Assignment 1: Solutions and marking scheme

- 1. [2 marks for submitting, 3 marks for peer reviews]
 - (a) Since a product of two real numbers is positive precisely when either both are positive or both are negative:

$$x^{2} - x - 6 = (x - 3)(x + 2) > 0$$

 $\Rightarrow (x - 3 > 0 \text{ and } x + 2 > 0) \text{ or } (x - 3 < 0 \text{ and } x + 2 < 0)$
 $\Rightarrow (x > 3 \text{ and } x > -2) \text{ or } (x < 3 \text{ and } x < -2)$
 $\Rightarrow x > 3 \text{ or } x < -2$

Hence $A = (-\infty, -2) \cup (3, \infty)$.

(b) Since there are only three possibilities for the sign of $x^2 - x - 6$:

$$x^{2} - x - 6 < 0 \Rightarrow x \notin A \text{ and } x^{2} - x - 6 \neq 0$$

 $\Rightarrow x \in [-2, 3] \text{ and } x \notin \{-2, 3\}$
 $\Rightarrow x \in (-2, 3)$

- 2. (a) 1A Correct example for one of $S \setminus C$ and $C \setminus S$. $\frac{3}{5} \in P, \ \frac{\pi}{6} \in S \setminus C, \ \frac{\pi}{3} \in C \setminus S, \ 0 \in C \cap S.$
 - (b) 1A Any valid counterexample. Observe that $0 \in S$ since $\sin(0) = 0 \in \mathbb{Q}$. Suppose $0 \in T$. This would give $\sin(0) = \frac{a}{c} \in P$, where $a, c \in \mathbb{N}$. But this implies a = 0 contradicting the fact that $a \in \mathbb{N}$. We conclude that $S \not\subseteq T$.

Many counterexamples are possible. Proof is slightly harder for non-zero examples.

(c) Let $x \in T$. This means $\sin(x) \in P$, so $\sin(x) = \frac{a}{c}$ where $a, c \in \mathbb{N}$ and $a^2 + b^2 = c^2$ for some $b \in \mathbb{N}$.

1M Set up proof hypothesis.

Now

$$\cos^{2}(x) = 1 - \sin^{2}(x) = 1 - \frac{a^{2}}{c^{2}} = \frac{c^{2} - a^{2}}{c^{2}} = \frac{b^{2}}{c^{2}} \Rightarrow \cos(x) = \pm \frac{b}{c}$$
This shows $x \in C$, since $-\frac{b}{c}$, $\frac{b}{c} \in \mathbb{Q}$.

3. Let $x \in D$. There are two cases to consider.

1M Two cases for denominator (or two cases for numerator and denominator if 2 is moved to LHS).

2M Overall proof argument

Case 1: If $\mathbf{x^2} - \mathbf{x} - \mathbf{6} > \mathbf{0}$, Q1(a) gives $x \in (-\infty, -2) \cup (3, \infty)$ and:

$$\frac{2x^2}{x^2 - x - 6} > 2 \Rightarrow 2x^2 > 2x^2 - 2x - 12$$
$$\Rightarrow 2x > -12 \Rightarrow x > -6$$
$$\Rightarrow x \in (-6, \infty)$$

so in this case we have $x \in [(-\infty, -2) \cup (3, \infty)] \cap (-6, \infty) = (-6, -2) \cup (3, \infty)$.

1

Case 2: If $\mathbf{x^2} - \mathbf{x} - \mathbf{6} < \mathbf{0}$, Q1(b) gives $x \in (-2, 3)$ and:

$$\frac{2x^2}{x^2 - x - 6} < 2 \Rightarrow 2x^2 < 2x^2 - 2x - 12$$
$$\Rightarrow 2x < -12 \Rightarrow x < -6$$
$$\Rightarrow x \in (-\infty, -6)$$

so in this case we have $x \in (-2,3) \cap (-\infty,-6) = \varnothing$.

Combining these answers gives $D = (-6, -2) \cup (3, \infty)$.

11 For the whole assignment: ALL mathematical notation is correct.