

RESEARCH ARTICLE

Depths in hooking networks

Colin Desmarais¹ and Hosam Mahmoud² D

¹Department of Mathematics, Uppsala University, Uppsala, Sweden. E-mail: colin.desmarais@math.uu.se

Keywords: Distance in graph, Limit law, Network, Preferential attachment, Random graph, Small world

Abstract

A hooking network is built by stringing together components randomly chosen from a set of building blocks (graphs with hooks). The vertices are endowed with "affinities" which dictate the attachment mechanism. We study the distance from the master hook to a node in the network chosen according to its affinity after many steps of growth. Such a distance is commonly called the depth of the chosen node. We present an exact average result and a rather general central limit theorem for the depth. The affinity model covers a wide range of attachment mechanisms, such as uniform attachment and preferential attachment, among others. Naturally, the limiting normal distribution is parametrized by the structure of the building blocks and their probabilities. We also take the point of view of a visitor uninformed about the affinity mechanism by which the network is built. To explore the network, such a visitor chooses the nodes uniformly at random. We show that the distance distribution under such a uniform choice is similar to the one under random choice according to affinities.

1. Introduction

Several types of networks grow by repeatedly attaching components chosen from a given set of building blocks. For instance, a social network may start out from a clique of friends, and later additional cliques adjoin themselves to the network. Many species of random trees (such as random recursive trees and random plane-oriented recursive trees) grow this way, where the blocks are simply paths of length 1. Recursive trees built from blocks that are themselves trees are investigated in [5].

In the context of networks, a *building block* is defined to be a connected graph G = (V, E) with a set of *vertices* V (also called *nodes*) and a set of edges E containing at least one edge; a particular vertex in V is distinguished as the *hook*, the node designated for connecting to larger graphs. A set of building blocks is used as components strung together into a bigger network in discrete time steps. A network grown from *one* building block is investigated in [10], where the initial building block is called a *seed*. Because all the components in a collection of size one are the same, the author of [10] calls such a network a self-similar hooking network. The focus in [10] is on local and global degree profiles.

As we consider here a set of possibly more than one building block, we think that it is more appropriate to call such networks simply hooking networks. Desmarais and Holmgren [3] considers the global degree profile for a hooking network grown from a set of building blocks, as a generalization of [10]. In the present manuscript, we consider depths in hooking networks, extending similar results on random trees in [4,5,8,9].

2. The set-up of hooking networks

We have a finite set of *random* building blocks (each equipped with a hook) from which we grow the hooking network. By random, we mean that there is a probability distribution on the set of blocks.

© The Author(s), 2021. Published by Cambridge University Press

²Department of Statistics, The George Washington University, Washington, DC 20052, USA. E-mail: hosam@gwu.edu.

Figure 1. A collection of random building blocks. The probability of a block appears above the block.

More precisely, we build a sequence G_0, G_1, G_2, \ldots of hooking networks from a collection of building blocks $C = \{G_1, G_2, \ldots, G_m\}$, where each G_i has a labeled vertex h_i called the *hook* and a selection probability $p_i \in [0, 1]$ such that $\sum_{i=1}^m p_i = 1$. Note that we allow the graphs in the set of building blocks to have loops and multiple edges.

We denote the degree of vertex v in a graph by $\deg(v)$. Note that a self-loop on v contributes 2 to the degree of v. To cover a wide variety of growth models, we endow the network with two real parameters: χ and ρ . The *affinity* or "attractive power" of a vertex v in the hooking network \mathcal{G}_{n-1} is the value

$$\chi \deg(v) + \rho$$
,

where $\deg(v)$ is the degree of v in \mathcal{G}_{n-1} . The sum of these quantities over all vertices in \mathcal{G}_{n-1} , denoted by τ_{n-1} , is the *total affinity* of \mathcal{G}_{n-1} . The network \mathcal{G}_n is grown from \mathcal{G}_{n-1} by "randomly" choosing a *latch* among the vertices of \mathcal{G}_{n-1} , where the probability of choosing v as a latch is

$$\frac{\chi \deg(v) + \rho}{\tau_{n-1}}.$$

So, when $\chi = 0$, the choice is made uniformly at random among all the vertices of \mathcal{G}_{n-1} , and when $\rho = 0$, the choice is made proportionally to the degree of v in \mathcal{G}_{n-1} . Once a latch v is identified, we choose a block $G_i \in C$ with probability p_i independently from history and attach a copy isomorphic to it to \mathcal{G}_{n-1} by merging the hook h_i to the latch v. The initial graph \mathcal{G}_0 is isomorphic to G_i , where G_i is chosen from C with probability p_i .

