Example-7

Find the voltage $v_c(t)$ in steady state

$$Z_{RC} = \frac{1}{1/R + 1/Z_c} = \frac{1}{0.01 + j0.01}$$

$$= \frac{1}{0.1414 \angle 45^{\circ}}$$

$$= 70.71 \angle -45^{\circ}$$

$$= 50 - j50 \Omega$$

$$V_c = V_s \frac{Z_{RC}}{Z_L + R_{RC}}$$

$$=10\angle -90^{\circ} \frac{70.71\angle -45^{\circ}}{j100+50-j50}$$

$$=10\angle -180^{\circ} = -10^{\circ}$$
 V

$$v_c(t) = -10\cos(1000t)V$$

Currents

$$I = \frac{V_s}{Z_L + Z_{RC}}$$

$$= \frac{10\angle -90^{\circ}}{50 + j50}$$

$$= 0.141\angle -135^{\circ} \text{ A}$$

$$I = \frac{V_s}{Z_L + Z_{RC}}$$

$$I_c = \frac{V_c}{Z_c} = \frac{10 \angle -180^{\circ}}{-j100} = -j0.1$$

$$I_R = V_c/R = \frac{10 \angle -180^\circ}{100} = -0.1 \text{ A}$$

Example-8 Use nodal analysis to find $v_1(t)$ in steady state

$$(0.1+j0.2)\mathbf{V_1} - j0.2\mathbf{V_2} = -j2$$
 (1a)
- $j0.2\mathbf{V_1} + j0.1\mathbf{V_2} = 1.5$ (2a)

Solving (1*a*) and (1*b*) $V_1 = 16.1 \angle 29.7^{\circ}$

$$v_1(t) = 16.1\cos(100t + 29.7^{\circ})$$

Example-9

In the circuit shown, find steady-state current, phasor voltages and construct a phasor diagram

$$\mathbf{I} = \frac{\mathbf{V}_{s}}{Z} = \frac{10 \angle -90^{\circ}}{250 + j250} = 28.28 \angle -135^{\circ} \text{ mA}$$

$$i(t) = 28.28\cos(500t - 135^{\circ})$$
 mA

$$\mathbf{V}_{R} = R\mathbf{I} = 7.07 \angle -135^{\circ}$$

$$\mathbf{V}_{R} = 7.07 \angle -135^{\circ}$$

$$\mathbf{V}_{L} = j\omega L\mathbf{I} = 7.07 \angle -45^{\circ}$$

$$\mathbf{V}_{L} = j\omega L\mathbf{I} = 7.07 \angle -45^{\circ}$$

Example-10 Solve for mesh currents:

$$j100I_1 + 100(I_1 - I_2) = 100$$

$$-j200I_2 + j100I_2 + 100(I_2 - I_1) = 0$$

Simplifying, we have

$$(100 + j100)I_1 - 100I_2 = 100$$

$$-100I_1 + (100 - j100)I_2 = 0$$

Solving we find

$$I_1 = 1.414 \angle -45^{\circ} \text{ A} \text{ and } I_2 = 1 \angle 0^{\circ} \text{ A}$$

$$i_1(t) = 1.414 \cos(1000 t - 45^{\circ})$$

$$i_2(t) = \cos(1000 \ t)$$

Thévenin and Norton Equivalent Circuits

The Thévenin equivalent for an ac circuit consists of a phasor voltage source \mathbf{v}_t in series with a complex impedance Z_t .

Thévenin and Norton Equivalent Circuits

The Norton equivalent circuit consists of a phasor current source $\mathbf{1}_{r}$ in parallel with the complex impedance Z_{t} .

Superposition Theorem is also applicable for independent sinusoidal sources

Thévenin and Norton Equivalent Circuits

- The Thévenin voltage is equal to the open-circuit phasor voltage of the original circuit

$$V_{t} = V_{oc}$$

- We can find the Thévenin impedance by zeroing the independent sources and determining the impedance looking into the circuit terminals
- The Thévenin impedance equals the open-circuit voltage divided by the short-circuit current

