习题答案与提示

第一章

习题 1.2

习题 1.3

- 1. 设摄氏温度为 C, 华氏温度为 F, 则 $F = \frac{9C}{5} + 32$
- 2. $y = x \frac{g}{v_0^2} \cdot x^2$, $v_0 = 500 \,\text{m}/$ 秒, g 为重力加速度, 值域 $[0, \frac{v_0^2}{4\sigma}]$.
- 3. (1) [-1,1) (2) $(-\infty,0) \cup (0,+\infty)$ (3) (-1,2)

- (4) ₩
- (5) $(-\infty,0)$ (6) $(-1,0) \cup (0,3]$
- 4. (1) 不相等, 因为定义域不同. (2) 相等.
- - (3) 不相等,对应法则不同. (4) 不相等,因为定义域不同.

- 5. (1) 无界; (2) 有界, $0 < f(x) \le 1$; (3) 有界, $|f(x)| < \frac{\pi}{2}$.
- 6. (1) 奇函数; (2) 非奇非偶函数; (3) 奇函数

 - (4) 奇函数; (5) 偶函数.

习题 1.4

1.
$$f[f(x)] = \frac{1+x}{2+x}$$
, $f\{f[f(x)]\} = \frac{2+x}{2x+3}$, $\frac{f(x)}{f[f(x)]} = \frac{2+x}{(1+x)^2}$

2.
$$f(x) = x^2 - 2, x \in (-\infty, -\sqrt{2}]$$
 [6] $[\sqrt{2}, +\infty)$

3. (1)
$$f^{-1}(x) = x^3 - 1, x \in \mathbb{R}$$

3. (1)
$$f^{-1}(x) = x^3 - 1, x \in \mathbb{R}$$
; (2) $f^{-1}(x) = \log_2 \frac{x}{1 - x}, x \in (0, 1)$;

(3)
$$f^{-1}(x) = e^{x-1} - 2, x \in \mathbb{R}$$
;

$$(4) \quad f^{-1}(x) = \begin{cases} -\sqrt{\frac{1-x}{2}}, & x < -1 \\ x^{\frac{1}{3}}, & -1 \le x \le 8 \\ \frac{x+16}{12}, & x > 8 \end{cases}$$

- 4. (1) $y = \arcsin \sqrt{x}$ 是由基本初等函数 $y = \arcsin u$, $u = \sqrt{x}$ 复合而成.
 - (2) $y = \ln^3(x^3 1)$ 是由基本初等函数 $y = u^3$, $u = \ln v$ 与函数 $v = x^3 1$ 复合而成.
 - (3) $y = e^{\sin x^2}$ 是由基本初等函数 $y = e^u$, $u = \sin v$, $v = x^2$ 复合而成.
 - (4) $y = \sin e^{2x}$ 是由基本初等函数 $y = \sin u$, $u = e^{v}$, v = 2x 复合而成.
- 5. 1.
- 6. $\varphi(x) = \arcsin(1 x^2), -\sqrt{2} \le x \le \sqrt{2}$.

第二章

习题 2.1

- 1. (1) $\lim_{n\to\infty}\frac{1}{3^n}=0$; (2) $\lim_{n\to\infty}(2+\frac{1}{n^2})=2$;

 - (3) $\lim_{n\to\infty} (-1)^n n$ 不存在; (4) $\lim_{n\to\infty} \frac{1+(-1)^n}{1000}$ 不存在.
- 2. 略
- 3. 提示: 利用数列极限的 εN 定义证明,考虑数列 $a_n = (-1)^n$.
- 4. (1) $\lim_{x \to 1} (x^2 3x + 2) = 0$; (2) $\lim_{x \to \infty} \frac{x^2 + 1}{2x^2} = \frac{1}{2}$;

 - (3) $\limsup_{x\to 0} \frac{1}{r}$ 不存在; (4) $\lim_{x\to \infty} \frac{\sin x}{r} = 0$.

- 5. 略
- 6. (1) 因为 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (x^2+1) = 1$, $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (3x+1) = 1$, 所以 $\lim_{x \to 0} f(x) = 1$
 - (2) 因为 $\lim_{x\to 0^+} \frac{|x|}{x} = \lim_{x\to 0^+} \frac{x}{x} = 1$, $\lim_{x\to 0^-} \frac{|x|}{x} = \lim_{x\to 0^-} \frac{-x}{x} = -1$, 所以 $\lim_{x\to 0} \frac{|x|}{x}$ 不存在.

习题 2.2

- 1. (D)
- 2. (B)
- 3. (1) $\frac{1}{2}$; (2) 0; (3) $\frac{1}{4}$; (4) $\frac{2 \times 3^{20}}{25}$;
 - (5) 1; (6) ∞ ; (7) n; (8) $\frac{1}{2}$.

