Cheatsheet for 18.6501x by Blechturm Page 1 of x	Fisher Information:	Exponential Parameter λ , continuous	$L(x_1X_n;\mu,\sigma^2) = $
	$I(p) = \frac{n}{p(1-p)}$	$f_X(x) = \begin{cases} \lambda exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{on } x = 0 \end{cases}$	$= \frac{1}{\left(\sigma\sqrt{2\pi}\right)^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right)$
1 Important probability distributions Bernoulli	Ci1	$f_{\chi(\chi)} = 0$, o.w.	Loglikelihood:
Parameter $p \in [0,1]$, discrete	$f_p(y) =$	$F_X(x) = \begin{cases} 1 - exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{o.w.} \end{cases}$	$\ell_n(\mu, \sigma^2) =$
$p_X(k) = \begin{cases} p, & \text{if } k = 1\\ (1-p), & \text{if } k = 0 \end{cases}$	3 p 37	$\mathbb{E}[X] = \frac{1}{\lambda}$	$=-nlog(\sigma\sqrt{2\pi})-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i-\mu)^2$
$\mathbb{E}[X] = p$	$= \exp(y\underbrace{(\ln(p) - \ln(1-p))}_{\theta} + \underbrace{n\ln(1-p)}_{-b(\theta)} + \underbrace{\ln(\binom{n}{y})}_{(y+h)})$	$Var(X) = \frac{1}{12}$	MLE:
Var(X) = p(1-p)	θ $-b(\theta)$ $c(y,\phi)$	Likelihood:	Fisher Information:
Likelihood n trials:	Multinomial	$L(X_1X_n;\lambda) = \lambda^n \exp\left(-\lambda \sum_{i=1}^n X_i\right)$	Canonical exponential form:
	Parameters $n > 0$ and p_1, \dots, p_r .	Loglikelihood:	Gaussians are invariant under affine transformation:
$L_n(X_1,, X_n, p) = p^{\sum_{i=1}^n X_i} (1-p)^{n-\sum_{i=1}^n X_i}$	$p_X(x) = \frac{n!}{x_1! \dots x_n!} p_1, \dots, p_r$	$\ell_n(\lambda) = nln(\lambda) - \lambda \sum_{i=1}^n (X_i)$	$aX + b \sim N(X + b, a^2\sigma^2)$
•	$\mathbb{E}[X_i] = n * p_i$		
Loglikelihood n trials:	$Var(X_i) = np_i(1 - p_i)$	MLE:	Sum of independent gaussians:
$\ell_n(p) = \sum_{n=1}^{n} V_n(n) = \sum_{n=1}^{n} V_n(n)$	Likelihood:	$\hat{\lambda}_{MLE} = \frac{n}{\sum_{i=1}^{n} (X_i)}$	Let $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$
$= \ln(p) \sum_{i=1}^{n} X_i + \left(n - \sum_{i=1}^{n} X_i\right) \ln(1-p)$	$p_X(x) = \prod_{j=1}^n p_j^{T_j}$, where $T^j = \mathbb{1}(X_i = j)$ is the count	Fisher Information:	If $Y = X + Z$, then $Y \sim N(\mu_X + \mu_Y, \sigma_X + \sigma_Y)$
MLE:	how often an outcome is seen in trials.	$I(\lambda) = \frac{1}{\lambda^2}$	If $U = X - Y$, then $U \sim N(\mu_X - \mu_Y, \sigma_X + \sigma_Y)$
$\hat{p}_{MLE} = \frac{\sum_{i=1}^{n} (X_i)}{n}$		Canonical exponential form:	Symmetry:
Fisher Information:	Loglikelihood: $\ell_n = \sum_{j=2}^n T_j \ln(p_j)$		If $X \sim N(0, \sigma^2)$, then $-X \sim N(0, \sigma^2)$
		$f_{\theta}(y) = \exp\left(y\theta - (-\ln(-\theta)) + \underbrace{0}\right)$	$\mathbb{P}(X > x) = 2\mathbb{P}(X > x)$
$I(p) = \frac{1}{p(1-p)}$	Poisson Parameter λ . discrete, approximates the binomial	$b(heta)$ $c(y,\phi)$	Standardization:
Canonical exponential form:	PMF when <i>n</i> is large, <i>p</i> is small, and $\lambda = np$.	$\theta = -\lambda = -\frac{1}{\mu}$	
$f_{\theta}(y) = \exp\left(y\theta - \ln(1 + e^{\theta}) + \underbrace{0}\right)$	$\mathbf{p_x}(k) = exp(-\lambda) \frac{\lambda^k}{k!}$ for $k = 0, 1, \dots$,	$\phi = 1$	$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$
$b(\theta)$ $c(y,\phi)$	$\mathbb{E}[X] = \lambda$	Shifted Exponential Parameters $\lambda, \theta \in \mathbb{R}$, continuous	$\mathbf{P}(X \le t) = \mathbf{P}\left(Z \le \frac{t-\mu}{\sigma}\right)$
$\theta = \ln\left(\frac{p}{1-p}\right)$		$f_{x}(x) = \begin{cases} \lambda exp(-\lambda(x-\theta)), & x >= \theta \\ 0, & x <= \theta \end{cases}$	Higher moments:
$\phi = 1$	$Var(X) = \lambda$	($\mathbb{E}[X^2] = \mu^2 + \sigma^2$
Binomial	Likelihood: $\sum_{i=1}^{n} x_i = 1$	$F_X(x) = \begin{cases} 1 - exp(-\lambda(x-a)), & if \ x >= \theta \\ 0, & x <= \theta \end{cases}$	$\mathbb{E}[X^3] = \mu^3 + 3\mu\sigma^2$
Parameters p and n , discrete. Describes the number of successes in n independent Bernoulli trials.	$L_n(x_1,,x_n,\lambda) = \prod_{i=1}^n \frac{\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{-n\lambda}$	$\mathbb{E}[X] = a + \frac{1}{3}$	$\mathbb{E}[X^4] = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$
	Loglikelihood:	$Var(X) = \frac{1}{12}$	Quantiles:
$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 1, \dots, n$	$\ell_n(\lambda) = \\ = -n\lambda + \log(\lambda)(\sum_{i=1}^n x_i) - \log(\prod_{i=1}^n x_i!)$	Λ	Uniform
$\mathbb{E}[X] = np$	MLE:	Likelihood:	Parameters <i>a</i> and <i>b</i> , continuous. (1) $\frac{1}{1-a}$, if $a < x < b$
Var(X) = np(1-p)		$L(X_1 \dots X_n; \lambda, \theta) = \lambda^n \exp(-\lambda n(\overline{X}_n - \theta)) 1(X_1 \ge \theta)$ Univariate Gaussians	$\mathbf{f}_{\mathbf{x}}(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a < x < b \\ 0, & \text{o.w.} \end{cases}$
Likelihood:	$\hat{\lambda}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} (X_i)$	Parameters μ and $\sigma^2 > 0$, continuous	$\mathbb{E}[X] = \frac{a+b}{2}$
$I_{m}(X_{1},\ldots,X_{m},\theta)=$	Fisher Information:	$f(x) = \frac{1}{\sqrt{(2\pi\sigma^2)}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$	$Var(X) = \frac{(b-a)^2}{12}$
$L_n(X_1, \dots, X_n, \theta) =$ $= \left(\prod_{i=1}^n {K \choose X_i}\right) \theta^{\sum_{i=1}^n X_i} (1 - \theta)^{nK - \sum_{i=1}^n X_i}$	$I(\lambda) = \frac{1}{\lambda}$	$ \frac{\sqrt{(2\pi\sigma^2)}}{\mathbb{E}[X] = \mu} $	Likelihood:
$= \left(\prod_{i=1}^{n} \left(X_{i}\right)\right)^{\theta - i = 1 - r} \left(1 - \theta\right)^{r+r} - L_{i=1} - r$	Canonical exponential form:	$Var(X) = \sigma^2$	$L(x_1 \dots x_n; b) = \frac{1(\max_i (x_i \le b))}{b^n}$
Loglikelihood:	•	CDF of standard gaussian:	Loglikelihood:
$\ell_n(\theta) = C + \left(\sum_{i=1}^n X_i\right) \log \theta + \left(nK - \sum_{i=1}^n X_i\right) \log(1-\theta)$	$f_{\theta}(y) = \exp\left(y\theta - \underbrace{e^{\theta} - \ln y!}\right)$	$\Phi(z) = \int_{-\infty}^{z} \frac{1}{z^{2}} e^{-x^{2}/2} dz$	Cauchy
MLE:	$b(\theta) c(y,\phi)$ $\theta = \ln \lambda$	$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$ Likelihood:	continuous, parameter m ,
IVILLE.	$\phi = \ln \lambda$ $\phi = 1$	LIKEIIIIOUU.	$f_m(x) = \frac{1}{\pi} \frac{1}{1 + (x - m)^2}$

