Les vecteurs M05

Exercice 1

Définition: Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs non-nul du plan. Deux vecteurs sont dits colinéaire s'il existe un nombre réel k tels que : $\overrightarrow{u} = k \cdot \overrightarrow{v}$

Le nombre réel k s'appelle le coefficient de colinéarité de u' par rapport à v'

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs réalisant l'égalité:

Justifier que les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires et que leur coefficient de colinéarité est $\frac{3}{2}$

2. Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs réalisant l'égalité: $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{0}$.

Justifier que ces deux vecteurs sont colinéaires.

- 3. Pour chacune des questions ci-dessous, les vecteurs u et \overrightarrow{v} sont colinéaires. Déterminer la valeur du coefficient de colinéarité de \overrightarrow{u} par rapport à \overrightarrow{v} :
 - (a.) $\frac{1}{2} \cdot \overrightarrow{u} = \frac{3}{4} \cdot \overrightarrow{v}$
- $(b.) \ 3 \cdot \overrightarrow{u} 2 \cdot \overrightarrow{v} = \overrightarrow{0}$
- $\overrightarrow{a} \cdot (\overrightarrow{u} 2 \cdot \overrightarrow{v}) = \overrightarrow{0} \qquad \overrightarrow{a} \cdot (\overrightarrow{u} + \overrightarrow{v}) = 2 \cdot \overrightarrow{u} + 3 \cdot \overrightarrow{v}$

Correction 1

1. Les vecteurs \overrightarrow{u} et \overrightarrow{v} vérifient la relation:

$$2 \cdot \overrightarrow{u} = 3 \cdot \overrightarrow{v} \implies \overrightarrow{u} = \frac{3}{2} \cdot \overrightarrow{v}$$

Cette égalité, de la forme $\overrightarrow{u} = k \cdot \overrightarrow{v}$, permet d'affirmer que les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires. Le coefficient de colinéarité de \overline{u} par rapport à \overline{v} est

 $\overline{2}$

2. Les vecteurs \overrightarrow{u} et \overrightarrow{v} vérifient : $\overrightarrow{u} + \overrightarrow{v} = 0 \implies \overrightarrow{u} = -\overrightarrow{v} \implies \overrightarrow{u} = -1 \times \overrightarrow{v}$

Les deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires et le coefficient de colinéarité de \overrightarrow{u} par rapport à \overrightarrow{v} est -1.

Nous devons transformer chacune des égalités sous la

afin de mettre en évidence le coefficient k de colinéarité \overrightarrow{u} par rapport à \overrightarrow{v} :

(a.) $\frac{1}{2} \cdot \overrightarrow{u} = \frac{3}{4} \cdot \overrightarrow{v}$

$$\overrightarrow{u} = 2 \times \frac{3}{4} \cdot \overrightarrow{v}$$

$$\overrightarrow{u} = \frac{3}{2} \cdot \overrightarrow{v}$$

Le coefficient de colinéarité de \overrightarrow{u} par rapport à \overrightarrow{v} est 3

(b) $3 \cdot \overrightarrow{u} - 2 \cdot \overrightarrow{v} = \overrightarrow{0}$ $3 \cdot \overrightarrow{u} = 2 \cdot \overrightarrow{v}$

$$3 \cdot u' = 2 \cdot v'$$

$$\overrightarrow{u} = \frac{2}{3} \cdot \overrightarrow{v}$$

Le coefficient de colinéarité de \overrightarrow{u} par rapport à \overrightarrow{v} est $\frac{2}{3}$.

