State	Finished
	Sunday, 15 October 2023, 5:22 PM
Time taken	22 mins 47 secs
Grade	10.00 out of 10.00 (100 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
The general probler	m in detection is
Select one:	
Binary hypothe	sis testing ✓
Multiple cost d	etermination
Gaussian discri	
Optimal patteri	
Your answer is corre	ect.
The correct answer	is: Binary hypothesis testing
The correct answer	is: Binary hypothesis testing
	is: Binary hypothesis testing
Question 2	is: Binary hypothesis testing
Question 2 Correct	is: Binary hypothesis testing
Question 2 Correct Mark 1.00 out of 1.00	is: Binary hypothesis testing
Question 2 Correct Mark 1.00 out of 1.00 Flag question Consider the bina	ary hypothesis testing problem described in lectures with noise istribution of the output under \mathcal{H}_1 is
Question 2 Correct Mark 1.00 out of 1.00 Flag question Consider the bina variance $\frac{1}{2}$. The description	ary hypothesis testing problem described in lectures with noise
Question 2 Correct Mark 1.00 out of 1.00 Flag question Consider the bina variance $\frac{1}{2}$. The d	ary hypothesis testing problem described in lectures with noise
Question 2 Correct Mark 1.00 out of 1.00 Flag question Consider the bina variance $\frac{1}{2}$. The description	ary hypothesis testing problem described in lectures with noise
Question 2 Correct Mark 1.00 out of 1.00 ▼ Flag question Consider the bina variance $\frac{1}{2}$. The description Select one: $\mathcal{N}(\bar{\mathbf{s}}, \mathbf{I})$ $\mathcal{N}(0, \mathbf{I})$	ary hypothesis testing problem described in lectures with noise istribution of the output under \mathcal{H}_1 is
Question 2 Correct Mark 1.00 out of 1.00 Flag question Consider the bina variance $\frac{1}{2}$. The d Select one: $\mathcal{N}(\bar{\mathbf{s}}, \mathbf{I})$	ary hypothesis testing problem described in lectures with noise istribution of the output under \mathcal{H}_1 is
Question 2 Correct Mark 1.00 out of 1.00 Flag question Consider the bina variance $\frac{1}{2}$. The d Select one: $\mathcal{N}(\bar{\mathbf{s}}, \mathbf{I})$ $\mathcal{N}(0, \mathbf{I})$	ary hypothesis testing problem described in lectures with noise istribution of the output under \mathcal{H}_1 is
Question 2 Correct Mark 1.00 out of 1.00 Flag question Consider the binary variance $\frac{1}{2}$. The description Select one: $\mathcal{N}(\bar{\mathbf{s}}, \mathbf{I})$ $\mathcal{N}(0, \mathbf{I})$ $\mathcal{N}(0, \mathbf{I})$ $\mathcal{N}(\bar{\mathbf{s}}, \frac{1}{2}\mathbf{I})$ Your answer is corrected.	ary hypothesis testing problem described in lectures with noise istribution of the output under \mathcal{H}_1 is
Question 2 Correct Mark 1.00 out of 1.00 Flag question Consider the bina variance $\frac{1}{2}$. The description Select one: $\mathcal{N}(\bar{\mathbf{s}}, \mathbf{I})$ $\mathcal{N}(0, \mathbf{I})$ $\mathcal{N}(0, \mathbf{I})$ $\mathcal{N}(\bar{\mathbf{s}}, \frac{1}{2}\mathbf{I})$ $\mathcal{N}(\bar{\mathbf{s}}, \frac{1}{2}\mathbf{I})$	ary hypothesis testing problem described in lectures with noise istribution of the output under \mathcal{H}_1 is
Question 2 Correct Mark 1.00 out of 1.00 Flag question Consider the bina variance $\frac{1}{2}$. The description Select one: $\mathcal{N}(\bar{\mathbf{s}}, \mathbf{I})$ $\mathcal{N}(0, \mathbf{I})$ $\mathcal{N}(\ \bar{\mathbf{s}}\ ^2, \frac{1}{2}\mathbf{I})$ Your answer is correct. The correct answer	ary hypothesis testing problem described in lectures with noise istribution of the output under \mathcal{H}_1 is
Question 2 Correct Mark 1.00 out of 1.00 Flag question Consider the bina variance $\frac{1}{2}$. The description Select one: $\mathcal{N}(\bar{\mathbf{s}}, \mathbf{I})$ $\mathcal{N}(0, \mathbf{I})$ $\mathcal{N}(0, \mathbf{I})$ $\mathcal{N}(\bar{\mathbf{s}}, \frac{1}{2}\mathbf{I})$ Your answer is correct The correct answer Question 3 Correct	ary hypothesis testing problem described in lectures with noise istribution of the output under \mathcal{H}_1 is
Question 2 Correct Mark 1.00 out of 1.00 Flag question Consider the bina variance $\frac{1}{2}$. The description Select one: $\mathcal{N}(\bar{\mathbf{s}}, \mathbf{I})$ $\mathcal{N}(0, \mathbf{I})$ $\mathcal{N}(0, \mathbf{I})$ $\mathcal{N}(\bar{\mathbf{s}}, \frac{1}{2}\mathbf{I})$ Your answer is corrected.	ary hypothesis testing problem described in lectures with noise istribution of the output under \mathcal{H}_1 is

Select one:

$$\bigcirc \quad \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=1}^{N}y(i)}{2\sigma^2}}$$

$$\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=0}^{N}(y(i)-s(i))^2}{2\sigma^2}}$$

Your answer is correct.

The correct answer is: $\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=1}^{N}y^2(i)}{2\sigma^2}}$

Question **4**

Correct

Mark 1.00 out of 1.00

The LRT chooses \mathcal{H}_1 if

Select one:

$$\bigcirc \quad \frac{p(\bar{\mathbf{y}};\mathcal{H}_0)}{p(\bar{\mathbf{y}};\mathcal{H}_1)} \geq \tilde{\gamma}$$

$$\qquad \qquad \underline{p(\bar{\mathbf{y}};\mathcal{H}_1)}{p(\bar{\mathbf{y}};\mathcal{H}_0)} > \tilde{\gamma} \ \checkmark$$

$$\bigcirc \quad \frac{p(\bar{\mathbf{y}};\mathcal{H}_0)}{p(\bar{\mathbf{y}};\mathcal{H}_1)} \geq 1$$

$$\bigcirc \quad \frac{p(\bar{\mathbf{y}};\mathcal{H}_1)}{p(\bar{\mathbf{y}};\mathcal{H}_0)} < \tilde{\gamma}$$

Your answer is correct.

The correct answer is: $\frac{p(\bar{\mathbf{y}};\mathcal{H}_1)}{p(\bar{\mathbf{y}};\mathcal{H}_0)} \geq \tilde{\gamma}$

Question ${\bf 5}$

Correct

Mark 1.00 out of 1.00

ℙ Flag question

Consider $\bar{\mathbf{s}} = \begin{bmatrix} 2 & -2 & 2 \end{bmatrix}^T$. The LRT reduces to the ML decision rule for $\gamma =$

Select one:

- O 2
- **4**
- 8
- O 16

Your answer is correct.

The correct answer is: 8

Question **6**

Correct

Mark 1.00 out of 1.00

Consider $\bar{\mathbf{s}} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}^T$ and $\sigma^2 = \frac{1}{4}$. The distribution of the test statistic $\bar{\mathbf{s}}^T \bar{\mathbf{y}}$ under \mathcal{H}_0 is

Select one:

- $\mathcal{N}\left(0,\frac{1}{8}\right)$
- $\mathcal{N}\left(0,\frac{1}{2}\right)$
- $\mathcal{N}(0,1)$

Your answer is correct.

The correct answer is: $\mathcal{N}\left(0,\frac{1}{4}\right)$

Question 7

Correct

Mark 1.00 out of 1.00

Detection occurs when

Select one:

- \bigcirc The test correctly detects the presence of signal under H₁ \checkmark
- The test correctly detects the absence of signal under H₀
- The test falsely detects the absence of signal under H₁
- The test falsely detects the presence of signal under H₀

Your answer is correct.

The correct answer is: The test correctly detects the presence of signal under H₁

Question **8**

Correct

Mark 1.00 out of 1.00

♥ Flag question

Consider $\bar{\mathbf{s}} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}^T$ and $\sigma^2 = 2$. The distribution of the test statistic $\bar{\mathbf{s}}^T \bar{\mathbf{y}}$ under \mathcal{H}_1 is

Select one:

- \circ $\bar{\mathcal{N}}(1,2)$
- $\mathcal{N}(2,2)$
- $\mathcal{N}\left(\frac{1}{2},4\right)$

$$\mathcal{N}\left(\frac{1}{2},1\right)$$

Your answer is correct.

The correct answer is: $\mathcal{N}(1,2)$

Question **9**

Correct

Mark 1.00 out of 1.00

Consider $\bar{\mathbf{s}} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}^T$, $\gamma = 2$ and $\sigma^2 = 2$. The probability of detection for the signal detection problem described in lectures is

Select one:

$$Q\left(-\frac{1}{2}\right)$$

$$\bigcirc \quad Q\left(-\frac{1}{2\sqrt{2}}\right)$$

$$\bigcirc$$
 $Q\left(\frac{1}{\sqrt{2}}\right)$

$$Q\left(-\frac{3}{2\sqrt{2}}\right)$$

Your answer is correct.

The correct answer is: $Q\left(\frac{1}{\sqrt{2}}\right)$

Question 10

Correct

Mark 1.00 out of 1.00

▼ Flag question

The ROC of the signal detection problem is given as

Select one:

$$\bigcirc Q\left(Q^{-1}(P_{FA})-\sqrt{\frac{1}{SNR}}\right)$$

$$Q(Q^{-1}(P_{FA}) - \sqrt{SNR}) \checkmark$$

$$\bigcirc Q(Q^{-1}(P_{FA}) - SNR)$$

$$\bigcirc \quad Q\left(Q^{-1}(P_{FA}) - \frac{1}{SNR}\right)$$

Your answer is correct.

The correct answer is: $Q(Q^{-1}(P_{FA}) - \sqrt{SNR})$

Finish review