Switching gears: neural networks

Source: https://thesharperdev.com/build-your-first-neural-network-part-2/

A single neuron is a logistic regressor!*

Source: https://thedatafrog.com/en/articles/logistic-regression/

A single neuron is a logistic regressor!

Why non-linearity?

A single neuron is a logistic regressor!

 Why non-linearity? → without them, a NN (no matter how deep) could only approximate linear functions

Input layer: shown as neurons, are just features

Hidden layer(s): intermediate layers whose outputs are not directly observed (hence hidden). Here: 1 HL. Facebook's DenseNet family of NNs had 121-264 HLs in 2016 (0.8-15.3 million parameters).

Activation of neuron 1 in the 2nd layer of the network.

Activation of neuron 2 in the 2nd layer of the network.

https://www.louisbouchard.ai/densenet-explained/

Activation of neuron 1 in the 3rd layer of the network.

$$\sigma(\begin{bmatrix} 1 & x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} b \\ w_1 \\ w_2 \\ w_3 \end{bmatrix})$$

$$\sigma(\begin{bmatrix} 1 & x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} b \\ w_1 \\ w_2 \\ w_3 \end{bmatrix}) \rightarrow \sigma(\begin{bmatrix} 1 & 66 & 39 & 12 \end{bmatrix} \begin{bmatrix} -0.5 \\ -2 \\ 4 \\ 1.5 \end{bmatrix})$$

Layer 1 Layer 2 Layer 3
$$\sigma([1 \ 66 \ 39 \ 12] \begin{bmatrix} -0.5 \\ -2 \\ 4 \\ 1.5 \end{bmatrix}) \rightarrow \sigma(41.5) \rightarrow 0.999...$$

$$\sigma(\begin{bmatrix}b_1 & w_{11} & w_{12} & w_{13} \\ b_2 & w_{21} & w_{22} & w_{23} \\ b_3 & w_{31} & w_{32} & w_{33}\end{bmatrix}\begin{bmatrix}1\\x_1\\x_2\\x_3\end{bmatrix}) \longrightarrow \sigma(\begin{bmatrix}1\\2\\3\end{bmatrix}) \longrightarrow \begin{bmatrix}\sigma(1)\\\sigma(2)\\\sigma(3)\end{bmatrix}$$

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

$$\Theta^{(1)}$$
 (layer 1 to layer 2)

$$egin{bmatrix} b_1 & w_{11} & w_{12} & w_{13} \ b_2 & w_{21} & w_{22} & w_{23} \ b_3 & w_{31} & w_{32} & w_{33} \ \end{pmatrix}$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)}) \qquad \begin{bmatrix} b_1 & w_{11} & w_{12} & w_{13} \end{bmatrix}$$

This calculation of the output of the network is called forward propagation

How do we perform?

- Just like before, there is a cost function.
- But we will talk about that and its implementation tomorrow!

How do we get parameters?

- Just like before, there is a cost function and a way to minimise this. But it's a bit more involved.
- To get parameters, we will use the principle of backpropagation. We'll get to that tomorrow.
- First, we need to discuss why we want to use neural networks at all!

- Best performing algorithms for complex tasks, bar none.
- Known potential of hierarchical organisation of simple units because of biological examples (though neural networks are not good models of actual neurons)
- Observation in frogs and cat visual cortex: there are specific layers of neurons, where earlier layers detect basic shapes

(lines, edges) with later layers incorporating this into more complex features about what is seen.

Source: https://en.wikipedia.org/wiki/Axon#/media/File:Bla usen_0657_MultipolarNeuron.png

- Until now, we decided on the features to give to our algorithms: think tumour size, biopsy test scores, etc.
- With neural networks and images, the situation changes: we don't arduously describe what is in each image, but rather let the network learn to extract and combine features so that it can classify training examples correctly.

Caveat for biology: it can be quite difficult to translate biological problems into a framework fit for deep learning, for reasons that will

become clear later.

 Example: in images, nearby pixels probably hold similar information, i.e. are involved in the same thing. Due to (long-range)
 3D-folding of DNA, linearly far DNA can be close together functionally. You need to

encode network or input to accomodate this!

