Основные этапы проекта по ИТ-архитектуры предприятия

- 0 этап АНАЛИЗ РЫНКА ИНСТРУМЕНТОВ формирующих ИТ-архитектуры
- 1 этап АНАЛИЗ объекта управления

Анализ внешней среды на макроуровне (PESTLE-анализ), внутренних факторов (SWOT-анализ) Выбор архитектурного фреймворка, методологии EA

- 2 этап БИЗНЕС-МОДЕЛИРОВАНИЕ предприятия
 - Экосистема цифрового предприятия
 - Бизнес-канва (по А.Остервальдеру)
 - Моделирование базовой ЕА (ВАЕ) (учитываем проектный, продуктовый, архитектурный и процессный подходы)
- 3 этап ЦЕЛЕПОЛАГАНИЕ и ВЫРАБОТКА СТРАТЕГИИ преобразований в ИТ-архитектуре Согласование мотивационных моделей стейкхолдеров, состава компетенций цифрового предприятия Разработка стратегий цифровой трансформации бизнеса и ИТ-системы
- 4 этап ПРОЕКТНОЕ УПРАВЛЕНИЕ РЕСУРСАМИ и ПЛАНИРОВАНИЕМ по DIGITAL
 - Разработка миграционных моделей (МЕА)

Разработка целевой ЕА (ТЕА). Метамодель

- Оценка эффективности проекта цифровой трансформации ИТ-архитектуры предприятия
- 5 этап МОНИТОРИНГ проекта с улучшений ИТ-архитектурой
- 6 этап СОВЕРШЕНСТВОВАНИЕ и формирование цикла обновлений новыми продуктами и новыми поставщиками продуктов ИТ-архитектуры предприятия Управление изменениями бизнес- и ИТ-систем. Переход к этапу 1.

Метод ADM (TOGAF 9.2/10)

Фиксированная последовательность фаз моделей ЕА.

- Центральное место Управление требованиями к бизнессистеме и ИТ-системе цифрового предприятия.
- Определенный состав входной и выходной информации для каждой фазы, существование правил перехода к очередной фазе EA.
- Итерационный характер моделей ЕА и общее проектное управление их разработкой.
- Существование репозитория для хранения элементов моделей и повторного их применения. Создание референсных моделей EA.
- Многообразие инструментов и методов разработки моделей EA:
- 1. Языки графического вида: UML, BPMN, ARCHIMATE
- 2. Аналитическая форма представления моделей EA (язык XML, языки программирования).

Моделирование ЕА цифрового предприятия

Рассмотрение по слоям

Модели ЕА

- 1. Модели бизнес-архитектуры Business Architecture:
- Бизнес-канва АОстервальдера
- Оргструктура предприятия
- Функциональная структура системы управления
- Модели бизнес-процессов
- Модели информационных потоков (DFD Data Row Diagram)

2. Модели ИТ-системы:

- И-фо-канва предприятия модель информационной среды и окружения предприятия;
- Архитектура данных Data Architecture (внемашиный и внутримашиный уровень)
- структурированной и неструктурированной информации, модель сущностей (ERD—Entity Relationship Diagram), структура данных БДи хранилищ, web-ресурсов
- Архитектура приложений Application Architecture (ИТ-сервисы бизнес-функций и бизнеспроцессов предприятия);
- Программная архитектура Software Architecture для программных продуктов и облачных сервисов (SaaS, PaaS)
- Архитектура ИТ-инфраструктуры Technology Architecture (вычислительная система, системное программное обеспечение и сетевые технологии, интегрированные с промышленным оборудованием и технологиями производства продуктов), сервисы laaS.

3. Модели коммуникаций:

- Компьютерные сети (топология, узлы, физическая и логическая архитектура)
- Интерфейсы пользователей, программных продуктов и технических средств

Правовое и документальное сопровождение регулирования цифровой ИТ-архитектуры предприятия

Основополагающие факторы:

- 1) Архитектурный фреймворк (например, TOGAF 9.2/10) поддерживает все этапы жизненного цикла архитектурных моделей ЕА для цифровой трансформации предприятия
- 2) Инструментальные средства моделирования ЕА обеспечивают возможность создания моделей ЕА любого предприятия
- 3) Возможность роста качества проекта цифровой трансформации за счет применения референсных (эталонных) архитектурных моделей ЕА, лучших практик, регламентов и стандартов
- 4) Унификация терминов, пользовательских, программных и технических интерфейсов
- 5) Стандартизация форм документов для соблюдения комплаенса проектных работ цифровой трансформации предприятия
- 6) Гибкость архитектурных моделей EA (Agile) согласно гибкости проектных решений, цифровых компетенций бизнеса, возможностей цифровых технологий
- 7) Наличие квалифицированных архитекторов для формирования команды проекта цифровой трансформации предприятия

Регламентация стандартов и архитектурных фреймворков, инструментальных средств для моделей ЕА

Их включение в состав документов по реализации проектных решений (ГОСТ 34.601, ГОСТа трансформации предприятий.

- Применение метода ADM TOGAF 9.2/10 для построения и модификации моделей EA.
- Разработка процессов для управления моделями ЕА в течение их жизненного цикла создание/внесение изменений, форматирование, импорт/экспорт моделей ЕА при работе с внешними системами, архивное хранение, утилизация моделей, мониторинг состояния моделей ЕА и др.
- Введение в состав моделей ЕА важнейших показателей цифровой трансформации:
- Номинальные значения проекта: длительность, стоимость,, трудоемкость, сложность цифровой трансформации, уровень, научно технический уровень проектных решений;
- Характеристика цифровых продуктов и сервисов (технические и экономические параметры), оценка цифровой зрелости прикладных и информационных процессов;
- Уровень информационной и экономической безопасности.
- Создание и применение референсных моделей ЕА цифровой трансформации предприятия, возможность их адаптации с учетом масштаба, отраслевой принадлежности, бизнес-модели цифровой экономики предприятия, технологических возможностей и располагаемых ресурсов.
- Планирование реализации цифровых компетенций предприятия (Planning Business Capabilities).

Начиная с первой пары становиться очевидным, что работа объемная, если на первой паре Вам показывать по проекту почти нечего, то чем ближе к финалу тем больше самих результатов по проекту. Хороший проект в финале имеет большой объем — необходимо с первой пары определить **Дорожную карту (ROADMAP)** и **Список задач (BACKLOG)** и это относиться только к плану проведения самих пар — на каждой паре вы выступаете Вы презентуете на слайдах выполненные задачи. По результатам всех пар у вас формируется общая презентация по проекту на 15-45 слайдов — это презентация проекта.

Как и во всех компаниях проект оформляется документацией. Документации бывает много начиная от Устава, технико-экономического обоснования (ТЭО), коммерческого предложения (ТКП) до 60 документов сопровождения и мониторинга, включая внешний аудит.

Из документации вы готовите только «Итоговый отчет» с приложениями.

Итоговый отчет оформляется командой студентов как единый документ. Имеет следующие структурные элементы:

титульный лист;
🗖 список исполнителей;
Аннотация;
Задание (Т3);
🖵 содержание;
Введение или краткая характеристика компании;
□ основная часть – описание ИТ в компании AS IS и ТО ВЕ
заключение;
список использованных источников;
🗖 приложения

- 1) Титульный лист ИТОГОВОГО ОТЧЕТА
- Нумерация страниц начинается с титульного листа. На первом листе (самом титульном) номер страницы не отображается. Указывается «Список исполнителей»

Требований к оригинальности не имеется. Это не курсовая, но заимствования в тексте выделяете или приводите ссылки

- 2) В аннотации указываете ограничения, сроки и ожидаемый результат по проекту. Сверху это ограничение по бюджету, снизу это минимальные требования. Ожидаемый результат полезность и рентабельность.
- 3) В СОДЕРЖАНИИ указываете разделы и подразделы (пункты) и какие таблицы и графики представляете в этом пункте и что идет в презентацию. Нумерация страницы на странице с содержанием не указывается. Содержание включает введение, наименование всех разделов, подразделов, пунктов (если они имеют наименование), заключение, список использованных источников и наименование приложений с указанием номеров страниц, с которых начинаются эти элементы работы. Содержание должно быть создано автоматически с помощью инструмента «Оглавление» в MS Word.

```
Пример, 1. Характеристика компании....

1.1. Структура компании...

(курсивом) Схема орг-структуры компании (слайд ...)

Схема информационных потоков (слайд ...)

1.2. Показатели ....

(курсивом) Схема ... (слайд ...)
```

