0.1 级数基本结论

0.1.1 级数的敛散性

定理 0.1 (交错级数不等式)

设 $\{a_n\}$ 递减非负数列,则对 $m,p \in \mathbb{N}_0$,必有

$$\left| \sum_{n=m}^{m+p} (-1)^n a_n \right| \leqslant a_m. \tag{1}$$

🕏 笔记 本不等式是最容易被遗忘的不等式,应该牢记于心.

证明 不妨设 m=0, 则

$$\sum_{n=0}^{p} (-1)^n a_n = \begin{cases} a_0 - (a_1 - a_2) - (a_3 - a_4) - \dots - (a_{p-1} - a_p) & , p \neq \emptyset \\ a_0 - (a_1 - a_2) - (a_3 - a_4) - \dots - (a_{p-2} - a_{p-1}) - a_p & , p \neq \emptyset \end{cases} \leqslant a_0.$$

此外

这就证明了不等式(1).

定理 0.2 (Leibniz(莱布尼兹) 判别法)

设 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 为交错级数, 若满足:

- (1) 数列 $\{u_n\}_{n=1}^{\infty}$ 单调递减;
- $(2) \lim_{n \to \infty} u_n = 0,$

则级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 收敛, 且其和不超过 u_1 .

证明

定理 0.3 (A-D 判别法)

级数 $\sum_{n=1}^{\infty} a_n b_n$ 满足下列条件之一时收敛.

1.
$$\left\{\sum_{\substack{k=1\\ \infty}}^{n} a_k\right\}_{n=1}^{\infty} 有界, b_n 递减到 0;$$

2. $\sum_{n=1}^{\infty} a_n$ 收敛, b_n 单调有界.

证明 由 Abel 变换, 注意到

$$\sum_{k=n}^{m} a_k b_k = \sum_{k=n}^{m-1} (b_k - b_{k+1}) \sum_{j=n}^{k} a_j + b_m \sum_{k=n}^{m} a_k.$$

于是对于第一种情况,设

$$M = 2 \sup_{n \ge 1} \left| \sum_{k=1}^{n} a_k \right|,$$

我们有

$$\left| \sum_{k=n}^{m} a_k b_k \right| \leq M \sum_{k=n}^{m-1} |b_k - b_{k+1}| + M|b_m| = Mb_n \to 0, \, \, \underline{\exists} \, n, m \to \infty.$$

对于第二种情况,因为 $\sum_{n=1}^{\infty}a_n$ 收敛,故对任何 $\varepsilon>0$, 当 n 充分大,对任何 $p\in\mathbb{N}_0$,必有

$$\left|\sum_{k=n}^{n+p} a_k\right| \leqslant \varepsilon.$$

于是当n,m充分大,我们有

$$\left|\sum_{k=n}^{m} a_k b_k\right| \leqslant \varepsilon \sum_{k=n}^{m-1} |b_k - b_{k+1}| + \varepsilon |b_m| = \varepsilon |b_m - b_n| + \varepsilon |b_m| \leqslant 3\varepsilon \sup_{n \geqslant 1} |b_n|.$$

因此无论如何都有级数 $\sum_{n=0}^{\infty} a_n b_n$ 收敛.

定理 0.4 (积分判别法)

若 f 是 $[1,+\infty)$ 的单调不变号函数, 则 $\sum_{i=1}^{\infty} f(n)$ 和 $\int_{1}^{\infty} f(x) dx$ 同敛散.

笔记 注意有限项不影响级数收敛性,有限区间不影响积分收敛性.方法是我们之前已经反复训练的. 证明 不妨设 f 非负递减, 注意到

$$\int_{1}^{\infty} f(x) dx = \sum_{n=1}^{\infty} \int_{n}^{n+1} f(x) dx \le \sum_{n=1}^{\infty} f(n) \le f(1) + \sum_{n=2}^{\infty} \int_{n-1}^{n} f(x) dx = f(1) + \int_{1}^{\infty} f(x) dx.$$

由夹逼准则即证.

对级数 $\sum_{n=1}^{\infty} a_n, a_n > 0, \forall n \in \mathbb{N},$ 有如下判别法: 极限版:

1. 若
$$\overline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2.
$$\vec{z} \quad \underline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n} > 1, \quad \underline{\underline{M}} \sum_{n=1}^{\infty} a_n \, \underline{\underline{\zeta}} \, \underline{\underline{k}}.$$

不等式版:

1. 若存在
$$N \in \mathbb{N}, \delta \in (0,1)$$
 使得 $\frac{a_{n+1}}{a_n} \leq \delta, \forall n \geq N,$ 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若存在
$$N \in \mathbb{N}$$
 使得 $\frac{a_{n+1}}{a_n} \geqslant 1, \forall n \geqslant N, 则 \sum_{n=1}^{\infty} a_n$ 发散.

注 极限版的 1 和不等式版的 1 是等价的, 极限版的 2 能推出不等式版的 2, 但不等式版的 2 不能推出极限版的 2.

定理 0.6 (Cauchy 链)

设正值递增函数 $F \in C^1[a,+\infty)$, $\frac{F'}{F}$ 在 $[a,+\infty)$ 递减. 若满足 $\sum^{\infty} F'(n)$ 发散,则对正项级数 $\sum^{\infty} a_n, a_n > \infty$ 0,∀n ∈ N 有如下判别法:

极限版:

1. 若

$$\lim_{n \to \infty} \frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} > 1,\tag{2}$$

则
$$\sum_{n=1}^{\infty} a_n$$
 收敛;

$$\lim_{n \to \infty} \frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} < 1,$$
(3)

则
$$\sum_{n=1}^{\infty} a_n$$
 发散.

1. 若存在 $c > 1, N \in \mathbb{N}$ 使得

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} \geqslant c, \forall n \geqslant N,$$

则
$$\sum_{n=1}^{\infty} a_n$$
 收敛;
2. 若存在 $c \leq 1, N \in \mathbb{N}$ 使得

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} \leqslant c, \forall n \geqslant N,$$

则
$$\sum_{n=1}^{\infty} a_n$$
 发散.

笔记 极限版和不等式版的第1个结果的条件是等价的, 第2个结果不等式版条件要更弱, 因为如果改 (3)为 $\lim_{n\to\infty} \frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} \leqslant 1$,则 $\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)}$ 仍然可能在n 充分大严格超过 1. 注 取 $F(x)=e^x$,则

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} = \frac{n - \ln a_n}{n} = 1 - \ln \sqrt[n]{a_n},$$

这恰好是根值判别法.

取 F(x) = x, 则

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} = \frac{-\ln a_n}{\ln n},$$

这恰好是对数判别法.

证明 Step 1 先证明

$$\lim_{x \to +\infty} F(x) = +\infty. \tag{4}$$

设 $\lim_{x \to +\infty} F(x) = A$, 则积分判别法表明

$$\sum_{n=1}^{\infty} \frac{F'(n)}{F(n)} \sim \int_{a}^{\infty} \frac{F'(x)}{F(x)} dx = \ln F(x) \Big|_{a}^{\infty},$$

即
$$\sum_{n=1}^{\infty} \frac{F'(n)}{F(n)}$$
 收敛. 但 $\sum_{n=1}^{\infty} \frac{F'(n)}{F(n)} \ge \sum_{n=1}^{\infty} \frac{F'(n)}{A}$, 这就和 $\sum_{n=1}^{\infty} F'(n)$ 发散矛盾! 故我们证明了 (4).

Step 2 当 (2) 成立, 再利用(4)式, 存在 $c > 1, N \in \mathbb{N}$ 使得

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} \geqslant c, F(N) > 1, \forall n \geqslant N.$$

因此

$$\frac{F'(n)}{a_n} \geqslant e^{c \ln F(n)} \Rightarrow \frac{F'(n)}{F^c(n)} \geqslant a_n, \forall n \geqslant N.$$

结合 $\frac{F'(n)}{F^{c}(n)} = \frac{F'(n)}{F(n)} \cdot \frac{1}{F^{c-1}(n)}$ 递减, 由积分判别法, 我们有

$$\sum_{n=1}^{\infty} \frac{F'(n)}{F^c(n)} \sim \int_N^{\infty} \frac{F'(x)}{F^c(x)} \, \mathrm{d}x = \int_{F(N)}^{\infty} \frac{1}{y^c} \, \mathrm{d}y < \infty,$$

因此 $\sum_{n=1}^{\infty} a_n$ 收敛.

Step 3 若存在 $c \leq 1, N \in \mathbb{N}$ 使得

$$\frac{\ln \frac{F'(n)}{a_n}}{\ln F(n)} \leqslant c, F(n) \geqslant 1, \forall n \geqslant N.$$

根据 Step 2, 同样的我们有 $\frac{F'(n)}{F(n)} \leqslant \frac{F'(n)}{F^c(n)} \leqslant a_n, \forall n \geqslant N$ 以及由积分判别法有

$$\sum_{n=1}^{\infty} \frac{F'(n)}{F(n)} \sim \int_{N}^{\infty} \frac{F'(x)}{F(x)} dx = \int_{F(N)}^{\infty} \frac{1}{y} dy = \infty,$$

因此 $\sum_{i=1}^{\infty} a_n$ 发散.

定理 0.7 (对数判别法)

对正项级数 $\sum_{n=1}^{\infty} a_n, a_n > 0, \forall n \in \mathbb{N}, 则有如下判别法:$

1. 若
$$\lim_{n\to\infty} \frac{\ln\frac{1}{a_n}}{\ln n} > 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\overline{\lim}_{n\to\infty} \frac{\ln \frac{1}{a_n}}{\ln n} < 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 发散.

不等式版:

1. 若存在 c > 1, $N ∈ \mathbb{N}$ 使得

$$\frac{\ln \frac{1}{a_n}}{\ln n} \geqslant c, \forall n \geqslant N,$$

则
$$\sum_{n=1}^{\infty} a_n$$
 收敛;
2. 若存在 $c \leq 1, N \in \mathbb{N}$ 使得

$$\frac{\ln \frac{1}{a_n}}{\ln n} \leqslant c, \forall n \geqslant N,$$

则
$$\sum_{n=1}^{\infty} a_n$$
 发散.

