REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
18-05-2005	Briefing Charts	
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER	
Comparison of Ablation Performance Thruster (Briefing Charts, POSTPRI	e in Laser Lightcraft and Standardized Mini NT)	5b. GRANT NUMBER
	,	5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Sean D. Knecht, C. William Larson and	Franklin B. Mead, Jr. (AFRL/PRSP)	4847
	5e. TASK NUMBER	
		0159
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S	S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
Air Force Research Laboratory (AFMC		
AFRL/PRSP		AFRL-PR-ED-VG-2005-393
10 E. Saturn Blvd.		
Edwards AFB CA 93524-7680		
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Research Laboratory (AFMC	()	
AFRL/PRS	, ,	11. SPONSOR/MONITOR'S
5 Pollux Drive		NUMBER(S)
Edwards AFB CA 93524-70448	AFRL-PR-ED-VG-2005-393	
12 DISTRIBUTION / AVAIL ARILITY STATE	MENT	

DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

Presented at the 4th International Symposium on Beamed Energy Propulsion, Nara, Japan, 11-14 Nov 2005.

On our 31st trip to the laser facility at WSMR we carried out experiments on laser ablation of black and white Delrin [also called polyoxymethylene, polyformaldehyde, (HCHO)x]. Mass ablation andthrust generation (Impulse) were accurately measured as a function of input laser energy in one shot experiments. The efficiency of conversion of laser energy to jet kinetic energy depended on thegeometry of the energy absorption/conversion zone. The most ideal geometry, an axis symmetric mini thruster, produced ~ 60 % conversion efficiency. The extensively studied 10-cm diameter Lightcraft (with inverted paraboloid, plug conversion efficiency. The extensively studied 10-cm diameter lightcraft (with inverted parabolid, progression nozzle geometry) produced ~ 50% conversion efficiency. The upper limit to energy conversion was computed with CEA code to be 73% for the well defined mini thruster geometry. Thus, total losses amount to ~ 13% and ~ 23%. This is a significant finding and helps to validate the concept of "momentum calorimetry", in which experiments like those accomplished here may be conducted to obtain reliable heats of formation. The experiments like those accomplished here may be conducted to obtain reliable heats of formation. The performance of candidate chemically enhanced laser ablation or other solid propellants may be measured on a small scale. In these most recent experiments, a near-exact match of coupling coefficients (1%) was achieved in a 14-fold scale-down of the 10-cm Lightcraft to the mini thruster.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
					Dr. Franklin B. Mead, Jr.
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER
			A	43	(include area code)
Unclassified	Unclassified	Unclassified	11	43	(661) 275-5929

Comparison of Ablation Performance in Laser Lightcraft and Standardized Mini-Thruster

The 4th International Symposium on Beamed Energy Propulsion 15-18 November 2005 Nara, Japan

Sean D. Knecht,

C. William Larson, &

Franklin B. Mead, Jr.

Propulsion Directorate

This briefing is distribution A: Approved for public release, distribution unlimited Research

Abstract

On our 31st trip to the laser facility at WSMR we carried out experiments on laser ablation of black and white Delrin [also called polyoxymethylene, polyformaldehyde, (HCHO)x]. Mass ablation and thrust generation (Impulse) were accurately measured as a function of input laser energy in one shot experiments. The efficiency of conversion of laser energy to jet kinetic energy depended on the geometry of the energy absorption/conversion zone. The most ideal geometry, an axis symmetric mini thruster, produced ~ 60 % conversion efficiency. The extensively studied 10-cm diameter Lightcraft (with inverted paraboloid, plug nozzle geometry) produced ~ 50% conversion efficiency. The upper limit to energy conversion was computed with CEA code to be 73% for the well defined mini thruster geometry. Thus, total losses amount to ~ 13% and ~ 23%. This is a significant finding and helps to validate the concept of "momentum calorimetry", in which experiments like those accomplished here may be conducted to obtain reliable heats of formation. The performance of candidate chemically enhanced laser ablation or other solid propellants may be measured on a small scale. In these most recent experiments, a near-exact match of coupling coefficients (1%) was achieved in a 14-fold scale-down of the 10-cm Lightcraft to the mini thruster.

