Table des matières

1.	Énoncé du problème	2
2.	Discrétisation	4
3.	L'identité d'énergie discrète	5

Sofya Sizova, Anastasiya Dulepova

1er mars 2020

1 Énoncé du problème

On s'intéresse au problème

Trouver
$$u \in C^2(0, T; L^2(\Omega))$$
 telle que (1)

$$\begin{cases} \frac{\partial^{2} u}{\partial t^{2}} - \operatorname{div}(\sigma \nabla u) = f & \operatorname{dans} \Omega \times [0, T_{\max}] \\ u|_{t=0} = u_{0} & \operatorname{dans} \Omega \\ \frac{\partial u}{\partial t}|_{t=0} = u_{1} & \operatorname{dans} \Omega \\ \sigma \frac{\partial u}{\partial n} = 0 & \operatorname{sur} \partial \Omega \times [0, T_{\max}] \end{cases}$$

$$(2)$$

En multipliant l'équation (1) par la fonction test $v \in H^1(\Omega)$ et un intégrant sur la domaine de Ω , on obtiens la formulation variationnelle en utilisant les formules de Green. Il faut noter que si la solution forte u de (1) vérifie $u \in C^2(0,T;L^2(\Omega))$, on peut relaxer la régularité de solution en temps et utiliser le fait que

$$\int_{\Omega} \frac{\partial^2 u}{\partial t^2}(x, t)v(x)d\Omega = \frac{d^2}{dt^2} \int_{\Omega} u(x, t)v(x), \tag{3}$$

car la partie droite est bien définie au sens de distribution en raison de régularité suffisante. Donc, on suppose maintenant que $u \in C^1(0,T;L^2(\Omega))$ simplement. Il faut que la fonction u soit C^1 minimum, car les conditions initiales doivent pouvoir être définies ponctuellement. Alors, la formulation

variationnelle est suivante

Trouver $\mathbf{u} \in C^1(0,T;L^2(\Omega)) \cap C^0(0,T;H^1(\Omega))$ tel que

Thousef
$$u \in \mathcal{C}(0, T, L'(\Omega)) \cap \mathcal{C}(0, T, H'(\Omega))$$
 ter que
$$\begin{cases}
\frac{d^2}{dt^2} \int_{\Omega} uv d\Omega + \int_{\Omega} \sigma \nabla u \nabla v d\Omega = \int_{\Omega} fv d\Omega & \forall v \in H^1(\Omega) \text{ p.p } t \in (0, T), \\
u(x, 0) = u_0, & \frac{\partial u}{\partial t}(x, 0) = u_1 & \text{dans } \Omega \\
\sigma \frac{\partial u}{\partial n} = 0, \text{ sur } \partial\Omega \times [0, T_{\text{max}}]
\end{cases}$$
(4)

Pour obtenir l'identité d'énergie on multiple la première équation de (1) par $\frac{\partial u}{\partial t}$ et intègre sur Ω . Donc

$$\int_{\Omega} \frac{\partial^2 u}{\partial t^2} \frac{\partial u}{\partial t} d\Omega - \int_{\Omega} \operatorname{div}(\sigma \nabla u) \frac{\partial u}{\partial t} d\Omega = \int_{\Omega} f \frac{\partial u}{\partial t} d\Omega.$$
 (5)

On peut modifier le première terme de (5) comment

$$\int_{\Omega} \frac{\partial^2 u}{\partial t^2} \frac{\partial u}{\partial t} d\Omega = \frac{1}{2} \int_{\Omega} \frac{d}{dt} (\frac{\partial u}{\partial t})^2 d\Omega = \frac{1}{2} \frac{d}{dt} \int_{\Omega} (\frac{\partial u}{\partial t})^2 d\Omega = \frac{1}{2} \frac{d}{dt} \|\frac{\partial u}{\partial t}\|_{L^2(\Omega)}^2.$$
 (6)

La deuxième égalité est admissible car la régularité de u est suffisante selon les hypothèses ci-dessous. Le second terme de (5) est égal à $\int_{\Omega} \sigma \nabla u \nabla (\frac{\partial u}{\partial t}) d\Omega$ après l'équation (4) avec $v = \frac{\partial u}{\partial t}$. Donc, on peut s'amener

$$\int_{\Omega} \sigma \nabla u \nabla (\frac{\partial u}{\partial t}) d\Omega = \int_{\Omega} \sigma \nabla u \frac{\partial \nabla u}{\partial t} d\Omega = \int_{\Omega} \frac{d}{dt} \frac{1}{2} (\sqrt{\sigma} \nabla u)^{2} = \frac{1}{2} \frac{d}{dt} \int_{\Omega} (\sqrt{\sigma} \nabla u)^{2} \text{ par hypothèses de régularité } = \frac{1}{2} \frac{d}{dt} ||\sqrt{\sigma} \nabla u||_{L^{2}(\Omega)}^{2}.$$
(7)

