Solution to Homework 1

Yangwei Liu

September 24, 2012

1 Problem 1

1.1 a.

True.

Proof. Suppose g(n) is in O(f(n)), so by definition we have:

$$\exists c_1, n_1 \text{ s.t. } \forall n > n_1, 0 < g(n) < c_1 \cdot f(n)$$

Suppose h(n) is in O(g(n)), so by definition we have:

$$\exists c_2, n_2 \text{ s.t. } \forall n > n_2, 0 < h(n) < c_2 \cdot g(n)$$

Combine them together, we have:

$$\exists c_3 = c_1 \cdot c_2, n_3 = \max(n_1, n_2) \text{ s.t. } \forall n > n_3, 0 < h(n) < c_3 \cdot f(n)$$

So we proved that O(O(f(n))) = O(f(n))

1.2 b.

True.

Proof. Suppose g(n) is in $\Theta(f(n))$, so by definition we have:

$$\exists c_1, c_1', n_1 \text{ s.t. } \forall n > n_1, c_1 \cdot f(n) < g(n) < c_1' \cdot f(n)$$

Suppose h(n) is in O(g(n)), so by definition we have:

$$\exists c_2, n_2 \text{ s.t. } \forall n > n_2, 0 < h(n) < c_2 \cdot g(n)$$

Combine them together, we have:

$$\exists c_3 = c_1^{'} \cdot c_2, n_3 = \max(n_1, n_2) \text{ s.t. } \forall n > n_3, 0 < h(n) < c_3 \cdot f(n)$$

So we prooved that
$$O(\Theta(f(n))) = O(f(n))$$

1.3 c.

False.

Counter-example: let $f(n) = n^2$, let g(n) = n, so $g(n) \in O(f(n))$, but $\Theta(g(n))$ is $\Theta(n)$, which is obviously not equal to $\Theta(f(n))$, which is $\Theta(n^2)$.

1.4 d.

True.

Intuitively, $O(\Omega(f(n)))$ and $\Omega(O(f(n)))$ both represent all the functions. A formal proof is as follows:

Proof. 1. For any function g(n) > 0, $h(n) \in \Omega(f(n))$ we have $g(n) + h(n) \in \Omega(f(n))$, and $g(n) \in O(g(n) + h(n))$. So this proves that every function g(n) > 0 is $O(\Omega(f(n)))$, no matter which f(n) you choose.

2. Let h(n) = 0 be a constant function. Obviously h(n) = O(f(n)). For any g(n) > 0, $g(n) \in \Omega(h(n))$, so we have proved that any function g(n) > 0 is $\Omega(O(f(n)))$, no matter which f(n) you choose.

Combining the above two statements, we have $O(\Omega(f(n))) = \Omega(O(f(n)))$

1.5 e.

True.

Proof. By definition we have:

$$\exists c_1, c_1', n_1 \text{ s.t. } \forall n > n_1, c_1 \cdot h(n) < f(n) < c_1' \cdot h(n)$$

$$\exists c_2, c_2', n_2 \text{ s.t. } \forall n > n_2, c_2 \cdot h(n) < g(n) < c_2' \cdot h(n)$$

So we have:

$$\exists c_{3} = c_{1} + c_{2}, c_{3}^{'} = c_{1}^{'} + c_{2}^{'}, n_{3} = \max(n_{1}, n_{2}), \text{ s.t. } \forall n > n_{3}, c_{3} \cdot h(n) < f(n) + g(n) < c_{3}^{'} \cdot h(n)$$

So by definition this means $f(n) + g(n) = \Theta(h(n))$

1.6 f.

False

Counter-example: let f(n) = 2n, g(n) = n, then obviously $f(n) = \Theta(g(n))$, but

$$\lim_{n \to +\infty} \frac{2^{f(n)}}{2^{g(n)}} = \lim_{n \to +\infty} 2^n = +\infty$$

so $2^{f(n)} = \omega(2^{g(n)})$

1.7 g.

Flalse.

Counter-example: Let f(n) = n, $g(n) = n^2$, so $\min(f(n), g(n)) = f(n) = n$. But $f(n) + g(n) = n + n^2$ is $\omega(n)$, not $\Theta(n)$.

2 Problem 2

2.1 a.

