UCSanDiegoX: DSE200x Python for Data Science Week 6: Mini Project

Does the aging population drag down the GDP growth?

Y. YANG Oct. 2019

Dataset

World Development Indicators Dataset

Research Question

- Does the aging population drag down the GDP growth?

Steps

In order to answer this question effectively, I picked up two representative countries considering their dramatic demographic change across the time – Japan and Nigeria. I will firstly have a look on how the demographic distribution and the annual GDP growth of these two countries change from 1980 to 2014. Specifically, I will compare the elderly people population of Japan with that of Nigeria, to show how different their societies are. Finally, I will evaluate the correlation between the number of seniors and the growth of economy and draw a conclusion.

Finding 1-1: Demographic changes

Japan saw a dramatic increase of elderly population as it accounted for a quarter of its total population by the end of 2014, while the constitution of Nigeria's population remained almost the same as what it was 25 years ago.

Finding 1-2: The elderly population changes

People aged 65 and older in Japan reached a quarter of its total population, up more than 15% 25 years ago. Japan had a post-war baby boom but followed by a prolonged period of low fertility.

Finding 2: Annual GDP growth

Year 2009 in Japan: The Japanese economy has been hit hard by the slump in global demand for advanced manufacturing products such as cars since the start of the 2008 Great Recession.

Year 2004 in Nigeria: Nigeria left the base year used to evaluate the real GDP far too long; as a result, its old GDP figures were inaccurate. In 2004, the new figures used 2010 as the base year.

Finding 3: Aging population and GDP growth

Correlation	Japan	Nigeria
Full data	-0.554	-0.365
Withdraw the outlier	-0.535	-0.560

Conclusion

The calculated result of Japan shows there is a strong (-1 < r < -0.5) inverse linear relationship between the two variables - the aging population and the GDP growth. In Nigeria, this potential correlation becomes solid after withdrawing the outlier year.

We may conclude that the growing elderly population is likely to create economic slowdown in either Japan or Nigeria. In addition, while high population growth in Nigeria may offset this negative effect and boost its GDP at some level. Broadly speaking, Japan may represent developed countries and Nigeria stands for the developing. But to support this general claim, more data explorations are needed.

References

[1] Kelley, Allen C., and Robert M. Schmidt. "Aggregate population and economic growth correlations: the role of the components of demographic change." *Demography* 32.4 (1995): 543-555.

Question: How does the changing population affect the economy?

I will be using "The World Development Indicators" dataset obtained from the World Bank containing over a thousand annual indicators of economic development from hundreds of countries around the world.

Specifically, I will study "how does the changing population affect the economy" by comparing two representative countries in demographic change - Japan and Nigeria, through 1980 - 2015.

```
In [1]: import pandas as pd
import numpy as np
import random
import matplotlib.pyplot as plt
```

Data Exploration and Cleaning

```
In [2]: data = pd.read_csv('/Users/yang/Downloads/world-development-indicators/Indicators.csv')
    data.head()
```

Out[2]:

	CountryName	CountryCode	IndicatorName	IndicatorCode	Year	Value
0	Arab World	ARB	Adolescent fertility rate (births per 1,000 wo	SP.ADO.TFRT	1960	1.335609e+02
1	Arab World	ARB	Age dependency ratio (% of working-age populat	SP.POP.DPND	1960	8.779760e+01
2	Arab World	ARB	Age dependency ratio, old (% of working-age po	SP.POP.DPND.OL	1960	6.634579e+00
3	Arab World	ARB	Age dependency ratio, young (% of working-age	SP.POP.DPND.YG	1960	8.102333e+01
4	Arab World	ARB	Arms exports (SIPRI trend indicator values)	MS.MIL.XPRT.KD	1960	3.000000e+06

Investigate the time period of the data:

```
In [3]: print (data.Year.max())
    print (data.Year.min())

2015
    1960
```

How does the demographics distribution change from 1980 to 2014?

```
In [4]: mask_all = data.IndicatorName.str.contains('Population, ages 0-14|Population, ages 15-64|Po
    pulation ages 65 and above')
    mask_yl= data.Year == 1980
    mask_y2= data.Year == 2014
    mask_a = data.CountryName == 'Japan'

In [5]: demo_Al= data[mask_all & mask_yl & mask_A][['CountryName','IndicatorName','Year','Value']]

In [6]: def extract_AgeNo(df):
    new = df['IndicatorName'].str.split('ages', expand=True)
    df['Age Index']=new[1]
    return df

In [7]: def sort_indexAge(df):
    df['sort'] = df['IndicatorName'].str.extract('(\d+)',expand=False).astype(int)
    df.sort_values('sort',inplace=True, ascending=True)
    df = df.drop('sort', axis=1)
    return df
```

```
In [8]: demo_Al=sort_indexAge(extract_AgeNo(demo_Al))
    demo_Al.head()
```

Out[8]:

Age Index	Value	Year	IndicatorName	CountryName	
0-14 (% of total)	23.561734	1980	Population, ages 0-14 (% of total)	Japan	1055266
15-64 (% of total)	67.392501	1980	Population, ages 15-64 (% of total)	Japan	1055267
65 and above (% of total)	9.045765	1980	Population ages 65 and above (% of total)	Japan	1055259

```
In [9]: demo_A2= data[mask_all & mask_y2 & mask_A][['CountryName','IndicatorName','Year','Value']]
    demo_A2=sort_indexAge(extract_AgeNo(demo_A2))
    demo_A2.head()
```

Out[9]:

	CountryName	IndicatorName	Year	Value	Age Index
5589433	Japan	Population, ages 0-14 (% of total)	2014	12.939212	0-14 (% of total)
5589434	Japan	Population, ages 15-64 (% of total)	2014	61.355365	15-64 (% of total)
5589426	Japan	Population ages 65 and above (% of total)	2014	25.705422	65 and above (% of total)

```
In [10]: mask_B= data.CountryName == 'Nigeria'
```

Out[11]:

Age Index	IndicatorName Year Value A			CountryName	
0-14 (% of total)	43.978688	1980	Population, ages 0-14 (% of total)	Nigeria	1069692
15-64 (% of total)	53.247057	1980	Population, ages 15-64 (% of total)	Nigeria	1069693
65 and above (% of total)	2.774255	1980	Population ages 65 and above (% of total)	Nigeria	1069685

Out[12]:

Age Index	Value	Year	IndicatorName	CountryName	
0-14 (% of total)	44.071179	2014	Population, ages 0-14 (% of total)	Nigeria	5610777
15-64 (% of total)	53.178905	2014	Population, ages 15-64 (% of total)	Nigeria	5610778
65 and above (% of total)	2.749916	2014	Population ages 65 and above (% of total)	Nigeria	5610770

```
In [13]: def demo_bar(df1, df2):
             assert len(df1) == len(df2)
             N = len(df1)
             ind = np.arange(N)
             width = 0.35
             fig, ax = plt.subplots(figsize=(9, 6))
             ax.bar(ind, df1.Value, width, label = df1.Year.iloc[0], color=(0.2588,0.4433,1.0))
             ax.bar(ind+width, df2.Value, width, label = df2.Year.iloc[0], color=(1.0,0.5,0.62))
             ax.set_ylabel('Population (% of toal)', fontsize=12)
             ax.set_ylim(0, 80)
             ax.set_xticks(ind + width / 2)
             ax.set xticklabels(df1['Age Index'].values, fontsize=12)
             ax.set_title('Demographics Changes of '+ df1.CountryName.iloc[0] +
                           ' from '+ str(df1.Year.iloc[0]) + ' to ' + str(df2.Year.iloc[0]), fontsize
         =12)
             ax.legend(loc = 'best', fontsize='large', fancybox=True)
             fig.savefig('/Users/yang/Desktop/graph.png')
             return plt.show()
```

```
In [14]: demo_bar(demo_A1, demo_A2)
```



```
In [15]: demo bar(demo B1, demo B2)
```


How about the GDP growth of each country in this period?

```
In [16]: mask_G = data.IndicatorName.str.contains('GDP grow')
    mask_y= data.Year >= 1980
    GDP_A= data[mask_G & mask_y & mask_A][['CountryName','IndicatorName','Year','Value']]
    GDP_A.head()
```

Out[16]:

	CountryName	IndicatorName	Year	Value
1055047	Japan	GDP growth (annual %)	1980	2.817591
1138191	Japan	GDP growth (annual %)	1981	4.176844
1222888	Japan	GDP growth (annual %)	1982	3.376608
1308181	Japan	GDP growth (annual %)	1983	3.060738
1393773	Japan	GDP growth (annual %)	1984	4.463899

```
In [17]:
          GDP B= data[mask G & mask y & mask B][['CountryName','IndicatorName','Year','Value']]
           GDP B.head()
Out[17]:
                    CountryName
                                                              Value
                                       IndicatorName
                                                    Year
           1069527
                          Nigeria GDP growth (annual %)
                                                    1980
                                                            4.204831
           1152958
                          Nigeria GDP growth (annual %)
                                                    1981
                                                          -13.127880
                                                   1982
           1237831
                          Nigeria GDP growth (annual %)
                                                           -1.053186
                          Nigeria GDP growth (annual %)
                                                           -5.050451
           1323313
                                                   1983
                          Nigeria GDP growth (annual %) 1984
                                                           -2.021538
           1409009
In [18]:
           for c in (GDP A, GDP B):
                print (c.CountryName.iloc[0], len(c))
           Japan 35
          Nigeria 35
In [19]: def Tosee(df1, df2, row, col):
                fig, ax = plt.subplots(nrows=row, ncols=col, figsize=(15, 6))
               MAX = max (df1.Value.max(),df2.Value.max())
               MIN = min (df1.Value.min(),df2.Value.min())
                for a, d in zip(ax,(df1, df2)):
                    X = d.Year.values
                    Y = d.Value.values
                    a.set ylim(1.2*MIN, 1.2*MAX)
                    a.plot(X, Y, marker='s', markersize=5)
                    a.set_xlabel('Year', fontsize=12)
                    a.set ylabel(d.IndicatorName.iloc[0], fontsize=12)
                    a.set_title(d.CountryName.iloc[0], fontsize=12)
                    fig.savefig('/Users/yang/Desktop/graph2.png')
                return plt.show()
In [20]: Tosee(GDP A, GDP B, 1, 2)
                                                                                           Nigeria
                                     Japan
              40
              30
                                                                     30
           GDP growth (annual %)
                                                                  GDP growth (annual %)
              20
                                                                     20
                                                                     10
              10
             -10
                                                                    -10
                 1980
                       1985
                             1990
                                                                        1980
                                                                              1985
                                    1995
                                          2000
                                                2005
                                                      2010
                                                            2015
                                                                                    1990
                                                                                          1995
                                                                                                2000
                                                                                                      2005
                                                                                                            2010
                                                                                                                  2015
```

