블로우 성형기 사용에 관한 기술지침

2016. 12

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 한성대학교 최 기흥 교수

ㅇ 개정자 : 한국산업안전보건공단 산업안전실

- o 제·개정 경과
 - 2009년 6월 기계안전분야 기준제정위원회 심의
 - 2012년 4월 기계안전분야 기준제정위원회 심의(개정)
 - 2015년 11월 기계안전분야 기준제정위원회 심의(개정)
 - 2016년 12월 기계안전분야 기준제정위원회 심의(개정)
- ㅇ 관련규격 및 자료
 - KOSHA GUIDE M-187-2016 「사출성형기 방호조치에 관한 기술지침」
 - PPIS-5: Safety at blow moulding machines (HSE)
- o 관련 법규·규칙·고시 등
 - 산업안전보건기준에 관한 규칙 제121조 (사출성형기 등의 방호장치)
- 0 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고 하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정 본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2016년 12월 27일

제 정 자 : 한국산업안전보건공단 이사장

블로우 성형기 사용에 관한 기술지침

1. 목 적

이 지침은 블로우 성형기 사용 시 발생하는 재해 원인 및 방호 등에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 블로우 성형기 작업에 적용한다.

3. 정 의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "블로우 성형기"라 함은 사출성형기의 일종으로 예비성형된 열가소성 또는 열 경화성 플라스틱 재료를 두개의 금형사이에 넣고 재가열과 동시에 노즐을 통해 고압가스를 블로우하여 원하는 모양의 제품을 성형·생산하는 기계를 말한다.
 - (나) "위험요인(Hazard)"이라 함은 위험을 일으킬 잠재적 가능성이 있는 것의 고유 한 특징이나 속성을 말한다
 - (다) "위험성(Risk)"이라 함은 위험요인이 부상으로 이어질 수 있는 가능성(빈도)과 중대성(강도)를 조합한 것을 의미한다.
 - (라) "가드"라 함은 기계·기구 및 설비의 안전을 확보하기 위한 기본적인 방호장치로서 기계설비의 외부로 노출되는 회전체, 구동부 및 동력전달장치 등의 돌출부 등 위험요인을 제거하기 위하여 설치하는 울이나 덮개 등을 말한다.

- (마) "고정식 가드(Fixed guard)"라 함은 움직일 수 없는 가드로서 블로우성형기에 견고하게 고정되어 공구를 사용치 않고는 제거 또는 개방할 수 없는 가드를 말한다.
- (바) "가동식 가드(Moving guard)"라 함은 미닫이 또는 여닫이 형태로 중력이나 수동 조작 등으로 확실하게 잠길 수 있는 가드로서 블로우 성형기에 견고하게 고정되어 공구를 사용치 않고는 제거 또는 개방할 수 없는 가드를 말한다.
- (사) "연동식 가드(Interlocking guard)"라 함은 가동식 가드가 연동장치와 조합된 가드를 말한다. 단, 가드가 닫혔을 때 기계의 작동이 초기화되는 방식을 의미하는 것은 아니다.
- (아) "동력식 가드(Power operated guard)"라 함은 중력이나 인력에 의하지 않고 동력으로 작동되는 가드를 말한다.
- (자) "연동장치(Interlocking device, 또는 interlock)"라 함은 기계, 전기 또는 기타 여러 작동방식으로 정해진 조건(일반적으로 가드가 닫혀있지 아니한 상태)에서 기계의 작동을 방지하기 위한 장치를 말한다.
- (차) "가동유지장치(Hold to run control device)"라 함은 수동으로 버튼을 누를 때에만 작동되고 버튼을 놓으면 자동으로 정지되는 조작 장치를 말한다.
- (차) "기능부여 장치(Enabling device)"라 함은 기동장치와 연결되어 사용되며 기동 전에 사전에 주어진 기능이 부여된 수동조작 장치를 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙,「산업 안전보건기준에 관한 규칙」및 고용노동부 고시에서 정하는 바에 따른다.

4. 사고 원인

다음의 <표 1>은 블로우 성형과 관련된 재해원인 및 건수를 정리한 것이다.

