TECHNICAL MEMORANDUM 1079

A 44.5

GED BY DDF

DEVELOPMENT OF PLASTIC PACKING CONTAINERS FOR 115 MM ROCKET LAUNCHER AMMUNITION

MICHAEL ALBANESE
JAMES M. SPILMAN

JUNE 1963

PICATINNY ARSENAL DOVER, NEW JERSEY

The findings in this report are not to be construed as an official Department of the Army Position.

DISPOSITION

Destroy this report when it is no longer needed. Do not return.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from DDC.

Technical Memorandum 1079

DEVELOPMENT OF PLASTIC PACKING CONTAINERS FOR 115 MM ROCKET LAUNCHER AMMUNITION

Ьy

Michael Albanese James M. Spilman

June 1963

J. D. MATLACK
Chief, Plastics and
Packaging Laboratory

Feltman Research Laboratories
Picatinny Arsenal
Dover, N. J.

Ŗ

ACKNOWL EDGMENT

The authors wish to acknowledge the editorial assistance of Mrs. Eileen Swick.

TABLE OF CONTENTS

	Page
Object	1
Summary	1
Conclusions	2
Recommendations	2
Introduction	3
Results	3
Discussion	4
Experimental Procedure	8
List of Materials	10
Distribution List	31
Table	
1 Alathon 2886 Resin (Design 2, Batch 1)	11
2 Alathon 2886 Resin (Design 2, Batch 2)	12
3 Alathon 2904 Resin (Design 3)	13
4 Alathon 7511 Resin (Design 2)	14
5 Bakelite DMDA 6087 Resin (Design 2)	15
6 Bakelite DMDA 7125 Resin (Design 2)	16
7 Dow 401 Resin (Design 2)	17
8 Dow 600 Resin (Design 2)	18
0 Grace 60-015 Resin (Design 2)	10

TABLE OF CONTENTS (Cont)

		Page
Figu	re	
1	Fiber container overpacked in wooden box	20
2	molded end caps, base and nose supports, and	21
	threaded closures	21
3	Design of prototype container	22
4	Design 1, a three-piece container with buttress thread, 8 threads per inch	23
5	Three-piece container and contents	24
6	Three-piece container assembled	25
7	Design 2, midsection. Square threads, 0.1-inch deep, 6 threads per inch. Thickness increased from .17 inch to .20 inch	26
8	Design 3 (final), end sections. Increased wall thickness from 5.760 to 5.860, 4 threads per inch. Increased depth of thread from 0.1 inch to 0.15 inch	27
9	Ring cut from tested container, showing contamination	28
10	Ring cut from tested container, showing voids	29
11	Enlarged view showing supruse due to contamination	30

OBJECT

To develop a lightweight plastic container for the 115 mm XM54 booster rocket which would provide a water seal and physical protection to the round during shipment and storage and would be in the same general price range per round as the standard packing system. The standard system consists of 2 rounds individually packed in cylindrical fiber containers subsequently overpacked with a wooden box.

SUMMARY

A high-density polyethylene was chosen for fabrication of the XM54 rocket container because of its light weight, good water and impact resistance, and low cost. Several methods of fabrication were considered for this application, including blow molding, injection molding, and extrusion.

The concept of blow molding was eliminated because the close tolerances required in the inside diameter and the threaded section of the container could not be adhered to. Containers were fabricated utilizing extruded tubes and injection molded end caps, base and nose supports, and threaded closures. These containers were designed in two sections which were screwed together to form a sealed container. Difficulty was experienced with the heat-welded joints upon testing, and buckling of the container also occurred.

In view of this problem, it was decided to use a three-piece injection-molded container. Several minor design changes were made on the three-piece container on the basis of test results, thereby giving the final design shown in Figure 8 (p 27).

Of the several resins tested, the two that appear most promising are Alathon 2904 and Grace 60-015. Phillips 6015 may also be satisfactory if a proper mold design can be established for use with this resin. Further testing of resins and designs is required, and optimum molding conditions must be established before a completely satisfactory container can be produced.

CONCLUSIONS

This is an interim report evaluating only the basic resin and design. From results obtained, it appears feasible that a suitable packing container for the XM54 can be fabricated by correlation of the proper design (probably Design 3, shown in Figs 3 and 8, pp 22 and 27), the right molding conditions, and a suitable resin. Alathon 2904 resin and Grace 60-015 resin appear promising for this application, provided proper molding conditions are established. Phillips 6015 may also be satisfactory if a proper molding procedure can be established.

RECOMMENDATIONS

It is recommended that (a) optimum molding conditions be established for fabrication of future containers, (b) promising resins be further evaluated with Design 3, and (c) on the basis of results of tests of Design 3, further design modifications be made, if necessary.

INTRODUCTION

The Plastics and Packaging Laboratory was requested by ARGMA to design and develop a lightweight packing container for the XM54 booster rocket. The design studies were prepared in two phases:

- a. An "Interim Design Phase" consisting of 2 individual cylindrical fiber containers overpacked in a wooden box (see Fig 1, p 20). This design was prepared to meet a deadline test date to provide for immediate use.
- b. An "Improved or Ultimate Design Phase" consisting of a plastic container, the development of which will extend over a longer period. The plastic container should have the following advantages over the old fiber container-wood box pack: increased water and water vapor protection, reduced weight and volume, and greater ease in packing and unpacking.

Four designs, two for Phase 1 and two for Phase 2, were submitted to ARGMA. The Interim Design Phase 1 was accepted and the required number of containers were supplied.

Considerable interest was shown in the plastic container as a possible replacement for the conventional fiber container-wood box pack and the Plastics and Packaging Laboratory at Picatinny was asked to proceed with its investigation of the plastic container.

RESULTS

Containers fabricated from several resins with 3 basic design changes were drop tested. Physical properties were determined on specimens cut from containers. Melt indexes were determined according to ASTM D 1238-57T, densities by the density-gradient technique of ASTM D 1505-60T. Tensile tests were conducted on the Baldwin PTE-21 test machine by ASTM method D638-61T. A crosshead speed of 2 inches per minute was used for tests conducted at 160°F and 73°F while 0.2 inch per minute was used for the tests conducted at -65°F.

