Tecnica Greedy

Introduzione

Sistema di indipendenza

Dimostrazione algoritmi greedy (da scrivere)!!

Come capire se un problema accetta un algoritmo greedy?

Matroide

Matroide Grafico

Qualche definizione

Teorema di Rado

Introduzione

Consiste nel calcolo della soluzione ottima attraverso sequenze di scelte localmente ottime.

- Facile da scrivere ed efficiente
- Scelta del locale ottimo non dipende dalle scelte successive
- ✓ Scelta riduce sottoproblemi da risolvere

Algoritmi greedy

- · Soluzione ottima
- Top-Down
- Pochi sottoproblemi da risolvere
- + efficiente e semplice
- · applicabile

Programmazione Dinamica

- Soluzione e valore ottimo
- Bottom-Up
- Tanti sottoproblemi da risolvere
- - efficiente e + complicato
- + applicabile

Sistema di indipendenza

Se nella coppia (S,F) dove:

- S è il numero finito {

 $s_1,...,s_n$ } di elementi

- F è sottoinsieme dell'insieme delle parti di S

Vale la proprietà:

Preso

 $A,B\in F$, allora qualsiasi $B\subseteq A$ appartiene a F

Dimostrazione algoritmi greedy (da scrivere)!!

Come capire se un problema accetta un algoritmo greedy?

Tecnica Greedy 1

Matroide

Struttura combinatoria a cui è associato un algoritmo greedy

<u>Sistema di indipendenza</u> dove per qualsiasi $A,B\in F$ tale che |B|>|A| allora esiste almeno un elemento $b\in B-A$ tale che $\{b\}\cup A\in F$

Matroide Grafico

Dato un grafo G=(V,E) non orientato e connesso, $M_g=(S,F)$ con S insieme E degli archi e F tutti i sottoinsiemi di S aciclici è il matroide grafico di G

 M_G è un matroide:

1.
$$A \in F$$
, $B \subseteq A \Rightarrow B \in F$

2.
$$\forall A, B \in F \ t.c. |B| = |A| + 1 \Rightarrow \exists \ b \in B - A \ \ t.c. \ \{b\} \cup A \in F$$

Questa viene chiamata proprietà dallo scambio, dimostriamola:

Siano
$$A, B \in F$$
 tali che $|B| = |A| + 1$ dove:

$$G_A = (V,A) o$$
 foresta di $|V| - |A|$ alberi

$$G_B = (V,B)
ightarrow$$
 foresta di $|V| - |A|$ alberi

Quest'ultimo avrà un albero in meno rispetto al primo.

 \Rightarrow in G_B esiste un arco (u,v) che connette due vertici u e v che in G_A stanno in due alberi diversi

Qualche definizione

- Estensione: $s \in S$ è l'estensione di $A \in F$ se $A \cup \{s\} \in F$
- ullet Massimale: $A\in F$ è massimale se non esistono estensioni
- Matroide pesato: al matroide viene associata una funzione peso $W:S o R^+$

Teorema di Rado

La coppia (S,F) è un matroide se e solo se per ogni funzione peso W, l'algoritmo standard greedy fornisce la soluzione ottima (sottoinsieme indipendente di peso massimo)

Tecnica Greedy 2

MST (Minimum Spanning Tree)

Introduzione

INPUT

OUTPUT

Qualche Definizione

Teorema dell'arco sicuro

Dimostrazione

Se $(u,v)\in T$

Se (u,v)
otin T

Corollario

Algo Generico

Algoritmo GENERIC-MST

Cosa fa?

Algoritmo di Kruskal

Algoritmo definitivo

Tempo di calcolo

Algoritmo di Prim

Funzionamento di base

Proprietà dell'algoritmo

Elementi utili

Coda Q

Campi dei vertici

Ad ogni passo...

Algoritmo

Tempo di calcolo

Introduzione

INPUT

Grafo connesso non orientato pesato G=(V,E) con $W:E o R^+$ tale che W(u,v) è il peso dell'arco (u,v)

OUTPUT

 $T\subseteq E$ aciclico tale che:

1.
$$orall \ v \in V, \ \exists \ (u,v) \in T$$

2.
$$W(T) = \sum_{(u,v) \,\in\, T} W(u,v)$$
 è minimo

$$G_T = (V,T) o$$
 MST

*

In poche parole...

