Discretized Streams

Fault-Tolerant Streaming Computation at Scale

Authors: Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica

Presenter: Michael Lanthier

Slides adapted from Tathagata Das' presentation at SOSP

Motivation

Many big-data applications need to process large data streams in near-real time

Website mon Require tens to hundreds of

Challenge

- Stream processing systems must recover from failures and stragglers quickly and efficiently
 - More important for streaming systems than batch systems

 Traditional streaming systems don't achieve these properties simultaneously

Outline

- Limitations of Traditional Streaming Systems
- Discretized Stream Processing (D-Streams)
- Spark Streaming
- Results
- Questions and Commentary

Traditional Streaming Systems

- Continuous operator model
 - Each node runs an operator with in-memory mutable state
 - For each input record,
 state is updated and new
 records are sent out

- Mutable state is lost if node fails
- Techniques such as node replication and upstream backup allow for fault tolerance.

Fault-tolerance in Traditional Systems

Node Replication [e.g. Borealis, Flux]

- Separate set of "hot failover" nodes process the same data streams
- Synchronization protocols ensures exact ordering of records in both sets
- On failure, the system switches over to the failover nodes

Fast recovery, but 2x hardware cost

Fault-tolerance in Traditional Systems

Upstream Backup [e.g. TimeStream, Storm]

- Each node maintains backup of the forwarded records since last checkpoint
- A "cold failover" node is maintained
- On failure, upstream nodes replay the backup records serially to the failover node to recreate the state

Only need 1 standby, but slow recovery

Slow Nodes in Traditional Systems

Node Replication

Upstream Backup

Neither approach handles stragglers

Spark Streaming's Goal

- Scales to hundreds of nodes
- Achieves second-scale latency
- Tolerate node failures and stragglers
- Sub-second fault and straggler recovery
- Minimal overhead beyond base processing

Why is it hard?

Stateful *continuous operators* tightly integrate "computation" with "mutable state"

Makes it harder to define clear boundaries when computation and state can be moved around

Dissociate computation from state

- Make state immutable and break computation into small, deterministic, stateless tasks
- Defines clear boundaries where state and computation can be moved around independently

Batch Processing Systems

Batch processing systems like MapReduce and Spark divide

- Data into small partitions
- Jobs into small, deterministic, stateless map / reduce tasks

Parallel Recovery

Failed tasks are re-executed on the other nodes in parallel

Discretized Stream Processing

Discretized Stream Processing

 Run a streaming computation as a series of small, deterministic batch jobs

Store intermediate state data in memory

Discretized Stream Processing

Example: Counting page views

Discretized Stream (DStream) is a sequence of immutable, partitioned datasets

 Can be created from live data streams or by applying bulk, parallel transformations on other DStreams

Lineage

- Datasets track operation lineage
- Datasets are periodically checkpointed asynchronously to prevent long lineages

Parallel Fault Recovery

- Lineage is used to recompute partitions lost due to failures
- Datasets on different time steps recomputed in parallel
- Partitions within a dataset also recomputed in parallel

Comparison to Continuous Operators

Discretized Stream Upstream Backup Processing count S Faster recovery than upstream backup, without the 2x cost of node replication across time intervals

How much faster than Upstream Backup?

Recover time = time taken to recompute and catch up

- Depends on available resources in the cluster
- Lower system load before failure allows faster recovery

Parallel recovery with 5 nodes faster than upstream backup

Parallel recovery with 10 nodes faster than 5 nodes

Parallel Straggler Recovery

- Straggler mitigation techniques
 - Detect slow tasks (e.g. 2X slower than other tasks)
 - Speculatively launch more copies of the tasks in parallel on other machines

Masks the impact of slow nodes on the progress of the system

Handling Late Data

- System can wait to accumulate records.
 - Records can then be batched by an external timestamp.
- System can batch like normal and allow the application to deal with it.
 - Developers can apply a reduce later on to batch like timestamps together.

D-Stream Features

- Allows transformations on RDDs
- Data can output to external systems
- Windowing can be applied to group data in intervals
- Incremental aggregation can be used for operations like count and max.
- Allows for tracking of state of external objects.

Overview

Aspect	D-Streams	Continuous proc. systems
Latency	0.5–2 s	1–100 ms unless records are batched for consistency
Consis- tency	Records processed atomically with interval they arrive in	Some systems wait a short time to sync operators before proceeding [5] 32
Late records	Slack time or app- level correction	Slack time, out of order processing [22] 35]
Fault recovery	Fast parallel recov- ery	Replication or serial recov- ery on one node
Straggler recovery	Possible via specu- lative execution	Typically not handled
Mixing w/ batch	Simple unification through RDD APIs	In some DBs [14]; not in message queueing systems

Spark Streaming

- Implemented using Spark processing engine
 - Spark allows datasets to be stored in memory, and automatically recovers them using lineage

Architecture Overview

Optimizations for Streaming

- Increased ability to pipeline transformations.
- Enabled asynchronous checkpointing.
- Added master recovery.
 - State of computation written at beginning of each timestep
 - Workers connect to new master and report their RDD partitions.

Batch and Interactive Processing

 Discretized Streams creates a single programming and execution model for running streaming, batch and interactive jobs

 Combine live data streams with historic data liveCounts.join(historicCounts).map(...)

Interactively query live streams

liveCounts.slice("21:00","21:05").count()

Evaluation

How fast is Spark Streaming?

Can process 60M records/second on 100 nodes at 1 second latency

Tested with 100 4-core EC2 instances and 100 streams of text

How does it compare to others?

Throughput comparable to other commercial stream processing systems

System	Throughput per core [records / sec]
Spark Streaming	160k
Oracle CEP	125k
Esper	100k
StreamBase	30k
Storm	30k

Comparison to Storm

Fault Recovery

Recovery time improves with more frequent checkpointing and more nodes

Straggler Recovery

Speculative execution of slow tasks mask the effect of stragglers

App combining live + historic data

Mobile Millennium Project: Real-time estimation of traffic transit times using live and past GPS

observations

 Markov chain Monte Carlo simulations on GPS observations

- Very CPU intensive
- Scales linearly with cluster size

Recent Related Work

- <u>Naiad</u> distributed system for executing data parallel, cyclic dataflow programs.
- <u>Re-Stream</u> Data streaming platform optimizing on energy efficiency.
- SEEP Extends continuous operators to enable parallel recovery, but does not handle stragglers

Questions

- Do the metrics provided accurately represent common use cases? Are there other metrics that should have been provided?
- Could this system be effectively adapted to deal with sub second latency?
- Will the system scale linearly in a less controlled environment?

Comments

- Paper could have included more metric comparisons.
 - How does the system handle straggler and fault recovery under load?
 - What was the cost of checkpointing?
- Provided a seemingly effective solution for the problem they are trying to solve.