Programowanie nieliniowe

Badania operacyjne Wykład 3 **Metoda Lagrange'a**

Plan wykładu

- Przykład problemu z nieliniową funkcją celu
- Sformułowanie problemu programowania matematycznego
- Podstawowe definicje
- Problem z ograniczeniami w postaci równości
- Twierdzenie Lagrange'a
- Metoda Lagrange'a
- Przykład

Nieliniowa funkcja celu

Na schemacie v oznacza napięcie źródła, r opór wewnętrzny źródła, a R opór odbiornika. Znaleźć taką wartość R, aby strata mocy była maksymalna, jeżeli dopuszczalny spadek napięcia na oporniku wynosi E?

$$P = i^2 R$$

$$i = \frac{V}{r + R}$$

$$E = iR$$

Nieliniowa funkcja celu i ograniczenia

zmaksymalizować
$$P = \left(\frac{V}{r+R}\right)^2 R$$

przy ograniczeniach:
$$\frac{\sqrt{R}}{r+R} < E$$

Nieliniowa funkcja celu

zmaksymalizować
$$P = \left(\frac{V}{r+R}\right)^2$$

$$\frac{dP}{dR} = \frac{v^2 (r+R)^2 - 2(r+R)v^2 R}{(r+R)^4}$$

Nieliniowa funkcja celu i ograniczenia

zmaksymalizować
$$P = \left(\frac{V}{r+R}\right)^2 R$$

przy ograniczeniach: $R < \frac{Er}{v-e}$

Nieliniowa funkcja celu i ograniczenia

zmaksymalizować
$$P = \left(\frac{V}{r+R}\right)^2 R$$

przy ograniczeniach: $R < \frac{Er}{v-e}$

Sformułowanie problemu programowania matematycznego

zminimalizować (zmaksymalizować)

przy ograniczeniach

$$z = f_0(x_1, x_2, ..., x_n)$$

$$f_1(x_1, x_2, ..., x_n) \leq 0$$

$$f_2(x_1, x_2, ..., x_n) \leq 0$$

.....

$$f_m(x_1, x_2, ..., x_n) \le 0$$

Sformułowanie problemu programowania matematycznego

zminimalizować (zmaksymalizować) $z = f_0(\mathbf{x})$

przy ograniczeniach: $f_i(\mathbf{x}) \leq 0$, i = 1, ..., m

 $x\in\Re^n$

Sformułowanie problemu programowania matematycznego

zminimalizować (zmaksymalizować)

 $z = f_0(\mathbf{x})$

przy ograniczeniach:

$$f_i(\mathbf{x}) \leq 0$$

$$f_i(\mathbf{x}) \leq 0,$$
 $i = 1, ..., m$

 $x \in \Re^n$

Problem programowania liniowego jest szczególnym przypadkiem problemu programowania matematycznego

zminimalizować (zmaksymalizować)

$$z = f_0(\mathbf{x}) = \mathbf{c}\mathbf{x}$$

przy ograniczeniach:

$$f_i(\mathbf{x}) = \mathbf{A}_i \mathbf{x} - b_i \le 0, i = 1,..., m$$

$$\mathbf{X} \in \Re^{n+}$$

Klasyfikacja problemów NLP

- Problemy bez ograniczeń
- Problemy z ograniczeniami
 - Ograniczenia w postaci równań
 - Ograniczenia w postaci nierówności

Niech:

- S = $\{x: f_i(x) \le 0, i = 1, ..., m\}$ zbiór rozwiązań dopuszczalnych
- $\Delta = \{ \mathbf{x} : 0 < ||\mathbf{x}^* \mathbf{x}|| < \delta \}$
- \blacksquare E = S $\cap \Delta$

Funkcja f₀ ma w punkcie **x*** słabe minimum

(maksimum) lokalne, jeśli istnieje δ >0 takie, że

dla każdego **x** ∈ E

$$f_0(\mathbf{x}^*) \le f_0(\mathbf{x}), (f_0(\mathbf{x}^*) \ge f_0(\mathbf{x}))$$

Niech:

- S = $\{x: f_i(x) \le 0, i = 1, ..., m\}$ zbiór rozwiązań dopuszczalnych
- $\Delta = \{ \mathbf{x} : 0 < ||\mathbf{x}^* \mathbf{x}|| < \delta \}$
- \blacksquare E = S $\cap \Delta$

dla każdego $\mathbf{x} \in \mathbf{E}$

Funkcja f_0 ma w punkcie \mathbf{x}^* właściwe minimum (maksimum) lokalne, jeśli istnieje $\delta>0$ takie, że

$$f_0(\mathbf{x}^*) < f_0(\mathbf{x}), (f_0(\mathbf{x}^*) > f_0(\mathbf{x}))$$

Niech:

- S = $\{x: f_i(x) \le 0, i = 1, ..., m\}$ zbiór rozwiązań dopuszczalnych
- $\Delta = \{ \mathbf{x} : 0 < ||\mathbf{x}^* \mathbf{x}|| < \delta \}$
- \blacksquare E = S $\cap \Delta$

Funkcja f₀ ma w punkcie **x*** właściwe minimum

(maksimum) globalne, jeśli dla każdego $x \in S$

$$f_0(\mathbf{x}^*) < f_0(\mathbf{x}), (f_0(\mathbf{x}^*) > f_0(\mathbf{x}))$$

Funkcje wielu zmiennych

Brak rozwiązań dopuszczalnych a zatem brak rozwiązań optymalnych!

- S = Ø
- \blacksquare S $\neq \emptyset$
 - optimum ograniczone
 - wartość funkcji nieograniczona
 - wartość funkcji ograniczona, ale optimum nieosiągalne

Gradient funkcji wielu zmiennych

Wektor pochodnych cząstkowych funkcji

$$f(\mathbf{x}): \mathfrak{R}^n \to \mathfrak{R}$$

ze względu na $x_1, ..., x_n$ nazywa się **gradientem funkcji** $f(\mathbf{x})$ i oznacza się go przez $\nabla f(\mathbf{x})$.

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \dots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

x jest punktem stacjonarnym funkcji $f(\mathbf{x})$ wtw $\nabla f(\mathbf{x}) = 0$.

Nieliniowa funkcja celu

zmaksymalizować
$$P = \left(\frac{V}{r+R}\right)^2 R$$

$$\frac{dP}{dR} = \frac{v^2 (r+R)^2 - 2(r+R)v^2 R}{(r+R)^4}$$

Czy w punkcie R = r jest maksimum?

$$\frac{\partial_2 P}{\partial R^2} = \frac{-2rv^2}{(r+R)^5} < 0$$

Hesjan funkcji f(x)

$$H(\mathbf{x}) = \begin{bmatrix} \frac{\partial 2f}{\partial x_1^2}(\mathbf{x}) & \frac{\partial 2f}{\partial x_1 \partial x_2}(\mathbf{x}) & \dots & \frac{\partial 2f}{\partial x_1 \partial x_n}(\mathbf{x}) \\ \dots & \dots & \dots \\ \frac{\partial 2f}{\partial x_n \partial x_1}(\mathbf{x}) & \frac{\partial 2f}{\partial x_n \partial x_2}(\mathbf{x}) & \dots & \frac{\partial 2f}{\partial x_n^2}(\mathbf{x}) \end{bmatrix}$$

Zakładamy, że

$$\frac{\partial 2f}{\partial x_1 \partial x_2} = \frac{\partial 2f}{\partial x_2 \partial x_1}$$

Określoność macierzy

Dla dowolnej macierzy **M** o wymiarach n x n i wektora **z** o długości n

M jest
$$\begin{cases} \text{dodatnnio określona} \\ \text{dodatnio półokreślona} \\ \text{ujemnie określona} \\ \text{ujemnie pólokreślona} \end{cases} \Leftrightarrow \mathbf{z}^\mathsf{T}\mathbf{Mz} \text{ jest} \begin{cases} > 0 \\ \ge 0 \\ < 0 \\ \le 0 \end{cases}$$

W pozostałych przypadkach M jest nieokreślona.

