Lecture Notes for

Neural Networks and Machine Learning

Introduction to Reinforcement Learning

Logistics and Agenda

- Logistics
 - Lab Four: Cleaning up GANs
- Agenda
 - Final Projects
 - Basics of Reinforcment Learning
 - Markov Processes
 - Reinforcement Learning Categorization
 - OpenAl Gym

Final Project

One Idea from Professor Stephanie Langin-Hooper SMU Meadows

Reinforcement Learning Basics

History of RL from Two Paths

Optimal Control

- Model processes via Markov property
- Optimal paths through states calculated through dynamic programming

- Animals learn by trial and error
- Formalized by Thorndike, 1911. Strengthen through pleasure and weaken through pain
- Paylov and B.F. Skinner would conduct experiments proving that behavior could be influenced with RL

Claude Shannon, J. Deutsch, Marvin Minsky, F. Rosenblatt, Widrow, Hoff

Edward Thorndike

B.F. Skinner

Bernard Widrow

Marvin Minsky

Ted Hoff

Ivan Pavlov

Claude Shannon

Conditioning, Skinner and Pavlov

Continuous Reinforcement

Partial Reinforcement

Desired behavior is reinforced every time it occurs

Most effective once a behavior has been established

Most effective when teaching a new behavior

New behavior is less likely to disappear

Creates a strong association between behavior and response

Various partial reinforcement schedules available to suit individual needs

verywell

1

6

How to condition a machine learning model?

- Hybrid of Supervised and Unsupervised Learning
- Reinforcement Learning
 - Possibly specific labels given, but not necessarily with supervision for how labels are achieved
 - labels are typically stochastic
 - Uses many techniques from supervised learning, but applied towards a slightly different objective function
 - Rewards (positive and negative) are possible to assess behavior in an environment (just like with animals RL)
 - Not specific to Machine Learning community

RL Landscape

Agent

 Interacts with the environment. Your model guides the Agent's decisions

Environment

Anything that is not the agent

Observations

What the agent knows about the environemnt

Actions

What an agent can perform with the given environment

Rewards

- Local measure of success
- Can compound local rewards over time

Generic Reinforcement Learning

RL Parameters in Psychology

- One model for some human behavior, such as you all tell me
- Agent:
- Environment (be specific):
- Observations:
- Actions:

Reward:

Conclusion: The complexity of the process is entirely due to the design and assumptions made in creating the environment, observation, actions we can oversimplify many interactions

Markov Building Blocks

HAVE YOU TRIED SWIFTKEY?
IT'S GOT THE FIRST DECENT
LANGUAGE MODEL I'VE SEEN.
IT LEARNS FROM YOUR SMS/
EMAIL ARCHIVES WHAT WORDS
YOU USE TOGETHER MOST OFTEN.

SPACEBAR INSERTS ITS BEST GUESS,

50 IF I TYPE "THE EMPI" AND
HIT SPACE THREE TIMES, IT TYPES
"THE EMPIRE STRIKES BACK."

WHAT IF YOU MASH SPACE
IN A BLANK MESSAGE?

Markov Processes

- Definition: Any process that can be explained (or simplified) through a sequential set of states that depend only on the previous state
- Practical Meaning: For N states, there will be the probability of transition to any other state, encoded through an NxN transition matrix of discrete probabilities
- State sequences are not deterministic, they are sampled from these distributions
- Despite simplicity, they can model a number of real processes with good enough precision

Next State, st+1									
Current State, s _t	0.1	0.2	0.1	0.6	0.0				
	0.9	0.0	0.1	0.0	0.0				
	0.0	0.4	0.0	0.4	0.2				
	0.0	0.4	0.2	0.0	0.4				
O	0.0	0.0	0.6	0.0	0.4				

MP Example from Maxim Lapan

	Sunny'	Rainy'
Sunny	0.8	0.2
Rainy	0.6	0.4

Sun+Summer			•••	
Rainy+Summer				
Sun+Fall		ling One Vari		
Rainy+Fall	Drast	ic Effect on S	State Spa	ace Size
Sun+Else				
Rainy+Else				

Markov Decision Processes (MDP)

- New Definition: any state to state transition can be altered by an action that is given by a Markov Process
- Definition: An MDP consists of:
 - \circ Env. States, s_t
 - Actions for each state, $a(s_t)$
 - Reward function for each state, $r(s_t)$
 - A transition model, $P(s_{t+1}, s_t \mid a)$ a matrix of probabilities
 - Not guaranteed next state by given action

