

①現況断面安定計算データーシート

		安定計算報告書 修正Fellenius法(道路土工式)	
現場名	谷上		

 現場名
 谷上

 測線名
 NO. 2

断面図

種別	記号	単位	条件と結果
計算式	-	-	修正Fellenius法(道路土工式)
仮定安全率	Fs0	-	1. 000
安全率	Fs	-	1. 000
粘着力	С	${ m kN/m^2}$	0. 38
内部摩擦角	φ	0	35. 0000
$\tan\phi$	tan φ	-	0. 700208
円弧中心座標	X	m	28. 500
円弧中心座標	Y	m	258. 000
円弧半径	R	m	6. 500
すべり面長	L	m	4. 027
面積	A	m^2	1. 55
法線力	N	kN/m	21. 90
間隙水圧	U	kN/m	0.00
地すべり抵抗力	S	kN/m	16. 86
地すべり力	T	kN/m	16. 86
逆算粘着力(φ=0時)	CO	${ m kN/m^2}$	4. 19
逆算内部摩擦角 (C=0時)	φ0	0	37. 5913
逆算tanφ (C=0時)	$\tan \phi 0$	_	0. 769863

すべり面強度

す	-べり	始点座標		終点座標		すべり面	すべり面	粘着力	内部原	撃擦角
直	区間	X (m)	Y (m)	X (m)	Y (m)	形状	強度	C(kN/m ²)	φ (°)	tanφ
	1	23.076	254. 418	26. 165	251. 934	円弧	逆算	0.38	35. 0000	0.700208

すべり面区間	区間幅 d(m)	すべり面 長 l(m)	スライス 重量 W(kN/m)	すべり面 法線分力 N(kN/m)	間隙水圧 U(kN/m)	地すべり 抵抗力 S(kN/m)	地すべり力 T(kN/m)
1	3. 089	4.027	27. 90	21. 90	0.00	16. 86	1 (KN/m) 16.86
合計	3.089	4. 027	27. 90	21. 90	0.00	16. 86	16. 86

計算条件

1. 地質定数

(1) 単位体積重量γ

当該斜面は複数地層での解析を行っている。各々の単位体積重量は以下のとおりである。

地層	単位体積重量 γ _t (kN/m³)
地層1	18. 00
地層2	18. 00
地層3	18. 00

※ 水の単位体積重量 γw: 10.000 (kN/m³)

(2) 粘着力C、内部摩擦角φ

繰り返し円弧によって複数のすべり面からC, φ関係図を作成し、強度定数を推定する。

地層名	粘着力 C(kN/m²)	内部摩擦角 φ (°)
地層1	逆	算値
地層2	0.00	30.0000
地層3	0.00	30.0000

2. 安定計算式

安定計算式は修正Fellenius法(道路土工式)を用いる。

$$F_{S} = \frac{\sum \{C \cdot l + (W \cdot \cos \alpha - u \cdot d \cdot \cos \alpha) \cdot \tan \phi\}}{\sum W \cdot \sin \alpha}$$

ここで、

Fs : 安全率 C : 粘着力 (kN/m^2) 1 : スライスのすべり面長さ (m)d : スライス幅 (m)₩ : スライス重量 (kN/m)α : すべり面傾斜角度 (°) u : 単位間隙水圧(u=h_w·γ_w) (kN/m^2) hw: 水位からすべり面の平均深さ (m)γω : 水の単位体積重量 (kN/m^3) (°) φ : 内部摩擦角

3. 仮定安全率

逆算する地形の仮定安全率を Fs = 1.000 に設定する。

C、φ逆計算

繰り返し円弧すべりによる逆算結果を C-tan φ 関係図で表すと次のようになる。

C-tan φ 関係図

上図を参考にして C、φ を決定する。

C = 0.38
$$(kN/m^2)$$

 $\tan \phi$ = 0.700208 $(\phi$ = 35.0000 (°))

決定した C、 φ に基づいて、最小安全率を照査する。

円弧すべり (X,Y)=(28.500, 258.000) R= 6.500 m の安定度は以下のとおりである。

スライス要素の集計表

内部摩	 響角	粘着力	すべり面 長さ	法線力	間隙水圧	地すべり 抵抗力	地すべり 力
ϕ (°)	$ an\phi$	$C(kN/m^2)$	L (m)	N(kN/m)	U (kN/m)	S(kN/m)	T (kN/m)
35. 0000	0. 700208	0.38	4. 027	21. 90	0.00	16. 86	16.86

安全率は次式で計算できる。

$$Fs = \frac{\sum \{C \cdot l + (W \cdot \cos \alpha - u \cdot d \cdot \cos \alpha) \cdot \tan \phi\}}{\sum W \cdot \sin \alpha}$$

$$= \frac{C \cdot L + (N - U) \cdot \tan \phi}{T}$$

$$= \frac{0.38 \times 4.027 + (21.90 - 0.00) \times 0.700208}{16.86}$$

$$= 1.000$$

ここで、

Fs : 安全率 C : 粘着力 (kN/m^2) 1: スライスのすべり面長さ (m)d : スライス幅 (m)W:スライス重量 (kN/m)(°) α : すべり面傾斜角度 u : 単位間隙水圧(u=h_w·γ_w) (kN/m^2) hw: 水位からすべり面の平均深さ (m)γω : 水の単位体積重量 (kN/m^3) φ : 内部摩擦角 (°)

円弧すべり (X,Y)=(28.500, 258.000) R= 6.500 m の安定度は以下のとおりである。

スライス要素の集計表

内部摩	 響角	粘着力	すべり面 長さ	法線力	間隙水圧	地すべり 抵抗力	地すべり 力
ϕ ($^{\circ}$)	$ an\phi$	$C(kN/m^2)$	L (m)	N(kN/m)	U (kN/m)	S(kN/m)	T (kN/m)
35. 0000	0.700208	0.38	4. 027	21.90	0.00	16.86	16. 86

安全率は次式で計算できる。

$$Fs = \frac{\sum \{C \cdot l + (W \cdot \cos \alpha - u \cdot d \cdot \cos \alpha) \cdot \tan \phi\}}{\sum W \cdot \sin \alpha}$$

$$= \frac{C \cdot L + (N - U) \cdot \tan \phi}{T}$$

$$= \frac{0.38 \times 4.027 + (21.90 - 0.00) \times 0.700208}{16.86}$$

$$= 1.000$$

ここで、

Fs : 安全率 C : 粘着力 (kN/m^2) 1 : スライスのすべり面長さ (m)d : スライス幅 (m)W:スライス重量 (kN/m)(°) α : すべり面傾斜角度 u : 単位間隙水圧(u=h_w·γ_w) (kN/m^2) hw: 水位からすべり面の平均深さ (m)γ w : 水の単位体積重量 (kN/m^3) φ : 内部摩擦角 (°)

繰り返し円弧計算結果一覧

入力条件

逆算層名	地層1
不通過層名	地層2, 地層3

中心範囲名		中心	の変化範囲	(m)	半径の変化範囲 (m)		
中心軋団石		始点	終点	ピッチ	開始半径	終了半径	ピッチ
中心範囲 1	X	24. 000	35. 000	0.500	5, 000	20,000	0, 500
	Y	253. 000	263.000	0.500	5.000	20.000	0.500

計算結果

18

29.500

261.500

10.000

0.712

4.23

32.4898

0.636819

-0.42

仮定安全率	計算式名	応力形式
1. 000	修正Fellenius法(道路土工式)	間隙水圧考慮

 1.000
 修正Fellenius法(道路土工式)
 間隙水圧考慮

 結果の出力条件
 逆算粘着力
 ・・・ 0.00 (kN/m²) 以上

 逆算内部摩擦角
 ・・・ 0.0000 (°) 以上

 深度
 ・・・ 0.500 (m) 以上

 中心 X
 中心 Y
 半径
 最大深度
 Φ=0.00時
 C=0.00時

※下線は最大値を示す。

1.189

35,0000

(X,Y)

					. 0011	0.0	D 11+		I	
No.	中心 X (m)	中心 Y (m)	半径 (m)	最大深度 (m)	φ=0の時 粘着力 (kN/m²)	C=00 内部摩擦角 (°)	ク時 tan φ	粘着力 C (kN/m²)	内部摩擦角 φ (°)	登録C, φに よる参考Fs
19	27. 000	257. 500	5. 500	0. 915	5. 39	31.6746	0.617000	-0.72	35. 0000	1. 205
20	30.000	262. 500	11. 000	0.605	3. 46	32. 5571	0. 638471	-0.33	35. 0000	1. 206
21	28. 500	260. 500	8. 500	0.602	3. 71	32. 2980	0. 632124	-0.40	35. 0000	1. 210
22	27. 500	258. 500	6. 500	0.815	4. 70	31. 7687	0. 619270	-0.61	35. 0000	1. 211
23	28. 000	259. 500	7. 500	0.710	3. 94	31.8680	0. 621670	-0.49	35. 0000	1. 222
24	29. 000	261. 000	9. 500	0. 907	5. 33	31. 3063	0.608160	-0.80	35. 0000	1. 222
25	29. 500	262. 000	10. 500	0. 799	4. 54	31. 3464	0.609119	-0.67	35. 0000	1. 233
26	26. 500	257. 500	5. 000	0. 707	4. 21	31. 2070	0.605789	-0.65	35. 0000	1. 246
27	30. 000	263. 000	11. 500	0. 690	3. 79	31. 3503	0.609211	-0.56	35. 0000	1. 249
28	27. 000	258. 500	6.000	0. 599	3. 60	31. 2385	0.606541	-0.55	35. 0000	1. 260
29	28. 500	261. 000	9. 000	0. 687	3. 91	30. 8308	0. 596849	-0.67	35. 0000	1. 270
30	29. 500	262. 500	11. 000	0. 885	4. 73	30. 3435	0. 585372	-0.92	35. 0000	1. 276
31	27. 000	258. 000	6. 000	1. 012	5. 52	30.0460	0. 578421	-1.16	35. 0000	1. 279
32	28. 000	260.000	8. 000	0. 796	4. 18	30. 4244	0. 587268	-0.80	35. 0000	1. 283
33	27. 500	259. 000	7. 000	0. 904	4.85	30. 1513	0. 580877	-0.99	35. 0000	1. 284
34	29. 000	262. 000	10.000	0. 579	3. 37	30. 8619	0. 597586	-0.57	35. 0000	1. 284
35	26. 500	257. 000	5. 000	1. 116	6. 08	29. 7355	0. 571212	-1.37	35. 0000	1. 288
36	29. 500	263. 000	11. 500	0. 971	4. 75	29. 6685	0. 569661	-1.08	35. 0000	1. 309
37	26. 500	258. 000	5. 500	0. 793	4. 29	29. 3504	0. 562331	-1.05	35. 0000	1. 333
38	27. 500	259. 500	7. 500	0. 990	4. 96	29. 0546	0. 555556	-1.29	35. 0000	1. 336
39	29. 000	262. 500	10. 500	0. 665	3. 53	29. 6529	0. 569301	-0.81	35. 0000	1. 337
40	28. 500	261. 500	9. 500	0. 773	3. 68	29. 5457	0. 566826	-0.86	35. 0000	1. 338
41	27. 000	258. 500	6. 500	1. 099	5. 56	28. 8555	0. 551017	-1.50	35. 0000	1. 339
42	27. 000	259. 000	6. 500	0. 684	3. 76	29. 4972	0. 565707	-0.89	35. 0000	1. 339
43	28. 000	260. 500	8. 500	0.882	4. 33	29. 1942	0. 558749	-1.09	35. 0000	1. 340
44	26. 500	257. 500	5. 500	1. 207	6. 12	28. 4975	0. 542900	-1.77	35. 0000	1. 351
45	27. 500	260.000	7. 500	0. 576	3. 21	29. 4728	0. 565147	-0.76	35. 0000	1. 357
46	27. 000	263. 000	11. 000	1. 670	7. 68	27.8009	0. 527261	-2.51	35. 0000	1. 377
47	28. 000	261. 000	9. 000	0. 968	4. 37	28. 4659	0. 542184	-1.27	35. 0000	1. 378
48	27. 500	260.000	8. 000	1. 076	4. 97	28. 2622	0. 537595	-1.50	35. 0000	1. 379
49	26. 500	263. 000	11. 000	1. 847	8. 91	27. 6253	0. 523349	-3.01	35. 0000	1. 380
50	27. 000	259. 000	7. 000	1. 184	5. 60	28. 0639	0. 533141	-1.75	35. 0000	1. 381
51	26. 500	262. 500	10. 500	1. 818	8. 52	27. 5441	0. 521545	-2.92	35. 0000	1. 387
52	28. 500	262. 000	10.000	0.858	3. 72	28. 5746	0. 544643	-1.06	35. 0000	1. 387
53	27. 000	262. 500	10. 500	1. 632	7. 26	27.6574	0. 524063	-2.44	35. 0000	1. 388
54	29. 000	263. 000	11. 000	0. 747	3. 63	28. 6049	0. 545328	-1.03	35. 0000	1. 388

	中心 X	中心Y	半径	最大深度	φ=0の時	C=0 c	の時	粘着力 C	内部摩擦角	登録C, φ に
No.	(m)	(m)	十 (m)	取八休及 (m)	粘着力 (kN/m²)	内部摩擦角	tan φ	(kN/m ²)	φ (°)	よる参考Fs
55	27. 500	263. 000	11. 000	1. 471	6. 34	27. 7788	0. 526768	-2.08	35. 0000	1. 389
56	26. 000	263. 000	11. 000	2. 000	10.04	27. 3151	0. 516471	-3. 57	35. 0000	1. 393
57	26. 500	262. 000	10.000	1. 785	8. 13	27. 4434	0. 519312	-2.83	35. 0000	1. 395
58	26. 000	262. 500	10. 500	1. 979	9. 68	27. 2952	0. 516032	-3. 45	35. 0000	1. 396
59	26. 500	258. 000	6. 000	1. 293	6. 11	27. 6646	0. 524224	-2.05	35. 0000	1. 397
60	24. 000	263. 000	9.000	0. 784	4. 16	28. 1779	0. 535698	-1.27	35. 0000	1. 398
61	27. 500	260. 500	8. 500	1. 161	5. 10	27. 8409	0. 528153	-1.66	35. 0000	1. 400
62	27. 000	259. 500	7. 500	1. 270	5. 68	27. 6621	0. 524168	-1.90	35. 0000	1. 402
63	27. 000	262.000	10.000	1. 588	6.88	27. 4664	0. 519821	-2.38	35. 0000	1. 402
64	27. 500	262. 500	10. 500	1. 421	6.00	27. 5988	0. 522761	-2.03	35. 0000	1. 402
65	26.000	262.000	10.000	1. 955	9. 27	27. 2029	0. 513995	-3.35	35. 0000	1. 403
66	28. 000	261. 500	9. 500	1. 050	4. 45	27. 9530	0. 530659	-1.42	35. 0000	1. 404
67	25. 500	263. 000	11. 000	2. 127	11. 01	27. 0166	0.509890	-4.11	35. 0000	1. 407
68	26.000	263. 000	10. 500	1. 500	7. 44	27. 3038	0. 516222	-2.65	35. 0000	1. 407
69	26. 500	261. 500	9. 500	1. 748	7. 70	27. 2407	0. 514828	-2.77	35. 0000	1. 409
70	25. 500	263. 000	10. 500	1. 627	8. 62	27. 1192	0. 512150	-3. 16	35. 0000	1. 411
71	27. 500	262. 000	10.000	1. 367	5. 74	27. 5040	0. 520657	-1.97	35. 0000	1. 411
72	26.000	261. 500	9. 500	1. 928	8.88	27. 0803	0. 511292	-3. 28	35. 0000	1. 412
73	25. 500	262. 500	10. 500	2. 113	10.71	26. 9311	0.508012	-4.05	35. 0000	1. 413
74	26. 500	258. 500	6.000	0.879	4. 36	27. 8259	0. 527818	-1.42	35. 0000	1. 413
75	28. 500	262. 500	10. 500	0. 937	3. 80	28. 0704	0. 533287	-1.19	35. 0000	1. 413
76	28. 000	262. 000	10.000	1. 123	4. 64	27. 7229	0. 525521	-1.54	35. 0000	1. 414
77	27. 000	261. 500	9. 500	1. 539	6. 56	27. 2819	0. 515739	-2.34	35. 0000	1. 415
78	27. 000	259. 500	7. 000	0. 770	3. 83	28. 0055	0. 531833	-1.21	35. 0000	1. 416
79	27. 000	260.000	8. 000	1. 352	5. 86	27. 3839	0.517994	-2.06	35. 0000	1. 416
80	25. 000	263. 000	11. 000	2. 235	11. 94	26. 8049	0. 505243	-4. 60	35. 0000	1. 417
81	28. 000	263. 000	11. 000	1. 249	5. 07	27. 5528	0. 521739	-1.73	35. 0000	1. 417
82	25. 500	262. 000	10.000	2. 097	10. 33	26. 8667	0. 506598	-3.94	35. 0000	1. 418
83	27. 500	260. 500	8. 000	0. 661	3. 36	28. 1956	0. 536096	-1.02	35. 0000	1. 418
84	27. 500	261. 000	9. 000	1. 238	5. 24	27. 4821	0. 520170	-1.81	35. 0000	1. 418
85	27. 500	261. 500	9. 500	1. 306	5. 46	27. 4397	0. 519231	-1.90	35. 0000	1. 418
86	28. 000	262. 500	10. 500	1. 189	4. 85	27. 5840	0. 522431	-1.64	35. 0000	1. 418
87	24. 000	262. 500	8. 500	0. 699	3. 74	27. 9582	0. 530775	-1. 19	35. 0000	1. 420
88	25. 000	263. 000	10. 500	1. 735	9. 65	26. 8846	0.506992	-3. 67	35. 0000	1. 420
89	25. 500	262. 500	10.000	1. 613	8. 24	27. 0019	0. 509568	-3.08	35. 0000	1. 420
90	26. 000	262. 500	10.000	1. 479	7. 04	27. 1347	0. 512491	-2.57	35.0000	1. 420

	中心 X	H. 2. V	业公	最大深度	φ=0の時	C=00	の時	粘着力 C	内如麻擦舟	₹\$ 2 .0 , 1,7 , 1
No.	(m)	中心 Y (m)	半径 (m)	取人保及 (m)	粘着力 (kN/m²)	内部摩擦角	tan φ	柏有刀 (kN/m²)	内部摩擦角 φ (°)	登録C, φ に よる参考Fs
91	26. 500	261. 000	9.000	1. 705	7. 36	27. 0906	0. 511519	-2.71	35. 0000	1. 420
92	26. 500	263. 000	10. 500	1. 347	6. 16	27. 2649	0. 515362	-2. 20	35. 0000	1. 420
93	26. 000	261. 000	9. 000	1. 898	8. 47	26. 9456	0. 508330	-3. 19	35. 0000	1. 422
94	27. 000	261. 000	9. 000	1. 485	6. 28	27. 2076	0. 514098	-2. 27	35. 0000	1. 422
95	27. 000	260. 500	8. 500	1. 423	6.04	27. 2230	0. 514439	-2. 18	35. 0000	1. 423
96	28. 000	261. 500	9.000	0. 550	2.89	28. 4231	0. 541219	-0.84	35. 0000	1. 424
97	26. 500	258. 500	6. 500	1. 379	6. 21	27. 1619	0. 513089	-2. 26	35. 0000	1. 425
98	24. 500	263. 000	10. 500	2. 006	10.63	26. 7196	0. 503376	-4. 15	35. 0000	1. 426
99	25. 500	261. 500	9. 500	2. 080	9. 92	26. 7733	0.504551	-3.84	35. 0000	1. 426
100	26.000	257. 500	5.000	0. 987	4.84	27. 4331	0.519084	-1.68	35. 0000	1. 427
101	24. 500	263. 000	11.000	2. 506	12.84	26. 5876	0.500491	-5.12	35. 0000	1. 428
102	25. 500	262. 000	9. 500	1. 597	7.84	26. 9077	0.507499	-2.97	35. 0000	1. 428
103	26.000	257. 000	5. 000	1. 401	6. 54	27. 0732	0. 511135	-2.41	35. 0000	1. 428
104	28. 500	263. 000	11.000	1. 008	3. 98	27. 6898	0. 524784	-1.33	35. 0000	1. 429
105	25. 000	262. 500	10.000	1. 719	9. 33	26. 7364	0.503744	-3.63	35. 0000	1. 430
106	25. 000	262. 500	10. 500	2. 219	11. 56	26. 6052	0.500875	-4.60	35. 0000	1. 430
107	24. 000	263. 000	10.500	2. 284	11. 62	26. 5766	0.500253	-4.64	35. 0000	1. 432
108	26. 500	260. 500	8. 500	1. 657	7. 06	26. 8903	0. 507117	-2.68	35. 0000	1. 434
109	24. 000	263. 000	9. 500	1. 284	6. 78	26. 9101	0. 507550	-2.57	35. 0000	1. 435
110	24. 000	263. 000	11. 000	2. 784	13. 74	26. 4422	0. 497324	-5.60	35. 0000	1. 435
111	25. 500	261. 000	9.000	2. 060	9. 54	26. 6484	0. 501820	-3.77	35. 0000	1. 435
112	24. 000	263. 000	10.000	1. 784	9. 23	26. 6407	0. 501650	-3.65	35. 0000	1. 436
113	25. 000	263. 000	10.000	1. 235	7. 15	26. 8413	0. 506042	-2.74	35. 0000	1. 436
114	25. 000	262. 000	9. 500	1. 710	8. 95	26. 6519	0. 501895	-3.53	35. 0000	1. 437
115	26. 000	260. 500	8. 500	1. 863	8. 04	26. 7252	0. 503498	-3. 14	35. 0000	1. 437
116	26. 000	262. 000	9. 500	1. 455	6. 64	26. 8988	0. 507303	-2.52	35. 0000	1. 437
117	24. 500	263. 000	10.000	1. 506	8. 21	26. 6917	0. 502766	-3. 22	35. 0000	1. 439
118	24. 500	262. 500	10.000	1. 923	10. 28	26. 5219	0. 499060	-4. 14	35. 0000	1. 440
119	26. 500	262. 500	10.000	1. 318	5. 75	27. 0058	0. 509653	-2.14	35. 0000	1. 440
120	24. 500	262. 500	10. 500	2. 423	12. 41	26. 3898	0. 496182	-5. 10	35. 0000	1. 441
121	25. 000	262. 000	10.000	2. 210	11. 22	26. 4391	0. 497254	-4. 57	35. 0000	1. 441
122	25. 500	261. 500	9.000	1. 580	7. 44	26. 7078	0. 503118	-2.91	35. 0000	1. 442
123	26. 500	259. 000	7. 000	1. 464	6. 34	26. 8668	0. 506600	-2.42	35. 0000	1. 442
124	24. 500	263. 000	9. 500	1. 006	5. 65	26. 9684	0. 508831	-2.12	35. 0000	1. 443
125	26. 500	259. 500	7. 500	1. 538	6. 57	26. 7921	0. 504964	-2.54	35. 0000	1. 444
126	26. 500	260.000	8.000	1. 602	6. 77	26. 7692	0. 504463	-2.62	35.0000	1.444

