A Network Tour of Data Science Final Project

Learning US Senate voting behavior from bill sponsorship profiles

Project Overview and Data

 Goal: predict votes of all senators based on the sponsorship information of each bill (sponsored by a senator)

Project Overview and Data

 Goal: predict votes of all senators based on the sponsorship information of each bill (sponsored by a senator)

- Approach: Convolutional Neural Network and Graph Interpolation

Project Overview and Data

- **Goal:** predict votes of all senators based on the sponsorship information of each bil (sponsored by a senator)

- Approach: Convolutional Neural Network and Graph Interpolation

- Data: collected from ProPublica Congress API from January 1997 to 2018 December
 - 6834 votes, 11 Senates (from 105 to 115), 231 senators
 - Adjacency is built considering the senator's positions (1 if senator i voted the same as j 0 otherwise)

Adjacency Matrices

Adjacency Matrices

Concordance and Dominance

Concordance and Dominance

Concordance and Dominance

115th Senate

105 senators (55 Republicans, 48 Democrats, 2 independent)

Sponsorship Profile

Over the 115th Senate, 79 bills were sponsored by senators (63 Republicans, 8 Democrats and 8 independent).

Most bills were from the Budget Committee or Foreign Relations Committee.

The sponsorship profile vector for a given vote is represented by the sponsors' final votes in a sparse vector:

 Sponsor 1
 Sponsor 2

 y
 0
 0
 ...
 y
 0
 0

Data per Senate:

Senate	105	107	108	109	110	111	112	113	114	115
Bills	59	40	48	326	277	156	262	193	258	79

Convolutional Neural Networks Model

- Input: sponsorship profile for each bill $(N_{BILLS} \times N_{SEN})$ + graph laplacian
- Output: senators' voting position for each bill $(N_{BILLS} \times N_{SEN})$
- Data split: train (50%), validation (10%), test (40%).

- Train

0.5

· Validation

Transductive Learning

- Inputs are known cosponsor positions
- Infer all other senators by variation minimization

Transductive Learning

- Predict threshold *t* using Random Forest
- Features are cosponsor statistics
- Targets are best thresholds

Random forest training data example:

# Dem Yea	# Dem Nay	# Rep Yea	# Rep Nay	# Dem = 0	# Rep = 0	# Dem > # Rep	t
0	0	25	0	True	False	False	0.231
13	0	14	0	False	False	False	0.993
0	0	0	1	False	False	False	-0.051
42	0	0	0	False	True	True	0.249

Results: Graph CNN

Results: Transductive Learning

Conclusion and further enhancements

- Exploratory data analysis: Senate polarization and majority / minority behavior
- Two methods for predicting voting pattern:
 - Transductive learning achieved the highest accuracy scores (avg. 86%)
 - Graph CNN did better with more data and much worse with less
- Apply learning methods to a multipartisan scenario
- Extend the analysis to House of Representatives