Topics on Hindley's Simple Type Theory*: 8E and 8F

Francisca Cappellesso & Gabriel Silva

* - Presentation adapted from the work of Thiago Mendonça and Washington Ribeiro Type Theory Class - 1/2020 - Universidade de Brasília - UnB

June 22, 2020

Outline of Presentation

 8E - The Structure of a nf-scheme Overview and Motivation Key Role, Remarks and Notations The Foundation for 8F

 8F - Stretching, Shrinking and Completeness Search Completeness Lemma Stretching Lemma Shrinking Lemma

Section 1

8E - The Structure of a nf-scheme

Subsection 1

Overview and Motivation

8E - The Structure of a nf-scheme

This section is about analysing the structure of an arbitrary long typed nf-scheme.

Motivation

Earlier sections left the stretching and shrinking lemmas unproved (8D2 and 8D3), as well as the completeness part of the searching theorem for $Long(\tau)$ (8C5(iii)).

- **8E** We lay the foundation by analysing the structure of an arbitrary long typed nf-scheme.
- 8F Having the necessary foundation, we fill the mentioned gaps.

Subsection 2

Key Role, Remarks and Notations

Structured Proofs à la Leslie Lamport

In this presentation, the mathematical proofs are presented as structured proofs à la Leslie Lamport [3, 2].

Notation for Components

We will underline a term Y when we want to indicate that it is being analysed as a component of a term X.

Organization of the Present Section

The early parts of this section will apply to both typed and untyped nf-schemes. Therefore, when we write nf-schemes, types will be omitted.

The final parts of this section will only apply to typed nf-schemes, so types will be displayed.

Key Role

A key role in our analysis will be played by a slightly strengthened form of the subformula property. This property says that the types of all the components of a closed β -nf M^{τ} are subtypes of τ .

This way, as the algorithm searches deeper and deeper, the types of the components we are working with remain drawn from the same fixed finite set.

nf-scheme

Remark 1

A nf-scheme is essentially a β -nf that may contain meta-variables under suitable restrictions.

nf-scheme

Remark 2

According to 8A5, every non-atomic nf-scheme X can be expressed uniquely in the form:

$$X \equiv \lambda x_1 \dots x_m . v Y_1 \dots Y_n$$

with $m + n \ge 1$ and where v is one of the x_i if X is closed.

The head and arguments of X are v and Y_1, \ldots, Y_n . If X is an atom its head is X and it has no arguments.

The construction-tree of such an X is shown in Fig 1. Note that the position of Y_i is: $0^m1^{n-i}2$, for $1 \le i \le n$.

An Example of a Construction Tree

Figure 1: Construction Tree for $\lambda xy.x(\lambda u.uV_1)V_2$. Figure obtained from [1].

Subsection 3

The Foundation for 8F

Subarguments

Definition 1 (8E2 in Hindley's)

A subargument of a typed or untyped nf-scheme X is a component that is an argument of X or an argument of a proper component of X.

Lemma 8E2.1

Lemma 2 (8E2.1 in Hindley's)

A component \underline{Y} of a typed or untyped nf-scheme X is a subargument iff its position is not \emptyset and the last symbol in its position is 2.

PROOF SKETCH: By induction on |X|. One can, for instance, consider the subarguments in the tree of Figure 1.

Remarks about Subarguments

Remark 3 (8E2.2(i) in Hindley's)

All occurrences of meta-variables in a composite nf-scheme are subarguments.

Proof: By restriction 8C1(iii) in the definition of nf-scheme.

Remark 4 (8E2.2(ii) in Hindley's)

A subargument of a subargument of X is a subargument of X.

PROOF: By the definition of subargument.

2-length and depth

Definition 1 (8E3 in Hindley's)

The 2-length of a position string p is the number of 2's in p.

Definition 2 (8E3 in Hindley's)

The depth in X of a subargument \underline{Z} of X is the 2-lenght of its position.

Remark 5 (8E3 in Hindley's)

The depth in X of a subargument \underline{Z} is the number of right-hand choices made when "travelling up" the tree of X from the bottom node to \underline{Z} .

Lemma 8E3.1

Lemma 3 (8E3.1 in Hindley's)

Let X be a typed or untyped nf-scheme with Depth $(X) \ge 1$, where the Depth of an nf-scheme is defined as in 8A6. Then:

- Depth(X) is the maximum of the depths in X of all subarguments in X,
- ② X has at least one subargument whose depth in X is the same as Depth(X), and each such subargument is an atom or abstracted atom.

PROOF SKETCH: By induction on |X|, using 8A6.

Argument-Branch

Definition 3 (8E4 in Hindley's)

If Z is a subargument of a typed or untyped nf-scheme X, the argument-branch from X to Z is the sequence:

$$\langle \underline{Z}_0,\underline{Z}_1,\dots,\underline{Z}_k\rangle$$

such that $\underline{Z}_0 \equiv \underline{X}$, $\underline{Z}_k \equiv \underline{Z}$ and for each i = 1, ..., k, we have \underline{Z}_i is an argument of \underline{Z}_{i-1} .

It is unextendable iff Z is an atom or abstracted atom.

Its length is $k \pmod{k+1}$.

Lemma 8E4.1

Lemma 4 (8E4.1 in Hindley's)

For any typed or untyped nf-scheme X:

- The depth in X of a subargument \underline{Z} is the same as the length of the argument-branch from \underline{X} to \underline{Z} ,
- Depth(X) is the maximum of the lengths of all argument-branches in X.

PROOF SKETCH: For (1) use induction on |X|, for (2) use 8E3.1.

IA, CA

Definition 4 (8E5 in Hindley's)

Let \underline{Z} be a subargument of a typed or untyped nf-scheme X, for instance:

$$Z \equiv \lambda x_1 \dots x_m.yZ_1 \dots Z_n \qquad (m \ge 0, n \ge 0)$$

The Initial Abstractors sequence IA(Z) is the (possibly empty) sequence:

$$IA(Z) = \langle x_1, \ldots, x_m \rangle$$

The Covering Abstractors sequence $CA(\underline{Z}, X)$ is defined as:

$$CA(\underline{Z},X) = \langle z_1,\ldots,z_q \rangle,$$

where $\underline{\lambda z_1}, \ldots, \underline{\lambda z_q}$ are the abstractors in X whose scopes contain \underline{Z} , written in the order they occur in X from left to right. Also, define:

$$Length(IA(Z)) = m,$$

 $Length(CA(\underline{Z}, X)) = q.$

IA, CA

Remark 6 (8E5.1 in Hindley's)

- If X has no bound-variable clashes, the members of IA(Z) are distinct and so are those of $CA(\underline{Z}, X)$.
- ② IA(Z) and $CA(\underline{Z}, X)$ are sequences of variables, not components.
- **③** For typed nf-schemes each variable in IA(Z) or $CA(\underline{Z}, X)$ is typed.
- **1** If the argument-branch from \underline{X} to \underline{Z} is $\langle \underline{Z}_0, \dots, \underline{Z}_k \rangle$ $(k \ge 1)$, then:

$$CA(\underline{Z},X) = IA(Z_0) * \ldots * IA(Z_{k-1})$$

where "*" denotes concatenation of sequences.

Warning

The remaining part of this section applies only for typed nf-schemes.

IAT

Definition 5 (IAT)

Let \underline{Z}^{σ} be a subargument of a typed nf-scheme X^{τ} , say:

$$Z^{\sigma} \equiv \lambda x_1^{\sigma_1} \dots x_m^{\sigma_m}.yZ_1 \dots Z_n \qquad \qquad (m \ge 0, n \ge 0)$$

The Initial Abstractors' Types Sequence (IAT(Z^{σ})) is defined as:

$$IAT(Z^{\sigma}) = \langle \sigma_1, \ldots, \sigma_m \rangle;$$

And we also define:

$$Length(IAT(Z^{\sigma})) = m$$

Premises

If $\rho \equiv \rho_1 \to \ldots \to \rho_m \to a$, we call ρ_1, \ldots, ρ_m the premises of ρ and we call a the tail of ρ .

