Homework 5

Aleck Zhao

March 7, 2018

Section 3.2

7. Show that the formula $e^{iz} = \cos z + i \sin z$ holds for all complex numbers z.

Proof. We have

$$\cos z + i \sin z = \frac{e^{iz} + e^{-iz}}{2} + i \cdot \frac{e^{iz} - e^{-iz}}{2i} = e^{iz}$$

as desired.

17. Find all numbers z (if any) such that

(a) $e^{4z} = 1$

Solution. We have $e^{4z} = 1 = e^0$ holds whenever $4z = 0 + 2k\pi i \implies z = k\pi i/2, k \in \mathbb{Z}$.

(b) $e^{iz} = 3$

Solution. We have $e^{iz}=3=e^{\text{Log }3}$ holds whenever $iz=\text{Log }3+2k\pi i\implies z=-i\,\text{Log }3+2k\pi$

(c) $\cos z = i \sin z$

Solution. We have

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$i \sin z = i \cdot \frac{e^{iz} - e^{-iz}}{2i} = \frac{e^{iz} - e^{-iz}}{2}$$

$$\cos z = i \sin z \implies \frac{e^{iz} + e^{-iz}}{2} = \frac{e^{iz} - e^{-iz}}{2}$$

$$\implies e^{-iz} = -e^{-iz} \implies e^{-iz} = 0$$

but this has no solution.

20. Show that the function $w = e^z$ maps the shaded rectangle in Fig 3.2(a) one-to-one onto the semi-annulus in Fig 3.2(b).

Proof. The rectangle in fig 3.2(a) is the set $A = \{x + iy : -1 \le x \le 1, 0 \le y \le \pi\}$, and the semi-annulus in fig 3.2(b) is the set $B = \{z : e^{-1} \le |z| \le e, \text{Im } z \ge 0\}$. Suppose $f(x_1 + iy_1) = f(x_2 + iy_2)$, so

$$e^{x_1+iy_1} = e^{x_2+iy_2} \implies x_1 + iy_1 = x_2 + iy_2 + 2k\pi i$$

 $\implies x_1 = x_2 \text{ and } y_1 = y_2 + 2k\pi$

Since $0 \le y_1, y_2 \le \pi$, it follows that k = 0 and so $y_1 = y_2$, so $x_1 + iy_1 = x_2 + iy_2$, and thus f is injective.

Take some $z \in B$, so $z = re^{i\theta}$ where

$$e^{-1} \le r \le e \implies -1 \le \text{Log } r \le 1$$

and θ lies in quadrants 1 and 2. Then let θ_0 be the argument of z in $[-\pi, \pi]$. Then we have

$$f(\operatorname{Log} r + i\theta_0) = re^{i\theta_0} = re^{i\theta}$$

where $\operatorname{Log} r + i\theta_0 \in A$, so f is surjective.

21. (a) Show that the mapping $w = \sin z$ is one-to-one in the semi-infinite strip

$$S_1 = \{x + iy : -\pi < x < \pi, y > 0\}$$

and find the image of this strip. Hint: See prob 16.

Proof. Suppose $\sin z_1 = \sin z_2$ with $z_1, z_2 \in S_1$. By the result of exercise 16, we have

$$0 = \sin z_2 - \sin z_1 = 2\cos\left(\frac{z_2 + z_1}{2}\right)\sin\left(\frac{z_2 - z_1}{2}\right)$$

Thus, either $\cos\left(\frac{z_2+z_1}{2}\right)=0$ or $\sin\left(\frac{z_2-z_1}{2}\right)=0$. We know that $\cos z=0$ if and only if $z=k\pi+\pi/2$ and $\sin z=0$ if and only if $z=k\pi$ for $k\in\mathbb{Z}$. Thus we have either

$$\frac{z_2+z_1}{2}=k\pi+\frac{\pi}{2} \implies z_2+z_1=\pi+2k\pi$$

$$\frac{z_2-z_1}{2}=k\pi \implies z_2-z_1=2k\pi$$

The RHS of both sides is real, so the first option is not possible because $y_1, y_2 > 0$. Thus in the second case, we have $y_2 = y_1$, and $x_2 - x_1 = 2k\pi$. But since $-\pi < x_1, x_1 < \pi$, the only way this equality can hold is if $x_2 - x_1 = 0$, and thus $z_1 = x_1 + iy_1 = x_2 + iy_2 = z_2$, so this mapping is injective on this domain.

