

SAIRAM DIGITAL RESOURCES

MA8351

DISCRETE MATHEMATICS
(COMMON TO CSE & IT)

UNIT-IV ALGEBRAIC STRUCTURES

4.5 COSETS AND LAGRANGE'S THEOREM

SCIENCE & HUMANITIES

COSET AND LAGRANGE'S THEOREM

Let (H,*) be a subgroup of (G,*).

LEFT COSET : $a * H = \{a * h : h \in H\}$ for any $a \in G$ is called the left coset of H in G determined by a.

RIGHT COSET: $H * a = \{h * a : h \in H\}$ for any $a \in G$ is called the right coset of H in G determined by a.

EXAMPLE: Let $(Z_4, +_4)$ be a group and $H = \{0,2\}$ be a subgroup of Z_4 .

Let
$$Z_n = \{0, 1, 2, 3, \dots, n\}$$
 and $Z_4 = \{0, 1, 2, 3\}$
Left coset: $0 + H = \{0, 2\} = H$

$$1 + H = \{1,3\}$$

$$2 + H = \{2,0\} = H$$

$$3 + H = {3,1} = 1 + H.$$

Distinct Left cosets of Z_A are H and 1 + H

NOTE:

- (i)If H is a subgroup of G then H itself is both left coset as well as right cosets of G.
 - (ii) If $a \in H * b$ the H * a = H * b.
 - (iii) If $a \in b * H$ the a * H = b * H.
 - (iv) Union of all Right and Left cosets of H is equal to G.
 - (v) Since $e \in H$, $a * e \in aH \implies a \in aH$ and $e * a = a \in Ha$

Also
$$eH = \{e * h/h \in H\} = \{h/h \in H\} = H$$

and $He = \{h * e/h \in H\} = \{h/h \in H\} = H$

So, H itself is a left coset as well as right coset.

(vi) In general, $Ha \neq aH$.

But if G is abelian, then Ha = aH.

That is every left coset is a right coset.

(vii) If the binary operation of G is denoted by + then the left coset will be written as $a + H = \{a + h/h \in H\}$

THEOREM

Any right or left cosets of *H* in *G* are either disjoint or identical.

PROOF:

Let H be a subgroup of a group G.

For any $a, b \in G$, a * H and b * H are two left cosets of H.

Suppose $(a * H) \cap (b * H) \neq \emptyset$, then $x \in (a * H) \cap (b * H)$.

 $x \in (a * H) \text{ and } x \in (b * H) \Longrightarrow x \in a * h_1 \text{ and } x \in b * h_2,$

for some $h_1, h_2 \in H$

$$a * h_1 = b * h_2 = (a * h_1) * h_1^{-1} = (b * h_2) * h_1^{-1}$$

$$\Rightarrow a * (h_1 * h_1^{-1}) = b * (h_2 * h_1^{-1})$$

$$a * e = b * (h_2 * h_1^{-1}) \Rightarrow a = b * (h_2 * h_1^{-1})$$

If x is an element in a * H, then

$$x = a * h = b * (h_2 * h_1^{-1}) * h = b * (h_2 * h_1^{-1} * h) \in b * H$$

Therefore, $x \in (a * H) \Longrightarrow x \in (b * H)$

THEOREM

The set of all left or right cosets of H in G forms the partition of G.

PROOF:

Let us prove that every element of *G* appears in atleast one left coset.

Let $a * H = \{a * h : h \in H\}$ be a left coset of $H, a \in G$.

For $e \in H \Rightarrow a * e \in a * H \Rightarrow a \in a * H$. Therefore, every element of G appears in atleast one left coset. Also, we know that the left coset are either identical or disjoint. Hence each element of G appears in exactly one and only one left coset of H in G.

Since the union of all distinct left cosets of H in G equals G, the set of left cosets form a partition of G.

THEOREM

If (H,*) is a subgroup of a group (G,*) and H*a is any right coset of H in G, then there exist a one-one correspondence between the elements of H and H*a.

PROOF:

Define a map $f: H \to H * a$ by f(h) = h * a, for any $a \in G$.

For any $h_1, h_2 \in H$, $f(h_1) = f(h_2) \Rightarrow h_1 * a = h_2 * a \Rightarrow h_1 = h_2 \Rightarrow f$ is one-one. For every $h * a \in H * a$, there exist $h \in H$ such that $f(h) = h * a \Rightarrow f$ is onto. Therefore there is one-one correspondence between H and H * a.

THEOREM: (LAGRANGE'S THEOREM)

Let G be a finite group of order n. Let H be a subgroup of G. Then order of H divides order of G.

PROOF: Let G be a finite group of order 'n'. Let (H,*) be a subgroup of (G,*) with 'm' distinct elements $H = \{h_1, h_2, \dots, h_m\}$. Let $a \in G$ and H * a is the right coset of H in G. $H * a = \{h_1 * a, h_2 * a, \dots, h_m * a\}$. Since there is one-one correspondence between the elements of H, there are 'm' distinct elements in H * a. W.k.t any right coset of H in G are either disjoint or identical. The number of distinct right cosets of H in G is finite(say k). The k distinct right cosets are

 $H*a_1, H*a_2, \dots H*a_k$. The union of these k distinct right cosets of H in G is equal to G. $G = (H*a_1) \cup (H*a_2) \cup \dots \cup (H*a_k)$

$$o(G) = O(H * a_1) + O(H * a_2) + \cdots + O(H * a_k)$$

 $n = m + m + m + \dots + m \text{ (k times)}$

Since k is an integer, m is the divisor of n. Therefore m divides n . O(H) divides O(G).

THEOREM

If G is a finite group of order n, then $a^n = e$ for any $a \in G$.

PROOF:

Let *G* be a finite group of order n.

Let $a \in G$ be an element of order m.

Then the order of 'a' is same a the order of cyclic group.

By Langrage's theorem, the order of the subgroup divides the order of G.

Hence m divides n. n = km. If 'm' is the order of 'a' then $a^m = e$.

Now
$$a^m = a^{km} = (a^m)^k = e^k = e \Longrightarrow a^n = e$$
.

THEOREM

The order of any element of a finite group is a divisor of order of the group.

Proof:

Let $a \in G$ and let O(a) = m. Then $a^m = e$. Let H be the cyclic subgroup generated by a. Then $H = \{a, a^2, a^3, \dots, a^m = e\}$. O(H) = m.

Therefore, O(a) is a divisor of O(G).

THEOREM

Every group of prime order is cyclic.

Proof:

Let $a \neq e$ be any element of G.

O(a) is a divisor of O(G) = p, a prime number.

Therefore, O(a) = 1 or p.

If O(a) = 1, then a = e, which is not true.

Hence $O(a) = p \Rightarrow a^p = e$.

Hence G can be generated by any element of G other than e and is of order p.

The cyclic group generated by $a \neq e$ is the entire G.

G is a cyclic group.

