

UNIDAD 1

1. PRIMERA PARTE

- **Telemática:** Disciplina científica y tecnológica que surge de la evolución y fusión de la telecomunicación y de la informática. Consiste en el estudio, diseño, gestión y aplicación de las redes y servicios de comunicaciones, para el transporte, almacenamiento y procesado de cualquier tipo de información.
- **Transmisión:** Proceso por el que se transporta una señal de un lugar a otro.

Sistema de Comunicaciones

Se compone de los siguientes elementos:

- 1. Fuente o emisor
- 2. Transmisor
- 3. Sistema o línea de transmisión
- 4. Receptor
- 5. **Destino**

2. SEGUNDA PARTE

Estándar: conjunto de normas que cumplen los fabricantes al diseñar y construir el software y hardware de los sistemas de comunicación

Estándar de hecho : VHS, TCP/IP
Estándar de derecho: AENOR, ISO

IEEE (Institute of Electrical and Electronics Engineers)

3. TERCERA PARTE

- Líneas de transmisión
- Líneas punto a punto: Unen dos equipos de extremo a extremo
- Líneas multipunto: Unen más de dos equipos entre sí.
- Líneas **privadas**: Propiedad de quién las utiliza.
- Líneas **públicas**: Propiedad de alguna empresa de comunicaciones.

4. CUARTA PARTE

Circuito de datos: Conjunto del transmisor y receptor, junto con el sistema que permite enlazar los datos que se transmiten.

Sus elementos son:

- Equipo terminal de datos (ETD)
- Equipo terminal de circuito de datos (ETCD)
- Línea de un circuito de datos
- Enlace de datos

5.QUINTA PARTE

Señal **analógica**: puede tomar valores continuos en rango infinito

Señal **digital:** sólo puede tomar dos valores (0 y 1), lo cual la hace más exactas.

UNA VENTAJA Y UNA DESVENTAJA DE LA SEÑAL DIGITAL

• Permite la generación infinita de copias sin pérdidas de calidad. (VENTAJA)

• Una pequeña pérdida de información puede ocasionar que toda la información sea ilegible. (**DESVENTAJA**)

Transmisión en serie: Consiste en el envío de información de bit en bit a través de un único cable

Características:

- Velocidad de transmisión lenta y distancia muy grande
- **Transmisión paralela:** Transferencia de datos de forma simultánea.

Características:

- Velocidad de transmisión rápida y distancia corta.
- **Transmisión asíncrona:** Se da cuando emisor y receptor no están sincronizados.

UNA VENTAJA Y UNA DESVENTAJA DEL MODO ASÍNCRONO

- Bajo rendimiento de transmisión (**DESVENTAJA**)
- Permite el uso de equipamiento más económico y de tecnología menos sofisticada. (VENTAJA)
- Tipos de sincronismo
 - Sincronismo de bit
 - Sincronismo de carácter
 - Sincronismo de bloque
- **Transmisión síncrona:** Se da cuando los dos dispositivos terminales de la comunicación están sincronizados

UNA VENTAJA Y UNA DESVENTAJA DE MODO SÍNCRONO

- Mejor rendimiento de la transmisión (**VENTAJA**)
- Los equipamientos son de tecnología más completa y más costosa (**DESVENTAJA**)

6.SEXTA PARTE

- Comunicación **símplex**: La transmisión de datos tiene lugar en un único sentido, desde un emisor a un receptor.
- Comunicación **semidúplex o halfduplex**: Es el modo de transmisión en que se puede emitir en ambos sentidos, pero no simultáneamente.
- Comunicación **dúplex o fullduplex**: Es el modo de transmisión en que se puede emitir en ambos sentidos simultáneamente.

