MEGR 3122 Dynamic Systems II: Formula Sheet

1st Order Differential Equations:

Homogeneous $\dot{x} + ax = 0$, $x(t_0) = x_0$

$$\implies x(t) = x_0 e^{-at}$$

Time Constant $\tau = 1/a$

$$x(\tau) \approx 0.368x_0, \quad x(2\tau) \approx 0.135x_0$$

 $x(3\tau) \approx 0.050x_0, \quad x(4\tau) \approx 0.018x_0$

Inhomogeneous $\dot{x} + ax = g$, $x(t_0) = x_0$

$$\implies x(t) = e^{-at} \int e^{at} g dt + Ce^{-at}$$

2nd Order Differential Equations:

Homogeneous $\ddot{x} + a\dot{x} + bx = 0$, $x(t_0) = x_0$, $\dot{x}(t_0) = \dot{x}_0$

Characteristic Equation $\lambda^2 + a\lambda + b = 0$

Case I: $a^2 - 4b > 0$ (real, distinct eigenvalues)

$$x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

Case II: $a^2 - 4b = 0$ (repeated eigenvalues)

$$x(t) = C_1 e^{-at/2} + C_2 t e^{-at/2}$$

Case III: $a^2-4b < 0$ (complex conjugate eigenvalues)

$$x(t) = e^{-at/2} (A\cos\omega t + B\sin\omega t)$$

Complex Numbers:

Imaginary number $i = \sqrt{-1}$

Modulus $r = |z| = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$

Argument $\theta = \arg(z) = \tan(\operatorname{Im}(z)/\operatorname{Re}(z))$

Euler's Formula $e^{i\theta} = \cos\theta + i\sin\theta$

Properties

For
$$z = (x + iy)$$
 and $w = (u + iv)$

$$\bar{z} = x - iy$$

$$z \cdot w = (xu - yv) + i(xv + yu)$$

$$|z| = z \cdot \bar{z}$$

$$\frac{z}{w} = \frac{z}{w} \left(\frac{\bar{w}}{z\bar{v}}\right)$$

For
$$z_1=r_1e^{i\theta_1},\,z_2=r_2e^{i\theta_2}$$

$$\bar{z}=re^{-i\theta}$$

$$z_1\cdot z_2=r_1r_2e^{i(\theta_1+\theta_2)}$$

$$z_1/z_2=r_1r_2e^{i(\theta_1-\theta_2)}$$

Laplace Transform:

Definition

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st}dt$$

Properties

$$\begin{split} \mathcal{L}[\alpha f(t)] &= \alpha \mathcal{L}[f(t)] \quad \text{(scalar multiplication)} \\ \mathcal{L}[f(t) + g(t)] &= \mathcal{L}[f(t)] + \mathcal{L}[g(t)] \quad \text{(addition)} \\ \mathcal{L}[f(t - \alpha)H(t - \alpha)] &= e^{-s\alpha}F(s) \quad \text{(translated function)} \\ &\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s) \quad \text{(initial value)} \\ &\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) \quad \text{(final value)} \\ \mathcal{L}[\dot{f}(t)] &= sF(s) - f(0) \quad \text{(differentation)} \\ \mathcal{L}[\ddot{f}(t)] &= s^2F(s) - sf(0) - \dot{f}(0) \end{split}$$

