Formale Grundlagen der Informatik I 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach

Alexander Kreuzer Pavol Safarik SS 2012

Gruppenübung

Aufgabe G1 (Relationen)

Wir stellen einen gerichteten Graphen als ein Tupel (V, E) dar, wobei V die Knotenmenge und $E \subseteq V \times V$ die Kantenrelation ist. $(x, y) \in E$ soll genau dann zutreffen, wenn es eine Kante von x nach y gibt; wir schreiben auch $x \longrightarrow y$ um diesen Sachverhalt auszudrücken.

- (a) Sei $R_0 \subseteq V \times V$ die Menge aller Paare (p,q), so dass es eine Folge von Kanten $p \longrightarrow \ldots \longrightarrow q$ von p nach q gibt (die Folge kann die Länge 0 haben; insbesondere erlauben wir p=q). Und sei $S_0 := \{(p,q) : (p,q) \in R_0 \text{ und } (q,p) \in R_0\}.$
 - Beweisen Sie, dass R_0 transitiv und S_0 eine Äquivalenzrelation ist.
- (b) Sei $R_1 := \{(p,q): (p,q) \in E \text{ oder } (q,p) \in E\}$ und S_1 die Menge aller Paare (p,q), so dass es eine Folge $\langle p_0, \dots, p_n \rangle$ gibt, mit $p = p_0, q = p_n$ und $(p_i, p_{i+1}) \in R_1$ für alle i < n. Zeigen Sie, dass R_1 symmetrisch und S_1 eine Äquivalenzrelation ist.
- (c) Sei jetzt $R_2 := \{(p,q) : (p,q) \in E \text{ und } (q,p) \in E\}$ und S_2 definiert wie S_1 in (b), wobei nun für alle i < n gelten soll, dass $(p_i, p_{i+1}) \in R_2$. Zeigen Sie, dass R_2 symmetrisch und S_2 eine Äquivalenzrelation ist.
- (d) Welche Beziehungen gibt es zwischen S_1, S_2 und S_3 ? (Machen Sie sich dazu klar, was die intuitive Bedeutung dieser Relationen ist.) Finden Sie auch einen Graphen in dem alle drei Relationen unterschiedlichen Bedeutungen haben.

Lösungsskizze:

(a) Angenommen, dass $(p,q) \in R_0$ und $(q,r) \in R_0$. Dann gibt es Pfade $p \to \cdots \to q$ und $q \to \cdots \to r$. Wenn wir diese aneinanderhängen, erhalten wir einen Pfad $p \to \cdots \to r$. Also ist $(p,r) \in R_0$. Also ist R_0 transitiv.

Wir beweisen jetzt, dass S_0 eine Äquivalenzrelation ist:

(Reflexivität) Da $(p, p) \in R_0$, für alle $p \in Q$, gilt $(p, p) \in S_0$.

(Symmetrie) Sei $(p,q) \in S_0$. Dann ist $(p,q) \in R_0$ und $(q,p) \in R_0$. Nach Definition von R folgt, dass $(q,p) \in S_0$.

(Transitivität) Sei $(p,q) \in R$ und $(q,r) \in S_0$. Dann ist $(p,q), (q,p), (q,r), (r,q) \in R_0$. Da R_0 transitiv ist, folgt, dass $(p,r), (r,p) \in R_0$. Also ist auch $(p,r) \in S_0$.

(b) Falls $(p,q) \in R_1$, dann $(p,q) \in E$ oder $(q,p) \in E$. Im beiden Fällen gilt $(q,p) \in R_1$, also ist R_1 symmetrisch.

Wir beweisen jetzt, dass S_1 eine Äquivalenzrelation ist: (Reflexivität) $(p,p) \in S_1$, da $\langle p \rangle$ eine geeignete Folge ist.

(Symmetrie) Sei $(p,q) \in S_1$. Dann gibt es eine Folge $\langle p_0, \ldots, p_n \rangle$ mit $p = p_0, q = p_n$ und $(p_i, p_{i+1}) \in R_1$ für alle i < n. Da R_1 symmetrisch ist, gilt auch $(p_{i+1}, p_i) \in R_1$ für alle i < n. Also ist $\langle p_n, \ldots, p_0 \rangle$ eine Folge, die belegt, dass $(q,p) \in S_1$.

