练习

- 1. 对正态总体的期望 μ 进行假设检验,如果在显著水平 0.05 下接受 H_0 : $\mu=\mu_0$, 那么在显著水平 0.01 下,下列结论正确的是().
 - (A) 必接受 H₀

(B) 可能接受,也可能拒绝 H_0

(C) 必拒绝 H₀

(D) 不接受,也不拒绝 H_0

解 当正态总体方差 σ^2 为已知时,该假设检验在显著性水平为 α 下的拒绝域为

$$W_{\alpha} = \{x \mid \left| \frac{\sqrt{n}(\overline{X} - \mu_0)}{\sigma} \right| \ge u_{\alpha/2} \}$$
, 当 $\alpha_1 > \alpha_2$ 时, $u_{\alpha_1/2} < u_{\alpha_2/2}$, 从而 $W_{\alpha_1} \supseteq W_{\alpha_2}$, 由此可得,

现 $\alpha_1=0.05>\alpha_2=0.01$,且 $x\not\in W_{\alpha_1}$,由此可得 $x\not\in W_{\alpha_2}$, 故应选择 A;

类似地, 当正杰总体方差 σ^2 为未知时, 该假设检验在显著性水平为 α 下的拒绝域为

$$W_{\alpha} = \{x \mid \left| \frac{\sqrt{n}(\overline{X} - \mu_0)}{S} \right| \ge t_{\alpha/2}(n-1)\}$$
,当 $\alpha_1 > \alpha_2$ 时, $u_{\alpha_1/2} < u_{\alpha_2/2}$,从而 $W_{\alpha_1} \supseteq W_{\alpha_2}$,由此

可得,现 $\alpha_1=0.05>\alpha_2=0.01$,且 $x\not\in W_{\alpha_1}$,由此可得 $x\not\in W_{\alpha_2}$,故也应选择A.

- 2. 在假设检验中,原假设 H_0 ,备选假设 H_1 ,则称为犯第二类错误的是 ().
- $(A) H_0$ 为真,接受 H_1
- (B) H₀不真,接受 H₀
- (C) H_0 为真,拒绝 H_1
- (D) H₀不真, 拒绝 H₀

解 犯第二类错误是指在原假设不真时,由于检验统计量的值落在接受域内,此时接受原假设的错误,故选择 B.

- 3. 在假设检验中,显著水平α表示为()
- (A) P{接受 H₀|H₀ 为假}
- (B) P{拒绝 H₀|H₀为真}

(C) 置信度为 α

(D) 无具体含义

解 在假设检验中,显著水平 α 表示为在原假设为真时,由于检验统计量的值落在拒绝域内,作出拒绝原假设所犯错误的概率,故选择 B.

4. 自动包装机装出的每袋重量服从正态分布,规定每袋重量的方差不超过 m,为了检查自动包装机的工作是否正常,对它生产的产品进行抽样检验,检验假设为 $H_0:\sigma^2 \leq m$,

 H_1 : $\sigma^2 > m$, $\alpha = 0.05$, 则下列命题中正确的是()

- (A) 如果生产正常,则检验结果也认为生产正常的概率为 0.95.
- (B) 如果生产不正常,则检验结果也认为生产不正常的概率为 0.95.
- (C) 如果检验的结果认为生产正常,则生产确实正常的概率等于 0.95.
- (D) 如果检验的结果认为生产不正常,则生产确实不正常的概率等于 0.95.
- 解 假设检验的显著性水平的意义可知,正确的为 A,故选择 A.
 - 5. 设 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 且相互独立,检验假设 H_0 : $\sigma_1^2 = \sigma_2^2$, H_1 : $\sigma_1^2 \neq \sigma_2^2$ $\alpha = 0.10$,从总体 X 中抽取容量 n=12 的样本,从总体 Y 中抽取容量为 m=10 的样本 算得样本方差 $S_1^2 = 118.4$, $S_2^2 = 31.93$,正确的检验方法与结论是().

- (A) 用 t 检验法,临界值 $t_{0.05}(17) = 2.11$,拒绝 H_0
- (B) 用 F 检验法,临界值 $F_{0.05}(11.9) = 3.10$, $F_{0.95}(11.9) = 0.34$,拒绝 H_0
- (C) 用 F 检验法, 临界值 $F_{0.05}(11.9) = 3.10$, $F_{0.95}(11.9) = 0.34$, 接受 H_0
- (D) 用 F 检验法, 临界值 $F_{0.01}(11.9) = 5.18$, $F_{0.99}(11.9) = 0.21$, 接受 H_0

该检验法为F检验法,且为双边检验,所以,临界值为 $F_{0.05}(11,9)=3.10$, 解

 $F_{0.95}(11,9)=0.34$,检验统计量的值为 $F=rac{s_1^2}{s_2^2}=3.71>F_{0.05}(11,9)=3.10$,故拒绝 H_0 ,因此 选择 B.

