Temperature Annual Means 1750 - 2015: Moving Averages for Global and Local (Los Angeles) Temperature Data

Extract Data

Write a SQL query to extract the city level data. Export to CSV.

```
SELECT year, avg_temp
FROM city_data
WHERE city = 'Los Angeles' AND country = 'United States'
ORDER BY year
```

Write a SQL query to extract the global data. Export to CSV.

```
SELECT *
FROM global_data
ORDER BY year
```

Process Data

Load both .csv files in R Studio.

```
# clear working environment
rm(list=ls())

# for the rollmean function
library(zoo)

# for the plot
library(ggplot2)

# read in files extracted by SQL
global_data <- read.csv('global_data.csv')
city_data <- read.csv('city_data.csv')

# check data
head(global_data)</pre>
```

```
head(city_data)
```

Merge city data and global data into one data frame joining on 'year' Pad missing values with 'NA'

```
# join the global and city data based on year
combined <- merge(x = global_data, y = city_data, by = "year", all = TRUE, suffixes = c(".global",".city"
))</pre>
```

Calculate moving averages in different intervals for both global and city temperature data using rollmeanr function

```
# compute moving averages of intervals (3, 5, 9, 15) for global temp data
combined$global_mavg03 <- rollmeanr(combined$avg_temp.global, 3, fill = NA)
combined$global_mavg05 <- rollmeanr(combined$avg_temp.global, 5, fill = NA)
combined$global_mavg09 <- rollmeanr(combined$avg_temp.global, 9, fill = NA)
combined$global_mavg15 <- rollmeanr(combined$avg_temp.global, 15, fill = NA)

# compute moving averages of intervals (3, 5, 9, 15) for city temp data
combined$city_mavg03 <- rollmeanr(combined$avg_temp.city, 3, fill = NA)
combined$city_mavg05 <- rollmeanr(combined$avg_temp.city, 5, fill = NA)
combined$city_mavg09 <- rollmeanr(combined$avg_temp.city, 9, fill = NA)
combined$city_mavg15 <- rollmeanr(combined$avg_temp.city, 15, fill = NA)

# attach the data frame
attach(combined)</pre>
```

Plot Data

Create a line chart that compares your city's temperatures with the global temperatures.

Check minima and maxima of all temperatures to determine limits for the Y axis

Use similar colour families for each moving average data set: blue for global data, orange for city data Add title, axis labels, and legend for the plot

```
# check min for the plot axis limit
min(c(global_mavg03, global_mavg05, global_mavg09, global_mavg15), na.rm = TRUE)

## [1] 6.943333

min(c(city_mavg03, city_mavg05, city_mavg09, city_mavg15), na.rm = TRUE)

## [1] 14.95333

# check max for the plot axis limit
max(c(global_mavg03, global_mavg05, global_mavg09, global_mavg15), na.rm = TRUE)

## [1] 9.67

max(c(city_mavg03, city_mavg05, city_mavg09, city_mavg15), na.rm = TRUE)
```

```
## [1] 17.02667
```

```
# create the plot using ggplot
ggplot(data=combined, aes(x=year)) +
 geom line(aes(y=global mavg03, colour = "Global 03"), size=0.6) +
 {\tt geom\_line(aes(y=global\_mavg05, colour = "Global 05"), size=0.6)} + \\
 geom_line(aes(y=global_mavg09, colour = "Global 09"), size=0.6) +
 geom_line(aes(y=global_mavg15, colour = "Global 15"), size=0.6) +
 geom line(aes(y=city mavg03, colour = "City 03"), size=0.6) +
 geom line(aes(y=city mavg05, colour = "City 05"), size=0.6) +
 geom_line(aes(y=city_mavg09, colour = "City 09"), size=0.6) +
 geom_line(aes(y=city_mavg15, colour = "City 15"), size=0.6) +
 scale_color_manual(values=c("gold1", "darksalmon", "orangered3", "firebrick",
                              "lightblue1", "cadetblue1", "deepskyblue2", "royalblue3"),
                              name="Moving Average Interval") +
 scale x continuous(breaks=c(1750, 1775, 1800, 1825, 1850, 1875, 1900, 1925, 1950, 1975, 2000, 2015)) +
 scale_y_continuous(limits=c(6, 18), breaks=c(6, 8, 10, 12, 14, 16, 18)) +
 labs(x = "Year", y = "Temperature Annual Mean") +
 ggtitle("Temperature Annual Means 1750 - 2015: Moving Averages for Global and Local (Los Angeles)")
```

Temperature Annual Means 1750 - 2015: Moving Averages for Global and Local (Los Angeles)

Zoom in on global temperatures only

Temperature Annual Means 1750 - 2015: Global Moving Averages

Zoom in on local (Los Angeles) temperatures only

Knit the .rmd file to html then print file to PDF

Observations

- There is higher variability for moving averages calculated with shorter intervals. Moving average interval of 3 for both global (light blue) and city (yellow) show more movement.
- As moving average interval increases (the darkest lines dark blue and red for interval of 15), the movement becomes smoother.
- Local temperature data for Los Angeles is much warmer than the global average, for all years with data.
- Variability is relatively high until approximately 1900, after which there is a general trend of rising temperatures. This is especially visible from 1975 2015 on the individual global and local plots.
- Variability is higher for the local data compared to global data likely since the global average is aggregated from multiple locations, and the increased sample size will lower the variance.

References

https://www.rdocumentation.org/packages/zoo/versions/1.8-3/topics/rollmean http://zevross.com/blog/2014/08/04/beautiful-plotting-in-r-a-ggplot2-cheatsheet-3/http://www.stat.columbia.edu/%7Etzheng/files/Rcolor.pdf https://rmarkdown.rstudio.com/authoring_basics.html