Positions in a Term

Consider $\tau \equiv (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$.

Figure 2: Positions in the term $\tau \equiv (a \to b \to c) \to (a \to b) \to a \to c$. Figure obtained from [1].

Subpremises

A subpremise of τ is a premise of some component of τ (possibly of τ itself).

Subpremises

Example 1

Let $\tau \equiv (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$ (see Figure 2). Let's represent subpremisses as triples " $\langle term, position, \tau \rangle$ ". The six subpremisses of τ are:

- \bullet $\langle a, 1, \tau \rangle$,
- $a \rightarrow b, 2, \tau$,

- \bigcirc $\langle a, 32, \tau \rangle$.

Positive Subpremises

A subpremise of τ is positive if and only if its position has even length (the symbol * does not count when computing the length).

In Example 1 the positive subpremises are:

- \bullet $\langle a, 21, \tau \rangle$,
- $(b, 31, \tau)$,

Definition 6

 $NSS(\tau)$ is the set of all finite sequences $\langle \sigma_1, \ldots, \sigma_n \rangle$ $(n \ge 1)$ such that:

$$\sigma_1 \to \ldots \to \sigma_n \to a$$
 (1)

is positive in τ .

Remark 7

Each member of NSS(τ) is called a negative subpremise-sequence, because it is a sequence of terms that have occurrences as negative subpremises in τ .

NSS

Example 2

$$\begin{array}{l} \textit{Let } \tau \equiv (\mathsf{a} \rightarrow (\mathsf{b} \rightarrow \mathsf{d} \rightarrow \mathsf{c}) \rightarrow \mathsf{d}) \rightarrow (\mathsf{a} \rightarrow \mathsf{b} \rightarrow \mathsf{c}) \rightarrow \mathsf{d} \rightarrow \mathsf{d}. \\ \textit{We have NSS}(\tau) = \{ \langle \mathsf{a} \rightarrow (\mathsf{b} \rightarrow \mathsf{d} \rightarrow \mathsf{c}) \rightarrow \mathsf{d}, \mathsf{a} \rightarrow \mathsf{b} \rightarrow \mathsf{c}, \mathsf{d} \rangle, \langle \mathsf{b}, \mathsf{d} \rangle \}. \end{array}$$

Proof:

 $\langle 1 \rangle 1$. $NSS(\tau) \supseteq \{ \langle a \rightarrow (b \rightarrow d \rightarrow c) \rightarrow d, a \rightarrow b \rightarrow c, d \rangle, \langle b, d \rangle \}$ $\langle 2 \rangle 1$. $\langle a \rightarrow (b \rightarrow d \rightarrow c) \rightarrow d, a \rightarrow b \rightarrow c, d \rangle \in NSS(\tau)$ By definition, since:

$$(a \to (b \to d \to c) \to d) \to (a \to b \to c) \to d \to d$$
 is positive in τ , as it has position \emptyset , of even length.

 $\langle 2 \rangle 2$. $\langle b, d \rangle \in NSS(\tau)$ By definition, since:

$$b \rightarrow d \rightarrow c$$

is positive in τ as it has position 31, of even length.

 $\langle 1 \rangle 2$. $\mathit{NSS}(\tau) \subseteq \{ \langle a \rightarrow (b \rightarrow d \rightarrow c) \rightarrow d, a \rightarrow b \rightarrow c, d \rangle, \langle b, d \rangle \}$ By checking that no other finite sequence $\langle \sigma_1, \ldots, \sigma_n \rangle$ is such that $\sigma_1 \rightarrow \ldots \rightarrow \sigma_n \rightarrow a$ is positive in τ .

Definition 7

The set of all the members of the sequences in NSS(τ) will be called \cup NSS(τ)

Example 3

In Example 2, we had:

$$\mathit{NSS}(\tau) = \{ \langle a \rightarrow (b \rightarrow d \rightarrow c) \rightarrow d, a \rightarrow b \rightarrow c, d \rangle, \langle b, d \rangle \}$$

Therefore,

$$\cup \textit{NSS}(\tau) = \{a \rightarrow (b \rightarrow d \rightarrow c) \rightarrow d, a \rightarrow b \rightarrow c, d, b\}$$

Lemma 8E7

Lemma 5 (8E7 in Hindley's)

If \underline{Z}^{σ} is a subargument of a closed long typed nf-scheme X^{τ} , then

- **1** σ occurs as a positive subpremise in τ (as defined in 9E6-8),
- ② If σ is an atom, $IAT(Z^{\sigma}) = \emptyset$,
- **3** If σ is composite, $IAT(Z^{\sigma}) \in NSS(\tau)$ (defined in 9E9),

Proof of Lemma 8E7 I

PROOF:

- $\langle 1 \rangle 1$. σ occurs as a positive subpremise in τ (as defined in 9E6-8).
 - $\langle 2 \rangle 1.$ If X^τ is a long member of $\mathbb{TNS}(\Gamma)$ and $\Gamma = \{u_1: \theta_1, \dots, u_p: \theta_p, V_1: \phi_1, \dots, V_q: \phi_q\} \text{ and } \underline{Z^\sigma} \text{ is a subargument of } X^\tau, \text{ then } \sigma \text{ occurs as a positive subpremise of } \theta_1 \to \dots \to \theta_p \to \tau.$

The proof is by induction on $|X^{\tau}|$.

 $\langle 3 \rangle 1$. Basis If X^{τ} is an atom there is no $\underline{Z^{\sigma}}$ subargument of X^{τ} , and the conclusion holds vacuously.

Proof of Lemma 8E7 II

$\langle 3 \rangle 2$. Induction Step

- $\begin{array}{ll} \langle 4 \rangle 1. \ \ \mathsf{X} \ \ \mathsf{has} \ \ \mathsf{the} \ \ \mathsf{form}: \\ & (\lambda x_1^{\tau_1} \dots x_m^{\tau_m}. (y^{(\rho_1 \to \dots \to \rho_n \to e)} X_1^{\rho_1} \dots X_n^{\rho_n})^e)^{\tau_1 \to \dots \to \tau_m \to e} \\ & \ \ \mathsf{where} \ \ m, n \geq 0 \ \ \mathsf{and} \ \ \tau \equiv \tau_1 \to \dots \to \tau_m \to e. \end{array}$
- $\langle 4 \rangle 2. \ {\rm Case:} \ Z^{\sigma} \equiv X_j^{\rho_j}.$
 - $\langle 5 \rangle 1$. Since $Z^{\sigma} \equiv X_j^{\rho_j}$, we have $\sigma \equiv \rho_j$.
 - $\langle 5 \rangle$ 2. Each of ρ_1, \ldots, ρ_n occurs as a positive subpremise of $\theta_1 \to \ldots \to \theta_p \to \tau$.
 - $\langle 6 \rangle 1$. Using the notation of $\langle 4 \rangle 1$ and $\langle 2 \rangle 1$, we have that either $y \equiv x_i$ for some $i \leq m$ or $y \equiv u_i$ for some $i \leq p$.
 - $\langle 6 \rangle 2$. Case: $y \equiv x_i$. We have that $\rho_1 \to \ldots \to \rho_n \to e \equiv \tau_i$. Then, the position of each ρ_j in $\theta_1 \to \ldots \to \theta_p \to \tau$ has length 2, making it a positive subpremise.

