This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000-284295

(43) Date of publication of application: 13.10.2000

(51) Int. CI.

GO2F 1/1339 G02F 1/13

GO2F 1/1333 GO9F 9/30

(21) Application number: 11-089612

(71) Applicant : HITACHI TECHNO ENG CO LTD

(22) Date of filing:

30.03.1999

(72) Inventor: HACHIMAN SATOSHI

IMAIZUMI KIYOSHI SAITO MASAYUKI KAWASUMI YUKIHIRO SANKAI HARUO HIRAL AKIRA

(54) METHOD AND APPARATUS FOR ASSEMBLING SUBSTRATE

(57) Abstract:

PROBLEM TO BE SOLVED: To bond substrates which are approximately the same to each other with high accuracy in a vacuum even if the substrate size increases and the thickness thereof is reduced.

SOLUTION: Electrostatic attraction force is acted on an upper substrate 1b from a pressurizing plate 27 and the upper substrate 1b is held on the pressurizing plate 27 and is bonded thereto in the vacuum. Further, the upper substrate 1b is held on the pressurizing plate 27 by suction attraction force and the electrostatic attraction force is acted on the upper substrate 1b accepted in the position of the extent slight apart from the pressurizing plate 27 dropped when the suction attraction force disappears in the process of progressing the pressure reduction, by which the upper substrate 1b is again held on the pressurizing plate 27 and the bonding in the vacuum is executed.

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-284295 (P2000-284295A)

(43)公開日 平成12年10月13日(2000.10.13)

(51) Int.Cl. ⁷		設別記号		ΡΙ			テーマコード(参考)
G02F	1/1339	505		G02F	1/1339	505	2H088
	1/13	101			1/13	101	2H089
	1/1333	5 0 0			1/1333	500	2H090
GO9F	9/30			G09F	9/30	(5 5 C 0 9 4
	-•	3 1 0				310	
				審查請求	未請求	請求項の数 5	OL (全 6]
(21) 出願番号		持願平 11-89612		(71) 出願人	0002330	77	
			į		日立テク	ァノエンジニア!	リング株式会社
(22)出顧日	2	² 成11年3月30日(1999.3.3	0)		東京都足	尼立区中川四丁 E	目13番17号
			Ī	(72) 発明者	八幡	Š.	
			į		茨城県莆	きヶ崎市向陽台 き	5丁目2番 日立
					クノエン	<i>、シニ</i> アリングを	大式会社開発研究
					内		
·			1	(72)発明者	今泉 清	P. C.	
		•*			茨城県電	きょ崎市向陽台 き	5丁目2番 日立
					クノエン	ノジニアリング を	大式会社開発研究
					内		
		•		(74)代理人	1000592	69	
					弁理士	秋本 正実	
							最終頁に組
	•		!				

(54) 【発明の名称】 基板の組立方法およびその装置

(57)【要約】

[課題] 基板サイズが大型化, 薄板化しても真空中で高精度に同程度の基板同士を貼り合せることが可能な基板の組立方法およびその装置を提供することである。

[解決手段] 加圧板から上基板に静電吸着力を作用させて加圧板に上基板を保持させて真空中で貼り合わせを行う。さらには、上基板を加圧板に吸引吸着力で保持させ、減圧を進める過程で吸引吸着力が消えた時に落下し加圧板から僅かに離れた程度の位置に受け止められた上基板に静電吸着力を作用させて、再度加圧板に上基板を保持させて真空中で貼り合わせを行なう。

【特許請求の範囲】

【請求項1】貼り合わせる一方の基板を加圧板の下面に 保持し、貼り合わせる他方の基板をテーブル上に保持し て対向させ、いづれかの基板に設けた接着剤により真空 中で間隔を狭めて貼り合わせる基板の組立方法におい て

加圧板から一方の基板に静電吸着力を作用させて一方の 基板を加圧板に保持させて貼り合わせを行うことを特徴 とする基板の組立方法。

【請求項2】貼り合わせる一方の基板を加圧板の下面に 保持し、貼り合わせる他方の基板をテーブル上に保持し て対向させ、いづれかの基板に設けた接着剤により真空 中で間隔を狭めて貼り合わせる基板の組立方法におい て

一方の基板を加圧板に大気中で吸引吸着力によって保持させ、減圧を進める過程で吸引吸着力が消えて落下する一方の基板を加圧板から僅かに離れた程度の位置に受け止めて、この一方の基板に加圧板から静電吸着力を作用させて加圧板に一方の基板を保持させて貼り合わせを行なうことを特徴とする基板の組立方法。

【請求項3】貼り合わせる一方の基板を加圧板の下面に 保持し、貼り合わせる他方の基板をデーブル上に保持し て対向させ、いづれかの基板に設けた接着剤により真空 中で間隔を狭めて貼り合わせる基板の組立方法におい て

一方の基板を加圧板に大気中で吸引吸着力によって保持させるとともに押し当てておき、減圧を進める過程で吸引吸着力が消える前後でこの一方の基板に加圧板から静電吸着力を作用させて加圧板に一方の基板を引き続き保持させて貼り合わせを行なうことを特徴とする基板の組立方法。

【請求項4】真空チャンバ内の上方に位置する加圧板の下面に貼り合わせる一方の基板を保持し、貼り合わせる他方の基板を真空チャンバ内の下方に位置するテーブル上に保持して両基板を対向させ、いづれかの基板に設けた接着剤により真空中で両基板の間隔を狭めて基板同士を貼り合わせる基板の組立装置において、