Cheatsheet for 18.6501x by Blechturm	Product of dependent r.vs <i>X</i> and <i>Y</i> :	6 Covariance	8 Random Vectors
Page 2 of x	$\mathbb{E}[X \cdot Y] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y]$	The Covariance is a measure of how much the values of each of two correlated random variables	A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$ of dimension
$\mathbb{E}[X] = notdefined!$ $Var(X) = notdefined!$	$\mathbb{E}[X \cdot Y] = \mathbb{E}[\mathbb{E}[Y \cdot X Y]] = \mathbb{E}[Y \cdot \mathbb{E}[X Y]]$	determine each other	$d \times 1$ is a vector-valued function from a probability space ω to \mathbb{R}^d :
med(X) = P(X > M) = P(X < M)	Linearity of Expectation where <i>a</i> and <i>c</i> are given	$Cov(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$	$\mathbf{X}:\Omega\longrightarrow\mathbb{R}^d$
	scalars:	$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$	
$= 1/2 = \int_{1/2}^{\infty} \frac{1}{\pi} \cdot \frac{1}{1 + (x - m)^2} dx$ Chi squared	$\mathbb{E}[aX + cY] = a\mathbb{E}[X] + c\mathbb{E}[Y]$	$Cov(X, Y) = \mathbb{E}[(X)(Y - \mu_Y)]$	$\begin{pmatrix} X^{(1)}(\omega) \\ X^{(2)}(\omega) \end{pmatrix}$
The χ_d^2 distribution with d degrees of freedom is	If Variance of <i>X</i> is known:	Possible notations:	$\omega \longrightarrow \begin{bmatrix} \ddots & \ddots$
given by the distribution of $Z_1^2 + Z_2^2 + \cdots + Z_d^2$, where	$\mathbb{E}[X^2] = var(X) - \mathbb{E}[X]$	$Cov(X,Y) = \sigma(X,Y) = \sigma_{(X,Y)}$	$\left(X^{(d)}(\omega)\right)$
$Z_1, \dots, Z_d \stackrel{iid}{\sim} \mathcal{N}(0,1)$ If $V \sim \chi_k^2$:	4 Variance	Covariance is commutative:	where each $X^{(k)}$, is a (scalar) random variable on Ω .
~	Variance is the squared distance from the mean.	Cov(X,Y) = Cov(Y,X)	PDF of X: joint distribution of its components
$\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \ldots + \mathbb{E}[Z_d^2] = d$	$Var(X) = \mathbb{E}[(X - \mathbb{E}(X))^2]$	Covariance with of r.v. with itself is variance:	$X^{(1)}, \dots, X^{(d)}$.
$Var(V) = Var(Z_1^2) + Var(Z_2^2) + + Var(Z_d^2) = 2d$ Student's T Distribution	$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$	$Cov(X,X) = \mathbb{E}[(X - \mu_X)^2] = Var(X)$	CDF of X:
$T_n := \frac{Z}{\sqrt{V/n}}$ where $Z \sim \mathcal{N}(0,1)$, and Z and V are	Variance of a product with constant <i>a</i> :	Useful properties:	$\mathbb{R}^d o [0,1]$
independent 2 Quantiles of a Distribution	$Var(aX) = a^2 Var(X)$	Cov(aX + h, bY + c) = abCov(X, Y)	$\mathbf{x} \mapsto \mathbf{P}(X^{(1)} \le x^{(1)}, \dots, X^{(d)} \le x^{(d)}).$
Let α in $(0,1)$. The quantile of order $1-\alpha$ of a	Variance of sum of two dependent r.v.:	Cov(X, X + Y) = Var(X) + cov(X, Y)	The sequence X_1, X_2, \dots converges in probability to X if and only if each component of the sequence
random variable X is the number q_{α} such that:	Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)	Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z)	$X_1^{(k)}, X_2^{(k)}, \dots$ converges in probability to $X^{(k)}$.
$q_{\alpha} = \mathbb{P}(X \le q_{\alpha}) = 1 - \alpha$	Variance of sum of two independent r.v.:	If $Cov(X, Y) = 0$, we say that X and Y are uncorrela-	Expectation of a random vector The expectation of a random vector is the element-
$\mathbb{P}(X \ge q_{\alpha}) = \alpha$	Var(X + Y) = Var(X) + Var(Y)	ted. If X and Y are independent, their Covariance is zero. The converse is not always true. It is only	wise expectation. Let X be a random vector of dimension $d \times 1$.
$F_X(q_\alpha) = 1 - \alpha$	Var(X - Y) = Var(X) + Var(Y)	true if <i>X</i> and <i>Y</i> form a gaussian vector, ie. any linear combination $\alpha X + \beta Y$ is gaussian for all $(\alpha, \beta) \in \mathbb{R}^2$	(4)
