01.05.2021

Student: Huseyin Kerem Mican Instructor: Taylan Sengul Course: Linear Algebra

Assignment: Section 1.8 Homework

1. Let $A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$, and define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$. Find the images under T of $\mathbf{u} = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$.

$$T(\mathbf{u}) = \begin{bmatrix} 3 \\ -15 \end{bmatrix}$$

$$T(\mathbf{v}) = \begin{bmatrix} 3a \\ 3b \end{bmatrix}$$

2. If T is defined by $T(\mathbf{x}) = A\mathbf{x}$, find a vector \mathbf{x} whose image under T is \mathbf{b} , and determine whether \mathbf{x} is unique. Let

$$A = \begin{bmatrix} 1 & -3 & 2 \\ 0 & 1 & -3 \\ 3 & -10 & 6 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} -4 \\ -7 \\ -2 \end{bmatrix}.$$

Find a single vector **x** whose image under T is **b**.

$$\mathbf{x} = \begin{bmatrix} -32 \\ -10 \\ -1 \end{bmatrix}$$

Is the vector **x** found in the previous step unique?

- A. No, because there are no free variables in the system of equations.
- OB. No, because there is a free variable in the system of equations.
- O. Yes, because there is a free variable in the system of equations.
- **D.** Yes, because there are no free variables in the system of equations.
- 3. Find a vector \mathbf{x} whose image under T, defined by $T(\mathbf{x}) = A\mathbf{x}$, is \mathbf{b} , and determine whether \mathbf{x} is unique. Let

$$A = \begin{bmatrix} 1 & 4 & 7 \\ 3 & 16 & 25 \\ 0 & 1 & 1 \\ -3 & -13 & -22 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 23 \\ 85 \\ 4 \\ -73 \end{bmatrix}.$$

Find a single vector **x** whose image under T is **b**.

$$\mathbf{x} = \begin{bmatrix} 7 \\ 4 \\ 0 \end{bmatrix}$$

Is the vector **x** found in the previous step unique?

- A. Yes, because there are no free variables in the system of equations.
- **B.** No, because there are no free variables in the system of equations.
- C. Yes, because there is a free variable in the system of equations.
- **D.** No, because there is a free variable in the system of equations.

Let A be a 4×4 matrix. What must a and b be in order to define T : $\mathbb{R}^a \to \mathbb{R}^b$ by $T(\mathbf{x}) = A\mathbf{x}$?

a = (Simplify your answer.)

b = 4 (Simplify your answer.)

Find all \mathbf{x} in \mathbb{R}^4 that are mapped into the zero vector by the transformation $\mathbf{x} \mapsto A\mathbf{x}$ for the given matrix A.

$$A = \begin{bmatrix} 1 & -5 & 6 & -12 \\ 0 & 1 & -3 & 4 \\ 2 & -8 & 6 & -16 \end{bmatrix}$$

Select the correct choice below and fill in the answer box(es) to complete your choice.

- A. There is only one vector, which is x =
- B. _{X3}
- C. X₁
- + X₄

6. Let
$$\mathbf{b} = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$
, and let A be the matrix $\begin{bmatrix} 1 & -4 & 6 & -6 \\ 0 & 1 & -3 & 6 \\ 3 & -10 & 12 & -5 \end{bmatrix}$. Is \mathbf{b} in the range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$?

Why or why not?

Is **b** in the range of the linear transformation? Why or why not?

- A. No, b is not in the range of the linear transformation because the system represented by the augmented matrix [A b] is inconsistent.
- B. No, b is not in the range of the linear transformation because the system represented by the augmented matrix [A b] is consistent.
- O. Yes, b is in the range of the linear transformation because the system represented by the augmented matrix [A b] is inconsistent.
- ✓ D. Yes, b is in the range of the linear transformation because the system represented by the augmented matrix [A b] is consistent.

7.

Let
$$\mathbf{b} = \begin{bmatrix} -8 \\ 1 \\ -3 \\ 7 \end{bmatrix}$$
, and let A be the matrix $\begin{bmatrix} 1 & 2 & 6 & 0 \\ 1 & 0 & 2 & -4 \\ 0 & 1 & 2 & 3 \\ -3 & 1 & -4 & 5 \end{bmatrix}$. Is \mathbf{b} in the range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$? Why or why not?

Is **b** in the range of the linear transformation? Why or why not?

- A. Yes, b is in the range of the linear transformation because the system represented by the appropriate augmented matrix is inconsistent.
- B. No, b is not in the range of the linear transformation because the system represented by the appropriate augmented matrix is consistent.
- **C.** No, **b** is not in the range of the linear transformation because the system represented by the appropriate augmented matrix is inconsistent.
- O. Yes, **b** is in the range of the linear transformation because the system represented by the appropriate augmented matrix is consistent.
- 8. Use a rectangular coordinate system to plot $\mathbf{u} = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -3 \\ 6 \end{bmatrix}$, and their images under the given transformation T.

