GOSSIP: decomposition software for the Global Optimization of nonconvex two-Stage Stochastic mixed-Integer nonlinear Programs

Rohit Kannan and Paul I. Barton

Process Systems Engineering Laboratory Department of Chemical Engineering Massachusetts Institute of Technology

November 4, 2018

Motivation Engineering Applications

Li, X. et al., AIChE Journal, 2011.

Sundaramoorthy, A. et al., Ind. Eng. Chem. Res., 2012.

Rebennack, S. et al., Comput. Chem. Eng., 2011.

Li, X. et al., Ind. Eng. Chem. Res., 2011.

Two-Stage Stochastic MINLP Framework

Scenario-based formulation

Probability of scenario h
$$\min_{x_1,\cdots,x_s,y,z} \sum_{h=1}^s p_h f_h(x_h,y,z) \qquad \text{Minimize the expected cost}$$
 s.t. $g_h(x_h,y,z) \leq 0, \ \forall h \in \{1,\cdots,s\}, \ \text{Constraints for all scenarios}$
$$x_h \in X_h \subset \{0,1\}^{n_{x_b}} \times \mathbb{R}^{n_{x_c}}, \ \forall h \in \{1,\cdots,s\}, \ \text{Second-stage decisions}$$
 for all scenarios
$$y \in Y \subset \{0,1\}^{n_y}, \ z \in Z \subset \mathbb{R}^{n_z}. \ \text{First-stage decisions}$$

 The solution times of algorithms implemented in commercial general-purpose global optimization software are worst-case exponential in the number of scenarios

Decomposition Strategy #1Complicating Variables Viewpoint

Variable

$$\min_{x_1,\dots,x_s,\mathbf{y},\mathbf{z}} \sum_{h=1}^s p_h f_h(x_h,\mathbf{y},\mathbf{z})$$

s.t. $g_h(x_h, y, z) \le 0$, $\forall h \in \{1, \dots, s\}$, Scenario $x_h \in X_h$, $\forall h \in \{1, \dots, s\}$, (Constraint)

Complicating variables

 $y \in Y$, $z \in Z$.

$$\min_{x_1} p_1 f_1(x_1, y, z)$$

s.t.
$$g_1(x_1, y, z) \le 0$$
,
 $x_1 \in X_1$.

$$\min_{x_h} p_h f_h(x_h, y, z)$$

s.t.
$$g_h(x_h, y, z) \le 0$$
,
 $x_h \in X_h$.

$$\min_{x_s} p_s f_s(x_s, y, z)$$

s.t.
$$g_s(x_s, y, z) \le 0$$
,
 $x_s \in X_s$.

Decomposition Algorithms Nonconvex Generalized Benders Decomposition (NGBD)

Nonconvex Generalized Benders Decomposition (NGBD)

$$\min_{x_1, \dots, x_s, y} \sum_{h=1}^s p_h f_h(x_h, y)$$
s.t. $g_h(x_h, y) \le 0$, $\forall h \in \{1, \dots, s\}$,
$$x_h \in X_h \subset \{0, 1\}^{n_{x_b}} \times \mathbb{R}^{n_{x_c}}, \ \forall h \in \{1, \dots, s\},$$
 $y \in Y \subset \{0, 1\}^{n_y}$.

Original Problem: Nonconvex MINLP

Convexification

Solve using GBD!

$$\min_{\substack{x_{1}, \dots, x_{s}, \\ q_{1}, \dots, q_{s}, y}} \sum_{h=1}^{s} p_{h} \Big[f_{h}^{\text{cv}}(x_{h}, q_{h}) + c_{y,h}^{\text{T}} y \Big]
\text{s.t.} \quad g_{h}^{\text{cv}}(x_{h}, q_{h}) + B_{y,h} y \leq 0, \ \forall h \in \{1, \dots, s\},
(x_{h}, q_{h}) \in \text{conv}(X_{h}) \times Q_{h}, \ \forall h \in \{1, \dots, s\},
y \in \{0, 1\}^{n_{y}}.$$

