Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Side 1 av 3

Faglig kontakt under eksamen: Christian Skau, telefon 73591755

KONTINUASJONSEKSAMEN I TMA4140 DISKRET MATEMATIKK

14. august 2013 Tid: 09.00-13.00 Bokmål

Sensur: 3. september 2013

Hjelpemidler: Bestemt enkel kalkulator, Rottmans matematiske formelsamling

Oppgave 1 La P(m,n) være utsagnet "n er større enn m", der universalmengden er de naturlige tall $\mathbb{N} = \{0,1,2,\cdots\}$. Hva er sannhetsverdien til $\exists n \forall m P(m,n)$ og $\forall m \exists n P(m,n)$?

Oppgave 2 Betrakt funksjonen $f: \mathbb{Z} \to \mathbb{Z}$ definert ved $f(n) = 2\lfloor \frac{n}{2} \rfloor$. (Her er $\lfloor \frac{n}{2} \rfloor$ det største heltallet som er mindre eller lik $\frac{n}{2}$.) Er f injektiv? Er f surjektiv? Begrunn svaret.

Oppgave 3 Hva er den hexadesimale (dvs. grunntall 16) framstillingen av $(ABC)_{16}$ + $(2F5)_{16}$?

Oppgave 4 Bevis ved induksjon at

$$\sum_{j=n}^{2n-1} (2j+1) = 3n^2$$

for alle $n = 1, 2, 3, \cdots$.

Oppgave 5

- a) Hvor mange studenter må det være i en klasse for å være garantert sikker på at minst fem av dem er født på samme ukedag?
- b) Hvor mange binære strenger er det som inneholder nøyaktig åtte 0'er og ti 1'ere, slik at hver 0 må etterfølges av en 1?

Oppgave 6 Gitt rekurrensrelasjonen

$$a_n = 8a_{n-1} + 9a_{n-2} \quad , \quad n \ge 2,$$

med initialbetingelsene $a_0 = 3$ og $a_1 = 7$. Finn a_9 .

Oppgave 7 — Avgjør om grafene G_1 og G_2 i Figur 1 er isomorfe eller ikke. Begrunn svaret.

Figur 1.

Oppgave 8

- a) Konstruer en deterministisk endelig tilstandsautomat M som gjenkjenner språket bestående av alle binære strenger med nøyaktig tre 0'er.
- b) Finn et regulært uttrykk for språket som gjenkjenner den deterministiske automaten i Figur 2.

Figur 2.

Oppgave 9

a) Finn et regulært uttrykk for språket L(G) generert av den regulære grammatikken G=(V,T,S,P), der $V=\{0,1,S,A,B\}$, $T=\{0,1\}$, og P er gitt ved

$$S \to 1A, S \to 0, S \to \lambda, A \to 0B, B \to 1B, B \to 1.$$

b) Konstruer en ikke-deterministisk endelig tilstandsautomat M som gjenkjenner språket L(G) i a).