Computer Programming

Programming Languages

TIOBE Index for October 2018

The Importance Of Being Earnest Programming Community Index (TIOBE)

Oct 2018	Oct 2017	Change	Programming Language	Ratings	Change
1	1		Java	17.801%	+5.37%
2	2		С	15.376%	+7.00%
3	3		C++	7.593%	+2.59%
4	5	^	Python	7.156%	+3.35%
5	8	^	Visual Basic .NET	5.884%	+3.15%
6	4	•	C#	3.485%	-0.37%
7	7		PHP	2.794%	+0.00%
8	6	•	JavaScript	2.280%	-0.73%
9	-	*	SQL	2.038%	+2.04%
10	16	*	Swift	1.500%	-0.17%
11	13	^	MATLAB	1.317%	-0.56%
12	20	*	Go	1.253%	-0.10%
13	9	*	Assembly language	1.245%	-1.13%
14	15	^	R	1.214%	-0.47%
15	17	^	Objective-C	1.202%	-0.31%
16	12	*	Perl	1.168%	-0.80%
17	11	*	Delphi/Object Pascal	1.154%	-1.03%
18	10	*	Ruby	1.108%	-1.22%
19	19		PL/SQL	0.779%	-0.63%
20	18	•	Visual Basic	0.652%	-0.77%

Reference: https://www.tiobe.com/tiobe-index/

Chapter 01:

Starting with MATLAB

Starting MATLAB, MATLAB Windows

Working In The Command Window

Arithmetic Operations With Scalars

Display Formats

Elementary Math Built-in Functions

Defining Scalar Variables

Useful Commands For Managing Variables

Script Files

Examples Of MATLAB Applications

Window	Purpose	
Current Folder Window	Shows the files in the current folder.	
Command Window	Main window, enters variables, runs programs.	
Workspace Window	Provides information about the variables that are stored.	
Command History Window	Logs commands entered in the Command Window.	
Editor Window	Creates and debugs script and function files.	
Figure Window	Contains output from graphic commands.	
Help Window	Provides help information.	

Arithmetic Operations With Scalars

Operation	Symbol	Example
Addition	+	5 + 3
Subtraction	_	5 – 3
Multiplication	*	5 * 3
Right Division	/	5 / 3
Left Division	\	5 \ 3 = 3 / 5
Exponentiation	٨	5 ^ 3 (means 53 = 125)

Arithmetic Operations With Scalars

Order Of Precedence

Precedence	Mathematical Operation
First	Parentheses. For Nested Parentheses, The Innermost Are Executed First.
Second	Exponentiation.
Third	Multiplication, Division (Equal Precedence).
Fourth	Addition And Subtraction.

Arithmetic Operations With Scalars

```
>> 7+8/2
                                                        Type and press Enter.
ans =
                                                         8/2 is executed first.
     11
                                                         Type and press Enter.
>> (7+8)/2
ans =
                                                         7+8 is executed first.
     7.5000
>> 4+5/3+2
                                                         5/3 is executed first.
ans =
     7.6667
>> 5^3/2
                                      5<sup>3</sup> is executed first, /2 is executed next.
ans =
    62.5000
>> 27^(1/3)+32^0.2
                                1/3 is executed first, 27<sup>(1/3)</sup> and 32<sup>0</sup>.2 are
ans =
                                executed next, and + is executed last.
>> 27^1/3+32^0.2
                                27<sup>1</sup> and 32<sup>0</sup>.2 are executed first, /3 is exe-
ans =
                                cuted next, and + is executed last.
     11
>> 0.7854-(0.7854)^3/(1*2*3)+0.785^5/(1*2*3*4*5)..
- (0.785)<sup>^</sup>7/(1*2*3*4*5*6*7)
                                 Type three periods ... (and press Enter) to
                                 continue the expression on the next line.
ans =
     0.7071
                                      The last expression is the first four
>>
                                      terms of the Taylor series for \sin(\pi/4).
```

Display Formats

The User Can Control The Format In Which MATLAB Displays Output On The Screen.

```
Command Window
  >> pi
                                                                                                                3.1416
                                                                                                   ⊞ans
   ans =
        3.1416
fx >>
                                                                                                    Command History
                                                                                                     %-- 10/12/2018 4:0...
                                                                                                     рi
```

The User Can Control The Format In Which MATLAB Displays Output On The Screen.