Devo avere ogni nodo collegato almeno da un arco, in modo tale che la somma di tutti questi archi sia la più piccola possibile

Qualche Definizione

- Taglio: Partizione di V in due insiemi V' e V-V'
- Arco attraversa taglio: arco $(u,v) \in E \;\; t.c. \; u \in V' \; \wedge \; v \in V'-V$
- ullet Taglio che rispetta l'insieme: un taglio rispetta un insieme $A\subseteq E$ se nessun arco di A attraversa il taglio
- Arco leggero: arco di peso minimo che attraversa il taglio

Teorema dell'arco sicuro

Dati:

- ullet un grafo connesso non orientato e pesato G=(V,E)
- un sottoinsieme A dell'insieme T di archi di un MST
- ullet un qualsiasi taglio (S,V-S) che rispetti A
- un arco leggero (u,v) del taglio

Allora l'arco leggero (u,v) è sicuro per A, ovvero $A \cup \{(u,v)\} \subseteq T$

NOTA! (u,v) è un arco sicuro per A se quell'arco appartiene al MST

Dimostrazione

IPOTESI: Esiste almeno un MST $T\subseteq E$ $\ t.c$ $A\subseteq T$

TESI: trovare MST $T' \subseteq E$ $\ t.c$ $A \cup \{(u,v)\} \subseteq T$

Visto che (S,V-S) rispetta A e (u,v) attraversa il taglio, allora (u,v)
otin A.

Abbiamo quindi 2 casi:

Se
$$(u,v)\in T$$

Allora $A \cup \{(u,v)\} \subseteq T$ il quale è una MST

Se
$$(u,v)
otin T$$

Dal momento che T è connesso, allora esisterà un cammino p che va da u a v. Visto che (u,v) attraversa il taglio, allora significa che si trovano da due parti opposte rispetto a quest'ultimo. Esiste allora almeno un arco (x,y) di p che attraversa il taglio.

Sia
$$T'=(T\setminus\{(x,y\}\cup\{(u,v)\})$$
:

Sappiamo che $A\subseteq T$ e che (x,y)
otin A visto che attraversa il taglio, allora $A\subseteq T\setminus\{(x,y\}$

A maggior ragione
$$A\subseteq (T\setminus \{(x,y)\})\cup \{(u,v)\}=T'\Rightarrow A\cup \{(u,v)\}\subseteq T'.$$

Verificando il peso di T':

$$w(T') = w(T) - w(x, y) + w(u, v)$$

Dal momento che (u,v) è un arco leggero del taglio attraversato anche da (x,y) allora $w(x,y) \geq w(u,v) \Rightarrow w(T') \leq w(T)$

Essendo T un MST, allora lo è anche T', il quale contiene $A \cup \{(u,v)\}$.

Corollario

$$A\subseteq T$$
 è tale che $G_A=(V,A)$ è una foresta con $|V|-|A|$ alberi. Sia $C=(V_C,A_C)$, con $V_C\subseteq V$ e $A_C\subseteq A$, una componente connessa di G_A . $\Rightarrow (V_C,V-V_C)$ è sicuramente un taglio che rispetta A \Rightarrow un arco leggero di $(V_C,V-V_C)$ è un arco sicuro per A

In poche parole...

Per trovare un nuovo arco sicuro da aggiungere ad A:

- Considero una delle componenti C della foresta
- Trovo arco leggero che collega un vertice in C con uno non in C

Algo Generico

- 1. Inizializza un insieme A vuoto
- 2. Aggiunge ad ogni passo un arco (u,v) tale che $A\cup\{(u,v)\}$ è un sottoinsieme dell'insieme T degli archi di MST
- 3. Algoritmo termina quando A=T, ovvero $G_A=(V,T)\Rightarrow MST$

Algoritmo GENERIC-MST

GENERIC-MST (G,W)

$$A \leftarrow \emptyset$$
 WHILE $|V| - |A| > 1$ trova arco (u,v) sicuro per A $A = A \cup \{(u,v)\}$

RETURN A

Cosa fa?

