Locally Equivalent Weights for Bayesian MrP

Ryan Giordano, Alice Cima, Erin Hartman, Jared Murray, Avi Feller UT Austin Statistics Seminar September 2025

Are US non-voters becoming more Republican?

Blue Rose research says yes:

"Politically disengaged voters have become much more Republican, and because less-engaged voters swung away from [Democrats], an expanded electorate meant a more Republican electorate."

> (Blue Rose Research 2024) (major professional pollsters)

On Data and Democracy says no:

"Claims of a decisive pro-Republican shift among the overall non-voting population are not supported by the most reliable, large-scale post-election data currently available."

> (Bonica et al. 2025) (major professional researchers)

Are US non-voters becoming more Republican?

Blue Rose research says yes:

"Politically disengaged voters have become much more Republican, and because less-engaged voters swung away from [Democrats], an expanded electorate meant a more Republican electorate."

> (Blue Rose Research 2024) (major professional pollsters)

On Data and Democracy says no:

"Claims of a decisive pro-Republican shift among the overall non-voting population are not supported by the most reliable, large-scale post-election data currently available."

(Bonica et al. 2025) (major professional researchers)

- The problem is very hard (it's difficult to accurately poll non-voters)
- · Different data sources
- *** Different statistical methods
 - · Blue Rose uses Bayesian hierarchical modeling (MrP)
 - · On Data and Democracy is using calibration weighting (CW)

Are US non-voters becoming more Republican?

Blue Rose research says yes:

"Politically disengaged voters have become much more Republican, and because less-engaged voters swung away from [Democrats], an expanded electorate meant a more Republican electorate."

> (Blue Rose Research 2024) (major professional pollsters)

On Data and Democracy says no:

"Claims of a decisive pro-Republican shift among the overall non-voting population are not supported by the most reliable, large-scale post-election data currently available."

> (Bonica et al. 2025) (major professional researchers)

- The problem is very hard (it's difficult to accurately poll non-voters)
- · Different data sources
- *** Different statistical methods
 - · Blue Rose uses Bayesian hierarchical modeling (MrP)
 - · On Data and Democracy is using calibration weighting (CW)

Our contribution

We define "MrP local equivalent weights" (MrPlew) that:

- · Are easily computable from MCMC draws and standard software, and
- Provide MrP versions of key diagnostics that motivate calibration weighting.
- ⇒ MrPlew provides direct comparisons between MrP and calibration weighting.

Outline

- · Introduce the statistical problem
 - · Contrast CW and MrP
 - · Prior work: Equivalent weights for linear models
 - · Interlude: Approximate equivalent weights for some non-linear models
 - Our key idea: Locally equivalent weights for non–linear models

Outline

- · Introduce the statistical problem
 - · Contrast CW and MrP
 - · Prior work: Equivalent weights for linear models
 - · Interlude: Approximate equivalent weights for some non-linear models
 - · Our key idea: Locally equivalent weights for non-linear models
- · Locally equivalent weights for covariate balance
 - · Describe covariate balance
 - · Define MrPlew weights and connect them to covariate balance
 - · Theoretical support
 - · Example of real-world results

Outline

- · Introduce the statisical problem
 - · Contrast CW and MrP
 - · Prior work: Equivalent weights for linear models
 - · Interlude: Approximate equivalent weights for some non-linear models
 - · Our key idea: Locally equivalent weights for non-linear models
- · Locally equivalent weights for covariate balance
 - · Describe covariate balance
 - · Define MrPlew weights and connect them to covariate balance
 - · Theoretical support
 - · Example of real-world results
- · Other uses of locally equivalent weights
 - · Parital pooling
 - · The meaning of negative weights
 - · Frequentist variance estimation
- · Future directions

The basic problem

We have a survey population, for whom we observe:

- Covariates **x** (e.g. race, gender, zip code, age, education level)
- Responses *y* (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

Observe
$$(\mathbf{x}_i, y_i)$$
 for $i = 1, \dots, N_S$

Observe
$$\mathbf{x}_j$$
 for $j = 1, \dots, N_T$

The basic problem

We have a survey population, for whom we observe:

- Covariates **x** (e.g. race, gender, zip code, age, education level)
- Responses *y* (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

The problem is that the populations may be very different.

The basic problem

We have a survey population, for whom we observe:

- Covariates **x** (e.g. race, gender, zip code, age, education level)
- Responses *y* (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

The problem is that the populations may be very different.

Our survey results may be biased.

How can we use the covariates to say something about the target responses?

```
We want \mu:=\frac{1}{N_T}\sum_{j=1}^{N_T}y_j, but don't observe target population y_j. Let Y_{\mathcal{S}}=\{y_1,\ldots,y_{N_S}\}.
```

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of \boldsymbol{x} may be different in the survey and target.

```
We want \mu:=\frac{1}{N_T}\sum_{j=1}^{N_T}y_j, but don't observe target population y_j. Let Y_S=\{y_1,\ldots,y_{N_S}\}.
```

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of x may be different in the survey and target.