Outline

- Collaboration Network/Why Laser Propulsion?
- Flavor of PLVTS
- The Laser and EL measurement (Joules)
- The Pendulum and I measurement (Newton seconds)
- The Mettler Balance and m measurement (milligrams)
- Compare the EL, I, m measurements on 2 Test Articles
 - Light Craft, model 200-3/4
 - Mini Thruster Standard for momentum calorimetry/prop devel
- Elementary considerations (energy/momentum)
- Comparison of experiments to 1-D equilib code (CEA)
- Conclusions/Work in progress/Flight Tests Movie

Phase II Program Collaborations X-50LR: Experimental 50-cm Laser Ramjet

Team December 2004 Pulsed Laser Vulnerability Test System

Distribution A – Approved for public release, Distribution Unlimited

Overall Energy Conversion in Laser Propulsion Mission

$$E_f = 1/2mv^2 = \eta \alpha \beta \gamma \delta E_{wall}$$

 $\eta =$ propulsion efficiency (jet kinetic energy to vehicle kinetic energy) $\alpha =$ expansion efficiency (internal propellant energy to jet kinetic energy) $\beta =$ absorption efficiency (laser energy at vehicle to internal propellant energy) $\gamma =$ transmission efficiency (laser energy at ground to laser energy at vehicle) $\delta =$ laser efficiency (electric energy to laser energy at ground)

***** Issue: separability of $\eta \alpha \beta \gamma \delta$ and E_{wall} ****

"\$500 worth of electricity to put 1 kg into LEO." At \$0.10/KWH, \$500 buys 18,000MJ = E_{wall} (1 KWH = 3.6 MJ); 1 kg at 10 km/s has E_f = 50 MJ, so $\eta\alpha\beta\gamma\delta$ = 0.0028 = 50/18000 But if 28% overall efficiency, then \$5/kg

Phipps, Reilly, Campbell, Laser & Particle Beams <u>18</u> (2001) 661-695 Pirri, Monsler, Nebolsine, AIAA Journal 12 (1974) 1254-1261

Pulsed Laser Vulnerability Test System

Laser Specifications

- Pulsed CO₂ Laser
- 10 KW
- ~ 5 to 30 μs pulse width
- Up to 30 Hz
- Up to 1000 J/pulse (E_L ± 10%)
- Near Field Burn Pattern~ 10 feet

10 kW LASER IRRADIATION

FFT and Far Field Burn Patterns

Burn Patterns:

500 feet 1000 feet 1500 feet

Pendulum Test Stand

Comparison of Pendulum Impulse to Hammer Impulse

NIST Traceable Impulse Calibration

Mettler Balance or Digital Balance

Measure m to \pm 0.3 mg

Model 200 Lightcraft Series: An AF-Patented Laser Vehicle Concept

Distribution A – Approved for public release, Distribution Unlimited

Lightcraft and Mini-Nozzle Standard

200-3/4 Lightcraft

 ϵ (ideal plug nozzle) = 14 m=40g

Delrin surface area ~ 25 cm² 350 J/25 cm²/18 μ s = 0.8 MW/cm² Cm=450 N/MW, E_L/m=5.1 MJ/kg Ve= 2270 m/s, efficiency = 0.51 T/W=CmP/mg = 11 at P=10 KW

Mini-nozzle 26° divergence angle

ε= 8 m=7.8 g Delrin surface area ~ 0.71 cm² 25 J/0.71 cm²/18 μs = 2.0 MW/cm² Cm=442 N/MW, EL/m=6.3 MJ/kg Ve=2795, efficiency=0.62

