REINFORCEMENT LEARNING PART 3

Ivan Bratko
Faculty of Computer and Information Science
University of Ljubljana

ACTIVE LEARNING:

TRY TO FIND A GOOD POLICY

Ideally: Aim at optimal policy

ACTIVE LEARNING

- Active learner attempts to find an optimal policy
- How can ADP be turned into active agent?
 - (1) Agent has to optimise policy, not just execute fixed policy
 - (2) If agent has learned state-transition function delta then optimal policy can be determined by solving constraint problem defined by Bellman equations:

$$U(s) = R(s) + gamma*max_aSUM_{s'}[P(s' | s,a)*U(s')]$$

ACTIVE AGENT: EXPLOITATION VS. EXPLORATION

- Active agent's task is to search among possible policies
- Actions tried by agent serve two goals:
 - (1) Achieve high reward (exploitation)
 - (2) Learning transition model (exploration)

MATHEMATICAL PROBLEM FOR STUDYING OPTIMAL EXPLORATION POLICIES

- What is optimal exploration policy?
- A theoretical framework for studying optimal exploration policies:
 multi-armed bandit problem
- n-armed bandit is a gambling machine with n levers (arms slot machines); gambler inserts a coin, chooses and pulls one of the levers; corresponding machine decides probabilistically about the reward to be paid to the gambler
- Gambler plays many times: what is the best exploration policy (that
 maximises expected cumulative reward)? Answer in general case is
 very hard, specially when the machines are not independent
- This is a RL problem

BALANCE BETWEEN EXPLOITATION AND EXPLORATION

- Is there optimal balance between exploitation and exploration? Main idea is roughly: GLIE
- GLIE schemes try to achieve good balance
- GLIE = Greedy in the Limit of Exploration
 Initially tend to explore, later tend to exploit.
 In the end, method becomes just greedy (choose action that maximizes reward)
- A simple GLIE scheme:

 With probability 1/t, choose random action, otherwise choose highest utility action (t=time; this probability decreases with time).

 This does converge, but can be very slow.

TWO MAIN APPROACHES TO ACTIVE RL

Both approaches explore among policies aiming at a good policy, but they differ in what is being learned

- 1. Utility based learning: Learn optimal state utilities and model delta
- 2. Q-learning: Learn Q-values

UTILITY BASED ACTIVE RL

- To search for a good policy, agent carries out trials in the domain
- In choosing next action, the agent strives to good compromise between exploration and exploitation
- The agent updates a domain model, i.e. transition probabilities by counting transitions to next state of form (s, a, s')
- During experimentation, the agent also updates approximations to optimal state utilities and optimal policy
- This can be done by solving the ADP problem; a popular method for that is value iteration algorithm

VALUE ITERATION

- Value iteration is a simple and practical method for determining optimal state utilities, so it is part of common technology for RL
- Given a (current) model delta (i.e. transition probabilities), problem is to solve equations:

$$U(s) = max_a (P(s' | s,a) * [r(s,a,s') + gamma * U(s')] (Eq. B)$$

- Value iteration method roughly consists of:
- 1. Initialise U(s) for all states s with arbitrary initial values, e.g. U(s)=0
- 2. Keep updating simultaneously all U(s) according to Eq. B using current U(s) in right hand side of Eq. B, until difference between old U and new U values become sufficiently small

VALUE ITERATION ALGORITHM

U'(s) are current estimates, U(s) are estimates from previous iteration Initialise for all s: U'(s) = 0;

Repeat

```
for all s: U(s) \leftarrow U'(s), D \leftarrow 0
for all s do simultaneously:
 U'(s) \leftarrow \max_a (P(s' \mid s,a) * [ r(s,a,s') + gamma * U(s')] if | U'(s) - U(s) | > D then D \leftarrow | U'(s) - U(s) | until D < eps * (1 – gamma) / gamma
```

eps is maximum error allowed in utility of any state
The termination condition comes from mathematical result:

if $||U_{i+1} - U_i|| < eps^*(1-gamma)/gamma$ then $||U_{i+1} - U|| < eps$ That is: If successive estimates are close then U_{i+1} is close to true U Notation $||U|| = max_s |U(s)|$ (max abs. value in a vector)

INTUITION WHY SMALL GAMMA HELPS CONVERGENCE

Consider effects of utilities between distant states:

$$S0 \rightarrow S1 \rightarrow \dots \rightarrow Sn \rightarrow$$

Suppose action in Sn generates large reward, and actions before Sn give low rewards. How does this effect U(S0) if Gamma is low/high?

