MOwNiT – arytmetyka komputerowa

Przygotował: Szymon Budziak

Problem:

Niech ciąg x_k będzie zdefiniowany:

$$x_1 = 4$$
, $x_{k+1} = 2^{2(k+1)+1} \cdot \frac{\sqrt{1 + x_k^2 / 2^{2(k+1)}} - 1}{x_k}$

Zaproponować inną postać tego związku i obliczyć x₃₀ dwoma sposobami.

Skomentować i spróbować objaśnić otrzymane wyniki.

Inna postać związku:

Podany wzór przekształcamy mnożąc ułamek przez "sztuczną jedynkę" jaką jest licznik tego ułamka tylko ze zmienionym znakiem przy 1 (+ 1).

$$\begin{split} x_{k+1} &= 2^{2(k+1)+1} \cdot \frac{\sqrt{1+x_k^2/2^{2(k+1)}}-1}{x_k} = \\ &= 2 \cdot 2^{2(k+1)} \cdot \frac{\sqrt{1+x_k^2/2^{2(k+1)}}-1}{x_k} \cdot \frac{\sqrt{1+x_k^2/2^{2(k+1)}}+1}{\sqrt{1+x_k^2/2^{2(k+1)}}+1} = \\ &= 2 \cdot 2^{2(k+1)} \cdot \frac{1+x_k^2/2^{2(k+1)}-1}{x_k \cdot (\sqrt{1+x_k^2/2^{2(k+1)}}+1)} = 2 \cdot 2^{2(k+1)} \cdot \frac{x_k^2}{x_k \cdot 2^{2(k+1)} \cdot (\sqrt{1+x_k^2/2^{2(k+1)}}+1)} = \\ &= \frac{2 \cdot x_k}{\sqrt{1+x_k^2/2^{2(k+1)}}+1} \end{split}$$

W zadaniu zostały wykorzystane 3 typy danych z biblioteki numpy:

- float32 jest to typ liczby zmiennoprzecinkowej o pojedynczej precyzji, taki sam jak typ float z C, posiada on 32 bity precyzji, gdzie 8 przeznaczonych jest na cechę i 23 na mantysę,
- double w numpy jest to typ liczby zmiennoprzecinkowej o podwójnej precyzji, taki sam jak typ double z C, posiada on 64 bity precyzji z czego 11 przeznaczonych jest na cechę i 52 na mantysę,
- 3) long double jest to typ liczby zmiennoprzecinkowej o rozszerzonej precyzji, taki sam jak typ long double z C, posiada on 128 bitów precyzji,

Dokładny opis typ zmiennych możemy otrzymać wywołując funkcję **np.finfo(zmienna)**, gdzie `zmienna` jest naszym typem danych. Funkcja ta użyta jest w jupyter notebooku.

Obliczenia oraz wykresy dla kolejnych x przy pomocy podanego wzoru:

Wykres 1: Wykres dla 30 kolejnych wartości x obliczonych przy pomocy podanego wzoru dla typu float

Wykres 2: Wykres dla 30 kolejnych wartości x obliczonych przy pomocy podanego wzoru dla typu double

Wykres 3: Wykres dla 30 kolejnych wartości x obliczonych przy pomocy podanego wzoru dla typu long double

X _n	float	double	long double
X ₁	4.0	4.0	4.0
X ₂	3.3137085	3.313708498984761	3.3137084989847603901
X ₃	3.1825979	3.1825978780745294	3.1825978780745281113
X ₄	3.1517248	3.151724907429258	3.1517249074292560925
X ₅	3.1441183	3.1441183852458665	3.1441183852459042777
X ₂₃	3.1339834	3.1339832938853593	3.1415913641129355899
X ₂₄	3.1110568	3.1110567880253206	3.1415823152036629893
X ₂₅	3.0536246	3.0536247478882985	3.1415330796402149921
X ₂₆	2.6198373	2.6198372951792175	3.1415046013554204743
X ₂₇	3.0536249	3.0536247478882985	3.1409113632183586267
X ₂₈	0.0	0.0	3.1390172659624233085
X ₂₉	nan	nan	3.12597834564362792
X ₃₀	nan	nan	3.1190235254148919498

Tabela 1: Obliczenia dla kolejnych wartości x przy pomocy podanego wzoru

Ciąg który mamy zadany w zdaniu zbiega do wartości π .

Możemy zauważyć, że dla różnych typów danych mamy mniej więcej zbliżone wartości, co można zauważyć w tabeli oraz na wykresach. Jednak w tabeli widać różnice w ostatnich liczbach, które wynikają z różnych precyzji. Typy float i double nie zwracają już poprawnych wyników dla liczby π od 23 miejsca w obydwu przypadkach. Jeśli chodzi o typ long double tutaj od 28 miejsca możemy zauważyć błąd w dokładności drugiej cyfry po przecinku. Wynika z tego, że wszystkie przetestowane typy są za mało precyzyjne aby określić 28, 29 i 30 wyraz ciągu. W przypadku typu float i double 28 wyraz jest już równy 0.0, co powoduje błędy w obliczaniu kolejnych wyrazów, ponieważ to 0.0 zostaje użyte w mianowniku.

Obliczenia dla kolejnych x przy pomocy przekształconego wzoru:

Wykres 4: Wykres dla 30 kolejnych wartości x obliczonych przy pomocy przekształconego wzoru dla typu float

Wykres 5: Wykres dla 30 kolejnych wartości x obliczonych przy pomocy przekształconego wzoru dla typu double

Wykres 6: Wykres dla 30 kolejnych wartości x obliczonych przy pomocy przekształconego wzoru dla typu long double

X _n	float	double	long double
X ₁	4.0	4.0	4.0
X ₂	3.3137085	3.3137084989847607	3.3137084989847603905
X ₃	3.1825979	3.1825978780745285	3.1825978780745281106
X ₄	3.1517248	3.151724907429256	3.1517249074292560986
X ₅	3.1441183	3.1441183852459047	3.1441183852459042628
X ₂₃	3.1415927	3.1415926535898313	3.1415926535898299572
X ₂₄	3.1415927	3.1415926535898033	3.141592653589802418
X ₂₅	3.1415927	3.1415926535897962	3.1415926535897955331
X ₂₆	3.1415927	3.141592653589795	3.141592653589793812
X ₂₇	3.1415927	3.141592653589795	3.1415926535897933818
X ₂₈	3.1415927	3.141592653589795	3.1415926535897932743
X ₂₉	3.1415927	3.141592653589795	3.1415926535897932474
X ₃₀	3.1415927	3.141592653589795	3.1415926535897932407

Tabela 2: Obliczenia dla kolejnych wartości x przy pomocy przekształconego wzoru

Możemy zauważyć, że dla różnych typów danych mamy mniej więcej zbliżone wartości, a nawet w niektórych przypadkach takie same. Dzięki zlikwidowaniu wyrazu x w mianowniku, poprzez przekształcenie wzoru program może zakończyć obliczenia i uzyskać wszystkie wyniki. Wyniki też są różne w zależności od użytego typu danych i ich precyzji. Jednak dzięki przekształceniu wzoru wyniki do 30 wyrazu są poprawne i bliskie prawdziwej wartości liczby π . Dodatkowo wyraz x_{30} dla typu double oraz long double jest równy wartości π z dokładnością do 11 miejsc po przecinku.

Literatura:

- [1] Wykłady nr 1 oraz nr 2 dr Rycerz z przedmiotu MOwNiT
- [2] Oficjalna dokumentacja Numpy na temat typów danych