Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана»

ФАКУЛЬТЕТ Информатика и системы управления (ИУ) КАФЕДРА Программное обеспечение ЭВМ и информационные технологии (ИУ7)

Дисциплина: Анализ Алгоритмов

Лабораторная работа № 2 «Умножение матриц»

Выполнил: Тимонин А.С.

Группа: ИУ7-52Б

Введение

Целью данной лабораторной работы является изучение различных алгоритмов перемножения матриц: классический алгоритм, алгоритм Винограда. А также предстоит провести сравнительный анализ.

Задачами данной лабораторной работы являются:

- 1. реализация и разработка алгоритмов;
- 2. проведение исследования на временные затраты алгоритмов;
- 3. сравнение и анализ полученных результатов.

1 Аналитический часть

В данном разделе приведены описания классического алгоритма и алгоритма Винограда.

1.1 Классический алгоритм

Если число столбцов в первой матрице совпадает с числом строк во второй, то эти две матрицы можно перемножить.

Пусть матрица A имеет n строк и m столбцов, а матрица B имеет m строк и k столбцов.

Тогда матрица С будет иметь m строк и k столбцов.

$$A_{nm} * B_{mk} = Cink = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1(k-1)} & c_{1k} \\ c_{21} & c_{22} & \dots & c_{2(k-1)} & c_{2k} \\ \dots & \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{n(k-1)} & c_{nk} \end{pmatrix}$$

1.2 Алгоритм Винограда

Если посмотреть на результат умножения двух матриц, то можно заметить, что каждый элемент в нем представляет собой скалярное произведение соответствующих строки и столбца исходных матриц. Также, такое умножение позволяет сделать предварительную обработку заранее.

Пусть два вектора
$$V = (v_1, v_2, v_3, v_4)$$
 и $W = (w_1, w_2, w_3, w_4)$.

Тогда Их скалярное произведение равно:

$$\mathbf{V} \bullet \mathbf{W} = v_1 w_1 + v_2 w_2 + v_3 w_3 + v_4 w_4.$$

Это равенство можно переписать в виде:

$$\mathbf{V} \bullet \mathbf{W} = (v_1 + w_2)(v_2 + w_1) + (v_3 + w_4)(v_4 + w_3) - v_1v_2 - v_3v_4 - w_1w_2 - w_3w_4.$$

Данный алгоритм позволяет разбить вычисления на несколько частей, одну из которых можно посчитать заранее. Также сокращается количество перемножений.

2 Конструкторская часть

В данном разделе приведены требования к программе, блок-схемы, сравнительный анализ по времени и по памяти.

2.1 Требования к программному продукту

Программный комплекс должен реализовывать 3 алгоритма перемножения матриц - классический, Винограда, оптимизированного Винограда. Пользователь должен иметь возможность создавать матрицы любого размера и перемножать матрицы одним из трех алгоритмов.

2.2 Средства реализации

Для выполнения поставленной задачи был использован язык программирования С++. Среда для разработки XCode. Для измерения процессорного времени была взята функция rdtsc из библиотеки ctime.

2.3 Схемы алгоритмов

Классическая реализация алгоритма умножения матриц представлена на рис. 1, на рис. 2 представлен алгоритм Винограда для перемножения матриц. На рис. 3 представлен алгоритм Винограда оптимизирован путем слияния 3 и 4 частей в алгоритме Винограда: перед тем как производить основные вычисления мы проверяем размер матрицы на четность и после этого вычисляем определенным образом. Также сокращено количество подсчетов длинны массива, операция умножения заменена на побитовый сдвиг вправо.