CONVERGENCE OF VALUE ITERATION

- Value iteration algorithm always converges to (unique) solution of Bellman equations B.
- In each iteration, error is reduced at least by factor gamma (exponential convergence). However, this gets slow if gamma is close to 1.
- Convergence to optimal policy is typically faster than convergence to approximation to optimal U values
- Why is convergence to optimal policy usually faster? Note that current values U(s) define a policy. When in some iteration U(s) are sufficiently close to U*(s), these U(s) define optimal policy PI*. Often U(s) already define optimal policy even if they are quite far from true values

VALUE ITERATION, 2x3 GRID EXAMPLE

 A simple robot world consisting of a 2x3 grid. Robot can move horizontally or vertically between adjacent cells; transition into goal state gives reward 100, other transitions reward 0. Gamma = 0.9.

2x3 GRID EXAMPLE WITH BROKEN ROBOT

 Let transitions 22-right and 11-right be nondeterministic: 50% chance that robot stays where it is. Gamma = 0.9.

USING OPTIMISTIC UTILITY ESTIMATES

- This is an idea to promote exploration in utility based RL
- Assign higher utilities to states reached by under-explored actions
- Such optimistic utility estimates can be used in value iteration algorithm
- Such optimistic utility estimates promote exploration
- Optimistic estimates can be viewed as reducing desire to explore
 (curiosity) to (a kind of) greed; high utility estimates reflect underexplored
 states (novelty of states). A simple greedy policy w.r.t. optimistic
 estimates will drive the agent to underexplored areas

OPTIMISTIC ESTIMATES

- U+(s) = optimistic utility estimate of s (higher than realistic)
- U+(s) <-- $\max_a (R(s,a) + \text{gamma f}(SUM_{s'} P(s' | s,a) * U+(s'), N(s,a))$
- N(s,a) = # times the pair (s,a) has occurred so far
 i.e. # times a has been tried in s
- f(u, n) is called exploration function; it trades between greed and curiosity
- To stimulate exploitation, f(u,n) should increase with u
- To stimulate exploration, f(u,n) should decrease with n

AN EXPLORATION FUNCTION

$$f(u,n) = \begin{cases} R^+ & \text{if } n < N_e \\ u & \text{otherwise} \end{cases}$$

R⁺ is max. possible cumulative reward obtainable in any state, in practice unrealistically high

N_e is fixed parameter, a threshold for optimism

This f makes the agent try each action at least N_e times

DEFINITION OF U+

- Note important detail in definition of U⁺
- U+(s) <-- max_a (R(s,a) + gamma * f(SUM P(...) U+(s'), ...)
- Very important to have U+ here and not just U
- This drives agent even in states close to START towards remote states in under-explored regions

Close to START, well explored Far from START, likely under-explored

RUSSELL & NORVIG 4x3 EXAMPLE

Convergence of learned policy

Note: Re-drawn approximately from Russell&Norvig

Q-LEARNING

Q FUNCTION

 In Q-learning, agent learns function Q. Q(s,a) is defined as the maximal cumulative reward achievable by action a in state s:

$$Q(s,a) = r(s,a) + gamma U^*(delta(s,a))$$
 (for deterministic case)

 In utility-based RL, agent has to learn reward function r and state transition function delta. This suffices to determine U* function, and that determines the optimal policy: (for deterministic case):

$$PI(s) = argmax_a [r(s,a) + gamma U^*(delta(s,a))]$$

LEARNING Q FUNCTION

- A TD agent that learns Q function does not need a model of delta
- Therefore: Q-learning is said to be a model-free method
- Complexity comparison of value-based RL and Q-learning: in both cases the domain of functions to be learned are of order |S| x |A|

LEARNING Q FUNCTION

Using identity U*(s) = max_a, Q(s,a) gives recursive definition of Q:

$$Q(s,a) = r(s,a) + gamma max_a, Q(s',a')$$

- One way to learn Q function is through iterative approximations
- Q[^](s,a) is current approximation of Q(s,a)
- After each action a in state s, approximation is updated by the TD rule:
 Q^(s,a) <-- Q^(s,a) + alpha*[r(s,a) + gamma max_a, Q^(s,a) Q^(s,a)]
 where s' is result of executing a in s
 - alpha = update rate: higher alpha, more vigorous update; alpha < 1

Q LEARNING ALGORITHM

- For each s and a, initialise Q^(s,a) <-- 0
- Let s be currently observed state
- Do "forever":
 - Select an action a and execute it
 - Receive immediate reward r
 - Observe next state s'
 - Update table entry Q^(s,a):

$$Q^{(s,a)} < -- \dots$$
 (TD update rule for $Q^{(s,a)}$)

• S <-- S'

EXAMPLE FROM POOLE & MACKWORTH 2017

Sam makes informed decision between partying and relaxing

Green numbers are rewards from actions performed in states

Gamma = 0.8

WHAT ARE Q-VALUES AFTER THE TRIAL BELOW?

s ars'	(state,actio	on) Q(state,action)
he re 7 he	he, re	$Q^{(he,re)} = 0.7^{*}0 + 0.3^{*}(7+1) = 2.1$
he re 7 he	he, re	$Q^{(he,re)} = 0.7^{2}.1 + 0.3^{(7+0.8^{2}.1)} = 4.07$
he pa 10 he	he, pa	$Q^{he,pa} = 3.98$
he pa 10 si	he, pa	$Q^{he,pa} = 5.79$
si pa 2 si	si, pa	•••
si re 0 si	si, re	
si, re, 0, he	si, re	

gamma = 0.8, alpha = 0.3

BEST POLICY FOR SAM

?- utilities(U), q(S,A,Q,U).

