Методика расчётов газоконденсатного объекта (по реализации в коде контроллеров)

19 сентября 2025 г.

Содержание

1	Лис	CT PVT	3			
	1.1	Входные данные	3			
	1.2	Параметры смеси	3			
	1.3	Безразмерные параметры	3			
	1.4	Расчёт коэффициента сверхсжимаемости Z	3			
	1.5	Отклонение Z	4			
	1.6	Плотность газа	4			
	1.7	Вязкость газа	4			
	1.8	Объёмный коэффициент газа	4			
	1.9	Выходные данные	4			
2	Лис	ст KGF (конденсатгазовый фактор)	5			
	2.1	Входные данные	5			
	2.2	Аппроксимация экспериментальной зависимости	5			
	2.3	Аппроксимация типовой зависимости	5			
	2.4	Интегральные показатели по экспериментальной кривой	5			
	2.5	Формирование сводной рабочей кривой	5			
	2.6	Выходные данные	6			
3	Лис	Лист Components (состав по давлению)				
	3.1	Входные данные	6			
	3.2	Алгоритм	6			
	3.3	Выходные данные	6			
4	Лист РZ (материальный баланс, \mathbf{p}/\mathbf{z})					
	4.1	Входные данные	6			
	4.2	Величины, связанные с PVT	7			
	4.3	Базовые объёмные расчёты	7			
	4.4	Материальный баланс газа (общий вид)	7			
	4.5	Водоприток (модель Хёрста-ван Эверденгена)	8			
	4.6	Пошаговый алгоритм (дискретное время t_k)	8			
	4.7	Производные и диагностические показатели	8			
	4.8	Выходные данные	8			

5	Лис	ст GDI (гидродинамические исследования)	9			
	5.1	Входные данные	6			
	5.2	Средние параметры	9			
	5.3	Гидравлическое сопротивление	9			
	5.4	Устьевое давление				
	5.5	Дополнительные параметры				
	5.6	Выходные данные				
6	Лис	Лист Productivity (продуктивность скважин)				
	6.1	Входные данные	10			
	6.2	Геометрические и фильтрационные параметры	10			
	6.3	Уравнение продуктивности	10			
	6.4	Расчёт дебита газа	10			
	6.5	Учёт псевдодавления	11			
	6.6	Дебит конденсата	11			
	6.7	Выходные данные	11			
7	Лис	Лист Temperature (устьевое давление и температура) 1				
	7.1	Входные данные	11			
	7.2	Массовые расходы и эффективная теплоёмкость	11			
	7.3	Итерационный алгоритм P_{ust} — T_{ust}	12			
8	Лист Base (месячный цикл расчёта)					
	8.1	Входные данные	12			
	8.2	Подготовка календаря и фонда	12			
	8.3	Алгоритм помесячного расчёта	13			
	8.4	Балансы по запасам	13			
	8.5	Выходные данные	14			

Введение

Документ описывает порядок вычислений, взаимосвязи формул и ключевые зависимости, реализованные в коде контроллеров: PVT, KGF, Components, PZ (материальный баланс), GDI, Productivity, Temperature, Base. Для каждого модуля приведены: входы, шаги расчёта, формулы и выходы, а также указано, какие результаты используются далее.

1 Лист PVT

1.1 Входные данные

- Давление пласта $P_{\rm pl}$ (МПа).
- Температура пласта $T_{\rm pl}$ (°С).
- Компонентный состав газа: y_i , молекулярные массы M_i , критические параметры $T_{c,i}, P_{c,i}, V_{c,i}, Z_{c,i}, \omega_i$.
- \bullet Выбранные методики: метод расчёта Z, плотности и вязкости.
- Табличные данные $Z_{\text{факт}}, \mu_{\text{факт}}$ для сравнения.

1.2 Параметры смеси

$$M_{\text{mix}} = \sum_{i} y_i M_i, \tag{1}$$

$$T_{c,\text{mix}} = \sum_{i} y_i T_{c,i},\tag{2}$$

$$P_{c,\text{mix}} = \sum_{i} y_i P_{c,i}.$$
 (3)

1.3 Безразмерные параметры

$$P_r = \frac{P}{P_{c,\text{mix}}},\tag{4}$$

$$T_r = \frac{T_{\rm pl} + 273.15}{T_{c,\rm mix}},$$
 (5)

$$\gamma_g = \frac{M_{\text{mix}}}{28.96}.\tag{6}$$

1.4 Расчёт коэффициента сверхсжимаемости Z

В коде реализованы несколько методов:

$$Z = f(P, T, \{y_i\}, \text{метод}). \tag{7}$$

Для уравнения Пенга-Робинсона:

$$P = \frac{RT}{V - b} - \frac{a\alpha}{V(V + b) + b(V - b)},\tag{8}$$

$$\alpha = \left(1 + \kappa (1 - \sqrt{T_r})\right)^2,\tag{9}$$

где a,b,κ определяются через параметры смеси и правила смешения:

$$a = \sum_{i} \sum_{j} y_{i} y_{j} a_{ij}, \quad a_{ij} = \sqrt{a_{i} a_{j}} (1 - k_{ij}), \quad b = \sum_{i} y_{i} b_{i}.$$

Для каждого давления решается кубическое уравнение относительно Z.

1.5 Отклонение Z

$$\Delta Z = \frac{Z_{\text{calc}} - Z_{\text{факт}}}{Z_{\text{факт}}} \cdot 100\%. \tag{10}$$

1.6 Плотность газа

$$\rho = \frac{P \cdot M_{\text{mix}}}{Z \cdot R \cdot (T_{\text{pl}} + 273.15)}.$$
(11)

1.7 Вязкость газа

Используются корреляции:

• Lee–Gonzalez–Eakin:

$$\mu_q = f(T, \rho, M_{\text{mix}}),$$

• Jossi–Stiel–Thodos:

$$\mu_g = f(P, T, Z; T_{c,i}, P_{c,i}, Z_{c,i}).$$

Отклонение:

$$\Delta \mu = \frac{\mu - \mu_{\text{факт}}}{\mu_{\text{факт}}} \cdot 100\%. \tag{12}$$

1.8 Объёмный коэффициент газа

$$B_g = \frac{101325 \left(T_{\rm pl} + 273.15\right) Z}{P \cdot 10^6 \cdot 293.15}.$$
 (13)

1.9 Выходные данные

- P_r, T_r, γ_a .
- $Z_{\rm calc}, \Delta Z$.
- $\rho(P), \rho_{\rm std}$.
- $\mu(P), \mu_{\rm std}, \Delta \mu$.
- $B_q(P)$.

Результаты сохраняются в файлы pvt_output.json, output_pvt_results.json, а также визуализируются графиками $Z(P),\, \rho(P),\, \mu(P),\, B_g(P).$

Лист KGF (конденсатгазовый фактор) 2

2.1Входные данные

- Экспериментальные точки: $\{(P_k, KGF_k^{\text{fact}})\}$.
- Типовая зависимость $KGF^{\mathrm{typ}}(P)$ (табличный ряд).
- Давления начала конденсации: $P_{nk}^{\text{exp}}, P_{nk}^{\text{typ}}$.

2.2Аппроксимация экспериментальной зависимости

Строится полином 4-й степени (МНК):

$$\widehat{KGF}_{\exp}(P) = AP^4 + BP^3 + CP^2 + DP + E. \tag{14}$$

Помежевая относительная ошибка (МАРЕ) по точкам:

$$MAPE = \frac{100}{N} \sum_{k=1}^{N} \left| \frac{\widehat{KGF}_{exp}(P_k) - KGF_k^{fact}}{KGF_k^{fact}} \right| \%.$$
 (15)

2.3Аппроксимация типовой зависимости

По табличному ряду $KGF^{\text{typ}}(P)$ строится полином 6-й степени:

$$\widehat{KGF}_{\text{tvp}}(P) = AP^6 + BP^5 + CP^4 + DP^3 + EP^2 + FP + G.$$
 (16)

