Ортогональное разложение матрицы

Требуется представить квадратную матрицу A размера $m \times m$ в виде произведения A = QR, где Q — ортогональная, R— правая треугольные матрицы.

Задание 1

- 1. Выберите квадратную матрицу A порядка $m \times m \ (m \ge 5)$.
- 2. Используя преобразования Γ ивенса (вращения) постройте QR разложение выбранной матрицы A = QR,
- 3. Проверьте, что разложение верно, а матрица Q ортогональна.

Задание 2

- 1. Выберите квадратную матрицу A порядка $m \times m \ (m \ge 5)$.
- 2. Используя преобразования Хаусхолдера (отражения) постройте QRразложение выбранной матрицы A = QR,
- 3. Проверьте, что разложение верно, а матрица Q ортогональна.

Методические указания

Преобразование вращения (преобразование Гивенса)

Пусть A — квадратная невырожденная матрица размера $m \times m$. Если $a_{11} \neq 0$ и $a_{21} \neq 0$, на первом шаге А умножается слева на матрицу элементарного вращения

$$Q_{12}(\varphi_{12}) = \begin{pmatrix} \cos \varphi_{12} & -\sin \varphi_{12} & 0 & 0 & \cdot & 0 \\ \sin \varphi_{12} & \cos \varphi_{12} & 0 & 0 & \cdot & 0 \\ 0 & 0 & 1 & 0 & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\ 0 & 0 & 0 & 0 & \cdot & 1 \end{pmatrix}$$

У матрицы $A_{12}=Q_{12}A$ изменяются только элементы первой и второй строки

цы
$$A_{12} = Q_{12}A$$
 изменяются только элементы первой и второй строки
$$A_{12} = \begin{pmatrix} a_{11}\cos\varphi_{12} - a_{21}\sin\varphi_{12} & \cdot & \cdot & a_{1m}\cos\varphi_{12} - a_{2m}\sin\varphi_{12} \\ a_{11}\sin\varphi_{12} + a_{21}\cos\varphi_{12} & \cdot & \cdot & a_{1m}\cos\varphi_{12} + a_{2m}\sin\varphi_{12} \\ a_{31} & a_{32} & \cdot & \cdot & a_{3m} \\ & \cdot & & \cdot & \cdot & \cdot \\ & a_{m1} & a_{52} & \cdot & \cdot & a_{mm} \end{pmatrix}$$

Преобразованные элементы выражаются через элементы того же столбца, в котором находятся, и сумма их квадратов не изменяется. Действительно,

$$\left(a_{1i}^{(12)}\right)^2 + \left(a_{2i}^{(12)}\right)^2 = \left(a_{1i}\cos\varphi_{12} - a_{2i}\sin\varphi_{12}\right)^2 + \left(a_{1i}\sin\varphi_{12} + a_{2i}\cos\varphi_{12}\right)^2 =$$

$$= a_{1i}^2 + a_{2i}^2$$

Выберем угол φ_{12} так, чтобы элемент $a_{21}^{(12)}$ матрицы A_{12} обратился в нуль, т.е.

$$a_{11}\sin\varphi_{12} + a_{21}\cos\varphi_{12} = 0.$$

Из этого равенства получаем выражения

$$\sin \varphi_{12} = -\frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}} , \quad \cos \varphi_{12} = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}}.$$

У матрицы A_{12} элемент первого столбца $a_{21}^{(12)}=0$, а $a_{11}^{(12)}=\sqrt{a_{11}^2+a_{21}^2}>0$.

Если $a_{11}=0$, то в первом столбце A выбирается ненулевой элемент $a_{k1}\neq 0$ (все элементы первого не могут быть нулевыми у невырожденной матрицы) и с помощью умножения слева на ортогональную матрицу перестановок первая и m-ая строки матрицы A меняются местами. Если $a_{21}=0$, то первый шаг не выполняется $A_{12}:=A$.

