CS2223 D Term 2020 Quiz 6

(1 point) Question 1: "My brain is open..."

I pledge that I am taking this quiz on my own, with help from no one else and no notes:

(3 points) Question 2: A National League baseball team consists of 25 players. A batting order from such a team consists of an ordered subset of 9 of the players. How many batting orders are possible?

- a.) $2^9 = 512$
- b.) 9! = 362,880
- c.) $C(25,9) = \frac{25!}{9!16!} = 2,042,975$ d.) $2^{25} = 33,554,432$
- e.) $P(25,9) = \frac{25!}{16!} = 741,354,768,000$

(3 points) Question 3: Generating Subsets

Each choice below represents all the subsets of $\{a, b, c\}$.

Which of them is in **squashed order**?

a.)
$$\emptyset$$
, $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$
b.) \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{2,1\}$, $\{3,1\}$, $\{3,2\}$, $\{3,2,1\}$
c.) \emptyset , $\{1\}$, $\{2\}$, $\{1,2\}$, $\{3\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$
d.) $\{1,2,3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $\{1\}$, $\{2\}$, $\{3\}$, \emptyset
e.) $\{3,2,1\}$, $\{2,1\}$, $\{3,1\}$, $\{3,2\}$, $\{3\}$, $\{2\}$, $\{1\}$, \emptyset

(3 points) Question 4: Minimal-Change Requirement

Suppose we wish to generate all $5^5 = 3{,}125$ arrangements of the digits 0 through 4, i.e. 00000 up to 44444, and we insist on applying the minimal-change requirement (perhaps as a 5-ary Gray code rather than a binary/Boolean one).

Which of the following might appear in our list after the arrangement 01234?

- a.) 01240
- b.) 10000
- c.) 10234
- d.) 11234
- e.) 12340

(1 point) Bonus Question: Binary Reflective Gray Codes
The follow is an interesting fact about our Binary Reflective Gray Code (BRGC):

- a.) Zero and One are the only integers with the same representations in Base Two and in our Binary Reflective Gray Code.
- b.) Unlike in Base Two, an integer is even if and only if its BRGC representation has an even number of 1s.
- c.) Powers of 2 larger than $2^0=1$ can be expressed with exactly one 1 in Base Two but require exactly two 1s in our BRGC.
- d.) As in Base Two, the length of the BRGC representation of a positive integer k can be computed as $\lceil \lg k \rceil + 1$, that is $\lceil \log_2 k \rceil + 1$
- e.) All of the Above