מבוא לטופולוגיה – סיכום

2025 במאי 12

תוכן העניינים

תוכן העניינים

1	שיעור	24.3.2025 - 1	3
	1.1	מבוא	3
2	שיעור	25.3.2025 - 2	6
	2.1	טופולוגיה — המשך	6
3	שיעור	31.3.2025 - 3	8
	3.1	סגירות	8
	3.2	השלמות לרציפות	9
4	שיעור	7.4.2025 - 4	11
	4.1	אקסיומות ההפרדה	11
5	שיעור	8.4.2025 - 5	14
	5.1	אקסיומות ההפרדה — המשך	14
6	שיעור	21.4.2025 - 6	15
	6.1	אקסיומות מנייה	15
	6.2	קשירות קשירות	16
7	שיעור	22.5.2025 - 7	18
	7.1	קשירות — המשך	18
8	שיעור	28.4.2025 - 8	19
	8.1	קשירות — סגירת פינות	19
	8.2		19
	8.3		21
9	שיעור	29.4.2025 - 9	22
	9.1	קומפקטיות — תכונות	22
10	שיעור	5.5.2025 - 10	24
	10.1	קומפקטיות — משפט טיכונוף	24
11	שיעור	6.5.2025 - 11	27
12	שיעור	12.5.2025 - 12	28
	12.1	הואההמיזטיה	28

24.3.2025 - 1 שיעור 1

מבוא 1.1

 $f:\mathbb{R} o\mathbb{R}$ ומערים, באינפי 1 מתבוננים ב \mathbb{R} והגדרנו את מושג הגבול של סדרות, ולאחריו את המושג של פונקציה רציפה בעפר דיברנו על מרחבים מטריים, באינפי 1 המושג באינפי 3 כבר ראינו את את ווו $\lim_{n \to \infty} f(x_n) = f(x)$ מתקיים מתקיים אם ולכל $x \in \mathbb{R}$ אם לכל אם לכל הייתה ש־f תיקרא המושג הכללי והרחב יותר של רציפות במרחבים מטריים. ניזכר בהגדרה של מרחב מטרי.

המקיימת, מטריקה) הנקראת מטריקה (הנקראת מטרי(X,d) באשר א קבוצה לא ריקה (מרחב מטרי) מרחב מטרי(X,d) האשר א המקיימת,

- $x,y \in X$ לכל d(x,y) = d(y,x) .1
- $d(x,y)=0\iff x=y$ וכך $\forall x,y\in X, d(x,y)\geq 0$.2
- $\forall x,y,z\in X, d(x,y)\leq d(x,y)+d(y,z)$ אי־שוויון המשולש, .3

דוגמה 1.1 נראה דוגמות למרחבים מטריים,

- d(x,y)=|x-y| יחד עם \mathbb{R} .1 $d_2(ar{x},ar{y})=\sqrt{\sum_{i=1}^n|x_i-y_i|^2}$ המוגדרת על־ידי (\mathbb{R}^n,d_2) .2
- $d_{\infty}(\bar{x},\bar{y})=\max_{1\leq i\leq n}|x_i-y_i|$, אינסוף, ואת מטריקת $d_p(\bar{x},\bar{y})=\left(\sum_{i=1}^n|x_i-y_i|^p\right)^{rac{1}{p}}$ או הגדיר את מטריקת מטריקת מטריקת 3.
- $ho(f,g) = \sup_{x \in [a,b]} |f(x) g(x)|$ קבוצת את המטריקה עבור $[a,b] o \mathbb{R}$ עבור הרציפות הפונקציות הרציפות עבור $[a,b] o \mathbb{R}$

נראה את ההגדרה הפורמלית של רציפות,

קדים $\delta>0$ קיים $\epsilon>0$ עבור אם לכל הא רציפה שיf רציפה אז נאמר שיf עבור f:X o Y עבור f:X o Y עבור הגדרה 1.2 (רציפות) אז נאמר שי $\rho(f(x'), f(x)) < \epsilon$ אז $d(x', x) < \delta$ מאם

אבל יותר קל לדבר במונחים של קבוצות פתוחות.

 $B(r,x) = B_r(x) = \{z \in X \mid d(x,z) < r\}$ הגדרה מטרי, נסמן מרחב מטרי, עבור עבור (בדור) עבור (בדור) אגדרה 1.3

 $A \in B(x,r) \subseteq U$ ש־ע $a \in B(x,r) \subseteq U$ קיים $b \in U$ קיים אם לכל עד מטרי, תת-קבוצה מטרי, תת-קבוצה עדרה 1.4 (קבוצה פתוחה) או מרחב מטרי, תת-קבוצה עדרה באווי עדרה שווי מידר מעריה שיים מטרי, תת-קבוצה אווי מידר מעריה שווי מידר מעריה מעריה עדר מעריה מער $f^{-1}(V)=\{x\in X\mid f(x)\in T$ מתקיים ב־Y מתקיים אם לכל עביפות הגדרה לכל f:X o Y (הגדרה לרציפות) איז הגדרה 1.5 הגדרה לכל איז היקרא רציפות היקרא רציפות) X- קבוצה פתוחה ב־V

הבאים, התנאים התנאים התנאים, au כך שמתקיימים התנאים הבאים, טופולוגיה, על au הגדרה 1.6 (טופולוגיה), חהי au קבוצה (לא ריקה), טופולוגיה על au היא אוסף

- $\bigcup_{\alpha\in I}U_{\alpha}\in au$ אז $\forall lpha\in I,U_{lpha}\in au$ כך שיס, I כך אינדקסים לקבוצת אינדקסים א אוז כלומר אם סגור לאיחוד, כלומר אם 2.
 - $U\cap V\in au$ מתקיים מופיים, כלומר לכל לכל טומר סופיים, סופיים מוכים סגור לחיתוכים au .3

. הגדרה אל מרחב טופולוגיה על X, יקרא א קבוצה אר קבוצה לא קבוצה לא כאשר אוגי (מרחב טופולוגי) זוג אוגי (מרחב טופולוגי) אוגי (מרחב טופולוגי) זוג אוגי (מרחב טופולוגי) זוג

 $U\in\Omega$ לכל $f^{-1}(U)\in au$ בעשם הגדרנו כבר מתי פונקציה f:X o Y עבור מרחבים טופולוגיים (X, au), איז היא רציפה, כאשר בעצם הגדרנו לכל מ סימון 1.8 איברי au יקראו קבוצות פתוחות.

הא היא קבוצה אם A איז המשלים של A או מרחב המשלים אם A או היא הברה אם הארה אם A או היא המשלים של היא היא הברה המערה אם הארה אם הארה אם הארחב טופולוגי אז תת־קבוצה אז תת־קבוצה אם הארחב של הארחב טופולוגי אז תת־קבוצה או הארחב של הארחב טופולוגי אז הערכה טופולוגי אז הערכה של הארחב טופולוגי אז הערכה טופולוגי אז הערכה של הארחב טופולוגי אז הערכה טופולוגי או הער פתוחה.

דוגמה באופן טריוויאלי כנביעה ערי, כלומר נגדיר טופולוגיה אין $au=\{U\subseteq X\mid \forall x\in U\exists r>0, B(x,r)\subseteq U\}$ מרחב מטרי, נגדיר זה יהי 1.2 דוגמה 1.2 יהי מהמרחב המטרי.

תרגיל 1.1 הוכיחו כי אכן זהו מרחב טופולוגי.

. יהי X קבוצה כלשהי, אז ניתן להגדיר על X טופולוגיה $\{\emptyset,X\}$ יהי עופולוגיה טופולוגיה טופולוגיה זו נקראת טופולוגיה אז ניתן להגדיר על X

. בולה אויה נגדיר $au_1=\mathcal{P}(X)$ נגדיר עבור קבוצה au_2 עבור קבוצה au_3 עבור קבוצה אויה נגדיר בולה נגדיר עבור דומה אוי עבור קבוצה אויה אויים ביינו דיים ביינו אויים ביינו ביינו אויים ביינו אויינו אויים ביינו אויים ב

24.3.2025 - 1 שיעור 1 מבוא 1.1

f: מתי איז שהיא רציפה התשובה היא שהיא היא הוא f: מתי א היא f: ווהי א רציפה תמיד. ווהי רציפה מתיד. מתי א מתי f: ווהי חלי. ווהי רציפה מתיד. מתי א דוגמה 1.5 מתי א מתיד. רציפה, תלוי בהגדרת הפונקציה, אבל במקרה שבו היא אכן רציפה, אז היא רציפה לעומה ההיא. לעומת אבל במקרה אבל האריא. לעומת האריא רציפה (Y, au) רציפה לעומת האריא. רציפה. $f:(X,\tau_1) o (Y, au)$

הערה לא כל טופולוגיה נובעת ממטריקה. לדוגמה הטופולוגיה הטריוויאלית על מרחב עם לפחות 2 נקודות.

. הקבוצה פתוחה קבוצה B(x,r) הקבוצה פתוחה.

 $\mathcal{F}=\{A\subseteq\mathbb{C}^n\mid\exists\{f_i\}_{i\in I}\subseteq\mathbb{C}[x_1,\ldots,x_n],A=\{(p_1,\ldots,p_n)\mid\forall i\in\mathbb{N}$ עבור איזשהו $X=\mathbb{C}^n$ נגדיר 1.6 נגדיר 1.6 נגדיר $I, f_i(p_1, \ldots, p_n) = 0\}$

, בסיס לטופולוגיה של X של תתי־קבוצות של בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס לטופולוגיה בסיס בסיס לטופולוגיה בסיס לטופולוג

 $x \in B$ כך ש־ $B \in \mathcal{B}$ יש $x \in X$.1

 $x \in C \subseteq A \cap B$ יש כך כך שי $x \in A \cap B$ ולכל $A, B \in \mathcal{B}$.2

טענה 1.11 עבור בסיס \mathcal{B} היא טופולוגיה, $au_{\mathcal{B}} = \{U \subseteq X \mid U \text{ is a union of elements of } \mathcal{B}\}$ היא טופולוגיה,

$$\forall \alpha \in I, B_{\alpha} \in \mathcal{B}, U = \bigcup_{\alpha \in I} B_{\alpha}$$

, אז מתקיים, אז איז סופי, אז אם ער אז או ער אז אוכחה. וכן וכן $U=\bigcup_{lpha\in I}B_lpha\in\mathcal{B}$ אז אז אז אם אז איז סופי, אז אז מתקיים, אז מתקיים, מכיוון ש־ $au_\mathcal{B}$ סגורה לחיתוך סופי, אז אם אם מתקיים,

$$U \cap V = (\bigcup_{\alpha \in I} B_{\alpha}) \cap (\bigcup_{\beta \in J} A_{\beta}) = \bigcup_{\alpha, \beta \in I \times J} B_{\alpha} \cap A_{\beta} = D$$

 $U\cap V=(\bigcup_{\alpha\in I}B_\alpha)\cap(\bigcup_{\beta\in J}A_\beta)=\bigcup_{\alpha,\beta\in I\times J}B_\alpha\cap A_\beta=D$ כך ש־ $C_{\alpha_0,\beta_0}\subseteq \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם אבל מהגדרת הבסיס פוימת קבוצה אבל מהגדרת הבסיס פוימת הבסיס פו . סופי. לכן הזיתות מצאנו בהתאם התאם ובהתאם $D\subseteq igcup_{(x,lpha,eta)} C_{x,lpha,eta}$ לכן לכן $B_{lpha_0}\cap A_{eta_0}$

 $\{B(x,rac{1}{n})\subseteq X\mid x\in$ אם מטרי, אז $\{B(x,r)\subseteq X\mid x\in X, r>0\}$ הוא טופולוגיה. אבל עכשיו נוכל להגדיר גם את מטרי, אז הערה . המטרי לטופולוגיה שהגדרנו למרחב הטופולוגיה לאותה לטופולוגיה לטופולוגיה לטופולוגיה לאותה לטופולוגיה לאותה לטופולוגיה לאותה לאותה לטופולוגיה ל

תרגיל 1.2 הוכיחו שזהו אכן בסיס עבור המרחב הטופולוגי הנתון.

 $C = \{a + d\mathbb{Z} \mid a, d \in \mathbb{Z}, d \neq 0\}$, נניח ש $\mathbb{Z} = \mathbb{Z}$, ונגדיר את הבסיס להיות אוסף הסדרות האריתמטיות הדו־צדדיות, כלומר $X = \mathbb{Z}$ $p\in p+dq\mathbb{Z}\subseteq$ אז $p\in (a+d\mathbb{Z})\cap (b+q\mathbb{Z})$, וננים כי זהו אכן בסיס (לטופולוגיה). נתבונן בזוג קבוצות ב $a+d\mathbb{Z},b+q\mathbb{Z}$, וננים כי זהו אכן בסיס (לטופולוגיה). $. au_C$ נגדיר טופולוגיית. ($a+d\mathbb{Z}$) \cap ($b+q\mathbb{Z}$)

קבוצות סגורות הן משלימים לקבוצות פתוחות.

כל סדרה אריתמטית דו־צדדית אינסופית היא גם פתוחה וגם סגורה. בפרט חיתוך סופי של סדרות אריתמטיות הוא סגור. לכן המשלים שלו הוא פתוח. מסקנה 1.12 (משפט אוקלידס) יש אינסוף מספרים ראשוניים.

לכן את קבוצה פתוחה קבוצה לכן, את נניח בשלילה כי של ראשוניים, או עבור עבור p_1,\dots,p_k עבור עבור אישוניים, אוהי בשלילה כי שלילה כי של ראשוניים, אוהי אוהים עבור אוווים, אוהי אוהים בשלילה כי של אוווים, אוהי אוהים בשלילה כי של ראשוניים, אורה, אורה,

$$\bigcup_{i=1}^k p_i \mathbb{Z} = \mathbb{Z} \setminus \{-1, 1\}$$

ולכן נובע ש־ $\{-1,1\}$ קבוצה פתוחה וזו כמובן סתירה.

טענה 1.13 (צמצום מרחב טופולוגי) עניח ש(X, au) מרחב טופולוגי, לכל $\emptyset
eq Y \subseteq X$ מרחב טופולוגי, מרחב טופולוגי(X, au) מרחב טופולוגיה מענה 1.13 (צמצום מרחב טופולוגי) מרחב טופולוגיה מרחב טופולוגיה מרחב טופולוגיה מרחב טופולוגיה מרחב טופולוגיה מרחב טופולוגיה. $. au_Y = \{W \in au \mid W \subseteq Y\}$ אז $Y \in au$ אם $Y \in au$

טענה 1.14 (טופולוגיית מכפלה) נניח ש־ (X_1, au_1) ו־ (X_2, au_2) מרחבים טופולוגיים, אז נגדיר טופולוגיית מכפלה (X_1, au_1, au_1) על־ידי

$$\tau_{1,2} = \{ U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2 \}$$

אז בסיס והטופולוגיית על־ידו נקראת על־ידו המכפלה. המכפלה דיטופולוגיית המכפלה דוא ד $au_{1,2}$ אז

דוגמה 1.8 נוכל לבנות כך מכפלה של כמות סופית או אינסופית של מכפלות טופולוגיות. עבור אוסף אינסופי (בן־מניה או לא בהכרח) אנו צריכים

24.3.2025 - 1 שיעור 1 1.1 מבוא

אז נגדיר ($\alpha \in I$ עבור (X_{α}, au_{α}) אז נגדיר להיזהר, נניח ש

$$au_b=\{\prod_{lpha\in I}U_lpha\mid oralllpha\in I, U_lpha\in au_lpha\}$$
 אם בסיס לטופולוגיה שנקרא טופולוגיית הקופסה. לעומת זאת נוכל להגדיר גם את

$$\tau_p = \{ \prod_{\alpha \in I} U_\alpha \mid U_\alpha = X_\alpha \text{ for almost all } \alpha \in I \}$$

$$.\prod_{\alpha\in I}=\{f:I\to\bigcup_{\alpha\in I}X_\alpha\mid \forall \alpha\in I, f(x)\in X_\alpha\}$$
 כלומר

25.3.2025 - 2 שיעור 2

טופולוגיה – המשך 2.1

Z=בשיעור הקודם דיברנו על מכפלה של טופולוגי, אז נתבונן שאם I קבוצת אינדקסים ולכל $lpha\in I$ גם מרחב טופולוגי, אז נתבונן ביI בשיעור הקודם דיברנו על מכפלה של טופולוגיה על I.

