Probability

A Practical, Systems-Based Approach

Bruce D. Marron *UTECA*, *CDMX*

Z1={observed system behavior}
Z2={possible causally-linked data}

Preface

This book is dedeicated to hours of NOT understanding probability theory.

Table of Contents

1	Intr	$\operatorname{roduction}$	1
	1.1	Ross Examples	1
		1.1.1 Example 2.5, p. 23	
		1.1.2 Excessive Elaborations	
	1.2	Ross Exercises Chapter 1	
		1.2.1 Examples	:
		1.2.2 Excessive Elaborations	:
	1.3	Third Principles	:
		1.3.1 Examples	:
		1.3.2 Excessive Elaborations	
2	The	eory of Numbers	
	2.1	First Principles	
		2.1.1 Examples	
		2.1.2 Excessive Elaborations	Ε.
	2.2		
		2.2.1 Examples	
		2.2.2 Excessive Elaborations	
	2.3	Third Principles	
		2.3.1 Examples	1
		2.3.2 Excessive Elaborations	L
3	Irro	ational and Transcendent Numbers	-
J	3.1	First Principles	7
	0.1	3.1.1 Examples	7
		3.1.2 Excessive Elaborations	7
	3.2	Second Principles	7
	5.2	3.2.1 Examples	7
		3.2.2 Excessive Elaborations	7
	3.3	Third Principles	-
	ა.ა	3.3.1 Examples	7
		3.3.2 Excessive Elaborations	-
		9.9.2 DACCSSIVE DIGDOLATIONS	•
Inc	\mathbf{dex}		ę

viii TABLE OF CONTENTS

Chapter 1

Introduction

Introduction to Probabi; lity Models, 10th edition by Sheldon Ross

1.1 Ross Examples

Suppose that n independent trials, each of which results in any of m possible outcomes with respective probabilities p1,..., pm, $\sum pi = 1$, are continually performed. Let X denote the number of trials needed until each outcome has occurred at least once. Define the equation for X=n and explain the reasoning.

Let outcomes be $1, \ldots, m$ with probabilities p_1, \ldots, p_m (independent across trials). For $n < m, \mathbb{P}(X = n) = 0$. For $n \ge m$

$$\mathbb{P}(X = n) = \sum_{\varnothing \neq S \subseteq \{1, ..., m\}} (-1)^{|S|+1} \Big(\sum_{j \in S} p_j\Big) \Big(1 - \sum_{j \in S} p_j\Big)^{n-1}$$

Why this is true (reasoning)

X=n means: after n-1 trials at least one outcome is missing, and on trial n the **last** missing type appears for the **first** time. Equivalently, pick any nonempty set S of outcomes and consider the event that **all** outcomes in S have been missing up to time n-1 and one of them appears at time n. The probability that no outcome from S appears in a given trial is $1-\sum_{j\in S}p_j$. So the chance they are all missing for the first n-1 trials and then one of them appears on trial n is

$$\left(1 - \sum_{j \in S} p_j\right)^{n-1} \left(\sum_{j \in S} p_j\right).$$

* But these events for different S overlap (inclusion–exclusion fixes the overcount), giving the alternating-sum formula above.

Coupon Collector Cheat Sheet (General Probabilities)

Problem: m outcomes with probabilities $p_1, \ldots, p_m > 0$, $\sum p_i = 1$. X = number of trials until all outcomes appear at least once. Define $q_S = \sum_{j \in S} p_j$ for subset $S \subseteq \{1, \ldots, m\}$.

