1. Grafos

Um grafo G é definido por um par de conjuntos Nós e Arcos onde:

- N é um conjunto finito, não vazio, de **nós** (ou **vértices**) do grafo, representado por " "
- A é um conjunto de pares ordenados a=(x, y) denominados arcos , onde $x e y \in N$, e são as arestas do arco.

Vejamos, por exemplo, o grafo G(N, A) dado por:

```
N = \{ p \mid p \text{ \'e uma pessoa } \}

A = \{ (v,w) \mid < v \text{ \'e amigo de } w > \}
```

Esta definição representa toda uma família de grafos. Um exemplo de elemento desta família (ver G_1) é dado por:

```
N = { Maria, Pedro, Joana, Luís }
A = { (Maria, Pedro) , (Joana,
Maria) , (Pedro, Luís) , (Joana,
Pedro) }
```


Neste exemplo estamos considerando que a relação $< v \ \acute{e} \ amigo \ de \ w> \ \acute{e} \ uma \ relação simétrica, ou seja, se <math>< v \ \acute{e} \ amigo \ de \ w>$ então $< w \ \acute{e} \ amigo \ de \ v>$. Como consequência, as arestas que ligam os vértices não possuem qualquer orientação

1.1. Grafo Dirigido

Um grafo **dirigido** é um grafo na qual os arcos são definidos por conjuntos ordenados onde os pares ordenados (Porto, Coimbra) e (Coimbra, Porto) representam dois arcos diferentes.

Exemplo:

Considere-se o seguinte grafo:

```
\begin{aligned} &G1 = (N1,\,A1)\\ &N1 = \{Porto,\,Coimbra,\,Lisboa,\,Faro\}\\ &A1 = \{(Porto,\,Coimbra),\,(Coimbra,\,Lisboa),\,(Lisboa,\,Faro),\,(Faro,\,Coimbra)\} \end{aligned}
```

Porto

Onde cada arco representa uma *Estrada* de sentido único entre duas localidades.

1.2. Grafo Não Dirigido

Um grafo **não dirigido** é um grafo na qual os arcos são definidos por conjuntos ordenados, onde os pares ordenados (Porto, Coimbra) e (Coimbra, Porto) representam o mesmo arco.

Considere o seguinte Grafo:

G2 = (N2, A2)

N2 = {Porto, Coimbra, Lisboa, Faro}

A2 = {(Porto, Coimbra), (Coimbra, Porto), (Coimbra, Lisboa), (Lisboa,

Faro), (Faro, Coimbra)}

Onde cada arco representa uma *Estrada* com dois sentidos entre duas localidades.

1.3. Grau de um Nó

Grafos Dirigidos

O grau interno de um nó é o número de arcos que incidentes nesse nó.

O grau externo de um nó é o número de arcos que partem desse nó.

Neste exemplo, a cidade do Porto tem **grau interno 0** e **grau externo 1**, e a cidade de Faro tem **grau interno 1** e **grau externo 1**.

Grafos Não Dirigidos

O grau de um nó é o número de arcos incidentes nesse nó.

Neste exemplo, a cidade do Porto tem grau 1 e a cidade de Faro tem grau 2.

1.4. Caminho

Um **caminho** é uma sequência de um ou mais arcos, na qual o segundo nó de cada arco coincide com o primeiro nó do arco seguinte.

Grafos Dirigidos

Exemplo:

```
O caminho do Porto para Faro = {(Porto, Coimbra), (Coimbra, Lisboa), (Lisboa, Faro)}
```


Grafos Não Dirigidos

Exemplo:

```
O caminho do Porto para Faro = {(Porto, Coimbra), (Coimbra, Lisboa), (Lisboa, Faro)} ou = {(Porto, Coimbra), (Coimbra, Faro)}
```


1.5. Comprimento de um Caminho

O **comprimento de um caminho** é igual ao número de arcos existentes no caminho.

No exemplo anterior, o comprimento do caminho do Porto para Faro = {(Porto, Coimbra), (Coimbra, Lisboa), (Lisboa, Faro)} é igual a 3.

1.6. Ciclo, Circuito e Laço

Um **ciclo** (*só para grafos dirigidos*) é um caminho na qual o nó de partida coincide com o nó de chegada.

