Chapitre 10 : Courbes paramétrées (planes)

I désigne ici un intervalle infini de \mathbb{R} .

 \mathfrak{P} désigne un plan affine de direction P, euclidien orienté quand il le faut, et $\mathfrak{R} = (O, \vec{i}, \vec{j})$ en est un repère (orthonormé direct si nécessaire)

I Généralités

A) Préliminaire

Soit
$$\gamma: I \to \mathfrak{P}$$
 $t \mapsto M(t)$
Soit $A \in \mathfrak{P}$, posons $\vec{F}_A: I \to \underline{P}$
 $t \mapsto \overline{AM(t)}$

 $(\vec{F}_A$ est une fonction vectorielle)

Proposition:

La classe de la fonction vectorielle \vec{F}_A , ainsi que les vecteurs de ses éventuelles dérivées d'ordre ≥ 1 ne dépendent pas du choix de A.

En effet, si B est un autre point de \mathfrak{P} :

$$\vec{F}_{R}(t) = \overrightarrow{BM}(t) = \overrightarrow{BA} + \overrightarrow{AM}(t) = \overrightarrow{BA} + \vec{F}_{A}(t)$$

Donc \vec{F}_B et \vec{F}_A sont bien de même classe, et sont égales à une constante près, donc les dérivées successives sont bien égales.

Définition:

La classe de γ , c'est-à-dire de $t\mapsto M(t)$ est, par définition, la classe de $\vec{F}_A: t\mapsto \overrightarrow{AM(t)}$ (qui ne dépend pas de A). Et, si cette fonction est de classe C^k , avec $k\geq 1$, pour tout $t\in I$, $\frac{d^k\vec{F}_A}{dt^k}(t)$ est noté $\frac{\overrightarrow{d^kM}}{dt^k}(t)$.

B) Définition

Soit $k \ge 1$. Un arc paramétré de classe C^k du plan \mathfrak{P} , c'est une fonction $\gamma: I \to \mathfrak{P}$ de classe C^k sur un intervalle I de \mathbb{R} . $t \mapsto M(t)$

Vocabulaire:

Si $\gamma: I \to \mathfrak{P}$ est un arc paramétré de classe C^k $(k \ge 1)$:

- $\{M(t), t \in I\}$ s'appelle le support de l'arc paramétré γ , ou aussi la trajectoire du mobile (tel que, pour tout $t \in I$, M(t) soit la position du mobile « à l'instant t »)
 - $\frac{\overrightarrow{dM}}{dt}(t) = \overrightarrow{v}(t)$: vecteur vitesse à l'instant t.

- Si $k \ge 2$: $\frac{d^2M}{dt^2}(t) = \vec{a}(t)$ est le vecteur accélération à l'instant t.
- On dit que le point de paramètre t est stationnaire lorsque $\vec{v}(t) = \vec{0}$.
- Un point A du support est dit multiple (ou plus précisément double, triple...) lorsqu'il existe t_1, t_2 distincts de I tels que $M(t_1) = M(t_2) = A$

Finalement, la donnée d'un arc paramétré correspond à la donnée d'un mouvement d'un point mobile.

Exemple:

Construire le support de l'arc paramétré $t\mapsto M(t)$ où $M(t)\begin{pmatrix} t(t+1)\\ t^2(t+1) \end{pmatrix}$ dans $\mathbb R$.

$$x(t) = t^{2} + t x'(t) = 2t + 1$$

$$y(t) = t^{3} + t^{2} y'(t) = 3t^{2} + 2t$$

$$t -2/3 -1/2 0$$

$$x'(t) - -0 + +$$

$$x(t)$$

$$y(t)$$

$$y(t)$$

$$y'(t) + 0 - 0 +$$

II Tangente

Dans tout ce paragraphe, $\gamma: I \to \mathfrak{P}$ est un arc paramétré de classe C^k , avec $k \ge 1$.

A) Définition

• Soit $t_0 \in \mathring{I}$.

On dit que l'arc γ présente une tangente au point $M_0 = M(t_0)$ lorsque la fonction

$$t\mapsto \frac{\overline{M_0M(t)}}{\left\|\overline{M_0M(t)}\right\|}$$
 est définie au voisinage épointé (c'est-à-dire en retirant t_0) de t_0 , admet

une limite à droite et une limite à gauche en t_0 , ces deux limites étant égales ou opposées.

