Couplage maximum dans un graphe biparti

Quentin Fortier

November 14, 2024

Dans ce cours, G=(S,A) est un graphe non-orienté.

Définition

Un couplage de G est un ensemble d'arêtes $M\subset A$ tel qu'aucun sommet ne soit adjacent à 2 arêtes de M, c'est-à-dire :

$$\forall e_1, e_2 \in M, e_1 \neq e_2 \implies e_1 \cap e_2 = \emptyset$$

Dans ce cours, G = (S, A) est un graphe non-orienté.

Définition

Un couplage de G est un ensemble d'arêtes $M\subset A$ tel qu'aucun sommet ne soit adjacent à 2 arêtes de M, c'est-à-dire :

$$\forall e_1, e_2 \in M, e_1 \neq e_2 \implies e_1 \cap e_2 = \emptyset$$

Définition

Un sommet $v \in S$ est couvert par M s'il appartient à une arête de M. Sinon, v est libre pour M.

Dans ce cours, G = (S, A) est un graphe non-orienté.

Définition

Un couplage de G est un ensemble d'arêtes $M\subset A$ tel qu'aucun sommet ne soit adjacent à 2 arêtes de M, c'est-à-dire :

$$\forall e_1, e_2 \in M, e_1 \neq e_2 \implies e_1 \cap e_2 = \emptyset$$

Définition

Un sommet $v \in S$ est couvert par M s'il appartient à une arête de M. Sinon, v est libre pour M.

Applications:

- Mariage : chaque personne est mariée à au plus une autre personne
- Rech. de logement : couplage entre étudiants et logements

Un graphe ${\cal G}$

Un couplage de ${\it G}$ (en rouge)

Pas un couplage

Exercice

Écrire une fonction

est_couplage : int array array -> (int*int) list -> bool

déterminant si un ensemble d'arêtes forme un couplage d'un graphe.

Soit M un couplage d'un graphe G.

Définitions

- La taille de M, notée |M|, est son nombre d'arêtes.
- M est un couplage maximum s'il n'existe pas d'autre couplage de taille strictement supérieure.
- M est un couplage parfait si tout sommet de G appartient à une arête de M.

Soit M un couplage d'un graphe G.

Définitions

- La taille de M, notée |M|, est son nombre d'arêtes.
- M est un couplage maximum s'il n'existe pas d'autre couplage de taille strictement supérieure.
- M est un couplage parfait si tout sommet de G appartient à une arête de M.

Question

M est un couplage maximal s'll n'existe pas de couplage M' tel que $M \subsetneq M'$.

Quelle(s) implication(s) a t-on entre couplage maximum et couplage maximal ?

Exercice

- Le couplage ci-dessous est-il parfait ?
- Quels sont les sommets couverts par ce couplage? Et ceux libres?
- Le graphe ci-dessous admet-il un couplage parfait ?

On va s'intéresser au problème suivant :

Problème : Couplage maximum

Entrée : Graphe G non orienté, non pondéré.

Sortie : Un couplage maximum de G.

Soit M un couplage d'un graphe G.

Définition

- Un chemin est élémentaire s'il ne passe pas deux fois par le même sommet.
- Un chemin élémentaire de G est M-alternant si ses arêtes sont alternativement dans M et dans $A\setminus M$.
- Un chemin de G est M-augmentant s'il est M-alternant et si ses extrémités sont libres pour M.

Soit M un couplage d'un graphe G.

Définition

- Un chemin est élémentaire s'il ne passe pas deux fois par le même sommet.
- Un chemin élémentaire de G est M-alternant si ses arêtes sont alternativement dans M et dans $A\setminus M$.
- ullet Un chemin de G est M-augmentant s'il est M-alternant et si ses extrémités sont libres pour M.

 $\underline{\mathsf{Exemple}}: 3-0-1-2-5-4$ est un chemin $M\text{-}\mathsf{augmentant}$ pour le couplage ci-dessous.

Définition (différence symétrique)

Si A et B sont des ensembles, $A\Delta B=(A\setminus B)\cup(B\setminus A)$.

Définition (différence symétrique)

Si A et B sont des ensembles, $A\Delta B=(A\setminus B)\cup(B\setminus A)$.

Un chemin est vu comme un ensemble d'arêtes.

Théorème

Soit M un couplage de G et P un chemin M-augmentant dans G. Alors $M\Delta P$ est un couplage de G.

Définition (différence symétrique)

Si A et B sont des ensembles, $A\Delta B=(A\setminus B)\cup(B\setminus A)$.

Un chemin est vu comme un ensemble d'arêtes.

Théorème

Soit M un couplage de G et P un chemin M-augmentant dans G. Alors $M\Delta P$ est un couplage de G.

Soit M un couplage d'un graphe G.

Théorème

M est un couplage maximum de G

 \iff

Il n'existe pas de chemin M-augmentant dans G

Soit M un couplage d'un graphe G.

Théorème

M est un couplage maximum de G

Il n'existe pas de chemin M-augmentant dans G

Preuve:

 \implies Soit M un couplage maximum.

Supposons qu'il existe un chemin M-augmentant P.

Alors $M\Delta P$ est un couplage de G et $|M\Delta P|>|M|$: absurde.

Théorème

M est un couplage maximum de G

Il n'existe pas de chemin M-augmentant dans G

Preuve:

 \longleftarrow Supposons qu'il existe un couplage M^* vérifiant $|M^*| > |M|$.

Théorème

M est un couplage maximum de ${\it G}$

$$\iff$$

Il n'existe pas de chemin M-augmentant dans G

- Supposons qu'il existe un couplage M^* vérifiant $|M^*| > |M|$. Considérons $G^* = (S, M\Delta M^*)$. Alors :
 - **1** Les degrés des sommets de G^* sont au plus 2,

Théorème

M est un couplage maximum de G

Il n'existe pas de chemin M-augmentant dans G

- Supposons qu'il existe un couplage M^* vérifiant $|M^*| > |M|$. Considérons $G^* = (S, M\Delta M^*)$. Alors :
 - ① Les degrés des sommets de G^* sont au plus 2, donc G^* est composé de cycles et de chemins uniquement.

Théorème

M est un couplage maximum de G

Il n'existe pas de chemin M-augmentant dans G

- Supposons qu'il existe un couplage M^* vérifiant $|M^*|>|M|$. Considérons $G^*=(S,M\Delta M^*)$. Alors :
 - ① Les degrés des sommets de G^* sont au plus 2, donc G^* est composé de cycles et de chemins uniquement.
 - ② Chacun de ces cycles et chemins alternent entre des arêtes de M et des arêtes de $M^{\ast}.$

Théorème

M est un couplage maximum de ${\it G}$

Il n'existe pas de chemin M-augmentant dans G

- Supposons qu'il existe un couplage M^* vérifiant $|M^*| > |M|$. Considérons $G^* = (S, M\Delta M^*)$. Alors :
 - ① Les degrés des sommets de G^* sont au plus 2, donc G^* est composé de cycles et de chemins uniquement.
 - ② Chacun de ces cycles et chemins alternent entre des arêtes de M et des arêtes de M^{\ast} .
 - $\ \ \,$ Comme $|M^*|>|M|,$ un de ces chemins contient plus d'arêtes de M^* que de M

Théorème

M est un couplage maximum de G

Il n'existe pas de chemin M-augmentant dans G

- Supposons qu'il existe un couplage M^* vérifiant $|M^*|>|M|$. Considérons $G^*=(S,M\Delta M^*)$. Alors :
 - ① Les degrés des sommets de G^* sont au plus 2, donc G^* est composé de cycles et de chemins uniquement.
 - ② Chacun de ces cycles et chemins alternent entre des arêtes de M et des arêtes de M^{\ast} .
 - **③** Comme $|M^*| > |M|$, un de ces chemins contient plus d'arêtes de M^* que de M: c'est un chemin M^* -augmentant.

Illustration de la preuve précédente :

Couplage maximum par chemin augmentant

Entrée : Graphe G = (S, A)

 $\textbf{Sortie} \ : \textbf{Couplage maximum} \ M \ \textbf{de} \ G$

 $M \leftarrow \emptyset$

Tant que il existe un chemin M-augmentant P dans G:

 $\ \, \bot \ \, M \leftarrow M \Delta P$

Couplage maximum par chemin augmentant

Entrée: Graphe G = (S, A)

 $\textbf{Sortie} \ : \textbf{Couplage maximum} \ M \ \textbf{de} \ G$

 $M \leftarrow \emptyset$

Tant que il existe un chemin M-augmentant P dans G :

 $\ \ \, \bigsqcup \, M \leftarrow M \Delta P$

Question

Comment trouver un chemin M-augmentant ?

- Dans un graphe quelconque, avec le Blossom algorithm (très compliqué et HP).
- Plus facilement dans un graphe biparti.

Définition

Un graphe G=(S,A) est biparti s'il existe une partition $S=X\sqcup Y$ telle que toute arête de A a une extrémité dans X et une extrémité dans Y.

Définition

Un graphe G=(S,A) est biparti s'il existe une partition $S=X\sqcup Y$ telle que toute arête de A a une extrémité dans X et une extrémité dans Y.

Question

Montrer que le graphe ci-dessous est biparti, en donnant une partition de ses sommets.

Définition

Un graphe G=(S,A) est biparti s'il existe une partition $S=X\sqcup Y$ telle que toute arête de A a une extrémité dans X et une extrémité dans Y.

Question

Montrer que le graphe ci-dessous est biparti, en donnant une partition de ses sommets.

Question

Donner un exemple de graphe non biparti.

Définition équivalente :

Définition

On appelle k-coloration de G une fonction $c:S\longrightarrow \{1,2,\ldots,k\}$ telle que pour tout arc $(u,v)\in A$, on a $c(u)\neq c(v)$.

Théorème

Les propositions suivantes sont équivalentes :

- G est biparti.
- G admet une 2-coloration.
- G n'a pas de cycle de longueur impair.

Exercice

Écrire une fonction est_biparti : int list array -> bool pour déterminer si un graphe est biparti, en complexité linéaire.

Exercice

Écrire une fonction est_biparti : int list array -> bool pour déterminer si un graphe est biparti, en complexité linéaire.

Exercice

Modifier la fonction précédente pour renvoyer un 2-coloriage.

Pour trouver un chemin M-augmentant dans un graphe biparti G:

- Partir d'un sommet libre.
- ② Se déplacer en alternant entre des arêtes de M et des arêtes de $G\setminus M$, sans revenir sur un sommet visité (DFS).
- ${f 3}$ Si on arrive à un sommet libre, alors on a trouvé un chemin M-augmentant.

Pour trouver un chemin M-augmentant dans un graphe biparti G:

- Partir d'un sommet libre.
- ② Se déplacer en alternant entre des arêtes de M et des arêtes de $G\setminus M$, sans revenir sur un sommet visité (DFS).
- $\ensuremath{\mathfrak{g}}$ Si on arrive à un sommet libre, alors on a trouvé un chemin $M\text{-}{\it a}{\it u}{\it g}{\it m}{\it e}{\it m}{\it e}{\it i}$

Question

Pourquoi cet algorithme ne fonctionne pas sur un graphe général (non biparti) ?

On peut aussi construire un graphe G_M pour simplifier la recherche d'un chemin M-augmentant.

On peut aussi construire un graphe G_M pour simplifier la recherche d'un chemin M-augmentant.

Soit G=(S,A) un graphe biparti, avec $S=X\sqcup Y$, et M un couplage de G.

On définit un graphe orienté $G_M = (S_M, A_M)$ où :

- $S_M = S \cup \{s, t\}$, où s et t sont deux nouveaux sommets.
- $\begin{array}{l} \bullet \ A_M = \{(s,u) \mid u \in A \ \text{et} \ u \ \text{est libre}\} \cup \{(v,t) \mid v \in B \ \text{et} \ v \ \text{est libre}\} \cup \{(u,v) \mid \{u,v\} \in A \setminus M\} \cup \{(v,u) \mid \{u,v\} \in M\}. \end{array}$

Autrement dit, G_M est construit à partir de G de la façon suivante :

- On ajoute deux nouveaux sommets s et t.
- ullet On mets des arcs depuis s vers chaque sommet libre de X.
- ullet On mets des arcs depuis chaque sommet libre de Y vers t.
- On oriente les arcs de M de Y vers X.
- On oriente les arcs de $A \setminus M$ de X vers Y.

Couplage maximum par chemin augmentant

Entrée: Graphe G = (S, A)

 $\textbf{Sortie} \ : \textbf{Couplage maximum} \ M \ \textbf{de} \ G$

$$M \leftarrow \emptyset$$

Tant que il existe un chemin M-augmentant P dans G: $M \leftarrow M\Delta P$

Complexité pour un graphe biparti :

- Ohaque recherche d'un chemin M-augmentant se fait par DFS en $\mathrm{O}(|S|+|A|).$
- Il y a au plus |A| d'itération du « Tant que », car on ajoute une arête au couplage à chaque fois.

D'où une complexité totale O(|A|(|S|+|A|)).

Question

Appliquer l'algorithme précédent au graphe ci-dessous.

