CAPÍTULO

2

Métodos de solución de ED de primer orden

2.5 Ecuaciones diferenciales homogéneas

Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de sus variables.

- 1. Consideremos la función de dos variables x, y: $F(x, y) = 2x^2y xy^2 + 4y^3$. Observamos que:
 - a. Todos los términos tienen el mismo grado 3.
 - b. Si multiplicamos ambas variables por el mismo factor t es posible factorizar t^3 , es decir:

$$F(tx, ty) = 2(tx)^{2}(ty) - (tx)(ty)^{2} + 4(ty)^{3} = 2t^{3}x^{2}y - t^{3}xy^{2} + 4t^{3}y^{3} = t^{3}(2x^{2}y - xy^{2} + 4y^{3}) = t^{3}F(x, y).$$

c. Es posible factorizar x^3 :

$$F(x,y) = 2x^{2}y - xy^{2} + 4y^{3} = x^{3} \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^{2} + 4\left(\frac{y}{x}\right)^{3} \right] = x^{3}F\left(1, \frac{y}{x}\right).$$

d. Es posible factorizar y^3 :

$$F(x,y) = 2x^2y - xy^2 + 4y^3 = y^3 \left[2\left(\frac{x}{y}\right)^2 - \left(\frac{x}{y}\right) + 4 \right] = y^3 F\left(\frac{x}{y}, 1\right).$$

- 2. Sea ahora la función de dos variables x, y: $G(x, y) = \sqrt[3]{2x^2y xy^2 + 4y^3} = \left(2x^2y xy^2 + 4y^3\right)^{\frac{1}{3}}$. Observamos que:
 - a. Los términos del polinomio dentro de la raíz cúbica tienen el mismo grado 3.

b. Si multiplicamos ambas variables por el mismo factor *t* es posible factorizar *t*, es decir:

$$G(tx,ty) = \sqrt[3]{2(tx)^2(ty) - (tx)(ty)^2 + 4(ty)^3} = \sqrt[3]{2t^3x^2y - t^3xy^2 + 4t^3y^3} =$$

$$= \sqrt[3]{t^3(2x^2y - xy^2 + 4y^3)} = \sqrt[3]{t^3}\sqrt[3]{2x^2y - xy^2 + 4y^3} =$$

$$= tG(x,y).$$

c. Es posible factorizar *x*:

$$G(x, y) = \sqrt[3]{2x^2y - xy^2 + 4y^3} = \sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x^3 \left[2\left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^3 + 4\left(\frac{y}{x}\right)^3 \right]} = x\sqrt[3]{x} + \sqrt[3]{x} + \sqrt[3]{x$$

d. Es posible factorizar *y*:

$$G(x,y) = \sqrt[3]{2x^2y - xy^2 + 4y^3} = \sqrt[3]{y^3 \left[2\left(\frac{x}{y}\right)^2 - \left(\frac{x}{y}\right) + 4 \right]} = y\sqrt[3]{2\left(\frac{x}{y}\right)^2 - \left(\frac{x}{y}\right) + 4} = yG\left(\frac{x}{y},1\right).$$

La siguiente definición generaliza las propiedades antes referidas:

• Una funcion F(x, y) es una función homogénea de grado n si se cumple alguna de las siguientes condiciones equivalentes:

1.
$$F(tx, ty) = t^n F(x, y)$$
.

$$2. F(x, y) = x^n F\left(1, \frac{y}{x}\right).$$

3.
$$F(x, y) = y^n F\left(\frac{x}{y}, 1\right)$$
.

De acuerdo a esta definición tenemos que:

La función $F(x, y) = 2x^2y - xy^2 + 4y^3$ es homogénea de grado 3.

La función $G(x, y) = \sqrt[3]{2x^2y - xy^2 + 4y^3}$ es homogénea de grado 1.

Para demostrar que una función de dos variables es homogénea de grado *n* sólo es necesario demostrar una de las condiciones anteriores. Se acostumbra demostrar la primera condición.

Ejemplo 2.5.1 Comprobar que la función $H(x, y) = \sqrt[5]{x^2 + xy}$ sea homogénea.

$$H(tx,ty) = \sqrt[5]{(tx)^2 + (tx)(ty)} = \sqrt[5]{t^2x^2 + t^2xy} = \sqrt[5]{t^2(x^2 + xy)} = \sqrt[5]{t^2}\sqrt[5]{x^2 + xy} =$$

$$= t^{\frac{2}{5}}\sqrt[5]{x^2 + xy} = t^{\frac{2}{5}}H(x,y).$$

Vemos que H(x, y) es una función homogénea de dos variables de grado $n = \frac{2}{5}$.

Ejemplo 2.5.2 Verificar que la función
$$K(x, y) = \cos\left(\frac{x^2}{y^2}\right) + \sin\left(\frac{y^3}{x^3}\right)$$
 sea homogénea de grado 0.

v

$$K(tx, ty) = \cos\left[\frac{(tx)^2}{(ty)^2}\right] + \sin\left[\frac{(ty)^3}{(tx)^3}\right] = \cos\left(\frac{t^2x^2}{t^2y^2}\right) + \sin\left(\frac{t^3y^3}{t^3x^3}\right) =$$

$$= \cos\left(\frac{x^2}{y^2}\right) + \sin\left(\frac{y^3}{x^3}\right) = K(x, y) = t^0K(x, y).$$

Ejemplo 2.5.3 Comprobar que D(x, y) = x + y - 1 no es una función homogénea.

Vamos a suponer que D(x, y) es homogénea, es decir, que cumple con:

$$D(tx, ty) = t^n D(x, y)$$
, para todo $t, x \& y \in \mathbb{R}$, y para algún n .

Estamos suponiendo entonces que

$$tx + ty - 1 = t^n(x + y - 1).$$

Evaluando de manera arbitraria en x = 1, y = 2:

$$3t - 1 = 2t^n.$$

Evaluando para t = 0:

$$-1 = 0.$$

El resultado anterior proporciona una contradicción. Por lo que tiene que ser falso lo que hemos supuesto. Se concluye entonces que D(x, y) no es homogénea.

• La ecuación diferencial

$$M(x, y) dx + N(x, y) dy = 0.$$

es homogénea si ambas funciones M(x, y) y N(x, y) son homogéneas del mismo grado n.

Ejemplo 2.5.4 Verificar que la ecuación diferencial (x - y) dx + (-2x + y) dy = 0 sea homogénea de grado 1.

▼

M(x, y) = x - y es una función homogénea de grado 1.

N(x, y) = -2x + y es una función homogénea de grado 1.

Ambas funciones son homogéneas del mismo grado.

Por lo tanto la ecuación diferencial es homogénea.

Ejemplo 2.5.5 Comprobar que la ecuación diferencial (x - y) dx + (-2x + y + 7) dy = 0 no es homogénea.

▼

M(x, y) = x - y es una función homogénea de grado 1.

N(x, y) = -2x + y + 7 no es una función homogénea.

Sólo una de las funciones M(x, y) & N(x, y) es homogénea.

Por lo tanto la ecuación diferencial no es homogénea.

Ejemplo 2.5.6 Determinar si la siguiente ecuación diferencial $(x - y) dx + (x^2 - 3xy) dy = 0$ es homogénea.

▼ En este caso:

M(x, y) = x - y es una función homogénea de grado 1.

 $N(x, y) = x^2 - 3xy$ es una función homogénea de grado 2.

Ambas funciones son homogéneas pero de grado diferente.

Por lo tanto la ecuación diferencial no es homogénea.

2.5.1 Resolución de ecuaciones diferenciales homogéneas

Presentamos dos procedimientos para resolver las ecuaciones diferenciales homogéneas

$$M(x, y) dx + N(x, y) dy = 0.$$

Ambos procedimientos consisten en un conjunto de pasos para obtener una ecuación diferencial de variables separables.

• Primer procedimiento. Considerando que la variable independiente es x, se despeja $\frac{dy}{dx}$:

$$M(x, y) dx + N(x, y) dy = 0 \Rightarrow N(x, y) dy = -M(x, y) dx \Rightarrow$$

$$\Rightarrow \frac{dy}{dx} = -\frac{M(x, y)}{N(x, y)}; \quad \text{donde } N(x, y) \neq 0.$$

Puesto que ambas funciones M(x, y), N(x, y) son homogéneas del mismo grado n, podemos factorizar x^n (la variable independiente es x) en el numerador y en el denominador:

$$\frac{dy}{dx} = -\frac{\varkappa^{M}M\left(1, \frac{y}{x}\right)}{\varkappa^{M}N\left(1, \frac{y}{x}\right)} = -\frac{M\left(1, \frac{y}{x}\right)}{N\left(1, \frac{y}{x}\right)}.$$
(2.1)

Hacemos el cambio de variable $u = \frac{y}{x}$, y despejamos y:

$$u = \frac{y}{x} \implies y = ux$$
.