Calibration weighting (CW)

► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)

Bayesian hierarchical modeling (MrP)

We want $\mu:=\frac{1}{N_T}\sum_{j=1}^{N_T}y_j$, but don't observe target population y_j . Let $Y_S=\{y_1,\ldots,y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- lacksquare Take $\hat{oldsymbol{\mu}}^{\sf CW}(Y_{\mathcal{S}}) = rac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta | \text{Survey data})}[y | \mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$

We want $\mu:=\frac{1}{N_T}\sum_{j=1}^{N_T}y_j$, but don't observe target population y_j . Let $Y_S=\{y_1,\ldots,y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- lacksquare Take $\hat{m{\mu}}^{\sf CW}(Y_{\cal S}) = rac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - \blacktriangleright Dependence on y_i is clear

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta|\text{Survey data})}[y|\mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
 - ightharpoonup Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\mathrm{Survey\ data}))$

ļ

We want $\mu:=\frac{1}{N_T}\sum_{j=1}^{N_T}y_j$, but don't observe target population y_j . Let $Y_S=\{y_1,\ldots,y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ightharpoonup Choose "calibration weights" w_i using only the regressors \mathbf{x} (e.g. raking weights)
- lacksquare Take $\hat{m{\mu}}^{\sf CW}(Y_{\cal S}) = rac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - \blacktriangleright Dependence on y_i is clear

- ▶ Weights give interpretable diagnostics:
 - Frequentist variability
 - Partial pooling
 - Regressor balance

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta|\text{Survey data})}[y|\mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
- ▶ Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\text{Survey data}))$
 - ▶ Black box

We want $\mu:=\frac{1}{N_T}\sum_{j=1}^{N_T}y_j$, but don't observe target population y_j . Let $Y_{\mathcal{S}}=\{y_1,\ldots,y_{N_S}\}.$

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- lacksquare Take $\hat{m{\mu}}^{\sf CW}(Y_{\cal S}) = rac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - ightharpoonup Dependence on y_i is clear

- ▶ Weights give interpretable diagnostics:
 - · Frequentist variability
 - Partial pooling
 - Regressor balance

Bayesian hierarchical modeling (MrP)

- ► Choose $\mathbb{E}\left[y|\mathbf{x},\theta\right] = m(\theta^\intercal\mathbf{x})$, choose prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$ (e.g. Hierarchical logistic regression)
- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta|\text{Survey data})}[y|\mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
- ▶ Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\text{Survey data}))$

▶ Black box

← We open this box, providing analogues of all these diagnostics

Prior work: Equivalent weights for linear models

Gelman (2007b) observes that MrP is a CW estimator when one uses linear regression to form \hat{y} :

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j = \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\mathbf{x}_j^{\intercal} \hat{\theta}}_{\text{Linear in } Y_{\mathcal{S}}}$$

Most existing literature on comparing CW and MrP focus on such linear models. ¹

 $^{^{1}\}mathrm{For}$ example, Gelman (2007b), B., F., and H. (2021), and Chattopadhyay and Zubizarreta (2023).

Prior work: Equivalent weights for linear models

Gelman (2007b) observes that MrP is a CW estimator when one uses linear regression to form \hat{y} :

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j = \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\mathbf{x}_j^{\mathsf{T}} \hat{\theta}}_{\text{Linear in } Y_{\mathcal{S}}}$$

Most existing literature on comparing CW and MrP focus on such linear models. ¹

But what if you use a non-linear link function? Or a hierarchical model?

"It would also be desirable to use nonlinear methods ... but then it would seem difficult to construct even approximately equivalent weights. Weighting and fully nonlinear models would seem to be completely incompatible methods." — (Gelman 2007a)

¹For example, Gelman (2007b), B., F., and H. (2021), and Chattopadhyay and Zubizarreta (2023).

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

The map from $Y_S \mapsto m(\mathbf{x}_i^\mathsf{T} \hat{\theta})$ is inherently nonlinear.

But some sample averages of $m(\mathbf{x}_i^\intercal \hat{\theta})$ can be approximately linear.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

The map from $Y_{\mathcal{S}} \mapsto m(\mathbf{x}_i^{\mathsf{T}} \hat{\theta})$ is inherently nonlinear.

But some sample averages of $m(\mathbf{x}_i^{\mathsf{T}}\hat{\theta})$ can be approximately linear.

Example #1

Additionally suppose $x \in \mathcal{X}$ is discrete and saturated. Then MrP is a CW estimator.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

The map from $Y_{\mathcal{S}} \mapsto m(\mathbf{x}_i^\intercal \hat{\theta})$ is inherently nonlinear.

