Evaluating Single Image Dehazing Methods Under Realistic Sunlight Haze

Zahra Anvari and Vassilis Athitsos

VLM Research Lab

Computer Science and Engineering Department
University of Texas at Arlington, Texas

USA

Single Image Dehazing Problem

- Haze degrades visibility and image quality
 - Degrades the performance of computer vision tasks, e.g., object detection
- Goal: Reconstruct haze-free image of a hazy image

Haze-free/Ground truth

Motivation

- Current methods make assumptions that do not hold in reality
 - **Haze color:** Single color haze i.e grayish white
 - Haze pattern/distribution: homogeneous/uniformly distributed

Motivation

- Current methods make assumptions that do not hold in reality
 - **Haze color:** Single color haze i.e., grayish white
 - **Haze pattern/distribution:** homogeneous/uniformly distributed

Sample images from NYU, SOTS and Middlebury synthetic hazy datasets

Goal

- Evaluating dehazing methods under realistic sunlight haze
 - Sun-light haze one of the most prevalent type of haze in the wild

Contributions

- We introduce a realistic sunlight haze, Sun-Haze
 - Containing 107 images
- We evaluate dehazing methods on the proposed dataset
- We present the limitations of current methods under realistic settings

Sun-Haze Dataset

- Having one ground truth for a hazy image is not practical
 - One hazy image could have a range of goud truth images with different lighting, contrast,..
 - One single image does not capture that
- Thus to be able to evalue dehazing methods in a more practical way, we need to have multiple ground truths
 - We build our dataset on top of MIT-fiveK
- MIT-fiveK includes:
 - 5,000 photos taken by photographers with SLR cameras.
 - These photos are captured from different scenes, subjects, and during various lighting conditions.
 - These photographs are retouched to obtain a visually pleasing renditions by five photography experts using Adobe Lightroom

Sun-Haze Dataset

- How we add haze?
 - We utilized Adobe Photoshop and Luminar 4
 - We use different parameters
 - Intensity: creates a thicker, more dense haze effect
 - **Penetration:** expands the sun haze effect to a broader region of the image
 - Warmth: creates a golden yellow sunhaze color, creates realistic sunlight color changes during the day
 - **Angle:** sunlight haze from different angles to further diversify our dataset
 - Sunset/sunrise haze effect: Using Adobe Photoshop we professionally added a gradient sunlight haze effect
 - Number of Sun rays

Sun-Haze Dataset

- Sun-haze contains 107 indoor and outdoor images along with six ground truth images:
 - One before retouch/original
 - Five ground truths retouched by five experts for MIT-fiveK dataset

Sun-Haze Dataset - Indoor sample

Hazy image

Original

Expert B

Expert C

Expert D

Expert E

Sun-Haze Dataset - Outdoor sample

Hazy Image

Original

Expert A

Expert B

Expert E Expert C Expert D

Sun-Haze Dataset - Sunset sample

Hazy Image

Original

I Expert A

Expert C

Expert D

Expert B

Expert E

Dehazing Methods

- We can categorize them into two categories:
 - Prior based
 - Mainly based on the parameter estimation of atmospheric scattering model
 - The physical scattering model consists of the transmission map and the atmospheric light:
 - $\bullet \qquad \mathsf{I}(\mathsf{x}) = \mathsf{J}(\mathsf{x})\mathsf{t}(\mathsf{x}) + \mathsf{A}(1 \mathsf{t}(\mathsf{x}))$
 - I(x) is the hazy image, J(x) is the haze-free image, t(x) is the medium transmission map, and A is the global atmospheric light on each x pixel coordinates
 - The solution of the haze-free image depends on the **estimation of the atmospheric light and the transmission map**

Dehazing Methods

- We can categorize them into two categories:
 - Prior based
 - Learning based/data-driven: Utilizes the deep convolutional neural networks or generative adversarial networks to estimate the transmission map indirectly
 - Takes advantage of the power of data
 - Paired vs unpaired supervision: Paired single image dehazing methods need the haze-free/ground truth of each hazy image for training, unpaired dehazing methods do not require the haze-free pair of the hazy images
 - combination methods:
 - Take advantage of deep CNNs/GANs and uses priors jointly