Derivamos con respecto a *x*:

$$\frac{dy}{dx} = \frac{d}{dx}(ux) = u\frac{d}{dx}(x) + x\frac{du}{dx} = u + x\frac{du}{dx}.$$

Sustituimos en (2.1):

$$u + x \frac{du}{dx} = -\frac{M(1, u)}{N(1, u)} \Rightarrow x \frac{du}{dx} = -\frac{M(1, u)}{N(1, u)} - u.$$

Por depender sólo de la nueva variable u, el miembro derecho de la ecuación diferencial, se puede considerar como $-\frac{M(1,u)}{N(1,u)} - u = k(u)$ y obtenemos:

$$x\frac{du}{dx} = k(u).$$

Ésta es ya una ecuación diferencial de variables separables.

$$\frac{du}{k(u)} = \frac{dx}{x} \, .$$

Para obtener la solución de esta ecuación diferencial se integran ambos miembros de la expresión. Posteriormente se sustituye $u=\frac{y}{x}$ y se obtiene la solución general de la ecuación diferencial homogénea original M(x,y) dx + N(x,y) dy = 0, considerando a x como variable independiente.

Ejemplo 2.5.7 Resolver la ecuación diferencial (x - y) dx + (x + y) dy = 0.

▼ Primero se despeja $\frac{dy}{dx}$ considerando que la variable independiente es x:

$$(x - y) dx + (x + y) dy = 0 \Rightarrow (x + y) dy = -(x - y) dx \Rightarrow$$
$$\Rightarrow \frac{dy}{dx} = \frac{-(x - y)}{x + y} = \frac{y - x}{y + x}.$$

Se factoriza *x*, la variable independiente, tanto del numerador como del denominador:

$$\frac{dy}{dx} = \frac{y-x}{y+x} = \frac{x\left(\frac{y}{x}-1\right)}{x\left(\frac{y}{x}+1\right)} = \frac{\frac{y}{x}-1}{\frac{y}{x}+1}.$$
 (2.2)

Se efectúa el cambio de variable $u = \frac{y}{x}$, posteriormente se despeja y:

$$u = \frac{y}{x} \implies y = ux$$
.

Derivando con respecto a *x*:

$$\frac{dy}{dx} = \frac{d}{dx}(ux) = u + x\frac{du}{dx}.$$

Sustituyendo en (2.2):

$$u + x \frac{du}{dx} = \frac{u - 1}{u + 1} \Rightarrow x \frac{du}{dx} = \frac{u - 1}{u + 1} - u = \frac{(u - 1) - u(u + 1)}{u + 1} = \frac{u - 1 - u^2 - u}{u + 1} = \frac{-1 - u^2}{u + 1} = \frac{-(u^2 + 1)}{u + 1} = -\frac{u^2 + 1}{u + 1}.$$

De esta manera se obtiene:

$$x\frac{du}{dx} = -\frac{u^2 + 1}{u + 1}.$$

Separando variables:

$$\frac{u+1}{u^2+1} \, du = -\frac{1}{x} \, dx \, .$$

Integrando:

$$\int \frac{u+1}{u^2+1} du = -\int \frac{1}{x} dx \implies \int \frac{u du}{u^2+1} + \int \frac{du}{u^2+1} = -\int \frac{dx}{x} \implies$$

$$\Rightarrow \frac{1}{2} \ln(u^2+1) + \arctan u + C_1 = -\ln x + C_2 \implies \frac{1}{2} \ln(u^2+1) + \arctan u = -\ln x + C;$$

utilizando $u = \frac{y}{x}$, se obtiene:

$$\frac{1}{2}\ln\left(\frac{y^2}{x^2}+1\right) + \arctan\left(\frac{y}{x}\right) = -\ln x + C,$$

que es la solución general de la ecuación diferencial homogénea dada y que puede ser expresada como

$$\ln(x^2 + y^2) + 2\arctan\left(\frac{y}{x}\right) = C.$$

• Segundo procedimiento. Considerando que la variable independiente es y, se despeja $\frac{dx}{dy}$:

$$M(x, y) dx + N(x, y) dy = 0 \Rightarrow M(x, y) dx = -N(x, y) dy \Rightarrow$$
$$\Rightarrow \frac{dx}{dy} = -\frac{N(x, y)}{M(x, y)}.$$

Puesto que ambas funciones M(x, y), N(x, y) son homogéneas del mismo grado n, se puede factorizar y^n (la variable independiente es y) en el numerador y en el denominador:

$$\frac{dx}{dy} = -\frac{y^{N}N\left(\frac{x}{y},1\right)}{y^{N}M\left(\frac{x}{y},1\right)} = -\frac{N\left(\frac{x}{y},1\right)}{M\left(\frac{x}{y},1\right)}.$$
(2.3)

