

Quadrilaterals Ex 14.4 Q6

Answer:

In $\triangle ABC$, BM and CN are perpendiculars on any line passing through A. Also.

We need to prove that ML = NL

From point L let us draw $LP \perp AN$

It is given that $\mathit{BM} \perp \mathit{AN}$, $\mathit{LP} \perp \mathit{AN}$ and $\mathit{CN} \perp \mathit{AN}$

Therefore,

 $BM \parallel LP \parallel CN$

Since, L is the mid points of BC,

Therefore intercepts made by these parallel lines on MN will also be equal Thus,

MP = NP

Now in ΔLMN ,

MP = NP

And $LP \perp AN$. Thus, perpendicular bisects the opposite sides.

Therefore, ΔLMN is isosceles.

Hence ML = NL

Hence proved.

Quadrilaterals Ex 14.4 Q7

Answer:

We have $\triangle ABC$ right angled at B.

It is given that AB = 9cm and AC = 15cm

D and E are the mid-points of sides AB and AC respectively.

(i) We need to calculate length of BC.

In AABC right angled at B:

By Pythagoras theorem,

$$BC = \sqrt{AC^2 - AB^2}$$

$$BC = \sqrt{15^2 - 9^2}$$

$$BC = \sqrt{12^2}$$

$$BC = \boxed{12}$$

Hence the length of BC is 12cm

(ii) We need to calculate area of ΔADE

In ΔABC right angled at B, D and E are the mid-points of AB and AC respectively.

Theorem states, the line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.

Therefore, $DE \parallel BC$

Thus, $\angle ADE = \angle ABC$ (Corresponding angles of parallel lines are equal)

And

$$DE = \frac{1}{2}BC$$

$$DE = \frac{1}{2}(12\text{cm})$$

area of
$$\triangle ADE = \frac{1}{2}(AD)(DE)$$

D is the mid-point of side AB

Therefore, area of $\triangle ADE = \frac{1}{2} \left(\frac{AB}{2} \right) (DE)$

$$=\frac{1}{2}\left(\frac{9}{2}\right)(6)$$

$$=\frac{27}{2}$$

Hence the area of $\triangle ADE$ is $\boxed{13.5 \text{cm}^2}$

********* END ********