

АЗБУКА ХАЛТУРЩИКА-ARMAТУРЩИКА разработка встраиваемых систем

основы бытовой автоматики, систем управления и сбора данных

- © ruOpenWrt
- © HackSpace «Чебураторный завод»
- © Консорциум хоббитов России

Оглавление

B	ведение	9
Ι	Основы электроники	10
1	Линейные схемы на пассивных элементах, основы электротехники	12
2	Симуляция и расчет схем в ngSPICE	13
3	KiCAD 3.1 Отрисовка схем в KiCAD 3.2 Библиотеки элементов 3.3 Передача схемы в ngSPICE	14
4	Простейшие полупроводниковые элементы 4.1 Оптоэлектроника	15 15

0	РГЛАВЛЕНИЕ	2
	4.2 Схемы на биполярных транзисорах	15 15
5	Операционные усилители	16
6	Источники питания 6.1 Батарейное питание 6.2 Линейные стабилизаторы 6.3 Импульсные преобразователи на ШИМ-контроллерах 6.4 Цепи защиты и гашения кондуктивных помех	17 17 17 17 17
7	Цифровая электроника	18
8	Компьютерные интерфейсы 8.1 Поколение 90х: COM, LPT, ISA 8.1.1 Резервный программатор AVR "пять проводков" 8.2 Сеть CAN 8.3 Интерфейсные модули USB 8.3.1 Универсальный высокоскоростной конвертер FTDI FT2232H	19 20 20 20 20 20
	8.3.2 JTAG-адаптер 8.3.3 Отладочный модуль CAN 8.4 Интерфейсные модули Ethernet	20 20 20 20
9	8.3.2 JTAG-адаптер	20 20

ОГЛАВЛЕНИЕ	3
11 Электропривод и исполнительные устройства	23
II Основы конструирования РЭС	24
12 Пакеты моделирования на основе OpenFOAM	25
13 Обеспечение теплового режима	26
14 Электромагнитная совместимость 14.1 Кондуктивные помехи 14.2 Компоновочные модели и оптимизация кабельной сети	
III Технология РЭС	28
15 Инструменты и оборудование 15.1 ЈТАG-адаптер 15.2 Отладочные платы 15.2.1 Arduino / Atmel Mega AVR8 / 15.2.2 Cortex-Mx 15.2.3 CubieBoard / Cortex-A8 AllWinner A10 / 15.2.4 Raspberry Pi / ARM11 BCM3032 / 15.2.5 BlackSwift / MIPS / 15.2.6 VoCore / MIPS /	29 30 30 31 31 31

ОГЛАВЛЕНИЕ	4

15.4 Измерительное оборудование	31
15.4.1 Тестер	
15.4.2 Осциллограф	
15.4.3 Логический анализатор	31
15.4.4 Генератор сигналов	
15.4.5 Рыльцеметр	31
16 Трассировка плат и подготовка производства в KiCAD	32
16.1 Технология ЛУТ (Лазерный УТюг)	32
16.2 Технология фоторезиста	32
16.3 Формат Gerber и подготвка промышленного производства	32
17 FreeCAD	33
17.1 Чертеж	34
17.2 Эскиз	34
17.3 Деталь	34
17.4 Сборка	34
17.5 Автогенерация конструкторской докуметации	34
17.6 Скрипты и пользовательские расширения	34
18 Эксплуатация станочного оборудования	35
19 Основы ЧПУ и цифрового производства	36
19.1 САМ-пакеты для FreeCAD	36

ОГЛАВЛЕНИЕ	5
IV Основы теории систем автоматического управления	37
20 1/2010/1011 100/1111 01/110P01	38
20.1 Передаточная функция	
20.2 Устойчивость САУ	38
20.3 Сети Петри	38
20.4 Автоматы Маркова	38
21 Релейное управление	39

