100 Problems in Combinatorics

JAKE R. GAMEROFF

ABSTRACT. I want to get better at combinatorics. Here I solve 100 problems which I find illustrative, interesting, or fun. Aside from assessing the correctness of proofs, this document is not heavily revised, so typos are inevitable.

1. Graph Theory

1.1. Question 1. For an integer $k \geq 3$, let $N = R_3(k, k, k)$ be the minimum N such that in every edge-coloring of K_N in 3 colors there is a set X of k vertices so that all edges between vertices of X have the same color. Prove that

$$\binom{N}{k} \left(\frac{1}{3}\right)^{\binom{k}{2}-1} \ge 1.$$

Proof. Suppose

$$\binom{N}{k} \left(\frac{1}{3}\right)^{\binom{k}{2}-1} < 1$$

for a contradiction. Let Ω be the space of all colorings of the edges of K_N in 3 colors. Let $R \subseteq V(K_N)$ be a k-element subset of vertices, and let A_R be the event where R is monochromatic. So

$$P(A_R) = 3 \prod_{1 \le i \le {k \choose 2}} \frac{1}{3} = 3^{1 - {k \choose 2}}.$$

By sub-additivity,

$$P\left(\bigcup_{R\in[V(K_N)]^k} A_R\right) \le \sum_{R\in[V(K_N)]^k} 3^{1-k} = \binom{N}{k} 3^{1-\binom{k}{2}} < 1.$$

Thus there is a non-zero probability that there is no monochromatic k-element subgraph of K_N , contradicting $N = R_3(k, k, k)$. Hence (*) follows and we're done.

- 1.2. Question 2. Let F be a forest on n vertices with c connected components.
 - (a) Prove that F has n-c edges.
 - (b) Find the average degree of G.
 - (c) Prove that the intersection of k connected subgraphs of F is either empty or a tree.

Proof. For (a) we proceed by induction on c. If c=1 then F is a tree so that |E(F)| = |V(F)| - 1 = n - 1 as needed. Now fix $c \ge 2$ and let C be any component of F. Let $F' = F \setminus C$. By induction, |E(F')| = |V(F')| - (c-1). Since C is maximally connected in F, |E(C)| = |V(C)| + 1 since it is a tree. Since there was no edge between F' and C (it was a component),

$$|E(F)| = |E(F')| + |E(C)|$$

$$= |V(F')| - (c-1) + |V(C)| + 1$$

$$= |V(F)| - c = n - c,$$

which completes the proof.

For (b) note that by handshaking and (a),

$$\sum_{v \in V(F)} \deg v = 2|E(F)| = 2(n - c)$$

so that the average degree of F is $\frac{2}{n}(n-c)$.

Finally, for (c) we proceed as in (a) by induction on k. The intersection of 1 connected subgraph of F must be a tree since F is a forest. Now let F_1 and F_2 be connected subgraphs of F. Assume for a contradiction that $F_1 \cap F_2$ is not a tree and non-empty. Since $F_1 \cap F_2$ is a subgraph of a forest, it is acyclic; thus $F_1 \cap F_2$ must not be connected, otherwise it is a tree. But then $F_1 \cap F_2$ is itself a forest. Using this and non-emptyness, there are vertices $u, v \in V(F_1 \cap F_2)$ which lie in different connected components. But then u, v lie in different connected components of F, and $u, v \in V(F_1)$ contradicts its connectivity, as needed. If $k \geq 3$, write $F' = F_1 \cap F_2 \cap \cdots \cap F_{k-1}$ and note that F' is either a tree or empty. In the first case, F' is connected so the induction hypothesis implies the result for $F' \cap F_k$; otherwise F' is null so that $F' \cap F_k$ is too. This completes the proof.

- 1.3. Question 3. Let G be a k-connected graph on n vertices.
 - (a) Prove that $|E(G)| \ge kn/2$.

- (b) Let G' be obtained from G by adding a vertex v adjacent to every vertex in G. Show that G' is (k+1)-connected.
- (c) Show that for every integer $k \geq 2$ and $n \geq k+1$ there is a k-connected graph with |V(G)| = n and $|E(G)| \leq (k-1)n$.