6. 机床厂某日从两台机器所加工的同一种零件中,分别抽取 n=20,m=25 的两个样本, 检验两台机床的加工精度是否相同,则提出假设().

(A)
$$H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$$

$$(A) \ \ H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2 \\ (B) \ \ H_0: \ \sigma_1^2 = \sigma_2^2, H_1: \ \sigma_1^2 \neq \sigma_2^2$$

(C)
$$H_0: \mu_1 \leq \mu_2, H_1: \mu_1 > \mu_2$$

(C)
$$H_0: \mu_1 \le \mu_2, H_1: \mu_1 > \mu_2$$
 (D) $H_0: \sigma_1^2 \le \sigma_2^2, H_1: \sigma_1^2 > \sigma_2^2$

解 要检验两台机床的加工精度是否相同,即要检验方差是否相等,因此提出的原假设和对 立假设分别为 H_0 : $\sigma_1^2 = \sigma_2^2$, H_1 : $\sigma_1^2 \neq \sigma_2^2$, 因此选择 B.

7. 设 $X_1, X_2, ..., X_{16}$ 为自 $N(\mu, 1)$ 的样本,现要检验 $H_0: \mu = 0, H_1: \mu > 0$,取拒绝域

$$W = \left\{ (x_1, x_2, \dots, x_{16}) : \frac{1}{16} \sum_{i=1}^{16} x_i > \frac{1}{4} u_{0.05} \right\}, \ \, 其中 \, u_{0.05} \, 表示 \, N(0,1)$$
的上 0.05 分位点,则此

检验方案犯第一类错误的概率为(

- (A) 0.05
- (B) 0.1
- (C) 0.9

解 检验方案犯第一类错误的概率为

$$\alpha = P\left\{\frac{1}{16}\sum_{1}^{16}x_{i} > \frac{1}{4}u_{0.05} \mid \mu = 0\right\} = P\left\{\frac{\frac{1}{16}\sum_{i=1}^{16}x_{i}}{\sqrt{\frac{1}{16}}} > u_{0.05} \mid \mu = 0\right\} = 0.05 \text{ , } \text{ bb$ \sharp A.}$$

8. 设总体 $X\sim N(\mu,\sigma^2)$, $X_1,X_2,...,X_n$ 为来自 X 的样本 (n>1) ,则下列不等式正确的 是()

(A)
$$P\{|X - \mu| < \varepsilon\} < P\{|\overline{X} - \mu| < \varepsilon\}$$

(A)
$$P\{|X - \mu| < \varepsilon\} < P\{|\overline{X} - \mu| < \varepsilon\}$$
 (B) $P\{|X - \mu| < \varepsilon\} > P\{|\overline{X} - \mu| < \varepsilon\}$

$$(C) \ P\{|X-\mu|<\varepsilon\} \le P\{|\overline{X}-\mu|<\varepsilon\} \qquad (D) \ P\{|X-\mu|<\varepsilon\} \ge P\{|\overline{X}-\mu|<\varepsilon\}$$

(D)
$$P\{|X-u|<\varepsilon\} \ge P\{|\overline{X}-u|<\varepsilon\}$$

$$\begin{aligned}
& P\{|X - \mu| < \varepsilon\} = P\left\{ \left| \frac{X - \mu}{\sigma} \right| < \frac{\varepsilon}{\sigma} \right\} = 2\Phi(\frac{\varepsilon}{\sigma}) - 1, \\
& P\{|\overline{X} - \mu| < \varepsilon\} = P\left\{ \left| \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \right| < \frac{\sqrt{n}\varepsilon}{\sigma} \right\} = 2\Phi(\frac{\sqrt{n}\varepsilon}{\sigma}) - 1,
\end{aligned}$$

故选择 A.

