

Enhancement of R123 Pool Boiling by the Addition of Hydrocarbons

Mark A. Kedzierski

U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Building and Fire Research Laboratory Gaithersburg, MD 20899

QC 100 .U56 NO.6244 1998

Enhancement of R123 Pool Boiling by the Addition of Hydrocarbons

Mark A. Kedzierski

U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Building and Fire Research Laboratory Gaithersburg, MD 20899

October 1998

U.S. DEPARTMENT OF COMMERCE William M. Daley, Secretary

TECHNOLOGY ADMINISTRATION Gary R. Bachula, Acting Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Raymond G. Kammer, Director

U.S. DEPARTMENT OF ENERGY Washington, D.C. 20858

ABSTRACT

This paper presents pool boiling heat transfer data for ten different R123/hydrocarbon mixtures. The data consisted of pool boiling performance of a GEWA-TTM surface for pure R123 and for ten dilute solutions of five different hydrocarbons: (1) pentane, (2) isopentane, (3) hexane, (4) cyclohexane, and (5) heptane with R123. The heat flux and the wall superheat were measured for each fluid at 277.6 K. A maximum $(19 \pm 3.5)\%$ increase over the pure R123 heat flux was achieved with the addition of 0.5% mass isopentane to R123. Other mixtures of isopentane, pentane, hexane, and cyclohexane with R123 exhibited smaller maximums than that of the R123/isopentane (99.5/0.5) mixture. Presumably, a layer enriched in hydrocarbon at the heat transfer surface caused the heat transfer enhancement. Conversely, an R123/heptane (99.5/0.5) mixture and an R123/cylcohexane (99.5/0.5) mixture exhibited only degradations with respect to the pure component performance for all test conditions. Several characteristics of the hydrocarbons were examined to determine their influence on the boiling heat transfer performance: molecular weight, molecular structure, composition, surface tension, and vapor pressure.

<u>Keywords</u>: Additive, binary mixtures, enhanced heat transfer, fluid heating, GEWA-TTM, hydrocarbons, pool boiling, R123, refrigerants, surfactant

INTRODUCTION

Typically, binary mixtures exhibit a boiling performance degradation compared to their pure components (Shock, 1982 and Thome, 1990). Yet, some special liquids, when added in small quantities, enhance the boiling performance of pure fluids. For the refrigeration and airconditioning industry, a liquid additive would be an economical means of reducing manufacturing and/or operating costs. For example, a liquid additive for 1,1-dichloro-2,2,2-trifluoroethane (R123) would enable existing water chillers to operate more efficiently or enable new water chillers to meet the same duty with fewer tubes. Unfortunately, liquid additives that significantly enhance refrigerant boiling performance are rare.

Most of the work on liquid additives has been in surfactants for aqueous solutions (Jontz and Myers (1960), Shah and Darby (1973) and Wu et al. (1995)). Carey (1992) and Rosen (1978) describe how surfactants reduce the surface tension of water. Basically, the surfactant molecule must have polar and nonpolar ends, i.e., an amphipathic structure. The nonpolar end of the surfactant distorts the interior structure of the solution. The structural distortion allows a surfactant molecule to travel to the liquid-vapor interface with less work than is required to bring a water molecule to the surface. By definition, the surface tension of the liquid-vapor interface is lowered when less work is required to bring a molecule to the surface.

Not much research has been done on surfactants for refrigerants. Kedzierski (1999) measured a significant enhancement of R123 pool boiling with the addition of 1% and 2% hexane by mass to R123. He used the Gibbs adsorption equation and the Young and Dupre equation to speculated that the boiling heat transfer enhancement of R123 by the addition of hexane was caused by an accumulation of hydrocarbon at the boiling surface. In essence, the greater concentration of hydrocarbon or "excess layer" at the heat transfer surface caused a reduction of the surface energy between the solid surface and the liquid. The existence of an excess layer at the liquid-solid interface is analogous to the existence of a surfactant induced excess layer at a liquid-vapor interface. Consequently, the hydrocarbon is not a typical surfactant because it accumulates at the solid-liquid interface rather than the liquid-vapor interface. However, the reduction in the liquid-solid surface energy results in a similar reduction in bubble departure diameter that occurs with a conventional surfactant. As a consequence of the bubble size reduction, the active site density increases. A heat transfer enhancement existed when a favorable balance between an increase in site density and a reduction in bubble size occurs.

In the present study, five different hydrocarbons were tested as additives in various concentrations with R123 in an effort to investigate the enhancement mechanism of the excess layer. The various hydrocarbons were chosen for their wide range of properties: namely, normal boiling point, interfacial surface tension, molecular weight, and molecular structure. It was hypothesized that certain thermophysical and chemical properties of the hydrocarbon were favorable for the creation of an excess layer. For example, an R123/hydrocarbon mixture that behaved as an azeotrope in the bulk mixture would be more likely to exhibit a heat transfer enhancement with respect to pure R123. For an azeotropic mixture, the excess layer is formed due to the strong affinity of the hydrocarbon for the solid surface. Dilute solution of hydrocarbons with R123 and mixture of components with similar boiling points were unlikely to exhibit heat transfer degradations that can be associated with concentration gradients. It was also

believed that a large difference between the surface tension of the additive and the refrigerant would create a large potential to reduce the surface energy of the liquid-solid interface via the excess layer. The stability of the excess layer may rely on the molecular structure of the hydrocarbon. For example, a particular molecular structure of a hydrocarbon may be more conducive to the formation of an excess layer due to its degree of repulsion of the polar R123 molecules that are at the interface of the excess layer and the bulk liquid.

APPARATUS

Figure 1 shows a schematic of the apparatus that was used to measure the pool boiling data of this study. More specifically, the apparatus was used to measure the liquid saturation temperature (T_s), the average pool-boiling heat flux (q"), and the wall temperature (T_w) of the test surface at the root of the fin. The three principal components of the apparatus were test chamber, condenser, and purger. The internal dimensions of the test chamber were 25.4 mm \times 257 mm \times 1.54 m. The test chamber was charged with approximately 7 kg of R123 from the purger, giving a liquid height of approximately 80mm above the test surface. As shown in Fig. 1, the test section was visible through two opposing, flat 150 mm \times 200 mm quartz windows. The bottom of the test surface was heated with high velocity (2.5 m/s) water flow. The vapor produced by liquid boiling on the test surface was condensed by the brine-cooled, shell-and-tube condenser and returned as liquid to the pool by gravity.

To reduce the errors associated with the liquid saturation temperature measurement, the saturation temperature of the liquid was measured with two 450 mm long 1.6 mm diameter stainless steel sheathed thermocouples. The small diameter provided for a relatively rapid response time. Nearly the entire length of the thermocouple was in contact with either the test refrigerant vapor or liquid to minimize conduction errors. The tip of the two thermocouples were placed approximately 2 mm above and 150 mm (and 300 mm) to one side of the top of the test surface. This placement ensured that approximately 80 mm of the probe length was in relatively well-mixed liquid near the two-phase fluid above the test surface. To provide for a saturated liquid pool state, the mass of liquid in the pool was large compared to mass of liquid condensed. At the highest heat flux, it would require nearly one hour to evaporate and condense the entire test chamber charge. The lack of a temperature difference between the probe and the well-insulated, low emissivity, 38 mm aluminum test chamber walls essentially eliminated temperature errors due to radiation to the probe.

TEST SURFACE

Figure 2 shows the oxygen-free high-conductivity (OFHC) copper GEWA-TTM test plate used in this study. Commercially, flattening the tips of the GEWA-KTM surface forms the GEWA-TTM or "T-fin" surface. The GEWA-TTM surface in this study was machined directly onto the top of the test plate by electric discharge machining (EDM). Figure 3 shows a photograph of the fin surface. The gap between the fin-tips was 0.348 mm. The surface had approximately 667 fins per meter oriented along the short axis of the plate. The ratio of the surface area to the projected area of the surface was 2.47. The fin-tip width and the fin-height were 1.05 mm and 1.038 mm, respectively.

MEASUREMENTS AND UNCERTAINTIES

The standard uncertainty (u_i) is the positive square root of the estimated variance u_i². The individual standard uncertainties are combined to obtain the expanded uncertainty (U). The expanded uncertainty is commonly referred to as the law of propagation of uncertainty with a coverage factor. All measurement uncertainties are reported for a 95% confidence interval.

The copper-constantan thermocouples and the data acquisition system were calibrated against a glass-rod standard platinum resistance thermometer (SPRT) and a reference voltage to a residual standard deviation of 0.005 K. The NIST Thermometry Group calibrated the fixed SPRT to two fixed points having expanded uncertainties of 0.06 mK and 0.38 mK. A quartz thermometer, which was calibrated with a distilled ice bath, agreed with the SPRT temperature to within approximately 0.003 K. Both the measured thermocouple electromotive force (EMF) and the measured 1 mV reference were regressed to the SPRT temperature. During a pool-boiling test, the 1 mV reference was measured prior to measuring each thermocouple EMF. The reference voltage was used to account for the drift in the acquisition measurement capabilities over time. Before each test run, the measurements of a thermocouple in the bath with the SPRT were compared. The mean absolute difference between the thermocouple and the SPRT was 0.06 K over one year. Considering the fluctuations in the saturation temperature during the test and the standard uncertainties in the calibration, the expanded uncertainty of the average saturation temperature was no greater than 0.04 K. Consequently, it is believed that the expanded uncertainty of the temperature measurements was less than 0.1 K. The saturation temperature was also obtained from a pressure transducer measurement with an uncertainty of less than 0.03 kPa. The uncertainty of the saturation temperature from a regression (with a residual standard deviation of 0.6 mK) of equilibrium data (Morrison and Ward, 1991) for R123 was 0.17 K. The saturation temperature obtained from the thermocouple and the pressure measurement nearly always agreed within \pm 0.17 K for the pure R123 data.

Figure 2 shows the coordinate system for the 20 wells where individual thermocouples were force fitted into the side of the test plate. The wells were 16 mm deep to reduce conduction errors. Using a method given by Eckert and Goldstein (1976), errors due to heat conduction along the thermocouple leads were estimated to be well below 0.01 mK. The origin of the coordinate system was centered on the surface with respect to the y-direction at the root of the fin. Centering the origin in the y-direction improved the accuracy of the wall heat flux and temperature calculations by reducing the number of fitted constants involved in these calculations. The x-coordinate measures the distance normal to the heat transfer surface. The y-coordinate measures the distance perpendicular to the x-coordinate. The thermocouples were arranged in four sets of five aligned in the x-direction. Following a procedure given by Kedzierski and Worthington (1993), the size and arrangement of the thermocouple wells were designed to minimize the errors in the wall temperature and temperature gradient measurement.

The heat flux and the wall temperature were obtained by regressing the measured temperature distribution of the block to the governing two-dimensional conduction equation (Laplace equation). In other words, rather than using the boundary conditions to solve for the interior temperatures, the interior temperatures were used to solve for the boundary conditions following a backward stepwise procedure given in Kedzierski (1995).

A backward stepwise regression was used to determine the best model or the significant terms of the solution to the Laplace equation in rectangular coordinates for each data point. Most infinite series solutions should converge within nine terms. The backward stepwise method began by regressing the first nine terms of the Laplace infinite series solution to the twenty measured plate temperatures:

$$T = A_0 + A_1 x + B_1 y + A_2 (x^2 - y^2) + 2B_2 xy + A_3 x (x^2 - 3y^2) + B_3 y (3x^2 - y^2) + A_4 (x^4 - 6x^2 y^2 + y^4) + 4B_4 (x^3 y - xy^3)$$

The above "full" model was reduced to its significant terms by removing terms with t-values less than two while maintaining the original residual standard deviation of the full model. Terms were removed one at a time. Regression of the 20 temperatures was done after each term with the smallest t-values was removed. Table 1 provides an overview of the various two-dimensional conduction models that were used to reduce the measured temperatures to heat fluxes and wall temperatures.

Fourier's law and the fitted constants $(A_0, A_1, \dots A_n)$ were used to calculate the average heat flux (q'') normal to and evaluated at the heat transfer surface as:

$$\mathbf{q''} = \left(\frac{1}{L_y} \int_{\frac{L_y}{2}}^{\frac{L_y}{2}} \mathbf{k} \frac{\partial \mathbf{T}}{\partial \mathbf{x}} d\mathbf{y}\right)_{\mathbf{x} = 0} = \overline{\mathbf{k}} \mathbf{A}_1$$

where \bar{k} is the average thermal conductivity along the surface of the plate, and L_y is the length of the heat transfer surface as shown in Fig. 2.

The average wall temperature (T_w) was calculated by integrating the local wall temperature:

$$T_{w} = \left(\frac{1}{L_{y}} \int_{\frac{L_{y}}{2}}^{\frac{L_{y}}{2}} T dy\right)_{x=0} = A_{0}$$

Siu et al. (1976) estimated the uncertainty in the thermal conductivity of OFHC copper to be about 2% to 3% by comparing round-robin experiments. Considering this, the relative expanded uncertainty in q" was greatest at the lowest heat fluxes, approaching 10% of the measurement at 10 kw/m^2 . In general, the E_{q"} appears to be relatively constant between 6% and 3% for heat fluxes above 30,000 W/m². The average random error in the wall superheat -- ($\Delta T_s = T_w - T_s$)--was within 0.1 K. A more detailed discussion of the uncertainty analysis can be found in Kedzierski (1996). After the data was reduced, it was realized that only one of the two thermocouples used to measure the liquid saturation temperature was used to calculate the wall superheat. This oversight may have added approximately 0.05 K to the systematic error. Considering that the boiling curve may drift more than 0.05 K in a month due to surface aging,

the shift in superheat was considered to be inconsequential due to the comparative purpose of the study.

EXPERIMENTAL RESULTS

The heat flux was varied from 80 kW/m² to 10 kW/m² to simulate typical operating conditions of R123 chillers equipped with enhanced tubes. All pool boiling tests were taken at 277.6 K saturated conditions. The data were recorded consecutively starting at approximately 80 kW/m² and then descending to 10 kW/m² in intervals of approximately 4 kW/m². The descending heat flux procedure minimized the possibility of any hysteresis effects on the data, which would have made the data sensitive to the initial operating conditions. Table 2 presents the measured heat flux and wall superheat for all of the data of this study. Table 3 gives the number of test days and data points for each fluid.

The mixtures were prepared by first charging approximately 90% of the R123 into the test chamber to a known mass. Next, measured weights of the particular spectrophotometric grade hydrocarbon were injected through a valve in the side of the test chamber (see Fig. 1). The liquid hydrocarbon was injected with a syringe through the valve, followed by flushing with the remaining R123 charge. The flushing of R123 through the valve and connecting tubes also assisted in mixing the charge. All compositions are determined from the masses of the charged components and are given on a mass percent basis. The maximum uncertainty of the composition measurement is approximately 0.02%, e.g. the range of a 0.5% composition is between 0.48% and 0.52%.

The pool boiling performance of dilute mixtures of R123 and the following hydrocarbons were measured at 0.5% and 1.0% by mass hydrocarbon: isopentane, pentane, hexane, and cyclohexane. An R123/isopentane (99.5/0.5) by mass mixture was also tested along with an R123/heptane (99.9/0.1) by mass mixture. Pure R123 pool boiling data was taken to provide a baseline for comparison to the mixtures.

Figures 4 through 14 are plots of the measured heat flux (q") versus the measured wall superheat $(T_w - T_s)$ for all of the fluids. On average, each fluid was tested over six days. For the most part, one day's test covered heat fluxes from 80 kW/m^2 to 10 kW/m^2 . The solid line is a cubic best-fit regression or estimated mean of the data. Two cubic fits were required to cover the low and the high heat flux data. Table 4 gives the constants for the cubic regression of the superheat versus the heat flux for each test fluid. The residual standard deviation of the regressions - representing the proximity of the data to the mean - are given in Table 5. On average, the residual standard deviation of the low heat flux and the high heat flux data about the mean is 0.17 K and 0.10 K, respectively. The dashed lines to either side of the mean represent the lower and upper 95% simultaneous (multiple-use) confidence intervals for the mean. The expanded uncertainty of the estimated mean wall superheat in the low heat flux region and the high heat flux region is approximately 0.1 K and 0.07 K, respectively. Table 6 provides the average mean wall uncertainty for low and high heat fluxes.

Figure 4 presents the boiling curve for pure R123 at 277.6 K on the GEWA-TTM surface. The boiling curve exhibits two characteristic regimes: a natural convection/boiling regime and a

vigorous nucleate boiling regime. The regimes are separated by the cessation of vigorous nucleate boiling (CVNB). The CVNB occurs for the pure R123 data at approximately 9.5 K (24 kW/m²). The nucleate boiling regime exists for superheats that are greater than the CVNB condition. Here, the heat transfer is governed primarily by the formation of isolated bubbles within the fin cavities. The superheats below the CVNB are insufficient to support vigorous bubble generation. Consequently, natural convection becomes a prevalent mode of heat transfer for superheats below CVNB. In this region, limited bubble activity exists.

Figure 4 compares the present R123 GEWA-TTM boiling curve to R123 GEWA-TTM boiling data that was taken approximately five years prior (Kedzierski, 1999) to the present data in the same apparatus and for the same surface. The data differ substantially in the vigorous boiling region. but agree closely in the natural convection/boiling region. Apparently, the surface condition has changed such that many nucleation sites have been eliminated. The surface was stored in a feltlined wooden box for the years between testing. The surface was cleaned prior to installation in the test apparatus with acetone, TarnexTM, hot tap water, and acetone for both the 1993 and the present tests. Following the cleaning process, the surface was exposed to a heat lamp for several hours. Just prior to the present tests, the surface was used for active pool boiling testing for nearly two years after the storage period. Aging and/or fouling of the surface have produced an offset in the wall superheat of approximately 2 K. It is believed that the superheat offset is not caused by a malfunctioning of the test equipment because no equivalent offset between the measured saturation temperature and the saturation temperature obtained from the measured pressure was observed. Also, the agreement of low heat flux data for the two periods shows that the measurements are consistent. In addition, examination of the surface after the present tests revealed that it was fouled with a somewhat tacky substance. The surface may have been contaminated with decane from previous R123/decane pool boiling tests. The decane could have been adsorbed on the test surface in a manner similar to that, which was observed by Tamura et al. (1983) where surfactants were irreversible adsorbed on metal surfaces.