Proof of Lemma 8E7 III

- $\langle 6 \rangle$ 3. Case: $y \equiv u_i$. Then $\rho_1 \to \ldots \to \rho_n \to e \equiv \theta_i$. Then, the position of each ρ_j has length 2, making it a positive subpremise.
- $\langle 4 \rangle 3$. Case: Z^{σ} is a subargument of $X_{j}^{
 ho_{j}}$.
 - $\langle 5 \rangle 1.$ $X_i^{\rho_j}$ is a long member of $\mathbb{TNS}(\{x_1 : \tau_1, \dots, x_m : \tau_m\} \cup \Gamma)$
 - $\langle 5 \rangle$ 2. By IH, σ occurs as a positive subpremise of $\tau_1 \to \ldots \to \tau_m \to \theta_1 \to \ldots \to \theta_p \to \rho_j$
 - $\langle 5 \rangle 3$. Case: σ is a positive subpremise of ρ_j . Then, by using the result $\langle 5 \rangle 2$ of branch $\langle 4 \rangle 2$ (notice the result holds because we can repeat the argument), we conclude.
 - $\langle 5 \rangle$ 4. Case: σ is a negative subpremise of one of $\tau_1,\ldots,\tau_m,\theta_1,\ldots,\theta_p$. Then σ will be a positive subpremise of $\theta_1\to\ldots\to\theta_p\to\tau$.

Proof of Lemma 8E7 IV

 $\langle 2 \rangle 2$. Since X^{τ} is closed, we can apply $\langle 2 \rangle 1$ with $\Gamma = \emptyset$ and conclude.

Proof of Lemma 8E7 V

- $\langle 1 \rangle 2$. If σ is an atom, $IAT(Z^{\sigma}) = \emptyset$.
 - $\langle 2 \rangle 1$. $IAT(Z^{\sigma})$ coincides with the sequences of all premises of σ .
 - $\langle 3 \rangle 1$. Z^{σ} is long.
 - $\langle 3 \rangle$ 2. Let: $IAT(Z^{\sigma}) = \langle \sigma_1, \dots, \sigma_m \rangle$. Since Z^{σ} is long, $\sigma \equiv \sigma_1 \to \dots \to \sigma_m \to e$.
 - $\langle 2 \rangle 2$. Since σ is an atom, there are no premises. By $\langle 2 \rangle 1$, $IAT(Z^{\sigma}) = \emptyset$.

Proof of Lemma 8E7 VI

- $\langle 1 \rangle 3$. If σ is composite, $IAT(Z^{\sigma}) \in NSS(\tau)$ (defined in 9E9)
 - $\langle 2 \rangle 1$. $IAT(Z^{\sigma}) \in NSS(\sigma)$.
 - $\langle 3 \rangle 1$. Z^{σ} is long.
 - $\langle 3 \rangle$ 2. Let: $IAT(Z^{\sigma}) = \langle \sigma_1, \dots, \sigma_m \rangle$. Then, since Z^{σ} is long, $\sigma \equiv \sigma_1 \to \dots \to \sigma_m \to e$.
 - $\langle 3 \rangle 3$. By $\langle 3 \rangle 1$, and the definition of $NSS(\sigma)$ (which is only defined for σ composite) we conclude.
 - $\langle 2 \rangle 2$. $NSS(\sigma) \subseteq NSS(\tau)$. It will be proved in $\langle 1 \rangle 4$.

Proof of Lemma 8E7 VII

- $\langle 1 \rangle 4$. $NSS(\sigma) \subseteq NSS(\tau)$.
 - $\langle 2 \rangle 1$. By $\langle 1 \rangle 1$, σ occurs as a positive subpremise in τ .
 - $\langle 2 \rangle$ 2. By the technical lemma 9E9.2(iii), since σ occurs as a positive subpremise of τ , we have $NSS(\sigma) \subseteq NSS(\tau)$.

Lemma 8E7

Remark 8

Notice that Lemma 8E7 connects $IAT(Z^{\sigma})$, which in general depends on the structure of Z^{σ} and hence implicitly on that of X^{τ} , with $NSS(\tau)$, which depends on τ and nothing else.

Corollary 8E7.1

Corollary 6 (8E7.1 in Hindley's)

If X^{τ} is a closed long typed nf-scheme, the type of each meta-variable in X^{τ} either occurs as a positive subpremise of τ or is τ itself.

- $\langle 1 \rangle 1$. Case: X^{τ} is a composite nf-scheme.
 - $\langle 2 \rangle 1$. Let: Z^{σ} be an arbitrary metavariable in X^{τ} .
 - $\langle 2 \rangle 2$. An occurrence of Z^{σ} in X^{τ} is a subargument.
 - $\langle 2 \rangle$ 3. Then, by Lemma 8E7, σ occurs as a positive subpremise of τ .
- $\langle 1 \rangle 2$. Case: X^{τ} is an atomic nf-scheme. In this case, X^{τ} is a meta-variable.

Corollary 8E7.2 I

Corollary 7 (8E7.2 in Hindley's)

If X^{τ} is a closed long typed nf-scheme and $\underline{Z^{\sigma}}$ is a subargument of X^{τ} or $\underline{Z^{\sigma}} \equiv \underline{X^{\tau}}$, then:

- $2 \quad Length(CA(\underline{Z}^{\sigma}, X^{\tau})) \leq (|\tau| 1) \times Depth(X^{\tau}),$
- **1** If $\underline{\lambda v_1^{\rho_1}}, \ldots, \underline{\lambda v_r^{\rho_r}}$ are all abstractors in X^{τ} (not just the initial ones), then $\{\rho_1, \ldots, \rho_r\}$ has $\leq |\tau| 1$ distinct members.

Corollary 8E7.2 I

- $\langle 1 \rangle 1$. Length $(IA(Z^{\sigma})) = \text{Length}(IAT(Z^{\sigma})) \leq |\tau| 1$
 - $\langle 2 \rangle 1$. Let: $Z^{\sigma} \equiv \lambda x_1^{\sigma_1} \dots x_m^{\sigma_m}.yZ_1 \dots Z_n$
 - $\langle 2 \rangle$ 2. Length($IA(Z^{\sigma})$) = Length($IAT(Z^{\sigma})$) = m. By definition, $IA(Z^{\sigma}) = \langle x_1, \dots, x_m \rangle$ and $IAT(Z^{\sigma}) = \langle \sigma_1, \dots \sigma_m \rangle$.
 - $\langle 2 \rangle$ 3. Length $(IAT(Z^{\sigma})) \leq |\tau| 1$
 - $\langle 3 \rangle 1$. Case: σ is atomic. Then, $IAT(Z^{\sigma}) = \emptyset$ by Lemma 8E7(ii). Therefore, Length $(IAT(Z^{\sigma})) = 0$ and since $|\tau| \geq 1$ the inequality holds.
 - $\langle 3 \rangle$ 2. Case: σ is composite.
 - $\langle 4 \rangle 1$. $IAT(Z^{\sigma}) \in NSS(\tau)$ By Lemma 8E7(iii).
 - $\langle 4 \rangle 2$. $IAT(Z^{\sigma}) = \langle \sigma_1, \dots, \sigma_m \rangle$. By definition.
 - $\langle 4 \rangle$ 3. If $\langle \sigma_1, \dots, \sigma_m \rangle \in \mathit{NSS}(\tau)$ then $m \leq |\tau| 1$. By Lemma 9E9.3(iv)

Corollary 8E7.2 II

- $\langle 1 \rangle$ 2. Length $(CA(\underline{Z^{\sigma}}, X^{\tau})) \leq (|\tau| 1) \times Depth(X^{\tau})$
 - $\langle 2 \rangle$ 1. Case: $\underline{Z} \equiv \underline{X}$. Since no abstractor in X has scope containing $\underline{Z} \equiv \underline{X}$, Length($CA(\underline{Z}^{\sigma}, X^{\tau})$) = 0.
 - $\langle 2 \rangle 2$. Case: $\underline{Z} \not\equiv \underline{X}$.
 - $\langle 3 \rangle 1$. Let: $\langle \underline{Z_0}, \ldots, \underline{Z_k} \rangle$, with $k \geq 1$ be the argument-branch from \underline{X} to \underline{Z} .
 - $\langle 3 \rangle$ 2. Length(CA(\underline{Z} , X)) = Length(IA(Z_0))+ ...+ Length(IA(Z_{k-1})).