9. 假设总体 $X \sim N(\mu,1)$, $X_1,X_2,...,X_{10}$ 为来自 X 的 10 个观察值,要在 $\alpha=0.05$ 的 水平下检验 H_0 : $\mu=\mu_0=0$, H_1 : $\mu\neq 0$ 取拒绝域 $W=\{|\bar{X}|\geq C\}$. (1)求 C (2)若 $\bar{X}=1$,是否可以据此样本推断 $\mu=0$ ($\alpha=0.05$)?(3)若以 $W=\{|\bar{X}|\geq 1.02\}$ 作为该检验 H_0 : $\mu=0$ 的拒绝域,试求检验的显著水平 α .

$$0.05 = P\{|\bar{X}| \ge C \mid \mu = 0\} = P\{|\sqrt{10}\bar{X}| \ge \sqrt{10}C \mid \mu = 0\} = 2[1 - \Phi(\sqrt{10}C)]$$

由此可得
$$\Phi(\sqrt{10}C) = 0.975 = \Phi(1.96) \Rightarrow C = \frac{1.96}{\sqrt{10}} = 0.6198$$
;

解 (1) 由显著性水平的含义可知

(2) 当 $\bar{X}=1$ 时, $|\bar{X}|=1>0.6198$,所以拒绝原假设 $H_0:\mu=0$;

(3)
$$\alpha = P\{ | \overline{X} | \ge 1.02 | \mu = 0 \} = P\{ | \sqrt{10}\overline{X} | \ge \sqrt{10} \times 1.02 | \mu = 0 \} = 2 \times [1 - \Phi(\sqrt{10} \times 1.02)]$$

 $\approx 2[1 - \Phi(3.23)] = 2 \times (1 - 0.99935) = 0.0013$.

10. 由经验知某零件重量 $X\sim N(\mu,\sigma^2)$, μ =15, σ^2 =0.05. 技术革新后,抽了 6 个样品,测得重量为(单位: 克): 14.7, 15.1, 14.8, 15.0, 15.2, 14.6,已知方差不变,问平均重量是否仍为 15?(α =0.05)

解 该问题为单个正态总体在方差已知时均值的双边检验问题, $H_0: \mu=15, H_1: \mu\neq15$,查表可得 $u_{\alpha/2}=u_{0.025}=1.96$, 计算得样本均值为 $\overline{x}=14.9, n=6$,检验统计量的值为

$$\left|\frac{\sqrt{n}(\overline{x}-15)}{\sqrt{0.05}}\right| = \left|\frac{\sqrt{6}(14.9-15)}{\sqrt{0.05}}\right| = 1.0954 < u_{0.025} = 1.96 \text{ , } 因此接受原假设, 认为零件的平$$

均重量仍为 15.

11. 某厂用自动包装机装箱,在正常情况下每箱重量服从N(100,1.15²). 某日开工后,随机抽查 10 箱,重量如下(单位:斤): 99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9,问包装机工作是否正常($\alpha=0.05$).

 $M = H_0 : \mu = 100, H_1 : \mu \neq 100$,

n=10,经计算得样本均值和样本标准差分别为 $\overline{x}=99.9,s=0.5831$,查 t 分布表得 $t_{\alpha/2}(n-1)=t_{0.025}(9)=2.2622$,计算得检验统计量的值为

$$\left| \frac{\sqrt{n}(\overline{x} - 100)}{s} \right| = \left| \frac{\sqrt{10}(99.9 - 100)}{0.5831} \right| = 0.5423 < t_{0.025}(9) ,$$

所以,接受原假设,认为包装机工作是否正常.

12. 正常人的脉搏平均为 72 次/分,某医生测得 10 例慢性四乙基铅中毒患者的脉搏(次/分): 54,67,68,78,70,66,67,70,65,69. 已知人的脉搏服从正态分布,问在显著性水平 $\alpha=0.05$ 下四乙基铅中毒者的脉搏和正常人的脉搏有无显著性差异?

解 $H_0: \mu = 72, H_1: \mu \neq 72$,

n=10,经计算得样本均值和样本标准差分别为 $\bar{x}=67.4,s=5.9292$,查t分布表得 $t_{\alpha/2}(n-1)=t_{0.025}(9)=2.2622$,计算得检验统计量的值为

$$\left| \frac{\sqrt{n}(\overline{x} - 72)}{s} \right| = \left| \frac{\sqrt{10}(67.4 - 72)}{5.9292} \right| = 2.4534 > t_{0.025}(9) ,$$

所以,拒绝原假设,认为四乙基铅中毒者的脉搏和正常人的脉搏有显著性差异.

