

Handbook of Physics

For courses:

Classical Physics for Engineers
Applied Physics for Engineers
Quantum Physics for Engineers
Condensed Matter Physics for Engineers

Compiled and Edited by

Department of Physics

RV College of Engineering® (Autonomous Institution affiliated to VTU, Belagavi) RV Vidyaniketan Post, 8th Mile, Mysuru Road Bengaluru – 560 059 Email: hod.physics@rvce.edu.in

Contents

Fundamental Constants	1
Kinematics and Kinetics	2
Oscillations Elasticity Thermodynamics	4
Elasticity Thermodynamics	6
Thermodynamics	8
Fluid Mechanics I	10
Fluid Mechanics II	13
Quantum Mechanics	14
Principles of Quantum Computation	17
Electrical Conductivity in Solids and Band Theory of Solids	18
Semiconductor Devices	20
Dielectrics and Transducers	21
Lasers	22
Optical Fibers	22
Superconductivity	23
Material Characterization	24
Formulae used in lab	26

Fundamental Constants

All the constants in this table are taken from *The NIST Reference on Constants*, *Units & Uncertainty* found in http://physics.nist.gov/constants.

Quantity	Symbol	Value	Unit
Speed of light in vacuum	c	299 792 458	$\mathrm{m}\mathrm{s}^{-1}$
Magnetic constant	μ_0	$4\pi \times 10^{-7}$	NA^{-2}
Electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817\times10^{-12}$	$\mathrm{F}\mathrm{m}^{-1}$
Newtonian constant of	G	6.67384×10^{-11}	$m^3kg^{-1}s^{-2}$
gravitation		3.1	_
Planck constant	h	6.62606957×10^{-34}	Js
$h/2\pi$	\hbar	$1.054571726 \times 10^{-34}$	Js
Elementary charge	e	$1.602176565\times10^{-19}$	C
Bohr magneton $e\hbar/2m_e$	$\mu_{ m B}$	$927.400968 \times 10^{-26}$	$ m JT^{-1}$
Nuclear magneton $e\hbar/2m_{\rm p}$	$\mu_{ m N}$	$5.05078353 \times 10^{-27}$	$ m JT^{-1}$
Fine-structure constant	α	$7.2973525698 \times 10^{-3}$	
$e^2/4\pi\epsilon_0\hbar c$			
Rydberg constant $\alpha^2 m_e c/2h$	R_{∞}	10 973 731.568 539	m^{-1}
Bohr radius	a_0	$0.52917721092\times10^{-10}$	m
$\alpha/4\pi R_{\infty} = 4\pi\epsilon_0 \hbar^2/m_{\rm e}e^2$			
Electron mass	$m_{ m e}$	$9.10938291 \times 10^{-31}$	kg
energy equivalent	$m_{\rm e}c^2$	0.510 998 928	MeV
Proton mass	$m_{ m p}$	$1.672621777 \times 10^{-27}$	kg
energy equivalent	$m_{ m p} c^2$	938.272 046	MeV
Neutron mass	$m_{ m n}$	$1.674927351 \times 10^{-27}$	kg
energy equivalent	$m_{ m n}c^2$	939.565 379	MeV
Avogadro constant	$N_{ m A}$	6.02214129×10^{23}	mol^{-1}
Atomic mass constant	$m_{ m u}$	$1.660538921 \times 10^{-27}$	kg
$m_{\rm u} = \frac{1}{12} m(^{12}{\rm C}) = 1{\rm u}$			
energy equivalent	$m_{ m u}c^2$	$1.492417954 \times 10^{-10}$	J
		931.494 061	MeV
Faraday constant $N_A e$	F	96 485.336 5	$C \text{mol}^{-1}$
Universal gas constant	R_u	8.314 462 1	$\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-}$

Quantity	Symbol	Value	Unit
Boltzmann constant R/N_A	k	$1.3806488 \times 10^{-23}$	J K ⁻¹
Stefan-Boltzmann constant $(\pi^2/60)k^4/\hbar^3c^2$	σ	5.670373×10^{-8}	$\mathrm{W}\mathrm{m}^{-2}\mathrm{K}^{-4}$
First radiation constant $2\pi hc^2$	c_1	3.74177153×10^{-16}	$\mathrm{W}\mathrm{m}^2$
Second radiation constant hc/k	c_2	1.4387770×10^{-2}	m K
Wien displacement law			
constant $b = \lambda_{\max} T$	<i>b</i>	2.8977721×10^{-3}	m K
constant $b' = v_{\text{max}}/T$	b'	5.8789254×10^{10}	$\mathrm{Hz}\mathrm{K}^{-1}$
Molar mass constant	$M_{ m u}$	1×10^{-3}	$kg mol^{-1}$
Molar mass of ¹² C	$M(^{12}C)$	12×10^{-3}	$kg mol^{-1}$
Standard atmosphere		101.325	k Pa
Standard acceleration of gravity	g	9.806 65	${ m m~s^{-2}}$

Kinematics and Kinetics

Quantity	Formula	Glossary
Velocity:	$v = \frac{ds}{dt}$	s = displacement t = time
Acceleration:	$a = \frac{d^2s}{dt^2}$	
Momentum:	p = mv	m = mass of the object
Newton's II law:	$F = \frac{dp}{dt} = ma$	F = force acting
Equations of motion with	v = u + at	v = final velocity
uniform acceleration:	$s = ut + \frac{1}{2}at^2$	u = initial velocity
	$v^2 - u^2 = 2as$	

