

Universidade Federal da Fronteira Sul Curso de Ciência da Computação **UFFS** Campus Chapecó

Álgebra de **Boole**

Prof. Luciano L. Caimi Icaimi@uffs.edu.br

Definida por:

- Um conjunto de operações válidas;
- Um conjunto de valores que cada variável pode assumir;

Valores das Variáveis:

Seja $A \in B \Rightarrow A \in \{0,1\}$ ($\{F,V\}$, $\{high, low\}$, $\{on, off\}$...)

De outra forma:

Se
$$A \neq 0 \Rightarrow A = 1$$

Se
$$A \neq 1 \Rightarrow A = 0$$

Operações Básicas da Álgebra de Boole

Cada operação possui pelo três formas de representação clássicas:

- Expressão lógica (simbólica);
- Tabela-verdade;
- Circuito;

Além destes formatos clássicos existem outros:

- Diagrama de decisão binária (BDD);
- Diagrama de Venn;

Operações Básicas da Algebra de Boole

1) Complemento (NOT)

Também chamado inversão ou negação.

Símbolo

Tabela Verdade

Ā, ¬A, ~A, A', not(A)

(lê-se "A negado")

A	S
0	1
1	0

Porta Lógica

- ↓ É uma operação unária (i.e. só pode ser aplicada a uma variável por vez);
- Tem como resultado na saída o valor oposto ao presente na entrada.

2) Operação E (AND)

Também denominada multiplicação lógica.

Símbolo

{.,^}

Tabela Verdade

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Porta Lógica

- **▶Definição 1:** a operação "E" resulta 1 se e somente se todas as variáveis de entrada valerem 1.
- **▶ Definição 2:** a operação "E" resulta 0 se ao menos uma das variáveis de entrada valer 0.

Operação "E" para 3 variáveis

Porta Lógica

▶ Definição 1: a operação "E" resulta 1 se e somente se todas as variáveis de entrada valerem 1.

Tabela Verdade

A	В	С	A.B.C
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

3) Operação OU (OR)

Também denominada adição lógica.

Símbolo

Tabela Verdade

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Porta Lógica

- **▶Definição 1:** a operação "OU" resulta 1 se ao menos uma das variáveis de entrada valer 1.
- **▶ Definição 2:** a operação "OU" resulta 0 se e somente se todas variáveis de entrada valerem 0.

porta

A	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

Uma outra forma de representação é o Diagrama de Decisão Binária (Bynary Decision Diagram - BDD)

Parte-se de uma variável de entrada qualquer e chega-se ao valor da saída conforme o valor contido nas variáveis de entrada (indicadas por arcos)

Diagrama de Venn

Circuitos Integrados comerciais

74LS32 – OR 2 entradas 74LS86 – XOR 2 entradas 74LS73A – Flip-Flop JK 74LS74A – Flip-Flop D

Propriedades da Álgebra de Boole

1) Comutativa

As variáveis de entrada podem ser operadas em qualquer ordem

2) Associativa

As variáveis podem ser associadas em qualquer conjunto

3) Distributiva

Em relação a operação de multiplicação booleana

Propriedades da Algebra de Boole

1) Comutativa

As variáveis de entrada podem ser operadas em qualquer ordem.

... Comutativa

Em termos de portas lógicas, teremos...

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$A + B + C$$

$$A + B + C$$

$$A + B + C$$

$$A + B + C + A$$

$$\equiv A \longrightarrow C + A + B \equiv ...$$

Tal propriedade é válida para qualquer uma das portas lógicas, respeitando-se obviamente a sua função.

2) Associativa

As variáveis de entrada podem ser operadas de duas em duas (ou de três em três, ou de quatro em quatro...)

Os parênteses indicam precedência.

... Associativa

Em termos de portas lógicas, teremos...

Tal propriedade é válida para qualquer uma das portas lógicas, respeitando-se obviamente a sua função.

