Các bài toán về phương trình bậc hai của hàm số lượng giác

1. Lý thuyết

Một số dạng phương trình bậc hai của một hàm số lượng giác

$$a.\sin^2 x + b.\sin x + c = 0, (a \ne 0)$$

$$a.\cos^2 x + b.\cos x + c = 0, (a \ne 0)$$

$$a.\tan^2 x + b.\tan x + c = 0, (a \ne 0)$$

$$a.\cot^2 x + b.\cot x + c = 0, (a \neq 0)$$

2. Phương pháp giải:

Phương trình dạng	Điều kiện xác định	Cách làm	Điều kiện ẩn phụ (ẩn t)		
f(sinx)		Đặt t = sinx	-1≤t≤1		
f(cosx)		Đặt t = cosx	-1≤t≤1		
f(tanx)	$x \neq \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$	Đặt t = tanx			
f(cotx)	$x \neq k\pi; k \in \mathbb{Z}$	Đặt t = cotx			

3. Ví dụ minh họa

Ví dụ 1: Giải các phương trình:

a)
$$2\sin^2 x - 5\sin x + 2 = 0$$

b)
$$5\cos^2 x - 6\cos x + 1 = 0$$

c)
$$tan^2x + 2tanx - 3 = 0$$

Lời giải

a) Đặt
$$t = \sin x \text{ với } -1 \le t \le 1$$
.

Ta được phương trình: $2t^2 - 5t + 2 = 0$

$$\Leftrightarrow 2t^2 - 4t - t + 2 = 0 \Leftrightarrow (2t - 1)(t - 2) = 0 \Leftrightarrow \begin{bmatrix} t = \frac{1}{2} \\ t = 2(Loai) \end{bmatrix}$$

Khi đó
$$\sin x = \frac{1}{2} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix} (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x = \frac{\pi}{6} + k2\pi; x = \frac{5\pi}{6} + k2\pi; k \in \mathbb{Z}$.

b) Đặt $t = \cos x \text{ với } -1 \le t \le 1$

Ta được phương trình: $5t^2 - 6t + 1 = 0$

$$\Leftrightarrow 5t^2 - 5t - t + 1 = 0 \Leftrightarrow (5t - 1)(t - 1) = 0 \Leftrightarrow \begin{bmatrix} t = 1 \\ t = \frac{1}{5} \end{cases}$$
 (Thỏa mãn)

Khi đó
$$\begin{bmatrix} \cos x = 1 \\ \cos x = \frac{1}{5} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = k2\pi \\ x = \pm \arccos\frac{1}{5} + k2\pi \end{bmatrix} (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x = k2\pi$; $x = \pm \arccos \frac{1}{5} + k2\pi$; $k \in \mathbb{Z}$.

c) Điều kiện xác định: $\cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$.

Đặt t = tanx. Ta được phương trình: $t^2 + 2t - 3 = 0$

$$\Leftrightarrow$$
 $t^2 + 3t - t - 3 = 0$

$$\Leftrightarrow (t+3)(t-1)=0$$

$$\Leftrightarrow \begin{bmatrix} t = -3 \\ t = 1 \end{bmatrix}$$

Khi đó
$$\Leftrightarrow$$
 $\begin{bmatrix} \tan x = -3 \\ \tan x = 1 \end{bmatrix} \Leftrightarrow$ $\begin{bmatrix} x = \arctan(-3) + k\pi \\ x = \frac{\pi}{4} + k\pi \end{bmatrix}$ ($k \in \mathbb{Z}$) (Thỏa mãn điều kiện xác

định)

Vậy họ nghiệm của phương trình là: $x = \frac{\pi}{4} + k\pi; x = \arctan(-3) + k\pi; k \in \mathbb{Z}$.

