Bank Marketing Analysis

Rong Wan, Hala Arar & Fazeeia Mohammed 2024-11-21

Contents

Summary	2
Introduction	2
Methods	3
Data	3
Data Validation Check	7
Analysis	18
Results	18
Model Creation	19
Initially without Hyperparameter optimization using grid search	19
Discussion	26
Logistic Regression Model:	26
Decision Tree Model:	28
Comparison and Implications:	29
Implications:	29
Strategic Recommendations:	29
Targeted Marketing:	30
Campaign Timing:	30
Personalized Offers:	30
Improve Conversion Rates:	30
Monitor and Adjust:	30
References	31

Summary

This lab report analyzes bank marketing campaigns with the goal of using machine learning to predict whether a customer will subscribe to a term deposit. The dataset, sourced from the UCI Machine Learning Repository, contains demographic and campaign-related information on customers who were contacted via phone for a Portuguese bank's direct marketing campaign (Moro and Cortez 2014). The target variable is whether or not the customer subscribed to a term deposit. This study evaluates the performance of Logistic Regression and Decision Tree models in predicting customer subscription to term deposits, using metrics such as accuracy, precision, recall, and F1 score. The Logistic Regression model achieved 88.5% accuracy with high precision (0.70) but low recall (0.20), making it suitable for minimizing false positives. Conversely, the Decision Tree model achieved 89.7% accuracy with improved recall (0.23) but lower precision (0.63), better identifying potential subscribers at the cost of higher false positives. Both models emphasize the majority class (non-subscribers) and highlight challenges in detecting true positives. Strategic recommendations include targeted marketing, personalized offers, and continuous monitoring and adjustment of the models to improve performance. By leveraging these models, banks can enhance marketing strategies, optimize resource allocation, and increase conversion rates.

Introduction

Bank marketing campaigns are a critical tool for financial institutions to promote their products and services, particularly time deposit subscriptions (Meshref 2020). However, identifying potential customers who are likely to respond positively to these campaigns can be challenging (Meshref 2020). Despite advances in targeted marketing strategies, response rates for bank marketing campaigns remain low, and ineffective campaigns can lead to wasted resources and decreased customer satisfaction (Xie et al. 2023).

One notable study in this area is "Predictive Analytics and Machine Learning in Direct Marketing for Anticipating Bank Term Deposit Subscriptions" by (Zaki et al. 2024). The authors explore how machine learning models, including the SGD Classifier, k-nearest neighbor Classifier, and Random Forest Classifier, can be used to predict bank term deposit subscriptions. The study employs various data exploration and feature engineering techniques to build and evaluate the models, ultimately identifying the Random Forest Classifier as the most effective, achieving an impressive accuracy of 87.5%. This study underscores the potential of machine learning to enhance marketing strategies in the banking sector, providing valuable insights that can help institutions refine their direct marketing approaches and improve customer acquisition.

In recent years, the use of machine learning and data mining techniques in the banking sector has gained significant traction, particularly for customer targeting and marketing optimization. A study by (Wang 2020) examines the application of machine learning algorithms, specifically

the C5.0 algorithm, to classify bank customers in order to improve marketing strategies. Using the Bank Marketing dataset from the UCI Machine Learning Repository, the study demonstrates how data mining can help identify customer segments, allowing banks to tailor their marketing campaigns more effectively. The classification model results can enhance decision-making processes for banks, ultimately improving marketing efficiency and customer satisfaction. The study highlights the importance of selecting relevant features, handling outliers, and balancing the dataset to ensure more accurate predictions.

This research raises the question of whether a machine learning algorithm can predict whether a customer will subscribe to a term deposit based on customer demographics and campaign-related data. This is an important inquiry because traditional marketing methods often rely on manual segmentation or generalized strategies, which may not capture the nuances of customer behavior. Additionally, by excluding customers who are unlikely to subscribe, banks can reduce campaign costs and improve customer experience. Conversely, accurately identifying potential subscribers allows banks to concentrate efforts on the right audience, improving both efficiency and outcomes. Therefore, if a machine learning algorithm can accurately predict customer subscriptions based on the bank marketing dataset, it could enable more effective, scalable, and data-driven marketing strategies, leading to better resource allocation and enhanced campaign performance.

Methods

Data

The dataset used in this project is the Bank Marketing dataset, sourced from the UCI Machine Learning Repository (Moro and Cortez 2014). It contains information related to direct marketing campaigns (via phone calls) conducted by a Portuguese banking institution to predict if a client will subscribe to a term deposit. The dataset contains 45,211 rows and 17 columns and it includes features such as age, job type, marital status, education, balance, and details about previous marketing campaigns. The target variable in this study is "y," which indicates whether a customer subscribed to a term deposit (binary: "yes" or "no"). We processed and analyzed this data using Python with libraries such as pandas, scikit-learn, and matplotlib to implement data cleaning, exploratory data analysis, and machine learning models. The data has been pre-processed and contains no missing values.

