HYPERGEOMETRIC FUNCTIONS COURSE ROSS 2023 PROBLEM SET

BRIAN GROVE

Week I:

LECTURE 1 PROBLEMS

1. Recall that

$$_{2}F_{1}\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ & 1 \end{bmatrix}; z \end{bmatrix} := \sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{k}\left(\frac{1}{2}\right)_{k}}{(1)_{k}(1)_{k}} z^{k}$$

for $z \in \mathbb{C}$ with |z| < 1.

(a) Show

$$_{2}F_{1}\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ & 1 \end{bmatrix}; z = \sum_{k=0}^{\infty} {2k \choose k}^{2} \left(\frac{z}{16}\right)^{k}.$$

Note: In parts (b) - (d) prove, disprove, or salvage if possible.

(b) Use part (a) to show that

$$_{2}F_{1}\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ & 1 \end{bmatrix}$$
; $4 = \sum_{k=0}^{\infty} \frac{1}{(k!)^{2}}$.

(c) Find lower and upper bounds for

$$_{2}F_{1}\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ & 1 \end{bmatrix}; 4$$

using part (b).

(d) Simplify

$$_2F_1\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ & 1 \end{bmatrix}; x$$

for $x = \frac{1}{4}, 32, \frac{1}{16}$, and $\frac{4}{3}$ to the best of your ability. Do you notice any patterns? What lower and upper bounds can you prove in these additional cases?

2. Define

$$_{0}F_{1}\begin{bmatrix} * \\ a \end{bmatrix} := \sum_{k=0}^{\infty} \frac{z^{k}}{(a)_{k} \cdot k!}$$

for $z \in \mathbb{C}$ such that |z| < 1.

Let $x \in \mathbb{R}$. Recall the Maclaurian series for cosine and sine,

$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

and

$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}.$$

(a) Show that

$$\cos(x) = {}_{0}F_{1}\left[\frac{*}{\frac{1}{2}}; -\frac{x^{2}}{4} \right]$$

and

$$\sin(x) = x \cdot {}_{0}F_{1} \begin{bmatrix} * \\ \frac{3}{2} ; -\frac{x^{2}}{4} \end{bmatrix}$$

for $x \in \mathbb{R}$ such that |x| < 1.

- (b) How are the proofs for cos(x) and sin(x) related? Does one of the formulas imply the other or are the arguments distinct?
- (c) Recall the double angle and Pythagorean identities from trigonometry, $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$ and $\sin^2(\theta) + \cos^2(\theta) = 1$, respectively.

Rewrite these two identities for sine and cosine in terms of the ${}_{0}F_{1}$ function using part (a). Then use the ${}_{0}F_{1}$ version of the double angle formula to compute $\sin(\frac{\pi}{3})$ in terms of ${}_{0}F_{1}$ functions.

3. The power series representations for $\sin^{-1}(x)$ and $-\ln(1-z)$ are

$$\sin^{-1}(x) = \sum_{k=0}^{\infty} \frac{(2k)!}{2^{2k}(k!)^2} \frac{x^{2k+1}}{2k+1}$$

for $x \in \mathbb{R}$ such that |x| < 1 and

$$-\ln(1-z) = \sum_{k=0}^{\infty} \frac{z^{k+1}}{k+1}$$

for $z \in \mathbb{C}$ such that |z| < 1.

(a) Show that

$$\sin^{-1}(x) = x \cdot {}_{2}F_{1} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} \end{bmatrix}; x^{2}$$

when |x| < 1.

- (b) Substitute $x = \frac{1}{\sqrt{2}}$ into the equation in part (a) to express π as a ${}_2F_1$ value.
- (c) Compare your answer from part (b) to the formula for π we proved in the lecture,

$$\pi = 4 \cdot {}_2F_1 \begin{bmatrix} \frac{1}{2} & 1\\ & \frac{3}{2} \\ \end{bmatrix}; -1 ,$$

to conclude that

$$_{2}F_{1}\begin{bmatrix}\frac{1}{2} & 1\\ & \frac{3}{2} \ ; & -1\end{bmatrix} = \frac{1}{\sqrt{2}} \cdot {}_{2}F_{1}\begin{bmatrix}\frac{1}{2} & \frac{1}{2}\\ & \frac{3}{2} \ ; & \frac{1}{2}\end{bmatrix}.$$

(d) Show that

$$-\ln(1-z) = z \cdot {}_{2}F_{1} \begin{bmatrix} 1 & 1 \\ & 2 \end{bmatrix}; z$$

for |z| < 1.