Lower Bounding Problem: MILP/Convex MINLP

Decomposition Strategy #2 Complicating Constraints Viewpoint

Formulation

$$\min_{x_1, \dots, x_s, y, z} \sum_{h=1}^{s} p_h f_h(x_h, y, z)$$
s.t. $g_h(x_h, y, z) \le 0, \forall h \in \{1, \dots, s\},$

$$x_h \in X_h, \forall h \in \{1, \dots, s\},$$

$$y \in Y, z \in Z.$$

Equivalent Formulation

$$\min_{\substack{x_1,\dots,x_s,\\y_1,\dots,y_s,\\z_1,\dots,z_s}} \sum_{h=1}^s p_h f_h(x_h,y_h,z_h)$$

Constraint

Complicating constraints

s.t.
$$g_h(x_h, y_h, z_h) \le 0$$
, $\forall h \in \{1, \dots, s\}$,
 $y_h - y_{h+1} = 0$, $\forall h \in \{1, \dots, s-1\}$,
 $z_h - z_{h+1} = 0$, $\forall h \in \{1, \dots, s-1\}$,
 $x_h \in X_h$, $y_h \in Y$, $z_h \in Z$, $\forall h \in \{1, \dots, s\}$.

Scenario (Variable)

Decomposition Strategy #2 Complicating Constraints Viewpoint

$$\min_{x_{1},y_{1},z_{1}} p_{1}f_{1}(x_{1},y_{1},z_{1}) \qquad \min_{x_{h},y_{h},z_{h}} p_{h}f_{h}(x_{h},y_{h},z_{h}) \qquad \min_{x_{s},y_{s},z_{s}} p_{s}f_{s}(x_{s},y_{s},z_{s})$$
s.t. $g_{1}(x_{1},y_{1},z_{1}) \leq 0$, s.t. $g_{h}(x_{h},y_{h},z_{h}) \leq 0$, s.t. $g_{s}(x_{s},y_{s},z_{s}) \leq 0$, s.t. $g_{s}(x_{s},y_{s},z_{s}) \leq 0$, $x_{1} \in X_{1}, y_{1} \in Y, z_{1} \in Z$. $x_{h} \in X_{h}, y_{h} \in Y, z_{h} \in Z$. Scenario (Variable)

Equivalent Formulation

$$\min_{\substack{x_1,\dots,x_s,\\y_1,\dots,y_s,\\z_1,\dots,z_s}} \sum_{h=1}^s p_h f_h(x_h,y_h,z_h)$$

s.t. $g_h(x_h, y_h, z_h) \le 0, \forall h \in \{1, \dots, s\},\$

Constraint

$$x_h \in X_h, y_h \in Y, z_h \in Z, \forall h \in \{1, \dots, s\}.$$

Lagrangian Relaxation (LR)

$$\min_{\substack{x_1,\dots,x_s,\\y_1,\dots,y_s,\\z_1,\dots,z_s}} \sum_{h=1}^s p_h f_h(x_h,y_h,z_h)$$

s.t.
$$g_h(x_h, y_h, z_h) \le 0$$
, $\forall h \in \{1, \dots, s\}$,
$$y_h - y_{h+1} = 0$$
, $\forall h \in \{1, \dots, s-1\}$,
$$z_h - z_{h+1} = 0$$
, $\forall h \in \{1, \dots, s-1\}$, Non-anticipativity constraints
$$x_h \in X_h, \ y_h \in Y, \ z_h \in Z, \ \forall h \in \{1, \dots, s\}.$$

