POWERED BY Dialog

Electronic component of resin-sealed type - can be automatically manufactured without cutting and bending external leads. NoAbstract Dwg 11-16/16

Patent Assignee: NEC CORP

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week Ty
JP 61015316	A	19860123	JP 84136755	A	19840702	198610 B

Priority Applications (Number Kind Date): JP 84136755 A (19840702)

Patent Details

Patent	Kind	Language	Page	Main	IPC	Filing	Notes
JP 61015316	Α		5				

Derwent World Patents Index © 2004 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 4561233

⑲日本国特許庁(JP)

①特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭61 - 15316

၍Int,Cl.⁴

識別記号

庁内整理番号

砂公開 昭和61年(1986)1月23日

H 01 G

9/05 9/08 9/24 Z - 7435 - 5E 7435 - 5E

7435-5E 7435-5E 審査請求 未請求 発明の数 2 (全 4 頁)

劉発明の名称 電子部品およびその製造方法

②特 顧 昭59-136755

愛出 願 昭59(1984)7月2日

仓 第 明 者 三 好 孝 行

東京都港区芝5丁目33番1号 日本電気株式会社内

⑪出 願 人 日本電気株式会社 東京都港区芝5丁目33番1号

砂代 理 人 弁理士 内 原 晋

明 腳 書

発明の名称
 電子部品およびその製造方法

2. 特許請求の範囲

- (1) 複数の外部リードを絶縁外接部から導出する 電子部品において、外部リードとなる複数の導 電板に設けた垂直突出部を絶縁板に一定間隔で 設けた孔に嵌着し、前記導電板を絶縁板の外側 に突設させ、電子部品案子から導出した複数の 内部リードを相対する導電板の嵌着部に接続し、 前記接続部を含めて電子部品案子を絶縁外接し たことを特徴とする電子部品。
- (2) 前記垂直突出部が先端に切れ目を有する円筒 形であることを特徴とする特許請求の範囲第1 項記般の電子部品。
- (3) 外部リードとなる複数の導電板に設けた垂直 突出部を絶縁板に一定間隔で設けた孔に接着す る工程と、前記導電板の接着部に電子部品素子

から導出した複数の内部リードを接続する工程 と、前配接続部を含めて電子部品案子を絶域外 装する工程とを含むことを特徴とする電子部品 の製造方法。

3. 発明の詳細な説明

(技術分野)

本発明は、電子部品かよびその製造方法に関するものである。

(従来技術)

従来の樹脂對止型の電子部品例えばチャブ型の 固体電解コンデンサかよびその製造方法は、第1 図に示すようなアルミニウム板などの帯状の関係体 板1にタンタルなどの弁作用金属からなる関係体 2から突設した関係リード3を磨接して等関係に 接続させた後、陽極体2の表面上に風次陽極酸に 層、半導体層。陰極導体層(図示省略)を形成し てコンデンサ累子4を形成する。次に第2図で示 すよりに陽極外部リードとなる第1の突設部5と 陰極外部リードとなる段差部を先端に有する第2

このような。従来固体電解コンデンサおよびそ の製造方法には次のような欠点があった。

- (1) 絶縁外装後でなければ捺印ができない。
- (中) 絶縁外裝後に外部リートを切断して折曲げる 工程を必要とする。
- 付 外部リードを切断するため、その切り口のリード母材の素地が経出する。

品の製造方法も得られる。

(寒施例)

327

以下、本発明の実施例を第1図および第5図~ 第10図を参照して説明する。

第1図に示すようなアルミニウムなどの帯状の 導電板1にタンタルなどの弁作用金属からなる陽 板体2から突設した陽振リード3を溶接して等間 際に接続させた後、陽極体2の表面上に順次陽極 酸化層、半導体層、陰極導体層(図示省略)を形 成してコンデンサ素子4を形成する。

次に第5図で示すようなエポキンガラスなどの 帝状の絶縁板10に等間隔に対向させて設けた角 孔10a,10bとその中間に丸10cを設ける。

次に世領板などをL字形状に加工して垂直突出部11aを設けた外部リード11に半田メッキなどの表面処理を施した後、上述の垂直突出部11a。11bを絶縁板11の角孔10a,10bに下面側から挿入する。

次に、第6図でポナように角孔10a、10b
から上方に突出した外部リートの垂直突出部11a,

(3) 切断・折曲げの際に外部リードを介して累子 に機械的なストレスを与える恐れがある。

(発明の目的)

本発明の目的は、かかる従来欠点を解消した電子部品およびその製造方法を提供することにある。 (発明の構成)

本祭明によれば複数の外部リードを絶縁外ととれば複数の外部リードを絶縁外ととれば複数の外部リードを絶縁外ととなる電子のはないない。 大阪 一般 では 一般 でき いい は いい は に は いい は に は いい は に は いい は は に は は いい は に は は いい は いい は に は いい は い

1 1 b をそれぞれ外側方向に折曲げ、さらに外部 リード 1 1 の導出部 1 1 c, 1 1 d を、絶縁板 10 の 側面に沿って 直角に折曲げたチェーンリード 12 を形成する。

次に、第7図でボすように、案子4の表面に被 着形成した陰極導体層と折曲げられた一方の垂直 突出部11bとが接するように配置した後、予め 中間部を折曲げた陽極リード23と他の折曲げら れた垂直突出部11aとを必接して接段する。次 に、案子4の陰極導体層と一方の垂直突出部11b を半田または導電ペーストなどで接続する。

