Рт лаба №1

Сидорчук Максим

6 октября 2023 г.

1 Часть 1: Делитель напряжения

В данной части работы был собран делитель напряжения из 2 резисторов с сопротивлением 20 кОм и 5.1 кОм. При подаче напряжения в 10 В на вход делителя, на выходе было получено напряжение $E^*=248.6 \mathrm{mB}*10=2.48\mathrm{B}$. Далее измерим внутреннее сопротивление получившегося источника, подключив к нему нагрузку в виде резистора с $R_l=10$ кОм. Получили $U_l=173.1 \mathrm{mB}*10=1.731$ В. Оценим внутреннее сопротивление источника по формуле $R^*=\frac{E^*-U_l}{U_l}*R_l=4.32$ кОм.

В следующей подчасти задания необходимо произвести измерение с синусоидальным входным сигналом. Амплитуда входного сигнала e=5B, амплитуда выходного $u=82.533*10*10^{-3}=0.8$ В. Тем самым получаем коеффициент передачи $k=\frac{u}{e}=0.16$.

2 Часть 2: Параллельный сумматор

Для начала по 2 параметрам $\alpha=0.4$ и $\beta=0.2$, а также $R_1=10$ кОм, найдем сопротивления $R_2=\frac{\alpha}{\beta}*R_1=20$ кОм и $R=\frac{3*(R_1||R_2)}{2}=R_1=10$ кОм.

Подключим синусоидальное напряжение с амплитудой 2В к E_1 и постоянное напряжение 5В к E_2 . Результирующая амплитуда напряжения на выходе сумматора составляет $U_{\rm amp}=1.18$ В с постоянной составляющей $U_{\rm const}=0.69$ В.

Найдем коеффициенты сумматора, замыкая правую и левую ветвь. Получаем $\alpha = 1.8/5.0 = 0.36$ и $\beta = 0.8/5.0 = 0.16$, которые достаточно близки к теоретическим.

Методом двух нагрузок найдем найдем эквивалентное сопротивление сумматора. $E^* = 2.88$ В, при $R_l = 5.1$ кОм найдем напряжение на нагрузочном резисторе $U_l = 1.02$ В. Отсюда получаем, что $R^* = \frac{(E^* - U_l) \cdot R_l}{U_l} = 9.3$ кОм.

3 Часть 3: Н-параметры

Смоделируем данную схему в микро капе. В одной схеме замкнем на ноль правый выход и найдем токи и напряжение: $I_1=1$ A, $U_1=2.2$ В, $I_2=-0.6$ А. Из данных значений получаем: $h_{11}=\frac{U_1}{I_1}=2.2$ Ом и $h_{21}=\frac{I_2}{I_1}=-0.6$ Ом. На аналогичной схеме только с источником напряжения справа и неподключенным левым выходом получим $U_2=1$ В, $U_1=0.6$ В, $I_2=0.2$ А. Подставим эти значения $h_{12}=\frac{U_1}{U_2}=0.6$, $h_{22}=\frac{I_2}{U_2}=0.2$. Полученные результаты соответствуют теории с сопротивлениями 1, 2 и 3 Ома соответственно.

4 Часть 4 : Х-параметры

Так же рассмотрим модель схемы. Имеется звезда с сопростивлениями $R_1=1$ кОм, $R_2=2$ кОм, $R_3=3$ кОм. Пересчитав их в параметры соответствующего треугольника получаем $R_{13}=5.5$ кОм, $R_{12}=3.67$ кОм, $R_{23}=11$ кОм. Так же имеем две схемы: на левой источник есть слева, на правой - справа. Получим X-параметры $X_{11}=U_1/I_1=4$, $X_{21}=U_2/I_1=3$, $X_{12}=U_1/I_2=3$, $X_{22}=U_2/I_2=5$. Все соответственно в кОм. Полученные значения соответствуют теории

5 Часть 5: Лестничные структуры

Данная часть работы полностью документирована фотографиями по причине упрощения жизни.