Linear Algebra Spring 23 Proofs

Ali Muhammad Asad

January 24, 2023

Chapter 1: Linear Equations and Matrices

1. If $A_1,A_2,...,A_n$ are invertible matrices of the same size, then $(A_1A_2...A_n)^{-1}=A_n^{-1}A_{n-1}^{-1}...A_2^{-1}A_1^{-1}$. [Prove using induction]

Solution:

- **2.** (a) If A is an ivnertible matrix, then $(A^{-1})^{-1} = A$
 - (b) Prove that $(A^n)^{-1} = (A^{-1})^n$ for $n = 0, 1, 2, \dots$ [Prove using induction]

[Hint: $A^n = AA...A$ n times]

Solution:

- **3.** (a) If A, B are matrices s.t. AB is defined, then $(AB)^T = B^T A^T$.
- (b) Prove that the transpose of a product of any number of matrices is equal to the product of their transposes in the reverse order i.e. $(A_1A_2...A_n)^T = A_n^T...A_2^TA_1^T$ [Prove using induction]

Solution:

4. If a system of equations has a unique solution, then Gaussian Elimination will find it. [Hint: Think induction - if we can prove it for one variable, and then prove it for k variables, then we can prove it for (k+1) variables.]

0 1		
₩	lution	٠

 $\textbf{5.} \quad \text{Prove that the reduced row echelon form is always unique [Qns needs to be worded properly, will do that] }$

Solution: