Cálculo Vetorial

INTEGRAIS MÚLTIPLAS, DE LINHA E DE SUPERFÍCIE

raphael.tinarrage@fgv.br

https://raphaeltinarrage.github.io/

Página web do curso. Informações sobre a agenda e os deveres de casa podem ser encontradas em https://raphaeltinarrage.github.io/EMApTopology.html.

Bibliografia.				
	Integral 1D	[Pin10, MHB11]	[Spi06, PCJ12]	[Gou20]
	Integral 2D & 3D	[PM09, CB22]	[MT12]	
	Para ir além		[KKS04]	

Conteúdo

1	Integrais 1D - Lembrete de integração	2
\mathbf{A}	Notações	14
В	Indicações para os exercícios	14
\mathbf{C}	Referências	18

Conteúdo detalhado

1	Inte	grais 1	D - Lembrete de integração	2
	1.1 Integral de Riemann			
		1.1.1	Somas de Riemann	2
		1.1.2	Somas de Darboux	5
		1.1.3	Propriedades fundamentais	6
		1.1.4	Passagem ao limite sob o sinal de integral	7
	1.2	Técnic	as de integração e integral imprópria	8
		1.2.1	Integração via primitiva	8
		1.2.2	Integração por substituição	8
		1.2.3	Integração por partes	9
		1.2.4	Integral imprópria	9
	1.3	Outras	s integrais	11
	1.4	Exercí	cios	12
		1.4.1	Integrais definidas	12
		1.4.2	Integrais impróprias	13
		1.4.3	Limites de integrais	14
\mathbf{A}	Not	ações		14
\mathbf{B}	Indi	cações	para os exercícios	14
	B.1	Exercí	cios da secção 1.4	14
\mathbf{C}	Refe	erência	ıs	18

1 Integrais 1D - Lembrete de integração

1.1 Integral de Riemann

Em livros de cálculo, define-se a integral de Riemann a partir de somas de Riemann (e de Darboux) [KKS04, Spi06, Pin10, PCJ12], a partir de primitivas [MHB11] ou de funções simples [Gou20]. Começaremos com o primeiro ponto de vista, deduzindo logo o segundo (teorema fundamental do cálculo). O terceiro ponto de vista é melhor compreendido no contexto da integral de Lebesgue, que estudaremos no final desta secção.

1.1.1 Somas de Riemann

Seja $a, b \in \mathbb{R}$ tal que a < b, e $f: [a, b] \to \mathbb{R}$ uma função numérica. Por integral de f, entendemos a área do subconjunto do plano \mathbb{R}^2 contido entre o segmento [a, b] e o gráfico $f([a, b]) = \{f(x) \mid x \in [a, b]\}$. Na teoria da integral de Riemann, esta é obtida por meio de aproximações sucessivas com retângulos (veja a figura 1). Para tanto, definimos uma **partição** de [a, b] como um conjunto de intervalos

$$\mathcal{P} = \{[t_i, t_{i+1}] \mid i \in [1, n]\}$$

onde n é um número inteiro, $t_1 = a$, $t_{n+1} = b$, e $t_i \le t_{i+1}$ para todo $i \in [1, n]$. Também definimos uma **partição marcada** como um conjunto de pares

$$\mathcal{P}_{m} = \{(x_{i}, [t_{i}, t_{i+1}]) \mid i \in [1, n]\}$$

onde $\{[t_i,t_{i+1}]\mid i\in \llbracket 1,n\rrbracket\}$ define uma partição de [a,b], e $x_i\in [t_i,t_{i+1}]$ para $i\in \llbracket 1,n\rrbracket.$

Definição 1.1. A soma de Riemann da uma função $f:[a,b] \to \mathbb{R}$ para uma partição marcada $\mathcal{P}_{\mathrm{m}} = \{(x_i,[t_i,t_{i+1}]) \mid i \in [\![1,n]\!]\}$ é definida como

$$S(f, \mathcal{P}_{\mathbf{m}}) = \sum_{i=1}^{n} f(x_i)(t_{i+1} - t_i).$$

Espera-se que quanto mais "fina" a partição, melhor a aproximação da área. Isto é formalizado da seguinte forma. Seja $\epsilon > 0$ um número real. Diremos que uma partição $\mathcal{P} = \{[t_i, t_{i+1}] \mid i \in [\![1, n]\!]\}$ é ϵ -fina se $t_{i+1} - t_i \leq \epsilon$ para todo $i \in [\![1, n]\!]$. Similarmente, uma partição marcada \mathcal{P}_{m} é dita η -fina se a partição \mathcal{P} subjacente for. No limite, obtém-se a definição original da integral de Riemann.

Definição 1.2. Diremos que uma função $f:[a,b] \to \mathbb{R}$ é **Riemann-integrável**, ou simplesmente **integrável**, se existe um número real $\ell \in \mathbb{R}$ tal que para todo $\epsilon > 0$, existe um $\eta > 0$ tal que para toda partição marcada $\mathcal{P}_{\rm m}$ η -fina, temos

$$|S(f, \mathcal{P}_{\mathrm{m}}) - \ell| < \epsilon.$$

Neste caso, o valor ℓ é único, é chamado de **integral** de f, é denotado $\int f$.

Notação 1.3. Se quisermos explicitar o intervalo de integração, escreveremos $\int_a^b f$ no lugar de $\int f$. A propósito, se f é integrável, então mostra-se que por todo intervalo $[x,y] \subset [a,b]$, a restrição de f a [x,y], denotada $f_{|[x,y]}$, também é integrável. Denotaremos sua integral $\int_x^y f$. Além disso, se quisermos explicitar a variável de integração, escreveremos $\int_a^b f(x) \, \mathrm{d}x$. Por exemplo, poderemos escrever $\int_a^b (x^2 + x + 1) \, \mathrm{d}x$.

Como consequência da definição, se f for integrável, então obtém-se a integral como o limite das somas de Riemann por qualquer sequência de partições marcadas η -fina com η indo para 0. Por exemplo, dado $n \in \mathbb{N}$, pode-se usar a n-subdivisão regular de [a,b],

$$\left\{ \left[a + (i-1) \cdot \frac{b-a}{n}, \ a+i \cdot \frac{b-a}{n} \right] \mid i \in [1,n] \right\},\$$

e escolher, em cada um desses intervalos, o ponto x_i como sendo o primeiro valor. Porém, a definição exige que o limite valha para toda sequência de partições marcadas. Exceto pelos exemplos simples a seguir, essa definição de integrabilidade é imprática, e preferiremos a baseada nas somas de Darboux (apresentada na secção 1.1.2), ou, melhor ainda, usaremos o arsenal clássico de técnicas de integração (coletadas na secção 1.2).