40

41

42

43

46 51

52

53

22 Пропорциональные САУ

Разработка ПО для встраиваемых систем

24 Вспомогательные скрипты на языке Python

25 Make: управление сборкой проектов

26 VCS: системы контроля версий

23 ПИДп-регуляторы

ОГЛАВЛЕНИЕ	6
26.2 Subversion 26.3 Git 26.3.1 GitHub	
27 Основы Си и C_+^+ 27.0.2 Установка MinGW (win32)	54 54 54
28 LLVM и разработка собственных компиляторов 28.1 Лексический и синтаксический анализ	55
VI Микроконтроллеры Cortex-Mx	57
30 Отладочные платы30.1 STM32DISCOVERY /Cortex-M3 STM32F103/	

ОГЛАВЛЕНИЕ	7
VII Периферия	59
VIII Встраиваемый emLinux	60
31 cross	61
32 BuildRoot	62
33 Особенности OpenWrt	63
34 Библиотека SDL 34.1 Реализация microGUI	64 64
35 Приложения для X Window	65
36 Программирование сетевых приложений	66
37 Сборка кросс-компиляторя GNU мальтийским крестом	67
IX IDE ©ECLIPSE	68
X Подготовка публикаций в I₽Т _E X 37.1 Установка MikTeX под ⊞Windows	

37.10.2 Схемы и графы в GraphViz	75 75
37.10.1 Графики GNUPLOT	75
37.10Π одготовка иллюстраций	75
37.9 Листинги скриптов и текстовых данных	75
37.8 Перекрестные ссылки и гипессылки	75
37.7 Формулы	75
37.6 Таблицы	75
37.5 Команды секционирования: часть, глава, раздел,	75
37.4 Список литературы и цитирование	72
37.3 Верстка слайдов	72
37.2.6 Оглавление	72
37.2.5 Верстка титульных страниц	72
37.2.4 Автор и название	72
37.2.3 Пакеты	72
37.2.2 Стили документа	
37.2.1 Заголовочный файл или блок	72

 $O\Gamma \Pi AB \Pi E H U E$ 9

Введение

Первоначально этот материал задумывался как комплект документации к платам BlackSwift и VoCore, но постепенно превратился в толстенный учебник для студентов ВУЗов и научных работнков по специлизациям, связанным с применением цифровой электроники и компьютерной техники.

Большой упор был сделан на использование открытого некоммерческого программного обеспечения, с целью удешевления учебного процесса, уменьшения себестоимости ваших проектов 1 , и стимулирования вашего участия в развитии этих программных пакетов.

Лицензия на эту книгу пока не выбрана, так что она пока просто пишется в духе OpenSource: любой может использовать ее часть, изменять или дополнять, до тех пор, пока не накладываются какие-либо административные, финансовые или юридические ограничения на распространение и развитие оригинальной версии или ее открытых форков.

Приглашаем всех желающих участвовать в развитии этого учебного пособия на форум ruOpenWrt, нам нужна обратная связь по качеству материала, результаты тестирования на вас или ваших студентах, дополнения и замечания.

¹ вряд ли ли у вас окажется лишняя пачка килобаксов на покупку пары коммерческих САПР, по крайней мере пока ваш стартап не взлетит в Top\$100K

Часть I Основы электроники

Здесь идет список ссылок на онлайн лекции в $\mathrm{edX},$ Coursera, и т.п.

Линейные схемы на пассивных элементах, основы электротехники

Симуляция и расчет схем в ngSPICE

KiCAD

- 3.1 Отрисовка схем в КіСАО
- 3.2 Библиотеки элементов
- 3.3 Передача схемы в ngSPICE

Простейшие полупроводниковые элементы

- 4.1 Оптоэлектроника
- 4.2 Схемы на биполярных транзисорах
- 4.3 Схемы на на полевых транзисорах

Операционные усилители

Источники питания

- 6.1 Батарейное питание
- 6.2 Линейные стабилизаторы
- 6.3 Импульсные преобразователи на ШИМ-контроллерах
- 6.4 Цепи защиты и гашения кондуктивных помех

