Complexité CM7

Antonio E. Porreca

aeporreca.org

Précédemment dans Complexité...

Proposition 2-AO (p. 56) Caractérisation existentielle de NP

Les deux conditions suivantes sont équivalentes :

- Le langage L est reconnu en temps polynomiale par une machine de Turing non déterministe N
- Il existe une machine de Turing déterministe M qui fonctionne en temps polynomial et un polynôme p(n) tels que

$$x \in L$$
 ssi $\exists y \in \{0,1\}^{p(n)} M(x,y)$ accepte

Le mot y qui justifient l'appartenance de x à L est appelé preuve ou certificat

P vs NP

- P est la classe des problèmes faciles à résoudre (de façon déterministe)
- NP est la classe des problèmes avec des solutions faciles à vérifier (de façon déterministe)
- Facile à résoudre implique facile à vérifier, donc $P \subseteq NP$
- On pense que facile à vérifier n'implique nécessairement pas facile à résoudre, donc $P \neq NP$
- Mais ça reste un problème ouvert, d'ou le 1000000 \$

Réductions, ou comment classer les problèmes par difficulté

Ordre de difficulté des problèmes

- On veut classer les problèmes (et pas les algorithmes !) en ordre de difficulté
- C'est quoi la difficulté ?
- On voudrait que ce soit liée de quelque façon au temps de calcul

Ordre de difficulté des problèmes

- Par exemple, $L_1 \leq L_2$ si le meilleur algorithme (ou machine de Turing) pour L_1 est plus rapide du meilleur algorithme pour L_2
- Problème : souvent on ne sait pas quel est le meilleur algorithme pour un problème !

Alternative : réductions

- On dit que L_1 est plus facile (ou de la même difficulté) que L_2 si on peut reconnaitre facilement L_1 quand on a un moyen de reconnaitre L_2
- Si c'est le cas, résoudre L_2 nous permet de résoudre L_1 , donc L_1 n'est pas plus difficile que L_2
- Dit autrement, pour résoudre L_1 on se ramène à L_2 ...
- ...ou, plus formellement, L_1 se réduit à L_2

Définition 3-A (p. 64) Réductions (many-one) polynomiales

• Une réduction (many-one) en temps polynomial d'un problème L_1 (sur l'alphabet Σ_1) à un problème L_2 (sur l'alphabet Σ_2) est une fonction $f\colon \Sigma_1^\star\to \Sigma_2^\star$ calculable en temps polynomial déterministe telle que

$$\forall x \in \Sigma_1^* \quad x \in L_1 \iff f(x) \in L_2$$

• Si une telle f existe, on dit que L_1 se réduit à L_2 (via f) et on notera $L_1 \leq_{\rm m}^{\rm P} L_2$ (ou parfois, en bref, $L_1 \leq L_2$)

Exemple 3-I (p. 66) Une réduction

Problème CLIQUE

- Entrée : un graphe non orienté G et un entier k
- Question : G a-t-il une clique de taille k ?

Problème ENSEMBLE-INDÉPENDANT

- Entrée : un graphe non orienté G et un entier k
- Question : existe-t-il un ensemble de k sommets indépendants dans G, c'est-à-dire tous non reliés deux à deux ?

$$G = (V, E)$$

$$G = (V, E)$$

$$G = (V, E)$$

$$G = (V, E)$$

$$G = (V, E)$$

$$G = (V, E)$$

$$G = (V, E)$$

$$\overline{G} = (V, V^2 - E)$$

$$G = (V, E)$$

$$\overline{G} = (V, V^2 - E)$$

a une clique de taille k

$$G = (V, E)$$

$$\overline{G} = (V, V^2 - E)$$

a une clique de taille $k \iff$ a un ens. indép. de taille k

$$G = (V, E)$$

$$\overline{G} = (V, V^2 - E)$$

a une clique de taille $k \iff$ a un ens. indép. de taille k

- Supposons que CLIQUE et ENS-INDÉP sont définis sur le même alphabet Σ (raisonnable, c'est toujours des graphes !)
- La fonction $f \colon \Sigma^{\star} \to \Sigma^{\star}$ définie par $f(V, E, k) = (V, V^2 E, k)$ est calculable en temps polynomial
- (V,E) a une clique de taille k ssi f(V,E,k) a un ensemble indépendant de taille k
- Donc $(V, E, k) \in CLIQUE iff f(V, E, k) \in ENS-INDÉP$

Mais aussi ENS-INDÉP ≤ CLIQUE!

