MT5823 Semigroup theory: Solutions 5 (James D. Mitchell) Bicyclic monoid, ideals, Green's relations

Bicyclic monoid

5-1. Let $c^i b^j$, $i \ge j$ be an idempotent in B. Then $(c^i b^j)^2 = c^i b^j$ and so $c^i b^j c^i b^j = c^i b^j$. Repeatedly applying bc = 1 to the left hand side of the last equality, we obtain $c^{2i-j}b^j = c^i c^{i-j}b^j = c^i b^j$. Hence 2i-j=i and so i=j. A similar argument proves that i=j in the case that $c^i b^j$, $i \le j$, is an idempotent.

Conversely, $(c^i b^i)^2 = c^i b^i c^i b^i = c^i b^i$ (by applying bc = 1 a total of i times). Hence every element $c^i b^i$ is an idempotent.

Let $c^i b^i, c^j b^j \in E$. Then

$$c^ib^ic^jb^j = \begin{cases} c^ib^{i-j}b^j = c^ib^i & i \ge j \\ c^ic^{j-i}b^j = c^jb^j & j \ge i \end{cases}.$$

Thus E is closed and so a subsemigroup of B. If $X \subseteq E$ and $\langle X \rangle = E$, then from the above equation X = E. Hence E is not finitely generated (although B is finitely generated).

5-2. Let $c^{4i+5}b^{4j+5}$, $c^{4k+5}b^{4l+5} \in S_1$. Then

$$c^{4i+5}b^{4j+5}c^{4k+5}b^{4l+5} = \begin{cases} c^{4i+5}b^{4j-4k}b^{4l+5} & j \ge k \\ c^{4i+5}c^{4k-4j}b^{4l+5} & k > j \end{cases} = \begin{cases} c^{4i+5}b^{4j-4k+4l+5} & j \ge k \\ c^{4i+4k-4j-5}b^{4l+5} & k > j. \end{cases}$$

Thus S_1 is closed and hence a subsemigroup of B.

A similar argument proves that S_2 is a subsemigroup of B also.

The mappings $\phi_1: B \longrightarrow S_1$ and $\phi_2: B \longrightarrow S_2$ defined by

$$(c^i b^j)\phi_1 = c^{4i+5} b^{4j+5} \ i, j \ge 0$$

$$(c^i b^j)\phi_2 = c^{4i+7}b^{4j+7} \ i, j \ge 0$$

are isomorphisms.

To prove that $S = S_1 \cup S_2$ is a subsemigroup it suffices to show that if $x \in S_1$ and $y \in S_2$, then $xy, yx \in S$. Let $x = c^{4i+5}b^{4j+5}$ and $y = c^{4k+7}b^{4l+7}$ where $k \ge j$. Then $xy = c^{4(i+k-j)+7}b^{4l+7} \in S_2 \subseteq S$. Analogous arguments prove that $xy \in S$ when k < j and $yx \in S$.

Since B is finitely generated (by b and c), $B \cong S_1$, and $B \cong S_2$, it follows that S_1 and S_2 are finitely generated also, and so too is $S_1 \cup S_2 = S$. A finite generating set for S_1 is $\{c^5b^9, c^9b^5\} = \{b, c\}\phi_1$ and for S_2 is $\{c^7b^{11}, c^{11}b^7\} = \{b, c\}\phi_2$.

Ideals

5-3. Let I be a left ideal and J be a right ideal. If $i \in I$ and $j \in J$, then $ji \in I$ and $ji \in J$. Hence $IJ \subseteq I \cap J$ and in particular, $I \cap J$ is nonempty.

Let S be a right zero semigroup. Then for $x, y \in S$, $x \neq y$, both $\{x\}$ and $\{y\}$ are left ideals, but $\{x\} \cap \{y\} = \emptyset$. \square

5-4. Let S be a rectangular band and let $I \subseteq S$ be any 2-sided ideal. Then for any $y \in I$ and $x \in S$ we have $xyx \in I$. But $xyx = x^2 = x$ and so I = S.

Consider $S = I \times \Lambda = \{ (i, \lambda) : i \in I, \lambda \in \Lambda \}$. Each set $L_i = \{ (i, \lambda) : \lambda \in \Lambda \}$ is a right ideal and each set $R_{\lambda} = \{ (i, \lambda) : i \in I \}$ is a left ideal.

