Kurs: KI T-InfT-008 und 010 Datenmengen und Embedded Systems

Cândido Vieira
10.10.2024
Balthasar-Neumann-Technikum (BNT)

Inhaltsverzeichnis

- 1. Einführung in Feature Engineering
- 2. Bedeutung von Feature Engineering
- 3. Typen von Features
- 4. Überblick über Techniken
- Feature Skalierung: Normalisierung und Standardisierung
- 6. Diskretisierung und Binning
 - a. Binning Methoden
- 7. Transformationen: Log- und Power-Transformationen

- 8. Interaktionsfeatures und Polynomiale Features
- 9. Text Features
- 10. Handhabung von Kategorischen Variablen
- 11. Feature Auswahl
- 12. Praktische Demonstration
- 13. Übungen

1. Einführung in Feature Engineering

Umwandlung von Rohdaten in nutzbare Features

• Ziel: Verbesserung der Vorhersageleistung

Wichtig für Modellgenauigkeit

2. Bedeutung von Feature Engineering

• Einfluss auf die Modellleistung

Zeitaufwand im ML-Prozess

Datenaufbereitung und Transformation

3. Typen von Features

• Numerisch: Alter, Preis, Einkommen

• Kategorisch: Land

• Zeitbasiert: Wochentag, Uhrzeit

4. Überblick über Techniken

- Feature Skalierung: Normalisierung und Standardisierung
- **Diskretisierung**: Binning
- Transformationen: Log und Power Transformationen
- Interaktionsfeatures: Kombination von Variablen

5. Feature Skalierung

• Normalisierung: Skaliert Daten zwischen [0, 1].

• Standardisierung: Daten haben Mittelwert 0 und Standardabweichung 1.

5. Normalisierung vs. Standardisierung

• Normalisierung: Für Algorithmen wie K-Nearest Neighbors.

• **Standardisierung**: Für Modelle mit normalverteilten Daten wie lineare Regression.

6. Diskretisierung und Binning

• Kontinuierliche Daten werden in Kategorien unterteilt.

• Beispiel: Einteilung von Alter in Gruppen wie "Kind", "Erwachsen", "Senior".

6. Binning Methoden

• Gleichbreiten-Binning: Gleich große Intervalle.

• Gleichhäufigkeits-Binning: Gleiche Anzahl an Datenpunkten pro Bin.

7. Transformationen: Log- und Power-Transformationen

• Log-Transformation: Nützlich bei exponentiellen Verteilungen.

• **Power-Transformation**: Verallgemeinerung der Log-Transformation.

7. Log-Transformation Beispiel

• Beispiel: um Schiefe in der Verteilung zu reduzieren.

8. Interaktionsfeatures

• Kombination von zwei oder mehr Features, um komplexe Beziehungen abzubilden.

• **Beispiel:** Alter x Einkommen.

8. Polynomiale Features

• Erstellung von Potenz-Features wie x^2, x^3, um nichtlineare Beziehungen zu erfassen.

• Nützlich bei polynomialen Regressionsmodellen.

9. Text Features

• **Tokenisierung**: Aufteilen von Text in Wörter.

• Bag-of-Words: Repräsentiert Texte als Vektoren basierend auf Wortfrequenzen.

9. TF-IDF

• **TF-IDF**: term frequency-inverse document frequency

• Repräsentiert wichtige Wörter durch Gewichtung seltener Begriffe.

• Nützlich zur Reduzierung des Einflusses häufiger Wörter wie "und", "der".

10. Kategorische Variablen: One-Hot-Encoding

• One-Hot-Encoding: Wandelt eine kategoriale Variable in binäre Spalten um.

• Jede Kategorie wird zu einer eigenen Spalte mit Werten 0 oder 1.

• Beispiel: **Wochentag** -> [Montag, Dienstag, Mittwoch]

Wochentag	Montag	Dienstag	Mittwoch
Montag	1	0	0
Dienstag	0	1	0
Mittwoch	0	0	1

10. Effektkodierung

• Unterschiede zwischen Gruppen durch Vergleich der Mittelwerte.

• Alternative zu One-Hot-Encoding für lineare Modelle.

11. Feature Auswahl

• Auswahl basierend auf statistischen Tests wie Chi-Quadrat-Test.

Nützlich zur Reduzierung der Komplexität eines Modells.

11. Feature Auswahl: Wrapper Methoden

• Modelle werden iterativ trainiert, um die besten Features zu identifizieren.

Methoden: Vorwärts- und Rückwärtsselektion.

11. Eingebaute Methoden zur Feature Auswahl

Modelle wie Lasso wählen Features automatisch aus.

Nützlich zur Vermeidung von Overfitting (Überanpassung).

12. Code-Beispiel: Skalierung

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

12. Code-Beispiel: One-Hot-Encoding

from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder()

X_encoded = encoder.fit_transform(X)

12. Feature Auswahl: Praktisches Beispiel

Anwendung von SelectKBest zur Auswahl der 3 besten Features.

• Ergebnisvergleich: Vorher und Nachher.

12. Zusammenfassung

Feature Engineering verbessert die Modellleistung erheblich.

• Wichtige Techniken: Skalierung, Diskretisierung, Interaktionsfeatures.

Auswahl der richtigen Features spart Rechenzeit und verhindert Überanpassung.

13. Übung 1: Skalierung und One-Hot-Encoding

Datensatz: Titanic-Daten

Skalierung der Variablen "Alter" und "Fare".

One-Hot-Encoding der Variablen "Sex" und "Embarked".

13. Übung 2: Diskretisierung und Binning

• Diskretisierung der Variablen "Fare".

• Gruppenbildung: Niedrig, Mittel, Hoch.

Visualisierung der Modellleistung vor und nach der Diskretisierung.

13. Übung 3: Min-Max Scaling

- MinMaxScale der Variablen "Age".
- Min-Max Scaling: normalisiert Daten in einen Bereich von 0 bis 1.

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

13. Übung 4: Min-Max Scaling

- MinMaxScale der Variablen "Age".
- Min-Max Scaling: normalisiert Daten in einen Bereich von -1 bis 1.

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

Referenzen

- 1. Brownlee, J. Data Preparation for Machine Learning, 2020, Machine Learning Mastery.
- 2. Kazil, J., Jarmul, K. Data Wrangling with Python, O'Reilly Media, 2016.