Gandhar Kulkarni (mmat2304)

1

1.

2. This statement is false. For sake of contradiction, let $(X, ||\cdot||)$ be a normed linear space such that the induced metric is the discrete metric. Then for $x, y \in X, x \neq y$ we must have ||x-y|| = 1. Note that $2x \neq 2y$, so we must have ||2x-2y|| = 2||x-y|| = 2, but by the discrete metric the answer should still be 1! Thus there can be no such norm.

 $\mathbf{2}$

We wish to show that the function $||\cdot||$ on X satisfies the triangle inequality iff the closed unit ball is convex. Assume that the function $||\cdot||$ is indeed a norm. Then let $x, y \in D$, the closed unit ball. Then $||x||, ||y|| \le 1$. Now we have for $\alpha \in [0, 1]$ $z = \alpha x + (1 - \alpha)y$. See that

$$||z|| = ||\alpha x + (1 - \alpha)y|| \le \alpha ||x|| + (1 - \alpha)||y|| \le \alpha \cdot 1 + (1 - \alpha) \cdot 1 \le 1,$$

thus we have $z \in D$.

Take two elements $x, y \in X$ both non-zero, since if either were zero the inequality would be trivial. Then

$$||x+y|| = (||x|| + ||y||) \cdot \left| \left| \alpha \frac{x}{||x||} + (1-\alpha) \frac{y}{||y||} \right| \right|,$$

where $\alpha = \frac{||x||}{||x||+||y||}$. Note that $\frac{x}{||x||} = \frac{y}{||y||} = 1$, thus we can use the convexity condition to see that $\frac{||x+y||}{||x||+||y||} \le 1$, which is the triangle inequality.

3

4

1. $||f_1 - F||_{\infty}$ is to be found, where F is the subspace of constant functions. Unfolding the term, we get

$$||f_1 - F||_{\infty} = \inf_{c \in \mathbb{R}} \{ \sup_{t \in [0,1]} |t - c| \},$$

which for $c \in [-1,0] \cup [1,2]$ is 1, while in (0,1) it decreases to $\frac{1}{2}$ then goes back up to 1. Thus, we must have $||f_1 - F||_{\infty} = \frac{1}{2}$.

2. We want to now see the distance between $f_2 = t^2$ and G, the space of all polynomials with degree at most 1. Then for some polynomial $-ax - b \in G$, we want to see $\sup_{t \in [0,1]} \{|t^2 + ax + b|\}$