				B 1 3 3 1 1	φ=0の時	C=00	の時		I toolate to	
No.	中心 X (m)	中心 Y (m)	半径 (m)	最大深度 (m)	が =005時 粘着力 (kN/m²)	内部摩擦角	tan φ	粘着力 C (kN/m ²)	内部摩擦角 φ (°)	登録C, φに よる参考Fs
127	25. 500	263. 000	10.000	1. 127	5. 91	26. 8830	0. 506956	-2. 25	35. 0000	1. 445
128	24. 000	262. 500	9.000	1. 199	6. 45	26. 7714	0. 504511	-2.50	35. 0000	1. 446
129	24. 000	262. 000	8.000	0. 615	3. 32	27.7149	0. 525344	-1.10	35. 0000	1. 447
130	24. 000	262. 500	10.000	2. 199	11. 20	26. 3463	0. 495236	-4. 63	35. 0000	1. 447
131	25. 000	261. 500	9.000	1. 700	8. 56	26. 5147	0.498902	-3. 45	35. 0000	1. 447
132	25. 000	261. 500	9. 500	2. 200	10.86	26. 3733	0. 495823	-4. 47	35. 0000	1. 447
133	25. 000	262. 500	9. 500	1. 219	6. 74	26. 7071	0.503102	-2.64	35. 0000	1. 448
134	25. 500	260. 500	8. 500	2. 036	9. 11	26. 4684	0. 497894	-3.70	35. 0000	1. 448
135	24. 500	263. 000	9.000	0. 506	2. 75	28. 0967	0. 533877	-0.85	35. 0000	1. 449
136	24. 500	262. 500	9. 500	1. 423	7. 88	26. 5387	0. 499426	-3. 16	35. 0000	1. 450
137	24. 000	262. 500	10. 500	2. 699	13. 26	26. 2035	0. 492138	-5.60	35. 0000	1. 451
138	26. 000	260.000	8.000	1. 823	7. 74	26. 5203	0. 499025	-3.12	35. 0000	1. 452
139	24. 000	262. 500	9. 500	1. 699	8. 87	26. 3976	0. 496353	-3.64	35. 0000	1. 453
140	24. 500	262. 000	9. 500	1. 849	9. 93	26. 3165	0. 494589	-4.12	35. 0000	1. 453
141	24. 500	262. 000	10.000	2. 349	12. 02	26. 1797	0. 491622	-5. 10	35. 0000	1. 455
142	26. 000	261. 500	9. 000	1. 428	6. 21	26. 6698	0. 502288	-2.44	35. 0000	1. 455
143	25. 000	261. 000	9. 000	2. 188	10. 47	26. 2437	0. 493009	-4.40	35. 0000	1. 456
144	27. 000	263. 000	10. 500	1. 170	4. 84	26. 8998	0. 507325	-1.84	35. 0000	1. 458
145	26. 500	262.000	9. 500	1. 285	5. 42	26. 7477	0. 503990	-2.10	35. 0000	1. 459
146	24. 500	262.000	9.000	1. 349	7. 50	26. 3977	0. 496354	-3.08	35. 0000	1. 461
147	25. 000	261.000	8. 500	1. 688	8. 15	26. 3257	0. 494789	-3.38	35. 0000	1. 461
148	26. 000	257. 500	5. 500	1. 487	6. 58	26. 5078	0. 498752	-2.65	35. 0000	1. 461
149	24. 500	261. 500	9.000	1. 788	9. 56	26. 1979	0. 492016	-4.04	35. 0000	1. 462
150	25. 500	260.000	8.000	2. 009	8. 67	26. 2615	0. 493395	-3.63	35. 0000	1. 462
151	25. 500	261.000	8.500	1. 560	7. 03	26. 4281	0. 497015	-2.87	35. 0000	1. 462
152	24. 000	262.000	8.500	1. 115	6.05	26. 5651	0.500000	-2.42	35. 0000	1. 463
153	24. 500	262. 500	9.000	0. 923	5. 22	26. 7116	0. 503201	-2.04	35. 0000	1. 464
154	25. 000	262.000	9.000	1. 210	6. 36	26. 4939	0. 498448	-2.57	35. 0000	1. 464
155	24. 000	262.000	9. 500	2. 115	10.80	26. 0840	0. 489548	-4.64	35. 0000	1. 465
156	24. 000	262. 000	9. 000	1. 615	8. 53	26. 1936	0. 491923	-3. 61	35. 0000	1. 467
157	24. 000	262. 000	10.000	2. 615	12. 79	25. 9581	0. 486829	-5. 60	35. 0000	1. 468
158	25. 000	260. 500	8. 500	2. 175	10.04	26. 0793	0. 489446	-4. 32	35. 0000	1. 468
159	26. 000	259. 500	7. 500	1. 775	7. 39	26. 2974	0. 494174	-3.08	35. 0000	1. 468
160	24. 500	261. 500	9. 500	2. 288	11. 64	25. 9849	0. 487406	-5. 08	35. 0000	1. 469
161	25. 500	262. 500	9. 500	1. 113	5. 49	26. 5673	0.500050	-2. 19	35. 0000	1. 469
162	26. 000	258. 000	6.000	1. 573	6. 75	26. 3029	0. 494294	-2.81	35.0000	1. 472

	中心 X	H. C. V	业农	最大深度	φ=0の時	C=00	カ 時	*ト業力 C	内如麻擦A	交換し 11 7
No.	(m)	中心 Y (m)	半径 (m)	取入保及 (m)	粘着力 (kN/m²)	内部摩擦角	tan φ	粘着力 C (kN/m ²)	内部摩擦角 φ (°)	登録C, φ に よる参考Fs
163	26. 500	259. 000	6. 500	0. 964	4. 31	26. 8290	0. 505773	-1.65	35. 0000	1. 472
164	25. 000	263. 000	9. 500	0. 735	4. 35	26. 7950	0. 505027	-1.67	35. 0000	1. 473
165	24. 500	261. 000	8. 500	1. 782	9. 17	26. 0226	0. 488222	-3.98	35. 0000	1. 475
166	27. 000	260. 000	7. 500	0.852	3. 81	26. 9745	0.508966	-1.43	35. 0000	1. 475
167	26. 000	259. 000	7. 000	1. 720	7. 14	26. 1979	0. 492016	-3.01	35. 0000	1. 476
168	26. 000	258. 000	5. 000	0. 573	2. 96	27. 4280	0. 518972	-1.03	35. 0000	1. 477
169	26. 000	261. 000	8. 500	1. 398	5. 88	26. 3671	0. 495688	-2.42	35. 0000	1. 477
170	24. 500	261. 500	8. 500	1. 288	7. 11	26. 1635	0. 491270	-3.02	35. 0000	1. 478
171	24. 000	261. 500	8. 500	1. 537	8. 16	26. 0408	0.488614	-3.53	35. 0000	1. 479
172	24. 000	261. 500	9.000	2. 037	10. 45	25. 8825	0.485196	-4.63	35. 0000	1. 479
173	24. 500	261. 000	9.000	2. 282	11. 28	25. 8361	0.484196	-5.03	35. 0000	1. 479
174	27. 500	261. 000	8. 500	0. 738	3. 41	27. 1024	0. 511778	-1.25	35. 0000	1. 479
175	25. 000	260. 500	8.000	1. 675	7. 73	26. 0713	0. 489274	-3.33	35. 0000	1. 480
176	25. 500	259. 500	7. 500	1. 977	8. 29	26. 0144	0.488044	-3.60	35. 0000	1. 480
177	26. 000	258. 500	6. 500	1. 653	6. 93	26. 1491	0. 490957	-2.95	35. 0000	1. 481
178	24. 000	261. 500	8.000	1. 037	5. 65	26. 3121	0. 494494	-2.35	35. 0000	1. 483
179	25. 000	260.000	8.000	2. 159	9. 61	25. 8638	0.484793	-4. 26	35. 0000	1. 483
180	25. 500	260. 500	8.000	1. 536	6. 62	26. 1506	0. 490991	-2.82	35. 0000	1. 483
181	27. 000	262. 500	10.000	1. 132	4. 55	26. 5716	0. 500144	-1.81	35. 0000	1. 483
182	26. 500	261. 500	9. 000	1. 248	5. 08	26. 3980	0. 496361	-2.08	35. 0000	1. 485
183	24. 000	261. 500	9. 500	2. 537	12. 34	25. 6807	0. 480853	-5. 63	35. 0000	1. 486
184	26. 000	258. 000	5. 500	1. 073	4. 77	26. 4434	0. 497348	-1.94	35. 0000	1. 487
185	24. 500	260. 500	8. 000	1. 776	8. 76	25. 8573	0. 484654	-3.89	35. 0000	1. 488
186	25. 000	261. 500	8. 500	1. 200	5. 93	26. 1816	0. 491663	-2.51	35. 0000	1. 488
187	26. 000	263. 000	10.000	1. 000	4. 55	26. 4683	0. 497890	-1.85	35. 0000	1. 489
188	28. 000	262. 000	9. 500	0. 623	2. 93	27. 2442	0. 514907	-1.05	35. 0000	1. 489
189	24. 500	262. 000	8. 500	0.849	4.83	26. 3858	0. 496096	-1.98	35. 0000	1. 490
190	24. 500	260. 500	8. 500	2. 276	10.87	25. 6680	0. 480580	-4.96	35. 0000	1. 491
191	24. 000	261. 000	8. 500	1. 963	10.08	25. 6700	0. 480624	-4.60	35. 0000	1. 494
192	24. 500	261. 000	8. 000	1. 282	6. 69	25. 9499	0. 486650	-2.93	35. 0000	1. 495
193	24. 000	261. 000	8.000	1. 463	7. 76	25. 8159	0. 483762	-3. 47	35. 0000	1. 496
194	25. 500	262. 000	9. 000	1. 097	5. 08	26. 1979	0. 492015	-2. 15	35. 0000	1. 497
195	25. 000	259. 500	7. 500	2. 140	9. 16	25. 6482	0. 480154	-4. 19	35. 0000	1. 499
196	26. 000	260. 500	8.000	1. 363	5. 56	26. 0542	0. 488904	-2.40	35. 0000	1. 500
197	24. 000	261. 500	7. 500	0. 537	2. 88	27. 0716	0. 511100	-1.06	35. 0000	1. 501
198	25. 500	259. 000	7. 000	1. 939	7. 94	25. 7200	0. 481697	-3.60	35.0000	1. 501

	中心 X	中心 Y	半径	最大深度	φ=0の時	C=00	D時	₩ 美 扣	内部摩擦角	対待に 117
No.	中心 X (m)	(m)	半径 (m)	取入保及 (m)	粘着力 (kN/m²)	内部摩擦角	$\tan \phi$	粘着力 C (kN/m²)	内部摩擦用 φ (°)	登録C, φに よる参考Fs
199	26. 500	259. 500	7. 000	1. 038	4. 31	26. 3488	0. 495291	-1.78	35. 0000	1. 501
200	24. 000	261.000	9. 000	2. 463	11. 95	25. 4584	0.476085	-5. 62	35. 0000	1. 502
201	25. 000	260.000	7. 500	1. 659	7. 29	25. 7727	0. 482832	-3. 28	35. 0000	1. 502
202	26. 500	261.000	8. 500	1. 205	4.84	26. 1701	0. 491412	-2.05	35. 0000	1. 503
203	28. 500	263. 000	10. 500	0. 508	2. 52	27. 3412	0. 517049	-0.89	35. 0000	1. 504
204	24. 500	260.000	8. 000	2. 269	10. 41	25. 4799	0. 476545	-4.88	35. 0000	1. 505
205	27. 000	260. 500	8. 000	0. 923	3.82	26. 4772	0. 498084	-1.54	35. 0000	1. 505
206	24. 000	260. 500	8. 000	1. 888	9. 68	25. 5090	0. 477167	-4. 52	35. 0000	1. 506
207	25. 500	260.000	7. 500	1. 509	6. 28	25. 8312	0. 484092	-2.80	35. 0000	1. 506
208	27. 000	262.000	9. 500	1. 088	4. 27	26. 2505	0. 493155	-1.79	35. 0000	1. 508
209	24. 500	260.000	7. 500	1. 769	8. 31	25. 5476	0. 477995	-3.86	35. 0000	1. 510
210	24. 000	261.000	7. 500	0. 963	5. 23	25. 9194	0. 485991	-2.30	35. 0000	1. 513
211	25. 000	262. 500	9. 000	0.719	3. 90	26. 3152	0. 494560	-1.62	35. 0000	1. 513
212	24. 000	260. 500	7. 500	1. 388	7. 35	25. 5629	0. 478324	-3.40	35. 0000	1. 515
213	26. 000	260.000	7. 500	1. 323	5. 31	25. 8694	0. 484914	-2.35	35. 0000	1. 515
214	26. 500	260. 500	8. 000	1. 157	4. 60	26. 0324	0. 488433	-1.99	35. 0000	1. 516
215	26. 000	258. 500	6.000	1. 153	4.81	25. 9606	0. 486881	-2.10	35. 0000	1. 517
216	26. 500	260.000	7. 500	1. 102	4. 43	26.0688	0. 489219	-1.91	35. 0000	1. 517
217	27. 000	261.000	8. 500	0. 985	3. 90	26. 2554	0. 493263	-1.63	35. 0000	1. 517
218	24. 000	260. 500	8. 500	2. 388	11. 56	25. 2397	0. 471412	-5.60	35. 0000	1. 518
219	27. 000	261. 500	9. 000	1. 039	4. 07	26. 1747	0. 491512	-1.72	35. 0000	1. 518
220	25. 500	258. 500	6. 500	1. 893	7. 61	25. 4742	0. 476422	-3.57	35. 0000	1. 519
221	25. 000	261.000	8. 000	1. 188	5. 49	25. 7529	0. 482406	-2.47	35. 0000	1. 520
222	24. 500	261. 500	8. 000	0. 788	4. 41	26. 0075	0. 487894	-1.91	35. 0000	1. 521
223	25. 000	259. 000	7. 000	2. 117	8. 69	25. 3452	0. 473664	-4. 15	35. 0000	1. 522
224	24. 500	260. 500	7. 500	1. 276	6. 27	25. 5790	0. 478670	-2.90	35. 0000	1. 523
225	27. 500	263. 000	10. 500	0. 971	3. 69	26. 2459	0. 493056	-1.55	35. 0000	1. 523
226	24. 500	259. 500	7. 500	2. 260	9. 95	25. 2210	0. 471011	-4.84	35. 0000	1. 524
227	24. 000	260.000	7. 500	1. 843	9. 23	25. 2289	0. 471180	-4. 48	35. 0000	1. 527
228	27. 500	261. 500	9. 000	0.806	3. 28	26. 3946	0. 496287	-1.34	35. 0000	1. 527
229	26. 000	259. 000	6. 500	1. 220	4. 91	25. 7503	0. 482349	-2. 21	35. 0000	1. 529
230	25. 000	259. 500	7. 000	1. 640	6. 90	25. 3938	0. 474701	-3. 27	35. 0000	1. 530
231	26. 000	259. 500	7. 000	1. 275	5. 11	25. 6782	0. 480799	-2.32	35. 0000	1. 530
232	26. 000	262. 500	9. 500	0. 979	4. 15	25. 9476	0. 486601	-1.82	35. 0000	1. 530
233	25. 500	259. 500	7. 000	1. 477	5. 98	25. 4975	0. 476921	-2.80	35. 0000	1. 531
234	24. 500	259. 500	7. 000	1. 760	7. 87	25. 2297	0. 471198	-3.82	35.0000	1. 534

	中心 X	中心Y	业⁄文	最大深度	φ=0の時	C=00	の時	小夫士 C	内如麻擦名	松兒 C 117
No.	中心 X (m)	(m)	半径 (m)	取入保及 (m)	粘着力 (kN/m²)	内部摩擦角	tan φ	粘着力 C (kN/m²)	内部摩擦角 ф (°)	登録C, φ に よる参考Fs
235	24. 000	260.000	8. 000	2. 343	11. 11	25. 0106	0. 466533	-5. 56	35. 0000	1. 535
236	25. 500	258. 000	6.000	1. 837	7. 34	25. 2561	0. 471761	-3.55	35. 0000	1. 535
237	25. 500	261. 500	8. 500	1. 080	4. 68	25. 6966	0. 481193	-2.13	35. 0000	1. 536
238	25. 500	257. 500	5. 500	1. 766	7. 10	25. 2004	0. 470572	-3.46	35. 0000	1. 541
239	27. 500	262. 500	10.000	0. 921	3. 49	26. 0406	0.488610	-1.51	35. 0000	1. 541
240	24. 000	260.000	7. 000	1. 343	6.89	25. 1852	0. 470249	-3.37	35. 0000	1. 544
241	25. 500	257. 000	5. 000	1. 682	6.87	25. 1819	0. 470179	-3.36	35. 0000	1. 544
242	27. 500	262.000	9. 500	0.867	3. 32	26. 0729	0. 489309	-1.43	35. 0000	1. 545
243	24. 500	259. 000	7. 000	2. 249	9. 47	24. 8972	0.464126	-4.81	35. 0000	1. 548
244	25. 000	258. 500	6. 500	2. 090	8. 30	24. 9784	0.465848	-4. 17	35. 0000	1. 548
245	24. 000	259. 500	7. 500	2. 338	10. 64	24. 8048	0.462166	-5. 47	35. 0000	1. 550
246	28. 000	262. 500	10.000	0. 689	2. 92	26. 2446	0. 493029	-1.22	35. 0000	1. 550
247	24. 000	259. 500	7. 000	1. 838	8. 77	24. 9048	0.464286	-4. 45	35. 0000	1. 551
248	25. 500	259. 000	6. 500	1. 439	5. 70	25. 2273	0. 471146	-2.77	35. 0000	1. 552
249	24. 000	260. 500	7. 000	0.888	4. 78	25. 3772	0. 474346	-2.27	35. 0000	1. 555
250	24. 500	260.000	7. 000	1. 269	5. 82	25. 1374	0. 469231	-2.86	35. 0000	1. 557
251	25. 500	257. 500	5. 000	1. 266	5. 18	25. 2315	0. 471236	-2.51	35. 0000	1. 559
252	25. 000	260. 500	7. 500	1. 175	5. 10	25. 2300	0. 471205	-2.47	35. 0000	1. 560
253	25. 000	259.000	6. 500	1. 617	6. 56	24. 9520	0. 465288	-3.31	35. 0000	1. 562
254	25. 000	262.000	8. 500	0. 710	3. 48	25. 6888	0.481026	-1.58	35. 0000	1. 564
255	26. 500	259. 500	6. 500	0. 538	2. 59	26. 2234	0. 492568	-1.09	35. 0000	1. 567
256	24. 500	259.000	6. 500	1. 749	7. 41	24. 7764	0. 461565	-3.83	35. 0000	1. 568
257	25. 500	258. 500	6.000	1. 393	5. 46	25. 0447	0. 467258	-2.72	35. 0000	1. 568
258	25. 500	258. 000	5. 500	1. 337	5. 31	25. 0417	0. 467194	-2.64	35. 0000	1. 570
259	24. 500	261.000	7. 500	0. 782	3. 97	25. 3638	0.474060	-1.89	35. 0000	1. 572
260	26. 000	258. 500	5. 500	0. 653	2. 98	25. 8248	0. 483953	-1.33	35. 0000	1. 574
261	26. 000	262.000	9. 000	0. 955	3.80	25. 4067	0. 474979	-1.80	35. 0000	1. 574
262	24. 000	259.000	7. 000	2. 333	10. 13	24. 4818	0. 455344	-5. 44	35. 0000	1. 575
263	25. 500	263. 000	9. 500	0. 627	2. 91	25. 8577	0.484661	-1. 29	35. 0000	1. 575
264	24. 500	258. 500	6. 500	2. 236	8. 95	24. 5192	0. 456131	-4. 79	35. 0000	1. 577
265	25. 000	258. 000	6.000	2. 055	7. 94	24. 5965	0. 457762	-4. 20	35. 0000	1. 577
266	25. 500	261.000	8.000	1. 060	4. 31	25. 1809	0. 470158	-2.11	35. 0000	1. 577
267	24. 000	259. 500	6. 500	1. 338	6. 45	24. 7189	0.460348	-3. 35	35. 0000	1. 579
268	28. 000	263.000	10. 500	0. 749	2. 82	25. 8508	0. 484514	-1. 25	35. 0000	1. 579
269	24. 000	259.000	6. 500	1. 833	8. 29	24. 5056	0. 455844	-4. 44	35. 0000	1. 581
270	26. 500	263. 000	10.000	0. 847	3. 25	25. 4815	0. 476580	-1.52	35. 0000	1. 586

	.1. 5 **	.1. \ **	\L \ \		φ=0の時	C=0	つ時	م ا کدارات		71/2 AT
No.	中心 X (m)	中心 Y (m)	半径 (m)	最大深度 (m)	ψ-005hq 粘着力 (kN/m²)	内部摩擦角 (°)	tan ϕ	粘着力 C (kN/m²)	内部摩擦角	登録C, φに よる参考Fs
271	25. 000	258. 500	6.000	1. 590	6. 24	24. 5880	0. 457583	-3.30	35. 0000	1. 591
272	25. 000	260.000	7. 000	1. 159	4.74	24. 7115	0. 460191	-2.47	35. 0000	1. 601
273	24. 000	260.000	6. 500	0. 843	4. 35	24. 7528	0. 461066	-2. 25	35. 0000	1. 605
274	24. 500	258. 500	6.000	1. 736	7. 00	24. 2795	0. 451087	-3.86	35. 0000	1. 606
275	24. 500	259. 500	6. 500	1. 260	5. 41	24. 5057	0. 455846	-2.90	35. 0000	1. 606
276	24. 000	258. 500	6. 500	2. 328	9. 59	24. 0450	0. 446170	-5. 45	35. 0000	1. 609
277	25. 000	257. 500	5. 500	2. 011	7. 57	24. 1861	0. 449126	-4. 23	35. 0000	1. 609
278	24. 500	258. 000	6.000	2. 220	8. 47	24. 0161	0. 445565	-4.84	35. 0000	1. 616
279	25. 500	260. 500	7. 500	1. 036	4.01	24. 6219	0. 458299	-2.11	35. 0000	1. 622
280	26. 000	261. 500	8. 500	0. 928	3. 50	24. 8259	0. 462613	-1.79	35. 0000	1. 622
281	24. 000	258. 500	6.000	1. 828	7. 76	23. 9586	0.444363	-4. 47	35. 0000	1. 624
282	25. 000	258. 000	5. 500	1. 555	5. 93	24. 1609	0.448597	-3.32	35. 0000	1. 624
283	24. 000	259. 000	6.000	1. 333	6.00	24. 1213	0.447768	-3.38	35. 0000	1. 627
284	25. 000	261. 500	8.000	0.700	3. 09	24. 8671	0.463487	-1.57	35. 0000	1. 633
285	25. 000	257. 000	5.000	1. 954	7. 24	23. 8800	0.442722	-4.21	35. 0000	1. 634
286	25. 000	257. 500	5.000	1. 511	5. 73	24. 0243	0.445738	-3. 27	35. 0000	1. 637
287	24. 500	260. 500	7. 000	0. 776	3. 56	24. 5064	0.455861	-1.90	35. 0000	1. 642
288	24. 000	258. 000	6.000	2. 323	9. 10	23. 5676	0. 436216	-5. 50	35. 0000	1. 646
289	26. 500	262. 500	9. 500	0.818	2. 93	24. 7751	0.461538	-1.51	35. 0000	1. 646
290	24. 500	258. 000	5. 500	1. 720	6. 63	23. 7469	0. 439946	-3.92	35. 0000	1. 648
291	25. 000	259. 500	6. 500	1. 140	4. 43	24. 1409	0. 448179	-2.49	35. 0000	1. 648
292	24. 500	257. 500	5. 500	2. 198	8. 04	23. 5619	0. 436098	-4.87	35. 0000	1. 652
293	26. 000	259. 000	6.000	0. 720	3.06	24. 5932	0. 457692	-1.62	35. 0000	1. 653
294	24. 500	259. 000	6.000	1. 249	5. 05	23. 9113	0. 443376	-2.92	35. 0000	1. 654
295	26. 500	260.000	7. 000	0.602	2. 57	24. 8670	0. 463485	-1.31	35. 0000	1. 658
296	25. 500	262. 500	9.000	0. 613	2. 50	24. 8971	0. 464123	-1. 27	35. 0000	1. 660
297	25. 500	260.000	7. 000	1. 009	3. 75	24. 1208	0. 447758	-2.11	35. 0000	1. 665
298	26. 000	261. 000	8.000	0.898	3. 27	24. 3178	0. 451892	-1.79	35. 0000	1. 665
299	24. 000	258. 000	5. 500	1. 823	7. 31	23. 3754	0. 432228	-4. 53	35. 0000	1. 671
300	25. 500	258. 000	5. 000	0.837	3. 38	24. 1580	0.448537	-1.89	35. 0000	1. 673
301	24. 000	259. 500	6.000	0.838	3. 94	23. 9027	0. 443195	-2.28	35. 0000	1. 676
302	24. 000	258. 500	5. 500	1. 328	5. 56	23. 3922	0. 432578	-3.43	35. 0000	1. 687
303	24. 000	257. 500	5. 500	2. 317	8. 63	23. 0091	0. 424663	-5. 59	35. 0000	1. 692
304	25. 000	259. 000	6.000	1. 117	4. 18	23. 6233	0. 437374	-2.50	35. 0000	1. 692
305	24. 500	257. 500	5. 000	1. 698	6. 30	23. 1851	0. 428292	-3.99	35. 0000	1. 695
306	25. 500	259. 500	6. 500	0. 977	3. 54	23. 7793	0. 440622	-2.08	35.0000	1. 696

	中心 X	中心Y	半径	最大深度	φ=0の時	C=0 (の時	粘着力 C	内部摩擦角	登録C, φ に
No.	(m)	(m)	(m)	(m)	粘着力 (kN/m²)	内部摩擦角	tan φ	(kN/m ²)	φ (°)	よる参考Fs
307	24. 500	257. 000	5. 000	2. 170	7. 60	22. 9819	0. 424101	-4.94	35. 0000	1. 701
308	26. 500	262. 000	9.000	0. 785	2. 68	24. 1594	0. 448566	-1.50	35. 0000	1. 702
309	26. 000	260. 500	7. 500	0.863	3. 03	23. 9238	0. 443635	-1.75	35. 0000	1. 703
310	24. 500	258. 500	5. 500	1. 236	4. 75	23. 2873	0. 430405	-2.97	35. 0000	1. 706
311	25. 000	261.000	7. 500	0. 688	2.75	23. 9772	0. 444753	-1.57	35. 0000	1. 712
312	26. 000	259. 500	6. 500	0. 775	2.89	23. 8825	0. 442773	-1.67	35. 0000	1. 713
313	25. 500	259. 000	6.000	0. 939	3. 39	23.6086	0. 437067	-2.04	35. 0000	1. 714
314	26. 000	260.000	7. 000	0.823	2. 93	23. 7861	0.440763	-1.72	35. 0000	1. 718
315	24. 500	260.000	6. 500	0. 769	3. 19	23. 5463	0. 435773	-1.93	35. 0000	1. 726
316	26. 500	260. 500	7. 500	0. 657	2. 55	23. 9293	0.443750	-1.47	35. 0000	1. 726
317	25. 500	258. 500	5. 500	0.893	3. 28	23. 4761	0. 434316	-2.00	35. 0000	1. 728
318	27. 000	261. 500	8. 500	0. 539	2. 20	24. 2245	0. 449931	-1.22	35. 0000	1. 728
319	24. 000	257. 500	5. 000	1.817	6.86	22. 6752	0. 417801	-4.63	35. 0000	1. 731
320	25. 000	258. 500	5. 500	1. 090	3. 95	23. 1800	0. 428187	-2.50	35. 0000	1. 731
321	26. 500	261. 500	8. 500	0.748	2. 54	23. 8479	0. 442051	-1.48	35. 0000	1. 733
322	24. 000	257. 000	5. 000	2. 309	8. 14	22. 3065	0. 410262	-5. 75	35. 0000	1. 753
323	24. 000	258. 000	5. 000	1. 323	5. 17	22. 5851	0. 415954	-3.53	35. 0000	1. 756
324	25. 000	258. 000	5. 000	1. 055	3. 76	22. 9061	0. 422541	-2.46	35. 0000	1. 758
325	24. 000	259. 000	5. 500	0. 833	3. 56	22. 9006	0. 422428	-2.34	35. 0000	1. 764
326	26. 500	261. 000	8. 000	0. 705	2. 41	23. 5365	0. 435570	-1.46	35. 0000	1. 765
327	25. 500	262. 000	8. 500	0. 597	2. 17	23. 7263	0. 439517	-1.28	35. 0000	1. 768
328	24. 500	258. 000	5. 000	1. 220	4. 44	22. 5669	0. 415582	-3.04	35. 0000	1. 770
329	27. 000	263. 000	10.000	0. 670	2. 12	23. 7081	0. 439139	-1.26	35. 0000	1. 773
330	27. 000	262. 000	9. 000	0. 588	2. 09	23. 4222	0. 433198	-1.28	35. 0000	1. 798
331	24. 500	259. 500	6.000	0. 760	2. 88	22.6058	0. 416379	-1.96	35. 0000	1. 813
332	25. 000	260. 500	7. 000	0. 675	2. 41	22.8679	0. 421756	-1.59	35. 0000	1. 817
333	27. 000	262. 500	9. 500	0. 632	1. 99	23. 2779	0. 430210	-1.25	35. 0000	1. 817
334	24. 000	258. 500	5. 000	0. 828	3. 22	21.7087	0. 398124	-2.44	35. 0000	1. 876
335	26. 000	263. 000	9. 500	0. 500	1. 56	23. 0470	0. 425443	-1.00	35. 0000	1. 889
336	25. 500	261. 500	8.000	0. 580	1.85	22. 4397	0. 412982	-1.28	35. 0000	1. 900
337	24. 500	259. 000	5. 500	0. 749	2. 60	21. 5944	0. 395815	-2.00	35. 0000	1. 914
338	25. 000	260.000	6. 500	0. 659	2. 17	21. 7585	0. 399132	-1.63	35. 0000	1. 929
339	24. 500	258. 500	5. 000	0. 736	2. 38	20. 5815	0. 375507	-2.06	35. 0000	2. 024
340	25. 500	261.000	7. 500	0. 560	1. 62	21. 3247	0. 390380	-1. 28	35. 0000	2. 028
341	25. 000	259. 500	6.000	0.640	1. 94	20. 7557	0. 378980	-1.64	35. 0000	2. 043
342	25. 000	259. 000	5. 500	0. 617	1.83	20. 0523	0.365005	-1.68	35.0000	2. 126

No.	中心 X (m)	中心 Y (m)	半径 (m)	最大深度 (m)	φ=0の時 粘着力 (kN/m²)	C=00 内部摩擦角 (°)	の時 tan φ	粘着力 C (kN/m²)	内部摩擦角 φ (°)	登録C, φに よる参考Fs
343	25. 000	258. 500	5.000	0. 590	1.84	19.8966	0. 361929	-1.72	35. 0000	2. 140
344	25. 500	260. 500	7. 000	0. 536	1. 45	20. 2365	0. 368652	-1.30	35. 0000	2. 161
345	25. 500	260.000	6. 500	0. 509	1. 50	19. 9621	0. 363222	-1.39	35. 0000	2. 179

※下線は最大値を示す。

地形	- 1
1111 7772	- 1

No.	距離 X(m)	標高 Y(m)	No.	距離 X(m)	標高 Y(m)	No.	距離 X(m)	標高 Y(m)
1	5. 530	261. 690	12	22. 990	254. 430	23	26. 970	251. 370
2	9. 910	261.620	13	23. 480	254. 360	24	27. 090	251. 350
3	11.000	261. 560	14	24. 160	253. 900	25	27. 370	251. 170
4	11. 560	261. 260	15	25. 670	252. 440	26	27. 540	250. 940
5	12. 940	260. 330	16	25. 900	252. 380	27	27.840	250. 430
6	14. 330	259. 390	17	25. 980	252. 370	28	28. 320	249. 530
7	15. 880	258. 280	18	26. 170	252. 370	29	28. 590	249. 520
8	18. 150	257. 030	19	26. 160	251. 570	30	28.600	249. 510
9	20. 090	255. 730	20	26. 380	251. 560	31	28.600	249. 450
10	21. 910	254. 610	21	26. 410	251. 540	32	29. 090	249. 500
11	22. 550	254. 420	22	26. 410	251. 450	33	31.000	249. 510

すべり面

Mo	距離 X(m)		高 Y(m)	すべ	り面
No.		/示	司 I (III <i>)</i>	形状	強度
1	23. 076	2	54. 418	円弧	地層値
2	24. 427	2	52. 935	円弧	地層値
3	26. 165	2	51. 934		地層値

地層境界線の座標

No.	地層	線 1	地層線 2					
NO.	距離 X(m)	標高 Y(m)	距離 X(m)	標高 Y(m)				
1	26. 160	251. 570	26. 160	251. 916				
2	5. 530	251. 570	5. 530	251.916				

	土質定数						
No.	地層	地質	湿潤重量	飽和重量	粘着力	内部	擎擦角
	1		$\gamma_{\rm t} ({\rm kN/m^3})$	$\gamma_{\rm sat} (kN/m^3)$	$C(kN/m^2)$	φ (°)	tan φ
1	地層1		18. 00	18.00	0.38	35.0000	0.700208
2	地層2		18. 00	18. 00	0.00	30.0000	0. 577350
3	地層3		18. 00	18. 00	0.00	30.0000	0. 577350

% 水の単位体積重量 γ_w : 10.000 (kN/m³)

スライス集計表

区間 1 円弧 Xc = 28.500 (m) Yc = 258.000 (m) R = 6.500 (m)

ſ	始点座标	票 (m)	終点座権	票 (m)	粘着力	内部層	擎擦角
	X	Y	X	Y	C(kN/m ²)	φ (°)	$ an\phi$
Ī	23. 076	254. 418	26. 165	251. 934	0.38	35. 0000	0. 700208

スライス	すべり h(スライス 幅	すべり面 長	すべり面 傾斜角	水位からすべり面	スライス の重量	すべり面 法線分力	間隙 水圧	地すべり 抵抗力	地すべり 力	有効抗 Ru (k	
イス 番号	左側	右側	d (m)	<i>l</i> (m)		深さh _w (m)		N (kN/m)	U (kN/m)	S(kN/m)	T (kN/m)	左側	右側
1	0.000	0. 489	0.404	0.680	52. 508	_	1. 80	1. 10	0.00	1.03	1. 43	0.0	0.4
2	0. 489	0.739	0. 680	0. 984	45. 773	_	7. 74	5. 40	0.00	4. 16	5. 55	0. 4	1.8
3	0. 739	0.708	0. 267	0. 350	40.341	_	3. 42	2.61	0.00	1. 96	2. 21	1.8	2.0
4	0.708	0. 292	1. 243	1. 474	32. 927	_	11.88	9. 97	0.00	7. 54	6. 46	2.0	1. 0
5	0. 292	0. 337	0. 230	0. 253	24. 662	_	1. 26	1.15	0.00	0.90	0. 53	1.0	0.6
6	0. 337	0. 362	0.080	0. 087	23. 190	_	0. 54	0.50	0.00	0. 38	0. 21	0.6	0.4
7	0. 362	0. 436	0. 185	0. 199	21. 904	_	1. 26	1. 17	0.00	0.89	0. 47	0. 4	0.0
小計	-	_	3. 089	4. 027	_	-	27. 90	21.90	0.00	16. 86	16. 86	_	_

スライス図

スライスの各部分の名称

h_1 , h_2	:	すべり面深さ	(m)
d	:	スライス幅	(m)
l	:	すべり面長	(m)
α	:	すべり面傾斜角	(°)
h_w	:	水位からすべり面の深さ	(m)
W	:	スライス重量	(kN/m)
u	:	単位間隙水圧	(kN/m^2)
S	:	地すべり抵抗力	(kN/m)
T	:	地すべり力	(kN/m)
N	:	法線力	(kN/m)
Ru_1 , Ru_2	:	有効抵抗力	(kN/m)

スライス詳細集計表

スラ イス号	地層	土質		左側高さ h ₁ (m)	右側高さ h ₂ (m)	幅 d(m)	面積 A(m²)	単位体積 重量 γ (kN/m³)	重量 W(kN/m)
	地層1		水位線 より上	0.000	0. 489	_	0. 10	18.00	1.80
1	<i>11</i>		円弧	_	_	_	0.00	18.00	0.00
	集計	;		0.000	0. 489	0. 404	0. 10		1.80
	地層1		水位線 より上	0. 489	0. 739	_	0. 42	18.00	7. 56
2	<i>II</i>		円弧	_	_	_	0. 01	18.00	0. 18
	集計			0. 489	0. 739	0.680	0. 43	-	7. 74
	地層1		水位線 より上	0. 739	0. 708	_	0. 19	18.00	3. 42
3	<i>II</i>		円弧	_	_	_	0.00	18.00	0.00
	集計	,		0. 739	0. 708	0. 267	0. 19	-	3. 42
	地層1		水位線 より上	0.708	0. 292	_	0. 62	18.00	11. 16
4	<i>II</i>		円弧	_	_	_	0.04	18.00	0.72
	集計			0. 708	0. 292	1. 243	0. 66	-	11.88
	地層1		水位線より上	0. 292	0. 337	_	0. 07	18.00	1. 26
5	<i>II</i>		円弧	_	_	_	0.00	18.00	0.00
	集計	,		0. 292	0. 337	0. 230	0. 07	-	1. 26
	地層1		水位線 より上	0. 337	0. 362	_	0.03	18.00	0. 54
6	<i>II</i>		円弧	_	_	_	0.00	18.00	0.00
	集計			0. 337	0. 362	0.080	0. 03	-	0. 54
	地層1		水位線より上	0.362	0. 436	_	0. 07	18.00	1. 26
7	"		円弧	_	_	_	0.00	18.00	0.00
	集計			0.362	0.436	0. 185	0.07	-	1. 26

25. 980

26. 165

7

252. 370

252.370

スライス座標一覧

	スライスの	座標								
スライス	距離		標高	f (m)		す	ーベり面	重心	erro to	
No.	(m)	地形 1	地層境界		すべり面	形状	強度	X	Y	備考
	23, 076	254, 418			254, 418					
1	20.0.0	201. 110			201.110	円弧	円弧 地層値		254. 213	
	23. 480	254. 360			253. 871					
2	24, 160	253, 900			253, 161	"	IJ	23. 842	253. 795	
3	24. 100	255. 900			255, 101	"	"	24, 292	253. 409	
	24. 427	253. 642			252. 935			21.202	200. 100	
4						"	"	24. 967	252.840	
5	25. 670	252. 440			252. 148	,,	"	25, 788	9E9 9E1	
5	25, 900	252, 380			252, 043	"	"	45. 788	252. 251	
6	20. 300	202. 000			202.040	"	"	25, 940	252, 200	
I -				1			1			

252.008

251.934

26.075

252. 170

②鉄筋挿入工計算書	(安定解析含む)	

切土補強土工法設計フロー

現場名 : NO.2

ケース名: ケース2:1:0.6

備考

○ 検討条件

安定計算手法: 繰返し円弧で検討する。 すべり面強度: 既知の土質定数を用いる。

○ 安定解析結果

計画地形に対して安定計算を行う。[計画安全率: Fsp = 1.200]

最大抑止力円弧 Prmax = 10.9kN/m、Fs = 0.714

最小安全率円弧 Pr

kN/m, Fsmin =

補強材の配置検討に用いる代表円弧の選定を行う。

円弧A Pr = 6.8kN/m、Fs = 0.603

円弧B Pr = 10.9kN/m、Fs = 0.714

○ 補強材の配置

補強材の配置計画を行い、安全率について照査する。

[ネジ節棒鋼 (SD345) D19、全長 4.000m、縦間隔 1.50m、水平間隔 1.50m、施工段数2段]

円弧A Pr =

6.8kN/m、Fs = 0.603[補強前]、Fs = 1.534[補強後]

円弧B Pr = 10.9kN/m、Fs = 0.714[補強前]、Fs = 1.206[補強後]

○ のり面工の設計

設計引張り力Tdの最大値

 $T_d = 10.329 \text{kN/}$ ($T_o = 10.329 \text{kN/}$ $\mu = 1.00$)

のり面工の規格決定

グリーンパネル(レギュラーサイズ、967×967×40)

切土補強土工法 報告書

現 場 名: NO.2

ケース名:ケース2:1:0.6

備 考:

1.	設計方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
2.	工法の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
3.	設計条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•	•	•	•	•	•						•		•	•		•		•
	3.1 土質条件	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	3.2 補強斜面の計画安全率	•	•	•			•		•	•	•	•	•						•		
	3.3 補強材	•					•	•													
	3.4 極限周面摩擦抵抗と安全率	•					•									•					
	3.5 補強材と注入材の許容付着応力		•																		
	3.6 補強材の引張り力の低減係数																				
	3.7 補強材の配置間隔、配置密度																				
	3.8 補強材の許容補強材力																				
	3.9 のり面工の低減係数																				
	3.10 削孔径																				
4.	切土補強土工法の設計 ・・・・・・・・																				
1.	4.1 補強前斜面の安全性評価																				
			_		_	_	_	_	_				_			_		_	_	_	_
	4.2 切土補強土工法の配置検討	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	4.3 補強材配置後の安全性評価	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	4.4 補強材の配置仕様と各補強材の抵抗力	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	4.5 補強材の計算	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	4.6 のり面工の設計		•	•	•	•		•									•		•		•

1. 設計方法

現場名 NO. 2

工法名 切土補強土工法

グリーンパネル

安定計算手法 繰返し円弧で検討する。 すべり面強度 既知の土質定数を用いる。

使用ソフトウェア 補強土 Version13.04 五大開発株式会社

備考	

2. 工法の概要

切土補強土工法は、鉄筋やロックボルトなどの比較的短い棒状補強材を地山に多数挿入することにより、地山と補強材との相互作用によって切土のり面全体の安定性を高める工法である。

(1) 基本構造

本工法の基本構造は、補強材、注入材、頭部、のり面工で構成され、頭部にはプレートとナットによりのり面工に固定され、のり面工が補強材と一体化することにより、補強材の引張効果を増加させ、のり面全体の安定性を向上させる構造を有している。

(2) 特長

本工法の特長は以下の通りである。

- ① 補強材、施工機械が小規模であり、施工の省力化を図れる。
- ② のり面を標準勾配より急に出来ることから用地取得や掘削土量の軽減が図れる。
- ③ 逆巻施工が可能で安全施工が可能となる。
- ④ 動態観測との併用で安全施工が可能となる。
- ⑤ 増し打ち等の対応が容易。

(3) 適用範囲

本工法の一般的な適用範囲は以下の通りである。

- ① 崩壊対策に適用する場合
 - ・抗土圧型ののり面保護的な適用
 - ・中規模の崩壊対策の抑止工
- ② 急勾配掘削に用いる場合
 - ・ 急勾配切土への適用
 - ・構造物掘削などの仮設斜面への適用

3. 設計条件

3.1 土質条件

当該斜面の地形及び土質の構成と定数は以下の通りである。

-	土質定数								
				湿潤重量	飽和重量	粘着力	内部層	を 擦角	
No	地層名	ı	土質名	γt	γ sat	С	ϕ	$ an\phi$	N値
				(kN/m³)	(kN/m^3)	(kN/m^2)	(°)		
1	地層1			18.00	18.00	0.38	35.0000	0.700208	5
2	地層2			18.00	18.00	0.38	35.0000	0.700208	5
3	地層3			18.00	18.00	0. 38	35. 0000	0.700208	5
4	地層4			18.00	18.00	0.38	35.0000	0.700208	5

