Section 11.2: Polar coordinates

Group work:

Problem 1 Plot the following (polar) points in the xy-plane and then rewrite them as rectangular coordinates.

(a)
$$\left(3, \frac{5\pi}{4}\right)$$

(a) $\left(3, \frac{5\pi}{4}\right)$ (b) $\left(3, -\frac{5\pi}{4}\right)$ (c) $\left(-3, \frac{5\pi}{4}\right)$ (d) $\left(-3, -\frac{5\pi}{4}\right)$

Solution: (a)

$$x = 3\cos\left(\frac{5\pi}{4}\right) = -\frac{3\sqrt{2}}{2}$$

$$y = 3\sin\left(\frac{5\pi}{4}\right) = -\frac{3\sqrt{2}}{2}$$

(b)

$$x = 3\cos\left(-\frac{5\pi}{4}\right) = -\frac{3\sqrt{2}}{2}$$

$$y = 3\sin\left(-\frac{5\pi}{4}\right) = \frac{3\sqrt{2}}{2}$$

Learning outcomes:

(c)
$$x = -3\cos\left(\frac{5\pi}{4}\right) = \frac{3\sqrt{2}}{2}$$

$$y = -3\sin\left(\frac{5\pi}{4}\right) = \frac{3\sqrt{2}}{2}$$

(d) $x = -3\cos\left(-\frac{5\pi}{4}\right) = \frac{3\sqrt{2}}{2}$ $y = -3\sin\left(-\frac{5\pi}{4}\right) = -\frac{3\sqrt{2}}{2}$

Problem 2 Rewrite the rectangular point (3,5) in polar coordinates in three different ways.

Solution:

i.

$$r = \sqrt{3^2 + 5^2} = \sqrt{34}$$
 $\theta = \arctan\left(\frac{5}{3}\right)$

ii.

$$r = \sqrt{34}$$
 $\theta = \arctan\left(\frac{5}{3}\right) - 2\pi$

iii.

$$r = -\sqrt{34}$$
 $\theta = \arctan\left(\frac{5}{3}\right) + \pi$

Problem 3 The graph of the curve $r=4\sin\theta$ is a circle. Use the graph below to sketch this circle. Can you verify this algebraically? What is the period of the polar curve? Is $0 \le \theta \le 2\pi$ necessary to complete the graph?

Solution: Graphing this equation in the picture below, we see that this is a circle with radius 2 and center (0,2).

To verify this algebraically,

$$4 = 4\sin\theta \qquad \Longrightarrow \qquad r^2 = 4r\sin\theta$$

$$\implies \qquad x^2 + y^2 = 4y$$

$$\implies \qquad x^2 + y^2 - 4y = 0$$

$$\implies \qquad x^2 + y^2 - 4y + 4 = 4$$

$$\implies \qquad x^2 + (y - 2)^2 = 2^2.$$

To find the period of the polar curve, we convert both x and y into parametric equations with parameter θ .

$$x = r\cos\theta = 4\sin\theta\cos\theta = 2\sin(2\theta)$$
$$y = r\sin\theta = 4\sin^2\theta = 4\cdot\frac{1}{2}(1-\cos(2\theta)) = 2(1-\cos(2\theta)).$$

The period of both $\sin(2\theta)$ and $\cos(2\theta)$ is π . So the entire graph of the equation $r = 4\sin\theta$ is traversed over the region $0 \le \theta < \pi$.

Problem 4 Graph $r = 2 + 4\cos\theta$ using the "Cartesian-to-Polar" method.

Solution: First, we graph $r = 2 + 4\cos\theta$ as if r and θ were Cartesian coordinates.

We then use this to draw the following graph in the xy-plane

If it helps, here are the parametric equations for this graph

$$x = r\cos\theta = (2 + 4\cos\theta)\cos\theta = 2\cos\theta + 4\cos^2\theta = 2(\cos\theta + 1 + \cos(2\theta))$$

$$y = 4\sin\theta = (2 + 4\cos\theta)\sin\theta = 2\sin\theta + 2\sin(2\theta).$$