COMP50011 Computational Techniques Imperial College London

Boxuan Tang

Spring 2023

Contents

1	Par	$\mathbf{t} \; 1$
	1.1	Vector and Matrix Norms
	1.2	Complex Matrices
	1.3	Least Square Method
	1.4	Spectral Decomposition of Symmetric Matrices
	1.5	Singular Value Decomposition
	1.6	Generalised Eigenvectors
	1.7	Cholesky Decomposition
	1.8	QR Decomposition
	1.9	QR Algorithm
	1.10	Fixed Point and Contracting Mapping Theorem
2	Par	t 2
	2.1	Condition Number
	2.2	Iterative Solutions for Linear Equations
	2.3	Iterative Techniques for Eigenvalues and Eigenvectors
	2.4	Functions of Several Variables
	2.5	Gradient Based Optimisation
	2.6	Linear Programming

1 PART 1 Page 2

1 Part 1

1.1 Vector and Matrix Norms

Definition 1.1 (l_p norm of vector in \mathbb{R}^n) The l_p norm of $x \in \mathbb{R}^n$ is defined as $\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$. $\|x\|_1 = \sum_{i=1}^n |x_i| \quad \|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$ (Euclidean norm) $\|x\|_{\infty} = \max_{1 \le i \le n} |x_i| \quad \text{with } \|x\|_{\infty} \le \|x\|_1 \le \|x\|_1$

Theorem 1.2 (Equivalence of all vector norms) Any 2 vector norms $\|\cdot\|_a$ and $\|\cdot\|_b$ are equivalent, meaning $\exists r, s > 0. \forall x \in \mathbb{R}^n. r \|x\|_a \leq \|x\|_b \leq s \|x\|_a$

Definition 1.3 (Matrix norm on $\mathbb{R}^{m \times n}$) *is a real-valued map* $\|\cdot\| : \mathbb{R}^{m \times n} \to \mathbb{R}$ *satisfying:*

- For any non-zero matrix $A \in \mathbb{R}^{m \times n} : ||A|| > 0$
- For any scalar λ and $A \in \mathbb{R}^{m \times n} : ||\lambda x|| = |\lambda| ||A||$
- For $A, B \in \mathbb{R}^{m \times n} : ||A + B|| \le ||A|| + ||B||$ (triangle inequality)
- It is a sub-multiplicative norm if $\forall A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}. ||AB|| \le ||A|| ||B||$

 $||A||_1 = \max_j ||a_j||_1$ (Column sum) $||A||_2 = \sigma_1(A)$ (Largest singular value) $||A||_{\infty} = \max_i ||a^i||_1$ (Row sum)

Definition 1.4 (Consistent and compatible) A matrix norm $\|\cdot\|$ on $\mathbb{R}^{m\times n}$ is consistent with the vector norms $\|\cdot\|_a$ on \mathbb{R}^n and $\|\cdot\|_b$ on \mathbb{R}^m if $\forall A \in \mathbb{R}^{m\times n}, x \in \mathbb{R}^n : \|Ax\|_b \leq \|A\| \|x\|_a$. If $a = b, \|\cdot\|$ is compatible with $\|\cdot\|_a$.

Definition 1.5 (Subordinate matrix norm) For a vector norm $\|\cdot\|$ on \mathbb{R}^n the subordinate matrix norm $\|\cdot\|$ on $\mathbb{R}^{m\times n}$ is: $\forall A \in \mathbb{R}^{m\times n}, \|A\| = \max\{\|Ax\| : x \in \mathbb{R}^n, \|x\| = 1\}$

Theorem 1.6 A vector norm is compatible with its matrix norm, so $\forall A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n ||Ax|| \le ||A|| ||x||$

1.2 Complex Matrices

Definition 1.7 (Standard Inner Product & Norm) The inner product $\langle \cdot, \cdot \rangle$ is defined as $\forall u, v \in \mathbb{C}^n$, $\langle u, v \rangle = \overline{u}^T v = \sum_{i=1}^n \overline{u_i} v_i = \overline{\langle v, u \rangle}$ (non-symmetric). The **norm** of $u \in \mathbb{C}^n$ is defined as $||u|| = \sqrt{\langle u, u \rangle}$.

