■ INSIGHT INTO SPATIAL EXTREMES

MARINE DEMANGEOT

IMAG - Université de Montpellier

Extreme event: rare event which takes very low or very large values

Floods in Pakistan - AFP (June - Oct. 2022)

 ≈ 1739 people killed \geq 2 million people homeless \$14.9 billion of damage

Wildfires in Gironde - AFP (July 2022)

> 20 800 hectares burnt $\approx 36\,000$ people evacuated

Extreme event: rare event which takes very low or very large values

Extreme event: rare event which takes very low or very large values

Extreme event: rare event which takes very low or very large values

Extreme event: rare event which takes very low or very large values

Extreme event: rare event which takes very low or very large values

 \blacksquare X: Daily amount of precipitation at a particular location

Extreme event: rare event which takes very low or very large values

X : Daily amount of precipitation at a particular location

Extreme event: rare event which takes very low or very large values

X : Daily amount of precipitation at a particular location

Extreme event: rare event which takes very low or very large values

Why do we need a specific theory to study extreme values?

$$X \sim f \text{ (pdf)}$$

$${X > t}$$

$$X \sim f \text{ (pdf)}$$

$$P[X > t]$$
?

$$X \sim f \text{ (pdf)}$$

$$P[X > t]$$
?

$$X \sim f \text{ (pdf)}$$

$$P[X > t]$$
?

$$X \sim f \text{ (pdf)}$$

$$P[X > t]$$
?

$$X \sim f \text{ (pdf)}$$

$$P[X > t]$$
?

t large

Parametric estimation : risk of underestimating P[X > t]

 $X \sim f \text{ (pdf)}$

P[X > t]?

t large

Parametric estimation : risk of underestimating P[X > t]

Non-parametric estimation : risk of underestimating P[X > t]

$$X \sim f \text{ (pdf)}$$

$$P[X > t]$$
?

t large

Extrapolation of the tail behaviour beyond the range of the data

$$X \sim f \text{ (pdf)}$$

$$P[X > t]$$
?

t large

Extrapolation of the tail behaviour beyond the range of the data

Extreme value theory

 $X \sim f \text{ (pdf)}$

P[X > t]?

t large

Extrapolation of the tail behaviour beyond the range of the data

1 Study of the maximum

2 Study of threshold exceedances

Univariate extremes

■ Study of the maximum

 $X \sim F$ random variable F cumulative distribution function (c.d.f.) X_1, \dots, X_n copies i.i.d. of X

Objective

Study of $\max_{i=1,...,n} X_i$

$$\forall x \in \mathbb{R} \quad \mathbf{P} \left[\max_{i=1,\dots,n} X_i \le x \right] = \mathbf{P} \left[X_1 \le x \right] \times \dots \times \mathbf{P} \left[X_n \le x \right] = (F(x))^n$$

Approximation of $\mathcal{L}\left(\max_{i=1}^{n} X_i\right)$ as $n \to +\infty$

■ Limit law for the maximum

Theorem

Fisher & Tippett (1928) Gnedenko (1943)

Let $(X_i)_{i\in\mathbb{N}^*}$ be i.i.d. random variables . If for any $n\in\mathbb{N}^*$, it exists $a_n>0$ and $b_n\in\mathbb{R}$ s.t.

$$\max_{i=1,\dots,n} \frac{X_i - b_n}{a_n} \overset{d}{\underset{n \to \infty}{\longrightarrow}} Z \qquad (non \ degenerate)$$

then Z is max-stable

 Z, Z_1, \dots, Z_n i.i.d. random variables (non degenerated)

Definition

Z is **max-stable** for any $n \in \mathbb{N}^*$, it exists $\alpha_n > 0$ and $\beta_n \in \mathbb{R}$ s.t.

$$\max_{i=1,\dots,n} \frac{Z_i - \beta_n}{\alpha_n} \overset{d}{\underset{n \to \infty}{\longrightarrow}} Z$$

■ Limit law for the maximum

Theorem

Fisher & Tippett (1928) Gnedenko (1943)

