HJB Equation and Merton's Portfolio Problem

Ashwin Rao

ICME, Stanford University

January 17, 2020

Overview

- Problem Statement
- 2 HJB Equation as Optimal Discounted Value Function PDE
- Reducing the PDE to an ODE
- Optimal Allocation and Consumption
- 5 Insights and Real-World Adaptation

• You will live for (deterministic) T more years

- You will live for (deterministic) T more years
- Current Wealth + PV of Future Income (less Debt) is $W_0 > 0$.

- ullet You will live for (deterministic) ${\cal T}$ more years
- Current Wealth + PV of Future Income (less Debt) is $W_0 > 0$.
- You can invest in (allocate to) n risky assets and a riskless asset

- You will live for (deterministic) T more years
- Current Wealth + PV of Future Income (less Debt) is $W_0 > 0$.
- You can invest in (allocate to) n risky assets and a riskless asset
- Each asset has known normal distribution of returns

- You will live for (deterministic) T more years
- Current Wealth + PV of Future Income (less Debt) is $W_0 > 0$.
- You can invest in (allocate to) n risky assets and a riskless asset
- Each asset has known normal distribution of returns
- Allowed to long or short any fractional quantities of assets

- You will live for (deterministic) T more years
- Current Wealth + PV of Future Income (less Debt) is $W_0 > 0$.
- You can invest in (allocate to) n risky assets and a riskless asset
- Each asset has known normal distribution of returns
- Allowed to long or short any fractional quantities of assets
- Trading in continuous time $0 \le t < T$, with no transaction costs

- You will live for (deterministic) T more years
- Current Wealth + PV of Future Income (less Debt) is $W_0 > 0$.
- You can invest in (allocate to) n risky assets and a riskless asset
- Each asset has known normal distribution of returns
- Allowed to long or short any fractional quantities of assets
- Trading in continuous time $0 \le t < T$, with no transaction costs
- You can consume any fractional amount of wealth at any time

- You will live for (deterministic) T more years
- Current Wealth + PV of Future Income (less Debt) is $W_0 > 0$.
- You can invest in (allocate to) n risky assets and a riskless asset
- Each asset has known normal distribution of returns
- Allowed to long or short any fractional quantities of assets
- Trading in continuous time $0 \le t < T$, with no transaction costs
- You can consume any fractional amount of wealth at any time
- Dynamic Decision: Optimal Allocation and Consumption at each time

- You will live for (deterministic) T more years
- Current Wealth + PV of Future Income (less Debt) is $W_0 > 0$.
- You can invest in (allocate to) n risky assets and a riskless asset
- Each asset has known normal distribution of returns
- Allowed to long or short any fractional quantities of assets
- Trading in continuous time $0 \le t < T$, with no transaction costs
- You can consume any fractional amount of wealth at any time
- Dynamic Decision: Optimal Allocation and Consumption at each time
- To maximize lifetime-aggregated utility of consumption

- You will live for (deterministic) T more years
- Current Wealth + PV of Future Income (less Debt) is $W_0 > 0$.
- You can invest in (allocate to) n risky assets and a riskless asset
- Each asset has known normal distribution of returns
- Allowed to long or short any fractional quantities of assets
- Trading in continuous time $0 \le t < T$, with no transaction costs
- You can consume any fractional amount of wealth at any time
- Dynamic Decision: Optimal Allocation and Consumption at each time
- To maximize lifetime-aggregated utility of consumption
- Consumption Utility assumed to have constant Relative Risk-Aversion

For simplicity, we state and solve the problem for 1 risky asset but the solution generalizes easily to n risky assets.

• Riskless asset: $dR_t = r \cdot R_t \cdot dt$

- Riskless asset: $dR_t = r \cdot R_t \cdot dt$
- Risky asset: $dS_t = \mu \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dz_t$ (i.e. Geometric Brownian)

- Riskless asset: $dR_t = r \cdot R_t \cdot dt$
- Risky asset: $dS_t = \mu \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dz_t$ (i.e. Geometric Brownian)
- $\mu > r > 0, \sigma > 0$ (for *n* assets, we work with a covariance matrix)

- Riskless asset: $dR_t = r \cdot R_t \cdot dt$
- Risky asset: $dS_t = \mu \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dz_t$ (i.e. Geometric Brownian)
- $\mu > r > 0, \sigma > 0$ (for *n* assets, we work with a covariance matrix)
- Wealth at time t is denoted by $W_t > 0$

- Riskless asset: $dR_t = r \cdot R_t \cdot dt$
- Risky asset: $dS_t = \mu \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dz_t$ (i.e. Geometric Brownian)
- $\mu > r > 0, \sigma > 0$ (for *n* assets, we work with a covariance matrix)
- Wealth at time t is denoted by $W_t > 0$
- Fraction of wealth allocated to risky asset denoted by $\pi(t, W_t)$

- Riskless asset: $dR_t = r \cdot R_t \cdot dt$
- Risky asset: $dS_t = \mu \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dz_t$ (i.e. Geometric Brownian)
- $\mu > r > 0, \sigma > 0$ (for *n* assets, we work with a covariance matrix)
- Wealth at time t is denoted by $W_t > 0$
- Fraction of wealth allocated to risky asset denoted by $\pi(t, W_t)$
- Fraction of wealth in riskless asset will then be $1 \pi(t, W_t)$

