Capitolo 103

Polinomi di II grado

Come prima applicazione dell'esistenza della radice, nonché delle regole algebriche dedotte dagli assiomi, possiamo studiare (in ${f R}$) l'equazione completa di secondo grado

$$ax^2 + bx + c = 0.$$

In seguito potremo dare indicazioni per la risoluzione delle disequazioni.

103.1 Ricerca degli zeri

L'equazione (...) è equivalente a

$$4a^2x^2 + 4axb + 4ac = 0$$

che, a sua volta equivale a

$$4a^2x^2 + 4axb + b^2 - b^2 + 4ac = 0$$

Posto, come al solito,

$$\Delta = b^2 - 4ac$$

(tale quantità prende il nome di $\mathit{discriminante}),$ l'equazione (...) si trascrive al modo seguente

$$(2ax + b)^2 - \Delta = 0.$$

Ora dobbiamo distinguere tre casi.

• Se $\Delta < 0$, abbiamo $-\Delta > 0$. D'altra parte $(2ax + b)^2 \ge 0$ per ogni $x \in \mathbf{R}$ e pertanto, applicando ...,

$$(2ax+b)^2 - \Delta > 0$$

dunque l'equazione non ammette alcuna soluzione (reale).

• Se $\Delta = 0$, l'equazione si riduce a

$$(2ax+b)^2 = 0$$

e sappiamo (per) che questa equazione equivale a

$$2ax + b = 0$$

ossia

$$x = -b/2a$$
.

Dunque l'equazione ammette un'unica soluzione.

• Se $\Delta > 0$, possiamo scrivere

$$\Delta = \left(\sqrt{\Delta}\right)^2$$
 .

Dunque l'equazione si riduce a

$$(2ax+b)^2 - \left(\sqrt{\Delta}\right)^2 = 0$$

e dunque

$$(2ax + b + \sqrt{\Delta})(2ax + b - \sqrt{\Delta}) = 0.$$

Questo rappresenta il primo importante esempio di fattorizzazione: ci siamo ricondotti a due equazioni di primo grado

$$2ax + b + \sqrt{\Delta} = 0$$
$$2ax + b - \sqrt{\Delta} = 0$$

con le rispettive soluzioni

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Dunque in questo terzo caso le soluzioni sono due, generalmente scritte al modo seguente

$$x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}.$$

103.2 Studio del grafico

Posto

$$p(x) = ax^2 + bx + c,$$

con la stessa tecniche analitiche viste sopra si potrebbero risolvere le disequazioni

$$p(x) \ge 0$$
 e $p(x) > 0$.

In questo paragrafo, vogliamo proporre una strategia leggermente diversa, che fa ricorso all'interpretazione grafica delle disequazioni stesse e che forse è più facile da ricordare.

Anzitutto osserviamo che

$$p(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right].$$

Pertanto il grafico di fpuò essere ottenuto dal grafico di

$$f_0(x) = x^2$$

attraverso successive trasformazioni:

1. si effettua una traslazione orizzontale

$$\left(x+\frac{b}{2a}\right)^2$$
,

2. si effettua una traslazione verticale

$$\left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right],$$

3. si effettua una dilatazione (con eventuale ribaltamento) e si ottiene

$$a\left[\left(x+\frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right]$$

Possiamo reinterpretare la discussione svolta a proposito dell'equazione di secondo grado. Sappiamo che la funzione $f_0(x) = x^2$ ha un grafico convesso, limitato inferiomente, che tocca in un sol punto l'asse delle x.

- 1. La traslazione orizzontale non cambia convessità, limitatezza e numero di intersezioni con l'asse delle x.
- 2. Se $\Delta \neq 0$ si presenta una traslazione verticale di $-\Delta/4a^2$; essa, in ogni caso, non cambia convessità e limitatezza, tuttavia
 - se $\Delta > 0$, il grafico trasla in basso e si producono due intersezioni con l'asse delle x;
 - se $\Delta < 0$, il grafico trasla in alto e si perde l'intersezione con l'asse delle x.
- 3. L'ultima trasformazione (dilatazione verticale) non cambia il numero di intersezioni (che dunque viene a dipendere solo da Δ). La dilatazione è significativa solo se a<0 in quanto produce un ribaltamento del grafico: la funzione diventa concava.

In definitiva, se vogliamo riassumere:

 \bullet la convessità dipende dal coefficiente a:

$$a > 0 \Longrightarrow f$$
 convessa,
 $a < 0 \Longrightarrow f$ concava;

• la posizione rispetto all'asse delle ascisse dipende da Δ :

 $\Delta > 0 \Longrightarrow 2 \text{ intersezioni},$

 $\Delta = 0 \Longrightarrow 1 \text{ intersezione (tangenza)},$

 Δ < 0 \Longrightarrow nessuna intersezione.

Queste informazioni, congiunte con la formula risolutiva dell'equazione, consentono di risolvere in maniera rapida ed efficiente le disequazioni.

Capitolo 104

Polinomi

Nell'appendice precedente abbiamo studiato l'equazione di secondo grado con un approccio analitico. La teoria delle equazioni algebriche acquista eleganza e simmetria quando si tiene debito conto degli aspetti algebrici.

104.1 Generalità

Si definisce polinomio in un'indeterminata a coefficienti reali un'espressione formale del tipo

$$P(x) = a_0 + a_1 x + \dots + a_n x^n$$
$$= \sum_{i=0}^{n} a_i x^i$$

essendo $a_i \in \mathbf{R}$.

In altri termini un polinomio è univocamente individuato da una famiglia finita di coefficienti

$$\{a_0, a_1, \ldots, a_n\}$$

Ovviamente possiamo anche pensare ad una famiglia infinita (successione)

$$\{a_0, a_1, \ldots, a_n, \ldots\}$$

in cui tutti i termini da un certo indice in poi siano uguali a 0.

L'indice n, che individua l'ultimo coefficiente diverso da 0 prende il nome di grado del polinomio, il corrispondente coefficiente a_n prende il nome di coefficiente direttivo.

Il grado del polinomio P(x) si denota con deg P(x).

Dobbiamo notare subito che ciascun polinomio $P(x) = \sum_{i=0}^{n} a_i x^i$ (inteso come espressione formale) si può identificare con la corrispondente funzione polinomiale

$$P : \mathbf{R} \to \mathbf{R}$$

$$P(x) = \sum_{i=0}^{n} a_i x^i$$

L'identificazione tra polinomi e funzioni polinomiali viene formalizzata nel seguente teorema, noto anche come *Principio di identità dei polinomi*.

Teorema 104.1 Siano assegnati due polinomi (a coefficienti reali)

$$P_1(x) = \sum_{i=0}^{n} a_i x^i$$

$$P_2(x) = \sum_{i=0}^{m} b_i x^i$$

le seguenti proposizioni sono equivalenti:

- a) $P_1(x) = P_2(x)$ per ogni $x \in \mathbf{R}$ (uguaglianza delle funzioni polinomiali);
- **b)** $n = m \ e \ a_i = b_i \ per \ ogni \ i \in \{0, 1, \dots, n\}$ (uguaglianza dei polinomi).

L'implicazione $\mathbf{b})\Longrightarrow \mathbf{a}$) è ovvia. L'implicazione non ovvia $\mathbf{a})\Longrightarrow \mathbf{b}$) vale in \mathbf{R} ed in tutti i campi infiniti e si deduce dal Teorema di Ruffini che vedremo in seguito.

L'insieme dei polinomi a coefficienti reali viene denotato con $\mathbf{R}[x]$.

104.2 Operazioni tra polinomi

Le funzioni polinomiali possono essere sommate e moltiplicate al pari di due qualsiasi funzioni reali di variabile reale. Tenuto conto delle proprietà delle potenze, quella che si ottiene è ancora una funzione polinomiale.

Esempio 104.2 Assegnati

$$P_1(x) = x^3 + x - 1$$

 $P_2(x) = 2x^2 - x + 2$

abbiamo

$$P_1(x) + P_2(x) = x^3 + 2x^2 + 1$$

 $P_1(x) \cdot P_2(x) = 2x^5 - x^4 + 4x^3 - 3x^2 + 3x - 2$

A partire da questa osservazione, sull'insieme dei polinomi $\mathbf{R}[x]$ si definiscono due leggi di composizione interna e si osserva che sono verificati gli assiomi che caratterizzano gli anelli. Abbiamo anche informazioni sul grado ottenuto nelle operazioni.

Proposizione 104.3 Assegnati due polinomi $P_1(x)$ e $P_2(x)$, risulta quanto segue

$$\deg(P_1(x) + P_2(x)) \leq \max \{\deg P_1(x), \deg P_2(x)\}, \deg(P_1(x) \cdot P_2(x)) = \deg P_1(x) + \deg P_2(x).$$

104.2.1 Divisione di polinomi

Assegnati due polinomi $P_1(x)$ e $P_2(x)$ vogliamo dare un significato alla divisione di $P_1(x)$ per $P_2(x)$, lo facciamo attraverso un teorema analogo a quello che dovrebbe essere ben noto per gli interi.

Teorema 104.4 Assegnati due polinomi $P_1(x)$ e $P_2(x)$, se $P_2(x) \neq 0$ esistono e sono univocamente determinati due polinomi Q(x) ed R(x) tali che

$$P_1(x) = P_2(x)Q(x) + R(x)$$

$$\deg R(x) < \deg P_2(x).$$

I polinomi Q(x) ed R(x) si dicono rispettivamente quoziente e resto e si scrive

$$\frac{P_1(x)}{P_2(x)} = Q(x) + \frac{R(x)}{P_2(x)}$$

Esempio 104.5 Calcoliamo

$$\frac{x^4 - 3x^3 + x + 3}{x^2 + x}.$$

Il quoziente e il resti sono dati rispettivamente da

$$Q(x) = x^2 - 4x + 4;$$

 $R(x) = -3x + 3.$

In breve

$$\frac{x^4 - 3x^3 + x + 3}{x^2 + x} = x^2 - 4x + 4 + \frac{-3x + 3}{x^2 + x}.$$

Definizione 104.6 Il polinomio $P_1(x)$ si dice divisibile per $P_2(x)$ se esiste un polinomio Q(x) tale che

$$P_1(x) = P_2(x)Q(x).$$

104.2.2 Divisione per $x - \alpha$

Assegnati un polinomio $P(x) = a_n x^n + \dots a_1 x + a_0$ ed $\alpha \in \mathbf{R}$, in base al Teorema 104.4 esistono e sono univocamente determinati

$$Q(x) = b_{n-1}x^{n-1} + \dots b_1x + b_0$$
$$r \in \mathbf{R}$$

tali che

$$P(x) = (x - \alpha)Q(x) + r.$$
 (104.1)

Osservazione 104.7 Si può dimostrare che i coefficienti b_i ed r sono dati da

$$b_{n-1} = a_n$$

$$b_{n-2} = a_{n-1} + \alpha b_{n-1}$$

$$\cdots$$

$$b_0 = a_1 + \alpha b_1$$

$$r = a_0 + \alpha b_0$$

Le formule precedenti sono sintetizzate in uno schema ben noto

104.3. RADICI 7

Esempio 104.8 Vogliamo effettuare la divisione di $P(x) = 3x^3 - x^2 - x - 1$ per x - 1/3.

Quindi il quoziente ed il resto sono dati rispettivamente da

$$Q(x) = 3x^2 - 1,$$

$$r = -4/3.$$

Poichè $r \neq 0$ possiamo concludere che P(x) non è divisibile per x - 1/3.

Osservazione 104.9 Dalla relazione (104.1) si deduce che $P(\alpha) = r$. Questo ha interessanti conseguenze: se vogliamo calcolare $P(\alpha)$, è più conveniente adoperare lo schema della divisione ed ottenere il resto, rispetto a sostituire α nella funzione polinomiale ed effettuare le operazioni (nel primo caso effettuiamo al più n-1 moltiplicazioni, nel secondo caso n(n+1)/2 moltiplicazioni).

Esempio 104.10 Assegnato $P(x) = x^4 - x^2 - 2x + 2$, vogliamo calcolare P(2)

Pertanto P(2) = r = 10.

104.2.3 Polinomi irriducibili

Le analogie tra polinomi ed interi non si fermano al Teorema sulla divisione, esiste anche una nozione in qualche modo analoga a quella di numero primo.

Definizione 104.11 Un polinomio P(x) (di grado ≥ 1) si dice irriducibile se, per ogni coppia di polinomi $Q_1(x)$ e $Q_2(x)$, da $P(x) = Q_1(x)Q_2(x)$ consegue che $Q_1(x)$ o $Q_2(x)$ è una costante.

Teorema 104.12 (di fattorizzazione unica) Ogni polinomio P(x) si scompone nel prodotto di polinomi irriducibili. La scomposizione è unica a meno di permutazioni (e costanti moltiplicative).

104.3 Radici

Sia P(x) un polinomio (a coefficienti reali) di grado $n \ge 1$.

Definizione 104.13 Un numero reale α si dice radice di P se risulta $P(\alpha) = 0$, ossia se il valore della funzione polinomiale associata a P calcolata in α è uguale a 0.

Teorema 104.14 (di Ruffini) Il numero reale α è radice del polinomio P se e solo se P è divisibile per $(x - \alpha)$, ossia esiste un polinomio $P_1(x)$ tale che

$$P(x) = (x - \alpha)P_1(x). (104.3)$$

Se $\alpha \in \mathbf{R}$ è una radice di P, in base al Teorema di Ruffini, esiste $P_1(x)$ tale che valga (104.3).

Se a sua volta $P_1(\alpha) = 0$, per lo stesso teorema, si ha che $P_1(x)$ è divisibile per $x - \alpha$ e quindi

$$P_1(x) = (x - \alpha)P_2(x).$$

Dunque, sostituendo in (104.3)

$$P(x) = (x - \alpha)^2 P_2(x).$$

Ovviamente passiamo a calcolare $P_2(\alpha)$ ed eventualmente continuiamo a scomporre; il processo si arresterà sicuramente entro n passi.

Questa osservazione giustifica la seguente definizione.

Definizione 104.15 Si dice che α è una radice di molteplicità $m \geq 1$ se risulta

$$P(x) = (x - \alpha)^m P_m(x), \qquad (104.4)$$

$$P_m(\alpha) \neq 0.$$

La radice si dice semplice (risp. multipla) se ha molteplicità 1 (risp. > 1).

Dalla (104.4) e dalla proprietà sul grado del prodotto si deduce che per ciascuna radice α la molteplicità m è minore o al più uguale ad n. In realtà sussiste un risultato più preciso.

Proposizione 104.16 Il polinomio P(x) (di grado $n \ge 1$) ammette al più n radici, contate con la loro molteplicità.

104.4 Specificità dei polinomi reali

Anche se fin dall'inizio abbiamo parlato di polinomi a coefficienti in **R**, le nozioni riportate fino a questo momento rimarrebbero valide qualora ad **R** andassimo a sostituire un qualsiasi altro anello dei coefficienti.

La scelta del corpo dei coefficienti è determinante riguardo

- riducibilità/irriducibilità di un polinomio,
- esistenza e numero di radici.

Esempio 104.17 Il polinomio $P(x) = x^2 - 2$ è irriducibile su \mathbf{Q} ma è riducibile su \mathbf{R}

$$P(x) = \left(x + \sqrt{2}\right)\left(x - \sqrt{2}\right).$$

Esempio 104.18 Consideriamo i polinomi

$$P_1(x) = 2x - 1$$

 $P_2(x) = x^2 + 1$
 $P_3(x) = x^2 - 1$

Si verifica immediatamente che $P_1(x)$ ammette la radice 1/2; il polinomio $P_2(x)$ non ammette alcuna radice (reale), infatti $x^2 + 1 > 0$ per ogni $x \in \mathbf{R}$. Il polinomio $P_3(x)$ ammette le radici ± 1 .

Evidentemente le due questioni sono collegate. Infatti, in base al Teorema di Ruffini, un polinomio di grado maggiore di 1 ammette una radice se e solo se non è irriducibile. Nel campo ${\bf R}$ sussiste la seguente caratterizzazione.

Proposizione 104.19 Un polinomio P(x) è irriducibile su \mathbf{R} se e solo se P(x) è di primo grado

$$P(x) = ax + b$$

oppure P(x) è di secondo grado

$$P(x) = ax^2 + bx + c$$

con

$$\Delta = b^2 - 4ac < 0.$$

104.4.1 Estensione al campo complesso

Poiché $\mathbf{R} \subset \mathbf{C}$, un polinomio a coefficienti reali può essere considerato anche come polinomio complesso, per cui ha senso considerare anche le sue radici in \mathbf{C} .

Proposizione 104.20 Se un polinomio P(x) a coefficienti reali ammette la radice complessa α , ammette anche la radice complessa coniugata $\bar{\alpha}$.

La teoria dei polinomi acquista maggiore eleganza qualora in campo complesso. Sussiste infatti seguente risultato noto anche come $Teorema\ Fondamentale\ dell'Algebra.$

Teorema 104.21 Sia P(x) un polinomio (a coefficienti reali o complessi) di grado $n \ge 1$. Allora P(x) ammette esattamente n radici (reali o complesse), contate ciascuna con la sua molteplicità.

104.5 Risoluzione di equazioni algebriche

Se P(x) è un polinomio reale (o eventualmente complesso), l'uguaglianza

$$P(x) = 0$$

prende il nome di equazione algebrica (intera). Il grado del polinomio è detto anche grado dell'equazione.

Le soluzioni di tale equazioni coincidono con le radici del polinomio P, quindi l'informazione su esistenze e numero delle soluzioni (complesse) viene fornito dal Teorema fondamentale dell'algebra.

La determinazione delle soluzioni è un problema che ha assillato per lungo tempo i matematici.

Per le equazioni di primo grado la soluzione è immediata, in quanto dipende soltanto dagli assiomi di campo.

Per le equazioni di secondo grado

$$ax^2 + bx + c = 0,$$

posto, come sopra,

$$\Delta = b^2 - 4ac,$$

si dispone di una formula

$$x_{1,2} = \frac{-b + \sqrt{\Delta}}{2a}$$

dove, per quest'unica volta, indichiamo con $\sqrt{\Delta} = \{w_1, w_2\}$ le due radici complesse di un generico numero reale o complesso. Inoltre si ha che

$$x_1 + x_2 = -\frac{b}{a}.$$

$$x_1 \cdot x_2 = \frac{c}{a}.$$

Sono note a livello specialistico formule risolutive per le equazioni di terzo e quarto grado.

Non esiste, anzi è stato dimostrato che non può esistere, una formula risolutiva per equazioni di grado superiore al quarto.

104.6 Equazioni a coefficienti interi

La proposizione seguente fornisce un condizione necessaria affinché un numero razionale sia radice di un polinomio a coefficienti interi.

Proposizione 104.22 Sia P(x) un polinomio a coefficienti interi

$$P(x) = a_n x^n + \dots + a_1 x + a_0.$$

Sia $q = m/n \in \mathbf{Q}$ una radice di P. Allora necessariamente

- $m \ \dot{e} \ un \ divisore \ di \ a_0;$
- $n \ \hat{e} \ un \ divisore \ di \ a_n$.

Evidentemente questa proposizione fornisce l'elenco delle possibili radici razionali (di un polinomio a coefficienti interi).

Esempio 104.23 Consideriamo

$$P(x) = 6x^4 + 5x^3 - 9x^2 - 4x + 4$$

I divisori di 4 sono 1,2,4; i divisori di 6 sono 1,2,3,6. Pertanto le possibili radici razionali del polinomio sono

$$\left\{\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{1}{6}\right\}.$$

Dunque assegnata un'equazione algebrica a coefficienti interi, abbiamo un elenco di possibili radici razionali: per ciascun q in elenco dovremo testare se è radice o meno. Come si diceva sopra (Osservazione 104.9) conviene effettuare il test tramite la divisione per x-q, ossia tramite lo schema (104.2). Tale schema non solo ci dice se un certo q è radice o meno; in caso affermativo, lo schema ci fornisce anche i coefficienti del polinomio $P_1(x)$ per cui risulta

$$P(x) = (x - q) P_1(x).$$

Dunque per determinare le altre radici di P(x) dovremo risolvere un'equazione di grado inferiore.

11

Esempio 104.24 Consideriamo l'equazione

$$6x^4 + 5x^3 - 9x^2 - 4x + 4 = 0$$

Nell'esempio precedente abbiamo riportato l'elenco delle possibili radici razionali del polinomio P(x) che definisce l'equazione, quindi iniziamo a testarle.

- 1 non è radice di P;
- \bullet -1 è radice, infatti

 $Quindi\ possiamo\ scrivere$

$$6x^4 + 5x^3 - 9x^2 - 4x + 4 = (x+1)(6x^3 - x^2 - 8x + 4).$$

e ci siamo ricondotti a trovare le radici del polinomio

$$P_1(x) = 6x^3 - x^2 - 8x + 4.$$

Le possibili radici razionali sono ovviamente quelle già elencate sopra e già sappiamo che 1 non è radice. Ricominciamo a testare.

- Se ci interessa anche la molteplicità di ciascuna radice, testiamo -1 per $P_1(x)$ (in quanto -1 potrebbe essere radice multipla di P(x)), altrimenti passiamo oltre;
- 2 non è radice di P_1 ;
- -2 non è radice di P_1 ;

e via di seguito per le altre radici in elenco, fino a trovare che

• 2/3 è radice di P₁, infatti

 $Quindi\ possiamo\ scrivere$

$$6x^{3} - x^{2} - 8x + 4 = (x - 2/3)(6x^{2} + 3x - 6)$$
$$= (3x - 2)(2x^{2} + x - 2)$$

Le ultime due radici le potremo ottenere applicando la formula per le equazioni di secondo grado

$$x_{3,4} = \frac{-1 \pm \sqrt{17}}{4}.$$

Concludiamo con una definizione ed una curiosità.

Definizione 104.25 Un numero reale si dice algebrico se è soluzione di un'equazione algebrica a coefficienti interi.

Esempio 104.26 Tutti i numeri razionali sono algebrici, infatti q = m/n è soluzione di

$$nx - m = 0.$$

Esempio 104.27 Tutti i radicali con radicando razionale sono numeri algebrici, infatti $\sqrt[n]{m/k}$ è soluzione di

$$kx^n - m = 0.$$

Dunque, ad esempio, $\sqrt{3}$ è un irrazionale algebrico. Pertanto l'insieme dei numeri algebrici contiene strettamente l'insieme dei razionali.

Esempio 104.28 Esistono numeri reali non algebrici, ad esempio π . Tali numeri reali vengono denominati trascendenti.

Osservazione 104.29 In un eccesso di divulgazione, si dice talvolta che i numeri reali vengono introdotti per effettuare le radici. In realtà, passando da ${\bf Q}$ ad ${\bf R}$, non si aggiungono solo le radici, ma si aggiungono anche numeri come π .

Riprendendo l'argomento introdotto nell'Osservazione ... si può dimostrare che l'insieme dei numeri algebrici ha la stessa cardinalità di \mathbf{Q} . Pertanto, tornando al tono divulgativo, possiamo concludere che la maggior parte dei numeri reali non solo è irrazionale, ma è trascendente.

104.7 Funzioni razionali

Definizione 104.30 Si definisce funzione razionale ogni funzione ottenuta come rapporto di funzioni polinomiali.

Osserviamo anzitutto che ogni funzione razionale

$$f(x) = \frac{P(x)}{Q(x)}$$

si può scrivere nella forma

$$f(x) = P_1(x) + \frac{P_2(x)}{Q(x)}$$

dove P_1 e P_2 sono polinomi e il grado di P_2 è strettamente minore del grado di Q. Infatti è sufficiente effettuare preliminarmente la divisione tra P e Q.

104.7.1 Scomposizione in frazioni parziali

Il teorema di fattorizzazione in fattori irriducibili ha un'interessante conseguenza nella decomposizione di ogni funzione razionale nella somma di frazioni parziali (i cosiddetti *fratti semplici*).

Consideriamo una funzione

$$f(x) = \frac{P(x)}{Q(x)}$$

e supponiamo che il grado di P è strettamente minore del grado di Q (e questa ipotesi, come abbiamo visto, non è restrittiva)

Supponiamo di aver effettuato la fattorizzazione di Q(x).

