Типы в языках программирования Лекция 5. Нормализация для простой системы

Денис Николаевич Москвин

СП6АУ РАН

22.03.2018

План лекции

Понятие нормализации

2 Слабая нормализация

③ Сильная нормализация

План лекции

Понятие нормализации

2 Слабая нормализация

③ Сильная нормализация

Слабая и сильная нормализация для терма

Определение

Терм называют *слабо (weak) нормализуемым* (WN), если существует последовательность редукций, приводящих его к нормальной форме.

Определение

Терм называют *сильно (strong) нормализуемым* (SN), если любая последовательность редукций, приводит его к нормальной форме.

Примеры

Терм KIK — сильно нормализуем,

терм $K I \Omega$ — слабо нормализуем,

терм Ω — не нормализуем.

Слабая и сильная нормализация для системы типов

Определение

Систему типов называют *слабо нормализуемой* если все её допустимые термы слабо нормализуемы.

Определение

Систему типов называют *сильно нормализуемой* если все её допустимые термы сильно нормализуемы.

• Что можно сказать про нормализуемость λ_{\rightarrow} ?

Слабая и сильная нормализация для системы типов

Определение

Систему типов называют *слабо нормализуемой* если все её допустимые термы слабо нормализуемы.

Определение

Систему типов называют *сильно нормализуемой* если все её допустимые термы сильно нормализуемы.

- Что можно сказать про нормализуемость λ_{\rightarrow} ?
- В отношении нормализации и карриевская и черчевская системы ведут себя одинаково, поэтому мы будем рассматривать их совместно, атрибутируя типами все, что можно, в тот момент, когда нам это потребуется.

План лекции

Понятие нормализации

2 Слабая нормализация

③ Сильная нормализация

Способы порождения редексов при β-редукции

Имеются 4 способа образования «нового» редекса в процессе редукции:

• Создание:

$$(\lambda x. \dots (x P) \dots)(\lambda y. Q) \longrightarrow \dots ((\lambda y. Q)P) \dots$$

② Умножение (тут не по-настоящему «новый»):

$$(\lambda x. \dots x \dots x \dots)((\lambda y. Q)R) \longrightarrow \dots ((\lambda y. Q)R) \dots ((\lambda y. Q)R) \dots$$

Опрятанный редекс:

$$(\lambda x. \lambda y. Q) P R \longrightarrow (\lambda y. [x \mapsto P]Q) R$$

Окращение id:

$$(\lambda x. x)(\lambda y. Q)P \longrightarrow (\lambda y. Q)P$$

Как доказать слабую нормализуемость?

- Схема доказательства:
 - Зададим подходящую меру на термах.
 - Опишем конкретную стратегию, каждый шаг которой сокращает эту меру.
- Отметим, что тривиальные меры (например, число редексов) не работают.
- Отметим также, что решение задачи сильной нормализации подобным образом представляет собой открытую проблему.

Мера терма: подготовительные определения

Определение: порядок типа

Для типа ρ его *порядок* $ord(\rho)$ определим индуктивно:

$$\begin{aligned} & \text{ord}(\alpha) = 0, \\ & \text{ord}(\sigma \rightarrow \tau) = \text{max}(\text{ord}(\sigma) + 1, \text{ord}(\tau)). \end{aligned}$$

или, эквивалентно:

$$\begin{split} & \text{ord}(\alpha) = 0, \\ & \text{ord}(\sigma_1 \to \ldots \to \sigma_n \to \alpha) = 1 + \text{max}(\text{ord}(\sigma_1), \ldots, \text{ord}(\sigma_n)). \end{split}$$

Определение: высота редекса

Высотой редекса $(\lambda x : \sigma. P)Q$ называется порядок типа его левого аппликанда $\lambda x : \sigma. P.$

Например, $h((\lambda x : \sigma. x)Q) = ord(\sigma) + 1$.

Мера терма: определение

Определение: мера терма

Для терма P его **меру** $\mathfrak{m}(P)$ определим как лексикографическую пару:

$$m(P) = (h_{\text{max}}(P), \sharp N)$$

где $h_{max}(P)$ — наибольшая высота редекса в P, а $\sharp N$ — число редексов такой высоты.

