Algoritmizace

Rozděl a panuj

Rozděl a panuj / Divide et impera

Dekompozice: Rozděl problém na podproblémy Rekurzivně najdi řešení podproblémů Syntéza: Z řešení podproblémů sestroj řešení původního problému

*Příklady

- Hanojská věž
- vyhodnocení aritmet. výrazu (v infixové notaci)
- třídění sléváním MergeSort
- třídění rozdělováním QuickSort

Třídění sléváním – MergeSort

Báze: Pole délky $n \le 1$ je již setříděno

Dekompozice: Pole délky $n \ge 2$ rozděl na poloviny

Rekurzivně setřiď obě části

Syntéza: Obě setříděné části slej (merge) do jednoho setříděného pole

Jak sloučíme dvě setříděná pole?

Pozorování

- dvě setříděná pole lze sloučit do jednoho výsledného setříděného pole v lineárním čase
- = operace slévání (merge)

* Příklad

MergeSort – dekompozice & rekurze

```
def mergeSort(a):
  if len(a) > 1:
    stred = len(a)//2 # stred pole
    # kopie první a druhé poloviny
    levy, pravy = a[:stred], a[stred:]
    # obě poloviny setřídíme
    mergeSort(levy)
    mergeSort(pravy)
    # indexy polí levy, pravy, a
    i = j = k = 0
```

MergeSort – slévání

```
# slejeme setříděné části
# levy[] a pravy[] do pole a[]
while i < len(levy) and j < len(pravy):</pre>
  if levy[i] < pravy[j]:</pre>
    a[k] = levy[i]
    i += 1
  else:
    a[k] = pravy[j]
    j += 1
  k += 1
```

MergeSort – slévání – závěr

```
# na konec připojíme zbylé prvky
# z levé či pravé části
while i < len(levy):</pre>
  a[k] = levy[i]
  i, k = i+1, k+1
while j < len(pravy):</pre>
  a[k] = pravy[j]
  j,k = j+1,k+1
```

MergeSort – průběh výpočtu

- výpočet průchod stromem rekurze do hloubky
- zásobník dosud nezpracovaných podúloh

Strom rekurze

Vrcholy

 podúlohy (rekurzivně) volané během (rekurzivního) algoritmu

Kořen

původní úloha

Děti každého rodiče

 představují podúlohy, (rekurzivně) volané v rodičovské úloze

Strom rekurze

Časová složitost

•
$$T(n) = \lceil \log_2 n \rceil \cdot O(n) = O(n \log n)$$

MergeSort – prostorová složitost

Prostor

- pracovní paměť: pomocné pole pro slévání
- zásobník pro obsluhu rekurze

Odvození velikosti pracovní paměti pomocí stromu rekurze

- vrchol stromu \rightarrow úsek délky $k \rightarrow$ prostor $\Theta(k)$
- v paměti je vždy právě zpracovávaný vrchol
- + všichni jeho předchůdci
- nejhorší případ: pracovní paměť pro všechny podúlohy (vrcholy) na cestě z kořene do listu

MergeSort – prostorová složitost

Nechť $n = 2^k$. Pak pracovní paměť

$$S(n) = O(n) + O(n/2) + O(n/4) + \dots + O(1) = O(n)$$

Necht' $2^k < n < 2^{k+1}$.

- položme $n^* = 2^{k+1}$
- pak $n^* < 2 \cdot n$

$$S(n) \le O(n^*) + O(n^*/2) + O(n^*/4) + \dots + O(1)$$

$$\le c \cdot n^* < c \cdot 2 \cdot n = O(n)$$

Složitost – alternativní odvození

Časovou i prostorovou složitost vyjádříme rekurentním vztahem

$$T(1) = O(1), T(n) = 2 \cdot T(n/2) + O(n)$$

 $S(1) = O(1), S(n) = S(n/2) + O(n)$
Řešení

- postupné dosazování
- hypotéza o přesném řešení
- důkaz matematickou indukcí

MergeSort bez rekurze

* Idea

- běh souvislý setříděný úsek pole
- začneme s 1prvkovými běhy vstupního pole
- poté budeme slévat vždy dva sousední běhy do jediného běhu o dvojnásobné délce
- v poslední iteraci bude pole obsahovat jediný běh

Časová složitost $O(n \log n)$

jako rekurzivní MergeSort

Prostorová složitost O(n)

 potřebujeme pomocné pole, do něhož sléváme cílové běhy ze zdrojových běhů v poli původním

Nerekurzivní MergeSort – čas

délka běhu čas

1 8 2 6 4 1 3 9 5 O(n)

2 2 8 4 6 1 3 5 9 O(n)

4 2 4 6 8 1 3 5 9 O(n)