Let B_n denote the *n*th block attached to the hooking network. The vertex corresponding to the hook of the initial block, B_0 , used to launch the network with G_0 , is called the *master hook* of the network and is denoted by H. Notice that by construction, the blocks B_0, B_1, \ldots, B_n are all independently and identically distributed.

3. Illustrative example

Let G_1 , G_2 , G_3 be the blocks in Figure 1, with probabilities $p_1 = 1/5$, $p_2 = 1/5$, and $p_3 = 3/5$. The hook of G_i , for i = 1, 2, 3, is labeled with h_i . Figure 2 shows the step-by-step evolution of one possible realization of the hooking networks G_0 , G_1 , G_2 , G_3 grown from G_3 is shown with its blocks G_3 , G_3 , G_3 , and G_3 identified.

Under uniform attachment ($\chi = 0$), the probability of the sequence $\mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3$ is

$$\frac{1}{5} \times \left(\frac{1}{4} \times \frac{1}{5}\right) \times \left(\frac{1}{7} \times \frac{1}{5}\right) \times \left(\frac{1}{10} \times \frac{3}{5}\right) = \frac{3}{175,000},$$

and under preferential attachment ($\rho = 0$), this probability is given by

$$\frac{1}{5} \times \left(\frac{1}{4} \times \frac{1}{5}\right) \times \left(\frac{1}{16} \times \frac{1}{5}\right) \times \left(\frac{5}{24} \times \frac{3}{5}\right) = \frac{1}{64,000}.$$

Figure 2. A sequence of hooking network.

4. Scope

Define D_n to be the shortest distance from the master hook H to the latch v chosen in \mathcal{G}_{n-1} to construct \mathcal{G}_n ; that is, the number of edges along the shortest path from H to v. We call this distance the *depth* of the vertex v. Notice that D_n is distributed as the depth of a vertex u in \mathcal{G}_{n-1} chosen at random proportionally to $\chi \deg(u) + \rho$, since the choice of a latch is made according to its affinity. For certain choices of C and affinity parameters χ and ρ , we find the exact average of D_n and prove a normal limit law. This result holds in the case of uniform attachment when all the blocks have the same number of vertices, and in the case of preferential attachment, when all the blocks have the same number of edges. The theorem holds in more generality, which is explained below.

We also consider an uninformed view of "random" depth, \widetilde{D}_n , according to which the network explorer is not aware of the underlying affinity. The explorer then resorts to a uniform choice of a random node. The result for \widetilde{D}_n is similar to that for D_n .

Let us introduce some notation:

- Denote the cardinality of a set \mathcal{E} by $|\mathcal{E}|$.
- For a graph G, we use V(G) for the set of its vertices and E(G) for the set its of edges.
- Let $v_i = |V(G_i)|$.
- Let $e_i = |E(G_i)|$.
- Let $s_i = 2\chi e_i + (\nu_i 1)\rho$.
- Let $\mathbb{I}_{\mathcal{A}}$ be the indicator of event \mathcal{A} .

The quantity s_i is the *affinity* of a copy B_n of the block G_i when it is hooked in the network. Note that after hooking, h_i is absorbed in a node of a previous network \mathcal{G}_{n-1} , so only $v_i - 1$ vertices of B_n participate in future hooking, while all the edges are intact and participate fully in all the future stages of hooking. The collections of building blocks we consider for the presentation of Gaussian laws have blocks with the same affinity, which we call s. This requirement is attained in several cases, for example, when $\chi = 0$ and $v_1 = v_2 = \cdots = v_m$ or when $\rho = 0$ and $e_1 = e_2 = \cdots = e_m$.

