5.1

Fonctions dérivées

Spé Maths 1ère - JB Duthoit

5.1.1 Exemple

On sait que la fonction définie sur \mathbb{R} par $f(x) = x^2$ est dérivable en tout nombre réel a, et que f'(a) = 2a.

 $lue{}$ On dit alors que f est dérivable sur \mathbb{R} !

5.1.2 Définition

Définition

Soit f une fonction définie sur un intervalle I. Si f est dérivable en tout réel a de I, on dit que f est dérivable sur I.

La fonction qui à tout x de I associe le nombre dérivé f'(x) est appelée **fonction dérivée de** f **sur** I. On la note f'.

5.1.3 Fonctions dérivées des fonctions de référence

Propriété

Fonction	Ensemble de	Ensemble de	fonction
usuelle	définition	$dcute{e}rivabilitcute{e}$	dérivée
f(x) =	\mathbb{R}	\mathbb{R}	f'(x) = m
mx + p			
$f(x) = x^2$	\mathbb{R}	\mathbb{R}	f'(x) = 2x
$f(x) = x^3$	\mathbb{R}	\mathbb{R}	$f'(x) = 3x^2$
$f(x) = \frac{1}{x}$	\mathbb{R}^*	\mathbb{R}^*	$f'(x) = -\frac{1}{x^2}$
$f(x) = x^4$	\mathbb{R}	\mathbb{R}	$f'(x) = -\frac{x^2}{x^2}$ $f'(x) = 4x^3$ $f'(x) = 1$
$f(x) = \sqrt{x}$	$[0; +\infty[$	$]0;+\infty[$	$f'(x) = \frac{1}{2\sqrt{x}}$