Sistemas de Recomendação

Camila Tormena João Guilherme Packer Marcos Eduardo Crivellaro

- •Introdução
 - Objetivo
 - O Definição e histórico
 - Motivações e Aplicações
 - Métricas

- Algoritmos
 - Técnicas Não-Personalizadas
 - Como Não ordenar pela média
 - Como ordenar pela média
 - Filtragem Colaborativa
 - Baseada em Vizinhos
 - O Filtragem Baseada em Conteúdo
 - Métodos Híbridos
 - Métodos Utilizados pelo Netflix

- •Implementação
 - Filtragem colaborativa baseada em usuários
 - Filtragem colaborativa baseada em itens
 - Ferramentas
- Estudos de caso
 - Netflix
 - Google AdSense

- Desafios e limitações
 - Esparcidade
 - The Cold-Start Problem
 - Fraude
 - Filter Bubble
- Considerações Finais

Seção 1 Introdução

Objetivo

- Visão geral dos sistemas de recomendação
- Abordagens e algoritmos
- Diferentes usos
- Benefícios
- Exemplos reais

- O"O objetivo dos sistemas de recomendação (SR) é gerar recomendações válidas para um conjunto de usuários, de itens que possam interessá-los" (MELVILLE; SINDHWANI, 2010)
- Personalizadas x Não personalizadas
- "Obter recomendações de fontes confiáveis é um componente importante do processo natural de tomada de decisões" (MELVILLE; SINDHWANI, 2010).
- Consumismo + Internet

- Problema com sobrecarga de informações
 - Mais opções nem sempre é melhor
- As pessoas geralmente apoiam-se em recomendações de outras pessoas para suas decisões diárias
- •Primeiro SR comercial: Tapestry
- •Informações explícitas x implícitas

- Abordagens
 - Filtragem colaborativa
 - Filtragem baseada em conteúdo
 - Métodos híbridos
- Área de pesquisa independente surgiu nos anos 90
- Interesse crescente
 - Papel importante em sites altamente conceituados
 - Conferências e workshops dedicados
 - Sessões em conferências de outras áreas
 - Cursos dedicados à área
 - Edições especiais em revistas acadêmicas

1988

A rule-based message filtering system (POLLOCK, 1988)

1992

Tapestry (GOLDBERG et al., 1992)

MAFIA: An active mailfilter agent for an intelligent document processing support (LUTZ; KLEIST-RETZOW; HOERNING, 1990) 1994

GroupLens (RESNICK et al., 1994)

2001

Amazon obtém patente de filtragem colaborativa baseada em items

(LINDEN; JACOBI; BENSON, 2001)

1997 MovieLens

Pandora inicia o projeto Genoma musical

2006

Netflix prize

Motivações e aplicações

- O"Os SR provaram ser uma ótima abordagem para lidar com o problema de sobrecarga de informações citado" (RICCI; ROKACH; SHAPIRA, 2011)
- •"1/3 dos consumidores que notam as recomendações acabam comprando algo baseado nelas" (GROSSMAN, 2013)
- OSRs são sistemas complexos
- Informações sobre itens x usuários

Motivações e aplicações

- Cinematch
 - Sistema de recomendações do Netflix
- Prêmio Netflix oferecido em 2006
 - 1 milhão de dólares para uma melhora de 10%
 - "Uma melhora de 10% traria para a empresa lucros além do um milhão de dólares oferecido" (THOMPSON, 2008)
 - Ganhador: BellKor's Pragmatic Chaos (2009)
- Nem sempre as características em comum dos filmes são identificáveis

Motivações e aplicações

- Motivos para implantar um SR
 - Aumentar o número de itens vendidos
 - Vender itens mais diversificados
 - Aumentar a satisfação dos usuários
 - Aumentar a fidelidade dos usuários
 - Melhorar o gerenciamentos dos itens
- OSRs estão sujeitos à falhas
 - Walmart acusado de racismo
- •Problema está na consistência dos dados!