Ví dụ 2: Giải các phương trình:

a)
$$\sin^2 x + 2\cos x + 2 = 0$$

b)
$$\cos 2x - 4\sin x = 3$$

c)
$$\cos 2x - 3\cos x + 4\cos^2 \frac{x}{2} = 0$$

Lời giải

a)
$$\sin^2 x + 2\cos x + 2 = 0$$

$$\Leftrightarrow$$
 1 - cos² x + 2cosx + 2 = 0

$$\Leftrightarrow$$
 $-\cos^2 x + 2\cos x + 3 = 0$

Đặt
$$t = \cos x \text{ với } -1 \le t \le 1$$

Ta được phương trình: $-t^2 + 2t + 3 = 0$

$$\Leftrightarrow$$
 $-(t+1)(t-3)=0$

$$\Leftrightarrow$$
 $\begin{bmatrix} t = -1 \\ t = 3 \text{ (Loai)} \end{bmatrix}$

Khi đó
$$\cos x = -1 \Leftrightarrow x = \pi + k2\pi (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x = \pi + k2\pi; k \in \mathbb{Z}$.

b)
$$\cos 2x - 4\sin x = 3$$

$$\Leftrightarrow$$
 1-2sin² x -4sin x -3=0

$$\Leftrightarrow$$
 $-2\sin^2 x - 4\sin x - 2 = 0$

Đặt
$$t = \sin x \text{ với } -1 \le t \le 1$$

Ta được phương trình: $-2t^2 - 4t - 2 = 0$

$$\Leftrightarrow -2(t+1)^2 = 0$$

$$\Leftrightarrow$$
 t = -1 (Thỏa mãn)

Khi đó:
$$\sin x = -1 \Leftrightarrow x = -\frac{\pi}{2} + k2\pi (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x=-\frac{\pi}{2}+k2\pi; k\in\mathbb{Z}$.

c)
$$\cos 2x - 3\cos x + 4\cos^2 \frac{x}{2} = 0$$

$$\Leftrightarrow 2\cos^2 x - 1 - 3\cos x + 4 \cdot \frac{1 + \cos x}{2} = 0$$

$$\Leftrightarrow 2\cos^2 x - \cos x + 1 = 0$$

Đặt $t = \cos x \text{ với } -1 \le t \le 1$

Ta được phương trình: $2t^2 - t + 1 = 0$ (*)

Ta có: $\Delta = (-1)^2 - 4.2.1 = -7 < 0$. Do đó phương trình (*) vô nghiệm

Vậy phương trình đã cho vô nghiệm.

Ví dụ 3: Giải các phương trình:

a)
$$tanx + 5cotx = 6$$

b)
$$\frac{1}{\sin x} + 3\cot^2 x + 1 = 0$$

Lời giải

a) Điều kiện xác định:
$$\begin{cases} \sin x \neq 0 \\ \cos x \neq 0 \end{cases} \Leftrightarrow \begin{cases} x \neq k\pi \\ x \neq \frac{\pi}{2} + k\pi \end{cases} \Leftrightarrow x \neq \frac{k\pi}{2}; k \in \mathbb{Z} \,.$$

Ta có:
$$\tan x + 5\cot x = 6 \Leftrightarrow \tan x + \frac{5}{\tan x} = 6$$

Đặt t = tanx. Ta được phương trình: $t + \frac{5}{t} = 6$ (Điều kiện: $t \neq 0$)

$$\Rightarrow$$
 t² + 5 = 6t

$$\Leftrightarrow$$
 $t^2 - 6t + 5 = 0$

$$\Leftrightarrow \begin{bmatrix} t = 1 \\ t = 5 \end{bmatrix}$$

Khi đó
$$\begin{bmatrix} \tan x = 1 \\ \tan x = 5 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{4} + k\pi \\ x = \arctan 5 + k\pi \end{bmatrix} (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x = \frac{\pi}{4} + k\pi; x = \arctan 5 + k\pi; k \in \mathbb{Z}$.

b) Điều kiện xác định: $\sin x \neq 0 \Leftrightarrow x \neq k\pi; k \in \mathbb{Z}$

Vì
$$\frac{1}{\sin^2 x} = 1 + \cot^2 x$$
 nên $\cot^2 x = \frac{1}{\sin^2 x} - 1$