Dans ce cas, on note $\vec{T}(t_0)$ la limite à droite, et la tangente à la courbe au point M_0 est par définition la droite passant par M_0 et dirigée par $\vec{T}(t_0)$ (appelé vecteur unitaire de sur la tangente orientée)

$$\frac{\overrightarrow{M_0M(t)}}{\left\|\overrightarrow{M_0M(t)}\right\|} \text{ est de norme 1 au voisinage épointé de } t_0 \text{ , donc } \left\|\overrightarrow{T}(t_0)\right\| = 1.$$

• Si t_0 est une extrémité de I, on adapte la définition...

B) Cas d'un point régulier

Définition :

$$M(t_0)$$
 est régulier $\Leftrightarrow \vec{v}(t_0) \neq \vec{0}$

$$M(t_0)$$
 est stationnaire $\Leftrightarrow \vec{v}(t_0) = \vec{0}$

Supposons ici que $\vec{v}(t_0) \neq \vec{0}$, notons $M_0 = M(t_0)$, $\vec{v}_0 = \vec{v}(t_0)$.

Le DL à l'ordre 1 en t_0 de la fonction vectorielle $\vec{F}: t \mapsto \overrightarrow{OM(t)}$ donne :

$$\vec{F}(t) = \vec{F}(t_0) + (t - t_0)\vec{F}'(t_0) + (t - t_0)\vec{\mathcal{E}}(t) \text{ où } \lim_{t \to t_0} \vec{\mathcal{E}}(t) = \vec{0}$$

Ou encore :
$$\overrightarrow{OM}(t) = \overrightarrow{OM}(t_0) + (t - t_0)\vec{v}(t_0) + (t - t_0)\vec{\varepsilon}(t)$$

C'est-à-dire
$$\overrightarrow{M_0M(t)} = (t - t_0)(\overrightarrow{v_0} + \overrightarrow{\varepsilon}(t))$$

Donc
$$\|\overline{M_0 M(t)}\| = |t - t_0| \|\overline{v_0} + \vec{\varepsilon}(t)\|$$

$$\underset{\text{lorsque } t \to t_0}{\|\vec{v_0} + \vec{\varepsilon}(t)\|}$$

Donc
$$\frac{\overrightarrow{M_0M(t)}}{\left\|\overrightarrow{M_0M(t)}\right\|} = \frac{t-t_0}{\left|t-t_0\right|} \frac{\overrightarrow{v_0} + \overrightarrow{\mathcal{E}}(t)}{\left\|\overrightarrow{v_0} + \overrightarrow{\mathcal{E}}(t)\right\|}$$
 est définie au voisinage épointé de t_0 , tend

vers
$$\frac{\vec{v}_0}{\|\vec{v}_0\|}$$
 à droite et $\frac{-\vec{v}_0}{\|\vec{v}_0\|}$ à gauche.

Ainsi, en un point non stationnaire, $\vec{T}(t_0) = \frac{\vec{v}_0}{\|\vec{v}_0\|}$.

Equation de la tangente :

$$M(t)\begin{vmatrix} x(t) \\ y(t) \end{vmatrix}, \ \vec{v}(t) \begin{vmatrix} x'(t) \\ y'(t) \end{vmatrix}$$

Tangente en $M_0 = M(t_0)$:

$$y'(t_0)(x-x_0)-x'(t_0)(y-y_0)=0$$
 (avec $x_0=x(t_0), y_0=y(t_0)$)

Donc si $x'(t_0) = 0$, on a une tangente verticale, sinon de pente $\frac{y'(t_0)}{x'(t_0)}$

C) Cas d'un point stationnaire « pas méchant »

On suppose que
$$\vec{v}(t_0) = \vec{0}$$
, mais que $\left\{ i \ge 2, \gamma \text{ est de classe } C^i \text{ et } \frac{\overrightarrow{d^i M}}{dt^i}(t_0) \ne \vec{0} \right\} \ne \emptyset$

C'est donc une partie non vide de \mathbb{N} , on note p son plus petit élément.

