## 栈与队列 队列接口与实现 邓俊辉 deng@tsinghua.edu.cn

## 操作与接口

- ❖队列 (queue) 也是受限的序列
- ❖只能在队尾插入(查询):
  - enqueue() / rear()
- ❖ 只能在队头删除(查询):
  - dequeue() / front()
- **❖ 先进先出** (FIFO)
  - 后进后出 (LILO)
- ❖扩展接口: getMax()...



## 实例

| 操作         | 输出    | Ŗ | 人列 | (右侧 | 则为队头) |
|------------|-------|---|----|-----|-------|
| Queue()    |       |   |    |     |       |
| empty()    | true  |   | _  |     |       |
| enqueue(5) |       | 5 |    |     |       |
| enqueue(3) |       | 3 | 5  |     |       |
| dequeue()  | 5     | 3 |    |     |       |
| enqueue(7) |       | 7 | 3  |     |       |
| enqueue(3) |       | 3 | 7  | 3   |       |
| front()    | 3     | 3 | 7  | 3   |       |
| empty()    | false | 3 | 7  | 3   |       |

| 操作          | 输出    | 队列(右侧为队头) |    |    |   |   |   |
|-------------|-------|-----------|----|----|---|---|---|
| enqueue(11) |       | 11        | 3  | 7  | 3 |   |   |
| size()      | 4     | 11        | 3  | 7  | 3 |   |   |
| enqueue(6)  |       | 6         | 11 | 3  | 7 | 3 |   |
| empty()     | false | 6         | 11 | 3  | 7 | 3 |   |
| enqueue(7)  |       | 7         | 6  | 11 | 3 | 7 | 3 |
| dequeue()   | 3     | 7         | 6  | 11 | 3 | 7 |   |
| dequeue()   | 7     | 7         | 6  | 11 | 3 |   |   |
| front()     | 3     | 7         | 6  | 11 | 3 |   |   |
| size()      | 4     | 7         | 6  | 11 | 3 |   |   |

## 实现

❖ 确认:如此实现的队列接口,均只需0(1)时间

❖ 课后:基于向量派生实现队列模板类,并就其效率做一评估

```
❖ 队列既然属于序列的特例,故亦可直接基于向量或列表派生
template <typename T> class Queue: public List<T> {
 public: //原有接口一概沿用
    void enqueue( T const & e ) { insertAsLast( e ); } //入队
    T dequeue() { return remove( first() ); } //出队
    T & front() { return first()->data; } //队首
 }; //以列表首/末端为队列头/尾——颠倒过来呢?
```

3