Introducción a la estimación espectral

Episodio II: técnicas paramétricas para espectros racionales

Andrés Altieri

Procesamiento de Señales II Facultad de Ingeniería, Universidad de Buenos Aires

Segundo cuatrimestre de 2015

Contenidos

Técnicas paramétricas para espectros racionales

Técnicas paramétricas: modelado AR

Técnicas paramétricas: modelado ARMA

Contenidos

Técnicas paramétricas para espectros racionales

Aproximación por espectros racionales (I)

- Una función racional es aquella que puede escribirse como un cociente de polinomios.
- En particular una función real es una función racional de $e^{j\omega}$ cuando puede escribirse como:

$$\phi(\omega) = \frac{\sum_{k=-m}^{m} \gamma_k e^{j\omega k}}{\sum_{k=-n}^{n} \rho_k e^{j\omega k}},$$

donde los coeficientes satisfacen $\gamma_k = \gamma_{-k}^*$ y $\rho_k = \rho_{-k}^*$.

• En particular, nos interesan aquellas funciones racionales de $e^{j\omega k}$ que son positivas, es decir, que son PSDs de algún sistema lineal.

Aproximación por espectros racionales (II)

• Una función racional, real y positiva de $e^{j\omega}$ puede escribirse como:

$$\phi(\omega) = \sigma^2 \left| rac{B(e^{j\omega})}{A(e^{j\omega})}
ight|^2,$$

donde $A(e^{j\omega})$ y $B(e^{j\omega})$ son polinomios de la forma:

$$A(e^{j\omega}) \triangleq 1 + a_1 e^{-j\omega} + \dots + a_n e^{-jn\omega}$$

$$B(e^{j\omega}) \triangleq 1 + b_1 e^{-j\omega} + \dots + b_m e^{-jm\omega}$$

• En términos de la transformada Z esto puede escribirse como:

$$\phi(\omega) = \sigma^2 \frac{B(z)B^*(1/z^*)}{A(z)A^*(1/z^*)} \bigg|_{z=e^{j\omega}}.$$

• Dado que los polos de $\phi(\omega)$ vienen en pares recíprocos y complejos conjugados, si no hay polos en el círculo unidad, la transformada Z convergerá sobre el círculo unitario.

Aproximación por espectros racionales (III)

• Esto implica que cualquier PSD racional puede obtenerse filtrando ruido blanco de varianza σ^2 con un filtro de respuesta impulsiva:

$$H(\omega) = \frac{B(\omega)}{A(\omega)}.$$

- De este modo, el modelo de una PSD racional puede convertirse en un modelo para la señal misma.
- En la práctica si se sabe que una señal tiene una PSD racional, puede ajustarse el modelo para obtener $H(\omega)$.
- Si se sabe que la PSD es continua aunque no necesariamente racional, el teorema de Stone-Weierstrass dice que las funciones racionales forman un conjunto denso en las funciones continuas. Por lo tanto, eligiendo un orden suficientemente grande, puede aproximarse la PSD con la precisión deseada.

Aproximación por espectros racionales (IV)

- Esto da lugar a varios modelos:
 - Si A ≡ 1 y B ≠ 1 la señal es modelada mediante un proceso de tipo MA (moving average).
 - ▶ Si $B \equiv 1$ y $A \neq 1$, la señal es modelada mediante un proceso autoregresivo (AR).
 - ▶ Si $A \neq 1$ y $B \neq 1$, el modelo es ARMA.

Covarianza del proceso ARMA con excitación blanca(I)

• El proceso ARMA puede caracterizarse por la ecuación en diferencias:

$$y[k] + \sum_{i=1}^{n} a_i y[k-i] = \sum_{j=0}^{m} b_j x[k-j] \quad (b_0 = 1).$$

• Multiplicando por $y^*[k-p]$ y tomando esperanza:

$$r[p] + \sum_{i=1}^{n} a_i r[p-i] = \sum_{j=0}^{m} b_j \mathbb{E}[x[k-j]y^*[k-p]].$$

 Por otro lado, si el sistema es causal y estable, la ecuación del ARMA puede escribirse como:

$$y[k] = \sum_{q=0}^{\infty} h[q]x[k-q] \quad (h[0] = 1).$$

Covarianza del proceso ARMA con excitación blanca (II)

• Por lo tanto se tiene que:

$$\mathbb{E}[x[k-j]y^*[k-p]] = \sum_{q=0}^{\infty} h^*[q]\mathbb{E}[x[k-j]x^*[k-p-q]] = \sigma_x^2 \sum_{q=0}^{\infty} h^*[q]\delta_{j,p+q} = \sigma_x^2 h^*[j-p]$$

• Volviendo a la ecuación original se tiene:

$$r[p] + \sum_{i=1}^{n} a_i r[p-i] = \sigma_x^2 \sum_{j=0}^{m} b_j h^*[j-p].$$

La relación entre los $\{a_k\}$, los $\{b_k\}$ y $\{h_k\}$ es compleja, pero usando que el sistema es causal se tiene que

$$r[p] + \sum_{i=1}^{n} a_i r[p-i] = 0 \text{ si } p > m$$

La ultima ecuación es la base para varias técnicas de estimación espectral.