定理 0.8 (根值判别法)

对正项级数 $\sum_{n=1}^{\infty} a_n$, 则有如下判别法:

1. 若
$$\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} < 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\lim_{n\to\infty} \sqrt[n]{a_n} > 1$$
, 则 $\sum_{n=1}^{n-1} a_n$ 发散.

1. 若存在 $c < 1, N ∈ \mathbb{N}$ 使得

$$\sqrt[n]{a_n} \leqslant c, \forall n \geqslant N,$$

则
$$\sum_{n=1}^{\infty} a_n$$
 收敛;
2. 若存在 $c \ge 1$ 和无穷多个 n 使得

$$\sqrt[n]{a_n} \geqslant c$$
,

则
$$\sum_{n=1}^{\infty} a_n$$
 发散.

注 值得注意的是, 对于根值判别法, 这里通过 Cauchy 链的叙述, 不应该是 $\overline{\lim}_{n\to\infty} \sqrt[q]{a_n} > 1$, 而应该是 $\underline{\lim}_{n\to\infty} \sqrt[q]{a_n} > 1$. 也不应是无穷多个n, 而是任何 $n \ge N$. 所以我们需要一些加强的证明.

证明 若存在 $c \ge 1$ 和无穷多个 n 使得

$$\sqrt[n]{a_n} \geqslant c,$$

则存在 $n_k \to \infty$, 使得

$$|a_{n_k}| > c \geqslant 1 \Rightarrow |a_{n_k}| \geqslant 1 \Rightarrow \lim_{k \to \infty} |a_{n_k}| \neq 0,$$

于是
$$\sum_{n=1}^{\infty} a_n$$
 发散.

定理 0.9 (Kummer 链)

对正项级数 $\sum_{n=1}^{\infty} a_n, a_n > 0, \forall n \in \mathbb{N},$ 设

$$K_n = \frac{1}{d_n} \cdot \frac{a_n}{a_{n+1}} - \frac{1}{d_{n+1}}, n = 1, 2, \dots, d_n > 0, \sum_{n=1}^{\infty} d_n = +\infty,$$

有如下判别法:

极限版:

1. 若
$$\underline{\lim}_{n\to\infty} K_n > 0$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\overline{\lim}_{n\to\infty} K_n < 0$$
, 则 $\sum_{n=1}^{\infty} a_n$ 发散.

不等式版:

1. 若存在 $N \in \mathbb{N}, \delta > 0$ 使得 $K_n \ge \delta, \forall n \ge N, 则 \sum_{i=1}^{\infty} a_n$ 收敛;

2. 若存在
$$N \in \mathbb{N}$$
 使得 $K_n \leq 0, \forall n \geq N, 则 \sum_{n=1}^{\infty} a_n$ 发散.

 \sim

注 当 $d_n = 1, n \in \mathbb{N}$. 我们有 $K_n = \frac{a_n}{a_{n+1}} - 1$, 这恰好就是比值判别法.

当
$$d_n = \frac{1}{n}, n \in \mathbb{N}$$
, 我们有 $K_n = n \frac{a_n}{a_{n+1}} - (n+1)$, 这恰好是拉比判别法.

当
$$d_n = \frac{1}{n \ln n}, n \in \mathbb{N}$$
, 我们有

$$\begin{split} K_n &= n \ln n \cdot \frac{a_n}{a_{n+1}} - (n+1) \ln (n+1) \\ &= n \ln n \cdot \frac{a_n}{a_{n+1}} - (n+1) \ln n - (n+1) \ln \left(1 + \frac{1}{n}\right) \\ &= \ln n \cdot \left[n \left(\frac{a_n}{a_{n+1}} - 1\right) - 1 \right] - (n+1) \ln \left(1 + \frac{1}{n}\right), \end{split}$$

即得一个较为广泛的判别法. 要注意我们在阶的层面对 K_n 做了变形, 因此不再给出不等式版本的较为广泛的判别法.

证明 若存在 $N \in \mathbb{N}, \delta > 0$ 使得 $K_n \geqslant \delta, \forall n \geqslant N, \mathbb{N}$

$$\frac{1}{\delta} \left(\frac{a_n}{d_n} - \frac{a_{n+1}}{d_{n+1}} \right) \geqslant a_{n+1}, \forall n \geqslant N.$$

现在

$$\sum_{k=N}^m a_{k+1} \leqslant \sum_{k=N}^m \frac{1}{\delta} \left(\frac{a_k}{d_k} - \frac{a_{k+1}}{d_{k+1}} \right) = \frac{1}{\delta} \left(\frac{a_N}{d_N} - \frac{a_{m+1}}{d_{m+1}} \right) \leqslant \frac{1}{\delta} \cdot \frac{a_N}{d_N},$$

所以 $\sum_{i=1}^{\infty} a_n$ 收敛.

若存在 $N \in \mathbb{N}$ 使得 $K_n \leq 0, \forall n \geq N$. 则 $\frac{a_{n+1}}{d_{n+1}} \geq \frac{a_n}{d_n}, \forall n \geq N$. 现在

$$a_{n+1} \geqslant \frac{a_N}{d_N} d_{n+1}, \forall n \geqslant N, \sum_{n=1}^{\infty} d_n = +\infty \Rightarrow \sum_{n=1}^{\infty} a_n = +\infty,$$

这就完成了证明.

定理 0.10 (拉比判别法)

对正项级数 $\sum_{n=1}^{\infty} a_n, a_n > 0, \forall n \in \mathbb{N}, 有如下判别法:$

极限版

1. 若
$$\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right) > 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\overline{\lim}_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right) < 1$$
, 则 $\sum_{n=0}^{\infty} a_n$ 发散.

不等式版:

1. 若存在
$$N \in \mathbb{N}, \delta > 1$$
 使得 $n\left(\frac{a_n}{a_{n+1}} - 1\right) \geqslant \delta, \forall n \geqslant N, 则 \sum_{n=1}^{\infty} a_n$ 收敛;

2. 若存在
$$N \in \mathbb{N}$$
 使得 $n\left(\frac{a_n}{a_{n+1}}-1\right) \leqslant 1, \forall n \geqslant N, 则 \sum_{n=1}^{\infty} a_n$ 发散.

 \Diamond

证明

定理 0.11 (较为广泛的判别法)

对正项级数 $\sum_{n=1}^{\infty} a_n, a_n > 0, \forall n \in \mathbb{N}, 有如下判别法:$

极限版 1:

1. 若
$$\lim_{n\to\infty} \ln n \cdot \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] > 1$$
,则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\overline{\lim}_{n\to\infty} \ln n \cdot \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] < 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 发散.

极限版 2:

1. 若
$$\lim_{n\to\infty} \ln n \left[n \ln \frac{a_n}{a_{n+1}} - 1 \right] > 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 收敛;

2. 若
$$\overline{\lim}_{n\to\infty} \ln n \left[n \ln \frac{a_n}{a_{n+1}} - 1 \right] < 1$$
, 则 $\sum_{n=1}^{\infty} a_n$ 发散.

 \Diamond

 $\stackrel{ ext{$\widehat{\Sigma}$}}{ ext{$\widehat{\Sigma}$}}$ 笔记 极限版 2 和极限版 1 在很多情况下是等价的, 极限版 1 就是 $\frac{ ext{$K$}}{ ext{$K$}}$ 似版版 $\frac{1}{n \ln n}$ 的情况. 我们这里以大家更熟悉的主流方法来书写一遍判别法证明, 以极限版 2 为例, 考场会更优先使用这种做法.

证明

1. 设 $t > 1, N \in \mathbb{N}$ 使得

$$\ln n \left[n \ln \frac{a_n}{a_{n+1}} - 1 \right] > t, \forall n \geqslant N.$$

然后

$$\ln \frac{a_n}{a_{n+1}} > \frac{1}{n} + \frac{t}{n \ln n}, \forall n \geqslant N.$$

现在求和得

$$\ln \frac{a_N}{a_{n+1}} > \sum_{k=N}^n \left(\frac{1}{k} + \frac{t}{k \ln k} \right), \forall n \geqslant N.$$

于是

$$a_{n+1} < a_N e^{-\sum\limits_{k=N}^n \left(\frac{1}{k} + \frac{t}{k \ln k}\right)}, \forall n \geqslant N.$$

现在由例题??(2)和例题??,我们有

$$\sum_{k=N}^{n} \frac{1}{k} = \ln n + O(1), \sum_{k=N}^{n} \frac{1}{k \ln k} = \ln \ln n + O(1), n \to \infty.$$

于是

$$e^{-\sum_{k=N}^{n} \left(\frac{1}{k} + \frac{t}{k \ln k}\right)} = e^{-\ln n - \ln \ln n + O(1)} = \frac{e^{O(1)}}{n \ln^{t} n}.$$

结合积分判别法有

$$\sum_{n=N}^{\infty} \frac{1}{n \ln^t n} \sim \int_{10}^{\infty} \frac{1}{x \ln^t x} dx = \int_{\ln 10}^{\infty} \frac{1}{y^t} dy < \infty,$$

我们知道 $\sum_{n=1}^{\infty} a_n$ 收敛.

2 设 0 < t < 1 N ∈ N 使得</p>

$$\ln n \left[n \ln \frac{a_n}{a_{n+1}} - 1 \right] < t, \forall n \geqslant N.$$

然后相似第1问的证明和

$$\sum_{n=N}^{\infty} \frac{1}{n \ln^t n} \sim \int_{10}^{\infty} \frac{1}{x \ln^t x} \, \mathrm{d}x = \int_{\ln 10}^{\infty} \frac{1}{y^t} \, \mathrm{d}y = +\infty,$$

我们有 $\sum_{n=1}^{\infty} a_n$ 发散.

