MISO Problem: Two Information Sources with Coupling

1 Mathematical Formulation

We consider an optimization problem with two information sources

$$\min_{(x_1, x_2, x_3) \in A} f_2 (f_1 (x_1, x_3), x_2, x_3)$$

where A is the feasible compact set and f_1, f_2 are continuous functions (see Figure 1).

Figure 1: Diagram of the problem

This formulation can be used to solve different problems. For example, f_1 could be an aerodynamic simulation of a wing and f_2 could be a structural simulation of a wing, that includes aerodynamical forces.

2 Value of Information Functions and Gaussian Processes

We place two Gaussian processes on f_1 and f_2 . Depending on the problem and the kernels of the Gaussian processes, we may have a Gaussian process on $f_2(f_1(x_1, x_3), x_2, x_3)$ with parameters μ_0 and Σ_0 .

We define the value of information functions as

$$V_n(x, h) = \mathbb{E}\left[\max_z \mu_{n+1}(z) - \max_z \mu_n(z) \mid x_{n+1} = x, h(x)\right]$$

where $h \in \{f_1, f_2\}$ and $x \in A \bigcup B$ where B is the range of f_1 , which is defined by $B = \{f(x_1, x_3) : \exists x_2 \text{ s.t. } (x_1, x_2, x_3) \in A\}.$

3 Algorithm

- 1. (First stage of samples) Use maximum likelihood or maximum a posteriori estimation to fit the parameters $\alpha_0(\cdot)$, $\beta_0(\cdot, \cdot)$ of the GP prior on f_1 , and $\rho_0(\cdot)$, $\Lambda_0(\cdot, \cdot)$ of the GP prior on f_2 . We denote the parameters of GP on $f_2(f_1(x_1, x_3), x_2, x_3)$ by μ_0, Σ_0
- 2. (Main stage of samples) For $n \leftarrow 0$ to N do
 - (a) Update our joint Gaussian process posterior on $f_2(f_1(x_1, x_3), x_2, x_3)$ using all samples by time n.
 - (b) Solve $(x_{n+1}, h_{n+1}) \in \arg \max_{x,h \in \{f_1, f_2\}} V_n(x, h)$
 - (c) Evaluate $h_{n+1}(x_{n+1})$
- 3. Return $x^* = \arg \max_{(x_1, x_2, x_3)} \mu_{N+1}(x_1, x_2, x_3)$.