- Riskless asset: $dR_t = r \cdot R_t \cdot dt$
- Risky asset: $dS_t = \mu \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dz_t$ (i.e. Geometric Brownian)
- $\mu > r > 0, \sigma > 0$ (for *n* assets, we work with a covariance matrix)
- Wealth at time t is denoted by $W_t > 0$
- ullet Fraction of wealth allocated to risky asset denoted by $\pi(t,W_t)$
- ullet Fraction of wealth in riskless asset will then be $1-\pi(t,W_t)$
- Wealth consumption per unit time denoted by $c(t, W_t) \ge 0$

- Riskless asset: $dR_t = r \cdot R_t \cdot dt$
- Risky asset: $dS_t = \mu \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dz_t$ (i.e. Geometric Brownian)
- $\mu > r > 0, \sigma > 0$ (for *n* assets, we work with a covariance matrix)
- Wealth at time t is denoted by $W_t > 0$
- Fraction of wealth allocated to risky asset denoted by $\pi(t, W_t)$
- ullet Fraction of wealth in riskless asset will then be $1-\pi(t,W_t)$
- ullet Wealth consumption per unit time denoted by $c(t,W_t)\geq 0$
- Utility of Consumption function $U(x) = \frac{x^{1-\gamma}}{1-\gamma}$ for $0 < \gamma \neq 1$

- Riskless asset: $dR_t = r \cdot R_t \cdot dt$
- Risky asset: $dS_t = \mu \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dz_t$ (i.e. Geometric Brownian)
- $\mu > r > 0, \sigma > 0$ (for *n* assets, we work with a covariance matrix)
- Wealth at time t is denoted by $W_t > 0$
- ullet Fraction of wealth allocated to risky asset denoted by $\pi(t,W_t)$
- ullet Fraction of wealth in riskless asset will then be $1-\pi(t,W_t)$
- ullet Wealth consumption per unit time denoted by $c(t,W_t)\geq 0$
- Utility of Consumption function $U(x) = \frac{x^{1-\gamma}}{1-\gamma}$ for $0 < \gamma \neq 1$
- Utility of Consumption function $U(x) = \log(x)$ for $\gamma = 1$

- Riskless asset: $dR_t = r \cdot R_t \cdot dt$
- Risky asset: $dS_t = \mu \cdot S_t \cdot dt + \sigma \cdot S_t \cdot dz_t$ (i.e. Geometric Brownian)
- $\mu > r > 0, \sigma > 0$ (for *n* assets, we work with a covariance matrix)
- Wealth at time t is denoted by $W_t > 0$
- Fraction of wealth allocated to risky asset denoted by $\pi(t, W_t)$
- ullet Fraction of wealth in riskless asset will then be $1-\pi(t,W_t)$
- ullet Wealth consumption per unit time denoted by $c(t,W_t)\geq 0$
- Utility of Consumption function $U(x) = \frac{x^{1-\gamma}}{1-\gamma}$ for $0 < \gamma \neq 1$
- Utility of Consumption function $U(x) = \log(x)$ for $\gamma = 1$
- $\gamma =$ (constant) Relative Risk-Aversion $\frac{-x \cdot U''(x)}{U'(x)}$

• We write π_t , c_t instead of $\pi(t, W_t)$, $c(t, W_t)$ to lighten notation

- We write π_t , c_t instead of $\pi(t, W_t)$, $c(t, W_t)$ to lighten notation
- ullet Balance constraint implies the following process for Wealth W_t

$$dW_t = ((\pi_t \cdot (\mu - r) + r) \cdot W_t - c_t) \cdot dt + \pi_t \cdot \sigma \cdot W_t \cdot dz_t$$

- We write π_t , c_t instead of $\pi(t, W_t)$, $c(t, W_t)$ to lighten notation
- ullet Balance constraint implies the following process for Wealth W_t

$$dW_t = ((\pi_t \cdot (\mu - r) + r) \cdot W_t - c_t) \cdot dt + \pi_t \cdot \sigma \cdot W_t \cdot dz_t$$

• At any time t, determine optimal $[\pi(t, W_t), c(t, W_t)]$ to maximize:

$$E\left[\int_{t}^{T} \frac{e^{-\rho(s-t)} \cdot c_{s}^{1-\gamma}}{1-\gamma} \cdot ds + \frac{e^{-\rho(T-t)} \cdot B(T) \cdot W_{T}^{1-\gamma}}{1-\gamma} \mid W_{t}\right]$$

- We write π_t , c_t instead of $\pi(t, W_t)$, $c(t, W_t)$ to lighten notation
- ullet Balance constraint implies the following process for Wealth W_t

$$dW_t = ((\pi_t \cdot (\mu - r) + r) \cdot W_t - c_t) \cdot dt + \pi_t \cdot \sigma \cdot W_t \cdot dz_t$$

• At any time t, determine optimal $[\pi(t, W_t), c(t, W_t)]$ to maximize:

$$E\left[\int_{t}^{T} \frac{e^{-\rho(s-t)} \cdot c_{s}^{1-\gamma}}{1-\gamma} \cdot ds + \frac{e^{-\rho(T-t)} \cdot B(T) \cdot W_{T}^{1-\gamma}}{1-\gamma} \mid W_{t}\right]$$

ullet where $ho \geq 0$ is the utility discount rate, B(T) is the bequest function

