Линейная алгебра

2024 — 2025

Содержание

L	Лек	ция 2.12.2024	
	1.1	Ранг матрицы	
		Применения ранга матрицы к СЛУ	

1 Лекция 2.12.2024

1.1 Ранг матрицы

 ${\cal V}$ - векторное пространство над ${\cal F}$

Определение 1. Ранг Матрицы $rk(S) = \max\{|S|, S' \subseteq S, S - \text{линейно независимо}\}$

- 1. Столбцовый Ранг
- 2. Строковый Ранг

Утверждение 1.1. Ранг матрицы равен размерности подпространства

Лемма 1.2. При элементраных преобразованиях строк сохраняются все линейные зависимости между стобцами. rk(A) не меняется при элементарных преобразованиях строк.

$$A \to B: \langle A^{(1)}, \dots, A^{(n)} \rangle = \langle B^{(1)}, \dots, B^{(n)} \rangle$$

Доказательство.

- 1. $B^{(i)} \in \langle A^{(1)}, \dots, A^{(n)} \rangle$
- 2. Так как все элементарные преобразования обратимы, то включение ваерно и в обратную сторону
- 3. Ранг матрицы не меняется при элементарных преобразованиях столбцов
- 4. Строковый ранг матрицы не менчяется при элементарных преобразованиях строк и столбцов

Лемма 1.3 $(rkA = rkA^T)$. Если A имеет улучшенный ступенчатый вид, то $rkA = rkA^T$, причем оба числа равны количеству ненулвеых строк в A

 \mathcal{L} оказательство. 1. Пусть r - число ненулевых строк в A

2. Тогда:

$$e_1, \dots, e_r \subseteq \{A^{(1)}, \dots, A^{(n)}\}, \quad r = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$
 $\langle e_1, \dots, e_r \rangle \subset \langle A^{(1)}, \dots, A^{(n)} \rangle$

3. С другой стороны $\forall i : A^{(i)} \in < e_1, \dots, e_r$

$$\Rightarrow < A^{(1)}, \dots, A^{(n)} > \subseteq < e_1, \dots, e_r >$$

4. Получаем:

$$< A^{(1)}, \dots, A^{(n)} > = < e_1, \dots, e_r > \Rightarrow rkA = dim < e_1, \dots, e_r > = r$$

5. Покажем, что $rkA^T=r$. Достаточно доказать, что строки $A^{(i)}$ линейно независимы. Пусть $1\leqslant i_1\leqslant\ldots\leqslant n$ - номера ведущих элементов строк в A и пусть $\alpha_1A_{(1)}+\cdots+\alpha_nA_{(n)}=\vec{0}$ для некоторых $\alpha_i\in F.$ i_k строка координата в левой части равна $\alpha_k\Rightarrow\alpha_k=0$.

Лемма 1.4. rkA равно rkA^T , что также равно количеству ненулевых строк в ступенчатом виде.

Пусть $A \in Mat_n(F)$.

Лемма 1.5. $rkA = n \Leftrightarrow \det A \neq 0$ и $rkA < n \Leftrightarrow \det A = 0$

Доказательство. 1. При приведении A к ступенчатому виду при помощи элементарных преобразованиях строк, rkA не меняется, ведь условие равенства определителя 0 не меняется

- 2. В случае ступенчатого вида $rkA < n \Rightarrow \exists i : A_{(i)} = \vec{0} \Rightarrow \det A = 0$
- 3. В случае ступенчатого вида $rkA = n \Rightarrow$ Матрица является верхнетреугольной $\Rightarrow \det A \neq 0$ (так как элементы на диагонали не равны 0)

Определение 2. *Подматрица матрицы* A - любая матрица, полученная из исходной вычеркиванием каких-то строк и/или столбцов

Лемма 1.6. Ранг подматрицы не больше ранга матрицы

 \mathcal{L} оказательство. Если какие-то столбцы в S линейно независимые, то соответствующие столбцы в A и подавно линейно независимые.

Определение 3. *Минор матрицы* A - определитель произвольной квадратной матрицы, являющейся подматрицей в A

Определение 4. Базисные миноры - Ненулевые миноры в A

Теорема 1.7.

 $\forall A \in Mat_{m \times n}$

Следующие 3 числа равны:

- 1. rkA
- 2. rkA^T
- 3. Наибольший порядок ненулевого минора в A

Доказательство.

- 1. Мы знаем, что I=II
- 2. Пусть S квадратная подматрица в A, размера r и $\det S \neq 0$. Тогда $r = rkS \leqslant rkA \Rightarrow III \leqslant I$
- 3. Обратно пусть rkA = r. Тогда в A есть r столбцов, которые линейно независимые. Пусть B подмножество в A, составленная из этих столбцов. Тогда $rkB = r \Rightarrow B$ B есть r линейно независимых строк.
- 4. Пусть S подматрица размера r imes r, составленная из этих строк. Тогда $rkS = r \Rightarrow \det S \neq 0 \Rightarrow III \geqslant I$
- 5. III = I

1.2 Применения ранга матрицы к СЛУ

Рассмотрим $Ax = b, A \in Mat_{m \times n}(F), x \in F^n, b \in F^m$

Теорема 1.8 (Теорема Кронекера-Копели). *СЛУ совместна тогда и только тогда* rkA = rk(A|b)

Доказательство.

- 1. множество решений сохранится
- $2. \ rkA$ и rk(A|b) не меняется
- 3. Система случаем, когда (A|b) имеет ступенчатый вид.
- 4. А такая система будет иметь равный ранг, если не будет строк вида $0,\dots,0,b \neq 0$

Теорема 1.9. Пусть СЛУ совместна. Система имеет единственное решение тогда и только тогда rkA = n (n - число независимых)

Доказательство. Снова все сводится к ситуации, когда (A|b) имеет ступенчатый вид; В таком случае решение единственное тогда и только тогда, когда нет свободных переменных, а значит главных переменных ровно n, а значит число ненулевых строк равно $n \Leftrightarrow rkA = n$

Лемма 1.10. Система имеет единственное решение тогда и только тогда, когда определитель не равен 0

Доказательство.

- 1. Единственность решения $\Rightarrow rkA \Rightarrow rkA = rk(A|b) = n$
- 2. $\det A \neq 0 \Rightarrow rkA \Rightarrow rk(A|b) = rkA = n \Rightarrow \mathsf{СЛУ}$ совместна и имеет одно решение

Пусть теперь СЛУ: Ax=0. Пусть $S\subseteq F^n$ - множество ее решений

Лемма 1.11. dimS = n - rkA