הערה מגדירים.

$$\prod_{\alpha \in I} X_{\alpha} = \{ f : I \to \bigcup_{\alpha \in I} X_{\alpha}, \forall \alpha \in I, f(\alpha) \in X_{\alpha} \}$$

לאחר מכן נוכל להגדיר טופולוגיית מכפלה,

,הבסים, נגדיר את הבסים (טופולוגיית מכפלה) 2.1 הגדרה

$$\mathcal{B}_{\text{box}} = \{ \prod_{\alpha \in I} U_{\alpha} \mid \forall \alpha \in I, U_{\alpha} \subseteq X_{\alpha}, U_{\alpha} \in \tau_{\alpha} \}$$

ואת הבסיס.

$$\mathcal{B}_{\text{prod}} = \{ \prod_{\alpha \in I} V_{\alpha} \mid \forall \alpha \in I, V_{\alpha} \in \tau_{\alpha}, V_{\alpha} \subseteq X_{\alpha}, |\{\beta \in I \mid V_{\beta} \neq X_{\beta}\}| < \infty, V_{\alpha} = X_{\alpha} \text{ for almost every } \alpha \}$$

אלו הן מכפלות של טופולוגיות המהוות טופולוגיה.

$$\pi_lpha(f)=f(lpha)$$
 אז שנן הטלהו ל $lpha\in I,\pi_lpha:Z o X_lpha$ הטלות שנן אז ל $Z=\prod_{lpha\in I}X_lpha$ אז הגדרה (העתקות הטלה) אז הגדרה

 $\pi_{lpha}^{-1}(U_{lpha})\in au$ יתקיים תהינה ב־ X_{lpha} יתקיים שכל ההטלות עריך שלכל הרוצים אכן יקיימו אכן יקיימו עריים אכן יקיימו הביס, ערכל ההטלות הביס, אנו רוצים אכן יקיימו אכן יקיימו אכן יקיימו אכן יקיימו אכן יתקיים ב־ X_{lpha} אבל זהו לא בסיס, אבל זהו לא בסיס, אבל נבחין כי X_{lpha} אבל זהו לא בסיס,

$$C = \{ U_{\alpha} \times \prod_{\beta \neq \alpha} X_{\beta} \mid \pi_{\alpha}^{-1}(U_{\alpha}) \in \tau \}$$

.] C=Xע כך של תת־קבוצות של X תהי קבוצה X קבוצה תהי קבוצה תהיקבוצות של עד תר־קבוצות הגדרה (מת־בסיס לטופולוגיה).

נגדיר את הסופיים הסופיים של איברי אוסף להיות כלומר $\mathcal{B}_C = \{\bigcap A \mid A \subseteq C, |A| < \infty\}$ הייות של איברי מתחבסים המושרה אוסף פתוחות) פתוחות פתוחות הוא בסים.

 $au_1\subseteq au_2$ אם אם au_2 הותר חלשה יותר שר אומרים על אומרים על au_1 שם אם קבוצה au_1 אם אומרים על אומרים על אומרים אם au_1

, מרחב מושרה מתאים לכל i. נרצה להתבונן במכפלתם, ונגדיר (X_i, au_i) מרחב (X_i, au_i) לכל לכל X_i, au_i לכל לכל X_i, au_i שהגדרנו זה עתה. אז נוכל להתבונן ב־ $(\prod X_i, au_{\mathrm{prod}})$ שהגדרנו זה עתה.

 $x,y\in Z$ לכל $Z=\prod_{i\in\mathbb{N}}X_i$ עם מטריקה מצוא מטריקה מרצה מטריים מטריים מטריים מטריים בהינתן מרפלה) מרצה (מטריקה מכפלה) אז נגדיה, אז נגדיר, אז נגדיר,

$$\rho(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

ברור שפונקציה זו מוגדרת, וברור אף כי היא מקיימת את התכונה השנייה של מטריקות, אך לא ברור שהיא מקיימת את אי־שוויון המשולש, זהו תרגיל שמושאר לקורא.

. \mathcal{B}_{prod} טענה שווה ל-מכפלה שורית עם מטריקת מרכפלה מרחבים מרחבים עבור (X_i, au_i) עבור עבור $Z = \prod_{i=1}^\infty X_i$ שענה 2.6 מענה

 $au_
ho=\mathcal{B}_{
m prod}$ בסיס, אז נוכל להגדיר טופולוגיה (Z,
ho) מרחב מטרי, ו־ $\mathcal{B}_
ho=\{B(x,r)\mid x\in Z, r>0\}$ בסיס, אז נוכל להגדיר שטופולוגיה נקבעת ביחידות על־ידי בסיס שלה, לכן מספיק להראות שכל $B\in\mathcal{B}_{
m prod}$ שייכת ל־ $T_{
m prod}$ שייכת ל־ $T_{
m prod}$. נוסיף ונבהיר שטופולוגיה נקבעת ביחידות על־ידי בסיס שלה, לכן מספיק להראות את שקילות הבסיסים.

נתחיל בתנאי הראשון, ונקבע $U_k\in au_k$ כלשהו. מספיק להראות שקבוצה מהצורה $U_k imes\prod_{i\neq k}X_i$ פתוחה בי0 עבור $U_k\in \mathbb{N}$ בית עבור בונסם ביל להרחיב הוכחה זו באופן סיסטמתי להיות על כל קבוצה סופית של קבוצות פתוחות. יהי 1 1 על להרחיב הוכחה זו באופן סיסטמתי להיות על כל קבוצה סופית של קבוצות פתוחות. יהי 1 ועישנו 1 על מרחב זה 1 שישנו 1 על מרחב זה 1 על מרחב 1 שישנו 1 על מרחב ביתוחה ולכן ישנו 1 ביות פתוח בי1 מדור פתוח בי1 ביתוח בי1 מדור פתוח בי1 מדור ביעור ביעוח ביעור ביעוח ביעור ביעוח ביעור ביעוח ביעוח

25.3.2025 - 2 שיעור 2 25.3.2025 טופולוגיה – המשך

קיים $Z=\prod_{i\in\mathbb{N}}X_i$ ב־ $\frac{s}{2^k}$ סביב $\frac{s}{2^k}$ את הכדור ברדיוס או לכן נבחן את המפלה כולו. איז א ומתקיים ברחב מרחב ומתקיים את התנאי לבסיס. נניח ש" $y=(y_i)_{i\in\mathbb{N}}\in B_{\frac{s}{2^k}}(x)$ אז המטרה שלנו היא להראות שהכדור שעתה בחרנו מקיים את התנאי לבסיס. נניח ש"כולו היא להראות שהכדור שעתה בחרנו מקיים את התנאי לבסיס.

$$\frac{s}{2^k} > \rho(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)} \ge \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

$$\Rightarrow s > \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

$$\Rightarrow \rho_k(x_k, y_k) < r$$

$$\Rightarrow y_k \in B_r(x_k) \subseteq U_k$$

, נעבור לתנאי השני, נתבונן בכדור הפתוח סביב Z סביב, $B_r(x)$, $x\in Z$ כאשור השני, נתבונן בכדור הפתוח מוגדר להיות,

$$B_r(x) = \left\{ y \in Z \mid \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)} < r \right\}$$

, על־ידי, המוגדרת על־ידי, כלומר הזנב של את טור הזנב לומר נחסום את כלומר כלומר המוגדרת אר המוגדרת על־ידי, כלומר ב $V\subseteq Z$ ההי כל על כלומר כלומר הזנב את כלומר כלומר כלומר כלומר ביש המוגדרת על־ידי, כלומר כלומר כלומר ביש המוגדרת על־ידי, כלומר ביש המוגדרת ביש המוגדרת על־ידי, כלומר ביש המוגדרת ביש

$$V = \left\{ (y_1,\ldots,y_M) \in \prod_{i=1}^M \mid \sum_{i=1}^M rac{1}{2^i} rac{
ho_i(x_i,y_i)}{1+
ho_i(x_i,y_i)} < rac{r}{2}
ight\}$$
ואנו טוענים כי $V imes \prod_{i=M+1}^\infty X_i \subseteq B_r(x)$ ואנו טוענים כי

П

31.3.2025 - 3 שיעור 3

3.1 סגירות

בדיוק כמו במרחבים מטריים, גם במרחב טופולוגי נרצה לדון במניפולציות על קבוצות במרחב, נתחיל בהגדרת הקונספט של סגור של קבוצה במרחב מופולוגי

A של הסגור את הסגור. נגדיר על קבוצה $A\subseteq X$ הגדרה ותהי קבוצה מרחב טופולוגי) היי היי (סגור של קבוצה כשלהי. הסגור של $A\subseteq X$ מרחב טופולוגי) מרחב טופולוגיA את את הסגור המכילה את A, כלומר,

$$\overline{A} = \bigcap_{X \setminus F \in \tau} F$$

בהתאם נקבל מספר תכונות ראשוניות ודומות לתכונות שראינו בעבר,

למה 3.2 התכונות הבאות מתקיימות,

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
 .1

. כאשר במקרה זה אין בהכרח שוויון. $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. 2

, אז מתקיים, אז מתקיים, $A=\mathbb{Q}, B=\mathbb{R}\setminus\mathbb{Q}$ וכן $X=\mathbb{R}$ שוויון, נגדיר שוויון, מתקיים, אז מתקיים, אז מתקיים,

$$\emptyset = \overline{\emptyset} = \overline{A \cap B} \subsetneq \overline{A} \cap \overline{B} = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$$

טענה 3.3 אם (X, au) מרחב טופולוגי ו(X, au) אז,

$$x \in \overline{A} \iff \forall U \in \tau, x \in U \to U \cap A \neq \emptyset$$

Aאם ורק אם כל קבוצה פתוחה ביב הנקודה לא Aאם ורק אם כל קבוצה פתוחה סביב הנקודה לא A

 $x
otin \overline{A}\iff \exists U\in au, x\in U\land U\cap A=\emptyset$ הטענה, כלומר שלילת את נראה הוכחה. נראה הוכחה

A- אבל \overline{A} פתוחה וזרה מהגדרתה $X\setminus \overline{A}$ אבל $x\in X\setminus \overline{A}$ ולכן ולכן $x\notin \overline{A}$

 $x
otin \overline{A}$ בכיוון השני אם יש $X
otin \overline{A}\subseteq F$ פתוחה כך ש־ $X
otin U\cap A=\emptyset$ אז ע $X
otin \overline{A}\subseteq F$ סגורה ומכילה את $X
otin \overline{A}\subseteq F$ ובהכרח

 $A^\circ = igcup_{U \in au, U \subset A} U$, הגדרה את הפנים את נגדיר את נגדיר ושפה) אנדרה 3.4 הגדרה

כלומר הפנים הוא איחוד כל הקבוצות הפנימיות הפתוחות של A, ובשל הסגירות של הטופולוגיה לאיחוד, נקבל כך את הקבוצה הפתוחה הגדולה ביותר שחלקית ל- $A = \overline{A} \setminus A^\circ$ היותר $A = \overline{A} \setminus A^\circ$

נבחין בהגדרה של סביבה ונשתמש בהגדרה זו כדי להגדיר מונח חדש.

 $.x \in U \subseteq L$ יש כך ער פרימת קבוצה פתוחה $t \in U \subseteq L$ יש כל באמר של באמר איז מביבה של נקודה) נאמר של $t \in L$

אם אם הצטברות של היא נקודת הצטברות $x\in A$ ו תת־קבוצה כלשהי, והי $x\in A$ ו נקודת הצטברות של חדוב טופולוגי, תהי $x\in A$ ו תת־קבוצה כלשהי, ו־ $x\in A$ ו נקודה מ־x שונה מ־x, כלומר,

$$\forall U \in \tau, x \in U \implies \exists y \in (U \setminus \{x\}) \cap A$$

A את קבוצת נקודות ההצטברות של A'

נרצה להסתכל על נקודות הצטברות כנקודות שלא משנה כמה קרוב אנחנו מסתכלים אליהן, עדיין נוכל למצוא בסביבתן נקודות נוספות. במובן הזה ברור שהן נמצאות בקרבת נקודות בפנים, אך עלולות להיות גם נקודות לא פנימיות שמקיימות טענה כזו.

 $\overline{A}=A\cup A'$ מענה 3.7 מתקיים

היא אוסף כל \overline{A} היא אוסף הטענה ש־ \overline{A} או או $x\in A\subseteq \overline{A}$ אז או אוסף היא אוסף כל $x\in A$ שונה מ \overline{A} או אוסף היא אוסף כל $x\in A\cup A'$ או אוסף כל $x\in A\cup A'\subseteq \overline{A}$ או הנקודות שבכל סביבה שלהן המכילה את $x\in A\cup A'\subseteq \overline{A}$ היא אוסף כל העובע ש־ $x\in A\cup A'\subseteq \overline{A}$

בכיוון השני נניח ש". $x\in A$ אז לכל $x\notin A$ כך ש". $x\in A$ מתקיים $x\in A$ אם אם $x\in A$ אם אז לכל $x\in A$ אז לכל $x\in A$ אז לכל $x\in A\cup A'$ מתקיים $x\in A\cup A'$ מרכי משני $x\in A\cup A'$ מרכי משני מש". $\overline{A}=A\cup A'$

31.3.2025 - 3 שיעור 3 שיעור 3

3.2 השלמות לרציפות

f:X o Y ופונקפט של רציפות ופונקציה איז מרחב טופולוגי ויX קבוצה כלשהי, ופונקציה איז בחול בחליני ויזכר בהגדרה לדון בקונספט של רציפות באופן רחב יותר. בהינתן להגדיר טופולוגיה על X כך שיf רציפה.

X איא מהבסיס משרית מושרית עליו ולהגדיר לבסיס ולהרחיבה הרחיבה היא תת־בסיס, היא הת־בסיס, ואפשר הרחיבה לבסיס ולהגדיר עליו $\{f^{-1}(U) \mid U \in au_Y\}$

. ביותר על X עבורה f רציפה עבור טופולוגיה או, וזו הטופולוגיה וו על דעותר או f סענה f סענה f סענה f סענה און ווא עבורה f סענה און ווא טופולוגיה אווא טופולוגיה און ווא טופולוגיה אווא טופולוג

 $\{U\subseteq Y\mid f^{-1}(U)\in au_X\}$ את נוכל להגדיר f:X o Y נוכל עם פונקציה עם יחד עם וקבוצה לשהי ווו ויוו הטופולוגיה וווו הטופולוגיה ביותר על עם ביותר על עם עם עם ועם ועם לבנות בסיס וטופולוגיה על f באופן דומה ביותר על עם ביותר ע

טענה 3.9 (שקילות לרציפות) יהיו מרחבים טופולוגיים (X, au_X), ותהי אז התנאים הבאים שקולים, יהיו מרחבים טופולוגיים (שקילות לרציפות)

- 1.2 רציפה לפי f .1
- X^{-1} סגורה $f^{-1}(F)$, $F\subseteq Y$ סגורה ב-2. .2 הגדרה זו עוזרת לנו לדון בקבוצות סגורות במקום פתוחות
- Xבסיס לטופולוגיה של Y אז לכל $B\in\mathcal{B}$ מתקיים ש $f^{-1}(B)$ פתוחה ב- B מתקיים של לנו לדון בכיסים ובכך לפשט את העבודה עם טופולוגיות הגדרה זו מאפשרת לנו לדון בבסיסים ובכך לפשט את העבודה עם טופולוגיות
- x של סביבה $f^{-1}(W)$ מתקיים שf(x) של $W\subseteq Y$ סביבה של $x\in X$ לכל .4
- רציפה. $f\mid_{U_{\alpha}}:U_{\alpha}\to Y$ מתקיים $\alpha\in\Omega$ מתקיים γ , ער γ , ער γ , ער אומר γ , כלומר אווער γ , ער אומר אווער γ , ער אומר אווער γ , ער אווער אווער פון אינים כיסוי פתוח אווער פון אינים אווער אווער
 - . רציפה. $f\mid_{F_i}:F_i\to Y$ כך שכל $1\leq i\leq n$ סגורות עבור $1\leq i\leq n$ עבור $1\leq i\leq n$ עבור $1\leq i\leq n$ עבור $1\leq i\leq n$
 - $f(\overline{A}) \subseteq \overline{f(A)}$ מתקיים $A \subseteq X$ לכל.