<표 1> 블로우 성형과 관련된 재해원인

구 분	건수	원인 및 이유	건수
금형 공구(Tool)	28	 (1) 금형 등의 조정(Setting)시 가드 밑으로 손을 넣음 (2) 조정하는 동안 가드를 제거함 (3) 연동 장치가 부적합하거나 유지 관 리가 미흡함 	10 5 3
배출부/컨베이어/스윙암	16	 (4) 기타 (1) 가드의 틈새를 통하여 배출된 제품을 수거할 수 있음 (2) 제품 수거를 위해 가드 기능이 해제됨 (3) 기타 	10 7 3 6
트리밍 구역	11	 (1) 가드 틈새 또는 하부로 수지 잔재물을 청소할 수 있음 (2) 연동장치가 부적합함 (3) 기타 	5 1 5
블로우 핀	5	(1) 부적합한 가드 틈새를 통해서 조정하 려고 함(2) 가드가 제거됨	3 2
금형이송 (압출부에서 블로우 부까지)	4	(1) 수동조작(Override key) 상태에서 조정작업 시 금형과 고정부 사이에 끼임 (2) 유압 또는 공압계통과의 연동이 이 루어지지 않음	2
예비성형 (Preform) 구역	2	(1) 금형 등을 조정하기 위하여 개방된 기기 상부로 접근함	2

스트리퍼 플레이트	1	(1) 스트리퍼 작동 시 끼임 발생. 비상 정지로 인해 공기 배출	2
기타 (압출기, 호퍼, 냉각팬)	3	(1) 다양함	3
세부 정보가 부족하여 분류하기 어려운 경우	7		7

※ 본 자료는 영국의 예임 (1986년~1996년 사이 HSE 감독관이 조사한 재해)

5. 재해예방 조치

블로우 성형기에 존재하는 위험요소에 대하여 <표 2>와 같이 안전조치 한다.

<표 2> 블로우 성형기의 안전조치

위험 요소	안전조치
금형가동구역	가동부의 동력원 (유압, 공기압 또는 전기)과 연동되는 가드를
내의 위험 ^{주1)}	설치하고 그 외 부분에는 견고한 고정식 가드를 설치한다.
	연동장치는 이중계통으로 설치하며 어느 한 계통에서 이상이 발
	생하더라도 위험 상황으로 이어지지 않도록 모니터링 한다.
기타 가동부 위	금형구역 내에서 가드장치에 의해 보호되지 않는 경우, 다음 방
헌 ^{주1)}	법을 적용 한다.
	(1) 고정식 가드를 설치하거나 작업자가 위험 구역에 접근하는
	것을 방지하기 위해 안전거리를 고려하여 가드를 설치한다.
	(2) 또는 단일 계통의 연동식 가드 설치 시에는 장치의 결함 발
	생을 모니터링하여 이상 발생 시에 작동을 중지시킨다.
	대형 기기 ^{주2)} 의 경우 모니터링이 가능하며 사람의 접근을 감지
	할 수 있는 안전장치를 설치한다. 예를 들면, (1) 압력 감응식 매트를 금형 사이에 설치하거나

- (2) 전자 감응식 안전장치 또는,
- (3) 금형가동 구역 밖에서만 해제가 가능한 기계식 잠금장치를 설치한다.

위와 같은 장치를 사용하여 새로이 기기를 기동하기 전에 다음 중 하나를 실행해야 한다.

- (1) 안전 장치의 재설정
- (2) 가드 닫음
- (3) 기능부여 장치(Enabling device)를 가동시켜 위험이 제거 되었음을 확인

재설정 및 기동 장치를 구동시키는 위치는 위험 구역을 명확히 살필 수 있는 위치여야 하며, 위험 구역에서 기동 장치를 구동 하는 것이 가능해서는 안 된다

비상정지장치는 금형 가동부 양쪽에 설치하여야 하며, 대형 로 터리 방식의 기기에서는 위험영역에 2m 이내 간격으로 설치하 여야 하다.

배출구역내의 금형구역 내에 적용된 안전장치에 의해 보호가 되지 않는다면 가동부 위험^{수1)} 다음을 추가하여 사용한다.

- (1) 고정식 가드를 설치하거나 작업자가 위험 구역에 접근하는 것을 방지하기 위해 안전거리를 고려하여 가드를 설치한다.
- (2) 또는, 연동된 제품배출장치를 설치하고, 장치의 결함 발생을 모니터링하여 이상 발생 시에 작동을 중지시킨다.
 - 이러한 제품배출장치에는 아래 사항을 포함한다.
 - (가) 단일 계통의 연동식 가드를 설치하되, 본 가드는 제품을 배출하는 경우에만 문이 밖으로 열리도록 하고 그 외에 는 연동식 가드로 기능한다.
 - (나) 또는, 두 계통의 전자감응식 안전장치를 설치하여 제품배 출 시 이외에는 접근을 방지하도록 한다.
 - (다) 또는, 기타 효과적인 수단, 예를 들어 배출장치 내에 압 력 감응식 매트를 설치하거나 스캐닝 장치를 설치한다.

동력식 가드	다음 중 하나의 안전장치를 설치한다 :
	(1) 가드가 닫히는 것을 차단하거나 방향을 전환시킬 수 있는 도어 에지센서를 설치(가드 양쪽에 설치함)한다.(2) 또는 감압형 닫힘장치를 설치한다.
	대형 기기 ^{주2)} 의 경우에 동력 부족상태에서 가드 닫힘과 관련되어 추가 설치되는 안전장치는 방호 영역 밖, 위험지역 조망이좋은 곳에 가동유지방식의 제어장치로 조작되어야 한다.
고온 표면에	80℃이상의 가열 부품은 가드나 단열재를 사용하여 뜻하지 않는
의한 화상	접촉으로부터 보호되어야 한다. 고온가열 부품이 어쩔 수 없이
	노출되는 부분(예, 금형)에는 경고 표지가 필요하다.

주1): 가동부 위험 예시: 금형 및 관련 구동 메커니즘, 절단 장치, 블로우 노즐 또는 치구, 타이로드, 냉각금형 및 관련 구동 메커니즘, 냉각 치구, 마감 부의 위험부품, 가열부의 예비성형 장치, 수지잔재물 제거장치, 사출장치 거동, 사출 유니트, 탈거장치 및 이송장치, 예비성형품 투입 장치 및 이송 메커니즘.

주2): '대형기기'는 가드와 기기 사이에 사람이 들어갈 수 있을 정도의 크기를 가진 기기이며, 제어반에서 기기의 전체를 볼 수가 없는 경우이다.

< 표 2>의 위험 요소가 모든 기기에 존재하는 것은 아니며, 일부 안전장치는 한 개이상의 위험요소로부터 보호할 수 있다. 예를 들면, 고정 가드와 함께 설치한 연동가드는 성형부, 절단부, 블로우 스테이션, 냉각부, 마감부 등에 대한 접근을 방호할수 있다. 이런 차원에서 보면, 가장 큰 위험성에 대해 필요한 방호기준이 전체 안전가드 장치에 적용되어야 한다.

6. 안전 점검

블로우 성형기에서 발생하는 재해의 약 50%는 안전장치가 부적합하거나 파손되어서 발생하며, 약 25%는 안전장치 기능을 무효화해서 발생한다. 다음은 안전을 유지하기 위해서 실행되어야 하는 최소한의 점검 조치이다. (추가적인 세부 사항은 제조자가 제공한 사용설명서를 참고한다).

6.1 운영 관련 점검 (권장 주기 : 매일 / 금형교체 후)

- (1) 모든 고정식 및 연동식 가드가 제 위치에 있으며 확실하게 작동하는지 여부
- (2) 모든 제어반 외함이 닫혀있고, 잠겨있으며, 키를 제거했는지 여부
- (3) 기기가 작동을 멈춘 상태에서 시험도구로 전자감응식 커튼센서를 감지시켰을 경 우 지시계가 상태 변경을 나타내는지 여부
- (4) 전원을 켜고 기기의 작동을 멈춘 상태에서 매트에 발을 올려놓는 경우에 압력감 응식 매트의 지시계가 작동하는지 여부

6.2 유지보수 점검 (권장 주기 : 월간)

