(六) 集合: 函数 (Functions)

魏恒峰

hfwei@nju.edu.cn

2021年04月15日

从"关系"的角度理解"函数"

$$f(x) = 2x + 1$$

"函数"也是"关系"

$$\{\ldots, (-2, -3), (-1, -1), (0, 1), (1, 3), \ldots\}$$

$$(x^2 + y^2)^2 + 4ax(x^2 + y^2) - 4a^2y^2 = 0$$

"函数"不允许"一对多"

Functions

Functions

PROOF!

Definition of Functions

$$R \subseteq A \times B$$

is a relation from A to B

$$f \subseteq A \times B$$
 is a *function* from A to B if

 $\forall a \in A. \exists ! b \in B. (a, b) \in f.$

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists ! b \in B. (a, b) \in f.$$

$$f:A\to B$$

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists! b \in B. (a, b) \in f.$$

$$f:A\to B$$

$$dom(f) = A$$
 $cod(f) = B$
 $ran(f) = f(A) \subseteq B$

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists ! b \in B. (a, b) \in f.$$

$$f:A\to B$$

$$dom(f) = A$$
 $cod(f) = B$
 $ran(f) = f(A) \subseteq B$

$$f: a \mapsto b$$

$$f: a \mapsto b$$
$$f(a) \triangleq b$$

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists! b \in B. (a, b) \in f.$$

For Proof:

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists! b \in B. (a, b) \in f.$$

For Proof:

$$\forall a \in A$$
.

$$\forall a \in A. \ \exists b \in B.(a,b) \in f$$

$$f \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A. \exists ! b \in B. (a, b) \in f.$$

For Proof:

$$\forall a \in A$$
.

$$\forall a \in A. \ \exists b \in B.(a,b) \in f$$

$$\exists !b \in B.$$

$$\forall b, b' \in B. (a, b) \in f \land (a, b') \in f \implies b = b'$$

$$I_X:X\to X$$

X 上的恒等函数

$$\forall x \in X. \ I_X(x) = x$$

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$$

0 < a < 1, b is a positive odd integer, $ab > 1 + \frac{3}{2}\pi$

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$$

0 < a < 1, b is a positive odd integer, $ab > 1 + \frac{3}{2}\pi$

Weierstrass Function (1872)

"处处连续, 但处处不可导"

$$Y^X = \{ f \mid f : X \to Y \}$$

$$Y^X = \{ f \mid f : X \to Y \}$$

$$|X| = x \quad |Y| = y, \qquad |Y^X| =$$

$$Y^X = \{ f \mid f : X \to Y \}$$

$$|X| = x \quad |Y| = y, \qquad |Y^X| = y^x$$

$$Y^X = \{ f \mid f : X \to Y \}$$

$$\forall Y. Y^{\emptyset} =$$

$$Y^X = \{f \mid f : X \to Y\}$$

$$\forall Y. Y^{\emptyset} = \{\emptyset\}$$

The *set* of all functions from X to Y:

$$Y^X = \{f \mid f : X \to Y\}$$

$$\forall Y. Y^{\emptyset} = \{\emptyset\}$$

$$\emptyset^{\emptyset} = \{\emptyset\}$$

$$Y^X = \{f \mid f : X \to Y\}$$

$$\forall Y. Y^{\emptyset} = \{\emptyset\}$$

$$\emptyset^{\emptyset} = \{\emptyset\}$$

$$\forall X \neq \emptyset. \ \emptyset^X =$$

$$Y^X = \{ f \mid f : X \to Y \}$$

$$\forall Y. Y^{\emptyset} = \{\emptyset\}$$

$$\emptyset^{\emptyset} = \{\emptyset\}$$

$$\forall X \neq \emptyset. \ \emptyset^X = \emptyset$$

$$Y^X = \{f \mid f : X \to Y\}$$

The *set* of all functions from X to Y:

$$Y^X = \{ f \mid f : X \to Y \}$$

Q: Is there a set consisting of all functions?

(六) 函数 (Functions)

The set of all functions from X to Y:

$$Y^X = \{f \mid f: X \to Y\}$$

Q: Is there a set consisting of all functions?

Theorem

There is no set consisting of all functions.

The set of all functions from X to Y:

$$Y^X = \{f \mid f: X \to Y\}$$

Q: Is there a set consisting of all functions?

