Mining Frequent Patterns in Transactional Databases

What is frequent pattern mining?

Frequent pattern mining aims to discover all interesting patterns in a transactional database that have **support** no less than the user-specified **minimum support** (**minSup**) constraint. The **minSup** controls the minimum number of transactions that a pattern must appear in a database.

The first paper of frequent pattern mining: https://rakesh.agrawal-family.com/papers/sigmod93assoc.pdf

What is the transactional database?

A transactional database is a collection of transactions, where each transaction contains a transaction-identifier and a set of items.

A hypothetical transactional database containing the items **a**, **b**, **c**, **d**, **e**, **f**, **and g** as shown below

tid	Transactions
1	a b c g
2	b c d e
3	a b c d
4	a c d f
5	a b c d g
6	c d e f
7	a b c d
8	a e f
9	a b c d
10	b c d e

Note: Duplicate items must not exist in a transaction.

about:srcdoc Page 1 of 5

Acceptable format of transactional databases in PAMI

Each row in a transactional database must contain only items. PAMI algorithms implicitly consider the row number as the transactional-identifier to reduce storage and processing costs.

abcg
bcde
abcd
acdf
abcdg
cdef
abcd
aef
abcd

bcde

Understanding the statisctics of database

To understand about the database. The below code will give the detail about the transactional database.

- Total number of transactions (Database size)
- Total number of unique items in database
- Minimum lenth of transaction that existed in database
- Average length of all transactions that exists in database
- Maximum length of transaction that existed in database
- Standard deviation of transaction length
- Variance in transaction length
- Sparsity of database

The sample code

import PAMI.extras.dbStats.transactionalDatabaseStats as stats

obj = stats.transactionalDatabaseStats('sampleInputFile.txt', ' ')
obj.run()
obj.printStats()

about:srcdoc Page 2 of 5

What is the input to frequent pattern mining algorithms

Algorithms to mine the frequent patterns requires transactional database and minSup (specified by user).

- Transactional database in following formats:
 - In string format (`/Users/Likhitha/Downlaods/sampleInputFile.txt')
 - In URL format (`https://www.uaizu.ac.jp/~udayrage/datasets/transactionalDatabases/transactional_T10
 - In DataFrame format (dataframe variable with heading `Transactions')
- minSup should be mentioned in count (beween 0 to length of database) or
 __percentage (multiplied with length of database)

What is the output of frequent pattern mining algorithms

The output of these algorithms is in two ways:

- Saving the patterns in user specified output file.
- Returns the patterns in dataframe variable.

How to run the frequent pattern algorithm in terminal

- Download the code from github.
- Navigate to PAMI folder where you downloaded the file.
- Go to frequentPattern folder

You will different types of folders like **basic**, **closed**, **maximal**, **topk**, **cuda**, **pyspark** Go to specific folder you are intended to and execute the following command on terminal.

python3 algorithmName.py path of Sample input file path of output file minSup seperator

about:srcdoc Page 3 of 5

Sample command to execute the Apriori code in frequentPattern/basic folder

python3 Apriori.py /Users/Donwloads/inputFile.txt
/Users/Downloads/outputFile.txt 3 ' '

How to implement the code by importing PAMI package

Import the PAMI package executing: pip3 install PAMI

Run the below sample code by making simple changes

- Replace sampleInputFile name or path in place of iFile and sampleOutputFile name or path in place of oFile
- Specify the minSup (like 10 or 0.1) in place of minSup
- Specify the seperator of input file after minSup. (If no seperator is specified the default tab seperator is considered for input file)

import PAMI.frequentPattern.basic.Apriori as alg
obj = alg.Apriori(iFile, minSup, ' ')
obj.startMine()
obj.savePatterns(oFile) (to store the patterns in file).
Df = obj.getPatternsAsDataFrame() (to store the patterns in dataframe)
obj.printStats()

What is the output of frequent pattern mining algorithms

Returns the pattern and support respectively with \$minSup=5\$

The output in file format:

about:srcdoc Page 4 of 5

b :7

b a :5

b a c :5

b d :6

b d c :6

b c :7

a :7

a d :5

a d c :5

a c :6

d:8

d c :8

c :9

The output in DataFrame format:

	Patterns	Support
0	b	7
1	b a	5
2	bac	5
3	b d	6
4	b d c	6
5	bс	7
6	а	7
7	a d	5
8	a d c	5
9	ас	6
10	d	8
11	d c	8
12	С	9

about:srcdoc Page 5 of 5