Dualize the nonanticipativity constraints

$$\sup_{\substack{\mu_{1}, \dots, \mu_{s-1}, \\ \lambda_{1}, \dots, \lambda_{s-1}, \\ z_{1}, \dots, z_{s}}} \min_{\substack{x_{1}, \dots, x_{s}, \\ y_{1}, \dots, y_{s}, \\ z_{1}, \dots, z_{s}}} \sum_{h=1}^{s} p_{h} f_{h}(x_{h}, y_{h}, z_{h}) + \sum_{h=1}^{s-1} \mu_{h}^{T} (y_{h} - y_{h+1}) + \sum_{h=1}^{s-1} \lambda_{h}^{T} (z_{h} - z_{h+1})$$

$$\text{s.t.} \quad g_{h}(x_{h}, y_{h}, z_{h}) \leq 0, \ \forall h \in \{1, \dots, s\},$$

$$x_{h} \in X_{h}, y_{h} \in Y, z_{h} \in Z, \ \forall h \in \{1, \dots, s\}.$$

The inner minimization can be decomposed into independent scenario problems

Our proposed approach (MLR) aims to leverage the advantages of both NGBD and LR

- Upper bounds are generated using efficient local optimization techniques that exploit the near-decomposable structure
- Lower bounds are generated by relaxing the complicating constraints corresponding to the continuous first-stage variables z

$$\max_{\lambda_{1},\dots,\lambda_{s-1}} \min_{\substack{x_{1},\dots,x_{s},\\ \mathbf{y},z_{1},\dots,z_{s}}} \sum_{h=1}^{s} p_{h} f_{h}(x_{h},\mathbf{y},z_{h}) + \sum_{h=1}^{s-1} \lambda_{h}^{T}(z_{h} - z_{h+1})$$
s.t. $g_{h}(x_{h},\mathbf{y},z_{h}) \leq 0, \ \forall h \in \{1,\dots,s\},$

$$x_{h} \in X_{h}, \ z_{h} \in Z, \ \forall h \in \{1,\dots,s\},$$

$$\mathbf{y} \in Y.$$

Inner minimization can be solved efficiently using NGBD

- Convergence is guaranteed by B&B, where it is sufficient to branch on the continuous first-stage variables z to converge
 - Convergence is accelerated potentially by using tailored decomposable bounds tightening techniques

GOSSIPOverview and Motivation

- Software for the Global Optimization of nonconvex two-Stage Stochastic mixed-Integer nonlinear Programs
 - More than 100,000 lines of source code (primarily in C++)
 - Links to state-of-the-art solvers, e.g., CPLEX, IPOPT, ANTIGONE
 - Enables solution of large-scenario cases studies from the literature

Motivation

Implementing decomposition algorithms such as NGBD is a nontrivial task

Naïve implementations may result in significant overhead

GOSSIPModel Reformulation

Some of GOSSIP's features

$$z^{j,\text{lo}} = \max_{h \in \{1, \dots, s\}} \min_{x_h, y, z_h} z_h^j$$
s.t. $g_h^{\text{cv}}(x_h, y, z_h) \le 0$,
$$x_h \in \text{conv}(X_h)$$
,
$$y \in Y, z_h \in Z$$
.

Computational Studies Implementation Details

Platform

CPU 3.5 GHz, Memory 6.0 GB, VMWare Workstation, GAMS 24.7.1, GCC 4.8.1, GFortran 4.8.1

GOSSIP Solvers

- LP and MILP solver: CPLEX 12.6 (C library)
- Global NLP solver: ANTIGONE 1.1 (C++ library)
- Local NLP solver: IPOPT 3.12.8 (C++ library)
- Bundle solver: MPBNGC 2.0 (Fortran library)

Methods for comparison

- ➤ ANTIGONE 1.1, BARON 16.3.4, COUENNE 0.5, SCIP 3.2
- Nonconvex generalized Benders decomposition (NGBD)
- Lagrangian relaxation (LR)
- Modified Lagrangian relaxation (MLR)
- Relative tolerance: 10^{-3} , Absolute tolerance: 10^{-9}
- Time Limit: 10,000 seconds

Computational Study Design and Operation of a Natural Gas Network

- 38 binary first-stage variables,
- 0 continuous first-stage variables,
- 93s continuous second-stage variables,
- 34s bilinear terms.

(s denotes the number of scenarios)

Computational Study Design and Operation of a Natural Gas Network

Computational Study Design and Operation of a Natural Gas Network

Computational Study and Refinery Or

Integrated Crude Selection and Refinery Operation

100 binary first-stage variables,

0 continuous first-stage variables,

122s continuous second-stage variables,

26s bilinear terms.