2.4 Интегральные показатели по экспериментальной кривой

По аппроксимации $\widehat{KGF}_{\mathrm{exp}}(P)$ до P_{nk}^{exp} вычисляются:

$$C5^{+} = \text{OGR}(P_{\text{pl}}, P_{nk}^{\text{exp}}, \{A, B, C, D, E\}),$$
 (17)

$$C5^{+} = OGR(P_{pl}, P_{nk}^{exp}, \{A, B, C, D, E\}),$$

$$KIK = KIK(P_{pl}, P_{nk}^{exp}, \{A, B, C, D, E\}).$$
(17)

(Обе функции реализованы в коде и возвращают интегральные метрики по кривой KGF(P).)

2.5 Формирование сводной рабочей кривой

На равномерной сетке $P \in [0.1, 1.1 \cdot \max(P_{nk}^{\text{exp}}, P_{nk}^{\text{typ}})]$:

$$KGF_{\exp}(P) = \begin{cases} \widehat{KGF}_{\exp}(P), & P \le P_{nk}^{\exp}, \\ C5^+, & P > P_{nk}^{\exp}, \end{cases}$$
(19)

$$KGF_{\text{typ}}(P) = \begin{cases} \widehat{KGF}_{\text{typ}}(P), & P \leq P_{nk}^{\text{typ}}, \\ KGF^{\text{typ}}(P_{nk}^{\text{typ}}), & P > P_{nk}^{\text{typ}}. \end{cases}$$
(20)

2.6 Выходные данные

- Коэффициенты полиномов: $\{A, B, C, D, E\}$ и $\{A, \dots, G\}$.
- Значения $C5^+$ и KIK.
- Сводная таблица $[P, KGF_{\text{exp}}(P), KGF_{\text{typ}}(P)].$
- Графики: экспериментальные точки и аппроксимации; типовая кривая; совмещённое сравнение.

3 Лист Components (состав по давлению)

3.1 Входные данные

- Таблица компонентного состава газа при $P=P_{pl}$: $\{x_i,M_i,T_{c,i},P_{c,i},V_{c,i},\omega_i\}$.
- Давление начала конденсации P_{nk} .
- Методика зависимости: экспериментальные данные или типовая кривая КГФ.

3.2 Алгоритм

1. Формируется сетка по давлению:

$$P \in [0.1, P_{nk}], \quad N = 30$$
 точек.

2. Для каждого компонента i вычисляется мольная доля как функция давления:

$$x_i(P) = \text{Composition}\left(P, P_{nk}, \text{ метод}, x_i^{(0)}, i\right),$$
 (21)

где $x_i^{(0)}$ — исходная мольная доля при $P_{pl},\,i=0..11.$

- 3. Полученная таблица $\{P, x_i(P)\}$ сохраняется в JSON.
- 4. Строятся графики $x_i(P)$ (например, $CH_4(P), C_2H_6(P), C_3H_8(P)$).

3.3 Выходные данные

- Таблица компонентного состава по давлению: $[P, x_1, \dots, x_{12}]$.
- JSON-файл components_output.json.
- Графики изменения мольных долей компонентов от давления.

4 Лист РZ (материальный баланс, p/z)

4.1 Входные данные

- Стартовые условия пласта: P_i , T_{res} (постоянная пластовая температура).
- Накопленный отбор газа по времени: $G_p(t_k)$.

- (Опц.) Накопленный отбор при предельном давлении и другие статистики добычи.
- \bullet Балансовые запасы (если заданы): N.
- Геометрия залежи: газонасыщенная толщина h, пористость ϕ , водонасыщенность S_w .
- Параметры аквифера (если учитывается водоприток): k_w , ϕ_w , R_a , h_a , θ , μ_w .
- Методики из PVT: выбор формулы для $Z(P),\, \rho(P),\, \mu(P);$ объёмный коэффициент $B_q(P).$

4.2 Величины, связанные с PVT

Для каждого P рассчитываются:

$$Z(P) = Z_{\text{calc}}(P, T_{\text{res}}), \tag{22}$$

$$B_g(P) = \frac{101325 \left(T_{\text{res}} + 273.15\right) Z(P)}{P \cdot 10^6 \cdot 293.15}.$$
(23)

Здесь B_g — объёмный коэффициент газа (привязка к используемым в коде единицам).