Стратегия слабой нормализации

Выбирать для сокращения редекс наибольшей высоты, который не содержит субредексов такой же высоты.

- Это всегда можно сделать.
- Это всегда приводит к сокращению нашей меры.

План лекции

Понятие нормализации

2 Слабая нормализация

③ Сильная нормализация

- Докажем, что любой терм, имеющий тип в системе λ_{\to} , сильно нормализуем.
- Обозначим через SN множество сильно нормализуемых термов из Λ .
- Проблема: $M \in SN \wedge N \in SN \not\Rightarrow M \ N \in SN$. Например,

- Докажем, что любой терм, имеющий тип в системе λ_{\to} , сильно нормализуем.
- Обозначим через SN множество сильно нормализуемых термов из Λ .
- Проблема: $M \in SN \wedge N \in SN \not\Rightarrow M N \in SN$. Например, $M = N = \omega = \lambda x. \, x \, x$.

- Докажем, что любой терм, имеющий тип в системе λ_{\to} , сильно нормализуем.
- Обозначим через SN множество сильно нормализуемых термов из Λ .
- Проблема: $M \in SN \wedge N \in SN \not\Rightarrow M N \in SN$. Например, $M = N = \omega = \lambda x. \ x \ x.$
- Однако в обратную сторону это верно: $M N \in SN \Rightarrow M \in SN \land N \in SN$. Почему?

- Докажем, что любой терм, имеющий тип в системе λ_{\to} , сильно нормализуем.
- Обозначим через SN множество сильно нормализуемых термов из Λ .
- Проблема: $M \in SN \wedge N \in SN \not\Rightarrow M N \in SN$. Например, $M = N = \omega = \lambda x. \, x \, x$.
- Однако в обратную сторону это верно: $M N \in SN \Rightarrow M \in SN \land N \in SN$. Почему?
- Верно ли, что $[x \mapsto N]M \in SN \Rightarrow (\lambda x. M)N \in SN$?

- Докажем, что любой терм, имеющий тип в системе λ_{\to} , сильно нормализуем.
- Обозначим через SN множество сильно нормализуемых термов из Λ .
- Проблема: $M \in SN \wedge N \in SN \not\Rightarrow M N \in SN$. Например, $M = N = \omega = \lambda x. \, x \, x$.
- Однако в обратную сторону это верно: $M \ N \in SN \Rightarrow M \in SN \land N \in SN$. Почему?
- Верно ли, что $[x \mapsto N]M \in SN \Rightarrow (\lambda x. M)N \in SN$? Heт! $N = \Omega \land x \notin FV(M)$.

- Докажем, что любой терм, имеющий тип в системе λ_{\to} , сильно нормализуем.
- Обозначим через SN множество сильно нормализуемых термов из Λ .
- Проблема: $M \in SN \wedge N \in SN \not\Rightarrow M N \in SN$. Например, $M = N = \omega = \lambda x. \, x \, x$.
- Однако в обратную сторону это верно: $M N \in SN \Rightarrow M \in SN \land N \in SN$. Почему?
- Верно ли, что $[x \mapsto N]M \in SN \Rightarrow (\lambda x. M)N \in SN$? Heт! $N = \Omega \land x \not\in FV(M)$.
 - Да, если потребовать $N \in SN$. Докажем ниже в чуть более общем виде.

Теоретико-множественная интерпретация $\lambda_{ ightarrow}$

• Для произвольных множеств термов $X,Y\subset \Lambda$ определим подмножество «лямбда-определимых» функций из X в Y:

$$X \rightarrow Y = \{F \in \Lambda \mid \forall S \in X. FS \in Y\}$$

- Для произвольного типа $\rho \in \mathbb{T}$ определим интерпретацию $[[
 ho]] \subset \Lambda$ индуктивно:
 - $[[\alpha]] = SN$, где α переменная типа;
 - $[[\sigma \to \tau]] = [[\sigma]] \to [[\tau]]$, где σ и τ произвольные типы.
- Пример:

$$[[\alpha \to \beta]] = [[\alpha]] \to [[\beta]] = SN \to SN.$$

 Интерпретация «шире» типа: нам достаточно, чтобы типизированный терм вкладывался в свою интерпретацию («корректность интерпретации», докажем своевременно).