$F_X^{-1}(1-\alpha) = \alpha$	5 Sample Mean and Sample Variance	without {0, 0}. 7 Law of large Numbers and Central Limit theorem	$\mathbb{E}[\mathbf{X}] = \begin{pmatrix} \mathbb{E}[X^{(1)}] \\ \vdots \\ \end{pmatrix}.$
If $X \sim N(0,1)$:	Let $X_1,,X_n \stackrel{iid}{\sim} P_{\mu}$, where $E(X_i) = \mu$ and	univariace	$\mathbb{E}[X^{(d)}]$
$\mathbb{P}(X > q_{\alpha}) = \alpha$ 3 Expectation	$Var(X_i) = \sigma^2$ for all $i = 1, 2,, n$	Let $X_1,,X_n \stackrel{iid}{\sim} P_{\mu}$, where $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ for all $i = 1, 2,, n$ and $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$.	The expectation of a random matrix is the expected
$\mathbb{E}[X] = \int_{-inf}^{+inf} x \cdot f_X(x) \ dx$	Sample Mean:		value of each of its elements. Let $X = \{X_{ij}\}$ be an $n \times p$ random matrix. Then $\mathbb{E}[X]$, is the $n \times p$ matrix
$\mathbb{E}[g(X)] = \int_{-inf}^{+inf} g(x) \cdot f_X(x) dx$	$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$	Law of large numbers:	of numbers (if they exist):
,	Sample Variance:	$\overline{X}_n \xrightarrow[n \to \infty]{P,a.s.} \mu$.	$\begin{bmatrix} \mathbb{E}[X_{11}] & \mathbb{E}[X_{12}] & \dots & \mathbb{E}[X_{1p}] \\ \mathbb{E}[X_{21}] & \mathbb{E}[X_{22}] & \dots & \mathbb{E}[X_{2p}] \end{bmatrix}$
$\mathbb{E}[X Y=y] = \int_{-inf}^{+inf} x \cdot f_{X Y}(x y) dx$	$S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 =$	$\frac{1}{n} \sum_{i=1}^{n} g(X_i) \xrightarrow[n \to \infty]{P.a.s.} \mathbb{E}[g(X)]$	$\mathbb{E}[X] = \begin{bmatrix} \mathbb{E}[X_{21}] & \mathbb{E}[X_{22}] & \dots & \mathbb{E}[X_{2p}] \\ \vdots & \vdots & \ddots & \vdots \\ \end{bmatrix}$
Integration limits only have to be over the support of the pdf. Discrete r.v. same as continuous but with	$= \frac{1}{n} \left(\sum_{i=1}^{n} X_i^2 \right) - \overline{X}_n^2$	Central Limit Theorem:	$\begin{bmatrix} \mathbb{E}[X_{n1}] & \mathbb{E}[X_{n2}] & \dots & \mathbb{E}[X_{np}] \end{bmatrix}$
sums and pmfs.	Cochranes Theorem:	$\sqrt{(n)} \frac{\overline{X_n} - \mu}{\sqrt{(\sigma^2)}} \xrightarrow[n \to \infty]{(d)} N(0, 1)$	Let <i>X</i> and <i>Y</i> be random matrices of the same dimension, and let <i>A</i> and <i>B</i> be conformable matrices of
Total expectation theorem:	If $X_1,,X_n \stackrel{iid}{\sim} N\mu,\sigma^2$ the sample mean \overline{X}_n and the	V (6)	constants.
$\mathbb{E}[X] = \int_{-inf}^{+inf} f_Y(y) \cdot \mathbb{E}[X Y = y] dy$	sample variance S_n are independent $\overline{X}_n \perp S_n$ for all n . The sum of squares of n Numbers follows a	$\sqrt{(n)(\overline{X_n} - \mu)} \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$	$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ $\mathbb{E}[AXB] = A\mathbb{E}[X]B$
Expectation of constant <i>a</i> :	all <i>n</i> . The sum of squares of <i>n</i> Numbers follows a Chi squared distribution $\frac{nS_n}{\sigma^2} \sim \chi_{n-1}^2$	Variance of the Mean:	Covariance Matrix
$\mathbb{E}[a] = a$	Unbiased estimator of sample variance:	$Var(\overline{X_n}) = $	Let <i>X</i> be a random vector of dimension $d \times 1$ with
Product of independent r.vs X and Y :	11	$\left(\frac{\sigma^2}{n}\right)^2 Var(X_1 + X_2,, X_n) = \frac{\sigma^2}{n}.$	expectation μ_X . Matrix outer products!
$\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$	$\tilde{S}_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2 = \frac{n}{n-1} S_n$	Expectation of the mean:	$\Sigma = \mathbb{E}[(X - \mu_X)(X - \mu_X)^T] =$
	$n=1$ $\frac{1}{i=1}$	$E[\overline{X_n}] = \frac{1}{n}E[X_1 + X_2,, X_n] = \mu.$	(A PA)(A PA)] -

