Alumno:

Duración: dos horas y media. Una condición suficiente de aprobación es la resolución completa y justificada de dos ejercicios cualesquiera. No se consideran cálculos dispersos o sin comentarios, ni diagramas sin la identificación completa de sus elementos.

1. En un autómata $M=(\Sigma,Q,q_0,\Upsilon,F)$, dado $k\in\mathbb{N}_0$ se define en Q la relación de k-equivalencia \mathcal{R}_k tal que $q\mathcal{R}_k r$ sii para cualquier $x\in\Sigma^\star:|x|\leq k$ se cumple que $\Upsilon^\star(q,x)\in F$ sii $\Upsilon^\star(r,x)\in F$ (con su correspondiente clausura, la \star -equivalencia \mathcal{R}_\star). Para el autómata M, determinar las clases de k-equivalencia, los conjuntos cociente $\bar{Q}=Q/\mathcal{R}_\star, \bar{F}=F/\mathcal{R}_\star$, la clase $\bar{q}_0=[q_0]$, la función $\bar{\Upsilon}:\bar{Q}\times\Sigma\to\bar{Q}$ y el autómata cociente $\bar{M}=(\Sigma,\bar{Q},\bar{q_0},\bar{\Upsilon},\bar{F})$ y determinar el lenguaje $\bar{L}=L(\bar{M})$. Hallar todas las palabras $x\in\bar{L}$ tales que $|x|\leq 3$.

- 2. En el conjunto $A = \{a_1, a_2, a_3, a_4, a_5\}$ sean \mathcal{S} y \mathcal{T} las relaciones determinadas por los correspondientes digraphs de la figura y sea \mathcal{R} la relación complemento de $\mathcal{T} \circ \mathcal{S}$ (esto es $\mathcal{R} = (\mathcal{T} \circ \mathcal{S})'$).
 - (a) Analizar si \mathcal{T}^2 es una relación de equivalencia en A, y en caso afirmativo hallar todos los $X \subset A$ tales que $[a_1]X + [a_3] = [a_5]$, donde $[a_k]$ es la clase de equivalencia del elemento a_k .
 - (b) Si G = (V(G), E(G)) es el digraph que representa \mathcal{R} , determinar el círculo centrado en a_1 de radio 1 (esto es, los elementos x de V(G) = A tales que la distancia $d(x, a_1)$ es a lo sumo 1).

3. Si A es la matriz de adyacencia del grafo simple dado por G=(V(G),E(G)), siendo $V(G)=\{x_1,x_2,\ldots,x_n\}$ de orden n=|V(G)| y el tamaño m=|E(G)|, se definen los autovalores de G como los autovalores de A, siendo su espectro $\sigma(G)=\{\lambda_1,\lambda_2,\ldots,\lambda_n\}$.

(b) *Probar* que es suficiente que dos grafos sean isomorfos para que tengan el mismo espectro, pero que la recíproca es falsa.

- 4. Sea el digraph G = (V(G), E(G)) fuertemente conexo. Su radio es $r(G) \stackrel{\text{def}}{=} \min_{u} \max_{v} d(u, v)$ y su diámetro $\phi(G) \stackrel{\text{def}}{=} \max_{u} \max_{v} d(u, v)$.
 - (a) Probar que $r(G) \leq \phi(G) \leq 2r(G)$ y verificar el cumplimiento de estas desigualdades para aquellos de los siguientes digraphs que resulten fuertemente conexos, determinando además su periferia P(G), su centro C(G).
 - (b) Si M_G es la matriz de incidencia de G, explicar (y probar) el significado de cada uno de los elementos (i,j) de la matriz $B = M_G M_G^T$ y ponerlo en evidencia mediante el cálculo directo en aquellos de los siguientes digraphs que no resulten hamiltonianos.

