Advanced Optimization Lecture 5: Stochastic Algorithms (SGD & CMA-ES)

November 10, 2021
CentraleSupélec / ESSEC Business School dimo.brockhoff@inria.fr

Dimo Brockhoff Inria Saclay – Ile-de-France

Course Overview

		Topic		
Wed, 13.10.2021	PM	Introduction, examples of problems, problem types		
Wed, 20.10.2021	PM	Continuous (unconstrained) optimization: convexity, gradients, Hessian, [technical test Evalmee]		
Wed, 27.10.2021	PM	Continous optimization II: [1st mini-exam] Constrained optimization: Lagrangian, optimality conditions		
Wed, 03.11.2021	PM	gradient descent, Newton direction, quasi-Newton (BFGS) Linear programming: duality, maxflow/mincut, simplex algo		
Wed, 10.11.2021	PM	Gradient-based and derivative-free stochastic algorithms: SGD and CMA-ES		
Wed, 17.11.2021	PM	Other blackbox optimizers: Nelder-Mead, Bayesian optimization		
Wed, 24.11.2021	PM	Benchmarking solvers: runtime distributions, performance profiles [2 nd mini-exam]		
Tue, 30.11.2021	23:59	Deadline open source project (PDF sent by email)		
Wed, 01.12.2021	PM	Discrete optimization: branch and bound, branch and cut, k-means clustering		
Wed, 15.12.2021	PM	Exam		

Clarification: Active Constraints

Correct in slides, but maybe not clear enough with my examples:

An inequality constraint is active in point a if the constraint is 0 in a

List of Potential Issues for Group Project

Non-exhaustive list of course, but feasible and interesting tasks for those groups who have not yet decided on a topic:

- https://github.com/facebookresearch/nevergrad/issues/589
- https://github.com/numbbo/coco/issues/1594
- https://github.com/numbbo/coco/issues/1121
- https://github.com/numbbo/coco/issues/1836

Advanced Exercise

Also for today and next time:

- advanced exercise available
- topic: benchmarking and the COCO platform (PDF on Edunao)

Details on Continuous Optimization Lectures

Introduction to Continuous Optimization

examples and typical difficulties in optimization

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
 - first and second order conditions
 - convexity
- constraint optimization
 - Lagrangian, optimality conditions

Gradient-based Algorithms

- gradient descent
- quasi-Newton method (BFGS) and invariances

Linear programming, duality

Learning in Optimization / Optimization in Machine Learning

- Stochastic gradient descent (SGD) + Adam
- CMA-ES (adaptive algorithms / Information Geometry)
- Other derivative-free algorithms: Nelder-Mead, Bayesian opt.

Linear Optimization

[optimization with linear objective and linear constraints functions]

Linear Programming

Linear programming = linear optimization

Find a vector *x* that

- maximizes $c^T x$
- s.t. $Ax \leq b$
- and $x \ge 0$

How to Solve Linear Programs?

Simplex method (Dantzig, 1940s)

fast in practice, but exponential in worst case

Interior point methods

• Khachiyan, 1979: first polynomial algorithm, $O(n^6L)$

n: #variables, L: #input bits

- Karmarkar, 1984: $O(n^{3.5}L)$
- Vaidya, 1989: $O(n(n+d)^{1.5}L) = O(n^{2.5}L)$ for constant d

d: #constraints

Idea Behind Simplex Algorithm

- Move along linear facets from corner to corner
- If corner not optimal, there is always a neighbor which is better
- Corresponds to equality constraints (inequality constraints need to be transformed accordingly via "slack variables")

Idea Behind Interior Point Methods

- evaluate inside the simplex and move towards the edges
- works with inequality constraints
- solve $f(x) 1/t \sum_{i=1}^{m} \log(g_i(x))$ iteratively with increasing t given m inequality constraints $g_i(x) \ge 0$

Conclusions

I hope it became clear...

- ... what linear programming is and
- ... what are the ideas behind the simplex algorithm and interior point methods

Next:

idea of duality

stochastic algorithms: stochastic gradient descent and CMA-ES

Duality

[how to solve an unconstrained problem instead of a constrained one]

based on:

https://www.youtube.com/watch?v=4OifjG2kIJQ

Given: The Primal (A Constrained Opt. Problem)

Primal Problem:

- $\bullet \quad \min f(x) \ [f \colon \mathbb{R}^n \to \mathbb{R}]$
- such that: h(x) = 0 and $g(x) \le 0$ $[h: \mathbb{R}^n \to \mathbb{R}^m] [g: \mathbb{R}^n \to \mathbb{R}^p]$

Reformulate via Lagrange multipliers/penalties/dual or slack variables:

- Associate to each equality constraint a λ_i and to each inequality constraint a μ_i
- Lagrangian: $L(x, \lambda, \mu) = f(x) + \lambda^T h(x) + \mu^T g(x)$

What to Do With the Lagrangian?