Tests were also conducted on ring specimens cut from containers in order to compare the tensile strength longitudinally and circumferentially, thereby determining whether molecular orientation was affecting the container properties. This ring test is described in NAVORD report 5680, "Proposed NOL Ring Test Method," July 1957.

Manufacturers data is also presented. Results are given in Tables 1 through 9 (pp 11 through 19). Molding conditions, where known, are also reported here.

DISCUSSION

The decision to use a thermoplastic container in the place of the initial fiber container-wood box pack for the 115 mm rocket ammunition was arrived at by considering the physical and chemical properties of various plastics and their ability to withstand the rugged treatment that military packages must undergo and still protect their contents from moisture during outdoor storage. The use of a plastic container would eliminate the need for the outer box, thereby providing a lightweight small-volume package which is desirable in current military logistics.

Representatives of industry were contacted and various plastics, methods of fabrication, and designs were discussed. Among the plastic materials considered were filled and unfilled polyethylene (regular and linear) and filled and unfilled polypropylene. The methods of fabrications considered were blow molding, injection molding, and extrusion.

Linear (high density) polyethylene appeared to be the most desirable material since it possessed the necessary combination of properties, namely light weight, good impact strength, negligible water absorption (0.1% in 24 hours), a cost falling within the desired price range, and relatively high mechanical properties at -65°F and +160°F.

Several methods of fabrication were considered. The first was blow molding, which was recommended by several sources as the most practical procedure to provide optimum mechanical properties, low tooling costs, and ease of molding. However, this method had to be discarded since the critical container dimensions could not be adhered to.

The second method considered was to fabricate the containers by using extruded container tubes and injection molding such other parts as end caps, base and nose supports, and threaded closures. These parts would then be assembled into two main sections by heat welding. The two sections would then be screwed together to form a sealed container. (See Figs 2 and 3, pp 21 and 22).

Manufacture of prototype containers by this inexpensive method, in addition to producing a "feel" for the container, resulted in two important

findings: (a) that a plastic container based on this concept (one container section for the cartridge case and one section for the projectile, threaded together) is feasible, and (b) that the weak point in this design is the heat-sealed joints. The containers were separating at the heat-welded joints during testing. Buckling of the aft end (charge case) was also occurring. This failure of the heat-welded joints could be attributed partly to the fact that the extruded tubing tended to lose its circular shape on standing, thereby making it difficult to obtain a good heat seal to an end adaption that was circular. Buckling also occurred in the short (aft end) of the container which held the charge. The buckling could be eliminated by reinforcing the part with ribs. However, it was felt that if heat welding presented a problem on these few sample containers under controlled laboratory fabricating conditions, it would be even more serious in mass production.

Since the aft end was short it could be injection molded, thereby eliminating heat sealing problems in this area. This led to the idea of a 3-piece container. A forward end section identical to the aft end could be used and both could be made in the same mold. A middle extension would then be necessary to make up the required length of the container. The design for the 3-piece injection-molded container (Design 1) is shown in Figures 4 and 5 (pp 23 and 24).

Bids were sent out for the molding of this container and Molded Insulation Corporation, which made the lowest bid and had satisfactory facilities, was selected.

In selecting a resin for the container, it was decided to try to obtain a melt index of about 1.5 and a density of 0.96. This combination of melt index and density would theoretically provide a strong, rigid material with good resistance to stress cracking. The first 3-piece plastic containers were injection molded using Phillips 6015 polyethylene resin, since it met the density and melt index requirements, and DuPont's Alathon 2886 resin, which had a 0.96 density and a melt index of 3.0. Although the Alathon 2886 had a higher melt index, it was reported to have a very narrow molecular weight distribution which would produce a tough part with a minimum of internal stress. The higher melt index would also reduce mold filling problems. Pilot lots of 5 containers of each resin were specified to be manufactured by Molded Insulation Corporation and submitted to Picatinny Arsenal for testing. However, difficulty was experienced in molding the midsection of the container.

The trouble was found to be mainly in the mold design. Initially, the molding material was fed from a small sprue to a ring runner and in turn this runner fed four gates equally spaced around the circumference at one end of the container. The gate nearest the sprue was being fed hotter material than the gates farther away from the sprue, as a result of which shrinkage was uneven. Thus the molded threads on the midsection were very wavy and impossible to engage. The situation was slightly improved by shutting off the gate nearest the sprue. By making a complete ring gate and keeping the ring thinnest near the sprue and thickest away from the sprue, molding was greatly improved.

With the close cooperation of DuPont personnel, good containers were obtained with the Alathon 2886 material. Difficulty was still experienced, however, in producing satisfactory containers of the Phillips 6015 resin.

The first molded containers received at Picatinny were molded of Phillips 6015 and Alathon 2886. These containers had a buttress thread design (Shown in Fig 4, Design 1, p 23).

When these containers were subjected to drop testing, it was found that the threads slipped very easily at room temperature and the midsections of the containers cracked. This thread slippage was due to distortion of the threaded sections of the container upon dropping.

In view of these results, the following additional design changes (See Fig 7, Design 2, p 26) were made:

- 1. The buttress thread was replaced by a square thread 0.1 inch deep.
 - 2. The number of threads per inch was decreased from 8 to 6.
- 3. The thickness of the midsection was increased from .17 inch to .20 inch.

Containers of Alathon 2886 were fabricated using this design (See Fig 7).

The Phillips 6015 resin was dropped from investigation at this time because of the aforementioned molding problems which had not yet been resolved.

Three plastics manufacturers, W. R. Grace Plastics Company, Union Carbide and Carbon Corporation, and Dow Chemical Corporation, submitted

free sample containers for testing. It is understood that private arrangements were made with these companies and Molded Insulation Corporation to fabricate these containers. Plastics and Packaging personnel gave the contractor permission to use their mold for this operation. The containers submitted were fabricated in accordance with Design 2 and molded of the following resins: Dow 401 and 600, Union Carbide DMDA 7125 and 6087, and Grace 60-015. DuPont also submitted another resin, Alathon 7511.