Approved by AICTE, New Delhi

Uniform circular motion:		
a) Angular velocity:	$\omega = \frac{d\theta}{dt}$	$\theta = \text{angular}$ displacement
b) Relation between v and ω :	$v = r\omega$	r = radius
c) Time period:	$T=2\pi/\omega$	
d) Angular acceleration:	$\alpha = \frac{d\omega}{dt} = \frac{d\omega}{d\theta}\omega$	
e) Linear acceleration:	$a = \alpha r$	
f) Equations of motion:	$\omega = \omega_0 + \alpha t$	ω_0 = initial angular
2	$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$	velocity
38/	$\omega^2 - \omega_0^2 = 2\alpha\theta$	1 = 1
g) Relations in terms of	$2\pi N$ $2\pi N$	\$
revolutions per minute (RPM) <i>N</i> :	$\omega = \frac{2\pi N}{60}, v = \omega r = \frac{2\pi N}{60}r$	
Superelevation:		
a) Centripetal force <i>or</i> centrifugal force:	$F = m\frac{v^2}{r}$	v = velocity, $m = $ mass $r = $ path radius
b) Frictional force:	F = fW	W = mg = weight
c) Condition for skidding on level road:	$v = \sqrt{fgr}$	f = coefficient of friction
d) Condition for over turning on level road:	$v = \sqrt{\frac{grB}{2h}}$	g = acceleration due to gravityB = distance between
e) Condition for skidding on banked road:	$v = \sqrt{gr\left(\frac{f + \tan \theta}{1 - f \tan \theta}\right)}$	inner and outer wheels h = height of center of gravity from ground
f) Condition for overturning on banked road:	$v = \sqrt{gr\left(\frac{B + 2h\tan\theta}{2h - B\tan\theta}\right)}$	θ = angle of superelevation

g) Reactions of a vehicle moving on a level circular path:	$R_A = \frac{W}{2} \left(1 - \frac{v^2 h}{Bgr} \right)$ $R_B = \frac{W}{2} \left(1 + \frac{v^2 h}{Bgr} \right)$	
h) Expression for superelevation, <i>e</i> :	$e = \frac{E}{B} = \tan \theta$ $e = \tan \theta = \frac{v^2}{qr}$	E = height from ground to elevated end of the road
i) Superelevation, <i>e</i> for rails:	$e = \frac{E}{G}$	G = gauge of rails
Projectile motion:	1/3	
a) Equation to the path of projectile:	$y = x \tan \alpha - \frac{gx^2}{2u^2 \cos^2 \alpha}$	α = angle of projection u = velocity of
b) Horizontal range:	$R = \frac{u^2 \sin(2\alpha)}{g}, R_{\text{max}} = \frac{u^2}{g}$	projection
c) Time of flight:	$T = \frac{2u\sin\alpha}{g}$	
d) Maximum height:	$H = \frac{u^2 \sin^2 \alpha}{2g}$	

Oscillations

Quantity	Formula	Glossary
Frequency:	$f = \frac{1}{T}$	T = time period
Angular frequency:	$\omega = \frac{2\pi}{T} = 2\pi f$	
Differential equation of a Simple Harmonic Motion (SHM):	$\frac{d^2y}{dt^2} + \omega^2 y = 0$	y = displacement

Equation of motion for a particle under linear SHM:	$y(t) = y_0 \sin(\omega t + \phi)$ or $y(t) = y_0 \cos(\omega t + \phi)$	$y_0 = \text{amplitude}$ $\phi = \text{phase}$
Velocity and acceleration for a particle under SHM:	$v = \omega \sqrt{y_0^2 - y^2}$ $a = -\omega^2 y$	
Time period of a spring-mass system undergoing SHM:	$T = \frac{\omega}{2\pi} = 2\pi \sqrt{\frac{m}{k}}$	m = mass attached $k = $ spring constant
Spring constant in stretching due to load mg	$k = \frac{mg}{L}$	L = stretching length $g = $ acceleration due to gravity
Effective spring constant for springs in series:	$\frac{1}{k_{\text{eff}}} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \cdots$	7.
Effective spring constant for springs in parallel:	$k_{\text{eff}} = k_1 + k_2 + k_3 + \cdots$	YU.S.
Damped harmonic oscillato	-	
a) Differential equation:	$\frac{d^2y}{dt^2} + 2b\frac{dy}{dt} + \omega^2 y = 0$	r = damping constant $2b = r/m$
b) General solution:	$y = A_1 e^{\left(-b + \sqrt{b^2 - \omega^2}\right)t} + A_2 e^{\left(-b - \sqrt{b^2 - \omega^2}\right)t}$	$\omega^2 = k/m$
c) Solution for critically damped case $(b^2 \approx \omega^2)$:	$y = [(C+D)+ \beta t(C-D)]e^{-bt}$	$\beta = \sqrt{b^2 - \omega^2}$
d) Solution for low damping case $(b^2 < \omega^2)$:	$y = Ae^{-bt}\sin(\beta't + \phi)$	$\beta' = \sqrt{\omega^2 - b^2}$
e) For this case the time period and the frequency is given by,	$T = \frac{2\pi}{\beta'} = \frac{2\pi}{\sqrt{\omega^2 - b^2}}$ $f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{k}{m} - \frac{r^2}{4m^2}}$	

Forced Vibrations:		
a) Differential equation:	$\frac{d^2y}{dt^2} + 2b\frac{dy}{dt} + \omega^2 y$ $= f\sin(\omega_d t)$	$f = F_0/m$ $F_0 = \text{amplitude of the}$ external driving force
b) General solution:	$y = A\sin(\omega_d t - \phi)$	ω_d = angular frequency of the external force
c) Amplitude A and phase ϕ :	$A = \frac{f}{\sqrt{\left(\omega^2 - \omega_d^2\right)^2 + 4b^2\omega_d^2}}$	R
	$\tan \phi = \frac{2b\omega_d}{\omega^2 - \omega_d^2}$	
d) Amplitude at resonance: $(\omega = \omega_d)$	$A_{\max} = \frac{f}{2b\omega_d}$	TEL

Elasticity

Quantity	Formula	Glossary
Linear strain or Tensile	change in length ΔL	
strain:	$=$ $\frac{1}{\text{original length}} = \frac{1}{L}$	
Volume strain or Bulk	_ change in volume _ ΔV	
strain:	original volume V	
Shear strain:	$=\theta=\frac{\Delta x}{L}$	$\Delta x = deformation$
	L	F = applied force
Stress:	$Stress = \frac{F}{I}$	A = cross-sectional
	A	area
	stress ∝ strain	
Hooke's law:	stress _ modulus of	
	$\frac{1}{\text{strain}} = \text{elasticity}$	

