ПРАКТИЧЕСКАЯ РАБОТА №4

ТЕМА: «Расчет бункеров, затворов, наклонных лотков» (4 часа)

Цель работы: Ознакомление с устройством и принципом работы бункеров, наклонных лотков, затворов, выполнение проектного расчета.

4.1 Краткие теоретические сведения.

Основными свойствами сыпучих и мелкозернистых материалов, которые надо учитывать при транспортировании, являются: гранулометрический состав, угол естественного откоса в покое и в движении, плотность, коэффициент трения между материалом и поверхностью, состояние материала.

Свободно насыпанный на горизонтальную поверхность материал образует конус, угол наклона образующей которого к горизонтальной поверхности является углом естественного откоса материала в покое p_1 . Если материал поместить на движущуюся поверхность, то в результате толчков и встряхивания угол естественного откоса уменьшается. Такой угол называют углом естественного откоса материала в движении:

$$p_2 \approx 0.7 \ p_1.$$
 (4.1)

Плотность – масса единицы объема материала при насыпке его без уплотнения, обычно измеряется в килограммах на кубический метр.

Коэффициент трения материала о поверхность обусловливает углы наклона стенок бункеров, лотков, конвейеров. Коэффициент трения $f = tg \ \varphi$, где φ — угол трения, град.

Транспортируемый материал может быть хрупким, липким, абразивным и пылящим. Характеристика свойств материалов, учитываемых при выборе транспортирующего оборудования, приведена в таблице 4.1.

Таблица 4.1 - Характеристики транспортируемых материалов

Наименование материалов	Плотность γ , $\kappa \Gamma/m^3$	Угол естественного откоса p^0 1, град. Коэффициент трени (φ) материала о ста			
материалов		в покое/в движении			
1	2	3 а/б	4 a/б		
Гравий	17001900	45/30	1/0,58		
Щебень	18002000	45/35	1/0,7		
Песок	14001700	45/30	1/0,58		
Грунт сухой	12001300	45/30	1/0,58		
Глина сухая	11001500	50/35	1,2/0,7		
Цемент	11001300	43/38	0,93/0,78		

Бункера служат для хранения и перегрузки сыпучих и мелкокусковых материалов. Наиболее часто применяются пирамидальные, пирамидально-призматические и цилиндроконические бункера.

					МиТОМ.ПТУМЦ.Пр.№4.2022.Отчет				
Изм.	Лист	№ докум.	Подпись	Дата					
Выпол	тнил	Крумкач А.А.			Практическая работа №4		7ит.	Лист	Листов
Прове	рил	Астапенко И.В.			«Расчет бункеров, затво-			1	10
					ров, наклонных лотков» ГГТУ им. П.С		•		

Минимальные размеры выпускных отверстий бункеров в значительной мере зависят от физических свойств материала и составляют (мм): для сухого песка 150×150 , песка сырого 450×450 , цемента 225×225 , гравия и шлака крупностью до 35 мм 300×300 , гравия крупностью до 100 мм 500×500 , щебня крупностью до 150 мм 650×650 .

Размеры наименьших квадратных и круглых выпускных отверстий бункеров можно определить по формуле

$$a = k(d_{\text{Makc}} + 80) \text{tg } p^0_1,$$
 (4.2)

где k=2,6 для сортированного материала; k=2,4 для рядового материала; $d_{\text{макс}}$ — размер максимальных кусков, мм; $p^0_{\ 1}$ — угол естественного откоса материала в покое, град.

Пропускная способность бункера проверяется зависимостью

$$\Pi = 3600 Fv, \tag{4.3}$$

где F — площадь выпускного отверстия, м 2 ; v — скорость истечения материала, м/с ($v \approx 0,5...2$ м/с).

Меньшие значения – для рядовых влажных материалов; большие – для сухих сортированных. Углы наклона стенок бункера к горизонту:

$$\alpha = p^0_1 + (5... 10^\circ). \tag{4.4}$$

Углы наклона ребер бункера к горизонту:

$$\alpha' = \varphi + (5 \dots 10^{\circ}),$$

где ϕ — угол трения материала о стенки бункера, град.

Наклонные лотки и желоба служат для перемещения насыпных материалов под действием силы тяжести. Для перемещения под уклон пылящих материалов применяют спускные трубы. Размеры сечения желоба зависят от заданной производительности и от крупности кусков материала (табл. 4.2).