Twierdzenie

H(x*) jest dodatnio określona

⇒ x* jest właściwym minimum lokalnym

H(x) jest dodatnio określona ⇒ dla wszystkich wartości x w pewnym otoczeniu x*

⇒ **x*** jest minimum lokalnym

x* jest minimum lokalnym

⇒ H(x*) jest dodatnio półokreślona

Problem z ograniczeniami w postaci równań

$$f_0(\mathbf{x}) = (x_1 - 1)^2 + x_2^2 + 1$$

przy ograniczeniach:
$$f_1(\mathbf{x}) = x_1 - 0.25x_2^2 = 0$$

Metoda graficzna

Podstawienie

zminimalizować

$$f_0(\mathbf{x}) = (x_1 - 1)^2 + x_2^2 + 1$$

przy ograniczeniach: $f_1(\mathbf{x}) = x_1 - 0.25x_2^2 = 0$

Otrzymujemy problem z jedną zmienną bez ograniczeń.

$$x_1 = 0.25 x_2^2$$

zminimalizować $f_0(\mathbf{x}) = (0.25x_2^2 - 1)^2 + x_2^2 + 1$

Metoda graficzna

Twierdzenie Lagrange'a

Niech dany będzie następujący problem nieliniowego programowania matematycznego

zminimalizować
$$z = f_0(x_1, ..., x_n)$$
 (1)

przy ograniczeniach:
$$f_i(x_1, ..., x_n) = 0$$
, $i = 1, ..., m$ (2)

Jeżeli:

- $(x_1^*,...,x_n^*)$ jest lokalnym optimum problemu (1)-(2)
- ■n>m
- ■f_i mają ciągłe pierwsze pochodne ze względu na x_i

to istnieje wektor $\mathbf{u} = [\mathbf{u}_1, ..., \mathbf{u}_m]^T$ taki, że

$$\left(\nabla f_{0}\left(x_{1}^{*},...,x_{n}^{*}\right)+\sum_{i=1}^{m}u_{i}\nabla f_{i}\left(x_{1}^{*},...,x_{n}^{*}\right)=0\right)$$

- Sprawdzić, że n>m i każda funkcja f_i ma ciągłe pochodne cząstkowe.
- 2. Zbudować funkcję Lagrange'a

$$L(\mathbf{x},\mathbf{u}) = f_0(\mathbf{x}) + \sum_{i=1}^{m} u_i f_i(\mathbf{x})$$

 Znaleźć wszystkie rozwiązania następującego układu równań nieliniowych

$$\nabla L(\mathbf{x}, \mathbf{u}) = \nabla f_0(\mathbf{x}) + \sum_{i=1}^{m} u_i \nabla f_i(\mathbf{x}) = \mathbf{0}$$

$$\frac{\partial L(\mathbf{x}, \mathbf{u})}{\partial u_{i}} = f_{i}(\mathbf{x}) = 0, \quad i = 1, ..., m$$

4. Sprawdzić każde rozwiązanie (**x***, **u***) aby stwierdzić, czy jest minimum lokalnym.

- 1. Sprawdzić, że n>m i każda funkcja f_i ma ciągłe pochodne cząstkowe.
- Zbudować funkcję Lagrange'a

$$L(\mathbf{x},\mathbf{u}) = f_0(\mathbf{x}) + \sum_{i=1}^{m} u_i f_i(\mathbf{x})$$

3. Znaleźć wszystkie rozwiązania następującego układu równań nieliniowych n równań

$$\nabla L(\mathbf{x}, \mathbf{u}) = \nabla f_0(\mathbf{x}) + \sum_{i=1}^{m} u_i \nabla f_i(\mathbf{x}) = \mathbf{0}$$

$$\frac{\partial L(\mathbf{x}, \mathbf{u})}{\partial u_{i}} = f_{i}(\mathbf{x}) = 0, \quad i = 1, ..., m$$

m równań

4. Sprawdzić każde rozwiązanie (**x***, **u***) aby stwierdzić, czy jest minimum lokalnym.

- Sprawdzić, że n>m i każda funkcja fi ma ciągłe pochodne cząstkowe.
- Zbudować funkcję Lagrange'a

$$L(\mathbf{x},\mathbf{u}) = f_0(\mathbf{x}) + \sum_{i=1}^{m} u_i f_i(\mathbf{x})$$

