Modelling Geometric Objects with ISO 15926

Geiza Hamazaki Bruno Lopes

Departamento de Informática Aplicada Universidade Federal do Estado do Rio de Janeiro

Instituto Tecgraf de Desenvolvimento de Software Técnico-Científico Pontifícia Universidade Católica do Rio de Janeiro

> Departamento de Informática Pontifícia Universidade Católica do Rio de Janeiro

> > September 2014

Actual problems Oil and Gas Industry

- Scenarios are replaced in 3-4 years
- Projects lifecycle last more then 10 years

- Different project tools
- High-cost migration

Actual problems Oil and Gas Industry

- Scenarios are replaced in 3-4 years
- Projects lifecycle last more then 10 years

Owner, Manufactures, Engineering Contractors and Operators may use different Platforms

- Different project tools
- High-cost migration

Actual problems Oil and Gas Industry

- Scenarios are replaced in 3-4 years
- Projects lifecycle last more then 10 years

Owner, Manufactures, Engineering Contractors and Operators may use different Platforms

- Different project tools
- High-cost migration

US\$15.8 billions for interoperability costs

ISO15926 - Industrial automation systems and integration—Integration of life-cycle data for process plants including oil and gas production facilities

Why use ISO 15926?

- Life-cicle description
- Flexibility and Extensibility
- Information context
- Validation

Data over Project Life Cycle (modified from Pawsey, 2012)

Part 1: Overview and fundamental principles

- Part 1: Overview and fundamental principles
- Part 2: DataModel, it that represent information common to users and process plants. In Natural Language: Grammar

- Part 1: Overview and fundamental principles
- Part 2: DataModel, it that represent information common to users and process plants. In Natural Language: Grammar
- Part 3: Geometry and topology

- Part 1: Overview and fundamental principles
- Part 2: DataModel, it that represent information common to users and process plants. In Natural Language: Grammar
- Part 3: Geometry and topology
- Part 4: Reference Data Library (RDL). In Natural Language: The dictionary

- Part 1: Overview and fundamental principles
- Part 2: DataModel, it that represent information common to users and process plants. In Natural Language: Grammar
- Part 3: Geometry and topology
- Part 4: Reference Data Library (RDL). In Natural Language: The dictionary
- Part 7: Templates. In Natural Language: It is equivalent to a phrase book

- Part 8: OWL implementation of the Templates. In Natural Language: It is like paper in a book, or a computer file

- Part 8: OWL implementation of the Templates. In Natural Language: It is like paper in a book, or a computer file
- Part 9: Implementation standards, with the focus on Façades, standard web servers, web services, and security

- Part 8: OWL implementation of the Templates. In Natural Language: It is like paper in a book, or a computer file
- Part 9: Implementation standards, with the focus on Façades, standard web servers, web services, and security
- Part 10: Formally named Implementation Methods for the Integration of Distributed Systems: Abstract Test Methods (draft)

- Part 8: OWL implementation of the Templates. In Natural Language: It is like paper in a book, or a computer file
- Part 9: Implementation standards, with the focus on Façades, standard web servers, web services, and security
- Part 10: Formally named Implementation Methods for the Integration of Distributed Systems: Abstract Test Methods (draft)
- Part 11: Industrial Usage Guidelines

Defining objects

Template methodology

Complex objects must be defined as templates.

Defining objects

Template methodology

Complex objects must be defined as templates.

Part 3

A huge library of **basic** geometric terms.

Identifying Part 3 elements

Circle definition in Part 3

An object is a **circle** if and only if: 1-it is **curve**; 2-it lies in a **plane**; 3- there is a centre point that is equi-distant from each point in the curve.

NOTE 2 A circle has the geometric properties: radius; center and plane. These properties can be given for a circle by a axial_reference_placement and a radius. A circle has two alternative values for the axial_reference_placement corresponding to opposite directions for the normal.

Identifying classes

Which templates are necessary?

Identifying classes

Which templates are necessary?