Exemplo 1.4 (Função constante). Seja $f: [a,b] \to \mathbb{R}$ a função constante igual a 1. Por qualquer partição marcada $\mathcal{P}_{\mathbf{m}} = \{(x_i, [t_i, t_{i+1}]) \mid i \in [\![1, n]\!]\}, \text{ temos}$

$$S(f, \mathcal{P}_{\mathbf{m}}) = \sum_{i=1}^{n} f(x_i)(t_{i+1} - t_i) = \sum_{i=1}^{n} 1 \cdot (t_{i+1} - t_i) = \underbrace{t_{n+1}}_{b} - \underbrace{t_1}_{a} = b - a.$$

Como o cálculo não depende da partição escolhida, f é Riemann-integrável, e $\int f = b - a$.

Exemplo 1.5 (Indicadora de intervalo semiaberto). Seja $f = \chi_{[a,b)} : [a,b] \to \mathbb{R}$ a função indicadora de [a,b), i.e., f(x) = 1 se $x \in [a,b)$ e f(b) = 0. Observemos que ela não é contínua. Contudo, ela é integrável. Com efeito, por qualquer partição marcada, e reproduzindo o cálculo em cima, obtemos

$$S(f, \mathcal{P}_{\rm m}) = t_n - t_1$$
 ou $t_{n+1} - t_1$,

dependendo se $x_n = b$ ou não. Em ambos os casos, se \mathcal{P} é ϵ -fina, temos

$$|S(f, \mathcal{P}_{\mathrm{m}}) - (b - a)| \le \epsilon.$$

Deduzimos que f é integrável e $\int f = b - a$.

Exemplo 1.6 (Função identidade). Seja $f:[a,b] \to \mathbb{R}$ a função identidade, i.e., $f:x \mapsto x$. Por qualquer partição marcada $\mathcal{P}_{\mathrm{m}} = \{(x_i,[t_i,t_{i+1}]) \mid i \in [\![1,n]\!]\}$, temos

$$S(f, \mathcal{P}_{\mathbf{m}}) = \sum_{i=1}^{n} f(x_i)(t_{i+1} - t_i) = \sum_{i=1}^{n} x_i \cdot (t_{i+1} - t_i).$$

Introduzimos agora a soma auxiliar

$$S^* = \sum_{i=1}^{n} \frac{t_{i+1} + t_i}{2} (t_{i+1} - t_i).$$

Por um lado, um calculo telescópico mostra que

$$S^* = \frac{1}{2} \sum_{i=1}^{n} (t_{i+1} + t_i)(t_{i+1} - t_i) = \frac{1}{2} \sum_{i=1}^{n} (t_{i+1}^2 - t_i^2) = \frac{1}{2} (b - a)^2.$$

Por outro lado, se \mathcal{P} for ϵ -fina, vale

$$|S^* - S(f, \mathcal{P}_{\mathbf{m}})| \le \left| \sum_{i=1}^n \left(\frac{t_{i+1} + t_i}{2} - x_i \right) (t_{i+1} - t_i) \right| \le \sum_{i=1}^n \frac{\epsilon}{2} (t_{i+1} - t_i) = \frac{\epsilon}{2} (b - a)$$

pois $x_i \in [t_i, t_{i+1}]$. Deduzimos a desigualdade

$$\left| S(f, \mathcal{P}_{\mathbf{m}}) - \frac{1}{2}(b-a)^2 \right| \le \frac{\epsilon}{2}(b-a)^2.$$

Logo, f é Riemann-integrável, e sua integral vale $\frac{1}{2}(b-a)^2$.

Exemplo 1.7 (Função de Dirichlet). Seja $f = \chi_{\mathbb{Q}} \colon [0,1] \to \mathbb{R}$ a função indicadora dos racionais sobre [0,1], isto é, f(x) = 1 se x é racional e f(x) = 0 senão. Ela não é Riemann-integrável. Com efeito, por qualquer partição $\mathcal{P} = \{[t_i, t_{i+1}] \mid i \in [1, n]\}$ de [0,1], podemos definir duas partições marcadas \mathcal{P}_m e \mathcal{P}'_m tal que

$$S(f, \mathcal{P}_{\mathrm{m}}) = 0$$
 e $S(f, \mathcal{P}'_{\mathrm{m}}) = 1$.

Elas são obtidas respetivamente escolhendo em cada intervalo $[t_i, t_{i+1}]$ um ponto x_i racional ou irracional — lembremos que os racionais são densos em \mathbb{R} . Vale mencionar que essa função, embora não seja integrável no sentido de Riemann, é no sentido de Lebesgue e de Henstock-Kurzweil (consulte a secção 1.3).

Exemplo 1.8. Seja $f: [0,1] \to \mathbb{R}$ definida por f(0) = 0 e $f(x) = 1/\sqrt{x}$ se x > 0. Pelo fato de ser infinito, pode-se mostrar que ela não é Riemann-integrável. De fato, por qualquer partição $\mathcal{P} = \{[t_i, t_{i+1}] \mid i \in [\![1, n]\!]\}$ de [0, 1], existe um intervalo $[t_i, t_{i+1}]$ onde f é ilimitada. Escolhendo nesse intervalo um ponto x_i tal que $f(x_i)$ é arbitrariamente grande, obtemos uma soma de Riemann arbitrariamente grande, que portanto não admite limite. De modo geral, mostra-se que uma função Riemann-integrável tem que ser limitada. Porém, é interessante observar que as integrais restritas $\int_{\epsilon}^{1} f$, por $\epsilon \in (0, 1]$, existem e valem $2(1 - \sqrt{\epsilon})$. Em particular, temos o limite

$$\lim_{\epsilon \to 0} \int_{\epsilon}^{1} f = 2.$$

Este limite é chamado de $integral\ impr\'opria$ (veja a secção 1.2.4). Como no exemplo anterior, mencionamos que f é integrável no sentido de Lebesgue e de Henstock-Kurzweil.

1.1.2 Somas de Darboux

Para marcar uma partição, os "piores" pontos que pode-se escolher são os que atingem o mínimo e o máximo da função em cada intervalo. Esta é a ideia de Darboux.

Definição 1.9. As somas inferior e superior de Darboux de uma função limitada $f: [a, b] \to \mathbb{R}$ em relação a uma partição (não-marcada) $\mathcal{P} = \{[t_i, t_{i+1}] \mid i \in [1, n]\}$ são

$$S_{\inf}(f, \mathcal{P}) = \sum_{i=1}^{n} \inf\{f(x) \mid x \in [t_i, t_{i+1}]\} \cdot (t_{i+1} - t_i)$$

$$S_{\sup}(f, \mathcal{P}) = \sum_{i=1}^{n} \sup\{f(x) \mid x \in [t_i, t_{i+1}]\} \cdot (t_{i+1} - t_i).$$

Claramente, por toda partição marcada \mathcal{P}_m cuja partição subjacente é \mathcal{P} , temos

$$S_{\inf}(f, \mathcal{P}) \leq S(f, \mathcal{P}_{\mathrm{m}}) \leq S_{\sup}(f, \mathcal{P}).$$

Além disso, se \mathcal{P}' é um refinamento de \mathcal{P} — i.e., uma partição cujos intervalos estão contidos nos de \mathcal{P} — então

$$S_{\inf}(f, \mathcal{P}') \ge S_{\inf}(f, \mathcal{P})$$
 e $S_{\sup}(f, \mathcal{P}') \le S_{\inf}(f, \mathcal{P})$.

