1. The symmetric difference of two sets is a new set that contains every element that is in either set except the elements that are in both sets. For example, the symmetric difference of {3, 7, 2, 12, 9} and {8, 12, 4, 16, 7, 5} would be {3, 2, 9, 8, 4, 16, 5}. Prove that the family of regular languages is closed under symmetric difference.

Page No. Date
1' The symmetric difference of 2 sets
$S_1 + S_2$ are defined as $S_1 \oplus S_2 = \sum_{n=1}^{\infty} x_n \in S_n$ or $x_n \in S_2$
and x is not in both s, 4 s, 3
and 22 16 not in both 1 7 2 5
To occure that the Search of the latest
To prove that the family of regular lang.
vages is closed under symmetric difference
or give a counter example.
The closest the state of
It is closed under symmetric difference.
Let S, & S be regular sets.
then (s, of s,) and (not (s, and s2)) = (s, us,) n (s, 0s,)
-(3,03)()(5,03)
ties s. O. s. is regular.
Since regular sets are closed under unions
interpretions and complements.
- Closure properties -
Union Concatenation Star
Intersection Complement
union - G, = (v, E, R, S,)
C = (, E, K, S,)
G2 = (V2 E2 R2 S2)
ASSUME Y, U VS \$ 4.
Making context free grammar.
1. G=(V, UV, U ES3) E
\$1UR2UES > 5,152 } 5)

2. Prove that the language $L = \{w: n_a(w) = n_b(w)\}$ is not regular.

Page No. Date	
2. L= & w na (w) = nb (w) 3 is non - regular 3:	,
Suppose L'is regular: then it must satisfy frompring property: Suppose w = (ab) Let w = xyz = (ab)'; (ab)'; (ab)	
Let $w = xyz = \varepsilon$; (ab); (ab) we have $ xy \leq s$ and $ y \geq 1$.	+
Also, xy'z must belong to I for all	
No contradiction.	
Henre L is regular. Also, is we consider w= a3 b5. Then w= zyz = o b a b	
Since xyyz = a a a a a bs	
i.e. zyz has more a's than b's.	
Hence, Lis not regular.	

3. Prove that the language L with $\Sigma = \{a\}$, where L = $\{a^n : n \text{ is a power of 2}\}$ is not regular.