Se hace el cambio de variable $u = \frac{x}{y}$; luego se despeja x:

$$u = \frac{x}{y} \implies x = uy.$$

Derivando con respecto a *y*:

$$\frac{dx}{dy} = \frac{d}{dy}(uy) = u\frac{d}{dy}(y) + y\frac{du}{dy} = u + y\frac{du}{dy}.$$

Sustituimos en (2.3):

$$u + y \frac{du}{dy} = -\frac{N(u, 1)}{M(u, 1)} \Rightarrow y \frac{du}{dy} = -\frac{N(u, 1)}{M(u, 1)} - u.$$

Por depender sólo de la nueva variable u el miembro derecho del la ecuación diferencial, se puede considerar como $-\frac{N(u,1)}{M(u,1)} - u = h(u)$ y se obtiene:

$$y\frac{du}{dy} = h(u).$$

Esta última expresión es ya una ecuación diferencial de variables separables.

$$\frac{du}{h(u)} = \frac{dy}{y} \,.$$

Para obtener la solución de esta ecuación diferencial se integran ambos miembros de la expresión. Posteriormente se utiliza $u = \frac{x}{y}$ y se obtiene de esta manera la solución general de la ecuación diferencial homogénea original M(x, y) dx + N(x, y) dy = 0, considerando a y como la variable independiente.

Ejemplo 2.5.8 Resolver la ecuación diferencial (x - y) dx + (x + y) dy = 0.

V Esta ecuación diferencial se resolvió anteriormente por medio del primer procedimiento.

Considerando que la variable independiente es y, se despeja $\frac{dx}{dy}$:

$$(x - y) dx + (x + y) dy = 0 \Rightarrow (x - y) dx = -(x + y) dy \Rightarrow$$
$$\Rightarrow \frac{dx}{dy} = -\frac{x + y}{x - y} = \frac{x + y}{-(x - y)} = \frac{x + y}{y - x}.$$

Se factoriza *y* (la variable independiente) tanto del numerador como del denominador:

$$\frac{dx}{dy} = \frac{y+x}{y-x} = \frac{y\left(1+\frac{x}{y}\right)}{y\left(1-\frac{x}{y}\right)} = \frac{1+\frac{x}{y}}{1-\frac{x}{y}}.$$
 (2.4)

Se hace el cambio de variable y se despeja x:

$$u = \frac{x}{y} \implies x = uy.$$

Derivando con respecto a *y*:

$$\frac{dx}{dy} = \frac{d}{dy}(uy) = u + y\frac{du}{dy},$$

Se sustituye en (2.4):

$$u + y \frac{du}{dy} = \frac{1+u}{1-u} \implies y \frac{du}{dy} = \frac{1+u}{1-u} - u = \frac{(1+u) - u(1-u)}{1-u} = \frac{1+u-u+u^2}{1-u} = \frac{1+u^2}{1-u}.$$

De esta forma se obtiene una ED de variables separables:

$$y\frac{du}{dy} = \frac{1+u^2}{1-u}.$$

Separando variables e integrando:

$$\frac{1-u}{1+u^2} \, du = \frac{1}{y} \, dy \ \Rightarrow \ \int \frac{1-u}{1+u^2} \, du = \int \frac{1}{y} \, dy \ \Rightarrow \ \int \frac{du}{1+u^2} - \int \frac{u \, du}{1+u^2} = \int \frac{dy}{y}.$$

Calculando las integrales se obtiene:

$$\arctan u - \frac{1}{2}\ln(1+u^2) + C_1 = \ln y + C_2 \implies \arctan u - \frac{1}{2}\ln(1+u^2) = \ln y + C;$$

ahora utilizamos $u = \frac{x}{y}$:

$$\arctan\left(\frac{x}{y}\right) - \frac{1}{2}\ln\left(1 + \frac{x^2}{y^2}\right) = \ln y + C,$$

que es la solución general de la ecuación diferencial homogénea dada y que puede expresarse como

$$2\arctan\left(\frac{x}{y}\right) - \ln(x^2 + y^2) = C.$$

Ejemplo 2.5.9 Obtener la solución general de la siguiente ED $xy' = \sqrt{x^2 - y^2} + y$, con x > 0.

