Algorithmen und Datenstrukturen Klausur SS 2020

Angewandte Informatik Bachelor

Name	
Matrikelnummer	

Aufgabe 1	Tiefen- und Breitensuche in ungerichteten Graphen	12	
Aufgabe 2	B-Bäume	14	
Aufgabe 3	Algorithmus von Floyd	10	
Aufgabe 4	Minimal aufspannender Baum mit Algorithmus von Kruskal	14	
Aufgabe 5	Binäre und Binomiale Heaps	10	
Summe		60	

Aufgabe 1 Tiefen- und Breitensuche in Graphen

(12 Punkte)

Ein <u>vollständiger Graph</u> ist ein ungerichteter Graph, bei dem jeder Knoten mit jedem anderen Knoten mit einer Kante verbunden ist. Folgende Abbildung zeigt einen vollständigen Graphen mit 6 Knoten.

- a) Wieviel Kanten hat ein vollständiger Graph mit n Knoten allgemein? (3 Punkte)
- b) Geben Sie für den oben abgebildeten Graphen die Reihenfolge der besuchten Knoten an, wenn der Graph mit <u>Tiefensuche</u> mit <u>Startknoten 1</u> traversiert wird. <u>Betrachten Sie die Nachbarn eines Knotens in der durch die Knotennummerierung gegebenen Reihenfolge.</u> (2 Punkte)
- c) Geben Sie für den oben abgebildeten Graphen die Reihenfolge der besuchten Knoten an, wenn der Graph mit <u>Breitensuche</u> mit <u>Startknoten 1</u> traversiert wird. <u>Betrachten Sie die Nachbarn eines Knotens in der durch die Knotennummerierung gegebenen Reihenfolge</u>. (2 Punkte)
- d) Wie sieht die Reihenfolge in c) aus, wenn in dem Graphen die Kante (1,2) gelöscht wird? (2 Punkte)
- e) Welches Problem entsteht bei der rekursiven Tiefensuche bei einem vollständigen Graphen mit sehr vielen Knoten? Zwei kurze Sätze genügen. (3 Punkte)

a) <u>Fügen</u> Sie in folgendem B-Baum (der Ordnung 4) die Schlüssel <u>30, 1 und 17 in genau dieser</u> <u>Reihenfolge ein</u>. (8 Punkte)

b) <u>Löschen</u> Sie in folgendem B-Baum (der Ordnung 4) den Schlüssel <u>15 und dann 7</u>. (6 Punkte)

Aufgabe 3 Algorithmus von Floyd

(10 Punkte)

Gegeben ist ein gerichteter Graph mit der Knotenmenge $V = \{0, 1, 2, 3, 4\}$. Mit dem Algorithmus von Floyd soll für jedes Knotenpaar ein kürzester Weg berechnet werden.

Der Algorithmus von Floyd berechnet für k=0,1,...4 die Distanzmatriz D^k . Dabei gibt $D^k(i,j)$ die Länge eines kürzesten Wegs von i nach j an, wobei nur Wege von i nach j berücksichtigt werden, die über Knoten aus $\{0,1,...,k\}$ gehen.

a) Geben Sie D^0 an. Zellen, deren Werte ∞ sind, dürfen einfach leer gelassen werden. (2 Punkte)

D^0		

b) Geben Sie D⁴ an, <u>ohne</u> den Algorithmus von Floyd schrittweise anzuwenden. Überlegen Sie sich stattdessen, was als Ergebnis herauskommen müsste. (4 Punkte)

D^4									

c) Welches Problem entsteht, wenn in dem oben abgebildeten Graphen eine Kante von Knoten 2 nach Knoten 0 mit dem negativen Gewicht -3 eingefügt wird (ein bis zwei Sätze genügen)? Wie erkennt der Algorithmus von Floyd dieses Problem (ein Satz genügt)? (4 Punkte)

Aufgabe 4 Minimal aufspannende Bäume

(14 Punkte)

Ein gewichteter, ungerichteter Graph mit der Knotenmenge $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ und 20 Kanten ist durch folgende Adjazenzmatrix gegeben. Aufgrund der besseren Lesbarkeit sind die Gewichte nur für eine Kantenrichtung eingetragen.

	1	2	3	4	5	6	7	8	9
1			1	12		6	10	4	
2			10	8	2		4	9	
3					15	5		6	
4					8		7	11	
5							3		
6							10	2	
7									
8									14
9									

- a) Bestimmen Sie einen minimal aufspannenden Baum mit dem <u>Algorithmus von Kruskal</u>. Tragen Sie in die Tabelle auf der folgende Seite für jeden Schritt folgende Daten ein:
 - die ausgewählte Kante,
 - das Gewicht und
 - die dazugehörende Union-Find-Struktur in graphischer Form als Menge von Bäumen.

Verwenden Sie den Union-By-Height-Algorithmus. (11 Punkte)

b) Geben Sie die Datenstruktur (Elternfeld p) für die <u>im Schritt 7</u> erhaltene Union-Find-Struktur an. (2 Punkte)

Knoten	1	2	3	4	5	6	7	8	9
р									

c) Wieviel Kanten hat ein minimal aufspannender Baum für einen Graphen mit n Knoten? (1 Punkt)

	1	2	3	4	5	6	7	8	9
1			1	12		6	10	4	
2			10	8	2		4	9	
3					15	5		6	
4					8		7	11	
5							3		
6							10	2	
7									
8									14
9									

Adjazenzmatrix
(Aufgrund der besseren Lesbarkeit sind die Gewichte nur für eine Kantenrichtung eingetragen)

Schritt	Kante	Gewicht	Union-Find-Struktur
1			
2			
3			
4			
5			
6			
7			
8			

Aufgabe 5 Binäre und binomiale Heaps

(10 Punkte)

a) <u>Löschen</u> Sie in folgendem binären Heap die größte Zahl. (2 Punkte)

b) <u>Fügen</u> Sie in folgendem binären Heap die <u>Zahl 7 ein</u>. (2 Punkte)

c) <u>Löschen</u> Sie in folgendem binomialen Heap <u>die größte Zahl.</u> (3 Punkte)

d) Durch welche Eigenschaft eines Binomialbaums ist sein Namensbestandteil "Binomial" gerechtfertigt? (3 Punkte)