- 1. A rimane aciclico durante le iterazioni
- 2. $G_A=(V,A)$ ad ogni iterazione è una foresta di |V|-|A| alberi

- 3. All'inizio, G_A contiene |V| alberi (singoli vertici)
- 4. Ogni iterazione riduce di 1 il numero di alberi e l'arco sicuro collega sempre componenti distinte di G_A
- 5. Quando arriva ad un solo albero l'algoritmo termina (ovvero tutti i vertici sono collegati)
- 6. Il numero di iterazioni è parti a ert V ert 1

Algoritmo di Kruskal

Algoritmo per trovare MST, tramite l'ordinamento degli archi in ordine crescente di costo e successivamente analizzandoli singolarmente, inserendo l'arco nella soluzione se non forma cicli con gli archi precedentemente selezionati (ovvero connette due componenti diverse di G_A .

Algoritmo definitivo

```
KRUSKAL-MST (G=(V,E), W) A \leftarrow \emptyset E \leftarrow \langle e_1,...,e_n \rangle ordinati per peso non decrescente FOREACH v \in V MAKE_SET (v) FOR i from 1 to n (u,v) \leftarrow e_i IF FIND_SET (u) \neq FIND_SET(v) A = \{(u,v)\} \cup A UNION (u,v) RETURN A
```

Tempo di calcolo

Sapendo che:

- $|E| \ge |V| 1$
- $\bullet \ \alpha \leq log|V| \to \alpha \leq log|E|$

L'ordinamento ha tempo O(|E|log|E|), FOREACH invece O(|V|) e infine il FOR complessivamente è $O(|E|\alpha)$. Sommando troviamo:

$$O(|E|log|E| + (|V| + |E|)\alpha) \to O(|E|log|E|)$$

Algoritmo di Prim

Funzionamento di base

1. Sceglie vertice arbitrario r (componente C all'inizio composta quindi solo da vertice r)

- 2. Trova l'arco di peso minimo che connette r ad un altro vertice v (entra così anche v in C)
- 3. Trovo arco di peso minimo che connette un vertice in C ad un vertice v non in C (anche questo entra in C)
- 4. Ripeto il passo 3
- 5. Termina quando C comprende tutti i vertici del grafo e quindi coincide con il MST

Proprietà dell'algoritmo

Ad ogni passo:

- 1. Il sottoinsieme A degli archi di MST aggiunti fanno parte della componente C. La foresta è composta quindi da:
 - $C = (V_C, A)$
 - $|V-V_C|$ componenti di vertici singoli (non ancora inseriti)
- 2. Il taglio $(V_C,V-V_C)$ rispetta l'insieme A
- 3. L'arco sicuro è l'arco leggero (di peso minimo) che connette un vertice in C con uno non in C.

Elementi utili

Coda Q

Coda di min-priority che contiene tutti i vertici che non appartengono a C (quindi all'inizio tutti), permettendo di estrarre un vertice v tale che (u,v) è l'arco leggero (peso minimo) che collega un vertice $u \in C$ con un vertice $v \notin C$.

Campi dei vertici

Ad ogni vertice v sono associati due campi:

- **v.key** \rightarrow minimo valore del peso degli archi (u, v) incidenti in v tale che $u \in C$.
- $v.\pi \rightarrow \text{indica un vertice } u$ tale che (u,v) è l'arco di peso minimo di v.key

All'inizio $v.key = \infty$ e $v.\pi = NIL$ per tutti i vertici tranne per il primo, il quale scelto in modo arbitrario e ha r.key = 0.

Ad ogni passo...

- 1. Viene estratto da Q il vertice u con il minor valore del campo key:
 - l'arco $(u.\pi,u)$ è un nuovo arco di MST
 - u è un vertice che si aggiunge alla componente C
- 2. Per ogni vertice v adiacente a u, se v è in Q e v.key > W(u,v), vengono aggiornati:
 - v.key al valore W(u,v)
 - $v.\pi$ al valore u