- 4. 提示:不妨设 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=a<1$,利用数列极限的 $\varepsilon-N$ 定义证明.
- 5. 提示: 取 $a_n = \frac{1}{2n\pi}$, $b_n = \frac{1}{(2n+1)\pi}$, 验证 $\lim_{n\to\infty} \cos a_n \neq \lim_{n\to\infty} \cos b_n$
- 6. (1) a = 1, b = 2 (2) a = 1, b = -1

习题 2.3

- 1. (1) 提示: 先证 a_n 单调递增,再证 $0 < a_n < 2$. $\lim_{n \to \infty} a_n = 2$
 - (2) 提示: 先证 a_n 单调递减,再证 $a_n > 0$. $\lim_{n \to \infty} a_n = \sqrt{c}$
- 2. (1) 0; (2) 1 提示: $1 < (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n})^n < \sqrt[n]{n}$.
- 3. 提示: 利用恒等式 $f(x)^{g(x)} = e^{g(x)\ln f(x)}$
- 4. (1) 3; (2) 1; (3) 2; (4) e^2 ;
 - (5) e^{-2} ; (6) e^{x+1} ; (7) e^{-1} ; (8) e^{3} .
- 5. (1) $x \to 0$ 时, x^3 是比 $x^2 + 3x$ 的高阶无穷小;
 - (2) $x \rightarrow 1$ 时, 1-x 是 $1-x^3$ 的同阶无穷小,但不是等价无穷小.
- 6. (D)
- 7. (B)
- 8. $(1)\frac{3}{2}$; (2) $\begin{cases} 1 & n=m \\ 0 & n>m \\ \infty & n < m \end{cases}$; (3) $\frac{1}{2}$; (4) $\frac{1}{6}$.
- 9. 略

习题 2.4

- 1.(1) x = 0 为第二类无穷间断点;
 - (2) x = -2 为第二类无穷间断点,x = 1 为第一类可去间断点;
- (3) x = 0为第一类可去间断点, $x = k\pi$ (k为非零整数)为第二类无穷间断点;

- (4) x = 0 为第二类振荡间断点;
- (5) x = 0为第一类可去间断点;
- (6) x=1为第一类跳跃间断点.
- 2. (1) 0; (2) 1; (3) 1; (4) $\frac{1-\sqrt{3}}{2}$; (5) $\cos a$; (6) 1; (7) 1.
- 3. a = 2.
- 4. a = 1, b = 0
- 5. 提示: 设 $f(x) = \sin x + x + 1$, 利用零点定理.

总习题 2

- 1. e^{a-b} . 2. a=2. 3. 0. 4. 2. 5. $k=\frac{3}{4}$.
- 6. (C) 7. (D) 8. 1 < k < 2. 9. $-\frac{1}{2}$.
- 10. x=1为第一类可去间断点; x=0为第一类跳跃间断点; x=-1第二类无穷间断点.
- 11. x = 0, x = 1 为第一类可去间断点,x = -1 为第二类无穷间断点.
- 12. x=1为第一类跳跃间断点,x=0为第二类无穷间断点.

第三章

习题 3.1

- 1. (1) $dy = -\sin x_0 dx$; (2) $dy = (1 x_0 + x_0^2 x_0^3) dx$;
 - (3) $dy = nx_0^{n-1}dx$; (4) $dy = \frac{1}{3}x_0^{-\frac{2}{3}}dx$.
- 2. (1) $dy = \frac{1}{x}dx$; (2) $dy = (\cos x + nx^{n-1})dx$;
 - (3) $dy = (\frac{1}{3}x^{-\frac{2}{3}} + 5)dx$; (4) $dy = (2x\cos x x^2\sin x)dx$.
- 3. 直线: y = x 1

习题 3.2

1. (1)
$$\frac{dy}{dx} = a$$
;

1. (1)
$$\frac{dy}{dx} = a$$
; (2) $f'(1) = -8$, $f'(2) = 0$, $f'(3) = 0$.

- 2. y = 2 x
- 3. 12 m/s
- 4. (1) $3f'(x_0)$; (2) $-f'(x_0)$; (3) $2f'(x_0)$.

5. (1)
$$y' = \frac{3}{2}\sqrt{x}$$
, $dy = \frac{3}{2}\sqrt{x}dx$;

5. (1)
$$y' = \frac{3}{2}\sqrt{x}$$
, $dy = \frac{3}{2}\sqrt{x}dx$; (2) $y' = -\frac{1}{2}x^{-\frac{3}{2}}$, $dy = -\frac{1}{2}x^{-\frac{3}{2}}dx$;

(3)
$$y' = -\frac{2}{x^3}, dy = -\frac{2}{x^3}dx$$

(3)
$$y' = -\frac{2}{x^3}, dy = -\frac{2}{x^3}dx;$$
 (4) $y' = \frac{7}{6}x^{\frac{1}{6}}, dy = \frac{7}{6}x^{\frac{1}{6}}dx.$

- 6. (1) 函数在x = 0处连续,不可导;
 - (2) 函数在x = 0处连续且可导.
- 7. 略
- 8. a = 2, b = -1.

习题 3.3

1. (1)
$$y' = 6x + 5$$

(2)
$$y' = \frac{3}{x^2} - \frac{2}{x^3}$$

1. (1)
$$y' = 6x + 5$$
; (2) $y' = \frac{3}{x^2} - \frac{2}{x^3}$; (3) $y' = x(1 + 2\ln x)$;

$$(4) \quad y' = 6e^x \cos x;$$

$$(5) \quad y' = \frac{x \cos x - \sin x}{x^2};$$

(4)
$$y' = 6e^x \cos x$$
; (5) $y' = \frac{x \cos x - \sin x}{x^2}$; (6) $y' = -\frac{1}{\sqrt{x(1+\sqrt{x})^2}}$.