- On utilise la même fonction $f: \Sigma^* \to \Sigma^*$ définie par $f(V, E, k) = (V, V^2 E, k)$, toujours calculable en temps polynomial*
- (V, E) a un ensemble indépendant de taille k ssi f(V, E, k) a une clique de taille k
- Donc $(V, E, k) \in \text{ENS-IND\'EP} \text{ iff } f(V, E, k) \in \text{CLIQUE}$

^{*} C'est un cas exceptionnel! Normalement il faut changer de fonction

Lemme 3-G (p. 66) $\leq_{\rm m}^{\rm P}$ (pré-)ordonne les langages

- \leq est réflexive : $L_1 \leq L_1$ via l'identité $f \colon \Sigma_1^\star \to \Sigma_1^\star$, qui évidemment est calculable en temps polynomial
- \leq est transitive : soit $L_1 \leq L_2$ via $f \colon \Sigma_1^\star \to \Sigma_2^\star$ et $L_2 \leq L_3$ via $g \colon \Sigma_2^\star \to \Sigma_3^\star$
- alors $x \in L_1 \iff f(x) \in L_2 \text{ et } f(x) \in L_2 \iff g(f(x)) \in L_3$, donc $x \in L_1 \iff g(f(x)) \in L_3$
- si f est calculable en temps polynomial p(n) alors $|f(x)| \le p(|x|) = p(n)$
- si g est calculable en temps polynomial q(n), alors la fonction composée $g \circ f$ est calculable en temps polynomial O(p(n) + q(p(n)))

Définition 3-H (p. 66) Problèmes equivalents

- Si $L_1 \leq_{\rm m}^{\bf P} L_2$ et $L_2 \leq_{\rm m}^{\bf P} L_1$ alors on écrit $L_1 \equiv_{\rm m}^{\bf P} L_2$ (parfois, en bref, $L_1 \equiv L_2$)
- On dit que les problèmes L_1 et L_2 sont equivalents pour les reductions (many-one) polynomiales
- Par exemple, on a toujours $L_1 \equiv L_1$

 \mathcal{X}

$$M_f$$
 $f(x)$ M_2

oui

oui

non

$$\forall x \in \Sigma_1^* \quad x \in L_1 \iff f(x) \in L_2$$

Proposition 3-C (p. 64) Pest close pour ≤

Si $L_2 \in \mathbf{P}$ et $L_1 \le L_2$, alors $L_1 \in \mathbf{P}$

- Soit f la fonction de réduction de L_1 à L_2 en temps polynomial p(n), et soit M_2 une machine déterministe qui reconnaît L_2 en temps polynomial q(n)
- Alors le suivant est un algorithme déterministe pour L_1 : calculer y=f(x) et retourner le résultat de $M_2(y)$
- Ça prend temps p(n) pour calculer f et q(p(n)) pour simuler M_2 sur y=f(x), donc temps polynomial, donc $L_1 \in \mathbf{P}$

Proposition 3-C (p. 64) P est close pour ≤

Ça veut dire que que si L_2 est efficacement resoluble et $L_1 \leq L_2$, c'est-à-dire que L_1 est plus simple que L_2 , alors L_1 est aussi efficacement resoluble, conformément à l'intuition