Markov Reward Process (MRP)

Total reward is given by sum of all future rewards

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots = \sum_k \gamma^k R_{t+k+1}$$

- Gamma defines far- and short-sightedness
 - Common values are 0 (short), 0.9, 0.99, and 1 (far)
- This reward calculation can be used to estimate the "Value" of each state based upon the average total reward a state should give, $V(s) = \mathbf{E}[G \mid s_t = s]$
- Typically, this value must be estimated from the model over fixed sequences, otherwise some values can become arbitrarily large by looping actions

MDPs and MRPs

- The million dollar question:
 How do we select a good action given a current state?
- If γ is not 0, this can get really complicated as we need to look at all possible future actions to measure value
- Instead of defining what is optimal, let's instead setup a comparison of different actions we might take (policy)
- A **policy** is defined as $\pi(a, s) = P(a_t = a \mid s_t = s)$
 - Given the current state, we have a certain probability of selecting each action
 - Action selection is **probabilistic**, but easy to define deterministic actions (set one action to 1.0, all others to 0.0)
- Try different policies, select one with best average reward

An Illustrative Example: Grid World

- State: Every square in grid
- Action: Move to make (I,r,u,d), with probability
- Reward: Goal, Death
- Policy: Given state, where should we move?
- Optimal Policy:

$$\pi^* = \arg \max_{\pi} \mathbf{E} \left[\sum_{k} \gamma^k R_{t+k+1} | \pi \right]$$

Random Policy

Another Policy

Another Policy

17

RL Categorization

Various Taxonomies

- Model-based versus Model-free
- Policy-based versus Value-based
- On-Policy, Off-Policy
- On-policy
 - We must interact with environment to learn a policy
- Off-policy
 - Can learn also from historical data or humans

Model-based versus Model-free

Model Based

- Predict the next observation and reward based on an understanding (model) of the rules in environment
- Often look a number of moves ahead (like in chess or similar game)
- Hard to construct in complex environments
- NOT what we will be studying... domain expertise

Model Free

- Don't care what the environment is
- Directly try to connect observations to actions (or values from which an action can be inferred)
- Just use a neural network! That is our style!
- Mixed: Sure, like Alpha-Go

Policy Based versus Value Based

- Policy Based Learning
 - Directly approximate the policy of the agent
 - Policy is typically a probability distribution of actions that we sample from for next action
 - Could also be a "see this, do that" configuration
- Value Based
 - Calculate an intermediate value function for all possible actions
 - Policy becomes choosing the best action based on value function

OpenAl Gym

Object Oriented RL

- Basics:
 - Define object instance for Agent() and the Env()
 - Define what observations will return
 - Run env.step(action)
 - Get new observations and reward from env
- action_space and observation_space
 - Possible actions to execute, Observations to get
 - Discrete or continuous?
 - Can actions be given simultaneously?

Basics of Cartpole

```
import gym
if name == " main ":
    env = gym.make("CartPole-v0")
    total_reward = 0.0
    total_steps = 0
    obs = env.reset()
    while True:
        action = env.action_space.sample()
        obs, reward, done, _ = env.step(action)
        total_reward += reward
        total_steps += 1
        if done:
            break
```


Action Space: One input, [0, 1] pull left or pull right

Obs Space: Dynamic state variables (continuous and four dimensional)

End: When more than 15 degrees off or too far from center

Reward: +1 for each time step

24

Wrapping the Environment

- When you want some extra action, observation, reward processing
- Expose function with ActionWrapper,
 RewardWrapper, ObservationWrapper

```
class RandomActionWrapper(gym.ActionWrapper):
                                                           if __name__ == "__main__":
    def init (self, env, epsilon=0.1):
                                                               env = RandomActionWrapper(gym.make("CartPole-v0"))
        super(RandomActionWrapper, self).__init__(env)
        self.epsilon = epsilon
                                                               obs = env.reset()
                                                               total_reward = 0.0
    def action(self, action):
        if random.random() < self.epsilon:</pre>
                                                               while True:
            print("Random!")
                                                                   obs, reward, done, _ = env.step(0)
            return self.env.action_space.sample()
                                                                   total_reward += reward
        return action
                                                                   if done:
                                                                        break
```

Might return different action than user supplied with small probability

OpenAl Gym

https://gym.openai.com

We provide the environment; you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano.

Lecture Notes for

Neural Networks and Machine Learning

Intro to Reinforcement Learning

Next Time:

CrossEntropy and Q-Learning

Reading: Lamar CH4-CH6