2.
$$f'(0) = \frac{3}{25}$$
; $f'(2) = \frac{17}{15}$.

3. (1)
$$y' = 10(2x+1)^4$$
; (2) $y' = \frac{x}{\sqrt{1+x^2}}$; (3) $y' = -2xe^{-x^2}$

(2)
$$y' = \frac{x}{\sqrt{1+x^2}}$$
;

$$(3) \quad y' = -2xe^{-x^2}$$

(4)
$$y' = 2x \arcsin \frac{1}{x} - \frac{|x|}{\sqrt{x^2 - 1}};$$
 (5) $y' = \sec x;$ (6) $y' = \frac{1}{\cos x};$

$$(5) \quad y' = \sec x;$$

$$(6) \quad y' = \frac{1}{\cos x};$$

(7)
$$y' = \frac{1}{2\sqrt{x(1-x)}};$$

(8)
$$y' = e^{2x}(2\sin 3x + 3\cos 3x)$$
;

(9)
$$y' = \arcsin \frac{x}{2}$$

(9)
$$y' = \arcsin \frac{x}{2}$$
; (10) $y' = \frac{1}{x \cdot \ln x \cdot \ln(\ln x)}$;

(11)
$$y' = \frac{1}{x^2 + 1}$$
;

$$(12) \quad y' = \frac{1}{\sqrt{x^2 + 1}} \,.$$

- 4. (1) $dy = 3\sin(1-3x)dx$; (2) $dy = \cos xe^{\sin x}dx$;
 - (3) $dy = \frac{e^x dx}{1 + e^{2x}}$; (4) $dy = \frac{x dx}{x^2 + 1}$.
- 5. (1) 0.5151; (2) 0.0175; (3) 1.0067; (4) 8.9444.
- 6. -43.63cm²; 104.72cm².

习题 3.4

- 1. (1) \mathbf{B} ; (2) n=2
- 2. (1) $\frac{2(1-x^2)}{(1+x^2)^2}$; (2) $-\frac{a^2}{(a^2-x^2)^{3/2}}$; (3) $\frac{2}{(1+x^2)^2}$;
 - (4) $-2e^{-x}\cos x$; (5) $e^{-\frac{x^2}{2}}(x^2-1)$; (6) $4(1+x)e^{2x}$;
 - (7) $-\frac{x}{(1+x^2)^{3/2}}$; (8) $-\frac{2x}{\sqrt{4-x^2}}$.
- 3. (1) $y^{(4)} = \frac{2}{(x-1)^3}$; (2) $y''' = \frac{4}{(1+x^2)^2}$; (3) $y'''(\frac{1}{2}) = 8$;
 - (4) $y^{(10)} = 2^8(-4x^2\sin 2x + 40x\cos 2x + 45\sin 2x)$.
- 4. (1) $2^{n-1}\sin(2x+\frac{n-1}{2}\pi)$; (2) $(n+x)e^x$; (3) $\frac{2(-1)^n n!}{(1+x)^{n+1}}$.

习题 3.5

- 1. (1) $-\frac{x}{y}$; (2) $\frac{e^{x+y}-y}{x-e^{x+y}} = \frac{y(x-1)}{x(1-y)}$; (3) $-\frac{y}{x+e^y}$; (4) $\frac{\sqrt{1-y^2} \cdot e^{x+y}}{1-\sqrt{1-y^2} \cdot e^{x+y}}$.
- 2. (1) 2t; (2) $\frac{2t}{1-t^2}$; (3) $\frac{\sin \theta}{1-\cos \theta}$; (4) $\frac{\cos t \sin t}{\sin t + \cos t}$.
- 3. $(1) \frac{1}{y^3}$; $(2) \frac{4\sin y}{(\cos y 2)^3}$; $(3) \frac{4}{9}e^{3t}$; $(4) \frac{1}{(1 + \cos t)^2}$; $(5) t \frac{1}{t}$.
- 4. (1) $(1+x)^{\frac{1}{x}} \left[\frac{1}{x(1+x)} \frac{1}{x^2} \ln(1+x) \right];$ (2) $\frac{\sqrt{x+2} \cdot (3-x)^4}{(x+1)^5} \left[\frac{1}{2(x+2)} \frac{4}{3-x} \frac{5}{x+1} \right].$
- 5. $\frac{16}{25\pi}$ m/min.

总习题3

1. -f'(0). 2. 2e.

3. -2. 4. $(-1)^{n-1}(n-1)!$.

5. $-2^{n}(n-1)!$. 6. $(1+3x)e^{3x}$. 7. (D). 8. (A).

9. (D). $10. \ 2x + y = 0. \qquad 11. \ y - x + \frac{\pi}{4} - \frac{1}{2} \ln 2 = 0.$

12. 1. 13. 4.

14. 1. 15. $\sqrt{2}$.

第四章

习题 4.1

1. $\xi = \frac{\pi}{2}$. 2. $\xi = \sqrt{\frac{4-\pi}{\pi}}$. 3. Eq. 4. Eq.