Considerando a x como la variable independiente, se despeja $\frac{dy}{dx}$:

$$\frac{dy}{dx} = \frac{\sqrt{x^2 - y^2}}{x} + \frac{y}{x}.$$

Factorizando *x* (la variable independiente) tanto del numerador como del denominador:

$$\frac{dy}{dx} = \frac{\sqrt{x^2 \left(1 - \frac{y^2}{x^2}\right)}}{x} + \frac{y}{x} = \frac{\sqrt{x^2} \sqrt{1 - \frac{y^2}{x^2}}}{x} + \frac{y}{x} = \frac{|x| \sqrt{1 - \frac{y^2}{x^2}}}{x} + \frac{y}{x} = \frac{x}{x} \sqrt{1 - \left(\frac{y}{x}\right)^2} + \frac{y}{x} \Rightarrow
\Rightarrow \frac{dy}{dx} = \sqrt{1 - \left(\frac{y}{x}\right)^2} + \frac{y}{x}.$$
(2.5)

Se efectúa el cambio de variable:

$$\frac{y}{x} = w \implies y = xw,$$

de donde, derivando con respecto a *x*:

$$\frac{dy}{dx} = \frac{d}{dx}(xw) = x\frac{dw}{dx} + w.$$

Sustituyendo en (2.5):

$$x\frac{dw}{dx} + w = \sqrt{1 - w^2} + w \Rightarrow x\frac{dw}{dx} = \sqrt{1 - w^2}.$$

Separando variables e integrando

$$\frac{dw}{\sqrt{1-w^2}} = \frac{dx}{x} \Rightarrow \int \frac{dw}{\sqrt{1-w^2}} = \int \frac{dx}{x} \Rightarrow$$

$$\Rightarrow \arcsin w + C_1 = \ln x + C_2 \Rightarrow \arcsin w = \ln x + C \Rightarrow$$

$$\Rightarrow \arcsin w = \ln x + \ln C \Rightarrow \arcsin w = \ln(Cx).$$

Hemos usado $C = \ln C$. De donde

$$w = \operatorname{sen}[\ln(Cx)].$$

Pero $w = \frac{y}{x}$, entonces

$$\frac{y}{x} = \text{sen}[\ln(Cx)] \Rightarrow y = x \text{sen}[\ln(Cx)]$$

es la solución general de la ecuación diferencial homogénea dada.

Ejemplo 2.5.10 Obtener la solución general de la ED $(x^2 + xy + 3y^2) dx - (x^2 + 2xy) dy = 0$.

Considerando a x como la variable independiente, se despeja $\frac{dy}{dx}$:

$$(x^2 + 2xy) dy = (x^2 + xy + 3y^2) dx \implies \frac{dy}{dx} = \frac{x^2 + xy + 3y^2}{x^2 + 2xy}.$$

Factorizando x^2 (variable independiente) tanto del numerador como del denominador:

$$\frac{dy}{dx} = \frac{x^{2}\left(1 + \frac{y}{x} + 3\frac{y^{2}}{x^{2}}\right)}{x^{2}\left(1 + 2\frac{y}{x}\right)} = \frac{1 + \frac{y}{x} + 3\left(\frac{y}{x}\right)^{2}}{1 + 2\left(\frac{y}{x}\right)}.$$
 (2.6)

Efectuando el cambio de variable y derivando con respecto a x:

$$\frac{y}{x} = w \implies y = xw \implies \frac{dy}{dx} = x\frac{dw}{dx} + w.$$

Sustituyendo en (2.6):

$$x\frac{dw}{dx} + w = \frac{1 + w + 3w^2}{1 + 2w} \Rightarrow x\frac{dw}{dx} = \frac{1 + w + 3w^2}{1 + 2w} - w = \frac{1 + w + 3w^2 - w - 2w^2}{1 + 2w} \Rightarrow x\frac{dw}{dx} = \frac{w^2 + 1}{2w + 1}.$$

Separamos variables e integramos:

$$\frac{2w+1}{w^2+1} dw = \frac{dx}{x} \implies \int \frac{2w}{w^2+1} dw + \int \frac{dw}{w^2+1} = \int \frac{dx}{x} \implies \\ \implies \ln(w^2+1) + \arctan w + C_1 = \ln x + C_2 \implies \ln(w^2+1) + \arctan w = \ln x + C.$$

Pero $w = \frac{y}{x}$. Entonces:

$$\ln\left(\frac{y^2}{x^2} + 1\right) + \arctan\frac{y}{x} = \ln x + C \implies \ln\left(\frac{y^2 + x^2}{x^2}\right) - \ln x + \arctan\frac{y}{x} = C \implies$$

$$\Rightarrow \ln(y^2 + x^2) - \ln x^2 - \ln x + \arctan\frac{y}{x} = C \implies \ln(x^2 + y^2) - 3\ln x + \arctan\frac{y}{x} = C \implies$$

$$\Rightarrow \ln(x^2 + y^2) - \ln x^3 + \arctan\frac{y}{x} = C \implies \ln\left(\frac{x^2 + y^2}{x^3}\right) + \arctan\frac{y}{x} = C.$$

Esta última expresión es la solución general de la ecuación diferencial homogénea dada.

