2nd Chapter: Fundamentals of Cryptography COMP 41280

Félix Balado

School of Computer Science University College Dublin

Outline of the Chapter

1 Basic Concepts and Models

2 Defining and Measuring Security

3 Cryptography and Coding

Information Security Requirements

Privacy:

 protected information should not be accessible to unauthorised third parties

Authentication:

the recipient of some information should be able to verify its origin and authorship

Integrity:

the recipient of a message should be able to verify that it has not been forged or altered in transit

■ Non repudiation:

a message authenticated by a trusted third party cannot be repudiated at a later stage by its sender

Cryptography can deal with aspects of all these requirements

Shannon's Model for Cryptography (1948)

Shannon's Model for Cryptography (1948)

Terminology and Basic Concepts

Basic encryption/decryption operation flow:

$$L \underset{T}{\rightarrow} C \underset{T'}{\rightarrow} L$$

- $T(\cdot, \cdot)$, $T'(\cdot, \cdot)$: families of invertible (injective) transformations which depend on a parameter K (encryption system, or cipher)
 - C = T(L, K): encryption of L
 - L = T'(C, K) = T'(T(L, K), K): decryption of C
- L: cleartext or plaintext (unencrypted message, "in the clear")
- C: ciphertext (encrypted or ciphered message)
- *K*: encryption/decryption key

Terminology and Basic Concepts

■ Basic encryption/decryption operation flow:

$$L \underset{T}{\rightarrow} C \underset{T'}{\rightarrow} L$$

- $T(\cdot, \cdot)$, $T'(\cdot, \cdot)$: families of invertible (injective) transformations which depend on a parameter K (encryption system, or cipher)
 - C = T(L, K): encryption of L
 - L = T'(C, K) = T'(T(L, K), K): decryption of C
- L: cleartext or plaintext (unencrypted message, "in the clear")
- *C*: ciphertext (encrypted or ciphered message)
- *K*: encryption/decryption key
- in many cryptographic methods $T(\cdot, K)$ does not operate on a single symbol, but on a block of n symbols

Terminology and Basic Concepts

■ Basic encryption/decryption operation flow:

$$L \underset{T}{\rightarrow} C \underset{T'}{\rightarrow} L$$

- $T(\cdot, \cdot)$, $T'(\cdot, \cdot)$: families of invertible (injective) transformations which depend on a parameter K (encryption system, or cipher)
 - C = T(L, K): encryption of L
 - L = T'(C, K) = T'(T(L, K), K): decryption of C
- L: cleartext or plaintext (unencrypted message, "in the clear")
- C: ciphertext (encrypted or ciphered message)
- *K*: encryption/decryption key
- in many cryptographic methods $T(\cdot, K)$ does not operate on a single symbol, but on a block of n symbols
- The wrong decryption key should lead to a wrong plaintext
 - in symmetric-key cryptography (Shannon's model), if $K' \neq K$ then $T'(T(L,K),K') \neq L$

Privacy Threats

- Attacker's nicknames:
 - Mallet, Mallory: malicious man in the middle
 - Eve: eavesdropper

Cryptanalysis (I)

- Kerckhoffs principle: it is always safer to assume that all the details of the cryptographic scheme are publicly known
 - only the key can remain secret
 - therefore
 - \blacksquare the encryption system (T, T') is public, static (not modifiable)
 - \blacksquare the key (K) is private, dynamic (modifiable)
 - **security through obscurity** (i.e., by assuming that Mallet does not know T, T') is a very bad idea in the long run
 - Shannon: "the enemy knows the system"

Cryptanalysis (II)

- Cryptanalysis: gathering information about the secret communication between Alice and Bob
 - point of view of Mallet
- An attack to a cryptosystem is an attempt to cryptanalyse it
 - examples (<u>successful</u> attacks):
 - recover cleartext *L*, either completely or partially
 - recover the key K (in which case future communications with that key will also be intercepted)