- 5. 有分别位于区间(1,2),(2,3),(3,4)内的3个根.
- 6. 略.
- 7. **提示**: 令 $F(x) = f(x)\sin x$,并在区间 $[0,\pi]$ 上应用罗尔中值定理.
- 8. 略.
- 9. 略.
- 10. **提示**: 令 $f(x) = \frac{e^x}{x}$, $g(x) = \frac{1}{x}$,并在区间 [a, b] 上应用柯西中值定理.

习题 4.2

1. 单调递增.

2. 单调递减.

3. 略.

- 4. (1) 在 $(-\infty,-1]$,[3,+∞)上单调递增,在(-1,3)上单调递减;
 - (2) 在 $(-\infty, -\frac{1}{2}]$, $[\frac{11}{18}, +\infty)$ 上单调递增,在 $(-\frac{1}{2}, \frac{11}{18})$ 上单调递减;
 - (3) 在 $(-\infty,0)$, $(0,\frac{1}{2}]$, $[1,+\infty)$ 上单调递减,在 $(\frac{1}{2},1)$ 上单调递增;
 - (4) 在 $(-\infty, \frac{2}{3}a], [a, +\infty)$ 上单调递增,在 $(\frac{2}{3}a, a)$ 上单调递减;
 - (5) 在 $(0,\frac{1}{2}]$ 上单调递减,在 $(\frac{1}{2},+\infty)$ 上单调递增;
 - (6) 在 $(-\infty, +\infty)$ 内单调递增.
 - 5. 略.

- 6. 有分别位于区间 $(-\infty, -1), (-1, 3), (3, +\infty)$ 内的 3 个根.
- 7. (1) 拐点($\frac{5}{3}$, $\frac{20}{27}$),在($-\infty$, $\frac{5}{3}$)内上凸,在($\frac{5}{3}$,+ ∞)内上凹;
 - (2) 没有拐点, 处处上凹;
 - (3) 拐点 $(\frac{1}{2}, e^{\arctan \frac{1}{2}})$,在 $(-\infty, \frac{1}{2})$ 内上凹,在 $(\frac{1}{2}, +\infty)$ 内上凸;
 - (4) 拐点(-1, $\ln 2$),(1, $\ln 2$),在($-\infty$,-1),(1,+ ∞)内上凸,在(-1,1)内上凹;
 - (5) 拐点(1,-7),在(0,1)内上凸,在 $(1,+\infty)$ 内上凹;
 - (6) 拐点 $(2,2e^{-2})$,在 $(-\infty,2)$ 内上凸,在 $(2,+\infty)$ 内上凹.
- 8. (1,-4),(0,0),(1,4).
- 9. $k = \pm \frac{\sqrt{2}}{8}$.
- 10. (1) 水平渐进线 y=0;
 - (2) 水平渐进线 y=0, 垂直渐近线 $x=\pm 1$;
 - (3) 垂直渐近线 x = -1, 斜渐近线 y = x 3;
 - (4) 垂直渐近线 $x = \pm 1$, 斜渐近线 y = x;
 - (5) 无水平和垂直渐近线, 斜渐近线 $y=2x\pm\frac{\pi}{2}$.
- 11. a=1, b=-3, c=-24, d=16.

习题 4.3

- 1. (1) 极大值 $f(-1) = \frac{5}{3}$, 极小值 f(3) = -9;
 - (2) 极小值 y(0) = 0;
 - (3) 极大值 $y(e^2) = 4e^{-2}$, 极小值 y(1) = 0;
 - (4) 极大值 $y(\frac{3}{4}) = \frac{5}{4}$;
 - (5) 极大值 $y(\frac{\pi}{4} + 2k\pi) = \frac{\sqrt{2}}{2}e^{\frac{\pi}{4} + 2k\pi}$, 极小值 $y[\frac{\pi}{4} + (2k+1)\pi] = -\frac{\sqrt{2}}{2}e^{\frac{\pi}{4} + (2k+1)\pi}$ ($k \in \mathbb{Z}$);

- (6) 极大值 f(0) = 0,极小值 $f(\frac{2}{5}) = -\frac{3}{25}\sqrt[3]{20}$.
- 2. (1) 最大值 y(1) = y(0) = 1, 最小值 $y(\frac{1}{2}) = \frac{3}{5}$;
 - (2) 最大值 $y(\frac{3}{4}) = \frac{5}{4}$,最小值 $y(-5) = -5 + \sqrt{6}$;
 - (3) 最大值 $y(0) = \frac{\pi}{4}$,最小值 f(1) = 0;
 - (4) 最大值 f(-10) = 132, 最小值 f(1) = f(2) = 0.
- 3. a=2,极大值 $\sqrt{3}$.
- 4. $h = \frac{2}{\sqrt{3}}R$.
- (1) L'(Q) = 60 0.2Q, L'(200) = 20, L'(400) = -20;
 - (2) Q = 300.
- 6. $\varphi = \frac{2\sqrt{6}}{3}\pi$.
- $7. \quad x = \sqrt{\frac{40}{4 + \pi}} \text{m}.$
- 8. D应设在距离 A 30 km 处.