3) Distributiva

Refere-se a operação de "multiplicação"

$$S = A.(B + C) = (A.B) + (A.C)$$

Conversão entre formatos de representação

Considerando as três formas de representação clássicas precisamos realizar a conversão entre as mesmas

- Expressão para tabela-verdade: avaliação
- Circuito para tabela verdade: avaliação
- Expressão para Circuito: síntese
- Circuito para expressão: variáveis e operações
- Tabela-verdade para expressão: SOP ou POS
- Tabela verdade para circuito: síntese

Avaliação de expressões booleanas

- Dada uma expressão booleana desejamos saber o comportamento da mesma:
- Montamos uma tabela-verdade com as variáveis de entrada a esquerda;
- Criar colunas à direita, conforme a ordem de precedência das operações contidas na equação que se está avaliando;
- Avaliar as expressões e obter resultados intermediários até encontrar valores finais;

Exemplo: Dada a expressão abaixo obtenha a tabela-verdade da mesma:

$$F(X,Y,Z) = X \cdot (Y + \overline{Z})$$

Avaliação de expressões booleanas: exemplo

$$F(X,Y,Z) = X \cdot (Y + \overline{Z})$$

X	Υ	Z	Z	(Y + Z)	X . (Y + Z)
0	0	0	1	1	0
0	0	1	0	0	0
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	1	1

Avaliação de expressões booleanas: exemplo

A			 		
В					
C	 		 	<u> </u>	
Y	 	 	 		

Circuitos Lógicos

- Dada uma equação que representa uma função Booleana, é possível representá-la graficamente, por meio de uma associação apropriada de portas lógicas.
- O desenho de um circuito lógico deve obedecer à ordem de precedência das operações mostradas na equação lógica que se deseja implementar.

Exemplo: Desenhe o circuito lógico que implementa a equação:

$$F(X,Y,Z) = X \cdot (Y + \overline{Z})$$

$$z \xrightarrow{\overline{Z}} \underbrace{Y + \overline{Z}}_{X \cdot (Y + \overline{Z})}$$

$$\times \cdot (Y + \overline{Z})$$

Exercício:

Avalie a expressão que segue e desenhe seu circuito lógico

$$F(A,B,C) = \overline{A} \cdot C + ((B \cdot C) + A \cdot \overline{B})$$

Exercício:

Avalie a expressão que segue e desenhe seu circuito lógico

$$F(A,B,C) = \overline{A} \cdot C + ((B \cdot C) + A \cdot \overline{B})$$

A	В	С	B.C	$A.\overline{B}$	$((B \cdot C) + A \cdot \overline{B})$	\overline{A} . C	\overline{A} . C +((B.C)+ A. \overline{B})
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	1
0	1	0	0	0	0	0	0
0	1	1	1	0	1	1	1
1	0	0	0	1	1	0	1
1	0	1	0	1	1	0	1
1	1	0	0	0	0	0	0
1	1	1	1	0	1	0	1

Exercício:

Avalie a expressão que segue e desenhe seu circuito lógico

$$F(A,B,C)=\overline{A}\cdot C+((B\cdot C)+A\cdot \overline{B})$$

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Expressões Lógicas

- Dada um circuito lógico formado de portas lógicas básicas devemos obter a expressão lógica equivalente.
- A expressão lógica deve obedecer à ordem de precedência das operações mostradas no circuito lógico que se deseja implementar.

Exemplo: Apresente a equação lógica que descreve o circuito abaixo:

$$S = P + Q$$

 $P = A \cdot B$
 $Q = T$
 $T = B + C$
 $Q = B + C$
 $S = (A \cdot B) + B + C$

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Exercício:

Dado o circuito lógico obtenha a expressão correspondente

Síntese com Soma de Produtos

Seja a função S, com a seguinte tabela-verdade:

A	В	С	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Qual é a expressão para esta tabela-verdade???

É a própria função E

$$S = A.B.C$$

Síntese com Soma de Produtos

E se o 1 estivesse em outro lugar?????

Seja a função S1, com a seguinte tabela-verdade:

A	В	С	S1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Qual é a expressão para esta tabela-verdade???

Usaremos a própria definição da função E: o resultado é 1 se todas as entradas forem 1.