Cryptanalysis (II)

- Cryptanalysis: gathering information about the secret communication between Alice and Bob
 - point of view of Mallet
- An attack to a cryptosystem is an attempt to cryptanalyse it
 - examples (<u>successful</u> attacks):
 - \blacksquare recover cleartext L, either completely or partially
 - recover the key K (in which case future communications with that key will also be intercepted)
- Mallet might also carry out <u>active</u> attacks
 - example:
 - replace genuine encrypted message C by forged encrypted message C_F (without necessarily obtaining L or K)

Cryptanalysis (III)

- Cryptanalysis is as much a science as an art
 - sometimes Mallet can attempt a systematic strategy
 - at other times no specific methodology is known
- Mallet can exploit side information available to him:
 - examples: message language, message content, format, etc
 - how can Mallet exploit side information?
 - common sentences
 - frequency of letters, digrams, trigrams,...
 - format information (headers, footers, tags, etc)
- Without side information, the attacker may always attempt exhaustive analysis (brute force): try all keys in key space

Cryptanalysis (Toy Example)

■ Try to decipher the following ciphertext, knowing that $T(\cdot, K)$ is a 4-character permutation of the input characters

C = "RDFO ATFI ELOP"

Cryptanalysis (Toy Example)

■ Try to decipher the following ciphertext, knowing that $T(\cdot, K)$ is a 4-character permutation of the input characters

$$C =$$
 "RDFO ATFI ELOP"

 easier to decipher if side information "message conveys car makes" is available to Mallet

Cryptanalysis (Toy Example)

■ Try to decipher the following ciphertext, knowing that $T(\cdot, K)$ is a 4-character permutation of the input characters

$$C = \text{"RDFO ATFI ELOP"}$$

- easier to decipher if side information "message conveys car makes" is available to Mallet
- in this toy example, brute force is not too difficult either, as there are only 4! = 24 keys (per 4-character block)
- These tricks tend not to be useful with modern methods

Cryptanalysis Models (I)

Ciphertext only

Cryptanalysis Models (I)

Ciphertext only

2 Known cleartext

Cryptanalysis Models (II)

3 Chosen cleartext

Cryptanalysis Models (II)

3 Chosen cleartext

4 Chosen ciphertext

Outline of the Chapter

1 Basic Concepts and Models

2 Defining and Measuring Security

3 Cryptography and Coding

Why does probability matter for the security of a cipher?

- Assume $\mathcal{L} = \{a, b\}$, i.e. only two plaintext symbols
 - pmf: $p(L = a) = \frac{1}{4}$ and $p(L = b) = \frac{3}{4}$
- Suppose $\mathcal{K} = \{k_1, k_2, k_3\}$, i.e. three possible keys
 - pmf: $p(K = k_1) = \frac{1}{2}$, $p(K = k_2) = p(K = k_3) = \frac{1}{4}$
- Now suppose that $C = \{1, 2, 3, 4\}$, and that T(L, K) is:

T(L,K)	а	b
k_1	1	2
k_2	2	3
<i>k</i> ₃	3	4

Why does probability matter for the security of a cipher?

- Assume $\mathcal{L} = \{a, b\}$, i.e. only two plaintext symbols
 - pmf: $p(L = a) = \frac{1}{4}$ and $p(L = b) = \frac{3}{4}$
- Suppose $\mathcal{K} = \{k_1, k_2, k_3\}$, i.e. three possible keys
 - \blacksquare pmf: $p(K = k_1) = \frac{1}{2}$, $p(K = k_2) = p(K = k_3) = \frac{1}{4}$
- Now suppose that $C = \{1, 2, 3, 4\}$, and that T(L, K) is:

$$\begin{array}{c|cccc} T(L, K) & a & b \\ \hline k_1 & 1 & 2 \\ k_2 & 2 & 3 \\ k_3 & 3 & 4 \\ \hline \end{array}$$