次に第8図で示すように、例えばポリプチレンテレフタレートなどの樹脂により形成した開口部を有するケース13を整列治具(図示省略)を用いて等間隔に整列させた状態で、チェーンリード12の案子4の搭級面を開口部からケース13内に挿入する。

次にチェーンリード12の絶縁板10に設けた 丸孔10cからディスペンサーなどの定量吐出器 14を用いて紫外称硬化型の復脂15を一定量だ けケース13内に在入・充塡する。

次化、紫外線照射装置(図示省略)により40~100w/cm の紫外線照射ランプ(図示省略)を用い、照射距離10~20 cm で1~60秒間 紫外線を照射して紫外線硬化型の樹脂15を硬化させた後、さらに未硬化部分を温度80~200℃ 倒えば、120℃で30分間以上放置して熱硬化させる。次に、ケース13の上面に品種・定格・極性などを捺印し、素子4の場気的なエージンクをする。

次に切断線 a1~an の位置でチェーンリード 12の絶縁板10を切断して、第9回および第10 図に示すチップ型固体電探コンデンサを形成する。なお、胡脂15は熱硬化型の樹脂でも可能であることはぼりまでもない。

次に第2の実施例を第11図~第16図を参照 して説明する。

第11図で示すようなエポキシガラスなどの帝 状の絶縁板20に等間隔に対向させて丸孔20a。 20bを設ける。次に黄銅板などの導電板の先端

, Oil

用いて等間隔に整列させた状態でチェーンリード22の案子 4 搭載面を開口部からケース13 内に 挿入する。次に外部リード21 の垂直突出部 21a。21b の貫通孔21e,21 f からディスペンサー などの定私吐出器14 を用いて紫外線硬化型の 樹脂15を一定量だけケース13 内に注入・充塡する。

次に、紫外線照射装置(図示省略)により40~100w/cm の紫外線照射ランプ(図示省略)を照射距離10~20cm で1~60秒間紫外線を照射して、紫外線照射型の樹脂15を硬化させた後、さらに未硬化部分を80~2000、例えば1200で30分間以上放置して熱硬化させる。

次にケース13の上面に品種・定格・極性などを禁印し、素子4の電気的なエージングをした後、切断線 a 1 ~ a n の位假でチェーンリード22の絶録板20を切断して、第15図および第16図で示すチップ型固体電解コンデンサを形成する。なお、樹脂15は熱硬化型の樹脂でも可能であることは言うまでもない。また、予め禁印表示を施

部にスリットを有する円筒状の垂直突出部 21a, 21bを設けた後に、半田メッキなどの表面処理 を施した外部リード 21を形成し、その垂直突出 部 21a, 21bを帯状絶縁板 20の丸孔 20a, 20bにそれぞれ挿入する。

次に、第12図でポナよりに、丸孔20d,20bから突出した外部リード21の垂順突出部21a,21bを絞める。さらに外部リード21の浮出部21c,21dを、絶縁破20の側面に沿って直角に折曲げたチェーンリード22を形成する。

次化、第13図で示すように、案子4の表面に 被潛形成した陰極導体層と鉸めた一方の垂直突出 部21bとが接するように配置した後、予め中間 部を折曲げた関極リード23と紋めた他の垂直突 出部21aを密接して接続する。

次に素子4の陰福導体層と飲めた一方の垂直突 出部21bを半田または再電ペーストなどで接続 する。次に第14図で示すように、例えばポリプ チレンテレフタレートなどの倒脂で形成した開口 部を有するケース13を整列治具(図示省略)を

したケース I 3を用いることにより、外装後の捺 印工程をなくすることもできる。

(発明の効果)

以上本発明により次の効果が符られる。

- (I) あらかじめ外装面に捺印を施したケースを用いることができるので、外装袋の捺印工程を削除できる。
- (ii) 外部リードが切断・折曲げ加工されたチェーンリードを用いるので、絶縁外装後に外部リードを切断・折曲げする工程が削除できる。
- したがって切断・折曲げの際に外部リードを 介して案子に複核的なストレスが加わらない。
- (V) 切断後にメッキなどの表面処理を施した外部 リードを用いることができるので、母材の案地 貸出をなくすることができる。

なお、 樹脂に紫外藤硬化型樹脂を用いると短時間() ~ 6 0 秒) で硬化させることができるので、リード取出しから外装の工程を連続一貫して自動化できる利点がある。

4. 図面の簡単な説明

414

第1図は固体電解コンデンサ素子の側面図。第2図,第3図は従来製造方法の一工程斜視図。第4図は従来固体電解コンデンサの断面図。第5図~第8図は本発明による実施例の製造方法の一工程斜視図。第9図は本発明による実施例の固体電解コンデンサの新面図。第11図~第14図は本発明による他の実施例の関体電解コンデンサの新視図。第16図は本発明による他の実施例の固体電解コンデンサの新視図。第16図は本発明による他の実施例の固体電解コンデンサの断面図。

1……海電板。2……陽極体。3,23……陽 低リード。4……コンデンサ梨子、5……第1の 突設部、6……第2の突設部、7……フレーム部。 8……リードフレーム、9,15……樹脂、10, 20……絶縁板、11,21……外部リード,12, 22……チェーンリード、13……ケース、14 定盤吐出器。

