Зміст

1		ктика		9
	1.1	PDP		. 3
		1.1.1	Алгоритм	. 3
		1.1.2	Програмний код	. ;
	1.2	Intel 8	8 <mark>080</mark>	
	1.3	MIPS		. 4
		1.3.1	Функціонування	. 4
		1.3.2	Практчні задачі	

Розділ 1

Практика

1.1 PDP

17.02.2014

Регістр R_4 . Його вміст має бути зменшений на 2. Отриманий результат є адрес, який потрібно отримати і занулити молодший розряд. І цей код записати у комірку пам'яті, що зсунута відносно номеру 155776 на -40 комірок.

1.1.1 Алгоритм

- 1. Зменшити значення регістру R_4 на 2;
- 2. Прочитати значення за адресою (R_4) і помістити його в R_3 ;
- 3. Накласти на значення, що міститься в R_3 маску, інвертовану відносно 111116;
- 4. Записати її у відповідну адресу.

1.1.2 Програмний код

```
SUB # 000002, R_4;
MOV (R_4), R_3;
BIC # 000001, R_3;
MOV # 155776, R_2;
MOV R_3, -40(R_2);
```

1.2 Intel 8080

05.03.2014

Типи завдань:

- Призначення команди (інфіксна нотація, кількість циклів та інше);
- Функціонування та коментарі до нього;
- Швидкодія;

• Вміст регістрів та комірок пам'яті.

M - це завжди регістрова пара HL. addr - це пряма адресація, адреса лежить в регістровій парі WZ.

Приклад 1.2.1. CC addr C - це cerry flag, в цей регістр буде поміщено ссув, який був отриманий у випадку арифметичних та інших операцій.

1.3 MIPS

1.3.1 Функціонування

Що буде на контрольній роботі з MIPS:

- описание команды, обрамление, машинный код;
- описание алгоритма, комментарии к коду, (10 б);
- описать функционирование.
 MIPS-lite інструкції, які можуть трапитися:
- ADD або SUB
- OR I
- LOAD a

 o STORE Word
- BRANCH

Завдання 1.3.1.

$$lw\$t1, offset(\$t2); \tag{1.1}$$

12.05.2014

- 1	7	• (1) 1		7 •	(6) (7)
	Хоманда завантажує у	noniomn *t	1 HOIL 2 HO	M'ami on ambagaia	*t'/ 'D GVIDGNE Officet
- 1	COMARIA SABARTAM VE V	DELICITY OF	1 /14/H1/3/114/	м ятгза алгресов	DLA 3 CVBOW OHSEL

	манда завантажуе у регістр эті дані з пам'яті за адресою этг з сувом с				
$N_{\overline{0}}$	Микрооперация	Управляющий сигнал			
1	PCout	IorD=0;			
2	Цикл пам'яті;	${\bf MemRead}{=}1$			
3	$ALU_a := (PC)$	${ m AluSrcA}{=}0$			
4	$ALU_b := (4)$	AluSrcB=01			
5	$ALU := ALU_a + ALU_b$	ALU_{op} =00 -> $ALU_{control}$ = 0010(= 2)			
6	$\mathrm{ALUout} := (\mathrm{ALU})$	PCSource=00;			
7	PC:=(ALU)	PCWrite=1;			
8	$IR:=((PC_{old}))$	$IR_{wr}=1;$			
9	CU[5-0] := IR[31-26]				
10	$\overline{\mathrm{DC}}$				
11	A := IR[25-21]				
		9,10,11 пункт			
	B:=IR[20-16]	виконуються майже одночасно.			
	$D\Pi [20-10]$	Цими мікроопераціями мікропроцесор			
		готує майбутню операцію R типу			
12	$ALU_a := (PC_{new})$	$ALU_{srcA}=0$			
13	$ALU_b := (SE(IR[15:0])? < 2$	$ALU_{srcB}=11$			
14	$ALU:=(ALU_a)+(ALU_B)$				
15	$ALU_{out} = (ALU)$	$ALU_{op} = 00$ -> $ALU_{control} = 0010$			
16	ALU_a := A	$ALU_{srcA}=0$			
17	$ALU_b := SE(IR[15:0])$	$ALU_{scrB}=10$			
18	$ALU:=(ALU_a)+(ALU_b)$	$ALU_{op}=00$			
19	$ALU_{out} := (ALU)$	$ALU_{control} = 0010$			
20	$M_{adress} := (ALU_{out})$	IorD = 1			
21	ЦП	$\mathrm{MemRead} = 1$			
22	$\mathrm{MDR} := ((ALU_{out}))$	$\operatorname{MemToReg} = 1$			
23	((IR[20-16])) := (MDR)	RegWrite = 1			

1.3.2 Практчні задачі

Завдання 1.3.2. Поміняти місцем дві змінні t1 та t2 так, щоб не використовувалась додаткова пам'ять. Математичний алгоритм:

$$t1 = t1 + t2 (1.2)$$

$$t2 = t1 - t2 (1.3)$$

$$t1 = t1 - t2 (1.4)$$

(1.5)

add \$t1,\$t1,\$t2 sub \$t2,\$t1,\$t2 sub \$t1,\$t1,\$t2

Завдання 1.3.3. Знайти кількість ненульових бітів у числі п.

addi \$t1,\$t1,0x49249249 # 0100 1001 0010 0100 1001 0010 0100 1001 addi \$t2,\$t2,0x381c0e07 # 0011 1000 0001 1100 0000 1110 0000 0111 addi \$t3,\$v0,0

and \$t4,\$t3,\$t1

sra \$t5,\$t3,1
and \$t5,\$t5,\$t1

sra \$t6,\$t3,2
and \$t6,\$t6,\$t1

add \$t3,\$t4,\$t5 add \$t3,\$t3,\$t6

sra \$t5,\$t3,3
add \$t4,\$t3,\$t5

and \$t4,\$t4,\$t2

sra \$t6,\$t3,6
and \$t6,\$t6,\$t2

add \$t3,\$t4,\$t6

sra \$t4,\$t3,9
sra \$t5,\$t3,18
sra \$t6,\$t3,27

add \$t4,\$t3,\$t4 add \$t4,\$t4,\$t5 add \$t4,\$t4,\$t6

and \$t4,\$t4,0x3f