Unknown counts in each column:

age	0
job	330
marital	80
education	1731
default	8597

housing	990
loan	990
contact	0
month	0
day_of_week	0
duration	0
campaign	0
pdays	0
previous	0
poutcome	0
emp.var.rate	0
cons.price.idx	0
cons.conf.idx	0
euribor3m	0
nr.employed	0
У	0
dtype: int64	

Unknown counts in each column:

O
330
80
1731
8597
990
990
0
0
0
0

campaign	0
pdays	0
previous	0
poutcome	0
emp.var.rate	0
cons.price.idx	0
cons.conf.idx	0
euribor3m	0
nr.employed	0
У	0

dtype: int64

Variable Name Role T	rna Domo	orlandrivintion	Missing Val- Unitsues
0	ntegenan	Age	yearsno
job Featu	ateg ovaa r	cation of job (categorical: 'admin.', 'blue-collar', 'entrepreneur', 'housemaid', 'management', 'retired', 'self-employed', 'services', 'student', 'technician', 'unemployed', 'unknown')	nan no
maritalFeatur	etegolyfiamilt	alMarital status (categorical: 'divorced', 'married',	nan no
	${ m Sta}$ - ${ m tus}$	'single', 'unknown'; note: 'divorced' means divorced or widowed)	
educati En atuu	eategoErichada	ation level (categorical: 'basic.4y', 'basic.6y',	nan no
	Level	'basic.9y', 'high.school', 'illiterate',	
		'professional.course', 'university.degree', 'unknown')	
default Featu	Benarynan	Has credit in default? (binary: 'yes', 'no')	nan no
balanceFeatu l	ntegenan	Average yearly balance (numeric)	eurosno
housingFeatuF	Benarynan	Has housing loan? (binary: 'yes', 'no')	nan no
loan Featur	Benarynan	Has personal loan? (binary: 'yes', 'no')	nan no
contactFeatur	Categorainal	Contact communication type (categorical: 'cellular', 'telephone')	nan yes
day_ofFeedek	ate nan	Last contact day of the week (categorical: 'mon', 'tue', 'wed', 'thu', 'fri')	nan no
month Featur	ate nan	Last contact month of the year (categorical: 'jan', 'feb', 'mar',, 'nov', 'dec')	nan no
duratioFieatuli	ntegenan	Last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y='no'). It should only be included for benchmark purposes.	seconds

Variable Name Role Type Demo	gı ləpkiri ption	Missing Val- Unitsues
campai gn eatu ir etegenan	Number of contacts performed during this campaign and for this client (numeric, includes last contact)	nan no
pdays Featu lre tegenan	Number of days that passed by after the client was last contacted from a previous campaign (numeric; -1 means client was not previously contacted)	days yes
previou F eatu Int egenan	Number of contacts performed before this campaign and for this client	nan no
poutconFeatuGategonaical	Outcome of the previous marketing campaign (categorical: 'failure', 'nonexistent', 'success')	nan yes
y TargeBinarynan	Has the client subscribed to a term deposit? (binary: 'yes', 'no')	nan no

Data Validation Check

Data validation failed with the following errors:

- Dataset contains duplicate rows.

Data validation failed with the following errors:

- Dataset contains duplicate rows.

Data passed outlier validation checks.

Data passed outlier validation checks.

Data passed category level validation checks.

Data passed category level validation checks.

Target validation passed.

Target validation passed.

Distribution of 'y':

У

no 36548 yes 4640

Name: count, dtype: int64

Figure 1: Loan Status distribution across education levels

Distribution of 'y':

у

36548 no

yes 4640

Name: count, dtype: int64

Correlations with target variable:

0011014010	
age	0.030399
job	0.025122
marital	0.046203
education	0.057799
default	-0.099352
housing	0.011552
loan	-0.004909
contact	-0.144773
month	-0.006065
day_of_week	0.015967
duration	0.405274
campaign	-0.066357

Figure 2: Distribution of Y

pdays -0.324914
previous 0.230181
poutcome 0.129789
emp.var.rate -0.298334
cons.price.idx -0.136211
cons.conf.idx 0.054878
euribor3m -0.307771
nr.employed -0.354678
Name: y, dtype: float64

Correlations with target variable:

age	0.030399				
job	0.025122				
marital	0.046203				
education	0.057799				
default	-0.099352				
housing	0.011552				
loan	-0.004909				
contact	-0.144773				
month	-0.006065				
day_of_week	0.015967				
duration	0.405274				
campaign	-0.066357				
pdays	-0.324914				
previous	0.230181				
poutcome	0.129789				
emp.var.rate	-0.298334				
cons.price.idx	-0.136211				
cons.conf.idx	0.054878				
euribor3m	-0.307771				
nr.employed	-0.354678				
Name: y, dtype:	float64				

Warning: Anomalous correlations between features:

	age	job	marital	education	default	housing	loan	contact	\
age	1.0	NaN	NaN	NaN	NaN	NaN	${\tt NaN}$	NaN	
job	NaN	1.0	NaN	NaN	NaN	NaN	${\tt NaN}$	NaN	
marital	NaN	NaN	1.0	NaN	NaN	NaN	${\tt NaN}$	NaN	
education	NaN	NaN	NaN	1.0	NaN	NaN	${\tt NaN}$	NaN	
default	NaN	NaN	NaN	NaN	1.0	NaN	${\tt NaN}$	NaN	
housing	NaN	NaN	NaN	NaN	NaN	1.0	${\tt NaN}$	NaN	
loan	NaN	\mathtt{NaN}	NaN	NaN	NaN	NaN	1.0	NaN	

