Geoffrey Parker - grp352 HW 9: 2.25-2.31 M328K February 16th, 2012

2.25 Theorem. Let a, b, and n be integers. If $a \mid n$, $b \mid n$, and (a,b) = 1, then $ab \mid n$.

Proof. Let a, b, and n be integers where $a \mid n, b \mid n$, and (a, b) = 1. We will show that $ab \mid n$. Let $p_1^{r_1}p_2^{r_2}\cdots p_m^{r_m}$ be the unique prime factorization of a, $q_1^{r_1}q_2^{r_2}\cdots q_s^{t_s}$ be the unique prime factorization of b, and $x_1^{y_1}x_2^{y_2}\cdots x_z^{y_z}$ be the unique prime factorization of n. Now, since a and b are coprime, there cannot be any i and j such that $p_i = q_j$, because if there were, (a, b) would be p_i . This means that the unique prime factorization of ab is $p_1^{r_1}q_1^{r_1}p_2^{r_2}q_2^{r_2}\cdots p_m^{r_m}q_s^{t_s}$, with s and m possibly being different and none of these terms combining. However, by theorem 2.12, we have that for all integers $i \leq m$ there exists a $i \leq m$ such that $i \leq m$ and $i \leq$

OR

This is just theorem 1.42, restated exactly. \Box

2.26 Theorem. Let p be prime and let a be an integer. Then p does not divide a if and only if (a, p) = 1.

Proof. Let p be prime and let a be an integer.

First, assume that $p \nmid a$. Since p is prime, the only divisors that p has are 1 and itself. And since $p \nmid a$, the only divisor p and a could possibly share is 1. Therefore (a, p) = 1.

Now, assume that (a, p) = 1. Since all numbers divide them selves, if $p \mid a$, then (a, p) would be p. Therefore $p \nmid a$.

2.27 Theorem. Let p be prime and let a and b be integers. If $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof. Let p be prime and let a and b be integers with $p \mid ab$. We will show that $p \mid a$ or $p \mid b$. Assume by way of contradiction that $p \nmid a$ and $p \nmid b$. Since p is prime, the unique prime factorization of p is just p. By theorem 2.12 and our assumption, this means that p is not a member of the unique prime factorizations of either a or b. This means in turn that p is not a member of the unique prime factorization of ab. And by theorem 2.12, this implies that $p \nmid ab$, so we have our contradiction. Therefore $p \mid a$ or $p \mid b$.

2.28 Theorem. Let a, b, and c be integers. If (b, c) = 1, then $(a, bc) = (a, b) \cdot (a, c)$.

Solution. Let a, b, and c be integers with (b,c)=1. By definition, $(a,b) \mid a$, and by theorem 1.6 $(a,b) \mid bc$. Similarly, $(a,c) \mid a$ and $(a,c) \mid bc$. Now by definition of gcd, ((a,b),(a,c)) will be the greatest of all the divisors common to a, b, and c, which since (b,c)=1, is 1. So $(a,b)\cdot(a,c)\mid (a,bc)$. //TODO

2.29 Theorem. Let a, b and c be integers. If (a,b) = 1 and (a,c) = 1, then (a,bc) = 1.

Solution. Let a, b and c be integers with (a,b)=1 and (a,c)=1. We will show that (a,bc)=1. Let A be the set of primes in the unique prime factorization of a, B for b and C for c. So we can say that there is no prime p which is a common element of either the sets A and B or the sets A and C, because if there was, we would have (a,b)=p or (a,c)=p. Therefore $A\cap (B\cup C)$ is empty. Now consider any integer k which is a common divisor of a and bc. Let K be the set of primes in the unique prime factorization of k. By theorem 2.12, since $k\mid a$ and $k\mid bc$, every element of K must be an element of both A and $(B\cup C)$. That is K is a subset of $A\cap (B\cup C)$. However, $A\cap (B\cup C)$ is empty, so K must also be empty. Therefore k must be 1, that is the only common divisor of a and bc is 1, so (a,bc)=1.

2.30 Theorem. Let a and b be integers. If (a,b) = d, then $(\frac{a}{d}, \frac{b}{d}) = 1$.

Proof. Let a and b be integers, with (a,b)=d. We will show that $(\frac{a}{d},\frac{b}{d})=1$.

2.31 Theorem. Let a, b, u, and v be integers. If (a,b) = 1 and $u \mid a$ and $v \mid b$, then (u,v) = 1.

Proof. Type your proof here!