18ECE301T202J - Wireless Communication

Name	Unit No.	Ш
Designation / Department	Unit Title	

Notations

M - Marks

CO - Course Learning Outcome

BL - Bloom's Level (1. Remembering | 2. Understanding | 3. Applying | 4. Analysing | 5. Evaluating

| 6. Creating)

PI - Performance Indicator Code

Note

- 1. Refer appendix / attachment for Bloom's Taxonomy action verbs
- 2. Refer appendix / attachment for a model Performance Indicator
- 3. For each unit / CO, write 20 MCQs (10 questions in Level 1 & 2; 6 or 7 questions in Level 3; 3 or 4 questions in Level 4)
- 4. Both higher order cognitive skills 'Evaluate' and 'Create' are difficult to assess in time-limited examinations, and hence no questions may not be set up in Levels 5 & 6.
- 5. Fill up the table of CO / Bloom's Level distribution given at the end of this document.

Q. No.		MCQ	M	СО	BL	PI
1.		by the propagation model that predicts the mean signal the for an arbitrary Transmitter – Receiver (T-R) separation ce.	1	2	1	
	A.	Small scale				
	B.	Mid scale				
	C.	Large scale				
	D.	Low scale				
	Ans.	С				
2.	Frii's	free space equation is	1	2	1	
	A.	$P_{r}(d) = (P_{t}G_{t}G_{r}\lambda)/(16\pi d^{2}L)$				
	B.	$P_r(d) = (P_tG_tG_r\lambda)/(16\pi^2d^2L)$				
	C.	$P_r(d) = (P_tG_tG_r)/(16\pi d^2L \lambda^2)$				
	D.	$P_r(d) = (P_tG_tG_r)/(16\pi d^2L \lambda^{-2})$				

	Ans.	D				
	Alls.					
3.	The ga $(A_e) t$	in of an antenna (G) is related to its effective aperture	1	2	1,2	
	A.	$G = (4\pi \lambda^2)/A_e$				
	B.	$G = (4\pi A_e)/\lambda^2$				
	C.	$G = A_e / (4\pi \lambda^2)$				
	D.	$G = (4 \pi^2 A_e)/\lambda^2$				
	Ans.	В				
4.	The ef	fective isotropic radiated power (EIRP) is	1	2	1,2	
	A.	$EIRP = \mathbf{P}_{r}\mathbf{G}_{t}$				
	B.	$EIRP = \mathrm{P_r}/\mathrm{G_t}$				
	C.	$EIRP = P_t/G_r$				
	D.	$EIRP = P_tG_t$				
	Ans.	D				
5.		ne far – field distance for an antenna with maximum sion of 2 m and operating frequency of 1000 MHz	2	2	3	
	A.	20.64 m				
	B.	26.64 m				
	C.	22.64 m				
	D.	28.64 m				
	Ans.	В				

6.		Insmitter produces 50 W of power, expres the transmit power s of dBm and dBw	2	2	3	
	A.	47 and 17				
	B.	17 and 47				
	C.	37 and 12.5				
	D.	27 and 15				
	Ans.	A				
7.	freque of 50 r	W is applied to a unity gain antenna with a 1000 MHz carrier ncy, find the received power in dBm at a free space distance in from the antenna. What is $P_r(10 \text{ km})$? Assume unity gain receiver antenna	2	2	3,4	
	A.	1.425 mW				
	B.	1.425 W				
	C.	1.425 μW				
	D.	1.425 nW				
	Ans.	С				
8.	upon a	occurs when a propagating electromagnetic wave impinges in object which has very large dimensions when compared to evelength of the propagating wave	1	2	1	
	A.	Refraction				
	B.	Reflection				
	C.	Diffraction				
	D.	Scattering				
	Ans.	В				

9.	receive	occurs when the radio path between the transmitter and er is obstructed by a surface that has sharp irregularities.	1	2	1	
	A.	Diffraction				
	B.	Scattering				
	C.	Refraction				
	D.	Reflection				
	Ans.	A				
10.		ate the Brewster angle for a wave impinging on ground g a permittivity of $\varepsilon_r = 5$.	2	2	3	
	A. 21.09					
	В.	22.09				
	C.	23.09				
	D.	24.09				
	Ans.	D				
11.	The ar	ngle at which no reflection occurs in the medium of origin is as	1	2	1,2	
	A.	Incident angle				
	B.	Reflection angle				
	C.	Critical angle				
	D.	Brewster angle				
	Ans.	D				
12.		ceived power at a distance 'd' from the transmitter for the y ground bounce model can be expressed as	2	2	2	
	A.	$P_r = (P_tG_tG_rd^2)/(h_t^2 h_r^2)$				
	B.	$P_r = (P_tG_tG_r)/(h_t^2 h_r^2 d^2)$				
	C.	$P_r = (P_t G_t G_r)/(h_t^2 h_r^2 d^4)$				

	D.	$P_r = (P_tG_tG_r d^4)/(h_t^2 h_r^2)$				
	Ans.	С				
13.	vertica cellula measu	bile is located 10 km away from a base station and uses a all $\lambda/4$ monopole antenna with a gain of 2.55 dB to receive a radio signals. The E field at 1 km from the transmitter is red to be 10^{-3} V/m. The carrier frequency used for this is 900 MHz, calculate the length of the receiving antenna.	2	2	3,4	
	A.	0.0523 m				
	B.	0.064 m				
	C.	0.075 m				
	D.	0.083 m				
	Ans.	D				
14.	vertica cellula measu system the tw	bile is located 10 km away from a base station and uses a al $\lambda/4$ monopole antenna with a gain of 2.55 dB to receive a radio signals. The E field at 1 km from the transmitter is red to be 10^{-3} V/m. The carrier frequency used for this is 900 MHz. Find the received power at the mobile using to ray ground reflection model assuming the height of the aitting antenna is 50 m and the receiving antenna is 3 m above bund.	2	2	3,4	
	A.	566.05 V/m				
	B.	$566.05 \times 10^{-3} \text{ V/m}$				
	C.	$566.05 \times 10^{-6} \text{ V/m}$				
	D.	$566.05 \times 10^{-9} \text{ V/m}$				
	Ans.	С				
15.	The fra	aunhofer distance is given by	1	2	1	
	A.	$d_f = (2 D^2)/\lambda^2$				
	B.	$d_f = (2 D)^2 / \lambda^2$				

	C.	$d_f = (2 D^2)/\lambda$				
	D.	$d_f = (2 D)/\lambda^2$				
	Ans.	С				
16.	The pa	th loss exponent 'n' value for free space is	1	2	1	
	A.	1				
	B.	1.5				
	C.	2				
	D.	3				
	Ans.	В				
17.		ura model found that the value of $G(h_{te})$ varies at a rate of dB/decade and $G(h_{re})$ varies at a rate of dB/decade ghts less than 3 m.	1	2	2	
	A.	10 and 20				
	B.	15 and 30				
	C.	20 and 10				
	D.	30 and 15				
	Ans.	С				
18.		tenna with maximum dimension of 1 m and operating ncy of 800 MHz. Calculate the Fraunhofer distance	2	2	3	
	A.	4.33 m				
	B.	4.33 cm				
	C.	5.33 cm				
	D.	5.33 m				
	Ans.	D				

19.	Accord	ding to laws of reflection in dielectrics the following is t.	1	2	2	
	A.	$\theta_{i} = \theta_{r}$				
	B.	$\theta_{i} > \theta_{r}$				
	C.	$\theta_{\rm i} < \theta_{\rm r}$				
	D.	$\theta_{\rm i} = 2\theta_{\rm r}$				
	Ans.	A				
20.		one is not correct regarding the Okumura model	1	2	1	
	A.	Simplest model				
	B.	Best in accuracy for mature cellular path loss prediction				
	C.	Model is not good at rural areas				
	D.	Slow response to rapid changes in terrain				
	Ans.	С				
21.	The pa	ath loss for the two-ray model can be expressed in dB as	1	2	2	
	A.	$PL(dB) = 40\log_{10} - 10\log_{10} G_t + 10\log_{10} G_r + 20\log_{10} H_t + 20\log_{10} H_t$				
	B.	$PL(dB) = 40logd-10logG_t-10logG_r+20logh_t+20logh_r$				
	C.	$PL(dB) = 40logd-$ $(10logG_t+10logG_r+20logh_t)+20logh_r$				
	D.	$PL(dB) = 40logd-$ $(10logG_t+10logG_r+20logh_t+20logh_r)$				
	Ans.	D				
22.	km, h _t	ate the median path loss using Okumara's model for $d=50$ $e=100$ m, $h_{re}=10$ m in a suburban environment. If the base transmitter radiates an EIRP of 1 KW at a carrier frequency MHz.	2	2	3,4	
	A.	-120.5 dB				
	B.	-122.5 dB				
	C.	-125.5 dB				

	D.	-130.5 dB				
	Ans.	С				
23.	Okum rangin	ara model can be used for base station antenna heights g from to m.	1	2	1	
	A.	5, 10				
	B.	10, 15				
	C.	15, 25				
	D.	30, 1000				
	Ans.	D				
24.	The pa	athloss equation of Hata model for a suburban area is	1	2	2	
	A.	$L_{50}(dB) = L_{50}(urban) + 2[log(f_c/28)]^2 + 5.4$				
	B.	$L_{50}(dB) = L_{50}(urban) - 2[log(f_c/28)]^2 - 5.4$				
	C.	$L_{50}(dB) = L_{50}(urban) - 2[log(f_c/28)] - 5.4$				
	D.	$L_{50}(dB) = L_{50}(urban) + 2[log(f_c/28)] + 5.4$				
	Ans.	С				
25.	street	_ Model uses diffraction to predict average signal strength at evel.	1	2	1	
	A.	Okumara				
	B.	Walfisch and Bertoni				
	C.	Hata				
	D.	Durkin's				
	Ans.	В				
26.	The fr	ee space path loss between the isotropic antennas is given by	1	2	1	
	A.	$\mathbf{P}_0 = \lambda/4\pi\mathbf{R}$				

	B.	$\mathbf{P}_0 = \lambda^2 / 4\pi \mathbf{R}^2$				
	C.	$\mathbf{P}_0 = \lambda^2 / 4\pi^2 \mathbf{R}^2$				
	D.	$\mathbf{P}_0 = \lambda^2/(4\pi\mathbf{R})^2$				
	Ans.	D				
27.	A spec	cial case of the piecewise model is model	1	2	1	
	A.	Durkin's				
	B.	Okumara				
	C.	Dual slope				
	D.	Hata				
	Ans.	С				
28.		free space model predicts that received signal decays unction of	1	2	1	
	A.	Gain of transmitter antenna				
	B.	T-R separation				
	C.	Power of transmitter antenna				
	D.	Effective aperture of the antenna				
	Ans.	В				
	A 10 t 0 10	na's officionavia given by the national	1	0	4	
29.		nna's efficiency is given by the ratio of	1	2	1	
	A.	Losses				
	B.	Physical aperture to effective aperture				
	C.	Signal power to noise power				
	D.	Effective aperture to physical aperture				
	Ans.	D				
20	Longl	ey-Rice prediction model is also referred as	1	2	1	
30.			1	2	1	

	A.	Okumura model				
	В.	Hata model				
	C.	ITS irregular terrain model				
	D.	Bertoni model				
		C C				
	Ans.	C				
31.		h method is used by Edwards and Durkin algorithm culate the loss associated with diffraction edges?	1	2	1	
	A.	A. Epstein and Peterson method				
	B.	Interpolation method				
	C.	Knife edge diffraction method				
	D.	Fresnel- Kirchoff method				
	Ans.	A				
32.	The Hata model is empirical formulation of which model?		1	2	1	
	A.	Okumura model				
	B.	Longley- Rice model				
	C.	Durkin's model				
	D.	Walfisch and Bertoni model				
	Ans.	A				
33.	Rela	tion between gain and effective aperture is given by	1	2	2	
	A.	$G=(4\pi A_e)/\lambda^2$				
	B.	G=(4π λ²)/A _e				
	C.	G=4πA _e				
	D.	$G=A_e/\lambda^2$				
	Ans.	A				
34.	Path	oss in free space model is defined as difference of	1	2	1	

		-				
	A.	Effective transmitted power and gain				
	B.	Effective received power and distance between T-R				
	C.	Gain and received power				
	D.	Effective transmitter power and receiver power				
	Ans.	D				
35.	levels	normal shadowing implies that measured signal at specific T-R separation have distribution signal levels have values in dB units.	1	2	2	
	A.	Rayleigh				
	B.	Gamma				
	C.	Gaussian				
	D.	Nakagami				
	Ans.	С				
36.		action is caused by propagation of secondary ets into	1	2	1	
	A.	Bright region				
	B.	Shadowed region				
	C.	Smooth region				
	D.	Large region				
	Ans.	В				
37.	Okum	nura model is applicable for distances of	1	2	1	
	A.	1 m to 10 m				
	B.	1 km to 100 km				
	C.	100 km to 1000 km				
	D.	10 km to 10000 km				
	Ans.	В				
38.	What	does path loss exponent indicates?	2	2	2	

	A.	Rate at which path loss decreases with distance				
	B.	Rate at which path loss increases with distance				
	C.	Rate at which path loss decreases with power density				
	D.	Rate at which path loss increases with power density				
	Ans.	В				
39.	Which distribution describes the shadowing effect?		1	2	1	
	A.	Log normal distribution				
	B.	Nakagami distribution				
	C.	Cauchy distribution				
	D.	Rayleigh distribution				
	Ans.	A				
40.	Propagation model that characterize rapid fluctuation is called			2	1	
	A.	Hata model				
	B.	Fading model				
	C.	Large scale propagation model				
	D.	Okumura model				
	Ans.	В				

Course Outcome and Bloom's Level Distribution to the questions

Question No.	Course Outcome Distribution					BL Distribution						
Question No.	CLO-1	CLO-2	CLO-3	CLO-4	CLO-5	L1	L2	L3	L4	L5	L6	
1		✓				✓						
2		✓				✓						
3		✓				✓	✓					
4		✓				✓	✓					

5	✓					✓		
6	✓					✓		
7	✓					✓	✓	
8	✓			✓				
9	✓			✓				
10	✓					✓		
11	✓			✓	✓			
12	✓				✓			
13	✓					✓	✓	
14	✓					✓	✓	
15	✓			✓				
16	✓			\				
17	✓				✓			
18	✓					✓		
19	✓				✓			
20	✓			✓				
21	✓				✓			
22	✓					✓	✓	
23	✓			✓				
24	✓				✓			
25	✓			✓				
26	✓			✓				
27	✓			✓				
28	✓			✓				
29	✓			✓				
30	✓			✓				
31	✓			✓				
32	✓			✓				
33	✓				✓			
34	✓			✓				
35	✓			✓	✓			
36	✓			✓				
37	✓			✓				
38	✓			✓				
39	✓			✓				
40	✓			✓				
Total			40					
%								