

Statistical Analyses

Session 6

Dan Herman

December 13, 2020

Goals

1. Learn how to summarize data and assess hypotheses

Objectives

- 1. Calculate a summary statistic for a variable using `summarize`
- 2. Calculate of summary statistic for a variable separately for a group of observations, using `group_by` and `summarize`
- 3. Perform a simple test for association

Typical Data Science Pipeline

Summarize()

summarize()

Make summaries of your data

summarize()

Make summaries of your data

```
covid_testing %>%
   summarize(new_variable = calculation)
```

name for new variable

Value or function

Q: How many tests are ordered per day?

summarize()

Make summaries of your data

function that returns number of observations

```
covid_testing %>%
    select(mrn, pan_day) %>%
    head(4) %>%
    summarize(order_count = n())
```

mrn	pan_day
5001412	4
5000533	7
5009134	7
5008518	8

summarize()

Make summaries of your data

mrn	pan_day
5001412	4
5000533	7
5009134	7
5008518	8

order_count	day_count
4	3

function that returns

number of distinct values

Your Turn 1

- Open "06 Stats.Rmd"
- Run the setup chunk
- Fill-in gaps to calculate:
 - a) Mean count of orders per `pan_day`
 - b) Mean count of orders per clinic

Vector Functions

TO USE WITH MUTATE ()

COUNTS

dplyr::n() - number of values/rows dplyr::n distinct() - # of uniques sum(!is.na()) - # of non-NA's

LOCATION

mean() - mean, also mean(!is.na()) median() - median

LOGICALS

mean() - Proportion of TRUE's sum() - # of TRUE's

POSITION/ORDER

dplyr::first() - first value dplyr::last() - last value

dplyr::nth() - value in nth location of vector

RANK

quantile() - nth quantile min() - minimum value max() - maximum value

SPREAD

IQR() - Inter-Quartile Range mad() - median absolute deviation sd() - standard deviation var() - variance

Summary Functions

TO USE WITH SUMMARISE ()

summarise() applies summary functions to columns to create a new table. Summary functions take vectors as input and return single values as output.

summary function

orized

lumns.

nput and

values <= min, no

ed to [0,1]

parisons

with NA

witch()

utput.

dplyr::n() - number of values/rows
dplyr::n_distinct() - # of uniques
sum(!is.na()) - # of non-NA's

mean() - mean, also mean(!is.na()) median() - median

mean() - Proportion of TRUE's sum() - # of TRUE's

dplyr::first() - first value

mad() - median absolute deviation sd() - standard deviation

Row Names

Tidy data does not use rownames, which store a variable outside of the columns. To work with the rownames, first move them into a column.

rownames_to_column() a t 1 a Move row names into col.

a <- rownames_to_column(iris, var = "C")

All column_to_rownames() Move col in row names. 2 b u 2 b u column_to_rownames(a, var = "C")

Also has_rownames(), remove_rownames()

Combine Tables

COMBINE VARIABLES

Use bind_cols() to paste tables beside each other as they are.

bind_cols(...) Returns tables placed side by side as a single table. BE SURE THAT ROWS ALIGN.

Use a "Mutating Join" to join one table to columns from another, matching values with the rows that they correspond to. Each join retains a different combination of values from the tables.

A	В	c	D	full_join(x, y, by = NULL,
a	t	1	3	copy=FALSE, suffix=c(".x",".y"),)
b	u	2	2	
C	٧	3	NA	Join data. Retain all values, all rows.

Use by = c("col1", "col2") to a t 1 t 3 b u 2 u 2Use By = C("COL1", "COL2") to specify the column(s) to match on. c v 3 NA NA $left_{join}(x, y, by = "A")$

COMBINE CASES

Use bind_rows() to paste tables below each other as they are.

dplyr

(Duplicates removed). union_all()

retains duplicates.

Use setegual() to test whether two data sets contain the exact same rows (in any order).

EXTRACT ROWS

Use a "Filtering Join" to filter one table against the rows of another.

ABC	semi_join(x, y, by = NULL,)
a t 1	Return rows of x that have a match in y.
b u 2	USEFUL TO SEE WHAT WILL BE JOINED.

anti_join(x, y, by = NULL, ...) Return rows of x that do not have a match in y. USEFUL TO SEE WHAT WILL NOT BE JOINED.

summarize() examples

- Last pandemic day (in data)
- Median turnaround time

Your Turn 2

Consider:

How would you calculate the median number of orders per day?

Grouping observations based on a specific variable's values

```
covid_testing %>%
  group_by(variable)
```

name of variable to group by

Group observations by pan_day

```
covid_testing %>%
   group_by(pan_day)
```


Group observations by `pan_day` and `clinic_name`

```
covid_testing %>%
    select(mrn, pan_day, clinic_name) %>%
    group_by(pan_day, clinic_name)
```


Make summaries of your data by group

Make summaries of your data

```
covid_testing %>%
   summarize(order_count = n())
```

mrn	pan_day	→	order_count
5001412	4		15524
5000533	7		
5009134	7		
5008518	8		

Make summaries of your data

```
covid_testing %>%
   group_by(pan_day) %>%
   summarize(order_count = n())
```

mrn	pan_day
5001412	4
5000533	7
5009134	7
5008518	8

Your Turn 3

Calculate:

- a) The median turnaround time for each day
- b) (*Extra*) The median number of orders per day

group_by() %>% summarize(): Example

Stats: Tests for association

Q: Is there an association between insurance and SARS-CoV-2 RT-PCR positivity?

payor_group_fac <chr></chr>	negative <int></int>	positive <int></int>
commercial	3549	86
government	3318	242
other	309	17
unassigned	7182	520

4 rows


```
data %>%
  fisher.test(simulate.p.value = T)
```

Data wrangling - 1

function that flexibly assigns values

Data wrangling - 2

```
# Generate counts
tmp_table_tall <- covid_testing_2 %>%
    group_by(payor_group_fac, result) %>%
    summarize(n = n()) %>%
    ungroup()
tmp_table_tall

# Pivot from tall to wide table
tmp_table_wide <- tmp_table_tall %>%
    spread(key = "result", value = "n")
tmp_table_wide
```

Remove groupings

Maps key values to separate columns

Testing for association

payor_group_fac <chr></chr>	negative <int></int>	positive <int></int>
commercial	3549	86
government	3318	242
other	309	17
unassigned	7182	520

4 rows

data %>%
 fisher.test(simulate.p.value = T)

Fisher's Exact Test for Count Data with simulated p-value (based on 2000 replicates)

data: .
p-value = 0.0004998
alternative hypothesis: two.sided

Your Turn 4

Use fisher.test() to estimate the relative odds of a positive test result for patients with government insurance compared to commercial insurance?

What Else?

Logistic regression

Goals

1. Learn how to summarize and assess data

Objectives

- 1. Calculate a summary statistic for a variable using `summarize`
- 2. Calculate of summary statistic for a variable separately for a group of observations, using `group_by` and `summarize`
- 3. Perform a simple test for association