- (e) Substitute $z = 1 \frac{e}{4}$ into the result of part (d) to write $\frac{1}{e-4}$ as a ${}_2F_1$ value.
- **4.** Is the operation *, where P * Q means the third point on the line through the points P and Q on an elliptic curve, a group operation? If so, describe the identity and inverse elements.
- 5. Prove the addition of two points on an elliptic curve is closed under the elliptic curve addition law.
- **6.** Prove the associativity of addition for the elliptic curve addition law with a picture.

LECTURE 2 PROBLEMS

1. Let $s \in \mathbb{C}$. The gamma function is defined as

$$\Gamma(s) := \int_0^\infty t^{s-1} e^{-t} dt$$

when Re(s) > 0.

- (a) Show that $\Gamma(1) = 1$ and $\Gamma(s+1) = s \cdot \Gamma(s)$ for $s \in \mathbb{C} \setminus \{\mathbb{Z}_{\leq 0}\}$ and $\operatorname{Re}(s) > 0$.
- (b) Use part (a) to show that $\Gamma(k) = (k-1)!$, where k is a positive integer.
- (c) Another common way to define the gamma function is as

$$\Gamma(s) = \lim_{s \to \infty} \frac{k^{s-1}k!}{(s)_k}$$

for all $s \in \mathbb{C} \setminus \{\mathbb{Z}_{\leq 0}\}.$

Use the above product definition of the gamma function to give another proof of the results in parts (a) and (b).

- (d) Why is the restriction that $s \notin \mathbb{Z}_{\leq 0}$ needed in the limit definition of $\Gamma(s)$? Try some examples, if necessary.
- (e) Do you think it is easier to prove parts (a) and (b) with the integral or limit definition of $\Gamma(s)$? How are the two proofs similar and how do they differ?
- 2. The reflection formula for the gamma function states that

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$

for $s \in \mathbb{C} \setminus \mathbb{Z}$.

- (a) Why is the reflection formula **not** valid for integers? Try some examples, if necessary.
- (b) Use the reflection formula to show $\Gamma(\frac{1}{2})^2 = \pi$.
- (c) Show the gamma function is always positive when Re(s) > 0.
- (d) Conclude that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ from parts (b) and (c).
- (e) Use the reflection formula to compute $\Gamma(\frac{n}{2})$ for n=3,5,7. Guess a general formula for $\Gamma(\frac{2n+1}{2})$ when $n \geq 1$. Can you prove your general formula?
- **3.** Show that $\Gamma(s)$ has no zeros. [Hint: The reflection formula may be useful.]
- 4. Define the Beta function as

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

for Re(x), Re(y) > 0.

Show that

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

when Re(x), Re(y) > 0.

- 5. In this problem prove, disprove, and salvage if possible for each statement.
 - (a) $\Gamma(0)$ is undefined.

(b)
$$B(-\frac{1}{2}, -\frac{1}{2}) = \frac{\Gamma(-\frac{1}{2})\Gamma(-\frac{1}{2})}{\Gamma(-1)} = 4\pi.$$

(c) $_2F_1\begin{bmatrix} \frac{1}{3} & 4\\ \frac{3}{2} & 1 \end{bmatrix}$ converges with the sum definition of the $_2F_1$ function.

(d)

$$B\left(\frac{1}{3}, \frac{2}{3}\right) = \frac{2\pi}{\sqrt{3}}.$$

6. Let $a \in \mathbb{Q}$ and recall the binomial series $(1-z)^{-a}$, where $z \in \mathbb{C}$. Show that

$$(1-z)^{-a} = \sum_{k=0}^{\infty} \frac{(a)_k}{k!} z^k$$

when |z| < 1, the Maclaurian series.

- 7. In the lecture, we showed that the real period of a Legendre elliptic curve is related to a $_2F_1$ value. This elliptic integral is a special case of more a general phenomenon called periods, introduced by Kontsevich and Zagier. Periods show up in many parts of number theory, algebraic geometry, topology, and beyond. Read <u>Periods</u> if you want to learn more about periods.
- 8. Define the Fibonacci sequence as $F_0 = 0$, $F_1 = 1$, with $F_{n+2} = F_n + F_{n+1}$ for all integers n. Similarly, define the Lucas sequence as $L_0 = 2$, $L_1 = 1$, and $L_{n+1} = L_n + L_{n-1}$ for all integers n. All statements below are valid for all integers n.
 - (a) Show that $F_{-n} = (-1)^{n-1}F_n$ and $L_{-n} = (-1)^nL_n$.
 - (b) Show that $L_n = F_{n+1} + F_{n-1}$ and $F_n = \frac{1}{5}(L_{n+1} + L_{n-1})$.
 - (c) In the lecture we proved the Binet formula for F_n . Prove the Binet formula for L_n ,

$$L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

(d) Let p be an odd prime. Show that

$$L_p \equiv 1 \mod p$$

and

$$F_p \equiv \left(\frac{5}{p}\right) \mod p,$$

where $\left(\frac{a}{n}\right)$ denotes the Legendre symbol.