Let $(X_i)_{i\in\mathbb{N}^*}$ be i.i.d. random variables. If for any $n\in\mathbb{N}^*$, it exists $a_n>0$ and $b_n \in \mathbb{R}$ s.t.

$$\max_{i=1,\dots,n} \frac{X_i - b_n}{a_n} \overset{d}{\underset{n \to \infty}{\longrightarrow}} Z \qquad \text{(non degenerate)}$$

then Z is max-stable

Characterization $Z \sim G$ (c.d.f.) is max-stable if and only if

$$G(x) = G_{\xi}(x) := \exp\left\{-\left(1 + \xi \frac{x - \beta}{\alpha}\right)^{-1/\xi}\right\} \qquad x \in \mathbb{R}^{6}$$

$$\xi \in \mathbb{R}$$
 $\alpha > 0$ $\beta \in \mathbb{R}$ $1 + \xi x > 0$ ξ extreme value index

by convention $G_0(x) = \exp\{-e^{-x}\}\$

■ Types of law

Remark The tail index determines the tail decay rate

Heavy tail
(polynomial decay)

Light tail (exponential decay)

Bounded tail $\xi < 0$

- Pareto, Student's t distributions
- Normal, exponential, gamma distributions
- Uniform, beta distributions

Estimation

For n large enough,

$$\max_{i=1,...,n} \frac{X_i - b_n}{a_n} \overset{distribution}{\approx} Z \sim G_{\xi}$$

with G_{ε} a max-stable distribution

$$\Rightarrow \quad \mathbb{P}\left[X > x\right] \approx -\frac{1}{n} \log \left\{ G_{\xi} \left(\frac{x - b_n}{a_n} \right) \right\} \quad \text{for } n \text{ large}$$

Objective

Estimation of ξ , a_n , b_n

 G_{ξ} has a parametric form : **maximum likelihood estimation** of ξ , a_n and b_n ex : *ismev* package (R)

How to get i.i.d. replications of $\max_{i=1,...,n} X_i$?

■ Block maxima method

Dividing the original sample of size n in k blocks of size m to have (approximately) k i.i.d. maxima

> e.g. annual maxima

E. Chautru - ATHENS courses 2023

Bais-variance trade-off between the choice of k and m $m = m(n) \to +\infty$ and $m/n \to 0$ as $n \to +\infty$

■ Return levels

From the limit distribution of the maximum, we can compute $\mathbb{P}[X > x]$ but we can also compute **return levels**

■ k blocks of size m : k i.i.d. replications of $\max_{i=1,...,m} X_i$

Definition Let $K \in \mathbb{N}^*$. The K m-block return level $R_{m,K}$ is the quantile associated to the probability 1/K:

$$\mathbb{P}\left[\max_{i=1,\ldots,m}X_i>R_{m,K}\right]=\frac{1}{K}$$

i.e. it is the level which is exceeded in one out of every m n-blocks, on average.

$$R_{m,K} pprox G_{\xi}^{-1} \left(\left(1 - \frac{1}{K} - b_m \right) / a_m \right)$$

Exemple We observe daily rainfall in Brest for many years. We compute the annual maximum for each year (m = 365). If K = 1000 then the return level $R_{365,1000}$ represent the amount of rainfall that will be observed once every 1000 years, on average.

Remark

Loss of information when considering only maxima.

We want to take into account the largest order statistics when analysing the tail of the distribution : study of threshold exceedances

■ Limit law for exceedances

■ X a random variable with $x^* := \sup\{x \in \mathbb{R} : F(x) < 1\} \in \mathbb{R} \cup \{+\infty\}$ the upper endpoint of its distribution

Theorem

Pickands (1975) Balkema & de Hann (1974)

Let $(X_i)_{i\in\mathbb{N}^*}$ be independent copies of X. The two following propositions are equivalent

 $\forall n \in \mathbb{N}^*$, it exists $a_n > 0$ and $b_n \in \mathbb{R}$ s.t.

