Cryptography Project 1

João Pedro Lourenço (jo1360lo-s) Group 12

November 2020

Working hours

The time taken to solve this project was about 12 hours.

Exercise 1

The largest 25 digit number is smaller than 10^{25} , and the largest 12 digit number (max size of a prime factor) is smaller than 10^{12} . If we can test 10 million numbers per second, that means that we will take at most $\frac{10^{12}}{10^7} = 10^5$ seconds, or around 2 hours and 46 minutes, to factor a 25 digit number.

Exercise 2

According to the prime-number theorem, an estimation of the number of primes smaller than n can be given by the following formula:

$$\pi(n) = n/\ln(n) \tag{1}$$

If we consider $n=10^{12}$, then $\pi(n)=3,62\times 10^{10}$. Following the same logic as before, the factorization will take at most around $\frac{3,62\times 10^{10}}{10^7}=3619$ seconds, which is about 1 hour. If we consider that each integer requires 8 bytes to represent, then we would need about $3,62\times 10^{10}\times 8=$

If we consider that each integer requires 8 bytes to represent, then we would need about $3,62 \times 10^{10} \times 8 = 2,896 \times 10^{11}$ bytes, or around 290GB. Such a capacity is definitely within student budget, as a 512GB HDD can be bought for 329 SEK ¹.

Exercise 3

The exercise was solved with Python and all standard libraries. It's worth noting, however, that it makes use of the provided GaussBin.exe program, so it only runs on Windows.

Structure

The program can be separated into 4 different stages:

- 1. **Generate the factor base list**. Given the desired factor base size as input, create a list with that size containing the first factor base size primes. The primes come from the provided .txt file.
 - Done by the generate_factor_base_list method.
- 2. Find r values and create the binary matrix. With the primes previously found, use the technique explained in the project description to find at most factor base size + 2 r values and their factorization, as well as build the binary matrix with that information.

Done by the generate_r_values_and_matrix method.

¹Western Digital 500GB Sata III on amazon.se

- 3. **Perform the gaussian elimination**. The matrix is written to an input file properly formatted, the GaussBin program is run, and then the results are gathered from the output of GaussBin.
 - Done by the gaussian_elimination method.
- 4. Find the gcd, if it exists. Walk by all the solutions of GaussBin, and try to find one that satisfies the required constraints.
 - Done by the find_gcd method.

Results

Using a factor base of 750, these are the obtained results:

Input	Time (secs)	Result
323	21.706	17, 19
307561	2.695	457, 673
31741649	2.695	4621, 6869
3205837387	2.792	46819, 68473
392742364277	3.31801	534571, 734687
235616869893895625763911	48.0058	453131078611, 519975082301

Table 1: Results of running the program with the different inputs

The last input is the unique value to each group (in my case, it's the value for group 12).

