# Artificial Intelligence Advanced Topics in AI & ML

Deep Learning Applications: Computer Vision, Speech Recognition

Aleksandr Petiushko

ML Research







A. Petiushko

#### Content

 $\color{red} \bullet$  Computer Vision





A. Petiushko

#### Content

- Omputer Vision
- Speech Recognition





## Computer Vision

- Computer Vision (CV): Direction targeted to analyze vision information: mostly images and videos
- Most common CV directions: classification, detection, segmentation
- Main research is concentrated around architectures of CV models: Convolutional Neural Networks (CNN)
- Read material: link



()AP

3 / 10

# The CNN Basis: Neocognitron<sup>1</sup>

- Fukushima in 1979 proposed an almost modern method for constructing the architecture of neural networks, which he borrowed from the model of the primary visual cortex
- Two types of neurons:
  - Simple, responsible for local characteristics
  - Complex, responsible for compensating for distortion
  - Organized into a cascade structure SCSCSC...
  - ► In a convolutional network, S=convolution, C=subsampling



• The main disadvantage: no backpropagation method was proposed for training





CV, ASR 4

#### **CNNs**

- CNN main operation: Convolution that is (spatially) translation-invariant
- CNN-related: Pooling operation, reducing the spatial size and keeping the most important features
- Now Visual Transformers (e.g., ViT<sup>2</sup>) ar on par with CNNs
- Read material: link





A. Petiushko CV, ASR 5 / 10

## Image Enhancement

- A very important problem for many applications (e.g. in a smartphone): Image Enhancement
- Relevant tasks: image super-resolution, removal of blur (motion and defocus), image reconstruction (noise removal)
- Read material (optional): link





# Speech Recognition

- Automatic Speech Recognition (ASR): Direction targeted to map a sequence of audio inputs to text outputs
- ASR mains differences with CV: 1) temporal sequence; 2) can benefit from signal pre-processing (like Fourier Transform, Mel-Frequency Cepstral Coefficients, etc.)
- Main research is concentrated around architectures of ASR models and how to omit pre-processing stage
- Read material: <u>link</u>



**◎AP** 

A. Petiushko CV, ASR 7 / 10

#### **ASR History**

- The first really working prototype was based on Hidden Markov Models<sup>3</sup> invented in 1960s and applied to speech recognition in 1970s
- ASR became popular after incorporation of Digital Assistants ("OK Google", Siri, Alexa, etc)
- Now the state-of-the-art models are based on Neural Nets
- Read material: <u>link</u>





• Read all the mentioned links





A. Petiushko

- Read all the mentioned links
- ② Computer vision is based on CNNs and Vision Transformers





- Read all the mentioned links
- 2 Computer vision is based on CNNs and Vision Transformers
- Main tasks in CV are classification, detection, and segmentation



9 / 10



- Read all the mentioned links
- 2 Computer vision is based on CNNs and Vision Transformers
- Main tasks in CV are classification, detection, and segmentation
- ASR has a long history starting with HMMs





- Read all the mentioned links
- 2 Computer vision is based on CNNs and Vision Transformers
- Main tasks in CV are classification, detection, and segmentation
- ASR has a long history starting with HMMs
- CV and ASR are now working on par or better than human-based!





# Thank you!





A. Petiushko CV, ASR 10 / 10