Μαθηματικά Γ' Γυμνασίου

Μάθημα 4 - Μονώνυμα και πράξεις με αυτά

	Συντελεστής	Κύριο Μέρος
$3x^2$	3	x^2
$-2xy^5$	-2	xy ⁵
$\frac{3}{2}xy^{-3}$	3 2	×y-3
$5x^3y^4$	5	× ³ y ⁴

Ποιες από τις παρακάτω αλγεβρικές παραστάσεις είναι μονώνυμα;

a)
$$-3x^2y$$

$$β$$
) 3 + x^2y

$$\gamma$$
) $\frac{x^3y}{\omega^2}$

α)
$$-3x^2y$$
 β) $3 + x^2y$ γ) $\frac{x^3y}{x^2}$ δ) $2x^2y\omega^3$ ε) $(3 - \sqrt{2})\alpha\beta^3$ στ) $\frac{2}{3}\alpha\beta\gamma^3$

στ)
$$\frac{2}{3}$$
αβγ³

$$\beta$$
) $31 \times^{2} Y \rightarrow \underline{8tv}$ fivar provincho aloi anzi N rapaeraen anortholor

$$\frac{1}{x_3 x} \longrightarrow \text{ eivor honoroho abor 4 babezar } \frac{1}{x_3 x_1} \longrightarrow \text{ eivor honoroho abor 4 babezar } \frac{1}{x_3 x_1} = \frac{1}{x_3 x_2} = \frac{1}{x_3 x_2} = \frac{1}{x_3 x_1} = \frac{1}{x_3 x_2} = \frac{1}{x_3 x_3} = \frac{1}{x_3$$

$$\mathcal{E}$$
) $2x^2yw^3 \rightarrow \text{eival provivapo}$

ε)
$$(3-\sqrt{2})\alpha\beta^3 \rightarrow είναι μονώνυμο με συντελεστή το $3-\sqrt{2}$.$$

$$\delta 7$$
) $\frac{2}{3}a\beta \chi^3 \rightarrow \epsilon i var μονώνυμο$

Ποια από τα παρακάτω μονώνυμα είναι όμοια:

β)
$$-\frac{3}{5}xy^3$$

$$\epsilon$$
) $\frac{\omega y x^3}{4}$

α)
$$6x^2y^2$$
 β) $-\frac{3}{5}xy^3$ γ) $-x^3y\omega$ δ) $-5y^3x$ ε) $\frac{\omega yx^3}{4}$ στ) $\frac{5}{2}y^2x^2$

ζ)
$$\frac{xy^3}{7}$$
 η) $-x^2y^2$ θ) $yx^3ω$ ι) $\sqrt{2}xy^3$

$$\eta$$
) $-x^2y^2$

$$\iota$$
) $\sqrt{2}xy^3$

6χγ όμοιο με όσα έχουν ίδιο κύριο μέρος, οπότε $\frac{5}{7}$ × $\frac{2}{7}$ $\frac{2}{7}$ $\frac{2}{7}$ -3 xy3 opo10 pe: $-5\frac{3}{7}x, \frac{xy^3}{7}$ $-x^3y\omega \quad \text{opolo } \mu \in :$ $\frac{\omega \times y^3}{\lambda}$, $y \times^3 \omega$

Να γίνουν οι πράξεις:

$$\alpha) -7\alpha x^2 - \frac{1}{2}\alpha x^2 + 4\alpha x^2 \qquad \beta) \left(-\frac{2}{3}xy^2\right) \cdot \left(-\frac{1}{4}x^3y^2\right) \qquad \gamma) \left(\frac{3}{4}\alpha^3\beta\right) : \left(-\frac{1}{2}\alpha\beta^3\right) = -\frac{1}{2}\alpha\beta^3$$

$$\alpha$$
) $-7\alpha x^2 - \frac{1}{2}\alpha x^2 + 4\alpha x^2$ fivor όλα όμοια κου μπορώ να κάνω αναμωνή:

$$\beta \left(-\frac{2}{3} \times y^{2} \right) \cdot \left(-\frac{1}{4} \times y^{2} \right) = \left(-\frac{2}{3} \right) \cdot \left(-\frac{1}{4} \right) \times y^{2+2} = +\frac{2 \cdot 1}{3 \cdot 4} \cdot x^{4} \cdot y^{4} = \frac{1}{6} \times y^{4} = \frac{1}{6} \times y^{4}$$

Να γίνουν οι πράξεις:

$$\alpha) -7\alpha x^2 - \frac{1}{2}\alpha x^2 + 4\alpha x^2 \qquad \beta) \left(-\frac{2}{3}xy^2\right) \cdot \left(-\frac{1}{4}x^3y^2\right) \qquad \gamma) \left(\frac{3}{4}\alpha^3\beta\right) : \left(-\frac{1}{2}\alpha\beta^3\right) = -\frac{1}{2}\alpha\beta^3$$

$$\frac{3}{4} \alpha^{3} \beta = \frac{\frac{3}{4} \alpha^{3} \beta}{-\frac{1}{2} \alpha \beta^{3}} = \frac{\frac{3}{4} \alpha^{3} \beta}{-\frac{1}{2} \alpha^{3} \beta} = \frac{\frac{3}{4} \alpha^{3} \beta}{-\frac{1}{4} \alpha^{3} \beta}$$