	NT1 -t	
	$Y = \frac{\text{Normal stress}}{\text{Normal stress}}$	
Young's modulus (<i>Y</i>):	Longitudin al strain	
	$=\frac{FL}{A\Delta L}$	
	$-\frac{1}{A\Delta L}$	
	$K = \frac{\text{Normal stress}}{1 - 1}$	
Bulk modulus (<i>K</i>):	$K \equiv \frac{1}{\text{Volume strain}}$	
Buik modulus (K).	FV	
	$=\frac{FV}{A\Delta V}$	
	Tangential stress	
Rigidity modulus (η):	$\eta = \frac{1}{\text{Shearing strain}}$	(R)
ragiaity modulus (ij).	FL 30	
/ 8	$=\frac{FL}{A\Delta x}$	(A)
/ ¿S-	lateral strain	2
Daissan's Datis (-)	$\sigma = \frac{1}{\text{longitudinal strain}}$	D = original diameter
Poisson's Ratio (σ):		ΔD = change in diameter
20	$=\frac{L}{\Delta L}\frac{\Delta D}{D}$	diameter
		α = elongation per unit
	$Y = \frac{1}{\alpha}$	length per unit stress
	α	along the direction of
Relations between	$K = \frac{1}{3(\alpha - 2\beta)}$	the force
different modulus of	$3(\alpha-2\beta)$	β = contraction per
elasticity	$\eta = \frac{1}{2(\alpha + \beta)}$	unit length per unit
	$2(\alpha + \beta)$	stress along the
	$\sigma = \frac{\beta}{-}$	direction ⊥ to the force
D 1 (* 1)	α	
Relations between Young's modulus <i>Y</i> and	Y	
1	$K = \frac{Y}{3(1 - 2\sigma)}$	
bulk modulus K: Relations between	3(1 20)	
Young's modulus Y and	Y	
rigidity modulus η :	$\eta = \frac{Y}{2(1+\sigma)}$	
Relations between	/	
Young's modulus <i>Y</i> , bulk	0 ·- V	
modulus K and rigidity	$Y = \frac{9\eta K}{3K + n}$	
modulus η :	$3K + \eta$	
modulus ij.		

Single cantilever:		
a) Bending moment for the beam bent to a radius of curvature of <i>R</i> :	$=\frac{Y}{R}I_g$	A = area of cross section of the beam
b) Geometrical moment of inertia:	$I_g = Ak^2$	k = radius of gyration about the neutral axis
c) Depression produced at a distance <i>x</i> from the fixed end:	$y = \frac{W}{YI_g} \left[\frac{Lx^2}{2} - \frac{x^3}{6} \right]$	W = load L = length of the beam $\delta = \text{depression}$
d) Young's modulus of the material of the cantilever:	$Y = \frac{WL^3}{3\delta I_g}$	produced at loaded end
e) For beam with rectangular cross section	$I_g = \frac{bd^3}{12}$	b = breadth d = thickness
f) For beam with circular cross section	$I_g = rac{\pi r^4}{4}$	r = radius
Couple per unit twist of a cylindrical rod (or wire):	$C = \frac{\pi \eta R^4}{2L}$	R = cross-sectional radius of the cylinder
Time period of a torsional pendulum:	$T = 2\pi \sqrt{\frac{I}{C}}$	L = length of the wire I = moment of inertia
Rigidity modulus of the wire of a torsional pendulum:	$\eta = \frac{8\pi L}{R^4} \left(\frac{I}{T^2}\right)$	of the attached rigid body about the axis of rotation

Thermodynamics

Quantity	Formula	Glossary
		T = temperature
		determined
Constant volume gas	P	P = gas pressure
thermometer:	$T = 273.16 \mathrm{K} \frac{1}{P_{\star}}$	measured
	11	$P_t = \text{gas pressure at}$
		triple point of water

Fahrenheit scale	$F = \frac{9}{5}C + 32$	C = Celsius scale
Pressure measured by a open U-tube mercury manometer:	$P = P_0 + \rho gz$ $= \rho gz_0 + \rho gz$ $= \rho g(z_0 + z)$	P_0 = atmospheric pressure ρ = density of mercury g = acceleration due to gravity z = difference in height of mercury in the two limbs z_0 = barometer reading
Heat energy required to raise the temperature of a liquid or a solid by ΔT :	$\Delta Q = mC\Delta T$	m = mass of the substance $C = $ specific heat
First law of thermodynamics:	$Q = \Delta U + W$	Q = heat transferred to the system ΔU = change in internal energy of the system W = work done by the system
Ideal gas equation of state:	$PV = nR_uT$ $PV = mRT$ $m = nM$ $R = R_u/M$	$P = \text{pressure}$ $V = \text{volume}$ $n = \text{number of moles}$ $R_u = \text{universal gas}$ constant $T = \text{temperature}$ $M = \text{molecular weight}$ $m = \text{mass of the gas}$ $R = \text{gas constant}$
Work done by gas expansion:	$W = \int_{V_i}^{V_f} P dV$	V_i = initial volume V_f = final volume
Work done in a isobaric process:	$W = P(V_f - V_i) = P\Delta V$	

Work done in a isothermal process:	$W = mRT \ln \left(\frac{V_f}{V_i} \right)$	
Adiabatic equation of state:	$PV^{\gamma} = \text{constant}$	$\gamma = C_P/C_V$ $C_P = \text{specific heat at}$ constant pressure $C_V = \text{specific heat at}$ constant volume $C_P - C_V = R$
Work done in adiabatic expansion of gases:	$W = \frac{1}{\gamma - 1} (P_i V_i - P_f V_f)$	P_i , V_i , P_f , V_f are initial and final pressures and volumes respectively.

