

DATA MINING AND DATA WAREHOUSING(Assignment-1)

by

-Bheemashankar 1PE16CS039

Program:

```
#include <stdio.h>
#include <stdlib.h>
float x[]=\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23\};
float y[]=\{13953.20,13842.35,13687.35,13604.60,
13685.15,13647.45,13671.10,13649.05,13651.15,13622.45,13600.05,13751.60,13676.65,
13694.25,13617.50,13537.25,13499.15,13542.90,
13509.90,13280.25,13107.75,13208.55,13272.25};
float out[2];
int i,j;
float xnew, ynew;
void linear_reg();
void gradientDescent();
int sizex, sizey;
float p;
int n=sizeof(x)/sizeof(float);
FILE *ftr1,*ftr2,*ftr3;
int main()
sizex=sizeof(x)/sizeof(float);
sizey=sizeof(y)/sizeof(float);
ftr3=fopen("original.xg","w");
for(i=0;i< n;i++)
fprintf(ftr3,"%.1f\t\t %.4f\n",x[i],y[i]);
fclose(ftr3);
printf("size of x=%d and y=%d\n",sizex,sizey);
linear_reg();
gradientDescent();
return 0;
}
void linear_reg()
```

```
float m=0,b=0;
float xsum = 0;
float ysum = 0;
float xmean, ymean, xval, yval;
float num = 0,den = 0;
for(i = 0; i < n; i++) {
xsum += x[i];
ysum += y[i];
xmean = xsum /n;
ymean = ysum /n;
for(i = 0; i < n; i++) {
num += (x[i] - xmean) * (y[i] - ymean);
den += (x[i] - xmean) * (x[i] - xmean);
m = num / den;
b = ymean - (m * xmean);
printf("\n----\n");
printf("The Line Equation after the linear regression is y=\%.3fx+\%.3f \n",m,b);
printf("\nLinear Regression slope and intercept are:\n");
printf("\nSlope(m):%f",m);
printf("\nIntercept(b):%f \n",b);
printf("\n\nThe Predicted Opening Values from Nifty MNC Index Data\n\n");
p = m*24+b;
printf("1/Feb/2019:%f\n",p);
p = m*25+b;
printf("2/Feb/2019:%f\n",p);
p = m*26+b;
printf("3/\text{Feb}/2019:%f\n",p);
p = m*27+b;
printf("4/Feb/2019:%f\n",p);
p = m*28+b;
printf("5/Feb/2019:%f\n",p);
```

```
ftr1=fopen("linear_reg.xg","w");
fprintf(ftr1,"TitleText: NSE_predictions_Linear Regression(Day vs
NSE_Opening\\nXUnitText: Days\\nYUnitText: Opening_Value\\\n\\\n'');
fprintf(ftr1,"\"Original Data\"\n");
for(i=0;i< n;i++)
{
fprintf(ftr1,"%d\t\t %.4f\n",(i+1),y[i]);
fprintf(ftr1,"\n\"Fit Line\"\n");
for(i=1;i<32;i++)
fprintf(ftr1, "%d\t \%f\n", i, (m*i+b));
fclose(ftr1);
}
void gradientDescent() {
float xin, yin, guess;
float m1=0.0;
float b1=0.0;
float error;
float learning_rate=0.002;
for(j=0;j<1000;j++)
for (i = 0; i < n; i++)
{
xin = x[i];
yin = y[i];
guess = (m1 * xin) + b1;
error = yin-guess;
m1 += learning_rate*(error * xin );
b1 += (learning_rate*error);
}
printf("\n-----\n");
                                                                       -1PE16CS039
```

```
printf("\nThe Line Equation after Gradient decent is y=\%.3fx+\%.3f \n",m1,b1);
printf("\nGradient decent slope and intercept are:\n");
printf("\nSlope(m):%f",m1);
printf("\nIntercept(b):%f \n",b1);
printf("\n\nThe Predicted Opening Values from Nifty MNC Index Data\n\n");
p = m1*24+b1;
printf("1/Feb/2019:%f\n",p);
p = m1*25+b1;
printf("\frac{2}{\text{Feb}}/\frac{2019}{\%} \text{ f} \text{ n}",p);
p = m1*26+b1;
printf("3/\text{Feb}/2019:\% f\n",p);
p = m1*27+b1;
printf("4/Feb/2019:%f\n",p);
p = m1*28+b1;
printf("5/\text{Feb}/2019:%f\n",p);
ftr2=fopen("gradient_decent.xg","w");
fprintf(ftr2,"TitleText: NSE_predictions_Gradient_Decent(Day vs
NSE_Opening\\nXUnitText: Days\\nYUnitText: Opening_Value\\\n\\\n'');
fprintf(ftr2,"\"Original Data\"\n");
for(i=0;i< n;i++)
{
fprintf(ftr2,"%d\t\t %.4f\n",(i+1),y[i]);
fprintf(ftr2,"\n\"Fit Line\"\n");
for(i=1;i<32;i++)
fprintf(ftr2,"%d\t\t %f\n",i,(m1*i+b1));
}
fclose(ftr2);
}
```

Output:

```
bsjakkani@bsjakkani-Lenovo-ideapad-FLEX-4-1470: ~/6th_sem/DMassign
bsjakkani@bsjakkani-Lenovo-ideapad-FLEX-4-1470:~$ cd 6th_sem/DMassign
bsjakkani@bsjakkani-Lenovo-ideapad-FLEX-4-1470:~/6th_sem/DMassign$ gcc Predict.cbs
-Lenovo-ideapad-FLEX-4-1470:~/6th_sem/DMassign$ ./a.out
size of x=23 and y=23
The Line Equation after the linear regression is y=-24.389x+13871.445
Linear Regression slope and intercept are:
Slope(m):-24.388721
Intercept(b):13871.445312
The Predicted Opening Values from Nifty MNC Index Data
1/Feb/2019:13286.116211
2/Feb/2019:13261.727539
3/Feb/2019:13237.338867
4/Feb/2019:13212.950195
5/Feb/2019:13188.561523
The Line Equation after Gradient decent is y=-25.541x+13865.518
Gradient decent slope and intercept are:
Slope(m):-25.540836
Intercept(b):13865.517578
The Predicted Opening Values from Nifty MNC Index Data
1/Feb/2019:13252.537109
2/Feb/2019:13226.997070
3/Feb/2019:13201.456055
4/Feb/2019:13175.915039
5/Feb/2019:13150.374023
bsjakkani@bsjakkani-Lenovo-ideapad-FLEX-4-1470:~/6th_sem/DMassign$
                      a
```

Graph:

1.Linear Regression

2.Gradient Descent

Problem Statement:

Use Nifty MNC NSE data for a month (from Jan 1st-Jan 31st, 2019) for one of the indices.

- (i) Model the 'opening' value data with linear regression (i.e., estimate parameters) using
- a. Gradient descent
- b. Least squares approach and

compare the resulting parameters .The estimation procedure is to be coded up using C (no library functions are allowed) (ii) Use the estimated parameters to predict the 'opening' value on Feb 1st, 2019 and Feb 5th, 2019

Dataset:

For the period 01-01-2019 to 31-01-2019						
01-Jan-2019	13953.20	13953.20	13835.00	13881.65	26267392	1344.17
02-Jan-2019	13842.35	13842.35	13669.65	13689.60	70964713	2340.88
03-Jan-2019	13687.35	13780.20	13567.60	13581.85	49021505	1898.49
04-Jan-2019	13604.60	13645.55	13505.80	13584.20	49740144	1957.16
07-Jan-2019	13685.15	13713.75	13606.55	13620.85	55204447	1729.99
08-Jan-2019	13647.45	13647.95	13557.30	13606.80	54337980	1675.58
09-Jan-2019	13671.10	13676.50	13555.55	13622.35	50784402	2038.33
10-Jan-2019	13649.05	13669.35	13603.95	13641.15	52639283	1754.57
11-Jan-2019	13651.15	13659.80	13581.00	13620.30	33545185	1440.69
14-Jan-2019	13622.45	13628.90	13520.55	13576.70	32286434	1318.42
15-Jan-2019	13600.05	13743.60	13599.35	13730.90	40029859	1739.09
16-Jan-2019	13751.60	13785.90	13638.75	13649.50	33263755	1554.56
17-Jan-2019	13676.65	13697.20	13601.55	13659.95	26815746	1514.92
18-Jan-2019	13694.25	13718.05	13569.85	13599.30	29184192	1475.38
21-Jan-2019	13617.50	13667.40	13530.95	13554.15	27668108	1438.14
22-Jan-2019	13537.25	13540.35	13427.55	13491.05	49622234	1927.71
23-Jan-2019	13499.15	13585.60	13479.95	13503.50	33647191	1820.45
24-Jan-2019	13542.90	13547.90	13442.20	13473.55	54213260	1900.99
25-Jan-2019	13509.90	13557.45	13222.95	13267.00	47744896	3358.94
28-Jan-2019	13280.25	13280.30	13066.35	13128.35	42108791	2703.56
29-Jan-2019	13107.75	13188.75	13053.65	13159.75	42351941	1866.93
30-Jan-2019	13208.55	13248.60	13158.30	13228.10	38651582	1554.91
31-Jan-2019	13272.25	13331.10	13217.05	13320.65	79836599	2648.05