3. Algo termina quando Q vuota

Algoritmo

```
\begin{array}{l} \textbf{PRIM-MST} \ (\textbf{G}, \textbf{W}, \textbf{r}) \\ \textbf{FOREACH} \ v \in V \\ v.key \leftarrow \infty \\ v.\pi \leftarrow NIL \\ r.key \leftarrow 0 \\ Aggiungi \ tutti \ i \ vertici \ di \ V \ alla \ coda \ Q \\ \textbf{WHILE} \ Q \neq \emptyset \\ u \leftarrow \textit{estrai vertice da} \ Q \\ \textbf{FOREACH} \ v \in \textit{adj}(u) \\ \textbf{IF} \ v \in Q \ \textbf{AND} \ W(u,v) < v.key \\ v.key \leftarrow W(u,v) \\ v.\pi \leftarrow u \end{array}
```

Tempo di calcolo

L'inizializzazione dei valori e l'aggiunta dei vertici a Q hanno tempo lineare O(|V|), anche WHILE O(|V|), l'estrazione del vertice da Q O(log|V|), l'ultimo FOREACH invece O(|E|) e infine l'assegnazione del valore da W(u,v) O(log|V|). Possiamo quindi calcolare il tempo totale:

$$O(|V|) + O(|V|log|V|) + O(|E|log|V|) o O(|E|log|E|)$$

Algoritmo di Dijkstra

```
Introduzione
   INPUT
   OUTPUT
   Sottostruttura ottima del cammino minimo
Scomposizione del peso
   Limite superiore
   Tecnica del rilassamento
       Prima dell'esecuzione
       Durante l'esecuzione
       Dopo l'esecuzione
       Algoritmo RELAX
Main topic
   Coda Q
   Algoritmo
   Prova di correttezza
       Teorema
```

Dimostrazione per assurdo

Introduzione

INPUT

Dato un grafo G=(V,E,W) orientato e pesato:

- ullet $W:E o R^+$ tale che $W(i,j)=w_{ij}=$ peso dell'arco (i,j)
- ullet Un vertice $s\in V$ chiamato vertice sorgente

OUTPUT

Per ogni $v \in V$ diverso da s, trovare il cammino di peso minimo che inizia in s e termina in v.

Sottostruttura ottima del cammino minimo

Se il cammino $P = \langle v_1, ..., v_{k-1}, v_k \rangle$ è minimo, allora sono minimo anche tutti i sottocammini:

$$P_{ij} = \langle v_i, ..., v_j \rangle$$
 per $1 \leq i < j \leq k$.

Scomposizione del peso

La scomposizione del peso del cammino minimo $\delta(s,v)$ dalla sorgente s al vertice v:

$$\delta(s,v) = \delta(s,u) + W(u,v)$$

Dove:

- u è il predecessore di v nel cammino minimo da s a v.

Algoritmo di Dijkstra 1

- $\delta(s,v)$ è il peso del cammino minimo da s a v
- $\delta(s,u)$ è il peso del cammino minimo da s a u
- W(u,v) è il peso dell'arco (u,v)

Limite superiore

Dato un qualsiasi arco (u, v) si ha:

$$\delta(s,v) \leq \delta(s,u) + W(u,v)$$

Dove:

- $\delta(s,v)$ è il peso del cammino minimo da s a v
- $\delta(s,u)$ è il peso del cammino minimo da s a u
- W(u,v) è il peso dell'arco (u,v), questo arco può non appartenere al cammino minimo.

Tecnica del rilassamento

Aggiungo ad ogni vertice v due attributi:

- v.d \rightarrow limite superiore per $\delta(s,v)$
- $v.\pi$ \rightarrow vertice u tale che $(u,v) \in E$

Questa tecnica viene eseguita per ogni arco (u, v) del grafo una sola volta.

Prima dell'esecuzione

- $v.d = \infty$ per ogni vertice v diverso dalla sorgente s
- $v.\pi = NIL$ per ogni vertice v
- s.d=0 per la sorgente s

Durante l'esecuzione

Se v.d > u.d + W(u,v) allora:

- 1. v.d = u.d + W(u, v)
- 2. $v.\pi = u$

Dopo l'esecuzione

- $v.d = \delta(s,v)$ ovvero il peso del cammino minimo da s a v
- $v.\pi=u$ ovvero il predecessore di v nel cammino minimo da s a v

Algoritmo RELAX

RELAX (u, v, W)

IF
$$v.d > u.d + W(u,v)$$

$$v.d \leftarrow u.d + W(u,v)$$

Main topic

Coda Q

Troviamo una coda Q di min-priority che contiene tutti i vertici che non hanno raggiunto il valore $\delta(s, v)$ nel proprio campo v.d, quindi ad ogni passo:

- 1. Viene estratto un vertice u da Q quando $u.d = \delta(s,u)$
- 2. Viene eseguito il rilassamento di ogni arco (u, v) uscente da u.
- 3. Dopo che Q si svuota l'algoritmo termina, e tramite il valore del campo dei predecessori si può ricostruire il cammino minimo dalla sorgente s ad un determinato vertice v.