Fluid Mechanics I

Quantity	Formula	Glossary
Specific volume:	$V_{\rho} = \frac{V_m}{m} = \frac{1}{\rho}$	V_m = volume of the fluid m = mass of the fluid ρ = density of the fluid
Specific gravity:	$SG = \frac{\rho}{\rho_{\rm w}}$	$\rho_{\rm w}$ = 1000 kg/m ³ is the density of water at 4°C.
Newton's law of viscosity for one-dimensional shear flow of Newtonian fluids:	$\tau = \mu \frac{du}{dy}$	$\tau = \text{shear stress}$ $\mu = \text{absolute viscosity}$ $du/dy = \text{velocity gradient}$
The force <i>F</i> required to move the upper plate at a constant speed of <i>V</i> while the lower plate remains stationary:	$F = \mu A \frac{V}{l}$	A = contact area between the plate and the fluid l = distance between the two parallel plates
Kinematic viscosity:	$v = \frac{\mu}{\rho}$	

Torque required in concentric cylinders rotational viscometer: Bulk modulus of elasticity for fluids: (in Pa)	$T = \mu \frac{4\pi^2 R^3 \dot{n} L}{l}$ $\kappa = -V_\rho \left(\frac{\partial P}{\partial V_\rho}\right)_T = \rho \left(\frac{\partial P}{\partial \rho}\right)_T$	L = length of the cylinder \dot{n} = number of revolutions per unit time R = radius of the inner cylinder l = fluid layer thickness
Isothermal compressibility: (in Pa ⁻¹)	$\alpha = \frac{1}{\kappa} = -\frac{1}{V_{\rho}} \left(\frac{\partial V_{\rho}}{\partial P} \right)_{T}$ $= \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right)_{T}$	within a small gap between two concentric cylinders P = pressure on the fluid $\rho = \text{density of the liquid}$ c = velocity of the sound
Adiabatic compressibility: (ultrasonic interferometer)	$ \alpha_{\text{ad}} = \frac{1}{\kappa} = \frac{\gamma}{\rho c^2} = \frac{1}{\rho c^2} $ $ c = \lambda f $	waves through the liquid $\gamma = c_p/c_v$ is the specific heat ratio of the fluid $\gamma = 1$ for liquids
Surface tension σ_s :		
a) Force balance for a U-shaped wire frame with a movable side:	$F = 2b\sigma_s$	b = breadth of the movable side of the frame
b) Work done to stretch the wire frame by area $\Delta A = 2b \Delta x$:	$W = F \Delta x = \sigma_s \Delta A$	$\Delta x = \text{distance moved}$
c) Excess pressure inside a droplet or air bubble of radius <i>R</i> :	$\Delta P_{\text{droplet}} = P_i - P_o = \frac{2\sigma_s}{R}$	P_i and P_o are the pressures inside and outside the
d) Excess pressure inside a soap bubble of radius <i>R</i> :	$\Delta P_{\text{bubble}} = P_i - P_o = \frac{4\sigma_s}{R}$	droplet or bubble.
e) Surface energy increase in the droplet:	$\delta W_{\text{surface}} = \sigma_s dA$ $= \sigma_s d(4\pi R^2) = 8\pi R \sigma_s dR$	

Capillary rise in a circular tube of constant radius <i>R</i> :	$h = \frac{2\sigma_s}{\rho gR}\cos\phi$	ρ = density of the liquid g = acceleration due to gravity ϕ = contact (or wetting) angle
Reynolds number for internal flow in a circular pipe:	$Re = \frac{Inertial forces}{Viscous forces}$ $= \frac{V_{avg}D}{\nu} = \frac{\rho V_{avg}D}{\mu}$	V_{avg} = average flow velocity D = diameter of the pipe
Streamline equation:	$\frac{dr}{V} = \frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}$	$d\vec{r} = dx\hat{i} + dy\hat{j} + dz\hat{k}$ = infinitesimal arc length
Pathline: (location at time <i>t</i>)	$\vec{x} = \vec{x}_{\text{start}} + \int_{t_{\text{start}}}^{t} \vec{V} dt$	$\vec{V} = u\hat{i} + v\hat{j} + w\hat{k}$ = velocity vector
Integral form of the continuity equation:	$ \int_{\substack{\text{control} \\ \text{volume}}} \frac{\partial \rho}{\partial t} dV_m \\ + \oint_{\substack{\text{control} \\ \text{surface}}} \rho \vec{V} . \hat{n} dA = 0 $	ρ = density of the fluid at each point in the control volume \vec{V} = velocity of the fluid at each point on the control surface \hat{n} = unit vector outward normal to the control surface dV_m = infinitesimal volume element dA = infinitesimal area element
Continuity equation for a steady flow of an ideal fluid through a tube with varying cross section:	$A_1V_1 = A_2V_2$	V_1 and V_2 are average speeds of the fluid at entrance and exit of the tube. A_1 and A_2 are cross-sectional areas at the entrance end and the exit end.

Fluid Mechanics II

Quantity	Formula	Glossary
Buoyant force:	$F_B = \rho g V$	ρ = density of the fluid
Poiseuille's formula for the volume of liquid flowing per second through a cylindrical tube of circular cross section:	$\eta = \frac{\pi a^4}{8l} \left(\frac{P}{V}\right)$ with $P = \rho g h$, $\eta = \frac{\pi \rho g a^4}{8l} \left(\frac{h}{V}\right)$	 g = acceleration due to gravity V = volume of the object P = fluid pressure a = capillary tube radius l = length of capillary tube V = volume of liquid
Poiseuille's equation in corrected version:	$\eta = \frac{\rho g h \pi a^4}{8V(l+1.64a)} - \frac{V \rho}{8\pi (l+1.64a)}$	passing through the tube h = height of liquid in capillary tube
Empirical relation between viscosity and temperature:	$\log \eta = a + \frac{b}{T}$	a and b are constants. $T = absolute temperature$
Variation of viscosity with temperature according to kinetic theory of gases:	$\eta = \alpha \eta_0 T^{1/2}$	α is a constant $\eta_0 = \text{viscosity at } 0^{\circ} \text{ C}$
Sutherland's modified formula for viscosity:	$\eta = \eta_0 \frac{\alpha T^{1/2}}{1 + S/T}$	S = Sutherland's constant
Bernoulli's theorem:	$\frac{P_1}{\rho} + gh_1 + \frac{1}{2}v_1^2$ $= \frac{P_2}{\rho} + gh_2 + \frac{1}{2}v_2^2 = \text{const.}$ $\frac{P}{\rho} + gh + \frac{1}{2}v^2 = \text{const.}$	P_1 and P_2 are fluid pressures at points 1 and 2. h_1 and h_2 are the heights of the tube from the ground at points 1 and 2. v_1 and v_2 are velocities of the fluid at points 1 and 2.

