C Atom Scattering

PES Grids for high symmetry sites

PBE: 16x0e

RPBE: 16x0e

vdW-DF2: 16x0e

10k Scattering Trajectories in a snapshot

Machine-Learned Interatomic Potentials (MLIPs)

MACE is equivariant message passing neural network (MPNN) model that utilizes the atomic-cluster expansion (ACE) framework to pass higher body-order messages. In our models, we have only used upto 3-body features.

$$egin{aligned} E = &V_0 + \sum_i V^{(1)}\left(oldsymbol{r}_i
ight) + rac{1}{2}\sum_{ij} V^{(2)}\left(oldsymbol{r}_i,oldsymbol{r}_j
ight) \ &+ rac{1}{3!}\sum_{ijk} V^{(3)}\left(oldsymbol{r}_i,oldsymbol{r}_j,oldsymbol{r}_k
ight) \ &+ rac{1}{4!}\sum_{ijkl} V^{(4)}\left(oldsymbol{r}_i,oldsymbol{r}_j,oldsymbol{r}_k,oldsymbol{r}_l
ight) + \cdots, \end{aligned}$$

To generate the DFT dataset to train MLIP models, convergence tests were performed for a 3x3x4 slab of Au(111) and, a k-mesh of 15x15x1 with sigma=0.2 eV was used for all the calculations.

DFT		Symmetry sites		Thermalised Slab
PBE	1225	455	483	500
RPBE	1236	475	495	495

Models (Hidden irreps)	Total number of parameters	
16x0e	31808	
16x0e + 16x1o	41856	
32x0e	51440	
32x0e + 32x1o	78576	

Almost all the models that were trained had:

RMSE in Energy: ~1.8 meV / atom

RMSE in Forces: ~ 15 meV / Å / atom

Drautz, Ralf. Physical Review B 99.1 (2019): 014104.

Batatia, Ilyes, et al. Advances in neural information processing systems 35 (2022): 11423-11436.

Stark, Wojciech G., et al. Machine Learning: Science and Technology 5.3 (2024): 030501.