Theorem

There is no set consisting of all functions.

Suppose by contradiction that A is the set of all functions.

The *set* of all functions from X to Y:

$$Y^X = \{f \mid f: X \to Y\}$$

Q: Is there a set consisting of all functions?

Theorem

There is no set consisting of all functions.

Suppose by contradiction that A is the set of all functions.

For every set X, there exists a function $I_X : \{X\} \to \{X\}$.

The set of all functions from X to Y:

$$Y^X = \{f \mid f: X \to Y\}$$

Q: Is there a set consisting of all functions?

Theorem

There is no set consisting of all functions.

Suppose by contradiction that A is the set of all functions.

For every set X, there exists a function $I_X : \{X\} \to \{X\}$.

$$\bigcup_{I_X \in A} \operatorname{dom}(I_X)$$

The set of all functions from X to Y:

$$Y^X = \{f \mid f : X \to Y\}$$

Q: Is there a set consisting of all functions?

Theorem

There is no set consisting of all functions.

Suppose by contradiction that A is the set of all functions.

For every set X, there exists a function $I_X : \{X\} \to \{X\}$.

 $\bigcup_{I_X \in A} \operatorname{dom}(I_X) \text{ would be the universe that does not exist!}$

Functions as Sets

Theorem (函数的外延性原理 (The Principle of Functional Extensionality))

f, g are functions:

$$f = g \iff dom(f) = dom(g) \land (\forall x \in dom(f). \ f(x) = g(x))$$

Theorem (函数的外延性原理 (The Principle of Functional Extensionality))

f, g are functions:

$$f = g \iff \mathit{dom}(f) = \mathit{dom}(g) \land \big(\forall x \in \mathit{dom}(f). \ f(x) = g(x) \big)$$

$$f = g \iff \forall (a, b). ((a, b) \in f \leftrightarrow (a, b) \in g).$$

Theorem (函数的外延性原理 (The Principle of Functional Extensionality))

f, g are functions:

$$f = g \iff \mathit{dom}(f) = \mathit{dom}(g) \land \big(\forall x \in \mathit{dom}(f). \ f(x) = g(x) \big)$$

$$f = g \iff \forall (a, b). ((a, b) \in f \leftrightarrow (a, b) \in g).$$

It may be that $cod(f) \neq cod(g)$.

$$f: A \to B$$
 $g: C \to D$

Q: Is $f\cap g$ a function?

$$f: A \to B$$
 $g: C \to D$

Q: Is $f \cap g$ a function?

Theorem (Intersection of Functions)

$$f\cap g:(A\cap C)\to (B\cap D)$$

 $f:A\to B \qquad g:C\to D$

Q: Is $f \cup g$ a function?

$$f:A \to B \qquad g:C \to D$$

Q: Is $f \cup g$ a function?

Theorem (Union of Functions)

$$f \cup g: (A \cup C) \rightarrow (B \cup D) \iff \forall x \in \mathit{dom}(f) \cap \mathit{dom}(g). \ f(x) = g(x)$$

$$f:A \to B$$
 $g:C \to D$

Q: Is $f \cup g$ a function?

Theorem (Union of Functions)

$$f \cup g: (A \cup C) \rightarrow (B \cup D) \iff \forall x \in \mathit{dom}(f) \cap \mathit{dom}(g). \ f(x) = g(x)$$

$$f: \mathbb{Q} \to \mathbb{R}$$

$$f(x) = \begin{cases} x+1, & \text{if } x \in 2\mathbb{Z} \\ x-1, & \text{if } x \in 3\mathbb{Z} \\ 2, & \text{otherwise} \end{cases}$$

$$f: \mathcal{P}(\mathbb{R}) \to \mathbb{Z}$$

$$f(A) = \begin{cases} \min(A \cap \mathbb{N}) & \text{if } A \cap \mathbb{N} \neq \emptyset \\ -1 & \text{if } A \cap \mathbb{N} = \emptyset \end{cases}$$

$$f: \mathcal{P}(\mathbb{R}) \to \mathbb{Z}$$

$$f(A) = \begin{cases} \min(A \cap \mathbb{N}) & \text{if } A \cap \mathbb{N} \neq \emptyset \\ -1 & \text{if } A \cap \mathbb{N} = \emptyset \end{cases}$$

$$dom(f) \cap dom(g) = \emptyset$$

By the Well-Ordering Principle of \mathbb{N}

$$D:\mathbb{R}\to\mathbb{R}$$

$$D(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Dirichlet Function

"处处不连续"

