多項式函數與方程

沈威宇

2025年1月12日

目錄

第一節	多項式函數與方程(Polynomial Functions and	d Equations)	1
_	、 方程組		1
=	。 多項式		1
Ξ	、 最高次項次數定理		1
四	。 商式極限		1
五	、 近似		1
六	、 除法定理		1
	(一) 餘式定理		1
	(二) 因式定理		2
t	· 線性變換		2
	(一) 平移		2
	(二) 伸縮		2
八	、 側與距離		2
	(一) 側		2
	(二) 直線與點距離		2
	(三) 直線間距離		2
	(四) 直線到點最短向量		2
	(五) 平行直線之間公垂向量		2
九	、 零函數		3
+	、 一元一次函數		3
	(一) 一般式(斜截式)		3
	(二) 點斜式		3
+-	- 、 一元二次函數		3
	(一) 一般式		3
	(二) 標準式		3
	(三) 判別式		3

	(四)	根																							3
	(五)	圖形特徵	故.																						4
(+=	(六)	根數 .																							4
	(七)	根與係數	效的	關化	系																				4
		一元三章	区区	數	•																				4
	()	一般式			•																				4
	(<u></u>	標準式			•																				4
	(三)	判別式																							4
+=	(四)	根																							5
	(五)	圖形特徵	数 .		•																				6
	(<u>/\</u>)	根與係數	效的	關(系																				6
		平面上的	勺直	線	•																				6
	(—)	一般式			•																				6
	(<u></u>	截距式																							6
	(三)	斜截式																							6
	(四)	點斜式																							7
	(五)	參數式																							7
	(`` \)	特性 .																							7
十匹	\	Polynon	nial	Int	erp	ool	ati	ior	ı (÷	多:	項:	式:	插	值	法)) .									7
	()	Newton'	s P	oly	no	mi	al	(4	- 頓	萔	偱値	短	Ę)												7
	(<u></u>	Lagrang	je F	oly	'no	mi	ial	(打	立村	各良	月E	∃‡i	插值	直法	去)										8

第一節 多項式函數與方程 (Polynomial Functions and Equations)

一、 方程組

• 相容方程組:一組方程組有解,則稱其為相容方程組。

• 相依方程組:一組方程組中,其中一者成立則其他者均成立,則稱其為相容方程組。

• 矛盾方程組:一組方程組無法同時成立,則稱其為矛盾方程組。

二、 多項式

多項式指由多個項(term)組成的代數表達式,每個項是常數與零或正整數個變數的乘積,且每個變數的指數必須是非負整數。

令有多項式 $f(x) \setminus g(x) \setminus q(x) \setminus r(x)$ 。

三、 最高次項次數定理

$$\deg(f(x) \cdot g(x)) = \deg(f(x)) + \deg(g(x))$$

四、 商式極限

領導係數指最高次項係數

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0, \deg(f(n)) < \deg(g(n)) \\ \frac{f(x) \ \text{領導係數}}{g(x) \ \text{領導係數}}, \deg(f(n)) = \deg(g(n)) \\ \hline \text{不存在}, \deg(f(n)) > \deg(g(n)) \end{cases}$$

五、 近似

f(x) 在 x = a 的 n 次近似 $(n \le \deg(f(x))) = f(x)$ 之泰勒級數最低次 n 項

六、 除法定理

恰有一組 $q(x) \cdot r(x)$ 滿足:

$$f(x) = g(x) \cdot q(x) + r(x)$$

$$\deg(r(x)) < \deg(g(x)) \lor r(x) = 0$$

若 r(x) = 0 則稱 q(x) 為 f(x) 之因式。

(一) 餘式定理

若
$$q(x) = ax + b$$
 則 $r(x) = f(\frac{b}{a})$ °

(二) 因式定理

 $f(\frac{b}{a}) = 0$ 若且惟若 ax + b 為 f(x) 的因式。

七、 線性變換

(一) 平移

對於任意函數 f(x), y = f(x) 右移 h 單位,上移 k 單位,得 y = f(x - h) + k。

(二) 伸縮

對於任意函數 f(x),y = f(x) 以 x 軸為基準線鉛直伸縮為原來的 a 倍,以 y 軸為基準線水平伸縮為原來的 b 倍,得 $y = af\left(\frac{x}{b}\right)$ 。

