

OBLIGATORIO

Taller de Servidores Linux Julio 2024

Franco Bentancor – 301987 Fabian Aguiar – 291203

Índice

DE	CLARAC	CION DE AUTORIA	3			
1.	OBJE	TIVOS Y PLANTEO	4			
1	1.	Objetivo	4			
		Planteo				
2. INSTALACIÓN DE SERVIDORES						
		Adaptadores de red				
		CentOS 9 Server				
1	1.	Ubuntu Server	8			
3.	REPO	SITORIO GITHUB	10			
4.	INST	ALACIÓN DEL NETWORK MANAGER	11			
5. EVIDENCIA DE PLAYBOOKS						
6.	REFE	RENCIAS BIBLIOGRÁFICAS	14			

DECLARACION DE AUTORIA

Nosotros, Franco Bentancor y Fabian Aguiar, declaramos que el trabajo que se presenta en esta obra es de nuestra propia mano.

Podemos asegurar que:

- La obra fue producida en su totalidad mientras realizábamos el trabajo final de la materia Administración de Servidores Linux.
- Cuando hemos consultado el trabajo publicado por otros, lo hemos atribuido con claridad.
- Cuando hemos citado obras de otros, hemos indicado las fuentes. Con excepción de estas citas, la obra es enteramente nuestra.
- En la obra, hemos acusado recibo de las ayudas recibidas.
- Cuando la obra se basa en trabajo realizado conjuntamente con otros, hemos explicado claramente qué fue contribuido por otros, y qué fue contribuido por nosotros.
- Ninguna parte de este trabajo ha sido publicada previamente a su entrega, excepto donde se han realizado las aclaraciones correspondientes.

Franco Bentancor 301987

Fabian Aguiar 291203

1.1. Objetivo

El objetivo de este documento es demostrar, a través de la creación de una maqueta, un posible escenario que podría representar un caso de uso común para administradores y desarrolladores de sistemas que realicen automatizaciones.

Para la elaboración de esta maqueta, se emplean las siguientes herramientas, aplicaciones y servicios:

- VirtualBox Máquinas virtuales CentOS 9 y Ubuntu Server
- Repositorios en GitHub
- Visual Studio Code
- Ansible

1.2. Planteo

Preparación del Servidor Controlador

- Configuración de un servidor controlador para Ansible.
- Instalación de paquetes y librerías necesarias para Ansible y Git.
- Creación de claves pública/privada SSH para el usuario que ejecutará automatismos.
- Configuración de un repositorio de código en Github o Gitlab.

Instalación de Servidores

- Instalación de dos servidores con las siguientes especificaciones:
 - o Disco de 13GB con particiones específicas:
 - 1GB para /boot
 - 7GB LVM para /
 - 3GB LVM para /var
 - 2GB LVM para SWAP
 - Cada servidor con 1 CPU y 2GB RAM.
 - o Distribuciones: uno con CentOS Stream 8 o 9, y otro con Ubuntu 24.04.
 - Configuración de dos interfaces de red por servidor: una conectada a NAT y otra a una red Interna o Host-Only.
 - Creación de un usuario no root con permisos administrativos y copia de la clave pública del servidor controlador.

Tareas con Ansible

• Servidor Red Hat:

- a. Instalación de la aplicación ToDo, JDK de Java, Tomcat y configuración de la Base de Datos.
- b. Configuración de Tomcat como servicio mediante SystemD y habilitación de puertos en el Firewall.

• Servidor Ubuntu:

- a. Instalación y configuración de MariaDB.
- b. Ejecución de procedimientos de seguridad de mysql-secure-installation.
- c. Creación de usuario para la aplicación y configuración del acceso a la Base de Datos en el Firewall.

Repositorio Git

- Inclusión de todo el contenido del proyecto en un repositorio Git con un README explicativo.
- Creación de un directorio de Documentación con una descripción detallada de las tareas realizadas, pruebas de ejecución de los playbooks y funcionamiento de las aplicaciones.
- El repositorio debe ser descargable como archivo Zip para su entrega.

