Adaptive Composition Property of Summary Statistic Privacy

In this document, we take a first step towards analyzing the adaptive composition property of the summary statistic privacy. We focus on the setting where the distribution parameter θ belongs to a finite set, there is only one summary statistic secret, and the tolerance range ϵ is 0. We also assume that $\sup_{\theta} \mathbb{P}(\theta) = a < 1$ and $\inf_{\theta} \mathbb{P}(\theta) = b > 0$. Under such setting, the summary statistic privacy of a mechanism \mathcal{M} can be written as

$$\Pi_{\omega_{\Theta}}^{\mathcal{M}} \triangleq \sup_{\hat{g}} \mathbb{P} \left(\hat{g} \left(\theta' \right) = g \left(\theta \right) \right).$$

The following theorem shows the adaptive composition guarantee of the summary statistic privacy under such setting.

Theorem 0.1 (Adaptive Composition). Consider a data holder sequentially applies m data release mechanisms to the original dataset. For the i-th mechanism \mathcal{M}_i , $\forall i \in [m]$, it takes the original distribution parameter θ and all previous released parameters $\theta'_1, \ldots, \theta'_{i-1}$ as input and output θ'_i . Suppose the summary statistic privacy of mechanism \mathcal{M}_i is $\Pi^{\mathcal{M}_i}_{\omega_{\Theta}}$, $\forall i \in [m]$. Let \mathcal{M} be the composition of these m mechanisms, and suppose the adversary can get access to all released parameters $\theta'_1, \ldots, \theta'_m$. The summary statistic privacy of

 \mathcal{M} can be bounded as $\prod_{\omega_{\Theta}}^{\mathcal{M}} \leq a \cdot \prod_{i \in [m]} \frac{\prod_{\omega_{\Theta}}^{\mathcal{M}_i}}{b}$.

Proof. For the summary statistic privacy of \mathcal{M} , we can get that

$$\begin{split} &\Pi_{\omega_{\Theta}}^{\mathcal{M}} = \sup_{\hat{g}} \mathbb{P} \left(\hat{g} \left(\theta'_1, \dots, \theta'_m \right) = g \left(\theta \right) \right) \\ &= \sum_{\theta'_1, \dots, \theta'_m} \mathbb{P} \left(\theta'_1, \dots, \theta'_m \right) \cdot \left(\sup_{\mathbf{g}} \sum_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta | \theta'_1, \dots, \theta'_m \right) \right) \\ &= \sum_{\theta'_1, \dots, \theta'_m} \sup_{\mathbf{g}} \sum_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta, \theta'_1, \dots, \theta'_m \right) \\ &= \sum_{\theta'_1, \dots, \theta'_m} \sup_{\mathbf{g}} \sum_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta \right) \cdot \mathbb{P} \left(\theta'_1, \dots, \theta'_m | \theta \right) \\ &\leq a \cdot \sum_{\theta'_1, \dots, \theta'_m} \sup_{\mathbf{g}} \sum_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_1, \dots, \theta'_m | \theta \right) \\ &= a \cdot \sum_{\theta'_1, \dots, \theta'_m} \sup_{\mathbf{g}} \prod_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_{i-1} \right) \\ &\leq a \cdot \sum_{\theta'_1, \dots, \theta'_m} \prod_{i \in [m]} \sup_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_{i-1} \right) \\ &\leq a \cdot \prod_{i \in [m]} \sum_{\theta'_1, \dots, \theta'_i} \sup_{\mathbf{g}} \sum_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_{i-1} \right) \\ &\leq a \cdot \prod_{i \in [m]} \sum_{\theta'_1, \dots, \theta'_i} \sup_{\mathbf{g}} \sum_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_{i-1} \right) \\ &\leq a \cdot \prod_{i \in [m]} \sum_{\theta'_1, \dots, \theta'_i} \sup_{\mathbf{g}} \sum_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_{i-1} \right) \\ &\leq a \cdot \prod_{i \in [m]} \sum_{\theta'_1, \dots, \theta'_i} \sup_{\mathbf{g}} \sum_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_{i-1} \right) \\ &\leq a \cdot \prod_{i \in [m]} \prod_{\theta'_1, \dots, \theta'_i} \sup_{\mathbf{g}} \sum_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_{i-1} \right) \\ &\leq a \cdot \prod_{i \in [m]} \prod_{\theta'_1, \dots, \theta'_i} \sup_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_{i-1} \right) \\ &\leq a \cdot \prod_{i \in [m]} \prod_{\theta'_1, \dots, \theta'_i} \sup_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_i \right) \\ &\leq a \cdot \prod_{i \in [m]} \prod_{\theta'_1, \dots, \theta'_i} \sup_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_i \right) \\ &\leq a \cdot \prod_{i \in [m]} \prod_{\theta'_1, \dots, \theta'_i} \sup_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_i \right) \\ &\leq a \cdot \prod_{i \in [m]} \prod_{\theta'_1, \dots, \theta'_i} \sup_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_i \right) \\ &\leq a \cdot \prod_{i \in [m]} \prod_{\theta'_1, \dots, \theta'_i} \sup_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_i \right) \\ &\leq a \cdot \prod_{i \in [m]} \prod_{\theta'_1, \dots, \theta'_i} \sup_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_i \right) \\ &\leq a \cdot \prod_{i \in [m]} \prod_{\theta'_1, \dots, \theta'_i} \sup_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_1, \dots, \theta'_i \right) \\ &\leq a \cdot \prod_{i \in [m]} \prod_{\theta'_1, \dots, \theta'_i} \sup_{\theta: g(\theta) = \mathbf{g}} \mathbb{P} \left(\theta'_i | \theta, \theta'_i \right) \\ &\leq a \cdot \prod_{i \in [m]} \prod_{\theta'_1, \dots, \theta'_i} \sup_$$