UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MEK2200 — Kontinuumsmekanikk

Eksamensdag: Torsdag 20. desember 2018

Tid for eksamen: 14.30 - 18.30

Oppgavesettet er på 3 sider.

Vedlegg: Ingen

Tillatte hjelpemidler: Rottmann: Matematische Formelsamlung,

godkjent kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1 (vekt 30%)

1a

Utled bevegelses- og kontinuitetslikningen for et vilkårlig kontinuerlig medium. Forklar hvilke fysiske lover som ligger til grunn.

1b

Med utgangspunkt i 1a, utled bevegelseslikningen for en inkompressibel Newtonsk væske. Forklar hvilke antagelser som gjøres.

1c

Med utgangspunkt i 1a, utled bevegelseslikningen for et isotropt lineært elastisk stoff. Forklar hvilke antagelser som gjøres.

Oppgave 2 (vekt 40%)

Vi ser på en homogen inkompressibel Newtonsk væske som flyter i et tynt lag ned et skråplan, som skissert i Fig 1. Bevegelsen er stasjonær og rettlinjet, hastigheten \vec{v} er parallell med skråplanet. Væskens kinematiske viskositetskoeffisient er ν og høyden på væskefilmen er h. Trykket ved den frie overflaten er p_0 .

2a

Sett opp likningene, inkludert grensebetingelser, som beskriver strømningen. Gjør alle mulige forenklinger og begrunn hvorfor man har et hastighetsfelt på formen

$$\vec{v} = (u(y), 0, 0) \tag{1}$$

Figur 1: Illustrasjon av viskøs væske som flyter nedover et skråplan.

2b

Finn bevegelsen og volumstrømmen Q_0 . Volumstrømmen er det væskevolum som per tidsenhet transporteres gjennom et plan normalt på x-aksen, med bredde lik 1.

Vi antar videre at vi har to væskelag som strømmer nedover skråplanet, som skissert i Fig 2. Både den frie overflaten og skilleflaten mellom de to lagene er parallelle med skråplanet, og tykkelsen på lagene er h_1 og h. Tettheten er den samme i begge lag, men de kinematisk viskositetskoeffisientene er henholdsvis v_1 og v. Bevegelsen er fremdeles stasjonær og rettlinjet, hastigheten er parallell med skråplanet og bare avhengig av avstanden til dette planet.

Figur 2: Illustrasjon av 2 lag med viskøse væsker som flyter nedover et skråplan.

2c

Sett opp grensebetingelsene ved skilleflaten.

2d

Finn bevegelsen i de to lagene. Skisser hastighetsprofilet. Hvordan blir hastighetsprofilet når $\frac{v_1}{v} \longrightarrow \infty$?

Oppgave 3 (vekt 30%)

Gitt tensoren

$$\mathcal{P} = aii + bij + cji + d(jj + kk)$$

der i, j, k er enhetsvektorene i henholdsvis x, y og z-retning, mens a, b, c og d er konstanter.

3a

Gi tensoren \mathcal{P} på matriseform. Hva må forholdet mellom konstantene være for at \mathcal{P} skal kvalifisere som en spenningstensor?

3b

Anta videre at a, b, c og d er funksjoner som varierer i rommet. Er det da flere restriksjoner hvis vi også krever at \mathcal{P} skal gjelde for en viskøs væske i ro (stasjonær), uten ytre påvirkninger? I så fall hvilke?

3c

Anta at b = c og finn prinsipalspenningene og prinsipalretningene til \mathcal{P} .

Tilleggsmateriale

Newton's friksjonslov

$$P_{ij} = -p\delta_{ij} + \kappa \nabla \cdot \boldsymbol{v}\delta_{ij} + 2\mu \left(\dot{\boldsymbol{\epsilon}}_{ij} - \frac{\nabla \cdot \boldsymbol{v}}{3} \delta_{ij} \right)$$

Hooke's lov

$$P_{ij} = \kappa \nabla \cdot \boldsymbol{u} \delta_{ij} + 2\mu \left(\epsilon_{ij} - \frac{\nabla \cdot \boldsymbol{u}}{3} \delta_{ij} \right)$$

SLUTT