But some sample averages of $m(\mathbf{x}_i^{\mathsf{T}}\hat{\theta})$ can be approximately linear.

Example #1

Additionally suppose $x \in \mathcal{X}$ is discrete and saturated. **Then MrP is a CW estimator.**

- Let \overline{y}^c_S denote the survey average among $\mathbf{x}=c$ for $c\in\mathcal{X}$

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

The map from $Y_{\mathcal{S}} \mapsto m(\mathbf{x}_i^{\mathsf{T}} \hat{\theta})$ is inherently nonlinear.

But some sample averages of $m(\mathbf{x}_i^{\mathsf{T}}\hat{\theta})$ can be approximately linear.

Example #1

Additionally suppose $\mathbf{x} \in \mathcal{X}$ is discrete and saturated. **Then MrP is a CW estimator.**

- Let \overline{y}^c_S denote the survey average among $\mathbf{x}=c$ for $c\in\mathcal{X}$
- For $\mathbf{x} = c$, the MLE satisfies $m(\hat{\theta}^\intercal \mathbf{x}) = \overline{y}_S^c$

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

The map from $Y_{\mathcal{S}} \mapsto m(\mathbf{x}_i^{\mathsf{T}} \hat{\theta})$ is inherently nonlinear.

But some sample averages of $m(\mathbf{x}_i^\intercal \hat{\theta})$ can be approximately linear.

Example #1

Additionally suppose $x \in \mathcal{X}$ is discrete and saturated. **Then MrP is a CW estimator.**

- Let \overline{y}^c_S denote the survey average among $\mathbf{x}=c$ for $c\in\mathcal{X}$
- For $\mathbf{x}=c$, the MLE satisfies $m(\hat{\theta}^\intercal\mathbf{x})=\overline{y}_S^c$
- Let N_S^c (or N_T^c) denote the # of survey (or target) observations with $\mathbf{x}_n = c$.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

The map from $Y_{\mathcal{S}} \mapsto m(\mathbf{x}_i^{\mathsf{T}} \hat{\theta})$ is inherently nonlinear.

But some sample averages of $m(\mathbf{x}_i^{\mathsf{T}}\hat{\theta})$ can be approximately linear.

Example #1

Additionally suppose $x \in \mathcal{X}$ is discrete and saturated. **Then MrP is a CW estimator.**

- Let \overline{y}^c_S denote the survey average among $\mathbf{x}=c$ for $c\in\mathcal{X}$
- For $\mathbf{x} = c$, the MLE satisfies $m(\hat{\theta}^{\mathsf{T}}\mathbf{x}) = \overline{y}_S^c$
- Let N_S^c (or N_T^c) denote the # of survey (or target) observations with $\mathbf{x}_n = c$.

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\intercal \hat{\theta}) = \frac{1}{N_T} \sum_{c \in \mathcal{X}} \underbrace{N_T^c \overline{y}_S^c}_{\text{Linear in } Y_{\mathcal{S}}} = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i^{\text{MrP}} y_i$$

For $w_i^{ ext{MrP}} = rac{N_T^c/N_T}{N_S^c/N_S}$ when $\mathbf{x}_i = c$.

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example #2

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example #2

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta})$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example #2

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\boldsymbol{\theta}}) \\ &\approx \int m(\mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\theta}}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \end{split} \tag{Law of large numbers)}$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example #2

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a *approximately* a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\boldsymbol{\theta}}) \\ &\approx \int m(\mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\theta}}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\theta}}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \end{split}$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example #2

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\begin{split} \hat{\mu}^{\mathrm{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) \\ &\approx \int m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int (\alpha^\mathsf{T} \mathbf{x}) m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(By assumption)} \end{split}$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example #2

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) \\ &\approx \int m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int (\alpha^\mathsf{T} \mathbf{x}) \, m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(By assumption)} \\ &\approx \alpha^\mathsf{T} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i m(\mathbf{x}_i^\mathsf{T} \hat{\theta}) \qquad \qquad \text{(Law of large numbers)} \end{split}$$

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example #2

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) \\ &\approx \int m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int (\alpha^\mathsf{T} \mathbf{x}) m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(By assumption)} \\ &\approx \alpha^\mathsf{T} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i m(\mathbf{x}_i^\mathsf{T} \hat{\theta}) \qquad \qquad \text{(Law of large numbers)} \\ &= \alpha^\mathsf{T} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i y_i \qquad \qquad \text{(Property of exponential family MLEs)} \end{split}$$

,

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example #2

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \underbrace{w_i^{\text{MrP}}}_{\alpha^{\mathsf{T}} \mathbf{x}_i} y_i + \text{Small error}$$

But what are the weights? We don't observe $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})}$, so can't estimate α directly.