contact	NaN	NaN	NaN		NaN		NaN	NaN	NaN	1.0	
month	NaN	NaN	NaN		NaN		NaN	NaN	NaN		
day_of_week	NaN	NaN	NaN		NaN		NaN	NaN	NaN	NaN	
duration	NaN	NaN	NaN		NaN		NaN	NaN	NaN	NaN	
campaign	NaN	NaN	NaN		NaN		NaN	NaN	NaN	NaN	
pdays	NaN	NaN	NaN		NaN		NaN	${\tt NaN}$	NaN	NaN	
previous	NaN	NaN	NaN		NaN		NaN	${\tt NaN}$	NaN	NaN	
poutcome	NaN	NaN	NaN		NaN		NaN	${\tt NaN}$	NaN	NaN	
emp.var.rate	NaN	NaN	NaN		NaN		NaN	${\tt NaN}$	NaN	NaN	
cons.price.idx	NaN	NaN	NaN		NaN		NaN	${\tt NaN}$	NaN	NaN	
cons.conf.idx	NaN	NaN	NaN		NaN		NaN	${\tt NaN}$	NaN	NaN	
euribor3m	NaN	NaN	NaN		NaN		NaN	${\tt NaN}$	NaN	NaN	
nr.employed	NaN	NaN	NaN		NaN		NaN	${\tt NaN}$	NaN	NaN	
у	NaN	NaN	NaN		NaN		NaN	${\tt NaN}$	NaN	NaN	
	mont	h day_o	f_week		camp	aign	pdays	previ	ous.	poutcome	\
age	Na	.N	NaN			NaN	NaN		NaN	NaN	
job	Na	.N	NaN			NaN	NaN		NaN	NaN	
marital	Na	.N	NaN			NaN	NaN		NaN	NaN	
education	Na	.N	NaN			NaN	NaN		NaN	NaN	
default	Na	.N	NaN			NaN	NaN		NaN	NaN	
housing	Na	.N	NaN			NaN	NaN		NaN	NaN	
loan	Na	.N	NaN			NaN	NaN		NaN	NaN	
contact	Na	.N	NaN			NaN	NaN		NaN	NaN	
month	1.	0	NaN			NaN	NaN		NaN	NaN	
day_of_week	Na	.N	1.0			NaN	NaN		NaN	NaN	
duration	Na	.N	NaN			NaN	NaN		NaN	NaN	
campaign	Na	.N	NaN			1.0	NaN		NaN	NaN	
pdays	Na	.N	NaN			NaN	1.0		NaN	NaN	
previous	Na	.N	NaN			NaN	NaN		1.0	NaN	
poutcome	Na	.N	NaN			NaN	NaN		NaN	1.0	
emp.var.rate	Na	.N	NaN			NaN	NaN		NaN	NaN	
cons.price.idx	Na	.N	NaN			NaN	NaN		NaN	NaN	
cons.conf.idx	Na	.N	NaN			NaN	NaN		NaN	NaN	
euribor3m	Na	.N	NaN			NaN	NaN		NaN	NaN	
nr.employed	Na	.N	NaN			NaN	NaN		NaN	NaN	
у	Na	.N	NaN			NaN	NaN		NaN	NaN	
	emp.	var.rate	cons.	price	.idx	cons	s.conf.i	dx eu	ribor	3m \	
age	r·	NaN		r00	NaN			aN		aN	
job		NaN			NaN			aN		aN	
marital		NaN			NaN			aN		aN	
education		NaN			NaN			aN		aN	
Caucation		wan			11011		14	W14	14	Q.14	

default	NaN	NaN	NaN	NaN
housing	NaN	NaN	NaN	NaN
loan	NaN	NaN	NaN	NaN
contact	NaN	NaN	NaN	NaN
month	NaN	NaN	NaN	NaN
day_of_week	NaN	NaN	NaN	NaN
duration	NaN	NaN	NaN	NaN
campaign	NaN	NaN	NaN	NaN
pdays	NaN	NaN	NaN	NaN
previous	NaN	NaN	NaN	NaN
poutcome	NaN	NaN	NaN	NaN
emp.var.rate	1.000000	NaN	NaN	0.972245
cons.price.idx	NaN	1.0	NaN	NaN
cons.conf.idx	NaN	NaN	1.0	NaN
euribor3m	0.972245	NaN	NaN	1.000000
nr.employed	0.906970	NaN	NaN	0.945154
У	NaN	NaN	NaN	NaN

	nr.employed	У
age	NaN	NaN
job	NaN	NaN
marital	NaN	NaN
education	NaN	NaN
default	NaN	NaN
housing	NaN	NaN
loan	NaN	NaN
contact	NaN	NaN
month	NaN	NaN
day_of_week	NaN	NaN
duration	NaN	NaN
campaign	NaN	NaN
pdays	NaN	NaN
previous	NaN	NaN
poutcome	NaN	NaN
emp.var.rate	0.906970	NaN
cons.price.idx	NaN	NaN
cons.conf.idx	NaN	NaN
euribor3m	0.945154	NaN
nr.employed	1.000000	NaN
У	NaN	1.0

[21 rows x 21 columns]