We define a few random variables that are used in our proofs.

Definition 4.1. For a block G_i , let $d_i(v)$ be the distance from a vertex v in G_i to the hook h_i . For a block G_i , define the random variable δ_i such that

$$\delta_i = \begin{cases} d_i(v) & \text{with probability } (\chi \deg(v) + \rho)/s_i \text{ if } v \neq h_i, \\ 0 & \text{with probability } \chi \deg(h_i)/s_i. \end{cases}$$

For $n \geq 1$, define the random variable

$$\Delta_n = \sum_{i=1}^m \mathbb{I}_{\{B_n = G_i\}} \delta_i.$$

The random variable δ_i measures the depth of a vertex v within a block in the network that is a copy of G_i , where v is chosen according to the affinity v contributes to the block after hooking (against the total affinity s_i of the block). Since the hook h_i is absorbed after hooking, it only contributes χ deg (h_i) to the affinity of the block. The random variable Δ_n is the depth within the nth block B_n added to the network of a vertex v chosen according to the affinity v contributes to the block B_n after hooking. Note that Δ_n has an "average distribution" over the δ_i 's. In other words, Δ_n is a mixture of the distributions of δ_i , where the mixing is taken according to the probabilities p_i . Each Δ_n is identically and independently distributed as a generic random variable Δ . Recall that $\mathbb{P}(B_n = G_i) = p_i$.

In our running example, we have $v_1 = v_2 = v_3 = 4$, $e_1 = e_2 = e_3 = 4$, and $s = s_1 = s_2 = s_3 = 8\chi + 3\rho$. It follows that

$$\mathbb{P}(\delta_1 = 0) = \frac{2\chi}{s}, \quad \mathbb{P}(\delta_1 = 1) = 2\frac{2\chi + \rho}{s}, \quad \mathbb{P}(\delta_1 = 2) = \frac{2\chi + \rho}{s};$$

the multiple 2 in $\mathbb{P}(\delta_1 = 1)$ accounts for two vertices at distance 1 from the hook of G_1 . Since Δ_n is distributed like Δ , for our running example we have

$$\mathbb{P}(\Delta_n = 0) = p_1 \mathbb{P}(\delta_1 = 0) + p_2 \mathbb{P}(\delta_2 = 0) + p_3 \mathbb{P}(\delta_3 = 0) = \frac{8\chi}{5s}.$$

Likewise, we have

$$\mathbb{P}(\Delta_n = 1) = \frac{21\chi + 8\rho}{5s}, \quad \mathbb{P}(\Delta_n = 2) = \frac{11\chi + 7\rho}{5s}.$$

The average of Δ is

$$\mathbb{E}[\Delta] = \frac{43\chi + 22\rho}{40\chi + 15\rho},$$

and the variance is

$$\mathbb{V}\mathrm{ar}[\Delta] = \frac{751\chi^2 + 523\chi\rho + 56\rho^2}{25(8\chi + 3\rho)^2}.$$

Since the hook of B_0 is not absorbed in a latch of a prior graph, the depth Δ_0 within B_0 follows a slightly different distribution from Δ . The affinity of B_0 is $s + \rho$ and the probability of choosing any vertex v within B_0 is $(\chi \deg(v) + \rho)/(s + \rho)$. From this, we see immdediately that Δ_0 is distributed as

$$\Delta_0 \stackrel{d}{=} \operatorname{Ber}\left(\frac{s}{s+\rho}\right) \Delta,\tag{1}$$

where Ber(p) is a Bernoulli random variable with parameter p.

Notice that the total affinity of the network is given by $\tau_0 = s + \rho$ (the affinity of the first block B_0) and $\tau_n = sn + \tau_0 = s(n+1) + \rho$.

