

HG TECHNOLOGY CO., LTD.

Figure State Positive Figure Formula States Formula Figure Formula For

INTRODUCTION

HG TECHNOLOGY CO., LTD.,

located at Changhua, Taiwan, dedicated to developing, designing, producing, and marketing cutting tools, comprises professionals with sophisticated processing experience that provide extensive services and ensure total customer satisfaction.

Our service range extensively covers 3C, semiconductor, medical care equipment, aerospace, and precision molding industries.

HG Technology continuously develops more advanced processing technologies based on the enterprise philosophy of extending the lifespan of tools, increasing work efficiencies, minimizing production costs in terms of wear and tear of tools, and maximizing customer benefits.

For HGT Cutting Tools, from material to finished products.

HG Technology insists on utilizing the processes provided by the original European manufacturers for the production. We only use high quality and stable German Carbide Rods, German and Swiss 6-axis CNC Grinding machines, advanced Swiss Coating technologies, and sophisticated German Digital Measuring Instruments.

With reasonable prices and stable quality, HG Technology has an expanding sales network that currently covers more than 30 countries throughout the world. Based on the enterprise philosophy of maximizing customer's benefits, HG Technology continuously refines itself and grows together with all its customers.

HG TECHNOLOGY CO., LTD. http://www.hgt.com.tw www.hgt.com.tw

ITEM PAGE STRUCTURE

THE SYSTEM CODE INTRODUCES

V	V70	Hardoned Steels HRC70 series	14
Q	MAGIC CUT	Magic cutting series	18
S	SUPER MILL	HSC & HHC series	45
E	EFFICIENCY	MILLS Efficiency end mills series	85
	I.pro	Titanium & Stainless cutting series	11
D	D MILL	Aluminum & Copper cutting series	12
G	G.pro	Graphite cutting series	13
(PT)	DEN.pro	Dental end mills	14
сом	COM.pro	CFRP machining series	15
EX	MAGIC SHAN	K Magic shank series	15
T	T.pro	Thread milling series	16
С	C.pro	Chamfering series	10
CD	CD	Carbide drills series	1
CR	CR	Carbide reamers series	18

	CONT	ENTS	Page	Mill Die.	Coating	HRC 45-55	HRC 55-60	HRC 60-65	Hardened Steels HRC 65-70	Cast Iron	Titanium Alloy	Stainless Steets	Aluminum Alloy	Copper Alloy	Graphite	Superalloy. Heat-resistant Steels
(V)	V70		e.14			Т										
$\overline{}$		V70B MEW	p. 15	3~12	l-plus	0	0	a	0							
		V70R NEW	P. 16	6-12	1-plus	0	0	0	0							
	2222	V70E NEW	P. 17	6-16	1-plus	0	0	0	0							
Q	MAGIC CL	IT	p. 18													
~		QBM	p. 19	0.2-1.8	Aldura	0	0	0								
1	-	QB	p. 20	1~16	ALTIN	0	0	0								
+	_	QBG	p. 21	4-12	Aldura	0	0	0								
1		QBN	p.22	1-16	nAcoli	0	0	0								
- 1	-	QBX	p. 23	1-16	10	0	(3)	O								
1		QBHN	n.24	1-12	nAco8	0	0	0								
-		QBHX	P. 25	1~12	B	0	0	0								
- 1		QBLS/M/L	p. 26	220	ALTIN	0	0	0								
+	-	QBLSX/MX/LX	P. 27	2-20	a	0	0	0								
1		QBP	P. 28	1~12	ALTIN	0	0	0								
+	-	QEM	P.29	0.2-1.8	Aldura	0	0	0								
- 1	- 223	QEB	P.30	1-20	ALTIN	0	0	0								
- 1	- 222	QEBG	0.31	4-/2	Aldurs	0	0	O								
1	- 5777	QEBN	r.32	3-20	nAcoB	0	0	0								
1	-	QEX	p.33	3~20	8	0	0	0								
1	222	QELB	0.34	6-12	ALTIN	0	0	O								
-	-	QRD	p.35	1-12	ALTIN	0	0	0								
+	000	QRDG	p.36	4-12	Aldura	0	0	0								
1	-	QRHN	p.37	3~/2	nAzo8	0	0	0								
1		QRHX	r.38	3~/2	a	0	0	0								
1	-	QERC	p. 39	6-12	ALTIN	0	0	0								
1		QRHLX	p. 40	6-/2	88	0	0	0								
÷		QBF	p.41	0.5~4	ALTIN	0	0	0								
÷	-	QEFA	0.42	0.5-3	Aldura	0	0	0								
+	-	QRFA	p. 43	1-3	Altura	0	0	0.								
	-	QRFB	0.44	1~3	Altions.	0	0	0								
S	SUPER MII	LL	p. 45	CAPTACE AND A												
-	-	SBM	0.46	0.2-1.8	ALTIN	0	0			0				0		
-		SBMX	2.47	0.2~1.8	10	0	0			0				0		
		SB	p. 48	1-16	ALTIN	0	0			0				0		
1	-	SBK	p. 49	1-16	G100	O	0			0				0		
1		SBX	e 50	1~16	8	0	0			0				0		