Describe geometrically what T does to each vector \mathbf{x} in \mathbb{R}^2 .

$$\mathsf{T}(\mathbf{x}) = \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right] \left[\begin{array}{c} \mathsf{x}_1 \\ \mathsf{x}_2 \end{array} \right]$$

Which graph below shows **u** and its image under the given transformation?

○ A.

(B.

ℰ C.

O D.

Which graph below shows v and its image under the given transformation?

A.

B.

○ C.

₩D.

What does T do geometrically to each vector \mathbf{x} in \mathbb{R}^2 ?

- **A.** A reflection through the origin
- OB. A dilation transformation over the x-axis
- C. A projection onto the x-axis
- D. A shear transformation

9.

Use a rectangular coordinate system to plot $\mathbf{u} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$, and their images under the given transformation T.

Describe geometrically what T does to each vector \boldsymbol{x} in $\mathbb{R}^2.$

$$\mathsf{T}(\mathbf{x}) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} \mathsf{x}_1 \\ \mathsf{x}_2 \end{array} \right]$$

Which graph below shows **u** and its image under the given transformation?

ℰA.

B.

○ C.

O D.

Which graph below shows \mathbf{v} and its image under the given transformation?

A.

🏲 в

O C.

O D.

What does T do geometrically to each vector \boldsymbol{x} in \mathbb{R}^2 ?

- A. A reflection through the origin
- **B.** A projection onto the y-axis
- O. A shear transformation
- **D.** A rotation over the x-axis

10.

Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps $\mathbf{u} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ into $\begin{bmatrix} 5 \\ 1 \end{bmatrix}$ and maps $\mathbf{v} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ into $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$. Use the fact that T is linear to find the images under T of $2\mathbf{u}$, $3\mathbf{v}$, and $2\mathbf{u} + 3\mathbf{v}$.

What is the image of 2u?

- \bigcirc **A**. $\begin{bmatrix} 2 \\ 10 \end{bmatrix}$
- \bigcirc B. $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$
- \bigcirc **c**. $\begin{bmatrix} -3 \\ 9 \end{bmatrix}$

What is the image of 3v?

- $A. \begin{bmatrix} -3 \\ 9 \end{bmatrix}$
- \bigcirc B. $\begin{bmatrix} 9 \\ -3 \end{bmatrix}$
- \bigcirc c. $\begin{bmatrix} -3 \\ 3 \end{bmatrix}$
- \bigcirc **D**. $\begin{bmatrix} 10 \\ 2 \end{bmatrix}$

What is the image of $2\mathbf{u} + 3\mathbf{v}$?

- \bigcirc A. $\begin{bmatrix} -11 \\ 7 \end{bmatrix}$
- \bigcirc B. $\begin{bmatrix} 11 \\ 7 \end{bmatrix}$
- \bigcirc **C**. $\begin{bmatrix} -7 \\ -11 \end{bmatrix}$

Let $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$, and $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 8 \end{bmatrix}$, and let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1

into \mathbf{y}_1 and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 4 \\ -4 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Which is the correct image of $\begin{bmatrix} 4 \\ -4 \end{bmatrix}$?

 \bigcirc B. $\begin{bmatrix} -12 \\ 16 \end{bmatrix}$

 \bigcirc **c**. $\begin{bmatrix} -12 \\ -16 \end{bmatrix}$

 \bigcirc D. $\begin{bmatrix} 4 \\ -4 \end{bmatrix}$

Which is the correct image of $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$?

$$\bigcirc$$
 A. $\begin{bmatrix} 5x_1 - x_2 \\ 3x_1 + 8x_2 \end{bmatrix}$

B.
$$\begin{bmatrix} 3x_1 - x_2 \\ 5x_1 + 8x_2 \end{bmatrix}$$

$$\bigcirc$$
 c. $\begin{bmatrix} 5x_1 - 8x_2 \\ 3x_1 + x_2 \end{bmatrix}$

D.
$$\begin{bmatrix} 3x_1 + x_2 \\ 5x_1 - 8x_2 \end{bmatrix}$$

12.

Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} -2 \\ -8 \end{bmatrix}$, and $\mathbf{v}_2 = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{x} into

 $x_1v_1 + x_2v_2$. Find a matrix A such that T(x) is Ax for each x.

