Numerical Optimal Control Lecture 10: Parametric Optimization

Sébastien Gros

S2, Chalmers

NTNU PhD course

Outline

- Parametric Optimization
- Continuity & differentiability
- Sensitivity in Newton
- 4 Sensitivity with inequality constraints
- Path Following Methods

Outline

- Parametric Optimization
- 2 Continuity & differentiabili
- 3 Sensitivity in Newton
- 4 Sensitivity with inequality constraints
- 5 Path Following Methods

Problem:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

s.t. $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

where ${\bf p}$ is a vector of parameters.

Problem:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

s.t. $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

where ${\bf p}$ is a vector of parameters.

Is w(p) differentiable?

Problem:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

s.t. $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

where ${f p}$ is a vector of parameters.

Is $\mathbf{w}\left(\mathbf{p}\right)$ differentiable ?

- Predictors: what does w(p), tell us about $w(p + \Delta p)$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

s.t. $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

where ${f p}$ is a vector of parameters.

Is $\mathbf{w}\left(\mathbf{p}\right)$ differentiable ?

- Predictors: what does w(p), tell us about $w(p + \Delta p)$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

s.t. $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

where ${f p}$ is a vector of parameters.

Is $\mathbf{w}\left(\mathbf{p}\right)$ differentiable ?

- Predictors: what does w(p), tell us about $w(p + \Delta p)$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ &\text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where p is a vector of parameters.

Is
$$\mathbf{w}(\mathbf{p})$$
 differentiable ?

Some applications:

- Predictors: what does w (p), tell us about $\mathbf{w}(\mathbf{p} + \Delta \mathbf{p})$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
s.t.
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

where p is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Some applications:

- Predictors: what does w (p), tell us about $\mathbf{w}(\mathbf{p} + \Delta \mathbf{p})$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ &\text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where $\ensuremath{\mathbf{p}}$ is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Some applications:

- Predictors: what does w(p), tell us about $w(p + \Delta p)$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ &\text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where $\ensuremath{\mathbf{p}}$ is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Illustration:

- Predictors: what does $\mathbf{w}(\mathbf{p})$, tell us about $\mathbf{w}(\mathbf{p} + \Delta \mathbf{p})$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ &\text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where p is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Illustration:

- Predictors: what does w (p), tell us about $\mathbf{w}(\mathbf{p} + \Delta \mathbf{p})$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
s.t.
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

where $\ensuremath{\mathbf{p}}$ is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Some applications:

- Predictors: what does w(p), tell us about $w(p + \Delta p)$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ &\text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where p is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Illustration:

- Predictors: what does w (p), tell us about $\mathbf{w}(\mathbf{p} + \Delta \mathbf{p})$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
s.t.
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

where $\ensuremath{\mathbf{p}}$ is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Illustration:

- Predictors: what does w(p), tell us about $w(p + \Delta p)$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ &\text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where p is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Some applications:

- Predictors: what does w (p), tell us about $\mathbf{w}(\mathbf{p} + \Delta \mathbf{p})$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ &\text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where p is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Illustration:

Some applications:

- Predictors: what does w (p), tell us about $\mathbf{w}(\mathbf{p} + \Delta \mathbf{p})$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

4 / 25

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ &\text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where $\ensuremath{\mathbf{p}}$ is a vector of parameters.

Is
$$\mathbf{w}(\mathbf{p})$$
 differentiable ?

Some applications:

- Predictors: what does w(p), tell us about $w(p + \Delta p)$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ &\text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where $\ensuremath{\mathbf{p}}$ is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Some applications:

- Predictors: what does $\mathbf{w}(\mathbf{p})$, tell us about $\mathbf{w}(\mathbf{p} + \Delta \mathbf{p})$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
s.t.
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

where \mathbf{p} is a vector of parameters.

Is
$$w(p)$$
 differentiable?

Some applications:

- Predictors: what does w(p), tell us about $w(p + \Delta p)$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ &\text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where $\ensuremath{\mathbf{p}}$ is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Some applications:

- Predictors: what does $\mathbf{w}(\mathbf{p})$, tell us about $\mathbf{w}(\mathbf{p} + \Delta \mathbf{p})$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ &\text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where $\ensuremath{\mathbf{p}}$ is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Some applications:

- Predictors: what does $\mathbf{w}(\mathbf{p})$, tell us about $\mathbf{w}(\mathbf{p} + \Delta \mathbf{p})$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Problem:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where $\ensuremath{\mathbf{p}}$ is a vector of parameters.

Is
$$w(p)$$
 differentiable ?

Some applications:

- Predictors: what does $\mathbf{w}(\mathbf{p})$, tell us about $\mathbf{w}(\mathbf{p} + \Delta \mathbf{p})$?
- Robust optimization
- Explicit MPC, Active Set QP solvers
- Real-time NMPC
- Decomposition methods

Illustration:

Changes of active set yield non-smooth points in the solution manifold $\mathbf{w}\left(\mathbf{p}\right)$.

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

One ought to understand

$$\mathbf{w}(\mathbf{p}): \mathbf{p} \in \mathbb{R}^p \mapsto \mathbf{w} \in \mathbb{R}^n$$

as a genuine function defined by the parametric $\ensuremath{\mathsf{NLP}}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Solution ${\bf w}$ is an **implicit function** of the parameters ${\bf p}.$ We will use IFT !

One ought to understand

$$\mathbf{w}(\mathbf{p}): \mathbf{p} \in \mathbb{R}^p \mapsto \mathbf{w} \in \mathbb{R}^n$$

as a genuine function defined by the parametric NLP

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

One ought to understand

$$\mathbf{w}(\mathbf{p}): \mathbf{p} \in \mathbb{R}^p \mapsto \mathbf{w} \in \mathbb{R}^n$$

as a genuine function defined by the parametric NLP

Solution ${\bf w}$ is an **implicit function** of the parameters ${\bf p}.$ We will use IFT !

Questions:

- Continuity & differentiability ?
- Sensitivities $\frac{\partial \mathbf{w}}{\partial \mathbf{p}}$?
- Predictors: using $w(p_0)$, what can I say about w(p) ?

$$\mathbf{w}(\mathbf{p}) \approx \mathbf{w}(\mathbf{p}_0) + \frac{\partial \mathbf{w}}{\partial \mathbf{p}}(\mathbf{p} - \mathbf{p}_0)$$

ullet Path-following: how to keep track of w(p) for a (continuously) changing p ?

Outline

- Parametric Optimization
- Continuity & differentiability
- 3 Sensitivity in Newton
- 4 Sensitivity with inequality constraints
- 5 Path Following Methods

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

w (p) is continuous around p

E.g. convex QP: SOSC holds everywhere (positive def. Hessian)

Theorem: if w(p) fulfils LICQ & strict SOSC,

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \ \text{if} \ \ \mathbf{w} \ (\mathbf{p}) \ \ \text{fulfils LICQ} \ \& \ \text{strict SOSC,} \\ \mathbf{w} \ (\mathbf{p}) \ \ \text{is continuous around} \ \ \mathbf{p} \\ \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: if $\mathbf{w}(\mathbf{p})$ fulfils LICQ & strict SOSC, $\mathbf{w}(\mathbf{p})$ is continuous around \mathbf{p}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: if $\mathbf{w}(\mathbf{p})$ fulfils LICQ & strict SOSC, $\mathbf{w}(\mathbf{p})$ is continuous around \mathbf{p}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \ \text{if} \ \ \mathbf{w} \ (\mathbf{p}) \ \ \text{fulfils LICQ} \ \& \ \ \text{strict SOSC,} \\ \mathbf{w} \ (\mathbf{p}) \ \ \text{is continuous around} \ \ \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem: if } \mathbf{w}\left(\mathbf{p}\right) \text{ fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \text{ is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

W. Z. W. Z.

 $\begin{array}{ll} \textbf{Theorem:} \ \ \text{if} \ \ \mathbf{w} \ (\mathbf{p}) \ \ \text{fulfils LICQ} \ \& \ \text{strict SOSC,} \\ \mathbf{w} \ (\mathbf{p}) \ \ \text{is continuous around} \ \ \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \, \text{if} \ \, \mathbf{w}\left(\mathbf{p}\right) \ \, \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \ \, \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

ž_M

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \, \text{if} \ \, \mathbf{w}\left(\mathbf{p}\right) \ \, \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \ \, \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{ll} \textbf{Theorem:} \ \ \text{if} \ \ \mathbf{w} \ (\mathbf{p}) \ \ \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w} \ (\mathbf{p}) \ \ \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \, \text{if} \ \, \mathbf{w}\left(\mathbf{p}\right) \ \, \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \ \, \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: if $\mathbf{w}(\mathbf{p})$ fulfils LICQ & strict SOSC, $\mathbf{w}(\mathbf{p})$ is continuous around \mathbf{p}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \, \text{if} \ \, \mathbf{w}\left(\mathbf{p}\right) \ \, \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \ \, \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: if $\mathbf{w}(\mathbf{p})$ fulfils LICQ & strict SOSC, $\mathbf{w}(\mathbf{p})$ is continuous around \mathbf{p}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \, \text{if} \ \, \mathbf{w}\left(\mathbf{p}\right) \ \, \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \ \, \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \leq 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \, \text{if} \ \, \mathbf{w}\left(\mathbf{p}\right) \ \, \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \ \, \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \ \text{if} \ \ \mathbf{w} \ (\mathbf{p}) \ \ \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w} \ (\mathbf{p}) \ \ \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: if w(p) fulfils LICQ & strict SOSC, $\mathbf{w}(\mathbf{p})$ is continuous around \mathbf{p}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \, \text{if} \ \, \mathbf{w}\left(\mathbf{p}\right) \ \, \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \ \, \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: if $\mathbf{w}(\mathbf{p})$ fulfils LICQ & strict SOSC, $\mathbf{w}(\mathbf{p})$ is continuous around \mathbf{p}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 \mathbf{w}_2

 $\begin{array}{l} \textbf{Theorem:} \ \ \text{if} \ \ \mathbf{w} \ (\mathbf{p}) \ \ \text{fulfils LICQ} \ \& \ \text{strict SOSC,} \\ \mathbf{w} \ (\mathbf{p}) \ \ \text{is continuous around} \ \ \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \leq 0$$

Theorem: if w(p) fulfils LICQ & strict SOSC, w(p) is continuous around p

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: if w(p) fulfils LICQ & strict SOSC, w(p) is continuous around p

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \ \text{if} \ \ \mathbf{w} \ (\mathbf{p}) \ \ \text{fulfils LICQ} \ \& \ \text{strict SOSC,} \\ \mathbf{w} \ (\mathbf{p}) \ \ \text{is continuous around} \ \ \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \ \text{if} \ \ \mathbf{w} \ (\mathbf{p}) \ \ \text{fulfils LICQ} \ \& \ \text{strict SOSC,} \\ \mathbf{w} \ (\mathbf{p}) \ \ \text{is continuous around} \ \ \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{ll} \textbf{Theorem:} \ \ \text{if} \ \ \mathbf{w} \ (\mathbf{p}) \ \ \text{fulfils LICQ} \ \& \ \text{strict SOSC,} \\ \mathbf{w} \ (\mathbf{p}) \ \ \text{is continuous around} \ \ \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem: if } \mathbf{w}\left(\mathbf{p}\right) \text{ fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \text{ is continuous around } \mathbf{p} \end{array}$

E.g. LP : SOSC holds only when 2 constraints are strictly active !

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: if $\mathbf{w}(\mathbf{p})$ fulfils LICQ & strict SOSC, $\mathbf{w}(\mathbf{p})$ is continuous around \mathbf{p}

E.g. LP : SOSC holds only when 2 constraints are strictly active !

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem: if } \mathbf{w}\left(\mathbf{p}\right) \text{ fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \text{ is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: if $\mathbf{w}(\mathbf{p})$ fulfils LICQ & strict SOSC, $\mathbf{w}(\mathbf{p})$ is continuous around \mathbf{p}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: if w (p) fulfils LICQ & strict SOSC, w (p) is continuous around p **E.g. LP**: SOSC holds only when 2 constraints are strictly active!

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem: if } \mathbf{w}\left(\mathbf{p}\right) \text{ fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \text{ is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 \mathbf{W}_2

 $\begin{array}{l} \textbf{Theorem:} \ \, \text{if} \ \, \mathbf{w}\left(\mathbf{p}\right) \ \, \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \ \, \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \leq 0$$

C_M

 $\begin{array}{l} \textbf{Theorem:} \ \, \text{if} \ \, \mathbf{w}\left(\mathbf{p}\right) \ \, \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \ \, \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

 $\begin{array}{l} \textbf{Theorem:} \ \, \text{if} \ \, \mathbf{w}\left(\mathbf{p}\right) \ \, \text{fulfils LICQ \& strict SOSC,} \\ \mathbf{w}\left(\mathbf{p}\right) \ \, \text{is continuous around } \mathbf{p} \end{array}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: if $\mathbf{w}(\mathbf{p})$ fulfils LICQ & strict SOSC, $\mathbf{w}(\mathbf{p})$ is continuous around \mathbf{p} **E.g. LP**: SOSC holds only when **2** constraints are strictly active !

Differentiability

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Differentiability

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Differentiability

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given $\mathbf{p},$ with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

then $\nabla_{\mathbf{p}}\mathbf{w}\left(\mathbf{p}\right)$ exists.

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given $\mathbf{p},$ with

- LICQ & strict SOSC
- \bullet no weakly active constraint h

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given $\mathbf{p},$ with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given $\mathbf{p},$ with

- LICQ & strict SOSC
- ullet no weakly active constraint ${f h}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given $\mathbf{p},$ with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given $\mathbf{p},$ with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given $\mathbf{p},$ with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given \mathbf{p} , with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $\mathbf{w}(\mathbf{p})$ at a given \mathbf{p} , with

- LICQ & strict SOSC
- ullet no weakly active constraint ${f h}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider w(p) at a given p, with

LICQ & strict SOSC

then $\nabla_{\mathbf{p}}\mathbf{w}\left(\mathbf{p}\right)$ exists.

• no weakly active constraint h

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- no weakly active constraint \mathbf{h} then $\nabla_{\mathbf{p}}\mathbf{w}\left(\mathbf{p}\right)$ exists.

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given $\mathbf{p},$ with

- LICQ & strict SOSC
- ullet no weakly active constraint ${f h}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given \mathbf{p} , with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $\mathbf{w}(\mathbf{p})$ at a given \mathbf{p} , with

- LICQ & strict SOSC
- $\ensuremath{\bullet}$ no weakly active constraint h

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given $\mathbf{p},$ with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- no weakly active constraint \mathbf{h} then $\nabla_{\mathbf{p}}\mathbf{w}\left(\mathbf{p}\right)$ exists.

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- no weakly active constraint h

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider $\mathbf{w}(\mathbf{p})$ at a given \mathbf{p} , with

- LICQ & strict SOSC
- no weakly active constraint h

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider $\mathbf{w}(\mathbf{p})$ at a given \mathbf{p} , with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given $\mathbf{p},$ with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $w\left(\mathbf{p}\right)$ at a given $\mathbf{p},$ with

- LICQ & strict SOSC
- $\ensuremath{\bullet}$ no weakly active constraint h

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $\mathbf{w}(\mathbf{p})$ at a given \mathbf{p} , with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- ullet no weakly active constraint ${f h}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- \bullet no weakly active constraint h

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

 $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- $\ensuremath{\bullet}$ no weakly active constraint h

Parametric NLP:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

Theorem: consider $\mathbf{w}(\mathbf{p})$ at a given \mathbf{p} , with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- ullet no weakly active constraint ${f h}$

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider w(p) at a given p, with

- LICQ & strict SOSC
- \bullet no weakly active constraint \mathbf{h}

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $\mathbf{w}(\mathbf{p})$ at a given \mathbf{p} , with

- LICQ & strict SOSC
- no weakly active constraint \mathbf{h} then $\nabla_{\mathbf{p}}\mathbf{w}\left(\mathbf{p}\right)$ exists.

Differentiability

Parametric NLP:

$$\mathbf{w}(\mathbf{p}) = \arg\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Theorem: consider $\mathbf{w}(\mathbf{p})$ at a given \mathbf{p} , with

- LICQ & strict SOSC
- no weakly active constraint h

then $abla_{\mathbf{p}}\mathbf{w}\left(\mathbf{p}\right)$ exists.

Outline

- Parametric Optimization
- 2 Continuity & differentiable
- 3 Sensitivity in Newton
- 4 Sensitivity with inequality constraints
- 5 Path Following Methods

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Parametric NLP: Solution $w(p), \lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Implicit function theorem

Let z be implicitly given by the C^1 function:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)=0$$

Parametric NLP: Solution $w(p), \lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Implicit function theorem

Let z be implicitly given by the \mathcal{C}^1 function:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)=0$$

$$\mathbf{z} = \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) \\ \mathbf{g}(\mathbf{w}, \mathbf{p}) \end{bmatrix}$$

Parametric NLP: Solution $w(p), \lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Implicit function theorem

Let z be implicitly given by the C^1 function:

$$\mathbf{R}(\mathbf{z}, \mathbf{p}) = 0$$
, with $\nabla_{\mathbf{z}} \mathbf{R}(\mathbf{z}, \mathbf{p}_0)$ full rank

$$\begin{aligned} \mathbf{z} &= \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \end{array} \right] \\ \mathbf{R} &= \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L} \left(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p} \right) \\ \mathbf{g} \left(\mathbf{w}, \mathbf{p} \right) \end{array} \right] \end{aligned}$$

Parametric NLP: Solution $w(p), \lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Implicit function theorem

Let z be implicitly given by the C^1 function:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)$$
 = 0, with $\nabla_{\mathbf{z}}\mathbf{R}\left(\mathbf{z},\mathbf{p}_{0}\right)$ full rank

Then for any \mathbf{p}_0 there is a \mathcal{C}^1 function $\xi(\mathbf{p})$ such that:

$$\mathbf{R}\left(\xi\left(\mathbf{p}\right),\mathbf{p}\right)=0$$

holds in a neighbourhood of \mathbf{p}_0 .

$$\begin{split} \mathbf{z} &= \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \end{array} \right] \\ \mathbf{R} &= \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L} \left(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p} \right) \\ \mathbf{g} \left(\mathbf{w}, \mathbf{p} \right) \end{array} \right] \end{split}$$

Parametric NLP: Solution $w(p), \lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Implicit function theorem

Let z be implicitly given by the \mathcal{C}^1 function:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)$$
 = 0, with $\nabla_{\mathbf{z}}\mathbf{R}\left(\mathbf{z},\mathbf{p}_{0}\right)$ full rank

Then for any \mathbf{p}_0 there is a \mathcal{C}^1 function $\xi(\mathbf{p})$ such that:

$$\mathbf{R}\left(\xi\left(\mathbf{p}\right),\mathbf{p}\right)=0$$

holds in a neighbourhood of \mathbf{p}_0 .

That means we have $\mathbf{z}(\mathbf{p}) = \xi(\mathbf{p})$ around \mathbf{p}_0 .

$$\begin{split} \mathbf{z} &= \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \end{array} \right] \\ \mathbf{R} &= \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L} \left(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p} \right) \\ \mathbf{g} \left(\mathbf{w}, \mathbf{p} \right) \end{array} \right] \end{split}$$

Parametric NLP: Solution $w(p), \lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Implicit function theorem

Let z be implicitly given by the C^1 function:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)$$
 = 0, with $\nabla_{\mathbf{z}}\mathbf{R}\left(\mathbf{z},\mathbf{p}_{0}\right)$ full rank

Then for any \mathbf{p}_0 there is a \mathcal{C}^1 function $\xi(\mathbf{p})$ such that:

$$\mathbf{R}\left(\xi\left(\mathbf{p}\right),\mathbf{p}\right)=0$$

holds in a neighbourhood of \mathbf{p}_0 .

That means we have $\mathbf{z}(\mathbf{p}) = \xi(\mathbf{p})$ around \mathbf{p}_0 .

We will have:

$$\mathbf{z} = \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix}$$
$$\mathbf{R} = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) \\ \mathbf{g}(\mathbf{w}, \mathbf{p}) \end{bmatrix}$$

In other words...

