Homework 0

My Name

1 Model Building

1.1 Data Preprocessing

Multicollinearity Analysis: Generate a correlation diagram of the covariates to investigate the relationship between variables. As shown in Figure 1a and Table 1, ...

Transformation and Residual Analysis: The next step is to check model assumptions and transformation.

1.2 Model Summary

The estimated model is shown as below. The residual standard error is 0.3 and the AIC value is -67. The detail of the summary is shown in Output 1.

$$\tilde{y} = 12 + 0.2 * V5$$
$$-0.01 * V15 : V12$$
$$y = (75\tilde{y} + 1)^{2/3} - 20$$

2 Important Variables and Reliability Assessment

Combing the result of model comparison, the final model ...

3 Model Comparison

Compare the proposed model $\mathbf{m1}$ with candidate models: regression tree, random forest, bagging [Faraway(2016)], ... The optimal lo and gam model are as follows:

Stat 8051 You Name

Problem 1

```
(a).
> # library(oehlert)
> library(faraway)
> library(MASS)
> # m<-lm(durability ~ brand, data = ex11.3)
> # boxcox(m)
> # anova(m)
> n<-6;g<-5
> 1<-(80.45*qf(0.005,25,4)-1)/n;u<-(80.45*qf(0.995,25,4)-1)/n
> l;u
[1] 2.606462
[1] 268.0322
```

I don't believe this interval has 99% coverage because the assumption may not satisfied. Brand 1 is very different form other brands, which means α_1 may not follow a normal distriution.

(b).[1] 0.7930562

[1] 0.9912905

References

[Faraway(2016)] J. J. Faraway, Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman and Hall/CRC, 2016.

Stat 8051 You Name

Appendices

Appendix A: Figures

Figure 1: Diagnostics Plots of $lm(y \sim .)$

Figure 2: Scatter plot between response and variables

Stat 8051 You Name

Appendix B: Tables

Table 1: Grouping of Variables

$\overline{G0}$	1	2	3	4
G1	5	6	7	

Table 2: Variables selected and VSD values

method	thod Variables		ARM			BIC		
тетои	v arrabies	VSD	VSD_minus	VSD_plus	VSD	VSD_minus	VSD_plus	
LASSO	{1 2 3 4}	0	0	0	0	0	0	
SCAD	{1 2 3}	0	0	0	0	0	0	
MCP	{1 2}	0	0	0	0	0	0	

Table 3: Variable Importance

Metric	Importance Order		
IncMSE	1 2 3 4		
IncNodePurity	1 2 3 4		
SOIL	1 2 3 4		
	(leftmost is the most important)		

Table 4: Uncertainty Assessment

Me	S={1, 2, 3, 4}	
	Sequential	0
Instability	Bootstrap	0
	Perturbation	0
ARM	VSD	0
	VSD_minus	0
	VSD_plus	0
	F-measure	0
	G-measure	0
BIC	VSD	0
	VSD_minus	0
	VSD_plus	0
	F-measure	0
	G-measure	0

Table 5: Model Comparison

Comparison	Winner	Winning Fraction of m1
m1 vs. Regression Tree	m1	1
m1 vs. random forest	m1	1
m1 vs. bagging	m1	1
m1 vs. loess	m1	1
m1 vs. gam	gam	0

Stat 8051You Name

Table 6: Cross Validation MSE and Absolute Error

Model	CV MSE	CV Mean Absolute Error
m1	0	0
Regression Tree	0	0
random forest	0	0
bagging	0	0
loess	0	0
gam	0	0

Appendix C: R output

Output 1

> summary(m3.1)

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 12.915676 0.502463 25.705 < 2e-16 *** ۷5 0.287077 0.108717 2.641 0.00873 ** ۷8 -0.033139 0.020466 -1.619 0.10649 V11 0.402557 0.042078 9.567 < 2e-16 ***

Residual standard error: 0.3505 on 289 degrees of freedom

> extractAIC(m3.1) [1] 10.0000 -617.0269