Importing necessary modules

```
In [1]:

1 import pandas as pd import numpy as np import statistics as st import matplotlib.pyplot as plt import numpy as np

6 import pandas as pd import numpy as np
```

Importing data

```
In [2]: 1 car=pd.read_csv(r"K:\Desktop\NIIT\tables\Mtcars_Data_Practice.csv")
car
```

Out[2]:

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	Mazda RX4	21.0	6	160.0	210	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	210	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	210	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
5	Valiant	18.1	6	225.0	205	2.76	3.460	20.22	1	0	3	1
6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
7	Merc 240D	24.4	4	146.7	330	3.69	3.190	20.00	1	0	4	2
8	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
9	Merc 280	19.2	6	167.6	223	3.92	3.440	18.30	1	0	4	4
10	Merc 280C	17.8	6	167.6	223	3.92	3.440	18.90	1	0	4	4
11	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
12	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
13	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
14	Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
15	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
16	Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
17	Fiat 128	32.4	4	78.7	340	4.08	2.200	19.47	1	1	4	1
18	Honda Civic	30.4	4	75.7	280	4.93	1.615	18.52	1	1	4	2
19	Toyota Corolla	33.9	4	71.1	180	4.22	1.835	19.90	1	1	4	1
20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
21	Dodge Challenger	15.5	8	318.0	250	2.76	3.520	16.87	0	0	3	2
22	AMC Javelin	15.2	8	304.0	180	3.15	3.435	17.30	0	0	3	2
23	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
24	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
25	Fiat X1-9	27.3	4	79.0	290	4.08	1.935	18.90	1	1	4	1
26	Porsche 914-2	26.0	4	120.3	320	4.43	2.140	16.70	0	1	5	2
27	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
28	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
29	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
30	Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
31	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

Task1: Cars mt sampling and distribution analysis

Subtasks 3.1.1

Out[3]:

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	AMC Javelin	15.2	8	304.0	180	3.15	3.435	17.30	0	0	3	2
1	Merc 240D	24.4	4	146.7	330	3.69	3.190	20.00	1	0	4	2
2	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
3	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
4	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2
5	Mazda RX4 Wag	21.0	6	160.0	210	3.90	2.875	17.02	0	1	4	4
6	Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
7	Fiat 128	32.4	4	78.7	340	4.08	2.200	19.47	1	1	4	1
8	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
9	Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
10	Toyota Corolla	33.9	4	71.1	180	4.22	1.835	19.90	1	1	4	1
11	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
12	Mazda RX4	21.0	6	160.0	210	3.90	2.620	16.46	0	1	4	4
13	Dodge Challenger	15.5	8	318.0	250	2.76	3.520	16.87	0	0	3	2
14	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
15	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
16	Merc 280	19.2	6	167.6	223	3.92	3.440	18.30	1	0	4	4
17	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
18	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
19	Valiant	18.1	6	225.0	205	2.76	3.460	20.22	1	0	3	1

Subtasks 3.1.2

```
1 rand_samp_r=car.sample(20,replace=True,random_state=13,ignore_index=1)
           2 rand_samp_r
 Out[4]:
                     model mpg cyl disp hp drat
                                                 wt qsec vs am gear carb
                 Honda Civic 30.4 4 75.7 280 4.93 1.615 18.52 1 1
          0
              Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0
          2
                  Merc 280C 17.8
                                6 167.6 223 3.92 3.440 18.90 1 0
          3
             Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0
                                                                   3
                  Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0
                  Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1
               Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0
                   Fiat X1-9 27.3 4 79.0 290 4.08 1.935 18.90 1
                 Merc 450SL 17.3
                                8 275.8 180 3.07 3.730 17.60 0 0
               Porsche 914-2 26.0 4 120.3 320 4.43 2.140 16.70 0 1
          10
                Hornet 4 Drive 21.4 6 258.0 210 3.08 3.215 19.44 1 0 3
                Porsche 914-2 26.0 4 120.3 320 4.43 2.140 16.70 0 1
          11
          12
                Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0
                                8 301.0 335 3.54 3.570 14.60 0
          13
                Maserati Bora 15.0
          14
                  Datsun 710 22.8
                                4 108.0 93 3.85 2.320 18.61 1 1
          15 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0
                 AMC Javelin 15.2 8 304.0 180 3.15 3.435 17.30 0 0
          16
          17
                     Valiant 18.1 6 225.0 205 2.76 3.460 20.22 1 0
          18
                Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0
          19
                  Merc 280C 17.8 6 167.6 223 3.92 3.440 18.90 1 0
         Subtasks 3.1.3
          1 sys_samp=car.iloc[np.arange(0,len(car),step=2)]
 In [5]:
          2 sys samp
 Out[5]:
                     model mpg cyl disp hp drat
                                                   wt qsec vs am gear carb
          0
                  Mazda RX4 21.0 6 160.0 210 3.90 2.620 16.46 0 1
                  Datsun 710 22.8
                                4 108.0 93 3.85 2.320 18.61
          4 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3
                  Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3
                                4 140.8 95 3.92 3.150 22.90 1 0
                  Merc 280C 17.8 6 167.6 223 3.92 3.440 18.90 1 0
          10
          12
                  Merc 450SL 17.3
                                8 275.8 180 3.07 3.730 17.60 0 0
          14 Cadillac Fleetwood 10.4
                                8 472.0 205 2.93 5.250 17.98 0 0
          16
              Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0
          18
                  Honda Civic 30.4 4 75.7 280 4.93 1.615 18.52 1 1
                                4 120.1 97 3.70 2.465 20.01 1 0
         20
                Toyota Corona 21.5
         22
                 AMC Javelin 15.2 8 304.0 180 3.15 3.435 17.30 0 0
          24
               Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0
          26
               Porsche 914-2 26.0 4 120.3 320 4.43 2.140 16.70 0 1
          28
               Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5
                Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5
         Subtasks 3.1.4
In [29]: 1 len(car.groupby("vs").get_group(1))
Out[29]: 14
In [28]:
          1 strat_samp=pd.DataFrame()
             samp_v=car.groupby("vs").get_group(1).sample(10,replace=True,ignore_index=True)
             samp_s=car.groupby("vs").get_group(0).sample(10,replace=True,ignore_index=True)
           4 | strat_samp=pd.concat([strat_samp,samp_s,samp_v],ignore_index=True)
          5 strat_samp
Out[28]:
                     model mpg cyl disp hp drat wt qsec vs am gear carb
                 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3
           1 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0
              Chrysler Imperial 14.7
                                8 440.0 230 3.23 5.345 17.42 0
               Porsche 914-2 26.0 4 120.3 320 4.43 2.140 16.70 0 1
               Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0
                 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3
                  Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3
                                8 460.0 215 3.00 5.424 17.82
          8 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
               Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1
          10
                   Merc 280 19.2 6 167.6 223 3.92 3.440 18.30 1 0 4 4
                  Merc 240D 24.4 4 146.7 330 3.69 3.190 20.00 1 0 4 2
          11
               Toyota Corolla 33.9 4 71.1 180 4.22 1.835 19.90 1 1 4 1
          12
          13
                Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
                  Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1
          14
                Hornet 4 Drive 21.4 6 258.0 210 3.08 3.215 19.44 1 0 3 1
         15
                Hornet 4 Drive 21.4 6 258.0 210 3.08 3.215 19.44 1 0 3 1
          16
          17
                  Merc 240D 24.4 4 146.7 330 3.69 3.190 20.00 1 0 4 2
```

Honda Civic 30.4 4 75.7 280 4.93 1.615 18.52 1 1 4 2

Merc 240D 24.4 4 146.7 330 3.69 3.190 20.00 1 0 4 2

18 19

Subtasks 3.1.5

Out[31]:

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
1	Dodge Challenger	15.5	8	318.0	250	2.76	3.520	16.87	0	0	3	2
2	Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
3	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
5	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
6	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
7	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
8	Porsche 914-2	26.0	4	120.3	320	4.43	2.140	16.70	0	1	5	2
9	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
10	Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
11	Valiant	18.1	6	225.0	205	2.76	3.460	20.22	1	0	3	1
12	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
13	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
14	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
15	Merc 280C	17.8	6	167.6	223	3.92	3.440	18.90	1	0	4	4
16	Valiant	18.1	6	225.0	205	2.76	3.460	20.22	1	0	3	1
17	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
18	Toyota Corolla	33.9	4	71.1	180	4.22	1.835	19.90	1	1	4	1
19	Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
20	Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1

Task2: To find measures of dispersion and display them visually for 3 samples

```
In [56]:
             fig,ax=plt.subplots(4,1,figsize=(8,15))
                mean=[]
                median=[]
             5 std=[]
             6 for i in range(1,5):
                     if(i==4):
                           mean.append(car.hp.mean())
                          median.append(car.hp.median())
std.append(car.hp.std())
ax[3].hist(car.hp,bins=5,color="purple")
ax[3].set_title("Population")
            10
11
            12
            13
                           measures=pd.DataFrame([mean,median,std],columns=["Samp_10","Samp_20","Samp_30","Population"],index=["Mean","Median","Standard_dev"])
            14
15
16
17
                           samp=car.sample(i*10,replace=True,ignore_index=True,random_state=13)
                          ax[i-1].hist(samp.hp,bins=5,color="orange")
ax[i-1].set_title("Sample "+str(i*10))
            18
                           mean.append(samp.hp.mean())
            19
                           median.append(samp.hp.median())
            20
                           std.append(samp.hp.std())
            21 measures
22
```

Out[56]:

```
        Mean
        218.800000
        211.800000
        200.30000
        211.312500

        Median
        230.000000
        216.500000
        205.00000
        210.000000

        Standard dev
        76.141389
        75.772929
        69.24676
        68.513449
```


Interpretation

```
In [61]:

1 """From the above population graph its clear that it has gaussian distribution and the data is spread evenly but when looking at the sampled data we can see that for each random sample 2 that the mean and median are very close each other and stardard deviation is similar with all the samples indicating proper 3 spread throughout the data"""
```

Out[61]: 'From the above population graph its clear that it has gaussian distribution and the data is spread evenly but when looking at the sampled data we can see that for each random sample the spread is uneven and unpredicatable but the observable point is the more the data points the more better the histogram follows gaussian distribution, also from measures of dispersion we can see \nthat the mean and median are very close each other and stardard deviation is similar with all the samples indicating proper\nspread throughout the data'