Turno:	Grupo:	Data:	
Número:	Nome:		
Número:	Nome:		
Número:	Nome:		

1 Trabalho preparatório a realizar ANTES da sessão de Laboratório:

1. Descreva quais os objectivos do trabalho que irá realizar na sessão de laboratório.

1.1	Objectivos do Trabalho	

1.1.1 Equações

Escreva no seguinte quadro todas as equações necessárias para calcular as grandezas, bem como as suas incertezas.

$\sigma_{\overline{t}} = \sqrt{rac{2}{g} \cdot rac{1}{2\sqrt{\overline{D}}}} \cdot \sigma_{\overline{D}} = \overline{t} \cdot rac{1}{2\overline{D}} \cdot \sigma_{\overline{D}}$	

Procedimento Experimental

Material

- Suporte do pêndulo.
- Massas de chumbo, linha inextensível e com massa desprezável.
- Régua graduada, cronómetro, fita métrica, transferidor, balança.

Determinação do tempo de reação

Comece a sessão de laboratório por estimar o atraso e a precisão que obtém na medição do tempo com o cronómetro, tendo em conta o tempo de reacção do sistema nervoso. Para cada membro do grupo, com uma régua graduada e a ajuda de um(a) colega obtenha 15 medidas da queda da régua. A partir da média e desvio padrão obtenha o tempo de reação e a incerteza.

Ensaio	A - Distância	B - Distância	C - Distância
#	de queda [cm]	de queda [cm]	de queda [cm]
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
Média \overline{D} [m]			
Desvio padrão $\sigma_{\overline{D}}$ [m]			
Tempo de reação \overline{t} [s]			
Desvio padrão $\sigma_{\overline{t}}$ [s]		_	

Determinação do período do pêndulo

Monte o sistema de pêndulo gravítico e obtenha o seu período para diversos comprimentos do fio L, usando a medição de N ciclos. A medição é de um intervalo de tempo e, como tal, os atrasos da reação compensam no início e no fim da contagem. No entanto, deve considerar como erro de medição o dobro do desvio padrão. Para o erro da média $\overline{\Delta t}$ deve considerar o majorante entre este erro, $2\sigma_{\overline{t}}$ e o maior desvio entre o valor $\overline{\Delta t}$ e cada ensaio individual.

Obtenha o valor de g_{exp} para estes ensaios, usando a expressão (9) do texto de apoio, bem como a respectiva incerteza experimental. Compare o valor final de g_{exp} obtido com o valor tabelado g_{tab} para Lisboa e estime o desvio à exactidão que obteve.

Angulo inicial: $\theta \simeq$	rad. Número de ciclos: $N =$	
Anguio iniciai. V =	Tau. Indifference ciclos. TV —	

Ensaio #	L:	土	[m]	L:	±	[m]	L:	±	[m]	L:	土	[m]
$\Delta t \mathrm{A} [\mathrm{s}]$		土			土			土			土	
$\Delta t \mathrm{B} [\mathrm{s}]$		土			土			土			土	
$\Delta t \in [s]$		±			土			土			土	
Média $\overline{\Delta t}$ [s]		土			土			土			土	
Período \overline{T} [s]		\pm			土			\pm			\pm	
$\overline{g} [\mathrm{ms}^{-2}]$		\pm			\pm			\pm			\pm	

Tenha em atenção os seguintes aspectos e comente-os na discussão final:

- Utilize apenas algarismos significativos (a.s.) nas tabelas. O erros devem conter no máximo 2 a.s.
- Qual a vantagem de usar na medição N ciclos do pêndulo?
- \bullet Naturalmente a massa utilizada não é pontual. Qual é o efeito na medida e incerteza do comprimento L ?
- Uma massa pendurada num fio tem mais que o grau de liberdade em θ . Tente assegurar que o pêndulo oscila apenas ao longo de um plano vertical.
- Tente minimizar o efeitos de paralaxe na determinação do ângulo máximo.
- Qual a posição do pêndulo que usa para cronometrar o intervalo de tempo?

Resultados finais

$g_{exp} = \underline{\qquad} \pm \underline{\qquad}$	$[ms^{-2}]$	
Desvio à exatidão =	%, Incerteza relativa =	0/

Actividades adicionais, se tiver tempo

- Utilize a montagem electrónica com barreira óptica para medição precisa do período. Compare com os outros resultados.
- Verifique experimentalmente que o período do pêndulo não depende do valor da massa.
- Verifique experimentalmente a alteração do período do pêndulo para ângulos iniciais grandes. Para que valores de θ_0 o valor calculado de g' se afasta de g_{exp} com desvio $\geq 5\%$?
- Tente estimar a percentagem de energia devido ao atrito que se perde em cada ciclo .

Análise, conclusões e comentários finais			