空位与缺陷

2019年3月5日 7:	50	
空位形成能	晶体内的一个原子放在晶体的表面(不改变晶体的表面能)所需要的能量数值偏大,没有考虑空位周围原子松弛以及电子状态的影响(空位导致电子衍射,电阻增加)计算方法: 1.自由电子理论计算空位形成能 2.德拜温度或金属的熔点计算空位形成能 3.原子对作用能来计算空位形成能(第一性原理) ★形成能和结合能有密切关系——结合能愈大,熔点愈高、形成能也愈大空位引起的畸变较小,形成能计算中,电子能占主要地位,畸变能只引起附加的校正项。间隙原子的畸变能较大	
空位形成能的测量方法		
空位的平衡浓度	原子的热运动使能量起伏,原子离开正常位置后产生空同时自间隙原子可以和空位结合(杂质原子不能),说明可能存在一个平衡浓度。在某一温度下,平衡空位浓度的自由能最小空位仪器组态熵 ΔS_c 和振动熵 ΔS_f 的增加	

间隙原子平衡浓 $C_i = ae^{-\frac{E_f^i}{kT}}$

度	$\sigma_l = q\sigma$	
双空位	平衡关系: $AB \leftrightarrow A + B$ 令 E_b 为空位对形成时释放的能量, $E_{2f} = 2E_f - E_b$ $C_{vv} = ZA'e^{\frac{-E_2f}{kT}},$ z为配位数 C_v	
讨论	 1.T上升, C_v增加,以指数方式增加一般A在1-10之间 2.近熔点时Cv~10⁻³—10⁻⁴; (Cu, 300K 4*10⁻⁵, 1350K 10⁻³) 3.间隙原子形成能较大约为空位3-4倍,对应的平衡浓度非常小 4.T降低,C_{vv}会增加,结合能越大,温度越低,空位结合成双空位倾向增加 ★5.空位是热力学平衡缺陷,位错不是 	
点缺陷的移动	空位移动是基体原子的反向迁移	
迁移激活能的测 量方法	自扩散——空位机制(驱动力——化学势) 空位迁移激活能 ΔU_m =自扩散激活能 Q -空位形成能 E_f 分段等温退火法: 电阻下降的速率决定与空位消失的速率 方法:测不同温度下 T_1 , T_2 等温达到同样的电阻下降值所用 间隙原子的迁移速率大于空位的迁移速率	
平衡及非平衡点 缺陷的产生	1.平衡点缺陷 2.高温淬火 3.金属间化合物失配 4.辐照、高能粒子轰击 5.冷加工、范性变形(再结晶温度以下的加工,位错的攀移 与点缺陷有关) 6.金属氧化	