²Krantz and Parks 2012; G., Stephenson, et al. 2019.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example #2

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a *approximately* a CW estimator.

$$\hat{\mu}^{\mathsf{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \underbrace{w_i^{\mathsf{MrP}}}_{\alpha^\mathsf{T} \mathbf{x}_i} y_i + \mathsf{Small} \ \mathsf{error}$$

But what are the weights? We don't observe $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})}$, so can't estimate α directly.

Key idea (informal)

If $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}})$ is approximately linear, then $w_i^{\text{MrP}} \approx \frac{\partial \hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}})}{\partial y_i}$.

²Krantz and Parks 2012; G., Stephenson, et al. 2019.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example #2

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a *approximately* a CW estimator.

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \underbrace{w_i^{\text{MrP}}}_{\alpha^{\mathsf{T}} \mathbf{x}_i} y_i + \text{Small error}$$

But what are the weights? We don't observe $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})}$, so can't estimate α directly.

Key idea (informal)

If $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})$ is approximately linear, then $w_i^{\mathrm{MrP}} \approx \frac{\partial \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})}{\partial y_i}$.

For logistic regression, compute and analyze $\frac{\partial \hat{\mu}^{MrP}(Y_S)}{\partial y_i}$ using the implicit function theorem.²

²Krantz and Parks 2012; G., Stephenson, et al. 2019.

Locally equivalent weights for hierarchical logistic regression MrP

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey\ data})} \left[m(\mathbf{x}_j^{\mathsf{T}} \theta) \right]$.

No reason to think $Y_{\mathcal{S}}\mapsto \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})$ is even approximately **globally** linear.

Locally equivalent weights for hierarchical logistic regression MrP

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey \, data})} \left[m(\mathbf{x}_j^{\mathsf{T}} \theta) \right]$.

No reason to think $Y_S \mapsto \hat{\mu}^{MrP}(Y_S)$ is even approximately **globally** linear.

MrP locally equivalent weights (MrPlew)

For new data \tilde{Y}_{S} , form a **MrP locally equivalent weighting**:

$$\hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(\tilde{Y}_{\mathcal{S}}) \approx \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(Y_{\mathcal{S}}) + \sum_{i=1}^{N_{S}} w_{i}^{\mathsf{MrP}}(\tilde{y}_{i} - y_{i}) \quad \text{where} \quad w_{i}^{\mathsf{MrP}} := \frac{\partial \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(Y_{\mathcal{S}})}{\partial y_{i}}.$$

Locally equivalent weights for hierarchical logistic regression MrP

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey\ data})} \left[m(\mathbf{x}_j^{\mathsf{T}} \theta) \right]$.

No reason to think $Y_S \mapsto \hat{\mu}^{MrP}(Y_S)$ is even approximately **globally** linear.

MrP locally equivalent weights (MrPlew)

For new data $\tilde{Y}_{\mathcal{S}}$, form a **MrP locally equivalent weighting**:

$$\hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(\tilde{Y}_{\mathcal{S}}) \approx \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(Y_{\mathcal{S}}) + \sum_{i=1}^{N_{S}} w_{i}^{\mathsf{MrP}}(\tilde{y}_{i} - y_{i}) \quad \text{where} \quad w_{i}^{\mathsf{MrP}} := \frac{\partial \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(Y_{\mathcal{S}})}{\partial y_{i}}.$$

The weights are given by weighted averages of posterior covariances³.

They can be easily computed with standard software⁴ without re–running MCMC.

³G., Broderick, and Jordan 2018.

⁴We use brms (Bürkner 2017).

Locally equivalent weights for hierarchical logistic regression MrP

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey \, data})} \left[m(\mathbf{x}_j^{\mathsf{T}} \theta) \right]$.

No reason to think $Y_S \mapsto \hat{\mu}^{MrP}(Y_S)$ is even approximately **globally** linear.

MrP locally equivalent weights (MrPlew)

For new data $\tilde{Y}_{\mathcal{S}}$, form a MrP locally equivalent weighting:

$$\hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(\tilde{Y}_{\mathcal{S}}) \approx \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(Y_{\mathcal{S}}) + \sum_{i=1}^{N_S} w_i^{\mathsf{MrP}}(\tilde{y}_i - y_i) \quad \text{where} \quad w_i^{\mathsf{MrP}} := \frac{\partial \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(Y_{\mathcal{S}})}{\partial y_i}.$$

Our task is to rigorously show that even such local weights can be used diagnostically.

9

The weights can look very different!

Does this mean anything? Are the differences important?

Figure 1: Comparison between raking and MrPlew weights for the Name Change dataset

What are we weighting for?³

Target average response
$$=rac{1}{N_T}\sum_{j=1}^{N_T}y_jpproxrac{1}{N_S}\sum_{i=1}^{N_S}w_iy_i$$
 = Weighted survey average response

We can't check this, because we don't observe y_i .