Venturi meter:	$\frac{P_1}{\rho g} + h_1 + \frac{v_1^2}{2g}$ $= \frac{P_2}{\rho g} + h_2 + \frac{v_2^2}{2g}$ When the tube is horizontal $h_1 = h_2$ $\frac{P_1}{\rho} + \frac{v_1^2}{2} = \frac{P_2}{\rho} + \frac{v_2^2}{2}$	
Rate of flow using Venturi meter:	$Q = a_1 v_1 = a_2 v_2$ $= a_1 a_2 \sqrt{\frac{2(P_1 - P_2)}{(a_1^2 - a_2^2)}}$ $= a_1 a_2 \sqrt{\frac{2\rho gH}{(a_1^2 - a_2^2)}}$	a_1 and a_2 are areas of cross-section of the tube at points 1 and 2. $H = \text{rise in fluid level}$ between capillaries attached at points 1 and 2.

Quantum Mechanics

Quantity	Formula	Glossary
Planck's formula for the blackbody radiation: Power radiated per unit area per unit solid angle per unit frequency by a black body at temperature <i>T</i> :	$U(\nu, T) = \frac{8\pi h \nu^3 / c^3}{\left[\exp\left(\frac{h\nu}{kT}\right) - 1\right]}$	h = Planck constant $c = speed of light in$ $vacuum$ $k = Boltzmann constant$ $v = frequency of the$ $v = electromagnetic radiation$
Einstein's fundamental equation for photoelectric effect:	$E_K = h\nu - \Phi$	E_K = kinetic energy of the ejected electron ν = frequency of photon Φ = work function of the metal

Energy of the discrete emission or absorption of radiation by atoms:	$h\nu = \left E_i - E_f \right $	E_i = initial state energy E_f = final state energy
Energy of the emitted photon:	$E = hv = \frac{hc}{\lambda}$	λ = wavelength of the emitted photon
Compton formula:	$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$	λ = wavelength of the incident photon λ' = wavelength after scattering m_e = electron rest mass c = speed of light θ = scattering angle
Compton wavelength of the electron:	$\lambda_e = \frac{h}{m_e c}$ $= 2.43 \times 10^{-12} \text{ m}$	
Compton formula in terms of the energies:	$E_{\gamma'} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos \theta)}$	$E_{\gamma} = hc/\lambda = \text{incident}$ energy $E_{\gamma'} = \text{scattered photon}$ energy
de Broglie wavelength:	$\lambda = \frac{h}{p}$ $\lambda = \frac{h}{\sqrt{2mqV}}$	p = momentum of the particle $m =$ mass of the particle $q =$ charge of the particle $V =$ potential with which the particle is accelerated
Phase velocity:	$v_p = \frac{\omega}{k} = \nu \lambda$	ω = angular frequency $k = 2\pi/\lambda$ = wave number ν = frequency
Group velocity:	$v_g = rac{d\omega}{dk}$	
Relation between group velocity and phase velocity:	$v_g = v_p - \frac{2\pi}{k} \left(\frac{dv_p}{d\lambda} \right)$	

Heisenberg uncertainty relationships:	$\Delta x \Delta p_x \ge \frac{h}{4\pi}$ $\Delta E \Delta t \ge \frac{h}{4\pi}$ $\Delta J \Delta \theta \ge \frac{h}{4\pi}$	Δx , Δp_x , ΔE , Δt , ΔJ and $\Delta \theta$ are the uncertainties in the measurement of the position, momentum, energy, time, angular momentum and angular position respectively.
Time independent Schrödinger wave equation in one dimension:	$\frac{d^2\psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E - V)\psi = 0$	$\psi \equiv \psi(x)$ = wave function E = total energy V = potential energy
Probability density:	$P(x,t) = \Psi^*\Psi = \Psi(x,t) ^2$	5.
Normalization condition:	$\int_{X} \Psi(x,t) ^2 dx = 1$	7
Schrödinger equation in operator form:	$\hat{H}\psi = E\psi$	$\hat{H}= ext{Hamiltonian operator}$
Particle in one-dimensional of infinite depth:	l potential well	
a) Differential equation:	$\frac{d^2\psi}{dx^2} + k^2\psi = 0$ $k^2 = \frac{8m\pi^2 E}{h^2}$	
b) Solution:	$\psi = A\cos(kx) + B\sin(kx)$	
c) Energy eigen values:	$E = \frac{n^2 h^2}{8ma^2}$ $n = 1, 2, 3 \dots$	a = width of the well
d) Normalized wave function:	$\psi_n = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$	

Principles of Quantum Computation

Quantity	Formula	Glossary
Inner product of two wave functions $\psi(x)$ and $\phi(x)$:	$\langle \psi \phi \rangle = \int \psi^* \phi dx$ $\langle \phi \psi \rangle = \int \phi^* \psi dx = \langle \psi \phi \rangle^*$	
Wave function as linear combination of basis vectors:	$ \psi\rangle = a_1 \phi_1\rangle + a_2 \phi_2\rangle + \cdots$ $ \psi\rangle = \sum_{n=1}^{\infty} a_n \phi_n\rangle$	$ \phi_1\rangle, \phi_2\rangle, \dots$ are basis vectors. a_1, a_2, a_3, \dots are complex coefficients.
Inner product of $ \psi\rangle$ with itself:	$\langle \psi \psi \rangle = \sum_{n=1}^{\infty} a_n ^2$	2.
Normalization condition:	$\frac{\overline{n=1}}{\langle \psi \psi \rangle} = 1$	Su
Orthogonality condition:	$\langle \psi_1 \psi_2 \rangle = \langle \psi_2 \psi_1 \rangle = 0$	
Condition for orthnormality of basis vectors:	$\langle \phi_1 \phi_2 \rangle = \langle \phi_2 \phi_1 \rangle = 0$ $\langle \phi_1 \phi_1 \rangle = 1 \text{ and }$ $\langle \phi_2 \phi_2 \rangle = 1$ In general $\langle \phi_m \phi_n \rangle = \delta_{mn}$	$\delta_{mn} = \begin{cases} 0 & \text{for } m \neq n \\ 1 & \text{for } m = n \end{cases}$
Hermitian matrix M:	$\mathbf{M}^{\dagger} = \mathbf{M}$	M [†] is the conjugate transpose of M
Unitary matrix U:	$\mathbf{U}^{\dagger}\mathbf{U} = \mathbf{U}\mathbf{U}^{\dagger} = \mathbf{I}$	
Pauli's spin matrices:	$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},$ $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$ 0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$ and $ 1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$ α and β are complex
A qubit:	$ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$	numbers, called the amplitude of the states.
Bloch sphere representation:	$ \psi\rangle = \cos\frac{\theta}{2} 0\rangle + e^{i\phi}\sin\frac{\theta}{2} 1\rangle$	θ = polar angle ϕ = azimuth angle