13. 用热敏电阻测温仪间接测量地热勘探井底温度,重复测量 7 次,测得温度($^{\circ}C$): 112.0, 113.4, 111.2, 112.0, 114.5, 112.9, 113.6,而用某精确办法测得温度为 112.6(可看作温度 真值),试问用热敏电阻测温仪间接测温有无系统偏差?(α =0.05)

解 H_0 : $\mu = 112.6, H_1$: $\mu \neq 112.6$,

n=7,经计算得样本均值和样本标准差分别为 $\bar{x}=112.8,s=1.1358$,查 t 分布表得 $t_{\alpha/2}(n-1)=t_{0.025}(6)=2.4469$,计算得检验统计量的值为

$$\left| \frac{\sqrt{n}(\overline{x} - 112.6)}{s} \right| = \left| \frac{\sqrt{7}(112.8 - 112.6)}{1.1358} \right| = 0.4659 < t_{0.025}(6) ,$$

所以,接受原假设,认为用热敏电阻测温仪间接测温无系统偏差.

14. 某电子元件的寿命(单位:小时) $X\sim N(\mu,\sigma^2)$,其中 μ , σ^2 均未知,现测得 16 只元件,其寿命如下: 159,280,101,212,224,279,179,264,222,362,168,250,149,260,485,170,问: (1)元件的平均寿命是否大于 225 小时?(2)元件寿命的方差 是否等于 100^2 ($\alpha=0.05$)?

 $M = (1) H_0: \mu \le 225, H_1: \mu > 225$

n=16,经计算得样本均值和样本标准差分别为 $\bar{x}=235.25, s=92.4038$,查t分布表得 $t_{\alpha}(n-1)=t_{0.05}(15)=1.7531$,计算得检验统计量的值为

$$\frac{\sqrt{n}(\overline{x}-112.6)}{s} = \frac{\sqrt{16}(235.25-225)}{92.4038} = 0.4437 < t_{0.05}(15) ,$$

所以,接受原假设,认为元件的平均寿命不大于225小时;

(2) 依题意,需要检验的原假设和备择假设为

$$H_0: \sigma = 100 \quad vs \quad H_1: \sigma \neq 100$$

选取检验统计量 $\chi^2 = \frac{n-1}{100^2} S^2$, $n=16,\alpha=0.05$,查表可得

$$\chi^2_{\alpha/2}(n-1)=\chi^2_{0.025}(15)=27.488,$$
 $\chi^2_{1-\alpha/2}(n-1)=\chi^2_{0.975}(15)=6.262$,此问题的拒绝域为

$$\{\chi^2 \ge 27.488$$
或 $\chi^2 \le 6.262\}$

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} = \frac{15 \times 92.4038^2}{100^2} = 12.8077$$

检验统计量的值没有落入拒绝域内,所以应拒绝原假设 H_0 ,认为元件寿命的方差是 100^2 .

15. 测定某种溶液中的水分,测得其 10 个样本值,并算得样本标准差 S=0.037,设测定值总体为正态分布, σ^2 为总体方差, σ^2 未知,试在显著性水平 α = 0.05 下检验假设:

$$H_0: \ \sigma \ge 0.04, \ H_1: \ \sigma < 0.04.$$

解 选取检验统计量 $\chi^2 = \frac{n-1}{0.04^2} S^2$, 该假设检验问题的拒绝域为

$$\left\{\frac{n-1}{0.04^2}s^2 \le \chi_{1-\alpha}^2(n-1)\right\}.$$

现 $n=10,\alpha=0.05$, 查表可得 $\chi_{1-\alpha}^2(n-1)=\chi_{0.95}^2(9)=3.325$, 此问题的拒绝域为

$$\{\chi^2 \le 3.325\}$$

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} = \frac{9 \times 0.037^2}{0.04^2} = 7.701 > 3.325$$

所以应接受原假设 H_0 ,即认为 $\sigma \geq 0.04$.

15. 某种导线,要求其电阻的标准差不得超过 0.005 (欧姆).今在生产的一批导线中抽取样品 9 根,测得 S=0.007(欧姆),设总体为正态分布。问在水平 α =0.05 下能认为这批导线的标准差显著地偏大吗?

解 要检验的问题可假设为: H_0 : σ ≤0.005, H_1 : σ >0.005.