习题 4.4

略

习题 4.5

- 1. (1) 1; (2) $\frac{2}{3\sqrt[6]{a}}$; (3) 1; (4) 2; (5) $-\frac{3}{5}$;

- (6) $-\frac{1}{8}$; (7) $+\infty$; (8) $\frac{4}{\pi}$; (9) 0; (10) $\frac{1}{2}$;

- $(11) \frac{1}{6}$; (12) 1; (13) 1; (14) 1.

2. 略

习题 4.6

1. $f(x) = -56 + 21(x-4) + 37(x-4)^2 + 11(x-4)^3 + (x-4)^4$.

2.
$$f(x) = 1 - 9x + 30x^2 - 45x^3 + 30x^4 - 9x^5 + x^6$$
.

3.
$$\sqrt{x} = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + \frac{1}{512}(x-4)^3 - \frac{5}{128\varepsilon^{\frac{7}{2}}}(x-4)^4$$

(を在 x 与 4 之间).

4.
$$\frac{1}{x} = -[1 + (x+1) + (x+1)^2 + (x+1)^3 + \dots + (x+1)^n] + \frac{(-1)^{n+1}}{\xi^{n+2}} (x+1)^{n+1}$$

(ε 在x与-1之间).

5. (1)
$$\ln \cos x = -\frac{1}{2}x^2 - \frac{1}{12}x^4 + o(x^4)$$
;

(2)
$$e^{\sin x} = 1 + x + \frac{1}{2}x^2 - \frac{1}{8}x^4 + o(x^4)$$
;

(3)
$$\frac{1}{1+e^x} = \frac{1}{2} - \frac{1}{4}x + \frac{1}{48}x^3 + o(x^4)$$
;

(4)
$$\ln(x + \sqrt{1 + x^2}) = x - \frac{1}{6}x^3 + o(x^4)$$
.

习题 4.7

1. (1)
$$ds = \frac{1+x^2}{1-x^2}dx$$
; (2) $ds = \frac{3}{2}a|\sin 2t|dt$; (3) $ds = 2a|\cos \frac{\theta}{2}|d\theta$.

2. 在
$$x = -\frac{b}{2a}$$
处曲率最大.

3. (1)
$$K = 2$$
; (2) $K = 1$; (3) $K = \frac{1}{2\sqrt{2}}$.

$$(3) \quad K = \frac{1}{2\sqrt{2}} \quad .$$

4.
$$K = \frac{3}{\sqrt{2}}$$
.

5. (1)
$$\rho = \frac{(2x+p)^{\frac{3}{2}}}{\sqrt{p}}$$
; (2) $\rho = \frac{[(b^2-a^2)x^2+a^4]^{\frac{3}{2}}}{a^4b}$;

(3)
$$\rho = \frac{\left[(a^2 + b^2)x^2 - a^4 \right]^{\frac{3}{2}}}{a^4 b};$$
 (4)
$$\rho = \frac{\left(b^2 \cos^2 t + a^2 \sin^2 t \right)^{\frac{3}{2}}}{a b}.$$

6. 点
$$(\frac{\pi}{2}, 1)$$
 处曲率半径有最小值 1.

7.
$$(\xi - 3)^2 + (\eta + 2)^2 = 8$$
.

总习题4

- 1. *ak* .
- 2. 略.
- 3. 提示: 令 $F(x) = e^x f(x)$, 并在区间[a,b]上应用罗尔中值定理.
- 4. (1) $\frac{1}{3}$; (2) $\frac{1}{6}$.
- 6. 略.
- 7. 当a > -2时,方程有二个实根;当a = -2时,方程仅有一个实根;当a < -2时,方程没有实根.
- 8. 极大值 f(0) = 2, 极小值 $f(e^{-1}) = (\frac{1}{e})^{\frac{2}{e}}$.
- 9. $x = \frac{\pi}{2}$ 时,曲率半径最小,最小值为 1.
- 10. $x = (\frac{4}{5k^2})^{\frac{1}{4}}$.

第五章

习题 5.1

- 1. 略.
- 2. (1) $\int_{1}^{3} \frac{1}{x} dx = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{1 + \frac{2i}{n}} \frac{2}{n} ; \qquad (2) \int_{1}^{2} (8 x^{3}) dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left[8 (1 + \frac{i}{n})^{3} \right] \frac{1}{n} .$
- 3. 略.
- 4. $A = \int_0^1 x^2 dx = \frac{1}{3}$.
- 5. (1) $-15 \le \int_{-1}^{2} (2x^3 3x^2) dx \le 12$; (2) $-\frac{9}{8} \le \int_{-0.5}^{1.5} (-x^4 + 2x^2) dx \le 2$;
 - (3) $8 \le \int_{-2.5}^{0.5} \frac{3x^2 + 4x + 4}{x^2 + x + 1} dx \le 12$.
- 6. (1) $\int_0^1 2x dx \ge \int_0^1 2x^2 dx$; (2) $\int_1^3 2x dx \le \int_1^3 2x^2 dx$;
 - (3) $\int_0^{\sqrt{2}} x dx \le \int_0^{\sqrt{2}} \sqrt{4 x^2} dx$; (4) $\int_1^2 e^x dx \ge \int_1^2 ex dx$.

