Package 'activegp'

May 25, 2024

Type Package
Title Gaussian Process Based Design and Analysis for the Active Subspace Method
Version 1.1.1
Date 2024-05-25
Author Nathan Wycoff, Mickael Binois
Maintainer Nathan Wycoff <nathan.wycoff@georgetown.edu></nathan.wycoff@georgetown.edu>
Description The active subspace method is a sensitivity analysis technique that finds important linear combinations of input variables for a simulator. This package provides functions allowing estimation of the active subspace without gradient information using Gaussian processes as well as sequential experimental design tools to minimize the amount of data required to do so. Implements Wycoff et al. (JCGS, 2021) <doi:10.48550 arxiv.1907.11572="">.</doi:10.48550>
License BSD_3_clause + file LICENSE
Depends R (>= $3.4.0$)
Imports Rcpp (>= 0.12.18), hetGP (>= 1.1.1), lhs, numDeriv, methods, MASS, RcppProgress
Encoding UTF-8
LinkingTo Rcpp, RcppArmadillo, RcppProgress
RoxygenNote 7.2.3
Suggests testthat
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-05-25 21:30:02 UTC
R topics documented:
activegp

2 activegp

C_tr	
C_var	
C_var2	
domain_to_R	
domain_to_unit	
grad_est_subspace	
logLikHessian	
Lt_GP	
n11_2_01	
plot.const_C	
print.const_C	
subspace_dist	
update.const_C	
update_C2	

activegp

Package activegp

Description

Active subspace estimation with Gaussian processes

Details

The primary function for analysis of the active subspace given some set of function evaluations is C GP.

C_var, C_var2, and C_tr give three possible acquisition functions for sequential design. Either C_var or C_var2 is recommended, see Wycoff et al for details and the example below for usage.

Author(s)

Nathan Wycoff, Mickael Binois

References

N. Wycoff, M. Binois, S. Wild (2019+), Sequential Learning of Active Subspaces, preprint. P. Constantine (2015) Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies, SIAM Spotlights

activegp 3

```
nvar <- 2
n <- 20
nits <- 20
# theta gives the subspace direction
f <- function(x, theta, nugget = 1e-6){
  if(is.null(dim(x))) x \leftarrow matrix(x, 1)
  xact <- cos(theta) * x[,1] - sin(theta) * x[,2]
  return(hetGP::f1d(xact) + rnorm(n = nrow(x), sd = rep(nugget, nrow(x))))
  return(100*erf((xact + 0.5)*5) + hetGP::fld(xact) +
    rnorm(n = nrow(x), sd = rep(nugget, nrow(x))))
}
theta_dir <- pi/6
act_dir <- c(cos(theta_dir), -sin(theta_dir))</pre>
# Create design of experiments and initial GP model
design <- X <- matrix(signif(maximinLHS(n, nvar), 2), ncol = nvar)</pre>
response <- Y <- apply(design, 1, f, theta = theta_dir)</pre>
model <- mleHomGP(design, response, lower = rep(1e-4, nvar),</pre>
                   upper = rep(0.5, nvar), known = list(g = 1e-6, beta0 = 0))
C_hat <- C_GP(model)</pre>
ngrid <- 51
xgrid <- seq(0, 1,, ngrid)</pre>
Xgrid <- as.matrix(expand.grid(xgrid, xgrid))</pre>
filled.contour(matrix(f(Xgrid, theta = theta_dir), ngrid))
ssd <- rep(NA, nits)</pre>
# Main loop
for(nit in 1:nits) {
  cat(nit)
  cat(" ")
  af <- function(x, C) C_var(C, x, grad = FALSE)</pre>
  af_gr <- function(x, C) C_var(C, x, grad = TRUE)</pre>
  Ctr_grid <- apply(Xgrid, 1, af, C = C_hat) # CVAR</pre>
  # Best candidate point
  opt_cand <- matrix(Xgrid[which.max(Ctr_grid),], 1)</pre>
  # Refine with gradient based optimization
opt <- optim(opt_cand, af, af_gr, method = 'L-BFGS-B', lower = rep(0, nvar), C = C_hat,
                 upper = rep(1, nvar), hessian = TRUE,
                 control = list(fnscale=-1, trace = 0, maxit = 10))
  # Criterion surface with best initial point and corresponding local optimum
  filled.contour(matrix(Ctr_grid, ngrid), color.palette = terrain.colors,
                  plot.axes = {axis(1); axis(2); points(X, pch = 20);
                                points(opt_cand, pch = 20, col = 'blue');
                                points(opt$par, pch = 20, col = 'red')})
```

4 as.matrix.const_C

as.matrix.const_C

Extract Matrix

Description

Given a const_C object, extracts the actual matrix itself.

