Lecture Notes of Multivariate Statistics

Luo Luo

School of Data Science, Fudan University

March 24, 2022

1 Review of Linear Algebra

Theorem 1.1 (QR Factorization). Prove the following results for Gram-Schmidt orthogonalization

- 1. $r_{ij} \neq 0 \text{ for all } i = 1, ..., n$
- 2. $\|\mathbf{q}_i\|_2 = 1$ for all i = 1, ..., n
- 3. $\mathbf{q}_i^{\mathsf{T}} \mathbf{q}_i = 0$ for all $i = 1, \ldots, n$ and j < i.

Proof. Part 1: Since each \mathbf{q}_i is a linear combination of $\{\mathbf{a}_1, \cdots, \mathbf{a}_i\}$, the entry r_{jj} is zero means

$$r_{jj} = \left\| \mathbf{a}_n - \sum_{i=1}^{n-1} r_{in} \mathbf{q}_i \right\|_2 = 0,$$

then \mathbf{a}_n must be a linear combination of $\{\mathbf{a}_1, \cdots, \mathbf{a}_{n-1}\}$, which validate the full rank assumption on \mathbf{A} .

Part 2: Just use the expression of r_{ij} .

Part 3: Recall that $r_{ij} = \mathbf{q}_i^{\mathsf{T}} \mathbf{a}_j$ for any $i \neq j$. We can verify

$$\mathbf{q}_1^{\top} \mathbf{q}_2 = \frac{\mathbf{q}_1^{\top} (\mathbf{a}_2 - r_{12} \mathbf{q}_1)}{r_{22}} = \frac{\mathbf{q}_1^{\top} (\mathbf{a}_2 - (\mathbf{q}_1^{\top} \mathbf{a}_2) \mathbf{q}_1)}{r_{22}} = \frac{\mathbf{q}_1^{\top} \mathbf{a}_2 - (\mathbf{q}_1^{\top} \mathbf{a}_2) \mathbf{q}_1^{\top} \mathbf{q}_1}{r_{22}} = 0$$

Suppose for $\mathbf{q}_i^{\top} \mathbf{q}_j = 0$ for all $\mathbf{q}_i^{\top} \mathbf{q}_j = 0$ for all $i = 1, \dots, n' - 1$ and j < i. Then for all $k = 1, 2, \dots, n' - 1$, we have

$$\mathbf{q}_{k}^{\top}\mathbf{q}_{n'} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - \sum_{i=1}^{n'-1} r_{in'}\mathbf{q}_{k}^{\top}\mathbf{q}_{i}}{r_{n'n'}} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - r_{kn'}\mathbf{q}_{k}^{\top}\mathbf{q}_{k}}{r_{n'n'}} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - r_{kn'}}{r_{n'n'}} = 0$$

Then we prove the result by induction

Theorem 1.2. Prove $\|\mathbf{A}\|_2 = \sigma_1$.

Proof. Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ be full SVD of \mathbf{A} . Then

$$\left\|\mathbf{A}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\mathbf{A}\mathbf{x}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{x}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{x}\right\|_2$$

Then let $\mathbf{y} = \mathbf{V}^{\top}\mathbf{x}$. Since \mathbf{V} is orthogonal matrix, we have $\|\mathbf{y}\|_2 = \|\mathbf{V}^{\top}\mathbf{x}\|_2 = \|\mathbf{x}\|_2 = 1$. Hence,

$$\sup_{\|\mathbf{x}\|_2=1} \|\mathbf{\Sigma}\mathbf{V}^{\top}\mathbf{x}\|_2 = \sup_{\|\mathbf{y}\|_2=1} \|\mathbf{\Sigma}\mathbf{y}\|_2 = \sup_{\|\mathbf{y}\|_2=1} \sqrt{\sum_{i=1}^r (\sigma_i y_i)^2} \le \sigma_1.$$

We attain the maximum by taking $\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ and the corresponding \mathbf{x} is $\mathbf{V} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

Theorem 1.3 (Cholesky Factorization). The symmetric positive-definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has the decomposition of the form

$$\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathsf{T}}$$

where $\mathbf{L} \in \mathbb{R}^{\times n}$ is a lower triangular matrix with real and positive diagonal entries.

Proof. For n=1, it is trivial. Suppose it holds for n-1, then any $\widetilde{\mathbf{A}} \in \mathbb{R}^{(n-1)\times (n-1)}$ can be written as

$$\widetilde{\mathbf{A}} = \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}^{\mathsf{T}}$$

where $\widetilde{\mathbf{L}} \in \mathbb{R}^{(n-1)\times (n-1)}$ is a lower triangular matrix with real and positive diagonal entries. Consider the case of n such that

$$\mathbf{A} = \begin{bmatrix} \widetilde{\mathbf{A}} & \mathbf{a} \\ \mathbf{a}^\top & \alpha \end{bmatrix} = \begin{bmatrix} \widetilde{\mathbf{L}} \widetilde{\mathbf{L}}^\top & \mathbf{a} \\ \mathbf{a}^\top & \alpha \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad \text{where } \mathbf{a} \in \mathbb{R}^{n-1}, \quad \alpha \in \mathbb{R}.$$

Let

$$\mathbf{L}_1 = \begin{bmatrix} \widetilde{\mathbf{L}}^{-1} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

We have

$$\mathbf{L}_{1}^{-1}\mathbf{A}\mathbf{L}_{1}^{-\top} = \begin{bmatrix} \widetilde{\mathbf{L}}^{-1} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}^{\top} & \mathbf{a} \\ \mathbf{a}^{\top} & \alpha \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{L}}^{-\top} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{b} \\ \mathbf{b}^{\top} & \alpha \end{bmatrix} \triangleq \mathbf{B} \in \mathbb{R}^{n \times n} \quad \text{where } \mathbf{b} \in \widetilde{\mathbf{L}}^{-1}\mathbf{a} \in \mathbb{R}^{n-1}.$$

Let

$$\mathbf{L}_2 = egin{bmatrix} \mathbf{I} & \mathbf{0} \ -\mathbf{b}^ op & 1 \end{bmatrix} \in \mathbb{R}^{n imes n}.$$

Then

$$\mathbf{L}_2^{-1}\mathbf{B}\mathbf{L}_2^{-\top} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{b}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{b} \\ \mathbf{b}^{\top} & \alpha \end{bmatrix} \begin{bmatrix} \mathbf{I} & -\mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \alpha - \mathbf{b}^{\top}\mathbf{b} \end{bmatrix}.$$

Since A is positive-definite, we have

$$\alpha - \mathbf{b}^{\mathsf{T}} \mathbf{b} = \alpha - \mathbf{a}^{\mathsf{T}} \widetilde{\mathbf{L}}^{-\mathsf{T}} \widetilde{\mathbf{L}}^{-1} \mathbf{a} = \alpha - \mathbf{a}^{\mathsf{T}} \widetilde{\mathbf{L}}^{-\mathsf{T}} \widetilde{\mathbf{L}}^{-1} \mathbf{a} = \alpha - \mathbf{a}^{\mathsf{T}} \widetilde{\mathbf{A}}^{-1} \mathbf{a} > 0.$$

Let $\alpha - \mathbf{b}^{\top} \mathbf{b} = \lambda^2$, where $\lambda > 0$. Hence, we have

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \alpha - \mathbf{b}^{\top} \mathbf{b} \end{bmatrix} = \mathbf{L}_3 \mathbf{L}_3^{\top}, \quad \text{where } \mathbf{L}_3 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \lambda \end{bmatrix}$$

which means $\mathbf{A} = \mathbf{L}\mathbf{L}^{\top} \in \mathbb{R}^{n \times n}$ where $\mathbf{L} = \mathbf{L}_1\mathbf{L}_2\mathbf{L}_3 \in \mathbb{R}^{n \times n}$ is a lower triangular matrix with real and positive diagonal entries.