Насыщенные множества

Множество $X \subseteq SN$ называется *насыщенным (saturated)*, если:

- $\forall x \in V \quad \forall n \geqslant 0 \quad \forall R_1, \dots, R_n \in SN$ $x \not R \in X$, то есть насыщенное множество X содержит все переменные и все аппликации переменных к SN-термам;
- ② $\forall P \in \Lambda \quad \forall Q \in SN \quad \forall n \geqslant 0 \quad \forall R_1, \dots, R_n \in SN \ ([x \mapsto Q]P) \ R \in X \Rightarrow (\lambda x. P)Q \ R \in X,$ то есть вместе с любым своим термом насыщенное множество X содержит все те его одношаговые экспансии, которые дают этот терм сокращением головного редекса, причем подставляемый терм (Q) должен быть сильно нормализуем.

Множество всех насыщенных подмножеств Λ назовем SAT.

Леммы о насыщенных множествах

- Множество SN сильно нормализуемых термов насыщенно.
- $oldsymbol{2}$ Если множества термов X и Y насыщенны, то множество $X o Y = \{F \in \Lambda \mid \forall S \in X. \ FS \in Y\}$ тоже насыщенно.
- ③ Для произвольного типа $ho\in\mathbb{T}$ интерпретация [[
 ho]] насыщенна.

Лемма 3 доказывается индукцией по структуре типа: базу обслуживает Лемма 1, а шаг — Лемма 2.

Лемма $1: SN \in SAT$

Лемма 1

Множество сильно нормализуемых термов насыщенно: $SN \in SAT$.

- $SN \subseteq SN$.
- Первое требование к насыщенности выполняется тривиально: для $\forall x \in V$

$$x \overrightarrow{R} \in SN$$

• Пусть

$$([x \mapsto Q]P)\overrightarrow{R} \in SN \tag{1}$$

Покажем, что

$$(\lambda x. P)Q\overrightarrow{R} \in SN \tag{2}$$

Лемма $1: SN \in SAT$ (продолжение)

- $[x \mapsto Q]P \in SN$ как подтерм SN-терма, поэтому $P \in SN$.
- Возьмем $(\lambda x. P)Q\overrightarrow{R}$ и сделаем конечное число редукций в P, Q и прочих \overrightarrow{R} . Получим:

$$(\lambda x. P')Q'\overrightarrow{R'}$$

Сократим:

$$([x \mapsto Q']P')\overrightarrow{R'} \tag{3}$$

Это редукт сильно нормализуемого $([x\mapsto Q]P)\overrightarrow{R}$, поэтому он тоже SN, откуда $(\lambda x.\ P)Q\overrightarrow{R}$ тоже SN. \blacksquare

Лемма 2: $X, Y \in SAT \Rightarrow X \rightarrow Y \in SAT$

Лемма 2

Если X и Y насыщенны, то $X \to Y = \{F \in \Lambda \mid \forall S \in X. \ FS \in Y\}$ тоже насыщенно.

- ullet X насыщенно, поэтому для $\forall x \in V$ верно $x \in X$.
- $F \in X \rightarrow Y \Rightarrow Fx \in Y \Rightarrow Fx \in SN \Rightarrow F \in SN$ (определение \rightarrow ; $Y \subseteq SN$; F подтерм Fx) То есть $X \rightarrow Y \subseteq SN$.
- Для $\forall x \in V$ и $\forall S \in X$ верно $x \overrightarrow{R} S \in Y$, поскольку $X \subseteq SN$, а Y насыщено. Отсюда следует первое условие насыщенности для $X \to Y$:

$$\forall x \in V \quad x \overrightarrow{R} \in X \rightarrow Y$$

• Второе условие насыщенности для $X \to Y$ получается аналогично из второго условия для Y

$$([x \mapsto Q]P)\overrightarrow{R}S \in Y \Rightarrow (\lambda x. P)Q\overrightarrow{R}S \in Y \blacksquare$$

