Cryptomorphic Descriptions of Matroids

Adriel Matei, Béla Schneider, Javier Vela, Juš Kocutar

Presenting: Javier, Juš

June 9, 2023

Motivation

- Motivation
- What is a matroid?

- Motivation
- What is a matroid?

- Motivation
- What is a matroid?
- Matroids defined by independent sets and bases

- Motivation
- What is a matroid?
- Matroids defined by independent sets and bases
- Matroids in terms of circuits

- Motivation
- What is a matroid?
- Matroids defined by independent sets and bases
- Matroids in terms of circuits
- Rank function and closure

- Motivation
- What is a matroid?
- Unear algebra and graph theory examples
- Matroids defined by independent sets and bases
- Matroids in terms of circuits
- Rank function and closure
- Ouality

Abstracting Independence - Motivation

 Notions of independence seem to independently appear in different branches of mathematics (linear algebra, graph theory, etc.)

Abstracting Independence - Motivation

- Notions of independence seem to independently appear in different branches of mathematics (linear algebra, graph theory, etc.)
- These notions share fundamental common properties (e.g. taking an element out of an independent set still yields an independent set)

Abstracting Independence - Motivation

- Notions of independence seem to independently appear in different branches of mathematics (linear algebra, graph theory, etc.)
- These notions share fundamental common properties (e.g. taking an element out of an independent set still yields an independent set)
- Abstracting fundamental properties gives us deeper understanding of the topic (e.g. by developing different ways to visualise the concept of independence)

What is a Matroid?

A matroid is a *structure* that abstracts the notion of *linear independence*. It can be defined in many different ways, such as using:

What is a Matroid?

A matroid is a *structure* that abstracts the notion of *linear independence*. It can be defined in many different ways, such as using:

- Independent sets
- Bases
- Circuits
- and many more...

What is a Matroid?

A matroid is a *structure* that abstracts the notion of *linear independence*. It can be defined in many different ways, such as using:

- Independent sets
- Bases
- Circuits
- and many more...

Due to all the possible characterizations this structure is useful to relate different areas in mathematics such as linear algebra and graph theory.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix} \quad E = \{1, 2, 3, 4, 5\}$$

Here, E is the set corresponding to the column vectors of A.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix} \quad E = \{1, 2, 3, 4, 5\}$$

Here, E is the set corresponding to the column vectors of A. The linearly independent sets are

$$\{1,5\},\{2,5\},\{3,5\},\{1,2\},\{1,3\},\{1\},\{2\},\{3\},\{5\}.$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix} \quad E = \{1, 2, 3, 4, 5\}$$

Here, E is the set corresponding to the column vectors of A. The linearly independent sets are

$$\{1,5\},\{2,5\},\{3,5\},\{1,2\},\{1,3\},\{1\},\{2\},\{3\},\{5\}.$$

Here, E is the set of edges.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix} \quad E = \{1, 2, 3, 4, 5\}$$

Here, E is the set corresponding to the column vectors of A. The linearly independent sets are

$$\{1,5\},\{2,5\},\{3,5\},\{1,2\},\{1,3\},\{1\},\{2\},\{3\},\{5\}.$$

Here, E is the set of edges. The cycles of this graph are $\{1,2,5\},\{1,3,5\},\{2,3\},\{4\}$. The independent sets are just the sets of edges that do not contain a cycle.

Our setup - finite set E, collection of its subsets \mathcal{I} satisfying:

Our setup - finite set $\it E$, collection of its subsets $\it I$ satisfying:

Our setup - finite set $\it E$, collection of its subsets $\it I$ satisfying:

- ② If $I \in \mathcal{I}$ and $J \subset I$, then $J \in \mathcal{I}$.

Our setup - finite set E, collection of its subsets $\mathcal I$ satisfying:

- ② If $I \in \mathcal{I}$ and $J \subset I$, then $J \in \mathcal{I}$.
- **③** If $J, I ∈ \mathcal{I}$ and |J| < |I|, then there is e ∈ I J such that $J ∪ e ∈ \mathcal{I}$.

Our setup - finite set E, collection of its subsets $\mathcal I$ satisfying:

- $\emptyset \in \mathcal{I}$.
- ② If $I \in \mathcal{I}$ and $J \subset I$, then $J \in \mathcal{I}$.
- **③** If $J, I ∈ \mathcal{I}$ and |J| < |I|, then there is e ∈ I J such that $J ∪ e ∈ \mathcal{I}$.

• Cycles are central to graph theory.

- Cycles are central to graph theory.
- Intuitively, spanning trees and (the absence) of cycles are intimately connected.

- Cycles are central to graph theory.
- Intuitively, spanning trees and (the absence) of cycles are intimately connected.
- It turns out this idea can be used to describe general matroids using a generalized notion of cycles *Circuits*.