Definition 1.8 (Common Formulas)
$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

1.3 Least Square Method

Definition 1.9 (Least Square Method) $A^TAx = A^Tb$ finds the $x \in \mathbb{R}^n$ where $||Ax - b||_2$ is minimised. **Algorithm 1.10 (Linear Regression)** Given $y(t) = \sum_{j=1}^n s_j f_j(t)$. Solve LSM for As = y where

$$A = \begin{bmatrix} f_1(t_1) & f_2(t_1) & \dots & f_n(t_1) \\ \vdots & \vdots & & \vdots \\ f_1(t_m) & f_2(t_m) & \dots & f_n(t_m) \end{bmatrix} e.g. \ given \ y(t) = h - gt^2/2, \ solve \ \begin{bmatrix} 1 & -t_1^2/2 \\ \vdots & \vdots \\ 1 & -t_n^2/2 \end{bmatrix} \begin{bmatrix} h \\ g \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

1.4 Spectral Decomposition of Symmetric Matrices

Definition 1.11 (Orthogonal) A matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal iff it is invertible and $Q^{-1} = Q^T$

- preserve Euclidean length and angle, so $||Qu||_2 = ||u||_2$ and $\widehat{QuQv} = \widehat{uv}$
- determinant of $Q, |Q| = \pm 1$ and all eigenvalues $\lambda \in \mathbb{C}$ have $|\lambda| = \pm 1$

Definition 1.12 (Symmetric) A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric iff $A^T = A$. If A is real,

- all eigenvalues of A are real
- for all eigenvalues λ_i of A, algebraic multiplicity of λ_i = geometric multiplicity of λ_i
- eigenvectors for distinct eigenvalues are orthogonal

Algorithm 1.13 (Spectral Theorem) If $A \in \mathbb{R}^{n \times n}$ is a real symmetric matrix, $A = QDQ^T = QDQ^{-1}$

- 1. Find the eigenvalues of A from its characteristic polynomial
- 2. For each eigenvalue, find its eigenspace and an orthornormal basis
- 3. Combine the bases to form Q. Form the diagonal matrix D using the associated eigenvalues.

1 PART 1 Page 3

1.5 Singular Value Decomposition

Definition 1.14 (Positive (semi-)definite) A symmetric real matrix $A \in \mathbb{R}^{n \times n}$ is

- +ve-definite $\Leftrightarrow x \neq 0, x^T A x > 0 \Leftrightarrow eigenvalues > 0 \ (diagonals > 0 \ and \max(A_{ii}, A_{jj}) > |A_{ij}|)$
- +ve semi-definite $\Leftrightarrow x^T A x \ge 0 \Leftrightarrow eigenvalues \ge 0 \ (diagonals \ge 0 \ and \max(A_{ii}, A_{jj}) \ge |A_{ij}|)$

If A is positive (semi-)definite, the sub-matrices in the upper left corner are also positive (semi-)definite. Let $A \in \mathbb{R}^{m \times n}$ then $A^T A, AA^T$ are symmetric and positive semi-definite

Algorithm 1.15 (Singular Value Decomposition) Let $A \in \mathbb{R}^{m \times n}$. Then $A = USV^T$ where $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$ are orthogonal

 $S \in \mathbb{R}^{m \times n} = diag(\sigma_1, \sigma_2 \dots \sigma_p), \ p = \min(m, n), \ with \ \sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_p \geq 0 \ the \ singular \ values \ of \ A$

- If $U = \begin{bmatrix} u_1 \dots u_m \end{bmatrix}$ and $V = \begin{bmatrix} v_1 \dots v_n \end{bmatrix}$ then $A = \sigma_1 u_1 v_1^T + \dots + \sigma_r u_r v_r^T$
- ullet positive singular values of A are the positive square roots of the eigenvalues of AA^T or A^TA
- number of positive singular value of A equals rank of A and $||A||_2 = \sigma_1$, the largest singular value of A
- $span(u_i)$ where $\sigma_i > 0$ form an orthonormal basis for the im(A) (U's left columns reading from USV^T)
- $span(v_i)$ where $\sigma_i = 0$ form an orthonormal basis for the ker(A) (V's bottom rows reading from USV^T)
- 1. More rows than columns, so A^TA is smaller than AA^T . Otherwise find SVD for A^T ,
- 2. Obtain eigenvalues $\sigma_1^2 \geq \dots \sigma_n^2 \geq 0$ and orthonormal eigenvectors $v_1 \dots v_n$ (forming V) of $A^T A$.
- 3. Let $u_i = \frac{1}{\sigma_i} A v_i$ for $1 \le i \le r$. Check $||u_i||_2 = 1$, $u_i^T u_j = 0$ and $A A^T u_i = \sigma_i^2 u_i$ for $1 \le i, j \le r, i \ne j$
- 4. Extend the set $u_1 \dots u_r$ to an orthonormal basis to obtain U

