МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Отчёт о выполнении лабораторной работы №4.4.1

Амплитудная дифракционная решетка

Автор: Сенокосов Арсений Олегович Сафин Дим Рустемович Б02-012

Долгопрудный 11 августа 2022 г.

1 Введение

Цель работы: знакомство с работой и настройкой гониометра Γ 5, определение спектральных характеристик амплитудной решетки.

В работе используются: гониометр, дифракционная решетка, ртутная лампа.

2 Теоретические сведения

Основное соотношение приближенной теории дифракционной решётки:

$$d\sin\varphi_m = m\lambda. \tag{1}$$

Угловая дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$
 (2)

3 Экспериментальная установка

При работе с дифракционной решёткой основной задачей является точное измерение углов, при которых наблюдаются главные максимумы для различных длин волн. В нашей работе для измерения углов используется гониометр Г5. Принципиальная схема экспериментальной установки приведена на рис. 3.

Рис. 1: Схема установки

4 Ход работы

Измерим угловые координаты спектральных линий ртути в ± 1 порядках, рассчитаем углы дифракции φ_m . Результаты измерений и вычислений занесем в таблицу 1.

	синий	голубой	зеленый	желтый	желтый	красный	красный
φ	12°34′55″	14°13′44″	15°50′49″	16°45′51″	16°49′45″	17°49′58″	18°09′50″
$\sin \varphi$	0,2178	0,2457	0,2731	0,2884	0,2895	0,3062	0,3117
λ , HM	435,8	491,6	546,1	577,0	579,1	623,4	690,7

Таблица 1: Измерение угловых положений спектральных линий

Для оценки угловой дисперсии решётки определим разности угловых координат линий жёлтого дублета во всех видимых порядках ($\Delta\lambda=21~{\rm \mathring{A}}$):

m	$\Delta \varphi,''$	$D \cdot 10^{-5}~\mathrm{pag/\mathring{A}}$	$\sigma_D \cdot 10^{-5} \; \mathrm{pag/\mathring{A}}$
1	224	5.17	0.21
-1	239	-5.52	0.22
2	588	13.57	0.54
-2	548	-12.65	0.51
3	1350	31.17	1.25
-3	1332	-30.75	1.23

Таблица 2: Исследование угловой дисперсии

5 Обработка результатов

Построим график зависимости $\sin \varphi_m$ от длины волны λ для ± 1 порядка:

График 1 График зависимости угловой координаты спектральных линий от длины волны

Определим по углу наклона графика период решётки d:

$$1/d = (453 \pm 21) \text{ mtpux/mm}$$
 (3)

$$d = (2,2 \pm 0,1) \text{ MKM}$$
 (4)

Для угловой дисперсии построим график зависимости этой величины от порядка дифракции.

.10-4 График 2 График зависимости угловой дисперсии от порядка максимума

Оценим разрешимый спектральный интервал $\delta\lambda$, разрешающую способность R и число эффективно работающих штрихов решётки N, а также её эффективный размер l. По результатам измерений угловая ширина первой жёлтой линии составляет $\Delta\varphi=30''$.

$$\delta \lambda \approx \Delta \varphi / D = (2.8 \pm 0.2) \text{ Å};$$
 (5)

$$R \approx \frac{\lambda}{\delta \lambda} = 2055 \pm 146 \tag{6}$$

$$N \approx R/m = 2055 \pm 146 \tag{7}$$

$$l \approx Nd = (4.5 \pm 0.3) \text{ MM} \tag{8}$$

Найдём порядок дифракции при которой жёлтая линия спектра совпадёт с фиолетовой:

$$(m+1)\lambda_{\Phi} = m\lambda_{\mathsf{x}}$$
$$m = \frac{\lambda_{\Phi}}{\lambda_{\mathsf{x}} - \lambda_{\Phi}} \approx 3.1$$

6 Обсуждение результатов и выводы

В ходе выполнения лабораторной работы были получены следующие результаты.

ullet Экспериментально измерено положение спектральных линий ртутной лампы в \pm 1 порядке. По полученным данным был вычислен период дифракционной решётки.

$$1/d = (453 \pm 21) \; {
m mtpux/mm}$$

$$\boxed{d = (2.2 \pm 0.1) \; {
m mkm}}$$

Эти данные примерно совпадают с реальными параметрами решётки 1/d = 500 штрих/мм.

- Далее была исследована угловая дисперсия дифракционной решётки, её зависимость от порядка максимума. Для жёлтой пары она была измерена в 3 порядках. Результаты представлениы на Графике 2. Экспериментальные данные хорошо описывают теоретическую зависимость.
- По результатам измерений были определены основные параметры дифракционной решётки для первого порядка дифракции. Была определена разрешающая способность, эффективное число штрихов и её эффективный размер.

$$R = 2055 \pm 146$$

$$N = 2055 \pm 146$$

$$l \approx Nd = (4.5 \pm 0.3) \text{ mm}$$

• Также был рассчитан порядок дифракции при которой жёлтая линия спектра совпадёт с фиолетовой.

$$m = 3.1$$

Результаты, полученные в ходе выолнения работы можно назвать удовлетворительными. Основной вклад в погрешность вности неточность опредения цвета той или иной спектральной линии в силу слабой интенсивности некоторых линий спектра. Также свой вклад вности неточность, появляющаяся в результате некоторого смещения нуля отсчёта угловых координат гониометра.