CONT	CONTENTS		Mill Dia.	Coating	HRC 45-55	HRC 56-60	HRC 60-65	Hardened Steels HRC 65-70	Cast iron	Titanium Alloy	Stainless Steets	Aluminum Alloy	Copper Alloy	Graphite	Superatioy. Heat-resistant Stress
	SBB	2.51	1-16	ALTIN	0	0			0				0		
	SBLS/M/L	1.52	1~20	ALTIN	0	0			0				0		
-	SBLSX/MX/LX	1.53	2-12	-8	0	0			0				0		
	SBC	2.54	2-6	ALT:N	0	0			0				0		
	SBCX	1.55	2-4	8	0	0			0				0		
	SEM	2.56	02-18	ALTIN	0	0			0				0		
-	SEMX	> 57	02~1.8	8	0	0			0				0		
	SEA).58	1~20	ALTIN	0	0			D				0		
-	SEB	1.59	1-20	ALTIN	0	0			0				0		
	SEK	> 60	1~20	G100	0	0			0				0		
-	SEX	2.61	3-20	18	0	0			0				0		
- EXXX	SEP	1.62	3-20	HELICA	0	(0)			0				0		
-	SEW	1.63	3~20	G300	0	0			0				0		
400	SEPC NEW	1.64	2-12	18	0	0			0	0	0	0	0		0
	SELA	1.65	6-12	ALTIN	0	0			0				0		
- (22)	SELB	2.66	3-16	ALTIN	0	0			0				0		
-6222	SELD	1.67	4-12	ALTIN:	0	0			0				0		
- Allis	SHA	2.68	6-16	ALTIN	0	0			0				0		
-7222	SEZ	2.69	4-12	ALTIN	0	0			0				0		
-	SRA	> 70	4~16	ALTIN	0	0			0				0		
	SRB	2.71	4~16	ALTIN	0	(0)			0				0		
-27.5	SRC	1.72	3-12	ALTIN	0	0			0				0		
-	SRD	>.73	1.5~12	ALTIN	0	0			0				0		
777	SRDX	1.74	3~12		0	0			0				0		
-322	SRK	1.75	3-12	G100	0	0			0				0		
-	SERC	1.76	6~12	ALTIN	0	0			0				0		
33%	SERCX	2.77	6-12	-10.	0	0			0				0		
	SRP	1.78	6-12	ALTIN	0	0			0				0		
-	SBF	1.79	0.5-4	ALTIN	0	0			0				0		
	SBFX	×.80	0.5-4		0	0			0				0		
	SEFA	18.4	1-3	ALTEN	0	0			0				0		
	SEFAX	1.82	I~3	ill	0	0			D				0		
	SEF	>.83	1-3	ALTIN	0	0			0				0		
-	SEFX).84	1~3	18	0	0			0				0		
EFFICIEN	CY MILLS	1.85													
	вм	2.86	04-18	ToUN	0				0				0		
	BS	2.87	I-4	THEN	0				0				0		