Algoritmo

```
DIJKSTRA (G, W, s)

Inizialize-Single-Source (G,s)
S \leftarrow \emptyset

Aggiungi tutti i vertici di V alla coda Q

WHILE Q \neq \emptyset
u \leftarrow estrai \ vertice \ da \ Q
S \leftarrow S \cup \{u\}

FOREACH v \in adj(u)

RELAX (u, v, W)
```

```
RELAX (u ,v ,W) Inizialize-Single-Source (G ,s)  \text{IF } v.d > u.d + W(u,v) \\ v.d \leftarrow u.d + W(u,v) \\ v.\pi \leftarrow u \\ v.\pi \leftarrow NIL \\ s.d \leftarrow 0
```

Prova di correttezza

Teorema

Sia $\langle v_1=s,v_2,...,v_k,v_{k-1},...,v_n\rangle$ la sequenza di vertici estratti da Q in un'esecuzione. Quando il vertice v_k viene estratto, allora $v_k.d=\delta(s,v_k)$.

Lemma

Algoritmo di Dijkstra 3

Se $v.d=\delta(s,v)$ a qualche passo dell'esecuzione, allora sicuramente v.d rimarrà uguale a $\delta(s,v)$ per il resto dell'esecuzione.

Dimostrazione per assurdo

Assumiamo che $v_k.d < \delta(v_k)$, allora il cammino minimo dalla sorgente a v_k deve coinvolgere vertici del set V-R (dove R contiene tutti i vertici eliminato dalla coda Q). Prendiamo in considerazione quindi un vertice v_q di questo set che fa parte del cammino fino a v_k e il suo predecessore v_p .

Quando v_p esce da Q, tutti i suoi archi vengono <u>rilassati</u>, compreso v_q dove troviamo quindi $v_q.d=\delta(v_q)$. Non avendo archi di peso nullo, allora $\delta(v_q)<\delta(v_k)\to v_q.d< v_k.d$.

Questo però può accadere solo se v_q viene scelto prima v_k dall'algoritmo, cosa che però è in contraddizione con la scelta v_k .

Algoritmo di Dijkstra 4

BFS (visita in ampiezza)

```
Introduzione
Struttura di base

Color
D (distanza)
All'inizio
Al termine
\pi (predecessore)
All'inizio
Al termine
Coda Q
Operazioni
Algoritmo
Complessità in tempo
```

Introduzione

BFS (G,s) visita in ampiezza partendo dal vertice sorgente s, visitando man mano tutti gli adiacenti, calcolando così la distanza di ognuno dalla sorgente.

- igvee V Visita tutti e soli i vertici raggiungibili da s
- Ogni vertice visitato una sola volta
- \bigvee Permette di stabilite la distanza da s di tutti i vertici raggiungibili

Struttura di base

Color

Vettore dei colori:

- · Bianco: vertice non visitato
- Grigio: vertice visitato (ma adiacenti non tutti visitati)
- Nero: vertice e i suoi adiacenti visitati

D (distanza)

All'inizio

- $v.d = \infty$ per un qualsiasi vertice v
- s.d = 0 per la sorgente

Al termine

• v.d = n per tutti i vertici v raggiungibili a distanza n

BFS (visita in ampiezza)

- $v.d = \infty$ per tutti i vertici v non raggiungibili
- s.d = 0 per la sorgente

π (predecessore)

All'inizio

• v.d = NIL per ogni vertice, compresa la sorgente

Al termine

- $v.\pi = u$ per vertice v con predecessore u
- $v.\pi = NIL$ per tutti i vertici v non raggiungibili
- $s.\pi = NIL$ per la sorgente (non avendo predecessori)