Electrical Conductivity in Solids and Band Theory of Solids

Quantity	Formula	Glossary
Ohm's Law:	V = IR	V = voltage applied
Resistivity:	$\rho = \frac{RA}{L}$	I = current flowingR = resistanceA = area of
Conductivity:	$\sigma = \frac{1}{\rho} = \frac{L}{RA}$	cross-section $L = \text{length of the}$
Electric field:	$E = \frac{V}{L}$	material $n = \text{carrier}$
Current density:	$J = \frac{I}{A} = \sigma E$	concentration e = electronic charge
Electric current in a conductor:	$I = nev_d A$	v_d = drift velocity m = mass of the
Drift velocity:	$v_d = \frac{eE}{m}\tau$	electron $ au$ =mean collision time
Electrical conductivity of a conductor:	$\sigma = \frac{ne^2\tau}{m}$	
Mobility of electrons:	$\mu = \frac{v_d}{E} = \frac{e\tau}{m}$	
Fermi factor:	$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$	E = energy level E_F = Fermi level k = Boltzmann
Density of states in a material in the energy range $E \& E + dE$:	$g(E)dE = \frac{4\pi}{h^3} (2m)^{3/2} E^{1/2} dE$	constant $T = \text{temperature of the }$ material
Number of free electrons per unit volume in the energy range $E \& E + dE$:	N(E) dE = g(E)f(E) dE	- Marchar
Total number of free electrons per unit volume in metals:	$n = \frac{8\pi}{3h^3} (2m)^{3/2} E_F^{3/2}$	m = mass of the electron

Fermi energy at 0 K:	$E_F = \frac{h^2}{8m} \left(\frac{3n}{\pi}\right)^{2/3}$	
Carrier concentration in in	trinsic semiconductor:	
a) for electrons:	$n = N_C e^{-(E_C - E_F)/kT}$ $N_C = 2 \left[\frac{2\pi m_e^* kT}{h^2} \right]^{3/2}$	N_C and N_V are effective density of states in the conduction
b) for holes:	$p = N_V e^{-(E_F - E_V)/kT}$ $N_V = 2 \left[\frac{2\pi m_h^* kT}{h^2} \right]^{3/2}$	and valence band. $m_{\rm h}^* = \text{effective mass of}$ electron in the material $m_{\rm h}^* = \text{effective mass of}$
Fermi level in intrinsic semiconductor:	$E_F = \left(\frac{E_C + E_V}{2}\right) + \frac{3}{4}kT\ln\left(\frac{m_{\rm h}^*}{m_{\rm e}^*}\right)$	hole in the material E_C = lowest energy level in the conduction band E_V = is the highest
a) For small <i>kT</i> :	$E_F = \frac{E_C + E_V}{2}$	energy level in the valence band
b) With $E_C - E_V = E_g$:	$E_F = \frac{E_g}{2} + E_V$	E_g = is the energy gap
Intrinsic charge carrier concentration:	$n_i = \sqrt{np} = 2 \left(\frac{2\pi k}{h^2}\right)^{3/2}$ $(m_e^* m_h^*)^{3/4} T^{3/2} e^{-E_g/2kT}$	
Conductivity of an intrinsic semiconductor:	$\sigma_i = e n_i (\mu_e + \mu_h)$	$\mu_{\rm e} = { m mobility} \ { m of}$ electrons $\mu_{ m h} = { m mobility} \ { m of} \ { m holes}$
Fermi energy for extrinsic semiconductors:		
a) n-type	$E_{F_n} = \frac{E_C + E_D}{2} - \frac{kT}{2} \ln \frac{N_C}{N_d}$	N_d = donor concentration
b) p-type	$E_{F_p} = \frac{E_V + E_A}{2} + \frac{kT}{2} \ln \frac{N_V}{N_a}$	N_a = acceptor concentration
Law of Mass Action:	$np = n_i^2 = \text{constant}$	

Hall voltage:	$V_H = R_H \frac{BI}{t}$	R_H = Hall coefficient B = applied magnetic
Hall coefficient:		field
a) For metals and <i>n</i> -type	_1	I = current flowing
semiconductors:	$R_H = \frac{-1}{-1}$	t = thickness of the
semiconductors.	ne ne	material
b) For <i>p</i> -type	1	
semiconductors:	$R_H = \frac{1}{pe}$	

Semiconductor Devices

Quantity	Formula	Glossary
Internal Potential barrier:	$V_0 = \frac{kT}{e} \ln \left(\frac{N_D N_A}{n_i^2} \right)$	$k = \text{Boltzmann}$ constant $T = \text{temperature}$ $e = \text{electronic charge}$ $N_D = \text{donors}$ concentration $N_A = \text{acceptors}$ concentration
The diode equation:	$I = I_0 \left[\exp\left(\frac{eV}{kT}\right) - 1 \right]$	n_i = intrinsic carrier concentration
Wavelength of light emitted by LED:	$\lambda = rac{hv}{E_g}$	V = voltage across the diode
Relation between currents in a transistor:	$I_E = I_B + I_C$	$I = $ current through the diode $I_0 = $ reverse saturation
Common base current gain factor:	$\alpha_{dc} = \frac{I_C}{I_E}$	current $E_q = \text{energy gap}$
Common emitter dc current gain:	$\beta_{dc} = \frac{I_C}{I_B}$	I_E = emitter current I_B = base current
Voltage gain of an amplifier:	$Gain = \frac{Output\ Voltage}{Input\ Voltage}$	I_C = collector current