Le DL à l'ordre p de \vec{F} donne alors :

$$\overrightarrow{M_0M(t)} = \frac{(t-t_0)^p}{p!} \left(\frac{\overrightarrow{d^pM}}{dt^p} (t_0) + \underbrace{\vec{\mathcal{E}}(t)}_{\to \vec{0}} \right)$$

Il en résulte comme pour un point régulier qu'il y a une tangente en $M(t_0)$, et qu'elle est dirigée par $\frac{\overrightarrow{d^pM}}{dt^p}(t_0)$.

Cas particulier:

Si γ est de classe C^2 , si $\vec{v}(t_0) = \vec{0}$ et $\vec{a}(t_0) \neq \vec{0}$, il y a alors une tangente en $M(t_0)$, dirigée par $\vec{a}(t_0)$.

III Etude locale « plus poussée »

On prend les mêmes notations qu'au paragraphe précédent, et l'arc est supposé ici de classe C^k , avec $k \ge 2$.

A) Cas d'un point birégulier

On suppose que $M(t_0)$ est birégulier, c'est-à-dire que $\vec{v}(t_0) \neq \vec{0}$ et $(\vec{v}(t_0), \vec{a}(t_0))$ est libre.

Le DL de \vec{F} en t_0 à l'ordre 2 donne :

$$\overline{M_0 M(t)} = (t - t_0) \vec{v}_0 + \frac{(t - t_0)^2}{2} \vec{a}_0 + (t - t_0)^2 \mathcal{E}(t) \text{ où } \lim_{t \to t_0} \vec{\mathcal{E}}(t) = \vec{0}$$

On se place dans le repère $(M_0, \vec{v}_0, \vec{a}_0)$:

$$M_0 \xrightarrow{\vec{a}_0} \vec{v}_0$$

Dans ce repère :

$$M \begin{vmatrix} (t-t_0) + (t-t_0)^2 \alpha(t) \\ \frac{(t-t_0)^2}{2} + (t-t_0)^2 \beta(t) \end{vmatrix} \text{ où } \vec{\mathcal{E}}(t) = \alpha(t)\vec{v}_0 + \beta(t)\vec{a}_0 \text{ (donc } \alpha(t), \beta(t) \xrightarrow[t \mapsto t_0]{} 0)$$

D'où l'aspect de la courbe :

$$M_0 \longrightarrow \vec{v}_0$$

On dit alors qu'on a un point ordinaire.

B) Cas plus général

On suppose qu'il existe $p, q \in \mathbb{N}^*$ avec p < q tels que :

•
$$\gamma$$
 est de classe C^q ; on note $\vec{r}_0 = \frac{\overrightarrow{d^p M}}{dt^p}(t_0)$, $\vec{s}_0 = \frac{\overrightarrow{d^q M}}{dt^p}(t_0)$

•
$$r_0 \neq \vec{0}$$
 et $p = \min \left\{ i \in \mathbb{N}^*, \frac{\vec{d}^i \vec{M}}{dt^i}(t_0) \neq \vec{0} \right\}$

•
$$(\vec{r}_0, \vec{s}_0)$$
 est libre, et $q = \min \left\{ j \ge p + 1, \left(\frac{\overrightarrow{d^p M}}{dt^p} (t_0), \frac{\overrightarrow{d^j M}}{dt^j} (t_0) \right) \right\}$ est libre

Le DL à l'ordre q de \vec{F} en t_0 donne :

$$\overrightarrow{M_0 M(t)} = \frac{(t - t_0)^p}{p!} \overrightarrow{r_0} + \frac{(t - t_0)^{p+1}}{(p+1)!} \lambda_1 \overrightarrow{r_0} + \dots + \frac{(t - t_0)^q}{q!} \overrightarrow{s_0} + (t - t_0)^q \overrightarrow{\varepsilon}(t)$$

Où
$$\lim_{t \mapsto t_0} \vec{\mathcal{E}}(t) = \vec{0}$$

Dans le repère $(M_0, \vec{r}_0, \vec{s}_0)$:

$$M_0 \xrightarrow{\vec{S}_0} r_0$$

On a

$$\overline{M_0 M(t)} = \frac{(t - t_0)^p}{p!} \vec{r}_0 + (t - t_0)^p \left(\frac{(t - t_0)}{(p+1)!} \lambda_1 + \dots + (t - t_0)^{q-p} \alpha(t) \right) \vec{r}_0 + \frac{(t - t_0)^q}{q!} \vec{s}_0 + (t - t_0)^q \beta(t) \vec{s}_0$$

