АСТРАДЬ

Содержание

1	He6	Небесная механика															2											
	1.1	Точки Лагранжа																										2

1 Небесная механика

1.1 Точки Лагранжа

Точками Лагранжа в системе из двух массивных тел, в которых третье тело с пренебрежимо малой массой, не испытывающее воздействие никаких других сил, кроме гравитационных, со стороны двух первых тел, может оставаться неподвижным относительно этих тел (Puc.13).

Точки $L_1,\,L_2$ и L_3 лежат на одной прямой, соединяющей два массивных тела. Точки L_4 и L_5 образуют равносторниие треугольники с массивными телами.

Для расстояний до точек $L_1,\,L_2$ и L_3 от центра масс справедливы следующие выражения:

$$r_1 = R\left(1 - \sqrt[3]{\frac{\alpha}{3}}\right)$$
 $r_2 = R\left(1 + \sqrt[3]{\frac{\alpha}{3}}\right)$ $r_3 = \left(1 + \frac{5}{12}\alpha\right)$ (1)

где $\alpha=M_1/(M_2+M_3),\,R$ — расстояние между телами, M_1 — масса более массивного тела, M_2 — масса второго тела.

Если $M_2 \ll M_1$, то точки L_1 и L_2 находятся примерно на равном расстоянии от тела M_2 . Примерное значение этого расстояния можно получить из соотношения

Рис. 1: Точки Лагранжа