

Model Optimization and Tuning Phase

Date	July 2024
Team ID	740714
Project Title	Occupancy Rates and Demand in the Hospitality Industry.
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic	-	-
Regression		
K-Neighbors	-	-
Classifier		
Decision Tree	-	_
Classifier		
SVC	-	-

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric
Logistic	from sklearm.linear_model import LogisticRegression
Regression	lr = LogisticRegression() lr.fit(x_train, y_train)
	/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1143: DataConversionWarming: A column-vector y was passed when a 1d array was expected. Please change the shart y = column_or_1d(y, warm=True)
	* LogisticRegression ()
Decision	
Tree Classifier	
	<pre>from sklearn.tree import DecisionTreeClassifier classifier = DecisionTreeClassifier(random_state = 0) classifier.fit(x_train,y_train)</pre>
	▼ DecisionTreeClassifier
	DecisionTreeClassifier(random_state=0)


```
SVC
          from sklearn.svm import SVC
          sv=SVC()
          sv.fit(x_train,y_train)
          /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.
            y = column_or_1d(y, warn=True)
          * SVC
          SVC()
K-
Neighbors
Classifier
          from sklearn.neighbors import KNeighborsClassifier
         Kn=KNeighborsClassifier()
          Kn.fit(x_train, y_train)
          /usr/local/lib/python3.10/dist-packages/sklearn/neighbors/_classification.py
           return self._fit(X, y)
          ▼ KNeighborsClassifier
          KNeighborsClassifier()
```

Final Model Selection Justification (2 Marks):

Final Model	Reasoning

	It is used to find Classification and Regression. KNN classifier is a simple, instance-based learning algorithm. It is a fast and real-time performance.
K-Neighbors Classifier	