4.3 Базовые объёмные расчёты

При известных балансовых запасах:

$$V_{\text{plast}} = N B_g(P_i), \tag{24}$$

$$A_{\text{plast}} = \frac{V_{\text{plast}}}{h}.$$
 (25)

Если N не заданы, то из линейной формы материального баланса для сухого газа

$$\frac{p}{z} = \frac{p_i}{z_i} - \frac{G_p}{G}$$

оценка начальных запасов G находится из наклона регрессии по точкам $(G_p, p/z)$:

$$slope = -\frac{1}{G} \quad \Rightarrow \quad G = -\frac{1}{slope}.$$
 (26)

4.4 Материальный баланс газа (общий вид)

В общем случае (с водопритоком и сжимаемостями) баланс записывается как

$$G_p = G\left(\frac{p_i}{z_i} - \frac{p}{z}\right) - \underbrace{\frac{B_w}{B_g}W_e}_{\Delta_{vir}} - \underbrace{GF_{ct}(p)}_{\Delta_{comp}}, \tag{27}$$

где

- W_e кумулятивный водоприток,
- B_w объёмный коэффициент воды (принят константой или по табличному значению),

• $F_{ct}(p)$ — слагаемое суммарной сжимаемости порового пространства и жидкости (в коде учитывается агрегированно).

Из (27) может быть выражено давление p как решение целевой функции

MBAL_fP
$$(p; \{G, G_p, W_e, F_{ct}, Z(P)\}) = 0,$$

которая в коде решается численно при каждом t_k .

4.5 Водоприток (модель Хёрста-ван Эверденгена)

Водоприток считается как свёртка ядра отклика аквифера с историей депрессии:

$$W_e(t_k) = \sum_{j=1}^k P_a(t_k - t_{j-1}) \left(\bar{p}_{j-1} - \bar{p}_j\right), \tag{28}$$

где $P_a(\cdot)$ — функция отклика (зависит от k_w , ϕ_w , R_a , h_a , θ , μ_w), а \bar{p}_j — среднее пластовое давление на шаге j. В коде это реализовано в виде функции Mbal_Hurst с расчётом эффективного радиуса дренирования и накопленного W_e .

4.6 Пошаговый алгоритм (дискретное время t_k)

- 1. По P_{k-1} вычислить $Z_{k-1}=Z(P_{k-1}),\ B_{g,k-1}=B_g(P_{k-1}).$
- 2. По истории до t_k обновить $W_e(t_k)$ (если учитывается аквифер).
- 3. Решить уравнение материального баланса (27) относительно P_k :

$$\text{MBAL_fP:} \quad F(P_k) = G\bigg(\frac{p_i}{z_i} - \frac{P_k}{Z(P_k)}\bigg) - \frac{B_w}{B_g(P_k)} W_e(t_k) - G\,F_{ct}(P_k) - G_p(t_k) = 0.$$

4. Сохранить P_k , $Z(P_k)$, $\frac{P_k}{Z(P_k)}$.

4.7 Производные и диагностические показатели

$$\left(\frac{P}{Z}\right)_{\text{fact}}, \quad \left(\frac{P}{Z}\right)_{\text{calc}} = \frac{P_k}{Z(P_k)}, \quad \text{невязка} = \left(\frac{P}{Z}\right)_{\text{fact}} - \left(\frac{P}{Z}\right)_{\text{calc}}.$$
 (29)

Показатели по аквиферу:

заполнение,
$$\% = 100 \cdot \frac{W_e}{V_{\text{plast}}}, \qquad H_{\text{подъёма}} = \frac{W_e}{A_{\text{plast}}}.$$
 (30)

4.8 Выходные данные

- ullet Таблица по времени: $P_{
 m calc},\ Z_{
 m calc},\ (P/Z)_{
 m calc},\ W_e,$ показатели заполнения и подъёма.
- (Опц.) Оценка G по наклону линии p/z– G_p , если N не задан.
- Графики: P/Z vs G_p (факт/расчёт), P vs G_p (факт/расчёт).

