多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形。每个顶点被赋予一个整数值,每条边被赋予一个运算符"+"或"*"。所有边依次用整数从1到n编号。

游戏第1步,将一条边删除。

随后n-1步按以下方式操作:

- (1) 选择一条边E以及由E连接着的2个顶点V1和V2;
- (2)用一个新的顶点取代边E以及由E连接着的2个顶点V1和 V2。将由顶点V1和V2的整数值通过边E上的运算得到的结果赋 予新顶点。

最后,所有边都被删除,游戏结束。游戏的得分就是所剩顶 点上的整数值。

问题:对于给定的多边形,计算最高得分。

多边形游戏 举例

(1)

(3)

例如: 这里画出一个五边形, 其中两种选择操作方案, 得到的结果也不同。

(2)

(4)

最优子结构性质

- 在所给多边形中,从顶点i(1≤i≤n)开始,长度为j(链中有j个顶点)的顺时针链p(i, j) 可表示为v[i], op[i+1], ..., v[i+j-1]。
- 如果这条链的最后一次合并运算在op[i+s]处发生(1≤s≤j-1),则可在op[i+s]处将链分割为2个子链p(i, s)和p(i+s, j-s)。

最优子结构性质

- ●设m1是对子链p(i, s)的任意一种合并方式得到的值,而a和b分别是在所有可能的合并中得到的最小值和最大值。m2是p(i+s, j-s)的任意一种合并方式得到的值,而c和d分别是在所有可能的合并中得到的最小值和最大值。依此定义有a≤m1≤b,c≤m2≤d
- ●(1)当op[i+s]='+'时,显然有a+c≤m≤b+d
- ●(2)当op[i+s]='*'时,有min{ac, ad, bc, bd}≤m≤max{ac, ad, bc, bd}
- 换句话说,主链的最大值和最小值可由子链的最大值和最小值得到。

递归求解

- ●定义m[i,j,0]为链p(i, j)合并的最小值,而m[i,j,1]为链p(i, j)合并的最大值。
- ●若最优合并在op[i+s]处,那么op[i+s]这条边将p(i, j)分为两个长度小于j的子链p(i, i+s)和子链p(i+s, j-s),且从顶点开始的长度小于j的子链的最大值和最小值均已经计算出了。
- ●为叙述方便,记:

递归求解 (接上)^{vi} op[i+1] 链 p(i, j) op[i+j-1] Vi+j-1 vi+j-1 vi+s-1 v

●将p(i,j)在op[i+s]处断开的最大值记为maxf(i, j, s), 最小值记为

minf(i, j, s), \mathbb{N} : min $f(i, j, s) = \begin{cases} a + c & op[i + s] = '+' \\ min\{ac, ad, bc, bd\} & op[i + s] = '*' \end{cases}$

$$\max f(i, j, s) = \begin{cases} b+d & op[i+s] = '+' \\ \max\{ac, ad, bc, bd\} & op[i+s] = '*' \end{cases}$$

最优断开的位置s,有1≤s≤j-1共j-1种情况,由此可得:

$$m[i, j, 0] = \min_{1 \le s < j} \{ \min f(i, j, s) \}, \quad 1 \le i, j \le n$$
$$m[i, j, 1] = \max_{1 \le s < j} \{ \max f(i, j, s) \}, \quad 1 \le i, j \le n$$