Laser Light Craft Flights

Larson, Mead AIAA 2001-0646

Air Plasma

Distribution A – Approved for public release, Distribution Unlimited

Mini Thruster 25 J, 18 μs, 0.71 cm²

I, m, E_L for Mini Thruster

$$I/E_1 = 444 \text{ Ns/MJ}$$

$$m/E_1 = 0.160 \text{ mg/J}$$

$$V_e = (I/E_L)/(m/E_L) = 2775 \text{ m/s}$$

Efficiency = ½(I/E_L)²/(m/E_L) = 0.616 = $\alpha\beta\Phi$

10 cm Light Craft 322 J, 18 μs

139.2 mNs

144.8 mNs

153.9 mNs

146.7 mNs

150.2 mNs

154.1mNs

151.8 mNs

133.0 mNs

136.1 mNs

137.8 mNs

Black Ser 7 322 J 59.8 mg/shot

White Ser 6 322 J 68.7 mg/shot

I, m, E_L for Light Craft 200-3/4

$$I/E_1 = 447 \text{ Ns/MJ}$$

$$m/E_{L} = 0.201 \text{ mg/J}$$

$$V_e = (I/E_L)/(m/E_L) = 2224 \text{ m/s}$$

Efficiency = ½(I/E_L)²/(m/E_L) = 0.497 = $\alpha\beta\Phi$

CONVERSION OF LASER ENERGY TO JET KINETIC ENERGY

$$Q^* = \frac{\beta E_L}{m_p}$$
 Specific internal energy

$$E_{jet} = \frac{1}{2}m_p < v_e^2 > = \alpha m_p Q^* = \alpha \beta E_L$$

$$I = m_p < v_e >$$

$$\frac{\mathbf{I}^2}{2m_p E_L} = \alpha \beta \frac{\langle \mathbf{v_e} \rangle^2}{\langle \mathbf{v_e}^2 \rangle} = \alpha \beta \Phi$$

$$\mathbf{C} = \frac{\mathbf{I}}{\mathbf{E}_{L}} = \frac{2\alpha\beta}{\langle \mathbf{v_e} \rangle} \left[\frac{\langle \mathbf{v_e} \rangle^2}{\langle \mathbf{v_e}^2 \rangle} \right] = \frac{2\alpha\beta\Phi}{\langle \mathbf{v_e} \rangle}$$

$$^{1/2}$$
C < $\mathbf{v_e}$ > = $\alpha\beta\Phi \leq 1$

$$\langle \mathbf{v_e}^2 \rangle = \frac{\int\limits_{\rho_i}^{\rho_f} d(\rho \mathbf{v_e}^2)}{\int\limits_{\rho_i}^{\rho_f} d\rho}$$

$$\langle \mathbf{v_e} \rangle = \frac{\int\limits_{\rho_i}^{\rho_f} d(\rho \mathbf{v_e})}{\int\limits_{\rho_i}^{\rho_f} d\rho} = -\frac{\int\limits_{m_f}^{t} \mathbf{F} dt}{\int\limits_{m_f}^{m_f} dm} = \frac{\int\limits_{m_i}^{m_f} d(m \mathbf{v_e})}{\int\limits_{m_i}^{m_f} dm}$$

$$\Phi = \frac{\langle \mathbf{v_e} \rangle^2}{\langle \mathbf{v_e}^2 \rangle}$$

For propellants with chemical energy

$$(\alpha\beta\Phi)_{apparent} = \alpha\Phi\left(\beta + \frac{m_p \Delta u_{chem}}{E_L}\right)$$

Larson, Mead, Kalliomaa, AIP Conference Proceedings, 664 (2003) pp170-181

Performance map of known laser materials and theoretical air

Experimental Results December 2004 200-3/4 Light Craft and Mini Thruster

Instantaneous Energy Addition to Delrin

4 mg per shot evaporated

20 μm layer/18 μs

6 J/mg = $Q*/\beta$

Specify energy and density of heated layer

 $Q_{delrin}^* < 6 \text{ MJ/kg}, \rho < 1420 \text{ kg/m}^3$

Obtain P ~ 20,000 bar T ~ 3700 K via CEA

Specify expansion ratio

 ε = 4, 8, 16, 32, 64

Obtain Isp, thermo props in exit plane via CEA

6 J/mg Energy Addition to Delrin

Distribution A – Approved for public release, Distribution Unlimited

Lifetime of Formaldehyde, $\tau(T,P)$

HCHO + M = H + HCO + M, $k=5x10^{15}exp-308kJ/mol/RT cm³/mol-s$

F. Gernot, D. F. Davidson, R. K. Hanson, *Int. J. Chem. Kinet.* <u>36</u> (2004) 157

Temperature (K)

Mole Fractions at Equilibrium

Formaldehyde expansion from P=22694 bar, T=3732K

[rho=1227 kg/m³,u=1.975 MJ/kg]

