IEA (OECD) - Part 1

Data visualisation designer - assignment

In this notebook I check the data.

Data loading

I load the provided dataset to the notebook to check the variables included in the dataset. There is one numeric variable: range, four different categorial variables and one time variable.

```
data = ▶ Table: 6 cols x 629 rows {_names: Array(6), _data: Object, _total: 6

data = aq.fromCSV(await FileAttachment("data@4.csv").text())
```

technology	vehicle_type	category	year	region	range
Fuel_Cell	Transit_Bus	Bus	2019	Europe	300
Electric	Transit_Bus	Bus	2019	Europe	250
Electric	Cargo_Van	MFT	2022	U.SCanada	160.9344
Electric	Cargo_Van	MFT	2022	Europe	160
Electric	School_Bus	Bus	2019	U.SCanada	193.12128

data.view(5)

Data cleaning

Range and year are numeric variables, which appear as string variables, hence I change it back to numeric variables. Then I exclude missing values and clean out wrong values by using filter on range and year. Last but not least I order the dataset by the variable "range" to check extreme values.

technology	vehicle_type	category	year	region	range
Electric	HD_Truck	HFT	2024	Europe	1448.409600
Fuel_Cell	HD_Truck	HFT	2024	U.SCanada	1448.409600
Fuel_Cell	HD_Truck	HFT	2023	U.SCanada	1287.475200
Fuel_Cell	HD_Truck	HFT	2023	Europe	1287.000000
Fuel_Cell	HD_Truck	HFT	2021	Europe	804.672000

data

```
.derive({ range: (d) => `${d["range"]} ` * 1 })
.derive({ year: (d) => `${d["year"]} ` * 1 })
.filter((d) => d.range > 0)
.filter((d) => d.year > 0)
.orderby(aq.desc("range"))
.view(5)
```

The two highest values seem to be outliers and are the only two values available for the year 2024, therefore I decided to exclude them for further analysis.

technology	vehicle_type	category	year	region	range
Fuel_Cell	HD_Truck	HFT	2023	U.SCanada	1287.475200
Fuel_Cell	HD_Truck	HFT	2023	Europe	1287.000000
Fuel_Cell	HD_Truck	HFT	2021	Europe	804.672000
Fuel_Cell	HD_Truck	HFT	2021	U.SCanada	804.672000
Fuel_Cell	HD_Truck	HFT	2021	China	804.672000

data

```
.derive({ range: (d) => `${d["range"]} ` * 1 })
.derive({ year: (d) => `${d["year"]} ` * 1 })
```

```
.filter((d) => d.range > 0)
.filter((d) => (d.year > 0) & (d.year < 2024))
.orderby(aq.desc("range"))
.view(5)</pre>
```

Looking at the minimum values they seem at least from a statistical point of view ok.

technology	vehicle_type	category	year	region	range	range2
Electric	Shuttle_Bus	MiniBus	2019	U.SCanada	64.37376	64.373760
Electric	Transit_Bus	MiniBus	2019	Europe	69	69.000000
Electric	Transit_Bus	Bus	2020	Europe	70	70.000000
Electric	HD_Truck	MFT	2021	China	90	90.000000
Electric	Other	HFT	2019	U.SCanada	90.123264	90.123264

data

```
.derive({ range2: (d) => `${d["range"]} ` * 1 })
.derive({ year: (d) => `${d["year"]} ` * 1 })
.filter((d) => d.range2 > 0)
.filter((d) => (d.year > 0) & (d.year < 2024))
.orderby("range2")
.view(5)</pre>
```

Saving the file as an array of objects.

```
data_final = ▶Array(478) [Object, Object, Object
```

Categorial variables

Now I check the sample size and average values by the different categories: technology, year, region, category and type.

1. Technology

The dataset includes far less data points with the technology fuel cell.

technology	mean	median	max	count
Fuel_Cell	509.235518	450.61632	1287.4752	36
Electric	271.670167	250.00000	804.6720	442

data

```
.filter((d) => d.range > 0)
.filter((d) => (d.year > 0) & (d.year < 2024))
.derive({ range2: (d) => `${d["range"]} ` * 1 })
.groupby("technology")
.rollup({
  mean: (d) => op.mean(d.range2),
  median: (d) => op.median(d.range2),
  max: (d) => op.max(d.range2),
```

```
count: op.count()
})
.orderby(aq.desc("mean"))
.view()
```

Fuel has a range on average twice as big as electric.

2. Year

Already having removed the year 2024 all other category sample sizes are at least 10.

year	mean	median	max	count
2023	620.797830	441.764928	1287.4752	10
2022	356.956789	321.868800	804.6720	23
2021	298.754473	250.000000	804.6720	95
2020	291.098684	251.000000	760.0000	145
2019	260.496215	250.000000	666.0000	205

data

```
.filter((d) => d.range > 0)
.filter((d) => (d.year > 0) & (d.year < 2024))
.derive({ range2: (d) => `${d["range"]} ` * 1 })
.groupby("year")
.rollup({
  mean: (d) => op.mean(d.range2),
  median: (d) => op.median(d.range2),
  max: (d) => op.max(d.range2),
  count: op.count()
})
.orderby(aq.desc("mean"))
.view(6)
```


Electric does not increase much by year.

2019 195 257 2020 140 286

Fuel by year has generally very small sample size less than 10 but we see an increase year by year.

Region

Australia and Latin America have very small sample sizes.

region	mean	median	max	count
Australia	437.563200	305.0000	804.6720	7
Europe	295.989126	250.0000	1287.0000	101
China	294.546411	270.0000	804.6720	135
U.SCanada	287.271617	241.4016	1287.4752	208
India	222.238095	250.0000	300.0000	21
Latin_America	211.597749	200.0000	260.0000	6

All

Electric

Category

Looks good.

category	mean	median	max	count
HFT	354.510829	271.794240	1287.4752	106
Bus	286.446807	250.500000	675.0000	188
MFT	257.431458	241.401600	563.2704	150
MiniBus	246.053711	233.354880	480.0000	34

All

Electric

Vehicle type

Looks good.

vehicle_type	mean	median	max	count
HD_Truck	393.738552	300.00000	1287.4752	79
Transit_Bus	295.697479	258.747520	675.0000	180
Other	276.341124	221.284800	760.0000	18
MD_Truck	258.237053	241.401600	430.0000	94
MD_step_Van	251.589789	241.401600	321.8688	22
Cargo_Van	239.630754	241.401600	402.3360	43
School_Bus	216.155016	208.410048	321.8688	16
Shuttle_Bus	212.838437	213.238080	321.8688	26

ΑII

Electric

Appendix

```
data_year = ▶ Array(5) [Object, Object, Object, Object]
data_year_electric = ▶ Array(5) [Object, Object, Object, Object]
data_year_fuel = ▶ Array(5) [Object, Object, Object, Object]
data_region = ▶ Array(6) [Object, Object, Object, Object, Object]
data_region_electric = ▶ Array(6) [Object, Object, Ob
data_category = ▶ Array(4) [Object, Object, Object]
data_category_electric = ▶Array(4) [Object, Object, Object]
data_vehicle_type = ▶ Array(8) [Object, Object, 
data_vehicle_type_electric = ▶ Array(8) [Object, Object, Object,
width = 900
color_iea = "#0000FF"
d3 = ▶ Object {format: f(t), formatPrefix: f(t, n), timeFormat: f(t), timePar
import {aq, op, table} from "@uwdata/arquero"
<style>
```