Крупность частиц	Закрытый желоб	Открытый желоб						
25	200×150	200×100						
40	300×200	300×150						
65	400×250	400×200						
100	500×300	500×200						
250	800×450	800×300						
400	1000×600	1000×400						

Таблица 4.2 - Характеристики крупности материалов

Так, для перемещения кусковых материалов с частицами крупностью до 400 мм применяют открытые и закрытые желоба.

Угол наклона лотков устанавливают в зависимости от угла трения материала о внутреннюю поверхность лотка.

Минимальный угол наклона лотка:

$$\alpha_{\text{мин}} = \varphi + (5 \dots 10^{\circ}),$$
град. (4.5)

Затворы служат для регулирования скорости истечения материалов из бункеров, а также для перекрывания их выпускных отверстий. Наиболее рас-

						Лист
					МиТОМ.ПТУМЦ.Пр.№4.2022.Отчет	2
Изм.	Лист	№ докум.	Подпись	Дата	, .	2

пространены клапанные, секторные, пальцевые и шиберные затворы (рис. 4.1).

Рис. 4.1. Затворы бункерные: а — клапанный; б — лотковый; в — секторный; Γ — пальцевый; д — шиберный горизонтальный; е — шиберный вертикальный

Давление материала, действующего на горизонтальный затвор:

$$p = 10\gamma R/\mu k, \Pi a, \qquad (4.6)$$

где γ — объемная масса материала, кг/м³; R = F/S — гидравлический радиус выпускного отверстия, м; F — площадь поперечного сечения выпускного отверстия, м²; S — периметр выпускного отверстия, м²; $\mu \approx tg$ p^0_1 — коэффициент трения материала о материал; p^0_1 — угол естественного откоса материала в покое; k — коэффициент подвижности материала:

$$k = (1 - \sin p^{0}_{1})/(1 + \sin p^{0}_{1}). \tag{4.7}$$

Усилие P_k , затрачиваемое на открывание затвора, определяется из равенства:

$$P_k \cdot \ell_p = P \cdot R_3 \cdot \mu_2 + (P + G) \frac{d}{2} \mu_1,$$
 (4.8)

Лист

где ℓ_P – длина рукоятки, M (рис. 2, θ); $P = pa^2$ – нормальная нагрузка на затвор, H; R_3 – радиус сектора затвора, M; μ_2 – коэффициент трения материала сектора по материалу в бункере; G – вес затвора; d – диаметр оси крепления сектора, M; μ_1 – коэффициент трения в оси крепления сектора (μ_1 = 0,1...0,2).

					МиТОМ.ПТУМЦ.Пр.№4.2022.Отчет
Изм.	Лист	№ докум.	Подпись	Дата	, .

Задание 1

Определить основные параметры пирамидально-призматического бункера, предназначенного для хранения Q=22 т несортированного гравия крупностью до $d_{\textit{макс}}=50$ мм. Размер бункера в плане $b \times b=2,5 \times 2,5$ м (рис. 4.2).

Рис. 4.2. Схемы комбинированных бункеров: а — пирамидально-призматический; б — цилиндроконический

Решение

Лист

Изм.

№ докум.

Определение размеров выпускного отверстия бункера:

$$a = k(d_{\text{MAKC}} + 80)tg \ p^0_{\ I} = 2,4(50 + 80) \cdot tg45 = 312 \text{ MM},$$

где k=2,6 для сортированного материала (нечетные варианты); k=2,4 для рядового материала (четные варианты); $d_{\text{макс}}=50$ мм; угол естественного откоса гравия в покое $p^0_1=45^\circ$ (табл.4.1, 3a).

Принимаем размеры разгрузочного отверстия $a \times a = 350 \times 350$ мм. В течение часа через отверстие бункера может быть выгружено:

$$v_1 = 3600F v = 3600a^2 v = 3600 \cdot 0.35^2 \cdot 1.5 = 660 \text{ m}^3/\text{ч}.$$

где ($v \approx 0,5...3$ м/с): меньшие значения — для рядовых влажных материалов; большие — для сухих сортированных.

