年 月 日 第 次作业	
Gradient Descent & Newton's Method	Guornishen guornio outlook.com
$f(x_{k+1}) \approx f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k)$	May 3,2020
Let $X_{k+1} - X_k = \frac{1}{2} \nabla f(X_k)$, then we have $f(X_k) \approx f(X_k) - \frac{1}{2} \nabla f(X_k)^{\frac{1}{2}} \nabla f(X_k) \leqslant f(X_k)$	
ewton's Method: F(KKH) & F(KK) + VF(KK) (KKHI - KK) + 1	-
$f(x_k + \lambda \cdot v) = f(x_k) + \lambda \cdot \nabla f(x_k)^7 v + \frac{1}{2} \lambda^2 v^7 \nabla f(x_k) v$	
Therefore, $\frac{\partial f(x_k + \lambda v)}{\partial v} = \lambda \nabla f(x_k) + \lambda^2 \nabla^2 f(x_k) v$	=0
=> v*=- 1/2 [\(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \)	
≥ [6, +2)*) ~ f(r.) A P(x) 7 FD2 (h.) 7-1 D f(x) 1	1 pre 17 62 6 7 1 ~

$$\Rightarrow f(x_k) + 2y^*) \approx f(x_k) + \frac{1}{2} \nabla f(x_k)^{-1} \nabla f(x_$$