CONTENTS 1

Linear Regression: A Revisit

Yifei Sun

Contents

Data	2
Multiple linear regression: a small experiment	3
Prediction interval vs. confidence interval	3
Best subset model selection	4

```
library(tidyverse)
library(summarytools)
library(leaps)
```

Data

In this example, we assess the association between high density lipoprotein (HDL) cholesterol and body mass index, blood pressure, and other demographic factors (age, gender, race) using the NHANES data (https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.aspx?BeginYear=2001). The data can be downloaded using functions in the package RNHANES.

```
load("L4_data.RData")
```

Summary statistics of the predictors and the response:

Data Frame Summary

 dat

Dimensions: 6434×6

Duplicates: 0

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
1	gender	1. 1	3108 (48.3%)	IIIIIIII	6434	0
	[factor]	2. 2	3326 (51.7%)	IIIIIIIII	(100%)	(0%)
2	race	1. 1	1593 (24.8%)	IIII	$\dot{6}434$	Ò
	[factor]	2. 2	262 (4.1%)		(100%)	(0%)
		3. 3	2910 (45.2%)	IIIIIIIII	, ,	` /
		4. 4	1448~(22.5%)	IIII		
		5. 5	221 (3.4%)			
3	age	Mean (sd) : 35.3 (22.1)	79 distinct values		6434	0
	[numeric]	$\min < \max < \max$:	(100%)	(0%)
		5 < 29 < 85		.:		
		IQR (CV) : 36 (0.6)		::		
				::::::		
				:::::::::		
4	$_{ m bmi}$	Mean (sd) : 26 (6.5)	2266 distinct		6434	0
	[numeric]	$\min < \max < \max$:	values	.:	(100%)	(0%)
		13.4 < 25.3 < 64.2		::		
		IQR (CV) : 8.2 (0.2)		:::		
				.:::		
				:::::.		

No	Variable	Stats / Values	Freqs (% of Valid)	Graph	Valid	Missing
5	sbp [numeric]	Mean (sd): 119.5 (20.1) min < med < max: 74 < 116 < 228 IQR (CV): 22 (0.2)	73 distinct values	: : ::. :::	6434 (100%)	0 (0%)
6	hdl [numeric]	Mean (sd): 51.6 (14.5) min < med < max: 19 < 49 < 160 IQR (CV): 17 (0.3)	102 distinct values	:. :: :: :: :::	6434 (100%)	0 (0%)

Multiple linear regression: a small experiment

bmi

-0.6649902

```
coef(fit3)["r2"]
```

r2

-0.6649902

Prediction interval vs. confidence interval

```
newdata <- dat[1,]
predict(fit1, newdata, interval = "confidence")

fit    lwr    upr</pre>
```

1 44.48379 43.83743 45.13016

```
predict(fit1, newdata, interval = "predict") # much wider!
```

fit lwr upr

 $1\ 44.48379\ 18.50864\ 70.45895$

Best subset model selection

summary(regsubsetsObj)