- Oldentificar o melhor algoritmo de recomendação é um desafio
 - O Discordância sobre os atributos e métricas
- •Problemas ao avaliar os algoritmos:
 - Algoritmos dependem do conjunto de dados
 - Objetivos da avaliação podem variar

- A maioria dos métodos foca na precisão
- O"A falta de padronização leva a uma grande quantidade de métricas sendo utilizadas, tornando-se difícil comparar os resultados de diferentes publicações" (HERLOCKER et al., 2004)
- As métricas de avaliação podem ser divididas em quatro grandes classes:
 - Precisão preditiva
 - O Precisão de classificação
 - Precisão de ranking
 - Não precisão

- Precisão preditiva (Predictive accuracy)
 - Avaliações estimadas x avaliações do usuário
 - Apropriada nos cenários em que uma predição correta das avaliações para todos os itens é de alta importancia
 - Root mean squared error (RMSE) foi a métrica utilizada na competição do Netflix
 - Fáceis de computar e compreender

- Precisão de classificação (Classification accuracy)
 - Mede a qtde de classificações corretas e incorretas
 - Adequada para aplicações levar os usuários a tomar certas ações como comprar produtos ou serviços
- Precisão de ranking (Rank accuracy)
 - Verifica a habilidade de estimar a ordem correta dos itens em relação à preferência do usuário
 - Adequada para sistemas que oferecem ao usuário uma longa lista ordenada de itens recomendados.

- Além da precisão
 - Sistemas precisam também convencer usuários
 - O Depende de características individuais
 - "Um SR deve inspirar confiança, possuir uma lógica razoavelmente transparente, apresentar items novos, prover detalhes sobre os itens, incluir fotos e avaliações da comunidade, e apresentar maneiras de refinar as recomendações" (SWEARINGEN; SINHA, 2001)

Seção 2 Algoritmos

Algoritmos de Sistemas de Recomendação

 Utilizam como base informações e atributos de usuários e itens para recomendar que estão disponíveis no sistema. Estes são os principais componentes avaliados com base em diferentes critérios, cada qual com sua

Categorias

- Técnicas Não-Personalizadas
 - o Como NÃO ordenar pela média
 - Como ordenar pela média
- Filtragem Colaborativa
 - Baseada em Vizinhos
- Filtragem Baseada em Conteúdo
- Métodos Híbridos

Como Não ordenar pela média

Nota do item = (Avaliações positivas) - (Avaliações negativas)

ιννεικαμπουπα Twerkathon Twerkative Twerk attack Twerkbortion Twerk burn twerk butter Twerk Cluster Twerked twerkee Twerken Twerker Twerker's Back Twerkers' compensation Twerk Ethic Twerkey

3. Twerk

The vigorously shaking of your Gluteus Maximus

That ratchet knows how to twerk.

mark as favorite buy twerk mugs & shirts booty twerk gluteus ass ratchet.

by A34 Feb 7, 2013 add a video

2831 up, 1799 down 🦫 🖂 💆 🚹

4. twerk

Ghetto dancing

"when i get hammered tonight, i'm twerking my heart out"

mark as favorite buy twerk mugs & shirts black girl ass alcohol ghetto ratchet by GabzS456 Dec 31, 2012 add a video

2820 up, 2191 down 🦻 💰 🗾 🚮

Como Não ordenar pela média

 Nota do item = média das avaliações = (Avaliações positivas) / (Total de avaliações)

See Color Options

TY Beanie Boos - Waddles - Penguin

\$9.99 \$7.44 Prime

Order in the next 23 minutes and get it by Wednesday, Oct 9. Eligible for FREE Super Saver Shipping.

More Buying Choices

\$2.29 new (40 offers)

*** (294)

Show only TY Beanie Boos items

Baby Einstein Take Along Tunes

\$9.99 \$8.40 Prime

Order in the next 23 minutes and get it by Wednesday, Oct 9. Eligible for FREE Super Saver Shipping. See Details

More Buying Choices

\$4.71 new (68 offers)

★★★★ ▼ (1,943)

Show only Baby Einstein items

Como ordenar pela média

 Nota do item = Limite inferior do intervalo de confiança da pontuação Wilson para um parâmetro Bernoulli

$$\left(\hat{p} + \frac{z_{\alpha/2}^2}{2n} \pm z_{\alpha/2} \sqrt{[\hat{p}(1-\hat{p}) + z_{\alpha/2}^2/4n]/n}\right) / (1 + z_{\alpha/2}^2/n).$$

- Algoritmo da filtragem baseada em vizinhos
 - Atribua um peso para todos os usuários de acordo com a similaridade com o usuário atual;
 - Selecione k usuários que tenham a maior similaridade possível com o usuário atual que normalmente é chamado de vizinhança;
 - 3. Compute uma predição de uma combinação ponderada das avaliações dos vizinhos selecionados.

