Nonlinear Programming

SECOND EDITION

Dimitri P. Bertsekas

Massachusetts Institute of Technology

WWW site for book information and orders http://world.std.com/~athenasc/index.html

Athena Scientific, Belmont, Massachusetts

Contents

1
. 4
. 4
13
22
22
43
62
64
65
75
88
02
07
08
19
30
48
58
60
62
66
83
87
91
92
09
10
15
23
23

vi Contents

2.3.2. Convergence Analysis*	p. 234
2.4. Two-Metric Projection Methods	p. 244
2.5. Manifold Suboptimization Methods	p. 250
2.6. Affine Scaling for Linear Programming	p. 259
2.7. Block Coordinate Descent Methods*	p. 267
2.8. Notes and Sources	p. 272
3. Lagrange Multiplier Theory	p. 275
3.1. Necessary Conditions for Equality Constraints	p. 277
3.1.1. The Penalty Approach	p. 281
3.1.2. The Elimination Approach	p. 283
3.1.3. The Lagrangian Function	p. 287
3.2. Sufficient Conditions and Sensitivity Analysis	p. 295
3.2.1. The Augmented Lagrangian Approach	p. 297
3.2.2. The Feasible Direction Approach	p. 300
3.2.3. Sensitivity*	p. 301
3.3. Inequality Constraints	p. 307
3.3.1. Karush-Kuhn-Tucker Optimality Conditions	p. 309
3.3.2. Conversion to the Equality Case*	p. 312
3.3.3. Second Order Sufficiency Conditions and Sensitivity*	p. 314
3.3.4. Sufficiency Conditions and Lagrangian Minimization*	p. 315
3.3.5. Fritz John Optimality Conditions*	p. 317
3.3.6. Refinements*	p. 330
3.4. Linear Constraints and Duality*	p. 357
3.4.1. Convex Cost Functions and Linear Constraints	p. 357
3.4.2. Duality Theory: A Simple Form for Linear Constraints	p. 359
3.5. Notes and Sources	p. 367
	_
	р. 369
4.1. Barrier and Interior Point Methods	p. 370
4.1.1. Linear Programming and the Logarithmic Barrier *	p. 373
4.2. Penalty and Augmented Lagrangian Methods	p. 388
4.2.1. The Quadratic Penalty Function Method	p. 390
4.2.2. Multiplier Methods – Main Ideas	p. 398
4.2.3. Convergence Analysis of Multiplier Methods*	p. 407
4.2.4. Duality and Second Order Multiplier Methods*	p. 410
4.2.5. The Exponential Method of Multipliers*	p. 413
4.3. Exact Penalties – Sequential Quadratic Programming*	p. 421
4.3.1. Nondifferentiable Exact Penalty Functions	p. 422
4.3.2. Differentiable Exact Penalty Functions	p. 439
4.4. Lagrangian and Primal-Dual Interior Point Methods*	p. 446
4.4.1. First-Order Methods	p. 446
4.4.2. Newton-Like Methods for Equality Constraints	p. 450
4.4.3. Global Convergence	p. 460

Contents

4.4.4. Primal-Dual Interior Point Methods	p. 463
4.4.5. Comparison of Various Methods	p. 471
4.5. Notes and Sources	p. 473
5. Duality and Convex Programming	p. 477
5.1. The Dual Problem	p. 479
5.1.1. Lagrange Multipliers	p. 480
5.1.2. The Weak Duality Theorem	p. 485
5.1.3. Characterization of Primal and Dual Optimal Solutions	p. 490
5.1.4. The Case of an Infeasible or Unbounded Primal Problem .	p. 491
5.1.5. Treatment of Equality Constraints	p. 493
5.1.6. Separable Problems and Their Geometry	p. 494
5.1.7. Additional Issues About Duality	p. 498
5.2. Convex Cost – Linear Constraints*	p. 503
5.2.1. Proofs of Duality Theorems	p. 505
5.3. Convex Cost - Convex Constraints	p. 511
5.4. Conjugate Functions and Fenchel Duality*	p. 521
5.4.1. Monotropic Programming Duality	p. 525
5.4.2. Network Optimization	p. 529
5.4.3. Games and the Minimax Theorem	p. 531
5.4.4. The Primal Function	p. 534
5.4.5. A Dual View of Penalty Methods	p. 536
5.4.6. The Proximal and Entropy Minimization Algorithms	p. 542
5.5. Discrete Optimization and Duality	p. 558
5.5.1. Examples of Discrete Optimization Problems	p. 559
5.5.2. Branch-and-Bound	p. 567
5.5.3. Lagrangian Relaxation	p. 576
5.6. Notes and Sources	p. 587
	-
6. Dual Methods	p. 591
6.1. Dual Derivatives and Subgradients*	p. 594
6.2. Dual Ascent Methods for Differentiable Dual Problems*	p. 600
6.2.1. Coordinate Ascent for Quadratic Programming	p. 600
6.2.2. Decomposition and Primal Strict Convexity	p. 603
6.2.3. Partitioning and Dual Strict Concavity	p. 604
6.3. Nondifferentiable Optimization Methods*	p. 609
6.3.1. Subgradient Methods	p. 610
6.3.2. Approximate and Incremental Subgradient Methods	p. 614
6.3.3. Cutting Plane Methods	p. 618
6.3.4. Ascent and Approximate Ascent Methods	p. 625
6.4. Decomposition Methods*	p. 638
6.4.1. Lagrangian Relaxation of the Coupling Constraints	p. 639
6.4.2. Decomposition by Right-Hand Side Allocation	p. 642
6.5. Notes and Sources	p. 645

viii Contents

Appendix A: Mathematical Background								p. 647
A.1. Vectors and Matrices								p. 648
A.2. Norms, Sequences, Limits, and Continuity								p. 649
A.3. Square Matrices and Eigenvalues								p. 656
A.4. Symmetric and Positive Definite Matrices								p. 659
A.5. Derivatives								p. 664
A.6. Contraction Mappings								p. 669
Appendix B: Convex Analysis							•	p. 671
B.1. Convex Sets and Functions								p. 671
B.2. Separating Hyperplanes								p. 689
B.3. Cones and Polyhedral Convexity								p. 694
B.4. Extreme Points								p. 701
B.5. Differentiability Issues								p. 707
Appendix C: Line Search Methods								p. 723
C.1. Cubic Interpolation								p. 723
C.2. Quadratic Interpolation								p. 724
C.3. The Golden Section Method \dots								p. 726
Appendix D: Implementation of Newton'	s I	Μe	th	00	ł			p. 729
D.1. Cholesky Factorization								p. 729
D.2. Application to a Modified Newton Method								p. 731
References					•	•	,•	p. 735
Index	_	_			_		_	p. 773