

Introduction to Audio Content Analysis

Module 7.3.3: Fundamental Frequency Detection in Monophonic Signals

alexander lerch

introduction overview

corresponding textbook section

section 7.3.3

lecture content

- established approaches to monophonic pitch tracking in
 - ► time domain
 - frequency domain

learning objectives

- define the task of monophonic pitch tracking
- ullet summarize the principles of time-domain f_0 -trackers and describe one approach in detail
- summarize the principles of frequency-domain \hat{f}_0 -trackers and describe one approa

introduction overview

corresponding textbook section

section 7.3.3

lecture content

- established approaches to monophonic pitch tracking in
 - ▶ time domain
 - frequency domain

■ learning objectives

- define the task of monophonic pitch tracking
- ullet summarize the principles of time-domain \hat{f}_0 -trackers and describe one approach in detail
- summarize the principles of frequency-domain $\hat{f_0}$ -trackers and describe one approarm in detail

fundamental frequency introduction

remember

Fourier series: every (quasi-)periodic sound is a combination of sinusoidals with integer frequency ratios

$$egin{array}{lll} x(t) &pprox & x(t+\hat{\mathcal{T}}_0) \ x(t) &pprox & \displaystyle\sum_{k=-\infty}^{\infty} a(k)e^{\mathrm{j}\omega_0kt} \end{array}$$

 \hat{f}_0 : musically, perceptually most "relevant" frequency

fundamental frequency

remember

Fourier series: every (quasi-)periodic sound is a combination of sinusoidals with integer frequency ratios

$$x(t) pprox x(t + \hat{T}_0)$$

 $x(t) pprox \sum_{k=-\infty}^{\infty} a(k)e^{j\omega_0kt}$

 \hat{f}_0 : musically, perceptually most "relevant" frequency

pitch detection task definition

- lacktriangle detect the **fundamental frequency** \hat{f}_0
- monophonic: only one fundamental frequency at a time
- related subtasks:
 - voice activity: detect when there is no voice/no fundamental frequency
 - note segmentation
 - note start time and stop time
 - average note frequency
 - average note velocity
 - vibrato detection
 - frequency to pitch mapping

monophonic fundamental frequency detection zero crossing rate

■ ZCR per block (bad)

$$\hat{\mathcal{T}}_0(n) = \frac{2 \cdot \left(i_{e}(n) - i_{s}(n)\right)}{f_{S} \cdot \sum\limits_{i=i_{S}(n)}^{i_{e}(n)} \left| \text{sign}\left[x(i)\right] - \text{sign}\left[x(i-1)\right] \right|}$$

average period length

$$\hat{T}_0(n) = \frac{2}{\mathcal{Z} - 1} \sum_{j=0}^{\mathcal{Z} - 2} \Delta t_{\text{ZC}}(j)$$

- variants:
 - create distance histogram and choose maximum
 - also use distances between local extrema

zero crossing rate

monophonic fundamental frequency detection

ZCR per block (bad)

$$\hat{\mathcal{T}}_0(n) = \frac{2 \cdot \left(i_{\mathrm{e}}(n) - i_{\mathrm{s}}(n)\right)}{f_{\mathrm{S}} \cdot \sum\limits_{i=i_{\mathrm{s}}(n)}^{i_{\mathrm{e}}(n)} \left|\mathrm{sign}\left[x(i)\right] - \mathrm{sign}\left[x(i-1)\right]\right|}$$

average period length

$$\hat{\mathcal{T}}_0(n) = rac{2}{\mathcal{Z}-1} \sum_{j=0}^{\mathcal{Z}-2} \Delta t_{\mathrm{ZC}}(j).$$

variants:

- create distance histogram and choose maximum
- also use distances between local extrema

monophonic fundamental frequency detection zero crossing rate

ZCR per block (bad)

$$\hat{T}_0(n) = \frac{2 \cdot \left(i_e(n) - i_s(n)\right)}{f_S \cdot \sum\limits_{i=i_s(n)}^{i_e(n)} \left| \text{sign}\left[x(i)\right] - \text{sign}\left[x(i-1)\right] \right|}$$

average period length

$$\hat{\mathcal{T}}_0(n) = rac{2}{\mathcal{Z}-1} \sum_{j=0}^{\mathcal{Z}-2} \Delta t_{\mathrm{ZC}}(j).$$

variants:

- create distance histogram and choose maximum
- also use distances between local extrema

monophonic fundamental frequency detection auto correlation function

Georgia Center for Music Tech Market Technology

■ find lag of ACF maximum

$$r_{xx}(\eta,n) = \sum_{i=i_{s}(n)}^{i_{e}(n)-\eta} x(i) \cdot x(i+\eta)$$

$$\hat{T}_0(n) = \operatorname{argmax} (r_{xx}(\eta, n))$$

variants:

monophonic fundamental frequency detection auto correlation function

Georgia Center for Music Tech Technology

■ find lag of ACF maximum

$$r_{\mathsf{XX}}(\eta, n) = \sum_{i=i_{\mathsf{s}}(n)}^{i_{\mathsf{e}}(n)-\eta} x(i) \cdot x(i+\eta)$$

