Fundamental Theorem, Part 2 (The Evaluation Theorem)

We now come to the second part of the Fundamental Theorem of Calculus. This part describes how to evaluate definite integrals without having to calculate limits of Riemann sums. Instead we find and evaluate an antiderivative at the upper and lower limits of integration.

THEOREM 4 (Continued)—The Fundamental Theorem of Calculus, Part 2 If f is continuous at every point in [a, b] and F is any antiderivative of f on [a, b], then

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

Proof Part 1 of the Fundamental Theorem tells us that an antiderivative of f exists, namely

$$G(x) = \int_{a}^{x} f(t) dt.$$

Thus, if F is any antiderivative of f, then F(x) = G(x) + C for some constant C for a < x < b (by Corollary 2 of the Mean Value Theorem for Derivatives, Section 4.2). Since both F and G are continuous on [a, b], we see that F(x) = G(x) + C also holds when x = a and x = b by taking one-sided limits (as $x \to a^+$ and $x \to b^-$).

Evaluating F(b) - F(a), we have

$$F(b) - F(a) = [G(b) + C] - [G(a) + C]$$

$$= G(b) - G(a)$$

$$= \int_a^b f(t) dt - \int_a^a f(t) dt$$

$$= \int_a^b f(t) dt - 0$$

$$= \int_a^b f(t) dt.$$

The Evaluation Theorem is important because it says that to calculate the definite integral of f over an interval [a, b] we need do only two things:

- Find an antiderivative F of f, and
- **2.** Calculate the number F(b) F(a), which is equal to $\int_a^b f(x) dx$.

This process is much easier than using a Riemann sum computation. The power of the theorem follows from the realization that the definite integral, which is defined by a complicated process involving all of the values of the function f over [a, b], can be found by knowing the values of any antiderivative F at only the two endpoints a and b. The usual notation for the difference F(b) - F(a) is

$$F(x)$$
 $\bigg]_a^b$ or $\bigg[F(x)\bigg]_a^b$,

depending on whether F has one or more terms.

EXAMPLE 3 We calculate several definite integrals using the Evaluation Theorem, rather than by taking limits of Riemann sums.

(a)
$$\int_{0}^{\pi} \cos x \, dx = \sin x \Big]_{0}^{\pi}$$

$$= \sin \pi - \sin 0 = 0 - 0 = 0$$
(b)
$$\int_{-\pi/4}^{0} \sec x \tan x \, dx = \sec x \Big]_{-\pi/4}^{0}$$

$$= \sec 0 - \sec \left(-\frac{\pi}{4}\right) = 1 - \sqrt{2}$$
(c)
$$\int_{1}^{4} \left(\frac{3}{2} \sqrt{x} - \frac{4}{x^{2}}\right) dx = \left[x^{3/2} + \frac{4}{x}\right]_{1}^{4}$$

$$= \left[(4)^{3/2} + \frac{4}{4}\right] - \left[(1)^{3/2} + \frac{4}{1}\right]$$

$$= \left[8 + 1\right] - \left[5\right] = 4$$
(d)
$$\int_{0}^{1} \frac{dx}{x + 1} = \ln|x + 1| \Big|_{0}^{1}$$

$$= \ln 2 - \ln 1 = \ln 2$$
(e)
$$\int_{0}^{1} \frac{dx}{x^{2} + 1} = \tan^{-1} x \Big|_{0}^{1}$$

$$= \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4}.$$