Вариационные методы.

Рассмотрим итерационные методы вида:

$$B\frac{x^{(k+1)} - x^{(k)}}{\tau_{k+1}} = -(Ax^{(k)} - f), \tag{1}$$

в которых параметр τ_{k+1} выбирается исходя из условия минимизации погрешности $\left\| \mathcal{E}^{(k+1)} \right\|_D = (D\mathcal{E}^{(k+1)}, \, \mathcal{E}^{(k+1)})$, где вектор погрешности $\mathcal{E}^{(k)} = x^* - x^{(k)}$, а x^* — точное решение системы Ax = f. Здесь D — заданная симметричная, положительно определенная матрица. В зависимости от выбора матриц B и D можно получить различные итерационные методы. Преимуществом таких методов является то, что они не требуют знания границ спектра матрицы $B^{-1}A$.

Вычисления по формуле (1) выполняются в следующей последовательности:

- 1. Вычисляем вектор невязки $r^{(k)} = f Ax^{(k)}$.
- 2. Решая систему ЛАУ $B\omega^{(k)} = r^{(k)}$, вычисляем вектор поправки $\omega^{(k)}$.
- 3. Вычисляем параметр au_{k+1} , исходя из условия минимизации энергетической нормы погрешности $\|arepsilon^{(k+1)}\|_D = (Darepsilon^{(k+1)}, \ arepsilon^{(k+1)})$.
 - 4. Вычисляем очередное приближение x_{k+1} по формуле $x^{(k+1)} = x^{(k)} + \tau_k \omega^{(k)}$.
- 5. Вычисления продолжаем до тех пор, пока относительная норма невязки $\|r^{(k)}\|/\|f\|$ не превосходит заданную точность δ .

Параметр au_{k+1} выбирают исходя из условия минимизации нормы вектора погрешности и полагают равным:

$$\tau_{k+1} = \frac{\left(D\omega^{(k)}, \varepsilon^{(k)}\right)}{\left(D\omega^{(k)}, \omega^{(k)}\right)}.$$
 (2)

Дальнейшее упрощение формулы (2) возможно за счет выбора матрицы D. Рассмотрим мотивы выбора матрицы D:

1. Пусть $A = A^T > 0$. Можно взять D = A, тогда (2) примет вид:

$$\tau_{k+1} = \frac{\left(A\omega^{(k)}, \varepsilon^{(k)}\right)}{\left(A\omega^{(k)}, \omega^{(k)}\right)} = \frac{\left(\omega^{(k)}, A^T \varepsilon^{(k)}\right)}{\left(A\omega^{(k)}, \omega^{(k)}\right)} = \frac{\left(\omega^{(k)}, A \varepsilon^{(k)}\right)}{\left(A\omega^{(k)}, \omega^{(k)}\right)} = \frac{\left(\omega^{(k)}, r^{(k)}\right)}{\left(A\omega^{(k)}, \omega^{(k)}\right)}. \tag{3}$$

Алгоритм, в котором параметр au_{k+1} выбирают по формуле (3), называют **методом скорейшего спуска**.

2. Пусть $\det A \neq 0$. Тогда можно взять $D = A^T A$ и уравнение (2) примет вид:

$$\tau_{k+1} = \frac{\left(A^{T}A\omega^{(k)}, \varepsilon^{(k)}\right)}{\left(A^{T}A\omega^{(k)}, \omega^{(k)}\right)} = \frac{\left(A\omega^{(k)}, \left(A^{T}\right)^{T}\varepsilon^{(k)}\right)}{\left(A\omega^{(k)}, \left(A^{T}\right)^{T}\omega^{(k)}\right)} = \frac{\left(A\omega^{(k)}, r^{(k)}\right)}{\left(A\omega^{(k)}, A\omega^{(k)}\right)}.$$
 (4)

Алгоритм, в котором параметр au_{k+1} выбирают по формуле (4), называют **методом** минимальных невязок.

3. Пусть A>0, $B=B^T>0$. Тогда в качестве D можно выбрать $D=A^TB^{-1}A$. Очевидно, что $D=D^T>0$. Тогда уравнение (2) примет вид:

$$\tau_{k+1} = \frac{\left(A^{T} B^{-1} A \omega^{(k)}, \varepsilon^{(k)}\right)}{\left(A^{T} B^{-1} A \omega^{(k)}, \omega^{(k)}\right)} = \frac{\left(A \omega^{(k)}, B^{-1} A \varepsilon^{(k)}\right)}{\left(B^{-1} A \omega^{(k)}, A \omega^{(k)}\right)} = \frac{\left(A \omega^{(k)}, \omega^{(k)}\right)}{\left(B^{-1} A \omega^{(k)}, A \omega^{(k)}\right)}.$$
 (5)

Алгоритм, в котором параметр τ_{k+1} выбирают по формуле (5), называют **методом** минимальных поправок.

Задание

Решить систему ЛАУ Ax=f, используя метод скорейшего спуска, метод минимальных невязок и минимальных поправок. В качестве матрицы A взять матрицу из предыдущей лабораторной (матрицу Пуассона), $n\!=\!10$. Правая часть f определяется вектором случайных значений между a и b (значения чисел a и b определяются преподавателем при проверке работы программы). Точность взять равной $\delta=10^{-6}$. Матрицу B взять равной матрице Якоби (диагональ матрицы A). Нарисовать графики убывания относительной нормы невязки $\|r^{(k)}\|/\|f^{(k)}\|$ для трех методов.