$$\max_{i=1,\dots,n} \frac{X_i - b_n}{a_n} \overset{d}{\underset{n \to \infty}{\longrightarrow}} Z \quad \textit{max-stable}$$

■ There exists a scaling function $m : \mathbb{R} \to (0, +\infty)$ such that

$$\frac{X-t}{m(t)} \mid X > t \xrightarrow[t \to x^*]{} Y$$

where Y follow a generalized Pareto distribution

■ Generalized Pareto distribution

Definition $Y \sim H$ (c.d.f.) has a generalized Pareto distribution if and only if

$$H(x) = H_{\xi}(x) := 1 - \left(1 + \xi \frac{x}{\sigma}\right)^{-1/\xi}$$
 $x \in (0, +\infty) \text{ s.t. } 1 + \xi x > 0$

 $\xi \in \mathbb{R}$ extreme value index $\sigma \in (0, +\infty)$ (scale parameter)

by convention $H_0 = \exp\{-x/\sigma\}$

Threshold stability Let y^* the upper endpoint of H_{ξ} then

Y - t'|Y > t' has a generalized Pareto distribution too

■ Estimation

For t large enough,

$$\frac{X-t}{m(t)} \mid X > t \stackrel{distribution}{\approx} Y \sim H_{\xi}$$

with $H_{\mathcal{E}}$ a generalized Pareto distribution

$$\Rightarrow \quad \forall x > t \quad \mathbb{P}\left[X > x\right] \approx \mathbb{P}\left[X > t\right] H_{\xi}\left(\frac{x - t}{m(t)}\right)$$

Objective

Estimation of ξ , m(t), $\mathbb{P}[X > t]$

 G_{ξ} has a parametric form : **maximum likelihood estimation** of ξ , m(t) (and empirical estimation of $\mathbb{P}\left[X>t\right]$)

ex: ismev package (R)

How to get i.i.d. replications of X - t | X > t?

■ Peak over threshold method

Set a high enough threshold t and select the observations exceeding t

Remark threshold exceedances that occur in groups → declustering to obtain a set of threshold excesses that are approximately independent

J. Koh - ATHENS courses 2023

Bais-variance trade-off for the choice of the threshold *t* (there exist methods to help select *t*)

■ Illustration

 $x_1, \dots, x_{500}, 500$ realizations of $X \sim \mathcal{T}(4)$

SPATIAL EXTREMES

■ Spatial maxima

Z random field (RF) on \mathbb{R}^d with non-degenerate margins

 Z_1, \dots, Z_n i.i.d. copies of Z

Definition

Z is **max-stable** if for any $n \in \mathbb{N}^*$, $\exists \alpha_n(.) > 0$ and $\beta_n(.) \in \mathbb{R}$ s.t.

$$\left(\max_{i=1,\dots,n} \frac{Z_i(x) - \beta_n(x)}{\alpha_n(x)}\right)_{x \in \mathbb{R}^d} \stackrel{f.d.d.}{=} (Z(x))_{x \in \mathbb{R}^d}$$

■ Spatial maxima

Z random field (RF) on \mathbb{R}^d with non-degenerate margins

 Z_1, \ldots, Z_n i.i.d. copies of Z

Definition

Z is **max-stable** if for any $n \in \mathbb{N}^*$, $\exists \alpha_n(.) > 0$ and $\beta_n(.) \in \mathbb{R}$ s.t.

$$\left(\max_{i=1,\dots,n}\frac{Z_i(x)-\beta_n(x)}{\alpha_n(x)}\right)_{x\in\mathbb{R}^d}\stackrel{f.d.d.}{=}(Z(x))_{x\in\mathbb{R}^d}$$

Remark The margins of Z are max-stable

■ Spatial maxima

Z random field (RF) on \mathbb{R}^d with non-degenerate margins

 Z_1, \dots, Z_n i.i.d. copies of Z

Definition

Z is **max-stable** if for any $n \in \mathbb{N}^*$, $\exists \alpha_n(.) > 0$ and $\beta_n(.) \in \mathbb{R}$ s.t.