%水の単位体積重量 $\gamma w = 10.00 (kN/m^3)$

3.2 補強斜面の計画安全率

「切土補強土工法設計・施工要領」では下記のように示されている。 補強斜面の計画安全率

項目	計画安全率
永久(長期)	Fsp ≥ 1.20
仮設(短期)	Fsp ≧ 1.05, 1.10

【切土補強土工法設計・施工要領 (H19.1) P.31】

当該斜面の重要性を考慮して Fsp (常時) ≥ 1.20 とする。

3.3 補強材

「切土補強土工法設計・施工要領」では補強材の許容引張応力度については、下記のように示されている。使用材料については、これと同等以上の性能を有する材料を用いるものとする。

補強材の許容引張応力度 (N/mm²)

補強材の種類	SD345
許容引張応力度	200

※仮設は1.5倍とする

【切土補強土工法設計・施工要領 (H19.1) P.31】

また、腐食代について要領では、以下のように示している。

永久目的で使用する場合は腐食代 1mm を鉄筋公称径に対して考慮する。

【切土補強土工法設計・施工要領(H19.1) P.39】

要領では、亜鉛メッキによる防食を前提とし、さらに亜鉛メッキによる防食を行っても軽度の腐食が見られた事例があることから、設計においては 1.0mmの腐食代を考慮する。 したがって、公称直径から 1.0mmを引いた値を補強材直径として設計する。

以上から補強材に関する諸数値を以下のように設定する。

材料名	呼び径	単位重量	直径	断面積	許容引張
	, , , , , , ,	W	d	As	応力度
		(kg/m)	(mm)	(cm^2)	σsa (N/mm²)
ネジ節棒鋼 (SD345)	D19	2. 25	18. 1	2. 573	200. 0

3.4 極限周面摩擦抵抗と安全率

「切土補強土工法設計・施工要領」によれば、極限周面摩擦抵抗の地盤別の推定値は、「グラウンドアンカー設計・施工基準、同解説」を 0.8 倍したものとなっている。これはアンカー工の極限周面摩擦抵抗が加圧注入した場合の実績値を参考として設定されているのに対して、切土補強土工法ではほとんど無加圧注入されていることによる。

一方、極限周面摩擦抵抗の安全率については、アンカー工と比較して設計荷重レベルが小さく、プレストレスとして常時緊張力が作用しないことなどを勘案して永久を 2.0 (アンカー工の 0.8 倍)、仮設を 1.5 (アンカー工と同じ)としている。

本工法では、下表を参考に極限周面摩擦抵抗値を定める。

極限周面摩擦抵抗の推定値

地盤の	種 類		極限周面摩擦抵抗(N/mm²)
	硬 :	岩	1. 20
LL 放此	軟	岩	0.80
岩盤	風化	岩	0. 48
	土	丹	0. 48
		10	0.08
		20	0. 14
砂礫	N 値	30	0. 20
		40	0. 28
		50	0.36
		10	0.08
		20	0. 14
砂	N 値	30	0.18
		40	0. 23
		50	0. 24
粘性	土		0.8×c c: 粘着力

【切土補強土工法設計・施工要領(H19.1) P.33】

以上から定着に関する諸数値を以下のように設定する。

項目	記号	単 位	数値	備考
周面摩擦抵抗の安全率	Fsa	_	2.00	
地山と注入材の周面摩擦抵抗	τр	N/mm^2	0.040	地層1
			0.040	地層2
			0.040	地層3
			0.040	地層4

3.5 補強材と注入材の許容付着応力

「切土補強土工法設計・施工要領」では下記のように示されている。

異形鉄筋と注入材の許容付着応力度 (N/mm²)

注入材の設計基準強度	24	27	30	
許容付着応力	1.6	1. 7	1.8	※仮設は1.5倍とする

【切土補強土工法設計・施工要領 (H19.1) P.31】

当該斜面では注入材の設計基準強度を24 N/mm² とし、許容付着応力は1.6N/mm² とする。

3.6 補強材の引張り力の低減係数

補強材の引張り力の低減係数は、「切土補強土工法設計・施工要領」に従い0.7とする。

3.7 補強材の配置間隔、配置密度

一般的な環境では 1.0~1.5m の間で経済的な配置を検討する必要がある。「切土補強土工法設計・施工要領」では、以下のように書かれている。

補強材は、補強効果が十分に発揮できるように、適切な間隔で配置しなければならない。一般的に、補強材打設間隔は、1.0~1.5m 程度とする。

【切土補強土工法設計・施工要領 (H19.1) P.35】

以上を踏まえ、当該斜面の補強材間隔は、縦間隔 1.50m×水平間隔 1.50m とする。

3.8 補強材の許容補強材力

許容補強材力に関して、「切土補強土工法設計・施工要領」では以下のように書かれている。

補強材の許容補強材力 T_{pa} は、補強材が移動土塊から受ける許容引抜き抵抗力 T_{1pa} 、不動地山から受ける許容引抜き抵抗力 T_{2pa} および補強材の許容引張り力 T_{sa} のうち最小のものを用いるものとする。

【切土補強土工法設計・施工要領 (H19.1) P.38】

移動土塊が極めて薄いような現場では、T_{1pa}が極端に小さくなる。このため設計計算ではこの補強鉄筋に抑止力はほとんどないことになってしまう。

「切土補強土工法設計・施工要領」では、「吹付枠工相当以上ののり面工を用いた場合には T_{1pa} の検討を無視しても良い」としている。この場合は T_{2pa} と T_{sa} のうち最も弱い抵抗値で設計することができる。

ただし、「吹付枠工相当以上」ではないのり面工を用いる場合(特に2次製品の反力板が多い)、要領によれば「適切な方法で T_{1pa} を評価して」としている。

以上を踏まえ、当該斜面の場合は T_{1pa} を考慮して検討する。

3.9 のり面工の低減係数

「切土補強土工法設計・施工要領」では下記のように示されている。

のり面エタイプと低減係数 μ の目安

のり面保護工タイプ	μ	備考
植生工のり面	0	
コンクリート吹付工	0.2 ~ 0.6	
のり枠工	$0.7 \sim 1.0$	
擁壁類	1.0	連続した板タイプのり面工

【切土補強土工法設計・施工要領(H19.1) P.50】

当該斜面ののり面工の低減係数は、上表を参考に1.00を採用する。

3.10 削孔径

削孔径を設定する場合、削孔機種の検討・選定が不可欠となる。対象とする地盤の状況や孔壁の自立性、作業足場の有無、削孔長などによって、施工性と経済性に適した機種を選定した後、削孔径を設定する必要がある。

この選定方法については、以下のフローを参考とする。

標準的な施工機械選定フロー (参考)

※1 1段のり面での施工本数が500本を超える場合は、オートポルトセッター工法の採用が有効な場合もある。

※2 削孔長が長くなる場合は、施工費が割高になるためグラウンドアンカー工等との比較検討を行い、経済性、施工性の良い工法を採用する必要がある。

削孔方法	削孔名	圣 (mm)
刊化力伝	標準	自穿孔
レッグドリル	42 ~ 46	
クローラドリル		
定置式ドリル		42 ~ 52
クレーン式ドリル	65	
オートボルトセッター		
デュアルモードドリル		
ロータリーパーカッションボーリングマシン(定置式・クロ―ラ式)	90	_
ロータリー式ボーリングマシン	90	

【切土補強土工法設計・施工要領 (H19.1) p.72 (一部加筆)】

検討結果より、当該斜面では、対象とする地盤特性や施工性、経済性などを考慮して削孔径は 65.0mmとする。

4. 切土補強土工法の設計

4.1 補強前斜面の安全性評価 補強前斜面の安全性は以下の通りである。

安定計算結果

	女儿 山 并 加 木							
	頂日		単位	数 値(常時)				
項目		記号	早 144	円弧A	円弧B			
計	安全率	Fs	_	0.603	0.714			
計算結果	計画安全率	Fsp	_	1. 200	1. 200			
果	必要抑止力	Pr	kN/m	6.8	10. 9			
	中心位揮	X	m	29. 500	29. 000			
円弧	中心座標	Y	m	257. 000	258. 000			
	半径	r	m	7. 000	7. 500			
	すべり抵抗力	S	kN/m	6. 81	15. 93			
l	滑動力	T	kN/m	11. 29	22.30			
計算要素	法線力	N	kN/m	7. 92	20.73			
要素	間隙水圧	U	kN/m	0.00	0.00			
	すべり面長	1	m	3. 303	3. 746			
	面積	A	m^2	0.77	1.70			

4.2 切土補強土工法の配置検討

- (1) 補強材の配置条件
 - ① 補強材の配置

補強材の配置は、以下の通りとする。

施工段数 2(段)

打設角度 のり面に直角

水平間隔 1.50 (m)

② 補強材の長さ条件

補強材の長さは、挿入長を1.50 ~ 6.50(m) で検討する。

(2) 配置する補強材の規格

補強材としてネジ節棒鋼 (SD345) D19 \sim D25 を使用する。 またその他に用いる条件として以下に設定する。

注入材の設計基準強度 $\sigma_{ck} = 24 (N/mm^2)$

補強材と注入材の許容付着応力 $\tau_c = 1.6 (N/mm^2)$ (常時)

周面摩擦抵抗の安全率 Fsa = 2.00 (常時)

のり面工の低減係数 $\mu=1.00$

補強材の引張り力の低減係数 $\lambda = 0.7$

補強材による抵抗力 : 引き止め力 Sh 、締め付け力 Ss 両方考慮

すべり面傾斜角 : 各補強材で算出

(3) 配置のり面 以下の範囲に配置する。

(4) 補強材配置と安全率

前述の検討条件で、各補強材設置後の安定度を照査した結果は以下の通りである。

材料名:ネジ節棒鋼(SD345)のり面工名称:グリーンパネル

計画安全率 Fsp = 1.200 補強材自動配置結果一覧表(常時) 安全率 Fs ※3 補強材 配置条件 総削孔長 のり面工 打設※ No. 施工段数 長さ条件 水平間隔 円弧A (施工10m) 備考 全長 円弧B 登録 呼び径 間隔 寸法(mm) 0.603(0.714 $\Sigma L_{\rm B}(m)$ SV(m) SH(m) n(段) α (°) (m) (m) 1.50 2.00 D19 1.50 1.50 1.014 0.909 $967 \times 967 \times 40$ 24, 800 1 2 2 D19 1.50 1.50 2.00 2.50 1.144 0.983 $967\!\times\!967\!\times\!40$ 31.467 3 D19 1.50 1.50 2.50 3.00 1.274 1.057 $967\!\times\!967\!\times\!40$ 38. 133 D19 1.50 1.50 3.00 3.50 $967 \times 967 \times 40$ 44.800 4 1.404 1.132 5 D19 1.50 1.50 3.50 4.00 1.5341.206 $967\!\times\!967\!\times\!40$ 51.4671.50 1.664 $967 \times \underline{967} \times 40$ 6 D19 1.50 4.50 58. 133 1.281 7 D19 1.50 5.00 1.794 64.800 1.50 4.50 1.355 $967 \times 967 \times 40$ 8 D19 1.50 1.50 5.00 5.50 1.924 1.430 $967 \times 967 \times 40$ 71.467 9 D19 1.50 1.50 5.50 6.00 2.054 1.504 $967\!\times\!967\!\times\!40$ 78.13310 D19 1.50 1.50 6.00 6.50 2. 184 1.578 $967\!\times\!967\!\times\!40$ 84.800 7.00 2.313 11 D19 1.50 1.50 2 6.50 1.653 $967 \times 967 \times 40$ 91.467 24.800 1.50 2.00 $967 \times 967 \times 40$ 12 D22 1.50 1.50 1.014 0.909 13 D22 1.50 1.50 2.00 2.50 1.144 0.983 $967\!\times\!967\!\times\!40$ 31.467 14 1.50 2 1.274 38. 133 D22 1.50 2,50 3,00 1.057 $967 \times 967 \times 40$ 3.50 44.800 15 D22 1.50 1.50 3.00 1.404 1.132 $967 \times 967 \times 40$ 16 1.50 1.50 4.001.5341.206 $967\!\times\!967\!\times\!40$ 51.467D22 3.50 17 D22 1.50 1.50 2 4.00 4.50 1.664 1.281 $967\!\times\!967\!\times\!40$ 58.133D22 1.50 1.50 2 5, 00 $967 \times 967 \times 40$ 64.800 18 4, 50 1.794 1, 355 19 D22 1.50 1.50 5.00 5.50 1.9241.430 $967\!\times\!967\!\times\!40$ 71.46720 D22 1.50 1.50 6.00 2.054 78. 133 2 5.50 1.504 $967 \times 967 \times 40$ 21 D22 1.50 1.50 6.50 2. 184 1.578 $967\!\times\!967\!\times\!40$ 84.800 6.00 22 D22 1.50 1.50 2 6.50 7.00 2.313 1.653 $967 \times 967 \times 40$ 91.467 23 D25 1.50 1.50 1.50 2,00 1.014 0.909 $967\!\times\!967\!\times\!40$ 24.800 24 D25 1.50 1.50 2.00 2.50 1.144 0.983 $967\!\times\!967\!\times\!40$ 31.467 2.50 25 1.50 3.00 1. 274 38. 133 D25 1.50 1.057 $967 \times 967 \times 40$ 26 D25 1.50 1.50 3.00 3.50 1.404 1.132 $967\!\times\!967\!\times\!40$ 44.80027 D25 1.50 1.50 3.50 4.00 1.5341.206 $967\!\times\!967\!\times\!40$ 51.467 28 D25 1.50 58.133 1.50 2 4.00 4.50 1.664 1.281 $967 \times 967 \times 40$ 5.00 29 D25 1.50 $967 \times 967 \times 40$ 64.8001.50 4.50 1.794 1.355 30 D25 1.50 1.50 5.00 5.50 1.924 1.430 $967\!\times\!967\!\times\!40$ 71.46731 D25 1.50 1.50 5.50 6.00 2.054 1.504 $967\!\times\!967\!\times\!40$ 78. 133 32 D25 2 2. 184 84.800 1.50 1.50 6.00 6.50 1.578 $967 \times 967 \times 40$ D25 7.00 $967 \times 967 \times 40$ 1.50 1.50 6.50 2. 313 1.653 91.467

※1 のり面に直角に配置した場合は "-" と表示 ※2 各段で補強材の全長が異なる場合、最大となる全長を表示 ※3 () は補強前安全率

これらの検討結果から、ネジ節棒鋼 (SD345) D19、縦間隔 1.50(m)、水平間隔 1.50(m)、 2段配置が最も当該斜面に適していると判断する。

4.3 補強材配置後の安全性評価

前項で決定した配置で補強後斜面の安定性は以下の通りである。

	補強材配置後の安全率結果]				
	項目		単位	数 値 (常時)		
			+化	円弧A	円弧B	
計	補強前安全率	Fs		0.603	0.714	
計算結果	計画安全率	Fsp	_	1. 200	1. 200	
果	補強後安全率	Fs	_	1. 534	1. 206	
	中心座標	X	m	29. 500	29. 000	
円弧		Y	m	257. 000	258. 000	
	半径	r	m	7. 000	7. 500	
計算	引き止め力	Sh	kN/m	1.018	2. 397	
計算 要素	締め付け力	Ss	kN/m	9. 497	8. 582	

施工段数: 2段

補強後安全率の算出 (円弧A)

Fs =
$$\frac{\sum \{ (N-U) \cdot \tan \phi + C \cdot 1 \} + Sh + Ss}{\sum T}$$
=
$$\frac{6.81 + 1.018 + 9.497}{11.29}$$
= 1.534

補強後安全率の算出 (円弧B)

Fs =
$$\frac{\sum \{ (N-U) \cdot \tan \phi + C \cdot 1 \} + Sh + Ss}{\sum T}$$
=
$$\frac{15.93 + 2.397 + 8.582}{22.30}$$
= 1.206

4.4 補強材の配置仕様と各補強材の抵抗力

決定した各補強材の仕様は以下の通りである。

補 強 材 の 規 格

番号	材料名	呼び径	単位重量 W(kg/m)	補強材径 d(mm)	断面積 As(cm²)	腐食代
材-1	ネジ節棒鋼(SD345)	D19	2. 25	18. 1	2. 573	考慮する

補強材の配置結果

		1114 12 12		座標 水平間隔		縦間隔	打設角度	全長	挿入長	配置
No.	番号	D (mm)	X (m)	Y (m)	SH(m)	SV(m)	α (°)	L (m)	$L_{B}(m)$	のり面
[1]	材-1	65.0	23. 537	253. 961	1. 50	_	30. 99	4.000	3.860	範囲 1
[2]	材-1	65. 0	24. 310	252. 676	1.50	1. 50	30. 99	4. 000	3.860	範囲 1

各補強材による抵抗力一覧表(円弧A-常時)

補強材 No.	β (°)	T1pa (kN/本)	T2pa (kN/本)	Tsa (kN/本)	Tpa (kN/本)	Td (kN/本)	Tm (kN/m)	Sh (kN/m)	Ss (kN/m)
[1]	93. 81	_	14. 502	51.460	14. 502	10. 151	6. 767	0.000	4. 728
[2]	81. 50	_	14. 755	51. 460	14. 755	10. 329	6. 886	1. 018	4. 769
計								1.018	9. 497

※T1pa、T2pa、Tsaの囲みはTpaとして用いる値を示す。

各補強材による抵抗力一覧表(円弧B-常時)

補強材 No.	β (°)	T1pa (kN/本)	T2pa (kN/本)	Tsa (kN/本)	Tpa (kN/本)	Td (kN/本)	Tm (kN/m)	Sh (kN/m)	Ss (kN/m)
[1]	85. 03	_	12.865	51. 460	12.865	9.006	6.004	0. 520	4. 188
[2]	73. 35	_	14. 036	51. 460	14. 036	9.825	6. 550	1.877	4. 394
計	計								8. 582

※T1pa、T2pa、Tsaの囲みはTpaとして用いる値を示す。

4.5 補強材の計算

ここまでは、一覧表として補強材の抵抗力などを示したが、ここでは代表1段の詳細計算を示す。

(1) 補強材による抵抗力の算出(円弧A-常時)

ここでは、前項の条件、数値、および数式を用いて補強材の抵抗力を求めるものとする。

< 補強材 No.1 >

① 補強材の許容補強材力の算出 Tpa

Tlpa =
$$\frac{1}{1 - \mu}$$
 • min(Σ (L1×tpa), Σ (L1×tca))

ここで、 μ =1.00 より Tlpaは計算しない。

T2pa = min(Σ (L2×tpa), Σ (L2×tca))

= 14. 502 (kN)

Tsa = $\sigma_{sa} \cdot A_s$ = 200.0 × 10³ × 2.573 × 10⁻⁴

= 51.460 (kN)

μ : のり面工の低減係数

 L1
 : 移動土塊の有効定着長
 (m)

 L2
 : 不動地山の有効定着長
 (m)

 σ sa : 補強材の許容引張り応力度 (kN/m^2)

As : 補強材の断面積 (m²)

よって Tpa は、T2pa く Tsa より T2pa とする。

② 補強材による抵抗力の算出

前項で算出されたTpaより、補強材による引き止め力Sh、および補強材による締め付け力Ssを求める。ただし、引き止め力Shがマイナスの場合は0.0として計算する。

Td =
$$\lambda$$
 • Tpa = 0.7 × 14.502 = 10.151 (kN/本)

$$Tm = \frac{Td}{SH} = \frac{10.151}{1.50} = 6.767 \text{ (kN/m)}$$

Sh =
$$Tm \cdot \cos \beta i$$
 = 6.767×cos(93.81)

= 0.000 (kN/m)

 $Ss = Tm \cdot sin \beta i \cdot tan \phi i = 6.767 \times sin(93.81) \times 0.700208$

= 4.728 (kN/m)

Tm : 補強材の設計引張り力 (kN/m)

λ : 補強材の引張り力の低減係数

Tpa : 補強材の許容補強材力 (kN/本)β_i : 補強材とすべり面とのなす角度 (°)

φ_i : 内部摩擦角 (°)

Td : 1本当りの設計引張り力 (kN/本)

SH : 水平間隔 (m)

(2) 補強材による抵抗力の算出(円弧B-常時)

ここでは、前項の条件、数値、および数式を用いて補強材の抵抗力を求めるものとする。

< 補強材 No.1 >

① 補強材の許容補強材力の算出 Tpa

T1pa =
$$\frac{1}{1-\mu}$$
 • min(Σ (L1×tpa), Σ (L1×tca))

ここで、 μ =1.00 より Tlpaは計算しない。

T2pa = min(Σ (L2×tpa), Σ (L2×tca))

= 12.865 (kN)

Tsa = $\sigma_{sa} \cdot A_s$ = 200.0 × 10³ × 2.573 × 10⁻⁴

= 51.460 (kN)

μ: のり面工の低減係数

L1 : 移動土塊の有効定着長 (m)

L2 : 不動地山の有効定着長 (m)

σ sa : 補強材の許容引張り応力度 (kN/m²)

As : 補強材の断面積 (m²)

よって Tpa は、T2pa く Tsa より T2pa とする。

② 補強材による抵抗力の算出

前項で算出されたTpaより、補強材による引き止め力Sh、および補強材による締め付け力Ssを求める。ただし、引き止め力Shがマイナスの場合は0.0として計算する。

Td =
$$\lambda$$
 • Tpa = 0.7 × 12.865 = 9.006 (kN/本)

$$Tm = \frac{Td}{SH} = \frac{9.006}{1.50} = 6.004 \text{ (kN/m)}$$

Sh =
$$Tm \cdot \cos \beta i$$
 = 6.004×cos(85.03)

= 0.520 (kN/m)

 $Ss = Tm \cdot sin \beta_i \cdot tan \phi_i = 6.004 \times sin(85.03) \times 0.700208$

= 4.188 (kN/m)

Tm : 補強材の設計引張り力 (kN/m)

λ : 補強材の引張り力の低減係数

Tpa : 補強材の許容補強材力 (kN/π) β_i : 補強材とすべり面とのなす角度 $(^\circ$) ϕ_i : 内部摩擦角 $(^\circ$) (kN/π) (kN/π)

SH : 水平間隔 (m)

4.6 のり面工の設計

(1) のり面工範囲 1の検討

グリーンパネル レギュラーサイズ について安全性を検討する。

計算条件

項目	記号	単 位	数值
設計引張り力	$T_{\rm d}$	kN/本	10. 329
のり面工の低減係数	μ	_	1.00
のり面工に作用する補強材引張り力	То	kN/本	10. 329

② のり面工の諸元

項目	記号	単 位	数 値
規格	_	_	レギュラーサイズ
許容設計荷重	TA	kN	123. 0
受圧面積	A	m^2	0. 935
製品重量	W	kg	17. 5
寸法(縦×横×厚さ)	_	mm	$967 \times 967 \times 40$

③ のり面工に作用する補強材引張り力の照査

設計引張り力 T_d は、最大値 [補強材 No. 2] $10.329 \, (kN/本)$ を使用する。 のり面工に作用する補強材引張り力 T_o を照査する。

$$T_o = \mu \cdot T_d = 1.00 \times 10.329$$

= 10.329 (kN/本) $\leq T_A = 123.0 \text{ (kN/本)} \cdot \cdot \cdot \text{ OK}$

したがって、グリーンパネルレギュラーサイズを採用する。

安定解析

 現場名
 NO.2

 ケース名
 ケース2:1:0.6

 備考

	上質定数								
				湿潤重量	飽和重量	粘着力	内部層	を 擦角	
No	地層名	ı	土質名	γt	γsat	C (1.17 (2)	ϕ	tan φ	N値
				(kN/m^3)	(kN/m^3)	(kN/m^2)	()		
1	地層1			18.00	18.00	0.38	35. 0000	0.700208	5
2	地層2			18.00	18.00	0.38	35. 0000	0.700208	5
3	地層3			18.00	18.00	0.38	35. 0000	0.700208	5
4	地層4			18.00	18. 00	0. 38	35. 0000	0. 700208	5

※水の単位体積重量 γw = 10.00(kN/m³)

座標の入力データ

No.	距離	原地形	計画地形	水位	す	べり面		ハタ上げ
NO.	X (m)	標高YG(m)	標高Y(m)	標高Yw(m)	標高Ys(m)	形状	強度	ハクエ()
1	5. 530		261. 690					
2	9. 910		261. 620					
3	11.000		261. 560					
4	11. 560		261. 260					
5	12. 940		260. 330					
6	14. 330		259. 390					
7	15. 880		258. 280					
8	18. 150		257. 030					
9	20. 090		255. 730					
10	21. 910		254. 610					
11	22. 550		254. 430					
12	22. 990		254. 440					
13	23. 280		254. 390					
14	24. 980		251. 560					
15	26. 160		251. 570					
16	26. 380		251. 560					
17	26. 410		251. 540					
18	26. 410		251. 450					
19	26. 970		251. 370					
20	27. 090		251. 350					
21	27. 370		251. 170					
22	27. 540		250. 940					
23	27. 840		250. 430					
24	28. 320		249. 530					
25	28. 320		249. 530					
26	28. 590		249. 520					
27	28. 590		249. 520					
28	28. 600		249. 510					
29	28. 600		249. 450					
30	28. 600		249. 510					
31	28. 600		249. 450					
32	29. 090		249. 500					
33	29. 090		249. 500					
34	31. 000		249. 510					
35	31.000		249. 510					、 計:計画地形のハタ上げ

原:原地形のハタ上げ、 計:計画地形のハタ上げ

地層境界線の座標

No.	地層	 尋線	地層線			
NO.	距離X(m)	標高Y(m)	距離X(m)	標高Y(m)		
1	5. 530	251. 916	26. 160	251. 570		
2	26. 164	251. 916	5. 530	251. 570		

1. 設計条件

(1) 補強斜面の計画安全率 本現場は永久として考え、計画安全率を設定する。

切土補強土工法設計・施工要領では下表のように示されている。

補強斜面の計画安全率

項目	計画安全率				
永久(長期)	Fsp ≥ 1.20				
仮設(短期)	Fsp ≥ 1.05, 1.10				

【切土補強土工法設計・施工要領 P.31】

計画安全率は、当該斜面の重要性を考慮して Fsp = 1.200 とする。

(2) 土質条件

当該斜面の地形、土質の構成と定数は以下の通りである。

=	上質定数								
				湿潤重量	飽和重量	粘着力	内部層	を 擦角	
No	地層名	ı	土質名	γt	γ sat	С	φ	tan φ	N値
				(kN/m^3)	(kN/m^3)	(kN/m^2)	(°)		
1	地層1			18.00	18.00	0.38	35. 0000	0.700208	5
2	地層2			18.00	18.00	0.38	35. 0000	0.700208	5
3	地層3			18.00	18.00	0. 38	35. 0000	0.700208	5
4	地層4			18. 00	18.00	0.38	35.0000	0.700208	5

※水の単位体積重量 γw = 10.00 (kN/m³)

2. 繰り返し円弧計算

斜面の安定性は繰り返し円弧すべりで検討した結果、以下のすべり面が最も危険と判断できる。

〈円弧A〉

1	+	∃ ↓	- 笪	灶	甲.
77	-11	Fi]	「晃	水 百	来

	尼 日 			
	項目	記号	単位	常時
計	安全率	Fs	_	0. 603
計算結果	計画安全率	Fsp	_	1. 200
果	必要抑止力	Pr	kN/m	6. 8
Ш	中心 横	X	m	29. 500
円弧	中心座標	Y	m	257. 000
	半径	r	m	7. 000
	すべり抵抗力	S	kN/m	6. 81
l	滑動力	T	kN/m	11. 29
計算要素	法線力	N	kN/m	7. 92
要素	間隙水圧	U	kN/m	0.00
	すべり面長	1	m	3. 303
	面積	A	m^2	0. 77

〈円弧B>

方 ;	눈의	(笛:	(土)	甲.

^	人 日			
	項目	記号	単位	常時
計	安全率	Fs	_	0. 714
計算結果	計画安全率	Fsp	_	1. 200
果	必要抑止力	Pr	kN/m	10. 9
	中心座標	X	m	29. 000
円弧	中心)坐標 	Y	m	258. 000
	半径	r	m	7. 500
	すべり抵抗力	S	kN/m	15. 93
	滑動力	Т	kN/m	22. 30
計算要素	法線力	N	kN/m	20. 73
要素	間隙水圧	U	kN/m	0.00
	すべり面長	1	m	3. 746
	面積	A	m^2	1.70

(1) 安定計算式

安定計算は、修正Fellenius法を用いて行う。 基本的に極限つり合い法を用いることとし、所要の計画安全率を確保するものとする。

安全率(Fs) =
$$\frac{$$
すべり抵抗力(Σ S)
滑動力(Σ T)

計算手法は、「スライス分割法」に基づいて、すべり土塊の断面をいくつかのスライスに分割し、各スライス(分割片)について力のつり合いを考えるものとする。

〈常時〉

$$Fs = \frac{\sum \{(N-U) \cdot \tan \phi\} + \sum (C \cdot 1)}{\sum T}$$

 $Pr = Fsp \cdot \Sigma T - [\Sigma \{(N-U) \cdot tan \phi\} + \Sigma (C \cdot 1)]$

: 上載荷重分力(法線方向)

Q_T : 上載荷重分力(接線方向)

ここで、

 Q_N

Fs : 安全率 Fsp : 計画安全率 Pr : 必要抑止力 (kN/m): スライスの重力による法線力 ($N=W \cdot \cos \theta + Q_N$) (kN/m): スライスに働く間隙水圧 $(U=u \cdot b \cdot \cos \theta)$ (kN/m)Т : スライスの重力による接線力 ($T=W\cdot\sin\theta+Q_T$) (kN/m): スライスのすべり面長 1 (m): スライス幅 (m) : すべり面の内部摩擦角 (°) φ C : すべり面の粘着力 (kN/m^2) : スライス重量 (kN/m) θ : すべり面傾斜角 (°) : 単位間隙水圧 (kN/m^2)

(kN/m)

(kN/m)

(2) 安定性の評価

〈円弧A〉

スライス要	要素の集計表						
内部摩擦角		粘着力	すべり面長	法線力	間隙水圧	滑動力	すべり抵抗力
φ (°)	tan φ	C (kN/m ²)	1 (m)	N(kN/m)	U(kN/m)	T(kN/m)	S(kN/m)
35. 0000	0. 700208	0.38	3. 303	7. 92	0.00	11.29	6. 81

常時の安全率は次式を用いて計算する。

Fs =
$$\frac{\sum \{(N-U) \cdot \tan \phi\} + \sum (C \cdot 1)}{\sum T}$$

= $\frac{(7.92 - 0.00) \times 0.700208 + 0.38 \times 3.303}{11.29}$
= 0.603

ここで、

Fs : 安全率

: スライスの重力による法線力 $(N=W \cdot \cos \theta + Q_N)$ (kN/m)U : スライスに働く間隙水圧 $(U=u \cdot b \cdot \cos \theta)$ (kN/m)T : スライスの重力による接線力 $(T=W \cdot \sin \theta + Q_T)$ (kN/m)1 : スライスのすべり面長 (m): スライス幅 (m): すべり面の内部摩擦角 (°) φ C : すべり面の粘着力 (kN/m^2) : スライス重量 (kN/m)(°) : すべり面傾斜角 u : 単位間隙水圧 (kN/m^2) Q_N : 上載荷重分力(法線方向) (kN/m)QT : 上載荷重分力(接線方向) (kN/m)

<円弧B>

スライス要素の集計表							
内部摩擦角		粘着力	すべり面長	法線力	間隙水圧	滑動力	すべり抵抗力
ϕ ($^{\circ}$)	tan φ	C (kN/m ²)	1 (m)	N(kN/m)	U(kN/m)	T(kN/m)	S(kN/m)
35. 0000	0. 700208	0.38	3. 746	20.73	0.00	22. 30	15. 93

常時の安全率は次式を用いて計算する。

Fs =
$$\frac{\sum \{(N-U) \cdot \tan \phi\} + \sum (C \cdot 1)}{\sum T}$$
=
$$\frac{(20.73 - 0.00) \times 0.700208 + 0.38 \times 3.746}{22.30}$$
= 0.714

ここで、

Fs : 安全率

: スライスの重力による法線力 $(N=W \cdot \cos \theta + Q_N)$ (kN/m)U : スライスに働く間隙水圧 $(U=u \cdot b \cdot \cos \theta)$ (kN/m)T : スライスの重力による接線力 $(T=W \cdot \sin \theta + Q_T)$ (kN/m): スライスのすべり面長 (m): スライス幅 b (m)(°) φ : すべり面の内部摩擦角 : すべり面の粘着力 C (kN/m^2) : スライス重量 (kN/m)(°) : すべり面傾斜角 : 単位間隙水圧 (kN/m^2) u : 上載荷重分力(法線方向) (kN/m) Q_N QT : 上載荷重分力(接線方向) (kN/m)

(3) 必要抑止力の計算

計画安全率 Fsp = 1.200 を満足する必要抑止力を計算する。

< 円弧A>

Pr = Fsp · Σ T-[Σ {(N-U) · tan ϕ } + Σ (C · 1)] = 1.200× 11.29-{(7.92- 0.00) × 0.700208+ 0.38× 3.303} = 6.8 (kN/m)

ここで、

Fsp : 計画安全率 Pr : 必要抑止力 (kN/m)N : スライスの重力による法線力($N=W\cdot\cos\theta+Q_N$) (kN/m)U : スライスに働く間隙水圧 $(U=u \cdot b \cdot \cos \theta)$ (kN/m): スライスの重力による接線力 ($T=W\cdot\sin\theta+Q_T$) (kN/m)1 : スライスのすべり面長 (m): スライス幅 b (m): すべり面の内部摩擦角 (°) С : すべり面の粘着力 (kN/m^2) (kN/m)W : スライス重量 : すべり面傾斜角 (°) : 単位間隙水圧 (kN/m^2) u Q_N : 上載荷重分力(法線方向) (kN/m)Q_T : 上載荷重分力(接線方向) (kN/m)

〈円弧B>

$$\begin{array}{lll} \Pr &=& \operatorname{Fsp} \cdot \Sigma \operatorname{T-}[\; \Sigma \; \{ (\mathrm{N-U}) \cdot \tan \phi \; \} + \Sigma \; (\mathrm{C} \cdot 1) \;] \\ \\ &=& 1.\, 200 \times \quad 22.\, 30 - \{ (\quad \ \ 20.\, 73 - \quad \ \ 0.\, 00) \times 0.\, 700208 + \quad \ \ 0.\, 38 \times \quad 3.\, 746 \} \\ \\ &=& 10.\, 9 \; (\mathrm{kN/m}) \end{array}$$

ここで、

Fsp : 計画安全率 (kN/m)Pr : 必要抑止力 : スライスの重力による法線力 $(N=W \cdot \cos \theta + Q_N)$ (kN/m): スライスに働く間隙水圧 $(U=u \cdot b \cdot \cos \theta)$ (kN/m)U T : スライスの重力による接線力 $(T=W\cdot\sin\theta+Q_T)$ (kN/m)1 : スライスのすべり面長 (m)b : スライス幅 (m)(°) : すべり面の内部摩擦角 φ : すべり面の粘着力 C (kN/m^2) W : スライス重量 (kN/m)(°) θ : すべり面傾斜角 : 単位間隙水圧 (kN/m^2) u : 上載荷重分力(法線方向) (kN/m) $Q_{\rm N}$ QT : 上載荷重分力(接線方向) (kN/m)

繰り返し円弧計算条件

1. 円弧条件

中心の変化範囲

X座標:23.000~35.000(m)ピッチ:0.500(m)Y座標:253.000~263.000(m)ピッチ:0.500(m)

2次追跡: なし

円弧半径の範囲

半径 : 5.000~ 20.000(m) ピッチ: 0.500(m)

2. 通過線 (条件:1本でも通過したすべりを採用)

線番号	No.	X座標(m)	Y座標(m)		
No. 1	1	23. 280	254. 390		
	2	24. 980	251. 560		

3. 不通過線

線番号	No.	X座標(m)	Y座標(m)		
No. 1	1	19. 490	256. 130		
	2	24. 980	251. 560		

4. 不通過層名

地層4

5. 計算条件

計画安全率(常時) Fsp = 1.200計算式 修正Fellenius法

すべり面強度 地層値

6. 出力条件

安全率 Fs · · · · 全て出力 抑止力 Pr (kN/m) · · · 全て出力 滑動力 T (kN/m) · · · 全て出力 深度 (m) · · · 全て出力

繰り返し円弧計算結果一覧 (常時)

			円弧条件	‡		すべり	海動力	生合家	抑止力
No.	登録	中心		半径	最大深度	抵抗力	滑動力	安全率	
1	政	X(m) 29.000	Y (m) 256. 500	r (m) 6.000	(m) 0.010	S(kN/m) 0.26	T (kN/m) 0.00	Fs	Pr(kN/m)
2		26. 000	258. 500	5. 000	0. 071	0. 12	0.00	<u>*</u> -	
3		28. 500	259. 000	7. 000	0. 036	0. 12	0.00	<u>*</u> -	_
4		31. 000	259. 000	9. 000	0. 008	0. 16	0.00	<u>*</u> -	_
5		34. 500	259. 000	12. 000	0. 008	0. 10	0.00	* -	_
6		28. 000	259. 500	7. 000	0. 044	0. 04	0.00	* -	
7		26. 500	260. 000	6. 500	0. 032	0.08	0.00	* -	
8		27. 500	260. 500	7. 500	0. 032	0. 03	0.00	* -	
9		30. 500	260. 500	9. 500	0.074		0.00	* - * -	
10		33. 000	260. 500	11. 500	0.042	0. 11	0.00	* -	
11			261. 000	7. 000		0. 18	0.00	* - * -	_
		25. 500 29. 500			0. 027				_
12			261. 500	9. 500	0. 053	0.09	0.00	* -	_
13		31. 000	261. 500	10. 500	0.005	0. 01	0.00	* -	_
14		27. 000	262. 000	8. 500	0. 029	0.06	0.00	* -	
15		28. 000	262. 000	9.000	0.045	0. 07	0.00	* -	_
16		30. 500	262. 000	10. 500	0.010	0. 02	0.00	* -	_
17		32. 500	262. 000	12.000	0.045	0. 12	0.00	* -	_
18		35. 000	262. 000	14. 000	0.026	0. 19	0.00	* -	_
19		29. 000	262. 500	10.000	0. 076	0. 12	0.00	* -	_
20		33. 000	263. 000	13. 000	0. 015	0. 03	0.00	* -	_
21	A	29. 500	257. 000	7. 000	0. 324	6. 81	11. 29	0.603	6.8
22		31. 500	258. 500	9. 500	0. 337	7. 44	12. 30	0.604	7. 4
23		28. 500	256. 500	6. 000	0. 439	9. 64	15. 67	0.615	9. 2
24		30. 500	257. 500	8. 000	0. 209	4. 30	6. 91	0.622	4. 0
25		32. 500	259. 000	10. 500	0. 223	4. 77	7. 61	0.626	4. 4
26		29. 000	257. 000	6. 500	0. 253	4. 54	7. 21	0.629	4. 2
27		34. 500	260. 500	13. 000	0. 236	4. 97	7.87	0.631	4. 5
28		32.000	259. 500	10. 500	0. 394	7. 79	12. 29	0.633	7. 0
29		28. 500	256. 000	5. 500	0. 196	3. 64	5. 74	0.634	3. 3
30		34. 000	261. 000	13.000	0. 406	8.00	12. 59	0.635	7. 2
31		34. 000	259. 500	12.000	0. 179	4. 24	6. 67	0.635	3.8
32		30.000	258. 000	8.000	0. 381	7. 36	11. 55	0.637	6. 5
33		28. 000	256. 500	5. 500	0. 367	6. 80	10. 67	0.637	6. 1
34		31.000	258. 500	9.000	0. 266	4. 94	7. 74	0.638	4. 4
35		32.000	258. 000	9.500	0. 166	3. 82	5. 96	0.640	3. 4
36		35.000	261. 500	14.000	0. 292	5. 35	8. 30	0.644	4. 7
							※け最小安/	Λ 	止力を表す

			円弧条件	<u></u> ‡		すべり	MH 프로니 그	<i>₽</i> ∧ 2	#G1 _L_
No.	登	中心	座標	半径	最大深度	抵抗力	滑動力	安全率	抑止力
0.7	録	X (m)	Y (m)	r (m)	(m)	S (kN/m)	T (kN/m)	Fs	Pr(kN/m)
37		33. 000	260. 000	11. 500	0. 279	5. 08	7. 88	0.644	4. 4
38		33. 000	260. 500	12.000	0. 519	10. 85	16. 82	0. 645	9. 4
39		27. 500	256. 000	5. 000	0. 553	12.06	18. 55	0.650	10. 2
40		31. 000	259. 000	9. 500	0. 508	10. 34	15. 90	0.650	8.8
41		29. 000	257. 500	7. 000	0. 495	9. 85	14. 95	0.658	8.1
42		34. 500	262. 000	14. 000	0. 443	7. 82	11. 77	0.664	6. 4
43		29. 500	258. 000	7. 500	0. 309	4. 85	7. 26	0.668	3. 9
44		31. 500	259. 500	10.000	0. 321	5. 06	7. 55	0. 670	4.0
45		32. 500	260. 500	11. 500	0. 439	7. 67	11.44	0.670	6.1
46		33. 500	261. 000	12. 500	0. 329	5. 26	7. 85	0.670	4.2
47		27. 500	256. 500	5. 000	0. 296	4. 57	6. 80	0.672	3.6
48		33. 500	261. 500	13. 000	0. 550	10. 49	15. 52	0. 675	8.2
49		30.000	258. 500	8.500	0. 623	13. 37	19.80	0.675	10.4
50		30. 500	259. 000	9.000	0. 434	7. 41	10. 96	0.676	5.8
51		30.000	256. 500	7. 000	0. 153	3. 02	4. 44	0.680	2.4
52		31. 500	260.000	10. 500	0. 548	10. 10	14. 71	0.686	7. 6
53		28. 500	257. 500	6. 500	0. 424	6. 91	10. 04	0.688	5. 2
54		28. 500	257. 000	6.000	0. 181	2. 74	3. 97	0.690	2.1
55		30. 500	258. 500	8. 500	0. 194	2. 94	4. 25	0. 691	2.2
56		28.000	257. 000	6.000	0. 610	12. 44	17. 89	0.695	9. 1
57		30.000	257. 500	7. 500	0. 138	2. 52	3. 62	0.696	1.9
58		32. 500	261. 000	12.000	0. 655	13. 19	18. 93	0.696	9.6
59		35. 000	263. 000	15. 000	0. 457	7. 38	10. 59	0. 696	5. 4
60		34.000	262. 000	13. 500	0. 353	5. 01	7. 14	0.701	3.6
61		34. 500	261. 500	13. 500	0. 217	3. 17	4. 52	0.701	2.3
62		34. 000	260. 500	12. 500	0. 164	2. 83	4. 03	0.702	2. 1
63		29. 500	258. 500	8. 000	0. 545	9. 65	13. 72	0.703	6. 9
64		33. 000	261. 500	12. 500	0. 457	7. 22	10. 23	0.705	5. 1
65		34. 000	262. 500	14. 000	0. 558	9. 80	13. 88	0. 706	6.9
66		32. 000	260. 500	11. 000	0. 352	4. 82	6. 82	0. 706	3. 4
67		32. 000	259. 000	10.000	0. 151	2. 65	3. 75	0. 706	1.9
68		32. 500	260.000	11. 000	0. 207	3. 00	4. 23	0. 709	2. 1
69	В	29. 000	258. 000	7. 500	0. 736	15. 93	22. 30	0.714	※ 10.9
70		30. 500	259. 500	9. 500	0. 655	12. 50	17. 48	0.715	8.5
71		30.000	259. 000	8.500	0. 351	4. 65	6. 49	0.716	3. 2
72		31. 000	260. 000	10.000	0. 457	6. 81	9. 46	0.719	4.6
73		29. 000	258. 000	7. 000	0. 236	2. 87	3. 98	0. 721	2.0
74		31. 000	259. 500	9. 500	0. 242	2. 99	4. 13	0. 723	2.0
ــــــــــــــــــــــــــــــــــــــ		22.000	_30.000				1. 10	· · · · · · · ·	