(Transitivität) zeigt man wieder durch aneinanderhängen von Folgen.

- (c) Analog zu (a) und (b).
- (d) Es gilt $S_2 \subseteq S_0 \subseteq S_1$. Alle Inklusionen sind echt, was sich z.B. am folgenden Graphen zeigt:

Aufgabe G2 ([Boolesche Algebren])

Sei $(B,0,1,+,\cdot,')$ eine Boolesche Algebra. Zeigen Sie die folgende Regeln, wobei Sie nur die folgende Axiome verwenden:

BA1: + und · sind assoziativ und kommutativ, d.h. für alle $x, y, z \in B$:

$$(x+y)+z=x+(y+z), \quad x+y=y+x,$$

 $(x\cdot y)\cdot z=x\cdot (y\cdot z), \quad x\cdot y=y\cdot x.$

BA2: + und · sind distributiv, d.h. für alle $x, y, z \in B$:

$$x \cdot (y+z) = x \cdot y + x \cdot z, \quad x + (y \cdot z) = (x+y) \cdot (x+z).$$

BA3: 0 und 1 sind neutrale Elemente bzgl. + und ·:

$$x + 0 = x$$
, $x \cdot 1 = x$ für alle $x \in B$.

BA4: Komplement: $0 \neq 1$ und $x \cdot x' = 0$ und x + x' = 1 für alle $x \in B$.

- (i) $0 \cdot 0 = 0$,
- (ii) 1+1=1,
- (iii) x + x = x,
- (iv) $x \cdot x = x$,
- (v) $x \cdot 0 = 0$,
- (vi) x + 1 = 1,
- (vii) $x + (x \cdot y) = x$,
- (viii) $x \cdot (x+y) = x$.

Lösungsskizze:

(i)

$$0 = 0 \cdot 1$$

$$= 0 \cdot (1+0)$$

$$= 0 \cdot 1 + 0 \cdot 0$$

$$= 0 + 0 \cdot 0$$

$$= 0 \cdot 0 + 0$$

$$= 0 \cdot 0.$$

(ii) Analog zu (i):

$$1 = 1 + 0$$

$$= 1 + (0 \cdot 1)$$

$$= (1 + 0) \cdot (1 + 1)$$

$$= 1 \cdot (1 + 1)$$

$$= (1 + 1) \cdot 1$$

$$= 1 + 1.$$

- (iii) $x + x = x \cdot 1 + x \cdot 1 = x \cdot (1+1) = x \cdot 1 = x$.
- (iv) Analog zu (iii): $x \cdot x = (x+0) \cdot (x+0) = x+0 \cdot 0 = x+0 = x$.
- (v) $x \cdot 0 = x \cdot (x \cdot x') = (x \cdot x) \cdot x' = x \cdot x' = 0$.
- (vi) Analog zu (v).
- (vii) $x + (x \cdot y) = x \cdot 1 + x \cdot y = x \cdot (1 + y) = x \cdot (y + 1) = x \cdot 1 = x$.
- (viii) Analog zu (vii).

Aufgabe G3

Seien $f, g : \mathbb{N} \to \mathbb{N}$ Funktionen. Wir sagen "f ist in $\mathcal{O}(g)$ " (kurz " $f \in \mathcal{O}(g)$ "), falls es Konstanten K, n_0 gibt, so dass

$$f(n) \leq K \cdot g(n)$$
 für alle $n \geq n_0$.

Wir schreiben $f \sim g$, falls $f \in \mathcal{O}(g)$ und $g \in \mathcal{O}(f)$. $f \sim g$ besagt, dass f und g dieselbe Wachstumsrate haben.

Zeigen Sie, dass $f \sim g$ eine Äquivalenzrelation auf der Menge aller Funktionen $\mathbb{N} \to \mathbb{N}$ ist.