Definition 1.16 (Principal Component Analysis) Assume $A \in \mathbb{R}^{m \times n}$ represents m samples of n dimensional data. The principal axes of A are the v_i for $1 \le i \le r$.

The first principal axis of A, $w_{(1)} = \arg\max_{\|w\|=1} w^T A^T A w = v_1$ the column vector associated with σ_1 . If $\sigma_1 >> \sigma_2$, then $A \approx \sigma_1 u_1 v_1^T$

1.6 Generalised Eigenvectors

Definition 1.17 (Generalised Eigenvector) Given a square matrix $A \in \mathbb{R}^{n \times n}$, a non-zero vector $v \in \mathbb{C}^n$ is a generalised eigenvector of rank m under eigenvalue $\lambda \in \mathbb{C}$ for A if $(A - \lambda I)^m v = 0$ and $(A - \lambda I)^{m-1} v \neq 0$. For every eigenvalue of algebraic multiplicity k, there are k linearly independent generalised eigenvectors.

Algorithm 1.18 (Jordan Normal Form) 1. Find the eigenvalues $\lambda_1 \dots \lambda_m$ of A.

- 2. For each eigenvalue λ_i compute the eigenvectors $v_{i1}^1 \dots v_{iq_i}^1$, noting geometric multiplicity g_i .
- 3. Find the missing generalised eigenvectors where for each eigenvector $v_{ij}^1 \in \mathbb{C}^n$ associated with λ_i , try to find all $v_{ij}^k \in \mathbb{C}^n$ such that $(A \lambda_i I)v_{ij}^k = v_{ij}^{k-1}$, solving using Gaussian Elimination if needed.

4. Write
$$B = \begin{bmatrix} v_{11}^1 \dots v_{11}^{k_{11}} \dots v_{1q_1}^1 \dots v_{1q_1}^{k_{1g_1}} \dots v_{m1}^1 \dots v_{m1}^{k_{m1}} \dots v_{mq_m}^1 \dots v_{mg_m}^{k_{mg_m}} \end{bmatrix}$$

5.
$$B^{-1}AB = J$$
, where $J = \begin{bmatrix} J_{k_{11}}(\lambda_1) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & J_{k_{mg_m}}(\lambda_m) \end{bmatrix}$ and $J_{k_{ij}}(\lambda_i) = \begin{bmatrix} \lambda_i & 1 & 0 & 0 \\ 0 & \lambda_i & 1 & 0 \\ 0 & 0 & \lambda_i & 1 \\ 0 & 0 & 0 & \lambda_i \end{bmatrix}$ of size k_{ij}

1.7 Cholesky Decomposition

Algorithm 1.19 A symmetric positive semi-definite matrix A has decomposition $A = LL^T$. If A is also positive-definite, L is unique and has positive diagonal elements.

$$L = \begin{bmatrix} l_{11} & 0 & \dots \\ l_{21} & l_{22} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$
 For $n=3$, $LL^T = \begin{bmatrix} l_{11}^2 & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^2 + l_{22}^2 & l_{21}l_{31} + l_{22}l_{32} \\ l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{32} & l_{31}^2 + l_{32}^2 + l_{33}^2 \end{bmatrix}$

Given Ax = b, $Find A = LL^T$. Solve Ly = b by forward substitution then $L^Tx = y$ by backward substitution.

