杭州电子科技大学学生考试卷(A)卷

考试课程		概率论与数理统计 (2017-2018-1 学期)		考试日期		2018年 月	日	成绩			
课程号	4	A0714040	教师号		任课教师姓名						
考生姓名		-	学号 (8 位)			年级			专业		
题目	-	=	三	四	II.	六		七	1	九	+
得分											

一、单项选择题	(每题3	分,	共1	5分)
---------	------	----	----	-----

得分

- 1、己知 A、B、C 为三个随机事件,则 A、B 不发生、C 发生的事件为()
 - (A) ABC

(B) ABC

(C) ABC

- (D) ABC
- 2、设随机事件A、B相互独立,则下列等式不正确的是()
 - (A) P(AB) = P(A)P(B)

(B) P(AB) = 0

(C) $P(A\overline{B}) = P(A)P(\overline{B})$

- (D) $P(\overline{A}\overline{B}) = P(\overline{A})P(\overline{B})$
- 3、关于标准正态分布、t 分布、F 分布、 χ^2 分布的 α 分为点,下列不正确的是()
 - (A) $\chi^{2}_{1-\alpha}(n) = -\chi^{2}_{\alpha}(n)$

(B) $Z_{1-\alpha} = -Z_{\alpha}$

(C) $t_{1-\alpha}(n) = -t_{\alpha}(n)$

- (D) $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$
- 4、 设随机变量 X 和 Y 相互独立,且他们的分布函数分别为 $F_{\chi}(x)$ 和 $F_{\gamma}(y)$,

 $Z = \min(X, Y)$ 的分布函数 $F_z(z)$ 是()

(A)
$$\min\{F_{x}(z), F_{y}(z)\}$$

(C)
$$1 - F_{\Gamma}(z)F_{\Gamma}(z)$$

(B)
$$F_{\chi}(z)F_{\chi}(z)$$

(D)
$$1 - [1 - F_r(z)][1 - F_r(z)]$$

5、随机变量 $X \sim N(\mu, \sigma^2)$,且 $P(\mu < X < 3) = P\{1 < X < \mu\}$,则 μ 的值是 ()

(A) 0

(B) 1

(C) 2

(D) 3

二、填空题(每空3分,共15分)

得分

1、设
$$P(B) = 0.3$$
, $P(AB) = 0.2$, $P(A \cup B) = 0.7$, 求 $P(A) =$

2、从 0,1,2, ..., 9 这 10 个数字中任取 3 个不同数字,则取到的 3 个数字中不含 0 和 5 的概率=

- 4、已知 $X \sim b(10, p)$, E(X) = 2, 则p =______
- 5、已知正态总体 $N(\mu, \sigma^2)$ 的参数 μ, σ^2 均未知, \bar{X}, S^2 分别为某样本的样本均值和样本方差,则检验单边假设 $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$ 的显著水平为 α 的拒绝域是______

三、(本题 5 分)

得分

设离散型随机变量》的分布律如右右	表: X	1	2	3	
求随机变量 X 的分布函数 $F(x)$ 。	р	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{2}{5}$	

四、(本题5分)

得分

己知本学期学概率论与数理统计课程的学生数为 1600, 根据期末试卷的难度,每位学生期末考试及格的概率为 0.8。设每位学生考试是否及格是相互独立的,试用中心极限定理计算期末考试及格的人数超过 1300 的概率。(结果用Φ(·)表示)

得分

设随机变量(X,Y)的概率分布律如右表:

- 求: (1) 关于 XY 的分布律;
 - (2) $P\{X \leq 2 \mid Y = 1\};$
 - (3) 计算 pxr 的值 (结果保留根号)。

Y	-1	0	4
-2	3 / 16	3/8	1/8
2	1/16	1/8	1/8

六、(本题 16 分)

得分

设二维随机变量(X,Y)的概率函数为:

$$f(x, y) = \begin{cases} \frac{1 + xy}{4}, & -1 < x < 1, -1 < y < 1, \\ 0, & \text{ 其他,} \end{cases}$$

则: (1) 求关于X和Y的边缘概率密度 $f_X(x)$, $f_Y(y)$;

- (2) 求概率 P{X < Y};
- (3) 判断X与Y相互独立,并说明理由。

七、(本题8分)

得分

设 $X_1, X_2, X_3, \ldots, X_n$ 为来自总体X的样本, $X_1, X_2, X_3, \ldots, X_n$ 为相应的样本值,已知总体X的密度函数为

$$f(x) = \begin{cases} (\theta + 1)x^{\theta}, 0 < x < 1, \\ 0, 其他 \end{cases}$$
 , 其中 $\theta > -1, \theta$ 为未知参数。

试求θ的矩估计值和最大似然估计值。

八、(本题8分)

得分

已知某地年平均气温 X (单位: "C) 近似服从正态分布 $N(\mu, \sigma^2)$,又近 5 年该地的平均气温的观察值为: 24.3,20.8,23.7,19.3,17.4 , 计算得 $\overline{x}=21.1$,s=2.9,试求 μ 的置信水平为 0.95 的双侧置信区间。(已知 $\sqrt{5}\approx 2.2$, $t_{0.025}(5)=2.57$, $t_{0.025}(4)=2.78$,计算结果保留两位小数。)

九、(本题8分)

得分

设某厂所生产的某种细纱每缕支数服从正态分布 $N(\mu,1.2^2)$ 。现从该厂某日生产的一批产品中,随机抽 16 缕进行支数测量,求得样本标准差 s=2.1。问当天生产的细纱支数的方差有无显著变化?(已知 $\alpha=0.05$, $\chi^2_{0.025}(15)=27.5$, $\chi^2_{0.025}(16)=28.8$,计算结果保留两位小数。)

十、证明题(本题5分) 得分

证明:设 $X_1, X_2, X_3, ... X_n$ 为来自总体 $N(1, \sigma^2)$ 的一个样本,证明:

$$T = \frac{X_1 - X_3}{|X_2 + X_4 - 2|} \sim t(1) .$$