(c.) $3 \cdot (\overrightarrow{u} - 2 \cdot \overrightarrow{v}) = \overrightarrow{0}$

$$\overrightarrow{u} - 2 \cdot \overrightarrow{v} = \overrightarrow{0}$$

Le coefficient de colinéarité de \overrightarrow{u} par rapport à \overrightarrow{v} est

(d.) $-2 \cdot (\overrightarrow{u} + \overrightarrow{v}) = 2 \cdot \overrightarrow{u} + 3 \cdot \overrightarrow{v}$

$$-2 \cdot \overrightarrow{u} - 2 \cdot \overrightarrow{v} = 2 \cdot \overrightarrow{u} + 3 \cdot \overrightarrow{v}$$

$$-2 \cdot \overrightarrow{u} - 2 \cdot \overrightarrow{u} = 3 \cdot \overrightarrow{v} + 2 \cdot \overrightarrow{v}$$
$$-4 \cdot \overrightarrow{u} = 5 \cdot \overrightarrow{v}$$

$$4 \cdot u = 5 \cdot v$$

$$\rightarrow 5 -$$

$$\overrightarrow{u} = \frac{5}{-4} \cdot \overrightarrow{v}$$

$$\overrightarrow{u} = -\frac{5}{4} \cdot \overrightarrow{v}$$

Le coefficient de colinéarité de \overrightarrow{u} par rapport à \overrightarrow{v} est

Exercice 2

Pour chaque question, déterminer si les deux vecteurs \overrightarrow{u} et v sont colinéaires.

S'ils le sont, donner le coefficient associé de colinéarité de \overrightarrow{u} par rapport à \vec{v} :

- a. $\overrightarrow{u}(-1;2)$; $\overrightarrow{v}(4;-8)$ b. $\overrightarrow{u}(3;2)$; $\overrightarrow{v}(9;4)$

- c. $\overrightarrow{u}(2;3)$; $\overrightarrow{v}(4,2;6,3)$ d. $\overrightarrow{u}(0,7;4,1)$; $\overrightarrow{v}(-2,8;16,4)$

Correction 2

a. Les vecteur \overrightarrow{u} et \overrightarrow{v} sont colinéaires car ils vérifient la relation: $\overrightarrow{u} = -\frac{1}{4} \cdot \overrightarrow{v}$

- Le coefficient de colinéarité du vecteur \overrightarrow{u} par rapport à
- b. On remarque qu'avec les vecteurs \overrightarrow{u} et \overrightarrow{v} :

 $\bullet \quad \frac{1}{3} \overrightarrow{v} \left(3; \frac{4}{3} \right)$

Le vecteur $\frac{1}{3}\overrightarrow{v}$ a même abscisse que le \overrightarrow{u} mais n'ont pas la même ordonnée.

• $\frac{1}{2}\overrightarrow{v}\left(\frac{9}{2};2\right)$

Le vecteur $\frac{1}{2}\overrightarrow{v}$ a même ordonnée que le vecteur \overrightarrow{v} mais n'ont pas la même abscisse.

Ainsi, il est impossible de déterminer un nombre réel kréalisant l'égalité:

On en déduit que les vecteurs \overrightarrow{u} et \overrightarrow{v} ne sont pas col-

c. Les vecteur \overrightarrow{u} et \overrightarrow{v} sont colinéaires car ils vérifient la $\overrightarrow{u} = \frac{1}{2,1} \cdot \overrightarrow{v}$

Feuille 81 - http://t.szczebara.chingatome.fr

Le coefficient de colinéarité du vecteur \overrightarrow{u} par rapport à \overrightarrow{v} est $\frac{1}{2.1}$.

- d. On remarque les relations suivantes:
 - $\frac{1}{4}\overrightarrow{v}(-0.7;4.1)$ qui a la même ordonnée que le vecteur

 \overrightarrow{u} mais pas la même abscisse.

• $-\frac{1}{4}\overrightarrow{v}(0,7;-4,1)$ qui a la même abscisse que le vecteur \overrightarrow{u} mais pas la même ordonnée.

L'impossibilité de déterminer un réel k vérifiant la relation $\overrightarrow{u} = k \cdot \overrightarrow{v}$, nous permet d'affirmer que les vecteurs \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires.

Exercice 3

On munit le plan d'un repère (O;I;J) et on considère les points A,B et C ci-dessous :

- 1. a. Donner les coordonnées des points A, B et C.
 - b. Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{BC} .
 - c. En déduire les coordonnées du vecteur \overrightarrow{v} défini par : $\overrightarrow{v} = \overrightarrow{AB} + 2 \cdot \overrightarrow{BC}$
- 2. Justifier que les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires.

