BigData Introdution

Ricardo Vilaça HASLab/MACC University of Minho

rmvilaca@di.uminho.pt

Presentation

- https://rmpvilaca.github.io/
- MACC & HASLab Researcher @ UM & INESC TEC
- Research Interests:
 - Energy-efficient scheduling
 - HPC, Big Data, and AI Convergence
 - Edge-Cloud-HPC Computing Continuum
 - Scalable data processing

Minho Advanced Computing Center

Roadmap

- BigData and Data Lakes
- Distributed Storage
 - Object Storage
 - File Systems
- File Formats

Big Data

Big Data

- Data Independence
- Full scan vs point queries
 - Projection and selection
- Data denormalization
 - Good for read-intensive scenarios
 - Not having to perform join improves performance

Scale challenges

- Very large amount of data:
 - Disk size
 - Caching performance
- Very large number of queries (reading):
 - Available CPU
- Very large number of queries (writing):
 - Available CPU and disk bandwidth
- Heterogeneous data
 - Nested data
 - Variety of data structures
- I/O bottleneck
 - High disk access time with respect to main memory access time
 - Ever growing processor speeds
- (And high availability...)

ETL vs ELT

- ETL (Extract, Transform, Load)
 - Imported into the database
 - Transform before load to a data warehouse
 - Schema on write
 - Complex transformations of smaller data sets
- ELT (Extract, Load, Transform)
 - Read from a file system (data lake)
 - Schema on read
 - More flexibility
 - Both structured and unstructured data

Push vs Pull

Push Query to Data

- Send the query (or a portion of it) to the node that contains the data
- Perform as much filtering and processing as possible where data resides before transmitting over network

Pull Data to Query

- Bring the data to the node that is executing a query that needs it for processing
- This is necessary when there is no compute resources available where persistent data files are located

Data Lake Stack Client Scheduler/ Master Worker Worker Worker Worker Node 1 Node 2 Node n Node 3 Workers Workers Workers Workers Distributed Storage

Shared Nothing

- Each instance has its own CPU, memory, locally-attached disk.
- Nodes only communicate with each other via network.
- Data partitioned into disjoint subsets across nodes.
- Cost-effective
 - off-the-shelf components
- Coupling with distributed file systems

Shared Disk

- Each node accesses a single logical disk via an interconnect, but also have their own private memory and ephemeral storage.
 - Must send messages between nodes to learn about their current state
- Cloud Object stores

Shared Nothing vs Shared Disk

Shared Disk

- Scale compute layer independently from the storage layer
- Easy to shutdown idle compute layer resources
- May need to pull uncached persistent data from storage layer to compute layer before applying filters

Shared Nothing

- Dominant parallel architecture for big data systems
- Harder to scale capacity (data movement)
- Potentially better performance & efficiency
- Apply filters where the data resides before transferring

Distributed Challenges

- Nodes fail
 - 1 in 1000 nodes fail a day
 - Duplicate Data
- Network is a bottleneck
 - Typically 1-10 Gb/s throughput
 - Bring computation to nodes, rather than data to nodes
- Traditional distributed programming is
 - often ad-hoc and complicated
 - Stipulate a programming system that can easily be distributed (MapReduce/Spark)

Distributed Storage

Distributed Storage System

Storing and managing data across the nodes of a cluster

- Object-based
 - Object = (oid, data, metadata)
 - Metadata can be different for different object
 - Easy to move
 - Flat object space → billions/trillions of objects
 - Easily accessed through REST-based API (get/put)
- File-based
 - Data in files of fixed- or variable-length records
 - Metadata-per-file stored separately from file
 - For large data, a file needs to be partitioned and distributed

Object Store

- Partition the persistent data into large, immutable files stored in an object store
 - All attributes for a tuple are stored in the same file in a columnar layout (PAX)
 - Header (or footer) contains meta-data about columnar offsets, compression schemes, indexes, and zone maps
- No hierarchy
- Each cloud vendor provides their own proprietary API to access data (PUT, GET, DELETE).
 - Some vendors support predicate pushdown (S3)

Hadoop Distributed File System (HDFS)