习题 5.2

- 1. $2e^{-1}$.
- 2. (1) $\frac{1}{\sqrt{1+x}} + \frac{\sin x}{\sqrt{1+\cos x}}$; (2) $2xg'(x^2)f[g(x^2)]$.
- 3. $\frac{d^2y}{dx^2} = -\frac{1}{t^4 \ln t}$.
- 4. $\frac{dy}{dx} = -\frac{\sqrt{x}}{2\cos 2y}$.
- 5. 极小值 $f(1) = -\frac{17}{12}$.
- 6. $(1) \infty$;
- 7. $(1) \frac{1}{42}$; (2) 2; $(3) \sqrt{2} 1$; (4) 13;

- (5) $\frac{1}{2}$; (6) $4-2\ln 2$; (7) 4; (8) $\frac{2}{11}$.

- 8. $\frac{\pi}{6} + \ln 2$.
- 9. a = 0, F'(x) 连续.
- 10. $f(x) = \begin{cases} \frac{x^3}{3} \frac{x}{2} + \frac{1}{3} & 0 \le x < 1 \\ \frac{x}{3} \frac{1}{2} & x \ge 1 \end{cases}$

习题 5.3

- 1. $y = \frac{5}{2}x^2 + C$, $y = 5(\frac{1}{2}x^2 + 1)$.
- 2. $(1)\frac{5}{4}x^4-2x^2+x+C$;
- (2) $-\frac{2}{3}x^{-\frac{3}{2}} + C$;
- (3) $\ln |x| 3\arcsin x + C$; (4) $\frac{1}{3}x^3 + 2x \frac{1}{x} + C$;
- (5) $\frac{2}{5}u^{\frac{5}{2}} + \frac{1}{2}u^2 \frac{2}{3}u^{\frac{3}{2}} u + C;$ (6) $-\frac{2}{3}x^{-\frac{3}{2}} e^x + \ln|x| + C;$

 - (7) $\tan x \sec x + C$;
- (8) $\frac{2^x}{\ln 2} \cos x + C$;

(9)
$$\arctan x - \frac{1}{x} + C$$
;

$$(10) -\cot x - x + C;$$

(11)
$$-4\cot x + C$$
;

$$(12) -\frac{1}{4}(\cot\theta + \tan\theta) + C.$$

习题 5.4

1. (1)
$$-\frac{1}{5}\cos(5t+2)+C$$
; (2) $-\sqrt{3-2t}+C$; (3) $-\frac{2}{3}e^{-x^3}+C$;

$$(2) -\sqrt{3-2t} + C$$

$$(3) -\frac{2}{3}e^{-x^3}+C$$

(4)
$$\frac{1}{2}\ln^2 x + C$$
; (5) $\frac{1}{6}\tan^6 x + C$; (6) $\arctan(e^x) + C$.

(5)
$$\frac{1}{6} \tan^6 x + C$$

(6)
$$\arctan(e^x) + C$$
.

2. (1)
$$\frac{5\sqrt{5}}{3}$$
; (2) $\frac{4}{3}$; (3) $\frac{1}{6\sqrt{2}}$;

$$(2) \frac{4}{3}$$

$$(3) \frac{1}{6\sqrt{2}}$$

$$(4) 1-\cos 1;$$

(4)
$$1-\cos 1$$
; (5) $\arctan e^{-\frac{\pi}{4}}$; (6) $\frac{4}{5}(3^{\frac{5}{8}}-1)$;

(6)
$$\frac{4}{5}(3^{\frac{5}{8}}-1)$$

(7)
$$\frac{5}{4} \ln 2 - \frac{1}{4} \ln 17;$$
 (8) $\frac{23}{15};$ (9) $\frac{65}{4};$

(8)
$$\frac{23}{15}$$
;

$$(9) \frac{65}{4}$$

$$(10) \ \frac{2}{15};$$

(11)
$$1-\frac{\pi}{4}$$
;

$$(11) \ 1 - \frac{\pi}{4}; \qquad (12) \ \sqrt{2} - \frac{2\sqrt{3}}{3};$$

(13)
$$7+2\ln 2$$
; (14) $\frac{1}{6}$; (15) $1-2\ln 2$;

$$(14) \frac{1}{6};$$

$$(15) 1 - 2 \ln 2$$

(16)
$$\ln 3 - \ln 2$$
; (17) 2;

(19)
$$\frac{1}{2}(1-\ln 2);$$
 (20) $4\ln 2 - \frac{15}{16};$ (21) $\frac{\pi^3}{6} + \frac{\pi}{2};$

(20)
$$4 \ln 2 - \frac{15}{16}$$
;

(21)
$$\frac{\pi^3}{6} + \frac{\pi}{2}$$

(22)
$$\frac{\pi(8-\pi)}{32} - \frac{1}{2} \ln 2$$
; (23) $4(2 \ln 2 - 1)$; (24) 0;

(25)
$$\frac{1}{2}(e\cos 1 + e\sin 1 - 1)$$
;

(25)
$$\frac{1}{2}(e\cos 1 + e\sin 1 - 1);$$
 (26)
$$\begin{cases} \frac{1 \cdot 3 \cdot 5 \cdots m}{2 \cdot 4 \cdot 6 \cdots (m+1)} \cdot \frac{\pi}{2}, & m = 2k+1 \\ \frac{2 \cdot 4 \cdot 6 \cdots m}{1 \cdot 3 \cdot 5 \cdots (m+1)}, & m = 2k \end{cases}.$$

3.
$$(1)\frac{2}{3}$$
; (2) 0; (3) 16; (4) $\ln 2$.

