

Решение задач по математике онлайн

ГЛАВНАЯ ССЫЛКИ

Главная >> Теория игр. Решение матричной игры.

Теория игр. Решение матричной игры.

Пример №1. Теория игр. Решение матричной игры в чистых стратегиях.

Пример №2. Теория игр. Решение матричной игры в смещанных стратегиях.

Пример №3. Теория игр. Решение матричной игры в смешанных стратегиях.

Программа позволяет решить матричную игру, путем сведения ее к задаче линейного программирования, которая, в свою очередь, решается симплекс методом. Вы можете ознакомиться с работой данной программы, посмотрев приведенные выше примеры.

Ввелите исходные данные

целые числа и (или) десятичные дроби (например -0.15 2.12 10)

			Стратеги	и игрока В	
		В 1	B_2	В 3	B_4
	A ₁	2	3	4	7
Стратегии игрока А	A ₂	6	5	1	4
	А 3	7	2	8	1

другое количество стратегий

решить

Введенная Вами матрица показывает выигрыш игрока А, в зависимости от выбранного им действия и от ответного действия игрока В. Данная матрица называется платежной матрицей. Мы рассматриваем игру двух игроков, в которой выигрыш одного из них равен проигрышу другого. Внешние факторы отсутствуют. Оба игрока обладают конечным числом действий и логикой, которая определят их действия (рассмотрим ниже). Строки матрицы являются возможными действиями игрока А, столбцы матрицы - возможными действиями игрока В. Возможные действия игроков называются чистыми стратегиями.

В нашем случае, количество чистых стратегий игрока А равно 3 . Количество чистых стратегий игрока В равно 4 .

Что думает игрок А?

Если я выберу стратегию A_1 ,то при любом действии игрока B, я гарантирую себе выигрыш 2 ,т.е. получу не менее 2 ден.ед. Если я выберу стратегию A_2 ,то при любом действии игрока B, я гарантирую себе выигрыш 1 ,т.е. получу не менее 1 ден.ед. Если я выберу стратегию A_3 ,то при любом действии игрока B, я гарантирую себе выигрыш 1 ,т.е. получу не менее 1 ден.ед.

		(Стратегии	игрока l	В	Минимальный элемент в
		B ₁	В2	В3	В4	строке
	A ₁	2	3	4	7	2
Стратегии игрока А	A ₂	6	5	1	4	1
	A ₃	7	2	8	1	1

Игрок A использует логику, которая гарантирует ему максимальный выигрыш вне зависимости от поведения игрока B. Свой выбор, игрок A остановит на стратегии A_1 , которая обеспечит ему выигрыш 2, т.е. доход не менее 2 ден.ед. Значение равное 2, называется нижней ценой игры.

Что думает игрок В?

Если я выберу стратегию B_1 , то при любом действии игрока A, я гарантирую себе проигрыш 7, т.е. потеряю не более 7 ден.ед. Если я выберу стратегию B_2 , то при любом действии игрока A, я гарантирую себе проигрыш 5, т.е. потеряю не более 5 ден.ед. Если я выберу стратегию B_3 , то при любом действии игрока A, я гарантирую себе проигрыш 8, т.е. потеряю не более 8 ден.ед. Если я выберу стратегию B_4 , то при любом действии игрока A, я гарантирую себе проигрыш 7, т.е. потеряю не более 7 ден.ед.

		(Стратегии	игрока l	В	Минимальный элемент в
		B ₁	В2	В3	В4	строке
	A ₁	2	3	4	7	2
Стратегии игрока А	A ₂	6	5	1	4	1

	A3	7	2	8	1	1
Максимальный элемент в столбце		7	5	8	7	

Игрок В использует логику, которая гарантирует ему минимальный проигрыш вне зависимости от поведения игрока А. Свой выбор, игрок В остановит на стратегии B_2 , которая обеспечит ему проигрыш 5, т.е. потерю не более 5 ден.ед.