Os "valores limites" destas somas têm nome.

Definição 1.10. As integrais inferior e superior de Darboux de f são

$$S_{\inf}(f) = \sup \{ S_{\inf}(f, \mathcal{P}) \mid \mathcal{P} \text{ partição de } [a, b] \}$$
e $S_{\sup}(f) = \inf \{ S_{\sup}(f, \mathcal{P}) \mid \mathcal{P} \text{ partição de } [a, b] \}.$

Quando estes valores coincidem, dizemos que f é **Darboux-integrável**, é definimos a sua integral como este valor.

Teorema 1.11. Uma função limitada $f:[a,b] \to \mathbb{R}$ é Riemann-integrável se e somente ela é Darboux-integrável. Neste caso, as integrais coincidem.

1.1.3 Propriedades fundamentais

Da formulação de Darboux deduzem-se convenientemente as principais propriedades da integral de Riemann. Recomendamos que o leitor consulte as provas em [Spi06, §§ 13-14].

Teorema 1.12 (Linearidade). Sejam $f, g: [a, b] \to \mathbb{R}$ Riemann-integráveis $e \ c \in \mathbb{R}$. Então f + cg é Riemann-integrável e

$$\int f + cg = \int f + c \int g.$$

Teorema 1.13 (Positividade & monotonicidade). Sejam $f:[a,b] \to \mathbb{R}$ Riemann-integrável e positiva. Então

$$\int f \ge 0.$$

Como corolário, se $f,g:[a,b]\to\mathbb{R}$ são Riemann-integráveis e $f\leq g$, vale

$$\int f \le \int g.$$

Teorema 1.14 (Integrabilidade absoluta). Seja $f:[a,b] \to \mathbb{R}$ Riemann-integrável. Então |f| é Riemann-integrável, e

$$\left| \int f \right| \le \int |f|.$$

Teorema 1.15 (Aditividade). Seja $f: [a,b] \to \mathbb{R}$ Riemann-integrável e $c \in (a,b)$. Então $f \notin Riemann-integrável$ em [a,c] e [c,b], e

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Teorema 1.16 (Teorema fundamental do cálculo). Se $f:[a,b] \to \mathbb{R}$ é contínua, então ela é Riemann-integrável. Além disso, a função

$$F: [a, b] \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_{a}^{x} f$$

 \acute{e} continuamente derivável e F' = f.

Corolário 1.17 (Segundo teorema fundamental do cálculo). Seja $f:[a,b] \to \mathbb{R}$ contínua. Se $F:[a,b] \to \mathbb{R}$ é uma primitiva de f, então

$$\int_{a}^{b} f = F(b) - F(a).$$

Notação 1.18. No restante deste texto, usaremos os colchetes $[F]_a^b = F(b) - F(a)$.

Observação 1.19. (Critério de integrabilidade de Lebesgue-Vitali) O teorema 1.16 mostra que toda função continua (em um intervalo compacto [a,b]) é Riemann-integrável. No entanto, a classe das funções Riemann-integráveis não se restringe a funções contínuas. Já estudamos no exemplo 1.5 uma função com um ponto de descontinuidade. De

modo geral, o teorema de Lebesgue-Vitali garante que uma função limitada é Riemann-integrável se e somente se ela for contínua em quase todos os pontos — ou seja, o conjunto de pontos de descontinuidade é de medida zero, na linguagem da teoria de medida de Lebesgue. Em particular, uma função limitada com um número finito, ou contável, de descontinuidades é Riemann-integrável. Mencionemos que o exemplo 1.7 fornece uma função não Riemann-integrável, de fato, ela admite um número incontável de descontinuidades (ela é contínua em nenhum lugar).

Observação 1.20. (Teorema fundamental do cálculo generalizado) De modo mais geral, pode-se perguntar se o resultado a seguir é válido: dado $F: [a,b] \to \mathbb{R}$ derivável, a derivada F' é Riemann-integrável e $\int_a^b F' = [F]_a^b$. Como se vê no seguinte exemplo, está errado. Considere a função $F: [0,1] \to \mathbb{R}$ definida por

$$F(x) = \begin{cases} x^2 \cos \frac{\pi}{x^2} & \text{se } x \in (0, 1], \\ 0 & \text{se } x = 0. \end{cases}$$

Ela é derivável, e

$$F'(x) = \begin{cases} 2x \cos \frac{\pi}{x^2} + \frac{2\pi}{x} \sin \frac{\pi}{x^2} & \text{se } x \in (0, 1], \\ 0 & \text{se } x = 0. \end{cases}$$

Como F' é ilimitada, ela não é Riemann-integrável. Veremos que esse resultado ainda é falso para a integral de Lebesgue, mas se torna válido para a de Henstock-Kurzweil.

1.1.4 Passagem ao limite sob o sinal de integral

Citamos agora três resultados relacionados ao comportamento da integral de Riemann a passagem ao limite. O segundo e terceiro são mais trabalhosos; uma demonstração foi dada por Cesare Arzelà, para a qual encaminhamos o leitor para [Lux71]. Vale a pena destacar que esses resultados são expressos de forma mais geral na integral de Lebesgue.

Teorema 1.21 (Convergência uniforme sob o sinal de integral). Considere uma sequencia $(f_n: [a,b] \to \mathbb{R})_{n \in \mathbb{N}}$ de funções Riemann-integráveis que converge uniformemente a uma função $f: [a,b] \to \mathbb{R}$. Então f é Riemann-integrável, e

$$\lim_{n \to \infty} \int f_n = \int f.$$

Teorema 1.22 (Teorema da convergência dominada para a integral de Riemann). Considere uma sequencia $(f_n: [a,b] \to \mathbb{R})_{n \in \mathbb{N}}$ de funções Riemann-integráveis que converge pontualmente a uma função $f: [a,b] \to \mathbb{R}$ Riemann-integrável, e tal que existe uma função $g: [a,b] \to [0,+\infty)$ que domina a sequência, i.e., tal que $|f_n(x)| \leq g(x)$ para todos $x \in [a,b]$ e $n \in \mathbb{N}$. Então vale

$$\lim_{n \to \infty} \int f_n = \int f.$$

Teorema 1.23 (Lemma de Fatou para a integral de Riemann). Considere uma sequencia $(f_n: [a,b] \to [0,+\infty))_{n\in\mathbb{N}}$ de funções positivas e Riemann-integráveis que converge pontualmente a uma função $f: [a,b] \to \mathbb{R}$ Riemann-integrável. Então vale

$$\liminf_{n \to \infty} \int f_n \ge \int f.$$

1.2 Técnicas de integração e integral imprópria

Veremos nessa secção as três estratégias elementares para calcular uma integral (via primitiva, substituição e integração por partes), bem como a noção de integral imprópria.