All of the containers were tested. The Alathon 2886 containers were drop tested at temperatures from -65°F to 160°F. They were also subjected to storage at 160°F for 48-hour and 100-hour periods to determine the effects of thermal stress. Thread slippage was observed on all drop tests. Containers cracked upon dropping at -65°F. They passed storage for 48 hours at 160°F but cracked when stored for 100 hours at this temperature.* They also cracked when immersed in boiling water for 4 hours (See Tables 1 and 2, pp 11 and 12).

Only a few of each of the other containers were available. Therefore, they were not tested over the complete temperature range. The Alathon 7511 was drop tested at -40°F only, at which temperature it cracked in the aft end. The aft end also stress cracked at the base of the ribs after 72 hours storage at 160°F (Table 4, p 14). The Dow 401 and Dow 600 containers were each drop tested at -40°F and 73°F. Both containers cracked at -40°F and exhibited thread slippage at 73°F. When these containers were stored for 72 hours at 160°F, the aft ends of both stress cracked at the base of the ribs (Tables 7 and 8, pp 17 and 18).

Only two Grace 60-015 containers were received. One was drop tested at -40°F and the other was subjected to 72 hours storage at 160°F. Both containers passed without cracking or thread slippage (Table 9, p 19).

Only two each of the Bakelite 6087 and 7125 containers were received. One of each of these was also drop tested at -40°F and one each was stored for 48 hours at 160°F. They cracked at -40°F, but passed the storage test without noticeable effects.

In view of the thread slippage which was still occurring at room and elevated temperatures, a change in thread design was made. The depth of the thread was increased from .1 inch to .15 inch and the number of threads per inch was decreased from 6 to 4. The OD of the end sections was increased from 5.760 to 5.860 (Design 3, Fig 8, p 27). In molding these new

It should be noted that the Alathon 2886 containers that were stored for 48 hours and 100 hours had the same design but were taken from two different batches of containers.

containers, the contractor made the desired changes except for the decrease in the number of threads per inch. Although they increased the depth of thread as specified, they maintained the old 6-thread-per-inch requirement.

Testing the Alathon 2886 resin was discontinued and Alathon 2904 resin was used instead for the new containers. Alathon 2904 consisted of 2886 resin with stabilizer, antioxidant, and coloring agent added. These containers were drop tested over a temperature range of from -65°F to 160°F and stored for 24 hours at 160°F. The containers cracked when dropped at -65°F. At -40°F one container passed all drop tests and another failed on the first drop. They passed room temperature and 160°F drop tests without cracking or slipping. No stress cracking was observed after storage for 24 hours at 160°F. The failure at -40°F is attributable to embrittlement of the material. When the tested containers were cut for tensile and ring specimens, large crystals of a foreign matter were found throughout the material (See Fig 9, p 28). Breaks usually occurred in these areas. Holes due to improper molding conditions were also found in the thick sections at the base of the ribs (Fig 9 and Table 3, p 13). In view of these results, it is considered necessary to fabricate more containers utilizing the most promising resins with Design 3. Close control of molding conditions must be established and the new containers shall be drop tested over a temperature range of -65°F to 160°F and subjected to storage tests over the same temperature range. Results of these tests will be given in a later report.

EXPERIMENTAL PROCEDURE

In addition to drop tests, tensile and tensile ring tests were conducted on all materials.

One container from each batch received was cut into test specimens. Tensile specimens were cut parallel to the direction of flow of the material (as shown on page 9) and tested in tension in the same direction as per ASTM Test Method D638-61T. Ring specimens were cut at a 90° angle to the direction of flow and tested in tension in this direction. Ring tests were conducted in accordance with the NOL ring test described in NAVORD report 6153.

These tests were conducted to determine the degree of "anistropy" or nonuniformity of properties within the molded containers caused by the tendency of molecules to orient themselves in the direction of flow during molding. This would result in lower strength in a crosswise direction (i.e., across the flow) than in the longitudinal direction.

In ring and tensile test results, given in the tables, anistropic effects were particularly evident at low temperature (-65°F). In these tests, Alathon 2886 containers showed the most severe difference between crosswise and longitudinal strength (43% less strength in the crosswise direction). Other containers ranged from approximately 27% lower crosswise strength to essentially equal strength in both directions.

LIST OF MATERIALS

Material	Supplier
Alathon 2904	E. I. DuPont de Nemours and Co., Inc.
Alathon 2886	E. I. DuPont de Nemours and Co., Inc.
Alathon 7511	E. I. DuPont de Nemours and Co., Inc.
Bakelite DMDA 6087	Union Carbide and Carbon Corp.
Bakelite DMDA 7125	Union Carbide and Carbon Corp.
Dow 401	Dow Chemical Company
Dow 600	Dow Chemical Company
Grace 60-015	W. R. Grace Plastics Company
Phillips 6015	Phillips Chemical Company

TABLE 1

Alathen 2886 Resin (Design 2, Betch 1)

Density reported by manufacturer:	0.95
Density of molded part:	0.96
Melt index reported by manufacturer:	3.0
Melt index of resin:	2.06
Melt index of molded part:	1.5

DROP TEST*

Test Temperature, °F	Results	
-65	Cracked in aft end; threads slipped	
-55	Threads slipped	
-20	Passed	
73	Passed	
120	Threads slipped	
160	Threads slipped	

EFFECTS OF THERMAL STRESS

Withstood 48 hours of storage at 160°F

MOLDING CONDITIONS

Injection Press Advanced 1st Stage 2nd Stage	18,000 psi 1,500 psi
Cycle Temperature, °F	
Front Middle Rear	400 450 450
Mold Temperature, °F	
Both core and cavity	150
Cycle, seconds	
Injection Booster Cooler Overall	45 20 70 210
Shot weight, oz	33

RING TEST RESULTS, FOR AFT END**

	Tensile Strength, psi	Jaw Travel, in., at 2 in./min.
Average	3603	.31
At -65°F High	4607	.31
Low	2543	.31
Ачегаде	3111	.20
At 73°F High	3802	.25
Low	2567	.19
	(Ring broke next to rib)	
Average	1783	.53
At 160°F High	2007	.69
Low	1478	.38

		Tensile Strength, psi	Percent Elengation	Tensile Modulus
	Average	6335	6.40	550,500
Λt -65°F	High	6418	6.55	659,000
	Low	6282	6.20	457,000
	Average	3893	11.0	238,500
At 73°F	High	3989	11.5	349,000
	Low	3743	10.4	188,000
	Average	1733	14.3	68,000
At 160°F	High	1755	14.7	76,500
	Low	1640	14.0	57,500

All containers tested at other than room temperatures were conditioned for 24 hours before testing.