www.hgt.com.tw

CONT	ENTS	Page	Mill Dia.	Coating	HRC 45-55	HRC 55-60	HRC 60-65	Hardened Steels HRC 65-70	Cast Iron	Titanium Alloy	Stainless Steels	Aluminum Alloy	Copper Alloy	Graphite	Superalloy. Heat-resistant Steels
-	BA	P.88	1-20	TidN	0			383	0				0		
	BB	p.89	1~12	TuLN	0				0				0		
	BLS/M/L	P. 90	1-20	ToLN	0				0				0		
	EM	P. 91	0.4-1.8	TiLN	0				0				0		
	ES	p. 92	1-4	TULN	0				0				0		
	EA	p. 93	1-20	TILN	0				0				0		
-	EB	p. 94	1~20	TisLN	0				0				0		
-	EC/EP	p. 95	320	TULN	0				0				0		
-222	ED	p. 96	3~16	ToLN	0				0	0	0		0		
-	ELA	0.97	6-12	TeLN	0				0				0		
-6221	ELB	p 98	3-16	TidN	0				0				0		
-	ELC	P. 99	2-/2	TisLN	0				0				0		
- 60000A	ELD	e 100	2-20	TioLN	0				0				0		
11111	EH	P. 101	6-20	TiLN	0				0				0		
	EHL	F.102	4-20	TidAN	0				0				0		
623	EG	P. 103	6-20	TuLN	0				0				0		
	EGA	e.104	6-20	TisLN	0				0				0		
-	ETL	p. 105	1-4	TULN	0				0				0		
-	ET	P. 106	0.5-10	TitLN	0				0				0		
	ERA	p. 106	3-12	ToLN	0				0				0		
-	ERB	0.109	3~12	TioLN	0				0				0		
-	ERC	e 110	6-/2	TisLN	0				0				0		
	BF	0.111	1-4	TiaLN	0				0				0		
	EFA	n 112	1-3	ToLN	0				0				0		
1 I.pro		r.113													
700	SBBI	n.114	3-12	G300	0					0	0				0
- (277)	SEI	e 115	3-20	G300	0					0	0				0
11/20	SEPS	e.116	3-20	HEUCA	0					0	0				0
■2558 01	SEPI	0.117	3-20	G300	0					0	0				0
200	SIB	6.118	3-20	G100	0					0	0				0
- Gillia	SHAI	0.119	6~16	G100	0					0	0				0
-	SEGI	P. 120	6-20	G300	0					0	0				0
	SRIP	p. 121	3~12	G300	0					0	0				0
-11/2	SIW NEW	P. 122	3~20	G-plus	0					0	0				0
11.12.71	SIRW NEW	r.123	3-/2	G-plus	0					0	0				0
D D MILL		P. 124													
	DB	e 125	1-12									0			

	CONT	ENTS	Page	Mill Dia.	Coating	HRC 45-55	HRC 55-50	HRC 60-65	Hardened Steels HRC 65-70	Cast iron	Titanium Alloy	Stainless Steels	Aluminum Alloy	Copper Alloy	Graphite	Superatioy. Heat-resistant Steels
	-551	DEA	1.126	1-16					-				0			
	-2757	DEB	1.127	1~16									0			
	2779	DEC	a. 128	2-20									0			
	- 33	DED	1.129	2-20									0			
	-222	DEDP	1.130	2~20	DLC								0			
	_3555555	DEL	2.131	2-20									0			
		DEPW NEW	>.132	3~20									0			
	- 55%	DEG). [33	6-16									0			
	742	DFR	1134	6-20									0			
	>>	DRC	2 135	3~16									0.			
	-20	DBX	x 136	1-12	CRN								0	0		
	-727	DEDX	1.137	2-20	CRN								0	0		
G	G.pro		x 138													
-	000	SGBB	2.139	4-12	Diamond										0	
		SGBF	2.140	4-12	District										0	
	100001	SGEB	2.141	4-12	Dismond										0	
	1000	SGRD	+ 142	4-12	Diamond										0	
	300	SGRB). [43	4~12	Diamond										0	
	_	SGBS	2.144	1.0-4.0	Diamond										0	
	-	SGES	2.145	1.0-4.0	Disnosd										0	
	_	SGRS	3.146	1.0-4.0	Diamond										0	
(TO	DEN.pro		1.147													
$\overline{}$		TOBF	> 148	06-30	Dignosti											
	30	TTBF	× 149	08-30	G300											
		TTFA	1.150	05-25	G300											
		TTRA	×151	1.0-2.5	G300											
		TTRB	1.151	20-40	G300											
		TCBF	× 152	08-30	Diamond											
	-01	TWBF	1.153	08-3.0												
COM	COM.pro		2.154													
	-	CFPA). 155	812	Diamond											
		CFRA	1.156	6-12	Diamond											
EX	MAGIC SH	HANK	> 157													
_		EX2CS NEW	> 158	10-20												
	-	EX2SB NEW	1.158	10-20	18	0	0			0				0		
	-63	EX2SRD NEW	2.159	10-20	8	0	0			0				0		
	=634	EX2SEB NEW	2 159	10-20	4	0	0			0				0		

