Do More People Die of Extreme Heat or Excessive Cold?

Jim Callahan

September 25, 2015

Synopsis: The question of "Do More People Die of Extreme Heat or Excessive Cold?" is addressed using the "R" statistical language and data from the National Oceanic and Atmospheric Administration (NOAA) "Storm Data" database. To put the question in perspective we first look at what types of storms cause the most deaths and property damage.

Data Processing The **R** language is an open source version of the the **S** language developed at Bell Labs during the "golden age" that also produced the **Unix** operating system and the **C** programming language. See: https://www.R-project.org/

Unlike C, R is an interpretive command language where the user types commands at the command line and gets an immediate response:

```
2+2

## [1] 4

sqrt(25)

## [1] 5
```

```
GaussDidThisInHisHeadInElemetarySchool <- sum(1:100)
print(GaussDidThisInHisHeadInElemetarySchool)
```

[1] 5050

The last of these three examples is a problem solved by famous mathematician Carl Friedrich Gauss (1777-1855) while he was an eight year old child math prodigy in elementary school. He solved it in his head, amazing his teacher. For more of the story see: "Clever Carl" http://nrich.maths.org/2478/index?nomenu=1

For those of us who are not (child or adult) math prodigies we can solve the problem with **R** by typing **sum(1:100)** at the command line. The "<-" assigns the result of the function to the variable name on the left.

The command line commands can be combined in simple text files "scripts" or combined with complied programs (compiled in FORTRAN, C or C++), data and documentation to form complete "packages".

Many open source statistical "packages" have been written in R making the complete system, the base language plus the optional downloadable statistical packages more powerful than proprietary statistical systems such as SAS or SPSS which, depending on the license, base price can be as much as \$9,000 a seat. See: http://www.sas.com/store/products-solutions/cSoftware-p1.html

When we load the **NOAA** "Storm Data" data file into the R statistical system, we will also be using the "<-" to assign the result to the variable name on the left.

```
# Select Columns of interest:
       Primary key: REFNUM
        Date and Time: BGN_DATE, BGN_TIME, TIME_ZONE,
       Location: STATE, COUNTY, COUNTY END, LATITUDE, LONGITUDE,
#
       Type of Storm: EVTYPE,
        Damage: PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP,
                      FATALITIES, INJURIES
        Casualties:
ColumnSubset <- c("REFNUM", "BGN_DATE", "BGN_TIME", "TIME_ZONE",
                 "STATE", "COUNTY", "COUNTY_END", "LATITUDE", "LONGITUDE",
                 "EVTYPE", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP",
                 "FATALITIES", "INJURIES")
storms <- NOAA[, ColumnSubset]
str(storms)
## 'data.frame': 902297 obs. of 16 variables:
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
## $ BGN_DATE : chr "4/18/1950 0:00:00" "4/18/1950 0:00:00" "2/20/1951 0:00:00" "6/8/1951 0:00:00" .
## $ BGN TIME : chr "0130" "0145" "1600" "0900" ...
## $ TIME_ZONE : chr "CST" "CST" "CST" "CST" ...
## $ STATE : chr "AL" "AL" "AL" "AL" ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ EVTYPE : chr "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
## $ PROPDMG : num 25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 25 ...
## $ PROPDMGEXP: chr "K" "K" "K" "K" ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: chr "" "" "" ...
## $ FATALITIES: num 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
#### Select Rows of interest
#### Select years of interest (Since 2001 "21st Century Storms" or "last 25 years")
#### Step 1: Create a year variable from date
#### Read in the date.
\mbox{\tt \#### NOAA's} 
 Time and time zone are in separate variables that we will ignore.
datetime = as.POSIXct(storms$BGN_DATE, "%m/%d/%Y %H:%M:%S", tz = "")
storms$year <- format(datetime, "%Y")</pre>
#### Step 2: Filter by year: "21st Century Storms"
storms <- storms[storms$year >= "2001", ]
#### Remove the original NOAA database
rm(NOAA)
#### Scale Property Damage and Crop Damage by thouands and millions
# Have to create series before using with()
storms$PropertyDamage <- storms$PROPDMG # Copy data; retain orginal intact
```

```
storms$PropertyDamage <- ifelse(storms$PROPDMGEXP == "K",</pre>
                                 storms$PropertyDamage * 1000,
                                storms$PropertyDamage)
storms$PropertyDamage <- ifelse(storms$PROPDMGEXP == "M",</pre>
                                storms$PropertyDamage * 1000*1000,
                                storms$PropertyDamage)
storms$CropDamage
                     <- storms$CROPDMG
                                           # Copy data; retain orginal intact
                    <- ifelse(storms$CROPDMGEXP == "K",
storms$CropDamage
                                storms$CropDamage * 1000,
                                storms$CropDamage)
storms$CropDamage
                     <- ifelse(storms$CROPDMGEXP == "M",
                                storms$CropDamage * 1000*1000,
                                storms$CropDamage)
```

```
#### Tabulate Fatalities and Damage by Storm Type and Year
#### Userful R commands include table(), xtabs(), ftable() or aggregate()
#### This use of aggregate() is based on Jared Lander's "R for Everyone" page 123
#### where he uses aggregate() on the diamonds data set from the ggplot2 package.
# Template: aggregate(formula, data, FUN, ..., subset, na.action = na.omit)
StormTot <- aggregate(</pre>
   formula = cbind(FATALITIES, INJURIES, PropertyDamage, CropDamage) ~ EVTYPE + year,
   data = storms,
          = sum)
   FUN
# Round off total to nearest dollar.
StormTot$PropertyDamage <- round(StormTot$PropertyDamage, digits = 0)</pre>
                     <- round(StormTot$CropDamage, digits = 0)</pre>
StormTot$CropDamage
#### Rename and put variables in logical order.
#### Order of columns:
StormTot <- StormTot[ , c("year", "EVTYPE", "FATALITIES", "INJURIES",</pre>
                          "PropertyDamage", "CropDamage") ]
#### The variables in "stormtab" have been aggregated by type of storm and year
#### and thus the NOAA supplied names reflect the origin of the variable
#### but not its current content, so it is appropriate to rename the variables
#### for display.
ColumnNames <- c("Year", "StormType", "Fatalities", "Injuries", "PropertyDamage", "CropDamage")
colnames(StormTot) <- ColumnNames</pre>
```

