TEMA №14

Ориентация

Съдържание

Тема 14: Ориентация

- Ойлерови ъгли
- Астрономически координати
- Динамика на полета
- Клониране

Ориентация в 3D

Ориентация в 3D

Под ориентация разбираме

- Завъртяността на обект в 3D (т.е. не къде сме, а накъде сме)

Цел на ориентацията на обект

- Еднозначното ѝ представяне в 3D
- Удобно за потребителя
- Предсказуем резултат

Някои методи за ориентация

- Ойлерови ъгли
- Астрономически координати
- Динамика на полета

Избор на метод

Според наличните изисквания за ориентация в 3D

Реализация на различните методи

- Чрез умножение на матрици
- Подробности в теми 19 и 26

Примери с контрол на ориентацията

- Слалом на непозната планета
- Нервна костенурка върху планета
- Полет между най-големите градове

"Slalom" http://youtu.be/cCxduRWjoRM

"Turtle Land" http://youtu.be/HhlUgQKwc1o

"Around The Word" http://youtu.be/Acx9Pa14dkk

Ойлерови ъгли

Ойлерови ъгли

Ойлерова теорема за ротацията

- Всяка ориентация може да се представи чрез три параметъра
- Следствие: това може да са три ъгъла (ротации), но не в произволен ред

Ойлеровите ъгли

12 различни комплекта от по три ъгъла

Пример с комплект ZXZ

Начално и крайно положение

- Две координатни системи $XYZ \rightarrow X''Y''Z''$
- Общо начало (т.е. без транслация)

Обща права

- Обща права m на равнините $X^{\prime\prime}Y^{\prime\prime}$ и XY
- Правата m е перпендикулярна на $Z^{\prime\prime}$ и Z
- Правата m ще е ориентир

Да видим ойлеровите ъгли ZXZ

- Ъгъл №1 Xm
- Ъгъл №2 *ZZ''*
- Ъгъл №3 mX''

Построение

Построение чрез комплект ZXZ

- Въртене около локалната ос Z
- Въртене около локалната ос X
- $-\,$ Въртене около локалната ос Z
- Редът на ротациите е фиксиран

Локалните оси кръщаваме X', Y', Z'

- Първоначално съвпадат с X, Y, Z
- Накрая ще съвпадат с X'', Y'', Z''

Ъгъл №1 (*Xm*)

- Въртим около Z^\prime (съвпада със Z)
- Целта е X' да отиде от X в m
- Така координатна ос става обща права

Ъгъл №2 (*ZZ''*)

- Въртим около X^{\prime} (съвпада с m)
- Целта е Z^\prime да отиде в $Z^{\prime\prime}$
- Така двете равнини се слепват

Ъгъл №3 (*mX*")

- Въртим отново около Z^\prime
- Целта е X' да отиде от m в X''
- Y' няма къде да ходи освен в Y'' (Защо?)

Демонстрация

Стъпки с ойлерови ъгли

- Обща права
- Обща равнина
- Общо пространство

Астрономически координати

Основни идеи

Астрономически координати

- Определяне на положението на обекти по небето (звезди, планети, спътници, гарги)
- Различни модели
 (хоризонтален, екваториален, еклиптичен и др)

В компютърната графика

 Най-често се среща хоризонталният метод или някоя негова модификация

Хоризонтален метод

Ориентация на телескоп

- Хоризонтално въртене наляво-надясно
- Вертикално въртене нагоре-надолу

Нещо липсва

При ориентацията на телескоп

- Може да се завърти на всички посоки (това, че не може надолу, е дизайнерско решение)
- Ориентацията се определя от два ъгъла
- Ойлер обаче твърди, че ни трябват три

На кого да вярваме

- На очите си или на Ойлер?
- Къде е разминаването?

Липсващото число

- Без него ориентацията не е еднозначна
- Галактика NGC 3021 при една и съща ориентация на телескопа

 – Липсва фиксиране на въртенето на сцената около централната точка

Приложение

Виртуален механизъм

- Вертикален ъгъл
- Хоризонтален ъгъл
- Ъгъл на въртене около собствената ос

Ориентация с вектор

Преимущества

- Вектор за посока, ъгъл за завъртяност
- Интуитивна дефиниция на посока

Недостатък

- Ойлер пак е недоволен от нас
- Вектор и ъгъл са ... четири числа

Кое число е излишното?

 $\begin{pmatrix} \alpha \\ x \\ y \\ z \end{pmatrix}$

- Определено не е ъгълът α (без него се губи еднозначността)
- Не е и някоя от координатите x, y или z на вектора (той трябва да е тримерен)

Може ли някой да обясни парадокса

 Хем има излишно число, хем всички са жизнено важни

Бонус-упражнение за 5 т.

– Само за първия верен отговор във форума на курса

Динамика на полета

Роли на ориентацията

Статична роля

- Определяне на завъртяността на обект
- Подходящи са ойлеровите ъгли или астрономическите координати

Динамична роля

- Завиване при движение в 3D
- Заимстване на модели от авиониката

Модел на ориентацията

Координатна система

- Декартова, локална
- Движи се и се върти заедно с обекта

Въртене

- Около локалните координатни оси
- Сложното въртене се композира от няколко попрости ротации

Използване в компютърната графика

- Клониране (подробности в тема 14)
- Геометрично създаване на фрактали (подробности в тема 22)
- Сложни системи от свързани елементи (подробности в тема 25)
- Движения на части и на цели обекти (подробности в тема 27)

Преимущества

 Движението не зависи от пространственото положение и ориентация

Недостатъци

- По-лесна ориентация, ако се "вживеем" в обекта
- Завой наляво на екрана може да изглежда надясно

Основни характеристики

- Всичко се измерва спрямо АЗът
- Няма глобална координатна система
- Няма точка (0,0,0)
 (т.е. има, това съм АЗ, където и да съм)

История отпреди 40 г.

Роботи, оставящи следи по пода

- Контролират се с програма
- Наричали са се "костенурки" заради формата и скоростта на пълзене

Снимки: cyberneticzoo.com/?p=1711, museum.mit.edu/150/entries/1158 и www.theoldrobots.com/turtle1.html

Управление на роботите

Команди

- Движение напред и назад
- Завой наляво и надясно

Използване на роботите

- За образователни цели
- Обучение по математика и информатика

Костенуркова графика

Наименование

– На английски turtle graphics

Език за програмиране Лого

- Създаден преди 40-50 години
- Досега над 300 версии и диалекти
- Имат костенуркова графика

Независимост от ориентацията

- Елементарна къща
- Петокъщие без основа

Ориентация в 3D

Оси на локална координатна система

– Надлъжна, вертикална, напречна

Въртене 1

- Въртене около вертикалната ос
- Отклонение от курса *завой*, (англ. *yaw*)

Въртене 2

- Въртене около напречната ос
- Наклон на носа *танграж* (англ. *pitch*)

Въртене 3

- Въртене около надлъжната ос
- Наклон на крилата *крен* (англ. *roll*)

Пример със самолетче

Прави осморки във въздуха

- При движение по едната примка завива наляво, а по другата – надясно
- Плавен преход между двете примки

Анализ на ъгъла на завиване

- Положителен, ако е наляво
- Отрицателен, ако е надясно
- Ъгълът е периодична функция

Уравнение на движението

- Правим малки стъпки и малки завои
- Ние сме в точка p_i , движим се със стъпка \vec{v}_i , ъгълът на завиване е α_i и пресмятаме в обратен ред:

$$\alpha_{i} = k \sin mt$$

$$\vec{v}_{i} = \text{rot}(\vec{v}_{i-1}, \alpha_{i})$$

$$p_{i} = p_{i-1} + \vec{v}_{i}$$

Параметри k и m

- Избрани така, че кривата да се затвори
- Ако не се затвори се получава лошо

Допълнителен ефект

По-естествен полет

- При завой самолетът да се накланя
- Тъжно: наклоним ли самолета, променяме и равнината на траекторията

Решение с две координатни системи

- Първата е за навигация
 (дава координатите на самолетчето)
- Втората е за ориентация
 (дава наклона на самолетчето)

Решение с една координатна система

- Проблемът е да се съчетаят (промяната в едната влияе негативно на другата)
- И все пак да пробваме

– Споделяне на една и съща координатна система

- 1. Правим завой
- 2. Стъпка напред
- 3. Създаваме кадър

- 1. Правим завой
 - 2. Стъпка напред
 - 3. Наклон встрани
- 4. Създаваме кадър
- 5. Обратен наклон до хоризонтално положение

– Да го видим

Клониране

Клониране

Основна идея

- Имаме невидим обект-самолет
- Клонираме образ на друг обект там, където е невидимия обект
- Използваме неговите координати и ориентация

Каква е полза?

- Спестяват се много сметки

Примери без сметки

Пешки разположени в кръг

- Садистичен вариант
- Мазохистичен вариант

Последен пример

- Метод на стоножката
- Ограда с дръвчета по нормалния вектор към нея (той е напречната ос от авиониката)

Повече информация

[PARE]стр. 42-45, 54-58, 102-106 [VINC] стр. 69-72

А също и:

- Astronomical Coordinate Systems
 http://spider.seds.org/spider/ScholarX/coords.html
- Maths Euler Angles
 http://www.euclideanspace.com/maths/geometry/rotations/euler/index.htm
- Roll, Pitch, and Yaw | How things fly http://howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw

Край