Green's relations

5-5. We have that $\operatorname{im}(f) = \{3,4\}$ and $\operatorname{im}(g) = \operatorname{im}(h) = \{2,3\}$. Thus, by Theorem 9.4, $(g,h) \notin \mathcal{L}$ in T_4 but $(f,g) \notin \mathcal{L}$ and $(f,h) \notin \mathcal{L}$.

On the other hand,

$$\ker(f) = \{\{1,4\},\{2,3\}\}, \ker(g) = \{\{1,4\},\{2,3\}\}, \text{ and } \ker(h) = \{\{1,2,3\},\{4\}\}.$$

Again it follows by Theorem 9.4 that $(f,g) \in \mathcal{R}$ but $(f,h) \notin \mathcal{R}$ and $(g,h) \notin \mathcal{R}$.

Now,

$$fh = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 2 & 3 \end{pmatrix}$$
 and $gh = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 3 \end{pmatrix}$.

Figure 1: The right Cayley graph of S.

Figure 2: The left Cayley graph of S.

Thus $\ker(fh)=\{\{1,4\},\{2,3\}\}$ and $\ker(gh)=\{\{1,2,3\},\{4\}\}$. Hence $(fh,gh)\not\in\mathscr{R}$ and so \mathscr{R} is not right congruence. \square

5-6. The right Cayley graph of S is shown in Figure 1. From Theorem ??, the strongly connected components of the right Cayley graph correspond to the \mathcal{R} -classes of S. From Figure 1 it is straightforward to deduce that the strongly connected components are:

$$\{b,b^2,b^3\},\{a^2b,a^2b^2,a^2b^3\},\{a,a^2\},\{ab,ab^2,ab^3\}.$$

The left Cayley graph of S is shown in Figure 2. From Theorem \ref{S} , the strongly connected components of the left Cayley graph correspond to the \mathscr{L} -classes of S. From Figure 2 it is straightforward to deduce that the strongly connected components are:

$${b,b^2,b^3}, {a,a^2}, {ab,ab^2,ab^3,a^2b,a^2b^2,a^2b^3}.$$

5-7. If i = k, then $c^i = c^k$ and so $c^i \mathcal{R} c^k$.

If $c^i \mathscr{R} c^k$, then there exist $c^x b^y$, $c^z b^t \in B$ $(x, y, z, t \ge 0)$ such that $c^i c^x b^y = c^k$ and $c^k b^z b^t = c^i$. Thus i + x = k and k + z = i. It follows that x = z = 0 and so i = k.

We have that $c^i \cdot b^j = c^i b^j$ and $c^i b^j \cdot c^j = c^i$. Hence $c^i b^j \mathcal{R} c^i$.

Finally, $c^i b^j \mathcal{R} c^k b^l$ if and only if $c^i \mathcal{R} c^i b^j \mathcal{R} c^k b^l \mathcal{R} c^k$ if and only if $c^i \mathcal{R} c^k$ if and only if i = k.

The analogous criterion for two elements of B to be \mathcal{L} -related is $c^i b^j \mathcal{L} c^k b^l$ if and only if j = l.

5-8. Let $e^2 = e \in S$ and $x \in R_e$ (the \mathscr{R} -class of e). Then there exist $u, v \in S^1$ such that eu = x and xv = e. Thus $ex = eeu = e^2u = eu = x$. Hence e is a left identity of R_e .

Let $x \in L_e$ (the \mathscr{L} -class of e). Then there exist $u, v \in S^1$ such that ux = e and ve = x. Thus $xe = vee = ve^2 = ve = x$.

5-9. Using the algorithm from lectures we find that the elements of S are:

$$x, y, x^2, xy, yx, y^2, x^3, x^2y, xy^2, x^3y, x^2y^2, x^3y^2$$

(12 elements in total). By drawing the left and right Cayley graphs of S we find that the \mathcal{R} - classes of S are:

$${yx}, {x^3y, x^3y^2}, {x^2y, x^2y^2}, {xy, xy^2}, {x, x^2, x^3}, {y, y^2}$$

the \mathcal{L} - classes of S are:

$$\{yx\}, \{x, x^2, x^3\}, \{xy, x^2y, x^3, y\}, \{xy^2, x^2y^2, x^3y^2\}, \{y, y^2\}$$

the only \mathcal{H} - classes of S with more than one element are:

$${x, x^2, x^3}, {y, y^2}.$$

Taking the composition of the \mathcal{L} - and \mathcal{R} - relations, we obtain Green's \mathcal{D} - relation:

$$\{yx\}, \{x, x^2, x^3\}, \{y, y^2\}, \{xy, x^2y, x^3, y, xy^2, x^2y^2, x^3y^2\}.$$

Since S is finite $\mathcal{J} = \mathcal{D}$.