- With the information above anyone can compute $p(C) = \sum_{L \in C} \sum_{K \in K} p(C|K, L) p(K, L)$
 - $p(C=1)=\frac{1}{9}, p(C=2)=\frac{7}{16}, p(C=3)=\frac{1}{4}, p(C=4)=\frac{3}{16}$

■ Using the Bayes' theorem we can compute $p(L|C) = \frac{p(C|L)p(L)}{p(C)}$

- Using the Bayes' theorem we can compute $p(L|C) = \frac{p(C|L)p(L)}{p(C)}$
- Therefore:
 - p(L = a | C = 1) = 1
 - if the attacker observes C = 1 he **knows** L = a and $K = k_1$
 - $p(L = a | C = 2) = \frac{1}{7}$
 - if the attacker observes C = 2 he guesses L = b and $K = k_1$
 - $p(L = a | C = 3) = \frac{1}{4}$
 - \blacksquare if the attacker observes C=3 he guesses L=b and $K=k_2$
 - p(L = a | C = 4) = 0
 - If the attacker observes C = 4 he knows L = b and $K = k_3$
- → ciphertext can reveal information about cleartext to attacker
 - this is what we would like to avoid

Encryption Security

There are two types of encryption methods as regards their vulnerability to cryptanalysis

- Insecure methods
- 2 Secure methods
 - a) unconditionally secure: there is no method by means of which K can be found by an attacker
 - b) computationally secure: there are methods that would allow an attacker to find ${\cal K}$ but they cannot be implemented in practice

Unconditionally Secure System (Perfect Cipher)

- <u>Definition</u>: a perfect cipher is such that an attacker can never have enough information to determine $T(\cdot, K)$ and $T'(\cdot, K)$, independently of available processing power and time
 - we then speak of perfect secrecy, or unconditional security

Unconditionally Secure System (Perfect Cipher)

- <u>Definition</u>: a perfect cipher is such that an attacker can never have enough information to determine $T(\cdot, K)$ and $T'(\cdot, K)$, independently of available processing power and time
 - we then speak of perfect secrecy, or unconditional security
- **Criterion** (Shannon): in an unconditionally secure system, or perfect cipher, *C* and *L* must be <u>statistically independent</u>:
 - p(L|C) = p(L), or equivalently p(L,C) = p(L)p(C)
 - note: this is from the point of view of Mallet, unaware of K

Unconditionally Secure System (Perfect Cipher)

- <u>Definition</u>: a perfect cipher is such that an attacker can never have enough information to determine $T(\cdot, K)$ and $T'(\cdot, K)$, independently of available processing power and time
 - we then speak of perfect secrecy, or unconditional security
- **Criterion** (Shannon): in an unconditionally secure system, or perfect cipher, *C* and *L* must be <u>statistically independent</u>:
 - p(L|C) = p(L), or equivalently p(L,C) = p(L)p(C)
 - \blacksquare note: this is from the point of view of Mallet, unaware of K
- **Consequence** for the mutual information: I(L; C) = 0
 - interpretation: on average, the ciphertext does not reveal any information about the plaintext
 - also I(K; C) = 0 (as H(K|C) = H(K) with perfect security)

Unconditionally Secure System

Unconditional security implies that

$$H(C) \leq H(K)$$

Proof:

- H(C|L) = H(C), because of the independence assumption in an unconditionally secure system
- furthermore:
 - H(L|K) = H(L), because message and key are independent
 - H(C|L,K) = 0, because of Kerckhoffs principle

Unconditionally Secure System

Unconditional security implies that

$$H(C) \leq H(K)$$

Proof:

- H(C|L) = H(C), because of the independence assumption in an unconditionally secure system
- furthermore:
 - H(L|K) = H(L), because message and key are independent
 - H(C|L,K) = 0, because of Kerckhoffs principle
- now, we can apply the chain rule for the entropy to H(C, L, K) in two ways:
 - $H(C, L, K) = H(L, K) + H(C + K)^{-1} = H(L) + H(K)$
 - $H(C,L,K) = H(C,L) + H(K|C,L) \ge H(C,L)$