Coda Q

Contiene solo i vertici di colore grigio, la visita termina quando Q è vuota

Operazioni

- head(Q), restituisce vertice in testa
- enqueue(Q, v), inserisce vertice v in testa (il quale è stato appena visitato e diventa grigio)
- dequeue(Q), elimina il vertice in testa (il quale è diventato nero)

Algoritmo

```
Procedura BFS (G, s)

FOREACH v \in V \setminus \{s\}

color[v] = W

d[v] = \infty

\pi[v] = NIL

color[s] = G

d[s] = 0

\pi[s] = NIL

Q = \emptyset

ENQUEUE (Q, s)

WHILE Q \neq \emptyset

v = HEAD(Q)

FOREACH u \in adj(v)

IF color[u] = W
```

BFS (visita in ampiezza) 2

```
\begin{aligned} \operatorname{color}[\mathbf{u}] &= \mathsf{G} \\ & \quad \mathbf{ENQUEUE} \ (\mathsf{Q}, \, \mathsf{v}) \\ & d.u = d.v + 1 \\ & \pi[u] = v \\ & \mathbf{DEQUEUE}(\mathsf{Q}) \\ & \operatorname{color}[\mathsf{v}] &= \mathsf{B} \end{aligned}
```

Complessità in tempo

Sapendo che:

- Costo inizializzazione: O(|V|)
- Ogni lista di adiacenza ispezionata al più una volta, con costo: O(|E|)

Quindi in totale la complessità vale: O(|V|+|E|)

BFS (visita in ampiezza) 3

DFS (visita in profondità)

```
Introduzione
Struttura di base
   Color
   \pi[v]
       All'inizio
       Al termine
   Vettore dei tempi
       d[v]
       f[v]
   Etichettatura degli archi
       Arco d'albero (arco T)
       Arco all'indietro (arco B)
       Arco in avanti (arco F)
       Arco trasversale (arco C)
   Teorema delle parentesi
       Dimostrazione Caso 1 (d[u]<d[v])
       Dimostrazione Caso 2 (d[u]>d[v])
Algoritmo
   Complessità in tempo
   Algo con etichettatura archi
```

Introduzione

DFS (G) visita in profondità di un grafo G:

- 1. Sceglie arbitrariamente un vertice s come sorgente e visita s
- 2. Visita un adiacente a_1 di s, poi un adiacente a_2 di a_1 , ecc ecc...
- 3. Quando raggiunge un vertice senza adiacenti, risale al predecessore e cerca un nuovo adiacente, nel caso risalendo fino a trovarne uno.
- 4. Quando risale fino ad s e non ha più nessun adiacente nuovo da visitare, si cerca una nuova sorgente e si riparte dal punto 2.
- 5. Tutto termina quando non ci sono più vertici disponibili ad essere selezionati come sorgenti.

Struttura di base

Color

Vettore di colori associati ai vertici:

- · Bianco: vertice non ancora visitato
- Grigio: vertice visitato ma non ancora visitati tutti gli adiacenti
- · Nero: vertice e adiacenti visitati

 $\pi[v]$

Indica il predecessore di v nella visita

All'inizio

• $\pi[v] = NIL$

Al termine

- ullet $\pi[s]=NIL$ se un vertice sorgente
- ullet $\pi[v]=u$, indica u come predecessore di v nella visita

Vettore dei tempi

d[v]

Vettore dei tempi di scoperta, ovvero segna il tempo quando v passa da bianco a grigio.

$$d[v] \in \{1, 2, ..., 2|V|\}$$

f[v]

Vettore dei tempi di completamento, ovvero quando v passa da grigio a nero.

$$f[v] \in \{1,2,...,2|V|\}$$
 e $f[v] > d[v]$

Etichettatura degli archi

Arco d'albero (arco T)

v bianco e u grigio quando l'arco viene esplorato ightarrow u predecessore di v

Arco all'indietro (arco B)

v grigio quando l'arco viene esplorato o u non è predecessore di v (d[v] < d[u])

Arco in avanti (arco F)

v nero e d[u] < d[v] quando l'arco viene visitato ightarrow u non è predecessore di v

Arco trasversale (arco C)

v nero e d[u]>d[v] quando l'arco viene visitato o u non è predecessore di v e non sono antenati.

