An internship in

Data Analytics with Tableau

by

SmartInternz

Project Name: Visualizing housing market trends: an analysis of sale prices and features

Project Id: LTVIP2025TMID60965

Team Members:

1. Venkata Krishna Meesala	(Reg.no.24A21F00F9)
2. Phani Kumar Polisetti	(Reg.no.24A21F00J0)
3. Anusri Mukkala	(Reg.no.22A21A04C4)
4. Aruna Kumari Potnuri	(Reg.no.22A21A05P4)

ABSTRACT

This project, titled "Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using Tableau," focuses on transforming complex real estate data into clear, actionable insights through interactive data visualization. By cleaning and preparing a dataset containing various housing attributes—such as sale price, area, number of bedrooms, renovation status, and location—key trends were uncovered using Tableau's powerful visual analytics. The project involved the creation of calculated fields (e.g., TotalAreaSqft, SalePriceBin), the use of filters (e.g., condition, renovation status, zipcode group), and the development of dashboards and stories that narrate insights across multiple dimensions. These dashboards were then embedded into a Flask web application, ensuring easy accessibility and deployment. The resulting solution empowers users—including buyers, real estate agents, and policy makers—to make data-driven decisions. With its scalability and modular structure, the project lays a foundation for further enhancements like live data integration, predictive analytics, and expanded geographic coverage.

Key Words:

- Tableau Dashboard
- Housing Market Analysis
- Data Visualization
- Sale Price Prediction
- Property Features
- Renovation Insights

Project Report Format

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. IDEATIONPHASE

- 2.1 Problem Statement
- 2.2 Empathy MapCanvas
- 2.3 Brainstorming

3. REQUIREMENTANALYSIS

- 3.1 CustomerJourneymap
- 3.2 Solution Requirement
- 3.3 Dataflow Diagram
- 3.4 Technology Stack

4. PROJECTDESIGN

- 4.1 Problem Solution Fit
- 4.2 Proposed Solution

5. FUNCTIONALANDPERFORMANCETESTING

5.1Performance Testing

6. RESULTS

6.1Output Screenshots

7. ADVANTAGES&DISADVANTAGES

- 8. CONCLUSION
- 9. FUTURESCOPE

10. APPENDIX

Source Code(if any)

Dataset Link

GitHub & Project Demo Link

1. Introduction

The real estate market is influenced by various factors such as house age, renovation status, number of bedrooms and bathrooms, and overall size. This project aims to analyze housing market trends and visualize key insights using Tableau to better understand how different features impact sale prices.

1.1. Project overviews

The dataset contains Transformed housing data and 21,609 house sale records, including Property features such as Sales price, area, bedrooms, bathrooms, floors and location. There are a total of 31 columns, out of which Sale Price can be supposedly taken as a dependent variable. The other variables are different features, locations and date, etc. regarding the houses. This project, "Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using Tableau," aims to explore and analyze housing market trends using the Transformed Housing Data 2 dataset from Kaggle. The objective is to identify key factors influencing house prices, such as location, size, number of bedrooms, bathrooms, floors and basement area.

By leveraging Tableau, the project will create interactive dashboards, story, bar chart, histogram, summary dashboard to visualize patterns, compare regional price variations, and gain insights into how different features impact house sale prices. The analysis will help in making data-driven decisions for buyers, sellers, and real estate professionals.

1.2. Objectives

- Identify key factors influencing house prices.
- Analyze the effect of renovations on property value.
- Explore the distribution of house sales across different price ranges.
- Create interactive Tableau dashboards to present findings effectively.

2. Project Initialization and Planning Phase

2.1. Define Problem Statement

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
PS-1	A first-time homebuyer who wants to make an informed decision	Find a home within my budget that meets my needs	The available market data is difficult to interpret and scattered across multiple sources	There is no centralized, easy-to-use tool that visualizes housing trends based on historical sales data	Confused and overwhelmed, making me hesitant to proceed
PS-2	A real estate investor looking for high-return properties	Identify profitable properties based on price trends and key influencing factors	Existing datasets require extensive manual analysis and lack clear insights	No interactive visualization tool allows me to compare property appreciation trends effectively	Frustrated and uncertain about making investment decisions
PS-3	A real estate agent aiming to assist clients efficiently	Provide accurate and insightful recommend ations based on market data	The data is time- consuming to analyze and spread across various reports	There is no comprehensive tool to aggregate and visualize pricing trends for quick insights	Less efficient, unable to provide quick, databacked advice to clients

2.2 Empathy Map Canvas

Empathy Map

Think & Feel

- Am I making data drive conclusions?
- Are there any emerging trends?
- Concerned about market fluctuations
- Curious about regional differences

See

- · Charts and graphs in Tableau
- Latest data on sale prices
- Different housing features

Hear

- Discussions with colleagues
- Market news and reports
- Client feedback

Say & Do

- Share findings with the team
- Focus on price trends over in
- Compare property attributes

Pain

- Difficult to identify patterns
- Time-consuming analysis
- Data quality concerns

Gain

- · Better market understanding
- · Informed decision making
- Stronger client presentations

2.3 Brain Storming

Step 1: Team Gathering, Collaboration and Problem Statement

Our team collaborated to identify pressing challenges in the real estate market, particularly in understanding how various property features influence housing sale prices. After exploring themes like housing affordability, real estate investment planning, urban development, and smart property insights, we narrowed down our focus to uncover actionable insights hidden in housing data. The objective was to visually explore trends using Tableau that would help buyers, sellers, investors, and policy makers understand patterns of sale prices based on features like area, bedrooms, renovation status, condition, location (zipcode groups), and more.

Problem Statement:

How can housing sale price trends and property characteristics be visualized and analyzed using Tableau to identify patterns, improve buyer/seller decision-making, and uncover insights that support strategic real estate planning?

Team Members:

Team Leader: Venkata Krishna Meesala

• Team Member: Phani Kumar Polisetti

• Team Member: Anusri Mukkala

• Team Member: Aruna Kumari Potnuri

Step 2: Brainstorming, Idea Listing and Grouping

S.No	o Idea Description	Category
1	Visualize average sale price by SalePriceBin	Pricing Insights
2	Analyze impact of number of bedrooms on sale price	Property Features
3	Explore relationship between Total Area and Price (scatter plot)	Size-Based Pricing
4	Compare prices for renovated vs. non-renovated homes	Renovation Analysis
5	Group insights by Zipcode Clusters	Geographical Comparison
6	Analyze house condition vs. price using dummy variables	Quality-Based Pricing
7	Add calculated field: TotalAreaSqft	Data Preparation
8	Create SalePriceBin with 100k intervals	Binning / Categorization
9	Use Tableau dashboard to combine insights	Dashboard Design
10	Build a Story in Tableau for narrative	Storytelling & Reporting

S.No Idea Description

Category

- 11 Embed Dashboard in Web Application using Flask Deployment & Integration
- 12 Add filters for Bedrooms, Condition, Renovation in Dashboard Interactive Exploration

Step 3: Idea Prioritization Table

S.No	Idea Description	Impact	Feasibility	Priority
1	Visualize average sale price by SalePriceBin	High	Easy	High
2	Analyze impact of number of bedrooms on sale price	High	Easy	High
3	Explore TotalArea vs Price (scatter plot)	High	Easy	High
4	Compare prices for renovated vs. non-renovated homes	High	Medium	High
5	Group insights by Zipcode Clusters	Medium	Medium	Medium
6	Analyze house condition vs. price	High	Medium	High
7	Add calculated field: TotalAreaSqft	Medium	Easy	High
8	Create SalePriceBin with 100k intervals	Medium	Easy	High
9	Use Tableau dashboard to combine insights	High	Easy	High
10	Build a Story in Tableau	High	Medium	High
11	Embed Dashboard in Web Application	High	Hard	Medium
12	Add filters for Bedrooms, Condition, Renovation	Medium	Easy	Medium

3. Requirement analysis

3.1 Customer Journey map

Customer Journey Map: Housing Market Trends Dashboard

Stage	Actions & Touchpoints	Experience & Emotions	Pain Points	Opportunities	User Goals
Awareness	- Sees dashboard via social media, newsletter, Tableau Public - Reads title/summary	Curious, Interested	Unclear if dashboard is relevant	Use benefit-driven titles, visual thumbnails	Attract interest and clarify purpose
Consideration	- Clicks dashboard link 1 - Reads introduction, explores layout	Engaged, Cautious	Overwhelmed by layout, unsure where to start	Add guided walkthrough, simplify navigation	Understand the dashboard and its features
Exploration	- Uses filters for location, price, features - Views charts (bar, scatter, pie, etc)	Excited, Inquisitive	Filters not intuitive, charts slow to load	Add example queries, improve speed	Discover valuable insights
Decision	- Exports visuals Shares dashboard - Bookmarks or downloads insights	Satisfied, Confident	Limited export options or unclear formats	Enable easy download/share, offer export guides	Preserve and share findings
Retention	Subscribes for updatesRevisits for new dataLeaves feedback	Loyal, Empowered	No update notifications, feedback unacknowledged	Enable email updates, actively respond to feedback	Stay informed and engaged

3.2 Solution Requirement

Functional Requirements (FRs)

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Data Import	Import data from CSVEnable live database integration .
FR-2	Data Cleaning & Transformation	- Handle missing values- Add calculated fields like Year, Lockdown
FR-3	Data Visualization	 Create Tableau worksheets Build multiple dashboards
FR-4	User Interaction	Enable filtering by region, yearView comparative bar chartsAnalyze pre/post-lockdown trends
FR-5	User Access	Role-based views for Analyst, Policy Maker,DeveloperDownload/export options
FR-6	Feedback Loop	Allow stakeholder feedback and change requestsImplement revision cycles

Non-Functional Requirements (NFRs)

NFR No.	Non-Functional Requirement	Description
NFR-1	Usability	Dashboard must be intuitive with clear filters, legends, and guided walkthroughs
NFR-2	Security	Implement role-based access and secure backend/database connectivity
NFR-3	Reliability	System must handle unexpected data formats and maintain high accuracy
NFR-4	Performance	Ensure fast loading and responsive interaction across all dashboard elements
NFR-5	Availability	Dashboard should be accessible across browsers/devices with minimal downtime
NFR-6	Scalability	Should scale for large datasets and support additional features/modules

3.3 Data Flow Diagram

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right

amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

- 1. Data collected from POSOCO in CSV format.
- 2. Cleaned and transformed, with calculated fields like Year and Lockdown.
- 3. Visualizations built in Tableau using multiple worksheets.
- 4. Users review the dashboard and may request changes.
- 5. Final version archived after approval.

3.4 Technology Stack

4. Project design

4.1 Problem Solution Fit

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioral patterns and recognize what would work and why.

Purpose:

- □ Solve complex problems in a way that fits the state of your customers.
- ☐ Succeed faster and increase your solution adoption by tapping into existing mediums and channels of behavior.
- ☐ Sharpen your communication and marketing strategy with the right triggers and messaging.
- ☐ Increase touch-points with your company by finding the right problem-behavior fit and building trust by solving frequent annoyances, or urgent or costly problems.
- ☐ Understand the existing situation in order to improve it for your target group.

4.2 Proposed Solution

Proposed Solution Template

S.No	. Parameter	Description
1	Problem Statement	The real estate market involves vast and complex datasets on housing features and sale prices. These datasets are often underutilized due to lack of effective visualization, making it difficult for buyers, sellers, and analysts to draw insights or forecast trends.
2	Idea / Solution Description	Our solution transforms static housing datasets into interactive, insightful visualizations using Tableau. The project involves cleaning and transforming the data, creating calculated fields and KPIs, and developing a dashboard that highlights key trends, comparisons, and location-based analyses. The solution is deployed via a Flask web app.
3	Novelty / Uniqueness	This project leverages Tableau's powerful visual capabilities to go beyond basic data analytics. By combining calculated fields, condition segmentation, and geographic mapping, the dashboard offers a dynamic exploration of how features like bedrooms, area, renovation, and location influence housing prices.
4	Social Impact / Customer Satisfaction	This solution enables real estate buyers, sellers, agents, and market researchers to make informed decisions. It improves housing transparency, supports better urban planning, and enhances user engagement with clear visuals and actionable insights.
5	Business Model (Revenue Model)	This dashboard can be scaled and offered as a subscription-based SaaS tool to real estate companies, market research firms, or housing consultancies. Advanced forecasting modules, API integrations, and custom dashboards can be monetized as premium features.
6	Scalability of the Solution	The system is designed to be scalable and adaptable. It can incorporate new e datasets (like rental trends or economic indicators), extend to new regions or cities, and integrate with ML models for price predictions, thereby offering long-term growth potent

5.FUNCTIONALANDPERFORMANCETESTING

5.1 Performance Testing

S.No	Parameter	Screenshot / Values		
1.	Data Rendered	The dataset used contains housing sales data with fields such as Sale		
		Price, Number of Bedrooms, Bathrooms, Flat Area, Lot Area,		
		Basement Area, House Age, Condition, Renovation Status, Zipcode		
		Group, and others. The data was provided in .csv format and include		
		derived and transformed columns suitable for advanced analytics and		
		visualizations in Tableau.		
2.	Data Preprocessin	Before importing the data into Tableau, preprocessing was done usin		
		Python (Pandas). The following steps were performed:		
		Removed null or missing values.		
		• Renamed columns for clarity (e.g., "No of Bedrooms" →		
		"Bedrooms").		
		Created calculated fields like "TotalAreaSqft" (sum of flat, lo		
		and		
		basement areas).		
		Generated dummy variables for house conditions and		
		renovation status.		
		Transformed categorical fields to improve Tableau usability.		
		The final cleaned dataset was stored and imported into		
		Tableau for visualization.		

3.	Utilization	Multiple filters were implemented in Tableau to improve interactivity and
	of Filters	user exploration. These include:
		Number of Bedrooms
		Number of Bathrooms
		House Condition
		Renovation Status (Yes/No)
		Zipcode Group
		Sale Price Bins
		These filters allow users to drill down and compare trends across different
		property types and regions.
4	Calculated	Several calculated fields were created in Tableau to enhance analysis and
	Fields Used	interactivity:
		• TotalAreaSqft → [FlatAreaSqft] + [LotAreaSqft] +
		[BasementAreaSqft]
		• SalePriceBin → Binning Sale Price into ₹100,000 intervals
		• Condition_Excellent, Condition_Good, etc. → Dummy fields (0/1
		Ever_Renovated_Yes → Dummy field to identify renovated home
		 AvgPrice → AVG([SalePrice]) for grouped insights
		 HouseAge → Difference between year built and sale date if
		available
		(or derived field if pre-calculated)
		These fields enable comparisons across pricing, condition, and space
		utilization.

6.Results

6.1 Output Screenshots

Output of Sheet 1

Output of Sheet 2

Output of Sheet 3

Output of Sheet 4

Tableau public link

https://public.tableau.com/app/profile/potnuri.aruna.kumari/viz/VisualizingHousingMarketTrends 17515735757040/Dashboard1?publish=yes

https://public.tableau.com/app/profile/potnuri.aruna.kumari/viz/VisualizingHousingMarketTrends 17515735757040/Story1?publish=yes

7. Advantages & disadvantages

Advantages:

1. Interactive Analysis:

The Tableau dashboard allows users to explore data with filters (e.g., bedrooms, renovation status, price bins), enhancing understanding through dynamic interactions.

2. Informed Decision-Making:

Buyers, sellers, agents, and investors can make data-driven decisions by identifying which features (e.g., area, renovations, number of floors) impact property value.

3. Data Storytelling:

The Tableau Story feature presents insights in a sequential, digestible narrative—great for business reports or stakeholder presentations.

4. Geographic Visualization:

Zipcode grouping allows regional comparison of price trends and property types, revealing market opportunities and local disparities.

5. Calculated Metrics & KPIs:

Metrics like Average Sale Price and Total Area improve business clarity and enable fast comparisons across categories.

6. Web Accessibility:

Embedding the dashboard into a Flask web app increases accessibility—users can view it from any browser without needing Tableau Desktop.

7. Modular & Scalable Design:

The project structure supports additional data (e.g., rental prices, future years), making it expandable to other regions or market conditions.

8. Minimal Coding Required:

Most of the visualizations are created using Tableau's drag-and-drop interface—making it ideal for analysts without deep programming expertise.

Disadvantages:

1. Static Dataset Limitation:

The analysis depends on a preloaded CSV file; it doesn't support real-time updates unless integrated with live databases or APIs.

2. Tool Dependency:

The system relies on Tableau Public, which has limitations like no row-level security and requires dashboards to be public.

3. Learning Curve for Tableau:

While Tableau is user-friendly, new users may need time to understand calculated fields, filters, and advanced charting options.

4. Limited Predictive Power:

This is a descriptive and visual analytics project—it does not use machine learning or predictive modeling to forecast housing prices.

5. Browser Compatibility:

Older browsers or low-resolution screens may not render complex dashboards optimally, especially if not designed responsively.

6. Manual Data Preprocessing:

Initial data cleaning, renaming, and transformation were done manually using Python or within Tableau, which might be error-prone at scale.

7. Learning Curve for Tableau:

While Tableau is user-friendly, new users may need time to understand calculated fields, filters, and advanced charting options.

