一、计算机体系结构 00:03

- 1. 计算机体系结构的分类 00:12
- 1) 宏观分类(按处理机数量)

1.2 计算机体系结构-1.2.1 计算机体系结构的发展

2

21

- **单处理系统**:利用一个处理单元与其他外部设备结合,实现存储、计算、通信、输入和输出等功能的系统。特点是所有功能由单个处理单元完成。
- **并行处理与多处理系统**:将两个以上的处理机互连,通过通信协调共同求解大问题的 计算机系统。核心优势是能充分发挥问题求解过程中的处理并行性。
- **分布式处理系统**:物理上远距离且松耦合的多计算机系统。特点是通信时间不可忽略 (相比处理时间),且通信线路数据传输速率显著低于处理机总线。
- 2) 微观分类 (按并行程度)

1.2 计算机体系结构-1.2.1 计算机体系结构的发展

● Flynn分类法

o **分类依据**: 1966年Flynn提出,按指令流和数据流的数量进行分类。

- 四类系统:
 - SISD (单指令流单数据流)
 - SIMD(单指令流多数据流)
 - MISD (多指令流单数据流)
 - MIMD(多指令流多数据流)
- 马泽云分类法
 - o **分类依据**: 1972年美籍华人马泽云提出,按并行度对计算机系统进行结构分类。
 - 四类计算机:
 - WSBS (字串行位串行)
 - WPBS (字并行位串行)
 - WSBP (字串行位并行)
 - WPBP (字并行位并行)
- Handler分类法

- o **分类特点**: 1977年德国Wolfgang Handler提出,基于硬件并行程度和计算并行程度。
- 三个层次:
 - 处理机级
 - 算术逻辑单元级
 - 逻辑门电路级
- Kuck分类法
 - o **分类特点**: 1978年David J.Kuck提出,用指令流和执行流及其多重性描述系统控制结构特征。
 - 四类系统:
 - SISE (单指令流单执行流)
 - SIME(单指令流多执行流)
 - MISE (多指令流单执行流)
 - MIME(多指令流多执行流)
- 3) 指令系统概述 03:20
- **系统定位**:处于软件和硬件的交界面,既不属于纯软件也不属于纯硬件。
- 执行流程:程序被分解翻译成指令存入内存,CPU从内存中取指令并执行。
- **重要性**:作为软硬件交互的桥梁,在计算机系统中具有关键地位。
- 2. 计算机体系结构的发展 01:33
- 1) 指令系统 02:46
- 指令的格式

■ 组成结构: 由操作码(OP)和地址码(A)两部分构成

跳跃寻址:下一条指令的地址由指令本身给出。

- 操作码功能:指定指令要完成的操作类型,如加法指令对应加法操作,减法指令 对应减法操作,取数指令对应数据读取操作
- o 地址码特性:指示操作数的地址而非操作数本身,这种设计提高了指令取数据的 灵活性
- 指令的寻址方式 04:29
 - o 顺序寻址 07:07

- 工作原理:下一条指令地址由程序计数器(PC)给出,PC每次自动加1
- 执行流程:
 - PC初始值为0,从内存地址0取出LAD 200指令
 - 指令存入指令寄存器后PC自增为1
 - 继续从地址1取出ADD 201指令
- 典型应用:适用于程序顺序执行的情况
- o 跳跃寻址 08:53

指令的跳跃寻址方式示意图

■ **工作原理**:下一条指令地址由当前指令本身给出

- 执行示例:
 - PC值为3时取出JMP 6指令
 - 执行后PC被修改为6而非自增后的4
 - 接着从地址6取出INC指令
- 典型应用:用于实现循环结构和条件分支
- 操作数的寻址方式 10:34
 - o 立即寻址 10:54
 - **核心特点**: 地址码字段直接存储操作数本身而非地址
 - **执行效率**: 速度最快, 因为无需额外访存操作
 - 指令格式:操作码OP|操作数D
 - o 直接寻址 11:41
 - **地址解析**: 地址码字段给出操作数在内存的直接地址
 - 有效地址: 地址码值即为操作数的真实地址
 - 特征标识: 间址特征位为0表示直接寻址
 - o 间接寻址 13:12

