UNCLASSIFIED AD 427128

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

MOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

PAGES ARE MISSING IN ORIGINAL DOCUMENT

ASD-TDR-63-585 VOLUME II

427

ALL MO.

MECHANICAL PROPERTIES OF WROUGHT TUNGSTEN

TECHNICAL DOCUMENTARY REPORT No. ASD-TDR-63-585, VOL. II

NOVEMBER 1963

AF MATERIALS LABORATORY
RESEARCH AND TECHNOLOGY DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO:

Project No. 7381, Task No. 738103

and the second s

(Prepared under Contract No. AF 33(616)-7385 by The Marquardt Corporation, Van Nuys, California; C. A. Drury, R. C. Kay, A. Bennett & M. J. Albom, Authors)

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Defense Documentation Center (DDC), (formerly ASTIA), Cameron Station, Bldg. 5, 5010 Duke Street, Alexandria 4, Virginia.

This report has been released to the Office of Technical Services, U.S. Department of Commerce, Washington 25, D.C., in stock quantities for sale to the general public.

Copies of this report should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

FOREWORD

This report was prepared by the Materials Research and Development
Laboratory of the Materials and Processes Section of The Marquardt Corporation,
Van Nuys, California, under USAF Contract No. AF33(616)-7385. The contract
was initiated under Project No. 7381, "Materials Applications", Task No. 738103,
"Data Collection and Correlation". All work was administered under the direction
of the AF Materials Laboratory, Research and Technology Division, with Mr. C.
L. Harmsworth as project engineer. The program was conducted under subcontract
from the Hughes Tool Company, Culver City, California.

This report covers work performed between April 1962 and April 1963.

ABSTRACT

Tensile and creep properties to 5000°F were determined for wrought. unalloyed tungsten sheet in order to establish design criteria. Three lobof material, prepared in accordance to the same specification, were used.

Hardness and tensile values below 2500°F could be correlated for entire lots of material. Correlation was found at strain rate and hold time: versus tensile strength properties or elongation values, at certain tempera-

Properties varied with powder lot to such an extent as to affect design parameters.

This technical documentary report has been reviewed and is approved.

D. A. Shinn, Chief Materials Information Branch Materials Application Division

AF Materials Laboratory

TABLE OF CONTENTS

		Pag	e											
I.	Int	croduction												
	Α.	Objectives												
II.	Ext	perimental Technique												
	Α.	Material												
	В.	Test Specimens												
		1. Geometry												
	c.	Test Equipment												
		1. Marquardt Elevated Temperature												
		Test Machine (TM-1)												
	D.	Test Procedures												
		1. Hardness												
		2. Creep-Rupture Tests												
		3. Tensile Test												
		4. Temperature Measurement												
		5. Protective Atmosphere												
III.	Res	ults												
	۸.	Hardness	,											
	В.	Creep												
	c.	Tensile Tests												
	D.	Chemical Composition												
IV	Dis	cussion												
	٨.	Hardness												
		1. Hardness												
		2. Hardness versus Tensile												
	в.	Creep Tests												
	C.	Tensile Tests												
		1. Tensile Tests - Effect of Strain Rate on												
		Strength and Elongation												
		2. Tensile Tests - Effect of Hold Time on Strength and Elongation												
		3. Tensile Tests - Effect of Powder Lot on												
		Strength and Elongation	,											

TABLE OF CONTENTS (CONT'D)

												٠													Page
v .	. Con	clus	ions			•					•		•	•	•	•	•	•	•	•	٠	•	•	•	11
	Α.	Har	dness	s							•		•	•	•	•	•	•	•	•	•	•	•	•	11
		1.	Hard	ines	រន	ve:	rsu	9]	Pen	o i	l.e	•	•	•	•	•	•	•	•	•	•	•		•	11
	В.	Cre	op.	• •		•	•	• •		•	•	•	•	•	•	•	•	•	•		•	•	•	•	12
	c.	Ten	sile	Tes	sts	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•		•	12
		-•	Tens on S	stro	aug	th	an	d I	Elo	nga	ati	lor	n.	•	•	•	•	•				•	•	•	12
		2.	Tens	engt	υh	an:	3 E	loi	nga	ti	on	•	٠	•	•	•	•	•	•	•	•	•			12
		3•	Tens																	•	•	•			12
VI.	Rec	omme	ndat.	ion:	; .	•	•							•	•	•	•	•	•	•		•	•	•	13
	Lis	t of	Ref	ere	nce	10	•									•	•		•	•	•	•	•	•	14
Annen	dix	- Thin	nøste	n S	She	et.	Spe	eci	f1	cai	t. 1 c	n				_							_		99