P. 162 P. 163 P. 164 P. 165 P. 166 P. 167 P. 168 P. 170 P. 171 P. 172 P. 173 P. 174 P. 174	MS-PLS MS-PLS MS-PLS MS-PLS MS-PLS 4-12 4-12 4-12 1-12 3-20 3-20 3-20	G-plus G100 G100 G100 IB G100 TisLN III					00000 0000 00			00000 0000		00000 0000 00	00000 0000 0
P. 162 P. 163 P. 164 P. 165 P. 166 P. 167 P. 168 P. 169 W. P. 171 P. 172 P. 173 P. 174 P. 175	MS-MS MS-MS MS-MS MS-MS MS-MS 4-12 4-12 1-12 3-20 3-20 3-20	G100 G100 IB G100 TisLN IB	0000 0000 00				0000 0000	00000 00000	0000000000	0000 0000 0	0000 0000	0 0000 0000	00000 0000 0
P. 163 P. 164 P. 165 P. 166 P. 167 P. 168 P. 169 P. 170 P. 171 P. 172 P. 173 P. 174 P. 175	MS-PLS MS-PLS MS-H2S MS-H2S 4-12 4-12 4-12 1-12 3-20 3-20 3-20	GI00 B GI00 TisLN III	0000 0000 00				0000 0000	0000 0000	0000 0000	0000 0000 0	0000 0000	0 0000 0000	0000 0000 0
P.164 P.165 P.166 P.167 P.168 P.169 P.171 P.172 P.173 P.174 P.175	MS-MS-MS-MS-MS-MS-MS-MS-MS-MS-MS-MS-MS-M	GI00 B GI00 TisLN III	0000 0000 00				0000 0000	0000 0000	0000 0000	0000 0000 0	0000 0000	0 0000 0000	0000 0000 0
P.165 P.166 P.167 P.168 P.169 W. P.171 R. P.172 P.173 P.174 P.175	#07-#15 #15-#125 #15-#175 #-12 #-12 #-12 1-12 3-20 3-20	G100 IB G100 TisLN IB					00000000	0000 0000	00000000	0000 0000	0000000	0000 0000	0000 0000
P.166 P.167 P.168 P.169 W. P.171 R. P.172 P.173 P.174 P.175	M5-H25 M5-H35 4-12 4-12 1-12 3-20 3-20 3-20	IB GIOO TIILN III III III III III III III III III	00000000				0000000	000000	000000	000000	000000	0000000	0000000
P.167 P.168 P.169 W. P.171 P. 172 P.173 P.174 P.175	M5-H35 4-12 4-12 4-12 1-12 3-20 3-20 3-20	GIOO TisLN iii iii	0 0 0 0 0				0 0000	0 0000 0	0 0 0 0 0	0 0000	0 0000	0 0000 0	0 0000 0
P. 168 P. 169 P. 170 P. 171 P. 172 P. 173 P. 174 P. 175	4-12 4-12 4-12 1-12 3-20 3-20 3-20	TisLN ill	0 0 0 0 0 0				00000	00000	00000	00000	0000	00000	00000
R 169 W 170 W 171 R 172 P 173 F 174 P 175	4-12 4-12 4-12 1-12 3-20 3-20 3-20	ill	0 0 0 0 0				0 0 0	0000	0000	0 0 0	000	00000	0000
w x.170 w p.171 R x.172 p.173 p.174 p.175	4-12 4-12 1-12 3-20 3-20 3-20	ill	0 0 0 0 0				0 0 0	0000	0000	0 0 0	000	00000	0000