- We write π_t , c_t instead of $\pi(t, W_t)$, $c(t, W_t)$ to lighten notation
- ullet Balance constraint implies the following process for Wealth W_t

$$dW_t = ((\pi_t \cdot (\mu - r) + r) \cdot W_t - c_t) \cdot dt + \pi_t \cdot \sigma \cdot W_t \cdot dz_t$$

• At any time t, determine optimal $[\pi(t, W_t), c(t, W_t)]$ to maximize:

$$E\left[\int_{t}^{T} \frac{e^{-\rho(s-t)} \cdot c_{s}^{1-\gamma}}{1-\gamma} \cdot ds + \frac{e^{-\rho(T-t)} \cdot B(T) \cdot W_{T}^{1-\gamma}}{1-\gamma} \mid W_{t}\right]$$

- where $\rho \ge 0$ is the utility discount rate, B(T) is the bequest function
- We can solve this problem for arbitrary bequest B(T) but for simplicity, will consider $B(T) = \epsilon^{\gamma}$ where $0 < \epsilon \ll 1$, meaning "no bequest" (we need this ϵ -formulation for technical reasons).

- We write π_t , c_t instead of $\pi(t, W_t)$, $c(t, W_t)$ to lighten notation
- ullet Balance constraint implies the following process for Wealth W_t

$$dW_t = ((\pi_t \cdot (\mu - r) + r) \cdot W_t - c_t) \cdot dt + \pi_t \cdot \sigma \cdot W_t \cdot dz_t$$

• At any time t, determine optimal $[\pi(t, W_t), c(t, W_t)]$ to maximize:

$$E\left[\int_{t}^{T} \frac{e^{-\rho(s-t)} \cdot c_{s}^{1-\gamma}}{1-\gamma} \cdot ds + \frac{e^{-\rho(T-t)} \cdot B(T) \cdot W_{T}^{1-\gamma}}{1-\gamma} \mid W_{t}\right]$$

- where $\rho \geq 0$ is the utility discount rate, B(T) is the bequest function
- We can solve this problem for arbitrary bequest B(T) but for simplicity, will consider $B(T) = \epsilon^{\gamma}$ where $0 < \epsilon \ll 1$, meaning "no bequest" (we need this ϵ -formulation for technical reasons).
- ullet We will solve this problem for $\gamma
 eq 1$ ($\gamma = 1$ is easier, hence omitted)

• Think of this as a continuous-time Stochastic Control problem

- Think of this as a continuous-time Stochastic Control problem
- The State is (t, W_t)

- Think of this as a continuous-time Stochastic Control problem
- The State is (t, W_t)
- The *Action* is $[\pi_t, c_t]$

- Think of this as a continuous-time Stochastic Control problem
- The State is (t, W_t)
- The Action is $[\pi_t, c_t]$
- The *Reward* per unit time is $U(c_t)$

Continuous-Time Stochastic Control

- Think of this as a continuous-time Stochastic Control problem
- The State is (t, W_t)
- The Action is $[\pi_t, c_t]$
- The *Reward* per unit time is $U(c_t)$
- The Return is the usual accumulated discounted Reward

Continuous-Time Stochastic Control

- Think of this as a continuous-time Stochastic Control problem
- The State is (t, W_t)
- The Action is $[\pi_t, c_t]$
- The Reward per unit time is $U(c_t)$
- The Return is the usual accumulated discounted Reward
- Find $Policy: (t, W_t) \rightarrow [\pi_t, c_t]$ that maximizes the *Expected Return*

Continuous-Time Stochastic Control

- Think of this as a continuous-time Stochastic Control problem
- The State is (t, W_t)
- The *Action* is $[\pi_t, c_t]$
- The Reward per unit time is $U(c_t)$
- The Return is the usual accumulated discounted Reward
- Find $Policy: (t, W_t) \rightarrow [\pi_t, c_t]$ that maximizes the *Expected Return*
- Note: $c_t \geq 0$, but π_t is unconstrained

• Instead of the usual Value Function (*Expected Return* from a given *State*), we consider the Discounted Value Function

- Instead of the usual Value Function (*Expected Return* from a given *State*), we consider the Discounted Value Function
- Discounted Value Function is simply the Value Function further discounted to time 0

- Instead of the usual Value Function (*Expected Return* from a given *State*), we consider the Discounted Value Function
- Discounted Value Function is simply the Value Function further discounted to time 0
- ullet We focus on the Optimal Discounted Value Function $V^*(t,W_t)$

$$V^*(t, W_t) = \max_{\pi_t, c_t} E\left[\int_t^T \frac{e^{-\rho s} \cdot c_s^{1-\gamma}}{1-\gamma} \cdot ds + \frac{e^{-\rho T} \cdot \epsilon^{\gamma} \cdot W_T^{1-\gamma}}{1-\gamma}\right]$$

- Instead of the usual Value Function (*Expected Return* from a given *State*), we consider the Discounted Value Function
- Discounted Value Function is simply the Value Function further discounted to time 0
- ullet We focus on the Optimal Discounted Value Function $V^*(t,W_t)$

$$V^*(t,W_t) = \max_{\pi_t,c_t} E[\int_t^T rac{e^{-
ho s}\cdot c_s^{1-\gamma}}{1-\gamma}\cdot ds + rac{e^{-
ho T}\cdot \epsilon^{\gamma}\cdot W_T^{1-\gamma}}{1-\gamma}]$$