(s denotes the number of scenarios)

Yang and Barton, AIChE Journal, 2016.

Computational Study Integrated Crude Selection and Refinery Operation

Computational Study Integrated Crude Selection and Refinery Operation

Computational Study Tank Sizing and Scheduling for a Chemical Plant

- 0 binary first-stage variables,
- 3 continuous first-stage variables,
- 9s binary second-stage variables,
- 38s continuous second-stage variables,
 - 3 signomial terms,
- 47s bilinear terms.

(s denotes the number of scenarios)

Computational Study Tank Sizing and Scheduling for a Chemical Plant

Computational Study Tank Sizing and Scheduling for a Chemical Plant

Summary and Future Work

- GOSSIP implements state-of-the-art decomposition techniques for nonconvex stochastic programs
- Case studies demonstrate the advantages of the software framework for solving large-scale problems
- Future work:
 - Additional features such as polyhedral relaxations, piecewise-convex relaxations, edge concave relaxations, RLT cuts
 - Incorporate alternate decomposition techniques such as nonconvex outer-approximation
- Please contribute to the test library (<u>rohitk@alum.mit.edu</u>).
 Contributions will be acknowledged

Acknowledgements

- Prof. Ruth Misener & Prof. Chris Floudas
- Prof. Yu Yang

Decomposition Approaches

nulation
$$\min_{x_1,\cdots,x_s,y,z} \sum_{h=1}^s p_h \Big[f_h(x_h) + c_{y,h}^{\mathsf{T}} \mathbf{y} + c_{z,h}^{\mathsf{T}} \mathbf{z} \Big]$$
 s.t. $g_h(x_h) + B_{y,h} \mathbf{y} + B_{z,h} \mathbf{z} \leq 0, \ \forall h \in \{1,\cdots,s\},$ $A_y \mathbf{y} + A_z \mathbf{z} \leq d_{y,z},$ $x_h \in X_h, \ \forall h \in \{1,\cdots,s\},$ Complicating $\mathbf{y} \in Y, \ \mathbf{z} \in Z.$

Equivalent Formulation

variables

$$\min_{\substack{x_1, \dots, x_s, \\ y_1, \dots, y_s, \\ z_1, \dots, z_s}} \sum_{h=1}^{s} p_h \left[f_h(x_h) + c_{y,h}^{\mathrm{T}} y_h + c_{z,h}^{\mathrm{T}} z_h \right]$$

s.t.
$$g_h(x_h) + B_{y,h} y_h + B_{z,h} z_h \le 0, \forall h \in \{1, \dots, s\},\$$

 $A_y y_h + A_z z_h \le d_{y,z}, \forall h \in \{1, \dots, s\},\$

Complicating constraints

$$y_{h} - y_{h+1} = 0, \ \forall h \in \{1, \dots, s-1\},\$$

$$z_{h} - z_{h+1} = 0, \ \forall h \in \{1, \dots, s-1\},\$$

$$x_{h} \in X_{h}, \ y_{h} \in Y, \ z_{h} \in Z, \ \forall h \in \{1, \dots, s\}.$$

Nonconvex Generalized Benders Decomposition

$$\min_{x_1, \dots, x_s, y} \sum_{h=1}^{s} p_h \Big[f_h(x_h) + c_{y,h}^{\mathsf{T}} y \Big]$$
s.t. $g_h(x_h) + B_{y,h} y \leq 0$, $\forall h \in \{1, \dots, s\}$,
$$A_y y \leq d_y,$$

$$x_h \in X_h \subset \{0,1\}^{n_{x_b}} \times \mathbb{R}^{n_{x_c}}, \ \forall h \in \{1, \dots, s\},$$

$$y \in Y \subset \{0,1\}^{n_y}.$$
Fix the first-stage variables

Original Problem: Nonconvex MINLP

Solve the scenario primal problems independently

$$\min_{x_1, \dots, x_s} \sum_{h=1}^s p_h \left[f_h(x_h) + c_{y,h}^{\mathsf{T}} \overline{y} \right]
\text{s.t.} \quad g_h(x_h) + B_{y,h} \overline{y} \leq 0, \ \forall h \in \{1, \dots, s\},
x_h \in X_h \subset \{0,1\}^{n_{x_b}} \times \mathbb{R}^{n_{x_c}}, \ \forall h \in \{1, \dots, s\}.$$

