(i)
$$\frac{1}{3} \left(\widetilde{y}_{n-1} + \widetilde{y}_n + \widetilde{y}_{n+1} \right)$$

$$n=1: \frac{1}{3}(\widetilde{y}_0 + \widetilde{y}_1 + \widetilde{y}_2)$$
 $n=1: \frac{1}{3}(y_3 + y_1 + y_2)$

$$n = 2 : \frac{1}{3} (\widetilde{y}_1 + \widetilde{y}_2 + \widetilde{y}_3) \implies n = 2 : \frac{1}{3} (y_1 + y_2 + y_3)$$

$$n = 3 : \frac{1}{3} (\tilde{y}_2 + \tilde{y}_3 + \tilde{y}_4)$$
 $n = 3 : \frac{1}{3} (\tilde{y}_2 + \tilde{y}_3 + \tilde{y}_4)$
 (\tilde{y}_1)

$$x(t) := \frac{1}{3} \cdot 1_{\xi-1,0,13}(t)$$
 $-\frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2}$

(ii) The zero padding must be infinite.