

UNIVERSIDAD RAFAEL LANDÍVAR CAMPUS SAN ALBERTO HURTADO, S.J. DE QUETZALTENANGO FACULTAD DE INGENIERÍA INGENIERÍA EN INFORMÁTICA Y SISTEMAS

PROGRAMA DEL CURSO

1. INFORMACIÓN GENERAL:

Nombre del curso	Arquitectura del Computador I
Sección	01
Créditos académicos	3 teóricos y 1 práctico
Horario de clases	Miércoles y viernes 10:15 a 11:45 horas
Ciclo lectivo	Primer ciclo 2023
Prerrequisitos	Organización computacional
Catedrático	Ing. José Abelardo Méndez Pú jamendezpu@correo.url.edu.gt Grupo de Telegram: https://t.me/+6gnt6hKPkAFiMzgx

2. DESCRIPCIÓN:

Este curso toma como base la organización de circuitos, para integrar componentes más grandes, los cuales finalmente conforman al computador. Entre estos circuitos se encuentran interfaces de entrada y salida, interfaces básicas, manejo de memoria, interrupciones como acceso a las interfaces de entrada y salida.

Además, se tiene como contenido del curso, la microprogramación del computador a través de instrucciones de CPU o programación en ensamblador, entre los cuales se programará los distintos modos de direccionamiento, instrucciones básicas y otras instrucciones de funcionamiento interno del computador.

3. OBJETIVOS:

- Describir los diferentes tipos de microprocesadores, así como su arquitectura y avances en su desarrollo histórico y generacional de manera estructurada.
- Identificar la estructura organizacional de configuración, diseño interno, alimentación y los componentes que el computador utiliza para comunicarse con el mundo externo.
- Comprender el funcionamiento de un computador a través de sus instrucciones básicas y con el uso de lenguajes de programación de bajo nivel.

4. CONTENIDO Y PLANIFICACIÓN:

FECHA	CONTENIDO	ACTIVIDADES IMPORTANTES
18 al 27 de enero (4 sesiones)	1. Conceptos básicos: 1.1. Introducción 1.1.1.Señales 1.1.2.Estados lógicos	Lineamientos de curso y forma de evaluación
	1.1.3.Sistemas de numeración 1.1.4.Codificación 1.2. Historia del desarrollo del microprocesador 1.3. Arquitectura del computador	Revisión # 1: Generaciones de computadoras
	1.3.1.Circuitos secuenciales 1.3.2.Latches 1.3.3.CPU 1.3.4.Memoria 1.3.5.Entrada/Salida	Proyecto de aplicación # 1: convertidor de base a base con Python.
	1.5.5.Entrada/Ganda	Proyecto de aplicación # 2: Contador binario
01 al 15 de febrero (5 sesiones)	2. Arquitectura del procesador: 2.1. Registros 2.2. Transferencia entre registros 2.3. Microoperaciones 2.4. Registros de desplazamiento 2.5. Células de registro 2.6. CISC 2.7. RISC 2.8. ARM 2.9. Arquitectura de buses 2.9.1.Harvard 2.9.2.Von Neuman 2.10. Administración de la memoria 2.10.1. Tecnologías de memoria 2.10.2. Jerarquías de memoria 2.11. Arquitectura de la familia x86 2.11.1. Sistema de registros 2.11.2. Organización de la memoria 2.11.3. Paginación, segmentación y direccionamiento 2.11.4. Unidad de control de la computadora 2.11.5. Unidad de procesos aritméticos 2.11.6. Unidad de control de programa 2.11.7. Unidad de control de interrupciones 2.12. Métodos de aceleración de tareas 2.12.1. Pipeline 2.12.2. Paralelismo	Lineamientos segunda evaluación parcial: memoria 4x4 bits y código BCD Revisión # 2: Arquitectura NISC Revisión # 3: Modos de operación del microprocesador Primera evaluación parcial

