CAP 3

CARACTERÍSTICAS DOS SISTEMAS DE CONTROLE (DISCRETO)

SUMÁ	RIO	
3.1.	INTRODUÇÃO	1
3.2.	ERRO NOS SISTEMAS DE CONTROLE	1
3.2.1.	ERRO DE MALHA FECHADA	1
3.2.2.	ERRO DA RESPOSTA DA PLANTA	1
3.2.3.	ERRO DA RESPOSTA AO DISTÚRBIO	2
3.2.4.	ERRO DE ESTADO ESTACIONÁRIO	2
3.2.5.	ERROS EM SISTEMAS COM REALIMENTAÇÃO UNITÁRIA	4
3.2.5.1	CONSTANTE DE ERRO ESTÁTICO DE POSIÇÃO	4
3.2.5.2	CONSTANTE DE ERRO ESTÁTICO DE VELOCIDADE	4
3.2.5.3	CONSTANTE DE ERRO ESTÁTICO DE ACELERAÇÃO	4
3.3.	SENSIBILIDADE DE SISTEMAS DE CONTROLE	5
3.4.	APROXIMAÇÃO LINEAR DE SISTEMAS FÍSICOS	5
	SISTEMAS LINEARES SUBMETIDOS A DISTÚRBIOS	
3.4.2.	"LINEARIZAÇÃO" DE SISTEMAS FÍSICOS	5
	MATLAB	
	LISTA DE EXERCÍCIOS	

3.1. INTRODUÇÃO

As características principais em sistemas de controle são abordadas neste capítulo, onde são tratados os assuntos relativos aos erros em sistemas de controle, sensibilidade e sistemas lineares.

3.2. ERRO NOS SISTEMAS DE CONTROLE

Idem à sistemas analógicos, porém utilizando a Transformada \mathcal{Z} .

3.2.1. ERRO DE MALHA FECHADA

Idem à sistemas analógicos, porém utilizando a Transformada \mathcal{Z} .

Exemplo 1 — Considere um sistema de controle com realimentação unitária cuja função de transferência do ramo direto seja

$$G(z) = \frac{1}{z^2 + z - 1/2}$$

Usando o Matlab, plote o gráfico do erro de malha fechada para uma entrada em degrau unitário.

SOLUÇÃO

$$\frac{E_c(z)}{R(z)} = \frac{1}{1 + G(z)H(z)} = \frac{1}{1 + \frac{1}{z^2 + z - 0.5}} = \frac{z^2 + z - 0.5}{z^2 + z + 0.5}$$

$$E_c(z) = \frac{z^2 + z - 0.5}{z^2 + z + 0.5}R(z)$$

3.2.2. ERRO DA RESPOSTA DA PLANTA

Idem à sistemas analógicos, porém utilizando a Transformada \mathcal{Z} .

Exemplo 2 — Considere um sistema de controle com realimentação unitária cuja função de transferência do ramo direto seja

$$G(z) = \frac{1}{z^2 + z - 1/2}$$

Usando o Matlab, plote o gráfico do erro da resposta da planta para uma entrada em degrau unitário.

SOLUÇÃO

$$T(z) = \frac{G(z)}{1 + G(z)H(z)} = \frac{\frac{1}{z^2 + z - 1/2}}{1 + \frac{1}{z^2 + z - 1/2}} = \frac{1}{z^2 + z + 0.5}$$

$$E_s(z) = R(z)(1 - T(z)) = R(z)\left(1 - \frac{1}{z^2 + z + 0.5}\right) = R(z)\left(\frac{z^2 + z - 0.5}{z^2 + z + 0.5}\right)$$

3.2.3. ERRO DA RESPOSTA AO DISTÚRBIO

Idem à sistemas analógicos, porém utilizando a Transformada \mathcal{Z} .

3.2.4. ERRO DE ESTADO ESTACIONÁRIO

Idem à sistemas analógicos, porém utilizando a Transformada Z.