5. Main results

We are now poised to state the main theorems. They come in two flavors: exact and asymptotic. We use $\psi_W(u) := \mathbb{E}[e^{Wu}]$ for the moment generating function of any generic random variable W. An exact moment generating function for D_n is key to the extraction of its exact moments and serves as a starting point for its asymptotic distribution.

When choosing the nth latch, we can think of first choosing one of the blocks that were previously added, and then choosing a vertex within that block. The depth of the hook of the ith block added is D_i . Because of the absorption of the hook in a node of a previous network, a block contributes only according to the amount of affinity in its nonhook vertices and all edges including those connected to the

hook, the only exception being the initial block as its master hook remains a viable candidate as a latch throughout all stages. Therefore, the contribution of B_i , for $i \ge 1$, is the depth Δ_i defined in Definition 4.1, whereas that of B_0 is the adjusted depth Δ_0 distributed as (1). We now have the distribution

$$D_n = \begin{cases} D_0 + \Delta_0, & \text{with probability } (s + \rho)/\tau_{n-1}; \\ D_i + \Delta_i, & \text{with probability } s/\tau_{n-1}, \text{ for } i = 1, \dots, n-1, \end{cases}$$

and $D_0 = 0$.

Recall the definition of δ_i from Definition 4.1. This random variable has the moment generating function

$$\psi_{\delta_i}(u) = \sum_{v \in V_i \setminus \{h_i\}} \frac{1}{s} (\chi \deg(v) + \rho) e^{d_i(v)u} + \frac{\chi}{s} \deg(h_i),$$

with $d_i(v)$ being the distance of v from h_i . Going further, we express this as

$$\psi_{\delta_{i}}(u) = \sum_{v \in V_{i}} \frac{1}{s} (\chi \deg(v) + \rho) e^{d_{i}(v)u} - \frac{\rho e^{d_{i}(h_{i})u}}{s}$$
$$= \sum_{v \in V_{i}} \frac{1}{s} (\chi \deg(v) + \rho) e^{d_{i}(v)u} - \frac{\rho}{s}.$$

The distribution of Δ_n is obtained by mixing the distributions in the blocks according to their probabilities. More precisely, Δ_n has the moment generating function

$$\psi_{\Delta_n}(u) = \sum_{i=1}^m p_i \psi_{\delta_i}(u) = \frac{s+\rho}{s} \psi_{\Delta_0}(u) - \frac{\rho}{s}.$$

We next develop $\psi_{D_n}(u)$ in exact form.

Lemma 5.1.

$$\psi_{D_n}(u) = \psi_{\Delta_0}(u) \prod_{i=1}^{n-1} \frac{\rho + si + s\psi_{\Delta}(u)}{\rho + s(i+1)}.$$

Proof. In the following derivation, we use the fact that, for $i \ge 1$, the variables D_i and Δ_i are independent, and that all Δ_i are identically distributed to the random variable Δ . We obtain

$$\psi_{D_n}(u) = \frac{s + \rho}{sn + \rho} \mathbb{E}[e^{(D_0 + \Delta_0)u}] + \frac{s}{sn + \rho} \sum_{i=1}^{n-1} \mathbb{E}[e^{(D_i + \Delta_i)u}]
= \frac{s + \rho}{sn + \rho} \psi_{\Delta_0}(u) + \frac{s\psi_{\Delta}(u)}{sn + \rho} \sum_{i=1}^{n-1} \psi_{D_i}(u).$$
(2)

Differencing for $n \ge 1$, we get

$$(\rho + sn)\psi_{D_n}(u) - (\rho + s(n-1))\psi_{D_{n-1}}(u) = s\psi_{\Delta}(u)\psi_{D_{n-1}}(u),$$

which we arrange in the iterable form

$$\psi_{D_n}(u) = \frac{\rho + s((n-1) + \psi_{\Delta}(u))}{\rho + sn} \psi_{D_{n-1}}(u).$$

946

Unwinding all the way back to $\psi_{D_1}(u) = \psi_{\Delta_0}(u)$ gives us

$$\psi_{D_n}(u) = \psi_{\Delta_0}(u) \prod_{i=1}^{n-1} \frac{\rho + si + s\psi_{\Delta}(u)}{\rho + s(i+1)},$$

for $n \geq 2$.

