1. (a)
$$u_1 = \frac{u_0}{1 + u_0} = \frac{1}{2}$$

$$u_2 = \frac{u_1}{1 + u_1} = \frac{\frac{1}{2}}{1 + \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3}$$

$$u_3 = \frac{u_2}{1 + u_2} = \frac{\frac{1}{3}}{1 + \frac{1}{2}} = \frac{\frac{1}{3}}{\frac{4}{2}} = \frac{1}{4}$$

2.
$$u_{n+1} - u_n = \frac{u_n}{1 + u_n} - u_n = \frac{u_n}{1 + u_n} - \frac{u_n(1 + u_n)}{1 + u_n} = \frac{-u_n^2}{1 + u_n}$$

Sachant que $u_n > 0$, on en déduit que $1 + u_n > 0$. De plus, $-u_n^2 < 0$, par signe de quotient, $u_{n+1} - u_n < 0$

3. Pour tout
$$n \in \mathbb{N}, u_n > 0$$
 et u_n est décroissante. Toute suite décroissante et minorée est convergente. Donc u_n converge.

Soit
$$f$$
 définie sur $]-1;+\infty[$ par $f(x)=\frac{x}{1+x}.$

On remarque que
$$u_{n+1} = f(u_n)$$
.

La limite de u_n est la solution de f(x) = x (pour le moment, on admet ce résultat, je modifierai le corrigé dès que nous aurons vu le théorème du point fixe...patience.) $f(x) = x \Leftrightarrow x = x(1+x) \Leftrightarrow$

$$x = x + x^2 \Leftrightarrow x^2 = 0 \Leftrightarrow x = 0$$

La limite de u_n est 0.

5. (a) On peut conjecturer que
$$u_n = \frac{1}{n+1}$$

(b) **Initialisation** :
$$u_0 = 1$$
 et $\frac{1}{1+0} = 1$.

La propriété est vraie pour n=0.

HR: On suppose qu'il existe
$$k > 0$$
 tel que $u_k = \frac{1}{k+1}$.

Hérédité: On montre que
$$u_{k+1} = \frac{1}{k+2}$$

$$u_{k+1} = \frac{u_k}{1 + u_k} = \frac{\frac{1}{k+1}}{1 + \frac{1}{k+1}} = \frac{\frac{1}{k+1}}{\frac{k+2}{k+1}} = \frac{1}{k+2}$$

Conclusion: Pour tout
$$n \in \mathbb{N}$$
; $u_n = \frac{1}{n+1}$