1.2.1 Integração via primitiva

Ao calcular uma integral, nosso primeiro reflexo é procurar uma primitiva e calcular sua diferença, como no teorema 1.16. Para isso, consultamos uma tabela de primitivas.

Função	Primitiva	Função	Primitiva
x^{α} $(\alpha \neq -1)$	$\frac{x^{\alpha+1}}{\alpha+1}$	$\frac{1}{\cos^2 x}$	$\tan x$
x^{-1}	$\log x $	$\frac{1}{\sin^2 x}$	$-\cot nx$
e^x	e^x	$\frac{1}{a^2 + x^2} \qquad (a \neq 0)$	$\frac{1}{a} \arctan \frac{x}{a}$
$a^x (a > 0, a \neq 1)$	$\frac{a^x}{\log a}$	$\frac{1}{a^2 - x^2} \qquad (a \neq 0)$	$\frac{1}{2a}\log\left \frac{x+a}{x-a}\right $
$\sin x$	$-\cos x$	$\frac{1}{\sqrt{a^2 - x^2}} \qquad (a > 0)$	$\arcsin \frac{x}{a}$
$\cos x$	$\sin x$		$\log\left(x+\sqrt{a^2+x^2}\right)$
$\tan x$	$-\log \cos x $	$\frac{1}{\sqrt{-a^2 + x^2}} (a \neq 0)$	
$\cot nx$	$ \log \sin x $	$\log x$	$x \log x - x$

Exemplo 1.24. Para calcular $\int_0^1 \sqrt{3x+1} \, dx$, observamos que a derivada de $x \mapsto \frac{2}{9}(3x+1)^{3/2}$ é $x \mapsto \sqrt{3x+1}$, e escrevemos

$$\int_0^1 \sqrt{3x+1} \, dx = \left[\frac{2}{9} (3x+1)^{3/2} \right]_0^1 = \frac{14}{9}.$$

1.2.2 Integração por substituição

Um outro procedimento, mais sofisticado, é baseado no seguinte teorema (que é apenas uma consequência da regra da cadeia).

Teorema 1.25 (Mudança de coordenadas). Seja $f:[c,d] \to \mathbb{R}$ contínua $e \phi:[a,b] \to [c,d]$ continuamente derivável. Vale

$$\int_{a}^{b} f(\phi(x))\phi'(x) \, dx = \int_{\phi(a)}^{\phi(b)} f(u) \, du.$$

Na prática, para aplicar esse resultado a uma expressão $\int_a^b g \, dx$, tentaremos adivinhar a substituição ϕ , e escrever g como $f(\phi(x))\phi'(x)$. É conveniente usar a notação simbólica

$$\begin{cases} "u = \phi(x)" \\ "du = \phi'(x) dx" \end{cases} \quad \text{donde} \quad \int_a^b f(\underbrace{\phi(x)}_u) \underbrace{\phi'(x) dx}_d = \int_{\phi(a)}^{\phi(b)} f(u) du.$$

Como mnemónico, lembraremos que " $du = \phi'(x) dx$ " vem de " $\frac{du}{dx} = \frac{d\phi(x)}{dx} = \phi'(x)$ ".

Exemplo 1.26. Para calcular $\int_0^1 2x \ln(x^2+1) dx$, usamos a substituição $\phi(x) = x^2+1$:

$$\begin{cases} u = x^2 + 1 \\ \mathrm{d}t = 2x\mathrm{d}x, \end{cases}$$

e escrevemos a mudança de coordenadas

$$\int_0^1 2x \ln(x^2 + 1) \, dx = \int_0^1 \ln(\underbrace{x^2 + 1}_u) \underbrace{2x \, dx}_{du} = \int_{\phi(0)}^{\phi(1)} \ln(u) \, du = \int_1^2 \ln(u) \, du$$
$$= \left[x \ln(x) - x \right]_1^2 = 1 - 2 \ln(2).$$

1.2.3 Integração por partes

Dadas duas funções $u, v : [a, b] \to \mathbb{R}$ deriváveis, vale (uv)' = u'v + uv'. Se elas são também continuamente deriváveis, então deduz-se, por linearidade,

$$[uv]_a^b = \int_a^b (uv)' = \int_a^b u'v + \int_a^b uv'.$$

Passando um termo integral ao outro lado, obtém-se a fórmula de integração por partes:

$$\int_{a}^{b} uv' = \left[uv \right]_{a}^{b} - \int_{a}^{b} u'v.$$

Exemplo 1.27. Para calcular $\int_0^{\sqrt{3}} \arctan x \ dx$, usemos a integração por partes com

$$\begin{cases} u(x) = \arctan x & u'(x) = \frac{1}{1+x^2} \\ v'(x) = 1 & v(x) = x, \end{cases}$$

e escrevamos

$$\int_0^{\sqrt{3}} \arctan x \, dx = \int_0^{\sqrt{3}} uv' = \left[uv \right]_0^{\sqrt{3}} - \int_0^{\sqrt{3}} u'v$$
$$= \left[x \arctan x \right]_0^{\sqrt{3}} - \int_0^{\sqrt{3}} \frac{x}{1+x^2} \, dx = \frac{\pi}{\sqrt{3}} - \ln(2).$$

1.2.4 Integral imprópria

Uma lacuna crucial da integral de Riemann, conforme definida na secção 1.1.1, é que ela não aceita integrar funções ilimitadas, ou definidas em intervalos não-compactos. Felizmente, ela pode ser generalizada para esses casos. Para ver isso, consideremos uma função $f:[a,b]\to\mathbb{R}$ contínua. Ela é Riemann-integrável, e mostra-se que

$$\lim_{x \to a^+} \int_x^b f = \lim_{x \to b^-} \int_a^x f = \int_a^b f.$$

Isso nos convida à seguinte definição.

Definição 1.28. Seja uma função contínua $f\colon I\to\mathbb{R}$ definida em um intervalo da forma

$$I = (a, b], [a, b), (-\infty, b]$$
 ou $[a, +\infty)$.

Se o seguinte limite existe

$$\lim_{x \to a^+} \int_x^b f, \quad \lim_{x \to b^-} \int_a^x f, \quad \lim_{x \to -\infty} \int_x^b f \quad \text{ou} \quad \lim_{x \to +\infty} \int_a^x f,$$

então diremos que a função f é Cauchy-Riemann-integrável, a que a integral $\int_I f$ converge. Definiremos sua integral imprópria (ou generalizada, ou de Cauchy-Riemann) $\int_I f$ como este limite. Caso contrário, diremos que a integral diverge.

Definição 1.29. Diremos que a integral $\int_I f$ é absolutamente convergente se a integral $\int_I |f|$ é convergente, e diremos que f é absolutamente integrável sobre I.

