LAB NOTE

Subject: Hardware/Software Interfacing

Lab 4: Timers

Student: Minh Quan Tran

Table of Contents

1.	Obj	ectives4	4
2.	Prol	blems and Solutions	5
2	2.1	Problems	5
2	2.2	Solutions	5
3.	Soft	ware Design	6
(3.1	List of function	6
(3.2	While loop	6

TABLE OF FIGURES

Figure 1-1: Basic outcome	
Figure 1-2: Intermediatet outcome	
Figure 1-3: Advance outcome	

1. Objectives

- Using STM32F411 board and STM32CubeIDE in Windows, create code to
 - Write code for the STM32F411 to configure and use Timers.

Basic:

Lab 4 - Basic Outcomes

- · Code created that:
 - Creates a microDelay function that uses polling of the CNT register on the timer to block the code for a small amount of time (100s of microseconds)
 - In while(1) loop in main.c call microDelay function you created and then toggle
 a GPIO pin that has an oscilloscope connected to it and prove the time is very
 close to the one specified
 - Do this experiment showing 500, 1000 and 5000 microsecond timing (you can recompile and download to board for each test)

Figure 1-1: Basic outcome

Intermediate:

Lab 4 – Intermediate Outcomes

- · Code created that:
 - Using one Timer with interrupts that occur when the Period is reached to toggle
 a GPIO pin connected to an oscilloscope to measure the speed of toggling
 - There should be no code in the main.c while (1) loop.
 - Test with various timer periods like 500, 1000 and 5000 microseconds

Figure 1-2: Intermediatet outcome

Advance:

Lab 4 – Advanced Outcomes

- · Code created that:
 - Using one Timer with interrupts that occur when the Period is reached to call a specified call-back function
 - Highest marks will be awarded for a solution that allows for more than one timeout with a different associated call-back function
 - Test with various timer periods like 500 and 5000 microseconds
 - It is suggested that you do not use printf in the call-back function due to it being unsafe
 - Toggling different GPIO outputs would be appropriate

Figure 1-3: Advance outcome

2. Problems and Solutions

2.1 Problems

- No problem
- 2.2 Solutions

3. Software Design

3.1 List of function

- This function is to create a delay in micro second by counting the number of ticks has passed using CNT registers.

```
void microDelay(uint32_t usDelay)
{
    // Get the current timer counter value
    uint32_t startTime = __HAL_TIM_GET_COUNTER(&htim1);
    uint32_t ticks = usDelay - 1; // 1 ticks = 1 us

    // Poll the CNT register until the specified number of ticks has passed
    while ((__HAL_TIM_GET_COUNTER(&htim1) - startTime) < ticks)
    {
        // Wait until the timer reaches the required ticks
    }
}</pre>
```

- This function is used to toggle LED whenever the timer overflow

```
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
    if (htim->Instance == TIM1)
    {
        HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_6);
    }
}
```

3.2 While loop

REFERENCES