LMA0001 – Lógica Matemática Aula 04 Semântica da Lógica Proposicional

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Semântica da lógica proposicional

Sintaxe vs semântica:

- Sintaxe diz respeito a como se escreve.
- Semântica diz respeito ao significado do que se escreve

A semântica da lógica proposicional diz respeito a atribuir **um valor verdade** a uma determinada fórmula proposicional (proposição).

Obviamente, isto depende da verdade das proposições atômicas e da forma como os conectivos atuam.

Valores-verdade

Para a **lógica proposicional clássica**, os valores-verdades são dois: *verdadeiro* e *falso*.

Podemos representar o conjunto de valores verdade de várias formas:

- V e F
- TRUE e FALSE
- 1 e 0

Nota: existem lógicas que possuem 3, 4, ou até mesmo infinitos valores-verdade. V e F não são absolutos!

Valoração

Valoração é justamente a operação que atribui V ou F a uma dada fórmula lógica.

Antes de chegarmos às definições, tentem determinar o valor verdade das seguintes fórmulas:

- p ∧ q
- $p \land \neg p$
- p ∨ ¬p
- $p \rightarrow q \rightarrow p \wedge q$

Valoração de símbolos proposicionais

Em um caso, a valoração depende do valor-verdade dos símbolos proposicionais.

Nos demais, a combinação dos conectivos *força* um valor-verdade específico.

Como não temos acesso ao significado dos símbolos proposicionais, assumimos que sua valoração é representada por uma função

$$\mathcal{V}_0: \mathcal{P} \to \{0, 1\}$$

a qual, por via de regra, não conhecemos totalmente (depende da realidade e da verdade ou falsidade das proposições).

Valoração de fórmulas

Cada possível valoração proposicional \mathcal{V}_0 sobre um conjunto \mathcal{P} determina **unicamente** uma valoração

$$\mathcal{V}:\mathcal{L}\to\{0,1\}$$

sobre as fórmulas construídas usando \mathcal{P} .

Valoração de fórmulas

Cada possível valoração proposicional \mathcal{V}_0 sobre um conjunto \mathcal{P} determina **unicamente** uma valoração

$$\mathcal{V}:\mathcal{L}\to\{0,1\}$$

sobre as fórmulas construídas usando \mathcal{P} .

 $\mathcal{V}(A)$ é calculada com base em \mathcal{V}_0 e A, como segue:

Tabelas-verdade dos conectivos

A valoração dos termos com base nos conectivos pode ser expressa através de tabelas-verdade:

A	$\neg A$	
0	1	
1	0	

Tabelas-verdade dos conectivos

A valoração dos termos com base nos conectivos pode ser expressa através de tabelas-verdade:

A	¬А
0	1
1	0

A	В	$A \wedge B$	$A \vee B$	$A \rightarrow B$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	1

Exercícios

1. Determine o valor-verdade das seguintes fórmulas, nas valorações proposicionais \mathcal{V}_{\top} e \mathcal{V}_{\perp} , que associam a todos símbolos proposicionais, respectivamente, 1 e 0:

•
$$\neg p \rightarrow q$$

•
$$((p \rightarrow q) \rightarrow p) \rightarrow p$$

•
$$(p \land \neg q) \lor (r \land s)$$

$$\bullet \ p \to q \to r \to (p \land q \lor r)$$

2. Para cada fórmula, encontre uma valoração proposicional na qual a fórmula é verdadeira (se houver):

•
$$q \rightarrow p \lor \neg p$$

•
$$(p \to q) \land (\neg q \to \neg p)$$

•
$$p \rightarrow \neg p$$