Correction 3

1. (a. Par lecture graphique, on a les coordonnées des points:

A(-2;1) ; B(1;-1) ; C(4;1,5)

- (b.) On a les coordonnées des vecteurs :
 - $\overrightarrow{AB}(x_B x_A; y_B y_A)$ = (1 - (-2); -1 - 1) = (3; -2)
 - $\overrightarrow{BC}(x_C x_B; y_C y_B)$ = (4 - 1; 1, 5 - (-1)) = (3; 2, 5)
- c. Le vecteur $2 \cdot \overrightarrow{BC}$ a pour coordonnées : $2 \cdot \overrightarrow{BC} (2 \times 3; 2 \times 2, 5) = (6; 5)$

On en déduit les coordonnées du vecteur \overrightarrow{v} : $\overrightarrow{v}(3+6;-2+5)=(9;3)$

2. Par lecture graphique, les coordonnées de \overrightarrow{u} sont: $\overrightarrow{u}(3;1)$

Les deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires, s'il existe un réel k réalisant l'égalité:

Considérons le vecteur $3 \cdot \overrightarrow{u}$ qui a pour coordonnées : $3 \cdot \overrightarrow{u} (3 \times 3; 3 \times 1) = (9; 3)$

On en déduit l'égalité: $\overrightarrow{v} = 3 \cdot \overrightarrow{u}$

Exercice 4

Dans le plan muni d'un repère $\left(O\,;\,;I\,;J\right)$, on considère les cinq points :

$$A(2;-2); B(11;-14); C(-3;1); D(5;3); E(12;-19)$$

Parmi les quatre vecteurs ci-dessous, un seul est colinéaire au vecteur \overrightarrow{AB} :

 \overrightarrow{BC} ; \overrightarrow{CD} ; \overrightarrow{DE} ; \overrightarrow{CE}

Lequel? Justifier votre réponse.

Correction 4

On a les coordonnées de vecteur:

•
$$\overrightarrow{AB} = (x_B - x_A; y_B - y_A) = (11 - 2; -14 - (-2))$$

= $(9; -12)$

- $\overrightarrow{BC} = (x_C x_B; y_C y_B) = (-3 11; 1 (-14))$ = (-14; 15)
- $\overrightarrow{CD} = (x_D x_C; y_D y_C) = (5 (-3); 3 1) = (8; 2)$
- $\overrightarrow{DE} = (x_E x_D; y_E y_D) = (12 5; -19 3) = (7; -22)$
- $\overrightarrow{CE} = (x_E x_C; y_E y_C) = (12 (-3); -19 1)$ = (15; -20)

En remarquant que: $\overrightarrow{CE} = \frac{5}{3} \cdot \overrightarrow{AB}$

On en déduit que l'unique vecteur colinéaire au vecteur \overrightarrow{AB} est le vecteur \overrightarrow{CE} .

Exercice 5

Proposition: Dans le plan muni d'un repère, on considère les deux vecteurs \overrightarrow{u} et \overrightarrow{v} .

Les deux vecteurs u' et v' sont colinéaires entre eux si, et seulement si, leur déterminant est nul.

On considère le plan muni d'un repere $(O\,;\,\overrightarrow{i}\,\,;\,\overrightarrow{j}\,)$ et les quatre points :

$$A(3;-5)$$
 ; $B(1;-1)$; $C(13;2)$; $D(18;-8)$

Etablir que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Correction 5

Voici les coordonnées des vecteurs suivants:

• $\overrightarrow{AB}(x_B - x_A; y_B - y_A)$ = (1 - 3; -1 - (-5)) = (-2; 4)

• $\overrightarrow{CD}(x_D - x_C; y_D - y_C)$ = (18 - 13; -8 - 2) = (5; -10) Le déterminant des vecteurs \overrightarrow{AB} et \overrightarrow{CD} a pour valeur : $\det\left(\overrightarrow{AB};\overrightarrow{CD}\right) = -2 \times (-10) - 4 \times 5 = 20 - 20 = 0$

D'après le critère de colinéarité, on en déduit que les deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Exercice 6