Figure 4 also compares the NIST 1993 GEWA-TTM boiling curve to GEWA-TXTM boiling curve measured by Webb and Pais (1992) at equal saturation temperatures. The figure summarizes the geometrical differences between the plate tested in this study and the tube that Webb and Pais (1992) tested. The Webb and Pais (1992) GEWA-TXTM data agree with the 1993 data for heat fluxes above 64 kW/m² and at 10 kW/m² and is greater than the present data for intermediate heat fluxes. The maximum percent difference between the two data sets of 100% occurs at the CVNB.

The greater performance of the Webb and Pais (1992) GEWA-TXTM surface compared to the 1993 NIST data for the intermediate heat flux region was partly due to the greater fins-per-meter (fpm) and the additional notch enhancement of the GEWA-TXTM surface. Also, the gap between the fins (S_f) on the plate was significantly larger than that on the GEWA-TXTM tube. The smaller fin-gap and the notch are effective at enhancing heat transfer at low site densities. A narrower fin-gap encourages bubble coalescence within the cavity. The notch acts to increase the site density. As the site density increases with the heat flux and the surface becomes saturated with bubbles, these geometry effects become less effective at heat transfer enhancement. Also, a flat plate does not experience the convection, as reported by Cornwell and

Einarsson (1989), that is induced by bubbles that slide within the channels of the side of a tube. The sliding bubbles also act to seed upper portions of the tube with vapor. These mechanisms would be less influential at higher heat fluxes where most of the potential sites have become active with vigorous bubble activity. Consequently, the performance difference between the plate and the tube becomes less significant at larger heat fluxes.

Figure 4 also shows the predictions from a free convection correlation for a horizontal plate with the upper surface being heated which was recommended by Incropera and Dewitt (1985). Although the correlation is for a flat plate, it may be possible to account for the enhanced surface with the characteristic length defined as the surface area over the exterior perimeter of the plate. The predictions are substantially lower than the present measurements. This is consistent with the enhancement of the free convection by some nucleate boiling and the upward motion of bubbles.

Figures 5 through 14 show the boiling curve for each of the mixtures in this study. As was done for pure R123, the cubic regressions are show as solid lines. Dotted lines depict the 95% simultaneous confidence intervals for the cubic fits. A cubic fits for the high and low heat flux regions were required for each mixture. The following discussion examines the relative heat transfer performance of the mixtures and that of pure R123.

Figures 15 through 20 illustrate the effect of the addition of the various hydrocarbons to R123 on heat transfer performance. The figures plot the ratio of the mixture to the pure R123 heat flux (q''_m/q''_p) versus the pure R123 heat flux (q''_p) at the same wall superheat. A heat transfer enhancement exists where the heat flux ratio is greater than one and the 95% simultaneous confidence intervals (depicted by shaded regions) do not include the value one.

Figure 15 shows that the R123/isopentane (99.5/0.5) mixture exhibits an enhancement for heat fluxes greater than approximately 24 kW/m². The CVNB is located near 24 kW/m². Consequently, the addition of isopentane to R123 improves the heat transfer associated with vigorous boiling more so than it does for low-active-site-density boiling region. The maximum heat flux ratio for the 99.5/0.5 mixture was 1.19 at 50 kW/m². The average heat flux ratio for the R123/isopentane (99.5/0.5) mixture over the entire range of test heat fluxes was 1.10. The performance of the R123/isopentane (99/1) mixture is similar to that of the R123/isopentane (99.5/0.5) mixture but it has a higher uncertainty. The R123/isopentane (99.9/0.1) mixture shows a maximum near its CVNB and decreases for heat fluxes above the CVNB. For 99.5% confidence, no difference exists between the boiling performance of the 99.9/0.1 mixture and pure R123 for heat fluxes greater than 37 kW/m².

Figure 16 shows that the R123/pentane (99.5/0.5) and (99/1) mixtures have similar heat flux ratio profiles. For example, both mixtures exhibit an enhancement for heat fluxes less than approximately 24 kW/m² and a degradation for heat fluxes greater than approximately 24 kW/m². Consequently, the addition of pentane to R123 enhances the low-active-site-density region rather than the vigorous boiling region. The maximum heat flux ratio for the R123/pentane (99/1) mixture was 1.14 at 12.6 kW/m². The average heat flux ratio for the R123/pentane (99/1) mixture over the entire range of test heat fluxes was 0.98. The

performance of the R123/pentane (99.5/0.5) mixture is similar to that of the R123/pentane (99/1) mixture but slightly less over nearly the entire heat flux range. The R123/pentane (99.5/0.5) mixture had a maximum heat flux ratio of 1.08 and an overall average heat flux ratio of 0.94.

Figure 17 shows the heat flux ratio for the R123/hexane (99.5/0.5) and R123/hexane (99/1) mixtures. The R123/hexane (99/1) mixture exhibits a maximum heat flux ratio of 1.13 in the low-active-site-density region at 24.4 kW/m². Whereas, the R123/hexane (99.5/0.5) mixture exhibits a maximum heat flux ratio of 1.08 in the vigorous nucleate boiling region (41.8 kW/m²). The average heat flux ratio for the entire test range was 1.04 and 1.01 for the R123/hexane (99.5/0.5) mixture and the R123/hexane (99/1) mixture, respectively. For 99.5% confidence, the R123/hexane (99.5/0.5) mixture boiling performance does not differ from that of pure R123 for heat fluxes greater than approximately 24 kW/m².

Figure 18 shows data for an R123/hexane (99/1) mixture and an R123/hexane (98/2) mixture that were taken in 1993 (Kedzierski, 1999) on the same surface and the same apparatus that was used in the present study. The R123/hexane (99/1) mixtures for the present study and the 1993 study exhibit a maxima at the same heat flux. However, the magnitude of the heat flux ratio for the 1993 study is much greater than that of the present study. Recall that Fig. 4 showed that the pure R123 boiling curve of the 1993 study significantly differed in the high heat flux region from the previous study. Obviously, the surface characteristics of the GEWA-TTM test plate were altered in the five years between the 1993 study and the present study. Presumably, the surface characteristics play a role in determining the effectiveness of the hydrocarbon in enhancing the active site density for nucleate boiling. From this, it is suspected that the heat flux ratios presented in this study would not be universally applicable to other enhancement geometries.

Figure 19 shows that the addition of heptane by 5% mass to R123 causes a heat transfer degradation for heat fluxes from 15 kW/m^2 to 70 kW/m^2 . The maximum heat flux ratio for the R123/heptane (99.5/0.5) mixture is 0.94 and occurs at 17 kW/m^2 . The heat flux ratio steadily decreases with increasing heat flux to approximately 0.51 at 70 kW/m^2 .

Figure 20 shows the heat flux ratio for two mixtures of R123 and cyclohexane. The R123/cyclohexane (99.5/0.5) mixture exhibits a heat transfer degradation as compared to pure R123 for the entire heat flux range of the tests. The R123/cyclohexane (99/1) has nearly the same performance of the (99.5/0.5) mixture with the exception of a small enhancement ($q''_m/q''_p = 1.04$) at $q''_p = 21.7 \text{ kW/m}^2$.

ENHANCEMENT TRENDS

The following five parameters were investigated for their influence on the boiling heat transfer performance of the hydrocarbon/R123 mixture: (1) the molecular weight of the hydrocarbon; (2) the difference in the boiling points of pure components at 39.8 kPa ($T_h - T_p$); (3) the difference in surface tension between the hydrocarbon and R123 at 277.6 K (σ_h - σ_p); (4) the mixture composition; and (5) the molecular structure of the hydrocarbon. Presumably, these parameters govern the dynamics of the formation of the excess layer for the R123/hydrocarbon mixtures. The mixtures should behave azeotropically in the bulk mixture. For very dilute solutions, mixtures may have large difference in normal boiling points while still maintaining azeotropic

behavior (Lunger and Shealy, 1994). However, due to its affinity for the solid, the hydrocarbon comes out of solution to form a confined region of higher hydrocarbon concentration at the wall. The initial formation of the excess layer due to the affinity of the hydrocarbon for the solid surface causes a composition shift past the azeotropic composition that may further increase the excess concentration through preferential boiling of the refrigerant. In addition, the excess layer cannot form on the wall unless the surface tension of the hydrocarbon is greater than that of R123. Otherwise, the hydrocarbon will act as a surfactant by accumulating at the liquid-vapor interface.

In figures 21 through 26, a linear model was used to provide only an approximate description of the trends in the data. Consequently, nearly each plot contains one or two influential points (Belsley et al., 1980) that may be considered outliers for the linear model. Future research might focus on gathering more data to better describe these trends and to identify the cause of outliers from the apparent linear trends.

Figure 21 shows the heat flux ratio as a function of the molecular weight of the hydrocarbon in the R123/hydrocarbon mixture. In general, larger heat flux ratios are obtained for R123/hydrocarbon mixtures that have hydrocarbons with smaller molecular weights. Hydrocarbons with large molecular weights tend to "be sticky" or have a strong affinity for the solid surface. For this case, the thickness of the excess layer may act as fouling rather than a surfactant for the surface.

Also, Hydrocarbons with large molecular weights tend to have larger vapor pressures relative to R123. Figure 22 illustrates the same point with the difference in boiling points (at 277.6 K) rather than the molecular weight. An R123/hydrocarbon mixture with a large vapor pressure difference or difference in boiling points will more likely exhibit azeotropic behavior, which can lead to a degradation in the heat transfer (Kedzierski et al., 1992). For example, it is likely that the performance of the R123/heptane (99.5/0.5) mixture suffers due to concentration gradients in the liquid.

Figure 23 provides the heat flux ratio as a function of the difference between the surface tension of the pure hydrocarbon (σ_h) and that of the pure R123 (σ_p) at 277.6 K. The figure shows that larger heat flux ratios are associated with smaller differences in surface tension between the hydrocarbon and R123. For a binary mixture, an excess layer is a consequence of differences in surface tension between the component liquids. An additive becomes a liquid-vapor surfactant if its surface tension is less than that of the solute. For this case, the additive accumulates (forms an excess layer) at the liquid-vapor interface and lowers its surface tension. Conversely, if the surface tension of the additive is greater than that of the solute, the additive forms an excess layer at the solid-liquid interface. Here, the surface energy between the liquid and solid is reduced by the presence of the excess layer on the liquid-solid interface. Closer examination of Fig. 22 shows that isopentane may lower the surface tension of the liquid-vapor interface, while the other hydrocarbons may lower the surface tension of the liquid-solid interface. An excess layer at the liquid-vapor interface or one at the liquid-solid interface would produce the same result by different means. That is, a reduction in the surface-tension of either the liquid-vapor or the liquid-solid interface causes a reduction in the bubble contact angle which, in turn, can cause an

enhancement of the heat transfer (Kedzierski, 1999). Nevertheless, the difference between the surface tension of isopentane and R123 may be within the uncertainty of its prediction. Consequently, it is possible that all of the hydrocarbons act on the liquid-solid interface.

Figure 24 illustrates the influence of the molecular structure of the hydrocarbon on the heat flux ratio. Apparently, the structure of the hydrocarbon has little influence on the heat transfer performance of the mixture. There is insufficient data to substantiate that, in general, a branch-chain hydrocarbon will give the best heat transfer performance. Even though three different unbranched-chain hydrocarbons were tested, the data is inconclusive due to the divergence of the R123/heptane (99.5/0.5) data from the mean of the data. The molecular structure does not appear to be a primary factor in determining the influence of the additives on the R123 heat transfer performance.

Figures 25 and 26 show that neither the mole fraction nor the mass fraction have much influence on the heat transfer performance of the R123/hydrocarbon mixture. The slopes of the data appear to vary randomly from mixture to mixture. Consequently, each R123/hydrocarbon pair has a unique composition for optimum heat transfer performance.

CONCLUSIONS

The pool boiling performance of R123 on a GEWA- T^{TM} surface was enhanced as much as (19% \pm 3%) by adding 0.5% mass isopentane. Overall, the R123/isopentane (99.5/0.5) mixture exhibited a 10 % heat transfer enhancement over the entire range of test heat fluxes. In addition, the R123/hexane (99.5/0.5) mixture showed an overall 4% and a maximum 13% heat transfer enhancement over pure R123. The pool boiling enhancement mechanism is presumably due to an accumulation of hydrocarbon at the boiling surface in the channels. Apparently, the excess layer reduces the surface-energy between the liquid and the heat transfer surface causing the production of small diameter bubbles. Smaller bubbles will induce higher site densities than larger bubbles. The site density is increased enough to more than compensate for the loss in bubble size and results in a net heat transfer enhancement.

The influence of several parameters on the pool boiling heat transfer of the R123/hydrocarbon mixtures was investigated. In general, larger heat flux ratios were obtained for R123/hydrocarbon mixtures than for hydrocarbons with smaller molecular weights. An R123/hydrocarbon mixture with a large difference in boiling points was more likely to exhibit azeotropic behavior, which led to a degradation in the heat transfer. Apparently, the structure of the hydrocarbon had little influence on the heat transfer performance of the mixture. Neither the mole fraction nor the mass fraction had much influence on the heat transfer performance of the R123/hydrocarbon mixture for the small composition range that was investigated.

ACKNOWLEDGEMENTS

This work was jointly funded by NIST and the U.S. Department of Energy (project no. DE-01-95CE23808.000 modification #A004) under Project Manager Esher Kweller. Thanks go to the following NIST personnel for their constructive criticism of the first draft of the manuscript: Dr. V. Payne, Mr. J. Gebbie, and Mrs. J. Land. The author would also like to express appreciation to

- G. Glaeser and S. Nolan for data collection. Furthermore, the author extends appreciation to Dr. E. Lagergren for consultations on the uncertainty analysis.

NOMENCLATURE

English Symbols

A_s actual surface area (m)

 E_{Tw} expanded uncertainty in the wall temperature (K)

 $E_{q''}$ relative expanded uncertainty (%) in heat flux measurement

e height of fin from tip to root (m)

k thermal conductivity $(W/m \cdot K)$

L_v length of test surface (m)

p exterior perimeter of test surface (m)

q" average wall heat flux (W/m²)
Ra_L Rayleigh number based on A_s/p
r_c radius of cavity mouth (m)

S_f spacing or gap between fin-tips (m)

s estimate of standard deviation

T temperature (K)

 $T_{\rm w}$ temperature of surface at root of fin (K)

U expanded uncertainty u_i standard uncertainty

x test surface coordinate, Fig. 2 (m)

y test surface coordinate, Fig. 2 (m)

Greek symbols

 ΔT wall superheat: $T_w - T_s$, (K)

σ surface-tension (kg/s²)

Subscripts

h hydrocarbon

l liquid

m mixture

p pure R123

s saturated state, solid surface

v vapor

Superscripts

average

REFERENCES

Carey, V. P., 1992, Liquid-Vapor Phase-Change Phenomena, Hemisphere, Washington.

Cornwell, K., and Einarsson, J. G., 1989, "The Influence of Fluid Flow on Nucleate Boiling from a Tube," <u>Eurotherm Seminar No. 8</u>, <u>Advances in Pool Boiling Heat Transfer</u>, Paderborn, FRG, May 11-12, pp. 28-41.

Belsley, D. A., Kuh, E., and Welsch, R. E., 1980, <u>Regression Diagnostics: Identifying Influential Data and Sources of Collinearity</u>, New York: Wiley.

Eckert, E. R. G., and Goldstein, R. J., 1976, <u>Measurements in Heat Transfer</u>, Hemisphere, Washington, 2nd ed., pp. 9-11.

Incropera, F. P., and DeWitt, D. P., 1985, <u>Fundamentals of Heat and Mass Transfer</u>, 2nd ed., John Wiley & Sons, New York, p. 439.

Jontz, P. D., and Myers, J. E., 1960, "The Effect of Dynamic Surface Tension on Nucleate Boiling Coefficients," <u>AICHE Journal</u>, Vol. 6, No. 1. pp. 34-38.

Kedzierski, M. A., Kim, J. H., and Didion, D. A., 1992, "Causes of the Apparent Heat Transfer Degradation for Refrigerant Mixtures," in *Two-Phase Flow and Heat Transfer*, HTD-Vol. 197, J. H. Kim, R. A. Nelson, and A. Hashemi, Eds., ASME, New York, pp. 149-158.

Kedzierski, M. A., 1999, "Enhancement of R123 Pool Boiling by the Addition of N-Hexane," <u>Journal of Enhanced Heat Transfer</u>, Vol. 6, No. 4.

Kedzierski, M. A., 1996, "Enhancement of R123 Pool Boiling by the Addition of N-Hexane," <u>NISTIR 5780</u>, U.S. Department of Commerce, Washington.

Kedzierski, M. A., 1995, "Calorimetric and Visual Measurements of R123 Pool Boiling on Four Enhanced Surfaces," <u>NISTIR 5732</u>, U.S. Department of Commerce, Washington.

Kedzierski, M. A., and Worthington, J. L. III, 1993, "Design and Machining of Copper Specimens with Micro Holes for Accurate Heat Transfer Measurements," <u>Experimental Heat Transfer</u>, Vol. 6. pp. 329-344.

Lunger, B. S., and Shealy, G. S., 1994, "Compositions of a Hydrofluorocarbon and a Hydrocarbon," International Patent WO 94/18282.

Morrison, G, and Ward, D. K., 1991, "Thermodynamic Properties of Two Alternative Refrigerants: 1,1-Dichloro-2,2,2-Trifluoroethane (R123) and 1,1,1,2-Tetrafluoroethane (R134a)," Fluid Phase Equilibria, Vol. 62, pp. 65-86.