w F.171 R P.172 P.173 F.174 P.174 P.175	4-12 1-12 3-20 3-20 3-20	-THEN	0 0 0				0	0	0 0	0	0	0 0	000
R e.172 e.173 e.174 e.174 e.175	1~12 3-20 3-20 3-20	TIMEN	0				0	0	0	0	0	0	0
e.173 e.174 e.174 e.175	3-20 3-20 3-20		0				0	0	0	0	0	0	0
P. 174 P. 174 P. 175 P. 175	3-20 3-20 3-20		0										
e 175 e 175	3-20 3-20		0										
P. 175	3-20						04	0	-	100	10	50	
p. 175			0				160	0	0	0	15,01	0	0
10000	3~20						0	0	0	0	0	0	0
P. 176		THIN	0				0	0	0	0	0	0	0
	6-20	TiaLN	0				0	0	0	0	0	0	0
0.176	6~20	TisLN:	0				0	0	0	0	0	0	0
9.177	0.5-5		0				0	0	0	0	0	0	0
p. 177	0.5-5	- Control	0				0	0	0	0	0	0	0
0.178	2~13	TiaLN	0				0				0		
r.179	3-20	TuLN	0				0				0		
r 180	3-20	TuLN	0				0				0		
P. 181	3~12	TaLN	0				0				0		
e 182	3-20	18	0				0				0		
P. 183	3-20	18	0				0				0		
p. 184	3~10		0				0				0		
P. 185													
0.186	2~12		0				O				0		
	p. 179 p. 180 p. 181 p. 182 p. 183 p. 184	P.180 3-20 P.181 3-12 P.182 3-20 P.183 3-20	P.180 3-20 TuLN P.181 3-12 TuLN P.182 3-20 IB P.183 3-20 IB P.184 3-10 III P.185	# 179 3-20 ThUN () # 180 3-20 ThUN () # 181 3-12 ThUN () # 182 3-20 (6 () # 183 3-20 (8 () # 184 3-10 (8 ()) # 185	P. 180 3-20 TILLN () P. 180 3-20 TILLN () P. 181 3-12 TILLN () P. 182 3-20 (6 () P. 183 3-20 (8 () P. 184 3-10 (8 ()) P. 185	# 179 3-20 TisLN () # 180 3-20 TisLN () # 181 3-12 TisLN () # 182 3-20 (6 () # 183 3-20 (8 ()) # 184 3-10 (8 ()) # 185	P. 189 3-20 TILIN () P. 180 3-20 TILIN () P. 181 3-12 TILIN () P. 182 3-20 (6 () P. 183 3-20 (8 () P. 184 3-10 (8 () P. 185	# 179 3-20 TalN () () # 180 3-20 TalN () () # 181 3-12 TalN () () # 182 3-20 () () # 183 3-20 () () # 184 3-10 () () # 185	# 180 3-20 ThEN () () # 180 3-20 ThEN () () # 181 3-12 ThEN () () # 182 3-20 () () # 183 3-20 () () # 184 3-10 () () # 185	# 179 3-20 TisLN () () # 180 3-20 TisLN () () # 181 3-12 TisLN () () # 182 3-20 (8 () () # 183 3-20 (8 () () # 184 3-10 (8 () () # 185	# 179 3-20 ThUN () () # 180 3-20 ThUN () () # 181 3-12 ThUN () () # 182 3-20 () () # 183 3-20 () () # 184 3-10 () () # 185	# 180 3-20 TidN () () () () () () () () () () () () ()	# 179 3-20 TiLIN () () () () () () () () () () () () ()