3) ЗАДАНИЕ содержит описание бизнес-кейса, включая краткое описание бизнеса, формулировку бизнеспроблемы, а также постановку задачи бизнес-инжиниринга. Задание должно быть дополнено ТЗ по ГОСТ-34

4) ИТОГОВОЙ ОТЧЕТ

Итоговый отчет команды работы должен быть представлен в едином файле формата DOC или DOCX. Итоговый отчет должен быть оформлен на одной стороне листа бумаги формата A4. Текст следует печатать через 1,5 интервала, шрифт Times New Roman, размер шрифта – 14, в таблицах – 12, в подстрочных сносках – 10. Итоговый отчет должен быть оформлен в соответствии с ГОСТ Общий объем отчета команды может составлять до 120 страниц, зависит от проработки деталей и увлеченности команды, включая таблицы, схемы и рисунки.

Итак, на каждой паре в начале выступления группа докладывает о ходе выполнения проекта, демонстрирует результат и указывает отклонения от Базового плана и графика и результаты план-факторного анализа. Далее каждый участник самостоятельно докладывает о достигнутых результатах. При этом каждый участник не только докладывает о достигнутых результатах, но также рассказывает об извлеченных уроках, будь то проблемы, неожиданные ситуации, возникшие трудности и т.п. Допускается, если извлеченные уроки будут представлены в конце отдельными слайдами. Вопросы преподавателя могут быть адресованы любому участнику группы. Если участник группы отсутствует на защите, присутствующие студенты защищают всю работу целиком.

Нормативные правовые акты, стандарты, своды знаний

- 1. **ГОСТ 34.601-90** Информационные технологии. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания
- 2. **ГОСТ 34.602-89** Информационные технологии. Комплекс стандартов на автоматизированные системы. Техническое задание на создание автоматизированной системы
- 3. **ГОСТ 34.201-89** Информационная технология. Комплекс стандартов на автоматизированные системы. Виды, комплектность и обозначение документов при создании автоматизированных систем
- 4. ГОСТ Р ИСО/МЭК 12207-99 Информационная технология. Процессы жизненного цикла программных средств
- 5. **ГОСТ Р ИСО/МЭК 15288-2005** Информационная технология. Системная инженерия. Процессы жизненного цикла систем
- 6. ГОСТ Р ИСО/МЭК 18384-1-2017 Эталонная архитектура для сервис-ориентированной архитектуры (SOA RA)
- 7. ГОСТ Р 57100-2016 Системная и программная инженерия. Описание архитектуры
- 8. ГОСТ Р ИСО 15704-2022 Моделирование и архитектура предприятия. Требования к стандартным архитектурам и методологиям предприятия
- 9. ГОСТ Р 10.00.00.01 «Единая система информационного моделирования. Термины и определения»
- 10. Профессиональный стандарт "Менеджер по информационным технологиям"

В архитектуре предприятия выделяют следующие слои:

- 1) фронт-офис (Front-Office);
- 2) мидл-офис (Middle-office);
- 3) бэк-офис (Back-office);
- 4) vyet (Accounting);
- 5) информационное хранилище (Data Warehouse);
- 6) отчетность (Reporting).

Первые четыре присутствуют как в бизнес-архитектуре, так и в системной архитектуре.

Два последних слоя относятся только к системной архитектуре.

При создании ИТ-продуктов и цифровой трансформации ИТ-архитектуру их учитывают.

ИТОГОВОЙ ОТЧЕТ Структура и детали

Введение или краткая характеристика компании

В тексте коротко

о деятельности компании

Чем компания «живет», что приносит доход

Зачем и почему использует технологии?

Что они дают компании: стабильность или рост?

В чем видят стратегию роста, куда думают развиваться?

Какие ожидают технологии им будут нужны из имеющихся?

Что считают что из технологий уже устарело и пора утилизировать?

Какие ожидают, что было бы ввести новые инструменты и технологии, но для этого необходимо пройти путь цифровых преобразований в ИТ-

архитектуре предприятия?

основная часть – описание ИТ в компании AS IS и ТО ВЕ;

Разбавляем текст и визуализируем

в таблицах рисунках графиках схемах

Общие сведения
История возникновения и развития
Основная деятельность
Организационная структура
Внешняя среда и конкуренты
Активы и пассивы компании
Финансовое состояние

Устав

Данные из отделов

(например, кадров, структура и текучка)

Данные маркетингового отдела

(объёмах продаж по видам услуг или товаров, конкуренты и т. п.)