Dielectrics and Transducers

Quantity	Formula	Glossary
Dipole moment of two	$\mu = (2a)q$	2a distance between
charges $-q$ and $+q$:	$\mu = (2a)q$	the charges
Induced dipole moment:	$\mu = \alpha E$	α = polarizability
Torque on the dipole in	$\tau = qE2a\sin\theta = \mu E\sin\theta$	E = applied electric
an electric field:		field
Polarization (total dipole	$\mu_{ ext{total}}$	V = volume of the
moment / unit volume):	$P = \frac{\mu_{\text{total}}}{V}$	dielectric
	3	ϵ_0 = permittivity of free
Electric displacement:	$D = \epsilon_0 \epsilon_r E$	space
Liectric displacement.	$D = \epsilon_0 \epsilon_r L$	ϵ_r = relative
14		permittivity
Relation for dielectric		151
susceptibility, χ , for	$P = \chi \epsilon_o E$	S
linear dielectrics:		
Relation between ϵ_r and	$\epsilon_r = 1 + \gamma$	
χ:	- γ - · χ	/ /
Electronic or Atomic	$P_e = N\alpha_e E$	N = number of atoms
Polarization:		per unit volume
Electronic polarizability:	$\alpha_e = \frac{\epsilon_0(\epsilon_r - 1)}{N}$	α_e = electronic
		polarizability
Ionic Polarization:	$P_i = N\alpha_i E$	α_i = ionic polarizability
		k = Boltzmann
Orientation or dipole	$P_o = \frac{N\mu^2 E}{3kT}$	constant
Polarization:	$P_o = \frac{1}{3kT}$	T = temperature
		μ = dipole moment
Orientation	$\alpha_o = \frac{\mu^2}{3kT}$	
polarizability:	$\alpha_o = \frac{1}{3kT}$	
Internal field in a solid		d = thickness of the
for one dimensional	$E_i = E + \frac{1.2\mu}{\pi\epsilon_0 d^3}$	dielectric slab
infinite array of dipoles:	$\pi \epsilon_0 d^3$	uiciectiic siab
Clausius Mosotti	$\epsilon_r - 1 N\alpha_e$	
equation:	$\frac{\epsilon_r - 1}{\epsilon_r + 2} = \frac{N\alpha_e}{3\epsilon_0}$	
	27 . 2 220	

Piezoelectric transducer formula:		F = applied force
The charge generated Q is given by,		d = piezoelectric
a) For longitudinal	Q = Fd	coefficient of the
arrangement:	$Q = \Gamma u$	crystal ($d_{quartz} =$
b) For transverse	O = Ed(h/a)	$2.3 \times 10^{-12} \text{C/N}$
arrangement:	Q = Fd(b/a)	b/a = thickness/width

Quantity	Formula	Glossary
Boltzmann factor:	$\frac{N_2}{N_1} = e^{-h\nu/kT}$	h = Planck constant $k = $ Boltzmann
Einstein's coefficients:	$\frac{A_{21}}{B_{21}} = \frac{8\pi h v^3}{c^3}$ $B_{12} = B_{21}$	constant $T = \text{temperature}$ $v = \text{frequency of the}$
Energy density at thermal equilibrium:	$U(v,T) = \frac{A}{B} \frac{1}{\exp\left(\frac{hv}{kT}\right) - 1}$	electromagnetic radiation $A = A_{21}$ $B = B_{21}$
Length of the resonator cavity:	$L=n\frac{\lambda}{2}, n=1,2,3,\ldots$	$\lambda = \text{Wavelength}$

Optical Fibers

Quantity	Formula	Glossary
Snell's law:	$n_1\sin\theta_1=n_2\sin\theta_2$	n_1 and n_2 are the refractive indices. θ_1 and θ_2 are angle of incidence & refraction.
Absolute refractive index:	$n = \frac{c}{v}$	c and v are velocities of light in vacuum and the medium.

Approved by AICTE, New Delhi

Numerical aperture:	NA = $\sin \theta_0 = \frac{\sqrt{n_1^2 - n_2^2}}{n_0}$	θ_0 = acceptance angle n_0 , n_1 and n_2 are the refractive indices of
Fraction Index Change:	$\Delta = \frac{n_1 - n_2}{n_1}$	surrounding medium, core and cladding.
Relation between NA and Δ:	$NA = n_1 \sqrt{2\Delta}$	
V-number if surrounding medium is air:	$V = \frac{\pi d}{\lambda} \text{NA}$	d = core diameter $\lambda = \text{wavelength of light}$
Number of modes for step index fiber:	$pprox rac{V^2}{2}$	
Number of modes for graded index fiber:	$pprox rac{V^2}{4}$	
Attenuation co-efficient (loss per unit length):	$\alpha = -\frac{10}{L} \log \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right)$	P_{out} = output power P_{in} = input power L = length of the optical fiber

Superconductivity

Quantity	Formula	Glossary
Critical current required		R = radius of the wire
to destroy the	$I_c = 2\pi R H_c$	H_c = critical magnetic
superconductivity:		field
		$H_0 = \min \max$
Minimum magnetic field		magnetic field required
required to destroy	T^2	at 0 K to destroy
superconductivity at	$H_c = H_0 \left[1 - \frac{T^2}{T_c^2} \right]$	superconductivity
temperature T :		T_c = transition
		temperature

Frequency of electromagnetic radiation emitted by a Josephson junction: $v = \frac{qV}{h} = \frac{2eV}{h}$ h = Planck's constant V = voltage applied q = total charge of the pair e = electronic charge

