

FACTORISATION OF TWO-VARIABLE p -ADIC L -FUNCTIONS

ANTONIO LEI

ABSTRACT. Let f be a modular form which is non-ordinary at p . Kim and Loeffler have recently constructed two-variable p -adic L -functions associated to f . In the case where $a_p = 0$, they showed that, as in the one-variable case, Pollack's plus and minus splitting applies to these new objects. In this short note, we show that such a splitting can be generalised to the case where $a_p \neq 0$ using Sprung's logarithmic matrix.

1. p -ADIC LOGARITHMIC MATRICES

We first review the theory of Sprung's factorisation of one-variable p -adic L -functions in [Spr12b, Spr12a], which is a generalisation of Pollack's work [Pol03].

Let $f = \sum_{n \geq 1} a_n q^n$ be a normalised eigen-newform of weight 2 and level N . Fix an odd¹ prime p that does not divide N and $v_p(a_p) \neq 0$. Here, v_p is the p -adic valuation. Let α and β be the two roots to

$$X^2 - a_p X + \epsilon(p)p = 0$$

with $r = v_p(\alpha)$ and $s = v_p(\beta)$. Note in particular that $0 < r, s < 1$.

Let G be a one-dimensional p -adic Lie group, which is of the form $\Delta \times \langle \gamma_p \rangle$, where Δ is a finite abelian group and $\langle \gamma_p \rangle \cong \mathbb{Z}_p$. Let F be a finite extension of \mathbb{Q}_p that contains $\mu_{|\Delta|}$, a_n and $\epsilon(n)$ for all $n \geq 1$. For a real number $u \geq 0$, we define $D^{(u)}(G, F)$ for the set of distributions μ on G which are of the form

$$\sum_{n \geq 0} \sum_{\sigma \in \Delta} c_{\sigma, n} \sigma (\gamma_p - 1)^n$$

where $c_{\sigma, n} \in F$ and $\sup_n \frac{|c_{\sigma, n}|_p}{n^u} < \infty$ for all $\sigma \in \Delta$ (here $|\cdot|_p$ denotes the p -adic norm with $|p|_p = p^{-1}$). Let $X = \gamma_p - 1$. If η is a character on Δ , we write $e_\eta \mu$ for the η -isotypical component of μ , namely, the power series

$$\sum_{n \geq 0} \sum_{\sigma \in \Delta} c_{\sigma, n} \eta(\sigma) (\gamma_p - 1)^n \in F[[X]].$$

For $\mu_1 \in D^{(u)}(\langle \gamma_p \rangle, F)$ and $\mu_2 \in D^{(u)}(G, F)$, we say that μ_1 divides μ_2 over $D^{(u)}(G, F)$ if μ_1 divides all isotypical components of μ_2 as elements in $F[[X]]$.

Definition 1.1. We say that $(\mu_\alpha, \mu_\beta) \in D^{(r)}(G, F) \oplus D^{(s)}(G, F)$ is a pair of interpolating functions for f if for all non-trivial characters ω on G that send γ_p

2000 *Mathematics Subject Classification.* 11S40, 11S80 (primary).

The author is supported by a CRM-ISM fellowship.

¹Our results in fact hold for $p = 2$. Since the interpolation formulae of p -adic L -functions are slightly different from the other cases, we assume $p \neq 2$ for notational simplicity.

to a primitive p^{n-1} -st root of unity for some $n \geq 1$, there exists a constant $C_\omega \in \overline{F}$ such that

$$\mu_\alpha(\omega) = \alpha^{-n} C_\omega \quad \text{and} \quad \mu_\beta(\omega) = \beta^{-n} C_\omega.$$

Remark 1.2. The p -adic L -functions L_α, L_β of Amice-Vélu [AV75] and Višik [Viš76] associated to f satisfy the property stated above, with G being the Galois group $\text{Gal}(\mathbb{Q}(\mu_{p^\infty})/\mathbb{Q})$ and C_ω being the algebraic part of the complex L -value $L(f, \omega^{-1}, 1)$ multiplied by some fudge factor.

