

1 GCAATCGATGGGCATCCTTCTGAGATCTCGGCCACTSTCGTCCAGTGCCATGCAG
 1 CGTTAGCTACCCGTAGGAAAGACTCTAGAAGGCCGTGACAGCAGGTACCGTACGTC 60

a A I D G A S F L K I F G P L S S S A M Q -
 61 TTTGTCAACGTGGCTACTTCTCATCGCAGCCGGCTTGTGGCTTTGCTTGGTTTC
 61 AACAGTTGACCCGATGAAGGAGTAGCGTCGGCCGCAACCCAGAAACGAGAACCAAAG 120

a F V N V G Y F L I A A G V V V F A L G F -
 121 CTGGGCTGCTATGGTGCTAAGACTGAGAGCAAGTGTGCCCTCGTGACGTTCTTCATC
 121 GACCCGACGATAACACGATTCTGACTCTCGTTCACAGGGAGCACTGCAAGAAGTAG 180

a L G C Y G A K T E S K C A L V T F F F I -
 181 CTCCTCCTCATCTTCATGGTGAGGTTGCCAGCTGCTGTGGTCGCCCTGGTGACACCATTA
 181 GAGGAGGAGTAGAAGTAACGACTCCAACGTCGACGACACCAGGGAAACACATGTGGTAT 240

a L L L I F I A E V A A A V V A L V Y T I -
 241 ATGGCTGAGCACTTCCCAGCTTGTGGTAGTGCCCTGCCATCAAGAAGATTGTGGTT
 241 TACCGACTCGTGAAGGGCTGCAACGACCATCACGGACCGTAGTTCTCTAAATACCAA 297

a M A E H F P T L L V V P A I K K I M V -

Fig. 1

1 AGCCAGCGAA CGGACGGAGG TGACAATAGA GTGTGCTGTC ATGCTTGTGA
51 GAGAGAAAAAC ACTTTCGAGT GCCAGAACCC AAGGAGGTGC AAATGGACAG
101 AGCCATACTG CGTTATAGCG GCGTGAAAAA TATTTCACG TTTTTTCATG
151 GTTGC GARCA GGTGCTCGC TGCGTTGTC GCGATGGAGA GACCCAAGCC
201 AGAGGAGAAAG CGGGTTCTCC TGGAAAGAGCC CATGCCCTTC TTTTACCTCA
251 AGTGTGTA A

Fig. 2