The exact average depth of the latch can be found mechanically from $\psi_{D_n}(u)$ by taking derivatives. It appears in a form involving the generalized rth harmonic number

$$\mathcal{H}_r(y) = \frac{1}{y+1} + \dots + \frac{1}{y+r}.$$

Theorem 5.2. Let D_n be the depth of the latch v chosen to construct G_n and suppose $s = s_1 = s_2 = \cdots = s_m$. For $n \ge 1$, the exact expected value of D_n is given by

$$\mathbb{E}[D_n] = \left(\mathcal{H}_{n-1}\left(\frac{\rho}{s} + 1\right) + \frac{s}{s + \rho}\right) \mathbb{E}[\Delta].$$

Proof. Take the derivative of the moment generating function in Lemma 5.1, then evaluate at u = 0, to get

$$\mathbb{E}[D_{n}] = \psi'_{\Delta_{0}}(0) \prod_{i=1}^{n-1} \frac{\rho + si + s\psi_{\Delta}(0)}{\rho + s(i+1)}$$

$$+ \psi_{\Delta_{0}}(0) \prod_{i=1}^{n-1} \frac{1}{\rho + s(i+1)} \prod_{i=1}^{n-1} (\rho + si + s\psi_{\Delta}(0))$$

$$\times \sum_{i=1}^{n-1} \frac{s\psi'_{\Delta}(0)}{\rho + si + s\psi_{\Delta}(0)}$$

$$= \mathbb{E}[\Delta_{0}] + \sum_{i=1}^{n-1} \frac{\mathbb{E}[\Delta]}{\rho/s + i + 1}$$

$$= \left(\mathcal{H}_{n-1}\left(\frac{\rho}{s} + 1\right) + \frac{s}{\rho + s}\right) \mathbb{E}[\Delta].$$

From the approximate value of the generalized harmonic number, we immediately get the following result.

Corollary 5.3. As $n \to \infty$, we have

$$\mathbb{E}[D_n] \sim \mathbb{E}[\Delta] \ln n$$
.

Theorem 5.4. Let D_n be the depth of the latch v chosen to construct \mathcal{G}_n . If $s_1 = s_2 = \cdots = s_m$, then

$$\frac{D_n - \mathbb{E}[\Delta] \ln n}{\sqrt{\ln n}} \xrightarrow{d} \mathcal{N}(0, \mathbb{V}ar[\Delta] + \mathbb{E}^2[\Delta]).$$

https://doi.org/10.1017/S0269964821000164 Published online by Cambridge University Press

Proof. We use Lemma 5.1 to develop the moment generating function of $(D_n - \mathbb{E}[\Delta] \ln n)/\sqrt{\ln n}$. By Stirling's approximation to the ratio of Gamma functions, as $n \to \infty$, we have

$$\begin{split} \psi_{D_n}\left(\frac{u}{\sqrt{\ln n}}\right) &= \psi_{\Delta_0}\left(\frac{u}{\sqrt{\ln n}}\right) \frac{\Gamma(\rho/s + \psi_{\Delta}(u/\sqrt{\ln n}) + n)\Gamma(\rho/s + 2)}{\Gamma(\rho/s + 1 + n)\Gamma(\rho/s + 1 + \psi_{\Delta}(u/\sqrt{\ln n}))} \\ &\sim \frac{\Gamma(\rho/s + \psi_{\Delta}(u/\sqrt{\ln n}) + n)}{\Gamma(\rho/s + 1 + n)} \\ &\sim n^{\psi_{\Delta}(u/\sqrt{\ln n}) - 1} \\ &= \exp\left(\left(\psi_{\Delta}\left(\frac{u}{\sqrt{\ln n}}\right) - 1\right)\ln n\right). \end{split}$$