On munit le plan d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$:

Montrer que les points suivants sont alignés:

$$A(-3;-1)$$
 ; $B(1;5)$; $C(-1;2)$

Correction 6

On a les coordonnées suivantes de vecteurs :

•
$$\overrightarrow{AB}(x_B - x_A; y_B - y_A)$$

= $(1 - (-3); 5 - (-1)) = (1 + 3; 5 + 1) = (4; 6)$

•
$$\overrightarrow{AC}(x_C - x_A; y_C - y_A)$$

= $(-1 - (-3); 2 - (-1)) = (-1 + 3; 2 + 1) = (2; 3)$

Le déterminant de ces deux vecteurs a pour valeur: $\det(\overrightarrow{AB}; \overrightarrow{AC}) = 4 \times 3 - 2 \times 6 = 12 - 12 = 0$

D'après le critère de colinéarité, les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Ainsi, les droites (AB) et \overrightarrow{AC} sont parallèles et ont le point A en commun. On en déduit que les points A, B, C sont alignés.

Exercice 7

On considère le plan muni d'un repère (O; I; J). Soit A, B, C et D quatre points du plan de coordonnées :

$$A(-5;1)$$
 ; $B(2;4)$; $C(-1;-2)$; $D(3;y_D)$

Déterminer les coordonnées du point D tel que les droites (AB) et (CD) soient parallèles et que le point D ait 3 pour abscisse.

Correction 7

On a les coordonnées de vecteurs suivant:

•
$$\overrightarrow{AB}(x_B - x_A; y_B - y_A) = (2 - (-5); 4 - 1) = (7; 3)$$

•
$$\overrightarrow{CD}(x_D - x_C; y_D - y_C)$$

= $(3 - (-1); y_D - (-2)) = (4; y_D + 2)$

Les droites (\overrightarrow{AB}) et (\overrightarrow{CD}) étant parallèles, on en déduit que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

D'après le critère de colinéarité, on a le déterminant de ces deux vecteurs est nul:

$$\det (\overrightarrow{AB}; \overrightarrow{CD}) = 0$$

$$7 \cdot (y_D + 2) - 4 \times 3 = 0$$

$$7 \cdot y_D + 14 - 12 = 0$$

$$7 \cdot y_D + 2 = 0$$

$$7 \cdot y_D = -2$$

$$y_D = -\frac{2}{7}$$

Le point D a pour coordonnées $D\left(3; -\frac{2}{7}\right)$.

Exercice 8

On considère le plan muni d'un repère (O; I; J). Soit A, B et C trois points du plan de coordonnées respectives: (4;-1); (1;3); (1;-2)

Déterminer les coordonnées du point D tel que les droites (AB) et (CD) soient parallèles et que le point D ait 3 pour abscisse.

Correction 8

On a les coordonnées de vecteurs suivant:

•
$$\overrightarrow{AB}(x_B - x_A; y_B - y_A)$$

= $(1 - 4; 3 - (-1)) = (-3; 4)$

•
$$\overrightarrow{CD}(x_D - x_C; y_D - y_C)$$

= $(3 - 1; y_D - (-2)) = (2; y_D + 2)$

Pour que les droites (AB) et (CD) soient parallèles, il faut et il suffit que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} soient colinéaires.

Ainsi, d'après le critère de colinéaire, il faut que le déterminant de ces deux vecteurs soit nul:

$$\det(\overrightarrow{AB}; \overrightarrow{CD}) = 0$$

$$-3(y_D + 2) - 2 \times 4 = 0$$

$$-3y_D - 6 - 8 = 0$$

$$-3y_D - 14 = 0$$

$$-3y_D = 14$$

$$y_D = \frac{14}{-3}$$

$$y_D = -\frac{14}{3}$$

Le point D a pour coordonnées $D\left(3; -\frac{14}{3}\right)$.

Exercice 9

On considère le triangle cicontre où I et G sont les milieux respectifs des segments [AB] et [CI], le point J est défini par la relation :

$$\overrightarrow{CJ} = \frac{1}{3} \cdot \overrightarrow{CA}$$

On considère la base vectorielle $(\overrightarrow{AB}; \overrightarrow{AC})$.

