МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №2

по дисциплине: Теория информации тема: «Исследование кодов Шеннона-Фано»

Выполнил: ст. группы ПВ-223 Дмитриев Андрей Александрович

Проверил: Твердохлеб В.В. **Цель лабораторной работы:** изучить способ кодирования сообщений по методу Шеннона-Фано. Научиться составлять код Шеннона-Фано для данного сообщения. Узнать, как вычисляется коэффициент сжатия и величина дисперсии. Сравнить метод Хаффмана с методом Шеннона-Фано по показателям сжатия и дисперсии.

Выполнение заданий:

№1.
Построить код для сообщения, содержащего строку панграммы «в чащах юга жил бы цитрус? да но фальшивый экземпляр!». Для полученного кода рассчитать показатели коэффициента сжатия и дисперсии.

Символ	Вероятность		Код					
		I	II	III	IV	V	VI	Код
	9/54	0	0	0				000
a	5/54			1				001
И	3/54		1	0	0			0100
Л	3/54				1			0101
В	2/54			1	0	0		01100
p	2/54					1		01101
Ы	2/54				1	0		01110
б	1/54					1		01111
Γ	1/54	1	0	1	0	0		10000
Д	1/54					1	0	100010
e	1/54						1	100011
Ж	1/54				1	0	0	100100
3	1/54						1	100101
й	1/54					1	0	100110
К	1/54						1	100111
M	1/54				0	0		10100
Н	1/54					1	0	101010
O	1/54						1	101011
П	1/54				1	0	0	101100
c	1/54						1	101101
Т	1/54					1	0	101110
у	1/54						1	101111
ф	1/54					0		11000
X	1/54				0		0	110011

		1	1	1	1	1		
Ц	1/54		0		1	1	110011	
Ч	1/54				0		11010	
Ш	1/54				1	1	0	11010
Щ	1/54						1	110111
Ь	1/54	1			0		11100	
Э	1/54				0	1	0	111010
Ю	1/54						1	111011
Я	1/54		1		0	0	111100	
,	1/54				1	U	1	111101
?	1/54					1	0	111110
!	1/54						1	111111

n = 53 - количество символов в сообщении

Всего в алфавите 35 символов. По формуле $N=2^{I}$, N - мощность алфавита, I - кол-во бит, необходимо для кодирования символа алфавита с помощью двоичного кода.

$$I = \log_2 N$$
; $I = \log_2 35 \approx 6$

 $B=n imes \eta$, где n - количество символов в сообщении, η - необходимый объем бит для представления одного символа, в данном случае $\eta=I=6,\,n=54$

$$B = 53 \times 6 = 324$$

$$B' =$$

$$K_{comp} = \frac{B}{B'} = \frac{318}{251} \approx 1,26$$

$$l_{cp.} = \sum_{i} p_i \cdot l_i = 4,76$$

$$\delta = \sum_{i} p_i \cdot (l_i - l_{cp.})^2 = 1.48$$

№2. Построить код для сообщения, содержащего строку «Victoria nulla est, Quam quae confessos animo quoque subjugat hostes» Для полученного кода рассчитать показатели коэффициента сжатия и дисперсии.

Victoria nulla est, Quam quae confessos animo quoque subjugat hostes

Символ	Вероятность		T.C.											
		I	II	III	IV	V	VI	Код						
٠ ،	9/68	0	0	0				000						
S	7/68			1				001						
u	7/68		1	0				010						
a	6/68			1	0			0110						
О	6/68			1	1			0111						
e	5/68		0	0	0			1000						
q	4/68			0	0	1			1001					
t	4/68						0			1	0			1010
i	3/68			1	1			1011						
n	3/68	1	1		0	0		11000						
c	2/68			0		1		11001						
1	2/68				1	0		11010						
m	2/68					1		11011						
b	1/68				0	0	0	111000						
f	1/68						1	111001						
g	1/68					1	0	111010						
h	1/68			1			1	111011						
j	1/68			1	1	0	0	111100						
r	1/68						1	111101						
V	1/68							1	1	0	111110			
,	1/68					1	1	111111						

n = 68 - количество символов в сообщении

Всего в алфавите 21 символ. По формуле $N=2^{l}$, N - мощность алфавита, l - кол-во бит, необходимо для кодирования символа алфавита с помощью двоичного кода.

