CSE 321 - Fall 2023

Homework 1

Due Date: (2/11/2023) 23:55

1. In each of the following situations, determine whether $f \in O(g)$, $f \in \Omega(g)$, or both (in which case $f \in O(g)$). Provide explicit explanations for your answers. For at least half of the examples, perform a limit analysis.

	<u>f(n)</u>	<u>g(n)</u>
a)	2^n	2^{2n}
b)	n^2	n^3
c)	3n + 1	2n - 5
d)	$4n^2$	n^2
e)	log2(n)	log10(n)
f)	2^n	3^n
g)	n^3	$1000n^{2}$
h)	5n + 4	2n + 2
i)	\sqrt{n}	log2(n)
j)	2^n	2^{n+1}

2. List the following functions in order of their growth and provide proof for your claims.

$$\frac{1}{2n}$$
, $log(n)$, $\sqrt{n+5}$, $n+1$, 10^n , $n^2 log(n)$, 2^n , $n!$, n^{2^n}

- 3. Provide pseudo code for the following operations on a given binary search tree (BST) with a height of n. Analyze the time complexity (in terms of Big-Oh notation) of your code for each of the following:
 - a) Merging with another BST of height n.
 - b) Finding the kth smallest element in the BST.
 - c) Balancing the BST.
 - d) Finding elements within a specified value range.

4. Calculate the time complexity (in terms of big -Oh notation) of the following program.

```
i = 2
while i <= n:
    if i % 2 != 0:
        i = i - 1
    else:
        i = i * i
        i = i + 1
    print(i)</pre>
```

5. Suppose you have an array of n elements, where each element can be either even or odd with a probability distribution of 20% even and 80% odd. Propose an algorithm that identifies the first even element in the array. Describe the algorithm and analyze its average-case time complexity.

Notes:

- Your answer must be handwritten and submitted via the Course MS Teams page.
- Pseudocodes should be submitted as actual Python code and submitted as separate files together with your handwritten solutions.
- If you have any questions, you can send an email to b.koca@gtu.edu.tr
- Please complete your homework individually; group studies will be regarded as cheating.