Theorem 1.4. Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, the solution of minimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \triangleq \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

is $\hat{\mathbf{x}} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{y}$, where $\mathbf{y} \in \mathbb{R}^n$

Proof. The Hessian of $f(\mathbf{x})$ is $\mathbf{A}^{\top} \mathbf{A} \succeq \mathbf{0}$, which means $f(\mathbf{x})$ is convex. Let $\mathbf{A} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^{\top}$ be the condense SVD, where r is the rank of \mathbf{A} . Since $\nabla f(\mathbf{x}) = \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b}$, we only needs to solve the linear system

$$\mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} = \mathbf{0}.$$

We denote the solution of $\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - \mathbf{A}^{\top}\mathbf{b} = \mathbf{0}$ be

$$\mathcal{X} = \left\{ \mathbf{x} : \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} = \mathbf{0} \right\}.$$

We can verify that $\hat{\mathbf{x}} = \mathbf{A}^{\dagger}\mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{y}$ is the solution of the linear system because

$$\begin{split} &\mathbf{A}^{\top}\mathbf{A}\hat{\mathbf{x}}-\mathbf{A}^{\top}\mathbf{b} \\ &=&\mathbf{A}^{\top}\mathbf{A}\left(\mathbf{A}^{\dagger}\mathbf{b}+(\mathbf{I}-\mathbf{A}^{\dagger}\mathbf{A})\mathbf{y}\right)-\mathbf{A}^{\top}\mathbf{b} \\ &=&\mathbf{A}^{\top}(\mathbf{A}\mathbf{A}^{\dagger}-\mathbf{I})\mathbf{b}+\mathbf{A}^{\top}\mathbf{A}\left(\mathbf{I}-\mathbf{A}^{\dagger}\mathbf{A}\right)\mathbf{y} \\ &=&\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}\mathbf{U}_{r}^{\top}(\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{-1}\mathbf{U}_{r}^{\top}-\mathbf{I})\mathbf{b}+\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}\mathbf{U}_{r}^{\top}\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\left(\mathbf{I}-\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{-1}\mathbf{U}_{r}^{\top}\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\right)\mathbf{y} \\ &=&\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}\mathbf{U}_{r}^{\top}(\mathbf{U}_{r}\mathbf{U}_{r}^{\top}-\mathbf{I})\mathbf{b}+\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{2}\mathbf{V}_{r}^{\top}\left(\mathbf{I}-\mathbf{V}_{r}\mathbf{V}_{r}^{\top}\right)\mathbf{y} \\ &=&\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}(\mathbf{U}_{r}^{\top}-\mathbf{U}_{r}^{\top})\mathbf{b}+\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{2}\left(\mathbf{V}_{r}^{\top}-\mathbf{V}_{r}^{\top}\right)\mathbf{y} \\ &=&\mathbf{0}. \end{split}$$

Hence, we have $\mathcal{X}_1 \subseteq \mathcal{X}$, where $\mathcal{X}_1 = \{\mathbf{x} : \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{y}, \mathbf{y} \in \mathbb{R}^n \}$. We also have

$$\mathbf{A}^{ op} \mathbf{A} \mathbf{x} - \mathbf{A}^{ op} \mathbf{b} = \mathbf{0}$$
 $\iff \mathbf{V}_r \mathbf{\Sigma}_r^2 \mathbf{V}_r^{ op} \mathbf{x} - \mathbf{V}_r \mathbf{\Sigma}_r \mathbf{U}_r^{ op} \mathbf{b} = \mathbf{0}$
 $\iff \mathbf{\Sigma}_r^2 \mathbf{V}_r^{ op} \mathbf{x} - \mathbf{\Sigma}_r \mathbf{U}_r^{ op} \mathbf{b} = \mathbf{0}$
 $\iff \mathbf{V}_r^{ op} \mathbf{x} = \mathbf{\Sigma}_r^{-1} \mathbf{U}_r^{ op} \mathbf{b}$
 $\iff \mathbf{V}_r \mathbf{V}_r^{ op} \mathbf{x} = \mathbf{V}_r \mathbf{\Sigma}_r^{-1} \mathbf{U}_r^{ op} \mathbf{b}$
 $\iff \mathbf{x} - (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{ op}) \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b}$
 $\iff \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{ op}) \mathbf{x}$

Hence, we have $\mathcal{X} = \{\mathbf{x} : \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{\top}) \mathbf{x}\} \subseteq \mathcal{X}_1$. In conclusion, we have $\mathcal{X} = \mathcal{X}_1$.

2 The Multivariate Normal Distributions

Statistical Independence If F(x,y) = F(x)G(y), we have

$$\begin{split} f(x,y) = & \frac{\partial^2 F(x,y)}{\partial x \partial y} = \frac{\partial^2 F(x) G(y)}{\partial x \partial y} \\ = & \frac{\mathrm{d} F(x)}{\mathrm{d} x} \frac{\mathrm{d} G(y)}{\mathrm{d} y} \\ = & f(x) g(y). \end{split}$$

If f(x,y) = f(x)g(y), we have

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u)g(v) du dv$$
$$= \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv = \int_{-\infty}^{x} f(u) du \int_{-\infty}^{y} g(v) dv$$
$$= F(x)G(y).$$

Uncorrelated does not means independent Let $X \sim U(-1,1)$ and

$$Y = \begin{cases} X, & X > 0 \\ -X, & X \le 0 \end{cases}$$

Show X and Y are uncorrelated but they are NOT independent.

Conditional Distributions Let $y_1 = y$, $y_2 = y + \Delta$. Then for a continuous density, the mean value theorem implies

$$\int_{y}^{y+\Delta y} g(v) \, \mathrm{d}v = g(y^*) \Delta y,$$

where $y \leq y^* \leq y + \Delta y$. We also have

$$\int_{y}^{y+\Delta y} f(u,v) \, \mathrm{d}v = f(u,y^*(u)) \Delta y,$$

where $y \leq y^*(u) \leq y + \Delta y$. Connecting above results to

$$\Pr\{x_1 \le X \le x_2 \mid y_1 \le Y \le y_2\} = \frac{\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(u, v) \, dv \, du}{\int_{y_1}^{y_2} g(v) \, dv}$$

with $y_1 = y$ and $y_2 = y + \Delta y$, we have

$$\Pr\{x_{1} \leq X \leq x_{2} \mid y \leq Y \leq y + \Delta y\}
= \frac{\int_{x_{1}}^{x_{2}} \int_{y}^{y + \Delta y} f(u, v) \, dv \, du}{\int_{y}^{y + \Delta y} g(v) \, dv}
= \frac{\int_{x_{1}}^{x_{2}} f(u, y^{*}(u)) \Delta y \, du}{g(y^{*}) \Delta y}
= \int_{x_{1}}^{x_{2}} \frac{f(u, y^{*}(u))}{g(y^{*})} \, du.$$
(1)

For y such that g(y) > 0, we define $\Pr\{x_1 \le X \le x_2 \mid Y = y\}$, the probability that X lies between x_1 and x_2 , given that Y is y, as the limit of (1) as $\Delta y \to 0$. Thus

$$\Pr\{x_1 \le X \le x_2 \mid Y = y\} = \int_{x_1}^{x_2} \frac{f(u, y)}{g(y)} du = \int_{x_1}^{x_2} f(u \mid y) du.$$
 (2)

Transform of Variables Let the density of X_1, \ldots, X_p be $f(x_1, \ldots, x_p)$. Consider the p real-valued functions $\mathbf{u} : \mathbb{R}^p \to \mathbb{R}^p$ such that

$$y_i = u_i(x_1, \dots, x_p), \qquad i = 1, \dots, p.$$

Assume the transformation \mathbf{u} from the x-space to the y-space is one-to-one, then the inverse transformation is \mathbf{u}^{-1} such that

$$x_i = u_i^{-1}(y_1, \dots, y_p), \qquad i = 1, \dots, p.$$

Let the random variables Y_1, \ldots, Y_p be defined by

$$Y_i = u_i(X_1, \dots, X_p), \qquad i = 1, \dots, p,$$

then we have

$$\int_{\mathbf{u}(\Omega)} g(\mathbf{y}) d\mathbf{y} = \int_{\Omega} g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) d\mathbf{x}, \tag{3}$$

and

$$f(\mathbf{x}) = g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|), \tag{4}$$

where the Jacobin matrix is

$$\mathbf{J}(\mathbf{x}) = \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \cdots & \frac{\partial u_1}{\partial x_p} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \cdots & \frac{\partial u_2}{\partial x_p} \\ \vdots & \vdots & & \vdots \\ \frac{\partial u_p}{\partial x_1} & \frac{\partial u_p}{\partial x_2} & \cdots & \frac{\partial u_p}{\partial x_p} \end{bmatrix}.$$