Ejemplo 2.5.11 Obtener la solución general de la ED 3x - 4y + (2x - y)y' = 0.

The esta ED se puede despejar fácilmente $\frac{dy}{dx}$, es decir, considerar a x como la variable independiente:

$$(2x - y)\frac{dy}{dx} = 4y - 3x \implies \frac{dy}{dx} = \frac{4y - 3x}{2x - y}.$$

Factorizando *x* (variable independiente) tanto del numerador como del denominador:

$$\frac{dy}{dx} = \frac{\cancel{x}\left(4\frac{y}{x} - 3\right)}{\cancel{x}\left(2 - \frac{y}{x}\right)} = \frac{4\left(\frac{y}{x}\right) - 3}{2 - \left(\frac{y}{x}\right)}.$$
(2.7)

Efectuando el cambio de variable y derivando con respecto a x:

$$\frac{y}{x} = u \implies y = xu \implies \frac{dy}{dx} = x\frac{du}{dx} + u.$$

Sustituyendo en (2.7):

$$x\frac{du}{dx} + u = \frac{4u - 3}{2 - u}.$$

De donde:

$$x\frac{du}{dx} = \frac{4u - 3}{2 - u} - u = \frac{4u - 3 - 2u + u^2}{2 - u} \Rightarrow x\frac{du}{dx} = \frac{u^2 + 2u - 3}{2 - u}.$$

Esta última expresión es una ED de variables separables. Separando variables se obtiene:

$$\frac{2-u}{u^2+2u-3}\,du=\frac{dx}{x}.$$

Integrando mediante fracciones parciales el miembro izquierdo de la ecuación:

$$\int \frac{-u+2}{(u+3)(u-1)} du = \int \frac{dx}{x} \Rightarrow -\frac{5}{4} \int \frac{du}{u+3} + \frac{1}{4} \int \frac{du}{u-1} = \int \frac{dx}{x} \Rightarrow$$

$$\Rightarrow -\frac{5}{4} \ln(u+3) + \frac{1}{4} \ln(u-1) + C_1 = \ln x + C_2 \Rightarrow$$

$$\Rightarrow -\frac{5}{4} \ln(u+3) + \frac{1}{4} \ln(u-1) = \ln x + C.$$

Multiplicando por 4 (y usando $C = 4C \& C = \ln C$):

$$-5\ln(u+3) + \ln(u-1) = 4\ln x + C \implies \ln(u-1) - \ln(u+3)^5 = \ln x^4 + \ln C \implies$$

$$\implies \ln\left[\frac{u-1}{(u+3)^5}\right] = \ln(Cx^4) \implies \frac{u-1}{(u+3)^5} = Cx^4 \implies$$

$$\implies u - 1 = Cx^4(u+3)^5.$$

Pero $u = \frac{y}{x}$, entonces:

$$\frac{y}{x} - 1 = Cx^4 \left(\frac{y}{x} + 3\right)^5 \implies \frac{y - x}{x} = Cx^4 \left(\frac{y + 3x}{x}\right)^5 \implies$$

$$\Rightarrow y - x = Cx^5 \frac{(y + 3x)^5}{x^5} \implies y - x = C(y + 3x)^5;$$

que es la solución general de la ecuación diferencial dada.

Ejemplo 2.5.12 Obtener la solución general del PVI $\frac{dy}{dx} = \frac{y + x \cos^2\left(\frac{y}{x}\right)}{x}$, con $y(1) = \frac{\pi}{4}$.

Separando en dos fracciones:

$$\frac{dy}{dx} = \frac{y}{x} + \cos^2\left(\frac{y}{x}\right). \tag{2.8}$$

Realizando el cambio de variable y derivando con respecto a x:

$$\frac{y}{x} = w \implies y = wx \implies \frac{dy}{dx} = x\frac{dw}{dx} + w.$$

Sustituyendo en (2.8) y simplificando, se obtiene:

$$x\frac{dw}{dx} + w = w + \cos^2 w \implies x\frac{dw}{dx} = \cos^2 w,$$

que es una ED de variables separables. Separando variables e integrando:

$$\frac{dw}{\cos^2 w} = \frac{dx}{x} \implies \int \sec^2 w \, dw = \int \frac{dx}{x} \implies \tan w = \ln x + C.$$

Pero $w = \frac{y}{x}$, entonces:

$$\tan\left(\frac{y}{x}\right) = \ln x + C.$$

Considerando la condición inicial $y(1) = \frac{\pi}{4}$, tenemos:

$$\tan\left(\frac{\pi}{4}\right) = \ln 1 + C \implies C = 1$$
, ya que $\tan\left(\frac{\pi}{4}\right) = 1$,

por lo tanto:

$$\tan\left(\frac{y}{x}\right) = \ln x + 1 = \ln x + \ln e = \ln(ex) \Rightarrow$$
$$\Rightarrow \frac{y}{x} = \arctan[\ln(ex)] \Rightarrow y = x \arctan[\ln(ex)].$$

que es la solución de la ED con la condición $y(1) = \frac{\pi}{4}$.