			円弧条件			すべり	滑動力	安全率	抑止力
No.	登録	中心		半径	最大深度	抵抗力			
75	郵水	X(m) 32.000	Y (m) 261.000	r (m) 11.500	(m) 0.558	S(kN/m) 9.44	T(kN/m) 13.05	Fs 0. 723	Pr(kN/m) 6.3
76		31. 500	260, 500	11. 000	0. 758	15. 95	21. 94	0. 726	10. 4
77		35. 000	262. 500	14. 500	0. 738		4. 28	0. 728	
		28. 000			0. 248	3. 12			2. 1
78			257. 500	6. 000		4. 47	6. 13	0. 729	2.9
79		33.000	262. 000	13. 000	0. 655	12. 10	16. 59	0. 729	7.9
80		33.000	261. 000	12.000	0. 245	3. 02	4. 13	0. 731	2.0
81		27. 500	257. 000	5. 500	0. 538	8. 96	12. 25	0. 731	5. 8
82		34. 000	263. 000	14. 500	0. 750	15. 22	20. 73	0. 734	9. 7
83		34. 500	263. 000	14. 500	0. 357	4. 55	6. 16	0. 738	2.9
84		29. 000	258. 500	7. 500	0. 457	6. 50	8. 79	0. 739	4.1
85		33. 500	262. 500	13. 500	0. 453	6. 45	8. 71	0. 740	4. 1
86		28. 000	256. 000	5. 000	0. 125	2. 03	2. 73	0. 743	1.3
87		28. 500	258. 000	7. 000	0. 653	11.89	15. 92	0.746	7.3
88		33. 500	259. 500	11. 500	0. 108	2. 28	3. 05	0. 747	1.4
89		30.000	259. 500	9. 000	0. 558	8. 91	11. 92	0. 747	5. 4
90		32. 500	261. 500	12. 000	0. 357	4. 38	5. 84	0.750	2.7
91		31. 000	260. 500	10.500	0. 655	11. 52	15. 30	0.752	6.9
92		29. 500	259. 000	8.500	0. 758	14. 99	19.85	0.755	8.9
93		27. 000	256. 500	5.000	0. 725	14.72	19. 46	0.756	8.7
94		32.000	261. 500	12.000	0. 749	14. 50	19. 12	0.758	8. 5
95		32. 500	262. 000	12. 500	0. 545	8. 32	10. 96	0.759	4. 9
96		31. 500	261. 000	11.000	0. 452	6. 03	7. 94	0.759	3. 5
97		33. 500	263. 000	14. 000	0. 637	10.82	14. 24	0.759	6. 3
98		30. 500	260.000	10.000	0.857	18. 56	24. 36	0. 761	10.7
99		33.000	262. 500	13. 500	0. 841	17.87	23. 44	0.762	10.3
100		33. 500	262.000	13.000	0. 258	2.77	3. 61	0.767	1.6
101		30. 500	260.000	9. 500	0. 357	4. 13	5. 36	0.770	2.4
102		27. 000	257. 000	5. 000	0. 456	5. 95	7. 65	0.777	3. 3
103		31. 500	260. 500	10. 500	0. 258	2. 69	3. 46	0. 777	1.5
104		29. 500	259. 000	8. 000	0. 258	2. 58	3. 28	0. 786	1.4
105		28.000	258. 000	6. 500	0. 558	8. 22	10. 44	0. 787	4. 4
106		32. 500	262. 500	13. 000	0. 721	13. 03	16. 53	0. 788	6. 9
107		30. 500	260. 500	10.000	0. 542	7. 87	9. 98	0. 788	4. 2
108		33.000	262. 500	13. 000	0. 341	3. 78	4. 79	0. 789	2. 0
109		31. 500	261. 500	11. 500	0. 632	10. 04	12. 69	0. 791	5. 2
110		29. 000	259. 000	8. 000	0. 654	10. 69	13. 49	0. 792	5. 5
111		30.000	260.000	9. 500	0. 746	13. 61	17. 17	0. 792	7. 0
112		31. 000	261. 000	11. 000	0. 837	16. 82	21. 20	0. 793	8. 7
					55.	· · · •			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

			円弧条件	‡		すべり	NR 351 . L.	<i>+</i>	hrin .I _I.
No.	登	中心	座標	半径	最大深度	抵抗力	滑動力	安全率	抑止力
110	録	X (m)	Y (m)	r (m)	(m)	S (kN/m)	T (kN/m)	Fs	Pr(kN/m)
113		32. 000	262. 000	12. 500	0. 926	20. 59	25. 94	0. 793	10.6
114		29. 500	259. 500	8. 500	0. 450	5. 64	7. 11	0. 793	2.9
115		28. 500	258. 500	7. 000	0. 356	3. 97	5. 00	0. 794	2. 1
116		33. 000	263. 000	13. 500	0. 515	7. 05	8.84	0. 797	3.6
117		32.000	262. 000	12. 000	0. 426	5. 27	6.60	0. 798	2. 7
118		27. 500	257. 500	6. 000	0. 758	14. 02	17. 42	0.804	6.9
119		28. 500	258. 500	7. 500	0.856	17. 26	21. 43	0.805	8.5
120		34. 000	263. 000	14. 000	0. 250	2. 42	3. 00	0.806	1.2
121		28. 000	257. 000	5. 500	0. 110	1. 32	1. 62	0.814	0.7
122		31. 500	258. 000	9. 000	0. 095	1. 99	2. 44	0.815	1.0
123		31. 000	261. 000	10. 500	0. 337	3. 53	4. 32	0.817	1.7
124		27.500	257. 500	5. 500	0. 258	2. 42	2. 95	0.820	1.2
125		32. 500	263. 000	13. 500	0.885	18. 27	22. 25	0.821	8.5
126		32.000	262. 500	12.500	0. 592	8.83	10. 72	0.823	4. 1
127		31. 500	262. 000	12.000	0. 798	14. 86	18. 00	0.825	6.8
128		32.000	261. 500	11. 500	0. 249	2. 24	2. 70	0.829	1.0
129		31.000	261. 500	11.000	0. 505	6. 47	7. 76	0.833	2.9
130		30. 500	261. 000	10. 500	0. 711	11. 95	14. 33	0.833	5. 3
131		29. 500	260.000	9.000	0. 624	9. 36	11. 21	0.834	4. 1
132		28. 500	259. 000	7. 500	0. 536	7. 15	8. 54	0.837	3. 1
133		30.000	260. 500	10.000	0. 918	18. 99	22.64	0.838	8. 2
134		30.000	258. 500	8. 000	0. 123	1. 35	1. 61	0.838	0.6
135		30.000	260. 500	9. 500	0. 418	4. 68	5. 55	0.843	2.0
136		29. 000	259. 500	8. 500	0.830	15. 56	18. 41	0.845	6.6
137		27. 500	258. 000	6. 000	0. 447	5. 08	5. 99	0.848	2. 2
138		28. 000	258. 500	7. 000	0. 741	12. 51	14. 67	0.852	5. 1
139		32. 500	263. 000	13. 000	0. 385	4. 11	4. 81	0.854	1.7
140		32.000	263. 000	13. 000	0. 746	12. 91	15. 06	0.857	5. 2
141		32.000	260. 000	10. 500	0. 131	1. 38	1. 61	0.857	0.6
142		30. 500	259. 500	9.000	0. 155	1. 34	1. 56	0.858	0.6
143		30.000	260. 000	9.000	0. 246	2.06	2. 39	0.861	0.9
144		27. 000	257. 500	5. 500	0. 651	9. 74	11. 30	0.861	3.9
145		29. 000	259. 500	8. 000	0. 330	3. 18	3. 69	0. 861	1.3
146		31. 500	262. 500	12. 500	0. 953	20. 36	23. 59	0. 863	8. 0
147		31. 000	262. 000	11. 500	0. 660	10. 13	11. 67	0. 868	3.9
148		30. 500	261. 500	11. 000	0. 867	16. 61	19. 04	0. 872	6. 3
149		32. 500	261. 000	11. 500	0. 155	1. 37	1. 57	0.872	0.6
150		28. 500	258. 000	6. 500	0. 153	1. 24	1. 42	0. 873	0.5
100		20.000	200.000	0.000	0. 100	1. 21	*************************************		

			円弧条件	‡		すべり	滑動力	安全率	抑止力
No.	登 録	中心		半径	最大深度	抵抗力			
151	郵	X(m) 27.500	Y (m) 258.000	r(m) 6.500	(m) 0. 947	S(kN/m) 19.31	T(kN/m) 22.09	Fs 0. 874	Pr(kN/m) 7.2
152		34. 000	261. 500	13. 000	0. 136	1. 40	1. 60	0.875	0.6
153		31. 500	262. 500	12. 000			5. 90	0.876	2. 0
					0. 453	5. 17			
154		30.000	261. 000	10.000	0. 574	7. 83	8. 92	0.877	2.9
155		34. 500	262. 500	14. 000	0. 156	1. 38	1. 57	0.878	0.6
156		31. 500	262. 000	11. 500	0. 298	2. 69	3. 06	0.879	1.0
157		32. 500	262. 500	12. 500	0. 221	1. 76	1. 99	0.884	0.7
158		33.000	262. 000	12. 500	0. 155	1. 23	1. 39	0.884	0.5
159		29. 500	260. 500	9. 500	0. 781	13. 56	15. 33	0. 884	4. 9
160		26. 500	257. 000	5. 000	0.855	15. 61	17. 51	0. 891	5. 5
161		29. 500	256. 500	6. 500	0. 082	1. 51	1. 69	0.893	0.6
162		29. 000	260.000	9. 000	0. 988	21.00	23. 48	0.894	7.2
163		29. 000	260. 000	8. 500	0. 488	5. 63	6. 27	0.897	1. 9
164		31. 500	259. 000	9. 500	0.080	1. 22	1. 36	0.897	0. 5
165		28. 500	259. 500	8. 000	0. 695	10.67	11.85	0.900	3.6
166		31.000	262. 500	12.000	0.803	14. 30	15.82	0.903	4.7
167		31.500	263. 000	12.500	0. 596	8. 25	9. 13	0.903	2.8
168		30. 500	261. 500	10.500	0. 367	3. 47	3. 83	0.906	1.2
169		30. 500	262. 000	11. 500	1. 010	22. 13	24. 32	0.909	7. 1
170		33. 500	260. 500	12.000	0. 093	1. 23	1. 35	0. 911	0.4
171		28.000	259. 000	7. 000	0. 402	4. 09	4. 48	0. 912	1.3
172		28.000	259. 000	7. 500	0. 902	17. 06	18. 65	0.914	5. 4
173		27. 500	258. 500	6. 500	0. 609	8. 35	9. 12	0.915	2.6
174		28.000	258. 500	6. 500	0. 241	1. 78	1. 94	0.917	0.6
175		30.000	261. 500	10. 500	0. 717	11.40	12. 38	0.920	3. 5
176		30. 500	262. 000	11.000	0. 510	6. 11	6. 62	0.922	1.9
177		29. 500	261. 000	10.000	0. 924	18. 37	19. 76	0.929	5.4
178		29. 500	257. 500	7. 000	0.067	1. 13	1. 21	0. 933	0.4
179		27. 000	258. 000	6.000	0.816	13. 98	14. 96	0. 934	4. 0
180		26. 500	257. 500	5. 000	0. 523	6. 10	6. 52	0. 935	1.8
181		29. 000	260. 500	9. 000	0. 630	8. 76	9. 32	0. 939	2. 5
182		31. 000	263. 000	12. 500	0. 936	19. 13	20. 33	0. 940	5. 3
183		29. 500	260. 500	9. 000	0. 281	2. 22	2. 36	0. 940	0.7
184		29.000	259. 000	7. 500	0. 154	1. 03	1. 09	0. 944	0.3
185		32.000	263. 000	12. 500	0. 246	1. 90	2. 01	0.945	0.6
186		28. 500	260. 000	8. 500	0. 837	14. 75	15. 51	0.950	3.9
187		27. 000	258. 000	5. 500	0. 316	2. 55	2. 68	0.951	0.7
188		29. 500	261. 000	9. 500	0. 424	4. 37	4. 59	0. 952	1. 2
							** は長小生/		ルカな主は

			円弧条件			すべり	滑動力	安全率	抑止力
No.	登 録	中心 X(m)	<u> </u>	半径 r(m)	最大深度 (m)	抵抗力 S(kN/m)	T(kN/m)	女主士 Fs	Pr(kN/m)
189	野水	30. 500	261. 000	10.000	0. 211	1. 48	1. 55	0. 954	0.4
190		31. 000	260. 500	10. 000	0. 155	1. 05	1. 10	0. 954	0.3
191		30. 500	262. 500	11. 500	0. 642	9. 17	9. 55	0. 960	2. 3
192		30.000	262, 000	11. 000	0. 848	15. 47	16. 09	0. 961	3. 9
193		28. 000	259. 500	8. 000	1. 044	22. 54	23. 33	0. 966	5. 5
194		29. 500	261. 500	10. 500	1. 053	23. 79	24. 58	0. 967	5. 8
195		33. 500	263. 000	13. 500	0. 137	0. 91	0. 94	0. 968	0. 3
196		26. 500	257. 500	5. 500	1. 023	20. 77	21. 39	0. 971	4. 9
197		28. 000	259. 500	7. 500	0. 544	6. 53	6. 72	0. 971	1. 6
198		31. 000	262. 500	11. 500	0. 303	2. 47	2. 54	0. 972	0.6
199		31. 000	263. 000	12. 000	0. 436	4. 52	4. 64	0. 974	1.1
200		27. 500	259. 000	7. 000	0. 750	11. 85	12. 05	0. 983	2.7
201		28. 500	260. 000	8. 000	0. 337	2. 92	2. 95	0. 989	0. 7
202		29. 500	261. 500	10.000	0. 553	6. 81	6. 88	0. 989	1.5
203		27. 000	257. 500	5. 000	0. 151	0. 92	0. 93	0. 989	0. 2
204		29. 000	261. 000	9. 500	0. 759	12. 14	12. 23	0. 992	2.6
205		30. 500	263. 000	12. 000	0. 763	12. 60	12. 64	0. 996	2.6
206		30.000	262. 500	11. 500	0. 968	20. 20	20. 20	1. 000	4. 1
207		28. 500	260. 500	9. 000	0. 964	19. 51	19. 49	1. 001	3. 9
208		27.000	258. 500	6. 500	0. 956	18. 38	18. 25	1. 007	3.6
209		30.000	262. 000	10. 500	0. 348	3. 04	3. 01	1.009	0.6
210		27. 000	258. 500	6. 000	0. 456	4. 66	4. 61	1. 010	0.9
211		28. 500	260. 500	8. 500	0. 464	4. 91	4. 80	1. 022	0.9
212		30.000	263. 000	12. 000	1. 078	25. 72	25. 07	1. 025	4.4
213		28. 000	260. 000	8. 000	0. 669	9. 57	9. 32	1. 026	1.7
214		29. 500	262. 000	10. 500	0. 671	9.81	9. 53	1. 029	1.7
215		26. 500	258. 000	5. 500	0. 663	9. 12	8. 86	1. 029	1.6
216		29. 000	261. 500	10.000	0. 875	16. 33	15. 76	1. 036	2.6
217		30.000	262. 500	11. 000	0. 468	5. 05	4. 87	1. 036	0.8
218		28. 500	261. 000	9. 500	1. 077	24. 78	23. 88	1. 037	3.9
219		27. 500	259. 500	7. 500	0. 873	15. 66	15. 01	1. 043	2.4
220		28. 500	259. 500	7. 500	0. 195	1. 17	1. 12	1. 044	0.2
221		35. 000	260. 000	13. 000	0.064	1. 61	1. 54	1. 045	0.3
222		27. 500	259. 000	6. 500	0. 250	1. 73	1. 65	1. 048	0.3
223		27. 000	259. 000	7. 000	1. 076	23. 34	22. 00	1. 060	3. 1
224		29. 500	260.000	8. 500	0. 124	0. 70	0. 66	1.060	0.1
225		26.000	257. 500	5. 000	0. 868	14. 71	13. 77	1.068	1. 9
226		29. 500	262. 500	11. 000	0. 779	13. 15	12. 26	1. 072	1.6

			円弧条件			すべり	 滑動力	安全率	抑止力
No.	登 録	中心 X(m)	<u> </u>	半径	最大深度	抵抗力			
227	业水	29. 000	262.000	r (m) 10.500	(m) 0.980	S(kN/m) 21.00	T(kN/m) 19.58	Fs 1. 072	Pr(kN/m) 2.5
228		30. 000	263. 000	11. 500	0. 578	7. 34	6. 83	1. 074	0. 9
229		28. 500	261. 000	9. 000	0. 577	7. 43	6. 91	1. 075	0.9
230		28. 000	260. 500	8. 500	0. 779	12. 91	11. 94	1. 081	1. 5
231		27. 000	259. 000	6. 500	0. 576	7. 20	6. 65	1. 082	0.8
232		30.000	261. 500	10. 000	0. 217	1. 31	1. 21	1. 082	0. 2
233		27. 500	259. 500	7. 000	0. 373	3. 33	3. 07	1. 084	0. 4
234		29. 000	261. 500	9. 500	0. 375	3. 34	3. 06	1. 091	0. 4
235		27. 500	260. 000	8. 000	0. 980	20. 26	18. 54	1. 092	2. 0
236		30. 500	263. 000	11. 500	0. 263	1. 88	1. 70	1. 105	0. 2
237		29. 000	261. 000	9. 000	0. 259	1. 77	1. 60	1. 106	0. 2
238		29. 500	263. 000	11. 500	0. 878	17. 30	15. 63	1. 106	1. 5
239		31. 500	261. 500	11. 000	0. 132	0.73	0.66	1. 106	0.1
240		26. 500	258. 500	6. 000	0. 779	12. 31	11. 10	1. 109	1.1
241		28. 500	261. 500	9. 500	0. 680	10. 08	8. 98	1. 122	0.7
242		28. 000	261. 000	9. 000	0.878	16. 89	15. 00	1. 126	1.2
243		31.000	262.000	11. 000	0. 160	0.85	0. 75	1. 133	0.1
244		29. 000	262.000	10.000	0. 480	5. 09	4. 49	1. 133	0.3
245		26. 500	258. 000	5. 000	0. 163	0. 93	0.82	1. 134	0. 1
246		26.000	258. 000	5. 500	0. 980	18. 97	16. 65	1. 139	1.1
247		27. 500	260. 000	7. 500	0. 480	5. 09	4. 44	1. 146	0.3
248		27.000	259. 500	7. 000	0. 679	9. 69	8. 40	1. 153	0.4
249		28.000	261. 500	9. 500	0. 966	21. 17	18. 26	1. 159	0.8
250		29. 500	262. 500	10. 500	0. 279	2. 02	1. 73	1. 167	0. 1
251		33.000	258. 500	10. 500	0.051	1. 25	1. 07	1. 168	0.1
252		26. 500	258. 500	5. 500	0. 279	2. 01	1. 72	1. 168	0. 1
253		29.000	262. 500	10. 500	0. 576	7. 30	6. 24	1. 169	0.2
254		26. 500	259. 000	6. 500	0.877	15. 90	13. 56	1. 172	0.4
255		28.000	260. 500	8.000	0. 279	2. 02	1. 72	1. 174	0. 1
256		26.000	258. 000	5. 000	0. 480	4.89	4. 16	1. 175	0.2
257		28. 500	262. 000	10.000	0. 772	13. 21	11. 24	1. 175	0.3
258		29. 500	263. 000	11.000	0. 378	3. 42	2.88	1. 187	0.1
259		28. 000	261. 000	8.500	0. 378	3. 42	2. 86	1. 195	0.1
260		28.500	262. 500	10.500	0.855	17. 05	14. 23	1. 198	0.1
261		27. 500	260. 500	8.000	0. 574	7. 11	5. 92	1. 201	0.0
262		28. 000	260. 000	7. 500	0. 169	0.95	0.79	1. 202	0.0
263		29. 000	263. 000	11.000	0. 663	9. 78	8.06	1. 213	-0.1
264		32. 000	261. 000	11.000	0. 058	0.34	0.28	1.214	0.0

			円弧条件			すべり	滑動力	安全率	抑止力
No.	登 録	中心 X(m)	<u> </u>	半径 r(m)	最大深度	抵抗力 S(kN/m)	T(kN/m)	女主牛 Fs	Pr(kN/m)
265	邓	28. 500	263.000	11.000	(m) 0. 931	21. 76	17. 92	1. 214	-0.2
266		27. 000	260. 000	7. 500	0. 769	12. 83	10. 56	1. 214	-0.1
267		30.000	259. 500	8. 500	0. 058	0. 34	0. 28	1. 214	0.0
268		26. 500	259. 500	7. 000	0. 960	20. 11	16. 52	1. 217	-0.2
269		35. 000	261. 000	13. 500	0. 050	0. 93	0. 76	1. 223	0.0
270		29. 000	260. 500	8. 500	0. 130	0. 60	0.49	1. 224	0.0
271		29. 500	258. 500	7. 500	0. 045	0. 37	0.30	1. 233	0.0
272		26. 500	259. 000	6. 000	0. 377	3. 24	2. 59	1. 250	-0.1
273		34. 000	262. 500	13. 500	0. 058	0.35	0. 28	1. 250	0.0
274		27. 000	260. 500	8. 000	0. 847	16. 52	13. 18	1. 253	-0.7
275		29. 500	262. 000	10.000	0. 171	0. 98	0.78	1. 256	0.0
276		27. 500	261. 000	8. 500	0. 658	9. 52	7. 57	1. 257	-0.4
277		28. 000	261. 500	9. 000	0. 466	4. 88	3. 88	1. 257	-0.2
278		26. 000	258. 500	5. 500	0. 571	6. 96	5. 50	1. 265	-0.3
279		27. 000	261. 000	8. 500	0. 915	20. 69	16. 23	1. 274	-1.2
280		31. 500	260. 000	10.000	0. 048	0. 37	0. 29	1. 275	0.0
281		28. 000	262. 000	9. 500	0. 545	6. 83	5. 23	1. 305	-0.5
282		30.000	261. 000	9. 500	0. 074	0.34	0. 26	1. 307	0.0
283		25. 500	258. 000	5.000	0. 762	12. 07	9. 22	1. 309	-1.0
284		27. 500	261. 500	9.000	0. 732	12. 49	9. 53	1. 310	-1.0
285		33. 500	261. 500	12.500	0.050	0.38	0. 29	1. 310	0.0
286		30. 500	262. 500	11.000	0. 142	0. 62	0. 47	1. 319	0.0
287		28. 500	262. 000	9. 500	0. 272	1. 85	1. 40	1. 321	-0.1
288		27. 500	262. 500	10.000	0.858	20. 44	15. 42	1. 325	-1.9
289		28. 500	262. 500	10.000	0. 355	3. 05	2. 30	1. 326	-0.2
290		27. 500	262. 000	9. 500	0. 798	16.06	12. 10	1. 327	-1.5
291		26. 500	259. 500	6.500	0. 460	4.82	3. 63	1. 327	-0.4
292		27.000	260.000	7.000	0. 269	1. 96	1. 47	1. 333	-0.1
293		28. 500	261. 500	9.000	0. 180	0.99	0.74	1. 337	-0.1
294		26.000	259. 000	6.000	0. 647	9. 15	6.82	1. 341	-0.9
295		28. 500	263. 000	10. 500	0. 431	4. 27	3. 13	1. 364	-0.5
296		28.000	262. 500	10.000	0. 616	8. 73	6. 37	1. 370	-1.0
297		25. 500	258. 500	5. 500	0.829	15. 25	11. 11	1. 372	-1.9
298		25. 500	259. 000	6.000	0. 883	19. 26	13. 83	1. 392	-2.6
299		26. 500	260.000	7.000	0. 532	6. 45	4. 62	1. 396	-0.9
300		28. 000	263. 000	10.500	0. 681	11. 83	8. 47	1. 396	-1.6
301		27. 000	260. 500	7. 500	0. 347	2.84	2. 03	1. 399	-0.4
302		26.000	259. 500	6. 500	0. 711	11. 83	8. 36	1. 415	-1.7