Can be used to compute best x given a λ and a μ with less constraints:

Dual Function:

- $q: \mathbb{R}^{m+p} \to \mathbb{R}$
- $q(\lambda, \mu) = \min_{x \in \mathbb{R}^n} L(x, \lambda, \mu)$ such that $\mu \ge 0$ [otherwise $\mu^T g(x) < 0$ for infeasible x]

And finally to compute a lower bound on $f(x^*)$:

Theorem (dual bound)

Let x^* be the minimum of the primal. If $\lambda \in \mathbb{R}^m$ and $0 \le \mu \in \mathbb{R}^p$, then $q(\lambda, \mu) \le f(x^*)$.

Finding the Best Lower Bound

Dual Problem:

- given $\mu \ge 0$ and $(\lambda, \mu) \in \{\lambda, \mu \mid q(\lambda, \mu) > -\infty\}$ do not allow unbounded solutions!

Relations Between Primal and Dual

Dual problem

Primal problem

	Optimal	Unbounded	Infeasible
Optimal	YES	NO	NO
Unbounded	NO	NO	YES
Infeasible	NO	YES	YES

more details in https://www.youtube.com/watch?v=4OifjG2kIJQ

Application of Duality: Max Flow = Min Cut

Application of Duality: Max Flow = Min Cut

Stochastic Algorithms

algorithms using randomness

stochastic gradient descent (SGD)

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Stochastic Algorithms

algorithms using randomness

stochastic gradient descent (SGD) [next week]

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Derivative-Free Optimization

Derivative-Free Optimization (DFO)

DFO = blackbox optimization

Why blackbox scenario?

- gradients are not always available (binary code, no analytical model, ...)
- or not useful (noise, non-smooth, ...)
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- some algorithms are furthermore function-value-free, i.e. invariant wrt. monotonous transformations of f.

Derivative-Free Optimization Algorithms

- (gradient-based algorithms which approximate the gradient by finite differences)
- coordinate descent
- pattern search methods, e.g. Nelder-Mead
- surrogate-assisted algorithms, e.g. NEWUOA or other trustregion methods
- other function-value-free algorithms
 - typically stochastic
 - evolution strategies (ESs) and Covariance Matrix Adaptation
 Evolution Strategy (CMA-ES)
 - differential evolution
 - particle swarm optimization
 - simulated annealing
 - ...

Nelder Mead

aka simplex downhill

Downhill Simplex Method by Nelder and Mead

While not happy do:

[assuming minimization of f and that $x_1, ..., x_{n+1} \in \mathbb{R}^n$ form a simplex]

- **1) Order** according to the values at the vertices: $f(x_1) \le f(x_2) \le \cdots \le f(x_{n+1})$
- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$

If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} := x_e$ and go to 1)

Else $x_{n+1} := x_r$ and go to 1)

Else (i.e. reflected point is not better than second worst) continue with 5)

5) Contraction (here: $f(x_r) \ge f(x_n)$)

Compute contracted point $x_c = x_o + \rho(x_{n+1} - x_o)$ (0 < $\rho \le 0.5$)

If $f(x_c) < f(x_{n+1})$: $x_{n+1} := x_c$ and go to 1)

Else go to 6)

6) Shrink

$$x_i = x_1 + \sigma(x_i - x_1)$$
 for all $i \in \{2, ..., n + 1\}$ ($\sigma < 1$) and go to 1)

J. A Nelder and R. Mead (1965). "A simplex method for function minimization".

Computer Journal. 7: 308–313. doi:10.1093/comjnl/7.4.308

Nelder-Mead: Reflection

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$ If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

Nelder-Mead: Reflection

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$ If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

Nelder-Mead: Reflection

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$ If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} := x_e$ and go to 1)

Else $x_{n+1} := x_r$ and go to 1)

2) Calculate x_o , the centroid of all points except x_{n+1} .

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} := x_e$ and go to 1)

Else $x_{n+1} := x_r$ and go to 1)

2) Calculate x_o , the centroid of all points except x_{n+1} .

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} := x_e$ and go to 1)

Else $x_{n+1} := x_r$ and go to 1)

2) Calculate x_o , the centroid of all points except x_{n+1} .