7. SÉPTIMA PARTE

- Redes de comunicaciones: conjunto de nodos o hosts y software conectados entre sí por medio de dispositivos físicos con la finalidad de compartir información
 - Equipos finales
 - Equipos intermedios
 - Elementos de interconexión
- **Redes dedicadas**: Sus líneas de comunicación son diseñadas e instaladas por el usuario o administrado
- **Redes compartidas**: Sus líneas de comunicación soportan información de diferentes usuarios

Topologias

- **Malla**: Es una interconexión total de todos los nodos, con la ventaja de que, si una ruta falla, se puede seleccionar otra alternativa.
- **Estrella**: Los equipos se conectarán a un nodo central. Si el nodo central falla, quedará inutilizada toda la red.
- **Bus**: Utiliza un único cable para conectar los equipos. Si falla algún enlace, todos los nodos quedan aislados
- **Anillo**: todos los nodos están conectados a una única vía con sus dos extremos unidos. Si falla algún enlace, la red deja de funcionar.
- **Irregular**: cada nodo debe estar conectado, como mínimo, por un enlace. Es la más utilizada en redes que ocupan zonas geográficas amplias.

Redes conmutadas: Un equipo origen (emisor) selecciona un equipo con el que quiere conectarse (receptor) y la red es la encargada de habilitar una vía de conexión entre los dos equipos.

Tres métodos:

- Conmutación de circuitos
- Conmutación de paquetes
- Conmutación de mensajes
- **Redes de difusión**: un equipo o nodo envía la información a todos los nodos y es el destinatario el encargado de seleccionar y captar esa información.
- **Subred o segmento de red**: Conjunto de estaciones que comparten el mismo medio de transmisión.
- **Red de área local** (LAN): Uno o varios segmentos de red conectados mediante dispositivos especiales.
- **Red de área metropolitana** (MAN): Está confinada dentro de una misma ciudad y se halla sujeta a regulaciones locales.
- **Red de área extensa** (WAN) y **redes globales**: Abarcan varias ciudades, regiones o países. Los enlaces WAN son ofrecidos generalmente por empresas de telecomunicaciones.

UNIDAD 2

1° PARTE

Arquitectura de red Características

Tolerancia a fallos

Una red tolerante a fallos es aquella que limita el impacto de un error de software o hardware y que además puede recuperarse de dicho error rápidamente.

Escalabilidad

Característica que permite el crecimiento de las redes sin repercutir en su funcionamiento.

Calidad del servicio

Para que suministre una buena calidad de servicio, crea prioridades.

Seguridad

Es la característica que más se está desarrollando actualmente, ya que es la que más preocupa a la sociedad actual, junto con la tolerancia a fallos.

Diseño

- Topología
- Método de acceso a la red
- Protocolos de comunicaciones
- Resolver una serie de problemas, como; Direccionamiento, acceso al medio,

fragmentación, entre otros

Funcionamiento

Dentro de una máquina:

- Cada nivel utiliza los servicios del nivel inferior.
- Un servicio se define como un conjunto de operaciones que una capa proporciona a la capa superior
- En el emisor la información viaja hacia abajo
- En el receptor la información viaja hacia arriba

Entre máquinas distintas:

- El nivel **n** de una máquina se comunica con el nivel **n** de la otra mediante un protocolo.
- Procesos del mismo son los procesos pares
- **Protocolo:** conjunto de reglas que regulan el formato y significado de los paquetes que intercambian

dos procesos pares

2°PARTE

Arquitectura TCP/IP

TCP/IP: conjunto de **protocolos organizados jerárquicament**e, con una función determinada y con cierta independencia entre sí. Son rápidos y fiables Características:

- Las aplicaciones son independientes de los dispositivos y medios de transmisión
- Permite conectar redes diferentes
- Cada paquete de información puede viajar por caminos distintos
- La comunicación es independiente de la topología.

Los niveles y sus protocolos

Nivel 4. Aplicación

- Proporciona la interfaz con el usuario y contiene los protocolos de alto nivel.
- Protocolos: DNS, etc.

Nivel 3. Transporte

- Se encarga de la segmentación de los datos en el origen, la ordenación de los paquetes y del control de errores.
- Protocolos: TCP, etc

Nivel 2. Internet

- La capa más importante de la arquitectura, permite el envío de paquetes.
- Protocolos: IP, etc.

Nivel 1. Acceso a red

- Utiliza los protocolos estándar de cada red.
- Protocolos:Ethernet, etc.

Encapsulamiento en TCP/IP

Encapsulamiento, cada nivel los datos recibidos de arriba y la cabecera propia se empaqueta y se entregan al nivel inferior.

Los paquetes de información se llama PDU (Unidad de Datos del

Protocolo) y es diferente en cada nivel => Establecen comunicación par-a-par.