TOLERANCE

1.0 0~-0.015

1.5

2.0

5.0

8.0

10.0

16.0

www.hgr.com.tw

Square End Mills Ball Nose End Mills Flute Dia. Dia. Tolerance Flute Dia. R Tolerance

0~-0.015

0~-0.015 0~-0.015 0~-0.015 0~-0.015 0~-0.015

0~-0.015

0~-0.020

0~-0.020

0~-0.020

12.0 0~-0.020

Flute Dia.	R Tolerance
R0.5	±0.01
R1	±0.01
R1.5	±0.01
R2	±0.01
R2.5	±0.01
R3	±0.01
R4	±0.01
R5	±0.01
R6	±0.01
R8	±0.02
R10	±0.02

Shank	m End Mills may	Corner Radio
Shanl	R Tolerance	Flute Dis.
3,544	±0.01	1.0
0	±0.01	2.0
ο.	±0.01	3.0
ø	±0.01	4.0
0	±0.01	6.0
Ø 1	±0.01	8.0
Ø 1	±0.01	10.0
Ø 1	±0.01	12.0
ø 2	±0.015	16.0

Snank	(rem)
Shank (h6)	Dia. Shank Tolerance
0 3	0~-0.008
ø 4	0~-0.008
ø 6	0~-0.008
ø 8	0~ -0.009
ø 10	0~-0.009
ø 12	0~-0.011
ø 16	0~-0.011
ø 20	0~ -0.013

Recommended Cutting Instructions

- In order to enhance processing efficiency and extend life of cutters, please use the balanced chucks with high rigidity and high accuracy.
- Make overhang enough for processing. If it's necessary to extend the milling cutter, please be sure to reduce spindle speed and feed speed.
- If there's abnormal sound or vibration during processing, please adjust cutting data to prevent cutters from being influenced or broken.
- 4. Please choose correct cutting oil to maximize efficiency.
- The result of cutting data depends on working materials, machines, work clips, programming and etc. Cutting data are for reference. You may increase cutting data starting from 50%.

www.hgr.com.tw

ICONS

DEPTH OF CUT

SOLID CARBIDE

WORK MATERIAL

iso	H	P	K	M	(\$)	N
		Low alloy steel			High temp, alloys	Aluminum alloy
MATERIAL	Hardened steel		Cast Iron	Stainless steel	V-10-20-20-20-20-20-20-20-20-20-20-20-20-20	Copper alloys
/H		High alloy steel, cast steel, tool steel			Titanium and Ti alloys	Non-metallic

HARD COATIING PROPERTIES

Coating Type	Symbol Color	Nanohard- ness(GPa)	Thickness (µm)	Friction Coefficient	Max usage Temp(°C)	Coating Temp(°C)
TIALN	BLACK	30	1 - 4	0.4	800	450 ↑
AITIN	BLACK	38	1 - 4	0.6	900	450 ↑
nACoB	BLUE	45	1 - 4	0.45	1200	400 †
HELICA	O COPPER	30	1 - 4	0.25	1000	480 †
CrN	METAL-SILVER	18	1 - 7	0.4	700	200 - 400
DLC	BLACK	20	1 - 3	0.15	400	150 - 250
G100	BURGUNDY-VIOLET	33	1 - 4	0.3	500	
G300	O SOFT GOLD	35	1 - 4	0.4	800	
i8	O GOLD-BRASS	47	1 - 4	0.45	900	
Aldura	■ BLACK	32	1 × 4	0.35	1100	
G-plus	WHITE GOLD		1 - 4	0.25	550	
i-plus	O COPPER		1-3	0.3	1200	

AITIN

nACoB

CrN

www.hgr.com.tw

G100

G300

Aldura

G-plus

i-plus

COATING APPLICATIONS

Coating Type	Symbol Color	Introduce coating on different materials
TIALN	■ BLACK	General steel for wel cutting (HRC35-45)
AITIN	BLACK	High Hard steel for Dry cutting (HRC45-65)
nACoB	BLUE	High Hard steel for Dry cutting (HRC55-65)
HELICA	COPPER	General steel, Cast iron, with special flute design and work on Stainless steel(EX: SEPS)
CrN	METAL-SILVER	Copper Alloy
DLC	BLACK	Aluminum Alfoy
G100	BURGUNDY-VIOLET	General steel for wet cutting (HRC35-45)
G300	SOFT GOLD	Tough material, ex: Titanium Alloy, Nickel Alloy ,Stainless steel and Heat-resistant alloy
i8	OOLD-BRASS	High Hard steel for Dry and wet cutting(HIRCSS-65)
Aldura	■ BLACK	High Hard steel for Dry cutting (HRCS5-65)
Diamond	BLACK GRAY	Graphite, Zirconium Oxide
G-plus	WHITE GOLD	Tough material, ex: Titanium Alloy, Nickel Alloy , Stainless steel and Heat-resistant alloy
i-plus	COPPER	High Hard steel for Dry and wet cutting(HRC70)