Para cálculo do erro de estado estacionário, utiliza-se o Teorema do Valor Final, ou seja,

$$e_{SS}[n] = \lim_{n \to \infty} e_S[n] = \lim_{z \to 1} [(1 - z^{-1})E_S(z)] = E_{SS}(z)$$

Para cálculo do erro de estado estacionário devido ao distúrbio:

$$e_{ssd}[n] = \lim_{n \to \infty} e_d[n] = \lim_{z \to 1} [(1 - z^{-1})E_d(z)] = E_{ssd}(z)$$

Exemplo 3 - Considere um sistema de controle com realimentação unitária cuja função de transferência de malha fechada seja

$$T(z) = \frac{Kz + b}{z^2 + az + b}$$

Para uma entrada em degrau nesse sistema:

- a) Calcule o erro da resposta da planta, e
- b) Calcule o erro de malha fechada,
- c) Compare e explique os porquês dos resultados das letras (a) e (b),
- d) Calcule o erro de estado estacionário do sistema.

a)
$$E_{s}(z) = R(z)(1 - T(z))$$

$$E_{s}(z) = \frac{z}{z - 1} \left(1 - \frac{Kz + b}{z^{2} + az + b} \right)$$

$$E_{s}(z) = \frac{z}{z - 1} \left(\frac{z^{2} + az + b - Kz - b}{z^{2} + az + b} \right)$$

$$E_{s}(z) = \frac{z}{z - 1} \left(\frac{z^{2} + (a - K)z}{z^{2} + az + b} \right)$$

$$E_{s}(z) = \frac{z}{z - 1} \left(\frac{z^{2} + (a - K)z}{z^{2} + az + b} \right)$$

$$E_{s}(z) = \frac{z}{z^{3} + (a - 1)z^{2} + (b - a)z - b}$$

É necessário obter a FTMA
$$T(z) = \frac{G(z)}{1 + G(z)H(z)} \implies G(z) = \frac{T(z)}{1 - T(z)}$$

$$G(z) = \frac{kz + b}{z^2 + z(a - k)}$$

$$E_c(z) = \frac{R(z)}{1 + G(z)H(z)} = \frac{\frac{z}{z - 1}}{1 + G(z)}$$

$$E_c(z) = \frac{\frac{z}{z - 1}}{1 + \frac{kz + b}{z^2 + z(a - k)}} = \frac{\frac{z}{z - 1}}{\frac{z^2 + z(a - k) + kz + b}{z^2 + z(a - k)}} = \frac{z}{z - 1} \left(\frac{z^2 + z(a - k)}{z^2 + az + b}\right)$$

$$E_c(z) = \frac{z^2 + z + a - K}{z^3 + (a - 1)z^2 + (b - a)z - b}$$

c) Os erros são iguais devido à realimentação ser unitária.

d)
$$E_{SS}(z) = \lim_{z \to 1} \left[(1 - z^{-1}) E_S(z) \right] = \lim_{z \to 1} \left[\left(\frac{z - 1}{z} \right) \frac{z^2 + z + a - K}{z^3 + (a - 1)z^2 + (b - a)z - b} \right]$$

$$E_{SS}(z) = \lim_{z \to 1} \left[\frac{z^3 + (a - K - 1)z - a + K}{z^4 + (a - 1)z^3 + (b - a)z^2 - bz} \right] \quad (l'Hospital)$$

$$E_{ss}(z) = \lim_{z \to 1} \left[\frac{2z^2 + a - K - 1}{4z^3 + 3(a - 1)z^2 + (b - a)z - b} \right]$$

$$E_{ss}(z) = \frac{2 + a - K - 1}{4 + 3(a - 1) + b - a - b}$$

$$E_{ss}(z) = \frac{2 + a - K - 1}{1 + 2a}$$

3.2.5. ERROS EM SISTEMAS COM REALIMENTAÇÃO UNITÁRIA

Os sistemas de controle podem ser classificados de acordo com a habilidade em seguir os sinais de entrada. Assim, um sistema de controle com realimentação unitária tem a seguinte função de transferência de malha aberta:

$$G(z) = \mathcal{Z}\left\{ \frac{K(T_a s + 1)(T_b s + 1) \cdots (T_c s + 1)}{s^N(T_1 s + 1)(T_2 s + 1) \cdots (T_p s + 1)} \right\}$$