4-6. 略.

7.
$$\tan \frac{1}{2} - 3e^{-2} + 1$$
. 8—10. 略.

习题 5.5

1. (1) 2; (2)
$$\pi$$
; (3) 2; (4) 发散; (5) -1 ;

(2)
$$\pi$$
.

$$(5) -1.$$

- 2. 收敛.
- 3. $2 \cdot \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{4}{5} \cdot \frac{2}{3}$.

习题 5.6

1. (1) $\frac{32}{3}$; (2) 1; (3) $e^2 - e$.

2. $a = \frac{\sqrt{6}}{4}$. 3. $\frac{1000\sqrt{3}}{3}$. 4. $\pi(\frac{1}{3}a^2 + ab + b^2)$.

5. 略.

6. $\frac{704}{3} \rho g(kN)$. $7. \frac{1}{12} \rho g \pi r^2 h^2(kJ)$.

8. $\frac{\pi \gamma d^3}{2}$.

9. 1.65N.

10. $F = -\frac{2Gm\rho l}{\sigma \sqrt{4\sigma^2 + l^2}}$ (其中G为引力系数),力的方向与细棒垂直且由M指向细

棒中心.

总习题 5

1. $\frac{1}{2} \ln^2 x$. 2. $\frac{\pi}{2}$. 3. -2 . 4. $\frac{1}{\lambda}$. 5. $\frac{\pi}{4}$.

6. 1 .

7. 2 . 8. (B). 9. (A). 10. (C).

11. $2\sqrt{x} \arcsin \sqrt{x} + 2\sqrt{1-x} + 2\sqrt{x} \ln x - 4\sqrt{x} + C$.

12. $-e^{-x} \arctan e^x + x - \frac{1}{2} \ln(1 + e^{2x}) + C$.

13. (1) 略; (2) $[2-\sqrt{2},\sqrt{2}]$.

14. $\frac{1}{2}$.

15. $f(x) = \ln(\sin x + \cos x), x \in [0, \frac{\pi}{4}].$

16. (1) $V(a) = \pi (\frac{a}{\ln a})^2$; (2) $a = e, V_{\min}(a) = V(e) = \pi e^2$.

17. $f(x) = \frac{1}{2}(e^x + e^{-x})$.

18. $(\frac{2}{3}\pi + \frac{\sqrt{3}}{4})ab\rho$.

19. 1.05 km.

第六章

习题 6.1

- 1. (1) -%; (2) -%; (3) -%; (4) -%;

- 2. (1) $y = Cx^2$ 是所给微分方程通解, $y = 4x^2$ 是所给微分方程的特解.
 - (2) $y = C_1 x + C_2 x^2$ 是所给微分方程的通解;
 - (3) $v = e^{2x} + e^{-x}$ 是所给微分方程的特解:
- (4) $y = \sin x$ 是所给微分方程的特解, $y = C_1 \sin x + C_2 \cos x$ 是所给微分方程 的通解.
- 3. $y = \frac{1}{2}x + 2$.
- 4. $\frac{dp}{dt} = k[Q(p) S(p)], (k > 0).$

习题 6.2

- 1. (1) $y^2 = \frac{2}{3} \ln|1 + x^3| + C;$ (2) $y = \frac{1}{C \cos x};$

 - (3) $\arcsin y = \ln |x| + C$;
- $(4) \quad \mathbf{y} = e^{Cx};$
- (5) $\arcsin y = \arcsin x + C$;
- (6) $y^2 + 2e^y = x^2 + 2e^{-x} + C$.
- 2. (1) $\sin 3y = \frac{3}{2}\cos 2x + \frac{3}{2}$;
- (2) $y^2 = 2(1-x)e^x 1$
- 3. (1) x + y = C;

- (2) $y = xe^{Cx+1}$;
- (3) $2v^3 = x^3 Cx$:
- $(4) \quad x + 2ve^{\frac{x}{y}} = C.$

4. (1) $y^3 = y^2 - x^2$;

- (2) $y^2 = 2x^2(\ln x + 2)$.
- 5. (1) $y = \frac{1}{x}(e^x + C)$;
- (2) $y = x(\ln^2 x + C)$;
- (3) $y = \frac{1}{r^3}(C \cos x)$;
- $(4) \quad y = \cos x(\sin x + C);$
- (5) $y = e^{-2x}(x^2 + C)$;
- (6) $y = \frac{1}{r^2} (\sin x + C)$.
- 6. (1) $y = \frac{1}{2}(3 e^{-2x})$;
- (2) $y=1-7e^{-\frac{x^2}{2}};$

(3)
$$y = \frac{1}{5}(t^3 - \frac{12}{t^2});$$

(4)
$$y = e^x (6 - \frac{1}{x+1}).$$

7. (1)
$$\frac{1}{y} = x(C - \ln x)$$
;

(2)
$$\frac{1}{y} = x^2 \left(-\frac{3}{7}x^{\frac{7}{3}} + C\right)^3$$
.