$$\left(\max_{i=1,\dots,n}\frac{Z_i(x)-\beta_n(x)}{\alpha_n(x)}\right)_{x\in\mathbb{R}^d}\stackrel{f.d.d.}{=}(Z(x))_{x\in\mathbb{R}^d}$$

Remark The margins of Z are max-stable

Theorem

Let $(X_i)_{i\in\mathbb{N}^*}$ be i.i.d. RFs. If for any $n\in\mathbb{N}^*$, $\exists a_n(.)>0$ and $b_n(.)\in\mathbb{R}$ s.t.

$$\left(\max_{i=1,\dots,n} \frac{X_i(x) - b_n(x)}{a_n(x)}\right)_{x \in \mathbb{R}^d} \stackrel{f.d.d.}{\underset{n \to \infty}{\longrightarrow}} (Z(x))_{x \in \mathbb{R}^d}$$

then Z is a max-stable RF

■ Spectral representation

■ Spectral representation

Unit-Fréchet margins:
$$\forall x \in \mathbb{R}^d$$
 $\mathbf{P}[Z(x) \le z] = e^{-1/z} \mathbf{1}_{\{z>0\}}$ $z \in (0, +\infty)$ $\gamma = 1$: heavy-tailed

■ Spectral representation

Unit-Fréchet margins:
$$\forall x \in \mathbb{R}^d \quad \mathbf{P}[Z(x) \le z] = e^{-1/z} \mathbf{1}_{\{z > 0\}} \quad z \in (0, +\infty)$$

 $\gamma = 1 : \text{heavy-tailed}$

Spectral representation

de Haan (1984) Giné et al. (1990)

If Z is continuous in probability then

$$(Z(x))_{x \in \mathbb{R}^d} \stackrel{f.d.d.}{=} \left(\max_{T \in \Pi} \frac{Y_T(x)}{T} \right)_{x \in \mathbb{R}^d}$$

 Π homogeneous Poisson point process on $(0, +\infty)$ with unit rate

 Y_T i.i.d copies of a continuous in probability and nonnegative RF Y with $E\left[Y(x)\right]=1$ for any $x\in\mathbb{R}^d$

■ Finite-dimensional distributions

From the spectral representation, we get an expression for the finite-dimensional distributions of Z:

$$\begin{split} \mathbf{P}\left[Z(x_1) \leq z_1, \dots, Z(x_k) \leq z_k\right] &= \exp\left\{\mathbf{E}\left[\max_{i \in \{1, \dots, k\}} \frac{Y(x_i)}{z_i}\right]\right\} \\ &= \exp\left\{-\mathbf{V}_{\mathbf{x}}(\mathbf{z})\right\} \\ &= \left\{x_1, \dots, x_k\right\} \quad \mathbf{z} = \left\{z_1, \dots, z_k\right\} \end{split}$$

The **exponent function** $V_x(z)$ is a measure of the dependence structure of Z

No parametric characterization for the exponent function and more generally for the dependence structure of a max-stable RF. To estimate $V_x(z)$ with, e.g, a maximum likelihood method, we need to assume a parametric model for $V_x(z)$.

■ Full likelihood

Assumption $V_x(z) = V_x(z|\beta)$ (β : vector of parameters) and all derivatives of $V_{\nu}(z|\beta)$ exists

Density function of $Z(x_1), \ldots, Z(x_{\nu})$

$$f_{\scriptscriptstyle X}(z) = \exp\left\{-V_{\scriptscriptstyle X}(z|\,\beta)\right\} \, \sum_{P \in \mathcal{P}_z} \prod_{S \in P} \left(-\frac{\partial}{\partial z_S} V_{\scriptscriptstyle X}(z|\,\beta)\right)$$

Main issues regarding the computation of $f_x(z)$:

- Closed-form expressions for $V_x(z|\beta)$ and $\frac{\partial}{\partial z_s}V_x(z|\beta)$ are not always available
- $2^{n}-1$ (complex) partial derivatives must be computed
- $card(P_z)$ = Bell number which grows more than exponentially with n: storage of very large data structures is required. ex: $n = 10 \rightarrow 115\,000$ partitions

