President Trump's

"Executive Time"

Problem Formulation

Each day at 14:30, we have the possibility of buying an ad on the president's favourite TV channel, and that ad will be played the same day at 15:01. But buying an ad is very expensive, and we want to maximize our chances that he will be watching TV at that time on that day, which is only possible during his "executive time". Each day before making our decision, we have access to the top_category of what president Trump was doing at 9:01, 11:01, and 13:01 on that specific day. Can you help us better invest our money by predicting the top_category of what he does at 15:01 on that day?

- Input
 - top_category of what president Trump was doing at 9:01, 11:01, and 13:01 on that specific day
- Output(prediction)
 - top_category of what he does at 15:01 on that day

Data Engineering Skills

Raw Dataset

Week c	date	/	time_start	time_end	duration	listed_title	top_category	_▼ P	listed_location	listed_project_officer	detail_category
1		2018-11-07	7 08:00	0 11:00	03:00:00	0 Executive time	executive_time		Oval office		executive_time
1		2018-11-07	7 11:00	0 11:30	00:30:00	Meeting with the chief of staff	meeting	r	Oval office		cos_meeting
1	· ·	2018-11-07	7 11:30	0 12:30	01:00:00	0 Executive time	executive_time	ſ	Oval office		executive_time
1		2018-11-07	7 12:30	0 13:30	01:00:00	Lunch	lunch	F	Private dining room		solo_lunch
1		2018-11-07	7 13:30	0 17:00	03:30:00	0 Executive time	executive_time		Oval office		executive_time
1		2018-11-08	8 08:00	09:30	01:30:00	0 Executive time	executive_time		Oval office		executive_time
1		2018-11-08	8 09:30	0 09:40	00:10:00	Depart the White House en route to Supreme Court of the United States	travel				domestic_travel
1		2018-11-08	8 09:45	5 09:55	00:10:00	Meet and greet with the supreme court justices	event	V	Washington, DC	Emmet Flood	meet_greet

Preprocessed Dataset

	top_category_0901	top_category_1101	top_category_1301	top_category_1501
07/11/18	executive_time	meeting	lunch	executive_time
08/11/18	executive_time	meeting	lunch	executive_time
09/11/18	travel	travel	travel	travel
13/11/18	executive_time	meeting	lunch	executive_time
14/11/18	executive_time	meeting	lunch	executive_time
15/11/18	executive_time	executive_time		meeting
19/11/18	executive_time	meeting	event	meeting
23/11/18	executive_time	executive_time	executive_time	executive_time
26/11/18	executive_time	meeting	lunch	travel
27/11/18	executive_time	event	meeting	meeting

Hypotheses

- 1. The output is same if the input is same in each top_category column and vice versa.
- 2. Data does not have equal distribution of number of classes so it becomes a class imbalance problem.

Result of Validation

1. After doing the prediction, I found that our hypotheses is wrong as per the example below.

	top_category_0901	top_category_1101	top_category_1301	top_category_1501
11/30/2018	executive_time	event	event	
12/3/2018	executive_time	meeting	lunch	event
12/4/2018	executive_time	meeting	lunch	executive_time

11/23/2018	executive_time	executive_time	executive_time	executive_time
12/4/2018	executive_time	meeting	lunch	executive_time
12/5/2018	executive_time	event	executive_time	executive_time

2. Our hypotheses is proved right by the bar graph on the side as there are only few data points in travel and event top_category confirming it is a class imbalance problem.

Machine Learning Model: Decision Trees

• We have been given multiple classes in the form of top_category and we must predict the top_category at 15:01 based on previous activities. The machine learning model, I have used for this prediction is decision trees which is good for multi-class classification problem and also, the data set is small with less number of classes. The visualization of the Decision Tress looks as below:

• Our model produces 60% F1 Score on the test data as shown in next slide. The performance metric used is F1 Score because it is a class imbalance problem. As accuracy is not a reliable performance metric incase of class imbalance problem, so I chose F1-score as metric which considers both recall and precision and to produce unbiased result.

Performance Metric: F1 Score

```
trained_model_A = TrainedModel([x_train, y_train])
performance = trained_model_A.evaluate_performance([x_test, y_test])
performance
```

0.6

2 0 2 0 0

3 0 0 0 1

Confusion Matrix

THANK YOU ©