

Exercícios Semana 02 - Aula 01

- 1) Escreva um algoritmo que receba dois números, exiba as opções:
 - a) 1 adição
 - b) 2 subtração

Então peça ao usuário para escolher uma das opções. Caso escolha a opção 1 o algoritmo deve realizar a soma dos dois números lidos e exibir. Caso escolha a opção 2 o algoritmo deve realizar a subtração dos dois números lidos e exibir.

- 2) Escreva um algoritmo que leia 3 valores e exiba qual o maior valor entre eles.
- 3) O custo de um carro novo ao consumidor é a soma do custo de fábrica com a porcentagem do distribuidor e dos impostos (aplicados ao custo de fábrica). Supondo que o percentual do distribuidor seja de 28% e os impostos de 45%, escrever um algoritmo para ler o custo de fábrica de um carro, calcular e escrever o custo final ao consumidor.
- 4) Escreva um algoritmo para ler uma temperatura em graus Fahrenheit, calcular e escrever o valor correspondente em graus Celsius (baseado na fórmula abaixo):

- 5) Faça um algoritmo para ler a quantidade adquirida e o preço unitário de um produto.
 - a) Calcular e escrever o total

total = quantidade adquirida * preço unitário

b) Leia o desconto sobre a compra e calcule.

total a pagar = total - desconto

- i) Sabendo-se que:
 - (1) Se quantidade <= 5 o desconto será de 2%.
 - (2) Se quantidade > 5 e quantidade <=10 o desconto será de 3%.
 - (3) Se quantidade > 10 o desconto será de 5%.
- 6) Numa determinada escola, os critérios de aprovação são os seguintes:
 - a) O aluno deve ter, no máximo, 25% de faltas;
 - b) A nota final deve ser igual ou superior a 7,00.

Construa um algoritmo para ler as notas que um aluno tirou nos 4 bimestres, o número total de aulas e o número de faltas, mostrando ao final a situação do aluno como sendo "Aprovado", "Reprovado por Faltas" e "Reprovado por média", considerando que a reprovação por faltas se sobrepõe a reprovação por nota.

- 7) Após construir o algoritmo anterior, crie mais duas versões dele para prever as seguintes situações:
 - a) Um aluno pode ficar em recuperação se possuir frequência suficiente (superior a 75%) e média superior a 5 mas inferior a 7;
 - b) Caso um aluno reprove por média e faltas, sua situação deve ser "Reprovado por Média e Faltas" (ao invés de simplesmente "Reprovado por Faltas" como antes).
- 8) Um carpinteiro esculpe placas personalizadas para estabelecimentos comerciais e deseja um programa que faça orçamentos das placas que produz, considerando as seguintes informações:
 - a) O valor mínimo de qualquer placa é de R\$ 300,00;
 - b) Placas de angelim custam R\$ 150,00 adicionais, mas placas de pinus não possuem nenhum custo extra;
 - c) Frases com até 12 caracteres estão incluídas no valor mínimo; para frases maiores, são cobrados R\$ 15,00 por caractere;

d) Para placas com dizeres brancos ou pretos não se cobra adicional,
mas se ele contiver letras douradas, cobra-se R\$ 60,00 a mais.

Baseado nessas informações, construa um algoritmo que leia o número de um orçamento, o nome do cliente, tipo de madeira (angelim ou pinus), número de caracteres da mensagem e a cor dos caracteres (branco, preto ou dourado). Ao final, imprima todos os dados de entrada e o preço da placa orçada.

- 9) Escreva um programa que peça ao usuário para fornecer um dia, mês e o ano arbitrários e determine se esses dados correspondem a uma data válida. Não deixe de considerar que existem meses com 30 e 31 dias, e que fevereiro pode ter 28 ou 29 dias, dependendo se o ano for bissexto. Considere que um ano é bissexto quando for divisível por 4.
- 10) Construa um algoritmo que leia uma data qualquer (dia, mês e ano) e calcule a data do próximo dia. Lembre-se que em anos bissextos o mês de fevereiro tem 29 dias. Lembre-se que um ano é bissexto quando for divisível por 4.
- 11) Crie um algoritmo para um jogo de adivinhação, onde o usuário tenta adivinhar um número aleatório gerado pelo computador. Esse número aleatório é inteiro e não negativo, e deve ser escolhido dentro de uma faixa estabelecida pelo usuário (por exemplo, o usuário pode estipular que esse número varie entre 0 e 10 ou entre 22 e 48, por exemplo). Após o usuário tentar adivinhar qual foi o número gerado, o algoritmo deve escrever esse número e dizer se indicar se o palpite do jogador estava correto, muito alto ou muito baixo.

Dica: Para gerar um número aleatório utilize a função <u>randint do módulo</u> <u>random</u>.