We use the asymptotic relation

$$\psi_{\Delta}\left(\frac{u}{\sqrt{\ln n}}\right) = 1 + \frac{u\mathbb{E}[\Delta]}{\sqrt{\ln n}} + \frac{u^2(\mathbb{V}\mathrm{ar}[\Delta] + \mathbb{E}^2[\Delta])}{2\ln n} + O\left(\frac{1}{\ln^{3/2} n}\right),$$

to get

$$\begin{split} \psi_{D_n}\left(\frac{u}{\sqrt{\ln n}}\right)e^{-(\mathbb{E}[\Delta]\ln n/\sqrt{\ln n})u} &\sim \exp\left(\left(\frac{u^2(\mathbb{V}\mathrm{ar}[\Delta]+\mathbb{E}^2[\Delta])}{2\ln n}\right)\ln n\right) \\ &\rightarrow \exp\left(\frac{u^2}{2}(\mathbb{V}\mathrm{ar}[\Delta]+\mathbb{E}^2[\Delta])\right). \end{split}$$

The last expression is the moment generating function of a centered normal distribution with variance $\mathbb{V}ar[\Delta] + \mathbb{E}^2[\Delta]$. According to Lévy's continuity theorem (see [6, Thm. 9.1], for example), convergence of moment generating functions implies the convergence in distribution stated in the theorem.

6. The uninformed visit

A visitor to the network may be uninformed about the affinity mechanism that constructed it. In the absence of such prior information, the visitor may decide to explore the network according to a uniform choice of a node, in which all the nodes in the network are equally likely.

When choosing a node uniformly at random, we can once again think of first choosing a block and then a node within that block. If the node is in B_i , its depth in the network is D_i plus the depth of a uniformly random node in B_i . The latter is an O(1) random variable. Let B be the random block chosen and suppose that all blocks have the same number of vertices, that is, $v_i = v_1 = v_2 = \cdots = v_m$. From the vantage point of uniform randomness, the probability of choosing the node from block B_i , with $i \ge 1$, is given by

$$\mathbb{P}(B=B_i)=\frac{\nu-1}{(\nu-1)n+\nu}\sim\frac{1}{n}.$$

The probability of B_0 is special:

$$\mathbb{P}(B=B_0) = \frac{\nu}{(\nu-1)n+\nu} = O\left(\frac{1}{n}\right).$$

Theorem 6.1. Let \widetilde{D}_n be the depth of a vertex chosen uniformly at random in the graph \mathcal{G}_n . If $s_1 = s_2 = \cdots = s_m$ and $v = v_1 = v_2 = \cdots = v_m$, then we have

$$\frac{\widetilde{D}_n - \mathbb{E}[\Delta] \ln n}{\sqrt{\ln n}} \xrightarrow{d} \mathcal{N}(0, \mathbb{V}ar[\Delta] + \mathbb{E}^2[\Delta]).$$

Proof. Let B be the block in which the chosen node falls. We compute

$$\psi_{\widetilde{D}_n}(u) = \sum_{i=0}^n \mathbb{E}[e^{\widetilde{D}_n u} \mid B = B_i] \mathbb{P}(B = B_i)$$

$$= O\left(\frac{1}{n}\right) + \frac{v - 1}{(v - 1)n + v} \sum_{i=1}^n \mathbb{E}[e^{(D_i + O(1))u}].$$

The O(1) in the exponent is the distance of a node chosen uniformly at random from the collection of building blocks. This random distance is independent of D_i . Upon changing the scale of u, we find by independence

$$\psi_{\widetilde{D}_n}\left(\frac{u}{\sqrt{\ln n}}\right) \sim \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left[e^{(D_i + O(1))(u/\sqrt{\ln n})}\right]$$
$$\sim \frac{1}{n} \sum_{i=1}^n \psi_{D_i}\left(\frac{u}{\sqrt{\ln n}}\right).$$

From (2), the moment generating function of $D_{n+1}/\sqrt{\ln n}$ can be written as

$$\psi_{D_{n+1}}\left(\frac{u}{\sqrt{\ln n}}\right) = \frac{s+\rho}{sn+\rho}\psi_{\Delta_0}\left(\frac{u}{\sqrt{\ln n}}\right) + \frac{s\psi_{\Delta}(\frac{u}{\sqrt{\ln n}})}{sn+\rho}\sum_{i=1}^n\psi_{D_i}\left(\frac{u}{\sqrt{\ln n}}\right)$$
$$\sim \frac{1}{n}\sum_{i=1}^n\psi_{D_i}\left(\frac{u}{\sqrt{\ln n}}\right).$$

Therefore, the moment generating functions of $\widetilde{D}_n/\sqrt{\ln n}$ and $D_{n+1}/\sqrt{\ln n}$ have the same asymptotic behavior, and the convergence stated in the theorem follows from Theorem 5.4.