Special Functions (-jectivity)

$$f:A\to B$$

$$\forall a_1, a_2 \in A. \ a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2)$$

$$f:A\to B \qquad f:A\rightarrowtail B$$

$$\forall a_1, a_2 \in A. \ a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2)$$

$$f:A \to B \qquad f:A \rightarrowtail B$$

$$\forall a_1, a_2 \in A. \ a_1 \neq a_2 \to f(a_1) \neq f(a_2)$$

For Proof:

▶ To prove that f is 1-1:

$$\forall a_1, a_2 \in A. \ f(a_1) = f(a_2) \to a_1 = a_2$$

$$f: A \to B$$
 $f: A \rightarrowtail B$

$$\forall a_1, a_2 \in A. \ a_1 \neq a_2 \to f(a_1) \neq f(a_2)$$

For Proof:

▶ To prove that f is 1-1:

$$\forall a_1, a_2 \in A. \ f(a_1) = f(a_2) \to a_1 = a_2$$

 \blacktriangleright To show that f is not 1-1:

$$\exists a_1, a_2 \in A. \ a_1 \neq a_2 \land f(a_1) = f(a_2)$$

$$f:A\to B$$

$$ran(f) = B$$

$$f:A \to B$$
 $f:A woheadrightarrow B$

$$ran(f) = B$$

$$f:A \to B$$
 $f:A woheadrightarrow B$

$$ran(f) = B$$

For Proof:

ightharpoonup To prove that f is onto:

$$\forall b \in B. \ (\exists a \in A. \ f(a) = b)$$

$$f: A \to B$$
 $f: A \twoheadrightarrow B$

$$ran(f) = B$$

For Proof:

ightharpoonup To prove that f is onto:

$$\forall b \in B. \ (\exists a \in A. \ f(a) = b)$$

ightharpoonup To show that f is not onto:

$$\exists b \in B. \ (\forall a \in A. \ f(a) \neq b)$$

Definition (Bijective (one-to-one correspondence) 双射; ——对应)

$$f:A\to B$$

1-1 & onto

Definition (Bijective (one-to-one correspondence) 双射; 一一对应)

$$f: A \to B$$
 $f: A \stackrel{1-1}{\longleftrightarrow} B$

1-1 & onto

$$f: \mathbb{Z} \to \mathbb{N}, \qquad f(x) = x^2 + 1$$

$$f: \mathbb{Z} \to \mathbb{N}, \qquad f(x) = x^2 + 1$$

$$f: \mathbb{N} \to \mathbb{Q}, \qquad f(x) = \frac{1}{x}$$

$$f: \mathbb{Z} \to \mathbb{N}, \qquad f(x) = x^2 + 1$$

$$f: \mathbb{N} \to \mathbb{Q}, \qquad f(x) = \frac{1}{x}$$

$$f: \mathbb{N} \to \mathbb{N}, \qquad f(x) = 2^x$$

26 / 52

$$f: \mathbb{Z} \to \mathbb{N}, \qquad f(x) = x^2 + 1$$

$$f: \mathbb{N} \to \mathbb{Q}, \qquad f(x) = \frac{1}{x}$$

$$f: \mathbb{N} \to \mathbb{N}, \qquad f(x) = 2^x$$

$$f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}, \qquad f(z,n) = \frac{z}{n+1}$$

$$f: \mathbb{Z} \to \mathbb{N}, \qquad f(x) = x^2 + 1$$
 $f: \mathbb{N} \to \mathbb{Q}, \qquad f(x) = \frac{1}{x}$

$$f: \mathbb{N} \to \mathbb{N}, \qquad f(x) = 2^x$$

$$f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}, \qquad f(z, n) = \frac{z}{n+1}$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \qquad f(x,y) = (x+1, y+1)$$

If $f: A \to 2^A$, then f is **not** onto.

Proof. Let A be a set and let $f: A \to 2^A$. To show that f is not onto, we must find a $B \in 2^A$ (i.e., $B \subseteq A$) for which there is no $a \in A$ with f(a) = B. In other words, B is a set that f "misses." To this end, let

$$B = \{x \in A : x \notin f(x)\}.$$

We claim there is no $a \in A$ with f(a) = B.