A roughly proof for above results:

- If $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\mathcal{S} \subset \mathbb{R}^p$ is a measurable set, then $m(\mathbf{A}\mathcal{S}) = |\det(\mathbf{A})|m(\mathcal{S})$. Let $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}$ where \mathbf{U} and \mathbf{V} are orthogonal and $\mathbf{\Sigma}$ is diagonal with nonnegative entries. Multiplying by \mathbf{V}^{\top} doesn't change the measure of \mathcal{S} . Multiplying by $\mathbf{\Sigma}$ scales along each axis, so the measure gets multiplied by $|\det(\mathbf{\Sigma})| = |\det(\mathbf{A})|$. Multiplying by \mathbf{U} doesn't change the measure.
- We consider the probability of \mathbf{x} in Ω and \mathbf{y} in $\mathbf{u}(\Omega)$; and partition Ω into $\{\Omega_i\}_i$. Then

$$\int_{\mathbf{u}(\Omega)} g(\mathbf{y}) d\mathbf{y}$$

$$= \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) m(\mathbf{u}(\Omega_{i}))$$

$$\approx \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) m(\mathbf{u}(\mathbf{x}_{i}) + \mathbf{J}(\mathbf{x}_{i})(\Omega_{i} - \mathbf{x}_{i}))$$

$$= \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) m(\mathbf{J}(\mathbf{x}_{i})\Omega_{i})$$

$$= \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) \operatorname{abs}(|\mathbf{J}(\mathbf{x}_{i})|) m(\Omega_{i})$$

$$\approx \int_{\Omega} g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) d\mathbf{x}.$$

• Consider notation Ω such that

$$\int_{\Omega} = \int_{x_1}^{x_1'} \cdots \int_{x_p}^{x_p'}$$

where $x_1 \leq x_1', x_2 \leq x_2', \dots, x_p \leq x_p'$. Then the notation $\mathbf{u}(\Omega)$ in the integral should consider the order

$$\int_{\mathbf{u}(\Omega)} = \int_{\min\{u_1(x_1), u_1(x_1')\}}^{\max\{u_1(x_1), u_1(x_1')\}} \cdots \int_{\min\{u_p(x_p), u_p(x_p')\}}^{\max\{u_p(x_p), u_p(x_p')\}}$$

By using even tinier subsets Ω_i , the approximation would be even better so we see by a limiting argument that we actually obtain (3). On the other hand, we have

$$\int_{\Omega} f(\mathbf{x}) \mathrm{d}\mathbf{x} = \int_{\mathbf{u}(\Omega)} g(\mathbf{y}) \mathrm{d}\mathbf{y} = \int_{\Omega} g(\mathbf{u}(\mathbf{x})) \mathrm{abs}(|\mathbf{J}(\mathbf{x})|) \mathrm{d}\mathbf{x}.$$

Since it holds for any Ω , then

$$f(\mathbf{x}) = g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|).$$

Lemma 2.1. If **Z** is an $m \times n$ random matrix, **D** is an $l \times m$ real matrix, **E** is an $n \times q$ real matrix, and **F** is an $l \times q$ real matrix, then

$$\mathbb{E}[\mathbf{DZE} + \mathbf{F}] = \mathbf{D}\mathbb{E}[\mathbf{Z}]\mathbf{E} + \mathbf{F}.$$

Proof. The element in the *i*-th row and *j*-th column of $\mathbb{E}[\mathbf{DZE} + \mathbf{F}]$ is

$$\mathbb{E}\left[\sum_{h,g} d_{ih} z_{hg} e_{gj} + f_{ij}\right] = \sum_{h,g} d_{ih} \mathbb{E}[z_{hg}] e_{gj} + f_{ij}$$

which is the element in the *i*-th row and *j*-th column of $\mathbf{D}\mathbb{E}[\mathbf{Z}]\mathbf{E} + \mathbf{F}$.

Lemma 2.2. If $\mathbf{y} = \mathbf{D}\mathbf{x} + \mathbf{f} \in \mathbb{R}^l$, where \mathbf{D} is an $l \times m$ real matrix, $\mathbf{x} \in \mathbb{R}^m$ is a random vector, then

$$\mathbb{E}[\mathbf{y}] = \mathbf{D}\mathbb{E}[\mathbf{x}] + \mathbf{f} \quad and \quad \mathrm{Cov}[\mathbf{y}] = \mathbf{D}\mathrm{Cov}[\mathbf{x}]\mathbf{D}^{\top}.$$

Proof. We have

$$\begin{split} &\operatorname{Cov}(\mathbf{y}) \\ =& \mathbb{E}\left[(\mathbf{y} - \mathbb{E}[\mathbf{y}])(\mathbf{y} - \mathbb{E}[\mathbf{y}])^{\top} \right] \\ =& \mathbb{E}\left[(\mathbf{D}\mathbf{x} + \mathbf{f} - \mathbb{E}[\mathbf{D}\mathbb{E}[\mathbf{x}] + \mathbf{f}])(\mathbf{D}\mathbf{x} + \mathbf{f} - \mathbb{E}[\mathbf{D}\mathbb{E}[\mathbf{x}] + \mathbf{f}])^{\top} \right] \\ =& \mathbb{E}[(\mathbf{D}\mathbf{x} - \mathbf{D}\mathbb{E}[\mathbf{x}])(\mathbf{D}\mathbf{x} - \mathbf{D}\mathbb{E}[\mathbf{x}])^{\top}] \\ =& \mathbb{E}[\mathbf{D}(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\top}\mathbf{D}^{\top}] \\ =& \mathbf{D}\mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\top}]\mathbf{D}^{\top} \\ =& \mathbf{D}\operatorname{Cov}[\mathbf{x}]\mathbf{D}^{\top}. \end{split}$$

The Density Function of Multivariate Normal Distribution Let the spectral decomposition of A be $\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^{\top}$, then we take $\mathbf{C} = \mathbf{U}\Lambda^{-1/2}$ and it satisfies $\mathbf{C}^{\top}\mathbf{A}\mathbf{C} = \mathbf{I}$ and \mathbf{C} is non-singular. Define $\mathbf{y} = \mathbf{C}^{-1}(\mathbf{x} - \mathbf{b})$, then

$$K^{-1} = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{b})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{b})\right) dx_{1} \dots dx_{p}$$

$$= \frac{1}{\det(\mathbf{C}^{-1})} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} \mathbf{y}^{\top} \mathbf{y}\right) dy_{1} \dots dy_{p}$$

$$= \det(\mathbf{C}) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} y_{i}^{2}\right) dy_{1} \dots dy_{p}$$

$$= \det(\mathbf{A}^{\frac{1}{2}}) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} y_{p}^{2}\right) \dots \exp\left(-\frac{1}{2} y_{1}^{2}\right) dy_{1} \dots dy_{p}$$

$$= \det(\mathbf{A}^{\frac{1}{2}}) (2\pi)^{\frac{p}{2}}.$$

The relation $\mathbf{y} = \mathbf{C}^{-1}(\mathbf{x} - \mathbf{b})$ means $\mathbf{x} = \mathbf{C}\mathbf{y} + \mathbf{b}$ and $\mathbb{E}[\mathbf{x}] = \mathbf{C}\mathbb{E}[\mathbf{y}] + \mathbf{b}$. The transformation implies the density function of \mathbf{y} is

$$g(\mathbf{y}) = \det(\mathbf{C}) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} K \exp\left(-\frac{1}{2}(\mathbf{C}\mathbf{y} + \mathbf{b} - \mathbf{b})^{\top} \mathbf{A}(\mathbf{C}\mathbf{y} + \mathbf{b} - \mathbf{b})\right) dy_1 \dots dy_p$$

$$= \det(\mathbf{C}) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} K \exp\left(-\frac{1}{2}\mathbf{y}^{\top} \mathbf{C}^{\top} \mathbf{A} \mathbf{C} \mathbf{y}\right) dy_{1} \dots dy_{p}$$

$$= K \det(\mathbf{C}) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}\mathbf{y}^{\top} \mathbf{y}\right) dy_{1} \dots dy_{p}$$

$$= \frac{\det(\mathbf{C})}{\sqrt{(2\pi)^{p} \det(\mathbf{A})}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}\sum_{i=1}^{p} y_{i}^{2}\right) dy_{1} \dots dy_{p}$$

$$= \frac{1}{(2\pi)^{p/2}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}\sum_{i=1}^{p} y_{i}^{2}\right) dy_{1} \dots dy_{p}.$$