LECTURE 3 PROBLEMS

- 1. Use the Pfaff transformation for the $_2F_1$ function to prove the Euler transformation for the $_2F_1$ function.
- 2. Recall the Gauss evaluation formula for the ${}_2F_1$ function at z=1 from the lecture. (put the formula here)

Use this formula to prove, disprove, and salvage if possible for the following statements.

(a)
$${}_{2}F_{1}\begin{bmatrix} \frac{5}{2} & \frac{3}{2} \\ \frac{1}{2} & 1 \end{bmatrix} = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2})}{\Gamma(-2)\Gamma(-1)} = 2\pi.$$

(b)
$$_{2}F_{1}\begin{bmatrix} \frac{1}{2} & \frac{3}{2} \\ \frac{7}{2} & \frac{7}{2} \end{bmatrix}; 1 = \frac{15\pi}{32}.$$

- **3.** Let B_k denote the k-th Bernoulli number. Show that $B_{2k+1}=0$ for $k\geq 1$.
- **4.** Let $s \in \mathbb{C}$. Recall the Riemann zeta function is defined as

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

when Re(s) > 1.

(a) Let p be a prime. Show that

$$\zeta(s) = \prod_{p} \frac{1}{1 - \frac{1}{p^s}}$$

when Re(s) > 1, where \prod_{p} denotes the product over all primes p.

(b) Use the functional equation for $\zeta(s)$,

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)$$

to show that $\zeta(-2k)=0$ for all positive integers k. Why is $\zeta(2k)$ nonzero for all positive integers k?

(c) A known formula for $\zeta(s)$ at positive even integers is

$$\zeta(2k) = \frac{(-1)^{k+1} B_{2k} 2^{2k-1} \pi^{2k}}{(2k)!}.$$

Use the functional equation for $\zeta(s)$ and the $\zeta(2k)$ formula to show that

$$\zeta(1-2k) = (-1)^{2k-1} \frac{B_{2k}}{2k}$$

for all positive integers k.

Week II:

Lecture 4 Problems

- 1. Show that \mathbb{F}_p^{\times} and $\widehat{\mathbb{F}_p^{\times}}$ are isomorphic as groups.
- **2.** Prove both versions of the orthogonality of characters on \mathbb{F}_p^{\times} or look up the proofs.
- **3.** Let $A, B \in \widehat{\mathbb{F}_p^{\times}}$ and recall the Gauss and Jacobi sums,

$$g(A) = \sum_{x \in \mathbb{F}_p^{\times}} A(x) \zeta_p^x$$

and

$$J(A,B) = \sum_{x \in \mathbb{F}_p^{\times}} A(x)B(1-x),$$

respectively.

(a) Show that

$$J(A, B) = \frac{g(A)g(B)}{g(AB)}$$

if $AB \neq \varepsilon$.

- (b) Salvage the result in part (a) when $AB = \varepsilon$.
- **4.** (a) Show that $J(A, \overline{A}) = -A(-1)$ if $A \neq \varepsilon$, where \overline{A} denotes the conjugate of the character A.
 - (b) Show that $J(A, \varepsilon) = -1$ if $A \neq \varepsilon$.
 - (c) Salvage the results in parts (a) and (b) when $A = \varepsilon$.
- 5. The double-angle formula for Gauss sums says that

$$g(A)g(\phi A) = g(A^2)g(\phi)\overline{A}(4)$$

for every multiplicative character $A \in \widehat{\mathbb{F}_p^\times}.$

(a) Use the double-angle formula to show

$$J(A, A) = \overline{A}(4)J(A, \phi).$$

- (b) Use part (a) to determine $J(\varepsilon, \varepsilon)$ and $J(\varepsilon, \phi)$ in another way.
- (c) Suppose $p \equiv 1 \mod 4$. Substitute $A = \eta_4 \chi$ into the double angle formula and solve for $g(\phi \chi^2)$.

Remark: The substitution in part (c) is a commonly used tool for simplifying Gauss sums inside the H_p function.

Lecture 5 Problems

- 1. Compute
 - (a) $H_p \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ & 1 \end{bmatrix}; 1 \end{bmatrix}$

for primes $p \equiv 1 \mod 3$.

for primes $p \equiv 1 \mod 4$.

