GOOD HOPE SCHOOL(F.4 – F.6) Properties of Circle

No.	Diagram	Given Condition	Conclusion	Abbreviation
1	A M B	$OM \perp AB$	AM = MB	⊥ from centre to chord bisects chord
2	O B	AM = MB	$OM \perp AB$	line joining centre to mid-pt of chord ⊥ chord
3	A B	$CM \perp AB$ and $AM = MB$	CM passes through O	⊥ bisector of chord passes through centre
4	P O B	AB = PQ	OM = ON	equal chords, equidistant from centre
5	B M A O D D D	OM = ON	AB = CD	chords equidistant from centre are equal
6	C O B	The angle at the centre and the angle at the circumference <u>are</u> <u>subtended by the</u> <u>same arc (i.e. arc AB</u> <u>in this case)</u>	∠AOB = 2∠ACB	∠ at centre twice ∠ at Θ^{ce}
7	A O B	AB is a diameter and C is a point on circle	$\angle ACB = 90^{\circ}$	∠ in semi-circle
8	A B	∠ACB = 90°	AB is diameter	converse of ∠ in semi- circle
9	C D D B	AB is a chord	$\angle ACB = \angle ADB$	∠s in the same segment

Page 2 Properties of Circle

No.	Diagram	Given Condition	Conclusion	Abbreviation
10	D C C O B	ABCD is a cyclic quadrilateral	$\angle A + \angle C = 180^{\circ}$ $\angle B + \angle D = 180^{\circ}$	opp. ∠s, cyclic quad.
11	D C O B E	One side of a cyclic quadrilateral is produced to form an exterior angle	∠ADC = ∠EBC	ext. ∠, cyclic quad.
12	C D B	$\angle ACB = \angle ADB$ and both <i>C</i> and <i>D</i> are on the same side of <i>AB</i>	A, B, C and D are concyclic	converse of ∠s in the same segment
13	C D B	$\angle A + \angle D = 180^{\circ}$ $\angle B + \angle C = 180^{\circ}$	A, B, C and D are concyclic	opp. ∠s supp.
14	C D B E	ABE is a straight line $\angle ACD = \angle DBE$	A, B, C and D are concyclic	ext. ∠ = int. opp. ∠
15(i)	A D	$\angle AOB = \angle COD$	AB = CD	equal ∠s, equal chords
15(ii)	A B	AB = CD	$\angle AOB = \angle COD$	equal chords, equal ∠s
16(i)	D B	$\angle AOB = \angle COD$	$\widehat{AB} = \widehat{CD}$	equal ∠s, equal arcs

Page 3 Properties of Circle

No.	Diagram	Given Condition	Conclusion	Abbreviation
16(ii)	A D D	$\widehat{AB} = \widehat{CD}$	$\angle AOB = \angle COD$	equal arcs, equal ∠s
17(i)	C O B	$\widehat{AB} = \widehat{CD}$	AB = CD	equal arcs, equal chords
17(ii)	C O B	AB = CD	$\widehat{AB} = \widehat{CD}$	equal chords, equal arcs
18	D C B	$\angle AOB : \angle COD = m : n$	$\widehat{AB}:\widehat{CD}=m:n$	arcs prop. to ∠s at centre
19	D C B	$\angle ADB : \angle BDC = m : n$	$\widehat{AB}:\widehat{BC}=m:n$	arcs prop. to ∠s at Θ^{ce}
21	O B	AB is the tangent to the circle at the point T	$AB\perp OT$	tangent ⊥ radius
22	O B	$ATB \perp OT$	ATB is the tangent to the circle at T.	converse of tangent ⊥ radius
23(i)	P	Two tangents drawn from an external point <i>T</i> meet the circle at points <i>P</i> and <i>Q</i>	TP = TQ	tangent prop.

Page 4 Properties of Circle

No.	Diagram	Given Condition	Conclusion	Abbreviation
23(ii)	P O	Two tangents drawn from an external point <i>T</i> meet the circle at points <i>P</i> and <i>Q</i>	$\angle TOP = \angle TOQ$	tangent prop.
23(iii)	P	Two tangents drawn from an external point <i>T</i> meet the circle at points <i>P</i> and <i>Q</i>	∠OTP = ∠OTQ	tangent prop.
24	B C Q	PQ is the tangent to the circle at point A	$\angle BCA = \angle BAP$	∠ in alt. segment
25	B C Q	$\angle BCA = \angle BAP$	PQ is the tangent to the circles at A	converse of ∠ in alt. segment
26	Touching externally Touching internally	Two circles touch each other (either externally or internally)	OAO' and OO'A are straight lines	prop. of two touching circles