Then for each $i = 1, \ldots, p$, we have

$$\mathbb{E}[y_i] = \frac{1}{(2\pi)^{p/2}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2} \sum_{j=1}^p y_j^2\right) dy_1 \dots dy_p$$

$$= \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2} y_i^2\right) dy_i\right) \prod_{j=1, i \neq j}^p \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} y_j^2\right) dy_j$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2} y_i^2\right) dy_i = 0.$$

Thus $\mathbb{E}[\mathbf{y}] = \mathbf{0}$ and $\mathbb{E}[\mathbf{x}] = \mathbf{C}\mathbb{E}[\mathbf{y}] + \mathbf{b} = \boldsymbol{\mu}$ implies $\mathbf{b} = \boldsymbol{\mu}$. The relation $\mathbf{x} = \mathbf{C}\mathbf{y} + \mathbf{b}$ means $\text{Cov}[\mathbf{x}] = \mathbf{C}\text{Cov}[\mathbf{y}]\mathbf{C}^{\top} = \mathbf{C}\mathbb{E}[\mathbf{y}\mathbf{y}^{\top}]\mathbf{C}^{\top}$. For each $i \neq j$, we have

$$\mathbb{E}[y_i y_j]$$

$$= \frac{1}{(2\pi)^{p/2}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} y_i y_j \exp\left(-\frac{1}{2} \sum_{h=1}^p y_h^2\right) dy_1 \dots dy_p
= \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2} y_i^2\right) dy_i\right) \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_j \exp\left(-\frac{1}{2} y_j^2\right) dy_j\right) \prod_{j=1, h \neq i, j}^p \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} y_h^2\right) dy_h
= 0$$

We also have

$$\mathbb{E}[y_i^2]$$

$$= \frac{1}{(2\pi)^{p/2}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} y_i^2 \exp\left(-\frac{1}{2} \sum_{h=1}^p y_h^2\right) dy_1 \dots dy_p$$

$$= \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i^2 \exp\left(-\frac{1}{2} y_i^2\right) dy_i\right) \prod_{i=1}^p \prod_{h \neq i} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} y_h^2\right) dy_h = 1.$$

Hence, it holds that

$$\mathbb{E}[(y_i - \mathbb{E}[y_i])(y_j - \mathbb{E}[y_j])] = \begin{cases} 0, & i \neq j, \\ 1, & i = j. \end{cases}$$

which implies $\Sigma = \text{Cov}[\mathbf{x}] = \mathbf{C}\mathbb{E}[\mathbf{y}\mathbf{y}^{\top}]\mathbf{C}^{\top} = \mathbf{C}\mathbf{C}^{\top}$. Since $\mathbf{C}^{\top}\mathbf{A}\mathbf{C} = \mathbf{I}$, we obtain $\mathbf{A}^{-1} = \mathbf{C}\mathbf{C}^{\top}$ and $\Sigma = \mathbf{A}^{-1} \succ \mathbf{0}$.

Theorem 2.1. Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \in \mathbb{R}^{p \times p}$ and $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$$y = Cx$$

is distributed according to $\mathcal{N}_p(\mathbf{C}\boldsymbol{\mu}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^\top)$ for non-singular $\mathbf{C} \in \mathbb{R}^{p \times p}$.

Proof. Let f(x) be the density of **x** such that

$$f(\mathbf{x}) = n(\mu \mid \mathbf{\Sigma}) = \frac{1}{\sqrt{(2\pi)^p \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

and $g(\mathbf{y})$ be the density function of \mathbf{y} . The relation $\mathbf{x} = \mathbf{C}^{-1}\mathbf{y}$ implies $g(\mathbf{y}) = f(\mathbf{u}^{-1}(\mathbf{y}))|\det(\mathbf{J}^{-1}(\mathbf{y}))|$ with $\mathbf{u}(\mathbf{x}) = \mathbf{C}\mathbf{x}$, $\mathbf{u}^{-1}(\mathbf{y}) = \mathbf{C}^{-1}\mathbf{y}$ and $\mathbf{J}^{-1}(\mathbf{y}) = \mathbf{C}^{-1}$. Hence, we have

$$g(\mathbf{y}) = f(\mathbf{C}^{-1}\mathbf{y})|\det(\mathbf{C}^{-1})|$$

$$= \frac{1}{\sqrt{(2\pi)^p \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{C}^{-1}\mathbf{y} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{C}^{-1}\mathbf{y} - \boldsymbol{\mu})\right) |\det(\mathbf{C}^{-1})|$$

$$= \frac{|\det(\mathbf{C}^{-1})|}{\sqrt{(2\pi)^p \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{y} - \mathbf{C}\boldsymbol{\mu})^{\top} \mathbf{C}^{-\top} \boldsymbol{\Sigma}^{-1} \mathbf{C}^{-1}(\mathbf{y} - \mathbf{C}\boldsymbol{\mu})\right)$$

$$= \frac{1}{\sqrt{(2\pi)^p \det(\mathbf{C}\boldsymbol{\Sigma}^{-1}\mathbf{C}^{\top})}} \exp\left(-\frac{1}{2}(\mathbf{y} - \mathbf{C}\boldsymbol{\mu})^{\top} (\mathbf{C}\boldsymbol{\Sigma}^{-1}\mathbf{C}^{\top})^{-1} (\mathbf{y} - \mathbf{C}\boldsymbol{\mu})\right)$$

$$= n(\mathbf{C}\boldsymbol{\mu} \mid \mathbf{C}\boldsymbol{\Sigma}^{-1}\mathbf{C}^{\top}),$$

where we use the fact

$$\frac{|\det(\mathbf{C}^{-1})|}{\sqrt{\det(\mathbf{\Sigma})}} = \frac{1}{\sqrt{|\det(\mathbf{C})|^2\det(\mathbf{\Sigma})}} = \frac{1}{\sqrt{|\det(\mathbf{C})|\det(\mathbf{\Sigma})|\det(\mathbf{C}^\top)|}} = \frac{1}{\sqrt{|\det(\mathbf{C}\mathbf{\Sigma}\mathbf{C}^\top)|}}.$$

Theorem 2.2. If $\mathbf{x} = [x_1, \dots, x_p]^{\top}$ have a joint normal distribution. Let

1.
$$\mathbf{x}^{(1)} = [x_1, \dots, x_q]^{\top}$$

$$2. \ \mathbf{x}^{(2)} = [x_{q+1}, \dots, x_p]^{\top}.$$

for q < p. A necessary and sufficient condition for $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ to be independent is that each covariance of a variable from $\mathbf{x}^{(1)}$ and a variable from $\mathbf{x}^{(2)}$ is 0.

Proof. Let

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad ext{where } \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}^{(1)} \\ \boldsymbol{\mu}^{(2)} \end{bmatrix} \ ext{and } \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$$

such that

$$\bullet \ \boldsymbol{\mu}^{(1)} = \mathbb{E}\left[\mathbf{x}^{(1)}\right],$$

$$\bullet \ \boldsymbol{\mu}^{(2)} = \mathbb{E}\left[\mathbf{x}^{(2)}\right],$$

$$ullet$$
 $oldsymbol{\Sigma}_{11} = \mathbb{E}\left[\left(\mathbf{x}^{(1)} - oldsymbol{\mu}^{(1)}
ight)\left(\mathbf{x}^{(1)} - oldsymbol{\mu}^{(1)}
ight)^{ op}
ight]$

$$\bullet \ \boldsymbol{\Sigma}_{22} = \mathbb{E}\left[\left(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)\left(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)^{\top}\right],$$

$$\bullet \ \boldsymbol{\Sigma}_{12} = \boldsymbol{\Sigma}_{21}^\top = \mathbb{E}\left[\left(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)}\right)\left(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)^\top\right].$$

Sufficiency (uncorrelated \Longrightarrow independent): The random vectors $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are uncorrelated means

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22} \end{bmatrix}$$
 and $\Sigma^{-1} = \begin{bmatrix} \Sigma_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \Sigma_{22}^{-1} \end{bmatrix}$.

