A Version of Lie's Second Theorem for Categories

Matthew Burke

Category Theory Seminar, Cambridge University 2015-11-17

Main Idea

Explain how to formulate and prove Lie's second theorem for categories.

Describe how these constructions naturally generalise classical Lie theory.

Summary

- 1. Formal Group Laws and Classical Multi-object Lie Theory
- 2. Synthetic Differential Geometry and the Jet Part

- 3. The Path and Weinstein Categories
- 4. Connectedness and Lie's Second Theorem

Formal Group Laws

Definition

A formal group law F of dimension n is an n-tuple $(F_1, ..., F_n)$ of power series in the indeterminates $X_1, ..., X_n, Y_1, ..., Y_n$ such that

$$F(0, \vec{Y}) = \vec{Y}$$
 , $F(\vec{X}, 0) = \vec{X}$ and $F(F(\vec{X}, \vec{Y}), \vec{Z}) = F(\vec{X}, F(\vec{Y}, \vec{Z}))$

Example

Given a Lie group (G, μ, e) choose a trivialisation $U \ni e$ and $g, h \in U$ such that $\mu(g, h) \in U$. If $g = \vec{X}$ and $h = \vec{Y}$ in the local coordinates then $\mu(\vec{X}, \vec{Y})$ is a formal group law in \vec{X} and \vec{Y} .

$$LieAlg \simeq FGLaw \perp LieGp$$

The adjunction $(-)_{int} \dashv (-)_{\infty}$ is an equivalence.

Multi-object Lie Theory

Definition

A *Lie groupoid* is a groupoid in *Man* such that the source and target maps are submersions.

Definition

A *Lie algebroid* is a vector bundle $A \to M$ in *Man* together with a bundle homomorphism $\rho: A \to TM$ such that the space of sections $\Gamma(A)$ is a Lie algebra satisfying $(\forall X, Y \in \Gamma(A))(\forall f \in C^{\infty}(M))$:

$$[X, fY] = \rho(X)(f) \cdot Y + f[X, Y]$$

The functor $(-)_{\infty}$ is full and faithful but not essentially surjective.

Relevant Features of Synthetic Differential Geometry

In synthetic differential geometry, we work in a topos ${\mathcal E}$ such that:-

- ▶ There is a full and faithful embedding $Man \stackrel{\iota}{\to} \mathcal{E}$.
- ▶ There is a ring $R = \iota(\mathbb{R}) \in \mathcal{E}$.
- ▶ The object $D_k = \{x \in R : x^{k+1} = 0\}$ is not terminal, in fact the Kock-Lawvere axiom holds:

$$R^{k+1} \rightarrow R^{D_k}$$

 $(a_0, a_1, ..., a_k) \mapsto (d \mapsto a_0 + a_1 d + ... + a_k d^k)$

is an isomorphism.

Definition

We write *SpecWeil* for the set of infinitesimal objects of the form:

$$\{(x_1,...,x_n): \bigwedge_{i=1}^n (x_i^{k_i}=0) \land \bigwedge_{j=1}^m (p_j=0)\}$$

for $n,m\in\mathbb{N}_{\geq 0}$, $k_i\in\mathbb{N}_{>0}$ and p_j are polynomials in the x_i .

The Jet Part of a Category

Definition

Let B be an object of \mathcal{E}/M . Let $a,b\in B$. Then we say that b is 'a jet away' from a iff

$$a \approx b \iff \bigvee_{D \in SpecWeil} \exists \phi \in B^D. \ \exists d \in D. \ (\phi(0) = a) \land (\phi(d) = b)$$

Theorem

Let $\mathbb{C} = (C, M, s, t, e, \mu)$ be a category in \mathcal{E} . Then the jet part \mathbb{C}_{∞} of \mathbb{C} has arrow space defined by

$$C_{\infty} = \{c \in (s : C \to M) : esc \approx c\}$$

Proposition

The category $\mathsf{Cat}_\infty(\mathcal{E})$ of all categories in \mathcal{E} is coreflective in $\mathsf{Cat}(\mathcal{E})$ and for all $\mathbb{C}, \mathbb{D} \in \mathsf{Cat}(\mathcal{E})$ the arrow $(\iota_\mathbb{C}^\infty)^{\mathbb{D}_\infty} : \mathbb{C}_\infty^{\mathbb{D}_\infty} \to \mathbb{C}^{\mathbb{D}_\infty}$ is an isomorphism.

The Path and Weinstein Categories

Definition

The category ${\mathbb I}$ has underlying reflexive graph

$$\{(x,y)\in I^2:x\leq y)\}\stackrel{\pi_2}{\leftarrow \Delta \xrightarrow[\pi_1]{}}I$$

and the only possible composition. The category $\partial \mathbb{I}^2$ is the full subcategory of \mathbb{I}^2 on the boundary of I^2 .

Definition

Let $\mathbb C$ be a category in $\mathcal E$. Then

- lacksquare A path in $\mathbb C$ is a functor $\mathbb I o \mathbb C$
- lacksquare A jet path in $\mathbb C$ is a functor $\mathbb I_\infty o \mathbb C$

In fact there are the following endofunctors and natural transformations on $Cat(\mathcal{E})$

$$W \stackrel{V}{\longleftarrow} P \stackrel{L}{\Longrightarrow} 1_{Cat(\mathcal{E})}$$

where

- ▶ the category $P\mathbb{C}$ is the category of paths in \mathbb{C} 'up to homotopy'
- ▶ the category $W\mathbb{C}$ is the category of jet paths in \mathbb{C} 'up to homotopy'
- ▶ the natural transformation *V* is induced by the inclusion

$$\iota_{\mathbb{I}}^{\infty}:\mathbb{I}_{\infty}\rightarrowtail\mathbb{I}$$

▶ the natural transformation *L* is induced by the inclusion

$$(0,1):\mathbf{2}\to\mathbb{I}$$

Integral Complete Categories

Definition

A category $\mathbb C$ in $\mathcal E$ is integral complete iff the following arrow is an isomorphism

$$\mathbb{C}^{\mathbb{I}} \xrightarrow{\mathbb{C}^{\iota_{\mathbb{C}}^{\infty}}} \mathbb{C}^{\mathbb{I}_{\infty}}$$

Proposition

If $\mathbb C$ is integral complete then $V_{\mathbb C}$ is an isomorphism.

Proposition

The category $Cat_{int}(\mathcal{E})$ of integral complete categories is a reflective subcategory of $Cat(\mathcal{E})$.

$$Cat_{\infty}(\mathcal{E}) \xrightarrow{\bot} Cat(\mathcal{E}) \xrightarrow{\bot} Cat_{int}(\mathcal{E})$$

Connectedness of Categories

Definition

Let $\mathbb C$ be a category in $\mathcal E$. Then $\mathbb C$ is path connected iff the following arrow is an epimorphism:

$$\mathbb{C}^{\mathbb{I}} \xrightarrow{\mathbb{C}^{(0,1)}} \mathbb{C}^2$$

and $\mathbb C$ is simply connected iff it is path connected and the following arrow is an epimorphism:

$$\mathbb{C}^{\mathbb{I}^2} \xrightarrow{\mathbb{C}^\iota} \mathbb{C}^{\partial \mathbb{I}^2}$$

Lemma

If $\mathbb C$ is path connected then $L_{\mathbb C}$ is an epimorphism. If $\mathbb C$ is simply connected then $L_{\mathbb C}$ is an isomorphism.

Lie's Second Theorem

Theorem

For all $\phi: \mathbb{C}_{\infty} \to \mathbb{X}$ there exists a unique lift ψ making

commute.