Species	chamber	ε =8	ε=64	species	chamber	ε=8	ε=64
СО	0.47502	0.48415	0.35692	СНЗОН	0.00015	0	0
H2	0.39082	0.39891	0.36466	CH3CHO,ethanal	0.00014	0	0
H2O	0.06058	0.04282	0.08215	C3H4,allene	0.00013	0	0
CH4	0.03818	0.05811	0.05318	C3H6,propylene	0.00013	0	0
CO2	0.00856	0.01574	0.05707	CH2	0.00012	0	0
C2H2	0.00742	0.00002	0	C2H2, vinylidene	0.00009	0	0
CH3	0.00472	0.00001	0	CH2OH	0.00007	0	0
Н	0.00402	0	0	C3H5,allyl	0.00006	0	0
C2H4	0.00267	0.00014	0	C4H2	0.00006	0	0
НСО	0.00180	0	0	СООН	0.00005	0	0
НСНО	0.00180	0.00003	0	CHCO,ketyl	0.00004	0	0
CH2CO	0.00096	0	0	CH3O	0.00003	0	0
C3H3,2-pryl	0.00039	0	0	C2H	0.00003	0	0
C2H3,vinyl	0.00035	0	0	C3O2	0.00003	0	0
ОН	0.00032	0	0	C4H6,butadiene	0.00003	0	0
C2H6	0.00027	0.00005	0.00001	C2O	0.00002	0	0
НСООН	0.00026	0	0	С2Н5ОН	0.00001	0	0
C3H4	0.00025	0	0	C3H4,cyclo-	0.00001	0	0
СН3СО	0.00019	0	0	C3H8	0.00001	0	0
C2H5	0.00019	0	0	C4H6,1butyne	0.00001	0	0
				C(gr)	0	0	0.0860

Mole Fractions at Equilibrium
Formaldehyde expansion from P=230 bar, T=3433 K,
[rho=12.02 kg/m³,u=1.907MJ/kg]

mole fractions	Chambr	throat	ε=4	e=8	e=16	e=32	e=64
СО	0.49263	0.49587	0.49955	0.49553	0.47166	0.43233	0.38881
H2	0.47969	0.48865	0.49681	0.4913	0.48006	0.46937	0.46168
Н	0.02313	0.01223	0.00003	0	0	0	0
H2O	0.00239	0.00173	0.0014	0.00435	0.01321	0.0231	0.03105
C2H2,acetylene	0.00105	0.00074	0.00002	0	0	0	0
CH4	0.00032	0.00033	0.00176	0.00435	0.00673	0.00753	0.00728
CO2	0.0003	0.00023	0.00041	0.00224	0.01093	0.02605	0.04371
СНЗ	0.00021	0.00012	0	0	0	0	0
НСО	0.00014	0.00005	0	0	0	0	0
*OH	0.00005	0.00002	0	0	0	0	0
CH2	0.00002	0.00001	0	0	0	0	0
HCHO,formaldehy	0.00002	0.00001	0	0	0	0	0
C2H	0.00001	0	0	0	0	0	0
C2H2, vinylidene	0.00001	0	0	0	0	0	0
C2H4	0.00001	0.00001	0	0	0	0	0
C(gr)	0	0	0	0.00223	0.01741	0.04162	0.06748

Distribution A – Approved for public release, Distribution Unlimited

Experimental data (I, EL, m) and derived parameters (Cm, Ve, efficiency, EL/m)

Geometry	I vs E _L	I vs E _L slope		m vs E _L slope		V_{e}	Efficiency	E _L /m
	mNs/J	R^2	mg/J	R^2	Ns/MJ	m/s		MJ/kg
Mini thruster white	0.444	0.97	0.160	0.99	444	2775	0.616	6.3
Mini thruster black	0.439	0.98	0.156	0.98	439	2814	0.618	6.4
Mini thruster AIR	0.253	0.97	-	-	253	-	-	-
10-cm Model white	0.447	0.85	0.201	0.96	447	2224	0.497	5.0
10-cm Model black	0.453	0.92	0.194	0.93	453	2335	0.529	5.2

Conclusions/Work in Progress

- C_m=450 N/MW for Light Craft/Delrin (350 J, 18 μs)
- C_m=442 N/MW for Mini Thruster/Delrin (25 J, 18 μs)
- 51 % efficiency for E_L to jet KE for Light Craft
- 62 % efficiency for E_L to jet KE for Mini Thruster
- Future Experiments
 - Vary pulse width, 5 and 30 μs, expansion ratio, ε = 4, 16, ...
 - Increase E_L up to ~ 100 J/pulse in mini thruster
 - Measure time resolved thrust with piezoelectric
 - Develop chemically enhanced ablative propellants
- Future Calculations with Chemical Equilibrium Applications Code
 - Factor pressure thrust into analysis
 - Analyze Chemically Energetic Propellants

Φ for Bimodal velocity distribution

Chunks of propellant Hot gases

 f_{heavy} mass fraction, v_{slow} velocity f_{light} mass fraction, v_{fast} velocity

Divergence Loss