Core Formulas

Quantity	Formula
$\overline{\mathrm{PMF}\ (n \geq m)}$	$\mathbb{P}(X=n) = \sum_{\varnothing \neq S} (-1)^{ S +1} q_S (1-q_S)^{n-1}$
CDF	$\mathbb{P}(X \le n) = \sum_{S}^{\infty \ne S} (-1)^{ S } (1 - q_S)^n$
Expectation	$\mathbb{E}[X] = \sum_{\varnothing \neq S} (-1)^{ S +1} \frac{1}{q_S}$
Minimum trials Sanity Check	$X_{\min} = m$ $\mathbb{P}(X = m) = m! \prod p_i; \sum_{n \ge m} \mathbb{P}(X = n) = 1$

Quick Insights

- Tail behavior dominated by largest $1 q_{\{i\}} = 1 \min p_i$; decays geometrically.
- Uniform probs: $p_i = 1/m \Rightarrow \mathbb{E}[X] = mH_m \approx m(\ln m + \gamma)$.
- Complexity: exact computation $O(2^m)$; feasible for $m \lesssim 20$.
- Simulation: use Monte Carlo for large m.
- First m trials all distinct probability: $m! \prod p_i$.

Algorithm (Bitmask / Combinations)

- 1. Enumerate all non-empty subsets S (bitmask or itertools.combinations).
- 2. Compute $q_S = \sum_{j \in S} p_j$.
- 3. Plug into PMF or expectation formulas.
- 4. Verify probabilities sum to 1 within tolerance.

Python Helper

```
from itertools import combinations
def coupon_collector_pmf(p, n):
    m = len(p)
    prob = 0.0
    idx = list(range(m))
    for r in range (1, m+1):
        for subset in combinations(idx, r):
            q = sum(p[i] for i in subset)
            prob += ((-1)**(r+1)) * q * (1-q)**(n-1)
    return prob
def coupon_collector_expectation(p):
    m = len(p)
    exp_val = 0.0
    idx = list(range(m))
    for r in range(1, m+1):
        for subset in combinations(idx, r):
            q = sum(p[i] for i in subset)
            exp_val += ((-1)**(r+1)) * (1/q)
    return exp_val
# Example usage:
p = [0.2, 0.3, 0.5]
for n in range (3, 8):
    print(f"P(X={n})_=_{coupon\_collector\_pmf(p,_n):.5f}")
print("E[X]_=", coupon_collector_expectation(p))
```

- 1.1.1 Example 2.5, p. 23
- 1.1.2 Excessive Elaborations
- 1.2 Ross Exercises Chapter 1
- 1.2.1 Examples
- 1.2.2 Excessive Elaborations
- 1.3 Third Principles
- 1.3.1 Examples
- 1.3.2 Excessive Elaborations

Chapter 2

Theory of Numbers

- 2.1 First Principles
- 2.1.1 Examples
- 2.1.2 Excessive Elaborations
- 2.2 Second Principles
- 2.2.1 Examples
- 2.2.2 Excessive Elaborations
- 2.3 Third Principles
- 2.3.1 Examples
- 2.3.2 Excessive Elaborations

Chapter 3

Irrational and Transcendent Numbers

- 3.1 First Principles
- 3.1.1 Examples
- 3.1.2 Excessive Elaborations
- 3.2 Second Principles
- 3.2.1 Examples
- 3.2.2 Excessive Elaborations
- 3.3 Third Principles
- 3.3.1 Examples
- 3.3.2 Excessive Elaborations

Index

A1, 7 A2, 7
B1, 7 B2, 7
C1, 7 C2, 7
D1, 7 D2, 7
E1, 7 E2, 7
F1, 7 F2, 7
G1, 7 G2, 7
H1, 7 H2, 7
I1, 7 I2, 7
J1, 7
J2, 7
J2, 7 K1, 7 K2, 7
K1, 7
K1, 7 K2, 7 L1, 7
K1, 7 K2, 7 L1, 7 L2, 7 M1, 7
K1, 7 K2, 7 L1, 7 L2, 7 M1, 7 M2, 7 N1, 7

 $\begin{array}{c} Q1,\ 7 \\ Q2,\ 7 \end{array}$

R1, 7

R2, 7
S1, 7
S2, 7
T1, 7
T2, 7
U1, 7
U2, 7
V1, 7
V2, 7
W1, 7
W2, 7
X1, 7
X2, 7
Y1, 7
Y2, 7
Z1, 7
Z2, 7