Se consideră funcția f : ℝ → ℝ definită astfel:

$$f(x) = \begin{cases} ax + b(1+a), & \text{dacă } x < -b, \\ ax^2 + 2a(a-1)x + a^3 - 2a^2 + a + b, & \text{dacă } x \ge -b. \end{cases}$$

0

Po: [-6,00)->17 $\frac{1}{2}: \sqrt{1 - \frac{34}{14}} - \frac{-168}{58}$

miner eazi graficu (m maxim/m)

$$\lim_{n \to \infty} f_n = (-\infty, 6)$$

$$\lim_{n \to \infty} f_n =$$

Cum +, lunctie de grad 1 =) imjection pe (-00,-6)

Functive de grad
$$l = l$$
 injectivo pe $l-\infty, -6$)

 $f_2: [l-6, \infty] - l-6, 6$ $l=0$
 $f_2: [l-6, \infty] - l-6, 6$ $l=0$

Deci f swj, imi => fis

$$\left(\frac{f: R \rightarrow R, \quad f(x) = x^2}{f: R \rightarrow \infty \rightarrow \infty}\right)$$

Com unet: " -7 < f, (x) < 6 (=> -7 < 7x + 48 < 6 |-48 L=> -65 = 7x ~-42 /: 7>0 $/=) - \frac{55}{1} + \times \sqrt{6} =) \times \left(\left(-\frac{55}{1} \right)^{-6} \right)$ $\int_{1}^{2} \left(\frac{1}{x} \right) \left(\frac{1}{x} \right) = \frac{1}{2}$ $\int_{1}^{2} \left(\frac{1}{x} \right) \left(\frac{1}{x}$ x ∈ R | -> x ∈ [-6,∞) 7× +84×+251 60 /+1 - \(\frac{1}{1} \leq \times + 6 \leq \frac{1}{2} \) $= \left[-6, -6 + \sqrt{\frac{1}{3}}\right]$ $-6 - \sqrt{\frac{1}{3}} = \left[-\frac{55}{3}, -6\right] = \left[-\frac{55}{3}, -6\right]$ $= \left[\begin{array}{cc} -\frac{55}{7} & -6 + \sqrt{\frac{1}{7}} \end{array} \right]$

Subiectul I. Pe mulțimea numerelor naturale $\mathbb N$ se consideră relația $a \sim b$ dacă și numai dacă există $k \in \mathbb Z$ astfel încât $b = 3^k a$.

- 1. Arătați că \sim este o relație de echivalență pe \mathbb{N} . (3 pct.)
- 2. Dacă \widehat{a} este clasa de echivalență a lui $a \in \mathbb{N}$ modulo \sim , descrieți $\widehat{0}$, $\widehat{1}$, $\widehat{6}$ și $\widehat{12}$. (2 pct.)
- 3. Determinați un sistem complet de reprezentanți pentru \sim . (2 pct.)
- 4. Dacă $\frac{\mathbb{N}}{\sim}$ este mulțimea claselor de echivalență pe \mathbb{N} modulo \sim , există $f: \frac{\mathbb{N}}{\sim} \to \mathbb{N}$ funcție bijectivă? Dar $g: \mathbb{N} \to \frac{\mathbb{N}}{\sim}$ funcție bijectivă? (2 pct.)

2.
$$a \sim b = \frac{1}{3} a$$

 $a \sim b = \frac{1}{3} a$
 $a \sim$

$$tx: \hat{12} = \hat{4} + \hat{15} = \hat{5}$$

$$\hat{6} = \{2,6,18,54,...\}$$

3) SCR = M \ (3K | KENT)

Fie p cel mai mic număr prim din descompunerea în factori primi a lui a și q cel mai mare număr prim mai mic sau egal cu a+b, diferit de p. Pentru un număr natural nenul n notăm cu $\exp_p(n)$ exponentul la care apare p în descompunerea în factori primi a lui n. Considerăm pe $\mathbb N$ relația binară ρ dată astfel: $m\rho n$ dacă $\exp_p(n) = \exp_p(m)$ și $\exp_q(n) = \exp_q(m)$. Să se arate că ρ este relație de echivalență, să se calculeze clasele de echivalență ale lui a și b și să se determine un sistem complet de reprezentanți pentru această relație de echivalență.

$$m \sim m \neq \exp_{1}(m) = \exp_{1}(m)$$

$$\exp_{1}(m) = \exp$$

4. Determinați numărul elementelor de ordin 24 din grupul produs direct
$$(\mathbb{Z}_{2^7}, +) \times (\mathbb{Z}_{3^7}, +)$$
.

| 128 | 5 | 2187 | $(\hat{X}_{10}, \hat{X}_{10})$ |

$$O\left(\left(\frac{1}{X}, \frac{1}{Y}\right)\right) = 24 = \left[O\left(\frac{1}{X}\right), O\left(\frac{1}{Y}\right)\right]$$

$$V_{cmi, arm} : \left[1, 24\right], \left[2, 74\right], \left[3, 24\right] = \left[1, 24\right], \left[1, 24\right]$$

Reomintine: [m (Zn+), x e Zn, o(x) m

Varionte positife: [8,3]

Coutôm
$$\hat{X}$$
 in \mathbb{Z}_{128} a.s. $\hat{\mathbb{Z}} \times \hat{\mathbb{Z}} = \hat{\mathbb{D}}$ (mod 128)

$$\Theta(X) = \frac{128}{(x,128)}$$

$$G(X) = \frac{128}{(x,128)}$$

$$G(X) = \frac{128}{(x,128)}$$

$$|2x = (x, 128)$$

$$= (128, x) = 16 = 2$$

Deci elemente de volin 24 in 17 sunt 4-2=8

n=pm. divicorui lui n=p, pem

$$|1|$$
 $|1|$ = $|1|$ = $|1|$ = $|1|$ = $|1|$ = $|1|$ = $|1|$ = $|1|$ = $|1|$ = $|1|$

$$O(1) = 1$$
 $O(5) = 4$
 $O(47) = O(-1) = 2$
 $O(43) = O(-5) = 4$
 $O(43) = O(-5) = 4$

$$O(1) = 2$$

$$O(1) = 4$$

$$O(1) = 4$$

$$O(1) = 4$$

$$O(3) \cdot 3 \in 7$$

$$O(3) \cdot 3 \in 7$$

$$G/_{H}$$

$$\overline{7} = \frac{1}{4} \cdot \frac{1}{5} \cdot \frac{1}{25} \cdot \frac{1}{25} \cdot \frac{1}{25} \cdot \frac{1}{25} = \frac{1}{4} \cdot \frac{1}$$

$$\frac{1}{\sqrt{100}} = \frac{1}{\sqrt{100}} = \frac{1}$$

Subjectul IV.

- 1. În inelul de polinoame $\mathbb{Z}_{350}[X]$, există divizori ai lui zero nenuli ce nu sunt elemente nilpotente? Dar polinoame inversabile de grad n, n număr natural nenul? (2+2 pct.)
- 2. Arătați că $f = X^3 + X^2 + \widehat{1}$ este un polinom ireductibil în $\mathbb{Z}_2[X]$. Descrieți inelul factor $L = \frac{\mathbb{Z}_2[X]}{f\mathbb{Z}_2[X]}$ și determinați elementele inversabile din L. (3 pct.)

$$f(\hat{o}) = f(\hat{i}) = \hat{i} = \hat$$

$$\begin{cases}
\hat{f} \in [\text{inversal}] \\
\hat{f} = \alpha x' + \beta x + C
\end{cases}$$

$$\begin{cases}
\frac{2}{2} = \sqrt{0.1} \\
0.1
\end{cases}$$

$$\begin{cases}
\frac{2}{1} = \sqrt{0.1} \\
0.1
\end{cases}$$

3. Este $f = X^4 + X^2 + \hat{1}$ polinom reductibil în $\mathbb{Z}_3[X]$? În caz afirmativ, descompuneți f în produs de polinoame ireductibile. (2 pct.)

I) Factori de greal 1

$$\begin{cases}
L(\widehat{O}) = \widehat{1} \\
\ell(\widehat{-1}) = f(\widehat{2}) = \widehat{D} = \sum_{i=1}^{n} x + \widehat{1} + f(\widehat{1}) \\
\ell(\widehat{-1}) = \widehat{0} = \sum_{i=1}^{n} x - \widehat{1} + f(\widehat{1})
\end{cases}$$

$$\begin{array}{c|c}
 & \times & \times & \times & \times & \times & \times \\
 & \times & \times & \times & \times & \times & \times \\
 & \times & \times & \times & \times & \times \\
 & \times & \times & \times & \times & \times \\
 & \times & \times & \times & \times & \times \\
\end{array}$$

$$\begin{array}{c|c}
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
 & \times & \times & \times & \times \\
\end{array}$$

$$\frac{x^{3} + 2x^{2} + 7x + 1}{2x + 2x + 2} = \frac{2x - 2}{0}$$

Problema 4. Fie $I = (3, X^3 - X^2 + 2X + 1)$ ideal în $\mathbb{Z}[X]$.

(i) Dați exemplu de un polinom din
$$\mathbb{Z}[X]$$
 care nu aparține lui I . (2 pct.)

(ii) Există
$$f \in \mathbb{Z}[X]$$
 astfel încât $(f) = I$? (3 pct.)

(iii) Să se arate că inelele factor
$$\frac{\mathbb{Z}[X]}{I}$$
 și $\frac{\mathbb{Z}_3[X]}{(X^3+\hat{2}X^2-X+\hat{1})}$ sunt izomorfe. Este $\frac{\mathbb{Z}[X]}{I}$ corp? (2+2 pct.)

1)
$$1 = 3 + (x) + (x^3 - x^2 + 2x + 1)$$
 g(x), $f, g \in \mathbb{Z}[x]$
 $ex : 2x + 1 \in \mathbb{Z}[x]$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 $f = x + 1 = x + 1$
 f

$$| = | \downarrow \rangle$$

$$| =$$

$$\frac{x^{3}-x^{2}+2x+1}{x^{3}}=\frac{1}{x^{3}}$$

$$\frac{\mathbb{Z}[\times]}{\mathbb{Z}[\times]} = \frac{\mathbb{Z}[\times]}{\mathbb{Z}[\times]} \sim \frac{\mathbb{Z}_{3}[\times]}{\mathbb{Z}_{3}[\times]}$$

Calculați $7^{7^{17^{17}}} \pmod{29}$.

Dim terms $\frac{1}{4} = 1$ (29). Note on $N := \frac{1}{4}$ is derivative.

When $\frac{1}{4} = 0$ (7) $\frac{1}{4} = 0$ (7) $\frac{1}{4} = 0$ (14) $\frac{1}{4} = 0$ (15) $\frac{1}{4} = 0$ (17) $\frac{1}{4} = 0$ (14) $\frac{1}{4} = 0$ (14) $\frac{1}{4} = 0$ (15) $\frac{1}{4} = 0$ (17) $\frac{1}{4} = 0$ (17) $\frac{1}{4} = 0$ (18) $\frac{1}{4} = 0$ (19) $\frac{1}{4} = 0$

=)
$$X = 7$$
, adica $N \equiv 7 (28)$
Ne întrancem în $(*)$: $Y = 7 \cdot 7 \cdot 7 = (-9) \cdot (-9) (-9) \cdot 7 = (-9) \cdot (-63) = -6.5 = (-29)$