МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики Кафедра математического обеспечения и суперкомпьютерных технологий

Направление подготовки «Прикладная математика и информатика» Магистерская программа «Системное программирование»

Отчет по лабораторной работе

«Разработка сверточной нейронной сети»

Выполнили: студенты группы 381603м4 Гладилов, Волокитин, Левин, Новак

СОДЕРЖАНИЕ

1	ФОРМАТ ВХОДА СЕТИ	3
2	ТЕСТОВЫЕ КОНФИГУРАЦИИ СЕТЕЙ	4
3	РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ	9
4	ИТОГИ	10

.

1 Формат входа сети

Для описания входа сети в библиотеке Caffe используется слой ImageData.

```
layer {
  name: "gender"
  type: "ImageData"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  image_data_param {
    source: "/home/glebg/dev/deep-learning/train.lst"
    new_width: 150
    new_height: 150
    batch_size: 100
  }
}
```

Описание значений параметров слоя:

- top Указывает на то, какие данные выходят из слоя, в данном случае это исходная картинка и метка класса
- phase TRAIN (TEST) –режим в котором используется слой
- transform_param описание преобразований над входными данными. В данном случае выполняется нормировка на 255
- Source файл *.lst где хранятся изображения и метки класса
- new_width/new_height размеры входного тензора
- batch_size размер пачки картинок.

В данной модели мы используем RGB картинки уменьшенные до размера 150x150 и нормализованные на 255

2 Тестовые конфигурации сетей

• Average:

Рис. 1. Сверточная сеть с avg pool

MaxPool

Рис. 2. MaxPool.

• FaceNet

Рис. 3. Facenet (Без Нормировки)

• Three FC

Рис. 4. Три скрытых слоя. Также Pool+Relu

• FaceNetWithNorm

Рис. 5. FaceNetWithNorm

3 Результаты экспериментов

Конфигурация сети	Время обучения (секунды)	Точность
Avg (10000)		0.908333
(GeForce GTX 1080)		
Max (10000)		0.9004
(GeForce GTX 1080)		
FaceNet (12000)		0.84
(Tesla K20X)		
Three FC (12000)		0.84
(Tesla K20X)		

4 Итоги

В рамках данной лабораторной работы были решены следующие задачи:

- Выбрана библиотека глубокого обучения (Caffe). Произведена её установка как на кластер так и на локальную машину. Подтверждена корректность установки.
- Выбрана практическая задача компьютерного зрения.
- Разработаны скрипты для подготовки данных, тренировки и тестирования сетей.
- Разработаны различные архитектуры нейронных сетей.
- Произведено обучение и тестирование разработанных глубоких моделей.