Exemplo de Algoritmo

Correlação do Coeficiente de Pearson

$$s_{a,u} = \frac{\sum_{i=1}^{m} [(r_{a,i} - \bar{r}_a)(r_{u,i} - \bar{r}_u)]}{\sqrt{\sum_{i=1}^{m} (r_{a,i} - \bar{r}_a)^2 \sum_{i=1}^{m} (r_{u,i} - \bar{r}_u)^2}}$$

Exemplo de Algoritmo

 Alternativa para a correlação de Pearson (passo 1)

$$w_{a,u} = \cos(\vec{r}_a, \vec{r}_u) = \frac{\vec{r}_a \cdot \vec{r}_u}{\|\vec{r}_a\|_2 \times \|\vec{r}_u\|_2}$$
$$= \frac{\sum_{i=1}^m r_{a,i} r_{u,i}}{\sqrt{\sum_{i=1}^m r_{a,i}^2} \sqrt{\sum_{i=1}^m r_{u,i}^2}}$$

Exemplo de Algoritmo

 No passo 3, as previsões geralmente são computadas como a média ponderada dos desvios da média do vizinho.

$$p_{a,i} = \overline{r}_a + \frac{\sum_{u=1}^{n} [(r_{u,i} - \overline{r}_u) w_{a,u}]}{\sum_{u=1}^{n} w_{a,u}}$$

- Métodos baseados no usuário:
 - Ao invés de recomendar itens semelhantes aos visualizados anteriormente pelo usuário, recomendar itens semelhantes aos de interesses em comum de outros usuários;
- Alguns métodos que seguem essa abordagem:
 - Cosseno;
 - Pearson;
 - Vizinhos mais próximos;
 - o etc;

- A abordagem mais comum é utilizar uma matriz que lista usuários e itens;
- Necessário que os usuários avaliem os itens.

- Características Positivas:
 - Produz recomendações "inesperadas";
 - Não depende de preferências anteriores do usuário;
 - Produz recomendações de alta qualidade: qualidade de um item avaliada pelos próprios usuários (público alvo).
- Características Negativas:
 - Avaliações Esparsas;
 - Primeiras Avaliações;
 - Cold-Start.

Filtragem Baseada em Conteúdo

- Método baseado em recomendação de itens semelhantes aos que determinado usuário selecionou anteriormente.
- A filtragem de informação é baseada na análise do conteúdo do item (descrito por suas características ou atributos) e no perfil do usuário (que mantém registro de itens selecionados anteriormente);
- Conceito: usuários tem tendência a se interessar por itens semelhantes aos que já comprou anteriormente;

Filtragem Baseada em Conteúdo

- Meios de determinar similaridade e recomendações relevantes:
 - o Índices de busca booleana;
 - Filtragem probabilística;
 - Modelos vetoriais;
 - Etc.
- Avaliação do item:
 - Usuário informa sua opinião explicitamente ou o sistema registra itens adquiridos ou visitados pelo usuário.

Filtragem Baseada em Conteúdo

Filtragem Baseada em Conteúdo

- Características Positivas:
 - Usuário Independente;
 - Novo Item.
- Características Negativas:
 - Análise de Conteúdo Limitada;
 - Especialização;
 - Novo Usuário.

Filtragem Baseada em Conteúdo

- Muito da pesquisa desta área tem focado em recomendar itens com conteúdo textual associado
 - páginas web, livros e filmes; onde o conteúdo associado como descrições e avaliações de usuários estão disponíveis.
- Portanto, várias abordagens tratam este problema como uma tarefa de recuperação de informação, onde o conteúdo associado com as preferências do usuário é tratado como uma consulta;
- Documentos não-avaliados recebem uma nota de relevância/similaridade de acordo com esta consulta.

Filtragem Baseada em Conteúdo

- Uma alternativa para abordagens de recuperação de informação é tratar recomendações como uma tarefa de classificação:
 - Cada exemplo representa o conteúdo de um item, e as avaliações anteriores do usuário são usadas como rótulos para estes.
- Algoritmos utilizados nesta classificação:
 - Vizinho K-mais-próximo;
 - Árvores de Decisão;
 - Classificador de Bayes;
 - Redes Neurais.