Proof. Base Case: When n = 1, we have

$$\sum_{i=1}^{n} i \cdot r^{i-1} = 1$$

$$\frac{1 - r^{n+1} - (n+1)(1-r)r^n}{(1-r)^2} = 1$$

Induction: Suppose when n = k, the statement holds, now for n = k + 1, we have:

$$\begin{split} \sum_{i=1}^{k+1} i r^{i-1} &= \sum_{i=1}^{k} i r^{i-1} + (k+1) r^k \\ &= \frac{1 - r^{k+1} - (k+1)(1-r) r^k}{(1-r)^2} + (k+1) r^k \\ &= \frac{1 - r^{k+1} - (k+1)(1-r) r^k + (k+1) r^k (1-r)^2}{(1-r)^2} \\ &= \frac{1 - r^{k+2} - (k+2)(1-r) r^{k+1}}{(1-r)^2} \end{split}$$

This finishes our proof.

2.2 b.

Proof. Base Case: $1 = 1, 2 = 2, 3 = 1 + 2, \cdots$

Induction : Suppose for $n \le k$ the statement holds. Now for n = k + 1, there are two situations:

- 1. If k+1 itself is a Fibonacci number, then we are done;
- 2. Otherwise, $\exists i$, s.t. $F_i < k+1 < F_{i+1}$. Let $a = k+1-F_i$, so $a \leq k$, so a can be represented as the sum of distinct unconsecutive Fibonacci numbers. Also notice that $a = k+1-F_i < F_{i+1}-F_i = F_{i-1}$, so F_{i-1} is not in the representation of a. So the representation of a plus F_i is the new representation for k+1.

So we finish the proof.

3 Problem 3

3.1 a.

Proof. Let $n_0 = 1$, let c = 1, we have

$$\forall n > n_0, n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1 < c\cdot n\cdot n\cdot n\cdot n\cdots n$$

So
$$n! = O(n^n)$$

3.2 b.

Proof. Let $F(x) = \frac{-\frac{x^2}{4} + \frac{1}{2}x^2\ln(x)}{\ln(2)}$, then we have $F'(x) = x^2\log(x)$. The rest follows imediately from the integration method.

3.3 c.

Proof.

$$\sum_{i=0}^{k} \log(\frac{n}{2^{i}}) = \sum_{i=0}^{k} \log(2^{k-i}) = \sum_{i=0}^{k} (k-i) = \frac{k^{2} - k}{2} = \Theta(k^{2})$$
$$\log^{2}(n) = k^{2}$$

3.4 d.

This statement is false.

Proof.

$$\lim_{n \to +\infty} \frac{2^n}{n^n} = \lim_{n \to +\infty} \frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \frac{2}{4} \cdot \frac{2}{5} \cdot \dots < \frac{4}{3} \lim_{n \to +\infty} (\frac{2}{4})^{n-3} = 0$$
So $n^n = \omega(2^n)$

4 Problem 4

In increasing order (f(n)) appears before g(n) means f(n) = O(g(n)):

$$n^{\frac{1}{\log(n)}}, \log^*(\log(n)), \sqrt{\log(n)}, (\log(\log(n)))^{\log(n)}, 2^{\sqrt{2\log(n)}}, n^5, (\log(n))^{\log(\log(n))}, 2^{n^{0.0001}}, n!, 2^{2^n}$$

Proof. 1. $n^{\frac{1}{\log(n)}} = 2^{\log(n^{\frac{1}{\log(n)}})} = 2^1 = 2$, this is a constant, so

$$\lim_{n \to +\infty} \frac{2}{\log^*(\log(n))} = 0$$

2. to prove $\log^*(\log(n)) = O(\sqrt{\log(n)})$ is not very easy. It seems trivial, but the function $\log^*(n)$ does not have a closed form. So we need to prove it by mathematical induction. First we prove a lemma, that for all n > 16, $\log^*(n) \le \sqrt{n}$:

Base Case when n = 17, the statement holds, obviously;

Induction suppose when $n \leq k$, the statement holds. for n = k + 1, there are two cases:

- (a) If $\log^*(k+1) = \log^*(k)$, then $\log^*(k+1) = \log^*(k) \le \sqrt{k} < \sqrt{k+1}$
- (b) If $\log^*(k+1) = \log^*(k) + 1$. This only happens when $k+1 = 2^{p+1}$, for some p. Now we let $n = 2^p$, by induction hypothesis we have $\log^*(2^p) \le \sqrt{2^p}$. So we have:

$$\sqrt{k+1} = \sqrt{2^{p+1}} = \sqrt{2^{p+1}} - \sqrt{2^p} + \sqrt{2^p}$$

$$\geq \sqrt{2^{p+1}} - \sqrt{2^p} + \log^*(2^p)$$

$$= \sqrt{2^{p+1}} - \sqrt{2^p} + \log^*(2^{p+1}) - 1$$

$$\geq \log^*(2^{p+1})$$

where the last \geq is due to the fact that $\sqrt{2^{p+1}} - \sqrt{2^p} > 1$, when p > 4. And

$$\log^*(2^p) = \log^*(2^{p+1}) - 1$$

is for the following reason: the \log^* function increases by 1 at 2^{p+1} , so the last time it increase by 1 is at p+1. And for a number x within the range from p+1 to $2^{p+1}-1$, $\log^*(x)$ remains the same value. And when p>4, obviously 2^p falls within this range.

This finishes the proof of our lemma. Let $\log(n) = m$, by the lemma we have $\log^*(m) \leq \sqrt{m}$, so we have:

$$\exists c = 1, n_0 = 65536$$
, s.t. $\forall n > n_0, \log^*(\log(n)) \le c \cdot \sqrt{\log(n)}$

3.

$$\lim_{n \to +\infty} \frac{\sqrt{\log(n)}}{(\log(n))^{\log(\log(n))}} = \lim_{n \to +\infty} \log(n))^{\frac{1}{2} - \log(\log(n))} = 0$$

4. we prove the next five relations in a similar way. Let $m = \log(n)$, we have:

$$(\log(\log(n)))^{\log(n)} = (\log(m))^m = 2^{(\log(m))^2}$$
$$2^{\sqrt{2\log(n)}} = 2^{\sqrt{2m}}$$
$$n^5 = 2^{5m}$$
$$(\log(n))^{\log(\log(n))} = m^{\log(m)} = 2^{m\log(\log(m))}$$
$$2^{n^{0.0001}} = 2^{2^{0.0001m}}$$

Notice that they are all in base-2 exponential form. So:

- (a) $(\log(m))^2$ is a polylog function, it is asymptotically smaller than any polynomial, so $(\log(m))^2 < \sqrt{2m}$, when $m > m_1$;
- (b) $\sqrt{2m} < 5m$ is obviouse;
- (c) $5m < m \log(\log(m))$, when $m > m_2$;
- (d) $m \log(\log(m))$ is polynomial bounded, and $2^{0.0001m}$ is exponential, so $m \log(\log(m)) < 2^{0.0001m}$, when $m > m_3$.

Notice in the above argument I didn't use the big-O notation. Because f(n) = O(g(n)) does not imply $2^{f(n)} = O(2^{g(n)})$. But if f(n) < g(n), we can have $2^{f(n)} = O(2^{g(n)})$. So simply let $m_0 = \max(m_1, m_2, m_3)$ and let c = 1, we have all the above relations proved by definition.

- 5. $n! = \omega(2^n), n > n^{0.0001}, \text{ so } n! = \omega(2^{n^{0.0001}})$
- 6. $n! = o(n^n) = o(2^{n \log(n)})$, and $n \log(n) < 2^n$. So $n! = o(2^{2^n})$.

5 Problem 5

5.1 a.

We have

$$T(n) = T(n-1) + 2^{n}$$

$$T(n-1) = T(n-2) + 2^{n-1}$$

$$T(n-2) = T(n-3) + 2^{n-2}$$
.....

$$T(2) = T(1) + 2^2$$

Adding them together, we have

$$T(n) = T(1) + \sum_{i=2}^{n} 2^{i} = 2^{n+1} - 3$$

5.2 b.

Directly apply Master Theorem, where a=4, b=3, and $n^2=\Omega(n^{\log_3(4)})$, also $4 \cdot (\frac{n}{3})^2 \leq \frac{4}{9}n^2$, so Case 3 applies. So $T(n)=\Theta(n^2)$.

5.3 c.

Again we use the Master Theorem. Here $a=6,\,b=7,$ and $n=\Omega(n^{\log_7(6)}),$ also $6\cdot \frac{n}{7}\leq \frac{6}{7}n,$ so Case 3 applies. So $T(n)=\Theta(n).$

5.4 d.

