暗号(3) —公開鍵暗号—

野口 拓 Taku NOGUCHI

秘密鍵(共有鍵)は 暗号として重要だが・・・

- □ 代表的なもの: DES, AESなど
- ・メリット
 - ・高速かつ安全性の証明された暗号化方式 (アルゴリズム)が複数知られている
 - 1対多通信 多対多間一斉通信に使える
- ・デメリット
 - ・鍵の配送が必要で、その際に漏洩の危険がある
 - N人の人がいれば_NC₂組の通信があり、 鍵はその分だけ必要

メリット: merit

デメリット: demerit

共有鍵=暗証番号式の金庫

多数に同時に送る場合?

暗証番号 1234

入れて 鍵かける

暗証番号 1234

暗証番号 1234

Aさんとは1234 Cさんとは4321

Bさん

N人いたらN(N-1)÷2の 暗証番号=鍵

Aさん

Aさんとは5678 Bさんとは4321

鍵配送問題の解決

- 秘密共有鍵では、予め何らかの方法でお互いに鍵を共有する必要がある
- 安全に鍵を交換できる方法があればいいが、ない場合には??
- 1976: Diffie-Hellman鍵交換 (DH鍵交換)
 - 離散対数問題(※)は困難 (ここではa=g^x mod pを単にa=g^xと書く)
 - Aが秘密情報xを持っていて、Bが秘密情報yを持っている
 - ・Aはg×を、Bはgyをお互いに相手に送る盗聴されてもx/yは不明
 - AとBはお互いに秘密共有鍵gxyを得られる
 - g^{xy} はなんと、modしてもちゃんと(g^x)^y

離散対数問題

(Discrete Logarithm Problem; DLP)

- ・整数の集合Z、素数pについて
 - Z mod p:整数を p で割った余りの集合
 - p=7のとき: {0,1,2,3,4,5,6}
- ・ 0を除く全ての Z mod p の要素について、x∈Z mod p の べき乗を考える
 - p=7, x=3 のとき: 3¹=3, 3²=2, 3³=6, 3⁴=4, 3⁵=5, 3⁶=1
- ある要素のべき乗の集合が全ての元を生成するとき、その要素を原始元という
 - 3は Z mod 7 の原始元
- ・離散対数問題: a,g∈Z mod p (ただし g は原始元)について gⁱ mod p = a となる整数解 i を求める問題
 - p=5, g=3, a=1 のとき、i はどうなる?
- p や g が大きくなると求めるのは難しい。この性質は暗号で広く用いられている

つまり

- gⁱ mod p = z (p は大きな素数) のとき
 - •(g,i,p)からzを求めるのは簡単
 - •(g,z,p)からiを求めるのは難しい

たとえばp=7としてみる

		1	2	3 3	4	5	6	7	8	9	10	11	12	13		
_	2	2	4	1	2	4	1	2	4	1	2	4	1	2		
	3	3	2	6	4	5	1	3	2	6	4	5	1	3		
g	4	4	2	1	4	2	1	4	2	1	4	2	1	4		
	5	5	4	6	2	3	1	5	4	6	2	3	1	5		
	6	6	1	6	1	6	1	6	1	6	1	6	1	6		
	1															

g^x mod 7

2 x=8 38mod 19 =6561 mod 19 =6 ① p=19, g=3に決定!

3 6

y=12
 3¹²mod 19
 =531441 mod 19
 =11

4 3y mod 19=11 3xy mod 19 =118 mod 19 214358881 mod 19 =7

3^x mod 19=6 3^y mod 19=11 x=?? y=??? 3^{xy} mod 19=???

4 3× mod 19=6 3×y mod 19 =6¹² mod 19 2176782336 mod 19 =7

SSHなんかでもつかわれてる

中間者攻擊

- MITM(Man-in-the-middle)攻撃ともいう
- ・DH鍵交換の中間に割り込むことができれば x,yそのものは得られずとも暗号文は解読可能
 - 通信相手の秘密情報は知ることができないので、本当に相手が正当な受信者か確認する手段がない

DH鍵交換で一応の解決をみた鍵配送問題が直面した難題

そこで公開鍵暗号

- DifffeとHellmanが1976年にアイデアを公表
 - 実はそれより前に英国の諜報機関で考案・開発されてたらしい
- 各人が「秘密鍵」と「公開鍵」を持つ
 - ・秘密鍵は自分だけが持ち他人に教えない 公開鍵は広く他人に教える(誰にばれてもよい)
 - 公開鍵は誰に知られてもよいので鍵配送が容易になる 秘密鍵の秘匿は必須だが、配送の必要がないので容易

• 「公開鍵」で暗号化すると「秘密鍵」で復号できる

Aさん

「公開鍵」

=特殊な暗証番号式の金庫

「公開の番号」で 鍵をかけると 「秘密の番号」で 鍵があく

のらかしめ 周知 (または通信開始 直前でもよい)

Aさんに「届け物」をしたい

こんなことが可能か?

→可能だった!