Feature correlation matrix:

```
job
                                      marital
                                                education
                                                            default
                                                                      housing \
                      age
                1.000000
                          0.001250 -0.389753
                                               -0.117892 0.164965 -0.001603
age
                                    0.027897
                                                0.134121 -0.028277
job
                0.001250
                          1.000000
                                                                    0.006962
marital
               -0.389753
                          0.027897
                                    1.000000
                                                0.109220 -0.079450
                                                                    0.010467
education
               -0.117892
                          0.134121
                                    0.109220
                                                1.000000 -0.186859
                                                                    0.016825
default
                0.164965 -0.028277 -0.079450
                                               -0.186859
                                                         1.000000 -0.015815
housing
               -0.001603 0.006962
                                    0.010467
                                                0.016825 -0.015815
                                                                    1.000000
               -0.007368 -0.010209
loan
                                    0.005788
                                                0.006384 -0.003782 0.044296
contact
                0.007021 -0.025132 -0.054501
                                               -0.024877 -0.033213 -0.007629
                                               -0.082684 -0.015830 -0.018141
month
                                               -0.017986 -0.008701 0.003339
day_of_week
               -0.017572 -0.000844
                                    0.002202
               -0.000866 -0.006490
                                    0.010290
                                               -0.015102 -0.011794 -0.007658
duration
campaign
                0.004594 -0.006923 -0.007240
                                                0.000371
                                                          0.032825 -0.011010
pdays
               -0.034369 -0.028468 -0.037942
                                               -0.046626
                                                          0.080062 -0.010551
                          0.020965
                                                0.038831 -0.102416 0.021314
previous
                0.024365
                                    0.038689
poutcome
                0.019750
                          0.011504
                                    0.001912
                                                0.017009
                                                          0.023417 -0.011783
               -0.000371 -0.008271 -0.084210
emp.var.rate
                                               -0.043778
                                                          0.203263 -0.060196
cons.price.idx
                0.000857 -0.016017 -0.057477
                                               -0.081607
                                                          0.168073 -0.080504
cons.conf.idx
                0.129372 0.052760 -0.033783
                                                0.078799
                                                          0.026522 -0.033845
euribor3m
                0.010767 -0.007880 -0.091939
                                               -0.036380
                                                          0.195336 -0.059277
nr.employed
               -0.017725 -0.019574 -0.086199
                                               -0.041492
                                                          0.189845 -0.045862
у
                0.030399
                          0.025122 0.046203
                                                0.057799 -0.099352 0.011552
                    loan
                           contact
                                               day_of_week
                                                                 campaign
                                       month
               -0.007368
                          0.007021 -0.024877
                                                 -0.017572
                                                                 0.004594
age
                                                            . . .
               -0.010209 -0.025132 -0.033213
                                                            ... -0.006923
                                                 -0.000844
job
marital
                0.005788 -0.054501 -0.007629
                                                  0.002202
                                                            ... -0.007240
education
                0.006384 -0.105726 -0.082684
                                                 -0.017986
                                                                 0.000371
default
               -0.003782 0.135238 -0.015830
                                                 -0.008701
                                                                 0.032825
                0.044296 -0.082186 -0.018141
                                                             ... -0.011010
housing
                                                  0.003339
                                                            . . .
                1.000000 -0.008556 -0.005705
                                                 -0.009344
                                                                 0.005166
loan
contact
               -0.008556
                          1.000000
                                    0.276565
                                                 -0.009575
                                                            . . .
                                                                 0.077368
                          0.276565
                                                            ... -0.062059
month
               -0.005705
                                    1.000000
                                                  0.027677
day of week
               -0.009344 -0.009575
                                    0.027677
                                                  1.000000
                                                            ... -0.038288
duration
               -0.000916 -0.026657
                                    0.003690
                                                  0.021950
                                                            ... -0.071699
campaign
                0.005166
                          0.077368 -0.062059
                                                 -0.038288
                                                            ... 1.000000
pdays
                0.000345
                          0.117970 -0.047891
                                                 -0.009531
                                                                 0.052584
previous
               -0.001327 -0.212848
                                    0.103157
                                                 -0.004102
                                                            ... -0.079141
poutcome
               -0.001511
                          0.118744 -0.065012
                                                  0.018732
                                                                 0.032586
                                                            . . .
                0.001849
                          0.393584 -0.178782
                                                  0.033245
emp.var.rate
                                                                 0.150754
                          0.591474 -0.004239
cons.price.idx -0.002430
                                                  0.005644
                                                                 0.127836
cons.conf.idx -0.012025
                         0.251614 0.009652
                                                  0.041465
                                                            ... -0.013733
```

```
euribor3m
                 0.000125
                           0.399773 -0.117264
                                                    0.039043
                                                                   0.135133
                                                              . . .
nr.employed
                 0.003903
                           0.269155 -0.221425
                                                    0.028380
                                                                   0.144095
                -0.004909 -0.144773 -0.006065
                                                    0.015967
                                                                  -0.066357
У
                           previous
                                      poutcome
                                                emp.var.rate
                                                               cons.price.idx
                           0.024365
                                                    -0.000371
age
                -0.034369
                                      0.019750
                                                                      0.000857
job
                -0.028468
                           0.020965
                                      0.011504
                                                    -0.008271
                                                                     -0.016017
                                      0.001912
marital
                -0.037942
                           0.038689
                                                    -0.084210
                                                                    -0.057477
                           0.038831
education
                -0.046626
                                      0.017009
                                                    -0.043778
                                                                    -0.081607
default
                 0.080062 -0.102416
                                      0.023417
                                                     0.203263
                                                                      0.168073
                -0.010551 0.021314 -0.011783
                                                    -0.060196
                                                                     -0.080504
housing
loan
                 0.000345 -0.001327 -0.001511
                                                     0.001849
                                                                    -0.002430
                 0.117970 -0.212848
contact
                                      0.118744
                                                     0.393584
                                                                      0.591474
month
                -0.047891
                           0.103157 -0.065012
                                                    -0.178782
                                                                     -0.004239
day_of_week
                -0.009531 -0.004102
                                      0.018732
                                                     0.033245
                                                                      0.005644
                           0.020640
duration
                -0.047577
                                      0.033360
                                                    -0.027968
                                                                      0.005312
campaign
                 0.052584 -0.079141
                                      0.032586
                                                     0.150754
                                                                      0.127836
                 1.000000 -0.587514 -0.475619
                                                     0.271004
                                                                      0.078889
pdays
                           1.000000 -0.313110
previous
                -0.587514
                                                    -0.420489
                                                                    -0.203130
poutcome
                -0.475619 -0.313110
                                      1.000000
                                                     0.192972
                                                                      0.211330
emp.var.rate
                 0.271004 -0.420489
                                      0.192972
                                                     1.000000
                                                                      0.775334
cons.price.idx
                0.078889 -0.203130
                                      0.211330
                                                     0.775334
                                                                      1.000000
cons.conf.idx
               -0.091342 -0.050936
                                      0.178289
                                                     0.196041
                                                                      0.058986
euribor3m
                 0.296899 -0.454494
                                      0.184144
                                                     0.972245
                                                                      0.688230
nr.employed
                 0.372605 -0.501333
                                      0.119689
                                                     0.906970
                                                                      0.522034
                -0.324914 0.230181
                                      0.129789
                                                    -0.298334
                                                                    -0.136211
У
                 cons.conf.idx
                                euribor3m
                                            nr.employed
                                                                 У
                                  0.010767
age
                      0.129372
                                              -0.017725
                                                          0.030399
job
                      0.052760
                                 -0.007880
                                              -0.019574
                                                          0.025122
marital
                     -0.033783
                                -0.091939
                                              -0.086199
                                                          0.046203
education
                      0.078799
                                 -0.036380
                                              -0.041492
                                                          0.057799
default
                      0.026522
                                  0.195336
                                               0.189845 -0.099352
                                -0.059277
housing
                     -0.033845
                                              -0.045862
                                                          0.011552
                     -0.012025
loan
                                  0.000125
                                               0.003903 -0.004909
contact
                      0.251614
                                  0.399773
                                               0.269155 -0.144773
month
                      0.009652
                                -0.117264
                                              -0.221425 -0.006065
day_of_week
                      0.041465
                                  0.039043
                                               0.028380
                                                          0.015967
duration
                     -0.008173
                                 -0.032897
                                              -0.044703
                                                          0.405274
campaign
                     -0.013733
                                  0.135133
                                               0.144095 -0.066357
                     -0.091342
                                  0.296899
                                               0.372605 -0.324914
pdays
                     -0.050936
                                 -0.454494
previous
                                              -0.501333
                                                          0.230181
poutcome
                      0.178289
                                  0.184144
                                               0.119689
                                                          0.129789
```

