# Pumping lemma linguaggi regolari

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi



$$L_1 = \{a^n b^m | n \le m\}$$

Il seguente linguaggio è regolare?

$$L_1 = \{a^n b^m | n \le m\}$$

Non regolare.

Per il pumping lemma: dato n, consideriamo la stringa  $z=a^nb^n$ . Necessariamente, per ogni u,v,w tali che  $|uv| \le n$ ,  $|v| \ge 1$  e z=uvw, deve essere  $uv=a^k$  per  $k \le n$  e quindi  $v=a^k$  per  $1 \le k$ . Per i=2, abbiamo allora che n+h>n e quindi  $z_2=a^{n+h}b^n\notin L_1$ .

$$L_1' = \{a^n b^m | n < m\}$$

Il seguente linguaggio è regolare?

$$L_1' = \{a^n b^m | n < m\}$$

Non regolare.

Per il pumping lemma: dato n, consideriamo la stringa  $z=a^nb^{n+1}$ . Necessariamente, per ogni u,v,w tali che  $|uv| \le n$ ,  $|v| \ge 1$  e z=uvw, deve essere  $uv=a^k$  per  $k \le n$  e quindi  $v=a^h$  per  $1 \le k$ . Per i=2, abbiamo allora che  $n+h \ge n+1$  e quindi  $z_2=a^{n+h}b^{n+1} \notin L_1'$ .

$$L_2 = \{a^n b^m | n \ge m\}$$

Il seguente linguaggio è regolare?

$$L_2 = \{a^n b^m | n \ge m\}$$

Non regolare.

Per il pumping lemma: dato n, consideriamo la stringa  $z=a^nb^n$ . Necessariamente, per ogni u,v,w tali che  $|uv| \le n$ ,  $|v| \ge 1$  e z=uvw, deve essere  $uv=a^k$  per  $k \le n$  e quindi  $v=a^h$  per  $1 \le k$ . Per i=0, abbiamo allora che  $z_0=a^{n-h}b^n \notin L_2$ .

In alternativa, osserviamo che dato che  $L_1$  non è regolare, non lo è neanche  $\overline{L}_1$ . Osserviamo inoltre che  $\overline{L}_1 = L_2 \cup L_3$ , con  $\overline{L}_3 = \{a^*b^*\}$ . Dato che  $\overline{L}_3$  è regolare, lo è anche  $L_3$ , per cui, se  $L_2$  fosse regolare ne risulterebbe che  $\overline{L}_1$  sarebbe regolare in quanto unione di linguaggi

$$L = \{a^i b^j | i - j > 4\}$$

Il seguente linguaggio è regolare?

$$L = \{a^i b^j | i - j > 4\}$$

Non regolare.

Per il pumping lemma: dato n, consideriamo la stringa  $z=a^nb^{n-3}$ . Necessariamente, per ogni u,v,w tali che  $|uv| \le n$ ,  $|v| \ge 1$  e z=uvw, deve essere  $uv=a^k$  per  $k \le n$  e quindi  $v=a^h$  per  $1 \le h \le k$ . Per i=0, abbiamo allora che n-h < n < n-3+4=n+1 e quindi  $z_0=a^{n-h}b^{n-3} \notin L$ .

$$L = \{a^i b^j | i - j < 4\}$$

Il seguente linguaggio è regolare?

$$L = \{a^i b^j | i - j < 4\}$$

Non regolare.

Per il pumping lemma: dato n, consideriamo la stringa  $z=a^nb^{n-3}$ . Necessariamente, per ogni u,v,w tali che  $|uv| \le n$ ,  $|v| \ge 1$  e z=uvw, deve essere  $uv=a^k$  per  $k \le n$  e quindi  $v=a^h$  per  $1 \le k$ . Per i=2, abbiamo allora che n+h>n-3+4=n+1 e quindi  $z_0=a^{n-h}b^{n-3} \notin L$ .

$$L = \{a^i b^j | i+j > 4\}$$

Il seguente linguaggio è regolare?

$$L = \{a^i b^j | i+j > 4\}$$

Regolare.

Si può definire un ASFD che lo riconosce.

$$L = \{a^i b^j | i + j < 4\}$$

Il seguente linguaggio è regolare?

$$L = \{a^i b^j | i + j < 4\}$$

Regolare.

Si tratta in effetti di un linguaggio finito.