9. $v_{\text{max}} = 40$.

习题 6.3

1. (1)
$$y = (x-2)e^x + C_1x + C_2$$
;

(2)
$$y = \frac{1}{8}e^{2x} + \sin x + C_1x^2 + C_2x + C_3$$
;

(3)
$$y = C_1 \ln |x| + C_2$$
;

(4)
$$y = -\ln|\cos(x + C_1)| + C_2$$
;

(5)
$$C_1 y^2 - 1 = (C_1 x + C_2)^2$$
;

(6)
$$y = \arcsin(C_2 e^x) - C_1$$
.

2. (1)
$$y = \frac{1}{4}e^{2x} - \frac{e^2}{2}x + \frac{e^2}{4}$$
;

(2)
$$y = -\frac{1}{6} \ln |6x+1|$$
;

$$(3) \quad y = -\ln \cos x \; ;$$

(4)
$$y = (\frac{1}{2}x+1)^4$$
.

习题 6.4

1. (1)
$$y = C_1 e^{4x} + C_2 e^{-3x}$$
;

(2)
$$y = C_1 e^{3x} + C_2 e^{-3x}$$
;

(3)
$$y = C_1 e^{4x} + C_2 e^{-x}$$
:

(4)
$$y = C_1 + C_2 e^{-9x}$$
;

(5)
$$y = C_1 e^{\frac{3}{2}x} + C_2 e^{-x}$$
;

(6)
$$y = (C_1 + C_2 x)e^{-\frac{x}{2}};$$

(7)
$$y = e^{-2x} (C_1 \cos x + C_2 \sin x);$$

(8)
$$y = e^x (C_1 \cos \sqrt{2}x + C_2 \sin \sqrt{2}x);$$

(9)
$$y = C_1 \cos 4x + C_2 \sin 4x$$
;

(10)
$$y = (C_1 + C_2 x)e^{\frac{3}{2}x}$$
.

2. (1)
$$y = \frac{3}{4}(e^{-x} - e^{-5x})$$
;

(2)
$$y = \frac{\sqrt{3}}{6} \sin 2\sqrt{3}x$$
;

(3)
$$y = xe^{-2x}$$
;

(4)
$$y = -e^{\frac{\pi - x}{2}} (\cos x + \frac{1}{2} \sin x)$$
.

3. (1)
$$y = C_1 + C_2 e^{-x} + \frac{1}{2} x^2 - x$$
; (2) $y = (C_1 + C_2 x) e^{-x} + \frac{1}{4} e^x$;

(2)
$$y = (C_1 + C_2 x)e^{-x} + \frac{1}{4}e^x$$
;

(3)
$$y = (C_1 + C_2 x + \frac{1}{2} x^2) e^{-x}$$
;

(4)
$$y = C_1 e^x + C_2 e^{-x} + \frac{1}{2} x e^x$$
;

(5)
$$y = e^{-2x} (C_1 \cos x + C_2 \sin x) + 2$$
;

(6)
$$y = C_1 + C_2 e^{-2x} + \frac{1}{6} x^3 - \frac{1}{4} x^2 + \frac{1}{4} x - \frac{1}{3} e^x$$
;

(7)
$$y = C_1 e^x + C_2 e^{-x} + \frac{1}{2} (\sin x - \cos x);$$

(8)
$$y = C_1 \cos x + C_2 \sin x - \frac{1}{2} x \cos x$$
;

(9)
$$y = e^{x}(C_1 - x) + e^{2x}(C_2 - x)$$
;

(10)
$$y = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{3} \sin x$$
.

4. (1)
$$y = C_1 + C_2 e^{5x} + \frac{1}{10} x^2 e^{5x} - \frac{1}{25} x e^{5x}$$
;

(2)
$$y = C_1 + C_2 e^x - \sin x$$
;

(3)
$$y = C_1 \cos x + C_2 \sin x - \frac{1}{2} x \cos x + x \sin x$$
.

5.
$$y = -\frac{1}{5}\cos x + \frac{1}{5}e^{2x}$$
.

6. 略.

总习题6

1.
$$x = y^2$$
.

2.
$$y = xe^{2x+1}$$
.

3.
$$y = e^{-x} \sin x$$
.

4.
$$y = C_1 e^{3x} + C_2 e^x - x e^{2x}$$
.

5.
$$y = C_1 e^{2x} + C_2 \cos x + C_3 \sin x$$
.

6.
$$y(x) = e^{-2x} + 2e^x$$
.

9.
$$y = C_1 e^{2x} + C_2 e^x - (x^2 + 2x)e^x$$
.

9.
$$y = C_1 e^{2x} + C_2 e^x - (x^2 + 2x)e^x$$
. 10. $y = \arcsin(\frac{1}{\sqrt{2}}e^x) - \frac{\pi}{4}$

11. (1)
$$f(x) = e^x$$
; (2) 拐点(0,0).

12.
$$\psi(t) = \frac{3}{2}t^2 + t^3$$
 $(t > -1)$.