All rings tested at -65°F and 160°F broke.

Alathon 2886 Resin (Design 2, Batch 2)

Density reported by manufacturer: 0.955
Melt index reported by manufacturer: 3.0

EFFECTS OF THERMAL STRESS

100 hours at 160°F dry - cracked, boiling water - 4 hours cracked

MOLDING CONDITIONS

Injection Press Advanced	
1st Stage 2nd Stage	19,000 psi 18,000 psi
Cycle Temperature, °F	
Front Middle Rear	400 450 450
Mold Temperature, °F	
Core Cavity	95 155
Cycle, seconds	
Injection Booster Cooling Overall	75 20 120 180–190
Shot weight, oz	40

RING TEST RESULTS FOR AFT END OF CONTAINER AT 73°F

Tensile Strength, psi

At Open End of Section	
Average	3863
High	3939
Low	3757
At Closed End of Section	
Average	3967
High	4056
Low	.3904

TENSILE TEST RESULTS FOR AFT END AT 73°F

	Tensile Strength, psi	Percent Elongation	Tensile Modulus
Average	3791	10.2	229,000
High	3909	10.8	289,000
Low	3610	9.6	190,000

TABLE 3

Alathon 2904 Resin (Design 3)

Density reported by manufacturer: 0.955
Density of molded part: 0.966
Melt index reported by manufacturer: 3.0
Melt index of molded part: 2.8-2.9

DROP TEST

Test Temperature, °F	Results
65 40	Cracked One container passed all drop-tests; one cracked
73	Passed
160	Passed

EFFECTS OF THERMAL STRESS

24 hours at 160°F - dry - passed

MOLDING CONDITIONS

MOLDING CON	DITIONS
Injection Press Advanced	
Ist stage 2nd stage	19,000 psi 16,000 psi
Cycle Temperature, °F	
Front Middle Rear	400 450 450
Mold Temperature, °F	
Zone 1, Cavity Zone 2, Cavity Zone 3, Sprue area Zone 4, Core	100 100 70 70
Cycle, seconds	
Injection Booster Cooling Overall	45 20 38 222
Shot weight, oz	41

RING TEST RESULTS

		Aft End		Center Section		
		Tensile Strength, psi	Jew Trevel, in., et 0.2 in./min.	Tensile Strength, psi	Jaw Trevel, in., et 2 in./min.	
	Average	7123	.25	5372	.24	
At -65°F		7407	.29	5932	.24 .23	
,	Low	6552	.20	4739	.21	
			At 2 in./min.		At 0.2 in./min.	
	Average	7248	.24	5916	.29	
At -65°F		8129	.29	6260	.37	
AC -07 1	Low	6765	.23	5396	.23	
			At 2 in./min.		At 2 in./min.	
	Average	3988	.58	3926	.78	
At 73°F	High	4108	.69	4015	.86	
, , ,	Low	3800	.54	3785	.70	
	Average	1764	.80			
At 160°F	High	1814	.81			
	Low	1734	.75			

TENSILE TEST RESULTS

TENSILE TEST RESULTS								
			Aft End			Center Section		
		Tensile Strength, psi	Percent Elengation	Tensile Medulus	Tensile Strength, psi	Percent Elengation et 0.2 in. min.	Tensile Medulus	
At65°F	Average High Low	7479 7771 7308*	5.85 7.25 3.8	502,000 551,500 429,000	7159 7295 7040	5.47 6.00 4.70	518,000 579,000 440,000	
At -65°F	Average High Low				7675 7883 7594	At 2 in. min. 6.75 6.50 5.50	521,500 576,500 482,500	
At 73°F	Average High Low	3671 3731 3643	11.4 13,0 9.2	184,500 204,000 153,500	3894 3922 3860	12.17 12.50 11.95	218,000 226,000 207,000	
At 160°F	Average High Low	1761 1842 1706	13.3 14.9 12.5	93,500 80,500 69,600				

^{*}Broke

Alathon 7511 Resin (Design 2)

Density reported by manufacturer: 0.96
Density of molded part: 0.36-0.47
Melt index reported by manufacturer: 0.3
Melt index of molded part: 0.953-0.959

Molding conditions:

Unknown

2

DROP TEST

Test Temperature, ○F

Result

-40

Cracked in aft end of container

EFFECTS OF THERMAL STRESS

72 hours at 160°F - dry; slight cracks at outside ribs

RING TEST RESULTS, FOR AFT END

		Tensile Strength, psi	Jaw Travel, in., at 0.2 in./min.
	Average	5167	.19
At -65° F*	High	5776	.19
	Low	4290	.19 at 2 in./min.
	Average	3341	.19
At 73°F**	High	3529	.19
	Low	3216	.19
	Average	1933	.61
At 160°F***	High	2006	.69
	Low	1853	.56

		Tensile Strength, psi	Percent Elongation	Tensile Modulus
	Average	7053	6.35	609,500
At -65° F	High	7128	6.75	730,000
	Low	6978	6.08	533,500
	Average	4473	9.57	225,000
At 73° F	High	4681	10.15	221,500
	Low	4376	9.05	229,000
	Average	2005	19.2	71,000
At 160°F	High	2100	22.1	76,000
	Low	1905	15.2	66,000

^{*}All broke in rib.

