2. データをきちんと取り込もう

- アナログ信号のディジタル化
 - 量子化、標本化
- 特徴抽出を容易にする処理
 - ノイズ除去

2.1 アナログ信号のディジタル化

2.1.1 アナログ信号は波である

• 波としてのパターンの表現

音声

画像

2.1.2 標本化と量子化

• 波をディジタル化する手順

2.1.2 標本化と量子化

- 標本化
 - 時間または空間に連続して分布している信号を、 離散的な観測点で代表させる。
 - 標本化定理
 - 元の波に含まれる周波数の中で最も高いものを *f* としたときに、 *2f* より高い周波数で標本化すれば、 元の波を完全に再現できる
 - 例) 人間の可聴範囲は 20Hz ~ 20,000Hz 程度CD は 44,100Hz で音を標本化

2.1.2 標本化と量子化

- 量子化
 - 連続値を取る信号強度を、有限の離散値で近似
 - 人間の識別能力を基準にする

例)聴覚のダイナミックレンジ (100dB)

16bit ≒ 96dB 演習問題

演習問題 2.1 参照

(ほぼ人間が聞き分けられる範囲)

聞くことができる 最も小さな音の 100 万倍

- 音声の知覚
 - 音は空気の粗密波 🔷 鼓膜を振動させる

• 音声の知覚

- 音声の知覚
 - メルフィルタバンクの適用

低い音ほど高分解能

$$x_m = \sum_{k=l_0}^{l_h} W_m(k)|S(k)|$$

m 番目の三角窓関数にパワースペクトルを かけて,区間の周波数についてたし合わせる

- 画像の知覚
 - 光の波長によって感度が異なる赤錐体・緑錐体・ 青錐体が脳に信号を伝えている

• 画像の知覚

カラー画像

- ノイズの除去
 - 音声の場合
 - 背景雑音(加法性):周波数空間で引き算
 - マイクの特性(乗法性):周波数の対数空間で引き算

加法性雑音の例

- 画像の場合
 - フィルタの適用

1画素ずつ走査

特定の画像入力に反応する 脳の視覚野領域の処理に対応

この画素の値を $\sum x_{i+p,j+q} h_{pq}$ $p = 0 \ q = 0$

と置き換える

$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

-1	0	1
-1	0	1
-1	0	1

平均値フィルタ (縦) エッジフィルタ

• 画像の場合

(a) メディアンフィルタ

(b) Sobelフィルタ

• メディアンフィルタ適用の結果

適用前

適用後

• Sobel フィルタ適用の結果

Sobel フィルタ適用