- RSA暗号の発見(1978年) Rivest, Shamir, Adlemanら 実はもっと前にイギリスで。
 - 素数P、Qに対してN=PQとする
 - a^{(P-1)(Q-1)n+1}mod PQ=a (フェルマーの定理より)
 - (P-1)(Q-1)に対して互いに素のeを選び ed mod (P-1)(Q-1)=1となるdを選ぶ
 - ed=(P-1)(Q-1)n+1なのでa^{ed}mod N=a
 つまり全ての数はe乗してからd乗すると元に戻る
 - 公開鍵は(N,e) 秘密鍵はdとする
 - ・平文mに対し暗号文C=me mod N 復号はm=Cd mod N
 - P、Qが大きければNの素因数分解は困難なので Nやeがわかってもdはなかなか求められない

フェルマー: Pierre de Fermat

e,dは→秘にするいでという。 秘暗するけるできる。 なりではないではない。 をはないではない。 をはないではない。 をはないではない。 をはないではない。 をはないではない。 をはないではない。 をはないではない。 をはないではない。 をはない。 をはなない。 をはない。 をはない。 をはなな。 をはな。 をはなな。 をはなな。 をはなな。 をはなな。 をはなな。 をはなな。 をはなな。 をはなな。 をは

最近, Nが1024bitだと解かれそうなので2048bit程度のものを使うことに

例えば P=3,Q=11

どの数を3乗しても 7乗すると 元の数に

PQ=33の剰余類群 (中文では陪集群?)

			<u> </u>			_	_			_		_			_	_					_	
		べき乗数																				
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	2	4	8	16	32	31	29	25	17	1	2	4	8	16	32	31	29	25	17	1	2
	3	3	9	27	15	12	3	9	27	15	12	3	9	27	15	12	3	9	27	15	12	3
	4	4	16	31	25	1	4	16	31	25	1	4	16	31	25	1	4	16	31	25	1	4
	5	5	25	26	31	23	16	14	4	20	1	5	25	26	31	23	16	14	4	20	1	- 5
	6	6	3	18	9	21	27	30	15	24	12	6	3	18	9	21	27	30	15	24	12	- 6
	7	7	16	13	25	10	4	28	31	19	1	- 7	16	13	25	10	4	28	31	19	1	- 7
	8	8	31	17	4	32	25	2	16	29	1	8	31	17	4	32	25	2	16	29	1	2 3 4 5 6 7 8
	9	9	15	3	27	12	9	15	3	27	12	9	15	3	27	12	9	15	3	27	12	
	10	10	1	10	1	10	1	10	1	10	1	10	1	10	1	10	1	10	1	10	1	10
	11	11	22	11	22	11	22	11	22	11	22	11	22	11	22	11	22	11	22	11	22	11
こ	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
0	13	13	4	19	16	10	31	- 7	25	28	1	13	4	19	16		31	7	25	28	1	13
の世界の数	14	14	31	5	4	23	25	20	16	26	1	14	31	5	4	23	25	20	16	26	1	14
뽀	15	15	27	9	3	12	15	27	9	3	12	15	27	9	3	12	15	27	9	3	12	15
界	16	16	25	4	31	1	16	25	4	31	1	16	25	4	31	1	16	25	4	31	1	16
0	17	17	25	29	31	32	16	8	4	2	1	17	25	29	31	32	16	8	4	2	1	17
¥4-	18	18	27	24	3	21	15	6	9	30	12	18	27	24	3	21	15	6	9	30	12	18
安义	19	19	31	28	4	10	25	13	16	- 7	1	19	31	28	4	10	25	13	16	7	1	19
	20	20	4	14	16	23	31	26	25	5	т-	20	4	14	16	23	31	26	25	5	1	20
	21	21	12	21	12	21	12	21	12	21	12	21	12	21	12	21	12	21	12	21	12	21
	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
	23	23	1	23	1	23	1	23	1	23	1	23	1	23	1	23	1	23	1	23	1	23
	24	24	15	30	27	21	9	18	3	6	12	24	15	30	27	21	9	18	3	6	12	24
	25	25	31	16	4	1	25	31	16	4	1	25	31	16	4	1	25	31	16	4	1	25
	26	26	16	20	25	23	4	5	31	14	1	26	16	20	25	23	4	5	31	14	1	25 26
	27	27	3	15	9	12	27	3	15	9	12	27	3	15	9	12	27	3	15	9	12	27
	28	28	25	7	31	10	16	19	4	13	1	28	25	7	31	10	16	19	4	13	1	28
	29	29	16	2	25	32	4	17	31	8	1	29	16	2	25	32	4	17	31	8	1	29
	30	30	9	6	15	21	3	24	27	18	12	30	9	6	15	21	3	24	27	18	12	30
	31	31	4	25	16	1	31	4	25	16	1	31	4	25	16	1	31	4	25	16	1	31
	32	32	1	32	1	32	1	32	1	32	1	32	1	32	1	32	1	32	1	32	1	32

