WSTĘP DO TEORII OBLICZALNOŚCI

ZADANIA DLA CHĘTNYCH Zestaw 1. Wersja 1.0.0 **Zad 1.1.** Zaprojektuj maszynę Turinga, która oblicza funkcję odejmowania ograniczonego f dla liczb naturalnych m i n w reprezentacji unarnej, czyli

$$f(m,n) = m - n = \begin{cases} m - n, & \text{jeżeli } m \ge n, \\ 0, & \text{jezeli } m < n \end{cases}$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, ..., q_7\}, \{1, 0\}, \{1, 0, \nabla\}, \delta, q_0, \nabla, \{q_7\}).$$

Obliczenia 2 - 1

∇	1	1	0	1	∇	
∇	1	1	0	1	∇	
∇	1	1	0	1	∇	
∇	1	1	0	1	∇	
∇	1	1	0	1	∇	
∇	1	1	0	1	∇	
∇	1	1	0	∇	∇	
∇	1	1	0	∇	∇	
∇	1	1	0	∇	∇	
∇	1	1	0	∇	∇	
∇	1	1	0	∇	∇	
∇	∇	1	0	∇	∇	
∇	∇	1	0	∇	∇	
∇	∇	1	0	∇	∇	
∇	∇	1	0	∇	∇	
∇	∇	1	0	∇	∇	
∇	∇	1	0	∇	∇	
∇	∇	1	∇	∇	∇	
	l					

$$K_0 \qquad q_0 1101 \vdash$$

$$K_1$$
 $1q_0101 \vdash$

$$K_2 \qquad 11q_001 \vdash$$

$$K_3$$
 110 q_0 1 \vdash

$$K_4$$
 1101 $q_0 \vdash$

$$K_5$$
 110 q_1 1 \vdash

$$K_6 \qquad 11q_20 \vdash$$

$$K_7$$
 $1q_210 \vdash$

$$K_8 \qquad q_2 110 \vdash$$

$$K_9 \qquad q_2 \bigtriangledown 110 \vdash$$

$$K_{10} \qquad q_3 110 \vdash$$

$$K_{11}$$
 $q_010 \vdash$

$$K_{12}$$
 $1q_00 \vdash$

$$K_{13}$$
 $10q_0 \bigtriangledown \vdash$

$$K_{14}$$
 $1q_10 \vdash$

$$K_{15}$$
 $10q_4 \bigtriangledown \vdash$

$$K_{16}$$
 $1q_50 \vdash$

$$K_{17}$$
 q_71

Obliczenia 1 - 1

∇	1	0	1	∇	
∇	1	0	1	∇	
∇	1	0	1	∇	
∇	1	0	1	∇	
∇	1	0	1	∇	
∇	1	0	∇	∇	
∇	1	0	∇	∇	
∇	1	0	∇	∇	
∇	1	0	∇	∇	
∇	∇	0	∇	∇	
∇	∇	0	∇	∇	
 ∇	∇	0	∇	∇	
∇	∇	0	∇	∇	
∇	∇	0	∇	∇	
∇	∇	∇	∇	∇	

$$K_0 \qquad q_0 101 \vdash$$

$$K_1 \qquad 1q_001 \vdash$$

$$K_2$$
 $10q_01 \vdash$

$$K_3 \qquad 101q_0 \bigtriangledown \vdash$$

$$K_4 \qquad 10q_11 \vdash$$

$$K_5 \qquad 1q_20 \vdash$$

$$K_6 \qquad q_2 10 \vdash$$

$$K_7 \qquad q_2 \bigtriangledown 10 \vdash$$

$$K_8 \qquad q_3 10 \vdash$$

$$K_9 \qquad q_0 0 \vdash$$

$$K_{10}$$
 $0q_0 \nabla \vdash$

$$K_{11}$$
 $q_10 \vdash$

$$K_{12}$$
 $0q_4 \bigtriangledown \vdash$

$$K_{13}$$
 $q_50 \vdash$

$$K_{14} \qquad q_7 \nabla$$

Zad 1.2. Zaprojektuj maszynę Turinga, która oblicza funkcję mnożenia f dla liczb naturalnych m i n w reprezentacji unarnej, czyli

$$f(m,n) = m \cdot n$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia, w tym pomnóż 3·2 lub 2·3 (wykonaj rysunki taśmy i zapisz konfiguracje). Rozwiązanie.