Rosen, M. J., 1978, Surfactants and Interfacial Phenomena, John Wiley & Sons, New York, p.57.

Shah, B. H., and Darby, R., 1973, "The Effect of Surfactant on Evaporative Heat Transfer in Vertical Film Flow," Int. J. Heat Mass Transfer, Vol. 16, pp. 1889-1903.

Shock, R. A. W., 1982, "Boiling in Multicomponent Fluids," <u>Multiphase Science and Technology</u>, Hemisphere Publishing Corp., Vol. 1, pp. 281-386.

Siu, M. C. I., Carroll, W. L., and Watson, T. W., 1976, "Thermal Conductivity and Electrical Resistivity of Six Copper-Base Alloys," <u>NBSIR 76-1003</u>, U.S. Department of Commerce, Washington.

Tamura, J., Tse, J. T., and Adamson, A. W., 1983, J. Japan Petrol. Inst. Vol. 26, p. 309.

Thome, J. R., 1990, <u>Enhanced Boiling Heat Transfer</u>, Hemisphere Publishing Corp., New York, Chap. 9.

Webb, R.L., and Pais, C., 1992, "Nucleate Pool Boiling Data for Five Refrigerants on Plain, Integral-fin and Enhanced Tube Geometries," <u>Int. J. Heat Mass Transfer</u>, Vol. 35, No. 8, pp. 1893-1904.

Wu, W., Yang, Y., and Maa, J., 1995, "Enhancement of Nucleate Boiling Heat Transfer and Depression of Surface Tension by Surfactant Additives," J. Heat Transfer, Vol. 117,pp. 526-529.

Table 1 Conduction model choice

X_0 = constant (all models) X_1 = x X_2 = y X_3 = xy X_4 = x^2 - y^2								
$X_5 = y(3x^2-y)$	$X_5 = y(3x^2-y^2)$ $X_6 = x(3y^2-x^2)$ $X_7 = x^4+y^4-6(x^2)y^2$ $X_8 = yx^3-xy^3$							
Fluid	Low q"	High q"						
	X ₁ ,X ₆ ,X ₇ (5 of 17) 29%	X ₁ ,X ₆ ,X ₇ (5 of 17) 29%						
R123/isopentane (99.9/0.1)	X ₁ ,X ₂ ,X ₃ (4 of 17) 24%	X ₁ ,X ₂ ,X ₃ (4 of 17) 24%						
	X ₁ ,X ₂ (3 of 17) 18%	X ₁ ,X ₂ (3 of 17) 18%						
	X ₁ (3 of 13) 23%	$X_{1}, X_{3}, X_{6}, X_{7}$ (43 of 117) 37%						
R123/isopentane (99.5/0.5)	X ₁ ,X ₆ ,X ₇ (2 of 13) 15%	X ₁ ,X ₃ ,X ₄ ,X ₇ (25 of 117) 21%						
		X_1, X_5, X_6, X_7 (13 of 117) 11%						
	X_1, X_3, X_6, X_7 (25 of 64) 39%	X_1, X_3, X_6, X_7 (25 of 64) 39%						
R123/isopentane (99/1)	X ₁ ,X ₄ ,X ₅ ,X ₇ (12 of 64) 19%	X ₁ ,X ₄ ,X ₅ ,X ₇ (12 of 64) 19%						
	X ₁ ,X ₃ ,X ₄ ,X ₇ (6 of 64) 9%	X ₁ ,X ₃ ,X ₄ ,X ₇ (6 of 64) 9%						
	X ₁ (11 of 52) 21%	X ₁ (11 of 52) 21%						
R123/pentane (99.5/0.5)	X_1, X_5, X_6, X_7 (10 of 52) 19%	X_1, X_5, X_6, X_7 (10 of 52) 19%						
	X ₁ ,X ₆ ,X ₇ (8 of 52) 15%	X ₁ ,X ₆ ,X ₇ (8 of 52) 15%						
	X ₁ (6 of 43) 14%	X_1, X_2, X_6, X_7 (33 of 70) 47%						
R123/pentane (99/1)	X_1, X_5, X_6, X_7 (6 of 43) 14%	X ₁ ,X ₂ ,X ₄ ,X ₇ (9 of 70) 13%						
	X_1, X_2, X_6, X_7 (6 of 43) 14%	X ₁ ,X ₄ ,X ₅ ,X ₇ (8 of 70) 11%						
	X_1, X_5, X_6, X_7 (10 of 49) 20%	X_1, X_3, X_4, X_7 (30 of 118) 25%						
R123/hexane (99.5/0.5)	X_1, X_3, X_6, X_7 (7 of 49) 14%	X_1, X_3, X_6, X_7 (28 of 118) 24%						
	X ₁ ,X ₃ (8 of 49) 16%	X ₁ ,X ₂ ,X ₆ ,X ₇ (28 of 118) 16%						
	X ₁ ,X ₃ ,X ₆ ,X ₇ (26 of 110) 24%	X ₁ ,X ₃ ,X ₆ ,X ₇ (26 of 110) 24%						
R123/hexane (99/1)	X_1, X_2, X_6, X_7 (18 of 110) 16%	X_1, X_2, X_6, X_7 (18 of 110) 16%						
	X ₁ ,X ₃ ,X ₄ ,X ₇ (17 of 110) 15%	X ₁ ,X ₃ ,X ₄ ,X ₇ (17 of 110) 15%						
	X ₁ (12 of 33) 36%	X ₁ ,X ₃ ,X ₆ ,X ₇ (47 of 78) 60%						
R123/heptane (99.5/0.5)	X ₁ ,X ₃ (9 of 33) 27%	$X_{1}, X_{3}, X_{4}, X_{7}$ (27 of 78) 35%						
	X ₁ ,X ₆ ,X ₇ (4 of 33) 12%	X_1, X_2, X_4, X_7 (2 of 78) 3%						
	X ₁ ,X ₂ ,X ₃ (11 of 38) 29%	X_1, X_3, X_6, X_7 (43 of 181) 24%						
R123/cyclohexane (99.5/0.5)	X_1, X_2, X_3, X_6 (5 of 38) 13%	X ₁ ,X ₄ ,X ₅ ,X ₇ (34 of 181) 19%						
	X ₁ ,X ₂ ,X ₄ ,X ₅ (4 of 38) 11%	X ₁ ,X ₂ ,X ₄ ,X ₇ (14 of 181) 8%						
	X_1, X_3, X_6, X_7 (38 of 124) 31%	X_1, X_3, X_6, X_7 (38 of 124) 31%						
R123/cyclohexane (99/1)	X ₁ ,X ₃ ,X ₄ ,X ₇ (23 of 124) 19%	X ₁ ,X ₃ ,X ₄ ,X ₇ (23 of 124) 19%						
	X ₁ ,X ₃ ,X ₄ ,X ₆ (9 of 124) 7%	X_1, X_3, X_4, X_6 (9 of 124) 7%						
	X_1, X_5, X_6, X_7 (23 of 66) 35%	X_1, X_3, X_6, X_7 (57 of 210) 27%						
R123	X ₁ ,X ₆ ,X ₇ (14 of 66) 21%	X ₁ ,X ₃ ,X ₄ ,X ₇ (52 of 210) 25%						
	X ₁ ,X ₃ ,X ₆ ,X ₇ (7 of 66) 11%	X_1, X_2, X_6, X_7 (34 of 210) 16%						

			Table	e 2 Pool bo	iling data	a			
R123/hexane	۵	10.570	76641.4	8.739	25025.1	9.770	35075.1	9.784	41637.8
	C	10.578 10.580	78231.7 77518.1	10.657 10.653	76769.9 77234.8	9.563 9.560	29471.4 29997.0	9.583	33724.6
(99.5/0.5)		10.547	74399.2	10.656	77431.6	9.567	30191.8	9.529 9.531	34904.6 34502.4
File:		10.534	73565.2	10.524	67745.2	8.983	27705.0	9.565	32421.6
GT5HEX.D.	ΔΤ	10.480 10.518	68138.2 70904.3	10.521 10.542	67894.2 66350.9	8.992 8.680	26041.7 21257.7	9.515 9.501	32173.3 31459.9
ΔT.(K)		10.466	67804.6	10.457	62293.3	8.645	23278.6	8.937	23012.7
10.604	76976.3	10.434 10.371	67040.6 62251.6	10.311 10.163	62380.7 57384.6	8.669 7.701	21631.0 15876.2	8.916 6.164	22590.1 10296.3
10.623	76334.3	10.331	62257.4	10.145	56287.0	7.681	15840.2	6.147	10606.9
10.611 10.529	76623.8 68496.7	10.319 10.302	59935.1 58019.1	10.136 10.040	56764.3 49699.5	7.698 6.152	15593.3 10927.9	6.109 10.559	10469.0 76942.2
10.519	68946.4	10.304	57738.0	10.053	50314.1	6.085	12517.2	10.540	77670.1
10.347 10.398	58373.2 55786.1	10.224	59335.5 49379.3	10.062	50544.9	6.058	11953.4	10.631	78227.5
10.383	55593.8	9.808 9.637	46088.8	9.897 9.860	40455.2 41080.5	10.649 10.670	75537.2 77683.7	10.456 10.417	68565.1 68709.4
10.113	47180.3 46989.9	9.719	44248.0	9.848	40526.7	10.651	77426.8	10.414	67924.5
10.092 10.016	46989.9 42193.1	9.793 9.700	41833.5 40135.5	9.608 9.708	34808.9 35738.3	10.573 10.567	70097.6 69973.5	10.284 10.238	59693.2 58544.5
10.000	41713.3	9.692	39575.4	9.697	35456.3	10.573	70444.8	10.224	59185.7
10.004 9.933	42045.1 38958.1	9.674 9.436	39495.1 31964.9	9.405 9.417	30391.4 29306.2	10.433	62357.0	10.120	48718.9
9.897	38522.3	9.486	32283.2	9.336	33405.9	10.432 10.406	62290.6 61760.1	10.129 10.123	48177.6 48521.4
9.894 9.653	39932.8 30721.0	9.459	32134.6	9.186	28170.0	10.383	58079.8	10.000	42248.0
9.627	31256.0	8.864 9.042	25410.7 27275.5	9.178 9.239	31 159.7 28362.7	10.368 10.370	58048.6 58455.2	9.930 9.966	44169.8 42429.2
9.666	30996.2	9.074	27578.6	9.084	26940.8	10.025	45078.1	9.706	33561.6
9.292 9.287	25087.9 24930.5	8.251 8.172	18885.6 18909.1	9.114 9.109	26956.9 29516.6	10.048 10.057	46033.3 46645.7	9.692 9.685	33940.3 34462.4
9.316	25257.3	8.137	18794.3	8.628	19741.4	9.884	40089.1	9.303	25548.9
9.136 8.465	24815.3 20630.1	6.436	13780.7	8.656	20007.6	9.881	40019.9	9.313	25739.0
8.574	20612.2	6.439 6.451	13333.7 13317.0	8.684 10.742	20197.8 79637.5	9.845 9.552	40327.2 29680.9	9.267 9.027	25701.1 24210.0
8.560	20257.6	10.570	76641.4	10.742	80608.5	9.500	31137.1	9.004	24808.9
10.604 10.587	75278.3 75395.3	10.578 10.580	78231.7 77518.1	10.714 10.590	80823.2 72530.6	9.554 8.741	30300.0 26801.8	9.016 8.401	24109.8 18583.8
10.586	74754.7	10.547	74399.2	10.583	72218.0	8.754	25030.5	8.429	18796.2
10.428 10.433	61473.8 61547.8	10.534	73565.2	10.566	71926.0	8.758	26630.3	8.429	18899.4
10.420	61182.4	10.480 10.518	68138.2 70904.3	10.406 10.378	59150.6 57970.8	8.784 8.766	26480.1 26027.0	3.392 3.379	3678.8 3860.0
10.328	51877.0	10.466	67804.6	10.381	59198.7	8.747	25919.4	3.552	4688.1
10.265 10.252	53048.0 53354.3	10.434 10.371	67040.6 62251.6	10.375 10.388	54836.2 54898.4	8.698 8.689	22920.2 23038.0	10.528 10.538	80876.3 84209.2
10.090	44646.0	10.331	62257.4	10.380	54458.3	8.698	23453.7	10.577	84774.8
10.000 9.993	41778.8 42878.2	10.319 10.302	59935.1	10.072	42847.9	8.435	19934.3	10.287	62766.7
9.907	39062.6	10.302	58019.1 57738.0	10.116 10.202	46297.3 47098.5	8.406 8.410	19199.2 19202.6	10.254 10.190	61362.0 54975.4
9.893	39467.7	10.224	59335.5	9.879	36282.0	7.925	16540.4	10.168	55133.9
9.884 9.754	39140.8 34072.1	9.808 9.637	49379.3 46088.8	9.828 9.858	35758.8 36791.0	7.868 7.881	16252.9 16346.5	10.134 9.929	55362.4 47478.2
9.751	34446.7	9.719	44248.0	9.224	24883.6	7.355	14462.7	9.926	48678.6
9.755 9.494	34102.5 28812.5	9.793 9.700	41833.5 40135.5	9.705 9.131	32403.7 27042.4	7.203	15408.3	9.923 9.836	50418.3 46668.5
9.512	28807.3	9.692	39575.4	9.404	29092.7			9.837	46558.2
9.493 8.779	29981.7 23280.0	9.674	39495.1	9.492	29880.5			9.811	46478.4
8.740	23024.0	9.436 9.486	31964.9 32283.2	9.156 9.106	27006.1 28638.3	R123/isopentan	e	9.706 9.681	44454.0 42013.9
8.740	23339.3	9.459	32134.6	8.811	22358.2	•		9.704	44384.6
8.023 7.900	17927.2 17413.7	9.042 9.074	27275.5 27578.6	8.637 8.223	20958.0 18572.6	(99.5/0.5)		9.555 9.529	39792.8 40380.3
7.942	17746.7	8.251	18885.6	8.230	18205.8	File:		9.203	28748.4
6.492 6.428	14171.2 13836.7	8.172 8.137	18909.1 18794.3	8.222 7.609	18094.9	GT5ISO.DA	Т	9.059	26741.9
6.462	14062.6	6.436	13780.7	7.568	15366.9 16978.9	ΔT _* (K)	q" (W/m²)	9.338 9.125	29928.3 27146.5
3.218 3.160	4741.1 4574.3	6.439	13333.7	10.665	76535.9	10.654	84348.5	9.124	26644.9
3.117	4420.8	6.451	13317.0	10.636 10.468	75091.3 63677.5	10.640	84665.0	9.088 8.750	27038.4 24243.9
10.654	75388.5			10.446	63049.2	10.638 10.452	85543.1 73786.4	8.860	25381.6
10.617 10.591	75022.5 75015.2	R123/hexand	e	10.457 10.370	63959.6 57308.0	10.427	73821.7 73631.0	10.486 10.565	77687.0 79631.8
10.539	69794.5	(99/1)		10.382	57606.8	10.426 10.246	64881.1	10.452	78879.9
10.529 10.516	69862.0 69863.8	File:		10.286 10.284	52592.0 52486.2	10.201	64339.2	10.263 10.247	65130.5 65785.3
10.467	64970.8			10.074	46388.7	10.195 10.007	63898.0 51668.5	10.264	66170.8
10.465 10.457	65699.3 66477.8	GT1HEX.D.	AT	10.074	46640.8	9.944	53399.3	9.936	47063.9
10.343	59049.8	ΔT,(K)	q" (W/m²)	10.052 9.883	46052.8 38605.0	9.978 9.795	52060.0 43693.3	9.919 9.885	47714.3 47373.0
10.364 10.365	59818.4	10.553 10.551	77774.6 78431.4	9.848	38708.5	9.746	42537.3	9.661	37342.6
10.196	59466.4 54406.1	10.530	78414.9	9.811 9.600	38785.3 31827.0	9.737	42639.0	9.665 9.635	37961.1 37980.8
10.185	53758.2	10.375	66238.7	9.569	32564.2	9.551 9.559	35643.9 35777.2	9.410	29206.2
10.182 9.986	53198.0 44074.9	10.395 10.422	66251.5 65607.0	9.604 8.978	31441.4 28224.2	9.212	27765.1	9.382	28643.4 25095.4
9.962	44109.0	10.234	53851.8	9.047	28509.5	9.269 9.295	27780.2 27810.5	9.092 8.557	20192.9
9.935 9.778	43432.2 35491.8	10.246 10.074	55155.3 50199.5	9.109	25960.1	9.536	39822.1	8.581	20381.4
9.808	35864.8	10.081	49493.8	8.872 8.895	26573.8 27067.1	10.528 10.504	72520.0 73490.4	8.581 8.659	20381.4 21629.8
9.698	36474.9	10.065 9.894	49586.0 41126.4	10.664	75556.7	10.483	74834.1	7.847	15231.8
9.199 9.183	27075.3 27380.7	9.952	40847.0	10.689 10.478	75195.5 62722.5	10.355	64328.4	7.813 7.257	15052.8 14008.2
9.256	26730.7	9.958	41037.6	10.470	63416.2	10.341 10.361	64042.6 64209.2	7.183	12844.0
8.132 8.148	19483.4 19796.7	9.604 9.577	29616.5 29920.3	10.466 10.477	63663.3 63231.6	10.222	54201.9	7.059 5.258	13745.5 9103.8
8.145	20281.5	9.603	29965.7	9.765	35107.0	10.200 10.127	53731.5 52876.0	5.258	8958.1
6.933 7.017	14662.9 14157.8	8.970 9.031	28136.4 28909.5	10.354	55564.5	9.929	49219.3		
7.066	14853.1	9.047	28883.2	10.147 10.145	47799.4 48708.4	9.985 9.979	51791.7 51940.0	R123/isopentane	
6.121 6.072	13214.8 12567.3	8.698 8.732	24410.9 24581.7	10.114 9.799	48076.3 35141.6	9.779	41799.5	(99/1)	
				5.755	03141.0	9.780	41430.5	(22/1)	

1.036	01110011	.T	7.765 7.780 7.238 7.159	17342.8 17362.5 15016.7 14851.8	9.985 9.688 9.743 9.345	48550.2 41309.9 38944.2 31310.9	10.864 10.839 10.811 10.798	62937.3 58121.0 57763.6 57966.7	10.243 10.249 10.228 9.967	40052.3 40048.1 40695.4 34155.0
10.384 70077.8 10.379 77481.0 8.827 23886.8 10.379 1812.3 8.448 2132.6 21					9.334	31305.6	10.737	54876.1	10.034	34102.7
10.287	10.354	70977.8	10.767	75491.0	8.837	23699.8	10.679	51612.3	9.948	31334.6
10.500										
10.228 57.68.7.2 10.17 2750.04 7.828 1882.28 10.181 3719.18 3.028 2288.11 10.228 2758.28 10.227 2758.28 10.228 2758.28 10.227 2759.28 10.227 2759.28 10.228 2759.28 10.227 2759.28 10.228 10.228	10.308	62244.9	10.619	65959.5	7.810	20208.4	10.395	46224.5	9.398	28874.7
10.228 \$240.06 10.47 \$873.44 10.738 74.422.3 10.072 \$3643.3 \$3643.3 \$3677 \$2864.2 \$10.151 \$10.161 \$4175.3 \$10.022 \$3633.3 \$10.643 \$7085.0 \$8.776 \$3004.0 \$44.7 \$2115.0 \$10.022 \$3633.3 \$10.643 \$7085.0 \$8.776 \$3004.0 \$44.7 \$2115.0 \$10.022 \$3633.3 \$10.643 \$7085.0 \$8.776 \$3004.0 \$44.42 \$2115.0 \$10.022 \$4730.2 \$3777.2 \$3683.2 \$10.643 \$7085.0 \$8.776 \$3004.0 \$44.42 \$2115.0 \$10.022 \$4730.2 \$3777.2 \$3180.3 \$10.643 \$10.643 \$410.0 \$2.700 \$3777.2 \$3180.3 \$10.643 \$10.022 \$4730.2 \$3.777 \$3180.3 \$10.643 \$10.022 \$4730.2 \$3.777 \$3180.3 \$10.643 \$10.022 \$4730.2 \$3.777 \$3180.3 \$10.643 \$10.022 \$4731.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2 \$4711.5 \$4742.2	10.228	57487.2	10.517	57560.4	7.928	18562.9	10.181	37183.8	9.026	23381.1
10.175										
10.063	10.175	52879.2	10.307	48342.1	10.761	72649.3	10.099	36684.9	8.617	21741.0
10.0291 5003.4.2 10.001 38891.2 10.588 81450.3 9.763 22975.2 8.417 19227.7 8.542 4772.3 8.442 2313.5 8.585 32274.9 10.538 8126.3 8.218.3 321.5 8.585 32274.9 10.538 8126.3 8.218.3 321.5 8.585 32274.9 10.538 8126.3 8.218.3 321.5			10.022	38453.5	10.643			30043.0	8.442	
10.022										
8.922 4231.5 5 8.688 32474.0 10.239 51276.6 8.918 24778.9 8.051 16387.1 16397.8 16397.	10.022	47730.2	9.757	31696.3	10.573	61442.5	9.325	29422.4	8.233	19610.5
9.792 38176.7 8.345 2798.27 10.270 5224.1 8.077 196.21.8 11.071 75777.3 8.05.2 4168.0 8.233 11.071 10.05 8022.5 8.002 11.071 10.05 80.05 8022.5 8.002 11.071 10.05 80.05 8022.5 8.002 11.071 10.05 80.05 8022.5 8.002 11.071 10.05 80.05 8022.5 8.002 11.071 10.05 80.05 8022.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 11.071 10.05 80.05 802.5 8.002 10.05 802.5 8.002 10.05 802.5 8.002 10.05 802.5 8.002 10.05 802.5 8.002 10.05 802.5 8.002 10.05 802.5 8.002 10.05 802.5 8.002 10.05 802.5 8.002 10.05 802.5 8.0			9.658	32474.0	10.239	51297.6			8.051	16387.1
8.790 88190.3 9.364 2760.7 9.383 41056.6 8.233 18172.0 11.065 80222.8 9.592 33098.8 9.346 2760.7 9.383 41056.6 11.019 7726.7 9.383 41056.6 11.019 7726.7 9.383 41056.8 9.376 9										
\$.002 31847.5 8.897 22064.7 8.895 22084.8 7.800 2384.2 9.746 30886.8 10.998 7.7565.1 10.978 7.7201.0 9.897 7.800.1 9.897	9.790	38190.3	9.364	27692.2	9.962	41686.0	8.233	18172.0	11.095	80328.5
8 9.446	9.602	31847.5	8.697	22064.7	9.897	40585.4	11.018	75526.1	10.987	72310.3
\$.425										
\$ 9.306 25883.7 7.780 17362.5 8.780 23734.4 10.323 44437.2 10.305 60647.2 \$ 9.237 24726.8 7.238 15016.7 7.484 103550.2 10.308 43805.3 10.308 60233.2 \$ 9.237 23782.3 10.728 7.3875 10.686 74340.5 9.941 23226.8 10.464 52798.3 \$ 9.207 23782.3 10.728 7.4826.5 10.686 74340.5 9.941 23226.8 10.647 53871.5 \$ 9.240 22882.8 10.738 7.4826.8 10.686 74340.5 9.941 2326.8 10.647 53871.5 \$ 10.488 72382.4 10.628 86915.8 10.661 74268.8 10.62 23340.0 10.528 50560.0 \$ 10.481 72153.5 10.738 74824.6 10.662 74664.8 10.662 74664.8 \$ 10.482 74150.3 10.631 68975.2 10.407 67848.9 10.661 74268.8 \$ 10.481 73153.6 10.577 65174.1 10.382 68048.2 10.670 \$ 10.482 74783.3 10.574 65174.1 10.382 68048.2 10.670 \$ 10.492 74783.3 10.574 65174.1 10.382 68048.2 10.670 \$ 10.493 64065.1 10.554 54735.5 10.108 57597.3 10.286 \$ 10.268 64051.1 10.268 55701.2 10.269 58044.2 10.870 \$ 10.268 64377.1 10.289 55914.8 10.035 54742.7 10.385 \$ 10.268 64377.1 10.289 55914.8 10.035 54742.7 10.385 \$ 10.276 64377.1 10.286 55701.2 10.047 74707.0 10.885 \$ 10.028 50336.3 10.054 45317.2 10.060 44311.6 \$ 10.276 64377.1 10.289 55914.8 10.035 47427.0 10.885 64368.1 \$ 10.281 6388.4 10.286 55701.2 10.016 47427.7 10.885 64368.1 \$ 10.082 50336.3 10.054 45317.2 10.870 10.885 10.058 10.058 \$ 10.082 50336.3 10.054 45317.2 10.870 10.885 10.058 \$ 10.083 50336.3 10.054 45317.2 10.870 10.885 10.058 1	9.426	29083.5	7.800			25723.4	10.766	61456.5	10.920	66318.7
9.327 250919 7.159 148518 7.561 16877.2 9.507 32811.2 10.728 54932.7 8.235 2344.8 7.171 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7 7.5896 1707.0 1 14856.7	9.305	25883.7	7.780	17362.5	8.780	23735.4	10.323	44437.2	10.805	60647.2
9.235 23448 7.171 14856.7 7.596 16709.5 9.593 33215.1 10.6461 51718.8 9.207 23732.3 10.726 77897.5 10.892 749.6 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1										
9.240 23982.8 10.738 74282.5 10.652 74694.6 9.051 24923.8 10.647 55387.5 10.455 72382.4 10.559 8919.0 10.6177 74247.3 9.106 23246.3 10.526 8019.5 10.417 8098.8 9.107 23246.3 10.526 8019.5 10.417 8098.8 9.107 23246.3 10.526 8019.5 10.417 8098.8 9.107 23246.3 10.526 8019.5 10.417 10.418 10.	9.235	23449.8	7.171	14856.7	7.596	16709.5	9.953	33215.1	10.661	51718.8
10.482 7469.3 10.630 65208.8 10.435 66088.6 8.970 22080.0 10.538 50475.0 10.492 7479.3 10.491 73153.6 10.497 68174.1 10.492 7473.3 10.491 73153.6 10.497 68174.1 10.382 68048.2 8.913 2295.5 10.093 32297.9 10.492 74738.3 10.591 6873.2 10.293 64095.1 10.594 6437.1 10.289 5914.8 10.035 47870.0 10.998 79191.8 9.656 31459.3 10.289 64095.1 10.289 5914.8 10.035 47870.0 10.998 79191.8 9.615 31318.6 10.281 63856.4 10.285 55701.2 10.011 47422.7 10.915 64851.1 9.432 27254.3 10.281 63856.4 10.285 55701.2 10.011 47422.7 10.915 68455.1 9.423 27255.1 10.191 50014.4 10.190 64454.6 8.882 8.892	9.240	23692.8	10.738	74282.6	10.662	74664.6	9.051	24923.8	10.647	55387.5
10.492 7519.0 3 10.534 88756.2 10.407 67849.9 9.007 22387.5 10.098 33297.9 10.452 74738.3 10.577 85173.7 10.238 88048.1 8.913 23882.0 10.075 33802.6 10.452 74738.3 10.574 85378.7 10.238 58842.2 11.034 72713.3 10.020 33712.2 11.04.2 7448.1 10.274 85378.7 10.238 58842.2 11.034 72713.3 10.020 33712.2 11.04.2 7448.1 10.274 85378.1 10.289 58914.8 10.035 47870.0 10.883 71891.8 9.615 31318.6 10.281 63856.4 10.265 55914.8 10.035 47870.0 10.883 71891.8 9.615 31318.6 10.281 63856.4 10.265 55914.8 10.035 47870.0 10.883 71891.8 9.615 31318.6 10.281 63856.4 10.166 48345.4 9.9892 47833.0 10.883 88225.0 9.373 27204.3 10.184 57421.3 10.006 448316.2 9.5802 47833.0 10.883 68225.0 9.373 27204.3 10.184 57421.3 10.006 448316.2 9.5802 30644.2 10.520 57815.6 10.011 10.033 50182.6 9.561 32279.2 9.075 30827.9 10.688 56402.0 9.9737 27204.3 10.033 50182.6 9.561 32279.2 9.075 30827.9 10.688 56402.0 (99.500.5) 10.083 50182.6 9.561 32279.2 9.075 30827.9 10.688 56402.0 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.681 56147.3 (99.500.5) 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.083 50182.6 9.580 32742.6 9.061 30889.8 10.083 50182.6 9.061 30889.8 10.083 50182.6 9.061 30889.8 10.083 50182.6 9.061 30889.8 10.083 50182.6 9.061 30889.8 10.083 50182.6 9.061 30889.8 10.083 50182.6 9.061 30										
10.452 74738.3 10.574 85378.7 10.230 58842.2 11.034 72713.3 10.020 38712.2 10.295 74431.3 10.581 8543.2 10.215 57715.8 11.034 72713.3 10.020 38712.2 10.298 64095.1 10.384 54738.5 10.189 57873.3 10.885 7288.7 3.205 31485.3 10.298 64095.1 10.384 54738.5 10.189 57837.3 10.885 7288.7 3.205 31485.3 10.298 64095.1 10.285 85201.2 10.215 7715.8 10.885 7288.7 3.205 31485.3 10.298 64095.1 10.381 58014.4 10.285 85201.2 10.011 7432.7 10.0815 86828.1 3.243 27755.5 10.181 58018.4 10.186 84345.4 9.992 47393.0 10.883 68229.0 9.373 27204.3 10.194 5732.1 10.060 48345.4 9.992 47393.0 10.883 68229.0 9.373 27204.3 10.179 58381.3 10.057 45114.2 9.582 36053.8 10.753 6223.5 10.002 50328.4 10.044 48316.8 9.580 36357.2 10.002 50328.4 10.044 48316.2 9.582 36053.8 10.753 6223.5 10.002 50328.4 10.044 48317.2 9.582 36053.8 10.753 6223.5 10.002 50328.4 10.054 48317.2 9.582 36053.8 10.753 6223.5 10.002 50328.4 10.054 48317.2 9.582 36053.8 10.753 6223.5 10.002 50328.4 10.054 48317.2 9.582 36053.8 10.753 5224.8 10.002 50328.4 10.054 48317.2 9.582 36053.8 10.753 5224.8 10.002 50328.4 10.004 48317.2 9.582 3.003 30088.8 10.681 56147.3 (99.5/0.5) 10.002 50328.4 10.004 40.002 50328.4 10.004 40.002 50328.4 10.004 40.002 50328.4 10.002 50328.	10.492	76190.3	10.634				9.007	22367.5	10.098	
10.2296 64095.1 10.354 54733.5 10.191 57597.3 10.885 72488.7 3.626 31495.3 10.276 64317.1 10.289 55914.8 10.035 47870.0 10.588 71991.8 9.615 31816.6 10.281 63856.4 10.285 56701.2 10.011 47432.7 10.915 68456.1 3.237.2 2755.5 10.1616 5618.4 10.1616 5618.4 10.285 56701.2 10.011 47432.7 10.915 68456.1 3.237.2 2755.5 10.0179 5638.4 10.083 5018.4 10.083 5018.2 10.083 5018.2 9.581 31.00.6 4 4811.2 9.582 31653.8 10.053 5018.2 9.581 31.00.6 4 4811.2 9.582 31653.8 10.533 5018.6 10.083 5018.6 9.586 3278.6 9.661 32379.2 9.075 30827.9 10.6 688 56402.0 5408.6 140.083 5018.6 9.580 32742.6 9.061 30888.8 10.681 56147.3 9.884 40452.7 9.585 32781.4 9.073 31004.1 10.588 5214.8 56147.3 9.883 42123.7 10.584 5242.8 9.681 42012.2 8.813 22761.2 8.831 10.004 34802.8 30	10.452	74738.3	10.574	65379.7	10.230	56842.2	11.034	72713.3	10.020	38712.2
10.281 63856.4 10.285 55914.8 10.035 47870.0 10.988 71991.8 9.615 31318.6 10.281 63856.4 10.285 56701.2 10.011 4782.7 10.915 68446.1 9.422 72555.5 10.161 56018.4 10.146 43345.4 9.992 47393.0 10.883 68229.0 9.9.73 27204.3 10.179 5885.3 10.060 44831.6 9.580 36357.2 10.870 67313.6 10.179 5885.3 10.060 44831.6 9.580 36053.8 10.780 67313.6 10.079 5858.3 10.067 44831.4 9.580 36053.8 10.079 67313.6 10.0725 67313.6 10.0										
10.161 56018.4 10.146 48345.4 9.992 47393.0 10.833 68229.0 9.373 27204.3 10.179 57432.1 10.060 48931.6 9.580 36357.2 10.870 67813.6 10.082 50338.1 10.094 48911.2 9.583 36442.2 10.652 54786.4 10.083 50182.6 9.561 33374.6 9.661 30274.6 9.661 30274.6 9.661 9.	10.276	64317.1	10.269	55914.8	10.035		10.958			
10.179 \$58581.3 10.057 45114.2 9.582 36053.8 10.755 63238.5 10.052 50338.1 10.054 45817.2 9.582 36448.2 10.652 54786.4 57864.5 10.083 50182.6 9.561 32379.2 9.075 300827.9 10.686 56402.0 (99.5/0.5) 9.884 40452.7 9.585 32742.6 9.061 30888.8 10.581 5617.3 52148.9 56402.0 (99.5/0.5) 9.884 40452.7 9.585 32742.6 9.061 30888.8 10.581 5617.3 52148.9	10.161	56018.4	10.146	48345.4	9.992	47393.0	10.883	68229.0		
10.082										
10.083	10.082	50338.1								ine
9.881 42031.2 8.913 27097.3 8.344 21123.7 10.543 52429.4 F1IC: 9.839 42120.2 8.921 25213.2 8.381 21095.3 9.956 35129.9 675CYC.DAT 9.680 3420.2.9 8.913 27553.8 8.381 21095.3 9.956 35129.9 36128.7 6.550 3420.2.9 8.913 27553.8 8.381 21095.3 9.956 35129.9 36128.7 6.550 36129.9 9.692 34394.9 8.402 18728.8 6.502 12700.0 10.048 34802.8 34802.8 9.529 31597.1 10.845 75558.4 6.502 12700.0 10.048 34802.8 10.843 76945.0 10.929 75858.4 8.969 28788.1 10.821 76848.4 8.902 24190.0 10.828 76826.2 9.514 31542.6 10.725 75891.4 8.902 24190.0 10.828 76826.2 9.514 31541.1 10.650 75832.8 8.951 2738.6 10.662 78035.7 78119.9 9.049 26906.6 10.567 73119.9 7.772 16408.5 10.611 58930.0 8.749 24366.6 10.579 73173.7 (99/1) 7.613 15951.8 10.611 58930.0 8.749 24366.6 10.579 73173.7 (99/1) 7.613 15951.8 10.611 58930.0 8.749 24366.6 10.579 73173.7 (99/1) 7.613 15951.8 10.611 58930.0 7.865 123708.2 10.558 72916.0 File: 10.825 72928.5 10.451 51263.3 7.965 20086.0 10.423 60048.8 7.985 20086.0 10.423 60048.8 7.985 20086.0 10.423 60048.8 7.985 20086.0 10.423 60048.8 7.985 20086.0 10.344 56839.5 5610.0 10.342 56424.9 11.104 7433.5 10.596 55980.2 10.341 56839.5 56190.0 11.0267 54584.4 11.109 74213.3 10.595 510.651 10.369 48640.4 (99.9)0.1) 10.267 54584.4 11.109 74213.3 10.595 510.651 60332.0 10.142 30633.0 10.590 5190.0 10.508 5190.2 10.341 56839.5 54464.0 10.999 51268.9 10.561 60322.0 10.142 33633.0 10.590 5190.0 10.589 51435.6 10.259 44646.3 10.168 37460.3 10.590 5190.2 10.370 48394.3 10.520 4223.2 10.151 4115.3 9.805 4224.6 10.079 51396.0 10.590 51390.3 10.590 513	10.083	50182.6	9.580	32742.6	9.061	30889.8	10.681	56147.3		
9.703 34202.9 8.913 27553.8 8.381 21095.3 9.556 35129.9 GTDCYC.DAT 9.690 34535.4 8.369 21284.2 6.650 13227.1 10.079 34126.7 3T,KK 0.d ("W/m") 10.845 75358.4 6.650 13227.1 10.079 34126.7 3T,KK 0.d ("W/m") 10.845 75358.4 8.502 12700.0 10.048 34802.8 10.821 76546.0 9.599 1.0327 1.0025		42031.2	8.913	27097.3	8.344	21123.7	10.543	52429.4	File:	
9.690 34535.4 8.369 2128.4.2 6.650 13227.1 10.079 34126.7 ΔT.(K) α' (Wim²) 9.592 3459.7.1 10.845 75358.4 6.502 12700.0 10.048 34802.8 10.821 75846.0 9.496 31542.6 10.725 7581.4 8.902 24190.0 10.821 76481.4 9.514 31541.1 10.650 76832.8 8.905.7 7382.8 8.911 23940.7 10.825 76825.7 9.649 26906.6 10.567 73119.9 7.772 16408.5 10.672 684113 8.749 24366.6 10.579 7313.7 7.613 15951.8 10.611 59830.0 8.689 23276.4 10.434 60107.0 7.1612 10.825 72928.5 10.590 5390.27 7.985 18765.7 10.411 59834.2 10.241 56839.5 11.111 72931.5 10.987 72735.3 10.451 59809.2 72928.5 10.451 59809.2									GT5CYC.D.	AT
9.529 31597.1 10.845 75358.4 6.821 14151.4 9.609 28788.1 10.221 76481.4 9.496 31541.6 10.725 75891.4 8.902 24190.0 10.228 75822.8 9.514 31541.1 10.650 75832.8 8.911 23940.7 10.652 75828.2 9.049 26906.6 10.567 73119.9 7.772 16408.5 10.672 68411.3 8.749 24366.6 10.579 73119.9 7.7595 16553.6 10.611 59830.2 8.569 23276.4 10.434 60107.0 7.595 16553.6 10.611 59878.6 7.865 2086.0 10.422 60248.8 18758.7 10.411 5983.2 6017.0 78846.7 10.461 45088.2 7.885 18758.7 10.342 56424.9 56424.9 11.111 73931.5 10.544 6558.4 4518.8 7.885 18758.2 10.342 56424.9 56424.9 11.111 7	9.690	34535.4	8.369	21284.2	6.650	13227.1	10.079			
9.514 31541.1 10.650 75832.8 8.911 23940.7 10.665 64437.5 8.965 27338.6 10.662 78035.7 78035.7 8123/cyclohexane 8.902 24142.6 10.672 68411.3 9.049 26906.6 10.567 73119.9 (99/1) 7.513 15951.8 10.611 5967.8 8.749 24366.6 10.579 73173.7 (99/1) 7.613 15951.8 10.611 59578.6 8.711 23708.2 10.558 72916.0 File: 7.595 16553.6 10.590 15930.7 8.659 23276.4 10.434 60107.0 File: 10.825 72928.5 10.451 51263.3 7.865 18765.7 10.411 59834.2 60248.8 6010.7 10.987 78735.3 10.461 49082.7 7.999 19927.2 10.341 56839.5 60248.8 60248.8 71.900 10.342 56424.9 10.342 56424.9 10.350 56190.0 11.104 74433.5 10.654 5899.9 10.337 48058.2 (99.9/0.1) 10.254 54684.0 10.999 61268.9 10.595 61058.2 10.385 42464.6 10.254 54684.0 10.999 61268.9 10.595 61058.2 10.385 42464.6 GTOISO.DAT 10.037 51395.0 10.698 51365.2 10.224 47316.7 10.185 36738.5 10.698 51360.0 10.599 61268.9 10.274 47316.7 10.185 37480.3 10.595 61058.2 10.374 37320.8 610.698 5135.6 10.239 47463.7 10.698 5135.6 10.239 47464.3 10.599 61268.9 10.274 47316.7 10.185 40402.0 GTOISO.DAT 10.037 51395.0 10.698 5135.6 10.239 4464.6 10.239 4464.6 10.374 47316.7 10.185 40402.0 GTOISO.DAT 10.037 51395.0 10.698 5135.6 10.239 4464.3 10.174 37320.8 10.767 75491.0 9.947 47830.0 10.719 51685.2 10.131 42445.5 10.172 37359.1 10.764 65595.9 9.972 43394.3 10.520 4324.2 10.129 43668.3 9.867 29865.2 10.699 76289.8 9.809 43061.2 10.517 43395.2 9.852 36268.6 9.588 2990.5 10.619 65959.5 9.808 42972.5 10.513 43118.7 10.062 40621.1 9.720 27906.5 10.517 43395.2 9.852 36268.6 9.588 22144.9 10.517 57560.4 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013 21246.8 10.037 57544.7 9.90 4206.0 65597.2 9.833 43637.6 10.099 35348.9 9.924 37231.2 9.699 28517.2 10.517 57560.4 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013 21246.8 10.037 57544.7 9.90 4206.0 6.009 370818.8 9.588 22144.9 10.507 57447.0 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013 21246.8 10.037 57544.7 9.90 2018.8 9.186 29446.3 9.366 29054.2 8.958 22144.9 10.031 2018.2 8000 2018.8 9.186 29446.3 9.366 29054.2 8.958 22144.9 10.031 2018.2 8000 2018.8 9.186 29446.	9.529	31597.1	10.845	75358.4			9.609	28788.1		
8.965 27338.6 10.662 78035.7 R123/cyclohexane 8.902 24142.6 10.672 68411.3 9.049 26906.6 10.567 73111.9 73111.9 7.613 15951.8 10.611 55630.0 8.749 24366.6 10.579 73173.7 (99/1) 7.613 15951.8 10.611 55953.6 10.579 73173.7 (99/1) 7.613 15951.8 10.611 55953.6 10.579 73173.7 (99/1) 7.613 15951.8 10.611 55953.6 10.579 73173.7 (99/1) 7.613 15951.8 10.611 55953.6 10.579 73173.7 (99/1) 7.613 15951.8 10.611 55953.6 10.579 73173.7 (99/1) 7.613 15951.8 10.611 55953.6 10.579 73173.7 (1							8.911	23940.7		
8.749 24366.6 10.579 73173.7 (99/1) 7.613 15951.8 10.611 59978.6 8.711 23708.2 10.558 72916.0 File: 10.825 72928.5 10.590 59302.7 8.669 23276.4 10.434 60107.0 File: 10.825 72928.5 10.451 51263.3 7.865 18765.7 10.411 58834.2 GT1CYC.DAT 10.997 78735.3 10.461 49088.2 7.985 19927.2 10.341 56839.5 AT.(K) a* (W/m³) 10.848 71970.1 10.389 4864.7 10.480 49158.8 7.989 19927.2 10.341 56839.5 AT.(K) a* (W/m³) 10.848 71970.1 10.389 4864.3 2						ane			10.672	68411.3
8.669 23276.4 10.434 60107.0 F1le: 10.825 72928.5 10.451 5128.3 7.865 18765.7 10.411 59834.2 7.965 20086.0 10.423 60248.8 GT1CYC.DAT 11.021 78846.7 10.468 49158.8 7.989 19927.2 10.341 56839.5 AT.(K) q* (W/m³) 10.848 71970.1 10.369 48643.2 (99.9/0.1) 10.267 54584.4 11.109 74214.3 10.564 59809.9 10.337 48058.2 (99.9/0.1) 10.267 54584.4 11.109 74214.3 10.565 61058.2 10.385 42646.6 10.267 10.262 54368.4 10.891 63279.4 10.274 47316.7 10.185 40402.0 (97.01150.DAT 10.037 51396.0 10.688 51435.6 10.239 46464.3 10.174 37320.8 AT.(K) q* (W/m³) 9.947 47830.0 10.719 51685.2 10.131 4214.5 10.174 37320.8 10.784 75064.9 19.972 48394.3 10.520 43234.2 10.129 43668.3 9.867 29886.2 10.759 76299.8 9.808 42972.5 10.513 43118.7 10.062 40621.1 9.720 27900.5 10.619 65595.5 9.833 43637.6 10.099 37081.8 9.699 37081.8 9.699 610.611 65900.3 9.200 37081.8 9.699 610.611 65900.3 9.200 37081.8 9.699 610.611 65900.3 9.200 37081.8 9.699 610.611 65900.3 9.800 43061.2 10.511 43118.7 10.062 40621.1 9.720 27900.5 10.640 65597.2 9.809 43061.2 10.517 43395.2 9.852 36268.6 9.588 26242.9 10.619 65959.5 9.833 43637.6 10.093 36239.6 9.909 37081.8 9.699 26317.2 10.611 65900.3 9.266 31911.1 9.378 23118.8 9.366 29054.2 8.958 22144.9 10.517 57560.4 9.274 30342.1 9.378 23118.8 9.366 29054.2 8.958 22144.9 10.517 57560.4 9.274 30342.1 9.378 23118.8 9.366 29054.2 8.958 22144.9 10.517 57560.4 9.274 30342.1 9.378 23118.8 9.366 29054.2 8.958 22144.9 10.517 57560.4 9.274 30342.1 9.378 23118.8 9.366 29054.2 8.958 22144.9 10.517 57560.4 9.274 30342.1 9.378 23113.8 9.366 29054.2 8.958 22144.9 10.517 57560.4 9.274 30342.1 9.378 23113.8 9.366 29054.2 8.958 22144.9 10.517 57560.4 9.274 30342.1 9.378 23113.8 9.366 29054.2 8.958 22144.9 10.517 57560.4 9.274 30342.1 9.378 23113.8 9.366 29054.2 8.958 22144.9 10.351 4918.7 7.908 17703.7 8.631 2440.8 9.096 25090.0 7.793 17385.6 10.031 4918.7 7.908 17703.7 8.631 2440.8 9.096 25090.0 7.793 17385.6 10.031 4440.8 9.096 25090.0 7.793 17385.6 10.031 4440.8 9.096 25090.0 7.793 17385.6 10.031 4440.8 9.096 25090.0 7.793 17385.6 10.031 44	8.749	24366.6	10.579	73173.7	(99/1)		7.613	15951.8	10.611	59578.6
7.885 18765.7 10.411 59834.2 GC18.8 GT1CYC.DAT 10.997 78735.3 10.461 49088.2 7.989 19927.2 10.341 56839.5 AT.(K) q* (W/m²) 10.848 71970.1 10.368 48643.2 R123/isopentane 10.342 56424.9 11.111 73931.5 10.764 65598.4 10.363 48640.4 (99.9/0.1) 10.267 54584.4 11.109 74214.3 10.595 61058.2 10.337 48058.2 File: 10.262 54368.4 10.891 63279.4 10.274 47316.7 10.142 39633.0 File: 10.262 54368.4 10.891 63279.4 10.274 47316.7 10.185 40402.0 GT01ISO.DAT 10.153 50789.5 10.880 63596.2 10.263 47349.1 10.168 37460.3 AT.(K) q* (W/m²) 9.947 47830.0 10.698 51435.6 10.239 46464.3 10.174 37320.8 10.784 75064.9 9.972 48394.3 10.520 43234.2 10.129 43668.3 9.867 29886.2 10.767 75491.0 10.049 47463.7 10.483 43106.8 10.151 44115.3 9.805 29907.5 10.767 75491.0 10.049 47463.7 10.483 43106.8 10.151 44115.3 9.805 29907.5 10.699 87629.8 9.808 42572.5 10.513 43118.7 10.062 40621.1 9.720 27900.5 10.699 65595.2 9.833 43637.6 10.093 35239.6 9.909 37081.8 9.589 26317.2 10.611 65900.3 9.300 32040.6 10.093 35239.6 9.909 37081.8 9.589 26317.2 10.611 65900.3 9.300 32040.6 10.093 35248.9 9.924 37231.2 9.649 26549.1 10.517 57560.4 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013 21480.8 10.467 5734.1 10.900 3725.5 10.500 30040.6 9.361 29366.2 9.013 21480.8 10.467 5734.4 7.911 19281.0 8.595 2527.3 9.139 25408.1 7.682 15217.6 10.307 48342.1 7.911 19281.0 8.595 2527.3 9.139 25408.1 7.093 17385.6 10.307 48342.1 7.911 19281.0 8.595 2527.3 9.139 25408.1 7.093 17385.6 10.307 48342.1 7.911 19281.0 8.595 2527.3 9.139 25408.1 7.093 17385.6 10.307 48342.1 7.911 19281.0 8.595 2527.3 9.139 25408.1 7.093 17385.6 10.300 2000 2000 2000 2000 2000 2000 2000	8.669	23276.4	10.434	60107.0	File:		10.825	72928.5		
7.989 19927.2 10.341 56839.5 AT.(K) Q* (W/m²) 10.848 71970.1 10.369 48643.2 R123/isopentane 10.342 56424.9 11.111 73931.5 10.654 65589.4 10.363 48640.4 (99.9/0.1) 10.257 54584.4 11.104 74433.5 10.654 59809.9 10.337 48058.2 10.350 10.254 54644.0 10.999 61268.9 10.561 60232.0 10.142 39633.0 10.254 54644.0 10.999 61268.9 10.561 60232.0 10.142 39633.0 10.151 10.254 54684.4 10.891 63279.4 10.274 47316.7 10.185 40402.0 10.153 50788.5 10.880 63596.2 10.263 47349.1 10.168 37460.3 10.153 50788.5 10.880 63596.2 10.263 47349.1 10.168 37460.3 10.767 10.767 75491.0 9.947 47830.0 10.719 51685.2 10.131 42414.5 10.172 37359.1 10.767 75491.0 9.947 48394.3 10.520 43234.2 10.129 43668.3 9.867 29886.2 10.767 75491.0 10.049 47463.7 10.483 43106.8 10.151 44115.3 9.805 29907.5 10.759 76298.8 9.808 42972.5 10.513 43118.7 10.062 40621.1 9.720 27800.5 10.619 65597.2 9.833 43637.6 10.093 35239.6 9.909 37081.8 9.599 26317.2 10.611 65900.3 9.300 32040.6 10.093 35239.6 9.909 37081.8 9.599 26317.2 10.611 65900.3 9.300 32040.6 10.093 35239.6 9.909 37081.8 9.699 26317.2 10.611 65900.3 9.300 3040.6 10.093 35239.6 9.909 37081.8 9.699 26317.2 10.611 65900.3 9.266 31911.1 9.378 29113.8 9.366 29054.2 8.958 22144.9 10.307 48342.1 7.911 19281.0 8.595 25827.3 9.139 25408.1 7.093 12966.0 10.307 48342.1 7.911 19281.0 8.595 25827.3 9.139 25408.1 7.093 12966.0 10.307 48342.1 7.911 19281.0 8.595 25827.3 9.139 25408.1 7.093 12560.					GT1CYC.D.	AT			10.461	49088.2
(99.9/0.1)	7.989		10.341				10.848		10.369	48643.2
File: 10.254 54644.0 10.999 61268.9 10.561 60232.0 10.142 39633.0 GT01ISO.DAT 10.153 50789.5 10.880 63596.2 10.263 47349.1 10.168 37460.3 10.168 10.037 51396.0 10.698 51435.6 10.239 46464.3 10.174 37320.8 10.767 75491.0 10.049 47463.7 10.483 43106.8 10.151 44115.3 9.805 29807.5 10.767 75491.0 10.049 47463.7 10.483 43106.8 10.151 44115.3 9.805 29807.5 10.769 76299.8 9.808 42972.5 10.513 43118.7 10.062 40621.1 9.720 27900.5 10.640 65597.2 9.809 43061.2 10.517 43395.2 9.852 36268.6 9.588 26242.9 10.619 65959.5 9.833 43637.6 10.093 35239.6 9.909 37081.8 9.699 26317.2 10.611 65900.3 9.300 32040.6 10.079 35348.9 9.924 37231.2 9.649 26549.1 10.517 57560.4 9.266 31911.1 9.378 29113.8 9.366 29054.2 8.958 22144.9 10.507 57447.0 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013 21480.8 10.447 56734.4 7.931 19281.0 8.595 25827.3 9.139 25408.1 9.032 1296.6 10.307 48342.1 7.908 17703.7 8.631 24404.8 9.092 25107.1 7.901 16260.3 10.620 3.002 3.002 3.003 3.0040.6 3.003 3.003 3.003 3.003 3.0040.6 3.003 3.003 3.003 3.0040.6 3.003 3.003 3.003 3.0040.6 3.003 3.00	R123/isopentan	e	10.350	56190.0			10.654	59809.9	10.337	48058.2
File: 10.262 54368.4 10.891 63279.4 10.274 47316.7 10.185 40402.0 GT01ISO.DAT 10.153 50789.5 10.880 63596.2 10.263 47349.1 10.168 37460.3 AT.(K) 9° (W/m²) 9.947 47830.0 10.719 51685.2 10.131 42414.5 10.172 37359.1 10.784 75064.9 9.972 4399.43 10.520 43234.2 10.129 43668.3 9.867 29886.2 10.767 75491.0 9.808 42972.5 10.483 43106.8 10.151 44115.3 9.805 29907.5 10.759 76299.8 9.808 42972.5 10.513 43118.7 10.062 40621.1 9.720 27900.5 10.640 65597.2 9.809 43061.2 10.517 43395.2 9.852 36268.6 9.588 26242.9 10.619 65959.5 9.833 43637.6 10.093 35239.6 9.909 37081.8 9.699 26317.2 10.611 65900.3 9.266 31911.1 9.378 29113.8 9.366 29054.2 8.958 22144.9 10.507 57447.0 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013 21480.8 10.447 56734.4 7.911 19281.0 8.595 25827.3 9.139 25408.1 9.033 21286.6 10.351 49184.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.362 47814 9.092 25107.1 7901 16560.3 10.3631 49184.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.3631 49184.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.3632 47814 9.092 25107.1 7901 16560.3 10.6603 47316.7 10.185 40404.8 9.092 25107.1 7901 16560.3 10.3631 49184.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.3631 49184.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.092 25107.1 7.901 16560.3 10.3632 47814 9.	•									42464.6 39633.0
GTOIISO.DAT 10.037 51396.0 10.688 51435.6 10.239 46464.3 10.174 37320.8 ΔΤ.(K) q² (W/m²) 9.947 47830.0 10.799 51885.2 10.131 42414.5 10.172 37320.8 10.784 75064.9 10.049 47463.7 10.483 43106.8 10.151 44115.3 9.805 2987.5 10.759 76299.8 9.808 42972.5 10.513 43118.7 10.062 40621.1 9.720 27800.5 10.640 65597.2 9.833 43637.6 10.093 35239.6 9.909 37081.8 9.699 26317.2 10.611 65900.3 9.300 32040.6 10.079 35348.9 9.924 37231.2 9.649 26549.1 10.517 57560.4 9.266 31911.1 9.378 29113.8 9.366 29054.2 8.958 22144.9 10.507 57447.0 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013	(99.9/0.1)								10.185	
10.784 75064.9 9.972 48394.3 10.520 43234.2 10.129 43688.3 9.867 29886.2 10.767 75491.0 10.049 47463.7 10.483 43106.8 10.151 44115.3 9.805 29907.5 10.769 76299.8 9.808 42972.5 10.513 43118.7 10.062 40621.1 9.720 27900.5 10.640 65597.2 9.809 43061.2 10.517 43395.2 9.852 36288.6 9.588 26242.9 10.619 65959.5 9.833 43637.6 10.093 35239.6 9.909 37081.8 9.699 26317.2 10.611 65900.3 9.300 32040.6 10.079 35348.9 9.924 37231.2 9.649 26549.1 10.517 57560.4 9.266 31911.1 9.378 29113.8 9.366 29054.2 8.958 22144.9 10.507 57447.0 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013 21480.8 10.447 56734.4 7.930 20178.8 9.186 29466.3 9.365 29224.1 9.033 21296.6 10.307 48342.1 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.3351 49184.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.3351 49184.7 7.908 17703.7 8.631 24404.8 9.092 25107.1 7.901 16260.3	(99.9/0.1) File:				10.891	63279.4	10.274	47316.7		
10.767 75491.0 9.808 42972.5 10.513 43106.8 10.151 44115.3 9.805 29907.5 10.759 76299.8 9.809 43061.2 10.517 43395.2 9.852 36268.6 9.588 26242.9 10.619 65959.5 9.833 43637.6 10.093 35239.6 9.909 37081.8 9.699 26317.2 10.611 65900.3 9.266 31911.1 9.378 29113.8 9.366 29054.2 9.699 26549.1 10.507 57560.4 9.266 31911.1 9.378 29113.8 9.366 29054.2 8.958 22144.9 10.507 57447.0 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013 21480.8 10.447 56734.4 7.930 20178.8 9.186 29446.3 9.365 29224.1 9.033 21296.6 10.307 48342.1 7.911 19281.0 8.595 25827.3 9.139 25408.1 9.03 21296.6 10.351 49184.7 7.908 17703.7 8.631 24404.8 9.092 25107.1 7.901 16260.3	(99.9/0.1) File: GT01ISO.D.		10.153 10.037	50789.5 51396.0	10.891 10.880 10.698	63279.4 63596.2 51435.6	10.274 10.263 10.239	47316.7 47349.1 46464.3	10.174	37460.3 37320.8
10.640 65597.2 9.809 43061.2 10.517 43395.2 9.852 36268.6 9.588 26242.9 10.619 65959.5 9.833 43637.6 10.093 35239.6 9.909 37081.8 9.699 26317.2 10.611 65900.3 9.300 32040.6 10.079 35348.9 9.924 37231.2 9.649 26549.1 10.517 57560.4 9.266 31911.1 9.378 29113.8 9.366 29054.2 8.958 22144.9 10.507 57447.0 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013 21480.8 10.447 56734.4 7.930 20178.8 9.186 29466.3 9.365 29224.1 9.033 21296.6 10.307 48342.1 7.911 19281.0 8.595 2527.3 9.139 25408.1 7.682 15217.6 10.351 49184.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.032 2486.5 10.670 73622.6 8.652 24281.4 9.092 25107.1 7.901 16260.3	(99.9/0.1) File: GT01ISO.D.	q" (W/m²)	10.153 10.037 9.947 9.972	50789.5 51396.0 47830.0 48394.3	10.891 10.880 10.698 10.719	63279.4 63596.2 51435.6 51685.2	10.274 10.263 10.239 10.131 10.129	47316.7 47349.1 46464.3 42414.5 43668.3	10.174 10.172	37460.3 37320.8 37359.1
10.611 65900.3 9.300 32040.6 10.079 35348.9 9.924 37231.2 9.649 25549.1 10.517 57560.4 9.266 31911.1 9.378 29113.8 9.366 29054.2 8.958 22144.9 10.507 57447.0 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013 21480.8 10.447 56734.4 7.930 20178.8 9.186 29446.3 9.365 29224.1 9.033 21296.6 10.307 48342.1 7.911 19281.0 8.595 25827.3 9.139 25408.1 7.682 15217.6 10.351 49184.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.331 49184.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.331 49184.7 7.908 17703.7 8.631 24404.8 9.092 25107.1 7.901 16260.3	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.787	q" (W/m²) 75064.9 75491.0	10.153 10.037 9.947 9.972 10.049	50789.5 51396.0 47830.0 48394.3 47463.7	10.891 10.880 10.698 10.719 10.520 10.483	63279.4 63596.2 51435.6 51685.2 43234.2 43106.8	10.274 10.263 10.239 10.131 10.129 10.151	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3	10.174 10.172 9.867 9.805	37460.3 37320.8 37359.1 29886.2 29907.5
10.517 57560.4 9.266 31911.1 9.378 29113.8 9.366 29054.2 8.958 22144.9 10.507 57447.0 9.274 30343.1 9.179 30040.6 9.361 29366.2 9.013 21480.8 10.447 56734.4 7.930 20178.8 9.186 29446.3 9.365 29224.1 9.033 21296.6 10.307 48342.1 7.911 19281.0 8.595 25827.3 9.139 25408.1 7.682 15217.6 10.351 49184.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.331 2456.5 10.670 73622.6 8.652 244814 9.092 25107.1 7.901 16260.3	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.765 10.759	q" (W/m²) 75064.9 75491.0 76299.8	10.153 10.037 9.947 9.972 10.049 9.808 9.809	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43061.2	10.891 10.880 10.698 10.719 10.520 10.483 10.513	63279.4 63596.2 51435.6 51685.2 43234.2 43106.8 43118.7 43395.2	10.274 10.263 10.239 10.131 10.129 10.151 10.062 9.852	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3 40621.1 36268.6	10.174 10.172 9.867 9.805 9.720 9.588	37460.3 37320.8 37359.1 29886.2 29907.5 27900.5 26242.9
10.447 55734.4 7.930 20178.8 9.186 29446.3 9.365 29224.1 9.033 21296.6 10.307 48342.1 7.911 19281.0 8.595 25827.3 9.139 25408.1 7.682 15217.6 10.351 49184.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.351 49184.7 7.908 17703.7 8.631 24404.8 9.096 25107.1 7.901 16260.3	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.767 10.759 10.640 10.619	q* (W/m²) 75064.9 75491.0 76299.8 65597.2 65959.5	10.153 10.037 9.947 9.972 10.049 9.808 9.809 9.833 9.300	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43061.2 43637.6 32040.6	10.891 10.880 10.698 10.719 10.520 10.483 10.513 10.517 10.093	63279.4 63596.2 51435.6 51685.2 43234.2 43106.8 43118.7 43395.2 35239.6	10.274 10.263 10.239 10.131 10.129 10.151 10.062 9.852 9.909 9.924	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3 40621.1 36268.6 37081.8 37231.2	10.174 10.172 9.867 9.805 9.720 9.588 9.699	37460.3 37320.8 37359.1 29886.2 29907.5 27900.5 26242.9 26317.2
10.307 4834.7 7.908 17703.7 8.631 24404.8 9.096 25090.0 7.793 17385.6 10.002 25090.0 7.908 1700.20 25090.0 7.908 1700.0 7.0 7.908 1700.0 7.0 7.0 7.0 7.	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.767 10.759 10.640 10.619 10.611 10.517	q" (W/m²) 75064.9 75491.0 76299.8 65597.2 65959.5 65900.3 57560.4	10.153 10.037 9.947 9.972 10.049 9.808 9.809 9.833 9.300 9.266	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43637.6 32040.6 31911.1	10.891 10.880 10.698 10.719 10.520 10.483 10.517 10.093 10.079 9.378	63279.4 63596.2 51435.6 51685.2 43234.2 43106.8 43118.7 43395.2 35239.6 35348.9 29113.8	10.274 10.263 10.239 10.131 10.129 10.151 10.062 9.852 9.909 9.924 9.366	47316.7 47349.1 46464.3 42414.5 43668.3 40621.1 36268.6 37081.8 37231.2 29054.2	10.174 10.172 9.867 9.805 9.720 9.588 9.699 9.649 8.958	37460.3 37320.8 37359.1 29886.2 29907.5 27900.5 26242.9 26317.2 26549.1 22144.9
10.022 28452 10.670 73622.6 8.652 242814 9.092 25107.1 7.901 16260.3	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.767 10.759 10.640 10.619 10.611 10.517 10.507	q* (W/m²) 75064.9 75491.0 76299.8 65597.2 65959.5 65900.3 57560.4 57447.0	10,153 10,037 9,947 9,972 10,049 9,808 9,809 9,833 9,300 9,266 9,274 7,930	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43061.2 43637.6 32040.6 31911.1 30343.1 20178.8	10.891 10.880 10.698 10.719 10.520 10.483 10.517 10.093 10.079 9.378 9.179 9.186	63279.4 63596.2 51435.6 51685.2 43234.2 43106.8 43118.7 43395.2 35239.6 35348.9 29113.8 30040.6 29446.3	10.274 10.263 10.239 10.131 10.129 10.151 10.062 9.852 9.909 9.924 9.366 9.361	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3 40621.1 36268.6 37081.8 37231.2 29054.2 29366.2 29324.1	10.174 10.172 9.867 9.805 9.720 9.588 9.699 9.649 8.958 9.013 9.033	37460.3 37320.8 37359.1 29886.2 29907.5 27900.5 26242.9 26317.2 26549.1 22144.9 21480.8 21296.6
10.021 28945 0 10.664 73694.8 8.752 23204.8 8.453 22173.6 6.741 12774.7	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.767 10.759 10.640 10.619 10.611 10.517 10.507 10.447	q* (W/m²) 75064.9 75491.0 76299.8 65597.2 65959.5 65900.3 57560.4 57447.0 56734.4 48342.1	10,153 10,037 9,947 9,972 10,049 9,808 9,809 9,833 9,300 9,266 9,274 7,930 7,911	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43061.2 43637.6 32040.6 31911.1 30343.1 20178.8 19281.0 17703.7	10.891 10.880 10.698 10.719 10.520 10.483 10.517 10.093 10.079 9.378 9.179 9.186 8.595	63279.4 63596.2 51435.6 51685.2 43106.8 43118.7 43395.2 35239.6 35348.9 29113.8 30040.6 29446.3 25827.3 24404.8	10.274 10.263 10.239 10.131 10.151 10.062 9.852 9.909 9.924 9.366 9.361 9.365 9.139 9.096	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3 40621.1 36268.6 37081.8 37231.2 29054.2 29366.2 29224.1 25408.1 25090.0	10.174 10.172 9.867 9.805 9.720 9.588 9.649 8.958 9.013 9.033 7.682 7.793	37460.3 37320.8 37359.1 29886.2 29907.5 27900.5 26242.9 26317.2 26549.1 22144.9 21480.8 21296.6 15217.6
10.001 36591.2 10.643 74076.7 8.669 22277.0 10.990 21756.2 6.743 13579.6	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.767 10.759 10.640 10.619 10.611 10.517 10.507 10.447 10.307 10.351 10.022	q* (W/m²) 75064.9 75491.0 76299.8 65597.2 65959.5 65900.3 57560.4 57447.0 56734.4 48342.1 49184.7 38453.5	10,153 10,037 9,947 9,972 10,049 9,808 9,809 9,833 9,300 9,266 9,274 7,930 7,911	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43061.2 43637.6 32040.6 31911.1 30343.1 20178.8 19281.0 17703.7	10.891 10.880 10.698 10.719 10.520 10.483 10.517 10.093 10.079 9.378 9.179 9.186 8.595 8.631 8.652	63279.4 63596.2 51435.6 51685.2 43234.2 43106.8 43118.7 43395.2 35239.6 35348.9 23113.8 30040.6 29446.3 25827.3 24404.8 24281.4	10.274 10.263 10.239 10.131 10.151 10.062 9.852 9.909 9.924 9.366 9.361 9.365 9.139 9.096 9.092 8.453	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3 40621.1 36268.6 37081.8 37231.2 29054.2 29366.2 29224.1 25408.1 25090.0 25107.1 22173.6	10.174 10.172 9.867 9.805 9.720 9.588 9.699 9.649 8.958 9.013 9.033 7.682 7.793	37460.3 37320.8 37359.1 29886.2 29907.5 27900.5 26242.9 26317.2 26549.1 22144.9 21480.8 21296.6 15217.6 17385.6 16260.3
9.642 33268.7 10.633 69749.1 7.432 16333.9 10.984 71411.4 5.845 11620.8	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.767 10.759 10.640 10.619 10.517 10.507 10.447 10.307 10.351 10.022 10.021 10.001	q" (W/m²) 75064.9 75491.0 76299.8 65597.2 65959.5 65900.3 57560.4 57447.0 56734.4 48342.1 49184.7 38453.5 38945.9 38691.2	10,153 10,037 9,947 9,972 10,049 9,808 9,809 9,833 9,300 9,266 9,274 7,930 7,911 7,908 10,670 10,664	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43061.2 43637.6 32040.6 31911.1 30343.1 20178.8 19281.0 17703.7 73622.6 73694.8 74076.7	10.891 10.898 10.698 10.719 10.520 10.483 10.517 10.093 10.079 9.378 9.179 9.186 8.595 8.631 8.652 8.752 8.669	63279.4 63596.2 51435.6 51685.2 43106.8 43118.7 43395.2 35239.6 35348.9 29113.8 30040.6 29446.3 25827.3 24404.8 24281.4 23204.8	10.274 10.263 10.239 10.131 10.129 10.151 10.062 9.852 9.909 9.924 9.366 9.366 9.365 9.139 9.092 8.453	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3 40621.1 36268.6 37081.8 37231.2 29054.2 29366.2 29224.1 25408.1 25090.0 25107.1 22173.6 22113.1	10.174 10.172 9.867 9.805 9.720 9.588 9.699 9.649 8.958 9.013 9.033 7.682 7.793 7.901 6.741	37460.3 37320.8 37359.1 29886.2 29907.5 27900.5 26242.9 26317.2 26549.1 22144.9 21480.8 21296.6 15217.6 17385.6 16260.3 12774.7 13579.6
9.658 32474.0 10.643 70103.0 7.464 16874.4 10.997 71826.8 5.814 11445.9 9.774 23594.7 10.429 60384.4 6.814 14341.8 10.965 67577.9 5.830 11454.9	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.767 10.759 10.640 10.611 10.517 10.507 10.447 10.307 10.351 10.022 10.021 10.001 9.757	q* (W/m²) 75064.9 75491.0 76299.8 65597.2 65959.5 65900.3 57560.4 57447.0 56734.4 48342.1 49184.7 38453.5 38945.9 38691.2	10,153 10,037 9,947 9,972 10,049 9,808 9,809 9,833 9,300 9,266 9,274 7,930 7,911 7,908 10,670 10,664 10,643 10,633	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43061.2 43637.6 32040.6 31911.1 30343.1 20178.8 19281.0 17703.7 73622.6 73694.8 74076.7 70144.1 69749.1	10.891 10.880 10.698 10.719 10.520 10.483 10.517 10.093 10.079 9.378 9.179 9.186 8.595 8.631 8.652 8.752 8.669 7.446	63279.4 63596.2 51435.6 51685.2 43234.2 43106.8 43118.7 43395.2 35239.6 35348.9 29113.8 30040.6 29446.3 25827.3 24404.8 22277.0 16243.3	10.274 10.263 10.239 10.131 10.151 10.062 9.852 9.909 9.924 9.366 9.361 9.365 9.139 9.096 9.092 8.453 8.460 10.984	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3 40621.1 36268.6 37081.8 37231.2 29054.2 29366.2 29224.1 25408.1 25408.1 25090.0 25107.1 22173.6 22113.1 71766.3 71411.4	10.174 10.172 9.867 9.805 9.720 9.588 9.689 9.649 8.958 9.013 9.033 7.682 7.793 7.901 6.741 6.743 6.758 5.845	37460.3 37320.8 37359.1 29886.2 29907.5 26242.9 26317.2 26549.1 22144.9 21480.8 21296.6 15217.6 17385.6 16260.3 12774.7 13579.6 12584.5 11620.8
9.74 33584.7 10.431 60419.2 6.750 13640.9 10.991 67793.3 10.796 77335.4 9.345 27583.7 10.396 5982.2 10.796 77335.4	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.767 10.759 10.640 10.619 10.611 10.517 10.507 10.447 10.307 10.351 10.022 10.021 10.001 9.757 9.642 9.658	q* (W/m²) 75064.9 75491.0 76299.8 65597.2 65959.5 65900.3 57560.4 57447.0 56734.4 48342.1 49184.7 38453.5 38945.9 38691.2 31696.3 33268.7 32474.0	10.153 10.037 9.947 9.972 10.049 9.808 9.809 9.833 9.300 9.266 9.274 7.930 7.911 7.908 10.670 10.664 10.643 10.635 10.633 10.643	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43061.5 43061.6 31911.1 30343.1 20178.8 19281.0 17703.7 73622.6 73694.8 74076.7 70144.1 69749.1 70103.0 60384.4	10.891 10.880 10.698 10.719 10.520 10.483 10.517 10.093 10.079 9.378 9.179 9.186 8.595 8.631 8.652 8.752 8.669 7.446	63279.4 63596.2 51435.6 51685.2 43234.2 43106.8 43118.7 43395.2 35239.6 35348.9 29113.8 30040.6 29446.3 25827.3 24404.8 24281.4 23204.8 22277.0 16243.3 16333.9 16874.4	10.274 10.263 10.239 10.131 10.129 10.151 10.062 9.852 9.909 9.924 9.366 9.361 9.365 9.139 9.096 9.092 8.453 8.460 10.980 10.984 10.997 10.965	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3 40621.1 36268.6 37081.8 37231.2 29054.2 29366.2 29224.1 25408.1 25090.0 25107.1 22173.6 22113.1 71766.3 71411.4 71826.8 67577.9	10.174 10.172 9.867 9.805 9.720 9.588 9.699 9.649 8.958 9.013 9.033 7.682 7.793 7.901 6.741 6.743 6.758 5.845	37460.3 37320.8 37359.1 29886.2 29907.5 26907.5 26242.9 26317.2 26549.1 22144.9 21480.8 21296.6 15217.6 17385.6 16260.3 12774.7 13579.6 12584.5 11620.8
9.343 27406.7 10.338 55133.0 11.052 72977.7 10.731 56275.7 10.837 77177.9	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.767 10.759 10.640 10.619 10.611 10.517 10.351 10.022 10.021 10.001 9.757 9.642 9.658 9.724 9.345	q* (W/m²) 75064.9 75491.0 76299.8 65597.2 65959.5 65900.3 57560.4 57447.0 56734.4 48342.1 49184.7 38453.5 38945.9 38691.2 31696.3 33268.7 32474.0 33584.7 27583.7	10,153 10,037 9,947 9,972 10,049 9,808 9,809 9,833 9,300 9,266 9,274 7,930 7,911 7,908 10,670 10,664 10,643 10,633 10,633 10,643 10,429 10,431	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43061.2 43637.6 32040.6 31911.1 30343.1 20178.8 19281.0 17703.7 73622.6 73694.8 74076.7 70144.1 69749.1 60384.4 60419.2	10.891 10.898 10.719 10.520 10.483 10.517 10.093 10.079 9.378 9.179 9.186 8.595 8.631 8.652 8.752 8.669 7.446 7.432 7.464 6.814 6.750	63279.4 63596.2 51435.6 51685.2 43106.8 43118.7 43395.2 35293.6 35348.9 29113.8 30040.6 29446.3 25827.3 24404.8 24281.4 23204.8 22277.0 16243.3 16333.9 16874.4 14341.8	10.274 10.263 10.239 10.131 10.151 10.062 9.852 9.909 9.924 9.366 9.361 9.365 9.139 9.096 9.092 8.453 8.460 10.984 10.997 10.985	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3 40621.1 36268.6 37081.8 37231.2 29054.2 29366.2 29224.1 25408.1 25408.1 25090.0 25107.1 22173.6 22113.1 71766.3 71411.4 71826.8 67577.9 67793.3	10.174 10.172 9.867 9.805 9.720 9.588 9.649 8.958 9.013 9.033 7.682 7.793 7.901 6.741 6.743 6.758 5.845 5.814 5.830 10.796	37460.3 37320.8 37359.1 29886.2 29907.5 27900.5 26242.9 26317.2 26549.1 22144.8 21296.6 15217.6 17385.6 16260.3 12774.7 13579.6 12584.5 11620.8 11445.9 77335.4
8.697 22064.7 10.325 55879.1 11.028 72986.1 10.705 56832.5 10.708 69097.6 8.692 7398.2 10.315 55874.6 10.99 73500.7 10.488 47339.9 10.697 67469.0	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.767 10.759 10.640 10.619 10.611 10.517 10.507 10.447 10.307 10.351 10.022 10.021 10.001 9.757 9.642 9.658 9.724 9.345 9.364 9.343	q* (W/m²) 75064.9 75491.0 76299.8 65597.2 65959.5 65900.3 57560.4 57447.0 56734.4 48342.1 49184.7 38453.5 38945.9 38691.2 31696.3 33268.7 32474.0 33584.7 27583.7 27692.2 27406.7	10,153 10,037 9,947 9,972 10,049 9,808 9,809 9,833 9,300 9,266 9,274 7,930 7,911 7,908 10,670 10,664 10,643 10,633 10,633 10,643 10,431 10,338	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43061.2 43637.6 32040.6 31911.1 30343.1 20178.8 19281.0 17703.7 73622.6 73694.8 74076.7 70144.1 69749.1 70103.0 60384.4 60419.2 55624.3 55133.0	10.891 10.898 10.719 10.520 10.483 10.517 10.093 10.517 10.093 10.079 9.378 9.179 9.186 8.595 8.631 8.652 8.752 8.669 7.446 7.432 7.464 6.814 6.750 6.818	63279.4 63279.4 63596.2 51435.6 51685.2 43234.2 43106.8 43118.7 43395.2 35239.6 35348.9 29113.8 30040.6 29446.3 25827.3 24404.8 24281.4 23204.8 22277.0 16243.3 16333.9 16874.4 14341.8 13640.9 13683.9 72977.7	10.274 10.263 10.239 10.131 10.129 10.151 10.062 9.852 9.909 9.924 9.366 9.361 9.365 9.139 9.096 9.092 8.453 8.460 10.984 10.997 10.965 10.991 10.943 10.731	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3 40621.1 36268.6 37081.8 37231.2 29054.2 29366.2 29224.1 25408.1 25090.0 25107.1 22173.6 22113.1 71766.3 71411.4 71826.8 67577.9 67793.3 6834.2 56275.7	10.174 10.172 9.867 9.805 9.720 9.588 9.699 9.649 8.958 9.013 9.033 7.682 7.793 7.901 6.741 6.743 6.758 5.845 5.814 5.830 10.796 10.826 10.827	37460.3 37320.8 37359.1 29886.2 29907.5 26907.5 26242.9 26317.2 26549.1 22144.9 21480.8 21296.6 15217.6 17385.6 16260.3 12774.7 13579.6 12584.5 11620.8 11445.9 77335.4 77004.0 77177.9
8.698 23636.9 9.967 46949.0 10.870 61429.0 10.496 47381.5 10.672 67513.0 7.800 15469.0 9.967 47080.6 10.868 62990.8 10.495 46853.0 10.638 64991.5	(99.9/0.1) File: GT01ISO.D. AT.(K) 10.784 10.767 10.759 10.640 10.619 10.611 10.517 10.507 10.447 10.307 10.351 10.022 10.021 10.001 9.757 9.642 9.658 9.724 9.345 9.364 9.343	q* (W/m²) 75064.9 75491.0 76299.8 65597.2 65959.5 65900.3 57560.4 57447.0 56734.4 48342.1 49184.7 38453.5 38945.9 38691.2 31696.3 33268.7 32474.0 33584.7 27583.7 27692.2 27406.7	10,153 10,037 9,947 9,972 10,049 9,808 9,809 9,833 9,300 9,266 9,274 7,930 7,911 7,908 10,670 10,664 10,643 10,635 10,633 10,643 10,429 10,431 10,338 10,338 10,338 10,338	50789.5 51396.0 47830.0 48394.3 47463.7 42972.5 43061.2 43637.6 32040.6 31911.1 30343.1 20178.8 19281.0 17703.7 73622.6 73694.8 74076.7 70144.1 69749.1 70103.0 60384.4 60419.2 59624.3 55896.1 55896.1	10.891 10.898 10.719 10.520 10.483 10.517 10.093 10.517 10.093 10.079 9.378 9.179 9.186 8.595 8.631 8.652 8.752 8.669 7.446 7.432 7.464 6.814 6.750 6.818	63279.4 63596.2 51435.6 51685.2 43234.2 43106.8 43118.7 43395.2 35239.6 35348.9 29113.8 30040.6 29446.3 25827.3 24404.8 22277.0 16243.3 16333.9 16374.4 14341.8 13640.9 72977.7 72986.1 73500.7	10.274 10.263 10.239 10.131 10.129 10.151 10.062 9.852 9.909 9.924 9.366 9.361 9.365 9.139 9.096 9.092 8.453 8.460 10.980 10.984 10.997 10.965 10.991 10.943 10.731 10.706 10.488	47316.7 47349.1 46464.3 42414.5 43668.3 44115.3 40621.1 36268.6 37081.8 37231.2 29054.2 29366.2 29224.1 25408.1 25090.0 25107.1 22173.6 22113.1 71766.3 71411.4 71826.8 67577.9 67793.3 68634.2 56275.7 56832.6 47339.9	10.174 10.172 9.867 9.805 9.720 9.588 9.699 9.649 8.958 9.013 9.033 7.682 7.793 7.901 6.741 6.743 6.758 5.845 5.814 5.830 10.796 10.826 10.837 10.708	37460.3 37320.8 37359.1 29886.2 29907.5 27900.5 26242.9 26549.1 22144.9 21480.8 21296.6 15217.6 17385.6 16260.3 12774.7 13579.6 12584.5 11620.8 11445.9 77335.4 77004.0 77177.9 69097.6 67469.0

10.636	65833.4	10.928	75131.3	0.216	1 27545 1	10.572	60452.0	44.040	
10.636 10.637	66334.5	10.915	75925.2	9.216 9.475	27545.1 26191.0	10.572 10.573	69453.0 69418.7	11.018 11.013	56155.390 56328.840
10.586	58678.1	10.678	61724.4	7.987	18726.0	10.590	69556.7	10.892	46680.610
10.572	56250.3	10.624	62145.0 62778.4	7.985 8.026	18768.4	10.539	66985.0	10.886	48265.960
10.513 10.464	57677.0 50565.6	10.597 10.451	50695.5	6.618	19215.9 13429.8	10.539 10.518	66985.0 67281.8	10.879 10.635	47013.360 38852.760
10.424	48328.5	10.434	50179.9	6.575	13439.0	10.521	66950.2	10.627	38025.290
10.383	51138.3	10.435	48968.8	6.547	13407.7	10.469	59108.2	10.647	38412.350
10.304 10.291	46753.4 46954.7	10.436 10.426	46460.7 47625.1	6.180 6.121	12348.1 13805.2	10.549 10.515	71151.1 68719.6	10.328 10.325	32643.710 32628.020
10.287	46596.9	10.410	49208.6	6.137	12091.4	10.512	70836.1	10.330	32425.280
10.008	34468.6	10.370	43418.1	5.711	11103.0	10.433	65771.5	9.747	29851.740
9.975 9.998	34410.7 33823.9	10.352 10.106	44165.5 34834.5	5.720 5.736	11336.2 11118.6	10.451 10.434	65459.6 65215.2	9.789 9.766	29929.970 29776.100
9.525	25780.3	10.052	33310.8	5.045	10170.3	10.365	57120.8	8.923	20076.290
9.482	25461.0	10.079	33951.9	5.030	10264.4	10.354	56416.4	8.901	21954.960
9.206 9.039	24545.0 23899.6	9.656 9.623	30753.8 30566.4	4.534 4.477	8660.2 8592.6	10.366 10.235	56885.0 49449.2	8.951 8.462	21850.880 17146.950
9.075	24279.5	9.751	31031.2	4.467	8609.4	10.184	50803.4	8.394	18648.020
8.652 8.704	22818.5 22166.8	9.164 9.133	24618.7 24570.6	3.939 3.915	6937.5	10.246 10.111	52638.6	8.386	16803.040
8.676	22486.6	9.150	24352.2	3.912	6915.5 6853.6	10.111	45351.0 43431.7	7.976 7.896	16675.900 16607.490
8.453	19270.4	9.705	32403.7	10.640	74426.3	10.091	45560.7	7.891	16583.510
8.359 8.403	20773.6 20816.7	9.279 8.978	27905.8 21319.1	10.642 10.635	74765.2 75207.8	9.969 9.922	33820.4 33956.5	11.224 11.267	76471.270 78175.070
6.506	13298.8	9.002	21752.8	10.612	72777.0	9.915	35022.5	11.277	78373.330
6.520	13287.5	9.001	21753.3	10.608	72351.7	9.543	26608.9	11.148	70748.320
6.576 10.773	13340.6 74484.0	8.606 8.617	20838.2 20088.0	10.600 10.502	72495.1 65423.9	9.339 9.282	27086.7 26973.0	11.158 11.157	70006.630 70063.700
10.749	72259.4	8.614	20226.1	10.485	65483.8	8.279	19779.7	10.988	60124.870
10.758	75320.7			10.483	64218.6	8.332	18935.4	10.961	60416.020
10.685 10.690	65898.5 66033.3			10.313 10.285	47201.2 47038.6	8.286 7.711	19489.5 17895.6	10.960 10.744	61120.050 51919.240
10.686	64801.7			10.231	47383.7	7.704	17286.2	10.716	54290.720
10.662	59741.6			10.070	39890.6	7.560	17017.9	11.382	72288.230
10.618 10.602	59501.1 60409.5			10.065 10.095	39785.7 40329.4	7.097 7.183	15874.4 16058.6	11.389 11.368	72199.000 71840.170
10.601	56648.2	D100/		9.818	27314.2	7.255	16214.1	11.271	64778.450
10.452	49822.4	R123/pentane		9.821	27264.6	6.583	16049.0	11.279	64959.540
10.431 10.405	49130.6 47988.8	(99.5/0.5)		9.789 8.878	27626.5 26033.8	6.612 6.550	15928.3 16078.1	11.258 11.208	64419.360 60118.720
10.298	41881.2	File:		8.873	26186.6	5.734	13160.1	11.180	60021.780
10.312 10.305	44029.1 44707.4		· T	8.887 8.503	24346.3 21011.1	5.694 5.580	13039.3 12579.6	11.158 10.970	60044.410 53194.990
10.236	40406.8	GT5PEN.DA		8.513	20875.5	4.591	9225.9	10.981	53752.450
10.239	39927.7	ΔT,(K)	g" (W/m²)	8.492	21121.9	4.556	9401.8	11.047	53548.300
10.246 10.121	40099.6 34616.8	10.530 10.507	77189.0 78270.7	7.741 7.647	19282.4 19331.1	4.570 10.441	9381.3 73523.3	10.693 10.756	42139.690 42028.090
9.988	34660.5	10.531	78851.2	6.719	15784.9	10.450	73384.3	10.749	42120.740
9.942	33644.3	10.429	65946.5	6.792	16022.2	10.334	63502.7	10.548	34996.520
9.253 9.263	26161.4 25772.7	10.440 10.437	65960.0 65402.3	6.806 6.217	16159.7 14074.0	10.300 10.299	63763.8 64051.4	10.579 10.554	35532.950 35663.320
9.259	26310.2	10.311	51040.0	6.196	13969.4	10.125	48977.3	10.451	33308.550
11.079	73184.5	10.296	52760.9	6.214	13955.2	10.091	48079.3	10.451	33240.300
10.978 10.944	71583.3 71696.6	10.352 10.242	55911.6 51735.6	5.236 5.439	10568.5 11340.8	10.110 10.000	46371.3 41144.6	10.449 10.228	32831.390 30857.720
10.805	59297.2	10.238	51987.8	5.465	11488.4	9.975	40258.7	10.245	31168.600
10.745 10.783	60150.4 58882.0	10.281 10.113	50154.4 44644.2			9.981 9.793	40617.5 31853.1	9.466 9.391	25534.810 25713.020
10.623	53204.4	10.116	43849.3	R123/pentane		9.799	31918.4	9.418	25642.390
10.585	52828.2	10.140	45196.8	•		9.796	32009.4	8.609	19153.960
10.504 10.483	43764.6 44107.6	10.074 10.074	42984.1 42021.2	(99/1)		8.806 8.831	21992.3 22223.6	8.566 8.574	19518.790 19426.800
10.293	35377.8	10.099	42167.6	File:		8.836	22335.8	7.275	14814.380
10.305	36062.1	10.005	36777.8	GT1PEN.DA	Т	8.073	18550.5	7.245	14792.260
10.301 9.481	36227.8 27201.2	9.992 9.976	37931.3 38756.1	ΔT.(K)	q" (W/m²)	8.039 8.062	20590.3 18380.8	7.198 11.380	14791.260 73828.450
9.510	24579.0	9.905	31528.8	10.502	73285.6	6.540	15353.0	11.461	77214.940
9.563 10.908	24807.1 75512.6	9.939 9.935	31656.4 31816.9	10.502	74053.8	6.497 6.481	15372.4 15174.0	11.441 11.247	77833.630 66935.390
10.877	75484.3	9.772	28344.5	10.498 10.449	74377.8 70012.9	5.983	13448.8	11.225	66874.650
10.897	75144.2	9.746	27753.0	10.433	69793.3	5.896	13359.9	11.220	66113.950
10.809 10.806	66702.0 66650.2	9.684 9.113	26931.0 25133.2	10.409	69856.1	5.480 5.477	11946.2 11956.9	11.137 11.127	59114.020 58760.120
10.787	66561.0	9.142	25503.5	10.376 10.376	66951.8 66481.8	5.128	10731.4	11.121	59234.130
10.739 10.739	62915.9 62563.6	9.301 8.636	23343.2 21465.8	10.328	58297.6	5.210 4.418	11075.9 8324.1	10.826 10.821	47345.450 47688.610
10.730	62253.3	8.684	21550.9	10.319 10.320	57767.5 58181.2	4.448	8471.7	10.823	48001.470
10.475	51054.9	8.647	21461.4	10.175	50357.5	R123/heptane		10.508	36595.680
10.504 10.525	51292.7 51352.6	7.772 7.823	16793.9 16919.3	10.211	48983.3	(99.5/0.5)		10.495 10.028	37150.810 29469.170
10.409	46063.0	7.810	16359.4	10.176 10.017	48930.5 40398.2	` ,		10.063	30036.540
10.406	45871.7	10.638	77573.0	10.026	40650.3	File:		10.050	30171.050
10.415 10.283	46551.3 40205.1	10.616 10.593	76419.1 75982.9	10.037	40243.2	GT5HEP.DA	AΤ	9.249 9.274	22354.330 22194.410
10.282	41321.0	10.509	70652.4	9.696 9.491	28206.6 29343.0	ΔT.(K)	q" (W/m²)_	9.318	22598.170
10.276 10.047	40487.6 32725.6	10.496 10.500	70330.0 69908.5	9.423	29293.3	11.327	72301.820	8.979 9.019	20441.540 19213.640
10.005	32297.9	10.420	60903.2	9.398 9.455	27590.0 26020.7	11.319	72641.780	9.019 8.944	21603.390
9.978	32298.2	10.447	60664.5	9.464	26466.6	11.329 11.156	72095.440 63700.860	7.836	15999.110
9.451 9.415	26971.0 26625.1	10.445 10.399	60638.3 57382.0	8.956	22535.2	11.154	64383.910	7.821 7.803	15969.800 15912.550
9.343	25885.5	10.408	57521.6	9.011 8.962	22217.1 22600.4	11.138 10.933	64027.380 55020.690	7.202	13899.690
9.380 9.374	26111.9	10.288	46924.1	8.578	20890.9	10.915	55033.350	7.161	13709.550
8.775	26030.6 19639.9	10.266 10.269	46827.2 46581.0	8.601	21286.8	10.917	54875.680	7.123	13585.680
8.737	19507.2	9.995	34052.0	8.652 7.808	21565.4 19818.3	11.247 11.260	72188.070 72218.030		
8.725 7.954	20278.4 16308.2	10.047 9.708	34344.9 26596.8	7.853	19398.3	11.184	71863.290	R123	
8.020	16386.4	9.646	27419.1	7.808 10.602	19480.7 69724.9	11.025 11.072	63988.800 64512.120	File:	
8.011	16425.0	9.646	26194.2	10.604	71458.9	11.072	64019.050	GTFLDN.I	ΔT
10.920	74408.6	9.330	25167.9	10.573	71126.0	11.006	55917.680	OTT-LDIV.L	/A.I

$\Delta T_{\star}(K)$	g" (W/m²)	9.158	24179.2	10.300	58432.3	10.491	64191.4	6.883	14027.3
10.562	67849.5	9.156	24096.8	10.081	50168.7	10.483	65151.8	6.765	13837.5
10.546	70318.8	9.161	24017.4	10.074	49677.1	10.388	55387.8	6.343	12681.1
10.561	71190.3	8.929	22063.2	10.074	49137.4	10.045	42880.3	6.423	12911.0
10.505	65318.1	8.918	21575.1	9.944	45286.3	10.112	46439.6	6.434	12901.3
10.508	65563.0	8.894	21962.9	9.925	45755.5	10.118	46352.3	5.723	11899.1
10.489	65156.7	10.642	74716.6	9.812	39678.3	9.990	40012.9	5.712	12018.3
10.489	65156.7	10.623	70798.8	9.803	39001.8	9.969	40055.1	5.718	12026.0
10.429	58931.7	10.602	71507.4	9.785	39460.0	9.935	37859.0	4.375	7998.6
10.429	58931.7	10.462	66053.5	9.653	30847.9	9.900	35900.8	4.319	7813.2
10.409	58386.5	10.546	70273.5	9.686	30830.0	9.905	35920.9	4.281	7743.2
10.326	53430.4	10.428	62980.0	9.666	31686.0	9.876	36314.4	10.463	74774.7
10.326	53752.0	10.403	62697.5	9.056	26719.1	9.643	30427.1	10.473	75628.3
10.319	54158.8	10.447	62857.3	9.057	26718.3	9.705	31029.8	10.476	75465.2
10.156	50168.9	10.357	55542.4	9.056	26923.7	9.603	28908.2	10.384	66881.8
10.135	50168.9	10.367	55176.5	8.103	20275.1	9.520	27983.9	10.379	67125.3
9.916	39976.9	10.229	55344.2	8.071	20061.4	9.526	27825.1	10.393	66602.5
9.896	39837.1	10.293	53744.1	10.565	74084.1	9.551	28000.5	10.309	58291.4
9.900	39847.7	10.170	46021.4	10.557	75398.2	9.370	29502.0	10.293	58641.1
9.723	36242.7	10.148	46255.9	10.576	77791.3	9.043	24847 9	10.155	53543.8
9.740	35292.3	10.125	46441.7	10.515	73731.3	9.031	24847.9 23706.9	10.114	54085.5
9.773	34923.3	9.979	38281.9	10.536	73678.8	8.354	18301.1	10.127	53223.4
9.527	30650.9	9.993	39569.9	10.531	74241.4	8.418	18471.5	9.994	45418.1
9.538	30498.3	9.998	40472.2	10.393	61736.4	8.277	17623.9	9.978	44951.6
		9.906	37435.4	10.378	61166.2	6.601	12776.5	9.959	45357.5
9.584	29118.1 25495.8	9.893	38141.4	10.361	58207.8	6.624	14208.8	9.827	37097.5
9.212 9.133	25495.8	9.903	37328.9	10.321	52763.1	10.533	76637.2	9.823	36973.2
	73581.9	9.651	28001.7	10.319	54585.8	10.556	78693.5	9.825	37229.2
10.571	73581.9	9.625	28800.6	10.315	55210.8	10.558	79748.9	9.461	32987.3
10.614	78115.3	9.657	29526.1	10.170	45571.4	10.481	66709.8	9.401	32973.3
10.607 10.546	70964.8	9.341	28251.3	10.093	46878.7	10.427	66373.5	9.397	32954.7
10.570	71110.9	9.281	28307.2	10.103	47341.5	10.417	66810.2	9.021	28075.7
		9.335	28912.1	9.944	41402.8	10.337	60987.2	8.941	28929.1
10.566 10.492	71008.0 66332.9	9.068	24843.4	9.923	40718.2	10.337	60987.2	9.027	28134.1
10.492	64730.9	9.092	24625.0	9.893	38389.6	10.317	60698.0	8.953	28435.7
	61133.5	9.134	25838.8	9.706	32526.5	10.322	62050.1	8.985	29839.6
10.450	61369.3	8.843	20998.5	9.696	31833.2	10.175	52777.2	9.052	27365.1
10.440	61404.8	8.853	20823.9	9.683	31840.0	10.184	53010.0	8.681	22594.9
10.455		8.877	20682.1	9.574	29407.7	9.643	30427.1	8.661	22203.5
10.353 10.330	55113.7 55318.9	8.501	18113.7	9.568	29434.1	10.190	52692.8	8.667	22672.1
10.330	50709.0	8.492	18058.8	9.450	30199.6	10.024	44457.7	7.698	18765.2
10.229	50709.0	8.499	18269.6	9.566	29404.9	9.991	43808.8	7.689	16734.8
10.180	50816.0	7.719	16956.2	9.027	27884.4	9.972	43968.4	7.778	17493.6
	45722.6	7.787	15367.2	9.012	27862.7	9.808	34897.2	6.968	16129.8
10.112 10.103	45722.6	7.756	17268.7	8.796	26061.9	9.813	35012.8	7.016	16186.8
10.074	45283.7	7.187	13632.1	8.892	25278.4	9.282	30843.2	7.032	16309.8
	45283.7 41985.6	7.203	13612.2	8.930	25325.2	9.293	30908.6	5.867	12457.8
10.023	40758.1	7.175	15473.3	8.800	23815.7	9.296	31056.1	5.835	10784.8
9.972		10.615	77166.7	8.840	24609.7	8.592	20948.7	5.833	12556.9
9.812	32430.1 33109.5	10.602	76991.8	8.867	23881.9	8.579	20811.7		
9.806	33109.5	10.596	76544.6	7.456	15254.3	8.563	20881.6		
9.811	33397.9 28139.9	10.596	76544.6	7.402	15028.8	8.398	19940.7		
9.597		10.436	64851.8	7.367	15098.4	8.421	20336.4		
9.524	30884.5	10.392	64890.2	10.615	76070.2	7.257	15064.2		
9.587	29191.0 28945.9	10.336	65476.0	10.636	77280.7	7.222	15144.9		
9.312 9.338	28945.9 28862.6	10.304	57889.6	10.641	77489.4	7.209	15407.7		
		10.306	58126.3	10.489	68287.0	6.903	13952.7		
9.346	28760.1	. 0.000	00.20.0	10.400	. 00207.0	0.000			

