[CS 2336]Discrete Mathematics: Autumn 2009

 2^{rd} exam (close book)

Examination Date: Nov. 30, 2009

Time: 13:10-15:00

- a) it's suffice to show that \mathcal{R} is (i) reflexive, (ii) symmetric, (iii) transitive. Let $(x,y) \in A$, x+ $y = x + y \Rightarrow (x, y) \mathcal{R}(x, y) \Rightarrow \text{reflexive. Let } (x_1, y_1), (x_2, y_2) \in A, x_1 + y_1 = x_2 + y_2, x_2 + y_2 = x_1 + y_2 + y_3 + y_4 + y_4$ $x_1 + y_1 \Rightarrow (x_1, y_1) \mathcal{R}(x_2, y_2), (x_2, y_2) \mathcal{R}(x_1, y_1) \Rightarrow \text{symmetric. Let } (x_1, y_1), (x_2, y_2), (x_3, y_3) \in$ $A, (x_1, y_1)\mathcal{R}(x_2, y_2), (x_2, y_2)\mathcal{R}(x_3, y_3) \Rightarrow x_1 + y_1 = x_2 + y_2 = x_3 + y_3, sox_1 + y_1 = x_3 + y_3 + y_4 + y_5 + y$ y_3 and $(x_1, y_1)\mathcal{R}(x_3, y_3) \Rightarrow$ transitive. Since \mathcal{R} is reflexive, symmetric, and transitive, it is an equivalence relation.
 - b) $[(1,3)] = \{(1,3),(3,1),(2,2)\}, [(2,4)] = \{(2,4),(4,2),(3,3)\}, [(1,1)] = \{(1,1)\}.$
 - $\{(3,4)(4,3)\} \cup \{(4,4)\}.$
- a) yes, the glb ϕ and lub 1, 2, 3 are in A.
 - b) no, the glb 1 is not in A.
 - c) yes, a ordered relation is lattice. (for example: N)
- a) Spanning graph has the same vertices set, and each edge of G can be exist or not. So, there are 7 edges in G, the number of spanning sub-graphs is 2^7 .
 - b) Connected means all vertices are in a same sub-graph. So, only edge $\overline{gf}, \overline{gh}, \overline{fh}$ can be removed. Furthermore, cannot removing more then one edge or the graph will be disconnected. So we can choose removing \overline{gf} , \overline{gh} , \overline{fh} , or not removing any edges, total 4 connected subgraphs.
 - c) f must be isolated means that \overline{fg} , \overline{fh} , \overline{df} cannot exist. So, there remains 4 edges to choose. The nubmer of sub-graph is 2^4 .

ŀ.				
	Name	Repeated Edges	Repeated Virtices	Open/Close
	Trail	No	Yes	Open
	Circuit	No	Yes	Close
	Path	No	No	Open
	Cycle	No	No	Close

a) 2^{10} 5.

4

- b) 2¹⁴
- c) $2^5 \times 3^9$
- d) 2⁵
- e) 1
- f) $\sum_{i=1}^{5} S(5,i) = 52$ g) $\sum_{i=1}^{3} S(3,i) = 5$
- 6. $\delta|V| \leq \sum_{v \in V} \deg(v) \leq \Delta|V|$. Since $2|E| = \sum_{v \in V} \deg(v)$, it follows that $\delta|V| \leq 2|E| \leq \Delta|V|$, so $\delta \leq 2(e/n) \leq \Delta$.

7. $R^{11}=\{(a,a), (a,c), (a,e), (a,d), (b,e), (b,d), (c,d), (c,e), (d,d), (d,e)\}$

8.

9.

Theorem 7.6

If \Re is an equivalence relation on a set A, and $x, y \in A$, then (a) $x \in [x]$; (b) $x \Re y$ if and only if [x] = [y]; and (c) [x] = [y] or $[x] \cap [y] = \emptyset$.

- a) 1. $x \Re x$ because \Re is an equivalence relation
- 2. This implies $x \in [x]$
- b) (\Rightarrow) 1. If $x \mathcal{R} y$, let $w \in [x]$.
- 2. Then, $w \mathcal{R} x$
- w R y because R is transitive
- **4**. Hence $w \in [y]$ and $[x] \subseteq [y]$.
- **5.** $y \Re x$ because \Re is symmetric
- **6.** if $t \in [y]$, then $t \mathcal{R} y$ and by the transitive property, $t \mathcal{R} x$.
- **7.** Hence $t \in [x]$ and $[y] \subseteq [x]$. Consequently, [x] = [y].

Theorem 7.6 (2)

If \Re is an equivalence relation on a set A, and $x, y \in A$, then (a) $x \in [x]$; (b) $x \Re y$ if and only if [x] = [y]; and (c) [x] = [y] or $[x] \cap [y] = \emptyset$.

- **b)** (\Leftarrow) **1.** let [x] = [y].
- 2. Since $x \in [x]$ by part (a), then $x \in [y]$ or $x \Re y$.
- **c)** 1. We assume that $[x] \neq [y]$ and show how it then follows that $[x] \cap [y] = \emptyset$.
- **2.** If $[x] \cap [y] \neq \emptyset$, then let $v \in A$ with $v \in [x]$ and $v \in [y]$.
- 3. Then $v \Re x, v \Re y$
- **4.** $x \Re v$ because \Re is symmetric
- 5. $(x \Re v \text{ and } v \Re y) \Rightarrow x \Re y \text{ | because } \Re \text{ is transitive}$
- 6. $x \Re y \Rightarrow [x] = [y]$ by part (b).
- 7. This contradicts the assumption that $[x] \neq [y]$