Годовые отчёты организации

(Экономических показатели и т.п.)

Бухгалтерская и финансовая отчётность

(Баланс, Приложения к балансу - формы №1-5)

На их основе ведут анализ активов, ликвидности, платёжеспособности, финансового состояния компании.

Аудиторское заключение

(Имеются оценки для инвесторов)

Фрагменты...

Информационные потоки

Ключевые позиции

Основа формирования базы данных

Когда много потоков информации проходит через отдел или структурное подразделение – это становится основой для формирования нового модуля ИТ-системы или в ИТ-архитектуре предприятия

Выбор архитектурного фреймворка, методологии ЕА

TOGAF (The Open Group Architecture Framework)

Охватывает весь процесс EA: от планирования и проектирования до внедрения и управления

Zachman Framework.

Предлагает таксономию для организации архитектурных артефактов

Методика Gartner

Методика META Group

Стандарт IEEE 1471-2008 для облегчение выражения и

передачи структуры системы

Стандарт ГОСТ Р ИСО 15704—2022 — зарождение предприятия,

реструктуризация предприятия, пошаговые изменения в

предприятии.

Другие...

ArchiMate

ARIS

Integrated Architecture Framework (IAF)

Экосистема цифрового предприятия

компоненты

Инфраструктура
Аналитика данных
Интеграционные платформы
Протоколы безопасности
Инструменты для совместной работы

Бизнес-канва (по А.Остервальдеру)

Модель Canvas

Кто является нашими

ключевыми партнерами?

Кто наши основные

поставшики?

Какие ключевые ресурсы

мы получаем от

партнеров?

Какой ключевой

деятельностью

занимаются наши

партнеры?

Ключевые виды деятельности

Каких видов

деятельности требуют

наши ценностные

предложения?

Наши каналы сбыта?

Наши взаимоотношения с

клиентами?

Наши потоки поступления

доходов?

Какую ценность мы

предоставляем

клиентам?

Какие потребности

удовлетворяем?

Какие проблемы

помогаем решить нашим

клиентам?

Какие преимущества

продуктов и услуг?

Какой набор товаров и

услуг мы можем

предложить каждому

клиентскому сегменту?

Взаимоотношения с клиентами

Потребительские / сегменты

Отношений какого типа ждет каждый клиентский сегмент? Какие отношения установлены? Как они интегрированы в общую схему бизнесмодели?

клиентом? Для кого мы создаем ценность? Можем ли мы выделить различные клиентские

сегменты?

Кто является нашим

Ключевые

ресурсы Какие ключевые ресурсы

получает клиент от наших сбыта

Каналы

взаимодействуем с ценностные

Через какие каналы мы клиентскими сегментами и доносим до них наши предложения?

Структура издержек

Какие наиболее важные расходы предполагает наша бизнесмодель?

Какие из ключевых ресурсов наиболее дороги? Какие ключевые виды деятельности требуют наибольших затрат?

Потоки поступления доходов

Какие потоки доходов мы генерируем? Каков размер каждого потока доходов?

2

Основная часть

Моделирование базовой EA (BAE) Описание ИТ в компании как есть (AS IS) UML, DFD, IDEFO, BPMN

Таким же образом можно описать архитектуру ПО по ее измерениям. Разница лишь в том, что в ней *четыре измерения*.

измерения: высоту, длину и ширину.

AS IS

Architecture

Strategic

Дизайн для IT-компаний

Создание единого стиля во всех элементах брендинга — от сайта и социальных сетей до презентаций и документов. Это позволит создать цельный образ компании, который будет узнаваемым и привлекательным для клиентов и потенциальных партнёров.

Design

Tactical

Архитектурные решения

3 Логические компоненты

Архитектурный стиль

Архитектурные характеристики

Логические уровни: клиентский,

презентации, бизнес-обслуживания, данных

Логические элементы. Устройства для обработки информации в цифровой форме...электронные, оптические и др.