LIST OF FIGURES

Figure	9	Pag	ze
1	Tensile and Creep Test Specimen Configuration	1.	5
2	1500°F Creep Rupture Properties of Commercially Tungsten Sheet (Fanateel) Powder Lot "A"	Pure lo	5
3	2000°F Creep Rupture Properties of Commercially Tungsten Sheet (Fansteel) Powder Lot "A"	Pure 1	7
4	2500°F Creep Rupture Properties of Commercially Tungsten Sheet (Fansteel) Powder Lot "A"	Pure 1	В
5	3000°F Creep Rupture Properties of Commercially Tungsten Sheet (Fansteel) Powder Lot "A"	Pure l	9
6	3500°F Creep Rupture Properties of Commercially Tungsten Sheet (Fansteel) Powder Lot "A" $$	Pure 20	0
7	4000°F Creep Rupture Properties of Commercially Tungsten Sheet (Fansteel) Powder Lot "A"	l'ure 2	1
8	4500°F Creep Rupture Properties of Commercially Tungsten Sheet (Fansteel) Powder Lot "A"	Pure 22	2
9	5000°F Creep Rupture Properties of Commercially Tungsten Sheet (Fansteel) Powder Lot "A"	Pure 2	3
10	1500°F Creep Rupture Properties of Commercially Tungsten Sheet (Fansteel) Powder Lot "B"	Pure 2	4
11	2000°F Creep Rupture Properties of Commercially : Tungsten Sheet (Fansteel) Powder Lot "B"	Pure 2	5
12	2500°F Creep Rupture Properties of Commercially : Tungsten Sheet (Fansteel) Cowder Lot "B"	Pure 26	5
13	3000°F Creep Rupture Properties of Commercially Eungsten Sheet (Fansteel) Fowder Lot "B"	Pure 2	7
14	3500°F Creep Rupture Properties of Commercially Tungsten Sheet (Fansteel) Fowder Lot "B"	Pure 2	3
15	4000°F Creep Rupture Properties of Commercially I Tungsten Sheet (Fansteel) Powder Lot "B"	Pure 29	€
16	4500°F Creep Rupture Properties of Commercially Tungsten Sheet (Fansteel) Powder Lot "B"	Pure 30	5

LIST OF FIGURES (CONT'D)

Figur	c	Page
17	5000°F Creep Rupture Properties of Commercially Pure Tungsten Sheet (Fansteel) Fowder Lot "B"	31
18	1500°F Creep Rupture Properties of Commercially Fure Tungsten Sheet (Fansteel) Powder Lot "C"	32
19	2000°F Creep Rupture Properties of Commercially Pure Tungsten Sheet (Fansteel) Powder Lot "C"	33
20	2500°F Creep Rupture Properties of Commercially Pure Tungsten Sheet (Fansteel) Fowder Lot "C"	34
51	3000°F Creep Rupture Properties of Commercially Pure Tungsten Sheet (Fansteel) Powder Lot "C"	35
2 2	3500°F Creep Rupture Properties of Commercially Pure Tungsten Sheet (Fanstecl) Fowder Lot "C"	36
23	4000°F Creep Rupture Properties of Commercially Pure Tungsten Sheet (Fansteel) Powder Lot "C"	37
24	4500°F Creep Rupture (roperties of Commercially Pure Tungsten Shect (Fansteel) Powder Lot "C"	38
25	5000°F Creep Rupture Properties of Commercially Pure Tungsten Sheet (Fancteel) Powder Lot "C"	39
26	Time and Stress Required to Reach 2% Creep at Various Test Temperatures Powder Lot "A"	40
27	Time and Otress Required to Reach 2% Creep at Various Test Temperatures Powder Lot "B"	41
28	Time and Stress Required to Reach 2% Creep at Various Test Temperatures Powder Lot "C"	42
29	Minimum Stress Required to Reach 2% Creep at Temperatures From 1500°F to 5000°F Fowder Lot "A"	43
30	Minimum Strees Required to Reach 2% Creep at Temperatures From 1500°F to 5000°F Fowder Lot "B"	44
31.	Minimum Stress Required to Reach 2% Creep at Temperatures From 1500°F to 5000°F Powder Lot "C"	45
32	Minimum Stress Required to Reach 2% Creep in 30 Seconds at Temperatures From 1500°F to 5000°F	46
33	Minimum Stress Required to Reach 2% Creep in 3600 Seconds at Temperatures From 1500°F to 5000°F	47