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = x_o + \gamma (x_r - x_o)(\gamma > 0)$$

If x_e better than x_r then $x_{n+1} := x_e$ and go to 1)

Else $x_{n+1} := x_r$ and go to 1)

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- **5) Contraction** (here: $f(x_r) \ge f(x_n)$)
 Compute contracted point $x_c = x_o + \rho(x_{n+1} x_o)$ ($0 < \rho \le 0.5$)
 If $f(x_c) < f(x_{n+1})$: $x_{n+1} := x_c$ and go to 1)
 Else go to 6)

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- **5) Contraction** (here: $f(x_r) \ge f(x_n)$)
 Compute contracted point $x_c = x_o + \rho(x_{n+1} x_o)$ ($0 < \rho \le 0.5$)
 If $f(x_c) < f(x_{n+1})$: $x_{n+1} := x_c$ and go to 1)
 Else go to 6)

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 6) Shrink

$$x_i = x_1 + \sigma(x_i - x_1)$$
 for all $i \in \{2, ..., n + 1\}$ and go to 1)

Nelder-Mead: Expansion

- **2)** Calculate x_o , the centroid of all points except x_{n+1} .
- 6) Shrink

$$x_i = x_1 + \sigma(x_i - x_1)$$
 for all $i \in \{2, ..., n + 1\}$ and go to 1)

Nelder-Mead: Standard Parameters

- reflection parameter : $\alpha = 1$
- expansion parameter: $\gamma = 2$
- contraction parameter: $\rho = \frac{1}{2}$
- shrink parameter: $\sigma = \frac{1}{2}$

some visualizations of example runs can be found here: https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method

Important to Note

- Nelder-Mead mainly good in (very) low dimension
 - we'll see this in the benchmarking lecture
- originally proposed algorithm shows shrinking simplex behavior

hence, newer implementations try to avoid this: [Hansen 2009] [Doerr et al. 2009], COBYLA [Powell 1994]

[Hansen 2009] Nikolaus Hansen: "Benchmarking the Nelder-Mead downhill simplex algorithm with many local restarts". In: *Genetic and Evolutionary Computation Conference Companion*, 2009.

[Doerr et al. 2009] Benjamin Doerr, Mahmoud Fouz, Martin Schmidt, and Magnus Wahlstrom: "BBOB: Nelder-Mead with resize and halfruns". In: *Genetic and Evolutionary Computation Conference Companion*, 2009.

[Powell 1994] Michael J. D. Powell: "A direct search optimization method that models the objective and constraint functions by linear interpolation". In: Advances in Optimization and Numerical Analysis, Kluwer Academic, Dordrecht, pp 51–67, 1994.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Stochastic Search Template

A stochastic blackbox search template to minimize $f: \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(x|\theta) \to x_1, ..., x_{\lambda} \in \mathbb{R}^n$
- Evaluate $x_1, ..., x_{\lambda}$ on f
- Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, ..., x_{\lambda}, f(x_1), ..., f(x_{\lambda}))$

• All depends on the choice of P and F_{θ}

deterministic algorithms are covered as well

• In Evolutionary Algorithms, P and F_{θ} are often defined implicitly via their operators.

Generic Framework of an EA

stochastic operators

"Darwinism"

stopping criteria

Nothing else: just interpretation change

The CMA-ES

Input: $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ

Initialize: C = I, and $p_c = 0$, $p_{\sigma} = 0$,

Set: $c_c \approx 4/n$, $c_\sigma \approx 4/n$, $c_1 \approx 2/n^2$, $c_\mu \approx \mu_w/n^2$, $c_1 + c_\mu \le 1$, $d_\sigma \approx 1 + \sqrt{\frac{\mu_w}{n}}$,