$$Z_{t} = \frac{V_{oc}}{I_{sc}} = \frac{V_{t}}{I_{sc}} \qquad I_{n} = I_{sc}$$

Example-11

Find Thévenin and Norton equivalents for the following circuit

13

$$I_{sc} = I_R - I_s = \frac{100 \angle 0^{\circ}}{100} - 1 \angle 90^{\circ}$$

$$=1-j=1.414\angle -45^{\circ}$$

$$V_t = I_{sc}Z_t = 100 \angle -90^\circ$$

Power dissipation in RLC Circuits

For Resistance

$$p = \frac{v(t)^2}{R}$$

$$p_{avg} = \frac{1}{T} \int_{0}^{T} \frac{v(t)^{2}}{R} dt$$

Voltage applied to a
$$50-\Omega$$
 resistance

$$p_{avg} = \frac{V_{rms}^2}{R}$$

$$V_{rms} = \frac{V_m}{\sqrt{2}}$$

$$p_{avg} = I_{rms}^2 R$$

$$I_{rms} = \frac{I_m}{\sqrt{2}}$$

$$v(t) = V_m \cos(\omega t)$$

$$i(t) = I_m \cos(\omega t - 90^\circ) = I_m \sin(\omega t)$$

$$p(t) = v(t)i(t) = V_m I_m \cos(\omega t) \sin(\omega t)$$

$$=\frac{V_m I_m}{2} \sin(2\omega t)$$

 Average power absorbed by an inductor is zero

$$p_{avg} = 0$$

$$v(t) = V_m \cos(\omega t)$$

$$i(t) = I_m \cos(\omega t + 90^\circ) = -I_m \sin(\omega t)$$

$$p(t) = v(t)i(t) = -V_m I_m \cos(\omega t)\sin(\omega t)$$

$$= -\frac{V_m I_m}{2} \sin(2\omega t)$$

$$p_{avg} = 0$$

 Average power absorbed by a capacitor is zero

General Rule

$$v(t) = V_m Cos(\omega t)$$

$$i(t) = I_m Cos(\omega t - \theta)$$

Average Power:

$$p = \frac{1}{T} \int_{0}^{T} v(t) \times i(t) dt$$

$$P = V_{\rm rms} I_{\rm rms} \cos \theta$$

Power Factor $PF = \cos \theta$

For a resistor PF = 1, while for inductor and capacitor it is 0

$$j\omega L = \omega L \angle 90 \; ; - j\frac{1}{\omega C} = \frac{1}{\omega C} \angle -90$$

θ is phase difference between voltage and current

Find the average power drawn from the supply

$$P = V_{srms} I_{rms} \cos(\theta)$$
 $V_{rms} = \frac{|V_s|}{\sqrt{2}} = \frac{10}{\sqrt{2}} = 7.071V$

$$P = V_{srms} I_{rms} \cos(\theta)$$
= 7.071×0.1×cos(45°)
$$= 0.5 \text{ W}$$

$$I_{rms} = \frac{|\mathbf{I}|}{\sqrt{2}} = \frac{0.1414}{\sqrt{2}} = 0.1A$$

Where is this power dissipated?

$$I_{Rrms} = \frac{0.1}{\sqrt{2}} = 0.071$$

$$P = V_{Rrms} \times I_{Rrms} \cos \theta = I_{Rrms}^2 \times R = 0.5W$$

Average power dissipated through the inductor

$$V_L = j100 \times I = 14.14 \angle -45$$

$$\theta = \angle -45 + 135 = \angle 90$$

$$P = V_{\rm rms} I_{\rm rms} \cos \theta$$

$$P = 0$$

$$P = I_{Rrms}^2 \times R = 0.5W$$

$$P = I_{Rrms}^2 \times R = 0.5W$$
 $P = I_{Rrms}^2 \times R = \frac{1}{2} |I_R|^2 R_{20}$

Should a Power company charge a person even though power consumed is zero?

Average Power:
$$P = V_{\text{rms}}I_{\text{rms}}\cos\theta$$

Reactive Power:

$$Q = V_{\rm ms} I_{\rm ms} \sin \theta$$
 (Volt Amperes Reactive (VAR))

- No average power is consumed in a pure inductive or capacitive load
- But, reactive power has current associated with it and causes loss of power in transmission lines and transformers
 - Electric-power companies charge their industrial customers for reactive power

Apparent Power

Apparent power =
$$V_{\rm rms}I_{\rm rms}$$
 Units: volt-amperes (VA)

$$P = V_{\text{rms}} I_{\text{rms}} \cos \theta$$
 $Q = V_{\text{rms}} I_{\text{rms}} \sin \theta$

$$P^{2} + Q^{2} = V_{rms}^{2} I_{rms}^{2} \cos^{2}(\theta) + V_{rms}^{2} I_{rms}^{2} \sin^{2}(\theta)$$
$$= (V_{rms} I_{rms})^{2}$$
$$= (apparant power)^{2}$$

Apparent Power =
$$\sqrt{P^2 + Q^2}$$

Apparent Power

$$P = I_{\rm rms}^2 R \quad {\rm or} \quad P = \frac{V_{\rm Rrms}^2}{R} \qquad \begin{array}{c} {\rm Voltage} \\ {\rm across} \\ {R} \quad {\rm or} \quad {\rm voltage} \\ {Q = I_{\rm rms}^2 X} \quad {\rm or} \quad {Q = \frac{V_{\rm Xrms}^2}{X}} \end{array}$$

$$Q = V_{rms}I_{rms}\sin\theta = I_{rms} |Z|I_{rms}\sin\theta = I_{rms}^{2} |Z|\frac{X}{|Z|}$$

Maximum Power Transfer for sinusoidal input

For maximum load power:
$$X_L = -X$$

$$P_L = \frac{V_S^2}{(R + R_L)^2} R_L$$

Choose $R_L = R$ to maximize load power $Z_L = \overline{Z}$

$$Z_L = \overline{Z}$$

Maximum power is transferred to the load when load is complex conjugate of source impedance 25

Maximum Power Transfer for sinusoidal input

Maximum power is transferred to the load when load is complex

conjugate of source impedance

$$Z_L = \overline{Z}$$

$$Z_L = 50 + j50 \Omega$$

$$P = I_{arms}^2 R_{load}$$
$$= (\frac{1}{\sqrt{2}})^2 \times 50 = 25 \mathbf{W}$$

Maximum Power Transfer for sinusoidal input when load is

Maximum power is transferred to the load when

$$R_L = |Z|$$