■ **地址解析**: 地址码给出的是操作数地址的地址

■ **访存次数**:需要两次内存访问(先取地址,再取操作数)

■ 地址类型:

形式地址:指令中的地址码(如示例中的5)有效地址:操作数的真实地址(如示例中的1)

o 寄存器寻址 15:05

●寄存器寻址:指令的地址码字段给出操作数在寄存器的编号(操作数在寄存器中)。

■ **地址解析**:地址码给出寄存器编号,操作数直接存储在寄存器中

■ 执行效率: 比内存寻址更快, 因为寄存器访问速度高于内存

■ 典型示例: 地址码为6时, 直接从R6寄存器读取操作数1

o 寄存器间接寻址 16:15

1.2.1 计算机体系结构的发展

■ 地址解析:

- 地址码给出寄存器编号
- 寄存器存储操作数的内存地址
- 根据该地址访问内存获取操作数
- **性能比较**:比纯间接寻址快,因为减少了内存访问次数
- **特征标识**:间址特征位为1表示间接寻址
- 操作数寻址方式速度的比较 22:01

操作数寻址方式速度的比较

■ 思考:上述操作数寻址方式哪个速度快,哪个速度慢?

o 速度排序原理

■ **访问层级差异**:由快到慢依次为:立即寻址 > 寄存器寻址 > 直接寻址 > 寄存器词 > 相对/基址/变址寻址 > 间接寻址

■ 最快原因: 立即寻址直接获取指令中的操作数, 无需额外访问存储单元

■ 最慢原因:间接寻址需两次内存访问(先取地址再取数据)

■ **关键考点**:考试常给出三种寻址方式要求排序,需掌握每种方式的数据获取 路径

o 操作数位置分类

■ 指令本身: 立即寻址(操作数直接编码在指令中)

■ **寄存器**:寄存器寻址、寄存器间接寻址

■ 内存:直接寻址、相对/基址/变址寻址、间接寻址

- **典型考题**:可能要求判断特定寻址方式的操作数存储位置
- 计算机指令执行过程 23:09
 - 执行流程
 - 取指令阶段:
 - PC寄存器输出指令地址到地址总线
 - CPU通过内存读取指令内容并存入IR(指令寄存器)
 - 分析阶段:
 - 指令译码器解析指令功能
 - 识别需要的操作数类型和数量
 - 执行阶段:
 - 获取操作数(根据寻址方式)
 - 生成控制信号完成运算/传输等操作
 - **关键特征**:该过程是冯·诺依曼体系结构的核心体现,具有顺序性、循环性
 - o 硬件协作
 - **PC寄存器**: 始终保存下条指令地址
 - 地址总线: 传输指令/数据的内存地址
 - **IR寄存器**: 暂存当前执行的指令内容
 - 译码器:将机器指令转换为控制信号
 - **注意点**:取指令阶段必然访问内存,而操作数获取可能不需要(如立即/寄存器寻址)
- CPU如何区分指令和数据 24:03
 - o 冯诺依曼体系结构
 - **存储方式**: 在冯诺依曼型计算机中,指令和数据是混合存放在内存中的,不 进行物理区分。
 - **对比结构**: 哈佛结构采用指令和数据分开存储的方式,与冯诺依曼结构形成 鲜明对比。
 - 本质特征: 无论指令还是数据. 在计算机中都以二进制形式(0和1)存在。
 - 0 区分机制
 - **核心原理**: CPU通过指令周期的不同阶段来区分指令和数据。
 - 阶段划分:
 - 取指令阶段:程序计数器(PC)将指令地址送入地址总线,CPU从内存取出指令存入指令寄存器(IR)
 - **分析阶段**: 指令译码器解析操作码
 - 执行阶段: 获取源操作数并执行指令
 - **动态区分**: 在指令周期的不同阶段,CPU会根据当前需要自动识别处理的是指令还是数据。
 - o 执行过程详解
 - 取指令:
 - PC提供指令地址
 - 通过地址总线访问内存
 - 指令内容存入IR
 - 分析指令:
 - 指令译码器解析操作码
 - 确定指令类型和操作数
 - 执行指令:
 - 获取源操作数
 - 执行相应操作
 - 更新PC指向下一条指令
- 应用案例 25:27