Proposition 3-C (p. 64) NP est close pour ≤

Si $L_2 \in \mathbb{NP}$ et $L_1 \leq L_2$, alors $L_1 \in \mathbb{NP}$

- Soit f la fonction de réduction de L_1 à L_2 en temps polynomial p(n), et soit M_2 une machine non déterministe qui reconnaît L_2 en temps polynomial q(n)
- Alors le suivant est un algorithme non déterministe pour L_1 : calculer y=f(x) et retourner le résultat de $M_2(y)$
- Ça prend temps p(n) pour calculer f et q(p(n)) pour simuler M_2 sur y = f(x), donc temps polynomial, donc $L_1 \in \mathbb{NP}$

Proposition 3-C (p. 64) NP est close pour ≤

Ça veut dire que que si L_2 est efficacement verifiable et $L_1 \leq L_2$, c'est-à-dire que L_1 est plus simple que L_2 , alors L_1 est aussi efficacement verifiable, conformément à l'intuition

ENS-INDÉP = CLIQUE

- On sait que CLIQUE \in **NP** (exercice du TD)
- Puisque ENS-INDÉP ≤ CLIQUE, on a ENS-INDÉP ∈ NP, parce que NP est clos pour ≤
- Si on découvrait que CLIQUE $\in \mathbf{P}$, on aurait aussi ENS-INDÉP $\in \mathbf{P}$, parce que \mathbf{P} est aussi clos par \leq
- Même chose si on découvrait que ENS-INDÉP $\in \mathbf{P}$: ça impliquerait CLIQUE $\in \mathbf{P}$

Complétude, ou les problèmes les plus difficiles du monde

Definition 3-J (p. 67) Difficulté et complétude

Soit L un problème et $\mathscr C$ une classe de complexité

- On dit que L est $\mathscr C$ -difficile (ou $\mathscr C$ -dur) si pour tout problème $L' \in \mathscr C$ on a $L' \le L$
- On dit que L est $\mathscr C$ -complet s'il est $\mathscr C$ -difficile et en plus on a $L \in \mathscr C$

Difficulté et complétude

- Les definitions sont très fortes : il faut que tous les problèmes de $\mathscr C$ se réduisent à L !
- À priori c'est n'est même pas évident qu'il existent des problèmes durs ou complets pour une classe...

P a (beaucoup de) problèmes complets

- Tout problème $L \in \mathbf{P}$ non trivial (c'est-à-dire, $L \neq \emptyset$ et $L \neq \Sigma^{\star}$) est \mathbf{P} -complet pour les reductions en temps polynomial
- Ça veut dire que cette notion de complétude n'est pas très intéressant pour ${f P}_{\cdots}$

Demonstration

- Soit $L \in \mathbf{P}$ avec $L \neq \emptyset$ et $L \neq \Sigma^*$
- Alors il existe $a \in L$ et aussi $b \notin L$

• Soit
$$L' \in \mathbf{P}$$
 et soit $f(x) = \begin{cases} a & \text{si } x \in L' \\ b & \text{si } x \notin L' \end{cases}$

- Comme $L' \in \mathbf{P}$, la fonction f est calculable en temps polynomial déterministe
- Mais aussi $f(x) = a \in L$ ssi $x \in L'$, donc $L' \leq L$

Il existe bien des problèmes NP-complets,

ou : on est pas là pour perdre notre temps

Proposition 3-M (p. 68) La prédiction est NP-complète

Le problème suivant est NP-complet :

- $A \in \mathbb{NP}$ parce qu'on peut simuler N(x) avec une machine de Turing universelle non déterministe
- Pour tout $B \in \mathbf{NP}$, on a $B \leq A$ parce qu'on peut prévoir le résultat de la machine N_B qui reconnaît B
 - Le problème A est, justement, la prédiction du résultat d'une TM non déterministe

Démonstration : $A \in NP$

- ullet Soit U une machine universelle non déterministe efficace
- Voilà un algorithme pour décider si $(\langle N \rangle, x, 1^t) \in A$:
 - Simuler N(x) pendant t étapes en exécutant $U(\langle N \rangle, x)$
 - Si $U(\langle N \rangle, x)$ accepte en $\leq t$ étapes, accepter
 - Si elle rejette ou elle n'a pas terminé en t étapes, rejeter
- Comme U simule N en temps polynomial, cet algorithme fonctionne aussi en temps polynomial

