105

3.4 Težinski grafovi

Grafički modeli koji se pojavljuju u praksi često zahtevaju dodeljivanje nekih realnih vrednosti granama. Te vrednosti ćemo nazivati težinama grana.

Definicija 130 Težinski graf je uređena trojka (V, E, ω) , gde je

$$\omega: E \to \mathbb{R}$$

funkcija koja svakoj grani $e \in E$ dodeljuje realan broj (njenu težinu) $\omega(e)$.

3.4.1 Algoritmi za konstrukciju minimalnog pokivajućeg stabla

Kruskalov algoritam Prvi algoritam koji ćemo prikazati uveo je Joseph Kruskal 1956. godine. Neka je $G=(V,E,\omega)$ povezan težinski graf, gde je $V=\{v_1,\ldots,v_n\}$ i označimo grane grafa G tako da važi sledeće uređenje

$$\omega(e_1) \le \omega(e_2) \le \ldots \le \omega(e_n).$$

Algoritam se sastoji od primene Algoritma 2 za odeđivanje pokrivajućeg stabla na ovako uređene grane.

Znači, algoritam u prvom koraku bira proizvoljnu granu najmanje težine. U svakom narednom koraku algoritma dodaje se prva naredna grana u nizu koja ne kreira konturu kada se doda prethodno izabranom podgrafu. Nakon n-1 koraka algoritam staje.

Primov algoritam Drugi algoritam koji ćemo predstaviti u ovom delu uveo je 1930. godine češki matematičar Vojtěch Jarnik. Isti algoritam ponovo je razvio 1957. godine Robert C. Prim i 1959. godine Edsger W. Dijkstra.

Alg
pritam kreé od proizvoljne gran najmanje težine u grafu. U svako m
 narednom koraku bira se proizvoljna grana najmanje težine koja je incidentna sa nekim već izabranim čvorom u pod
grafu. Algoritma se završava kada je izabrano n-1 grana.

Teorema 131 Neka je G povezan težinski graf. Tada je stablo dobijeno Primovim algoritmom minimalno pokrivajuće stablo.

Dokaz. Pretpostavimo da su

$$e_1, e_2, \ldots, e_{n-1}$$

grane pokrivajućeg stabla T koje su redom birane Primovim algoritmom. Označićemo sa T_k stablo sa granama e_1, \ldots, e_k . Neka je S minimalno pokrivajuće

stablo grafa G sa osobinom da sadrži e_1, \ldots, e_k , gde je k maksimalan prirodan broj sa osobinom da postoji minimalno pokrivajuće stablo koje sadrži prvih k grana izabranih Primovim algoritmom. Pokazaćemo da je T = S.

Pretpostavimo suprotno, da je $S \neq T$ tj. da je k < n-1. Odatle sledi da S sadrži e_1, \ldots, e_k , ali ne sadrži e_{k+1} . Kako je $S \cup \{e_{k+1}\}$ povezan i ima više od n-1 grana, on sadrži konturu i ta kontura sadrži e_{k+1} (S je stablo i ne sadrži konturu). Sa druge strane, postoji grana u konturi koja ne pripada T_{k+1} , zato što je T_{k+1} stablo. Polazeći od jednog kraja e_{k+1} (koji je incidentan sa nekom od grana e_1, \ldots, e_{k+1} , prateći konturu sve dok ne stignemo do grane koja nije u T_{k+1} , možemo naći granu e koja nije u T_{k+1} , a koja je incidentan sa čvorom koji je incidentan sa nekom od grana e_1, \ldots, e_k .

Ako iz S obrišemo tu granu, a dodamo granu e_{k+1} , dobijamo stablo T' sa n-1 grana koje sadrži grane e_1,\ldots,e_{k+1} . Kako je e_{k+1} izabrana Primovim algoritmom, e je isto bilo na raspolaganju, što znači da je $\omega(e) \geq \omega(e_{k+1})$. Odatle je T' minimalno pokrivajuće stablo. To je u kontradikciji sa pretpostavkom da je k najveći mogući prirodni broj sa osobinom da pokrivajuće stablo sadrži e_1,\ldots,e_k . \square