Implement SGD on Linear Regression using Boston Home Price Dataset

```
In [2]: import warnings
    warnings.filterwarnings("ignore")

In [3]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt

    from sklearn.datasets import load_boston
    from sklearn.cross_validation import train_test_split
    from sklearn.metrics import mean_squared_error

    from sklearn.linear_model import SGDRegressor
    from sklearn.preprocessing import StandardScaler
```

C:\Users\GauravP\Anaconda3\lib\site-packages\sklearn\cross_validation.py:41: DeprecationWarning: This module was deprec ated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are mov ed. Also note that the interface of the new CV iterators are different from that of this module. This module will be re moved in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

```
In [4]: boston = load_boston()
```

```
print(boston.DESCR)
In [5]:
        Boston House Prices dataset
        ______
        Notes
        Data Set Characteristics:
            :Number of Instances: 506
            :Number of Attributes: 13 numeric/categorical predictive
            :Median Value (attribute 14) is usually the target
            :Attribute Information (in order):
                - CRIM
                           per capita crime rate by town
                           proportion of residential land zoned for lots over 25,000 sq.ft.
                - ZN
                - INDUS
                           proportion of non-retail business acres per town
                - CHAS
                           Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
                           nitric oxides concentration (parts per 10 million)
                - NOX
                - RM
                           average number of rooms per dwelling
                           proportion of owner-occupied units built prior to 1940
                - AGE
                - DIS
                           weighted distances to five Boston employment centres
                - RAD
                           index of accessibility to radial highways
                - TAX
                           full-value property-tax rate per $10,000
                - PTRATIO pupil-teacher ratio by town
                           1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
                - B
                           % lower status of the population
                - LSTAT
                - MEDV
                           Median value of owner-occupied homes in $1000's
            :Missing Attribute Values: None
            :Creator: Harrison, D. and Rubinfeld, D.L.
        This is a copy of UCI ML housing dataset.
        http://archive.ics.uci.edu/ml/datasets/Housing (http://archive.ics.uci.edu/ml/datasets/Housing)
```

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression problems.

References

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
 - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing) (http://archive.ics.uci.edu/ml/datasets/Housing))

```
In [9]:
           Data.head()
 Out[9]:
                            INDUS
                                   CHAS
                                                       AGE
                                                                DIS RAD
                                                                           TAX PTRATIO
                                                                                              B LSTAT
                CRIM
                        ZN
                                           NOX
                                                   RM
           0 0.00632 18.0
                              2.31
                                      0.0
                                          0.538
                                                 6.575
                                                        65.2
                                                            4.0900
                                                                      1.0 296.0
                                                                                     15.3 396.90
                                                                                                    4.98
                                                                          242.0
                                                                                                    9.14
            1 0.02731
                        0.0
                              7.07
                                      0.0
                                          0.469
                                                 6.421
                                                        78.9
                                                             4.9671
                                                                      2.0
                                                                                     17.8
                                                                                          396.90
            2 0.02729
                        0.0
                              7.07
                                      0.0 0.469
                                                 7.185
                                                        61.1 4.9671
                                                                      2.0 242.0
                                                                                     17.8
                                                                                         392.83
                                                                                                    4.03
              0.03237
                        0.0
                              2.18
                                          0.458
                                                 6.998
                                                        45.8
                                                             6.0622
                                                                      3.0 222.0
                                                                                     18.7
                                                                                          394.63
                                                                                                    2.94
                                      0.0
            4 0.06905
                        0.0
                              2.18
                                      0.0 0.458
                                                7.147
                                                        54.2 6.0622
                                                                      3.0 222.0
                                                                                     18.7 396.90
                                                                                                    5.33
           Data Labels = boston.target
In [10]:
           Data Labels.shape
Out[10]: (506,)
           Data["PRICE"] = Data Labels
In [11]:
In [12]:
           Data.head()
Out[12]:
                CRIM
                        ΖN
                            INDUS CHAS
                                           NOX
                                                   RM
                                                       AGE
                                                                DIS RAD
                                                                           TAX PTRATIO
                                                                                              B LSTAT PRICE
           0 0.00632
                      18.0
                              2.31
                                           0.538
                                                 6.575
                                                        65.2
                                                             4.0900
                                                                      1.0
                                                                          296.0
                                                                                     15.3
                                                                                          396.90
                                                                                                    4.98
                                                                                                           24.0
                                      0.0
            1 0.02731
                        0.0
                              7.07
                                                             4.9671
                                                                      2.0 242.0
                                                                                          396.90
                                                                                                    9.14
                                                                                                           21.6
                                      0.0 0.469
                                                 6.421
                                                        78.9
                                                                                     17.8
            2 0.02729
                        0.0
                              7.07
                                      0.0
                                          0.469
                                                 7.185
                                                        61.1
                                                             4.9671
                                                                      2.0 242.0
                                                                                     17.8
                                                                                          392.83
                                                                                                    4.03
                                                                                                           34.7
            3 0.03237
                                                                      3.0 222.0
                                                                                     18.7 394.63
                                                                                                    2.94
                                                                                                           33.4
                        0.0
                              2.18
                                          0.458
                                                 6.998
                                                        45.8 6.0622
                                      0.0
                                                                                                           36.2
            4 0.06905
                        0.0
                              2.18
                                      0.0
                                          0.458
                                                7.147
                                                        54.2 6.0622
                                                                      3.0 222.0
                                                                                     18.7
                                                                                          396.90
                                                                                                    5.33
In [13]:
           Data.shape
Out[13]: (506, 14)
In [14]: # weight = np.random.rand(13, 1) # defining initial random weight
```

```
In [15]:
         # weiaht
         # print(type(weight))
In [16]:
         \# b = np.random.random()
                                    # generating initial random y-intercept
In [17]:
In [18]: # np.dot(weight.T, Data.iloc[0])
In [19]: # for i in range(len(weight)):
               weight[i][0] = weight[i][0] - Data.iloc[0].values[i]
In [20]:
         # weight
         # print(Data.iloc[0].values[0])
In [21]:
In [22]:
         # weight[11][0]
In [23]: X train, X test, Y train, Y test = train test split(Data, Data["PRICE"], test size = 0.2)
         X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
Out[23]: ((404, 14), (102, 14), (404,), (102,))
         m = X train.shape[0]
In [24]:
```