LIST OF FIGURES (CONT'D)

igur	e	Page
34	Desired Microstructure. 200 X. Murikami's Etch. Longitudinal Section	103
35	Minimum Acceptable Microstructure. 200 X. Murikami's Etch. Longitudinal Section	103
36	Unacceptable Microstructure. 200 X. Murikami's Etch. Longitudinal Section	103
37	Measurement of Flatness	10)

LIGT OF TABLES

Toble		Page
1	Hardeess Heasurements - Fowder Lot "A"	48
rī.	Hardness Heasurements - Fowder Lot "B"	50
111	Mardness Measurements - Fowder Lot "C"	52
ΞV	1500°F Creep Rupture Properties For Commercially Pure (Intered Tungsten Sheet (Fansteel) Powder Lot "A"	54
V	2000°C Creep Suprure Properties For Commercially Sure Sintered Tungsten Sheet (Pansteel) Fowder Lot "A"	55
Vii	1900°F Greep Aupture Proporties For Commercially are lintered Tungston Sheet (Fansteel) Powder Lot "A"	56
via	3000° Creep Rupture Properties For Commercially sure lintered Tung ter Cheet (Fanticel) owder Lot "A"	57
VUII	3500°F Creep Rupture Properties For Commercially Outer Cintered Eurgsten Cheet (Fanateel) Powder Lot "A"	58
i	1000°F Creep Rupture Properties For Commercially Fure distored Tungston Sheet (Fansteel) Fowder Lot "A"	59
3	4500°F Greep Rupture Properties For Commercially Fure Cictored Tungsten Sheet (Fassteel) Powder Lot "A"	60
XI	5000°F Croop Rupture Properties For Commercially Sure Lintered Tungsten Sheet (Fansteel) Powder Lot "A"	61
2.1.1	1500°F Creep Rupture Properties For Commercially sure sintered Tungsten Sheet (Fansteel) sowder Lot "B"	62
LIF	2000°F Creep Rupture Properties For Commercially use Sintered Tungsten Sheet (Fasteel) .owder Lot "B"	63
VER	0500°F Creep Rupture Properties For Commercially Fure Sintered Tungeten Sheet (Fanatee!) Towder Lot "B"	64
χV	3000°F Creep Rupture Properties For Commercially Pure Sintered Tungsten Sheet (Famsteel) Fowder Lot "B"	65
r v x	3500°F Creep Rupture Properties For Commercially Ture Sintered Tungsten Sheet (Fansteel) - owder Lot "B"	66
T1.VX	4000°F Creep Rupture roperties For Commercially Jure fintered Tungsten Sheet (Faneteel) Powder Lot "B"	67

LIST OF TABLES (CONT'D)