Usage

```
## S3 method for class 'const_C'
as.matrix(x, ...)
```

Arguments

x A const_C object with field 'mat'.

... Additional parameters. Not used.

Value

The mat entry of C, a matrix.

C_GP 5

C_GP

Active Subspace Matrix closed form expression for a GP.

Description

Computes the integral over the input domain of the outer product of the gradients of a Gaussian process. The corresponding matrix is the C matrix central in active subspace methodology.

Usage

```
C_GP(
  modelX,
  y,
  measure = "lebesgue",
  xm = NULL,
  xv = NULL,
  S = NULL,
  verbose = TRUE
)
```

Arguments

modelX

This may be either 1) a homGP or hetGP GP model, see hetGP-package containing, e.g., a vector of thetas, type of covariance ct, an inverse covariance matrix Ki, a design matrix X0, and response vector Z0. 2) A matrix of design locations, in which case a vector of responses must be given as the y argument, and this function will fit a default model for you.

У

A vector of responses corresponding to the design matrix; may be ommitted if a GP fit is provided in the modelX argument.

measure

One of c("lebesgue", "gaussian", "trunc_gaussian", "sample", "discrete"), indiciating the probability distribution with respect to which the input points are drawn in the definition of the active subspace. "lebesgue" uses the Lebesgue or Uniform measure over the unit hypercube [0,1]^d. "gaussian" uses a Gaussian or Normal distribution, in which case xm and xv should be specified. "trunc_gaussian" gives a truncated Gaussian or Normal distribution over the unit hypercube [0,1]^d, in which case xm and xv should be specified. "sample" gives the Sample or Empirical measure (dirac deltas located at each design point), which is equivalent to calculating the average expected gradient outer product at the design points. "discrete" gives a measure which puts equal weight at points in the input space specified via the S parameter, which should be a matrix with one row for each atom of the measure.

xm

If measure is "gaussian" or "trunc_gaussian", gives the mean vector.

ΧV

If measure is "gaussian" or "trunc_gaussian", gives the marginal variance vector. The covariance matrix is assumed to be diagonal.

S

If measure is "discrete", gives the locations of the measure's atoms. S is a matrix, each row of which gives an atom.

Should we print progress?

verbose

6 C_GP

Value

a const_C object with elements

- model: GP model provided or estimated;
- mat: C matrix estimated;
- Wij: list of W matrices, of size number of variables;
- ct: covariance type (1 for "Gaussian", 2 for "Matern3_2", 3 for "Matern5_2").

References

N. Wycoff, M. Binois, S. Wild (2019+), Sequential Learning of Active Subspaces, preprint.

P. Constantine (2015), Active Subspaces, Philadelphia, PA: SIAM.

See Also

```
print.const_C, plot.const_C
```

```
### Active subspace of a Gaussian process
library(hetGP); library(lhs)
set.seed(42)
nvar <- 2
n <- 100
# theta gives the subspace direction
f <- function(x, theta, nugget = 1e-3){
 if(is.null(dim(x))) x <- matrix(x, 1)</pre>
 xact \leftarrow cos(theta) * x[,1] - sin(theta) * x[,2]
 return(hetGP::fld(xact) + rnorm(n = nrow(x), sd = rep(nugget, nrow(x))))
}
theta_dir <- pi/6
act_dir <- c(cos(theta_dir), -sin(theta_dir))</pre>
# Create design of experiments and initial GP model
design <- X <- matrix(signif(maximinLHS(n, nvar), 2), ncol = nvar)</pre>
response <- Y <- apply(design, 1, f, theta = theta_dir)</pre>
model <- mleHomGP(design, response, known = list(beta0 = 0))</pre>
C_hat <- C_GP(model)</pre>
# Subspace distance to true subspace:
print(subspace_dist(C_hat, matrix(act_dir, nrow = nvar), r = 1))
plot(design %*% eigen(C_hat$mat)$vectors[,1], response,
```