Um **circuito** (só para grafos não dirigidos) é um caminho na qual o nó de partida coincide com o nó de chegada.

Um laço, é um ciclo com um único arco, isto é, um arco que inicia e termina no mesmo nó.

Grafos Dirigidos

Exemplo:

ciclo: {(Coimbra, Lisboa), (Lisboa, Faro), (Faro, Coimbra)}

laço: {(Porto, Porto)}

Grafos Não Dirigidos

Exemplo:

circuito:{(Coimbra, Lisboa), (Lisboa, Faro), (Faro, Coimbra)}

laço: {(Coimbra, Coimbra)}

1.7. Grafo Cíclico

Um grafo é cíclico se o grafo contém um ou mais ciclos.

1.8. Grafo Acíclico

Um grafo é acíclico se o grafo não contém nenhum ciclo.

1.9. Grafo Parcial

Um grafo **parcial** é um grafo constituído pelos mesmos nós do grafo original, podendo conter apenas um subconjuntos de arcos do grafo original.

Exemplo:

Considere-se o seguinte grafo G = (N, A):

N = {Porto, Coimbra, Lisboa, Faro}

A = {(Porto, Porto), (Porto, Coimbra), (Coimbra, Lisboa), (Lisboa, Faro), (Faro, Coimbra)}

Partindo deste grafo G, podemos obter os seguinte grafos parciais:

Grafos Parciais:

1.10. **Subgrafo**

Um subgrafo é um grafo constituído por um subconjunto dos nós do grafo original, juntamente com todos os arcos entre este subconjunto de nós, existentes no grafo original.

Exemplo:

Considere-se o seguinte grafo G = (N, A):

N = {Porto, Coimbra, Lisboa, Beja}

A = {(Beja, Beja), (Beja, Lisboa), (Beja, Coimbra), (Lisboa, Coimbra), (Coimbra, Porto)}

Partindo deste grafo G, podemos obter os seguinte subgrafos:

Subgrafos:

1.11. **Grafo Conexo**

Um grafo conexo é um grafo na qual existe pelo menos um nó a partir do qual existe caminho para todos os restantes nós.

Exemplo:

Considere-se o seguinte grafo G = (N, A):

G = (N, A)

N = {Porto, Coimbra, Lisboa, Faro}

A = {(Beja, Beja), (Beja, Lisboa), (Beja, Coimbra), (Lisboa, Coimbra),

(Coimbra, Porto)}

A partir do nó de Beja, existe pelo menos um caminho para todos os restantes nós, isto é, partindo de Beja pode-se alcançar qualquer um dos destinos.

1.12. Grafo Fortemente Conexo

Um grafo **fortemente conexo** é um grafo na qual a partir de qualquer nó, existe pelo menos um caminho para todos os restantes nós.

Exemplo:

Considere-se o seguinte grafo G = (N, A):

G = (N, A)

N = {Porto, Coimbra, Lisboa, Serpa}

A = {(Serpa, Lisboa), (Lisboa, Coimbra), (Coimbra, Serpa), (Coimbra,

Porto), (Porto, Coimbra)}

A partir de qualquer nó é possível alcançar qualquer um dos restantes destinos.

1.13. Grafo Regular (n)

Um grafo é dito ser **regular** (\mathbf{n}) quando todos os seus vértices tem o mesmo grau, onde \mathbf{n} é o grau dos seus nós.

Por exemplo, um grafo é um grafo regular-3 quando todos os seus nós têm grau 3.

1.14. Grafo Completo - Kn

Um grafo completo é um grafo que contém o número máximo de arcos possível, isto é, quando existe, para cada nó, um arco desse nó para todos os restantes nós. Estes grafos são designados por Kn, onde n é o número de nós do grafo.

Propriedades:

- Existe um único grafo completo (a menos de isomorfismos) com n vértices que denotamos por Kn
- Um grafo Kn possui o número máximo possível de arcos para um dados n, sendo um grafo regular (n-1) dado que todos os seus vértices tem grau n-1.
- Todos os grafos completos são grafos regulares.