Table		Page
IIIVX	4500°F Creep Rupture Properties For Commercially Pure Sintered Tungsten Sheet (Fansteel) Powder Lot "B"	68
XIX	5000°F Creep Rupture Properties For Commercially Pure Sintered Tungsten Sheet (Fansteel) Powder Lot "B"	69
XX	1500°F Creep Rupture Properties For Commercially Pure Sintered Tungsten Sheet (Fansteel) Powder Lot "C"	70
XXI	2000°F Creep Rupture Properties For Commercially Pure Sintered Tungsten Sheet (Fansteel) Powder Lot "C"	71
XXII	2500°F Creep Rupture Froperties For Commercially Pure Sintered Tungsten Sheet (Fansteel) Powder Lot "C"	72
XXIII	3000°F Creep Rupture Properties For Commercially Pure Sintered Tungsten Sheet (Fansteel) Powder Lot "C"	73
XXIV	3500°F Creep Rupture Properties For Commercially Pure Sintered Tungsten Sheet (Fansteel) Powder Lot "C"	74
XXV	4000°F Creep Rupture Properties For Commercially Fure Sintered Tungsten Sheet (Fansteel) Powder Lot "C"	75
IVXX	4500°F Creep Rupture Properties For Commercially Pure Sintered Tungsten Sheet (Fansteel) Powder Lot "C"	76
XXVII	5000°F Creep Rupture Properties For Commercially Pure Sintered Tungsten Sheet (Fansteel) Powder Lot "C"	7 7
XXVIII	Stress Required to Reach 2% Creep in 30, 120, 600, and 3600 Seconds	78
XXIX	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot A - Test Condition 1	79
xxx	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot A - Test Condition 1	80
XXXI	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot A - Test Condition 1	81
XXXII	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot B - Test Condition 1	82
XXXIII	Mechanical Properties For Commercially Pure Tungsten Sheet (Fensteel) Powder Lot C - Test Condition 1	83

LIST OF TABLES (CONT'D)

Table		Page
VYXXX	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot C - Test Condition 1	84
VXXX	Mochanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot A - Test Condition 2	85
IVXXX	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot A - Test Condition 2	86
IIVXXX	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot B - Test Condition 2	87
IIIVXXX	Mcchanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot B - Test Condition 2	88
XXXXX	Mechanical Properties For Commercially Pure Tungsten Shect (Fansteel) Powder Lot C - Test Condition 2	89
XXXX	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot A - Test Condition 3	90
XXXXI	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot B - Test Condition 3	91
XXXXXII	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot C - Test Condition 3	93
TITXXXX	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot Λ - Test Condition 4	94
VEXXXX	Mechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot B - Test Condition 4	95
xxxxv	Rechanical Properties For Commercially Pure Tungsten Sheet (Fansteel) Powder Lot C - Test Condition 4	96
IVXXXX	Chemical Composition	97

I. INTRODUCTION

In April of 1962, The Marquardt Corporation subcontracted from The Hughes Tool Company to perform the final phases of Contract AF33(616)-7385, "Design Properties of Wrought Tungsten (Elevated Temperature Mechanical Testing). The work was conducted by the Materials Research and Development Laboratory of the Materials and Process Section. The objective and technical phases of the program have been abstracted from ASD-TDR-63-585, Volume I, and are presented below for the purpose of supplying background information.

"The principal objective of this program is to determine the mechanical properties of commercially available unalloyed tungsten and develop a compilation of representative data that can be used by the designer for very high temperature applications."

"The first phase of this program is to establish a material specification that will insure a high quality level....

The second phase will determine the effect on properties of material produced to the resulting specification by five (5) producers of tungsten products....

The third phase will determine the effect of four (4) basic production methods on bar stock....

The fourth phase will determine the effect on sheet of three (3) types of fabrication methods....

The fifth phase will determine the properties of the material under the following conditions: Eight (8) temperatures (room temperature, 2000°F and 500°F increments to 5000°F); Two (2) hold times of 30 seconds and 20 minutes; and a strain rate of 0.1 in/in/sec throughout the test, or of 0.001 in/in/sec to yield strength followed by 0.01 in/in/sec to ultimate strength....

The sixth phase will consist of creep tests. Four stresses will be used to cause two percent creep in times of about 30 seconds, one minute, 20 minutes, and one hour at eight (8) temperatures in 500°F increments from 1500°F to 5000°F."