Year

How does the elderly population change across this period?

Year

```
In [21]: mask1 = data.IndicatorName.str.contains('Population ages 65 and above')
Old_A= data[mask1 & mask_y & mask_A][['CountryName','IndicatorName','Year','Value']]
Old_A.head()
```

Out[21]:

	CountryName	IndicatorName	Year	Value
1055259	Japan	Population ages 65 and above (% of total)	1980	9.045765
1138399	Japan	Population ages 65 and above (% of total)	1981	9.293358
1223101	Japan	Population ages 65 and above (% of total)	1982	9.508684
1308394	Japan	Population ages 65 and above (% of total)	1983	9.712745
1393986	Japan	Population ages 65 and above (% of total)	1984	9.936894

```
In [22]: Old_B= data[mask1 & mask_y & mask_B][['CountryName','IndicatorName','Year','Value']]
    Old_B.head()
```

Out[22]:

	CountryName	IndicatorName	Year	Value
1069685	Nigeria	Population ages 65 and above (% of total)	1980	2.774255
1153199	Nigeria	Population ages 65 and above (% of total)	1981	2.800028
1238081	Nigeria	Population ages 65 and above (% of total)	1982	2.819332
1323568	Nigeria	Population ages 65 and above (% of total)	1983	2.832640
1409262	Nigeria	Population ages 65 and above (% of total)	1984	2.840471

```
In [23]: for c in (Old_A, Old_B):
    print (c.CountryName.iloc[0], len(c))
```

Japan 35 Nigeria 35

```
In [24]:
    def Tosee_together(df1, df2):
        fig, ax = plt.subplots(figsize=(9, 6))
        MAX = max (df1.Value.max(),df2.Value.max())
        MIN = min (0,df1.Value.min(),df2.Value.min())
        ax.set_ylim(MIN, 1.2*MAX)
        ax.plot(df1.Year, df1.Value, 'bs', label = df1.CountryName.iloc[0])
        ax.plot(df2.Year, df2.Value, 'g--', linewidth=2, label = df2.CountryName.iloc[0])
        ax.set_xlabel('Year', fontsize=12)
        ax.set_ylabel(df1.IndicatorName.iloc[0], fontsize=12)
        ax.set_title('Change of the elderly population', fontsize=12)
        ax.legend(loc = 'upper left', fontsize='large', fancybox=True)
        fig.savefig('/Users/yang/Desktop/graph22.png')
        return plt.show()
```

In [25]: Tosee together(Old A, Old B)

Does the aging population of Japan drag down the GDP growth?

```
In [26]: def Scat(df1, df2): # x, y
    fig, ax = plt.subplots(figsize=(6, 5))
    X = df1.Value.values
    Y = df2.Value.values
    #area = 40*df2.Value.min(), 1.2*df2.Value.max())
    ax.set_ylim(1.2*df2.Value.min(), 1.2*df2.Value.max())
    ax.scatter(X, Y, c=Y, cmap=plt.cm.seismic)
    ax.set_alpha(1)
    ax.set_xlabel(df1.IndicatorName.iloc[0], fontsize=12)
    ax.set_ylabel(df2.IndicatorName.iloc[0], fontsize=12)
    ax.set_title(df1.CountryName.iloc[0], fontsize=12)

fig.savefig('/Users/yang/Desktop/graph_cor.png')
    return ax
```


Background: The Japanese economy has been hit hard by the slump in global demand for advanced manufacturing products such as cars since the start of the 2008 Great Recession.

Let's truncate the outlier.

Background: Nigeria left the base year used to evaluate the real GDP far too long; as a result, its old GDP figures were inaccurate. In 2004, the new figures use 2010 as the base year and thus the figure in 2004 upgraded so big. Let's see what will be after removing the outlier year.

Conclusion

The calculated result of Japan shows there is a strong (-1 < r < -0.5) inverse linear relationship between the two variables - the aging population and the GDP growth. In Nigeria, this potential correlation becomes solid after withdrawing the outlier year. We may conclude that the growing elderly population is likely to create economic slowdown in either Japan or Nigeria. In addition, while high population growth in Nigeria may offset this negative effect and boost its GDP at some level. Broadly speaking, Japan may represent developed countries and Nigeria stands for the developing. But to support this general claim, more data explorations are needed.

```
In [ ]:
```