Sage Dynamics Ref Car	d v3.0	Dynamical System Initialization	Rational Functions f.dynamical_degree()	
(for Sage 8.1)		DynamicalSystem(polys, [domain])	f.degree_sequence()	deg. of iterates
Rings and Fields		projective if no domain	f.indeterminacy_locus()	deg. of fierates
ZZ integer ring $\operatorname{Zmod}(m)$	$\mathbb{Z}/m\mathbb{Z}$	DynamicalSystem_affine(polys, [domain])		if fin. many
QQ rational field QQbar	alg. clos. of QQ	DynamicalSystem_projective(polys, [domain])		n nn. many
RR real field CC	complex field	$\texttt{f.as_dynamical_system()} \text{End} \rightarrow \text{DS}$	Functions	
Qp(p) p-adic field $Zp(p)$	p-adic integers	Periodic Behavior	f[i]	ith coord
QQ[] polynomials QQ[[]]	power series	$f.dynatomic_polynomial([m,n])$ —	f.automorphism_group()	$\{\phi: f^{\phi} = f$
	finite field	$Q.is_preperiodic(f)$ —	f.autmorphism_group()	$\operatorname{Hom}(f,f)$
CyclotomicField(n)	$\mathbb{Q}(\zeta_n)$	Q.multiplier(f,n) $(f^n)'(Q)$	f.base_ring()	_
FractionField(ring)	field of fractions	$Q.orbit_structure(f)$ [tail,period]	f.change_ring()	
QuadraticField(d)	$\mathbb{Q}(\sqrt{d})$	$f.periodic_points(n,[params])$	P.chebyshev_polynomial(k , k	ind)
·	number field	f.rational_periodic_points([params]) —	f.codomain()	— .
K.absolute_field()	—	f.rational_periodic_graph([params]) —	${\tt f.conjugate}(\phi)$	$\phi^{-1} \circ f \circ \phi$
K.degree()	$[K:\mathbb{Q}]$	f.rational_preperiodic_points([params]) —	${\tt f.conjugating_set}(g)$	$\operatorname{Hom}(f,g)$
K.extension(poly)	$[K \cdot \mathcal{Q}]$ fld ext	f.rational_preperiodic_graph([params]) —	<pre>f.defining_polynomials()</pre>	_
QQ.range_by_height(bd)	iterator	f.possible_periods([params]) via good red.	f.degree()	_
K.elements_of_bounded_height(bd		Heights and Measures	$ exttt{f.dehomogenize}(k)$	_
number_field_elements_from_alge		•	f.domain()	_
	braics(pis)	Q.canonical_height(f ,[params]) $\hat{h}_f(Q)$	${ t f.homogenize}(k)$	
Spaces and Schemes		f.critical_height() $\sum_{c \in \operatorname{Crit}} \hat{h}_f(c)$	f.is_morphism()	_
A. < vars >= AffineSpace(ring, dim)	\mathbb{A}^n	${\tt Q.global_height([prec])} \qquad \qquad h(Q)$	<pre>f.normalize_coordinates()</pre>	remove gcd
P. <pre>P.<pre><vars>=ProjectiveSpace(ring, d)</vars></pre></pre>		f.global_height([prec]) —	${ t f.nth_iterate}(Q,n)$	$f^n(Q)$
PP. <vars>=ProductProjectiveSpace</vars>	-	Q.green_function(v ,[prec]) at v	f.nth_iterate_map(n)	f^n
	$\mathbb{P}^n \times \cdots \times \mathbb{P}^m$	f.height_difference_bound() $\left h(Q) - \hat{h}_f(Q) ight $	P.Lattes(E,m)	create Latt
${\tt WehlerK3Surface}(polys)$		$ ext{f.local_height_arch}(i, [ext{prec}]) \qquad ext{at } \infty$	f.orbit(Q,[m,n])	$\{f^m(Q),\ldots$
S.affine_patch $(i, [A])$		Critical Points	f.primes_of_bad_reduction() —
S.base_ring()	base ring S	f.critical_points() —	f.resultant()	_
S.change_ring()	change base ring	f.critical_subscheme() —	$ exttt{f.scale_by}(t)$	$t\cdot f$
S.coordinate_ring()	coor. ring of S	f.critical_point_portrait() —	f.specialization()	subs value
S.defining_ideal()		f.critical_height() $\sum_{c \in ext{Crit}} \hat{h}_f(c)$	Points	
S.defining_polynomials()		f.is_postcritically_finite() —	Q[i]	ith coord
S.dimension()	rel. dim of S	f.wronskian_ideal() crit locus	Q.change_ring()	_
S.gens()	vars of coord. ring		Q.clear_denominator()	_
S.point_transformation_matrix([pts,pts])	Cyclic Structures	Q.codomain()	ambient space
	find PGL element	f.all_rational_preimages(points) —	Q.dehomogenize(i)	
S.projective_embedding($[i,\mathbb{P}]$)	_	f.cyclegraph() Fq digraph	Q.domain()	base ring
		Q.orbit_structure(f) $\boxed{\mathbb{F}_q}$ $[tail,per]$	Q.homogenize(i)	
S.rational_points([bd,fld])		${ t Q.rational_preimages(f)}$	Q.normalize_coordinates()	remove gcd
	subscheme of S	Q.rational_connected_component(f) —	Q.nth_iterate(f,n)	$f^n(Q)$
	vars of coord. ring		Q.orbit $(f,(m,n))$	$f^m(Q),\ldots,f^n(Q)$
	vars as strings		Q.scale_by(t)	$t \cdot Q$
			d.pcare_place	v «

S.weil_restriction()

restric. of const.