5-10. In Problem **5-7** we proved that

$$c^i b^j \mathcal{R} c^k b^l$$
 if and only if $i = k$ (1)

$$c^i b^j \mathcal{L} c^k b^l$$
 if and only if $j = l$. (2)

Hence $c^i b^j \mathcal{H} c^k b^l$ if and only if i = k and j = l if and only if $c^i b^j = c^k b^l$. It follows that $\mathcal{H} = \Delta_B$.

On the other hand, if $c^i b^j$, $c^k b^l \in B$ are arbitrary, then

$$c^i b^j \mathcal{R} c^i b^l \mathcal{L} c^k b^l$$

from (1) and (2). Thus $\mathcal{D} = B \times B$.

Finally, $(c^kb^i)c^ib^j(c^jb^l)=c^kb^l$ and $(c^ib^k)c^kb^l(c^lb^j)=c^ib^j$. Thus $c^ib^j \mathcal{J}c^kb^l$ and $\mathcal{J}=B\times B$. (Note that B is infinite.)

5-11. Let S be a semigroup and suppose that S is defined by a presentation $\langle A|R\rangle$ where |A|>|R|. Let I and J be index sets such that |I|=|A| and |J|=|R|, and write $A=\{a_i:i\in I\}$ and $R=\{(u_j,v_j)\in A^+\times A^+:j\in J\}$. We define a $|R|\times |A|$ matrix $Q=(q_{j,i})_{j\in J,i\in I}$ where $q_{j,i}$ is the number of times a_i occurs in u_j minus the number of times a_i occurs in v_j . For example, if S is the semigroup defined by the presentation

$$\langle a_1, a_2, a_3 | a_1 a_2 a_1 = a_2 a_3, a_3 a_1 = a_2 \rangle$$

then the matrix is

$$\begin{pmatrix} 2 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$

Since Q is a matrix with entries in \mathbb{Q} , it is the matrix of a linear transformation $\mathbf{q}:\mathbb{Q}^{|A|}\longrightarrow\mathbb{Q}^{|R|}$ with respect to any basis for $\mathbb{Q}^{|A|}$. Hence, by the Rank-Nullity Theorem,

$$\dim(\mathbb{O}^{|A|}) = |A| = \dim \ker(\mathbf{q}) + \dim \operatorname{im}(\mathbf{q}).$$

Clearly, $\dim \operatorname{im}(\mathbf{q}) < \dim(\mathbb{Q}^{|R|}) = |R|$ and, since |R| < |A|, it follows that $\dim \ker(\mathbf{q}) = |A| - \dim \operatorname{im}(\mathbf{q}) \ge |A| - |R| > 0$.

Suppose that $\vec{x} \in \ker(\mathbf{q}) \setminus \{\vec{0}\}$ and that the entries of (the column vector) \vec{x} are $x_1, x_2, \dots, x_{|I|}$. We define $f: A \longrightarrow \mathbb{Q}$ by $(a_i)f = x_i$ for all $i \in I$. If $(b_1 \cdots b_k, c_1 \cdots c_l) \in R$, then since $\vec{x} \in \ker(\mathbf{q})$ it follows that

$$(b_1)f + \cdots + (b_k)f - ((c_1)f + \cdots + (c_l)f) = 0$$

and so

$$(b_1)f + \dots + (b_k)f = (c_1)f + \dots + (c_l)f.$$

In other words, the subsemigroup U of the additive semigroup $\mathbb Q$ generated by $x_1,\ldots,x_{|I|}$ satisfies the relations R defining S, and so U is a homomorphic image of S by Theorem 6.4. But at least one of $x_1,\ldots,x_{|I|}$ is non-zero, and so U is infinite. A finite semigroup cannot have an infinite homomorphic image and so S must be infinite too.