Znaleźć wszystkie rozwiązania następującego układu równań nieliniowych

$$\nabla L(\mathbf{x}, \mathbf{u}) = \nabla f_0(\mathbf{x}) + \sum_{i=1}^{m} u_i \nabla f_i(\mathbf{x}) = \mathbf{0}$$

$$\frac{\partial L(\mathbf{x}, \mathbf{u})}{\partial u_i} = f_i(\mathbf{x}) = 0, \quad i = 1, ..., m$$

Warunki Lagrange'a

Sprawdzić każde rozwiązanie (x*, u*) aby stwierdzić, czy jest minimum lokalnym.

- Sprawdzić, że n>m i każda funkcja f_i ma ciągłe pochodne cząstkowe.
- Zbudować funkcję Lagrange'a

$$L(\mathbf{x},\mathbf{u}) = f_0(\mathbf{x}) + \sum_{i=1}^{m} u_i f_i(\mathbf{x})$$

 Znaleźć wszystkie rozwiązania następującego układu równań nieliniowych

$$\nabla L\left(\boldsymbol{x},\boldsymbol{u}\right) = \nabla f_{0}\left(\boldsymbol{x}\right) + \sum_{i=1}^{m} u_{i} \nabla f_{i}\left(\boldsymbol{x}\right) = \boldsymbol{0}$$

Punkty Lagrange'a

$$\frac{\partial L(\mathbf{x}, \mathbf{u})}{\partial L(\mathbf{x}, \mathbf{u})} = f_{\mathbf{i}}(\mathbf{x}) = 0, \quad \mathbf{i} = 1, ..., \mathbf{m}$$

4. Sprawdzić każde rozwiązanie (x*, u*) aby stwierdzić, czy jest minimum lokalnym.

Przykład

zminimalizować
$$f_0(\mathbf{x}) = (x_1 - 1)^2 + x_2^2 + 1$$

przy ograniczeniach: $f_1(\mathbf{x}) = x_1 - 0.25x_2^2 = 0$

Przykład – znajdowanie punktów Lagrange'a

Rozwiązanie:

$$x_1 = x_2 = 0$$

 $u_1 = 2$

Sprawdzanie punktów Lagrange'a

Jeżeli

(x*, u*) jest jedynym punktem Lagrange'a i wiadomo, że funkcja osiąga minimum,

to

x* jest minimum lokalnym.

Twierdzenie zachodzi dla naszego przykładu. Zatem punkt (0,0) jest minimum.

Przykład

Sprawdzanie punktów Lagrange'a

Jeżeli

(x*, u*) jest punktem Lagrange'a
 i hesjan H_L(x*) funkcji Lagrange'a w punkcie x*
 dla u = u* spełnia warunek:

$$\mathbf{x}^{\mathsf{T}}\mathbf{H}_{\mathsf{L}}(\mathbf{x}^{*})\mathbf{x} > 0$$

dla wszystkich \mathbf{x} takich, że $\mathbf{x}^T \nabla f_i(\mathbf{x}) = 0$, i = 1, ..., m,

to

x* jest minimum lokalnym.

Sprawdzanie punktów Lagrange'a

Jeżeli założenia twierdzenia Lagrange'a są spełnione i nie istnieje **u** takie, że

$$\nabla f_0(\mathbf{x}^*) + u_i \nabla f_i(\mathbf{x}^*) = 0$$

w punkcie **x***, to w tym punkcie na pewno nie występuje minimum.

Przykład

zminimalizować

$$f_0(\mathbf{x}) = x_1^2 + (x_2 - 2)^2 + x_3^2$$

przy ograniczeniach

$$f_1(\mathbf{x}) = x_1^2 + 0.25x_2^2 + x_3^2 - 1 = 0$$

 $f_2(\mathbf{x}) = -x_2 + 2x_3 = 0$

w punkcie:

$$\mathbf{x} = \begin{bmatrix} \frac{2}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}$$