Объем материала в бункере:

Подпись

Дата

$$V_0 = \frac{Q}{\gamma} = \frac{20}{1,6} = 12,5 \text{ m}^3.$$

На разгрузку бункера затрачивается:

$$t = 3600 \frac{V_0}{v_1} = 3600 \frac{12,5}{660} = 68 \text{ c.}$$

Определение основных размеров бункера. Углы наклона стенок (граней) бункера к горизонту $a^{\circ} = p^{0}_{1} + 10^{\circ} = 45^{\circ} + 10^{\circ} = 55^{\circ}$.

Лист

(1 pai	ich) bynkcp	ла к тор	изог	$\frac{11y a - p_1 + 10 - 43 + 10 - 33}{11}$	
					_
				МиТОМ.ПТУМЦ.Пр.№4.2022.Отчет	

Высота пирамидальной части бункера:

$$h_1 = \frac{b-a}{2}tg\alpha = \frac{2,5-0,35}{2}tg55^0 = 1,53 \text{ m}.$$

Высота призматической части бункера может быть найдена из формулы объема бункера:

$$V_n = h_2 b^2 + \frac{h_1}{3} (b^2 + ab + a^2);$$

$$h_2 = \frac{V_n - \frac{h_1}{3} (b^2 + ab + a^2)}{b^2} = \frac{12,5 - \frac{1,53}{3} (2,5^2 + 0,35 \cdot 2,5 + 0,35^2)}{2,5^2} = 1,42 \text{ M}.$$

Полная высота бункера

$$H = h_1 + h_2 = (1,53 + 1,42) = 2,95 \text{ M} = 2950 \text{ MM}.$$

<u>Проверка угла наклона ребра бункера к горизонту</u>. Диагонали оснований пирамидальной части бункера:

$$D = b\sqrt{2} = 2.5 \cdot 1.4 = 3.5 \text{ m}; \quad d = a\sqrt{2} = 0.35 \cdot 1.4 = 0.49 \text{ m}.$$

Угол наклона ребер бункера:

$$\alpha_1 = arctg \frac{2h_1}{D-d} = arctg \frac{2 \cdot 1,53}{3,5-0,49} = arctg 1,02 = 45^\circ.$$

При угле трения гравия по стали (табл.4.1, 4б) в движении $\phi=30^\circ$ получим

$$\alpha_1 \ge \varphi + 5^{\circ} = 30^{\circ} + 5^{\circ} = 35^{\circ}$$

т.е. материал во внутренних углах бункера оставаться не будет.

Задание 1

Изм.

Лист

№ докум.

Подпись

Дата

Определить основные параметры бункера. Данные приведены в таблице 4.3.

Таблица 4.3 – Исходные данные к расчету бункеров

№ варианта	Q , т	Хранимый материал	$b \times b$, M
1	22	Песок	2×2
2	25	Цемент	3×3
3	20	Γ равий ($d=60$ мм)	2,5×2,5
4	18	Щебень ($d = 50$ мм),	2,2×2,2
5	15	Γ равий ($d = 40$ мм)	1,8×1,8
6	16	Песок	1,8×1,8
7	30	Цемент	4×4
8	22	Γ равий ($d = 50$ мм)	2,5×2,5
9	24	Γ равий ($d = 45 \text{ мм}$)	2,7×2,7
10	10	Γ равий ($d = 25 \text{ мм}$)	1,5×1,5
11	14	Песок	1,8×1,8
12	26	Цемент	3,4×3,4
13	18	Гравий (d = 45 мм)	1,4×1,4
14	22	Гравий (d = 25 мм)	2,2×2,2
15	16	Гравий (d = 50 мм)	1,7×1,7
			Лист

МиТОМ.ПТУМЦ.Пр.№4.2022.Отчет

5

Пример 2

Определить основные размеры спускного лотка, подающего гравий на вторичное дробление. Крупность гравия 50...70 мм. Насыпная плотность γ = 1600 кг/м³. Пропускная способность лотка $\Pi=160$ м³/ч. Высота спуска h=4 м. Начальная скорость $v_0=0,2$ м/с (все - табл.4.4). Конечная скорость $[v_\kappa] \leq 2$ м/с.