Three broke next to rib, one in rib.

Three broke, one in rib.

Bakelite DMDA 6087 Resin (Design 2)

Density reported by manufacturer: 0.962
Density of molded part: 0.96
Melt index reported by manufacturer: 2.0
Melt index of molded part: 1.9-2.1

Result

45

90

DROP TEST

Test Temperature, °F

Cycle, seconds
Injection

Booster Cooling

Overall

-40	Cracked
EFFECTS OF THERMAL STRESS	
48 hours at 160°F-dry; passed	
MOLDING CONDITIONS	
Cycle Temperature, °F	
Front Middle Rear	400 450 450
Mold Temperature, °F	
Core Cavity	100-105 95-100

RING TEST RESULTS, FOR AFT END

		Tensile Strength, psi	Jaw Travel, in., at 2 in./min.
	Average	5803	.22
At -65° F	High	6290	.31
	Low	5549	.19
	Average	4191	.58
At -73°F	High	4372	.63
	Low	3965	.56
	Average	1834	.73
At 160°F	High	1976	.75
	Low	1781	.69

		Tensile Strength, psi	Percent Elongation	Tensile Modulus
	Average	6898	5.10	648,000
At -65°F	High	6925	5.95	711,000
	Low	6587	3.45	570,500
	Average	4132	9.42	241,000
At 73°F	High	4177	10.0	289,000
	Low	4079	8.5	209,500
	Average	1767	13.4	83,000
At 160°F	High	1805	14.1	89,500
	Low	1718	12.3	75,000

TABLE 6
Bakelite DMDA 7125 Resin (Design 2)

Density reported by manufacturer: 0.95
Density of molded part: 0.95-0.957
Melt index reported by manufacturer: 7.5
Melt index of molded part: 6.4

DROP TEST

Result

45 -90

Test Temperature, °F

Injection

Booster Cooling Overall

-40	Cracked
EFFECTS OF THERMAL STRESS	
48 hours at 160°F-dry; passed	
MOLDING CONDITIONS	
Cycle Temperature, °F	
Front	400
Middle	450
Rear	450
Mold Temperature, °F	
Core	100-105
Cavity	95-100
Cycle, seconds	

RING TEST RESULTS, FORAFT END

The that the base of the think				
		Tensile Strength, psi	Jaw Travel, in., at 2 in./min.	
	Average	4945	.41	
At -65°F	High	5281	.44	
	Low	4357	.38	
	Average	2278	.19	
At 73°F	High	2768	.25	
	Low	1877	.13	
At 73°F	Average	3089*		
	High	3186		
	Low	2660		
	Average	1206	0.97	
At 160°F	High	1240	1.0	
	Low	1150	0.94	

		Tensile Strength, psi	Percent Elongation	Tensile Modulus
	Average	5743	4.71	507,000
At -65°F	High	5939	5.63	566,000
•	Low	5496	3.20	439,500
	Average	3072	11.0	161,000
At 73°F	High	3103	11.4	181,500
	Low	2989	10.4	126,500
	Average	1270	14.3	45,500
At 160°F	High	1294	14.9	52,500
	Low	1244	13.9	34,500

^{*}This second set of tensile strength values was taken from two more containers from the same batch. The differences in results indicate an inconsistency in molding procedure.

Dow 401 Resin (Design 2)

Density reported by manufacturer:	0.95
Density of molded part:	0.95
Melt index reported by manufacturer:	1.0
Melt index of molded pa :	1.1

DROP TEST

Test Temperature, °F	Results
-40	Cracked
73	Threads slipped

EFFECTS OF THERMAL STRESS

72 hours at 160°F - dry; cracked at ribs

MOLDING CONDITIONS

In	ection	n Press	Advanced

1st Stage	1400 psi
2nd Stage	1200 psi
Cycle Temperature, °F	
Front	450
Middle	450
Rear	400
Mold Temperature, °F	
Core	125
Cavity	90
Cycle, seconds	
Injection	75
Booster	61
Cooling	180
Overall	270

RING TEST RESULTS, AT AFT END

		Tensile Strength, psi	Jaw Travel, in., at 2 in./min.
	Average	5846	.59
At -65°F	High	6293	.63
	Low	5539	.56
	Average	4172	.500
At 73°F	High	4231	.500
111. 79. 1	Low	4123	.500
	Average	1800	.72
At 160°F	High	1863	.75
200 -	Low	1743	.69

			•	
		Tensile Strength, psi	Percent Elongation	Tensile Modulus
	Average	6140	6.26	483,500
At-	-65°F High	6189	7.10	520,000
•••	Low	6100	5.28	397,500
Ar.	73°F Average	3622	9.92	158,000
,,,,	High	3672	10.15	193,000
	Low	3580	9.60	139,500
	Average	1678	16.1	65,500
Ar	160°F High	1705	17.0	70,500
210	Low	1642	15.8	60,000

Dow 600 Resin (Design 2)

Density reported by manufacturer:	0.96
Density of molded part:	0.959
Melt index reported by manufacturer:	3.5
Melt index of molded part:	3.6

DROP TEST

Results

Test Temperature, °F

Cycle, seconds

Injection Booster Cooling Overall

-40 73	Cracked Threads slipped
EFFECTS OF THERMAL STRESS	
72 hours at 160°F - dry; cracked	
MOLDING CONDITIONS	
Injection Press Advanced	
1st Stage 2nd Stage	1400 psi 1200 psi
Cycle Temperature, °F	
Front Middle Rear	450 450 400
Mold Temperature, °F	
Core Cavity	125 90

RING TEST RESULTS, FOR AFT END

		Tensile Strength, psi	Jaw Travel, in., at 2 in./min.
	Average	6185	.25
At -65°F	High	6484	.25
	Low	5876	.25
	Average	3605	.281
At 73°F	High	3898	.313
	Low	3341	.250
	Average	1801	.73
At 160°F	High	1822	.75
	Low	1782	.69