Primal Problem: Nonconvex NLP/MINLP

Nonconvex Generalized Benders Decomposition

Modified Lagrangian Relaxation

$$\begin{aligned} & \min_{\substack{x_1, \cdots, x_s, y, \\ z_1, \cdots, z_s}} \; \sum_{h=1}^s p_h \Big[f_h(x_h) + c_{y,h}^\mathsf{T} y + c_{z,h}^\mathsf{T} z_h \Big] \\ & \text{s.t.} \quad g_h(x_h) + B_{y,h} y + B_{z,h} z_h \leq 0, \; \forall h \in \{1, \cdots, s\}, \\ & A_y y + A_z z_h \leq d_{y,z}, \; \forall h \in \{1, \cdots, s\}, \\ & z_h = z_{h+1}, \; \forall h \in \{1, \cdots, s-1\}, & \longrightarrow \\ & x_h \in X_h, \; z_h \in Z, \; \forall h \in \{1, \cdots, s\}, \\ & y \in Y \subset \left\{0,1\right\}^{n_y}. & \text{Dualize the nonanticipativity constraints} \end{aligned}$$

$$\sup_{\lambda_{1}, \dots, \lambda_{s-1}} \min_{\substack{x_{1}, \dots, x_{s}, y, \\ z_{1}, \dots, z_{s}}} \sum_{h=1}^{s} \left(p_{h} \left[f_{h}(x_{h}) + c_{y,h}^{T} y + c_{z,h}^{T} z_{h} \right] \right) + \sum_{h=1}^{s-1} \lambda_{h}^{T} \left(z_{h} - z_{h+1} \right)$$

s.t.
$$g_h(x_h) + B_{y,h}y + B_{z,h}z_h \le 0, \forall h \in \{1, \dots, s\},$$

 $A_y y + A_z z_h \le d_{y,z}, \forall h \in \{1, \dots, s\},$
 $x_h \in X_h, z_h \in Z, \forall h \in \{1, \dots, s\},$
 $y \in Y.$

The inner minimization can be solved in a decomposable manner using NGBD

GOSSIPModel Formulation

```
for(int j=0; j<NUM_POOLS; ++j)</pre>
    for(int j2=0; j2<NUM_POOLS; ++ j2)</pre>
        if(T_PP[j][j2])
             for(int h=0;h<NUM_SCEN;++h)</pre>
                 sprintf(clabel, "s_PP[%d][%d][%d]", j+1, j2+1, h+1);
                 s_PP[j][j2][h].setIndependentVariable(
                                       ++varcount,
                                       compgraph::CONTINUOUS,
                                       I(0,1),
                                                                               DAG Representation
                                       0.,
                                       h+1.
                                       clabel);
                                                            Variables
for(int j=0; j<NUM_POOLS;++j)</pre>
    for(int h=0;h<NUM SCEN;++h)</pre>
         Split_bal[j][h] = 1;
        for(int j2=0; j2<NUM_POOLS; ++ j2)</pre>
             if(T_PP[j][j2])
                 Split_bal[j][h] -= s_PP[j][j2][h];
                                                          Constraints
        for(int k=0;k<NUM_TERMINALS;++k)</pre>
             if(T_PT[j][k])
                 Split_bal[j][h] -= s_PT[j][k][h];
         Split_bal[j][h].setDependentVariable(++concount,compgraph::EQUALITY);
    }
```