 $t \cdot f$ subs value of param ith coord ambient space base ring remove gcd $f^n(Q)$ $\begin{bmatrix} f^m(Q), \dots, f^n(Q) \end{bmatrix}$ $t \cdot Q$

ith coord $\{\phi:f^\phi=f\}$ $\operatorname{Hom}(f, f)$

remove gcd $f^n(Q)$

create Lattès map $\{f^m(Q),\ldots,f^n(Q)\}$

1

preparser(bool)

		1
Iteration $f.nth_iterate(Q,n)$	$f^n(Q)$	Matrices matrix(K,n,m,list)
f.nth_iterate_map(n)	$f^{n}(\mathcal{Q})$	matrix(K, list of li
f.orbit(Q ,[m , n])	$\left[f^m(Q),\ldots,f^n(Q)\right]$	M.charpoly()
f.rational_preimages(Q ,		M.determinant()
	f(Q)	M.height()
Moduli Spaces	M.inverse()	
f.is_polynomial() has	M.LLL([args])	
f.is_PGL_minimal()	M.minors(k)	
f.is_conjugate(g) $g \stackrel{?}{=}$	M.rank()	
	$+ a_{n-2}x^{n-2} + \dots + a_0$ resultant f^{ϕ}	
	Polynomial Rings	
f.multiplier_spectra(n,	R. <a,b>=PolynomialR</a,b>	
$\{\lambda_f(Q):$	R. <a>=PolynomialRin	
f.sigma_invariants(n ,[p	R. <a>=PolynomialRin	
$\{\sigma_i(\lambda_f(Q)):$	R.gen(k)	
Finite Fields	R.gens()	
f.cyclegraph() it	R.hom(im_gens,S)	
$Q.orbit_structure(f)$ [t	R.ideal(polys)	
Mandelbrot and Julia Set	I.dimension()	
$external_ray(v)$	I.elimination_ideal	
mandelbrot_plot([params]	I.gens()	
${ t julia_plot([params])}$	I.groebner_basis()	
Miscellaneous / Help	<pre>I.is_prime() I.is_maximal()</pre>	
Wiscentification / Telp	last output	I.is_maximal() I.is_principal()
- %time	execution time	I.is_one()
<pre>timeit('cmd',number=#)</pre>	time multiple iterations	I.primary_decomposi
s.< <i>tab</i> >	show all cmds on s	I.radical()
s.cmd?	info about cmd on s	I.ring()
set_verbose(None)	disable warnings	I.variety()
load(''path to file'')	load code file	I.vector_space_dime
copy(obj)	_	F.monomial_coeffici
latex(obj)	_	F.polynomial(x)
all(list of bool)	_	F.subs(dict)
any(list of bool)	_	F(tuple)
sum(list)	_	F.coefficient(mon)
$\max(list)$	_	F.coefficients()
isinstance(f, type)	check for type	list(F)

on/off notebk preparsing

F[list]

F.dict() F.lift(I)

```
create matrix
ists)
       create matrix
        global height
        LLL reduced lattice
        dets of k \times k minors
             poly ring over K
Ring(K,2)
ng(K)
             univar poly ring
             multivar poly ring
ng(K,1)
             kth variable
             all variables
             Hom(R,S)
             krull dim of R/I
al(vars)
sition()
             R.
             rat pts of dim 0
ension()
             of R/I
             base ring element
cient(mon)
             make univariate
             substitution
             substitution
   poly element
  list of (coeff,mon)
  coeff of mon with exp list
  dict of mon:coef via exp
  coeff of gens of I to get F
```

```
Algebraic Geometry
S.Chow_form()
                                      associated Chow form
S.coordinate_ring()
S.defining_ideal()
S.defining_polynomials()
 S.degree()
                                      from lc of hil poly
 S.dimension()
                                      relative dimension
 S.intersection(T)
                                      Serre's Tor
 S.intersection_multiplicity(T,Q)
 S.irreducible_components()
S.is smooth()
                                      Jacobian ideal
S.Jacobian()
S.projective_closure([P])
S.rational_points([bd])
 S.subscheme(ideal)
 S.veronese_embedding(d)
 S.weil_restriction()
                                      S \times T
 S*T
                                      S \times \cdots \times S
 S**n
I.radical()
                                      radical ideal
PP.components()
PP.dimension_components()
                                      list of dims
PP.segre_embedding([codomain])
 C.arithmetic_genus()
C.genus()
C.is_complete_intersection()
C.is_ordinary_singularity(Q)
C.is_transverse(D,Q)
C.tangents(Q)
Copyright © 2017 B. Hutz, J. Silverman v3.0. Permission is granted
```

for noncommercial distribution provided the copyright notice and this permission notice are preserved on all copies. Thanks to ICERM

for hosting us while version 1.0 was written.