Теперь A_{12} умножается слева на матрицу

$$Q_{13}(\varphi_{13}) = \begin{pmatrix} \cos \varphi_{13} & 0 & -\sin \varphi_{13} & 0 & \cdot & 0 \\ 0 & 1 & 0 & 0 & \cdot & 0 \\ \sin \varphi_{13} & 0 & \cos \varphi_{13} & 0 & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\ 0 & 0 & 0 & 0 & \cdot & 1 \end{pmatrix}.$$

У матрицы $A_{13}=Q_{13}A_{12}$ изменятся элементы первой и третьей строки. Аналогично предыдущему выберем угол φ_{13} так, чтобы $a_{31}^{(13)}=0$, тогда элемент $a_{11}^{(13)}=\sqrt{\left(a_{11}^{(12)}\right)^2+a_{31}^2}=\sqrt{a_{11}^2+a_{21}^2+a_{31}^2}>0$.

Повторим этот процесс еще m-3 раз, и получим матрицу

$$A_{1} = \begin{pmatrix} a_{11}^{1m} & a_{12}^{(1(m-1))} & a_{13}^{(1(m-1))} & \cdot & a_{1m}^{(1(m-1))} \\ 0 & a_{22}^{(12)} & a_{23}^{(12)} & \cdot & a_{2m}^{(12)} \\ 0 & a_{32}^{(13)} & a_{33}^{(13)} & \cdot & a_{3m}^{(13)} \\ 0 & \cdot & \cdot & \cdot & \cdot \\ 0 & a_{52}^{(1(m-1))} & a_{m3}^{(1(m-1))} & \cdot & a_{mm}^{(m-1)} \end{pmatrix} = \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdot & a_{1m}^{(1)} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} & \cdot & a_{2m}^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} & \cdot & a_{3m}^{(1)} \\ 0 & \cdot & \cdot & \cdot & \cdot \\ 0 & a_{m2}^{(1)} & a_{m3}^{(1)} & \cdot & a_{mm}^{(1)} \end{pmatrix}$$

у которой все элементы первого столбца, начиная со второго равны нулю, а $a_{11}^{(1)}=\sqrt{a_{11}^2+\ldots+a_{15}^2}$. Матрица A_1 получается из A с помощью ортогонального преобразования

$$A_1 = Q_{1(m-1)} \cdot \ldots \cdot Q_{13} \cdot Q_{12} \cdot A = Q_1 \cdot A,$$

где матрица $Q_1 = Q_{1(m-1)} \dots \cdot Q_{13} \cdot Q_{12}$ — ортогональна как произведение ортогональных матриц. Иногда в этом произведении могут появиться ортогональные матрицы перестановок.

Аналогично строится ортогональная матрица $Q_2 = Q_{2(m-1)} \cdot Q_{24} \cdot Q_{23}$, такая, что у матрицы $A_2 = Q_2 A_1 = Q_2 Q_1 A$ нулевыми становятся поддиагональные элементы в первых двух столбцах. Заметим, что при умножении матрицы A_1 на матрицу Q_2 элементы первого столбца и первой строки не изменяются, а диагональный элемент $a_{22}^{(2)} = \sqrt{\left(a_{22}^{(1)}\right)^2 + \ldots + \left(a_{2m}^{(1)}\right)^2} > 0$.

Аналогично строятся матрицы $Q_3, \dots Q_{m-1}$, и в результате получается треугольная матрица $A_{m-1} = Q_{m-1} \cdot Q_3 \cdot Q_2 \cdot Q_1 A$, у которой все поддиагональные элементы равны нулю, а диагональные, кроме, быть может, последнего неотрицательны. Таким образом, для правой треугольной матрицы A_{m-1} получается выражение

$$A_{m-1} = Q_{m-1} \cdot \ldots \cdot Q_1 \cdot A = \widetilde{Q} \cdot A \Rightarrow A = QR$$

где $Q = \widetilde{Q}^{\scriptscriptstyle T}$ — ортогональная матрица.

В случае, если матрица A окажется вырожденной и на i-ом шаге $a_{i,j}^{i-1}=0, j=i,\ldots,m$, элементы i-ой строки переставляются с элементами последней ненулевой строки. Тогда у матрицы A_{m-1} нулевыми окажутся элементы последних строк. Количество ненулевых диагональных элементов (или ненулевых строк) у матрицы A_{m-1} равно рангу матрицы A.