 $I = \log_2 N$; $I = \log_2 21 \approx 5$

 $B=n imes \eta$, где n - количество символов в сообщении, η - необходимый объем бит для представления одного символа, в данном случае $\eta=I=5,\,n=68$

$$B = 68 \times 5 = 340 \delta = \sum p_i \cdot (l_i - l_{cp.})^2 = 0.99$$

$$K_{comp} = \frac{B}{B'} = \frac{340}{278} \approx 1,22$$

$$l_{cp.} = \sum p_i \cdot l_i = 4{,}03$$

$$\delta = \sum p_i \cdot (l_i - l_{cp.})^2 = 0.99$$

№3.

Построить консольное приложение, реализующее процесс кодирования по методу Шеннона-Фано (с возможностью расчета коэффициента сжатия и дисперсии).

Листинг программы:

```
class Node:
   def __init (self, freqs):
       \frac{\overline{}}{\text{self.freqs}} = \text{freqs}
        self.left = None
        self.right = None
def calculate freq(s):
    freqs = {}
       freqs[w] = 0
        freqs[w] += 1
    for symb in freqs:
        freqs[symb] = round(freqs[symb] / len(s), 3)
    freqs = sorted(freqs.items(), key=lambda item: item[1], reverse=True)
    return freqs
def calculate freqs sum(d):
    dd = dict(d)
    for v in dd.values():
def printCodes(shannon codes):
    for key, value in shannon codes.items():
       print(f"{key} : {value}")
def printFreqs(freqs):
    for el in freqs:
def encode(input s, shannon codes):
    encoded s = ""
    for symb in input s:
```

```
encoded s += shannon codes[symb]
    return encoded s
def calculateKcomp(input_s, encoded_s):
    return len(input_s) * N / len(encoded_s)
def calculateDispersion(freqs, shannonCodes):
    dispersion = 0
    l middle = 0
    for f in freqs:
        l middle += f[1] * len(shannonCodes[f[0]])
    for f in freqs:
        dispersion += f[1] * ((len(shannonCodes[f[0]]) - l middle) ** 2)
    return dispersion
def get codes(node, s, shannon codes):
    if node.right is None:
        shannon codes[node.freqs[0][0]] = s
    get codes(node.left, s + "0", shannon codes)
    get codes(node.right, s + "1", shannon codes)
def createShannonTree(node):
    if len(node.freqs) == 1:
    freqs sum = 0
    mid freqs sum = calculate freqs sum(node.freqs) / 2
    sep index = -1
    for i in range(len(node.freqs)):
        freqs sum += node.freqs[i][1]
        if freqs sum >= mid freqs sum:
            if (freqs sum - mid freqs sum) <= (mid freqs sum - (freqs sum -
node.freqs[i][1])):
                 sep index = i
                 sep_index = i - 1
    node.right = Node(node.freqs[:sep index + 1])
    node.left = Node(node.freqs[sep index + 1:])
    createShannonTree (node.right)
    createShannonTree(node.left)
```

```
def main():
    input_s = input("Введите текст: ")
    print(f"\nВведенный текст: (длина = {len(input_s)})\n{input_s}\n")
    freqs = calculate_freq(input_s)
    root = Node(freqs)
    printFreqs(freqs)
    createShannonTree(root)
    shannon_codes = {}
    get_codes(root, "", shannon_codes)
    printCodes(shannon_codes)
    encoded_s = encode(input_s, shannon_codes)
    print(f"\nЗакодированное сообщение: (длина = {len(encoded_s)})\n{encoded_s}")
    print(f"\nКоэффициент сжатия: {calculateKcomp(input_s, encoded_s)}")
    print(f"\nКоэффициент сжатия: {calculateComp(input_s, shannon_codes)}")
main()
```

