Compiler Optimizations and Program Analysis

Unnikrishan C

August 19, 2019

Outline

First Main Section

• Static Analysis gives overapproximation of the program properties at each program point.

- Static Analysis gives overapproximation of the program properties at each program point.
- We saw an example of identifying whether variable are odd or even at a program point.

- Static Analysis gives overapproximation of the program properties at each program point.
- We saw an example of identifying whether variable are odd or even at a program point.
- The ideal value was not obtained. Values obtained were over approximated.

- Static Analysis gives overapproximation of the program properties at each program point.
- We saw an example of identifying whether variable are odd or even at a program point.
- The ideal value was not obtained. Values obtained were over approximated.
- Values obtained also depends on lattice taken for analysis.

Powerset of $\{1,2,3\}$ - Relation= \subseteq

• Some domains are totally ordered $1 \le 2 \le 3 \le ..$ (Set of all Natural Numbers)

Powerset of $\{1,2,3\}$ - Relation= \subseteq

- Some domains are totally ordered $1 \le 2 \le 3 \le ..$ (Set of all Natural Numbers)
- Some domains are partially ordered: powerset of the set $\{1,2,3\}$, with relation \subseteq

Powerset of $\{1,2,3\}$ - Relation= \subseteq

- Some domains are totally ordered $1 \le 2 \le 3 \le ..$ (Set of all Natural Numbers)
- Some domains are partially ordered: powerset of the set $\{1,2,3\}$, with relation \subseteq

Divisors of $12 = \{1,2,3,4,6,12\}$ and relation=divides

- $(a \rightarrow b) \Rightarrow (b \div a) ==0$.
- Hasse Diagram shown below.

ullet A POSET is a non-empty set S with a partial order \leq on S.

- A POSET is a non-empty set S with a partial order \leq on S.
- ullet \leq is a binary relation on S with properties

- A POSET is a non-empty set S with a partial order \leq on S.
- $\bullet \le$ is a binary relation on S with properties
 - reflexive: $x \le x$, $\forall x \in S$.

- ullet A POSET is a non-empty set S with a partial order \leq on S.
- ullet \leq is a binary relation on S with properties
 - reflexive: $x \le x$, $\forall x \in S$.
 - transitive: $x \le y$ and $y \le z$, $\Rightarrow x \le z$, $\forall x$, y, $z \in S$.

- ullet A POSET is a non-empty set S with a partial order \leq on S.
- $\bullet \le$ is a binary relation on S with properties
 - reflexive: $x \le x$, $\forall x \in S$.
 - transitive: $x \le y$ and $y \le z$, $\Rightarrow x \le z$, $\forall x$, y, $z \in S$.
 - antisymmetric: $x \le y$ and $y \le x \Rightarrow x == y$, $\forall x, y \in S$.

Transitive - S= divisors of 12 and binary relation $\leq =$ divides

In a POSET (R,≤)

- In a POSET (R,≤)
 - X is a subset of R $(X \subseteq R)$.
 - An element $u \in R$ is an **upper bound** of a set of elements $X \subseteq R$, if $x \le u$ for all $x \in X$.

- In a POSET (R,≤)
 - X is a subset of R $(X \subseteq R)$.
 - An element $u \in R$ is an **upper bound** of a set of elements $X \subseteq R$, if x < u for all $x \in X$.
 - u is the **least upper bound**,or **lub** or **join**) of X if u is an **upper bound** for X , and for every upper bound y of X , we have $u \le y$.

- In a POSET (R,≤)
 - X is a subset of R $(X \subseteq R)$.
 - An element $u \in R$ is an **upper bound** of a set of elements $X \subseteq R$, if $x \le u$ for all $x \in X$.
 - u is the least upper bound, or lub or join) of X if u is an upper bound for X, and for every upper bound y of X, we have u

 y.
 - We write $u = \sqcup X$.

- In a POSET (R,≤)
 - X is a subset of R $(X \subseteq R)$.
 - An element $u \in R$ is an **upper bound** of a set of elements $X \subseteq R$, if x < u for all $x \in X$.
 - u is the least upper bound, or lub or join) of X if u is an upper bound for X, and for every upper bound y of X, we have u

 y.
 - We write $u = \sqcup X$.
 - \bullet Similarly, $v=\sqcap X$ is the greatest lower bound or glb or meet of X .

Lattices

 A lattice is a partially order set in which every pair of elements has an lub and a glb

Lattices

- A lattice is a partially order set in which every pair of elements has an lub and a glb
- A **complete lattice** is a lattice in which every subset of elements has a **lub** and **glb**.

Lattices

- A lattice is a partially order set in which every pair of elements has an lub and a glb
- A complete lattice is a lattice in which every subset of elements has a lub and glb.
- What is semilattice?. Read Dragon Book, covered in the previous class.

The below relation is Lattice, POSET, both or None?

The below relation is Lattice, POSET, both or None?

• It is POSET, not a lattice.

• Generate IR in binary format: clang -emit-Ilvm file.c -o file.bc

- Generate IR in binary format: clang -emit-llvm file.c -o file.bc
- Make binary IR to readable format (new): Ilvm-dis file.bc (generates hello.ll)

- Generate IR in binary format: clang -emit-Ilvm file.c -o file.bc
- Make binary IR to readable format (new): Ilvm-dis file.bc (generates hello.ll)
- Open IR using command (new): vi file.II

- Generate IR in binary format: clang -emit-llvm file.c -o file.bc
- Make binary IR to readable format (new): Ilvm-dis file.bc (generates hello.ll)
- Open IR using command (new): vi file.II
- The LLVM IR pass discussed in one of the previous class is added in course repository.