. תוחות שירות על קבוצות הרציפות של משלימים הגדרה שירות מהגדרה שירות פתוחות. בובע ישירות מהגדרה של משלימים והגדרת ל

- היא איחוד השני כל קבוצה הטענה. לכיוון השני כך להראות היא קבוצה פתוחה, ונוכל כך להראות את נכונות הטענה. לכיוון השני כל קבוצה היא איחוד $f^{-1}(\bigcup U_{\alpha}) = \bigcup f^{-1}(U_{\alpha})$, של קבוצות מהבסיס, U_{α} , ור
- $x\in f^{-1}(U)\subseteq$ ש־ט פתוחה, לכן נובע ש־ט $f(x)\in U\subseteq W$ אז קיימת אז קיימת של $f(x)\in W\subseteq Y$ וכן $f(x)\in W\subseteq Y$ אז פתוחה. $f^{-1}(U)$ פתוחה.
- היא $f^{-1}(U)$ הנחה אז צריך להראות שר $f^{-1}(U)$ פתוחה. תהי תהי $f^{-1}(U)$ אם צריך להראות שר $f^{-1}(U)$ פתוחה אז צריך להראות אז צריך להראות פתוחה, ונסיק שר $f^{-1}(U)=\bigcup_{x\in f^{-1}(U)}V_x$ פתוחה, ונסיק שר $f^{-1}(U)=\bigcup_{x\in f^{-1}(U)}V_x$ פתוחה, ונסיק שר
 - . נוכל לבחור כיסוי טריוויאלי. נוכל לבחור נוכל כיסוי נוכל וויאלי. ביסוי נוכל לבחור נוכל לבחור נוכל לבחור נוכל לבחור כיסוי טריוויאלי.
- - . נבחר את לכיסוי סגור של עצמה. $1 \Longrightarrow 6$
- עששינו בימה למהלך ההוכחה רציפה. כעת ההוכחה לההלך שעשינו $f\mid_{F_i}: F_i \to Y$, ונניח גם שלכל של כיסוי סגור סופי אל כיסוי סגור כיסוי סגור אפיון רציפות בעזרת $f\mid_{F_i}: F_i \to Y$, אבל כעת אפיון רציפות בעזרת $f\mid_{F_i}: F_i \to Y$, ואיחוד סופי על סגורות הוא סגור.
- $f(x) \notin \overline{f(A)}$ שילה שי $f(\overline{A}) \in \overline{f(A)}$, נניח בשלילה שי $f(\overline{A}) \in \overline{f(A)}$, יהי $f(\overline{A}) \in \overline{f(A)}$, יהי $f(\overline{A}) \in \overline{f(A)}$, נניח בשלילה שי $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב־ $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ וקיבלנו $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ פתוחה ב- $f(\overline{A}) \in \overline{f(A)}$ אבל $f(\overline{A}) \in \overline{f(A)}$ וקיבלנו
 - סגורה, אז, $F \subseteq Y$ מגורה, אז. $7 \implies 2$

$$f(\overline{f^{-1}(F)}) \overset{\text{finith}}{\subseteq} \subseteq \overline{F} \overset{\text{finith}}{=} F \ \Longrightarrow \ \overline{f^{-1}(F)} \subseteq f^{-1}(F)$$

31.3.2025 - 3 שיעור 3 שיעור 3

, לכן, $f^{-1}(F)\subseteq\overline{f^{-1}(F)}$ מהגדרת סגור נוכל להסיק ש

$$\overline{f^{-1}(F)} = f^{-1}(F)$$

Xבפרט $f^{-1}(F)$ סגורה ב-

נבחן תכונה מעניינת שלא תשרת אותנו רבות, אך כן מעלה שאלות,

I=[0,1] עבור f:I imes X o X הציבה עופציה שי ש (Contractible) אם ש־ עבור עבור אמר מרחב טופולוגי, נאמר ש־ X כוויץ אם יש פונקציה רציפה איז יהי איז מרחב טופולוגי, נאמר איז X כך ש־ X בעבור X הגדרה עבור X העבור X הגדרה עבור X הגדרה עבור X האיז ישר X בעבור X הגדרה עבור X בעבור X בעבור X האיז ישר X בעבור X

 $x\mapsto x_1$ כסמן גם $f_t:X\mapsto X$ כאשר הפונקציה הקבועה וכן נקבל $f_t:X\mapsto X$ כאשר כאשר בסמן גם

f(t,x)=(1-t)x נגדיר על־ידי המוגדרת f:I imes I o I ואת את מה 3.2 נגדיר 3.2 נגדיר

. נגדיר $\mathbb R$ כוויצה בדיוק באותו על־ידי $f:I imes\mathbb R$ נגדיר שגם f(t,x)=(1-t)x על־ידי על־ידי אופן. נגדיר

תרגיל S^1 כוויץ. הראו מרגיל 3.1

נחזור לדבר על פונקציות רציפות.

f(x)(i)=xכך לכל $f:(\mathbb{R}, au_\mathbb{R}) o(\mathbb{R}^\mathbb{N}, au)$ לכל לכל 3.2 נתבונן בי

הקופסה. עופולוגיית אי לא רציפה הופלוגיית המכפלה, טופולוגיית הקופסה כהעתקה כאשר לא רציפה או לא רציפה הראו שי f

פתרון בתבונן ב T_n בעופולוגיית הקופסה היא לא קבוצה פתוחה, אך עד הקופסה היא לא פתרון פתרון זוהי קבוצה פתוחה, אך עד הקופסה היא לא העדיפה. אך $T_n=1$ בעופולוגיית הקופסה היא לא רציפה.

לעומת זאת בטופולוגיית המכפלה היא אכן רציפה.

רציפה ערכית די־חד ערכית $f:X\to Y$ היא העתקה איז מופולוגיים שני מרחבים בין שני מרחבים הומיאומורפיזם (הומיאומורפיזם הומיאומורפיזם בין שני מרחבים טופולוגיים אונים היא. $f:X\to Y$ היא היא.

ביניהן. f:X o Y ביניהן הומיאומורפיות אם ביניהן ביניהן יקראו יקראו די

אנו נרצה להסתכל על הומיאומורפיזם כאיזומורפיזם של מרחבים טופולוגיים.

$$f'(x) = \frac{e^x(e^x + 1) - e^x e^x}{(e^x + 1)^2} = \frac{e^x}{(e^x + 1)^2} > 0$$

. ולכן האי גם על, ואכן המרחבים הומיאומורפים. $f(x) \xrightarrow{x \to -\infty} 0, f(x) \xrightarrow{x \to \infty} 1$ ולכן המרחבים הומיאומורפים.

 $z\mapsto rac{z-i}{z+i}$ על־ידי $\psi:\eta o D$ נגדיר גם $D=\{z\in\mathbb{C}\mid |z|<1\}$ ואת ואת $\eta=\{z=x+iy\in\mathbb{C}\mid x,y\in\mathbb{R},y>0\}$ נגדיר את נגדיר את הוכחה כי זהו אכן הומיאומורפיזם מושארת לקורא.

נבחין כי הדוגמה האחרונה אינה אלא העתקת מביוס, העתקה קונפורמית ואנליטית.

. המרחבים בין שני המרחבים כי אין אונים כי אין טוענים אונים אנו אונים א

נבחן אבל הערכית ועל, ארכית ערכית ועל, ארכית דיחד ערכית ועל, ארכית אדר דיחד ערכית לדוגמה, לדוגמה, לדוגמה לא וועל, ארכית לא לדוגמה, ארכית ועל, ארכית ועל, ארכית ועל, ארכית ארכית ועל, ארכית

נניח שיש העתקה חד־חד ערכית אך מן הצד מיJיה נקודה יחידה, אז נקבל איחוד זר של שתי קבוצות ונציא מיJ, ונוציא מיJ, ונוציא מיJ, ונוציא מיJ, ונוציא מילאה אומנם סבוכה יותר, אך הצבענו פה על הבדל מהותי בין שני המרחבים.

. הראו כי \mathbb{R}^2 לא הומיאומורפים תרגיל 3.3 הראו כי

?האם גם \mathbb{R}^2 ו- \mathbb{R}^3 הומיאומורפים

 $f(U)\subseteq Y$ מתקיים (סגורה) פתוחה לכל אם לכל (סגורה) העתקה תיקרא העתקה f:X o Y העתקה העתקה פתוחה (סגורה) ב-3.12 העתקה פתוחה (סגורה) ב-Y

. המוגדרת ולא סגורה היא רציפה, היא היא $f(x)=x^2$ ידי על-ידי המוגדרת המוגדר העיפה, זוגמה היא הוגדרת לידי המוגדרת המוג

. האבל אבל אבל רציף, הוא הוא $x\mapsto x$ ידי על־ידי המוגדר ($0,1)\hookrightarrow\mathbb{R}$ השיכון השיכון אבל דוגמה 3.7

. ביפה. אך אך אר סגורה, סגורה היא טריוויאלית טריוויאלית המוגדרת $\{a,b\} o \{a,b\}$

 \Box

7.4.2025 - 4 שיעור 4

אקסיומות ההפרדה 4.1

מטרתנו היא לאפיין את הקונספט של הפרדה, כלומר מתי אנו יכולים לחסום חלקים שונים במרחב הטופולוגי בקבוצות פתוחות. במקרים המטריים אף ראינו בעבר כמה הפרד היא מועילה, היא פתח לדיון נרחב.

הגדרה אם להפרדה אם x,y ניתנים להפרדה אם קיימות קבוצות שה איני מאר $x,y \in X$. נאמר ש $x,y \in X$ ניתנים להפרדה אם קיימות קבוצות פתוחות $x,y \in X$ בארכונות האלה זרות, וכן $x,y \in X$.

עבור $x \in U, A \subseteq V$ אם להפרדה ניתנים והאיבר שהקבוצה נאמר נאמר $x \in X, A \subseteq X$ עבור

. וזרות. $A\subseteq U, B\subseteq V$ ביתנות להפרדה ניתנות $A\cap B=\emptyset$ כך ש־ $A, B\subseteq X$ לבסוף נאמר ש

עתה משהגדרנו את הקונספט הכללי של הפרדה, נגדיר באופן בהיר ועקבי סוגים שונים של "רמת" ההפרדה שמרחב טופולוגי מקיים.

האקסיומות את עבור $i\in\{0,1,2,3,4\}$ עבור עבור את מקיים את מקיים את יקרא מרחב איקרא יקרא מרחב מופולוגי א יקרא מרחב א יקרא מרחב T_i אם הוא מקיים את האקסיומות מרחב א יקרא יקרא מרחב מופולוגי א יקרא מרחב א יקרא מר

- אחרת אך את הנקודות אחת שמכילה פתוחה פתוחה קבוצה $x,y\in X$ לכל , T_0
- השנייה את הנקודה המכילה את המכילה את המכילה את אחת הנקודות את אחת המכילה את קיימת פתוחה את אחת אחת אחת אחת אחת $x,y\in X$ קיימת קיימת $x\in U,y\notin U$ בך ש־ $x\in U,y\notin U$ אז קיימת אז קיימת אז אז הראשונה. כלומר אם אז קיימת דער אם אחת המכילה את אחת המכילה את המכילה
- - ניתנות להפרדה x, אונם X בותנות להפרדה x, אונם X בותנות להפרדה x, אונם X ביתנות להפרדה המרחב הוא T_1
 - ניתנות להפרדה $A,B\subseteq X$ אם המרחב אם שכל זוג תלי, כלומר כלומר ניתנות להפרדה אם T_1 אם המרחב הוא T_4

נעבור למספר טענות הנוגעות לסוגי ההפרדה השונים.

סענה $\{x\}\subseteq X$ סענה אם ורק אם לתקיים אם מחקיים אם T_1

U=u בקבל שגם $x\notin U_y$ כך ש $U_y\subseteq X$ פתוחה קבוצה פתוחה עלכל $X\ni y\neq x$ אז לכל $X\in X$ אז לכל האכרות נקבע נקודה $U^C=\{x\}$ היא קבוצה פתוחה. לכן סגורה. אבל מההגדרה שסיפקנו ל-U נקבל ש $U^C=\{x\}$ היא קבוצה פתוחה. לכן סגורה.

טענה 4.4 אם מרחב מטרי הוא T_n אז הוא גם $T_1 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0$ מענה 4.4 אז הוא גם T_n אז הוא גם T_n אז הוא גם ווענה 4.4 אקסיומות ההפרדה) מענה T_n אז הוא גם ווענה T_n אז הוא גם ווענה א

בעוד שלא נוכיח טענה זו, נבהיר כי היא נובעת ישירות מהגדרת ההפרדה. נבחין כי המספור הוא עתה לא ארעי כפי שאולי היינו שוגים לחשוב, אלא האקסיומות מסודרות לפי "כוחן" בהפרדת דברים במרחב. נמשיך ונראה טענה שתיצוק משמעות למרחבים נורמליים.

V סענה $A\subseteq U$ קיימת למרחב פתוחה A וורק אם לכל קבוצה סגורה A וורק אם לכל קבוצה פתוחה אם פתוחה $A\subseteq U$ מענה $A\subseteq U$ מענה לכל קבוצה פתוחה $A\subseteq V\subseteq \overline{V}\subseteq U$

כלומר לכל קבוצה סגורה וקבוצה פתוחה שמכילה אותה, יש קבוצה פתוחה ביניהן כך שגם הסגור שלה ביניהן.

, כך שמתקיים, פתוחה על קיימת קבוצה פתוחה על אז קיימת קבוצה על גויח השני, נניח ש $A,B\subseteq X\setminus B$ בכיוון זרות ולכן אז קבוצות סגורות סגורות ולכן אז קיימת פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז המתקיים,

$$A \subset V \subset \overline{V} \subset X \setminus B$$

 $V\cap (X\setminus \overline{V})=\emptyset$ ונובע גם ונובע $B\subseteq X\setminus \overline{V}$ ולכן

טענה 4.6 (ת. $x \in X$) שקול למרחב האוסדורף) אם מרחב האוסדורף, כלומר מרחב T_2 , אם ורק אם $T_2 \in X$ מרחב האוסדורף מרחב אוסדורף. כלומר מרחב T_2 מרחב האוסדורף מרחב אוסדורף מרחב מופולוגיית המכפלה.

7.4.2025-4 שיעור 4 שיעור 4

, כי, נבחין כי, $U_{x,y}\cap V_{x,y})\cap \Delta_X=\emptyset$ מרחב האוסדות, כלומר $y\in V_{x,y}$ וי $x\in U_{x,y}$ שי x
eq y לכל לכל מרחב האוסדורף. לכל מרחב האוסדורף.

$$X \times X \setminus \Delta_X = \bigcup_{x \neq y} (U_{x,y} \times V_{x,y})$$

ובטופולוגיית המכפלה זוהי קבוצה פתוחה.

בכיוון השני נניח ש־ $(x,y)\in (X\times X)\setminus \Delta_X$ או א x
eq y פתוחה, אם $X\times X\setminus \Delta_X$ או הגדרת טופולוגיית בכיוון השני נניח ש־ $(x,y)\in U\times V\subseteq X^2\setminus \Delta_X$ ואף ש־ $(x,y)\in U\times V\subseteq X^2\setminus \Delta_X$ פתוחות כך ש־ע

 T_i טענה Y_i או גם אז גם אז גם Y_i הוא מרחב אז גם א גם א גם א גם א גם א גם או גם אז גם אז גם אז גם אז מרחב אז גם אז מרחב אז גם אז מרחב אז גם א

. T_3 בעבור הטענה נובעת ישירות מהגדרת אקסיומות ההפרדה עבור הטענה נובעת ישירות הטענה וובעת אקסיומות ההפרדה וובעת ישירות מהגדרת אקסיומות החובעת ישירות מהגדרת אקסיומות אקסיומות וובעת ישירות הטענה וובעת ישירות מהגדרת אקסיומות החובעת ישירות הטענה וובעת ישירות המענה עבור החובעת ישירות המענה עבור החובעת ישירות החובעת החובעת החובעת החובעת ישירות החובעת הח

הוא דוגמות רבות נוכל למצוא אדוגמות למרחבים של Counter examples in Topology $.T_4$ הוא ספר שבו נוכל למצוא דוגמות למרחבים למרחבים כאלה.

X אוז גם $X \times Y$ אז גם $i \in \{1,2,3\}$ טענה X אם מרחבים מכפלה) אם או מרחבי מכפלה אז גם X אוז גם אז איז גם אוז מרחבים מענה און מענה און מרחבים מכפלה

, הקבוצה, את נוכל להגדיר אז או נוכל $(x,y)\in X imes Y$ אם אם עבור את הקבוצה.

$$(X \times (Y \setminus \{y\})) \cup ((X \setminus \{x\}) \times Y)$$

זוהי קבוצה סגורה מהגדרת טופולוגיית המכפלה.

. רגולרי $X \times Y$ יש שלינו להראות ועלינו ורגולריים אם T_1 הם X, Yיש הנניח נניח להראות עבור להוכחת אם X, Yיש הניח לאונים ועלינו להראות עבור להוכחת הטענה עבור אונים אינים אונים אונים

 $z\in V, C\subseteq W, Z\setminus W\subseteq$ בי כך כך אורות זרות מגורות סגורה, סגורה, כב עבור נסמן בעבור להוכחת מגורה, כב עבור להוכחת מגורה, בעבור להוכחת מגורה, בעבור להוכחת מגורה, בעבור לכיוון הראשון בעבור כב עבור כב בעבור כב עבור בעבור בע

האפיון האחרון והחשוב שנראה עתה למרחבים המקיימים אקסיומות הפרדה הוא הקשר למרחבים מטריים.