Démonstration : $\forall B \in \mathbf{NP}, B \leq A$

- Soit $B \in \mathbf{NP}$ et soit N_B une machine non déterministe qui reconnait B en temps polynomial p(n)
- Donc on connaît N_B et son temps de calcul p(n), puisque c'est nécessaire pour prouver que $B \in \mathbb{NP}$
- Voilà la réduction : $f(x) = (\langle N_B \rangle, x, 1^{p(|x|)})$
- $x \in B$ ssi $N_B(x)$ accepte en temps $\leq p(|x|)$ ssi $f(x) \in A$
- f est calculable en temps polynomial

f est calculable en temps polynomial, par exemple si N_B fonctionne en temps $p(n) = n^3 - 3n + 7$

```
fonction f(x)
      n := |x|
      écrire "(" sur le ruban de sortie
                                                                       O(1)
      écrire le code \langle N_B \rangle sur le ruban de sortie
      écrire "," sur le ruban de sortie
                                                                    O(n)
      écrire x sur le ruban de sortie
                                                                    O(1)
      écrire "," sur le ruban de sortie
      pour i := 1 à n faire
            pour j := 1 à n faire
                                                                                           O(p(n))
                  pour k := 1 à n faire
                        écrire 1 sur le ruban de travail
      pour i := 1 à 3 faire
            pour j := 1 à n faire
                  effacer 1 du ruban de travail
      pour i := 1 à 7 faire
            écrire 1 sur le ruban de travail
                                                                    O(p(n))
      copier le ruban de travail sur le ruban de sortie
      écrire ")" sur le ruban de sortie
                                                                    O(1)
fin
```

! Remarque!

- Ouais, on est bien d'accord, ce n'est pas un problème très interessant...
- C'est un problème ad-hoc calqué sur la definition de NP
- La NP-complétude devient pertinente lorsqu'elle concerne des problems naturels
- On verra qu'il y en a plein de naturels!

Les problèmes NP-complets, ou entrons enfin dans le vif du sujet

Proposition 3-P (p. 69) NP-complétude : tout ou rien

Les affirmations suivantes sont équivalentes :

- 1. P = NP
- 2. tout problème NP-complet est dans P
- 3. il existe un problème NP-complet dans P

Démonstration

- Si P = NP (1), alors en particulier $NP \subseteq P$, donc tout problème NP-complet est dans P (2)
- Si tout problème NP-complet est dans P (2),
 vu qu'il existe au moins un problème NP-complet,
 alors il existe un problème NP-complet dans P (3)
- S'il existe un problème NP-complet A dans P (3), alors on peut le résoudre en temps polynomial. Mais comme B ≤ A pour tout B ∈ NP, alors B ∈ P aussi, donc NP ⊆ P, donc P = NP (1)

Proposition 3-W (p. 76) NP-complétude par réduction

- Soit C un problème \mathbf{NP} -complet et $A \in \mathbf{NP}$
- Si $C \leq A$ alors A est aussi NP-complet

Démonstration

- Soit $B \in \mathbf{NP}$ n'importe quel problème dans \mathbf{NP}
- Comme C est \mathbf{NP} -complet, on a $B \leq C$
- Si $C \leq A$, alors $B \leq A$ aussi par transitivité de \leq
- Ça vaut pour tout $B \in \mathbf{NP}$, donc A est \mathbf{NP} -difficile
- Et comme $A \in \mathbf{NP}$ aussi, il est \mathbf{NP} -complet

! Remarque!

- On vient d'utiliser la notion de réduction $C \leq A$, qui montre qu'un peut résoudre C efficacement si on a une solution efficace pour A...
- ...d'une façon perverse, pour montrer que A n'a pas de solution efficace*!
- Autrement dit, si C est difficile est A est au moins aussi difficile que C, alors A est difficile aussi