

Mock Exam

Course of study: Robotics				
Examination				
Points:				
Duration of ex	amination:			
Please write le	egibly!			
Date: _				
Name: _				
Register No.:_				
Study Course:				
Hints:				
Make sure that sheet.	t you enter your mat	riculation number in	the header of each ex	xamination
boxes (\boxtimes) with	the correct answers	or enter the solution	e correct. Please mark s into the appropriate function of points within	ield ().
Example:				
(2 points)				
□ wrong	□ wrong	⊠ wrong	⋈ wrong	
🔀 right	☐ right	⊠ right	🔀 right	
□ wrong	□ wrong	□ wrong	🗷 wrong	
🗷 right	⊠ right	☐ right	☐ right	
2 points	 1 point	0 points	0 points	

A planar robot with two joints is considered. The first joint is a prismatic one, while the second is revolute. Furthermore $q_1>0$ and $-\frac{\pi}{2}\leq q_2\leq \frac{\pi}{2}$ holds.

a) (points)

Draw the coordinate systems according to the Denavit-Hartenberg algorithm into the illustration of the robot under consideration.

b) (points)

Compute the parameters according to the Denavit-Hartenberg algorithm of the robot under consideration.

θ		9- II 2
d	9, +L2	
а	L ₂	L ₃
α	$-\frac{T}{2}$	

c) (points)

Compute the local transformation matrices Ai.

Hint:
$$\cos\left(x - \frac{\pi}{2}\right) = \sin(x)$$
, $\sin\left(x - \frac{\pi}{2}\right) = -\cos(x)$

d) (points)

Compute the forward kinematics of the robot under consideration.

$$x = \frac{L_1 + L_3 S_2}{y}$$

$$y = C$$

$$z = \frac{q_1 + L_2 + L_3 C_2}{q_1 + L_2 + L_3 C_2}$$

e) (points)

Compute the inverse kinematics of the robot under consideration.

$$q_{1} = \frac{Z_{o} - L_{2} - L_{3} \cos(\sin(\frac{x_{o} - L_{1}}{L_{3}}))}{\sin(\frac{x_{o} - L_{1}}{L_{3}})}$$

$$q_{2} = \frac{\sin(\frac{x_{o} - L_{1}}{L_{3}})}{L_{3}}$$

f) (points)

Compute the 2x2 Jacobian matrix of the robot under consideration.

d) (points)

Calculate possible singular configurations of the robot under consideration.

$$\det(\frac{1}{2}) = -L_3C_2 \neq 0$$

Explanatory statement: We have singularity when
$$Cos(9_2) = 0$$
,

but since $-\frac{\pi}{2} < q_2 < \frac{\pi}{2} \Rightarrow Cos(9_2) \neq 0$ for the conditions of q_2 .

 $Rotation(3x3)$ transtation $(3x_1)$
 $= Cos(9_2) \neq 0$ for the conditions of q_2 .

Replace $= Cos(9_2) \neq 0$ for the conditions of q_2 .

 $= Cos(9_2) \neq 0$ for the conditions of q_2 .

 $= Cos(9_2) \neq 0$ for the conditions of q_2 .

 $= Cos(9_2) \neq 0$ for the conditions of q_2 .

"Jerk":-Important parameter in motion planning/controlling - Time derivative of acceleration - Avoid excessive input of acceleration.

Matriculation number.:	

Task 2: (points)

A planar robot with a rotational and a prismatic joint is considered.

a) (points)

Compute the Jacobian matrix of the system under consideration.

J =

b) (points)

For a current configuration $q=\begin{bmatrix}\frac{\pi}{4} & \frac{1}{4}\end{bmatrix}'$, $\dot{x}=\begin{bmatrix}1 & \frac{1}{2}\end{bmatrix}'$ and $l_1=\frac{3}{4}$ holds. Compute the appropriate joint velocities.

 $\dot{q}_1 =$

 \dot{q}_2 = ______

Task 3: (points) Label all blocks in the diagram

Task 4: (points)

Is the given matrix a rotation matrix (give an explanatory statement)?

$$R = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$R^{T} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$R^{T} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

$$R^{T} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$
Since $R^{T} = R^{T} \Rightarrow R$ is an orthogonal matrix

$$R^{T} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

Matriculation number.:		
Task	5 : (42 points)	
1.)	(2 points)	
·	The values of the use of	ne joint variables for a given end effector pose are calculated by
		the inverse kinematics. the recursive Newton-Euler-algorithm. the Jacobian matrix. a path planning method.
2.)	(2 points)	
	How many deg	rees of freedom does the end effector of a spatial robot have at
	maximum?	
3.)	(2 points)	
	What are the pr	roperties of a rotation matrix R ?
	X	R is square. R is orthogonal. R is diagonal. R is singular.
4.)	(2 points)	
	⊠ a □ a □ th	s transformation matrix describes compact description of a rigid body transformation. n algorithm for the derivation of the Jacobian. ne mapping of a non-square matrix into the nullspace. n algorithm for the derivation of the pseudo-inverse.
5.)	(2 points)	
	How many solu usually have?	tions does the forward kinematics of a spatial serial manipulato
	X _	3 6 1 none
6.)	(2 points)	
	Jacobian is	f the joint velocities onto the end effector velocities by use of a linear.
		non-linear. singular. proportional.

