1.2_3(1)OSI参考模型.md 2024-10-16

OSI 参考模型

日期: 2024年10月16日

知识总览

• 记住: 各层的名称和顺序 (物联网叔会使用)

• 了解: 常见网络设备的功能层次

• 了解: 各层的功能

关于个别术语的说明

记住: 各层的名称和顺序

- **谐音助记**: OSI 参考模型 1~7 层——"**物联网叔会使用**"
 - 。 应**用**层
 - 表示层
 - 会话层
 - 传输层
 - 网络层
 - 数据链路层
 - 物理层

常见网络设备功能层次

1.2_3(1)OSI参考模型.md 2024-10-16

各层的功能

物理层

- **物理层任务**: 实现<u>相邻节点</u>之间**比特 (0 或 1) 的传输**
- 。 物理层功能
 - 1. 需要定义电路接口参数(如形状、大小、尺寸、引脚数等)
 - 2. 需要定义传输信号的含义、电气特征 (如 5V 表示 1, 1V 表示 0; 每比特电信号持续时间 0.1ms)

• 数据链路层 (链路层)

- **链路层任务**: 确保<u>相邻节点</u>之间链路**逻辑上无差错**
- 链路层功能
 - 1. 差错控制: 检错 + 纠错; 或检错 + 丢弃 + 重传
 - 以帧 (Frame, 含多个比特) 为传输单位, 包含校验信息 (需校验编码技术), 成功接收后去除校验信息
 - 2. 流量控制: 协调两个节点的速率
 - 控制流量可以防止丢帧

网络层

- 网络层任务: 把"分组"从源结点转发到目的结点
- 网络层功能
 - 1. **路由选择**:构造并维护路由表,决定分组到达目的节点的最佳路径 2. **分组转发**:将"**分组** (Packet,也称数据报)"从**合适的端口转发**出去
 - 3. 拥塞控制: 发现网络拥塞, 并采取措施缓解拥塞
 - 4. 网际互连: 实现异构网络互连
 - 5. 其他功能: 差错控制、流量控制、连接建立与释放、可靠传输管理

■ 网络层的**差错控制**是以"**分组**"为单位的,而不是"**帧**",一个分组可能被拆分为多个 帧,数据链路层只能保证"帧"的正确,不能保证"分组"的正确

- **连接建立与释放**涉及的是"虚电路"
- **可靠传输管理**例如接收方需要返回分组确认消息

• 传输层

- **传输层任务**:实现端到端通信(即实现<u>进程到进程</u>的通信), "端"指端口
 - 源节点的微信给目的节点的微信发送数据,使用的是对应的端口号,保证不会把数据发到 QQ 等其他进程
 - 在数据的发送方多个进程可以通过端口号请求传输层的服务,该过程被称为"传输层的复用
 - 在数据的接收方传输层会通过端口号分派给对应的进程,该过程被称为"传输层的分用"
- 。 传输层功能
 - 1. 复用和分用:发送端几个高层实体复用一条低层的连接,在接收端再进行分用
 - 2. 其他功能: 差错控制、流量控制、连接建立与释放、可靠传输管理
 - 网传输层的**差错控制**是以"**报文段**"为单位的,确保报文段有序、不重复到达,一个报 文段可以拆分成多个分组
 - **可靠传输管理**例如接收方需要返回报文段确认消息
- #5~#7层(会话层、表示层、应用层)
 - 会话层任务: 管理进程间会话
 - 会话层主要功能: 会话管理, 采用检查点机制, 当通信失效时从检查点继续恢复通信(例如文件断点续传)
 - 表示层任务: 解决不同主机上信息显示不一致的问题
 - 。 表示层主要功能: <u>数据格式转换</u>, 如字符编码转换、压缩/解压、加密/解密
 - 应用层任务: 实现特定的网络应用
 - **应用层主要功能**:功能繁多,根据应用需求设计,例如 HTTP 协议等

总结

• 各层数据传输单位

1.2_3(1)OSI参考模型.md 2024-10-16

○ 数据分段(从大到小) -> 数据重装(从小到大)

汇总

层	任务	功能
#7 应用 层	实现特定网络应用	略
#6 表示 层	解决不同主机上信息表 示不一致的问题	数据格式转换
#5 会话 层	管理进程间会话	会话管理
#4 传输 层	实现实端到端(进程到 进程)通信	复用和分用、差错控制、流量控制、连接管理、可靠传输管 理
#3 网络 层	把分组从源结点转发到 目的结点	路由选择、分组转发、拥塞控制、网际互联、差错控制、流 量控制、连接管理、可靠传输管理
#2 数据 链路层	确保相邻节点之间的链 路逻辑上无差错	差错控制、流量控制
#1 物理 层	实现相邻节点之间比特 的传输	需定义电路接口参数、信号的含义/电气特性等