

Brown Dwarfs: The Failed Stars

Frank Genty, Anthony Pizzareli, Khovesh Ramdin

Points of Discussion

- Intro
- Temperature/Luminosity intro discussion (span in HR Diagram)
- Typical density, pressure, composition
- Equation of State discussion, quantum effects
- Application of Saha equation
- Energy Transport/ Temperature Gradient
- Atmosphere
- Nuclear fusion discussion (special cases+limitations)
- Conclusion :Discussion of lifespan

Typical Structure

https://earthsky.org/space/definition-what-are-brown-dwarfs/

- Usually defined as between 13 and 80 Jupiter masses
- Not enough mass to sustain Hydrogen fusion
- Can fuse deuterium
- More massive brown dwarfs can fuse lithium (65M_J)
- Roughly 1 Jupiter Radius

Formation Process

- Brown dwarfs start formation like a star, in a gaseous cloud
- In a normal star, deuterium fusion is a temporary step to formation
- Brown dwarfs do not collect more mass and are stuck at the deuterium fusion stage
- Sometimes they can form as a binary companion to regular stars

https://astronomy.com

HR Diagram

- Compared to our sun, which has a surface temperature of 5778K
- Typically observed between 700K and 2400K
- Usually around 1/100,000 solar luminosity
- Not very luminous or hot...

http://sttff.antspad.net/ast/hrd.html

Typical Composition

- High mass allows for a lot of Hydrogen and Helium
- Traces of lithium remain in the object
 - Lithium normally gets destroyed by fusion
- Older brown dwarfs contain a metallic Hydrogen core
- Atmosphere contains amounts of methane and water vapor (infrared spectrum)

Classes of Brown Dwarfs

Type L, T & Y Cool Brown Dwarf Stars

- Class Y (Ultra-Cool) Brown Dwarfs have a temperature lower than 600K
 - One extremely cool Brown Dwarf was found with a surface temperature of 300K (30°C or 86°F)
 - No methane content
- Class T (Methane) Brown Dwarfs, surface between 700K and 1300K
 - More likely dark magenta
 - Spectra dominated by methane absorption lines
 - broad absorption features from the alkali metals Na and K
 - Lack the FeH and CrH bands that "L" type dwarfs exhibit
- Class L (Dwarf Stars) Temperatures between 1300K and 2000K
 - Can include brown dwarfs and really cool stars
 - emission bands (FeH, CrH, MgH, CaH)
 - o alkali metal lines (Na I, K I, Cs I, Rb I)

Atmosphere

- Class Y dwarfs in their cool state have more complex atmospheres
 - Cool enough to allow water ice and eventually ammonia ice clouds
- Class T Dwarfs have a very thin atmosphere, layers sink as the object cools
- The hottest dwarfs can have different layers with clouds of different compositions
 - Potassium Iodide in the upper atmosphere (MgSiO3 too)
 - Forsterite (Mg₂SiO₄) as the pressure increases
 - Lowest layer is aluminum oxide

https://scitechdaily.com/astronomers-probe-layer-cake-structure-of-monster-brown -dwarfs-alien-atmosphere/

Spectral Classes for Stars

Spectral Class	Color	Approximate Temperature (K)	Principal Features	Examples
O	Blue	> 30,000	Neutral and ionized helium lines, weak hydrogen lines	10 Lacertae
В	Blue- white	10,000-30,000	Neutral helium lines, strong hydrogen lines	Rigel, Spica
A	White	7500-10,000	Strongest hydrogen lines, weak ionized calcium lines, weak ionized metal (e.g., iron, magnesium) lines	Sirius, Vega
F	Yellow- white	6000-7500	Strong hydrogen lines, strong ionized calcium lines, weak sodium lines, many ionized metal lines	Canopus, Procyon
G	Yellow	5200-6000	Weaker hydrogen lines, strong ionized calcium lines, strong sodium lines, many lines of ionized and neutral metals	Sun, Capella
K	Orange	3700-5200	Very weak hydrogen lines, strong ionized calcium lines, strong sodium lines, many lines of neutral metals	Arcturus, Aldebaran
M	Red	2400-3700	Strong lines of neutral metals and molecular bands of titanium oxide dominate	Betelgeuse, Antares
L	Red	1300-2400	Metal hydride lines, alkali metal lines (e.g., sodium, potassium, rubidium)	Teide 1
Т	Magenta	700-1300	Methane lines	Gliese 229B
Y	Infrared ¹	< 700	Ammonia lines	WISE 1828+2650

https://uwm.pressbooks.pub/astronomy/chapter/chapter-17-section-17-3-the-spectra-of-stars-and-brown-dwarfs/#browndwarfs

Equation of State/ Quantum Effects

$$P = K\rho^{(1+1/n)}$$
, Polytropic equation $K = C\mu_e^{-5/3} (1 + \gamma + \alpha \psi)$, $n = 3/2$

$$\rho_c = 1.28412 \times 10^5 \left(\frac{M}{M_{\odot}}\right)^2 \frac{\mu_e^5}{\left(1 + \gamma + \alpha \psi\right)^3} \, \text{g/cm}^3,$$

$$P_c = 3.26763 \times 10^9 \left(\frac{M}{M_{\odot}}\right)^{10/3} \frac{\mu_e^{20/3}}{\left(1 + \gamma + \alpha \psi\right)^4} \, \text{Mbar}.$$

$$T_c = 7.68097 \times 10^8 \, \text{K} \left(\frac{M}{M_{\odot}}\right)^{4/3} \frac{\psi \mu_e^{8/3}}{\left(1 + \gamma + \alpha \psi\right)^2}.$$

$$R = 2.80858 \times 10^9 \left(\frac{M_{\odot}}{M}\right)^{1/3} \mu_e^{-5/3} \left(1 + \gamma + \alpha \psi\right) \, \text{cm}.$$

$$\psi = \frac{k_B T}{\mu_F} = \frac{2m_e k_B T}{\left(3\pi^2 \hbar^3\right)^{2/3}} \left[\frac{\mu_e}{\rho N_A}\right]^{2/3}, \quad \alpha = 5\mu_e/2\mu_1$$

$$\gamma = (\partial \log T/\partial \log \rho)_s$$

Density, Pressure

- Early in life, a brown dwarf is supported by deuterium burning if present
- After there is no more deuterium, the core compresses leading to partial electron degeneracy pressure
- Because of the pressure and ionization, the core forms metallic hydrogen

https://www.amnh.org/explore/news-blogs/research-posts/brown-dwarf-wind-speed

Energy Transport

- Schwarzschild Criterion for convection met
- Fully convective ~ mixes all material from formation for Lithium, deuterium burning

Nuclear Fusion

- Core temp too low to support stable fusion
- Lithium fusion occurs at T ~ 2.5*10^6 K
- Deuterium fusion occurs at T~ 10⁶ K
- Convection ensures all material is available for fusion for duration in which star maintains necessary temperature
- M ~ 60 MJ sized dwarfs have a chance for fusion for 10⁶ years after which it

becomes too cool

 ${}_{1}^{2}D + {}_{1}^{2}D + 2\pi^{\circ} = {}_{2}^{4}He.$

brown dwarf's core

D atoms squeezed in

degenerated electron cloud

Saha Equation/ Cooling

$$\frac{n_{II}}{n_{I}} = \frac{2Z_{II}}{n_{e}Z_{I}} \left(\frac{2\pi m_{e}kT}{h^{2}}\right)^{3/2} e^{-\chi_{I}/kT}$$

- Hydrogen composition dominant and initial state generally has variation in densities
- Progressively cools and temperature becomes too low for ionization

Cooling

- Rate of cooling can be approximated numerically for polytropes with n =1.5
- Fusion of deuterium and lithium can sustain luminosity for higher mass brown dwarfs for longer periods
- Low mass brown dwarfs are not able to sustain extended periods of any fusion

$$L \simeq L_{\odot} \left(\frac{M}{M_{\odot}}\right)^{2.63} \left(\frac{t}{10^7 \,\mathrm{yr}}\right)^{-1.2}$$

Lifespan

- Some may briefly fuse lithium or deuterium until temperature becomes too low
- Don't really die, just cools off and approaches 0 luminosity
- Slowly cool for billions of years, eventually becomes a cold ball of gas
- As it cools, luminosity lowers, making it cool even slower

Citations

- Sayantan Auddy, Shantanu Basu, S. R. Valluri, "Analytic Models of Brown Dwarfs and the Substellar Mass Limit", Advances in Astronomy, vol. 2016, Article ID 5743272, 15 pages, 2016. https://doi.org/10.1155/2016/5743272
- Martin, E. L. (n.d.). *The Birth and Evolution of Brown Dwarfs*. The birth and evolution of Brown Dwarfs. Retrieved April 21, 2022, from http://www2.ifa.hawaii.edu/CSPF/presentations/bdtutorial/frame.htm
- Weights, D. J., Lucas, P. W., Roche, P. F., Pinfield, D. J., & Riddick, F. (2008, December 23). Infrared spectroscopy and analysis of brown dwarf and planetary mass objects in the orion nebula cluster. OUP Academic. Retrieved April 21, 2022, from https://academic.oup.com/mnras/article/392/2/817/977501
- Creighton, A. by J. (2019, January 18). Chapter 17 Section 17.3: The Spectra of Stars (and Brown Dwarfs). Survey of Astronomy. Retrieved April 21, 2022, from https://uwm.pressbooks.pub/astronomy/chapter/chapter-17-section-17-3-the-spectra-of-stars-and-brown-dwarfs/
- Dunbar, B. (n.d.). *Brown dwarf detectives*. NASA. Retrieved April 21, 2022, from https://www.nasa.gov/vision/universe/starsgalaxies/brown_dwarf_detectives.html#:~:text=Brown%20dwarfs%20are%20failed%20stars,emit%20almost %20no%20visible%20light.
- Allard, F., & Homeier, D. (2007). Brown dwarfs. Scholarpedia. Retrieved April 21, 2022, from http://www.scholarpedia.org/article/Brown dwarfs#:~:text=Depending%20on%20the%20mass%20of,cm%7D%5E%7B-3%7D%5C%20.
- How do you discover brown dwarfs? brown dwarfs 3. (n.d.). Retrieved April 21, 2022, from https://www.stsci.edu/~inr/observ/pics/bd3.htm
- Spiegel1, D. S., Burrows1, A., & Milsom2, J. A. (2011, January 3). *IOPscience*. The Astrophysical Journal. Retrieved April 21, 2022, from https://iopscience.iop.org/article/10.1088/0004-637X/727/1/57
- Allers, K. (2021, August 1). Brown dwarfs could reveal secrets of planet and star formation. Scientific American. Retrieved April 21, 2022, from https://www.scientificamerican.com/article/brown-dwarfs-could-reveal-secrets-of-planet-and-star-formation/
- Marley, M. S., & Robinson, T. D. (2014, October 23). On the Cool Side: Modeling the Atmospheres of Brown Dwarfs and Giant Planets. Retrieved April 21, 2022, from http://export.arxiv.org/pdf/1410.6512
- Artifexian. (2014, February 28). *The life cycle of brown dwarfs youtube*. Retrieved April 21, 2022, from https://www.youtube.com/watch?v=PRwn6fftmLU