DM₆

À rendre le Vendredi 13/ Lundi 16 novembre 2020.

Exercice 1 (Très classique). Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 &= 1 \\ u_{n+1} &= \sin(u_n) \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n < \frac{\pi}{2}$.
- 2. On note $f(x) = \sin(x) x$. Montrer que pour tout $x \in \mathbb{R}_+^*$, f(x) < 0.
- 3. En déduire le sens de variation de $(u_n)_{n\in\mathbb{N}}$.
- 4. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$
- 5. Montrer que $f(x) = 0 \iff x = 0$.
- 6. Déterminer la valeur de ℓ .

Exercice 2. On reprend les notations de l'exercice précédent.

- 1. Ecrire une fonction qui prend en paramètre $n \in \mathbb{N}$ et qui retourne la valeur de u_n . (Pour ceux qui n'ont pas encore vu les fonctions, vous pouvez écrire un script qui demande à l'utilisateur la valeur de n souhaité et qui retourne la valeur de u_n sans les fonctions, mais bon c'est pas si différent...)
- 2. Ecrire une fonction qui prend en paramètre $e \in \mathbb{R}^+$ et qui retourne la valeur du premier terme $n_0 \in \mathbb{N}$ telle que $|u_{n_0} \ell| \le e$ et la valeur de u_{n_0} . (même remarque)

Exercice 3. Soit $(I_n)_{n\in\mathbb{N}}$ la suite définie par $I_0=1$ et pour tout $n\in\mathbb{N}$, $I_{n+1}=(2n+1)I_n$. Exprimer I_n en fonction de n à l'aide uniquement de factorielle et puissance.

Exercice 4 (Facultatif). 1. Montrer que pour tout $n \in \mathbb{N}^*$ l'équation $x^3 + nx = 1$ admet une unique solution dans \mathbb{R}^+ . On la note x_n .

- 2. Justifier que la suite est minorée par 0 et majorée par 1.
- 3. Montrer que $x_{n+1}^3 + nx_{n+1} 1 < 0$.
- 4. En déduite que la suite $(x_n)_{n\in\mathbb{N}}$ est décroissante.
- 5. En déduire que $(x_n)_{n\in\mathbb{N}}$ converge.
- 6. A l'aide d'un raisonement par l'absurde justifier que cette limite vaut 0.