选取的检验统计量为
$$\chi^2 = \frac{(n-1)S^2}{0.005^2}$$
,该检验问题的拒绝域为 $\left\{ \frac{(n-1)s^2}{0.005^2} \ge \chi_\alpha^2 (n-1) \right\}$,

 $n=9, \alpha=0.05$,查表可得 $\chi^2_{\alpha}(n-1)=\chi^2_{0.05}(8)=15.507$, $\chi^2=\frac{(n-1)S^2}{0.005^2}=\frac{8\times0.007^2}{0.005^2}=15.680>15.507$,拒绝原假设,即认为这批导线的标准差显著地偏大.

16. 两家农业银行分别对 21 个储户和 16 个储户的年存款余额进行抽样检查,测得其平均年存款余款分别为 $\overline{x}=2600$ 元, $\overline{y}=2700$ 元;样本标准差 S_1 =81 元和 S_2 =105 元,假设年存款余额服从正态分布,试比较两家银行的储户的平均年存款余额有无显著差异(提示:本题要先检验两总体的方差是否相等,再检验均值是否相等, $\alpha=0.10$)?

解 首先检验假设
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ vs H_1 : $\sigma_1^2 \neq \sigma_2^2$

对于显著性水平 $\alpha=0.10$, n=21, m=16,查 F 分布表得 $F_{\alpha/2}(n-1, m-1)=F_{0.05}(20, 15)=2.328$,

$$F_{1-\alpha/2}(n-1,m-1) = F_{0.95}(20,15) = \frac{1}{F_{0.05(15,20)}} = \frac{1}{2.20} = 0.4545$$
,假设 H_0 的拒绝域为
$$W_1 = \{\frac{s_1^2}{s^2} \le 0.4545$$
 或 $\frac{s_1^2}{s^2} \ge 2.328\}$

$$F = \frac{s_1^2}{s_2^2} = \frac{81^2}{105^2} = 0.5951$$

因为 0.4545<F=0.5951<2.328,所以接受假设 H_0 : σ_1^2 = σ_2^2 .

再检验假设 H_0' : $\mu_1 = \mu_2$ vs H_1' : $\mu_1 \neq \mu_2$.

对于显著性水平 $\alpha=0.10$, $n=21, m=16, \pm t$ 分布表得 $t_{\alpha/2}(n+m-2)=t_{0.05}(35)=1.6896$,

假设 H_0 的拒绝域为

$$W_1 = \{ |t| \ge 1.6896 \}$$

由样本算得

$$t = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-2}}} = \frac{2600 - 2700}{\sqrt{\frac{20 \times 81^2 + 15 \times 105^2}{21 + 16 - 2}}} = -3.2736$$

因为|t|=3.2736>1.6896,样本落入拒绝域中,所以拒绝 H_0 ,即认为两家银行的储户的平均年存款余额有显著差异.

18. 机床厂某日从两台机器所加工的同一零件中,分别抽若干个样测量零件尺寸,得:第一台机器的: 6.2, 5.7, 6.5, 6.0, 6.3, 5.8, 5.7, 6.0, 6.0, 5.8, 6.0

第二台机器的: 5.6, 5.9, 5.6, 5.7, 5.8, 6.0, 5.5, 5.7, 5.5

问:这两台机器的加工精度是否有显著性差异?(α =0.05)假定两台机器加工的零件尺寸都服从正态分布.

解 该问题即检验假设 $H_0: \sigma_1^2 = \sigma_2^2$ vs $H_1: \sigma_1^2 \neq \sigma_2^2$

对于显著性水平 $\alpha = 0.05$, n=11, m=9,计算得两组样本的样本方差分别为 $S_1^2 = 0.0640$, $S_2^2 = 0.0300$,查F分布表得 $F_{\alpha/2}(n-1, m-1) = F_{0.025}(10,8) = 4.295$,

$$F_{1-\alpha/2}(n-1,m-1) = F_{0.975}(10,8) = \frac{1}{F_{0.025(8,10)}} = \frac{1}{3.855} = 0.2594$$
,假设 H_0 的拒绝域为

$$W_1 = \{\frac{s_1^2}{s_2^2} \le 0.2594 \, \text{pk} \, \frac{s_1^2}{s_2^2} \ge 4.295 \}$$

$$F = \frac{s_1^2}{s_2^2} = \frac{0.0640}{0.0300} = 2.133$$

因为 0.2594 < F = 2.133 < 4.295,所以接受假设 H_0 ,即认为这两台机器的加工精度没有显著性差异.