初始边界值显然为: m[i,1,0] = v[i], $1 \le i \le n$ m[i,1,1] = v[i], $1 \le i \le n$

计算最优值

m[i,n,1] (1 ≤ i ≤ n): 即为游戏首次删去第i条边后得到的最大得分。

m[i,n,0] (1≤i≤n): 即为游戏首次删去第i条边后得到的最小得分。

算法描述: 如书P69程序清单。

复杂性分析: 算法需要 O(n³)的计算时间。

```
private static void minMax(int i,int s, int j)
               int[] e=new int[5];
               int a=m[i][s][0],
                                              public static int polyMax()
                   b=m[i][s][1],
                   r=(i+s-1)%n+1,
                                                 for (int j=2;j<=n; j++) // 链中有j个顶点
                   c=m[r][j-s][0],
                                                      for (int i=1;i<=n; i++) #链的起点i
                   d=m[r][i-s][1];
                                                        for (int s=1; s<j; s++){ #链中断开点s
               if(op[r]=+'){
                                                           minMax(i,s,j);
                   minf=a+c;
                                                           if(m[i][j][0]>minf) m[i][j][0]=minf;
                    maxf=b+d;
                                                             if(m[i][j][0] \le maxf) m[i][j][1] = maxf;
                else {
                    e[1]=a*c:
                                                        int temp=m[1][n][1];
                    e[2]=a*d;
                                                           for(int i=2;i \le n;i++)
                    e[3]=b*c;
                                                                 if(temp \le m[i][n][1]) temp = m[i][n][1];
                    e[4]=b*d
                                                           return temp;
                    minf=e[1]
                    \max = e[1];
                    for(int k=2,k<5,k++){
                       if(minf \geq e[k])minf = e[k],
                       if(maxf<e[k])maxf=e[k];
                                                                                                  45
```


m[i][j][0]/m[i][j][1]

j	1	2	3	4

0	0	0	0	0
0	2/2	0/0	0/0	0/0
0	3/3	0/0	0/0	0/0
0	4/4	0/0	0/0	0/0
0	5/5	0/0	0/0	0/0

	ı
٧	
ор	

0

0	1	2	3	4
	2	3	4	5
+	×	+	×	+

J		

2

3

4

minMax(1,1,2)

J	
1	
4	

2

0

0	0	0	0	0
0	2/2	0/5	0/0	0/0
0	3/3	0/0	0/0	0/0
0	4/4	0/0	0/0	0/0
0	5/5	0/0	0/0	0/0

op[2]=='+'
a+c=5> m[1][2][0]=0
maxf=b+d=5

V

op

0	1	2	3	4
+	×	+	×	+

j	1	2	3	4

O)	U	0	U
0	2/2	0/5	0/0	0/0
0	3/3	0/12	0/0	0/0
0	4/4	0/0	0/0	0/0
0	5/5	0/0	0/0	0/0

minMax(2,1,2)

a=m[i][s][0]=m[2][1][0]=3
b=m[i][s][1]=m[2][1][1]=3
r=(i+s-1)%n+1=3
c=m[r][j-s][0]=m[3][1][0]=4
d=m[r][j-s][1]=m[3][1][1]=4

V	
V	
	-

op

3

0	1	2	3	4
+	×	+	×	+

 $a \times c=12 > m[2][2][0]=0$

 $maxf= a \times c = 12$

op[3]=='**×**'

j 1 2 3 4

 0
 0
 0
 0
 0

 1
 0
 2/2
 0/5
 0/0
 0/0

2 0 3/3 0/12 0/0 0/0

minMax(3,1,2)

maxf = a + c = 9

a=m[i][s][0]= m[3][1][0]= 4 b=m[i][s][1]= m[3][1][1]= 4 r=(i+s-1)%n+1=4 c=m[r][j-s][0]= m[4][1][0]= 5 d=m[r][j-s][1]= m[4][1][1]= 5 op[3]=='+' a + c=9> m[3][2][0]=0 3 0 4/4 0/9 0/0 0/0 4 0 5/5 0/0 0/0 0/0

> 0 1 2 3 2 3 4 + × + ×

4

5

+

٧

op

4 ×	2
minMax(4,1,2)	
a=m[i][s][0]=m[4][1][0]=5	
h=m[i][s][1]=m[4][1][1]=5	

a=m[i][s][0]=m[4][1][0]=5
b=m[i][s][1]=m[4][1][1]=5
r=(i+s-1)%n+1=1
c=m[r][j-s][0]=m[1][1][0]=2
d=m[r][j-s][1]=m[1][1][1]=2
op[1]==' x '
$a \times c=10 > m[4][2][0]=0$

V

op

	0	0	0	0	0
	0	2/2	0/5	0/0	0/0
١	0	3/3	0/12	0/0	0/0
	0	4/4	0/9	0/0	0/0
•	0	5/5	0/10	0/0	0/0
•					

