Hochpassfilter¹

- Hochpassfilter verstärken schnelle lokale Änderungen Kanten aber auch Rauschen
- Approximationen der Ableitung

Sobelfilter in x

-1	0	1
-2	0	2
-1	0	1

 $\frac{\partial}{\partial x}$

Sobelfilter in y

1	2	1
0	0	0
-1	-2	-1

 $\frac{\partial}{\partial v}$

Laplacefilter

0	1	0
1	-4	1
0	1	0

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

1	1	1
1	-8	1
1	1	1

Approximationen der Ableitung?

Sobelfilter in x in 2D

-1	0	1
-2	0	2
-1	0	1

 $\frac{\partial}{\partial x}$

In 1D?

Approximationen der Ableitung?

Sobelfilter in x in 2D

-1	0	1
-2	0	2
-1	0	1

 $\frac{\partial}{\partial x}$

In 1D? Sobelfilter in x in 1D

<u>-1</u> 0 1

 $\frac{d}{dx}$

Approximationen der Ableitung?

Sobelfilter in x in 2D

-1	0	1
-2	0	2
-1	0	1

 $\frac{\partial}{\partial x}$

Ableitung

Einseitiger Grenzwert

$$\frac{df}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \approx$$

In 1D? Sobelfilter in x in 1D

 $\frac{d}{dx}$

Approximationen der Ableitung?

Sobelfilter in x in 2D

-1	0	1
-2	0	2
-1	0	1

$$\frac{\partial}{\partial x}$$

Ableitung Einseitiger Grenzwert

$$\frac{df}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \approx$$

Zweiseitiger Grenzwert \approx lokale Änderung

$$pprox \lim_{\Delta x \to 0} rac{f(x + \Delta x) - f(x - \Delta x)}{2 \cdot \Delta x} =$$

In 1D? Sobelfilter in x in 1D

 $\frac{d}{dx}$

Approximationen der Ableitung?

Sobelfilter in x in 2D

-1	0	1
-2	0	2
-1	0	1

 $\frac{\partial}{\partial x}$

 $\begin{array}{c} \text{In 1D?} \\ \text{Sobelfilter in } \times \text{ in 1D} \end{array}$

$$\frac{d}{dx}$$

Ableitung Einseitiger Grenzwert

$$\frac{df}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \approx$$

Zweiseitiger Grenzwert pprox lokale Änderung

$$pprox \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x-\Delta x)}{2\cdot \Delta x} =$$

Bei diskreten Pixeln: f(x - 0.4) = f(x)

$$=\lim_{\Delta x\to 1.0}\frac{f(x+\Delta x)-f(x-\Delta x)}{2\cdot \Delta x}=$$

Änderung des Wertes bei $imes \pm 1$

Approximationen der Ableitung?

Sobelfilter in \times in 2D

-1	0	1
-2	0	2
-1	0	1

In 1D? Sobelfilter in x in 1D

Ableitung Einseitiger Grenzwert

$$\frac{df}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \approx$$

Zweiseitiger Grenzwert ≈ lokale Änderung

$$pprox \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x-\Delta x)}{2\cdot \Delta x} =$$

Bei diskreten Pixeln: f(x - 0.4) = f(x)

$$=\lim_{\Delta x\to 1.0}\frac{f(x+\Delta x)-f(x-\Delta x)}{2\cdot \Delta x}=$$

Änderung des Wertes bei $x\pm 1$ $= \frac{f(x+1) - f(x-1)}{2} = \frac{1}{2}(-f(x-1) + f(x+1)) \to$

$$\frac{1}{2}(-f(x-1)+f(x+1)) \to$$

Approximationen der Ableitung?

-1	0	1
-2	0	2
-1	0	1

$$\frac{\partial}{\partial x}$$

In 1D?
Sobelfilter in x in 1D

$$\frac{d}{dx}$$

Ableitung Einseitiger Grenzwert

$$\frac{df}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \approx$$

Zweiseitiger Grenzwert pprox lokale Änderung

$$pprox \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x - \Delta x)}{2 \cdot \Delta x} =$$

Bei diskreten Pixeln: f(x - 0.4) = f(x))

$$= \lim_{\Delta x \to 1.0} \frac{f(x + \Delta x) - f(x - \Delta x)}{2 \cdot \Delta x} =$$

Anderung des Wertes bei $x \pm 1$ $= \frac{f(x+1) - f(x-1)}{2} = \frac{1}{2}(-f(x-1) + f(x+1)) \rightarrow$

$$-1.0 \cdot f(x-1) + 0.0 \cdot f(x) + 1.0 \cdot f(x+1)$$

Sobelfilter in x

Original

Sobelfilter X

Sobelfilter in y

Original

Sobelfilter Y