Assim, teremos que usar um termo produto tal que quando A=0, B=1 e C=0, este termo resulta

em 1.

Síntese com Soma de Produtos

E se o 1 estivesse em outro lugar?????

Seja a função S1, com a seguinte tabela-verdade:

A	В	С	S1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Repare que A.B.C = 1 somente se A = 0, B = 1 e C = 0.

$$S1 = \overline{A}.B.\overline{C}$$

Síntese com Soma de Produtos

E se houver duas posições valendo 1?????

Seja a função S, com a seguinte tabela-verdade:

A	В	С	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Qual é a expressão para esta tabela-verdade???

Dividiremos em duas funções S1 e S2. Cada uma vai ficar com um 1 original

Síntese com Soma de Produtos

E se houver duas posições valendo 1?????

Seja a função S, com a seguinte tabela-verdade:

Α	В	С	S	S1	S2
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	1	1	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	1	0	1

Note que, se fizermos o OU da coluna S1 com a coluna S2, obteremos exatamente a coluna S. Portanto:

$$S = S1 + S2$$

$$S = \overline{A}.B.\overline{C} + A.B.C$$

Síntese com Soma de Produtos

Conclusões:

Cada 1 de uma função pode ser representado por um produto lógico (E) no qual todas as variáveis de entrada estão presentes (tais produtos são chamados mintermos ou minitermos)

Cada mintermo é único, pois representa uma e somente uma posição que vale 1

Uma função pode ser representada por uma soma lógica (OU) dos seus mintermos.

Síntese com Soma de Produtos

Lista de Minitermos para funções de 3 variáveis de entrada

A	В	С	Minitermos
0	0	0	A.B.C
0	0	1	A.B.C
0	1	0	A.B.C
0	1	1	A.B.C
1	0	0	A.B.C
1	0	1	A.B.C
1	1	0	A.B.C
1	1	1	A.B.C

Exercício:

- Dada a função F, com a seguinte tabela-verdade, faça o que se pede:
- a) encontre a equação em soma de produtos (soma de minitermos) para a mesma.
- b) desenhe o circuito lógico correspondente.

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$F = \overline{A \cdot B \cdot C} + \overline{A \cdot B \cdot C} + A \cdot \overline{B \cdot C} + A \cdot B \cdot \overline{C}$$

Versão 2

Custo:

Iremos considerar o somatório de todas as portas de entrada do circuito

Custo:

$$4 \times 3 + 1 \times 4 = 16$$

Síntese com Produto de Somas

Seja a função P, com a seguinte tabela-verdade:

A	В	С	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Qual é a expressão para esta tabela-verdade???

É a própria função OU

$$P = A + B + C$$

Síntese com Produto de Somas

E se o 0 estivesse em outro lugar?????

Seja a função P1, com a seguinte tabela-verdade:

Α	В	C	P1
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Qual é a expressão para esta tabela-verdade???

Usaremos a própria definição da função OU: o resultado é 0 se todas as entradas forem 0.

Assim, teremos que usar um termo soma tal que quando A=1, B=0 e C=0, este termo resulta em 0.

Síntese com Produto de Somas

E se o 0 estivesse em outro lugar?????

Seja a função P1, com a seguinte tabela-verdade:

Α	В	С	P1
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Repare que A+B+C=0 somente se A=1, B=0 e C=0.

$$P1 = A + B + C$$

Síntese com Produto de Somas

E se houver duas posições valendo 0??????

Seja a função P, com a seguinte tabela-verdade:

Α	В	С	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Qual é a expressão para esta tabela-verdade???

Dividiremos em duas funções S1 e S2. Cada uma vai ficar com um 0 original.

Síntese com Produto de Somas

E se houver duas posições valendo 0?????

