MH1200 Problem Set 9

October 26, 2017

Elementary consequences

Problem 1. Let V be a vector space with zero element 0. Using the defining properties of a vector space, show the following:

- 1. $v + (-1) \cdot v = 0$ for any $v \in V$.
- 2. if $a \cdot v = \mathbf{0}$ then either a = 0 or $v = \mathbf{0}$.
- 3. If $a \cdot v = b \cdot v$ and $v \neq 0$ then a = b.

Subspaces in \mathbb{R}^n

Problem 2. Determine if the following subsets of \mathbb{R}^3 are subspaces

```
 \begin{array}{ll} (a) \; \{(x_1,x_2,x_3): x_1 \geq 0, x_2 \geq 0, x_3 \geq 0\} & (b) \; \{(1,x_2,x_3): x_2,x_3 \in \mathbb{R}\} \\ (c) \; \{(x_1,x_2,x_3): x_1 \leq x_2 \leq x_3\} & (d) \; \{(x_1,x_2,x_3): x_1+x_2=0, x_3+x_2=0\} \\ (e) \; \{(x_1,x_2,x_3): x_1\cdot x_3=0\} & (f) \; \{(0,0,c): c \; \text{is an integer}\} \end{array}
```

Problem 3. Let $S \subseteq \mathbb{R}^3$ be a subspace. Define $T \subseteq \mathbb{R}^2$ as

$$T = \{(x, y) : \text{there is a } z \text{ such that } (x, y, z) \in S\}.$$

Show that T is a subspace of \mathbb{R}^2 .

Subspaces in other vector spaces

Problem 4. Let V be the vector space of 3-by-3 matrices.

- 1. Find a subspace of V that contains no nonzero diagonal matrices.
- 2. Let $S \subseteq V$ be the set of *symmetric* 3-by-3 matrices. Show that S is a subspace. Find a set of matrices that span S. How small can you make your spanning set?

3. Let $S \subseteq V$ be the set of all matrices of the form

$$\begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$$

for some $a,b,c \in \mathbb{R}$. Matrices of this form are called *circulant*. Show that S is a subspace. Find a set of matrices that span S in this case.

Problem 5. Let V be the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$. Show that the subset $S \subseteq V$ of *even* functions, those satisfying f(x) = f(-x) for all $x \in \mathbb{R}$, is a subspace.

Problem 6. Let V be a vector space and $U,W\subseteq V$ be subspaces of V. Show that $U\cap W$ is also a subspace of V.

Span

Problem 7. Consider the three vectors

$$\vec{w} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{u} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \vec{v} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

Is span($\{\vec{w}, \vec{u}\}$) equal to span($\{\vec{w}, \vec{u}, \vec{v}\}$)?