Sotto queste semplici ipotesi si può dimostrare che la funzione f(x) = P(x)/Q(x) si scrive come combinazione lineare di termini di tipo

$$\frac{1}{(\alpha x + \beta)^i}, \qquad \frac{x}{(ax^2 + bx + c)^j}, \qquad \frac{1}{(ax^2 + bx + c)^j}.$$

dove $(\alpha x + \beta)$ e $(ax^2 + bx + c)$ sono i fattori irriducibili che compaiono nella fattorizzazione di Q(x).

Precisamente:

• se nella fattorizzazione di Q(x) compare un fattore $(\alpha x + \beta)^m$, nella decomposizione di f compariranno addendi di tipo

$$\frac{A_i}{(\alpha x + \beta)^i}$$

con $1 \le i \le m$;

• se nella fattorizzazione di Q(x) compare un fattore $(ax^2 + bx + c)^n$, nella decomposizione di f compariranno addendi di tipo

$$\frac{B_j x}{\left(ax^2 + bx + c\right)^j}, \qquad \frac{C_j}{\left(ax^2 + bx + c\right)^j}$$

con $1 \le j \le n$.

Quindi, se si riesce ad effettuare la fattorizzazione di Q, l'unica fatica da compiere è quella di determinare i coefficienti della combinazione lineare.

Gli esempi chiariranno la procedura da seguire.

Esempio 104.31 Consideriamo

$$\frac{2x-3}{9x^2-4}$$

Il denominatore si fattorizza come segue

$$9x^2 - 4 = (3x - 2)(3x + 2)$$

Quindi dobbiamo individuare due costanti A, B tali che

$$\frac{2x-3}{9x^2-4} = \frac{A}{3x-2} + \frac{B}{3x+2}$$

Esistono vari metodi per determinare tali costanti, noi ne indichiamo uno. Effettuiamo la somma a secondo membro e otteniamo

$$\frac{A}{3x-2} + \frac{B}{3x+2} = \frac{(3A+3B)x + 2A - 2B}{(3x-2)(3x+2)},$$

ossia

$$\frac{2x-3}{9x^2-4} = \frac{(3A+3B)x+2A-2B}{9x^2-4}$$

Affinché le due funzioni coincidano i coefficienti dei numeratori devono essere ordinatamente uguali e quindi imponiamo

$$3A + 3B = 2$$
$$2A - 2B = -3$$

Se risolviamo questo sistema lineare nelle incognite $A\ e\ B,$ otteniamo

$$A = -\frac{5}{12}$$

$$B = \frac{13}{12}$$

Pertanto, sostituendo in (), concludiamo

$$\frac{2x-3}{9x^2-4} = -\frac{5}{12}\frac{1}{3x-2} + \frac{13}{12}\frac{1}{3x+2}.$$

Esempio 104.32 Consideriamo

$$\frac{1}{t^2 + 3t - 4}$$

Il denominatore si fattorizza come segue

$$t^2 + 3t - 4 = (t - 1)(t + 4)$$

Quindi dobbiamo individuare due costanti A, B tali che

$$\frac{1}{t^2 + 3t - 4} = \frac{A}{t - 1} + \frac{B}{t + 4}$$

Ora procediamo come sopra

$$\frac{1}{t^2 + 3t - 4} = \frac{A}{t - 1} + \frac{B}{t + 4}$$
$$= \frac{(A + B)t + (4A - B)}{t^2 + 3t - 4}$$

Affinché le due funzioni coincidano i coefficienti dei numeratori devono essere ordinatamente uguali e quindi imponiamo

$$\begin{cases} A+B=0\\ 4A-B=1 \end{cases} \iff \begin{cases} A=\frac{1}{5}\\ B=-\frac{1}{5} \end{cases}$$

E pertanto

$$\frac{1}{t^2+3t-4} = \frac{1}{5} \left(\frac{1}{t-1} - \frac{1}{t+4} \right)$$

Esempio 104.33 Consideriamo

$$\frac{x^2 - x}{x^3 + 1}$$

 $\it Il\ denominatore\ si\ fattorizza\ come\ segue$

$$x^3 + x = (x+1)(x^2 - x + 1)$$

Quindi dobbiamo individuare tre costanti A, B, C tali che

$$\frac{x^2 - x}{x^3 + 1} = \frac{A}{x + 1} + \frac{Bx}{x^2 - x + 1} + \frac{C}{x^2 - x + 1}$$