• $V^*(t, W_t)$ satisfies a simple recursive formulation for $0 \le t < t_1 < T$.

$$V^*(t, W_t) = \max_{\pi_t, c_t} E[V^*(t_1, W_{t_1}) + \int_t^{t_1} \frac{e^{-
ho s} \cdot c_s^{1-\gamma}}{1-\gamma} \cdot ds]$$

Rewriting in stochastic differential form, we have the HJB formulation

$$\max_{\pi_t, c_t} E[dV^*(t, W_t) + \frac{e^{-\rho t} \cdot c_t^{1-\gamma}}{1-\gamma} \cdot dt] = 0$$

Rewriting in stochastic differential form, we have the HJB formulation

$$\max_{\pi_t, c_t} E[dV^*(t, W_t) + \frac{e^{-\rho t} \cdot c_t^{1-\gamma}}{1-\gamma} \cdot dt] = 0$$

Use Ito's Lemma on dV^* , remove the dz_t term since it's a martingale, and divide throughout by dt to produce the HJB Equation in PDE form:

$$\max_{\pi_t, c_t} \left[\frac{\partial V^*}{\partial t} + \frac{\partial V^*}{\partial W_t} ((\pi_t(\mu - r) + r)W_t - c_t) + \frac{\partial^2 V^*}{\partial W_t^2} \frac{\pi_t^2 \sigma^2 W_t^2}{2} + \frac{e^{-\rho t} \cdot c_t^{1-\gamma}}{1-\gamma} \right] = 0$$

Rewriting in stochastic differential form, we have the HJB formulation

$$\max_{\pi_t, c_t} E[dV^*(t, W_t) + \frac{e^{-\rho t} \cdot c_t^{1-\gamma}}{1-\gamma} \cdot dt] = 0$$

Use Ito's Lemma on dV^* , remove the dz_t term since it's a martingale, and divide throughout by dt to produce the HJB Equation in PDE form:

$$\max_{\pi_t, c_t} \left[\frac{\partial V^*}{\partial t} + \frac{\partial V^*}{\partial W_t} ((\pi_t(\mu - r) + r)W_t - c_t) + \frac{\partial^2 V^*}{\partial W_t^2} \frac{\pi_t^2 \sigma^2 W_t^2}{2} + \frac{e^{-\rho t} \cdot c_t^{1-\gamma}}{1-\gamma} \right] = 0$$

Let us write the above equation more succinctly as:

$$\max_{\pi_t, c_t} \Phi(t, W_t; \pi_t, c_t) = 0$$

Rewriting in stochastic differential form, we have the HJB formulation

$$\max_{\pi_t, c_t} E[dV^*(t, W_t) + \frac{e^{-\rho t} \cdot c_t^{1-\gamma}}{1-\gamma} \cdot dt] = 0$$

Use Ito's Lemma on dV^* , remove the dz_t term since it's a martingale, and divide throughout by dt to produce the HJB Equation in PDE form:

$$\max_{\pi_t, c_t} \left[\frac{\partial V^*}{\partial t} + \frac{\partial V^*}{\partial W_t} ((\pi_t(\mu - r) + r)W_t - c_t) + \frac{\partial^2 V^*}{\partial W_t^2} \frac{\pi_t^2 \sigma^2 W_t^2}{2} + \frac{e^{-\rho t} \cdot c_t^{1-\gamma}}{1-\gamma} \right] = 0$$

Let us write the above equation more succinctly as:

$$\max_{\pi_t, c_t} \Phi(t, W_t; \pi_t, c_t) = 0$$

Note: we are working with the constraints $W_t > 0, c_t \geq 0$ for $0 \leq t < T$

Find optimal π_t^* , c_t^* by taking partial derivatives of $\Phi(t, W_t; \pi_t, c_t)$ with respect to π_t and c_t , and equate to 0 (first-order conditions for Φ).

Find optimal π_t^* , c_t^* by taking partial derivatives of $\Phi(t, W_t; \pi_t, c_t)$ with respect to π_t and c_t , and equate to 0 (first-order conditions for Φ).

• Partial derivative of Φ with respect to π_t :

$$(\mu - r) \cdot \frac{\partial V^*}{\partial W_t} + \frac{\partial^2 V^*}{\partial W_t^2} \cdot \pi_t \cdot \sigma^2 \cdot W_t = 0$$

$$\Rightarrow \pi_t^* = \frac{-\frac{\partial V^*}{\partial W_t} \cdot (\mu - r)}{\frac{\partial^2 V^*}{\partial W_t^2} \cdot \sigma^2 \cdot W_t}$$

Find optimal π_t^* , c_t^* by taking partial derivatives of $\Phi(t, W_t; \pi_t, c_t)$ with respect to π_t and c_t , and equate to 0 (first-order conditions for Φ).