定理 0.12 (Herschfeld 判别法)

设 p > 1 且 $\{a_n\}_{n=1}^{\infty} \subset [0, +\infty)$. 定义

$$t_n = \sqrt[p]{a_1 + \sqrt[p]{a_2 + \cdots + \sqrt[p]{a_n}}}, n \in \mathbb{N},$$

然后 $\{t_n\}_{n=1}^{\infty}$ 收敛的充要条件是 $a_n^{\frac{1}{p^n}}$ 有界. 显然 $\{t_n\}_{n=1}^{\infty}$ 单调递增.

证明 必要性: 若 $\{t_n\}_{n=1}^{\infty}$ 收敛,则由

$$t_n = \sqrt[p]{a_1 + \sqrt[p]{a_2 + \dots + \sqrt[p]{a_n}}} \geqslant \sqrt[p]{0 + \sqrt[p]{0 + \dots + \sqrt[p]{a_n}}} = a_n^{\frac{1}{p^n}}$$

和 $\{t_n\}_{n=1}^{\infty}$ 有界知 $a_n^{\frac{1}{p^n}}$ 有界.

充分性: 若 $a_n^{\frac{1}{p^n}}$ 有界, 则设 $a_n^{\frac{1}{p^n}} \leqslant M$, $\forall n \in \mathbb{N}$, 于是我们有 $a_n \leqslant M^{p^n}$, $\forall n \in \mathbb{N}$. 因此

$$t_{n} = \sqrt[p]{a_{1} + \sqrt[p]{a_{2} + \dots + \sqrt[p]{a_{n}}}} \leqslant \sqrt[p]{M^{p} + \sqrt[p]{M^{p^{2}} + \dots + \sqrt[p]{M^{p^{n}}}}}$$

$$= M\sqrt[p]{1 + \sqrt[p]{1 + \dots + \sqrt[p]{1}}} \leqslant M \lim_{n \to \infty} \underbrace{\sqrt[p]{1 + \sqrt[p]{1 + \dots + \sqrt[p]{1}}}}_{n \uparrow \text{ for } \text{for } \text{for$$

其中最后一个等号的极限存在性可以考虑递增函数确定的递推

$$x_1 = \sqrt[p]{1}, x_{n+1} = \sqrt[p]{1 + x_n}, n \in \mathbb{N}.$$

注意到 $x_2=\sqrt[q]{2}>1=x_1$, 不动点 $x_0>1$ 满足 $x_0^p-x_0-1=0$. 因此由命题??知 $\{x_n\}_{n=1}^\infty$ 递增有上界, 从而极限存在.

命题 0.1

若 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 $\lim_{n\to\infty} \frac{\sum_{k=1}^{n} k a_k}{n} = 0$.

室记 这个命题是一个重要的需要记忆的结论,在很多难题时可能是一个很微不足道的中间步骤,但却会把人卡住.

这个命题是命题??的离散版本.

注 此外, 此类问题还不是直接应用 Stolz 定理就可以的. 笔记如果我们直接使用 Stolz 定理, 就有

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k a_k}{n} = \lim_{n \to \infty} \frac{n a_n}{n - (n-1)} = \lim_{n \to \infty} n a_n.$$

遗憾的是, 上式最后的极限可能不存在, 而 Stolz 定理不可以逆用.

证明 记 $s_k = \sum_{i=1}^k a_i$, 则由 Abel 变换及 Stolz 公式可得

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k a_k}{n} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n-1} [k - (k+1)] s_k + n s_n}{n}$$

$$= \lim_{n \to \infty} \left(s_n - \frac{\sum_{k=1}^{n-1} s_k}{n} \right)$$
$$= \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_n = 0.$$

设 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 1. 若 a_n 单调, 则 $\lim_{n\to\infty} na_n = 0$.

- 2. 若 na_n 单调, 则 $\lim_{n \to \infty} n \ln n \cdot a_n = 0$.
- 3. 若 $n \ln n \cdot a_n$ 单调,则 $\lim_{n \to \infty} n \ln n \cdot \ln \ln n \cdot a_n = 0$.

1. 不妨设 a_n 递减, 否则考虑 $-a_n$ 即可. 因为收敛级数末项趋于 0, 所以我们知道 a_n 递减到 0. 注意到由 a_n 递 减知

$$0 \leqslant 2na_{2n} \leqslant 2\sum_{k=n+1}^{2n} a_k, \ 0 \leqslant (2n-1)a_{2n-1} \leqslant 2na_{2n-1} \leqslant 2\sum_{k=n}^{2n-1} a_k.$$

现在由 Cauchy 收敛准则知

$$\lim_{n \to \infty} 2na_{2n} = \lim_{n \to \infty} (2n - 1)a_{2n - 1} = 0.$$

由命题??知 $\lim_{n\to\infty} na_n = 0$.

2. 不妨设 na_n 递减, 否则考虑 $-a_n$ 即可. 因为 $\lim_{n\to\infty}na_n=c\neq 0$ 会导致 $a_n\sim \frac{c}{n}$, 进而 $\sum_{i=1}^{\infty}a_n$ 发散, 所以我们知道 nan 递减到 0.

我们有

$$\sum_{\sqrt{n}-1\leqslant k\leqslant n-1}a_k=\sum_{\sqrt{n}-1\leqslant k\leqslant n-1}\frac{ka_k}{k}\geqslant na_n\sum_{\sqrt{n}-1\leqslant k\leqslant n-1}\frac{1}{k}\geqslant na_n\sum_{\sqrt{n}-1\leqslant k\leqslant n-1}\int_k^{k+1}\frac{1}{x}\mathrm{d}x$$
$$=na_n\int_{\lfloor \sqrt{n}\rfloor}^n\frac{1}{x}\mathrm{d}x=na_n\ln\frac{n}{\lfloor \sqrt{n}\rfloor}\geqslant na_n\ln\frac{n}{\sqrt{n}}=\frac{1}{2}na_n\ln n\geqslant 0,$$

利用 Cauchy 收敛准则和夹逼准则我们得到 $\lim_{n\to\infty} n \ln n \cdot a_n = 0$.

3. 不妨设 $n \ln n \cdot a_n$ 递减, 否则考虑 $-a_n$ 即可. 若 $\lim_{n \to \infty} (n \ln n \cdot a_n) = c \neq 0$. 注意到 $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ 发散, $\sum_{n=1}^{\infty} a_n$ 收敛, 这就和比较判别法矛盾! 因此 $\lim_{n\to\infty} (n \ln n \cdot a_n) = 0$, 从而 $a_n \ge 0$. 注意到

$$\sum_{[\ln n] \leqslant k \leqslant n} a_k = \sum_{[\ln n] \leqslant k \leqslant n} \frac{k \ln k \cdot a_k}{k \ln k} \geqslant n \ln n \cdot a_n \sum_{[\ln n] \leqslant k \leqslant n} \frac{1}{k \ln k}$$

$$\geqslant n \ln n \cdot a_n \sum_{[\ln n] \leqslant k \leqslant n} \int_k^{k+1} \frac{1}{x \ln x} dx = n \ln n \cdot a_n \int_{[\ln n]}^{n+1} \frac{1}{x \ln x} dx$$

$$= n \ln n \cdot a_n \cdot \ln \frac{\ln (n+1)}{\ln [\ln n]} \geqslant n \ln n \cdot a_n \cdot \ln \frac{\ln n}{\ln \ln n} \sim n \ln n \cdot \ln \ln n \cdot a_n,$$

利用 Cauchy 收敛准则就证明了 $\lim_{n\to\infty} n \ln n \cdot \ln \ln n \cdot a_n = 0$.

例题 0.1 设 $a_n \downarrow 0$, 证明: $\sum_{n=0}^{\infty} \frac{a_n}{n}$ 收敛的充要条件是 $\{a_n \ln n\}$ 有界且 $\sum_{n=0}^{\infty} (a_n - a_{n+1}) \ln n$ 收敛.

证明 利用 Abel 变换得

$$\sum_{k=1}^{n} \frac{a_k}{k} = \sum_{k=1}^{n-1} (a_k - a_{k+1}) \sum_{i=1}^{k} \frac{1}{i} + a_n \sum_{k=1}^{n} \frac{1}{k}, \quad \forall n \in \mathbb{N}.$$
 (5)

由 Stolz 公式可得

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\ln \left(1 + \frac{1}{n}\right)} = 1,$$

故

$$\sum_{k=1}^{n-1} (a_k - a_{k+1}) \sum_{i=1}^k \frac{1}{i} \sim \sum_{k=1}^{n-1} (a_k - a_{k+1}) \ln k, \quad n \to \infty.$$
 (6)

$$a_n \sum_{k=1}^n \frac{1}{k} \sim a_n \ln n, \quad n \to \infty. \tag{7}$$

充分性: 因为 $\sum_{k=1}^{\infty} (a_k - a_{k+1}) \ln k < +\infty$,所以由(6)(7)式知 $\sum_{k=1}^{\infty} (a_k - a_{k+1}) \sum_{i=1}^{k} \frac{1}{i} < +\infty$. 又由 $\{a_n \ln n\}$ 有界知 $\sum_{k=1}^{n} \frac{1}{i}$ 有界 因此中(5)式知 $\sum_{k=1}^{\infty} \frac{a_k}{i} < +\infty$

$$\{a_n \sum_{k=1}^n \frac{1}{k}\}$$
 有界. 因此由(5)式知 $\sum_{k=1}^\infty \frac{a_k}{k} < +\infty$.