Unconditionally Secure System (II)

finally, using the two expressions above we have:

$$0 = H(C, L, K) - H(L) - H(K)$$

Unconditionally Secure System (II)

finally, using the two expressions above we have:

$$0 = H(C, L, K) - H(L) - H(K)$$

$$\geq H(C, L) - H(L) - H(K)$$

Unconditionally Secure System (II)

finally, using the two expressions above we have:

$$0 = H(C, L, K) - H(L) - H(K)$$

 $\geq H(C, L) - H(L) - H(K)$
 $= H(C|L) - H(K)$

 \blacksquare as H(C|L) = H(C) with unconditional security, then we have that H(C) < H(K)

Interpretation: a low-entropy key will be bad for security

Perfect Ciphers and Key Space Size

- Related to the previous result, we have the following implication of perfect security:
 - lacktriangle in a perfect cipher, $\boxed{\# \text{keys} \geq \# \text{messages}}$ (that is, $|\mathcal{K}| \geq |\mathcal{L}|$)

Perfect Ciphers and Key Space Size

- Related to the previous result, we have the following implication of perfect security:
 - lacktriangle in a perfect cipher, $\boxed{\# \mathsf{keys} \geq \# \mathsf{messages}}$ (that is, $|\mathcal{K}| \geq |\mathcal{L}|$)
- Proof: (by contradiction)
 - assume that #keys < #messages and take a cipher value C_0 which has nonzero probability, that is $p(C_0) > 0$
 - if there are less keys than messages, then for any key K we can always find a message L_0 such that $T'(C_0, K) \neq L_0$

Perfect Ciphers and Key Space Size

- Related to the previous result, we have the following implication of perfect security:
 - lacktriangle in a perfect cipher, $\boxed{\# \text{keys} \geq \# \text{messages}}$ (that is, $|\mathcal{K}| \geq |\mathcal{L}|$)
- Proof: (by contradiction)
 - assume that #keys < #messages and take a cipher value C_0 which has nonzero probability, that is $p(C_0) > 0$
 - if there are less keys than messages, then for any key K we can always find a message L_0 such that $T'(C_0, K) \neq L_0$
 - for this L_0 we have that $p(C_0|L_0)=0$
 - then this cannot be a perfect cipher, because by definition it would require $p(C_0|L_0) = p(C_0)$ (contradiction)

Computational Security

- <u>Definition</u>: a system is computationally secure when
 - 1 the ciphertext contains sufficient information to decipher a unique cleartext solution
 - 2 but the best practical attack is <u>technologically</u> limited in terms of processing power
- Thus its is not guaranteed that Mallet will succeed in a reasonable amount of time

Computational Security

- <u>Definition</u>: a system is computationally secure when
 - 1 the ciphertext contains sufficient information to decipher a unique cleartext solution
 - 2 but the best practical attack is <u>technologically</u> limited in terms of processing power
- Thus its is not guaranteed that Mallet will succeed in a reasonable amount of time
- In this type of real life systems, security is verified by stress-testing
- Example: DES (Data Encryption Standard)
 - cryptosystem with a key length of 56 bits (2⁵⁶ different keys)
 - assume that Mallet knows some ciphertext-plaintext pairs: then it can always try all keys (brute force)
 - lacksquare 1 key every 5 $\mu s
 ightarrow$ 11,000 years to try all keys

Computational Security

- <u>Definition</u>: a system is computationally secure when
 - 1 the ciphertext contains sufficient information to decipher a unique cleartext solution
 - 2 but the best practical attack is <u>technologically</u> limited in terms of processing power
- Thus its is not guaranteed that Mallet will succeed in a reasonable amount of time
- In this type of real life systems, security is verified by stress-testing
- Example: DES (Data Encryption Standard)
 - cryptosystem with a key length of 56 bits (2⁵⁶ different keys)
 - assume that Mallet knows some ciphertext-plaintext pairs: then it can always try all keys (brute force)
 - 1 key every 5 μ s \rightarrow 11,000 years to try all keys
 - however with a million parallel processors: 4 days