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \bigtriangledown, F) = (\{q_0, ..., q_{11}\}, \{1, 0\}, \{1, 0, r, X, Y, \bigtriangledown\}, \delta, q_0, \bigtriangledown, \{q_{11}\}).$$

 ${f Zad~1.3.}$ Zaprojektuj maszynę Turinga, która oblicza funkcję f dla liczbynaturalnej n w reprezentacji unarnej, gdzie

$$f(n) = \begin{cases} \frac{n}{2}, & \text{jeżeli } n \text{ jest parzysta,} \\ \frac{n+1}{2}, & \text{jezeli } n \text{ jest niparzysta.} \end{cases}$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, ..., q_9\}, \{1\}, \{1, X, \nabla\}, \delta, q_0, \nabla, \{q_9\}).$$

Obliczenia n = 1

Oblic	zeni	a n	= 1			
	∇	∇	1	∇	∇	
	∇	∇	1	∇	∇	
	∇	∇	1	1	∇	
	∇	∇	1	1	∇	
	∇	∇	1	X	∇	
	∇	∇	1	X	∇	
	∇	∇	1	X	∇	
	∇	∇	∇	X	∇	
	∇	∇	∇	X	∇	
	∇	∇	∇	X	∇	
	∇	∇	∇	1	∇	
	∇	∇	∇	1	∇	
Oblic	zeni	a n	= 2			
	∇	1	1	∇	∇	
	∇	1	1	∇	∇	
	∇	1	1	∇	∇	
	∇	1	1	∇	∇	
	∇	1	1	∇	∇	
	∇	1	X	∇	∇	
	∇	1	X	∇	∇	
	∇	1	X	∇	∇	
	∇	∇	X	∇	∇	
	∇	∇	X	∇	∇	
				•		
	∇	∇	X	∇	∇	
	∇	∇	<i>X</i>	∇	∇	
	∇	∇		∇	∇	

$$K_0 \qquad \nabla q_0 1 \vdash$$

$$K_1 \qquad 1q_1 \bigtriangledown \vdash$$

$$K_2$$
 $1q_31 \vdash$

$$K_3$$
 $1q_41 \vdash$

$$K_4 \qquad q_5 1X \vdash$$

$$K_5 \qquad q_5 \bigtriangledown 1X \vdash$$

$$K_6 \qquad q_6 1X \vdash$$

$$K_7 \qquad q_7X \vdash$$

$$K_8 \qquad q_4 \bigtriangledown X \vdash$$

$$K_8 \qquad q_8X \vdash$$

$$K_9 \qquad 1q_8 \bigtriangledown \vdash$$

$$K_{10} q_9 1$$

$$K_0 \qquad q_0 11 \vdash$$

$$K_1$$
 $1q_11 \vdash$

$$K_2$$
 $11q_0 \bigtriangledown \vdash$

$$K_3$$
 $1q_21 \vdash$

$$K_4$$
 $1q_41 \vdash$

$$K_5 \qquad q_5 1X \vdash$$

$$K_6 \qquad q_5 \bigtriangledown 1X \vdash$$

$$K_7 \qquad q_6 1X \vdash$$

$$K_8 \qquad q_7X \vdash$$

$$K_8 \qquad q_4 \bigtriangledown X \vdash$$

$$K_9 \qquad q_8X \vdash$$

$$K_{10}$$
 $1q_8 \bigtriangledown \vdash$

$$K_{11}$$
 q_91

Zad 1.5. Zaprojektuj maszynę Turinga, która oblicza funkcję f dla liczby naturalnej n w reprezentacji unarnej, gdzie

$$f(n) = \left\lfloor \frac{n}{2} \right\rfloor$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, ..., q_6\}, \{1\}, \{1, X, \nabla\}, \delta, q_0, \nabla, \{q_6\}).$$

Zad 1.7. Zaprojektuj maszynę Turinga, która oblicza funkcję signum (znaku)

$$sgn(n) = \begin{cases} 1, & \text{jeżeli } n > 0, \\ 0, & \text{jeżeli } n = 0 \end{cases}$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4\}, \{1\}, \{1, X, \nabla\}, \delta, q_0, \nabla, \{q_4\}).$$

Zad 1.9. Zaprojektuj maszynę Turinga, która oblicza funkcję

$$f(n) = \begin{cases} 0, & \text{jeżeli } n \text{ jest parzysta,} \\ 1, & \text{jeżeli } n \text{ jest nieparzysta.} \end{cases}$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{1\}, \{1, \nabla\}, \delta, q_0, \nabla, \{q_5\}).$$

 ${\bf Zad~1.11.}$ Zaprojektuj maszynę Turinga, która oblicza funkcję maksimum dla liczb naturalnych mi nw reprezentacji unarnej, czyli

$$f(n) = max(m, n).$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, ..., q_{12}\}, \{1, 0\}, \{1, 0, X, \nabla\}, \delta, q_0, \nabla, \{q_{12}\}).$$