Cheatsheet for 18.6501x by Blechturm	Multivariate CLT	9 Statistical models	$\mathbb{P}_{\theta}[\mathcal{I}\ni\theta]\geq 1-\alpha,\ \forall\theta\in\Theta$
Page 3 of x	Let $X_1,,X_d \in \mathbb{R}^d$ be independent copies of a random vector X such that $\mathbb{E}[x] = \mu$ ($d \times 1$ vector of	$E, \{P_{\theta}\}_{\theta \in \Theta}$	Confidence interval of asymptotic level $1 - \alpha$ for θ :
$\mathbb{E}\left(\begin{bmatrix} X_{1} - \mu_{1} \\ X_{2} - \mu_{2} \\ \dots \\ X_{d} - \mu_{d} \end{bmatrix} [X_{1} - \mu_{1}, X_{2} - \mu_{2}, \dots, X_{d} - \mu_{d}]\right)$	expectations) and $Cov(X) = \Sigma$	E is a sample space for X i.e. a set that contains all possible outcomes of X	Any random interval $\mathcal I$ whose boundaries do not depend on θ and such that:
$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \end{bmatrix}$	$\sqrt{(n)(\overline{X_n} - \mu)} \xrightarrow[n \to \infty]{(d)} N(0, \Sigma)$	$\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ is a family of probability distributions on $E.$	$\lim_{n\to\infty} \mathbb{P}_{\theta}[\mathcal{I}\ni\theta] \ge 1-\alpha, \ \forall \theta\in\Theta$
$\Sigma = Cov(X) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{bmatrix}$	$\sqrt{(n)}\Sigma^{-1/2}\overline{X_n} - \mu \xrightarrow[n \to \infty]{(d)} N(0, I_d)$	Θ is a parameter set, i.e. a set consisting of some possible values of Θ .	Two-sided asymptotic CI
The covariance matrix Σ is a $d \times d$ matrix. It is a	Where $\Sigma^{-1/2}$ is the $d \times d$ matrix such that $\Sigma^{-1/2}\Sigma^{-1/2} = \Sigma^1$ and I_d is the identity matrix.	θ is the true parameter and unknown. In a parame-	Let $X_1,,X_n = \tilde{X}$ and $\tilde{X} \stackrel{\text{1.d}}{=} P_{\theta}$. A two-sided CI is a function depending on \tilde{X} giving an upper and lower bound in which the estimated parame-
table of the pairwise covariances of the elemtents of the random vector. Its diagonal elements are the variances of the elements of the random vector, the	Multivariate Delta Method Gradient Matrix of a Vector Function:	tric model we assume that $\Theta \subset \mathbb{R}^d$, for some $d \ge 1$. Identifiability:	ter lies $\mathcal{I} = [l(\tilde{X}, u(\tilde{X}))]$ with a certain probability $\mathbb{P}(\theta \in \mathcal{I}) \ge 1 - q_{\alpha}$ and conversely $\mathbb{P}(\theta \notin \mathcal{I}) \le \alpha$
off-diagonal elements are its covariances. Note that the covariance is commutative e.g. $\sigma_{12} = \sigma_{21}$	Given a vector-valued function $f: \mathbb{R}^d \to \mathbb{R}^k$, the	$\theta \neq \theta' \Rightarrow \mathbb{P}_{\theta} \neq \mathbb{P}_{\theta'}$	Since the estimator is a r.v. depending on \tilde{X} it has
Alternative forms:	gradient or the gradient matrix of f , denoted by ∇f , is the $d \times k$ matrix:	$\mathbb{P}_{\theta} = \mathbb{P}_{\theta'} \Rightarrow \theta = \theta'$	a variance $Var(\hat{\theta}_n)$ and a mean $\mathbb{E}[\hat{\theta}_n]$. After finding those it is possible to standardize the estimation of the standardize the estimation of the standardize that the standardize the standardiz
$\Sigma = \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T =$ $= \mathbb{E}[XX^T] - \mu_X \mu_X^T$	$\nabla f =$	A Model is well specified if:	tor using the CLT. This yields an asymptotic CI: $\mathcal{I} = \hat{\theta}_n + \left[\frac{-q_{\alpha/2}\sqrt{Var(\theta)}}{\sqrt{n}}, \frac{q_{\alpha/2}\sqrt{Var(\theta)}}{\sqrt{n}}\right]$
Let the random vector $X \in \mathbb{R}^d$ and A and B be conformable matrices of constants.	$= \begin{pmatrix} \nabla f_1 & \nabla f_2 & \dots & \nabla f_k \end{pmatrix} =$	$\exists \theta \ s.t. \ \mathbb{P} = \mathbb{P}_{\theta}$ 10 Estimators	This expression depends on the real variance $Var(\theta)$ of the r.vs, the variance has to be estimated. Three
Cov($AX + B$) = $Cov(AX) = ACov(X)A^T = A\Sigma A^T$ Every Covariance matrix is positive definite.	$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_k}{\partial x_1} \\ \vdots & \cdots & \vdots \\ \frac{\partial f_1}{\partial x_d} & \cdots & \frac{\partial f_k}{\partial x_d} \end{pmatrix}.$	A statistic is any measurable function of the sample, e.g. $\overline{X_n}$, $max(X_i)$, etc. An Estimator of θ is any statistic which does not depend on θ .	possible methods: plugin (use sample mean), solve (solve quadratic inequality), conservative (use the maximum of the variance).
$\Sigma < 0$	$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_k}{\partial x_k} \end{pmatrix}$	An estimator $\hat{\theta}_n$ is weakly consistent if: $\lim_{n\to\infty} \hat{\theta}_n = \theta$	Delta Method
Gaussian Random Vectors	This is also the transpose of what is known as the Jacobian matrix J_f of f .	or $\hat{\theta}_n \xrightarrow[n \to \infty]{P} \mathbb{E}[g(X)]$. If the convergence is almost surely it is strongly consistent.	If I take a function of the mean and want to make it converge to a function of the mean.