3

0	1	2	3	4
	2	3	4	5
+	×	+	×	+

1	
1	
-	

3	4
	4

0	0	0	0	0
0	2/2	0/5	0/14	0
0	3/3	0/12	0	0
0	4/4	0/9	0	0
0	5/5	0/10	0	0

minMax(1,1,3)

a+c=2

maxf=b+d=14

a=m[1][1][0]=2
b=m[1][1][1]=2
r=(i+s-1)%n+1=2
c=m[r][j-s][0]=m[2[2][0]=0
d=m[r][i-s][1]=m[2][2][1]=12

	_	
	•	

٧

op

0

0	1	2	3	4
+	×	+	×	+

op

 $a \times c=0$

 $maxf=b \times d=5 \times 4=20$

j	1	2	3	4
_				

0	0	0	0	0
0	2/2	0/5	0/20	0
0	3/3	0/12	0	0
0	4/4	0/9	0	0
0	5/5	0/10	0	0

0	1	2	3	4
+	×	+	×	+

op

 $a \times c=0$

 $maxf=b \times d=3 \times 9=27$

j 1	2	3	4
-----	---	---	---

0	0	0	0	0
0	2/2	0/5	0/20	0
0	3/3	0/12	0/27	0
0	4/4	0/9	0	0
0	5/5	0/10	0	0

0	1	2	3	4
+	×	+	×	+

op

a + c = 5

 $\max_{f=27>b+d=17}$

i	1	2	3	4
•				

0	0	0	0	0
0	2/2	0/5	0/20	0
0	3/3	0/12	0/27	0
0	4/4	0/9	0	0
0	5/5	0/10	0	0

0	1	2	3	4
+	×	+	×	+

op

op[4]=='+'

 $\max_{b} + d = 14$

a + c=4

j	1	2	3	4
•				

0	0	0	0	0
0	2/2	0/5	0/20	0
0	3/3	0/12	0/27	0
0	4/4	0/9	0/14	0
0	5/5	0/10	0	0

0	1	2	3	4
+	×	+	×	+

 $a \times c=0$

 $maxf=14 < b \times d=18$

V

op

j	1	2	3	4
•				

0	0	0	0	0
0	2/2	0/5	0/20	0
0	3/3	0/12	0/27	0
0	4/4	0/9	0/18	0
0	5/5	0/10	0	0

0	1	2	3	4
+	×	+	×	+

 $a \times c=0$

 $maxf=b \times d=25$

V

op

j	1	2	3	4

0	0	0	0	0
0	2/2	0/5	0/20	0
0	3/3	0/12	0/27	0
0	4/4	0/9	0/18	0
0	5/5	0/10	0/25	0

0	1	2	3
+	×	+	×

0	1	2	3	4
+	×	+	×	+

op

op[2]=='+'

Maxf=25>b+d=13

a + c = 3

j	1	2	3	4
•				

0	0	0	0	0
0	2/2	0/5	0/20	0
0	3/3	0/12	0/27	0
0	4/4	0/9	0/18	0
0	5/5	0/10	0/25	0

0	1	2	3	4
+	×	+	×	+

X

m[i][j][0]/m[i][j][1]

0	0	0	0	0
0	2/2	0/5	0/20	0/29
0	3/3	0/12	0/27	0
0	4/4	0/9	0/18	0
0	5/5	0/10	0/25	0

minMax(1,1,4)

$$r=(i+s-1)\%n+1=2$$

$$c=m[r][j-s][0]=m[2][3][0]=0$$

op

3

a + c = 2

$$Maxf=b+d=29$$

 $a \times c=2$

 $Maxf=29 < b \times d=45$

V

op

j 1	2	3	4
-----	---	---	---

0	0	0	0	0
0	2/2	0/5	0/20	0/45
0	3/3	0/12	0/27	0
0	4/4	0/9	0/18	0
0	5/5	0/10	0/25	0

0	1	2	3	4
+	×	+	×	+

op

op[4]=='+'