Suppose, for the sake of contradiction, there is an $a \in A$ such that f(a) = B. We nonder: Is $a \in B$?

- If a ∈ B, then, since B = f(a), we have a ∈ f(a). So, by definition of B, a ∉ f(a); that is, a ∉ B.⇒ ←
- If $a \notin B = f(a)$, then, by definition of $B, a \in B. \Rightarrow \Leftarrow$

Both $a \in B$ and $a \notin B$ lead to contradictions, and hence our supposition [there is an $a \in A$ with f(a) = B] is false, and therefore f is not onto.

27/52

If $f: A \to 2^A$, then f is **not** onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

If $f: A \to 2^A$, then f is **not** onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

$$2^{A} = \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

If $f: A \to 2^A$, then f is **not** onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

$$2^{A} = \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

Onto

$$\forall B \in 2^A$$
. $(\exists a \in A. \ f(a) = B)$

If $f: A \to 2^A$, then f is **not** onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

$$2^{A} = \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

Onto

$$\forall B \in 2^A. \ (\exists a \in A. \ f(a) = B)$$

Not Onto

$$\exists B \in 2^A. \ (\forall a \in A. \ f(a) \neq B)$$

$$f(1) = \{1, 2\}$$

 $f(2) = \{1, 3\}$
 $f(3) = \emptyset$

$$f(1) = \{1, 2\}$$

$$f(2) = \{1, 3\}$$

$$f(3) = \emptyset$$

$$B = \{2, 3\}$$

$$f(1) = \{1, 2\}$$

$$f(2) = \{1, 3\}$$

$$f(3) = \emptyset$$

$$B = \{2, 3\}$$

$$B = \{x \in \{1, 2, 3\} \mid x \notin f(x)\} = \{2, 3\}$$

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ \Big(\forall a \in A. \ f(a) \neq B \Big)$$

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ (\forall a \in A. \ f(a) \neq B)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \notin f(a)\}$$

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ \left(\forall a \in A. \ f(a) \neq B \right)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \notin f(a)\}$$

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ \left(\forall a \in A. \ f(a) \neq B \right)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \notin f(a)\}$$

▶ By contradiction (\forall) :

$$\exists a \in A. \ f(a) = B.$$

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ \left(\forall a \in A. \ f(a) \neq B \right)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \not\in f(a)\}$$

▶ By contradiction (\forall) :

$$\exists a \in A. \ f(a) = B.$$

 $Q: a \in B$?

If $f: A \to 2^A$, then f is **not** onto.

$$\exists B \in 2^A. \ (\forall a \in A. \ f(a) \neq B)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \notin f(a)\}$$

▶ By contradiction (\forall) :

$$\exists a \in A. \ f(a) = B.$$

 $Q: a \in B$?

 $a \in B \iff a \notin B$

If $f: A \to 2^A$, then f is **not** onto.

If $f: A \to 2^A$, then f is **not** onto.

a	f(a)					
	1	2	3	4	5	• • •
1	1	1	0	0	1	
2	0	0	0	0	0	
3	1	0	0	1	0	
4	1	1	1	1	1	
5	0	1	0	1	0	
:	:	:	:	:	:	

If $f: A \to 2^A$, then f is **not** onto.

a	f(a)					
	1	2	3	4	5	• • •
1	1	1	0	0	1	
2	0	0	0	0	0	• • •
3	1	0	0	1	0	• • •
4	1	1	1	1	1	
5	0	1	0	1	0	• • •
:	:	:	:	:	:	

If $f: A \to 2^A$, then f is **not** onto.

a	f(a)					
	1	2	3	4	5	• • •
1	1	1	0	0	1	
2	0	0	0	0	0	
3	1	0	0	1	0	• • •
4	1	1	1	1	1	
5	0	1	0	1	0	• • •
:	:	:	:	:	:	

$$B = \{0, 1, 1, 0, 1\}$$

If $f: A \to 2^A$, then f is **not** onto.

