Análisis automático de imágenes de frotis de sangre periférica para diagnóstico de Leucemia

Alumno: Hodei Zia López

Director: José Antonio Sanz Delgado

Introducción: Objetivo

Introducción: Objetivo

Introducción: Objetivo

¿Qué es la Leucemia?

Muestra de un paciente enfermo

Muestra de un paciente sano

Datasets

Implementación

- 1. Fase 1: Preprocesamiento de Imágenes
- 2. Fase 2: Generación de Variables
- 3. Fase 3: Clasificación
- 4. Fase 4: Base de Datos e Interfaz Grafica
- 5. Fase 5: Deep Learning

Segmentación con K-Means

Segmentación con K-Means + Máscara

Normalización

Conversión de espacios de color

Implementación

- 1. Fase 1: Preprocesamiento de Imágenes
- 2. Fase 2: Generación de Variables
- 3. Fase 3: Clasificación
- 4. Fase 4: Base de Datos e Interfaz Grafica
- 5. Fase 5: Deep Learning

Generación de Variables

Tres datasets

- 1 HistMax1
- 2 PixelesMax1
- 3 HistMax2
- 4 PixelesMax2
- 5 Diferencia Picos
- 6 Leucocitos
- 7 Porcentaje

- 1 MoradosEnCluster
- 2 HistSegMax1
- 3 PixelesSegMax1
- 4 HistSegMax2
- 5 PixelesSegMax2

- 1 Rojos
- 2 Morados
- 3 Blancos
- 4 Porcentaje_Rojos
- 5 Porcentaje_Morados
- 6 Porcentaje_Blancos

Implementación

- 1. Fase 1: Preprocesamiento de Imágenes
- 2. Fase 2: Generación de Variables
- 3. Fase 3: Clasificación
- 4. Fase 4: Base de Datos e Interfaz Grafica
- 5. Fase 5: Deep Learning

Clasificación manual

Método 1 PORCENTAJES 9.76574421 10.10868549 10.20590663 10.27392745 10.28197408 11.06106639 11.11866832 11.68518662 11.80226803 12.15209365 13.00989985 16.666370631 PORCENTAJES [0.13431907 0.14338493 0.18216372 0.18496513 0.18748045 0.19417405 0.20659566 0.20737052 0.21495223 0.21830201 0.22062659 0.22386312 0.23671985 0.25315285 0.26079416 0.27236342 0.28121471 0.29768944 0.32799244 0.33105016 0.33481717 0.33529401 0.34563541 0.35081506 0.35377145 0.35726428 0.36792159 0.37252307 0.37496686 0.3832221 0.38486719 0.38756728 0.39290786 0.4224956 0.43450594 0.44087172 0.45258403 0.49211383 0.52893162 0.53083301

0.54278374 0.55165291 0.5599916 0.57092309 0.61069727 0.63036084 0.64865947 0.70496202 0.72976947 0.78502297 0.84604621 0.84604621

1.01607442 1.09092593 1.24292374 1.33304

Método 2

0.64865947 0.70496202 0.72976947 0.78502297 0.84604621 0.84604621

1.01607442 1.09092593 1.24292374 1.33304

Clasificación automática

Hiper parámetros por defecto

Grid Search

Clasificador	Rendimiento en	Rendimiento en	FScore	Clasificador	Sin	MinMaxScaler	StandardScaler
	train	test			normalizar		
KNN	100.00%	96.96%	95.84%	KNN	99.09%	99.09%	99.09%
Arboles de Decisión	100.00%	100.00%	100.00%	Arboles de Decisión	99.09%	99.09%	99.09%
Random Forest	100.00%	96.96%	95.84%	Random Forest	100.00%	100.00%	100.00%
Regresión Logística	100.00%	100.00%	100.00%	Regresión Logística	99.09%	99.09%	99.09%
SVM	84.00%	84.84%	88.88%	SVM	99.09%	99.09%	100.00%
Redes Neuronales	58.66%	45.45%	0.00%	Redes Neuronales	100.00%	99.09%	99.09%

^{*}Rendimiento en test

Selección de variables – Filtros

- Medidas de calidad utilizadas
 - Chi2
 - ANOVA
- Selección de mejores:
 - K-Best. [1,2,3,...,15,16,17] mejores variables.