Métodos Híbridos

 A filtragem de informação é baseada na análise do conteúdo do item e no perfil do usuário. As configurações possíveis são:

Métodos Híbridos

Métodos Utilizados pelo Netflix

- Matrix factorization (ou também matrix decomposition):
 - Método híbrido;
 - Em sua forma base, caracteriza ambos itens e usuários por vetores;
 - Há vários métodos de diferentes de aplicar, cada qual destinado a determinadas classes de problemas;
 - Ex: na análise numérica, para equações lineares, pode ser utilizada decomposição LU (lower upper).
 - Consiste da fatoração de uma matriz em produtos de matrizes.

Métodos Utilizados pelo Netflix

- Restricted Boltzmann Machines (RBM):
 - Base em filtragem colaborativa;
 - Aplica distribuição de probabilidades em seu conjunto de parâmetros de entrada, de acordo com critérios específicos.
 - Tipo padrão de RBM compõe:
 - Unidades visíveis (v) e escondidas (h) de valores booleanos e pesos de compensação (a para "v" e b para "h");
 - Uma matriz simétrica de pesos W associada as unidades visíveis e escondida;
 - Energia dada por:

$$E(v,h) = -\sum_{i} a_i v_i - \sum_{j} b_j h_j - \sum_{i} \sum_{j} h_j w_{i,j} v_i$$

Métodos Utilizados pelo Netflix

- Matrix factorization;
- Restricted Boltzmann Machines;
- Linear regression;
- Logistic regression;
- Elastic nets;
- Singular Value Decomposition;
- Markov Chains
- Latent Dirichlet Allocation
- Association Rules
- Gradient Boosted Decision Trees
- Random Forests
- Técnicas de clustering (ex: Affinity Propagation).

Seção 3

Caso de uso

Implementação de um sistema de recomendação simples

Implementação de um SR

- Implementação manual de um algoritmo simples para realizar recomendações
 - Filtragem colaborativa baseada em usuários
 - Filtragem colaborativa baseada em itens
- Utilização de ferramentas para implementação

Coletando preferências

• Representando informações

```
# A dictionary of movie critics and their ratings of a small
# set of movies
critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
 'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
 'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
 'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
 'The Night Listener': 4.5, 'Superman Returns': 4.0,
 'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
 'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}
```

Encontrando usuários similares

Oldentificação de similaridade através da Distância euclidiana

```
from math import sqrt
# Returns a distance-based similarity score for person1 and person2
def sim distance(prefs,person1,person2):
  # Get the list of shared items
  si={}
  for item in prefs[person1]:
    if item in prefs[person2]:
       si[item]=1
  # if they have no ratings in common, return 0
  if len(si)==0: return 0
  # Add up the squares of all the differences
  sum of squares=sum([pow(prefs[person1][item]-prefs[person2][item],2)
                      for item in prefs[person1] if item in prefs[person2]])
  return 1/(1+sum of squares)
```


Classificando usuários

- •É verificada a compatibilidade pela comparação de um usuário com todos os outros, através da métrica de distância previamente definida
 - Exemplo: Distância Euclidiana

Recomendando itens

- Problemas ao considerar um único usuário similar
 - Exclui filmes que o mesmo não assistiu e inclui filmes que apenas ele gostou
- Solução: pontuação ponderada para os itens

Critic	Similarity	Night	S.xNight	Lady	S.xLady	Luck	S.xLuck
Rose	0.99	3.0	2.97	2.5	2.48	3.0	2.97
Seymour	0.38	3.0	1.14	3.0	1.14	1.5	0.57
Puig	0.89	4.5	4.02			3.0	2.68
LaSalle	0.92	3.0	2.77	3.0	2.77	2.0	1.85
Matthews	0.66	3.0	1.99	3.0	1.99		
Total			12.89		8.38		8.07
Sim. Sum			3.84		2.95		3.18
Total/Sim. Sum			3.35		2.83		2.53

Relacionando itens

- OUtilizado em sites de compras on-line
 - Não possui muitas informações sobre o usuário
- •É possível utilizar os métodos implementados anteriormente
 - Basta inverter o dicionário e chamar a função de similaridade:

```
{'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5}}

{'Lady in the Water':{'Lisa Rose':2.5, 'Gene Seymour':3.0},
'Snakes on a Plane':{'Lisa Rose':3.5, 'Gene Seymour':3.5}} etc..

>> reload(recommendations)
>> movies=recommendations.transformPrefs(recommendations.critics)
>> recommendations.topMatches(movies, 'Superman Returns')
[(0.657, 'You, Me and Dupree'), (0.487, 'Lady in the Water'), (0.111, 'Snakes on a Plane'), (-0.179, 'The Night Listener'), (-0.422, 'Just My Luck')]
```

