Complex Analysis Problems

D. Zack Garza

Wednesday $17^{\rm th}$ June, 2020

1	Integrals and Cauchy's Theorem		5
	1.1 1		. 5
	1.2 2		. 6
	1.3 3		. 6
	1.4 4		. 6
	1.5 5		. 6
	1.6 6		. 6
	1.7 7		. 6
	1.8 8		. 7
	1.9 9		. 7
	1.10 10		. 7
2	Lieuwille's Theorem Davier Sovies		7
2	Liouville's Theorem, Power Series		•
	2.1 1		
			-
			-
	2.10 10	•	. 9
3	Spring 2020 Homework 1		9
	3.1 1		. 9
	3.2 2		. 9
	3.3 3		. 9
	3.4 4		. 9
	3.5 5		. 10
	3.6 6		. 10
	3.7 7		. 10
	3.8 8		. 10
	3.9 9		. 10

4	Spri	ng 2020	Homewo	rk 2												11
	4.1	Stein A	nd Shakar	rchi	 		 		 	 						11
		4.1.1	2.6.1		 		 		 	 						11
		4.1.2	2.6.2		 		 		 	 						12
		4.1.3	$2.6.5 \dots$		 		 		 	 						12
		4.1.4	2.6.6		 		 		 	 						13
		4.1.5	2.6.7		 		 		 	 						13
		4.1.6	2.6.8		 		 		 	 						13
		4.1.7	2.6.9													13
		4.1.8	2.6.10													13
		4.1.9	2.6.13													13
			2.6.14													14
		4.1.11														14
	4.2		nal Proble													14
	1.2	4.2.1	1													14
		4.2.2	2													14
		4.2.3	2 3													14
		4.2.4	4													14
		4.2.4 $4.2.5$	4 5													15
		4.2.6	5 6													15
		4.2.0 $4.2.7$	7													15
		4.2.7	1 8													$\frac{15}{15}$
		4.2.6 $4.2.9$	o 9 (Cauchy													15
			9 (Cauchy 10				_	,								$\frac{15}{16}$
			10 11													
																16
			12													
		4.2.13	13		 	• •	 		 	 	• •	• •	• •	•	 •	16
5	•	_	Homewo													16
	5.1		nd Shakar	chi	 		 		 	 						
		5.1.1	$3.8.1 \dots$		 		 		 	 						16
		5.1.2	$3.8.2 \dots$		 		 		 	 						17
		5.1.3	$3.8.4 \dots$		 		 		 	 						17
		5.1.4	$3.8.5 \dots$		 		 		 	 						17
		5.1.5	3.8.6.		 		 		 	 						17
		5.1.6	3.8.7		 		 		 	 						17
		5.1.7	3.8.8		 		 		 	 						17
		5.1.8	3.8.9		 		 		 	 						18
		5.1.9	3.8.10		 		 		 	 						18
		5.1.10	3.8.14		 		 		 	 						19
		5.1.11	3.8.15		 		 		 	 						19
		5.1.12	3.8.17		 		 		 	 						20
		5.1.13														20
	5.2		ns From T													
		5.2.1														20

		5.2.2	2 .																					 				20
		5.2.3	3.																									21
		5.2.4	4 .																									21
		5.2.5																										21
		5.2.6	-																									21
		5.2.7	7.	-				-					 -									-	-			-		21
		5.2.8				 -		-	-		 -			-	 -	-				-		-	-			-		$\frac{21}{22}$
		5.2.6 $5.2.9$	9.	-	-	 -		-	-	-	 -	•	 -	•	 -	-	 -	 -		-	-	-	-		-	-	-	$\frac{22}{22}$
		5.2.10	10																									22
		5.2.11	11																									22
		5.2.12																										22
		5.2.13																										22
		5.2.14	14		•			•	•	•					 •					•	•			 •		•		22
2	Г		. •	. (_1_1		 _																		22
6		a Ques					_																					23
	6.1	Fall 20																										23
		6.1.1	? .																									23
		6.1.2	? .																									23
		6.1.3	? .																									23
		6.1.4	? .																									24
		6.1.5	? .																					 				24
		6.1.6	? .																					 				24
		6.1.7	? .																									24
		6.1.8	? .																					 				24
		6.1.9	? .																					 				24
		6.1.10	? .																					 				25
		6.1.11																										25
		6.1.12	? .																					 				25
		6.1.13	_																									25
		6.1.14																										$\frac{25}{25}$
		6.1.15																										$\frac{25}{25}$
		6.1.16																										26
		6.1.17																										$\frac{26}{26}$
		6.1.18	_																									$\frac{26}{26}$
		6.1.19																										$\frac{26}{26}$
		6.1.19 $6.1.20$		•	•	 •		•	•	•	 •	•	 •	•	 •	•	 -	 •	•	•	•	 •	•	 	•	•	•	26
	6.2	Fall 20																										$\frac{20}{26}$
	0.2	6.2.1	? .																									$\frac{20}{26}$
		-																										
		6.2.2	? .																									27
		6.2.3																										27
		6.2.4	? .																									27
		6.2.5	? .																									27
		6.2.6			-			-	-	-	 -		 -		 -		 -	 -				-	-		-	-	-	28
		6.2.7																										28
		6.2.8	? .																									28
		6.2.9	? .																									28
		6.2.10	? .																					 				28
		6 2 11	?																									28

	6.2.12 ?	29
	6.2.13 ?	29
	6.2.14 ?	29
	6.2.15 ?	29
	6.2.16 ?	29
	6.2.17 ?	30
	6.2.18 ?	30
	6.2.19 ?	30
	6.2.20 ?	30
6.3	Spring 2014	30
0.5	1 0	
		30
	6.3.2 ?	31
	6.3.3 ?	31
	6.3.4 ?	31
	6.3.5 ?	31
	6.3.6 ?	32
	6.3.7 ?	32
	6.3.8 ?	32
	6.3.9 ?	32
	6.3.10 ?	32
	6.3.11 ?	32
	6.3.12 ?	33
6.4	Fall 2015	33
	6.4.1 ?	33
	6.4.2 ?	33
	6.4.3 ?	34
	6.4.4 ?	34
	6.4.5 ?	34
	6.4.6 ?	35
	6.4.7 ?	35
	6.4.8 ?	35
	6.4.9 ?	35
	6.4.10 ?	35
	6.4.11 ?	36
	6.4.12 ?	36
	6.4.13 ?	36
	6.4.14 ?	36
	6.4.15 ?	36
	6.4.16 ?	36
	6.4.17 ?	37
	6.4.18 ?	37
6.5	Spring 2015	37
	6.5.1 ?	37
	6.5.2 ?	37
	6.5.3 ?	37
	6.5.4 ?	37
	6.5.5 ?	38
	6.5.6 ?	$\frac{38}{38}$
	U.U.U	-

	6.5.7 ?	38
	6.5.8 ?	38
	6.5.9 ?	38
	6.5.10 ?	39
	6.5.11 ?	39
	6.5.12 ?	39
	6.5.13 ?	39
	6.5.14 ?	40
	6.5.15 ?	40
	6.5.16 ?	40
	6.5.17 ?	40
	6.5.18 ?	41
	6.5.19 ?	41
	6.5.20 ?	41
	6.5.21 ?	41
	6.5.22 ?	42
	6.5.23 ?	42
	6.5.24 ?	42
	6.5.25 ?	42
	6.5.26 ?	42
	6.5.27 ?	
	6.5.28 ?	
	6.5.29 ?	_
	6.5.30 ?	
	6.5.31 ?	
	6.5.32 ?	
	6.5.33 ?	
	6.5.34 ?	
6.6	Fall 2016	
	6.6.1 ?	
	6.6.2 ?	
	6.6.3 ?	
	6.6.4 ?	
	6.6.5 ?	
	6.6.6 ?	
	6.6.7 ?	
	6.6.8 ?	46

1 Integrals and Cauchy's Theorem

1.1 1

Suppose $f,g:[0,1]\longrightarrow \mathbb{R}$ where f is Riemann integrable and for $x,y\in [0,1],$

$$|g(x) - g(y)| \le |f(x) - f(y)|.$$

Prove that g is Riemann integrable.

1.2 2

State and prove Green's Theorem for rectangles.

Then use it to prove Cauchy's Theory for functions that are analytic in a rectangle.

1.3 3

Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of analytic functions on $\mathbb{D}^\circ := \{z \in \mathbb{C} \mid |z| < 1\}$.

Show that if $f_n \longrightarrow g$ for some $g: \mathbb{D}^{\circ} \longrightarrow \mathbb{C}$ uniformly on every compact $K \subset \mathbb{D}^{\circ}$, then g is analytic on \mathbb{D}° .

1.4 4

Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of entire functions where

- $f_n \longrightarrow g$ pointwise for some $g: \mathbb{C} \longrightarrow \mathbb{C}$.
- On every line segment in \mathbb{C} , $f_n \longrightarrow g$ uniformly.

Show that

- \bullet g is entire, and
- $f_n \longrightarrow g$ uniformly on every compact subset of \mathbb{C} .

1.5 5

Prove that there is no sequence of polynomials that uniformly converge to $f(z) = \frac{1}{z}$ on S^1 .

1.6 6

Suppose that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a continuous function that vanishes outside of some finite interval. For each $z \in \mathbb{C}$, define

$$g(z) = \int_{-\infty}^{\infty} f(t)e^{-izt} dt.$$

Show that g is entire.