o 例题:指令寻址方式

- (6)计算机指令系统采用多种寻址方式。立即寻址是指操作数包含在指令中,寄存器寻址是指操作 数在寄存器中,直接寻址是指操作数的地址在指令中。这三种寻址方式获取操作数的速度____。
 - A.立即寻址最快,寄存器寻址次之,直接寻址最慢
 - B 寄存器寻址量快,立即寻址次之,直接寻址量慢
 - C.直接寻址最快,寄存器寻址次之,立即寻址最慢
 - D.寄存器寻址最快,直接寻址次之, 立即寻址最慢

3

■ 题目解析

- **速度比较**:立即寻址最快(操作数直接包含在指令中),寄存器寻址次之(操作数在寄存器中),直接寻址最慢(需要访问内存获取操作数)
- 原理分析:
 - 立即寻址:直接获取操作数,无需额外访问
 - 寄存器寻址:只需访问寄存器,速度仅次于立即寻址
 - o 直接寻址:需要访问内存,速度最慢
- **答案确认**:正确答案为A选项(立即寻址>寄存器寻址>直接寻址)
- o 例题:指令区分阶段 27:05

- (7)冯•诺依曼计算机中指令与数据均以二进制形式存放在存储器中,CPU区分它们的依据是_____
 - A.指令操作码的译码结果
 - B.指令和数据的寻址方式
 - C.指令周期的不同阶段
 - D.指令和数据所在的存储单元
- 答案: C
- 解析: CPU根据指令周期的不同阶段本区分是指令还是数据,1) 通常在取指阶段取出的是指令, 在其他阶段(如分析、取数或执行阶段)取出的是数据,2)取指令或数据时绝址的来源不同:指 令地址来源于程序计数器,数据地址来源于地址形成部件。
- _ ■ 题目解析
 - **区分原理**: CPU通过指令周期的不同阶段来区分指令和数据
 - 具体机制:
 - o 取指阶段取出的是指令
 - o 分析/取数/执行阶段取出的是数据
 - 地址来源差异:
 - o 指令地址来源于程序计数器(PC)
 - o 数据地址来源于地址形成部件
 - ▶ 答案确认:正确答案为C选项(指令周期的不同阶段)
- 指令集的分类 27:34
 - o CISC与RISC对比

1.2.1 计算机体系结构的发展

(4) 指令集的分类

●CISC指令集: 复杂指令集, 各条指令按顺序串行执行,

•RISC指令集: 精简指令集,减少指令总数,采用优化编译、硬布线、重叠寄存器窗口等技术。

特性	CISC	RISC
指令数目	3	少
指令长度	可变长指令	大部分等长指令
控制器复杂性	复杂	简单
寻址方式	较丰富,提高编程灵活性	较少,以提高效率
编程便利性	指令多,编程灵活	编程量更大,采用较多通用寄存器
实现方式	微程序控制技术	采用硬布线逻辑控制优化编译程序,采用流水线 技术

= ■ 基本定义:

● CISC(复杂指令集): 指令数量多,各条指令按顺序串行执行

● RISC(精简指令集): 减少指令总数,采用优化编译、硬布线、重叠寄存器 窗口等技术

■ 编程特性:

- CISC: 指令多,编程灵活
- RISC: 编程量更大,采用较多通用寄存器
- 实现方式:
 - CISC: 采用微程序控制技术(用软件设计硬件的技术)
 - RISC: 采用硬布线逻辑控制优化编译程序,使用流水线技术加快执行速度
- 指令特征:
 - 指令数目: CISC多, RISC少
 - 指令长度: CISC为可变长指令、RISC大部分为等长指令(如64位)
 - 控制器复杂性: CISC复杂、RISC简单
 - 寻址方式: CISC较丰富(提高编程灵活性), RISC较少(提高效率)
- 典型示例:
 - 乘法运算: CISC可直接提供乘法指令,RISC需将乘法转换为加法运算实现
- o 例题:RISC特点 30:31

- (8)以下关于RISC (精简指令集计算机) 特点的叙述中,错误的是____。
 - A.对存储器操作进行限制,使控制简单化
 - B.指令种类多,指令功能强
 - C 设置大量通用客存器
 - D.选取使用频率较高的一些指令,提高执行速度

2

- 题目解析
 - **题目分析**: 要求识别关于RISC特点的错误叙述
 - 选项解析:
 - o A: 正确、RISC确实对存储器操作进行限制以简化控制
 - o B: 错误,这是CISC的特点而非RISC
 - o C: 正确、RISC会设置大量通用寄存器
 - o D: 正确,RISC会选取使用频率高的指令提高执行速度
 - 正确答案: B
 - 考点提示: 需准确区分RISC与CISC的核心特征差异
- 指令的流水处理 31:57
 - 基本原理:将指令执行划分为多个过程段(如取指IF、译码ID、执行EX、写回WB),每个过程段由专用部件处理,形成类似工厂流水线的作业方式
 - 典型过程段:
 - 取指(IF): 由取指部件完成
 - 译码(ID): 由译码部件完成
 - 执行(EX): 由执行部件完成
 - 写回(WB): 由写回部件完成
 - **部件特点**:不同部件执行速度可能不同,例如取指需2Δt,译码需3Δt,执行需4Δt,写回需5Δt
 - o 非流水线时空图 34:06
 - **执行方式**:串行执行,前一条指令完全执行完毕后才开始下一条指令
 - 时间计算:
 - 单条指令时间:各段执行时间之和,如T单=2+3+4+5=14 Δ t

- n条指令总时间: $T^{\Diamond} = n \times T^{\Diamond} = 14n\Delta t$
- 效率问题: 任一时刻只有1个部件工作, 其他部件空闲(如译码时取指部件 闲置)
- 标量流水线时空图 37:00 0
 - 执行方式: 各部件并行工作, 前一条指令进入下一段时, 当前段立即处理下 一条指令
 - 时间计算:
 - 第一条指令时间: T首 = 各段时间和 = $14\Delta t$
 - 后续指令时间: 受最慢段限制 (瓶颈段), 如写回需 $5\Delta t$, 则每 $5\Delta t$ 完成 1条指令
 - n条指令总时间: $T = T + (n-1) \times T$ 瓶颈 = $14 + (n-1) \times 5$
 - **效率优势**:相比非流水线,时间从 $14n\Delta$ t缩短至 $14+5(n-1)\Delta$ t
 - **瓶颈问题**:流水线速度取决于最慢的段,如写回段 5Δ t决定整体吞吐率
- 超标量流水线

1.2.1 计算机体系结构的发展

(5) 指令的流水处理

指令流水线原理:将指令的执行划分成若干个过程段,每个过程段由不同的部件进行处理

- 核心思想:通过增加硬件资源(如双取指部件、双译码部件)实现多条指令
- 执行方式: 相当于多条流水线同时工作, 用空间换时间
- 应用场景: 适用于需要更高指令吞吐率的处理器设计
- 2) 指令流水线的计算 44:41

