Αλγόριθμοι και Πολυπλοκότητα

Ν. Μ. Μισυρλής

Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήμιο Αθηνών

Μέγιστη Κοινή Υπακολουθία

Ορισμοί

Ορισμός 1: Μια ακολουθία $Z=< z_1,z_2,\ldots,z_k>$ αποτελεί υπακολουθία μιας δεδομένης ακολουθίας $X=< x_1,x_2,\ldots,x_m>$ εάν υπάρχει μια γνησίως αύξουσα ακολουθία $< i_1,i_2,\ldots,i_k>$ από αύξοντες αριθμούς στοιχείων της X τέτοια ώστε για όλα τα $j=1,2,\ldots,k$ να ισχύει $x_{i_j}=z_{j_j}$.

Παράδειγμα

Η Z=<B,C,D,B> είναι μια υπακολουθία της X=<A,B,C,B,D,A,B>, με αντίστοιχη ακολουθία αυξόντων αριθμών <2,3,5,7>.

Ορισμός 2: Για δυο δεδομένες ακολουθίες *X* και *Y*, λέμε ότι μια ακολουθία *Z* είναι *κοινή υπακολουθία* των *X* και *Y* εάν είναι υπακολουθία τόσο της *Q* όσο και της *Y*.

Παράδειγμα

Εάν X=<A,B,C,B,D,A,B> και Y=<B,D,C,A,B,A>, η ακολουθία <B,C,A> είναι μια κοινή υπακολουθία των X και Y.

Μέγιστη Κοινή Υπακολουθία

Πρόβλημα

Στο πρόβλημα της μέγιστης υπακολουθίας μας δίνονται δύο ακολουθίες $X=< x_1, x_2, \ldots, x_m >$ και $Y=< y_1, y_2, \ldots, y_n >$ και ζητείται να βρεθεί μια μέγιστου μήκους κοινή υπακολουθία των X και Y.

Βήμα 1: Χαρακτηρισμός μια Μέγιστης Κοινής Υπακολουθίας

- Το πρόβλημα της ΜΚΥ διαθέτει την ιδιότητα της βέλτιστης υποδομής.
- Για μια δεδομένη ακολουθία $X=< x_1,x_2,\ldots,x_m>$, ορίζουμε την i- οστή προθηματική υπακολουθία της X, για $i=0,1,\ldots,m,$ ως την υπακολουθία $X_i=< x_1,x_2,\ldots,x_i>$.

Παράδειγμα

Εάν X=< A,B,C,B,D,A,B>, τότε $X_4=<$ A,B,C,B> και η X_0 είναι η κενή ακολουθία.

Τηεορεμ

Έστω δυο ακολουθίες $X=< x_1,x_2,\ldots,x_m>$ και $Y=< y_1,y_2,\ldots,y_n>,$ και έστω $Z=< z_1,z_2,\ldots,z_k>$ οποιαδήποτε ΜΚΥ των X και Y.

- 1. Εάν $x_m = y_n$ τότε $z_k = x_m = y_n$ και η Z_{k-1} είναι μια ΜΚΥ των X_{m-1} και Y_{n-1} .
- 2. Eáv $x_m \neq y_n \ \kappa \alpha \imath \ z_k \neq x_m, \$ é π erai ó $\pi \imath \ \eta \ Z \$ eívai µia MKY των $X_{m-1} \ \kappa \alpha \imath \ Y.$
- 3. Eáv $x_m \neq y_n$ $\kappa a z_k \neq y_n$, éneral óti η Z eíval μ la MKY $t\omega v$ X $\kappa a Y_{n-1}$.

Βήμα 1: Χαρακτηρισμός μια Μέγιστης Κοινής Υπακολουθίας

Απόδειξη.

- Φ Εάν $z_k \neq x_m$, τότε προσαρτώντας το στοιχείο $x_m = y_n$ στην Z προκύπτει μια κοινή υπακολουθία των X και Y με μήκος = k+1, το οποίο αντιφάσκει στην υπόθεση μας ότι η Z είναι μια ΜΚΥ των X και Y. Συνεπώς πρέπει $z_k = x_m = y_n$.
 - Επιπλέον, η Z_{k-1} είναι μια κοινή υπακολουθία των X_{m-1} και Y_{n-1} με μήκος =k-1. Θέλουμε να δείξουμε ότι είναι μια ΜΚΥ. Έστω ότι δεν ισχύει, υπάρχει δηλαδή μια κοινή υπακολουθία W των X_{m-1} και Y_{n-1} με μήκος >k-1. Αν πρσαρτήσουμε στην W το στοιχείο $x_m=y_n$ παίρνουμε μια κοινή υπακολουθία των X και Y με μήκος >k, άτοπο.
- ② Αν $z_k \neq x_m$ τότε η Z είναι μια κοινή υπακολουθία των X_{m-1} και Y. Εάν υπήρχε κοινή υπακολουθία W των X_{m-1} και Y με μήκος > k, τότε η W θα ήταν επίσης κοινή υπακολουθία των X_m και Y, το οποίο αντιφάσκει με την υπόθεση ότι η Z είναι ΜΚΥ των X και Y.
- Ανάλογα με την (2).

Βήμα 1: Χαρακτηρισμός μια Μέγιστης Κοινής Υπακολουθίας

- Από τις προτάσεις του θεωρήματος έπεται ότι μια ΜΚΥ δυο ακολουθιών εμπεριέχει μια ΜΚΥ προθηματικών υπακολουθιών των δύο αρχικών ακολουθιών.
- Το πρόβλημα της ΜΚΥ παρουσιάζει βέλτιστη υποδομή.
- Μια αναδρομική λύση αυτού του προβλήματος έχει επίσης την ιδιότητα της επικάλυψης των υποπροβλημάτων.

Βήμα 2: Μια Αναδρομική Λύση

- Από το παραπάνω Θεώρημα προκύπτει ότι για να προσδιορίσουμε κάποια ΜΚΥ των $X=< x_1, x_2, \ldots, x_m >$ και $Y=< y_1, y_2, \ldots, y_n >$ θα πρέπει να εξετάσουμε δυο υποπροβλήματα.
 - Αν $x_m = y_n$, πρέπει να βρούμε μια ΜΚΥ των X_{m-1} και Y_{n-1} . Προσαρτώντας σε αυτήν το $x_m = y_n$ παίρνουμε μια ΜΚΥ των X και Y.
 - Αν $x_m \neq y_n$ θα πρέπει να λύσουμε δύο υποπροβλήματα: την εύρεση μιας ΜΚΥ των X_{m-1} και Y και την εύρεση μιας ΜΚΥ των X και Y_{n-1} . Η μεγαλύτερη από αυτές τις δύο ΜΚΥ είναι μια ΜΚΥ των X και Y.
- Η ύπαρξη της ιδιότητας της επικάλυψης υποπροβλημάτων στο πρόβλημα της ΜΚΥ μπορεί να δειχθεί πολύ εύκολα.
 - Για να βρούμε τις ΜΚΥ των X και Y, θα χρειαστεί ενδεχομένως να βρούμε τις ΜΚΥ των X και Y_{n-1} και των X_{m-1} και Y.
 - Καθένα από αυτά τα υποπροβλήματα, όμως, έχει ως υποπρόβλημα την εύρεση της ΜΚΥ των X_{m-1} και Y_{n-1} .
 - 🕨 Σε πολλά άλλα υποπροβλήματα εμφανίζονται κοινά υπο-υποπροβλήματα.

Βήμα 2: Μια Αναδρομική Λύση

- Έστω c[i,j] το μήκος μιας ΜΚΥ των ακολουθιών X_i και Y_j .
- Εάν έχουμε i=0 ή j=0, τότε μια από τις ακολουθίες έχει μήκος 0, και κατά συνέπεια η ΜΚΥ έχει μήκος επίσης 0.
- Με βάση τη βέλτιστη υποδομή του προβλήματος της ΜΚΥ, προκύπτει η εξής αναδρομική σχέση:

$$c[i,j] = \left\{ \begin{array}{ll} 0, & \text{s\'av } i = 0 \ \acute{\eta} \ j = 0, \\ c[i-1,j-1]+1, & \text{s\'av } i,j > 0 \ \text{kat } x_i = y_j, \\ \max \left(c[i,j-1], c[i-1,j] \right), & \text{s\'av } i,j > 0 \ \text{kat } x_i \neq y_j. \end{array} \right.$$

8 / 17

Αναδρομικός Αλγόριθμος

```
MKY(x,y,i,j)
/*Αγνοούμε την κατάσταση διακοπής i = j = 0 */
    if x[i] = y[j] then
        c[i,j] = MKY(x,y,i-1,j-1)
    else
        c[i,j] = max {MKY(x,y,i-1,j), MKY(x,y,i,j-1)}
    return c
```

9 / 17

Βήμα 3: Υπολογισμός του Μήκους μιας ΜΚΥ

Η χειρότερη περίπτωση είναι $x[i] \neq y[j]$.

Η αναδρομική σχέση της πολυπλοκότητας είναι:

$$T(m,n) \ge T(m,n-1) + T(m-1,n)$$
 $\ge [T(m,n-2) + T(m-1,n-1)] + [T(m-1,n-1) + T(m-2,n-1)]$
 $T(m,n) \ge 2T(m-1,n-1)$
Av $m \ge n$
 $T(m,n) \ge 2^2T(m-2,n-2)$
 \vdots
 $\ge 2^mT(0,0)$
 $\ge 2^m$
Av $n \ge m \implies T(m,n) \ge 2^n$

Βήμα 3: Υπολογισμός του Μήκους μιας ΜΚΥ

- Ωστόσο, επειδή υπάρχουν μόνο Θ(mn) διαφορετικά υποπροβλήματα,
 υπολογίζουμε τις λύσεις αναβιβαστικά μέσω δυναμικού προγραμματισμού.
- Η διαδικασία Μικος ΜΚΥ που ακολουθεί
 - δέχεται ως είσοδο δύο ακολουθίες $X = < x_1, x_2, \dots, x_m >$ και $Y = < y_1, y_2, \dots, y_n > .$
 - Ο αλγόριθμος υπολογίζει τις τιμές των c[i,j], τις οποίες και αποθηκεύει σε έναν πίνακα c[0...m,0...n]. Ο υπολογισμός των στοιχείων γίνεται κατ αύξουσα σειρά γραμμής του πίνακα από τα αριστερά προς τα δεξιά.
 - Η διαδικασία τηρεί επίσης τον πίνακα b[1...m,1...n], για την κατασκευή μιας βέλτιστης λύσης. Το "βέλος" b[i,j] δείχνει προς το στοιχείο πίνακα το οποίο αντιστοιχεί στη βέλτιστη λύση του υποπροβλήματος που επιλέχθηκε στον υπολογισμό του c[i,j].
 - Η διαδικασία επιστρέφει τους πίνακες b και c. Το στοιχείο c[m, n] περιέχει το μήκος μιας ΜΚΥ των X και Y.

Βήμα 3: Υπολογισμός του Μήκους μιας ΜΚΥ

```
m \leftarrow \mu \eta κος[X]
2 n \leftarrow \mu \dot{\eta} κος[Y]
    yια i \leftarrow 1 έως m
             c[i,0] \leftarrow 0
5
      yια j ← 0 έως n
             c[0,j] \leftarrow 0
6
      yια i ← 1 έως m
8
             για j \leftarrow 1 έως n
9
                     av x_i = y_i
                            τότε c[i,j] \leftarrow c[i-1,j-1]+1
10
                                    b[i,i] \leftarrow' \nwarrow'
11
```

Μηκος ΜΚΥ(X, Y)

Βήμα 3: Υπολογισμός του Μήκους μιας ΜΚΥ

```
12 αλλιώς αν c[i-1,j] \ge c[i,j-1]
13 τότε c[i,j] \leftarrow c[i-1,j]
14 b[i,j] \leftarrow' \uparrow'
15 αλλιώς c[i,j] \leftarrow c[i,j-1]
16 b[i,j] \leftarrow' \leftarrow'
17 επιστροφή c και b
```

13 / 17

Βήμα 4: Κατασκευή μιας ΜΚΥ

- Ξεκινώντας από το στοιχείο b[m,n], διατρέχουμε απλώς τον πίνακα ακολουθώντας τα βέλη.
- Κάθε βέλος \nwarrow " που συναντούμε στο πίνακα b[i,j] σημαίνει ότι το στοιχείο $x_i = y_j$ ανήκει στη ΜΚΥ.
- Με τη μέθοδο αυτή, τα στοιχεία της ΜΚΥ συναντώνται με αντίστροφη σειρά.

Βήμα 4: Κατασκευή μιας ΜΚΥ

```
ΕΚΤΥΠΩΣΗ ΜΚΥ(b, Q, i, j)
αν i = 0 ή j = 0
τότε επιστροφή
αν b[i,j] ='^{\kappa}
ΕΚΤΥΠΩΣΗ ΜΚΥ(b, Q, i - 1, j - 1)
εκτύπωση x_i
αλλιώς αν b[i,j] ='^{\dagger}
τότε ΕΚΤΥΠΩΣΗ ΜΚΥ(b, Q, i - 1, j)
αλλιώς ΕΚΤΥΠΩΣΗ ΜΚΥ(b, Q, i - 1, j)
```

Μη Αναδρομικός Αλγόριθμος

Χρόνος O(mn)

Χώρος O(mn)

4. Κατασκευή λύσης

Μη Αναδρομικός Αλγόριθμος

