$$E_{\text{Y}} = \begin{bmatrix} 1 & \cdot & \cdot \\ -\Delta & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}, E_{\text{YY}} = \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & V & 1 \end{bmatrix}, P = \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{bmatrix} \begin{bmatrix} 1 & \cdot & \cdot \\ 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \end{bmatrix} = .1$$

- د، سطر $E_{\texttt{TT}}E_{\texttt{TT}}b=(\texttt{1},-\texttt{0},-\texttt{0})$ اما $E_{\texttt{TT}}E_{\texttt{TT}}b=(\texttt{1},-\texttt{0},-\texttt{TO})$. $E_{\texttt{TT}}E_{\texttt{TT}}b=(\texttt{1},-\texttt{0},-\texttt{0},-\texttt{TO})$. $E_{\texttt{TT}}E_{\texttt{TT}}b=(\texttt{1},-\texttt{0},-\texttt{0},-\texttt{TO})$. $E_{\texttt{TT}}E_{\texttt{TT}}b=(\texttt{1},-\texttt{0},-\texttt{0},-\texttt{TO})$. $E_{\texttt{TT}}E_{\texttt{TT}}b=(\texttt{1},-\texttt{0},-\texttt{0},-\texttt{TO})$. $E_{\texttt{TT}}E_{\texttt{TT}}b=(\texttt{1},-\texttt{0},-$
- . $\begin{bmatrix} 1 & \cdot & \cdot \\ -4 & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & -7 & 1 \end{bmatrix}$, $M = E_{\text{TY}}E_{\text{T1}}E_{\text{T1}} = \begin{bmatrix} 1 & \cdot & \cdot \\ -4 & 1 & \cdot \\ 1 & -7 & 1 \end{bmatrix}$. $M = E_{\text{TY}}E_{\text{T1}}E_{\text{T1}}E_{\text{T1}}$. $M = E_{\text{T2}}E_{\text{T1}}E$
- به حذف روی ستون ۲: $b=\begin{bmatrix}1\\ \cdot\\ \cdot\end{bmatrix} \xrightarrow{E_{\text{T1}}} \begin{bmatrix}1\\ -\text{$+$}\\ \cdot\end{bmatrix} \xrightarrow{E_{\text{T1}}} \begin{bmatrix}1\\ -\text{$+$}\\ \top\end{bmatrix} \xrightarrow{E_{\text{TT}}} \begin{bmatrix}1\\ -\text{$+$}\\ \end{bmatrix}$ ععادله اصلی .۴ حذف روی ستون ۲: Ux=c=(1,-\$+\$,1\$+\$) به Ax=b بندیل شده است. سپس جایگزینی معکوس نتیجه می دهد $Ax=(1,\cdot,\cdot,\cdot)$ بین جواب معادله $Ax=(1,\cdot,\cdot,\cdot)$ است.
- ۵. تغییر a_{rr} از ۷ به ۱۱، محور سوم را از ۵ به ۹ تغییر می دهد. تغییر a_{rr} از ۷ به ۲، محور را از ۵ به بدون محور تغییر می دهد.
- و. مثال: $\begin{bmatrix} \mathbf{Y} \\ \mathbf{Y} \\ \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{I} \\ \mathbf{V} \\ \mathbf{V} \end{bmatrix} \begin{bmatrix} \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} \end{bmatrix}$. اگر همه ستونها مضربی از ستون ۱ باشند، محور $\begin{bmatrix} \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} \end{bmatrix} = \begin{bmatrix} \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} \end{bmatrix}$ ومی وجود ندارد.
- ۷. برای معکوس کردن E_{0} ۷ برابر سطر ۱ را به سطر ۳ اضافه کنید. معکوس ماتریس حذف $E^{-1} = I$ برابر است با $E^{-1} = E^{-1} = E^{-1}$. ضرب $E^{-1} = E^{-1}$ این $E^{-1} = E^{-1}$ برابر است با $E^{-1} = E^{-1}$ برابر است با موضوع را تأیید می کند.
- a(d-b)-b(c-a) و $M^*=\begin{bmatrix}a&b\\c-a&d-b\end{bmatrix}$ و $M=\begin{bmatrix}a&b\\c&d\end{bmatrix}$. M . M و $M=\begin{bmatrix}a&b\\c&d\end{bmatrix}$. M عنی M و از سطر M در مینان M را تغییر نمی دهد.

۹.
$$M = \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \end{bmatrix}$$
 و نه E_{r_1} روی سطر M جدید $M = \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot & 1 \\ -1 & \cdot & \cdot \end{bmatrix}$ عمل کند.

دا.
$$E_{17}E_{17}=\begin{bmatrix} 7 & \cdot & 1 \\ \cdot & 1 & \cdot \\ 1 & \cdot & 1 \end{bmatrix}:\begin{bmatrix} 1 & \cdot & 1 \\ \cdot & 1 & \cdot \\ 1 & \cdot & 1 \end{bmatrix}:E_{17}=\begin{bmatrix} 1 & \cdot & 1 \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$$
. امتحان کنید!

است. درایههای قطری میتوانند در طول
$$A = \begin{bmatrix} 1 & 7 & 7 \\ 1 & 1 & 7 \\ 1 & 7 & 1 \end{bmatrix}$$
 مثال با دو محور منفی $A = \begin{bmatrix} 1 & 7 & 7 \\ 1 & 7 & 1 \end{bmatrix}$ حذف علامت عوض کنند.

۱۲. حاصل ضرب اول
$$\begin{bmatrix} 9 & \Lambda & V \\ 8 & \Delta & 5 \\ T & Y & 1 \end{bmatrix}$$
 است که سطرها و همچنین ستونها معکوس شدهاند. حاصل ضرب دوم $\begin{bmatrix} 7 & \Lambda & V \\ 7 & Y & 1 \end{bmatrix}$ است.

- ۱۳. (الف) حاصل ضرب E در ستون سوم E ستون سوم E است. ستونی که با صفر شروع می شود، صفر باقی می ماند. E (ب) E می تواند سطر E را به سطر E اضافه کند تا یک سطر صفر را به یک سطر غیرصفر تغییر دهد.
- دارای E_{rr} دارای E_{rr} دارای E_{rr} دارای E_{rr} دارای E_{rr} دارای E_{rr} دارای است. در غیر این صورت، ماتریسهای E_{rr} با E_{rr} مطابقت دارند.

$$-17$$
 م به به $A=\begin{bmatrix} -1 & -4 & -7 \\ 1 & -7 & -6 \\ 7 & \cdot & -7 \end{bmatrix}
ightarrow \begin{bmatrix} -1 & -4 & -7 \\ \cdot & -9 & -17 \\ \cdot & -17 & -74 \end{bmatrix} : a_{ij}=7i7j$. 10 $E_{rr}=\begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & -7 & 1 \end{bmatrix}$ ، -17 نبدیل شد که مثالی از «پر شدن» (fill-in) است. برای حذف آن 17 منفرد است!

$$x=1$$
 (الف) سن X و Y برابر X و Y است: $x=1$ و $x=1$ میگذرد وقتی $x=1$ و $x=1$

از
$$y$$
 نقطه داده شده می گذرد وقتی: $y = a + bx + cx^{\mathsf{Y}}$ سهمی . ۱۷

$$a+b+c=$$

$$a + \Upsilon b + \Upsilon c = \Lambda$$

$$a + \Upsilon b + 4c = 1\Upsilon$$

(1,1,1),(1,7,7),(1,4,4) آنگاه a=7,b=1,c=1 این ماتریس با ستونهای a=7,b=1,c=1 یک «ماتریس وندرموند» است.

$$EF = \begin{bmatrix} 1 & \cdot & \cdot \\ a & 1 & \cdot \\ b & c & 1 \end{bmatrix}, FE = \begin{bmatrix} 1 & \cdot & \cdot \\ a & 1 & \cdot \\ b + ac & c & 1 \end{bmatrix}, E^{\Upsilon} = \begin{bmatrix} 1 & \cdot & \cdot \\ \Upsilon a & 1 & \cdot \\ \Upsilon b & \cdot & 1 \end{bmatrix}, F^{\Upsilon} = .1 \Lambda$$

$$\cdot \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \Upsilon c & 1 \end{bmatrix}$$

را
$$QP = \begin{bmatrix} \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \end{bmatrix}$$
 . $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$. $PQ = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$

۲۰. (الف) هر ستون EB برابر است با
$$EB$$
 ضرب در یک ستون از .B (ب) EB برابر است با EB ضرب در یک ستون از EB مضربی از EB هستند.

