Double Pendulum: Chaotic Dynamics

Prof. Ana Isabel C.

Math-Dynamics Lab

May 31, 2025

Introduction

The double pendulum is a classic mechanical system exhibiting chaotic behavior due to its nonlinear dynamics, making it highly sensitive to initial conditions.

Applications:

- Nonlinear dynamics
- Chaos theory
- Mechanical systems analysis

Mathematical Definition

Parameters:

- Lengths: $L_1 = L_2 = 1 \text{ m}$
- Masses: $m_1 = m_2 = 1 \text{ kg}$
- Gravity: $g = 9.81 \text{ m/s}^2$
- State: $\mathbf{s} = [\theta_1, \dot{\theta}_1, \theta_2, \dot{\theta}_2]^T$

Notations:

•
$$\Delta \theta = \theta_1 - \theta_2$$
, $c = \cos(\Delta \theta)$, $s = \sin(\Delta \theta)$

•
$$D = m_1 + m_2 s^2$$

Differential Equations:

$$\begin{split} \dot{\theta}_1 &= \dot{\theta}_1, \\ \ddot{\theta}_1 &= \frac{m_2 g \sin(\theta_2) c - m_2 s (L_1 \dot{\theta}_1^2 c + L_2 \dot{\theta}_2^2) - (m_1 + m_2) g \sin(\theta_1)}{L_1 D} \\ \dot{\theta}_2 &= \dot{\theta}_2, \\ \ddot{\theta}_2 &= \frac{(m_1 + m_2) (L_1 \dot{\theta}_1^2 s - g \sin(\theta_2) + g \sin(\theta_1) c) + m_2 L_2 \dot{\theta}_2^2 s c}{L_2 D}. \end{split}$$

Nonlinear terms drive chaotic motion.

Numerical Solution

The nonlinear system is solved numerically:

- scipy.integrate.odeint: Runge-Kutta 4th-order method.
- Initial Conditions: $s(0) = [\pi/2, 0, \pi, 0]^T$.
- Time: $t \in [0, 10]$ s with 1000 points ($\Delta t \approx 0.01$ s).

$$\dot{\mathbf{s}} = \begin{bmatrix} \dot{\theta}_1 \\ \ddot{\theta}_1 \\ \dot{\theta}_2 \\ \ddot{\theta}_2 \end{bmatrix}.$$

Captures sensitivity to initial conditions.

Visualization

- Implemented in Python using matplotlib.animation.
- 2D plot of pendulum positions over 1000 time steps.
- Cartesian coordinates: $x_1 = \sin(\theta_1)$, $y_1 = -\cos(\theta_1)$, $x_2 = x_1 + \sin(\theta_2)$, $y_2 = y_1 \cos(\theta_2)$.

Conclusion

- The double pendulum exemplifies chaotic dynamics in mechanical systems.
- Numerical solutions enable visualization of complex motion.
- Valuable for education, research, and scientific outreach in nonlinear dynamics.

Source code available at: github.com/IsabelCasPe/Math-Dynamics