加圧板に一方の基板を吸引吸着力で保持させる手段と静電吸着力で保持させる手段を設け、真空チャンバ内の滅圧を進める過程で吸引吸着力が消えた時に落下する一方の基板を加圧板から僅かに離れた程度の位置に受け止める手段あるいは加圧板に一方の基板を押し付ける手段を設け、この受け止め手段あるいは押し付ける手段上に一方の基板があるときに少なくとも静電吸着力を作用させて加圧板に一方の基板を保持させる手段を設けたことを特徴とする基板の組立装置。

【請求項5】真空チャンバ内の上方に位置する加圧板の下面に貼り合わせる一方の基板を保持し、貼り合わせる他方の基板を真空チャンバ内の下方に位置するテーブル上に保持して両基板を対向させ、いづれかの基板に設け

た接着剤により真空中で両基板の間隔を狭めて基板同士を貼り合わせる基板の組立装置において、

テーブルは真空チャンバの内外間を水平に移動できるものであり、真空チャンバの外に位置したテーブル上の他方の基板に接着剤を閉鎖したパターンに描画する手段と、テーブル上における他方の基板上の接着剤の閉鎖したパターン内に液晶を滴下する手段を設け、加圧板に一方の基板を吸引吸着力で保持させる手段と静電吸着力で保持させる手段を設け、真空チャンバ内の滅圧を進める過程で吸引吸着力が消えた時に落下する一方の基板を加圧板から僅かに離れた程度の位置に受け止める手段あるいは加圧板に一方の基板を押し付ける手段を設け、この受け止め手段あるいは押し付ける手段上に一方の基板があるときに少なくとも静電吸着力を作用させて加圧板に一方の基板を保持させる手段を設けたことを特徴とする基板の組立装置。

【発明の詳細な説明】

[0001]

【 発明の属する技術分野 】 本発明は、真空チャンバ内で 貼り合せる基板同士をそれぞれ保持して対向させ真空中 で間隔を狭めて貼り合わせる基板の組立方法とその装置 に関する。

[0002]

【従来の技術】液晶表示パネルの製造には、透明電極や 薄膜トランジスタアレイを付けた 2 枚のガラス基板を数 μm程度の極めて接近した間隔をもって接着剤(以下、 シール剤ともいう)で貼り合わせ(以後、貼り合せ後の 基板をセルと呼ぶ)、それによって形成される空間に液 晶を封止する工程がある。

【0003】この液晶の封止には、注入口を設けないようにシール剤をクローズしたパターンに描画した一方の基板上に液晶を滴下しておいて他方の基板を一方の基板上に配置し真空中で上下の基板を接近させて貼り合せる特開昭62-165622号公報で提案された方法や、一方の基板上に注入口を設けるようにシール剤をパターン描画して真空中で基板の貼り合わせ後にシール剤の注入口から注入する特開平10-26763号公報で提案された方法などがある。

[0004]

【発明が解決しようとする課題】上記従来技術では、シール剤のパターン描画の前後に係わらず、いずれも両基板は真空中で貼り合わせている。真空中では、大気状態時のように、基板を大気との圧力差で吸引吸着することができない。

【0005】上側に位置する基板(以下、上基板と呼ぶ。)の端部を機械的に保持すると基板の中央部がためみ、そのたわみは最近の基板大型化、薄板化傾向が強まるにつれて大きくなっている。

【0006】上下各基板の周縁端部に設けた位置合わせ マークを利用して位置決めを行うため、たわみが大きい 程両基板の端部同士の間隔は拡がり位置合わせができない。

【0007】更に、上基板のたわみで上基板の中央部が 周縁部よりも先に下側の基板(以下、下基板と呼ぶ。) に接触するので、基板間隔を一定にする為に基板間に散 布されているスペーサが動き、基板上に形成されている 配向膜などを傷つけてしまう。

【0008】実際には貼り合せる上下の基板は同サイズなので、保持代がほとんど取れない状態にある。

【0009】それゆえ本発明の目的は、基板サイズが大型化、薄板化しても真空中で高精度に同程度の基板同士を貼り合せることが可能な基板の組立方法およびその装置を提供することにある。

·[0010]

(課題を解決するための手段)上記目的を達成する本発明の特徴とするところは、加圧板から上基板に静電吸着力を作用させて加圧板に上基板を保持させて真空中で貼り合わせを行うことにある。

【0011】さらには、上基板を加圧板に大気中で吸引吸着力で保持させ、減圧を進める過程で吸引吸着力が消えた時に落下する上基板を加圧板から僅かに離れた程度の位置に受け止めて、この上基板に加圧板から静電吸着力を作用させて、再び加圧板に上基板を保持させて真空中で貼り合わせを行なうことにある。

[0012]

【発明の実施の形態】以下,本発明の一実施形態を図に 基づいて説明する。

【0013】図1乃至図3において、本発明になる基板 組立装置は、液晶滴下部S1と基板貼合部S2から構成 され、この両部分は架台2上に隣接して配置される。架 台2の上方には基板貼合部S2を支持するフレーム3が ある。また、架台2の上面には、XY8ステージT1が 備えられている。 Xステージ4aは、駆動モータ5によ り、図面上で左右のX軸方向に、即ち、液晶滴下部S1 と基板貼合部S2間を往来できるようになっている。Y ステージ4bはXステージ4a上にあり、駆動モータ6に よりXステージと直交するY軸方向に往来できるように なっている。θステージ4cはYステージ4b上にあり、 回転ベアリングフを介して駆動モータ8によりYステー ジ4bに対して水平に回転可能になっていて、Bステー ジ4c上に基板を搭載するテーブル9が固定される。ま た、Yステージ4 bにプレート13で下チャンバ10が 固定されている。 Bステージ4cは、下チャンバ10に 対し回転ベアリング11と真空シール12を介して軸A を回転中心として回転自由に取付けられ、6ステージ4 cが回転しても下チャンバ10はつられて回転しない構 造としている。

【0014】液晶滴下部S1は、テーブル9に保持された下基板1aに所望量の液晶剤を滴下するためのフレーム3から突出したブラケット14で支持されたディスペ

ンサ17とこれを上下移動させるための2軸ステージ15とそれを駆動するモータ16で構成される。下基板1aをテーブル9上に保持搭載したXYBステージT1は、液晶剤を滴下するディスペンサ17のノズル18に対し、XおよびY方向に移動する。これにより、下基板1a上の任意の個所に所望量の液晶剤が滴下される。

【0015】液晶滴下後の下基板 1 aを搭載保持したX Y θ ステージT 1 は基板貼合部 S 2の下部に駆動モータ 5によって移動する。

【0016】基板貼合部S2では、上チャンバ21とその内部の静電吸着板28がそれぞれ独立して上下動できる構造になっている。即ち、上チャンバ21は、リニアブッシュと真空シールを内蔵したハウジング30を有しており、シャフト29をガイドとしてフレーム2に固定されたシリンダ22により上下の2軸方向に移動する。【0017】XYのステージT1が基板貼合部S2に移動していて上チャンバ21が下降すると、下チャンバ10の周りに配置してある0リング44に上チャンバ21のフランジが接触し一体となり、この時真空チャンバとして機能する状態になる。

【0018】0リング44のつぶれ量は、上チャンバ2 1の下降停止位置を調整し、真空チャンバ内を真空に保 つことができ、かつ、最大の弾性が得られる程度に設定 する。

【0019】ハウジング30は、上チャンバ21が下チャンバ10と真空チャンバを形成して変形しても、シャフト29に対し真空漏れを起こさないで上下動可能な真空シールを内蔵しているので、真空チャンバの変形がシャフト29に与える力を吸収することができ、シャフト29に固定され静電吸着板28を保持した加圧板27の変形がほぼ防止でき、後述するように静電吸着板28に保持された上基板1bとテーブル9に保持された下基板1aとの平行を保って貼り合せが可能となる。

【0020】23は真空バルブ、24は配管ホースで図示していない真空源に接続され、これらは真空チャンバを減圧し真空にする時に使用される。また、25はガスパージバルブ、26はガスチューブで、 N_2 やクリーンドライエアー等の圧力源に接続され、これらは真空チャンバを大気圧に戻す時に使用される。

【0021】上基板1 bは静電吸着板28の下面に密着保持されるが、大気下において上基板1 bは吸引吸着で一静電吸着板28に保持されるようになっている。即ち、41は吸引吸着用継手、42は吸引チューブであり、図示していない真空源に接続され、静電吸着板28面に・は、それにつながる複数の吸引孔が設けられている。

【0022】尚、周りが大気の場合、静電吸着を併用してもよいし、静電吸着力が大きい場合は、吸引吸着を不要としてもよい。

【0023】静電吸着板28はシャフト29で支持された加圧板27に取付けられており、シャフト29はハウ

ジング31、32に固定されている。ハウジング31はフレーム2に対してリニアガイド34で取付けられ、静電吸着板28は上下動可能な構造になっている。その上下駆動はフレーム2とつながるフレーム35上のブラケット38に固定されたモータ40により行う。駆動の伝達はボールねじ36とナットハウジング37で実行される。ナットハウジング37は荷重計33を介してハウジング32とつながり、その下部の静電吸着板28と一体で動作する。

【0024】従って、モータ40によってシャフト29が下降し、上基板1bを保持した静電吸着板28が下降し上基板1bがテーブル9上の下基板1aと密着して、加圧力を与えることのできる構造となっている。この場合、荷重計33は加圧力センサとして働き、逐次、フィードバックされた信号を基にモータ40を制御することで、上下基板1a、1bに所望の加圧力を与えることが可能となっている。

【0025】下基板1aは重力方向の搭載なので、図2に示すようにテーブル9に設けた位置決め部材81に押付ローラ82による水平方向での押付けによる位置決めの固定で十分であるが、貼り合わす直前の微小位置決めの際、上基板1bが下基板1a上のシール剤や液晶剤と接触した影響で下基板1aがずれたり持上がる可能性があることや真空チャンバ内が滅圧され真空になる過程で下基板1aとテーブル9との間に入り込んでいる空気が逃げて下基板1aが踊りずれる可能性があるので、テーブル9に対しても静電吸着の機能を持たせても良い。そして、テーブル9に上下Z軸方向に移動できるピンを設け接地しておくと、基板貼り合わせ後のセルの帯電防止とテーブル9からのセル取り外しを容易に行なうことができる。

【0026】図2に示す60は、静電吸着板28が吸引吸着をしていて真空チャンバが減圧され吸引吸着力が消えて上基板1bが落下するときに静電吸着板28の億か下の位置で受け止める受止爪で、上基板1bの2個の対角の位置にあって下方に伸びたシャフト59で釣り下げた形に支持されている。具体的には、図3に示すように、シャフト59は上チャンバ21のハウジング58を介して真空シールされて回転と上下移動ができるようになっている。即ち、シャフト59は、シャフト29に設けたブラケット63に固定された昇降アクチェータ62でジャフト29の上下移動とは独立してさらに上下に移動できるだけでなく、回転アクチェータ61によって回転できるようになっている。

【0027】次に、基板を吸着する靜電吸着板28について説明する。

(0028) 静電吸着板28は起縁物の板であり、方形の凹部を2個有していて、各凹部に内蔵された平板電極を誘電体で覆ってその誘電体の主面が静電吸着板28の下面と同一平面になっている。埋め込まれた各平板電極

はそれぞれ正負の直流電源に適宜なスイッチを介して接続されている。

【0029】従って、各平板電極に正あるいは負の電圧が印加されると、静電吸着板28の下面と同一平面になっている誘電体の主面に負あるいは正の電荷が誘起され、それら電荷によって上基板1bの透明電極膜との間に発生するクーロン力で上基板1bが静電吸着される。各平板電極に印加する電圧は同極でもよいしそれぞれ異なる双極でもよい。