Lösungsskizze:

Wir bemerken zuerst, dass $f \in \mathcal{O}(f)$, weil wir einfach K = 1 und $n_0 = 0$ wählen können. Weiter gilt, dass

$$f \in \mathcal{O}(q) \text{ und } q \in \mathcal{O}(h) \text{ implizient } f \in \mathcal{O}(h).$$
 (1)

Nehmen wir an, dass $f(n) \le K_0 \cdot g(n)$ für alle $n \ge n_0$ und $g(n) \le K_1 h(n)$ für alle $n \ge n_1$. Dann folgt, dass $f(n) \le K_0 K_1 h(n)$ wenn $n \ge n_0$ und $n \ge n_1$, d.h., wenn $n \ge \max(n_0, n_1)$.

Jetzt beweisen wir, dass $f \sim g$ eine Äquivalenzrelation ist. Die Reflexivität $f \sim f$ ist klar, da $f \in \mathcal{O}(f)$; die Symmetrie is auch klar, weil $f \sim g$ heißt, dass $f \in \mathcal{O}(g)$ und $g \in \mathcal{O}(f)$, woraus folgt, dass $g \sim f$. Um die Transitivität zu beweisen, nehmen wir an, dass $f \sim g$ und $g \sim h$. Daraus folgt, dass $f \in \mathcal{O}(g)$ und $g \in \mathcal{O}(h)$. Dann folgt mit (1), dass $f \in \mathcal{O}(h)$. Analog beweist man $h \in \mathcal{O}(f)$.

Aufgabe G4 (Induktion)

Sei $z=\sum_{i=0}^k z_i 10^i$ mit $z_i\in\{0,1,\ldots,9\}$ (d.h. $z_k z_{k-1}\ldots z_0$ ist die Dezimaldarstellung von z). Die Quersumme von z ist die Zahl

$$q(z) = \sum_{i=0}^{k} z_i.$$

(a) Beweisen Sie, dass $z\equiv_9 q(z)$ und dass deshalb die Zahl z genau dann durch 9 teilbar ist, wenn ihre Ouersumme dies ist.

Hinweis. Zeigen Sie mit Induktion, dass $10^n - 1$ für jedes $n \in \mathbb{N}$ durch 9 teilbar ist.

(b) Zeigen Sie, dass die Zahl z genau dann durch 11 teilbar ist, wenn ihre alternierende Quersumme

$$\sum_{i=0}^{k} (-1)^{i} z_{i} = z_{0} - z_{1} + z_{2} - \ldots + (-1)^{k} z_{k}$$

dies ist.

Lösungsskizze:

(a) Zuerst zeigen wir mit Induktion, dass $10^n - 1$ durch 9 teilbar ist.

Induktionsanfang: $10^0 - 1 = 0$ ist offensichtlich durch 9 teilbar.

Induktionsschritt von n nach n+1: wir nehmen an, dass 10^n-1 durch 9 teilbar sei, d.h., dass $10^n-1=9\cdot k_n$ für ein $k_n\in\mathbb{N}$. Dann ist auch

$$10^{n+1} - 1 = 10 \cdot 10^n - 1 = 10 \cdot 10^n - 10 + 10 - 1 = 10(10^n - 1) + 9 = 9(10k_n + 1)$$

durch 9 teilbar.

Hieraus folgt, dass für jede Dezimalzahl $\sum_{i=0}^{k} 10^k z_k$ die Differenz

$$z - q(z) = (z_0 + 10z_1 + 100z_2 + \dots + 10^k z_k) - (z_0 + z_1 + z_2 \dots + z_k)$$

= $z_1(10 - 1) + z_2(100 - 1) + \dots + (10^k - 1)z_k$

durch 9 teilbar ist. Deshalb ist $z = q(z) \mod 9$.

(b) Idee: wie in (a). Man beweist jetzt, dass $10^n - (-1)^n$ durch 11 teilbar ist. (In Wikipedia findet man unter "Teilbarkeit" ähnliche Kriterien für andere Zahlen.)