The quadratic form of $n(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$\begin{split} & (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \\ &= \left[(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})^{\top} \quad (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})^{\top} \right] \begin{bmatrix} \boldsymbol{\Sigma}_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)} \\ \mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \end{bmatrix} \\ &= & (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})^{\top} \boldsymbol{\Sigma}_{11}^{-1} (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)}) + (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})^{\top} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}) \end{split}$$

and we have $\det(\mathbf{\Sigma}) = \det(\mathbf{\Sigma}_{11}) \det(\mathbf{\Sigma}_{22})$. Then

$$n(\boldsymbol{\mu} \mid \boldsymbol{\Sigma})$$

$$= \frac{1}{\sqrt{(2\pi)^p \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

$$= \frac{1}{\sqrt{(2\pi)^q \det(\boldsymbol{\Sigma}_{11})}} \exp\left(-\frac{1}{2}(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})\right)$$

$$\cdot \frac{1}{\sqrt{(2\pi)^{p-q} \det(\boldsymbol{\Sigma}_{22})}} \exp\left(-\frac{1}{2}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})^\top \boldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right)$$

$$= n(\boldsymbol{\mu}^{(1)} \mid \boldsymbol{\Sigma}^{(1)}) n(\boldsymbol{\mu}^{(2)} \mid \boldsymbol{\Sigma}^{(2)}).$$

Thus the marginal distribution of $\mathbf{x}^{(1)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}_{11})$ and the marginal distribution of $\mathbf{x}^{(2)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22})$. We have prove two variables are independent.

Necessity (independent \Longrightarrow uncorrelated): Let $1 \le i \le q$ and $q+1 \le j \le p$. The Independence means

$$\sigma_{ij} = \mathbb{E}\left[(x_i - \mu_i)(x_j - \mu_j) \right]$$

$$= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} (x_i - \mu_i)(x_j - \mu_j) f(x_1, \dots, x_p) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_p$$

$$= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} (x_i - \mu_i)(x_j - \mu_j) f(x_1, \dots, x_q) f(x_{q+1}, \dots, x_p) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_p$$

$$= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} (x_i - \mu_i) f(x_1, \dots, x_q) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_q \cdot \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} (x_j - \mu_j) f(x_{q+1}, \dots, x_p) \, \mathrm{d}x_{q+1} \dots \, \mathrm{d}x_p$$

$$= 0$$

Theorem 2.3. If $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma} \succ \mathbf{0}$, the marginal distribution of any set of components of \mathbf{x} is multivariate normal with means, variances, and covariances obtained by taking the corresponding components of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, respectively.

Proof. We shall make a non-singular linear transformation $\bf B$ to subvectors

$$\mathbf{y}^{(1)} = \mathbf{x}^{(1)} + \mathbf{B}\mathbf{x}^{(2)}$$
$$\mathbf{y}^{(2)} = \mathbf{x}^{(2)}$$

leading to the components of $\mathbf{y}^{(1)}$ are uncorrelated with the ones of $\mathbf{y}^{(2)}$. The matrix \mathbf{B} should satisfy

is

$$\begin{split} &= \mathbb{E}\left[\left(\mathbf{x}^{(1)} + \mathbf{B}\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(1)} + \mathbf{B}\mathbf{x}^{(2)}\right]\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\ &= \mathbb{E}\left[\left(\mathbf{x}^{(1)} - \mathbb{E}\left[\mathbf{x}^{(1)}\right] + \mathbf{B}\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\ &= \mathbb{E}\left[\left(\mathbf{x}^{(1)} - \mathbb{E}\left[\mathbf{x}^{(1)}\right]\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] + \mathbf{B} \cdot \mathbb{E}\left[\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\ &= \mathbf{\Sigma}_{12} + \mathbf{B}\mathbf{\Sigma}_{22}. \end{split}$$

Thus $\mathbf{B} = -\Sigma_{12}\Sigma_{22}^{-1}$ and $\mathbf{y}^{(1)} = \mathbf{x}^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}\mathbf{x}^{(2)}$. The vector

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}^{(1)} \\ \mathbf{y}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}$$

is a non-singular transform of \mathbf{x} , and therefore has a normal distribution with

$$\mathbb{E}\begin{bmatrix}\mathbf{y}^{(1)}\\\mathbf{y}^{(2)}\end{bmatrix} = \begin{bmatrix}\mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\\\mathbf{0} & \mathbf{I}\end{bmatrix}\mathbb{E}[\mathbf{x}] = \begin{bmatrix}\mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\\\mathbf{0} & \mathbf{I}\end{bmatrix}\begin{bmatrix}\boldsymbol{\mu}^{(1)}\\\boldsymbol{\mu}^{(2)}\end{bmatrix} = \begin{bmatrix}\boldsymbol{\mu}^{(1)} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\mu}^{(2)}\\\boldsymbol{\mu}^{(2)}\end{bmatrix} = \begin{bmatrix}\boldsymbol{\nu}^{(1)}\\\boldsymbol{\nu}^{(2)}\end{bmatrix}$$

Since the transform is non-singular, we have

$$\operatorname{Cov} \begin{bmatrix} \mathbf{y}^{(1)} \\ \mathbf{y}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} & \mathbf{I} \end{bmatrix} \\
= \begin{bmatrix} \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} & \mathbf{0} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} & \mathbf{I} \end{bmatrix} \\
= \begin{bmatrix} \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{22} \end{bmatrix}$$

Thus $\mathbf{y}^{(1)}$ and $\mathbf{y}^{(2)}$ are independent, which implies the marginal distribution of $\mathbf{x}^{(2)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22})$. Because the numbering of the components of \mathbf{x} is arbitrary, we have proved this theorem.

Theorem 2.4. Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$z = Dx$$

is distributed according to $\mathcal{N}_q(\mathbf{D}\boldsymbol{\mu}, \mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^\top)$ for any $\mathbf{D} \in \mathbb{R}^{q \times p}$.

Proof. It is easy to verify $\mathbb{E}[\mathbf{z}] = \mathbf{D}\boldsymbol{\mu}$ and $\text{Cov}[\mathbf{z}] = \mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^{\top}$. Hence, we only need to show \mathbf{z} follows normal distribution.

Since $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, it can be presented as

$$x = Ay + \lambda$$

where $\mathbf{A} \in \mathbb{R}^{p \times r}$, r is the rank of Σ and $\mathbf{y} \sim \mathcal{N}_r(\nu, \mathbf{T})$ with non-singular $\mathbf{T} \succ \mathbf{0}$. We can write

$$z = DAy + D\lambda$$
,

where $\mathbf{D}\mathbf{A} \in \mathbb{R}^{q \times r}$. If the rank of $\mathbf{D}\mathbf{A}$ is r, the formal definition of a normal distribution that includes the singular distribution implies \mathbf{z} follows normal distribution.

If the rank of **DA** is less than r, say s, then

$$\mathbf{E} = \mathrm{Cov}[\mathbf{z}] = \mathbf{D}\mathbf{A}\mathrm{Cov}[\mathbf{y}]\mathbf{A}^{\top}\mathbf{D}^{\top} = \mathbf{D}\mathbf{A}\mathbf{T}\mathbf{A}^{\top}\mathbf{D}^{\top} \in \mathbb{R}^{r \times r}$$

is rank of s. There is a non-singular matrix

$$\mathbf{F} = egin{bmatrix} \mathbf{F}_1 \ \mathbf{F}_2 \end{bmatrix} \in \mathbb{R}^{r imes r}$$

with $\mathbf{F}_1 \in \mathbb{R}^{s \times r}$ and $\mathbf{F}_2 \in \mathbb{R}^{(r-s) \times r}$ such that

$$\mathbf{F}\mathbf{E}\mathbf{F}^\top = \begin{bmatrix} \mathbf{F}_1\mathbf{E}\mathbf{F}_1^\top & \mathbf{F}_1\mathbf{E}\mathbf{F}_2^\top \\ \mathbf{F}_2\mathbf{E}\mathbf{F}_1^\top & \mathbf{F}_2\mathbf{E}\mathbf{F}_2^\top \end{bmatrix} \begin{bmatrix} (\mathbf{F}_1\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_1\mathbf{D}\mathbf{A})^\top & (\mathbf{F}_1\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_2\mathbf{D}\mathbf{A})^\top \\ (\mathbf{F}_2\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_1\mathbf{D}\mathbf{A})^\top & (\mathbf{F}_2\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_2\mathbf{D}\mathbf{A})^\top \end{bmatrix} = \begin{bmatrix} \mathbf{I}_s & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