• Partial derivative of Φ with respect to π_t :

$$(\mu - r) \cdot \frac{\partial V^*}{\partial W_t} + \frac{\partial^2 V^*}{\partial W_t^2} \cdot \pi_t \cdot \sigma^2 \cdot W_t = 0$$

$$\Rightarrow \pi_t^* = \frac{-\frac{\partial V^*}{\partial W_t} \cdot (\mu - r)}{\frac{\partial^2 V^*}{\partial W_t^2} \cdot \sigma^2 \cdot W_t}$$

• Partial derivative of Φ with respect to c_t :

$$-\frac{\partial V^*}{\partial W_t} + e^{-\rho t} \cdot (c_t^*)^{-\gamma} = 0$$
$$\Rightarrow c_t^* = (\frac{\partial V^*}{\partial W_t} \cdot e^{\rho t})^{\frac{-1}{\gamma}}$$

Now substitute π_t^* and c_t^* in $\Phi(t, W_t; \pi_t, c_t)$ and set it to 0, which gets us the Optimal Discounted Value Function PDE:

Now substitute π_t^* and c_t^* in $\Phi(t, W_t; \pi_t, c_t)$ and set it to 0, which gets us the Optimal Discounted Value Function PDE:

$$\frac{\partial V^*}{\partial t} - \frac{(\mu - r)^2}{2\sigma^2} \cdot \frac{\left(\frac{\partial V^*}{\partial W_t}\right)^2}{\frac{\partial^2 V^*}{\partial W^2}} + \frac{\partial V^*}{\partial W_t} \cdot r \cdot W_t + \frac{\gamma}{1 - \gamma} \cdot e^{\frac{-\rho t}{\gamma}} \cdot \left(\frac{\partial V^*}{\partial W_t}\right)^{\frac{\gamma - 1}{\gamma}} = 0$$

Now substitute π_t^* and c_t^* in $\Phi(t, W_t; \pi_t, c_t)$ and set it to 0, which gets us the Optimal Discounted Value Function PDE:

$$\frac{\partial V^*}{\partial t} - \frac{(\mu - r)^2}{2\sigma^2} \cdot \frac{\left(\frac{\partial V^*}{\partial W_t}\right)^2}{\frac{\partial^2 V^*}{\partial W_t^2}} + \frac{\partial V^*}{\partial W_t} \cdot r \cdot W_t + \frac{\gamma}{1 - \gamma} \cdot e^{\frac{-\rho t}{\gamma}} \cdot \left(\frac{\partial V^*}{\partial W_t}\right)^{\frac{\gamma - 1}{\gamma}} = 0$$

The boundary condition is:

$$V^*(T, W_T) = e^{-
ho T} \cdot \epsilon^{\gamma} \cdot rac{W_T^{1-\gamma}}{1-\gamma}$$

Now substitute π_t^* and c_t^* in $\Phi(t, W_t; \pi_t, c_t)$ and set it to 0, which gets us the Optimal Discounted Value Function PDE:

$$\frac{\partial V^*}{\partial t} - \frac{(\mu - r)^2}{2\sigma^2} \cdot \frac{\left(\frac{\partial V^*}{\partial W_t}\right)^2}{\frac{\partial^2 V^*}{\partial W_t^2}} + \frac{\partial V^*}{\partial W_t} \cdot r \cdot W_t + \frac{\gamma}{1 - \gamma} \cdot e^{\frac{-\rho t}{\gamma}} \cdot \left(\frac{\partial V^*}{\partial W_t}\right)^{\frac{\gamma - 1}{\gamma}} = 0$$

The boundary condition is:

$$V^*(T, W_T) = e^{-\rho T} \cdot \epsilon^{\gamma} \cdot \frac{W_T^{1-\gamma}}{1-\gamma}$$

The second-order conditions for Φ are satisfied **under the assumptions** $c_t^*>0, W_t>0, \frac{\partial^2 V^*}{\partial W_t^2}<0$ for all $0\leq t< T$ (we will later show that these are all satisfied in the solution we derive), and for concave $U(\cdot)$, i.e., $\gamma>0$

We surmise with a guess solution

$$V^*(t, W_t) = f(t)^{\gamma} \cdot \mathrm{e}^{-\rho t} \cdot \frac{W_t^{1-\gamma}}{1-\gamma}$$

We surmise with a guess solution

$$V^*(t, W_t) = f(t)^{\gamma} \cdot e^{-\rho t} \cdot \frac{W_t^{1-\gamma}}{1-\gamma}$$

Then,

$$\frac{\partial V^*}{\partial t} = (\gamma \cdot f(t)^{\gamma - 1} \cdot f'(t) - \rho \cdot f(t)^{\gamma}) \cdot e^{-\rho t} \cdot \frac{W_t^{1 - \gamma}}{1 - \gamma}$$

We surmise with a guess solution

$$V^*(t, W_t) = f(t)^{\gamma} \cdot e^{-\rho t} \cdot \frac{W_t^{1-\gamma}}{1-\gamma}$$

Then,

$$\frac{\partial V^*}{\partial t} = (\gamma \cdot f(t)^{\gamma - 1} \cdot f'(t) - \rho \cdot f(t)^{\gamma}) \cdot e^{-\rho t} \cdot \frac{W_t^{1 - \gamma}}{1 - \gamma}$$
$$\frac{\partial V^*}{\partial W_t} = f(t)^{\gamma} \cdot e^{-\rho t} \cdot W_t^{-\gamma}$$

We surmise with a guess solution

$$V^*(t, W_t) = f(t)^{\gamma} \cdot e^{-\rho t} \cdot \frac{W_t^{1-\gamma}}{1-\gamma}$$

