MATH 202, Spring 202 4	1
In class work 17	

Name:	
Row and Seat:	

"The more I read, the more I acquire, the more certain I am that I know nothing."

VOLTAIRE

In class work **17** has questions **1** through **3** with a total of **5** points. Turn in your work at the end of class *on paper*. This assignment is due *Tuesday 9 April 13:20*.

1. Show that $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$.

1 2. Use the *ratio* test to determine of the series $\sum_{k=0}^{\infty} \frac{k^k}{k!}$ converges or diverges.

- 1 3. Define a sequence s by $s_n = \sum_{k=0}^n \frac{(-1)^k}{\sqrt{k+1}}$. This is a convergent alternating series. Also define $s_\infty = \lim_{n \to \infty} s_n$.
- (a) Use Desmos to graph s on the interval [1, 2, ..., 150]. Also use Desmos to find the numeric values of s_{149} and s_{150} . As best you can, reproduce a cartoon of the graph of s.

(b) From the theory of convergent alternating series, we know that $s_{149} < s_{\infty} < s_{150}$. Looking at the graph of s, I would guess that s_{∞} is pretty close to the arithmetic average of s_{150} and s_{149} ; that is $s_{\infty} \approx \frac{s_{150} + s_{149}}{2}$. Find the numeric value of $\frac{s_{150} + s_{149}}{2}$.