17 y 22 de febrero (2 sesiones)	3.	Nuevas tecnologías 3.1. Procesadores digitales de señales 3.2. Procesadores para servidores 3.3. Procesadores para móviles 3.4. Arquitectura multinúcleo 3.5. Virtualización por hardware 3.6. Hyper-threading	Revisión # 4: Boost y Turbo Boost
24 de febrero al 3 de marzo (5 sesiones)	4.	Componentes internos y dispositivos periféricos 4.1. Motherboard 4.2. Módulo regulador de tensión 4.3. Zócalos de procesador 4.4. Zócalos para memoria RAM 4.5. Conectores de unidad de disco 4.6. PCI 4.7. AGP 4.8. Chipset 4.9. Procesador gráfico 4.10. Conectores 4.11. Dispositivos periféricos 4.11.1. Control de entrada/salida 4.11.2. Interrupciones	Revisión # 5: Polling
8 de marzo al 14 de abril (10 sesiones)	5.	Programación de bajo nivel 5.1. Sistema operativo 5.1.1.Funciones 5.1.2.Tipos 5.1.3.Núcleo del sistema 5.2. Lenguaje ensamblador 5.2.1.Representación de datos 5.2.2.Direccionamiento 5.2.3.Control de interrupciones 5.2.4.Comportamiento de las interrupciones 5.2.5.Sintaxis básica 5.2.6.Segmentos de memoria 5.2.7.Llamadas al sistema 5.2.8.Modos de direccionamiento 5.2.9.Constantes y variables 5.2.10. Saltos y ciclos 5.2.11. Uso de pila 5.2.12. Subrutinas 5.2.13. Inclusión de archivos 5.2.14. Caracteres especiales 5.2.15. Operaciones aritméticas y lógicas 5.2.16. Uso de argumentos desde la línea de comandos	Tarea 1: Conversión de cadena a mayúsculas / minúsculas Tarea 2: Despliegue cíclico en pantalla Tarea 3: petición de datos en pantalla y despliegue Tarea 4: Rutinas de manejo de pantalla Tarea 5: Calculadora simple desde línea de comandos Simposio de ingeniería Entrega de proyecto de aplicación – segunda evaluación parcial: memoria 4x4 bits y código BCD revisión presencial.

19 de abril al 5 de mayo (6 sesiones)	Ordenador de placa reducida Raspberry Pi 6.1. Modelos 6.2. Configuración 6.3. GPIO	Tarea 5: 0 RPN simp línea de c	
	6.4. Principios de programación E/S	Proyecto de aplicación # 3: secuencia binaria	
		PrueProyCalcuRPNopcid	ón a p/petición

5. ACREDITACIÓN:

Actividad	Valor
Evaluaciones parciales: 2 de 8 puntos c/u	16
Informes de revisión documental: 5 de 2 pts. c/u	10
Tareas de programación 5 de 5 pts. c/u	25
Simposio	4
Proyectos de aplicación – 3 de 5 puntos	15
Evaluación final *	
Proyecto final	15
Evaluación práctica presencial	15
Total	100

^{*}Es requisito indispensable contar con un mínimo de 35 puntos de zona y al menos 75% de asistencia a clases para tener derecho a realizar la evaluación final del curso.

6. BIBLIOGRAFÍA:

- Brey, B. B. (2001). Los Microprocesadores Intel (5ta. ed.). (J. L. Chacarría, Ed., & I. J. Pérez, Trad.) México, México: PEARSON Educación.
- Darche, P. (2020). Microprocessor 3. Core Concepts Hardware Aspects. ISTE Ltd and John Wiley & Sons, Inc.
- Dutemann, J. (2009). Assembly Language Step-by-Step. Wiley.
- Floyd, T. L. (2006). Fundamentos de sistemas digitales (9^a. Ed.). Madrid: PEARSON Educación.

Future Publishing Limited (2016). Raspberry PI the Complete Manual. Eight Edition

Hennessy, J. L., Patterson, D. A. (2019). Computer Architecture: A Quantitative Approach (6th Ed.). Elsevier.

Ledin, J. (2020). Modern Computer Architecture and Organization. Packt Publishing.

Lloris, A., Prieto, A. (1996). Diseño Lógico. McGraw Hill.

Mano, M. (1993). Arquitectura de computadores (3er. Ed.). Prentice Hall.

Zhirkov, I. (2017). Low-Level Programming: C, Assembly, and Program Execution on Intel® 64 Architecture. Apress.

Vo. Bo. Ing. Miguel Francisco Matul Calderón

COORDINADOR AREA DE INGENIERÍA

Coordinador Área de Ingeniería en Informática y Sistemas

Ing. José Abelardo Méndez Pú

Docente del curso

Quetzaltenango, enero de 2023.