 T_4 מענה (איז מטריי, אז הוא מרחבים מטריים) אם מענה (א מרחב מטרי, אז אז מרחבים מטריים) מענה

הוכחה. נניח ש $X \subseteq X$ תת־קבוצה כלשהי ו $X \in X$. נרחיב את הגדרת המטריקה להגדרת הקוטר, כלומר נאמר שמתקיים,

$$\rho(x, E) = \inf\{\rho(x, y) \mid y \in E\}$$

.3 מטענה מטענה כמסקנה כמסקנה אז p(x,E)>0 אז או $x\notin E$ מסענה מטענה ב

 $V=igcup_{b\in B}B_{
ho(b,A)}(b)$ ו בניח ש $U=igcup_{a\in A}B_{
ho(a,B)}(a)$ אז אי $a\in A,\
ho(a,B)>0, \forall b\in B,\
ho(b,A)>0$ בניח זרות. $A,B\subseteq X$ הן פתוחות וזרות.

נעיר שהכיוון ההפוך נקרא מרחב מטריזבילי, ונעסוק בנושא זה בהמשך הקורס. נעבור לדוגמות.

 T_1 אבל א T_2 אבל הוא מרחב X הוא במקרה הא X במקרה אבל א $X=\{x,y\}$ עם הטופולוגיה אבל א גדיר $X=\{x,y\}$

7.4.2025-4 שיעור 4 שיעור 4 4

במקרה הה בסיס של כל הקבוצות שמשלימן סופי, כלומר מהבסיס של המושרית מהבסיס של במקרה מהבסיס על נגדיר $X=\mathbb{N}$ נגדיר במקרה נגדיר $X=\mathbb{N}$ במקרה זה הוא מרחב באבל לא T_1 אבל לא T_2

 $.T_3$ אבל אבל אבר שהוא מרחב נראה נראה 4.4 אבל דוגמה אבל אבל א

, יחד עם הבסיס, \mathbb{R} הקבוצה מעל כמרחב כמרחב הטופולוגי הבסיס, נגדיר את נגדיר במיסופולוגי $\mathbb{R}_{\frac{1}{m}}$

$$\mathcal{B} = \{(a,b) \in \mathbb{R}^2 \mid a < b\} \cup \{(a,b) \setminus \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \mid x, y \in \mathbb{R}, x < y\}$$

ההוכחה ש־ \mathcal{B} מושארת לקורא.

. נבחין אוסדורף, שגם שגם שגם להסיק לכן מרחב האוסדורף, אוסדורה האחרונה של $\mathbb{R}_{\frac{1}{n}}$ מרחב האוסדורף, לכן נוכל להסיק שגם

נראה ש־ $\mathbb{R}_{\frac{1}{n}}$ לא $\mathbb{R}_{\frac{1}{n}}$ (כי $\{\frac{1}{n}\mid n\in\mathbb{N}\}$ סגורה, ונראה כי לא ניתן להפריד בינה לבין 0. נניח ש־ $0\in U$ בחין כי $\{\frac{1}{n}\mid n\in\mathbb{N}\}$ סגורה, ונראה כי לא ניתן להפריד בינה לבין 0. נניח ש־0 כו 0 כי 0 פתוחה אז 0 מכילה איבר בסיס, לכן 0 מכילה קבוצה מהצורה 0 עבור 0 עבור 0 פתוחה אז 0 ש־0 פתוחה אז 0 מכילה איבר בסיס, לכן 0 מכילה קבוצה לבן 0 מכילה 0 בינה 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לכן 0 מכילה 0 פתוחה אז 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לכן 0 מכילה 0 פתוחה אז 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לוביר בסיס, לוביה איבר בסיס, לו

$.T_4$ אבל אבל האהא שהוא למרחב לא דוגמה נראה נראה 4.5 נראה אבל אבל אבל אבל אבל האחוא אבל לא

 $\mathbb{R}_L imes \mathbb{R}_L$ אז T_3 בפרט גם הנוצרת על T_4 הוא מרחב \mathbb{R}_L אז הוא $L=\{[a,b)\mid a< b, a,b\in\mathbb{R}\}$ עם הבסיס עם הנוצרת על T_3 היא בהכרח מטענה שראינו קודם על מכפלות מרחבי הפרדה.

היא $A\subseteq L$ הטופולוגיה נבחין כל תת־קבוצה היא הטופולוגיה היא מרחב \mathbb{R}^2_L היא מושרית על מי \mathbb{R}^2_L היא הטופולוגיה בחין כל תת־קבוצה בחין כי הטופולוגיה המשך הסתירה ל־ T_4 .

8.4.2025 - 5 שיעור 5

אקסיומות ההפרדה — המשך 5.1

נמשיך בהוכחת הסתירה עבור הדוגמה האחרונה מהשיעור הקודם.

הוא הטופולוגיה המושרית מ־ \mathbb{R}^2_L על A היא הטופולוגיה קבוצה בנוסף הגדרנו את הקבוצה $L=\{(-x,x)\mid x\in\mathbb{R}\}\subseteq\mathbb{R}^2_L$ אוהי המושרית מ" $L=\{(-x,x)\mid x\in\mathbb{R}\}\subseteq\mathbb{R}^2_L$ על A היא הטופולוגיה המושרית על $A=L\cap C_A$ הסקנו גם שכל $A\subseteq L\cap C_A$ היא סגורה ב"L=1, כלומר לכל $A\subseteq L$ יש קבוצה $C_A\subseteq\mathbb{R}^2_L$ ולכן גם A סגורה ב"L=1, נניח ש"L=1 היא היא L=1 היא מרחב נורמלי, ולכן כל שתי קבוצות סגורות זרות ניתנות להפרדה. בפרט לכל $A\subseteq L$ היש קבוצות פתוחות זרות $A\subseteq L$ נניח ש"A=1, נכך ש"A=1, בפרט לכל A=1 ווג קבוע כזה (וניצור מיפוי). בפרט לכל A=1 אז גם A=1 אז גם A=1 אז גם A=1 הוכר את A=1 אז גם A=1 ולכן A=1 ולכן A=1 אז גם A=1 ולכן A=1 אז גם A=1 ולכן A=1 ולכן A=1 אז גם A=1 ולכן A=1 ולכן A=1 אז גם A=1 ולכן A=1 ולכן A=1 ולכן A=1 אז גם A=1 אז A=1 אז גם A=1 ולכן A=1 ולבות A=1 ולבות

. ערכית, ולכן הד־חד שהיא שהכיח לנו להוכיח ונותר מתירה, ולכן מקבלת ערכית, ולכן ψ

נניח ש־ $V_A\cap D\neq\emptyset$, אז $\emptyset\neq A$, אז $\emptyset\neq A$ כי $U_A\neq\emptyset$ כי $U_A\neq\emptyset$. גם $U_A\neq\emptyset$, אם שכן $U_A\neq\emptyset$, אז $U_A\neq\emptyset$ כי $U_A\neq\emptyset$ כי $U_A\neq\emptyset$ כי $U_A\neq\emptyset$ כי $U_A\neq\emptyset$ בפופה וי $U_A\neq\emptyset$ בוכע שכן $U_A\neq\emptyset$ כך ש־ $U_A\neq\emptyset$ ו־ $U_A\neq\emptyset$ ו־ $U_A\neq\emptyset$ ו־בהתאם $U_A\neq\emptyset$ ו־בהתאם $U_A\neq\emptyset$ ויו אף קבוצה פתוחה. נסיק ש־ $U_A\neq\emptyset$ ש־ $U_A\cap U_B\neq\emptyset$ אז $U_A\cap U_B\neq\emptyset$ מקיימת $U_A\neq\emptyset$ ו־ $U_A\cap U_B\neq\emptyset$ ובהתאם $U_A\neq\emptyset$ ויו אף $U_A\cap U_B\neq\emptyset$ ווו אף $U_A\cap U_A\neq\emptyset$ ווו אף $U_A\cap U_A\neq\emptyset$ ווו אף $U_A\cap U_A\neq\emptyset$ ווו אף $U_A\cap U_A\neq\emptyset$ ווו

וזה בלתי $\mathcal{P}(L)\hookrightarrow\mathcal{P}(D)\hookrightarrow L$ אז נוכל לבנות איז $|\mathbb{R}|=|L|$ אבל שיכון שיכון שיכון \mathbb{R} . יש לנו שיכון שיכון שיכון $\mathcal{P}(D)\hookrightarrow\mathbb{R}$ אפשרי.

 T_4 במרחבי במיוחד משמעותית נסיים עם למה

f:X o [0,1] אם X מרחב טופולוגי T_4 , אז לכל זוג קבוצות סגורות זרות $C,D\subseteq X$, קיימת פונקציה רציפה T_4 אז לכל זוג קבוצות סגורות T_4 אוריסון) אם T_4 מרחב טופולוגי T_4 אז לכל זוג קבוצות סגורות זרות T_4 אוריסון.

קהוח, עבור ווער C_0 כי סטורה C_0 נניח ש־ C_0 מניח ש־ C_0 נניח ש־ C_0 וכן C_0 וכן C_0 וכן C_0 סטורה אלכן פרוחה. נניח ש־ C_0 מרחב באופן רקורסיבי קבוצות מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות ווער מדי מדובר בקבוצה מדובר בקבוצה מדובר בקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות מדובר בקבוצה בקבוצה מדובר בקבוצה מדובר בקבוצה מדובר בקבוצה מדובר בקבוצה מדובר בקבוצה בקבוצה

$$C_0 \subseteq V_{\frac{1}{2^n}} \subseteq C_{\frac{1}{2^n}} \subseteq V_{\frac{2}{2^n}} \subseteq C_{\frac{2}{2^n}} \dots$$

ונגדיר לכל $x \in X$ את הפונקציה,

$$f(x) \begin{cases} \inf\{t \in [0,1] \mid x \in V_t\} & \exists t, x \in V_t \\ 1 & \text{else} \end{cases}$$

אנו טוענים ש־f מקיימת את האמור, כלומר f(x)=C לכל f(x)=1, וכן f(x)=f(x)=0 הציפה. נשים לב ש־f(x)=f(x)=0 אנו טוענים ש־f(x)=f(x)=0 מקיימת את האמור, כנחין גם שעבור f(x)=x נובע ש־f(x)=x לאף f(x)=x נובע ש־f(x)=x נובע ש־f(x)=x נובע ש־f(x)=x נובע ש־להראות רציפות. אנו יודעים בחיל מקור של קבוצה שכל מקור של קבוצה של f(x)=x מספיק לבדוק את הרציפות עבור תת־בסיס של הקטע, שכל מקור של קבוצה פתוחה הוא פתוח. נבחר את תת־הבסיס f(x)=x ווא לכל f(x)=x מספיק לבדוק את הרציפות עבור ב"f(x)=x מחוח. בחר את תת־הבסיס f(x)=x ווא לכל f(x)=x מספיק לבדוק את הרציפות עבור תת־הבסיס של הקטע, שכל מקור של קבוצה שמתקיים, פתוחה הוא פתוח.

$$x \in f^{-1}([0,b))$$

 $f^{-1}([0,b))\subseteq$ אז נובע ש $f^{-1}([0,b))\subseteq$ אז לכן קיים $f^{-1}([0,b))$ מספר דיאדי (מהצורה הדרושה). לכן $f^{-1}([0,b])$ לכן קיים $f^{-1}([0,b])$ מספר דיאדי (מהצורה $f^{-1}([0,b])$ נניח שר $f^{-1}([0,b])$ אז שו מצאנו ש $f^{-1}([0,b])$ ווע שר $f^{-1}([0,b])$ אז מצאנו ש $f^{-1}([0,b])$ אז $f^{-1}([0,b])$ או $f^{-1}([0,b])$

21.4.2025 - 6 שיעור 6

6.1 אקסיומות מנייה

ראינו עד כה מספר שימושים לבסיסים של טופולוגיה, הגדרה 1.10. עתה נגדיר הגדרה משלימה לבסיס בהקשר מקומי.

בהתאם נגדיר את ההגדרה המהותית הראשונה שעוסקת במנייה.

הגדרה אם לכל $x\in X$ קיים בסיס לפתוחות של מקיים את מקיים את מקיים ממרחב בסיס לפתוחות של המנייה הראשונה אם לכל לכל מקיים בסיס לפתוחות של משבסיס בן־מנייה.

הגדרה 6.3 (אקסיומת המנייה השנייה) נאמר שמרחב X מקיים את אקסיומת המנייה השנייה השנייה (אקסיומת המנייה באים בן־מניה ל־X

הגדרה 6.4 מרחב לינדולף) X יקרא מרחב לינדולף, אם לכל כיסוי פתוח של X יש כיסוי בן־מניה.

 $X\subseteq \bigcup_{lpha\in J}U_lpha$ בלומר אם כך כיסוי פתוח, אז כיסוי כיסוי אב כלומר אב כלומר כלומר כיסוי כיסוי אז כיסוי פתוח, אוני ביסוי פתוח, אוני ביסוי פתוח, אוני פתוח, אוני ביסוי ביסוי פתוח, אוני ביסוי פתוח, אוני ביסוי ביסו

עתה משהגדרנו שפה לדבר בה על הקונספט של מנייה במרחבים טופולוגיים, נוכל לעבור למספר טענות.

טענה 6.6 מרחב רגולרי המקיים את אקסיומת המנייה השנייה הוא נורמלי.

 T_4 המקיים את אקסיומת המנייה השנייה ד T_3 בפרט מרחב

הוכחה. נניח ש־X רגולרי המקיים את אקסיומת המנייה השנייה. יהי \mathcal{B} בסיס בן־מניה. אנו רוצים להראות נורמליות, נניח ש־X רגולרי המקיים את אקסיומת המנייה השנייה. יהי \mathcal{B} בסיס בן־מניה. אנו רוצים להראות וואנו רוצים למצוא להן הפרדה. לכל $a\in A$ כך ש־ $a\notin B$ יש קבוצה פתוחה $a\in U_a\subseteq \overline{U}_a\subseteq X\setminus B$ כאשר $a\in U_a\subseteq A$ (כאשר $a\in A$), כאשר $a\in A$ וואכן האוסף $a\in A$ האוסף $a\in A$ האוסף $a\in A$ הווע על־ידי $a\in A$ (בחור את בן־מניה, ונוכל לכתוב אותו על־ידי $a\in A$ (באות אופן אפשר למצוא קיבלנו ש־ $a\in A$ באותו אופן $a\in A$ האוסף $a\in A$ (באומף אופף אפשר למצוא פתוחות $a\in A$ כך ש־ $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ כך ש־ $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ וסדרה $a\in A$ וסדרם ש־ $a\in A$ וסדרם ווחות $a\in A$ ווחות מורמל ווחות $a\in A$ ווחות ווחות $a\in A$ ווחות מורמל ווח

לכל $S=\bigcup_{k\in\mathbb{N}}S_k$ נגדיר בהתאם $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{U}_{a_k}$ וכן $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ נגדיר בהתאם לכל $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ונבדיר אז $K\in\mathbb{N}$ אז החיתוך לא ריק, אז $T=\bigcup_{k\in\mathbb{N}}T_k$ אם החיתוך לא ריק, אז $T=\bigcup_{k\in\mathbb{N}}T_k$ בי אלה קבוצות פתוחות. נבחין כי $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ונבדוק ש־ $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ אם החיתוך לא ריק, אז $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ולכן נובע,

$$S_m = U_{b_k} \setminus \bigcup_{i=1}^k \overline{T}_i \supseteq T_n$$

וזו סתירה.

נרצה לדון בקשר שבין מרחבים מטריים למרחבים טופולוגיים.

הגדרה 6.7 (מרחב מטריזבילי) מרחב טופולוגיX נקרא מטריזבילי אם קיימת מטריקה על X שמשרה את הטופולוגיה.

כבר ראינו שכל מטריקה משרה טופולוגיה שמקיימת את T_4 , עתה נרצה להבין מתי בדיוק טופולוגיה אכן מושרית מאיזושהי מטריקה. T_4 תת־מרחב של מרחב מטריזבילי הוא מטריזבילי.

משפט 6.8 (משפט המטריזביליות של אורסון) אם X מרחב טופולוגי T_3 המקיים את אקסיומת המנייה השנייה, אז X מטריזבילי.

, המכפלה עם המכפלה וויע סופולוגיית עם במרחב מטרי במרחב במרחב המכפלה הוא הכללי הרעיון הכללי הוא לשכן במרחב מטרי ב

$$d(x,y) = \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{2^n}$$

 $\psi(X)$ ל־ל מ־ל העתקה ערכית ערכית לי ע $\psi:X o [0,1]^{\mathbb{N}}$ ולבנות העתקה

 $x\in V_{xy}\subseteq$ בסיס בחצות למצוא ניתן ניתן $x\in U_{xy},y\in W_{xy}$ כך כך ער ער x
eq yיש פתוחות זרות $x\neq y$ יש פתוחות לכל לכל

21.4.2025 - 6 שיעור 6 6.2 קשירות

אוריסון קיימת של אוריסון בת־מניה. הברמניה. אז $\Lambda=\{(u,u)\in\mathcal{B}^2\mid\emptyset\not\subseteq V\subseteq\overline{V}\subseteq U\}$ אוריסון באוסף כל מבונן באוסף $\overline{V}_{xy}\subseteq U_{xy}$. נגדיר (גדיר $\{g_k\mid k\in\mathbb{N}\}=\{f_{(u,v)}\mid (u,v)\in\Lambda\}$ כדרת פונקציות הקבלים סדרת ויר $f\mid_{\overline{V}}=0$ ו־ $f\mid_{X\setminus U}=1$ כך ש־ $f=f_{(u,v)}:X o[0,1]$ רציפות. רציפות איא הומיאומורפיזם. על־ידי $\psi:X o\psi(X)$ על־ידי ערכית טוענים כי ψ היא היא ענים כי ψ היא הומיאומורפיזם. על־ידי $\psi:X o[0,1]^\mathbb{N}$ בטופולוגיית המכפלה שקולה לרציפות בכל קורדינטה, לכן מרציפות g_k לכל g_k מרציפות בכל קורדינטה, לכן מרציפות שלכל g_k לכל מרציפות בכל הציפות שלכל אוניית המכפלה בכל הציפות מכך שלכל אוניית במופולוגיית המכפלה בכל הציפות מכך שלכל אוניית במופולוגיית המכפלה בכל הציפות מכך שלכל אוניית במופולוגיית המכפלה במופולוגיית המכפלה במופולוגיית במופולוגית במופולוגיית במופולוגית במופולוגיית במופולוגית במ ש"ע $g_k(y)=1, g_k(x)=0$ ו־ם. אנו $g_k=f_{(v,u)}$ יש $x\in V\subseteq \overline{V}, y\in X\setminus U$ בראות הומיאומורפיזם. אנו $x\in V\subseteq V$ $W\subseteq X$ אלכל צריך להראות אלכל ביץ, כלומר באיפה כאשר איז $\psi^{-1}:E o X$ שלכל שלכל אריד להראות ערכית, וצריך להראות שלכל $k(x)\in\mathbb{N}$ יהי $x\in V\subseteq\overline{V}$ בר ש־ $V\in\mathcal{B}$ כך שימת $X\in U\subseteq W$ כך שימת $X\in U\subseteq W$ פתוחה ב־E. לכל $\int_{x\in W}g_{k(x)}^{-1}([0,1))=W$ ונובע ש־ $x\in g^{-1}([0,1))\subseteq U\subseteq W$ אז $g_{k(x)}\mid_{X\setminus U}=1$ וכן ומתקיים, $g_{k(x)}(x)=0$ וכן ש־ $g_{k(x)}=f_{(v,u)}$ אז מרש ,ולכן, $g_{k(x)}^{-1}=\psi^{-1}\circ\pi_{k(x)}^{-1}$ ולכן ולכן $g_{k(x)}=\pi_{k(x)\circ\psi}$

$$W = \bigcup_{x \in W} \psi^{-1}(\pi_{k(x)}^{-1}([0,1))) = \psi^{-1}(\bigcup_{x \in W} \pi_{k(x)}^{-1}([0,1)))$$

 $.\psi(W)=(igcup_{x\in W}\pi_{k(x)}^{-1}([0,1)))\cap E$ ונובע

6.2 קשירות

הגדרה 6.9 (קשירות) מרחב טופולוגי X יקרא קשיר אם לא ניתן להציג אותו כאיחוד של שתי קבוצות פתוחות זרות לא ריקות.

הערה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות סגורות. זאת שכם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות אורה. הארה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות סגורות. הארה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של הפוצות סגורות. תו. פתוחות, U^C , V^C וכמובן $U^C \cup V^C = X$ אז $U \cap V = \emptyset$

(a,b),[a,b],(a,b],[a,b] מהן תתי־הקבוצות של \mathbb{R} התשובה היא קטעים, (a,b), מהן תתי־הקבוצות הקשירות של

היא קבועה. היא קשיר אם היסקרטית, היא הדיסקרטית, עם היא או או הדיסקרטית, היא קבועה. הערה מרחב מרחב מרחב או היא קשיר אם ורק אם כל פונקציה רציפה הערה מרחב מרחב מרחב היא קבועה.

טענה 6.10 (תכונות של קשירות) התכונות הבאות מתקיימות,

- קשירה f(X) אם f:X o Y קשיר f:X o Y אם .1
 - קשירה אז \overline{A} קשירה אז $A\subseteq X$ השירה.
- קשירה $\bigcup_{\alpha\in I}A_{\alpha}$ אז $\alpha\in I$ כך ש־ $A_{\alpha}\cap A_{\beta}
 eq\emptyset$ כך ש־ $\beta\in I$ כך שירה קשירות וקיים אז $\{A_{\alpha}\}_{\alpha\in I}$ לכל 3.
 - קשירה $Y=\prod_{\alpha\in I}X_{\alpha}$ אם קשירים או מרחבים טופולוגיים קבוצת אם $\{X_{\alpha}\}_{\alpha\in I}$.4

אבל $f(A)=\{0\}$ אבל הכלליות נניח ש־ \overline{A} לא קשירה, לכן נובע שיש $f:\overline{A} o \{0,1\}$ לא קבועה. בלי הגבלת מענה 2. נוכיח את טענה 2. נוכיח את טענה 2. הייסור, לכן נובע שיש . חזו סתירה ולכן $\overline{A}\subseteq f^{-1}(\{0\})$ שי סגורה ונובע אילכן חזו סתירה ולכן $A\subseteq f^{-1}(\{0\})$ סגורה ולכן וזו סתירה.

A imes B אז שירים קשירים טופולוגיים מרחבים אם A,B אם עדר. שיר להראות ונרצה ונרצה טופולוגיים מרחבים או מרחבים ל $\{X_{lpha}\}_{lpha \in I}$ מרחבים או נעבור להוכחת טענה A,B מרחבים טופולוגיים ונרצה להראות ש קשיר, כנביעה מטענה 3, שכן,

$$A \times B = (\bigcup_{a \in A} \{a\} \times B) \cup (\bigcup_{b \in B} A \times \{b\})$$

 $A\times B=(\bigcup_{a\in A}\{a\}\times B)\cup (\bigcup_{b\in B}A\times \{b\})$ נרצה למצוא תת־קבוצה של $f:I\to \bigcup X_\alpha$ כאשר קבע, $f\in Y$ נקבע, נגדיר. נגדיר אפופה של אתריקבוצה של למצוא הבחירה. נקבע $P_F = \{h \in Y \mid h(\alpha) = f(\alpha) \forall \alpha \notin F\}$ כאשר $Z = \{h \in Y \mid |\{\alpha \in I \mid h(\alpha) \neq f(\alpha)\}| < \infty\} = \bigcup_{F \subseteq I, |F| < \infty} P_F$ אנו טוענים שתי שרא שרC קשירה היא שרC קשירה היא שרC קשירה היא שרכל קשירה היא שרבר קשירה, השנייה היא שרבר קשירה אנו טוענים שתי טענות, הראשונה היא שלכל P_F . מהגדרת מופולוגיית מהגדרת מהגדרת אהכפלה. $P_F\cong\prod_{y\in F}X_y$

נבהיר שמטרתנו הייתה למצוא קבוצה צפופה על ולהשתמש בטענה על סגור על סגור על צפופה. עשינו זאת על-ידי הוכחה למקרים סופיים עם למת $Z_F=\{h\in\prod_{lpha\in I}X_lpha=Y\mid$ נגדיר גדיר הבא הכוכב. בשלב הכוכב המכפלה קשירה המכפלה קשירה המכפלה המכפלה הכוכב. בשלב הבא הכוכב המכפלה אם נגדיר , $f_F(lpha)=f(lpha)$, או $f_F:I\setminus F o igcup_{lpha\in I\setminus F}X_lpha$ עבור $Y_F imes\{f_F\}$, שווה לי עבור Z_F או $\forall eta\notin F, h(eta)=f(eta)\}$ נקונן מספיק להתבונן אפופה ולכן קבוצה שכן אפופה לכל על מתקיימים מתקיימים לכל אכן אכן קבוצה קשירה, את שכן קבוצה לכל בוצה על בוצה על לכל לכל אכן לכל על אכן אכן בוצה על קבוצה על אינון אינו בבסים שהגדרנו בעזרתו את טופולוגיית מתקיים $\emptyset
eq B \in \mathcal{B}$ מתקיים שהגדרנו במיס שהגדרנו מחלכל במיס שלכל מתקיים שלכל מתקיים מחקיים שלכל מתקיים שלכל מחלכו מחלכל מחלכו מתקיים שלכל מתקיים שלכליים שלכל מתקיים של מתקיים של מתקיים של מתקיים שלכל מתקיים שלכל מתקיים שלכל מתקיים שלכל מתקיים g(eta)=f(eta)כך ש־ $g\in B$ כך לכל $\emptyset
eq U_lpha\subseteq X_lpha$ סופית ו $F\subseteq I$ סופית כאשר הוא מהצורה $G\in B$ כך ש־ $G\in B$ סופית ו $G\in B$ סופית ו $G\in B$ סופית ו

21.4.2025 - 6 שיעור 6 6.2

, אז נגדיר, או היושהי איזושהי מ־ $\emptyset
eq \emptyset$, מ־ $\emptyset : A \notin F$ לכל

$$B \ni g(\alpha) = \begin{cases} h(\alpha) & \alpha \in F \\ f(\alpha) & \alpha \notin F \end{cases}$$

 $g\in Z_F\subseteq Z$ נטען כי $g\in Z$, זאת שכן

22.5.2025 - 7 שיעור 7

7.1 קשירות – המשך

הגדרה לכל סביבה W של x של $x\in X$ אם לכל סביבה אוא קשיר מקומית הוא קשיר מקומית נאמר שהמרחב הטופולוגי הוא קשיר מקומית לכל $x\in X$ אם לכל סביבה של x של x של המקומית אם x קשיר מקומית לכל $x\in X$

x את מכילה אשר המקסימלית הקשירות הקבוצה הת-הקבוצה במרחב במרחב x במרחב במרחב רכיב קשירות) רכיב הקשירות של x

. $\bigcup_{x \in Z \subset X} Z$ את אכן קיימת אכן הטופולוגיה, לאיחוד אסגירות הסגירות בשל הסגירות אכן אכן הערה

. $\{\frac{1}{3}\}$ ־ש היא התשובה התשובה ב־ \mathbb{Q} ? ב־לוגמה 7.1 מה הוא רכיב הקשירות של

lpha(a) ל־lpha(a) נאמר שזוהי מסילה ביA היא פונקציה רציפה lpha(a) כך ש־lpha(a) כך ש־lpha(a) נאמר שזוהי מסילה בין lpha(a) ל־lpha(a) הגדרה lpha(a) מסילה lpha(a) היא פונקציה רציפה lpha(a) כך ש־lpha(a) כך ש־lpha(a) נאמר שזוהי מסילה בין lpha(a) ל-lpha(a) ל-lpha(a) האמסילה lpha(a) מסילה בין lpha(a) היא פונקציה רציפה lpha(a) ל-lpha(a) כך ש־lpha(a) כך ש-lpha(a) נאמר שזוהי מסילה בין lpha(a) ל-lpha(a) ל-lp

כך $x\in U\subseteq W$ המרחה של x יש קבוצה לכל סביבה אם לכל מקומית קשיר מסילתית המרחב א קשיר מסילתית מקומית ב־x אם לכל סביבה איש של על המרחב א קשירה מסילתית.

 $x \in X$ קשיר מסילתית מקומית אם x קשיר מסילתית מקומית לכל בהתאם

נתעניין להבין מה הקשר בין ארבעת מושגי הקשירות שראינו זה עתה. נתחיל בתכונה חשובה של קשירות מסילתית.

מענה 7.6 אם X קשירה מסילתית וf:X o Y רציפה אז f:X o X קשירה מסילתית.

lpha(0)=p' כך ש־ lpha:[0,1] o X מסילה עש מסילה f(p')=p, f(q')=q כך כך p', $q'\in X$ כך ש־ p, $q\in f(X)$ הוכחה. יהיו aירי מסילה המקשרת את aירי aירי מסילה היא רציפות היא רציפות היא רציפה ולכן aירי מסילה מסילה מסילה aירי aירי מסילה מסיל

עתה נראה את הקשר בין קשירות וקשירות מסילתית.

. מענה 7.7 אם X קשיר מסילתית אז X קשיר

לא קשיר $f(X)=\{0,1\}$ אבל $f(X)=\{0,1\}$ אבל דיסקרטית כך שי $f:X \to \{0,1\}$ אבל אבל אבל קשיר אז אם אם הוכחה. אם לא קשיר אז יש פונקציה רציפה לו אבל היים הטופולוגיה הדיסקרטית כך לא קשיר.

נבחין כי קשירות לא גוררת קשירות מסילתית, נראה דוגמה מתאימה.

X=0 נבחין כי \mathbb{R}^2 נבחין ארף הסגור של גרף הסגור של \mathbb{R}^2 , ונניח של \mathbb{R}^2 , ווהי תת-קבוצה של \mathbb{R}^2 , זוהי תת-קבוצה של \mathbb{R}^2 , ונניח של הסגור אל קשיר מסילתית, א קיימת מסילה אכן קשיר. מהצד השני הוא א קשיר מסילתית, א קיימת מסילה \mathbb{R}^2 , סגור של קבוצה קשירה הוא קשיר ולכן סגור זה אכן קשיר. מהצד השני הוא א קשיר מסילתית, א קיימת מסילה $\alpha(0)=(0,0), \alpha(1)=(1,\sin 1)$ כך שר $\alpha:[0,1]\to X$

28.4.2025 - 8 שיעור 8

- קשירות פינות - 8.1

דוגמה 8.1 נראה מרחב קשיר אך איננו קשיר מקומית. זהו מרחב המסרק,

$$(\{0\}\times[0,1])\cup\{[0,1]\times\{0\}\}\bigcup_{n\in\mathbb{N}}\{\frac{1}{n}\}\times[0,1]$$

מן הצד השני ראינו גם כי קשירות לא גוררת קשירות מסילתית.

,(0,1]ב בי $\frac{1}{x}$ של לגרף של \mathbb{R}^2 הצמצום אבמצום 8.2 ב־

$$Y = (\{0\} \times [0,1]) \cup \{(x, \sin\frac{1}{x}) \mid 0 < x \leq 1\}$$

מרחב זה הוא קשיר שכן הוא צמצום של מרחב קשיר והגרף רציף כתמונה של פונקציה רציפה ממרחב קשיר (קטע).

,כך שמתקיים, כך מסילתה ש- $\alpha:[0,1]\to Y$ מסילה בפרט מסילתית מסילתית קשיר קשיר נניח נניח בשלילה מסילתית מסילתית ולכן

$$\alpha(0) = (0,0), \qquad \alpha(1) = (1, \sin 1)$$

נמצא . $lpha_1(t_1)=rac{1}{2}$ כך ש $\frac{1}{2}$ ס כך $t_1<1$ הביניים קיים ערך הביניים $lpha_1(0)=0,$ $lpha_1(1)=1$ ולכן $\delta(t)=(lpha_1(t),lpha_2(t))$ נמצא . $lpha_1(t_1)=\frac{1}{2}$ ולכן $\delta(t)=(lpha_1(t),lpha_2(t))$ משפט ערך הביניים קיים $\delta(t)=(lpha_1(t),lpha_2(t))$ ונמצא . $lpha_1(t_1)=(lpha_1(t),lpha_2(t))$ ולכן $\delta(t)=(lpha_1(t),lpha_2(t))$ משפט ערך הביניים קיים $\delta(t)=(lpha_1(t),lpha_2(t))$ ולכן $\delta(t)=(lpha_1(t),lpha_2(t))$ משפט ערך הביניים קיים $\delta(t)=(lpha_1(t),lpha_2(t))$ משפט ערך הביניים קיים לוגדיר גם משפט ערך הביניים לוגדיר גם משפט ערך הבינים לוגדיר גם משפט ערך הביניים לוגדיר גם משפט ערך הבינים לוגדיר גם משפט ערך הביניים לוגדיר גם משפט ערך הבינים לוגדיר גם משפט ערך משפט ערך משפט ערך משפט ערך משפט ערך משפט ערך

$$\alpha(t_2) = (?, -1)$$

ואכן מאפיון ענקבל שלנקודות האה נקודות ככה סדרה של לבנות ככה מדרה של נוכל לבנות אלה יש גבול ($\alpha(t_3)=(?,1)$ שלנקודות היינה לגבולות נקבל.

$$\alpha(0) = \lim_{n \to \infty} t_n = \lim_{n \to \infty} (-1)^n$$

אבל גבול זה לא קיים.

