Divide-and-Conquer

Natasha Dejdumrong

CPE 212 Algorithm Design

Topics

- Merge sort
- Quick sort

General Concept

Merge Sort

8 3 2 9 7 1 5 4

Algorithm MergeSort(A)

- 1: Input: An array of $A[l \dots r]$ of orderable elements
- 2: Output: Array $A[l \dots r]$ sorted in non-decreasing order

3:

- 4: **if** A has more than one element **then**
- 5: $m \leftarrow \lfloor (l+r)/2 \rfloor$
- 6: MergeSort(A[l ... m])

 \triangleright Sort 1sthalf of A

7: MergeSort(A[m+1...r])

 \triangleright Sort 2^{nd} half of A \triangleright Merge two halves

8: Merge(A, l, m, r)

Algorithm Merge(A, l, m, r)

```
1: Input: Two arrays defined by A[l ... m], A[m+1 ... r]
 2: Output: Sorted array A[l \dots r]
 3:
 4: n_1 \leftarrow \text{Size}(A[l \dots m])
 5: n_2 \leftarrow \text{Size}(A[m+1...r])
 6: i, j, k \leftarrow 0
 7:
 8: while i < n_1 and j < n_2 do
       if A[l+i] < A[m+1+j] then
 9:
           B[k] \leftarrow A[l+i]
10:
           i \leftarrow i + 1
11:
     else
12:
           B[k] \leftarrow A[m+1+j]
13:
           j \leftarrow j + 1
14:
     k \leftarrow k + 1
15:
16: if i = n_1 then
                                                        > Left array empty first
       Copy A[j...n_2-1] to B[k...n_1+n_2-1]
17:
                                                       18: else
       Copy A[i...n_1-1] to B[k...n_1+n_2-1]
19:
20: Copy B to A[l \dots r]
```

Efficiency of Merge Sort

- Basic operation is the key comparison
 - Split the list into two halfs
 - Sort each half
 - Merge both halfs
- \square C(n) = # key comparisons for a list of size n

$$C(n) = \begin{cases} 0 & n = 1 \\ 2C(n/2) + C_{\mathsf{merge}}(n) & n > 1 \end{cases}$$

How many worst-case comparions to merge a list of size n?

The worst-case number of comparisons in the merge sort is

$$C_{\mathrm{worst}}(n) = \begin{cases} 0 & n = 1 \\ 2C_{\mathrm{worst}}(n/2) + n - 1 & n > 1 \end{cases}$$

- Solved by backward substitution
- Alternatively from Master theorem

General Divide-and-Conquer

$$T(n) = aT(n/b) + f(n)$$
 where $f(n) \in \Theta(n^d)$, $d \ge 0$

Master Theorem: If
$$a < b^d$$
, $T(n) \in \Theta(n^d)$
If $a = b^d$, $T(n) \in \Theta(n^d \log n)$
If $a > b^d$, $T(n) \in \Theta(n^{\log b} a)$

Note: The same results hold with O instead of Θ .

Examples:
$$T(n) = 4T(n/2) + n \Rightarrow T(n) \in ?$$

 $T(n) = 4T(n/2) + n^2 \Rightarrow T(n) \in ?$
 $T(n) = 4T(n/2) + n^3 \Rightarrow T(n) \in ?$

Quick Sort

- Select pivot element *p* (first one)
- Rearrange the list into two subarrays L, R such that
 - L has s elements less than equal to p
 - R has remaining elements greater than equal to p
- Exchange the pivot element with the last element in L
- Sort L and R recursively

Scan to the right until encountering A[i] ≥ p

Scan to the left until encountering A[j] ≤ p

Case I:

Scan to the right until encountering A[i] ≥ p

Scan to the left until encountering A[j] ≤ p

Scan to the right until encountering A[i] ≥ p

Scan to the left until encountering A[j] ≤ p

Case III:

p all elements ≤ p p all elements ≥ p

$$\int s = i = j$$

all elements ≤ p

p

all elements ≥ p

Algorithm HoarePartition

- 1: Input: Array $A[l \dots r]$ of orderable elements
- 2: Output: A partition of $A[l \dots r]$ with the split position as return value

