orange

INSY 695 **Enterprise Data Science & ML in Production**

Reducing Telecom Customer Churn

Michael Church Carson, Hadyan Fahreza, Solomon Gomez, Danyal Hamid, Vahid Hedley, Atrin Morteza Ghasemi, and Reza Soleimani

The Team

Business Analysts

Michael Church Carson

GitHub: MWCC8

Vahid Hedley

GitHub: VahidHedley

Data Scientists

Hadyan Fahreza

GitHub: hifahreza

Atrin Morteza Ghasemi

GitHub: Atrin-Morteza-Ghasemi

Reza Soleimani

GitHub: rsoleimani

Data Analysts

Solomon Gomez

GitHub: solomongomez

Danyal Hamid

GitHub: danyalhamid1996

Business Context

- Orange is a French multinational telecommunications company with approximately 266 million customers.
- → To maintain its revenue, Orange needs to minimize the rate at which its current customers are leaving
- → Observed **churn rate** is approximately17%
- → Need to predict churn so we can learn how to reduce it.

Data and Hypothesis

- Phone plan feature and usage data on 2666 of Orange's American customers, including charges, call type, number of service calls, and state of residence.
- Target = **Churn**, binary (0 or 1)

Hypothesis:

- Customers who call the service agents more often will be more likely to churn
- Customers who pay more will be more likely to churn

Principal Component Analysis

Principal Component Analysis

Dealing with Imbalanced Classes

Initial Dataset Classes

Train set) 0: 1282 │ 1: 210

Test set) 0: 266 | 1: 54

After Applying SMOTEENN

Train set) 0: 1272 | 1: 814

Modelling

- 1. Logistic Regression
- 2. Decision Tree Classifier
- 3. Random Forest Classifier
- 4. Gradient Boosting Classifier
- Light Gradient Boosting Machine Classifier
- 6. Extreme Gradient Boosting Classifier

- 7. Support Vector Classifier
- 8. AdaBoost
- 9. TPOTClassifier
- 10. CatBoostClassifier
- 11. ANN Sequential Model
- 12. Causal Inference

Results - Feature importance AdaBoost Classifier

Results - Feature importance CatBoost Classifier

Most important features:

- 1. Total minutes
- 2. Customer service calls
- 3. Voicemail feature
- 4. Total day charges

Threats to Validity - AdaBoost Classifier

Threats to Validity - CatBoost Classifier

Causal Inference - Results

Treatment

Customer Service Calls

Most important feature (AdaBoost)

Package

CausalML

Binary Approach

Churn Prediction

No Service Calls*

13.92%

2. Any Service Calls — 14.95%

Bucketed Approach Ch

Churn Prediction

1. No Service Calls* — 13.89%

2. 1-3 Service Calls — 10.24%

3. 4-9 Service Calls — 55.74%

Causal Inference - Uplift Curves

No Service Calls VS Any Service Calls

No Service Calls VS 4-9 Service Calls

Recommendations

- → Orange should invest in **customer service**:
 - Orange should improve the quality of its customer service
 - Ensure that customers do not have to call back more than 3 times. The rate of attrition increases significantly when customers have to call back several times.
- → Customers who do not have voicemail are more likely to churn
 - Orange should offer voicemail as a standard feature.
- → Customers who have a lot of minutes are more likely to churn.
 - Orange should offer a reduced rate per minute after customers pass a certain number of total calling minutes.

Questions?