- 12) Uma certa operadora de telefonia móvel cobra R\$ 5,00 mensais pelo seu plano básico de transmissão de SMS (mensagens de texto), sendo que taxas adicionais são cobradas conforme as regras abaixo:
 - a) As primeiras 60 mensagens estão incluídas no plano básico;

- b) b. Se o usuário mandar mais de 60 mensagens, cada mensagem adicional custará R\$ 0.05, até o limite de 180 mensagens.
- c. Acima de 180 mensagens, o valor de cada uma delas passa a R\$ 0,10;
- d) d. A soma dos impostos estaduais e federais amonta a 12% do valor de cada fatura.

Com base nessas informações, crie um algoritmo para ler o número total de mensagens enviadas por um usuário. Ao final, calcule o valor da conta e mostre todos os dados, incluindo o valor da conta com e sem impostos.

- 13) Sabendo que há 60 segundos em um minuto, 3.600 segundos em uma hora e 86.400 segundo em um dia, crie um algoritmo que a partir de uma determinada quantidade de segundos fornecida pelo usuário, converte-a da seguinte maneira:
 - a) Se a quantidade de segundos for maior ou igual a 60, o programa deverá exibir o número de minutos equivalente;
 - b) Se a quantidade de segundos for maior ou igual a 3.600, o programa deverá exibir o número de horas equivalente;
 - c) Se a quantidade de segundos for maior ou igual a 86.400, o programa deverá exibir o número de dias equivalente.
- 14) Faça um algoritmo para ler a temperatura atual e conforme leitura, imprima o resultado de acordo com a tabela abaixo.

Temperatura	Resultado
até 15°	Muito frio
de 16° à 22°	Frio
de 23° à 26°	Agradável
de 27° à 30°	Quente
31° ou mais	Muito quente

- 15) Construa um algoritmo que, a partir de duas cores primárias fornecidas pelo usuário, determine qual cor seria obtida pela mistura delas. As cores vermelho, azul e amarelo são chamadas de cores primárias porque não podem ser obtidas a partir de outras cores e, quando misturadas, resultam numa cor secundária, de acordo com as seguintes regras:
 - a) vermelho + azul = roxo;
 - b) vermelho + amarelo = laranja;
 - c) azul + amarelo = verde.

Se o usuário inserir algo diferente de "vermelho", "azul" ou "amarelo", o programa deverá exibir uma mensagem de erro. Caso contrário, o programa deve exibir o nome da cor secundária resultante.

- 16) Construa um algoritmo que, a partir do valor do comprimento dos três lados de um triângulo, classifique-o em equilátero, isósceles ou escaleno. Lembre, um triângulo é equilátero quando o comprimento de todos os seus lados for igual, é isósceles quando apenas um dos lados tiver comprimento diferente e é escaleno quando todos os lados tiverem comprimentos diferentes dos demais lados.
- 17) Faça um programa que pergunte ao usuário se ele quer passar uma temperatura de Fahrenheit para Celsius ou de Celsius para Fahrenheit, e que, a partir da resposta do usuário, faça a devida conversão.
- 18)As Organizações XTC resolveram dar um aumento de salário aos seus colaboradores e lhe contrataram para desenvolver o programa que calcula os reajustes. Faça um programa que recebe o salário de um colaborador e o reajuste segundo o seguinte critério, baseado no salário atual:
 - a) salários até R\$ 280,00 (incluindo): aumento de 20%
 - b) salários entre R\$ 280,00 e R\$ 700,00: aumento de 15%
 - c) salários entre R\$ 700,00 e R\$ 1500,00: aumento de 10%
 - d) salários de R\$ 1500,00 em diante: aumento de 5%

Após o aumento ser realizado informe na tela:

a) o salário antes do reajuste;

- b) o percentual de aumento aplicado;
- c) o valor do aumento;
- d) o novo salário, após o aumento.
- 19) Faça um Programa que leia um número inteiro menor que 1000 e imprima a quantidade de centenas, dezenas e unidades do mesmo. Exemplos:

326 = 3 centenas, 2 dezenas e 6 unidades

12 = 1 dezena e 2 unidades

20) Faça um programa que leia as duas notas parciais obtidas por um aluno numa disciplina ao longo de um semestre, e calcule a sua média. A atribuição de conceitos obedece à tabela abaixo:

Média de Aproveitamento	
Entre 9.0 e 10.0 Conceito	А
Entre 7.5 e 8.9	В
Entre 6.0 e 7.4	С
Entre 4.0 e 5.9	D
Entre 0 e 3.9	Е

O algoritmo deve mostrar na tela as notas, a média, o conceito correspondente e a mensagem:

- a) APROVADO se o conceito for A, B ou C.
- b) REPROVADO se o conceito for D ou E.

Desafio

Crie um algoritmo que funcione como um jogo de loteria, conforme as seguintes regras:

- a) O algoritmo deve gerar três números aleatórios entre 0 e 9;
- b) O usuário deve fornecer um palpite com três números, também entre 0 e 9;

c) Cada um dos palpites do usuário deve ser comparado com os números aleatórios, de acordo com a tabela abaixo:

Números Correspondentes	Número de pontos
Nenhum número coincidente	0
Acertar um número	10
Acertar dois números	100
Acertar os três números, mas não na mesma ordem em que foram gerados	1000
Acertar três números na mesma ordem que os números aleatórios	1.000.000