ABSTRACT

The invention relates to a protein which presents identical or different catalytically active domains of glycosyltransferases and has a processive action. In particular, the same protein is successively active in at least two successive process steps.

Tabl 1. ¹H-NMR data of peracetylated tetra- ($\underline{4}$), tri- ($\underline{3}$), and di-($\underline{2}$)glycosyldiacylglycerolipids isolated from *E. coli* BL21 (DE3) expressing *ypfP*. ß-Gentiobiose octaacetate ($\underline{1}$) serves as reference substance. Spectra were recorded at 600 MHz and 300K; signals are referenced to internal TMS (0.000 *ppm*).

Sugar	Chemical shift of proton								
	1	2	3	4	5	6a	6b		
	δ (ppm)								
Tetrasaccharide, <u>4</u>						·····			
A ß-D-Glc-(1→	4.502	4.931	5.148	5.011	3.658	4.059	4.211		
B →6)-ß-D-Gic-(1>	4.490	4.858	5.101	4.858	3.60*	3.56*	3.807		
C →6)-ß-D-Glc-(1→	4.480	4.880	5.117	4.858	3.60*	3.56*	3.855		
D →6)-ß-D-Glc-(1→Gro	4.412	4.845	5.117	4.875	3.60*	3.523	3.890		
Trisaccharide, <u>3</u>									
A ß-D-Glc-(1→	4.506	4.916	5.140	5.006	3.646	4.065	4.202		
B →6)-ß-D-Glc-(1→	4.462	4.866	5.095	4.857	3.60*	3.55*	3.811		
C →6)-ß-D-Glc-(1→Gro	4.417	4.871	5.117	4.848	3.59*	3.512	3.878		
Disaccharide, 2	4.500	4.040	F 404		2.020	4.056			
A	4.508	4.913	5.121	5.006	3.639	4.056	4.210		
B →6)-ß-D-Glc-(1→Gro	4.409	4.862	5.112	4.828	3.60*	3.538	3.802		
B-Gentiobiose octaacetate	. —	4.000	r 407	4.070	0.500	4.000	4.470		
A	4.465	4.902	5.107	4.976	3.586 3.708	4.038 3.496	4.176 3.845		
B →6)-ß-D-Glc-(1→	5.608	5.001	5.147	4.911	3.706	3.490	3.043		
Sugar	Coupling of	onstant J (Hz)	· · <u></u> .						
	J _{1,2}	J _{2,3}	J _{3,4}	J _{4,5}	J _{5,6a}	J _{6a,6b}	J _{6b,5}		
Tetrasaccharide, <u>4</u>									
A ß-D-Glc-(1→	7.8	9.5	9.6	9.7	2.0	12.2	5.2		
B →6)-ß-D-Glc-(1→	7.6	9.7	9.9	10.0	-	10.4	2.3		
C →6)-ß-D-Glc-(1→	7.6	10.0	9.9	10.0	-	10.9	2.5		
D →6)-ß-D-Glc-(1→Gro	8.0	9.8	9.9	9.8	4.6	10.4	2.1		
Trisaccharide, 3			• •		0.4	40.1	_		
A	7.9	9.5	9.6	9.7	2.4	12.1	4.9 2.2		
B →6)-ß-D-Glc-(1>	8.0	9.7	9.4	9.8	6.9	11.5	2.2		
C →6)-&-D-Glc-(1→Gro	8.0	10.0	9.5	9.7	•	11.5			
Disaccharide, 2						40.0	_		
A	8.0	9.3	9.6	9.7	2.1	12.3	4.8		
B →6)-ß-D-Glc-(1→Gro	7.9	9.9	9.5	10.0	6.8	10.8	2.0		
3-Gentiobiose octaacetate						40.0	-		
A	8.0	9.6	9.5	9.6	2.4	12.3	4.8		
B →6)-ß-D-Glc-(1→	8.2	9.6	9.5	9.7	2.4	11.4	5.7		

Other signals: 4, OAc 2.030,1.993 (2x),1.976 (2x), 1.969, 1.963, 1.959, 1.937, 1.932,1.917 (2x); -CH₂- 1.185, CH₃; -CH=CH-5.277. 3, OAc 2.208, 1.991, 1.974 (2x), 1.967, 1.955 (2x), 1.930, 1.927, 1.914, -CH₂- 1.185, -CH₃ 0.812, -CH=CH- 5.277. 2, OAc 2.025, 1.973 (2x), 1.958, 1.953, 1.928, 1.924, -CH₂- 1.185, -CH₃ 0.812, -CH=CH- 5.278. 1 OAc 2.028, 2.010, 1.992, 1.954, 1.943, 1.936, 1.920 (2x) ppm.

