DATA 403 Final Presentation

Student ID:2021320301

Name: Seong Ah Choi

Contents

- Introduction
- Method
- Experiments
- Conclusion

Introduction Humanoid Standup

State	3D humanoid's state which is described by its joint's state
Action	Perform actions by selecting joint torques.
Reward	The goal is to make robot stand-up. It will be determined with the height of robot and control force of robot

Method Actor-Critic Network

Experiments Parameter Experiment

After adding additional layers to the neural network, the average reward has increased.

Method Actor-Critic Network

Parameter Experiment-smaller rl rate


```
ppo_config = OmegaConf.create({
    "anneal_Ir": True,
    "update_epochs": 10, # The number of iteractions of ppo training
    "minibatch_size": 2048, #환경의 크기가 크대.
    "Ir": 0.000015,
    "max_grad_norm": 0.5, #그레디언트 폭주 방지-최대 그레디언트 norm값
    "norm_adv": True,
    "clip_coef": 0.15,
    "ent_coef": 0.000015,
    "vf_coef": 0.5,
    "gamma": 0.96,
    "gae_lambda": 0.95,
    })
print(ppo_config)
print(ppo_config.minibatch_size)
```

Parameter Experiment-about gamma value

<u>Performance</u>

Experimental setting

```
ppo_config = OmegaConf.create({
   "anneal_lr": True,
   "update_epochs": 15, # The number of iteractions of ppo training
   "minibatch size": 64,
   "lr": 0.000015,
   "max_grad_norm": 0.55, #그레디언트 폭주 방지-최대 그레디언트 norm값
   "norm adv": True,
   "clip coef": 0.2,
   "ent coef": 0.0001,
   "vf coef": 0.5,
   "gamma": 0.99,
   "gae_lambda": 0.95,
print(ppo_config)
print(ppo_config.minibatch_size)
```

Introduction Half cheetah

State	3D robot with four legs which is described by its velocity and its joints' state
Action	Perform actions by selecting joint torques.
Reward	The goal is to make robot go ahead.

Parameter Experiment-with larger entropy coefficient


```
ppo_config = OmegaConf.create({
    "anneal_Ir": True,
    "update_epochs": 10, # The number of iteractions of ppo training
    "minibatch_size": 64,
    "Ir": 0.00001,
    "max_grad_norm": 0.5, #그레디언트 폭주 방지-최대 그레디언트 norm값
    "norm_adv": True,
    "clip_coef": 0.2,
    "ent_coef": 0.0055,
    "vf_coef": 0.5,
    "gamma": 0.99,
    "gae_lambda": 0.95,
    })
print(ppo_config)
print(ppo_config.minibatch_size)
```

Parameter Experiment-with larger rl rate


```
ppo_config = OmegaConf.create({
    "anneal_Ir": True,
    "update_epochs": 15, # The number of iteractions of ppo training
    "minibatch_size": 64,
    "Ir": 0.0003,
    "max_grad_norm": 0.55, #그레디언트 폭주 방지-최대 그레디언트 norm값
    "norm_adv": True,
    "clip_coef": 0.2,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "gamma": 0.99,
    "gae_lambda": 0.95,
    })
print(ppo_config)
print(ppo_config.minibatch_size)
```

Parameter Experiment-Reducing the number of hidden units

```
self.critic = nn.Sequential(
    nn.Linear(self.state_dim, 4),
    nn.Tanh(),
    nn.Linear(4, 2),
    nn.ReLU(),
    nn.Linear(2, 1)
)
```

Hidden unit number

64	4
Overfitting occurred Bad learning	Much better learning

Performance

Conclusion

Overfitting

Too many hidden units can lead to overfitting.

Gamma value

Low gamma value can make learning immediate

RL rate

High RL rate can make learning unbalanced

Entropy coefficient

High entropy coefficient can make Learning unstable