Модели приложений. Последовательность обмена, описания данных и состояний

архитектурные характеристики
Выберите архитектурный стиль
многоуровневая архитектурах,
Модульная архитектура
Требования к логической архитектуре
Требования к физической архитектуре
Распределение приложения по техническим аспектам
Распределение приложения по бизнес-областям
Решение в каком слое (или слоях) должен находиться
каждый компонент?

Объедините все четыре аспекта архитектуры Сделайте набросок высокоуровневого представления пользовательских интерфейсов, баз данных и компонентов

Развертываемость Способность к развитию Представление Масштабируемость

Многоуровневая архитектура разделяет объекты по возможностям Разделение логических компонентов (которые включают рабочие процессы и сущности): Рабочий процесс приложения Бизнес-логика, рабочие процессы, проверки и другие действия в домене

Сохранение в архитектуре иерархии набора и баз данных.

Последовательный порядок от «Рецепта» до Пользователя

Стоимость модульности

Современные технологии разрабатываются и эксплуатируются с учетом того, что они, как правило, более просты в тестировании и перепроектировании

модель 4+1

Основная часть

Моделирование базовой EA (BAE) Описание ИТ в компании как есть (AS IS) UML, DFD, IDEFO, BPMN

> Клиентский компьютер

> > 🖵 Client App

Interface3

диаграммы потоков данных диаграммы перехода состояний диаграммы развертывания диаграммы вариантов использования (диаграммы use case)

Interface1

Разработка целевой EA (TEA). Метамодель Целевое состояние (TO BE) +Vision Этапы перехода Разработка миграционных моделей (MEA)

Составляем блок-схему целевого процесса

Типы интеграции информационных систем на предприятии

Двухточечная интеграция (point-to-point). Предполагает прямое соединение отдельных подсистем или компонентов без необходимости наличия посредников. Такой подход отличается простотой и полезен в ситуациях, когда присутствует малое количество взаимосвязанных элементов и нет нужды в сложной обработке информации.

Интеграция через шину (Enterprise Service Bus, ESB). Вместо множества прямых соединений, системы подключаются к шине, что упрощеет архитектуру и улучшает масштабируемость.

Вертикальная. Годразумевает внедрение разных системных уровней (снизу вверх), а также помогает глубже интегрировать компоненты, что повышает удобство эксплуатации. Звездообразная. Основана на том, что центральная система представляет собой хаб с точкой интеграции, через которую осуществляется связь с компонентами. Такой метод востребован при необходимости управления подсистемами с обменом данными между ними. Горизонтальная. Применяется в целях объединения компонентов в единую платформу для дальнейшей совместной работы.

Оркестровка процессов. Подразумевает управление и координацию взаимодействия между системами, что позволяет создавать сложные процессы интеграции, используя последовательные и параллельные задачи.

Событийно-ориентированная интеграция. В этом случае системы реагируют на определенные события в других системах

Интеграция с устаревшей системой.
Интеграция с корпоративным приложением.
Интеграция со сторонними системами.
(Расширить возможности без лишних затрат)
Интеграция между компаниями

Технологии системной интеграции

SOA – Сервис-ориентированная архитектура

ESB (Enterprise Service Bus) – шина предприятия

Веб-сервисы. Технология заключается в применении стандартных протоколов (SOAP, REST,

ХМL) для обмена данными между различными программами

Адаптеры и коннекторы

Middleware – промежуточное программное обеспечение

Облачные технологии

Микросервисная архитектура

iPaaS – интеграционные платформы как сервис

Этапы интеграционного процесса

Разработка Тестирование Внедрение Мониторинг

Гаттерны интеграции корпоративных информационных систем

Структурные паттерны интеграции Паттерны по методу интеграции Паттерны интеграции по типу обмена данными

Архитектурные паттерны:

Внутридоменные интеграции. Intra-app интеграция.

API (Application Programming Interface).

