- Πρόβλημα συντομότερου μονοπατιού (Shortest Path)
 - επιδιώκεται ο προσδιορισμός του πλέον σύντομου, φθηνότερου ή αξιόπιστου μονοπατιού μεταξύ ενός ή περισσοτέρων ζευγών κόμβων σε ένα δίκτυο

- Πρόβλημα συντομότερου μονοπατιού
 - Εξετάζεται ένας κατευθυντικός γράφος G=(V,E)
 - Η κάθε ακμή e που ανήκει στο Ε, έχει ένα βάρος c_e.
 - κόστος, χρονική επιβάρυνση, απώλειες, κ.α.
 - Για ένα ζεύγος κόμβων, u_1 και u_k , το βάρος ενός μονοπατιού $P=u_1e_1u_2e_2...u_{k-1}e_{k-1}$, όπου u_i ανήκει στο V, και e_i ανήκει στο E, είναι το άθροισμα των βαρών των e_i που συμμετέχουν στο μονοπάτι:

$$w(p) = \sum_{i=1}^{k-1} c_{e_i}$$

 προσδιορισμός του μονοπατιού που ξεκινάει από τον κόμβο u₁ και καταλήγει στον u_k έτσι ώστε να ελαχιστοποιηθεί η ποσότητα w(p).

- Πρόβλημα συντομότερου μονοπατιού
 - τα συντομότερα μονοπάτια εμφωλεύονται (nested)
 - εάν κάποιος κόμβος k αποτελεί τμήμα του συντομότερου μονοπατιού από i στο j, τότε το συντομότερο μονοπάτι (i, j) θα πρέπει να είναι το συντομότερο (i,k) μονοπάτι και το συντομότερο (j,k) μονοπάτι.
 - Τα ελάχιστα μονοπάτια μπορούν να προσδιοριστούν μέσω της αναδρομικής σχέσης:

$$d_{ij} = \min_{k} (d_{ik} + d_{kj})$$

όπου d_{xy} είναι το μήκος του συντομότερου μονοπατιού από το x στο y.

- Πρόβλημα συντομότερου μονοπατιού
- Dijkstra
 - Εφαρμόζεται σε κατευθυντικούς γράφους με μη-αρνητικά βάρη ακμών.
 - Εντοπίζει τα ελάχιστα μονοπάτια από τον κόμβο αφετηρία r σε όλους τους υπόλοιπους κόμβους του γράφου.
 - Βασική ιδέα η αντικατάσταση των προσωρινών ετικετών που αναθέτονται στους κόμβους με μόνιμες.
 - Η μόνιμη ετικέτα ενός κόμβου υποδηλώνει το συνολικό κόστος του ελαχίστου μονοπατιού από τον κόμβο αφετηρία στον τρέχοντα κόμβο.

- Πρόβλημα συντομότερου μονοπατιού
- □ Dijkstra: Σε κάθε βήμα ο αλγόριθμος:
 - επιλέγει τον κόμβο i με τη μικρότερη προσωρινή ετικέτα
 - την καθιστά μόνιμη
 - καταγράφει τον προηγούμενο κόμβο
 - ενημερώνει τις προσωρινές ετικέτες όλων των γειτονικών κόμβων του *i*

- Πρόβλημα συντομότερου μονοπατιού
- Dijkstra

- Πρόβλημα συντομότερου μονοπατιού
- Dijkstra

Πρόβλημα συντομότερου μονοπατιού

Dijkstra

Πρόβλημα συντομότερου μονοπατιού

□ Dijkstra

Πρόβλημα συντομότερου μονοπατιού

■ Dijkstra

Πρόβλημα συντομότερου μονοπατιού

□ Dijkstra

Πρόβλημα συντομότερου μονοπατιού

■ Dijkstra

Εφαρμογή του Αγορίθμου Dijkstra στα Δίκτυα

- Ο αλγόριθμος του Dijkstra (διαισθητικά)
 - Ας φανταστούμε το δίκτυο ως Ν σφαίρες, τοποθετημένες στο πάτωμα
 - Έστω ότι συνδέονται μεταξύ τους με σκοινιά
 - Τα σκοινιά έχουν διαφορετικά μήκη
 - Αρχικά, σηκώνουμε τη «σφαίρα 1»
 - Συνεχίζουμε να σηκώνουμε σιγά-σιγά τη σφαίρα 1, μέχρις ότου και μία δεύτερη σφαίρα, η «σφαίρα 2», σηκωθεί από το πάτωμα.
 - βρήκαμε τη βέλτιστη διαδρομή από τη σφαίρα 1 προς τη σφαίρα 2, την οποία αποτελεί ο απευθείας σύνδεσμός τους.
 - Συνεχίζουμε να σηκώνουμε τη σφαίρα 1, μέχρις ότου μία τρίτη σφαίρα σηκωθεί
 - Η βέλτιστη διαδρομή από τη σφαίρα 1 προς τη 3 αποτελείται, είτε από τον απευθείας σύνδεσμό τους, είτε από την ζεύξη των συνδέσμων 1-2 και 2-3
 - Αυτό συνεχίζεται μέχρις ότου σηκώσουμε όλες τις σφαίρες από το πάτωμα