Observação 1.30. Pode-se mostrar que uma integral absolutamente convergente é convergente (isto é, uma função Cauchy-Riemann-integrável é absolutamente integrável), mas a recíproca é falsa (veja o exemplo 1.36). As integrais que são convergentes, mas não absolutamente, são ditas semiconvergentes (ou condicionalmente convergentes).

Notação 1.31. Poderemos denotar uma integral imprópria como $\int_a^b f$ no lugar de $\int_{(a,b]} f$ ou $\int_{[a,b)} f$. Porém, na notação $\int_a^b f$, não se vê de que lado o intervalo é aberto. Isso não será um problema, pois poderemos ler na função f onde ela não for definida. Se ela for definida em todo [a,b] e Riemann-integrável, então a integral imprópria é de fato igual à integral usual, e não há ambiguidade. Além disso, e para distingui-las das integrais impróprias, é costumeiro referirmo-nos às integrais usuais por **integrais definidas**.

Exemplo 1.32. A integral $\int_1^{+\infty} \frac{1}{x} dx$ é divergente. De fato,

$$\int_{1}^{t} \frac{1}{x} dx = \left[\log(x) \right]_{1}^{t} = \log(t) - 1 \xrightarrow[t \to +\infty]{} + \infty.$$

Por outro lado, $\int_1^{+\infty} \frac{1}{x^2} \; \mathrm{d}x$ é convergente, já que

$$\int_1^t \frac{1}{x^2} \, \mathrm{d}x = \left[\frac{-1}{x} \right]_1^t = 1 - \frac{1}{t} \xrightarrow[t \to +\infty]{} 1.$$

Ela também é absolutamente convergente, pois é positiva.

Propriedade 1.33 (Exemplos referenciais). Seja $\alpha > 0$.

- 1. A função $x \mapsto \frac{1}{x^{\alpha}}$ é absolutamente integrável sobre (0,1] se e somente se $\alpha < 1$, e sobre $[1,+\infty)$ se e somente se $\alpha > 1$.
- 2. A função $x \mapsto e^{\alpha x}$ é absolutamente integrável sobre $[0, +\infty)$ por qualquer $\alpha > 0$.

Para mostrar que uma integral é absolutamente convergente, podemos a comparar com funções já conhecidas, usando o seguinte resultado.

Propriedade 1.34 (Critério da comparação para a integrabilidade absoluta). Sejam $f: I \to \mathbb{R} \ e \ \phi: I \to \mathbb{R}^+ \ contínuas.$

1. $Se |f| \le \phi \ e \ \phi \ abs.$ integrável sobre I, então f também é abs. integrável sobre I, e

$$\left| \int_{I} f \right| \leq \int_{I} \phi.$$

Suponhamos agora que f é positiva, e que I = (a, b] com $a \in \mathbb{R} \cup \{-\infty\}$.

- 2. Se $f(x) = \mathcal{O}_{x \to a} \phi(x)$ e ϕ abs. integrável sobre I, então f é abs. integrável sobre I.
- 3. Se $f(x) \sim_{x \to a} \phi(x)$, então f é abs. integrável sobre I se e somente ϕ é.

Similarmente, suponhamos que I = [a, b) com $b \in \mathbb{R} \cup \{+\infty\}$.

- 4. Se $f(x) = \mathcal{O}_{x \to b} \phi(x)$ e ϕ abs. integrável sobre I, então f é abs. integrável sobre I.
- 5. Se $f(x) \sim_{x \to b} \phi(x)$, então f é abs. integrável sobre I se e somente ϕ é.

Exemplo 1.35. A integral $\int_0^{+\infty} \sin(x)/x^2 dx$ é absolutamente convergente. De fato, $x \mapsto \sin(x)/x^2$ é limitada pela função positiva $x \mapsto 1/x^2$, que é absolutamente integrável sobre \mathbb{R}^+ pelo exemplo 1.32. Podemos aplicar então o ponto 1. da propriedade 1.34.

No caso de integrais semiconvergentes, não podemos aplicar o critério de comparação anterior. Outras técnicas de integração devem ser usadas.

Exemplo 1.36. A integral $\int_0^{+\infty} \cos(x)/x \, dx$ é convergente. Para ver isso, fixamos um a > 0, e efetuemos uma integração por partes com $u'(x) = \cos(x)$ e v(x) = 1/x:

$$\int_0^a \frac{\cos(x)}{x} dx = [u(x)v(x)]_0^a - \int_0^a u(x)v'(x) dx$$
$$= \frac{\sin(a)}{a} + \int_0^a \frac{\sin(x)}{x^2} dx.$$

O primeiro termo converge para zero, e o segundo para $\int_0^{+\infty} \sin(x)/x^2 dx$, pois a integral é absolutamente convergente, pelo exemplo 1.35. Porém, mostra-se que $\int_0^{+\infty} \cos(x)/x dx$ não é absolutamente convergente (veja o exercício 1.10).

1.3 Outras integrais

Figura 1: Integral de Riemann como aproximações sucessivas por meio de retângulos

1.4 Exercícios

1.4.1 Integrais definidas

Exercício 1.1 (correção). Calcule as seguintes integrais:

$$I_{1} = \int_{0}^{2} 5x^{3} - 3x - 7 \, dx \qquad I_{2} = \int_{0}^{\pi/4} 2\cos x - 3\sin x \, dx \qquad I_{3} = \int_{0}^{1/3} 2e^{3x} + 2x \, dx$$

$$I_{4} = \int_{0}^{2} \frac{x}{1 + 2x^{2}} \, dx \qquad I_{5} = \int_{0}^{2} \frac{e^{3x}}{1 + 2e^{3x}} \, dx \qquad I_{6} = \int_{1}^{2} \frac{\ln x}{x} \, dx$$

$$I_{7} = \int_{0}^{1} xe^{x} \, dx \qquad I_{8} = \int_{1}^{e} x^{2} \ln x \, dx \qquad I_{9} = \int_{1}^{2} \ln^{2} x \, dx$$

$$I_{10} = \int_{1}^{4} \frac{1 - \sqrt{x}}{\sqrt{x}} \, dx \qquad I_{11} = \int_{1}^{3} \frac{\sqrt{x}}{x + 1} \, dx \qquad I_{12} = \int_{-1}^{1} \sqrt{1 - x^{2}} \, dx$$

Para I_{10} , I_{11} e I_{12} , pode-se usar respetivamente as substituições $t = \sqrt{x}$, $t = \sqrt{x}$ e $\sin t = x$.