Seja a função P, com a seguinte tabela-verdade:

A	В	С	S	S1	S2
0	0	0	0	0	1
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Note que, se fizermos o E da coluna S1 com a coluna S2, obteremos exatamente a coluna S. Portanto:

$$S = S1 . S2$$

$$S = (A+B+C) \cdot \overline{(A+B+C)}$$

No produto das somas o parênteses é obrigatório

Síntese com Produto de Somas

Conclusões:

Cada 0 de uma função pode ser representado por uma soma lógica (OU) na qual todas as variáveis de entrada estão presentes (tais somas são chamadas maxtermos ou maxitermos)

Cada maxtermo é único, pois representa uma e somente uma posição que vale 0

Uma função pode ser representada por um produto lógico (E) dos seus maxtermos.

Síntese com Produto de Somas

Lista de Maxitermos para funções de 3 variáveis de entrada

A	В	С	Maxitermos
0	0	0	A+B+C
0	0	1	A+B+€
0	1	0	A+B+C
0	1	1	A+B+C
1	0	0	A+B+C
1	0	1	A+B+C
1	1	0	A+B+C
1	1	1	A+B+C

Exercício:

- Dada a função F, com a seguinte tabela-verdade, faça o que se pede:
- a) encontre a equação em produto de somas (produto de maxtermos) para a mesma.
- b) desenhe o circuito lógico correspondente.

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$\mathsf{F} = (\mathsf{A} + \mathsf{B} + \mathsf{C}\) \cdot (\mathsf{A} + \mathsf{B} + \overline{\mathsf{C}}\) \cdot (\overline{\mathsf{A}} + \mathsf{B} + \mathsf{C}\) \cdot (\overline{\mathsf{A}} + \overline{\mathsf{B}} + \overline{\mathsf{C}}\)$$

$$\mathsf{F} = (\mathsf{A} + \mathsf{B} + \mathsf{C}) \cdot (\mathsf{A} + \mathsf{B} + \mathsf{C}) \cdot (\mathsf{\overline{A}} + \mathsf{B} + \mathsf{C}) \cdot (\mathsf{\overline{A}} + \mathsf{\overline{B}} + \mathsf{\overline{C}})$$

Custo:

$$4 \times 3 + 1 \times 4 = 16$$

Formas Canônicas: Resumo

A	В	C	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$S(A,B,C) = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$$

$$S(A,B,C) = m_2 + m_3 + m_5 + m_6$$

$$S(A,B,C) = \sum (2,3,5,6)$$

$$S(A,B,C) = (A+B+C) \cdot (A+B+\overline{C}) \cdot (\overline{A}+B+C) \cdot (\overline{A}+\overline{B}+\overline{C})$$

$$S(A,B,C) = M_0 \cdot M_1 \cdot M_4 \cdot M_7$$

$$S(A,B,C) = \prod (0,1,4,7)$$

Formas Canônicas: Resumo

Conclusões:

Cada 0 de uma função pode ser representado por uma soma lógica (OU) na qual todas as variáveis de entrada estão presentes (tais somas são chamadas maxtermos ou maxitermos)

Cada maxtermo é único, pois representa uma e somente uma posição que vale 0

Uma função pode ser representada por um produto lógico (E) dos seus maxtermos.

✓ Simplificação Algébrica

Dificuldades na obtenção da equação mínima:

O processo de simplificação é recursivo: após simplificar mintermos, pode ser possível continuar a simplificação com os produtos resultantes da primeira rodada de simplificação;

A ordem na qual se procede a simplificação faz diferença!

É difícil identificar as simplificações possíveis (e também a ordem ótima);

✓ Simplificação Algébrica

Faz uso:

- Propriedades da Álgebra de Boole;
- Teoremas de DeMorgan;
- Identidades Auxiliares;

Propriedades das Portas Lógicas

1) Porta NOT

$$\overline{\overline{A}} = A$$

2) Porta E (AND)

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

$$A \cdot 0 = 20$$

$$A \cdot 1 = A$$

$$A \cdot A = A$$

$$A \cdot \bar{A} = 20$$

3) Porta OU (OR)

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

$$A + 0 = A$$
 $A + 1 = 1$
 $A + A = A$
 $A + \bar{A} = 1$

Fazendo Simplificações através das propriedades

$$S = (\bar{A} \cdot 0) + (B \cdot B) + (A \cdot \bar{A}) + (B \cdot 1)$$

 $S = ???$
 $S = B$

Propriedades da Algebra de Boole

1) Comutativa

As variáveis de entrada podem ser operadas em qualquer ordem.