$$FE=$$
 اما $EF=egin{bmatrix} 1 & 1 \ 1 & 7 \end{bmatrix}$ نتیجه می دهند $E=egin{bmatrix} 1 & 1 \ 1 & 7 \end{bmatrix}$ اما $E=egin{bmatrix} 1 & 1 \ 1 & 7 \end{bmatrix}$.

$$(EAx)_1=(Ax)_1=(a_1)$$
 (ح) $a_{11}-Ya_{11}$ (ح) $a_{11}-a_{11}$ (ح) $\sum_j a_{7j}x_j$ (د) . ۲۲ $\sum_j a_{1j}x_j$

۲۳. E(EA) ۴ برابر سطر ۱ را از سطر ۲ کم میکند (EEA این عملیات سطری را دو بار انجام می دهد). AE ۲ برابر ستون ۲ ماتریس A را از ستون ۱ کم میکند (ضرب از سمت راست در E به جای سطرها روی ستونها عمل میکند).

- $\Upsilon x_1 + \Upsilon x_7 = :$ سیستم مثلثی عبارت است از $A|b = egin{bmatrix} \Upsilon & \Upsilon & \Upsilon & \Upsilon \\ \Upsilon & 1 & 1 \\ \Upsilon & -\Delta & 1\Delta \end{bmatrix}$. $\Upsilon Y = \Upsilon x_1 + \Upsilon x_2 = 1$ ما برا می دهد. $x_1 = 0$ و $x_2 = 0$ را می دهد. $x_1 = 0$ را می دهد.
- ۲۵. معادله آخر به $\Upsilon = \bullet$ تبدیل می شود. اگر عدد ϑ اصلی، Υ بود، آنگاه سطر $1 + \mu$ سطر $2 + \mu$ سطر $3 + \mu$ سطر $4 + \mu$ سطر
- $.x^* = \begin{bmatrix} \mathbf{Y} \\ -\mathbf{1} \end{bmatrix} \underbrace{\mathbf{Y}} \begin{bmatrix} \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} \\ \mathbf{Y} & \mathbf{Y} & \mathbf{Y} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{Y} & \mathbf{Y} & \mathbf{Y} \\ \mathbf{Y} & \mathbf{Y} & \mathbf{Y} \end{bmatrix} \rightarrow x = \begin{bmatrix} -\mathbf{V} \\ \mathbf{Y} \end{bmatrix}$
- ریادی $d=\cdot=c$ و t=c جوابی وجود ندارد. (ب) اگر t=t=c جوابهای زیادی درود. t=t=c جوابهای زیادی وجود دارد. t=t=c جوابهای زیادی
 - مت. A=AI=A(BC)=(AB)C=IC=C . ۲۸. آن معادله وسطی بسیار مهم است.
- $E = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$ $E = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$ $E = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$ $E = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$ $E = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$ $E = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$ $E = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$ $E = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$ $E = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}.$

.۳۰ (الف) $E = A^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ کاهش می دهد. (ب) $E = A^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ سپس $F = B^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ سطر اول FEM را به '[۱۱]' کاهش می دهد. (ج) سپس $ar{E}=A^{-1}$ دو بار، سطر دوم EEFEM را به [++] کاهش می دهد. (د) اکنون به دست آید. EFFEM=B. ماتریسهای E و F را جابجا کنید تا EFEM=Bاین سوال بر روی ماتریسهای با درایههای صحیح مثبت M با c=d-bc تمرکز دارد. همین مراحل درایه ها را کوچکتر و کوچکتر میکنند تا زمانی که M حاصل ضربهآیی از A و B شود.

$$E_{\text{Y}} = \begin{bmatrix} 1 & 1 & 1 \\ a & 1 & 1 \\ \vdots & \vdots & \ddots & 1 \end{bmatrix}, E_{\text{YY}} = \begin{bmatrix} 1 & 1 & 1 \\ \vdots & b & 1 \\ \vdots & \ddots & \ddots & 1 \end{bmatrix}, E_{\text{YY}} = \begin{bmatrix} 1 & 1 & 1 \\ \vdots & \ddots & 1 \\ \vdots & \ddots & \ddots & 1 \end{bmatrix}, E_{\text{YY}} E_{\text{YY}} E_{\text{YY}} = . \text{YY}$$

$$\vdots \begin{bmatrix} 1 & 1 & 1 \\ a & 1 & 1 \\ abc & bc & c & 1 \end{bmatrix}$$