

实验二十六、多区域 OSPF 配置

一、 实验目的

- 1. 掌握多区域 OSPF 的配置
- 2. 理解 OSPF 区域的意义

二、 应用环境

在大规模网络中,我们通常划分区域减少资源消耗,并将拓扑的变化本地化。

三、 实验设备

1. DCR-1751 三台

2. CR-V35MT 一条

3. CR-V35FC 一条

四、 实验拓扑

五、 实验要求

配置表

Router-A		Router-B		Router-C	
S1/1(DCE)	192.168.1.1	S/1/0(DTE)	192.168.1.2	F0/0	192.168.2.2
F0/0	192.168.0.1	F0/0	192.168.2.1	E1/0	192.168.3.1

路由器B为ABR

六、 实验步骤

第一步: 参照实验三和上表配置各接口地址,并测试连通性

第二步: 路由器 A 的配置

Router-A#conf

Router-A_config#router ospf 100

Router-A_config_ospf_100#network 192.168.0.0 255.255.255.0 area 1 Router-A_config_ospf_100#network 192.168.1.0 255.255.255.0 area 1 Router-A_config_ospf_100#^Z

第三步: 路由器 B 的配置

Router-B#conf

Router-B_config#router ospf 100

Router-B_config_ospf_100#network 192.168.1.0 255.255.255.0 area 1

! 注意区域的划分在接口上

 $Router-B_config_ospf_100 \# network~192.168.2.0~255.255.255.0~area~0$

Router-B_config_ospf_100#^Z

第四步: 路由器 C 的配置

Router-C#conf

Router-C_config#router ospf 100

Router-C_config_ospf_100#network 192.168.2.0 255.255.255.0 area 0

Router-C_config_ospf_100#network 192.168.3.0 255.255.255.0 area 0

Router-C_config_ospf_100#^Z

第五步: 查看路由表

Router-A#sh ip route

Codes: C - connected, S - static, R - RIP, B - BGP, BC - BGP connected

D - DEIGRP, DEX - external DEIGRP, O - OSPF, OIA - OSPF inter area

ON1 - OSPF NSSA external type 1, ON2 - OSPF NSSA external type 2

OE1 - OSPF external type 1, OE2 - OSPF external type 2

DHCP - DHCP type

VRF ID: 0

C	192.168.0.0/24	is directly connected, FastEthernet0/0	
C	192.168.1.0/24	is directly connected, Serial1/1	
O IA	192.168.2.0/24	[110,1601] via 192.168.1.2(on Serial1/1)	
O IA	192.168.3.0/24	[110,1611] via 192.168.1.2(on Serial1/1)	! 区域间的路由

Router-B#sh ip route

Codes: C - connected, S - static, R - RIP, B - BGP, BC - BGP connected
D - DEIGRP, DEX - external DEIGRP, O - OSPF, OIA - OSPF inter area
ON1 - OSPF NSSA external type 1, ON2 - OSPF NSSA external type 2
OE1 - OSPF external type 1, OE2 - OSPF external type 2
DHCP - DHCP type

VRF ID: 0

O 192.168.0.0/24 [110,1601] via 192.168.1.1(on Serial1/0)

		! 对 ABR 来说是区域内的路由
O	192.168.3.0/24	[110,11] via 192.168.2.2(on FastEthernet0/0)
C	192.168.2.0/24	is directly connected, FastEthernet0/0
C	192.168.1.0/24	is directly connected, Serial1/0

Router-C#sh ip route

```
Codes: C - connected, S - static, R - RIP, B - BGP

D - DEIGRP, DEX - external DEIGRP, O - OSPF, OIA - OSPF inter area

ON1 - OSPF NSSA external type 1, ON2 - OSPF NSSA external type 2

OE1 - OSPF external type 1, OE2 - OSPF external type 2
```

O IA	192.168.0.0/24	[110,1602] via 192.168	.2.1(on	FastEthernet0/0)		
O IA	192.168.1.1/32	[110,1601] via 192.168	.2.1(on	FastEthernet0/0)		
O IA	192.168.1.2/32	[110,3201] via 192.168	.2.1(on	FastEthernet0/0)	! [区域间的路由
C	192.168.2.0/24	is directly connected,	FastEth	ernet0/0		
C	192.168.3.0/24	is directly connected,	Etherne	et1/0		

七、 注意事项和排错

- 1. 区域的划分在接口上进行
- 2. 必须有 area 0 存在

八、 配置序列

```
Router-B#sh run
Building configuration...

Current configuration:
!
!version 1.3.2E
service timestamps log date
service timestamps debug date
no service password-encryption
!
hostname Router-B
!
ip host a 192.168.1.1
ip host c 192.168.2.2
!
!
!
```

interface FastEthernet0/0


```
ip address 192.168.2.1 255.255.255.0
no ip directed-broadcast
!
interface Serial1/0
ip address 192.168.1.2 255.255.255.0
no ip directed-broadcast
!
interface Async0/0
no ip address
no ip directed-broadcast
!
!
!
router ospf 100
network 192.168.1.0 255.255.255.0 area 1
network 192.168.2.0 255.255.255.0 area 0
!
```

九、 共同思考

- 1. 为什么必须有 area 0 存在?
- 2. 在路由器 A 和 C 宣告网段的时候有其他的方法吗?

十、 课后练习

请将地址改为 10.0.0.0/25 重复以上实验

十一、相关命令详解

network area

将一个区域中几个网段定义成一个网络范围, no network 命令取消网络范围。 **network** *network mask* **area** *area_id* [advertise | not-advertise]
[**no**] **network** *network* mask area area_id [advertise | not-advertise]

参数

参数	参数说明
network	网络IP地址,点分十进制格式。
mask	掩码,点分十进制格式。

area_id		为区域号。
advertise 利	1	指定是否将到这一网络范围路由的摘要信息广播出去。
notadvertise		

缺省

系统缺省没有配置网络范围。

命令模式

路由配置态

使用说明

一旦将某一网络的范围加入到区域中,到区域中所有落在这一范围内的 IP 地址的内部路由都不再被独立地广播到别的区域,而只是广播整个网络范围路由的摘要信息。引入网络范围和对该范围的限定,可以减少区域间路由信息的交流量。

示例

定义网络范围 10.0.0.0 255.0.0.0 加入到区域 2 中。router_config_ospf_10#network 10.0.0.0 255.0.0.0 area 2