Результат для первого сообщения:

```
C:\Users\dmitr\AppData\Local\Programs\Python\Python39\python.exe
T:/2kurs2sem/InformTheor/lab2/main.py
Введите текст: в чащах юга жил бы цитрус? да но фальшивый экземпляр!
Введенный текст: (длина = 53)
в чащах юга жил бы цитрус? да но фальшивый экземпляр!
Таблица частот (вероятностей):
 : 0.17
a : 0.094
и: 0.057
л: 0.057
в: 0.038
ы: 0.038
p: 0.038
ч: 0.019
щ: 0.019
x : 0.019
ю: 0.019
r: 0.019
ж: 0.019
б: 0.019
ц: 0.019
 : 0.019
 : 0.019
c: 0.019
 : 0.019
д: 0.019
н: 0.019
0:0.019
ф: 0.019
ь: 0.019
ш: 0.019
```

```
й: 0.019
э: 0.019
к: 0.019
з : 0.019
e: 0.019
м: 0.019
п: 0.019
я: 0.019
!: 0.019
Полученные коды:
!: 000000
я : 000001
п : 00001
м : 000100
e : 000101
з : 000110
к : 000111
э: 001000
й: 001001
ш: 00101
ь: 001100
ф: 001101
o : 00111
н: 010000
д: 010001
? : 01001
c : 010100
y : 010101
т: 010110
ц: 010111
б: 011000
ж : 011001
r : 01101
ю: 011100
x : 011101
щ: 01111
ਖ : 10000
p: 10001
ы: 10010
в: 10011
л: 1010
и: 1011
a : 110
 : 111
Закодированное сообщение: (длина = 251)
01101000000110001000000
Коэффициент сжатия: 1.2669322709163346
Дисперсия: 1.4822618449999996
Process finished with exit code 0
```

Результат для второго сообщения:

```
C:\Users\dmitr\AppData\Local\Programs\Python\Python39\python.exe
T:/2kurs2sem/InformTheor/lab2/main.py
Введите текст: Victoria nulla est, Quam quae confessos animo quoque subjugat hostes
Введенный текст: (длина = 68)
```

```
Victoria nulla est, Quam quae confessos animo quoque subjugat hostes
Таблица частот (вероятностей):
: 0.132
u : 0.1<u>03</u>
s: 0.103
0:0.088
a : 0.088
e : 0.074
t: 0.059
i : 0.044
n : 0.044
q: 0.044
1: 0.029
m : 0.029
Q: 0.015
f : 0.015
b : 0.015
h: 0.015
Полученные коды:
u : 110
a : 1000
e : 0111
t : 0<u>11</u>0
i : 01011
n: 01010
c : 00111
1 : 00110
m : 00101
V : 001001
r : 001000
, : 000111
Q: 000110
f : 000101
b : 000100
j : 000011
h : 00000
Закодированное сообщение: (длина = 278)
Коэффициент сжатия: 1.223021582733813
Дисперсия: 0.9995612159999998
Process finished with exit code 0
```

№4.

Получить кодовые представления сообщений из пунктов 1 и 2 заданияпо методу Хаффмана. Сравнить полученные результаты с методом Шеннона-Фано по показателям сжатия и дисперсии. Сделать соответствующие выводы.

По методу Хаффмана получим.

Для первого сообщения:

Коэффициент сжатия: 1.2669322709163346

Дисперсия: 2.118903524385903

Для второго сообщения:

Коэффициент сжатия: 1.4676258992805755

Дисперсия: 1.2569204152249132

Заметим, что коэффициент сжатия информации больше у Хаффмана, но дисперсия меньше.

Вывод: в ходе работы изучен способ кодирования сообщений по методу Шеннона-Фано. Получены навыки составления кода Шеннона-Фано для данных сообщений, нахождения коэффициента сжатия, величины дисперсии. Также мы сравнили метод Хаффмана с методом Шеннона-Фано по показателям сжатия и дисперсии.