K-means Clustering

Son Nguyen

What is clustering?

Clustering is grouping data points into groups where data points in one group are similar to each other.

`

What is clustering?

`

Methods of Clustering

We will cover two clustering methods:

- K-means clustering and
- Hierarchical clustering

K-means Clustering

- Data
- Visualize Data
- Result of K-means clustering

Step 1

Step 1: Randomly select centroids

Step 1: Collect points for each clusters

Locate centroids

Collect points for each clusters

Relocate centroids

Collect points for each clusters

Relocate centroids

Collect points for each clusters

Relocate centroids

Step 2: Collect points for each clusters

I	GIA	Screen Time
	3.9	90
	4.0	150
	3.0	140
	2.0	139

Step 2: Relocate centroids

Step 2: Collect points for each clusters

Centroids

Cluster	х1	х2
1	5.5	7.2
2	35.5	27.3

`

K-means Algorithm

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 1. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster centroid. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - (b) Assign each observation to the cluster whose centroid is closest (where closest is defined using Euclidean distance).

Dataset

Randomly Assign Cluster to Points

Cluster	Point	X	у
1	Α	1	3
2	В	2	2
1	С	3	5
1	D	4	5
2	Е	5	6

Determine Centroids

Cluster	Point	X	у	M_1x	M_1y	M_2x	M_2y
1	Α	1	3	2.67	4.33	3.5	4
2	В	2	2	2.67	4.33	3.5	4
1	С	3	5	2.67	4.33	3.5	4
1	D	4	5	2.67	4.33	3.5	4
2	E	5	6	2.67	4.33	3.5	4

$$ullet$$
 Centroid 1: $M_1=rac{A+C+D}{3}=rac{(1,3)+(3,5)+(4,5)}{3}=rac{(8,13)}{3}=(2.67,4.33)$

$$ullet$$
 Centroid 2: $M_2=rac{B+E}{3}=rac{(2,2)+(5,6)}{2}=rac{(7,8)}{2}=(3.5,4)$

Distance to Centroids

Cluster	Point	X	у	M_1x	M_1y	M_2x	M_2y	dc1	dc2
1	Α	1	3	2.67	4.33	3.5	4	2.13	2.69
2	В	2	2	2.67	4.33	3.5	4	2.42	2.50
1	С	3	5	2.67	4.33	3.5	4	0.75	1.12
1	D	4	5	2.67	4.33	3.5	4	1.49	1.12
2	Е	5	6	2.67	4.33	3.5	4	2.87	2.50

$$ullet$$
 Variance within Cluster 1 = $V_1=AM_1^2+CM_1^2+DM_1^2=7.3195$

$$ullet$$
 Variance within Cluster 2 = $V_2=BM_2^2+DM_2^2=12.5$

$$ullet$$
 Total Variance = $V_1+V_2=19.83$

Compare Distances to Centroids

Cluster	Point	X	у	dc1	dc2	min_distance
1	А	1	3	2.13	2.69	2.13
2	В	2	2	2.42	2.50	2.42
1	С	3	5	0.75	1.12	0.75
1	D	4	5	1.49	1.12	1.12
2	E	5	6	2.87	2.50	2.50

Reassign Clusters

Cluster	Point	X	у	dc1	dc2	min_distance	New_Cluster
1	Α	1	3	2.13	2.69	2.13	1
2	В	2	2	2.42	2.50	2.42	1
1	С	3	5	0.75	1.12	0.75	1
1	D	4	5	1.49	1.12	1.12	2
2	Е	5	6	2.87	2.50	2.50	2

- New cluster 1 = {A, B, C}
- New cluster 2 = {D, E}
- ullet Total Variance = $AN_1^2+BN_1^2+CN_1^2+DN_2^2+EN_2^2=7.67$

Reassign Clusters

Cluster	Point	X	у	dc1	dc2	min_distance	New_Cluster
1	А	1	3	2.13	2.69	2.13	1
2	В	2	2	2.42	2.50	2.42	1
1	С	3	5	0.75	1.12	0.75	1
1	D	4	5	1.49	1.12	1.12	2
2	Е	5	6	2.87	2.50	2.50	2

- New cluster 1 = {A, B, C}
- New cluster 2 = {D, E}
- ullet Total Variance = $AN_1^2 + BN_1^2 + CN_1^2 + DN_2^2 + EN_2^2 = 7.67$
- The process continues until there is no change in the total variance
- The total variance will be reduced to its minimum.

Step 1: Total Variance within

Cluster	Point	X	у
1	Α	1	3
2	В	2	2
1	С	3	5
1	D	4	5
2	Е	5	6

• Total Variance within 19.83

`

Step 2: Total Variance within

New_Cluster	Point	x	у
1	Α	1	3
1	В	2	2
1	С	3	5
2	D	4	5
2	E	5	6

• Total Variance within 7.67

`

Step 2: Total Variance within

New_Cluster	Point	X	у
1	А	1	3
1	В	2	2
1	С	3	5
2	D	4	5
2	Е	5	6

- Total Variance within 7.67
- The process continues until there is no change in the total variance
- The total variance will be reduced to its minimum.

Terminology

• Total Variance also called the total within sum square or the within-cluster sum of squares (WCSS) or WSS

`

Mumber of clusters? Elbow method!

- Plot the WSS
- Decide the elbow of the graph

## Murder Assault UrbanPop Rape cluste	r:
## Alabama 1.24256408 0.7828393 -0.5209066 -0.003416473	4
## Alaska 0.50786248 1.1068225 -1.2117642 2.484202941	4
## Arizona 0.07163341 1.4788032 0.9989801 1.042878388	4
## Arkansas 0.23234938 0.2308680 -1.0735927 -0.184916602	3
## California 0.27826823 1.2628144 1.7589234 2.067820292	4
## Colorado 0.02571456 0.3988593 0.8608085 1.864967207	4

Principal Components

- Since we have four variables, we could have 6 different plots to visualize the clustring
- The more variables we have, the more plot we can have
- It is easier to contain all the variables in a few variables, then make plots.
- One way to do this is to use principal components analysis. The first two principals may contain most of the information of in the dataset.