^{*} non resolved multiplets

Tabl 2. 600-MHz ¹H-NMR data of PL1_{Ac,Me} and PL2_{Ac,Me} and their diastereomers PL1'_{Ac,Me} and PL2'_{Ac,Me} (CDCl₃, 300K; internal TMS, δ_{H} = 0.000).

	PL2		PL2'		PL1		PL1'	
_	δ (ppm)	J (Hz)	δ (ppm)	J (Hz)	δ (ppm)	J (Hz)	_δ (ppm)	J (Hz)
→6)-ß-D-Gio	; ^B -(1→							
H-1	4.407	J _{1,2} 8.0	4.416	$J_{1',2'}$ 8.0				
H-2	4.856	$J_{2,3}$ 9.2	4.853	$J_{2',3}$ 9.2				
H-3	5.110	$J_{3,4}$ 9.6	5.113	$J_{3',4'}$ 9.6				
H-4	4.828	$J_{4,5}$ 9.5	4.816	$J_{4',5'}$ 9.5				
H-5	3.585	J _{5,6a} 6.8	3.598	$J_{5',6a}$ 6.3				
H-6a	3.530	J _{6a,6b} 11.2	3.519	$J_{6'a,6'b}$ 10.8				
H-6b	3.826	$J_{5,6b}$ 2.5	3.839	$J_{5',6'b}$ 2.5	•			
ß-D-Glc ^A -(1-	→							
H-1	4.531	$J_{1,2}$ 8.0	4.513	$J_{1',2'}$ 8.0	4.461	$J_{1,2}$ 7.9	4.4457	$J_{1',2'}$ 7.9
H-2	4.900	$J_{2,3}$ 9.4	4.989	$J_{2',3'}$ 9.4	4.904	$J_{2,3}$ 9.5		
H-3	5.125	$J_{3,4}$ 9.4	5.125	$J_{3',4'}$ 9.4	5.131	$J_{3,4}$ 9.6		
H-4	4.992	$J_{4,5}$ 9.8	4.973	$J_{4',5'}$ 9.8	5.002	$J_{4,5}$ 9.7		
H-5	3.655		3.647		3.643	$J_{5,6a}$ 2.6		
H-6a	4.01*		4.01*		4.068	$J_{6a,6b}$ 12.4		
H-6b	4.10*		4.10*		4.183	J _{5,6b} 4.9		
P→3)-Gro ¹								
H-1a	4.10*		4.10*		4.11*	$J_{1a,1b}$ 11.9 $J_{1a,2}$ 4.8	4.11*	J _{1'a,1b'} 12.4
H-1b	4.261	$J_{1b,2}$ 3.9	4.264	$J_{1'b,2'}$ 3.9	4.264	$J_{1b,2}$ 4.6	4.273	$J_{1'b,2'}$ 4.6
H-2	5.221	·	5.221		5.164	J _{2,3a} 4.9	5.164	
						$J_{2,3b}$ 5.3		
H-3a	4.07*	$J_{3a,3b}$ 12.0	4.07*	$J_{3'a,3'b}$ 12.1.	4.09*		4.09*	
H-3b	4.14*		4.14*		4.12*		4.11*	
P→1)-Gro ²								
H-1a	4.07*	$J_{1a,2}$ 12.2	4.07*		4.07*		4.06*	
H-1b	4.223	$J_{1b,2}$ 3.5	4.228	$J_{1'b,2'}$ 3.6	4.11*		4.11*	
H-2	5.11*		5.11*		5.082	$J_{2,3a}$ 4.9	5.082	$J_{2',3'a}$ 5.3
H-3°	3.554	$J_{3a,3b}$ 10.8	3.559	$J_{3'a,3'b}$ 10.4	3.668	$J_{3a,3b}$ 11.0	3.697	$J_{3'a,3b'}$ 11.0
H-3b	3.826	$J_{3b,2}$ 4.8	3.901	$J_{3',2'}$ 4.6	3.868		3.872	
Methyl phos	-							9
P-OCH ₃	3.720	$^{3}J_{P,H}$ 9.3	3.701	$^{3}J_{P,H}$ 9.2	3.711	³ J _{P,H} 11.1	3.692	³ Ј _{Р,Н} 11.2
Fatty acids					5 004			
-CH=CH-	5.277				5.28*			
-CH ₂ -CH=	1.943				1.940	2.000		
-CH ₂ - (α)		, 2.258			2.242, 2			
-CH ₂ - (ß)	1.538				1.536, 1			
-CH ₂ - (γ/ω-1) -CH ₃ (ω)		- 1.26 , 0.815 <i>J</i> 6	3		1.18 – 1 0.810, (3	
-Oi 13 (W)	5.011	, 5.5.5			0.010,		-	