Performing Stochastic Gradient Descent by taking 10 random samples

```
In [25]:
         weight = np.random.randn(13)*np.sqrt(2/m) # defining initial random weight from normal distribution
         b = np.random.randn(1)*np.sqrt(2/m) # generating initial random y-intercept from normal distribution
         learningRate = 0.2
         for i in range(2500): # running 2500 iterations
             Data batch 10 = X train.sample(n = 10) # taking 10 stochastic samples
             X temp = Data batch 10.drop("PRICE", axis = 1, inplace = False)
             X std = StandardScaler().fit transform(X temp)
             X = pd.DataFrame(X std, columns = columnNames)
             Y = Data_batch 10["PRICE"]
             PartialGradient = np.empty(13)
             sum2 = 0
             for j in range(13): # as there are 13 dimensions in our dataset and dimensions of weight should also be same as d
                 sum1 = 0
                 for k in range(10):
                     sum1 += -2 * X.iloc[k][j] * (Y.iloc[k] - np.dot(weight, X.iloc[k]) - b) # this is a derivative of linear req
                 PartialGradient[j] = sum1
             PartialGradient *= learningRate
               print("Partial Gradient = "+str(PartialGradient))
               print("Iteration number = "+str(i))
             for m in range(10):
                 sum2 += -2 * (Y.iloc[m] - np.dot(weight, X.iloc[m]) - b)
                                                                            # this is the derivative of linear regression w.r.t
             b = b - learningRate * sum2 #updating y-intercept 'b'
             for 1 in range(13):
                 weight[1] -= PartialGradient[1] # updating weights
             learningRate = 0.01 / pow(i+1, 0.25) #learning rate at every iteration
             weight = weight + 0.0001*np.dot(weight, weight) #adding L2 regularization
             b = b + 0.0001*np.dot(weight, weight) #adding L2 regularization
         print("Weight = "+str(weight))
         print("b = "+str(b))
```

Weight = [-0.32149077 0.9982537 0.29047732 1.27605095 -1.06511298 3.04382499

```
1.05440704 -1.84683024 2.35400459 -1.59350102 -1.53593969 0.60975559
          -4.62227638]
         b = [23.70362149]
In [26]:
         import math
         test_temp = X_test.drop("PRICE", axis = 1, inplace = False)
         test std = StandardScaler().fit transform(test temp)
         test data = pd.DataFrame(test std, columns = columnNames)
         test labels = Y test
         y predicted = []
         for i in range(102):
             test i = 0
             test i = np.dot(weight, test data.iloc[i]) + b[0] #making prediction by using min values of weight obtained from SGD
             y predicted.append(test i)
         y true = []
         for i in range(102):
```

y true.append(test labels.iloc[i])

```
In [27]: d1 = {'True Labels': Y_test, 'Predicted Labels': y_predicted}
    df1 = pd.DataFrame(data = d1)
    df1
```

Out[27]:

	True Labels	Predicted Labels
307	28.2	33.574712
385	7.2	9.976670
36	20.0	22.681121
380	10.4	23.861470
409	27.5	23.335253
414	7.0	-0.529739
178	29.9	32.621376
341	32.7	32.601284
302	26.4	28.449411
86	22.5	21.823519
308	22.8	31.300523
276	33.2	39.287680
500	16.8	21.771495
79	20.3	22.598499
214	23.7	7.426240
476	16.7	23.185484
120	22.0	22.459707
83	22.9	25.998738
150	21.5	24.149239
209	20.0	19.805452
386	10.5	8.650260
39	30.8	31.750179
260	33.8	36.041398

