16.522 Session IMissions and Thrusters

Missions Requiring High Thrust

Planetary takeoff

Photo is in public domain from NASA.

Shuttle, Delta, Proton...

Planetary landing

Image is in public domain from NASA.

Viking, Lunar lander...

Rapid maneuvering

Image is in public domain from DARPA. Scatter (DARPA F6)...

Apogee kick

Photo is in public domain from NASA.

GTO-Escape, STAR motors...

Perigee kick

Image is in public domain from NASA.

GTO-GEO Centaur upper stage

Fast plane change

Missions Requiring High Isp (>1000 sec)

Deep space missions ($\Delta V > 2 \text{ km/s}$)

Image is in public domain from NASA.

Planetary explorers, JIMO...

Long-term formation flight

Image is in public domain from NASA.

Interferometers, collaborative, TPF...

Long-term drag cancellation

Image is in public domain from NOAA.

LEO, LMO, LSO, LVO, GOCE...

Non-Keplerian orbits

Image is in public domain from NASA.

Parallel to rings of Saturn, Comet chaser...

Missions where high Isp is beneficial

These missions could be done otherwise, but benefit from high Isp propulsion (electric propulsion), some due to their high-power capacity. Communications, radar, most military satellites.

Orbit raising

Image is in public domain from NASA.

LEO-MEO, LEO-GEO, SMART...

End-of-life de-orbiting

Image is in public domain from NASA.

Reduce space debris...

Orbit-repositioning

Courtesy of DLR (German Aerospace Center). CC license BY.

Walking, separation, TanDem-X...

Slow plane change

Image is in public domain from NASA.

Orbit corrections

Image is in public domain from NASA.

NSSK, EWD, HS601 (Boeing)...

Chemical Thrusters (I)

Cold-gas thrusters	PRISMA Cold Gas Experiment
$Isp \approx 40-60 sec$	
$F \approx 0.1 \text{ mN} \rightarrow 1 \text{ N}$	
Reliable and simple	Photo removed due to copyright restrictions. Please see the Swedish
Safe (popular in university satellites)	Space Corporation (SSC) website for ECAPS' 1N (HPGP) engine.
Amenable for miniaturization	
Very limited ΔV (~ I m/s)	
Not appropriate for fine thrusting	
Inexpensive	Uppsala University, Sweden (0.01-1 mN)
Monopropellants	Hydrazine (N ₂ H ₄) Thruster
$Isp \approx 230 sec$	
$F \approx 500 \text{ mN} \rightarrow 500 \text{ N}$	
$F \approx 500 \text{ mN} \rightarrow 500 \text{ N}$ High reliability, large experience base	Image removed due to copyright restrictions. Please see
	Image removed due to copyright restrictions. Please see the monopropellant rocket engines from Aerojet.
High reliability, large experience base	- · · · -
High reliability, large experience base Simple system	- · · · · -
High reliability, large experience base Simple system Capable of pulsing (>10ms, 10 ⁶ pulses)	- · · · -

Chemical Thrusters (2)

Bipropellants

 $Isp \approx 305-325 sec$

 $F \approx 10 \text{ N} \rightarrow 120 \text{ kN}$

Large experience base

Relatively complex

Difficult to pulse, re-startable

Toxic propellants

Better Isp than monoprops

High cost

MMH + N_2O_4 Thruster

Aerojet Image courtesy of Steve Jurnetson on Flickr. CC license BY.