8. Limited Predictive Power:

This is a descriptive and visual analytics project—it does not use machine learning or predictive modeling to forecast housing prices.

9. Browser Compatibility:

Older browsers or low-resolution screens may not render complex dashboards optimally, especially if not designed responsively.

10. Manual Data Preprocessing:

Initial data cleaning, renaming, and transformation were done manually using Python or within Tableau, which might be error-prone at scale.

8.Conclusion:

The project "Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using Tableau" successfully demonstrates how complex real estate data can be transformed into meaningful, interactive visual insights. By leveraging Tableau's powerful visualization capabilities, we have made it easier for buyers, sellers, investors, and analysts to understand the key factors influencing house prices. Our dashboard enables quick comparisons based on features like number of bedrooms, renovations, house age, and geographic location. The integration with Flask provides a seamless web interface, enhancing accessibility and usability. Overall, this project bridges the gap between raw housing data and strategic real estate decision-making, allowing users to gain actionable insights with minimal technical expertise.

9. Future scope:

1. Live Data Integration:

Future versions can integrate live property listings or transaction data via APIs or real-time databases to provide up-to-date market insights.

2. Machine Learning Forecasting:

Incorporating regression models or time-series forecasting can help predict future housing prices based on historical trends and features.

3. Rental Market Visualization:

Extend the dashboard to include rental data analysis, enabling a broader comparison between buying vs. renting decisions.

4. Mobile Optimization:

Responsive design enhancements can be implemented to ensure the dashboard performs well across tablets and smartphones.

5. Advanced User Access Control:

By using Tableau Server or Tableau Online, dashboards can be secured with role-based access for different stakeholders.

6. Location Intelligence Enhancements:

Integration of geospatial data, satellite maps, or demographic overlays can improve location-based insights (e.g., school zones, crime rates).

7. Recommendation Engine:

Develop a recommendation system to suggest optimal property types using user-input filters.

10.Appendix

Source Code:

index.html

```
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Housing Market Portal</title>
 <style>
  * {
   margin: 0;
   padding: 0;
   box-sizing: border-box;
  body, html {
   height: 100%;
   font-family: Arial, sans-serif;
   scroll-behavior: smooth;
  }
  nav {
   position: fixed;
   top: 0;
   right: 0;
   background: rgba(82, 192, 204, 0.9);
   padding: 10px 20px;
   z-index: 1000;
   display: flex;
   gap: 20px;
   box-shadow: 0 \text{ 2px 5px rgba}(0,0,0,0.1);
  }
  nav a {
   text-decoration: none;
   color: #333;
   font-weight: bold;
  }
  section {
   padding: 100px 30px;
   min-height: 100vh;
  #home {
   background-image:
url('https://static.vecteezy.com/system/resources/previews/026/586/050/large 2x/beautiful-
```

