Distribution-Free Prediction Sets Adaptive to Unknown Covariate Shift

Hongxiang Qiu, Edgar Dobriban, Eric Tchetgen Tchetgen

Department of Statistics, The Wharton School, University of Pennsylvania

- Great advances in prediction using machine learning
- Prediction sets with coverage guarantees are useful to quantify uncertainty of prediction
- One useful guarantee is *Probably Approximately Correct* (PAC):

$$\Pr\left(\Pr\left(Y\notin \hat{\textit{C}}(\textit{X})\mid \mathsf{training data}\right) \leq \alpha_{\mathrm{error}}\right) \geq 1 - \alpha_{\mathrm{conf}}$$

- Interpretation: with high confidence level $1 \alpha_{\rm conf}$ (probably), the coverage error rate of \hat{C} is below $\alpha_{\rm error}$ (approximately correct)
- Also termed "training-set conditional validity"
- Inductive conformal prediction outputs PAC prediction sets if all data come from the same population [Papadopoulos et al., 2002, Vovk, 2013, Park et al., 2020]

- Challenge: in many applications, labeled training data are drawn from a different population from the target population
- For example, labeled data from Africa but want to predict in USA
- Common assumption: covariate shift (covariate distribution shifts; distribution of label/outcome given covariate remains same)
- Under covariate shift, we learn $Y \mid X$ using labeled data from source population and can extrapolate to target population

• Can we construct PAC prediction sets adaptive to covariate shift based on an arbitrary predictor under weak assumptions?

- Can we construct PAC prediction sets adaptive to covariate shift based on an arbitrary predictor under weak assumptions?
- Previous literature: Sort of: require knowing exactly the covariate distribution shift [Park et al., 2021]

- Can we construct PAC prediction sets adaptive to covariate shift based on an arbitrary predictor under weak assumptions?
- Previous literature: Sort of: require knowing exactly the covariate distribution shift [Park et al., 2021]
- What if this shift is unknown?
- Available data: i.i.d. from P^0
 - labeled data (X, Y) from source population (A = 1), and
 - unlabeled data (X, \cdot) from target population (A = 0)

No informative PAC prediction set

Lemma

Suppose that X and Y are continuous. Under unknown covariate shift, if \hat{C} is PAC, then under any data-generating distribution P^0 and for almost every y,

$$\Pr(y \notin \hat{C}(X) \mid A = 0) \le \alpha_{\text{error}} + \alpha_{\text{conf}}.$$

Any PAC prediction set \hat{C} is generally uninformative

- Consider $X \perp \!\!\! \perp Y$ and $Y \in \mathbb{R}$: might wish $\hat{C}(x) = (\hat{q}_{\alpha_{\mathrm{error}}/2}, \hat{q}_{1-\alpha_{\mathrm{error}}/2})$, but it is impossible to be PAC
- ullet The following $\hat{\mathcal{C}}$ is PAC but useless

$$\hat{C}(x) = egin{cases} \mathbb{R} & ext{with probability } 1 - lpha_{ ext{error}} \ \emptyset & ext{with probability } lpha_{ ext{error}} \end{cases}$$

Resort to asymptotic coverage guarantee

• Asymptotically Probably Approximately Correct (APAC) guarantee for prediction set \hat{C}_n :

$$\Pr\left(\Pr\left(Y\notin\hat{\mathcal{C}}_{\textit{n}}(X)\mid\text{training data}\right)\leq\alpha_{\text{error}}\right)\geq1-\alpha_{\text{conf}}-\text{o(1)}$$
 as sample size $n\to\infty$.

• Interpretation: with high confidence level approaching $1-\alpha_{\rm conf}$, the coverage error rate of \hat{C}_n is below $\alpha_{\rm error}$

Proposed method: PredSet-1Step

- Given an arbitrary scoring function s, consider candidate prediction sets $C_{\tau}: x \mapsto \{y: s(x,y) \geq \tau\}$
- Examples of s(x, y): estimated $\Pr(Y = y \mid X = x)$ or $f(Y = y \mid X = x)$ from held-out labeled data; $-|y \hat{y}(x)|$ for a predictor \hat{y} trained from held-out labeled data
- Using semiparametric efficiency theory, we construct an asymptotically efficient estimator (cross-fit one-step corrected estimator) $\hat{\psi}_{n,\tau}$ of the coverage error of C_{τ} in the target population:

$$\Pr(Y \notin C_{\tau}(X) \mid A = 0) =: \Psi_{\tau}(P^{0})$$

- Construct a $(1 \alpha_{\rm conf})$ -confidence upper bound $\lambda_n(\tau)$ for $\Psi_{\tau}(P^0)$
- Select a threshold $\hat{\tau}_n$ from a grid \mathcal{T}_n based on $\lambda_n(\tau)$

Flowchart of cross-fit one-step corrected estimator

Cross-fit one-step corrected estimator

- 1. Randomly split entire data set into V folds with index sets I_{ν} $(\nu = 1, \dots, V)$
- 2. For each fold v, estimate nuisance functions $(\mathcal{E}_{0,\tau},g_0)$ with $(\hat{\mathcal{E}}_{n,\tau}^{-\nu},\hat{g}_n^{-\nu})$ using data out of fold v

$$\mathcal{E}_{0,\tau}(x) := \Pr(Y \notin C_{\tau}(X) \mid X = x, A = 1)$$

 $g_0(x) := \Pr(A = 1 \mid X = x)$

3. Let $\hat{\gamma}_n^{\nu}$ be the empirical proportion of A=1 in fold ν (estimator of $\Pr(A=1)$)

Cross-fit one-step corrected estimator

4. For each fold v, compute one-step corrected estimator

$$\begin{split} \hat{\psi}_{n,\tau}^{\nu} &:= \underbrace{\frac{\sum_{i \in I_{\nu}} (1 - A_i) \hat{\mathcal{E}}_{n,\tau}^{-\nu}(X_i)}{\sum_{i \in I_{\nu}} (1 - A_i)}}_{\text{sample analogue of } \Psi_{\tau}(P^0)} \\ &+ \underbrace{\frac{1}{|I_{\nu}|} \sum_{i \in I_{\nu}} \frac{A_i}{1 - \hat{\gamma}_n^{\nu}} \frac{1 - \hat{g}_n^{-\nu}(X_i)}{\hat{g}_n^{-\nu}(X_i)} [\mathbb{1}(Y_i \notin C_{\tau}(X_i)) - \hat{\mathcal{E}}_{n,\tau}^{-\nu}(X_i)]}_{\text{one-step correction}}. \end{split}$$

5. Average over folds: $\hat{\psi}_{n,\tau} := \frac{1}{n} \sum_{\nu=1}^{V} |I_{\nu}| \hat{\psi}_{n,\tau}^{\nu}$.

Asymptotic efficiency

Theorem (Informal)

Under conditions, $\hat{\psi}_{n,\tau}$ is an asymptotically efficient estimator of $\Psi_{\tau}(P^0)$ and

$$\sqrt{n}(\hat{\psi}_{n,\tau} - \Psi_{\tau}(P^0)) \stackrel{d}{\to} \mathrm{N}\left(0, \sigma_{0,\tau}^2\right)$$

with $\sigma_{0,\tau}^2 = \mathbb{E}_{P^0}[D_{\tau}(P^0)(O)^2]$ where $D_{\tau}(P^0)$ is the efficient influence function.

 $(1 - \alpha_{conf})$ -Wald confidence upper bound $\lambda_n(\tau)$ for $\Psi_{\tau}(P^0)$:

$$\lambda_n(\tau) = \hat{\psi}_{n,\tau} + z_{\alpha_{\text{conf}}} \frac{\hat{\sigma}_{n,\tau}}{\sqrt{n}}$$

Selection of threshold

Select the threshold

$$\hat{\tau}_n := \max\{\tau \in \mathcal{T}_n : \lambda_n(\tau') < \alpha_{\text{error}} \text{ for all } \tau' \in \mathcal{T}_n \text{ such that } \tau' \leq \tau\},$$

The largest candidate threshold such that all λ_n on the left hand side are below $\alpha_{\rm error}$. (Similar to Bates et al. [2021])

Theorem (Informal)

Under conditions, $C_{\hat{\tau}_n}$ *is APAC.*

Illustration of threshold selection

Simulation result

Analysis of HIV risk prediction data in South Africa

- Y: HIV infection
- Source population: urban and rural communities
- Target population: peri-urban communities with community HIV treatment coverage <15%
- Target coverage error $\alpha_{
 m error} = 5\%$ (coverage $\geq 95\%$)
- Target confidence level $1 \alpha_{conf} = 95\%$

Method	Empirical coverage	95% CI of coverage
PredSet-1Step	95.98%	94.83%–96.89%
Inductive CP	91.89%	90.35%-93.20%

Conclusion

- Prediction sets are useful to quantify uncertainty of prediction
- Unknown covariate shift is a common challenge
- We propose a method, PredSet-1step, to construct APAC prediction sets adaptive to unknown covariate shift

Acknowledgment

Collaborators:

Edgar Dobriban

Eric Tchetgen Tchetgen

Funding supported by NSF, NIH and Analytics at Wharton.

arXiv preprint: https://arxiv.org/abs/2203.06126 (will update soon)

R package available on Github.

Thank you!

References

- S. Bates, A. Angelopoulos, L. Lei, J. Malik, and M. I. Jordan. Distribution-free, risk-controlling prediction sets. arXiv preprint arXiv:2101.02703, 2021.
- L. Lei and E. J. Candès. Conformal inference of counterfactuals and individual treatment effects. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 83(5):911-938, 2021. ISSN 14679868. doi: 10.1111/rssb.12445. URL http://arxiv.org/abs/2006.06138.
- H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman. Inductive confidence machines for regression. In European Conference on Machine Learning, pages 345-356. Springer, 2002.
- S. Park, S. Li, I. Lee, and O. Bastani. Pac confidence predictions for deep neural network classifiers. arXiv preprint arXiv:2011.00716, 2020.
- S. Park, E. Dobriban, I. Lee, and O. Bastani. Pac prediction sets under covariate shift, 2021
- R. J. Tibshirani, R. F. Barber, E. J. Candès, and A. Ramdas. Conformal prediction under covariate shift. Advances in Neural Information Processing Systems, 32, 2019. ISSN 10495258.

References

V. Vovk. Conditional validity of inductive conformal predictors. In *Asian conference on machine learning*, volume 25, pages 475–490. PMLR, 2013. doi: 10.1007/s10994-013-5355-6.

Intuition behind one-step correction: linear approximation

Without one-step correction, the naïve estimator $\Psi_{\tau}(\hat{P}_{n,\tau}^{\nu})$ is generally asymptotically inefficient.

More technical results

Key condition for asymptotic efficiency of $\hat{\psi}_{n, au}$:

$$\|\hat{\mathcal{E}}_{n,\tau}^{-\nu} - \mathcal{E}_{0,\tau}\|\|\hat{g}_n^{-\nu} - g_0\| = o_p(n^{-1/2})$$

Rate of o(1) term:

Theorem (Informal)

If the asymptotic variance is nonzero, the coverage probability $\Pr(\Psi_{\tau}(P^0) \leq \lambda_n(\tau))$ equals

$$1 - \alpha_{\text{conf}} - O\left(n^{1/4} \mathbb{E}_{P^0}[\|\hat{\mathcal{E}}_{n,\tau}^{-\nu} - \mathcal{E}_{0,\tau}\|\|\hat{g}_n^{-\nu} - g_0\|]^{1/2}\right)$$

The rate of the o(1) term is mainly determined by the product of convergence rates of the two nuisance function estimators.