八、 側與距離

(一) 側

在 \mathbb{R}^n 空間中,假設有 \mathbb{L} : $(f(x_1, x_2, ..., x_n) = 0 \circ 點 P 滿足 <math>f(P) > 0$ 若且惟若 P 在 \mathbb{L} 的正側 \circ 點 P 滿足 f(P) = 0 若且惟若 P 在 \mathbb{L} 上 \circ 點 P 滿足 f(P) < 0 若且惟若 P 在 \mathbb{L} 的負側 \circ

(二) 直線與點距離

在 \mathbb{R}^n 空間中,假設有 \mathbf{L} : $(f(x_1,x_2,\ldots,x_n)=0$,且 f 為一次函數,且 f 的係數為 a_1,a_2,\ldots,a_n ,且 f 的常數項為 c 。點 P 到 \mathbf{L} 的距離 $d(P,\mathbf{L})=\frac{|f(P)|}{\sqrt{\sum_{i=1}^n a_i^2}}$ 。

(三) 直線間距離

在 \mathbb{R}^n 空間中,假設有 \mathbf{L}_1 : $(f(x_1, x_2, ..., x_n) = 0 \cdot \mathbf{L}_2$: $(g(x_1, x_2, ..., x_n) = 0 \cdot \mathbf{L}_1$ 方 \mathbf{L}_2 的係數均為 $a_1, a_2, ..., a_n$,且 $f \cdot g$ 的常數項分別為 $c \cdot d \cdot \mathbf{L}_1$ 到 \mathbf{L}_2 的距離 $d(\mathbf{L}_1, \mathbf{L}_2) = \frac{|c - d|}{\sqrt{\sum_{i=1}^n a_i^2}}$

(四) 直線到點最短向量

在 \mathbb{R}^n 空間中,假設有 \mathbf{L} : $(f(x_1,x_2,\ldots,x_n)=0$,且 f 為一次函數,且 f 的係數為 a_1,a_2,\ldots,a_n ,且 f 的常數項為 c 。 \mathbf{L} 上距離點 P 最近的點到點 P 的向量 $\vec{v}=\frac{f(P)}{\sum_{i=1}^n a_i^2}(a_1,a_2,\ldots,a_n)$ 。

(五) 平行直線之間公垂向量

在 \mathbb{R}^n 空間中,假設有 \mathbf{L}_1 : $(f(x_1, x_2, \dots, x_n) = 0 \, \cdot \, \mathbf{L}_2$: $(g(x_1, x_2, \dots, x_n) = 0 \, \cdot \, \mathbf{L}_f \, \cdot \, g$ 為一次函數,且 $f \, \cdot \, g$ 的係數均為 a_1, a_2, \dots, a_n ,且 $f \, \cdot \, g$ 的常數項分別為 $c \, \cdot \, d \, \circ \, \mathbf{L}_1$ 上任意點 P 到 \mathbf{L}_2 上距離點 P 最近的點的向量 $\vec{v} = \frac{c - d}{\sum_{i=1}^n a_i^2} (a_1, a_2, \dots, a_n) \, \circ$

九、 零函數

$$f(x) = 0$$

十、 一元一次函數

 $a \neq 0$

(一) 一般式(斜截式)

$$f(x) = ax + b$$

其中a稱斜率,b稱y截距。

(二) 點斜式

$$y - y_0 = m(x - x_0)$$

零函數與一元一次函數合稱線性函數。

十一、 一元二次函數

 $a \neq 0$

(一) 一般式

$$f(x) = ax^2 + bx + c$$

(二) 標準式

$$f(x) = a(x - h)^2 + k$$

其中
$$(h, k) = \left(-\frac{b}{2a}, -\frac{b^2 - 4ac}{4a}\right)$$

(三) 判別式

$$\Delta = b^2 - 4ac$$

(四) 根

$$x = \frac{-b + \sqrt{b^2 - 4ac} e^{k\pi i}}{2a} \text{, where } k = 0, 1$$

$$= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{\Delta}}{2a}$$

(五) 圖形特徵

- 拋物線。
- 頂點 *V*、極值點:(*h*, *k*)。
- 對稱軸: x = h。
- 開口:a 為正,開口向上,反之向下。|a| 愈大,開口愈小。

(六) 根數

- a > 0 且 $\Delta < 0$:函數恆正,無實根,有二共軛複根。
- a < 0 且 $\Delta > 0$:函數恆負,無實根,有二共軛複根。
- a > 0 且 $\Delta = 0$:函數不負,一重實根。
- a < 0 且 $\Delta = 0$:函數不正,一重實根。
- $\Delta < 0$:函數與 x 軸有二交點,二實根。