The maximum likelihood estimator cannot be used

■ Composite likelihood

Use a log-composite likelihood, i.e. a linear combination of (smaller) log-likelihood entities

- $Z_1,...,Z_n,$ i.i.d. simple max-stable RFs with
- $\forall i \in \{1, ..., n\}$ $z_i(x) = (z_i(x_1), ..., z_i(x_k))$ realization of Z_i observed in locations $x_1, ..., x_k$

Pairwise log-likelihood *Padoan et al (2010)*

For max-stable processes, most of the time, only the bivariate densities can "easily" be derived analytically

$$\mathcal{\ell}_p(z_1(x), \dots, z_n(x) \mid \beta) = \sum_{\ell=1}^n \sum_{1 \leq i < j \leq k} w_{i,j} \log \left\{ f\left(z_{\ell}(x_i), z_{\ell}(x_j)\right) \right\}$$

where $\{w_{i,j}, 1 \leq i < j \leq k\}$ are suitable weights that improve efficiency or reduce the computational cost

Remark Under mild conditions the maximum pairwise likelihood estimator is consistent and asymptotically normal

■ Composite likelihood

Use a log-composite likelihood, *i.e.* a linear combination of (smaller) log-likelihood entities

- $Z_1,...,Z_n,$ i.i.d. simple max-stable RFs with
- $\forall i \in \{1, ..., n\}$ $z_i(x) = (z_i(x_1), ..., z_i(x_k))$ realization of Z_i observed in locations $x_1, ..., x_k$

Pairwise log-likelihood Padoan et al (2010)

For max-stable processes, most of the time, only the bivariate densities can "easily" be derived analytically

$$\mathcal{\ell}_p(z_1(x), \dots, z_n(x) \mid \beta) = \sum_{\ell=1}^n \sum_{1 \le i < j \le k} w_{i,j} \log \left\{ f\left(z_{\ell}(x_i), z_{\ell}(x_j)\right) \right\}$$

where $\{w_{i,j}, 1 \leq i < j \leq k\}$ are suitable weights that improve efficiency or reduce the computational cost

Remark Pairwise log-likelihood can handle the estimation of both the margins and the dependence structure: better understanding of overall uncertainty even if it increases the computational complexity

■ Example of multivariate models

 \blacksquare k locations x_1, \dots, x_k

$$x = (x_1, \dots, x_k)$$

Symmetric logistic model for all $z = (z_1, ..., z_k) \in (0, +\infty)^k$

$$V_{X}(z) = \left(\sum_{i=1}^{k} z_{i}^{-1/\alpha}\right)^{\alpha}$$

Only one parameter to estimate, α , but lack of flexibility

Asymmetric logistic model for all $z = (z_1, ..., z_k) \in (0, +\infty)^k$

$$V_{x}(z) = -\sum_{c \in C} \left(\sum_{i \in c} \left(\frac{w_{i,c}}{z_{i}} \right)^{\alpha_{c}} \right)^{1/\alpha_{c}}$$

where C is the set of all non-empty subsets of $\{1,\ldots,k\}$ and with constraints on α_c and $w_{i,c}$

More flexible model but the number of parameters to be estimated is of order 2^k

■ Example of multivariate models

The multivariate models do not take into account the spatial features of the phenomenon under study

We can follow ideas from Geostatistics

■ Geostatistical context

Geostatistics regionalized phenomenon modelled by a random field (RF) Z

In many cases, we partially observe only one realization of Z

mining resources estimation, soil contamination evaluation

Assumption Z is second-order stationary

 $\forall x, h \in \mathbb{R}^d$

$$\mu := \mathbf{E}[Z(x)] < +\infty$$

$$\sigma^2 := \mathbf{Var}[Z(x)] < +\infty$$

$$\rho(h) := \mathbf{Corr}[Z(x), Z(x+h)]$$

■ Geostatistical context

Geostatistics regionalized phenomenon modelled by a random field (RF) Z

In many cases, we partially observe only one realization of Z

mining resources estimation, soil contamination evaluation

Assumption Z is second-order stationary

Dependence measure

$$\gamma: \mathbb{R}^2 \to \mathbb{R}_+$$
 variogram

$$\gamma(h) := \frac{1}{2} \mathbb{E} \left[\left(Z(h) - Z(0) \right)^2 \right]$$

■ Stationary max-stable RF

Let Z be a simple max-stable RF

Z is not second-order stationary

Assumption Z simple **stationary** max-stable RF

$$\mathbf{P}\left[Z(x_1) \le z_1, \dots, Z(x_n) \le z_n\right] = \mathbf{P}\left[Z(x_1 + h) \le z_1, \dots, Z(x_n + h) \le z_n\right]$$

$$h, x_1, \dots, x_n \in \mathbb{R}^d \quad z_1, \dots, z_n \in \mathbb{R}$$

Remark In the stationary case, bivariate extremal dependence is parameterized in terms of separating vector h (and, in the isotropic case, in terms of distance), which drastically reduces the number of required parameters

■ Extremal coefficient function

Extremal coefficient function (ECF)

$$\theta: h \in \mathbb{R}^d \longrightarrow \mathbf{E} \big[\max \big(Y(0), Y(h) \big) \big] \in [1, 2]$$

$$\forall h \in \mathbb{R}^d \quad z \in (0, +\infty)$$

$$\mathbf{P}[Z(0) \le z, Z(h) \le z] = \exp\left\{-\frac{\theta(h)}{z}\right\}$$

- $\theta(h) = 1$ full dependence
- $\theta(h) = 2$ independence

■ Example - Smith process

$$Z(x) := \max_{(S,T) \in \Pi} \left(\frac{f(x-S)}{T} \right) \qquad x \in \mathbb{R}^d$$

 Π homogeneous Poisson point process on $\mathbb{R}^d \times (0, +\infty)$ with unit rate $f: \mathbb{R}^d \to \mathbb{R}_+$ centred d-variate **Gaussian** p.d.f. with covariance matrix Σ

$$\theta(h) = 2\Phi\left(\frac{\|h\|_{\Sigma^{-1}}}{2}\right)$$

Φ standard Gaussian c.d.f.

■ Example - Extremal Gaussian process

$$Z(x) := \sqrt{2\pi} \max_{T \in \Pi} \left(\frac{W_T(x)}{T} \right) \qquad x \in \mathbb{R}^d$$

 Π homogeneous Poisson point process on $(0,+\infty)$ W_T i.i.d. copies of a standard Gaussian process with correlation function ρ

$$\theta(h) = 1 + \sqrt{\frac{1 - \rho(h)}{2}}$$

■ Example - Brown-Resnick process

$$Z(x) := \max_{T \in \Pi} \left(\exp \left\{ W_T(x) - \frac{\sigma_W^2(x)}{2} \right\} \right) \qquad x \in \mathbb{R}^d$$

 $\begin{array}{ll} \Pi & \text{homogeneous Poisson point process on } (0,+\infty) \\ W_T & \text{i.i.d. copies of a intrinsically Gaussian process with E} \left[W_T(x)\right] = 0, \\ \sigma_W^2(x) = \operatorname{Var} \left[W_T(x)\right] \text{ and variogram } \gamma \end{array}$

■ Example - Brown-Resnick process

$$Z(x) := \max_{T \in \Pi} \left(\exp \left\{ W_T(x) - \frac{\sigma_W^2(x)}{2} \right\} \right) \qquad x \in \mathbb{R}^d$$

 $\begin{array}{ll} \Pi & \text{homogeneous Poisson point process on } (0,+\infty) \\ W_T & \text{i.i.d. copies of a intrinsically Gaussian process with E} \left[W_T(x)\right] = 0, \\ \sigma_W^2(x) = \operatorname{Var} \left[W_T(x)\right] \text{ and variogram } \gamma \end{array}$

$$\theta(h) = 2\Phi\left(\sqrt{\frac{\gamma(h)}{2}}\right)$$

Φ standard Gaussian c.d.f.