and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$\begin{aligned} & \boldsymbol{x}_i = \boldsymbol{m} + \sigma \, \boldsymbol{y}_i, \quad \boldsymbol{y}_i \ \sim \ \mathcal{N}_i(\mathbf{0},\mathbf{C}) \,, \quad \text{for } i = 1, \dots, \lambda \\ & \boldsymbol{m} \leftarrow \sum_{i=1}^{\mu} w_i \, \boldsymbol{x}_{i:\lambda} = \boldsymbol{m} + \sigma \, \boldsymbol{y}_w \quad \text{where } \boldsymbol{y}_w = \sum_{i=1}^{\mu} w_i \, \boldsymbol{y}_{i:\lambda} \\ & \boldsymbol{p}_{\mathbf{c}} \leftarrow (1 - c_{\mathbf{c}}) \, \boldsymbol{p}_{\mathbf{c}} + 1\!\!\!\! \mathbf{1}_{\{\parallel p_{\sigma} \parallel < 1.5\sqrt{n}\}} \sqrt{1 - (1 - c_{\mathbf{c}})^2} \sqrt{\mu_w} \, \boldsymbol{y}_w \end{aligned} \quad \text{update mean} \\ & \boldsymbol{p}_{\boldsymbol{c}} \leftarrow (1 - c_{\mathbf{c}}) \, \boldsymbol{p}_{\boldsymbol{c}} + 1\!\!\!\! \mathbf{1}_{\{\parallel p_{\sigma} \parallel < 1.5\sqrt{n}\}} \sqrt{1 - (1 - c_{\mathbf{c}})^2} \sqrt{\mu_w} \, \boldsymbol{y}_w \end{aligned} \quad \text{cumulation for } \boldsymbol{C} \\ & \boldsymbol{p}_{\boldsymbol{\sigma}} \leftarrow (1 - c_{\boldsymbol{\sigma}}) \, \boldsymbol{p}_{\boldsymbol{\sigma}} + \sqrt{1 - (1 - c_{\boldsymbol{\sigma}})^2} \sqrt{\mu_w} \, \boldsymbol{C}^{-\frac{1}{2}} \boldsymbol{y}_w \end{aligned} \quad \text{cumulation for } \boldsymbol{\sigma} \\ & \boldsymbol{C} \leftarrow (1 - c_1 - c_{\boldsymbol{\mu}}) \, \boldsymbol{C} \, + \, c_1 \, \boldsymbol{p}_{\mathbf{c}} \boldsymbol{p}_{\mathbf{c}}^{\, \mathrm{T}} \, + \, c_{\boldsymbol{\mu}} \sum_{i=1}^{\mu} w_i \, \boldsymbol{y}_{i:\lambda} \boldsymbol{y}_{i:\lambda}^{\, \mathrm{T}} \end{aligned} \quad \text{update } \boldsymbol{C} \\ & \boldsymbol{\sigma} \leftarrow \boldsymbol{\sigma} \times \exp\left(\frac{c_{\boldsymbol{\sigma}}}{d_{\boldsymbol{\sigma}}} \left(\frac{\parallel p_{\boldsymbol{\sigma}} \parallel}{\mathbf{E} \parallel \mathcal{N}(\mathbf{0},\mathbf{I}) \parallel} - 1\right)\right) \end{aligned} \quad \text{update of } \boldsymbol{\sigma} \end{aligned}$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

CMA-ES in a Nutshell

Evolution Strategies (ES)

A Search Template

The CMA-ES

Input: $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ

Initialize: C = I, and $p_c = 0$, $p_{\sigma} = 0$,

Set: $c_c \approx 4/n$, $c_\sigma \approx 4/n$, $c_1 \approx 2/n^2$, $c_\mu \approx \mu_w/n^2$, $c_1 + c_\mu \le 1$, $d_\sigma \approx 1 + \sqrt{\frac{\mu_w}{n}}$,

and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$egin{aligned} x_i &= m{m} + \sigma \, m{y}_i, \quad m{y}_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C}) \,, \quad \text{for } i = 1, \ldots, \lambda \ m{m} \leftarrow \sum_{i=1}^{\mu} w_i \, m{x}_{i:\lambda} &= m{m} + \sigma \, m{y}_w \quad \text{where } m{y}_w = \sum_{i=1}^{\mu} w_i \, m{y}_{i:\lambda} \quad \text{update mean} \ m{p}_c \leftarrow (1-c_c) \, m{p}_c + \mathbb{1}_{\{\parallel p_\sigma \parallel < 1.5 \sqrt{n}\}} \, \sqrt{1-(1-c_c)^2} \, \sqrt{\mu_w} \, m{y}_w \quad \text{cumulation for } \mathbf{C} \ m{p}_\sigma \leftarrow (1-c_\sigma) \, m{p}_\sigma + \sqrt{1-(1-c_\sigma)^2} \, \sqrt{\mu_w} \, \mathbf{C}^{-\frac{1}{2}} \, m{y}_w \quad \text{cumulation for } \sigma \ \mathbf{C} \leftarrow (1-c_1-c_\mu) \, \mathbf{C} + c_1 \, m{p}_c \, m{p}_c^{\, \mathrm{T}} + \mathbf{C}^{\, \mu} \, \mathbf{v} \, \mathbf{v}^{\, \mathrm{T}} \, \mathbf{v}^{\, \mathrm{T$$

 $\sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\|p_{\sigma}\|}{\mathsf{E}\|\mathcal{N}(\mathbf{0},\mathbf{I})\|}-1\right)\right)$

Not covered on this slide: termination encoding

Goal:

Understand the main principles of this state-of-the-art algorithm.

Copyright Notice

- Last slide was taken from http://www.cmap.polytechnique.fr/~nikolaus.hansen/copenhagen-cma-es.pdf (copyright by Nikolaus Hansen, one of the main inventors of the CMA-ES algorithms)
- In the following, I will borrow more slides from there and from http://www.cmap.polytechnique.fr/~dimo.brockhoff/opt imizationSaclay/2015/slides/20151106continuousoptIV.pdf (by Anne Auger)
- In the following and the online material in particular, I refer to these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.
- There is also a tutorial available on Youtube by Y. Akimoto and N. Hansen: https://www.youtube.com/watch?v=7VBKLH3oDuw

The CMA-ES

Input: $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ

Initialize: C = I, and $p_c = 0$, $p_{\sigma} = 0$,

Set: $c_c \approx 4/n$, $c_\sigma \approx 4/n$, $c_1 \approx 2/n^2$, $c_\mu \approx \mu_w/n^2$, $c_1 + c_\mu \leq 1$, $d_\sigma \approx 1 + \sqrt{\frac{\mu_w}{n}}$,

and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$egin{aligned} x_i &= m{m} + \sigma \, m{y}_i, \quad m{y}_i \sim \mathcal{N}_i(\mathbf{0}, \mathbf{C}) \,, \quad \text{for } i = 1, \dots, \lambda \ m{m} \leftarrow \sum_{i=1}^{\mu} w_i \, m{x}_{i:\lambda} &= m{m} + \sigma \, m{y}_w \quad \text{where } m{y}_w = \sum_{i=1}^{\mu} w_i \, m{y}_{i:\lambda} \quad \text{update mean} \ m{p}_c \leftarrow (1-c_c) \, m{p}_c + \mathbb{1}_{\{\parallel p_\sigma \parallel < 1.5 \sqrt{n}\}} \, \sqrt{1-(1-c_c)^2} \, \sqrt{\mu_w} \, m{y}_w \quad \text{cumulation for } \mathbf{C} \ m{p}_\sigma \leftarrow (1-c_\sigma) \, m{p}_\sigma + \sqrt{1-(1-c_\sigma)^2} \, \sqrt{\mu_w} \, \mathbf{C}^{-\frac{1}{2}} \, m{y}_w \quad \text{cumulation for } \sigma \ \mathbf{C} \leftarrow (1-c_1-c_\mu) \, \mathbf{C} + c_1 \, m{p}_c \, m{p}_c^{\, \mathrm{T}} + \mathbf{C}^{\, \mu} \, \mathbf{v} \, \mathbf{v}^{\, \mathrm{T}} \quad \mathbf{v} \, \mathbf{v} \, \mathbf{v}^{\, \mathrm{T}} \end{aligned}$$

 $\sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\|p_{\sigma}\|}{\mathsf{E}\|\mathcal{N}(\mathbf{0},\mathbf{I})\|}-1\right)\right)$

Not covered on this slide: termination encoding

Goal:

Understand the main principles of this state-of-the-art algorithm.

CMA-ES: Stochastic Search Template

A stochastic blackbox search template to minimize $f: \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(x|\theta) \rightarrow x_1, ..., x_{\lambda} \in \mathbb{R}^n$
- Evaluate $x_1, ..., x_{\lambda}$ on f
- Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, ..., x_{\lambda}, f(x_1), ..., f(x_{\lambda}))$

For CMA-ES and evolution strategies in general:

sample distributions = multivariate Gaussian distributions

Sampling New Candidate Solutions (Offspring)

Evolution Strategies

New search points are sampled normally distributed

$$\mathbf{x}_i \sim \mathbf{m} + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$
 for $i = 1, \dots, \lambda$

as perturbations of m, where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\mathbf{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbb{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

here, all new points are sampled with the same parameters

it remains to show how to adapt the parameters, but for now: normal distributions

from [Auger, p. 10]

Normal Distribution

1-D case

probability density of the 1-D standard normal distribution $\mathcal{N}(0,1)$

(expected (mean) value, variance) = (0,1)

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

General case

Normal distribution $\mathcal{N}(\mathbf{m}, \sigma^2)$

(expected value, variance) =
$$(\mathbf{m}, \sigma^2)$$
 density: $p_{\mathbf{m},\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mathbf{m})^2}{2\sigma^2}\right)$

- A normal distribution is entirely determined by its mean value and variance
- ▶ The family of normal distributions is closed under linear transformations: if X is normally distributed then a linear transformation aX + b is also normally distributed
- **Exercice:** Show that $\mathbf{m} + \sigma \mathcal{N}(0, 1) = \mathcal{N}(\mathbf{m}, \sigma^2)$

Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its mean value m and variance σ^2 .