Filtragem baseada em itens

- Computar recomendações a partir todas as avaliações envolve muitas operações
 - Depende do número de usuários e de avaliações de cada usuário
- Filtragem colaborativa baseada em itens é mais adequada para grandes volumes de dados
 - Cálculos realizados antecipadamente
 - Similaridade entre itens muda com menos frequência

Construindo o conjunto de similaridades

- Etapas:
 - Transformar o dicionário para o formato itens
 => classificações
 - Iterar sobre cada item e calcular o valor de similaridade com os outros
 - Criar um dicionário com a lista dos itens mais similares
- Precisa ser executado apenas para manter a lista de similaridades atualizada

Recomendando itens

- Verificar todos os itens que um usuário avaliou
- Encontrar os itens similares
- OPonderá-los através do dicionário de itens

Movie	Rating	Night	R.xNight	Lady	R.xLady	Luck	R.xLuck
Snakes	4.5	0.182	0.818	0.222	0.999	0.105	0.474
Superman	4.0	0.103	0.412	0.091	0.363	0.065	0.258
Dupree	1.0	0.148	0.148	0.4	0.4	0.182	0.182
Total		0.433	1.378	0.713	1.764	0.352	0.914
Normalized			3.183		2.598		2.473

```
>> reload(recommendations)
>> recommendations.getRecommendedItems(recommendations.critics,itemsim,'Toby')
[(3.182, 'The Night Listener'),
  (2.598, 'Just My Luck'),
  (2.473, 'Lady in the Water')]
```

Algoritmo implementado

Coletar e representar preferências

Definir a similaridade entre dois usuários

Encontrar os usuários mais similares

Recomendar itens

Ferramentas

- Apache Mahout
 - Biblioteca para aprendizado de máquina, classificação, clustering e recomendações
 - Fornece ferramentas para construir SR variados
 - Trabalha sobre Apache Hadoop
 - Framework open-source para escalabilidade através de computação e armazenamento distribuídos.
 - Opensource com licença Apache 2.0
- MyMediaLite
 - O Biblioteca leve para construção de algoritmos para sistemas de recomendação
 - Opensource com licença GPL

Ferramentas

- Duine
 - Framework para criar mecanismos de predição (calcula quão interessante um item é para um usuário)
 - Opensource com licença LGPLv3
- GraphLab
 - Originalmente escrito para tarefas de aprendizado de máquina, mas é atualmente utilizado para um grande número de tarefas de data mining
 - Oferece um toolkit para filtragem colaborativa
 - Opensource com licença Apache 2.0
- Lenskit
 - Toolkit para construir, pesquisar e estudar sistemas de recomendação
 - Opensource com licença GPL

Seção 4

Estudos de caso

Estudos de Caso

- 1. Netflix
- 2. Google AdSense

Estudo de Caso: Netflix

- Netflix: serviço de TV por internet.
- Importância da Recomendação ao Netflix:
 - Em 2006, criou uma competição que premiaria em 1 milhão de dólares quem conseguisse melhorar seu algoritmo (Netflix Prize);
 - Em 2012, 75% do conteúdo visualizado do Netflix foi proveniente de algum tipo de recomendação;
 - Maior importância: personalização das recomendações ao usuário ativo, a ordenação dos itens recomendados é o parâmetro principal.

Estudo de Caso: Netflix

- Organização do Estudo Netflix:
- 1. Netflix Prize
- 2. Sistema de Recomendação Netflix
- 3. Parâmetros Analisados para Recomendação
- 4. Ordenação dos Itens Recomendados
- 5. Conclusão

Netflix: Netflix Prize

- Netflix Prize:
 - •\$1 milhão ao vencedor;
 - Critério de vitória: superar o RMSE do algoritmo existente da Netflix (0,9525) em pelo menos 10%.
 - Prêmio melhor progresso anual: \$50 mil;
 - Início em 2006 e término em 2009;
 - O Vencedor do primeiro Prêmio de Progresso:
 - Equipe da Korbell
 - ●8,43% de melhoria;
 - Conjunto de 107 algoritmos. Dois algoritmos aproveitados: Matrix Factorization e Restricted Boltzmann Machines.

Netflix: Netflix Prize

Melhor Resultado: BellKor's Pragmatic Chaos
Melhoria de 10,06%.

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 veleaders.

Rank	Team Name	Best	Test Score	% lm	provement	Best Submit Time
Gran	d Prize - RMSE = 0.8567 - Winning	Team: I	BellKor's Pra	gmatic	Chaos	
1	BellKor's Pragmatic Chaos	1	0.8567	i.	10.06	2009-07-26 18:18:28
2	The Ensemble	1	0.8567		10.06	2009-07-26 18:38:22
3	Grand Prize Team	}	0.8582		9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	1	0.8588		9.84	2009-07-10 01:12:31
5	Vandelay Industries!	}	0.8591	1	9.81	2009-07-10 00:32:20
6	PragmaticTheory	1	0.8594		9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	1	0.8601	1	9.70	2009-05-13 08:14:09
8	Dace	1	0.8612		9.59	2009-07-24 17:18:43

Netflix: Sistema de Recomendação

- O Sistema de Recomendação Netflix
 - Tudo se torna uma recomendação!
 - Recomendações arranjadas em grupos colocados em linhas, e cada coluna é um item do grupo.

- O Principais Parâmetros de Recomendação:
 - Semelhança (ou Similaridade);
 - Amigos (social);
 - Popularidade;
 - O Gênero (ou Categoria);
 - Outros parâmetros podem incluir localização geográfica do usuário ou dados retirados de seu perfil ou outros acessos.
- Algoritmos observam estes parâmetros em conjunto, não separados.

Similaridade

Search results

Queue Add

Similaridade

• Similaridade: Gêneros Temporários

Sugestões de amigos (social)

Friends' Favorites

Watched by your friends

- Popularidade:
 - Através da avaliação dos usuários para os itens assistidos;
 - Através do número de visualizações dos itens, parciais e totais;
 - Netflix possui um mecanismo para medir a popularidade de itens no Facebook, e não apenas em seu sistema.

- Gêneros:
 - Trata-se da organização dos filmes em linhas determinadas por gêneros.
 - Os gêneros de alto nível, mais comuns, são os que geralmente se enquadram os filmes: comédias, dramas, suspense, terror, ação, etc.
 - Filmes também podem ser enquadrados em subgêneros diversos.

O Gêneros: exemplos de subgêneros

Netflix: Parâmetros Analisados

- Ordenação:
 - Encontrar a melhor ordem para exibição de itens de cada arranjo;
 - Analisa e atribui ordem de acordo com um ou mais critérios de preferência do usuário ou popularidade do item;
 - É considerada muito importante ao Netflix, pois é fator principal da personalização usuário serviço.

Netflix: Ordenação de Itens

Ordenação: exemplo simples de ordenação

Netflix: Conclusões

- Sistema de recomendação Netflix utilizada métodos híbridos;
- O sistema de recomendação é parte fundamental da experiência usuário – serviço, vez que boa parte da visualização de itens é por recomendação;
- A equipe Netflix busca constantemente a melhoria de seu sistema de recomendação direcionado a personalização, mostrando reconhecimento da importância deste como diferencial do serviço.

Estudo de Caso: Google AdSense

- Organização do Estudo:
- 1. AdSense e AdWords
- 2. Funcionamento do AdSense
- 3. Site Parceiro: Implantação e Vantagens
- 4. Parâmetros Analisados
- 5. Conclusão

AdSense e AdWords

- Google AdSense:
 - O Definição;
 - Local de Aplicação;
 - Vínculo direto com o Google AdWord.
- Google AdWords:
 - Definição;
 - Funcionamento;
 - O Local de Publicação.

AdSense e AdWords

Aproximadamente 105.000.000 resultados (0,40 segundos)

Busca por "Anúncios Google"

www.google.com.br/ads/ -

Saiba mais sobre a publicidade no Google e como ganhar dinheiro com seu site.

Google AdWords - Publicidade on-line do Google

adwords.google.com.br/ *

Anuncie no Google AdWords, na seção de "Links patrocinados" ao lado dos resultados de pesquisa para incentivar o tráfego e as vendas de seu website.

Ganhe dinheiro com seu site – Editor – Anúncios do Google

www.google.com.br/ads/publisher/ *

Explore o pacote completo de soluções para editores do Google criado para ...

Anúncios ①

Anuncie Grátis na OLX

www.olx.com.br/desapega * Vender na OLX é Fácil. Fotografou, Publicou, Desapegou!