【0030】次に、本基板組立装置で基板を貼り合わせる工程について説明する。

【0031】先ず、テーブル9に上基板1bを保持した 治具を搭載し、駆動モータラでXYBステージT1を基 板貼合部S2に移動させる。そこでモータ40によりシャフト29を介して加圧板27や静電吸着板28を降下 させ、テーブル9上の上基板1bを吸引吸着させてから、モータ40で上昇させて、上基板1bを待機状態と する。

 ${0032}$ $XY\theta$ ステージT1 は液晶滴下部S1 に戻って、空になった治具が外されテーブル9上に下基板1 aが搭載され、図2に示すように所望位置に固定保持される。

【0033】図1には示していないが、フレーム3にシール剤を吐出するデイスペンサがあって、XYのステージ下1の各モータ5.6で下基板1aをXY軸方向に移動させつつシール剤を吐出させると、下基板1a上にクローズ(閉鎖)したパターンでシール剤を描画できる。その後、デイスペンサ17から液晶剤を下基板1a上に滴下する。この場合、シール剤がダムとなって、滴下した液晶剤は流失することはない。

【0034】次に、XYBステージT1を基板貼合部S2に移動させ、シリンダ22で上チャンバ21を降下させ、そのフランジ部21aをOリング44に当接させて下チャンバ10と真空チャンバを形成させる。そして、真空バルブ23を開放して真空チャンバ内を滅圧していく。この時、上基板1bは静電吸着板28に吸引吸着された状態になっているので、減圧が進み真空化していくと上基板1bに作用していた吸引吸着力は消えて行き、上基板1bが自重で落下する。これを図2に示すように 受止爪60で受け止めて、図3に示すように静電吸着板28の僅か下の位置に保持しておく。

-【0035】真空チャンバ内が充分真空になった時点。で、静電吸着板28に電圧を印加して受止爪60上の上基板1bを、静電吸着板28にクーロン力で吸引保持する。この場合、既に真空になっているので、静電吸着板28と上基板1bが間に空気が残るようなことは無いし、その空気が逃げるときに上基板1bが踊ることもない。より重要なことは空気を介在させることなく、静電吸着板28に上基板1bが密着していることである。そのため、誘起電荷で放電を発生することがない。

[0036] 空気を残したまま放電を生じると空気が膨張し、上基板1bを静電吸着板28から剥削させたり薄ガラス製の上基板1bを破壊することがあるが、本実施形態によれば空気が存在しないので、そのような異常事故は発生しない。

【0037】その後、昇降アクチェータ62でシャフト59を下降させ、次に、回転アクチェータ61でシャフト59を回転させ、受止爪60が上下両基板の貼り合わせの邪魔にならぬようにしてから、モータ40で加圧板27を降下させ、荷重計33で加圧力を計測しつつモータ40を制御して上下両基板1a.1bを所望間隔に貼り合わせる。

【0038】この場合、上基板1 bは静電吸着板28に密着していて中央部が垂れ下がっていることはないから、液晶剤中のスペーサに悪影響を与えたり、基板同士の位置合わせが不可能になることはない。因みに、位置合わせは図示を省略した上チャンバ21に設けた覗き窓から画像認識カメラで上下各基板1a、1bに設けられている位置合わせマークを読み取って画像処理により位置を計測し、XY & ステージT1の各ステージ4a乃至4cを微動させて、高精度な位置合わせを行なう。

[0039]貼り合わせが終了すると、真空バルブ23を締めてガスパージバルブ25を開き、真空チャンバ内に N_2 やクリーンドライエアーを供給し、大気圧に戻してからガスパージバルブ25を閉じて、シリンダ22で上チャンバ21を上昇させ、 $XY\theta$ ステージT1を液晶滴下部S1に戻して、テーブル9からセルを外し次の貼り合わせに備える。ここで、貼合後のセルは帯電している場合があるので、接地した除電バーに接触させたりイオン風を吹き当てるなどの除電処理をしてから、テーブル9からセルを外すと良い。テーブル9から外したセルは下流のUV光照射装置や加熱装置などでシール剤が硬化される。

【0040】以上の実施形態では、シール剤を吐出して 液晶を滴下し直ちに貼り合せに移行するので、基板が塵 埃を受けづらく生産歩留まりを向上できる。また、ギャ カステージT1を上基板1bの真空チャンバ内への搬送 に利用でき、装置の小型化が図られている。

【0041】本発明は以上説明した実施形態に限らず、 以下の様に実施しても良い。

【0042】(1) 上基板1 bの静電吸着板28への供給は、XY & ステージT1に上下方向に伸縮可能な複数の受止爪(図2の受止爪6 0 相当のもの)を設けておいて、XY & ステージT1が液晶滴下部S1にあるときにその複数の受止爪上に上基板1 bを載せて、XY & ステージT1を基板貼合部S2に移動させるようにしてもよい。

【0043】(2) また、ロボットハンドから直接静

電吸着板28に吸引吸着をしてよい。

【0044】(3) 上記(1)で説明したXY θ ステージT1に設けた受止爪で、減圧が進む際に落下する上 基板1bを受け止めるようにしてもよい。

【0045】(4) さらに、図2の受止爪60や上記(1)で説明したXYのステージT1に設けた受止爪で、上基板1bが落下する前に上基板1bを静電吸着板28に押し付けておいて、静電吸着板28に吸引吸着された状態から減圧を進めて、静電吸着に切替えてもよい。この場合、物理的に上基板1bが静電吸着板28に密着しているということがないようにしておくことで、上基板1bと静電吸着板28の間の空気を減圧とともに真空化することができる。

