1

Random Vector Assignment

Mayank Gupta

Consider a triangle with vertices,
$$\mathbf{A} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -5 \\ -3 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$

I. Vector

A. Table

parameter	value	description
m _{AB}	$\begin{pmatrix} -8\\2 \end{pmatrix}$	Direction vec of AB
m _{BC}	$\binom{8}{2}$	Direction vec of BC
m _{CA}	$\begin{pmatrix} 0 \\ -4 \end{pmatrix}$	Direction vec of CA
$ \mathbf{A} - \mathbf{B} $	8.246	length of AB
$ \mathbf{B} - \mathbf{C} $	8.246	length of BC
$\ \mathbf{C} - \mathbf{A}\ $	4	length of CA
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}$	3	non-collinear
$\mathbf{n}_{\mathbf{A}\mathbf{B}}^{ op}$	(2 8)	A D
С	-34	AB
$\mathbf{n}_{\mathbf{BC}}^{ op}$	(2 -8)	D.C.
С	14	BC
$\mathbf{n}_{\mathbf{C}\mathbf{A}}^{ op}$	(-4 0)	10
С	-12	AC
Area	16	Area of ΔABC
Angle	75.96	∠BAC
Angle	28.07	∠ABC
Angle	75.96	∠ACB
	•	TABLE I.1

Equations related to triangle

Fig. I.1. Triangle generated using python

II. MEDIAN

A. Table

parameter	value	description
D	$\begin{pmatrix} -1 \\ -2 \end{pmatrix}$	Midpoint AB
E	$\begin{pmatrix} 3 \\ -3 \end{pmatrix}$	Midpoint BC
F	$\begin{pmatrix} -1 \\ -4 \end{pmatrix}$	Midpoint CA
$\mathbf{n}_{\mathbf{A}\mathbf{D}}^{ op}$	(3 4)	AD
c	-11	AD
$\mathbf{n}_{\mathbf{BE}}^{ op}$	(0 -8)	BE
c	24	DE
$\mathbf{n}_{\mathbf{CF}}^{ op}$	(-3 4)	CF
c	-13	Cr
G	$\begin{pmatrix} 0.33 \\ -3 \end{pmatrix}$	Centroid

TABLE II.1 Equations related to median

Fig. II.1. Triangle with centroid generated using python

III. ALTITUDE

A. Table

parameter	value	description
$\mathbf{n}_{\mathbf{A}\mathbf{D_1}}^{ op}$	(8 2)	AD_1
c	14	AD_1
$\mathbf{n}_{\mathbf{BE_1}}^{ op}$	$\begin{pmatrix} 0 & -4 \end{pmatrix}$	$B E_1$
c	12	BL_1
$\mathbf{n}_{\mathbf{CF_1}}^{ op}$	$\begin{pmatrix} -8 & -2 \end{pmatrix}$	CF_1
c	-26	Cr i
Н	$\begin{pmatrix} 2.5 \\ -3 \end{pmatrix}$	Orthocenter

TABLE III.1
Equations related to altitude

Fig. III.1. Triangle with altitude generated using python

IV. PERPENDICULAR BISECTOR

A. Table

parameter	value	description
\mathbf{n}^{T}	(8 -2)	Demandicular bisector of AP
С	0	Perpendicular bisector of AB
\mathbf{n}^{T}	(-8 -2)	Perpendicular bisector of BC
С	12	r espendicular disector of BC
\mathbf{n}^{T}	(0 4)	Perpendicular bisector of CA
С	-12	r espendicular discetor of CA
center(O)	$\begin{pmatrix} -0.75 \\ -3 \end{pmatrix}$	Circumcircle
radius	4.25	
		TABLE IV.1

Equations related to circumcircle

Fig. IV.1. Triangle with circumcircle generated using python

V. Angular Bisector

A. Table

parameter	value	description
\mathbf{n}^{T}	(1.24 0.97)	Angular bisector of A
c	-1.12	
\mathbf{n}^{T}	(0 -1.94)	Angular bisector of B
c	5.82	Angular bisector of B
$\mathbf{n}^{ op}$	(-1.24 -0.97)	Angular bisector of C
c	-8.58	Aligular disector of C
center(I)	(1.44)	
center(1)	(-3)	Incircle
radius	1.56	
Angle	37.98	∠BAI
Angle	37.98	∠CAI
D ₃	(1.06)	POC with AB
	(-1.48)	
E_3	$\begin{pmatrix} 1.06 \\ -4.51 \end{pmatrix}$	POC with BC
F ₃	$\begin{pmatrix} 3 \\ -3 \end{pmatrix}$	POC with CA
Length	2	AF_3 , CE_3
Length	6.246	BD_3,BE_3
Length	2	CF_3 , CD_3
		TABLE V.1

Equations related to incircle

Fig. V.1. Triangle with incircle generated using python