Design of Experiment and Analysis of Variance

Repetition

Raju Rimal

30 Aug, 2017

Norges miljø- og biovitenskapelige universitet

ANOVA table

Hypothesis

$$H_0: au_i = 0 ext{ for i} = 1, 2, 3 \ H_1: au_i
eq 0 ext{ for at least one } i$$

Decision

From F-table, $F_0 > F_c$. So we reject H_0 at 95% confidence level.

F-distribution with 2 and 21 df 0.05 level of significance

Questions

- a) What is the 95% confidence interval of error variance?
- b) We found that there is significant effect of first child's weight on second child, but how different is the effect of High from low and medium?

Confidence interval of error variance

Confidence Interval

Exam 2013 Data

Using values in previous slide in above formula,

$$\left\lceil \frac{851962.5}{35.479}, \frac{851962.5}{10.283} \right\rceil = [24013.2, 82852.4]$$

24013 40570 82852 lower estimate upper

At **95% confidence level**, we can say that the true error variance σ^2 lies between the interval (24013.2, 82852.4).

Df Sum Sq Mean Sq F value
Weight1 2 1012033 506017 12.5
Residuals 21 851962 40570

Df Sum Sq Mean Sq F value Exercise: Exam 2011 1(b)

Post-hoc Test

Think what will happen if you increase the confidence level from 0.05 to 0.1.

Tukey Pairwise Comparison

For multiple testing, Tukey has suggested **studentized** range statistic as,

$$q = rac{{ar y}_{
m max} - {ar y}_{
m max}}{\sqrt{{
m MSE}/n}}$$

Compare q with $q_{\alpha}(a, f)$ found in table. We declare a pair to be significantly different if $q > q_{\alpha}(a, f)$.

Confidence Interval

$$({ar y}_i - {ar y}_j) \pm q_lpha(a,f) \sqrt{rac{ ext{MSE}}{n}}$$

$$({ar y}_i - {ar y}_j) - q_lpha(a,f) \sqrt{rac{ ext{MSE}}{n}} \leq \mu_i - \mu_j \leq ({ar y}_i - {ar y}_j) + q_lpha(a,f) \sqrt{rac{ ext{MSE}}{n}}$$

You can also check if this interval contains zero.

Post-hoc Example

Tukey pairwise comparison

Weight1 mean n High 3816 8 Low 3316 8 Medium 3614 8

Exam 2013, 2(d)

From the Appendix 1 and Appendix 4, we have,

```
Df Sum Sq Mean Sq F value Pr(>F)
Weight1 2 1012033 506017 12.5 0.000269
Residuals 21 851962 40570 NA NA
```

Using studentized, T-distribution table $q_{0.05}(3,21)=3.565$. So,

$$T_{0.05} = q_{0.05}(3,21)\sqrt{rac{40569.643}{8}} = 253.845$$

We have three possible pairs for comparison: Low-High, Medium-High and Medium-Low. The difference in their means are: -500, -202.5, 297.5 respectively.

If compared with $T_{0.05}(3,21)$, we see that at 95% confidence level, we find Low-High and Medium-Low differ significantly.

Exam 2015, 1(e)

Contrast test

Use cases

- Comparison of one group with average of other group
- Comparing treatments with control

Exam 2014: 2(d)

Hypothesis:

$$H_0:rac{1}{2}(\mu_1+\mu_2)-rac{1}{2}(\mu_3+\mu_4)=0 ext{ vs } H_1:rac{1}{2}(\mu_1+\mu_2)-rac{1}{2}(\mu_3+\mu_4)
eq 0$$

Decision:

From Table 8, p-value (0.065) > 0.05.

▶ What should we conclude?

Contrast Calculation

Continue on Exam 2014: 2(d)

Before any compution, formulate a hypothesis.

Estimate of Contrast

$$\Gamma = \sum_{i=1}^a c_i \mu_i = rac{1}{2} (\mu_1 + \mu_2) - rac{1}{2} (\mu_3 - \mu_4) = -5.5$$

Here the contrast coefficients c_i are: 1/2, 1/2, -1/2, -1/2. Contrast coefficients sum to zero. For estimation of Γ , use respective sample mean. Also use Table 6 for following calculations.

Standard Error and test statistic

$$ext{SE}(\hat{\Gamma}) = \sqrt{rac{ ext{MSE}}{n} \sum_{i=1}^a c_i^2} = 2.82 \qquad t = rac{\hat{\Gamma}}{ ext{S.E}(\hat{\Gamma})} \sim t_{lpha/2,N-a}$$

Random Effect Model

Random factor

$$au_i \sim ext{N}(0, \sigma_ au^2)$$

Fixed factor

$$\sum_{i=1}^{a} \tau_i = 0$$

The Model

$$y_{ij} = \mu + au_i + arepsilon_{ij} ext{ where, } arepsilon_{ij} \sim ext{N}(0, \sigma^2) ext{ and } au_i \sim ext{N}(0, \sigma^2)$$

Why Random effect model

Specific levels are not of interest. General variation is more important. Levels of a factor are **randomly selected**. For example, if besetning (farm) is not of interest, we randomly sample such farms from a population of farm.

Usually, **blocks** are taken as random factor.

A comparison with Fixed Effect Model

Specific levels of a factor is important than their general variation. These levels are **specifically chosen**. For instance, comparison of new and old drug where a particular drug is used for comparison.

Random Effect Model

Exam 2011: 1(a)

Hypothesis:

$$H_0:\sigma_ au^2=0 ext{ vs } H_1:\sigma_ au^2>0$$

From Appendix 2, we see p-value is larger than $\alpha = 0.05$, we can not reject the null hypothesis. So, we claim that **at 95% confidence level** we claim that there is *not significant variation* between the farms.

Estimates of Variance Components

total variation
$$\operatorname{var}(y_{ij}) = \sigma_{\tau}^2 + \sigma^2$$

We estimate them as,

$$\hat{\sigma}^2 = ext{MSE} ext{ and } \hat{\sigma_{ au}}^2 = rac{ ext{MS}_{ ext{treatment}} - ext{MSE}}{n}$$

Random Effect Model

Exam 2011: 1(c), 1(d)

Exam 2012: 1(c)

Exam 2013: 1(c)

Exam 2014: 1(e)

Exam 2015: 2(c)

Intraclass Correlation Coefficient

Proportion of variation between groups to total variation.

$$ho = rac{\sigma_ au^2}{\sigma_ au^2 + \sigma^2}$$

Using estimates of variance components, we can estimate intraclass correlation coefficient.

Confidence interval of overall mean

The $100(1 - \alpha)$ level of confidence interval for overall mean μ in case of **random effect model** is,

$$\hat{\mu} \pm t_{lpha/2,a-1} \sqrt{rac{ ext{MS}_{ ext{treatment}}}{N}}$$

(Refer to Thore's Lecture on Random effect Model)