5 Лист GDI (гидродинамические исследования)

5.1 Входные данные

- Пластовое давление P_{res} и забойное P_{bhp} .
- Дебиты газа q.
- Геометрия НКТ: диаметр D, шероховатость ϵ , длина L, глубина H.
- Пластовая и устьевая температуры $T_{\rm pl}, T_{\rm ust}$.
- ullet Методы расчёта Z, плотности и вязкости (из модуля PVT).

5.2 Средние параметры

$$P_{\text{mean}} = \frac{P_{\text{res}} + P_{\text{bhp}}}{2},\tag{31}$$

$$\Delta(P^2) = P_{\text{res}}^2 - P_{\text{bhp}}^2. \tag{32}$$

5.3 Гидравлическое сопротивление

Коэффициент гидравлического сопротивления λ вычисляется через функцию Ld:

$$\lambda = \operatorname{Ld}(P_{\text{mean}}, T_{\text{mean}}, q, D, \epsilon). \tag{33}$$

Коэффициент трения (пример: Коулбрук-Уайт/Черчилль)

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\epsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right), \quad \text{Re} = \frac{\rho vD}{\mu}, \quad v = \frac{4Q}{\pi D^2}.$$
(34)

$$f = 8 \left[\left(\frac{8}{\text{Re}} \right)^{12} + \frac{1}{\left(A + B \right)^{1.5}} \right]^{1/12}, \quad A = \left\{ -2 \log_{10} \left[\left(\frac{\epsilon}{3.7D} \right)^{1.11} + \frac{2.457}{\text{Re}} \right] \right\}^{2}, \quad B = \left(\frac{37530}{\text{Re}} \right)^{16}.$$
(35)

5.4 Устьевое давление

По функции Pust определяется устьевое давление:

$$P_{\text{ust}} = f(P_{\text{bhp}}, q, D, \epsilon, \gamma_g, L, T_{\text{ust}}, T_{\text{pl}}, Z, \mu, \rho, \lambda).$$
(36)

Падение давления в стволе (Дарси-Вейсбах + столб)

$$\frac{dP}{dz} = \rho g + \frac{2f\rho v^2}{D} + \rho v \frac{dv}{dz}, \qquad \Delta P \approx \underbrace{\bar{\rho}gH}_{\text{гидростатика}} + \underbrace{\frac{2\bar{f}\,\bar{\rho}\,L\,\bar{v}^2}{D}}_{\text{трение}} + \underbrace{\bar{\rho}\,\bar{v}\,\Delta v}_{\text{ускорение (опц.)}}. \tag{37}$$

5.5 Дополнительные параметры

Для проверки пересчитываются свойства при средних условиях:

$$Z_{\rm cp} = Z(P_{\rm mean}, T_{\rm mean}), \tag{38}$$

$$\rho_{\rm cp} = \rho(P_{\rm mean}, T_{\rm mean}),\tag{39}$$

$$\mu_{\rm cp} = \mu(P_{\rm mean}, T_{\rm mean}). \tag{40}$$

5.6Выходные данные

- Таблица по q: $\Delta(P^2)$, $P_{\mathrm{ust}}^{\mathrm{факт}}$, $P_{\mathrm{ust}}^{\mathrm{pacq}}$.
- Коэффициент гидравлического сопротивления λ.
- Графики:
 - 1. Зависимость $\Delta(P^2)$ от дебита q.
 - 2. Сравнение P_{ust} (факт и расчёт).

Лист Productivity (продуктивность скважин) 6

6.1Входные данные

- Пластовое давление P_{res} , забойное давление P_{bhp} .
- Параметры пласта: проницаемость k, толщина h, радиус дренирования R, радиус скважины r_w , скин-фактор s.
- Свойства газа: $Z(P), \mu(P)$ (из листа PVT).
- Газоконденсатный фактор KGF(P) (из листа KGF).

6.2Геометрические и фильтрационные параметры

$$T = \frac{2\pi kh}{\mu B \left(\ln\frac{R}{r_w} + s\right)},\tag{41}$$

$$T = \frac{2\pi kh}{\mu B \left(\ln\frac{R}{r_w} + s\right)},$$

$$\lambda(P) = \frac{P}{Z(P)\mu(P)}.$$
(41)

6.3Уравнение продуктивности

Используется квадратичная форма Роулинса-Шеллхарта:

$$\frac{P_{\rm res}^2 - P_{\rm bhp}^2}{q} = A + Bq,\tag{43}$$

где A, B — эмпирические коэффициенты (определяются из результатов исследования скважины).

6.4 Расчёт дебита газа

$$q = \frac{-A + \sqrt{A^2 + 4B(P_{\text{res}}^2 - P_{\text{bhp}}^2)}}{2B}.$$
 (44)

6.5 Учёт псевдодавления

При использовании псевдодавления:

$$m(P) = \int \frac{2P}{\mu(P)Z(P)} dP \approx \frac{P}{\mu(P)Z(P)}, \tag{45}$$

уравнение продуктивности переписывается как

$$q = \frac{m(P_{\text{res}}) - m(P_{\text{bhp}})}{A^* + B^* q}.$$
 (46)

6.6 Дебит конденсата

Определяется через газовый дебит и KGF(P) при среднем давлении:

$$Q_{\rm cond} = \frac{KGF\left(\frac{P_{\rm res} + P_{\rm bhp}}{2}\right)}{1000} \cdot Q_{\rm gas}.$$
 (47)

6.7 Выходные данные

- Газовый дебит $Q_{\rm gas}$ для заданного $P_{\rm bhp}$.
- Дебит конденсата Q_{cond} .
- Кривые продуктивности $q(P_{\text{bhp}})$.

7 Лист Temperature (устьевое давление и температура)

7.1 Входные данные

- Дебиты: газ $Q_{\rm gas}$ (тыс. м $^3/{
 m cyr}$), конденсат $Q_{\rm cond}$ (т/сут).
- Свойства при ст. усл.: плотность газа $\rho_{\rm std}$, плотность конденсата $\rho_{\rm cond}$.
- Геометрия и режим: глубина H, длина НКТ L, диаметр D, шероховатость ϵ , время работы t.
- \bullet Температуры: пластовая $T_{\rm pl},$ начальная устьевая $T_{\rm ust}^{(0)}.$
- Теплофизические параметры: теплоёмкости $c_{p,gas}$, $c_{p,cond}$, теплопроводности колонн/породы (λ и т. п.), параметры мерзлоты (если есть).
- Методы/функции: расчёт Z(P,T), $\mu(P,T)$, $\rho(P,T)$ (из PVT), гидросопротивление Ld, устьевое давление Pust, устьевая температура Tust.

7.2 Массовые расходы и эффективная теплоёмкость

$$\dot{m}_g = \frac{Q_{\text{gas}} \cdot 10^3}{24} \,\rho_{\text{std}} \quad [\text{K}\Gamma/\text{Y}],\tag{48}$$

$$\dot{m}_o = \frac{Q_{\text{cond}}}{24} \rho_{\text{cond}} \quad [\text{K}\Gamma/\text{Y}], \tag{49}$$

$$\dot{m} = \dot{m}_g + \dot{m}_o, \qquad c_{p,\text{mix}} = \frac{\dot{m}_g}{\dot{m}} c_{p,\text{gas}} + \frac{\dot{m}_o}{\dot{m}} c_{p,\text{cond}}.$$
 (50)

7.3 Итерационный алгоритм P_{ust} – T_{ust}

- 1. **Шаг 0.** Принять начальную устьевую температуру $T_{\mathrm{ust}}^{(0)}.$
- 2. Шаг 1. Рассчитать устьевое давление по гидравлике ствола:

$$P_{\text{ust}}^{(0)} = \text{Pust}\left(P_{\text{bhp}}, Q_{\text{gas}}, D, \epsilon, L, T_{\text{ust}}^{(0)}, T_{\text{pl}}, Z, \mu, \rho, \lambda\right).$$

3. Шаг 2. Рассчитать устьевую температуру по теплопередаче:

$$T_{\text{ust}}^{(1)} = \text{Tust}\left(T_{\text{pl}}, \, \dot{m}, \, c_{p,\text{mix}}, \, \lambda, \, t, \, H, \, P_{\text{bhp}}, \, P_{\text{ust}}^{(0)}\right).$$

4. Шаг 3. Пересчитать устьевое давление при обновлённой температуре:

$$P_{\text{ust}}^{(1)} = \text{Pust}\left(\dots; T_{\text{ust}}^{(1)}\right).$$

5. Шаг 4. Ещё один шаг теплопередачи:

$$T_{\text{ust}}^{(2)} = \text{Tust}\left(\dots; P_{\text{ust}}^{(1)}\right).$$

6. Критерий. При необходимости выполнить третий проход:

$$P_{\text{ust}}^{(2)} = \text{Pust}\left(\dots; T_{\text{ust}}^{(2)}\right), \qquad T_{\text{ust}}^{(3)} = \text{Tust}\left(\dots; P_{\text{ust}}^{(2)}\right).$$

Эффективная теплоотдача и устьевая температура

$$U_{\text{eff}} = \left(\frac{1}{\alpha_i} + R + R + \frac{1}{\alpha_o}\right)^{-1}, \qquad T_{\text{ust}} = T_{\text{pl}} - (T_{\text{pl}} - T_{\text{rp}}) \exp\left(-\frac{U_{\text{eff}}L}{\dot{m} c_{p,\text{mix}}}\right). \tag{51}$$

Здесь α_i, α_o — внутренний/внешний коэффициенты теплоотдачи, R, R — термосопротивления стенки/изоляции, $T_{\rm rp}$ — эффективная температура окружающей среды/породы.

8 Лист Base (месячный цикл расчёта)

8.1 Входные данные

- Начальные запасы: газ N, конденсат N^{cond} (если заданы).
- Пластовые условия и геометрия: $P_{pl,0}$, T_{pl} , толщина h, площадь A, пористость ϕ , насыщенности.
- Производственные данные: календарь месяцев $\{m\}$, длительность L_m (сут), фонд скважин N(m), коэффициенты эксплуатации $K_{\text{экспл}}(m)$.
- Связанные модули: PVT (Z, μ, ρ, B_g) , KGF (KGF(P)), Components $(y_i(P))$, PZ/MBAL $(P_{pl}(Q^{\text{\tiny Hak}}))$, Productivity $(q(P_{\text{bhp}}))$, Temperature/GDI $(P_{\text{ust}}, T_{\text{ust}})$.

8.2 Подготовка календаря и фонда

Среднедействующий фонд:

$$N_{\text{mean}}(m) = K_{\text{экспл}}()\overline{N}(m), \qquad \overline{N}(m) = \frac{1}{L_m} \int_{t \in m} N(t) dt.$$
 (52)

8.3 Алгоритм помесячного расчёта

Для каждого месяца $m = 1, 2, \dots$ выполняется:

1. Пластовое давление (МВАL):

$$P_{pl}^{\text{start}}(m) = \text{MBAL_fP}(Q^{\text{\tiny HAK}}(m-1)).$$

- 2. Забойное давление: задать/оценить $P_{\rm bhp}(m)$ (по ограничениям или связи $P_{pl}-\Delta P).$
- 3. Гидросопротивление:

$$\lambda(m) = \operatorname{Ld}(P_{\text{mean}}, T_{\text{mean}}, q, D, \epsilon).$$

4. Дебит одной скважины (Productivity):

$$q_{\text{base}}(m) = \frac{-A + \sqrt{A^2 + 4B \left(P_{pl}^{\text{start}}(m)^2 - P_{\text{bhp}}(m)^2\right)}}{2B}.$$

5. Добыча газа по фонду:

$$Q_{\rm gas}(m) = rac{L_m \, N_{
m mean}(m) \, q_{
m base}(m)}{1000} \quad [
m MЛH \, M^3].$$

6. Кумулятив:

$$Q^{\text{hak}}(m) = Q^{\text{hak}}(m-1) + Q_{\text{gas}}(m).$$

7. Уточнение P_{nl} :

$$P_{pl}^{\text{end}}(m) = \text{MBAL_fP}(Q^{\text{\tiny HAK}}(m))$$
 .

8. Конденсат (через KGF):

$$Q_{\rm cond}(m) = \frac{KGF\left(\frac{P_{pl}^{\rm start}(m) + P_{\rm bhp}(m)}{2}\right)}{1000} Q_{\rm gas}(m).$$

9. Устьевые параметры (Temperature/GDI):

$$P_{\text{ust}}(m) = \text{Pust}(\cdot), \qquad T_{\text{ust}}(m) = \text{Tust}(\cdot).$$

10. Скорости и вынос жидкости:

$$v_{
m bhp}(m)=rac{4\,q_{
m base}}{\pi D^2}, \quad v_{
m ust}(m)=rac{4\,Q_{
m ras,nob}}{\pi D^2}, \quad$$
проверка $v>v_{
m min}$ (Tochigin).

11. **Компонентные показатели:** оценка долей C_3 – C_4 (Composition_calc) и добычи СПБТ.

8.4 Балансы по запасам

$$OIZ_{gas}(m) = OIZ_{gas}(m-1) - Q_{gas}(m), \tag{53}$$

$$OIZ_{\text{cond}}(m) = OIZ_{\text{cond}}(m-1) - Q_{\text{cond}}(m).$$
(54)

8.5 Выходные данные

- Сводная помесячная таблица (JSON): $P_{pl}^{\text{start/end}}$, P_{bhp} , q_{base} , Q_{gas} , Q_{cond} , P_{ust} , T_{ust} , v_{bhp} , v_{ust} , OIZ_{gas} , OIZ_{cond} и пр.
- Графики: добычи газа/конденсата, траектории пластового давления, устьевые параметры, балансы ОИЗ, критерий выноса жидкости.

Глоссарий символов

P,T	давление, температура (МПа, °C)
Z	коэффициент сверхсжимаемости (–)
μ, ho	вязкость (м $\Pi a \cdot c$), плотность (кг/м 3)
B_g	объёмный коэффициент газа $({\rm M}_{\rm n,r}^3/{\rm M}_{\rm cr}^3)$
KGF	конденсатогазовый фактор $(\Gamma/M^3$ или $T/MЛН M^3)$
f	коэффициент трения Дарси-Вейсбаха (-)
D, L, H	диаметр, длина, глубина колонны (м)
ϵ	эквивалентная шероховатость (м)
Q, q	объёмный расход/дебит (м $^3/\mathrm{c},\mathrm{тыc.m}^3/\mathrm{cyr})$

Единицы и конвертация

Во всех формулах придерживаемся СИ; при работе с табличными данными используем siunitx и явно указываем переходы (например, МПа \leftrightarrow Па, тыс. M^3/c).

Соответствие переменных коду

Символ	В методичке	В коде (пример)
P_{ust} f T_{ust} P/Z	устьевое давление коэффициент трения устьевая температура псевдодавление (простое)	Pust() Ld() Tust() pz_controller: P/Z

Структуры данных и результаты

Модули сохраняют промежуточные/итоговые результаты в JSON (например, pvt_output.json, components_output.json, temperature_output.json). Рекомендуется описать ключевые поля (имя поля, единицы, краткое описание) для воспроизводимости.