Exemplo:

1.15. Multigrafo

Um **multigrafo** é um grafo que contém múltiplas ocorrências de um mesmo arco, isto é, entre dois nós existe mais de um arco.

Exemplo:

Considere-se o seguinte grafo G = (N, A):

N = {Porto, Coimbra, Lisboa, Serpa}

 $A = \{(Serpa, Lisboa), (Lisboa, Coimbra), (Coimbra, Serpa), (Coim$

Serpa), (Coimbra, Porto), (Porto, Coimbra)}

Neste grafo, existem 2 arcos entre os nós de Coimbra e Serpa.

1.16. Árvore

Uma **árvore** é um grafo conexo sem ciclos, isto é, existe pelo menos um nó (raiz da árvore) a partir do qual existe caminho para todos os restantes nós.

Exemplo:

Considere-se o seguinte grafo G = (N, A):

N = {Porto, Coimbra, Lisboa, Beja}

A = {(Beja, Lisboa), (Beja, Coimbra), (Coimbra, Porto)}

Neste grafo, a partir do nó de Beja, existe um caminho para todos os restantes nós. (NOTA: se rodar a imagem nota-se o desenho de uma árvore binária).

1.17. Grafo Pesado e Peso de um Arco

Um **grafo pesado** é um grafo na qual todos os arcos contêm um valor (peso) associado.

O peso de um arco, em grafos pesados, é o valor associado a cada arco.

Exemplo:

Considere-se o seguinte grafo G = (N, A):

N = {Porto, Coimbra, Lisboa, Serpa}

A = {(Serpa, Lisboa), (Lisboa, Coimbra), (Coimbra, Serpa),

(Coimbra, Serpa), (Coimbra, Porto), (Porto, Coimbra)}

Onde cada arco representa uma estrada de sentido único entre duas localidades, e o peso de cada arco representa a distancia entre duas localidades.

2. Representação de Grafos

2.1. Matriz de Adjacência

Um grafo G = (N, A) com \mathbf{n} nós pode ser representado numa **matriz** de adjacência \mathbf{M} , na qual, a matriz contém dimensão \mathbf{n} x \mathbf{n} , as linhas e as colunas representam os diversos nós do grafo e a sua intersecção representa a existência ou não de um arco a ligar os dois nós.

Grafos não pesado:

Para i (linha) e j (coluna), que representam respectivamente, origem e destino de uma matriz binária (só contém 0's ou 1's) de adjacência M,

- M(i,j) = 1 se existir um arco com origem em i e destino em j
- M(i,j) = 0 caso contrário

Grafos pesado:

Para i (linha) e j (coluna), que representam respectivamente, origem e destino de uma matriz de adjacência M,

- $M(i,j) = \mathbf{p}$ se existir um arco com origem em i e destino em j com ponderação \mathbf{p}
- $M(i,j) = \infty$ caso contrário

Exemplo I:

Considere-se o seguinte grafo G = (N, A):

G = (N, A)

N = {Porto, Coimbra, Lisboa, Faro}

A = {(Beja, Beja), (Beja, Lisboa), (Beja, Coimbra), (Lisboa, Coimbra), (Coimbra, Porto)}

	Porto	Coimbra	Lisboa	Beja
Porto	0	0	0	0
Coimbra	1	0	0	0
Lisboa	0	1	0	0
Beja	0	1	1	1

Exemplo II:

Considere-se o seguinte grafo G = (N, A):

G = (N, A)

N = {Porto, Coimbra, Lisboa, Faro}

A = {(Porto, Coimbra), (Coimbra, Lisboa), (Lisboa, Faro), (Faro, Coimbra)}

Este grafo pode ser representado pela seguinte matriz de adjacência (Origem x Destino):

<u> </u>				
	Porto	Coimbra	Lisboa	Faro
Porto	8	118	8	8
Coimbra	118	8	196	455
Lisboa	8	196	8	300
Faro	8	455	300	8

Nota: Grafos não dirigidos são representados por Matrizes Simétricas

Exemplo III:

Considere-se o seguinte grafo G = (N, A):

G = (N, A)

N = {Porto, Coimbra, Lisboa, Faro}

A = {(Porto, Porto), (Porto, Coimbra), (Coimbra, Porto), (Coimbra,

Lisboa), (Lisboa, Faro), (Faro, Coimbra)}

Este grafo pode ser representado pela seguinte matriz de adjacência (Origem x Destino):