Solid Propellant

 $Isp \approx 280-300 sec$

 $F \approx 50 \text{ N} \rightarrow \text{large boosters}$

Simple integration (no plumbing)

Light casing (15-20% propellant)

Non-restartable

Potentially dangerous handling

I-5% dispersion in impulse/direction

Moderate to high cost

HTPB/AP Thruster

- Image is in pa

ATK STAR Series

Electric Thrusters (I)

Electrothermal

High efficiency, low Isp

Simple, limited by material temperature

With monopropellant, Isp ~ 310 sec

(Intelsat satellites)

With H_2 , Isp ~ 700 sec

(storage an issue)

 $F \approx 10 \text{ N} \rightarrow 100 \text{ N}$

Enables efficient waste disposal (ISS)

Arcjets

Efficiency ~ 0.4

Isp $\sim 600 \text{ s (MMH)}$, 1000 s (H₂)

Power $\sim 0.5 \rightarrow 30 \text{ kW (or available)}$

Close to optimal lsp for some missions

Therefore high F/P

Some flight experience (Telstar)

Relatively simple PPU

Butane/Water Thruster

Image is in public domain from NASA.

Surrey (SSTL) $\Delta V \sim 10$ m/s

Ammonia, Isp = 800 s, 2 N

Image is in public domain from NASA.

Aerojet, ARGOS Satellite

Electric Thrusters (2)

Hall Thrusters

Efficiency $\sim 0.4 \rightarrow 0.6$

Power $\sim 0.05 \rightarrow 10 \text{ kW}$

 $Isp \sim 1500 \to 1800 \text{ sec (up to } 3000 \text{ s)}$

Favorable for many missions

Reasonable efficiency, adequate life

Flight experience (Russian thrusters)

Contamination, EMI concerns

Complex PPU

Xenon Low Power Hall Thruster

Image is in public domain from NASA.

Busek BHT-200, 200 W, 1390 s, 44% eff

Ion Engines

Efficiency $\sim 0.5 \rightarrow 0.75$

Power $\sim 0.05 \rightarrow 10 \text{ kW}$

 $Isp \sim 2500 \rightarrow 4000 sec (7000 s, NASA)$

Favorable for high ΔV missions

Good efficiency, adequate life

Flight experience

Very complex PPU

Large, relatively heavy engine

30 cm Xenon Ion Engine

Image is in public domain from NASA.

NASA NSTAR, IkW, 3900 s, 50% eff

Electric Thrusters (3)

Pulsed Plasma (PPT)

Efficiency $\sim 0.05 \rightarrow 0.1$

Power $\sim 0.05 \rightarrow 1 \text{ kW}$

 $Isp \sim 1000 \rightarrow 1300 sec$

Simple system, solid propellant

Short pulse operation (micro-s)

Controllable pulse rates

Suitable for precision maneuvering

Very low efficiency (large PPU)

70 W, Teflon PPT

Image is in public domain from NASA.

NASA GRC, 0.86 mN, 1300 s, 8.4% eff

MPD

Efficiency $\sim 0.2 \rightarrow 0.6(?)$

Power ~ I MW

 $Isp \sim 2000 \rightarrow 6000 sec$

Favorable for high power missions

Low efficiency at low/medium power

Steady or pulsed

Heat dissipation challenges

Difficult to test in the ground

Argon MPD

Image courtesy of MIT.

MIT-SPL, Astrovac (GTL)

Electric Thrusters (4)

Electrosprays

Efficiency ~ 0.3 (mixed) → 0.8 (pure)

Power ~ I mW → I W (scalable)

Isp ~ 200 (droplet) → 4000 sec (ion)

Micro-propulsion technology

Good efficiency

Low TRL

Life limited by corrosion

Bipolar operation

FEEP

Efficiency ~ 0.6 → 0.7

Power ~ 10 mW → 10 W

Isp > 6500 sec

Micro-propulsion technology

Requires heat to melt metals

Requires electron neutralizer

Life limited by source erosion

Contamination issues

Electrospray Thrusters for CubeSats

MIT-iEPS, I W, 3000 s, 80% eff (est.)

Array of 3 Indium FEEP Thrusters

Figure from M. Tajmar and C. A. Scharlemann. "Development of Electric and Chemical Microthrusters." *International Journal of Aerospace Engineering* 2011 (2011): 10. Article ID 361215, doi:10.1155/2011/361215. CC license BY.

ARC, Austria, ~5 W, 6000 s

MIT OpenCourseWare http://ocw.mit.edu

16.522 Space Propulsion Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.