Фасад с единым интерфейсом для упрощения пользователя Адаптер. Преобразует интерфейс (из-за несовместимости) Прокси

Управление сложностью
Повторное использование решений
Улучшение коммуникации
Оптимизация ресурсов

Дорожная карта (ROADMAP) и Список задач (BACKLOG)

Лекций - 6 Практика - 11 Roadmap

0

Нулевой этап – организационные вопросы

Дорожная карта (ROADMAP) и Список задач (BACKLOG)

На нулевом этапе необходимо ознакомиться с ИТ предприятия и начать структурировать проект по ИТ-трансформации

- **Этап 1.** Описание (постановка) бизнес-задачи.
- **Этап 2.** Экспресс-диагностика информационных процессов и анализ бизнес-данных
- Этап 3. Разбор функциональных требований к ИТ-решению на основе ожидаемых бизнес-результатов
- Этап 4. Познакомиться с теоретическим представлением о методах и моделях цифровой трансформации и задуматься о выборе какая из имеющихся информационно-аналитических моделей подходит для использования в компании

Замечание 1. План проекта, который изначально детализируется до уровня этапов и наиболее значимых блоков работ. План проекта определяет набор и порядок работ, выполняемых участниками проекта. Допускается не производить планирование работ, выполняемых участниками, если планируется выполнение короткого проекта. Допускается применение гибких методологий управления проектами. План проекта разрабатывается в MS Project. Участники группы детализируют содержание общего Плана проекта. Далее группа агрегирует информацию и формирует Базовый план проекта и согласует его с проектным руководителем.

Дорожная карта (ROADMAP) и Список задач (BACKLOG)

Члены группы формируют Устав проекта, который должен содержать:

- название проекта;
- бизнес-причину возникновения проекта;
- бизнес-цель;
- требования, удовлетворяющие потребности, пожелания и ожидания Заказчика и иных заинтересованных сторон;
- расписание основных контрольных событий;
- участников проекта;
- окружение проекта;
- допущения относительно организации и окружения, а также внешние допущения;
- ограничения относительно организации и окружения, а также внешние ограничения;
- лимит денежных средств, выделенных на достижение бизнес-цели;
- назначение руководителя проекта, общий состав Проектной группы и ее полномочия.

Дорожная карта (ROADMAP) и Список задач (BACKLOG)

Замечание 2. Группа должна принять решение о способах взаимодействия при выполнении проекта.

В качестве инструментов коммуникации и передачи данных могут использоваться:

- корпоративные цифровые образовательные платформы (MS Teams, LMS, и др.);
- файловые хостинги (Яндекс.Диск, Облако Mail.ru, Dropbox и др.);
- социальные сети;
- сервисы многопользовательской работы с документами (Google Docs, редактор документов в Яндекс.Диск и пр.);
- мессенджеры;
- прочие ресурсы.

При необходимости разрабатывается План управления коммуникациями, План управления рисками и иные планы. План управления коммуникациями разрабатывается в случае выполнения длительных проектов, в случае большого числа заинтересованных сторон, а также в случае необходимости регулярного взаимодействия с Заказчиком. Цель формирования плана управления коммуникациями — обеспечить эффективное взаимодействие между всеми заинтересованными сторонами.

Дорожная карта (ROADMAP) и Список задач (BACKLOG)

Замечание 3. Один из членов группы с наиболее подходящей ролью осуществляет мониторинг на протяжении всех этапов выполнения проекта по бизнес-аналитике. При выполнении мониторинга он должен узнавать у других участников группы статус выполнения текущих задач, корректировать Рабочий план проекта, включая:

- корректировку последовательности выполнения задач;
- корректировку сроков выполнения задач;
- закрытие выполненных задач;
- корректировку задействованных ресурсов;
- и пр.

Участники группы обязаны информировать ответственного студента о статусе выполнения задач, о необходимости изменения сроков, о необходимости изменить порядок выполнения задач и о иных событиях, связанных с выполнением проекта. Порядок мониторинга может быть определен в Плане управления коммуникациями. В ином случае ответственный студент самостоятельно определяет порядок взаимодействия с другими участниками группы при мониторинге. При мониторинге проекта используется рабочий план и программа MS Project. Во время выполнения проекта группы должны выполнить все блоки согласованных проектных задач. Порядок выполнения задач и ответственные роли определяются при формировании Базового плана проекта.