Proof. For (a) note that since G is k-connected, every vertex has degree at least k. Otherwise, there is a vertex with degree at most k-1; deleting its neighbours disconnects the graph, contradicting k-connectivity. By handshaking,

$$|E(G)| = \frac{1}{2} \sum_{v \in V(G)} \deg v \le nk/2.$$

For (b), let v be adjacent to every vertex in V(G) in G'. Let X be a subset of $\leq k$ vertices in V(G'). If $v \in X$ then $G' \setminus X = G \setminus (X \setminus \{v\})$ is connected since G is k-connected and $|X \setminus \{v\}| \leq k-1$. Otherwise, $v \notin X$. Let $w \in X$ and note that $G' \setminus (X \setminus \{w\})$ is connected by k-connectivity. Then, we may remove w while preserving connectedness, since any two vertices x, y in $G' \setminus X$ are both adjacent to v. Hence G' is (k+1)-connected since X was arbitrary.

For (c) we may assume that n > 2k-2, otherwise $k+1 \le n \le 2k-2$ and

$$\binom{n}{2} = \frac{n(n-1)}{2} \le \frac{2k-2}{2} \cdot n = (k-1)n$$

so we can just take $G = K_n$, which is (n-1)-connected so that it is k-connected since $k+1 \le n$. Let G be d-regular, where d=2k-2. Then by handshaking,

$$|E(G)| = \frac{1}{2} \sum_{v \in V(G)} d = \frac{n}{2} (2k - 2) = (k - 1)n.$$

It remains to prove that G is k-connected. Let X be a set of at most k-1 vertices.

We prove (c) by induction on k. For $k \geq 2$ and $n \geq k + 1$, the cycle C_n on n vertices is the graph we need. Indeed,

$$|E(C_n)| = n = 1 \cdot n = (k-1)n.$$

Now fix $k \geq 3$. By the IH we obtain a graph G' on n' vertices and m' edges such that G' is (k-1)-connected, $n' \geq k$, and $m' \leq (k-2)n'$. Now let G be obtained by taking a vertex $v \in V(G')$ and connecting it to every vertex in G'. Then from (b) G is k-connected. This uses n'

edges. Let n = n' + 1 and m = m' + n'. Then $n = n' + 1 \ge k + 1$ and $m = m' + n' \le (k - 2)n' + n' = (k - 1)n'$ $\le (k - 1)(n' + 1) = (k - 1)n$

which completes the proof.

1.4. **Question 4.** Prove that:

- (a) If T is a tree then |V(T)| = |E(T)| + 1.
- (b) If F is a forest and c(F) is the number of components of F, show that c(F) = |V(F)| |E(F)|.

Proof. For (a) we proceed by induction on |V(T)|. If |V(T)| = 1 then T is edgeless so that |V(T)| = 0 + 1 = |E(T)| + 1. Now fix $|V(T)| \ge 2$. Then T has at least one leaf v. Let $T' = T \setminus v$. Then T' is a tree on |V(T)| - 1 vertices, so by the IH we have |V(T')| = |E(T')| + 1. Appending v to T' gives one new vertex and one new edge. Hence |V(T)| = |V(T')| + 1 = |E(T')| + 1 + 1 = |E(T)| + 1 and we're done. For (b) we induct on c(F). If c(F) = 1 then from (a)

$$|V(F)| = |E(F)| + 1 \Leftrightarrow 1 = |V(F)| - |E(F)|.$$

Then if $c(F) \geq 2$, let F' be obtained from F by deleting one entire component C. Then by the IH we have c(F') = |V(F')| - |E(F')| and since C is a tree, (a) implies that |V(C)| = |E(C)| + 1. Putting these two together, we obtain that

$$c(F) = c(F') + 1 = |V(F')| - |E(F')| + |V(C)| - |E(C)|$$

= |V(F)| - |E(F)|,

since $V(F') \cap V(C) = E(F') \cap E(C) = \emptyset$. This completes the proof. \square