Then,

$$\frac{\partial V^*}{\partial t} = (\gamma \cdot f(t)^{\gamma - 1} \cdot f'(t) - \rho \cdot f(t)^{\gamma}) \cdot e^{-\rho t} \cdot \frac{W_t^{1 - \gamma}}{1 - \gamma}$$
$$\frac{\partial V^*}{\partial W_t} = f(t)^{\gamma} \cdot e^{-\rho t} \cdot W_t^{-\gamma}$$
$$\frac{\partial^2 V^*}{\partial W_t^2} = -f(t)^{\gamma} \cdot e^{-\rho t} \cdot \gamma \cdot W_t^{-\gamma - 1}$$

Substituting the guess solution in the PDE, we get the simple ODE:

$$f'(t) = \nu \cdot f(t) - 1$$

Substituting the guess solution in the PDE, we get the simple ODE:

$$f'(t) = \nu \cdot f(t) - 1$$

where

$$\nu = \frac{\rho - (1 - \gamma) \cdot \left(\frac{(\mu - r)^2}{2\sigma^2\gamma} + r\right)}{\gamma}$$

Substituting the guess solution in the PDE, we get the simple ODE:

$$f'(t) = \nu \cdot f(t) - 1$$

where

$$\nu = \frac{\rho - (1 - \gamma) \cdot (\frac{(\mu - r)^2}{2\sigma^2 \gamma} + r)}{\gamma}$$

with boundary condition $f(T) = \epsilon$.

Substituting the guess solution in the PDE, we get the simple ODE:

$$f'(t) = \nu \cdot f(t) - 1$$

where

$$\nu = \frac{\rho - (1 - \gamma) \cdot (\frac{(\mu - r)^2}{2\sigma^2 \gamma} + r)}{\gamma}$$

with boundary condition $f(T) = \epsilon$.

The solution to this ODE is:

$$f(t) = \begin{cases} \frac{1 + (\nu \epsilon - 1) \cdot e^{-\nu(T - t)}}{\nu} & \text{for } \nu \neq 0 \\ T - t + \epsilon & \text{for } \nu = 0 \end{cases}$$

Putting it all together (substituting the solution for f(t)), we get:

$$\pi^*(t, W_t) = \frac{\mu - r}{\sigma^2 \gamma}$$

Putting it all together (substituting the solution for f(t)), we get:

$$\pi^*(t, W_t) = \frac{\mu - r}{\sigma^2 \gamma}$$

$$c^*(t, W_t) = \frac{W_t}{f(t)} = \begin{cases} \frac{\nu \cdot W_t}{1 + (\nu \epsilon - 1) \cdot e^{-\nu(T - t)}} & \text{for } \nu \neq 0 \\ \frac{W_t}{T - t + \epsilon} & \text{for } \nu = 0 \end{cases}$$

Putting it all together (substituting the solution for f(t)), we get:

$$\pi^*(t, W_t) = \frac{\mu - r}{\sigma^2 \gamma}$$

$$c^*(t, W_t) = \frac{W_t}{f(t)} = \begin{cases} \frac{\nu \cdot W_t}{1 + (\nu \epsilon - 1) \cdot e^{-\nu(T - t)}} & \text{for } \nu \neq 0 \\ \frac{W_t}{T - t + \epsilon} & \text{for } \nu = 0 \end{cases}$$

$$V^*(t, W_t) = \begin{cases} e^{-\rho t} \cdot \frac{(1 + (\nu \epsilon - 1) \cdot e^{-\nu(T - t)})^{\gamma}}{\nu^{\gamma}} \cdot \frac{W_t^{1 - \gamma}}{1 - \gamma} & \text{for } \nu \neq 0 \\ e^{-\rho t} \cdot \frac{(T - t + \epsilon)^{\gamma} \cdot W_t^{1 - \gamma}}{1 - \gamma} & \text{for } \nu = 0 \end{cases}$$

Putting it all together (substituting the solution for f(t)), we get:

$$\pi^*(t, W_t) = \frac{\mu - r}{\sigma^2 \gamma}$$

$$c^*(t, W_t) = \frac{W_t}{f(t)} = \begin{cases} \frac{\nu \cdot W_t}{1 + (\nu \epsilon - 1) \cdot e^{-\nu(T - t)}} & \text{for } \nu \neq 0 \\ \frac{W_t}{T - t + \epsilon} & \text{for } \nu = 0 \end{cases}$$

$$V^*(t, W_t) = \begin{cases} e^{-\rho t} \cdot \frac{(1 + (\nu \epsilon - 1) \cdot e^{-\nu(T - t)})^{\gamma}}{\nu^{\gamma}} \cdot \frac{W_t^{1 - \gamma}}{1 - \gamma} & \text{for } \nu \neq 0 \\ e^{-\rho t} \cdot \frac{(T - t + \epsilon)^{\gamma} \cdot W_t^{1 - \gamma}}{1 - \gamma} & \text{for } \nu = 0 \end{cases}$$

• f(t) > 0 for all $0 \le t < T$ (for all ν) ensures $W_t, c_t^* > 0, \frac{\partial^2 V^*}{\partial W_t^2} < 0$. This ensures the constraints $W_t > 0$ and $c_t \ge 0$ are satisfied and the second-order conditions for Φ are also satisfied.

Optimal Allocation and Consumption

Putting it all together (substituting the solution for f(t)), we get:

$$\pi^*(t, W_t) = \frac{\mu - r}{\sigma^2 \gamma}$$

$$c^*(t, W_t) = \frac{W_t}{f(t)} = \begin{cases} \frac{\nu \cdot W_t}{1 + (\nu \epsilon - 1) \cdot e^{-\nu(T - t)}} & \text{for } \nu \neq 0 \\ \frac{W_t}{T - t + \epsilon} & \text{for } \nu = 0 \end{cases}$$

$$V^*(t,W_t) = \begin{cases} e^{-\rho t} \cdot \frac{(1 + (\nu \epsilon - 1) \cdot e^{-\nu(T-t)})^{\gamma}}{\nu^{\gamma}} \cdot \frac{W_t^{1-\gamma}}{1-\gamma} & \text{for } \nu \neq 0 \\ e^{-\rho t} \cdot \frac{(T - t + \epsilon)^{\gamma} \cdot W_t^{1-\gamma}}{1-\gamma} & \text{for } \nu = 0 \end{cases}$$

- f(t) > 0 for all $0 \le t < T$ (for all ν) ensures $W_t, c_t^* > 0, \frac{\partial^2 V^*}{\partial W_t^2} < 0$. This ensures the constraints $W_t > 0$ and $c_t \ge 0$ are satisfied and the second-order conditions for Φ are also satisfied.
- The HJB Formulation was key and this solution approach provides a template for similar continuous-time stochastic control problems.

• Optimal Allocation $\pi^*(t, W_t)$ is constant (independent of t and W_t)

- ullet Optimal Allocation $\pi^*(t,W_t)$ is constant (independent of t and $W_t)$
- ullet Optimal Fractional Consumption $\frac{c^*(t,W_t)}{W_t}$ depends only on t $(=\frac{1}{f(t)})$

- Optimal Allocation $\pi^*(t, W_t)$ is constant (independent of t and W_t)
- ullet Optimal Fractional Consumption $rac{c^*(t,W_t)}{W_t}$ depends only on $t\ (=rac{1}{f(t)})$
- With Optimal Allocation & Consumption, the Wealth process is:

$$\frac{dW_t}{W_t} = \left(r + \frac{(\mu - r)^2}{\sigma^2 \gamma} - \frac{1}{f(t)}\right) \cdot dt + \frac{\mu - r}{\sigma \gamma} \cdot dz_t$$

- ullet Optimal Allocation $\pi^*(t,W_t)$ is constant (independent of t and $W_t)$
- ullet Optimal Fractional Consumption $\frac{c^*(t,W_t)}{W_t}$ depends only on t $(=\frac{1}{f(t)})$
- With Optimal Allocation & Consumption, the Wealth process is:

$$\frac{dW_t}{W_t} = \left(r + \frac{(\mu - r)^2}{\sigma^2 \gamma} - \frac{1}{f(t)}\right) \cdot dt + \frac{\mu - r}{\sigma \gamma} \cdot dz_t$$

ullet Expected Portfolio Return is constant over time $(=r+rac{(\mu-r)^2}{\sigma^2\gamma})$

- ullet Optimal Allocation $\pi^*(t,W_t)$ is constant (independent of t and W_t)
- ullet Optimal Fractional Consumption $rac{c^*(t,W_t)}{W_t}$ depends only on $t\ (=rac{1}{f(t)})$
- With Optimal Allocation & Consumption, the Wealth process is:

$$\frac{dW_t}{W_t} = \left(r + \frac{(\mu - r)^2}{\sigma^2 \gamma} - \frac{1}{f(t)}\right) \cdot dt + \frac{\mu - r}{\sigma \gamma} \cdot dz_t$$

- Expected Portfolio Return is constant over time $(=r+\frac{(\mu-r)^2}{\sigma^2\gamma})$
- Assuming $\epsilon < \frac{1}{\nu}$, Fractional Consumption $\frac{1}{f(t)}$ increases over time

- ullet Optimal Allocation $\pi^*(t,W_t)$ is constant (independent of t and $W_t)$
- ullet Optimal Fractional Consumption $rac{c^*(t,W_t)}{W_t}$ depends only on t $(=rac{1}{f(t)})$
- With Optimal Allocation & Consumption, the Wealth process is:

$$\frac{dW_t}{W_t} = \left(r + \frac{(\mu - r)^2}{\sigma^2 \gamma} - \frac{1}{f(t)}\right) \cdot dt + \frac{\mu - r}{\sigma \gamma} \cdot dz_t$$

- Expected Portfolio Return is constant over time $(=r+rac{(\mu-r)^2}{\sigma^2\gamma})$
- Assuming $\epsilon < \frac{1}{\nu}$, Fractional Consumption $\frac{1}{f(t)}$ increases over time
- Expected Rate of Wealth Growth $r + \frac{(\mu r)^2}{\sigma^2 \gamma} \frac{1}{f(t)}$ decreases over time