By 8E5.1, remembering that in an nf-scheme there are no bound-variable clashes.

- $\langle 3 \rangle$ 3. Length(IA(Z_0))+ ...+ Length(IA(Z_{k-1})) $\leq k(|\tau|-1)$ By Step $\langle 1 \rangle$ 1 we have Length(IA(Z_i)) $\leq (|\tau|-1)$.
- (3)4. $k(|\tau|-1) \le (|\tau|-1) \times Depth(X)$ By 8E4.1(ii), Depth(X) is greater or equal than the length of the argument-branch from X to Z, which is k.

Corollary 8E7.2 III

- $\langle 1 \rangle$ 3. If $\underline{\lambda v_1^{\rho_1}}$, ..., $\underline{\lambda v_r^{\rho_r}}$ are all abstractors in X^{τ} (not just the initial ones), then $\{\rho_1,\ldots,\rho_r\}$ has $\leq |\tau|-1$ distinct members.
 - $\langle 2 \rangle 1. \ \rho_i \in \cup NSS(\tau).$
 - $\langle 3 \rangle 1$. Each ρ_i is in $IAT(X^{\tau})$ or in $IAT(Y^{\theta})$ for some subargument Y^{θ} of X^{τ} .
 - $\langle 3 \rangle$ 2. Case: $\rho_i \in IAT(X^{\tau})$. By the definition of $IAT(X^{\tau})$ and of $\cup NSS(\tau)$ we get that $\rho_i \in \cup NSS(\tau)$.
 - $\langle 3 \rangle$ 3. Case: $\rho_i \in IAT(Y^{\theta})$. By Lemma 8E7(iii) we get that $\rho_i \in \cup NSS(\tau)$.
 - $\langle 2 \rangle 2$. $| \cup \textit{NSS}(\tau) | \leq |\tau| 1$ By Lemma 9E9.3

Section 2

8F - Stretching, Shrinking and Completeness

Subsection 1

Search Completeness Lemma

Search Completeness Lemma

Lemma 8 (8F1 in Hindley's)

Part (iii) of the search theorem 8C5 holds; i.e. if τ is composite and $d \ge 0$, then:

$$Long(au,d)\subseteq \mathcal{A}(au,\leq d+1)$$

The way to prove the lemma would be by induction on d, however to make the induction hypothesis work, we need to strength it a bit...

An Auxiliary Lemma For Completeness

Lemma 9

Let $\mathbb{L}^*(\tau,d)$ be the set of all long typed closed nf-schemes X^{τ} such that $Depth(X^{\tau})=d$ and

- X^{τ} is proper and all its meta-variables have depth d in X^{τ} .
- **2** all subarguments with depth d in X^{τ} are meta-variables.

Then,

$$\mathbb{L}^*(\tau, d) \subseteq \mathcal{A}(\tau, \le d) \tag{1}$$

and

$$Long(\tau, d) \subseteq \mathcal{A}(\tau, \leq d+1)$$
 (2)

where (1) is understood modulo renaming of meta-variables.

An Auxiliary Lemma For Completeness I

PROOF: The proof is by induction on *d*:

- $\langle 1 \rangle 1$. **Basis:** d = 0.
 - $\langle 2 \rangle 1$. $\mathbb{L}^*(\tau,0) \subseteq \mathcal{A}(\tau,0)$
 - $\langle 3 \rangle 1$. Let: $X^{\tau} \in \mathbb{L}^*(\tau, d)$, with d = 0.
 - $\langle 3 \rangle 2.$ X^{τ} is a meta-variable, as the only proper nf-schemes with depth 0 are meta-variables.
 - $\langle 3 \rangle 3$. $\mathcal{A}(\tau,0) = \{V^{\tau}\}$, by step 0 of the search algorithm (8C6).
 - $\langle 3 \rangle$ 4. Renaming the meta-variable X^{τ} to V^{τ} we see the result holds.
 - $\langle 2 \rangle 2$. $Long(\tau, 0) \subseteq \mathcal{A}(\tau, \leq 1)$
 - $\langle 3 \rangle 1$. Let: $M^{\tau} \in Long(\tau, 0)$, with $\tau \equiv \tau_1 \to \ldots \to \tau_m \to e \pmod{m \geq 1}$
 - $\langle 3 \rangle 2$. M^{τ} has form $\lambda y_1^{\tau_1} \dots y_m^{\tau_m} y_i^{\tau_i}$ with $1 \leq i \leq m, \tau_i \equiv e$.
 - $\langle 3 \rangle 3$. $\mathcal{A}(\tau,0) = \{V^{\tau}\}$, by step 0 of the search algorithm (8C6).
 - $\langle 3 \rangle$ 4. The search algorithm 8C6 Step 1:Part IIa1 adds M^{τ} (it may be necessary a renaming of bound variables) to $\mathcal{A}(\tau, 1)$.

Notice that the condition that the tail of τ_i (which is $\tau_i \equiv e$ itself) is isomorphic to the tail of τ (which is e) is indeed satisfied.

An Auxiliary Lemma For Completeness II

- $\langle 1 \rangle 2$. Induction Step: d to d+1.
 - $\langle 2 \rangle 1$. $\mathbb{L}^*(\tau, d+1) \subseteq \mathcal{A}(\tau, \leq d+1)$
 - $\langle 3 \rangle 1$. Let: $X \in \mathbb{L}^*(\tau, d+1)$.
 - $\langle 3 \rangle$ 2. Let: $\underline{W_1}$, ..., $\underline{W_r}$ with $r \geq 1$ the subarguments of X of depth d and let X' be the result of replacing each $\underline{W_i}$ in X by a distinct new meta-variable $\underline{V_i}$ of the same type as $\underline{W_i}$.
 - $\langle 4 \rangle 1$. Since $X \in \mathbb{L}^*(\tau, d+1)$, Depth(X) = d+1.
 - $\langle 4 \rangle$ 2. By 8E3.1(ii), X has a subargument whose depth in X is d+1.
 - $\langle 4 \rangle$ 3. By 8E4.1, X has a subargument whose depth in X is d.
 - $\langle 4 \rangle 4$. Therefore, if $\underline{W_1}, \ldots, \underline{W_r}$ are the subarguments of X of depth d, we must have $r \geq 1$.

An Auxiliary Lemma For Completeness III

- $\langle 3 \rangle 3. \ X' \in \mathbb{L}^*(\tau, d).$
 - $\langle 4 \rangle 1$. X' is a nf-scheme.

By definition. Notice that each new meta-variable $\underline{V_i}$ will occur in an argument position because each $\underline{W_i}$ is a subargument.