必要性: 若 $\sum_{k=1}^{n} \frac{a_k}{k} < +\infty$, 则由(5)式可知

$$\sum_{k=1}^{\infty} (a_k - a_{k+1}) \sum_{i=1}^{k} \frac{1}{i} \leqslant \sum_{k=1}^{\infty} \frac{a_k}{k} < +\infty,$$

$$\lim_{n\to\infty} a_n \sum_{k=1}^n \frac{1}{k} \leqslant \sum_{k=1}^\infty \frac{a_k}{k} < +\infty.$$

于是再由(6)(7)式可得

$$\sum_{k=1}^{\infty} \left(a_k - a_{k+1} \right) \ln k < +\infty,$$

 $\lim_{n\to\infty} a_n \ln n < +\infty \Longrightarrow \{a_n \ln n\} \neq \mathbb{R}.$

定理 0.13 (级数的控制收敛定理)

设 $a_n(s), n = 1, 2, \cdots$ 满足

$$|a_n(s)| \leqslant c_n, \sum_{n=1}^{\infty} c_n < \infty,$$

以及 $\lim_{s} a_n(s) = b_n \in \mathbb{R}$.

$$\lim_{s} \sum_{n=1}^{\infty} a_n(s) = \sum_{n=1}^{\infty} b_n,$$

这里 \lim_{s} 表示 s 趋于某个 $s_0 \in \mathbb{R} \cup \{-\infty, +\infty\}$.

证明 事实上由极限保号性, 我们知道 $|b_n| \leqslant c_n, n=1,2,\cdots$, 因此 $\sum_{n=1}^{\infty} b_n$ 绝对收敛, 从而

$$\left| \sum_{n=1}^{\infty} a_n(s) - \sum_{n=1}^{\infty} b_n \right| \le \left| \sum_{n=1}^{m} (a_n(s) - b_n) \right| + \sum_{n=m+1}^{\infty} |a_n(s) - b_n|$$

$$\leq \left| \sum_{n=1}^{m} (a_n(s) - b_n) \right| + 2 \sum_{n=m+1}^{\infty} c_n.$$

对s取极限得

$$\lim_{s} \left| \sum_{n=1}^{\infty} a_n(s) - \sum_{n=1}^{\infty} b_n \right| \leqslant 2 \sum_{n=m+1}^{\infty} c_n.$$

由 m 任意性及 $\sum_{n=0}^{\infty} c_n$ 收敛的 Cauchy 收敛准则得

$$\lim_{s} \left| \sum_{n=1}^{\infty} a_n(s) - \sum_{n=1}^{\infty} b_n \right| = 0.$$

我们完成了级数控制收敛定理的证明.

例题 **0.2** 求 $\lim_{n\to\infty}\sum_{k=1}^{n-1}\left(\frac{k}{n}\right)^n$.

解 注意到

$$\lim_{n \to \infty} \sum_{k=1}^{n-1} \left(\frac{k}{n} \right)^n = \lim_{n \to \infty} \sum_{k=1}^{n-1} \left(\frac{n-k}{n} \right)^n = \lim_{n \to \infty} \sum_{k=1}^{\infty} \left(1 - \frac{k}{n} \right)^n \chi_{\{1, 2, \dots, n-1\}}(k),$$

并且

$$\left|\left(1-\frac{k}{n}\right)^n\chi_{\{1,2,\cdots,n-1\}}(k)\right|\leqslant e^{n\ln\left(1-\frac{k}{n}\right)}\leqslant e^{n\cdot\left(-\frac{k}{n}\right)}=e^{-k}.$$

又 $\sum_{k=0}^{\infty}e^{-k}<\infty$, 故由级数的控制收敛定理及(??)式可知

$$\lim_{n \to \infty} \sum_{k=1}^{n-1} \left(\frac{k}{n}\right)^n = \sum_{k=1}^{\infty} \lim_{n \to \infty} \left(1 - \frac{k}{n}\right)^n \chi_{\{1, 2, \dots, n-1\}}(k) = \sum_{k=1}^{\infty} e^{-k}$$

$$= \frac{e^{-1}}{1 - e^{-1}} = \frac{1}{e - 1}.$$

定理 0.14 (级数的 Levi 定理)

若非负 $a_n(s), n=1,2,\cdots$ 满足 $a_n(s)$ 是 s 的关于趋近方向的递增函数 (注意如果取极限的方式是 $s\to s_0^+,$ 那 么应该是关于 s 的递减函数) 且

$$\lim_{s} a_n(s) = b_n \in \mathbb{R} \bigcup \{+\infty\}.$$

证明

$$\lim_{s} \sum_{n=1}^{\infty} a_n(s) = \sum_{n=1}^{\infty} b_n.$$

笔记 本定理即使级数发散, 极限数列发散, 也能使用. 证明 若 $\sum_{n=1}^{\infty} b_n$ 收敛, 那么由于 $0 \leqslant a_n(s) \leqslant b_n$, 取控制级数 $\sum_{i=1}^{\infty} b_n$ 即可使用控制收敛定理得到

$$\lim_{s} \sum_{n=1}^{\infty} a_n(s) = \sum_{n=1}^{\infty} b_n.$$

若 $\sum_{n=1}^{\infty} b_n$ 发散, 由于 $\sum_{n=1}^{\infty} a_n(s)$ 也单调递增, 故 $\lim_{s} \sum_{n=1}^{\infty} a_n(s)$ 广义存在. 假设

$$\lim_{s} \sum_{n=1}^{\infty} a_n(s) = m < \infty,$$

此时对任何 $N \in \mathbb{N}$, 都有

$$\sum_{n=1}^{N} b_n = \lim_{s} \sum_{n=1}^{N} a_n(s) \leqslant \lim_{s} \sum_{n=1}^{\infty} a_n(s) = m < \infty,$$

矛盾! 我们完成了 Levi 定理的证明.

引理 0.1 (级数的 Fatou 引理)

设非负数列 $a_n(s), n = 1, 2, \dots,$ 则

$$\sum_{n=1}^{\infty} \underline{\lim}_{s} a_{n}(s) \leqslant \underline{\lim}_{s} \sum_{n=1}^{\infty} a_{n}(s).$$

筆记 本定理即使级数发散,极限数列发散,也能使用.

证明 不妨设 $s \to +\infty$, 考虑 $g_n(s) \triangleq \inf_{t \geq s} a_n(t)$, 则 g_n 关于趋于方向递增非负, 所以由级数的 Levi 定理知

$$\sum_{n=1}^{\infty} \underline{\lim}_{s} a_n(s) = \sum_{n=1}^{\infty} \lim_{s} g_n(s) = \lim_{s} \sum_{n=1}^{\infty} g_n(s) = \lim_{s} \sum_{n=1}^{\infty} \inf_{t \geqslant s} a_k(t) \leqslant \underline{\lim}_{s} \sum_{n=1}^{\infty} a_k(s),$$

这就完成了证明.

定理 0.15 (级数的 Fubini 定理)

满足下述条件之一时,必有

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m,n} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m,n}.$$
 (8)

1. $a_{m,n} \geqslant 0, \forall m, n \in \mathbb{N}$;

2.

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |a_{m,n}| < \infty.$$

🔮 笔记 第一个条件级数发散也能用,再一次体现思想:非负级数无脑换.

证明

1. 由级数的 Levi 定理. 我们注意到 $\{\sum_{n=1}^{N} a_{m,n}\}$ 关于 N 非负递增, 于是有

$$\sum_{m=1}^{\infty} \lim_{N \to \infty} \sum_{n=1}^{N} a_{m,n} = \lim_{N \to \infty} \sum_{m=1}^{\infty} \sum_{n=1}^{N} a_{m,n} = \lim_{N \to \infty} \sum_{n=1}^{N} \sum_{m=1}^{\infty} a_{m,n} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m,n},$$
(9)

这就是 (8).

2. 注意到

$$\sum_{m=1}^{\infty} \left| \sum_{n=1}^{N} a_{m,n} \right| \leqslant \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |a_{m,n}| < \infty,$$

于是由级数的控制收敛定理知(9)仍然成立,这就是(8).

定理 0.16 (级数加括号的理解)

- 1. 收敛级数任意加括号也收敛且收敛到同一个值.
- 2. 级数加括号之后收敛,且括号内每个元素符号相同,则原级数收敛,且级数值和如此加括号后一致.

证明

1. 设加括号后新的级数是 $\sum_{k=1}^{\infty} \sum_{j=n_k+1}^{n_{k+1}} a_j$, 其中 n_k 递增趋于 $+\infty$. 则

$$\sum_{k=1}^{\infty} \sum_{j=n_k+1}^{n_{k+1}} a_j = \lim_{m \to \infty} \sum_{k=1}^{m} \sum_{j=n_k+1}^{n_{k+1}} a_j = \lim_{m \to \infty} \sum_{j=n_1+1}^{n_{m+1}} a_j = \sum_{j=n_1+1}^{\infty} a_j,$$

这就完成了证明.

2. 即证明对严格递增的 $\{n_k\}_{k=1}^{\infty}\subset\mathbb{N}, n_1=0,$ 如果 $\sum_{k=1}^{\infty}\sum_{j=n_k+1}^{n_{k+1}}a_j$ 收敛且对任何 $k\in\mathbb{N}$ 都有 $a_{n_k+1},a_{n_k+2},\cdots,a_{n_{k+1}}$

将符号相同,则 $\sum_{j=1}^{\infty} a_j$ 收敛且

$$\sum_{j=1}^{\infty} a_j = \sum_{k=1}^{\infty} \sum_{j=n_k+1}^{n_{k+1}} a_j.$$
 (10)

事实上, 对每个 $n \in \mathbb{N}$, 存在唯一的 $m \in \mathbb{N}$, 使得 $n_m < n \leq n_{m+1}$, 此时

$$\sum_{j=1}^{n} a_j = \sum_{k=1}^{m-1} \sum_{j=n_k+1}^{n_{k+1}} a_j + \sum_{j=n_m+1}^{n} a_j.$$

则当 $a_j \ge 0, n_m < j \le n_{m+1}$, 我们有

$$\sum_{j=1}^{n} a_j \geqslant \sum_{k=1}^{m-1} \sum_{j=n_k+1}^{n_{k+1}} a_j, \sum_{j=1}^{n} a_j = \sum_{k=1}^{m} \sum_{j=n_k+1}^{n_{k+1}} a_j - \sum_{j=n+1}^{n_{m+1}} a_j \leqslant \sum_{k=1}^{m} \sum_{j=n_k+1}^{n_{k+1}} a_j.$$
 (11)

若 $a_j ≤ 0, n_m < j ≤ n_{m+1}$, 可得 (11) 的类似式

$$\sum_{k=1}^{m} \sum_{j=n_k+1}^{n_{k+1}} a_j \leqslant \sum_{j=1}^{n} a_j \leqslant \sum_{k=1}^{m-1} \sum_{j=n_k+1}^{n_{k+1}} a_j.$$
 (12)

让 $n \to +\infty$, 我们由 (11),(12) 和夹逼准则得 (10). 这就完成了证明.

