AI IN THE BUILT ENVIRONMENT DCP4300

Week 9: Robotics

Part B: Reinforcement Learning

Dr. Chaofeng 'Charles' Wang

University of Florida College of Design Construction and Planning

Reinforcement Learning:

Train the Agent to learn to React to an Environment by trial and error.

Reinforcement Learning:

Train the Agent to learn to React to an Environment by trial and error.

Has broad applications. Some examples:

Autonomous Driving

Gaming Al

Robotics

Design

Supervised Learning Vs Reinforcement Learning

They are both trained to learn some functions: $f: X \to Y$

x1	x2	x3	x4	x5	У
0.21	0.20	0.65	0.87	0.29	0.22
0.83	0.47	0.14	0.77	0.43	0.63
0.42	0.31	0.41	0.43	0.11	0.92
0.83	0.49	0.52	0.01	0.94	0.17
0.99	0.05	0.47	0.72	0.01	0.60
0.31	0.31	0.74	0.41	0.93	0.13
0.29	0.03	0.32	0.16	0.24	0.35
0.91	0.91	0.24	0.23	0.51	0.23
0.47	0.04	0.17	0.77	0.34	0.08
0.10	0.10	0.73	0.82	0.32	0.23
0.09	0.66	0.10	0.98	0.21	0.66
0.00	0.35	0.38	0.18	0.89	0.02

X is a space of [x1,x2,x3,x4,x5]

Y is a space of [y]

Training data is labeled:

pairs of ([x1,x2,x3,x4,x5], [y])

The differences:

No training data.

The agent has to interact with environment to generate the data on the run. And the generated data is unlabeled.

Reinforcement Learning

(state, action, reward) trajectory

A stochastic process consisting of a sequence of events (state), where the event depends only on the previous event.

Stock market

A day

Next

Transition matrix

	s1	s2	s3	s4
s1	0.1	0.8	0	0.1
s2	0	0	1	0
s3	0.6	0.4	0	0
s4	0.3	0.4	0.3	0

Current

Any environment model (simplified)

State transition

$$S_t \xrightarrow{a_t} S_{t+1}$$

It's a probability:

$$p(s'|s,a) = P(S'=s|S=s,A=a)$$

The randomness comes from the environment.

Policy, π

It is a function,
$$\pi$$
: $(a, s) \rightarrow [0,1]$

$$\pi(a|s) = P(A = a|S = s)$$

The output of the function means the probability of taking the action A = a given S = s

The agent will take an action, which is guided by the policy function π .

What does it mean? The agent will draw a sample from the distribution.

$$u_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} \dots$$

The return depends on the current and all future actions $(a_t, a_{t+1}, a_{t+2}, ...)$, current state and all future states $(s_t, s_{t+1}, s_{t+2}, ...)$

Action can be sampled from the policy function $\pi(a|s)$

State can be sampled from the state transition function p(s'|s,a)

Value functions

Action-value function

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[u_t | S_t = s_t, A_t = a_t]$$

Optimal action-value function

$$Q^*(\mathbf{s_t}, \mathbf{a_t}) = max_{\pi} Q_{\pi}(\mathbf{s_t}, \mathbf{a_t})$$

State-value function

$$V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t, A)] = \sum_a [\pi(a|s_t) \cdot Q_{\pi}(s_t, a)]$$
 Action is discrete

$$V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t, A)] = \int [\pi(a|s_t) \cdot Q_{\pi}(s_t, a)] da$$
 Action is continuous

Value functions

Action-value function

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t]$$

Given policy π , how good it is for the agent to take the action a_t in the state s_t

State-value function

$$V_{\pi}(s_t) = \mathbb{E}_{A}[Q_{\pi}(s_t, A)]$$

Given policy π , how good the situation is in the state s_t

How does the agent work?

There are two types:

Policy-based

If we know the policy function π : The agent can take an action by sampling:

$$a_t \sim \pi(\cdot \mid s_t)$$

Value-based

If we know the optimal action-value function $Q^*(s_t, a_t)$: The agent can take an action that maximize Q^* :

$$a_t = argmax_a Q^*(s_t, a)$$

Value-based RL

If we know the optimal action-value function $Q^*(s_t, a_t)$: The agent can take an action that maximize Q^* : $a_t = argmax_aQ^*(s_t, a)$

 $Q^*(s_t, a_t)$ can be calculated by looping over all *possible future paths*, for simplest cases.

A practical method is to approximate it **iteratively**.

Action

State

Q	a_1	a_2	a_3	a_4
s_1	$Q(s_1, a_1)$	$Q(s_1, a_2)$	$Q(s_1, a_3)$	$Q(s_1, a_4)$
s_2	$Q(s_2, a_1)$	$Q(s_2, a_2)$	$Q(s_2, a_3)$	$Q(s_2, a_4)$
S ₃	$Q(s_3, a_1)$	$Q(s_3, a_2)$	$Q(s_3, a_3)$	$Q(s_3, a_4)$
	•			•

Our objective is to learn the values $Q(s_t, a_t)$ which represents the policy

Q-learning Algorithm

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S'
until S is terminal
```


Q-learning Algorithm

Action

State

Q	a1	a2	a3	a4
s1	0	0	0	0
s2	0	0	0	0
s3	0	0	0	0
	•	•	•	•
	•	•	•	

a

Update Q(s,a) in table $Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma max *Q(s',*) - Q(s,a)]$

S

Bellman Equation

$$Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{*} Q(s',*) - Q(s,a)]$$

Bellman Equation

$$u_{t} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} \dots$$

$$u_{t} = r_{t} + \gamma (r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots)$$

$$u_{t} = r_{t} + \gamma u_{t+1}$$

$$E(u_t) = E(r_t + \gamma u_{t+1})$$

$$E(u_t) = r_t + \gamma E(u_{t+1})$$

$$Q(s_t, a_t) = r_t + \gamma Q(s_{t+1}, a_{t+1})$$

$$Q(s, a) = r + \gamma Q(s', a')$$

In Q-learning, we use a table to store and calculate the optimal Q values. This is ok for simple cases.

But for more complicated cases, this is not doable because the dimension of the table can the calculation needed are too large.

Instead of using a table, we can use a neural network to approximate the real $Q^*(s_t, a_t)$.

The method is called Deep Q Network (DQN)

Deep Q Network (DQN)

COLADO CAS SERVICION AND PLANNES

DCP 4300

Deep Q Network (DQN)

 s_t

More RL

https://spinningup.openai.com/en/latest/

DeepMind x UCL Reinforcement Learning Lecture Series

https://deepmind.com/learning-resources/reinforcementlearning-series-2021

Collection of implementations of RL https://stable-baselines3.readthedocs.io/en/master/

Tensorflow Agents also has implementations https://www.tensorflow.org/agents

Create A Reinforcement Learning Workflow

OpenAl Gym DeepMind-control Atari *Your own*

Exercise: Build your own environment and RL workflow

Tensorflow Agents: Environment: https://www.tensorflow.org/agents/tutorials/2 environments tutorial

Tensorflow Agents: DQN https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial

Workflow:

https://colab.research.google.com/drive/1wkklY2cj -qvA7AJvRUnTYWuE GNJvvt?usp=sharing