 $\{0046\}$ (5) さらにまた、図2の受止爪60や上記(1)で説明した $XY\theta$ ステージT1に設けた受止爪で、上基板1bを静電吸着板28から僅かに離れた位置に保持しておいて、吸引吸着をしないで減圧を進める途中で静電吸着を行なってもよい。

【0047】(6) また、図2では受止爪60により上基板1bの2個の角部(対角を構成する2隅)を保持しているが、上基板1bの4個の角部(4隅)を保持したり、上基板1bの4辺あるいは長手方向の2辺または幅方向の2辺を適宜な手段で保持するようにしてもよい

[0048]

【発明の効果】以上説明したように本発明によれば、基板サイズが大型化、薄板化しても真空中で高精度に同程度の基板同士を貼り合せることができる。

【図面の簡単な説明】

(図1) 本発明の一実施形態を示す基板組立装置の概略 図である。

【図2】上下の各基板を貼り合わせるときの状況を示す 斜視図である。

(図3)上基板に静電吸着力を作用させ上下両基板を貼り合わせる直前の状況を示す要部の断面図である。

【符号の説明】

S 2 基板貼合部

1 a 下基板

1 b 上基板

9 テーブル

10 下チャンバ

..2.1 上チャンバ

23 真空バルブ

27 加圧板

28 静電吸着板

59 シャフト

61 回転アクチェータ

62 昇降アクチェータ

[図1]

【図2】

【図3】

フロントページの続き

(72)発明者 齊藤 正行

茨城県竜ヶ崎市向陽台5丁目2番 日立テクノエンジニアリング株式会社開発研究所内

(72)発明者:川隅 幸宏:

茨城県竜ヶ崎市向陽台5丁目2番 日立テクノエンジニアリング株式会社開発研究所内

(72) 発明者 三階 春夫

茨城県竜ヶ崎市向陽台5丁目2香 日立テクノエンジニアリング株式会社開発研究所内

(72) 発明者 平井 明

茨城県竜ヶ崎市向陽台5丁目2番 日立テクノエンジニアリング株式会社開発研究所

Fターム(参考) 2HO88 FA01 FA10 FA16 FA30 HA01

2HOS9 NA49 NA60 QA11

2H090 JC12 LA02

5C094 AA14 AA42 AA43 AA55 BA43

GB01

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000-292799

(43) Date of publication of application: 20.10.2000

(51) Int. CI.

G02F

(21) Application number : 11-101899

(71) Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22) Date of filing:

09.04.1999 (72) Inventor : YAMADA YOSHITERU MATSUKAWA HIDEKI

(54) LIQUID CRYSTAL DISPLAY DEVICE AND ITS PRODUCTION

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a method for the production of a liquid crystal display device in which uniform display can be obtd. all over the display screen. SOLUTION: In the production of a liquid crystal display device by laminating a pair of substrates 2 having electrodes with a spacer 4 interposed with a photosetting sealing material 3 to form a cell and by filling the cell with a liquid crystal 5a, the cell is filled with a liquid crystal 5a mixed with a photoinitiating agent which is contained in the sealing material 3. Moreover, the whole surface of the liquid crystal cell filled with the liquid crystal is irradiated with light 1 to harden the sealing material 3.

G02F 1/1339

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-292799 (P2000-292799A)

(43)公開日 平成12年10月20日(2000.10.20)

(51) Int.Cl.⁷

識別記号 505

FΙ

G02F 1/1339 505

テーマコード(参考) 2H089

審査請求 未請求 請求項の数6 OL (全 6 頁)

(21)出願番号

特願平11-101899

(22) 出願日

平成11年4月9日(1999.4.9)

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72) 発明者 山田 佳照

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 松川 秀樹

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100068087

弁理士 森本 養弘

Fターム(参考) 2H089 JA05 MA04Y NA22 NA24

NA41 NA44 QA12 QA16

(54) 【発明の名称】 液晶表示素子とその製造方法

(57)【要約】

【課題】 表示画面の全面にわたって均一な表示の得ら れる液晶表示素子の製造方法を提供する。

【解決手段】 一対の電極付き基板2をスペーサ4を介 して光硬化型シール材3にて貼り合わせたセルに液晶5 aを充填して液晶表示案子を製造するに際し、シール材 3に含まれる光開始剤を混入した液晶5 aを前記セルに 充填する。また、液晶を充填した液晶セルの全面に光1 を照射してシール材3を硬化する。

光開始剤を混入した液晶

【特許請求の範囲】

【謂求項1】一対の電磁付き基板をスペーサを介して光 硬化型シール材にて貼り合わせたセルに液晶を充填して 液晶表示素子を製造するに際し、

前記シール材に含まれる光開始剤を混入した液晶を前記 セルに充填する液晶表示素子の製造方法。

[請求項2]一対の電極付き基板をスペーサを介して光硬化型シール材にて貼り合わせたセルの間に液晶を充填し、前記光硬化型シール材を硬化して液晶表示素子を製造するに際し、

前記光硬化型シール材に含まれる光開始剤を混入した液 晶をセルに充填し、液晶を充填したセルの全面に光を照 射してシール材を硬化する液晶表示素子の製造方法。

【請求項3】セルへの液晶の充填は、一対の電極付き基板の少なくとも一方の基板の外周部にシール材を塗布し、前記シール材を塗布した基板のシール材の内側に液晶を滴下して前記一対の基板を貼り合わせて充填する請求項1または請求項2記載の液晶表示素子の製造方法。

【請求項4】シール材としてアクリル系紫外線硬化型シール材を用い、このシール材に含まれるアセトフェノン系、ベンゾイン系、ベンゾフェノン系の少なくともいずれかの光開始剤を混入した液晶を用いる請求項1から請求項3のいずれか記載の液晶表示素子の製造方法。