Link Patrocinado Anúncios

www.velli.com.br/ *

(11) 4301-3433

Divulge seus produtos na Internet Planos e Serviços para sua Empresa

Anúncios Buscadores

www.cadastrando.com.br/Anuncios-Google

Quer Colocar Anúncios Aqui ? Faça Já Seu Orçamento! Confira.

Anuncie Grátis Online

www.bomnegocio.com/Anúncios *

Seja Visto Por Milhares de Pessoas Com o Bom Negócio! Acesse e Confira

Veja seu anúncio aqui »

AdSense: Funcionamento

- Funcionamento do AdSense:
 - Baseado nos anúncios do AdWords:
 - Os dois sistemas se complementam;
 - Modelo impulsiona o crescimento do comércio eletrônico e garante lucros para a Google;
 - Entidades envolvidas:
 - Anunciante: cria o anúncio e paga sua manutenção;
 - Editor do site parceiro: hospeda anúncios em sua página da web;
 - Ferramenta Google AdSense: gerenciar os anúncios e atribui anúncios condizentes nas páginas dos parceiros.

AdSense: Site Parceiro

- O Site Parceiro Vantagens de ser parceiro:
 - Lucro de percentual por clique para o site parceiro apenas disponibilizando espaço;
 - Acesso simples e instantâneo a milhares de anunciantes;
 - Ferramenta controla os anúncios, sendo desnecessária manutenção de anúncios ou da forma que são selecionados.

AdSense: Site Parceiro

- Site Parceiro Modo de Implantar:
 - 1. Cadastre-se no Google AdSense;
 - 2. Escolher os formatos dos anúncios;
 - 3. Instalar os códigos gerados pelo AdSense para sua página;
 - 4. Gerenciar o programa Adsense;
 - 5. Receber a comissão.

AdSense: Parâmetros Analisados

- Parâmetros Analisados:
 - Conteúdo da página visualizada;
 - Localização geográfica do usuário;
 - Custo optado a pagar por clique;
 - Histórico de acesso a sites (por tipo e conteúdo);
 - Informações do perfil do Google;
 - Se o usuário já interagiu com anúncios anteriormente;
 - Cookies da DoubleClick no navegador;
 - Entre outros não divulgados.

AdSense: Exemplo

Exemplo do AdSense: GameFAQs

League of Legends - PC

Is there a certain genre of games that you just flat out hate? Explain why!

Xbox 360

Do any of your cars have a chrome paintjob?

Grand Theft Auto Online - PlayStation 3

More Message Board Topics »

game deals revealed

Metal Gear Solid 5: Ground Zeroes getting PlayStation-exclusive content

Community News Update: Tuesday 11/12 \$10 Pokemon X/Y music collection hits

iTunes

PlayStation 4 preorders ahead of Xbox One, Ubisoft suggests

Sony on PS4 launch -- "We're very, very confident"

Ubisoft: Watch Dogs progressing "very well," will be top-seller in 2014

Witcher dev: Publishers use DRM as "smokescreen" to cover their a**es

Rayman Legends coming to PS4, Xbox One in February

More Headlines »

AdSense: Exemplo

Exemplo AdSense: GameFAQs > CNET

AdSense: Conclusões

- Conclusões:
 - Método de recomendação baseado em conteúdo, pois nenhum dos parâmetros se baseia em algum tipo de avaliação de usuário;
 - A abordagem tem grande relevância para a Google, uma vez que quanto mais interessante e preciso se tornarem os anúncios, maior o lucro da empresa;
 - Recomendações corretas e otimizadas são essenciais para aumentar o interesse do usuário no anúncio e o número de vendas do anunciante.

Seção 5

Desafios e limitações

Desafios e Limitações

- 1. Esparcidade
- 2. The Cold-Start Problem
- 3. Fraude
- 4. Filter Bubble

Esparcidade

- A maioria dos usuários não avalia grande parte dos seus itens;
- Isso diminui a probabilidade de encontrar usuários com avaliações parecidas (filtragem colaborativa).

```
 \begin{bmatrix} 1.1 & 0 & 0 & 0 & 0 & 0 & 0.5 \\ 0 & 1.9 & 0 & 0 & 0 & 0 & 0.5 \\ 0 & 0 & 2.6 & 0 & 0 & 0 & 0.5 \\ 0 & 0 & 7.8 & 0.6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1.5 & 2.7 & 0 & 0 \\ 1.6 & 0 & 0 & 0 & 0.4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.9 & 1.7 \\ \end{bmatrix}
```

The Cold-Start Problem

- Este problema pode ocorrer quando há itens e usuários novos;
- Surge principalmente em sistemas de filtragem colaborativa, pois os itens precisam de avaliação anteriores;
- Este problema também se aplica a itens "obscuros", ou seja, um item dos menos requisitados

Fraude

- Em sistemas que dependem de avaliações de produtos, vendedores podem manipular o sistema;
- Essa manipulação ocorre utilizando perfis falsos que avaliam os competidores de forma negativa e o vendedor fraudulento de forma positiva.

