Programmazione Lineare e Metodo del Simplesso

Luigi De Giovanni

Dipartimento di Matematica, Università di Padova

Modelli di programmazione matematica

min(max)
$$f(x)$$

s.t. $g_i(x) = b_i$ $(i = 1 ... k)$
 $g_i(x) \le b_i$ $(i = k + 1 ... k')$
 $g_i(x) \ge b_i$ $(i = k' + 1 ... m)$
 $x \in \mathbb{R}^n$

•
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 è un vettore (colonna) di n variabili **reali**;

- f e g_i sono funzioni $\mathbb{R}^n \to \mathbb{R}$
- $b_i \in \mathbb{R}$

Modelli di Programmazione Lineare (PL)

f e gi sono funzioni lineari di x

```
min(max) c_1x_1 + c_2x_2 + \ldots + c_nx_n

s.t. a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n = b_i (i = 1 \ldots k)

a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \le b_i (i = k + 1 \ldots k')

a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \ge b_i (i = k' + 1 \ldots m)

x_i \in \mathbb{R} (i = 1 \ldots n)
```

In questa fase consideriamo soltanto variabili reali!!!

Quanto diremo non vale in caso di variabili intere o binarie

Soluzione di un problema PL

- Soluzione ammissibile: $x \in \mathbb{R}^n$ che soddisfa tutti i vincoli
- Regione ammissibile: insieme delle x ammissibili
- Soluzione ottima x^* [min]: $c^Tx^* \le c^Tx, \forall x \in \mathbb{R}^n, x$ ammissibile.

Risolvere un problema PL significa determinare se:

- è inammissibile
- è illimitato
- ammette soluzione ottima

Geometria della PL

La regione ammissibile è un **poliedro** (intersezione di un numero finito di semispazi chiusi e iperpiani in \mathbb{R}^n)

Problema di PL: $min(max)\{c^Tx : x \in P\}$, P è un poliedro in \mathbb{R}^n .

Vertici di un poliedro: definizione

• $z \in \mathbb{R}^n$ è combinazione convessa di due punti x e y se $\exists \lambda \in [0,1] : z = \lambda x + (1 - \lambda)y$

- $z \in \mathbb{R}^n$ è combinazione convessa stretta di due punti x e y se $\exists \lambda \in (0,1) : z = \lambda x + (1-\lambda)y$.
- $v \in P$ è vertice del poliedro P se non può essere espresso come combinazione convessa stretta di due punti distinti dello stesso poliedro: $\nexists x, y \in P, \lambda \in (0,1) : x \neq y, v = \lambda x + (1 \lambda)y$

Rappresentazione dei poliedri

$$z \in \mathbb{R}^n$$
 è combinazione convessa di $x^1, x^2 \dots x^k$ se $\exists \lambda_1, \lambda_2 \dots \lambda_k \geq 0$: $\sum_{i=1}^k \lambda_i = 1$ e $z = \sum_{i=1}^k \lambda_i x^i$

Teorema di rappresentazione dei poliedri [Minkowski-Weyl] - caso limitato

Poliedro *limitato* $P \subseteq \mathbb{R}^n$, $v^1, v^2, ..., v^k$ ($v^i \in \mathbb{R}^n$) i vertici di P se $x \in P$ allora $x = \sum_{i=1}^k \lambda_i v^i$ con $\lambda_i \ge 0, \forall i = 1...k$ e $\sum_{i=1}^k \lambda_i = 1$ (x è combinazione convessa dei vertici di P)

Nota: un poliedro è un insieme convesso!

Vertice ottimo: dall'intuizione grafica alla dimostrazione

Teorema: esistenza di un vertice ottimo (versione "min")

Problema PL min $\{c^Tx : x \in P\}$, P non vuoto e limitato

- PL ammette soluzione ottima
- esiste almeno un vertice ottimo

Dimostrazione:

$$V = \{v^1, v^2 \dots v^k\} \qquad v^* = \arg\min_{v \in V} c^T v$$

$$c^T x = c^T \sum_{i=1}^k \lambda_i v^i = \sum_{i=1}^k \lambda_i c^T v^i \ge \sum_{i=1}^k \lambda_i c^T v^* = c^T v^* \sum_{i=1}^k \lambda_i = c^T v^*$$
 In sintesi:
$$\forall x \in P, \ c^T v^* \le c^T x$$

Possiamo limitare la ricerca dell'ottimo ai "soli" vertici!

