- En 1D: $\Delta u = u_{xx}$. - En 3D: $\Delta u = u_{xx} + u_{yy} + u_{zz}$.

Entonces, las versiones multidimensionales de las ecuaciones son:

- Ondas: $u_{tt} - c^2 \Delta u = F(\vec{x}, t), \quad \vec{x} \in \Omega, \ t \in \mathbb{R}$. - Calor: $u_t - k^2 \Delta u = F(\vec{x}, t), \quad \vec{x} \in \Omega, \ t > 0$.

15.3 Condiciones iniciales

Las condiciones iniciales fijan el estado del sistema en t = 0:

- Para la ecuación de ondas (2da orden temporal):

$$u(\vec{x}, 0) = f(\vec{x}), \quad u_t(\vec{x}, 0) = g(\vec{x}).$$

- Para la ecuación del calor (1er orden temporal):

$$u(\vec{x}, 0) = f(\vec{x}).$$

- Para la ecuación de Laplace/Poisson (estática): no se imponen condiciones iniciales.

15.4 Condiciones de frontera

Estas condiciones modelan la interacción del objeto con el medio externo. Se distinguen:

- **Dirichlet**: se especifica el valor de la función: $u=\phi$ en la frontera. - **Neumann**: se especifica la derivada normal: $\frac{\partial u}{\partial \vec{n}}=\psi$. - **Mixtas (1D)**: Dirichlet en un extremo, Neumann en el otro. - **Periódicas (1D)**: u(0)=u(L) y $u_x(0)=u_x(L)$.

15.5 Ejemplo: Ecuación de calor con condiciones Neumann

Un problema bien formulado es:

$$\begin{cases} u_t = k^2 u_{xx}, & x \in (0, L), \ t > 0, \\ u(x, 0) = f(x), & x \in (0, L), \\ u_x(0, t) = -h_i(t), & t > 0, \\ u_x(L, t) = h_d(t), & t > 0. \end{cases}$$

Aquí f(x), $h_i(t)$ y $h_d(t)$ son datos conocidos, que definen la temperatura inicial y los flujos en los extremos.

15.6 Esquemas de diferencias finitas para EDP

La resolución numérica de EDP se basa en reemplazar derivadas por esquemas de derivación centrada en una malla rectangular. Sea $U(x_i, y_j)$ el valor de la función en el punto de malla (x_i, y_j) , entonces:

$$\begin{split} \frac{\partial U}{\partial x}\bigg|_{i,j} &\approx \frac{U_{i+1,j} - U_{i-1,j}}{2\Delta x}, \quad \frac{\partial U}{\partial y}\bigg|_{i,j} \approx \frac{U_{i,j+1} - U_{i,j-1}}{2\Delta y}, \\ \frac{\partial^2 U}{\partial x^2}\bigg|_{i,j} &\approx \frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{(\Delta x)^2}, \quad \frac{\partial^2 U}{\partial y^2}\bigg|_{i,j} \approx \frac{U_{i,j-1} - 2U_{i,j} + U_{i,j+1}}{(\Delta y)^2}. \end{split}$$

15.7 Aplicación: Ecuación de Laplace en 2D

La ecuación de Laplace:

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0,$$

se discretiza en una malla $[a,b] \times [c,d]$ con paso $\Delta x = \frac{b-a}{n}, \ \Delta y = \frac{d-c}{m}$, y puntos de red (x_i,y_j) . En cada punto interior:

$$\frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{(\Delta x)^2} + \frac{U_{i,j-1} - 2U_{i,j} + U_{i,j+1}}{(\Delta y)^2} = 0.$$

Esta fórmula genera un sistema lineal de (n-1)(m-1) ecuaciones con igual número de incógnitas: los valores de U en los puntos interiores de la malla. Se usa una matriz bidimensional para almacenar la solución aproximada.