------Portfolio Project

------Vector Geoprocessing Tools-----

Import Basic Libraries

```
In [3]:  import geopandas as gbd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Load Shape Files (shp)

Out[25]: <Axes: >

Intersection of Polygons

```
In [27]:  intersection = gbd.overlay(sa1, sa2, how='intersection')
intersection.plot()
```

Out[27]: <Axes: >

Union of Polygons

```
In [30]:  union = gbd.overlay(sa1, sa2, how='union')
union.plot()
plt.show()
```



```
      In [31]: ▶ union.head()mm

      Out[31]: desc_1 desc_2 geometry

      0 Study_Area_1 Study_Area_2 POLYGON ((101.44456 4.32501, 101.44529 4.33050...)

      1 Study_Area_1 NaN POLYGON ((101.38479 4.40801, 101.38479 4.40801...)

      2 NaN Study_Area_2 POLYGON ((101.38479 4.40764, 101.38479 4.40801...)
```

Symmetric Difference of Polygons

Difference of Polygons

```
difference = gbd.overlay(sa1,sa2,how='difference')
In [35]:
             difference.plot()
             plt.show()
               4.60
               4.55
               4.50
               4.45
               4.40
                        101.35
                                  101.40
                                             101.45
                                                       101.50
                                                                 101.55
                                                                           101.60

    difference.head()

In [36]:
   Out[36]:
                       desc
                                                             geometry
```

0 Study_Area_1 POLYGON ((101.38479 4.40801, 101.38479 4.40801...

Dissolveing a polygon

Out[38]: <Axes: >

In [40]: ▶ union.head()

Out[40]:		desc_1	desc_2	geometry	common_column
	0	Study_Area_1	Study_Area_2	POLYGON ((101.44456 4.32501, 101.44529 4.33050	1
	1	Study_Area_1	NaN	POLYGON ((101.38479 4.40801, 101.38479 4.40801	1
	2	NaN	Study_Area_2	POLYGON ((101.38479 4.40764, 101.38479 4.40801	1


```
dissolved_sa.head()
```

Buffer in Polygons

Reprojecting the river GeoPandas GeoDataFrame into a projected CRS

In [48]: ▶ river.plot()

Out[48]: <Axes: >


```
Out[49]: <Axes: >
         505000
          500000
          495000 -
          490000 -
          485000 -
          480000
              7725000500007500
In [50]:  river_pro.head()
  Out[50]:
           id
                                  geometry
         0 1 LINESTRING (778620.752 505214.942, 777899.429 ...
In [51]: ► type(river_pro)
  Out[51]: geopandas.geodataframe.GeoDataFrame
Out[53]: geopandas.geoseries.GeoSeries
```

```
In [57]:  buffer_500m.plot(figsize = (7,7))
   Out[57]: <Axes: >
              505000
              500000
              495000 -
              490000 -
              485000 -
              480000
```

Obtained the centroid

7725007500077500

```
In [62]: In union = gbd.overlay(sa1,sa2,how='union')
union.plot(edgecolor = 'black')
plt.show()
```



```
In [64]: M centroid = union['geometry'].centroid
centroid.plot(figsize = (7,7))
```

C:\Users\DELL\AppData\Local\Temp\ipykernel_26256\3828846257.py:1: User Warning: Geometry is in a geographic CRS. Results from 'centroid' are likely incorrect. Use 'GeoSeries.to_crs()' to re-project geometries to a projected CRS before this operation.

centroid = union['geometry'].centroid

Out[64]: <Axes: >

Out[66]: <Axes: >


```
In [ ]: ▶
```