Цифровая электроника

Компьютерные интерфейсы

- 8.1 Поколение 90х: COM, LPT, ISA
- 8.1.1 Резервный программатор AVR "пять проводков"
- **8.2** Сеть САN
- 8.3 Интерфейсные модули USB
- 8.3.1 Универсальный высокоскоростной конвертер FTDI FT2232H
- 8.3.2 JTAG-адаптер
- 8.3.3 Отладочный модуль CAN

ПЛИС

Датчики

Электропривод и исполнительные устройства

Часть II

Основы конструирования РЭС

Пакеты моделирования на основе OpenFOAM

Обеспечение теплового режима

Электромагнитная совместимость

- 14.1 Кондуктивные помехи
- 14.2 Компоновочные модели и оптимизация кабельной сети

Часть III Технология РЭС

Инструменты и оборудование

15.1 JTAG-адаптер

15.2 Отладочные платы

Прежде чем начать работать с отдельными МК, устанавливая их на плату собственной разработки, для быстрого старта используют $omnadounue\ nnamu^1$

¹ development board, demo board

15.2.1 Arduino /Atmel Mega AVR8/

15.2.2 Cortex-Mx

См. <mark>30</mark>

- 15.2.3 CubieBoard /Cortex-A8 AllWinner A10/
- 15.2.4 Raspberry Pi /ARM11 BCM3032/
- 15.2.5 BlackSwift /MIPS/
- 15.2.6 VoCore /MIPS/
- 15.3 Монтажный инструмент
- 15.4 Измерительное оборудование
- 15.4.1 Тестер
- 15.4.2 Осциллограф
- 15.4.3 Логический анализатор
- 15.4.4 Генератор сигналов
- 15.4.5 Рыльцеметр

Трассировка плат и подготовка производства в KiCAD

- 16.1 Технология ЛУТ (Лазерный УТюг)
- 16.2 Технология фоторезиста
- 16.3 Формат Gerber и подготвка промышленного производства

FreeCAD

- 17.1 Чертеж
- 17.2 Эскиз
- 17.3 Деталь
- 17.4 Сборка
- 17.5 Автогенерация конструкторской докуметации
- 17.6 Скрипты и пользовательские расширения

Эксплуатация станочного оборудования

Основы ЧПУ и цифрового производства

19.1 CAM-пакеты для FreeCAD

Часть IV

Основы теории систем автоматического управления

Математический аппарат

- 20.1 Передаточная функция
- 20.2 Устойчивость САУ
- 20.3 Сети Петри
- 20.4 Автоматы Маркова

Релейное управление

Пропорциональные САУ

ПИДп-регуляторы

Часть V

Разработка ПО для встраиваемых систем

Вспомогательные скрипты на языке Python

Название языка произошло вовсе не от вида пресмыкающихся. Автор назвал язык в честь популярного британского комедийного телешоу 1970-х «Летающий цирк Монти Пайтона». Впрочем, всё равно название языка чаще ассоциируют именно со змеёй, нежели с передачей — пиктограммы файлов в KDE или в Microsoft Windows и даже эмблема на сайте http://www.python.org (до выхода версии 2.5) изображают змеиные головы.

Python¹ — высокоуровневый язык программирования общего назначения, ориентированный на повышение производительности разработчика и читаемости кода.

Руthon удобно применять для написания различных вспомогательных скриптов. Часто его используют при разработке сложных программных систем для написания первых версий. В процессе работы над большими программами часто перерабатываются большие объемы кода, поэтому для ускорения разработки требуется максимально высокоуровневый язык. После того как архитектура программы стабилизируется, узким местом становится производительность, и программу переписывают на более низкоуровневом компилируемом языке, чаще всего C_+^+ .

Написание программ упрощают:

- объектно-ориентированное программирование облегчает разработку программ, позволяет переопределить стандартные операторы для пользовательских типов данных, упрощая синтаксис
- динамическая типизация не требуется заранее упределять переменные, они создаются простым присваиванием
- обработка исключений для секции кода можно определить обработчик ошибок
- **высокоуровневые структуры данных** списки, словари (набор элементов ключ:значение), очереди
- богатая стандартная библиотека и множество дополнительных библиотек на все случаи

 $^{^{1}}$ в оригинале читается **па́йтон**, но давно русифицировался как **пито́н**

24.1 Установка под \mathbb{H}Windows

Customize Python Add python exe to PATH Next Finish

24.2 Запуск

Из командной строки: 🖽 + R >> cmd >> python

```
X
C:\Windows\system32\cmd.exe - python
Microsoft Windows [Version 6.1.7601]
(c) Корпорация Майкрософт (Microsoft Corp.), 2009. Все права защищены.
C:\Users\dmitry>python
Python 2.7.8 (default, Jun 30 2014, 16:03:49) [MSC v.1500 32 bit (Intel)] on win
Type "help", "copyright", "credits" or "license" for more information.
 .5882352941176472
>>> _
```

Простейшая среда $IDLE^2$:

```
\boxplus \square Программы \square Python 2.7 \square IDLE (Python GUI) Панель задач \square IDLE \square \square \square Закрепить в панели задач \square \square
```

² на GUI-библиотеке Tkinter, идущей в комплекте

⊲⊲ по файлу скрипта:

```
+R notepad /tmp/py.py
```

```
/tmp/py.py

1 print "1+2/3.4="
2 print 1+2/3.4
3 4 raw_input('.')
```

```
+ R \rightarrow /tmp/py.py
```


Открытием файла скрипта в IDLE:

24.3 Дополнительные материалы

- [2] Г. Россум, Ф.Л.Дж. Дрейк, Д.С. Откидач, Язык программирования Python
- [1] Аллен Дауни Думать на языке Python: Думать как компьютерный специалист

Make: управление сборкой проектов

VCS: системы контроля версий

- 26.1 CVS
- 26.2 Subversion
- 26.3 Git
- 26.3.1 GitHub

Основы Си и C_+^+

- 27.0.2 Установка MinGW (win32)
- 27.1 Особенности C_+^+ в embedded

LLVM и разработка собственных компиляторов

- 28.1 Лексический и синтаксический анализ
- 28.2 Применение flex/bison для разбора текстовых форматов данных
- 28.3 Компилятор Паскаля

Сборка кросс-компилятора GNU toolchain

Часть VI

Микроконтроллеры Cortex-Mx

Отладочные платы

30.1 STM32DISCOVERY /Cortex-M3 STM32F103/

30.2 STM32F4DISCOVERY /Cortex-M4 STM32F407/

Часть VII

Периферия

Часть VIII

Встраиваемый emLinux

cross

BuildRoot

Особенности OpenWrt

Библиотека SDL

34.1 Реализация microGUI

Приложения для X Window

Программирование сетевых приложений

Сборка кросс-компиляторя GNU мальтийским крестом

Часть IX

IDE ©ECLIPSE

Часть Х

Подготовка публикаций в ІАТЕХ

LaTeX (по-русски произносится **латéx**) — наиболее популярный набор макрорасширений (или макропакет) системы компьютерной вёрстки Т_ЕX, который облегчает набор сложных документов. В типографском наборе форматируется как БТ_ЕX.

Главная идея I^ATEX состоит в том, что авторы должны думать о содержании, о том, что они пишут, не беспокоясь о конечном визуальном облике (печатный вариант, текст на экране монитора или что-то другое). Готовя свой документ, автор указывает логическую структуру текста (разбивая его на главы, разделы, таблицы, изображения), а I^ATEX решает вопросы его отображения. Так содержание отделяется от оформления. Оформление при этом или определяется заранее (стандартное), или разрабатывается для конкретного документа.

