

The Root of the Matter: A Discussion of DNS Security

Mark Allman
International Computer Science Institute

EECS 325 / 425 November 2018

"Like a preacher stealin' hearts in a travelin' show ..."

Collaborators

- Michael Bailey, Illinois/UMich
- Owen Bell, Case
- Tom Callahan, Case
- Jake Czyz, UMich
- Nick Feamster, Princeton
- Scott lekel-Johnson, Arbor
- Ben Jones, Princeton
- Andrew Kalafut, Grand Valley

- Eric Osterweil, Verisign
- Vern Paxson, ICSI & UCB
- Michael Rabinovich, Case
- Kyle Schomp, Case
- Craig Shue, WPI
- Nicholas Weaver, ICSI
- Jing Zhang, UMich

- DNS, as we use it:
 - connectionless UDP transport
 - single packet request
 - single packet response

- DNS, as we use it:
 - connectionless UDP transport
 - single packet request
 - single packet response

 However, name resolution is structurally complex and mysterious with many hidden components

DNS server message format

DNS server message format

DNS server message format

Goal:

www.icir.org

Basic Structure

Delegating Resolution

Caching Efficacy

Caching Efficacy

Caching Efficacy

More Delegation!

More Delegation!

FDNS-to-RDNS Delay

FDNS-to-RDNS Delay

• All like components do not always act the same

- All like components do not always act the same
- E.g., clients do not always adhere to the TTL

- All like components do not always act the same
- E.g., clients do not always adhere to the TTL

Network	Cnns.	TTL Exp.
ICSI	443K	30%
CCZ	817K	8%
LBNL	6.IM	14%

TTL Violations

TTL Violations

TTL Violations

TTL Violations

Replication

Replication

Replication

User Behavior

- Moving away from the infrastructure ...
- How about user behavior?

Query Rate

Query Rate

Query Rate

Name Popularity

Name Popularity

Name Popularity

- Open resolvers are a common component of the DNS ecosystem
 - will answer DNS queries for any host

- Open resolvers are a common component of the DNS ecosystem
 - will answer DNS queries for any host

- Curse: security issues
 - can circumvent RDNS policy, etc.

- Open resolvers are a common component of the DNS ecosystem
 - will answer DNS queries for any host

- Curse: security issues
 - can circumvent RDNS policy, etc.

 Blessing: provide us with myriad measurement vantage points

 15M open resolvers in 2010 (Leonard & Loguinov, IMC 2010)

- 15M open resolvers in 2010 (Leonard & Loguinov, IMC 2010)
- 32M open resolvers in 2013

- 15M open resolvers in 2010 (Leonard & Loguinov, IMC 2010)
- 32M open resolvers in 2013
 - mostly cheap home networking gear
 - mostly DNS forwarders

- 15M open resolvers in 2010 (Leonard & Loguinov, IMC 2010)
- 32M open resolvers in 2013
 - mostly cheap home networking gear
 - mostly DNS forwarders
- 15M open resolvers in 2017 (openresolverproject.org)

DNS Security

DNS Security

• DNS' key flaw:

DNS Security

- DNS' key flaw:
 - all transactions in clear text!
 - no trust, no privacy, no integrity

Security Implications

Security Implications

- DNS susceptible to ...
 - ... surveillance
 - ... spoofing
 - ... modification
 - ... injection
 - ... interposition

Security Implications

- DNS susceptible to ...
 - ... surveillance
 - ... spoofing
 - ... modification
 - ... injection
 - ... interposition

Every component of the DNS ecosystem is a potential adversary

ADNS Lying

ADNS Lying

- ADNS lying is prevented via implementation of bailiwick rules
 - prevents names from outside an ADNS' control from being accepted in responses

ADNS Lying

- ADNS lying is prevented via implementation of bailiwick rules
 - prevents names from outside an ADNS' control from being accepted in responses

 Out of I.09M open resolvers scanned we find 749 cases where bogus names are cached by part of the DNS infrastructure