Ejemplo 2.5.13 Obtener la solución general del PVI $y dx + x(\ln x - \ln y - 1) dy = 0$; con y(1) = e.

- ▼ Vamos a resolver este PVI por dos procedimientos:
 - 1. Considerando a x como la variable independiente, se despeja $\frac{dy}{dx}$:

$$x(\ln x - \ln y - 1)dy = -y \, dx \implies \frac{dy}{dx} = \frac{-y}{x(\ln x - \ln y - 1)}.$$

Factorizando *x* tanto del numerador como del numerador:

$$\frac{dy}{dx} = \frac{\frac{y}{x}}{\ln y + 1 - \ln x} = \frac{\frac{y}{x}}{\ln y + \ln e - \ln x} \Rightarrow \frac{dy}{dx} = \frac{\frac{y}{x}}{\ln \left(e^{\frac{y}{x}}\right)} = \frac{\frac{y}{x}}{\ln \left(e^{\frac{y}{x}}\right)}.$$
 (2.9)

Haciendo el cambio de variable y derivando con respecto a x:

$$\frac{y}{x} = u \implies y = xu \implies \frac{dy}{dx} = x\frac{du}{dx} + u.$$

Sustituyendo en (2.9):

$$x\frac{du}{dx} + u = \frac{u}{\ln eu} = \frac{u}{1 + \ln u} \Rightarrow x\frac{du}{dx} = \frac{u}{1 + \ln u} - u = \frac{u - u - u \ln u}{1 + \ln u} \Rightarrow x\frac{du}{dx} = -\frac{u \ln u}{1 + \ln u}.$$

Esta última expresión es una ED de variable separables. Separando variables e integrando:

$$\frac{1+\ln u}{u\ln u}du = -\frac{dx}{x} \implies \int \frac{du}{u\ln u} + \int \frac{du}{u} = -\int \frac{dx}{x} \implies \ln(\ln u) + \ln u = -\ln x + C \implies \ln(\ln u) + \ln u + \ln x = C \implies \ln(xu\ln u) = C.$$

Pero $u = \frac{y}{x}$, entonces:

$$\ln\left[\cancel{x}\,\frac{y}{\cancel{x}}\ln\left(\frac{y}{x}\right)\right] = C \implies \ln\left[y\ln\frac{y}{x}\right] = C.$$

Considerando la condición inicial y(1) = e:

$$\ln\left[e\,\ln\frac{e}{1}\right] = C \implies C = 1.$$

Por lo que

$$\ln\left[y\,\ln\frac{y}{x}\right] = 1 \implies y\ln\frac{y}{x} = e,$$

es la solución de la ED con y(1) = e.

2. Otro procedimiento es considerar a y como la variable independiente y despejar entonces $\frac{dx}{dy}$:

$$y dx = -x(\ln x - \ln y - 1) dy \Rightarrow \frac{dx}{dy} = -\frac{x}{y}(\ln x - \ln y - 1) \Rightarrow$$
$$\Rightarrow \frac{dx}{dy} = -\frac{x}{y} \left[\ln \left(\frac{x}{y} \right) - 1 \right]. \tag{2.10}$$

Considerando que $\frac{x}{y} = w$, despejando x y derivando con respecto a y:

$$\frac{x}{y} = w \implies x = yw \implies \frac{dx}{dy} = y\frac{dw}{dy} + w.$$

Sustituyendo en la ED (2.10):

$$y\frac{dw}{dy} + w = -w(\ln w - 1) \implies y\frac{dw}{dy} = -w\ln w + w - w \implies y\frac{dw}{dy} = -w\ln w,$$

separamos variables e integramos:

$$\frac{dw}{w \ln w} = -\frac{dy}{y} \implies \int \frac{dw}{w \ln w} = -\int \frac{dy}{y} \implies \ln(\ln w) = -\ln y + C \implies \ln(\ln w) + \ln y = C \implies$$
$$\implies \ln(y \ln w) = C \implies y \ln w = C.$$

Pero $w = \frac{x}{y}$, entonces:

$$y \ln \left(\frac{x}{y}\right) = C.$$

Considerando la condición inicial y(1) = e:

$$C = e \ln \left(\frac{1}{e}\right) = e(\ln 1 - \ln e) = e(0 - 1) = -e \implies C = -e.$$

Por lo tanto, la solución del PVI es

$$y \ln \left(\frac{x}{y}\right) = -e.$$

Ejercicios 2.5.1 Ecuaciones diferenciales homogéneas. Soluciones en la página 14 Resolver las siguiente ecuaciones diferenciales.