Hardened Steels HRC70 series

V70B

▶ Ball Nose / for ① ②

Order No.	Radius R	Neck Dia D3	Flute Length L1	Effective Length L3	DAL L2	Shank Dia D2
V70B 0306	R1.5	2.90	3	8	50	6
V70B 0406	R2	3.88	4	10	50	6
V70B 0506	R2.5	4.80	5	13	50	6
V70B 0606	R3	5.80	6	15	50	6
V70B 0808	R4	7.70	8	20	60	8
V70B 1010	R5	9.60	10	25	75	10
V70B 1212	R6	11.50	12	30	75	12

▼ Depth of cut

▼ Recommended cutting condition for V70B

MATERIAL	Hardened Steels SKD61 , SKT4 -HRC55		Hardened Steels SKD11, SKH51 -HRC65		Hardened Steels SKH , HAP -HRC70	
HARDNESS						
Radius (R)	SPEED (min-1)	FEED mm/min	SPEED (mir-*)	FEED mm/mm	SPEED (mir ¹)	FEED mm/min
R1.5	22000	2200	18000	1800	10500	850
R2	16500	2200	13500	1800	8000	850
R2.5	13400	2200	11000	1850	6400	850
R3	11300	2300	9100	1850	5500	850
R4	8600	2350	7000	1900	4100	850
R5	7000	2350	5600	1900	3200	850
R6	5800	2300	4700	1850	2700	850

V70R

Corner Radius / for 📵 📵

Order No.	Diameter D1	Corner R R	Neck Dia D3	Flute Length	Efficilive Length L3	OAL L2	Shank Dia D2
V70R 0605	6.0	0.5	5.80	6	18	50	6
V70R 0610	6.0	1.0	5.80	6	18	50	6
V70R 0805	8.0	0.5	7.70	8	24	60	8
V70R 0810	8.0	1.0	7.70	8	24	60	8
V70R 1005	10.0	0.5	9.60	10	30	75	10
V70R 1010	10.0	1.0	9.60	10	30	75	10
V70R 1020	10.0	2.0	9.60	10	30	75	10
V70R 1205	12.0	0.5	11.50	12	36	75	12
V70R 1210	12.0	1.0	11,50	12	36	75	12
V70R 1220	12.0	2.0	11.50	12	36	75	12

Depth of cut

www.hgt.com.tw

▼ Recommended cutting condition for V70R

MATERIAL	Hardened Steels SKD61 , SKT4		Hardened Steels SKD11 , SKH51		Hardened Steels SKS , SKH	
HARDNESS	-HR	065	-HR	C65	-HR	C70
Dia. (D1)	SPEED (min ⁻¹)	FEED mm/min	SPEED (min:5)	FEED om/min	SPEED (mir*)	FEED mm/min
6	5050	420	4000	260	3500	200
8	3800	400	3000	250	2700	180
10	3050	360	2400	240	2100	160
12	2520	360	2000	230	1800	150

V70E

Square / for 🗓 🕡

Order No.

V70E 0606

V70E 0808

V70E 1010

V70E 1212 V70E 1616

12.0

16.0

30

40

75

100

12

16

Depth of cut

-	Tan	Dia	ac(mm)
	cap	- 6	0.2
	500	- 8	0.2
-	109	10	0.3
1	HRC85	12	0.3
ae	8p≤1.5 D1	16	0.5

	Too.	Dia	aumm
	Of.	- 6	0.1
	50	8	0.1
-	W	10	0.2
1	HRC70	12	0.2
ae	@ps1.0.01	15	0.3

▼ Recommended cutting condition for V70E

MATERIAL	Hardened Steels SKD61 , SKT4		Hardened Steels SKD11 -HRC65		Hardened Steels SKS , SKH -HRC70	
HARDNESS -HRC55		055				
Dia. (D1)	SPEED (min ⁻¹)	FEED mm/min	SPEED (min ⁻¹)	FEED mm/min	SPEED (mar-1)	FEED mm/min
6	13000	4600	6400	2400	4200	1450
8	10000	4600	4800	2400	3200	1450
10	7700	4600	4000	2400	2600	1450
12	6400	3800	3200	1900	2200	1200
16	4800	2900	2400	1400	1600	900

www.hgt.com.tw