2 PART 2 Page 4

1.8 QR Decomposition

Definition 1.20 (Gram-Schmidt Process) $u_j = v_j - (e_1 \cdot v_j)e_1 - \cdots - (e_{j-1} \cdot v_j)e_{j-1}$ and $e_j = \frac{u_j}{\|u_i\|}$

Algorithm 1.21 (QR Decomposition using Gram-Schmidt Process)

Let
$$Q = [e_1 \dots e_n]$$
 be an orthornormal basis for $A \in \mathbb{R}^{m \times n}$. $A = Q \begin{bmatrix} (e_1 \cdot a_1) & \dots & (e_1 \cdot a_n) \\ 0 & \ddots & \vdots \\ 0 & \dots & (e_n \cdot a_n) \end{bmatrix}$

Theorem 1.22 (Householder Map) $H_u = I - 2uu^T$ reflects a point along a plane through the origin with unit normal u. It is involuntary $(H_u = H_u^{-1})$ and orthogonal $(H_u = H_u^{-1})$.

1.9 QR Algorithm

Theorem 1.23 (Algorithm) $A_0 = A$. Apply QR decomposition for $A_k = Q_{k+1}R_{k+1}$. Set $A_{k+1} = R_{k+1}Q_{k+1}$

If A is symmetric, it converges to a diagonal matrix and the eigenvectors are the columns of Q_k

Theorem 1.24 (LU decomposition) A non singular matrix $A \in \mathbb{R}^{n \times n}$ can be factorised A = LU iff A can be reduced into its row echolon form without swapping any two rows. If the diagonal elements of L are all 1, the decomposition is unique.

1.10 Fixed Point and Contracting Mapping Theorem

Definition 1.25 (Fixed Point) Let $f: S \to S$ and $p \in S$. If f(p) = p then p is a fixed point.

Definition 1.26 (Contraction) f is a contraction on (S,d) if $\exists 0 \leq \alpha < 1. \forall x,y \in S.d(f(x),f(y)) \leq \alpha d(x,y)$

Theorem 1.27 (Fixed Point Theorem) If f is a contraction on a complete metric space (S,d), f has a unique fixed point.

2 Part 2

2.1 Condition Number

Definition 2.1 (Condition Number) Let problem P be represented by Ax = b. Then $\kappa(P) = \kappa(A) = \|A^{\dagger}\| \|A\|$ where $A^{\dagger} = (A^T A)^{-1} A^T$. For square matrices, $\kappa(A) = \|A^{-1}\| \|A\|$.

2.2 Iterative Solutions for Linear Equations

Algorithm 2.2 (General Method) A = G + R. $Ax = b \Leftrightarrow x = (-G^{-1}R)x + (G^{-1}b)$.

- **Jacobi Method** Split A = D + (L + U) with $x = (-D^{-1}(L + U))x + (D^{-1}b)$
- Gauss-Seidel Method Split A = (D+L) + U with $x = (-(D+L)^{-1}U)x + ((D+L)^{-1}b)$
- Strictly row diagonally dominant $\forall i, |a_{ii}| > \sum_{j \neq i} |a_{ij}|$ is sufficient for both convergence (G-S faster)

Theorem 2.3 Let $M \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}^n$. Let $\|\cdot\|$ be a consistent norm on $\mathbb{R}^{n \times n}$. If $\|M\| < 1$, then (x_k) defined by $x_{k+1} = Mx_k + c$ converges for any starting point x_0 .

2.3 Iterative Techniques for Eigenvalues and Eigenvectors

Algorithm 2.4 (Power Iteration) Let $A \in \mathbb{R}^{n \times n}$ be diagonalisable matrix with eigenvalues of distinct modulus. Set any $x_0 \in \mathbb{R}^n \setminus \{0\}$ and $x_{k+1} = \frac{Ax_k}{\|Ax_k\|}$. As $x \to \infty, x_k \to v$ and $\|Ax_k\| \to |\lambda|$ (dominant eigenvalue).

Algorithm 2.5 (Inverse Power Iteration) If A is also non-singular, $x_{k+1} = \frac{A^{-1}x_k}{\|A^{-1}x_k\|}$ gives $x_k \to v$ and $\|A^{-1}x_k\| \to |\frac{1}{\lambda}|$ where λ is the eigenvalue of A with the smallest modulus.

