AMAT 362 Lecture 1 Worksheet

Dr. Justin M. Curry

Due: February 6, 2021

Name:				
	 , ,	 1 .11	 1 1 0	

Questions marked with a \star have subjective answers and will only be graded for completeness.

- 1. (2 points) What's the probability of a 4 of a kind, assuming you're dealt a 5 card hand, uniformly at random, from a standard 52 card deck?
- 2. (1 point) ★ How much money do you need to make to be in the top 1% of income earners in the United States? What about the top 1% of New Yorkers? Do you think there is such a thing as a "fair" distribution of incomes? What does that look like?
- 3. (1 point) * What's the probability of life on Mars? What does this question illustrate about the different meanings of the term "probability"?
- 4. (1 point) ★ How many people should you date before settling down on "the one," assuming that's something you want to do?
- 5. (6 points) Translate each of the following symbolic expressions into English statements:
 - (a) (1 point) $x \in A$
 - (b) (1 point) $A \subseteq B$
 - (c) (1 point) A^c
 - (d) (1 point) $R \times S$
 - (e) (1 point) |A|
 - (f) (1 point) How do you interpret \varnothing and Ω in probability?
- 6. (2 points) State De Morgan's Laws. What does this have to do with the star battle problem? https://krazydad.com/tablet/starbattle/
- 7. (2 points) Consider the set Ω , the union operation $A \cup B$ of subsets of Ω and the intersection operation $A \cap B$ on Ω . What does it mean to say that \cup and \cap are associative and symmetric? How does the union operation "distribute over" the intersection operation?
- 8. (5 points) Suppose we have a deck of 20 cards, 10 are red and 10 are blue. Each of the blue cards has a unique number between 1 and 10. Each of the red cards has a unique number also between 1 and 10.
 - (a) (1 point) Describe the sample space Ω as a Cartesian product.
 - (b) (1 point) Consider the following events:
 - Let A be the event that a card drawn has an even number on it.
 - Let B be the event that a blue card is drawn.
 - Let C be the event that a card with a number (strictly) less than 5 is drawn.

What are the sizes of A, B, and C?

- (c) (2 points) Describe the events $A \cup B \cup C$ and $A^c \cap B^c \cap C^c$.
- (d) (1 point) What are the number of outcomes in each of the events in part (c)?