- $\langle 4 \rangle 2$. X' is long, closed and has depth d.
- X' is long since X is long and each replacement of $\underline{W_i}$ by $\underline{V_i}$ preserves type. It is closed since X was closed and each replacement of $\underline{W_i}$ by $\underline{V_i}$ adds no free variable. It has depth d as every subargument of depth d is a meta-variable.
- $\langle 4 \rangle 3$. X' is proper and all its meta-variables have depth d in X'. The proof is by contradiction. If X' contained a meta-variable occurrence \underline{V} at a depth < d, such a \underline{V} could not be a \underline{V}_i and hence would also occur in X at a depth < d. This contradicts the fact that X is proper and all its meta-variables have depth d in X.
- $\langle 4 \rangle 4$. All subarguments with depth d in X' are meta-variables. By the construction of X'.

An Auxiliary Lemma For Completeness IV

- $\langle 3 \rangle$ 4. There is a $X'' \in \mathcal{A}(\tau, \leq d)$ that is identical to X' except perhaps for alphabetic variations of meta-variables. By the induction hypothesis, since $X' \in \mathbb{L}^*(\tau, d)$.
- $\langle 3 \rangle$ 5. Apply Step d+1 of Algorithm 8C6 to each V_i in X''. The algorithm will give X as an extension of X''.
 - $\langle 4 \rangle 1$. Each W_i has form $W_i \equiv \lambda x_{i,1} \dots x_{i,m_i}.y_i V_{i,1} \dots V_{i,n_i}$ Since Depth(X) = d+1, we have $Depth(W_i) \leq 1$. Since X satisfies the conditions (1) of $\mathbb{L}^*(\tau,d+1)$, W_i is not a meta-variable. Since X satisfies the condition (2) of $\mathbb{L}^*(\tau,d+1)$, the result holds.
 - $\langle 4 \rangle$ 2. By the form of W_i (see Step $\langle 4 \rangle$ 1) and the algorithm 8C6, each $\underline{W_i}$ will be a suitable replacement for $\underline{V_i}$.
 - $\langle 4 \rangle$ 3. X is an extension of X".
- $\langle 3 \rangle 6. \ X \in \mathcal{A}(\tau, \leq d+1).$

An Auxiliary Lemma For Completeness V

- $\langle 2 \rangle 2$. Long $(\tau, d+1) \subseteq \mathcal{A}(\tau, \leq d+2)$
 - $\langle 3 \rangle$ 1. Let: $M \in Long(\tau, d+1)$.
 - $\langle 3 \rangle$ 2. Let: $\underline{U_1}$, ..., $\underline{U_r}$ with $r \geq 1$ be the subarguments of M, without repetition, whose depth in M is d+1.

By 8E3.1, M has a subargument whose depth in M is d+1. Therefore, $r \ge 1$.

- $\langle 3 \rangle 3$. Each U_i is of the form $U_i \equiv \lambda x_{i,1} \dots x_{i,m_i} y_i$ Since Depth(M) = d+1, each U_i must have depth 0 and we conclude.
- $\langle 3 \rangle$ 4. Let: M' be the result of replacing each $\underline{U_i}$ in M by a distinct new meta-variable $\underline{V_i}$ with the same type as $\underline{U_i}$.
- $\langle 3 \rangle 5. \ M' \in \mathbb{L}^*(\tau, d+1).$
 - $\langle 4 \rangle 1$. M' is a nf-scheme.

Because M is a nf-scheme and the replacement of $\underline{U_i}$ by $\underline{V_i}$ preserves the restrictions necessary for a nf-scheme.

 $\langle 4 \rangle 2$. M' is long and closed.

An Auxiliary Lemma For Completeness VI

Since M is long and closed and each replacement of $\underline{U_i}$ by $\underline{V_i}$ preserves type and adds no free variables, we conclude that M' is long and closed respectively.

 $\langle 4 \rangle 3$. M' has depth d+1.

When going from M to M' all subarguments whose depth in M was d+1 had depth 0 (when viewed as terms, instead of subarguments of M) and were replaced by a meta-variable, of depth 0. Therefore, Depth(M') = Depth(M) = d+1.

 $\langle 4
angle 4$. M' is proper and all it's meta-variables have depth d+1 in M' .

Because this result holds for M and all meta-variables introduced replace subarguments whose depth in M was d+1.

 $\langle 4 \rangle$ 5. All subarguments with depth d+1 in M' are meta-variables. Because all the subarguments of depth d+1 in M were replaced by meta-variables to obtain M'.

An Auxiliary Lemma For Completeness VII

 $\langle 3 \rangle$ 6. There is a M'', differing from M' only by renaming meta-variables, such that $M'' \in \mathcal{A}(\tau, \leq d+1)$.

Because
$$\mathbb{L}^*(\tau, d+1) \subseteq \mathcal{A}(\tau, \leq d+1)$$
 (see Step $\langle 2 \rangle 1$)

 $\langle 3 \rangle$ 7. Applying Step d+2 of Algorithm 8C6 to M'' will give us that M is an extension of M''.

By the Algorithm 8C6, since each \underline{U}_i is a suitable replacement for \underline{V}_i in M''.

 $\langle 3 \rangle 8. \ M \in \mathcal{A}(\tau, \leq d+2).$

Search Completeness Lemma

Lemma 10 (8F1 in Hindley's)

Part (iii) of the search theorem 8C5 holds; i.e. if τ is composite and $d \ge 0$, then:

$$\mathsf{Long}(au, d) \subseteq \mathcal{A}(au, \leq d+1)$$

PROOF: By Result (2) of Lemma 9.

Subsection 2

Stretching Lemma

Detailed Stretching Lemma

Lemma 11 (8F2 in Hindley's)

If Long (τ) has a member M^{τ} with depth $\geq ||\tau||$ then:

- there exists $(M^*)^{\tau} \in Long(\tau)$ with $Depth((M^*)^{\tau}) \geq Depth(M^{\tau}) + 1$,
- **2** Long(τ) is infinite.

Proof of Detailed Stretching Lemma I

Proof:

- $\langle 1 \rangle 1$. There exists $(M^*)^{\tau} \in Long(\tau)$ with $Depth((M^*)^{\tau}) \geq Depth(M^{\tau}) + 1$.
 - $\langle 2 \rangle$ 1. Let: M be a typed closed long β -nf with type τ and without bound-variable clashes. Let: $d = Depth(M) \geq ||\tau|| \geq 1$.
 - $\langle 2 \rangle$ 2. Let: $\langle \underline{N_0}, \ldots, \underline{N_d} \rangle$ be an argument-branch of length d. Here $\underline{N_0} \equiv \underline{M}$ and $\underline{N_{i+1}}$ is an argument of N_i .
 - $\langle 2 \rangle 3$. Each N_i has form:

$$\lambda x_{i,1} \dots x_{i,m_i} \cdot y_i P_{i,1} \dots P_{i,n_i} \qquad (m_i, n_i \geq 0.)$$

 $\langle 2 \rangle$ 4. Let: $\underline{B_i}$ be the body of N_i for $i=0,\ldots,d$. That is: $\underline{B_i} \equiv y_i P_{i,1} \ldots P_{i,n_i}$

Proof of Detailed Stretching Lemma II

- $\langle 2 \rangle$ 5. At least two of these $\underline{B_i}$ have the same type.
 - $\langle 3 \rangle 1$. The type of each B_i is an atom, since N_i is long.
 - $\langle 3 \rangle$ 2. Each one of this atoms occur in τ , by 2B3(i).
 - $\langle 3 \rangle 3$. The number of type-variables in τ is $||\tau|| \leq d$ (by hypothesis).
 - $\langle 3 \rangle 4$. Since there are d+1 components $\underline{B_0}, \ldots, \underline{B_d}$ at least two of these must have the same type.
- $\langle 2 \rangle$ 6. Let: \underline{B}_{p} and \underline{B}_{p+r} , with $r \geq 1$ be a pair with the same type. Let: M^* be the result of replacing \underline{B}_{p+r} in M by a copy of \underline{B}_{p} (after changing bound variables in this copy to avoid clashes).