 \triangleright Undo last swap when $i \ge j$

- 3:
- $4: p \leftarrow A[l]$
- $5: i \leftarrow l$
- 6: $j \leftarrow r + 1$
- 7: repeat
- 8: repeat $i \leftarrow i+1$ until $A[i] \geq p$
- 9: repeat $j \leftarrow j-1$ until $A[j] \leq p$
- 10: $\operatorname{swap}(A[i], A[j])$
- 11: until $i \geq j$
- 12: $\operatorname{swap}(A[i], A[j])$
- 13: $\operatorname{swap}(A[l], A[j])$
- 14: Return j

Algorithm QuickSort

- 1: Input: Array $A[l \dots r]$ of orderable elements
- 2: Output: Array $A[l \dots r]$ in non-decreasing order
- 3:
- 4: if l < r then
- 5: $s \leftarrow \operatorname{Partition}(A[l \dots r])$
- 6: QuickSort(A[l ... s 1])
- 7: QuickSort(A[s+1...r])

Efficiency of Quick Sort

- Best case $\Theta(n \log_2 n)$
 - All the splits happen in the middle of subarrays
- Worst case $\Theta(n^2)$
 - Input is a strictly increasing array (problem already solved).
 - One of the two subarrays after splitting is always empty.
- \blacksquare Average case $\Theta(n \log_2 n)$
 - Split position is equally likely.

General Concept

Binary Tree

- Ordered tree = Rooted tree in which all the children of each vertex are ordered.
- Binary tree = Ordered tree where vertex has at most two children (left child, right child)

Implementation of Binary Tree

Computing Height of a Binary Tree

- Length of the longest path from the root to the leaf.
- Computed as max of the heights of the root's left and right subtrees plus 1.

Algorithm Height(T)

- 1: Input: A binary tree T
- 2: Output: The height of T
- 3:
- 4: if $T = \emptyset$ then
- 5: **return** -1
- 6: else
- 7: **return** max{ Height(T_{left}), Height(T_{right}) } +1

Efficiency of Height()

- Basic operation (executed in every call) is to check whether the tree if empty.
- # calls made = # internal nodes + # external nodes

 \blacksquare How many external nodes (x) for n internal nodes ?

$$n = 1, x = 2$$

Full binary tree only (zero or two children)

$$n = 3, x = 4$$

Binary Tree Traversal

- Preorder: Root before left and right subtrees.
- Inorder: Root after left subtree but before right subtree.
- Postorder: Root after left and right subtrees.

Preorder Traversal

Algorithm Preorder(T)

1: Input: A binary tree T

2: Output: The sequence of nodes from preorder traversal of T

3:

4: if $T \neq \emptyset$ then

5: Visit root of T

6: Preorder (T_{left})

7: Preorder (T_{right})

Inorder Traversal

Algorithm Inorder(T)

1: Input: A binary tree T

2: Output: The sequence of nodes from inorder traversal of T

3:

4: if $T_{\text{left}} \neq \emptyset$ then

5: Inorder (T_{left})

6: Visit root of T

7: if $T_{\text{right}} \neq \emptyset$ then

8: Inorder (T_{right})

Postorder Traversal

Step 1: Visit T_{left} in postorder

Step 2: Visit T_{right} in postorder

Algorithm Postorder(T)

1: Input: A binary tree T

2: Output: The sequence of nodes from postorder traversal of T

3:

4: if $T_{\text{left}} \neq \emptyset$ then

5: Postorder (T_{left})

6: if $T_{\text{right}} \neq \emptyset$ then

7: Postorder (T_{right})

8: Visit root of T

Ex: Algebraic Expression

- Consider an expression ((x+y)/2)+((x-4)/3)
- What kind of traversal must be applied to evalulate the expression?