Значение равное 5, называется верхней ценой игры.

В случае, если верхняя цена игры равна нижней цене игры - мы нашли оптимальное решение, которое устраивает обоих игроков, исходя из их логики. В нашей задаче, если игроки пользуются только чистыми стратегиями, оптимальное решение не найдено. Но, всегда есть решение в смешанных стратегиях.

• Смешанной стратегией игрока A называется применение чистых стратегий A_1 , A_2 , A_3 с вероятностями p_1 , p_2 , p_3 .

Смешанную стратегию первого игрока обозначают как вектор:

$$P = (p_1, p_2, p_3),$$
где $p_1 + p_2 + p_3 = 1$ и $p_1, p_2, p_3 \ge 0$

• Смешанной стратегией игрока В называется применение чистых стратегий B_1 , B_2 , B_3 , B_4 с вероятностями q_1 , q_2 , q_3 , q_4 .

Смешанную стратегию второго игрока обозначают как вектор:

$${
m Q}=(\;{
m q}_1\;,\,{
m q}_2\;,\,{
m q}_3\;,\,{
m q}_4\;)\;,$$
 где ${
m q}_1+{
m q}_2+{
m q}_3+{
m q}_4=1\;$ и ${
m q}_1\;,\,{
m q}_2\;,\,{
m q}_3\;,\,{
m q}_4\;\geqq 0$

• Оптимальное решение игры (или просто - решение игры) - это пара оптимальных смешанных стратегий

$$P^*$$
 (p^*_1 , p^*_2 , p^*_3) и Q^* (q^*_1 , q^*_2 , q^*_3 , q^*_4)

обладающих следующим свойством:

если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно отступать от своей.

Выигрыш игрока А равный проигрышу игрока В, соответствующий оптимальному решению, называется ценой игры v.

Цена игры больше либо равна нижней цены игры и меньше или равна верхней цены игры.

В нашем случае : $2 \le v \le 5$.

		(Стратегии	игрока 1	В
		B ₁	В2	В3	В4
	A ₁	2	3	4	7
Стратегии игрока А	A ₂	6	5	1	4
	A ₃	7	2	8	1

Если $P^* = (p^*_1, p^*_2, p^*_3)$ и $Q^* = (q^*_1, q^*_2, q^*_3, q^*_4)$ являются оптимальным решением, то должны выполняться две следующие системы неравенств:

$$\begin{cases} 2 p*_1 + 6 p*_2 + 7 p*_3 \ge v \\ 3 p*_1 + 5 p*_2 + 2 p*_3 \ge v \\ 4 p*_1 + p*_2 + 8 p*_3 \ge v \\ 7 p*_1 + 4 p*_2 + p*_3 \ge v \end{cases}$$

$$\begin{cases} 2 q_{1}^{*} + 3 q_{2}^{*} + 4 q_{3}^{*} + 7 q_{4}^{*} \le v \\ 6 q_{1}^{*} + 5 q_{2}^{*} + q_{3}^{*} + 4 q_{4}^{*} \le v \\ 7 q_{1}^{*} + 2 q_{2}^{*} + 8 q_{3}^{*} + q_{4}^{*} \le v \end{cases}$$

• Рассмотрим первую систему.

Разделим почленно первую систему на v (цену игры).

Т.к. цена игры положительная, то знаки в неравенствах системы не изменятся.

Введем новые обозначения:

$$y_1 = p*_1 / v$$
 , $y_2 = p*_2 / v$, $y_3 = p*_3 / v$

Рассмотрим сумму:

$$y_1 + y_2 + y_3 = p*_1 / v + p*_2 / v + p*_3 / v = 1/v * (p*_1 + p*_2 + p*_3) = 1/v$$

Т.к игрок А старается увеличить свой выигрыш, т.е. цену игры v, то выражение 1/v будет стремиться к минимуму.

