INE 5430 - Inteligência Artificial Prof. Mauro

Trabalho 4: Raciocínio Probalístico

1 Introdução

A lógica fuzzy foi desenvolvida em 1965 por Lofti Asker Zadeh. Consiste em uma abordagem diferente da lógica booleana, que possui uma compreensão de "0" e "1", ou de "sim" e "não", "verdade" e "mentira". Uma vez que muitas das coisas que necessitam ser representadas não possuem essa simetria, a lógica Fuzzy surge para adicionar valores intermediários dentro da lógica. Por exemplo, as seguintes situações, que não poderiam ser descritas na lógica booleana:

- A comida está "boa";
- O dia está "quente";
- A disciplina está "difícil";
- A caminha foi "cansativa".

Com a lógica booleana, não seria possível determinar o que seriam as variáveis "boa", "quente", "difícil"e "cansativa". Dessa forma a lógica Fuzzy atribui valores intermediários, conforme imagem 6, na qual é apresentado a velocidade de algo, pode-se atribuir, por exemplo, que quando a velocidade é 55mph ele está em uma velocidade média.

Figura 1: Exemplo de utilização de lógica fuzzy

Dessa forma, este presente trabalho tem a intenção de aplicar um trabalho na área de lógica fuzzy para consolidar o conhecimento teórico adquirido na disciplina de Inteligência Artificial. O trabalho consiste em criar uma lógica para um caminhão estacionar na posição desejada, baseado na sua posição (x,y) e no ângulo. E foi implementado em JAVA com o auxílio da biblioteca JFuzzyLogic.

2 Desenvolvimento

Conjuntos fuzzy

As coordenadas x e y são fornecidas pelo sistema e possuem valores entre 0 e 1. Também é fornecido o ângulo do caminhão (entre 0 e 360). A saída é resulta no movimento do motorista e é um valor entre -1 (volante é virado 30 graus para a esquerda) e 1 (volante é virado 30 graus para a direita). As figuras 2, 3, 4 e 5 mostram os conjuntos fuzzy de entrada e de saída.

Figura 2: Gráfico de X

Figura 3: Gráfico de Y

Figura 4: Gráfico de angle_truck

Figura 5: Gráfico de Movement

Método de defuzzificação

O método de defuzzificação utifizado foi CenterOf Area (COA), que consiste em fornecer um valor no centro de gravidade do conjunto fuzzy (Debasis, 2018). A área total da distribuição de função de associação usada para representar a ação de controle combinada é dividida em várias subáreas(Debasis, 2018). A área e o centro de cada subárea é calculado e o somatório de todas essas subáreas é levado em consideração encontrar o valor de defuzzificação (Debasis, 2018).

Regras

A formação do conjunto de regras foi desenvolvido, baseando na posição (x, y) e no ângulo do caminhão. A coordenada x foi dividida em três partes e a coordenada y também, formando y "conjuntos de posições".

	Termo A	Termo B	Termo C	Saída
Regra 1	x is next	angle_truck is north		turn_left
Regra 2	x is next	angle_truck is east		$turn_right$
Regra 3	x is next	angle_truck is west		$turn_left$
Regra 4	x is middle	angle_truck is north		$turn_right$
Regra 5	x is middle	angle_truck is east		$turn_right$
Regra 6	x is middle	angle_truck is south	y is middle	$turn_left$
Regra 7	x is middle	angle_truck is south	y is far	$turn_left$
Regra 8	x is middle	angle_truck is west	y is next	$turn_right$
Regra 9	x is far	angle_truck is north		$turn_left$
Regra 10	x is far	angle_truck is west		$turn_left$
Regra 11	x is far	angle_truck is south	y is middle	$turn_right$
Regra 12	x is far	angle_truck is south	y is far	$turn_right$
Regra 13	x is far	angle_truck is east	y is next	$turn_left$

Dificuldades encontradas e como elas foram superadas

O principal problema foi trabalhar com o sistema de coordenadas, existindo dificuldade em definir a um limite para virar à esquerda ou a direita em em como saber o quão perto está a doca. Assim, houve dificuldade de definir as regras utilizadas e mesmo tendo controle sobre os casos das bordas direita e esquerda, a implementação dependeu de tentativa e erro até chegar num padrão aceitável. Infelizmente nem todas as posições conseguem estacionar na doca, mas em todas as posições e ângulos testados, o caminhão consegue estacionar na borda inferior.

3 Conclusão

Os autores deste trabalho puderam compreender de forma prática como é o funcionamento da lógica Fuzzy. Uma vez que um trabalho prático auxilia no entendimento da parte teórica. Dessa forma, teve como resultado final o que pode-se observar na imagem abaixo:

Figura 6: Simulação resultante

Referências

Debasis, Samanta (2018). Defuzzification Methods. Dísponível em: http://www.nid.iitkgp .ernet.in/dsamanta/courses/archive/sca/Archives/Chapter%205%20Defuzzification%20 Methods.pdf>. Acesso em: Novembro de 2018.