SPÉCIFICATIONS TECHNIQUES - IOT

Cadre du projet	3
Résumé	
Équipe	
Contexte	
Spécifications techniques	
Arduino	
Spécifications	
Référence	
Capteur gyroscopique	
Gyroscope	
Accéléromètre	
Référence	
Caméra	
Spécifications	
Références	

Cadre du projet

Résumé

Le projet consiste à améliorer l'analyse des conditions d'accidents pour les véhicules de la TFL (Transports For London), pour faciliter les investigations afin de déterminer le cadre des responsabilités en cas d'accidents, le tout avec un système embarqué à bord des véhicules.

Équipe

Ce fichier a été produit par l'équipe en charge de l'IoT, qui a pour mission de concevoir le système qui sera embarqué sur les véhicules.

Contexte

Il est prévu de devoir équiper pour un total d'environ 68000 véhicules, suivant ces chiffres :

Type de véhicules	Nombre
Bus	9000
Métro	500
Taxi	58000
Tram	450
TOTAL	68000

Référence : https://tfl.gov.uk/corporate/about-tfl/what-we-do Il est important de préciser que ces chiffres sont une estimation du nombre de véhicules circulant

Spécifications techniques

Arduino

Spécifications

· ·	
Microcontroller	ATMega4809
Operating Voltage	5V
VIN min-MAX	7-21V
DC Current per I/O Pin	20 mA
DC Current for 3.3V Pin	50 mA
Clock Speed	20MHz
CPU Flash Memory	48KB (ATMega4809)
SRAM	6KB (ATMega4809)
EEPROM	256byte (ATMega4809)
PWM Pins	5 (D3, D5, D6, D9, D10)
UART	1
SPI	1
12C	1
Analog Input Pins	8 (ADC 10 bit)
Analog Output Pins	Only through PWM (no DAC)
External Interrupts	all digital pins
LED_BUILTIN	13
USB	Uses the ATSAMD11D14A (datasheet)
Length	45 mm
Width	18 mm
Weight	5 gr (with headers)

ARDUINO NANO EVERY

Référence

https://store.arduino.cc/collections/boards/products/arduino-nano-every

Capteur gyroscopique

Gyroscope

VDD = 2.375V-3.46V, VLOGIC (MPU-6050 only) = 1.8V±5% or VDD, TA = 25°C

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
GYROSCOPE SENSITIVITY						
Full-Scale Range	FS_SEL=0		±250		º/s	
	FS_SEL=1		±500		º/s	
	FS_SEL=2		±1000		º/s	
	FS_SEL=3		±2000		º/s	
Gyroscope ADC Word Length			16		bits	
Sensitivity Scale Factor	FS_SEL=0		131		LSB/(º/s)	
	FS_SEL=1		65.5		LSB/(°/s)	
	FS_SEL=2		32.8		LSB/(°/s)	
	FS_SEL=3		16.4		LSB/(°/s)	
Sensitivity Scale Factor Tolerance	25°C	-3		+3	%	
Sensitivity Scale Factor Variation Over Temperature			±2		%	
Nonlinearity	Best fit straight line; 25°C		0.2		%	
Cross-Axis Sensitivity			±2		%	
GYROSCOPE ZERO-RATE OUTPUT (ZRO)						
Initial ZRO Tolerance	25°C		±20		º/s	
ZRO Variation Over Temperature	-40°C to +85°C		±20		º/s	
Power-Supply Sensitivity (1-10Hz)	Sine wave, 100mVpp; VDD=2.5V		0.2		º/s	
Power-Supply Sensitivity (10 - 250Hz)	Sine wave, 100mVpp; VDD=2.5V		0.2		º/s	
Power-Supply Sensitivity (250Hz - 100kHz)	Sine wave, 100mVpp; VDD=2.5V		4		º/s	
Linear Acceleration Sensitivity	Static		0.1		º/s/q	
SELF-TEST RESPONSE						
Relative	Change from factory trim	-14		14	%	1
GYROSCOPE NOISE PERFORMANCE	FS_SEL=0					
Total RMS Noise	DLPFCFG=2 (100Hz)		0.05		º/s-rms	
Low-frequency RMS noise	Bandwidth 1Hz to10Hz		0.033		º/s-rms	
Rate Noise Spectral Density	At 10Hz		0.005		%s/ √ Hz	
GYROSCOPE MECHANICAL FREQUENCIES						
X-Axis		30	33	36	kHz	
Y-Axis		27	30	33	kHz	
Z-Axis		24	27	30	kHz	
LOW PASS FILTER RESPONSE						
	Programmable Range	5		256	Hz	
OUTPUT DATA RATE						
	Programmable	4		8,000	Hz	
GYROSCOPE START-UP TIME	DLPFCFG=0					
ZRO Settling (from power-on)	to ±1% of Final		30		ms	

