CS 228 Problem Set 1

Hugh Zhang

March 2, 2017

Problem 1

We want to compute $P(C \mid v_1 \dots v_k)$. For our purposes, our sampler Q is uniform on the possible, so assuming a permutation x' is possible to reach from a state x, then the probabilities are equal. Thus, we can cancel the Qs out.

Acceptance probability is

$$A(c' \mid c, v_1 \dots v_k)$$
= $min(1, \frac{P(c' \mid v_1 \dots v_k)Q(c \mid x', v_1 \dots v_k)}{P(c \mid v_1 \dots v_k)Q(c' \mid x, v_1 \dots v_k)})$
= $min(1, \frac{P(c' \mid v_1 \dots v_k)}{P(c \mid v_1 \dots v_k)})$

How do we calculate

$$\frac{P(c' \mid v_1 \dots v_k)}{P(c \mid v_1 \dots v_k)}$$

$$= \frac{P(c' \mid v_1 \dots v_k)}{P(c \mid v_1 \dots v_k)}$$

$$= \frac{P(c', v_1 \dots v_k)}{P(c, v_1 \dots v_k)}$$

$$= \frac{P(v_1 \dots v_k \mid c')P(c')}{P(v_1 \dots v_k \mid c)P(c)}$$

We are given $P(v_1 \dots v_k \mid C)$, and although we don't quite know P(c), we are given the assumption that it is uniform a priori, so for our approximation it cancel out.

1.2

The samples are directly from $P(C \mid v_1 \dots v_k)$. Thus,

$$P(C_i = k \mid v_1 \dots v_k) = \frac{\sum_{m=1}^{M} 1(C_i[m] == k)}{M}$$

, or in English, just count the number of times you see it in the sample and divide it by the total number of samples.

1.3

Gibbs sampling does not work. When we sample C, we take two elements C_i and C_j and swap them. If we were to try to Gibbs sample this and try to sample each C_i independently and in order for all i, we would get invalid samples that were not permutations.

Problem 2

From lecture, we have.

$$\begin{split} & \log P(y_i \mid x_i, \theta) \\ = & \log \left(\frac{1}{Z(x^i, \theta)} \prod_{n \in N} exp(\theta_n f_n(x^i, y_n^i)) \right)) \\ = & \sum_{n \in N} \theta_n f_n(x^i, y_n^i)) - \log(Z(x^i, \theta)) \\ = & \sum_{n \in N} \theta_n f_n(x^i, y_n^i)) - \log \sum_n \sum_y exp(\theta_n * f_n(y, x^i)) \end{split}$$

Since the likelihood is just the log of the probability summed over all the data, letting M be the number of examples in D, we have

$$g(\theta, D) = (1 - \alpha)\ell_{Y|X}(\theta, D) + \alpha\ell_{X|Y}(\theta, D)$$

Where as per above,

$$\ell_{Y|X}(\theta, D) = \sum_{i}^{M} \left(\sum_{n \in N} \theta_n f_n(x_n^i, y_n^i) \right) - \log \sum_{n} \sum_{y} exp(\theta_n * f_n(y_n, x_n^i))$$

$$\ell_{X|Y}(\theta, D) = \sum_{i}^{M} \left(\sum_{n \in N} \theta_n f_n(x_n^i, y_n^i) \right) - \log \sum_{n} \sum_{x} exp(\theta_n * f_n(y_n^i, x_n))$$

2.2

We want to calculate

$$\frac{\partial}{\partial \theta} g(\theta, D)$$

$$= (1 - \alpha) \frac{\partial}{\partial \theta} \ell_{Y|X}(\theta, D) + \alpha \frac{\partial}{\partial \theta} \ell_{X|Y}(\theta, D)$$

$$=$$

We calculate

$$\begin{split} &\frac{\partial}{\partial \theta} \ell_{Y|X}(\theta, D) \\ &= \frac{\partial}{\partial \theta} \sum_{i}^{M} (\sum_{n \in N} \theta_{n} f_{n}(x_{n}^{i}, y_{n}^{i})) - \log \sum_{n} \sum_{y} exp(\theta_{n} * f_{n}(y_{n}, x_{n}^{i}))) \\ &= \sum_{i}^{M} (\sum_{n \in N} f_{n}(x_{n}^{i}, y_{n}^{i})) - \frac{\partial}{\partial \theta} \log \sum_{n} \sum_{y} exp(\theta_{n} * f_{n}(y_{n}, x_{n}^{i}))) \\ &= \sum_{i}^{M} (\sum_{n \in N} f_{n}(x_{n}^{i}, y_{n}^{i})) - \frac{1}{\sum_{n} \sum_{y} exp(\theta_{n} * f_{n}(y_{n}, x_{n}^{i})))} * \frac{\partial}{\partial \theta} \left(\sum_{n} \sum_{y} exp(\theta_{n} * f_{n}(y_{n}, x_{n}^{i})) \right) \\ &= \sum_{i}^{M} (\sum_{n \in N} f_{n}(x_{n}^{i}, y_{n}^{i})) - \frac{\sum_{n} \sum_{y} exp(\theta_{n} * f_{n}(y_{n}, x_{n}^{i})) * f_{n}(y_{n}, x_{n}^{i}))}{\sum_{n} \sum_{y} exp(\theta_{n} * f_{n}(y_{n}, x_{n}^{i}))} \\ &= \sum_{i}^{M} (\sum_{n \in N} f_{n}(x_{n}^{i}, y_{n}^{i})) - \frac{\sum_{n} P(x_{n}^{i}) * f_{n}(y_{n}, x_{n}^{i})}{Z(\theta, x_{n}^{i})} \end{split}$$