МАРГАНЕЦ, ЦИНК И ИХ СОЕДИНЕНИЯ ТИПЫ РЕАКЦИЙ

более сильный ВЫТЕСНЯЕТ более слабого - вытеснение ПРИМЕРЫ:

основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ:

электролит + электролит (р-р) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ:

- 1) NaOH + HCl = NaCl + H₂O
- 2) KCl + AgNO, = KNO, + AgI

ЦИНК ОБЩИЕ СВЕДЕНИЯ

Нахождение: ІІВ-группа ПС

Электронная формула: 3s²3p⁶3d¹⁰4s²

Степени окисления: 0, +2

ФИЗИЧЕСКИЕ СВОЙСТВА:

голубовато-белый металл

НАХОЖДЕНИЕ В ПРИРОДЕ:

в основном в составе соединений!

ZnS - цинковая обманка

ZnO - цинкит

мягкий

хрупкий

электропроводный

теплопроводный

быстро окисляется

на влажном воздухе

покрыт оксидной плёнкой

ХИМИЧЕСКИЕ СВОЙСТВА И ПОЛУЧЕНИЕ

1) в лаборатории: электролиз p-ров солей: ZnSO₂ + 2H,O (эл.ток) = Zn + O, + H,SO₂ + H,

2) в промышленности: в-е из оксида коксом: ZnO + C (t) = Zn + CO

Zn + неметалл = бинарное соединение

$$Zn + H_2O(t) = ZnO + H_2$$

Zn + кислота

```
Zn + HCl =
Zn + H<sub>2</sub>SO<sub>4</sub> (конц) =
Zn + H<sub>2</sub>SO<sub>4</sub> (разб) =
Zn + HNO<sub>3</sub> (разб) =
Zn + HNO<sub>3</sub> (конц) =
```

Zn + соль менее активного металла

также часто встречаются:

ОКСИД И ГИДРОКСИД ЦИНКА

твёрдые вещества

амфотерные соединения

нерастворимы в воде

Обладают амфотерными свойствами: реагируют с кислотами, с кислотными оксидами (нелетучими), со щелочами, с оксидами щелочных и щелочно-земельных металлов.

ZnO: вытесняет летучие оксиды из солей; Zn(OH): разлагается при t.

7-	+		
		= 1	
			_

$$ZnO + NaOH(t) =$$

$$Zn(OH)$$
, + NaOH (t) =

$$Zn(OH)_{1}(t) =$$

МАРГАНЕЦ ОБЩИЕ СВЕДЕНИЯ

Нахождение: VIIB-группа ПС

Электронная формула<mark>: 3s²3p⁶3d⁵4s²</mark>

Степени окисления: 0,+2,+3,+4,+6,+7

ФИЗИЧЕСКИЕ СВОЙСТВА:

серебристо-белый металл

твёрдый

НАХОЖДЕНИЕ В ПРИРОДЕ:

в основном в составе соединений!

МпО,*пН,О - пиролюзит

Mn₂O₂ - гаусманит

хрупкий

электропроводный

теплопроводный

быстро окисляется

на влажном воздухе

покрыт оксидной плёнкой

химические свойства и получение

1) в лаборатории: электролиз р-ров солей: $MnSO_{\chi} + 2H_{\gamma}O$ (эл.ток) = $Mn + O_{\gamma} + H_{\gamma}SO_{\chi} + H_{\gamma}$ 2) в промышленности: в-е из оксида коксом: MnO, + 2C (t) = Mn + 2CO

Mn + неметалл = бинарное соединение

$$Mn + S = ____, Mn + P = _____$$

$$Mn + H_2O (t) = MnO + H_2$$

Mn + кислота

Mn + HCl =

Mn + H₂SO₄ (конц) =

 $Mn + H_2SO_4 (pa36) = ___$

Mn + HNO, (pas6) = Mn + HNO, (конц) =

Mn + соль менее активного металла

Mn + CuSO, = Mn + FeCl, =

также может встретиться:

Mn + NaNO, + NaOH =

ОКСИД И ГИДРОКСИД МАРГАНЦА (II)

твёрдые нерастворимые в-ва

Mn0 + H,0 =

оксид - зелёного цвета

MnO + HCl = MnO + SO, =

основные свойства

MnO + SO,/CO, =

MnO + C/CO =

 $MnO + H_{3}SO_{2}(pa36) =$

ОКСИД МпО обладает основными свойствами: реагирует с кислотами, с кислотными оксидами (нелетучими), вытесняется восстановителями из оксида; обладает восстановительными свойствами - легко окиляется; ГИДРОКСИД Мп(ОН)2 обладает основными свойствами: реагирует с кислотами и некоторыми кислотными оксидами (нелетучими); обладает восстановительными свойствами за счёт Мп*2

MnO + HNO ₃ (конц) =	
MnO + 0, = +	
$Mn(OH)_{2}(t) =$	
Mn(OH), + HNO, =	
Mn(OH), + HCl =	
MnCl, + NaOH =	
Mn(OH), + NaNO, =	
Mn(OH), + KBrO =	
$Mn(NO_3)_2(t) =$	
$MnSO_4 + KMnO_4 + H_2SO_4 =$	
MnSO, + NaClO, + NaOH =	
MnS + HCl =	

ПЕРМАНГАНАТ КАЛИЯ И ЕГО УЧАСТИЕ В ОВР

твёрдое вещество

фиолетового цвета

окислительные свойства

ДЛЯ ОВР С УЧАСТИЕМ СОЕДИ-НЕНИЙ МАРГАНЦА ОЧЕНЬ ВАЖ-НА СРЕДА!!!

В нейтральной среде перманганат калия восстанавливается до бурого осадка MnO.,

в кислой среде - до бесцветной соли Mn²+,

в щелочной среде - до зелёного манганата калия K_2MnO_4 .

KMnO, + HCl = KMnO, + MnSO, + H₂O = KMnO, + Na,SO, + KOH = HMnO, + H₃S = HMnO, + SO, + H₂O = K,MnO, + HBr = KMnO, + KNO, + H,O = MnO, + O, + KOH = KMnO, + PH, + H,SO, = KMnO, + Na, S + H, O = $KMnO_{\lambda} + NaI + H_{\lambda}O =$ KMnO, + FeSO, + H₂O = $MnO_1 + NaBr + H_1SO_1 =$ $MnO_1 + KI + H_1SO_2 =$ MnO + HCl = MnSO, + NaClO, + NaOH =

Перманганат калия (марганцовка) КМпО_Д - тёмно-фиолетовые кристаллы, при растворении в воде - малиново-фиолетовый раствор: В РАЗНЫХ СРЕДАХ ВЕДЁТ СЕБЯ ПО-РАЗНОМУ

OKИСЛИТЕЛЬ (KMnO₄) + BOCCTAHOBИТЕЛЬ + CPEДА (!)