... our $\mathbf{z}\left(\mathbf{p}\right)$ is locally well defined and differentiable if $\nabla_{\mathbf{z}}\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)$ exists and is full rank

Parametric NLP: Solution w(p), $\lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \lambda, \mathbf{p}) = 0
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Let's check $\nabla_{\mathbf{z}} \mathbf{R}(\mathbf{z}, \mathbf{p})$ for the KKT conditions:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right) = \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L}\left(\mathbf{w},\mathbf{p},\boldsymbol{\lambda}\right) \\ \mathbf{g}\left(\mathbf{w},\mathbf{p}\right) \end{array} \right] \qquad \text{with} \qquad \mathbf{z} = \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \end{array} \right]$$

Parametric NLP: Solution w(p), $\lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \lambda, \mathbf{p}) = 0
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Let's check $\nabla_{\mathbf{z}} \mathbf{R}(\mathbf{z}, \mathbf{p})$ for the KKT conditions:

$$R\left(\mathbf{z},\mathbf{p}\right) = \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L}\left(\mathbf{w},\mathbf{p},\boldsymbol{\lambda}\right) \\ \mathbf{g}\left(\mathbf{w},\mathbf{p}\right) \end{array} \right] \qquad \text{with} \qquad \mathbf{z} = \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \end{array} \right]$$

We get:

$$\nabla_{\mathbf{z}} \mathbf{R} \left(\mathbf{z}, \mathbf{p} \right) = \begin{bmatrix} \nabla_{\mathbf{w}}^{2} \mathcal{L} \left(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p} \right) & \nabla_{\mathbf{w}} \mathbf{g} \left(\mathbf{w}, \mathbf{p} \right) \\ \nabla_{\mathbf{w}} \mathbf{g} \left(\mathbf{w}, \mathbf{p} \right)^{\mathsf{T}} & \mathbf{0} \end{bmatrix}$$

Parametric NLP: Solution w(p), $\lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \lambda, \mathbf{p}) = 0
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Let's check $\nabla_{\mathbf{z}} \mathbf{R}(\mathbf{z}, \mathbf{p})$ for the KKT conditions:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right) = \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L}\left(\mathbf{w},\mathbf{p},\boldsymbol{\lambda}\right) \\ \mathbf{g}\left(\mathbf{w},\mathbf{p}\right) \end{array} \right] \qquad \text{with} \qquad \mathbf{z} = \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \end{array} \right]$$

We get:

$$\nabla_{\mathbf{z}} \mathbf{R} \left(\mathbf{z}, \mathbf{p} \right) = \begin{bmatrix} \nabla_{\mathbf{w}}^{2} \mathcal{L} \left(\mathbf{w}, \lambda, \mathbf{p} \right) & \nabla_{\mathbf{w}} \mathbf{g} \left(\mathbf{w}, \mathbf{p} \right) \\ \nabla_{\mathbf{w}} \mathbf{g} \left(\mathbf{w}, \mathbf{p} \right)^{\mathsf{T}} & \mathbf{0} \end{bmatrix}$$

This is the KKT matrix providing the Newton step, remember:

$$\left[\begin{array}{cc} \nabla_{\mathbf{w}}^{2} \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}\right) & \nabla_{\mathbf{w}} \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) \\ \nabla_{\mathbf{w}} \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right)^{\mathsf{T}} & \mathbf{0} \end{array} \right] \left[\begin{array}{c} \Delta \mathbf{w} \\ \boldsymbol{\lambda} \end{array} \right] = - \left[\begin{array}{c} \nabla \Phi\left(\mathbf{w}\right) \\ \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) \end{array} \right]$$

Parametric NLP: Solution w(p), $\lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \lambda, \mathbf{p}) = 0
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Let's check $\nabla_{\mathbf{z}} \mathbf{R}(\mathbf{z}, \mathbf{p})$ for the KKT conditions:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right) = \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L}\left(\mathbf{w},\mathbf{p},\boldsymbol{\lambda}\right) \\ \mathbf{g}\left(\mathbf{w},\mathbf{p}\right) \end{array} \right] \qquad \text{with} \qquad \mathbf{z} = \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \end{array} \right]$$

We get:

$$\nabla_{\mathbf{z}} \mathbf{R} \left(\mathbf{z}, \mathbf{p} \right) = \begin{bmatrix} \nabla_{\mathbf{w}}^{2} \mathcal{L} \left(\mathbf{w}, \lambda, \mathbf{p} \right) & \nabla_{\mathbf{w}} \mathbf{g} \left(\mathbf{w}, \mathbf{p} \right) \\ \nabla_{\mathbf{w}} \mathbf{g} \left(\mathbf{w}, \mathbf{p} \right)^{\mathsf{T}} & \mathbf{0} \end{bmatrix}$$

This is the KKT matrix providing the Newton step, remember:

$$\left[\begin{array}{cc} \nabla_{\mathbf{w}}^{2} \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}\right) & \nabla_{\mathbf{w}} \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) \\ \nabla_{\mathbf{w}} \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right)^{\mathsf{T}} & \mathbf{0} \end{array} \right] \left[\begin{array}{c} \Delta \mathbf{w} \\ \boldsymbol{\lambda} \end{array} \right] = - \left[\begin{array}{c} \nabla \Phi\left(\mathbf{w}\right) \\ \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) \end{array} \right]$$

Theorem

The parametric solution $\mathbf{z}(\mathbf{p})$ is well defined and \mathcal{C}^1 in a neighbourhood of \mathbf{p} if the KKT matrix is full rank at \mathbf{p}

Parametric NLP: Solution w(p), $\lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Differentiating implicit functions

Let z be implicitly given by the C^1 function:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)=0,\quad\text{with}\quad\nabla_{\mathbf{z}}\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)\text{ full rank}$$
 then $\mathbf{z}\left(\mathbf{p}\right)$ is well defined and \mathcal{C}^{1} .

Where: $\mathbf{z} = \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix}$ $\mathbf{R} = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) \\ \mathbf{g}(\mathbf{w}, \mathbf{p}) \end{bmatrix}$

Parametric NLP: Solution w(p), $\lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Differentiating implicit functions

Let z be implicitly given by the C^1 function:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)$$
 = 0, with $\nabla_{\mathbf{z}}\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)$ full rank

then $\mathbf{z}(\mathbf{p})$ is well defined and \mathcal{C}^1 .

Sensitivity $\frac{\partial}{\partial \mathbf{p}} \mathbf{z}(\mathbf{p})$ is given by

$$\frac{d\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)}{d\mathbf{p}} = \frac{\partial\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)}{\partial\mathbf{z}}\frac{\partial\mathbf{z}}{\partial\mathbf{p}} + \frac{\partial\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)}{\partial\mathbf{p}} = 0$$

Where:
$$\mathbf{z} = \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) \\ \mathbf{g}(\mathbf{w}, \mathbf{p}) \end{bmatrix}$$

Parametric NLP: Solution w(p), $\lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Differentiating implicit functions

Let z be implicitly given by the C^1 function:

$$\mathbf{R}(\mathbf{z}, \mathbf{p}) = 0$$
, with $\nabla_{\mathbf{z}} \mathbf{R}(\mathbf{z}, \mathbf{p})$ full rank

then $\mathbf{z}(\mathbf{p})$ is well defined and \mathcal{C}^1 .

Sensitivity $\frac{\partial}{\partial \mathbf{p}} \mathbf{z}(\mathbf{p})$ is given by

$$\frac{d\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)}{d\mathbf{p}} = \frac{\partial\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)}{\partial\mathbf{z}}\frac{\partial\mathbf{z}}{\partial\mathbf{p}} + \frac{\partial\mathbf{R}\left(\mathbf{z},\mathbf{p}\right)}{\partial\mathbf{p}} = \mathbf{0}$$

i.e.

$$\frac{\partial \mathbf{z}}{\partial \mathbf{p}} = -\frac{\partial \mathbf{R} \left(\mathbf{z}, \mathbf{p}\right)^{-1}}{\partial \mathbf{z}} \frac{\partial \mathbf{R} \left(\mathbf{z}, \mathbf{p}\right)}{\partial \mathbf{p}}$$

Where:

$$\mathbf{z} = \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix}$$
$$\mathbf{R} = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) \\ \mathbf{g}(\mathbf{w}, \mathbf{p}) \end{bmatrix}$$

Parametric NLP: Solution w(p), $\lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Differentiating the optimal solution

Sensitivity given by:

$$\frac{\partial \mathbf{z}}{\partial \mathbf{p}} = -\frac{\partial \mathbf{R} \left(\mathbf{z}, \mathbf{p} \right)}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R} \left(\mathbf{z}, \mathbf{p} \right)}{\partial \mathbf{p}}$$

With

Where:
$$\mathbf{z} = \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix}$$
$$\mathbf{R} = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) \\ \mathbf{g}(\mathbf{w}, \mathbf{p}) \end{bmatrix}$$

Parametric NLP: Solution w(p), $\lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Differentiating the optimal solution

Sensitivity given by:

$$\frac{\partial \mathbf{z}}{\partial \mathbf{p}} = -\frac{\partial \mathbf{R} \left(\mathbf{z}, \mathbf{p} \right)}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R} \left(\mathbf{z}, \mathbf{p} \right)}{\partial \mathbf{p}}$$

With

$$\frac{\partial \mathbf{R}\left(\mathbf{z},\mathbf{p}\right)}{\partial \mathbf{z}} = \begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) & \nabla_{\mathbf{w}} \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) \\ \nabla_{\mathbf{w}} \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right)^{\mathsf{T}} & \mathbf{0} \end{bmatrix}$$

$$\mathbf{z} = \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) \\ \mathbf{g}(\mathbf{w}, \mathbf{p}) \end{bmatrix}$$

Parametric NLP: Solution w(p), $\lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Differentiating the optimal solution

Sensitivity given by:

$$\frac{\partial \mathbf{z}}{\partial \mathbf{p}} = -\frac{\partial \mathbf{R} \left(\mathbf{z}, \mathbf{p} \right)}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R} \left(\mathbf{z}, \mathbf{p} \right)}{\partial \mathbf{p}}$$

With

$$\frac{\partial \mathbf{R}(\mathbf{z}, \mathbf{p})}{\partial \mathbf{z}} = \begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) & \nabla_{\mathbf{w}} \mathbf{g}(\mathbf{w}, \mathbf{p}) \\ \nabla_{\mathbf{w}} \mathbf{g}(\mathbf{w}, \mathbf{p})^{\mathsf{T}} & 0 \end{bmatrix}$$
$$\frac{\partial \mathbf{R}(\mathbf{z}, \mathbf{p})}{\partial \mathbf{p}} = \begin{bmatrix} \nabla_{\mathbf{w}, \mathbf{p}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) \\ \nabla_{\mathbf{p}} \mathbf{g}(\mathbf{w}, \mathbf{p})^{\mathsf{T}} \end{bmatrix}$$

$$\mathbf{z} = \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) \\ \mathbf{g}(\mathbf{w}, \mathbf{p}) \end{bmatrix}$$

Parametric NLP: Solution w(p), $\lambda(p)$ implicitly given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda) = 0
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Differentiating the optimal solution

Sensitivity given by:

$$\frac{\partial \mathbf{z}}{\partial \mathbf{p}} = -\frac{\partial \mathbf{R} \left(\mathbf{z}, \mathbf{p}\right)}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R} \left(\mathbf{z}, \mathbf{p}\right)}{\partial \mathbf{p}}$$

With

$$\frac{\partial \mathbf{R}(\mathbf{z}, \mathbf{p})}{\partial \mathbf{z}} = \begin{bmatrix} H(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) & \nabla_{\mathbf{w}} \mathbf{g}(\mathbf{w}, \mathbf{p}) \\ \nabla_{\mathbf{w}} \mathbf{g}(\mathbf{w}, \mathbf{p})^{\mathsf{T}} & 0 \end{bmatrix}$$
$$\frac{\partial \mathbf{R}(\mathbf{z}, \mathbf{p})}{\partial \mathbf{p}} = \begin{bmatrix} \nabla_{\mathbf{w}, \mathbf{p}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) \\ \nabla_{\mathbf{p}} \mathbf{g}(\mathbf{w}, \mathbf{p})^{\mathsf{T}} \end{bmatrix}$$

Where:

$$\mathbf{z} = \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix}$$
$$\mathbf{R} = \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \mathbf{p}) \\ \mathbf{g}(\mathbf{w}, \mathbf{p}) \end{bmatrix}$$

- If \mathbf{p} enters linearly in $\mathbf{g}(\mathbf{w}, \mathbf{p})$, then $\frac{\partial \mathbf{R}(\mathbf{z}, \mathbf{p})}{\partial \mathbf{p}} = \begin{bmatrix} 0 \\ \text{Cst.} \end{bmatrix}$
- Sensitivities are for free since a factorisation of the KKT matrix is available from the Newton algorithm

Computing the Sensitivities - Implementation

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

Remarks:

- M re-used in the sensitivities, computationally cheap !!
- Sensitivities are inexact if Newton is not properly converged
- Must use ∇_{w,p}L and not ∇_{w,p}Φ in sensitivities!