A random vector $\mathbf{X} = (X^{(1)},, X^{(d)})^T$ is a Gaussian vector, or multivariate Gaussian or normal variable, if any linear combination of its components	General statement, given	Asymptotic normality of an estimator:	$\sqrt{n}(g(\widehat{m}_1) - g(m_1(\theta))) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, g'(m_1(\theta))^2 \sigma^2)$
is a (univariate) Gaussian variable or a constant (a		(d)	12 Hypothesis tests Comparisons of two proportions
"Gaussian" variable with zero variance), i.e., if $\alpha^T \mathbf{X}$ is (univariate) Gaussian or constant for any constant	• $(\mathbf{T}_n)_{n\geq 1}$ a sequence of random vectors	$\sqrt{(n)(\hat{\theta}_n - \theta)} \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$	Let $X_1,, X_n \stackrel{iid}{\sim} Bern(p_x)$ and $Y_1,, Y_n \stackrel{iid}{\sim} Bern(p_y)$
non-zero vector $lpha \in \mathbb{R}^d$. Multivariate Gaussians	• satisfying $\sqrt{n} \left(\mathbf{T}_n - \vec{\theta} \right) \xrightarrow[n \to \infty]{(d)} \mathbf{T}$,	σ^2 is called the Asymptotic Variance of $\hat{\theta}_n$. In the case of the sample mean it the variance of a single X_i . If the estimator is a function of the sample	and be <i>X</i> independent of <i>Y</i> . $\hat{p}_x = 1/n \sum_{i=1}^n X_i$ and $\hat{p}_x = 1/n \sum_{i=1}^n Y_i$
The distribution of, X the d -dimensional Gaussian or normal distribution, is completely specified by the vector mean $\mu = \mathbb{E}[\mathbf{X}] = (\mathbb{E}[X^{(1)}], \dots, \mathbb{E}[X^{(d)}])^T$	• a function $\mathbf{g}: \mathbb{R}^d \to \mathbb{R}^k$ that is continuously differentiable at $\vec{\theta}$,	mean the Delta Method is needed to compute the Asymptotic Variance. Asymptotic Variance ≠ Variance of an estimator.	$H_0: p_x = p_y; H_1: p_x \neq p_y$
and the $d \times d$ covariance matrix Σ . If Σ is invertible, then the pdf of X is:	then	Bias of an estimator:	To get the asymptotic Variance use multivariate Delta-method. Consider $\hat{p}_x - \hat{p}_y = g(\hat{p}_x, \hat{p}_y)$; $g(x, y) = x - y$, then
$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)},$	$\sqrt{n} \left(\mathbf{g}(\mathbf{T}_n) - \mathbf{g}(\vec{\theta}) \right) \xrightarrow[n \to \infty]{(d)} \nabla \mathbf{g}(\vec{\theta})^T \mathbf{T}$	$Bias(\hat{\theta}_n = \mathbb{E}[\hat{\theta_n}] - \theta$	$\sqrt{(n)(g(\hat{p}_x,\hat{p}_y) - g(p_x - p_y))} \xrightarrow[n \to \infty]{(d)} N(0,\nabla g(p_x - p_y))$
$ \sqrt{(2\pi)^d \det(\Sigma)} $ $ \mathbf{x} \in \mathbb{R}^d $	With multivariate Gaussians and Sample mean:	Quadratic risk of an estimator:	$p_{y})^{T} \Sigma \nabla g(p_{x} - p_{y}))$
Where $det(\Sigma)$ is the determinant of Σ , which is posi-	Let $T_n = \overline{X}_n$ where \overline{X}_n is the sample average of	$R(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \theta)^2] = Bias^2 + Variance$	$\Rightarrow N(0, p_x(1-px) + p_y(1-py))$ Private
tive when Σ is invertible. If $\mu = 0$ and Σ is the identity matrix, then X is called a standard normal random vector . If the covariant matrix Σ is diagonal, the pdf factors	$\mathbf{X}_1, \dots, \mathbf{X}_n \overset{iid}{\sim} \mathbf{X}$, and $\vec{\theta} = \mathbb{E}[\mathbf{X}]$. The (multivariate) CLT then gives $\mathbf{T} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$ where $\Sigma_{\mathbf{X}}$ is the covariance of \mathbf{X} . In this case, we have:	11 Confidence intervals Let $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$ be a statistical model based on observations $X_1, \dots X_n$ and assume $\Theta \subseteq \mathbb{R}$. Let $\alpha \in (0,1)$.	Pivot: Let $X_1,,X_n$ be random samples and let T_n be a function of X and a parameter vector θ . That is, T_n
into pdfs of univariate Gaussians, and hence the components are independent.	$\sqrt{n} \left(\mathbf{g}(\mathbf{T}_n) - \mathbf{g}(\vec{\theta}) \right) \xrightarrow[n \to \infty]{(d)} \nabla \mathbf{g}(\vec{\theta})^T \mathbf{T}$	Non asymptotic confidence interval of level $1 - \alpha$	is a function of $X_1,, X_n, \theta$. Let $g(T_n)$ be a random variable whose distribution is the same for all θ . Then, g is called a pivotal quantity or a pivot.
The linear transform of a gaussian $X \sim N_d(\mu, \Sigma)$ with conformable matrices A and B is a gaussian:	$\nabla \mathbf{g}(\vec{\theta})^T \mathbf{T} \sim \mathcal{N} \left(0, \nabla \mathbf{g}(\vec{\theta})^T \Sigma_{\mathbf{X}} \nabla \mathbf{g}(\vec{\theta}) \right)$	for θ : Any random interval \mathcal{I} , depending on the sample	For example, let X be a random variable with mean
$AX + B = N_d(A\mu + b, A\Sigma A^T)$	$(\mathbf{T} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}}))$	X_1,X_n but not at θ and such that:	μ and variance σ^2 . Let $X_1,, X_n$ be iid samples of X . Then,