Чтобы вычислить матрицы Q и R, сначала выполняются операторы присваивания R:=A и $\widetilde{Q}^T:=E$, а затем элементы матриц R и \widetilde{Q}^T одинаково преобразуются при каждом вращения. После выполнения (m-1)-ого шага будут получены матрицы R и $Q=\widetilde{Q}^T.$

Один из вариантов алгоритма построения QR разложения с помощью преобразований вращения можно записать в виде:

- 1. Начало,
- 2. ir := 0, эта переменная введена для вычисления rank(A) = m ir,
- 3. $R := A, Q_1 = E, E$ единичная матрица,
- 4. в цикле по i от 1 до m-1-ir выполнить,

найти в цикле по k от i до m первый ненулевой элемент a_{ik}

 $(|a_{ik}|>arepsilon,$ где arepsilon- точность расчета) конец цикла по k,

если k < m - ir,

тогда переставить i и k строки у матриц R и Q_1 , иначе переставить i и m-ir строки у матриц R и Q_1 ,ir:=ir+1, конец условного оператора

в цикле по j от i+1 до m выполнить

$$r := \sqrt{a_{ii}^2 + a_{ji}^2}; c := \frac{a_{ii}}{r}; s := -\frac{a_{ji}}{r}$$

цикл по k от i до m,

$$r := a_{ik} * c - a_{jk} * s; a_{jk} := a_{ik} * s + a_{jk} * c; a_{ik} := r;$$

конец цикла по k,

цикл по k от 1 до m выполнить

$$r := \widetilde{q}_{ik} * c - \widetilde{q}_{jk} * s; \ \widetilde{q}_{jk} := \widetilde{q}_{ik} * s + \widetilde{q}_{jk} * c; \ \widetilde{q}_{ik} := r;$$

конец цикла по k,

конец цикла по j,

конец цикла по i.

После выполнения этих вложенных циклов получаются такие матрицы $R = A_{m-1}$ (правая треугольная) и $\widetilde{Q} = Q^T$ (ортогональная), что A = Q R, причем матрица Q равна произведению матриц элементарных вращений и матриц перестановок.

Для реализации метода вращений требуется $2m^3 + 0(m^2)$ арифметических операций (сложений, умножений, делений).

Замечание. Если матрица A правая почти треугольная (правая матрица Xессенберга), то для построения ее QR разложения потребуется существенно меньше операций.

Преобразование отражения (преобразования Хаусхолдера)

Преобразование отражения (Хаусхолдера) — это построение матрицы P, которая произвольный отличный от нулевого m-мерный вектор-столбец $\overline{v}=(v_1,v_2,\ldots,v_m)^T$ преобразует в $\sigma\|\overline{v}\|\overline{e}$, где $\sigma=-\operatorname{sgn}(v_1)$, $\overline{e}=(1,0,\ldots,0)^T$.

Матрица отражение Р имеет вид

$$P = E - 2\frac{\overline{u} \ \overline{u}^T}{\overline{u}^T \ \overline{u}}$$

где $\overline{u} = \overline{v} - \sigma \|\overline{v}\| \overline{e}$. Введение константы σ позволяет уменьшить влияние ошибок округления.

Для построения QR-разложения выбирается в качестве m- мерного вектора \overline{v}_1 первый столбец матрицы A

$$\overline{v}_1 = (a_{11}, a_{21}, \dots, a_{m1})^T$$

и строится матрица P_1 размера $m \times m$, такая, что $P_1\overline{v_1} = \sigma_1 \|\overline{v_1}\| \overline{e_1}$, тогда

Затем выбирается (m-1)-мерный вектор \overline{v}_2

$$\overline{v}_2 = (a_{22}^{(1)}, a_{32}^{(1)}, \dots, a_{m2}^{(1)})^T$$

и строится матрица P размера $(m-1)\times (m-1)$, такая, что $P\overline{v_2}=\sigma_2\|\overline{v_2}\|\overline{e_2}$, где $\overline{e}_2=(1,0,\dots,0)^{\scriptscriptstyle T}-(m-1)$ -мерный вектор-столбец. Если матрицу A_1 умножить на P_2 $(m\times m)$

$$P_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & P \end{array}\right),$$

