Machine Learning

VC-Dimension

Fabio Vandin

December 11th, 2023

PAC Learning

Question: which hypothesis classes \mathcal{H} are PAC learnable?

Up to now: if $|\mathcal{H}| < +\infty \Rightarrow \mathcal{H}$ is PAC learnable.

What about \mathcal{H} : $|\mathcal{H}| = +\infty$? Not PAC learnable?

We focus on:

- binary classification: $\mathcal{Y} = \{0, 1\}$
- 0-1 loss

but similar results apply to other learning tasks and losses.

Restrictions

Definition (Restriction of \mathcal{H} to \mathcal{C})

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $C = \{c_1, \dots, c_m\} \subset \mathcal{X}$. The restriction \mathcal{H}_C of \mathcal{H} to C is:

$$\mathcal{H}_{C} = \{ [\underline{h(c_1)}, \dots, \underline{h(c_m)}] : \underline{h} \in \mathcal{H} \}$$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

Note: \mathcal{H}_C is the set of functions from C to $\{0,1\}$ that can be derived from \mathcal{H} .

Us per varie habbiano vari vellori

Example: Intervals

$$\mathcal{H} = \{ h_{\mathsf{a},\mathsf{b}} : \mathsf{a},\mathsf{b} \in \mathbb{R}, \mathsf{a} < \mathsf{b} \}$$

where $h_{a,b}: \mathbb{R} \to \{0,1\}$ is

$$h_{a,b}(x) = \mathbb{1}[x \in (a,b)] = \begin{cases} 1 & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

VC-dimension?

Example: Axis Aligned Rectangles

$$\mathcal{H} = \{h_{(a_1,a_2,b_1,b_2)} : a_1, a_2, b_1, b_2 \in \mathbb{R}, a_1 \leq a_2, b_1 \leq b_2\}$$

$$h_{(a_1,a_2,b_1,b_2)}(x_1,x_2) = \begin{cases} 1 & \text{if } a_1 \le x_1 < a_2, b_1 \le x_2 \le b_2 \\ 0 & \text{otherwise} \end{cases}$$

VC-dimension?

Example: Convex Sets

Model set \mathcal{H} such that for $h \in \mathcal{H}$, $h : \mathbb{R}^2 \to \{0,1\}$ with

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in S \\ 0 & \text{otherwise} \end{cases}$$

where S is a convex subset of \mathbb{R}^2

VC-dimension?

Exercise

Consider the classification problem with $\mathcal{X} = \mathbb{R}^2$, $\mathbb{Y} = \{0, 1\}$. Consider the hypothesis class $\mathcal{H} = \{h_{(\mathbf{c}, a)}, \mathbf{c} \in \mathbb{R}^2, a \in \mathbb{R}\}$ with

$$h_{(\mathbf{c},a)}(\mathbf{x}) = \begin{cases} 1 & \text{if } ||\mathbf{x} - \mathbf{c}|| \le a \\ 0 & \text{otherwise} \end{cases}$$

Find the VC-dimension of \mathcal{H} .

The Fundamental Theorems of Statistical Learning

Theorem

Let $\mathcal H$ be a hypothesis class of functions from a domain $\mathcal X$ to $\{0,1\}$ and consider the 0-1 loss function. Assume that $VCdim(\mathcal H)=d<+\infty$. Then there are absolute constants C_1,C_2 such that

 H has the uniform convergence property with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\varepsilon^2} \le m_{\mathcal{H}}^{UC}(\varepsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\varepsilon^2}$$

• H is agnostic PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\varepsilon^2} \le m_{\mathcal{H}}(\varepsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\varepsilon^2}$$

Equivalently:

Theorem

Let \mathcal{H} be an hypothesis class with VC-dimension $VCdim(\mathcal{H}) < +\infty$. Then, with probability $\geq 1 - \delta$ (over $S \sim \mathcal{D}^m$) we have:

$$\forall h \in \mathcal{H}, L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + C\sqrt{\frac{VCdim(\mathcal{H}) + \log(1/\delta)}{2m}}$$

where C is a universal constant.

Note: finding $h \in \mathcal{H}$ that minimizes the upper bound (above) to $L_{\mathcal{D}}(h) \Rightarrow \text{ERM rule}$

Theorem

Let \mathcal{H} be a class with $VCdim(\mathcal{H}) = +\infty$. Then \mathcal{H} is not PAC learnable.

Notes:

• the VC-dimension *characterizes* PAC learnable hypothesis classes

Exercise

Let

$$\mathcal{H}_d = \{ \textit{h}_{\textbf{w}}(\textbf{x}) : \textit{h}_{\textbf{w}}(\textbf{x}) = \text{sign}(<\textbf{w},\textbf{x}>) \}$$

where $\mathcal{X} = \mathbb{R}^d$.

Prove that $VCdim(\mathcal{H}_d) = d$.

An Interesting Example...

Note: in previous examples the VC-dimension is equivalent to the number of parameters that define the model... but it is not always the case!

Function of one parameter: $f_{\theta}(x) = \sin^2 \left[2^{8x} \arcsin \sqrt{\theta} \right]$

VC-dimension of $f_{\theta}(x)$ is infinite!

In fact, $f_{\theta}(x)$ can approximate any function $\mathbb{R} \to \mathbb{R}$ by changing the value of θ !

FIG. 1: A scatter plot of f_{θ} for $\theta=0.2446847266734745458227540656\cdots$ plotted at integer x values, showing that a single parameter can fit an elephant (left). The same model run with parameter $\theta=0.0024265418055000401935387620\cdots$ showing a fit of a scatter plot to Joan Miró's signature (right). Both use r=8 and require hundreds to thousands of digits of precision in θ .

["One parameter is always enough", Piantadosi, 2018]

Bibliography

[UML] Chapter 6