(b) $H_p \begin{bmatrix} \frac{1}{4} & \frac{3}{4} \\ & 1 \end{bmatrix}; 1$

2. Let $\alpha = \{a_1, \ldots, a_n\}$ and $\beta = \{1, b_2, \ldots, b_n\}$ be the first and second rows of the hypergeometric data, respectively, with all $a_i, b_i \in \mathbb{Q}$.

The hypergeometric data $\{\alpha, \beta\}$ is primitive if $a_i - b_j \notin \mathbb{Z}$ for all $i, j \in [1, n]$.

Another property of hypergeometric data is to be defined over \mathbb{Q} . We say a multiset, say α , is defined over \mathbb{Q} if

$$\prod_{j=1}^{n} (X - e^{2\pi i a_j}) \in \mathbb{Z}[x],$$

where the $a_j \in \alpha$.

The hypergeometric data $\{\alpha, \beta\}$ is <u>defined over \mathbb{Q} </u> if both multisets, α and β , are defined over \mathbb{Q} .

In each case determine if the hypergeometric data is algebraic, primitive, and defined over \mathbb{Q} .

(a)
$$\alpha = \{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{6}\}$$
 and $\beta = \{1, \frac{3}{2}, \frac{1}{5}, \frac{4}{5}\}.$

(b)
$$\alpha = \{\frac{1}{2}, \frac{1}{6}, \frac{5}{6}\}$$
 and $\beta = \{1, \frac{1}{3}, \frac{2}{3}\}.$

- (c) $\alpha = \{\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}\}$ and $\beta = \{1, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}\}.$
- (d) $\alpha = \{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}\}$ and $\beta = \{1, 1, 1\}$.
- 3. Recall the algebraic formula from the lecture,

$$_{2}F_{1}\begin{bmatrix} a & a + \frac{1}{2} \\ & \frac{1}{2} \end{bmatrix}; z = \frac{1}{2} \left[(1 + \sqrt{z})^{-2a} + (1 - \sqrt{z})^{-2a} \right]$$

where $0 < a < \frac{1}{2}$ and $z \in \mathbb{C}$ with |z| < 1.

- (a) Let $a = \frac{1}{3}$ in the algebraic formula above and think about what the finite field analog of this formula should be.
- (b) Show that if $p \equiv 1 \mod 6$ and $\lambda \in \mathbb{F}_p^{\times}$ then

$$H_p \begin{bmatrix} \frac{1}{3} & \frac{5}{6} \\ & \frac{1}{2} \end{bmatrix}; \lambda = \left(\frac{1 + \phi(\lambda)}{2} \right) \left[\eta_3 (1 + \sqrt{\lambda}) + \eta_3 (1 - \sqrt{\lambda}) \right].$$

- 4. In each part simplify your answer to the best of your ability.
 - (a) Compute

$$H_p \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ & \frac{1}{2} \end{bmatrix}; 2$$

for the primes p = 7, 13, and 19.

(b) Compute

$$H_p \begin{bmatrix} \frac{1}{6} & \frac{5}{6} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
; 4

for the primes p = 13, 17, and 61.

(c) Compute

$$H_5 \begin{bmatrix} \frac{1}{4} & \frac{3}{4} \\ & \frac{1}{2} \end{cases}; \lambda$$

for all $\lambda \in \mathbb{F}_5^{\times}$.

LECTURE 6 PROBLEMS

1. Let \tilde{E}_{λ} denote the mod p reduction of the Legendre elliptic curve

$$E_{\lambda}: y^2 = x(1-x)(1-\lambda x)$$

where $\lambda \in \mathbb{Z} \setminus \{0,1\}$ and p is a prime of good reduction. Recall that $|\tilde{E}_{\lambda}(\mathbb{F}_p)|$ is the number of solutions to \tilde{E}_{λ} over \mathbb{F}_p plus one, for the point at infinity.

- (a) Compute $\tilde{E}_{\lambda}(\mathbb{F}_{11})$ for all $\lambda \in \mathbb{F}_{11} \setminus \{0,1\}$. Do you see any patterns? Any conjectures?
- (b) Use your computations in part (a) to determine the values of

$$H_{11}\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ & 1 \end{bmatrix}; \lambda$$

for all $\lambda \in \mathbb{F}_{11} \setminus \{0,1\}$. Any patterns or conjectures for these H_{11} values?

(c) Repeat parts (a) and (b) with p=17 and use your computations to refine your conjectures from parts (a) and (b).

8 BRIAN GROVE

- $\bf 2.\ Read\ \underline{Mazur's\ article}$ to learn more about the Sato-Tate conjecture and related equidistribution problems.
- $\bf 3.\ Read\ \underline{this\ summary}$ on the introduction of hypergeometric moments by Ono, Saad, and Saikia.