Display Formats

Command	Description	Example	
format short	Fixed-point with 4 decimal digits for: 0.001 ≤ number ≤ 1000 Otherwise display format short e.	>> 290/7 ans = 41.4286	
format long	Fixed-point with 15 decimal digits for: $0.001 \le number \le 100$ Otherwise display format long e.	>> 290/7 ans = 41.428571428571431	
format short e	Scientific notation with 4 decimal digits.	>> 290/7 ans = 4.1429e+001	
format long e	Scientific notation with 15 decimal digits.	>> 290/7 ans = 4.142857142857143e+0 01	
format short g	Best of 5-digit fixed or floating point.	>> 290/7 ans = 41.429	
format long g	Best of 15-digit fixed or floating point.	>> 290/7 ans = 41.4285714285714	
format bank	Two decimal digits.	>> 290/7 ans = 41.43	
format compact	Eliminates blank lines to allow more lines with information displayed on the screen.		
format loose	Adds blank lines (opposite of compact).		

MATLAB Expressions Can Include Functions. You Can Think Of A Function As A Black Box That, In General, Takes Inputs, Does Some Computations With Them, And Produces Outputs.

MATLAB Expressions Can Include Functions. You Can Think Of A Function As A Black Box That, In General, Takes Inputs, Does Some Computations With Them, And Produces Outputs.

$$Y = sqrt(X)$$

$$Y = sqrt(X)$$

```
>> sqrt(64)
                                          Argument is a number.
ans =
                                     Argument is an expression.
>> sqrt(50+14*3)
ans =
    9.5917
                                  Argument includes a function.
>> sqrt(54+9*sqrt(100))
ans =
    12
>> (15+600/4)/sqrt(121)
                                Function is included in an expression.
ans =
    15
>>
```


Function	Description	Example
sqrt(x)	Square root.	>> sqrt(81) ans = 9
nthroot(x,n)	Real <i>n</i> th root of a real number <i>x</i> . (If <i>x</i> is negative <i>n</i> must be an odd integer.)	>> nthroot(80,5) ans = 2.4022
exp(x)	Exponential (e^x) .	>> exp(5) ans = 148.4132

Function	Description	Example
abs(x)	Absolute value.	>> abs(-24) ans = 24
log(x)	Natural logarithm. Base <i>e</i> logarithm (ln).	>> log(1000) ans = 6.9078
log10(x)	Base 10 logarithm.	>> log10(1000) ans = 3.0000
factorial(x)	The factorial function x! (x must be a positive integer.)	>> factorial(5) ans = 120

Function	Description	Example
sin(x) sind(x)	Sine of angle x (x in radians). Sine of angle x (x in degrees).	>> sin(pi/6) ans = 0.5000
cos(x)	Cosine of angle x (x in radians). Cosine of angle x (x in degrees).	>> cosd(30) ans = 0.8660
tan(x) tand(x)	Tangent of angle x (x in radians). Tangent of angle x (x in degrees).	>> tan(pi/6) ans = 0.5774
cot(x) cotd(x)	Cotangent of angle x (x in radians). Cotangent of angle x (x in degrees).	>> cotd(30) ans = 1.7321

Function	Description	Example
round(x)	Round to the nearest integer.	>> round(17/5) ans = 3
fix(x)	Round toward zero.	>> fix(13/5) ans = 2
ceil(x)	Round toward infinity.	>> ceil(11/5) ans = 3
floor(x)	Round toward minus infinity.	>> floor(-9/4) ans = -3
rem(x,y)	Returns the remainder after <i>x</i> is divided by <i>y</i> .	>> rem(13,5) ans = 3
sign(x)	Signum function. Returns 1 if $x > 0$, -1 if $x < 0$, and 0 if $x = 0$.	

The Assignment Operator

Variable_name = A numerical value, or a computable expression

$$>> x=15$$

x =

$$>> x=3*x-12$$

33

x =

>>

The number 15 is assigned to the variable \times .

MATLAB displays the variable name and its assigned value.

A new value is assigned to x. The new value is 3 times the previous value of x minus 12.

CAUTION!

Defining Scalar Variables

The Assignment Operator

THINK OF = AS MEANING "ASSIGN TO" OR "STORE IN" BUT NOT MEANING "EQUALS"

Why?

x = x + 6 has no meaning in math because it implies that 0 = 6.

x = x + 6 is perfectly fine in MATLAB because it means "take whatever is in x, add 6 to that and store the result back into x"

The Assignment Operator

The variables a, B, and C are defined but are not displayed, since a semicolon is typed at the end of each statement.

