UNIDADE DE CONTROLE

UNIDADE DE CONTROLE

```
0000xxxxxxxxxxx LODD
                           AC := M[x]
0001xxxxxxxxxxx STOD
                           M[x] := AC
0010xxxxxxxxxxx ADDD
                           AC := AC + M[x]
0011xxxxxxxxxxx SUBD
                           AC := AC - M[x]
0100xxxxxxxxxxx JPOS
                           se AC > 0 então
                                P\overline{C} := x
0101xxxxxxxxxxxx JZER
                           se AC = 0 então
                                PC := x
0110xxxxxxxxxxx JUMP
                           PC := x
0111xxxxxxxxxxx LOCO
                           AC := x
                           AC := M[SP + x]
1000xxxxxxxxxxx LODL
                           M[SP + x] := AC
1001xxxxxxxxxxx STOL
1010xxxxxxxxxxx ADDL
                           AC := AC + M[SP+x]
                           AC := AC - M[SP+x]
1011xxxxxxxxxxxx SUBL
1100xxxxxxxxxxx JNEG
                           se AC < 0 então
                                PC := x
1101xxxxxxxxxxx JNZE
                           se AC /= 0 então
                                PC := x
1110xxxxxxxxxxx CALL
                           SP := SP - 1;
                           M[SP] := PC;
                           PC := x
111100000000000 PSHI
                           SP := SP - 1;
                           M[SP] := M[AC]
                           M[AC] := M[SP];
111100100000000 POPI
                           SP := SP + 1
                           SP := SP - 1;
111101000000000 PUSH
                           M[SP] := AC
1111011000000000 POP
                           AC := M[SP];
                           SP := SP + 1
111110000000000 RETN
                           PC := M[SP];
                           SP := SP + 1
1111101000000000 SWAP
                           TMP := AC;
                           AC := SP;SP := TMP
11111100yyyyyyy INSP
                           SP := SP + y
11111110yyyyyyyy DESP
                           SP := SP - y
```

UNIDADE DE CONTROLE

•	0000	ADD	r1 := r1 + r2
•	0001	AND	r1 := r1 . r2
•	0010	MOVE	r1 := r2
•	0011	COMPL	r1 := inv (r2)
•	0100	LSHIFT	r1 := lshift (r2)
•	0101	RSHIFT	r1 := rshift (r2)
•	0110	GETMBR	r1 := MBR
•	0111	TEST	if $r2 < 0$ then $N := true;$
•			if $r2 = 0$ then $Z := true$
•	1000	BEGRD	MAR := r1; rd
•	1001	BEGWR	MAR := r1; MBR := r2; wr
•	1010	CONRD	RD
•	1011	CONWR	WR
•	1100		
•	1101	NJUMP	if N then goto r
•	1110	ZJUMP	if Z then goto r
•	1111	UJUMP	goto r