Exercício 1.2 (Integrais de Wallis, correção).

$$I_n = \int_0^{\pi/2} \sin^n x \, \mathrm{d}x.$$

- 1. Calcule explicitamente I_n por todo $n \in \mathbb{N}$.
- 2. Deduza a fórmula do produto de Wallis

$$\lim_{n\to\infty} \prod_{p=1}^n \left(\frac{2p}{2p-1} \frac{2p}{2p+1}\right) = \frac{\pi}{2}$$

e a aproximação

$$I_n \sim \sqrt{\frac{\pi}{2n}}.$$

Exercício 1.3 (Desigualdade de Hölder, correção). Seja a > 0 e $f: [0, a] \to \mathbb{R}$ strictly increasing, derivável em [0, a[, e tal que f(0) = 0. Ponha, para todo $x \in [0, a]$,

$$g(x) = \int_0^x f + \int_0^{f(x)} f^{-1} - x f(x),$$

onde f^{-1} denota a função inversa.

- 1. Mostre que g(x) = 0 para todo $x \in [0, a]$.
- 2. Prova a desigualdade de Young: para todo $b \in]0, f(a)[$,

$$ab \le \int_0^a f + \int_0^b f^{-1}.$$

3. Prova a desigualdade de Hölder: dados $a,b\geq 0$ e p,q>1 tal que $\frac{1}{p}+\frac{1}{q}=1,$

12

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Exercício 1.4 (Teorema do valor médio para integrais, <u>correção</u>). Seja $f:[a,b]\to\mathbb{R}$ uma função contínua.

1. Defina $m = \inf\{f(x) \mid x \in [a, b]\}$ e $M = \sup\{f(x) \mid x \in [a, b]\}$. Mostre que

$$m \leq \frac{1}{b-a} \int_a^b f \leq M.$$

2. Mostre que existe um $c \in [a, b]$ tal que

$$\int_a^b f = (b - a)f(x).$$

3. Além disso, se $g:[a,b]\to\mathbb{R}$ é estritamente positiva e Riemann-integrável, mostre que existe um $c\in[a,b]$ tal que

$$\int_a^b fg = f(c) \int_a^b g.$$

Exercício 1.5 (correção). Prova que se $h \colon \mathbb{R} \to \mathbb{R}$ é contínua, $f,g \colon \mathbb{R} \to \mathbb{R}$ são diferenciáveis, e

$$F(x) = \int_{f(x)}^{g(x)} h,$$

então F'(x) = h(g(x))g'(x) - h(f(x))f'(x).

1.4.2 Integrais impróprias

Exercício 1.6 (correção). Determine se as seguintes integrais impróprias convergem.

$$I_{1} = \int_{1}^{2} \frac{1}{\sqrt{x-1}} dx \qquad I_{2} = \int_{0}^{1} \frac{x^{2}+1}{x\sqrt{2-x}} dx \qquad I_{3} = \int_{0}^{1} \ln x dx$$

$$I_{4} = \int_{0}^{\pi/2} \tan x dx \qquad I_{5} = \int_{0}^{+\infty} \frac{x}{(x+2)^{2}(x+1)} dx \qquad I_{6} = \int_{0}^{1} \frac{1}{x\sqrt{x+1}} dx$$

$$I_{7} = \int_{0}^{1} x^{2024} e^{-x} dx \qquad I_{8} = \int_{0}^{1} \frac{e^{x}}{\sqrt{x}} dx \qquad I_{9} = \int_{1}^{2} \frac{1}{x \ln^{2} x} dx$$

Exercício 1.7 (Integral de Dirichlet, correção). Considere a integral imprópria

$$I = \int_0^{\pi/2} \ln(\sin(x)) \, \mathrm{d}x.$$

- 1. Mostre que I converge.
- 2. Partindo da fórmula $\sin(x) = 2\sin(x/2)\cos(x/2)$, mostre que $I = -\frac{\pi \log 2}{2}$.

Exercício 1.8 (Integrais de Bertrand, correção). Sejam α, β reais. Mostre que

- 1. $\frac{1}{t^{\alpha}(\log t)^{\beta}}$ é abs. integrável sobre $[e, +\infty)$ se e somente se $\alpha > 1$, ou $\alpha = 1$ e $\beta > 1$.
- 2. $\frac{1}{t^{\alpha}|\log t|^{\beta}}$ é abs. integrável sobre (0,1/e] se e somente se $\alpha<1,$ ou $\alpha=1$ e $\beta>1.$

Exercício 1.9 (Função gamma, correção). Ponhamos, por todo $x \in]0, +\infty[$

$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt.$$

- 1. Mostre que a integral imprópria $\Gamma(x)$ é convergente.
- 2. Mostre que para todo $x \in]1, +\infty[$, temos $\Gamma(x+1) = x\Gamma(x)$.
- 3. Mostre que para todo $n \in \mathbb{N}$, vale $\Gamma(n) = (n-1)!$.

Exercício 1.10 (correção). Mostre que $\int_0^\infty \frac{\cos(x)}{x} dx$ não é absolutamente convergente.

Exercício 1.11 (<u>correção</u>). Seja $f: [a, +\infty)$ tal que $\int_1^{+\infty} f$ converge. Mostre que por todo $\alpha > 0$, a seguinte integral converge:

$$\int_{1}^{+\infty} \frac{f(x)}{x^{\alpha}} \, \mathrm{d}x.$$

1.4.3 Limites de integrais

Exercício 1.12 (correção). Por todo $n \in \mathbb{N}$ estritamente positivo, considere a função $f_n = \chi_{(0,1/n]} \cdot n$, onde $\chi_{(0,1/n]}$ é a indicadora do intervalo (0,1/n]. Calcule $\int_0^1 f_n$. Deduza que a hipótese de dominação no teorema de convergência dominada é necessária.

Exercício 1.13 (correção). Suponha que $f: [0,1] \to \mathbb{R}$ seja contínua. Mostre que

$$\lim_{n \to +\infty} \int_0^1 f(x^n) \, \mathrm{d}x = f(0).$$

Exercício 1.14 (<u>correção</u>). Suponha que $f:[a,b] \to \mathbb{R}$ seja contínua, estritamente positiva, e defina $M = \sup\{f(x) \mid x \in [a,b]\}$. Mostre que

$$\lim_{n \to +\infty} \left(\int_a^b f(x)^n \, \mathrm{d}x \right)^{1/n} = M.$$

A Notações

 $\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{R}^+$ Números inteiros, racionais, reais, reais positivos

 \mathbb{R}^n Espaço euclidiano de dimensão n

[a,b], [m,n] Intervalo real, intervalo inteiro

 χ_A Função indicadora de um conjunto $A \subset \mathbb{R}$ ou \mathbb{R}^n

 $\mathcal{P}, \mathcal{P}_{m}$ Partição de um intervalo, partição marcada

 $\int f$, $\int_a^b f$, $\int_a^b f(x) dx$ Integral de uma função

B Indicações para os exercícios

B.1 Exercícios da secção 1.4

Correção do exercício 1.1.

