$$\Rightarrow \int_{\ell} = \int_{i=0}^{\infty} \frac{1}{1} \frac{1}{2} \frac{1}{i+\ell}, \quad L > 0$$

$$y_{0} = 5a^{2} \sum_{i=0}^{\infty} 4_{i}^{2} = 5a^{2} \left(1 + \sum_{i=i}^{\infty} 4_{i}^{2}\right)$$

Modelos economéricos e estatisticos de séries temporais lineares são relotizados p/ descrever os padrões dos pesos 4 de 72

Para uma série fracament estacionária: 4:-00 pl i -> 00

-> Retornos: a dep linear dos retorno corrente to com
o retorno passado te e diminui p/ l grande.

Modelos AR

PI CRSP o fabo de os reformos mensais re terem autocorrelacos de lag-1 estabésticamente significante indica que o retormo r_{t-1} pode su útil na predicas de r_t.

Un modelo simples p/ usar esta característica é:

(5)
$$\Gamma_{t} = \phi_{o} + \phi_{1} \Gamma_{t-1} + \alpha_{t}$$
 {at} suido manco { σ_{a}^{2}

regressed linear re dependente.

Modelo autoregressivo de ordem 1 : AR(1)

P/ um modelo AR(1), condicionados ao reformo (+1 temos
$E[\Gamma_t \Gamma_{t-1}] = \phi_0 + \phi_1\Gamma_{t-1} \qquad \text{Van}[\Gamma_t \Gamma_{t-1}] = \text{Van}[\alpha_t] = \sigma_a^2,$
ou seja, dado o retorno passado (t-1, o retorno alual é centrado em torno de \$6+\$1(t-1 c/ desvio pachad sa
Propriedade Markoviana: condicionado a (t-1, (t mão é correlacionado com (t-i p/ i>1.
Nos casos em que (t-s mão é suficient pl deferminar o valor esperado condicional de (t precisamos buscar um modelo mais flexivel
Generalização: $AR(1) \rightarrow AR(p)$ $\Gamma_t = \phi_0 + \phi_1 \Gamma_{t-1} + \cdots + \phi_p \Gamma_{t-p} + \alpha_t \qquad p \in \mathbb{N}_+$ $\Gamma_{\alpha_t, \beta_t} = \rho_0 + \rho_1 \Gamma_{t-1} + \cdots + \rho_p \Gamma_{t-p} + \alpha_t \qquad p \in \mathbb{N}_+$ $\Gamma_{\alpha_t, \beta_t} = \rho_0 + \rho_1 \Gamma_{t-1} + \cdots + \rho_p \Gamma_{t-p} + \alpha_t \qquad p \in \mathbb{N}_+$
⇒ os ρ valores (+i passados (i = 1,, ρ) conjuntamente determinam a experança condicional de (+ dados os rebornos passados.
[AR(p) é da mesma forma que uma regressad múltipla c/ or valores laggeados de desempenhando o papel de variáveis explanatórias]
Propriedades dos Motelos AR(1)
Assumindo que a série é fraçamente estaciona via tenvo:

$E[r_t] = \mu$, $Var[r_t] = y_0$, $Cov[r_t, r_{t-j}] = y_j$
mas quais ple jo são constantes e j'é função apenas de
Tomando o valor esperado de (5): E[at]=0
$E[\Gamma_t] = E[\phi_0 + \phi_1 \Gamma_{t-1} + \alpha_t] = \phi_0 + \phi_1 E[\Gamma_{t-1}]$
condices de estacionarie dade: E[rt] = E[rt-s] = M
$= 0 \mu = \phi_0 + \phi_1 \mu \text{ou} E[\Gamma_t] = \mu = \frac{\phi_0}{1 - \phi_1}$
Dras consiguéntas:
1) a média de l'é existe se $\phi_1 \neq 1$ 2) a midia de l'é zero se, l somente se, $\phi_0 = 0$
: p/ um processo AR(1) estacionario o lemo constante Φ_0 está relacionado da média de (t) via $\Phi_0=(1-\Phi_1)\mu$ e $\Phi_0=0 \rightarrow E[(t)=0$
Usando (6) podemos reescrever o modelo como:
$\Gamma_{t} - \mu = \phi_{1}(\Gamma_{t-1} - \mu) + \alpha_{t} \tag{7}$
$\int_{t} f_{t} = \phi_{0} + \phi_{1} \int_{t-1}^{t} f_{0} = \phi_{0} (1 - \phi_{0}) \mu + \phi_{0} \int_{t-1}^{t} f_{0} = 0$
= 1 + 1 + 0, 1 + 0, 1 + at => \(\tau_t - \mu = \phi_1 \left(\dagger_t - \mu \right) + at