Zad 1.13. Zaprojektuj maszynę Turinga, która oblicza funkcję

$$f(m,n) = n^2$$

dla liczby naturalnej n w reprezentacji unarnej. Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, ..., q_{17}\}, \{1\}, \{1, 0, X, Y, r, \nabla\}, \delta, q_0, \nabla, \{q_{11}\}).$$

Zad 1.19. Zaprojektuj maszynę Turinga, która kopiuje wejściowy łańcuch w dla alfabetu $\Sigma = \{a, b\}$. Rozwiązanie może nie zawierać separatora

$$q_0w \stackrel{*}{\vdash} q_fww$$

lub może zawierać dowolny separator, na przykład separatorem może być blank, czyli

$$q_0w \stackrel{*}{\vdash} q_fw \bigtriangledown w.$$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, ..., q_{10}\}, \{a, b\}, \{a, b, s, X, Y, \nabla\}, \delta, q_0, \nabla, \{q_{10}\}).$$

Zad 1.22. Zaprojektuj maszynę Turinga nad alfabetem $\Sigma = \{a, b\}$, która akceptuje język

 $L = \{w: w \text{ zawiera równą liczbę symboli } a \text{ i } b\}.$

Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, ..., q_6\}, \{a, b\}, \{a, b, X, Y, \nabla\}, \delta, q_0, \nabla, \{q_6\}).$$

Zad 1.23. Zaprojektuj maszynę Turinga, która akceptuje język

$$L = \{w \colon |w| \text{ jest parzysta}\}$$

nad alfabetem $\Sigma = \{0,1\}$. Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje). Rozwiązanie.

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2\}, \{1, 0\}, \{1, 0, \nabla\}, \delta, q_0, \nabla, \{q_2\}).$$

Zad 1.25. Niech $\Sigma=\{a,b\}$. Zaprojektuj maszynę Turinga, która akceptuje język $L=\{w\,w^R\colon\,w\in\{a,b\}^*\},$

gdzie w^R oznacza **odwrócenie** w, a więc jeśli $w = a_1 a_2 ... a_k$, to $w^R = a_k a_{k-1} ... a_1$. Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, ..., q_7\}, \{a, b\}, \{a, b, X, Y, \nabla\}, \delta, q_0, \nabla, \{q_7\}).$$

Zad 1.27. Niech $\Sigma = \{0, 1\}$. Zaprojektuj maszynę Turinga, która oblicza odwrócenie łańcucha, czyli funkcję

$$f(w) = w^R$$

gdzie $w \in \{0,1\}^+$ oraz w^R oznacza **odwrócenie** w, a więc jeśli $w = a_1 a_2 ... a_k$, to $w^R = a_k a_{k-1} ... a_1$. Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, ..., q_9\}, \{1, 0\}, \{1, 0, s, X, Y, \nabla\}, \delta, q_0, \nabla, \{q_9\}).$$

Zad 1.30. Zaprojektuj maszynę Turinga, która akceptuje język

$$L = \{x^n y^n \colon n \ge 1\}$$

nad alfabetem $\Sigma = \{x,y\}$. Narysuj diagram przejść. Dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje). Rozwiązanie.

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, ..., q_8\}, \{x, y\}, \{x, y, A, B, \nabla\}, \delta, q_0, \nabla, \{q_8\}).$$

Zad 1.46. Wypisz cztery przykładowe łańcuchy opisywane przez wyrażenie $\mathbf{a}(\mathbf{a} + \mathbf{b})^*\mathbf{b}\mathbf{b}$. Czy można skonstruować (deterministyczną) maszynę Turinga,która akceptuje język

$$L = L(\mathbf{a}(\mathbf{a} + \mathbf{b})^* \mathbf{b} \mathbf{b})?$$

Jeżeli można, to narysuj diagram przejść i dla zaprojektowanej maszyny wykonaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \{a, b, \nabla\}, \delta, q_0, \nabla, \{q_4\}).$$

Zad 1.47. Wypisz cztery przykładowe łańcuchy opisywane przez wyrażenie $10+(0+11)0^*1$. Czy można skonstruować (deterministyczną) maszynę Turinga, która akceptuje język

$$L = L(10+(0+11)0*1)?$$

Jeżeli można, to narysuj diagram przejść i dla zaprojektowanej maszyny wy-konaj dwa obliczenia (wykonaj rysunki taśmy i zapisz konfiguracje).

$$M = (Q, \Gamma, \Sigma, \delta, q_0, \nabla, F) = (\{q_0, ..., q_7\}, \{1, 0\}, \{1, 0, \nabla\}, \delta, q_0, \nabla, \{q_7\}).$$