命题 0.3

若 $a_n \downarrow 0$ 且 $\sum_{k=1}^n (a_k - a_n)$ 有界, 则 $\sum_{n=1}^\infty a_n$ 收敛.

证明 由 $\{a_n\}$ 递减可得, 对 $\forall m \in \mathbb{N}$, 都有

$$\sum_{k=1}^{m} a_k - ma_n \leqslant \sum_{k=1}^{m} a_k - ma_n + \sum_{k=m+1}^{n} (a_k - a_n) = \sum_{k=1}^{n} a_k - na_n = \sum_{k=1}^{n} (a_k - a_n).$$

$$\sum_{k=1}^{m} a_k \leqslant \sum_{k=1}^{n} (a_k - a_n) < C, \quad \forall m \in \mathbb{N}.$$

1. 设 $\{a_n\}_{n=1}^{\infty} \subset [0,+\infty)$, $S_n = \sum_{k=1}^{n} a_k$, $n \in \mathbb{N}$. 若 $\{a_n\}_{n=1}^{\infty}$ 不恒为 0, 不妨设 $a_1 \neq 0$, 则有

$$\sum_{n=1}^{\infty} \frac{a_n}{S_n^p} \begin{cases} \psi \mathfrak{D}, & p > 1, \\ \max_{n=1}^{\infty} a_n = 0, & 0$$

2. 对 p > 0 和收敛级数 $\sum_{i=1}^{\infty} a_{i}, a_{i} > 0$, 定义 $R_{n} = \sum_{i=1}^{\infty} a_{k}, n = 0, 1, 2, \cdots$, 证明

$$\sum_{n=1}^{\infty} \frac{a_n}{R_{n-1}^p} = \begin{cases} \psi \, \mathfrak{G}, & 0$$

笔记 本结果虽然不能直接使用, 但连同证明方法却要记住! 并且要学会联想和转化到本题的样子, 例如

$$\sum \left(1 - \frac{a_{n+1}}{a_n}\right), \sum \left(\frac{\ln \frac{a_n}{a_{n+1}}}{\ln a_n}\right)$$

等结构.

证明

1. 当 p > 1, 注意到

$$\sum_{n=2}^{\infty} \frac{a_n}{S_n^p} = \sum_{n=2}^{\infty} \frac{S_n - S_{n-1}}{S_n^p} = \sum_{n=2}^{\infty} \int_{S_{n-1}}^{S_n} \frac{1}{S_n^p} dx \leqslant \sum_{n=2}^{\infty} \int_{S_{n-1}}^{S_n} \frac{1}{x^p} dx = \int_{S_1}^{\infty} \frac{a_n}{x^p} dx,$$

可以看到无论 $\sum_{i=1}^{\infty} a_n$ 收敛性如何都有 $\sum_{i=1}^{\infty} \frac{a_n}{S_n^p}$ 收敛.

当
$$0 ,若 $\sum_{n=1}^{\infty} a_n$ 收敛,则有 $\frac{a_n}{S_n^p} \sim \frac{a_n}{\left(\sum_{n=1}^{\infty} a_n\right)^p} = ca_n, n \to \infty$,其中 c 是某个常数,故 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^p}$ 收敛. 当$$

 $\sum_{n=1}^{\infty} a_n$ 发散, 我们对任何充分大的 $m,k \in \mathbb{N}$ 都有

$$1 - \frac{S_k}{S_{k+m}} = \frac{S_{k+m} - S_k}{S_{k+m}} = \sum_{n=k+1}^{k+m} \frac{a_n}{S_{k+m}} \leqslant \sum_{n=k+1}^{k+m} \frac{a_n}{S_n} \leqslant \sum_{n=k+1}^{k+m} \frac{a_n}{S_n^p}.$$

让 $m \to +\infty$, 利用 $S_{k+m} \to +\infty$, 于是我们有余项不能任意小, 因此由 Cauchy 收敛准则知 $\sum_{s=0}^{\infty} \frac{a_n}{s^p}$ 发散. 这就 完成了证明.

2. 一方面

$$\sum_{n=1}^{\infty} \frac{a_n}{R_{n-1}^p} = \sum_{n=1}^{\infty} \frac{R_{n-1} - R_n}{R_{n-1}^p} \leqslant \sum_{n=1}^{\infty} \int_{R_n}^{R_{n-1}} \frac{1}{x^p} \mathrm{d}x = \int_0^{R_0} \frac{1}{x^p} \mathrm{d}x.$$

故当 $0 有 <math>\sum_{n=1}^{\infty} \frac{a_n}{R_{n-1}^p}$ 收敛. 另外一方面, 当 $p \geqslant 1$, 对 $m, t \in \mathbb{N}^*$, 有

$$\sum_{n=m}^{m+t} \frac{a_n}{R_{n-1}^p} = \sum_{n=m}^{m+t} \frac{R_{n-1} - R_n}{R_{n-1}^p} \geqslant \sum_{n=m}^{m+t} \frac{R_{n-1} - R_n}{R_{m-1}^p} = \frac{R_{m-1} - R_{m+t}}{R_{m-1}^p}.$$

注意 $\lim_{t\to+\infty} R_{m+t} = 0$, 故

$$\lim_{t \to +\infty} \sum_{n=m}^{m+t} \frac{a_n}{R_{n-1}^p} \geqslant \begin{cases} 1, & p = 1, \\ \frac{1}{R_{m-1}^{p-1}} \geqslant \frac{1}{R_0^{p-1}} > 0, & p > 1. \end{cases}$$

即
$$\sum_{n=1}^{\infty} \frac{a_n}{R_{n-1}^p}$$
 发散.

0.1.2 Riemann 重排定理

定理 0.17 (Riemann 重排定理)

设实级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛. 则对 $\forall \alpha, \beta \in \mathbb{R}$ 且 $-\infty \leqslant \alpha < \beta \leqslant +\infty$, 都存在级数的重排 $\sum_{n=1}^{\infty} a'_n$ 使得

$$\overline{\lim}_{n \to \infty} S'_n = \beta, \ \underline{\lim}_{n \to \infty} S'_n = \alpha, \tag{13}$$

这里 S_n' 是重排级数的部分和. 特别地, 对 $\forall L \in \mathbb{R}$, 都存在级数的重排 $\sum_{n=1}^{\infty} a_n'$ 使得

$$\lim_{n\to\infty} S_n' = L.$$

 $^{\circ}$

 $\stackrel{\diamondsuit}{\mathbf{C}}$ 笔记 定理叙述和证明思想都同等重要. 本结果比通常的黎曼重排定理要强. 证明的核心想法就是如果比 β 大, 则下一项加入负部来调小. 如果比 α 小了, 则下一项加入正部来调大.

注 重排的严格叙述是: 存在一个双射 $\sigma: \mathbb{N} \to \mathbb{N}$, 使得级数 $\sum_{n=1}^{\infty} a_{\sigma(n)}$ 满足(13)式. 因此排列 1, 3, 5, \cdots , 2, 4, \cdots 是无意义的.

证明 考虑

$$p_n \triangleq \frac{a_n + |a_n|}{2}, \ q_n \triangleq \frac{a_n - |a_n|}{2},\tag{14}$$

则

$$p_n + q_n = |a_n|, \ p_n - q_n = a_n. \tag{15}$$

级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛知正项级数 $\sum_{n=1}^{\infty} p_n$, $\sum_{n=1}^{\infty} q_n$ 都发散. 现在把 a_n 中非负的项依此记作 P_1, P_2, \cdots , 负的项的绝对值依此记作 Q_1, Q_2, \cdots .

当 α , β ∈ \mathbb{R} , 选取最小的 m_1 , k_1 ∈ \mathbb{N} 使得

$$\sum_{i=1}^{m_1} P_i > \beta, \ \sum_{i=1}^{m_1} P_i - \sum_{j=1}^{k_1} Q_j < \alpha.$$

选取最小的 $m_2, k_2 \in \mathbb{N}$ 使得

$$\sum_{i=1}^{m_1} P_i - \sum_{j=1}^{k_1} Q_j + \sum_{i=m_1+1}^{m_2} P_i > \beta, \ \sum_{i=1}^{m_1} P_i - \sum_{j=1}^{k_1} Q_j + \sum_{i=m_1+1}^{m_2} P_i - \sum_{j=k_1+1}^{k_2} Q_j < \alpha.$$

现在依此下去得到一个重排级数:

$$\sum_{i=1}^{m_1} P_i - \sum_{j=1}^{k_1} Q_j + \sum_{i=m_1+1}^{m_2} P_i - \sum_{j=k_1+1}^{k_2} Q_j + \cdots$$

设部分和的子列刚好是加到 $P_{m_{n-1}}$ 这种形式, 也就是说

$$\begin{cases} 第 - 项: P_1 + \cdots + P_{m_1-1}; \\ 第 - 项: P_1 + \cdots + P_{m_1} - Q_1 - \cdots - Q_{k_1} + P_{m_1+1} + \cdots + P_{m_2-1}; \\ 第 - 项: \cdots + P_{m_2+1} + \cdots + P_{m_3-1}; \\ \vdots \end{cases}$$

现在

$$(\cdots + P_{m_{n-1}+1} + \cdots + P_{m_n-1}) + P_{m_n} > \beta, \ (\cdots + P_{m_{n-1}+1} + \cdots + P_{m_n-1}) \leq \beta,$$

因此

$$0 \leq \beta - (\cdots + P_{m_{n-1}+1} + \cdots + P_{m_n-1}) < P_{m_n}.$$

注意到 $\lim_{n\to\infty} P_{m_n} = 0$, 我们有

$$\lim_{n\to\infty}(\cdots+P_{m_{n-1}+1}+\cdots+P_{m_n-1})=\beta.$$

类似的,设部分和子列刚好是加到 $Q_{k_{n-1}}$ 这种形式并有

$$0 \leq (\cdots - Q_{k_{n-1}+1} - \cdots - Q_{k_n-1}) - \alpha < Q_{k_n}, \lim_{n \to \infty} Q_{k_n} = 0.$$

于是

$$\lim_{n \to \infty} (\cdots - Q_{k_{n-1}+1} - \cdots - Q_{k_n-1}) = \alpha.$$

此外显然有上极限不超过 β ,下极限不小于 α ,这就证明了(13).

