Ph.D. Qualifying Exam, Real Analysis

Fall 2022, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- Let $Y \subset \mathbb{R}$ be a non-empty compact subset. Show that there is a Hilbert space H and a self-adjoint bounded linear operator $T: H \to H$ such that the spectrum of T is exactly Y.
- Consider $C^{\infty}(\mathbb{T})$ (where $\mathbb{T}=\mathbb{R}/\mathbb{Z}$) with the usual Fréchet topology given by the seminorms $\rho_k(f)=\sup_{x\in\mathbb{T}}|f^{(k)}(x)|$. Prove that there is no norm on $C^{\infty}(\mathbb{T})$ which induces the same topology.
- Consider $f \in L^1_{loc}(\mathbb{R}^n)$ and assume that the (uncentered) maximal function Mf (given by $Mf(x) = \sup_{B\ni x} \frac{1}{|B|} \int_B |f|$, where the supremum is taken over all balls containing x) satisfies $Mf > \lambda > 0$ on $B_1(0)$. Show that $Mf > c\lambda$ on $B_2(0)$ for some c > 0 depending only on the dimension n. (Here, $B_R(0) = \{x \in \mathbb{R}^n : |x| < R\}$.)
- Suppose X, Y are Hilbert spaces, $P: X \to Y$ continuous linear. Suppose Z is a dense subspace of Y and for each $z \in Z$ there exists $x \in X$ such that Px = z. Consider in addition the following two estimates: i) (for all $x \in X$) $||x||_X \le C||Px||_Y$, ii) (for all $x \in Y$) $||v||_Y \le C||P^*v||_X$. Does either one of these imply that $P: X \to Y$ is invertible? For both inequalities either give a proof of invertibility or provide a counterexample.
- 5 For every $f \in \mathcal{S}(\mathbb{R}^2)$, define $Tf(x,y,z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(x\xi_1 + y\xi_2 + z|\xi|)} f(\xi_1,\xi_2) d\xi_1 d\xi_2$, where $|\xi| = \sqrt{|\xi_1|^2 + |\xi_2|^2}$.
 - **a.** Prove that there exists C > 0 such that the following holds for all $f \in \mathcal{S}(\mathbb{R}^2)$ and for all $z \in \mathbb{R}$:

$$\Big(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Tf(x,y,z)|^2 dx dy\Big)^{1/2} =: \|Tf(\cdot,z)\|_{L^2(\mathbb{R}^2)} \le C\|f\|_{L^2(\mathbb{R}^2)}.$$

b. Prove that there exists C>0 such that the following holds for all $f\in\mathcal{S}(\mathbb{R}^2)$ satisfying $\mathrm{supp}(f)\subset\{(\xi_1,\xi_2):|\xi|\leq 2|\xi_1|\}$ and for all $x\in\mathbb{R}$:

$$\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Tf(x, y, z)|^2 \, dy \, dz\right)^{1/2} \le C \|f\|_{L^2(\mathbb{R}^2)}.$$

c. Prove that for any $(x,y) \in \mathbb{R}^2$ and every $f \in \mathcal{S}(\mathbb{R}^2)$, there is a C > 0 (depending on (x,y) and f) such that the following holds for all $z \in \mathbb{R}$:

$$|Tf(x, y, z)| \le C(1 + |z|)^{-1}.$$

Ph.D. Qualifying Exam, Real Analysis

Fall 2022, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 If $A \subset [0, 2\pi]$ is measurable, prove that $\lim_{n\to\infty} \int_A \cos nx \, dx = 0$.
- Does there exist $f \in C([0,1])$ with $\int_0^1 x f(x) dx = 1$ and $\int_0^1 x^n f(x) dx = 0$ for $n = 0, 2, 3, \dots$? Give an example or prove that no such f exists.
- Let V be the vector space of all real-valued Borel measurable functions on [0,1]. Show that there is no seminorm $\|\cdot\|$ on V such that a sequence $\{f_n\}$ converges in (the Lebesgue) measure to f on [0,1] if and only if $\lim_{n\to\infty}\|f-f_n\|=0$. (Hint: assume that such a seminorm exists and show that for each $\epsilon>0$ there is a collection of functions $g_1,\cdots g_n$ in V with $\|g_j\|\leq \epsilon$ and $n^{-1}\sum_j g_j=1$.)
- 4 Let $\ell \subset \ell^{\infty}$ be the space of convergent real sequences $a = \{a_n\}_{n=1}^{\infty}$. Define $T_0 : \ell \to \mathbb{R}$ by $T_0(a) = \lim_{n \to \infty} a_n$.
 - **a.** Prove that there exists a linear functional $T: \ell^{\infty} \to \mathbb{R}$ such that $T = T_0$ on ℓ and for $a = \{a_n\}_{n=1}^{\infty}$,

$$\liminf_{n \to \infty} a_n \le T(a) \le \limsup_{n \to \infty} a_n.$$

(Hint: first ignore the inequality involving $\liminf_{n\to\infty} a_n$.)

- **b.** Fix a T as in part (a). For each $E \subset \mathbb{N}$, define $a_E = \{a_{E,n}\}_{n=1}^{\infty}$ by setting $a_{E,n} = 1$ when $n \in E$ and $a_{E,n} = 0$ otherwise. Define the function $\kappa : 2^{\mathbb{N}} \to \mathbb{R}$ by $\kappa(E) = T(a_E)$. Show that κ is finitely additive but not countably additive.
- 8 Recall that for $s \ge 0$ the Sobolev space $H^s(\mathbb{R}^n)$ consists of $u \in L^2(\mathbb{R}^n)$ with $\int (1+|\xi|^2)^s |(\mathcal{F}u)(\xi)|^2 d\xi < \infty$, where \mathcal{F} is the Fourier transform.
 - **a.** Prove that for every $s > \frac{n}{2}$, there exists a constant $C_1 > 0$ (depending only on s and n) such that for every $f \in H^s(\mathbb{R}^n)$,

$$||f||_{L^{\infty}(\mathbb{R}^n)} \le C_1 ||f||_{H^s(\mathbb{R}^n)}.$$

b. Prove that for every $s > \frac{n}{2}$, there exists a constant $C_2 > 0$ (depending only on s and n) such that for every $f, g \in H^s(\mathbb{R}^n)$,

$$||fg||_{H^s(\mathbb{R}^n)} \le C_2 ||f||_{H^s(\mathbb{R}^n)} ||g||_{H^s(\mathbb{R}^n)}.$$

(Hint: first prove that for every p > 0, there is C = C(p) so that

$$(1+|\xi|^2)^p \le C(1+|\xi-\xi'|^2)^p + C(1+|\xi'|^2)^p, \quad \forall \xi, \, \xi' \in \mathbb{R}^n.$$

c. Let $s > \frac{n}{2}$ and $f \in H^s(\mathbb{R}^n)$. Prove that there exists $\epsilon > 0$ such that if $||f||_{H^s(\mathbb{R}^n)} \le \epsilon$, then $h(x) = \frac{1}{1 - f(x)} - 1$ is well-defined (i.e. $1 - f(x) \ne 0$ for a.e. x) and $h \in H^s(\mathbb{R}^n)$.