Closest-Pair Problem

```
ALGORITHM BruteForceClosestPair(P)
```

```
//Finds distance between two closest points in the plane by brute force //Input: A list P of n (n \ge 2) points p_1(x_1, y_1), \ldots, p_n(x_n, y_n) //Output: The distance between the closest pair of points d \leftarrow \infty for i \leftarrow 1 to n - 1 do for j \leftarrow i + 1 to n do d \leftarrow \min(d, sqrt((x_i - x_j)^2 + (y_i - y_j)^2)) //sqrt is square root return d
```

1D Closest Pair by Divide-and-

- Divide S into two sets S₁ and S_r by the median
- Recursively compute closest pair (p_1,p_2) in S_1 and (q_1,q_2) in S_r
- Let $\delta = \min\{\text{dist}(p_1,p_2), \, \text{dist}(q_1,q_2)\}$

- Closest pair is (p_1,p_2) , or (q_1,q_2) , or some (p_3,q_3)
- If (p_3,q_3) is the closest pair, it must be within δ of m
 - In S_1 , at most one point can be in (m-δ, m]. Why?
 - In S_2 , at most one point can be in (m, m-δ)

Algorithm 1D-EffClosestPair(S)

- 1: Input: Set of sorted points S in 1D
- 2: Output: Closest distance δ_{\min} of two points in S
- 3:
- 4: if $|S| \leq 3$ return δ computed by brute force
- 5:
- 6: $m \leftarrow \text{median}(S)$
- 7: Split S to S_l and S_r by the median m
- 8: $\delta_l \leftarrow 1$ D-EffClosestPair (S_l)
- 9: $\delta_r \leftarrow 1$ D-EffClosestPair (S_r)
- 10: $\delta \leftarrow \min(\delta_l, \delta_r)$
- 11:
- 12: Get a point p_3 in S_l within $m \delta$ from m
- 13: Get a point q_3 in S_r within $m + \delta$ from m
- 14: $\delta_{\min} \leftarrow \operatorname{dist}(p_3, q_3)$
- 15: $\delta_{\min} \leftarrow \min\{\delta_{\min}, \delta\}$
- 16: return δ_{\min}

2D Closest Pair by Divide-and-

- Divide S into two sets S_1 and S_r by the median of x
 - Recursively compute closest pair (p_1,p_2) in S_1 and (q_1,q_2) in S_r
 - Let $\delta = \min\{\text{dist}(p_1,p_2), \, \text{dist}(q_1,q_2)\}$

Find the closest pair from all pairs of points whose x-coordinates within $(m-\delta, m+\delta)$

For each point p in the strip, all neighbors within distance δ_0 must also be in the circle R

- If $dist(p,q) = \delta'$, the y-coord difference must be less than or equal to δ' .
- So, any other point r with $dist(p,r) \le \delta'$ must have its y-coordinate difference less than δ'

- Can subsequently consider only points with y-coord difference less than δ_0
- Update δ_0 if encoutering a closer point to p.

Algorithm 2D-EffClosestPair(X, Y)1: Inputs: Set of points X with size n sorted by x-coordinates Same set of points Y sorted by y-coordinates 2: Output: Distance δ_{\min} of two closest points 4: 5: if $n \leq 3$ return δ_{\min} computed by brute force 6: Copy first $\lceil n/2 \rceil$ points in X to X_l 8: Copy the same points above in Y to Y_l 9: $\delta_l \leftarrow 2\text{D-EffClosestPair}(X_l, Y_l)$ 10: 11: Copy the remaining $\lfloor n/2 \rfloor$ points in X to X_r 12: Copy the same points above in Y to Y_r 13: $\delta_r \leftarrow 2\text{D-EffClosestPair}(X_r, Y_r)$ 14: $\delta \leftarrow \min\{\delta_l, \delta_r\}$ 15: 16: $m \leftarrow X[\lceil n/2 \rceil - 1].x$ \triangleright Get the median by x-coordinates 17: Copy all points in Y whose x-coordinates are within $m-\delta$ to array P Copy all points in Y whose x-coordinates are within $m + \delta$ to array Q 19: $\delta_{\min} \leftarrow \delta$ 20: for each point $p \in P$ do for each point $q \in Q$ with $|p.y - q.y| < \delta_{\min}$ do 21: $\delta_{\min} \leftarrow \min\{\delta_{\min}, \operatorname{dist}(p, q)\}$ 22: 23: 24: return δ_{\min}

Examples

Summary

- Divide-and-Conquer design
 - Problem recursively divided into equal-sized subproblems
 - Combine solutions of subproblems to get the solution of the original problem.
- Running time typically satisfies T(n) = aT(n/b) + f(n) and solved from Master theorem.