当 α, β 可以取 ∞ 时, 可取 $\{\alpha_n\}, \{\beta_n\} \subset \mathbb{R}$ 使得 $\alpha_n < \beta_n, \alpha_n \to \alpha, \beta_n \to \beta$. 考虑

$$\left(\cdots + \sum_{j=m_{n-1}+1}^{m_n} P_j\right) > \beta_n, \left(\cdots - \sum_{j=k_{n-1}+1}^{k_n} Q_j\right) < \alpha_n,$$

即可完成构造并类似得到(13).

例题 0.3 若正项级数 $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛, 证明: 级数 $\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \cdots + a_n}$ 也收敛.

证明 从条件可见正数数列 $\{a_n\}$ 为正无穷大量. 以下分两步来做.

(1) 若数列 $\{a_n\}$ 单调增加,则有

$$a_1 + a_2 + \cdots + a_{2n-1} \geqslant a_n + a_{n+1} + \cdots + a_{2n-1} \geqslant na_n$$

因此有不等式:

$$\frac{2n-1}{a_1 + a_2 + \dots + a_{2n-1}} + \frac{2n}{a_1 + a_2 + \dots + a_{2n}} \leqslant \frac{2n-1}{na_n} + \frac{2n}{na_n} < \frac{4}{a_n},$$

从而级数 $\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \cdots + a_n}$ 的部分和数列有上界, 因此收敛. 同时还得到

$$\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \dots + a_n} \leqslant 4 \sum_{n=1}^{\infty} \frac{1}{a_n}.$$

(2) 对于一般情况, 将数列 $\{a_n\}$ 按照从小到大重排, 并将重排后的数列记为 $\{b_n\}$. 根据收敛的正项级数在重排后仍收敛, 因此级数 $\sum_{n=1}^{\infty} \frac{1}{b_n}$ 收敛. 利用 (1) 知道级数 $\sum_{n=1}^{\infty} \frac{n}{b_1 + b_2 + \cdots + b_n}$ 收敛. 同时容易看出对每个 n 成立不等式

$$b_1 + b_2 + \dots + b_n \leq a_1 + a_2 + \dots + a_n$$

因此就有

$$\frac{n}{a_1 + a_2 + \dots + a_n} \leqslant \frac{n}{b_1 + b_2 + \dots + b_n},$$

于是从比较判别法就知道级数 $\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \dots + a_n}$ 收敛.

例题 0.4

证明

0.1.3 幂级数阶与系数阶的关系

定理 0.18 (幂级数系数的阶蕴含幂级数和函数的阶)

(1) 设

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, x \in (-1, 1)$$
 (16)

满足

$$b_n > 0$$
, $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, $\lim_{x \to 1^-} g(x) = +\infty$, (17)

则

$$\lim_{x \to 1^{-}} \frac{f(x)}{g(x)} = 0. \tag{18}$$

(2) 设

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, x \in (-1, 1)$$

满足

$$b_n > 0$$
, $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$, $\lim_{x \to 1^-} g(x) = +\infty$, (19)

则

$$\lim_{x \to 1^{-}} \frac{f(x)}{g(x)} = 1. \tag{20}$$

(3) 设

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, x \in \mathbb{R}$$
 (21)

满足

$$b_n > 0, \lim_{n \to \infty} \frac{a_n}{b_n} = 0, \tag{22}$$

则

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0. \tag{23}$$

(4) 设

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, x \in \mathbb{R}$$
 (24)

满足

$$b_n > 0, \lim_{n \to \infty} \frac{a_n}{b_n} = 1, \tag{25}$$

则

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1. \tag{26}$$

注 一句话总结本结论: 即幂级数系数的阶蕴含幂级数和函数的阶.

证明

(1) 注意到

$$\frac{f(x)}{g(x)} = \sum_{n=0}^{\infty} \frac{a_n}{b_n} \frac{b_n x^n}{\sum_{k=0}^{\infty} b_k x^k}.$$

我们有

$$0 \leqslant \lim_{x \to 1^{-}} \frac{b_n x^n}{\sum_{k=0}^{\infty} b_k x^k} = \lim_{x \to 1^{-}} \frac{b_n x^n}{g(x)} = 0.$$

由 Toeplitz 定理 (b) 以及 (17) 即得 (18).

(2) 由 $\lim_{n \to \infty} \frac{a_n - b_n}{b_n} = 0$ 和 (1) 问知

$$\lim_{x \to 1^{-}} \frac{f(x) - g(x)}{g(x)} = 0,$$

即得(20).

(3) 注意到

$$\frac{f(x)}{g(x)} = \sum_{n=0}^{\infty} \frac{a_n}{b_n} \frac{b_n x^n}{\sum\limits_{k=0}^{\infty} b_k x^k}.$$

我们有

$$0 \leqslant \frac{b_n x^n}{\sum_{k=0}^{\infty} b_k x^k} \leqslant \frac{b_n x^n}{b_n x^n + b_{n+1} x^{n+1}} = \frac{b_n}{b_n + b_{n+1} x},$$

即 $\lim_{x \to +\infty} \frac{b_n x^n}{\sum_{k=0}^{\infty} b_k x^k} = 0$. 由 Toeplitz 定理 (b) 以及 (22) 我们就得到 (23).

(4) 由 $\lim_{n\to\infty} \frac{a_n - b_n}{b_n} = 0$ 和 (3) 问知

$$\lim_{x \to 1^{-}} \frac{f(x) - g(x)}{g(x)} = 0,$$

即得 (26).

例题 0.5 设 p 是 \mathbb{R} 上实解析函数且 $0 < \prod_{n=0}^{\infty} p^{(n)}(0) < \infty$, 求 $\lim_{x \to +\infty} \frac{p'(x)}{p(x)}$.

证明 注意到

$$1 = \lim_{m \to \infty} \frac{\prod_{n=0}^{m+1} p^{(n)}(0)}{\prod_{n=0}^{m} p^{(n)}(0)} = \lim_{m \to \infty} p^{(m)}(0),$$

所以 $\{p^{(n)}(0)\}_{n=0}^{\infty}$ 是有界数列, 故

$$p(x) = \sum_{n=0}^{\infty} \frac{p^{(n)}(0)}{n!} x^n, x \in \mathbb{R}.$$

在 R 上有定义且收敛. 于是

$$p'(x) = \sum_{n=0}^{\infty} \frac{p^{(n+1)}(0)}{n!} x^n, x \in \mathbb{R}.$$

由定理 0.18(3), 我们有

$$\lim_{n \to \infty} \frac{\frac{p^{(n)}(0)}{n!}}{\frac{p^{(n+1)}(0)}{n!}} = 1 \Rightarrow \lim_{x \to +\infty} \frac{p'(x)}{p(x)} = 1.$$

例题 0.6 计算

$$\sum_{n=1}^{\infty} \ln n \cdot x^n \sim \frac{\ln \frac{1}{1-x}}{1-x}, x \to 1^-.$$

解 注意到

$$\ln n \sim 1 + \frac{1}{2} + \dots + \frac{1}{n}, n \to \infty.$$

由定理 0.18可知

$$\sum_{n=1}^{\infty} \ln n \cdot x^n \sim \sum_{n=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) x^n \xrightarrow{\text{Mbi} ??} \frac{-\ln (1-x)}{1-x} = \frac{\ln \frac{1}{1-x}}{1-x}, x \to 1^-.$$

例题 0.7 证明:

$$\lim_{y \to 1^{-}} \frac{1}{\ln(1-y)} \int_{0}^{1} \frac{\mathrm{d}x}{\sqrt{(1-x^{2})(1-y^{2}x^{2})}} = -\frac{1}{2}.$$

证明 注意到

$$(1+x)^{-\frac{1}{2}} = \sum_{k=0}^{\infty} C_{-\frac{1}{2}}^{k} x^{k} = 1 + \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right) \left(-\frac{1}{2}-1\right) \cdots \left(-\frac{1}{2}-k+1\right)}{k!} x^{k} = 1 + \sum_{k=1}^{\infty} \frac{(-1)^{k} (2k-1)!!}{2^{k} k!} x^{k} = 1 + \sum_{k=1}^{\infty} \frac{(-1)^{k} (2k-1)!!}{(2k)!!} x^{k}.$$

于是

$$\int_{0}^{1} \frac{\mathrm{d}x}{\sqrt{1-x^{2}}\sqrt{1-y^{2}x^{2}}} = \int_{0}^{1} \frac{1+\sum\limits_{k=1}^{\infty}\frac{(2k-1)!!}{2^{k}k!}x^{2k}y^{2k}}{\sqrt{1-x^{2}}} \mathrm{d}x = \int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} \mathrm{d}x + \sum\limits_{k=1}^{\infty} \left[\frac{(2k-1)!!}{(2k)!!} \int_{0}^{1} \frac{x^{2k}}{\sqrt{1-x^{2}}} \mathrm{d}x\right] y^{2k}$$

$$\stackrel{x=\cos\theta}{=} \frac{\pi}{2} + \sum\limits_{k=1}^{\infty} \left[\frac{(2k-1)!!}{(2k)!!} \int_{0}^{\frac{\pi}{2}} \sin^{2k}\theta \mathrm{d}\theta\right] y^{2k} = \frac{\pi}{2} + \frac{\pi}{2} \sum\limits_{k=1}^{\infty} \left[\frac{(2k-1)!!}{(2k)!!}\right]^{2} y^{2k}.$$

