Fairness in Machine Learning

Fairness in Machine Learning

Q: What is **Fairness?**

Fairness in Machine Learning

Q: What is Fairness?

A: Understanding and mitigation of *discrimination* based on sensitive characteristics.

(Hardt Moritz, CS294, UC Berkley, 2017)

(according to the US labor law)

(according to the US labor law)

Disparate Treatment

(according to the US labor law)

Disparate Treatment

Formal Intentional

(according to the US labor law)

Disparate Treatment

Formal Intentional

'age' > 55

(according to the US labor law)

Disparate Treatment

Formal Intentional

'age' > 55 'experience, years' > 30

(according to the US labor law)

Disparate Treatment

Disparate Impact

Formal Intentional

'age' > 55 'experience, years' > 30

(according to the US labor law)

(according to the US labor law)

(according to the US labor law)

Formal Intentional

'age' > 55 'experience, years' > 30

Disparate Impact

Unjustified

Avoidable

PositiveRate(Class A) = 60%

PositiveRate(Protected Class B) = 30%

Independence (Demographic parity)

PositiveRate(Class1) = PositiveRate(Class2)

Independence (Demographic parity)

PositiveRate(Class1) = PositiveRate(Class2)

Separation (Equality of opportunity)

TruePositiveRate(Class1) = TruePositiveRate(Class2)

Independence (Demographic parity)

PositiveRate(Class1) = PositiveRate(Class2)

Separation (Equality of opportunity)

TruePositiveRate(Class1) = TruePositiveRate(Class2)

Sufficiency (Group unawareness)

Class membership is not considered

- 2 different groups
- Perfect predictor (Score = P)
- True positive → +3
- False positive → -7

- Thresholds are set to maximize utility
- Fairness constraints

• Groups are of equal size (n=1000000)

	profit	total discrate	profit (X1, X2)		thresholds (X1, X2)		positiveRate (X1, X2)		TruePositiveRate (X1, X2)	
Maximize Profit	539674	0.598	89814	449860	70	69	0.091	0.311	0.217	0.525
Group Unaware	539633	0.607	89814	449819	<mark>70</mark>	<mark>70</mark>	0.091	0.301	0.217	0.511
Demographic Parity	415232	0.634	23910	391322	57	81	0.186	0.191	0.397	0.345
Equal Opportunity	445025	0.621	34715	410310	58	79	0.177	0.211	0.382	0.377

- Group 1 size = 10⁵
- Group 2 size = 10^6

0	10	20	30	40	50	60	70	80	90	100	0	10	20 :	30	40	50	60	70 8	80 9	0 100
	•		*****		la La	lo še ol					00000000000000000000000000000000000000	***								
0	10	20	30	40	50	60	70	80	90	100	0	10	20	30	40	50	60	70	80	90 10
0000	10	20	000000	0000	*****	So ۥ o	8	ee e:	•••	100	•	10	20 3		40		60	70 8		0 100
•					2.01		••••	• • •	•••			•								
0	10	20	30	40	50	60	70	80	90	100	0	10	20	30	40	50	60	70	80	90
			200								200020000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								

	profit	total discrate	profit (X1, X2)		thresholds (X1, X2)		positiveRate (X1, X2)		TruePositiveRate (X1, X2)	
Maximize Profit	461503	0.511	8985	452518	74	70	0.067	0.3	0.167	0.511
Group Unaware	461478	0.508	8960	452518	<mark>70</mark>	<mark>70</mark>	0.089	0.3	0.214	0.511
Demographic Parity	434527	0.514	-15536	450063	47	72	0.281	0.28	0.542	0.482
Equal Opportunity	443108	0.518	-6955	450063	51	72	0.24	0.28	0.481	0.482

- Group 1 size = 10^6
- Group 2 size = 10^5

	profit	total discrat e	profit (X1, X2)		profit (X1, X2)			sholds , X2)		veRate X2)		sitiveRate ., X2)
Maximize Profit	133095	0.748	88992	44103	70	71	0.09	0.291	0.216	0.494		
Group Unaware	133045	0.746	88992	44053	<mark>70</mark>	<mark>70</mark>	0.09	0.301	0.216	0.508		
Demographic Parity	114126	0.776	88903	25223	69	90	0.096	0.101	0.229	0.191		
Equal Opportunity	118310	0.758	87605	30705	68	87	0.102	0.131	0.241	0.244		

Conclusion:

- Discrimination is domain-specific
- Outcome of a fairness concept application depends on the problem, group sizes, underlying distributions and other parameters.

Designing for Fairness (Google's recommendations)

- Consider the problem
- Ask experts
- Train the models to account for bias
- Interpret outcomes
- Publish with context

https://developers.google.com/machine-learning/fairness-overview https://developers.google.com/machine-learning/crash-course/fairness