- Cycles are central to graph theory.
- Intuitively, spanning trees and (the absence) of cycles are intimately connected.
- It turns out this idea can be used to describe general matroids using a generalized notion of cycles *Circuits*.

• Circuits are minimal dependent sets

- Circuits are minimal dependent sets
- We can formally define a matroid given its ground set E and a set of circuits C:

- Circuits are minimal dependent sets
- We can formally define a matroid given its ground set E and a set of circuits C:
- **1** $\emptyset \not\in \mathcal{C}$ (the empty set cannot be dependent)

- Circuits are minimal dependent sets
- We can formally define a matroid given its ground set E and a set of circuits C:
- $\emptyset \not\in \mathcal{C}$ (the empty set cannot be dependent)
- ② If $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$ then $C_1 = C_2$ (otherwise C_2 would clearly not be minimal)

- Circuits are minimal dependent sets
- We can formally define a matroid given its ground set E and a set of circuits C:
- ② If $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$ then $C_1 = C_2$ (otherwise C_2 would clearly not be minimal)
- ③ If $C_1, C_2 \in \mathcal{C}$ are distinct circuits and $e \in C_1 \cap C_2$ then a circuit $C_3 \in \mathcal{C}$ exists with $C_3 \subseteq (C_1 \cup C_2) e$

- Circuits are minimal dependent sets
- We can formally define a matroid given its ground set E and a set of circuits C:
- **1** $\emptyset \notin \mathcal{C}$ (the empty set cannot be dependent)
- ② If $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$ then $C_1 = C_2$ (otherwise C_2 would clearly not be minimal)
- **③** If $C_1, C_2 ∈ C$ are distinct circuits and $e ∈ C_1 ∩ C_2$ then a circuit $C_3 ∈ C$ exists with $C_3 ⊆ (C_1 ∪ C_2) − e$

(a) Graph

- Circuits are minimal dependent sets
- We can formally define a matroid given its ground set E and a set of circuits C:
- **1** $\emptyset \not\in \mathcal{C}$ (the empty set cannot be dependent)
- ② If $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$ then $C_1 = C_2$ (otherwise C_2 would clearly not be minimal)
- ③ If $C_1, C_2 \in \mathcal{C}$ are distinct circuits and $e \in C_1 \cap C_2$ then a circuit $C_3 \in \mathcal{C}$ exists with $C_3 \subseteq (C_1 \cup C_2) e$

- Circuits are minimal dependent sets
- We can formally define a matroid given its ground set E and a set of circuits C:
- **1** $\emptyset \notin \mathcal{C}$ (the empty set cannot be dependent)
- ② If $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$ then $C_1 = C_2$ (otherwise C_2 would clearly not be minimal)
- **③** If $C_1, C_2 ∈ C$ are distinct circuits and $e ∈ C_1 ∩ C_2$ then a circuit $C_3 ∈ C$ exists with $C_3 ⊆ (C_1 ∪ C_2) − e$

- Circuits are minimal dependent sets
- We can formally define a matroid given its ground set E and a set of circuits C:
- **1** $\emptyset \not\in \mathcal{C}$ (the empty set cannot be dependent)
- ② If $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$ then $C_1 = C_2$ (otherwise C_2 would clearly not be minimal)
- **③** If $C_1, C_2 ∈ C$ are distinct circuits and $e ∈ C_1 ∩ C_2$ then a circuit $C_3 ∈ C$ exists with $C_3 ⊆ (C_1 ∪ C_2) − e$

• The notion of *rank* from linear algebra can also be generalized to arbitrary matroids.

• The notion of rank from linear algebra can also be generalized to arbitrary matroids. The rank of a set S, denoted r(S), measures the size of the largest independent sets contained in S. For example, the rank of the ground set E is the size of a basis of the matroid (since all bases are of the same size).

- The notion of rank from linear algebra can also be generalized to arbitrary matroids. The rank of a set S, denoted r(S), measures the size of the largest independent sets contained in S. For example, the rank of the ground set E is the size of a basis of the matroid (since all bases are of the same size).
- The closure of a set S, denoted cl(S), is the maximal superset of S with equal rank. In other words:

- The notion of rank from linear algebra can also be generalized to arbitrary matroids. The rank of a set S, denoted r(S), measures the size of the largest independent sets contained in S. For example, the rank of the ground set E is the size of a basis of the matroid (since all bases are of the same size).
- The closure of a set S, denoted cl(S), is the maximal superset of S with equal rank. In other words:

$$cl(S) = \{x \in E : r(S \cup x) = r(S)\}.$$

Graphic matroids:

- Graphic matroids:
 - the rank function measures the size of the spanning forest.