1.7 7

Suppose $f: \mathbb{C} \longrightarrow \mathbb{C}$ is entire and

$$|f(z)| \le |z|^{\frac{1}{2}}$$
 when $|z| > 10$.

Prove that f is constant.

1.8 8

Let γ be a smooth curve joining two distinct points $a, b \in \mathbb{C}$.

Prove that the function

$$f(z) := \int_{\gamma} \frac{g(w)}{w - z} \, dw$$

is analytic in $\mathbb{C} \setminus \gamma$.

1.9 9

Suppose that $f: \mathbb{C} \longrightarrow \mathbb{C}$ is continuous everywhere and analytic on $\mathbb{C} \setminus \mathbb{R}$ and prove that f is entire.

1.10 10

Prove Liouville's theorem: suppose $f: \mathbb{C} \longrightarrow \mathbb{C}$ is entire and bounded. Use Cauchy's formula to prove that $f' \equiv 0$ and hence f is constant.

2 Liouville's Theorem, Power Series

2.1 1

Suppose f is analytic on a region Ω such that $\mathbb{D} \subseteq \Omega \subseteq \mathbb{C}$ and $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is a power series with radius of convergence exactly 1.

- a. Give an example of such an f that converges at every point of S^1 .
- b. Given an example of such an f which is analytic at 1 but $\sum_{n=0}^{\infty} a_n$ diverges.
- c. Prove that f can not be analytic at *every* point of S^1 .

2.2 2

Suppose f is entire and has Taylor series $\sum a_n z^n$ about 0.

- a. Express a_n as a contour integral along the circle |z| = R.
- b. Apply (a) to show that the above Taylor series converges uniformly on every bounded subset of \mathbb{C} .
- c. Determine those functions f for which the above Taylor series converges uniformly on all of \mathbb{C} .

2.3 3

Suppose D is a domain and f, g are analytic on D.

Prove that if fg = 0 on D, then either $f \equiv 0$ or $g \equiv 0$ on D.

2.4 4

Suppose f is analytic on \mathbb{D}° . Determine with proof which of the following are possible:

a.
$$f\left(\frac{1}{n}\right) = (-1)^n$$
 for each $n > 1$.

b.
$$f\left(\frac{1}{n}\right) = e^{-n}$$
 for each even integer $n > 1$ while $f\left(\frac{1}{n}\right) = 0$ for each odd integer $n > 1$.

c.
$$f\left(\frac{1}{n^2}\right) = \frac{1}{n}$$
 for each integer $n > 1$.

d.
$$f\left(\frac{1}{n}\right) = \frac{n-2}{n-1}$$
 for each integer $n > 1$.

2.5 5

Prove the Fundamental Theorem of Algebra (using complex analysis).

2.6 6

Find all entire functions that satisfy

$$|f(z)| \ge |z| \quad \forall z \in \mathbb{C}.$$

Prove this list is complete.

2.7 7

Suppose $\sum_{n=0}^{\infty} a_n z^n$ converges for some $z_0 \neq 0$.

- a. Prove that the series converges absolutely for each z with $|z| < |z|_0$.
- b. Suppose $0 < r < |z_0|$ and show that the series converges uniformly on $|z| \le r$.

2.8 8

Suppose f is entire and suppose that for some integer $n \geq 1$,

$$\lim_{z \to \infty} \frac{f(z)}{z^n} = 0.$$

Prove that f is a polynomial of degree at most n-1.

2.9 9

Find all entire functions satisfying

$$|f(z)| \le |z|^{\frac{1}{2}}$$
 for $|z| > 10$.

2.10 10

Prove that the following series converges uniformly on the set $\{z \mid \Im(z) < \ln 2\}$:

$$\sum_{n=1}^{\infty} \frac{\sin(nz)}{2^n}.$$

3 Spring 2020 Homework 1

3.1 1

Geometrically describe the following subsets of \mathbb{C} :

- a. |z 1| = 1
- b. |z-1| = 2|z-2|
- c. $1/z = \bar{z}$
- d. $\Re(z) = 3$
- e. $\Im(z) = a$ with $a \in \mathbb{R}$.
- f. $\Re(z) > a$ with $a \in \mathbb{R}$.
- g. |z-1| < 2|z-2|

3.2 2

Prove the following inequality, and explain when equality holds:

$$|z + w| \ge ||z| - |w||$$
.

3.3 3

Prove that the following polynomial has its roots outside of the unit circle:

$$p(z) = z^3 + 2z + 4.$$

Hint: What is the maximum value of the modulus of the first two terms if $|z| \leq 1$?

3.4 4

a. Prove that if c > 0,

$$|w_1| = c|w_2| \implies |w_1 - c^2w_2| = c|w_1 - w_2|.$$

b. Prove that if c > 0 and $c \neq 1$, with $z_1 \neq z_2$, then the following equation represents a circle:

$$\left|\frac{z-z_1}{z-z_2}\right| = c.$$

Find its center and radius.

Hint: use part (a)

3.5 5

a. Let $z, w \in \mathbb{C}$ with $\bar{z}w \neq 1$. Prove that

$$\left| \frac{w - z}{1 - \overline{w}z} \right| < 1 \quad \text{if } |z| < 1, \ |w| < 1$$

with equality when |z| = 1 or |w| = 1.

- b. Prove that for a fixed $w \in \mathbb{D}$, the mapping $F: z \mapsto \frac{w-z}{1-\overline{w}z}$ satisfies
 - F maps $\mathbb D$ to itself and is holomorphic.
 - F(0) = w and F(w) = 0.
 - |z| = 1 implies |F(z)| = 1.

3.6 6

Use nth roots of unity to show that

$$2^{n-1}\sin\left(\frac{\pi}{n}\right)\sin\left(\frac{2\pi}{n}\right)\cdots\sin\left(\frac{(n-1)\pi}{n}\right) = n.$$

Hint:

$$1 - \cos(2\theta) = 2\sin^2(\theta)$$
$$2\sin(2\theta) = 2\sin(\theta)\cos(\theta).$$

3.7 7

Prove that $f(z) = |z|^2$ has a derivative at z = 0 and nowhere else.

3.8 8

Let f(z) be analytic in a domain, and prove that f is constant if it satisfies any of the following conditions:

- a. |f(z)| is constant.
- b. $\Re(f(z))$ is constant.
- c. arg(f(z)) is constant.
- d. f(z) is analytic.

How do you generalize (a) and (b)?

3.9 9

Prove that if $z \mapsto f(z)$ is analytic, then $z \mapsto \overline{f(\overline{z})}$ is analytic.

3.10 10

a. Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$.

b. Use (a) to show that the logarithm function, defined as

$$\log z = \log r + i\theta$$
 where $z = re^{i\theta}$ with $-\pi < \theta < \pi$.

is holomorphic on the region $r > 0, -\pi < \theta < \pi.$

Also show that this function is not continuous in r > 0.

3.11 11

Prove that the distinct complex numbers z_1, z_2, z_3 are the vertices of an equilateral triangle if and only if

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1.$$

4 Spring 2020 Homework 2

Note on notation: I sometimes use $f_x := \frac{\partial f}{\partial x}$ to denote partial derivatives, and $\partial_z^n f$ as $f^{(n)}(z)$.

4.1 Stein And Shakarchi

4.1.1 2.6.1

Show that

$$\int_0^\infty \sin\left(x^2\right) dx = \int_0^\infty \cos\left(x^2\right) dx = \frac{\sqrt{2\pi}}{4}.$$

Hint: integrate e^{-x^2} over the following contour, using the fact that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$:

4.1.2 2.6.2

Show that

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

Hint: use the fact that this integral equals $\frac{1}{2i} \int_{-\infty}^{\infty} \frac{e^{ix} - 1}{x} dx$, and integrate around an indented semicircle.

4.1.3 2.6.5

Suppose $f \in C^1_{\mathbb{C}}(\Omega)$ and $T \subset \Omega$ is a triangle with $T^{\circ} \subset \Omega$. Apply Green's theorem to show that $\int_T f(z) \ dz = 0$.

Assume that f' is continuous and prove Goursat's theorem.

Hint: Green's theorem states

$$\int_T F dx + G dy = \int_{T^{\circ}} \left(\frac{\partial G}{\partial x} - \frac{\partial F}{\partial y} \right) dx dy.$$

4.1.4 2.6.6

Suppose that f is holomorphic on a punctured open set $\Omega \setminus \{w_0\}$ and let $T \subset \Omega$ be a triangle containing w_0 . Prove that if f is bounded near w_0 , then $\int_T f(z) dz = 0$.

4.1.5 2.6.7

Suppose $f: \mathbb{D} \longrightarrow \mathbb{C}$ is holomorphic and let $d := \sup_{z,w \in \mathbb{D}} |f(z) - f(w)|$ be the diameter of the image of f. Show that $2|f'(0)| \leq d$, and that equality holds iff f is linear, so $f(z) = a_1z + a_2$.

Hint:
$$2f'(0) = \frac{1}{2\pi i} \int_{|\xi| = r} \frac{f(\xi) - f(-\xi)}{\xi^2} d\xi$$
 whenever $0 < r < 1$.

4.1.6 2.6.8

Suppose that f is holomorphic on the strip $S = \{x + iy \mid x \in \mathbb{R}, -1 < y < 1\}$ with $|f(z)| \le A(1+|z|)^{\nu}$ for ν some fixed real number. Show that for all $z \in S$, for each integer $n \ge 0$ there exists an $A_n \ge 0$ such that $|f^{(n)}(x)| \le A_n(1+|x|)^{\nu}$ for all $x \in \mathbb{R}$.

Hint: Use the Cauchy inequalities.

4.1.7 2.6.9

Let $\Omega \subset \mathbb{C}$ be open and bounded and $\varphi : \Omega \longrightarrow \Omega$ holomorphic. Prove that if there exists a point $z_0 \in \Omega$ such that $\varphi(z_0) = z_0$ and $\varphi'(z_0) = 1$, then φ is linear.

Hint: assume $z_0 = 0$ (explain why this can be done) and write $\varphi(z) = z + a_n z^n + O(z^{n+1})$ near 0. Let $\varphi_k = \varphi \circ \varphi \circ \cdots \circ \varphi$ and prove that $\varphi_k(z) = z + k a_n z^n + O(z^{n+1})$. Apply Cauchy's inequalities and let $k \longrightarrow \infty$ to conclude.

4.1.8 2.6.10

Can every continuous function on \mathbb{D} be uniformly approximated by polynomials in the variable z?

Hint: compare to Weierstrass for the real interval.

4.1.9 2.6.13

Suppose f is analytic, defined on all of \mathbb{C} , and for each $z_0 \in \mathbb{C}$ there is at least one coefficient in the expansion $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ is zero. Prove that f is a polynomial.

Hint: use the fact that $c_n n! = f^{(n)}(z_0)$ and use a countability argument.

4.1.10 2.6.14

Suppose that f is holomorphic in an open set containing \mathbb{D} except for a pole $z_0 \in \partial \mathbb{D}$. Let $\sum_{n=0}^{\infty} a_n z^n$ be the power series expansion of f in \mathbb{D} , and show that $\lim \frac{a_n}{a_{n+1}} = z_0$.

4.1.11 2.6.15

Suppose f is continuous and nonvanishing on $\overline{\mathbb{D}}$, and holomorphic in \mathbb{D} . Prove that if $|z| = 1 \implies |f(z)| = 1$, then f is constant.

Hint: Extend f to all of \mathbb{C} by $f(z) = 1/\overline{f(1/\overline{z})}$ for any |z| > 1, and argue as in the Schwarz reflection principle.

4.2 Additional Problems

4.2.1 1

Let $a_n \neq 0$ and show that

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L \implies \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = L.$$

In particular, this shows that when applicable, the ratio test can be used to calculate the radius of convergence of a power series.

4.2.2 2

Let f be a power series centered at the origin. Prove that f has a power series expansion about any point in its disc of convergence.

4.2.3 3

Prove the following:

- a. $\sum_{n} nz^{n}$ does not converge at any point of S^{1}
- b. $\sum_{n} \frac{z^n}{n^2}$ converges at every point of S^1 .
- c. $\sum_{n} \frac{z^n}{n}$ converges at every point of S^1 except z = 1.

4.2.4 4

Without using Cauchy's integral formula, show that if |a| < r < |b|, then

$$\int_{\gamma} \frac{dz}{(z-\alpha)(z-\beta)} = \frac{2\pi i}{\alpha - \beta}$$

where γ denotes the circle centered at the origin of radius r with positive orientation.

4.2.5 5

Assume f is continuous in the region $\{x + iy \mid x \ge x_0, \ 0 \le y \le b\}$, and the following limit exists independent of y:

$$\lim_{x \to +\infty} f(x + iy) = A.$$

Show that if $\gamma_x := \{z = x + it \mid 0 \le t \le b\}$, then

$$\lim_{x \longrightarrow +\infty} \int_{\gamma_x} f(z) \, dz = iAb.$$

4.2.6 6

Show by example that there exists a function f(z) that is holomorphic on $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$ and for all r < 1,

$$\int_{|z|=r} f(z) \, dz = 0,$$

but f is not holomorphic at z = 0.

4.2.7 7

Let f be analytic on a region R and suppose $f'(z_0) \neq 0$ for some $z_0 \in R$. Show that if C is a circle of sufficiently small radius centered at z_0 , then

$$\frac{2\pi i}{f'(z_0)} = \int_C \frac{dz}{f(z) - f(z_0)}.$$

Hint: use the inverse function theorem.

4.2.8 8

Assume two functions $u, b : \mathbb{R}^2 \longrightarrow \mathbb{R}$ have continuous partial derivatives at (x_0, y_0) . Show that f := u + iv has derivative $f'(z_0)$ at $z_0 := x_0 + iy_0$ if and only if

$$\lim_{r \to 0} \frac{1}{\pi r^2} \int_{|z-z_0|=r} f(z) dz = 0.$$

4.2.9 9 (Cauchy's Formula for Exterior Regions)

Let γ be a piecewise smooth simple closed curve with interior Ω_1 and exterior Ω_2 . Assume f' exists in an open set containing γ and Ω_2 with $\lim_{z \to \infty} f(z) = A$. Show that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \begin{cases} A, & \text{if } z \in \Omega_1 \\ -f(z) + A, & \text{if } z \in \Omega_2 \end{cases}.$$

4.2.10 10

Let f(z) be bounded and analytic in \mathbb{C} . Let $a \neq b$ be any fixed complex numbers. Show that the following limit exists:

$$\lim_{R \to \infty} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz.$$

Use this to show that f(z) must be constant.

4.2.11 11

Suppose f(z) is entire and

$$\lim_{z \to \infty} \frac{f(z)}{z} = 0.$$

Show that f(z) is a constant.

4.2.12 12

Let f be analytic in a domain D and γ be a closed curve in D. For any $z_0 \in D$ not on γ , show that

$$\int_{\gamma} \frac{f'(z)}{(z - z_0)} dz = \int_{\gamma} \frac{f(z)}{(z - z_0)^2} dz.$$

Give a generalization of this result.

4.2.13 13

Compute

$$\int_{|z|=1} \left(z + \frac{1}{z}\right)^{2n} \frac{dz}{z}$$

and use it to show that

$$\in_0^{2\pi} \cos^{2n}(\theta) d\theta = 2\pi \left(\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \right).$$

5 Spring 2020 Homework 3

5.1 Stein and Shakarchi

5.1.1 3.8.1

Use the following formula to show that the complex zeros of $\sin(\pi z)$ are exactly the integers, and they are each of order 1:

$$\sin \pi z = \frac{e^{i\pi z} - e^{-i\pi z}}{2i}.$$

Calculate the residue of $\frac{1}{\sin(\pi z)}$ at $z = n \in \mathbb{Z}$.

5.1.2 3.8.2

Evaluate the integral

$$\int_{\mathbb{R}} \frac{dx}{1+x^4}.$$

What are the poles of $\frac{1}{1+z^4}$?

5.1.3 3.8.4

Show that

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx = \pi e^{-a}, \quad \text{for all } a > 0.$$

5.1.4 3.8.5

Show that if $\xi \in \mathbb{R}$, then

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \xi}}{(1+x^2)^2} dx = \frac{\pi}{2} (1+2\pi |\xi|) e^{-2\pi |\xi|}.$$

5.1.5 3.8.6

Show that

$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^{n+1}} = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \cdot \pi.$$

5.1.6 3.8.7

Show that

$$\int_0^{2\pi} \frac{d\theta}{(a + \cos \theta)^2} = \frac{2\pi a}{(a^2 - 1)^{3/2}}, \quad \text{whenever } a > 1.$$

5.1.7 3.8.8

Show that if $a, b \in \mathbb{R}$ with a > |b|, then

$$\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}.$$

5.1.8 3.8.9

Show that

$$\int_0^1 \log(\sin \pi x) dx = -\log 2.$$

5.1.9 3.8.10

Show that if a > 0, then

$$\int_0^\infty \frac{\log x}{x^2 + a^2} dx = \frac{\pi}{2a} \log a.$$

5.1.10 3.8.14

Prove that all entire functions that are injective are of the form f(z) = az + b with $a, b \in \mathbb{C}$ and $a \neq 0$.

Hint: Apply the Casorati-Weierstrass theorem to f(1/z).

5.1.11 3.8.15

Use the Cauchy inequalities or the maximum modulus principle to solve the following problems:

a. Prove that if f is an entire function that satisfies

$$\sup_{|z|=R} |f(z)| \le AR^k + B$$

for all R > 0, some integer $k \ge 0$, and some constants A, B > 0, then f is a polynomial of degree $\le k$.

- b. Show that if f is holomorphic in the unit disc, is bounded, and converges uniformly to zero in the sector $\theta < \arg(z) < \varphi$ as $|z| \longrightarrow 0$, then $f \equiv 0$.
- c. Let $w_1, \dots w_n$ be points on $S^1 \subset \mathbb{C}$. Prove that there exists a point $z \in S^1$ such that the product of the distances from z to the points w_i is at least 1.

Conclude that there exists a point $w \in S^1$ such that the product of the above distances is exactly 1.

d. Show that if the real part of an entire function is bounded, then f is constant.

5.1.12 3.8.17

Let f be non-constant and holomorphic in an open set containing the closed unit disc.

a. Show that if |f(z)| = 1 whenever |z| = 1, then the image of f contains the unit disc.

