Node Degree for Attributed Graphs

- **Justification:** Node degree provides information about the node's connectivity, which can complement existing attributes.
- This was added as an additional item in the feature vector of each node.
- The original (paper) model configuration was used to rule out any other factors that may introduce variability in the AUC scores.
- Let's take a look at the results...

Node Degree for Attributed Graphs (cont.)

Datasets	GLADC	Node Features	Node Features + Node Degrees
MMP	0.696 ± 0.042		
HSE	0.618 ± 0.110		
p53	0.649 ± 0.216		
BZR	0.715 ± 0.067	0.683 ± 0.045	0.661 ± 0.078
DHFR	0.612 ± 0.041	0.560 ± 0.053	0.553 ± 0.050
COX2	0.615 ± 0.044	0.595 ± 0.093	0.632 ± 0.053
ENZYMES	0.583 ± 0.035	0.529 ± 0.071	0.547 ± 0.080
IMDB	0.656 ± 0.023		
AIDS	0.993 ± 0.005	0.993 ± 0.005	0.992 ± 0.008
NCI1	0.683 ± 0.011		

Node Degree | Attributed Graphs | Graph Convolutions

- Main takeaway: adding node degree does not seem to improve AUC scores significantly (or at all).
- From our previous discoveries... Graph convolutions outperformed linear layers when dealing with node degrees.
- Let's see if we can translate that knowledge.

Node Degree | Attributed Graphs | Graph Convolutions (cont.)

Datasets	GLADC	Node Features	Node Features + Node Degrees	Node Features + Node Degrees + GC
MMP	0.696 ± 0.042			
HSE	0.618 ± 0.110	1		
p53	0.649 ± 0.216	1		
BZR	0.715 ± 0.067	0.683 ± 0.045	0.661 ± 0.078	0.478 ± 0.074
DHFR	0.612 ± 0.041	0.560 ± 0.053	0.553 ± 0.050	0.574 ± 0.048
COX2	0.615 ± 0.044	0.595 ± 0.093	0.632 ± 0.053	0.465 ± 0.038
ENZYMES	0.583 ± 0.035	0.529 ± 0.071	0.547 ± 0.080	0.494 ± 0.038
IMDB	0.656 ± 0.023	1		
AIDS	0.993 ± 0.005	0.993 ± 0.005	0.992 ± 0.008	0.276 ± 0.363
NCI1	0.683 ± 0.011	1		

Node Degree | Attributed Graphs | Graph Convolutions (cont.)

- So no improvement...
- Perhaps GC work better overall with bigger datasets.
 - Note the attributed datasets are considerably smaller than the plain ones
 - The biggest attributed (AIDS): 2000 graphs.
 - The smallest plain (NCI1): 4110 graphs.

Loss Function Reconfiguration

- We have played around with removing L3 from LG.
- Let's now look at the effects of removing the contrastive loss (L2) to see how it impacts the AUC scores.

Node Degree for Attributed Graphs (cont.)

Datasets	GLADC	LG	LG - L2
MMP	0.696 ± 0.042	0.508 ± 0.138	0.507 ± 0.139
HSE	0.618 ± 0.110	0.551 ± 0.070	0.553 ± 0.070
p53	0.649 ± 0.216	0.497 ± 0.122	0.496 ± 0.121
BZR	0.715 ± 0.067	0.683 ± 0.045	0.682 ± 0.078
DHFR	0.612 ± 0.041	0.560 ± 0.053	0.560 ± 0.050
COX2	0.615 ± 0.044	0.595 ± 0.093	0.595 ± 0.093
ENZYMES	0.583 ± 0.035	0.529 ± 0.071	0.529 ± 0.071
IMDB	0.656 ± 0.023		
AIDS	0.993 ± 0.005	0.993 ± 0.005	0.992 ± 0.003
NCI1	0.683 ± 0.011	0.668 ± 0.034	0.667 ± 0.034