Мы получили задачу линейного программирования.

Требуется найти минимум линейной функции $F = y_1 + y_2 + y_3$ при следующей системе ограничений :

$$\begin{cases} 2 y_1 + 6 y_2 + 7 y_3 \ge 1 \\ 3 y_1 + 5 y_2 + 2 y_3 \ge 1 \\ 4 y_1 + y_2 + 8 y_3 \ge 1 \\ 7 y_1 + 4 y_2 + y_3 \ge 1 \end{cases}$$

• Рассмотрим вторую систему.

Разделим почленно вторую систему на v (цену игры).

Т.к. цена игры положительная, то знаки в неравенствах системы не изменятся.

Введем новые обозначения:

$$x_1 = q_1^* / v$$
, $x_2 = q_2^* / v$, $x_3 = q_3^* / v$, $x_4 = q_4^* / v$

Рассмотрим сумму:

$$x_1 + x_2 + x_3 + x_4 = q*_1 / v + q*_2 / v + q*_3 / v + q*_4 / v = 1/v * (q*_1 + q*_2 + q*_3 + q*_4) = 1/v * (q*_1 + q*_4$$

Т.к игрок В старается уменьшить свой проигрыш, т.е. цену игры v, то выражение 1/v будет стремиться к максимуму.

Мы получили задачу линейного программирования.

Требуется найти максимум линейной функции $L = x_1 + x_2 + x_3 + x_4$ при следующей системе ограничений :

$$\begin{cases} 2 x_1 + 3 x_2 + 4 x_3 + 7 x_4 \le 1 \\ 6 x_1 + 5 x_2 + x_3 + 4 x_4 \le 1 \\ 7 x_1 + 2 x_2 + 8 x_3 + x_4 \le 1 \end{cases}$$

Полученные задачи являются парой симметричных взаимно двойственных задач.

Решив одну из них, мы автоматически получим решение второй.

Удобнее решить вторую задачу. Решим ее симплекс методом.

• Система ограничений должна быть приведена к каноническому виду.

К левой части неравенства 1 системы ограничений прибавляем неотрицательную переменную x₅ , тем самым мы преобразуем неравенство 1 в равенство.

K левой части неравенства 2 системы ограничений прибавляем неотрицательную переменную x_6 , тем самым мы преобразуем неравенство 2 в равенство.

К левой части неравенства 3 системы ограничений прибавляем неотрицательную переменную х₇ , тем самым мы преобразуем неравенство 3 в равенство.

$$\begin{cases} 2 x_1 + 3 x_2 + 4 x_3 + 7 x_4 + x_5 & = 1 \\ 6 x_1 + 5 x_2 + x_3 + 4 x_4 & + x_6 & = 1 \end{cases}$$

$$7 x_1 + 2 x_2 + 8 x_3 + x_4 + x_7 = 1$$

Система ограничений приведена к каноническому виду, т.е.. все условия системы представляют собой уравнения.

• Определимся с начальным опорным решением

Наличие единичного базиса в системе ограничений позволяет легко найти начальное опорное решение. Рассмотрим подробнее:

Переменная x_5 входит в уравнение 1 с коэффициентом 1, а в остальные уравнения системы с коэффициентом ноль, т.е. x_5 - базисная переменная

Переменная x_6 входит в уравнение 2 с коэффициентом 1, а в остальные уравнения системы с коэффициентом ноль, т.е. x_6 - базисная переменная.

Переменная x_7 входит в уравнение 3 с коэффициентом 1, а в остальные уравнения системы с коэффициентом ноль, т.е. x_7 - базисная переменная.

Переменные , которые не являются базисными, называются свободными переменными. Приравняв свободные переменные нулю, в получившийся системе ограничений, мы получим начальное опорное решение.

$$X_{HAH} = (0, 0, 0, 0, 1, 1, 1)$$

Значение функции для начального решения: L (X $_{\rm Hat}$) = 0

Обратите внимание:

При составлении исходной симплекс таблицы, коэффициенты при переменных функции L записываются с противоположными знаками, а свободный член со своим знаком.