Hint: Show that $f(z) = w_0$ has a root for every $w_0 \in \mathbb{D}$, for which it suffices to show that f(z) = 0 has a root. Conclude using the maximum modulus principle.

b. If $|f(z)| \ge 1$ whenever |z| = 1 and there exists a $z_0 \in \mathbb{D}$ such that $|f(z_0)| < 1$, then the image of f contains the unit disc.

5.1.13 3.8.19

Prove that maximum principle for harmonic functions, i.e.

- a. If u is a non-constant real-valued harmonic function in a region Ω , then u can not attain a maximum or a minimum in Ω .
- b. Suppose Ω is a region with compact closure $\overline{\Omega}$. If u is harmonic in Ω and continuous in $\overline{\Omega}$, then

$$\sup_{z\in\Omega}|u(z)|\leq \sup_{z\in\overline{\Omega}-\Omega}|u(z)|.$$

Hint: to prove (a), assume u attains a local maximum at z_0 . Let f be holomorphic near z_0 with $\Re(f) = u$, and show that f is not an open map. Then (a) implies (b).

5.2 Problems From Tie

5.2.1 1

Prove that if f has two Laurent series expansions,

$$f(z) = \sum c_n(z-a)^n$$
 and $f(z) = \sum c'_n(z-a)^n$

then $c_n = c'_n$.

5.2.2 2

Find Laurent series expansions of

$$\frac{1}{1-z^2}+\frac{1}{3-z}$$

How many such expansions are there? In what domains are each valid?

5.2.3 3

Let P, Q be polynomials with no common zeros. Assume a is a root of Q. Find the principal part of P/Q at z=a in terms of P and Q if a is (1) a simple root, and (2) a double root.

5.2.4 4

Let f be non-constant, analytic in |z| > 0, where $f(z_n) = 0$ for infinitely many points z_n with $\lim_{n \to \infty} z_n = 0.$ Show that z = 0 is an essential singularity for f.

Example: $f(z) = \sin(1/z)$.

5.2.5 5

Show that if f is entire and $\lim_{z \to \infty} f(z) = \infty$, then f is a polynomial.

5.2.6 6

a. Show (without using 3.8.9 in the S&S) that

$$\int_0^{2\pi} \log \left| 1 - e^{i\theta} \right| \, d\theta = 0$$

b. Show that this identity is equivalent to S&S 3.8.9:

$$\int_0^1 \log(\sin(\pi x)) \ dx = -\log 2.$$

5.2.7 7

Let 0 < a < 4 and evaluate

$$\int_0^\infty \frac{x^{\alpha - 1}}{1 + x^3} \ dx$$

5.2.8 8

Prove the fundamental theorem of Algebra using

- a. Rouche's Theorem.
- b. The maximum modulus principle.

5.2.9 9

Let f be analytic in a region D and γ a rectifiable curve in D with interior in D. Prove that if f(z) is real for all $z \in \gamma$, then f is constant.

5.2.10 10

For a > 0, evaluate

$$\int_0^{\pi/2} \frac{d\theta}{a + \sin^2 \theta}$$

5.2.11 11

Find the number of roots of $p(z) = 4z^4 - 6z + 3$ in |z| < 1 and 1 < |z| < 2 respectively.

5.2.12 12

Prove that $z^4 + 2z^3 - 2z + 10$ has exactly one root in each open quadrant.

5.2.13 13

Prove that for a > 0, $z \tan z - a$ has only real roots.

5.2.14 14

Let f be nonzero, analytic on a bounded region Ω and continuous on its closure $\overline{\Omega}$. Show that if $|f(z)| \equiv M$ is constant for $z \in \partial \Omega$, then $f(z) \equiv M e^{i\theta}$ for some real constant θ .

6 Extra Questions from Jingzhi Tie

6.1 Fall 2009

6.1.1 ?

- (1) Assume $\displaystyle\ f(z) = \sum_{n=0}^\inf c_n z^n \converges in $|z| < R$. Show that for $r <R$, $$\frac{1}{2 \pi} \int_0^{2 \pi} |f(r e^{i \theta})|^2 d \theta = \sum_{n=0}^\inf |c_n|^2 r^{2n} ; .$$$
- (2) Deduce Liouville's theorem from (1).

6.1.2 ?

Let \$f\$ be a continuous function in the region \$\$D=\{z \suchthat \abs{z}>R, 0\leq \arg z\leq \theta\}\quad\text{where}\quad 1\leq \theta \leq 2\pi.\$\$ If there exists \$k\$ such that \$\displaystyle{\lim_{z\to\infty} zf(z)=k}\$ for \$z\$ in the region \$D\$.

Show that \$\$\lim_{R'\to\infty} \int_{L} f(z) dz=i\theta k \$\$

Show that $\$ \lim_{R'\to\infty} \int_{L} f(z) dz=i\theta k,\$\$ where \$L\$ is the part of the circle \$|z|=R'\$ which lies in the region \$D\$.

6.1.3 ?

Suppose that \$f\$ is an analytic function in the region \$D\$ which contains the point \$a\$. Let $\$F(z) = z - a - qf(z), \quad \texttt{where} ^- q \setminus \texttt{is a complex parameter}. \$$$

- (1) Let $K\subset D$ be a circle with the center at point a and also we assume that $f(z) \to 0$ for $z\in K$. Prove that the function F has one and only one zero $z\in K$ on the closed disc a whose boundary is the circle K if a displaystyle $|q|<\min_{z\in K} f(z)|$.
- (2) Let G(z) be an analytic function on the disk \frac{K} . Apply the residue theorem to prove that $\frac{G(w)}{F'(w)}=\frac{1}{2\pi i} \int \frac{G(z)}{F(z)} dz,$ where s is the zero from (1).
- (3) If $z\in K$, prove that the function $\del{f(z)}\$ can be represented as a convergent series with respect to $q\$: $\del{f(z)}\$ $\f(z-a)^{n+1}\$.

6.1.4 ?

Evaluate $\frac{0}^{\int \int x^2+a^2} \dx \.$

6.1.5 ?

Let f=u+iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z=re^{i\cdot t}$, $r\neq 0$. Show that

 $\ \$ \frac{\partial u}{\partial r}=-\frac{1}{r}\frac{\partial v}{\partial \theta},\quad \frac{\partial v}{\partial r}=-\frac{1}{r}\frac{\partial u}{\partial \theta}.\$\$

6.1.6 ?

Show that $\displaystyle \int_0^{\infty} \frac{x^{a-1}}{1+x^n} dx=\frac{\pi^{a-1}}{n} \sin \frac{a\pi^{n}}{n} \$ using complex analysis, \$0< a < n\$. Here \$n\$ is a positive integer.

6.1.7 ?

For s>0, the **gamma function** is defined by $\displaystyle{Gamma(s)=\int_0^{\int_0^{t} e^{-t}t^{s-1} dt}$.

- 1. Show that the gamma function is analytic in the half-plane Re (s)>0, and is still given there by the integral formula above.
- 2. Apply the formula in the previous question to show that $\frac{s}{\sigma(1-s)}=\frac{\pi(1-s)}{\sin \pi s}.$

> Hint: You may need $\displaystyle \frac{1-s}=t \int_0^{\infty} e^{-vt}(vt)^{-s} dv} for $t>0$.

6.1.8 ?

Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If $p_n(z) = a_0 + a_1z + \cdot a_{n-1}z^{n-1} + a_nz^n\cdot (a_n \neq 0)$ is a polynomial of degree n, then it has n zeros in \$\mathbb C\$.

6.1.9 ?

Suppose \$f\$ is entire and there exist \$A, R >0\$ and natural number \$N\$ such that $f(z) \mid g \in A \mid z \mid N \mid z \mid g \in R.$$ Show that

- (i) \$f\$ is a polynomial and
- (ii) the degree of \$f\$ is at least \$N\$.

6.1.10 ?

Let $f: {\mathbb C} \to \mathbb C$ be an injective analytic (also called *univalent*) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.

6.1.11 ?

Let g be analytic for $|z|\leq 1$ and |g(z)|<1 for |z|=1.

- 1. Show that g has a unique fixed point in |z| < 1.
- 2. What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z|=1? Give an example if (a) is not true or give an proof if (a) is still true.
- 3. What happens if we simply assume that \$f\$ is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that f(z) not\equiv z\$. Can f have more than one fixed point in |z| < 1?
- > Hint: The map $\displaystyle \sum_{\alpha}_{\alpha}z}{1-\bar{\alpha}z}$ may be useful.

6.1.12 ?

Find a conformal map from $D = \{z : |z| < 1, |z - 1/2| > 1/2\}$ to the unit disk $Delta=\{z : |z|<1\}$.

6.1.13 ?

Let f(z) be entire and assume values of f(z) lie outside a *bounded* open set Ω . Show without using Picard's theorems that f(z) is a constant.

6.1.14 ?

- (1) Assume $\phi = \sum_{n=0}^{infty c_n z^n} converges in $|z| < R$. Show that for $r < R$, $$ \frac{1}{2 \pi} \int_0^{2 \pi} |f(r e^{i \theta})|^2 d \theta = \sum_{n=0}^{infty c_n|^2 r^{2n}}; .$$$
- (2) Deduce Liouville's theorem from (1).

6.1.15 ?

Let f(z) be entire and assume that $f(z) \leq M |z|^2$ outside some disk for some constant M. Show that f(z) is a polynomial in z of degree ≤ 2 .

6.1.16 ?

Let $a_n(z)$ be an analytic sequence in a domain D such that

 $\sum_{n=0}^{\infty} |a_n(z)| \text{ converges uniformly on bounded and closed sub-regions of } D. \text{ Show that } \sum_{n=0}^{\infty} |a'_n(z)| \text{ converges uniformly on bounded and closed sub-regions of } D.$

6.1.17 ?

Let f(z) be analytic in an open set Ω except possibly at a point z_0 inside Ω show that if f(z) is bounded in near z_0 , then α in point z_0 int_\Delta z_0 for all triangles \Delta in Ω in Ω .

6.1.18 ?

Assume \$f\$ is continuous in the region:

 $0 < |z - a| \le R$, $0 \le \arg(z - a) \le \beta_0$ $(0 < \beta_0 \le 2\pi)$ and the limit $\lim_{z \to a} (z - a) f(z) = A$ exists. Show that

$$\lim_{r \to 0} \int_{\gamma_r} f(z) dz = iA\beta_0 ,$$

where $\gamma_r := \{ z \mid z = a + re^{it}, \ 0 \le t \le \beta_0 \}.$

6.1.19 ?

Show that $f(z) = z^2$ is uniformly continuous in any open disk |z| < R, where R > 0 is fixed, but it is not uniformly continuous on \mathbb{C} .

6.1.20 ?

(1) Show that the function u=u(x,y) given by $u(x,y)=\frac{e^{ny}-e^{-ny}}{2n^2}\sin nx\quad \text{text}{for}\ n\in \mathbb{N}$ is the solution on $D=\{(x,y)\ |\ x^2+y^2<1\}$ of the Cauchy problem for the Laplace equation $\frac{2u}{partial\ ^2u}{partial\ x^2}+\frac{2u}{partial\ y^2}=0,\quad u(x,0)=0,\quad \frac{rac}{partial\ u}{partial\ y}(x,0)=\frac{\sin nx}{n}.$ (2) Show that there exist points $(x,y)\in D$ such that $\frac{1}{n}.$

6.2 Fall 2011

6.2.1 ?

(1) Assume $\sigma = \sum_{n=0}^{n=0} \le c_n \le c_n$

 $\frac{1}{2 \pi^2 \int \int \int c^2 \pi^2 f(r e^{i \theta})^2 d \theta = \sum_{n=0}^{infty |c_n|^2 r^{2n} ; .}$

(2) Deduce Liouville's theorem from (1).

6.2.2 ?

Let \$f\$ be a continuous function in the region $\protect{\$}D=\{z\ | \ |z|>R, 0\leq \arg Z\leq \theta}\qquad \cline{\c$

6.2.3 ?

Suppose that f is an analytic function in the region D which contains the point a. Let $F(z) = z-a-qf(z),\quad \text{where}\quad q \ \text{start}$ parameter}.

- (1) Let $K\subset D$ be a circle with the center at point a and also we assume that $f(z) \to 0$ for $z\in K$. Prove that the function F has one and only one zero z=0 on the closed disc $a\in K$ whose boundary is the circle K if $a\in K$ $a\in K$ $a\in K$ $a\in K$ $a\in K$ $a\in K$
- (2) Let G(z) be an analytic function on the disk \frac{K} . Apply the residue theorem to prove that $\frac{G(w)}{F'(w)}=\frac{1}{2\pi i} \int G(z){F(z)} dz,$ where s is the zero from (1).
- (3) If $z\in K$, prove that the function $\left(\frac{1}{F(z)}\right)$ can be represented as a convergent series with respect to q: $\left(\frac{1}{F(z)}\right)^{r}\left(\frac{1}{F(z)}\right)^{r+1}.$

6.2.4 ?

Evaluate $\displaystyle \frac{0}^{\int \int x^2+a^2} \ dx }$

6.2.5 ?

Let f=u+iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z=re^{i\theta}$, $r\neq 0$. Show

that

 $\ \$ \frac{\partial u}{\partial r}=-\frac{1}{r}\frac{\partial v}{\partial \theta},\quad \frac{\partial v}{\partial r}=-\frac{1}{r}\frac{\partial u}{\partial \theta}.\$\$

6.2.6 ?

Show that $\displaystyle \int_0^{\infty} \frac{x^{a-1}}{1+x^n} dx=\frac{\pi^{n}}{n} \ \$ using complex analysis, 0< a< n. Here n is a positive integer.

6.2.7 ?

For s>0, the **gamma function** is defined by $\displaystyle{\Gamma(s)=\left(\frac{0^{\star} e^{-t}t^{s-1} dt}\right)}.$

- 1. Show that the gamma function is analytic in the half-plane \$\Re (s)>0\$, and is still given there by the integral formula above.
- 2. Apply the formula in the previous question to show that \$\$\Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin \pi s}.\$\$
- > Hint: You may need $\displaystyle \frac{1-s}=t \int_0^{\infty} e^{-vt}(vt)^{-s} dv$ for t>0.

6.2.8 ?

Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If $p_n(z) = a_0 + a_1z + \cdot a_{n-1}z^{n-1} + a_nz^n\cdot (a_n \neq 0)$ is a polynomial of degree n, then it has n zeros in \$\mathbb C\$.

6.2.9 ?

Suppose \$f\$ is entire and there exist \$A, R >0\$ and natural number \$N\$ such that $f(z) \mid g \in A \mid z \mid N \mid f(z) \mid g \in R.$$ Show that (i) \$f\$ is a polynomial and (ii) the degree of \$f\$ is at least \$N\$.

6.2.10 ?

Let $f: \mathbb C} \rightarrow \mathbb C$ has an injective analytic (also called univalent) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.

6.2.11 ?

Let g be analytic for $|z|\leq 1$ and |g(z)| < 1 for |z| = 1.

- Show that g has a unique fixed point in |z| < 1.
- What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z|=1? Give an example if (a) is not true or give an proof if (a) is still true.
- What happens if we simply assume that \$f\$ is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that f(z) \not\equiv z\$. Can f have more than one fixed point in |z| < 1?

```
> Hint: The map
$\displaystyle{\psi_{\alpha}(z)=\frac{\alpha}{1-\frac{\alpha}z}}$
> may be useful.
```

6.2.12 ?

Find a conformal map from $D = \{z : |z| < 1, |z - 1/2| > 1/2\}$ to the unit disk $\Delta = \{z : |z| < 1\}$.

6.2.13 ?

Let f(z) be entire and assume values of f(z) lie outside a *bounded* open set \$\Omega\$. Show without using Picard's theorems that f(z) is a constant.

6.2.14 ?

Let f(z) be entire and assume values of f(z) lie outside a *bounded* open set Ω . Show without using Picard's theorems that f(z) is a constant.

6.2.15 ?

- (1) Assume $\displaystyle f(z) = \sum_{n=0}^\inf c_n z^n$ converges in |z| < R. Show that for x < R, $\|f(z)\| \leq \|f(z)\| \|f(z)\|^2 \|f($
- (2) Deduce Liouville's theorem from (1).

6.2.16 ?

Let f(z) be entire and assume that $f(z) \leq M |z|^2$ outside some disk for some constant M. Show that f(z) is a polynomial in z of degree |z|

6.2.17 ?

Let $a_n(z)$ be an analytic sequence in a domain D such that $\alpha_n(z) = \sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D. Show that $\alpha_n(z) = \sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D.

6.2.18 ?

Let f(z) be analytic in an open set Ω except possibly at a point z_0 inside Ω . Show that if f(z) is bounded in near z_0 , then $\dim z$ in Ω in Ω .

6.2.19 ?

```
Assume $f$ is continuous in the region: $0< |z-a| \leq R, \; 0 \leq \arg(z-a) \leq \beta_0$ ($0 < \beta_0 \leq 2 \pi$) and the limit $\displaystyle \lim_{z \rightarrow a} (z-a) f(z) = A$ exists. Show that $$\lim_{r \rightarrow 0} \int_{\gamma_r} f(z) dz = i A \beta_0 \; , \; \; $$ where $\gamma_r : = \{ z \; | \; z = a + r e^{it}, \; 0 \leq t \leq \beta_0 \}.$
```

6.2.20 ?

Show that $f(z) = z^2$ is uniformly continuous in any open disk |z| < R, where R>0 is fixed, but it is not uniformly continuous on \mathbb{C} .

- (1) Show that the function u=u(x,y) given by $u(x,y)=\frac{e^{ny}-e^{-ny}}{2n^2}\sin nx\quad \text{text}{for}\ n\in \mathbb{N}$ is the solution on $D=\{(x,y)\ |\ x^2+y^2<1\}$ of the Cauchy problem for the Laplace equation $\frac{2u}{partial\ ^2u}{partial\ ^2u}{partial\ ^2u}{partial\ y^2}=0,\quad u(x,0)=0,\quad \frac{rac}{\pi x}.$
- (2) Show that there exist points $(x,y)\in D$ such that $\displaystyle \frac{1}{u(x,y)}=\inf y$.

6.3 Spring 2014

6.3.1 ?

The question provides some insight into Cauchy's theorem. Solve the problem without using the Cauchy theorem.

1. Evaluate the integral \$\displaystyle{\int_{\gamma} z^n dz}\$ for

- all integers \$n\$. Here \$\gamma\$ is any circle centered at the origin with the positive (counterclockwise) orientation.
- 2. Same question as (a), but with \$\gamma\$ any circle not containing the origin.
- 3. Show that if \$|a|<r<|b|\$, then
 \$\displaystyle{\int_{\gamma}\frac{dz}{(z-a)(z-b)} dz=\frac{2\pi i}{a-b}}\$.
 Here \$\gamma\$ denotes the circle centered at the origin, of
 radius \$r\$, with the positive orientation.</pre>

6.3.2 ?

- (2) Deduce Liouville's theorem from (1). Liouville's theorem: If f(z) is entire and bounded, then f is constant.

6.3.3 ?

Let \$f\$ be a continuous function in the region $\protect{\$}D=\{z\ | \ |z|>R, 0\leq \arg Z\leq \theta}\qquad \cline{$\mathbb{Z}}\$ If there exists \$k\$ such that \$\$\displaystyle{ $\lim_{z\to \infty} zf(z)=k$ \$ for \$z\$ in the region \$D\$. Show that $\protect{\$}\lim_{R'\to\infty} \sin ty \displaystyle_{R'\to\infty} \sin ty \displays$

6.3.4 ?

Evaluate $\displaystyle \frac{0}^{\int \int x^2+a^2} \ dx }$.

6.3.5 ?

Let f=u+iv be differentiable (i.e. f'(z) exists) with continuous partial derivatives at a point $z=re^{i\theta}$, $r\in 0$. Show that $f=re^{i\theta}$ partial f^{θ} partial f^{θ} at f^{θ} partial f^{θ} .

6.3.6 ?

Show that $\displaystyle \int_0^{\infty} \frac{x^{a-1}}{1+x^n} dx=\frac{\pi^{n}}{n} \sin \frac{a\pi}{n}} \$ using complex analysis, \$0< a < n\$. Here \$n\$ is a positive integer.

6.3.7 ?

For s>0, the **gamma function** is defined by $\displaystyle{Gamma(s)=\int_0^{\int_0^{t} e^{-t}t^{s-1} dt}$.

- Show that the gamma function is analytic in the half-plane \$\Re (s)>0\$, and is still given there by the integral formula above.
- Apply the formula in the previous question to show that \$\$\Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin \pi s}.\$\$
- > Hint: You may need $\displaystyle \frac{1-s}=t \int_0^{\infty} e^{-vt}(vt)^{-s} dv} for $t>0$.

6.3.8 ?

Apply Rouché's Theorem to prove the Fundamental Theorem of Algebra: If $p_n(z) = a_0 + a_1z + \cdot a_nz^n\cdot (a_n \cdot a_0)$ is a polynomial of degree n, then it has n zeros in $\alpha 0$

6.3.9 ?

Suppose f is entire and there exist A, R > 0 and natural number N such that $f(z) \mid g \in A \mid z \mid N \setminus f(z) \mid g \in R.$ Show that (i) f is a polynomial and (ii) the degree of f is at least S.

6.3.10 ?

Let $f: \mathbb C \$ injective analytic (also called univalent) function. Show that there exist complex numbers $a \neq 0$ and b such that f(z) = az + b.

6.3.11 ?

Let g be analytic for $|z|\leq 1$ and |g(z)| < 1 for |z| = 1.

- Show that g has a unique fixed point in |z| < 1.
- What happens if we replace |g(z)| < 1 with $|g(z)| \le 1$ for |z|=1? Give an example if (a) is not true or give an proof

if (a) is still true.

- What happens if we simply assume that \$f\$ is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that |f(z)| < 1 (and the continuous conti

> Hint: The map $\displaystyle{\pi(z)=\frac{\alpha}{1-\frac{\alpha}z}} \ > \mbox{may be useful.}$

6.3.12 ?

Find a conformal map from $D = \{z : |z| < 1, |z - 1/2| > 1/2\}$ to the unit disk $Delta=\{z : |z|<1\}$.

6.4 Fall 2015

6.4.1 ?

Let $a_n \neq 0$ and assume that $\frac{1}{|a_n|} = L$. Show that $\frac{n+1}{|a_n|} = L$. Show that $\frac{n}{|a_n|} = L$. Show that when applicable, the ratio test can be used to calculate the radius of convergence of a power series.

6.4.2 ?

- (a) Let \$z, w\$ be complex numbers, such that $\$ w \neq 1\$. Prove that \$\$\abs{\frac{w z}{1 \frac{w} z}} < 1 \; \ \mbox{if} \; |z| < 1 \; \mbox{and}\; |w| < 1,\$\$ and also that \$\$\abs{\frac{w z}{1 \frac{w} z}} = 1 \; \; \mbox{if} \; |z| = 1 \; \mbox{or}\; |w| = 1.\$\$
- (b) Prove that for fixed w in the unit disk \mathbb{D} , the mapping $F: z \rightarrow \frac{w z}{1 \sqrt{y} z}$ satisfies the following conditions:
- (i) \$F\$ maps \$\mathbb D\$ to itself and is holomorphic.
- (ii) F\$ interchanges 0\$ and w\$, namely, F(0) = w\$ and F(w) = 0\$.
- (iii) |F(z)| = 1 if |z| = 1.

\begin{cases}

&

Α,

```
(iv) $F: {\mathbb D} \mapsto {\mathbb D}$ is bijective.
> Hint: Calculate $F \circ F$.
6.4.3 ?
 Use n-th roots of unity (i.e. solutions of z^n - 1 = 0) to show
\ \sin\frac{n} \sin\frac{2\pi}{n} \cdot \frac{(n-1)\pi}{n}
\; .$$
> Hint: $1 - \cos 2 \theta = 2 \sin^2 \theta,\; \sin 2 \theta = 2 \sin \theta \cos \theta$.
(a) Show that in polar coordinates, the Cauchy-Riemann
equations take the form
$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}
\; \; \; \text{and} \; \; \;
\frac{\partial v}{\partial r} = - \frac{1}{r} \frac{\partial u}{\partial \theta}$
(b) Use these equations to show that the logarithm function
defined by \frac{s}\log z = \log r + i \cdot ; ;
is a holomorphic function in the region
$r>0, \; - \pi < \theta < \pi$. Also show that $\log z$ defined</pre>
above is not continuous in $r>0$.
6.4.4 ?
 Assume $f$ is continuous in the region:
x \neq x_0, \  \   and the limit
\ \displaystyle \lim_{x \rightarrow + \infty} f(x + iy) = A$$ exists
uniformly with respect to $y$ (independent of $y$). Show that
\ \lim_{x \rightarrow + \infty} \int_{\gamma_x} f(z) dz = iA b \; , \; \; $$
where \gamma_x := \{z \}; | z = x + it, \}; 0 \leq t \leq b.
6.4.5 ?
  (Cauchy's formula for "exterior" region) Let $\gamma$ be piecewise
smooth simple closed curve with interior $\Omega_1$ and exterior
$\Omega_2$. Assume $f'(z)$ exists in an open set containing $\gamma$
and \Omega_2 and \lim_{z \to 0} f(z) = A. Show
\frac{1}{2 \pi i} \int_{gamma \frac{f(\pi i)}{\pi i} \int_{gamma} \frac{f(\pi i)}{\pi i} d \pi i
```

\text{if\ \$z \in \Omega_1\$}, \\

-f (z) + A, & \text{if\ \$z \in \Omega_2\$} \end{cases}\$\$

6.4.6 ?

Let f(z) be bounded and analytic in $\mathcal S$. Let $a \neq b$ be any fixed complex numbers. Show that the following limit exists $\lim_{R \to \infty} \lim_{z\to b} \int_{z-b} dz.$ Use this to show that f(z) must be a constant (Liouville's theorem).

6.4.7 ?

Prove by *justifying all steps* that for all π in {\mathbb C}\$ we have \$\displaystyle e^{- \pi \xi^2} = \int_{- \infty}^\infty e^{- \pi x^2} e^{2 \pi i x \xi} dx \; .\$

> Hint: You may use that fact in Example 1 on p. 42 of the textbook without proof, i.e., you may assume the above is true for real values of \$\xi\$.

6.4.8 ?

Suppose that f is holomorphic in an open set containing the closed unit disc, except for a pole at z_0 on the unit circle. Let $\$

 $f(z) = \sum_{n = 1}^{infty} a_n z^n$

 $f(z) = \sum_{n = 1}^{n} c_n z^n$ denote the the power series in the open disc. Show that (1) $c_n \neq 0$ for all large enough s^s , and (2)

 $\displaystyle \lim_{n \to \infty} \lim_{x \to \infty} \frac{c_n}{c_n+1} = z_0$.

6.4.9 ?

Let f(z) be a non-constant analytic function in |z|>0 such that $f(z_n) = 0$ for infinite many points z_n with $\lim_{n \to \infty} \inf y = 0$. Show that z=0 is an essential singularity for f(z). (An example of such a function is $f(z) = \sin (1/z)$.)

6.4.10 ?

Let f be entire and suppose that $\lim_{z \to f} f(z) = \inf_{z \to g} f(z)$. Show that f is a polynomial.

6.4.11 ?

Expand the following functions into Laurent series in the indicated regions:

(a) $\displaystyle\ f(z) = \frac{z^2 - 1}{(z+2)(z+3)}, \ \ 2 < |z| < 3$, $3 < |z| < + \int_{z}^{z} |z| < 1$

6.4.12 ?

