See lee all archivo crudual prints as part of the provided of the complete prints of the prints of t	
Selice of archivo crudo Free sets path or odding as the construction of agreed and you that path observer was stilled one. In [20] If the learner', which the learner' processing of agreed and you that path observer was stilled one. In [20] If the learner' process or one and the construction of agreed and you that path observer was stilled one. In [20] If the learner' process of the construction of t	
En esta parte del código se se el archivo crudo proveilente del ecubio de xid y se tada asia obtener una estida dos concent. of Tutte = opans(*Xe*Tvida.cod*, mices*r*) concent. of Tutte = concent. spirit(**) ratiol. contractor = contractor = concent. spirit(**) ratiol. contractor = concent. spirit(**) ratiol. contractor = contractor = contractor = contractor =	
partial_importantes = content split(';') table_contents = series_importantes(';') titles = table_contents((';')) table_contents = table_contents((';')) Se convierte el archivo De esta parte del codigo el contents del archivo crudo se convierte en un archivo CSV para posteriormete abriro con pandas In (%): octour_file = opert('catal.cav', 'b') octour_file	
cable_contented = (able_contented or epitane(titles, '21061A, PSDV1') (able_contented (able_contented or epitane	
En esta parte del código el contenido del archivo crudo se convierte en un archivo CSV para posteriormete abrirlo con pandas In [94]: output_file = open('data.csv', 'w') output_file.write(tabba_contenido) output_file.close() Creamos la gráfica interactiva para la formula de Debye-Scherrer En esta parte del código se obtienen los puntos más relevantes de la gráfica y se les da un tratamiento para poder trabajar con ellos. In [95]: df = pd.read.csv('data.csv') y_position_value_global = 190 beta_constant_value = 0 fig = px.line(df, xc'_2THETA', y='_PSO', labels={'Name': '2theta', 'value': 'values'}, title='SrTiO3 difractograma') Tig.opdate_traces(line=dict(color='blue')) * Add a line parallal to x-axis at y_position_value tig.add_shape(typs='line',	
In [94]: output_file = open('data.csv', 'w') output_file.write(tabla.contenido) output_file.close() Creamos la gráfica interactiva para la formula de Debye-Scherrer En esta parte del código se obtienen los puntos más relevantes de la gráfica y se les da un tratamiento para poder trabajar con ellos. In [95]: df = pd.read_csv('data.csv') y position value glothal = 198 beta_constant_value = 0 fig = px.line(df, x=' 2THETA', y=' PSD', labels=('Name': '2theta', 'Value': 'values'), title='SrTi03 difractograma') fig.update_traces(line=dict(color='blue')) # Add a line parallel to x-axis at y.position_value fig.add.shape(type='line',	
En esta parte del código se obtienen los puntos más relevantes de la gráfica y se les da un tratamiento para poder trabajar con ellos. In [95]: df = pd.read_csv('data.csv') y_position_value_global = 100 beta_constant_value = 0 fig = px.line(df, x=' 2THETA', y=' PSD', labels={'Name': '2theta', 'Value': 'values'}, title='SrTiO3 difractograma') fig.update_traces(line=dict(color='blue')) # Add a line parallel to x-axis at y_position_value fig.add_shape(type='line', x@-df[' 2THETA'].min(), y@=y_position_value_global, x1=df[' 2THETA'].max(), y1=y_position_value_global, y1=y_position_value_global,	
<pre>In [95]: df = pd.read_csv('data.csv') y_position_value_global = 100 beta_constant_value = 0 fig = px.line(df, x=' 2THETA', y=' PSD', labels={'Name': '2theta', 'Value': 'values'}, title='SrTi03 difractograma') fig.update_traces(line=dict(color='blue')) # Add a line parallel to x-axis at y_position_value fig.add_shape(type='line',</pre>	
