

Suresh Devasahayam
Professor of Bioengineering
Christian Medical College
Vellore

Outline

- Need for measuring human movement
- Non-contact measurement
- Camera based measurement

The forward problem

- Given:
 - the geometry of the skeletal system
 - Force from the muscles
- Calculate the movement of limb segements
- Calculate external forces on the body

The inverse problem: movement analysis

Determining the physiological properties from the observed movement:

What are the control signals from the nervous system?

What are the characteristics of the musculoskeletal system?

Analysis of gait

Observe

Limb movement

Ground reaction forces

Muscle activity

Determine:

joint kinematics

Net moments

Power

Energy expenditure

Three parts of gait analysis

Kinematics Kinetics EMG

Limb movement in space

Positions determined every 0.01 second:

Foot

Shank

Thigh

Pelvis

Kinematics

Get joint positions at successive time intervals

Calculate position changes of limb segments:

Translation Rotation

Calculate translational velocities, V_x , V_y , V_z

Calculate rotational velocities, ρ_x , ρ_y , ρ_z

Similarly, calculate accelerations

$$Velocity = \frac{Current position - previous position}{time interval between measurement}$$

$$Acceleration = \frac{Current velocity - previous velocity}{time interval}$$

Segment movement forces

Estimate mass & moment of inertia for each segment (foot, shank, thigh) from anthropometric data

Using the acceleration calculated from the motion data, calculate the forces effected on these body segments

External forces on the body

Normal walking – only ground reaction forces Sports – forces due to ball on limb/bat Assisted walking – crutch, walker, etc.

Muscles involved in normal walking

Ankle flexion/extension

Tibialis Anterior

Gastrocnemius

Knee flexion/extension

Medial Hamstrings

Vastus Lateralis

Hip flexion/extension

Rectus Femoris

Gluteus maximus

Hip adduction/abduction

Adductor Longus

Tensor Fascia Lata

EMG measurement locations

Three points on a limb and angle of joint

C:
$$(x_C, y_C, z_C)$$

A: (x_A, y_A, z_A)

B: (x_B, y_B, z_B)

$$a = BC = \sqrt{(x_B - x_C)^2 + (y_B - y_C)^2 + (z_B - z_C)^2}$$

$$b = AC = \sqrt{(x_A - x_C)^2 + (y_A - y_C)^2 + (z_A - z_C)^2}$$

$$c = AB = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2 + (z_A - z_B)^2}$$

$$\cos(B) = \frac{a^2 + c^2 - b^2}{2ac}$$

Camera placement

Room co-ordinates to camera image co-ordinates

camera
$$X \Rightarrow A = k_p(-z_A, y_A), B = k_p(-z_B, y_B), C = k_p(-z_C, y_C)$$

camera $Z \Rightarrow A = k_q(x_A, y_A), B = k_q(x_B, y_B), C = k_q(x_C, y_C)$

Camera images

Camera image co-ordinates

$$camera \ \ Z \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} k_q x_A \\ k_q y_A \\ k_q z_A \\ 1 \end{bmatrix} = \begin{bmatrix} k_q x_A \\ k_q y_A \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} Image_{Horiz} \\ Image_{Vert} \\ - \\ - \end{bmatrix} \qquad camera \ \ X \Rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} k_p x_A \\ k_p y_A \\ k_p z_A \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ k_p y_A \\ -k_p z_A \\ 1 \end{bmatrix} = \begin{bmatrix} - \\ Image_{Horiz} \\ Image_{Horiz} \\ - \end{bmatrix}$$

Room co-ordinate system

Magnification and depth dependent scale factor

Multiple camera systems

3D reconstruction

3D reconstruction from cameras

- Image of Marker A in camera I co-ords: x'_A, y'_A
- Image of Marker A in camera II co-ords:x"_A, y"_A
- Knowing positions of cameras I & II in room coordinates, we can calculate, x, y, z in room coordinates

How many cameras?

- Theoretical minimum number of cameras is 2
- The theoretical minimum assumes infinite spatial resolution for the imaging system, no distortion, visibility of all markers always, by each camera, etc.
- In practice these assumptions are not true
- The 3D reconstruction is done by SVD (i.e., not by direct solution) and the accuracy improves with more cameras

Measurement of ground forces

- Force vector: direction and magnitude of force by foot on the ground
- Centre of pressure determines the position of the force vector (i.e., whether at the heel, toe, or in-between)

Force plate recording

Force plate measurement

- Horizontal forces in forward-backward direction and lateral (left-right) direction are measured by all four pillars
- Centre of pressure is calculated from the relative vertical force on each pillar