ALGORITHMES POUR MAXIMISER LES BÉNÉFICES

Aide à la décision dans le processus d'achat d'actions

1 Problème

2 Algorithmes

Plan

3 Résultats

4 Conclusion

Problème

- Comment maximiser le profit total des actions achetées, sous les contraintes :
 - > Chaque action : achetée qu'une seule fois.
 - Acheter une fraction d'action : non
 - > Dépense maximal : 500 euros
 - => Problème du sac à dos (the 0/1 Knapsack Problem)

Algorithmes

- Les algorithmes pour résoudre le problème :
 - >> Brute Force
 - Dynamic Programming
 - >> Greedy
 - »Etc.

Représenter le problème

- Étant donnée n actions : A1, A2, ..., An
- Noter Ci le coût de Ai
- Noter Pi le profit de l'action Ai
 => Le profit total de Ai : Ci*Pi
 (Si Pi représente en « % », le profit total de Ai : Ci*Pi*0.01)
- Le problème est de trouver : (ici, $C_{max} = 500$)

$$Max(\sum_{i} C_{i} * P_{i})$$
 sous la constrainte $\sum_{i} C_{i} \leq C_{max}$

Algorithme Brute Force

- Lister toutes les différentes combinaisons d'actions
- Pour chaque combinaison, calculer le profit total
- La solution est la combinaison ayant le profit total le plus grand et le coût total ne dépasse pas C_{max}

Brute Force - Exemple avec 3 actions

- Les combinaisons (lire l'arbre de gauche à droite):
 - 1. A1A2A3
 - 2. A1A2
 - 3. A1 A3
 - 4. A1
 - 5. A2A3
 - 6. A2
 - 7. A3
 - 8.0

Ai-1 : Ai est choisi

Ai-0 : Ai n'est pas choisi

Exemple en binaire: 111, 110, ..., 011 (=11), ..., 001 (=1), 000 (=0)

L'arbre représente les choix dans l'algorithme Brute Force

Brute Force - Pseudocode

Complexité

Mémoire / Temporelle O(n) $O(n*2^n)$

```
n = nombre_de_actions
nombre_de_combinaisons = 2^n
solution = []
                                                     => n éléments
Pour k de 0 à nombre de combinaisons -1:
                                                                    => 2^n opérateurs
    choix = représenter k en binaire (en n chiffres binaires)
    combinaison = []
                                                     => n éléments
    Pour chaque élément-i dans le choix :
                                                                      => n opérateurs
          Si élémént-i == 1 :
              action-i est choisie donc l'ajouter à la combinaison
    Si le coût total de la combinaison \leq C
          Si le profit total de la combinaison > le profit total de la solution :
              solution = combinaison
```

Algorithme Programmation dynamique

Construire la solution optimale du problème à i actions à partir du problème à i-1 actions (les actions sont numérotés 1, 2, ..., n)

Les solutions de sous-problèmes sont pré-calculées et stockées dans un tableau

Trancher le problème avec Cmax en des sous

Profit total maximisé

Coût maximal: j

problèmes avec le coût max 0, 1, 2, ..., Cmax

Algorithme Programmation dynamique (suite)

	0		 C _{max}
			 0
An-1		P({A1,,An-1}, C _{max} - Cn)	 P({A1,, An-1}, C _{max})
An	•••	•••	 P({A1,, An-1, An}, C _{max})

Programmation dynamique Pseudocode

n = n - 1

Complexité

Mémoire / Temporelle O(n*m) O(n*m)

```
n = nombre de actions + 1
m = int(C_{max}) + 1
                                                                           => n*m éléments
B = matrice de taille n*m initialisée avec 0
     pour stocker les profits totales optimales de sous problèmes
# remplir la matrice B
Pour i de 1 à n :
                                                                                              =>n*m
  Pour j de 1 à m:
                                                                                              opérateurs
     Si coût(action-i) < j :
       l'action-i est ajoutée dans la liste des actions à choisir donc
       B[i][j] = max(B[i-1][j], B[i-1][j - coût(action-i)] + profit(action-i))
     Sinon:
       B[i][j] = B[i-1][j]
solution = []
                                                                         ~ n éléments
# tracer la solution
                                                                                     ~ n*m opérateurs
Tant que C_{max} \ge 0 et n \ge 0:
  Si B[n][C_{max}] == B[n-1][C_{max} - coût(action-n)] + profit(action-n):
     l'action-n est choisie donc l'ajouter dans la solution
     C_{\text{max}} = C_{\text{max}} - \text{coût(action-n)}
                                                                                                       11
```

Algorithme Greedy

- Trier les actions en fonction de leurs efficacités (le rapport de son profit sur son coût).
- Ajouter les actions les plus efficaces dans la limite du coût maximal autorisé.