Contenidos

2 Técnicas paramétricas: modelado AR

Modelado por procesos autoregresivos

- Se obtiene tomando $B(\omega) \equiv 1$.
- Son sistemas sólo con polos, lo que permite modelar señales de banda angosta con picos colocando polos cerca de la circunferencia unitaria.
- La estimación de los coeficientes del AR se obtienen resolviendo ecuaciones lineales, lo que lo hace un técnica atractiva.

Modelado AR: ecuaciones de Yule-Walker (I)

• Partimos de la recursión vista para el ARMA:

$$r[p] + \sum_{i=1}^{n} a_i r[p-i] = \sigma_x^2 \sum_{j=0}^{m} b_j h^*[j-p].$$

Con m = 0 se obtienen las ecuaciones de Yule-Walker ([Y 1927; W 1931]):

$$r[p] + \sum_{i=1}^{n} a_i r[p-i] = \sigma_x^2 b_0 h^*[-p] = \sigma_x^2 \delta_{p,0}.$$

 Es decir que la autocovarianza satisface una ecuación como la del proceso mismo.

Modelado AR: ecuaciones de Yule-Walker (II)

• Matricialmente puede escribirse como:

$$\begin{bmatrix} r[0] & r[-1] & \dots & r[-n] \\ r[1] & r[0] & \dots & r[-n+1] \\ \vdots & & \ddots & r[-1] \\ r[n] & \dots & & r[0] \end{bmatrix} \begin{bmatrix} 1 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \sigma_x^2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

o en forma más compacta:

$$\mathbf{R}_{n+1} \left[\begin{array}{c} 1 \\ \boldsymbol{\theta}_n \end{array} \right] = \left[\begin{array}{c} \sigma_x^2 \\ \mathbf{0} \end{array} \right]$$

Modelado AR: técnica de la autocovarianza

• Definimos:

$$\mathbf{r}_n \triangleq \begin{bmatrix} r[1] & \dots & r[n] \end{bmatrix}^T$$

y rescribimos las ecuaciones de Y-W como:

$$\begin{cases} \mathbf{r}_n + \mathbf{R}_n \boldsymbol{\theta}_n = \mathbf{0} \\ \begin{bmatrix} r[0] & \mathbf{r}_n^H \end{bmatrix} \begin{bmatrix} 1 \\ \boldsymbol{\theta}_n \end{bmatrix} = \sigma_x^2 \end{cases}$$

Técnica de la autocovarianza

- Se estima la secuencia de autocovarianza $\{r[k]\}_k$.
- Se obtiene un estimado de la matriz de correlación $\hat{\mathbf{R}}_n$.
- Se estiman los coeficientes del AR:

$$\hat{\boldsymbol{\theta}}_n = -\hat{\mathbf{R}}_n^{-1}\hat{\mathbf{r}}_n$$

- Se estima la varianza con la ecuación restante.
- El estimador sesgado es un buen candidato, ya que da una matriz positiva.

Modelado AR: Y-W y predicción lineal

• Reinterpretamos el proceso AR:

$$y[k] + \sum_{i=1}^{n} a_i y[k-i] = e[k]$$

como un problema de predicción lineal, es decir:

$$\hat{\mathbf{y}}[k] = \mathbf{y}[k-1]^T \boldsymbol{\theta}$$

$$\operatorname{con} \mathbf{y}[k-1] \triangleq \begin{bmatrix} y[k-1] & \dots & y[k-n] \end{bmatrix}^T$$
.

- $\bullet \ e[k]$ es interpretado como un error de predicción y no como una excitación.
- Los coeficientes $\{a_i\}$ deben minimizar el error en algún sentido.
- Si se busca minimizar la varianza del error: $\mathbb{E}[|e[k]|^2]$ obtenemos el filtro de Wiener y las ecuaciones Y-W nuevamente.
- El problema de modelado AR es análogo al de predicción lineal.

Modelado AR: cuadrados mínimos (LS) (I)

- Asumimos, como hasta ahora, que hay N muestras de y[k], k = 1, ..., N.
- La estimación por cuadrados mínimos buscamos minimizar el error muestral:

$$\sum_{k=N_1}^{N_2} |e[k]|^2 = \sum_{k=N_1}^{N_2} \left| y[k] + \sum_{i=1}^n a_i y[k-i] \right|^2 = \sum_{k=N_1}^{N_2} \left| y[k] + \mathbf{y}[k-1]^T \boldsymbol{\theta} \right|^2,$$

donde $1 < N_1 < N_2 < N$.