U = [healthy/35.714, sick/23.80952],

S = healthy, A = relax, Q = 35.095;

S = healthy, A = party, Q = 35.714;

S = sick, A = relax, Q = 23.80952;

S = sick, A = party, Q = 22.000;

SAM'S Q-LEARNING

After 100 steps (in this domain a trial never ends):

healthy: [relax:34.0675,party:35.4022]

sick: [relax:26.2121,party:22.02939]

After 1000 steps:

healthy: [relax:36.04827,party:35.31005]

sick: [relax:26.5521,party:21.0226]

After 5.000 steps:

healthy: [relax:34.9970,party:36.1772]

sick: [relax:23.5344,party:21.4785]

After 10.000 steps:

healthy: [relax:35.1979,party:36.0068]

sick: [relax:23.7620,party:21.7365]

RUSSELL & NORVIG ROBOT 4x3

Optimal policy:

In s11: Best action is up, Q(s11,up) = 0.7453

In s31: Best action is left: Q(s31,left) = 0.6514

Q(s31,up) = 0.6325

Q-learning, a trial ends in terminal state, or after 100 steps

#trials	Q(s11,up)	Best policy
50	0.7989	no
100	0.7788	yes
500	0.7582	yes
1000	0.7716	yes
10000	0.7428	yes

EXPLORATION STRATEGIES

- Which action to select next?
- Trade-off between exploitation and exploration
- Extreme exploitation: maximise_a Q[^](s,a) (greedy policy)
- This may never discover policies that are even more profitable than the policy already known (also, cf. convergence theorem that requires visiting all (s,a) pairs many times)
- Epsilon-greedy policy: Choose a random action with probability ε, and action with maximum utility (according to current estimates) with probability 1- ε. Parameter ε may appropriately decrease with time.

MIXTURE OF EXPLOITATION/EXPLORATION, SOFTMAX

- Make probabilistic choices, higher Q[^] for action a_i, higher the chance for a_i to be selected ("softmax")
- Let P(a_i | s) be prob. of randomly selecting action a_i in state s. Then e.g.

$$P(a_i \mid s) = k^{Q^{(s,ai)}} / SUMj k^{Q^{(s,aj)}}$$

k > 0

higher k ---> tend to exploit

lower k ----> tend to explore $(k \ge 1)$

E.g.
$$Q(s,a1)=4$$
, $Q(s,a2)=1$

$$k=1$$
: $P(a1)=1/(1+1)=0.5$, $P(a2)=0.5$

$$k=2$$
: $P(a1)= 2^4/(2^4 + 2^1) = 16/18$, $P(a2)=2/18$

It is appropriate that k varies with time: start with desire to explore (small k), later prefer to exploit (increase k)

S

a2

CONVERGENCE OF Q LEARNING

- Convergence theorem for Q learning for deterministic MDPs
 - Let all rewards be bounded: for all (s,a), |(r(s,a)| ≤ c
 - Let agent initialise Q^ table to arbitrary finite values
 - Let agent use Q learning update rule and discount factor gamma
 s.t. 0 < gamma ≤ 1
 - Let for all a and s, Qⁿ(s,a) denote values of Qⁿ after n-th update
 - Then, if each pair (s,a) is visited infinitely many times, then $Q^{n}(s,a)$ converges to Q(s,a) as $n \rightarrow infinity$, for all (s,a).

GENERALISATION OF Q ESTIMATES

- In our methods so far, Q estimates are updated for the visited stateaction pairs; these are kept in tabular form, and unvisited values stay unchanged
- This is very limiting
- Therefore other methods determine Q estimates for unvisited stateaction pairs through function approximation using ML methods. The estimates for the visited pairs are taken as examples for such ML methods
- Traditionally, neural networks are usually used in this context for function approximation (DRL stands for Deep Reinf. Learning)

CONVERGENCE OF Q LEARNING IN NONDETERMINISTIC CASE

- Convergence theorem for non-deterministic Q learning
 - Let all rewards be bounded: for all (s,a), |r(s,a)| ≤ c
 - Let the agent initialise Q^ values to arbitrary values, and use the training rule for nondeterministic MDPs with discount factor gamma s.t. 0 ≤ gamma < 1
 - Let n(i,s,a) be the iteration in which action a was for the i-th time applied to state s.
 - If each state-action pair is visited infinitely often, 0 ≤ alpha_n < 1, and SUM_[i=1..inf] alpha_{n(i,s,a)} = inf and SUM_[i=1..inf] alpha²_{n(i,s,a)} < inf , then all Q[^] values converge to Q as n --> inf, with probability 1.