Felicitaciones! ¡Aprobaste!

Calificación recibida 100 % Calificación del último envío 100 % Para Aprobar 80 % o más

Ir al siguiente elemento

1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words.	1 / 1 punto
	○ True	
	False	
	Correcto The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors ranges between 50 and 400.	
2	What is t-SNE?	
	What is t SINE:	1 / 1 punto
	A linear transformation that allows us to solve analogies on word vectors	1 / 1 punto
		1 / 1 punto
	A linear transformation that allows us to solve analogies on word vectors	1 / 1 punto
	 A linear transformation that allows us to solve analogies on word vectors A non-linear dimensionality reduction technique 	1 / 1 punto

1 / 1 punto

3. Suppose you download a pre-trained word embedding which has been

trained on a huge corpus of text. You then use this word embedding to train

an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

- True
- False

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".

- **4.** Which of these equations do you think should hold for a good word embedding? (Check all that apply)
- 1 / 1 punto

- \square $e_{boy} e_{girl} \approx e_{sister} e_{brother}$
- $ightharpoonup e_{boy} e_{brother} pprox e_{girl} e_{sister}$
 - ✓ Correcto
 Yes!
- \square $e_{boy} e_{brother} \approx e_{sister} e_{girl}$

5.	Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E * o_{1234}$ in Python?	1 / 1 punto
	It is computationally wasteful.	
	\bigcirc The correct formula is $E^T * o_{1234}$.	
	This doesn't handle unknown words (<unk>).</unk>	
	None of the above: calling the Python snippet as described above is fine.	
	Correcto Yes, the element-wise multiplication will be extremely inefficient.	
6.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.	1 / 1 punto
	True	
	○ False	
7.	In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.	1 / 1 punto
	\bigcirc c is the sequence of all the words in the sentence before t .	
	\bigcirc c is a sequence of several words immediately before t .	
	\bigcirc c is the one word that comes immediately before t .	
	✓ Correcto	

1 / 1 punto

8. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

$$P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{i'=1}^{10000} e^{\theta_{i'}^T e_c}}$$

Which of these statements are correct? Check all that apply.

- \blacksquare θ_t and e_c are both 500 dimensional vectors.
 - ✓ Correcto
- \square θ_t and e_c are both 10000 dimensional vectors.
- $\ensuremath{ f arphi}$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.
 - **⊘** Correcto
- After training, we should expect θ_t to be very close to e_c when t and c are the same word.
- **9.** Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

- \square θ_i and e_j should be initialized to 0 at the beginning of training.
- \blacksquare θ_i and e_i should be initialized randomly at the beginning of training.
 - **⊘** Correcto
- $ightharpoonup X_{ij}$ is the number of times word j appears in the context of word i.
 - **⊘** Correcto
- The weighting function f(.) must satisfy f(0) = 0.

The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.

- **10.** You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?
- 1 / 1 punto

- \bigcirc $m_1 \ll m_2$
 - **⊘** Correcto