מענה אז X קשיר מסילתית מקומית אז X קשיר מסילתית.

, הותוה, אנו יודעים גם אנו יודעים אנו אנו יודעים ש־ $A \neq \emptyset$ ולכן אנו יודעים ש־ $A \neq 0$ ונתבונן במחלקת הקשירות של $a \in A$ ונסמנו אנו יודעים מסילתית ולכן בפרט ישנה סביבה של $a \in A$ אנו יודעים כי $a \in A$ אנו יודעים כי $a \in A$ אנו יודעים כי $a \in A$

נטען גם כי A סגורה, הראינו שבמרחב קשיר מסילתית מקומית כל רכיב קשירות מסילתית הוא קבוצה פתוחה, אבל זה גורר שכל רכיב קשירות מסילתית האחרים. מסילתית האחרים.

A=Xינסיק ש־ $x_0\in A$ אבל $A\in \{X,\emptyset\}$ אז

8.2 קומפקטיות

. הגדרה של X יש תת־כיסוי פופי. אם לכל כיסוי פתוח של א יש תת־כיסוי סופי. מרחב טופולוגי א יקרא קומפקטי אם לכל כיסוי פתוח של א יש תת־כיסוי סופי.

 $X=igcup_{lpha\in I_0}U_lpha$ שיפי כך סופי כך אז קיים $X=igcup_{lpha\in I}U_lpha$ כך שר $A=igcup_{lpha\in I}U_lpha$ כך ער $A=igcup_{lpha\in I}U_lpha$ כך ער $A=igcup_{lpha\in I}U_lpha$ או המכיל את תיקבוצה עוקרא קומפקטית אם היא מרחב קומפקטי כתת־מרחב של $A=igcup_{lpha\in I}U_lpha$ המכיל את את את היא מרחב היא מרחב היא מרחב היא מרחב הוא מרחב היא מרחב היא מרחב הוא מרחב היא מרחב היא מרחב הוא מרחב הוא מרחב היא מרחב הוא מרחב ה

נראה הגדרה שקולה בניסוח של קבוצות סגורות,

את להן שיש סגורות ב־X כך שיש להן את לכל אוסף אם לכל אוסף אם לכל מרסהב טופולוגי קומפקטיות) א מרחב מרחב אורק אם לכל אוסף מגורה לכל אוסף אז יש א להן את מרחב טופית כך שמתקיים, חכונת החיתוך הסופי, כלומר ש $\emptyset=\bigcap_{\alpha\in I}F_{\alpha}$ סופית, אם F_{0} סופית, אם סופית כך שמתקיים,

$$\bigcap_{\alpha \in I_0} F_\alpha = \emptyset$$

. הטומה אס סגורק אם אם ורק אם קומפקטית היא $A\subseteq\mathbb{R}^n$ הערה שתת-קבוצה שתת-קבוצה האטומה.

עבור המקרה של $A \subseteq \mathbb{R}$ עבור המקרה של

$$A\subseteq\bigcup_{n\in\mathbb{N}}(-n,n)=\mathbb{R}$$

28.4.2025 - 8 שיעור 8

$$V \cap (\bigcup_{i=1}^{N} U_{a_n}) = \emptyset$$

. בהמשך. יותר כללית בהמשך ולכן $V \subseteq \mathbb{R} \setminus A$ ולכן ולכן $V \subseteq \mathbb{R} \setminus A$ וכן וכן ער ש־ענה ענובע ש־ער ולכן אולכן ולכן ולכן אולכן ולכן אולכן אולכן אולכן ולכן אולכן אולכן

היא סגורה, אוסדורף האוסדורף מכרחב A הוכחנו החזקה לתת-קבוצה לתת-קבוצה הוכחנו כרגע מענה חזקה הותר, כל תת-קבוצה הומפקטית

היא $A=\{a\}$ היא הטריוויאלית, אז הטריוויאלית, קיימים מרחבים איימים קיימים האינה סגורה. לדוגמה סגורה. לדוגמה איינה מת-קבוצה קומפקטית אינה עם תת-קבוצה קומפקטית אבל לא סגורה.

טענה A אם X קומפקטית ו $A\subseteq X$ סגורה אז א קומפקטית.

$$X = (X \setminus A) \cup \bigcup_{\alpha \in I} U_{\alpha}$$

וקיבלנו כי יש למרחב תת־סיכוי סופי. כלומר יש $I_0\subseteq I$ סופית כך שמתקיים,

$$X = (X \setminus A) \cup \bigcup_{\alpha \in I_0} U_{\alpha}$$

 $A \subseteq \bigcup_{\alpha \in I_{\alpha}} U_{\alpha}$ ולכן

טענה 8.5 תמונה רציפה של מרחב קומפקטי היא קומפקטית, כלומר אם X מרחב קומפקטי וf:X o Y פונקציה רציפה מX למרחב טופולוגי f:X o Y אז אז $f(X)\subseteq Y$ אז אז f(X)

טענה 8.6 אם X מרחב האוסדורף קומפקטי אז X מרחב רגולרי.

 $.b \notin A$ ונקודה סגורה סגורה בין להפריד אפשר וגן אפשר ורק אם ורק אם מתקיימת הגורה. רגולריות הוכחה. וגן אפשר וא

 U_a,V_a עבור $a\in U_a,b\in V_a$ שיש פתוחות פובע שיש פתוחות כל $a\in A$ כך שי $a\in A$ קומפקטית, נובע שיA קומפקטית, או נובע שי $A\in U$ סגורה עבור $A\subseteq U$ סגורה עבור או נובע שיA קומפקטית, או פתוחות או וובעים כי $A\subseteq U$ וובע שיים או וובעים כי $A\subseteq U$ וובעים כי

. היא הומיאומורפיזם ערכית ערכית ערכית הד-חד ערכית f:X o Y , מסקנה מופולוגי מחדם מחדם ערכית ערכית או מסקנה ערכית ערכית או מסקנה או מסק

עלינו עלינו להראות רק ש־f מקיימת ש־ f^{-1} רציפה, ונקבל שכלל התנאים להומיאומורפיזם חלים. לכל תת־קבוצה סגורה f^{-1} רציפה, ונקבל שכלל התנאים להומיאומורפיזם חלים. לכל מקיימת ש־ f^{-1} סגורה. f^{-1} סגורה עלינו להראות ש־ f^{-1} סגורה. f^{-1} סגורה להומיאומורפיזם מגורה ולכן היא קומפקטית ו־ f^{-1} סגורה. f^{-1} סגורה.

. מרחב מרחב אז א מרחב האוסדורף קומפקטי אז א מרחב נורמלי. אם אם 8.8 מענה

 $B\subseteq$ ו זרות, זרות, אז לכל $b\notin A$ מתקיים $b\notin A$ מתקיים $b\in B$ פתוחות זרות, אז לכל $A,B\in X$ קתי קבוצות סגורות וזרות, אז לכל $B\subseteq U_b$ מתקיים $A,B\in X$ קתי קבוצות הללו מפרידות הללו מפרידות הללו מפרידות הא סגורה במרחב קומפקטי ולכן $B\subseteq \bigcup_{i=1}^n V_{b_i}$ כיסוי פתוח סופי, וכן $A,B\subseteq X$ ושתי הקבוצות הללו מפרידות בין A ל $B\subseteq X$ ופתוחות.

טענה $f:X o\mathbb{R}$ רציפה, אז, רציפה, אז מרחב מופולוגי קומפקטי וX

- הסומה (וסגורה) הסומה f(X) .1
- מקסימום ומינימום f^- מקסימום 2.
- . מטריזבילי במידה f המטריקה ρ המטריזבילי מטריזבילי נניח X

הוכחה. נוכיח את הטענות,

. היא סגורה חסומה. \mathbb{R} היא קומפקטית ותת-קבוצה הוחסומה $f(X)\subseteq\mathbb{R}$ היא סגורה חסומה.

מקיים $x\in X$ מקיים של A ולכן כל A ולכן הוא הסופרימום של A ונניח שA ונניח שA מתקבל וסופי, נסמן גם A מתקבל וסופי, נסמן גם A מתקבל וסופי, משר A מתקבל וגם לכל A וא מרי־קבוצות סגורות A ולכל A וא מרי־קבוצות סגורות בייט אוסף שלכל A וא מרי־קבוצות המור ווא מקר בייט אוסף אומיים בייט אוסף שלכל A ווא מהור בייט אוסף שלכל A ווא מההגדרה בייט אוסף אומיים מחור בייט אוסף שלכל A ווא מההגדרה בייט אומיים מחור בייט אוסף מחור בייט אוסף מחור בייט אוסף מחור בייט אומיים מחור בייט

$$\bigcup_{i=1}^{n} F_{\epsilon_i} = A \cap [M - \delta, M]$$

עבור $\delta = \min\{\epsilon_1, \ldots, \epsilon_n\}$ נובע אם כך,

$$A\cap\{M\}=\bigcap_{\epsilon>0}(A\cap[M-\epsilon,M])=\bigcap_{\epsilon>0}F_\epsilon\neq\emptyset$$

 $M\in A=f(X)$ ולכן נסיק ולכן ולכן

3. מושאר כתרגיל, אבל רמז הוא מספר לבג לכיסוי.

8.3 קומפקטיות במרחבים מטריים

לא נגדיר אך ניזכר במספר הגדרות חשובות מעולם המרחבים המטריים, הן סדרות קושי, שלמות, חסימות לחלוטין. בהינתן שאנו מכירים את המונחים הללו, נעבור למשפט, אך לפני זה נגדיר מונח חדש שיעזור לנו בהוכחת משפט זה.

הכיסוי אם הכיסוי לבג אז (מספר לבג) אז $\lambda>0$ אז אז X אז פיסוי פתוח של הכיסוי מטרי, ויהי ויהי אמפר לבג של מספר לבג אז מספר לבג של הכיסוי אם הגדרה 8.11 אז $B_\lambda(x)\subseteq U_\alpha$ בך ש־ $\alpha\in I$ לכל לבל אז קיים X

 $lpha\in I$ לכל $U_lpha
ot\equiv B_{rac{1}{n}}(x)$ כך שי $x\in X$ שי $n\in\mathbb{N}$ לכל לראות זאת, לכל מספר לבג. כדי לראות מספר לבג. כדי לראות מספר מסריים מטריים קומפקטיים, תמיד שמספר לבג. כדי לראות זאת, לכל מקומפקטיות סדרתית ונקבל סתירה.

הערה באופן כללי קומפקטיות לא גוררת קומפקטיות סדרתית וגם לא להיפך.

X בוגמה אם עם טופולוגיית שמצביה עם עם $X=\{0,1\}^I$ וכן I=[0,1] וכן גדיר קומפקטיות סדרתית לא גוררת קומפקטיות. נגדיר אוכן I=[0,1] וכן X=[0,1] עם טופולוגיית שנוכיח בהמשך. בהמשך. נגדיר עם הטופולוגיה במושרית ממנו. אנו טוענים כי Y קומפקטי סדרתית אבל לא קומפקטי.

 $(\alpha,\alpha_1,\ldots,\alpha_n\in I$ נסמן לכל מצד שני, לכל $Y\subseteq igcup_{lpha\in I}U_lpha$ וכן פתוחה, וכן $U_lpha=\{x\in X\mid x_lpha=0\}$ נסמן לכל מצד מצר לא קומפקטי, לכל ל

$$Y \not\subseteq \bigcup_{i=1}^n U_{\alpha_i}$$

 $y_n\in\{0,1\}^J$ עבור $J=igcup_{n=1}^\infty J_n$ עבור lpha
otin J לכל לכל $y_n(lpha)=0$ בת־מניה בת־מניה בת־מניה לכל לכל לכל לכל עבור $J_n\subseteq[0,1]$ עבור לכל מטריים) אז התנאים הבאים שקולים, אז התנאים מטריים מטריים מטריים מטריים מטריים.

- קומפקטיX .1
- קומפקטי סדרתית X .2
- שלם וחסום לחלוטין X .3

 $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 2 \Rightarrow 1$ הסדר בו נוכיח את המשפט היה הסדר בו נוכיח

29.4.2025 - 9 שיעור 9

9.1 קומפקטיות – תכונות

נמשיך במתן דוגמות,

דוגמה 2.1 נראה דוגמה למרחב קומפקטי סדרתית שאינו קומפקטי. נגדיר I=[0,1] וכן I=[0,1] וכן אפוניים בהמשפט טיכונוף שנוכיח בהמשפט X, $X\{0,1\}^I$ וכן I=[0,1] וכן I=[0,1] אינו קומפקטית סדרתית. לכל I=[0,1] אנו טוענים כי I=[0,1] אנו טוענים סדרתית. לכל סדרתית של סדרתית. לכל סדרתית של סדרתית של סדרתית. לכל סדרתית של סדרתית ש

$$\bigcup_{i=1}^{n} U_{\alpha_i} \subseteq \{x \in X \mid \exists 1 \le i \le n, x_{\alpha} = 0\}$$

,ובמקרה זה נבחר $Z=Z_{lpha}$ עבור,

$$Z_{\alpha} = \begin{cases} 1 & \alpha = \alpha_i, 1 \le i \le n \\ 0 & \text{else} \end{cases}$$

, לכל $y^n=(y^n_\alpha)_{\alpha\in I}$ כאשר $\{y^n\}_{n=1}^\infty\subseteq Y$ תהי סדרתית. תהי קומפקטית עתה כי עתה כי $J_n=\{\alpha\in I\mid y^n_\alpha=1\}$

ונבחין כי \aleph_0 נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$ נתבונן במרחב הטופולוגי $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם מטרי. רעינו שיש מטריקה על $\{0,1\}^I\to\{0,1\}^I\to\{0,1\}^I$ שמתאימה לטופולוגיית המכפלה. נגדיר את ההטלות $J=\bigcup_{n\in\mathbb{N}}J_n$ כאשר $J=\bigcup_{n\in\mathbb{N}}J_n$ מתכנסת. מטרי קומפקטי הוא קומפקטי סדרתית ולכן יש תת־סדרה $J=\bigcup_{n\in\mathbb{N}}J_n$ סדרה מתכנסת, נשאר לנו לבדוק שנובע שגם $J=\bigcup_{n\in\mathbb{N}}J_n$ מתכנסת.

דוגמה 9.2 נראה דוגמה למרחב קומפקטי שאינו קומפקטי סדרתית.

 $f_n:[0,1] o$ לאשר $\{f_n\}_{i=1}^\infty\subseteq X$ כלומר $\{f_n\}_{i=1}^\infty\subseteq X$ מטיכונוף שוב $\{f_n\}$ קומפקטי. נגדיר סדרת איברים $\{f_n\}_{i=1}^\infty\subseteq T$ מקיימת $\{f_n\}_{i=1}^\infty$ מטיכונוף שוב $\{f_n\}_{i=1}^\infty$ קומפקטי. נגדיר סדרת איברים $\{f_n\}_{i=1}^\infty$ ניתן לכתוב כפיתוח בינארי, $\{f_n\}_{i=1}^\infty$ עבור $\{f_n\}_{i=1}^\infty$ ומתקיים, $\{f_n\}_{i=1}^\infty$ נוכל למשל לבחור את הפיתוח שמחלצות את הספרה ה־ $\{f_n\}_{i=1}^\infty$ מהמספר שהן מקבלות. נניח של $\{f_n\}_{i=1}^\infty$ יש כאשר, נגדיר עתה מתכנסת $\{f_n\}_{k=1}^\infty\subseteq \{f_n\}_{k=1}^\infty$ נגדיר עדור מתכנסת $\{f_n\}_{k=1}^\infty\subseteq \{f_n\}_{k=1}^\infty$

$$s_m = \begin{cases} 1 & m = n_{2k} \\ 0 & \text{else} \end{cases}$$

ונחשב,

$$f_{n_k}(s) = \begin{cases} 1 & k \in 2\mathbb{N} \\ 0 & k \in 2\mathbb{N} + 1 \end{cases}$$

. ולכן לא f_{n_k} ולכן

מצאנו שתי דוגמות שאכן מעידות על זה שקומפקטיות וקומפקטיות סדרתית לא גוררות אחת את השנייה במרחבים כלליים.

 $\prod_{lpha\in I} X_lpha$ אז $lpha\in I$ אז מכפלה של מרחב משפט סיכונוף) משפט חימון היא קומפקטיים היא קומפקטיים, כלומר אם מכפלה של מרחבים טופולוגיים קומפקטיים היא קומפקטיי. עם טופולוגיית המכפלה הוא קומפקטי.