 C_GP_ci

```
main = "Projection along estimated active direction")
plot(design %*% eigen(C_hat$mat)$vectors[,2], response,
    main = "Projection along estimated inactive direction")

# For other plots:
# par(mfrow = c(1, 3)) # uncomment to have all plots together
plot(C_hat)
# par(mfrow = c(1, 1)) # restore graphical window
```

C_GP_ci

CI on Eigenvalues via Monte Carlo/GP

Description

CI on Eigenvalues via Monte Carlo/GP

Usage

```
C_GP_ci(model, B = 100)
```

Arguments

model A homGP model

B Monte Carlo iterates

Value

A list with elements ci giving 95

 C_{tr}

```
theta_dir <- pi/6
act_dir <- c(cos(theta_dir), -sin(theta_dir))

# Create design of experiments and initial GP model
design <- X <- matrix(signif(maximinLHS(n, nvar), 2), ncol = nvar)
response <- Y <- apply(design, 1, f, theta = theta_dir)
model <- mleHomGP(design, response, known = list(beta0 = 0))

res <- C_GP_ci(model)

plot(c(1, 2), log(c(mean(res$eigen_draws[,1]), mean(res$eigen_draws[,2]))),
   ylim = range(log(res$eigen_draws)), ylab = "Eigenvalue", xlab = "Index")
   segments(1, log(res$ci[1,1]), 1, log(res$ci[2,1]))
   segments(2, log(res$ci[1,2]), 2, log(res$ci[2,2]))</pre>
```

C_tr

Expected variance of trace of C

Description

Expected variance of trace of C

Usage

```
C_tr(C, xnew, grad = FALSE)
```

Arguments

C A const_C object, the result of a call to C_GP.

xnew The new design point

grad If FALSE, calculate variance of trace after update. If TRUE, returns the gradient.

Value

A real number giving the expected variance of the trace of C given the current design.

References

N. Wycoff, M. Binois, S. Wild (2019+), Sequential Learning of Active Subspaces, preprint.

C_var

Examples

```
### Variance of trace criterion landscape
library(hetGP)
   set.seed(42)
   nvar <- 2
   n <- 20
   # theta gives the subspace direction
   f \leftarrow function(x, theta = pi/6, nugget = 1e-6){
    if(is.null(dim(x))) x \leftarrow matrix(x, 1)
    xact <- cos(theta) * x[,1] - sin(theta) * x[,2]
    return(hetGP::f1d(xact) +
      rnorm(n = nrow(x), sd = rep(nugget, nrow(x))))
   }
   design <- matrix(signif(runif(nvar*n), 2), ncol = nvar)</pre>
   response <- apply(design, 1, f)</pre>
   model <- mleHomGP(design, response, lower = rep(1e-4, nvar),</pre>
                   upper = rep(0.5, nvar), known = list(g = 1e-4))
   C_hat <- C_GP(model)</pre>
   ngrid <- 101
   xgrid <- seq(0, 1,, ngrid)</pre>
   Xgrid <- as.matrix(expand.grid(xgrid, xgrid))</pre>
   filled.contour(matrix(f(Xgrid), ngrid))
   Ctr_grid <- apply(Xgrid, 1, C_tr, C = C_hat)</pre>
   filled.contour(matrix(Ctr_grid, ngrid), color.palette = terrain.colors,
                 plot.axes = {axis(1); axis(2); points(design, pch = 20)})
```

C_var

Element-wise Cn+1 variance

Description

Element-wise Cn+1 variance

Usage

```
C_var(C, xnew, grad = FALSE)
```

Arguments

С

A const_C object, the result of a call to C_GP.

 C_{var}

xnew The new design point
grad If FALSE, calculate variance of update. If TRUE, returns the gradient.

Value

A real number giving the expected elementwise variance of C given the current design.