Роли внутри команды ИТ-проектов помогают его эффективной реализации

- **Руководитель проекта** участник проектной группы, который отвечает за сроки проекта и реализацию его целей. Ключевые аспекты роли включают управление границами проекта, стоимостью и сроками, командой проекта, взаимодействием со стейкхолдерами проекта.
- Владелец продукта участник проектной группы, который несет ответственность за достижение максимальной ценности продукта как результата работы, которую выполняет команда разработки. Владелец продукта является связующим звеном между заказчиком и командой разработки, отвечает за создание и контроль бэклога продукта.
- Бизнес-аналитик аналитик, который выполняет действия по бизнес-анализу, независимо от названия занимаемой должности.
- Бизнес-архитектор аналитик, который проектирует и согласовывает целевую архитектуру информационно-аналитической системы с учетом бизнес-требований заказчика.
- Специалист по анализу данных аналитик, который исследует бизнес-данные с целью получения знаний, позволяющих повысить эффективность управления бизнесом.
- Специалист по внедрению информационно-аналитических технологий участник проектной группы, который проектирует, разрабатывает и внедряет бизнес-аналитику, используя знания функциональности бизнес-приложений и аналитических платформ.
- Специалист по требованиям аналитик, который разрабатывает спецификацию и согласовывает функциональные и технологические требования к решению, производит мониторинг и оценку изменений требований, и пр.
- Системный аналитик специалист, анализирующий требования к решению и детализирующий их до конкретных задач к системе и к проектированию модели систем.
- Scrum-мастер участник проектной группы, который помогает всем понять теорию, практики, правила и ценности методологии Scrum, контролирует правильность Scrum-процессов, организует и проводит совещания, разрешает противоречия и защищает команду от отвлекающих факторов, проводит фасилитацию встреч, отвечает за учет, хранение и выдачу Scrum-инвентаря.
- Разработчик единственная роль для членов команды разработки в Scrum, независимо от типа задач, которые он выполняет. Scrum не признает других ролей в команде разработки. При этом отдельные члены команды разработки могут обладать различными специализированными навыками и экспертизой.
- Менеджер продукта участник проектной группы, отвечающий за создание нового продукта, анализ рынка, продвижение продукта, планирование КРI, определение назначения продукта и др.

Бизнес-аналитика

В настоящее время бизнес-аналитика имеет центральное место в любой компании:

- связана с поддержкой принятия управленческих решений в бизнесе на основе
- аналитических методов, моделей и инструментов
- процесс извлечения знаний из бизнес-данных улучшает качество управления бизнесом
- интеллектуальные технологии и бизнес-приложения рассматривают даже на нескольких слоях

Современная бизнес-аналитика включает, но не ограничивается семейством бизнес-приложений классов Business Intelligence (BI), CPM (Corporate Performance Management), Predictive Analytics, Simulation tools, CRM (Customer Relationship management), SMM Analytics (Social media marketing), и пр.

С точки зрения используемых методов бизнес-аналитика опирается на эконометрику, математическую статистику, интеллектуальные методы анализа данных и машинного обучения, разведочный анализ данных, методы визуального анализа, предиктивную и рекомендательную аналитику, имитационное моделирование и пр.

С точки зрения используемых технологий бизнес-аналитика строится на программных разработках, которые могут носить как заказной характер, так и представлять собой параметрически настраиваемые приложения, могут работать как локальные системы (On Premise), так и SaaS сервисы (Cloud analytics).

0

Нулевой этап – организационные вопросы

Цифровая модель корпоративного управления и бизнес-аналитика

бизнес-аналитика, главным образом, используется на 3–4 уровнях корпоративного управления, что соответствует уровням принятия стратегических и оперативных решений соответственно, т. е. задачам менеджмента старшего и среднего звена.

Уровень исполнения в большей степени связан не с аналитическими, а с учетными задачами, которые реализуются с использованием OLTP-систем (Online transaction process), например, ERP и других ИС операционного уровня.

4.8. Планирование 4.5. Сценарное 4.6. Предиктивный 4.7. Оптимизированнное моделирование моделирование 4.2. Статистическое 4.4. Машинное 4.3. Прогнозирование 4.1. Ретро-анализ обучение моделирование Типовые решения Рабочая среда Приложения Инструменты расширенного анализа моделирования визуализации Обеспечение доступа к данным Рабочее пространство для доступа аналитических приложений Высокоскоростная обработка данных Технологии высокоскоростных расчетов и памяти Интеграция в гибридных сетях Внутренние данные **Данные** Данные Внешние данные из ERP-систем из ВІ-систем из других ИС

Node to sept

Data Mining и big data в бизнес-аналитике цифровой трансформации государственного и корпоративного управления

Проанализировать что влияет на бизнес. Провести аналитику влияния на бизнес процессов и ...