Assume f(z) is analytic in region D and Γ is a rectifiable curve in D with interior in D. Prove that if f(z) is real for all $z \in \Gamma$ is a constant.

6.4.13 ?

Find the number of roots of $z^4 - 6z + 3 = 0$ in |z| < 1 and |z| < 2 respectively.

6.4.14 ?

Prove that $z^4 + 2z^3 - 2z + 10 = 0$ has exactly one root in each open quadrant.

6.4.15 ?

- (2) Show that the above is still true if Re(f(z)) > 0 is replaced with $\text{Re}(f(z)) \neq 0$.

6.4.16 ?

Assume f(z) is analytic in $\frac{n+1}{z}$ and f(0)=0 and is not a rotation (i.e. $f(z) \neq e^{i \cdot theta} z$). Show that $\frac{n-1}^{i \cdot theta} f^{n}(z)$ converges uniformly to an analytic function on compact subsets of $\frac{m+1}{z} = f(f^{n}(z))$.

6.4.17 ?

6.4.18 ?

Let $f(z) = \sum_{n=-\infty}^n c_n z^n$ be analytic and one-to-one in $r_0 < |z| < R_0$. For $r_0 < R < R_0$, let D(r,R) be the annulus r < |z| < R. Show that the area of D(r,R) is finite and is given by $s = \pi c_n c_n < R^2 = \pi^2 c_n < R^$

6.5 Spring 2015

6.5.1 ?

Let $a_n(z)$ be an analytic sequence in a domain D such that $\alpha_n(z) \le \sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D. Show that $\alpha_n(z) \le \sum_{n=0}^{\infty} |a_n(z)|$ converges uniformly on bounded and closed sub-regions of D.

6.5.2 ?

Let f_n , f be analytic functions on the unit disk ${\mathbb D}$. Show that the following are equivalent.

- (i) $f_n(z)$ converges to f(z) uniformly on compact subsets in \mathbb{D} .
- (ii) $\int_{|z|=r} |f_n(z) f(z)| \ dz|\ converges to 0 if $0< r<1$.$

6.5.3 ?

Let \$f\$ and \$g\$ be non-zero analytic functions on a region Ω . Assume |f(z)| = |g(z)| for all \$z\$ in Ω . Show that $f(z) = e^{i \cdot g(z)}$ in Ω some Ω \leq \theta < 2 \pi\$.

6.5.4 ?

Suppose f is analytic in an open set containing the unit disc \mathbb{D} and |f(z)| =1 when |z|=1. Show that either

6.5.5 ?

- (1) Let p(z) be a polynomial, R>0 any positive number, and $m \neq 1$ an integer. Let $M_R = \sup \{ |z^{m} p(z) 1|: |z| = R \}$. Show that $M_R>1$.
- (2) Let $m \neq 1$ be an integer and $K = \{z \in \mathbb{R} : r \neq |z| \leq R \}$ where r< R. Show (i) using (1) as well as, (ii) without using (1) that there exists a positive number $\alpha = 0$ 0 such that for each polynomial p(z), $p(z) = z^{-m}|: z \in K \}$

6.5.6 ?

Let $\frac{1}{z^2 -1}$. Find all the Laurent series of f and describe the largest annuli in which these series are valid.

6.5.7 ?

Suppose f is entire and there exist A, R > 0 and natural number N such that $|f(z)| \leq A |z|^N$ for $|z| \leq R$. Show that (i) f is a polynomial and (ii) the degree of f is at most N.

6.5.8 ?

Suppose f is entire and there exist A, R > 0 and natural number N such that $|f(z)| \neq A |z|^N$ for $|z| \neq R$. Show that (i) f is a polynomial and (ii) the degree of f is at least N.

6.5.9 ?

- (1) Explicitly write down an example of a non-zero analytic function in |z|<1 which has infinitely zeros in |z|<1.
- (2) Why does not the phenomenon in (1) contradict the uniqueness theorem?

6.5.10 ?

- (1) Assume u is harmonic on open set 0 and z_n is a sequence in 0 such that $u(z_n) = 0$ and $\lim z_n \in 0$. Prove or disprove that u is identically zero. What if 0 is a region?
- (2) Assume \$u\$ is harmonic on open set \$0\$ and \$u(z) = 0\$ on a disc in \$0\$. Prove or disprove that \$u\$ is identically zero. What if \$0\$ is a region?
- (3) Formulate and prove a Schwarz reflection principle for harmonic functions
- > cf. Theorem 5.6 on p.60 of Stein et al.
- > Hint: Verify the mean value property for your new function obtained by Schwarz reflection principle.

6.5.11 ?

Let \$f\$ be holomorphic in a neighborhood of $D_r(z_0)$. Show that for any \$s<r\$, there exists a constant \$c>0\$ such that \$\$||f||_{(\infty, s)} \leq ||f||_{(1, r)},\$\$ where \$\displaystyle ||f||_{(\infty, s)} = \text{sup}_{z \in D_r(z_0)}||f(z)|\$ and \$\$\displaystyle ||f||_{(1, r)} = \int_{D_r(z_0)} ||f(z)||dx dy\$.

> Note: Exercise 3.8.20 on p.107 in Stein et al is a straightforward consequence of this stronger result using the integral form of the Cauchy-Schwarz inequality in real analysis.

6.5.12 ?

- (1) Let f be analytic in $\Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<r$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|< 0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles $a_n \in \Omega: 0<|z-a|<0<|$ except at a sequence of poles a
- (2) Explain the similarity and difference between the above assertion and the Weierstrass-Casorati theorem.

6.5.13 ?

Compute the following integrals.

```
$a \in \mathbb R$ (iii)
\displaystyle \frac{0^\pi }{a + \sin \theta} \  \  d \theta
$a>1$
(iv) $\displaystyle \int_0^{\frac{\pii}{2}}
\frac{d \theta}{a+ \sin^2 \theta}, $ a >0$. (v)
\displaystyle \int_{\{|z|=2\} } (z^{5} -1) (z-3) \ \ dz
\displaystyle \int_{-\infty}^{\int x \cdot pi a} (\sin \pi x + \cos \pi a) e^{-i x \cdot xi} \
$0< a <1$, $\xi \in \mathbb R$ (vi)</pre>
\star = 1 \cdot z = 1 \cdot z \cdot z \cdot dz
6.5.14 ?
Compute the following integrals.
(i) $\displaystyle \int_0^\infty \frac{\sin x}{x} \, dx$ (ii)
\star \left( \frac{x}{x} \right)^2 \ dx \ (iii)
\displaystyle \int_0^{x^{a-1}}{(1 + x)^2} \, dx
$0< a < 2$
\(i\)
```

 $\displaystyle \int_0^{\infty} \frac{x^2} dx$ \$a, b >0\$ (ii) $\displaystyle \int_0^{x^{a-1}}{1 + x^n} \ dx$ 0< a < n

 $\(iii\) \$ int_0^\infty \frac{\log x}{1 + x^n} \, dx\$, \$n \geq 2\$ (iv) $\displaystyle \int_0^{\infty} \frac{x}{(1 + x^2)^2} dx$ \$a \in \mathbb C\$

6.5.15 ?

Let \$0<r<1\$. Show that polynomials $P_n(z) = 1 + 2z + 3z^2 + cdots + nz^{n-1}$ have no zeros in \$|z|<r\$ for all sufficiently large \$n\$'s.</pre>

6.5.16 ?

Let \$f\$ be an analytic function on a region \$\Omega\$. Show that \$f\$ is a constant if there is a simple closed curve \$\gamma\$ in \$\Omega\$ such that its image \$f(\gamma)\$ is contained in the real axis.

6.5.17 ?

(1) Show that $\displaystyle \frac{\pi^2}{\sin^2 \pi^2}$ and

 $\ g(z) = \sum_{n = -\inf y}^{ \inf y} \frac{1}{(z-n)^2}$ have the same principal part at each integer point.

(2) Show that

6.5.18 ?

Let f(z) be an analytic function on ${\mathbb C} \$ backslash $\{z_0 \}$, where z_0 is a fixed point. Assume that f(z) is bijective from ${\mathbb C} \$ backslash $\{z_0 \}$ onto its image, and that f(z) is bounded outside $D_r(z_0)$, where r is some fixed positive number. Show that there exist a, b, c, $d \in \mathbb C$ with $a-bc \neq 0$, a heq a such that a be heq a.

6.5.19 ?

Assume f(z) is analytic in ${\mathbb D}: |z|<1$ and f(0)=0 and is not a rotation (i.e. $f(z) \neq e^{i \cdot z}$). Show that $\frac{n=1}^{i} f(z)$ converges uniformly to an analytic function on compact subsets of $\frac{n+1}{z} = f(f^n(z))$.

6.5.20 ?

Let \$f\$ be a non-constant analytic function on \$\mathbb D\$ with \$f(\mathbb D) \subseteq \mathbb D\$. Use \$\psi_{a} (f(z))\$ (where \$a=f(0)\$, \$\displaystyle \psi_a(z) = \frac{a - z}{1 - \bar{a}z}\$) to prove that \$\displaystyle \frac{|f(0)| - |z|}{1 + |f(0)||z|} \leq |f(z)| \leq \frac{|f(0)| + |z|}{1 - |f(0)||z|}\$.

