We consider a DTMC & Xn3nema governed by

	0	1	0	0
Pa	0.1	0.4	0.2	0.3
	0.2	0.2	0.5	0.1
	0.3	0.3	0.4	0

a) To apply Theorem 4.1, we check that P is regular Here, P is regular as

1. All states communicate, and 2. At least one state is aperiodic.

Thus, by Theorem 4.1:

 $T_{0} = 0.1 T_{1} + 0.2 T_{2} + 0.3 T_{3},$ $T_{1} = T_{0} + 0.4 T_{1} + 0.2 T_{2} + 0.3 T_{3},$ $T_{2} = 0.2 T_{1} + 0.5 T_{2} + 0.4 T_{3},$ $T_{3} = 0.3 T_{1} + 0.1 T_{2},$ $T_{0} + T_{1} + T_{2} + T_{3} = 1.$

(No. N., N2, N3) = (161/1111, 460/1111, 320/111, 170/1111).

b) To calculate mio, we apply eq. (3.89). In this setting mio = VI. From eq. (389), we get:

 $V_1 = 1 + 0.4 V_1 + 0.2 V_2 + 0.3 V_3,$ $V_2 = 1 + 0.2 V_1 + 0.5 V_2 + 0.1 V_3,$ $V_3 = 1 + 0.3 V_1 + 0.4 V_2,$

which yields the solution (Y1, Y2, Y3) = (950/161, 860/161, 790/161).

Hence, Mio = V, = 950/161.

c) The mean return time to state zero is given as mo= 1+ M10= 1111/161.

Indeed, we therefore have that ma' = 161/1111 = To.