		Tensile Strength, psi	Percent Elongation	Tensile Modulus
	Average	6732	5.77	586,500
At -65°F	High	6884	5.93	620,000
	Low	6613	5.68	526,500
	Average	4062	9.44	211,000
At 73°F	High	4079	9.76	201,000
	Low	4035	9.30	159,500
	Average	1818	12.7	80,500
At 160°F	High	1902	13.6	96,000
	Low	1773	11.4	69,500

Grace 60-015 Resin (Design 2)

Density reported by manufacturer:	0.96
Density of molded part:	0.963
Melt index reported by manufacturer:	1.5
Melt index of molded part:	1.4 - 1.5

DROP TEST

Test Temperature, °F

Result

40	Passed
EFFECTS OF THERMAL STRESS	
72 hours at 160°F - dry; passed	
MOLDING CONDITIONS	
Cycle Temperature, °F	
Front Middle Rear	450 450 475
Mold Temperature, °F	
Core Cavity	85-90 120
Cycle, seconds	
Injection Booster Cooling Overall	9 20 45 150

RING TEST RESULTS, FOR AFT END

		Tensile Strength, psi	Jaw Travel, in., at 2 in./min.
	Average	4993*	.34
At -65°F		5831	.38
	Low	4020	.31
	Average	4541**	
At 73°F	High	4708	
. •	Low	4380	
	Average***	3803	
At 73°F	High	3849	
	Low	3747	
	Average	2173	.61
At 160°F	High	2252	.68
	Low	2142	.56

		Tensile Strength, psi	Percent Elongation	Tensile Modulus
At -65°F	Average	6637	6.50	520,500
		6762	6.85	570,000
	Low	5676	6.14	470,500
At 73°F	Average	4300	9.7	234,500
	High	4364	10.0	250,500
	Low	4105	9.0	218,000
At 160°F	Average	1792	14.9	77,000
		1819	15.5	77,500
	Low	1748	13.8	76,500

^{*}Specimen broke.
***All broke.
****Broke next to rib.

ig 1 Fiber container overpacked in wooden box

Fig 2 First container design with extruded tubes and injection molded end caps, base and nose supports, and threaded closures. A – assembled B – disassembled with contents

21

Fig 3 Design of prototype container

Fig 4 Design 1, a three-piece container with buttress thread, 8 threads per inch

24

Fig 6 Three-piece container assembled

Design 2, midsection. Square threads, 0.1-inch deep, 6 threads per inch. Thickness increased from .17 inch to .20 inch. Fig 7

Fig 8 Design 3 (final), end sections. Increased wall thickness from 5.760 to 5.860, 4 threads per inch. Increased depth of thread from 0.1 inch to 0.15 inch.

Fig 9 Ring cut from tested container, showing contamination

Fig 10 Ring cut from tested container, showing voids

Fig 11 Enlarged view, showing rupture due to contamination

DISTRIBUTION LIST

	Copy No.
Commanding Officer Picatinny Arsenal ATTN: Technical Information Section SMUPA-DC Dover, N. J.	1- 5 6
Commanding General Army Materiel Command R&D Directorate Research Division ATTN: Dr. Peter Kosting Building T7 Dept of the Army Washington 25, D. C.	7
Commanding General U. S. Army Munitions Command ATTN: AMSMU-A AMSMU-W Picatinny Arsenal Dover, N. J.	8 9
Plastics Technical Evaluation Center ATTN: Director, Mr. H. Pebly Picatinny Arsenal Dover, N. J.	10- 11
Commanding General U. S. Army Weapons Command ATTN: AMSWE-RDR Rock Island, Ill.	12- 13
Redstone Scientific Information Center U. S. Army Missile Command ATTN: Chief, Document Section Redstone Arsenal, Alabama	14- 15

	Copy No.
Commanding Officer	
Detroit Arsenal	
ATTN: ORDMC-RMN, Mr. John Reynar ORDMC-RRS, Mr. D. R. Lem	16 17
Center Line, Mich.	- '
Commanding Officer	
Aberdeen Proving Ground	
ATTN: Coating & Chemical Laboratory	18
Technical Library, Bldg. 313	19- 20
Maryland	
Commanding General	
White Sands Missile Range	
ATTN: STEWS_AMTED_STW	21
Director	22
Technical Library	23
New Mexico	
Commanding Officer	
Frankford Arsenal	
ATTN: Pitman-Dunn Labs, Dr. H. Gisser	24
Mr. Paul Holtzman, Code 6252	25
Library Branch, 0270	26
Philadelphia 37, Pa.	
Commanding Officer	
Rock Island Arsenal	
ATTN: Laboratory, Mr. R. F. Shaw	27
Commanding Officer	
Springfield Armory	
ATTN: Res Chem Lab, Mr. Zavarella	28
Springfield 1, Mass.	
Commanding Officer	
Watervliet Arsenal	
ATTN: SWEWV_RDA	29
Watervliet N. Y.	

	Copy No.
Commandant U.S. Army Ordnance Guided Missile School ATTN: AJQ-RA Redstone Arsenal, Alabama	30
Commanding Officer Ammunition Procurement & Supply Agency ATTN: SMUAP-QFO Joliet, Ill.	31
Commanding General Army Ordnance Tank-Automotive Command ATTN: Technical Information Section Detroit Arsenal Center Line, Mich.	32
Commanding Officer Rossford Ordnance Depot ATTN: ORDWD-P Toledo 1, Ohio	33
Commanding Officer U.S. Army Materials Research Agency ATTN: Technical Information Section Watertown Arsenal Watertown 72, Mass.	34
Commanding Officer Harry Diamond Laboratories ATTN: AMXDO-TIB Connecticut Ave & Van Ness St, NW Washington 25, D. C.	35
Commanding General U. S. Army Signal Research & Development Labs ATTN: SIG-FM/EL-PEM-1-d Mr. E. Beekman	36