1.
$$x dx + (y - 2x) dy = 0$$
.

8.
$$(x^2 + y^2)y' + xy = 0$$
.

2.
$$(-t+r) dt + (7t-4r) dr = 0$$
.

9.
$$(v^2 + 3xv) dx = (4x^2 + xv) dv$$
.

3.
$$(2x - y) dx + (-3x + 5y) dy = 0$$
.

10.
$$xy' \operatorname{sen}^2\left(\frac{y}{x}\right) = x + y \operatorname{sen}^2\left(\frac{y}{x}\right)$$
.

4.
$$xy dx + (x^2 - y^2) dy = 0$$
.

11.
$$(x^2 - 8xy - 4y^2) dy = (x^2 + 2xy - 4y^2) dx$$
.

5.
$$x \frac{dy}{dx} - y = \sqrt{x^2 + y^2}$$
.

12.
$$xy^2 \frac{dy}{dx} = y^3 - x^3$$
, con $y(1) = 2$.

6.
$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{x}{y} + \frac{y}{x} \right).$$

13.
$$xy' \arctan\left(\frac{y}{x}\right) + x = y \arctan\left(\frac{y}{x}\right)$$
.

7.
$$xy dy = (y^2 - xy + x^2) dx$$
.

14.
$$y dx + x(\ln x - \ln y - 1) dy = 0$$
, con $y(1) = e$.

18.
$$xy' + xe^{\frac{y}{x}} = y$$
, con $y(1) = 0$.

$$15. \ yx\left(\frac{dx}{dy}\right) + y^2e^{-\frac{x}{y}} = x^2.$$

19.
$$(x + 3y) dy = (x - y) dx$$
, con $y(1) = 0$.

16.
$$xy'(\ln y - \ln x) + x = y(\ln y - \ln x)$$
.

17.
$$(x - y) dy = (x + y) dx$$
, con $y(-1) = 0$.

20.
$$y dx = x(\ln x - \ln y) dy$$
, $\cos x(1) = 1$.

Ejercicios 2.5.1 Ecuaciones diferenciales homogéneas. Página 12

1.
$$\frac{x}{x-y} = \ln|y-x| + C$$
.

2.
$$\frac{1}{2} \ln \left[\left(\frac{t}{r} \right)^2 - 8 \left(\frac{t}{r} \right) + 4 \right] + \frac{\sqrt{3}}{4} \ln \left(\frac{t - 4r - 2\sqrt{3}r}{t - 4r + 2\sqrt{3}r} \right) = -\ln r + C.$$

3.
$$\frac{1}{\sqrt{6}} \arctan\left(\frac{5y - 2x}{\sqrt{6}x}\right) - \frac{1}{2} \ln\left[\left(\frac{5y - 2x}{5x}\right)^2 + \frac{6}{25}\right] = \ln x + C.$$

4.
$$y^4 - 2x^2y^2 = C$$
.

5.
$$y + \sqrt{x^2 + y^2} = Cx^2$$
.

6.
$$x^2 - y^2 = Cx$$
.

7.
$$(x-y)e^{\frac{y}{x}}=C$$
.

$$8. \ y^4 + 2x^2y^2 = C.$$

9.
$$v^4 e^{\frac{y}{x}} = Cx^3$$
.

$$10. \ 2y - x \operatorname{sen}\left(\frac{2y}{x}\right) = 4x \ln x + Cx.$$

11.
$$x + y = C(x^2 + 4y^2)$$
.

12.
$$y^3 = -3x^3 \ln x + 8x^3$$
.

13.
$$\frac{y}{x} \arctan\left(\frac{y}{x}\right) = \ln\left(\frac{\sqrt{x^2 + y^2}}{x^2}\right) + C.$$

14.
$$y \ln \left(\frac{y}{x}\right) = e$$
.

15.
$$(x - y)e^{\frac{x}{y}} + y \ln y = Cy$$
.

16.
$$y \ln \left(\frac{y}{x}\right) - y = -x \ln x + Cx$$
.

17.
$$x^2 - 2xy - 3y^2 = 1$$
.

18.
$$e^{-\frac{y}{x}} = \ln x + 1$$
.

19.
$$\arctan\left(\frac{y}{x}\right) = \ln(\sqrt{x^2 + y^2}).$$

20.
$$x = eye^y$$
.