Table of Common Laplace Transforms

Table of Common Laplace Transforms		
Row	f(t)	F(s)
1	Unit impulse, $\delta(t)$	1
2	Unit step/Heaviside, $H(t)$	$\frac{1}{s}$
3	Ramp, t	$\frac{1}{s^2}$
4	$\frac{t^{n-1}}{(n-1)!}$, $n = 1, 2, 3, \dots$	$\frac{\frac{1}{s}}{\frac{1}{s^2}}$ $\frac{1}{s^n}$
5	$t^n, \qquad n = 1, 2, 3, \dots$	$\frac{n!}{s^{n+1}}$
6	e^{-at}	$\frac{1}{(s+a)}$
7	te^{-at}	$\frac{1}{(s+a)^2}$
8	$\frac{t^{n-1}}{(n-1)!} e^{-at}, n = 1, 2, 3, \dots$	$\frac{1}{(s+a)^n}$
9	$\int t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
10	$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
11	$\cos(\omega t)$	$\frac{\frac{s}{s^2 + \omega^2}}{\omega}$
12	$\sinh(\omega t)$	$\frac{\omega}{s^2-\omega^2}$
13	$\cosh(\omega t)$	$\frac{\frac{\omega}{s^2 - \omega^2}}{\frac{s}{s^2 - \omega^2}}$
14	$\frac{1}{a}(1 - e^{-at})$	$\frac{1}{s(s+a)}$
15	$\frac{1}{b-a}(e^{-at} - e^{-bt})$ $\frac{1}{b-a}(be^{-bt} - ae^{-at})$	$\frac{1}{(s+a)(s+b)}$
16	$\frac{1}{b-a}(be^{-bt} - ae^{-at})$	$\frac{s}{(s+a)(s+b)}$
17	$\frac{1}{ab} \left(1 + \frac{1}{a-b} \left(be^{-bt} - ae^{-at} \right) \right)$	$\frac{1}{s(s+a)(s+b)}$
18	$\frac{1}{a^2} \left(1 - e^{-at} - ate^{-at} \right)$	$\frac{1}{s(s+a)^2}$
19	$\frac{1}{a^2} \left(at - 1 + e^{-at} \right)$	$\frac{1}{s^2(s+a)}$
20	$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2 + \omega^2}$ $s+a$
21	$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$
22	$\frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta\omega_n t} \sin(\omega_n \sqrt{1-\zeta^2 t})$	$\frac{s+a}{(s+a)^2+\omega^2}$

Inverse Laplace Transform

$$F(s) = \mathcal{L}(f(t)) \implies f(t) = \mathcal{L}^{-1}[F(s)]$$

Partial Fraction Expansion:

Polynomial form

$$F(s) = \frac{Q(s)}{R(s)} = \frac{d_m s^m + d_{m-1} s^{m-1} + \dots + d_1 s + d_0}{c_n s^n + c_{n-1} s^{n-1} + \dots + c_1 s + c_0}$$

Zero-pole-gain form

$$F(s) = \frac{A(s)}{B(s)} = \frac{k(s-z_1)(s-z_1)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)} ,$$

PF Form: Case I (Distinct, Real Poles)

$$F(s) = \frac{A(s)}{B(s)} = \frac{a_1}{s - p_1} + \dots + \frac{a_k}{s - p_k} + \dots + \frac{a_n}{s - p_n} ,$$

with coefficients solved by

$$a_k = \frac{A(s)(s - p_k)}{B(s)} \bigg|_{s = p_k}$$

PF Form: Case II (Repeated Real Poles).

$$F(s) = \frac{A(s)}{(s-p)^n} = \frac{a_1}{(s-p)} + \dots + \frac{a_k}{(s-p)^k} + \dots + \frac{a_n}{(s-p)^n}$$

with coefficients by multiplying by $(s-p)^n$

$$F(s)(s-p)^{n} = a_{1}(s-p)^{n-1} + \dots + a_{k}(s-p)^{n-k} + \dots + a_{n}$$

equating coefficients, and solving the system of equations.

PF Form: Case III (Complex Poles). $p_{1,2} = -\alpha \pm i\omega$

$$F(s) = a_1 \frac{\omega}{(s+\alpha)^2 + \omega^2} + a_2 \frac{(s+\alpha)}{(s+\alpha)^2 + \omega^2}$$

with coefficients solved by writing

$$F(s) = \frac{A(s)}{B(s)} = \frac{a_1\omega + a_2(s+\alpha)}{(s+\alpha)^2 + \omega^2}$$

equating coefficients of numertor above and solving the system of equations.

2nd Order System (Damped Harmonic Oscillator):

$$\ddot{x} + \underbrace{\left(\frac{b}{m}\right)}_{=2\zeta\omega_n} \dot{x} + \underbrace{\left(\frac{k}{m}\right)}_{=\omega_n^2} x = 0$$

$$\implies \ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = 0$$

Damping ratio: $\zeta = b/(2\sqrt{km}) \ge 0$

- Case $\zeta > 1$ overdamped.
- Case $\zeta = 1$ critically damped.
- Case $0 < \zeta < 1$ underdamped.
- Case $\zeta = 0$ undamped.

Natural frequency $\omega_n = \sqrt{k/m}$ (rad/s)

Damped natural frequency $\omega_d = \omega_n \sqrt{1 - \zeta^2}$

Poles $p_{1,2} = -\zeta \omega_n \pm \omega_d i$

Misc

$$T = \frac{2\pi}{\omega}$$
 (seconds)