

ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation

Fei Mi*, Xiaoyu Lin* and Boi Faltings

Motivation

Approaches for session-bases recommendation are developed in an offline manner, in which the recommender is trained on a very large static training set and evaluated on a very restrictive testing set in a one-time process. However, a recommender needs to be periodically updated with new data steaming in. In this paper, we study session-based recommendation in a continual learning setup to consider such realistic recommendation scenarios.

Current Cycle

Recommender

 $f(\theta_t)$

Contributions

- The first to study the practical continual learning setting for the session-based recommendation task.
- Propose a method called Adaptively Distilled Exemplar Replay (ADER) for this task, and benchmark it with state-of-the-art continual learning techniques.
- superior performance of ADER and its ability to mitigate catastrophic forgetting.
- Experiment results on two widely used datasets empirically demonstrate the

Notations

···· Recommender

 $f(\theta_{t-1})$

- $\succ f(\theta_{t-1})$: recommendation model obtained until the last update cycle t-1.
- $\triangleright D_t$: new incoming data at update cycle t.

Continual Learning Setup

Previous Cycle

- $\succ f(\theta_t)$: the updated model, after $f(\theta_{t-1})$ is trained on D_t .
- $\succ E_t$: exemplar set selected until update cycle t.
- $\succ I_t$: the set of appeared items until cycle t.
- $\triangleright \phi(\cdot)$: the feature extractor in recommendation model $f(\theta)$.

Proposed Method Herding^{*} **Herding** Herding D_{t+1} D_{t-1} Recommender Recommender Recommender $f(\theta_{t-1})$ $f(\boldsymbol{\theta}_{t+1})$ $f(\theta_t)$

Algorithms

 \succ Algorithm to select exemplars at update cycle t

Algorithm 1 *ADER*: ExemplarSelection at cycle *t*

Input:
$$S = D_t \cup E_{t-1}$$
; $M_t = [m_1, m_2, ..., m_{|I_t|}]$
for $y = 1, ..., |I_t|$ do
 $\mathcal{P}_y \leftarrow \{\mathbf{x} : \forall (\mathbf{x}, y) \in S\}$
 $\mu \leftarrow \frac{1}{|\mathcal{P}_u|} \sum_{\mathbf{x} \in \mathcal{P}_y} \phi(\mathbf{x})$

for
$$k = 1, ..., m_y$$
 do

$$\mathbf{x}^k \leftarrow \arg\min_{\mathbf{x} \in \mathcal{P}_y} \|\mu - \frac{1}{k} [\phi(\mathbf{x}) + \sum_{j=1}^{k-1} \phi(\mathbf{x}^j)] \|$$

end for

$$E_y \leftarrow \{(\mathbf{x}^1, y), ..., (\mathbf{x}^{m_y}, y)\}$$

end for

Output: exemplar set $E_t = \bigcup_{y=1}^{|I_t|} E_y$

> Algorithm to update model at update cycle t

Algorithm 2 *ADER*: UpdateModel at cycle *t*

Input: $D_t, E_{t-1}, I_t, I_{t-1}$

Initialize θ_t with θ_{t-1}

while θ_t not converged do

Train θ_t with loss in Eq. (2)

end while

Compute M_t using Eq. (1)

Compute E_t using Algorithm 1 with θ_t and M_t

Output: updated θ_t and new exemplar set E_t

Exemplar Selection

What is the criterion for selecting exemplars of an item/label?

Herding technique [Welling, 2009; Rebuffi et al., 2017].

How many exemplars are stored for each item/label?

The number of exemplars is proportional to its appearance frequency. Suppose Nexemplars in total, the number of exemplars $m_{t,i}$ at cycle t for item $i \in I_t$ is:

$$m_{t,i} = N \cdot \frac{|\{x, y = i\} \in D_t \cup E_{t-1}|}{|D_t \cup E_{t-1}|}$$
 Eq. (1)

Proposed Adaptive Distillation Loss

 \succ Knowledge Distillation (KD) loss on exemplars E_{t-1}

$$L_{KD}(\theta_t) = -\frac{1}{|E_{t-1}|} \sum_{(x,y) \in E_{t-1}} \sum_{i=1}^{|I_{t-1}|} \widehat{p}_i \cdot \log(p_i)$$

where \widehat{P} is predicted distribution generated by $f(\theta_{t-1})$, and P is the prediction of $f(\theta_t)$.

 \triangleright Regular Cross-Entropy (CE) loss computed w.r.t. D_t

$$L_{CE}(\boldsymbol{\theta}_t) = -\frac{1}{|D_t|} \sum_{(x,y) \in D_t} \sum_{i=1}^{|I_t|} \delta_{i=y} \cdot \log(p_i)$$

Adaptive Distillation Loss

$$\lambda_t = \lambda_{base} \cdot \sqrt{\frac{|I_{t-1}|}{|I_t|} \cdot \frac{|E_{t-1}|}{|D_t|}}, \qquad L_{ADER} = L_{CE} + \lambda_t \cdot L_{KD} \qquad \text{Eq. (2)}$$

Results DIGINETICA **EWC** Joint Finetune *ADER* Dropout Recall@20 47.28% 49.07% 47.66% 50.03% 50.21% 35.00% 36.53% 35.48% 37.27% 37.52% Recall@10 16.01% 16.86% 16.28% 17.31% 17.32% **MRR@20** 15.16% 16.00% 16.45% 15.44% 16.43% MRR@10

50	DIGINETICA	YOOCHOOSE
52 - %)0 50 -		74 -
Recall@20(%)		72 -
46 -		70 -
(%) 18 -		38 -
RR@20(%) 16		37 - 36 -
E 10		35 -
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 week	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 day

YOOCHOOSE									
Finetune	Dropout	EWC	Joint	ADER					
71.86%	72.20%	71.91%	72.22%	72.38%					
63.82%	64.15%	63.89%	64.16%	64.41%					
36.49%	36.60%	36.53%	36.65%	36.71%					
35.92%	36.03%	35.97%	36.08%	36.14%					

Ablation Study (on DIGINETICA dataset)

- $ER_{herding}$: A vanilla exemplar replay by using L_{CE} , rather than L_{KD} , on exemplars.
- ER_{random} : It differs from $ER_{herding}$ by selecting exemplars of an item at random.
- ER_{loss} : It differs from $ER_{herding}$ by selecting exemplars of an item with smallest L_{CE} .
- $ADER_{equal}$: This differs from ADER by selecting equal number of exemplars for each item.
- $ADER_{fix}$: It differs from ADER by not using the adaptive λ_t in Eq.(2), but a fixed λ .

	ER _{herding}	ER _{random}	ER _{loss}	$ADER_{equal}$	$ADER_{fix}$
Recall@20	49.44%	49.14%	49.31%	49.92%	50.09%
Recall@10	36.88%	36.61%	36.65%	37.21%	37.41%
MRR@20	16.95%	16.79%	16.90%	17.23%	17.29%
MRR@10	16.08%	15.92%	16.02%	16.35%	16.41%