ТО

$$A_{2} = P_{2} \cdot A_{1} = P_{2} P_{1} \cdot A = \begin{pmatrix} \sigma_{1} \| \overline{v}_{1} \| & a_{12}^{(1)} & a_{13}^{(1)} & \cdot & a_{1m}^{(1)} \\ 0 & \sigma_{2} \| \overline{v}_{2} \| & a_{23}^{(2)} & \cdot & a_{2m}^{(2)} \\ 0 & 0 & a_{32}^{(2)} & \cdot & a_{3m}^{(2)} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & a_{m3}^{(2)} & \cdot & a_{mm}^{(2)} \end{pmatrix}$$

Если продолжить этот процесс, то получится матрица

$$A_{m-1} = P_{m-1} \cdot A_{m-1} = P_{m-1} \dots P_1 \cdot A =$$

$$\begin{pmatrix} \sigma_1 \| \overline{v}_{(1)} \| & a_{12}^{(1)} & a_{13}^{(1)} & \cdot & a_{1m}^{(1)} \\ 0 & \sigma_2 \| \overline{v}_2 \| & a_{23}^{(2)} & \cdot & a_{2m}^{(2)} \\ & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & \sigma_{m-1} \| \overline{v}_{m-1} \| & a_{m-1,m}^{(m-1)} \\ 0 & 0 & \cdot & 0 & a_{mm}^{(m-1)} \end{pmatrix}$$

и искомое разложение

$$A = Q R$$

где
$$Q = P_1^T \cdot P_2^T \dots \cdot P_{m-1}^T$$
, $R = A_{m-1}$.

Реализацию алгоритма метода отражений можно начинать с операторов присваивания R:=A и Q:=E, а затем на каждом шаге преобразования отражения умножать матрицу R справа на P_i , а Q слева на $P_i^{\scriptscriptstyle T}$, $i=1,\ldots,m-1$. В результате будут вычислены искомые матрицы R и Q.

В методе отражений требуется выполнить $4/3m^3 + 0(m^2)$ арифметических операций (сложений, умножений, делений).

Приведем один из вариантов алгоритма построения QR разложения с помощью преобразований отражения. В этом алгоритме используется процедура преобразования первого столбца матрицы произвольного размера $(k \times k)$.

В процедуре $Otrag(k, \overline{v}_k, P_k)$ строится матрица отражения P_k $(m \times m)$, с помощью которой все поддиагональные элементы k-ого столбца матрицы R обращаются в нуль, $\overline{v}_k = (R_{k,k}, \dots, R_{m,k})$.

Начало процедуры $Otrag(k, \overline{v}_k, P_k)$

- 1. $P_k := E$ единичная матрица размера $m \times m$,
- 2. создать e —единичный k-мерный вектор,
- 3. если первая компонента $v_1 > 0$ вектора \overline{v}_k , то $\sigma := -1$, иначе $\sigma := 1$,
- 4. вычислить норму вектора $\overline{v_k} \left(||\overline{v}|| = \sqrt{\sum_{i=1}^n v_i^2} \right);$
- 5. вычислить вектор $\overline{u} = \overline{v}_k \sigma ||\overline{v}_k|| \overline{e},$
- 6. вычислить элементы матрицы $P:=E-2rac{\overline{u}\,\overline{u}^{\scriptscriptstyle T}}{\overline{u}^{\scriptscriptstyle T}\,\overline{u}}$ размера k imes k
- 7. вставить в нижний угол единичной матрицы P_k размера $m \times m$ матрицу P;

конец процедуры.

Алгоритм построения QR разложения с помощью преобразований отражения, использующий процедуру Otrag(k, B, Q), можно записать в виде:

- 1. Q := E единичная матрица, а R := A,
- 2. цикл по i от 1 до m-1, создать вектор $\overline{v}_1=(R_{i,i},\dots,R_{m,i})$, обратиться к процедуре $Otrag(i,\overline{v}_1,P_1),\,R:=P_1R,\,Q:=QP_1^T,$ конец цикла по i

После выполнения этого алгоритма получаются такие матрицы R (правая треугольная) и Q (ортогональная), что A=QR.

Список литературы

[1] Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. - М.:Наука,1989г.

- [2] Вержбицкий В.М. Основы численных методов.- М.:Высш.шк.,2002.
- [3] Воеводин В.В. Вычислительные основы линейной алгебры. -М.:Наука,1977.