PHY 831: Statistical Mechanics Exam 1

October 18, 2021

- 1. (10 points) Consider a one-dimensional solid of length L at temperature T containing N atoms in a chain. Each atom has one spin-half conduction electron (so the rest of the electrons can effectively be neglected). Model excitations of the lattice using a one-dimensional version of the Debye model, so that the density of states in frequency space is given by $g(\omega) = L/(2\pi c_s)$, where c_s is the sound speed, $k = \omega/c_s$ is the wavenumber, and the energy of a phonon is given by $\epsilon = \hbar \omega$. Since motion is only possible in the x-direction, the waves can have only one polarization. Treat the electrons as a free, non-relativistic gas confined to move in one-dimension.
 - (a) What is the electron chemical potential of this system at zero temperature (i.e., what is the Fermi energy ϵ_F , expressed in terms of the electron density)?
 - (b) What is the electron contribution to the energy of the system at zero temperature?
 - (c) What is the Debye frequency for the lattice, expressed in terms of N, L, and c_s ?
 - (d) What is the phonon contribution to the energy for *T* small compared to the Debye temperature?
- 2. For free bosons in a D-dimensional box with an energy-momentum relation $\epsilon = ap^s$, where a and s are positive constants, what is the dimension at which Bose-Einstein condensation begins to occur at low temperatures, in terms of D and s?
- 3. Consider a gas of *N* spin-1/2 non-relativistic electrons of mass *m* (non-interacting) confined to a two dimensional area *A*.
 - (a) Compute the single particle density of states and derive an expression for the Fermi energy ϵ_F in terms of the matter density.
 - (b) At T = 0, compute the average energy, expressed in terms of N and the Fermin energy.
 - (c) Calculate the force per unit length exerted by the system (i.e., the 2d-analog of pressure) at T=0.
 - (d) Now consider T > 0 but $k_B T << \epsilon_F$. What is the average energy to $\mathcal{O}(T^2)$ in the Sommerfeld expansion?
- 4. Consider a gas of spinless bosons with a pairwise hard core interaction $u(r < a) = \infty$.

- (a) Treating the system as a classical gas, compute the b_2 coefficient in the virial cluster expansion.
- (b) Treating the system as a quantum gas, compute the b_2 coefficient to leading non-vanishing order in a/l_Q .