Y=W הוכחה. X_1,X_2 מרחבים טופולוגיים קומפקטיים, ונוכיח ש־ $X_1\times X_2$ קומפקטי. נניח בשלילה שאכן X_1,X_2 מרחבים טופולוגיים קומפקטיים, ונוכיח ש־ $X_1\times X_2$ קומפקטי. נניח בשלילה שיש נקודה $Y=(a,b)\in Y$ כיסוי פתוח של $Y=(a,b)\in Y$ לא קומפקטי. לכן יש $Y=(a,b)\in Y$ כיסוי פתוח של $Y=(a,b)\in Y$ לו הבלתי אפשרי כי $Y=(a,b)\in Y$ הוה בלתי אפשרי כי $Y=(a,b)\in Y$ הוה בלתי אפשרי כי $Y=(a,b)\in Y$ הוה בלתי אפשרי כי על־ידי מספר סופי של קבוצות בסיס שמכילה את $Y=(a,b)\in Y$ ו"בער הערים אשר ניתנת לכיסוי על־ידי מספר סופי של קבוצת בסיס שמכילה את אוני בער הערים על פתוחה ולכן מכילה קבוצת בסיס שמכילה את אוני בער הערים בער

נטען כי יש $A\in X_1$ כך שלא קיימת קבוצה פתוחה $A\in X_2$ כך ש־ $a\in U$ כך ש־ $a\in U$ נניח בשלילה פרוצות מ"כיסוי מוכלת באיחוד סופי של קבוצות מהכיסוי הנתון. נבחן את על־ידי קבוצות מהכיסוי הנתון. נבחן את על־ידי קבוצות מהכיסוי הנתון. נבחן את $a\in X_1$ של־ידי קבוצות מהכיסוי הנתון. נבחן את על־ידי קבוצות מהכיסוי מ"כיסוי פתוח, אבל $A=U_a$ קומפקטית ולכן קיימות $A=U_a$ כך ש־ $A=U_a$ כל על־ידי פתוח, אבל על־ידי פתוחה, אבל על־ידי פתוחה, ולכן קיימות על־ידי מ"כיסוי סופי ל־ $A=U_a$ ישר בשל ההנחה כי אין תת־כיסוי סופי.

29.4.2025 - 9 שיעור 9 9 שיעור 9

5.5.2025 - 10 שיעור 10

10.1 קומפקטיות – משפט טיכונוף

ניזכר בכמה הגדרות שמגיעות אליהו מתורת הקבוצות.

הגדרה 10.1 (קבוצה סדורה) סדר על קבוצה, או קבוצה סדורה, הוא הזוג הסדור (X,\leq) , כאשר X קבוצה ו־X יחס דו־מקומי רפלקסיבי, אנטי־סימטרי וטרנזיטיבי.

הגדרה 10.2 (סדר טוב) סדר טוב הוא סדר קווי, כלומר יש יחס לפחות לאחד הכיוונים בין כל שני איברים בקבוצה, וכן שלכל תת-קבוצה של X יש מינימלי ביחס הסדר.

עיקרון הסדר הטוב מעיד שלכל קבוצה יש סדר טוב כלשהו שמוגדר עליה, והוא שקול לאקסיומת הבחירה.

בשיעור הקודם הוכחנו את משפט טיכונוף למקרה הסופי, עתה נראה את ההוכחה עבור המקרה הכללי. נבחין כי משפט טיכונוף שקול לאקסיומת הבחירה (ולעיקרון הסדר הטוב), ולכן במהלך ההוכחה נהיה מחויבים להשתמש באקסיומה.

נבנה באינדוקציה \mathcal{F} הניח הכיסוי הזה ש"ע בשלילה ש"ע בניח אינה קומפקטית, כלומר ש"ע כיסוי פתוח שאין לו תת־כיסוי סופי, נסמן את הכיסוי הזה $Y=\prod_{\alpha\in I}X_{\alpha}$. נבנה באינדוקציה לכל 1 איזשהו 1 בסיס טופולוגי ל"ע, המכילה תת־הקבוצה, 1 איזשהו 1 בסיס טופולוגי ל"ע בסיס טופולוגי ל"ע המכילה הת"ב המכילה תח"ב המכילה חדש בחיס טופולוגי ל"ע המכילה הת"ב המכילה המכילה חדשה המכילה המכילה המכילה המכילה המכילה חדשה המכילה המכ

$$\prod_{\alpha \le \gamma} \{X_{\alpha}\} \times \left(\prod_{\gamma < \alpha} X_{\alpha}\right) \tag{1}$$

או את,

$$\prod_{\alpha<\gamma}\{a_\alpha\}\times\prod_{\gamma\leq\alpha}X_\alpha \tag{2}$$
אז אינה ניתנת לכיסוי על־ידי אוסף סופי של a_α נבנה את באנדוקציה טרנספיניטית (אינדוקציה על סודרים). נביח שהגדרנו את על לכי

אז a_{α} אז a_{γ} אנה ניתנת לכיסוי על־ידי אוסף סופי של A_{γ} . נבנה את a_{γ} באינדוקציה טרנספיניטית (אינדוקציה על סודרים). נניח שהגדרנו את a_{γ} או בנה את a_{γ} אינה ניתנת לכיסוי על־ידי תת־אוסף סופי מ־ A_{γ} (ונבהיר, זו הנחת a_{γ} אינה ניתנת לכיסוי על־ידי תת־אוסף סופי מ־ A_{γ} (ונבהיר, זו הנחת a_{γ} אינה בסיס שמכילה את a_{γ} אינרים, יהיו סודרים עוקבים, אלו שמתקבלים מהוספת 1 לאיבר קיים כלשהו, ויש איברים גבוליים, עליהם נסתכל כאיברים אינסופיים, גבול בראי החיבור של איברים אחרים. כדי להתמודד עם הקושי הזה ולהשתמש באינדוקציה טרנספיניטית, מסתכלים על איברים גבוליים אלה או כאיברים מינימליים בקבוצה המתאימה להם, או כסופרימום של קבוצת האיברים הכיוונים.

ענדרש. \mathcal{F} אנח סופי של \mathcal{F} ואז מצאנו אנח לכיסוי על־ידי תת־אוסף סופי של פוצת בסיס המקיימת אנח בסיס מפרימת על־ידי תת־אוסף סופי של \mathcal{F} וויש ל־ $W_{a_\gamma}=1$ וויש ל־ $W_{a_\gamma}=1$ וויש ל־ $W_{a_\gamma}=1$ על או שיש קבוצה בסיס בסיס מפרימת שלילת הטענה. בסיס בחין כי,

$$a_{\gamma} \in \pi \gamma(W_{a_{\gamma}})$$

קבוצה פתוחה, אז מתקיים,

$$X_{\gamma} = \bigcup_{\alpha_{\gamma} \in X_{\gamma}} \pi_{\gamma}(W_{a_{\gamma}})$$

אז יש תת־כיסוי סופי,

$$X_{\gamma} = \bigcup_{i=1}^{k} \pi_{\gamma}(W_{a_{\gamma}^{i}})$$

,נגדיר, יש תת־כיסוי סופי על־ידי איברי $igcup_{i=1}^k W_{a^i_\gamma}$ לכן לקבוצה

$$V_i = \left(\prod_{j=1}^k \pi_{\gamma^<}(W_{a^i_\gamma})\right) \times \pi_{\gamma}(W_{a^i_\gamma}) \times \prod_{\alpha > \gamma} X_\alpha$$

, אז, $\pi_{\gamma^<}:Y o\prod_{lpha<\gamma}X_lpha$ כאשר

$$\bigcup_{i=1}^k V_i = \left(\bigcap_{j=1}^k \pi_{\gamma^<}(W_{a_\gamma^j})\right) \times \left(\bigcup \pi_{\gamma}(W_{a_\gamma^i})\right) \times \prod_{\alpha > \gamma} X_\gamma$$

ולכן,

$$\bigcup_{i=1}^k V_i = \left(\bigcap_{j=1}^k \pi_{\gamma^{<}}(W_{a^i_\gamma})\right) \times \left(\prod_{\alpha \geq \gamma} X_\alpha\right)$$

וקיבלנו סתירה כי הנחנו שהקבוצה הזו לא ניתנת לכיסוי סופי בעזרת איברי ${\mathcal F}$, ובכל זאת מצאנו כיסוי סופי כזה.

, מתקיים, טרנספיניטית לכל $\alpha_{\gamma} \in X_{\gamma}$ מקבלים מקבליטית טרנספיניטיה לכן לכן לכן אינדוקציה טרנספיניטית ל

$$Y = \prod_{\alpha \in I} X_{\alpha} \ni f = (a_{\gamma})_{\gamma \in I}$$

מתקיים $\alpha>\gamma_0$ כך שלכל $\gamma_0\in I$ יש איבר בסיס איבר $S_lpha=X_lpha$, ולכמעט כל $W=\prod_{lpha\in I}S_lpha$ כך שלכל $f\in W\subseteq L$ סתקיים ולכן יש איבר בסיס, $S_lpha=X_lpha$ ולכן קיבלנו איבר בסיס,

$$\prod_{\alpha \le \gamma_0} \{a_\alpha\} \times \prod_{\alpha > \gamma_0} X_\alpha \subseteq L$$

וסתירה.

אנו כבר יודעים כי אנו יכולים לראות קומפקטיות גם כך שאם Z קומפקטי אז לכל L אוסף סופי של קבוצות סגורות ב־Z עם תכונת החיתוך הסופי, יש חיתוך לא טריוויאלי.

הגדרה 10.3 (תכונת החיתוך הסופי) נאמר שלאוסף L של תתי-קבוצות של קבוצה Z יש את תכונת החיתוך הסופי, אם לכל תת-קבוצה סופית של יש חיתוך לא טריוויאלי. L

יהיה נוח להסתכל על אפיון אחר,

טענה 10.4 (שקילות לקומפקטיות) מרחב טופולוגי Z הוא קומפקטי אם לכל אוסף L של תתי־קבוצות Z עם תכונת החיתוך הסופי, מתקיים D ש־D D ש-D .

נעבור למספר טענות לקראת משפט שנראה בהמשך.

טענה 10.5 אם לאוסף קבוצות $L_{eta}=\{\pi_{eta}(A)\mid A\in L\}$ יש את תכונת החיתוך הסופי, אז גם לי $L\subseteq\prod_{lpha\in I}X_{lpha}$ יש את תכונת החיתוך הסופי ביחס לי- X_{eta} .

אומנם לא נוכיח טענה זו, אבל נשים לב שהיא נובעת באופן ישיר מהאפיון הנוסף לקומפקטיות ושימוש בקבוצות הסגורות המושרות מהסגור שהגדרנו על L.

טענה 10.6 אם L אוסף תתי־קבוצות של Y המקיים את תכונת החיתוך הסופי, אז L מוכל באוסף תתי־הקבוצות של Y עם תכונת החיתוך הסופי, כך שהאוסף מקסימלי.

החורה החיתוך הסופי, זו קבוצה את תכונת המקיימות המקיימות $\Omega=\{C_{\alpha}\}$, $L\subseteq C\subseteq \mathcal{P}(Y)$ של כל תתי־הקבוצות באוסף Ω של כל המקסימלי כזה. באוסף של בורן נובע שאכן יש איבר מקסימלי כזה.

נראה טענה כללית נוספת ובעלת חשיבות.

- $\bigcap_{i=1}^n A_i \in M$ גם $A_1, \ldots, A_m \in M$ ולכל $m \in \mathbb{N}$.1
 - $B\in M$ אז $A\cap B
 eq\emptyset$ אם $A\in M$ אז $B\subseteq R$ אז $B\subseteq A$ אם .2

גם כאן, ההוכחה היא ברורה ונובעת מהמקסימליות, ומושארת כתרגיל לקורא.

נעבור להוכחה נוספת למשפט טיכונוף, תוך שימוש בטענות שראינו זה עתה.

עם אסימלי עם $L\subseteq M\subseteq \mathcal{P}(Y)$ יש הסופי. עם תכונת החיתוך עם הכל עם אכל לכל לכל לכל לכל לכל אין איז הסופי. עם עם החיתוך הסופי. איז לכל לכל לכל לכל לכל איז איז החיתוך הסופי. איז החיתוך הסופי.

 $M_{\alpha} = \{\pi_{\alpha}(A) \mid A \in M\}$ לכל α נגדיר

 $y_lpha\in igcap_{A\in M_lpha}\overline{A}$ את lpha את הכונת החיתוך הסופי. נובע ש X_lpha קומפקטי וי $A=\emptyset$. נבחר לכל את את תכונת החיתוך הסופי. נובע ש

, מקיימת $y=(y_\alpha)_{\alpha\in I}\in\prod_{\alpha\in I}X_\alpha=Y$ הנקודה כי נוכיח אנו נוכיח אנו

$$y\in\bigcap_{B\in M}\overline{B}\subseteq\bigcap_{A\in L}\overline{A}$$

שמקיימת $y\in W\subseteq Y$ מספיק להראות שכל קבוצת בסיס $y\in W$ שמקיימת על פרואות על פרואות שכל קבוצת את מספר, כלומר, כל פתוחה שמכילה את $y\in W$ שמקיימת מטענה $y\in W$ ונראה ש $y\in W$ בסיס בסיס $y\in W$ היא חיתוך של מספר סופי של קבוצות $y\in W$ באוסף עבור $y\in W$ מקסימלי ולכן אם $y\in W$ לכל עבוצה שמספיק להוכיח שכל $y\in W$ כזו כך ש $y\in W$ כי היא חיתוך של מספר סופי של $y\in W$ אד אלה ב $y\in W$ הותך כל איבר ב- $y\in W$ נובע ש $y\in W$ כי היא חיתוך של מספר סופי של $y\in W$ אך אלה ב $y\in W$ חותך כל איבר ב- $y\in W$

אז גם $y_{\beta}\in\pi_{\beta}(D)$ גם $D\in M$ נובע שלכל $A=\pi_{\beta}(D),D\in M$ וכן $y_{\beta}\in\bigcap_{A\in M_{\beta}}\overline{A}$ אז גם $y_{\beta}\in Z_{\beta}$ עבור $y_{\beta}\in Z_{\beta}$ פתוחה, ולכן $y_{\beta}\in\pi_{\beta}(D)$ גם $y_{\beta}\in Z_{\beta}$ וויתוך זה לא ריק, כפי שרצינו להראות. $y_{\beta}\in\pi_{\beta}(Z_{\beta})=y_{\beta}\cap D$ גם אז גם $y_{\beta}\in\pi_{\beta}(D)$ אז גם $y_{\beta}\in Z_{\beta}$ פרט חיתוך זה לא ריק. לכן גם $y_{\beta}\in\pi_{\beta}(D)$

6.5.2025 - 11 שיעור 11

בהינתן מרחב טופולוגי X האם יש מרחב קומפקטי שמכיל את X? נענה על שאלה זו בהרצאה הקרובה. נתחיל בהגדרת הרעיון באופן פורמלי.

ועתה משיש לנו טרמינולוגיה מתאימה, נוסיף הגדרה שתעזור לנו.

קומפקטית אים איש קיימת אברה עופולוגי $X \in C \subseteq X$ הגדרה מוחב איש סביבה לכל נקודה עופולוגי אם לכל נקרא קומפקטית, כלומר אם לכל נקודה אברה $X \in X$ הגדרה ב־ $X \in X$

.[0,1] דוגמה 11.1 נגדיר את X=(0,1), ונרצה למצוא קומפקטיזציה של X. יש שני מרחבים המהווים קומפקטיזציה לX=(0,1), הם X=(0,1)

משפט 11.3 אם \hat{X} מרחב טופולוגי קומפקטי מקומית והאוסדורף, אז המרחב (∞) אז המרחב $\hat{X}=Y=X\cup\{\infty\}$ אז המרחב משפט האוסדורף, אז המרחב הטופולוגיה,

$$\hat{\tau} = \tau \cup \{Y \setminus K \mid K \subseteq X, K \text{ is compact}\}$$

הוא מרחב קומפקטי והאוסדורף.

 $\{V_{\alpha}\mid V_{\alpha}=1$ שקולה ל־שקולה, $\{V_{\alpha}\}_{\alpha\in I}\subseteq\hat{ au}$ נניח טפי. נניח טסגורה לאיחודים סגורה לאיחודים וסגורה לחיתוך טופי. נניח ש $\hat{ au}$, אז קבוצה זו שקולה ל־X קומפקטית. נסמן את זו הראשונה X ואת זו השנייה X. נבחין כי, X כאשר X קומפקטית. נסמן את זו הראשונה X ואת זו השנייה X נבחין כי,

$$\bigcup_{\alpha \in I} V_{\alpha} = \bigcup_{V \in \Lambda} V \cup \bigcup_{V \in \Omega} V = U \cup \bigcup_{U \in \Omega} U$$

,כך שמתקיים, אבל מההגדרה קיימת $J\subseteq I$

$$\bigcup_{\alpha \in J} (Y \setminus K_{\alpha}) = Y \setminus \bigcap_{\alpha \in J} K_{\alpha}$$

 $V \cup igcup_{U \in \Omega} U = V \cup (Y \setminus K)$ נובע ש־ K_{lpha_0} . נובע שכן קומפקטית סגורה, לכן גם $\bigcap K_{lpha}$ גם גורה, לכן גם $\bigcap K_{lpha}$ סגורה ולכן קומפקטית.

