Machine Learning Introduction

EE698V - Machine Learning for Signal Processing

Vipul Arora

Machine Learning

Classification

Feature Extraction

- height = x1
- diameter = x2

$$\blacksquare$$
 = \bigstar

Soft Classification

$$P(\blacksquare = \bigstar) = 0.6$$

$$P(\blacksquare = \bigcirc) = 0.4$$

Soft Classification

$$h = x_2 - mx_1 - c$$

$$P(\blacksquare = \bigstar) = \frac{1}{1 + \exp(-h)}$$

Sigmoid function

$$\sigma(h) = \frac{1}{1 + \exp(-h)}$$

 x_1

Fraud detection

★ = Fraudulent transaction

= Genuinetransaction

 x_1

Machine Learning

- Training set
 - Inputs, $\{x_1, x_2, ...\}$
 - Targets, $\{y_1, y_2, ...\}$
- Test set
 - Inputs, $\{x_1^t, x_2^t, ...\}$
 - Unseen targets, $\{y_1^t, y_2^t, ...\}$

References

• "Pattern Recognition and Machine Learning", C.M.

Bishop, 2nd Edition, Springer, 2011. Chapter 1