

와인 색깔 예측 모형 04_{part}

안효준

- 독립 변수의 선형 결합을 이용하여 사건의 발생 가능성을 확률로 예측하는 데 사용되는 통계 기법
- 선형 회귀 : (종속 변수 : 수치형)
- 로지스틱 회귀 : (종속 변수 : 범주형)

WINE GROWTH POTENTIAL

```
X = wine.iloc[:, :-1] # 독립변수
  y = wine['color'] # 종속변수
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

√ 0.0s

                                                                                          Python
```

훈련(train), 테스트(test) 세트 분할 (80:20)

```
# 데이터 스케일링 (수치형 변수)
  scaler = StandardScaler()
  X_scaled = scaler.fit_transform(X_train)

√ 0.0s

                                                                                      Python
```

설명변수의 단위를 맞추기 위해 스케일링(Scaling)

로지스틱 회귀모델 훈련 결과

Confusion Matrix:

[[3899 13]

[19 1266]]

일반식: $\log \operatorname{it}(P(Y=1)) = \alpha + \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_{12} x_{12}$

Actual Class

Classification Report:

precision recall f1-score support 1.00 1.00 1.00 3912 0.99 0.99 0.99 1285 0.99 5197 accuracy 0.99 0.99 0.99 5197 macro avg 0.99 0.99 weighted avg 0.99 5197

Model Coefficients: <- 회귀계수(베타) 값

Intercept:

Intercept: [-4.19044926] <- 상수항(알파) 값

혼동행렬 (Confusion Matrix)

테스트 데이터에 적합한 결과

Confusion Matrix:

5] [[981 8 306]] 일반식: $logit(P(Y=1)) = \alpha + \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_{12} x_{12}$

Classification Report:

precision recall f1-score support 0.99 0.99 0 0.99 986 Actual Class 0.98 0.97 0.98 314 0.99 1300 accuracy 0.99 1300 macro avg 0.99 0.98 weighted avg 0.99 0.99 0.99 1300

	Positive	Negative	
Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
	Precision $\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN + FN)}$	Accuracy $\frac{TP + TN}{(TP + TN + FP + FN)}$

Predicted Class

로지스틱 회귀모형 : $\operatorname{logit}(p) = eta_0 + eta_1 x_1 + eta_2 x_2 + \dots + eta_n x_n$

설명변수(x)에 데이터 값을 대입 : $\operatorname{logit}(p) = eta$

로짓 함수 정의 : $\operatorname{logit}(p) = \operatorname{log}\left(\frac{p}{1-p}\right)$ 여기서 $\frac{p}{1-p}$ 는 확률 p의 오즈

<- 시그모이드 함수

```
vprint(f"표준화 한 설명변수 값: (고정산도, 휘발성 산도, ..., 알코올, 품질)"
        f"\n{X_test_scaled[0]}\n와인의 종류: {y_test.to_list()[0]} (0: 화이트, 1: 레드)")

√ 0.0s

                                                                                Python
표준화 한 설명변수 값: (고정산도, 휘발성 산도, ..., 알코올, 품질)
[-0.1721767 -0.54303355 0.90013042 -0.65328671 -0.32082382 0.53259574
 0.04149221 -1.34998708 -0.3632329 -0.35397899 1.17959322 1.34345237]
와인의 종류: 0 (0: 화이트, 1: 레드) <- 화이트 와인 데이터
   logit = model.decision function(X test scaled[0].reshape(1, -1))
   logit

√ 0.0s

                                                                                Python
array([-6.182377])
```

로짓값 $\operatorname{logit}(p) = -6.182377$ $\operatorname{logit}(p) = eta$

Python

0.0020612547458882333

0.0s

$$p=rac{e^{-6.182377}}{1+e^{-6.182377}}pprox 0.002$$

따라서 레드 와인(Y=1)일 확률은 약 0.2%

해당 데이터는 화이트 와인으로 추측

```
표준화 한 설명변수 값: (고정산도, 휘발성 산도, ..., 알코올, 품질)
[-0.1721767 -0.54303355 0.90013042 -0.65328671 -0.32082382 0.53259574
0.04149221 -1.34998708 -0.3632329 -0.35397899 1.17959322 1.34345237]
와인의 종류: 0 (0: 화이트, 1: 레드) <- 화이트 와인 데이터
```

실제로도 해당 데이터는 화이트 와인 데이터

로지스틱 회귀모형이 잘 작동하는 것으로 보임

아쉬운 점

● 교차 검정(Cross Validation)을 수행하지 않아 모델의 과적합 우려가 존재

● 로지스틱 회귀모형 이외의 다른 분류 모형을 비교해보지 못함 (Random Forest, Gradient Boosting, Light GBM 등)

종합 결론

- 와인 간의 특징 차이를 실제로 통계적으로 검정해 볼 수 있었다.
- 간단한 분류 모형을 만들어 봄으로써 머신러닝의 기초를 맛볼 수 있었다.