Корректность интерпретации [[—]]: проблема

- Наша цель теперь доказать корректность интерпретации, то есть $M: \sigma \Rightarrow M \in [[\sigma]].$
- Однако утверждение типизации в общем случае имеет контекст: $\Gamma \vdash M : \sigma$.
- При индукции по выводу $\Gamma \vdash M$: σ возникает проблема для случая, когда $M = \lambda x.\ M'$ и, соответственно, $\sigma = \sigma_1 \to \sigma_2$. Нужно доказать (имея ІН $M' \in [[\sigma_2]]$)

$$\begin{array}{l} \lambda x.\,M' \in [[\sigma_1 \to \sigma_2]] \\ \lambda x.\,M' \in \{F \mid \forall P \in [[\sigma_1]].\,F\,P \in [[\sigma_2]]\} \\ \forall P \in [[\sigma_1]] \Rightarrow (\lambda x.\,M')\,P \in [[\sigma_2]] \\ \forall P \in [[\sigma_1]] \Rightarrow [x \mapsto P]\,M' \in [[\sigma_2]] \end{array}$$

Это никак не следует из нашего определения интерпретации.

Корректность интерпретации [[—]]: формулировка

• Решение проблемы — задать оценку (valuation) для всех переменных контекста Γ.

Tеорема. Корректность интерпретации [[-]]

$$\left. \begin{array}{l} x_1: \rho_1, \ldots, x_k: \rho_k \vdash M: \sigma \\ P_1 \in [[\rho_1]], \ldots, P_k \in [[\rho_k]] \end{array} \right\} \ \Rightarrow \\ \\ \left[x_1 \mapsto P_1, \ldots, x_k \mapsto P_k \right] M \in [[\sigma]]. \end{array}$$

Доказательство. Индукция по выводу $\Gamma \vdash M : \sigma$.

Корректность, доказательство

- $\Gamma \vdash M : \sigma$ при M = x. По лемме генерации $x : \sigma \in \Gamma$. Тогда для произвольного $P \in [[\sigma]]$ получаем $[x \mapsto P] M = [x \mapsto P] x = P$.
- $\Gamma \vdash M : \sigma$ при $M = M_1 \, M_2$. По лемме генерации $\Gamma \vdash M_1 : \tau \to \sigma$ и $\Gamma \vdash M_2 : \tau$. Обозначим подстановку $[x_1 \mapsto P_1, \dots, x_k \mapsto P_k]$ через S. По IH имеем $S(M_1) \in [[\tau \to \sigma]]$ и $S(M_2) \in [[\tau]]$. Но

$$S(M_1\,M_2) = (S(M_1))(S(M_2)) \in [[\sigma]]$$

в соответствии с интерпретацией стрелочного типа в определении интерпретации.

Корректность, доказательство (2)

• $\Gamma \vdash M : \sigma$ при $M = \lambda x. M'.$ По лемме генерации $\sigma = \sigma_1 \to \sigma_2$ и $\Gamma, x : \sigma_1 \vdash M' : \sigma_2.$ Обозначим подстановку $[x_1 \mapsto P_1, \dots, x_k \mapsto P_k]$ через S. По IH имеем, что для произвольного $P \in [[\sigma_1]]$ верно

$$(S \circ [x \mapsto P])(M') \in [[\sigma_2]].$$

Рассмотрим

$$(S(\lambda x.\,M'))P = (\lambda x.\,S(M'))P = (S\circ[x\mapsto P])(M')\in[[\sigma_2]].$$

Но поскольку $P \in [[\sigma_1]]$ и произволен, имеем $S(\lambda x.\,M') \in [[\sigma_1 \to \sigma_2]].$

Сильная нормализация

$$\Gamma \vdash M : \sigma \Rightarrow M \in SN$$

Доказательство.

- Положим в предыдущей теореме все $P_i = x_i$. Это можно сделать, поскольку каждое $[[\rho_i]]$ насыщенно, а значит содержит любые термовые переменные, $x_i \in [[\rho_i]]$.
- Тогда подстановка в заключении теоремы станет тождественной, и мы получим $M \in [[\sigma]] \subseteq SN$.