³Pun attributable to Solon, Haider, and Wooldridge (2015)

What are we weighting for?³

Target average response
$$=\frac{1}{N_T}\sum_{i=1}^{N_T}y_j \approx \frac{1}{N_S}\sum_{i=1}^{N_S}w_iy_i$$
 = Weighted survey average response

We can't check this, because we don't observe y_i . But we can check whether:

$$\frac{1}{N_T} \sum_{j=1}^{N_T} \mathbf{x}_j = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i \mathbf{x}_i$$

Such weights satisfy "covariate balance" for x.

You can check covariate balance for any calibration weighting estimator, and any function $f(\mathbf{x})$.

11

³Pun attributable to Solon, Haider, and Wooldridge (2015)

What are we weighting for?³

Target average response
$$=rac{1}{N_T}\sum_{j=1}^{N_T}y_jpproxrac{1}{N_S}\sum_{i=1}^{N_S}w_iy_i=$$
 Weighted survey average response

We can't check this, because we don't observe y_i . But we can check whether:

$$\frac{1}{N_T} \sum_{j=1}^{N_T} \mathbf{x}_j = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i \mathbf{x}_i$$

Such weights satisfy "covariate balance" for x.

You can check covariate balance for any calibration weighting estimator, and any function $f(\mathbf{x})$.

Even more, covariate balance is the criterion for a popular class of calibration weight estimators:

Raking calibration weights

"Raking" selects weights that

- · Are as "close as possible" to some reference weights
- · Under the constraint that they balance some selected regressors.

³Pun attributable to Solon, Haider, and Wooldridge (2015)

One reason to balance $f(\mathbf{x})$ is because we think $\mathbb{E}\left[y|\mathbf{x}\right]$ might plausibly vary $\propto f(\mathbf{x})$, and want to check whether our estimator can capture this variability.

One reason to balance $f(\mathbf{x})$ is because we think $\mathbb{E}\left[y|\mathbf{x}\right]$ might plausibly vary $\propto f(\mathbf{x})$, and want to check whether our estimator can capture this variability.

Balance-informed sensitivity check (BISC) (informal)

Pick a small $\delta>0$ and an $f(\cdot)$. Define a new response variable \tilde{y} such that

$$\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x}).$$

We know the change this is supposed to induce in the target population.

Covariate balance checks whether our estimators produce the same change.

One reason to balance $f(\mathbf{x})$ is because we think $\mathbb{E}\left[y|\mathbf{x}\right]$ might plausibly vary $\propto f(\mathbf{x})$, and want to check whether our estimator can capture this variability.

Balance-informed sensitivity check (BISC) (formal)

Pick a small $\delta > 0$ and an $f(\cdot)$. Define a *new response variable* \tilde{y} such that

$$\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x}).$$

We know the expected change this perturbation produces in the target distribution:

$$\mathbb{E}\left[\mu(\tilde{y}) - \mu(y)|\mathbf{x}\right] = \frac{1}{N_T} \sum_{j=1}^{N_T} \left(\mathbb{E}\left[\tilde{y}|\mathbf{x}_p\right] - \mathbb{E}\left[y|\mathbf{x}_p\right]\right) = \delta \frac{1}{N_T} \sum_{j=1}^{N_T} f(\mathbf{x}_j)$$

Then, check whether your estimator $\hat{\mu}(\cdot)$ produces the same change for observed $\tilde{Y}_{\mathcal{S}}, Y_{\mathcal{S}}$:

$$\underbrace{\hat{\mu}(\tilde{Y}_{\mathcal{S}}) - \hat{\mu}(Y_{\mathcal{S}})}_{\text{Replace weighted averages with changes in an estimator}} \overset{\text{check}}{\approx} \delta \frac{1}{N_T} \sum_{j=1}^{N_T} f(\mathbf{x}_j).$$

One reason to balance $f(\mathbf{x})$ is because we think $\mathbb{E}\left[y|\mathbf{x}\right]$ might plausibly vary $\propto f(\mathbf{x})$, and want to check whether our estimator can capture this variability.

Balance-informed sensitivity check (BISC) (formal)

Pick a small $\delta > 0$ and an $f(\cdot)$. Define a *new response variable* \tilde{y} such that

$$\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x}).$$

We know the expected change this perturbation produces in the target distribution:

$$\mathbb{E}\left[\mu(\tilde{y}) - \mu(y)|\mathbf{x}\right] = \frac{1}{N_T} \sum_{j=1}^{N_T} \left(\mathbb{E}\left[\tilde{y}|\mathbf{x}_p\right] - \mathbb{E}\left[y|\mathbf{x}_p\right]\right) = \delta \frac{1}{N_T} \sum_{j=1}^{N_T} f(\mathbf{x}_j)$$

Then, check whether your estimator $\hat{\mu}(\cdot)$ produces the same change for observed $\tilde{Y}_{\mathcal{S}}, Y_{\mathcal{S}}$:

$$\underbrace{\hat{\mu}(\tilde{Y}_{\mathcal{S}}) - \hat{\mu}(Y_{\mathcal{S}})}_{\text{Replace weighted averages with changes in an estimator}} \overset{\text{check}}{\approx} \delta \frac{1}{N_T} \sum_{j=1}^{N_T} f(\mathbf{x}_j).$$

When $\hat{\mu}(\cdot) = \hat{\mu}^{CW}(\cdot)$, BISC recovers the standard covariate balance check.