• Matricialmente, podemos definir la matriz:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}^{T}[N_{1} - 1] \\ \mathbf{y}^{T}[N_{1}] \\ \vdots \\ \mathbf{y}^{T}[N_{2} - 1] \end{bmatrix} \qquad \qquad \tilde{\mathbf{y}} = \begin{bmatrix} y[N_{1}] \\ y[N_{1} + 1] \\ \vdots \\ y[N_{2}] \end{bmatrix}$$
(1)

y escribir:

$$\sum_{k=N}^{N_2} |e[k]|^2 = ||\tilde{\mathbf{y}} + \mathbf{Y}\boldsymbol{\theta}||^2$$

Modelado AR: cuadrados mínimos (LS) (II)

Estimador LS

El estimador de los parámetros del AR por cuadrados mínimos es (si las columnas de y son LI):

$$\hat{\boldsymbol{\theta}} = -(\mathbf{Y}^H \mathbf{Y})^{-1} (\mathbf{Y}^H \mathbf{y}).$$

Los valores de N_1 y N_2 dan lugar a distintos estimadores.

A continuación estudiamos algunos casos particulares.

Modelado AR: LS, técnica de la autocorrelación

- Se asume que hay ceros que antes y después de las muestras
- Se toma $N_1 = 1$ y $N_2 = N + n$, para obtener:

$$\tilde{\mathbf{y}} = \begin{bmatrix} y[1] \\ y[2] \\ \vdots \\ y[n+1] \\ y[n+2] \\ \vdots \\ y[n] \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ y[1] & 0 & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline y[n] & y[n-1] & \dots & y[1] \\ y[n+1] & y[n] & \dots & y[2] \\ \vdots & & \vdots \\ y[N-1] & y[N-2] & \dots & y[N-n] \\ \hline y[N] & y[N-1] & \dots & y[N-n] \\ \hline y[N] & y[N] & \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & y[N] \end{bmatrix}$$

Definiendo las matrices de ese modo, se obtiene la llamada técnica de la autocorrelación.

Modelado AR: LS, técnica de la covarianza

- No se asume que hay ceros antes y despues (es arbitrario).
- Se toma $N_1 = n + 1$ y $N_2 = N$, para obtener:

$$\tilde{\mathbf{y}} = \begin{bmatrix} y[n+1] \\ y[n+2] \\ \vdots \\ y[n] \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} y[n] & y[n-1] & \dots & y[1] \\ y[n+1] & y[n] & \dots & y[2] \\ \vdots & & \vdots & \\ y[N-1] & y[N-2] & \dots & y[N-n] \end{bmatrix}$$

• Definiendo las matrices de ese modo, se obtiene la llamada *técnica de la covarianza* o *técnica LS de la covarianza*

Modelado AR: LS, técnica de la autocorrelación y Yule-Walker

 La solucion LS puede interpretarse como una aproximacion a las ecuaciones de Yule-Walker.

Relación entre el estimador YW y el LS autocorrelación

Si se arma la matriz **Y** como en el método de la autocorrelación ($N_1 = 1$ y $N_2 = N + n$), el estimador sesgado de la autocorrelación es:

$$\hat{\mathbf{R}}_n = \frac{1}{N} \mathbf{Y}^H \mathbf{Y},$$

y el estimador sesgado del vector $\hat{\mathbf{r}}_n$ es:

$$\hat{\mathbf{r}}_n = \frac{1}{N} \mathbf{Y}^H \tilde{\mathbf{y}}.$$

El estimador de la autocorrelación coincide con el de Yule-Walker con estimador sesgado.

Segundo cuatrimestre de 2015

Modelado AR: comparación entre ambas técnicas LS

- La matriz de la técnica Y-W/autocorrelación es positiva y Toeplitz.
- La matriz de LS covarianza no es Toeplitz ni necesariamente positiva.
- Para matrices Toeplitz hermíticas existen técnicas eficientes de inversión.
- Para N grande ambas técnicas son parecidas porque los estimadores son más parecidos.
- Para muestras pequeñas o medianas son diferentes.
- El modelo AR obtenido por Y-W es siempre estable, mientras que el otro no necesariamente.
- Esto puede afecta si además del espectro se quiere filtrar alguna señal con el modelo.
- Sin embargo, un modelo estable puede obtenerse reflejando los polos inestables.
- El modelo LS es mas exacto que el de Y-W en predecir el espectro. Esto puede ser a causa del sesgo que introduce el agregado de ceros.

Contenidos

3 Técnicas paramétricas: modelado ARMA

Modelado ARMA

- El modelo ARMA combina las ventajas de la estimación AR o MA.
- Sin embargo, no existe un algoritmo bien establecido para la estimación ARMA ni algoritmos óptimos.
- Las técnicas de estimación ARMA son heurísticas.
- A continuación mencionaremos una técnica basada en el estimador LS.