	Copy No.
Chemical Research & Development Laboratories	
ATTN: Mr. T. A. Treglia	38
Mr. T. P. Steinmetz	39
Edgewood Arsenal, Maryland	
Commanding General	
U. S. Army CBR Agency	
ATTN: SMUCB-TO-DS (Mr. Cooke)	40
Edgewood Arsenal, Maryland	
Commanding Officer	
Engineer Research & Development Laboratories	
Materials Branch	
ATTN: Mr. Philip Mitton	41
Mr. S. Goldfein	42
Mr. W. Armstrong	43
Information Resources Branch	44
Fort Belvoir, Virginia	
Commanding General	
Quartermaster Research & Engineering Center	
ATTN: Clothing & Organic Materials Div.	45- 47
Natick, Mass.	
Office, Chief of Transportation	
Dept of the Army	
ATTN: Mr. John Stolarick, TCARO-R	48
Washington 25, D. C.	
Commanding Officer	
U. S. Army Transportation Research Command	
ATTN: ASE (Mr. J. Everette Forehand)	49
Fort Eustis, Virginia	
U. S. Army Transportation & Engineering Command	
ATTN: Mr. N. C. Thomas	50
Mr. F. P. McCourt	51
Dr. Echols	52
Fort Eustis, Virginia	

	Copy No.
Ordnance Officer Headquarters, U. S. Army Caribbean Corozal Fort Clayton	
Canal Zone	53
Army Signal Supply Agency ATTN: SIGSU-F7f1 225 South 18th Street Philadelphia 3, Pa.	54
Army Packaging Board Office of the Deputy Chief of Staff for Logistics Dept of the Army Washington 25, D. C.	55- 64
Dept of the Navy Office of Naval Research ATTN: Code 423 Washington 25, D. C.	65
Dept of the Navy Bureau of Ships Hull Division Materials Development & Applications Branch ATTN: Mr. J. B. Alfers, Code 634C Washington 25, D. C.	66
U. S. Naval Ordnance Laboratory ATTN: Mr. H. A. Perry Mr. F. R. Barnet, Chief, Nonmetallic Materials Division White Oak Silver Spring, Maryland	67 68
Commander Naval Research Laboratory ATTN: Code 2027 Washington 25, D. C.	69

	Copy No.
Commander	
New York Naval Shipyard	
ATTN: RRMA	70
Airborne Equipment Division	71
Washington 25, D. C.	
Dept of the Navy	
Bureau of Naval Weapons	
ATTN: Code RRMA	72
Mr. A. Calapristi	73
Washington 25, D. C.	
Dept of the Navy	
Bureau of Supplies and Accounts	
ATTN: Mr. H. Lapidus, Code S-82	74
Washington 25, D. C.	
U. S. Naval Supply Research & Development Facility ATTN: Mr. S. Stambler Bayonne, N. J.	75
Commanding Officer	
Naval Weapons Station	
Research and Development Division	
ATTN: Mr. U. Cormier	76
Yorktown, Virginia	
Aeronautical Materials Laboratory	
Naval Air Materials Center	
ATTN: Mr. E. K. Rishel, Head, Plastics Branch	77
Philadelphia 12, Pa.	
Naval Weapons Laboratory	
ATTN: Mr. R. Tom (Code WCD)	78
Dahlgren, Virginia	

	Copy No.
Dept of the Navy Bureau of Naval Weapons ATTN: Mr. P. M. Goodwin (RRMA-10) Washington 25, D. C.	79
Naval Air Development Center Aeronautical, Electronic, and Electrical Laboratory ATTN: Dr. H. R. Moore, Head, Materials & Process Branch Johnsville, Pa.	80
Commander (Code 5557) U. S. Naval Ordnance Test Station China Lake, California	81
David Taylor Model Basin ATTN: Mr. A. R. Willner, Head, Materials Research Branch Washington 7, D. C.	82
Commander Aeronautical Systems Division Wright-Patterson Air Force Base ATTN: Mr. R. T. Schwartz, ASRCNC Mr. Peterson, ASRCNC-1 Dayton, Ohio	83 84
Commander Mobile Air Material Area Brookley Air Force Base, Alabama	85
Defense Documentation Center Arlington Hall Station Arlington 12, Virginia	86–105
Dr. W. R. Lucas (M-P & VE-M) George C. Marshall Space Flight Center Huntsville, Alabama	106
U. S. Dept of Agriculture Forest Products Laboratory Madison 5. Wisconsin	107

	Copy No.
Dept of Commerce National Bureau of Standards Room 4022, Industrial Building Washington 25, D. C.	108
Sandia Corporation Sandia Base ATTN: Bertha R. Allen Albuquerque, N. M.	109
Sandia Corporation Livermore Laboratory ATTN: Librarian P. O. Box 969 Livermore, California	110
Chairman, Container Committee American Ordnance Association Mills Building Pennsylvania Ave and 17th St, NW Washington 6, D. C.	111
Interservice Data Exchange Program AOMC IDEP Office ATTN: R. A. Ham, ORDXM-RCS Mr. Schenk Redstone Arsenal, Alabama	112–113 114–115
E. I. Du Pont de Nemours & Company ATTN: Dr. G. M. Kuettel Empire State Building New York 1, N. Y.	116
W. R. Grace & Company ATTN: Mr. Warren Petersen 225 Allwood Road Clifton, N. J.	117

	Copy No.
Dow Chemical Company ATTN: Mr. Richard W. Beckwith 916 Shoreham Building Washington 5, D. C.	118
Hercules Powder Company ATTN: Mr. Samuel A. McElroy, II Hercules Tower 910 Market Street Wilmington 99, Delaware	119
Eastman Chemical Products, Inc. ATTN: Mr. Thomas W. Sellers 260 Madison Avenue New York 16, N. Y.	120
Marbon Chemical Company ATTN: Mr. E. J. Collins Washington, W. V.	121
Union Carbide Plastics Company ATTN: Mr. P. R. Junghans River Road Bound Brook, N. J.	122
Celanese Polymer Company ATTN: Mr. Oscar J. Pladek 160 Terminal Avenue Clark, N. J.	123
Monsanto Chemical Company Plastic Division ATTN: Mr. T. J. Martin Springfield, Mass.	124
Avisun Corporation ATTN: Mr. Anthony M. Maresca One E. 42nd Street New York 17, N. Y.	125

	Copy No.
Phillips Chemical Company	
Plastics Sales Division	
ATTN: Mr. Clem R. Loden	126
80 Broadway	
New York, N. Y.	
Allied Chemical Company	
Plastic Division	•
ATTN: Mr. John D'Agostino	127
40 Rector Street	
New York 6, N. Y.	