We will study
$$\hat{\boldsymbol{\mu}}(\cdot) = \hat{\boldsymbol{\mu}}^{MrP}(\cdot)$$
.

BISC for MrP

Suppose I have \tilde{y} such that $\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x})$. Now I need to evaluate $\hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(\tilde{y}) - \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(Y_{\mathcal{S}})$.

BISC for MrP

Suppose I have \tilde{y} such that $\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x})$. Now I need to evaluate $\hat{\mu}^{\mathsf{MrP}}(\tilde{y}) - \hat{\mu}^{\mathsf{MrP}}(Y_{\mathcal{S}})$.

Problem: $\hat{\mu}^{\text{MrP}}(\cdot)$ is computed with MCMC.

- Each MCMC run typically takes hours, and
- Output is noisy, and $\hat{\mu}^{\mathrm{MrP}}(\tilde{y}) \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})$ may be small.

BISC for MrP

Suppose I have \tilde{y} such that $\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x})$. Now I need to evaluate $\hat{\boldsymbol{\mu}}^{\mathrm{MrP}}(\tilde{y}) - \hat{\boldsymbol{\mu}}^{\mathrm{MrP}}(Y_{\mathcal{S}})$.

Problem: $\hat{\mu}^{MrP}(\cdot)$ is computed with MCMC.

- · Each MCMC run typically takes hours, and
- Output is noisy, and $\hat{\mu}^{MrP}(\tilde{y}) \hat{\mu}^{MrP}(Y_S)$ may be small.

Solution: Use our local approximation, MrPlew!

Balance informed sensitivity check with MrPlew:

For a wide set of judiciously chosen $f(\cdot)$, check

$$\hat{\mu}^{\mathsf{MrP}}(\tilde{Y}_{\mathcal{S}}) - \hat{\mu}^{\mathsf{MrP}}(Y_{\mathcal{S}}) pprox \sum_{i=1}^{N_S} w_i^{\mathsf{MrP}}(\tilde{y}_i - y_i) pprox \underbrace{\delta \sum_{i=1}^{N_S} w_i^{\mathsf{MrP}} f(\mathbf{x}_i)}_{}^{\mathsf{check}} \stackrel{\mathsf{check}}{pprox} \delta \frac{1}{N_T} \sum_{j=1}^{N_T} f(\mathbf{x}_j).$$

What you actually check

- We have defined BISC in terms of \tilde{y} such that $\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x})$
- We have approximated $\hat{\pmb{\mu}}^{\rm MrP}(\tilde{Y}_{\cal S}) \hat{\pmb{\mu}}^{\rm MrP}(Y_{\cal S})$ for $\tilde{y} pprox y$

How to get such a \tilde{y} ? **Recall** y **is binary!**

- We have defined BISC in terms of \tilde{y} such that $\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x})$
- We have approximated $\hat{\mu}^{\rm MrP}(\tilde{Y}_{\cal S}) \hat{\mu}^{\rm MrP}(Y_{\cal S})$ for $\tilde{y} pprox y$

How to get such a \tilde{y} ? Recall y is binary! Two solutions, with their own pros and cons:

Option 1: Force \tilde{y} to be binary.

Option 2: Allow \tilde{y} to take generic values.

- We have defined BISC in terms of \tilde{y} such that $\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x})$
- We have approximated $\hat{\mu}^{\rm MrP}(\tilde{Y}_{\cal S}) \hat{\mu}^{\rm MrP}(Y_{\cal S})$ for $\tilde{y} pprox y$

How to get such a \tilde{y} ? Recall y is binary! Two solutions, with their own pros and cons:

Option 1: Force \tilde{y} to be binary.

- 1. Make *some* guess $\hat{m}(\mathbf{x}) \approx \mathbb{E}\left[y|\mathbf{x}\right]$
 - · E.g. Posterior mean, or
 - · Shrunken posterior mean, or
 - Some values that gives the same posterior
- 2. Take $u_i \stackrel{iid}{\sim} \text{Unif}(0,1)$
- 3. Assume $y_i = \mathbb{I}\left(u_i \leq \hat{m}(\mathbf{x}_i)\right)$
- 4. Draw $u_n|y_n$
- 5. Set $\tilde{y}_i = \mathbb{I}\left(u_i \leq \hat{m}(\mathbf{x}_i) + \delta \mathbf{x}_i\right)$

Option 2: Allow \tilde{y} to take generic values.