Рис 1. Классический алгоритм перемножений матриц

Рис 2. Алгоритм Винограда умножения матриц

Рис 3. Оптимизированный алгоритм Винограда умножения матриц

2.4 Расчет сложности алгоритмов

Модель вычислений

Для корректного расчета сложности алгоритмов следует описать модель вычислений. Любая арифметическая операция имеет стоимость 1. Проверка условия имеет стоимость 1, а переход в блок иначе не имеет стоимости. В циклах происходит начальная инициализация и проверка, каждая операция имеет стоимость 1. В цикле происходит проверка условия и увеличение счетчика, каждая такая операция тоже имеет стоимость 1. Так, каждая итерация цикла имеет добавочную стоимость 2.

Классический алгоритм:

Вычисление матрицы -
$$2 + M(2 + 5 + Q(2 + 2 + N(2 + 11))) = 2 + 7M + 4MQ + 13MNQ$$

Алгоритм Винограда:

Вычисление multH - 2 + M(2 + 5 + N/2(3 + 12))

Вычисление multV - 2 + Q(2 + 5 + N/2(3 + 12))

Вычисление матрицы с четной разм. (лучший случ.) -

$$2 + M(2 + 2 + Q(12 + N/2*(3+23)) = 2+M(2+Q(11+12.5N)) = 2+M(2+11Q+12.5NQ) = 4+4M + 12QM + 13MNQ$$

Вычисление матрицы с нечетной разм. (худший случ.) -

$$6+4M + 12QM + 13MNQ + M(2+2+Q(2+13)) = 6+8M+27QM+13MNQ$$

Оптимизированный алгоритм Винограда:

Вычисление multH - 2 + M(2 + 4 + N/2(12))

Вычисление multV - 2 + Q(2 + 4 + N/2(12))

Вычисление матрицы с четной разм. (лучший случ.) - 4+M(4+Q(4+7+N/2(3+23))) = 4+M(4+Q(11+13N)) = 4+M(4+11Q+13NQ) = 4+4M+11MQ+13MNQ

Вычисление матрицы с нечетной совпадающей размерностью исходных матриц (худший случай) - +M(4+Q(4+14+N/2(2+23))) = 4+M(4+Q(18+12.5N)) = 4+M(4+18Q+12.5NQ) = 4+4M+18MQ+12.5MNQ

3 Технологическая часть

В данном разделе приведено требования к программному обеспечению, а также листинг кода

3.1 Требования к ПО

Программа была написана на языке C++ в среде Xcode. Данный язык обусловлен наличием библиотеки, позволяющей считать тики процессора, что более точно определяет эффективность программы

3.2 Листинг кода

Реализация алгоритмов перемножения матриц представлена в листингах 1, 2, 3 соответственно.

Листинг 1. Классический алгоритм умножения матриц

Листинг 2. Алгоритм Винограда для умножения матриц

```
mulh[i] += A[i][2 * k] * A[i][2 * k + 1];
    }
    for (unsigned i = 0; i < 0; i++) {
        mulV[i] = 0;
        for (unsigned k = 0; k < N / 2; k++)
            mulV[i] += B[2 * k][i] * B[2 * k + 1][i];
    }
    for (unsigned i = 0; i < M; i++)
        for (unsigned j = 0; j < 0; j++) {
            C[i][j] = -mulH[i] - mulV[j];
            for (unsigned k = 0; k < N / 2; k++) {
                C[i][j] = C[i][j] +
                            (A[i][2 * k] + B[2 * k + 1][j]) *
                            (A[i][2 * k + 1] + B[2 * k][j]);
            }
        }
    if (N % 2 == 1) {
        for (unsigned i = 0; i < M; i++)
            for (unsigned j = 0; j < 0; j++)
                C[i][j] = C[i][j] + A[i][N - 1] * B[N - 1][j];
    }
    delete [] mulH;
    delete [] mulV;
}
Листинг 3. Оптимизированный алгоритм Винограда для умножения матриц
void vingr_mult_mtr_opt(int ** A, int ** B, int ** C,
                       unsigned M, unsigned N, unsigned Q) {
    unsigned d = N / 2;
    int *mulH = new int [M];
    int *mulV = new int [0];
    for (unsigned i = 0; i < M; i++) {</pre>
        mulH[i] = 0;
        for (unsigned k = 0; k < d; k++)
            mulH[i] += A[i][k << 1] * A[i][k << 1 | 1];
    }
    for (unsigned i = 0; i < 0; i++) {
        mulV[i] = 0;
        for (unsigned k = 0; k < d; k++)
            mulV[i] += B[k << 1][i] * B[k << 1 | 1][i];
```

```
}
    if (N % 2 == 0) {
        for (unsigned i = 0; i < M; i++)
            for (unsigned j = 0; j < 0; j++) {
                C[i][j] = -mulH[i] - mulV[j];
                for (unsigned k = 0; k < N / 2; k++) {
                    C[i][j] = C[i][j] +
                                     (A[i][k \ll 1] + B[k \ll 1 | 1][j]) *
                                     (A[i][k \ll 1 \mid 1] + B[k \ll 1][j]);
                }
            }
    } else {
        for (unsigned i = 0; i < M; i++)
            for (unsigned j = 0; j < 0; j++) {
                C[i][j] = -mulH[i] - mulV[j] +
                                A[i][N-1] * B[N-1][j];
                for (unsigned k = 0; k < N / 2; k++) {
                    C[i][j] = C[i][j] +
                            (A[i][k \ll 1] + B[k \ll 1 | 1][j]) *
                            (A[i][k \ll 1 \mid 1] + B[k \ll 1][j]);
            }
        }
    }
    delete [] mulH;
    delete [] mulV;
}
```