又由 Wallis 公式知

$$\frac{(2k)!!}{(2k-1)!!} \sim \sqrt{\pi k}, k \to \infty.$$

故由定理 0.18可得

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{1 - x^2} \sqrt{1 - y^2 x^2}} \sim \frac{\pi}{2} \sum_{k=1}^\infty \frac{y^{2k}}{\pi k} = \frac{1}{2} \sum_{k=1}^\infty \frac{(y^2)^k}{k} = -\frac{1}{2} \ln(1 - y^2)$$
$$= -\frac{1}{2} \ln(1 - y) - \frac{1}{2} \ln(1 + y) \sim -\frac{1}{2} \ln(1 - y), y \to 1^-.$$

例题 0.8 证明

$$\sum_{n=0}^{\infty} \frac{x^n}{\ln n} \sim \frac{1}{(1-x)\ln\frac{1}{1-x}}, x \to 1^-.$$

证明 注意到 $\sum_{n=2}^{\infty} \frac{x^n}{\ln n}$ 在 (-1,1) 上绝对收敛, 由Cauchy 积收敛定理及推论 0.1可知

$$-\ln(1-x)\sum_{n=2}^{\infty} \frac{x^n}{\ln n} = \sum_{n=1}^{\infty} \frac{x^n}{n} \cdot \sum_{n=2}^{\infty} \frac{x^n}{\ln n} = \frac{\frac{2\pi}{10} \cdot 10^{-1}}{10^{-1} \cdot 10^{-1}} \sum_{n=3}^{\infty} \left(\sum_{k=2}^{n-1} \frac{1}{\ln k \cdot (n-k)}\right) x^n.$$

下证 $\lim_{n\to+\infty} \sum_{k=0}^{n-1} \frac{1}{(n-k)\ln k} = 1$. 一方面, 我们有

$$\sum_{k=2}^{n-1} \frac{1}{(n-k)\ln k} \geqslant \sum_{k=2}^{n-1} \frac{1}{(n-k)\ln (n-1)} = \frac{\sum_{k=1}^{n-2} \frac{1}{k}}{\ln (n-1)} \to 1, n \to \infty.$$

另一方面, 对 $\forall \varepsilon \in (0,1)$, 我们有

$$\begin{split} \sum_{k=2}^{n-1} \frac{1}{(n-k)\ln k} &\leqslant \sum_{2 \leqslant k \leqslant \varepsilon n} \frac{1}{(n-k)\ln k} + \sum_{\varepsilon n \leqslant k \leqslant n-1} \frac{1}{(n-k)\ln k} \\ &\leqslant \frac{1}{n(1-\varepsilon)} \sum_{2 \leqslant k \leqslant \varepsilon n} \frac{1}{\ln 2} + \sum_{\varepsilon n \leqslant k \leqslant n-1} \frac{1}{(n-k)\ln \varepsilon n} \\ &\leqslant \frac{\varepsilon n}{n(1-\varepsilon)\ln 2} + \frac{\sum_{\varepsilon n \leqslant k \leqslant n-1} \frac{1}{k}}{\ln \varepsilon + \ln n}. \end{split}$$

$$\overline{\lim}_{n\to\infty} \sum_{k=2}^{n-1} \frac{1}{(n-k)\ln k} \leqslant \frac{\varepsilon}{(1-\varepsilon)\ln 2} + 1.$$

再令 $\varepsilon \to 0^+$ 得

$$\overline{\lim}_{n\to\infty} \sum_{k=2}^{n-1} \frac{1}{(n-k)\ln k} \leqslant 1.$$

故由夹逼准则知 $\lim_{n \to +\infty} \sum_{k=2}^{n-1} \frac{1}{(n-k) \ln k} = 1$. 于是由定理 0.18可知

$$-\ln(1-x)\sum_{n=2}^{\infty} \frac{x^n}{\ln n} = \sum_{n=3}^{\infty} \left(\sum_{k=2}^{n-1} \frac{1}{\ln k (n-k)}\right) x^n \sim \sum_{n=3}^{\infty} x^n = \frac{1}{1-x}, x \to 1^-.$$

$$\mathbb{F} \sum_{n=2}^{\infty} \frac{x^n}{\ln n} \sim \frac{1}{(1-x)\ln\frac{1}{1-x}}, x \to 1^-.$$

例题 0.9 设

$$a_0 = 1, a_1 = \frac{5}{4}, a_n = \frac{(2n+3)a_{n-1} + (2n-3)a_{n-2}}{4n}, n = 2, 3, \dots$$

求 $\lim_{n\to\infty} a_n$.

\$

笔记 注意到形式幂级数法我们不需要担心考虑的 f 的幂级数是否收敛的问题. 因为这个方法最后往往可以算出一个具体的 f, 对这个 f 来说直接用数学归纳法计算验证会发现其 Taylor 多项式的系数恰好就是条件中的数列, 从而整个逻辑严谨. 因此这又是一个从逻辑上来说属于**先猜后证**的方法.

从证明可以看到本题实质上是通过幂级数法求出了 a_n 的通项. 此外考虑 $\frac{1}{1-x}f(x)$ 的幂级数并用 Cauchy 积可以导出 $\sum_{k=0}^n a_k$ 的信息.

如果要严谨地证明,就是用数学归纳法证明下述求出来的 a_n 通项表达式 (其实就是下面解出来的 f 的 Taylor 展开式中的通项) 就是满足题目条件的 a_n ,再直接计算其极限即可.

证明 记
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
,则 $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$. 由条件可得
$$4na_n = (2n+3)a_{n-1} + (2n-3)a_{n-2}, \quad n = 2, 3, \cdots.$$

$$\Rightarrow 4 \sum_{n=2}^{\infty} n a_n x^n = \sum_{n=2}^{\infty} [(2n+3)a_{n-1} + (2n-3)a_{n-2}] x^n.$$

$$\Rightarrow 4 \sum_{n=1}^{\infty} n a_n x^n - 4a_1 x = \sum_{n=1}^{\infty} (2n+5)a_n x^{n+1} + \sum_{n=0}^{\infty} (2n+1)a_n x^{n+2}$$

$$\Rightarrow 4x \sum_{n=1}^{\infty} n a_n x^{n-1} - 5x = 2x^2 \sum_{n=1}^{\infty} n a_n x^{n-1} + 2x^3 \sum_{n=1}^{\infty} n a_n x^{n-1} + 5x \sum_{n=1}^{\infty} a_n x^n + x^2 \sum_{n=1}^{\infty} a_n x^n$$

$$\Rightarrow 4x \sum_{n=1}^{\infty} n a_n x^{n-1} - 5x = 2x^2 \sum_{n=1}^{\infty} n a_n x^{n-1} + 2x^3 \sum_{n=1}^{\infty} n a_n x^{n-1} + 5x \sum_{n=0}^{\infty} a_n x^n + x^2 \sum_{n=0}^{\infty} a_n x^n - 5x$$

$$\Rightarrow (2x^3 + 2x^2 - 4x) \sum_{n=1}^{\infty} n a_n x^{n-1} + (x^2 + 5x) \sum_{n=1}^{\infty} a_n x^n = 0$$

$$\Rightarrow (2x^3 + 2x^2 - 4x) f'(x) + (x^2 + 5x) f(x) = 0.$$

又注意到 $f(0) = a_0 = 1, f'(0) = a_1 = \frac{5}{4}$, 故分离变量解上述微分方程得

$$f(x) = \frac{1}{\sqrt{2}} \frac{\sqrt{x+2}}{1-x}.$$

因为 $\sqrt{x+2} \in C^{\infty}(\mathbb{R})$, 所以可记 $\sqrt{x+2} = \sum_{n=0}^{\infty} b_n x^n$, 则 $\sqrt{3} = \sum_{n=0}^{\infty} b_n$. 由Cauchy 积收敛定理及推论 0.1知

$$f(x) = \frac{1}{\sqrt{2}} \cdot \frac{1}{1 - x} \cdot \sqrt{x + 2} = \frac{1}{\sqrt{2}} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} b_k \right) x^n.$$

因此
$$a_n = \frac{1}{\sqrt{2}} \sum_{k=0}^n b_k$$
, 故 $\lim_{n \to \infty} a_n = \frac{1}{\sqrt{2}} \sum_{n=0}^\infty b_n = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{6}}{2}$.

0.1.4 Cauchy 积

定义 0.1 (Cauchy 积)

设
$$\sum_{n=0}^{\infty} a_n, \sum_{n=0}^{\infty} b_n$$
 是两个收敛级数, 我们称

$$\sum_{n=0}^{\infty} c_n, c_n = \sum_{k=0}^{n} a_k b_{n-k}$$

为
$$\sum_{n=0}^{\infty} a_n, \sum_{n=0}^{\infty} b_n$$
 的 Cauchy(**乘**) 积. 我们记

$$A_n = \sum_{k=0}^n a_k, B_n = \sum_{k=0}^n b_k, S_n = \sum_{k=0}^n c_k.$$

 \mathbf{i} 我们暂时并不清楚 $\sum_{n=0}^{\infty} c_n$ 是否收敛, 更不知道是否有

$$\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n.$$

结论 延续定义 0.1, 我们有

$$\begin{cases} a_0b_0 = c_0 \\ a_0b_1 + a_1b_0 = c_1 \\ a_0b_2 + a_1b_1 + a_2b_0 = c_2 \\ \vdots \\ a_0b_n + a_1b_{n-1} + a_2b_{n-2} + \dots + a_nb_0 = c_n \end{cases}$$

这可以看做一个线性方程组

$$\begin{pmatrix} a_0 & & & & & \\ a_1 & a_0 & & & & \\ a_2 & a_1 & a_0 & & & \\ \vdots & \vdots & \vdots & \ddots & & \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

则当 $a_0 \neq 0$, 我们有

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_0 \\ a_1 & a_0 \\ a_2 & a_1 & a_0 \\ \vdots & \vdots & \vdots & \ddots \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}^{-1} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

本结论可以帮我们计算已知函数的倒数的 Taylor 展开. 例题
$$0.10$$
 设 $a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}, n = 0, 1, \cdots, 则$

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^n}{\sqrt{(n-k+1)(k+1)}}$$

发散.