In the *n*-dimensional case it is determined by its mean vector and covariance matrix

Covariance Matrix

If the entries in a vector $\boldsymbol{X} = (X_1, \dots, X_n)^T$ are random variables, each with finite variance, then the covariance matrix Σ is the matrix whose (i,j) entries are the covariance of (X_i, X_i)

$$\Sigma_{ij} = \text{cov}(X_i, X_j) = \mathbb{E}\left[(X_i - \mu_i)(X_j - \mu_j)\right]$$

where $\mu_i = E(X_i)$. Considering the expectation of a matrix as the expectation of each entry, we have

$$\Sigma = \mathrm{E}[(X - \mu)(X - \mu)^T]$$

 Σ is symmetric, positive definite

The Multi-Variate (*n*-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, \mathbf{C})$ is uniquely determined by its mean value $m \in \mathbb{R}^n$ and its symmetric positive definite $n \times n$ covariance matrix \mathbf{C} .

density:
$$p_{\mathcal{N}(m,C)}(x) = \frac{1}{(2\pi)^{n/2}|C|^{1/2}} \exp\left(-\frac{1}{2}(x-m)^{\mathrm{T}}C^{-1}(x-m)\right)$$
,

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, \mathbb{C})$ is uniquely determined by its mean value $m \in \mathbb{R}^n$ and its symmetric positive definite $n \times n$ covariance matrix \mathbb{C} .

density:
$$p_{\mathcal{N}(m,C)}(x) = \frac{1}{(2\pi)^{n/2}|C|^{1/2}} \exp\left(-\frac{1}{2}(x-m)^{\mathrm{T}}C^{-1}(x-m)\right)$$
,

The mean value m

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

$$\mathcal{N}(\mathbf{m}, \mathbf{C}) = \mathbf{m} + \mathcal{N}(0, \mathbf{C})$$

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, \mathbb{C})$ is uniquely determined by its mean value $m \in \mathbb{R}^n$ and its symmetric positive definite $n \times n$ covariance matrix \mathbb{C} .

density:
$$p_{\mathcal{N}(m,C)}(x) = \frac{1}{(2\pi)^{n/2}|C|^{1/2}} \exp\left(-\frac{1}{2}(x-m)^{\mathrm{T}}C^{-1}(x-m)\right)$$
,

The mean value m

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

$$\mathcal{N}(\mathbf{m}, \mathbf{C}) = \mathbf{m} + \mathcal{N}(0, \mathbf{C})$$

The covariance matrix C

- determines the shape
- **period** geometrical interpretation: any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x m)^{\mathrm{T}} \mathbf{C}^{-1} (x m) = 1\}$

from [Auger, p. 13]

Covariance Matrix: Lines of Equal Density

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x-m)^{\mathrm{T}}\mathbf{C}^{-1}(x-m)=1\}$

Lines of Equal Density

 $\mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{I}) \sim \mathbf{m} + \sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$ one degree of freedom σ components are independent standard normally distributed

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A}\mathbf{A}^{\mathrm{T}}\right)$ holds for all A.

Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x-m)^{\mathrm{T}}\mathbf{C}^{-1}(x-m)=1\}$

Lines of Equal Density

 $\mathcal{N}\left(\mathbf{m}, \sigma^2 \mathbf{I}\right) \sim \mathbf{m} + \sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$ one degree of freedom σ components are independent standard normally distributed

 $\mathcal{N}\left(\mathbf{m}, \mathbf{D}^2\right) \sim \mathbf{m} + \mathbf{D}\,\mathcal{N}(\mathbf{0}, \mathbf{I})$ n degrees of freedomcomponents are independent, scaled

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\mathbf{A}^{\mathrm{T}})$ holds for all A.

Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x - m)^{\mathrm{T}} \mathsf{C}^{-1} (x - m) = 1\}$

Lines of Equal Density

 $\mathcal{N}(\mathbf{m}, \mathsf{D}^2) \sim \mathbf{m} + \mathsf{D} \mathcal{N}(\mathbf{0}, \mathsf{I})$ *n* degrees of freedom

 $\mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{I}) \sim \mathbf{m} + \sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$ one degree of freedom σ components are independent standard normally distributed

components are independent, scaled

 $\mathcal{N}(\mathbf{m}, \mathbf{C}) \sim \mathbf{m} + \mathbf{C}^{\frac{1}{2}} \mathcal{N}(\mathbf{0}, \mathbf{I})$ $(n^2 + n)/2$ degrees of freedom components are correlated

where I is the identity matrix (isotropic case) and **D** is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\mathbf{A}^{\mathrm{T}})$ holds for all Α.

Adaptation of Sample Distribution Parameters

Adaptation: What do we want to achieve?

New search points are sampled normally distributed

$$m{x}_i \sim m{m} + \sigma \, \mathcal{N}_i(\mathbf{0}, \mathbf{C}) \qquad ext{for } i = 1, \dots, \lambda$$
 where $m{x}_i, m{m} \in \mathbb{R}^n, \ \sigma \in \mathbb{R}_+, \ m{C} \in \mathbb{R}^{n \times n}$

- the mean vector should represent the favorite solution
- the step-size controls the step-length and thus convergence rate

should allow to reach fastest convergence rate possible

▶ the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

adaptation should allow to learn the "topography" of the problem particulary important for ill-conditionned problems $\mathbf{C} \propto \mathbf{H}^{-1}$ on convex quadratic functions

from [Auger, p. 16]

Adaptation of the Mean

Plus and Comma Selection

Evolution Strategies (ES)

The Normal Distribution

Evolution Strategies

Terminology

 μ : # of parents, λ : # of offspring

Plus (elitist) and comma (non-elitist) selection

 $(\mu + \lambda)$ -ES: selection in {parents} \cup {offspring}

 (μ, λ) -ES: selection in {offspring}

(1+1)-ES

Sample one offspring from parent *m*

$$\mathbf{x} = \mathbf{m} + \sigma \, \mathcal{N}(\mathbf{0}, \mathbf{C})$$

If x better than m select

$$m \leftarrow x$$

Non-Elitism and Weighted Recombination

Evolution Strategies (ES)

The Normal Distribution

The $(\mu/\mu, \lambda)$ -ES

Non-elitist selection and intermediate (weighted) recombination

Given the *i*-th solution point
$$x_i = m + \sigma \underbrace{\mathcal{N}_i(\mathbf{0}, \mathbf{C})}_{=:y_i} = m + \sigma y_i$$

Let $x_{i:\lambda}$ the *i*-th ranked solution point, such that $f(x_{1:\lambda}) \leq \cdots \leq f(x_{\lambda:\lambda})$. The new mean reads

$$\mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_i \mathbf{x}_{i:\lambda} = \mathbf{m} + \sigma \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}$$

where

$$w_1 \ge \dots \ge w_{\mu} > 0$$
, $\sum_{i=1}^{\mu} w_i = 1$, $\frac{1}{\sum_{i=1}^{\mu} w_i^2} =: \mu_w \approx \frac{\lambda}{4}$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

[Hansen, p. 34]

Invariance Against Order-Preserving *f*-Transformations

Invariance: Function-Value Free Property

Three functions belonging to the same equivalence class

A *function-value free search algorithm* is invariant under the transformation with any order preserving (strictly increasing) *g*.

Invariances make

- observations meaningful as a rigorous notion of generalization
- algorithms predictable and/or "robust"

from [Hansen, p. 37]

Evolution Strategies (ES)

Invariance

Basic Invariance in Search Space

translation invariance

is true for most optimization algorithms

Identical behavior on f and f_a

$$f: \mathbf{x} \mapsto f(\mathbf{x}), \qquad \mathbf{x}^{(t=0)} = \mathbf{x}_0$$

$$f: x \mapsto f(x), \quad x^{(t=0)} = x_0$$

 $f_a: x \mapsto f(x-a), \quad x^{(t=0)} = x_0 + a$

No difference can be observed w.r.t. the argument of *f*

Invariance Against Search Space Rotations

Evolution Strategies (ES)

Invariance

Rotational Invariance in Search Space

• invariance to orthogonal (rigid) transformations \mathbf{R} , where $\mathbf{R}\mathbf{R}^{\mathrm{T}} = \mathbf{I}$ e.g. true for simple evolution strategies recombination operators might jeopardize rotational invariance