- $I_1 = 0$ por integração via a primitiva $\frac{5}{4}x^4 \frac{3}{2}x^2 7x$.
- $I_2 = \frac{5}{2}\sqrt{2} 3$ por integração via a primitiva $2\sin x + 3\cos x$.
- $I_3 = \frac{2}{3}e$ por integração via a primitiva $\frac{2}{3}e^{3x} + 2x$.
- $I_4 = \frac{2}{9}$ por integração via a primitiva $\frac{1}{4}\ln(1+2x^2)$.
- $I_5 = \frac{1}{6} \ln \left(\frac{1+2e^6}{3} \right)$ por integração via a primitiva $\frac{1}{6} \ln (1+2e^{3x})$.
- $I_6 = \frac{\log^2 2}{2}$ por integração via a primitiva $\frac{1}{2} \ln^2 x$.
- $I_7 = 1$ por integração por partes com $\begin{cases} u(x) = x & u'(x) = 1 \\ v'(x) = e^x & v(x) = e^x \end{cases}$

$$\int_0^1 uv' = \left[uv \right]_0^1 - \int_0^1 u'v = \left[xe^x \right]_0^1 - \int_0^1 e^x \, \mathrm{d}x = e - (e - 1).$$

• $I_8 = \frac{1}{9}(1 - 2e^3)$ por integração por partes com $\begin{cases} u(x) = \ln x & u'(x) = 1/x \\ v'(x) = x^2 & v(x) = x^3/3 \end{cases}$

$$\int_{1}^{e} uv' = \left[uv\right]_{1}^{e} - \int_{1}^{e} u'v = \left[\frac{1}{3}x^{3}\ln x\right]_{1}^{e} - \int_{1}^{e} \frac{1}{3}x^{2} dx = \frac{1}{3}e^{3} - \frac{1}{9}e^{3} - \frac{1}{9}.$$

• $I_9 = 2(\ln 2 - 1)^2$ por integração por partes com $\begin{cases} u(x) = \ln^2 x & u'(x) = 2\frac{\ln x}{x} \\ v'(x) = 1 & v(x) = x \end{cases}$

$$\int_{1}^{2} uv' = \left[uv \right]_{1}^{2} - \int_{1}^{2} u'v = \left[x \ln^{2} x \right]_{1}^{2} - \int_{1}^{2} 2 \ln x \, dx = 2 \ln^{2} 2 - 2(2 \ln 2 - 1),$$

onde usamos a primitiva $x \ln x - x$ de $\ln x$.

• $I_{10}=-1$ por mudança de coordenadas com $\begin{cases} t=\sqrt{x} \\ \mathrm{d}t=\frac{1}{2\sqrt{x}}\mathrm{d}x \end{cases}$

$$\int_{1}^{4} \frac{1 - \sqrt{x}}{\sqrt{x}} dx = \int_{1}^{4} 2(1 - \sqrt{x}) \cdot \underbrace{\frac{1}{2\sqrt{x}} dx}_{dt} = \int_{\sqrt{1}}^{\sqrt{4}} 2(1 - t) dt$$
$$= \left[2t - t^{2}\right]_{1}^{2} = -1.$$

• $I_{11} = 2\sqrt{3} - 2 - \frac{\pi}{6}$ por mudança de coordenadas com $\begin{cases} t = \sqrt{x} \\ \mathrm{d}t = \frac{1}{2\sqrt{x}} \mathrm{d}x \end{cases}$

$$\int_{1}^{3} \frac{\sqrt{x}}{x+1} dx = \int_{1}^{3} 2 \frac{x}{x+1} \cdot \underbrace{\frac{1}{2\sqrt{x}} dx}_{dt} = 2 \int_{\sqrt{1}}^{\sqrt{3}} \frac{t^{2}}{t^{2}+1} dt = 2 \int_{1}^{\sqrt{3}} 1 - \frac{1}{t^{2}+1} dt$$

$$= 2 \left[t - \arctan t \right]_{1}^{\sqrt{3}}$$

$$= 2(\sqrt{3} - \arctan \sqrt{3} - 1 + \arctan 1)$$

$$= 2(\sqrt{3} - \frac{\pi}{2} - 1 + \frac{\pi}{4}).$$

•
$$I_{12} = \frac{\pi}{2}$$
 por mudança de coordenadas com
$$\begin{cases} \sin t = x & (t = \arcsin x) \\ dx = \cos t \ dt & (dt = \frac{1}{\cos t} \ dx) \end{cases}$$

$$\int_{-1}^{1} \sqrt{1 - x^2} \underbrace{dx}_{\cos t \, dt} = \int_{\arcsin 1}^{\arcsin 1} \sqrt{1 - \sin^2 t} \cdot \cos t \, dt = \int_{-\pi/2}^{\pi/2} \cos t \cdot \cos t \, dt$$
$$= \int_{-\pi/2}^{\pi/2} \frac{1 + \cos 2t}{2} \, dt = \frac{\pi}{2}.$$

Correção do exercício 1.2.

1. Ao integrar I_n por partes, obtemos $I_n = (n-1)(I_{n-2} - I_n)$, e portanto $I_n = \frac{n-1}{n}I_{n-2}$. Como $I_0 = \pi/2$, deduzimos

$$I_{2n} = \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2}$$
 e $I_{2n+1} = \frac{(2n)!!}{(2n+1)!!}$.

onde o duplo fatorial é definido como $p!! = p(p-2)(p-4) \cdot \cdot \cdot$.

2. Este produto vale $\frac{I_{2n+1}}{I_{2n}}\frac{\pi}{2}$. Por monotonicidade da integral, $I_{2n+1} \leq I_{2n} \leq I_{2n-1}$. Logo,

$$1 \le \frac{I_{2n}}{I_{2n+1}} \le \frac{I_{2n-1}}{I_{2n+1}} = \frac{2n+1}{2n} \xrightarrow[n \to \infty]{} 1.$$

Correção do exercício 1.3.

- 1. Se G é uma primitiva de f^{-1} , mostre que G(f(x))' = xf'(x).
- 2. Chame o teorema do valor intermediário: existe $x \in [0, a]$ tal que f(x) = b.
- 3. Use $f(x) = x^{p-1}$.

Correção do exercício 1.4.

- 1. Use a monotonicidade da integral.
- 2. Use o teorema do valor médio para função f cujos mínimo e máximo são m e M.
- 3. Mostre primeiro que $m \int_a^b g \le \int_a^b fg \le M \int_a^b g$, e raciocine como antes.

Correção do exercício 1.5. Poderemos começar com $F(x) = \int_0^{g(x)} h$.

Correção do exercício 1.6.

I_1 converge	I_2 diverge	I_3 converge
I_4 diverge	I_5 converge	I_6 diverge
I_7 converge	I_8 converge	I_9 converge

Correção do exercício 1.7.