Решение

Выбираем односекционный открытый спусковой лоток (рис. 4.3, a). Коэффициент трения щебня по стали в движении $\mu = 0.58$; $\varphi = 30^{\circ}$ (табл.4.1, 4б). Угол наклона желоба $\alpha = \varphi + (5...10^{\circ}) = 30^{\circ} + 5^{\circ} = 35^{\circ}$.

Рис. 4.3 - Схема расчета лотка: а – одинарного; б – составного

Конечная скорость определяется по формуле

$$v_{\kappa} = \sqrt{2 \cdot g \left(1 - \frac{\mu}{tg\alpha}\right) h + v_0^2} = \sqrt{2 \cdot 9.81 \left(1 - \frac{0.58}{tg35^{\circ}}\right) 4 + 0.2^2} = 3.8 \,\text{m/c}.$$

Скорость $v_{\kappa}=3.8\,$ м/с оказывается выше допустимой $[v_{\kappa}]=2\,$ м/с. Поэтому необходимо перейти на составной лоток (рис. 4.3, δ).

Длина составного спускного лотка при v_0 =0,2 м/с и [v_κ]=2 м/с определяется как:

$$L = \frac{2gh + v_0^2 - v_{\kappa}^2}{2g\mu} = \frac{2 \cdot 9,81 \cdot 4 + 0,2^2 + 2^2}{2 \cdot 9,81 \cdot 0,58} = 6,7 \text{ m}.$$

Высота h_1 начального участка спуска при $v_0 = 0,2$ м/с и $[v_{\kappa}] = 2$ м/с определяется

$$h_1 = \frac{(v_{\kappa}^2 - v_0^2)tg\alpha}{2g(tg\alpha - \mu)} = \frac{(2^2 - 0, 2^2) \cdot tg35^{\circ}}{2 \cdot 9,81(tg35^{\circ} - 0,58)} = 1,16 \text{ M}.$$

Высота h_2 конечного участка спуска будет определятся как

$$h_2 = h - h_1 = 4 - 1{,}16 = 2{,}84 \text{ M}.$$

Лист

					МиТОМ.ПТУМЦ.Пр.№4.2022.Отчет
Изм.	Лист	№ докум.	Подпись	Дата	, .

Угол наклона конечного тормозящего участка:

$$tg\alpha_2 = \frac{h_2}{L - \frac{h_1}{tg\alpha_1}} = \frac{2,84}{6,7 - \frac{1,16}{0,7}} = 0,558$$
 $\alpha_2 = 29^\circ$

Конечная скорость на тормозящем участке, для которого $v_0 = 0.2$ м/с; $h_2 = 2.84$ м и $\alpha_2 = 29^\circ$ определяется по формуле

$$v_{\kappa} = \sqrt{2g\left(1 - \frac{\mu}{tg\alpha_2}\right)h_2 + v_0^2} = \sqrt{2 \cdot 9.81\left(1 - \frac{0.58}{tg29^0}\right) \cdot 2.84 + 2^2} = 1.3 \text{ m/c}.$$

Полученная скорость не превышает допустимую конечную скорость.

По заданной производительности (таблица 4.4) определяем площадь поперечного сечения лотка:

$$F = \frac{\Pi}{3.6 \times v_{K} \times K} = \frac{160}{3600 \times 1.3 \times 0.35} = 0.098 \text{ m}^{2},$$

где Π — пропускная способность лотка, т/ч; υ — конечная скорость на лотке, м/с; K— коэффициент заполнения, K=0,35.

Ширина желоба b = a+0.05=0.35+0.05=0.4 м; высота бортов желоба c = F/b = 0.098/0.4=0.245 м. Площадь поперечного сечения желоба

Задание 2 Определить основные размеры спускного лотка.

Таблица 4.4 – Исходные данные к расчету лотков

№ варианта	Максималь- ная круп- ность камня <i>a</i> , мм	Объемная масса γ , т/м 3	Пропускная способность лотка II . м $^3/_{ m H}$	Высота спуска <i>h</i> , м	Начальная ${ m ckopoctb} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Конечная скорость <i>v</i> , м/ч	Примечание
1	30	2	400	6	0,6	2,5	Щебень
2	50	1,9	300	5	0,5	2,5	Гравий
3	45	1,8	200	4	0,5	2	Гравий
4	40	1,8	150	3	0,3	2	Щебень
5	20	1,7	100	2	0,2	1,5	Песок
6	70	1,9	350	3	0,1	3	Гравий
7	90	2	250	4	0,3	2,5	Гравий
8	30	1,6	450	2	0,15	2	Песок
9	20	1,8	150	4	0,5	2	Щебень
10	70	1,4	120	5	0,6	1,5	Щебень
11	15	1,6	320	3	0,2	3	Гравий
12	55	2,2	240	4	0,35	2,5	Гравий
13	60	1,5	180	2	0,25	2	Песок
14	20	1,6	140	4	0,6	2	Щебень
15	40	1,8	220	5	0,4	1,5	Щебень