やってみよう

- 素数pとqを選ぶ: これが秘密鍵のもとになる p=17, q=11
- pとqを掛け合わせてNをつくる N = 17 × 11 = 187
- (p-1)×(q-1)と互いに素 (coprime) なeを決める e = 7

・ここで

秘密鍵: p=17, q=11から作られるd

公開鍵:N = 187, e = 7

公開鍵:N=187,e=7を使って暗号化する

- 暗号文Cの作り方: C = Me (mod N)
- 例えば01011000(XのASCIIコード)を暗号化したいとする
- $01011000_{(2)} = 88_{(10)}$
- C=88⁷ (mod 187)

モジュラ: module

```
・7乗の計算がちょっと大変… モジュラ算術をつかう
7 = 1 + 2 + 4より
88^7 \pmod{187} = [88^1 \pmod{187} \times 88^2 \pmod{187} \times 88^4 \pmod{187}] \pmod{187}
88^1 = 88 \equiv 88 \pmod{187}
88^2 = 7744 \equiv 77 \pmod{187}
88^4 = 59969536 \equiv 132 \pmod{187}
88^7 \pmod{187} = 88 \times 77 \times 132 = 894432 \equiv 11 \pmod{187}
```

• C=11

秘密鍵d: p=17, q=11, e = 7から求める

・秘密鍵dの求め方:e×d≡1[mod(p-1)×(q-1)]

- e=7, p=17, q=11より 7×d = 1 (mod 16×10) 7×d = 1 (mod 160)
- ここで161/7 = 23

d=23

復号化:dを使ってCを復号化する

- $\bullet M = C^{d} \pmod{N}$
- C=11, N=187, d=23より
- $-M=11^{23} \pmod{187}$
- 23 = 1+ 2 + 4 + 16より 11²³ (mod 187)= [11¹ (mod 187) × 11² (mod 187) × 11⁴ (mod 187) × 11¹⁶ (mod 187)] (mod 187)
- $M \equiv 88 \pmod{187}$
- $M = 88_{(10)} = 01011000_{(2)}$

ここで問題です

the magic words are squeamish ossifrage

N=

114,381,625,757,888,867,669,235,779,976,146,612,010,218, 296,721,242,362,562,561,842,935,706,935,245,733,897,830, 597,123,563,958,705,058,989,075,147,599,290,026,879,543, 541

このNをpとqに素因数分解してください

この問題(正しくはp, qを使って数字の暗号文を解く)は1977年の8月に新聞に掲載された。

魔法の言葉は気難しいヒゲワシ

N=

114,381,625,757,888,867,669,235,779,976,146,612,010,218, 296,721,242,362,562,561,842,935,706,935,245,733,897,830, 597,123,563,958,705,058,989,075,147,599,290,026,879,543, 541

このNをpとqに素因数分解してください

この問題(正しくはp, qを使って数字の暗号文を解く)は1977年の8月に新聞に掲載された。

解読されたのは、17年後の1994年4月26日 600人のボランティアによる

公開鍵暗号について

- RSA以降、いくつかの手法が発見される
 - ElGamal, 楕円曲線暗号など
- ・メリット
 - 公開鍵は秘匿する必要がないので容易に公開可
 - 秘密鍵は公開することがないので秘密を保ちやすい
 - N人のユーザ間での通信も鍵はN組で済む
 - 公開鍵を利用して電子署名アルゴリズムが作れる
 - たとえばRSAなら公開鍵と秘密鍵は対称なので簡単
 - 対称性のない公開鍵暗号を基にした方法はもう少し複雑
- ・デメリット
 - 一般に(共通鍵暗号に比べ)計算量が格段に多い=遅い
 - 共通鍵を公開鍵で暗号化して受信者に送った後、 その共通鍵で暗号化した暗号文を送るとよい
 - 一対多-多対多同報通信が苦手(受信者の数だけ暗号化)

RSA公開鍵を使った「電子署名」

:秘密鍵で「暗号化」する

(暗号性)ハッシュ関数 (hash function)

- 任意の長さの入力データから、固定長のデータを作り出す関数 y=H(x): yはxの「ハッシュ値」
- MD5(128bit)、SHA(160~512bit)などが知られている
- ・yからxを求めることは困難
 - 一方向性関数(One-way function)とも呼ばれる
- ・あるxとyの組が判っているときにでも、 同じyになる別のx'を計算/推測することが難しい
 - ・yの値はxの同一性を示すとみなせる
 - :同じyの値を持てばxも同一とみなせる
 - その意味でyをMessage-digest(ダイジェスト)とも呼ぶ
 - ・ 違うxに対して同じyが得られた時、これを衝突(Collision)と呼ぶ
- ・平文全体を秘密鍵で署名するのは時間がかかりすぎるので ハッシュ関数で平文ダイジェストを得て、それに署名する

実際の電子署名の仕組み

暗号化+署名=「認証付き通信」

・ AさんからBさんに確実にモノを届けたい

秘密鍵 2345 Bさん 公開鍵 5678

金庫は大小2つ 小金庫は大金庫に入る

暗号化してから署名