(七) 根與係數的關係

令根 $\alpha \setminus \beta$

$$\alpha + \beta = -\frac{b}{a}$$
$$\alpha \beta = \frac{c}{a}$$

十二、 一元三次函數

 $a \neq 0$

(一) 一般式

$$f(x) = ax^3 + bx^x + cx + d$$

(二) 標準式

$$f(x) = a(x-h)^3 + p(x-h) + k$$
 其中 $(h, p, k) = \left(\frac{b}{3a}, c - \frac{b^2}{3a}, \frac{2b^3 - 9abc}{27a^2} + d\right)$

(三) 判別式

$$\Delta = \left(\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}\right)^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)^3$$

(四) 根

1. 直接公式:

$$x = -\frac{b}{3a} + e^{\frac{2k\pi i}{3}} \sqrt[3]{\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}} + \sqrt{\left(\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}\right)^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)^3} + e^{\frac{2(3-k)\pi i}{3}} \sqrt[3]{\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}} \quad \text{, where } k = 0, 1, 2$$

2. 三解分開公式:

$$\begin{split} x_1 &= -\frac{b}{3a} + \sqrt[3]{\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}} + \sqrt{\left(\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}\right)^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)^3} \\ &+ \sqrt[3]{\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}} \\ x_2 &= -\frac{b}{3a} + \frac{-1 + \sqrt{3}i}{2} \sqrt[3]{\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}} + \sqrt{\left(\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}\right)^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)^3} \\ &+ \frac{-1 - \sqrt{3}i}{2} \sqrt[3]{\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}} \\ x_3 &= -\frac{b}{3a} + \frac{-1 - \sqrt{3}i}{2} \sqrt[3]{\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}} + \sqrt{\left(\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}\right)^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)^3} \\ &+ \frac{-1 + \sqrt{3}i}{2} \sqrt[3]{\frac{bc}{6a^2} - \frac{b^3}{27a^3} - \frac{d}{2a}} \end{split}$$

3. 卡迪諾公式(Cardino's formula):

令:

$$h = \frac{b}{3a}$$

$$p = c - \frac{b^2}{3a}$$

$$k = \frac{2b^3 - 9abc}{27a^2} + d$$

$$r = \frac{p}{a}$$

$$s = \frac{k}{a}$$

$$u = -\frac{s}{2} + \sqrt{\frac{s^2}{4} + \frac{r^3}{27}} e^{\frac{2k\pi i}{2}} \quad \text{, where } k = 0, 1$$

$$C = \sqrt[3]{u} e^{\frac{2k\pi i}{3}} \quad \text{, where } k = 0, 1, 2$$

則:

$$x = C - \frac{r}{3C} + h$$

4. 一般化卡迪諾公式:

令:

$$\begin{split} &\Delta_0 = b^2 - 3ac \\ &\Delta_1 = 2b^3 - 9abc + 27a^2d \\ &u = \Delta_1 + \sqrt{{\Delta_1}^2 - 4{\Delta_0}^3}\,e^{\frac{2k\pi i}{2}} \quad \text{, where } k = 0,\,1 \\ &C = \sqrt[3]{\frac{\Delta_1 + u}{2}}\,e^{\frac{2k\pi i}{3}} \quad \text{, where } k = 0,\,1,\,2 \end{split}$$

則:

$$x = -\frac{1}{3a} \left(b + C + \frac{\Delta_0}{C} \right)$$

(五) 圖形特徵

- 頂點 *V*:(*h*, *k*)。
- 二階旋轉對稱點、拐點(一階導數為零,二次導數為零):(h, f(h))。
- 鞍點(非極值的駐點,駐點指一階導數為零):ap < 0 若且惟若存在二個鞍點,p = 0 若且惟若存在一個鞍點(圖形單調遞增或減),ap > 0 若且惟若不存在鞍點(圖形嚴格遞增或減)。
- 極值:不存在。

(六) 根與係數的關係

令根 $\alpha \setminus \beta \setminus \gamma$

$$\alpha + \beta + \gamma = -\frac{b}{a}$$
$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$
$$\alpha\beta\gamma = -\frac{d}{a}$$