【請求項5】液晶セルに、波長330~400nm、強度3000~5000mJ/cm²の紫外線照射を行う 請求項1から請求項4のいずれか記載の液晶表示素子の 製造方法。

【請求項6】一対の電極付き基板をスペーサを介して光 硬化型シール材にて貼り合わせたセルに液晶を充填した 液晶表示素子であって、

前記液晶にはシール材に含まれる光開始剤が均一に分散 している液晶表示素子。

【発明の詳細な説明】

[0001]

[発明の属する技術分野] 本発明は、一対の電極付き基板をスペーサを介して光硬化型シール材にて貼り合わせたセルに液晶を充填する液晶表示素子の製造方法に関するものである。

[0002]

【従来の技術】液晶表示栗子は、一対の配向処理された電極付き基板をスペーサを介してシール材にて貼り合わせたセルに液晶を充填することにより形成される。セルへの液晶の充填方法としては、真空注入工法、滴下工法などが知られている。

【0003】真空注入工法では、まず、上記の電極付き 基板をアライメント装置を用いて貼り合わせ、加圧する ことにより基板間のギャップを一定にして、シール材を 紫外線や熱により硬化し、必要な端子部分を残して切断 することによりセルを作製する。得られたセルを真空槽 内に配置して減圧状態にした後、セルの注入口を液晶に 浸漬し、次いでセルを大気圧に開放して液晶の毛細管現象を利用することにより、セル内に液晶を充填する。

【0004】最後に、余分な液晶を押し出し、紫外線硬化型樹脂を用いて注入口を封口することにより液晶表示素子が得られる。一方、滴下工法は、一対の基板の少なくとも一方の基板の外周部にアクリル系の紫外線硬化型シール材を塗布し、このシール材の内側に液体吐出装置を用いて必要量だけ液晶材料を供給する。

【〇〇〇5】次いで、この液晶を滴下した基板と他方の 基板とをスペーサを介してアライメント装置を用いて真 空中にて貼り合わせ、液晶の紫外線劣化を防止するため に表示部をマスクで隠して、シール部分にのみ紫外線照 財を行い前記シール材を硬化することにより液晶表示素 子が得られる。

[0006]

【発明が解決しようとする課題】しかしながら、上記の 真空注入工法では、セルサイズが大型化するほど液晶の 注入時間が長くなることから、量産化への対応が困難で ある。一方、滴下工法は、液体吐出装置により直接基板 上に液晶を必要量だけ供給するため液晶の注入時間を大 幅に短縮でき、しかもパネルサイズに関わらず注入時間 を一定に保つことが可能となり、量産化への対応が容易 となる。

【0007】しかしながら上記の滴下工法では、液晶注入後に紫外線照射を行ってシール材の硬化を行うため、シール材が未硬化の状態で液晶材料と接触してシール材が液晶中へ溶出したり、シール材の硬化の際にマスクズレやマスク劣化などにより液晶に紫外線光が照射されて部分的に液晶劣化が生じ、シール材の周辺部とパネルの内側との表示が不均一になるという問題がある。

【0008】また、紫外線強度の不足などの要因によってシール材が完全に硬化しない場合には、シール材に含まれる組成分が液晶中へ溶出したりするため、シール材の周辺部では表示が不均一になりやすくなる。中でも特に、シール材に含有され光照射によってシール材の重合を開始して硬化させるトリガーとしての働きを有する光開始剤は、イオン性が強いため、この光開始剤が液晶中に溶出すると電圧を印加した際に光開始剤が印加電圧の実効値を低下させたり、配向膜に付着して液晶分子の配向を乱してパネルの中心部の表示とに差が生じ、表示が不均一になるという問題がある。

[0009] 同様に、上記の真空注入工法においても、 封口に使用される紫外線硬化型樹脂に関して硬化が不十 分であると、紫外線硬化型樹脂に含まれる組成分が液晶 中に溶出して封口部で表示不良が起こることとなる。本 発明は前記問題点を解決し、シール材の周辺部とパネル の中央部での表示に差がなく、均一な表示が得られる液 晶表示素子の製造方法を提供するものである。

[0010]

【課題を解決するための手段】本発明の液晶表示素子の

製造方法は、セルに液晶を充填する手順とその液晶の構成を特殊にしたことを特徴とする。この本発明によると、シール材周辺部と表示画面の中央部との表示に差がなく、表示画面の全面にわたって均一な表示の得られる液晶表示器子を得ることができる。

[0011]

【発明の実施の形態】請求項1記載の液晶表示素子の製造方法は、一対の電極付き基板をスペーサを介して光硬化型シール材にて貼り合わせたセルに液晶を充填して液晶表示素子を製造するに際し、前記シール材に含まれる光開始剤を混入した液晶を前記セルに充填することを特徴とする。

【0012】この構成によると、液晶中におけるイオン性物質の濃度を均一にでき、シール材周辺部と表示画面の中央部とでその表示に差がなく、表示画面の全面にわたって均一な表示の液晶表示素子を得ることができる。請求項2記載の液晶表示素子の製造方法は、一対の電極付き基板をスペーサを介して光硬化型シール材にて貼り合わせたセルの間に液晶を充填し、前記光硬化型シール材を硬化して液晶表示素子を製造するに際し、前記光硬化型シール材に含まれる光開始剤を混入した液晶をセルに充填し、液晶を充填したセルの全面に光を照射してシール材を硬化することを特徴とする。

【 0 0 1 3 】この構成によると、セルの全面に光照射を行うことでシール材の完全硬化が実現でき、シール材に含まれる光開始剤の液晶中への溶出によるシール材の周辺部と表示画面の中央部との表示が不均一になることを防止することができる。また、シール硬化時において光照射を行う際のマスクアライメント装置が省略でき、液晶表示素子の製造工程を簡略化できる。