Come sopra effettuiamo la somma a secondo membro e otteniamo

$$\frac{A}{x+1} + \frac{Bx}{x^2 - x + 1} + \frac{C}{x^2 - x + 1} = \frac{(A+B)x^2 + (-A+B+C)x + A + C}{(x+1)(x^2 - x + 1)}$$

ossia

$$\frac{x^2 - x}{x^3 + 1} = \frac{(A+B)x^2 + (-A+B+C)x + A + C}{(x+1)(x^2 - x + 1)}.$$

Affinché le due funzioni coincidano i coefficienti dei numeratori devono essere ordinatamente uguali e quindi imponiamo

$$A+B = 1$$

$$-A+B+C = -1$$

$$A+C = 0$$

Se risolviamo questo sistema lineare nelle incognite A, B e C, otteniamo

$$A = \frac{2}{3}$$

$$B = \frac{1}{3}$$

$$C = -\frac{2}{3}$$

Pertanto, sostituendo in (), concludiamo

$$\frac{x^2 - x}{x^3 + 1} = \frac{2}{3} \frac{1}{x + 1} + \frac{1}{3} \frac{2x - 1}{x^2 - x + 1} - \frac{2}{3} \frac{1}{x^2 - x + 1}.$$

Esempio 104.34 Consideriamo

$$\frac{x^2}{x^4 + 3x^2 - 4}.$$

Il denominatore si fattorizza come segue

$$x^4 + 3x^2 - 4 = (x - 1)(x + 1)(x^2 + 4)$$

Quindi dobbiamo individuare quattro costanti A, B, C, D tali che

$$\frac{x^2}{x^4 + 3x^2 - 4} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{Cx}{x^2 + 4} + \frac{D}{x^2 + 4}$$

Come sopra effettuiamo la somma a secondo membro e otteniamo

$$\begin{split} &\frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx}{x^2+4} + \frac{D}{x^2+4} = \\ &= \frac{\left(A+B+C\right)x^3 + \left(-B+A+D\right)x^2 + \left(4B+4A-C\right)x + 4A-4B-D}{x^4+3x^2-4} \end{split}$$

ossia

$$\frac{x^2}{x^4 + 3x^2 - 4} =$$

$$= \frac{(A+B+C)x^3 + (-B+A+D)x^2 + (4B+4A-C)x + 4A-4B-D}{x^4 + 3x^2 - 4}$$

Affinché le due funzioni coincidano i coefficienti dei numeratori devono essere ordinatamente uguali e quindi imponiamo

$$A + B + C = 0$$

 $A - B + D = 1$
 $4A + 4B - C = 0$
 $4A - 4B - D = 0$

Risolviamo questo sistema lineare nelle incognite A, B, C, D e otteniamo

$$A = \frac{1}{10}$$

$$B = -\frac{1}{10}$$

$$C = 0$$

$$D = \frac{4}{5}$$

Sostituendo in () si conclude

$$\frac{x^2}{x^4 + 3x^2 - 4} = \frac{1}{10} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right) + \frac{4}{5} \frac{1}{x^2 + 4}.$$

Esempio 104.35 Consideriamo

$$\frac{x^3}{\left(x^2-4\right)^2}$$

Il denominatore si fattorizza come seque

$$(x^2 - 4)^2 = (x - 2)^2(x + 2)^2$$

Pertanto dobbiamo individuare quattro costanti A, B, C, D tali che

$$\frac{x^3}{(x^2-4)^2} = \frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{x+2} + \frac{D}{(x+2)^2}$$

 $Procedendo\ come\ sopra\ si\ ottiene$

$$A = B = C = \frac{1}{2}$$

$$D = -\frac{1}{2}$$

Pertanto

$$\frac{x^3}{(x^2-4)^2} = \frac{1}{2} \left(\frac{1}{x-2} + \frac{1}{(x-2)^2} + \frac{1}{x+2} - \frac{1}{(x+2)^2} \right)$$