ML Competition

신용카드 사용자 연체 예측

아머러파티

김지은 노명진 심재민 이서연 임형빈

CONTENTS

00. 분석 주제 & 전략

01. Data Cleansing

- · 범주형 변수 처리
- 수치형 변수 처리

02. Feature Engineering

- · feature 생성
- · feature selection

03. Scaling & Encoding

- · Scaling
- · Encoding

04. Modeling

- · Random Forest
- · LGBM
- · CatBoost
- · XGBoost
- · Ensemble

00 분석 주제 & 전략

신용카드 사용자들의 <u>신용카드 사용자들의</u> 개인 신상정보 데이터 대금 연체 정도 예측

01 Data Cleansing

· 범주형 변수

01 Data Cleansing

· 수치형 변수

01 Data Cleansing

· 수치형 변수

child_num이 7 이상은 target 값이 전부 2

family_size가 9 이상은 target 값이 전부 2

9 이상은 9로 대체

02 Feature Engineering

· feature 생성

begin month를 제외한 모든 값이 중복되는 데이터 존재

월 소득

총 소득

가구별 인당 평균 소득

주 단위 년 단위 카드 발급 나이 고용된 후 몇 년 후에 발급 받았는지 10개월 기준 구간화

02 Feature Engineering

· feature 생성

총 102개의 feature 생성

02 Feature Engineering

feature selection

<u>각 모델별로 적합한 feature 선택</u>

Embedded Method를 활용한
 Select From Model 사용

{'ID': True, 'gender': False, 'car': False, 'reality': False, 'child_num': False, 'income_total': True, 'income_type': True, 'edu_type': True, 'family_type': True, 'house_type': False, 'DAYS_BIRTH': True, 'DAYS_EMPLOYED': False, 'work_phone': False, 'phone': False, 'email': False, 'occyp_type': True, 'family_size': False, 'begin_month': True, 'income/family': True, 'adult_num': False, 'age': False, 'EMPLOYED': False, 'MONTH_EMPLOYED': True, 'YEAR_EMPLOYED': False, IVEAD EMPLOYED at Teur ● Feature간의 상관관계가 높은 것 중 feature importance가 더 작은 변수 삭제

03 Scaling & Encoding

Scaling

	child_num	income_total	DAYS_BIRTH	DAYS_EMPLOYED	family_size	begin_month	income/family	adult_num	age	MONTH_EMPLC
count	26457.000000	26457.000000	26457.000000	26457.000000	26457.000000	26457.000000	26457.000000	26457.000000	26457.000000	26457.00
mean	0.427411	184830.586410	15958.053899	2198.529538	2.195752	26.123294	62178.848922	1.768341	43.213478	72.88
std	0.728768	89387.516632	4201.589022	2370.140530	0.903769	16.559550	35043.384019	0.422616	11.513590	78.93
min	0.000000	27000.000000	7705.000000	0.000000	1.000000	-0.000000	6300.000000	-1.000000	21.000000	0.00
25%	0.000000	121500.000000	12446.000000	407.000000	2.000000	12.000000	37500.000000	2.000000	34.000000	13.00
50%	0.000000	157500.000000	15547.000000	1539.000000	2.000000	24.000000	52500.000000	2.000000	42.000000	51.00
75%	1.000000	225000.000000	19431.000000	3153.000000	3.000000	39.000000	78750.000000	2.000000	53.000000	105.00
max	7.000000	492935.852351	25152.000000	15713.000000	9.000000	60.000000	246467.926175	2.000000	68.000000	523.00

수치형 변수들 간의 값 범위의 차이가 큼

MinMax Scaler

일정한 범위로 조정

로그 변환

정규분포에 가까운 형태

03 Scaling & Encoding

Encoding

04 Modeling

· Random Forest, LGBM, CatBoost, XGBoost

optuna 하이퍼파라미터 최적화

Random Forest

public: 0.7439 private: 0.7267

LGBM

V

public: 0.7368 private: 0.7207

public: 0.7293 private: 0.7135

04 Modeling

· Ensemble

<u> 상관계수가 낮은 모델들 선택</u> -> RandomForest, CatBoost, XGBoost

04 Modeling

· Ensemble

public: 0.7016 private: 0.6854

THANK YOU

ML Competition

아머러파티

2022. 11. 29