2017-2018 学年第一学期

《高等数学 A(上)》期末考试试题(A)

考试注意事项: 学生必须将答题内容写在答题纸上, 写在试题纸上一律无效

- 一. 填空题 (本大题共 10 小题,每小题 4 分,共 40 分)
- $2. \lim_{x \to 0} \cot x \cdot \left(\frac{1}{\sin x} \frac{1}{x}\right) = \underline{\qquad}.$
- 4. 设函数 $f(x) = \int_0^{\sin x} \sin(t^2) dt, g(x) = x^2 + x^3$, 则当 $x \to 0$ 时, f(x)是 g(x)的_____. (填选项)
- (A)等价无穷小;(B)同阶无穷小;(C)高阶无穷小;(D)低阶无穷小.
- 5. 函数 $f(x) = e^{2x} \ln(1+x)$ 在 x = 0 点展开到 x^3 项的带 Peano 型余项的马克劳林公式是 ______.
 - 6. 曲线 $y = e^{-x^2}$ 的向上凸区间是______.
 - $7. \int e^{e^x + x} dx = \underline{\hspace{1cm}}.$
 - 8. $I = \int_{1}^{1} \frac{dx}{1 + e^{1/x}} = \underline{\hspace{1cm}}$
 - $9. \int_0^{+\infty} \frac{dx}{\sqrt{x(x+1)}} = \underline{\hspace{1cm}}$
- 10. 微分方程 $yy'' 2(y')^2 = 0$ 满足条件 y(0) = 1, y'(0) = -1 的特解为_____.

二 (8分). 已知
$$\lim_{x\to+\infty} \left[\sqrt{x^2+x+1} - (ax+b) \right] = 0$$
, 求常数 $a = b$.

三 (8分). 设函数 y = y(x) 由方程 $x^3 + y^3 - 3x + 6y = 2$ 确定.

$$\left. \stackrel{\circ}{x} \frac{d^2 y}{dx^2} \right|_{x=2} \left. \mathop{\nearrow} \frac{d^2 x}{dy^2} \right|_{x=2}.$$

四 (10分)设 f(x) 在 (a,b) (ab < 0)内有 f''(x) > 0,且

$$\lim_{x \to 0} \frac{f(x) - e^{x^2}}{x - \sin x} = 2$$

试求 f(0) 及 f'(0) 的值, 并证明: $\mathbf{c}(a,b)$ 内有 $f(x) \ge 1$.

五(8分). 根据 k 的不同取值情况,讨论方程 $x-\frac{\pi}{2}\sin x=k$ 在开区间 $(0,\frac{\pi}{2})$ 内根的个数,并说明理由.

六(10 分). 设平面图形 A 由 $x^2 + y^2 \le 2x$ 与 $y \ge x$ 所确定. 求(1)图形 A 的面积; (2)图形 A 绕 x 轴旋转一周所得旋转体的体积; (3)图形 A 绕直线 x=2 旋转一周所得旋转体的体积.

七(10分). 求微分方程 $y'' - 6y' + 9y = e^{3x} + 6x + 5$ 的通解.

八(6 分). 设 f(x) 在闭区间[0,c] 上连续,其导数 f'(x) 在(0,c) 内存在且单调减少,试证明不等式: $f(a+b) \le f(a) + f(b)$,其中常数 a,b 满足 $0 < a \le b \le a + b \le c$.