Material Characterization

Quantity	Formula	Glossary
Ultimate tensile strength: (N/mm²)	$T_{u} = \frac{\text{Ultimate Load}}{\left(\text{Original area of cross-section} \right)}$ $= \frac{P_{u}}{A_{0}}$	P_u = maximum load where necking down occurs A_0 = initial cross sectional area of specimen
Elastic limit: (N/mm²)	$T_e = \frac{P_e}{A_0}$	$P_e={ m elastic\ load\ limit}$ (in N)
Proportional limit: (N/mm²)	$T_p = \frac{P_p}{A_0}$	P_p = Proportional load limit (in N)
Yield point: (N/mm²)	$T_s = \frac{P_s}{A_0}$	P_s = load at the yield point
Stiffness: or the modulus of elasticity:	$E = \frac{T}{\epsilon} = \frac{P_p L}{\epsilon A_0}$	L = gauge length
Rupture: Breaking strength	$=rac{P_f}{A_0}$	P_f = load at failure
The Brinell Hardness Number (BHN):	$= \frac{BHN = \frac{P}{A}}{\pi D(D - \sqrt{D^2 - d^2})}$	P = load (in N) A = area of contact between the ball and the indentation D = diameter of the ball d = diameter of the impression

Complex reflectance ratio measured in ellipsometry:	$\rho = \frac{R_p}{R_s} = \tan \Psi e^{i\Delta}$	R_S and R_P are the amplitudes of the s and p components of the polarized light $\tan \Psi = \text{modulus of}$ amplitude reflection ratio $\Delta = \text{phase difference}$ between s and p polarized reflected light
Solar cell <i>I-V</i> characteristics curve: Equation for current:	$I = I_0 \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right] - I_L$	I_0 = dark saturation current q = electronic charge V = applied voltage across the terminals of
Bragg's equation for x-ray diffraction:	$n\lambda = 2d\sin\theta$	d = interplanar distance in the crystal $\theta =$ incident angle $\lambda =$ wavelength of x-ray beam $n = 1, 2, 3, \dots$ specifies the order of reflection
Scherrer equation: Crystallite size,	$D = \frac{K\lambda}{\beta \cos \theta}$	β = full width at half maximum of peaks measured in radian located at any 2θ in the pattern K = shape factor and is usually taken as about 0.89.

The kinetic energy E_K of the photoelectron ejected in XPS method:	$E_K = h\nu - E_B - \phi$	h = Plank's constant v = frequency of the x-rays incident E_B = binding energy of electron ϕ = work function
Limit of resolution of a Scanning Electron Microscope (SEM):	$\Delta x = \frac{\lambda}{2\mu \sin \theta}$ $\lambda = \frac{h}{\sqrt{2meV}}$	$2\mu \sin \theta = \text{numerical}$ aperture of the objective $1/\Delta x = \text{resolving}$ power of the microscope $\lambda = \text{de Broglie}$ wavelength of electrons $m = \text{mass of the}$ electron $e = \text{electronic charge}$ $V = \text{voltage with which}$ the electron is accelerated

Formulae used in lab

Quantity	Formula	Glossary
Volume resonator:	$f_x = \sqrt{\frac{\left(f^2 V\right)_{\text{avg}}}{V_x}}$	f = frequency of the
		tuning fork
		V = volume of the
		resonating air
Young's modulus of the material of the cantilever:	$q=rac{4mgL^3}{bd^3\delta_{ m mean}}$	$\delta_{\mathrm{mean}} = \mathrm{depression} \ \mathrm{for}$
		mass m
		L, b, d = length, breadth
		and thickness of the
		cantilever

R = radiusL =length of the wire Rigidity modulus of the I =moment of inertia $\eta = \frac{8\pi L}{R^4} \left(\frac{I}{T^2} \right)$ wire of a torsional of the attached rigid pendulum: body about the axis of rotation Moment of Inertia: (with rotation axis passing through their centers) $I_1 = MR^2/2$ a) For circular disc with axis ⊥ to disc plane radius R and mass M: $I_2 = MR^2/4$ axis along diameter $I_3 = M(L^2 + B^2)/12$ b) For rectangular plate axis ⊥ to plate plane with length L, breadth B $I_4 = ML^2/12$ axis ⊥ to plate length and mass M: $I_5 = MB^2/12$ axis ⊥ to plate breadth λ = wavelength of the Thickness of the paper light by interference at an air L = air wedge lengthwedge: β = fringe width C = grating constantn =order of diffraction $\lambda = \frac{C \sin \theta_n}{}$ x_n = distance between Laser diffraction: central and nth maxima $\theta_n = \tan^{-1}\left(\frac{x_n}{d}\right)$ d = distance betweengrating and screen $\sin \theta_0 = \frac{W}{\sqrt{(4L^2 + W^2)}}$ Numerical Aperture L =distance from the (NA): optical fiber to screen Capacitance and τ = time constant $C = \frac{\tau}{R}$ and $\epsilon_r = \frac{Cd}{\epsilon_0 A}$ dielectric constant: R = resistance in series $R = \frac{V}{I}$ f =frequency of the $L = \frac{V}{2\pi f I}$ Black box: applied AC source $C = \frac{I}{2\pi f V}$

 $X_L = 2\pi f_0 L$ $X_C = \frac{1}{2\pi f_0 C}$ L = inductanceC = capacitanceSeries LCR: $L = \frac{1}{4\pi^2 f_0^2 C}$ f_0 = resonance frequency $Q = f_0/\Delta f$ e = electronic chargeV = voltage acrossThe diode equation: (at $I = I_0 \left[\exp\left(\frac{eV}{kT}\right) - 1 \right]$ diode, I = currenttemperature T) through the diode. I_0 = reverse saturation current V_K = knee voltage of $\lambda = \frac{hc}{eV_K}$ Wavelength of LED: the LED I_C = collector current $\beta = \left[\frac{I_{C_2} - I_{C_1}}{I_{B_2} - I_{B_1}} \right]_{V_{CE}}$ I_B = base current Transistor parameters: V_{CE} = voltage across collector & emitter $\rho = \text{density of copper.}$ A and l are area of cross-section and $E_F = 1.36 \times 10^{-15}$ Fermi energy of copper: length of the wire. m = slope of theresistance versus temperature graph. $m = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$ n = number of dataLinear Least Square Fit points formulas: m = slope $c = \frac{\sum y \sum x^2 - \sum x \sum xy}{n \sum x^2 - (\sum x)^2}$ c = y-intercept k = Boltzmann constant $E_g = \frac{4.606 \, km}{1.6 \times 10^{-19}}$ Band gap of a thermister: $m = \text{slope of the } \log R$ (in eV) versus 1/T graph