Thus $(\mathbf{F}_1\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_1\mathbf{D}\mathbf{A})^{\top} = \mathbf{I}_s$ means $\mathbf{F}_1\mathbf{D}\mathbf{A}$ is of rank s and the non-singularity of \mathbf{T} means $\mathbf{F}_2\mathbf{D}\mathbf{A} = \mathbf{0}$. Hence, we have

$$\mathbf{F}\mathbf{z}' = \mathbf{F}(\mathbf{D}\mathbf{A}\mathbf{y} + \mathbf{D}\boldsymbol{\lambda}) = egin{bmatrix} \mathbf{F}_1 \\ \mathbf{F}_2 \end{bmatrix} \mathbf{D}\mathbf{A}\mathbf{y} + \mathbf{F}\mathbf{D}\boldsymbol{\lambda} = egin{bmatrix} \mathbf{F}_1\mathbf{D}\mathbf{A}\mathbf{y} \\ \mathbf{F}_2\mathbf{D}\mathbf{A}\mathbf{y} \end{bmatrix} + \mathbf{F}\mathbf{D}\boldsymbol{\lambda} = egin{bmatrix} \mathbf{F}_1\mathbf{D}\mathbf{A}\mathbf{y} \\ \mathbf{0} \end{bmatrix} + \mathbf{F}\mathbf{D}\boldsymbol{\lambda}.$$

Let $\mathbf{u}_1 = \mathbf{F}_1 \mathbf{D} \mathbf{A} \mathbf{y} \in \mathbb{R}^s$. Since $\mathbf{F}_1 \mathbf{D} \mathbf{A} \in \mathbb{R}^{s \times r}$ is of rank $s \leq r$, we conclude \mathbf{u}_1 has a non-singular normal distribution. Let $\mathbf{F}^{-1} = [\mathbf{G}_1, \mathbf{G}_2]$, where $\mathbf{G}_1 \in \mathbb{R}^{r \times s}$ and $\mathbf{G}_2 \in \mathbb{R}^{(r-s) \times s}$. Then

$$\mathbf{z} = \mathbf{F}^{-1} \left(egin{bmatrix} \mathbf{u}_1 \ \mathbf{0} \end{bmatrix} + \mathbf{F} \mathbf{D} oldsymbol{\lambda}
ight) = \left[\mathbf{G}_1, \mathbf{G}_2
ight] egin{bmatrix} \mathbf{u}_1 \ \mathbf{0} \end{bmatrix} + \mathbf{D} oldsymbol{\lambda} = \mathbf{G}_1 \mathbf{u}_1 + \mathbf{D} oldsymbol{\lambda}$$

which is of the form of the formal definition of normal distribution.

Theorem 2.5. For $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and every vector $\boldsymbol{\alpha} \in \mathbb{R}^{(p-q)}$, we have

$$\operatorname{Var}\left[x_i^{(11.2)}\right] \leq \operatorname{Var}\left[x_i - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right],$$

for i = 1, ..., q, where $x_i^{(11.2)}$ and x_i are the i-th entry of $\mathbf{x}^{(11.2)}$ and the i-th entry of \mathbf{x} respectively. Proof. We denote

$$\mathbf{B} = egin{bmatrix} oldsymbol{eta}_{(1)}^{ op} \ dots \ oldsymbol{eta}_{(q)}^{ op} \end{bmatrix}.$$

Since $\mathbf{x}^{(11.2)}$ is uncorrelated with $\mathbf{x}^{(2)}$ and

$$\mathbb{E}[\mathbf{x}^{(11.2)}] = \mathbb{E}[\mathbf{x}^{(1)} - (\boldsymbol{\mu}^{(1)} + \mathbf{B}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}))] = \mathbb{E}[\mathbf{x}^{(1)}] - \boldsymbol{\mu}^{(1)} + \mathbf{B}(\mathbb{E}[\mathbf{x}^{(2)}] - \boldsymbol{\mu}^{(2)}) = \mathbf{0},$$

we have

$$\begin{aligned} & \operatorname{Var} \big[x_{i} - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)} \big] \\ = & \mathbb{E} \big[x_{i} - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)} - \mathbb{E} \big[x_{i} - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)} \big] \big]^{2} \\ = & \mathbb{E} \big[x_{i} - \mu_{i} - \boldsymbol{\alpha}^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ = & \mathbb{E} \big[x_{i}^{(11.2)} + \boldsymbol{\beta}_{(i)}^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) - \boldsymbol{\alpha}^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ = & \mathbb{E} \big[x_{i}^{(11.2)} - \mathbb{E} \big[x_{i}^{(11.2)} \big] + (\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha})^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ = & \operatorname{Var} \big[x_{i}^{(11.2)} \big]^{2} + \mathbb{E} \big[\big(x_{i}^{(11.2)} - \mathbb{E} \big[x_{i}^{(11.2)} \big] \big) \big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha})^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big] + \mathbb{E} \big[\big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha} \big)^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ = & \operatorname{Var} \big[x_{i}^{(11.2)} \big]^{2} + (\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha})^{\top} \mathbb{E} \big[\big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big)^{\top} \big] \big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha} \big) \\ = & \operatorname{Var} \big[x_{i}^{(11.2)} \big]^{2} + (\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha})^{\top} \operatorname{Cov} \big(\mathbf{x}^{(2)} \big) \big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha} \big) \\ \geq & \operatorname{Var} \big[x_{i}^{(11.2)} \big]^{2}, \end{aligned}$$

where the quadratic form attains its minimum of 0 at $\beta_{(i)} = \alpha$.

Remark 2.1. Observe that

$$\mathbb{E}[x_i] = \mu_i + \boldsymbol{\alpha}^{\top} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})$$

Hence, the second equality in the proof means $\mu_i + \beta_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})$ is the best linear predictor of x_i in the sense that of all functions of $\mathbf{x}^{(2)}$ of the form $\boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)} + c$, the mean squared error of the above is a minimum.

Theorem 2.6. Under the setting of Theorem 2.5, we have

$$\operatorname{Corr}\left(x_{i}, \boldsymbol{\beta}_{(i)}^{\top} \mathbf{x}^{(2)}\right) \geq \operatorname{Corr}\left(x_{i}, \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right).$$

Proof. Since the correlation between two variables is unchanged when either or both is multiplied by a positive constant, we can assume that

$$\mathbb{E}\left[oldsymbol{lpha}^{ op}\mathbf{x}^{(2)}
ight]^2 = \mathbb{E}\left[oldsymbol{eta}_{(i)}^{ op}\mathbf{x}^{(2)}
ight]^2.$$

Using Theorem 2.5, we have

$$\operatorname{Var}\left[x_{i}^{(11.2)}\right] \leq \operatorname{Var}\left[x_{i} - \boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right]$$

$$\iff \mathbb{E}\left[x_{i} - \mu_{i} - \boldsymbol{\beta}_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right]^{2} \leq \mathbb{E}\left[x_{i} - \mu_{i} - \boldsymbol{\alpha}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right]^{2}$$

$$\iff \operatorname{Var}\left[x_{i}\right] - \mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\beta}_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right] + \operatorname{Var}\left[\boldsymbol{\beta}_{(i)}^{\top}\mathbf{x}^{(2)}\right]$$

$$\leq \operatorname{Var}\left[x_{i}\right] - \mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\alpha}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right] + \operatorname{Var}\left[\boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right]$$

$$\iff \frac{\mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\alpha}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right)}} \leq \frac{\mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\beta}_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}\right)\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\beta}^{\top}\mathbf{x}^{(2)}\right)}}$$

$$\iff \frac{\operatorname{Cov}\left[x_{i}, \boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\beta}^{\top}\mathbf{x}^{(2)}\right)}} \leq \frac{\mathbb{E}\left[x_{i}, \boldsymbol{\beta}_{(i)}^{\top}\mathbf{x}^{(2)}\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\beta}^{\top}\mathbf{x}^{(2)}\right)}}$$