Proof of Detailed Stretching Lemma III

- $\langle 2 \rangle 7$. $Depth(M^*) \geq d+1$.
 - $\langle 3 \rangle 1$. $Depth(B_p) \geq r + Depth(B_{p+r})$.

Since \underline{B}_p properly contains \underline{B}_{p+r} and B_{p+r} , when seeing as a subargument of B_p , has depth r in B_p .

 $\langle 3 \rangle 2$. M^* has an argument-branch with length d+r.

The members of the argument-branch are:

$$\underline{N}_0^*, \dots, \underline{N}_{p+r}^*, \underline{N}_{p+1}^o, \dots \underline{N}_d^o$$

where for $0 \le i \le p+r$ each \underline{N}_i^* has the same position in M^* as \underline{N}_i had in M and for $p+1 \le j \le d$ we have $N_i^o \equiv N_j$.

 $\langle 3 \rangle$ 3. $Depth(M^*) \geq d+r \geq d+1$. $Depth(M^*) \geq d+r$ by Step $\langle 3 \rangle$ 2 and 8E4.1 and $d+r \geq d+1$ since $r \geq 1$ (Step $\langle 2 \rangle$ 6).

Proof of Detailed Stretching Lemma IV

- $\langle 2 \rangle 8$. M^* is indeed a long typed term.
 - $\langle 3 \rangle$ 1. Let: Γ_i be the context that assigns to the initial abstractors of N_i the types they have in M.
 - $\langle 3 \rangle 2$. The set $Con(B_p) \cup Con(M) \cup \Gamma_0 \cup \ldots \cup \Gamma_{p+r}$ is consistent.
 - $\langle 4 \rangle 1$. $\Gamma_0 \cup \ldots \cup \Gamma_d$ is consistent.

Since M has no bound variable clashes, the variables in $\Gamma_0, \ldots, \Gamma_d$ are all distinct.

- $\langle 4 \rangle 2$. $Con(B_p) \subseteq \Gamma_0 \cup \ldots \cup \Gamma_d$.
 - $\langle 5 \rangle 1$. Every variable free in B_p is bound in one of N_0, \ldots, N_p because M is closed and \underline{B}_p is in \underline{N}_p .
 - $\langle 5 \rangle$ 2. Therefore, by the definition of typed term (5A1) we get $B_p \in \mathbb{TT}(\Gamma_0, \dots, \Gamma_p)$.
 - $\langle 5 \rangle 3$. By the definition of Con() we obtain $Con(B_p) \subseteq \Gamma_0 \cup \ldots \cup \Gamma_p$.
 - $\langle 5 \rangle 4$. $\Gamma_0 \cup \ldots \cup \Gamma_p \subseteq \Gamma_0 \cup \ldots \cup \Gamma_d$.

Proof of Detailed Stretching Lemma V

- $\langle 4 \rangle 3$. $Con(M) \subseteq \Gamma_0 \cup \ldots \cup \Gamma_d$. Since M is closed, $Con(M) = \emptyset$.
- $\langle 4 \rangle 4$. $\Gamma_0 \cup \ldots \cup \Gamma_{p+r} \subseteq \Gamma_0 \cup \ldots \cup \Gamma_d$.
- $\langle 3 \rangle 3$. Since M is a genuine typed term and Step $\langle 3 \rangle 2$ holds and the abstractors in M whose scope contain \underline{B}_{p+r} , are exactly the initial abstractors of N_0, \ldots, N_{p+r} we can apply Lemma 5B2.1(ii) and conclude that M^* is a genuine typed term.
- $\langle 3 \rangle$ 4. M^* is long since M is long and in the substitution of \underline{B}_{p+r} by \underline{B}_p the types of \underline{B}_{p+r} and \underline{B}_p are the same.
- $\langle 3 \rangle$ 5. M^* is closed since M is closed and the substitution of $\underline{B}_{\rho+r}$ by \underline{B}_{ρ} has not removed any abstractor.

Proof of Detailed Stretching Lemma VI

 $\langle 1 \rangle 2$. $Long(\tau)$ is infinite. By repetition of Step $\langle 1 \rangle 1$.

Subsection 3

Shrinking Lemma

Detailed Shrinking Lemma

Lemma 12 (8F3 in Hindley's)

If $\mathsf{Long}(au)$ has a member $\mathsf{M}^ au$ with $\mathsf{depth} \geq \mathbb{D}(au)$ then

• it has a member $M^{*\tau}$ with

$$Depth(M^{\tau}) - ||\tau|| \leq Depth(M^{*\tau}) < Depth(M^{\tau})$$

 \bullet it has a member N^{τ} with

$$\mathbb{D}(au) - || au|| \leq Depth(\mathsf{N}^ au) < \mathbb{D}(au)$$

Proof of Detailed Shrinking Lemma I

 $\langle 1 \rangle 1$. If $Long(\tau)$ has a member M^{τ} with depth $\geq \mathbb{D}(\tau)$ then it has a member $M^{*\tau}$ with:

$$Depth(M^{\tau}) - ||\tau|| \leq Depth(M^{*\tau}) < Depth(M^{\tau})$$

- $\langle 2 \rangle 1$. Let: M be a member of $Long(\tau)$ without bound-variable clashes.
- $\langle 2 \rangle 2$. Let: d = Depth(M). $d \geq \mathbb{D}(\tau) \geq 2$.
 - $\langle 3 \rangle 1.$ $d = Depth(M) > \mathbb{D}(\tau)$ by hypothesis.
 - $\langle 3 \rangle$ 2. By Definition, $\mathbb{D}(\tau) = |\tau| \times ||\tau||$.
 - $\langle 3 \rangle$ 3. $|\tau| \geq 2$ since τ is composite. Notice that τ must be composite since atomic types have no inhabitants.
 - $\langle 3 \rangle 4$. $\mathbb{D}(\tau) \geq 2$.

Proof of Detailed Shrinking Lemma II

 $\langle 2 \rangle$ 3. Consider any argument-branch of M with length d. It has form $\langle N_0, \dots, N_d \rangle$

where $\underline{N}_0 \equiv \underline{M}$ and \underline{N}_{i+1} is an argument of \underline{N}_i for $i=0,\ldots,d-1$. We will shrink this branch.

By 8E4.1, since Depth(M) = d, M has at least one argument-branch with length d.

 $\langle 2 \rangle$ 4. Each N_i has form

$$N_i \equiv \lambda x_{i,1} \dots x_{i,m_i} y_i P_{i,1} \dots P_{i,n_i} \qquad (m_i, n_i \ge 0)$$

- $\langle 2 \rangle$ 5. Let: $\rho_i \equiv \rho_{i,1} \to \ldots \to \rho_{i,m_i} \to a_i$ be the type of N_i .
- $\langle 2 \rangle$ 6. $IAT(N_i) = \langle \rho_{i,1}, \dots, \rho_{i,m_i} \rangle$. Since \underline{N}_i is long, the types of $x_{i,1}, x_{i,2}, \dots$ are exactly $\rho_{i,1}, \rho_{i,2}, \dots$ By the definition of IAT we obtain $IAT(N_i) = \langle \rho_{i,1}, \dots, \rho_{i,m_i} \rangle$.
- $\langle 2 \rangle$ 7. Let: \underline{B}_i be the body of N_i , just as in the proof of Lemma 8F2 (the previous lemma). The type of \underline{B}_i is a_i . Since the type of B_i is the tail of the type of N_i .

Proof of Detailed Shrinking Lemma III

 $\langle 2 \rangle$ 8. Let: the sequence d_0, d_1, \ldots be defined as follows. $d_0 = 0$. d_{j+1} is the least index greater than d_j such that $IAT(N_{d_{j+1}})$ differs from all of:

$$IAT(N_{d_0}), \ldots, IAT(N_{d_j})$$

.