 $\hat{T}_0(n) = \operatorname{argmax} (r_{xx}(\eta, n))$

variants:

center clipping

Georgia Center for Music Tech Market Technology

• find lag of AMDF minimum

$$\mathrm{AMDF}_{\mathsf{xx}}(\eta, \mathsf{n}) = \frac{1}{i_{\mathrm{e}}(\mathsf{n}) - i_{\mathrm{s}}(\mathsf{n}) + 1} \sum_{i = i_{\mathrm{s}}(\mathsf{n})}^{i_{\mathrm{e}}(\mathsf{n}) - \eta} |\mathsf{x}(i) - \mathsf{x}(i + \eta)|$$

- variants:
 - AMDF-weighted ACF

$$r'_{xx}(\eta, n) = \frac{r_{xx}(\eta, n)}{\text{AMDF}_{xx}(\eta, n) + 1}$$

• find lag of AMDF minimum

$$\mathrm{AMDF}_{\mathsf{xx}}(\eta, \mathsf{n}) = \frac{1}{i_{\mathrm{e}}(\mathsf{n}) - i_{\mathrm{s}}(\mathsf{n}) + 1} \sum_{i = i_{\mathrm{s}}(\mathsf{n})}^{i_{\mathrm{e}}(\mathsf{n}) - \eta} |\mathsf{x}(i) - \mathsf{x}(i + \eta)|$$

variants:

AMDF-weighted ACF

$$r'_{xx}(\eta, n) = \frac{r_{xx}(\eta, n)}{\text{AMDF}_{xx}(\eta, n) + 1}$$

monophonic fundamental frequency detection average magnitude difference function

$$X_{\mathrm{HPS}}(k,n) = \prod_{j=1}^{\mathcal{O}} |X(j \cdot k,n)|^2$$

$$\hat{f}_0(n) = \operatorname{argmax} (X_{\mathrm{HPS}}(k, n))$$

first published in the 1960s by Noll

¹A. M. Noll, "Pitch Determination of Human Speech by the Harmonic Product Spectrum, the Harmonic Sum Spectrum, and a Maximum Likelihood Estimate." in *Proceedings of the Symposium on Computer Processing in Communications*, vol. 19, Brooklyn: Polytechnic Press of the

monophonic fundamental frequency detection harmonic product spectrum 2/2

Georgia Center for Music Tech Technology

sum instead product sum

$$X_{\mathrm{HSS}}(k,n) = \sum_{j=1}^{\mathcal{O}} |X(j \cdot k,n)|^2$$

- advantage
 - robust against missing harmonics
- disadvantage
 - less pronounced peak

$$r_{XX}(\eta,n) = \sum_{k=-\mathcal{K}/2}^{\mathcal{K}/2-1} |X(k,n)| \cdot |X(k+\eta,n)|$$

 \Rightarrow detect maximum location

monophonic fundamental frequency detection cepstral pitch detection

- 1 compute cepstrum
- 2 detect periodicities

monophonic fundamental frequency detection spectral maximum likelihood

- create **template matrix** with (smoothed) delta pulses for all possible frequencies
- $lue{}$ compute the **cross correlation** (lag = 0) between spectrum and all templates
- lacktriangle pick the result with the **highest correlation** \Rightarrow frequency estimate

monophonic fundamental frequency detection spectral maximum likelihood

- create **template matrix** with (smoothed) delta pulses for all possible frequencies
- lacktriangle compute the **cross correlation** (lag = 0) between spectrum and all templates
- pick the result with the highest correlation ⇒ frequency estimate

erview intro mono f0 time domain **frequency domain** summar

monophonic fundamental frequency detection spectral maximum likelihood

Georgia Center for Music Tech Technology

- create **template matrix** with (smoothed) delta pulses for all possible frequencies
- lacktriangle compute the **cross correlation** (lag=0) between spectrum and all templates
- \blacksquare pick the result with the $highest\ correlation \Rightarrow$ frequency estimate

- **I filterbank** of band pass filters (e.g., mel scale)
- 2 HWR
- 3 smoothing
- 4 within-band periodicity estimate (e.g. **ACF**)
- 5 combination of bands

Georgia Center for Music Tech Technology

- **I filterbank** of band pass filters (e.g., mel scale)
- 2 HWR
- 3 smoothing
- within-band periodicity estimate (e.g. **ACF**)
- 5 combination of bands

- **1 filterbank** of band pass filters (e.g., mel scale)
- 2 HWR
- 3 smoothing
- within-band periodicity estimate (e.g. ACF)
- **5** combination of bands

Georgia Center for Music Tech Technology

- **I filterbank** of band pass filters (e.g., mel scale)
- 2 HWR
- 3 smoothing
- 4 within-band periodicity estimate (e.g. **ACF**)
- **5 combination** of bands

monophonic fundamental frequency detection auditory-motivated pitch tracking 1/2

- **I filterbank** of band pass filters (e.g., mel scale)
- 2 HWR
- 3 smoothing
- 4 within-band periodicity estimate (e.g. ACF)
- 5 combination of bands

Georgia Center for Music Tech Technology

1 filterbank output

2 half wave rectification

3 smoothed output

summary lecture content

basic commonality

- all approaches look for periodicity
 - waveform similarity in time domain
 - equidistant harmonics/peaks in freq domain

■ state-of-the-art

- despite the age of the presented methods, tweaked versions of the presented approaches are still often considered state-of-the-art
- combinations of different approaches can be robust

