Prajwal Gupta

RA1911003010660

AI LAB-12

Aim- Applying deep learning methods to solve an application.

Problem Formulation- Solving a dataset using deep learning methods to predict crypto currency prices.

Problem Statement- Predicting the prices of crypto currencies like bitcoin and Ethereum using LSTM.

Algorithm used (Problem Solving)- LSTM

LSTM or Long Short Term Memory is a Recurrent Neural Network used for sequence prediction problems. Here we are doing a problem of time series data i.e. it changes with time. Hence LSTM is used for this problem.

Dataset-

The dataset has 2161 rows, i.e. 2161 data entries.

Code-

Importing libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM,Dense,Dropout,Activation

from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.metrics import mean_absolute_error
```

Entering the Etherium dataset

```
In [2]:
    data = '/content/coin_Ethereum.csv'
    dataset = pd.read_csv(data)
    chosen_col = 'Close'
    print(len(dataset))
    dataset.head()
```

2160

Out[2]:		SNo	Name	Symbol	Date	High	Low	Open	Close	Volume	Marketcap
	0	1	Ethereum	ETH	2015-08-08 23:59:59	2.798810	0.714725	2.793760	0.753325	674188.0	4.548689e+07
	1	2	Ethereum	ETH	2015-08-09 23:59:59	0.879810	0.629191	0.706136	0.701897	532170.0	4.239957e+07
	2	3	Ethereum	ETH	2015-08-10 23:59:59	0.729854	0.636546	0.713989	0.708448	405283.0	4.281836e+07
	3	4	Ethereum	ETH	2015-08-11 23:59:59	1.131410	0.663235	0.708087	1.067860	1463100.0	6.456929e+07
	4	5	Ethereum	ETH	2015-08-12 23:59:59	1.289940	0.883608	1.058750	1,217440	2150620.0	7.364501e+07

Making Training and Testing data

```
In [3]: split_row = len(dataset) - int(0.2 * len(dataset))
    train_data = dataset.iloc[:split_row]
    test_data = dataset.iloc[split_row:]

In [4]: fig, ax = plt.subplots(1, figsize=(13, 7))
    ax.plot(train_data[chosen_col], label='Train', linewidth=2)
    ax.plot(test_data[chosen_col], label='Test', linewidth=2)
    ax.set_ylabel('Price USD', fontsize=14)
    ax.set_title('', fontsize=16)
    ax.legend(loc='best', fontsize=16)
```

Out[4]: <matplotlib.legend.Legend at 0x7f30bbde6e50>

Making the model

```
In [10]:
       model = Sequential()
model.add(LSTM(units=100, input_shape=(X_train.shape[1], X_train.shape[2])))
       model.add(Dropout(0.2))
model.add(Dense(1))
model.add(Activation('linear'))
model.compile(optimizer='adam', loss='mse')
      Running the model
       callback = EarlyStopping(monitor='loss', patience=10, restore_best_weights=True)
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=100, batch_size=32, verbose=1, callbacks=[callback], shuffle=True)
       Epoch 1/100
       42/42 [=====
Epoch 2/100
42/42 [=====
Epoch 3/100
                       =======] - 5s 57ms/step - loss: 5.9006e-04 - val_loss: 1.0731e-04
                            42/42 [====
Epoch 4/100
42/42 [====
                              =====] - 2s 43ms/step - loss: 1.3931e-04 - val_loss: 8.5686e-05
                             =====] - 2s 42ms/step - loss: 1.2668e-04 - val_loss: 8.7286e-05
       Epoch 5/100
42/42 [=====
                           =======] - 2s 43ms/step - loss: 1.0669e-04 - val_loss: 7.8201e-05
          Epoch 80/100
          42/42 [=========] - 2s 41ms/step - loss: 4.0768e-05 - val_loss: 4.2097e-05
          Epoch 81/100
          42/42 [=====
                                   Epoch 82/100
          42/42 [=====
                             ========] - 2s 42ms/step - loss: 4.2216e-05 - val_loss: 4.3942e-05
          Epoch 83/100
          42/42 [=====
                                   Epoch 84/100
          loss and validation loss both are decreasing therefore the model is performing well
 In [12]:
              plt.plot(history.history['loss'], label = 'loss')
              plt.plot(history.history['val_loss'], label = 'val_loss')
              plt.legend()
             <matplotlib.legend.Legend at 0x7f309be81f50>
 Out[12]:
             0.0006
                                                                        loss
                                                                        val_loss
             0.0005
```


This clearly shows that the model is neither overfitting nor underfitting

Output-

Graph of real values (blue) and predicted values (orange).

Result- Hence Deep Learning method- LSTM is used to predict the prices of cryptocurrency.