19. Constrained nonlinear least squares

Outline

Constrained nonlinear least squares

Penalty method

Augmented Lagrangian method

Nonlinear control example

Constrained nonlinear least squares

add equality constraints to nonlinear least squares problem:

minimize
$$f_1(x)^2 + \cdots + f_p(x)^2$$

subject to $g_1(x) = 0, \ldots, g_p(x) = 0$

- $f_i(x)$ is ith (scalar) residual; $g_i(x) = 0$ is ith (scalar) equality constraint
- with vector notation $f(x) = (f_1(x), \dots, f_m(x)), g(x) = (g_1(x), \dots, g_p(x))$

minimize
$$||f(x)||^2$$

subject to $g(x) = 0$

- ightharpoonup x is *feasible* if it satisfies the constraints g(x) = 0
- \hat{x} is a solution if it is feasible and $||f(x)||^2 \ge ||f(\hat{x})||^2$ for all feasible x
- problem is difficult to solve in general, but useful heuristics exist

Lagrange multipliers

the Lagrangian of the problem is the function

$$L(x,z) = ||f(x)||^2 + z_1 g_1(x) + \dots + z_p g_p(x)$$
$$= ||f(x)||^2 + g(x)^T z$$

- p-vector $z = (z_1, \dots, z_p)$ is vector of Lagrange multipliers
- method of Lagrange multipliers: if \hat{x} is a solution, then there exists \hat{z} with

$$\frac{\partial L}{\partial x_i}(\hat{x},\hat{z}) = 0, \quad i = 1,\dots,n. \qquad \frac{\partial L}{\partial z_i}(\hat{x},\hat{z}) = 0, \quad i = 1,\dots,p$$

(provided the gradients $\nabla g_1(\hat{x}), \ldots, \nabla g_p(\hat{x})$ are linearly independent)

• \hat{z} is called an *optimal Lagrange multiplier*

Optimality condition

gradient of Lagrangian with respect to x is

$$\nabla_{x} L(\hat{x}, \hat{z}) = 2Df(\hat{x})^{T} f(\hat{x}) + Dg(\hat{x})^{T} \hat{z}$$

gradient with respect to z is

$$\nabla_z L(\hat{x}, \hat{z}) = g(\hat{x})$$

• optimality condition: if \hat{x} is optimal, then there exists \hat{z} such that

$$2Df(\hat{x})^T f(\hat{x}) + Dg(\hat{x})^T \hat{z} = 0, \qquad g(\hat{x}) = 0$$

(provided the rows of $Dg(\hat{x})$ are linearly independent)

this condition is necessary for optimality but not sufficient

Constrained (linear) least squares

recall constrained least squares problem

minimize
$$||Ax - b||^2$$

subject to $Cx = d$

- ▶ a special case of the nonlinear problem with f(x) = Ax b, g(x) = Cx d
- apply general optimality condition:

$$2Df(\hat{x})^{T}f(\hat{x}) + Dg(\hat{x})^{T}\hat{z} = 2A^{T}(A\hat{x} - b) + C^{T}\hat{z} = 0, \qquad g(\hat{x}) = C\hat{x} - d = 0$$

these are the KKT equations

$$\begin{bmatrix} 2A^TA & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{z} \end{bmatrix} = \begin{bmatrix} 2A^Tb \\ d \end{bmatrix}$$

Outline

Constrained nonlinear least squares

Penalty method

Augmented Lagrangian method

Nonlinear control example

Penalty method

solve sequence of (unconstrained) nonlinear least squares problems

minimize
$$||f(x)||^2 + \mu ||g(x)||^2 = \left\| \begin{bmatrix} f(x) \\ \sqrt{\mu}g(x) \end{bmatrix} \right\|^2$$

- $ightharpoonup \mu$ is a positive *penalty parameter*
- instead of insisting on g(x) = 0 we assign a penalty to deviations from zero
- for increasing sequence $\mu^{(1)}$, $\mu^{(2)}$, ..., compute $x^{(k+1)}$ by minimizing

$$||f(x)||^2 + \mu^{(k)}||g(x)||^2$$

 $ightharpoonup x^{(k+1)}$ is computed by Levenberg–Marquardt algorithm started at $x^{(k)}$