Algorithm: NLP solution with sensitivities

Input: $\mathbf{w}, \lambda, \mathbf{p}$

while not converged do

Compute:

$$M = \left[\begin{array}{cc} H & \nabla_{\mathbf{w}} \mathbf{g} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & 0 \end{array} \right]^{-1}$$

Newton step

$$\begin{bmatrix} \Delta \mathbf{w} \\ \lambda^+ \end{bmatrix} = -M \begin{bmatrix} \nabla_{\mathbf{w}} \Phi \\ \mathbf{g} \end{bmatrix}$$

Update: $\mathbf{w} \leftarrow \mathbf{w} + t\Delta \mathbf{w}$, $\lambda \leftarrow t\lambda^+ + (1-t)\lambda_k$

Compute sensitivities at the solution:

$$\frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \end{array} \right] = -M \left[\begin{array}{c} \nabla_{\mathbf{w},\mathbf{p}} \mathcal{L} \\ \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \end{array} \right]$$

return $\mathbf{w}, \lambda, \frac{\partial \mathbf{w}}{\partial \mathbf{p}}, \frac{\partial \lambda}{\partial \mathbf{p}}$

Outline

- Parametric Optimization
- 2 Continuity & differentiability
- 3 Sensitivity in Newton
- 4 Sensitivity with inequality constraints
- 5 Path Following Methods

Parametric NLP: Solution $\mathbf{w}(\mathbf{p}), \boldsymbol{\lambda}(\mathbf{p}), \boldsymbol{\mu}(\mathbf{p})$ given by the KKT conditions:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p}) \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda, \mu) = 0 \\
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \\
\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0 \qquad \qquad \mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0 \\
\mu_{i} \mathbf{h}_{i}(\mathbf{w}, \mathbf{p}) = 0$$

Now we have non-smooth conditions...

Parametric NLP: Solution $\mathbf{w}(\mathbf{p}), \boldsymbol{\lambda}(\mathbf{p}), \boldsymbol{\mu}(\mathbf{p})$ given by the KKT conditions:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p}) \qquad \qquad \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda, \mu) = 0 \\
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \qquad \qquad \mathbf{g}(\mathbf{w}, \mathbf{p}) = 0 \\
\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0 \qquad \qquad \mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0 \\
\mu_{i} \mathbf{h}_{i}(\mathbf{w}, \mathbf{p}) = 0$$

Now we have non-smooth conditions...

... however, they are piecewise smooth!!

Parametric NLP: Solution $w(p), \lambda(p), \mu(p)$ given by the KKT conditions:

$$\min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda, \mu) = 0$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$
$$\mu_{i} \mathbf{h}_{i}(\mathbf{w}, \mathbf{p}) = 0$$

Now we have non-smooth conditions...

Let \mathbb{A} be the active set, then we have:

$$\nabla_{\mathbf{w}} \mathcal{L} (\mathbf{w}, \mathbf{p}, \lambda, \mu) = 0$$
$$\mathbf{g} (\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}_{\mathbb{A}} (\mathbf{w}, \mathbf{p}) = 0$$
$$\mu_{\mathbb{A}} = 0$$

and
$$\mathbf{h}_{\bar{\mathbb{A}}}\left(\mathbf{w},\mathbf{p}\right)<0,\,\boldsymbol{\mu}_{\mathbb{A}}>0$$

... however, they are piecewise smooth!!

Parametric NLP: Solution $w(p), \lambda(p), \mu(p)$ given by the KKT conditions:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda, \mu) = 0$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$
$$\mu_{i} \mathbf{h}_{i}(\mathbf{w}, \mathbf{p}) = 0$$

Now we have non-smooth conditions...

... however, they are piecewise smooth !!

Let A be the active set, then we have:

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{p}, \lambda, \mu) = 0$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}_{\mathbb{A}}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mu_{\mathbb{A}} = 0$$

and
$$\mathbf{h}_{\mathbf{\bar{A}}}\left(\mathbf{w},\mathbf{p}\right)<0,\,oldsymbol{\mu}_{\mathbf{A}}>0$$

Conditions are smooth as long as all constraints are **strictly active**. Then we avoid the "corner" of the complementarity slackness manifold.

Parametric NLP:

$$\begin{aligned} \min_{\mathbf{w}} \quad \Phi(\mathbf{w}) \\ \mathbf{g}(\mathbf{w}, \mathbf{p}) &= 0 \\ \mathbf{h}(\mathbf{w}, \mathbf{p}) &\leq 0 \end{aligned}$$

Let \mathbb{A} be the (strictly) active set, then we have:

$$\nabla_{\mathbf{w}} \Phi (\mathbf{w}) + \nabla_{\mathbf{w}} \mathbf{g} (\mathbf{w}, \mathbf{p}) \lambda + \nabla_{\mathbf{w}} \mathbf{h}_{\mathbb{A}} (\mathbf{w}, \mathbf{p}) \mu_{\mathbb{A}} = 0$$
$$\mathbf{g} (\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right)=0$$

$$\boldsymbol{\mu}_{\overline{\mathbb{A}}}=0$$

and
$$\mathbf{h}_{\mathbf{\bar{A}}}\left(\mathbf{w},\mathbf{p}\right)<0,\,\boldsymbol{\mu}_{\mathbf{\bar{A}}}>0$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Let \mathbb{A} be the (strictly) active set, then we have:

$$\nabla_{\mathbf{w}}\Phi\left(\mathbf{w}\right) + \nabla_{\mathbf{w}}\mathbf{g}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\lambda} + \nabla_{\mathbf{w}}\mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\mu}_{\mathbb{A}} = 0$$

$$\mathbf{g}\left(\mathbf{w},\mathbf{p}\right) = 0$$

$$\mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right) = 0$$

$$\boldsymbol{\mu}_{\mathbb{A}} = 0$$

and
$$\mathbf{h}_{\mathbf{\bar{A}}}\left(\mathbf{w},\mathbf{p}\right)<0,\,\boldsymbol{\mu}_{\mathbf{\bar{A}}}>0$$

Let's define:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right) = \left[\begin{array}{c} \nabla_{\mathbf{w}}\Phi\left(\mathbf{w}\right) + \nabla_{\mathbf{w}}\mathbf{g}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\lambda} + \nabla_{\mathbf{w}}\mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\mu}_{\mathbb{A}} \\ \mathbf{g}\left(\mathbf{w},\mathbf{p}\right) \\ \mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right) \end{array} \right], \quad \mathbf{z} = \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu}_{\mathbb{A}} \end{array} \right]$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Let \mathbb{A} be the (strictly) active set, then we have:

$$\nabla_{\mathbf{w}} \Phi(\mathbf{w}) + \nabla_{\mathbf{w}} \mathbf{g}(\mathbf{w}, \mathbf{p}) \boldsymbol{\lambda} + \nabla_{\mathbf{w}} \mathbf{h}_{\mathbb{A}}(\mathbf{w}, \mathbf{p}) \boldsymbol{\mu}_{\mathbb{A}} = 0$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}_{\mathbb{A}}(\mathbf{w}, \mathbf{p}) = 0$$

$$\boldsymbol{\mu}_{\mathbb{A}} = 0$$

and
$$\mathbf{h}_{\bar{\mathbb{A}}}\left(\mathbf{w},\mathbf{p}\right)<0,\,\boldsymbol{\mu}_{\mathbb{A}}>0$$

Let's define:

Refine:
$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right) = \left[\begin{array}{c} \nabla_{\mathbf{w}}\Phi\left(\mathbf{w}\right) + \nabla_{\mathbf{w}}\mathbf{g}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\lambda} + \nabla_{\mathbf{w}}\mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\mu}_{\mathbb{A}} \\ \mathbf{g}\left(\mathbf{w},\mathbf{p}\right) \\ \mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right) \end{array} \right], \quad \mathbf{z} = \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu}_{\mathbb{A}} \end{array} \right]$$

Sensitivity given by $\frac{\partial \mathbf{z}}{\partial \mathbf{p}} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$ with:

$$\frac{\partial \mathbf{R}}{\partial \mathbf{z}} = \left[\begin{array}{ccc} \mathbf{\mathcal{H}} & \nabla_{\mathbf{w}} \mathbf{g} & \nabla_{\mathbf{w}} \mathbf{h}_{\mathbb{A}} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & \mathbf{0} & \mathbf{0} \\ \nabla_{\mathbf{w}} \mathbf{h}_{\mathbb{A}}^{\mathsf{T}} & \mathbf{0} & \mathbf{0} \end{array} \right]$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Let A be the (strictly) active set, then we have:

$$\nabla_{\mathbf{w}}\Phi\left(\mathbf{w}\right) + \nabla_{\mathbf{w}}\mathbf{g}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\lambda} + \nabla_{\mathbf{w}}\mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\mu}_{\mathbb{A}} = 0$$

$$\mathbf{g}\left(\mathbf{w},\mathbf{p}\right) = 0$$

$$\mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right) = 0$$

$$\boldsymbol{\mu}_{\mathbb{A}} = 0$$

and
$$\mathbf{h}_{\mathbf{\bar{A}}}\left(\mathbf{w},\mathbf{p}\right)<0,\,\boldsymbol{\mu}_{\mathbf{\bar{A}}}>0$$

Let's define:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right) = \left[\begin{array}{c} \nabla_{\mathbf{w}}\Phi\left(\mathbf{w}\right) + \nabla_{\mathbf{w}}\mathbf{g}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\lambda} + \nabla_{\mathbf{w}}\mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\mu}_{\mathbb{A}} \\ \mathbf{g}\left(\mathbf{w},\mathbf{p}\right) \\ \mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right) \end{array} \right], \quad \mathbf{z} = \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu}_{\mathbb{A}} \end{array} \right]$$

Sensitivity given by $\frac{\partial \mathbf{z}}{\partial \mathbf{p}} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$ with:

$$\frac{\partial \mathbf{R}}{\partial \mathbf{z}} = \begin{bmatrix} H & \nabla_{\mathbf{w}} \mathbf{g} & \nabla_{\mathbf{w}} \mathbf{h}_{\mathbb{A}} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & 0 & 0 \\ \nabla_{\mathbf{w}} \mathbf{h}_{\mathbb{A}}^{\mathsf{T}} & 0 & 0 \end{bmatrix}$$

Matrix $\frac{\partial \mathbf{R}}{\partial \mathbf{s}}$ is factorized inside Active Set QP solvers (c.f. Chapter "QP solvers"). I.e. we get the sensitivities for free[†] when using SQP !!