$$A = \begin{bmatrix} -2 & 6 \\ -8 & -5 \end{bmatrix}$$

.2021	Section 1.8 Homework-Huseyin Kerem Mican
Detern	nine whether each statement below is true or false. Justify each answer.
a. A lir	near transformation is a special type of function.
O A.	False. A linear transformation is not a function because it maps one vector \mathbf{x} to more than one vector $T(\mathbf{x})$.
○ В.	False. A linear transformation is not a function because it maps more than one vector \mathbf{x} to the same vector $T(\mathbf{x})$.
O C.	True. A linear transformation is a function from $\mathbb R$ to $\mathbb R$ that assigns to each vector $\mathbf x$ in $\mathbb R$ a vector $T(\mathbf x)$ in $\mathbb R$.
ℰ D.	True. A linear transformation is a function from \mathbb{R}^n to \mathbb{R}^m that assigns to each vector x in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .
b. If A	is a 3×5 matrix and T is a transformation defined by $T(\mathbf{x}) = A\mathbf{x}$, then the domain of T is \mathbb{R}^3 .
A.	True. The domain is \mathbb{R}^3 because A has 3 columns, because in the product $A\mathbf{x}$, if A is an $m \times n$ matrix then \mathbf{x} must be a vector in \mathbb{R}^m .
○ В.	False. The domain is actually \mathbb{R} , because in the product $A\mathbf{x}$, if A is an $m \times n$ matrix then \mathbf{x} must be a vector in \mathbb{R} .
ℰ C.	False. The domain is actually \mathbb{R}^5 , because in the product $A\mathbf{x}$, if A is an m×n matrix then \mathbf{x} must be a vector in \mathbb{R}^n .
O D.	True. The domain is \mathbb{R}^3 because A has 3 rows, because in the product $A\mathbf{x}$, if A is an $m \times n$ matrix then \mathbf{x} must be a vector in \mathbb{R}^m .
c. If A	is an m×n matrix, then the range of the transformation $\mathbf{x}\mapsto A\mathbf{x}$ is \mathbb{R}^m .
A.	False. The range of the transformation is \mathbb{R}^n because the domain of the transformation is \mathbb{R}^m .
○ В.	True. The range of the transformation is \mathbb{R}^m , because each vector in \mathbb{R}^m is a linear combination of the columns of A.
ℰ C.	False. The range of the transformation is the set of all linear combinations of the columns of A, because each image of the transformation is of the form Ax .
O D.	True. The range of the transformation is \mathbb{R}^m , because each vector in \mathbb{R}^m is a linear combination of the rows of A.
d. Eve	ry linear transformation is a matrix transformation.
O A.	True. Every linear transformation $T(\mathbf{x})$ can be expressed as a multiplication of a vector A by a matrix \mathbf{x} such as $A\mathbf{x}$.
ℰ В.	False. A matrix transformation is a special linear transformation of the form $\mathbf{x} \mapsto A\mathbf{x}$ where A is a matrix.
O C.	True. Every linear transformation $T(\mathbf{x})$ can be expressed as a multiplication of a matrix A by a vector \mathbf{x} such as $A\mathbf{x}$.
O D.	False. A matrix transformation not a linear transformation because multiplication of a matrix A by a vector \mathbf{x} is not linear.
	ansformation T is linear if and only if $T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2)$ for all \mathbf{v}_1 and \mathbf{v}_2 in the domain of T r all scalars c_1 and c_2 .
ℰ A.	True. This equation correctly summarizes the properties necessary for a transformation to be linear.
○ В.	False. A transformation T is linear if and only if $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

 \bigcirc **C.** False. A transformation T is linear if and only if T(0) = 0.

- D. False. A transformation T is linear if and only if T(u + v) = T(u) + T(v) for all u, v in the domain of T.
- 14. Show that the transformation T defined by $T(x_1, x_2) = (4x_1 3x_2, x_1 + 5, 4x_2)$ is not linear.

If T is a linear transformation, then $T(\mathbf{0}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ and $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$ for all vectors \mathbf{u} , \mathbf{v} in the

domain of T and all scalars c, d. (Type a column vector.)

Check if T(0) follows the correct property to be linear.

$$T(0,0) = (4(0) - 3(0), (0) + 5, 4(0))$$
 Substitute.
= $(0, 5, 0)$ Substitute.

What is true about T(**0**)?

- \bigcirc **A.** T(**0**) = **0**
- **ଔB.** T(0) ≠ 0
- \bigcirc **C.** $T(\mathbf{0}) = (1,1,1)$
- \bigcirc **D.** T(**0**) = 5

Therefore, T is not linear.

15. The given matrix determines a linear transformation T. Find all \mathbf{x} such that $T(\mathbf{x}) = \mathbf{0}$.

$$\begin{bmatrix}
3 & -1 & 3 & -2 \\
-5 & 3 & -9 & 0 \\
-5 & 7 & 3 & -10 \\
8 & -6 & 9 & 3
\end{bmatrix}$$

Select the correct choice below and fill in the answer box within your choice.

- \bigcirc A. $\mathbf{x} = \mathbf{x}_1$ + \mathbf{x}
- \bigcirc B. $\mathbf{x} = \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4$
- C. There is only one vector, which is **x** =
- D. $\mathbf{x} = \mathbf{x}_4 \qquad \begin{bmatrix} \frac{3}{2} \\ \frac{5}{2} \\ 0 \end{bmatrix}$