Computational Security: Confusion and Diffusion

- Shannon proposed that a good practical encryption method (i.e. computationally secure) should implement two features:
 - confusion: the relationship between C and K should be as complex as possible
 - diffusion: the statistical properties of L should be spread (diffused) across C
- These assumptions typically refer to <u>blocks</u> of symbols
 - block of n plaintext symbols \leftrightarrow block of n ciphertext symbols
- We will see how these features are implemented when we study practical methods

Unconditional Security and the Unicity Distance

- Shannon also proposed to measure the secrecy of a practical cipher in terms of key equivocation: H(K|C)
 - if H(K|C) = 0 there is <u>no uncertainty</u> about the key when a ciphertext is known
 - then the cryptographic method is, in principle, breakable
 - (if Mallet has enough computational resources)

Unconditional Security and the Unicity Distance

- Shannon also proposed to measure the secrecy of a practical cipher in terms of key equivocation: H(K|C)
 - if H(K|C) = 0 there is <u>no uncertainty</u> about the key when a ciphertext is known
 - then the cryptographic method is, in principle, breakable
 - (if Mallet has enough computational resources)
- Typically, as the block length n increases the key equivocation decreases
 - **definition** (Shannon): the unicity distance (N_0) of a cipher is the smallest block length n such that H(K|C) = 0
 - lacktriangle equivalently, N_0 is the minimum amount of ciphertext symbols needed by an attacker to unequivocally determine the key

Unconditional Security and Random Ciphers

- The direct computation of the unicity distance N_0 of a given cipher T(L, K) is usually difficult
 - H(K|C) requires p(K,C) (which can be hard to model)

Unconditional Security and Random Ciphers

- The direct computation of the unicity distance N_0 of a given cipher T(L, K) is usually difficult
 - H(K|C) requires p(K,C) (which can be hard to model)
- However we can approximately compute the unicity distance just by assuming that we are dealing with a random cipher
 - **definition** (Shannon): T(L, K) is a random cipher if the choice of K by Alice is made uniformly at random among all possibilities in K

Unicity Distance Analysis

Assumptions that we will make in our unicity distance analysis:

- The cryptographic method is seen as a random cipher
 - the key K corresponds to a block of n symbols: $C^n = T(L^n, K)$
- Attacker:
 - ciphertext only attack
 - exhaustive cryptanalysis with unlimited processing power and time: Mallet can try all keys (brute force)
 - when attempting decryption, the attacker can distinguish nonsense blocks of information from meaningful ones (i.e. Mallet knows the plaintext language)

Redundancy

- The unicity distance analysis involves the concept of redundancy of the language in which the cleartext is written
 - **definition**: the redundancy of L, where $L \in \mathcal{L}$ and $|\mathcal{L}| = s$, is

$$R = \log_2 s - H(L)$$
 (in bits/symbol)

■ in English, the alphabet size is s=26; empirically, $H(L)\approx 1.5$ bits/letter, and then $R \approx \log_2 26 - 1.5 = 3.2$ bits/letter

Redundancy

- The unicity distance analysis involves the concept of redundancy of the language in which the cleartext is written
 - **definition**: the redundancy of L, where $L \in \mathcal{L}$ and $|\mathcal{L}| = s$, is

$$R = \log_2 s - H(L)$$
 (in bits/symbol)

- in English, the alphabet size is s=26; empirically, $H(L)\approx 1.5$ bits/letter, and then $R \approx \log_2 26 - 1.5 = 3.2$ bits/letter
- Intuitively: redundancy is the information we can remove while still preserving the message (what we do in compression)
 - ad-hoc example: removing redundancy from an English text while (approximately) preserving message content
 - "Th cncpt f rdndncy n nglsh s ntrstng"