O(n)

 $2^k < n \implies k < \log_2 n \le \lceil \log_2 n \rceil \implies k + 1 \le \lceil \log_2 n \rceil$

Časová složitost

• $T(n) = \lceil \log_2 n \rceil \cdot O(n) = O(n \log n)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

MergeSort – slévání

```
def merge(a, temp, zacatek, stred, konec):
 i,j,k = zacatek,stred+1,zacatek
 while i <= stred and j <= konec:
   if a[i] < a[j]:
      temp[k] = a[i]
      i += 1
   else:
      temp[k] = a[j]
      j += 1
   k += 1
```

MergeSort – slévání – závěr

```
# na konec připojí zbylé prvky
# z levého / pravého běhu
while i <= stred:
  temp[k] = a[i]
  i, k = i+1, k+1
while j <= konec:</pre>
  temp[k] = a[j]
  j,k = j+1,k+1
# výsledek zkopíruje do pole a
 [zacatek:konec+1]=
                 temp[zacatek:konec+1]
```

MergeSort – třídění

```
def mergeSort(a):
n = len(a) # délka vstupního pole
 temp = [None] * n # alokuje pomocné
# slévá sousední běhy délek 1,2,4,...
beh = 1
while beh < n:
  for zacatek in range(0,n-beh,2*beh):
      stred = zacatek + beh - 1
      konec = min(stred + beh, n-1)
      merge(a, temp, zacatek, stred, konec)
  beh *= 2
```

Problém

① Vylepšete implementaci algoritmu MergeSort tak, abyste se na konci funkce Merge vyhnuli kopírování z pomocného pole temp zpět do vstupního pole a [zacatek:konec+1] = temp[zacatek:konec+1]

② Rozmyslete si, jak by šel algoritmus MergeSort využít pro setřídění spojových seznamů.

Půjde to snáze rekurzí nebo iterací?

Aplikace: Vnější třídění

Problém

• setřídit data, která se nevejdou do RAM

Nové kritérium

• minimalizovat I/0 operace

Idea

- slévání běhů
- běh uložen v souboru
- fáze rozdělování, fáze slévání

Přímé slučování

Na začátku

• tříděná data v jednou souboru (triviální běhy délky 1)

Fáze rozdělování

- setříděné běhy ze vstupního souboru rozdělujeme
- střídavě do dvou pomocných souborů S1 a S2

Fáze slévání

- nejprve sloučíme první běhy z S1 a S2 do běhu
- o dvojnásobné délce, zapíšeme do výstupního souboru

◆□▶ ◆□▶ ◆豆▶ ◆豆 ◆のQ@

- stejně pro druhé běhy
- takto sloučením S1 a S2 vytvoříme jeden soubor
- tvořený běhy o dvojnásobné délce

Přímé slučování

Složitost

- chceme minimalizovat počet operací se soubory
- # read = # write
- $2n \lceil \log_2 n \rceil$

Vylepšení

- sloučit rozdělování + slévání
- slévat více běhů
- využít přirozeně setříděných částí vstupu
- předtřídit počáteční běhy v RAM

Jednofázové slučování

- Idea: sloučit rozdělování + slévání
 - rozdělování do 2 souborů jen na začátku
 - dále: 2 fáze → 1 fáze

Nové běhy hned rozdělujeme

střídavě do dvou souborů

Počet operací

• # read $\approx n \log_2 n$

Zvýšení stupně slučování

- Idea: k-cestné slučování
 - rozdělujeme k běhů do k souborů

Počet kroků p

- $k^{p-1} < n \le k^p$
- $p = \lceil \log_k n \rceil$
- zrychlení $\log_2 n / \log_k n = \log_2 k$
- ✓ Jak vybrat minimum z k běhů?
 - halda: čas $O(\log k)$
- ✗ Počet otevřených souborů
 - 2fázové: k + 1 soubor
 - 1fázové: 2k souborů (k vstupních a k výstupních)

イロト 4回ト 4 重ト 4 回ト 4 回ト

Přirozené slučování

- Idea: využít již setříděné úseky na vstupu
 - některé úseky vstupu mohou být již setříděny
 - proč toho nevyužít?