Theorem 2.7. Let $\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}$. If $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are independent and $g(\mathbf{x}) = g^{(1)}(\mathbf{x}^{(1)})g^{(2)}(\mathbf{x}^{(2)})$, its characteristic function is

$$\mathbb{E}[g(\mathbf{x})] = \mathbb{E}[g^{(1)}(\mathbf{x}^{(1)})]\mathbb{E}[g^{(2)}(\mathbf{x}^{(2)})].$$

Proof. Let $f(\mathbf{x}) = f^{(1)}(\mathbf{x}^{(1)})f^{(2)}(\mathbf{x}^{(2)})$ be the density of \mathbf{x} . If g(x) is real-valued, we have

$$\mathbb{E}[g(\mathbf{x})] = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} g(\mathbf{x}) f(\mathbf{x}) \, dx_1 \dots \, dx_p
= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} g^{(1)}(\mathbf{x}^{(1)}) g^{(2)}(\mathbf{x}^{(2)}) f^{(1)}(\mathbf{x}^{(1)}) f^{(2)}(\mathbf{x}^{(2)}) \, dx_1 \dots \, dx_p
= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} g^{(1)}(\mathbf{x}^{(1)}) f^{(1)}(\mathbf{x}^{(1)}) \, dx_1 \dots \, dx_q \cdot \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} g^{(2)}(\mathbf{x}^{(2)}) f^{(2)}(\mathbf{x}^{(2)}) \, dx_{q+1} \dots \, dx_p
= \mathbb{E}[g^{(1)}(\mathbf{x}^{(1)})] \mathbb{E}[g^{(2)}(\mathbf{x}^{(2)})].$$

If g(x) is complex-valued, then we have

$$\begin{split} &g(\mathbf{x}) \\ &= \left[g_1^{(1)}(\mathbf{x}^{(1)}) + \mathrm{i}\,g_2^{(1)}(\mathbf{x}^{(1)})\right] \left[g_1^{(2)}(\mathbf{x}^{(2)}) + \mathrm{i}\,g_2^{(2)}(\mathbf{x}^{(2)})\right] \\ &= g_1^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)}) - g_2^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)}) + \mathrm{i}\left[g_1^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)}) + g_2^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)})\right] \end{split}$$

and

$$\begin{split} & \mathbb{E}\big[g(\mathbf{x})\big] \\ = & \mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)})\big] - \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)})\big] + \mathrm{i}\,\mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)}) + g_2^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)})\big] \end{split}$$

$$\begin{split} &= & \mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_1^{(2)}(\mathbf{x}^{(2)})\big] - \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_2^{(2)}(\mathbf{x}^{(2)})\big] \\ &+ \mathrm{i}\, \mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_2^{(2)}(\mathbf{x}^{(2)})\big] + \mathrm{i}\, \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_1^{(2)}(\mathbf{x}^{(2)})\big] \\ &= & \Big[\mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})\big] + \mathrm{i}\, \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})\big] \Big] \Big[\mathbb{E}\big[g_1^{(2)}(\mathbf{x}^{(2)})\big] + \mathrm{i}\, \mathbb{E}\big[g_2^{(2)}(\mathbf{x}^{(2)})\big] \Big] \\ &= & \mathbb{E}\big[g^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g^{(2)}(\mathbf{x}^{(2)})\big]. \end{split}$$

Theorem 2.8. The characteristic function of \mathbf{x} distributed according to $\mathcal{N}_p(\mu, \Sigma)$ is

$$\phi(\mathbf{t}) = \exp\left(\mathrm{i}\,\mathbf{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right).$$

for every $\mathbf{t} \in \mathbb{R}^p$.

Proof. For standard normal distribution $\mathbf{y} \sim \mathcal{N}_p(\mathbf{0}, \mathbf{I})$, we have

$$\phi_{0}(\mathbf{t}) = \mathbb{E}\left[\exp\left(i\mathbf{t}^{\top}\mathbf{y}\right)\right]$$

$$= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \frac{\exp(i\mathbf{t}^{\top}\mathbf{y})}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}\mathbf{y}^{\top}\mathbf{y}\right) dy_{1} \dots dy_{p}$$

$$= \prod_{j=1}^{p} \left(\int_{-\infty}^{+\infty} \frac{\exp(it_{j}y_{j})}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}y_{j}^{2}\right) dy_{j}\right)$$

$$= \prod_{j=1}^{p} \left(\int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}(y_{j} - it_{j})^{2} - \frac{1}{2}t_{j}^{2}\right) dy_{j}\right)$$

$$= \prod_{j=1}^{p} \left(\exp\left(-\frac{1}{2}t_{j}^{2}\right) \int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}z_{j}^{2}\right) dz_{j}\right)$$

$$= \prod_{j=1}^{p} \left(\exp\left(-\frac{1}{2}t_{j}^{2}\right)\right) = \exp\left(-\frac{1}{2}\mathbf{t}^{\top}\mathbf{t}\right).$$

For the general case of $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, we can write $\mathbf{x} = \mathbf{A}\mathbf{y} + \boldsymbol{\mu}$ such that $\mathbf{y} \sim \mathcal{N}_p(\mathbf{0}, \mathbf{I})$ and $\boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^{\top}$. Then we have

$$\begin{aligned} \phi(\mathbf{t}) &= \mathbb{E} \left[\exp(i \, \mathbf{t}^{\top} \mathbf{x}) \right] \\ &= \mathbb{E} \left[\exp(i \, \mathbf{t}^{\top} (\mathbf{A} \mathbf{y} + \boldsymbol{\mu})) \right] \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu}\right) \, \mathbb{E} \left[\exp(i \, (\mathbf{A}^{\top} \mathbf{t})^{\top} \mathbf{y}) \right] \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu}\right) \, \phi_0 \left(\mathbf{A}^{\top} \mathbf{t} \right) \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu}\right) \, \exp\left(-\frac{1}{2} \mathbf{t}^{\top} \mathbf{A} \mathbf{A}^{\top} \mathbf{t}\right) \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu}\right) \, \exp\left(-\frac{1}{2} \mathbf{t}^{\top} \mathbf{X} \mathbf{A}^{\top} \mathbf{t}\right) \end{aligned}$$

Remark 2.2. Denote the characteristic function of $\mathbf{x} \in \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ as $\phi_{\mathbf{x}}(\mathbf{t}) = \exp\left(i\mathbf{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right)$. For $\mathbf{z} = \mathbf{D}\mathbf{x}$, the characteristic function of \mathbf{z} is

$$\phi_{\mathbf{z}}(\mathbf{t}) = \mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{t}^{\top}\mathbf{z})\right] = \mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{t}^{\top}\mathbf{D}\mathbf{x})\right] = \mathbb{E}\left[\exp(\mathrm{i}\,(\mathbf{D}^{\top}\mathbf{t})^{\top}\mathbf{x})\right] = \exp\left(\mathrm{i}\,\mathbf{t}^{\top}(\mathbf{D}\boldsymbol{\mu}) - \frac{1}{2}\mathbf{t}^{\top}(\mathbf{D}^{\top}\boldsymbol{\Sigma}\mathbf{D})\mathbf{t}\right)$$

which implies $\mathbf{z} \sim \mathcal{N}(\mathbf{D}\boldsymbol{\mu}, \mathbf{D}^{\top}\boldsymbol{\Sigma}\mathbf{D})$ and we prove Theorem 2.4.

Theorem 2.9. If every linear combination of the components of a random vector \mathbf{y} is normally distributed, then \mathbf{y} is normally distributed.