Εφαρμογή του Αγορίθμου Dijkstra στα Δίκτυα

Ο αλγόριθμος Dijkstra

- Πρόβλημα συντομότερου μονοπατιού
- Bellman-Ford
 - Υποθέτουμε ότι ο κόμβος 1 είναι ο κόμβος προορισμού (destination) και εξετάζουμε το πρόβλημα εντοπισμού του συντομότερου μονοπατιού από κάθε κόμβο προς τον κόμβο 1.
 - Υποθέτουμε ότι υπάρχει τουλάχιστον ένα μονοπάτι από κάθε κόμβο προς τον προορισμό.
 - Θεωρούμε ότι d_{ij}=∞ την απόσταση κάθε ακμής (i, j) που δεν ανήκει στον γράφο
 - Το συντομότερο μονοπάτι από ένα κόμβο i προς τον κόμβο 1, με τον περιορισμό ότι το μονοπάτι περιέχει h ή λιγότερες ακμές και διέρχεται από τον κόμβο 1 μόνο μία φορά, καλείται συντομότερο (≤ h) μονοπάτι με μήκος D_i^h
 - Ο αλγόριθμος πρώτα προσδιορίζει τα μικρότερα μήκη μονοπατιού που αποτελούνται από μία ακμή, μετά τα μικρότερα μήκη μονοπατιού με δύο ακμές κλπ.

- Πρόβλημα συντομότερου μονοπατιού
- Bellman-Ford
 - τεχνική της χαλάρωσης (relaxation)
 - προχωράει στην χαλάρωση μίας ακμής
 (u, v) όταν μπορεί να βελτιωθεί το συντομότερο μονοπάτι προς τον κόμβο ν με την μετακίνηση μέσω του κόμβου u
 - Η εκτίμηση για το συνολικό κόστος του συντομότερου μονοπατιού παρουσιάζεται μέσα στον κάθε κόμβο
 - Στο σχήμα, η τρέχουσα εκτίμηση κόστους συντομότερου μονοπατιού για τον ν είναι 9, ενώ η αντίστοιχη εκτίμηση για τον υ είναι 5 και το κόστος της ακμής (u,v) είναι 2
 - Κατά συνέπεια, το 9 μπορεί να αντικατασταθεί με την τιμή 5+2=7

- Πρόβλημα συντομότερου μονοπατιού
- Bellman-Ford

- Πρόβλημα συντομότερου μονοπατιού
- Bellman-Ford

Συντομότερα μονοπάτια χρησιμοποιώντας 1 ακμή ή λιγότερες.

- Πρόβλημα συντομότερου μονοπατιού
- Bellman-Ford

Συντομότερα μονοπάτια χρησιμοποιώντας 2 ακμές ή λιγότερες.

- Πρόβλημα συντομότερου μονοπατιού
- Bellman-Ford

Συντομότερα μονοπάτια χρησιμοποιώντας 3 ακμές ή λιγότερες.

- Πρόβλημα συντομότερου μονοπατιού
- Bellman-Ford

Τελικό Δένδρο

Εφαρμογή του Αγορίθμου Belman-Ford στα Δίκτυα

Ο αλγόριθμος των Bellman-Ford

- Θεωρεί έναν κόμβο προορισμού προς τον οποίο οι υπόλοιποι κόμβοι θα πρέπει να βρουν τις βέλτιστες διαδρομές
- Αρχικά, κάθε κόμβος θεωρεί τον κόμβο προορισμού απροσπέλαστο και καταχωρεί ως κόστος διαδρομής (απόσταση) μία μεγάλη τιμή, πχ ∞
- Στα επόμενα βήματα κάθε κόμβος στέλνει στους γειτονικούς του ένα μήνυμα
 - περιέχει την τρέχουσα απόστασή του από τον προορισμό
- Ο παραλήπτης του μηνύματος συγκρίνει την απόστασή του από τον προορισμό με αυτή που προκύπτει εάν δρομολογήσουμε την κυκλοφορία μέσω του αποστολέα του μηνύματος
- Εάν η νέα απόσταση είναι μικρότερη, τότε καταχωρείται αυτή ως η βέλτιστη διαδρομή

Εφαρμογή του Αγορίθμου Belman-Ford στα Δίκτυα

Ο αλγόριθμος των Bellman-Ford

Δρομολόγηση Διανύσματος Αποστάσεων vs Κατάστασης Συνδέσμων

- Δρομολόγηση με Διάνυσμα Αποστάσεων
 - Ο κάθε κόμβος στέλνει ολόκληρο τον πίνακα
 δρομολόγησης που τηρεί στους γειτονικούς κόμβους
- Δρομολόγηση με Κατάσταση Συνδέσμων
 - Ο κάθε κόμβος στέλνει σε όλους τους κόμβους του δικτύου την πληροφορία της κατάστασης των συνδέσμων του

Δρομολόγηση Διανύσματος Αποστάσεων vs Κατάστασης Συνδέσμων

Προορισμός	Κόστος
Α	2
В	4
Γ	3
Δ	-
E	3
Z	1

Κατάστασης Συνδέσμων

Αναγνωριστικό κόμβου :	Δ	
	Α	2
Κατάσταση συνδέσμων :	Е	3
	Z	1
Αύξων αριθμός :	117	
Διάρκεια ζωής :	5000 sec	