PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS / DEPARTAMENTO DE ESTADÍSTICA

EYP 1025-1027: Modelos Probabilísticos

I1

Profesor: Reinaldo Arellano. Ayudante: Daniel Gálvez.

Primer semestre 2024

1. **Tema 1:**

- a) Sean $\mathcal{F} = \mathcal{A}_1 \cap \mathcal{A}_2$ y $\mathcal{G} = \mathcal{A}_1 \cup \mathcal{A}_2$, donde \mathcal{A}_1 y \mathcal{A}_2 son σ -álgebra de subconjuntos de $\Omega \neq \emptyset$ tales que $\mathcal{A}_1 \subseteq \mathcal{A}_2$. Se pide: ¿Son \mathcal{F} y \mathcal{G} σ -álgebras de subconjuntos de Ω ? Explique.
- b) Sean A y B dos eventos definidos en (Ω, \mathcal{A}, P) tales que $P(A) = P(B) = \frac{1}{2}$ y $P(A \cup B) = \frac{3}{4}$. **Se pide:** 1) ¿Son A y B eventos independientes? 2) ¿Cuál es la probabilidad de que ocurra exactamente uno de los eventos A o B?

2. **Tema 2:**

- a) Se lanza un dado equilibrado en forma independiente una infinidad de veces. Sea $\{A_n\}_{n=1}^{\infty}$ una secuencia de eventos, donde $A_n = sale un número par en cada uno de los n primeros lanzamientos. Se pide: 1) Calcule la probabilidad de <math>A_n$; 2) Pruebe que $P(\lim_{n\to\infty} A_n) = 0$.
- b) Tres adolescentes quieren entrar a una discoteca para mayores edad. En la entrada, se les pide que presenten sus identificaciones; después de que el portero las revisa y les niega la entrada, devuelve las identificaciones al azar. Se pide: Encuentre la probabilidad de que ninguno de los adolescentes reciba su propia identificación.

3. **Tema 3:**

- a) Sea (Ω, \mathcal{A}) un espacio medible, donde $\Omega = \{-1, 0, 1\}$ y $\mathcal{A} = \{\emptyset, \{0\}, \{-1, 1\}, \Omega\}$. Sea $X : \Omega \to \mathbb{R}$ la función identidad $X(\omega) = \omega$. Se pide: ¿Es X una variable aleatoria? Explique.
- b) Sea X una variable aleatoria con función distribución dada por

$$F_X(x) = \begin{cases} 0, & x < -1, \\ \frac{1}{2}, & -1 \le x < 0, \\ \frac{1}{2} + \frac{x}{4}, & 0 \le x < 2, \\ 1, & x \ge 2. \end{cases}$$

Se pide: 1) Grafique F_X ; 2) Calcule P(X = -1), P(X = 0), $P(-1 < X \le 0)$, $P(-1 \le X < 0)$ y $P(X \ge 0)$.

Notas:

- 1) Todas las preguntas tienen el mismo puntaje.
- 2) Ud. deberá argumentar todos sus cálculos en cada pregunta para obtener el puntaje completo.
- 3) La prueba dura 2:15 horas.