Should This Loan be Approved or Denied?

Loan Default Prediction

Group Members:

Jianing Hu Shiqi Tang Shuyang Ning Yuchen Wu

GitHub Repository:

https://github.com/JoanneT17/5293 group project loan

CONTENTS

- 1. Introduction
- 2. Exploratory Data Analysis
- 1) Checking the outliner for numerical variables
- 2) Analysis on target values
 - a) Imbalanced
 - b) Univariate Analysis
 - i) Categorical variables
 - ii) Numerical variables
- 3) Correlation
- 3. Model Building
- 4. Evaluation & Model Selection
- 5. Improvements
- 1) Limitation
- 2) Multicollinearity

INTRODUCTION

Source

U.S. Small Business Administration (SBA)

Background

The U.S. SBA was founded in 1953 on the principle of promoting and assisting small enterprises in the U.S. credit market.

There have been many success stories of start-ups receiving SBA loan guarantees such as FedEx and Apple Computer. However, there have also been stories of small businesses and/or start-ups that have defaulted on their SBA-guaranteed loans.

Purpose

Help loan officer make decisions about whether to approve a loan to a small business.

89.9w rows 27 columns

Selected Columns

NAICS North American industry

classification system code

ApprovalFY Fiscal year of commitment

Term Loan term in month

NewExist 1=existing, 2=new

FranchiseCode 00000 or 00001= no franchise

```
# drop duplication
df. drop duplicates(subset=None, keep='first', inplace=True)
```

```
# keep first 2 digits of NAICS
df. NAICS = pd. to_numeric (df. NAICS. astype (str). str[:2])
# New Exist = 0, 1 (Delet NewExist = 0.0)
df. NewExist = df. NewExist. astype (int)
df = df[(df. NewExist == 1) | (df. NewExist == 2)]
df. NewExist[df. NewExist == 1] = 0
df. NewExist[df. NewExist == 2] = 1
# Franchise Code = 0, 1
df. FranchiseCode[df. FranchiseCode <= 1] = 0
df. FranchiseCode[df. FranchiseCode > 1] = 1
df = df. rename(columns={"FranchiseCode":"HasFranchise"})
```

89.9w rows 27 columns

Selected Columns

UrbanRural 1=urban 2=rural 0=undefined

RevLineCr Revolving line of credit

Y=yes, N=no

GrAppv Gross amount of loan approved

MIS_Status Loan status

CHGOFF=default, PIF = full paid

EXPLORATORY DATA ANALYSIS

1. Checking the outliner for numerical variables

All these numerical variables have outliers.

	ApprovalFY	Term	GrAppv
count	891424.000000	891424.000000	8.914240e+05
mean	2001.163105	110.712274	1.927831e+05
std	5.908215	78.863264	2.828811e+05
min	1969.000000	0.000000	1.000000e+03
25%	1997.000000	60.000000	3.500000e+04
50%	2003.000000	84.000000	9.000000e+04
75%	2006.000000	120.000000	2.250000e+05
max	2014.000000	569.000000	5.000000e+06

2. Analysis On Target Value

a. Imbalanced

Imbalance Ratio: 4.66

b. Univariate Analysis

i. Categorical variables

2. Analysis On Target Values

- b. Univariate Analysis
 - i. Categorical variables
 - ii. Numerical Variables

3. Correlation

The high correlation between the left variables may affects the performance of our model created by the algorithms, like logistic regression and KNN.

Correlated variables: 'Paid in full' dataframe (Coef > = 0.3)

	Var1	Var2	Correlation
46	UrbanRural	ApprovalFY	0.75
74	GrAppv	Term	0.49
9	ApprovalFY	NAICS	0.48
45	UrbanRural	NAICS	0.43
55	RevLineCr	ApprovalFY	0.39
56	RevLineCr	Term	0.34

Correlated variables: 'Default' dataframe (Coef > = 0.3)

	Var1	Var2	Correlation
46	UrbanRural	ApprovalFY	0.61
9	ApprovalFY	NAICS	0.52
74	GrAppv	Term	0.50
45	UrbanRural	NAICS	0.36
56	RevLineCr	Term	0.30

General Algorithm

Determine X and Y from selected columns

Split data into train and test sets

Build initial model

Improve model using grid search

Check accuracy of best model in test data

	precision	recall	f1-score	support
0	0.853	0.976	0.910	183357
1	0.661	0.219	0.330	39499
accuracy			0.842	222856
macro avg	0.757	0.598	0.620	222856
weighted avg	0.819	0.842	0.807	222856

Logistic Regression

X using all columns except 'default', all object in dummy forms

Y 'default'

```
# Scale the feature values prior to modeling
scale = StandardScaler()
X_scaled = scale.fit_transform(X)

X_train, X_val, y_train, y_val = train_test_split(X_scaled, y, test_size=0.25)
Initialize model
```

LogisticRegression(random state).fit(training data)

get accuracy on testing data

```
# Improve model using grid search
from sklearn.model_selection import GridSearchCV
grid={"C":np.logspace(-3,3,7), "penalty":["11","12"]} # 11 lasso 12 ridge
logreg_cv=GridSearchCV(log_reg, grid, cv=10)
logreg_cv.fit(X_train, y_train)
print("tuned hpyerparameters: (best parameters) ",logreg_cv.best_params_)
print("accuracy:",logreg_cv.best_score_)
```