Maxf=45>b+d=25

a + c = 5

j	1	2	3	4
•				

0	0	0	0	0
0	2/2	0/5	0/20	0/45
0	3/3	0/12	0/27	0
0	4/4	0/9	0/18	0
0	5/5	0/10	0/25	0

0	1	2	3	4
+	×	+	×	+

op

op[3]=='X'

 $Maxf=b \times d=54$

 $a \times c=0$

0	0	0	0	0
0	2/2	0/5	0/20	0/45
0	3/3	0/12	0/27	0/54
0	4/4	0/9	0/18	0
0	5/5	0/10	0/25	0

0	1	2	3	4
+	×	+	×	+

a + c = 0

Maxf=54 > b + d=22

V

op

0	0	0	0	0
0	2/2	0/5	0/20	0/45
0	3/3	0/12	0/27	0/54
0	4/4	0/9	0/18	0
0	5/5	0/10	0/25	0

0	1	2	3	4
+	×	+	×	+

minMax(2,3,4)a=m[2][3][0]=0

$$r=(i+s-1)\%n+1=1$$

$$c=m[r][j-s][0]=m[1][1][0]=2$$

V

op

0

3

$$a \times c = 0$$

$$Maxf=54 = b \times d = 54$$

j	1	2	3	4

0	0	0	0	0
0	2/2	0/5	0/20	0/45
0	3/3	0/12	0/27	0/54
0	4/4	0/9	0/18	0
0	5/5	0/10	0/25	0

0	1	2	3	4
+	×	+	×	+

0	0	0	0	0
0	2/2	0/5	0/20	0/45
0	3/3	0/12	0/27	0/54
0	4/4	0/9	0/18	0/29
0	5/5	0/10	0/25	0

b=m[3][1][1]=4

r=(i+s-1)%n+1=4

c=m[r][j-s][0]=m[4][3][0]=0

d=m[r][j-s][1]= m[4][3][1]=25

op[4]=='+'

V

a + c = 4Maxf = b + d = 29

op

j	1	2	3	4

0	0	0	0	0
0	2/2	0/5	0/20	0/45
0	3/3	0/12	0/27	0/54
0	4/4	0/9	0/18	0/45
0	5/5	0/10	0/25	0

minMax(3,2,4)

a=m[3][2][0]=0

b=m[3[2][1]=9

r=(i+s-1)%n+1=1

c=m[r][j-s][0]= m[1][2][0]=0

d=m[r][j-s][1]=m[1][2][1]=5

op[1]=='X'

٧

i

3

 $a \times c = 0$

 $Maxf=29 < b \times d=45$

op

op[2]=='+'

Maxf=45 > b + d = 16

a + c = 2

j	1	2	3	4
_				

0	0	0	0	0
0	2/2	0/5	0/20	0/45
0	3/3	0/12	0/27	0/54
0	4/4	0/9	0/18	0/45
0	5/5	0/10	0/25	0

0	1	2	3	4
+	×	+	×	+

op

op[1]=='X'

 $Maxf=b \times d=100$

 $a \times c = 0$

j	1	2	3	4
•				

0	0	0	0	0
0	2/2	0/5	0/20	0/45
0	3/3	0/12	0/27	0/54
0	4/4	0/9	0/18	0/45
0	5/5	0/10	0/25	0/100

0	1	2	3	4
+	×	+	×	+

op

op[2]=='+'

Maxf=100 > b + d=22

a + c = 0

j	1	2	3	4
•				

0	0	0	0	0
0	2/2	0/5	0/20	0/45
0	3/3	0/12	0/27	0/54
0	4/4	0/9	0/18	0/45
0	5/5	0/10	0/25	0/100

0	1	2	3	4
+	×	+	×	+

j 1 2 3 4

0	0	0	0	0
0	2/2	0/5	0/20	0/45
0	3/3	0/12	0/27	0/54
0	4/4	0/9	0/18	0/45
0	5/5	0/10	0/25	0/100

a=m[4][3][0]=0		
b=m[4][3][1]=25		1
r=(i+s-1)%n+1=3		4
c=m[r][j-s][0]=m[3][1][0]=4	
d=m[r][j-s][1]=m[3][1][1]=4	
op[3]=='x'	V	i
$\mathbf{a} \times \mathbf{c} = 0$		
$M_{ov}f = 100 - h \lor d = 100$	op	