Substituindo repetidamente:

	$\int_{t} -\mu = a_{t} + \phi_{1} \left(\phi_{1} \left(\int_{t-2} -\mu \right) + a_{t-1} \right)$	
	$= a_{t+a_{t-1}}\phi_{1} + \phi_{i}^{2}(r_{t-2}-\mu)$	
	$= a_{t} + \phi_{1} a_{t-1} + \phi_{1}^{2} (\phi_{1} (r_{t-3} - \mu) + a_{t-2})$	
	$= a_{t} + \phi_{1} a_{t-1} + \phi_{1}^{2} a_{t-2} + \phi_{1}^{3} (r_{t-3} - \mu)$	
	$\Rightarrow \Gamma_{t} - \mu = \sum_{k=0}^{\infty} \phi_{k}^{k} a_{t-k} \qquad (8)$	
	Remmando (4): $\int_{k=0}^{\infty} 4k a_{t-k}$	
	4x= \$\psi_x => \Gamma_t-\mu i uma funcion de at-re 1	ρl
	$\frac{\{a_{i}\} \text{ iid}}{\Longrightarrow E[(f_{i}-\mu)\alpha_{i}]=0}$	0
vrtaci	$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \left[\int_{t-1}^{t} a_{t} dt \right] = \frac{\partial}{\partial t} \left[\int_{t-1}^{t} a_{t} dt \right] = 0$	
	Tomando o quadrado de (7):	
	$\Gamma_{t}^{2} = (\mu + \phi_{t}(\Gamma_{t} - \mu) + a_{t})^{2}$	
	= pt +2ptor(pt-1-p) +2pat + pr(rt-1) + 2ator(rt-1)	-μ) ²
	+ 20, n E [1 + 20, n E [1 + 20]	
(=> (E[x=]=2µ0,E[x=]+0,E[x=]+20,E[a=12]+40,E[a=1	 -1
	+ ZMP, E [at] + E [ai]	7

L

| ------ | ------- |

- 10/<1 é condição necessária e suficiente para que o modelo AR(1)
Se = Po+ O1 Sen + at sen.
seje fracamente estacionário.
Usundo Po = (1-O2) µ reescrevemos
Γt = (1-Φ1)μ + Φ1 Γt-2 + at
Este modelo é usado el freg. em finanças com os mediado a pusistência da dependência denâmica de uma sérve AR(1)
ACF de un modelg AR(1)
/ [-μ = Φι ([+-1-μ) + at - at ([+=μ) = Φι ([+-1-μ]at + at
$E[a_t(\Gamma_t - \mu)] = \Phi_1 E[(\Gamma_{t-1} - \mu)a_t] + E[a_t^2] = E[a_t^2] = \Gamma_a^2$
Maple of Mary Carpo Ma
$(\Gamma_{t-\mu})(\Gamma_{t-\mu}-\mu)=\phi_{1}(\Gamma_{t-1}-\mu)(\Gamma_{t-\mu}-\mu)+(\Gamma_{t-\mu}-\mu)a_{t}$
$E[(r_{t-\mu})(r_{t-e-\mu})] = (0, (r_{t-e-\mu})(r_{t-e-\mu}) + E[(r_{t-e-\mu})a_{t-e-\mu})]$
<u></u>
υ <u>χ</u>

p/ 1 = 0

$$\int_{0}^{\infty} = \phi_{1} E\left[(c_{t-1} - \mu)(c_{t} - \mu) \right] + E\left[(c_{t} - \mu)a_{t} \right] = \phi_{1} \int_{1}^{\infty} + \delta a^{2}$$

pll>0 Months

Ne= Y-l

t=t-1

= O₁ X 0.-1

= 0, E[([-\mu])] + E[([-\mu])]