Table 3 Number of test days and data points

Fluid (% mass)	Number of days	Number of data points
R123/isopentane (99.9/0.1)	7	186
R123/isopentane (99.5/0.5)	5	130
R123/isopentane (99/1)	2	64
R123/pentane (99.5/0.5)	3	113
R123/pentane (99/1)	4	113
R123/hexane (99.5/0.5)	5	158
R123/hexane (99/1)	6	175
R123/heptane (99.5/0.5)	5	111
R123/cyclohexane (99.5/0.5)	6	177
R123/cyclohexane (99/1)	7	182
R123	8	276

Table 4 Constants for cubic boiling curve fits for GEWA-TTM $\Delta T_s = A_0 + A_1 q'' + A_2 q''^2 + A_3 q''^3$ $\Delta T_s \text{ in Kelvins and q'' in W/m}^2$

Fluid 1.794215x10⁻¹⁴ -3.305539x10⁻⁹ R123/isopentane (99.9/0.1) ΔT_s≥8.5K 5.162564 2.213069x10⁻⁴ -9.070653x10⁻¹⁰ -7.87954x10⁻¹⁴ 3.242045 2.982389x10⁻⁴ ΔT_s≤9.5K -1.89345x10⁻⁹ 9.752913x10⁻¹⁵ 1.387433x10⁻⁴ R123/isopentane (99.5/0.5) 6.596237 $\Delta T_s \ge 8K$ 1.143663x10⁻³ 5.346848x10⁻¹³ -4.152663x10⁻⁸ -1.953420 $\Delta T_s \leq 9.5 K$ 6.239937 1.715029x10⁻⁴ -2.614962x10⁻⁹ 1.441917x10⁻¹⁴ R123/isopentane (99/1) ΔT_s≥0K 1.228280x10⁻³ -3.369096x10⁻⁸ 3.120554x10⁻¹³ -5.436468 $\Delta T_s \leq 10K$ -5.821089x10⁻¹⁰ R123/pentane (99.5/0.5) 8.725847 5.269372x10⁻⁵ 2.857575x10⁻¹⁵ $\Delta T_s \ge 9.7K$ -1.148459x10⁻¹³ 9.454738x10⁻¹ 4.434199x10-4 -1.626985x10⁻⁹ $\Delta T_s \leq 9.7K$ 6.665111 1.609068x10⁻⁴ -2.494825x10⁻⁹ 1.396698x10⁻¹⁴ R123/pentane (99/1) $\Delta T_s \ge 9K$ $-1.360361 \times 10^{-12}$ -5.514591x10⁻⁴ 6.175966x10⁻⁸ 5.494870 $\Delta T_s \leq 9K$ R123/hexane (99.5/0.5) 7.052807 1.128998x10⁻⁴ -1.337031x10⁻⁹ 6.112061x10⁻¹⁵ ΔT_s≥9K -8.785910x10⁻¹³ 2.307429 7.110618x10⁻⁵ 2.923709x10⁻⁸ $\Delta T_s \leq 9K$ -1.416185x10⁻¹⁰ -6.081541x10⁻¹⁶ 8.415715 4.340422x10⁻⁵ R123/hexane (99/1) $\Delta T_s \ge 9.5 K$ 1.061641x10⁻¹² 1.975566x10⁻³ -7.828415x10⁻⁸ -8.193729 $\Delta T_s \leq 9.5 K$ 1.071097x10⁻¹⁴ 7.642573 1.367339x10⁻⁴ -1.968117x10⁻⁹ R123/heptane (99.5/0.5) $\Delta T_s \ge 10K$ 8.135101x10⁻⁴ -2.198312x10⁻⁸ 2.182051x10⁻¹³ -4.695406x10⁻¹ $\Delta T_s \leq 10.7K$ R123/cyclohexane (99.5/0.5) 5.140536 2.582199x10⁻⁴ -4.229872x10⁻⁹ 2.413322x10⁻¹⁴ $\Delta T_s \ge 9K$ 2.736247x10⁻¹⁵ -3.819449 1.137466x10⁻³ -2.584559x10⁻⁸ $\Delta T_s \leq 9K$ 3.204812x10⁻⁴ 2.809359x10⁻¹⁴ 3.727304 -5.075217x10⁻⁹ R123/cyclohexane (99/1) $\Delta T_s \ge 0K$ 1.287840x10⁻¹⁴ 6.21063 1.71370x10⁻⁴ -2.475810x10⁻⁹ R123 $\Delta T_s \ge 9K$ $4.497650 x 10^{-13}$ -3.71984 1.21909x10⁻³ -3.952890x10⁻⁸ $\Delta T_s \leq 9.7K$

Table 5 Residual standard deviation of q" data from the mean ΔT_s

Tuois o Itali	idual statidate deviation of q de	tta Holli tile illean 215
Fluid	Low q"	High q"
	U (K)	U (K)
R123/isopentane (99.9/0.1)	(<9.5K)	(>8.5K)
	0.18	0.13
R123/isopentane (99.5/0.5)	(<9.5K)	(>8K)
	0.12	0.10
R123/isopentane (99/1)	(<10K)	(>0K)
_	0.18	0.12
R123/pentane (99.5/0.5)	(<9.7K)	(>9.7K)
	0.26	0.04
R123/pentane (99/1)	(<9K)	(>9K)
	0.21	0.08
R123/hexane (99.5/0.5)	(<9K)	(>9K)
	0.13	0.11
R123/hexane (99/1)	(<9.5K)	(>9.5K)
	0.15	0.06
R123/heptane (99.5/0.5)	(<10.7K)	(>10K)
- · · · · · · · · · · · · · · · · · · ·	0.16	0.08
R123/cyclohexane (99.5/0.5)	(<9K)	(>9K)
	0.19	0.10
R123/cyclohexane (99/1)	(<0K)	(>0K)
	0.14	0.14
R123	(<9.7K)	(>9K)
	0.25	0.11

Table 6 Average magnitude of 95% multi-use confidence interval for mean T_w-T_s(K)

Fluid	Low q"	High q"
	U (K)	U (K)
R123/isopentane (99.9/0.1)	0.16	0.07
R123/isopentane (99.5/0.5)	0.13	0.06
R123/isopentane (99/1)	0.21	0.10
R123/pentane (99.5/0.5)	0.24	0.04
R123/pentane (99/1)	0.22	0.07
R123/hexane (99.5/0.5)	0.15	0.04
R123/hexane (99/1)	0.13	0.04
R123/heptane (99.5/0.5)	0.15	0.06
R123/cyclohexane (99.5/0.5)	0.26	0.06
R123/cyclohexane (99/1)	0.07	0.07
R123	0.15	0.05

Fig. 1 Schematic of test apparatus

Fig. 2 OFHC copper GEWA-TTM test plate and thermocouple coordinate system

PERSPECTIVE SIDE VIEW

SIDE VIEW

GEWA-T

Fig. 3 Photograph of GEWA-TTMgeometry

Fig. 4 R123 pool boiling curve for GEWA-T surface at 277.6 K

Fig. 5 R123/isopentane (99.9/0.1) pool boiling curve for GEWA-T surface at 277.6 K

Fig. 6 R123/isopentane (99.5/0.5) pool boiling curve for GEWA-T surface at 277.6 K

Fig. 7 R123/isopentane (99/1) pool boiling curve for GEWA-T surface at 277.6 K

Fig. 8 R123/pentane (99.5/0.5) pool boiling curve for GEWA-T surface at 277.6 K

Fig. 9 R123/pentane (99/1) pool boiling curve for GEWA-T surface at 277.6 K

Fig. 10 R123/hexane (99.5/0.5) pool boiling curve for GEWA-T surface at 277.6 K

Fig. 11 R123/hexane (99/1) pool boiling curve for GEWA-T surface at 277.6 K

Fig. 12 R123/heptane (99.5/0.5) pool boiling curve for GEWA-T surface at 277.6 K

Fig. 13 R123/cyclohexane (99.5/0.5) pool boiling curve for GEWA-T surface at 277.6 K

Fig. 14 R123/cyclohexane (99/1) pool boiling curve for GEWA-T surface at 277.6 K

Fig. 15 Enhancement ratio for three dilute R123/isopentane mixtures

Fig. 16 Enhancement ratio for two dilute R123/pentane mixtures

Fig. 17 Enhancement ratio for two dilute R123/hexane mixtures

Fig .18 Effect of hexane on R123 pool boiling heat flux as measured in 1993

Fig. 19 Enhancement ratio for R123/heptane (99.5/0.5)

Fig. 20 Enhancement ratio for two dilute R123/cyclohexane mixtures

Fig. 21 Influence of molecular weight on the average enhancement ratio for dilute solutions of R123 and hydrocarbons

Fig. 22 Influence of boiling range on the average enhancement ratio for dilute solutions of R123 and hydrocarbons

Fig. 23 Influence of surface tension on the average enhancement ratio for dilute solutions of R123 and hydrocarbons

Fig. 24 Influence of molecular structure of hydrocarbon on the average enhancement ratio for dilute solutions of R123 and hydrocarbons

Fig. 25 Influence of mole fraction on the average enhancement ratio for dilute solutions of R123 and hydrocarbons

Fig. 26 Influence of mass fraction on the average enhancement ratio for dilute solutions of R123 and hydrocarbons