Filter Bubble

- Fenômeno em que um usuário acaba sendo isolado de outras idéias, culturas e produtos potencialmente benéficos;
- Ocorre devido à personalização criada pelo sistema de recomendação, que recomenda itens novos baseados nos anteriores, ou em certos perfis.

Considerações Finais

- Sistemas de recomendação podem ser uma ótima forma de aumentar o lucro ou relevância de um serviço online;
- Possuem vários benefícios para os usuários e prestadores de serviço, mas é necessário tomar cuidado para não infringir a privacidade do usuário nem omitir itens disponíveis no sistema.

AJUDA do AdSense. Disponível em:

https://support.google.com/adsense/troubleshooter/1631343. Acesso em: 11 nov. 2013.

AMATRIAIN, X; BASILICO, J. Netflix Recommendations: Beyond the 5 stars. 2012. Disponível em:

http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html. Acesso em: 11 nov. 2013.

APACHE Mahout. Disponível em: http://mahout.apache.org/. Acesso em: 10 de novembro de 2013.

DUINE. Disponível em:

http://www.duineframework.org/index.html. Acesso em: 10 de novembro de 2013.

- GROSSMAN, L. How Computers Know What We Want Before We Do. Disponível em: http://www.time.com/time/magazine/article/0,9171,1992403,00.html>. Acesso em: 20 ago. 2013.
- GATTO, E. C. Palestra unesp 2012, 15 out. 2012. Disponível em: http://www.slideshare.net/elainececiliagatto/palestra-unesp-2012>. Acesso em: 10 out. 2013
- FELIPINI, D. Adwords e Adsense, os filhos gêmeos do Google. Disponível em: < http://www.ecommerce.org.br/artigos/adsense-adwords.php >. Acesso em: 11 nov. 2013.
- FELIPINI, D. Google AdSense. Disponível em: http://www.e-commerce.org.br/google_adsense.php. Acesso em: 11 nov. 2013.

- GraphLab. Disponível em: http://graphlab.org/. Acesso em: 10 de novembro de 2013.
- INGERSOLL, G. Introdução ao Apache Mahout (2009). Disponível em: http://www.ibm.com/developerworks/br/java/library/j-mahout/. Acesso em: 15 de outubro de 2013.
- LENSKIT. Disponível em: http://lenskit.grouplens.org/. Acesso em: 10 de novembro de 2013.
- MELVILLE, P.; SINDHWANI, V. Encyclopedia of machine learning. [s.l.] Springer-Verlag, chapter Recommender systems, 2010.
- MILLER, E.; How Not To Sort By Average Rating. Disponível em: http://www.evanmiller.org/how-not-to-sort-by-average-rating.html>. Acesso em: 9 out. 2013.

MYMEDIALITE. Disponível em: http://mymedialite.net/. Acesso em: 10 de novembro de 2013.

NETFLIX. Disponível em: http://pt.wikipedia.org/wiki/Netflix. Acesso em: 11 nov. 2013.

O QUE é o Google AdWords?. Disponível em: http://www.clinks.com.br/videos-tutoriais/o-que-e-google-adwords/. Acesso em: 11 nov. 2013.

PARISER, E. The filter bubble: What the Internet is hiding from you. Penguin (UK). 2011.

- RICCI, F.; ROKACH, L.; SHAPIRA, B. Introduction to Recommender Systems Handbook. In: RICCI, F. et al. (Eds.). Recommender Systems Handbook. Boston, MA: Springer US, 2011. p. 1–35.
- SAMPAIO, I.; Aprendizagem Ativa em Sistemas de Filtragem Colaborativa. 2007
- SCHRODER, G.; THIELE, M.; LEHNER, W. "Setting Goals and Choosing Metrics for Recommender System Evaluations." UCERSTI Workshop at the ACM Conference on Recommender Systems, 2011.
- Segaran, Toby. Programming Collective Intelligence: Building Smart Web 2.0 Applications. Beijing: O'Reilly, 2007.