Провести анализ ИТ-систем и бизнес процессов как есть

Проанализировать путь Трансформации и миграции инфраструктуры обработки и хранения данных. Как линейный персонал работает и с чем стоит поработать для сокращения рутины и тонких мест

План изменений корпоративной ИТ-архитектуры

Совмещение инструментов и методик делает процесс более прозрачным, управляемым и предсказуемым, что особенно важно в сложных проектах

Канбан-доска (Kanban Board)

Для визуализации текущего состояния задач и управления потоком работы на всех этапах проекта

Шаблоны документов (Templates)

Стандартизируют работу и облегчают повторяемость процессов, таких как технические спецификации, планы тестирования и отчеты

Что мы хотим показать в нашей модели?

слой приложений (application layer) слой системных технологий ИТ-платформ (technology layer)

почему система нелогично устроена

Используемые в компании системы или проектируемые новые имеют ли рост? Выполняют полноценно работу под текущие задачи бизнеса с небольшим запасом на линейный рост? Оцнка роста объемов данных в самой компании и как выросла нагрузка на мощности компании для выполнения текущей работы?

«Так исторически сложилось»

«Решали оперативные задачи»

Компании сливаются, поглощаются, переживают резкие скачки развития — эти процессы создают непредсказуемые нагрузки на информационные системы

Избыточная связанность компонентов

Одна из распространенных ошибок — слишком жесткая взаимосвязь компонентов

Модульный подход. Можно декомпозировать систему на отдельные бизнес-сервисы, чтобы каждый из них был относительно независим

Как правильно оценивать ИТ-архитектуру

Сигналы на уровнях

Как было **AS IS**Во время внедрения
Сразу после **TO BE**В долгосрочной перспективе

Неразумная цифровизация

Технологий много – толку мало

Сложные системы

Осваиваем бюджет – потратим не свое

Нет эффекта

Во время внедрения

- четкие сроки и контроль исполнения задач,
- регулярный трекинг прогресса и обратная связь от пользователей;
- своевременная эскалация отклонений,
- появление первых признаков улучшения установленных КРІ

После внедрения

- Выполнение количественных КРI, которые мы поставили в самом начале трансформации. Например, снижение времени выполнения операции, уменьшение потеры, повышение производительности и т.д.
- Оценка со стороны реальных сотрудников, работающих в процессе. Если они говорят, что стало проще, быстрее и понятнее, значит мы действительно поменяли подход

В перспективе

- роствыручки,
- соотношение ШТDA к выручке (ШТDA/Revenue);
- poct TSR (Total Shareholder Return);
- увеличение доли рынка (market share).
- и другим показателям, напрямую связанным с созданием устойчивой бизнес-ценности.

ИТОГ: Критерии оценки

■ Логическая целостность, которая определяется:
🖵 соответствием содержания проекта выбранной теме;
 логичностью и аргументированностью изложения материала, четкостью структуры изложения;
четко сформулированными целями и задачами курсового проекта;
□ достижением поставленной цели и задач, наличием выводов по результатам выполнения проекта.
■ Качество выполнения курсового проекта, которое определяется:
🖵 глубиной анализа проблемной ситуации;
 обоснованностью выбора инструментария и методов исследования рассматриваемой проблемы;
🗖 описанием используемых данных, их достоверностью, обоснованием методики сбора и обработки данных;
🗆 соответствием полученных результатов цели проекта;
🗆 использованием высококачественных источников.
■ Практический вклад участников проекта, который определяется:
🛘 аргументацией эффективности предлагаемых решений и возможностью их практической реализации;
🖵 самостоятельностью участников проектной команды в выполнении проекта, в том числе формулировкой
собственного подхода к решению проблемной ситуации.
■ Оформление текста проекта и презентации определяется:
🖵 соблюдением требований к объему и оформлению текста проекта;
🛘 отсутствием орфографических и стилистических ошибок в тексте проекта и на слайдах презентации;
🛘 наглядностью материала, в том числе использование статистических материалов, схем, таблиц, графиков,
способствующих лучшему восприятию и пониманию важной информации.
■ Проведение презентации проекта, которое определяется:
🗆 соблюдением временных рамок (10 минут на презентацию);
🖵 ответами на вопросы (релевантность и глубина ответов);
🖵 презентационными навыками.