Resultados:

Tanto con Chi2 como con ANOVA obtenemos un 98.66% en train y un 100.00% en test.

Con Chi2: a partir de sus 6 mejores variables.

Con ANOVA: a partir de sus 3 mejores variables.

Selección de variables – PCA

Recorriendo las 17 variables con el PCA.

Resultados:

Con solamente dos variables podemos llegar A un 98.66% en train y 100.00% test

Selección de variables – Correlaciones

Eliminamos las variables con correlación mayor al umbral 0.8 con alguna de las variables de entrada

Resultado: Bajamos de 17 a 9 variables

Selección de variables – Correlaciones

Grid Search con las 9 variables

Clasificador	Sin normalizar	MinMaxScaler	StandardScaler
KNN	90.72%	99.09%	99.09%
Arboles de Decisión	98.18%	98.18%	98.18%
Random Forest	100.00%	100.00%	100.00%
Regresión Logística	90.45%	99.09%	99.09%
SVM	86.00%	99.09%	100.00%
Redes Neuronales	82.45%	99.09%	99.09%

Selección de variables – Feature Importances y SHAP Values

• Feature Importance con Random Forest

SHAP Values

Implementación

- 1. Fase 1: Preprocesamiento de Imágenes
- 2. Fase 2: Generación de Variables
- 3. Fase 3: Clasificación
- 4. Fase 4: Base de Datos e Interfaz Grafica
- 5. Fase 5: Deep Learning

Base de Datos

• Arquitectura de la BBDD creada con más de 2500 instancias

Interfaz Gráfica

• Interfaz de usuario pensada para facilitar el manejo de la BBDD

Base de Datos - Pruebas

Introduzca los datos de la Prueba

Enviar

Implementación

- 1. Fase 1: Preprocesamiento de Imágenes
- 2. Fase 2: Generación de Variables
- 3. Fase 3: Clasificación
- 4. Fase 4: Base de Datos e Interfaz Grafica
- 5. Fase 5: Deep Learning

Deep Learning

- Reducción de imágenes
 - 1944x1458 (75.00% de resolución respecto a la original)
 - 1458x1093 (56.25% de resolución respecto a la original)
 - 1093x820 (42.16% de resolución respecto a la original)
 - 820x615 (31.63% de resolución respecto a la original)
 - 615x461 (23.72% de resolución respecto a la original)

Deep Learning

• 615x461

Tensor("Mean_1:0", shape=(), dtype=float32)
Train Accuracy: 1.0
Test Accuracy: 1.0

Resultado:

100.00% en Train **100.00%** en Test

• 820x615

Tensor("Mean_1:0", shape=(), dtype=float32)
Train Accuracy: 1.0
Test Accuracy: 0.93939394

Resultado:

100.00% en Train **93.93%** en Test

• 1093x820

Tensor("Mean_1:0", shape=(), dtype=float32)
Train Accuracy: 1.0
Test Accuracy: 0.969697

Resultado:

100.00% en Train **96.96%** en Test

Deep Learning

• 1458x1093

Tensor("Mean_1:0", shape=(), dtype=float32)
Train Accuracy: 1.0
Test Accuracy: 0.969697

Resultado:

100.00% en Train **96.96%** en Test

• 1944x1458

Tensor("Mean_1:0", shape=(), dtype=float32)
Train Accuracy: 1.0
Test Accuracy: 0.969697

Resultado:

100.00% en Train **96.96%** en Test

Conclusiones y líneas futuras

- No todo es el porcentaje de acierto.
- Deep Learning funciona muy bien con imágenes.
- No todos los errores son iguales.

- Facilitar el acceso a estos análisis a todo el mundo.
- Detectar la enfermedad antes de que se expanda.

- Detectar que tipo de leucocitos tienen mayor relación con la enfermedad.
- Reducir la combinatoria de los hiper parámetros del Grid Search.
- Aumentar el dataset con muestras reales.
- Trabajar sobre el terreno para mejorar el proyecto e intentar aplicarlo.