Physics of Surfaces and Nanostructures (E/A) - Surfaces

Degree - M.Sc. in Physics (PO von 2014)

\overline{Module}	Elective Advanced Lectures: BCGS Courses
Module No.	physics70d

Course	Physics of Surfaces and Nanostructures (E/A)
Course No.	Surfaces

		Teachi	Teaching			
Category	\mathbf{Type}	Language hours	\mathbf{CP}	Semester		
Elective	Lecture	English 2	3	WT		

Requirements for Participation:

Preparation: Basic knowledge of solid state physics

Form of Testing and Examination: Oral examination

Length of Course: 1 semester

Aims of the Course:

Understanding of fundamental concepts in surface and nanostructure science

Knowledge of basic fields and important applications

Contents of the Course:

The lecture introduces to modern topics of surface and nanostructure physics. Basic concepts are illustrated with examples and the link to technical applications is emphasised. Topics covered are

- surface structure and defects,
- adsorption and heterogeneous catalysis,
- surface thermodynamics and energetics
- surface electronic structure and quantum dots,
- magnetism at surfaces
- epitaxy and thin film processes,
- oxide films
- ion beam processes at surfaces,
- clusters,
- graphene

Recommended Literature:

Michely: Skriptum (available during the course)

H. Ibach: Physics of Surfaces and Interfaces (Springer, Berlin 2006)

K. Oura et al: Surface Science - an introduction (Springer, Berlin 2003)

M. Prutton: Introduction to Surface Physics (Oxford University Press, 1994)

H. Lüth: Solid Surfaces, Interfaces and Thin Films, (Springer, Berlin 2001)

M. Henzler/W. Göpel: Oberflächenphysik des Festkörpers (Teubner, Stuttgart 1994)