对角线论证 (Cantor's diagonal argument) (以下仅适用于可数集合 A).

a	f(a)					
	1	2	3	4	5	
1	1	1	0	0	1	
2	0	0	0	0	0	• • •
3	1	0	0	1	0	
4	1	1	1	1	1	
5	0	1	0	1	0	• • •
:	:	:	:	:	:	

$$B = \{0, 1, 1, 0, 1\}$$

Functions as Relations

$$f|_X \qquad f(A) \qquad f^{-1}(B) \qquad f^{-1} \qquad f \circ g$$

Definition (Restriction)

The restriction of a function f to X is the function:

$$f|_X = \{(x, y) \in f \mid x \in X\}$$

Definition (Restriction)

The restriction of a function f to X is the function:

$$f|_X = \{(x, y) \in f \mid x \in X\}$$

$$f:A\to B$$

34 / 52

Definition (Restriction)

The restriction of a function f to X is the function:

$$f|_X = \{(x, y) \in f \mid x \in X\}$$

$$f:A\to B$$

$$f|_X: A \cap X \to B$$

$$f|_X(x) = f(x), \forall x \in A \cap X$$

Definition (Image)

The image of X under a function f is the set

$$f(X) = \{b \mid \exists a \in X : (a, b) \in f\}$$

Definition (Inverse Image)

The *inverse image* of Y under a function f is the set

$$f^{-1}(Y) = \{ a \mid \exists b \in Y : (a, b) \in f \}$$

Definition (Image)

The *image* of X under a function f is the set

$$f(X) = \{b \mid \exists a \in X : (a, b) \in f\}$$

Definition (Inverse Image)

The *inverse image* of Y under a function f is the set

$$f^{-1}(Y) = \{ a \mid \exists b \in Y : (a, b) \in f \}$$

 $X \subseteq \text{dom} f, Y \subseteq \text{ran} f$ are not necessary

Definition (Image)

The image of X under a function f is the set

$$f(X) = \{ b \mid \exists a \in X : (a, b) \in f \}$$

Definition (Inverse Image)

The *inverse image* of Y under a function f is the set

$$f^{-1}(Y) = \{ a \mid \exists b \in Y : (a, b) \in f \}$$

 $X \subseteq \text{dom} f, Y \subseteq \text{ran} f$ are not necessary

f may not be invertible in $f^{-1}(Y)$

$$y \in f(X) \iff \exists x \in \text{dom} f \cap X : y = f(x)$$

$$y \in f(X) \iff \exists x \in X : y = f(x)$$

$$x \in f^{-1}(Y) \iff f(x) \in Y$$

Theorem (Properties of f and f^{-1} (UD Theorem 17.7))

$$f: A \to B$$
 $A_1, A_2 \subseteq A, B_1, B_2 \subseteq B$

- (i) f preserves only \subseteq and \cup :
 - $(1) A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2)$
 - (2) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
 - (3) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
 - $(4) f(A_1 \setminus A_2) \supseteq f(A_1) \setminus f(A_2)$
- (ii) f^{-1} preserves $\subseteq, \cup, \cap, and \setminus$:
 - $(5) B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)$
 - (6) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
 - (7) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
 - (8) $f^{-1}(B_1 \setminus B_2) = f^{-1}(B_1) \setminus f^{-1}(B_2)$

$$f:A\to B$$

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

$$f:A\to B$$

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

$$b \in f(A_1 \cap A_2)$$

$$f:A\to B$$

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

$$b \in f(A_1 \cap A_2)$$

$$\implies \exists a \in A_1 \cap A_2 \cap A : b = f(a)$$

$$f:A\to B$$

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

$$b \in f(A_1 \cap A_2)$$

$$\implies \exists a \in A_1 \cap A_2 \cap A : b = f(a)$$

$$\implies \exists a \in A : a \in A_1 \land a \in A_2 \land b = f(a)$$

38 / 52

魏恒峰 (hfwei@nju.edu.cn)

$$f:A\to B$$

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

$$b \in f(A_1 \cap A_2)$$

$$\implies \exists a \in A_1 \cap A_2 \cap A : b = f(a)$$

$$\implies \exists a \in A : a \in A_1 \land a \in A_2 \land b = f(a)$$

$$\implies \exists a \in A \cap A_1 : b = f(a) \land \exists a \in A \cap A_2 : b = f(a)$$

$$f:A\to B$$

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

$$b \in f(A_1 \cap A_2)$$

$$\implies \exists a \in A_1 \cap A_2 \cap A : b = f(a)$$

$$\implies \exists a \in A : a \in A_1 \land a \in A_2 \land b = f(a)$$

$$\implies \exists a \in A \cap A_1 : b = f(a) \land \exists a \in A \cap A_2 : b = f(a)$$

$$\implies b \in f(A_1) \cap f(A_2)$$

$$f:A\to B$$

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

$$b \in f(A_1 \cap A_2)$$

- $\implies \exists a \in A_1 \cap A_2 \cap A : b = f(a)$
- $\implies \exists a \in A : a \in A_1 \land a \in A_2 \land b = f(a)$
- $\implies \exists a \in A \cap A_1 : b = f(a) \land \exists a \in A \cap A_2 : b = f(a)$
- $\implies b \in f(A_1) \cap f(A_2)$