- ullet Optimal Allocation $\pi^*(t,W_t)$ is constant (independent of t and $W_t)$
- ullet Optimal Fractional Consumption $rac{c^*(t,W_t)}{W_t}$ depends only on $t\ (=rac{1}{f(t)})$
- With Optimal Allocation & Consumption, the Wealth process is:

$$\frac{dW_t}{W_t} = \left(r + \frac{(\mu - r)^2}{\sigma^2 \gamma} - \frac{1}{f(t)}\right) \cdot dt + \frac{\mu - r}{\sigma \gamma} \cdot dz_t$$

- Expected Portfolio Return is constant over time $(=r+\frac{(\mu-r)^2}{\sigma^2\gamma})$
- Assuming $\epsilon < \frac{1}{\nu}$, Fractional Consumption $\frac{1}{f(t)}$ increases over time
- Expected Rate of Wealth Growth $r + \frac{(\mu r)^2}{\sigma^2 \gamma} \frac{1}{f(t)}$ decreases over time
- If $r + \frac{(\mu r)^2}{\sigma^2 \gamma} > \frac{1}{f(0)}$, we start by Consuming < Expected Portfolio Growth and over time, we Consume > Expected Portfolio Growth

- ullet Optimal Allocation $\pi^*(t,W_t)$ is constant (independent of t and W_t)
- ullet Optimal Fractional Consumption $rac{c^*(t,W_t)}{W_t}$ depends only on t $(=rac{1}{f(t)})$
- With Optimal Allocation & Consumption, the Wealth process is:

$$\frac{dW_t}{W_t} = \left(r + \frac{(\mu - r)^2}{\sigma^2 \gamma} - \frac{1}{f(t)}\right) \cdot dt + \frac{\mu - r}{\sigma \gamma} \cdot dz_t$$

- Expected Portfolio Return is constant over time $(=r+rac{(\mu-r)^2}{\sigma^2\gamma})$
- Assuming $\epsilon < \frac{1}{\nu}$, Fractional Consumption $\frac{1}{f(t)}$ increases over time
- Expected Rate of Wealth Growth $r + \frac{(\mu r)^2}{\sigma^2 \gamma} \frac{1}{f(t)}$ decreases over time
- If $r + \frac{(\mu r)^2}{\sigma^2 \gamma} > \frac{1}{f(0)}$, we start by Consuming < Expected Portfolio Growth and over time, we Consume > Expected Portfolio Growth
- ullet Wealth Growth Volatility is constant $(=rac{\mu-r}{\sigma\gamma})$

Portfolio Return versus Consumption Rate

• Analytical tractability in Merton's formulation was due to:

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion
 - Frictionless, continuous trading

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion
 - Frictionless, continuous trading
- However, real-world situation involves:

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion
 - Frictionless, continuous trading
- However, real-world situation involves:
 - Discrete amounts of assets to hold and discrete quantities of trades

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion
 - Frictionless, continuous trading
- However, real-world situation involves:
 - Discrete amounts of assets to hold and discrete quantities of trades
 - Transaction costs

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion
 - Frictionless, continuous trading
- However, real-world situation involves:
 - Discrete amounts of assets to hold and discrete quantities of trades
 - Transaction costs
 - Locked-out days for trading

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion
 - Frictionless, continuous trading
- However, real-world situation involves:
 - Discrete amounts of assets to hold and discrete quantities of trades
 - Transaction costs
 - Locked-out days for trading
 - Non-stationary/arbitrary/correlated processes of multiple assets

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion
 - Frictionless, continuous trading
- However, real-world situation involves:
 - Discrete amounts of assets to hold and discrete quantities of trades
 - Transaction costs
 - Locked-out days for trading
 - Non-stationary/arbitrary/correlated processes of multiple assets
 - Changing/uncertain risk-free rate

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion
 - Frictionless, continuous trading
- However, real-world situation involves:
 - Discrete amounts of assets to hold and discrete quantities of trades
 - Transaction costs
 - Locked-out days for trading
 - Non-stationary/arbitrary/correlated processes of multiple assets
 - Changing/uncertain risk-free rate
 - Consumption constraints

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion
 - Frictionless, continuous trading
- However, real-world situation involves:
 - Discrete amounts of assets to hold and discrete quantities of trades
 - Transaction costs
 - Locked-out days for trading
 - Non-stationary/arbitrary/correlated processes of multiple assets
 - Changing/uncertain risk-free rate
 - Consumption constraints
 - Arbitrary Risk-Aversion/Utility specification

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion
 - Frictionless, continuous trading
- However, real-world situation involves:
 - Discrete amounts of assets to hold and discrete quantities of trades
 - Transaction costs
 - Locked-out days for trading
 - Non-stationary/arbitrary/correlated processes of multiple assets
 - Changing/uncertain risk-free rate
 - Consumption constraints
 - Arbitrary Risk-Aversion/Utility specification
- → Approximate Dynamic Programming or Reinforcement Learning

- Analytical tractability in Merton's formulation was due to:
 - Normal distribution of asset returns
 - Constant Relative Risk-Aversion
 - Frictionless, continuous trading
- However, real-world situation involves:
 - Discrete amounts of assets to hold and discrete quantities of trades
 - Transaction costs
 - Locked-out days for trading
 - Non-stationary/arbitrary/correlated processes of multiple assets
 - Changing/uncertain risk-free rate
 - Consumption constraints
 - Arbitrary Risk-Aversion/Utility specification
- → Approximate Dynamic Programming or Reinforcement Learning
- Large Action Space points to Policy Gradient Algorithms