4 Экспериментальная часть

В данном разделе проведено исследование временных затрат написанных алгоритмов с подробным сравнительным анализом.

4.1 Сравнительное исследование

Замеры времени выполнялись на квадратных матрицах размеров от 100х100 до 1000х1000 с интервалом в 100 элементов. Также замеры времени проводились над квадратными матрицами нечетной размерностью от 101х101 до 1001х1001 с шагом 100. В табл. 4.1.1-4.1.2 и рис. 4.1.1-4.1.2 представлены результаты замеров времени в тактах.

Таблица 4.1.1. Сравнение времени работы алгоритмов в тактах процессора для четной размерности таблиц

	Classic	Vinograd	Vinograd opt.
100	5309906	3492994	3438812
200	41791620	31873814	29161740
300	178998050	125717644	133166774
400	547620612	393795716	380205336
500	1095450900	835462300	761248202
600	1698521190	1328236332	1282629266
700	2638849132	2247398672	2298834432
800	3422139986	3171317544	3261247570
900	3545636741	2998248558	3473267372
1000	7356693575	6934621043	6744072550

Рисунок 4.1.1. График зависимости времени работы алгоритмов для четной размерности матриц

	Classic	Vinograd	Vinograd opt.
101	4842611	3566992	3501080
201	40046584	31284620	28390012
301	170642172	132633753	123052866
401	510572952	386237826	380056734
501	1031029677	788027506	761248202
601	1408245229	1111112926	1154359310
701	2399545870	2122864749	2043793498
801	2795353636	2712904320	2658934893
901	3321456235	3268833774	3203435897
1001	5936626724	6004934586	6134903434

Таблица 4.1.2. Сравнение времени работы алгоритмов в тактах процессора для нечетной размерности таблиц

Рисунок 4.1.2. График зависимости времени работы алгоритмов для нечетной размерности матриц

4.2 Вывод

По данным эксперимента можно заметить, что алгоритм Винограда и оптимизированный алгоритм Винограда выдают практически одинаковые результаты, и несколько выигрывают у стандартного алгоритма.

Заключение

В ходе выполнения данной лабораторной работы были изучены и реализованы различные алгоритмы перемножения матриц. В аналитической части было приведено описание алгоритмов. В конструкторской части были представлены блок-схемы алгоритмов. Также был выполнен расчет сложности алгоритмов. В экспериментальной части проведен сравнительный анализ временных затрат, после которого было выявлена незначительная разность обоих алгоритмов.