Definition 1.3. A matrix $M_p = \begin{pmatrix} m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2} \end{pmatrix}$ with $m_{1,1}, m_{2,1} \in D^{(r)}(\langle \gamma_p \rangle, F)$ and $m_{1,2}, m_{2,2} \in D^{(s)}(\langle \gamma_p \rangle, F)$, is called a p -adic logarithmic matrix associated to f if $\det(M_p)$ is, up to a constant in F^\times , equal to $\log_p(\gamma_p)/(\gamma_p - 1)$, and $\det(M_p)$ divides both

$$m_{2,2}\mu_\alpha - m_{2,1}\mu_\beta \quad \text{and} \quad -m_{1,2}\mu_\alpha + m_{1,1}\mu_\beta$$

over $D^{(1)}(G, F)$ for all interpolating functions μ_α, μ_β for f .

Lemma 1.4. Let μ_α, μ_β be a pair of interpolating functions for f . If M_p is a p -adic logarithm matrix associated to f , then there exist $\mu_\#, \mu_\flat \in D^{(0)}(G, F)$ such that

$$(\mu_\alpha \quad \mu_\beta) = (\mu_\# \quad \mu_\flat) M_p.$$

Proof. Let

$$\mu_\# := \frac{m_{2,2}\mu_\alpha - m_{2,1}\mu_\beta}{\det(M_p)} \quad \text{and} \quad \mu_\flat := \frac{-m_{1,2}\mu_\alpha + m_{1,1}\mu_\beta}{\det(M_p)}.$$

By definition, the numerators lie inside $D^{(1)}(G, F)$ and the coefficients of $\det(M_p)$ have the same growth rate as those of $\log_p(\gamma_p)$, so $\mu_\#$ and μ_\flat lie inside $D^{(0)}(G, F)$. The factorisation follows from the fact that

$$\begin{pmatrix} m_{2,2} & -m_{1,2} \\ -m_{2,1} & m_{1,1} \end{pmatrix} M_p = \begin{pmatrix} \det(M_p) & 0 \\ 0 & \det(M_p) \end{pmatrix}.$$

□

We now recall the construction of Sprung's canonical p -adic logarithmic matrix associated to f .

Let $C_n = \begin{pmatrix} a_p & 1 \\ -\epsilon(p)\Phi_{p^n}(\gamma_p) & 0 \end{pmatrix}$, where Φ_{p^n} denotes the p^n -th cyclotomic polynomial for $n \geq 1$, $C = \begin{pmatrix} a_p & 1 \\ -\epsilon(p)p & 0 \end{pmatrix}$ and $A = \begin{pmatrix} -1 & -1 \\ \beta & \alpha \end{pmatrix}$. Define

$$M_p^{(n)} := C_1 \cdots C_n C^{-n-2} A.$$

Theorem 1.5 (Sprung). The entries of the sequence of matrices $M_p^{(n)}$ converge (under the standard sup-norm on p -adic power series) in $D^{(1)}(\langle \gamma_p \rangle, F)$ as $n \rightarrow \infty$ and the limit $\lim_{n \rightarrow \infty} M_p^{(n)}$ is a p -adic logarithmic matrix associated to f .

Proof. We only sketch our proof here since this is merely a slight generalisation of Sprung's results in [Spr12a, Spr12b].

Since $C_{n+1} \equiv C \pmod{(X+1)^{p^n} - 1}$, we have

$$M_p^{(n+1)} \equiv M_p^{(n)} \pmod{(X+1)^{p^n} - 1}.$$

Note that

$$A^{-1}CA = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix},$$

which implies that

$$(1) \quad C^{-n-2}A = A \begin{pmatrix} \alpha^{-n-2} & 0 \\ 0 & \beta^{-n-2} \end{pmatrix} = \begin{pmatrix} -\alpha^{-n-2} & -\beta^{-n-2} \\ \beta\alpha^{-n-2} & \alpha\beta^{-n-2} \end{pmatrix}.$$

Since all the entries in $C_1 \cdots C_n$ are integrals, the coefficients of the first (respectively second) row of $M_p^{(n)}$ grow like $O(p^{-r})$ (respectively $O(p^{-s})$) as $n \rightarrow \infty$. Therefore, by [PR94, §1.2.1], the entries of the first (respectively second) row of $M_p^{(n)}$ converge to elements in $D^{(r)}(\langle \gamma_p \rangle, F)$ (respectively $D^{(s)}(\langle \gamma_p \rangle, F)$).

Let $M_p = \begin{pmatrix} m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2} \end{pmatrix}$ be the limit $\lim_{n \rightarrow \infty} M_p^{(n)}$. If ω is a character that sends γ_p to a primitive p^{n-1} -st root of unity, then

$$M_p(\omega) = C_1(\omega) \cdots C_{n-1}(\omega) C^{-n-1} A.$$

Note that $C_{n-1}(\omega) = \begin{pmatrix} a_p & 1 \\ 0 & 0 \end{pmatrix}$, so from (1), we see that there exist two constants $A_\omega, B_\omega \in \overline{F}$ such that

$$M_p(\omega) = \begin{pmatrix} a_p A_\omega & A_\omega \\ a_p B_\omega & B_\omega \end{pmatrix} \begin{pmatrix} -\alpha^{-n-1} & -\beta^{-n-1} \\ \beta\alpha^{-n-1} & \alpha\beta^{-n-1} \end{pmatrix} = \begin{pmatrix} -\alpha^{-n} A_\omega & -\beta^{-n} A_\omega \\ -\alpha^{-n} B_\omega & -\beta^{-n} B_\omega \end{pmatrix}.$$

In particular, if μ_α, μ_β is a pair of interpolating functions for f ,

$$m_{2,2}(\omega)\mu_\alpha(\omega) - m_{2,1}(\omega)\mu_\beta(\omega) = -m_{1,2}(\omega)\mu_\alpha(\omega) + m_{1,1}(\omega)\mu_\beta(\omega) = 0.$$

Finally, by [Spr12a, Remark 2.19], $\det(M_p) = \frac{\log_p(1+X)}{X} \times \frac{\beta-\alpha}{(\alpha\beta)^2}$, hence the result. \square

Remark 1.6. Similar logarithmic matrices have been constructed in [LLZ10] using the theory of Wach modules, but they are not canonical.

2. TWO-VARIABLE p -ADIC L -FUNCTIONS

2.1. Setup for two-variable distributions. We now fix an imaginary quadratic field K in which p splits into $\mathfrak{p}\bar{\mathfrak{p}}$. If \mathfrak{J} is an ideal of K , we write $G_{\mathfrak{J}}$ for the Ray class group of K modulo \mathfrak{J} . Define

$$G_{p^\infty} = \varprojlim G_{p^n}, \quad G_{\mathfrak{p}^\infty} = \varprojlim G_{\mathfrak{p}^n}, \quad G_{\bar{\mathfrak{p}}^\infty} = \varprojlim G_{\bar{\mathfrak{p}}^n}.$$

These are the Galois groups of the Ray class fields $K(p^\infty)$, $K(\mathfrak{p}^\infty)$ and $K(\bar{\mathfrak{p}}^\infty)$ respectively. Fix topological generators $\gamma_{\mathfrak{p}}$ and $\gamma_{\bar{\mathfrak{p}}}$ of the \mathbb{Z}_p -parts of $G_{\mathfrak{p}^\infty}$ and $G_{\bar{\mathfrak{p}}^\infty}$ respectively. We have an isomorphism

$$G_{p^\infty} \cong \Delta \times \langle \gamma_{\mathfrak{p}} \rangle \times \langle \gamma_{\bar{\mathfrak{p}}} \rangle,$$

where Δ is a finite abelian group. Let $X = \gamma_{\mathfrak{p}} - 1$ and $Y = \gamma_{\bar{\mathfrak{p}}} - 1$. For real numbers $u, v \geq 0$, we define $D^{(u,v)}(G_{p^\infty}, F)$ for the set of distributions of G_{p^∞} which are of the form

$$\sum_{i,j \geq 0} \sum_{\sigma \in \Delta} c_{\sigma,i,j} \sigma X^i Y^j,$$

where $c_{\sigma,i,j} \in F$ and $\sup_{i,j} \frac{|c_{\sigma,i,j}|_p}{i^u j^v} < \infty$ for all $\sigma \in \Delta$. On identifying each Δ -isotypical component of μ with a power series in X and Y , we have the notion of

divisibility as in the one-dimensional case. We define the operators $\partial_{\mathfrak{p}}$ and $\partial_{\overline{\mathfrak{p}}}$ to be the partial derivatives $\frac{\partial}{\partial X}$ and $\frac{\partial}{\partial Y}$ respectively.

For $\star \in \{\mathfrak{p}, \overline{\mathfrak{p}}\}$, we let Ω_\star be the set of characters on G_{p^∞} with conductor $(\star)^n$ for some integer $n \geq 1$.

Let $\mu \in D^{(u,v)}(G_{p^\infty}, F)$ where $u, v \geq 0$. If $\omega_{\mathfrak{p}} \in \Omega_{\mathfrak{p}}$, we define a distribution $\mu^{(\omega_{\mathfrak{p}})}$ by

$$\mu^{(\omega_{\mathfrak{p}})}(\omega_{\overline{\mathfrak{p}}}) = \mu(\omega_{\mathfrak{p}} \omega_{\overline{\mathfrak{p}}}).$$

Lemma 2.1. *The distribution $\mu^{(\omega_{\mathfrak{p}})}$ lies inside $D^{(v)}(G_{\overline{\mathfrak{p}}^\infty}, F')$, where F' is the extension $F(\omega_{\mathfrak{p}}(\gamma_{\mathfrak{p}}))$.*

Proof. We need to show that

$$(2) \quad \sup_j \frac{|\sum_i c_{\sigma,i,j}(\omega_{\mathfrak{p}}(\gamma_{\mathfrak{p}}) - 1)^i|_p}{j^v} < \infty$$

for all $\sigma \in \Delta$. But $v_p(\omega_{\mathfrak{p}}(\gamma_{\mathfrak{p}}) - 1) > 0$, so there exists a constant C , such that

$$|(\omega_{\mathfrak{p}}(\gamma_{\mathfrak{p}}) - 1)^i|_p \leq \frac{C}{i^u}$$

for all i . Hence,

$$\frac{|c_{\sigma,i,j}(\omega_{\mathfrak{p}}(\gamma_{\mathfrak{p}}) - 1)^i|_p}{j^v} \leq C \times \frac{|c_{\sigma,i,j}|_p}{i^u j^v},$$

which implies (2). \square

Similarly, for $\omega_{\overline{\mathfrak{p}}} \in \Omega_{\overline{\mathfrak{p}}}$, we may define a distribution $\mu^{(\omega_{\overline{\mathfrak{p}}})} \in D^{(u)}(G_{\overline{\mathfrak{p}}^\infty}, F')$, where $F' = F(\omega_{\overline{\mathfrak{p}}}(\gamma_{\overline{\mathfrak{p}}}))$.

2.2. Sprung-type factorisation. Let $L_{\alpha,\alpha}, L_{\alpha,\beta}, L_{\beta,\alpha}, L_{\beta,\beta}$ be the two-variable p -adic L -functions constructed in [Loe13] (also [Kim11]). By [Loe13, Theorem 4.7], $L_{\star,\bullet}$ is an element of $D^{(v_p(\star), v_p(\bullet))}(G_{p^\infty}, F)$ for $\star, \bullet \in \{\alpha, \beta\}$. Moreover, if ω is a character on G_{p^∞} of conductor $\mathfrak{p}^{n_{\mathfrak{p}}} \overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}}$ with $n_{\mathfrak{p}}, n_{\overline{\mathfrak{p}}} \geq 1$, we have

$$(3) \quad L_{\alpha,\alpha}(\omega) = \alpha^{-n_{\mathfrak{p}}} \alpha^{-n_{\overline{\mathfrak{p}}}} C_\omega$$

$$(4) \quad L_{\alpha,\beta}(\omega) = \alpha^{-n_{\mathfrak{p}}} \beta^{-n_{\overline{\mathfrak{p}}}} C_\omega$$

$$(5) \quad L_{\beta,\alpha}(\omega) = \beta^{-n_{\mathfrak{p}}} \alpha^{-n_{\overline{\mathfrak{p}}}} C_\omega$$

$$(6) \quad L_{\beta,\beta}(\omega) = \beta^{-n_{\mathfrak{p}}} \beta^{-n_{\overline{\mathfrak{p}}}} C_\omega$$

for some $C_\omega \in \overline{F}$ that is independent of α and β .

Let M_p be the logarithmic matrix given by Theorem 1.5. On replacing γ_p by $\gamma_{\mathfrak{p}}$ and $\gamma_{\overline{\mathfrak{p}}}$ respectively, we have two logarithmic matrices $M_{\mathfrak{p}} = \begin{pmatrix} m_{1,1}^{\mathfrak{p}} & m_{1,2}^{\mathfrak{p}} \\ m_{2,1}^{\mathfrak{p}} & m_{2,2}^{\mathfrak{p}} \end{pmatrix}$ and $M_{\overline{\mathfrak{p}}} = \begin{pmatrix} m_{1,1}^{\overline{\mathfrak{p}}} & m_{1,2}^{\overline{\mathfrak{p}}} \\ m_{2,1}^{\overline{\mathfrak{p}}} & m_{2,2}^{\overline{\mathfrak{p}}} \end{pmatrix}$ defined over $D^{(1)}(\langle \gamma_{\mathfrak{p}} \rangle, F)$ and $D^{(1)}(\langle \gamma_{\overline{\mathfrak{p}}} \rangle, F)$ respectively.

Our goal is to prove the following generalisation of [Loe13, Corollary 5.4].

Theorem 2.2. *There exist $L_{\#, \#}, L_{\flat, \#}, L_{\#, \flat}, L_{\flat, \flat} \in D^{(0,0)}(G_{p^\infty}, F)$ such that*

$$(L_{\alpha,\alpha} \quad L_{\beta,\alpha} \quad L_{\alpha,\beta} \quad L_{\beta,\beta}) = (L_{\#, \#} \quad L_{\flat, \#} \quad L_{\#, \flat} \quad L_{\flat, \flat}) M_{\mathfrak{p}} \otimes M_{\overline{\mathfrak{p}}}.$$

We shall prove this theorem in two steps, namely, to show that we can first factor out $M_{\mathfrak{p}}$, then $M_{\overline{\mathfrak{p}}}$.

Proposition 2.3. *For $\star \in \{\alpha, \beta\}$, there exist $L_{\#, \star}, L_{\flat, \star} \in D^{(0, v_p(\star))}(G_{p^\infty}, F)$ such that*

$$(7) \quad (L_{\alpha, \star} \quad L_{\beta, \star}) = (L_{\#, \star} \quad L_{\flat, \star}) M_p.$$

Proof. We take $\star = \alpha$ (since the proof for the case $\star = \beta$ is identical). Let $\omega_p \in \Omega_p$ and $\omega_{\bar{p}} \in \Omega_{\bar{p}}$ and write $\omega = \omega_p \omega_{\bar{p}}$.

By (3) and (5), $L_{\alpha, \alpha}^{(\omega_{\bar{p}})}$ and $L_{\beta, \alpha}^{(\omega_{\bar{p}})}$ is a pair of interpolating functions for f . In particular, $\det(M_p)$ divides both

$$m_{2,2}^p L_{\alpha, \alpha}^{(\omega_{\bar{p}})} - m_{2,1}^p L_{\beta, \alpha}^{(\omega_{\bar{p}})} \quad \text{and} \quad -m_{1,2}^p L_{\alpha, \alpha}^{(\omega_{\bar{p}})} + m_{1,1}^p L_{\beta, \alpha}^{(\omega_{\bar{p}})}$$

over $D^{(1)}(G_{p^\infty}, F)$. Therefore, the distributions

$$m_{2,2}^p L_{\alpha, \alpha} - m_{2,1}^p L_{\beta, \alpha} \quad \text{and} \quad -m_{1,2}^p L_{\alpha, \alpha} + m_{1,1}^p L_{\beta, \alpha}$$

vanish at all characters of the form $\omega = \omega_p \omega_{\bar{p}}$. This implies that

$$(m_{2,2}^p L_{\alpha, \alpha} - m_{2,1}^p L_{\beta, \alpha})^{(\omega_p)} = (-m_{1,2}^p L_{\alpha, \alpha} + m_{1,1}^p L_{\beta, \alpha})^{(\omega_p)} = 0$$

since these two distributions lie inside $D^{(r)}(G_{\bar{p}^\infty}, F')$ for some F' , with $r < 1$, and they vanish at an infinite number of characters for each of their isotypical components. Hence, $\det(M_p)$ divides

$$m_{2,2}^p L_{\alpha, \alpha} - m_{2,1}^p L_{\beta, \alpha} \quad \text{and} \quad -m_{1,2}^p L_{\alpha, \alpha} + m_{1,1}^p L_{\beta, \alpha}$$

over $D^{(1,r)}(G_{p^\infty}, F)$. Let

$$L_{\#, \alpha} := \frac{m_{2,2}^p L_{\alpha, \alpha} - m_{2,1}^p L_{\beta, \alpha}}{\det(M_p)} \quad \text{and} \quad L_{\flat, \alpha} := \frac{-m_{1,2}^p L_{\alpha, \alpha} + m_{1,1}^p L_{\beta, \alpha}}{\det(M_p)}.$$

We may then conclude as in the proof of Lemma 1.4. \square

Lemma 2.4. *Let ω be a character of G_{p^∞} of conductor $p^{n_p} \bar{p}^{n_{\bar{p}}}$ with $n_p, n_{\bar{p}} \geq 1$. There exist constants D_ω and E_ω in \bar{F} such that*

$$\begin{aligned} \partial_p L_{\alpha, \alpha}(\omega) &= \alpha^{-n_{\bar{p}}} D_\omega, & \partial_p L_{\alpha, \beta}(\omega) &= \beta^{-n_{\bar{p}}} D_\omega, \\ \partial_p L_{\beta, \alpha}(\omega) &= \alpha^{-n_{\bar{p}}} E_\omega, & \partial_p L_{\beta, \beta}(\omega) &= \beta^{-n_{\bar{p}}} E_\omega. \end{aligned}$$

Proof. We only prove the result concerning $\partial_p L_{\alpha, \alpha}$ and $\partial_p L_{\alpha, \beta}$. Fix an $\omega_{\bar{p}} \in \Omega_{\bar{p}}$. By (7) and (8), we have

$$\beta^{n_{\bar{p}}} L_{\alpha, \beta}^{(\omega_{\bar{p}})}(\omega_p) = \alpha^{n_{\bar{p}}} L_{\alpha, \alpha}^{(\omega_{\bar{p}})}(\omega_p)$$

for all $\omega_p \in \Omega_p$. But $L_{\alpha, \beta}^{(\omega_{\bar{p}})}, L_{\alpha, \alpha}^{(\omega_{\bar{p}})} \in D^{(r)}(G_{p^\infty}, F')$ for some F' . As $r < 1$, this implies that

$$\beta^{n_{\bar{p}}} L_{\alpha, \beta}^{(\omega_{\bar{p}})} = \alpha^{n_{\bar{p}}} L_{\alpha, \alpha}^{(\omega_{\bar{p}})}.$$

In particular, their derivatives agree, that is

$$\beta^{n_{\bar{p}}} \partial_p L_{\alpha, \beta}^{(\omega_{\bar{p}})} = \alpha^{n_{\bar{p}}} \partial_p L_{\alpha, \alpha}^{(\omega_{\bar{p}})}.$$

