达特 WZ-S-K 型甲醛检测模组

使用说明书

深圳市普晟传感技术有限公司

版权声明

本手册版权为深圳市普晟传感技术有限公司所有,未经深圳市普晟传感技术 有限公司书面许可,任何单位和个人不得摘录、复制、翻译、注释、编辑本手册 的部分或全部内容,侵权必究。

为使您更好地使用本公司产品,请务必仔细阅读本说明书并按照所建议的使用方法进行使用。对于不按照使用说明进行操作或因擅自去除、拆卸、更换传感器内部组件而对本产品造成的损坏,本公司不承担相应损失。

本公司以客户需求为导向,追求高品质的客户体验与高质量的技术创新,欢迎新老客户与我司进行产品应用探讨。

手册版本号: WZ-S-K-V 1.1

深圳市普晟传感技术有限公司 2022 年 12 月 16 日

产品简介

WZ-S-K型甲醛检测模组是全球甲醛检测专家——英国达特公司的最新力作,采用升级版达特甲醛传感器结合先进的微检测技术,直接将环境中的甲醛含量转换成浓度值,标准化数字输出,便于客户集成使用。WZ-S-K型甲醛检测模组经过严格的工厂校准,可直接应用于您的检测体系中。

特点

测量精度高响应速度快使用寿命长功耗低 稳定可靠 抗干扰能力强 无需定期校准

典型应用

智能家居 便携式仪表 可穿戴设备 空气清新机 新风系统

管脚定义

Pin1	VCC	3. 3V-5V
Pin2	GND	
Pin6	T1	传感器发送引脚
Pin7	R1	传感器接收引脚

结构尺寸

技术指标

WZ-S-K
燃料电池
甲醛
0-2ppm
10ppm
3. 3-5V
<3min
<40S
<60S
0.001ppm
-20°C∼50°C
10%-90%RH(非凝结)
5年(正常使用)
12 个月
4g

通讯协议

▶ 通用设置

传感器模块使用串行通讯方式,通讯配置参数如下:

波特率	9600
数据位	8 位
停止位	1 位
校验位	无

备注:数据 1bit ≈104us;发送每条指令后延时要大于 100ms

> 3.3V TTL 电平限制

Table 31-1. D.C. Electrical Characteristics

 $(V_{DD} - V_{SS} = 2.4 \sim 5.5 \text{ V}, T_A = 25 \text{ °C})$

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit				
Supply	voltage									
V_{DD}	Operating voltage	F = 0 to 16 MHz	2.4	-	5.5	V				
	1/0									
V _{IL}	Input low voltage (I/O with TTL input)		V _{SS} -0.3	-	0.2V _{DD} -0.1	٧				
V _{IL1}	Input low voltage (I/O with Schmitt trigger input, RST, and XIN)		V _{SS} -0.3	-	0.3V _{DD}	٧				
V _{IH}	Input high voltage (I/O with TTL input)		0.2V _{DD} +0.9	-	V _{DD} +0.3	٧				
V _{IH1}	Input high voltage (I/O with Schmitt trigger input and XIN)		0.7V _{DD}	-	V _{DD} +0.3	V				
V _{IH2}	Input high voltage (RST)		0.8V _{DD}	-	V _{DD} +0.3	V				

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{OH}	Output high voltage	V _{DD} = 5.5 V, I _{OH} = - 590 uA	2.4	-	-	V
	(quasi-bidirectional mode)	V _{DD} = 4.5 V, I _{OH} = - 380 uA	2.4	-	-	
		V _{DD} = 3.0 V, I _{OH} = - 100 uA	2.4	-	-	
		V _{DD} = 2.4 V, I _{OH} = -40 uA	2.0	-	-	
V _{OH1}	Output high voltage	V _{DD} = 5.5 V, I _{OH} = - 20 mA	2.4	-	-	V
	(push-pull mode)	V _{DD} = 4.5 V, I _{OH} = - 13 mA	2.4	-	-	
		V _{DD} = 3.0 V, I _{OH} = - 3.5 mA	2.4	-	-	
		V _{DD} = 2.4 V, I _{OH} = -2 mA	2.0	-	-	

▶ 通讯命令

通讯分主动上传和问答式,出厂默认为主动上传,每隔1秒发送1次浓度值。命令行格式如下:

0	1	2	3	4	5	6	7	8
起始位	气体名称	单位	小数位数	气体浓度	气体浓度	满量程高	满量程	校验值
			无	高位	低位	位	低位	
0xFF	CH20=0x17	Ppb=0x04	0x00	0x00	0x25	0x07	0xD0	0x25

气体浓度值=气体浓度高位*256+气体浓度低位;

(浓度高位和浓度低位需从16进制换算为10进制后再代入本公式计算)

切换到问答式,命令行格式如下:

0	1	2	3	4	5	6	7	8
起始位	保留	切换命令	问答	保留	保留	保留	保留	校验值
0xFF	0x01	0x78	0x41	0x00	0x00	0x00	0x00	0x46

切换到主动上传,命令行格式如下:

0	1	2	3	4	5	6	7	8
起始位	保留	切换命令	主动上传	保留	保留	保留	保留	校验值
0xFF	0x01	0x78	0x40	0x00	0x00	0x00	0x00	0x47

读气体浓度值格式如下:

0	1	2	3	4	5	6	7	8
起始位	保留	命令	保留	保留	保留	保留	保留	校验值
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79

传感器返回值格式如下

0	1	2	3	4	5	6	7	8
起始位	命令	气体浓度高	气体浓度低	保留	保留	气体浓度	气体浓度低	校验值
		位 (ug/m3)	位 (ug/m3)			高位 (ppb)	位 (ppb)	
0xFF	0x86	0x00	0x2A	0x00	0x00	0x00	0x20	0x30

气体浓度值=气体浓度高位*256+气体浓度低位

(浓度度高位和浓度低位需从16进制换算为10进制后再代入本公式计算)

校验和计算

return(tempq);

}

注意事项

- ➢ 禁止插拔模组上的传感器。
- ▶ 禁止改动、移动电子元件安装状态。
- ▶ 避免接触有机溶剂、有机蒸汽、高浓度气体。
- ▶ 不可过度的撞击或震动。
- ▶ 禁止超限使用模组。
- ▶ 请务必确认高低电平在上表中的范围内。
- ▶ IO 的电流最大为 15mA ,要注意过流损坏单片机 IO 口,最终会造成单片机功能异常或损坏。

地址:深圳市龙华区大浪街道同胜社区华荣路联建科技工业园 4 栋 1 楼

邮箱: sales@szprosense.com 网址: www.szprosense.com