■ Illustration - Saudi Arabian rainfall

Davison et al (2019)

SpatialExtremes package (R)

- Jeddah liable to intense (but rare) strong convective rainstorms, leading to flash floods, extensive damage and deaths
- three-hourly rainfall satellite measurements (in mm/hr) available at 750 grid cells over 17 years (1998-2014)

■ Illustration - Saudi Arabian rainfall

- Computation of the 17 annual daily rainfall maxima for each cell.
- 17 maps of annual daily rainfall maxima: 17 realizations of a max-stable process observed at 750 locations (space-rich but time-poor dataset)

Annual maximum for 2009

■ Illustration - Saudi Arabian rainfall

- Computation of the 17 annual daily rainfall maxima for each cell.
- 17 maps of annual daily rainfall maxima: 17 realizations of a max-stable process observed at 750 locations (space-rich but time-poor dataset)

The region is arid: some grid cells experienced no rain in certain years. In total, six annual maxima, in different grid cells, are equal to zero

 \longrightarrow censored likelihood: for the observed maxima that do not exceed the threshold u=3mm/day, we only give to the likelihood the information that these observations are below u

■ Estimation of the margins

Remark Estimations of the margins parameters and of the dependence structure are done separately

For each cell $s \in \{1, ..., 750\}$, we want to estimate

- the location parameter $b_n(s)$
- the scale parameter $a_n(s)$
- the shape parameter or extreme value index $\xi(s)$

Remark

Only 17 temporal replicates: it is difficult to find simple relationships that well capture the spatial variation of the marginal parameters.

— neglecting spatial dependence: local censored likelihood approach to estimate the 3 parameters at each location

Result

Good estimation of the location and scale parameter but large variation of $\xi(s)$ (from 0.28 to 0.49) that imply very different tail behavior It is assumed that $\xi(s) = \xi$. The estimation gives $\hat{\xi} = 0.14$: the rainfall distribution is slightly heavy-tailed

Estimation of the margins

Estimation, in each grid point, of the location parameter (left) and the scale parameter (right)

Estimation of the margins

Estimation, in each grid point, of the 50-year (left) and 100-year (right) return levels (in mm/day)

■ Estimation of the dependence structure

Remark the data are transformed to a common unit Fréchet scale

4 stationary isotropic max-stable processes to assess the spatial dependence of extreme rainfall events:

- **Brown-Resnick process** with variogram $\gamma(s_1, s_2) = (\|s_1 s_2\|/\lambda)^{\kappa}$ $\lambda > 0$ $\kappa \in (0, 2]$
- **Extremal Gaussian process** (Schalther process) with correlation function $\rho(s_1, s_2) = \exp{-\gamma(s_1, s_2)}$
- **Extremal-t process** with correlation function $\rho(s_1, s_2) = \exp{-\gamma(s_1, s_2)}$ and degrees of freedom $\alpha > 0$
- **Smith process** with covariance matrix $\Sigma = \lambda^2 I_2$

In addition : the same models are considered in a geometrically anisotropic version. They are obtained by replacing the Euclidean distance $\|s_1 - s_2\|$ by the Mahalanobis distance in the models

■ Estimation of the dependence structure

Estimation

Pairwise (conditional) likelihood + 95% confidence intervals obtained using a non-parametric bootstrap

Model	$\lambda [\mathrm{km}]$	κ	α	a	θ	CLIC
Smith	$34_{[26,39]}$					124
Schl.	44[34,53]	$1.46_{[1.19,1.84]}$				362
BR.	$13_{[8,16]}$	$0.71_{[0.52,0.94]}$				23
Ext t	$333_{[165,1357]}$	$0.90_{[0.63,1.13]}$	$5.9_{[3.9,13.1]}$			0

