Fondamenti di Algebra e Geometria

Cognome.......MatricolaMatricola

GRIGLIA I	OI VALU	TAZIONI	Ξ				
ESERCIZIO	1	2	3	4	5	6	Totale
Punteggio							

TEMPO A DISPOSIZIONE: 2,5 ore

- 1. Determina, al variare del parametro k, la dimensione del sottospazio vettoriale Udi $\mathbb{R}_3[x]$ generato dai polinomi $p_k(x) = x^3 + kx^2$, $q(x) = x^2 + x + 3$, $r(x) = x^3 + (k+1)x^2 + x + k$. Determina una base di U nel caso k = 0.
- 2. Determina per quali valori di $k \in \mathbb{R}$ la matrice seguente è invertibile.

$$\mathcal{A} = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 1 & 2 & 0 & -1 \\ 0 & 1 & k & -1 \\ 1 & 1 & -1 & 1 \end{pmatrix}$$

Calcola la matrice inversa nel caso k = 0.

3. Stabilisci se il seguente sistema lineare è compatibile e, in caso affermativo, determina le soluzioni

$$\begin{cases} x_1 - 4x_2 + x_4 = 13\\ 3x_1 - 2x_3 - x_4 = -7\\ x_1 - 5x_2 = 7 \end{cases}$$

4. Sia ϕ l'endomorfismo di \mathbb{R}^3 che nella base canonica è rappresentato dalla matrice

$$\mathcal{A} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & k & 1 \\ k & 1 & k \end{array}\right)$$

Stabilire per quali valori di k l'endomorfismo ϕ è diagonalizzabile.

Fornire, nel caso k = 1, una base di autovettori in cui ϕ è rappresentato da una matrice diagonale. D e la corrispondente matrice diagonalizzante $P \in GL_3(\mathbb{R})$.

5. Determinare, a meno di permutazione dei blocchi, la forma canonica di Jordan della matrice seguente:

$$\mathcal{A} = \left(\begin{array}{cccc} 1 & 0 & 0 & -2 \\ 2 & 1 & 4 & 0 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & -2 & 1 \end{array}\right)$$

6. Definire il nucleo e il rango di un omomorfismo. Enunciare le condizioni necessarie e sufficienti per l'iniettività, la suriettività, l'invertibilità di un omomorfismo. Enunciare la formula delle dimensioni. Enunciare le stesse definizioni e criteri per una matrice.