Problem Set 1 - Solutions

Due January 31, 2002.

1. Prove by induction that for any natural number n, $n^3 + (n+1)^3 + (n+2)^3$ is divisible by 9.

Proof:

The proof is in two parts: the basis and the inductive step; we prove each in turn.

BASIS: If n = 0, $n^3 + (n+1)^3 + (n+2)^3 = 0 + 1 + 8 = 9$, which is divisible by 9. Thus, it is true when n=0.

INDUCTION: Now, suppose it is true for some $n \ge 0$. We need to show that it is true for n+1. We have:

$$(n+1)^3 + (n+2)^3 + (n+3)^3 = (n+1)^3 + (n+2)^3 + (n+3)(n^2 + 6n + 9)$$

$$= (n+1)^3 + (n+2)^3 + n^3 + 9n^2 + 36n + 27$$

$$= n^3 + (n+1)^3 + (n+2)^3 + 9(n^2 + 4n + 3)$$

Since $9|n^3 + (n+1)^3 + (n+2)^3$ (by assumption) and $9|9(n^2 + 4n + 3)$, we know that it is true for n+1.

From the basis and the inductive step, we know that $n^3 + (n+1)^3 + (n+2)^3$ is true for any natural number n.

2. Find all of the solutions to the equation $x^2 + 1 = y^2$ over the integers. Prove that there are no other solutions. (The phrase "over the integers" means that x and y are only allowed to take integer values.)

Approach1:

$$x^{2} + 1 = y^{2} \Rightarrow (y + x)(y - x) = 1$$

Because, x and y are integers, y+x and y-x are also integers. Observe that y+x and y-x cannot be zero. So we have:

$$|y+x| \ge 1$$

$$|y - x| > 1$$

However, both of |y + x| and |y - x| cannot be greater than 1, otherwise, either the product is greater than 1 or one of them is not an integer. Thus, we know:

$$|y + x| = 1$$

$$|y-x|=1$$

To ensure (y + x)(y - x) = 1, two cases arise:

Case 1:

$$y + x = 1$$

$$y - x = 1$$

We have the solution (x, y) = (0, 1).

Case 2:

$$y + x = -1$$

$$y - x = -1$$

We have the solution (x, y) = (0, -1).

Based on our deduction, they are the only solutions.

Approach2:

$$x^2 + 1 = y^2 \Rightarrow x^2 < y^2$$

Therefore, |y| must be greater than |x|. Let $|y| = |x| + d, d \ge 1$. We have:

$$x^2 + 1 = x^2 + 2|x|d + d^2$$

$$\Rightarrow 1 = 2|x|d + d^2 > d^2(|x|d > 0) \Rightarrow |d| < 1 \Rightarrow d = 0, 1$$

We can discuss from two cases:

Case 1:

$$d=0 \Rightarrow 2|x|d+d^2=0 \neq 1 \Rightarrow$$
 No solution

Case 2:

$$d = 1 \Rightarrow 2|x|d + d^2 = 2|x| + 1 = 1 \Rightarrow x = 0 \Rightarrow y = 1, -1$$

So the only solutions are (0, 1) and (0, -1).

3. Let w be a string in $\{0,1\}^*$. How many ways are there to write w as xy, where x and y are also strings in $\{0,1\}^*$?

Let |w| = n. To write w as xy, x must be a prefix of w. For each possible x, y can be derived accordingly. Since there are totally n+1 prefixes of w (including ϵ), w can be written as xy in |w|+1 ways.

4. (a) Let L_1 and L_2 be two finite languages over the alphabet $\{0,1\}$. Define $L_1 \circ L_2 = \{xy | x \in L_1, y \in L_2\}$. Prove an upper bound on the size of $L_1 \circ L_2$ in terms of $|L_1|$ and $|L_2|$ and show that your upper bound cannot be improved.

Proof:

From the definition of $L_1 \circ L_2$, we know that for each $x \in L_1$, if we take any string $y \in L_2$, xy will be in $L_1 \circ L_2$. So for each $x \in L_1$, we can obtain $|L_2|$ strings belonging to $L_1 \circ L_2$. There are totally $|L_1|$ possible x's. Therefore, totally, we can obtain $|L_1| \times |L_2|$ strings belonging to $L_1 \circ L_2$. Notice that we have not missed any strings of $L_1 \circ L_2$. As a result, $|L_1 \circ L_2| \leq |L_1 \times |L_2|$.

If there is no duplication among those obtained $|L_1| \times |L_2|$ strings, the size of $L_1 \circ L_2$ will be equal to the upper bound. For example, if $L_1 = L_2 = \{0,1\}$, $L_1 \circ L_2 = \{00,01,11,11\}$, whose size is $4 (= |L_1| \times |L_2|)$. So the upper bound cannot be improved.

(b) Show, also, that there is a pair of languages A and B so that $|A \circ B|$ is strictly less than the upper bound you have established.

Let $A=\{0,01\}, B=\{10,0\}.$ Then $A\circ B=\{010,00,0110\}.$ Obviously, $|A\circ B|=3<4=|A|\times |B|.$