- $\langle 2 \rangle 9$. Let: *n* be the greatest integer such that d_n is defined.
- $\langle 2 \rangle$ 10. d_0, \ldots, d_n partition the set $\{0, 1, \ldots, d\}$ into the following n+1, non empty sets, which will be called **IAT-intervals**: $\mathbb{I}_j = \{d_j, d_j+1, \ldots, d_{j+1}-1\} \qquad (0 \leq j \leq n-1)$ $\mathbb{I}_n = \{d_n, d_n+1, \ldots, d\}$
- $\langle 2 \rangle 11$. If \mathbb{I}_j contains two numbers p and p+r, with $r \geq 1$ and B_p and B_{p+r} have the same type we shal call $\langle p, p+r \rangle$ a **tail-repetition**. It will be called **minimal** iff there is no other tail-repetition $\langle p', q' \rangle$ with $p \leq p' < q' \leq p+r$.

Proof of Detailed Shrinking Lemma IV

- $\langle 2 \rangle 12$. At least one *IAT*-interval contains a tail-repetition.
 - $\langle 3 \rangle 1$. Suppose, by contradiction, that no interval contained a tail-repetition.
 - $\langle 3 \rangle 2$. An \mathbb{I}_j that contains no tail-repetition must have $\leq ||\tau||$ members.
 - $\langle 4 \rangle 1$. For such an \mathbb{I}_i , the atoms:

$$a_{d_j},\ldots,a_{d_{j+1}-1}$$

must all be distinct.

- $\langle 4 \rangle 2$. By Step $\langle 2 \rangle 5$, each a_i occurs in ρ_i .
- $\langle 4 \rangle$ 3. By 8E7, ρ_i occurs in τ . So, a_i occurs in τ .
- $\langle 4 \rangle 4$. By definition, there are only $||\tau||$ distinct atoms in τ .
- $\langle 4 \rangle$ 5. Hence, \mathbb{I}_j has $\leq ||\tau||$ members.

Proof of Detailed Shrinking Lemma V

- $\langle 3 \rangle 3$. Since there are n+1 *IAT* intervals in the given branch, the branch would have $\leq (n+1) \times ||\tau||$ members.
- $\langle 3 \rangle$ 4. $n+1 \leq |\tau|$. So, the branch would have $\leq |\tau| \times ||\tau||$ members.
 - $\langle 4 \rangle 1$. Since our argument-branch has d members after $\underline{\mathbb{N}}_0$, we have $n \leq d$ and $d_n \leq d$.
 - $\langle 4 \rangle 2$. $0 = d_0 < d_1 < \ldots < d_n \le d$.
 - $\langle 4 \rangle$ 3. For each i, $IAT(N_i)$ is identical to one of: $IAT(N_{d_0}), IAT(N_{d_1}), \ldots, IAT(N_{d_n})$ where each one of the IAT's in the equation above are distinct.
 - $\langle 4 \rangle$ 4. $n+1 \leq \#(NSS(\tau))+1$ By 8E7, each one of the n+1 *IAT's* are empty or members of $NSS(\tau)$. Since they are distinct, at most one of them is empty.

$$\langle 4 \rangle$$
5. $\#(NSS(\tau)) \leq |\tau| - 1$
By 9E9.3(ii)

Proof of Detailed Shrinking Lemma VI

 $\langle 3 \rangle$ 5. However the branch has d+1 members and using Step $\langle 2 \rangle$ 2 we obtain

$$d+1 = Depth(M) + 1 \geq \mathbb{D}(\tau) + 1 > |\tau| \times ||\tau||$$
 which contradicts Step $\langle 3 \rangle$ 4.

 $\langle 2 \rangle$ 13. We start to build M^* as follows. In the given branch take the last \mathbb{I}_j containing a tail-repetition, choose a minimal tail-repetition $\langle p,p+r \rangle$ in it and change M to a new term M' by replacing \mathcal{B}_p by \mathcal{B}_{p+r} .

Proof of Detailed Shrinking Lemma VII

- $\langle 2 \rangle$ 14. M' is a genuine typed term. M' is a long β -nf with the same type as M. Also |M'| < |M|.
 - $\langle 3 \rangle$ 1. M' is a genuine typed term, with the same type as M. We repeat the argument used in the proof of the Stretching Lemma (8F2):
 - $\langle 4 \rangle$ 1. Let: Γ_i be the context that assigns to the initial abstractors of N_i the types they have in M.
 - $\langle 4 \rangle 2$. The set $Con(B_{p+r}) \cup Con(M) \cup \Gamma_0 \cup \ldots \cup \Gamma_p$ is consistent.
 - $\langle 5 \rangle 1$. $\Gamma_0 \cup \ldots \cup \Gamma_d$ is consistent. Since M has no bound variable clashes, the variables in $\Gamma_0, \ldots, \Gamma_d$ are all distinct.
 - $\langle 5 \rangle 2$. $Con(B_{p+r}) \subseteq \Gamma_0 \cup \ldots \cup \Gamma_d$.
 - $\langle 6 \rangle 1$. Every variable free in B_{p+r} is bound in one of N_0, \ldots, N_{p+r} because M is closed and \underline{B}_{p+r} is in \underline{N}_{p+r} .

Proof of Detailed Shrinking Lemma VIII

- $\langle 6 \rangle$ 2. Therefore, by the definition of typed term (5A1) we get $B_{p+r} \in \mathbb{TT}(\Gamma_0 \cup \ldots \cup \Gamma_{p+r})$.
- $\langle 6 \rangle$ 3. By the definition of Con() we obtain $Con(B_{p+r}) \subseteq \Gamma_0 \cup \ldots \cup \Gamma_{p+r}$.
- $\langle 6 \rangle 4$. $\Gamma_0 \cup \ldots \cup \Gamma_{p+r} \subseteq \Gamma_0 \cup \ldots \cup \Gamma_d$.
- $\langle 5 \rangle 3$. $Con(M) \subseteq \Gamma_0 \cup \ldots \cup \Gamma_d$. Since M is closed, $Con(M) = \emptyset$.
- $\langle 5 \rangle 4$. $\Gamma_0 \cup \ldots \cup \Gamma_{p+r} \subseteq \Gamma_0 \cup \ldots \cup \Gamma_d$.
- $\langle 4 \rangle 3$. Since M is a genuine typed term and Step $\langle 4 \rangle 2$ holds and the abstractors in M whose scope contain \underline{B}_p , are exactly the initial abstractors of N_0, \ldots, N_p we can apply Lemma 5B2.1(ii) and conclude that M' is a genuine typed term with the same type as M.

Proof of Detailed Shrinking Lemma IX

- $\langle 3 \rangle 2$. M' is a long β -nf. Since M is a long β -nf and B_p and B_{p+r} have the same type.
- $\langle 3 \rangle 3$. |M'| < |M|. Since B_p properly contains B_{p+r} we have $|B_{p+r}| < |B_p|$ and hence |M'| < |M|.

Proof of Detailed Shrinking Lemma X

- $\langle 2 \rangle$ 15. Although M' might not be closed, there is a procedure in which, from M', we can obtain a long β -nf M'' with the same type and depth as M' which is closed. Notice that we are not claiming that M' and M'' are related by α -conversion or any other way.
 - $\langle 3 \rangle 1$. First, notice that M' might not be closed. M' might not be closed because the change from M to M' has removed the initial abstractors of $\underline{N}_{p+1}, \ldots, \underline{N}_{p+r}$ from M, and so some free variables occurrences in \underline{B}_{p+r} that were bound in M might now be free in M'.
 - $\langle 3 \rangle$ 2. Let: \underline{v} be free in the occurrence of \underline{B}_{p+r} in M' that has replaced \underline{B}_p in M. Let: \underline{v} be also free in M'.