O polo de multiplicidade N no denominador é quem determina o tipo desse sistema, assim, um sistema é chamado do tipo 0 se N=0, do tipo 1 se N=1, e assim sucessivamente. Essa classificação é diferente da ordem do sistema. Polos na origem no plano S correspondem a polos em 1 no plano S, assim, nos sistemas discretos, o tipo corresponde à multiplicidade do polo no ponto 1.

3.2.5.1. CONSTANTE DE ERRO ESTÁTICO DE POSIÇÃO

O termo "posição" refere-se ao valor do parâmetro de saída. O erro é, então, definido para uma entrada em degrau como:

$$K_p = \lim_{z \to 1} (z - 1) \frac{G(z)}{z}$$

3.2.5.2. CONSTANTE DE ERRO ESTÁTICO DE VELOCIDADE

O termo "velocidade" refere-se ao valor da taxa de variação do parâmetro de saída. O erro é, então, definido para uma entrada em rampa como:

$$K_v = \frac{1}{T_s} \lim_{z \to 1} \left[(z - 1)^2 \frac{G(z)}{z} \right]$$

3.2.5.3. CONSTANTE DE ERRO ESTÁTICO DE ACELERAÇÃO

O termo "aceleração" refere-se ao valor da posição a uma entrada em aceleração. O erro é, então, definido para uma entrada em parábola unitária como:

$$K_a = \frac{1}{T_s^2} \lim_{z \to 1} \left[(z - 1)^3 \frac{G(z)}{z} \right]$$

O quadro abaixo apresenta o resumo dos valores de erro estacionário para sistemas com realimentação unitária.

	ENTRADAS			
SISTEMAS	DEGRAU (K_p)	RAMPA (K_v)	PARÁBOLA (K_a)	
	$u[nT_s] = 1$	$r[nT_s] = n$	$p[nT_s] = \frac{1}{2}n^2$	
Tipo 0	$e_{ss}[n] = \frac{1}{1 + K_p}$	$e_{ss}[n] = \infty, \qquad K_v = 0$	$e_{ss}[n] = \infty, \qquad K_a = 0$	
Tipo 1	$e_{ss}[n]=0, \qquad K_p=\infty$	$e_{ss}[n] = \frac{1}{K_v}$	$e_{ss}[n] = \infty, \qquad K_a = 0$	
Tipo 2	$e_{ss}[n]=0, \qquad K_p=\infty$	$e_{ss}[n]=0, \qquad K_v=\infty$	$e_{ss}[n] = \frac{1}{K_a}$	

Os sistemas com constantes infinitas são incapazes de seguir as respectivas entradas em regime permanente.

Os <u>erros estáticos são indicativos do desempenho em regime permanente</u>. Para melhorar o desempenho em regime permanente, é necessário aumentar o tipo do sistema, comprometendo a sua estabilidade.

3.3. SENSIBILIDADE DE SISTEMAS DE CONTROLE

Idem à sistemas analógicos, porém utilizando a Transformada Z.

3.4. APROXIMAÇÃO LINEAR DE SISTEMAS FÍSICOS

Idem à sistemas analógicos, porém utilizando sinais discretos.

3.4.1. SISTEMAS LINEARES SUBMETIDOS A DISTÚRBIOS

Idem à sistemas analógicos, porém utilizando a Transformada Z.

3.4.2. "LINEARIZAÇÃO" DE SISTEMAS FÍSICOS

Será aplicado apenas para sistemas analógicos.

3.5. MATLAB

Funções úteis: diff, limite, syms.

3.6. LISTA DE EXERCÍCIOS

Livro KUO 10^aed: