实验报告 18 RC 串联电路的稳态特性

实验名	S 称	RC 串联电路的稳态特性								
班	级	23063114	实验	2024.11.14						
学	号	23061922		预习成绩	,					
姓	名	本與這	京沙代	操作成绩						
实验组号		4109	一实验成绩	报告成绩						
任课		重 彭兹	平丽.	总评成绩						

【实验目的】

- 1. 观测 RC 串联电路的幅频特性和相频特性。
- 2. 学习用双踪法和李萨如图形法测相位差。

【实验原理】

u

光

0

WUR = HO

一、RC 串联电路的稳态特性

RC 串联电路的稳态过程是指 电路中乌电压和电流 随电源心但定心周期性变化。 RC 串联电路的稳态特性包括幅频特性和相频特性。幅频特性是指 元件上 输出电压分 指值 随电源 领 全 夏化 分 特性 ;相频特性是指 元件上籍

出电压的相应随电源领率变化

1. RC 串联电路如图 18-1 所示。根据电路的特点导出电阻端输出和电容端输出的幅频特性公式,并画出幅频特性曲线。

RC串联电路の急阻抗: $|Z| = \sqrt{R^2 + (\omega c)^2}$. 回路中の电流: $I = \frac{u_i}{|Z|}$. 则电容两路的输出电压 $U_c = \frac{1}{\sqrt{wc}} \cdot \frac{u_i}{\sqrt{(wcR)^2 + 1}}$ 电阻两路的输出电压 $U_R = IR = \frac{u_i}{\sqrt{1 + (\omega c_R)^2}}$.

Uc

 $I(t)=Isin\omega t$

2. 画出输出电压和输入电压之间的相位关系图,写出电容端输出的相频特性公式,并

$$\int \tan y_c = -\frac{u_R}{u_c} = -wck.$$

$$\cos y_c = -\frac{u_c}{u_i}$$

二、相位差的测量方法

1. 双踪法是将**办了各侧同软华飞线或**同时显示在示波器上,从而求出相位差,示波器上显示如图 18-2 所示。(写出相位差公式并说明公式中各量的物理意义。)

$$\mathcal{G}=2\pi\frac{\Delta L}{L}$$

△L:两正弦胶达到同一调设的时间差. ○

L: 正弦波一个周期时间在示设器 上显示的水平长度。

2. 将 U_c 和 U_i 分别输入示波器的 X_i 和 Y_i 轴,示波器显示模式调整为 Y_i 7 模式,这时在示波器上显示如图 18-3 所示。(写出相位差公式并说明公式中各量的物理意义。)

【实验仪器】(写明仪器型号、规格、精度。)

教守示政器.

教学式函数信号链器.

基础电学实验箱.

【注意事项】

- 1.信号丝器罗慧延验。
- 2. 信号发生器和示波器而盖地游图发地。 测电器游马稳志特性,发地游在电管一侧; 测电阻端的稳态特性,发地游在电阻一侧。

【实验内容及步骤】(根据实验要求简述实验内容及步骤。)

和图连接电路.

1.测定RC串联电路与幅频等性.

取 只=1.5mk.a., C=0.01/nF, 调整语号发生器为正弦成, 输出电压为 [V. 立波器 选"MEASURE", 自动哪量.
调节f至5mHz ~ 3mkHz, MI Mc两端电压幅值,作图.

2. 双踪法测定 RC串联电路多期领导性.

- (1) 示政器呈示模式 Y-T, 据~ SURSOR, 这样类型为X.
- (少调节月至1004年~3水北,侧出孔和上,下少年月前路
- 的 ずて, て二流, 与て=RC 四较.

3. 李萨加图形法 测定 RC 串联电路的 胸额特性.

- (1) 改复星示模式办X-Y,调整图形设了独与队到更成重信。 据"cursor"如张美型为Y.
- (2) 广洞的小儿人的比较,脚出人民、女生,中里一个的的。

(3)作tany-f于科本人, 學了二品,5 T=RC比较。

【数据处理与结果】(整理数据表格,计算结果和不确定度,写出结果表达式。)

(在坐标纸上画出 RC 串联电路的幅频特性和相频特性;用作图法求出时间常数 τ ,并和 τ = RC 比较,算出百分比误差,可用电脑作图。)

書詩知園形式:
$$T = \frac{1}{2\pi} = \frac{0.087}{2\pi} = 0.0130$$
.

理视道: $T_0 = RC = 0.015$.

误差: $\frac{|\tau - \tau_0|}{T_0} = \frac{0.002}{0.015} = 13.3\%$.

双題式: $T = \frac{1}{2\pi} = \frac{0.1128}{2\pi} = 0.0179$

理观道: $T_0 = RC = 0.0115$.

误差: $\frac{|\tau - \tau_0|}{T_0} = \frac{0.0029}{0.015} = 19.3\%$.

HDU 设备名化太子重3,建议修-修 $^{\text{CO}}$.

(河國附后).

【结果讨论与误差分析】(实验所得幅频特性和相频特性曲线与理论曲线是否吻合,分析影响实验结果的原因。分析作图求得的时间常数 τ 和 τ = RC 相差较大的原因。)

所得曲线与理论曲线基车响台.