But for a general $\mu \in D^{(r,s)}(G_{p^\infty}, F)$, we have

$$\partial \left(\mu^{(\omega_{\bar{p}})} \right) (\omega_p) = \partial_p \mu(\omega_p \omega_{\bar{p}})$$

for all $\omega_p \in \Omega_p$, hence

$$\beta^{n_{\bar{p}}} \partial_p L_{\alpha, \beta}(\omega) = \alpha^{n_{\bar{p}}} \partial_p L_{\alpha, \alpha}(\omega)$$

as required. \square

Proposition 2.5. *For $\star \in \{\#, \flat\}$, there exist $L_{\star,\#}, L_{\star,\flat} \in D^{(0,0)}(G_{p^\infty}, F)$ such that*

$$(8) \quad (L_{\star,\alpha} \quad L_{\star,\beta}) = (L_{\star,\#} \quad L_{\star,\flat}) M_{\bar{p}}.$$

Proof. Let us prove the proposition for $\star = \#$. Let $\omega_p \in \Omega_p$ and $\omega_{\bar{p}} \in \Omega_{\bar{p}}$ and write $\omega = \omega_p \omega_{\bar{p}}$. Recall that

$$L_{\#, \bullet} \det(M_p) = m_{2,2}^p L_{\alpha, \bullet} - m_{2,1}^p L_{\beta, \bullet}$$

for $\bullet \in \{\alpha, \beta\}$. Since $\det(M_p)$ is, up to a non-zero constant in F^\times , equal to $\log_p(1+X)/X$, we have $\det(M_p)(\omega_p) = 0$ and $\partial_p \det(M_p)(\omega_p) \neq 0$. On taking partial derivatives, Lemma 2.4 together with (3)-(6) imply that

$$L_{\#, \bullet}(\omega) = (\bullet)^{-n_{\bar{p}}} \frac{K_\omega}{\partial_p \det(M_p)(\omega_p)},$$

where K_ω is the constant

$$m_{2,2}^p(\omega_p) D_\omega + \partial_p m_{2,2}^p(\omega_p) \alpha^{-n_p} C_\omega - m_{2,1}^p(\omega_p) E_\omega - \partial_p m_{2,1}^p(\omega_p) \beta^{-n_p} C_\omega.$$

In particular, we see that $L_{\#, \alpha}^{(\omega_p)}$ and $L_{\#, \beta}^{(\omega_p)}$ is a pair of interpolating functions for f , so we may proceed as in the proof of Proposition 2.3 (with the roles of p and \bar{p} swapped). \square

Combining the factorisations (7) and (8), we obtain Theorem 2.2.

Acknowledgement. The author would like to thank David Loeffler and Henri Darmon for their very helpful comments.

REFERENCES

- [AV75] Yvette Amice and Jacques Vélu, *Distributions p -adiques associées aux séries de Hecke*, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974), Soc. Math. France, Paris, 1975, pp. 119–131. Astérisque, Nos. 24–25.
- [Kim11] Byoung Du Kim, *Two-variable p -adic L -functions of modular forms for non-ordinary primes*, preprint, 2011.
- [LLZ10] Antonio Lei, David Loeffler, and Sarah Livia Zerbes, *Wach modules and Iwasawa theory for modular forms*, Asian J. Math. **14** (2010), no. 4, 475–528.
- [Loe13] David Loeffler, *p -adic integration on ray class groups and non-ordinary p -adic L -functions*, arXiv:1304.4042, 2013.
- [Pol03] Robert Pollack, *On the p -adic L -function of a modular form at a supersingular prime*, Duke Math. J. **118** (2003), no. 3, 523–558.
- [PR94] Bernadette Perrin-Riou, *Théorie d’Iwasawa des représentations p -adiques sur un corps local*, Invent. Math. **115** (1994), no. 1, 81–161.
- [Spr12a] Florian Sprung, *On pairs of p -adic analogues of the conjectures of Birch and Swinnerton-Dyer*, arXiv: 1211.1352, 2012.
- [Spr12b] Florian E. Ito Sprung, *Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures*, J. Number Theory **132** (2012), no. 7, 1483–1506.
- [Viš76] M. M. Višik, *Nonarchimedean measures associated with Dirichlet series*, Mat. Sb. (N.S.) **99(141)** (1976), no. 2, 248–260, 296.

DEPARTMENT OF MATHEMATICS AND STATISTICS, BURNSIDE HALL, MCGILL UNIVERSITY, MONTREAL QC, CANADA H3A 0B9

E-mail address: antonio.lei@mcgill.ca