. סגורה לחיתוכים סופיים, כנביעה מהשלמה לאיחודים $\hat{ au}$

$$A = X \cap V = X \cap (Y \setminus K) = X \setminus K \in \tau$$

כי X סגורה, זאת שכן X קומפקטית ו־X האוסדורף.

נראה של $\{V_{\alpha}\cap X\mid V_{\alpha}\in L\}$ קומפקטית. נניח של $\{V_{\alpha}\cap X\mid V_{\alpha}\in L\}$ כיסוי פתוח של $\{V_{\alpha}\cap X\mid V_{\alpha}\in L\}$ קומפקטית. נניח של $\{V_{\alpha}\cap X\mid V_{\alpha}\in L\}$ כיסוי פתוח של $\{V_{\alpha}\cap X\mid V_{\alpha}\in L\}$. $\{V_{\alpha}\cap X\mid V_{\alpha}\in L\}$. $\{V_{\alpha}\cap X\mid V_{\alpha}\in L\}$. $\{V_{\alpha}\cap X\mid V_{\alpha}\in L\}$

$$K \subseteq \bigcup_{i=1}^{N} (V_{\alpha_i} \cap X)$$

 $.Y = igcup_{i=1}^N V_{lpha_i}$ ונסיק ש־

מצאנו קומפקטיזציה על־ידי הוספת נקודה יחידה.

. בלבד, ו־ ∞ נקודה מבודדת. אינו קומפקטי אז אינו קומפקטי אז אחרת א $\overline{X}=X$ אחרת אינו קומפקטי אינו אינו אינו אינו אינו או

z:X oו, z:X o מרחב אוסדורף קומפקטי מקומי אז יש מרחב קומפקטי, נסמן X, ב־X כך ש־X כך שרX מרחב האוסדורף קומפקטי מקומי אז יש מרחב קומפקטי, נסמן X, ב־X כל הראות שאם X נגדיר (Z(X)), וכן שכל פונקציה רציפה וחסומה של X ניתנת להרחבה לפונקציה רציפות שכל X, וכן שכל פונקציה רציפות מ-X ולכל X כל הפונקציות הרציפות מ-X ל־X ולכל X בגדיר X וווהי קומפקטיזציה של X.

12.5.2025 - 12 שיעור 12

12.1

נמשיך עם המשפט שדנו בו בשיעור הקודם.

משפט 12.1 (סטון־צ'ק) אם X מרחב טופולוגי האוסדורף קומפקטי מקומית אז קיים מרחב טופולוגי האוסדורף Y כך שקיים שיכון משפט X כך שהרחבה לפונקציה רציפה על T כך שהרחבה יחידה. וכל פונקציה רציפה על T כר שהרחבה לפונקציה רציפה על T כר שהרחבה לפונקציה רציפה על T כר שהרחבה לפונקציה רציפה על T כר שהרחבה יחידה.

הוכחה. נבחן את $F=C(X,[0,1]^F$ אוסף הפונקציות הרציפות X o [0,1]. נתבונן במרחב המכפלה F=C(X,[0,1]). ממשפט טיכונוף זהו מרחב $Y=\overline{\iota(X)}$ גדיר גם $f\in F, x\in X$ לכל I(x)(f)=f(x) על־ידי I(x)=I(x) נגדיר העתקה על מרחב האוסדורף. נגדיר העתקה על מרחב קומפקטי, וכן I(x)=I(x) היא האוסדורף כתת־מרחב של מרחב האוסדורף.

. בדוק, אז הומיאומורפיזם, איז הוכך ערכית ערכית דר־חד העתקה היא הומיאומורפיזם, איז שיכון ערכית איז ערכית ערכית אז היא שיכון אם איכון אז בדוק.

עבור חד־חד ערכיות תהינה $f(x_1)\neq f(x_2)$ בהינתן כי קיימת $f\in F$ אנו טוענים כי $x_1,x_2\in X$ בהינתן טענה זו נסיק עבור חד־חד ערכיות הינה $\iota(x_1)\neq\iota(x_2)$ ולכן $\iota(x_1)(f)\neq\iota(x_2)(f)$

יש אוריסון, עבור מרחב קומפקטי והאוסדורף. ניזכר בלמה של הוריסון, עבור מרחב קומפקטי והאוסדורף. ניזכר מהאוסדורף. ניזכר עבור מרחב קומפקטי והאוסדורף. עבור $U_1,U_2=\emptyset$ מבנה פונקציה רציפה על $C_1\cup C_2=\emptyset$ קבוצות סגורות קומפקטיות סביב $U_1,U_2=\emptyset$, כך שמהלמה של אוריסון יתקיים $U_1,U_2=\emptyset$ בננה פונקציה רציפה על $U_1,U_2=\emptyset$

נותר להראות ש־ $U(X) = \iota(X) = \iota(X)$ היא הומיאומורפיזם. כלומר צריך להראות שכל קבוצה פתוחה $M \subseteq X$ מקיימת ש־ $U(X) = \iota(X)$ היא פתוחה, וגם להראות ש־ $U(X) = \iota(X)$ היא הומיאומורפיזם.

ערש $x\in W$ שיש $x\in W$ פתוחה ולא בניח ווער פתוחה ולא ריקה, אנו רוצים להראות ש־t(W) פתוחה. ער פתוחה ולא ריקה, אנו רוצים להראות שt(W) פתוחה ולא t(W) עבור ער פתוחה ולא עבור t(X) עבור ער פתוחה ולא בניח ווער פתוחה ולא פתוחה ש־t(X) עבור ער פתוחה ולא פ

 $\pi_f: [0,1]^F o [0,1]$ בהיר כי $\iota(x) \in V \cap \iota(X) \subseteq \iota(W)$ היא פתוחה כך היא פתוחה כי $V = \pi_f^{-1}([0,1])$. נמשיך ונטען כי

 $a_f=\inf\{f(x)\mid x\in X\}, b_f=$ עבור עבור את נבחן את $ilde{F}=\{f:X o\mathbb{R}\mid f ext{ is bounded and continuous}$ היו $\sup\{f(x)\mid x\in X\}$

eta(X)סימון 2.2 שבנינו המרחב את נסמן 12.2 סימון

משפט $\varphi:X o C$ יהי אז כל פונקציה רציפה C קומפקטי מקומית האוסדורף, אז כל פונקציה רציפה על פונקציה האוסדורף, קומפקטי מקומית האוסדורף, $\varphi:X o C$

טענה $X\hookrightarrow Y_i$ נניח ש־ $X\hookrightarrow Y_i$ מרחב האוסדורף קומפקטי מקומית ו־ Y_1,Y_2 קומפקטיות האוסדורף עם שיכונים $X\hookrightarrow Y_i$ צפופים כך שכל פונקציה רציפה וחסומה מ־X ל־X ניתנת להרחבה רציפה של Y_1,Y_2 , אז Y_1,Y_2 הומיאומורפים.

. פנים שלה שלה לסגור לסגור לסגור, $\overline{(A)}^\circ=\emptyset$ אם דלילה אם תיקרא קבוצה עופולוגי. קבוצה מרחב מופולוגי. קבוצה אם אם 12.5 מרחב מופולוגי. קבוצה אם אם מיש פנים או

. (קבוצות הסטנדרטיות ב־ \mathbb{R} הן דלילות). $\mathbb{Z}\subseteq\mathbb{R}$ אונמה ב- \mathbb{R} דוגמה ב-לות).

מהצד השני $\mathbb{Q} \subset \mathbb{R}$ לא דלילה.

הגדרה 12.6 (קטגוריה ראשונה ושנייה) קבוצה תיקרא מהקטגוריה הראשונה אם היא איחוד בן־מניה של קבוצות דלילות, אחרת נאמר שהיא מהקטגוריה השנייה.

משפט 12.7 בייר) האוסדורף או מרחב קומפקטי האוסדורף או מרחב מטרי שלם,

אז לכל אוסף בן־מניה $\bigcup_{n=1}^{\infty}A_n$ של קבוצות דלילות מתקיים שלאיחוד של $\{A_n\}_{n=1}^{\infty}$ יש פנים ריק.

12.5.2025 - 12 שיעור 12 שיעור 12 12.5.2025

. אפופה $\bigcap_{n=1}^\infty U_n$ אז וצפופות פתוחות קבוצות הן $\left\{U_n\right\}_{n=1}^\infty$ שאם שקול לטענה המשפט הערה הערה הערה און $\left\{U_n\right\}_{n=1}^\infty$

הוכחה. המשפט הוא למעשה שני משפטים על שני תנאים שונים, אנו נוכיח את המקרה של מרחב קומפקטי האוסדורף, והמקרה השני מושאר כתרגיל ומשתמש בעקרונות דומים.

$$a_n \in V_n \subseteq \overline{V}_n \subseteq U_{n-1}$$

, ולכן, אוסף מביניהן סופי מספר שכל המקיימות סגורות קבוצות אוסף אוסף האוסף האוסף האוסף $\{\overline{V}_n\}$ האוסף האוסף האוסף ולכן, האוסף לא האוסף ה

$$\bigcap_{n=1}^{\infty} \overline{V}_n \neq \emptyset$$

 $.U\not\subseteq\bigcup_{n=1}^\infty A_n$ נסיק שאכן $b\in U$ אבל אבל ,
 $b\notin\bigcup_{n=1}^\infty A_n$ שיכן . $b\in\bigcap\overline{V}_n$ יהי

 $X\setminus\{x\}$ האטברות הצטברות היא היא בקודה אם כל נקודה מושלם מרחב מרחב (מרחב מושלם) מרחב הגדרה 12.8 הגדרה

מסקנה אז X אז אז אז מרחב קומפקטי האוסדורף מרחב אז אז אז 12.9 מסקנה 12.9 מסקנה אז איז מרחב מסקנה אז איז מסקנה איז איז מסקנה איז מסקנה איז איז מסקנה איז איז מסקנה א

הגדרה של קבוצות בייר) באמרחב או פנים. הגדרה או מרחב בייר שמרחב או נאמר שמרחב בייר או נאמר שמרחב לאניה ווא פנים. הגדרה 12.10 (תכונת בייר) באמרחב או פנים.

מתקיים $x_0\in X$ מתקיים על X כך שלכל X כך מלכל נניח ש־X היא סדרת פונקציות רציפות על מרחב בייר ו־X מתקיים מטרי, ונניח ש־X מרחב מטרי, ונניח ש־X מתקיים מרחב בייר ו־X מרחב מטרי, אז X רציפה בקבוצה צפופה של נקודות.

X= מתקיים $\epsilon>0$ אז לכל $B_n(\epsilon)=\{x\in X\mid \forall m,n\in\mathbb{N},\ d(f_n(x),f_m(x))\leq\epsilon\}$ אז לכל $\epsilon>0$ אז לכל פנים. t=0 מתקיים אז לכל t=0 אז לכל t=0 מתקיים פנים. t=0 אז לכל t=0 מתקיים פנים. t=0 אז לכל פונים, ולכן לאיזושהי קבוצה באיחוד אמור להיות פנים.

הגדרות ומשפטים

הגדרות ומשפטים

3		17
3	(רציפות) 1.2 (רציפות)	הו
3	(כדור) בדרה 1.3 (כדור)	הו
3	דרה 1.4 (קבוצה פתוחה)	17
3	שקולה לרציפות)	17
3	בדרה 1.6 (טופולוגיה)	17
3	דרה 1.7 (מרחב טופולוגי)	הו
3		הו
4	בדרה 1.10 (בסים לטופולוגיה)	17
4	ענה 1.13 (צמצום מרחב טופולוגי)	טז
4	צנה 1.14 (טופולוגיית מכפלה)	טז
6	בדרה 2.1 (טופולוגיית מכפלה)	הו
6		הו
6	(תת־בסיס לטופולוגיה)	הו
6		הו
6		הו
8	סגור של קבוצה במרחב טופולוגי)	הו
8	3.4 (פנים ושפה) זרה 3.4 (פנים ושפה)	הו
8	של נקודה) מביבה של נקודה) מביבה של נקודה 3.5 (סביבה של נקודה)	17
8		17
9	גנה 3.9 (שקילות לרציפות)	טז
10	(מרחב כוויץ)	הו
10	(הומיאומורפיזם)	17
10	2.10 העתקה פתוחה וסגורה)	הו
11	לאיברים ניתנים להפרדה)	17
11		הו
11	צנה 4.4 (גרירת אקסיומות ההפרדה)	טז
11	ענה 4.5 (שקילות למרחב נורמלי)	טז
11	צנה 4.6 (תנאי שקול למרחב האוסדורף)	טז
12	צנה 4.7 (אקסיומות הפרדה בתתי־מרחבים)	טז
12	ענה 4.8 (אקסיומות הפרדה במרחבי מכפלה)	טז
12	צנה 4.9 (הפרדה במרחבים מטריים)	טז
15	בדרה 6.1 (בסיס לטופולוגיה בנקודה)	הו
15		הו
15		הו
15		הו
15	ספרבילי)	הו
15	בדרה 6.7 (מרחב מטריזבילי)	17
15	שפט 6.8 (משפט המטריזביליות של אורסון)	מי
16	\ldots דרה 6.9 (קשירות)	הו
16	צגה 6.10 (תכונות של קשירות)	טז
18	דרה 7.1 (קשירות מקומית)	הג

הגדרות ומשפטים

18				 	 					 																					(1	רוו	טי	: קי	ביב	ר((7 (.2	רה	זגדו	7
18				 						 																								(ה'	זיק	(מנ	7 (.3	רה	זגדו	7
18				 	 					 																			ת)	זיו	לר	וסי	מ מ	יות	טיו	(ק <i>ו</i>	7 (.4	רה	הגדו	7
18				 	 					 							 								(1	גיר	ווכ	מק	ת	זיו	לו	וסי	מ מ	יות	טיו	(קנ <u>'</u>	7 (.5	רה	זגדו	7
19				 	 					 																						ת)	זירו	יקני	מכ	(קו (8 (.2	רה	זגדו	7
19				 	 					 						 											(יות	יטי, וטי	ַק	מכ	ָ קוו	ל.	ות:	קיי	עי)	8 (.3	רה	הגדו	7
21				 						 							 				(ֹגי)	לו	פו	טו	⊐	η-	במו	; ב	7	דו	ז ס	זרר	בנכ	הת	7)	8.1	0	רה	זגדו	7
21				 	 					 							 															(ג=	לנ	פר	מסו	(د	8.1	1	רה	זגדו	7
21				 						 							 	(ים	,-	ומו	ו מ	יב	חב	זרז	בכ		זירו	קנ	פי	ומ	לק	, ,	לוו'	זקי	")	8.	12	פט	משכ	2
22				 	 					 						 														. ((ካ	ונו	יכ	ט נ	זפנ	מע) 9	.1	פט	משכ	2
24				 	 					 																				(;	7	ידוו	ם :	צה	קבו.	2)	10	.1	רה	זגדו	7
24				 	 					 																						. (וב	ט -	זדו	ɔ)	10	.2	רה	הגדו	7
25				 						 																	י)	סוכ	הכ	٦	זרן	חיו	ה	נת	זכו	1)	10	.3	רה	זגדו	7
25				 	 					 																	(יוח	יטי,	ַ בק	מכ	קוי [,]	: ל	יוח.	קיי	(שי	1	0.4	ה ו	זענו	2
27				 	 					 																				(יה	יזצ	יטי,	ופק	קום.	2)	11	.1	רה	זגדו	1
27				 	 					 																											11	.2	רה	הגדו	7
27				 	 					 																											11	.3	פט	משכ	2
28				 	 					 																						(j	7	ן־צ	יטו	0)	12	2.1	פט	משכ	2
28				 						 																											12	2.3	פט	משכ	2
28				 	 					 																				(;	7	ליי	7	צה	קבו.	2)	12	.5	רה	הגדו	7
28				 	 					 															(יין.	זבי	וע	בה	זרנ	278	רז	יה	ור	וטג	2)	12	.6	רה	זגדו	1
28				 	 					 																								. (יירן:	⊐)	12	.7	פט	משכ	2
29				 						 																				(1	, בים	ישי	מו	זב	ארז	2)	12	.8	רה	זגדו	7
29				 	 	 				 							 													. ((٦	ביי	תו	ברבו	(תנ	1	2.1	0	רה	הגדו	7