Donc, l'énergie est définie par $E(t) = \frac{1}{2} \|\frac{\partial u}{\partial t}\|_{L^2(\Omega)}^2 + \frac{1}{2} \|\sqrt{\sigma}\nabla u\|_{L^2(\Omega)}^2$, et on a l'identité

$$\frac{dE(t)}{dt} = (f(t), \frac{\partial u}{\partial t})_{L^2(\Omega)}, \quad \text{ou}$$
 (8)

$$E(t) = \int_{\Omega} f \frac{\partial u}{\partial t} d\Omega + E_0. \tag{9}$$

Si f = 0, alors $E = E_0 = \frac{1}{2} ||u_1||^2 + \frac{1}{2} ||\sqrt{\sigma} \nabla u_0||^2$, l'énergie se conserve dans le système ferme.

2 Discrétisation

Maintenant on discrétise cette formulation variationnelle par les éléments finis de Lagrange P^1 en espace et différences finies centrées d'ordre 2 en temps. On va tout d'abord discrétiser l'espace en utilisant le méthode de Galerkin. Soit V_h est de dimension fini et $V_h \subset H^1(\Omega)$, qui vérifie la propriété d'approximation, c'est à dire quand h tend vers 0, $\inf_{v_h \in V_h} \|v - v_h\|$ tend vers zéro $\forall v \in H^1(\Omega)$. Alors, la formulation variationnelle semi-discrète est

Trouver $u_h \in C^1(0,T;V_h)$ tel que

$$\begin{cases}
\frac{d^2}{dt^2} \int_{\Omega} u_h v_h d\Omega + \int_{\Omega} \sigma \nabla u_h \nabla v_h d\Omega = \int_{\Omega} f v_h d\Omega & \forall v_h \in V_h \text{ p.p } t \in (0, T), \\
u_h(0) = u_{h,0}, & \frac{du_h}{dt}(0) = u_{h,1} & \text{dans } \Omega \\
\sigma \frac{\partial u}{\partial n} = 0, \text{ sur } \partial\Omega \times [0, T_{\text{max}}]
\end{cases} \tag{10}$$

On introduit la base de V_h $(\omega_i)_{i=1..N}$, où $N=\dim V_h$. Donc, on peut écrire u_h

$$u_h(t) = \sum_{i=1...N} u_h(M_i, t)\omega_i = \sum_{i=1...N} U_i(t)\omega_i.$$
 (11)

Alors, on peut réécrire la formulation (10) dans une forme matricielle

$$\mathbb{M}\frac{d^2U}{dt^2}(t) + \mathbb{K}^{\sigma}U(t) = F(t)$$
(12)

$$U(0) = U_0, \quad \frac{dU}{dt}(0) = U_1,$$
 (13)

où $\mathbb{M}_{ij} = \int_{\Omega} \omega_i \omega_j d\Omega$, $\mathbb{K}_{ij} : \sigma = \int_{\Omega} \sigma \nabla \omega_i \nabla \omega_j d\Omega$ sont les matrices symétriques, (car $(\mathbb{M}V, V) = ||v_h||^2 > 0$, et $(\mathbb{K}V, V) = ||\sigma \nabla v_h||^2 > 0$) et définies positives (car $\omega_i \in H_0^1$ $\forall i$ et dans cette espace on a l'inégalité de Poincaré), $F_j = \int_{\Omega} f \omega_i d\Omega$.

Pour la discrétisation en temps on considéré $U_i^k = U_i(t_k)$, donc $u_h^k = \sum_{i=1..N} U_i^k \omega_i$. On va discrétiser la seconde dérivative dans (10) par le schéma d'ordre 2, le schéma saute-mouton. Donc, l'équation (12) discrétise en temps est

$$\mathbb{M}\frac{U^{k+1} - 2U^k + U^{k-1}}{\Delta t^2} + \mathbb{K}^{\sigma} U^k = F^k.$$
 (14)

Ici $\Delta t = \frac{T}{M}$, M es le nombre de couches dans le temps. Il faut définir les conditions initiales dans ce cas. En t = 0 on a $u_h(0) = u_h^0 \approx u_{h,0}$. Pour le

prochain pas du temps $t_1 = \Delta t$ on utilise la formule de Taylor d'ordre 2

$$u(\Delta t) = u_0 + \Delta t u_1 + \frac{\Delta t^2}{2} \frac{\partial^2 u}{\partial t^2}(0) + O(\Delta t^3)$$
(15)

Pour notre équation initiale (1) cela conduit à

$$(u_h(\Delta t), v_h)_{L^2} = (u_h^1, v_h)_L^2 \approx (u_{h,0}, v_h) + \Delta t (\frac{\partial u_h}{\partial t}(0), v_h)_{L^2} + \frac{1}{2} (\Delta t)^2 (\frac{\partial^2 u_h}{\partial t^2}(0), v_h)_{L^2}.$$
(16)