Q: When does $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ hold?

$$f:A\to B$$

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

$$b \in f(A_1 \cap A_2)$$

$$\implies \exists a \in A_1 \cap A_2 \cap A : b = f(a)$$

$$\implies \exists a \in A : a \in A_1 \land a \in A_2 \land b = f(a)$$

$$\implies \exists a \in A \cap A_1 : b = f(a) \land \exists a \in A \cap A_2 : b = f(a)$$

$$\implies b \in f(A_1) \cap f(A_2)$$

Q: When does $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ hold?

f is injective.

Theorem (Properties of f and f^{-1} (UD Theorem 17.7))

$$f:A\to B$$

- (iii) f and f^{-1} :
 - $(9) \ A_0 \subseteq A \implies A_0 \subseteq f^{-1}(f(A_0))$
 - (10) $B_0 \supseteq f(f^{-1}(B_0))$

Theorem (Properties of f and f^{-1} (UD Theorem 17.7))

$$f:A\to B$$

- (iii) f and f^{-1} :
 - $(9) \ A_0 \subseteq A \implies A_0 \subseteq f^{-1}(f(A_0))$
 - (10) $B_0 \supseteq f(f^{-1}(B_0))$

$$A_0 \subseteq A \implies A_0 \subseteq f^{-1}(f(A_0))$$

Theorem

$$f:A\to B$$

$$B_0 \supseteq f(f^{-1}(B_0))$$

Theorem

$$f:A\to B$$

$$B_0 \supseteq f(f^{-1}(B_0))$$

$$b \in f(f^{-1}(B_0))$$

Theorem

$$f:A\to B$$

$$B_0 \supseteq f(f^{-1}(B_0))$$

$$b \in f(f^{-1}(B_0))$$

$$\implies \exists a \in f^{-1}(B_0) : b = f(a)$$

40/52

$$f:A\to B$$

$$B_0 \supseteq f(f^{-1}(B_0))$$

$$b \in f(f^{-1}(B_0))$$

$$\implies \exists a \in f^{-1}(B_0) : b = f(a)$$

$$\implies \exists a \in A : f(a) \in B_0 \land b = f(a)$$

$$f:A\to B$$

$$B_0 \supseteq f(f^{-1}(B_0))$$

$$b \in f(f^{-1}(B_0))$$

$$\implies \exists a \in f^{-1}(B_0) : b = f(a)$$

$$\implies \exists a \in A : f(a) \in B_0 \land b = f(a)$$

$$\implies b \in B_0$$

$$f:A\to B$$

$$B_0 \supseteq f(f^{-1}(B_0))$$

$$b \in f(f^{-1}(B_0))$$

$$\implies \exists a \in f^{-1}(B_0) : b = f(a)$$

$$\implies \exists a \in A : f(a) \in B_0 \land b = f(a)$$

$$\implies b \in B_0$$

Q: When does $B_0 = f(f^{-1}(B_0))$ hold?

$$f:A\to B$$

$$B_0 \supseteq f(f^{-1}(B_0))$$

$$b \in f(f^{-1}(B_0))$$

$$\implies \exists a \in f^{-1}(B_0) : b = f(a)$$

$$\implies \exists a \in A : f(a) \in B_0 \land b = f(a)$$

$$\implies b \in B_0$$

Q: When does $B_0 = f(f^{-1}(B_0))$ hold?

f is surjective and $B_0 \subseteq B$.

$$f: A \to B$$

$$B_0 \supseteq f(f^{-1}(B_0))$$

$$b \in f(f^{-1}(B_0))$$

$$\implies \exists a \in f^{-1}(B_0) : b = f(a)$$

$$\implies \exists a \in A : f(a) \in B_0 \land b = f(a)$$

$$\implies b \in B_0$$

Q: When does $B_0 = f(f^{-1}(B_0))$ hold?