 $Maxf=100=b \times d = 100$

0	1	2	3	4
+	×	+	×	+

X + X

X

X

0

lo[i][j]记载s的值

j 1 2 3 4

0	0	0	0	0
0	0	1	2	2
0	0	1	1	1
0	0	1	2	2
0	0	1	1	1

3.10 0-1背包问题

▶引入:海盗问题

▶问题:

给定 n 种物品和一个背包。物品i的重量是 w_i ,其价值为 v_i ,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

▶规定:

一 只有两种选择,装入为1,不装为0,因此称为0-1背包问题。注:不能装入多次,也不能只装入部分

3.10 0-1背包问题

>表示:

价值总和最大

$$\max \sum_{i=1}^{n} v_{i} x_{i}$$

$$\begin{cases} \sum_{i=1}^{n} w_{i} x_{i} \leq C \\ x_{i} \in \{0,1\}, 1 \leq i \leq n \end{cases}$$

背包容量

▶最优子结构性质:

如果 $(x_1, x_2, ..., x_n)$ 是所给0/1背包问题的一个最

$$\begin{cases} \sum_{i=1}^{n} w_i x_i \le C \\ x_i \in \{0,1\} \quad (1 \le i \le n) \end{cases}$$

$$\max \sum_{i=1}^{n} v_i x_i$$

若能证明(x,,...,x,)是下面子问题的最优解:

$$\begin{cases} \sum_{i=2}^{n} w_{i} x_{i} \leq C - w_{1} x_{1} \\ x_{i} \in \{0,1\} \quad (2 \leq i \leq n) \end{cases}$$

$$\max \sum_{i=2}^{n} v_{i} x_{i}$$

则0/1背包问题具有最优子结构性质。

➡证明0/1背包问题是最优子结构(反证)。

设 $(x_1, x_2, ..., x_n)$ 是所给0/1背包问题的一个最优解,则 $(x_2, ..., x_n)$ 是下面一个子问题的最优解:

$$\begin{cases} \sum_{i=2}^{n} w_{i} x_{i} \leq C - w_{1} x_{1} \\ x_{i} \in \{0,1\} \ (2 \leq i \leq n) \end{cases}$$
 max
$$\sum_{i=2}^{n} v_{i} x_{i}$$

$$\max \sum_{i=2}^{n} v_{i} x_{i}$$

如若不然,设 $(y_2, ..., y_n)$ 是上述子问题的一个最优解,则

$$\sum_{i=2}^{n} v_{i} y_{i} > \sum_{i=2}^{n} v_{i} x_{i}$$

$$w_{1} x_{1} + \sum_{i=2}^{n} w_{i} y_{i} \leq C$$

$$w_1 x_1 + \sum_{i=2}^n w_i y_i \leq C$$

因此,

$$v_1x_1 + \sum_{i=2}^n v_iy_i > v_1x_1 + \sum_{i=2}^n v_ix_i = \sum_{i=1}^n v_ix_i$$

这说明 $(x_1, y_2, ..., y_n)$ 是所给0/1背包问题比 $(x_1, x_2, ..., x_n)$ 更优的 解,从而导致矛盾。

▶重叠子问题性质:

```
C=10, W=\{7,3,4,5\}, V=\{42,12,40,25\}
实例:
子集
             总重量
                           总价值
                           $0
 {1}
                           $42
 {2}
                           $12
 {3}
                           $40
                           $25
 \{1, 2\}
             10
                           $54
 \{1, 3\}
                           不可行
             11
             12
                           不可行
 \{2, 3\}
                           $52
 \{2, 4\}
                           $37
 \{3, 4\}
                           $65
```

0/1背包问题如何用动态规划法解决?

关键问题:找出动态规划函数

- \square 0/1背包问题可以看作是决策一个序列 $(x_1, x_2, ..., x_n)$,对任
- 一变量 x_i 的决策是决定 x_i =1还是 x_i =0。在对 x_{i-1} 决策后,已确
- 定了 $(x_1, ..., x_{i-1})$, 在决策 x_i 时,问题处于下列两种状态之一:
 - (1) 背包容量不足以装入物品i,则 x_i =0,背包不增加价值;
 - (2) 背包容量可以装入物品i。
- 在(2)的状态下,物品i有两种情况,装入(则 $x_i=1$)或不装入(则 $x_i=0$)。在这两种情况下背包价值的最大者应该是

对 x_i 决策后的背包价值。

令V(i,j)表示在前 $i(1 \le i \le n)$ 个物品中能够装入容量为j($1 \le j \le C$)的背包中的物品的最大值,则可以得到如下动态规划函数:

$$V(i, 0) = V(0, j) = 0$$

$$V(i, j) = \begin{cases} V(i-1, j) & j < w_i \\ \max\{V(i-1, j), V(i-1, j-w_i) + v_i\} & j \ge w_i \end{cases}$$

表明: 把前面i个物品装入容量为0的背包和把0个物品装入容量为i的背包,得到的价值均为0。

$$V(i, j) = \begin{cases} V(i-1, j) & j < w_i \\ \max\{V(i-1, j), \ V(i-1, j-w_i) + v_i\} & j \ge w_i \end{cases}$$

(1) 第一个式子表明:如果第i个物品的重量大于背包的容量,则物品i不能装入背包,则装入前i个物品得到的最大价值和装入前i-1个物品得到的最大价值是相同的。

$$V(i, j) = \begin{cases} V(i-1, j) & j < w_i \\ \max\{V(i-1, j), \ V(i-1, j-w_i) + v_i\} & j \ge w_i \end{cases}$$

- (2) 第二个式子表明:如果第*i*个物品的重量小于背包的容量,则会有以下两种情况:
- ①如果第*i*个物品没有装入背包,则背包中物品的价值就等于把前*i*-1个物品装入容量为*j*的背包中所取得的价值。
- ②如果把第i个物品装入背包,则背包中物品的价值等于把前i-1个物品装入容量为j- w_i 的背包中的价值加上第i个物品的价值 v_i ;

显然,取二者中价值较大者作为把前点个物品装入容量为点的背包中的最优解。

按下述方法来划分阶段:第一阶段,只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入前2个物品,确定在各种情况下的背包能够得到的最大价值;依此类推,直到第n个阶段。最后,V(n,C)便是在容量为C的背包中装入n个物品时取得的最大价值。

为了确定装入背包的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),表明第n个物品被装入背包,前n-1个物品被装入容量为 $C-w_n$ 的背包中;否则,第n个物品没有被装入背包,前n-1个物品被装入容量为C的背包中。依此类推,直到确定第1个物品是否被装入背包中为止。由此,得到如

下函数:

$$x_{i} = \begin{cases} 0 & V(i,j) = V(i-1,j) \\ 1, & j = j - w_{i} \end{cases} V(i,j) > V(i-1,j)$$

实例: 有5个物品, 其重量分别是{2, 2, 6, 5, 4}, 价值分别为{6, 3, 5, 4, 6}, 背包的容量为10。

根据动态规划函数,用一个(n+1)×(C+1)的二维表V,V[i][j]表示把前i个物品装入容量为i的背包中获得的最大价值。

算法实现

设n个物品的重量存储在数组w[n]中,价值存储在数组v[n]中,背包容量为C,数组V[n+1][C+1]存放迭代结果,其中V[i][j]表示前i个物品装入容量为j的背包中获得的最大价值,数组x[n]存储装入背包的物品,动态规划法求解0/1背包问题的算法如下:

算法——0/1背包问题
int KnapSack(int n, int w[], int v[]) {
 for (i=0; i<=n; i++) //初始化第0列
 V[i][0]=0;
 for (j=0; j<=C; j++) //初始化第0行
 V[0][j]=0;

```
算法——0/1背包问题
for (i=1; i<=n; i++) //计算第i行,进行第i次迭代
   for (j=1; j<=C; j++)
       if (j<w[i]) V[i][j]=V[i-1][j];
       else V[i][j]=max(V[i-1][j], V[i-1][j-w[i]]+v[i]);
j=C; //求装入背包的物品
for (i=n; i>0; i--){
  if (V[i][j]>V[i-1][j]) {
     x[i]=1;
     j=j-w[i];
  else x[i]=0;
return V[n][C]; //返回背包取得的最大价值
```

0/1背包问题用动态规划法,与其他方法相比,效率如何,效果如何?

- □ 在算法中,第一个for循环的时间性能是O(n),第二个for循环的时间性能是O(C),第三个循环是两层嵌套的for循环,其时间性能是 $O(n \times C)$,第四个for循环的时间性能是O(n),所以,算法的时间复杂性为 $O(n \times C)$,一定能求得最优解。
- □ 蛮力法: O(2ⁿ), 一定能求得最优解
- □贪心法: O(n), 不一定能求得最优解

0-1背包问题练习题:

$$V(i, j) = \begin{cases} V(i-1, j) & j < w_i \\ \max\{V(i-1, j), V(i-1, j-w_i) + v_i\} & j \ge w_i \end{cases}$$

		0	j-wi	j	W
	0	0	0	0	0
wi,vi	i-1	0	v[i-1,j-wi]	v[i-1,j]	
	i	0		v[i,j]	
	n	0			目标

实例:

$$V(i, j) = \begin{cases} V(i-1, j) & j < w_i \\ \max\{V(i-1, j), \ V(i-1, j-w_i) + v_i\} & j \ge w_i \end{cases}$$

物品	重量	价值	承重量
1	2	\$12	W=5
2	1	\$10	
3	3	\$20	
4	2	\$15	

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	0	0	0	0	0
1	10	2	0	0	0	0	0	0
3	20	3	0	0	0	0	0	0
2	15	4	0	0	0	0	0	0

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	0	12	12	12	12
1	10	2	0	0	0	0	0	0
3	20	3	0	0	0	0	0	0
2	15	4	0	0	0	0	0	0

 $v[1][0] \sim v[1][1] = 0, \quad v[1][2] \sim v[1][5] = 12$

$$V(i, j) = \begin{cases} V(i-1, j) & j < w_i \\ \max\{V(i-1, j), \ V(i-1, j-w_i) + v_i\} & j \ge w_i \end{cases}$$

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	0	12	12	12	12
1	10	2	0	10	12	22	22	22
3	20	3	0	0	Ø	0	0	0
2	15	4	0	0	0	0	0	0

v[2][0] = 0, v[2][1] = 10, v[2][2] = 12, $v[2][3] \sim v[2][5] = 22$

$$V(i, j) = \begin{cases} V(i-1, j) & j < w_i \\ \max\{V(i-1, j), \ V(i-1, j-w_i) + v_i\} & j \ge w_i \end{cases}$$

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	0	12	12	12	12
1	10	2	0	10	12	22	22	22
3	20	3	0	10	12	22	30	32
2	15	4	0	0	0	0	0	0

$$v[3][0] = 0$$
, $v[3][1] = 10$, $v[3][2] = 12$, $v[3][3] = 22$
 $v[3][4] = 30$, $v[3][5] = 32$

$$V(i, j) = \begin{cases} V(i-1, j) & j < w_i \\ \max\{V(i-1, j), \ V(i-1, j-w_i) + v_i\} & j \ge w_i \end{cases}$$

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	0	12	12	12	12
1	10	2	0	10	12	22	22	22
3	20	3	0	10	12	22	30	32
2	15	4	0	10	15	25	30	37

$$v[4][0] = 0$$
, $v[4][1] = 10$, $v[4][2] = 15$, $v[4][3] = 25$
 $v[4][4] = 30$, $v[4][5] = 37$

$$V(i, j) = \begin{cases} V(i-1, j) & j < w_i \\ \max\{V(i-1, j), \ V(i-1, j-w_i) + v_i\} & j \ge w_i \end{cases}$$

最优子集的组成元素:

$$v[3,3] = v[2,3]$$

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	0	12	12	12	12
1	10	2	0	10	12	22	22	22
3	20	3	0	10	12	22	30	32
2	15	4	0	10	15	25	30	37

递推关系式(向前)

设所给0-1背包问题的子问题

$$\max \sum_{k=i}^{n} v_k x_k$$

$$\begin{cases} \sum_{k=i}^{n} w_k x_k \le j \\ x_k \in \{0,1\}, i \le k \le n \end{cases}$$

的最优值为m(i, j),即m(i, j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。由0-1背包问题的最优子结构性质,可以建立计算m(i, j)的递归式如下。

$$m(i,j) = \begin{cases} \max\{m(i+1,j), m(i+1,j-w_i) + v_i\} & j \ge w_i \\ m(i+1,j) & 0 \le j < w_i \end{cases}$$

$$m(n,j) = \begin{cases} v_n & j \ge w_n \\ 0 & 0 \le j < w_n \end{cases}$$

例子:

物品	重量	价值	承重量
1	2	\$12	W=5
2	1	\$10	
3	3	\$20	
4	2	\$15	

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	0	0	0	0	0
1	10	2	0	0	0	0	0	0
3	20	3	0	0	0	0	0	0
2	15	4	0	0	0	0	0	0

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	0	0	0	0	0
1	10	2	0	0	0	0	0	0
3	20	3	0	0	0	0	0	0
2	15	4	1 0	, 0	15	15	15	1 5

$$m[4][0] \sim m[4][1] = 0, m[4][2] \sim m[4][5] = 15$$

$$m(n,j) = \begin{cases} v_n & j \ge w_n \\ 0 & 0 \le j < w_n \end{cases}$$

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	0	0	0	0	0
1	10	2	0	0	0	0	0	0
3	20	3	0	0	15	20	20	35
2	15	4	0	0	15	15	15	15

$$m[3][0] \sim m[3][2] = 0, m[3][3] \sim m[3][4] = 20$$

 $m[3][5] = 35$

$$m(i,j) = \begin{cases} \max\{m(i+1,j), m(i+1,j-w_i) + v_i\} & j \ge w_i \\ m(i+1,j) & 0 \le j < w_i \end{cases}$$

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	0	0	0	0	0
1	10	2	0	10	15	25	30	35
3	20	3	0	0	15	20	20	35
2	15	4	0	0	15	15	15	15

m[2][0] = 0, m[2][1] = 10, m[2][2] = 15, m[2][3] = 25 $m[2][4] \sim m[2][5] = 30$

$$m(i,j) = \begin{cases} \max\{m(i+1,j), m(i+1,j-w_i) + v_i\} & j \ge w_i \\ m(i+1,j) & 0 \le j < w_i \end{cases}$$

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	10	15	25	30	37
1	10	2	0	10	15	25	30	35
3	20	3	0	0	15	20	20	35
2	15	4	0	0	15	15	15	15

m[1][0] = 0, m[1][1] = 10, m[1][2] = 15, m[1][3] = 25m[1][4] = 27, m[1][5] = 37

$$m(i,j) = \begin{cases} \max\{m(i+1,j), m(i+1,j-w_i) + v_i\} & j \ge w_i \\ m(i+1,j) & 0 \le j < w_i \end{cases}$$

最优子集的组成元素:

$$m[3,2] = m[4,2]$$

wi	vi	j	0	1	2	3	4	5
		0	0	0	0	0	0	0
2	12	1	0	10	15	25	30	37
1	10	2	0	10	15	25	30	35
3	20	3	0	0	15	20	20	35
2	15	4	0	0	15	15	15	15

0-1背包问题的算法复杂度分析:

空间:w[n], v[n], m[n][c], O(nc) 时间: 由m(i, j)的递归式, 算法需要O(nc)计算时间。 构造最优解时间: O(n)。 当背包容量c很大时, 算法需要的计算时间较多。 例如, 当c>2ⁿ时, 算法需要Ω(n2ⁿ)计算时间。