Title

Luis Daniel Díaz¹

¹ Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia

14 de octubre de 2024

así:

1. Punto 3.

1.1. Deducción de la ecuación diferencial.

Cuando el líquido toca un plano infinito, estamos asumiendo que la curvatura del liquido en ese plano es cero. Además, desde esta perspectiva, $\kappa_0=0$, de modo que la ecuación que deducimos en clase queda:

 $\kappa_1 + \kappa_2 = 2\kappa_0 + \frac{z}{R_c^2}$ $\kappa_1 = \frac{z}{R_c^2}$ $\kappa_1 = -\frac{\partial}{\partial z} (1 + z'^2)^{-1/2}$

esta última igualad también deducida en clase. Dado que al igualar, la ecuación diferencial sólo depende de z, se convierte en una ecuación diferencial ordinaria.

$$-\frac{d}{dz}(1+z'^2)^{-1/2} = \frac{z}{R_c^2}$$
$$d(1+z'^2)^{-1/2} = -\frac{z}{R_c^2}dz$$
$$\int_0^{(1+z'^2)^{-1/2}} d(1+z'^2)^{-1/2} = \int_0^{-\frac{z}{R_c^2}} dz$$

 $(1+z'^2)^{-1/2} - 1 = -\frac{1}{2} \frac{z^2}{R_c^2}$ $(1+z'^2)^{-1/2} = 1 - \frac{1}{2} \left(\frac{z}{R_c}\right)^2$ $1+z'^2 = \left[1 - \frac{1}{2} \left(\frac{z}{R_c}\right)^2\right]^{-2}$

$$z'^{2} = \left[1 - \frac{1}{2} \left(\frac{z}{R_c}\right)^{2}\right]^{-2} - 1 \tag{1.1}$$