В практическом смысле использование LATEX позволяет (в порядке уменьшения важности):

- с помощью макросов и ТеХ-программирования реализовывать любые стили и самую сложную верстку, существует множество готовых пакетов для верстки графических химических формул, разнообразных схем, транскрипционных знаков, внезапно электронных схем, цветных листингов и т.п.
- автоматизировать работу с документами: пересобирать выходные файлы через Make, генерировать части документов с помощью своих скриптов²
- получить выходой документ в .pdf .html .txt .PostScript .djvu ...с кликабельными ссылками, анимированными, а иногда и интерактивными элементами
- не использовать файлы документов в закрытом формате

¹ копипаста https://ru.wikipedia.org/wiki/LaTeX

 $^{^{2}}$ отчеты, стандартные формы, результаты работы любых программ

- легко держать набор файлов в VCS
- не покупать текстовый процессор

Особенно важен пункт про сложную верстку: она всегда нужна в крупных технических публикациях, особенно в учебной литературе, или отчетных работах. Вам обязательно понадобиться вставлять графики экспериментальных данных, тематически специфичные схемы, листинги, выходные данные работы ваших пограмм и т.п.

Традиционно L^AT_EX любим математиками, и всеми кто готовит публикации с большим количеством формул и перекрестных ссылок: после небольшого обучения формулы вводятся с листа со скоростью набора текста, особенно если ваш редактор умеет автодополнение, и никакой мышиной возьни.

Естественно всякие чисто автоматические вещи типа автонумерации ссылок и формул, сборки оглавлений и индексов, цветовая подсветка синтаксиса в листингах программ, размещение плавающих иллюстраций и т.п. выполняются автоматически ТеХ-процессором в пакетном режиме, и на выходе получается красивый печатный или электронный (.pdf) документ.

Единственная область, не удобная в L^AT_EX-верстке — создание сложных таблиц. Для этого были созданы визуальные редакторы, позволяющие отрисовать структуру таблицы мышью, а затем заполнить готовый шаблон данными.

- 37.1 Установка MikTeX под ⊞Windows
- 37.2 Структура документа
- 37.2.1 Заголовочный файл или блок
- 37.2.2 Стили документа
- 37.2.3 Пакеты
- 37.2.4 Автор и название
- 37.2.5 Верстка титульных страниц
- 37.2.6 Оглавление
- 37.3 Верстка слайдов

37.4 Список литературы и цитирование

IATEX умеет мощную подсистему управления цитированием и списками литературы. В простейшем случае, например при написании единственной статьи, раздел библиографии можно создать в том же документе, добавив в конец thebibliography:

\documentclass{article}

```
\input{header}
\author{Bacя Пупкин}
\title{Пример статьи с цитатами}
\begin{document}
\maketitle
В статье используются книги: \cite{A} и \cite{B}
\begin{thebibliography}{99}
\bibitem{A} Книга А
\bibitem{B} Книга В
\end{thebibliography}
\end{document}
```

Но если вы регулярно работаете с документацией, или часто пишете статьи, возникает естественное желание вынести весь список литературы в отдельную базу данных, прописать авторов, названия, издательства и т.п. Это делается с помощью программы biber и пакета biblatex.

Пример использования этой системы вы легко найдете в исходниках этой книги:

• файл header.tex содержит секцию подключения пакета и подгрузки библиофайлов:

```
% books bib management
\usepackage{biblatex}
\addbibresource{../bib/python.bib}
\addbibresource{../bib/eskd.bib}
...
```

- библиофайлы хранятся в **соседнем** репозитории ../bib, склонированном с https://github.com/ponyatov/bib.
- порядок вызова pdflatex и biber см. Makefile

- 37.5 Команды секционирования: часть, глава, раздел,...
- 37.6 Таблицы
- 37.7 Формулы
- 37.8 Перекрестные ссылки и гипессылки
- 37.9 Листинги скриптов и текстовых данных
- 37.10 Подготовка иллюстраций
- 37.10.1 Графики GNUPLOT
- 37.10.2 Схемы и графы в GraphViz

Список литературы

- [1] Аллен Дауни. Думать на языке Python: Думать как компьютерный специалист. 1999. URL: https://drive.google.com/file/d/0B0u4WeMj0894Q2hWV1Qw0FFQ0Vk/view?usp=sharing.
- [2] Г. Россум и др. Язык программирования Python. Stichting Mathematisch Centrum, 1990–1995 и др., 2001, с. 454. URL: http://rus-linux.net/MyLDP/BOOKS/python.pdf.