Шаг 1

За ведущий выберем столбец 1 , так как -1 наименьший элемент в L строке. Элемент L строки, принадлежащий столбцу свободных членов не рассматриваем.

За ведущую выберем строку 3, так как отношение свободного члена к соответствующему элементу выбранного столбца для 3 строки является наименьшим. Обратите внимание, что отношение мы вычисляем только для положительных элементов столбца 1.

базисные переменные	x ₁	x ₂	х3	X4	x5	х6	Х7	свободные члены	отношение
x ₅	2	3	4	7	1	0	0	1	1 2
х6	6	5	1	4	0	1	0	1	1 6
x ₇	7	2	8	1	0	0	1	1	1

									7
L	- 1	- 1	- 1	- 1	0	0	0	0	-

Разделим элементы строки 3 на 7.

базисные переменные	x ₁	x ₂	х3	X4	x5	х6	х7	свободные члены	отношение
х5	2	3	4	7	1	0	0	1	1 2
х6	6	5	1	4	0	1	0	1	1 6
x ₇	1	2 7	8 7	1 7	0	0	1 7	1 7	1 7
L	- 1	- 1	- 1	- 1	0	0	0	0	-

От элементов строки 1 отнимает соответствующие элементы строки 3 умноженные на 2. От элементов строки 2 отнимает соответствующие элементы строки 3 умноженные на 6. От элементов строки L отнимает соответствующие элементы строки 3 умноженные на -1.

базисные переменные	x ₁	x ₂	х3	x4	x5	х6	х7	свободные члены	отношение
x5	0	17 7	12 7	47 7	1	0	- ² 7	5 7	-
х6	0	23 7	- 41 - 7	22 7	0	1	- ⁶ 7	1 7	-
x ₁	1	2 7	8 7	1 7	0	0	1 7	1 7	-
L	0	- ⁵ 7	1 7	- 6 - 7	0	0	1 7	1 7	-

 $X_1 = (1/7, 0, 0, 0, 5/7, 1/7, 0)$

Значение функции L для данного решения: L (X $_1$) = 1/7

Шаг 2

За ведущий выберем столбец 4, так как -6/7 наименьший элемент в L строке. Элемент L строки, принадлежащий столбцу свободных членов не рассматриваем.

За ведущую выберем строку 2, так как отношение свободного члена к соответствующему элементу выбранного столбца для 2 строки является наименьшим. Обратите внимание, что отношение мы вычисляем только для положительных элементов столбца 4.

базисные переменные	х1	x ₂	х3	X4	x5	х6	Х7	свободные члены	отношение
х5	0	17 7	12 7	47 7	1	0	- ² ₇	5 7	5 47
х6	0	23 7	- 41 - 7	22 7	0	1	- ⁶ 7	1 7	1 22
x ₁	1	2 7	8 7	1 7	0	0	1 7	1 7	1
L	0	- 5 - 7	1 7	- 6 - 7	0	0	1 7	1 7	-

Разделим элементы строки 2 на 22/7.

базисные переменные	x ₁	x ₂	х3	X4	X5	x ₆	Х7	свободные члены	отношение
x ₅	0	17 7	12 7	47 7	1	0	- ² 7	5 7	5 47
x ₆	0	23 22	-41 -22	1	0	7 22	- 3 - 11	1 22	1 22
х1	1	2 7	8 7	1 7	0	0	1 7	1 7	1
L	0	- 5 - 7	1 7	- ⁶ 7	0	0	1 7	1 7	-

От элементов строки 1 отнимает соответствующие элементы строки 2 умноженные на 47/7.

От элементов строки 3 отнимает соответствующие элементы строки 2.

От элементов строки L отнимает соответствующие элементы строки 2 умноженные на -6/7.

базисные переменные	x ₁	x ₂	х3	x ₄	x ₅	x ₆	х7	свободные члены	отношение
x ₅	0	- 101 - 22	313 22	0	1	47 - 22	17 11	9 22	-
х4	0	23 22	-41 -22	1	0	7 22	- 3 - 11	1 22	-
х1	1	3 22	31 22	0	0	- 1 - 22	2 11	3 22	-
L	0	2 11	-16 -11	0	0	3 11	- 1 - 11	2 11	-

 $X_2 = (3/22, 0, 0, 1/22, 9/22, 0, 0)$

Значение функции L для данного решения: L (X $_2$) = 2/11

IIIar 3

За ведущий выберем столбец 3, так как -16/11 наименьший элемент в L строке. Элемент L строки, принадлежащий столбцу свободных членов не рассматриваем.

За ведущую выберем строку 1, так как отношение свободного члена к соответствующему элементу выбранного столбца для 1 строки является наименьшим. Обратите внимание, что отношение мы вычисляем только для положительных элементов столбца 3.

базисные переменные	x ₁	x ₂	х3	х4	x5	х6	х7	свободные члены	отношение
x ₅	0	- 101 - 22	313 22	0	1	- 47 - 22	17 11	9 22	9 313
х4	0	23 22	-41 -22	1	0	7 22	- 3 - 11	1 22	-
х1	1	3 22	31 22	0	0	- 1 - 22	2 11	3 22	3 31
L	0	2 11	- 16 - 11	0	0	3 11	- 1 - 11	2 11	-

Разделим элементы строки 1 на 313/22.

базисные переменные	x ₁	x ₂	х3	x ₄	x ₅	x ₆	х7	свободные члены	отношение
х5	0	- 101 - 313	1	0	22 313	- 47 - 313	34 313	9 313	9 313
х4	0	23 22	-41 -22	1	0	7 22	- 3 - 11	1 22	-
x ₁	1	3 22	31 22	0	0	- 1 - 22	2 11	3 22	3 31
L	0	2 11	- 16 - 11	0	0	3 11	- ¹ 11	2 11	-

От элементов строки 2 отнимает соответствующие элементы строки 1 умноженные на -41/22.

От элементов строки 3 отнимает соответствующие элементы строки 1 умноженные на 31/22.

От элементов строки L отнимает соответствующие элементы строки 1 умноженные на -16/11.

базисные переменные	x ₁	x ₂	Х3	X4	x5	х6	Х7	свободные члены	отношение
х3	0	- 101 - 313	1	0	22 313	47 -313	34 313	9 313	-
x ₄	0	139 313	0	1	41 313	12 313	- 22 - 313	31 313	-
х1	1	185 313	0	0	- 31 - 313	52 313	9 313	30 313	-
L	0	90	0	0	32	17	21	70	-

	313		313	313	313	313	
	l					l	

 $X_3 = (30/313, 0, 9/313, 31/313, 0, 0, 0)$

Значение функции L для данного решения: L (X $_3$) = 70/313

Шаг 4

За ведущий выберем столбец 2 , так как -90/313 наименьший элемент в L строке. Элемент L строки, принадлежащий столбцу свободных членов не рассматриваем.

За ведущую выберем строку 3, так как отношение свободного члена к соответствующему элементу выбранного столбца для 3 строки является наименьшим. Обратите внимание, что отношение мы вычисляем только для положительных элементов столбца 2.

базисные переменные	х1	x ₂	х3	X4	x5	х6	Х7	свободные члены	отношение
х3	0	-101 -313	1	0	22 313	47 -313	34 313	9 313	-
х4	0	139 313	0	1	41 313	12 313	- 22 - 313	31 313	31 139
х1	1	185 313	0	0	- 31 - 313	52 313	9 313	30 313	6 37
L	0	- 90 - 313	0	0	32 313	17 313	21 313	70 313	-

Разделим элементы строки 3 на 185/313.

базисные переменные	x ₁	x ₂	х3	x ₄	x ₅	x ₆	x ₇	свободные члены	отношение
х3	0	- 101 - 313	1	0	22 313	- 47 - 313	34 313	9 313	-
х4	0	139 313	0	1	41 313	12 313	- 22 - 313	31 313	31 139
х1	313 185	1	0	0	- 31 - 185	52 185	9 185	6 37	6 37
L	0	- 90 - 313	0	0	32 313	17 313	21 313	70 313	-

От элементов строки 1 отнимает соответствующие элементы строки 3 умноженные на -101/313.

От элементов строки 2 отнимает соответствующие элементы строки 3 умноженные на 139/313.

От элементов строки L отнимает соответствующие элементы строки 3 умноженные на -90/313.

базисные переменные	x ₁	x ₂	х3	x ₄	x ₅	x ₆	х7	свободные члены	отношение
х3	101 185	0	1	0	3 185	- 11 - 185	23 185	3 37	-
х4	- 139 - 185	0	0	1	38 185	- 16 - 185	- 17 - 185	1 37	-
x ₂	313 185	1	0	0	- 31 - 185	52 185	9 185	6 37	-
L	18 37	0	0	0	2 37	5 37	3 37	10 37	-

Значение функции L для данного решения: L (X $_4$) = 10/37

 $L = 10/37 - 18/37 x_1 - 2/37 x_5 - 5/37 x_6 - 3/37 x_7$

Учитывая, что все х ј ≥ 0 по условию задачи, наибольшее значение функции равно свободному члену 10/37.

 $x_1 = 0$

 $x_2 = 6/37$

 $x_3 = 3/37$

 $x_4 = 1/37$

Учитывая правило формирования ответа симметричной двойственной задачи, запишем ее решение, на основании все той же последней симплекс таблицы.

 $y_1 = 2/37$

 $y_2 = 5/37$

$$y_3 = 3/37$$

Максимальное значение функции прямой задачи равно минимальному значению функции двойственной задачи.

 $L_{\text{max}} = 10/37$, $F_{\text{min}} = 10/37$

Найдем цену игры v .

$$v=1 \; / \; F_{max} = 1 \; / \; L_{min} = 37/10$$

Теперь, мы можем найти оптимальное решение нашей игры.

$$p*_1 = y_1 * v = 2/37 * 37/10 = 1/5$$

$$p*_2 = y_2 * v = 5/37 * 37/10 = 1/2$$

$$p*_3 = y_3 * v = 3/37 * 37/10 = 3/10$$

$$q*_1 = x_1 * v = 0 * 37/10 = 0$$

$$q*_2 = x_2 * v = 6/37 * 37/10 = 3/5$$

$$q*_3 = x_3 * v = 3/37 * 37/10 = 3/10$$

$$q*_4 = x_4 * v = 1/37 * 37/10 = 1/10$$

Ответ:

$$P* = (1/5, 1/2, 3/10)$$

$$Q^* = (0, 3/5, 3/10, 1/10)$$

Цена игры v = 37/10.

Дадим объяснение полученному ответу.

Выигрыш игрока А составит 37/10 ден.ед.

Проигрыш игрока В составит 37/10 ден.ед.

Игрок А:

использует стратегию A_1 на 20 %

использует стратегию A_2 на 50 %

использует стратегию A_3 на 30 %

Игрок В:

использует стратегию В1 на 0 %

использует стратегию B_2 на 60 %

использует стратегию В3 на 30 %

использует стратегию В4 на 10 %

Не забывайте, пожалуйста, дать хорошую ссылку с Вашего сайта или с Вашей странички в социальных сетях.

Copyright © 2010-2013, www.reshmat.ru При копировании материалов ссылка на сайт www.reshmat.ru обязательна.

обратная связь