(b) For $w = \sin z$, what is the image of the smaller semi-infinite strip

$$S_2 = \{x + iy : -\pi/2 < x < \pi/2, y > 0\}$$
?

Solution. Let $z = x + iy \in S_2$, so

$$\sin z = \sin (x + iy) = \sin x \cos(iy) + \sin(iy) \cos x$$
$$= \sin x \cosh y + i \sinh y \cos x$$

Here, $-1 \le \sin x \le 1$ and $\cosh y > 0$, so $\sin x \cosh y$ can be anything. Then $\sinh y > 0j$ and $0 \le \cos x \le 1$, so the image is the entire upper half plane, excluding the real axis.

Section 3.5

- 3. Find the principal value of each of the following.
 - (a) $4^{1/2}$

Solution. This is $4^{1/2} = e^{\frac{1}{2} \log 4} = e^{\log 2} = 2$.

(b) i^{2i}

Solution. This is

$$i^{2i} = e^{2i\operatorname{Log} i} = e^{2i(\operatorname{Log}|i| + i\operatorname{Arg}(i))} = e^{2i\cdot i\pi/2} = e^{-\pi}$$

(c) $(1+i)^{1+i}$

Solution. This is

$$(1+i)^{1+i} = e^{(1+i)\operatorname{Log}(1+i)} = e^{(1+i)[\operatorname{Log}(1+i)+i\operatorname{Arg}(1+i)]}$$

$$= e^{(1+i)\left(\operatorname{Log}\sqrt{2}+i\pi/4\right)} = e^{\operatorname{Log}\sqrt{2}+i\pi/4+i\operatorname{Log}\sqrt{2}-\pi/4}$$

$$= e^{\operatorname{Log}\sqrt{2}-\pi/4}e^{i\left(\operatorname{Log}\sqrt{2}+\pi/4\right)}$$

$$= \sqrt{2}e^{i\pi/4}e^{-\pi/4+i\operatorname{Log}\sqrt{2}} = (1+i)\exp\left(-\frac{\pi}{4} + \frac{i}{2}\operatorname{Log}2\right)$$

8. Show that all solutions of the equation $\sin z = 2$ are given by $\pi/2 + 2k\pi \pm i \operatorname{Log}(2 + \sqrt{3})$, where $k = 0, \pm 1, \pm 2, \cdots$.

Proof. We have

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = 2$$

$$\implies e^{iz} - e^{-iz} = 4i \implies e^{2iz} - 1 = 4ie^{iz}$$

$$\implies e^{2iz} - 4ie^{iz} - 1 = 0$$

so by the quadratic formula, we have

$$e^{iz} = \frac{4i \pm \sqrt{(-4i)^2 - 4(-1)}}{2} = \frac{4i \pm \sqrt{-12}}{2} = i\left(2 \pm \sqrt{3}\right)$$
$$= e^{i\pi/2 + \text{Log}(2 \pm \sqrt{3})}$$
$$\implies iz = \frac{i\pi}{2} + \text{Log}\left(2 \pm \sqrt{3}\right) + 2k\pi i, \quad k \in \mathbb{Z}$$

Now, we have

$$\frac{1}{2-\sqrt{3}} = \frac{2+\sqrt{3}}{2^2-3} = 2+\sqrt{3}$$

$$\implies \operatorname{Log}\left(2+\sqrt{3}\right) = -\operatorname{Log}\left(2-\sqrt{3}\right)$$

so the solution is given by

$$z = \frac{\pi}{2} \pm i \operatorname{Log}\left(2 + \sqrt{3}\right) + 2k\pi, \quad k \in \mathbb{Z}$$

as desired. \Box

11. Find all solutions of the equation $\sin z = \cos z$.

Solution. We have

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \frac{e^{iz} + e^{-iz}}{2} = \cos z$$

$$\implies e^{iz} - e^{-iz} = ie^{iz} + ie^{-iz}$$

$$\implies e^{2iz} - 1 = ie^{2iz} + i$$

$$\implies e^{2iz} = \frac{1+i}{1-i} = \frac{(1+i)^2}{1^2 + 1^2} = \frac{1}{2}(1+i)^2$$

$$\implies e^{2iz} = \frac{1}{2}\left(\sqrt{2}e^{i\pi/4}\right)^2 = e^{i\pi/2}$$

$$\implies 2iz = \frac{i\pi}{2} + 2k\pi i, \quad k \in \mathbb{Z}$$

$$\implies z = \frac{\pi}{4} + k\pi, \quad k \in \mathbb{Z}$$