Modelado ARMA: técnica LS en dos etapas (I)

- Si fuera posible conocer la secuencia de entradas x[k] al ARMA, podría utilizarse una técnica para estimar la respuesta del sistema como un problema de identificación de un sistema.
- La técnica LS en dos pasos se basa en estimar primero dicha secuencia.
- El modelo ARMA puede elegirse de fase mínima de modo que puede interpretarse a *x* como la salida y a *y* como la entrada:

$$X(z) = \frac{A(z)}{B(z)}Y(z)$$

 Al ser causal, la respuesta de este "nuevo" sistema puede expandirse como una respuesta impulsiva infinita:

$$x[k] = y[k] + \sum_{p=1}^{\infty} v[p]y[k-p],$$

donde $V(z) = \frac{A(z)}{B(z)}$.

Modelado ARMA: técnica LS en dos etapas (II)

- La respuesta v tiene infinitos coeficientes, no puede ser estimada con finitas muestras.
- Sin embargo puede truncarse la respuesta a un orden K que contenga la mayor parte de la energía:

$$\hat{x}[k] = y[k] + \sum_{p=1}^{K} \tilde{v}[p]y[p-k].$$

Luego puede tratarse el problema de predecir la muestra y[k] en funcion de las K muestras previas.

- Pueden obtenerse la respuesta *v* usando las técnicas Y-W o LS vistas antes.
- Con esto se estima la entrada del ARMA: $\{\hat{x}[K+1], \dots, \hat{x}[N]\}$
- A continuación se utiliza esto para identificar el modelo.

Modelado ARMA: técnica LS en dos etapas (III)

• Se definen:

$$\mathbf{w} \triangleq \begin{bmatrix} a_1 & \dots & a_n \middle| b_1 & \dots & b_m \end{bmatrix}^T$$

У

$$\mathbf{u}[k] = \begin{bmatrix} y[k-1] & \dots & y[k-n] \\ -x[k-1] & \dots & -x[k-m] \end{bmatrix}^T$$

y se escribe la ecuación en diferencias del ARMA como:

$$y[k] + \mathbf{w}^T \mathbf{u}[k] = x[k]$$

- El objetivo es estimar **w**.
- La entrada x fue estimada para $k \geq K$.
- Por lo tanto, definiendo:

$$L = K + m$$

podemos escribir las ecuaciones en forma matricial para:

$$L+1 \le k \le N$$
.

Modelado ARMA: técnica LS en dos etapas (IV)

• Matricialmente:

$$\mathbf{Z} \triangleq \begin{bmatrix} y[L] & \dots & y[L-n+1] & -\hat{x}[-L] & \dots & -\hat{x}[L-m+1] \\ y[L+1] & \dots & y[L-n+2] & -\hat{x}[-L+1] & \dots & -\hat{x}[L-m+2] \\ \vdots & & \vdots & & \vdots & & \vdots \\ y[N-1] & \dots & y[N-n] & -\hat{x}[N-1] & \dots & -x[N-m] \end{bmatrix}^{T}$$

$$\mathbf{z} = \begin{bmatrix} y[L+1] & y[L+2] & \dots & y[N] \end{bmatrix}^{T}$$

$$\hat{\mathbf{x}} = \begin{bmatrix} \hat{x}[L+1] & \hat{x}[L+2] & \dots & \hat{x}[N] \end{bmatrix}^{T}$$

el sistema queda:

$$z + Zw \approx \hat{x}$$

La solución que mejor aproxima a $\hat{\mathbf{x}}$ por LS es:

$$\hat{\mathbf{w}} = -(\mathbf{Z}^H \mathbf{Z})^{-1} (\mathbf{Z}^H \mathbf{z}).$$

Modelado ARMA: técnica LS en dos etapas (V)

• Por último, se estima σ_r^2 como:

$$\hat{\sigma}_x^2 = \frac{1}{N - L} ||\mathbf{z} + \mathbf{Z}\hat{\mathbf{w}}||^2$$

donde el vector w es el del estimador LS:

$$\hat{\mathbf{w}} = -(\mathbf{Z}^H \mathbf{Z})^{-1} (\mathbf{Z}^H \mathbf{z}).$$

Modelado ARMA: técnica LS en dos etapas (V)

Algunas observaciones:

- El estimador es positivo por construcción.
- Por el truncado del modelo AR, el estimador tiene sesgo. Tomando *K* grande se compensa esto.
- Sin embargo, *K* no debería ser tan grande que reduzca la exactitud del segundo paso.
- Por otro lado, la dificultad mayor dificultad es cuando los ceros están cerca de la circunferencia unidad, pues *K* debe ser grande en ese caso.