- Distributed architecture
- Master/slave topology
- Independent data and metadata handling
- POSIX-like Interface
- Designed for large data sets
- Throughput over latency

HDFS Architecture

NameNode

- Maintains the file system metadata
 - e.g., namespace, access control, file-to-block mapping, block locations
- Manages and controls system-wide activities (e.g., load balancing, locking)
- HDFS-client <-> NameNode
 - Exchange metadata requests
- NameNode <-> DataNode
 - Periodically exchange block reports and heartbeats

DataNode

- Storage units of the file system
- Store and retrieve files/blocks to HDFS-clients
- Files are split into blocks
 - dfs.blocksize is typically 64MiB or 128MiB
 - Blocks are stored across different DataNodes for increased availability and parallelism (defined by dfs.replication)
 - Default replication factor is 3

Requests lifecycle

File vs Objects

File systems

- tied to a particular hierarchical organisation and storage device
- files can be modified or accessed arbitrarily
- size limit determined by underlying storage facility
- accessed by programs running in a host that mounts the file system

Objects

- immutable
- data storage not bound logically to any storage facility
- whole-object operations
- accessible over the Internet

File Formats

Relational Data Format

- Tabular data
- Multiple data types
- Optional (null) values
- No nested or repeated values
- Large number of columns

ld	Name	Location
1	aa	Braga
2	bbb	Porto
3	СС	Porto
4	dddddd	
5	eee	Lisboa

Text (CSV)

- Row-oriented
- Simple to produce and consume
- Schema can be inferred
- Redundancy and verbose representation (numbers)
- Ambiguity in separators and missing fields
- Only primitive types
- Difficult to page, especially when compressed

ld	Name	Location
1	aa	Braga
2	bbb	Porto
3	СС	Porto
4	dddddd	
5	eee	Lisboa

<u>data.csv</u>

"1","aa","Braga"
"2","bbb","Porto"
"3","cc","Porto"
"4","dddddd",

"5","eee","Lisboa"

. . . , . . . , . .

Data Formats Challenges

- Representation of types
 - Compactness and ambiguity
- Data that needs to be moved for:
 - Selection (range scan)
 - Projection
- Compression

Binary rows

- Compact and unambiguous
- Efficient I/U/D
- Can be paged and compressed
 - Not efficient as different data types are interleaved
- All data is read for projections

Id	Name	Location
1	aa	Braga
2	bbb	Porto
3	СС	Porto
4	dddddd	
5	eee	Lisboa
•••		•••

```
1 aa Braga
2 bbb Porto
3 cc Porto
4 dddddd Porto
5 eee Lisboa
... ...
```


Columnar

- Efficient projections
- Compressed very efficiently
 - Dictionary and/or
 - Run Length Encoding (RLE)
- Inefficient I/U/D
- Inefficient range scan

Id	Name	Location
1	aa	Braga
2	bbb	Porto
3	СС	Porto
4	dddddd	
5	eee	Lisboa

RLE: Braga 3 x Porto Lisboa

Dict.: 1 2 2 2 3 ... 1: Braga, 2: Porto, 3: Lisboa

Hybrid

- Columnar segments, that can be accessed and compressed separately
- Good trade-off:
 - I/U/D updates only one segment
 - Range scans can read only some segments
 - Projections can easily skip columns

ld	Name	Location
1	aa	Braga
2	bbb	Porto
3	СС	Porto
4	dddddd	
5	eee	Lisboa

```
aa bbb cc
Braga Porto Porto

data 0002

4 5 ...

dddddd eee ...
Porto Lisboa ...
```


Hierarchical data

- Data that is not normalized (in a relational sense)
 - Nested structures
 - Repeated fields
- Useful as it avoids multiple files and foreign keys

Image from: https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet.html

JSON

- Well-known and widely supported
- No explicit schema
- Row-based
- Not splitable
- Complex data like structs and arrays

```
"AddressBook": [
      "owner": "Jason F.",
      "ownerPhoneNumbers": [
        "123456789",
        "987654321"
      "contacts": [
        { "name": "John" },
         "name": "Joe", "number":
"214365879" }
      "owner": "Joe G.",
      "ownerPhoneNumbers": [
        "214365879"
```


Types of metadata

- <u>Technical</u>
 - Types, representation, ...
- Operational
 - Location (indexing), cardinality, ...
- Business
 - What it means, quality, ...