emp.var.rate	0.196041	0.972245	0.906970 -0.298334
cons.price.idx	0.058986	0.688230	0.522034 -0.136211
cons.conf.idx	1.000000	0.277686	0.100513 0.054878
euribor3m	0.277686	1.000000	0.945154 -0.307771
nr.employed	0.100513	0.945154	1.000000 -0.354678
У	0.054878	-0.307771	-0.354678 1.000000

[21 rows x 21 columns]

Warning: Anomalous correlations between features:

Warning: Anomalous correlations between features:										
	age	job	marital	educatio	n defa	ault 1	housing	loan	contact	\
age	1.0	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
job	NaN	1.0	NaN	Na	N	NaN	NaN	NaN	NaN	
marital	${\tt NaN}$	NaN	1.0	Na	N	NaN	NaN	NaN	NaN	
education	${\tt NaN}$	NaN	NaN	1.	0	NaN	NaN	NaN	NaN	
default	NaN	NaN	NaN	Na	N	1.0	NaN	NaN	NaN	
housing	NaN	NaN	NaN	Na	N	NaN	1.0	NaN	NaN	
loan	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	1.0	NaN	
contact	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	1.0	
month	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
day_of_week	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
duration	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
campaign	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
pdays	NaN	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
previous	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
poutcome	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
emp.var.rate	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
cons.price.idx	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
cons.conf.idx	NaN	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
euribor3m	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
${\tt nr.employed}$	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
у	${\tt NaN}$	NaN	NaN	Na	N	NaN	NaN	NaN	NaN	
	mont	h da	y_of_week	ca	npaign	pday	s previ	ous :	poutcome	\
age	Na	.N	NaN		NaN	Na	N	NaN	NaN	
job	Na	.N	NaN		NaN	Na	N	NaN	NaN	
marital	Na	.N	NaN		NaN	Na	N	NaN	NaN	
education	Na	.N	NaN		NaN	Na	N	NaN	NaN	
default	NaN		NaN		NaN	Na	N	NaN		
housing	Na	NaN NaN			NaN NaN		N	NaN		
loan	Na	.N	NaN		NaN	aN NaN		NaN	NaN	
contact	Na		NaN		NaN	NaN NaN		NaN		
month	1.	0	NaN		NaN	Na	N	NaN NaN		
day_of_week	k NaN		1.0		NaN	Na	N	NaN	NaN	