十三、 平面上的直線

(一) 一般式

$$ax + by + c = 0$$

(二) 截距式

若 $ab \neq 0$

$$\frac{x}{p} + \frac{y}{q} = 1$$

其中 $p = -\frac{c}{a} \cdot q = -\frac{c}{b}$ 分別為 $x \cdot y$ 截距。

(三) 斜截式

若 $b \neq 0$,即 $v \stackrel{.}{\rightarrow} x$ 的函數

$$y = f(x) = mx + q$$

其中 m 稱斜率。

(四) 點斜式

若 $b \neq 0$,即 y 為 x 的函數

$$y - y_0 = m(x - x_0)$$

(五) 參數式

設相異兩點 $A(x_1, y_1) \cdot B(x_2, y_2)$:

直線 \overrightarrow{AB} 的參數式:

$$\begin{cases} x = x_1 + (x_2 - x_1)t \\ y = y_1 + (y_2 - y_1)t \end{cases}, \quad t \in \mathbb{R}$$

射線 \overrightarrow{AB} 的參數式:

$$\begin{cases} x = x_1 + (x_2 - x_1)t \\ y = y_1 + (y_2 - y_1)t \end{cases}, \quad t \ge 0$$

線段 \overline{AB} 的參數式:

$$\begin{cases} x = x_1 + (x_2 - x_1)t \\ y = y_1 + (y_2 - y_1)t \end{cases}, \quad 0 \le t \le 1$$

(六) 特性

- 平面上直線 L_1 : ax + by + c = 0、 L_2 : dx + ey + f = 0: ae = bd 若且惟若 L_1/L_2 ; ad + be = 0 若且惟若 $L_1 \perp L_2$;若 $L_1 \setminus L_2$ 存在斜率 $m_1 \setminus m_2$ 則: $m_1 = m_2$ 若且惟若 L_1/L_2 , $m_1m_2 = -1$ 若且惟若 $L_1 \perp L_2$ 。
- L: *ax* + *by* + *c* : *a* > 0 則 *ax* + *by* + *c* > 0 在 L 之右半平面; *b* > 0 則 *ax* + *by* + *c* > 0 在 L 之上半平面。

十四、 Polynomial Interpolation (多項式插值法)

Polynomial interpolation is a method of constructing a polynomial that passes through a given set of points. Given n+1 data points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$, the goal is to find a polynomial p(x) of degree at most n such that:

$$p(x_i) = y_i$$
 for $i = 0, 1, ..., n$.

(一) Newton's Polynomial (牛頓插值法)

Newton's polynomial interpolation uses the concept of divided differences to construct the polynomial in a recursive form. The Newton interpolating polynomial can be written as:

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

where the coefficients a_0, a_1, \dots, a_n are obtained using divided differences. The divided differences are recursively computed as follows:

$$f[x_i] = y_i$$

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

$$f[x_i, x_{i+1}, \dots, x_k] = \frac{f[x_{i+1}, \dots, x_k] - f[x_i, \dots, x_{k-1}]}{x_k - x_i}$$

The Newton polynomial can be succinctly written as:

$$p(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots$$

(二) Lagrange Polynomial (拉格朗日插值法)

Lagrange polynomial interpolation expresses the polynomial as a linear combination of basis polynomials. The Lagrange form of the interpolating polynomial is given by:

$$p(x) = \sum_{i=0}^{n} y_i L_i(x)$$

where $L_i(x)$ are the Lagrange basis polynomials, defined as:

$$L_i(x) = \prod_{\substack{0 \le j \le n \\ j \ne i}} \frac{x - x_j}{x_i - x_j}$$

Each $L_i(x)$ is a polynomial that is 1 at $x = x_i$ and 0 at all other x_j $(j \neq i)$.

Barycentric Form (重心形式) of Lagrange Interpolation:

The Barycentric form is a more efficient and numerically stable way to compute the Lagrange interpolation polynomial. The Barycentric form of the interpolating polynomial is:

$$p(x) = \frac{\sum_{i=0}^{n} \frac{w_{i} y_{i}}{x - x_{i}}}{\sum_{i=0}^{n} \frac{w_{i}}{x - x_{i}}}$$

where w_i are the barycentric weights, defined as:

$$w_i = \frac{1}{\prod_{\substack{0 \le j \le n \\ j \ne i}} (x_i - x_j)}$$