Università degli Studi dell'Aquila

Prova Scritta di Algoritmi e Strutture Dati con Laboratorio

Martedì 5 luglio 2022 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

1. Dato un problema con una delimitazione inferiore alla complessità temporale pari a $\Omega(f(n))$, un algoritmo per la sua risoluzione si dice *ottimale* se ha un tempo di esecuzione g(n) tale che:

*a) $g(n) = \Theta(f(n))$ b) g(n) = o(f(n)) c) $g(n) = \omega(f(n))$ d) g(n) = f(n)

2. L'algoritmo Selection Sort, nel caso migliore costa:

a) O(n) *b) $\Theta(n^2)$ c) $O(n \log n)$ d) $\Theta(n)$

- 3. L'altezza dell'albero di decisione associato al problema dell'ordinamento di n elementi basato su confronti è:

 *a) $\Omega(n \log n)$ b) $\omega(n \log n)$ c) $O(n \log n)$ d) $\Theta(n!)$
- 4. A quale delle seguenti classi asintotiche di funzioni appartiene la complessità dell'algoritmo QUICKSORT: *a) $\omega(n \log n)$ b) $o(n^2)$ c) $\omega(n^2)$ d) $\Theta(n \log n)$
- 5. Sotto quali ipotesi la soluzione dell'equazione di ricorrenza $T(n) = a \cdot T(n/b) + f(n)$, con $T(1) = \Theta(1)$, a, b costanti non negative, è pari a $T(n) = \Theta(n^{\log_b a})$?
 - a) Se $f(n) = O\left(n^{\log_b a + \epsilon}\right)$, per qualche $\epsilon > 0$, e se vale la condizione di regolarità: $af(n/b) \le cf(n)$ per qualche c < 1 ed n sufficientemente grande
 - *b) Se $f(n) = O\left(n^{\log_b^- a \epsilon}\right)$, per qualche $\epsilon > 0$

c) Se $f(n) = \Theta\left(n^{\log_b a}\right)$ d) Se $f(n) = \Omega\left(n^{\log_b a - \epsilon}\right)$, per qualche $\epsilon > 0$

6. La procedura FixHeap(A, 1) per il mantenimento di un heap binario applicata al vettore A = [12, 15, 21, 14, 9, 13] restituisce:

a) A = [21, 15, 12, 14, 9, 13] b) A = [15, 12, 21, 14, 9, 13] c) A = [15, 14, 21, 12, 9, 13] *d) A = [21, 15, 13, 14, 9, 12]

7. Dato un albero AVL di n elementi, l'inserimento in successione di $\Theta(\log n)$ elementi comporta un numero complessivo di rotazioni:

a) $\Theta(n)$ *b) $O(\log n)$ c) $\Theta(\log^2 n)$ d) O(1)

8. Sia $h(\cdot)$ una funzione hash. Quale delle seguenti funzioni descrive il metodo di scansione lineare in una tabella hash di dimensione m per l'inserimento di un elemento con chiave k dopo l'i-esima collisione:

a) $c(k,i) = (h(k) + m) \mod i$ b) $c(k,i) = h(k) \mod m$ *c) $c(k,i) = (h(k) + i) \mod m$ d) $c(k,i) = i \mod m$

- 9. Si consideri il grafo G=(V,E) con $V=\{1,2,3,4,5\}$ ed $E=\{(1,2),(1,5),(2,3),(2,4)\}$. Quali delle seguenti affermazioni è <u>falsa</u>:
 - a) G è bipartito b) se radichiamo G in 1 e orientiamo tutti gli archi dalla radice verso le foglie, otteniamo un albero binario quasi completo *c) il diametro di G, ovvero la distanza massima tra due nodi in G, è pari a 4 d) G ha grado 3
- 10. Dato il grafo G in figura, si orientino gli archi dal nodo con lettera minore al nodo con lettera maggiore secondo l'ordine alfabetico. Quanti rilassamenti avrà eseguito in totale alla fine della prima passata l'algoritmo di Bellman e Ford con sorgente a e con l'ipotesi che gli archi vengano considerati in ordine lessicografico?

a) 7 *b) 8 c) 9 d) 10

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										