Algorithme Greedy - Exemple

	Coût (euros)	Profit (euros)	Efficacité (Profit/Coût)	Trier en efficacité :
Action-1	10	1	1/10 = 0.1	=> 3ème
Action-2	15	6	6/15 = 0.4	=> 1er
Action-3	5	1	1/5 = 0.2	=> 2ème

- Liste d'actions triées : [Action-2, Action-3, Action-1]
- Si C_{max} = 20, l'action 2 est choisie car C2 = 15 < 20
- Si C_{max} = 28, l'action 2 est choisie, puis l'action 3 car C2 + C3 = 15 + 5 < 28
- Si C_{max} = 31, l'action 2 est choisie, puis l'action 3, enfin l'action 1 car C2 + C3 + C1 = 15 + 5 + 10 < 31

Greedy - Pseudocode

Complexité

Mémoire / Temporelle O(n) O(nlog(n))

```
\begin{array}{l} n = nombre\_de\_actions \\ L = liste \ des \ actions \ triées \ en \ ordre \ décroissant \ de \ l'efficacité \\ Pour \ le \ trie : O(nlog(n)) \\ total\_coût = 0 \\ i = 1 \\ \\ \hline Solution = [] \\ \hline Tant \ que \ i \leq n \ et \ total\_coût \leq C_{_{max}}: \\ action-i = L[i] \\ total\_coût = total\_coût + coût(action-i) \\ i = i+1 \\ ajouter \ action-i \ à \ la \ solution \\ \end{array}
```

Résumé

	Complexité en mémoire	Complexité temporelle	Remarque
Brute Force	O(n)	O(n*2 ⁿ)	Temps de calcul exponentiel
Programmation dynamique	O(n*m)	O(n*m)	 Temps de calcul important si m est grand Coût total autorisé et le coût de chaque action doivent être un nombre entier
Greedy	O(n)	O(nlog(n))	- Très rapide- Solution optimale locale

Illustration en chiffres

	n : nombre d'actions, m : coût max n = 20, m = 50000
Brute Force	$n*2^n = 20.971.520$
Programmation dynamique	n*m = 1.000.000
Greedy	nlog(n) = 26

Résultats

	Problème 20 actions	Problème dataset1 (956 actions)	Problème dataset2 (540 actions)
Brute Force	4 seconds Total cost: 498 Total profit: 99.08		
Programmation dynamique	0.008 seconds	27.87 seconds	16.33 seconds
	Total cost: 498	Total cost: 499.95	Total cost: 499.90
	Total profit: 99.08	Total profit: 198.54	Total profit: 197.96
Greedy	4.28e-05 seconds	0.0006 seconds	0.00045 seconds
	Total cost: 498	Total cost: 500.00	Total cost: 499.96
	Total profit: 97.48	Total profit: 198.51	Total profit: 197.76
Données de		Total cost: 498.76	Total cost: 489.24
Sienna		Total return: 196.61	Profit: 193.78

Conclusion

- Algorithme brute force donne une solution exacte mais le temps de calcul est exponentiel en fonction du nombre d'actions.
- Algorithme programmation dynamique donne aussi une solution exacte mais le temps de calcul dépend du coût maximal autorisé (en entier) et devient très important lors que ce coût est grand.
- Algorithme greedy donne une solution approximative mais très rapide en temps de calcul. Cet algorithme est applicable quand le prix de chaque action est petit par rapport au coût maximal autorisé. Il peut donner une très mauvaise solution si l'action la plus efficace a le coût très proche du coût maximal autorisé.