Proof of Detailed Shrinking Lemma XI

- $\langle 3 \rangle 3$. There is a variable in $x_{d_q,k} \in IA(N_{d_q})$, with $d_q \leq p$ that has the same type as v.
 - $\langle 4 \rangle 1$. v occurs in $IA(\underline{\mathbb{N}}_h)$ for some h with $p+1 \leq h \leq p+r$. Since \underline{v} is free in M', v does not occur in a covering abstractor of this occurrence of B_{p+r} in M'. This covering abstractors are exactly the initial abstractors of $\underline{\mathbb{N}}_0, \ldots, \underline{\mathbb{N}}_p$ in M so:

$$v \notin IA(\underline{\mathbb{N}}_0) \cup \ldots \cup IA(\underline{\mathbb{N}}_p)$$

However, M is closed and therefore our \underline{v} , in M, must be in the scope of a $\underline{\lambda v}$ in one of $IA(\underline{N}_0), \ldots, IA(\underline{N}_{p+r})$. Hence, v occurs in $IA(\underline{N}_h)$ for some h with $p+1 \leq h \leq p+r$.

 $\langle 4 \rangle 2$. In our notation, we have $v \equiv x_{h,k}$ for some $k \leq m_h$. Also, the type of v is $\rho_{h,k} \in IAT(\underline{\mathbb{N}}_h)$.

Proof of Detailed Shrinking Lemma XII

 $\langle 4 \rangle 3$. $IAT(\underline{\mathbb{N}}_h) = IAT(\underline{\mathbb{N}}_{d_q})$ for some $q \leq j$. Since the tail-repetition $\langle p, p+r \rangle$ is in the interval \mathbb{I}_j , by our definition of d_0, \ldots, d_n , we get that $IAT(\underline{\mathbb{N}}_h)$ coincides with:

$$IAT(\underline{\mathbb{N}}_{d_0}), \ldots, IAT(\underline{\mathbb{N}}_{d_i})$$

- $\langle 4 \rangle 4$. Hence, there is a variable $x_{d_q,k} \in IA(N_{d_q})$ with the same type as v.
- $\langle 4 \rangle$ 5. $d_q \leq p$. From Step $\langle 4 \rangle$ 3, we have $q \leq j$, which implies $d_q \leq d_j$. Since the tail-repetition $\langle p, p+r \rangle$ occurs in \mathbb{I}_j we have $p \geq d_j$.

Proof of Detailed Shrinking Lemma XIII

 $\langle 3 \rangle$ 4. Replace v by this variable. The result will be a long β -nf with the same type and depth as M' and containing one less free variable.

From $\langle 3 \rangle 3$, we see that this variable is bound by an abstractor in N_{d_q} , where $d_q \leq p$. Since the change from M to M' has only removed the initial abstractors of $\underline{N}_{p+1}, \ldots, \underline{N}_{p+r}$, this variable is still a bound variable in M'. Therefore, the result has one less free variable than M'. The result has the same type and depth because we substituted a variable v by another variable that has the same type as v.

Proof of Detailed Shrinking Lemma XIV

 $\langle 3 \rangle$ 5. By similarly replacing every variable of \underline{B}_{p+r} that is free in M' by a new one which has the same type but is bound in M' we obtain a long β -nf M'' with the same type and depth as M' and which is closed.

Proof of Detailed Shrinking Lemma XV

- $\langle 2 \rangle$ 16. $d ||\tau|| \leq Depth(M'') \leq d$.
 - $\langle 3 \rangle 1$. The number of arguments removed from the argument-branch is r, so our argument-branch now contains d-r arguments.
 - $\langle 3 \rangle 2$. Hence, $d r \leq Depth(M'') \leq d$.
 - $\langle 3 \rangle$ 3. $r \leq ||\tau||$. By definition, there are only $||\tau||$ distinct atoms in τ . Since the tail repetition $\langle p, p+r \rangle$ we took is minimal, we have $r \leq ||\tau||$.
 - $\langle 3 \rangle 4$. $d ||\tau|| \leq Depth(M'') \leq d$.

Proof of Detailed Shrinking Lemma XVI

- $\langle 2 \rangle$ 17. If Depth(M'') < d define $M^* \equiv M''$. If not, select a branch in M'' with length d and apply the removal procedure to it (the removal procedure is the one that from M produced M''). Keep doing this to shorten the branches with length d until there are none left. Define M^* to be the first term produced by this procedure whose depth is less than d.
- $\langle 2 \rangle$ 18. Then:

$$|d - ||\tau|| \le Depth(M^*) < d$$

as required.

Proof of Detailed Shrinking Lemma XVII

 $\langle 1 \rangle 2$. If $Long(\tau)$ has a member M^{τ} with depth $\geq \mathbb{D}(\tau)$ then it has a member N^{τ} with:

$$\mathbb{D}(au) - || au|| \leq Depth(N^{ au}) < \mathbb{D}(au)$$

By repeating the whole procedure described in Step $\langle 1 \rangle 1$ until you obtain an output with depth $\langle \mathbb{D}(\tau)$.

Example 8F3.1 I

Let $\tau \equiv (a \rightarrow a) \rightarrow a \rightarrow a$, and let M^{τ} be a typed version of the Church numeral for the number four, i.e.

$$M^{\tau} \equiv (\lambda u^{a \to a} v^{a}.(u(u(u(uv)))))^{\tau}$$

Then: $||\tau|| = 1$, $|\tau| = 4$, $\mathbb{D}(\tau) = |\tau| \times ||\tau|| = 4$.

Since Depth(M) = 4, the above shrinking procedure can be applied to M. There is only one argument-branch in M containing four subarguments, and its members are:

$$\underline{\lambda u v. u^4 v}, \quad \underline{u^3 v}, \quad \underline{u^2 v}, \quad \underline{u v}, \quad \underline{v}$$

Example 8F3.1 II

Let's call them N_0, \ldots, N_4 respectively. We have:

$$IAT(N_0) = \langle a \rightarrow a, a \rangle$$

 $IAT(N_1) = IAT(N_2) = IAT(N_3) = IAT(N_4) = \emptyset$

Since the only change in $IAT(N_i)$ comes at i=1, using the notation of the proof of 8F3, we have:

$$n=1, d_0=0, d_1=1, \mathbb{I}_0=\{0\}, \mathbb{I}_1=\{1,2,3,4\}$$

There are 3 minimal repetitions in \mathbb{I}_1 ($\langle 1,2 \rangle$, $\langle 2,3 \rangle$, $\langle 3,4 \rangle$).

Example 8F3.1 III

According to our procedure, we pick the last one. We replace \underline{uv} by \underline{v} and this changes M to:

$$M^* \equiv \lambda u v. u^3 v$$

And now, notice that $Depth(M^*) = 3 < \mathbb{D}(\tau)$.

Warning: A Limitation of the Shrinking Lemma

As mentioned in 8D10(iii) the proof of the shrinking lemma does not necessarily apply to restricted systems of λ -terms, for example the λI -calculus. In fact, there is no guarantee that if we shrink a λI -term the result will still be a λI -term, since shrinking may cut out some variables.

References I

- J Roger Hindley.
 Basic simple type theory.
 Cambridge University Press, 1997.
- [2] Leslie Lamport.

 How to write a proof.

 The American mathematical monthly, 102(7):600–608, 1995.
- [3] Leslie Lamport.

 How to write a 21 st century proof.

 Journal of fixed point theory and applications, 11(1):43–63, 2012.