Input Taking

1. I took the given terrain and transformed it into a 2d array.

Printing the terrain

1. Printed the terrain with the right amount of spaces between characters.

Output giving

- 1. I assumed the outputs I took was right and the if the output given was not right, with try and catch methods, I send the same methods for taking the desired input.
- 2. When I get the right input, I transform it into numbers and make the necessary modifications to my terrain
- 3. I print the terrain as wanted in the game

Solving the game

- 1. Firstly, I assumed as the water is not fluid and created a matrix with the water level equal to the biggest height possible (biggest number in the terrain), we can think as creating a rectangular prism. Let's call this flooded terrain.
- 2. Then , i derived a matrix to find the added water for each coordinate of the terrain , in order the find that , for each coordinate , I subtracted the terrain from the flooded terrain . We can call this new terrain added water terrain
- 3. For purposes later discussed, I created a method which erases the water (erases just 1 unit) that is connected to the given coordinate, and if the calls the same method when it erases a water unit, so what this method does is erases 1 unit from a water group that is connected, from the flooded terrain and the added water terrain. Let's call this method eliminating water method.
 - For understanding if the water is erasable or not , I used added water terrain to check if there is water . For understanding the height I checked the flooded terrain .
 - * if there is water and the height is more I erased enough water to balance the heights .
- 4. At last, I used the eliminating water method to eliminate all waters added to the sides, because at the sides, there can't be any water.

Printing the final terrain with water lakes and printing the result

- 1. I checked the added water terrain if there were any water, if so, I added the water units of a lake to a sum variable.
- 2. Then when I summed up all the units of a lake with a recursive algorithm, I added the square root of this sum variable to a general sum.
- 3. While using this recursive algorithm I created a new terrain with alphabetical characters at the coordinates where the lakes found .
- 4. I printed out the new terrain and below that I printed out the general sum