Tabulate Fatalities and Damage by Storm Type and Year

Results

Health Impact

##		StormType	Fatalities	Injuries	PropertyDamage	CropDamage
##	1	TORNADO	587	6163	4519600705	31361000
##	2	FLASH FLOOD	68	30	1384044700	88447000
##	3	HEAT	63	611	0	0
##	4	FLOOD	58	10	4717677453	154872000
##	5	THUNDERSTORM WIND	54	373	381891410	139832000
##	6	EXCESSIVE HEAT	36	138	1143200	0
##	7	RIP CURRENT	29	27	0	0
##	8	LIGHTNING	26	194	46978920	112000
##	9	COLD/WIND CHILL	21	1	70000	0
##	10	HIGH SURF	11	11	222000	0
##	11	STRONG WIND	10	33	16545130	15059000
##	12	AVALANCHE	9	8	55000	0
##	13	WILDFIRE	6	116	648318400	9797000
##	14	HIGH WIND	4	11	41951000	44293000
##	15	TROPICAL STORM	4	1	138742200	24501000
##	16	MARINE THUNDERSTORM WIND	3	14	108800	50000
##	17	BLIZZARD	2	0	2742000	0
##	18	EXTREME COLD/WIND CHILL	2	1	7035000	0
##	19	MARINE STRONG WIND	2	5	351600	0
##	20	WINTER WEATHER	2	0	1895000	0
##	21	COASTAL FLOOD	1	1	27274000	0
##	22	HEAVY RAIN	1	1	11791000	20713000
##	23	LANDSLIDE	1	0	21136000	17000
##	24	TSUNAMI	1	0	53554000	0
##	25	WINTER STORM	1	0	18157000	70000

```
# What type of storms caused the most property damage in the most recent year (2011)?
DamageStorms <- StormsRankYear[order(-StormsRankYear$PropertyDamage, na.last = NA), ]
# Renumber the rows</pre>
```

Property Damage

##		${ t StormType}$	PropertyDamage	CropDamage	Fatalities	Injuries
##	1	FLOOD	4717677453	154872000	58	10
##	2	TORNADO	4519600705	31361000	587	6163
##	3	FLASH FLOOD	1384044700	88447000	68	30
##	4	WILDFIRE	648318400	9797000	6	116
##	5	HAIL	451329550	82334000	0	31
##	6	THUNDERSTORM WIND	381891410	139832000	54	373
##	7	TROPICAL STORM	138742200	24501000	4	1
##	8	TSUNAMI	53554000	0	1	0
##	9	LIGHTNING	46978920	112000	26	194
##	10	HIGH WIND	41951000	44293000	4	11
##	11	STORM SURGE/TIDE	40695000	0	0	0
##	12	COASTAL FLOOD	27274000	0	1	1
##	13	LANDSLIDE	21136000	17000	1	0
##	14	WINTER STORM	18157000	70000	1	0
##	15	STRONG WIND	16545130	15059000	10	33
##	16	HEAVY SNOW	16125300	20000	0	0
##	17	HEAVY RAIN	11791000	20713000	1	1
##	18	HURRICANE	10500000	10500000	0	0
##	19	ICE STORM	7837500	80000	0	0
##	20	LAKESHORE FLOOD	7500000	0	0	0
##	21	EXTREME COLD/WIND CHILL	7035000	0	2	1
##	22	FROST/FREEZE	5540000	13410000	0	0
##	23	WATERSPOUT	5110000	0	0	0
##	24	BLIZZARD	2742000	0	2	0
##	25	WINTER WEATHER	1895000	0	2	0

Event Descriptions indicating Hot or Cold Weather

COLD
COLD/WIND CHILL
COLD WIND CHILL TEMPERATURES
EXCESSIVE HEAT
EXTREME COLD
EXTREME COLD/WIND CHILL
EXTREME WINDCHILL
FREEZE
FREEZING DRIZZLE
FREEZING RAIN
FROST/FREEZE
HARD FREEZE
HEAT
RECORD WARMTH

UNSEASONABLY COLD UNSEASONABLY COOL UNSEASONABLY WARM UNUSUALLY COLD WINTER STORM WINTER WEATHER WINTER WEATHER/MIX

\mathbf{END}