Redundancy

- The unicity distance analysis involves the concept of redundancy of the language in which the cleartext is written
 - <u>definition</u>: the <u>redundancy</u> of L, where $L \in \mathcal{L}$ and $|\mathcal{L}| = s$, is

```
R = \log_2 s - H(L) (in bits/symbol)
```

- in English, the alphabet size is s=26; empirically, $H(L)\approx 1.5$ bits/letter, and then $R\approx \log_2 26-1.5=3.2$ bits/letter
- Intuitively: redundancy is the information we can remove while still preserving the message (what we do in compression)
 - ad-hoc example: removing redundancy from an English text while (approximately) preserving message content
 - "Th cncpt f rdndncy n nglsh s ntrstng"
 - "The concept of redundancy in English is interesting"
 - this would not be possible if R = 0 in English

Meaningful Messages and Language Entropy

- There are s^n possible n-symbol block messages, of which
 - 1 $2^{nH(L)}$ are meaningful (on average), and have uniform probability $2^{-nH(L)}$
 - \blacksquare consequence of asymptotic equipartition property (large n):

$$-\frac{1}{n}\log_2 p(L_1,\cdots,L_n)\to H(L)$$

Meaningful Messages and Language Entropy

- There are s^n possible n-symbol block messages, of which
 - 1 $2^{nH(L)}$ are meaningful (on average), and have uniform probability $2^{-nH(L)}$
 - \blacksquare consequence of asymptotic equipartition property (large n):

$$-\frac{1}{n}\log_2 p(L_1,\cdots,L_n)\to H(L)$$

2 the rest, $s^n - 2^{nH(L)}$ messages, are meaningless (or nonsense), and have negligible (≈ 0) probability

Meaningful Messages and Language Entropy

- There are s^n possible n-symbol block messages, of which
 - 1 $2^{nH(L)}$ are meaningful (on average), and have uniform probability $2^{-nH(L)}$
 - consequence of asymptotic equipartition property (large n):

$$-\frac{1}{n}\log_2 p(L_1,\cdots,L_n)\to H(L)$$

2 the rest, $s^n - 2^{nH(L)}$ messages, are meaningless (or nonsense), and have negligible (≈ 0) probability

■ <u>Definition</u>: a key \hat{K} is false or spurious if, given $C^n = T(L^n, K)$, $\hat{L}^n = T'(C^n, \hat{K})$ is meaningful, but $\hat{K} \neq K$ and $\hat{L}^n \neq L^n$

- <u>Definition</u>: a key \hat{K} is false or spurious if, given $C^n = T(L^n, K)$, $\hat{L}^n = T'(C^n, \hat{K})$ is meaningful, but $\hat{K} \neq K$ and $\hat{L}^n \neq L^n$
- Let $f(C^n)$ be the number of false keys associated to a ciphertext, then the average number of false keys is

$$E(f(C^n)) = (\# \text{ keys} - 1) \times \frac{\# \text{ meaningful blocks}}{\# \text{ blocks}}$$

- <u>Definition</u>: a key \hat{K} is false or spurious if, given $C^n = T(L^n, K)$, $\hat{L}^n = T'(C^n, \hat{K})$ is meaningful, but $\hat{K} \neq K$ and $\hat{L}^n \neq L^n$
- Let $f(C^n)$ be the number of false keys associated to a ciphertext, then the average number of false keys is

$$E(f(C^n)) \stackrel{(*)}{=} (\# \text{ keys} - 1) \times \frac{\# \text{ meaningful blocks}}{\# \text{ blocks}}$$

- Notes:
 - (*) random cipher assumption

- <u>Definition</u>: a key \hat{K} is false or spurious if, given $C^n = T(L^n, K)$, $\hat{L}^n = T'(C^n, \hat{K})$ is meaningful, but $\hat{K} \neq K$ and $\hat{L}^n \neq L^n$
- Let $f(C^n)$ be the number of false keys associated to a ciphertext, then the average number of false keys is

$$\begin{split} E(f(C^n)) &\stackrel{(*)}{=} (\# \text{ keys} - 1) \times \frac{\# \text{ meaningful blocks}}{\# \text{ blocks}} \\ &= (|\mathcal{K}| - 1) \times \frac{2^{nH(L)}}{2^{n\log_2 s}} \\ &= (|\mathcal{K}| - 1) \times 2^{-nR} \\ &= 2^{\log_2 |\mathcal{K}| - nR} - \epsilon \end{split}$$

- Notes:
 - (*) random cipher assumption
 - \blacksquare # blocks: $s^n = (2^{\log_2 s})^n = 2^{n \log_2 s}$

Unicity Distance

■ With this result, we define the unicity distance of a cipher as

$$N_0 = \frac{\log_2 |\mathcal{K}|}{R}$$

■ N_0 is the solution to $\log_2 |\mathcal{K}| - nR = 0$ (exponent in $E(f(C^n))$, that is, a block size n such that $E(f(C^n)) < 1$

Unicity Distance

■ With this result, we define the unicity distance of a cipher as

$$N_0 = \frac{\log_2 |\mathcal{K}|}{R}$$

■ N_0 is the solution to $\log_2 |\mathcal{K}| - nR = 0$ (exponent in $E(f(C^n))$, that is, a block size n such that $E(f(C^n)) < 1$

■ Therefore:

- if $n < N_0 \rightarrow \underline{\text{unconditionally secure system}}$
 - on average, there are false keys
 - not enough information for the attacker to uniquely determine the key (and hence the cleartext)
- if $n \ge N_0 \to \text{insecure system}$
 - on average, there are no false keys
 - enough information, or equivalently H(K|C) = 0 (null equivocation)
- \rightarrow In a good cipher N_0 should be as large as possible

Outline of the Chapter

1 Basic Concepts and Models

2 Defining and Measuring Security

3 Cryptography and Coding

Encryption and Source Coding

- We have mentioned that some cryptanalyses look for most frequent patterns in C (using histograms; more later)
 - these attacks can be thwarted if the symbols in C have uniform probabilities and no correlations among them (diffusion)

Encryption and Source Coding

- We have mentioned that some cryptanalyses look for most frequent patterns in C (using histograms; more later)
 - these attacks can be thwarted if the symbols in *C* have uniform probabilities and no correlations among them (diffusion)
- Source coding approximates this scenario by eliminating redundancy from the cleartext
 - it is a good idea to compress (that is, to source code) the cleartext before encrypting it
 - lacktriangle decreasing redundancy (R) increases the unicity distance (N_0)
 - even if the attacker is aware of compression, this increases the computational complexity of attacks

Encryption and Source Coding

- We have mentioned that some cryptanalyses look for most frequent patterns in C (using histograms; more later)
 - these attacks can be thwarted if the symbols in *C* have uniform probabilities and no correlations among them (diffusion)
- Source coding approximates this scenario by eliminating redundancy from the cleartext
 - it is a good idea to compress (that is, to source code) the cleartext before encrypting it
 - \blacksquare decreasing redundancy (R) increases the unicity distance (N_0)
 - even if the attacker is aware of compression, this increases the computational complexity of attacks
- In connection with this, we may also wonder whether a cipher could also possibly decrease the redundancy of the cleartext...

- **Theorem**: the entropy of the encrypted text can never be smaller than the entropy of the cleartext
- Proof:
 - first see that since C = T(L, K) and L = T'(C, K), then H(C|L, K) = 0 and H(L|C, K) = 0 (Kerckhoffs' principle)

- **Theorem**: the entropy of the encrypted text can never be smaller than the entropy of the cleartext
- Proof:
 - first see that since C = T(L, K) and L = T'(C, K), then H(C|L, K) = 0 and H(L|C, K) = 0 (Kerckhoffs' principle)
 - now, H(C, L, K) can be written in two different ways using the chain rule of the entropy

$$H(C, L, K) = H(C|L, K) + H(L, K)$$

= $H(L|C, K) + H(C, K)$

- **Theorem**: the entropy of the encrypted text can never be smaller than the entropy of the cleartext
- Proof:
 - first see that since C = T(L, K) and L = T'(C, K), then H(C|L, K) = 0 and H(L|C, K) = 0 (Kerckhoffs' principle)
 - now, H(C, L, K) can be written in two different ways using the chain rule of the entropy

$$H(C, L, K) = H(C|L, K) + H(L, K)$$
$$= H(L|C, K) + H(C, K)$$

- **Theorem**: the entropy of the encrypted text can never be smaller than the entropy of the cleartext
- Proof:
 - first see that since C = T(L, K) and L = T'(C, K), then H(C|L, K) = 0 and H(L|C, K) = 0 (Kerckhoffs' principle)
 - now, H(C, L, K) can be written in two different ways using the chain rule of the entropy

$$H(C, L, K) = \underline{H(C|L, K)}^{0} + \underline{H(L, K)}$$
$$= \underline{H(L|C, K)}^{0} + \underline{H(C, K)}$$

applying the chain rule of the entropy again:

$$H(L,K) = H(L|K) + H(K)$$

$$H(C,K) = H(C|K) + H(K)$$

- Therefore: H(L|K) = H(C|K), that is, when the key is known the entropies of cleartext and ciphertext coincide
- Moreover H(L|K) = H(L), because the key is chosen independently of the cleartext

- Therefore: H(L|K) = H(C|K), that is, when the key is known the entropies of cleartext and ciphertext coincide
- Moreover H(L|K) = H(L), because the key is chosen independently of the cleartext
- Since $H(C|K) \le H(C)$ (because conditioning cannot increase entropy) then

$$H(L) \leq H(C)$$

- Therefore: H(L|K) = H(C|K), that is, when the key is known the entropies of cleartext and ciphertext coincide
- Moreover H(L|K) = H(L), because the key is chosen independently of the cleartext
- Since $H(C|K) \le H(C)$ (because conditioning cannot increase entropy) then

$$H(L) \leq H(C)$$

- <u>interpretation</u>: the shortest representation of the ciphertext will always need at least the same amount of bits/symbol as the shortest representation of the cleartext
- if H(C) = H(L) then the cipher is called <u>nonexpansive</u>

Encryption and Channel Coding

- Source coding can be critical if errors happen (such as during transmission through a communications channel):
 - 1 a wrong symbol may preclude decoding
 - 2 a missing symbol may preclude decoding (desynchronisation)
 - consider a bit error in a binary prefix source code. . .

Encryption and Channel Coding

- Source coding can be critical if errors happen (such as during transmission through a communications channel):
 - 1 a wrong symbol may preclude decoding
 - 2 a missing symbol may preclude decoding (desynchronisation)
 - consider a bit error in a binary prefix source code. . .
- Without redundancy, errors are hard to tackle
- Solution: channel coding (error correction coding), which reintroduces redundancy to detect/correct errors
 - simplest example of error detection: parity check
 - simplest example of error correction: repetition

Encryption and Channel Coding (II)

- All modern communications standards include more or less sophisticated channel coding (error correction)
- The information is organised in frames (blocks), and headers/footers are inserted with error correction redundancy

Encryption and Channel Coding (II)

- All modern communications standards include more or less sophisticated channel coding (error correction)
- The information is organised in frames (blocks), and headers/footers are inserted with error correction redundancy
- If we apply error correction before encryption, the attacker's job would be eased: higher plaintext redundancy
 - furthermore, channel errors will affect decryption, and Bob typically will not be able to recover original plaintext
- therefore channel coding headers have to be inserted after encryption