- We have defined BISC in terms of \tilde{y} such that $\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x})$
- We have approximated $\hat{\mu}^{\rm MrP}(\tilde{Y}_{\cal S}) \hat{\mu}^{\rm MrP}(Y_{\cal S})$ for $\tilde{y} pprox y$

How to get such a \tilde{y} ? Recall y is binary! Two solutions, with their own pros and cons:

Option 1: Force \tilde{y} to be binary.

- 1. Make *some* guess $\hat{m}(\mathbf{x}) \approx \mathbb{E}\left[y|\mathbf{x}\right]$
 - · E.g. Posterior mean, or
 - · Shrunken posterior mean, or
 - Some values that gives the same posterior
- 2. Take $u_i \stackrel{iid}{\sim} \text{Unif}(0,1)$
- 3. Assume $y_i = \mathbb{I}(u_i \leq \hat{m}(\mathbf{x}_i))$
- 4. Draw $u_n|y_n$
- 5. Set $\tilde{y}_i = \mathbb{I}\left(u_i \leq \hat{m}(\mathbf{x}_i) + \delta \mathbf{x}_i\right)$

Option 2: Allow \tilde{y} to take generic values.

- 1. Set $\tilde{y}_i = y_i + \delta f(\mathbf{x}_i)$.
- 2. Then you're done.
- 3. There is nothing else to do.

- We have defined BISC in terms of \tilde{y} such that $\mathbb{E}\left[\tilde{y}|\mathbf{x}\right] = \mathbb{E}\left[y|\mathbf{x}\right] + \delta f(\mathbf{x})$
- We have approximated $\hat{\mu}^{\rm MrP}(\tilde{Y}_{\mathcal{S}}) \hat{\mu}^{\rm MrP}(Y_{\mathcal{S}})$ for $\tilde{y} pprox y$

How to get such a \tilde{y} ? **Recall** y **is binary! Two solutions, with their own pros and cons:**

Option 1: Force \tilde{y} to be binary.

- 1. Make some guess $\hat{m}(\mathbf{x}) \approx \mathbb{E}\left[y|\mathbf{x}\right]$
 - · E.g. Posterior mean, or
 - · Shrunken posterior mean, or
 - Some values that gives the same posterior
- 2. Take $u_i \stackrel{iid}{\sim} \text{Unif}(0,1)$
- 3. Assume $y_i = \mathbb{I}(u_i < \hat{m}(\mathbf{x}_i))$
- 4. Draw $u_n|y_n$
- 5. Set $\tilde{y}_i = \mathbb{I}\left(u_i \leq \hat{m}(\mathbf{x}_i) + \delta \mathbf{x}_i\right)$

Pros and cons:

- Realistic
- Have to pick $\hat{m}(\mathbf{x})$
- $\tilde{Y}_{\mathcal{S}} Y_{\mathcal{S}}$ not infinitesimally small
- · Sanity check for theory

Option 2: Allow \tilde{y} to take generic values.

- 1. Set $\tilde{y}_i = y_i + \delta f(\mathbf{x}_i)$.
- 2. Then you're done.
- 3. There is nothing else to do.

Pros and cons:

- Not realistic
- No additional assumptions
- $\tilde{Y}_{\mathcal{S}} Y_{\mathcal{S}}$ may be infinitesimally small
- · Use for theory

BISC Theorem: (sketch)

Take
$$\tilde{y}_n = y_n + \delta f(\mathbf{x}_n)$$
.

We state conditions for Bayesian hierarchical logistic regression under which

$$\left| \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(\tilde{Y}_{\mathcal{S}}) - \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(Y_{\mathcal{S}}) - \delta \sum_{i=1}^{N_{S}} w_{i}^{\mathsf{MrP}} f(\mathbf{x}_{i}) \right| = \mathsf{Small?}$$

 $^{^4}$ Donsker class of measurable functions with uniformly bounded $\mathbb{E}\left[\mathbf{x}f(\mathbf{x})
ight]$.

⁵**G.** and Broderick 2024; Kasprzak, **G.**, and Broderick 2025.

BISC Theorem: (sketch)

Take
$$\tilde{y}_n = y_n + \delta f(\mathbf{x}_n)$$
.

We state conditions for Bayesian hierarchical logistic regression under which

$$\left| \hat{\boldsymbol{\mu}}^{\text{MrP}}(\tilde{Y}_{\mathcal{S}}) - \hat{\boldsymbol{\mu}}^{\text{MrP}}(Y_{\mathcal{S}}) - \delta \sum_{i=1}^{N_S} w_i^{\text{MrP}} f(\mathbf{x}_i) \right| = O(\delta^2)$$

 $^{^4}$ Donsker class of measurable functions with uniformly bounded $\mathbb{E}\left[\mathbf{x}f(\mathbf{x})
ight]$.