Thay vào phương trình ta có: $\frac{1}{\sin x} + 3\left(\frac{1}{\sin^2 x} - 1\right) + 1 = 0$

$$\Leftrightarrow 3\frac{1}{\sin^2 x} + \frac{1}{\sin x} - 2 = 0$$

Đặt $t = \frac{1}{\sin x}$ (Vì $-1 \le \sin x \le 1$; $\sin x \ne 0$ nên $t \ge 1$ hoặc $t \le -1$)

Ta được phương trình: $3t^2 + t - 2 = 0 \Leftrightarrow \begin{cases} t = -1 \\ t = \frac{2}{2} \text{(Loai)} \end{cases}$

Khi đó
$$\frac{1}{\sin x} = -1 \Leftrightarrow \sin x = -1 \Leftrightarrow x = -\frac{\pi}{2} + k2\pi (k \in \mathbb{Z})$$

Vậy họ nghiệm của phương trình là: $x = -\frac{\pi}{2} + k2\pi; k \in \mathbb{Z}$.

4. Bài tập tự luyện

Câu 1. Nghiệm của phương trình lượng giác: $2\cos^2 x + 3\sin x - 3 = 0$ thỏa mãn điều kiện $0 < x < \frac{\pi}{2}$ là:

A.
$$x = \frac{\pi}{3}$$

B.
$$x = \frac{\pi}{2}$$

D.
$$x = \frac{5\pi}{6}$$

Câu 2. Các họ nghiệm của phương trình $\cos 2x - \sin x = 0$ là:

A.
$$\frac{\pi}{6} + k2\pi; -\frac{\pi}{2} + k2\pi; k \in \mathbb{Z}$$

B.
$$\frac{5\pi}{6} + k2\pi; -\frac{\pi}{2} + k2\pi; k \in \mathbb{Z}$$

C.
$$\frac{\pi}{6} + \frac{k2\pi}{3}$$
; $k \in \mathbb{Z}$

$$\mathbf{D.} - \frac{\pi}{6} + \frac{\mathbf{k}2\pi}{3}; \mathbf{k} \in \mathbb{Z}$$

Câu 3. Nghiệm dương bé nhất của phương trình: $2\sin^2 x + 5\sin x - 3 = 0$ là:

A.
$$x = \frac{\pi}{2}$$

B.
$$x = \frac{3\pi}{2}$$

C.
$$x = \frac{5\pi}{6}$$
 D. $x = \frac{\pi}{6}$

D.
$$x = \frac{\pi}{6}$$

Câu 4. Nghiệm của phương trình $2\cos 2x + 2\cos x - \sqrt{2} = 0$ là

A.
$$x = \pm \frac{\pi}{4} + k2\pi; k \in \mathbb{Z}$$

B.
$$x = \pm \frac{\pi}{4} + k\pi; k \in \mathbb{Z}$$

C.
$$x = \pm \frac{\pi}{3} + k2\pi; k \in \mathbb{Z}$$

D.
$$x = \pm \frac{\pi}{3} + k\pi; k \in \mathbb{Z}$$

Câu 5. Trong $[0;2\pi)$, phương trình sinx = $1 - \cos^2 x$ có tập nghiệm là:

A.
$$\left\{\frac{\pi}{2}; \pi; 2\pi\right\}$$
 B. $\left\{0; \pi\right\}$ C. $\left\{0; \frac{\pi}{2}; \pi\right\}$ D. $\left\{0; \frac{\pi}{2}; \pi; 2\pi\right\}$

Câu 6. Có bao nhiều nghiệm của phương trình $\cos 4x + 3\sin 2x + 1 = 0$ thuộc khoảng $(0;2\pi)$?

A. 1

B. 2

C. 3

D. 4

Câu 7. Phương trình $\sin^2 \frac{x}{3} - 2\cos \frac{x}{3} + 2 = 0$ có các nghiệm là:

A. $x = k\pi, k \in \mathbb{Z}$

B. $x = k3\pi, k \in \mathbb{Z}$

C. $x = k2\pi, k \in \mathbb{Z}$

D.

 $x = k6\pi, k \in \mathbb{Z}$

Câu 8. Họ nghiệm của phương trình $3\cos 4x + 2\cos 2x - 5 = 0$ là:

A. $k2\pi; k \in \mathbb{Z}$

B. $\frac{\pi}{2} + k2\pi; k \in \mathbb{Z}$ **C.** $k\pi; k \in \mathbb{Z}$

D.