- (1) 误差分析:①系统误差:加仪器名化、测量精度误差等.
 - ② 难戏世图案:如放大器的饱和、电管漏电等.
 - ③干扰乖噪声:加电磁干扰、热噪声等.
- (ツ て与 T=RC 相差较大的原因:
 - ①测量误差:如效路法测得 AT, 下不准确 使用于动沟林使测量标的 严格对准交叉, 查萨加图形法 堋 A 时未与图形于略相切, 测 B 时未严格对准 4 轴 3 点.

B财本严格对准 4 轴交点. ② 模型误差;实际系统中存在非常性因素,不完全使得 T=RC.

③ 作图误差: 图或拟台时, 求得长值有上下浮动, 从而导致下的误差。【分析讨论题】

- ν_{c} ν_{e} . ν_{e}
- 2. 测量 RC 串联电路幅频特性, 电容端输出和电阻端输出的电路连线有什么区别?
- 1. (1) 稳态过程:电路中的电压和电流随电源作恒定的周期性变化.
 - (2) 关系:由 Ui=I-12 = IJR+(tic)2.

$$\Rightarrow \begin{cases} U_{c} = I \cdot \overline{w_{c}} = \frac{U_{i}}{\sqrt{(w_{c}R)^{2}+1}} \\ U_{R} = I \cdot R = \frac{U_{i}}{\sqrt{1+(\overline{w_{c}R})^{2}}} \end{cases} \Rightarrow -\overline{A} \ge \overline{Q} : I = \frac{U_{c}}{v_{c}} = \frac{U_{R}}{R}.$$

- 2. ①若电容端输出,信号源据电容-涕,另一海据司改器。
 - ②若电阻铸输出,信号源据电阻-锑,另-锑据及器

【实验心得或建议】

- <>> RC串來电路与时间常數 T 对电路分频率响应有重要影响.
- (2) 通过本汉吴旌,进一与理解了 RC串联电路 (2) 通过本汉吴旌,并进一岁 熟悉) 信号发生器与示赦器 (6) 操作。

【原始数据记录】

1. RC 串联电路的幅频特性测量数据如下。

$R=1.5$ kΩ, $C=0.01$ μF 表中 $U_{\rm cpp}$ 是数字式示波器峰峰值, $U_{\rm rms}$ 是有效值														
f/kHz	0.50	1.00	2.00	3.00	5.00	7.00	9.00	11.00	13.00	15.00	18.00	22.00	26.00	30.00
$U_{ m cpp}/{ m V}$	5.08	5.06	4.98	4.84	4.52	4.12	3.76	3.40	3.08	2.80	2.44	2.12	1-84	1-64
$U_{ m rms}$ /V	1.80	1-79	1.76	1.71	1.60	1.46	1-33	1.20	109	0-99	0.86	0-75	0.65	0.18

Ugp/2/2.

2. 双踪法测 RC 串联电路的相频特性测量数据如下。

R =	R=1.5 kΩ,C=0.01μF 表中 Δ T 是两个信号达到同一相位时的时间差, T 为信号周期													
f/kHz	0.50	1.00	2.00	3.00	5.00	7.00	9.00	11.00	13.00	15.00	18.00	-22.00	26.00	30.00
$\Delta T/s$	21.0 X10-b	17.8	16.8 X10-6	16.2 X10-6	15.4 XP 0		13.6 ×10-6	12.4 X10-6	11.6 ×10-6	10.8 X10-6	9.80 ×10-6	-8-60 ×10-6	7.60 ×10-6	-680 ×10-6
TIMS	2000.0				20.0	1429	UH	90-9	76.9	66-7	打.6	45.t	38.5	33.3
φ/rad	0-066	0-112	041	0:303	0.484	0-63	0769	n.85)	0.948	1-018	1-108	1-189	1.242	1-282
tan ϕ	0-066	0.112	244	0.31	0.51	0-73	0.968	iist	1.391	1.620	2.006	248	2.90)	3.363

3. 李萨如图形法测 RC 串联电路的相频特性测量数据如下。

R=1.5 kΩ, $C=0.01$ μF 表中 A 、 B 分别是椭圆在 Y 轴上的投影和截距														
f/kHz	0.50	1.00	2.00	3.00	5.00	7.00	9.00	11.00	13.00	15.00	18.00	22.00	26.00	30.00
A/V	5.20	5.12	5.12	t.12	<u> </u>	f.04	J.04	y.04	J.04	t-op	5-04	J.ok	J.ox	J.04
<i>B</i> / V	0.240	0.464	0.918	1.40	2.16	2.76	3.24	3.68	3.92	4.08	4.32	448	4.56	4.64
φ/ rad	0-046	0-091	0.180	(6.2)	0-436	0.180	068	0.81)	180	0.943	1.0}0	1.08	1-13	1.170
tan ϕ	0.046	०न्१।	0-182	0.28	p 046	0.65	0.83	1.069	1.23)	1.379	1.664	1.940	2.124	2.358

RC 串联电路的幅频特性曲线:

李萨如图形法:

双踪法:

