Chapitre 3: Espaces vectoriels

1 Espace vectoriel réel

1.1 Structure d'espace vectoriel réel

Exemple 1

Soient n et p deux entiers naturels non nuls.

- $\mathbb{R}^n =$
- $\mathcal{M}_{n,p}(\mathbb{R})$ est
- $\mathbb{R}[X]$ est
- $\mathbb{R}_n[X]$ est
- Si D est une partie de \mathbb{R} , \mathbb{R}^D est
- En particulier, $\mathbb{R}^{\mathbb{N}}$ est

Test 1 (Voir la solution.)

Dans chaque cas, calculer u + 3v.

- 1. Dans \mathbb{R}^3 , avec u = (1, -1, 0) et v = (3, -2, 5).
- 2. Dans $\mathcal{M}_{2,2}(\mathbb{R})$ avec $u = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et $v = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- 3. Dans $\mathbb{R}[X]$ avec $u = 3X^3 X + 1$ et $v = X^5 2X^3 + X^2 + 2$.

Les ensembles de l'exemple 1, aussi différents les uns des autres soient-ils, possèdent une structure commune : ils peuvent tous être munis d'une « addition » et d'une « multiplication par un nombre réel ». L'objet de ce chapitre est de donner un cadre formel et unifié à l'étude des ensembles ayant une telle structure. Ainsi, les résultats généraux que l'on obtiendra s'appliqueront aussi bien aux matrices qu'aux fonctions, aux polynômes . . .

Définition 1 (Loi de composition interne, loi de composition externe)

Soit E un ensemble non vide.

- Une **loi de composition interne sur** E est une application de $E \times E$ dans E.
- Une **loi de composition externe sur** E est une application de $\mathbb{R} \times E$ dans E.

Exemple 2

Soient n et p deux entiers naturels non nuls.

- 1. Dans \mathbb{R}^n .
 - L'addition de deux *n*-uplets de réels est une loi de composition interne :

La multiplication d'un n-uplet de réels par un nombre réel est une loi de composition externe :

	$+: \mathcal{M}_{n,p}(\mathbb{R}) \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R})$
	$(A, B) \longmapsto A + B$
a multiplication	d'une matrice par un nombre réel est une loi de composition externe :
a munipheadon	
	$ \begin{array}{c} \cdot : \mathbb{R} \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R}) \\ (\lambda, A) \longmapsto \lambda \cdot A \end{array} $
	$(\Lambda,\Lambda) \longmapsto \Lambda \cdot \Lambda$
R[X].	
	ux polynômes est une loi de composition interne :
	$+: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$
	$(P,Q) \longmapsto P + Q$
a multiplication	d'un polynôme par un nombre réel est une loi de composition externe :
	$\cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$
	$(\lambda, P) \longmapsto \lambda \cdot P$
\mathbb{R}^{D} où D est une μ	
L'addition de deu	ıx fonctions est une loi de composition interne :
	$+: \mathbb{R}^{\mathrm{D}} \times \mathbb{R}^{\mathrm{D}} \longrightarrow \mathbb{R}^{\mathrm{D}}$
	$(f,g)\longmapsto f+g$
La multiplication	d'une fonction par un nombre réel est une loi de composition externe :
	$\cdot: \mathbb{R} \times \mathbb{R}^{\mathrm{D}} \longrightarrow \mathbb{R}^{\mathrm{D}}$
	$(\lambda, f) \longmapsto \lambda \cdot f$

2. Dans $\mathcal{M}_{n,p}(\mathbb{R})$.

- 5. Dans $\mathbb{R}^{\mathbb{N}}$.
 - L'addition de deux suites est une loi de composition interne :

			_

- La multiplication d'une suite par un nombre réel est une loi de composition externe :

Test 2 (Voir la solution.)

- 1. (a) Soit $n \in \mathbb{N}^*$ et soit $(P,Q) \in \mathbb{R}_n[X]^2$. Montrer que $P + Q \in \mathbb{R}_n[X]$.
 - (b) En déduire que l'addition de polynômes est une loi de composition interne sur $\mathbb{R}_n[X]$.
- 2. Soit E l'ensemble des polynômes de degré **exactement** égal à n. L'addition des polynômes est-elle une loi de composition interne sur E ?

Définition 2 (Espace vectoriel réel)

Soit E un ensemble non vide muni d'une loi de composition interne, notée +, et d'une loi de composition externe, notée \cdot .

On dit que E est un **espace vectoriel réel** (ou un R-espace vectoriel) si

- 1. la loi + vérifie les conditions suivantes :
 - i) $\forall (x, y) \in E^2$, x + y = y + x (commutativité)
 - ii) $\forall (x, y, z) \in E^3$, (x + y) + z = x + (y + z) (associativité)
 - iii) il existe un élément, noté 0_E et appelé **élément neutre**, tel que : $\forall x \in E, \ x + 0_E = x = 0_E + x$
 - iv) pour tout $x \in E$, il existe un élément, noté -x et appelé **symétrique de** x, tel que : $x + (-x) = (-x) + x = 0_E$
- 2. la loi \cdot vérifie les conditions suivantes :
 - i) $\forall x \in E \ \forall (\lambda, \mu) \in \mathbb{R}^2$, $(\lambda \times \mu) \cdot x = \lambda \cdot (\mu \cdot x) = \mu \cdot (\lambda \cdot x)$
 - ii) $\forall x \in E, 1 \cdot x = x$
 - iii) $\forall (x, y) \in E^2 \ \forall \lambda \in \mathbb{R}, \ \lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y \ (distributivit\acute{e})$
 - iv) $\forall x \in E \ \forall (\lambda, \mu) \in \mathbb{R}^2$, $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$.

Remarque 1 (Vocabulaire et notation)

- 1. Attention, par abus, on note avec le même symbole + l'addition dans E et dans $\mathbb R.$
- 2. Les éléments de E sont appelés des **vecteurs** et sont parfois notés avec une flèche (par exemple, \overrightarrow{u}) et parfois sans. Au concours, il est recommandé de s'aligner sur la notation du sujet!
- 3. Les éléments de \mathbb{R} qui interviennent dans la loi externe sont souvent appelés des **scalaires**.
- 4. On écrira souvent λu au lieu de $\lambda \cdot u$.
- 5. On place toujours les scalaires devant le vecteur.

Proposition 1

Soit E un ensemble muni de deux lois + et · en faisant un espace vectoriel.

- 1. L'élément neutre pour la loi + est unique.
- 2. Pour tout $x \in E$, le symétrique de x est unique.

Proposition 2 (Exemples de référence)

Soient n et p deux entiers naturels non nuls. Les ensembles suivants, munis des lois + et \cdot définies dans l'exemple 2, sont des espaces vectoriels réels :

$$\mathbb{R}^n$$
 , $\mathcal{M}_{n,p}(\mathbb{R})$, $\mathbb{R}[X]$, $\mathbb{R}_n[X]$, $\mathbb{R}^{\mathbb{N}}$, $\mathbb{R}^{\mathbb{D}}$

où D est une partie de \mathbb{R} .

Remarque 2

Par abus, on dira souvent «E (ou \mathbb{R}^n , $\mathcal{M}_{n,p}(\mathbb{R})$, $\mathbb{R}[X]$, ...) est un espace vectoriel réel » en omettant la référence aux lois + et ·.

Exemple 3

Soient n et p deux entiers naturels non nuls.

Espace vectoriel E	Neutre	Élément	Symétrique
\mathbb{R}^n		(x_1,\ldots,x_n)	
$\mathcal{M}_{n,p}(\mathbb{R})$		$A = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$	
\mathbb{R}^{D} , D partie de \mathbb{R}		$f : D \to \mathbb{R}$	

Test 3 (Voir la solution.)

- 1. Déterminer l'élément neutre de l'addition de $\mathbb{R}[X]$. Soit $P = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{R}[X]$, déterminer son symétrique.
- 2. Déterminer l'élément neutre de l'addition de $\mathbb{R}^{\mathbb{N}}$. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$, déterminer son symétrique.

Proposition 3 (Règles de calcul)

Soit E un espace vectoriel réel. Alors

- 1. $\forall x \in E$, $0 \cdot x = 0_E$.
- 2. $\forall \lambda \in \mathbb{R}, \lambda . 0_{E} = 0_{E}.$
- 3. $\forall x \in E \ \forall \lambda \in \mathbb{R}, \ \lambda \cdot x = 0_E \iff (\lambda = 0 \text{ ou } x = 0_E).$
- 4. $\forall x \in E, (-1) \cdot x = -x.$

1.2 Combinaisons linéaires

Définition 3 (Combinaison linéaire de vecteurs)

Soit $p \in \mathbb{N}^*$.

Soit E un espace vectoriel et soient $x_1,...,x_p$ des vecteurs de E. Un vecteur x est dit **combinaison linéaire** des vecteurs $x_1,...,x_p$ s'il existe des réels $\lambda_1,...,\lambda_p$ tels que

$$x = \lambda_1 x_1 + \dots + \lambda_p x_p.$$

Exemple 4

1. Dans \mathbb{R}^3 , u = (1,4,1) est combinaison linéaire des vecteurs v = (1,0,1) et w = (0,1,0) car:

2. $Dans \mathbb{R}_3[X]$, $P = 3X^2 + 2X - 1$ est naturellement écrit comme une combinaison linéaire des monômes

3. Dans $\mathcal{M}_2(\mathbb{R})$, soient $A = \begin{pmatrix} 3 & 2 \\ 3 & 6 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. A est-elle une combinaison linéaire de B et de I_2 ?

 $4. \ \ \, \text{Dans tout espace vectoriel E, } 0_E \text{ est combinaison lin\'eaire de n'importe quelle famille de vecteurs :}$

Remarque 3

En pratique, pour montrer qu'un vecteur x est combinaison linéaire des vecteurs x_1, \ldots, x_p , on cherche des scalaires $\lambda_1, \ldots, \lambda_p$ tels que $x = \lambda_1 x_1 + \cdots + \lambda_p x_p$ en résolvant un système linéaire.

Test 4 (Voir la solution.)

- 1. Dans $\mathcal{M}_{3,1}(\mathbb{R})$, on pose $e_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et $e_3 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$. Écrire les vecteurs $u = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$ et $v = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$ comme combinaison linéaire des vecteurs e_1 , e_2 et e_3 .
- 2. Dans $\mathbb{R}[X]$, montrer que le polynôme $X^2 + 1$ est combinaison linéaire des polynômes $(X + 1)^2$, X + 1 et 1.

5

3. Dans $\mathcal{M}_2(\mathbb{R})$, la matrice $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$ est-elle combinaison linéaire des matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$?

Test 5 (Voir la solution.)

- 1. On considère les trois polynômes suivants : $P = X^2 + 2X$, $Q = -X^2 + 1$ et $R = 4X^2 + 6X 1$. Déterminer tous les triplets de réels (a, b, c) tels que aP + bQ + cR = 0.
- 2. Dans \mathbb{R}^4 , on considère les vecteurs x = (1, 2, -1, 4) et y = (2, 4, -2, 4). Déterminer tous les couples de réels (a, b) tels que ax + by = 0.

2 Sous-espaces vectoriels

2.1 Sous-espace vectoriel

Définition 4 (Sous-espace vectoriel)

Soit E un espace vectoriel et soit $F \subset E$. On dit que F est un **sous-espace vectoriel** de E lorsque

- 1. F est non vide,
- 2. $\forall x \in F \ \forall y \in F, x + y \in F \ (stabilit\'e \ par \ addition),$
- 3. $\forall x \in F \ \forall \lambda \in \mathbb{R}, \ \lambda \cdot x \in F \ (stabilité par multiplication par un scalaire).$

Remarque 4

En combinant les points 2 et 3 avec un raisonnement par récurrence, on voit qu'un sous-espace vectoriel est stable par combinaison linéaire.

Exemple 5

Proposition 4

Un sous-espace vectoriel d'un espace vectoriel E est un espace vectoriel (pour les lois induites par celles de E).

Tout sous-espace vectoriel d'un espace vectoriel E contient 0_E .

Proposition 5 (Caractérisation des sous-espaces vectoriels)

Soit E un espace vectoriel et soit $F \subset E$. Alors F est un sous-espace vectoriel de E si et seulement si

- 1. F est non vide,
- 2. $\forall (x, y) \in F^2 \ \forall \lambda \in \mathbb{R}, \ x + \lambda y \in F.$

Méthode 1

- 1. Pour montrer qu'un ensemble est un espace vectoriel, on montre souvent que c'est un sous-espace vectoriel d'un espace vectoriel de référence à l'aide de la caractérisation ci-dessus car cela demande beaucoup moins de vérifications que la définition d'espace vectoriel.
- 2. Pour montrer que F est non vide, on montre souvent que $0_E \in F$.

Exemple 6

Exemple 7

Montrons que $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 .

Exemple 8

Plus généralement, l'ensemble des solutions d'un système linéaire **homogène** à n variables est un sous-espace vectoriel de \mathbb{R}^n . En effet, considérons un système

Exemple 9

Soit $(n, m) \in \mathbb{N}^2$ avec $n \leq m$.

- 1. $\mathbb{R}_n[X]$ est un sous-espace vectoriel de $\mathbb{R}_m[X]$ et de $\mathbb{R}[X]$.
- 2. L'ensemble des suites réelles convergentes est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Test 6 (Voir la solution.)

Parmi les espaces suivants, lesquels sont des sous-espaces vectoriels de l'espace considéré?

1.
$$F = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\},\$$

2.
$$G = \{P \in \mathbb{R}[X] \mid P'(0) = 0\},\$$

3.
$$H = \{ f \in \mathcal{C}(\mathbb{R}, \mathbb{R}) \mid \lim_{x \to +\infty} f(x) = 1 \}.$$

Test 7 (Voir la solution.)

Montrer que les ensembles suivants sont des espaces vectoriels :

1.
$$E = \{M \in \mathcal{M}_3(\mathbb{R}) \mid {}^tM = 2M\},\$$

2.
$$F = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + 2u_n\}.$$

2.2 Sous-espace vectoriel engendré

Définition 5 (Sous-espace vectoriel engendré)

Soit $n \in \mathbb{N}^*$.

Soit E un espace vectoriel et $u_1, ..., u_n$ des vecteurs de E.

L'ensemble des combinaisons linéaires de u_1, \ldots, u_n est un sous-espace vectoriel de E appelé sous-espace **vectoriel engendré** par les vecteurs $u_1, ..., u_n$. On le note

$$Vect(u_1, ..., u_n)$$
.

On dit que $(u_1, ..., u_n)$ est une **famille génératrice** de Vect $(u_1, ..., u_n)$.

Remarque 5

Soit E un espace vectoriel et $u_1, ..., u_n$ des vecteurs de E.

$$Vect(u_1, ..., u_n) = \{\lambda_1 u_1 + \cdots + \lambda_n u_n \mid (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n\}.$$

Exemple 10

•	$Dans \mathbb{R}[X]$, $Vect(1,X,X^2)$ est égal à
	Plus généralement, pour tout $n \in \mathbb{N}$, Vect $(1, X,, X^n)$ est égal à
	Soit E un espace vectoriel et $x \in E$. Alors
	Vect(x) =
	$Dans \mathbb{R}^2$, $représenter Vect((2,1))$.
	Dans \mathbb{R}^3 , représenter Vect((1,0,0),(1,2,0)).

Proposition 6

Soit $n \in \mathbb{N}^*$.

Soit E un espace vectoriel et u_1, \dots, u_n des vecteurs de E.

- Le sous-espace vectoriel engendré par les vecteurs u_1, \dots, u_n est un sous-espace vectoriel de E.
- Tout sous-espace vectoriel de E contenant $u_1, ..., u_n$ contient $Vect(u_1, ..., u_n)$.

Proposition 7

Soit $n \in \mathbb{N}^*$.

Soit E un espace vectoriel et soit $(u_1, ..., u_n)$ une famille de vecteurs de E.

- 1. Si un vecteur u est combinaison linéaire de u_1, \ldots, u_n alors $\text{Vect}(u_1, \ldots, u_n) = \text{Vect}(u_1, \ldots, u_n, u)$.
- 2. On a $\forall i \in \{1, ..., n\}, \forall j \neq i$, $\text{Vect}(u_1, ..., u_n) = \text{Vect}(u_1, ..., u_i + u_j, ..., u_n)$.
- 3. Si $\lambda_1, ..., \lambda_n$ sont des scalaires **tous non nuls** alors $\text{Vect}(u_1, ..., u_n) = \text{Vect}(\lambda_1 u_1, ..., \lambda_n u_n)$.

Remarque 6

- 1. En particulier, $Vect(u_1, ..., u_n) = Vect(u_1, ..., u_n, 0_E)$.
- $2. \ En \ combinant \ les \ points \ 2 \ et \ 3, \ on \ voit \ que \ si \ on \ ajoute \ un \ multiple \ d'un \ vecteur \ de \ la \ famille \ à \ un \ autre$ vecteur de la famille, la nouvelle famille obtenue engendre le même sous-espace vectoriel :

$$\forall i \in \{1, \dots, n\}, \forall j \neq i, \ \forall \lambda \in \mathbb{R}, \ \mathrm{Vect}(u_1, \dots, u_n) = \mathrm{Vect}(u_1, \dots, u_i + \lambda u_j, \dots, u_n).$$

Exemple	1	1

Dans $\mathcal{M}_{3,1}(\mathbb{R})$, simplifions $F = \text{Vect}\left(\begin{pmatrix} 1\\2\\-1 \end{pmatrix}, \begin{pmatrix} 2\\2\\1 \end{pmatrix}, \begin{pmatrix} 4\\6\\-1 \end{pmatrix}\right)$.					
Dans ℝ[X], dét	erminons F = Ve	$ect(X^2+1,X+2)$	2,1). On a		

Test 8 (Voir la solution.)