Additional signals for OAc: 2.025, 2.018, 1.989, 1.954, 1.934 ppm in **PL1** and **PL1**';

^{1.975 (2}x), 1.972, 1.965, 1.927, 1.921 ppm in PL2 and PL2'; * non resolved multiplet.

Tabl 3. 90.6-MHz ¹³C-NMR data of **PL1**_{Ac,Me}, **PL2**_{Ac,Me}, MGlcD_{Ac}, and DGlcD_{Ac} (CDCl₃, 300K; internal CDCl₃, δ_{H} = 77.0).

	PL1		PL2 [§]	MGIcD [§]	DGIcD
•	δ (ppm)	J (Hz)	δ (ppm)	δ (ppm)	δ (ppm)
→6)-ቤ-D - Glc ^E	³-(1→				
C-1			101.1		100.7
C-2			71.1		71.1
C-3			72.6		72.6
C-4			69.0		69.1
C-5			73.4		73.3
C-6			68.0		68.1
-D-Glc ^A -(1→	•				
C-1	101.1		101.2	101.3	100.8
C-2	71.1		71.1	71.2	71.1
C-3	72.6		72.6	72.7	72.7
C-4	68.3		68.4	68.5	68.3
C-5	72.0		72.2	72.1	72.0
C-6	61.8		65.7	61.8	61.8
P→3)-Gro¹					
C-1	· 61.7		61.6		
C-2	69.4	³ J _{C,P} 6	69.3		
C-3	65.6	⁴ J _{C,P} ~6	65.8		
→1)-Gro²					
C-1	65.7	$^4J_{\rm C,P}\sim 6$	62.2	62.1	62.3
C-2	70.3	$^{3}J_{C,P}$ 7.6	69.5	69.7	69.6
C-3	67.1	·	67.5	67.8	67.5
-OCH₃	54,6, 54	4.5			
atty acids					
-CH=CH-	128.1		n.d.	n.d.	130.0
	127.8		n.d.	n.d.	129.9
	127.5		n.d.	n.d.	129.8
-CH ₂ -CH=	27.2		27.2	27.4	27.2
C-1	173.2, 1		n.d.	n.d.	173.3, 173.8
C-2	34.0, 3	4.1	34.0	34.4	34.2, 34.6
C-3	24.8		24.9	25.0	24.9
C-4C-13/16			29.929.1	30.429.0	29.929.1
C-(ω3)	31.8, 3		31.9	31.3	31.9
C-(ω2)	22.7, 2	2.0	22.7	19.8	20.6, 20.7
C-(ω1)	14.1		14.1	14.2	13.1

Additional signals for OAc in $PL1_{Ac,Me}$: COCH₃ at 170.6, 170.2, 169.9, 169.4, 169.2 ppm; COCH₃ at 20.8, 20.7, 20.6 (5x) ppm. § Values taken from HMQC experiments; n.d., not determined.