- (1) 모든 고정식 가드가 고정되어 있으며 공구가 있어야만 이를 해체할 수 있는지 여부
- (2) 모든 연동 장치가 적절히 설치되어 있으며, 가드에 견고하게 부착되어 있는지 여부
- (3) 어떤 연동식 가드를 열더라도 해당 위험 부위들이 즉시 정지하는지 여부
- (4) 가드가 열리면서 바로 위험 부위가 정지할 수 있는지 여부
- (5) 동력식 가드의 경우, 도어 에지센서 또는 감압형 닫힘장치가 제대로 작동하는지 여부
- (6) 비상 정지 시스템의 정상작동 여부
- (7) 비상 정지 시스템을 가동한 후에 기기를 재설정하지 않고도 위험 부위를 가동시 키는 것이 가능한지 여부
- (8) 기계 구속 장치가 제대로 조정되고 작동되고 있는 지의 여부
- (9) 제어반 외함의 닫힘과 잠김, 키 제거 및 키 관리 담당자 유무 여부
- (10) 시험도구로 전자감응식 커튼센서를 감지시키거나 압력감응식 매트에 적절한 힘

KOSHA GUIDE

M - 7 - 2016

이 가해졌을 때 위험 부위의 움직임이 정지되는지 여부

- (11) 전자감응식 장치 또는 압력감응식 매트 전원이 제거되었을 때, 동력이 다시 공급되고 장치가 재설정 될 때까지 기기의 가동이 중지되고, 기기가 재가동되지 않는지 여부
- (12) 외관검사를 통해 전선 손상이나 손상 징후 여부
- (13) 고온표면 부품의 경우 (기기의 방호구역의 외부에 있는 온도 조절회로의 호스까지 포함하여) 고정식 가드 또는 단열재에 의해 충분히 보호되었는지 여부

6.3 설정(Setting) 시 안전 점검

기기 설정 중에 재해가 종종 발생하고 있으며 그 원인은 안전장치 가동이 수반되지 않았거나, 정상적이든지 비정상적이든지 연동식 가드 기능이 제거되거나 고정식 가드가 해체된 상태에서 작업이 이루어졌기 때문이다

설정 작업에서는 다양한 범주의 행위가 발생할 수 있음을 인식하여야 한다. 가능한 한 대부분의 설정작업이나 설정 후의 위험부위 가동 시에는 닫힌 가드 외부에서 조작이 이루어져야 한다.

기기의 전원을 차단한 상태에서 설정작업이 수행되기 곤란한 곳에서는 아래 사항을 기반으로 하는 문서화된 안전작업절차가 제시되어야 한다.

6.3.1 설정 (Setting)

- (1) 가드를 수동으로 조작할 수 있는 장치를 제공하되 키록(key-lock) 스위치를 통해서 그 사용을 엄격하게 제한하여야 한다.
- (2) 가드 수동조작이 선택되었을 때에는, 위험한 기기 가동은 자동적으로 가동유지 또는 촌동(인칭) 방식과 같은 안전모드에서만 가동되도록 제한되어야 한다.
- (3) 위험구역 내에서 휴대할 수 있는 이동식 제어장치의 경우에는 추가적으로 제어 장치에 비상정지장치를 설치하여야 한다. 비상정지장치는 설정 작업과 관계되는 위험한 가동상황 전체에 대해 정지시킬 수 있어야 한다.
- (4) 이동식 제어장치에 추가적인 안전장치가 설치되지 않았다면 작업자가 위험 구역을 명확히 조망할 수 있는 위치에 제어장치를 고정시켜야 한다.

- (5) 추가적인 안전장치는 키록(key-lock) 스위치가 설정에 위치했을 경우에만 조작할 수 있으며 키는 제거되어야 한다.
- (6) 설정 속도는 25 mm/s를 초과해서는 안 된다.
- (7) 아래로 떨어진 부품이 위험을 야기할 것으로 판단되면, 기계적인 구속 장치가 작동되어야 한다.

6.3.2 설정 후

기기를 작업자에게 인계하기 전에 가드 연동 부분에 대해 최종적으로 점검 하고 제대로 작동하고 있는지 확인한다.