⁵**G.** and Broderick 2024; Kasprzak, **G.**, and Broderick 2025.

BISC Theorem: (sketch)

Take
$$\tilde{y}_n = y_n + \delta f(\mathbf{x}_n)$$
.

We state conditions for Bayesian hierarchical logistic regression under which

$$\left| \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(\tilde{Y}_{\mathcal{S}}) - \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(Y_{\mathcal{S}}) - \delta \sum_{i=1}^{N_S} w_i^{\mathsf{MrP}} f(\mathbf{x}_i) \right| = O(\delta^2) \text{ as } N \to \infty$$

⁴Donsker class of measurable functions with uniformly bounded $\mathbb{E}\left[\mathbf{x}\,f\left(\mathbf{x}\right)\right]$.

⁵G. and Broderick 2024; Kasprzak, G., and Broderick 2025.

BISC Theorem: (sketch)

Take
$$\tilde{y}_n = y_n + \delta f(\mathbf{x}_n)$$
.

We state conditions for Bayesian hierarchical logistic regression under which

$$\sup_{f \in \mathcal{F}} \left| \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(\tilde{Y}_{\mathcal{S}}) - \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(Y_{\mathcal{S}}) - \delta \sum_{i=1}^{N_{S}} w_{i}^{\mathsf{MrP}} f(\mathbf{x}_{i}) \right| = O(\delta^{2}) \text{ as } N \to \infty$$

For a very broad class⁴ of \mathcal{F} .

Uniformity justifies searching for "imbalanced" f.

⁴Donsker class of measurable functions with uniformly bounded $\mathbb{E}\left[\mathbf{x}\,f(\mathbf{x})\right]$.

⁵G. and Broderick 2024; Kasprzak, G., and Broderick 2025.

BISC Theorem: (sketch)

Take
$$\tilde{y}_n = y_n + \delta f(\mathbf{x}_n)$$
.

We state conditions for Bayesian hierarchical logistic regression under which

$$\sup_{f \in \mathcal{F}} \left| \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(\tilde{Y}_{\mathcal{S}}) - \hat{\boldsymbol{\mu}}^{\mathsf{MrP}}(Y_{\mathcal{S}}) - \delta \sum_{i=1}^{N_{S}} w_{i}^{\mathsf{MrP}} f(\mathbf{x}_{i}) \right| = O(\delta^{2}) \text{ as } N \to \infty$$

For a very broad class⁴ of \mathcal{F} .

Uniformity justifies searching for "imbalanced" f.

The uniformity result builds on our earlier work on uniform and finite–sample error bounds for Bernstein–von Mises theorem–like results⁵.

⁴Donsker class of measurable functions with uniformly bounded $\mathbb{E}\left[\mathbf{x}\,f(\mathbf{x})\right]$.

⁵G. and Broderick 2024; Kasprzak, G., and Broderick 2025.

References i

B., Eli, Avi F., and Erin H. (2021). Multilevel calibration weighting for survey data. arXiv: 2102.09052 [stat.ME].

Blue Rose Research (2024). 2024 Election Retrospective Presentation. https://data.blueroseresearch.org/2024retro-download. Accessed on 2024-10-26.

Bonica, A. et al. (Apr. 2025). Did Non-Voters Really Flip Republican in 2024? The Evidence Says No.

https://data4democracy.substack.com/p/did-non-voters-really-flip-republican.

Bürkner, Paul-Christian (2017). "brms: An R Package for Bayesian Multilevel Models Using Stan". In: Journal of Statistical Software 80.1, pp. 1–28. DOI: 10.18637/jss.v080.i01.

Chattopadhyay, A. and J. Zubizarreta (2023). "On the implied weights of linear regression for causal inference". In: Biometrika 110.3, pp. 615–629.

G. and T. Broderick (2024). The Bayesian Infinitesimal Jackknife for Variance. arXiv: 2305.06466 [stat.ME]. URL: https://arxiv.org/abs/2305.06466.

G., T. Broderick, and M. I. Jordan (2018). "Covariances, robustness and variational bayes". In: Journal of machine learning research 19.51.

G., W. Stephenson, et al. (2019). "A swiss army infinitesimal jackknife". In: The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, pp. 1139–1147.

Gelman, A. (2007a). "Rejoinder: Struggles with survey weighting and regression modelling". In: Statistical Science 22.2, pp. 184–188.

(2007b). "Struggles with survey weighting and regression modeling". In.

Kasprzak, M., G., and T. Broderick (2025). How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences. arXiv: 2209.14992 [math.ST]. URL: https://arxiv.org/abs/2209.14992.

Krantz, S. and H. Parks (2012). The Implicit Function Theorem: History, Theory, and Applications. Springer Science & Business Media.

References ii

Solon, G., S. Haider, and J. Wooldridge (2015). "What are we weighting for?" In: Journal of Human resources 50.2, pp. 301–316.