PROJETO FINAL

Acidentes Terrestres

INTEGRANTES

Ana Paula Guimarães

Andréa Goulart

Bruno Yaporandy

Carlos Dudas

ÍNDICE

- Descrição
- Workflow
- Tecnologias
- ETL
 - Extract (Extrair)
 - Transform (Transformar)
 - Load (Carregar)
- Pipeline
- Triggers e Procedures
- Particularidade
- Formato dos Datasets
- Data Studio
- Conclusão

DESCRIÇÃO DO PROJETO

A Soul's Traffic Company, uma empresa de sinalização de trânsito está estudando abrir uma nova filial na cidade de Charlotte (Estados Unidos), para auxiliar essa decisão, nossa equipe foi contratada para normalizar 2 DataSets (2016 até 2021) e gerar insights que contribuam com a equipe de dados para tomar essa decisão. Com o objetivo de normalizar os dados e gerar insights através de um processo de ETL.

WORKFLOW

Trello

TECNOLOGIAS

Extract, Tranform and Load (ETL)

Extrair os dados de um banco de dados em cloud

Extract Transform Load

- Extração do segundo dataset (accidents_charlotte.json)
df = pd.read_json('path/accidents.json', orient='records')

- Datasets originais salvos em banco MySQL
 df = df.to_sql('tabela', conexão = engine, if_exists='replace', index = False)

Extract Transform Load

- Remoção de colunas que não condizem com o objetivo do projeto df.drop(['Coluna'], axis=1, inplace=True)
- Tradução dos datasets para PT-BRdf.rename(columns={'Street': 'Rua'}, inplace=True)
- Procurando por inconsistências pd.unique(df['Coluna'])

Extract Transform Load

- Correção de dados ausentesdf['Coluna'] = df['Coluna'].replace(np.nan, 'dado ausente')
- Validação dos dados com Pandera schema.validate(df)
- Somando os dois datasets (Merge)

 df = pd.merge(df1, df2, how="outer", on=["Coluna1", "Coluna2"...])

Extract Transform Load

- Montagem do DataFrame utilizando StructType
 esquema = (StructType([StructField('ID', StringType(), False)...]))
- Normalização de colunas devido ao Merge
 df = df.withColumn('Cidade', regexp_replace('Cidade', 'merge', 'Charlotte'))
- Salvando o DataFrame tratado no Bucket para dar inicio ao Load df.repartition(1).write.format("parquet").option("header".....

Extract Transform Load

- Inserindo o dicionário na coleção mongoDB atlas collection.insert_many(df_dicio)

- Início aos insights SparkSQL e Big Query em conjunto com Data Studio

PIPELINES

- Pipeline 01: Removendo colunas fora do escopo do projeto

| 'Leitura do dataset'>> beam.io.ReadFromText('path', skip_header_lines=1)

| 'Indicando o separador do arquivo'>> beam.Map(record.split(','))

| 'Selecionando Colunas do projeto'>> beam.Map(Seleção das Colunas)

| 'Salvar resultado'>> beam.io.WriteToText('path', file_name_suffix='.csv')

DataFrame Inicial DataFrame Após Pipeline

-Pipeline 02: DataFrame Filtratado por Estado (Carolina do Norte)

| 'Leitura do dataset'>> beam.io.ReadFromText('path', skip_header_lines=1)

| 'Indicando o separador do arquivo'>> beam.Map(record.split(','))

| 'Filtragem de colunas'>> beam.Filter([9] == 'Carolina do Norte')

| 'Salvar resultado'>> beam.io.WriteToText('path', file_name_suffix='.csv')

DataFrame Filtrado pelo Estado

TRIGGERS/PROCEDURES

VALIDAÇÃO DE DADOS

TRIGGERS

SEMPRE QUE HOUVER INSERT -SEMPRE QUE HOUVER UPDATE-SEMPRE QUE HOUVER DELETE-

CREATE TRIGGER tr_auditoria_usa

BEFORE INSERT/UPDATE/DELETE ON acidentesusa

FOR EACH ROW

INSERT/UPDATE/DELETE INTO acidentes_auditoria

(auditoria)

VALUES (CONCAT('Foi inserido o ID:', new.ID));

INTEGRIDADE DOS DADOS

PROCEDURE

CONTAGEM DE LINHAS

ATRAVES DO COUNT(*)

CREATE PROCEDURE Todos_os_acidentes()
SELECT COUNT(*) FROM acidentesusa;

PARTICULARIDADES

- Removendo dados de cidades não pertencentes ao nosso dataset

df_usa.drop(df_usa[df_usa.Cidade == 'Nome_da_Cidade'].index, inplace=True)

FORMATO DOS

66 MIL LINHAS

6 COLUNAS

2.8 MILHÕES DE LINHAS

16 COLUNAS

DF-MERGE: (2.8 MILHÕES, 16)

INSIGHTS

QUANTIDADE DE ACIDENTES POR REGIÃO

Google Data Studio

QUANTIDADE DE ACIDENTES POR ESTADO

QUANTIDADE DE ACIDENTES POR MÊS

QUANTIDADE DE ACIDENTES POR CIDADE

TOTAL DE ACIDENTES

2.911.468

CONCLUSÃO

Sugestões:

A redução da velocidade

Educação no trânsito

Estruturas adequadas

Campanhas educativas

AGRADECIMENTOS

CONTATO

https://www.linkedin.com/in/ana-paula-guimar%C3%A3es-ribeiro-36559a123/

https://www.linkedin.com/in/andreacgoulart/

https://www.linkedin.com/in/brunoyaporandy/

https://www.linkedin.com/in/carlos-dudas/

