

Machine Learning Process

Wu Zhuoyuan, Wu Tingan, Qiu Zixin

WHU Fintech Stu

November 2, 2022

How machine learning from data works

The challenge of machine learning Supervised learning Unsupervised learning Reinforcement learning

The machine learning workflow

Workflow

Regression

Classification

Exploring, extracting, and engineering features

Selecting an ML algorithm

Design and tune the model

What is MI?

- ▶ A subfield of computer science that gives computers the ability to learn **without being explicitly programmed**. (Arthur Samuelson,1959)
- ▶ A computer program **learns from experience** with respect to a task and a performance measure of whether the performance of the task improves with experience. (Tom Mitchell,1997)

The key challenge of ML

- ► The **hypothesis space** limits the functions that the data can possibly represent.
- The key challenge is how to choose a model with a hypothesis space.
 - ▶ **large enough** to contain a solution to the learning problem
 - small enough to ensure reliable learning and generalization.
- The no-free-lunch theorem (NFL) states that a learner's hypothesis space has to be tailored to a specific task.

Supervised learning: teaching by example

- What is supervised learning?
 - to capture a functional input-output relationship from individual samples.
 - to apply its learning by making valid statements about new data.

Supervised learning: teaching by example

- ▶ The output variable
 - We will use y_i for outcome observations i = 1, ..., N, or y for a (column) vector of outcomes.
- ► The input variable
 - We use x_i for a vector of features with observations i = 1, ..., N, or **X** in matrix notation, where each column contains a feature and each row an observation.
- ▶ The **solution** is a function $f(\hat{X})$ that represents what the model learned about the input-output relationship.

Supervised learning: teaching by example

- ▶ The bias-variance trade-off
 - Overly simple models will miss complex signals and deliver biased results.
 - More complex models are more likely to learn random noise particular to the training sample.

Unsupervised learning: uncovering useful patterns

- Unsupervised algorithms aim to identify structure in the input that permits a new representation of the information contained in the data.
- Only observe the features and have no specific measurements of the outcome.
- Frequently, the measure of success is the contribution of the result to a downstream task.

Unsupervised learning: Use cases

- Grouping securities with similar risk and return characteristics (*Chapter 13*)
- Finding a small number of risk factors driving the performance of a much larger number of securities using principal component analysis or autoencoders (Chapter 13,19)
- Identifying latent topics in a body of documents (for example, earnings call transcripts) that comprise the most important aspects of those documents (*Chapter 13,14*)

Cluster algorithms

- Cluster algorithms summarize a dataset by assigning a large number of data points to a smaller number of clusters.
- Some prominent examples:
 - K-means clustering
 - Gaussian mixture models
 - Density-based clusters
 - Hierarchical clusters

Dimensionality reduction

- Dimensionality reduction produces new data that captures the most important information contained in the source data.
- Some prominent examples:
 - Principal component analysis (PCA)
 - Manifold learning
 - Autoencoders

What is reinforcement learning?

- It centers on an agent that needs to choose the action that yields the highest reward over time, based on a set of observations that describes the current state of the environment.
- ► The **trade-off** between exploitation and exploration.

Reinforcement learning

Reinforcement learning: learning by trial and error

- Interactive: actions taken now may influence both the environment and future rewards.
- Dynamic: the stream of positive and negative rewards impacts the algorithm's learning.

Reinforcement learning: learning by trial and error

- RL vs supervised learning
 - ► The outcomes only become available over time.
 - Aims to find the optimal strategy instead of the input-output relationship.
- RL vs unsupervised learning
 - Although with a delay, the feedback on the actions will be available.

Workflow

Define the Problem & Measure of Success Collect, Clean & Validate Data Explore, Extract & Engineer Features Decide on Machine Learning Algorithm Cross-Validate Model Design and Hyper-Parameters

Deploy & Predict

Figure 6.1: Key steps of the machine learning workflow

Framing the problem – from goals to metrics

- ▶ A continuous output variable poses a regression problem
- ▶ A categorical variable implies classification
- The special case of ordered categorical variables represents a ranking problem

Regression

Popular loss functions and error metrics

Name	Formula	scikit-learn function	Scoring parameter
Mean squared error	$\frac{1}{N}\sum_{i=1}^{N}(y_i-\hat{y}_i)^2$	mean_squared_error	neg_mean_squared_ error
Mean squared log error	$\frac{1}{N} \sum_{i=1}^{N} (\ln(1 + y_i) - \ln(1 + \hat{y}_i))^2$	mean_squared_log_ error	neg_mean_squared_ log_error
Mean absolute error	$\frac{1}{N}\sum_{i=1}^N \lvert y_i - \hat{y}_i \rvert$	mean_absolute_ error	neg_mean_absolute_ error
Median absolute error	$median(\hat{y}_1 - \hat{y}_1 ,, \hat{y}_N - \hat{y}_N)$	median_absolute_ error	neg_median_ absolute_error
Explained variance	$1 - \frac{(y - \hat{y})}{(y)}$	explained_ variance_score	explained_variance
R ² score	$1 - \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{N} (y_i - \overline{y}_i)^2}$	r2_score	r2

Confusion matrix

Figure 6.3: Confusion matrix and related error metrics

Precision

$$\textit{Precision} = \frac{\textit{TP}}{\textit{TP} + \textit{FP}}$$

Recall

$$Recall = \frac{TP}{TP + FN}$$

▶ f1 score

$$f1 = 2 * \frac{Precision * Recall}{Precision + Recall}$$

- Receiver operating characteristics (ROC) curve allows us to visualize, compare, and select classifiers based on their performance.
- The area under the curve (AUC) is defined as the area under the ROC plot that varies between 0.5 and the maximum of 1.

Figure 6.4: Receiver-Operating Characteristics, Precision-Recall Curve, and F1 Scores charts

Using information theory to evaluate features

Mutual Information

- The mutual information (MI) between a feature and the outcome is a measure of the mutual dependence between the two variables, which extends the notion of correlation to nonlinear relationships
- ▶ The concept of MI is closely related to the fundamental notion of entropy of a random variable. Formally, the mutual information—I(X, Y)—of two random variables, X and Y, is defined as the following:

$$I(X,Y) = \int Y \int Xp(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

Linear Models

need strong assumptions about the nature of the functional relationship between input and output variables.

Deep Neural Networks

need fewer assumptions than linear models but will require more useful data.

The bias-variance trade-off

- ▶ Irreducible part
 - the absence of relevant variables
 - natural variation
 - measurement errors
- Reducible part
 - bias
 - variance

Underfitting versus overfitting – a visual example

- ▶ *Illustration *
 - ▶ A polynomial of degree 1, but obviously wrong.
 - ▶ A polynomial of degree 5, approximates the true relationship reasonably well on the interval from about 0.5pi until 2.5pi.
 - A polynomial of degree 15, fits the small sample almost perfectly, but provides a poor estimate of the true relationship.

How to manage the bias-variance trade-off

Real Function

$$f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + u$$

Illustration

Design and tune the model

Learning curves