			円弧条件			すべり	滑動力	安全率	抑止力
No.	登 録	中心 X(m)	<u> </u>	半径 r(m)	最大深度 (m)	抵抗力 S(kN/m)	T(kN/m)	女主牛 Fs	Pr(kN/m)
303	业人	27. 000	259. 500	6. 500	0. 179	0.88	0. 62	1. 419	-0. 1
304		26. 000	260. 500	7. 500	0. 812	18. 93	13. 26	1. 427	-3. 0
305		26. 000	260. 000	7. 000	0. 765	14. 97	10. 44	1. 433	-2.4
306		27. 000	259. 000	6. 000	0. 076	0. 32	0. 22	1. 454	0.0
307		30.000	263. 000	11. 000	0. 078	0. 32	0. 22	1. 454	0.0
308		28. 500	261. 000	8. 500	0. 077	0. 32	0. 22	1. 454	0.0
309		27. 000	261. 000	8. 000	0. 415	4. 10	2.81	1. 459	-0.7
310		32.000	262. 500	12.000	0. 092	0.38	0. 26	1. 461	0.0
311		26. 500	260. 500	7. 500	0. 593	8.38	5. 65	1. 483	-1.6
312		29. 000	263. 000	10. 500	0. 163	0.88	0. 59	1. 491	-0.1
313		26. 500	261. 500	8. 500	0. 695	14. 40	9. 65	1. 492	-2.8
314		31. 500	263. 000	12. 000	0. 096	0. 36	0. 24	1. 500	0.0
315		27. 500	261. 000	8.000	0. 158	0.87	0. 58	1. 500	-0.1
316		26. 500	261. 000	8. 000	0. 647	10. 92	7. 23	1. 510	-2.2
317		27. 500	261. 500	8. 500	0. 232	1. 52	1.00	1. 520	-0.3
318		27. 500	262. 000	9.000	0. 298	2. 40	1. 57	1. 528	-0.5
319		27. 000	261. 500	8. 500	0. 476	5. 51	3. 59	1.534	-1.2
320		25. 500	258. 500	5.000	0. 329	2.64	1. 70	1.552	-0.6
321		27.000	263. 000	10.000	0. 621	12. 99	8. 32	1. 561	-3.0
322		27. 000	262. 000	9. 000	0. 529	7. 22	4. 53	1. 593	-1.7
323		27. 500	258. 500	6. 000	0. 109	0.40	0. 25	1. 600	-0.1
324		27. 500	262. 500	9. 500	0. 358	3. 19	1. 99	1. 603	-0.8
325		27. 000	262. 500	9. 500	0. 578	9.84	6. 12	1.607	-2.4
326		24. 500	258. 500	5.000	0. 713	16. 54	10. 03	1. 649	-4. 5
327		27. 500	263. 000	10.000	0. 411	4. 47	2.71	1.649	-1.2
328		25. 500	259. 000	5. 500	0. 383	3. 70	2. 22	1.666	-1.0
329		26.000	259. 000	5. 500	0. 147	0.77	0.46	1.673	-0.2
330		33.000	259. 500	11. 000	0. 036	0. 78	0.46	1. 695	-0.2
331		28.000	263. 000	10.000	0. 181	1.04	0.61	1.704	-0.3
332		25.000	259. 500	6.000	0.608	12. 50	7. 33	1. 705	-3.7
333		29. 000	255. 500	5. 500	0. 025	0. 53	0.31	1.709	-0.1
334		25.000	258. 500	5.000	0. 545	7. 60	4. 40	1.727	-2.3
335		31.000	257. 000	8.000	0. 038	0.80	0.46	1. 739	-0.2
336		25. 500	261. 000	7. 500	0. 527	11. 25	6. 44	1. 746	-3.5
337		25. 000	259. 000	5.500	0. 580	9.82	5. 62	1.747	-3.0
338		26. 000	259. 500	6.000	0. 211	1. 19	0.68	1.750	-0.3
339		26. 000	260. 000	6.500	0. 265	1. 95	1. 10	1.772	-0.6
340		25. 500	259. 500	6.000	0. 429	4. 66	2. 61	1. 785	-1.5

No	マシ	中心	円弧条件	牛 半径	最大深度	すべり 抵抗力	滑動力	安全率	抑止力
No.	登 録	X (m)	座保 Y(m)	十年 r (m)	取入休及 (m)	S (kN/m)	T(kN/m)	Fs	Pr(kN/m)
341		26.000	262. 500	9.000	0. 446	9. 67	5. 26	1. 838	-3.3
342		26.000	260. 500	7. 000	0. 312	2. 62	1. 42	1. 845	-0.9
343		25. 500	260. 500	7. 000	0. 499	8. 57	4. 63	1.850	-3.0
344		28. 000	258. 000	6. 000	0.058	0. 26	0. 14	1.857	0.0
345		25. 500	260.000	6. 500	0. 467	6. 30	3. 37	1.869	-2.2
346		28.000	262. 500	9. 500	0. 116	0. 52	0. 27	1. 925	-0.1
347		26.000	261. 000	7. 500	0. 352	3. 58	1. 85	1. 935	-1.3
348		26. 500	261. 500	8.000	0. 195	1. 32	0. 68	1. 941	-0.5
349		31. 000	258. 000	8. 500	0. 023	0. 61	0. 31	1. 967	-0.2
350		27. 500	257. 000	5. 000	0. 038	0. 30	0. 15	2. 000	-0.1
351		26.000	261. 500	8.000	0. 387	4. 40	2. 18	2. 018	-1.7
352		26.000	262. 000	8. 500	0. 419	6. 70	3. 30	2. 030	-2.7
353		26. 500	262. 000	8. 500	0. 237	1. 74	0.85	2. 047	-0.7
354		26. 500	262. 500	9.000	0. 274	2. 29	1. 10	2. 081	-0.9
355		26. 500	261. 000	7. 500	0. 147	0. 68	0. 32	2. 125	-0.2
356		24. 000	259. 000	5.000	0. 335	8. 51	3. 99	2. 132	-3. 7
357		24. 500	260. 500	6. 500	0. 269	6. 75	3. 10	2. 177	-3.0
358		26. 500	263. 000	9. 500	0. 308	3. 02	1. 38	2. 188	-1.3
359		26. 500	260. 500	7. 000	0. 093	0. 38	0. 17	2. 235	-0.1
360		27.000	263. 000	9. 500	0. 121	0.66	0. 28	2. 357	-0.3
361		24. 500	260.000	6.000	0. 259	4. 23	1. 50	2. 820	-2.4
362		25. 000	260.000	6.000	0. 132	0. 96	0. 33	2. 909	-0.5
363		24. 500	259. 500	5. 500	0. 246	2. 73	0. 92	2. 967	-1.6
364		24. 500	259. 000	5.000	0. 231	2. 00	0. 67	2. 985	-1.1
365		25.000	260. 500	6. 500	0. 153	1. 12	0. 37	3. 027	-0.6
366		25.000	259. 000	5.000	0. 080	0. 40	0. 13	3.076	-0.2
367		25.000	261. 000	7. 000	0. 170	1. 41	0. 45	3. 133	-0.8
368		25.000	259. 500	5. 500	0. 108	0. 57	0. 18	3. 166	-0.3
369		27. 000	262. 500	9.000	0. 078	0. 26	0.08	3. 250	-0.1
370		25. 500	262. 500	8. 500	0. 092	0. 69	0. 20	3. 450	-0.4
371		25. 000	261. 500	7. 500	0. 185	1. 65	0. 47	3. 510	-1.0
372		25. 000	262. 000	8. 000	0. 198	2. 15	0. 59	3. 644	-1.4
373		25. 500	262. 000	8.000	0. 073	0. 42	0. 11	3. 818	-0.2
374		25. 500	263. 000	9.000	0. 108	0. 61	0. 14	4. 357	-0.4
375		25. 500	261. 500	7. 500	0. 051	0. 26	0.05	5. 200	-0.2

解析断面図(常時)

スライス集計表 (円弧A)

区間 1 円弧[中心座標(X,Y) = (29.500, 257.000)、 半径 r = 7.000(m)]

始点座	漂 (m)	終点座	票 (m)	粘着力	内部層	を 擦角
X	Y	X	Y	$C(kN/m^2)$	φ (°)	$ an\phi$
22. 984	254. 439	24. 861	251. 757	0.38	35. 0000	0. 700208

No	左側高さ h1(m)	右側高さ h2(m)	スライス幅 b(m)	すべり面長 1(m)	すべり面 傾斜角 θ(°)	平均 水位高 hw(m)	スライス の重量 W(kN/m)	法線力 N(kN/m)	間隙水圧 U(kN/m)	すべり 抵抗力 S(kN/m)	滑動力 T(kN/m)
1	0.000	0. 013	0.005	0.014	68. 472	-	0.00	0.00	0.00	0.01	0.00
2	0.013	0. 601	0. 290	0.701	64. 553	-	1. 62	0.70	0.00	0.76	1. 46
3	0.601	0. 597	0. 484	0. 937	58. 656	-	5. 40	2. 81	0.00	2.32	4. 61
4	0. 597	0. 130	0. 924	1. 417	50. 031	_	6.66	4. 28	0.00	3. 54	5. 10
5	0. 130	0.073	0.078	0.106	43. 028	-	0. 18	0. 13	0.00	0.13	0. 12
6	0.073	0.000	0.095	0. 128	42. 200	_	0.00	0.00	0.00	0.05	0.00
小計	1	_	1.876	3. 303	-	-	13.86	7. 92	0.00	6.81	11. 29

スライス図:円弧A

スライス集計表 (円弧B)

区間 1 円弧[中心座標(X,Y) = (29.000, 258.000)、 半径 r = 7.500(m)]

始点座	漂 (m)	終点座	票 (m)	粘着力	内部層	を 擦角
X	Y	X Y		$C(kN/m^2)$	φ (°)	$ an\phi$
22. 378	254. 478	24. 873	251. 737	0.38	35. 0000	0. 700208

No	左側高さ h1(m)	右側高さ h2(m)	スライス幅 b(m)	すべり面長 1(m)	すべり面 傾斜角 θ(°)	平均 水位高 hw(m)	スライス の重量 W(kN/m)	法線力 N(kN/m)	間隙水圧 U(kN/m)	すべり 抵抗力 S(kN/m)	滑動力 T(kN/m)
1	0.000	0. 257	0. 172	0.351	60. 194	-	0.36	0. 18	0.00	0. 26	0.31
2	0. 257	0. 927	0. 440	0. 793	55. 615	_	4.86	2. 74	0.00	2. 22	4.01
3	0. 927	1. 241	0. 290	0.466	51. 359	_	5. 58	3. 48	0.00	2.61	4. 36
4	1. 241	1. 149	0. 174	0. 263	48. 696	_	3. 78	2. 49	0.00	1.84	2.84
5	1. 149	0. 253	1. 160	1.558	42. 678	_	15. 30	11. 25	0.00	8. 47	10. 37
6	0. 253	0. 107	0. 152	0. 186	35. 170	_	0.54	0. 44	0.00	0.38	0.31
7	0. 107	0.000	0. 107	0. 129	34. 037	_	0.18	0. 15	0.00	0.15	0. 10
小計	-	_	2. 495	3.746	-	_	30.60	20. 73	0.00	15. 93	22. 30

スライス図:円弧B

スライス座標一覧 (円弧A)

No.	距離		標高	(m)		す	べり面	重心	(m)
	(m)	地形 1	地層境界	水位線	すべり面	形状	強度	X	Y
	22. 985	254. 440			254. 440				
1	22. 990	254. 440			254. 427	円弧	地層値	22. 988	254. 436
2	22.990	254, 440			204. 421	"	"	23. 179	254. 202
3	23. 280	254. 390			253. 789	,,,	"	23. 522	253. 678
3	23. 764	253. 584			252. 988		"	23. 322	200.010
4	0.4.000	050.046	051 016		051 016	11	"	24. 135	252. 743
5	24. 688	252. 046	251. 916		251. 916	"]]	24, 724	251. 935
	24. 766	251. 916			251.843				
6	24. 861	251. 758			251. 758	"	"	24. 798	251. 839
	24.001	201.700			201.700				

スライス座標一覧 (円弧B)

No.	距離		標高	(m)		す	べり面	重心	(m)
	(m)	地形 1	地層境界	水位線	すべり面	形状	強度	X	Y
	22. 378	254. 478			254. 478				
1	00 550	054 490			054 170	円弧	地層値	22. 492	254. 360
2	22. 550	254. 430			254. 173	,,,	"	22. 811	254. 103
	22. 990	254. 440			253. 513				
3	23. 280	254. 390			253. 149	"	IJ	23. 142	253. 866
4	25, 260	254. 550			200. 149	"	"	23. 366	253. 649
	23. 454	254. 101			252. 951			00.016	050 017
5	24. 614	252, 169	251. 916		251. 916	"	"	23. 916	252. 917
6			201.010			"	"	24. 680	251. 964
7	24. 766	251. 916			251. 809	,,	,,	24. 802	251. 821
-	24. 874	251. 737			251. 737		"	24. 002	201.021

スライス詳細集計表 (円弧A)

No	地層名	土質名	形状	左側 高さ h ₁ (m)	右側 高さ h ₂ (m)	スライス 幅 b(m)	面積 A(m²)	単位体積 重量 γ (kN/m³)	重量 W(kN/m)
1	地層1	 	台形	0.000	0.013	_	0.00	18.00	0.00
	"		円弧	_	_	_	0.00	18.00	0.00
	集計		_	0.000	0. 013	0.005	0.00		0.00
2	地層1	 	台形	0. 013	0.601	_	0.09	18.00	1. 62
	JJ		円弧	_	_	_	0.00	18. 00	0.00
	集計		_	0. 013	0.601	0. 290	0.09	_	1. 62
3	地層1		台形	0. 601	0. 597	_	0. 29	18.00	5. 22
	"	i I I	円弧	_	_	_	0.01	18. 00	0. 18
	集計	 	_	0. 601	0. 597	0. 484	0.30	_	5. 40
4	地層1		台形	0. 597	0. 130	_	0. 34	18. 00	6. 12
	"	i I I	円弧	_	_	_	0.03	18. 00	0. 54
	集計		_	0. 597	0. 130	0. 924	0. 37	_	6. 66
5	地層1	1 1	台形	0. 130	0.000	_	0.01	18. 00	0. 18
	地層3		台形	0.000	0.073	_	0.00	18. 00	0.00
	JJ		円弧	_	_	_	0.00	18. 00	0.00
	集計	; 	_	0. 130	0.073	0.078	0.01		0. 18
6	地層3	 	台形	0.073	0.000	_	0.00	18. 00	0.00
	"	i 	円弧	_	_	_	0.00	18.00	0.00
	集計	ii —		0. 073	0.000	0. 095	0.00	<u> </u>	0.00

スライス詳細集計表 (円弧B)

No	地層名	土質名	形状	左側 高さ h ₁ (m)	右側 高さ h ₂ (m)	スライス 幅 b(m)	面積 A (m²)	単位体積 重量 γ (kN/m³)	重量 W(kN/m)
1	地層1		台形	0.000	0. 257	_	0.02	18.00	0. 36
	<i>II</i>		円弧	_	_	_	0.00	18.00	0.00
	集計			0.000	0. 257	0. 172	0.02	_	0. 36
2	地層1		台形	0. 257	0. 927	_	0. 26	18.00	4. 68
	<i>II</i>		円弧	_	_	_	0.01	18.00	0. 18
	集計	_	_	0. 257	0. 927	0.440	0. 27	_	4. 86
3	地層1		台形	0. 927	1. 241	_	0. 31	18. 00	5. 58
	II .		円弧	_	_	_	0.00	18.00	0.00
	集計		 	0. 927	1. 241	0. 290	0. 31	_	5. 58
4	地層1		台形	1. 241	1. 149	_	0. 21	18.00	3. 78
	<i>II</i>		円弧	_	_	_	0.00	18.00	0.00
	集計	—	_ _	1. 241	1. 149	0. 174	0. 21	_	3. 78
5	地層1		台形	1. 149	0. 253	_	0.81	18. 00	14. 58
	II .		円弧	_	_	_	0.04	18.00	0. 72
	集計	_	_	1. 149	0. 253	1. 160	0.85	_	15. 30
6	地層1		台形	0. 253	0.000	_	0.02	18.00	0. 36
	地層3		台形	0.000	0. 107	_	0.01	18.00	0. 18
	<i>11</i>		円弧	_	_	_	0.00	18.00	0.00
	集計		 <u> </u>	0. 253	0. 107	0. 152	0.03	_	0. 54
7	地層3		台形	0. 107	0.000	_	0. 01	18. 00	0. 18
	<i>II</i>		円弧	_	_	_	0.00	18. 00	0.00
	集計	<u> </u>		0. 107	0.000	0. 107	0. 01	<u> </u>	0. 18

スライスの各部分の名称

h_1	:	左側高さ	(m)
h_2	:	右側高さ	(m)
b	:	スライス幅	(m)
1	:	すべり面長	(m)
θ	:	すべり面傾斜角	(°)
$h_{\text{w}} \\$:	平均水位高	(m)
W	:	スライス重量	(kN/m)
u	:	単位間隙水圧	(kN/m^2)
S	:	すべり抵抗力	(kN/m)
T	:	滑動力	(kN/m)
N	:	法線力	(kN/m)

補強材の配置

 現場名
 NO.2

 ケース名
 ケース2:1:0.6

 備考

安定計算結果

	伍口	≑ 1 ₽.	光子	数 値(常時)			
	項目	記号	単位	円弧A	円弧B		
計	安全率	Fs	_	0.603	0.714		
計算結果	計画安全率	Fsp	_	1. 200	1. 200		
果	必要抑止力	Pr	kN/m	6.8	10. 9		
	中心座標	X	m	29. 500	29. 000		
円弧	中心坐標	Y	m	257. 000	258. 000		
	半径	r	m	7.000	7. 500		
	すべり抵抗力	S	kN/m	6.81	15. 93		
١.,	滑動力	Т	kN/m	11. 29	22. 30		
計算	法線力	N	kN/m	7. 92	20. 73		
計算要素	間隙水圧	U	kN/m	0.00	0.00		
	すべり面長	1	m	3. 303	3. 746		
	面積	A	m^2	0.77	1.70		

補強材自動配置の条件

補強材の自動配置を検討するにあたり、以下に諸条件を示す。

(1) 検討補強材の選択

種類	材料名	呼び径	削孔径 D(mm)	腐食代
ネジ節棒鋼	ネジ節棒鋼 (SD345)	D19 ~ D25	65. 0	考慮する

(2) 自動計算範囲

配置	始点		終	点	のり長	形式	備	考
のり面	X (m)	Y (m)	X (m)	Y (m)	(m)	形式	7月	4
範囲 1	24. 980	251. 560	23. 280	254. 390	3. 301	連続線	上から固定長=0.	500m

(3) 補強材計算要素

項目	開始	終了	ピッチ			
施工段数	n(段)	2	2	1		
水平間隔	SH(m)	1. 50	1.50	0. 50		
縦間隔	SV(m)	水平間隔 × 1.00				
打設角度	α (°)	のり面に直角				
挿入長 (削孔長)	L _B (m)	1. 50	6. 50	0. 50		

(4) 補足条件

項目		数値
余長	(m)	0.10 m 確保
全長の丸め単位	(m)	0.5 m 単位で丸め
全長の最低長	Lmin(m)	_
不動地山への挿入最低長	L2min(m)	_

補強材自動配置結果一覧表(常時)