Proof. Let \mathbf{y} is a random vector with $\mathbb{E}[\mathbf{y}] = \boldsymbol{\mu}$ and $\operatorname{Cov}[\mathbf{y}] = \boldsymbol{\Sigma}$. Suppose the univariate random variable $\mathbf{u}^{\mathsf{T}}\mathbf{y}$ (linear combination of \mathbf{y}) is normal distributed for any $\mathbf{u} \in \mathbb{R}^p$. The characteristic function of $\mathbf{u}^{\mathsf{T}}\mathbf{y}$ is

$$\begin{split} \phi_{\mathbf{u}^{\top}\mathbf{y}}(t) = & \mathbb{E}\left[\exp(\mathrm{i}\,t\mathbf{u}^{\top}\mathbf{y})\right] \\ = & \exp\left(\mathrm{i}\,t\mathbb{E}[\mathbf{u}^{\top}\mathbf{y}] - \frac{1}{2}t^{2}\mathrm{Cov}(\mathbf{u}^{\top}\mathbf{y})\right) \\ = & \exp\left(\mathrm{i}\,t\mathbf{u}^{\top}\boldsymbol{\mu} - \frac{1}{2}t^{2}\mathbf{u}^{\top}\boldsymbol{\Sigma}\mathbf{u}\right). \end{split}$$

Set t = 1, then we have

$$\mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{u}^{\top}\mathbf{y})\right] = \exp\left(\mathrm{i}\,\mathbf{u}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{u}^{\top}\boldsymbol{\Sigma}\mathbf{u}\right).$$

which implies the characteristic function of y is

$$\phi_{\mathbf{y}}(\mathbf{u}) = \exp\left(\mathrm{i}\,\mathbf{u}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{u}^{\top}\boldsymbol{\Sigma}\mathbf{u}\right)$$

that is, $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

3 Estimation of the Mean Vector and the Covariance

Theorem 3.1. If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with p < N, the maximum likelihood estimators of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad and \quad \hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

respectively.

Proof. The logarithm of the likelihood function is

$$\ln L = -\frac{PN}{2} \ln 2\pi - \frac{N}{2} \ln \left(\det(\boldsymbol{\Sigma}) \right) - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}).$$

We have

$$\begin{split} &\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \\ &= \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) + \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) \\ &+ \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) + \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) \\ &= \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) + \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) \\ &\geq \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}), \end{split}$$

where the equality holds when $\mu = \bar{\mathbf{x}}$. Hence, the estimator of means should be $\hat{\mu} = \bar{\mathbf{x}}$. Now, we only need to study how to maximize

$$-\frac{PN}{2}\ln 2\pi - \frac{N}{2}\ln\left(\det(\mathbf{\Sigma})\right) - \frac{1}{2}\sum_{\alpha=1}^{N}(\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}\mathbf{\Sigma}^{-1}(\mathbf{x}_{\alpha} - \bar{\mathbf{x}}).$$

We let $\Psi = \Sigma^{-1}$ and

$$l(\boldsymbol{\Psi}) = -\frac{PN}{2} \ln 2\pi - \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}^{-1}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})$$

$$= -\frac{PN}{2} \ln 2\pi + \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr} \left((\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) \right)$$

$$= -\frac{PN}{2} \ln 2\pi + \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr} \left((\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} \right),$$

then

$$\frac{\partial l(\boldsymbol{\Psi})}{\partial \boldsymbol{\Psi}} = \frac{\partial}{\partial \boldsymbol{\Psi}} \left(-\frac{PN}{2} \ln 2\pi + \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr} \left((\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} \right) \right) \\
= \frac{N}{2} \boldsymbol{\Psi}^{-1} - \frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

We can verify $l(\Psi)$ is concave on the domain of symmetric positive definite matrices, which means the maximum is taken by $\frac{\partial f(\Psi)}{\partial \Psi} = \mathbf{0}$, that is,

$$\mathbf{\Sigma} = \mathbf{\Psi}^{-1} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

Lemma 3.1. If $\mathbf{D} \in \mathbb{R}^{p \times p}$ is positive definite, the maximum of

$$f(\mathbf{G}) = -N \ln \det(\mathbf{G}) - \operatorname{tr}(\mathbf{G}^{-1}\mathbf{D})$$

with respect to positive definite matrices **G** exists, occurs at $\mathbf{G} = \frac{1}{N}\mathbf{D}$.

Proof. Let $\mathbf{D} = \mathbf{E}\mathbf{E}^{\top}$ and $\mathbf{E}^{\top}\mathbf{G}^{-1}\mathbf{E} = \mathbf{H}$. Then we have $\mathbf{G} = \mathbf{E}\mathbf{H}^{-1}\mathbf{E}^{\top}$,

$$\det(\mathbf{G}) = \det(\mathbf{E}) \det(\mathbf{H}^{-1}) \det(\mathbf{E}^{\top}) = \det(\mathbf{E}\mathbf{E}^{\top}) \det(\mathbf{H}^{-1}) = \frac{\det(\mathbf{D})}{\det(\mathbf{H})}$$

and

$$\mathrm{tr}(\mathbf{G}^{-1}\mathbf{D}) = \mathrm{tr}(\mathbf{G}^{-1}\mathbf{E}\mathbf{E}^\top) = \mathrm{tr}(\mathbf{E}^\top\mathbf{G}^{-1}\mathbf{E}) = \mathrm{tr}(\mathbf{H}).$$

Then the function to be maximized (with respect to positive definite \mathbf{H}) is

$$q(\mathbf{H}) = -N \ln \det(\mathbf{D}) + N \ln \det(\mathbf{H}) - \operatorname{tr}(\mathbf{H}).$$

Let $\mathbf{H} = \mathbf{T}\mathbf{T}^{\top}$ here \mathbf{L} is lower triangular. Then the maximum of

$$g(\mathbf{H}) = -N \ln \det(\mathbf{D}) + N \ln \det(\mathbf{H}) - \operatorname{tr}(\mathbf{H})$$
$$= -N \ln \det(\mathbf{D}) + N \ln (\det(\mathbf{T}))^{2} - \operatorname{tr}(\mathbf{T}\mathbf{T}^{\top})$$

$$= -N \ln \det(\mathbf{D}) + N \ln \left(\prod_{i=1}^{p} t_{ii}^{2} \right) - \sum_{i \ge j} t_{ij}^{2}$$

$$= -N \ln \det(\mathbf{D}) + \sum_{i=1}^{p} \left(N \ln(t_{ii}^{2}) - t_{ii}^{2} \right) - \sum_{i \ge j} t_{ij}^{2}$$

occurs at $t_{ii}^2 = N$ and $t_{ij} = 0$ for $i \neq j$; that is $\mathbf{H} = N\mathbf{I}$. Then

$$\mathbf{G} = \frac{1}{N}\mathbf{D}.$$

Theorem 3.2. Let $f(\theta)$ be a real-valued function defined on a set S and let ϕ be a single-valued function, with a single-valued inverse, on S to a set S^* . Let

$$g(\theta^*) = f\left(\phi^{-1}(\theta^*)\right).$$

Then if $f(\theta)$ attains a maximum at $\theta = \theta_0$, then $g(\theta^*)$ attains a maximum at $\theta^* = \theta_0^* = \phi(\theta_0)$. If the maximum of $f(\theta)$ at θ_0 is unique, so is the maximum of $g(\theta^*)$ at θ_0^* .

Proof. By hypothesis $f(\theta_0) \geq f(\theta)$ for all $\theta \in \mathcal{S}$. Then for any $\theta^* \in \mathcal{S}^*$, we have

$$g(\theta^*) = f(\phi^{-1}(\theta^*)) = f(\theta) \le f(\theta_0) = g(\phi(\theta_0)) = g(\theta_0^*).$$

Thus $g(\theta^*)$ attains a maximum at $\theta_0^* = \phi(\theta_0)$. If the maximum of $f(\theta)$ at θ_0 is unique, there is strict inequality above for $\theta \neq \theta_0$, and the maximum of $g(\theta^*)$ is unique.

Corollary 3.1. If $\mathbf{x}_1, \dots, \mathbf{x}_N$ constitutes a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, let $\rho_{ij} = \sigma_{ij}/(\sigma_i \sigma_j)$. Then the maximum likelihood estimator of ρ_{ij} is

$$\hat{\rho}_{ij} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}}$$

Proof. The set of parameters $\mu_i = \mu_i$, $\sigma_i^2 = \sigma_{ii}$ and $\rho_{ij} = \sigma_{ij}/\sqrt{\sigma_{ii}\sigma_{jj}}$ is a one-to-one transform of the set of parameters μ and Σ . Then the estimator of ρ is

$$\hat{\rho}_{ij} = \frac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii}\hat{\sigma}_{jj}}} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}}.$$