Termination

recall optimality condition

$$2Df(\hat{x})^T f(\hat{x}) + Dg(\hat{x})^T \hat{z} = 0, \qquad g(\hat{x}) = 0$$

 \triangleright $x^{(k)}$ satisfies normal equations for linear least squares problem:

$$2Df(x^{(k)})^T f(x^{(k)}) + 2\mu^{(k-1)} Dg(x^{(k)})^T g(x^{(k)}) = 0$$

• if we define $z^{(k)} = 2\mu^{(k-1)}g(x^{(k)})$, this can be written as

$$2Df(x^{(k)})^T f(x^{(k)}) + Dg(x^{(k)})^T z^{(k)} = 0$$

- we see that $x^{(k)}$, $z^{(k)}$ satisfy first equation in optimality condition
- feasibility $g(x^{(k)}) = 0$ is only satisfied approximately for $\mu^{(k-1)}$ large enough
- penalty method is terminated when $||g(x^{(k)})||$ becomes sufficiently small

Example

$$f(x_1, x_2) = \begin{bmatrix} x_1 + \exp(-x_2) \\ x_1^2 + 2x_2 + 1 \end{bmatrix}, \qquad g(x_1, x_2) = x_1 + x_1^3 + x_2 + x_2^2$$

$$g(x_1, x_2) = x_1 + x_1^3 + x_2 + x_2^2$$

- ▶ solid: contour lines of $||f(x)||^2$
- dashed: contour lines of g(x)
- \hat{x} is solution

First six iterations

solid lines are contour lines of $||f(x)||^2 + \mu^{(k)}||g(x)||^2$

Convergence

- figure on the left shows residuals in optimality condition
- ▶ blue curve is norm of $g(x^{(k)})$
- red curve is norm of $2Df(x^{(k)})^T f(x^{(k)}) + Dg(x^{(k)})^T z^{(k)}$

Outline

Constrained nonlinear least squares

Penalty method

Augmented Lagrangian method

Nonlinear control example

Drawback of penalty method

- $\mu^{(k)}$ increases rapidly and must become large to drive g(x) to (near) zero
- for large $\mu^{(k)}$, nonlinear least squares subproblem becomes harder
- for large $\mu^{(k)}$, Levenberg–Marquardt method can take a large number of iterations, or fail

Augmented Lagrangian

the augmented Lagrangian for the constrained NLLS problem is

$$L_{\mu}(x,z) = L(x,z) + \mu ||g(x)||^{2}$$
$$= ||f(x)||^{2} + g(x)^{T}z + \mu ||g(x)||^{2}$$

- this is the Lagrangian L(x,z) augmented with a quadratic penalty
- $ightharpoonup \mu$ is a positive penalty parameter
- augmented Lagrangian is the Lagrangian of the equivalent problem

minimize
$$||f(x)||^2 + \mu ||g(x)||^2$$

subject to $g(x) = 0$

Minimizing augmented Lagrangian

equivalent expressions for augmented Lagrangian

$$L_{\mu}(x,z) = \|f(x)\|^{2} + g(x)^{T}z + \mu\|g(x)\|^{2}$$

$$= \|f(x)\|^{2} + \mu\|g(x) + \frac{1}{2\mu}z\|^{2} - \frac{1}{2\mu}\|z\|^{2}$$

$$= \left\| \left[\frac{f(x)}{\sqrt{\mu}g(x) + z/(2\sqrt{\mu})} \right] \right\|^{2} - \frac{1}{2\mu}\|z\|^{2}$$

• can be minimized over x (for fixed μ , z) by Levenberg–Marquardt method:

minimize
$$\left\| \begin{bmatrix} f(x) \\ \sqrt{\mu}g(x) + z/(2\sqrt{\mu}) \end{bmatrix} \right\|^2$$