Accession No. AD ACCRESSION No. DEVELOPMENT OF PLASTIC PACKING CONTAINERS Picatinny Arsenal, Dover, N. J. DEVELOPMENT OF PLASTIC PACKING CONTAINERS FOR 115 MM ROCKET LAUNCHER AMMUNITION Michael Albanese and James M. Spilman The chnical Memorandum 1079, June 1963, 40 pp, draw- III. Spilman, James M. III. Shilman, James M. III. Shilman, James M. UNITERMS Plastics Containers UNITERMS Launchers Containers UNITERMS Lip mm A high-density polyethylene was chosen for fabrica- tions of the Plastics and Packaging Laboratory. A high-density polyethylene was chosen for fabrica- tions of the ZMM4 rocker container because of its light weight, good water and impact resistance, and low cost. Several methods of fabrication were considered for this application, including blow molding, was eliminated because the close tolerances required in the inside diameter and the threaded section of the container could not be (over)	Accession No. AD Accession No. Picatinny Arsenal, Dover, N. J. DEVELOPMENT OF PLASTIC PACKING CONTAINERS I Containers — Development of PLASTIC PACKING CONTAINERS II. Albane se, Michael Honese and James M. Spilman, James M. III. Spilman, J. M. A high density polyethylene was chosen for fabrication of the XM54 rocket container because of its light weight, good water and impact resistance, and low cost. Several methods of fabrication were considered for this supplication, including blow molding, injection molding, and extrusion. The concept of blow molding was eliminated because the threaded section of the container could not be
1. Rockets – Containers 2. Containers – Development I. Albanese, Michael II. Spilman, James M. III. XM54 Rockets UNITERMS Plastics Containers 115 mm Rockets Laucher Resins Spilman, J. M. Albanese, M.	1. Rockets - Containers 2. Containers - Development I. Albanese, Michael II. Spilman, James M. III. XM54 Rockets UNITERMS Containers 115 mm Rockets Launcher Resins Spilman, J. M. Albanese, M.
Accession No. DEVELOPMENT OF PLASTIC PACKING CONTAINERS FOR 115 MM ROCKET LAUNCHER AMMUNITION Michael Albanese and James M. Spilman Technical Memorandum 1079, June 1963, 40 pp, drawings, photographs, tables. Unclassified report from the Plastics Application and Ammunition Packaging Sections of the Plastics and Packaging Laboratory. A high-density polyethylene was chosen for fabrication of the XM54 rocket container because of its light weight, good water and impact resistance, and low cost. Several methods of fabrication were considered for this sapplication, including blow molding, injection molding, and extrusion. The concept of blow molding was eliminated because the close tolerances required in the inside diameter and the threaded section of the container could not be	AINERS draw- om the Sec- light ilight ov cost. or this olding, eccause ter and e

truded rubes and injection molded end caps, base and nose supports, and threaded closures. These containers were designed in two sections which were screwed together to form a sealed container. Difficulty was experienced with the hear-welded joints upon testing, and buckling of the container also occurred. Containers were fabricated utilizing exţ,

In view of this problem, it was decided to use a three-piece injection-molded container. Several minor design changes were made on the three-piece container on the basis of test results, thereby giving the final design shown in Figure 8 (p. 27).

Of the several resins tested, the two that appear most promising are Alathon 2904 and Grace 60-015. Phillips 6015 may also be satisfactory if a proper mold design can be established for use with this resin. Further resting of resins and designs is required, and optimum molding conditions must be established before a completely satisfactory container can be produced.

truded tubes and injection molded end caps, base and nose supports, and threaded closures. These containers were designed in two sections which were screwed together to form a sealed container. Difficulty was experienced with the hear-welded joints upon testing, and adhered to. Containers were fabricated utilizing ex-

In view of this problem, it was decided to use a three-piece injection-molded container. Several minor design changes were made on the three-piece container on the basis of test results, thereby giving the final design shown in Figure 8 (p 27). buckling of the container also occurred.

Of the several resins tested, the two that appear most promising are Alathon 2904 and Grace 60–015. Phillips 6015 may also be satisfactory if a proper mold design can be established for use with this resin. Further testing of resins and designs is required, and optimum molding conditions must be established before a completely satisfactory container can be produced.

truded tubes and injection molded end caps, base and nose supports, and threaded closures. These containers were designed in two sections which were screwed together to form a sealed container. Difficulty was experienced with the hear-welded joints upon testing, and buckling of the container also occurred. Containers were fabricated utilizing ex-

In view of this problem, it was decided to use a three-piece injection-molded container. Several minor design changes were made on the three-piece container on the basis of test results, thereby giving the final design shown in Figure 8 (p. 27).

Of the several resins tested, the two that appear most promising are Alathon 2904 and Grace 60-015. Phillips 6015 may also be satisfactory if a proper mold design can be established for use with this resin. Further testing of resins and designs is required, and optimum molding conditions must be established before a completely satisfactory container can be produced.

ers were designed in two sections which were screwed together to form a sealed container. Difficulty was experienced with the heat-welded joints upon testing, and truded tubes and injection molded end caps, base and nose supports, and threaded closures. These containadhered to. Containers were fabricated utilizing exbuckling of the container also occurred.

In view of this problem, it was decided to use a

there-piece injection-molded container. Several mind design changes were made on the three-piece container on the basis of test results, thereby giving the final design shown in Figure 8 (p 27).

Of the several resins tested, the two that appear most promising are Alathon 2904 and Grace 60-015. Phillips 6015 may also be satisfactory if a proper mold design can be established for use with this resin. Further testing of resins and designs is required, and optimum molding conditions must be established before a completely satisfactory container can be produced.