19. 有甲、乙两台机床加工同样产品,从这两台机床加工的产品中随意地抽取若干件,测得产品直径(单位: *mm*)为

试比较甲、乙两台机床加工产品直径有无显著差异(α=5%)?假定两台机床加工产品的直径都服从正态分布,且总体方差相等.

解 该问题即要检验两个正态总体在方差位置但相等的基础假设

$$H_0: \mu_1 = \mu_2$$
 vs $H_1: \mu_1 \neq \mu_2$.

对于显著性水平 $\alpha = 0.05$,n=8,m=7,经计算得两组样本的样本均值和样本方差分别为

$$\overline{x} = 18.675$$
, $\overline{y} = 20$, $s_X^2 = 12.5021$, $S_Y^2 = 0.3967$, 查 t 分布表得

$$t_{\alpha/2}(n+m-2) = t_{0.025}(13) = 2.1604$$

假设 H_0 的拒绝域为 $W = \{|t| \ge 2.1604\}$

由样本算得

$$t = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-2}}} = \frac{18.675 - 20}{\sqrt{\frac{7 \times 12.5021 + 6 \times 0.3967}{8 + 7 - 2}}} = -1.8033$$

因为t=1.8033<2.1604,样本未落入拒绝域中,所以接受原假设 H_0 ,即认为甲、乙两台机床加工产品直径无显著差异。

20. 检验 26 匹马,测得每 100 毫升的血清中,所含的无机磷平均为 3.29 毫升,标准差为 0.27 毫升,又检验 18 头羊,测得每 100 毫升的血清中,所含的无机磷平均为 3.96 毫升,,标准差为 0.40 毫升. 设马和羊的血清中含无机磷服从正态分布,试问在显著性水平 $\alpha=0.05$ 条件下,马和羊的血清中含无机磷的含量有无显著性差异?

解 首先检验假设 H_0 : $\sigma_1^2 = \sigma_2^2$ vs H_1 : $\sigma_1^2 \neq \sigma_2^2$

对于显著性水平 $\alpha = 0.05$,n=26, m=18,查 F分布表得 $F_{\alpha/2}(n-1, m-1) = F_{0.025}(25, 17) = 2.548$,

$$F_{1-\alpha/2}(n-1,m-1) = F_{0.975}(25,17) = \frac{1}{F_{0.025(17,25)}} = \frac{1}{2.36} \approx 0.4237$$
,假设 H_0 的拒绝域为

$$W_1 = \{ \frac{s_1^2}{s_2^2} \le 0.4237 \, \text{pk} \, \frac{s_1^2}{s_2^2} \ge 2.548 \}$$

$$F = \frac{s_1^2}{s_2^2} = \frac{0.27^2}{0.40^2} \approx 0.4556$$

因为 0.4237 < F = 0.4556 < 2.548,所以接受假设 H_0 : $\sigma_1^2 = \sigma_2^2$.

再检验假设 $H_0^{'}$: $\mu_1 = \mu_2$ vs $H_1^{'}$: $\mu_1 \neq \mu_2$.

对于显著性水平 $\alpha = 0.05$,n=26,m=18,查 t 分布表得 $t_{\alpha/2}(n+m-2) = t_{0.025}(42) = 2.0181$,

假设 H 的拒绝域为

$$W_1 = \{ |t| \ge 2.0181 \}$$

由样本算得

$$t = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-2}}} = \frac{3.29 - 3.96}{\sqrt{\frac{25 \times 0.27^2 + 17 \times 0.40^2}{26 + 18 - 2}}} \approx -6.6445$$

因为|t|=6.6445>2.0181,样本落入拒绝域中,所以拒绝 H_0 ,即认为马和羊的血清中含无机磷的含量有显著性差异.

21. 测的两批电子器材的电阻的子样值为

 A 批 x (欧姆): 0.140, 0.138, 0.143, 0.142, 0.144, 0.137

 B 批 y (欧姆): 0.135, 0.140, 0.142, 0.136, 0.138, 0.140

设这两批器材的电阻分别服从分布 $N(\mu_1, \sigma_1^2)$ 与 $N(\mu_2, \sigma_2^2)$.

- (1) 检验假设 H_0 : $\sigma_1^2 = \sigma_2^2$, $\alpha = 5\%$;
- (2) 检验假设 H_0 : $\mu_1 = \mu_2$, $\alpha = 5\%$.