【0014】請求項3記載の液晶表示素子の製造方法は、請求項1または請求項2において、セルへの液晶の充填は、一対の電極付き基板の少なくとも一方の基板の外周部にシール材を塗布し、前記シール材を塗布した基板のシール材の内側に液晶を滴下して前記一対の基板を貼り合わせて充填することを特徴とする。請求項4記載の液晶表示素子の製造方法は、請求項1から請求項3のいずれかにおいて、シール材としてアクリル系紫外線硬化型シール材を用い、このシール材に含まれる少なくともアセトフェノン、ベンゾイン、ベンゾフェノン系のいずれかの光開始剤を混入した液晶を用いることを特徴とする。

【0015】請求項5記載の液晶表示素子の製造方法は、請求項1から請求項4のいずれかにおいて、液晶セルに、液長330~400nm、強度3000~5000mJ/cm²の紫外線照射を行うことを特徴とする。請求項6記載の液晶表示業子は、一対の電極付き基板をスペーサを介して光硬化型シール材にて貼り合わせたセルに液晶を充填した液晶表示素子であって、前記液晶にはシール材に含まれる光開始剤が均一に分散しているこ

とを特徴とする。

【0016】以下、本発明の実施の形態について説明する。図1は、本発明の実施の形態を示す。一対の電極付き基板2をスペーサ4を介して光硬化型シール材3にて貼り合わせたセルに液晶を充填して液晶表示素子を製造するに際し、この実施の形態では、シール材3に含まれる光開始剤を混入した液晶うaを前記セルに充填する。【0017】そして、液晶を充填した後の液晶セルの全面に光を照射して光硬化型シール材3を硬化する。セルへの液晶の充填は、一対の電極付き基板2の少なくとも一方の基板の外周部にシール材3を塗布し、前記シール材3を塗布した基板のシール材の内側に液晶を滴下して前記一対の基板を貼り合わせて充填する、いわゆる滴下工法にて行う。

【0018】光硬化型シール材3としては、アクリル系 紫外線硬化型シール材が好適に使用でき、このシール材 に含まれるアセトフェノン系、ベンゾイン系、ベンゾフェノン系の少なくともいずれかの光開始剤、あるいはこれに類似した機能を有する物質を混入した液晶5aを用いる。上記のようにアクリル系紫外線硬化型シール材3を使用する場合には、液晶セルに、波長330~400 nm、強度3000~5000mJ/cm²の紫外線1の照射を行う。

【0019】従来の紫外線照射は、波長250~400 nm、強度3000~5000mJ/cm²の条件にて行なわれているが、この実施の形態では従来よりも高い波長域にて紫外線照射を行うことで、上述のようにマスクを使用せずに液晶セルの全面に紫外線を照射しても液晶の劣化を抑えることができる。上記のようにして製造された液晶表示素子は、液晶中にシール材に含まれる光開始材が均一に分散しているものであるため、液晶中全体でイオン性物質の濃度が均一となり、シール材に含まれる光開始剤の溶出などによるシール材の周辺部と表示画面の中央部の表示に差がなく、均一な表示の液晶表示素子が得られる。

[0020]以下、本発明の実施の形態について、比較例と実施例に基づいて説明する。

比較例

図2は従来の液晶セルへの紫外線照射を示す。滴下工法により液晶を滴下注入した液晶セルに、シール材3の塗布位置にマスク6の開口部8a,8bが対応するよう配置し、シール材3にマスク6を介して紫外線1を照射する。

【0021】このとき、マスクズレやマスク6の劣化などによりシール村3の硬化が不十分となり、シール村6の成分が液晶5bの中に溶出することがある。このような液晶5b中へのシール村6の成分の溶出が発生すると、シール村3周辺部分の液晶5bのイオン成分が増加して、液晶セルの伝導度が中央部に較べて高くなる。その結果、シール村3の周辺部のしきい値が中央部より高

くなり、シール材3の周辺部に液晶劣化部7が発生し、 この液晶劣化部7が表示ムラとなって見える。

【0022】表1は、シール材3の成分が液晶5b中に 溶解したときの液晶の伝導度の変化および表示品位の関係を示す。なお、液晶表示素子の表示品位については目 視にて評価し、表示品位の良好なものを○、冥駆動上の 問題はないが低周波数域(1 H z)でムラが発生するも のを△にて表す。

[0023]

【表1】

(表1)

放置時間	液晶の伝導度	液晶表示素子の
(min)	(μS)	表示品位
0	4.90×10^{-03}	0
1	8.00×10 ⁻⁰³	0
3	6.70×10 ⁻⁰³	0
. 5	7.20×10^{-03}	. 0
30	9.50×10 ⁻⁰³	\triangle

表1に示すように、未硬化のシール材3の放置時間が長くなると、シール材3中の成分の液晶5 bへの溶出量が増加し、液晶5 bの伝導度が高くなる。それに伴なって、液晶表示素子の表示品位が低下する。液晶表示素子の表示品位に影響を与えるシール材3の成分を特定するため、シール材3中に含まれる、光開始剤、反応性希釈剤、カップリング剤のそれぞれを液晶5 bに溶解して、液晶の伝導度を測定した。

【0024】なお、光開始剤としては日本チバガイギー (株) 社製の光開始剤イルガキュア651を、反応性希 釈剤としては共栄社化学 (株) 社製の反応性希釈剤EcーAを、カップリング剤としては信越化学工業(株) 製のカップリング剤KBM403をそれぞれ用いた。得られた測定結果を表2に示す。

[0025]

【表2】

(表2)

	不純物伝導度(S)				
濃度	光開始剤	反応性希釈剤	カップリング剤		
(wt%)	(イルカ・キュ7651)	(Ec-A)	(KBM403)		
0	3.83×10 ⁻¹²	3.83×10 ⁻¹²	3.83×10 ⁻¹²		
0.05	7.63×10 ⁻¹²	5.88×10 ⁻¹²	5.56×10 ⁻¹²		
0.10	9.43×10 ⁻¹²	5.52×10 ⁻¹²	5.56×10 ⁻¹²		
0.50	· 2.04×10 ⁻¹⁰	7.24×10 ⁻¹²	5.26×10 ⁻¹²		

表2より、液晶の伝導度に大きな影響を与えるのは、光開始剤であることがわかる。従って、予め液晶5 b に光開始剤を混入してパネル面内のイオン濃度を均一にすることで、シール材3の成分が液晶中に溶出してもシール材3の周辺部のみのイオン濃度を上げることにならず、液晶劣化部7における表示ムラを防止することができる。

【0026】また、図2に示すように、マスクの開口部8a、8bの隙間bはシール材3の塗布幅aよりも広く、また、液晶セルとマスクとのクリアランスcも大きいため、紫外線1を照射すると開口部8a、8bからの紫外線1の漏れが液晶5bを劣化させたりして影響を与えることがある。ここでの具体的な値としては、a=1mm、b=5mm、c=1~2mmである。

【0027】紫外線1と液晶5bの伝導度の関係を表3に示す。

[0028]

【表3】

(表3)

照射時間	伝導度(μs)		
(秒)	该長λ.≧250mm	波長λ≧330mm	
0	0.27	0.29	
90	19.2	0.41	
180	42.4	0.56	
270	88.6	0.62	

表3に示すように、液晶5 bは紫外線照射されると伝導度が高くなる。従って、液晶5 bに紫外線1 が照射されないパネルの面内と、液晶5 bに紫外線1 が照射されるマスク6の開口部8 a、8 bの周辺とでは、紫外線が照射された領域でしきい値差が生じムラとなって見える。【0029】このように、従来の液晶表示素子の製造方法では、未硬化のシール材と液晶との接触によるシール材の液晶への溶出や、シール材硬化時のマスクズレやマスク劣化などによる液晶への紫外線照射や、シール材の

未硬化によりシール材中の光開始剤の溶出などにより、

シール材周辺部での表示の不均一が生じることとなる。

この実施例では、上記図1に示すように、シール材3の 硬化時にマスク6を使用せず、また液晶セルに充填する 液晶を特殊な構成とした点で上記比較例と異なる。

【〇〇30】詳細には、上記比較例と同様に満下工法に て液晶セルを形成する。このとき、セルに滴下する液晶 5 aにはシール材3に含有される光開始剤と同様の光開 始剤を混入している。作製した液晶セルには、マスクを 用いずにセルの全面に紫外線1を照射してシール剤3の 硬化を行う。

【0031】このように液晶セルの全面に紫外線照射を 行うことで、マスクズレなどの影響が無く、常にシール 材の完全硬化が可能である。また、パネルの全面に紫外 線1を照射することでセル全体の液晶の状態が均一とな り、面内での伝導度を均一にすることができる。なお、 あらかじめ液晶5aに混入する光開始剤の濃度は、シー ル材3の周辺部においてシール材3より液晶5a中に溶 出する光開始剤の湿度と等しくなるようにすればよい。 [0032]効果的な光開始剤の濃度を調べるために、 光開始剤の濃度と表示ムラの発生時間との関係を調べ た。得られた測定結果を表4に示す。

[0033] 【表4】

(表4)

· 光開始剤濃度 (wt%)	表示ムラ発生時間 (hour)
0	100
1.0	100
3.5	100
10.0	300

表4に示すように、液晶中の光開始剤濃度を10wt% 程度とすると、光開始剤を入れていない場合に較べて表 示ムラ発生までの時間を3倍程度にまで引き伸ばすこと ができる。なお、上記のように光開始剤を液晶5bへ多 量に混入すると閾値高を招き、また、上述のように紫外 線照射時にはマスク6を使用していないため紫外線1が 液晶5aに直接照射されるため液晶5aの劣化が顕著に 現れることが予想される。

【0034】しかしながら、従来のようにシール材の周 辺部だけが局部的に表示が不均一になるのではなく、液 **晶セル全体としてはその表示は均一なものとなっている** ため、局部的な異常部の発生を防ぐことができる。従っ て、表示画面の全体的な表示不均一を防ぎ、均一な表示 品位の得られる液晶表示紫子を実現することが可能であ る。また、シール材硬化時において紫外線照射を行う際 のマスクアライメント装置が省略でき、工程の簡素化も 実現できる。

[0035]

【発明の効果】以上のように本発明の液晶表示素子の製 造方法によれば、光硬化型シール材に含まれる光開始剤 を混入した液晶を充填した液晶表示素子とすることで、 液晶中におけるイオン性物質の温度を均一にでき、シー ル材周辺部における表示の不均一がなく表示画面の全面 にわたって均一な表示の液晶表示素子を実現できる。

【0036】また、光照射に際しては、マスクを介する ことなく液晶セルの全面にわたって紫外線を照射するこ とで、シール材を完全に硬化することが可能となり、シ ール材に含まれる光開始剤の溶出による表示劣化やシー ル材周辺部における表示の不均一を防ぐことができる。

【図面の簡単な説明】

【図1】実施の形態における液晶セルへの紫外線照射を

【図2】従来の液晶セルへの紫外線照射を示す図 【符号の説明】

1 紫外線 基板 2 シール部 4 スペーサ 5a, 5b 液晶 マスク 液晶劣化部

7

- 紫外線 茎板 シール材 スペーサ 光開始剤を混入した液晶