Anisotropic max-stable models

Model	$\lambda \text{ [km]}$	κ	α	a	θ	CLIC
Smith	31[28,37]			$0.82_{[0.72,1.33]}$	$0.19_{[-1.48,2.02]}$	119
Schl.	$42_{[31,54]}$	$1.47_{[1.20,1.82]}$		$0.89_{[0.70,1.28]}$	$0.23_{[-0.32,1.26]}$	362
BR.	$12_{[7,21]}$	$0.72_{[0.53,0.95]}$		$0.71_{[0.52,1.81]}$	$-0.12_{[-0.25,1.41]}$	21
Ext t	$424_{[176,1352]}$	$0.90_{[0.64,1.10]}$	$6.2_{[4.1,14.8]}$	$1.37_{[0.55, 1.66]}$	$1.37_{[-0.30,1.42]}$	41

CLIC: model selection criterion (to minimize)

- No strong evidence against isotropy
- **E**xtremal-t model looks best but $\hat{\alpha}$ and $\hat{\lambda}$ are very unstable
- Isotropic Brown-Resnick model: good balance of fit and parsimony

For each model and each distance h the estimation of $\theta(h)$ may be compared to the empirical estimation of $\theta(h)$

- Brown-Resnick and extremal-t processes : reasonable fit
- Smith model: too rigid to capture the decay of dependence
 - Schlather model: unable to capture the long-range independence.

■ Simulations

Annual rainfall maxima for 2009 (left), and two simulated maps (middle and right) based on the fitted isotropic Brown-Resnick max-stable model

■ The spatial patterns and forms of dependence observed in the simulations tend to agree with the data (although the 2009 annual maxima seem to be slightly smoother)

■ Spatial aggregated risk

- $lue{}$ 10000 simulations from the fitted isotropic Brown-Resnick model Z
- Focus on 14 grid cells s that are less than 50km from Jeddah and Makkah (2nd and 3rd largest cities) ($s \in S^*$)

We use the simulation to estimate the the probability p(v) that the annual maximum averaged over the 14 grid cells be larger than a select threshold v:

$$p(v) = \mathbf{P}\left[\frac{1}{|S^*|} \sum_{s \in S^*} Z(s) > v\right]$$

- p(50mm/day) = 0.072 (return period = 13.9 years)
- p(71.1mm/day) = 0.019 (return period = 1/0.019 = 53.6 years)
 71.1: daily rainfall level observed on November 25, 2009, during the Jeddah floods, which caused 122 fatalities
- p(100 mm/day) = 0.0041 (return period = 245.1 years)

- Estimating parametrically the dependence structure of multivariate extremes is difficult in high dimension (lack of flexibility or a rapid increase in the number of parameters)
- Same problem (even worse) for non-parametric estimation (not presented here)
- Stationary max-stable processes are more parsimonious models but
 - 1 They rely on the strong assumption of stationarity
 - 2 They require prior domain knowledge on the spatial locations of gauging stations

Need for sparse structure for multivariate extremes

So far, 3/4 main approaches:

- Adaptation of unsupervised learning methods: clustering approaches and principal component analysis
- Concomitant extremes
- Graphical models

See a review in Engelke & Ivanovs (2021)

■ References

- A.A. Balkema and L. de Haan, Residual Life Time at Great Age, *The Annals of Probability*, 2(5), 1974
- A. Davison, R. Huser and E. Thibaud, Spatial Extremes, CRC Press, 2019
- L. de Haan, A Spectral Representation for Max-stable Processes, *Ann. Probab.*, 12(4):1194-1204, 1984
- s. Engelke and I. Jevgenijs, Sparse Structures for Multivariate Extremes, *Annual Review of Statistics and Its Application*, 8(1):241-270, 2021
- R.A. Fisher and L.H.C. Tippett, Limiting forms of the frequency distribution of the largest or smallest member of a sample, *Mathematical Proceedings of the Cambridge Philosophical Society*, 24(2):180-190, 1928
- B. Gnedenko, Sur la distribution limite du terme maximum d'une serie aleatoire, *Annals of Mathematics*, 44(3):423-453, 1943