解(1)检验假设 H_0 : $\sigma_1^2=\sigma_2^2$, H_1 : $\sigma_1^2\neq\sigma_2^2$, 由样本值计算得两组样本的样本均值和样本方差分别为 $\overline{x}=0.1407$, $\overline{y}=0.1385$, $s_A^2=7.8667\times 10^{-6}$, $s_B^2=7.1\times 10^{-6}$, 对于显著性水平 $\alpha=0.05$, n=6,m=6,查F分布表得 $F_{\alpha/2}(n-1,m-1)=F_{0.025}(5,5)=7.15$,

$$F = \frac{s_A^2}{s_B^2} = \frac{7.8667 \times 10^{-6}}{7.1000 \times 10^{-6}} \approx 1.1080$$

因为 0.1399<F=1.1080<7.15,所以接受假设 H_0 : $\sigma_1^2 = \sigma_2^2$;

(2) 检验假设 H_0 : $\mu_1 = \mu_2$, H_1 : $\mu_1 \neq \mu_2$, 对于显著性水平 $\alpha = 0.05$, n=6, m=6,查 t 分布表 $\# t_{\alpha/2}(n+m-2) = t_{0.025}(10) = 2.2281,$

假设 H_0 的拒绝域为

$$W = \{ |t| \ge 2.2281 \}$$

由样本算得

$$t = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-2}}} = \frac{0.1407 - 0.1385}{\sqrt{\frac{5 \times 7.8667 \times 10^{-6} + 5 \times 7.1 \times 10^{-6}}{6+6-2}}} \approx 1.3929$$

因为t=1.3929<2.2281,样本没有落入拒绝域中,所以接受拒绝 H_0 ,即认为两批电子器材的电阻没有显著性差异.

22. 为了检查一骰子是否均匀,把它掷了120次,得结果如下:

出现 点数	1	2	3	4	5	6
次数	15	15	20	21	23	26

试在显著性水平 $\alpha = 0.10$ 下作 χ^2 拟合优度检验.

解 根据题意需要检验假设

Ho: 这颗骰子的六个面是匀称的.

(或
$$H_0: P\{X=i\} = \frac{1}{6} \ (i=1,2,\dots,6)$$
)

其中 X 表示抛掷这骰子一次所出现的点数 (可能值只有 6 个),

取
$$\Omega_i = \{i\}$$
, $(i=1, 2, \dots, 6)$

则事件 $A_i = \{X \in \Omega_i\} = \{X = i\}$ $(i = 1, 2, \dots, 6)$ 为互不相容事件.

在
$$H_0$$
 为真的前提下, $p_i = P(A_i) = \frac{1}{6}(i = 1, 2, \dots, 6)$

$$\chi^{2} = \sum_{i=1}^{k} \frac{(f_{i} - np_{i})^{2}}{np_{i}} = \frac{(15 - 120 \times \frac{1}{6})^{2}}{120 \times \frac{1}{6}} + \frac{(15 - 120 \times \frac{1}{6})^{2}}{120 \times \frac{1}{6}} + \frac{(20 - 120 \times \frac{1}{6})^{2}}{120 \times \frac{1}{6}} + \frac{(21 - 120 \times \frac{1}{6})^{2}}{120 \times \frac{1}{6}} + \frac{(23 - 120 \times \frac{1}{6})^{2}}{120 \times \frac{1}{6}} + \frac{(26 - 120 \times \frac{1}{6})^{2}}{120 \times \frac{1}{6}} = 4.8$$

查
$$\chi^2$$
分布表得 $\chi^2_{0.10}(k-1) = \chi^2_{0.10}(5) = 9.236$, $\chi^2 = 4.8 > 9.236$,

所以接受原假设 H, 认为这颗骰子的六个面是匀称的.

23. 一农场 10 年前在一鱼塘里按如下比例 20:15:40:25 投放了四种鱼: 鲑鱼、鲈鱼、竹夹鱼和鲇鱼的鱼苗. 现在在鱼塘里获得一样本如下

序号	1	2	3	4	
种类	鲑鱼	鲈鱼	竹夹鱼	鲇鱼	
数量(条)	132	100	200	168	$\Sigma = 600$

检验各鱼类数量的比例较 10 年前是否有显著改变? ($\alpha = 0.05$)解 用 X 记鱼种类的序号,根据题意需检验假设:

所需计算列表如下拟合检验计算表(n=600)

A_{i}	f_i	p_i	np_i	$f_i^2 / n\hat{p}_i$
A_1	132	0.20	120	145.20
A_2	100	0.15	90	111.11
A_3	200	0.40	240	166.67
A_4	168	0.25	150	188.16
				Σ=611.14

$$\chi^2 = 611.14 - 600 = 11.14, \ k = 4, r = 0, \ \chi^2_{1-a}(k-r-1) = \chi^2_{0.95}(3) = 7.815 < 11.14,$$

故拒绝 H_0 ,认为各鱼类数量之比较 10 年前有显著改变 .

