Generating Natural Adversarial Examples

Motivation

- Adversarial examples [1]
- $x^* = \operatorname{argmin}_{\widetilde{x}} ||x \widetilde{x}||_2 \text{ s. t. } f(x) \neq f(\widetilde{x}).$

An adversarial example in [1] applied to GoogLeNet

An adversarial example applied to MNIST classifier of Random Forests

- Disadvantages of these adversaries
- Unnatural.
- Added noise is imperceptible and uninterpretable.
- There is mismatch between input space and *semantic space*.
- Related approaches cannot be applied to heavily structured domains.

Background

• Generative adversarial networks (GANs) [2]

Architecture of GANs

- Minimax game between competing generator and critic.
- Generator maps prior distribution $p_z(z)$ to distribution of real instances $p_{\text{real}}(x)$, generating fake \tilde{x} which are close to real x. $\min_{G_{\theta}} E_{z \sim p_{z}(z)} [\log(1 - C_{\omega}(G_{\theta}(z)))]$
- Critic discriminates between real instances x and generated fake \tilde{x} . $\max_{C_{\omega}} \mathcal{E}_{x \sim p_{\text{real}}(x)}[\log(C_{\omega}(x))] + \mathcal{E}_{z \sim p_{z}(z)}[\log(1 - C_{\omega}(G_{\theta}(z)))]$
- Wasserstein GAN [3]
- Use Wasserstein-1 (also called Earth-Mover) distance instead.
- Generator: $\max_{G_{\theta}} \mathrm{E}_{z \sim p_{z}(z)}[C_{\omega}(G_{\theta}(z))]$ Critic: $\max_{C_{\omega}} \mathrm{E}_{x \sim p_{\mathrm{real}}(x)}[C_{\omega}(x)] \mathrm{E}_{z \sim p_{z}(z)}[C_{\omega}(G_{\theta}(z))]$

Proposed Approach

- Natural Adversarial Examples
- $x^* = G_{\theta}(z^*)$ as $z^* = \operatorname{argmin}_{\tilde{z}} \|I_{\gamma}(x) \tilde{z}\|_2$ s.t. $f(x) \neq f(G_{\theta}(\tilde{z}))$.

Architecture of our approach

• Inverter I_{ν} maps input x to corresponding z in semantic space. $\min_{I_{\gamma}} \lambda_{1} \mathbf{E}_{x \sim p_{\text{real}}(x)} \| x - G_{\theta}(I_{\gamma}(x)) \|_{2} + \lambda_{2} \mathbf{E}_{z \sim p_{z}(z)} \| z - I_{\gamma}(G_{\theta}(z)) \|_{2}$

• Search for adversaries in dense and continuous representation z of the input data instead of in the data space directly.

> Given input instance x, black-box classifier f $y_{\text{pred}} = f(x), \hat{z} = I_{\gamma}(x)$ for radius r in range $(0, R, \delta r)$: sample random noise ϵ within $(r, r + \delta r)$ $\tilde{z} = \hat{z} + \epsilon, \, \tilde{x} = G_{\theta}(\tilde{z}), \, \tilde{y} = f(\tilde{x})$ if there exists y^* in \tilde{y} that $y^* \neq y_{\text{pred}}$: return corresponding adversary x^*

Pseudo code for searching adversaries

- \bullet For discrete text t, we incorporate a discrete structure auto-encoder proposed in [4], in order to encode sentence to continuous code space with $E_{\phi}(t)$, and decode continuous code to sentence with $D_{\psi}(x)$.
- Advantages of our adversaries
 - Natural.
 - Difference from the input is informative and interpretable.
 - Semantically close to the input.
 - Our approach can be applied to text data, generating grammatical adversarial sentences.

References

- [1] Goodfellow et al, "Explaining and Harnessing Adversarial Examples", ICLR 2015.
- [2] Goodfellow et al, "Generative Adversarial Nets", NIPS 2014.
- [3] Arjovsky et al, "Wasserstein Generative Adversarial Networks", ICML 2017.
- [4] Zhao et al, "Adversarially Regularized Autoencoders for Generating Discrete Structures", arXiv 2017.

Experimental Results

- Experiments on images
 - Interpretable natural adversaries

Adversary via adding small scale noise vs. our natural adversary with interpretable difference.

• Evaluation of black-box classifiers

Evaluation of black-box MNIST classifiers (Random Forests vs. LeNet-5) via analyzing generated adversaries.

	$avg \delta x$	P(larger δx)	avg δz	P(larger δz)	test accuracy
Random Forest	s 5.1097	0.27	1.3742	0.32	0.9045
LeNet-5	5.9665	0.73	1.7499	0.68	0.9871

• Experiments on text entailment

Premise	Hypothesis	Perturbed Hypothesis	Target Flip
the two boys are swimming with boogie boards.	the two boys are in their bath tub.	the two boys are in their room.	Contradiction => Neutral
an older women tending to a garden.	the lady is weeding her garden.	the lady is facing her garden.	Neutral => Entailment
boys with their backs against an incoming wave.	a group of people stand together.	a group of people are playing together.	Entailment => Neutral
workers standing on a lift.	workers walk off a lift.	there are some men climbing.	Contradiction => Entailment