: pl um modelo AR(1) fracamente estacionarios

 $Van(\Gamma_{\ell}) = \gamma_0 = \frac{\sigma_0^2}{1 - \phi_0^2} \qquad \ell \qquad \gamma_{\ell} = \phi_{\ell} \gamma_{\ell-1} \qquad \rho/ \qquad \ell > 0$

= D ge = O, ge 1 2 > 0

 $\beta_0 = 1 = 0$ $\beta_1 = \phi_1$, $\beta_2 = \phi_1^2$, $\beta_3 = \phi_1^3$ ---

Pe=Pr - ACF de run AR(1)
fraçamente estacionarios
de cai exponencialmente

d toxa O, iniciando de 1

|----|

au_

Modelo AR(2)
Um modelo AR(2) tem a forma:
<u>Γ</u> = Φο + Φι Γ t- s + Φ2 Γ t-2 + G t
Usando a mesma licrica de substituição:
$E[r_{E}] = \mu = \frac{\rho_{o}}{1 - \phi_{1} - \phi_{2}} (desde que \theta_{1} + \theta_{2} \neq 1)$
Usando $\phi_0 = (1 - \phi_1 - \phi_2)\mu$ podemos revolver o AR(2):
$(\Gamma_{t-\mu}) = \phi_1 (\Gamma_{t-1} - \mu) + \phi_2 (\Gamma_{t-2} - \mu) + q_t$
Multiplicande per $(f_{t-e}-\mu)$; tomando e valor expuado e usando $E[(f_{t-e}-\mu)a_{t}]=0$ p/ $L>0$
Objernos:
equação de momento de um modelo AC(2) estacionário
Dividindo por p_0 : $p_e = \phi_1 p_{e-1} + \phi_z p_{e-2}$ pl $l > 0$ (9) (ACF de r_e)
ACF lag 1: $f_1 = \phi_1 f_0 + \phi_2 f_{-1} = \phi_1 + \phi_2 f_1$

ITALI DOA	
	rt AR(2) estacionària:
	· βε=Φ182+Φ2 βε-2 2>2
A equacqu (9) mos diz que estaciona rio satisfaz a de regunda ordem:	seguinte equacque de diferenças
$(1-\phi_1B-\phi_2B^2)f_\ell=0$)
B: "back-shift gerator"	Bfe = fe-1
Esta equação de deferences o de um AR(2) estacerónario	Uta es propriedades da ACF
Conerp à equaço de défen de segunda orden	enças enise um polinômio
$1 - \beta_1 \alpha - \beta_2 \alpha^2 = 0 \implies$	
Invusas das solucios são o do modelo AR(2). Den e wz.	hamadas de raizes características oborremos estas raizes por cos
A condico de estacionariel pl	um modelo AR(2) é que es

valores absolutos de sues deux raizes eauxfensitées sejans menores do que 1

P/ AP(1) $w = 1 = \phi_1 \quad |\phi_1| < 1 = 0$ estacionarie//.

Mo	odelo AR(p)			
Ge	meralizando a	es resultados a		
	$\delta_{\epsilon} = \phi_o + \phi$	1 (t-1 + + Op	rt-p + at	
	E[st] =	φ _ο \$1-···-Φ _ρ	(derde que o de seja nulo	nominador n
A.	ı v		a ao modelo é	
	1-0,x-0	22 + pap	= 0	
Se ern	lodas as sou n môdulo a	lucies desta eq sérit re s	uacid forem mai erá estacionária.	ous que 1
	· · · ·	-		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			