- 1. A convergência segue da aproximação $\ln(\sin(x)) \sim_{x\to 0} \ln(x)$, uma primitiva do qual é $x\mapsto x\ln(x)-x$.
- 2. Usando $\sin(x) = 2\sin(x/2)\cos(x/2)$, obtemos

$$I = \frac{\pi \ln(2)}{2} + \int_0^{\pi/2} \ln\left(\sin\frac{x}{2}\right) dx + \int_0^{\pi/2} \ln\left(\cos\frac{x}{2}\right) dx$$

Por outro lado, integrando por substituição, temos

$$\int_0^{\pi/2} \ln\left(\cos\frac{x}{2}\right) dx = \int_0^{\pi/2} \ln\left(\cos\frac{x}{2}\right) dx.$$

Logo, a primeira equação reescreve-se como $I = \frac{\pi \ln(2)}{2} + I + I$, e deduzimos

$$I = -\frac{\pi \ln(2)}{2}.$$

Correção do exercício 1.8. Poderemos usar o critério da comparação (propriedade 1.34), juntamente com o seguinte truque: se $\alpha > 0$, então podemos escrever $\alpha = 1 + 2h$, com h > 0, e

$$\frac{1}{t^{\alpha}(\log t)^{\beta}} = \frac{1}{t^{1+h} \cdot t^{h}(\log t)^{\beta}} = \mathcal{O}_{t \to +\infty} \left(\frac{1}{t^{1+h}}\right).$$

Correção do exercício 1.9.

- 1. Escreva $e^t t^{x-1} = e^{t+(x-1)\ln(x)}$, estude o comportamento assimptótico da função em $0 \text{ e} +\infty$, e usa resultados de comparação para integral imprópria.
- 2. Integre por partes.
- 3. Use (2) junto com $\Gamma(1) = 1$.

Correção do exercício 1.10. Fabrique, à mão, uma sequencia de intervalos $[t_0, t_1]$, $[t_2, t_3]$, ..., tal que $t_0 < t_1 < t_2 < t_3 < ...$ e

$$\sum_{i=1}^{+\infty} \int_{t_{2i}}^{t_{2i+1}} \frac{|\cos x|}{x} \, dx \ge \sum_{i=1}^{+\infty} \frac{1}{t_{2i+1}} \int_{t_{2i}}^{t_{2i+1}} |\cos x| \, dx = +\infty.$$

Correção do exercício 1.11. Pondo $F(t)=\int_1^t f$, a integração por partes mostra que

$$\int_{1}^{t} \frac{f(x)}{x^{\alpha}} dx = \left[\frac{F(x)}{x^{\alpha}} \right]_{1}^{t} + \alpha \int_{1}^{t} \frac{F(x)}{x^{\alpha+1}} dx.$$

Correção do exercício 1.12. Por um lado, $\int_0^1 f_n = 1$. Por outro lado, $(f_n)_{n>0}$ converge pontualmente em [0,1] a função constante igual a 0, cuja integral é 0. Consequentemente, $\lim \int_0^1 f_n \neq \int_0^1 \lim f_n$.

Correção do exercício 1.13. Pode-se usar o teorema de convergência dominada, junto com a convergência pontual $f(x^n) \xrightarrow[n \to \infty]{} f(0)$ por todo $x \in [0, 1)$.

Correção do exercício 1.14. Usando a desigualdade $f \leq M$, obtemos

$$\left(\int_{a}^{b} f(x)^{n} dx\right)^{1/n} \leq \left(\int_{a}^{b} M^{n} dx\right)^{1/n} = \left((b-a)M^{n}\right)^{1/n} = (b-a)^{1/n}M$$

$$\xrightarrow[n \to \infty]{} M.$$

Agora, escolhamos um $\epsilon > 0$. Mostraremos que

$$\lim_{n \to \infty} \left(\int_a^b f(x)^n \, \mathrm{d}x \right)^{1/n} \ge M - \epsilon,$$

o que bastará para concluir. Seja $y \in [a, b]$ que atinge o máximo M e, por continuidade, $\eta > 0$ tal que $f(x) > M - \epsilon$ por todo $x \in [y - \eta, y + \eta]$. Escrevemos

$$\left(\int_{a}^{b} f(x)^{n} dx\right)^{1/n} \ge \left(\int_{y-\eta}^{y+\eta} (M-\epsilon)^{n} dx\right)^{1/n} = \left((2\eta)(M-\epsilon)^{n}\right)^{1/n}$$
$$= (2\eta)^{1/n}(M-\epsilon) \xrightarrow[n \to \infty]{} M - \epsilon.$$

C Referências

- [CB22] Jean Cerqueira Berni. Mat 2455 Cálculo diferencial e integral III. *Instituto de Matemática e Estatística IME/USP*, 2022. https://www.ime.usp.br/~jeancb/mat2455.html.
- [Gou20] Xavier Gourdon. Les maths en tête: Analyse. Les maths en tête, pages 1-456, 2020. https://keybase.theophile.me/maths/livres/gourdon-analyse.pdf.
- [KKS04] D.S. Kurtz, J. Kurzweil, and C.W. Swartz. Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane. Series in real analysis. World Scientific Pub., 2004. https://epdf.tips/theories-of-integration.html.
- [Lux71] WAJ Luxemburg. Arzela's dominated convergence theorem for the riemann integral. The American Mathematical Monthly, 78(9):970-979, 1971. https://sites.math.washington.edu/~morrow/335_17/dominated.pdf.
- [MHB11] Pedro Alberto Morettin, Samuel Hazzan, and Wilton de Oliveira Bussab. Cálculo funções de uma e várias variáveis. Saraiva Uni, 2011. https://document.onl/download/link/livro-calculo-funcoes-de-uma-e-varias-variaveis-bussab-wilton.html.
- [MT12] Jerrold E. Marsden and Anthony Tromba. Vector calculus. W.H. Freeman, New York, array edition, 2012. https://uuwaterloohome.files.wordpress.com/2020/04/jerrold-e.-marsden-anthony-tromba-vector-calculus.pdf.

- [PCJ12] Murray H Protter and B Charles Jr. A first course in real analysis. Springer Science & Business Media, 2012. https://www.mymathscloud.com/api/download/modules/University/Textbooks/analysis-real/8) A%20First%20 Course%20in%20Real%20Analysis%20Protter.pdf?id=25323333.
- [Pin10] Márcia Maria Fusaro Pinto. Introdução ao cálculo integral, 2010. https://docente.ifrn.edu.br/elionardomelo/disciplinas/calculo-diferencial-e-integral-ii/material-de-aula.
- [PM09] Diomara Pinto and Maria Cândida Ferreira Morgado. Cálculo diferencial e integral de funções de várias variáveis. UFRJ, 2009.
- [Spi06] Michael Spivak. Calculus. Cambridge University Press, 2006. https://isidore.co/CalibreLibrary/Spivak,%20Michael/Calculus%20(4th%20ed.)%20(8039)/.
- [Wel11] Jonathan Wells. Generalizations of the Riemann integral: an investigation of the Henstock integral. Whitman Coll, pages 1-28, 2011. https://www.whitman.edu/documents/Academics/Mathematics/SeniorProject_JonathanWells.pdf.