Počáteční běhy

- již setříděné úseky vstupu
- délka běhu > 1

Počet kroků

- počet počátečních běhů b
- počet kroků $\log_2 n \to \log_2 b$

Časová složitost

• $O(n \log b)$

Předtřídit počáteční běhy

- ½ Idea: předtřídit počáteční běhy v RAM
 - lze spojit s rozdělovací fází 1.kroku
 - # read / write se nezvýší

Časová složitost

- *m* = délka přetříděného běhu
- počet běhů [n/m]
- celkový čas $O(n \log(n/m))$

MergeSort – další variace

TimSort

- Tim Peters (2002), využívá Python od verze 2.3
- stabilní hybridní třídící algoritmus
- metoda: Peter McIlroy, SODA 1993
- délka běhu $b \in \langle 32,64 \rangle$ tak, aby n/b byla mocnina 2
- běhy jsou setříděny vkládáním (InsertionSort)
- slévání běhů (MergeSort)

Třídění rozdělováním – QuickSort

* Idea

- pole délky ≤ 1 je již setříděno
- jinak ve vstupním poli zvolíme prvek zvaný pivot
- prvky v poli přeskupíme tak, aby výsledné pole tvořily dva navazující úseky
 - » levý s prvky ≤ pivot
 - » pravý s prvky ≥ pivot
- oba úseky setřídíme rekurzivně

QuickSort – Partition

```
def quickSort(a, start, stop):
      setřídí a[start..stop]
  levy, pravy = start, stop # ukazatele
  pivot = a[(levy+pravy)//2]
  while levy <= pravy: # nepřeskočily se</pre>
   while a[levy] < pivot: # patří vlevo</pre>
     levy += 1 # posouvat levý ukazatel
   while pivot < a[pravy]: # patří vpravo</pre>
     pravy -= 1 # posouvat pravý ukazatel
  # pokračuje ->
```

QuickSort – Partition

```
if levy < pravy: # nesetkaly se</pre>
  # vyměň hodnoty
  a[levy], a[pravy] = a[pravy], a[levy]
if levy <= pravy: # nepřeskočily se</pre>
  # pokračuj
  levy, pravy = levy + 1, pravy - 1
# konec while-cyklu
```

QuickSort – rekurze

```
# netriviální úseky setřiď rekurzivně
if start < pravy:
   quickSort(a, start, pravy)
if levy < stop:
   quickSort(a, levy, stop)</pre>
```

QuickSort – časová složitost

Časová složitost T(n) v nejhorším případě

• $T(n) = O(n) + \max_{1 \le i \le n-1} (T(i) + T(n-i))$

Horní odhad

- pomocí stromu rekurze
- na každé hladině: čas O(n)
- počet hladin $\leq n$
- $T(n) = O(n^2)$

Dolní odhad

- $T(n) \ge \Omega(n) + T(n-1) = \Omega(n^2)$
- pro jaké vstupy nastane?

QuickSort – časová složitost

Časová složitost v nejlepším případě

- co když se podaří v každém kroku zvolit jako pivotový prvek medián?
- T(n) = O(n) + 2T(n/2)
- výška stromu rekurze logaritmická
- čas $O(n \cdot \log n)$

Časová složitost v průměrném případě $O(n \cdot \log n)$

důkaz : ADS I

QuickSort – zrychlení

Volba pivotového prvku

• určení mediánu v čase $O(n) \Rightarrow$ teoretické zrychlení na čas $O(n \cdot \log n)$ i v nejhorším případě

Volba pivota v praxi

- náhodně
- medián z a[1], a[n//2], a[-1]
- medián ze 3 náhodně zvolených

Odstranění konce rekurze

• malé $n \Rightarrow$ setřídit přímou metodou (InsertionSort)

QuickSort bez rekurze

Rekuzivní volání ⇒

- uložení hranic úseku k setřídění do zásobníku
- simulace průchodu stromem rekurze
- Může být úspornější
 - časově (obsluha rekurze)
 - i prostorově (stačí zásobník logaritmické velikosti)
- ★ Složitější kód

QuickSort – prostorová složitost

Netřídí na místě!

K obsluze rekurze je třeba zásobník

- prostorová složitost O(n)
- lze zlepšit na $O(\log n)$

Problémy: QuickSort

③ Prvek posloupnosti délky *n* nazveme skoromediánem, pokud leží v uspořádané posloupnosti na k-tém místě, kde

$$n/4 \le k \le 3n/4$$
.

Kdyby se nám v algoritmu QuickSort podařilo v každém kroku vybrat v čase O(1) jako pivota skoromedián, změnilo by to nějak časovou složitost v nejhorším případě?

Ve vaší analýze složitosti můžete předpokládat, že prvky na vstupu jsou po dvou různé.

Problémy: QuickSort

- 4 Upravte QuickSort tak, aby pro
 - zadané pole a
 - a číslo k

vrátil k-tý nejmenší prvek a bez toho, že by pole třídil. Mělo by k tomu stačit jediné rekurzivní volání.

Časová složitost výsledného algoritmu je v nejhorším případě stále kvadratická, dá se ale ukázat, že v průměrném případě pracuje v lineárním čase.