Modeling process steps

Definition of the signature, that describes the elements that compound the relationship;

Signature

Order	Rule	Туре
1	hasProperty	Property
2	valPropertyValue	ExpressReal
3	hasScale	Scale

Modeling process steps

Definition of Axioms/Sentences in First Order Logic (FOL), that describes the semantics through the relations between the elements presented in the signature.

Axiom

```
RealMagnitudeOfProperty(x_1, x_2, x_3) \leftrightarrow property(x_1) \land ExpressReal(x_2) \land scale(x_3) \land \exists u \text{ (MagnitudeOfProperty}(x_1, u, x_3) \land IdentificationByNumber(x_2, u))
```


RealMagnitudeOfProperty

The template **RealMagnitudeOfProperty** is used to connect a concept classified as a **property** with a numeric value and a **scale**.

Order	Rule	Type
1	hasProperty	Property
3	valPropertyValue hasScale	ExpressReal Scale

RealMagnitudeOfProperty

The template **RealMagnitudeOfProperty** is used to connect a concept classified as a **property** with a numeric value and a **scale**.

Signature

Order	Rule	Type
1	hasProperty	Property
2	valPropertyValue	Property ExpressReal
3	hasScale	Scale

RealMagnitudeOfProperty

The template **RealMagnitudeOfProperty** is used to connect a concept classified as a **property** with a numeric value and a **scale**.

Signature

Order	Rule	Туре
1	hasProperty	Property
2	valPropertyValue hasScale	Property ExpressReal
3	hasScale	Scale

Axiom

RealMagnitudeOfProperty(
$$x_1, x_2, x_3$$
) \leftrightarrow property(x_1) \land ExpressReal(x_2) \land scale(x_3) \land $\exists u \text{ (MagnitudeOfProperty}(x_1, u, x_3) \land$ IdentificationByNumber(x_2, u))

0,0

3,0

GeometryRadiusTemplate

Order	Rule	Туре
1	hasPossessor	ObjectWithRadius
2	hasRadius	RealNumber
3	hasLowerBound	RealNumber
4	hasUpperBound	RealNumber


```
RadiusTemplate(x, y, z, w) \leftrightarrow
ObjectWithRadius(x) \land RealNumber(y) \land RealNumber(z) \land
RealNumber(w) \wedge \exists m \text{ (radius}(m) \wedge \text{hasEnd1}(m, x_1)
      \wedge hasEnd2(m, k)) \wedge
\exists k \text{ (metric\_space\_length}(k) \land \exists i \text{ (}
      Scale(i) \land \exists \ell(
             PropertyRange(\ell) \wedge
             LowerUpperMagnitudeOfPropertyRange(\ell, i, z, w) \land
             RealMagnitudeOfProperty(k, y, j))) \land
      \exists p \ (MappingTriple(m, x, k) \land radius(p)))
```



```
AxialReferencePlacementTemplate(q, p_x, p_y, p_z, d_x, d_y, d_z) \leftrightarrow
ObjectWithAxialReferencePlacement(q) \land \exists k(
     axis1 placement(k) \wedge
     ReferencePointTemplate(k, p_x, p_y, p_z) \land
     ReferenceDirectionTemplate(k, d_x, d_y, d_z) \wedge
     \exists p \; (MappingTriple(p, q, k) \land 
           axial_reference_placement(p)))
```


GeometryAxialReference PlacementTemplate

Further work

- Implement tools:
 - for domain experts
 - for users
- Develop ISO 15926 research subjects

To-Do

Template Expander expands FOL definitions to basic terms iRing Tools interoperate data in a ISO 15926-like approach .15926 an environment to build and manipulate ISO 15926 compliant data 15926:8 OWL visualization

FOL2OWL translates FOL template axioms to OWL

Laboratório de Tecnologia em Métodos Formais Departamento de Informática Pontifícia Universidade Católica do Rio de Janeiro http://www.tecmf.inf.puc-rio.br/BrunoLopes bvieira@inf.puc-rio.br

Tel: +55 (21) 3527-1500 4505

