

examples of symplectic manifolds

 ${\bf Canonical\ name} \quad {\bf Examples Of Symplectic Manifolds}$

Date of creation 2013-03-22 13:12:31 Last modified on 2013-03-22 13:12:31 Owner mathcam (2727) Last modified by mathcam (2727)

Numerical id 9

Author mathcam (2727)

Entry type Example Classification msc 53D05 Examples of symplectic manifolds: The most basic example of a symplectic manifold is \mathbb{R}^{2n} . If we choose coordinate functions $x_1, \ldots, x_n, y_1, \ldots y_n$, then

$$\omega = \sum_{m=1}^{n} dx_m \wedge dy_m$$

is a symplectic form, and one can easily check that it is closed.

Any orientable 2-manifold is symplectic. Any volume form is a symplectic form.

If M is any manifold, then the cotangent bundle T^*M is symplectic. If x_1, \ldots, x_n are coordinates on a coordinate patch U on M, and ξ_1, \ldots, ξ_n are the functions $T^*(U) \to \mathbb{R}$

$$\xi_i(m,\eta) = \eta(\frac{\partial}{\partial x_i})(m)$$

at any point $(m, \eta) \in T^*(M)$, then

$$\omega = \sum_{i=1}^{n} dx_i \wedge d\xi_i.$$

(Equivalently, using the notation α from the entry Poincare 1-form, we can define $\omega = -d\alpha$.)

One can check that this behaves well under coordinate transformations, and thus defines a form on the whole manifold. One can easily check that this is closed and non-degenerate.

All orbits in the coadjoint action of a Lie group on the dual of it Lie algebra are symplectic. In particular, this includes complex Grassmannians and complex projective spaces.

Examples of non-symplectic manifolds: Obviously, all odd-dimensional manifolds are non-symplectic.

More subtlely, if M is compact, 2n dimensional and M is a closed 2-form, consider the form ω^n . If this form is exact, then ω^n must be 0 somewhere, and so ω is somewhere degenerate. Since the wedge of a closed and an exact form is exact, no power ω^m of ω can be exact. In particular, $H^{2m}(M) \neq 0$ for all $0 \leq m \neq n$, for any compact symplectic manifold.

Thus, for example, S^n for n > 2 is not symplectic. Also, this means that any symplectic manifold must be orientable.

Finally, it is not generally the case that connected sums of compact symplectic manifolds are again symplectic: Every symplectic manifold admits an

almost complex structure (a symplectic form and a Riemannian metric on a manifold are sufficient to define an almost complex structure which is compatible with the symplectic form in a nice way). In the case of a connected sum of two symplectic manifolds, there does not necessarily exist such an almost complex structure, and hence connected sums cannot be (generically) symplectic.