

## Quadratwurzelangriff mit CUDA

Denny Hecht, Silvio Feig

21.01.2015

### Übersicht



- 1 Diffie-Hellman-Schlüsselaustausch
- 2 Quadratwurzelangriff
- 3 Quadratwurzelangriff
- 4 Hardware
- 5 CUDA



### Diffie-Hellman-Schlüsselaustausch

- öffentliche Werte:
  - n Primzahl, so dass  $\frac{n-1}{2}$  auch eine Primzahl ist
  - g Primitivwurzel von n
  - $a = g^x \mod n$
  - $b = g^y \mod n$
- geheime Werte:
  - X
  - y
  - privater Schlüssel  $ps = g^{xy} \mod n$



# Quadratwurzelangriff

- gesucht ist der diskrete Logarithmus
  - $x = dlog_q(a)$
  - $y = dlog_q(b)$
- der private Schlüssel ps kann nun mit g<sup>xy</sup> mod n berechnet werden

#### BABYSTEP-GIANTSTEP-ALGORITHMUS(n, g, a)



```
m = \sqrt{n-1}
          for j \in \{0, ..., m-1\}
             babyStepTable[i] = g^{l}
 5
          end
 6
          for i \in \{0, ..., m-1\}
            giantStepTable[i] = a(g^{-m})^i
 8
 9
          end
10
          for i \in \{0, ..., m-1\}
12
             for j \in \{0, ..., m-1\}
                if giantStepTable[i] == babyStepTabel[j]
13
14
                   return im+i
15
                end
16
          end
```



#### Hardware

- gesucht n ≤ 2<sup>64</sup>
- $m = \sqrt{2^{64} 1} \approx 4.294.967.296$
- 2<sup>64</sup> ist die größte annehmbar Zahl
- 8 Byte pro Zahl
- 4.294.967.296 \* 8 Byte ≈ 32 GByte
- Hauptspeicher: 2 GByte
- Grafikspeicher: 1.5 GByte





siehe Quelltext