6.5.21 ?

Find a conformal map

- 1. from $\{z: |z 1/2| > 1/2, \text{Re}\{z\} > 0 \}$ to $\{\text{mathbb H}\}$
- 2. from $\{z: |z 1/2| > 1/2, |z| < 1 \}$ to ∞D
- 3. from the intersection of the disk $|z + i| < \sqrt{2}$ with ${\mathbb B}$ to ${\mathbb D}$.

- 4. from \${\mathbb D} \backslash [a, 1)\$ to
 \${\mathbb D} \backslash [0, 1)\$ (\$0<a<1)\$. \[Short solution
 possible using Blaschke factor\]</pre>
- 5. from $\{z: |z| < 1, \text{Re}(z) > 0 \}$ backslash (0, 1/2]\$ to $\$ wathbb $\{z: |z| < 1, \text{Re}(z) > 0 \}$

6.5.22 ?

Let C and C be two circles and let $z_1 \in C$, $z_2 \in C$, $z_1 \in C$, $z_1 \in C$. Show that there is a unique fractional linear transformation f with f(C) = C and $f(z_1) = z_1$, $f(z_2) = z_2$.

6.5.23 ?

Assume $f_n \in H(\Omega)$ is a sequence of holomorphic functions on the region Ω that are uniformly bounded on compact subsets and $f \in H(\Omega)$ is such that the set $\Omega \in \Omega$ in $\Omega \in \Pi$ normal $\Gamma \in \Pi$ normal point in $\Omega \in \Pi$ so that $\Gamma \in \Pi$ converges to Γ uniformly on compact subsets of $\Omega \in \Pi$.

6.5.24 ?

Let

- $\displaystyle \frac{1}{\pi}\int_{\infty} \frac{1}{\pi}\int_{\infty}$

6.5.25 ?

Prove that

 $\del{z}\left(z\right)$ is a conformal map from half disc $\z=x+iy:\ |z|<1,\ y>0$ to upper half plane $\del{z=x+iy:\ y>0}$.

6.5.26 ?

Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing a bounded region U anticlockwise. Let $f: \Omega \times \Omega$ to $\Delta \times \Omega$ be a holomorphic function and $f(z) \Omega \times \Omega$. Prove that

 $f(z) \leq M$ for all $z\in U$.

6.5.27 ?

```
Compute the following integrals. (i) \int_0^{\infty} \int_0^{\infty} \int_0^{\infty} \int_0^{\infty} dx^{a-1}}{1 + x^n} \ dx^{0< a < n} (ii) $\displaystyle \int_0^{\infty} \int_0^{\infty} dx^{1+x^2}^2 \ dx^{0}
```

6.5.28 ?

```
Let 0<r<1$. Show that polynomials p_n(z) = 1 + 2z + 3z^2 + \cdot 2 + 1$ have no zeros in |z|<r$ for all sufficiently large n$'s.
```

6.5.29 ?

Let \$f\$ be holomorphic in a neighborhood of $D_r(z_0)$. Show that for any \$s<r\$, there exists a constant \$c>0\$ such that \$\$\|f\|_{(\infty, s)} \leq c \|f\|_{(1, r)},\$\$ where \$\displaystyle \|f\|_{(\infty, s)} = \text{sup}_{z \in D_s(z_0)}\|f(z)\|\$ and \$\displaystyle \|f\|_{(1, r)} = \int_{D_r(z_0)} \|f(z)\| dx dy\$.

6.5.30 ?

Let $\displaystyle \left\{ \sum_{\alpha = z}{1-\bar{z}}\right\}$ with $\displaystyle \left\{ \sum_{z \leq z} 1-\sum_{z \leq z} 1-\sum_{z \leq z} \right\}$

- $\displaystyle \frac{1}{\pi}\int_{\infty} \frac{1}{\pi}\int_{\infty}$
- $\displaystyle \frac{1}{\pi^2} \int \frac{1}{1-|\alpha^2} \$ \log \frac{1}{1-|\alpha|^2}{.

Prove that $\displaystyle \frac{1}{z}\left(z+\frac{1}{z}\right)$ is a conformal map from half disc $\left(z=x+iy:\ |z|<1,\ y>0\right)$ to upper half plane $\mbox{ mathbb } H=\left(z=x+iy:\ y>0\right)$.

6.5.31 ?

Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing a bounded region U anticlockwise. Let $f: \Omega \times \Omega \times \Omega$ be a holomorphic function and $f(z) \cap \Omega \times \Omega \times \Omega$. Prove that $f(z) \cap \Omega \times \Omega \times \Omega$ for all $z \in \Omega$.

6.5.32 ?

Compute the following integrals. (i) $\star \sin^2 x^{a-1}$ + x^n \, dx\$, \$0< a < n\$ (ii) $\star \sin^2 x$ \\ int_0^\infty \\ frac{\log x}{(1 + x^2)^2}\, dx\$

6.5.33 ?

Let 0<r<1. Show that polynomials $p_n(z) = 1 + 2z + 3z^2 + \cdot z^{n-1}$ have no zeros in |z|<r for all sufficiently large n.

6.5.34 ?

Let \$f\$ be holomorphic in a neighborhood of $D_r(z_0)$. Show that for any s<r, there exists a constant c>0 such that $|f|_{(\inf y, s)} \leq |f|_{(1, r)},$ where $|f|_{(\inf y, s)} = \cot \sup_{z \in D_r(z_0)} |f(z)|$ and $|f|_{(1, r)} = \int_{(D_r(z_0))} |f(z)| dx dy$.

6.6 Fall 2016

6.6.1 ?

Let u(x,y) be harmonic and have continuous partial derivatives of order three in an open disc of radius R>0.

- (a) Let two points (a,b), (x,y) in this disk be given. Show that the following integral is independent of the path in this disk joining these points:
- $\sv(x,y) = \int_{a,b}^{x,y} (-\int_{\alpha u}^{y} x) .$
- (b) \hfill
- (i) Prove that u(x,y)+iv(x,y) is an analytic function in this disc.
 - (ii) Prove that v(x,y) is harmonic in this disc.

6.6.2 ?

(a) f(z)=u(x,y)+i v(x,y) be analytic in a domain $D\subset \mathbb{C}$. Let $z_0=(x_0,y_0)$ be a point in $D\subset \mathbb{C}$ which is in the intersection of the curves $u(x,y)=c_1$ and $v(x,y)=c_2$, where c_1 and c_2 are constants. Suppose that $f'(z_0)\neq 0$. Prove that the lines tangent to these curves at z_0 are perpendicular.

- (b) Let $f(z)=z^2$ be defined in ${\mathbb C}$.
 - (i) Describe the
 level curves of \$\mbox{\textrm Re}{(f)}\$ and of \$\mbox{Im}{(f)}\$.

6.6.3 ?

- (a) \$f: D\rightarrow {\mathbb C}\$ be a continuous function, where \$D\subset {\mathbb C}\$ is a domain.Let \$\alpha:[a,b]\rightarrow D\$ be a smooth curve. Give a precise definition of the *complex line integral* \$\$\int_{\alpha} f.\$\$
- (b) Assume that there exists a constant \$M\$ such that
 \$|f(\tau)|\leq M\$ for all \$\tau\in \mbox{\textrm Image}(\alpha\$). Prove
 that
 \$\$\big | \int_{\alpha} f \big |\leq M \times \mbox{\textrm length}(\alpha).\$\$
- (c) Let C_R be the circle |z|=R, described in the counterclockwise direction, where R>1. Provide an upper bound for $\int_{C_R} \frac{C_R} \sqrt{(z)} {z^2} | \$ which depends [only] (underline) on R and other constants.

6.6.4 ?

- (a) Let Let $f:{\mathbb C}\to C}\to \mathbb C$ be an entire function. Assume the existence of a non-negative integer m, and of positive constants L and R, such that for all z with |z|>R the inequality ||z| \leq L |z|^m\$ holds. Prove that f is a polynomial of degree ||z|
- (b) Let \$f:{\mathbb C}\rightarrow {\mathbb C}\$ be an entire
 function. Suppose that there exists a real number M such that for
 all \$z\in {\mathbb C}\$ \$\$\mbox{\textrm Re} (f) \leq M.\$\$ Prove that \$f\$
 must be a constant.

6.6.5 ?

Prove that all the roots of the complex polynomial $\$z^7 - 5z^3 + 12 = 0$ \$ lie between the circles |z| = 1\$ and |z| = 2\$.

6.6.6 ?

(a) Let \$F\$ be an analytic function inside and on a simple closed curve \$C\$, except for a pole of order \$m\geq 1\$ at \$z=a\$ inside \$C\$.

Prove that

(b) Evaluate $\frac{C}\frac{e^{\tau_2+\pi^2}}{(\tau_2+\pi^2)^2}d\tau_3$ where \$C\$ is the circle |z|=4\$.

6.6.7 ?

Find the conformal map that takes the upper half-plane comformally onto the half-strip $\{ w=x+iy: -\pi/2< x<\pi/2 \ y>0 \}$.

6.6.8 ?

Compute the integral $\displaystyle{\int_{-\infty}^{\int_{-\infty}^{\infty}} \frac{e^{-2\pi ix}}{(\cos \pi z)^{-2}}}.$ where $\displaystyle{\cosh z=\frac{e^{z}+e^{-z}}{2}}.$