(= -8 = - =								
	Porto	Coim bra	Lisboa	Faro				
Porto	6	118	8	8				
Coimbra	125	8	196	8				
Lisboa	8	8	8	300				
Faro	8	455	8	8				

2.1.1. Determinação do Grau de um Nó

Grafos Dirigidos

	Porto	Coimbra	Lisboa	Beja	Grau Externo
Porto	0	0	0	0	0
Coimbra	1	0	0	0	1
Lisboa	0	1	0	0	1
Beja	0	1	1	1	3
Grau Interno	1	2	1	1	

Grafos Não Dirigidos

	Porto	Coimbra	Lisboa	Faro	Grau
Porto	0	1	0	0	1
Coimbra	1	0	1	1	3
Lisboa	0	1	0	1	2
Faro	0	1	1	0	2

Nota: O grau de um grafo não dirigido, também pode ser calculado pela soma dos elementos da colunas (por a matriz ser sempre simétrica).

2.2. Listas de Adjacência

Um grafo G = (N, A) com **n** nós pode ser representado em **listas** de adjacência **L**, na qual, para cada nó existe um lista ligada que contém todos os nós adjacentes (que partem deste) a este. Cada elemento da lista ligada representa um arco entre o nó inicial e esse elemento.

Exemplo I:

Considere-se o seguinte grafo G = (N, A):

G = (N, A)

N = {Porto, Coimbra, Lisboa, Faro}

A = {(Beja, Beja), (Beja, Lisboa), (Beja, Coimbra), (Lisboa, Coimbra), (Coimbra, Porto)}

Este grafo pode ser representado pelas seguintes listas de adjacência:

Porto	^
Coimbra	>
Lisboa	>
Beja	>

null	
Porto	>
Coimbra	>
Beja	>

null

2.2.1. Determinação do Grau de um Nó

Grafos Dirigidos

O **grau externo** de um nó é o número de elementos na lista de adjacência desse nó.

O **grau interno** não pode ser calculado directamente, sendo necessário percorrer todas as listas e contar o número de vezes que o nó aparece nas listas de adjacência.

Coimbra

null

null

null

Lisboa

-->

-->

Beja	>	Beja
Grau in	terno):

Porto

Coimbra

Lisboa

Porto: 1Coimbra: 2Lisboa: 1Beja: 1

null

Porto

Coimbra

Grafos Não Dirigidos

O grau de um nó é o número de elementos na lista de adjacência desse nó.

									Grau
Porto	>	Coimbra	>	null				_	1
Coimbra	>	Porto	>	Lisboa	>	Faro	>	null	3
Lisboa	>	Coimbra	>	Faro	>	null			2
Faro	>	Coimbra	>	Lisboa	>	null			2

3. Operações sobre Grafos

Sejam G=(N, A), G'=(N, A') e G''=(N, A'')

Nota: Todos os grafos devem conter os mesmos nós.

3.1. União de Grafos

$$G = G' \cup G''$$
 se e só se $A = \{ (x, y) : (x, y) \in A' \lor (x, y) \in A'' \}$

3.2. Composição de Grafos

$$G = G'$$
 o G'' se e só se $A = \{ (x, y) : \exists_{a \in \mathbb{N}} (x, a) \in A'' \land (a, y) \in A' \}$

3.3. Exponenciação de Grafos

 I^n - Matriz Identidade. Um grafo Identidade, é um grafo na qual existe um arco (x, y) se e só se x=y.

$$\begin{aligned} G^n & &= \mathbf{I}^n & & se \ n = 0 \\ &= G \ o \ G^{n\text{--}1} & & se \ n > 0 \end{aligned}$$

Isto é, existe um arco (x, y) em G^n sse existir em G um caminho com origem em x e destino em y, composto por \mathbf{n} arcos.

3.4. Fecho Transitivo

$$G^+ = \bigcup_{n=1}^{\infty} G^n$$

Isto é, existe um arco (x, y) em G^+ sse existir em G um caminho com origem em x e destino em y, **composto por pelo menos um arco**.