f is surjective and $B_0 \subseteq B$.

$$B_0 \subseteq \operatorname{ran} f$$

Function Composition

Definition (Composition)

$$f: A \to B$$
 $g: C \to D$
$$\operatorname{ran} f \subseteq C$$

The composite function $g \circ f : A \to D$ is defined as

$$(g \circ f)(x) = g(f(x))$$

Definition (Composition)

$$f: A \to B$$
 $g: C \to D$
$$\operatorname{ran} f \subseteq C$$

The composite function $g \circ f : A \to D$ is defined as

$$(g \circ f)(x) = g(f(x))$$

Why not " $\exists b$ " as below?

Definition (Composition)

The *composition* of relations R and S is the relation

$$R \circ S = \{(a,c) \mid \exists b : (a,b) \in S \land (b,c) \in R\}$$

Theorem (Associative Property for Composition)

$$f:A \to B \quad g:B \to C \quad h:C \to D$$

$$h\circ (g\circ f)=(h\circ g)\circ f$$

Theorem (Associative Property for Composition)

$$f:A \to B$$
 $g:B \to C$ $h:C \to D$

$$h\circ (g\circ f)=(h\circ g)\circ f$$

Proof.

Theorem (Associative Property for Composition)

$$f:A \to B$$
 $g:B \to C$ $h:C \to D$

$$h\circ (g\circ f)=(h\circ g)\circ f$$

Proof.

$$dom h \circ (g \circ f) = dom(h \circ g) \circ f$$

$$(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$$

$$f:A \to B$$
 $g:B \to C$

- (i) If f, g are injective, then $g \circ f$ is injective.
- (ii) If f, g are surjective, then $g \circ f$ is surjective.
- (iii) If f, g are bijective, then $g \circ f$ is bijective.

$$f:A\to B$$
 $g:B\to C$

- (i) If f, g are injective, then $g \circ f$ is injective.
- (ii) If f, g are surjective, then $g \circ f$ is surjective.
- (iii) If f, g are bijective, then $g \circ f$ is bijective.

Proof for (i).

$$\forall a_1, a_2 \in A : ((g \circ f)(a_1) = (g \circ f)(a_2) \implies a_1 = a_2)$$

$$f:A\to B$$
 $g:B\to C$

- (i) If f, g are injective, then $g \circ f$ is injective.
- (ii) If f, g are surjective, then $g \circ f$ is surjective.
- (iii) If f, g are bijective, then $g \circ f$ is bijective.

Proof for (i).

$$\forall a_1, a_2 \in A : ((g \circ f)(a_1) = (g \circ f)(a_2) \implies a_1 = a_2)$$

Proof for (ii).

$$\forall c \in C : (\exists a \in A : (g \circ f)(a) = c)$$

$$f:A \to B$$
 $g:B \to C$

- (i) If $g \circ f$ is surjective, then g is surjective.
- (ii) If $g \circ f$ is injective, then f is injective.

$$f:A \to B$$
 $g:B \to C$

- (i) If $g \circ f$ is surjective, then g is surjective.
- (ii) If $g \circ f$ is injective, then f is injective.

You can also prove it by contradiction.

Inverse Functions

Definition (Inverse)

Let $f: A \to B$ be a bijective function.

The *inverse* of f is the function f^{-1} : $B \to A$ defined by

$$f^{-1}(b) = a \iff f(a) = b.$$

47/52

Definition (Inverse)

Let $f: A \to B$ be a bijective function.

The *inverse* of f is the function f^{-1} : $B \to A$ defined by

$$f^{-1}(b) = a \iff f(a) = b.$$

信息量太大

 $f:X\to Y$ is invertible if there exists $g:Y\to X$ such that

$$f(x) = y \iff g(y) = x.$$

 $f: X \to Y$ is invertible if there exists $g: Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

f is invertible \iff f is bijective.