- 1. Exprimer les vecteurs \overrightarrow{AI} et \overrightarrow{AJ} dans la base vectorielle $(\overrightarrow{AB}; \overrightarrow{AC})$.
- 2. Etablir que la décomposition vectorielle du vecteur \overrightarrow{AG} : $\overrightarrow{AG} = \frac{1}{4} \cdot \overrightarrow{AB} + \frac{1}{2} \cdot \overrightarrow{AC}$
- 3. En déduire l'alignement des points B, G, J.

Correction 9

Une video est accessible

1. • D'après l'énoncé, le point I est le milieu du segment $\overrightarrow{AB}: \overrightarrow{AI} = \frac{1}{2} \cdot \overrightarrow{AB}$

- Par définition, on a: $\overrightarrow{CJ} = \frac{1}{3} \cdot \overrightarrow{CA}$ On a les manipulations algébriques suivantes: $\overrightarrow{AJ} = \overrightarrow{AC} + \overrightarrow{CJ} = \overrightarrow{AC} + \frac{1}{3} \cdot \overrightarrow{CA} = \overrightarrow{AC} - \frac{1}{3} \cdot \overrightarrow{AC} = \frac{2}{3} \cdot \overrightarrow{AC}$
- 2. Le point G étant le milieu du segment [IC], on a : $\overrightarrow{IG} = \frac{1}{2} \cdot \overrightarrow{IC}$ On a les manipulations suivantes : $\overrightarrow{AG} = \overrightarrow{AI} + \overrightarrow{IG} = \overrightarrow{AI} + \frac{1}{2} \cdot \overrightarrow{IC} = \overrightarrow{AI} + \frac{1}{2} \cdot \left(\overrightarrow{IA} + \overrightarrow{AC}\right)$

On a les manipulations suivantes:
$$\overrightarrow{AG} = \overrightarrow{AI} + \overrightarrow{IG} = \overrightarrow{AI} + \frac{1}{2} \cdot \overrightarrow{IC} = \overrightarrow{AI} + \frac{1}{2} \cdot \left(\overrightarrow{IA} + \overrightarrow{AC}\right)$$

$$= \overrightarrow{AI} + \frac{1}{2} \cdot \overrightarrow{IA} + \frac{1}{2} \overrightarrow{AC} = \overrightarrow{AI} - \frac{1}{2} \cdot \overrightarrow{AI} + \frac{1}{2} \overrightarrow{AC} = \frac{1}{2} \cdot \overrightarrow{AI} + \frac{1}{2} \overrightarrow{AC}$$

$$= \frac{1}{2} \cdot \left(\frac{1}{2} \cdot \overrightarrow{AB}\right) + \frac{1}{2} \overrightarrow{AC} = \frac{1}{4} \cdot \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}$$

- 3. On a les décompositions suivantes:
 - $\overrightarrow{BG} = \overrightarrow{BA} + \overrightarrow{AG} = -\overrightarrow{AB} + \left(\frac{1}{4} \cdot \overrightarrow{AB} + \frac{1}{2} \cdot \overrightarrow{AC}\right)$ = $-\frac{3}{4} \cdot \overrightarrow{AB} + \frac{1}{2} \cdot \overrightarrow{AC}$
 - $\overrightarrow{BJ} = \overrightarrow{BA} + \overrightarrow{AJ} = -\overrightarrow{AB} + \frac{2}{3} \cdot \overrightarrow{AC}$

On remarque que:
$$\frac{3}{4} \cdot \overrightarrow{BJ} = \frac{3}{4} \cdot \left(-\overrightarrow{AB} + \frac{2}{3} \cdot \overrightarrow{AC} \right) = -\frac{3}{4} \cdot \overrightarrow{AB} + \frac{3}{4} \times \frac{2}{3} \cdot \overrightarrow{AC}$$
$$= -\frac{3}{4} \cdot \overrightarrow{AB} + \frac{1}{2} \cdot \overrightarrow{AC} = \overrightarrow{BG}$$