Definition 1 (Typ I-område). Ett område $D \subseteq \mathbb{R}^2$ är av Typ I om det kan skrivas som $D = \{(x,y) \mid a \leq x \leq b, \ c(x) \leq y \leq d(x)\}$ där c(x) och d(x) är kontinuerliga.

Definition 2 (Typ II-område). Ett område $D \subseteq \mathbb{R}^2$ är av *Typ II* om det kan skrivas som $D = \{(x,y) \mid a(y) \leq x \leq b(y), \ c \leq y \leq d\}$ där a(x) och b(x) är kontinuerliga.

Sats 1. Om D är ett område av typ I eller II och f(x,y) är kontinuerlig på D är f integrerbar.

Bevis. Anta att D är ett område av typ I och att $D\subseteq E=[a,b]\times [g,h]$ så att $g\le c(x)$ \forall x och $h\ge d(x)$ \forall x. Då är

$$\iint_{D} f(x,y) dA = \iint_{R} F(x,y) dA$$

$$= \int_{a}^{b} \int_{g}^{h} F(x,y) dy dx$$

$$= \{F(x,y) = 0 \text{ om } g \le y \le c(x) \text{ el. } d(x) \le y \le h\}$$

$$= \int_{a}^{b} \int_{c(x)}^{d(x)} F(x,y) dy dx$$

$$= \{F(x,y) = f(x,y) \text{ om } (x,y) \in D\}$$

$$= \int_{a}^{b} \int_{c(x)}^{d(x)} f(x,y) dy dx.$$

Samma härledning gäller för typ II-områden.