補強材自動配置結果一覧表 のり面工名称: グリーンパネル 計画安全率 Fsp = 1.200 補強材 配置条件 安全率 Fs ※3 総削孔長 のり面工.**4 No. 縦間隔 水平間隔 施工段数 打設角度 全長 円弧A 円弧B 備考 (施工.10m) 材料名 呼び径 寸法(mm) α (°) *1 (m) *2 SV(m) SH(m) n(段) 0.603)0.714 $\Sigma L_{\rm B}$ (m) ネジ節棒鋼 (SD345) D19 1.50 1.50 2 2.00 1.014 0.909 $967 \times 967 \times 40$ 24, 800 2 ネジ節榛鋼 (SD345) D19 1. 50 1.50 2 2.50 0.983 $967 \times 967 \times 40$ 31, 467 1.144 3 ネジ節榛鋼 (SD345) 1.274 D19 1. 50 1. 50 2 3.00 1.057 $967 \times 967 \times 40$ 38, 133 ネジ節棒鋼 (SD345) 4 D19 1.50 1.50 2 3.50 1.404 1.132 $967 \times 967 \times 40$ 44.800 ○ ネジ節棒鋼 (SD345) D19 1.50 1.50 1.534 1.206 $967 \times 967 \times 40$ 5 4.00 51, 467 ネジ節棒鋼 (SD345) D19 1.50 1.50 2 4.50 1.664 $967 \times 967 \times 40$ 58. 133 1.281 ネジ節棒鋼 (SD345) D19 1. 50 1. 50 5.00 1.794 1.355 $967 \times 967 \times 40$ 64, 800 8 ネジ節棒鋼 (SD345) D19 1.50 1.50 2 1.924 1.430 $967 \times 967 \times 40$ 71, 467 5, 50 ネジ節棒鋼 (SD345) 2 9 D19 1.50 1.50 6,00 2,054 1.504 $967 \times 967 \times 40$ 78, 133 ネジ節棒鋼 (SD345) 1, 50 1.50 2.184 1.578 84, 800 10 D19 6, 50 $967 \times 967 \times 40$ 11 ネジ節棒鋼 (SD345) D19 1.50 1.50 2 7.00 2.313 91, 467 1.653 $967 \times 967 \times 40$ 12 ネジ節棒鋼 (SD345) D22 1, 50 1.50 2 2,00 1.014 0 909 $967 \times 967 \times 40$ 24, 800 13 ネジ筋棒鋼 (SD345) D22 1.50 1.50 2 0.983 $967 \times 967 \times 40$ 31, 467 2, 50 1.144 ネジ節棒鋼 (SD345) D22 14 1. 50 1.50 2 3.00 1.274 1.057 $967 \times 967 \times 40$ 38. 133 ネジ節棒鋼 (SD345) 15 D22 1. 50 1.50 3.50 1.404 1.132 $967 \times 967 \times 40$ 44, 800 16 ネジ節棒鋼 (SD345) D22 1.50 1.50 2 4.00 1.534 1.206 $967 \times 967 \times 40$ 51.467 17 ネジ節棒鋼 (SD345) D22 1.50 1.50 4.50 1.664 1.281 $967 \times 967 \times 40$ 58. 133 ネジ節棒鋼 (SD345) 2 1.794 18 D22 1.50 1.50 5.00 1.355 $967 \times 967 \times 40$ 64.800 ネジ節棒鋼 (SD345) 2 19 D22 1. 50 1.50 5.50 1.924 1.430 $967 \times 967 \times 40$ 71.467 20 ネジ筋棒鋼 (SD345) 2 2,054 D22 1.50 1.50 6,00 1.504 78, 133 $967 \times 967 \times 40$ ネジ節棒鋼 (SD345) 21 D22 1.50 1.50 2 6, 50 2.184 1.578 $967 \times 967 \times 40$ 84, 800 22 ネジ筋棒鋼 (SD345) D22 1.50 1.50 2 7.00 2.313 1,653 $967 \times 967 \times 40$ 91, 467 23 ネジ節棒鋼 (SD345) D25 1.50 1.50 2 2.00 1.014 0.909 $967 \times 967 \times 40$ 24.800 24 ネジ筋棒鋼 (SD345) D25 1, 50 1, 50 2 2, 50 1.144 0.983 $967 \times 967 \times 40$ 31, 467 ネジ節棒鋼 (SD345) 25 1, 50 1, 50 1,274 $967 \times 967 \times 40$ D25 3, 00 1.057 38, 133

※1 のり面に直角に配置した場合は "-" と表示

※2 各段で補強材の全長が異なる場合、最大となる全長を表示

※3 ()は補強前安全率

^{※4} 各段でのり面エサイズが異なる場合、最大となるのり面エサイズを表示

1	補強棒	才自動配置結果一覧表	計画安全率	≅ Fsp =	1.200	のり面工名称: グリーンパネル								
		補強材	配置条件				安全	率 Fs ^{※3}	のり面工 ※4	総削孔長				
No.	登 録	材料名	呼び径	縦間隔 SV(m)	水平間隔 SH(m)	施工段数 n(段)	打設角度 α (°) *1	全長 (m) ^{※2}	円弧A (0.603)	円弧B (0.714)	寸法(mm)	(施工10m) ΣLB(m)	備考	
26		ネジ節棒鋼 (SD345)	D25	1. 50	1. 50	2	_	3. 50	1. 404	1.132	$967 \times 967 \times 40$	44. 800		
27		ネジ節棒鋼 (SD345)	D25	1. 50	1. 50	2	_	4. 00	1.534	1.206	$967 \times 967 \times 40$	51. 467		
28		ネジ節棒鋼 (SD345)	D25	1. 50	1. 50	2	_	4. 50	1.664	1. 281	$967 \times 967 \times 40$	58. 133		
29		ネジ節棒鋼 (SD345)	D25	1. 50	1. 50	2	_	5. 00	1.794	1.355	$967 \times 967 \times 40$	64. 800		
30		ネジ節棒鋼 (SD345)	D25	1. 50	1. 50	2	_	5. 50	1.924	1.430	$967 \times 967 \times 40$	71. 467		
31		ネジ節棒鋼 (SD345)	D25	1. 50	1. 50	2	_	6. 00	2.054	1.504	$967 \times 967 \times 40$	78. 133		
32		ネジ節棒鋼 (SD345)	D25	1. 50	1. 50	2	_	6. 50	2. 184	1.578	$967 \times 967 \times 40$	84. 800		
33		ネジ節棒鋼 (SD345)	D25	1. 50	1. 50	2	_	7. 00	2. 313	1.653	$967 \times 967 \times 40$	91. 467		

※1 のり面に直角に配置した場合は "-" と表示 ※2 各段で補強材の全長が異なる場合、最大となる全長を表示

※3 ()は補強前安全率

※4 各段でのり面エサイズが異なる場合、最大となるのり面エサイズを表示

 現場名
 NO.2

 ケース名
 ケース2:1:0.6

 備考

補 強 材 の 規 格

番号	材料名	呼び径	単位重量 W(kg/m)	補強材径 d(mm)	断面積 As(cm²)	腐食代
材-1	ネジ節棒鋼(SD345)	D19	2. 25	18. 1	2. 573	考慮する

補強材の配置結果

補強材	規格	削孔径	配置座標		水平間隔	縦間隔	打設角度	全長	挿入長	配置
No.	番号	D (mm)	X (m)	Y (m)	SH(m)	SV(m)	α (°)	L (m)	$L_{B}(m)$	のり面
[1]	材-1	65. 0	23. 537	253. 961	1.50	_	30. 99	4. 000	3.860	範囲 1
[2]	材-1	65.0	24. 310	252. 676	1. 50	1. 50	30. 99	4. 000	3.860	範囲 1

補強材の引張り耐力の算出条件

項目			数 値 (常時)	備考
補強材の許容引張り応力度	σsa	N/mm ²	200.0	ネジ節棒鋼(SD345) D19
補強材と注入材の許容付着応力	τс	N/mm^2	1.6	$\sigma \text{ ck} = 24 (\text{N/mm}^2)$
周面摩擦抵抗の安全率	Fsa	_	2.00	
のり面工の低減係数	μ	_	1.00	
補強材の引張り力の低減係数	λ	_	0.7	
地山と注入材の周面摩擦抵抗	τр	N/mm^2	0.040	地層1
			0.040	地層2
			0.040	地層3
			0. 040	地層4

補強材の抵抗力の算出方法

(1) 許容付着力の算出

許容付着力の算出式を以下に示す。

許容付着力 ta (kN/m)は、tpa と tcaの最も小さい値のものとする。

ただし、地山と注入材の許容付着力 tpa及び、補強材と注入材の許容付着力 tca は、以下の式による。

$$tpa = \frac{\tau p \cdot \pi \cdot D}{Fsa}$$

tpa : 地山と注入材の許容付着力 (kN/m) τ p : 地山と注入材の周面摩擦抵抗 (kN/m²)

D : 削孔径 (m)

Fsa : 周面摩擦抵抗の安全率

 $tca = \tau c \cdot \pi \cdot d$

tca: 補強材と注入材の許容付着力 (kN/m) τc: 補強材と注入材の許容付着応力 (kN/m²)

d : 補強材径 (m)

(2) 補強材の許容補強材力の算出

補強材の許容補強材力の算出方法、並びに算出式を以下に示す。 許容補強材力 Tpa (kN/本)は、T1pa、T2pa、Tsaの最も小さい値のものとする。 前項で算出された ta より、「移動土塊から受ける引抜き抵抗力(T1pa)」、「不動地山から受ける引 抜き抵抗力(T2pa)」、補強材の材料による「補強材の許容引張り(Tsa)」は以下の式で求められる。

T1pa =
$$\frac{1}{1 - \mu}$$
 ·L1 · ta

Tlpa: 移動土塊から受ける引抜き抵抗力 (kN/本)

μ : のり面工の低減係数

L1 : 移動土塊の有効定着長 (m)

 $T2pa = L2 \cdot ta$

T2pa: 不動地山から受ける引抜き抵抗力 (kN/本) L2 : 不動地山の有効定着長 (m)

Tsa = σ sa · As

Tsa : 補強材の許容引張り力 (kN/本) σsa : 補強材の許容引張り応力度 (kN/m²) As : 補強材の断面積 (m²) 以上の結果より、補強後の安定計算式を以下に示す。

Fs =
$$\frac{\sum \{(N-U) \cdot \tan \phi + C \cdot 1\} + Sh + Ss}{\sum T}$$

Fs : 安全率

N : スライスの重力による法線力 (N=W・ $\cos\theta$ +QN) (kN/m): スライスに働く間隙水圧 $(U=u \cdot b \cdot \cos \theta)$ (kN/m)T: スライスの重力による接線力 $(T=W\cdot\sin\theta+Q_T)$ (kN/m)1 : スライスのすべり面長 (m): スライス幅 (m)(°) φ : すべり面の内部摩擦角 C : すべり面の粘着力 (kN/m^2) : スライス重量 (kN/m)(°) θ : すべり面傾斜角 u : 単位間隙水圧 (kN/m^2) Q_N : 上載荷重分力(法線方向) (kN/m)Q_T : 上載荷重分力(接線方向) (kN/m)Sh : 補強材による引き止め力 $(Sh=Tm \cdot cos \beta)$ (kN/m)Ss : 補強材による締め付け力 $(Ss = Tm \cdot sin \beta \cdot tan \phi) (kN/m)$ Tm : 補強材の設計引張力 (kN/m)β : 補強材設置角度 (すべり面と補強材とのなす角度)(°)

補強材による抵抗力の算出 (円弧A-常時)

ここでは、前項の条件、数値、および数式を用いて補強材の抵抗力を求めるものとする。

< 補強材 No.1 >

(1) 補強材の許容補強材力の算出 Tpa

Tlpa =
$$\frac{1}{1 - \mu} \cdot \min(\Sigma (L1 \times tpa), \Sigma (L1 \times tca))$$

ここで、 μ =1.00 より Tlpaは計算しない。

T2pa = min(
$$\Sigma$$
(L2×tpa), Σ (L2×tca))

$$=$$
 14.502 (kN)

Tsa =
$$\sigma_{sa} \cdot A_s$$
 = 200.0 × 10³ × 2.573 × 10⁻⁴
= 51.460 (kN)

μ: のり面工の低減係数

 L1 : 移動土塊の有効定着長
 (m)

 L2 : 不動地山の有効定着長
 (m)

 σ sa : 補強材の許容引張り応力度 (kN/m^2) As : 補強材の断面積 (m^2)

よって Tpa は、T2pa < Tsa より T2pa とする。

(2) 補強材による抵抗力の算出

前項で算出されたTpaより、補強材による引き止め力Sh、および補強材による締め付け力Ssを求める。 ただし、引き止め力Shがマイナスの場合は0.0として計算する。

Td =
$$\lambda$$
 · Tpa = 0.7 × 14.502 = 10.151 (kN/本)

$$Tm = \frac{Td}{SH} = \frac{10.151}{1.50} = 6.767 \text{ (kN/m)}$$

Sh =
$$Tm \cdot \cos \beta i$$
 = 6.767×cos(93.81)

= 0.000 (kN/m)

$$Ss = Tm \cdot sin \beta i \cdot tan \phi i = 6.767 \times sin(93.81) \times 0.700208$$

= 4.728 (kN/m)

Tm : 補強材の設計引張り力 (kN/m)

λ : 補強材の引張り力の低減係数

Tpa : 補強材の許容補強材力 (kN/本) β_i : 補強材とすべり面とのなす角度 ($^\circ$) ϕ_i : 内部摩擦角 ($^\circ$) (kN/本)

SH : 水平間隔 (m)

補強材による抵抗力の算出 (円弧B-常時)

ここでは、前項の条件、数値、および数式を用いて補強材の抵抗力を求めるものとする。

< 補強材 No.1 >

(1) 補強材の許容補強材力の算出 Tpa

T1pa =
$$\frac{1}{1 - \mu}$$
 • min(Σ (L1×tpa), Σ (L1×tca))

ここで、 μ =1.00 より Tlpaは計算しない。

T2pa = min(
$$\Sigma$$
(L2×tpa), Σ (L2×tca))

$$=$$
 12.865 (kN)

Tsa =
$$\sigma_{sa} \cdot A_s$$
 = 200.0 × 10³ × 2.573 × 10⁻⁴

$$=$$
 51.460 (kN)

μ : のり面工の低減係数

 L1 : 移動土塊の有効定着長
 (m)

 L2 : 不動地山の有効定着長
 (m)

 σ sa : 補強材の許容引張り応力度 (kN/m^2)

As : 補強材の断面積 (m²)

よって Tpa は、T2pa < Tsa より T2pa とする。

(2) 補強材による抵抗力の算出

前項で算出されたTpaより、補強材による引き止め力Sh、および補強材による締め付け力Ssを求める。 ただし、引き止め力Shがマイナスの場合は0.0として計算する。

Td =
$$\lambda$$
 · Tpa = 0.7 × 12.865 = 9.006 (kN/本)

$$Tm = \frac{Td}{SH} = \frac{9.006}{1.50} = 6.004 \text{ (kN/m)}$$

Sh =
$$Tm \cdot \cos \beta i$$
 = 6.004×cos (85.03)

$$=$$
 0.520 (kN/m)

$$Ss = Tm \cdot sin \beta i \cdot tan \phi i = 6.004 \times sin(85.03) \times 0.700208$$

$$=$$
 4.188 (kN/m)

Tpa: 補強材の許容補強材力(kN/本) βi : 補強材とすべり面とのなす角度(°) ϕi : 内部摩擦角(°)Td: 1本当りの設計引張り力(kN/本)

SH : 水平間隔 (m)

各補強材による抵抗力一覧表 (円弧A-常時)

各補強材による抵抗力一覧表											
補強材 No.	β (°)	Tlpa (kN/本)	T2pa (kN/本)	Tsa (kN/本)	Tpa (kN/本)	Td (kN/本)	Tm (kN/m)	Sh (kN/m)	Ss (kN/m)		
[1]	93. 81		14. 502	51. 460	14. 502	10. 151	6. 767	0.000	4. 728		
[2]	81. 50		14. 755	51. 460	14. 755	10. 329	6. 886	1.018	4. 769		
計								1.018	9. 497		

※T1pa、T2pa、Tsaの囲みはTpaとして用いる値を示す。

各補強材による抵抗力一覧表 (円弧B-常時)

各補強	触材による	る抵抗力一身	覧表						
補強材 No.	β (°)	T1pa (kN/本)	T2pa (kN/本)	Tsa (kN/本)	Tpa (kN/本)	Td (kN/本)	Tm (kN/m)	Sh (kN/m)	Ss (kN/m)
[1]	85. 03		12.865	51. 460	12.865	9.006	6.004	0. 520	4. 188
[2]	73. 35		14. 036	51. 460	14. 036	9.825	6. 550	1.877	4. 394
計								2. 397	8. 582

※T1pa、T2pa、Tsaの囲みはTpaとして用いる値を示す。

許容補強材力:円弧A(常時)

許容補強材力:円弧B(常時)

各補強材における層ごとの挿入長 (円弧A-常時)

項目			数値	備考
周面摩擦抵抗の安全率	Fsa	_	2.00	
補強材と注入材の許容付着応力	τс	N/mm²	1.6	

補強材 No.1 削孔径 D = 65.0 (mm) 補強材径 d = 18.1 (mm)

層	LB	L1(n)	L2(n)	τр	tpa	tca	L1•tpa	L1·tca	L2•tpa	L2·tca
地層1	3.860	0.309	3. 551	40	4. 084	90. 981	1. 262	28. 113	14. 502	323. 074
合 計	3.860	0.309	3. 551				1. 262	28. 113	14. 502	323. 074

補強材 No. 2 削孔径 D = 65.0 (mm) 補強材径 d = 18.1 (mm)

層	LB	L1(n)	L2(n)	τр	tpa	tca	L1•tpa	L1·tca	L2•tpa	L2·tca
地層1	1. 475	0. 247	1. 228	40	4. 084	90. 981	1. 009	22. 472	5. 015	111. 725
地層3	0. 672	0.000	0. 672	40	4. 084	90. 981	0.000	0.000	2. 744	61. 139
地層4	1. 713	0.000	1. 713	40	4. 084	90. 981	0.000	0.000	6. 996	155. 850
合 計	3.860	0. 247	3. 613				1. 009	22. 472	14. 755	328. 714

 LB : 地山の挿入長(削孔長)
 (m)

 L1 : 移動土塊の有効定着長
 (m)

L2 : 不動地山の有効定着長 (m)

τρ : 地山と注入材の周面摩擦抵抗 (kN/m²)

tpa : 地山と注入材の許容付着力 (kN/m) tpa = $\frac{\tau p \cdot \pi \cdot D}{Fsa}$

tca :補強材と注入材の許容付着力 (kN/m) tca = $\tau c \cdot \pi \cdot d$

各補強材における層ごとの挿入長 (円弧B-常時)

項目			数値	備考
周面摩擦抵抗の安全率	Fsa	_	2.00	
補強材と注入材の許容付着応力	τс	N/mm²	1.6	

補強材 No.1 削孔径 D = 65.0 (mm) 補強材径 d = 18.1 (mm)

層	LB	L1(n)	L2(n)	τр	tpa	tca	L1•tpa	L1·tca	L2•tpa	L2•tca
地層1	3.860	0.710	3. 150	40	4. 084	90. 981	2. 900	64. 597	12. 865	286. 590
合 計	3.860	0.710	3. 150				2. 900	64. 597	12. 865	286. 590

補強材 No. 2 削孔径 D = 65.0 (mm) 補強材径 d = 18.1 (mm)

層	LB	L1(n)	L2(n)	τр	tpa	tca	L1•tpa	L1·tca	L2•tpa	L2•tca
地層1	1. 475	0. 423	1. 052	40	4. 084	90. 981	1. 728	38. 485	4. 296	95. 712
地層3	0.672	0.000	0. 672	40	4. 084	90. 981	0.000	0.000	2. 744	61. 139
地層4	1. 713	0.000	1. 713	40	4. 084	90. 981	0.000	0.000	6. 996	155. 850
合 計	3.860	0. 423	3. 437				1. 728	38. 485	14. 036	312. 701

 LB : 地山の挿入長(削孔長)
 (m)

 L1 : 移動土塊の有効定着長
 (m)

 L2 : 不動地山の有効定着長
 (m)

τρ : 地山と注入材の周面摩擦抵抗 (kN/m²)

tpa : 地山と注入材の許容付着力 (kN/m) tpa = $\frac{\tau\,p\cdot\pi\cdot D}{Fsa}$ tca : 補強材と注入材の許容付着力 (kN/m) tca = $\tau\,c\cdot\pi\cdot d$

 現場名
 NO.2

 ケース名
 ケース2:1:0.6

 備考

	補強材配置後の安全率結果						
	項目	記号	単位	数 値 (常時)			
	以 日	記与	早 1仏	円弧A	円弧B		
計	補強前安全率	Fs	_	0.603	0.714		
計算結果	計画安全率	Fsp	_	1. 200	1. 200		
果	補強後安全率	Fs	_	1. 534	1. 206		
	 中心座標	X	m	29. 500	29. 000		
円弧	十心性保	Y	m	257. 000	258. 000		
	半径	r	m	7. 000	7. 500		
計算	引き止め力	Sh	kN/m	1.018	2. 397		
計算要素	締め付け力	Ss	kN/m	9. 497	8. 582		

施工段数: 2段

補強後安全率の算出 (円弧A)

Fs =
$$\frac{\sum \{ (N-U) \cdot \tan \phi + C \cdot 1 \} + Sh + Ss}{\sum T}$$

= $\frac{6.81 + 1.018 + 9.497}{11.29}$
= 1.534

補強後安全率の算出 (円弧B)

Fs =
$$\frac{\sum \{ (N-U) \cdot \tan \phi + C \cdot 1 \} + Sh + Ss}{\sum T}$$
=
$$\frac{15.93 + 2.397 + 8.582}{22.30}$$
= 1.206

のり面工 設置範囲別情報 (グリーンパネル)

のり面工配置諸元 のり面工に作用する補強材引張り力 T。= 10.329 (kN/本)

(円弧すべり)

	- / ш н		- У Ш = (= / () / () ()		(111.)	,					(1.4	4/		
範	判定	設置数	規格	製品寸法(mm)		受圧面積	許容設計強度	補強材規格			間隔(m)		Td	
进	刊足			縦 L1	横 L2	厚さ h	(m ²)	(kN)	No.	材料名	呼び径	水平	縦	(kN/本)
	OK	2	レギュラーサイズ	967	967	40	0. 935	123. 0	[1]	ネジ節棒鋼 (SD345)	D19	1.500	0.500	10. 151
									[2]	ネジ節棒鋼 (SD345)	D19	1.500	1. 500	10. 329

のり面工設計計算報告書

(グリーンパネル)

現 場 名	NO. 2
ケース名	ケース2:1:0.6
備考	

計 算 条 件

項目	記号	単 位	数值
設計引張り力	$T_{\rm d}$	kN/本	10. 329
のり面工の低減係数	μ	_	1. 00
のり面工に作用する補強材引張り力	То	kN/本	10. 329

のり面工の諸元

項目	記号	単 位	数值
規格	_	_	レギュラーサイズ
許容設計荷重	TA	kN	123. 0
受圧面積	A	m^2	0. 935
製品重量	W	kg	17. 5
寸法(縦×横×厚さ)	_	mm	$967 \times 967 \times 40$

のり面工に作用する補強材引張り力の照査

設計引張り力 T_d は、最大値 [補強材 No. 2] $10.329 \, (kN/本)$ を使用する。 のり面工に作用する補強材引張り力 T_o を照査する。

$$T_o = \mu \cdot T_d = 1.00 \times 10.329$$

= 10.329 (kN/本) $\leq T_A = 123.0$ (kN/本) · · · OK

したがって、グリーンパネルレギュラーサイズを採用する。