Lagrange multiplier update

• minimizer \tilde{x} of augmented Lagrangian $L_{\mu}(x,z)$ satisfies

$$2Df(\tilde{x})^T f(\tilde{x}) + Dg(\tilde{x})^T (2\mu g(\tilde{x}) + z) = 0$$

• if we define $\tilde{z} = z + 2\mu g(\tilde{x})$ this can be written as

$$2Df(\tilde{x})^T f(\tilde{x}) + Dg(\tilde{x})^T \tilde{z} = 0$$

this is the first equation in the optimality conditions

$$2Df(\hat{x})^T f(\hat{x}) + Dg(\hat{x})^T \hat{z} = 0, \qquad g(\hat{x}) = 0$$

- shows that if $g(\tilde{x}) = 0$, then \tilde{x} is optimal
- if $g(\tilde{x})$ is not small, suggests \tilde{z} is a good update for z

Augmented Lagrangian algorithm

1. set $x^{(k+1)}$ to be the (approximate) minimizer of

$$||f(x)||^2 + \mu^{(k)}||g(x) + z^{(k)}/(2\mu^{(k)})||^2$$

using Levenberg–Marquardt algorithm, starting from initial point $x^{(k)}$

2. multiplier update:

$$z^{(k+1)} = z^{(k)} + 2\mu^{(k)}g(x^{(k+1)}).$$

3. penalty parameter update:

$$\mu^{(k+1)} = \mu^{(k)}$$
 if $\|g(x^{(k+1)})\| < 0.25 \|g(x^{(k)})\|$, $\mu^{(k+1)} = 2\mu^{(k)}$ otherwise

- iteration starts at $z^{(1)} = 0$, $\mu^{(1)} = 1$, some initial $x^{(1)}$
- \blacktriangleright μ is increased only when needed, more slowly than in penalty method
- ightharpoonup continues until $g(x^{(k)})$ is sufficiently small (or iteration limit is reached)

Example of slide 19.9

solid lines are contour lines of $L_{\mu^{(k)}}(x,z^{(k)})$

Convergence

- figure on the left shows residuals in optimality condition
- ▶ blue curve is norm of $g(x^{(k)})$
- red curve is norm of $2Df(x^{(k)})^T f(x^{(k)}) + Dg(x^{(k)})^T z^{(k)}$

Outline

Constrained nonlinear least squares

Penalty method

Augmented Lagrangian method

Nonlinear control example

Simple model of a car

$$\frac{dp_1}{dt} = s(t)\cos\theta(t)$$

$$\frac{dp_2}{dt} = s(t)\sin\theta(t)$$

$$\frac{d\theta}{dt} = \frac{s(t)}{L}\tan\phi(t)$$

- s(t) is speed of vehicle, $\phi(t)$ is steering angle
- p(t) is position, $\theta(t)$ is orientation

Discretized model

discretized model (for small time interval h):

$$p_1(t+h) \approx p_1(t) + hs(t)\cos(\theta(t))$$

 $p_2(t+h) \approx p_2(t) + hs(t)\sin(\theta(t))$
 $\theta(t+h) \approx \theta(t) + h\frac{s(t)}{L}\tan(\phi(t))$

- define input vector $u_k = (s(kh), \phi(kh))$
- define state vector $x_k = (p_1(kh), p_2(kh), \theta(kh))$
- discretized model is $x_{k+1} = f(x_k, u_k)$ with

$$f(x_k, u_k) = \begin{bmatrix} (x_k)_1 + h(u_k)_1 \cos((x_k)_3) \\ (x_k)_2 + h(u_k)_1 \sin((x_k)_3) \\ (x_k)_3 + h(u_k)_1 \tan((u_k)_2)/L \end{bmatrix}$$

Control problem

- move car from given initial to desired final position and orientation
- using a small and slowly varying input sequence
- this is a constrained nonlinear least squares problem:

minimize
$$\sum_{k=1}^{N} ||u_k||^2 + \gamma \sum_{k=1}^{N-1} ||u_{k+1} - u_k||^2$$
 subject to
$$x_2 = f(0, u_1)$$

$$x_{k+1} = f(x_k, u_k), \quad k = 2, \dots, N-1$$

$$x_{\text{final}} = f(x_N, u_N)$$

ightharpoonup variables are $u_1, \ldots, u_N, x_2, \ldots, x_N$

Four solution trajectories

Boyd & Vandenberghe

Inputs for four trajectories

Introduction to Applied Linear Algebra

Boyd & Vandenberghe