Source: https://en.wikipedia.org/wiki/Topologically_associating_domain#/media/ File:Structural_organization_of_chromatin.png

 The mythical property of universal approximation. This says that neural networks can approximate any function with arbitrary accuracy, even with only 1 hidden layer (given enough neurons in it).

Why neural networks?

- The mythical property of universal approximation. This says that neural networks can approximate any function with arbitrary accuracy, even with only 1 hidden layer (given enough neurons in it).
- How can that be? You will find out in-depth in the next practical.
- Of course, that doesn't necessarily mean we would have the data to train such a neural network efficiently. Just that it is provable that for any continuous function a neural network can exist that approximates it as well as you like.

Recap so far

- Neural networks can be thought of as hiërarchical sets of logistic regressors
- We essentially make earlier layers learn useful features for distinction on their own, and can use these best possible learned features for the classification by the final unit(s)
- Parsing an example through the network and getting the output is called forward propagation
- Universal approximation holds that, in principle, neural networks can learn any continuous function arbitrarily well.

 Networks with a single hidden layer can approximate any function. Let's get some more intuition by building our own logic circuit.

- Networks with a single hidden layer can approximate any function. Let's get some more intuition by building our own logic circuit.
- Boolean operators:

	ОТ		AND			OR			XOR	
X	x '	X	У	xy	X	У	<i>x+y</i>	X	У	<i>x</i> ⊕ <i>y</i>
0	1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	1	0	1	1
		1	0	0	1	0	1	1	0	1
		1	1	1	1	1	1	1	1	0

Networks with a single hidden layer can approximate any function. Let's get some more intuition by building our own logic circuit.

Boolean operators:

Only if two incoming connections are on, the output is on

A____X

Source: https://www.electronicstutorial.net/digital-logic-gates/andgate/

No	OT .		AND			OR			XOR	
X	x'	X	У	xy	X	У	X+Y	<u> </u>	У	<i>x</i> ⊕ <i>y</i>
0	1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	1	0	1	1
		1	0	0	1	0	1	1	0	1
		1	1	1	1	1	1	1	1	0

Only if either incoming connection

Networks with a single hidden layer can approximate any function. Let's get some more intuition by building our own logic circuit.

Boolean operators:

AND

NOT

X

0

6/introduction-to-xor-gate/

 Networks with a single hidden layer can approximate any function. Let's get some more intuition by building our own logic circuit.

Combine: XNOR

Boolean operators:

https://www.tutorialspoint.com/com

puter logical organization/logic ga

Motivating example:

Motivating example:

Motivating example:

• AND function $\rightarrow x_1$ and x_2 can be either 0 or 1

- AND function $\rightarrow x_1$ and x_2 can be either 0 or 1

$$h_{\theta}(x) = sigmoid(-30 + 20 \cdot x_1 + 20 \cdot x_2)$$
 $h_{\theta}(x) = \sigma([-30 \ 20 \ 20] \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix})$

- AND function $\rightarrow x_1$ and x_2 can be either 0 or 1

$$h_{\theta}(x) = sigmoid(-30 + 20 \cdot x_1 + 20 \cdot x_2)$$

- AND function $\rightarrow x_1$ and x_2 can be either 0 or 1

$$h_{\theta}(x) = sigmoid(-30 + 20 \cdot x_1 + 20 \cdot x_2)$$

x_1	x_2	$h_{\Theta}(x)$
0	0	g(-30) 20
0	1	g(-10) 20
1	0	g(-10) %0
1	1	9(10) 21

Over to you: make an OR function → try
it yourself and discuss with neighbours for 2 minutes

X	У	x+y
0	0	0
0	1	1
1	0	1
1	1	1

Zorg dat ik op de slide kan schrijven!

$$h_{\theta}(x) = sigmoid(? + ? \cdot x_1 + ? \cdot x_2)$$
 Om hier truth table van studenten te maken

Answer

x_1	x_2	$h_{\Theta}(x)$
0	0	g(-10) ~= 0
0	1	g(-10+20) ~= 1
1	0	g(-10+20) ~= 1
1	1	$g(-10 + 20 + 20) \sim = 1$