注 这是一组 Cauchy 积不收敛的反例.

证明 事实上, 我们有

$$\left| \sum_{k=0}^{n} \frac{(-1)^{n}}{\sqrt{(n-k+1)(k+1)}} \right| = \sum_{k=0}^{n} \frac{1}{\sqrt{(n-k+1)(k+1)}} \geqslant \sum_{k=0}^{n} \frac{1}{\sqrt{\left(n-\frac{n}{2}+1\right)\left(\frac{n}{2}+1\right)}} = \frac{n+1}{\frac{n}{2}+1} \to 2,$$

上式的放缩实际上利用了二次函数 $(n-k+1)(k+1) = -k^2 + nk + n + 1$ 的最值大值点 $k = \frac{n}{2}$. 这就证明了

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^n}{\sqrt{(n-k+1)(k+1)}}$$

发散.

命题 0.5

延续定义 0.1, 我们有

$$\lim_{n \to \infty} \frac{\sum_{j=0}^{n} S_j}{n} = \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n$$
(27)

证明 注意到

$$S_n = \sum_{k=0}^n \sum_{i=0}^k a_i b_{k-i} = \sum_{i=0}^n \sum_{k=i}^n a_i b_{k-i} = \sum_{i=0}^n a_i B_{n-i} = \sum_{i=0}^n a_{n-i} B_i,$$

于是我们有

$$\sum_{i=0}^{n} S_{j} = \sum_{i=0}^{n} \sum_{j=0}^{j} a_{j-i} B_{i} = \sum_{i=0}^{n} \sum_{j=i}^{n} a_{j-i} B_{i} = \sum_{i=0}^{n} A_{n-i} B_{i}$$

由命题??可得(27).

推论 0.1

设级数 $\sum_{n=0}^{\infty} a_n, \sum_{n=0}^{\infty} b_n$ 都收敛, 则它们的 Cauchy 积 $\sum_{n=0}^{\infty} c_n$ 收敛的充要条件是

$$\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n.$$

证明 延续定义 0.1, 充分性显然成立, 下证必要性. 由命题 0.5及 Stolz 定理可得

$$\sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n = \lim_{n \to \infty} \frac{\sum_{j=0}^{n} S_j}{n} = \lim_{n \to \infty} S_n = \sum_{n=0}^{\infty} c_n.$$

定理 0.19 (Cauchy 积收敛定理)

延续定义 0.1, 我们有

1. 若
$$\sum_{n=0}^{\infty} a_n$$
, $\sum_{n=0}^{\infty} b_n$ 有一个绝对收敛, 则 $\sum_{n=0}^{\infty} c_n$ 收敛.

2. 若
$$\sum_{n=0}^{\infty} a_n$$
, $\sum_{n=0}^{\infty} b_n$ 都绝对收敛, 则 $\sum_{n=0}^{\infty} c_n$ 绝对收敛.

证明 1. 注意到

$$S_n = \sum_{k=0}^n \sum_{i=0}^k a_i b_{k-i} = \sum_{i=0}^n \sum_{k=i}^n a_i b_{k-i} = \sum_{i=0}^n a_i B_{n-i} = \sum_{i=0}^n a_{n-i} B_i,$$

因此我们只需证明

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{i=0}^n a_i B_{n-i}$$

收敛. 不妨设 (否则, 若 $\lim_{n\to\infty} B_n = B$, 则用 $B_n - B$ 代替 B_n)

$$\sum_{n=1}^{\infty} |a_n| < \infty, \lim_{n \to \infty} B_n = 0$$

于是运用命题??就有

$$\lim_{n \to \infty} \left| \sum_{i=0}^{n} a_i B_{n-i} \right| \le \lim_{n \to \infty} \sum_{i=0}^{n} |a_i| \cdot |B_{n-i}| = \sum_{i=0}^{\infty} |a_i| \cdot 0 = 0$$

这就证明了 $\sum_{n=0}^{\infty} c_n$ 收敛.

2. 若
$$\sum_{n=0}^{\infty} a_n$$
, $\sum_{n=0}^{\infty} b_n$ 都绝对收敛. 注意到

$$\sum_{k=0}^{n} |c_k| \leqslant \sum_{k=0}^{n} \sum_{i=0}^{k} |a_i b_{k-i}| = \sum_{i=0}^{n} \sum_{k=i}^{n} |a_i b_{k-i}| = \sum_{i=0}^{n} \left(|a_i| \sum_{k=i}^{n} |b_{k-i}| \right)$$

于是由命题??就有

$$\sum_{k=0}^{\infty} |c_k| \leqslant \lim_{n \to \infty} \sum_{i=0}^{n} \left(|a_i| \sum_{k=i}^{n} |b_{k-i}| \right) = \sum_{i=0}^{\infty} |a_i| \cdot \sum_{i=0}^{\infty} |b_i| < \infty$$

这就证明了 $\sum_{n=0}^{\infty} c_n$ 绝对收敛.

接下来我们研究 Cauchy 积和两个级数的积差距有多少.

命题 0.6

延续定义 0.1, 我们有

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k \sum_{j=0}^{k-1} b_{n-j} = 0 \iff \sum_{n=0}^{\infty} c_n \, \text{kg}.$$
 (28)

证明 注意到

$$S_n = \sum_{k=0}^n \sum_{i=0}^k a_i b_{k-i} = \sum_{i=0}^n \sum_{k=i}^n a_i b_{k-i} = \sum_{i=0}^n a_i B_{n-i} = \sum_{i=0}^n a_{n-i} B_i,$$

即
$$\sum_{j=0}^{n} b_j \sum_{k=0}^{n} a_k = \sum_{k=0}^{n} c_k$$
. 于是

$$\sum_{k=1}^{n} a_k \sum_{j=0}^{k-1} b_{n-j} = \sum_{k=1}^{n} a_k \left(\sum_{j=0}^{n} b_{n-j} - \sum_{j=k}^{n} b_{n-j} \right)$$

$$= \sum_{j=0}^{n} b_j \left(\sum_{k=0}^{n} a_k - a_0 \right) - \sum_{k=1}^{n} a_k \sum_{j=0}^{n-k} b_j$$

$$= \sum_{j=0}^{n} b_j \sum_{k=0}^{n} a_k - \sum_{k=0}^{n} \sum_{j=0}^{n-k} a_k b_j$$

$$= \sum_{j=0}^{n} b_j \sum_{k=0}^{n} a_k - \sum_{k=0}^{n} c_k$$

由于 Cauchy 积收敛,则由推论 0.1, 我们有

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k \sum_{j=0}^{k-1} b_{n-j} = 0 \iff \sum_{n=0}^{\infty} c_n \, \text{this}$$

例题 **0.11** 设递减数列 $a_n, b_n > 0, n = 0, 1, 2, \cdots$, 且 $\sum_{n=0}^{\infty} (-1)^n a_n$, $\sum_{n=0}^{\infty} (-1)^n b_n$ 收敛, 记 $c_n = \sum_{j=0}^n a_j b_{n-j}$, 证明

$$\sum_{n=0}^{\infty} (-1)^n c_n \, | \psi \, | \hat{\omega} \, \iff \lim_{n \to \infty} c_n = 0$$
 (29)

证明 左推右显然, 现在假设 $\lim_{n\to\infty} c_n = 0$, 由命题 0.6, 我们只需证明

$$\lim_{n \to \infty} \sum_{k=1}^{n} (-1)^k a_k \sum_{j=0}^{k-1} (-1)^{n-j} b_{n-j} = 0$$

现在

$$\left| \sum_{k=1}^{n} (-1)^k a_k \sum_{j=0}^{k-1} (-1)^{n-j} b_{n-j} \right| \leq \sum_{k=1}^{n} a_k \left| \sum_{j=0}^{k-1} (-1)^{n-j} b_{n-j} \right|$$

$$\leq \sum_{k=1}^{n} a_k b_{n-k+1} \leq \sum_{k=0}^{n+1} a_k b_{n-k+1} = c_{n+1}$$

其中第二个不等号来自于交错级数不等式. 于是我们有

$$\lim_{n \to \infty} \left| \sum_{k=1}^{n} (-1)^k a_k \sum_{j=0}^{k-1} (-1)^{n-j} b_{n-j} \right| = 0$$

我们证明了(29).

设 $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$, 设

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, x \in (-1, 1).$$

记
$$S_n riangleq \sum_{k=0}^n a_k$$
,则

$$\frac{f(x)}{1-x} = \sum_{n=0}^{\infty} S_n x^n, x \in (-1, 1).$$

证明 由 Taylor 级数可知

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, x \in (-1, 1).$$

显然 $\sum_{n=0}^{\infty}x^n$ 在 (-1,1) 上绝对收敛,故由Cauchy 积收敛定理可知 $f(x)=\sum_{n=0}^{\infty}a_nx^n$ 和 $\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n$ 的 Cauchy 积也收敛,即

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} (a_k x^k) x^{n-k} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k x^n = \sum_{n=0}^{\infty} S_n x^n < +\infty.$$

故由推论 0.1可知

$$\frac{f(x)}{1-x} = \sum_{n=0}^{\infty} a_n x^n \cdot \sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} S_n x^n.$$