 $g_n \triangleq \frac{\overline{X_n} - \mu}{\sigma}$ is a pivot with $\theta = \left[\mu \ \sigma^2 \right]^T$ being the parameter vector. The notion of a parameter vector here is not to

Page 4 of x

Walds Test

Cheatsheet for 18.6501x by Blechturm

be confused with the set of paramaters that we use to define a statistical model. Onesided Twosided P-Value

$$X_1,...,X_n \stackrel{iid}{\sim} \mathbf{P}_{\theta^*}$$
 for some true parameter $\theta^* \in \mathbb{R}^d$. We construct the associated statistical model $(\mathbb{R}, \{\mathbf{P}_{\theta}\}_{\theta \in \mathbb{R}^d})$ and the maximum likelihood estimator $\widehat{\theta}_{\eta}^{MLE}$ for θ^* . Decide between two hypotheses:

 $H_0: \theta^* = 0 \text{ VS } H_1: \theta^* \neq 0$ Assuming that the null hypothesis is true, the asymptotic normality of the MLE $\widehat{\theta}_n^{MLE}$ implies that the following random variable $\|\sqrt{n}\mathcal{I}(\mathbf{0})^{1/2}(\widehat{\theta}_n^{MLE} - \mathbf{0})\|^2$

$$\|\sqrt{n}\mathcal{I}(\mathbf{0})^{1/2}(\widehat{\theta}_n^{MLE} - \mathbf{0})\|^2 \xrightarrow[n \to \infty]{} \chi_d^2$$
Wald's Test in 1 dimension:

converges to a χ_k^2 distribution.

In 1 dimension, Wald's Test coincides with the two-

sided test based on on the asymptotic normality of the MLE.

Given the hypotheses $H_0: \theta^* = \mathbf{0} \text{ VS } H_1: \theta^* \neq \mathbf{0}$ a two-sided test of level α , based on the asymptotic normality of the MLE, is ψ_{α} =

 $\mathbf{1}\left(\sqrt{nI(\theta_0)}\left|\widehat{\theta}^{\text{MLE}}-\theta_0\right|>q_{\alpha/2}(\mathcal{N}(0,1))\right)$ where the Fisher information $I(\theta_0)^{-1}$ is the asym-

ptotic variance of $\widehat{\theta}^{\text{MLE}}$ under the null hypothesis. On the other hand, a Wald's test of level α is $\psi_{\alpha}^{\text{Wald}} = \mathbf{1} \left(nI(\theta_0) \left(\widehat{\theta}^{\text{MLE}} - \theta_0 \right)^2 > q_{\alpha}(\chi_1^2) \right)$

$\mathbf{1}\left(\sqrt{nI(\theta_0)}\left|\widehat{\theta}^{\mathrm{MLE}}-\theta_0\right|>\sqrt{q_{\alpha}(\chi_1^2)}\right)$

13 Distance between distributions Total variation

The total variation distance TV between the propability measures P and Q with a sample space \vec{E} is defined as:

$$TV(\mathbf{P}, \mathbf{Q}) = \max_{A \subset E} |\mathbf{P}(A) - \mathbf{Q}(A)|,$$

Calculation with f and g :

Symmetry:

 $d(\mathbf{P}, \mathbf{Q}) = d(\mathbf{Q}, \mathbf{P})$

$$TV(\mathbf{P}, \mathbf{Q}) = \begin{cases} \frac{1}{2} \sum_{x \in E} |f(x) - g(x)|, & \text{discr} \\ \frac{1}{2} \int_{x \in E} |f(x) - g(x)| dx, & \text{cont} \end{cases}$$
Symmetry:

 $KL(\mathbf{P}, \mathbf{Q}) = \begin{cases} \sum_{x \in E} p(x) \ln \left(\frac{p(x)}{q(x)} \right), & \text{discr} \\ \int_{x \in E} p(x) \ln \left(\frac{p(x)}{q(x)} \right) dx, & \text{cont} \end{cases}$ Not a distance Sum over support of *P*! Asymetric in general:

TV between continuous and discrete r.v: $d(\mathbf{P}, \mathbf{V}) = 1$

the KL divergence (also known as relative entropy)

KL between between the propability measures *P* and

Q with the common sample space E and pmf/pdf

nonnegative:

 $d(\mathbf{P}, \mathbf{Q}) = 0 \iff \mathbf{P} = \mathbf{Q}$

 $d(\mathbf{P}, \mathbf{V}) \le d(\mathbf{P}, \mathbf{Q}) + d(\mathbf{Q}, \mathbf{V})$

If the support of **P** and **Q** is disjoint:

functions *f* and *g* is defined as:

triangle inequality:

 $d(\mathbf{P}, \mathbf{O}) \geq 0$

definite:

 $d(\mathbf{P}, \mathbf{V}) = 1$

KL divergence

$$KL(P,Q) \neq KL(Q,P)$$

Nonnegative:
 $KL(P,Q) \geq 0$
Definite:
if $P = Q$ then $KL(P,Q) = 0$
Does not satisfy triangle inequality in general:

 $KL(\mathbf{P}, \mathbf{V}) \leq KL(\mathbf{P}, \mathbf{O}) + KL(\mathbf{O}, \mathbf{V})$ Estimator of KL divergence:

$$\widehat{KL}(\mathbf{P}_{\theta_*}, \mathbf{P}_{\theta}) = const - \frac{1}{n} \sum_{i=1}^{n} log(p_{\theta}(X_i))$$

Maximum likelihood estimation

 $KL(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) = \mathbb{E}_{\theta^*} \left[ln \left(\frac{p_{\theta^*}(X)}{p_{\theta}(X)} \right) \right],$

maximum likelihood estimator.

Maximum likelihood estimator:

Cookbook: take the log of the likelihood function. Take the partial derivative of the loglikelihood func- *X*: tion with respect to the parameter. Set the partial

derivative to zero and solve for the parameter. derivative to zero and solve for the parameter.