Identical behavior on f and $f_{\mathbf{R}}$

$$f: \mathbf{x} \mapsto f(\mathbf{x}), \quad \mathbf{x}^{(t=0)} = \mathbf{x}_0$$

 $f_{\mathbf{R}}: \mathbf{x} \mapsto f(\mathbf{R}\mathbf{x}), \quad \mathbf{x}^{(t=0)} = \mathbf{R}^{-1}(\mathbf{x}_0)$

$$f_{\mathbf{R}}: \mathbf{x} \mapsto f(\mathbf{R}\mathbf{x}), \mathbf{x}^{(t=0)} = \mathbf{R}^{-1}(\mathbf{x}_0)$$

45

No difference can be observed w.r.t. the argument of f

⁴Salomon 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from Nature PPSN VI

Invariance Against Rigid Search Space Transformations

Invariance

Evolution Strategies (ES)

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable ⇔ non-separable)

from [Hansen, p. 40

Invariance Against Rigid Search Space Transformations

Evolution Strategies (ES)

Invariance

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable ⇔ non-separable)

from [Hansen, p. 41]

Invariance Against Rigid Search Space Transformations

Evolution Strategies (ES)

Invariance

Invariance Under Rigid Search Space Transformations

for example, invariance un (separable ⇔ non-separab

mainly Nelder-Mead and CMA-ES have this property

Invariances: Summary

Evolution Strategies (ES)

Invariance

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms.

Invariance

Albert Einstein

- Empirical performance results
 - from benchmark functions
 - from solved real world problems

are only useful if they do generalize to other problems

 Invariance is a strong non-empirical statement about generalization

generalizing (identical) performance from a single function to a whole class of functions

consequently, invariance is important for the evaluation of search algorithms

Step-Size Adaptation

Recap CMA-ES: What We Have So Far

Step-Size Control

Evolution Strategies

Recalling

New search points are sampled normally distributed

$$\mathbf{x}_i \sim \mathbf{m} + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$$
 for $i = 1, \dots, \lambda$

as perturbations of m, where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\mathbf{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution and $m \leftarrow \sum_{i=1}^{\mu} w_i x_{i:\lambda}$
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbb{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update σ and \mathbb{C} .

Why At All Step-Size Adaptation?

Why Step-Size Control?

from [Auger, p. 22]

Why Step-Size Adaptation?

Why Step-Size Control?

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

in
$$[-0.2, 0.8]^n$$
 for $n = 10$

from [Auger, p. 22]

Step-Size Control

Why Step-Size Control?

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

for
$$n = 10$$
 and $x^0 \in [-0.2, 0.8]^n$

with optimal step-size σ

Optimal Step-Size vs. Step-Size Control

Step-Size Control

Why Step-Size Control

Why Step-Size Control?

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

for
$$n = 10$$
 and $x^0 \in [-0.2, 0.8]^n$

with optimal versus adaptive step-size σ with too small initial σ

Optimal Step-Size vs. Step-Size Control

Step-Size Control

Why Step-Size Control

Why Step-Size Control?

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i^2$$

for
$$n = 10$$
 and $x^0 \in [-0.2, 0.8]^n$

comparing number of f-evals to reach $||m|| = 10^{-5}$: $\frac{1100-100}{650} \approx 1.5$

Adapting the Step-Size

Question:

How to actually adapt the step-size during the optimization?

Most common:

- 1/5 success rule
- Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)
- others possible (Two-Point Adaptation, self-adaptive step-size, ...)

One-fifth success rule

One-fifth success rule

Probability of success (p_s)

1/2

Probability of success (p_s)

"too small"

1/5

from [Auger, p. 33]

One-fifth success rule

 p_s : # of successful offspring / # offspring (per generation) $\sigma \leftarrow \sigma \times \exp\left(\frac{1}{3} \times \frac{p_s - p_{\mathrm{target}}}{1 - p_{\mathrm{target}}}\right)$ Increase σ if $p_s > p_{\mathrm{target}}$ Decrease σ if $p_s < p_{\mathrm{target}}$ (1+1)-ES $p_{target} = 1/5$ IF offspring better parent $p_s = 1, \ \sigma \leftarrow \sigma \times \exp(1/3)$ ELSE $p_s = 0, \ \sigma \leftarrow \sigma / \exp(1/3)^{1/4}$

Why 1/5?

Asymptotic convergence rate and probability of success of scale-invariant step-size (1+1)-ES

sphere - asymptotic results, i.e. $n = \infty$ (see slides before)

1/5 trade-off of optimal probability of success on the sphere and from [Auger, p. 35]