

Soutenance de stage

Dirigé par Eurydice Laffayrerie Encadré par Yoan Saint-Pierre

Février 2021 - Aout 2021

Introduction

Contexte
Description de l'entreprise
Objectifs et enjeux du stage

Fonctionnement du marché Français de l'électricité et du gaz

Fin du monopole d'EDF votée le 10 février 2000 -> Apparition de Tarif Réglementé de Vente (TRV)

Place sur le marché

Histoire de la branche

(Belgique)

marché français

Arrivée de Total Spring sur le

par Poweo

Direct Energie

Rapport de stage | 5 25/08/2021

fusion de TEG, TS et DE

que l'ensemble des

filiales de la

Compagnie, y

compris Total Direct Energie

Objectifs et enjeux du stage

Prédiction d'appels

Objectif:

- Prédire les appels des clients 3 mois à l'avance sur différents flux d'appels.

Enjeux:

- Permet aux chefs d'équipes de former des équipiers en prévisions d'un gros flux à venir
- Evite d'investir dans une équipe trop grande inutilement

Suivi Conso

Objectifs:

- Estimer la consommation de chauffage d'un client
- Prédire l'étiquette énergétique (DPE) du logement des clients
- Analyser l'impact de l'accompagnement de TE sur la consommation des clients

Enjeux:

- Un pas vers la transition énergétique
- Diminution de la facture
- Fidélisation des clients

I - Prédiction d'appels

- 1 Méthodologie Générale
- 2 Prédiction d'appels Pro
- 3 Prédiction d'appels Vente

Facebook - Prophet

$$y(t) = trend(t) + saison(t) + holiday(t) + err(t)$$

- Prend en compte des variations de trend (linéaire ou logistique par morceaux) de manière automatisée
- Prend en compte la saisonnalité sur plusieurs mailles (mensuelle, **annuelle**, hebdomadaire)
- Prend en compte les jours fériés/évènements extraordinaires (ex: covid)
- Bon rapport **précision**/temps de tunage du modèle
- Robuste aux outliers et aux données manquantes
- Tunable en utilisant les connaissances métier

• Nécessite un historique de données suffisant pour voir apparaitre une saisonnalité

Prédiction d'appels – Service Client PRO

2022

Résultats - Pro

Prédiction d'appels - Service Client - Ventes - particulier

Suite à un changement d'architecture des flux, seuls les flux de **3099** et de **Click To Call** (CTC) ont un historique potentiellement exploitable.

Modèle précédent : Winter-Holt (fonction built-in de Excel) manuellement lancé en début de chaque mois.

Comme on travaille sur les ventes, il est pertinent d'introduire <u>le budget mensuel prévisionnel</u> comme variable exogène dans notre modèle

Objectifs du projet :

- Automatiser la prédiction
- Améliorer la prédiction

Résultats - 3099

MAE = Mean Absolute Error

Ancienne MAE = 2477.80

Nouvelle MAE = 1064.6

En moyenne on se trompe 2 fois moins que dans la précédente prédiction

>> Mise en production du notebook

Résultats - CTC

Série temporelle difficile à prédire car :

- peu de saisonnalité
- peu corrélée au budget
- pics imprévisibles dans le futur du point de vue de notre modèle

II – Suivi Conso

- 1 Bilan hiver
- 2 Analyse d'impact
- 3 Prédiction d'étiquettes DPE

Bilan hiver - Enjeux

Origine du besoin :

On veut donc envoyer un mail à nos clients pour répondre à leurs questions sur leur consommation de chauffage sur l'hiver précédent :

- Combien d'électricité/de gaz ai-je utilisé pour me chauffer ?
- Est-ce que **les autres** consomment autant pour se chauffer ?

Bilan hiver - Algo

Bilan hiver - Résultats

On envoie ensuite un mail aux clients restants du type: « Cet hiver, on a estimé que tu avais consommé 85% de ton électricité pour te chauffer, c'est normal comparé aux autres clients de ta région »

Analyse d'impact

Intérêts:

- Vérifier l'efficacité d'un service proposé
- Utiliser cette analyse comme argument lors de démarchage ou de campagnes publicitaires
- Voir même dans le meilleur des cas, acquérir un label officiel de réduction d'énergie

Objectif: explorer et découvrir une librairie d'économétrie pour proposer une méthodologie d'analyse d'impact

On étudie l'impact de la clef **Conso-Live** sur la consommation d'électricité de nos clients car c'est un service en lequel on a confiance qu'il ait un réel impact

Analyse d'impact résultats

Uncertainty of Mean Point Estimate:

- Mean point : -0.441 kWh/an

- Pvalue : 0.25

- CI lower mean : -1.072

- Cl upper mean: 0.189

Ce sont des résultats décevants qu'on peut expliquer par :

- Une pose de problème un peu trop ambitieuse (impact sur 1 an de la réduction > impact le mois suivant l'installation de conso-live)
- Un faible nombre de clients (à cause de la restriction de 2 ans d'historique)
- Un modèle trop pauvre en features de contrôle

Prédiction d'étiquettes DPE

Objectifs:

- Quels sont les foyers thermosensibles ?
- Pour quelle raison ? Logement Energivore ?

Enjeux:

- Proposer des travaux de rénovations financés par l'Etat aux clients qui en ont besoin

Prédiction d'étiquettes DPE

En étudiant la relation entre la consommation et la **température** de nos clients, on repère des clients bien plus thermosensibles que d'autres.

Mais quand il s'agit de savoir **pourquoi** ils consomment plus en hiver, on a besoin de plus d'information car on pourrait avoir affaire à :

- Logement énergivore
- Habitudes de vies différentes (degré de confort, mauvaises pratiques de chauffage, ...)
- Appareils supplémentaires (piscine chauffée, sauna, ...)

Prédiction d'étiquettes DPE – description des données

- Le département
- Le type de chauffage
- Le type de chauffe eau modèle de type LightGBM (une version allégée en calculs de XGBoost) classification binaire (bonne étiquette/mauvaise étiquette) supervisée

Prédiction d'étiquettes DPE – résultats

Rappel = 95.23%

18% des négatifs ont été classés comme faux positifs

Prédiction d'étiquettes DPE – Etude des faux positifs

Le modèle se trompe souvent quand :

- La pente de leur nuage de points est trop forte
- La température de début de chauffage est élevée
- La taille du logement est assez importante
- Vieille année de construction

Le projet a particulièrement intéressé l'équipe de Marketing

Conclusion

Stage très enrichissant:

- J'ai pu mener plusieurs projet du début de la phase de développement jusqu'à la phase de **production** (prédictions d'appel) dont certains avec une certaine autonomie (Prédiction d'appels - Vente)
- J'ai travaillé autour de beaucoup de **projets variés** nécessitant d'apprendre de **nouvelles compétences** ou parfois de faire preuve de **créativité**

Remerciements