<pre>fig.update_traces(line=dict(color='blue')) # Add a line parallel to x-axis at y_position_value fig.add_shape(type='line', x0=df[' 2THETA'].min(), y0=y_position_value_global, x1=df[' 2THETA'].max(), y1=y_position_value_global,</pre>	
<pre>type='line', x0=df[' 2THETA'].min(), y0=y_position_value_global, x1=df[' 2THETA'].max(), y1=y_position_value_global,</pre>	
#	
<pre>indice_refle_mas_alta = df[df[' PSD'] == max(df[' PSD'].values)].index[0] #print(indice_refle_mas_alta) # Obtenemos la mitad de la distancia con de la reflexión mas grande usando el punto de referencia given_PSD_value = altura_reflexion_max/2 # Se calcula la diferencia absoluta entre los dos valores dados y todos los datos de la columna PSD. df[[Absolute Difference]] = absoluta PSD value)</pre>	
<pre>df['Absolute_Difference'] = abs(df[' PSD'] - given_PSD_value) # Encuentra la fila con la menor diferencia encontrada closest_index = df['Absolute_Difference'].idxmin()</pre>	
<pre>closest_2THETA_value = df.loc[closest_index, ' 2THETA'] closest_PSD_value = df.loc[closest_index, ' PSD'] # Encontramos el siguiente valor más cercano next_upper_values = df[df[' PSD'] > given_PSD_value] if not next_upper_values.empty: next_upper_index = next_upper_values[' PSD'].idxmin()</pre>	
<pre>next_upper_2THETA = df.loc[next_upper_index, ' 2THETA'] next_upper_PSD = df.loc[next_upper_index, ' PSD'] #</pre>	
# Agregamos dos puntos con las coordenadas de closes index y el promedio de 2theta en el next_upper_index y next_upper_index + 1 fig.add_trace(go.Scatter(x=[df[' 2THETA'][closest_index]], y=[df[' PSD'][closest_index]], mode='markers+text', text='Punto A', textposition='bottom center', marker=dict(color='blue'))) fig.add_trace(go.Scatter(x=[promedio_de_dos_puntos], y=[df[' PSD'][closest_index]], mode='markers+text', text='Punto B', textposition='bottom center', marker=dict(color='red')))	
# Creamos una linea entre esos cos puntos fig.add_trace(go.Scatter(x=[df[' 2THETA'][closest_index], promedio_de_dos_puntos], y=[df[' PSD'][closest_index], df[' PSD'][closest_index]], mode='lines', line=dict(color='green', dash='dash'))) # Se calcula la distancia con la formula euclidiana def calculate_fwhm(index):	
half_max = df[' PSD'][index] / 2 # Half of the peak's maximum value left_bound = np.where(df[' PSD'][:index] < half_max)[0][-1] # Left boundary right_bound = np.where(df[' PSD'][index:] < half_max)[0][0] + index # Right boundary fwhm = df[' 2THETA'][right_bound] - df[' 2THETA'][left_bound] # FWHM calculation return fwhm heta constant value = calculate fwhm(indice refle mas alta) #Se quardan los dates en la variable global	
beta_constant_value = calculate_fwhm(indice_refle_mas_alta) #Se guardan los datos en la variable global distance_two_points = beta_constant_value # Se agrega una anotación con esta distancia fig.add_annotation(x=(next_upper_2THETA + closest_2THETA_value)/2, y=df[' PSD'][closest_index], text=f'Distancia: {distance_two_points:.5f}', # Ponemos la distancia con 3 puntos decimales	
<pre>showarrow=True, arrowhead=1,) fig.add_annotation(x=(next_upper_2THETA + closest_2THETA_value)/2,</pre>	
<pre>y=df[' PSD'][closest_index + 3], text=f'Distancia entre linea y pico: {altura_reflexion_max} y distancia mitad {altura_reflexion_max/2}', # Ponemos la distancia con 3 puntos decimales showarrow=True, arrowhead=1,) fig.show(renderer='notebook')</pre>	
SrTiO3 difractograma	
Distancia entre linea y pico: 36275 y distancia mitad 18137.5 trace 1 trace 2 Trace 3 30k	
25k Distancia: 0.32840 PRUNDO/B	
15k 10k 5k	
10 20 30 40 50 60 70 80 90 2THETA	
Cálculo de tamaño de cristalito a partir de la formula de Debye-Scherrer	
$D = \frac{K\lambda}{\beta cos(\theta)}$ Donde: • K: Factor de estructura (0.89 para cúbicas [2])	
 λ: Longitud de onda CuKα (1.5406 Å) β: Distancia entre Punto A y Punto B D: Tamaño de cristalito 	