Donner une expression la plus simple possible des sous-espaces vectoriels suivants.

- 1. $Dans \mathbb{R}^2$, F = Vect((1,2), (2,4)).
- 2. $Dans \mathbb{R}[X]$, $F = Vect(1 + X, X, X X^2, 1 + 2X + X^2)$.

Méthode 2

Pour montrer qu'un ensemble F est un (sous-)espace vectoriel, on peut aussi montrer que c'est l'espace vectoriel engendré par une famille de vecteurs.

• Lorsque l'ensemble est donné sous forme paramétrique.

Exemple 12

Dans chaque cas, montrons que F est un espace vectoriel et donnons une famille génératrice de F.

1.
$$F = \{(x, y, -3x + y) \in \mathbb{R}^3 \mid (x, y) \in \mathbb{R}^2 \}$$

Test 9 (Voir la solution.)

Dans chaque cas, montrer que F est un espace vectoriel et donner une famille génératrice de F.

1.
$$F = \{(2a+c, a+3b, 2b+c) \in \mathbb{R}^3 \mid (a, b, c) \in \mathbb{R}^3\}.$$

2.
$$F = \{(c-a)X^3 + aX^2 + (2a-b)X + c \in \mathbb{R}[X] \mid (a, b, c) \in \mathbb{R}^3\}.$$

• Lorsque l'ensemble est décrit à l'aide d'équations.

Exemple 13

On considère $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \text{ et } x + 2y - 3z = 0\}.$

1.	Écrire les conditions	sous lesquelles ur	n vecteur appartient à F	sous forme d'un système.
----	-----------------------	--------------------	--------------------------	--------------------------

2. Obtenir un système triangulaire équivalent.

3. Exprimer les inconnues principales en fonctions des autres.

4. Faire apparaître la famille génératrice et conclure.

Test 10 (Voir la solution.)

Dans chaque cas, montrer que F est un espace vectoriel et donner une famille génératrice de F.

1.
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid -x - y + z = 0 \text{ et } 2x + y - 5z = 0\}.$$

2.
$$G = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = 0\}.$$

3.
$$H = \{(x, y, z) \in \mathbb{R}^3 \mid 2x = y \quad et \quad y = 3z\}.$$

Test 11 (Voir la solution.)

 $Soit \, \mathbf{E} = \big\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N} \ u_{n+2} = u_{n+1} + 6u_n \big\}.$

- 1. Rappeler la forme de l'expression du terme général d'un élément de E.
- 2. En déduire que E est un espace vectoriel et en donner une famille génératrice.

Méthode 3

Inversement, étant donné un espace vectoriel sous forme de « Vect » vous devez savoir en déterminer des équations qui le décrivent.

Exemple 14

Écrire la co	ndition pour qu'un vecte	ur appartienne à F so	ous forme d'un systèn	
Mottro lo si	ystème sous forme triang			
Wiettie ie sy		mane.		
Faire appar	raître les équations et con	clure		

Test 12 (Voir la solution.)

Décrire les espaces vectoriels suivants à l'aide d'équations.

- 1. $F_1 = Vect((1, 2, -1, 2), (1, 1, 1, 1))$.
- 2. $F_2 = Vect((1,1,1),(1,2,3),(1,4,9))$.
- 3. $F_3 = Vect((2,1,-3),(1,1,-2))$.

3 Objectifs

- 1. Avoir compris les notions d'espace vectoriel et de sous-espace vectoriel.
- 2. Connaître par coeur les définitions de combinaison linéaire, sous-espace engendré par une famille.
- 3. Savoir montrer qu'un ensemble est un espace vectoriel ou un sous-espace vectoriel avec la caractérisation des sous-espaces vectoriels.
- 4. Savoir montrer qu'un ensemble est un sous-espace vectoriel en en déterminant une famille génératrice.
- 5. Savoir décrire un sous-espace vectoriel engendré par une famille à l'aide d'équations.
- 6. Savoir manipuler la notation Vect.