48 / 52

 $f:X\to Y$ is invertible if there exists $g:Y\to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

f is invertible \iff f is bijective.

f is invertible $\implies f$ is bijective

48 / 52

 $f:X\to Y$ is invertible if there exists $g:Y\to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

f is invertible \iff f is bijective.

```
f is invertible \implies f is bijective g is a function \implies f is injective \operatorname{dom} g = Y \implies f is surjective
```

 $f:X\to Y$ is invertible if there exists $g:Y\to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

f is invertible \iff f is bijective.

```
f is invertible \implies f is bijective g is a function \implies f is injective \operatorname{dom} g = Y \implies f is surjective
```

f is bijective $\implies f$ is invertible

 $f: X \to Y$ is invertible if there exists $g: Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

f is invertible \iff f is bijective.

f is invertible $\implies f$ is bijective g is a function $\implies f$ is injective $dom q = Y \implies f$ is surjective

f is bijective $\implies f$ is invertible

To show that q defined above is indeed a function from Y to X.

48 / 52

 $f:X \to Y$ is invertible if there exists $g:Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

 $f:X \to Y$ is invertible if there exists $g:Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

 $g: Y \to X$ is unique.

 $f: X \to Y$ is invertible if there exists $g: Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

 $g: Y \to X$ is unique.

By Contradiction

 $f:X \to Y$ is invertible if there exists $g:Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

 $g: Y \to X$ is unique.

By Contradiction

$$f^{-1} \triangleq g$$

 $f:X \to Y$ is invertible if there exists $g:Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

 $g: Y \to X$ is unique.

By Contradiction

$$f^{-1} \triangleq g$$

$$f(x) = y \iff f^{-1}(y) = x$$

 $f: A \to B$ is bijective

(i)
$$f \circ f^{-1} = I_B$$

(ii)
$$f^{-1} \circ f = I_A$$

(iii) f^{-1} is bijective.

(iv)
$$g: B \to A \land f \circ g = I_B \implies g = f^{-1}$$

(v)
$$g: B \to A \land g \circ f = I_A \implies g = f^{-1}$$

 $f: A \rightarrow B$ is bijective

(i)
$$f \circ f^{-1} = I_B$$

(ii)
$$f^{-1} \circ f = I_A$$

(iii) f^{-1} is bijective.

(iv)
$$g: B \to A \land f \circ g = I_B \implies g = f^{-1}$$

(v)
$$g: B \to A \land g \circ f = I_A \implies g = f^{-1}$$

The ways to find/check f^{-1} .

 $f: A \to B$ is bijective

(i)
$$f \circ f^{-1} = I_B$$

(ii)
$$f^{-1} \circ f = I_A$$

(iii) f^{-1} is bijective.

(iv)
$$q: B \to A \land f \circ g = I_B \implies g = f^{-1}$$

(v)
$$q: B \to A \land q \circ f = I_A \implies q = f^{-1}$$

The ways to find/check f^{-1} .

$$g = f^{-1} \circ (f \circ g) = f^{-1} \circ I_B = f^{-1}$$

Theorem (Inverse of Composition (UD Theorem 16.6))

$$f:A \to B$$
 $g:B \to C$ are bijective

(i) $g \circ f$ is bijective

魏恒峰 (hfwei@nju.edu.cn)

(ii) $(q \circ f)^{-1} = f^{-1} \circ q^{-1}$

Proof for (ii).

It suffices to check either one of the following identities:

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = I_A$$

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = I_C$$

$$f:A\to B\quad g:B\to A$$

(iii)
$$f \circ g = I_B \wedge g \circ f = I_A \implies g = f^{-1}$$

$$f:A\to B\quad g:B\to A$$

(iii)
$$f \circ g = I_B \wedge g \circ f = I_A \implies g = f^{-1}$$

You need to check both identities.

$$f: A \to B \quad g: B \to A$$

(iii)
$$f \circ g = I_B \wedge g \circ f = I_A \implies g = f^{-1}$$

You need to check both identities.

Theorem (UD Theorem 16.8)

$$f:A \to B$$
 $g:B \to C$

- (i) If $g \circ f$ is surjective, then g is surjective.
- (ii) If $g \circ f$ is injective, then f is injective.

$$f: A \to B \quad g: B \to A$$

(iii)
$$f \circ g = I_B \wedge g \circ f = I_A \implies g = f^{-1}$$

You need to check both identities.

Theorem (UD Theorem 16.8)

$$f: A \to B$$
 $g: B \to C$

- (i) If $g \circ f$ is surjective, then g is surjective.
- (ii) If $g \circ f$ is injective, then f is injective.

First show that f is bijective, and then use Theorem 16.4.

Thank You!

Office 926 hfwei@nju.edu.cn