If an indicator function on the pdf/pmf does not $\mathcal{I}(\theta) = \int_{-\infty}^{\infty} \frac{\left(\frac{\partial f_{\theta}(x)}{\partial \theta}\right)^2}{f_{\theta}(x)} dx$ depend on the parameter, it can be ignored. If it depends on the parameter it can't be ignored because there is an discontinuity in the loglikelihood function. The maximum/minimum of the X_i is then the

Let $\{E, (\mathbf{P}_{\theta})_{\theta \in \Theta}\}$ be a statistical model associated with a sample of i.i.d. random variables $X_1, X_2, ..., X_n$. Assume that there exists $\theta^* \in \Theta$ such that $X_i \sim \mathbf{P}_{\theta^*}$. The maximum likelihood estimator is the (unique)

 θ that minimizes $\widetilde{\mathrm{KL}}(\mathbf{P}_{\theta^*},\mathbf{P}_{\theta})$ over the parameter space. (The minimizer of the KL divergence is unique due to it being strictly convex in the space of distributions once is fixed.)

 $\hat{\mu}_n^{MLE} = \frac{1}{n} \sum_{i=1}^{n} (x_i)$ 13.1 Fisher Information The Fisher information is the covariance matrix of

Gaussian Maximum-loglikelihood estimators:

the gradient of the loglikelihood function. It is equal to the negative expectation of the Hessian of the

 $\mathcal{I}(\theta) = Cov(\nabla \ell(\theta)) =$

taken with respect to the pmf.

 $\operatorname{argmax}_{\theta \in \Theta} \operatorname{ln} \bigcap p_{\theta}(X_i)$

MLE estimator for $\sigma^2 = \tau$: $\hat{\tau}_n^{MLE} = \frac{1}{n} \sum_{i=1}^n X_i^2$

MLE estimators:

Let $\theta \in \Theta \subset \mathbb{R}^d$ and let $(E, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$ be a statistical model. Let $f_{\theta}(\mathbf{x})$ be the pdf of the distribution \mathbf{P}_{θ} . Then, the Fisher information of the statistical model

loglikelihood function and captures the negative of

the expected curvature of the loglikelihood function.

$$= \mathbb{E}[\nabla \ell(\theta)) \nabla \ell(\theta)^{T}] - \mathbb{E}[\nabla \ell(\theta)] \mathbb{E}[\nabla \ell(\theta)] =$$

$$= -\mathbb{E}[\mathbb{H}\ell(\theta)]$$
Where $\ell(\theta) = \ln f_{\theta}(\mathbf{X})$. If $\nabla \ell(\theta) \in \mathbb{R}^{d}$ it is a $d \times d$ matrix. The definition when the distribution has

a pmf $p_{\theta}(\mathbf{x})$ is also the same, with the expectation

Let $(\mathbb{R}, \{\mathbf{P}_{\theta}\}_{\theta \in \mathbb{R}})$ denote a continuous statistical model. Let $f_{\theta}(x)$ denote the pdf (probability density function) of the continuous distribution P_{θ} . Assume that $f_{\theta}(x)$ is twice-differentiable as a function of the parameter θ .

Formula for the calculation of Fisher Information of

Models with multiple parameters (ie. Gaussians):

Models with one parameter (ie. Bernulli):

 $\mathcal{I}(\theta) = Var(\ell'(\theta))$

 $\mathcal{I}(\theta) = -\mathbb{E}\left[\mathbf{H}\ell(\theta)\right]$

 $\mathcal{I}(\theta) = -\mathbf{E}(\ell''(\theta))$

Cookbook:

Better to use 2nd derivative.

- · Find loglikelihood
- · Take second derivative (=Hessian if multiva-
 - M(0), the asymptotical variance of the MOM esti-

• Don't forget the minus sign! Asymptotic normality of the maximum likelihood estimator

• Find the expectation of the functions of X_i

situte the right power back. $\mathbb{E}[X_i] \neq \mathbb{E}[X_i^2]$.

• For all $\theta \in \Theta$, the support \mathbb{P}_{θ} does not depend

and subsitute them back into the Hessian or

the second derivative. Be extra careful to sub-

Under certain conditions the MLE is asymptotically normal and consistent. This applies even if the MLE

is not the sample average. Let the true parameter $\theta^* \in \Theta$. Necessary assumpti-

- The parameter is identifiable
- on θ (e.g. like in $Unif(0,\theta)$); • θ^* is not on the boundary of Θ ;
- Fisher information $\mathcal{I}(\theta)$ is invertible in the neighborhood of θ^*
- · A few more technical conditions The asymptotic variance of the MLE is the inverse

 $\sqrt{(n)}(\widehat{\theta}_n^{\text{MLE}} - \theta^*) \xrightarrow[n \to \infty]{(d)} N_d(0, \mathcal{I}(\theta^*)^{-1})$

Let $X_1, ..., X_n \overset{iid}{\sim} \mathbf{P}_{\theta^*}$ associated with model $(\mathbb{E}, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$, with $\mathbb{E} \subseteq \mathbb{R}$ and $\Theta \subseteq \mathbb{R}$, for some d Population moments:

of the fisher information.

14 Method of Moments

 $m_k(\theta) = \mathbb{E}_{\theta}[X_1^k], 1 \le k \le d$

Empirical moments: $\widehat{m_k}(\theta) = X_n^k = \frac{1}{n} \sum_{i=1}^n X_i^k$

 $\widehat{m_k} \xrightarrow[n \to \infty]{P,a.s.} m_k$

 $(\widehat{m_1},\ldots,\widehat{m_d}) \xrightarrow{P,a.s.} (m_1,\ldots,m_d)$

Convergence of empirical moments:

MOM Estimator *M* is a map from the parameters of a model to the moments of its distribution. This map

ons that can be solved for the true parameter vector θ^*). Find the moments (as many as parameters), set up system of equations, solve for parameters, use

empirical moments to estimate. $\psi:\Theta\to\mathbb{R}^d$

 $\theta \mapsto (m_1(\theta), m_2(\theta), \dots, m_d(\theta))$

 $M^{-1}(m_1(\theta^*),m_2(\theta^*),\ldots,m_d(\theta^*))$ The MOM estimator uses the empirical moments:

 $M^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}, \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}, \dots, \frac{1}{n}\sum_{i=1}^{n}X_{i}^{d}\right)$

is invertible, (ie. it results into a system of equati-

Assuming M^{-1} is continuously differentiable at

 $-\mathbb{E}[\mathbf{H}\ell(\theta)].$

 $\operatorname{argmin}_{\theta \in \Theta} \widehat{\operatorname{KL}}_n(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) =$ $\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ln p_{\theta}(X_i) =$

 Massage second derivative or Hessian (isolate functions of X_i to use with $-\mathbf{E}(\ell''(\theta))$ or Cheatsheet for 18.6501x by Blechturm Page 5 of x

$$\sqrt{(n)}(\widehat{\theta_n^{MM}} - \theta) \xrightarrow[n \to \infty]{(d)} N(0, \Gamma)$$

where,

$$\Gamma(\theta) = \left[\frac{\partial M^{-1}}{\partial \theta}(M(\theta))\right]^T \Sigma(\theta) \left[\frac{\partial M^{-1}}{\partial \theta}(M(\theta))\right]$$

$$\Gamma(\theta) = \nabla_{\theta} (M^{-1})^T \Sigma \nabla_{\theta} (M^{-1})$$

 Σ_{θ} is the covariance matrix of the random vector of the moments $(X_1^1, X_1^2, ..., X_1^d)$.

15 OLS

$$Y|X = x \sim N(\mu(x), \sigma^2 I)$$

Regression function $\mu(x)$:

$$\mathbb{E}[Y|X=x] = \mu(x) = x^T \beta$$

Random Component of the Linear Model:

Y is continuous and Y|X = x is Gaussian with mean $\mu(x)$

16 Generalized Linear Models

We relax the assumption that μ is linear. Instead, we assume that $g \circ \mu$ is linear, for some function g:

$$g(\mu(\mathbf{x})) = \mathbf{x}^T \beta$$

The function g is assumed to be known, and is referred to as the link function. It maps the domain of the dependent variable to the entire real Line.

it has to be strictly increasing,

it has to be continuously differentiable and its range is all of \mathbb{R}

16.1 The Exponential Family

A family of distribution $\{\mathbf{P}_{\theta} : \theta \in \Theta\}$, where the parameter space $\Theta \subset \mathbb{R}^k$ is -k dimensional, is called a k-parameter exponential family on \mathbb{R}^1 if the pmf or pdf $f_{\theta} : \mathbb{R}^q \to \mathbb{R}$ of \mathbf{P}_{θ} can be written in the form:

$$f_{\boldsymbol{\theta}}(\mathbf{y}) = h(\mathbf{y}) \exp (\eta(\boldsymbol{\theta}) \cdot \mathbf{T}(\mathbf{y}) - B(\boldsymbol{\theta}))$$
 where $\{$

if k = 1 it reduces to:

$$f_{\theta}(y) = h(y) \exp(\eta(\theta)T(y) - B(\theta))$$

17 Algebra

Absolute Value Inequalities:

$$|f(x)| < a \Rightarrow -a < f(x) < a$$

 $|f(x)| > a \Rightarrow f(x) > a \text{ or } f(x) < -a$

18 Matrixalgebra

$$\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^T(\mathbf{A}\mathbf{x}) = \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x} = \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x}$$

19 Calculus

Differentiation under the integral sign

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a(x)}^{b(x)} f(x,t) \, \mathrm{d}t \right) = f(x,b(x))b'(x) - f(x,a(x))a'(x) + \int_{a(x)}^{b(x)} f_x(x,t) \, \mathrm{d}t.$$

Concavity in 1 dimension

If $g: I \to \mathbb{R}$ is twice differentiable in the interval I: concave:

if and only if $g''(x) \le 0$ for all $x \in I$

strictly concave:

if g''(x) < 0 for all $x \in I$

convex:

if and only if $g''(x) \ge 0$ for all $x \in I$

strictly convex if: g''(x)>0 for all $x \in I$

Multivariate Calculus

The Gradient ∇ of a twice differntiable function f is defined as:

$$\nabla f: \mathbb{R}^d \to \mathbb{R}^d$$

$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{pmatrix} \mapsto \begin{pmatrix} \frac{\partial f}{\partial \theta_1} \\ \frac{\partial f}{\partial \theta_2} \\ \vdots \\ \frac{\partial f}{\partial \theta_d} \end{pmatrix}$$

Hessian

The Hessian of f is a symmetric matrix of second partial derivatives of f

$$\begin{split} \mathbf{H}h(\theta) &= \nabla^2 h(\theta) = \\ \begin{pmatrix} \frac{\partial^2 h}{\partial \theta_1 \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_1 \partial \theta_d}(\theta) \\ & \vdots & \\ \frac{\partial^2 h}{\partial \theta_1 \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_d \partial \theta_d}(\theta) \end{pmatrix} \in \mathbb{R}^{d \times d} \end{split}$$

 $\eta(\theta) = A \text{ symmetric}(\underbrace{\text{real}}_{R} \text{valued}) d \times d \text{ matrix } A \text{ is:}$

Positive semi-definite: $\mathbf{x} T_1 \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^d$.

 $T(y) = Positive definite: \mathbb{R}^k$

 $h(\mathbf{y})$

 $\left(\frac{1}{L_{k}} \frac{1}{L_{k}} \right) > 0$ for all non-zero vectors $\mathbf{x} \in \mathbb{R}^{d}$

Negative semi-definite (resp. negative definite): $: \mathbb{R}^q \to \mathbb{R}$.

 $\mathbf{x}^T \mathbf{A} \mathbf{x}$ is negative for all $\mathbf{x} \in \mathbb{R}^d - \{\mathbf{0}\}$.

(or negative) semi-definiteness.

Positive (or negative) definiteness implies positive

If the Hessian is positive definite then f attains a local minimum at a (convex).

If the Hessian is negative definite at a, then f attains a local maximum at a (concave).

If the Hessian has both positive and negative eigenvalues then a is a saddle point for f.