1.2.1 计算机体系结构的发展

- - ●非流水执行时间: 一条指令执行的时间×指令总数
 - ●流水执行时间:第一条指令的执行时间+(n-1)×最长流水段时间,n为指令总数
 - ●加速比: 非流水方式与流水方式所用时间之比
 - ●流水线的操作周期: 为最长流水段时间
 - ●流水线的吞吐率: 为最长流水段时间的倒数
 - ●连续n条指令的吞吐率: 指令总数/总时间

- 执行时间计算
 - 非流水执行时间: 一条指令执行的时间乘以指令总数,公式为T非流水 = t单指令 × n
 - 流水执行时间: 由两部分组成, 第一条指令完整执行时间加上剩余指令的最长段 执行时间,公式为T流水 = t第一条 + $(n-1) \times t$ 最长段
- 性能指标
 - 加速比: 非流水方式与流水方式所用时间之比,即 $S = T_{\widehat{T}_{\widehat{A}K}}$
 - 操作周期: 等于流水线中最长段的时间,决定了流水线的工作节奏 0
 - 基础吞吐率: 操作周期的倒数,表示单位时间内完成的指令数,公式为 $TP = \frac{1}{T_{\text{BLKB}}}$ 0

- \circ **连续吞吐率**: 对于n条指令,计算公式为 $TP_n = \frac{n}{T_{\hat{n},x}}$,反映实际连续执行时的效率
- 流水线结构
 - 典型五段式:包含取指(IF)、译码(ID)、执行(EX)、访存(MEM)、写回(WB)五个阶段
 - o **关键路径**: 各段中执行时间最长的段将决定整个流水线的性能瓶颈

二、应用案例 45:54

1. 例题:指令流水线计算

本节练习

- (9)设指令流水线将一条指令的执行分为取指、分析、执行三段,已知取指时间是2ns,分析时间是2ns,执行时间是1ns,则执行完1000条指令所需的时间为。
 - A.1004ns
 - R 1998ns
 - . C.2003ns
- D.2008ns

2

- 1) 题目解析
- 流水线分段: 指令执行分为取指(2ns)、分析(2ns)、执行(1ns)三个过程段
- 计算原理:
 - o 第一条指令时间 = 各段耗时总和 =2 + 2 + 1 = 5ns
 - 剩余n-1条指令时间 =(n-1) × 最长流水段时间=999 × 2 = 1998ns

总时间公式: $T = kt + (n-1)max(t_i)$

- (k) 人,(k) 人,(
- 具体计算: 5 + 999 × 2 = 2003ns
- 正确答案: C选项 (2003ns)
- 关键点:识别最长流水段时间(本例中为2ns)是计算剩余指令时间的关键

三、知识小结

知识点	核心内容	考试重点/易 混淆点	难度系数
计算机体系 结构分类	宏观/微观分类法:单处理系统、并行多处理系统、 分布式处理系统	微观分类标 准 (处理机 数量)vs宏 观分类标准	***
FLYNN分类法	按指令流和数据流数量分 类: SISD/SIMD/MISD/MIMD	MISD实际不 存在,SIMD 与向量处理 关系	***
指令系统特性	软件硬件交界面、操作码+ 地址码结构	地址码存储 的是 操作数 地址而非数 据本身	***
寻址方式对 比	8种寻址方式: 立即/直接/ 间接/寄存器/基址/变址/相 对寻址	速度排序 : 立即>寄存器 >直接>间接	****

	1		
		(访问内存	
		次数差异)	
指令执行流	取指→译码→取数→执行	PC自增机制	***
程	四阶段流水线	与跳跃寻址	
		的区别	
CISC vs RISC	CISC:复杂指令/变长/微程	关键区别∶	★★★★☆
	序控制; RISC: 精简指令/	指令数量与	
	等长/硬布线	控制器复杂	
		度	
流水线技术	标量流水线时间公式: k∆t	瓶颈段决定	★★★★☆
	+(n-1)*max(Δt)	吞吐率(最	
		长阶段时	
		间)	
超标量流水	空间换时间: 多套功能部	与标量流水	***
线	 件并行	线的 硬件资	
		源差异	