

Introduzione ai metodi statistici per le applicazioni industriali parte 2

Antonio Panico

Department of Engineering for Industrial Systems and Technologies
University of Parma

18 giugno 2025

- LUNIVERSITÀ

Media, Mediana e Moda: attenzione alla differenza! UNIVERSITÀ

Cosa si intende per "media"?

Riassumere dei dati con un solo numero può sembrare semplice, ma esistono tre modi diversi:

- Media (mean): somma dei valori divisa per il numero di osservazioni
- Mediana (median): valore centrale dei dati ordinati
- Moda (mode): valore più frequente

Perché la media può essere fuorviante?

- La media è sensibile agli outlier: pochi valori estremi possono spostarla molto.
- Esempio: se una persona guadagna 1 milione in una classe, la media del reddito non rappresenta quasi nessuno.
- La mediana è più robusta e spesso più rappresentativa in distribuzioni sbilanciate

Definizione: Sia $x_1, x_2, ..., x_n$ una **collezione di osservazioni** (redditi individuali).

Formula della media

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Come si calcola la mediana

- Ordina i dati in ordine crescente: $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$
- Se n è dispari: la mediana è il valore centrale $x_{\left(\frac{n+1}{2}\right)}$
- Se n è pari: la mediana è la media tra i due valori centrali:

Mediana =
$$\frac{X_{(n/2)} + X_{(n/2+1)}}{2}$$

la moda è il valore x che appare con la maggiore frequenza

$$\mathsf{Moda} = \arg\max_{\mathsf{x}} f(\mathsf{x})$$

dove f(x) è la frequenza di x nel campione.

Esempio – Redditi simulati (distribuzione di Pareto)

- Media (mean): €24.872.000
- Mediana (median): €15.807.000
- Moda (mode): €20.000

Nota: la moda può essere fortemente influenzata da valori estremi, soprattutto in distribuzioni asimmetriche.

Perché servono gli indici di dispersione?

Non basta la media!

Conoscere solo la media non è sufficiente per descrivere un insieme di dati. **Esempio:** la misura media delle scarpe maschili è utile, ma non dice nulla sulla **varietà di taglie** necessarie per produrre scarpe per tutti.

Indici di dispersione principali:

- Range: differenza tra valore massimo e minimo. Molto sensibile agli estremi.
- Intervallo interquartile (IQR): differenza tra il 75º e il 25º percentile.
 Robusto contro outlier.
- Deviazione standard: misura quanto i valori si discostano dalla media.
 Adatta a distribuzioni simmetriche.

Dispersione, Range e IQR

Alta dispersione

Bassa dispersione

La deviazione standard (σ) è una misura della dispersione dei dati rispetto alla media (μ).

- Se σ è **piccola**, i dati sono **concentrati** intorno alla media.
- Se σ è **grande**, i dati sono **più dispersi**.

Definizione Formale

Sia data una popolazione di *N* elementi:

$$x_1, x_2, \ldots, x_N$$

La varianza della popolazione è:

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}$$

La deviazione standard della popolazione è:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Interpretazione della Deviazione Standard

Se i dati seguono (approssimativamente) una **distribuzione normale**, possiamo interpretare σ come intervallo di confidenza empirico:

- Circa **68%** dei dati si trova in $[\mu \sigma, \mu + \sigma]$
- Circa **95%** dei dati si trova in $[\mu 2\sigma, \mu + 2\sigma]$
- Circa **99.7%** dei dati si trova in $[\mu 3\sigma, \mu + 3\sigma]$

Questo è noto come la regola empirica o regola dei tre sigma.

Coefficiente di Variazione (CV)

Il **coefficiente di variazione** è una misura di dispersione relativa, utilizzata per confrontare la variabilità di dataset con unità di misura o scale diverse.

Definizione:

$$\mathsf{CV} = \frac{\sigma}{\mu} \times 100\%$$

Dove:

- $oldsymbol{\sigma} = ext{deviazione standard del campione}$
- ullet $\mu=$ media del campione

Interpretazione:

- Valori più alti indicano maggiore variabilità relativa.
- Utile per confrontare variabilità tra gruppi anche con medie diverse.

Confronto della variabilità della domanda

Obiettivo

Capire quale prodotto ha una domanda più variabile nel tempo.

Dati mensili di vendita

Prodotto	Media vendite	Dev. standard	Coef. Variazione
Α	1000 unità	200	0.20
В	100 unità	40	0.40

<u>Attenzione</u>

Non possiamo confrontare direttamente le **deviazioni standard** di due serie con scale diverse: il prodotto B ha una variabilità relativa maggiore nonostante la dev. standard sia inferiore.

Cos'è la Covarianza?

Definizione

La **covarianza** misura il modo in cui due variabili quantitative variano insieme. Indica se, e in che direzione, due variabili tendono a muoversi in relazione l'una all'altra.

Formula:

$$Cov(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- Se > 0: le variabili crescono insieme
- Se < 0: una cresce mentre l'altra decresce
- Se = 0: assenza di relazione lineare

Esempio: Calcolo della Covarianza

Dati:

- \bullet X = [1, 2, 3], Y = [2, 4, 6]
- $\bar{x}=2, \quad \bar{y}=4$

Calcolo:

$$Cov(X,Y) = \frac{(1-2)(2-4) + (2-2)(4-4) + (3-2)(6-4)}{3} = 1.33$$

Interpretazione

 $\mathsf{Cov}(\mathsf{X},\,\mathsf{Y})=1.33\to\mathsf{esiste}$ una relazione positiva tra X e Y: quando X aumenta, anche Y tende ad aumentare.

Limiti della Covarianza: un esempio

Due coppie di variabili

X Y	1 2	2 4	3 6	4 8
W Z	10	20 40	30	40
Z	10 20	40	60	80

Covarianze:

$$Cov(X, Y) = 3.33$$
 $Cov(W, Z) = 333.33$

Problema

La relazione tra le variabili è identica in entrambi i casi, ma la covarianza cambia a causa della scala. Non possiamo confrontarle direttamente.