24. 在一批灯泡中抽取 300 只进行寿命测试, 其结构如下:

寿命(小时)	<i>X</i> ≤100	100< <i>X</i> ≤200	200< <i>X</i> ≤300	X>300
灯泡数	120	80	40	60

试问灯泡寿命是否服从参数为 0.005 的指数分布 E (0.005) ($\alpha = 0.05$)

解
$$H_0: f(x) = \begin{cases} 0.005e^{-0.005x}, x > 0, \\ 0, & x \le 0. \end{cases}$$
,列表计算 χ^2 值.

			1	
A_i	(0, 100]	(100, 200]	(200, 300]	≥300
f_i	120	80	40	60
\widehat{p}_i	0. 39347	0. 23865	0. 14475	0. 22313
$n \widehat{p}_i$	118. 04	71. 60	43. 43	66. 94
$f_i - n\widehat{p}_i$	1.96	8. 4	-3. 43	-6. 94
$\frac{\left(f_i - n\widehat{p}_i\right)^2}{n\widehat{p}_i}$	0. 0325	0. 9855	0. 2709	0. 7195 Σ=2. 0084

$$\chi^{2} = \sum_{i=1}^{4} \frac{\left(f_{i} - n\widehat{p}_{i}\right)^{2}}{n\widehat{p}_{i}} = 2.0084$$

水平 $\alpha = 0.05$ 的拒绝域为 $\{\chi^2 \ge \chi^2_{0.05}(4-1) = 7.815\}$.

由于
$$\chi^2$$
 = 2.0084 < $\chi^2_{0.05}$ (3) = 7.815.

所以接受原假设 H_0 ,认为总体服从从参数为 0.005 的指数分布 E(0.005).

25. 下面列出了 84 个依特拉斯坎人男子的头颅的最大宽度(mm), 试验证这些数据是否来自正态总体? ($\alpha = 0.10$)

解 所求问题为检验假设,
$$H_0$$
: X 的概率密度 $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$, $-\infty < x < +\infty$

由于在 H_0 中参数 μ , σ^2 未具体给出, 故先估计 μ , σ^2 .

由最大似然估计法得 $\hat{\mu}$ =143.8, $\hat{\sigma}^2$ =6.0²,

将 X 可能取值区间 $(-\infty,\infty)$ 分为7个	・ハハX 旧[见卜表
--------------------------------------	---------	-----

A_i	f_i	\hat{p}_{i}	$n\hat{p}_{i}$	$f_i^2/n\hat{p}_i$
$A_1: x \le 129.5$ $A_2: 129.5 < x \le 134.5$	1 }	0.0087	0.73 4.36 }5.09	4.91
$A_2:134.5 < x \le 139.5$	10	0.1752	14.72	6.79
$A_4: 139.5 < x \le 144.5$	33	0.3120	26.21	41.55
$A_5: 144.5 < x \le 149.5$	24	0.2811	23.61	24.40
$A_6: 149.5 < x \le 154.5$	91	0.1336	11.22	10.02
$A_7: 154.5 < x < \infty$	35	0.0375	3.15	$\Sigma = 87.67$

在 H_0 为真的前提下, X 的概率密度的估计为

$$\hat{f}(x) = \frac{1}{\sqrt{2\pi} \times 6} e^{-\frac{(x-143.8)^2}{2\times 6^2}}, -\infty < x < +\infty.$$

概率 $p_i = P(A_i)$ 有估计

$$=\Phi(-1.55)-\Phi(-2.38)=0.0519$$
.

检验统计量的值为
$$\chi^2 = \sum_i f_i^2 / n\hat{p}_i - n = 87.67 - 84 = 3.67, n = 84, k = 5, r = 2,$$

$$\chi_{1-\alpha}^{2}(k-r-1) = \chi_{0.9}^{2}(5-2-1) = \chi_{0.9}^{2}(2) = 4.605 > 3.67,$$

故在水平 0.1 下接受 H_0 , 认为样本服从正态分布.