Over to you: make a NOT function → try
it yourself and discuss with neighbours for 2 minute

NOT							
X	x'						
0	1						
1	0						

Zorg dat ik op de slide kan schrijven!

$$h_{\theta}(x) = sigmoid(? + ? \cdot x_1)$$

Om hier truth table van studenten te maken

Answer

Just put a large negative weight in front of whatever you want to negate (enough to overcome the bias)

Making simple functions ourselves: (NOT x₁) AND (NOT x₂)

 Make NOT x₁ AND NOT x₂ → try it yourself and discuss with neighbours for 2 minutes

$$h_{\theta}(x) = sigmoid(? + ? \cdot x_1 + ? \cdot x_2)$$

Zorg dat ik op de slide kan schrijven!

Om hier truth table van studenten te maken

Making simple functions ourselves: (NOT x₁) AND (NOT x₂)

Answer

Just put a large negative weight in front of whatever you want to negate (enough to overcome the bias)

Only positive when $x_1 = x_2 = 0$

		(0)	(0)	
x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	
0	0	0	1	
0	1	0	0	
1	0	0	0	ı
1	1	1	0	

x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	$h_{\Theta}(x)$
0	0	0	17	1 -
0	1	0	07	0
1	0	0	0	0
1	1	1	0	1

Computing complex functions

 This is an illustration of how neural networks work: earlier layers can compute simple functions like AND and OR. By combining those outputs, you can compute more complex functions.

Multiclass classification in neural nets

Multiclass classification in neural nets

Question to you

Say we have 10 classes and the following network, how many

parameters in $\Theta^{(2)}$? Etc. $\Theta^{(j)} = \text{matrix of weights controlling} \\ \text{function mapping from layer } j \text{ to} \\ \text{layer } j+1$

Question to you

Say we have 10 classes and the following network, how many

+ 10 → bias of each unit in output layer

Question to you

- Say we have 10 classes and the following network, how many parameters in $\Theta^{(2)}$? $\Theta^{(j)} = \text{matrix of weights controlling function mapping from layer } j \text{ to } j \text{$

Answer: 60. 5*10 → weights between units.
 + 10 → bias of each unit in output layer

Summary

- We can use individual neurons to calculate simple logic functions
- We can combine the outputs of single neurons to calculate more complex (logic) functions
- For multiclass classification, we simply make class a vector, where we strive for the real class to be ~1, and all other classes 0.

Afternoon practical 1

Laat de studenten kijken naar/lezen:

https://www.youtube.com/watch?v=ljqkc7OLenl en http://neuralnetworksanddeeplearning.com/chap4.html

en:

https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQO bOWTQDNU6R1 67000Dx ZCJB-3pi&index=1

https://www.youtube.com/watch?v=QObOWTQDNU6R1_67000Dx_ZC

Afternoon practical 2

- Multiclass logistic regression: geef bio dataset met, zeg, 6 kankerclasses en wat features.
 - → laat splitsen in test en trainset
 - → train 6 binaire classifiers (laat ook zelf data transformeren daartoe) met gradient descent
 - →plot resultaat van elke classifier op train en testset gedurende training. (liefst in 6 aparte plotjes met decision boundary erop geprojecteerd)
- (optioneel) → laat zelfde kort doen op MNIST data
- Neural network:
 - → start met vrijelijk 15 minuten klooien met
 - rningRate=0.03®ularizationRate=0&noise=0 cretize=false&percTrainData=50&x=true&y=true &sinX=false&collectSta
 - → geef netwerkarchitectuur + pretrained weights voor MNIST, laat:
 - -MNIST-data visualiseren
 - -zelf netwerkuitkomst bouwen middels correcte vermenigvuldigingen en toevoegen bias units
 - -Afrondend: youtube filmpje over GAN (https://www.youtube.com/watch?v=p5U4NgVGAwg) of jazzmuziek maken: https://www.youtube.com/watch?v=nA3YOFUCn4U of iets lezen over GANs als cool extra ding:

Beste misschien: laat ze clip 1 en 2 kijken van 3blue1brown neural net (~halfuur)