

Fall 2023

CSCE 363/3611 - Digital Signal Processing

Spike Sorting

Seif Eldawlatly

- Neural Engineering is a field of research that focuses on engineering methods to investigate the function of the central and peripheral nervous system and manipulate its behavior
- Neural Interfaces are systems that can help restore sensory function, communication, and control to impaired humans
- The main principle is that disabled people would have their brains or parts of their brains fully functional
- Neural Interfaces make use of functional parts to restore a lost function
- Objectives of Neural Engineering:
 - 1- Understand Brain Function
 - 2- Provide Therapeutic, Assistive and Augmentative Technology

Examples of Neural Interfaces:

Motor Brain-Machine Interface

Transmitter
Speech
processor

Receiver/stimulator

Hicrophone

Blectrode
array

array

Cochlear Implant

Visual Prosthesis

Types of Neural Interfaces

Recorded Signals

Brain-Machine Interfaces (BMIs)

- Invasive neural interfaces are often termed as Brain-Machine Interfaces (BMIs)
- BMI approaches are based on recordings from groups of single neurons (also known as single units) or on the activity of multiple neurons (also known as multi-units)

Neural Activity

Features

- 1. Spike shape is stereotypical (all-or-none firing)
- 2. Communication between neurons is either excitatory or inhibitory
- 3. There is a synaptic delay between connected neurons

Signals Processing

Signals Processing

Extracellular Recording of Neural Activity

Spike Sorting

 It is usually necessary to identify the activity of different neurons recorded on the same electrode (The process of Spike Sorting)

(Einevoll, 2012)

Spike Sorting

- Although spikes of all neurons are stereotypical with the same shape when measured intracellularly, they would have different shapes when recorded extracellularly
- K-means clustering can be used here to identify the spikes belonging to different neurons
- One problem is how to know the number of units recorded (the value of K)
- This can be determined visually only if all spikes are represented in a 2D space
- In the project, extract two features from each spike as follows:
 - The standard deviation of the samples of the spikes
 - The maximum difference between two successive samples of the spike

Spike Sorting

Raster Plot of Spike Train