6. Calculul proceselor de transfer de căldură conductiv

6.1. Relații generale

Conductivitate termică – transfer de căldură cauzat de mișcarea microparticulelor (molecule, atomi, electroni) și o diferență de temperaturi. Acest tip de transfer de căldură în stare pură se întîlnește în solide.

Legea Fourier - fluxul de căldură este direct proporțional la un coeficient oarecare:

$$\dot{Q} = -\lambda \frac{\partial t}{\partial n} \cdot S , \qquad (6.1)$$

$$\dot{q} = \frac{\dot{Q}}{S} = -\lambda \frac{\partial t}{\partial n},\tag{6.2}$$

unde: λ este conductivitatea termică, $\left\lceil \frac{W}{m \cdot K} \right\rceil$;

S - aria suprafeței izoterme perpendiculară pe direcția fluxului de căldură, m²;

$$\frac{\partial t}{\partial n}$$
 - derivata temperaturii după normală, $\frac{K}{m}$.

6.2. Transfer de căldură unidirecțional în regim permanent fără surse interne de energie printr-un perete plan

Se consideră un perete plan omogen, de grosime δ , a cărei figură este prezentată mai jos:

Figura 6.1. Reprezentarea mperaturilor într-o secțiune prin peretele de grosime δ

Relația de calcul pentru fluxul unitar de căldură transmis prin acest perete este:

$$\dot{q} = \frac{\lambda}{\delta} (t_1 - t_2), \quad \left[\frac{W}{m^2} \right], \tag{6.3}$$

sau:

$$\stackrel{\bullet}{\mathbf{q}} = \frac{\mathbf{t}_1 - \mathbf{t}_2}{\mathbf{R}_c}, \tag{6.4}$$

unde R_c reprezintă rezistența la conducție termică, $R_c = \frac{\delta}{\lambda}$, în

$$\frac{m^2 \cdot K}{W}$$
.

Fluxul de căldură prin suprafața S este:

$$\dot{Q} = \dot{q} \cdot S = \frac{t_1 - t_2}{R_c} \cdot S \left[W \right]. \tag{6.5}$$

Temperatura în orice punct se poate determina astfel:

$$t_x = \frac{t_2 - t_1}{\delta} + t_1. \tag{6.6}$$

Pentru perete plan omogen format din n straturi:

$$\dot{q} = \frac{t_1 - t_{n+1}}{\sum_{i=1}^{n} \frac{\delta_i}{\lambda_i}} = \frac{t_1 - t_{n+1}}{R_{\text{ech}}}.$$
(6.7)

6.3. Transfer de căldură unidirecțional în regim permanent fără surse interne de energie printr-un perete cilindric

Figura 6.2. Variația temperaturii în peretele tubular simplu

Se va considera un tub nelimitat și omogen. Raza interioară este r_l , iar cea exterioară – r_2 , iar coeficientul conductibilității termice λ al substanței, din care e fabricat peretele, este constant. Fața interioară se găsește la temperatura t_{p1} , menținută constant pe toată întinderea feței, iar fața exterioară se găsește la temperatura t_{p2} , de asemenea constantă.

Temperatura în orice punct se determină cu următoarea relație:

$$t = t_{p1} - \frac{t_{p1} - t_{p2}}{\ln \frac{r_2}{r_1}} \ln \frac{r}{r_1}.$$
 (6.9)

Unde r este raza cilindrului până în punctul, temperatura căruia trebuie de determinat.

Fluxul de căldură transmis de un perete tubular va fi dat de expresia:

$$\dot{Q} = \frac{2\pi\lambda l \left(t_{p1} - t_{p2}\right)}{\ln\frac{r_2}{r_1}}, \quad [W]$$
(6.10)

unde l'este lungimea tubului.

În practică s-a obișnuit a exprima uneori fluxul de căldură pe o unitate de lungime a tubului, adică prin densitatea liniară a fluxului termic:

$$\dot{q}_{l} = \frac{\dot{Q}}{l} = \frac{2\pi\lambda(t_{p1} - t_{p2})}{\ln\frac{r_{2}}{r_{1}}}, [W/m]$$
(6.11)

În figura 6.3. este prezentat un tub, compus din trei straturi de substanțe diferite, care au coeficienții conductibilității termice respectiv λ_1 , λ_2 și λ_3 constanți. Razele suprafețelor laterale sunt r_1 și r_4 , iar a suprafețelor de contact r_2 și r_3 .

Figura 6.3. Transfer de căldură printr-un tub cilindru compus din mai multe straturi

In cazul unui perete compus din **n** straturi, densitatea liniară a fluxului de căldură se determină astfel:

$$\dot{q}_{l} = \frac{\pi \left(t_{p1} - t_{p(n+1)} \right)}{\sum_{i=1}^{i=n} \left(\frac{1}{2\lambda_{i}} \ln \frac{d_{i+1}}{d_{i}} \right)_{n}}, [W/m]$$
(6.12)

Iar temperatura la suprafața de contact a doua straturi oarecare i și i+1 va fi:

$$t_{p(i+1)} = t_{p1} - \frac{\dot{q}_l}{2\pi} \sum_{i=1}^{i} \frac{1}{\lambda_i} \ln \frac{r_{i+1}}{r_i}, [^{\circ}C]$$
 (6.13)

unde: r_i și r_{i+1} sunt respectiv raza interioară și cea exterioară a stratului tubular i.