7.) (2 points) How many independent parameters does a rotation matrix have at maximum to
describe the orientation of a coordinate system with respect to another coordinate system?
□ 1 ★ 3 □ 0
8.) (2 points)
The upper left 3x3 sub-matrix of a homogenous
transformation matrix has the meaning of a translation.
rotation.
□ bias.
□ scaling.
9.) (2 points)
The determinant of a rotation matrix for a "right-handed" system is equal to
№ 1.
□ 0. □ -1.
\Box $-\pi$
10.)(2 points)
The norm of a row or a line of a rotation matrix is equal to
⊻ 1.
$\begin{array}{ccc} & \pi. \\ & \pi \end{array}$
11.) (2 points)
The workspace of a plain robot with two rotational joints can have the shape of
□ a circle.
a circular ring.
□ a square.
an ellipse.
12.) (2 points)
In which cases is the pseudo-inverse of a Jacobian typically used?
☐ The Jacobian is square and diagonal.
☐ The TCP is outside the workspace. ☐ The Jacobian is of non-square type.
The Jacobian is of non-square type.

Matriculation number.:

Matriculation number.:		
×	The number of joints is larger than the amount of degrees of freedom of the end effector.	
13.) (2 points)		
14.) (2 points) How many pothave, assuming	the Jacobian matrix is singular. the robot is in a stretched position. the Jacobian matrix is square. the end effector leaves the planned path. ssible solutions does the inverse kinematics of the pictured robot ing only the position of the tool center point is given?	
□ r <u>X</u> t	one solution no solution wo solutions infinite amount of solutions	
15.)(2 points)		
effector degre	mension of the Jacobian of a robot with 7 actuators and 6 end es of freedom? 7x6 6x7x6 6x7 6x7	
16.)(2 points)		
degrees of fre	tuators does a robot need at least, assuming three independent edom for the end effector are required? I actuator actuators actuators actuators actuators	

Good luck!

Appendix:

Denavit-Hartenberg algorithm

Definition of the coordinate systems:

- 1. Definition of the initial coordinate system at the base of the robot. The z₀-axis lies within the axis of movement of the first joint in direction of the kinematic chain. Define the x₀- and y₀-axes in order to generate an orthogonal right-handed system.
- 2. For i=1,...,n-1 do the following steps:
- 3. The z_i-axis is to arrange in direction of the axis of movement of joint i+1 (rotational or translational joint)
- 4. The origin of coordinate system lies within the intersection point of the z_{i-} and z_{i-1-} axes or within the intersection point of the z_{i-} axis with the collective perpendicular of the z_{i-} and z_{i-1-} axes
- 5. In case of an intersection of z_{i-1}- and z_i-axis, the x_i-axis is orthogonal to both z_{i-1}- and z_i-axis. Otherwise the x_i-axis lies in direction of the perpendicular between z_i- and z_{i-1}-axis.
- 6. Choose the y_i-axis in order to generate an orthogonal right-handed system (x,y,z)_i.
- 7. Definition of the TCP coordinate system: The z_n -axis lies in direction of z_{n-1} -axis. The x_n -axis is orthogonal to both z_n and z_{n-1} -axis.

Denavit-Hartenberg parameters:

- θ_i Angle between x_{i-1} -axis and x_i -axis around the z_{i-1} -axis-
- d_i Distance from origin of coordinate system $(x,y,z)_{i-1}$ to the intersection point of z_{i-1} -axis and x_i -axis, measured along the z_{i-1} -axis.
- a_i Distance from intersection point of z_{i-1} -axis and x_i -axis to the origin of coordinate system $(x,y,z)_i$, measured along the x_i -axis (or the shortest distance between z_{i-1} -axis and z_i -axis).
- α_i Angle between the z_{i-1} -axis and z_i -axis around the x_i -axis.

Transformation matrix

$$\begin{aligned} \mathbf{A}_i &= \mathrm{Rot}_{z,\theta_i} \mathrm{Trans}_{z,d_i} \mathrm{Trans}_{x,a_i} \mathrm{Rot}_{x,\alpha_i} = \\ \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\theta_i)\sin(\alpha_i) & a_i\cos(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i)\cos(\alpha_i) & -\cos(\theta_i)\sin(\alpha_i) & a_i\sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$