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Let A be the (strictly) active set, then we have:

$$\nabla_{\mathbf{w}} \Phi (\mathbf{w}) + \nabla_{\mathbf{w}} \mathbf{g} (\mathbf{w}, \mathbf{p}) \lambda + \nabla_{\mathbf{w}} \mathbf{h}_{\mathbb{A}} (\mathbf{w}, \mathbf{p}) \mu_{\mathbb{A}} = 0$$

$$\mathbf{g} (\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}_{\mathbb{A}} (\mathbf{w}, \mathbf{p}) = 0$$

$$\mu_{\mathbb{A}} = 0$$

and $\mathbf{h}_{\mathbf{\bar{A}}}\left(\mathbf{w},\mathbf{p}\right)<0,\,\boldsymbol{\mu}_{\mathbf{\bar{A}}}>0$

Let's define:

$$\mathbf{R}\left(\mathbf{z},\mathbf{p}\right) = \left[\begin{array}{c} \nabla_{\mathbf{w}}\Phi\left(\mathbf{w}\right) + \nabla_{\mathbf{w}}\mathbf{g}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\lambda} + \nabla_{\mathbf{w}}\mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right)\boldsymbol{\mu}_{\mathbb{A}} \\ \mathbf{g}\left(\mathbf{w},\mathbf{p}\right) \\ \mathbf{h}_{\mathbb{A}}\left(\mathbf{w},\mathbf{p}\right) \end{array} \right], \quad \mathbf{z} = \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu}_{\mathbb{A}} \end{array} \right]$$

Sensitivity given by $\frac{\partial \mathbf{z}}{\partial \mathbf{p}} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$ with:

$$\frac{\partial \mathbf{R}}{\partial \mathbf{z}} = \begin{bmatrix} H & \nabla_{\mathbf{w}} \mathbf{g} & \nabla_{\mathbf{w}} \mathbf{h}_{\mathbb{A}} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & 0 & 0 \\ \nabla_{\mathbf{w}} \mathbf{h}_{\mathbb{A}}^{\mathsf{T}} & 0 & 0 \end{bmatrix}$$

Matrix $\frac{\partial \mathbf{R}}{\partial \mathbf{z}}$ is factorized inside Active Set QP solvers (c.f. Chapter "QP solvers"). I.e. we get the sensitivities for free[†] when using SQP !!

[†]however this factorisation may be hidden deep inside a code you don't have access to... ③⑤⑤. Lobby for free access to the factorisation of the KKT matrix !!

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

$$\begin{aligned} s.t. \quad & \mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0 \\ & \frac{1}{5} \left(\tanh \theta + 1 \right) - \mathbf{w}_2 \leq 0 \end{aligned}$$

$$\frac{1}{5}\left(\tanh\theta+1\right)-\mathbf{w}_2\leq 0$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Constraint h inactive, $\mu = 0$, $A = \emptyset$ and:

$$\frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} H & \nabla_{\mathbf{w}} \mathbf{g} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & \mathbf{0} \end{bmatrix}^{-1} \frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \end{bmatrix}$$
$$\frac{\partial \boldsymbol{\mu}}{\partial \mathbf{p}} = \mathbf{0}$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0$$

$$\frac{1}{5} \left(\tanh \theta + 1 \right) - \mathbf{w}_2 \le 0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\begin{aligned} \min_{\mathbf{w}} \quad \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) &\leq 0 \end{aligned}$$

Constraint h inactive, $\mu = 0$, $A = \emptyset$ and:

$$\frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} H & \nabla_{\mathbf{w}} \mathbf{g} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & \mathbf{0} \end{bmatrix}^{-1} \frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \end{bmatrix}$$
$$\frac{\partial \boldsymbol{\mu}}{\partial \mathbf{p}} = \mathbf{0}$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0$$

$$\frac{1}{5} \left(\tanh \theta + 1 \right) - \mathbf{w}_2 \le 0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Constraint h inactive, $\mu = 0$, $A = \emptyset$ and:

$$\frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} H & \nabla_{\mathbf{w}} \mathbf{g} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & 0 \end{bmatrix}^{-1} \frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \end{bmatrix}$$
$$\frac{\partial \boldsymbol{\mu}}{\partial \mathbf{p}} = 0$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0$$

$$\frac{1}{5} \left(\tanh \theta + 1 \right) - \mathbf{w}_2 \le 0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Constraint h inactive, $\mu = 0$, $A = \emptyset$ and:

$$\frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} H & \nabla_{\mathbf{w}} \mathbf{g} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & 0 \end{bmatrix}^{-1} \frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \end{bmatrix}$$
$$\frac{\partial \boldsymbol{\mu}}{\partial \mathbf{p}} = 0$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 (1 + \mathbf{w}_1^2) + \theta = 0$$

$$\frac{1}{5}\left(\tanh\theta+1\right)-\mathbf{w}_2\leq 0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Constraint h inactive, $\mu = 0$, $A = \emptyset$ and:

$$\frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} H & \nabla_{\mathbf{w}} \mathbf{g} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & 0 \end{bmatrix}^{-1} \frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \end{bmatrix}$$
$$\frac{\partial \boldsymbol{\mu}}{\partial \mathbf{p}} = 0$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0$$

$$\frac{1}{5} \left(\tanh \theta + 1 \right) - \mathbf{w}_2 \le 0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Constraint h inactive, $\mu = 0$, $A = \emptyset$ and:

$$\frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} H & \nabla_{\mathbf{w}} \mathbf{g} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & 0 \end{bmatrix}^{-1} \frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \end{bmatrix}$$
$$\frac{\partial \boldsymbol{\mu}}{\partial \mathbf{p}} = 0$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0$$

$$\frac{1}{5} \left(\tanh \theta + 1 \right) - \mathbf{w}_2 \le 0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Constraint h inactive, $\mu = 0$, $A = \emptyset$ and:

$$\frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} H & \nabla_{\mathbf{w}} \mathbf{g} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & 0 \end{bmatrix}^{-1} \frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \end{bmatrix}$$
$$\frac{\partial \boldsymbol{\mu}}{\partial \mathbf{p}} = 0$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0$$

$$\frac{1}{5} \left(\tanh \theta + 1 \right) - \mathbf{w}_2 \le 0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Constraint h inactive, $\mu = 0$, $A = \emptyset$ and:

$$\frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \end{bmatrix} = - \begin{bmatrix} H & \nabla_{\mathbf{w}} \mathbf{g} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} & 0 \end{bmatrix}^{-1} \frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \end{bmatrix}$$
$$\frac{\partial \boldsymbol{\mu}}{\partial \mathbf{p}} = 0$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0$$

$$\frac{1}{5} \left(\tanh \theta + 1 \right) - \mathbf{w}_2 \le 0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

 $h(\mathbf{w}, \mathbf{p}) \leq 0$

Constraint h active, $\mu \neq 0$, $A = \{1\}$ and:

$$\frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array} \right] = - \left[\begin{array}{ccc} \boldsymbol{H} & \nabla_{\mathbf{w}} \mathbf{g} & \nabla_{\mathbf{w}} \mathbf{h} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} \\ \nabla_{\mathbf{w}} \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} \end{array} \right]^{-1} \frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \\ \mathbf{h} \end{array} \right]$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0$$

$$\frac{1}{5}\left(\tanh\theta+1\right)-\mathbf{w}_2\leq0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

 $h(\mathbf{w}, \mathbf{p}) \leq 0$

Constraint h active, $\mu \neq 0$, $A = \{1\}$ and:

$$\frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array} \right] = - \left[\begin{array}{ccc} \boldsymbol{H} & \nabla_{\mathbf{w}} \mathbf{g} & \nabla_{\mathbf{w}} \mathbf{h} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} \\ \nabla_{\mathbf{w}} \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} \end{array} \right]^{-1} \frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \\ \mathbf{h} \end{array} \right]$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 (1 + \mathbf{w}_1^2) + \theta = 0$$

$$\frac{1}{5}\left(\tanh\theta+1\right)-\mathbf{w}_2\leq 0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Constraint h active, $\mu \neq 0$, $A = \{1\}$ and:

$$\frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array} \right] = - \left[\begin{array}{ccc} \boldsymbol{H} & \nabla_{\mathbf{w}} \mathbf{g} & \nabla_{\mathbf{w}} \mathbf{h} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} \\ \nabla_{\mathbf{w}} \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} \end{array} \right]^{-1} \frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \\ \mathbf{h} \end{array} \right]$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0$$

$$\frac{1}{5}\left(\tanh\theta+1\right)-\mathbf{w}_2\leq0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

Constraint ${\bf h}$ active, ${\boldsymbol \mu} \neq {\bf 0}, \ {\mathbb A} = \{1\}$ and:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

$$\frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array} \right] = - \left[\begin{array}{ccc} \boldsymbol{H} & \nabla_{\mathbf{w}} \mathbf{g} & \nabla_{\mathbf{w}} \mathbf{h} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} \\ \nabla_{\mathbf{w}} \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} \end{array} \right]^{-1} \frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \\ \mathbf{h} \end{array} \right]$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

$$\mathrm{s.t.} \quad \mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0$$

$$\frac{1}{5}\left(\tanh\theta+1\right)-\mathbf{w}_2\leq0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

Constraint h active, $\mu \neq 0$, $A = \{1\}$ and:

$$\frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array} \right] = - \left[\begin{array}{ccc} \boldsymbol{H} & \nabla_{\mathbf{w}} \mathbf{g} & \nabla_{\mathbf{w}} \mathbf{h} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} \\ \nabla_{\mathbf{w}} \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} \end{array} \right]^{-1} \frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \\ \mathbf{h} \end{array} \right]$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 (1 + \mathbf{w}_1^2) + \theta = 0$$

 $\frac{1}{5} (\tanh \theta + 1) - \mathbf{w}_2 \le 0$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})
\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

 $h(\mathbf{w}, \mathbf{p}) \leq 0$

Constraint **h** active, $\mu \neq 0$, $\mathbb{A} = \{1\}$ and:

$$\frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array} \right] = - \left[\begin{array}{ccc} \boldsymbol{H} & \nabla_{\mathbf{w}} \mathbf{g} & \nabla_{\mathbf{w}} \mathbf{h} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} \\ \nabla_{\mathbf{w}} \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} \end{array} \right]^{-1} \frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \\ \mathbf{h} \end{array} \right]$$

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 \left(1 + \mathbf{w}_1^2 \right) + \theta = 0$$

$$\frac{1}{5} \left(\tanh \theta + 1 \right) - \mathbf{w}_2 \le 0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

Parametric NLP:

Constraint
$${\bf h}$$
 active, ${m \mu} \neq {\bf 0}$, ${\mathbb A} = \{ {\bf 1} \}$ and:

$$\mathsf{min} \quad \Phi\left(\mathbf{w},\mathbf{p}\right)$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

$$\frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array} \right] = - \left[\begin{array}{ccc} H & \nabla_{\mathbf{w}} \mathbf{g} & \nabla_{\mathbf{w}} \mathbf{h} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} \\ \nabla_{\mathbf{w}} \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} \end{array} \right]^{-1} \frac{\partial}{\partial \mathbf{p}} \left[\begin{array}{c} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \\ \mathbf{h} \end{array} \right]$$

Example

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2$$

s.t.
$$\mathbf{w}_2 - \mathbf{w}_1 (1 + \mathbf{w}_1^2) + \theta = 0$$

$$\frac{1}{5}\left(\tanh\theta+1\right)-\mathbf{w}_2\leq 0$$

Check
$$\frac{\partial \mathbf{z}}{\partial \theta} = -\frac{\partial \mathbf{R}}{\partial \mathbf{z}}^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{p}}$$

At the "corner", derivative does not exist. But directional derivatives do !! I.e.

$$\lim_{n\to\infty} \frac{\partial \mathbf{z}}{\partial \mathbf{n}}$$

$$\lim_{\mathbf{p} \to \mathbf{p}_{-}} \frac{\partial \mathbf{z}}{\partial \mathbf{p}} \quad \text{and} \quad \lim_{\mathbf{p} \to \mathbf{p}_{+}} \frac{\partial \mathbf{z}}{\partial \mathbf{p}}$$

exist

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

$$\frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{bmatrix} = - \begin{bmatrix} H & \nabla_{\mathbf{w}} \mathbf{g} & \nabla_{\mathbf{w}} \mathbf{h} \\ \nabla_{\mathbf{w}} \mathbf{g}^{\top} & 0 & 0 \\ \nabla_{\mathbf{w}} \mathbf{h}^{\top} & 0 & 0 \end{bmatrix}^{-1} \frac{\partial}{\partial \mathbf{p}} \begin{bmatrix} \nabla_{\mathbf{w}} \mathcal{L} \\ \mathbf{g} \\ \mathbf{h} \end{bmatrix}$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi\left(\mathbf{w}, \mathbf{p}\right)$$

$$g(\mathbf{w}, \mathbf{p}) = 0$$

 $h(\mathbf{w}, \mathbf{p}) \le 0$

$$\begin{aligned} \min_{\Delta \mathbf{w}} \quad & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0 \end{aligned}$$

 $\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le \mathbf{0}$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \boldsymbol{\mathcal{H}} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \boldsymbol{\mathcal{L}} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = 0 \\ & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq 0 \end{aligned}$$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

$$\begin{aligned} \min_{\mathbf{w}} \quad \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) &\leq 0 \end{aligned}$$

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \boldsymbol{\mathcal{H}} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \boldsymbol{\mathcal{L}} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = 0 \\ & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq 0 \end{aligned}$$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

 $h(\mathbf{w}, \mathbf{p}) \leq 0$

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \boldsymbol{\mathcal{H}} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \boldsymbol{\mathcal{L}} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = 0 \\ & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq 0 \end{aligned}$$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Approximating QP

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \boldsymbol{\mathcal{H}} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \boldsymbol{\mathcal{L}} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = 0 \\ & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq 0 \end{aligned}$$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \boldsymbol{\mathcal{H}} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \boldsymbol{\mathcal{L}} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = \mathbf{0} \\ & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq \mathbf{0} \end{aligned}$$

where

 $h(\mathbf{w}, \mathbf{p}) \leq 0$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

 $h(\mathbf{w}, \mathbf{p}) \leq 0$

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \mathcal{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = \mathbf{0} \\ & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq \mathbf{0} \end{aligned}$$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi\left(\mathbf{w}, \mathbf{p}\right)$$

$$g(\mathbf{w}, \mathbf{p}) = 0$$

 $h(\mathbf{w}, \mathbf{p}) \le 0$

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \mathcal{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = \mathbf{0} \\ & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq \mathbf{0} \end{aligned}$$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

 $h(\mathbf{w}, \mathbf{p}) \leq 0$

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \mathcal{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = \mathbf{0} \\ & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq \mathbf{0} \end{aligned}$$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \boldsymbol{\mathcal{H}} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \boldsymbol{\mathcal{L}} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = 0 \\ & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq 0 \end{aligned}$$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

 $h(\mathbf{w}, \mathbf{p}) \leq 0$

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \boldsymbol{\mathcal{H}} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \boldsymbol{\mathcal{L}} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = 0 \\ & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq 0 \end{aligned}$$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

 $h(\mathbf{w}, \mathbf{p}) \leq 0$

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \boldsymbol{\mathcal{H}} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \boldsymbol{\mathcal{L}} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = 0 \\ & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq 0 \end{aligned}$$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

min
$$\Phi(\mathbf{w}, \mathbf{p})$$

$$g(\mathbf{w}, \mathbf{p}) = 0$$

 $h(\mathbf{w}, \mathbf{p}) \le 0$

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \boldsymbol{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = \mathbf{0} \end{aligned}$$

 $\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \leq \mathbf{0}$

where

 \mathbf{w}_0

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

 $\overline{\mathbf{p}}$

Parametric NLP:

Approximating QP

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0 \\ & & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \leq 0 \end{aligned}$$

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

Parametric NLP:

Approximating QP

$$\label{eq:posterior} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

where

$$\Delta \mathbf{w} = \mathbf{w} - \mathbf{w}_0$$
$$\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0$$

QP predictor holds the sensitivities implicitly (current active set), but also catches a linear approximation of the "kinks" resulting from changes of active set

Parametric NLP:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$
$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$
$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

- solved at \mathbf{p}_0 yields \mathbf{w}_0
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\label{eq:posterior} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}
\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0
\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\label{eq:problem} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

$$\begin{aligned} \min_{\Delta \mathbf{w}} \quad & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \boldsymbol{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0 \end{aligned}$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\begin{aligned} \min_{\mathbf{w}} \quad \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) &\leq 0 \end{aligned}$$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}
\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0
\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\begin{aligned} \min_{\mathbf{w}} \quad \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) &\leq 0 \end{aligned}$$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}
\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0
\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\begin{aligned} \min_{\mathbf{w}} \quad \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) &\leq 0 \end{aligned}$$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}
\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0
\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\label{eq:problem} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}$$
$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0$$
$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\label{eq:min_w} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}
\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0
\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\label{eq:problem} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

$$\begin{aligned} \min_{\Delta \mathbf{w}} \quad & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \boldsymbol{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0 \end{aligned}$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\begin{aligned} \min_{\mathbf{w}} \quad \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) &= 0 \\ \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) &\leq 0 \end{aligned}$$

$$\begin{aligned} \min_{\Delta \mathbf{w}} \quad & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \boldsymbol{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0 \end{aligned}$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\label{eq:posterior} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

$$\begin{aligned} \min_{\Delta \mathbf{w}} \quad & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0 \end{aligned}$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\label{eq:posterior} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}$$
$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0$$
$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\label{eq:problem} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

$$\begin{aligned} \min_{\Delta \mathbf{w}} \quad & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \boldsymbol{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0 \end{aligned}$$

- solved at p₀ yields w₀
- new parameter p, perturbation $\Delta p = p p_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\label{eq:min_w} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

$$\begin{aligned} \min_{\Delta \mathbf{w}} \quad & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \boldsymbol{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0 \end{aligned}$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Parametric NLP:

$$\label{eq:min_w} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{aligned}$$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}
\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0
\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

- solved at p₀ yields w₀
- new parameter \mathbf{p} , perturbation $\Delta \mathbf{p} = \mathbf{p} \mathbf{p}_0$ inserted in the QP
- predicted solution $\mathbf{w} = \mathbf{w_0} + \Delta \mathbf{w}$ from the QP

Outline

- Parametric Optimization
- 2 Continuity & differentiability
- 3 Sensitivity in Newton
- 4 Sensitivity with inequality constraints
- Path Following Methods

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: SQP

Input: Solution w, λ , μ at p, and p⁺ Use initial guess:

$$\mathbf{w}, \lambda, \mu$$

to solve NLP at p^+ , new solution:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

return
$$\mathbf{w}, \lambda, \mu$$

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: SQP

Input: Solution w, λ , μ at p, and p⁺ Use initial guess:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

to solve NLP at p^+ , new solution:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

return \mathbf{w}, λ, μ

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: SQP

Input: Solution \mathbf{w} , λ , μ at \mathbf{p} , and \mathbf{p}^+ Use initial guess:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

to solve NLP at \mathbf{p}^+ , new solution:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

return \mathbf{w}, λ, μ

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: SQP

Input: Solution w, λ , μ at p, and p⁺ Use initial guess:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

to solve NLP at \mathbf{p}^+ , new solution:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

return \mathbf{w}, λ, μ

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: SQP

Input: Solution w, λ , μ at p, and p⁺ Use initial guess:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

to solve NLP at \mathbf{p}^+ , new solution:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

return \mathbf{w}, λ, μ

 1^{st} Newton step of SQP

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: SQP

Input: Solution \mathbf{w} , λ , μ at \mathbf{p} , and \mathbf{p}^+ Use initial guess:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

to solve NLP at \mathbf{p}^+ , new solution:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

return \mathbf{w}, λ, μ

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: SQP

Input: Solution w, λ , μ at p, and p⁺ Use initial guess:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

to solve NLP at \mathbf{p}^+ , new solution:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

return \mathbf{w}, λ, μ

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: Path-following SQP

Input: Solution w,
$$\lambda$$
, μ at p, and p^+ and $H, g, \nabla g, ...$

Solve QP predictor with
$$\Delta \mathbf{p} = \mathbf{p}^+ - \mathbf{p}$$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \mathbf{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}$$

$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq \mathbf{0}$$

Updated initial guess:

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$

$$\lambda \leftarrow \lambda + \Delta \lambda$$

$$\mu \leftarrow \mu + \Delta \mu$$

and solve NLP at p^+ (SQP), new solution:

$$\mathbf{w}, \lambda, \mu$$

return \mathbf{w}, λ, μ and $H, \mathbf{g}, \nabla \mathbf{g}, ...$

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: Path-following SQP

Input: Solution
$$\mathbf{w}, \lambda, \mu$$
 at \mathbf{p} , and \mathbf{p}^+ and $H, \mathbf{g}, \nabla \mathbf{g}, ...$

Solve QP predictor with
$$\Delta \mathbf{p} = \mathbf{p}^+ - \mathbf{p}$$

$$\min_{\Delta \mathbf{w}} \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\
\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = \mathbf{0}$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

Updated initial guess:

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$

$$\lambda \leftarrow \lambda + \Delta \lambda$$

$$\mu \leftarrow \mu + \Delta \mu$$

and solve NLP at p^+ (SQP), new solution:

$$\mathbf{w}, \lambda, \mu$$

return \mathbf{w}, λ, μ and $H, \mathbf{g}, \nabla \mathbf{g}, ...$

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: Path-following SQP

Input: Solution \mathbf{w} , $\boldsymbol{\lambda}$, $\boldsymbol{\mu}$ at \mathbf{p} , and \mathbf{p}^+ and \boldsymbol{H} , \mathbf{g} , $\nabla \mathbf{g}$, ...

