

주요 내용

- 7.1 배열의 개념
- 7.2 1차원 배열
 - 7.2.1 배열의 선언(declaration)
 - 7.2.2 배열의 초기화
 - 7.2.3 배열과 순환 명령
- 7.3 성적 열람
- 7.4 배열의 정렬
 - 7.4.1 선택 정렬법(selection sort)
 - 7.4.2 버블 정렬법(bubble sort)
 - 7.4.3 삽입 정렬법(insertion sort)
- 7.5 석차 구하기
- 7.6 2차원 배열의 기초
- 7.7 2차원 배열의 조작
- 7.8 회전과 전치 행렬
- 7.9 행렬합
- 7.10 행렬곱
- 7.11 배열 공간 채우기
- 7.12 배열 공간 비우기

7.1 배열의 개념

□ 배열의 개념

- 배열은 하나의 공통된 이름(즉, 배열명)으로 같은 종류의 데이터를 저장하기 위한 기억 장소를 확보해 놓고 그 곳에 같은 데이터 형의 변수들을 순차적으로 기억시키는 데이터 구조이다.
 - ◆ 배열의 각 요소는 기억 장소에 연속적으로 저장되어 있으며, 각각의 개별적인 기억 장소에는 단순 변수와 같이 한 장소에 하나의 값만을 기억한다. 그러므로 배열의 각각의 요소는 일반 변수처럼 취급된다.
 - ◆ 다시 말해서, 같은 종류의 여러 개의 데이터를 일일이 변수를 부여하려면 복잡 하므로 전체를 하나의 집단으로 취급하여, 배열명을 이들 전체 데이터를 대표 하는 이름으로 사용하고 각각의 개별 데이터는 번호를 붙여서 식별하면 편리하 게 데이터를 기록하고 판독할 수 있다.
 - ◆ 따라서, 앞서 언급한 바와 같이 데이터 형이 같고 많은 양의 정보를 처리해야 할 필요가 있는 경우에 배열을 사용하면 유용하다.

<그림 7.1> 배열의 구조

7.2 1차원 배열

□ 7.2.1 배열의 선언(declaration)

● 배열의 선언

학년	1학년	2학년	3학년	4학년	5학년	6학년
학생 수	90	83	85	86	84	88

<그림 7.2> 학생 수

7.2.2 배열의 초기화

- 초기화를 포함하여 배열의 각 요소에 데이터를 저장하는 방법으로는 다음 과 같은 3가지 방법이 있다.
 - (1) 배열을 선언함과 동시에 초기화를 수행하는 방법
 - (2) 배열을 선언해 두고 이후에 프로그램 내에서 데이터를 대입하는 방법
 - (3) 배열을 선언해 두고 이후에 외부에서 데이터를 읽어들이는 방법

7.2.3 배열과 순환 명령

● 배열에 순환 명령을 대응시키기

● 순환 명령을 이용하여 1학년에서 6학년까지의 학생 수를 배열에 기 억시키기 _____

◆ 배열에 기억된 학생 수

● 각 학년의 학생 수를 변경하기

◆ 증감된 학생수

7.3 성적 열람

● 100명의 성명, 국어, 영어, 수학으로 구성된 데이터를 입력하여 배열에 기억시켜 두고 원하는 사람의 성적을 확인하기

■입력 설계

■출력 설계

7.4 배열의 정렬

□ 7.4.1 선택 정렬법(selection sort)

제1단계	제2단계	제3단계	***	제n-2단계	제n-1단계
A1 : A2	A2 : A3	A3 : A4	***	An-2 : An-1	An-1: An
A1: A3	A2 : A4	A3 : A5	***	An-2: An	
A1: A4	A2 : A5	A3 : A6	***		
A1: A5	A2 : A6	1			
:		A3 : An			
:	A2 : An				
A1 : An		PC	5		

정렬 전의 데이터: 8 9 5 3 7

제1단계(I=1) : 3 9 8 5 7

제2단계(I=2) : 3 5 9 8 7

제3단계(I=3) : 3 5 7 9 8

제4단계(I=4) : 3 5 7 8 9

<그림 7.8> 선택 정렬 단계

⊙선택 정렬법을 사용하여 오름차순으로 정렬하기

정렬 전의 데이터: 제1단계(I=1) : 제2단계(I=2) : 제3단계(I=3) : 제4단계(I=4) :

<그림 7.8> 선택 정렬 단계

□ 7.4.2 버블 정렬법(bubble sort)

제1단계	제2단계	제3단계	43.1	제n-2단계	제n-1단계
A1 : A2	A1 : A2	A1 : A2	•••	A1 : A2	A1 : A2
A2: A3	A2 : A3	A2 : A3	***	A2 : A3	
A3: A4	A3 : A4	A3 : A4	***	35.00	
A4: A5	A4 : A5	i i			
<u> </u>	E	An-3 : An-2			
	An-2 : An-1	9.15			
An-1 : An					

정렬 전의 데이터: 7 9 8 5 3

제1단계(**I=1**) : 7 8 5 3 9

제2단계(I=2) : 7 5 3 8 9

제3단계(I=3) : 5 3 7 8 9

제4단계(I=4) : 3 5 7 8 9

<그림 7.10> 버블 정렬 단계

◉ 버블 정렬법을 사용하여 오름차순으로 정렬하기

□ 7.4.3 삽입 정렬법(insertion sort)

정렬 전의 데이터: 8 5 7 9 3

제1단계(I=2) : 5 8 7 9 3 KEY: 5

제2단계(I=3) : 5 7 8 9 3 KEY: 7

제3단계(I=4) : 5 7 8 9 3 KEY: 9

제4단계(I=5) : 3 5 7 8 9 KEY: 3

<그림 7.11> 삽입 정렬 단계의 일례

제2단계(I=3) : 3 8 7 5 6 KEY:

제3단계(I=4) : 3 5 8 7 6 KEY: 5

<그림 7.12> 삽입 정렬 단계의 또 다른 예

●삽입 정렬법을 사용하여 오름차순으로 정렬하기

7.5 석차 구하기

● 선택 정렬법을 이용한 석차 구하기

■입력 설계

■출력 설계

⊙ 버블 정렬법을 이용한 석차 구하기

7.6 2차원 배열의 기초

[표 7.1] 2차원 배열의 구조

	반 학년	1반	2반	3반	4반
1번 벡터 :	1 학년	53	52	54	53
2번 벡터 :	2 학년	54	56	57	56
3번 벡터 :	3 학년	53	55	54	52
		1번 요소	2번 요소	3번 요소	4번 요소

[표 7.2] 2차원 배열의 요소 구분

	1 열	2 열	3열	4 열
1 행	(1, 1)	(1, 2)	(1, 3)	(1, 4)
2 행	(2, 1)	(2, 2)	(2, 3)	(2, 4)
3 행	(3, 1)	(3, 2)	(3, 3)	(3, 4)

●학생 수를 2차원 배열에 기억시키기

[표 7.3] AP(J, I)로 변경할 시의 배열의 기억 상태

	1 열	2 열	3열	4 열
1 행	53	53	57	55
2 행	52	54	56	54
3 행	54	56	53	52

학생수 집계표						
	1 반	2 반	3반	4반	학년계	
1학년	53	52	54	53	212	
2학년	54	56	54 57	56	223	
3학년	53	55	54	52	214	
반 계	160	163	165	161	649	

<그림 7.13> 학생 수 집계표

● 학생 수의 합계 구하기

7.7 2차원 배열의 조작

● 5×5 정방 행렬 작성하기

[표 7.4] 5×5 정방 행렬의 일례

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

◉오른쪽 대각선이 지나는 요소의 내용을 합산하기

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

●오른쪽 대각선이 지나는 오른쪽 요소들을 모두 합산하 기

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

$$Y = A(1, 1) + A(1, 2) + A(1, 3) + A(1, 4) + A(1, 5)$$

$$+ A(2, 2) + A(2, 3) + A(2, 4) + A(2, 5)$$

$$+ A(3, 3) + A(3, 4) + A(3, 5)$$

$$+ A(4, 4) + A(4, 5)$$

$$+ A(5, 5)$$

●오른쪽 대각선의 왼쪽에 있는 요소들을 합산하기

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

$$Y = A(1, 1) + A(2, 2) + A(3, 1) + A(3, 2) + A(3, 3) + A(4, 1) + A(4, 2) + A(4, 3) + A(4, 4) + A(5, 1) + A(5, 2) + A(5, 3) + A(5, 4) + A(5, 5)$$

●왼쪽 대각선의 아래쪽의 요소만 합산하기

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

◉배열의 중심에서 시작하여 좌우로 하나씩 늘려서 삼각

형 형태의 요소들만 합산하기

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

$$Y = A(3, 3) + A(4, 2) + A(4, 3) + A(4, 4) + A(5, 1) + A(5, 2) + A(5, 3) + A(5, 4) + A(5, 5)$$

●배열의 왼쪽에서 오른쪽으로 중심까지 볼록 삼각형에 해당되는 요소들만 합산하기

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	2 3	24	25

$$Y = A(1, 1) + A(2, 1) + A(3, 1) + A(4, 1) + A(5, 1) + A(2, 2) + A(3, 2) + A(4, 2) + A(3, 3)$$

7.8 회전과 전치 행렬

● 전치 행렬 만들기

● 배열 A에 기억된 내용을 왼쪽으로 90°회전시킨 배열 B만들기

● 배열 A의 내용을 반대 방향에 옮겨지도록 180°회전시키기

	16	15	14	13
	12	11	10	9
B =	8	7	6	5
	4	3	2	1

7.9 행렬합

● 행렬합 계산하기

7.10 행렬곱

● 행렬곱 계산하기

행렬 C=A×B는,

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1m} \\ c_{21} & c_{22} & \cdots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mm} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nm} \end{bmatrix}$$

33

7.11 배열 공간 채우기

● 삼각형 모양으로 숫자 채우기-1

				1
			3	2
		6	5	4
	10	9	8	7
15	14	13	12	11

● 삼각형 모양으로 숫자 채우기-2

1	2	4	7	11
	3	5	8	12
		6	9	13
			10	14
				15

● 삼각형 모양으로 숫자 채우기-3

				11
			7	12
ko ,		4	8	13
50	2	5	9	14
1.	3	6	10	15

7.12 배열 공간 비우기

● 삼각형 모양으로 비우고 숫자 채우기-1

1	2	3	4	5	6	7
8	9	10	11	12	13	
14	15	16	17	18		
19	20	21	22			
23	24	25	26	27	3.	
28	29	30	31	32	33	
34	35	36	37	38	39	40

● 삼각형 모양으로 비우고 숫자 채우기-2

1	8	14	19	23	28	34
2	9	15	20	24	29	35
3	10	16	21	25	30	36
4	11	17	22	26	31	37
5	12	18		27	32	38
6	13				33	39
7	80					40

● 삼각형 모양으로 비우고 숫자 채우기-3

1						25
2	8				20	26
3	9	13		17	21	27
4	10	14	16	18	22	28
5	11	15		19	23	29
6	12				24	30
7						31

