

Découvrir un jeu de données et se familiariser avec les outils de Data Scientist

AL SAMMAN Wassim – Data Scientist Apprenti Mentor : Panayotis PAPOUTSIS

Problématique et le but du projet

- La demande du Manager Mark.
- Le but d'expansion à l'international.
- Comprendre les différents fichiers de données.
- Trouver les données les plus pertinentes.
- Concentrer à réaliser le plus fort potentiel du client.
- Trouver les pays les plus importants pour l'expansion.

Première découverte des données

- Sont des données de la banque mondiale (The World Bank EdStats All Indicator Query).
- Téléchargeables sur le site (Education Statistics).
- Plus que 4000 Indicateurs sur différents thèmes comme : Education, Population, Economie...
- Les Indicateurs sont classés dans des catégories sur le site (Available Indicators).
- Ce site est le clé pour trouver des Indicateurs dans nos fichiers. Soit par nom, soit par code.
- Dans la photo, c'est un exemple du premier fichier (EdStatsCountry) ouvert sur Jupyter. La photo montre qu'une petite partie de ce fichier.

	Country Code	Short Name	Table Name	Long Name	alpha code	Currency Unit	Special Notes	Region	Income Group	WB- 2 code		disseminat stand
0	ABW	Aruba	Aruba	Aruba	AW	Aruban florin	SNA data for 2000- 2011 are updated from offici	Latin America & Caribbean	High income: nonOECD	AW		1
1	AFG	Afghanistan	Afghanistan	Islamic State of Afghanistan	AF	Afghan afghani	Fiscal year end: March 20; reporting period fo	South Asia	Low income	AF	***	General Dissemina Sys (GD
2	AGO	Angola	Angola	People's Republic of Angola	AO	Angolan kwanza	April 2013 database update: Based on IMF data,	Sub- Saharan Africa	Upper middle income	AO		General E Dissemina Sys (GD
								Furone &	Unner			General D

Premier pas sur Jupyter

- Importer les librairies nécessaires pour la suite du travail : Pandas, Numpy, matplotlib...
- Lire les fichiers : pd.read_csv().
- Utiliser des fonctions pour visualiser le contenu des fichiers : .head(), .columns, .loc[], .describe()...

[5]: df1.	describe()			
t[5]:	National accounts reference year	r Latest industrial data	Latest trade data	Unnamed: 31
cou	at 32.0000	107.000000	185.000000	0.0
mea	n 2001.5312	2008.102804	2010.994595	NaN
s	d 5.2485	2.616834	2.569675	NaN
m	n 1987.0000	2000.000000	1995.000000	NaN
25	% 1996.75000	2007.500000	2011.000000	NaN
50	% 2002.0000	2009.000000	2012.000000	NaN
75	% 2005.0000	2010.000000	2012.000000	NaN
ma	x 2012.0000	2010.000000	2012.000000	NaN

Meilleure visualisation avec la librairie Missingno

- D'abord, Il faut installer Missingno:
 - Depuis Jupyter: !pip install missingno.
 - Sur Anaconda Prompt: pip install missingno.
- Visualise avec un graphique le taux de remplissage et la corrélation entre les données.
- Dispose des fonctions comme : .bar, .matrix, .heatmap et .dendrogram.
- Chacun de fonctions donne un graphique différent.
- Choix de fonction selon notre but.
- La fonction choisie est : missingno.bar.
- Un exemple de missingno.bar.

Choisir les données les plus pertinentes à la demande du Manager

- Le point clé du choix est basé sur les Indicateurs.
- Sur le site (Available Indicators), on trouver les noms et les codes des Indicateurs.
- Le choix a été basé sur 4 thèmes : Population, Education, Déploiement internet et matériels informatique, Economique.
- Vérifier notre choix avec les fichiers du projet.
- Au-dessous la ligne de code qui permet de vérifier l'Indicateur choisi.

In [26]:	df3.loc	[df3['Ind	dicator	Code']==	'IT.NET.USER	.P2']					
Out[26]:		Country Name	Country Code	Indicator Name	Indicator Code	1970	1971	1972	1973	1974	1975	
	1375	Arab World	ARB	Internet users (per 100 people)	IT.NET.USER.P2	NaN	NaN	NaN	NaN	NaN	NaN	
				Internet								

Choisir la période d'analyse

- Deux intérêt pour la période : Une période récente, une période où le pourcentage de données est bon.
- Décider à l'aide du taux du remplissage selon les années.
- La nécessité de créer une fonction pour ne pas répéter à chaque fois le code.
- La fonction def analyse_periode(df,rangee,first).
- Appliquer la fonction sur toutes les données dfALLInd.

- Le but d'analyser les pays.
- Taux de remplissage n'est pas par colonne.
- La fonction def analyse_pays(df).
- Appliquer la fonction sur le DataFrame de la population dfpop.

Créer un DataFrame satisfait la période et les pays et choisir le meilleur indicateur

- Avoir le DataFrame dans la période d'étude et en éliminant les pays vides avec la fonction def final(df).
- Choisir un seul indicateur.
- Réaliser le choix avec la fonction indper(df,IndGr).
- Créer le DataFrame final dfIndB qui contient les 4 meilleurs indicateurs choisis.

Avoir le DataFrame sans des données manquantes

- L'intérêt de remplir les données manquantes.
- Les méthodes pour remplir:
 - Remplir par moyenne.
 - Supprimer des lignes qui ont des valeurs manquantes.
 - Utiliser des algorithmes.
- La méthode que j'ai choisi.
- La fonction fillbymean(df,NumberNan).

Utiliser Z-Score pour vérifier la qualité du remplissage

- Pourquoi cette méthode ?
- La fonction checkbyzscore(df).

Les pays les plus potentiels

- Filtrage sur les noms des pays. Eliminer les pays qui ont des noms : High income, Low & middle income...
- Uniformiser les indicateurs avec la fonction normalize(df,decimal).
- L'idée de Scoring.
- Appliquer la fonction def scoring_pays(df) sur le DataFrame final des meilleurs indicateurs, rempli, uniformisé, et sans les noms des pays éliminés dfIndBFRN.
- Prendre en compte la langue du pays.

Out[46]:		Country Code	Country Name	Score
	0	PRY	Paraguay	0.829
	1	ALB	Albania	0.813
	2	ARM	Armenia	0.810
	3	BGR	Bulgaria	0.806
	4	ECU	Ecuador	0.806
		***		***
	227	TCA	Turks and Caicos Islands	0.295
	228	ERI	Eritrea	0.292
	229	MAF	St. Martin (French part)	0.251
	230	CUW	Curacao	0.236
	231	CHI	Channel Islands	0.174

Conclusion

- Ce que j'ai appris dans ce projet.
- Trouver une approche à suivre.
- S'habituer à une nouvelle méthode du travail.
- La nécessité de développer ses outils informatiques.
- Optimiste pour la suite.
- Le but de respecter les délais.