Изм.	Лист	№ докум.	Подпись	Дата

Пример 3

Рассчитать секторный затвор, перекрывающий бункер песка. Радиус затвора $R_3 = 0.4$ м, длина рукоятки $l_p = 0.7$ м, размер выпускного отверстия бункера $a \times a = 0.35 \times 0.35$ м (рис. 4.1, e).

Решение

Площадь поперечного сечения выпускного отверстия $F=a\cdot a=0.35^2=0.123~\mathrm{m}^2.$

Периметр выпускного отверстия $S = 4a = 4 \cdot 0.35 = 1.4$ м.

Гидравлический радиус выпускного отверстия определяется как

$$R = \frac{F}{S} = \frac{0.123}{1.4} = 0.09 \text{ M}.$$

Угол естественного откоса песка в покое $p_1^0 = 45^\circ$ (табл.4.1, 3a).

Коэффициент подвижности материала определяется как

$$k = \frac{1 - \sin \rho_1^0}{1 + \sin \rho_1^0} = \frac{1 - \sin 45^0}{1 + \sin 45^0} = 0,176$$

Коэффициент трения песка о материал затвора $\mu=1$ (табл.4.1, 4а). Давление материала, действующее на горизонтальный затвор, определяется по формуле 4.6 р = $10\gamma R/\mu k$:

$$p = 10 \cdot \frac{1800 \cdot 0.09}{1.0.176} = 9100 \text{ Ha}.$$

Нормальная нагрузка на затвор $P=p\cdot a^2=9100\,0,35^2=1120$ Н. Вес затвора принимаем равным G=100 Н, диаметр оси d=15 мм = =0,015 м. Усилие, затрачиваемое на открывание затвора:

$$P_k = \frac{PR_3\mu_2 + (P+G)\frac{d}{2}\mu_1}{l_P} = \frac{1120 \cdot 0, 4 \cdot 1 + (1120 + 100)\frac{0,015}{2} \cdot 0, 2}{0,7} = 650 \text{ H}.$$

Задание 3

Рассчитать секторный затвор по параметрам, приведенным в таблице 4.5.

Таблица 4.5 – Исходные данные к расчету затворов

№ варианта	<i>R</i> ₃ , м	l_p , M	$a \times a$, M	Хранимый материл
1	0,35	0,5	$0,25 \times 0,25$	Песок
2	0,4	0,6	0,3 ×0,3	Цемент
3	0,45	0,7	$0,35 \times 0,35$	Шлак
4	0,5	0,75	$0,4 \times 0,4$	Гравий ($d_{маск} = 30 \text{ мм}$)
5	0,6	0,8	$0,45 \times 0,45$	Щебень ($d_{маск} = 40$ мм)
6	0,25	0,45	$0,2 \times 0,2$	Песок
7	0,5	0,8	$0,4 \times 0,4$	Песок
8	0,4	0,6	$0,35 \times 0,35$	Шлак
9	0,7	0,95	$0,5 \times 0,5$	Щебень ($d_{маск} = 50$ мм)
10	0,3	0,5	$0,3 \times 0,3$	Шлак

Изм.	Лист	№ докум.	Подпись	Дата

4.4 Выполнение работы

- 1. Ознакомиться с теоретическими сведениями.
- 2. Изучить устройств и принцип работы бункеров, затворов и лотков.
- 3. Произвести расчет бункеров, затворов и лотков.
- 4. Оформить отчет.

4.5 Содержание отчета

- 1. Цель работы.
- 2. Теоретические сведения.
- 3. Расчет бункеров, затворов и лотков.
- 4. Выводы по работе.

·				
Изм.	Лист	№ докум.	Подпись	Дата