	27 27	37 37			37 37	37 37	37 37
duration	NaN	NaN	• • •	NaN	NaN	NaN	NaN
campaign	NaN	NaN	• • •	1.0	NaN	NaN	NaN
pdays	NaN	NaN	• • •	NaN	1.0	NaN	NaN
previous	NaN	NaN	• • •	NaN	NaN	1.0	NaN
poutcome	NaN	NaN	• • •	NaN	NaN	NaN	1.0
emp.var.rate	NaN	NaN	• • •	NaN	NaN	NaN	NaN
cons.price.idx	NaN	NaN		NaN	NaN	NaN	NaN
cons.conf.idx	NaN	NaN		NaN	NaN	NaN	NaN
euribor3m	NaN	NaN		NaN	NaN	NaN	NaN
${\tt nr.employed}$	NaN	NaN		NaN	NaN	NaN	${\tt NaN}$
У	NaN	NaN		NaN	NaN	NaN	${\tt NaN}$
	emp.var.rate	cons.	<pre>price.idx</pre>	cons.	conf.idx	euribor3m	\
age	NaN		NaN		NaN	NaN	
job	NaN		NaN		NaN	NaN	
marital	NaN		NaN		NaN	NaN	
education	NaN		NaN		NaN	NaN	
default	NaN		NaN		NaN	NaN	
housing	NaN		NaN		NaN	NaN	
loan	NaN		NaN		NaN	NaN	
contact	NaN		NaN		NaN	NaN	
month	NaN		NaN		NaN	NaN	
day_of_week	NaN		NaN		NaN	NaN	
duration	NaN		NaN		NaN	NaN	
campaign	NaN		NaN		NaN	NaN	
pdays	NaN		NaN		NaN	NaN	
previous	NaN		NaN		NaN	NaN	
poutcome	NaN		NaN		NaN	NaN	
emp.var.rate	1.000000		NaN		NaN	0.972245	
cons.price.idx	NaN		1.0		NaN	NaN	
cons.conf.idx	NaN		NaN		1.0	NaN	
euribor3m	0.972245		NaN		NaN	1.000000	
nr.employed	0.906970		NaN		NaN	0.945154	
У	NaN		NaN		NaN	NaN	
	nr.employed	у					
age	NaN	NaN					
job	NaN	NaN					
marital	NaN	NaN					
education	NaN	NaN					
default	NaN	NaN					
housing	NaN	NaN					
loan	NaN	NaN					

contact	NaN	NaN
month	NaN	NaN
day_of_week	NaN	NaN
duration	NaN	NaN
campaign	NaN	NaN
pdays	NaN	NaN
previous	NaN	NaN
poutcome	NaN	NaN
emp.var.rate	0.906970	NaN
cons.price.idx	NaN	NaN
cons.conf.idx	NaN	NaN
euribor3m	0.945154	NaN
nr.employed	1.000000	NaN
У	NaN	1.0

[21 rows x 21 columns]

Analysis

The analysis began with loading and preprocessing the dataset, addressing missing values, encoding categorical features, and scaling numeric variables to ensure consistency across features. The dataset was then split into training and testing sets, with 20% allocated for testing to evaluate model performance. A logistic regression model was chosen for binary classification, implemented through a Pipeline to streamline preprocessing, encoding, and model fitting. To optimize model accuracy, GridSearchCV was used for hyperparameter tuning, and cross-validation was employed to assess the model's robustness. After training the model, its performance was evaluated using various metrics such as accuracy, precision, recall, and F1-score, with confusion matrices and heatmaps created using Seaborn for better visualization. These tools provided insights into the model's ability to differentiate between classes.

Results

To evaluate the utility of each predictor in predicting the response variable (y) for the bank marketing dataset, we visualized the distributions of each predictor in the training dataset, coloring them by the class (yes: orange and no: blue). These visualizations include univariate distributions, pairwise correlations, and scatterplots, as seen in the attached figures. In analyzing these plots, we observe significant differences in the distribution centers and spreads of predictors like duration and campaign between the two classes. However, some variables, such as age and balance, show overlapping distributions with less apparent class separation. Furthermore, categorical predictors, such as job and month, exhibit class imbalance but may still hold valuable predictive information. Based on these insights, predictors demonstrating

clear separability and meaningful patterns are prioritized for inclusion in the predictive model, while those showing little to no differentiation may be considered for exclusion.

```
alt.ConcatChart(...)
```

```
# Look at the univariate distributions (counts) for categorical variables
# Changing 'target' to an object dtype just for the data passed to the chart
aly.dist(
    bank_data.assign(target=lambda bank_data: bank_data['y'].astype(object)),
    dtype='object',
    color='y'
)
```

```
# Visualize pairwise correlations for quantitative variables
aly.corr(bank_data)
```

```
# Visualize pairwise scatterplots for quantitative variables with high correlations
# Identify columns with at least one high correlation
high_corr_columns = [
    "age",
    "duration",
    "campaign",
    "previous",
    "y", # Always include the target as well
]
# Sampling the DataFrame to not saturate the charts
aly.pair(bank_data[high_corr_columns].sample(300), color='y')
```

Model Creation

Initially without Hyperparameter optimization using grid search

```
Accuracy: 0.8975479485311969
Confusion Matrix:
[[7198 105]
[ 739 196]]
Logistic Regression Evaluation:
Accuracy: 0.90
Precision: 0.65
```

Recall: 0.21 F1 Score: 0.32

Accuracy: 0.8975479485311969

Confusion Matrix: [[7198 105] [739 196]]

Logistic Regression Evaluation:

Accuracy: 0.90 Precision: 0.65 Recall: 0.21 F1 Score: 0.32

Figure 3: png

Best hyperparameters found: {'classifier_C': 0.1, 'classifier_max_iter': 300, 'classifier_

Accuracy: 0.8852082650049197

Confusion Matrix: [[5236 68] [632 162]]

Logistic Regression Evaluation:

Accuracy: 0.89 Precision: 0.70 Recall: 0.20 F1 Score: 0.32

Best hyperparameters found: {'classifier__C': 0.1, 'classifier__max_iter': 300, 'classifier_

Accuracy: 0.8852082650049197

Confusion Matrix: [[5236 68] [632 162]]

Logistic Regression Evaluation:

Accuracy: 0.89 Precision: 0.70 Recall: 0.20 F1 Score: 0.32

Figure 4: png

Fitting 5 folds for each of 90 candidates, totalling 450 fits

Best Parameters from Grid Search: {'classifier__criterion': 'entropy', 'classifier__max_dept

Accuracy: 0.8973051711580481

Confusion Matrix:

[[7177 126]

[720 215]]

 $\hbox{\tt Decision Tree Evaluation with Optimized Hyperparameters:}$

Accuracy: 0.90 Precision: 0.63 Recall: 0.23 F1 Score: 0.34

Fitting 5 folds for each of 90 candidates, totalling 450 fits

Best Parameters from Grid Search: {'classifier__criterion': 'entropy', 'classifier__max_dept'.

Accuracy: 0.8973051711580481

Confusion Matrix: [[7177 126]

[720 215]]

Decision Tree Evaluation with Optimized Hyperparameters:

Accuracy: 0.90 Precision: 0.63 Recall: 0.23 F1 Score: 0.34

Figure 5: Confusion Matrix Heat Map

Discussion

Logistic Regression Model:

The Logistic Regression model has achieved an accuracy of approximately 88.5%, with the best hyperparameters found as: {'classifier_C': 0.1, 'classifier_max_iter': 100, 'classifier_penalty': 'l1', 'classifier_solver': 'liblinear'}. The confusion matrix for this model is as follows:

- True Negatives (5236): The model correctly identified 5236 non-subscribers, which indicates its strong performance in predicting the majority class (non-subscribers).
- False Positives (68): There are 68 instances where the model incorrectly predicted that non-subscribers would subscribe. This is a relatively low number, indicating that the model is relatively efficient at avoiding unnecessary targeting.

Optimized Decision Tree Visualization (Limited Depth)

Figure 6: Optimized Decision Tree Visualization

- False Negatives (632): The model missed 632 actual subscribers, which is a significant number and highlights the low recall.
- True Positives (162): The model correctly predicted 162 subscribers, but this number is still quite low, reflecting the model's struggle to identify potential subscribers.

The **Precision** is 0.70, meaning that 70% of the customers predicted as subscribers are actually subscribers. However, the **Recall** is only 0.20, meaning the model captures just 20% of the actual subscribers, which is quite low. This results in an **F1 Score** of 0.32, reflecting a poor balance between precision and recall. Despite the good precision, the low recall suggests that the model is not effectively identifying many actual subscribers, pointing to a significant trade-off between false positives and false negatives. This version of Logistic Regression is more suited to scenarios where **precision** (minimizing false positives) is prioritized over **recall** (capturing all potential subscribers).

Decision Tree Model:

After performing a grid search for hyperparameter optimization, the best hyperparameters found are: {'classifier_criterion': 'entropy', 'classifier_max_depth': 5, 'classifier_min_samples_leaf': 1, 'classifier_min_samples_split': 2}. The model achieved an accuracy of approximately 89.7%, with the confusion matrix as follows:

- True Negatives (7177): The Decision Tree correctly predicted 7177 non-subscribers, showing solid performance in predicting the majority class (non-subscribers).
- False Positives (126): There are 126 instances where the model incorrectly predicted non-subscribers as subscribers, which is a moderate number compared to the Logistic Regression model, indicating a higher sensitivity to identifying potential subscribers.
- False Negatives (720): The model failed to predict 720 actual subscribers, a somewhat higher number, reflecting a lower recall than might be ideal.
- True Positives (215): The Decision Tree correctly predicted 215 subscribers, which is an improvement over the Logistic Regression model, suggesting it is better at identifying potential subscribers.

The **Precision** is 0.63, meaning 63% of the customers predicted as subscribers are indeed subscribers. The **Recall** is 0.23, meaning the model captures only 23% of actual subscribers, indicating it still misses a significant portion. This results in an **F1 Score** of 0.34, which is slightly higher than the Logistic Regression model but still reflects an imbalance between precision and recall. The Decision Tree model performs better than Logistic Regression in terms of recall but still struggles to capture a large proportion of the potential subscribers. It might benefit from further adjustments, such as pruning, to reduce the number of false positives and improve its recall.

Although the Decision Tree has a slightly lower accuracy, its **higher recall** (more true positives) suggests it is better at identifying potential subscribers. However, its higher **false**

positives indicate that the model might be overfitting, capturing noise in the data. This suggests that the Decision Tree is more sensitive to patterns in the data but might benefit from **regularization** or **pruning** to reduce overfitting.

Comparison and Implications:

Both models indicate that the most common outcome in the dataset is non-subscription, as reflected in the confusion matrices, where the number of true negatives vastly outweighs the number of true positives. This confirms that "no" is the statistically likely outcome for customer subscription.

- Logistic Regression Model: The Logistic Regression model is better suited for situations where minimizing false positives is critical, as its **precision** (0.70) is higher than that of the Decision Tree model. However, its **recall** (0.20) is lower, meaning it misses a significant portion of actual subscribers. This makes the Logistic Regression model more effective in contexts where avoiding unnecessary targeting of non-subscribers is more important than capturing every potential subscriber.
- Decision Tree Model: The Decision Tree model, while slightly less accurate overall (accuracy = 89.7%), has a better recall (0.23), meaning it identifies more true positives compared to Logistic Regression. However, this comes at the cost of an increased number of false positives (126). As such, the Decision Tree is better at capturing potential subscribers but may lead to more resources being spent on non-converting customers.

Implications:

Both models show reasonable accuracy and can be useful for the business's marketing initiatives to increase term deposits (subscriptions). The Logistic Regression model would be advantageous in scenarios where reducing false positives and minimizing resource expenditure is a priority, while the Decision Tree model could be valuable in situations where capturing more potential subscribers (even at the cost of more false positives).

Future iterations of these models should focus on improving both **precision** and **recall**, possibly through regularization, pruning, or incorporating more diverse data to better identify customers likely to subscribe. By fine-tuning the models, the business can maximize the effectiveness of its marketing campaigns and increase its return on investment.

Strategic Recommendations:

Given the insights from the evaluation of both models, here are some actionable strategies to enhance the bank's marketing efforts and improve conversion rates:

Targeted Marketing:

• Use these models to segment customers into two groups: those with a high likelihood of subscribing (identified by the model as potential positives) and those with a low likelihood (predicted as negatives). Focus marketing efforts on the high-probability segment to optimize resource allocation.

Campaign Timing:

• Refine marketing strategies by focusing efforts on customers during certain times when they are more likely to respond. The model can be expanded to include temporal features (e.g., day of the week or month) to optimize campaign timing.

Personalized Offers:

• Tailor offers to individual customers based on characteristics like age, occupation, or previous interactions with the bank (e.g., loan status). The models' predictions can guide personalized messaging, increasing engagement with customers and improving the chances of subscription.

Improve Conversion Rates:

• Implement **follow-up campaigns** targeting customers predicted as high-likelihood subscribers but who still did not convert. For those predicted as low-likelihood, consider creating new or improved offers to address specific concerns or barriers to subscription.

Monitor and Adjust:

• Continuously track the performance of both models over time, paying close attention to precision and recall. As more data becomes available, adjust the models and marketing strategies to ensure increasing accuracy and the development of more effective campaigns.

By applying these insights and strategies, the bank can improve its targeting for **long-term deposit** products, increasing conversion rates while making sure the marketing efforts are cost-effective and personalized.

-For the markdown rendering Chat-gpt was used to correct code

References

- Meshref, H. 2020. "Predicting Loan Approval of Bank Direct Marketing Data Using Ensemble Machine Learning Algorithms." *International Journal of Circuits, Systems and Signal Processing* 14: 1–9. https://doi.org/https://doi.org/10.46300/9106.2020.14.117.
- Moro, Rita, S., and P. Cortez. 2014. "Bank Marketing." UCI Machine Learning Repository.
- Wang, D. 2020. "Research on Bank Marketing Behavior Based on Machine Learning." In AIAM2020: Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture, 150–54. https://doi.org/https://doi.org/10.1145/3421766.3421800.
- Xie, C., J.-L. Zhang, Y. Zhu, B. Xiong, and G.-J. Wang. 2023. "How to Improve the Success of Bank Telemarketing? Prediction and Interpretability Analysis Based on Machine Learning." Computers & Industrial Engineering 175: 108874. https://doi.org/https://doi.org/10.1016/j.cie.2022.108874.
- Zaki, A. M., N. Khodadadi, W. H. Lim, and S. K. Towfek. 2024. "Predictive Analytics and Machine Learning in Direct Marketing for Anticipating Bank Term Deposit Subscriptions." *American Journal of Business and Operations Research* 11 (1): 79–88. https://doi.org/https://doi.org/10.54216/AJBOR.110110.