Schema

Information about data items and types

• Implicit, central or embedded:

.java

```
"1","aa","Braga"
"2","bbb","Porto"
"3","cc","Porto"
"4","dddddd",
"5","eee","Lisboa"
```

```
Central repository
```

```
1 aa Braga
2 bbb Porto
3 cc Porto
4 dddddd Porto
5 eee Lisboa
... ...
```

```
"id": "integer",
"name": "string",
"location": "string"

data

1 aa Braga
2 bbb Porto
3 cc Porto
4 dddddd Porto
5 eee Lisboa
... ... ...
```


Partitions

- Partition files by a low cardinality column
- Encode partition key in the file name
- Used often with locations and dates
- Useful to avoid reading data

Value summaries / indexes

- Range [min,max] of values in each column
- Compact representation (e.g., Bloom filter) of values in each column
- Useful to avoid reading data

Cardinality summaries

- Number of distinct values in each column
- Compact representation (e.g., histogram) of repetitions of values in intervals, for each column
- Useful to predict how much data will be processed and stored

Compression tradeoffs

- Compression ratio vs splittable
- Cold data vs hot data
- Codecs
 - SNAPPY
 - GZIP
 - LZO

Big Data File Formats

- Open-source binary file formats that make it easier to access data across systems and libraries for extracting data from files
 - Libraries provide an iterator interface to retrieve (batched) columns from files
- Highly efficient data compression techniques
- Support for schema evolution
- Faster analytics workloads
 - Less I/O usage
- Splittable file formats
 - Spread between more than one worker node

Avro file

- JSON for data types and protocols
- Row-based
- Compacts binary format but not efficient data compression
- Language-neutral data serialization system
- Schemas: Primitive, Records, Enums, Arrays, Maps ...
 - Supports evolution of schemas
- Efficient for use with write-intensive, big data operations.

ORC File

- Compressed columnar storage from Apache Hive
- Block-mode compression
- Data type support
- Ordered data store (within one stripe)
- Indices with column-level aggregated values (min, max, sum, ...)

Apache Parquet

- Compressed columnar storage from Cloudera/Twitter
- Highly integrated with Apache Spark
- Supports (page) compression and splitting
- Supports nested columns (Dremel encoding)
- Supports complex nested data structures in a flat columnar format
- Supports minimal number of types
- Uses data skipping to locate specific column values

Apache Parquet File Format

- Row group: A logical horizontal partitioning of the data into rows
- Column chunk: A chunk of the data for a particular column.
- Page: Column chunks are divided up into pages written back to back.

Image from https://dkharazi.github.io/blog/parquet

Apache Parquet File

Column-Oriented Data

Mike Sue Pam 22 25 29 M F Sam Jeff Kate 19 31 M 20 M

Parquet Data Block

Image from https://dkharazi.github.io/blog/parquet

Apache Arrow

- Language-independent columnar memory format made for flat and hierarchical data
- Efficient analytic operations on modern hardware, CPUs and GPUs
- Primarily in-memory compressed columnar storage for vectorized processing
- Complementary to Parquet
 - Allows easier and more efficient movement of data from RAM to disk

Image from https://arrow.apache.org/overview/

Others formats

- Apache CarbonData
 - Compressed columnar storage with indexes from Huawei
- Apache IceBerg
 - Flexible data format that supports schema evolution from Netflix
- Delta Lake
 - Enables building lakehouses, with ACID transactions, time travel, ...
- Not everything tabular
 - Array
 - HDF5
 - Multi-dimensional arrays for scientific workloads
 - Zarr
 - Zarr is a format for the storage of chunked, compressed, N-dimensional arrays
 - Graph
 - RDF
 - JSON-LD

More information

- https://www.researchgate.net/publication/361334530 The Big Data Textb ook - teaching large-scale databases in universities
- https://github.com/apache/parquet-format/blob/master/BloomFilter.md
- https://github.com/apache/parquet-format/blob/master/Compression.md
- Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: interactive analysis of web-scale datasets. Proc. VLDB Endow.