References

N. Wycoff, M. Binois, S. Wild (2019+), Sequential Learning of Active Subspaces, preprint.

```
### Norm of the variance of C criterion landscape
library(hetGP)
set.seed(42)
nvar <- 2
n <- 20
# theta gives the subspace direction
f <- function(x, theta = pi/6, nugget = 1e-6){
if(is.null(dim(x))) x \leftarrow matrix(x, 1)
xact \leftarrow cos(theta) * x[,1] - sin(theta) * x[,2]
return(hetGP::fld(xact)
  + rnorm(n = nrow(x), sd = rep(nugget, nrow(x))))
design <- matrix(signif(runif(nvar*n), 2), ncol = nvar)</pre>
response <- apply(design, 1, f)</pre>
model <- mleHomGP(design, response, lower = rep(1e-4, nvar),</pre>
                upper = rep(0.5, nvar), known = list(g = 1e-4))
C_hat <- C_GP(model)</pre>
ngrid <- 51
xgrid <- seq(0, 1,, ngrid)</pre>
Xgrid <- as.matrix(expand.grid(xgrid, xgrid))</pre>
filled.contour(matrix(f(Xgrid), ngrid))
cvar_crit <- function(C, xnew){</pre>
return(sqrt(sum(C_var(C, xnew)^2)))
}
Cvar_grid <- apply(Xgrid, 1, cvar_crit, C = C_hat)</pre>
filled.contour(matrix(Cvar_grid, ngrid), color.palette = terrain.colors,
             plot.axes = {axis(1); axis(2); points(design, pch = 20)})
```

C_var2

C_var2

Alternative Variance of Update

Description

Defined as $E[(C - E[C])^2]$, where $A^2 = AA$ (not elementwise multiplication).

Usage

```
C_var2(C, xnew, grad = FALSE)
```

Arguments

C A const_C object, the result of a call to C_GP.

xnew The new design point

grad If FALSE, calculate variance of update. If TRUE, returns the gradient.

Value

A real number giving the expected variance of C defined via matrix multiplication given the current design.

References

N. Wycoff, M. Binois, S. Wild (2019+), Sequential Learning of Active Subspaces, preprint.

12 domain_to_R

domain_to_R

Rectangular Domain -> Unbounded Domain

Description

Given an m dimensional function whose inputs live in bounded intervals [a1, b1], ..., [am, bm], return a wrapped version of the function whose inputs live in R^m. Transformed using the logit function.

Usage

```
domain_to_R(f, domain)
```

Arguments

f The function to wrap, should have a single vector-valued input.

domain A list of real tuples, indicating the original domain of the function.

Value

A function wrapping f.

domain_to_unit 13

domain_to_unit

Change a function's inputs to live in [-1, 1]

Description

Given an m dimensional function whose inputs live in bounded intervals [a1, b1], ..., [am, bm], return a wrapped version of the function whose inputs live in [-1, 1], ..., [-1, 1].

Usage

```
domain_to_unit(f, domain)
```

Arguments

f The function to wrap, should have a single vector-valued input.

A list of real tuples, indicating the original domain of the function.

Value

A function wrapping f.

grad_est_subspace

Estimate the Active Subspace of a Cheap Function using Gradients

Description

```
Looks between [-1, 1]
```

Usage

```
grad_est_subspace(f, r, m, M = NULL, scale = FALSE)
```

Arguments

f The function to eval

r The max dim of the active subspace

m The dimension of the underlying/embedding space.

M optional budget of evaluations, default to 2 * r * log(m)

scale Scale all gradients to have norm 1?

Value

A list with sub, the active subspace, sv, the singular values (all m of them), fs, which gives function values, gs, function grads, and X, which gives sampled locations.

Lt_GP

logLikHessian	Hessian of the log-likelihood with respect to lengthscales hyperparameters Works for homGP and hetGP models from the hetGP package for now.

Description

Hessian of the log-likelihood with respect to lengthscales hyperparameters Works for homGP and hetGP models from the hetGP package for now.

Usage

```
logLikHessian(model)
```

Arguments

model

homGP model

Value

A matrix giving the Hessian of the GP loglikelihood.

Lt_GP

Active Subspace Prewarping

Description

Computes a matrix square root of C = Lt

Usage

```
Lt_GP(..., C)
```

Arguments

... Parameters to be passed to C_GP, if C was not provided.