Come generare ed esplorare (tutti) i vertici? Un esempio

Una piccola ditta di profumi realizza due nuove fragranze a partire da 3 essenze: rosa, mughetto e viola. Per realizzare un litro di fragranza 1 sono richiesti 3 centilitri di rosa, 1 centilitro di mughetto e 3 centilitri di viola. Per realizzare un litro di fragranza 2 sono richiesti 4 centilitri di rosa, 4 centilitri di mughetto e 2 centilitri di viola. La disponibilità in magazzino per le tre essenze è di 24, 20 e 18 centilitri per rosa, mughetto e viola rispettivamente. Sapendo che l'azienda realizza un profitto di 13 e 10 euro per ogni litro venduto di fragranza 1 e 2 rispettivamente, determinare le quantità ottimali delle due fragranze da produrre.

$$\max 13x_1 + 10x_2$$

 $s.t. 3x_1 + 4x_2 \le 24$ (e1)
 $x_1 + 4x_2 \le 20$ (e2)
 $3x_1 + 2x_2 \le 18$ (e3)
 $x_1 , x_2 \ge 0$

Esempio: vertici come intersezione

Caratterizzazione algebrica dei vertici

Scriviamo il sistema come equazioni

stema come **equazioni**

$$3x_1 + 4x_2 + s_1$$
 $x_1 + 4x_2 + s_2$
 $3x_1 + 2x_2$
 $5 = 18 - 3x_1 - 2x_2$
 $5 = 24 - 3x_1 - 2x_2$

Sn= 24-3xn-4x6

2 gradi di libertà: ponendo a 0 due variabili, sistema quadrato!

Forma standard per problemi PL

```
min c_1 x_1 + c_2 x_2 + \ldots + c_n x_n

s.t. a_{i1} x_1 + a_{i2} x_2 + \ldots + a_{in} x_n = b_i (i = 1 \ldots m)

x_i \in \mathbb{R}_+ (i = 1 \ldots n)
```

vincoli sono delle equazioni; (+/- variabili slack/surplus)
 variabili ≥ 0; (sostituzione di variabili)
 funzione obiettivo di minimo senza cost. addit. e moltipl. (X −1);
 b_i ≥ 0. (X −1)

Forma standard: esempio

 $\hat{x}_1 = -x_1 \qquad (\hat{x}_1 \ge 0)$

max
$$5(-3x_1 + 5x_2 - 7x_3) + 34$$

 $s.t.$ $-2x_1 + 7x_2 \le 5 - 6x_3 + 2x_1$
 $-3x_1 + x_3 + 12 \ge 13$
 $x_1 + x_2 \le -2$
 $x_1 \le 0$
 $x_2 \ge 0$

$$\begin{aligned} x_3 &= x_3' - x_3'' \quad (x_3' \geq 0 \ , \ x_3'' \geq 0) \\ & \min \quad -3\hat{x}_1 - 5x_2 + 7x_3' - 7x_3'' \\ & s.t. \quad 4\hat{x}_1 + 7x_2 + 6x_3' - 6x_3'' + s_1 = 5 \\ & 3\hat{x}_1 + x_3' - x_3'' - s_2 = 1 \\ & \hat{x}_1 - x_2 - s_3 = 2 \\ & \hat{x}_1 \geq 0 \ , \ x_2 \geq 0 \ , \ x_3' \geq 0 \ , \ x_3'' \geq 0 \ , \ s_1 \geq 0 \ , \ s_2 \geq 0 \ , \ s_3 \geq 0. \end{aligned}$$

Richiami di algebra lineare: definizioni

• vettore colonna
$$v \in \mathbb{R}^{n \times 1}$$
: $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

- vettore riga $v^T \in \mathbb{R}^{1 \times n}$: $v^T = [v_1, v_2, ..., v_n]$
- matrice $A \in \mathbb{R}^{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$
- $v, w \in \mathbb{R}^n$, prodotto scalare $v \cdot w = \sum_{i=1}^n v_i w_i = v^T w = w^T v$
- Rango di $A \in \mathbb{R}^{m \times n}$, $\rho(A)$, max righe/colonne lin. indip.
- $B \in \mathbb{R}^{m \times m}$ invertibile $\iff \rho(B) = m \iff det(B) \neq 0$

Sistemi di equazioni lineari

 Sistemi di equazioni in forma matriciale: un sistema di m equazioni in n incognite può essere messo in forma matriciale:

$$Ax = b$$
, con $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ e $x \in \mathbb{R}^n$.

• Teorema di Rouché-Capelli:

$$Ax = b$$
 ammette soluzioni $\iff \rho(A) = \rho(A|b) = r (\infty^{n-r} \text{ soluzioni}).$

- Operazioni elementari su matrici:
 - scambiare la riga i con la riga j;
 - moltiplicare la riga i per uno scalare non nullo;
 - ▶ sostituire alla riga i, la riga i più α volte la riga j ($\alpha \in \mathbb{R}$).

Le operazioni elementari sulla matrice aumentata [A|b] non alterano l'insieme delle soluzioni ammissibili del sistema Ax = b.

 Metodo di Gauss-Jordan per la soluzione di sistemi Ax = b: eseguire delle operazioni elementari sulla matrice aumentata [A|b] in modo da ottenere in A una sottomatrice identità di dimensioni pari a ρ(A) = ρ(A|b).