1 Trasformazione della CFG in PDA

Prendiamo il seguente esempio:

Trasformiamo la seguente CFG in PDA:

$$S \to aTb \mid b$$
$$T \to Ta \mid \varepsilon$$

1.1 Costruzione del PDA

Dobbiamo metterci 3 stati:

• q_{start} : stato iniziale

• q_{loop} : stato principale di elaborazione

• q_{end} : stato finale

e successivamente diciamo "se c'è simbolo di input nella pila, poi lo rimuovo": L'idea quindi è di seguire la leftmost derivation, quindi avremo:

- $\varepsilon, S \to aTb$ (prima cosa fatta)
- l'altra transizione possibile di S
- le due transizioni possibili di T
- a e b (in pop) perché simboli terminali

1.2 Rappresentazione grafica del PDA

Figure 1: PDA equivalente alla CFG data

1.3 Definizione formale del PDA

Il PDA equivalente è definito dalla sestupla $(Q, \Sigma, \Gamma, \delta, q_0, F)$ dove:

- $Q = \{q_0, q_1, q_2\}$ è l'insieme degli stati
- $\Sigma = \{a,b\}$ è l'alfabeto di input
- $\Gamma = \{S, T, a, b, \$\}$ è l'alfabeto dello stack
- q_0 è lo stato iniziale
- $F = \{q_2\}$ è l'insieme degli stati finali
- δ è la funzione di transizione definita come segue:

$$- \delta(q_0, \varepsilon, \varepsilon) = \{(q_1, \$S)\}\$$

$$- \delta(q_1, \varepsilon, S) = \{(q_1, aTb), (q_1, b)\}\$$

$$- \delta(q_1, \varepsilon, T) = \{(q_1, Ta), (q_1, \varepsilon)\}\$$

$$- \delta(q_1, a, a) = \{(q_1, \varepsilon)\}\$$

$$- \delta(q_1, b, b) = \{(q_1, \varepsilon)\}\$$

$$- \delta(q_1, \varepsilon, \$) = \{(q_2, \$)\}\$$

1.4 Esempio di derivazione

Vediamo come il PDA processa la stringa *aab*:

Stato	Input rimanente	Stack	Azione
q_0	aab	ε	Inizializza
q_1	aab	\$S	Espandi $S \to aTb$
q_1	aab	\$bTa	Espandi $T \to Ta$
q_1	aab	\$baTa	Leggi a (input) = a (stack)
q_1	ab	\$bT	Espandi $T \to Ta$
q_1	ab	\$bTa	Leggi a (input) = a (stack)
q_1	b	\$bT	Espandi $T \to \varepsilon$
q_1	b	\$b	Leggi b (input) = b (stack)
q_1	ε	\$	Passa allo stato finale
q_2	ε	\$	ACCETTA