Teorema delle parentesi

Dopo la visita in profondità, si possono verificare 3 casi con u e v:

- 1. [d[u], f[u]] contiene [d[v], f[v]] o v discende da u nell'albero.
- 2. [d[v],f[v]] contiene [d[u],f[u]] o u discende da v nell'albero.
- 3. [d[v], f[v]] e [d[u], f[u]] sono disgiunti $\to u$ e v non discendono l'uno dall'altro.

Dimostrazione Caso 1 (d[u]<d[v])

Due possibilità:

Vengono ispezionati tutti gli archi uscenti da v prima di riprendere l'ispezione degli archi uscenti da u. Quindi v discende da u (f[v] < f[u])

$$ightarrow [d[u],f[u]]$$
 contiene $[d[v],f[v]]$ $f[u] < d[v]$

Sicuramente d[u] < f[u] < d[v] < f[v], quindi prima di visitare v ho già finito di visitare u e i suoi adiacenti, segue che nessuno discende dall'altro.

Dimostrazione Caso 2 (d[u]>d[v])

Semplicemente applico la dimostrazione precedente scambiando i ruoli di v e u.

Algoritmo

```
Procedura DFS (G)  \begin{aligned} & \textbf{FOREACH} \ v \in V \\ & \text{color[v] = W} \\ & \pi[\text{v}] = \text{NIL} \\ & \text{d[v]=0} \end{aligned}
```

```
time=0

FOREACH v \in V

IF color[v]=W

DFS_visit (G,v)

Procedura DFS_visit (G,u)

time= time + 1

d[u] = time

color[u] = G

FOREACH v \in adj(u)

IF color[v]=W

\pi[v]= u

DFS_visit (G, u)

time= time + 1

f[u]= time

color[u]=B
```

f[v]=0

Complessità in tempo

- Costo inizializzaione: O(|V|)
- ullet DFS_visit viene chiamata nel caso peggiore una volta per vertice: O(|V|) chiamate
- In DFS_visit in totale il costo di ispezione delle liste di adiacenza è: O(|E|)

Quindi in totale la complessità vale: O(|E| + |V|).

Algo con etichettatura archi

Per adattare l'algoritmo precedente, basta modificare DFS_visit, DFS possiamo lasciarlo invariato.

Procedura DFS_visit (G,u)

```
time = time + 1 d[u] = time color[u] = G FOREACH \ v \in adj(u) IF \ color[v] = W \pi[v] = u DFS\_visit(G, v) (u, v) \rightarrow \text{``Arco T''}
```

```
ELSE IF \operatorname{color}[\mathsf{v}] = \mathsf{G} (u,v) 	o \operatorname{``Arco} \mathsf{B''} ELSE IF d[u] < d[v] (u,v) 	o \operatorname{``Arco} \mathsf{F''} ELSE (u,v) 	o \operatorname{``Arco} \mathsf{C''} \operatorname{color}[\mathsf{u}] = \mathsf{B} \operatorname{time} = \operatorname{time} + 1 f[\mathsf{u}] = \operatorname{time}
```

Ordinamento Topologico

Considerando un grafo G = (V,E) orientato aciclico, l'ordinamento topologico è un elenco dei vertici: $T=\langle v_1,...,v_n\rangle$ tale che per ogni arco (v_i,v_j) si ha che v_i viene prima di v_j in T.

time= time + 1

Nel cado del DFS l'ordinamento topologico coincide con la lista (pila) dei vertici disposta in ordine decrescente rispetto a f[v]

Algoritmo DFS con ordinamento topologico

```
Procedura DFS (G)

FOREACH v \in V

color[v] = W

\pi[v] = NIL

d[v] = 0

f[v] = 0

time = 0

S = empty stack

FOREACH v \in V

IF color[v] = W

DFS_visit (G,v)

WHILE NOT is Empty(s)

pop(S)

Procedura DFS_visit (G,u)
```

```
\begin{aligned} &\text{d[u] = time} \\ &\text{color[u] = G} \\ &\textbf{FOREACH} \ v \in adj(u) \\ &\textbf{IF} \ \text{color[v]=W} \\ &\pi[v] = u \\ &\text{DFS\_visit} \ (\text{G, u}) \\ &\text{time= time} + 1 \\ &\text{f[u]= time} \\ &\text{color[u]=B} \\ &\text{push} \ (\text{S, u}) \end{aligned}
```