2. INSTALACIÓN DE SERVIDORES

Se preparan dos máquinas virtuales con los requisitos planteados previamente.

2.1. Adaptadores de red

Se crean dos adaptadores de red para cada máquina:

- Primer adaptador configurado para usar NAT y tener salida a internet.
- Segundo adaptador para que la máquina tenga acceso únicamente al host.

2.2. CentOS 9 Server

Se crea el usuario sysadmin en la instalación

Se generan las particiones según lo solicitado

Servidor CentOS 9 creado

1.1. Ubuntu Server

Seguimos con los pasos para la instalación de Ubuntu Server:

Instalamos OpenSSH Server

```
SSH configuration

You can choose to install the OpenSSH server package to enable secure remote access to your server.

[X] Install OpenSSH server

[X] Allow password authentication over SSH

[ Import SSH key ▶ ]

AUTHORIZED KEYS
```

Creamos las particiones

```
Storage configuration
FILE SYSTEM SUMMARY
                             TYPE
                                         DEVICE TYPE
                                         new partition of local disk
                    1.000G
                             new xfs
  /boot
                    3.000G
                             new xfs
                                         new LVM logical volume
  /van
[ SWAP
                    1.996G
                             new swap
                                         new LVM logical volume
AVAILABLE DEVICES
[ Create software RAID (md) ▶ ]
[ Create volume group (LVM) ▶ ]
USED DEVICES
                                                  TYPE
                                                  LVM volume group
                                                                         11.996G
[ vgO (new)
                                                                                   ▶ ]
                 new, to be formatted as xfs, mounted at /
  root
                                                                          7.000G
                 new, to be formatted as xfs, mounted at /var
new, to be formatted as swap
                                                                          3.000G
  var
                                                                           1.996G
  swap
[ VBOX_HARDDISK_VBa9489afd-23148825
                                                  local disk
                                                                         13.000G
                                                                                   • ]
  partition 1 new, BIOS grub spacer
                                                                          1.000M
  partition 2 new, to be formatted as xfs, mounted at /boot
partition 3 new, PV of LVM volume group vgO
                                                                          1.000G
                                                                         11.997G
```

Creamos el usuario sysadmin

Servidor creado en VirtualBox

3. REPOSITORIO GITHUB

Generamos la clave pública como fue demostrado en clase.

Desde GitHub, creamos un nuevo usuario con nuestro propio repositorio llamado TallerJulio2024:

Generamos el archivo Inventario con la siguiente información, para de esta manera el *playbook* sea realizado en ambos clientes.

4. INSTALACIÓN DEL NETWORK MANAGER

Instalamos el Network Manager mediante el comando

```
apt install network-manager
```

Luego editamos el archivo

sudo nano 50-cloud-init.yaml

```
# This file is generated from information provided by the datasource. Changes
# to it will not persist across an instance reboot. To disable cloud-init's
# network configuration capabilities, write a file
# /etc/cloud/cloud.cfg.d/99-disable-network-config.cfg with the following:
# network: {config: disabled}
network:
    ethernets:
        ethernets:
        enp0s3:
            dhcp4: true
        enp0s8:
            dhcp4: false
            addresses:
            - 192.168.56.21/24
version: 2
```

5. EVIDENCIA DE PLAYBOOKS

serverapp.yml

tomcat.yml

database.yml

_					<i>,</i>
	DEEL		AS BIBL	$I \cap C \cap I$	λ Γ Γ Λ Γ
n	RFFF	- K F I II I	A > RIBI	11 11784	4 FIL 4 N
U .		_ \		.10017	111000

Grabaciones y material subido en aulas:

https://aulas.ort.edu.uy/

Servicio tomcat:

https://reintech.io/blog/install-configure-apache-tomcat-centos-9

Solución al problema de levantar la base de datos:

https://stackoverflow.com/questions/56313083/ansible-ubuntu-18-04-mysql-the-pymysql-python-2-7-and-python-3-x-or-mys

Documentación de ansible:

https://docs.ansible.com/