Лабораторное занятие Scheme 13

Во всех задачах многочлен

$$P(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n$$

 $задается \ cnucком коэффициентов (a_0 \ a_1 \ \dots \ a_{n-1} \ a_n).$

- 1. Напишите функцию, которая вычисляет производную многочлена, заданного на входе.
- 2. Напишите функцию, которая возвращает сумму многочленов, заданных на входе.
- 3. Напишите функцию, которая вычисляет произведение многочленов, заданых на входе.
- 4. Напишите функцию, которая первым аргументом получает основание системы счисления k ($k \le 10$), остальные аргументы (их произвольное число) являются натуральными числами в этой системе счисления. Результатом должна быть сумма всех этих чисел в системе счисления по основанию k.

Примечание. Использовать многочлены. Например, $1364_7 = 1 \cdot 7^3 + 3 \cdot 7^2 + 6 \cdot 7^1 + 4$.

5. Напишите функцию, которая по заданным многочлену и начальному приближению его корня x_0 уточняет этот корень методом Ньютона¹.

¹Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Улучшением метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить нуль первой производной либо градиента в случае многомерного пространства.

Алгоритм

- (a) Задается начальное приближение x_0 .
- (b) Пока не выполнено условие остановки, в качестве которого можно взять $|x_{n+1} x_n| < \varepsilon$ или $|f(x_{n+1})| < \varepsilon$ (то есть погрешность в нужных пределах), вычисляют новое приближение:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Теорма о сходимости метода Ньютона. Пусть x^* — простой вещественный корень уравнения f(x) = 0, а функция f(x) — дважды дифференцируема в некоторой окрестности $U_r(x^*)$, причем первая произодная нигде не обращается в нуль.

Тогда, следуя обозначениям

$$0 < m_1 = \inf_{x \in U_r(x^*)} |f'(x)|, M_2 = \sup_{x \in U_r(x^*)} |f''(x)|,$$

при выборе начального приближения x^0 из той же окрестности $U_r(x^*)$ такого, что

$$\frac{M_2|x^0 - x^*|}{2m_1} = q < 1,$$

итерационная последовательность

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}, k = 0, 1, \dots$$

будет сходиться к x^* , причем для погрешности на k-м шаге буддет справедлива оценка:

$$|x^k - x^*| \le q^{2^k - 1}|x^0 - x^*|.$$