2 PART 2 Page 5

Definition 2.6 (Rayleigh Quotient) $R(A,x) = \frac{x^T A x}{x^T x}$ approximates eigenvalue and not its modulus

Algorithm 2.7 (Deflation) Define H_u with $u = v_1 + ||v_1||_2 e_1$ where $e_1 = [1, 0, \dots]^T$ (so $Hx_1 = \alpha e_1$).

Then
$$HAH^{-1} = \begin{bmatrix} \lambda_1 & b^T \\ 0 & B \end{bmatrix}$$
. Then $x_2 = H^{-1} \begin{bmatrix} \beta \\ z_2 \end{bmatrix}$ where z_2 is dominant eigenvector of B and $\beta = \frac{b^T z_2}{\lambda_2 - \lambda_1}$

2.4 Functions of Several Variables

Theorem 2.8 (Clairaut's Theorem) If f_{xy} and F_{yx} are continuous at (a,b), $f_{xy}(a,b) = f_{yx}(a,b)$.

Definition 2.9 (Gradient Vector) $\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$. For unit $u, f_u(x,y) = \nabla f(x,y) \cdot u$. Directional vector is maximum when it has same direction as ∇f (fastest change of f)

Definition 2.10 (Hessian) $D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - (f_{xy})^2.$

- Local maximum D > 0 and $f_{xx}(a,b) < 0$ or eigenvalues all negative.
- Local minimum D > 0 and $f_{xx}(a,b) > 0$ or eigenvalues all positive.
- Saddle Point D < 0 or eigenvalues both positive and negative

2.5 Gradient Based Optimisation

Definition 2.11 (Quadratic Form) $f(x_1, x_2) = ax_1^2 + bx_1x_2 + cx_2^2 + dx_1 + ex_2$ can be expressed as $\frac{1}{2}x^TAx - x^TB$ where $A = \begin{bmatrix} 2a & b \\ b & 2c \end{bmatrix}$ and $B = \begin{bmatrix} -d \\ -e \end{bmatrix}$ with $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Then $\nabla f(x_1, x_2) = Ax - B$.

Algorithm 2.12 (Steepest Descent) $x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)})$.

For quadratic functions $\frac{1}{2}x^T A x - x^T B$, $\alpha_k = \frac{(g^{(k)})^T (g^{(k)})}{(g^{(k)})^T H g^{(k)}}$ where $g^{(k)} = \nabla f(x)$ and $H = A = \nabla^2 f(x)$

Algorithm 2.13 (Conjugate Gradient) To solve Ax = b:

Set $D = \{d_1 \dots d_n\}$, a set of n A-conjugate vectors $(\forall i \neq j, d_i^T A d_j = 0)$. Set starting point x_0 .

For k in 1 to n:

1.
$$\alpha_k = \frac{d_k^T(b-Ax_{k-1})}{d_k^TAd_k}$$
 and $x_k = x_{k-1} + a_kd_k$

Set starting point x_0 . Set $r_0 = b - Ax_0$. For k in 1 to n:

- 1. if k = 1 then $d_k = r_0$ else $d_k = r_{k-1} \beta_k d_{k-1}$ where $\beta_k = -\frac{r_{k-1}^T r_{k-1}}{r_{k-2}^T r_{k-2}}$
- 2. $\alpha_k = \frac{r_{k-1}^T r_{k-1}}{d_k^T A d_k}$, $x_k = x_{k-1} + a_k d_k$ and $r_k = r_{k-1} \alpha_k A d_k$

2.6 Linear Programming

Algorithm 2.14 (Simplex Method) Maximise $z = c_1x_1 + \cdots + c_nx_n$ with $a_{11}x_1 + \cdots + a_{1n}x_n \leq b_1, \ldots$

- 1. **Identify Column** Choose the most negative entry in the top z row
- 2. Identify Row Evaluate the $\frac{solution\ column}{positive\ entries\ in\ that\ column}$. Choose the smallest ratio.
- 3. Change basis Change the variable in the left-hand column to the non-basic variable of that column.
- 4. $Make\ Pivot = 1$ Make the pivot 1 by dividing throughout.
- 5. Gaussian Elimination Clear the rest of elements in that column using GE.

Theorem 2.15 (Duality Principle) Objective function of minimisation problem reaches min iff objective function of its dual reaches max. When they do, they are equal.