Algorithm 1 Generalized Integral Transformation

Require: Input function f(t).

Ensure: Transformed function F(s) or $F(\omega)$, depending on the specific transformation.

- 1: **function** Integral Transform (f(t))
- Initialize the transformed function F(s) or $F(\omega)$. 2:
- Define the transformation kernel or integral expression depending on the 3: specific transformation (e.g., Fourier or Laplace).
- Perform the integral transformation: 4:
- $F(s) = \int_{-\infty}^{\infty} f(t) \cdot K(s, t) dt$ \triangleright For example, Laplace Transform 5:
- 6:
- 7: $F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-i\omega t} dt$ 8: **end function** \triangleright For example, Fourier Transform