<pre>def calc_tamanio_cristalito_scherrer (beta, theta): K = 0.89 # Para cúbicas según la referencia LAMBDA = 1.5406 # Longitud de onda Cobre K alfa #print(theta) theta_rads = np.deg2rad(theta) angulo = np.cos(theta_rads)</pre>	
<pre>#print(theta_scherrer/2) display(Markdown(f''' <div align="center"> Tamaño de cristalito calculado: {calc_tamanio_cristalito_scherrer(np.deg2rad(distance_two_points),(theta_scherrer/2))} nm </div></pre>	
''')) Tamaño de cristalite calculado: 24 886236598966275 pm	
Tamaño de cristalito calculado: 24.886226598966275 nm	
Creamos la gráfica para la formula de Williamson-Hall En esta parte del código se obtienen los puntos más relevantes de la gráfica y se les da un tratamiento para poder trabajar con ellos, sin embargo ahora el tratamiento se hace con base a obtener los datos para calcular el tamaño de cristalito a trav Williamson-Hall	vés de
<pre>In []: # Encontramos los picos más altos en la gráfica peaks, _ = find_peaks(df[' PSD'], prominence=50 , distance= 90) # Adjust prominence as needed peaks = np.delete(peaks, 0) peaks = np.delete(peaks, 1) peaks = np.delete(peaks, 7)</pre>	
<pre>y_position_value_global = 100 beta_constant_value = 0 lista_picos_index = [] for i in peaks:</pre>	
<pre>lista_picos_index.append(i) fig = px.line(df, x=' 2THETA', y=' PSD', labels={'Name': '2theta', 'Value': 'values'}, title='SrTi03 difractograma') fig.add_scatter(x=df[' 2THETA'][peaks], y=df[' PSD'][peaks], mode='markers', marker=dict(color='red', size=8), name='Peaks') fig.update_traces(line=dict(color='blue'))</pre>	
# Agregamos una linea horizontal que sirve como punto de referencia fig.add_shape(type='line', x0=df[' 2THETA'].min().	
<pre>x0=df[' 2THETA'].min(), y0=y_position_value_global, x1=df[' 2THETA'].max(), y1=y_position_value_global, line=dict(color='red', width=2, dash='solid'))</pre>	
#	
<pre>def calculate_fwhm(index): half_max = df[' PSD'][index] / 2 # Half of the peak's maximum value left_bound = np.where(df[' PSD'][:index] < half_max)[0][-1] # Left boundary right_bound = np.where(df[' PSD'][index:] < half_max)[0][0] + index # Right boundary fwhm = df[' 2THETA'][right_bound] - df[' 2THETA'][left_bound] # FWHM calculation return fwhm</pre>	
<pre>def largo_pico(distancia, df_f, peaks): fig.add_annotation(x=df_f[' 2THETA'][peaks], y=df_f[' PSD'][peaks - 2], text=f'FWHM {distancia:.3f}', # Ponemos la distancia con 3 puntos decimales</pre>	
showarrow=True, arrowhead=1,) fwhm_values = [] angulos_peaks = []	
<pre>for peak_index in peaks: fwhm = calculate_fwhm(peak_index) angulos_peaks.append(df[' 2THETA'][peak_index]) fwhm_values.append(fwhm) #print(f"Peak at index {peak_index}: FWHM = {fwhm}")</pre>	
<pre>for i in range(len(lista_picos_index)): largo_pico(fwhm_values[i], df, lista_picos_index[i]) #largo_pico(lista_distancia_entre_picos[1], df,1,1) #print(lista_picos_index[1]) #print(calculate_fwhm(lista_picos_index[1]))</pre>	
fig.show(renderer='notebook')	
Se obtienen los datos necesarios para hacer la gráfica $\beta cos\theta$ vs $sen\theta$ In [98]: lista_de_angulos_2theta = angulos_peaks lista_de_angulos_theta = [] for angulo in lista_de_angulos_2theta: lista_de_angulos_theta.append(angulo/2)	
<pre>In [99]: sen_angulos_plot = [] cos_angulos_plot = [] #print(beta_constant_value) #beta_constant_value = 3</pre>	
<pre>contador = 0 for angulo in lista_de_angulos_theta: #print(fwhm_values[contador]) #print(np.deg2rad(angulo)) # Convert the angle from degrees to radians deg_angle_sen = np.sin(np.deg2rad(angulo)) deg_angle_sen = np.sin(np.deg2rad(angulo))</pre>	
<pre>deg_angle_cos = np.cos(np.deg2rad(angulo)) sen_angulos_plot.append(4 * deg_angle_sen) cos_angulos_plot.append(fwhm_values[contador] * deg_angle_cos) #print(np.cos(angulo) * beta_constant_value) contador += 1</pre>	
#print(sen_angulos_plot) Se grafíca $eta cos heta$ vs $sen heta$	
# Add a scatter plot of the list values # Create a Plotly figure fig = go.Figure() fig.add_trace(go.Scatter(x=sen_angulos_plot, y=cos_angulos_plot, mode='markers', marker=dict(color='blue'))) # Update layout if needed (e.g., title, axis labels)	
fig.update_layout(title='SrTi03 &cosø vs senø', xaxis_title='4senø', yaxis_title='&cosø') # Show the plot fig.show(renderer='notebook')	
SrTiO3 ßcosø vs senø •	
0.45	
0.35 1 1.5 2 2.5 4senø	
Regresión lineal de los datos	
<pre>In []: # Se crean arreglos de numpy con las listas de los angulos senos y cosenos ya tratados x = np.array(sen_angulos_plot) y = np.array(cos_angulos_plot) # Se hace la regresión lineal con numpy slope, intercept = np.polyfit(x, y, 1) # 1 for linear regression</pre>	
<pre># Creamos la función de la linea de regresión con la variable slope e intercept regression_line = slope * x + intercept # Creamos una gráfica fig = go.Figure()</pre>	
# Graficamos los puntos originales fig.add_trace(go.Scatter(x=x, y=y, mode='markers', name='Datos originales')) # Graficamos la linea de regresión fig.add_trace(go.Scatter(x=x, y=regression_line, mode='lines', name='Linea de regresión'))	
# Agregamos las etiquetas fig.update_layout(title='SrTi03 ßcosø vs senø con Regresion lineal', xaxis_title='4senø', yaxis_title='ßcosø'	
<pre>) equation = f'y = {slope}x + {intercept}' # Calculamos R cuadrada r_squared = r2_score(y, regression_line) # Mostramos la gráfica fig.show(renderer='notebook')</pre>	
<pre>display(Markdown(f''' <div align="center"> Ecuación obtenidad: {f'y = {slope}'} x + {f'{intercept}'} </div> <div align="center"> \$R^2\$= {r_squared} </div></pre>	
''')) • • • • • • • • • • • • • • • • • •	
SrTiO3 ßcosø vs senø con Regresion lineal • Datos originales	
0.5	
0.45	
0.35	
1 1.5 2 2.5 4senø	
Ecuación obtenidad: y = 0.07948605932788505 x + 0.2832693357361943 $R^2 = 0.6759802329862871$	
Calculo del cristalito utilizando la fórmula de Williamson-hall Para calcular el cristralito a través de este método tenemos que utilizar la siguiente expresión $\beta_{hkl}cos\theta = \frac{K\lambda}{R} + 4\epsilon sen\theta$	
$eta_{hkl}cos heta=rac{K\lambda}{D}+4\epsilon sen heta$ si observamos bien podemos cuenta que la fórmula adopta la forma: $y=mx+b$	
Haciendo la regresión lineal de nuestros datos podemos obtener la siguiente expresión $y=0.11535040977386593x+0.24479779320473088$ por lo que podemos decir que:	
$\frac{K\lambda}{D} = 0.24479779320473088$ Asumiendo que: • K = 0.89	
 λ = 1.5406 Å Podemos despejar y obtener el resultado, tal que: K = 0.9 # Para cúbicas según la referencia 	
LAMBDA = 1.5406 # Longitud de onda Cobre K alfa wh_cristalito = (K * LAMBDA)/intercept display(Markdown(f'''	
<pre> <div align="center"> Tamaño de cristalito calculado por Williamson-hall : {wh_cristalito} nm </div> '''))</pre>	
<pre>if slope > 0: display(Markdown(f'La pendinente es positiva por lo tanto podemos argumentar que el sistema tiene tiene unatensión'))</pre>	
else:	
else: display(Markdown(f'La pendinente es negativa por lo tanto podemos argumentar que el sistema tiene tiene unacompresión'))	
else: display(Markdown(f'La pendinente es negativa por lo tanto podemos argumentar que el sistema tiene tiene una _compresión_')) Tamaño de cristalito calculado por Williamson-hall : 4.894776190287218 nm La pendinente es positiva por lo tanto podemos argumentar que el sistema tiene tiene una tensión Calculo de cristalinidad Primero tenemos que hayar el area bajo la curva de nuestra gráfica, gracias a la librería numpy esto no tiene mayor complicación y podemos lograrlo con la función _np.trapz() .	
else: display(Markdown(f'La pendinente es negativa por lo tanto podemos argumentar que el sistema tiene tiene una _compresión_')) Tamaño de cristalito calculado por Williamson-hall : 4.894776190287218 nm La pendinente es positiva por lo tanto podemos argumentar que el sistema tiene tiene una tensión Calculo de cristalinidad Primero tenemos que hayar el area bajo la curva de nuestra gráfica, gracias a la librería numpy esto no tiene mayor complicación y podemos lograrlo con la función np.trapz() . In []: x_values = df[' 2THETA'].values	
else: display(Markdown(f'La pendinente es negativa por lo tanto podemos argumentar que el sistema tiene tiene una _compresión')) Tamaño de cristalito calculado por Williamson-hall: 4.894776190287218 nm La pendinente es positiva por lo tanto podemos argumentar que el sistema tiene tiene una tensión Calculo de cristalinidad Primero tenemos que hayar el area bajo la curva de nuestra gráfica, gracias a la librería numpy esto no tiene mayor complicación y podemos lograrlo con la función _np_trapz() . In []: x_values = df[' 2THEIA']_values _y_values = df[' 2THEIA']_values _y_values = df[' 789']_values # Se calcula el área bajo la curva (repla trapezcidal) area_total = np_trapz(y_values, x=x_values) # Se prafica la señal del difractograma fig = go_tfupre[]	
else: display(Markdown(f'La pendinente es negativa por lo tanto podemos argumentar que el sistema tiene tiene una _compresión_')) Tamaño de cristalión calculado por Williamson-hall: 4.894776190287218 nm La pendinente es positiva por lo tanto podemos argumentar que el sistema tiene tene una tensión Calculo de cristalinidad Primero tenemos que hayar el area bajo la curva de nuestra gráfica, gracias a la librería numpy esto no tiene mayor complicación y podemos logrado con la función [np.trapz()]. In []: x. values = df[' TRITA'].values y.values = df[' PRO].values # Se calcula el área Dajo la curva (regia trapezatoa)) # se calcula el área Dajo la curva (regia trapezatoa)) # Se grafica la sofial del difractograma ing = go Enjura() fig. add_trace(go.Scatter(xex.values, yey.values, mane='XRD original')) # Creaces un pollapion que dibore el área bajo la curva x polygon = np.concatenate([x values, x values[::-1]]) y.polygon = np.concatenate([x values, x values[::-1]]) fig. add_trace(go.Scatter(
Tamaño de cretatio calculado por Williamson hall 4.894776190287218 nm La pendinente es positiva por lo tante podemos argumentar que el sistema tone tiene una temaño. Calculo de cristalinicad Primero tenemos que hayar el area bajo la curva de nuestra gráfica, gracias a la libería numpy esto no tiene mayor complicación y podemos logrado con la función (np. L'apz()). [1] [1] X. Values e off 2 mcTr. Values 2 mcTr. Value	
display(*Aarkdown(*'La pendirecte es negativa por lo tanto podemos argumentar que el sistema tiene tiene una _compresión_')) Tameno de cristalito calculado por Williamson-hall : 4.894776190287219 nm La pendimente es positiva por lo tanto podemos argumentar que el sistema tiene tiene una tensión Calculo de cristalinidad Primero tenremos que hayar el area bajo la curva de nuestra gráfica, gracias a la libreria numpy esto no fene mayor complicación y podemos logrado con la función _mp_trappz(). In []: x_values = eff(' 20et/A') values # se calcula el retra para la carva (regla trappzetistal) # se calcula el retra para la carva (regla trappzetistal) # se pratica la sensia del carractograma it si son stapine() it g. ado_trace(po_Scatter(xx_values, ysy_values, mode='lines', name='X80 original')) # Cremos un poliquos que ultular el sirve a bajo 2 e curva x pal'syon = puncanciamiste(c values, values(::-1))) # gradutaciamiste consideration (values, values(::-1))) # gradutaciamiste consideration (consideration) # position p	
Tamefo de cristation (file percinores os negativa por la tario podenos argumentar que el sistema tieno tione una _comerción _i)) Tamefo de cristatio calculado por Williamson-hall : 4.594776190287218 om La perdimente es positiva por lo tanto podenos argumentar que el sistema teme tene una teneido Calculo de cristationidad Pursero terremos que hayar el area bago la curva de nuestra grifica, gracias a la liberta numpy esto no tione mayor complicación y podenos logrado con la función _inp_trop/(). []	
Calculo de cristalinidad Primero teriamos que hejer e sea bajo is curve de nuelte gidios, grecas a la litoria nump esto no tere mayor complicador y podernos logrado con la función np. \$7,822(1). 2. Autumos e m(1 * 7551) values e m(1 * 7551) values e mayor complicador y podernos logrado con la función np. \$7,822(1). 2. Values e m(1 * 7551) values e m(1 * 7551) values e mayor complicador y podernos logrado con la función np. \$7,822(1). 2. Values e m(1 * 7551) values e m(1 * 7551) values e mayor complicador y podernos logrado con la función np. \$7,822(1). 2. Values e m(1 * 7551) values e m(1 * 7551) values e mayor complicador y podernos logrado con la función np. \$7,822(1). 2. Values e m(1 * 7551) values e m(1 * 7551) values e mayor complicador y podernos logrado con la función np. \$7,822(1). 2. Values e m(1 * 7551) values e mayor complicador y podernos logrado con la función np. \$7,822(1). 2. Values e m(1 * 7551) values e mayor complicador y podernos logrado con la función np. \$7,822(1). 2. Values e m(1 * 7551) values e mayor complicador y podernos logrado con la función np. \$7,822(1). 2. Values e m(1 * 7551) values e mayor complicador y podernos logrado con la función np. \$7,822(1). 2. Values e m(1 * 7551) values e mayor complicador y podernos logrado con la función np. \$7,822(1). 3. Values e m(1 * 7551) values e m(1 * 7551) values (1 * 7551) valu	
The partition of the production of the production of the lattice operators of the lattice operators and the partition of the	
To care or operation of the production of the common part of the commo	
Target on a challence and properties and a properties and properties are consistent and properties and properties and properties and properties are consistent and properties and properti	
Calcule de cristalinidad Calcule de cristalinidad Provincioneme de region de cristalinidad provincionement de control de cristalinidad provincionement de cristalinidad provincionement de control de cristalinidad provincionement de cristalin	
Terral to a charton to protect on the protect in a month to protect and to charton between the common and protect and to the protect on the protect and to the protec	
Table 50 miles and an activate process of process representation of the control o	
Table to a total point to an appropriate good to be total point or any activation and a sound part Microsol Art. 4.9979 MRRPS on a separate control part to a total part to a	
Person and product and a contract and appropriate person and perso	
The contraction of the contracti	
The state of the s	
Temporary Content Cont	
Extraction of the process of the p	
See integran los picos de la giffica Continue de processor de la giffica Continue de la gif	lisi. Sit amet ed odio morbi

