LECTURE-5

Mathematical Concepts hinear Algebra Review

 $\alpha = \begin{pmatrix} \alpha_i \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{R}^n$

Lolineaux space or Vector space ar subspace V Linear subspace Affine subspace u+V= {u+v| u=V}

hinear independence (dependence of {a, ,a2 -- , ae}

Linear combination of a. 92.... , 92

a = 4, 9, + 4292 + ... + 0,00 Inner or dot product, norm of a vector, orthogonal vectors.

Span

Baris, dimension

Natural basis of RM: Se, e2-... en

Matrices

Elementary matrix operations

Special matrices: Identity Triangular, Symmetric, Orthogonal

Determinant, rank, inverse, singular, nonsingular

minor

-) Ax=b has a som iff rank (A) = rank [A b]

Linear transformation (or linear map)

Linear map if

a) L(ax)=aL(x) +xER, aER

b) L(x+y) = L(x) +L(y) +x, yER

L(x) = Ax

Sigenvalues and Sigenreeters

Chevacteriotic PSlynomial

Let AER RMXM Range or image 4 A

R(A)= {Ax: xER}

Null space or Kernel or A

N(A) = {xER} : Ax=0}

Creometry: IR

hive Segment joining x, ER and xeER is the

set of points (vectors) given by

Greenetry: IR^n Line Segment joining $x_i \in R^n$ and $x_2 \in R^n$ is the set of points (vectors) given by $\begin{cases} x \mid x = hx_i + (1-h)x_2, 0 \le h \le 1 \end{cases}$.

Line joining x_i and x_2 is the set $\begin{cases} x \mid x = hx_i + (1-h)x_2, h \in R^n \end{cases}$. $\begin{cases} x \mid x = hx_i + (1-h)x_2, h \in R^n \end{cases}$. $\begin{cases} x \in R^n \text{ is a linear combination of } x_i, x_2, \dots x_m \in R^n \end{cases}$ If $\exists h_i \in R$ such that $x = \sum_{i=1}^m h_i x_i$ • Affine combination if $\sum_{i=1}^m h_{i-1} = 1$.

Convex combination if $b_i \ge 0$ to and $\sum_{i=1}^m h_{i-1} = 1$.

A set $S \subseteq \mathbb{R}^n$ is called a <u>convex set</u> if $x_1, x_2 \in S \Rightarrow \lambda x_1 + (1-\lambda)x_2 \in S + 0 \leq \lambda \leq 1$.

Griven a point $x_0 \in \mathbb{R}^n$ and a nonzero vector $d \in \mathbb{R}^n$, the set $\{x_0 + hd \mid h > o\}$ is called a ray in \mathbb{R}^n . Here, x_0 is the vertex of the ray, and d is the direction of the ray het $c \in \mathbb{R}$ and $a \in \mathbb{R}^n$, $a \neq 0$. Then the set $H = \{x \mid a^Tx = c\}$ is said to be a hyperplane in \mathbb{R}^n . The sets $H_+ = \{x \mid a^Tx > c\} \leftarrow positive half-space <math>H_- = \{x \mid a^Tx \leq c\} \leftarrow positive half-space are called closed half-spaces generated by <math>H$.

Let $b \in H$. Then $a^Tb-c=0$. We can write $a^Tx-c=(a^Tb-c)=a^T(x-b)=2a$, x-b>in, H consists of points x for which a and x-b are orthogonal. We call a the normal to the hyperplane H.

A linear variety is a set of the form $\begin{cases} x \in \mathbb{R}^n \mid Ax=b \end{cases} = \begin{cases} b+Ax \mid Ax=0 \ x \in \mathbb{R}^n \end{cases}$ for some matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.

If $dim \mathcal{N}(A)=r$, we say that the linear variety has dimension r.

Let $C \subseteq \mathbb{R}^{N}$, $D \subseteq \mathbb{R}^{N}$, $h \in \mathbb{R}$. Then $h = \{x \mid x = h \in C, c \in C\}$ $C \neq D = \{x \mid x = c \neq d, c \in C, d \in D\}$

Thm: Convex subsets of R" have tere following properties:

(i) The intersection of any collection of convex sets is convex

(ii) Df C in a convex set and it ER, then it c is a convex set.

(iii) Df C and D are convex sets, then CfD is a convex set.

Pf: Simple and exercise.

Thm: A set $S \subseteq \mathbb{R}^n$ is convex of and only if every convex combination of any finite number of points of S is contained in S.

Let $S \subseteq \mathbb{R}^n$ be a convex set. A point $x \in S$ is called an extreme point or vertex of S of there exist no two distinct points x, and x_2 in S s.t. $x = \lambda x$, $x \in (1-\lambda)x_2$ for $x \in \lambda < 1$.