- Graphic matroids:
 - the rank function measures the size of the spanning forest.
 - the closure is the maximal superset one can obtain by only adding edges when they introduce cycles.

- Graphic matroids:
 - the rank function measures the size of the spanning forest.
 - the closure is the maximal superset one can obtain by only adding edges when they introduce cycles.
- Vector matroids:

- Graphic matroids:
 - the rank function measures the size of the spanning forest.
 - the closure is the maximal superset one can obtain by only adding edges when they introduce cycles.
- Vector matroids:
 - the rank function measures the rank of the submatrix, so the dimention of the span.

- Graphic matroids:
 - the rank function measures the size of the spanning forest.
 - the closure is the maximal superset one can obtain by only adding edges when they introduce cycles.
- Vector matroids:
 - the rank function measures the rank of the submatrix, so the dimention of the span.
 - the closure operator constructs the span, intersected with E.

Consider the matroid induced by the graph G, and the set S defined below.

Consider the matroid induced by the graph G, and the set S defined below.

Consider the matroid induced by the graph G, and the set S defined below.

(b) S

• *U* is a spanning forest (we removed *c* to get rid of a cycle)

(c) U

(a) G

Consider the matroid induced by the graph G, and the set S defined below.

- *U* is a spanning forest (we removed *c* to get rid of a cycle)
- The rank is the size of the spanning forest, i.e. r(S) = |U| = 11.

(b) S

(c) U

(a) G

Consider the matroid induced by the graph G, and the set S defined below.

- *U* is a spanning forest (we removed *c* to get rid of a cycle)
- The rank is the size of the spanning forest, i.e. r(S) = |U| = 11.
- The only edges which introduce cycles when added to S are a and b, so cl(S) = S + a + b.

Duality - Definition

Given a matroid M, the dual of M is a matroid denoted by M^* having the same ground set E, such that the bases of M^* are precisely the complements of bases of M.

Duality - Definition

Given a matroid M, the dual of M is a matroid denoted by M^* having the same ground set E, such that the bases of M^* are precisely the complements of bases of M. Formally:

• let M be a matroid on E with \mathcal{B} as its collection of bases, and:

$$\mathcal{B}^*(M) = \{ E(M) - B : B \in \mathcal{B}(M) \}.$$

• Then the dual matroid M^* is a matroid having $\mathcal{B}^*(M)$ as its collection of bases.

Duality - Definition

Given a matroid M, the dual of M is a matroid denoted by M^* having the same ground set E, such that the bases of M^* are precisely the complements of bases of M. Formally:

• let M be a matroid on E with \mathcal{B} as its collection of bases, and:

$$\mathcal{B}^*(M) = \{ E(M) - B : B \in \mathcal{B}(M) \}.$$

• Then the dual matroid M^* is a matroid having $\mathcal{B}^*(M)$ as its collection of bases.

Independent set, Basis, Circuit, Dependent set

•
$$(M^*)^* = M$$

- $(M^*)^* = M$
- Let M be a matroid in a set E and suppose $X \subseteq E$. Then

- $(M^*)^* = M$
- Let M be a matroid in a set E and suppose $X \subseteq E$. Then
 - ① X is independent if and only if E X is cospanning.

- $(M^*)^* = M$
- Let M be a matroid in a set E and suppose $X \subseteq E$. Then
 - **1** X is independent if and only if E X is cospanning.
 - ② X is spanning if and only if E X is coindependent.

- $(M^*)^* = M$
- Let M be a matroid in a set E and suppose $X \subseteq E$. Then
 - **1** X is independent if and only if E X is cospanning.
 - ② X is spanning if and only if E X is coindependent.
- If *M* is *representable* over the field *F*, then *M** is also representable over *F*.

- $(M^*)^* = M$
- Let M be a matroid in a set E and suppose $X \subseteq E$. Then
 - **1** X is independent if and only if E X is cospanning.
 - ② X is spanning if and only if E X is coindependent.
- If M is representable over the field F, then M^* is also representable over F.
- $r(M) + r^*(M) = |E(M)| = |E(M^*)|$

- $(M^*)^* = M$
- Let M be a matroid in a set E and suppose $X \subseteq E$. Then
 - **1** X is independent if and only if E X is cospanning.
 - ② X is spanning if and only if E X is coindependent.
- If M is representable over the field F, then M^* is also representable over F.
- $r(M) + r^*(M) = |E(M)| = |E(M^*)|$
- $r^*(X) = r(E X) + |X| r(M)$

Example 1: Let us consider the bipartite graph $K_{3,3}$.

Example 1: Let us consider the bipartite graph $K_{3,3}$.

We can see it has 9 edges, so the ground set is $E = \{1, 2, 3, \dots, 9\}$.

Example 1: Let us consider the bipartite graph $K_{3,3}$.

We can see it has 9 edges, so the ground set is $E = \{1, 2, 3, \dots, 9\}$.

The matrix associated to the matroid $M(K_{3,3})$ is the following:

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Theorem

Let M be the vector matroid of the matrix $[I_r|D]$ where the columns of this matrix are labelled, in order, $e_1, e_2, ..., e_n$ and $1 \le r \le n$.

Theorem

Let M be the vector matroid of the matrix $[I_r|D]$ where the columns of this matrix are labelled, in order, $e_1, e_2, ..., e_n$ and $1 \le r < n$. Then M^* is the vector matroid of $[-D^T|I_{n-r}]$ where its columns are also labelled $e_1, e_2, ..., e_n$ in that order.

Theorem

Let M be the vector matroid of the matrix $[I_r|D]$ where the columns of this matrix are labelled, in order, $e_1, e_2, ..., e_n$ and $1 \le r < n$. Then M^* is the vector matroid of $[-D^T|I_{n-r}]$ where its columns are also labelled $e_1, e_2, ..., e_n$ in that order.

So, the dual matroid $M^*(K_{3,3})$ is represented by the following matrix:

$$B^* = egin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

So we have,

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} B^* = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

So we have,

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} B^* = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Where, r(M) = 5 and $r^*(M) = 4$, and |E(M)| = 9. Hence, we see that $r(M) + r^*(M) = |E(M)|$ holds.

So we have,

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} B^* = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Where, r(M) = 5 and $r^*(M) = 4$, and |E(M)| = 9. Hence, we see that $r(M) + r^*(M) = |E(M)|$ holds.

Also, in this example, both matroids are vector matroids over the field \mathbb{F}_2 .

So we have,

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} B^* = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Where, r(M) = 5 and $r^*(M) = 4$, and |E(M)| = 9. Hence, we see that $r(M) + r^*(M) = |E(M)|$ holds.

Also, in this example, both matroids are vector matroids over the field \mathbb{F}_2 . However, although $M(K_{3,3})$ is a graphic matroid, its dual, $M^*(K_{3,3})$ is not graphic. This results points to the following:

So we have,

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix} \\ B^* = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Where, r(M) = 5 and $r^*(M) = 4$, and |E(M)| = 9. Hence, we see that $r(M) + r^*(M) = |E(M)|$ holds.

Also, in this example, both matroids are vector matroids over the field \mathbb{F}_2 . However, although $M(K_{3,3})$ is a graphic matroid, its dual, $M^*(K_{3,3})$ is not graphic. This results points to the following:

Theorem

The dual of a graphic matroid is itself graphic if and only if the underlying graph is planar.

• We abstracted linear independence with three axioms.

- We abstracted linear independence with three axioms.
- This abstract independence turns out to have connections to other fields too, like graph theory.

- We abstracted linear independence with three axioms.
- This abstract independence turns out to have connections to other fields too, like graph theory.
- Each matroid has circuits, bases, rank function and closure operator, each with their unique properties that determine them from the reverse direction.

- We abstracted linear independence with three axioms.
- This abstract independence turns out to have connections to other fields too, like graph theory.
- Each matroid has circuits, bases, rank function and closure operator, each with their unique properties that determine them from the reverse direction.
- Every matroid has an "opposite matroid" called its dual, that is formed using the complements of the bases of the original matroid.

References

J. G. Oxley. Matroid theory. Oxford Science Publications.
 Oxford University Press, USA, 1993.

References

- J. G. Oxley. Matroid theory. Oxford Science Publications.
 Oxford University Press, USA, 1993.
- G. Gordon and J. McNulty. Matroids: A geometric introduction. Cambridge University Press, 2021.

Thank You!

For can now give and example for the concepts given until know. *Example:*

Now, we will formulate another important point, the so called, orthogonality, which refers to the link between circuits and cocircuits.

Proposition: For a given matroid M, let C be a circuit and C* be a cocircuit. Then, $|C \cap C*| \neq 1$.

Proof.

We will prove this by contradiction. Suppose $C \cap C* = \{x\}$, for some $x \in E$, this is, there exists and element in the intersection such that the cardinality will be 1. Now consider the hyperplane $H = E - C^*$, and recall that the closure cl(H) = H. We can onserve that by the way in which it is defined if $x \in C^*$, then $x \notin H$, but $C - x \subseteq H$. Moreover, we have that $x \in cl(C - x)$ hence $x \in cl(H) = H$. Then $x \notin C^*$, which is a contradiction. So, $C \cap C* \neq \{x\}$, which implies $|C \cap C*| \neq 1$.