7. Concluding remarks

To get a feel for what is involved in the central limit theorem and see the various nuances of the network parameters, we give some concrete forms relating to the running example. Under pure uniform attachment ($\chi = 0$), we have

$$\frac{D_n - \frac{22}{15} \ln n}{\sqrt{\ln n}} \xrightarrow{d} \mathcal{N}\left(0, \frac{12}{5}\right),\,$$

whereas for preferential attachment ($\rho = 0$), we have

$$\frac{D_n - \frac{43}{40} \ln n}{\sqrt{\ln n}} \xrightarrow{d} \mathcal{N}\left(0, \frac{13}{8}\right).$$

A case of mixed uniform and preferential attachments with $\chi=2.4$ and $\rho=5$ gives rise to the central limit theorem

$$\frac{D_n - \frac{1066}{855} \ln n}{\sqrt{\ln n}} \xrightarrow{d} \mathcal{N}\left(0, \frac{112}{57}\right).$$

Observe that the asymptotic average depth in the case of uniform attachment is higher than that of preferential attachment, because attaching preferentially "favors" older vertices in the network, and thus has the effect of "lifting" the joining blocks closer to the master hook. Of course, the asymptotic average depth in the mixed case is somewhere in between uniform and preferential attachments.

The class of random graphs we study in the article lives in the "small world," a phrase commonly used nowadays to refer to networks with average inter-node distances of order $\log n$. The author of [7] reports on a variety of networks arising in nature and technology that exhibit small world behavior. An important application appears in [1]. For a wider scope on small-world network, see [2,11].

Acknowledgments. The work of the first author is partly supported by the Knut and Alice Wallenberg Foundation, the Ragnar Söderbergs Foundation, and the Swedish Research Council. The second author wishes to thank Northeastern University for hosting his sabbatical visit. In particular, he thanks Albert-László Barabási for providing the opportunity.

References

- [1] Albert, R., Jeong, H., & Barabási, A. (1999). Diameter of the world-wide web. Nature 401: 130-131.
- [2] Barabási, A. (2018). Network science. Cambridge, UK: Cambridge University Press.
- [3] Desmarais, C. & Holmgren, C. (2020). Normal limit laws for vertex degrees in randomly grown hooking networks and bipolar networks. *Electronic Journal of Combinatorics* 27: P2.45.
- [4] Devroye, L. (1988). Applications of the theory of records in the study of random trees. Acta Informatica 26: 123-130.
- [5] Gopaladesikan, M., Mahmoud, H., & Ward, M.D. (2014). Building random trees from blocks. *Probability in the Engineering and Informational Sciences* 28: 67–81.
- [6] Gut, A. (2013). Probability: a graduate course, 2nd ed. New York: Springer.
- [7] Kleinberg, J. (2000). Navigation in a small world. *Nature* 406: 845.
- [8] Mahmoud, H. (1991). Limiting distributions for path lengths in recursive trees. Probability in the Engineering and Informational Sciences 5: 53–59.
- [9] Mahmoud, H. (1992). Distances in random plane-oriented recursive trees. *Journal of Computational and Applied Mathematics* 4: 237–245.
- [10] Mahmoud, H. (2019). Local and global degree profiles of randomly grown self-similar hooking networks under uniform and preferential attachment. Advances in Applied Mathematics 111: 101930.
- [11] Watts, D. & Strogatz, S. (1998). Collective dynamics of small-world networks. *Nature* 393: 440–442.