Московский физико-технический институт Физтех-школа прикладной математики и информатики

БОЛЬШОЕ НАЗВАНИЕ КУРСА

V CEMECTP

Лектор: Иван Иванович Иванов

Автор: Павел Дуров Проект на Github

Содержание

1	Алг	ебра многочленов	2
	1.1	Операции над многочленами	2
	1.2	Операции над новыми многочленами	2
	1.3	Деление многочленов с остатком	4
		1.3.1 Схема Горнера	4
	1.4	НОЛ двух многочленов. Алгоритм Евклида	5

1 Алгебра многочленов

Определение 1.1. Многочленом называется функция $f: \mathbb{R} \to \mathbb{R}, f = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$

Определение 1.2. $\mathbb{F}[x]$ — множество всех многочленов над \mathbb{F} (с коэффициентами в \mathbb{F})

1.1 Операции над многочленами

- 1. + -сложение
- $2. \cdot -$ умножение
- 3. $\cdot \lambda$ домножение на константу

Замечание. Многочлены над \mathbb{R} образуют коммутативное кольцо

Определение 1.3. Алгебра над полем \mathbb{F} называется называется множество A, с определенными на нем операциями $+,\cdot,\cdot,\lambda$, которое удовлетворяет следующим условиям:

- 1. $(A, +, \cdot \lambda)$ линейное пространство над \mathbb{F}
- 2. $(A, +, \cdot)$ кольцо (необязательно коммутативное)
- 3. $\lambda(xy) = x(\lambda y) = (\lambda x)y, \lambda \in \mathbb{F}, x, y \in A$

Пример.

- 1. $\mathbb{R}[x]$
- 2. $M_n(\mathbb{F})$
- 3. $\mathbb{Z}_p[x]$

Замечание. Возникает проблема: в $\mathbb{Z}_p[x]$ сущесвтует многочлен $x^p - x \equiv 0 \forall x \in \mathbb{Z}_p$. Но тогда у нас будет конечный базис в $\mathbb{Z}_p[x]$, чего не хотелось бы. Определим многочлен по-другому:

Определение 1.4. Многочленом над коммутативным кольцом с 1 R называется бесконечная пооследовательность $a_0, a_1 \ldots$, в которой лишь конечное число коэффициентов отличны от 0. Такие пооследовательности называются финитными.

1.2 Операции над новыми многочленами

Пусть
$$A = (a_i), B = (b_i)$$

- 1. $A + B = C \Leftrightarrow c_i = a_i + b_i$
- 2. $A \cdot B = C \Leftrightarrow c_k = \sum_{i=0}^k a_i b_{k-i}$
- 3. $A \cdot \lambda = C \Leftrightarrow c_k = \lambda \cdot a_i$

Утверждение 1.1. R[x] — коммутативное кольцо относительно "+", "·"

Доказательство.

- 1. (R[x], +) абелева группа (очев)
- 2. $A \cdot B = B \cdot A$ тут мы пользуемся тем, что R коммутативное кольцо. Поэтому в сумме $\sum_{i=0}^k a_i b_{k-i}$ если переставить множители местами, ничего не поменяется
- 3. A(BC) = (AB)C

$$\sum_{i=0}^{n} a_i \left(\sum_{j=0}^{n-i} b_j c_{n-i-j} \right) = \sum_{i=0}^{k} \sum_{j=0}^{n-i} a_i b_j c_{n-i-j} = \sum_{i+j+k=n} a_i b_j c_k = \sum_{k=0}^{n} c_k \left(\sum_{i=0}^{n-k} a_i b_{n-k-i} \right)$$

4. A(B+C) = AB + AC - Достаточно раскрыть скобки, чтобы проверить, мне лень техать.

Следствие. R[x] — бесконечномерное линейное пространство с базисом $1, x, x^2 \dots$

Следствие. Нетрудно проверить, что в $R[x], 1 = (1,0,0,\dots)$. Аналогично, $x^n = (\underbrace{0,0,\dots0}_n,1,0,0,\dots)$

Определение 1.5. Старший коэффициент — последний ненулевой элемент последовательности.