Hausübung

Aufgabe H1 ([Relationen])

(i) Welche der Eigenschaften "Reflexivität", "Symmetrie" und "Transitivität" haben die folgenden binären Relationen

$$R_1 = \{(1,2), (5,6), (2,3), (1,3), (4,4)\}$$
 auf $A_1 = \{1,2,3,4,5,6\}$, $R_2 = \{(1,1), (2,2), (3,3)\}$ auf $A_2 = \{1,2,3\}$, $R_3 = \{(1,2), (2,1), (1,1), (2,2)\}$ auf $A_2 = \{1,2\}$?

(ii) Sei $p: Y \to X$ eine Surjektion. Zeigen Sie, dass durch

$$y_0 \sim y_1 :\Leftrightarrow p(y_0) = p(y_1)$$

eine Äquivalenzrelation auf Y definiert wird. Zeigen Sie auch, dass es eine Bijektion zwischen Y/\sim und X gibt.

Lösungsskizze:

- (i) R_1 is nicht reflexiv, nicht symmetrisch, aber transitiv. R_2 und R_3 sind reflexiv, symmetrisch und transitiv.
- (ii) p(y) = p(y) gilt für jedes y, und deshalb ist \sim reflexiv. Wenn $p(y_0) = p(y_1)$ gilt, gilt auch $p(y_1) = p(y_0)$, und deshalb ist \sim symmetrisch. Wenn $p(y_0) = p(y_1)$ gilt und $p(y_1) = p(y_2)$, gilt auch $p(y_0) = p(y_2)$, und deshalb ist \sim transitiv.

Wir definieren $t: Y/\sim \to X$ durch

$$t([y]) = p(y).$$

1. t is wohldefiniert, da

$$[y_0] = [y_1] \Rightarrow y_0 \sim y_1 \Rightarrow p(y_0) = p(y_1).$$

2. t ist injektiv, da

$$t([y_0]) = t([y_1]) \Rightarrow p(y_0) = p(y_1) \Rightarrow y_0 \sim y_1 \Rightarrow [y_0] = [y_1].$$

3. Für jedes $x \in X$ gibt es ein $y \in Y$ mit p(y) = x (p ist surjektiv). Es folgt t([y]) = p(y) = x, und deshalb ist t surjektiv.

Aufgabe H2 (Boolesche Algebren)

(6 Punkte)

Sei $(B,0,1,+,\cdot,')$ eine Boolesche Algebra.

(i) Seien $x, y \in B$ so, dass

$$x \cdot y = 0$$
 und $x + y = 1$.

Zeigen Sie, dass y=x'. (Verwenden Sie hier und in (ii) nur die Axiome und Regeln die Sie in Aufgabe (G3) abgeleitet haben.)

Hinweis: beweisen Sie y = x'y und x' = x'y.

(ii) Zeigen Sie die De Morgan Regeln:

$$0' = 1,
 1' = 0,
 (x+y)' = x' \cdot y',
 (x \cdot y)' = x' + y',
 x'' = x.$$

(iii) Zeigen Sie, dass durch $\varphi(b) = b'$ ein Isomorphismus von Booleschen Algebren

$$(B,0,1,+,\cdot,') \xrightarrow{\varphi} (B,1,0,\cdot,+,')$$

definiert wird.

Lösungsskizze:

(i)

$$y = y(x + x')$$
$$= yx + yx'$$
$$= yx'$$

$$x' = x'(x+y)$$

$$= x'x + x'y$$

$$= x'y$$

(ii) Es folgt mit (i) aus

$$(x+y)x'y' = xx'y + yx'y'$$
$$= 0+0$$
$$= 0$$

und

$$x + y + x'y' = x + y(x + x') + x'y$$

$$= x + xy + x'y + x'y'$$

$$= xy + x + x'(y + y')$$

$$= xy + x + x'$$

$$= xy + 1$$

$$= 1,$$

dass (x + y)' = x'y'. Die anderen Fälle gehen analog.

(iii) Es folgt unmittelbar aus (ii), dass φ ein Homomorphismus ist. φ ist selbst ein Isomorphismus, weil es seine eigene Umkehrfunktion ist.