C the result of a call to C_GP. If provided, all other arguments are ignored.

Value

The matrix Lt which can be used for sensitivity prewarping, i.e. by computing Xw = X

n11_2_01

n11_2_01

 $f:[-1, 1] -> R \ Becomes \ f:[0,1] -> R$

Description

```
f:[-1, 1] \rightarrow R Becomes f:[0,1] \rightarrow R
```

Usage

```
n11_2_01(f)
```

Arguments

f

initial function

Value

The same function with domain shifted.

plot.const_C

Plot const_C objectc

Description

Plot const_C objectc

Usage

```
## S3 method for class 'const_C'
plot(x, output = c("all", "matrix", "logvals", "projfn"), ...)
```

Arguments

x A const_C object, the result of a call to C_GP

output one of "image" (image of the C matrix), "logvals" (log-eigen values), "projfn"

projected function on first eigen vector or all plots at once (default).

... Additional parameters. Not used.

subspace_dist

print.const_C

Print const_C objects

Description

Print const_C objects

Usage

```
## S3 method for class 'const_C'
print(x, ...)
```

Arguments

x A const_C object, the result of a call to C_GP

... Additional parameters. Not used.

subspace_dist

Get the distance between subspaces defined as the ranges of A and B

Description

Get the distance between subspaces defined as the ranges of A and B

Usage

```
subspace_dist(A, B, r)
```

Arguments

A matrix or const_C object.

B Another matrix with the same number of rows as A, or const_C object of the

same dimension.

r A scalar integer, the dimension of the subspace to compare (only necessary if

either A or B is a const_C object).

Value

A nonnegative scalar giving the cosine of the first principle angle between the two subspaces.

update.const_C

update.const_c c update with new observations	update.const_C	C update with new observations
---	----------------	--------------------------------

Description

Update Constantine's C with new point(s) for a GP

Usage

```
## S3 method for class 'const_C'
update(object, Xnew, Znew, ...)
```

Arguments

object A const_C object, the result of a call to the C_GP function.

Xnew matrix (one point per row) corresponding to the new designs

Znew vector of size nrow(Xnew) for the new responses at Xnew

... not used (for consistency of update method)

Value

The updated const_C object originally provided.

See Also

C_GP to generate const_C objects from mleHomGP objects; update_C2 for an update using faster expressions.

18 update_C2

```
theta_dir <- pi/6
act_dir <- c(cos(theta_dir), -sin(theta_dir))

# Create design of experiments and initial GP model
design <- X <- matrix(signif(maximinLHS(n, nvar), 2), ncol = nvar)
response <- Y <- apply(design, 1, f, theta = theta_dir)
model <- mleHomGP(design, response, known = list(beta0 = 0))

C_hat <- C_GP(model)

print(C_hat)
print(subspace_dist(C_hat, matrix(act_dir, nrow = nvar), r = 1))

# New designs
Xnew <- matrix(runif(2), 1)
Znew <- f(Xnew, theta_dir)

C_new <- update(C_hat, Xnew, Znew)
print(C_new)
subspace_dist(C_new, matrix(act_dir, nrow = nvar), r = 1)</pre>
```

update_C2

Update Constantine's C, using update formula

Description

Update Constantine's C, using update formula

Usage

```
update_C2(C, xnew, ynew)
```

Arguments

C A const_C object, the result of a call to C_GP.

xnew The new design point ynew The new response

Value

Updated C matrix, a const_C object.

References

N. Wycoff, M. Binois, S. Wild (2019+), Sequential Learning of Active Subspaces, preprint.

Index

```
activegp, 2
as.matrix.const\_C, 4
C_GP, 5, 8, 9, 11, 17, 18
C_{GP_ci, 7}
C_tr, 8
C_var, 9
C_var2, 11
domain_to_R, 12
domain_to_unit, 13
grad_est_subspace, 13
logLikHessian, 14
Lt_GP, 14
mleHomGP, 17
n11_2_01, 15
plot.const_C, 6, 15
print.const_C, 6, 16
\verb|subspace_dist|, 16
update.const_C, 17
update_C2, 17, 18
```