Задача 10 - 1. Подобие

1.1 Время падения легко рассчитывается по формуле

$$h = \frac{gt^2}{2} \quad \Rightarrow \quad t = \sqrt{\frac{2h}{g}} \ . \tag{1}$$

Теперь необходимо выразить ускорение свободного падения на планете через ее радиус. По известным формулам:

$$g = G\frac{M}{R^2} = G\frac{\frac{4}{3}\pi\rho R^3}{R^2} = \frac{4}{3}G\pi\rho R.$$
 (2)

Таким образом, ускорение на меньшей планете в два раза меньше ускорения свободного падения на Земле. Следовательно, время падения в соответствии с формулой (1) увеличится в $\sqrt{2}$ раз, Т.е.

$$\tau_1 = \frac{\tau}{\sqrt{2}} \,. \tag{3}$$

1.2 Теплота, выделяющаяся при замерзании воды на нижней поверхности льда должна пройти через слой льда. Поток теплоты, очевидно, обратно пропорционален толщине льда. Поэтому время намерзания Δt слоя малой толщины Δh связано уравнением теплового баланса

$$\Delta h = \frac{\beta}{h} \Delta t \,. \tag{1}$$

 Γ де β постоянная величина, зависящая от удельной теплоты кристаллизации, теплопроводности, температуры воздуха. Из уравнения (1) с учетом подсказки следует, что

$$h^2 = 2\beta t. (2)$$

Из этого уравнения видим, что при увеличении времени в два раза толщина возрастает в $\sqrt{2}$ раз. Таким образом. толщина льда станет равной

$$h_1 = \sqrt{2}h = 14cM \tag{3}$$

1.3 Изменение высоты слоя пропорционально количеству теплоты, выделяющейся при прохождении электрического тока, которое в свою очередь (при постоянной силе тока) пропорционально сопротивлению слоя, т.е.

$$\Delta h = -\frac{\beta}{h} \Delta t \,, \tag{1}$$

Где β постоянная величина, зависящая от удельной теплоты размеров ванны, удельного сопротивления и удельной теплоты испарения жидкости, силы проходящего тока. Из уравнения (1) следует, что

$$\Delta h = -\frac{\beta}{h} \Delta t \quad \Rightarrow \quad \Delta (h^2) = -2\beta t \quad \Rightarrow \quad h^2 - h_0^2 = -2\beta t \,. \tag{2}$$

Для времени τ_0 получим

$$\left(\frac{h_0}{2}\right)^2 - h_0^2 = -2\beta t \quad \Rightarrow \quad \frac{3}{4}h_0^2 = 2\beta\tau_0. \tag{3}$$

Для времени полного выкипания

$$h_0^2 = 2\beta \tau_1 \,. \tag{4}$$

Из этих выражений следует, что $au_1 = \frac{4}{3} au_0$. Поэтому все жидкость выкипит через время

$$\tau = \tau_1 - \tau_0 = \frac{\tau_0}{3}$$