Dehazing Methods

Method	Paired vs. Unpaired	Prior-based	Learning-based	Adversarial-based
DCP [12]	NA	✓		
MSCNN [22]	Paired	✓	✓	
DehazeNet [10]	Paired	✓	✓	
AODNet [13]	Paired	✓	✓	
EPDN [19]	Paired		✓	✓
Dehaze-GLCGAN [6]	Unpaired		✓	✓
CycleDehaze [11]	Unpaired		✓	✓

Experiments

- Benchmark dataset: Sun-Haze
- Evaluated methods: DCP, MSCNN, DehazeNet, AOD-Net, Cycle-Dehaze, GLCGAN, EPDN
- Metrics:
 - Reference based:
 - PSNR
 - SSIM
 - CIEDE2000
 - No-reference based
 - Pl
 - NIQE

Quantitative Results on SUN-HAZE Dataset

Ground truth	Metric	DCP	MSCNN	Dehazenet	AOD-Net	EPDN	Dehaze-GLCGAN	CycleDehaze
Expert A	PSNR	11.01	16.48	15.62	14.83	15.88	14.38	15.53
	SSIM	0.641	0.773	0.733	0.698	0.784	0.789	0.778
	CIEDE	34.76	23.46	27.55	30.26	26.29	24.37	26.62
Expert B	PSNR	11.28	16.33	15.13	14.15	14.96	15.12	15.38
	SSIM	0.655	0.763	0.709	0.676	0.761	0.801	0.763
	CIEDE	32.66	25.43	30.90	34.33	31.64	22.03	26.49
Expert C	PSNR	11.32	16.57	15.49	14.49	15.44	14.74	15.23
	SSIM	0.643	0.746	0.703	0.670	0.756	0.782	0.737
	CIEDE	33.22	24.57	28.84	31.93	28.73	23.98	28.98
Expert D	PSNR	11.43	14.91	13.75	12.82	13.55	14.93	14.35
	SSIM	0.649	0.722	0.667	0.632	0.713	0.781	0.728
	CIEDE	30.87	29.10	34.76	38.87	36.28	22.36	28.67
Expert E	PSNR	11.32	15.27	13.86	12.99	13.56	15.32	14.84
	SSIM	0.640	0.719	0.660	0.626	0.704	0.780	0.733
	CIEDE	33.07	28.56	34.38	38.11	35.88	22.30	28.13
Original image	PSNR	11.40	19.10	17.78	16.89	17.96	14.57	16.39
	SSIM	0.686	0.867	0.814	0.782	0.857	0.810	0.834
	CIEDE	36.10	18.44	23.95	26.63	22.72	24.46	23.46
Average	PSNR	11.34	17.51	16.28	15.37	16.32	14.73	15.73
	SSIM	0.651	0.765	0.721	0.680	0.763	0.799	0.762
	CIEDE	33.45	24.93	30.06	33.36	30.26	23.25	27.06
No reference	NIQE	5.35	4.06	4.08	3.93	4.13	4.09	4.60
No reference	PI	3.71	3.25	3.25	3.02	3.04	2.93	4.08

Green: Best

Pink: Second best Yellow: Third best

Qualitative Results on SUN-HAZE Dataset

Input: Hazy Image

MSCNN EPDN AODNet GLCGAN DehazeNet

Original

Expert A

Expert B

Expert D

Expert E

Qualitative Results on SUN-HAZE Dataset

Input: Hazy Image

AODNet

Original Ex

Expert A

Expert B

Expert D

Expert E

Qualitative Results on SUN-HAZE Dataset

AODNet

GLCGAN

Original

Expert A

Expert B

ert D Expert E

Discussion and Conclusion

- The relatively low SSIM, PSNR and relatively high CIEDE2000, NIQE, and PI prove current dehazing methods are unable to generalize well to remove sunlight haze.
- The existing methods performed even more poorly on varicolored haze, .e.g., sunset hazy images
- Our results question the underlying assumptions of these methods and their practicality in real-world scenarios.
- Therefore, for dehazing methods to be practical they need to be trained and tested using more realistic and practical datasets which include a variety of realistic haze patterns and colors.

Thank You!

zahra.anvari@mavs.uta.edu