浙江工业大学 2023/2024 学年第二学期 概率论与数理统计A(48学时)期末考试试卷

学号:		姓名:	班级:	任课教师:		
分位.	点数据:					
$\Phi(1)$	1) = 0.8413,	$\Phi(2) = 0.9772,$	$\Phi(1.65) = 0.95,$	$\Phi(1.96) = 0.$.975,	
$t_{0.01}(15$	5) = 2.6025,	$t_{0.01}(16) = 2.5835,$	$t_{0.005}(15) = 2.9467,$	$t_{0.005}(16) = 2.$.9468	
一. 选择	承题(毎题 3 タ	分 ,共 2 4 分)				
1. 己	知随机事件 A,	$B, \perp P(AB) = P(\overline{A})$	\overline{B}), 则下列结论正确的	J是	()
(A) <i>A</i> 和 <i>B</i> 互不	相容	(B) A∪B 是必然	事件		
(\mathbf{C})) P(A) + P(B)=1	(D) 以上三个选项:	均不正确		
2. 袋	中装有标记编号	号为 1 到 10 的 10 个	球, 现随机地取出来 4	个并按照标记的组	编号从	小到
大	排列,则排在第	二的球编号为 6 的概	率是		()
(\mathbf{A})	$\frac{1}{5}$	(B) $\frac{1}{6}$	(C) $\frac{1}{7}$	(D) $\frac{1}{8}$		
3. 若	随机变量 <i>X</i> ~ .	B(2,0.4),其分布函数	女是 $F(x)$, 则 $F(1.5) =$:	()
(A)) 1	(B) 0.84	(C) 0.16	(D) 0		
4. 设	f(x) 为某一连续	卖型随机变量 X 的概	率密度函数,且 f(1+x)	$f(1-x), \int_0^2 f(x)$	x)dx =	0.6,
则	$P\{X<0\} =$				()
(\mathbf{A})) 0.2	(B) 0.4	(C) 0.6	(D) 0.8		
5. 设	二维随机变量($X,Y) \sim N(-1,-1,2)$	$(5,0), \ \mathbb{M} \ E(XY^2) =$		()
(A) 6	(B) −6	(C) 9	(D) -9		
6. 设	随机变量 <i>X</i> ~ .	$N(0,1), Y \sim N(1,4),$	且相关系数 $\rho_{XY}=1$,	则	()
(A)	$P\{Y = -2X\}$	$\{-1\}=1$	(B) $P\{Y = 2X - 1\}$	$1\} = 1$		
(C	$P\{Y = -2X\}$		(D) $P\{Y - 2X +$	1		

7.	设总体 $X \sim N(3,16), X_1, X_2, \cdots, X_{16}$ 是来自该总体的样本, \overline{X} 和 S^2 分别表示样本均值						
	和样本方差,则下列结论中不正确的是 ()						
	(A) $\frac{15S^2}{16} \sim \chi^2(15)$ (B) $\frac{1}{\underline{16}} \sum_{i=1}^{16} (X_i - 3)^2 \sim \chi^2(16)$						
	(C) $Cov(\overline{X}, S^2) = 0$ (D) $\frac{\overline{X} - 3}{4} \sim N(0, 1)$						
8.	设 X_1, X_2, X_3, X_4 为来自总体 $N(1, \sigma^2)$ 的简单样本, 则统计量 $\frac{X_1 - X_2}{ X_3 + X_4 - 2 }$ 服从的分布是						
	(A) $t(1)$ (B) $N(0,1)$ (C) $\chi^2(1)$ (D) $F(1,1)$						
二. 埃	真空题 (每空 2 分, 共 16 分)						
9.	设随机事件 A, B 独立, 且 $P(A) = 0.5, P(B) = 0.4$, 则 $P(A - B) =$.						
10.	设某地区位于甲、乙两河流的汇合处, 当任一河流泛滥时, 该地区即遭受水灾. 设某时期内甲河流泛滥的概率为 0.1, 乙河流泛滥的概率为 0.2, 当甲河流泛滥时, 乙河流泛滥的概率为 0.3, 则该时期内这个地区遭受水灾的概率是						
11.	设随机变量 X 服从参数为 1 的指数分布, 则 $Y = \max\{X, \frac{1}{X}\}$ 的分布函数 $F_Y(y) =$						
12.	2. 设随机变量 X 服从参数为 2 的泊松分布, $Y \sim U(0,4), E(XY) = 5$, 则 $D(X - Y) =$, 应用切比雪夫不等式估计 $P\{ X - Y < 4\} \geqslant$						
13.	. 已知某厂生产的晶体管寿命服从均值为 100h 的指数分布, 现从该厂的产品中随机抽取 64 只, 假设这些晶体管的寿命是相互独立的. 利用中心极限定理计算这 64 只晶体管的寿命总和超过 7200h 的概率为						
14.	设 X_1, X_2, \cdots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单样本,参数 μ, σ^2 未知,样本均值 $\bar{x}=8$. 若参数 μ 的置信度为 0.95 的双侧置信区间上限为 9.6, 则 μ 的置信度为 0.95 的双侧置信区间下限为						
15.	设总体 $X \sim N(\mu, 1)$, 其中 $\mu \in \mathbf{R}$ 未知, x_1, x_2, \cdots, x_{16} 是总体 X 的样本值, 对假设检验问题 $H_0: \mu = 2, H_1: \mu \neq 2$, 取拒绝域 $W = \{\bar{x} \geq 2.5\}$, 则该检验犯第一类错误的概率是						

三. 解答题 (共 60 分)

16. (12 分) 设连续型随机变量
$$X$$
 的分布函数 $F(x) = \begin{cases} 0, & x < -1, \\ \frac{1}{2}(1+x^3), & -1 \leqslant x \leqslant 1, \\ 1, & x > 1. \end{cases}$

求: (1) $P\{-\frac{1}{3} < X < \frac{2}{3}\}$; (2) X 的概率密度函数 f(x); (3) $E(X^2)$.

17. (14 分) 设离散型随机变量 (X,Y) 的联合分布表为

Y X	0	2	4
0	a	$\frac{1}{9}$	$\frac{1}{18}$
1	$\frac{1}{3}$	0	b

F(x,y) 是(X,Y) 的联合分布函数, 且 $F(1,3) = \frac{11}{18}$.

求: (1) a, b 的值; (2) X, Y 的边缘分布列; (3) Z = XY 的分布列和 EZ.

18. (16 分)设随机变量 (X,Y) 的概率密度函数

$$f(x,y) = \begin{cases} axy, & x > 0, y > 0, 2x + y < 2, \\ 0, & \text{ 其他.} \end{cases}$$

- (1) 求常数 a;
- (2) 求边缘密度函数 $f_X(x)$;
- (3) $\Re P\{Y < \frac{1}{2}|X = \frac{1}{2}\}.$
- 19. (10 分)设总体 X 的分布列为

$$\begin{array}{c|ccccc} X & -1 & 1 & 2 \\ \hline P & 1 - \theta & \frac{1}{3}\theta & \frac{2}{3}\theta \end{array}$$

其中未知参数 $\theta > 0$, 若 2, -1, 1, 1, 2 是来自该总体的简单样本.

求 θ 的矩估计值和最大似然估计值.

20. (8 分) 设尼龙钓鱼绳平均拉力(单位: kN)服从正态分布. 产品说明书称普通 6 号尼龙钓鱼绳平均拉力不小于 12. 现在随机抽查了 16 根, 测得平均拉力为 11.8, 标准差为 0.4. 在显著性水平 $\alpha=0.01$ 下检验产品是否与说明书有显著差别.