We have:

$$T(n) = T(\sqrt{n}) + \log(n)$$

$$T(\sqrt{n}) = T(\sqrt[4]{n}) + \log(\sqrt{n}) = T(\sqrt[4]{n}) + \frac{1}{2}\log(n)$$

$$T(\sqrt[4]{n}) = T(\sqrt[8]{n}) + \log(\sqrt[4]{n}) = T(\sqrt[8]{n}) + \frac{1}{2^2}\log(n)$$

$$\dots$$

$$T(\sqrt[2^k]{n}) = T(\sqrt[2^{k+1}]{n}) + \log(\sqrt[2^k]{n}) = T(\sqrt[2^{k+1}]{n}) + \frac{1}{2^k}\log(n)$$

Add them together, we have:

$$T(n) = T(\sqrt{2^{k+1}} \sqrt{n}) + \sum_{i=0}^{k+1} \frac{1}{2^i} \log(n)$$

Take limitation on both side, we have:

$$\lim_{k \to +\infty} T(n) = \lim_{k \to +\infty} T(\sqrt[2^{k+1}]{n}) + \lim_{k \to +\infty} \sum_{i=0}^{k+1} \frac{1}{2^i} \log(n) = T(1) + 2\log(n)$$

So we have

$$T(n) = 1 + 2\log(n)$$

5.5 e.

From

$$T(n) = 2 + \sum_{i=1}^{n-1} T(i)$$

We have

$$T(n+1) = 2 + \sum_{i=1}^{n} T(i)$$

So we have

$$T(n+1) - T(n) = \sum_{i=1}^{n} T(i) - \sum_{i=1}^{n-1} T(i) = T(n)$$

So

$$T(n+1) = 2T(n)$$

when $n \geq 2$. This is because we use a term $\sum_{i=1}^{n-1} T(i)$ in the above equations, and $\sum_{i=1}^{1-1} T(i)$ is not defined, so n must start from 2. And $T(2) = 2 + \sum_{i=1}^{1} T(i) = 3$ And we have

$$T(n) = 2T(n-1)$$

$$T(n-1) = 2T(n-2)$$

$$T(n-2) = 2T(n-3)$$

.

$$T(3) = 2T(2)$$

Multiply them together, we have

$$T(n) = 2^{n-2}T(2) = 3 \cdot 2^{n-2}$$

5.6 f.

Apply the Master Theorem, where $a=3,\,b=2,$ and $n\log(n)=O(n^{\log_2(3)}),$ so Case 1 applies. So $T(n)=\Theta(n^{\log(3)})$

5.7 g.

Apply the Master Theorem, where $a=2,\ b=2,$ and $\frac{n}{\log(n)}=O(n^{\log_2(2)}),$ so Case 1 applies. So $T(n)=\Theta(n)$

5.8 h.

Suppose T(2) = a is given. Divide the original recursion formula by n, we have:

$$\frac{T(n)}{n} = \frac{T(\sqrt{n})}{\sqrt{n}} + 1$$

Define $U(n) = \frac{T(n)}{n}$, so $U(2) = \frac{a}{2}$, and

$$U(n) = U(\sqrt{n}) + 1$$

Define $m = \log(n)$, so $n = 2^m$, so we have:

$$U(2^m) = U(2^{\frac{1}{2}m}) + 1$$

Define $V(m) = U(2^m)$, so $V(1) = U(2) = \frac{a}{2}$, and

$$V(m) = V(\frac{1}{2}m) + 1$$

and so we have:

$$V(\frac{1}{2}m) = V(\frac{1}{4}m) + 1$$

$$V(\frac{1}{4}m) = V(\frac{1}{8}m) + 1$$

$$V(\frac{1}{8}m) = V(\frac{1}{16}m) + 1$$

.

$$V(\frac{1}{\frac{m}{2}}m) = V(\frac{1}{m}m) + 1$$

We have $\log(m)$ many of such equations (think why?). Adding them together, we have:

$$V(m) = V(1) + \log(m) = \frac{a}{2} + \log(m) = \frac{a}{2} + \log(\log(n))$$

Remember that $V(m) = U(2^m)$, and $U(2^m) = U(n)$, so we have:

$$U(n) = V(m) = \frac{a}{2} + \log(\log(n))$$

So we have:

$$T(n) = \frac{a}{2}n + n\log(\log(n))$$

6 Problem 6

Directly use the characteristic equation method. The equation is:

$$x^2 = 5x - 6$$

the roots are 2 and 3. So a_n is in the form $a_n = A \cdot 2^n + B \cdot 3^n$. And we have $a_0 = 2$, $a_1 = 5$, so we have

$$A + B = 2$$

$$2A + 3B = 5$$

So
$$A = 1$$
, $B = 1$. So $a_n = 2^n + 3^n$