The value of the variable C is displayed by typing the name of the variable.

```
>> a=12, B=4; C=(a-B)+40-a/B*10

a =

12

The variable B is not displayed because a semicolon is typed at the end of the assignment.
```

The Assignment Operator


```
>> x=0.75;

>> E=sin(x)^2+cos(x)^2

E =

1

>>
```

??? Undefined function or variable 'x'

Rules About Variable Names

A variable can be named according to the following rules:

- Must begin with a letter.
- Can be up to 63 characters long.
- Can contain letters, digits, and the underscore character.
- Cannot contain punctuation characters (e.g., period, comma, semicolon).
- MATLAB is case-sensitive: it distinguishes between uppercase and lowercase letters. For example, AA, Aa, aA, and aa are the names of four different variables.
- No spaces are allowed between characters (use the underscore where a space is desired).
- Avoid using the name of a built-in function for a variable (i.e., avoid using cos, sin, exp, sqrt, etc.). Once a function name is used to for a variable name, the function cannot be used.

Defining Scalar Variables

Predefined Variables and Keywords

break case catch classdef continue else elseif end for function global if otherwise parfor persistent return spmd switch try while

ans A variable that has the value of the last expression that was not assigned to a specific variable (see Tutorial 1-1). If the user does not assign the value of an expression to a variable, MATLAB automatically stores the result in ans.

pi The number π .

eps The smallest difference between two numbers. Equal to 2^(-52), which is approximately 2.2204e-016.

inf Used for infinity.

i Defined as $\sqrt{-}$, which is: 0 + 1.0000i.

j Same as i.

NaN Stands for Not-a-Number. Used when MATLAB cannot determine a valid numeric value. Example: 0/0.

Useful Commands For Managing Variables

Command	Outcome
clear	Removes all variables from memory
clear x y z	Removes only variables x, y, and z from memory
who	Displays a list of the variables currently in memory
whos	Displays a list of the variables currently in memory and their size, together with information about their bytes and class

So far, have run MATLAB commands by typing in single command, pressing ENTER, getting MATLAB's result, and then repeating this process for next command

Better Way:

- A. Save All Commands In A File.
- B. With One Command In Command Window, Tell MATLAB To Run All Commands In File.

Notes About Script Files

- i. A Script File Is A Sequence Of MATLAB Commands, Also Called A Program.
- ii. When A Script File Runs, MATLAB Executes The Commands In The Order They Are Written, Just As If They Were Typed In The Command Window.
- iii. When A Script File Has A Command That Generates An Output, The Output Is Displayed In The Command Window.
- iv. Using A Script File Is Convenient Because It Can Be Edited And Executed Many Times.
- v. Script Files Can Be Typed And Edited In Any Text Editor And Then Pasted Into The MATLAB Editor.
- vi. Script Files Are Also Called M-files Because The Extension .M Is Used When They Are Saved.


```
Command Window
  >> pwd
  ans =
       'C:\Users\Pooya\Documents\MATLAB'
  >> cd 'C:\Users\Pooya\Desktop'
  >> pwd
  ans =
       'C:\Users\Pooya\Desktop'
fx >>
```


Sample Problem 01: **HEAT TRANSFER**

An object with an initial temperature of T_0 that is placed at time t = 0 inside a chamber that has a constant temperature of T_S will experience a temperature change according to the equation

$$T = T_S + (T_0 - T_S)e^{-kt}$$

where T is the temperature of the object at time t, and k is a constant. A soda can at a temperature of 120° F (after being left in the car) is placed inside a refrigerator where the temperature is 38° F. Determine, to the nearest degree, the temperature of the can after three hours. Assume k = 0.45. First define all of the variables and then calculate the temperature using one MATLAB command.

Sample Problem 01: **HEAT TRANSFER**

Sample Problem 02: TRIGONOMETRIC IDENTITY

A trigonometric identity is given by:

$$\cos^2 \frac{x}{2} = \frac{\tan x + \sin x}{2\tan x}$$

Verify that the identity is correct by calculating each side of the equation, substituting $x = \frac{\pi}{5}$.

Sample Problem 02: TRIGONOMETRIC IDENTITY

Assignment