Определение 1.6. Индекс старшего коэффициента называется степенью многочлена $\deg P$. У многочлена $(0,0,\dots)$ степень зависит от контекста. Мы будем считать, что его степень $-\infty$.

Определение 1.7. Кольцо с $1 \neq 0$ называется областью целостности, если в нем нет делителей нуля.

Утверждение 1.2. Пусть R — область целостности. Тогда $ab=ac, a \neq 0 \Rightarrow b=c$

Доказательство.

$$a(b-c) = 0$$
$$b-c = 0$$
$$b = c$$

Утверждение 1.3. $A, B \in R[x], 1 \in R$. Тогда:

- 1. $\deg A + \deg B \leqslant \max(\deg A, \deg B)$
- 2. $\deg AB \leqslant \deg A + \deg B$

Причем, если R — область целотности, то во втором пункте будет равенство.

Доказательство. Все понятно

Следствие. Если R — область целостности, то R[x] — тоже.

Определение 1.8. Многочлен от n переменных определяется рекурсивно: многочлен от одной переменной — как мы определяли выше, далее $R[x_1, x_2, \dots x_n] = R[x_1, x_2, \dots x_{n-1}][x_n]$.

П

1.3 Деление многочленов с остатком

Теорема 1.1. Пусть F — none, $A, B \in F[x], B \neq 0$. тогда

1.
$$\exists ! Q, R : A = BQ + R, \deg R < \deg B$$

Доказательство. Существование доказывается алгоритмом деления в столбик. Проверим единственность:

$$BQ + R = BS + T$$

$$BQ - BS = T - R$$

$$\deg(B(Q - S)) > \deg(T - R)$$

Противоречие

Теорема 1.2 (Безу). Пусть $P \in F[x]$. Тогда P(x) - P(c):(x - c)

Доказательство. Разделим многочлен P на x-c с остатком. Получится P=Q(x-c)+R, причем R — константа. Тогда подставим x=c, получим, что R=P(c).

1.3.1 Схема Горнера

Задан многочлен:

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n, \quad a_i \in \mathbb{R}$$

Пусть требуется вычислить значение данного многочлена при фиксированном значении $x = x_0$. Представим многочлен P(x) в следующем виде:

$$P(x) = a_0 + x(a_1 + x(a_2 + \cdots + x(a_{n-1} + a_n x) \dots))$$

Определим следующую последовательность:

$$b_{n} = a_{n},$$

$$b_{n-1} = a_{n-1} + b_{n}x_{0},$$

$$\vdots$$

$$b_{i} = a_{i} + b_{i+1}x_{0},$$

$$\vdots$$

$$b_{0} = a_{0} + b_{1}x_{0}.$$

Искомое значение $P(x_0)$ есть b_0 . Покажем, что это так.

В полученную форму записи P(x) подставим $x=x_0$ и будем вычислять значение выражения, начиная с внутренних скобок. Для этого будем заменять подвыражения через b_i

$$P(x_0) = a_0 + x_0(a_1 + x_0(a_2 + \dots + x_0(a_{n-1} + a_n x_0) \dots)) =$$

$$= a_0 + x_0(a_1 + x_0(a_2 + \dots + x_0 b_{n-1} \dots)) =$$

$$\vdots$$

$$= a_0 + x_0 b_1 =$$

$$= b_0.$$

1.4 НОД двух многочленов. Алгоритм Евклида

Определение 1.9. Многочлен f делится на g, если f = gh для некототорого h

Определение 1.10. Многочлены f, g называются ассоциированными, если f : g, g : f.

Определение 1.11. Многочлен d называется Наибольшим общим делителем двух многочленов f,g, если:

- 1. f:d,g:d
- 2. $f:d', q:d' \Rightarrow d:d', d:d'$

Теорема 1.3 (О представлении НОДа).

- 1. НОД любых двух многочленов существует
- 2. НОД любых двух многочленов представим в виде их линейной комбинации