

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $30V,5.8A,R_{DS(ON).max}=26m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- Green device available

Applications

- PWM application
- Load switch
- Power management

Product Summary

 $\begin{array}{ll} V_{DSS} & 30V \\ R_{DS(on).max} @ V_{GS} {=} 10V & 26 m\Omega \\ I_D & 5.8 A \end{array}$

Pin Configuration

SOT-23-3

Schematic

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	30	V
Continuous drain current (T _A = 25°C)	l _D	5.8	А
Continuous drain current (T _A = 100°C)		3.7	A
Pulsed drain current ¹⁾	Ірм	23.2	А
Gate-Source voltage	V _{GSS}	±12	V
Power Dissipation (T _A = 25°C)	P _D	1.4	W
Storage Temperature Range	Тэтс	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	Reja	89	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM3400-S2	SOT-23-3	VSM3400-S2

Electrical	Characteristics	T ₁ = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics					•	
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	30			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	0.65	1.0	1.35	V
Drain-source leakage current	I _{DSS}	V _{DS} =30 V, V _{GS} =0 V, T _J = 25°C			1	μА
		V _{DS} =24 V, V _{GS} =0 V, T _J = 125°C			10	μА
Gate leakage current, Forward	I _{GSSF}	V _{GS} =12 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-12 V, V _{DS} =0 V			-100	nA
		V _{GS} =10 V, I _D =5.8 A		18	26	mΩ
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =4.5 V, I _D =5 A		20	32	mΩ
		Vgs=2.5V, Id=4A		31	52	mΩ
Forward transconductance	g _{fs}	V _{DS} =5 V , I _D =5.8A		30		S
Dynamic characteristics				•		
Input capacitance	C _{iss}			494		
Output capacitance	Coss	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		62.4		pF
Reverse transfer capacitance	C _{rss}	- F = 1MHz		53.7		
Gate resistance	Rg	V _{GS} =0V,V _{DS} =0V,f=1MHz		4.2		mΩ
Turn-on delay time	t _{d(on)}			7.6		
Rise time	t _r	V _{DD} = 15V,V _{GS} =10V, I _D =5.8 A,		113.2		ns
Turn-off delay time	t _{d(off)}	Rg=10Ω		44.4		
Fall time	t _f			13.6		
Gate charge characteristics						
Gate to source charge	Q _{gs}			3.3		
Gate to drain charge	Q _{gd}	V _{DS} =15V, I _D =5.8A, V _{GS} = 10V		2.1		nC
Gate charge total	Qg			13.6		
Drain-Source diode characteristic	s and Maxir	num Ratings				
Continuous Source Current	Is				5.8	А
Pulsed Source Current ²⁾	Ism]			23.2	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =5.8A, T _J =25℃			1.2	V

Notes:

^{1:} Repetitive Rating: Pulse width limited by maximum junction temperature.

^{2:} Pulse Test: Pulse Width ${\leqslant}300\mu s,$ Duty Cycle ${\leqslant}2\%.$

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature(°C)

Figure 8. Maximum Safe Operating Area

Figure 9. Normalized Maximum Transient Thermal Impedance (RthJA)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

