

• The notation $\mathbb{E}_{\pi}[\cdot]$ is borrowed from the suggested textbook, where $\mathbb{E}_{\pi}[\cdot]$ is defined as the expected value of a random variable, given that the agent follows policy π .

Bellman Equations

• The Bellman expectation equation for v_{π} is: $v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s].$

Optimality

- A policy π' is defined to be better than or equal to a policy π if and only if $v_{\pi'}(s) \geq v_{\pi}(s)$ for all $s \in \mathcal{S}$.
- An **optimal policy** π_* satisfies $\pi_* \geq \pi$ for all policies π . An optimal policy is guaranteed to exist but may not be unique.
- All optimal policies have the same state-value function v_* , called the **optimal** state-value function.

Action-Value Functions

- The action-value function for a policy π is denoted q_{π} . For each state $s \in \mathcal{S}$ and action $a \in \mathcal{A}$, it yields the expected return if the agent starts in state s, takes action a, and then follows the policy for all future time steps. That is, $q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t|S_t=s,A_t=a]$. We refer to $q_{\pi}(s,a)$ as the value of taking action a in state s under a policy π (or alternatively as the value of the stateaction pair s,a).
- All optimal policies have the same action-value function q_* , called the **optimal** action-value function.

Optimal Policies

• Once the agent determines the optimal action-value function q_* , it can quickly obtain an optimal policy π_* by setting $\pi_*(s) = \arg\max_{a \in \mathcal{A}(s)} q_*(s, a)$.