3.6 Random Numbers — Monte Carlo Simulations

In many areas of experimental, computational and theoretical physics it is desirable to produce stochastic computer models of an experimental setup (including measurement errors) or a physical entity (such as a galaxy or star). Such models are called Monte Carlo simulations because they are non-deterministic, and therefore model real-life processes more closely.

Exercise: Estimation of π 3.6.1

Use Excel to draw a circle of unit radius inside a square with sides measuring two units (both centred on (0,0)). Generate two columns of 1000 random numbers drawn from a uniform distribution spanning the interval [-1,+1]. Consider these two columns to be (x,y) coordinate pairs, and plot these points over the circle and square. The probability that a point lies within the circle is given by:

$$P = \frac{\text{area of circle}}{\text{area of box}} = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}$$

Use the Excel COUNTIF() function to estimate π from N pairs of random numbers where N runs from 1 to 1000. Plot your estimate of π as a function of N

Exercise: Propagation of Errors 3.6.2

In this exercise we model a simple first-year experiment in which the radius, length and mass of a cylinder are measured in order to determine the density of the material that the cylinder is made from.

1. Generate 150 "synthetic data sets" for length (ℓ) , diameter (d) and mass (M) measurement using a gaussian random number generator to add experimental errors with known variances to the "exact" dimensions and mass. Use the following parent distribution parameters to calculate the synthetic data:

$$\mu_{\ell} = 40 \text{ mm};$$
 $\sigma_{\ell} = 0.05 \text{ mm}$
 $\mu_{d} = 20 \text{ mm};$ $\sigma_{d} = 0.005 \text{ mm}$
 $\mu_{M} = 90 \text{ g};$ $\sigma_{M} = 1 \text{ mg}$

- 2. Consider these 150 data sets to be 15 independent groups of ten measurements. For each group determine the sample mean \bar{x}_i , sample standard deviation s_i and the standard deviation of the mean $(s_m)_i$ (the uncertainty in the mean) for each of the three "measured" quantities. Table of \bar{x}_i , s_i and $(s_m)_i$
- 3. Use these 15 sets of mean values to obtain 15 estimates of the required density ρ_i . Find the standard deviation $s(\rho_i)$ of these 15 mean densities (i.e. the standard deviation of the mean), which is the uncertainty in ρ .

Table of 15 values of ρ_i and single value of $s(\rho_i)$

14 Data Processing — Random Numbers — Monte Carlo Simulations

4. Use equation 0-7 to calculate variance s^2 and equation 0-1 to find the uncertainty $(s_m)_i$ of each of the 15 density determinations by propagating the measured variances in the "measurements". Compare these 15 values with the single value obtained in the previous step. Table of $(s_m)_i$ compared to $s(\rho_i)$.

3.6.3 Exercise: Stochastic Physical Model

A certain theoretical model for the distribution of stars in a globular cluster predicts that the stellar density obeys the following probability density functions for the spherical polar coordinates:

$$P_r(r) = \begin{cases} \frac{1}{r_0} e^{-r/r_0} & ; r \ge 0 \\ 0 & ; r < 0 \end{cases}$$

$$P_{\phi}(\phi) = \begin{cases} \frac{1}{2\pi} & ; 0 \le \phi \le 2\pi \\ 0 & ; \text{ otherwise} \end{cases}$$

$$P_{\theta}(\theta) = \begin{cases} \frac{1}{2} \sin(\theta) & ; 0 \le \theta \le \pi \\ 0 & ; \text{ otherwise} \end{cases}$$

1. Show that the random variable transformations required are given by:

$$r = r_0 \ln \left(\frac{1}{1-u}\right)$$

$$\theta = \cos^{-1}(1-2v)$$

$$\phi = 2\pi w$$

where u, v and w are drawn from uniform parent populations spanning [0,1].

- 2. Generate synthetic (r, θ, ϕ) coordinates for a globular cluster with 1000 stars and a scalesize of $r_0 = 10^5$ km.
- 3. Plot the projections of these stars in the (x-y), (y-z) and (x-z) planes. Recall that the transformation from SPC to Cartesian coordinates is given by:

$$x = r \cos(\phi) \sin(\theta)$$

$$y = r \sin(\phi) \sin(\theta)$$

$$z = r \cos(\theta)$$

4. Obtain histograms of the x, y and z distributions of the stars (plotted on the same set of axes).