$$S = A.B.C$$
 $S = A.C.B$ $S = B.A.C$

$$S = A.C.B$$

$$S = B.A.C$$

2) Associativa

As variáveis de entrada podem ser operadas de duas em duas (ou de três em três, ou de quatro em quatro...)

$$S = (A+B)+C$$

$$S = A + B + C$$

$$S = (A+B)+C$$
 $S = A+B+C$ $S = A+(B+C)$

3) Distributiva

Refere-se a operação de "multiplicação".

$$S = A (B + C)$$
 $S = AB + AC$

$$S = AB + AC$$

Exercício:

Simplifique as expressões:

1)
$$S = \overline{A} \cdot \overline{B} + \overline{A} \cdot B$$

2)
$$P = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

3) Q =
$$(A+B+C).(\overline{A}+\overline{B}+C)$$

Teoremas de DeMorgan

Definição 1: O complemento do produto é igual a soma dos complementos.

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$
 \Box \Box \Rightarrow \Box

Definição 2: O complemento da soma é igual ao produto dos complementos.

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$
 \Rightarrow \Rightarrow \Rightarrow

Exercício:

Simplifique as expressões:

1)
$$S = (\overline{\overline{A.C} + B + D}) + (C.(\overline{A.C.D}))$$

2) $P = \overline{AB}\overline{\overline{CD}}$

Identidades Auxiliares da Algebra de Boole

1)
$$A + (A . B) = A$$

2)
$$A + (\bar{A} \cdot B) = A + B$$

$$\overline{\overline{A} + (\overline{A} \cdot B)} = \overline{\overline{A} \cdot (\overline{\overline{A}} \cdot B)} = \overline{\overline{A} \cdot (\overline{\overline{A}} + \overline{B})}$$

Aplicado – se a propriedade distributiva

$$(\overline{A}.A)+(\overline{A}.\overline{B})=\overline{\overline{A}.\overline{B}}=A+B$$

3)
$$(A+B).(A+C) = A + B.C$$

Aplicado – se a propriedade distributiva

$$A.A+A.C+B.A+B.C$$

$$A+A.C+A.B+B.C$$

$$A(1+C+B)+B.C$$

$$A+B.C$$

Exercício:

Simplifique a expressão:

1)
$$S = \overline{(A \cdot \overline{C}) + \overline{A}} + \overline{B} \overline{C} A \overline{C} + (\overline{A} B)$$

2)
$$X = \overline{A \cdot \overline{C} + \overline{A}} + \overline{B \cdot \overline{C} \cdot A \cdot \overline{C}} + \overline{A} \cdot B$$

Universalidade das Portas

Com NAND/NOR é possível construir qualquer outra função

Método gráfico para simplificação de expressões

Processo simples, estruturado e sistemático

Não indicado para circuitos grandes (até 5 entradas)

Circuito obtido deve estar na forma canônica

Construção a partir da tabela-verdade

Cada linha da tabela corresponde a um quadrado no mapa

Quadrados adjacentes diferem de apenas 1 variável (código gray)

A primeira linha/coluna é adjacente à última linha/coluna

O mapa é preenchido com 0s e 1s

• 2 Variáveis

• 2 Variáveis

- Devemos procurar por 1s adjascentes
 - 1) Agrupar em quadras
 - 2) Agrupar em duplas
- 3) Pegar os remanescentes isoladamente
- Todos os uns devem ser utilizados;
- Pode usar o mesmo 1 mais de uma vez;

- Devemos procurar por 1s adjacentes
 - 1) Agrupar em oitavas
 - 2) Agrupar em quadras
 - 3) Agrupar em duplas
- 3) Pegar os remanescentes isoladamente
- Todos os uns devem ser utilizados;
- Pode usar o mesmo 1 mais de uma vez;

para habilitar o sinal

para desabilitar o sinal

Inversor Controlado

A	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Gerador e Verificador de Paridade par

Representação IEEE Ansi