^{1.} Please refer to the following document for further information on Self-Test: MPU-6000/MPU-6050 Register Map and Descriptions.

Accéléromètre

VDD = 2.375V-3.46V, VLOGIC (MPU-6050 only) = 1.8V±5% or VDD, $TA = 25^{\circ}C$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
ACCELEROMETER SENSITIVITY						
Full-Scale Range	AFS_SEL=0		±2		g	
	AFS_SEL=1		±4		g	
	AFS_SEL=2		±8		g	
	AFS_SEL=3		±16		g	
ADC Word Length	Output in two's complement format		16		bits	
Sensitivity Scale Factor	AFS_SEL=0		16,384		LSB/g	
	AFS_SEL=1		8,192		LSB/g	
	AFS_SEL=2		4,096		LSB/g	
	AFS_SEL=3		2,048		LSB/g	
Initial Calibration Tolerance			±3		%	
Sensitivity Change vs. Temperature	AFS_SEL=0, -40°C to +85°C		±0.02		%/°C	
Nonlinearity	Best Fit Straight Line		0.5		%	
Cross-Axis Sensitivity			±2		%	
ZERO-G OUTPUT						
Initial Calibration Tolerance	X and Y axes		±50		mg	1
	Z axis		±80		mg	
Zero-G Level Change vs. Temperature	X and Y axes, 0°C to +70°C		±35			
	Z axis, 0°C to +70°C		±60		mg	
SELF TEST RESPONSE						
Relative	Change from factory trim	-14		14	%	2
NOISE PERFORMANCE						
Power Spectral Density	@10Hz, AFS_SEL=0 & ODR=1kHz		400		μg/√Hz	
LOW PASS FILTER RESPONSE						
	Programmable Range	5		260	Hz	
OUTPUT DATA RATE						
	Programmable Range	4		1,000	Hz	
INTELLIGENCE FUNCTION INCREMENT			32		mg/LSB	

^{1.} Typical zero-g initial calibration tolerance value after MSL3 preconditioning. 2. Please refer to the following document for further information on Self-Test: MPU-6000/MPU-6050 Register Map and Descriptions.

Référence

Pour de plus ample précision, nous vous invitons à explorer la datasheet de ce capteur : https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

Caméra

Spécifications

Références

https://cdn-reichelt.de/documents/datenblatt/A300/RPI_CAM_5MP.pdf

Antenne LoRaWAN

Spécifications

Frequency Band (MHz)	700-750	824-960	1710-1990	2110-2170	2500-2700
Gain (dBi)	>-5	>-1	>0.4	>-1	>-1
Total radiation efficiency (dB)	>-5	>-3	>-2.5	>-3	>-3
S11 (dB)	<-5	<-4.2	<-10	<-7	<-10
Polarization	Linear	Linear	Linear	Linear	Linear

Parameter	
Dimension	130x16x5
Operating temperature	-40/85 °C
Cable type	Microcoaxial cable 1.13
Connector	lpx-MHF
Cable length	120mm

S11 chart

Efficiency (dB)

Références

https://content.arduino.cc/assets/datsheet_505_012_ufl.pdf