3°PARTE

Modelo de referencia OSI

- Surge para resolver las carencias de la arquitectura TCP/IP.
- Actualmente no es una arquitectura de red
- Niveles 1, 2 y 3 => Soporte de red
- Nivel 4 => Transporte fiable
- Niveles 5, 6 y 7 => Soporte al usuario.

Nivel 7. Nivel de aplicación

- Permite al usuario y al sistema operativo el acceso a la red,
- Protocolos -> FTP, etc

Nivel 6. Nivel de presentación

- Se encarga de la sintaxis de la información intercambiada entre sistemas.

Nivel 5. Nivel de sesión

Se encarga de controlar el diálogo de la red

Nivel 4. Nivel de transporte

- Prepara los datos a enviar para su transporte a través de la red y procesa los datos de la red
- Protocolos -> TCP, etc.

Nivel 3. Nivel de red

- Se encarga de la entrega de un paquete
- Protocolos -> IP, etc

Nivel 2. Nivel de Enlace de datos

- Se encarga de la entrega de los datos de un equipo a otro

Nivel 1. Nivel Físico

- Se encarga de transmitir el flujo de bits a través del medio físico.
- Protocolos -> Wi-Fi

Encapsulación en el modelo OSI

- Proceso **Emisor** (Añadir cabeceras y datos)
- Proceso **Receptor** (Extraer cabeceras y datos)

4°PARTE

Comparativa del modelo OSI con TCP/IP

El modelo TCP/IP es más antiguo que el modelo OSI.

Mirar las equivalencias de níveles

Red de Área Local: sistema de transmisión de datos que permite la comunicación entre dispositivos a gran velocidad y compartir recursos.

Ventajas:

- Compartir recursos
- Mayor Fiabilidad
- Administración eficiente
- Flexibilidad: Los cambios en la situación física de los equipos no afectan.
- Automatización de tareas: Permiten realizar copias de seguridad, etc.

Inconvenientes:

- Pérdida de seguridad de los datos.
- Dispersión de los datos y recursos.
- Mayor dificultad de gestión y administración.

Proyecto IEEE 802

Comunican equipos de distintos fabricantes. Cubre los dos primeros niveles del modelo OSI y parte del tercer nivel.

Divide la capa de Enlace de datos en dos subniveles:

- Subnivel LLC (Control de Enlace Lógico)
- Subnivel MAC (Control de Acceso al Medio) -> Son específicos de cada red LAN.

Clasificación de los Estándares IEEE 802

1. Ethernet (IEEE 802.3):

Es una familia de redes LAN que define:

- Protocolos a nivel de enlace (subnivel MAC)
- Tecnologías a nivel físico
- Abarca el primer nivel del modelo OSI y el subnivel MAC

TENER EN CUENTA

Implementaciones

- Ethernet -> 10 Base5 (Cable grueso), 10Base2 (Cable fino) y 10BaseT (Cables de par trenzado UTP)
- Fast Ethernet -> 100BaseT4 (Usa cuatro pares de hilos trenzados UTP de categoría 3 o superior), 100BaseTX (Utiliza dos pares de hilos trenzados UTP o STP de categoría 5 o superior) y 100BaseFX (Utiliza un par de hilos de fibra óptica multimodo)
- Gigabit Ethernet -> 1000BaseT (Cuatro pares de hilos del cable)
- 10 Gigabit Ethernet -> (Sobre par trenzado con cables de categoría 6 o 7)

2. Token Bus

Utiliza el cable coaxial de televisión de 75 12.

3. Token Ring

• Método de acceso: paso de testigo

El testigo es una trama de control que circula alrededor del anillo

4. **FDDI**

Fibra óptica

5. **WLAN**

Red de área local inalámbrica que utiliza ondas de radio.

• Tipos de redes Wi-Fi

- **Red Ad hoc:** los equipos inalámbricos se conectan entre sí, sin punto de acceso.
- **Red de infraestructura:** el punto de acceso hace de puente entre la red cableada y la red inalámbrica.
- **Red bridge:** conectan redes LAN mediante un enlace inalámbrico.

• Seguridad en redes Wifi

- WEP proporciona seguridad a una red inalámbrica.
- Posteriores WPA2 y WPA3 (El más actual)