On sait que $(\frac{\partial^2 u_h}{\partial t^2}|_{t=0}, v_h)_{L^2} + (\sigma \nabla u^0, \nabla v_h) = (f^0, v_h)_L^2$, donc $(\frac{\partial^2 u_h}{\partial t^2}|_{t=0}, v_h)_{L^2} = F^0 - \sigma \mathbb{K} U_0$ dans le milieu homogène, où $\sigma = c^2$, comme dans notre cas. À partir de Taylor on déduit la condition initiale

$$\mathbb{M}U^{1} = \mathbb{M}U_{0} + \Delta t \mathbb{M}U_{1} - \frac{\Delta t^{2}}{2}c^{2}\mathbb{K}U_{0} + \frac{\Delta t^{2}}{2}F^{0}.$$
 (17)

L'indice supérieur signifie un pas dans le temps, et inférieur signifie le pas dans espace. Finalement, le schéma totalement discrétise est (18).

$$\begin{cases}
\mathbb{M} \frac{U^{k+1} - 2U^k + U^{k-1}}{\Delta t^2} + \sigma \mathbb{K} U^k = F^k, \\
U^0 = U_0, \\
\mathbb{M} U^1 = \mathbb{M} U_0 + \Delta t \mathbb{M} U_1 - \frac{\Delta t^2}{2} c^2 \mathbb{K} U_0 + \frac{\Delta t^2}{2} F^0.
\end{cases}$$
(18)

On peut accélérer ce schéma en augmentant le pas d'un temps Δt ou la taille de discrétisation en espace h. Mais il est important de se rappeler que les valeurs arbitraires de h et Δt peuvent entraîner une instabilité de schéma. Il faut que ces valeurs satisfassent l'inégalité de stabilité (la condition de Courant–Friedrichs–Levy), qui sera donné ci-dessous.

3 L'identité d'énergie discrète

On définit une énergie discrète du schéma \mathcal{E} , qui représente l'approximation de l'énergie continue E(t).

$$\mathcal{E}^{k+1/2} = \frac{1}{2} \left\| \frac{U^{k+1} - U^k}{\Delta t} \right\|_{\mathbb{M}}^2 + \frac{1}{2} (c^2 \mathbb{K} U^k, U^{k+1}). \tag{19}$$

Ici $\|U\|_{\mathbb{M}}^2 = (\mathbb{M}U, U)$. Pour obtenir l'inégalité d'énergie discrète on multiple la première équation de (18) par $\frac{U^{k+1}-U^{k-1}}{2\Delta t}$. En regroupant les termes, nous obtenons

$$\frac{1}{2}\mathbb{M}\frac{(U^{k+1} - U^k)^2 - (U^k - U^{k-1})^2}{\Delta t^2} + \frac{1}{2}(c^2\mathbb{K}U^k, U^{k+1}) - \frac{1}{2}(c^2\mathbb{K}U^k, U^{k-1})$$

$$= \Delta t(F^k, \frac{U^{k+1} - U^{k-1}}{2\Delta t}). \quad (20)$$

En absence de source on obtiens que l'énergie discrète se conserve.

$$\mathcal{E}^{k+1/2} = \mathcal{E}^{k-1/2} \quad \forall k > 1. \tag{21}$$

Pour déduire la condition de stabilité à partir d'égalité (21), il faut s'assurer que $(c^2 \mathbb{K} U^k, U^{k+1})$ soit définie positive. Cela conduit à la formulation d'une condition de stabilité nécessaire de type CFL (22).

$$\gamma_{\text{cfl}} = \frac{c^2 \Delta t^2}{4} \sup_{V \neq 0} \frac{(\mathbb{K}V, V)}{(\mathbb{M}V, V)} \le 1.$$
 (22)

On peut utilisé le théorie connu pour exprimer cette condition dans une autre forme.

$$\gamma_{\text{cfl}} = \frac{c^2 \Delta t^2}{4} \sup_{i} |\lambda_i|, \text{où}$$
 (23)

 λ_i sont les solution de probleme aux valeurs propres

$$\begin{cases}
-\operatorname{div}(\sigma \nabla u) = \lambda u, \\
\sigma \frac{\partial u}{\partial n} = 0 \quad \text{sur } \partial \Omega
\end{cases}$$
(24)

qui est equivalente de la formulation $c^2 \mathbb{K} U = \lambda_h \mathbb{M} U$.

Alors, le schéma est stable, si le pas en temps $\Delta t \leq \frac{2}{c\sqrt{\sup |\lambda_i|}}$. Pour donner l'expression plus précise il faut calculer le spectre du problème (24).