GOSSIP

Automatic Structure Detection

GOSSIP

Bounds Tightening Techniques

Recourse Variables

$$x_{h}^{i,L} = \min_{x_{h}, y, z} x_{h}^{i}$$
s.t. $g_{h}^{cv}(x_{h}) + B_{y,h}y + B_{z,h}z \le 0$,
$$A_{y}y + A_{z}z \le d_{y,z},$$

$$x_{h} \in conv(X_{h}),$$

$$y \in Y, z \in Z.$$

Complicating Variables

$$z^{i,L} = \max_{h} \min_{x_{h}, y, z_{h}} z_{h}^{i}$$
s.t. $g_{h}^{cv}(x_{h}) + B_{y,h}y + B_{z,h}z_{h} \leq 0$,
$$A_{y}y + A_{z}z_{h} \leq d_{y,z},$$

$$x_{h} \in conv(X_{h}),$$

$$y \in Y, z_{h} \in Z.$$

GOSSIPRelaxation Strategies

Term	Relaxation
xy	McCormick envelope
$\frac{x}{y}$	Bilinear reformulation, Quesada and Grossmann envelope
$egin{array}{c} y \ x^c \end{array}$	Secant, Liberti and Pantelides linearization
$\log(x)$	Secant
$\exp(x)$	Secant
x^y	Reformulate as $\exp(y \log(x))$
x	MIP reformulation
$\min(x,y)$	Reformulate as $\frac{1}{2}(x+y- x-y)$
$\max(x,y)$	Reformulate as $\dfrac{1}{2}\left(x+y- x-y ight)$ Reformulate as $\dfrac{1}{2}\left(x+y+ x-y ight)$
$x \log(x)$	Secant
$x \exp(x)$	Bilinear reformulation, Secant
xyz	Meyer and Floudas envelope
xyzw	Cafieri et al. relaxations
$x_1^{c_1} \cdot x_2^{c_2} \cdots x_n^{c_n}$	Bilinear reformulation, Secant, Transformation-based relaxation

GOSSIPUpper Bounding Techniques

Lower Bounding Problem

$$\sup_{\lambda_{1},\dots,\lambda_{s-1}} \min_{\substack{x_{1},\dots,x_{s},y,\\z_{1},\dots,z_{s}}} \sum_{h=1}^{s} \left(p_{h} \left[f_{h}(x_{h}) + c_{y,h}^{\mathsf{T}} y + c_{z,h}^{\mathsf{T}} z_{h} \right] \right) + \sum_{h=1}^{s-1} \lambda_{h}^{\mathsf{T}} \left(z_{h} - z_{h+1} \right)$$
s.t. $g_{h}(x_{h}) + B_{y,h} y + B_{z,h} z_{h} \leq 0, \ \forall h \in \{1,\dots,s\},$

$$A_{y} y + A_{z} z_{h} \leq d_{y,z}, \ \forall h \in \{1,\dots,s\},$$

$$x_{h} \in X_{h}, \ z_{h} \in Z, \ \forall h \in \{1,\dots,s\},$$

$$y \in Y.$$

Upper Bounding Problem

$$\min_{\substack{x_{1}, \dots, x_{s}, y, \\ z_{1}, \dots, z_{s}}} \sum_{h=1}^{s} p_{h} \Big[f_{h}(x_{h}) + c_{y,h}^{\mathsf{T}} y + c_{z,h}^{\mathsf{T}} z_{h} \Big]$$
s.t.
$$g_{h}(x_{h}) + B_{y,h} y + B_{z,h} z_{h} \leq 0, \ \forall h \in \{1, \dots, s\},$$

$$A_{y} y + A_{z} z_{h} \leq d_{y,z}, \ \forall h \in \{1, \dots, s\},$$

$$z_{h} = z_{h+1}, \ \forall h \in \{1, \dots, s-1\},$$

$$x_{h} \in X_{h}, \ z_{h} \in Z, \ \forall h \in \{1, \dots, s\},$$

$$y \in Y.$$

- Fix the binary variables in the upper bounding problem to the lower bounding solution
- Initialize the continuous secondstage variables to the lower bounding solution
- Initialize the continuous firststage variables to the average lower bounding solution