

element (1,2) of the matrix equals λ_2 . Once constructed, the traffic matrices are used to compute the provisioning routes (e.g., paths), for each non-zero element of those matrices, and the computed paths are pinned down using multi-protocol label switching (MPLS) for Diffserv networks or multi-protocol lambda switching (MP λ S) for optical networks.

Page 6, after equation (4), please insert the following paragraph:

--V represents the total amount of bandwidth of accepted flows, and W represents the total amount of bandwidth of all flows.--

Page 16, please replace the second full paragraph with the following paragraph:

Accordingly, in the next step S21, M is defined as the subset of those already accepted (i.e., during the previous $i-1$ steps) quadruplets $T(1), \dots, T(i-1)$ for which the following two conditions hold true. First, the bit $[r_j]b_i$ of quadruplet is TRUE and the path SPA(j) thus can be altered. Second, all links e in Q belong to the path SPA(j): $Q \subset \text{SPA}(j)$. Therefore, if the bandwidth reservation for r_j of the quadruplet $T(j)$ for its path SPA(j) is removed, the available bandwidth at each link e in Q increases by r_j . Since the i^{th} flow requires bandwidth reservation of $r_i \leq r_j$, this increase is sufficient for accommodating the i^{th} flow using its path SPI(i).