modern-house-exterior-with-carport-modern-residential-district-and-minimalist-building-concept-by-ai-generated-free-photo.jpg');

```
background-size: cover;
 background-position: center;
 color: white;
 text-align: center;
 display: flex;
 justify-content: center;
 align-items: center;
 flex-direction: column;
#home h1 {
 font-size: 3em;
 background: rgba(0,0,0,0.5);
 padding: 20px;
 border-radius: 10px;
#about {
 display: flex;
 align-items: center;
 justify-content: center;
 flex-wrap: wrap;
 gap: 40px;
 background-color: rgb(30, 30, 95);
#about img {
 width: 40%;
 max-width: 400px;
 border-radius: 10px;
}
#about .text {
 max-width: 500px;
 text-align: left;
 color: antiquewhite;
 font-family: Arial, Helvetica, sans-serif;
 font-size: medium;
}
#dashboard, #story {
 background-color: #ffffff;
 text-align: center;
 background-color: rgb(30, 30, 95);
.tableauPlaceholder {
 margin: 0 auto;
 width: 100%;
```

```
max-width: 1000px;
     footer {
       text-align: center;
       padding: 20px;
       background: #ddd;
  </style>
</head>
<body>
  <nav>
     <a href="#home">Home</a>
     <a href="#about">About</a>
     <a href="#dashboard">Dashboard</a>
     <a href="#story">Story</a>
  </nav>
  <section id="home">
     <h1>Welcome to Housing Market Insights</h1>
     'Lucida Sans Unicode', Geneva, Verdana, sans-serif; color: rgb(252, 252, 250); padding:
10px;">Explore real-time housing market trends, stories, and data visualization
  </section>
  <section id="about">
     <img src="https://images.unsplash.com/photo-1570129477492-45c003edd2be"</pre>
alt="Building">
     <div class="text">
       <h2>About the Project</h2>
          This project explores the dynamic housing market trends across regions and time. Using
Tableau,
          we visualize critical data such as average housing prices, mortgage rates, and market shifts
          to help understand where the market is heading. Our goal is to provide actionable insights
          for buyers, sellers, and policy makers.
       </div>
  </section>
  <section id="dashboard">
     <a href="color: antiquewhite;padding:10px;font-family: Georgia, 'Times New Roman', 'Times
Times, serif;">Housing Market Dashboard</h2>
     <div class="tableauPlaceholder" id="tableauDashboard">
       <object class="tableauViz" width="100%" height="600" style="display: none;">
          <param name="host url" value="https%3A%2F%2Fpublic.tableau.com%2F" />
          <param name="embed code version" value="3" />
          <param name="site root" value="" />
          <param name="name"</pre>
value="VisualizingHousingMarketTrends 17515735757040/Dashboard1" />
```

```
<param name="tabs" value="no" />
    <param name="toolbar" value="yes" />
    <param name="static image"</pre>
value="https://public.tableau.com/static/images/Vi/VisualizingHousingMarketTrends 17515735
757040/Dashboard1/1.png" />
    <param name="animate transition" value="yes" />
    <param name="display static image" value="yes" />
    <param name="display spinner" value="yes" />
    <param name="display overlay" value="yes" />
    <param name="display count" value="yes" />
    <param name="language" value="en-US" />
    <param name="filter" value="publish=yes" />
   </object>
  </div>
 </section>
 <section id="story">
  <a>h2 style="color: antiquewhite; padding: 10px; font-family: Georgia, 'Times New Roman',</a>
Times, serif;">Housing Market Story</h2>
  <div class="tableauPlaceholder" id="tableauStory">
   <object class="tableauViz" width="100%" height="600" style="display: none;">
    <param name="host url" value="https%3A%2F%2Fpublic.tableau.com%2F" />
    <param name="embed code version" value="3" />
    <param name="site root" value="" />
    <param name="name"</pre>
value="VisualizingHousingMarketTrends_17515735757040/Story1" />
    <param name="tabs" value="no" />
    <param name="toolbar" value="yes" />
    <param name="static image"</pre>
value="https://public.tableau.com/static/images/Vi/VisualizingHousingMarketTrends 17515735
757040/Story1/1.png" />
    <param name="animate transition" value="yes" />
    <param name="display static image" value="yes" />
    <param name="display spinner" value="yes" />
    <param name="display overlay" value="yes" />
    <param name="display count" value="yes" />
    <param name="language" value="en-US" />
    <param name="filter" value="publish=yes" />
   </object>
  </div>
 </section>
 <footer>
  © 2025 Housing Market Analysis
 </footer>
 <script>
  function loadTableauViz(id) {
   var divElement = document.getElementById(id);
   var vizElement = divElement.getElementsByTagName('object')[0];
   if (divElement.offsetWidth > 800) {
```

```
vizElement.style.width = '100%';
    vizElement.style.height = (divElement.offsetWidth * 0.75) + 'px';
   } else if (divElement.offsetWidth > 500) {
    vizElement.style.width = '100%';
    vizElement.style.height = (divElement.offsetWidth * 0.75) + 'px';
   } else {
    vizElement.style.width = '100%';
    vizElement.style.height = '1200px';
   var scriptElement = document.createElement('script');
   scriptElement.src = 'https://public.tableau.com/javascripts/api/viz v1.js';
   vizElement.parentNode.insertBefore(scriptElement, vizElement);
  document.addEventListener('DOMContentLoaded', function () {
   loadTableauViz('tableauDashboard');
   loadTableauViz('tableauStory');
  });
 </script>
</body>
</html>
app.py
from flask import Flask, render_template
app = Flask(__name__)
@app.route('/')
def home():
  return render template('index.html')
if name == ' main ':
  app.run(debug=True)
```

Project Structure

Dataset Link

https://www.kaggle.com/datasets/chiragksharma/transformed-housing-data

Project Demo Video Link

https://drive.google.com/file/d/1iFp0IMhuyv7v91d HsVjYxEK9ruwAiBT/view?usp=sharing

GitHub Repository Link

https://github.com/ArunaKumari1512/Visualizing Housing Trends