Rock-Paper-Scissor Population Dynamics

The Problem

 Three populations, r, p, seach one is strong against another, as in the game rock-paper-scissor.

N sites are available for the three populations.

Competition for space.

The Model

- No spontaneous death and births
- \circ Each one of the three species has an invasion rate P_r , P_p , $P_s \in [0, 1]$.
- \circ When an individual meet another of the weaker species, it predates it with probability P_i .
- The probability of meeting is equal for each pair of individuals.
- \circ We call n_r, n_p, n_s the densities of the populations, and we can normalize them such that $n_r+n_p+n_s=1$

Mean-field approximation

- \circ As $N \to \infty$, the evolution is well represented by ordinary differential equations (ODEs).
- With the model just described, we can suppose that the rate of encounter of two populations is proportional to their densities
- \circ Rate of change for r: $\frac{dn_r}{d_t} = n_r (P_r n_s P_p n_p)$
- The other are analogous

Equilibrium points

- Obviously, there is equilibrium whenever just one species is alive.
- The other equilibrium condition can be obtained by putting $\frac{dn_r}{dt} = \frac{dn_p}{dt} = \frac{dn_s}{dt} = 0$, and we obtain: $n_r = \alpha P_s$, $n_p = \alpha P_r$, $n_s = \alpha P_p$, where α is just a normalizing factor.
- The equilibrium point of a species does not depend on its own invasion rate, but rather on the one of the species they invade.
- Therefore, the most aggressive species does not have the highest population at equilibrium.

ODE simulations

$$P_r = P_p = P_s$$

started from $(r_0, p_0, s_0) = (0.5, 0.25, 0.25)$

$$P_r = P_p = 0.45, P_s = 0.1$$

$$P_r = 0.8, P_p = P_s = 0.1$$

Simulations for a finite N

- \circ The mean-field equation holds for very large N.
- \circ If N is large the simulations seem to follow the ODE,
- \circ For small N, after some epochs (where an epoch is N time steps), only one population will survive.
- Olt is mathematically proved that extinction will occur in any case.

Case $P_r = P_p = P_s, N = 100$

N=100 . Even if we started from an initial population near to the equilibrium configuration, eventually

only γ survived.

Case $P_r = P_p = P_s$, comparison

If N is large enough, the simulation is similar to the ODE. Otherwise, the noise takes over and eventually leads to extinction.

General case: $P_r \ge P_p \ge P_s$

o The equilibrium points are n_p ≥ n_s ≥ n_r .

 \circ The species oscillate around the equilibrium, therefore the species that will go extint more often will be r.

 \circ In this case, the only species that survives is s, that is the weakest species in terms of aggressivity.

Case $P_r > P_p > P_s$

Case $P_r = P_p > P_s$

- \circ At the equilibrium point of the ODE system, $n_p=n_{\scriptscriptstyle S}>n_r$
- ○Again, s is the species that survives more often.

Case $P_r > P_p = P_s$

In this case $n_p > n_s = n_r$. If s goes exctint first, only p survives. If otherwise r goes extinct, only s survives. Either way is one of the weaker species that survives.

Local interactions

- We can imagine also local interactions rather than global ones.
- We can observe that the dynamics change a lot:
 - Local extinctions
 - Clusterization of the populations

Moore neighborhood

 Equilibrium in terms of population densities is reached, and it is not distant to the theoretical one

Simulations on a 500×500 grid

 \circ We used a 500×500 square lattice for the simulations

 Two individuals can interact only if they are neighbor in the environment (we used a Moore Neighborhood)

Asynchronous updates, one per each time-step

In this case the populations densities seem to converge to the same point, and we see clusters of small size

Mutations

- We can add mutations on the new individuals: in particular we changed the invasion rate over time.
- We do that by adding random mutations to newborns starting from the invasion rate of the parent
- This way, the stronger individuals reproduce faster, and the mean invasion rate of the population will surely increase.
- The effect of this is that the size of the population that is subject to mutations decreases over time.

Simulation with mutations

Simulation with mutations: after 500 epochs where the invasion rates were all equat to 1/3, we added to each newborn of rock type's invasion rate a random number sampled from a gaussian with mean 0 and standard deviation 10^{-2} .

Disease effect

 Instead of random mutations, we can think of a disease that weakens one population, lowering its competitiveness.

 The paradoxal effect is that, after the disease, the population would increase in size

Generalizations

• The schema could of course be extended for m types of individuals, with various balance of power between them.

olt was find out that the more the relationships are intransitive, the more diversity in the ecosystem.

Conclusions

○Survival of the fittest ≠survival of the strongest.

Competitive intransitiveness may lead to counter-intuitive results.

 These results could explain how biodiversity is mantained: we've seen that is often possible to be achieve dynamic equilibrium.

The complexity of nature could allow such intransitive behaviours.