Predicting Hurricane Deaths

Group 2 - Adi Arifovic, Oliver Baldwin Edwards, Leah Johnson May 13th, 2020

Purpose

- To predict the number of hurricane deaths
 - Using variables such as maximum sustained wind speed, atmospheric pressure, and property damage
- Hypothesis:
 - The number of deaths would *increase* with an increase in maximum sustained wind speed and property damage.
 - Intuitively it would make sense for more destructive hurricanes to also be more deadly.

Data

Source

- Dataset "hurricNamed" from the "DAAG" R package
 - 94 named US hurricanes from 1950 to 2012
 - Includes: number of deaths, damage, weather statistics
 - Cited by a research paper

RESEARCH ARTICLE

Female hurricanes are deadlier than male hurricanes

Kiju Jung, Sharon Shavitt, Madhu Viswanathan, and Joseph M. Hilbe

PNAS June 17, 2014 111 (24) 8782-8787; first published June 2, 2014 https://doi.org/10.1073/pnas.1402786111

Edited* by Susan T. Fiske, Princeton University, Princeton, NJ, and approved May 14, 2014 (received for review February 13, 2014)

Variables:

Response Variable

• deaths describes the number of human deaths that occurred due to each hurricane (ranging from 0 to 1846).

Explanatory Variables

- LF.WindsMPH: max wind speed (mph)
- LF.PressureMB: atmospheric pressure (millibars)
- · LF.times: number of times the hurricane made landfall
- BaseDam2014: property damage (millions of 2014 US dollars)
- NDAM2014: normalized damage (millions of 2014 US dollars)

Exploratory Analysis

Kernel Density Estimation

- deaths, NDAM2014, and BaseDam2014 had very skewed kernel density estimates.
- Adding a log() transformation to deaths, NDAM2014, and BaseDam2014 resulted in more normal kernel density estimates and minimized the effects of the outliers.

Correlation Tests

- We use Kendall's au at a significance level lpha=0.05
- Hypotheses tested:
 - The null hypothesis of no association (independence) $H_0: \tau \leq 0$
 - The alternative hypothesis of positive association $H_A: \tau > 0$.
 - (We also tested for negative associations with the set of hypotheses $H_0: \tau \geq 0$ and $H_A: \tau < 0$.)

Correlation Table

Variable	Hypothesis Tested	p-value	Correlation Estimate
NDAM2014	$H_A: \tau > 0$	$8.073 \cdot 10^{-16}$	0.578
LF.times	$H_A: \tau > 0$	0.008542	0.209
LF.PressureMB	$H_A: \tau > 0$	1	-0.431
LF.PressureMB	$H_A: \tau < 0$	$1.915 \cdot 10^{-9}$	-0.431
LF.WindsMPH	$H_A: \tau > 0$	$7.606 \cdot 10^{-6}$	0.331
BaseDam2014	$H_A: \tau > 0$	$7.691 \cdot 10^{-15}$	0.558

Table 1: Correlation Test Results

Model Fitting

Ordinary Least Squares Regression

- Carried out best subsets selection method and series of nested F tests
- Assumptions for OLS:
 - Independence
 - Linearity & Equal Variances
 - Normality of Residuals

Best OLS model

- The best OLS model was the model predicting log_deaths with simply log_NDAM2014 (normalized damage)
- AIC = 301.11, and R_{adj}^2 = 50.08%.

OLS Model: log_death vs. log_NDAM2014

OLS Residuals vs. Fitted

Kolmogorov-Smirnov Test

- Ran this test to check the assumption of normally distributed residuals for our above selected linear regression model.
- Hypothesis:

$$H_0: F(t) = F^*(t)$$

$$H_A: F(t) \neq F^*(t) \text{ for at least one } t$$

Where F(t) refers to the estimated CDF of the distribution of residuals of our linear model, and $F^*(t)$ is the CDF of the normal distribution.

Kolmogorov-Smirnov Test Results

• p-value of 0.7095 > 0.05

Rank-based JHM Model

- Fit due to the issue with the equal variances condition in the OLS regression model
- Performed drop in dispersion tests to ensure the significance of each predictor in the model.
- Found that the best model predicting log_deaths was again one that used only log_NDAM2014.
 - $R^2 = 48.07\%$

Best JHM Model

JHM Residuals vs. Fitted

Generalized Additive Model

Fitting log_NDAM2014 & LF.PressureMB to the GAM

- GAM used to look for possible trends and relationships that were missed by other models primarily due to restrictions by linearity.
- Used manual forward selection to fit the best model.
- The best way to fit log_NDAM2014 was with a b-spline.
- The best way to fit LF.PressureMB was with an s-spline (while keeping the previous b-spline for log_NDAM2014).
 - -AIC = 288.015

Additional Changes to the GAM

• After plotting, the LF.PressureMB scatterplot displayed a poor fit. (AIC = 288.015)

Final GAM Model

• Applying a cubic fit to LF.PressureMB vastly improved the fit. (AIC = 290.884)

Conclusion

Comparison of Residuals

log_deaths

Comparison of Fit

	R^2	R^2_{adj}	$L1_{prop}$
Best OLS	0.5061	0.5008	0.3195
Best JHM	0.5054	0.5000	0.3183
Best GAM	0.6018	0.5743	0.3781

Comparison of Fit cont'd

	CVR^2	CVR^2_{adj}	$CVL1_{prop}$
Best OLS	0.4870	0.4814	0.3083
Best JHM	0.4867	0.4811	0.3027
Best GAM	0.5203	0.4872	0.3193

Findings

- gam(log_deaths ~ bs(log_NDAM2014) + poly(LF.PressureMB, 3))
 - Low AIC = 290.884
 - Better graphical representation
 - Higher R^2 , R_{adj}^2 , $L1_{prop}$
 - Ability to fit local trends
- Matches original hypothesis
 - More severe hurricane = more deaths

Limitations

- Limited numerical predictors
- Reliance on normalized hurricane damage (NDAM2014)
- Reliance on log transformations
 - Potential for better log transformations

References

- https://www.rdocumentation.org/packages/DAAG/versions/1.24
- https://www.pnas.org/content/111/24/8782#ref-28
- https://ascelibrary.org/doi/abs/10.1061/(ASCE)1527-6988(2008)9:1(29)
- https://www.rhinobldg.com/understanding-barometric-pressure-inhurricanes/

Questions?