

Next: Hydrogen Atom Up: Central Potentials Previous: Derivation of Radial Equation

Infinite Spherical Potential Well

Consider a particle of mass m and energy E > 0 moving in the following simple central potential:

$$V(r) = \begin{cases} 0 & \text{for } 0 \le r \le a \\ \infty & \text{otherwise} \end{cases}$$
 (647)

Clearly, the wavefunction ψ is only non-zero in the region $0 \le r \le a$. Within this region, it is subject to the physical boundary conditions that it be well behaved (*i.e.*, square-integrable) at r=0, and that it be zero at r=a (see Sect. <u>5.2</u>). Writing the wavefunction in the standard form

$$\psi(r,\theta,\phi) = R_{n,l}(r) Y_{l,m}(\theta,\phi), \tag{648}$$

we deduce (see previous section) that the radial function $R_{n,l}(r)$ satisfies

$$\frac{d^2 R_{n,l}}{dr^2} + \frac{2}{r} \frac{dR_{n,l}}{dr} + \left(k^2 - \frac{l(l+1)}{r^2}\right) R_{n,l} = 0$$
(649)

in the region $0 \le r \le a$, where

$$k^2 = \frac{2\,m\,E}{\hbar^2}.\tag{650}$$

Figure 20: The first few spherical Bessel functions. The solid, short-dashed, long-dashed, and dot-dashed curves show $j_0(z)$, $j_1(z)$, $y_0(z)$, and $y_1(z)$, respectively.

Defining the scaled radial variable z = k r, the above differential equation can be transformed into the standard form

$$\frac{d^2 R_{n,l}}{dz^2} + \frac{2}{z} \frac{dR_{n,l}}{dz} + \left[1 - \frac{l(l+1)}{z^2}\right] R_{n,l} = 0.$$
 (651)

The two independent solutions to this well-known second-order differential equation are called *spherical Bessel functions*, and can be written

$$j_l(z) = z^l \left(-\frac{1}{z} \frac{d}{dz} \right)^l \left(\frac{\sin z}{z} \right), \tag{652}$$

$$y_l(z) = -z^l \left(-\frac{1}{z} \frac{d}{dz} \right)^l \left(\frac{\cos z}{z} \right). \tag{653}$$

Thus, the first few spherical Bessel functions take the form

$$j_0(z) = \frac{\sin z}{z}, \tag{654}$$

$$j_1(z) = \frac{\sin z}{z^2} - \frac{\cos z}{z}, \tag{655}$$

$$y_0(z) = -\frac{\cos z}{z}, \tag{656}$$

$$y_1(z) = -\frac{\cos z}{z^2} - \frac{\sin z}{z}. \tag{657}$$

These functions are also plotted in Fig. 20. It can be seen that the spherical Bessel functions are oscillatory in nature, passing through zero many times. However, the $y_l(z)$ functions are badly behaved (i.e., they are not square-integrable) at z=0, whereas the $j_l(z)$ functions are well behaved everywhere. It follows from our boundary condition at r=0 that the $y_l(z)$ are unphysical, and that the radial wavefunction $R_{n,l}(r)$ is thus proportional to $j_l(k\,r)$ only. In order to satisfy the boundary condition at r=a [i.e., $R_{n,l}(a)=0$], the value of k must be chosen such that $z=k\,a$ corresponds to one of the zeros of $j_l(z)$. Let us denote the nth zero of $j_l(z)$ as $z_{n,l}$. It follows that

$$k a = z_{n,l}, \tag{658}$$

for $n=1,2,3,\ldots$ Hence, from (650), the allowed energy levels are

$$E_{n,l} = z_{n,l}^2 \frac{\hbar^2}{2m \, a^2}.\tag{659}$$

The first few values of $z_{n,l}$ are listed in Table 1. It can be seen that $z_{n,l}$ is an increasing function of both n and l.

Table 1: The first few zeros of the spherical Bessel function $j_l(z)$.

	n = 1	n = 2	n = 3	n = 4
l = 0	3.142	6.283	9.425	12.566
l = 1	4.493	7.725	10.904	14.066
l = 2	5.763	9.095	12.323	15.515
l = 3	6.988	10.417	13.698	16.924
l=4	8.183	11.705	15.040	18.301

We are now in a position to interpret the three quantum numbers-n, l, and m--which determine the form of the wavefunction specified in Eq. (648). As is clear from Sect. 8, the azimuthal quantum number m determines the number of nodes in the wavefunction as the azimuthal angle ϕ varies between 0 and 2π . Thus, m=0 corresponds to no nodes, m=1 to a single node, m=2 to two nodes, etc.

Likewise, the polar quantum number \boldsymbol{l} determines the number of nodes in the wavefunction as the polar angle $\boldsymbol{\theta}$ varies between 0 and $\boldsymbol{\pi}$. Again, $\boldsymbol{l}=0$ corresponds to no nodes, $\boldsymbol{l}=1$ to a single node, etc. Finally, the radial quantum number \boldsymbol{n} determines the number of nodes in the wavefunction as the radial variable \boldsymbol{r} varies between 0 and \boldsymbol{a} (not counting any nodes at $\boldsymbol{r}=0$ or $\boldsymbol{r}=\boldsymbol{a}$). Thus, $\boldsymbol{n}=1$ corresponds to no nodes, $\boldsymbol{n}=2$ to a single node, $\boldsymbol{n}=3$ to two nodes, etc. Note that, for the case of an infinite potential well, the only restrictions on the values that the various quantum numbers can take are that \boldsymbol{n} must be a positive integer, \boldsymbol{l} must be a non-negative integer, and \boldsymbol{m} must be an integer lying between $-\boldsymbol{l}$ and \boldsymbol{l} . Note, further, that the allowed energy levels (659) only depend on the values

of the quantum numbers n and l. Finally, it is easily demonstrated that the spherical Bessel functions are mutually orthogonal: *i.e.*,

$$\int_0^a j_l(z_{n,l} r/a) j_l(z_{n',l} r/a) r^2 dr = 0$$
(660)

when $n \neq n'$. Given that the $Y_{l,m}(\theta,\phi)$ are mutually orthogonal (see Sect. 8), this ensures that wavefunctions (648) corresponding to distinct sets of values of the quantum numbers n, l, and m are mutually orthogonal.

Next Up Previous

Next: Hydrogen Atom Up: Central Potentials Previous: Derivation of Radial Equation

Richard Fitzpatrick 2010-07-20