 $-\frac{\pi}{2} + k2\pi; k \in \mathbb{Z}$

Câu 9. Phương trình $\tan^2 x + 5\tan x - 6 = 0$ có các nghiệm là:

A. $x = \frac{\pi}{4} + k\pi$; $x = \arctan(-6) + k\pi$; $k \in \mathbb{Z}$

B. $x = \frac{\pi}{4} + k2\pi; x = \arctan(-6) + k2\pi; k \in \mathbb{Z}$

C. $x = -\frac{\pi}{4} + k\pi; x = \arctan(-6) + k2\pi; k \in \mathbb{Z}$

D. $x = k\pi$; $x = \arctan(-6) + k\pi$; $k \in \mathbb{Z}$

Câu 10. Một họ nghiệm của phương trình $3\tan 2x + 2\cot 2x - 5 = 0$ là

 $\mathbf{A} \cdot -\frac{\pi}{4} + \frac{\mathbf{k}\pi}{2}; \mathbf{k} \in \mathbb{Z}$

B. $\frac{\pi}{4} + \frac{k\pi}{2}$; $k \in \mathbb{Z}$

C. $-\frac{1}{2}\arctan\frac{2}{3} + \frac{k\pi}{2}; k \in \mathbb{Z}$

D. $\frac{1}{2}\arctan\frac{2}{3} + \frac{k\pi}{2}$; $k \in \mathbb{Z}$

Câu 11. Số nghiệm của phương trình $2\tan x - 2\cot x - 3 = 0$ trong khoảng $\left(-\frac{\pi}{2};\pi\right)$ là :

A. 2

B. 1

C. 4

D. 3

Câu 12. Phương trình $\cos 2x + \sin^2 x + 2\cos x + 1 = 0$ có nghiệm là:

$$\mathbf{A.} \left[\begin{array}{l} x = k2\pi \\ x = \frac{\pi}{3} + k2\pi \end{array} \right] (k \in \mathbb{Z})$$

B.
$$x = \pm \frac{\pi}{3} + k\pi; k \in \mathbb{Z}$$

$$\mathbf{C.} \ \mathbf{x} = \frac{\pi}{3} + \mathbf{k} 2\pi; \mathbf{k} \in \mathbb{Z}$$

D.
$$x = \pi + k2\pi; k \in \mathbb{Z}$$

Câu 13. Các nghiệm của phương trình $\sqrt{3} \tan x + \cot x - \sqrt{3} - 1 = 0$ là:

A.
$$x = \frac{\pi}{4} + k\pi$$
$$x = \frac{\pi}{6} + k\frac{\pi}{2} (k \in \mathbb{Z})$$

$$\mathbf{B.} \begin{cases} x = \frac{\pi}{4} + k2\pi \\ x = \frac{\pi}{6} + k2\pi \end{cases} (k \in \mathbb{Z})$$

C.
$$x = \frac{\pi}{4} + k3\pi$$

$$x = \frac{\pi}{6} + k3\pi$$

$$(k \in \mathbb{Z})$$

$$\mathbf{D.} \begin{bmatrix} x = \frac{\pi}{4} + k\pi \\ x = \frac{\pi}{6} + k\pi \end{bmatrix} (k \in \mathbb{Z})$$

Câu 14. Số nghiệm của phương trình $\frac{\sin^2 x}{1-\cos x} = 1$ thuộc $\left(-\frac{\pi}{2};0\right)$ là:

A. 2

B. 0

C. 1

D. 3

Câu 15. Họ nghiệm của phương trình $\cos^2 x + \sin x + 1 = 0$ là:

A.
$$x = -\frac{\pi}{2} + k2\pi; k \in \mathbb{Z}$$

B.
$$x = k\pi; k \in \mathbb{Z}$$

C.
$$x = \frac{\pi}{2} + k2\pi; k \in \mathbb{Z}$$

D.
$$x = \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$$

Bảng đáp án

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	С	D	A	C	D	D	C	A	D	D	D	D	В	A