Solve QP predictor with $\Delta \mathbf{p} = \mathbf{p}^+ - \mathbf{p}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \mathbf{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}$$

$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = \mathbf{0}$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

Updated initial guess:

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$

$$\lambda \leftarrow \lambda + \Delta \lambda$$

$$\mu \leftarrow \mu + \Delta \mu$$

and solve NLP at p^+ (SQP), new solution:

$$\mathbf{w}, \lambda, \mu$$

return \mathbf{w}, λ, μ and $H, \mathbf{g}, \nabla \mathbf{g}, ...$

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: Path-following SQP

Input: Solution w, λ , μ at p, and p^+ and $H, g, \nabla g, ...$

Solve QP predictor with $\Delta \mathbf{p} = \mathbf{p}^+ - \mathbf{p}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \mathbf{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}$$

$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = \mathbf{0}$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

Updated initial guess:

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$

$$\lambda \leftarrow \lambda + \Delta \lambda$$

$$\mu \leftarrow \mu + \Delta \mu$$

and solve NLP at p^+ (SQP), new solution:

$$\mathbf{w}, \lambda, \mu$$

return w, λ , μ and H, g, ∇g , ...

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: Path-following SQP

Input: Solution w, λ , μ at p, and p^+ and $H, g, \nabla g, ...$

Solve QP predictor with $\Delta \mathbf{p} = \mathbf{p}^+ - \mathbf{p}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^\mathsf{T} \boldsymbol{H} \Delta \mathbf{w} + \Delta \mathbf{p}^\mathsf{T} \nabla_{\mathbf{p} \mathbf{w}} \boldsymbol{\mathcal{L}} \Delta \mathbf{w}$$

$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = \mathbf{0}$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

Updated initial guess:

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$

$$\lambda \leftarrow \lambda + \Delta \lambda$$

$$\mu \leftarrow \mu + \Delta \mu$$

and solve NLP at p^+ (SQP), new solution:

$$\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}$$

return \mathbf{w}, λ, μ and $H, \mathbf{g}, \nabla \mathbf{g}, ...$

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: Path-following SQP

Input: Solution \mathbf{w} , λ , μ at \mathbf{p} , and \mathbf{p}^+ and H, \mathbf{g} , $\nabla \mathbf{g}$, ...

Solve QP predictor with $\Delta \mathbf{p} = \mathbf{p}^+ - \mathbf{p}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^\mathsf{T} \boldsymbol{H} \Delta \mathbf{w} + \Delta \mathbf{p}^\mathsf{T} \nabla_{\mathbf{p} \mathbf{w}} \boldsymbol{\mathcal{L}} \Delta \mathbf{w}$$

$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

Updated initial guess:

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$

$$\lambda \leftarrow \lambda + \Delta \lambda$$

$$\mu \leftarrow \mu + \Delta \mu$$

and solve NLP at p^+ (SQP), new solution:

$$\mathbf{w}, \lambda, \mu$$

return \mathbf{w}, λ, μ and $H, \mathbf{g}, \nabla \mathbf{g}, ...$

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: Path-following SQP

Input: Solution \mathbf{w} , $\boldsymbol{\lambda}$, $\boldsymbol{\mu}$ at \mathbf{p} , and \mathbf{p}^+ and \boldsymbol{H} , \mathbf{g} , $\nabla \mathbf{g}$, ...

Solve QP predictor with $\Delta \mathbf{p} = \mathbf{p}^+ - \mathbf{p}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \mathbf{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}$$

$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0$$
$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} < 0$$

Updated initial guess:

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$

$$\lambda \leftarrow \lambda + \Delta \lambda$$

$$\mu \leftarrow \mu + \Delta \mu$$

and solve NLP at p^+ (SQP), new solution:

$$\mathbf{w}, \lambda, \mu$$

return \mathbf{w}, λ, μ and $H, \mathbf{g}, \nabla \mathbf{g}, ...$

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: Path-following SQP

Input: Solution w, λ , μ at p, and p^+ and $H, g, \nabla g, ...$

Solve QP predictor with $\Delta \mathbf{p} = \mathbf{p}^+ - \mathbf{p}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^\mathsf{T} \boldsymbol{H} \Delta \mathbf{w} + \Delta \mathbf{p}^\mathsf{T} \nabla_{\mathbf{p} \mathbf{w}} \boldsymbol{\mathcal{L}} \Delta \mathbf{w}$$

$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} \le 0$$

Updated initial guess:

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$

$$\lambda \leftarrow \lambda + \Delta \lambda$$

$$\mu \leftarrow \mu + \Delta \mu$$

and solve NLP at p^+ (SQP), new solution:

$$\mathbf{w}, \lambda, \mu$$

return \mathbf{w}, λ, μ and $H, \mathbf{g}, \nabla \mathbf{g}, ...$

Follow a solution path w(p), for a given "parameter trajectory" p?

Algorithm: Path-following SQP

Input: Solution w, λ , μ at p, and p^+ and $H, g, \nabla g, ...$

Solve QP predictor with $\Delta \mathbf{p} = \mathbf{p}^+ - \mathbf{p}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \mathbf{H} \Delta \mathbf{w} + \Delta \mathbf{p}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w}$$

$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{p} = 0$$
$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{p} < 0$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}' \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}' \Delta \mathbf{p} \le 0$$

Updated initial guess:

$$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$$

$$\lambda \leftarrow \lambda + \Delta \lambda$$

$$\mu \leftarrow \mu + \Delta \mu$$

and solve NLP at p^+ (SQP), new solution:

$$\mathbf{w}, \lambda, \mu$$

return w, λ , μ and H, g, ∇ g, ...

Follow a solution path $w\left(\mathbf{p}\right)\!,$ for a given "parameter trajectory" \mathbf{p} ?

Predictor-Corrector

QP predictor

$$\begin{aligned} & \underset{\Delta\mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \boldsymbol{H} \Delta \mathbf{w} + \left(\mathbf{p}^{\mathsf{+}} - \mathbf{p}\right)^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \left(\mathbf{p}^{\mathsf{+}} - \mathbf{p}\right) = 0 \\ & & & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \left(\mathbf{p}^{\mathsf{+}} - \mathbf{p}\right) \leq 0 \end{aligned}$$

SQP (corrector)

$$\min_{\Delta \mathbf{w}} \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \mathbf{\Phi}^{\mathsf{T}} \Delta \mathbf{w}$$
$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} = 0$$
$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} \le 0$$

Predicts solution for a parametric change

Corrects solution until KKT satisfied

Predictor-Corrector:

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w} + \left(\mathbf{p}^{+} - \mathbf{p}\right)^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \left(\mathbf{p}^{+} - \mathbf{p}\right) = 0 \\ & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \left(\mathbf{p}^{+} - \mathbf{p}\right) \leq 0 \end{aligned}$$

Implementation: solution \mathbf{w} at \mathbf{p} known, together with $H, \mathbf{g}, \nabla \mathbf{g}, ...$ For new parameter \mathbf{p}^+

- ③ Solve Predictor-Corrector, using H, g, ∇g , ... (already known). Predicts next solution + correct \mathbf{w} if KKT not yet fulfilled!
- ② Update $\mathbf{p} \leftarrow \mathbf{p}^+$, re-evaluate $H, \mathbf{g}, \nabla \mathbf{g}, ...$, back to 1. Correct solution until KKT satisfied

Predictor-Corrector and Parametric Embedding

Parametric NLP:

$$\begin{aligned} \mathbf{w}\left(\mathbf{p}\right) &= \arg\min_{\mathbf{w}} & \Phi\left(\mathbf{w},\mathbf{p}\right) \\ & \mathbf{g}\left(\mathbf{w},\mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w},\mathbf{p}\right) \leq 0 \end{aligned}$$

NLP with parametric embedding is equivalent to the "Path-following SQP" algorithm. This is a "cheap" way of implementing the algorithm.

Resulting QP: is a predictor-correct QP

$$\begin{aligned} & \underset{\Delta \mathbf{w}, \Delta \boldsymbol{\theta}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \boldsymbol{H} \Delta \mathbf{w} + \nabla \boldsymbol{\Phi}^{\mathsf{T}} \Delta \mathbf{w} + \Delta \boldsymbol{\theta}^{\mathsf{T}} \nabla_{\boldsymbol{\theta} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \boldsymbol{\theta} = 0 \\ & & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \boldsymbol{\theta} \leq 0 \\ & & & & & \mathbf{p} - \mathbf{p}^{+} + \Delta \boldsymbol{\theta} = 0 \end{aligned}$$

- If $\mathbf{p} \neq \mathbf{p}^+$, QP does predictor-corrector step, and sets $\mathbf{p} \leftarrow \mathbf{p}^+$ (full SQP step)
- If $\mathbf{p} = \mathbf{p}^+$, QP does classic SQP (corrector) step, converges the KKT conditions

Predictor-Corrector and Parametric Embedding

NLP with parametric embedding:

$$\mathbf{w}(\mathbf{p}^{+}) = \arg\min_{\mathbf{w}, \mathbf{p}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$$

$$\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$$

$$\mathbf{p} - \mathbf{p}^{+} = 0$$

NLP with parametric embedding is equivalent to the "Path-following SQP" algorithm. This is a "cheap" way of implementing the algorithm.

Resulting QP: is a predictor-correct QP

- If $\mathbf{p} \neq \mathbf{p}^+$, QP does predictor-corrector step, and sets $\mathbf{p} \leftarrow \mathbf{p}^+$ (full SQP step)
- If $p = p^+$, QP does classic SQP (corrector) step, converges the KKT conditions

Suppose p(t) is **continuously changing with time** t and continuously measured.

Suppose p(t) is **continuously changing with time** t and continuously measured.

- NMPC: p(t) is a state estimation, solution w contains the control
- Minimize time from p(t) to update $\mathbf{w}(\mathbf{p}(t))$ (control delay)

S. Gros (S2, Chalmers)

Suppose p(t) is continuously changing with time t and continuously measured.

- NMPC: p(t) is a state estimation, solution w contains the control
- Minimize time from $\mathbf{p}(t)$ to update $\mathbf{w}(\mathbf{p}(t))$ (control delay)
- Avoid linearization **between** new $\mathbf{p}(t)$ and update of \mathbf{w} ...

Suppose p(t) is continuously changing with time t and continuously measured.

- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- Minimize time from p(t) to update
 w (p(t)) (control delay)
- Avoid linearization **between** new $\mathbf{p}(t)$ and update of \mathbf{w} ...