Avec $\vec{\varepsilon}(t) = \alpha(t)\vec{r_0} + \beta(t)\vec{s_0}$, donc $\alpha(t), \beta(t) \xrightarrow[t \to t_0]{} 0$

Donc
$$M(t)$$

$$\frac{\left(t-t_0\right)^p}{p!} + o((t-t_0)^p)$$
$$\frac{(t-t_0)^q}{q!} + o((t-t_0)^q)$$

p impair q pair

→point ordinaire

p impair *q* impair

→point d'inflexion

p pair *q* impair

→point de rebroussement de première espèce

p pair

q pair

→point de rebroussement de deuxième espèce

IV Branches infinies

Quelques situations, pour un arc $\gamma: I \to \mathfrak{P}$ $t \mapsto M(t) \Big|_{y(t)}^{x(t)}$

Soit $a \in \overline{\mathbb{R}}$, adhérent à *I*.

On suppose que x(t) et y(t) ont une limite dans $\overline{\mathbb{R}}$ lorsque $t \mapsto a$, et que l'une de ces limites est infinie.

 $1^{\text{er}} \text{ cas} : x(t) \to \pm \infty, \ y(t) \to y_0 \in \mathbb{R} :$

 $2^{\text{ème}} \text{ cas}: x(t) \rightarrow x_0 \in \mathbb{R}, y(t) \rightarrow \pm \infty:$

- Si $\frac{y(t)}{y(t)} \to \alpha \in \mathbb{R}$, on a une direction asymptotique de pente α .
 - o Si $y(t) \alpha x(t) \rightarrow \beta \in \mathbb{R}$, on a une asymptote d'équation $y = \alpha x + \beta$
 - o Si $y(t) \alpha x(t) \rightarrow \pm \infty$, on a une branche parabolique de direction de pente α .
 - o Si $y(t) \alpha x(t)$ n'a pas de limite, on n'a rien de mieux qu'une direction asymptotique.
- Si y(t)/x(t) → ±∞, on a une branche parabolique verticale.
 Si y(t)/x(t) n'a pas de limite, on n'a rien à dire...

Remarque:

Si une courbe C a pour équation une équation de la forme $C: y = f(x), x \in I$, alors elle admet le paramétrage évident $\begin{cases} x = t \\ y = f(t) \end{cases}, t \in I$

V Marche à suivre pour la construction du support d'un arc paramétré

Soit
$$\gamma: I \to \mathfrak{P}$$
, desupport C .
$$t \mapsto M(t)|_{v(t)}^{|x(t)|} \operatorname{dans} \mathfrak{R}$$

(1) Etude du domaine de définition, de la classe...

(2) Réduction de l'intervalle d'étude :

Exemples, dans le cas $I = \mathbb{R}$:

- (a) $\forall t \in \mathbb{R}, \begin{cases} x(-t) = x(t) \\ y(-t) = y(t) \end{cases}$. On peut se limiter à \mathbb{R}^+ , et on obtient tout C. (b) $\forall t \in \mathbb{R}, \begin{cases} x(-t) = -x(t) \\ y(-t) = -y(t) \end{cases}$. On peut se limiter à \mathbb{R}^+ , et on obtient C en faisant la symétrie par rapport à O.
- (c) $\forall t \in \mathbb{R}, \begin{cases} x(-t) = x(t) \\ y(-t) = -y(t) \end{cases}$. On peut se limiter à \mathbb{R}^+ , et on obtient C en faisant la symétrie par rapport à (Ox selon (Oy))
- (d) $\forall t \in \mathbb{R}, \begin{cases} x(-t) = -x(t) \\ y(-t) = y(t) \end{cases}$. On peut se limiter à \mathbb{R}^+ , et on obtient C en faisant la symétrie par rapport à (Oy selon (Ox .
- (e) $\forall t \in \mathbb{R}, \begin{cases} x(t+T) = x(t) \\ y(t+T) = y(t) \end{cases}$. L'étude entre 0 et T donne toute la courbe. (f) $\forall t \in \mathbb{R}, \begin{cases} x(t+T) = x(t) + \alpha \\ y(t+T) = y(t) + \beta \end{cases}$. On fait l'étude entre 0 et T, puis on fait les translations
- (3) Tableau de variations, limites.
- (4) Points particuliers, stationnaires, branches infinies...