Best model: c = 10, penalty = ridge

General Algorithm

Determine X and Y from selected columns

Split data into train and test sets

Build initial model

Improve model using grid search

Check accuracy of best model in test data

	precision	recall	f1-score	aummont
	precision	recarr	II-score	support
_				
0	0.937	0.965	0.951	183514
1	0.812	0.697	0.750	39342
accuracy			0.918	222856
macro avg	0.875	0.831	0.851	222856
weighted avg	0.915	0.918	0.916	222856

KNN

- X using all columns except 'default', 'NAICS', 'Industry'
- Y 'default'

```
# split Train Data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, stratify=y, random_state=520)
```

Initialize model

KNeighborsClassifier().fit(training data)

get accuracy on testing data

Best model : n_neighbors = 3, weight = 'uniform'

General Algorithm

Determine X and Y from selected columns

Split data into train and test sets

Build initial model

Improve model using grid search

Check accuracy of best model in test data

	precision	recall	f1-score	support
0 1	0.963 0.849	0.968 0.828	0.966 0.838	183215 39641
accuracy macro avg weighted avg	0.906 0.943	0.898 0.943	0.943 0.902 0.943	222856 222856 222856

Decision Tree

X using all columns except 'default', don't use object data(Industry is substituted by NAICS)

Y 'default'

```
# Split Train Data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=520)
```

Initialize model

DecisionTreeClassifier().fit(training data)

get accuracy on testing data

Best model: max_depth = 20 min_samples_leaf = 50

criterion = 'entropy'

General Algorithm

Determine X and Y from selected columns

Split data into train and test sets

Build initial model

Improve model using grid search

Check accuracy of best model in test data

	precision	recall	f1-score	support
0 1	0.956 0.856	0.971 0.792	0.963 0.823	183215 39641
accuracy macro avg weighted avg	0.906 0.938	0.882 0.939	0.939 0.893 0.938	222856 222856 222856

Random Forest

X using all columns except 'default', don't use object data(Industry is substituted by NAICS)

Y 'default'

```
# Split Train Data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=520)
```

Initialize model

RandomForestClassifier().fit(training data)

get accuracy on testing data

Best model: max_depth = 20 n_etimators = 120

criterion = 'entropy'

EVALUATION & MODEL SELECTION

- By comparison, we conclude that
 Decision Tree and Random Forest
 perform better in this case.
- As the dataset is slightly unbalanced, we will look at balanced accuracy when comparing decision tree model and random forest model.
- Balanced accuracy is calculated as:

(Sensitivity + Specificity) / 2

Where sensitivity is the true positive rate, and specificity is the true negative rate.

	Accuracy	Training Time
Logistic Regression	84.2%	4.16s
KNN	91.8%	135.67s
Decision Tree	94.3%	17.31s
Random Forest	93.9%	155.74s

Decision Tree VS. Random Forest

print(classification report(y test, y pred imp, digits=3)) print(classification_report(y_test, y_rfcimb_pred, digits=3)) precision recall f1-score support precision recall f1-score support 0.956 0.971 0.963 183215 0.963 0.968 0.966 183215 0.856 0.792 0.823 39641 1 0.849 0.828 0.838 39641 222856 accuracy 0.939 0.943 222856 accuracy macro avg 0.906 0.882 0.893 222856 0.906 0.898 0.902 222856 macro avq weighted avg 0.938 0.939 0.938 222856

Random Forest:

print("Balanced Accuracy: ".metrics.balanced_accuracy_score(y_test, y_pred_imp))

0.943

Balanced Accuracy: 0.8978866718146674

0.943

0.943

Decision Tree:

weighted avg

print("Balanced Accuracy: ",metrics.balanced_accuracy_score(y_test, y_rfcimb_pred))
Balanced Accuracy: 0.8817420671543394

- Balanced accuracy for decision tree model: 89.8%.
- Balanced accuracy for random forest model: 88.2%.

222856

Conclusion

- Accuracy wise: Decision Tree performs better than Random Forest both in accuracy score and balanced accuracy;
- Training cost wise: Random Forest has a higher training time than a single Decision Tree.
- Random Forest is suitable for situations when we have a large dataset, and interpretability is not a major concern.
- Decision trees are much easier to interpret and understand. Since a random forest combines multiple decision trees, it becomes more difficult to interpret.

→ We recommend Decision Tree Model in this case when predicting whether the loan should be accepted or denied.

Further Evaluation


```
from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred_imp)
TN = cm[0][0]
FN = cm[1][0]
TP = cm[1][1]
FP = cm[0][1]

# we use the WACC matric from the article
# http://store.ectap.ro/articole/1421.pdf

WACC = 0.25*(TP/(TP+FN))+0.75*(TN/(TN+FP))
print('The WACC rank of our model is: '+str(WACC))
```

The WACC rank of our model is: 0.9330412536542431

IMPROVEMENT

1. Limitation

a. 'Loan Term == 84' occupied a large proportion of the data

```
df.loc[df.RevLineCr == 1].Term.value counts().head()
84
      95709
      15763
       9908
12
       8123
       5740
Name: Term, dtype: int64
df.loc[df.Default == 0].Term.value counts().head()
84
       225747
60
        86639
240
        84705
120
        75941
300
        44354
Name: Term, dtype: int64
```


Default

1. Limitation

- b. The data is too out-to-date
- i. Most of the places are undecided

ii. The usage of the revolving line of credit is becoming popular after millennium

- c. More factors may influence a small enterprise default a business loan or not:
- i. The credibility of the company's lender
- ii. The market situation of each industry for each year (This can be obtained by the GDP proportion of each industry occupied)

iii. ...

IMPROVEMENT

2. Multicollinearity

Violin Plot: Fiscal Year VS Industry

3. Add auto-encoder model

We can also create the decoder layers of the auto-encoder neural network to further improve our model.