	True Labels	Predicted Labels
117	19.2	25.225483
191	30.5	31.497098
70	24.2	24.933699
28	18.4	22.795985
327	22.2	20.232604
359	22.6	23.134161
200	32.9	32.274996
420	16.7	24.018745
220	26.7	37.112744
183	32.5	32.703507
323	18.5	21.005108
317	19.8	19.302545
468	19.1	19.493337
97	38.7	38.107872
319	21.0	22.306002
141	14.4	3.929432
113	18.7	21.920684
484	20.6	20.825408
177	24.6	30.268484
127	16.2	17.319076
229	31.5	31.007247
344	31.2	30.497529
61	16.0	21.420041
128	18.0	21.806511
238	23.7	28.633456

	True Labels	Predicted Labels
138	13.3	15.613109
354	18.2	17.560080
121	20.3	23.625482
75	21.4	24.724778
358	22.7	28.895073
457	13.5	16.890481
168	23.8	28.485455
171	19.1	26.148232
384	8.8	4.897493
123	17.3	16.586335
192	36.4	34.403742
351	24.1	24.660269

102 rows × 2 columns

```
In [28]: Mean_Sq_Error = mean_squared_error(y_true, y_predicted)
Mean_Sq_Error
```

Out[28]: 21.186227759904064

```
In [29]: lm1 = sns.lmplot(x="True Labels", y="Predicted Labels", data = df1, size = 10)
fig1 = lm1.fig
fig1.suptitle("With Manual Implementation(Without Sklearn)", fontsize=18)
sns.set(font_scale = 1.5)
```



```
In [30]: X temp = X train.drop("PRICE", axis = 1, inplace = False)
         X std = StandardScaler().fit transform(X temp)
         X = pd.DataFrame(X std, columns = columnNames)
         Y = Y train
         X test temp = X test.drop("PRICE", axis = 1, inplace = False)
         X test std = StandardScaler().fit transform(X test temp)
         X te = pd.DataFrame(X test std, columns = columnNames)
         Y te = Y test
         clf = SGDRegressor(shuffle = False, learning rate= 'invscaling', n iter = 2500)
         clf.fit(X, Y)
         Y pred = clf.predict(X te)
         print("Weight = "+str(clf.coef ))
         print("Y Intercept = "+str(clf.intercept ))
         Weight = [-0.89269428 1.00193127 0.13084557 0.60707741 -2.18656679 2.65855319
           0.48883977 -3.1378251 3.06195059 -2.31933488 -2.2108428
                                                                       0.98680097
          -4.40275391]
         Y Intercept = [22.69923301]
         C:\Users\GauravP\Anaconda3\lib\site-packages\sklearn\linear model\stochastic gradient.py:117: DeprecationWarning: n ite
         r parameter is deprecated in 0.19 and will be removed in 0.21. Use max iter and tol instead.
           DeprecationWarning)
```

Out[31]:

	True Labels	Predicted Labels
307	28.2	34.625922
385	7.2	8.343819
36	20.0	23.316409
380	10.4	17.438339
409	27.5	20.622426
414	7.0	-4.672888
178	29.9	33.368859
341	32.7	31.891682
302	26.4	29.890827
86	22.5	22.931960
308	22.8	30.479532
276	33.2	36.848141
500	16.8	21.261716
79	20.3	23.172265
214	23.7	9.750177
476	16.7	21.598159
120	22.0	22.643716
83	22.9	26.195696
150	21.5	21.729502
209	20.0	17.517960
386	10.5	6.814786
39	30.8	32.455154
260	33.8	36.925601

	True Labels	Predicted Labels
117	19.2	25.052271
191	30.5	31.687539
70	24.2	25.651552
28	18.4	20.505749
327	22.2	19.798277
359	22.6	20.066619
200	32.9	31.447576
420	16.7	20.724189
220	26.7	34.896699
183	32.5	33.364668
323	18.5	20.529674
317	19.8	19.080668
468	19.1	17.932330
97	38.7	37.809138
319	21.0	22.071387
141	14.4	3.041505
113	18.7	21.783646
484	20.6	19.919586
177	24.6	31.086678
127	16.2	15.453201
229	31.5	32.501553
344	31.2	29.492981
61	16.0	19.817923
128	18.0	19.424246
238	23.7	29.507171

	True Labels	Predicted Labels
138	13.3	13.811254
354	18.2	14.232612
121	20.3	23.421829
75	21.4	24.833043
358	22.7	22.931203
457	13.5	12.468762
168	23.8	27.986559
171	19.1	25.952486
384	8.8	3.198285
123	17.3	16.656538
192	36.4	34.391115
351	24.1	21.243552

102 rows × 2 columns

```
In [32]: Mean_Sq_Error = mean_squared_error(Y_te, Y_pred)
Mean_Sq_Error
```

Out[32]: 18.601333691948366

Final Verdict:

Mean Square Error

Manual Implementation: 21.186 Sklearn Implementation: 18.60