The program

```
import math, os, time, subprocess, decimal
2
    def prime_factorization(n, prime_list):
        Factorizes n with the primes found in prime_list
6
        result = {}
        for index, prime in enumerate(prime_list):
10
            prime_counter = 0
11
            while n % prime == 0:
                 n /= prime
13
                 prime_counter += 1
15
            if prime_counter != 0:
16
                 result[prime] = prime_counter
17
            if n == 1:
19
                 break
20
21
        if n != 1:
22
            return {}
23
24
        return result
25
26
   def gcd(a,b):
28
```

```
while b:
29
            b, a = a \% b, b
30
        return a
31
32
   def generate_matrix_row(factorization, factor_base_list):
34
35
        Creates a row for the binary matrix, with a given factorization
36
37
        new\_row = []
38
39
        # have to iterate over the whole factor base, as that's the length of the row
40
        for prime in factor_base_list:
41
            if prime in factorization:
42
                new_row.append(
43
                    factorization[prime] % 2
                   # append 1 or 0, depending on the exponent being odd or even
45
            else:
                new_row.append(0)
47
        return new_row
49
50
   def find_gcd(solutions, r_values, given_number):
51
52
        Attempts to find the qcd based on the solutions of the binary matrix
53
54
        decimal.getcontext().prec = 1024  # Start with a decent precision
55
56
        for index, solution in enumerate(solutions):
57
            calculated = False
58
            while not calculated:
59
                try:
60
                    x = decimal.Decimal(1)
61
                    y = decimal.Decimal(1)
62
                     # Iterate over the current solution to find and accumulate the
64
                     # appropriate the r_values
                    for equation_number, matrix_value in enumerate(solution):
66
                         if matrix_value == 1:
                             x *= r_values[equation_number][0] % given_number
68
                             for prime, count in r_values[equation_number][1].items():
                                 y *= prime ** count
70
71
                    y = int(decimal.Decimal(y.sqrt())) % given_number
72
73
                     # Given x and y, get gcd
74
                    gcd_ = int(gcd(abs(x - y), given_number))
75
76
                    if gcd_ != 1 and gcd_ != given_number: # Acceptable, is solution
77
                         other_factor = int(given_number / gcd_)
                         if other_factor > gcd_:
79
                             return gcd_, other_factor
80
                         else:
81
                             return other_factor, gcd_
```

```
calculated = True # no problems, can proceed to try the next solution
84
                 except decimal.InvalidOperation:
86
                      # Could not perform an operation at the current level of precision,
                      # so double it and try again
88
                     decimal.getcontext().prec *= 2
89
90
         return (-1, -1)
91
92
93
    def gaussian_elimination(matrix):
94
95
         Writes matrix to a file to be used as input to the provided program,
96
         returns all the solutions
97
        m = len(matrix)
99
         if m == 0:
100
             return []
101
        n = len(matrix[0])
103
         # Write input file
104
         with open("matrix_input.txt", "w") as file:
105
             file.write("{} {}\n".format(m, n))
106
             for row in matrix:
107
                 stringed_row = [str(i) for i in row]
108
                 file.write(" ".join(stringed_row))
109
                 file.write("\n")
110
111
         # Execute program
112
         with open(os.devnull, "wb") as devnull:
113
             subprocess.check_call(
114
                 ["GaussBin.exe", "matrix_input.txt", "result.txt"],
115
                 stdout=devnull,
116
                 stderr=subprocess.STDOUT,
117
118
119
         # Retrieve solutions
120
         with open("result.txt", "r") as output:
             raw_result = output.readlines()[
122
                 1:
123
               # first result is number of solutions, ignore
124
125
         # Convert into integers and a list of lists and for easier processing
126
         separated = [result.split() for result in raw_result]
127
         final_result = []
128
         for solution in separated:
129
             final_result.append([int(x) for x in solution])
130
131
         return final_result
132
133
134
    def generate_r_values_and_matrix(
135
        k_start, k_stop, factor_base_size, factor_base_list, given_number
136
```

```
):
137
138
        Generates and returns the r_values, with their respective factorization,
139
        as well as the binary matrix.
140
141
        r_values = []
142
        matrix = []
143
        r_values_seen = []
144
145
        for k in range(k_start, k_stop):
146
             for j in range(2, k + 1):
147
                 r = math.floor(math.sqrt(k * given_number)) + j
148
                 r_modulo = r ** 2 % given_number
149
150
                 if r_modulo > 1 and r not in r_values_seen:
151
                     factorization = prime_factorization(r_modulo, factor_base_list)
153
                     # It might not be factorizable with the given factor base,
                      # in which case we ignore this r value
155
                     if factorization != {}:
                          new_row = generate_matrix_row(factorization, factor_base_list)
157
158
                          # Only accept the value in case it does not result in
159
                          # a repeated row
160
                          if new_row not in matrix:
161
162
                              matrix.append(new_row)
                              r_values.append((r, factorization))
163
                              r_values_seen.append(r)
164
165
                 if len(r_values) >= factor_base_size + 2:
166
                     return r_values, matrix
167
168
        return r_values, matrix
169
170
171
    def generate_factor_base_list(factor_base):
172
173
        Creates a list of primes with size factor_base.
174
        primes = []
176
        with open("prim_2_24.txt", "r") as primes:
177
178
             # Primes are organized in lists of 10 primes, so the following list
179
             # comprehension returns all the lists of 10 primes until the list that
180
             # contains the factor_base prime.
181
             factor_base_list = [
182
                 next(primes).split() for x in range(math.ceil(factor_base / 10))
183
184
185
             # Collapse all lists into one, and convert each number to integer
             flattened = [
187
                 int(prime)
188
                 for factor_base_sublist in factor_base_list
189
                 for prime in factor_base_sublist
```

```
]
191
192
             # Only return until the size given by the argument
193
             return flattened[:factor_base]
194
195
196
    def quadratic_sieve(given_number, factor_base_size):
197
198
         Runs the simplified quadratic sieve algorithm
199
200
201
         factor_base_list = generate_factor_base_list(factor_base_size)
202
         r_values, matrix = generate_r_values_and_matrix(
203
             2, factor_base_size + 1, factor_base_size, factor_base_list, given_number
204
         )
205
         solutions = gaussian_elimination(matrix)
         factor_1, factor_2 = find_gcd(solutions, r_values, given_number)
207
208
         if factor_1 != -1 and factor_2 != -1:
209
             return (factor_1, factor_2)
210
         else:
211
             return "Not found"
212
```