Algorithm: Real-time path-following

```
Input: Solution \mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu} and \boldsymbol{H}, \mathbf{g}, \nabla \mathbf{g}, ... at \mathbf{p}, new parameter \mathbf{p}^+ (measurement)
```

Take single full SQP step on NLP:

$$\mathbf{w} \left(\mathbf{p}^{+} \right) = \arg \min_{\mathbf{w}, \mathbf{p}} \quad \Phi \left(\mathbf{w}, \mathbf{p} \right)$$
$$\mathbf{g} \left(\mathbf{w}, \mathbf{p} \right) = 0, \quad \mathbf{p} - \mathbf{p}^{+} = 0$$
$$\mathbf{h} \left(\mathbf{w}, \mathbf{p} \right) \le 0$$

```
using H, \mathbf{g}, \nabla \mathbf{g}, \dots at \mathbf{p}
Update H, \mathbf{g}, \nabla \mathbf{g}, \dots
return \mathbf{w}, \lambda, \mu and H, \mathbf{g}, \nabla \mathbf{g}, \dots
```

Suppose p(t) is **continuously changing with time** t and continuously measured.

- NMPC: p(t) is a state estimation, solution w contains the control
- Minimize time from p(t) to update $\mathbf{w}(\mathbf{p}(t))$ (control delay)
- Avoid linearization **between** new $\mathbf{p}(t)$ and update of w...

Algorithm: Real-time path-following

Input: Solution w, λ , μ and H, g, ∇ g, ... at p, new parameter p⁺ (measurement)

Take single full SQP step on NLP:

$$\mathbf{w}(\mathbf{p}^+) = \arg\min_{\mathbf{w}, \mathbf{p}} \Phi(\mathbf{w}, \mathbf{p})$$

$$\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0, \quad \mathbf{p} - \mathbf{p}^+ = 0$$

 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

using $H, g, \nabla g, \dots$ at p Update $H, g, \nabla g, ...$ return \mathbf{w}, λ, μ and $H, \mathbf{g}, \nabla \mathbf{g}, ...$

NMPC at physical time *i* is an **NLP** with $\mathbf{w} = \{\mathbf{x}_0, \mathbf{u}_0, ..., \mathbf{x}_{N-1}, \mathbf{u}_{N-1}, \mathbf{x}_N\}$

$$\mathbf{w}\left(\hat{\mathbf{x}}_{i}\right) = \arg\min_{\mathbf{w}} \quad \Phi\left(\mathbf{w}\right)$$

s.t.
$$\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}_i) = \begin{bmatrix} \hat{\mathbf{x}}_i - \mathbf{x}_0 \\ \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ \dots \\ \mathbf{f}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) - \mathbf{x}_N \end{bmatrix} = 0$$
$$\mathbf{h}(\mathbf{w}) = \begin{bmatrix} \mathbf{h}(\mathbf{x}_0, \mathbf{u}_0) \\ \dots \\ \mathbf{h}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) \\ \mathbf{h}(\mathbf{x}_N) \end{bmatrix} \le 0$$

NMPC at physical time *i* is an **NLP** with $\mathbf{w} = \{\mathbf{x}_0, \mathbf{u}_0, ..., \mathbf{x}_{N-1}, \mathbf{u}_{N-1}, \mathbf{x}_N\}$

$$\mathbf{w}\left(\hat{\mathbf{x}}_{i}\right) = \underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \Phi\left(\mathbf{w}\right)$$

s.t.
$$\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}_i) = \begin{bmatrix} \hat{\mathbf{x}}_i - \mathbf{x}_0 \\ \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ \dots \\ \mathbf{f}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) - \mathbf{x}_N \end{bmatrix} = 0$$
$$\mathbf{h}(\mathbf{w}) = \begin{bmatrix} \mathbf{h}(\mathbf{x}_0, \mathbf{u}_0) \\ \dots \\ \mathbf{h}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) \\ \mathbf{h}(\mathbf{x}_N) \end{bmatrix} \le 0$$

Initial conditions $\hat{\mathbf{x}}_i$ at time i are already embedded

NMPC at physical time *i* is an **NLP** with $\mathbf{w} = \{\mathbf{x}_0, \mathbf{u}_0, ..., \mathbf{x}_{N-1}, \mathbf{u}_{N-1}, \mathbf{x}_N\}$

 $\mathbf{w}\left(\hat{\mathbf{x}}_{i}\right) = \underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \Phi\left(\mathbf{w}\right)$

s.t.
$$\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}_i) = \begin{bmatrix} \hat{\mathbf{x}}_i - \mathbf{x}_0 \\ \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ \dots \\ \mathbf{f}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) - \mathbf{x}_N \end{bmatrix} = 0$$

$$\mathbf{h}(\mathbf{w}) = \begin{bmatrix} \mathbf{h}(\mathbf{x}_0, \mathbf{u}_0) \\ \dots \\ \mathbf{h}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) \\ \dots \\ \mathbf{h}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) \end{bmatrix} \le 0$$

$$\frac{\mathbf{return}}{\mathbf{h}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1})}$$

Initial conditions $\hat{\mathbf{x}}_i$ at time i are already **embedded**

Perform between $\hat{\mathbf{x}}_{i-1}$ and $\hat{\mathbf{x}}_i$:

Algorithm: Preparation phase

Input: Solution \mathbf{w} , $\boldsymbol{\lambda}$, $\boldsymbol{\mu}$ and at \mathbf{p} Compute \boldsymbol{H} , \mathbf{h} , $\nabla \mathbf{h}$, $\nabla \mathbf{g}$, $\nabla \Phi$ and

$$\bar{\mathbf{g}} = \left[\begin{array}{c} \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ \vdots \\ \mathbf{f}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) - \mathbf{x}_N \end{array} \right]$$

return $H, h, \nabla h, \nabla g, \nabla \Phi$ and \bar{g}

NMPC at physical time *i* is an **NLP** with $\mathbf{w} = \{\mathbf{x}_0, \mathbf{u}_0, ..., \mathbf{x}_{N-1}, \mathbf{u}_{N-1}, \ \mathbf{x}_N\}$

 $\mathbf{w}\left(\hat{\mathbf{x}}_{i}\right) = \underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \Phi\left(\mathbf{w}\right)$

s.t.
$$\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}_i) = \begin{bmatrix} \hat{\mathbf{x}}_i - \mathbf{x}_0 \\ \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ \dots \\ \mathbf{f}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) - \mathbf{x}_N \end{bmatrix} = 0$$
$$\mathbf{h}(\mathbf{w}) = \begin{bmatrix} \mathbf{h}(\mathbf{x}_0, \mathbf{u}_0) \\ \dots \\ \mathbf{h}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) \\ \mathbf{h}(\mathbf{x}_N) \end{bmatrix} \le 0$$

Initial conditions $\hat{\mathbf{x}}_i$ at time i are already **embedded**

Perform between $\hat{\mathbf{x}}_{i-1}$ and $\hat{\mathbf{x}}_i$:

Algorithm: Preparation phase

Input: Solution \mathbf{w} , $\boldsymbol{\lambda}$, $\boldsymbol{\mu}$ and at \mathbf{p} Compute \boldsymbol{H} , \mathbf{h} , $\nabla \mathbf{h}$, $\nabla \mathbf{g}$, $\nabla \Phi$ and

$$\mathbf{\bar{g}} = \left[\begin{array}{c} \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right) - \mathbf{x}_{1} \\ \vdots \\ \mathbf{f}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) - \mathbf{x}_{N} \end{array} \right]$$

return H, h, ∇h , ∇g , $\nabla \Phi$ and \bar{g}

Perform upon receiving $\hat{\mathbf{x}}_i$

Algorithm: Feedback phase

Input: $\hat{\mathbf{x}}_i$, w and H, h, ∇ h, ∇ g, ∇ Φ and $\bar{\mathbf{g}}$ Form $\begin{bmatrix} \hat{\mathbf{x}}_i - \mathbf{x}_0 \end{bmatrix}$

$$\mathbf{g}\left(\mathbf{w},\hat{\mathbf{x}}_{i}\right) = \begin{bmatrix} \hat{\mathbf{x}}_{i} - \mathbf{x}_{0} \\ \bar{\mathbf{g}} \end{bmatrix}$$

Solve QP gives $\Delta \mathbf{w}$, λ , μ Update $\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$ return \mathbf{w} , λ , μ

NMPC at physical time *i* is an **NLP** with $\mathbf{w} = \{\mathbf{x}_0, \mathbf{u}_0, ..., \mathbf{x}_{N-1}, \mathbf{u}_{N-1}, \ \mathbf{x}_N\}$

 $\mathbf{w}\left(\hat{\mathbf{x}}_{i}\right) = \underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \Phi\left(\mathbf{w}\right)$

s.t.
$$\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}_i) = \begin{bmatrix} \hat{\mathbf{x}}_i - \mathbf{x}_0 \\ \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ \dots \\ \mathbf{f}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) - \mathbf{x}_N \end{bmatrix} = \mathbf{0}$$

$$\mathbf{h}(\mathbf{w}) = \begin{bmatrix} \mathbf{h}(\mathbf{x}_0, \mathbf{u}_0) \\ \dots \\ \mathbf{h}(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}) \\ \mathbf{h}(\mathbf{x}_N) \end{bmatrix} \leq \mathbf{0}$$

Initial conditions $\hat{\mathbf{x}}_i$ at time i are already **embedded**

RTI reduces control delay by moving the linearization "out of the way", into Preparation phase. Feedback phase boils down to solving a QP.

Perform between $\hat{\mathbf{x}}_{i-1}$ and $\hat{\mathbf{x}}_i$:

Algorithm: Preparation phase

Input: Solution \mathbf{w} , $\boldsymbol{\lambda}$, $\boldsymbol{\mu}$ and at \mathbf{p} Compute \boldsymbol{H} , \mathbf{h} , $\nabla \mathbf{h}$, $\nabla \mathbf{g}$, $\nabla \Phi$ and

$$\mathbf{\bar{g}} = \left[\begin{array}{c} \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right) - \mathbf{x}_{1} \\ \vdots \\ \mathbf{f}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) - \mathbf{x}_{N} \end{array} \right]$$

return H, h, ∇h , ∇g , $\nabla \Phi$ and \bar{g}

Perform upon receiving $\hat{\mathbf{x}}_i$

Algorithm: Feedback phase

Input: $\hat{\mathbf{x}}_i$, w and H, h, ∇ h, ∇ g, ∇ Φ and $\bar{\mathbf{g}}$ Form $\left[\hat{\mathbf{x}}_i - \mathbf{x}_0 \right]$

$$\mathbf{g}\left(\mathbf{w}, \hat{\mathbf{x}}_{i}\right) = \begin{bmatrix} \hat{\mathbf{x}}_{i} - \mathbf{x}_{0} \\ \bar{\mathbf{g}} \end{bmatrix}$$

Solve QP gives $\Delta \mathbf{w}$, λ , μ Update $\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$ return \mathbf{w} , λ , μ