VI Paramétrages classiques, coniques

• $\mathfrak{E}: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Alors & est le support de l'arc paramétré $\begin{cases} x = a \cdot \cos t \\ y = b \cdot \sin t \end{cases}, t \in \mathbb{R}.$

• $\mathfrak{F}: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Paramétrage:

$$\begin{cases} x = a.\text{ch } t \\ y = b.\text{sh } t \end{cases}, t \in \mathbb{R} \text{ pour la branche des } x > 0.$$

$$\begin{cases} x = -a.\operatorname{ch} t \\ y = b.\operatorname{sh} t \end{cases}, t \in \mathbb{R} \text{ pour l'autre branche.}$$

 $P: y^2 = 2px$

Paramétrage : $\begin{cases} y = y \\ x = \frac{y^2}{2nx}, y \in \mathbb{R} \end{cases}$.

• Tangente à une ellipse :

Soit \mathfrak{E} une ellipse de foyers F et F' et de $\frac{1}{2}$ grand axe a.

Soit $t \mapsto M(t)$ un paramétrage de l'ellipse, de classe C^1 au moins et sans point stationnaire.

On a:
$$\forall t \in I$$
, $||\overrightarrow{FM(t)}|| + ||\overrightarrow{F'M(t)}|| = 2a$

Ainsi, en dérivant,
$$\forall t \in I$$
, $\frac{\overrightarrow{FM(t)} \cdot \overrightarrow{v}(t)}{\left\| \overrightarrow{FM(t)} \right\|} + \frac{\overrightarrow{F'M(t)} \cdot \overrightarrow{v}(t)}{\left\| \overrightarrow{F'M(t)} \right\|} = 0$

C'est-à-dire
$$\forall t \in I, \vec{v}(t) \perp \left(\frac{\overrightarrow{FM(t)}}{\|\overrightarrow{FM(t)}\|} + \frac{\overrightarrow{F'M(t)}}{\|\overrightarrow{F'M(t)}\|} \right)$$

Ainsi, $\vec{v}(t)$ est dans la direction de la bissectrice extérieure.

Définition:

La bissectrice de deux droites \mathfrak{D} , \mathfrak{D} ', c'est la réunion de deux droites qui sont l'ensemble des points équidistants à \mathfrak{D} et \mathfrak{D} '.

• Tangente à une hyperbole :

 $\vec{v}(t)$ est dirigé selon la bissectrice intérieure... (C'est la même chose que pour l'ellipse, mais on remplace les + par des –).

• Cas d'une parabole :

Soit P une parabole de foyer F et de directrice \mathfrak{D} .

Alors $P = \{M \in \mathfrak{P}, MF = MH\}$, où H est le projeté orthogonal de M sur \mathfrak{D} .

Soit K le projeté orthogonal de F sur \mathfrak{D} , Δ la droite orthogonale à \mathfrak{D} passant par K.

Ainsi, \overrightarrow{HM} est le projeté orthogonal de \overrightarrow{KM} sur $dir(\Delta)$.

Soit \vec{u} le vecteur unitaire sur Δ de même sens que \vec{KF} . Alors $HM = \vec{KM} \cdot \vec{u}$.

Donc
$$\forall t \in I, \|\overrightarrow{FM(t)}\| = MF = MH = \overrightarrow{KM} \cdot \overrightarrow{u}$$
.

Donc, en dérivant,
$$\forall t \in I$$
, $\frac{\vec{v}(t) \cdot \overline{FM(t)}}{\left\| \overline{FM(t)} \right\|} = \vec{v}(t) \cdot \vec{u}$

Soit
$$\forall t \in I, \vec{v}(t) \perp \left(\frac{\overrightarrow{FM(t)}}{\left\| \overrightarrow{FM(t)} \right\|} - \vec{u} \right)$$

La tangente en M est donc la bissectrice des $\frac{1}{2}$ droites [MF) et [MH)