Marquardt contracted to perform the work specifically described in the fifth and sixth phases of the program with some modifications and additions. The original objective of the program was not changed; however, in order to secure optimum data, slight modifications in the technical procedures were made. These changes were requested prior to the initiation of the work and involved such parameters as hold time, creep time, and test temperatures.

Manuscript released by authors August 1963 for publication as an ASD Technical Documentary Report.

A. OBJECTIVES

Marquardt's objectives for this portion of the complete program were:

To fabricate test specimens from three powder lots of 0.050 inch thick pure tungsten sheet.

To conduct creep rupture tests from 1500 to 5000°F to determine the stresses required to reach 2% plastic creep in 30, 120, 600, and 3600 seconds.

To conduct tensile tests from 70°F to 5000°F using four different test conditions. These test conditions used various combinations of hold times and strain rates.

Conduct hardness and chemical compositions checks on the (three powder lots) sheet material supplied.

II. EXPERIMENTAL TECHNIQUE

A. WITERIAL

The tungsten sheet used in this program was ordered by the Hughes Tool Company to their Material Specification HM36-1006, Commercially Pure Tungsten Sheet, dated October 1961. A copy of this specification appears in Appendix A of this report. The referenced specification was written during the first phases of this program and the development work relating to this specification can be found in ASD-TDR-63-585, Vol. I (Reference 1). The material was ordered to a minimum Rockwell hardness of (45-N) 50.0. This value was a deviation from the specification requirement of (45-N) 46.0. Fork at Hughes had shown that increased hardness resulted in better room temperature strength and elongation values.

A great deal of emphasis had been placed on the development of a material specification and checking of material from many vendors. The tungsten sheet used in this program (fifth and sixth phases of the over-all program) can be considered to be among the best obtainable at the time of purchase (ordered October 1961, delivered March 1962) because of this preliminary work.

All tungsten sheet was supplied by Fansteel Metallurgical Corporation. The material was prepared from three identically processed powder lots. There were 38 sheets in Not A, 35 sheets in Lot B, and 35 sheets in Lot C. All sheets had the following dimensions: 11 inches long, 3 inches wide, and 0.050 inches thick. Visual inspection disclosed that some sheets had severe laminations and surface defects. Test specimens prepared from these sheets were carefully checked to insure the absence of any defects which would influence the accuracy of the results. (E. g., no specimen was tested which

had a defect in the reduced section; however, several specimens did contain defects in the grip portion). Each lot of tungsten was chemically analyzed. The test specimens were identified to conform to the identification procedure used in the first phases of this program, ASD-TDR-63-585 (Reference 1).

However, it should be noted that specimens designated "BA", "BB", "BC" in this report were not prepared from the same material noted in Reference 1. The specimen identification procedure used at Marquardt is given below:

Lot				Specimen Number
A				BA-1 through BA-178
В				BB-1 through EB-167
C				BC-1 through BC-169
	B	A .	1	Specimen number Lot designation (three (3) lots from producer)
	Ĺ			Producer (Fansteel)

B. TEST SPECIMENS

1. Geometry

A rectangular test specimen design (i.e., no reduced section) was employed during the initial phases of this program by Hughes Tool Company. However, in attempting to continue with this same configuration, some difficulties were encountered. Preliminary tests on 1/2 x 11 inch rectangular tungsten specimens at temperatures of 2500°F to 5000°F disclosed the following problems:

- a. Overheating of the copper friction grip assemblies.
- b. Excessive oxidation of the specimen in the area outside the atmosphere chamber.

From these findings, the decision was made to machine the center 2-1/2 inch section of the specimen to one-half the sample width. This concentrated the heating to the center section, minimized the temperature gradient and gave more accurate results for the procedures employed. The concentration of heating eliminated failures from oxidation of that part of the specimen outside the atmosphere chamber.

2. Fabrication

All specimens were machined by Marquardt's Manufacturing Department to the configuration shown in Figure 1. After machining, the specimens were dye penetrant checked for laminations and cracking. About 2% were rejected because of excessive cracks. Specimens having minute cracks located outside the reduced section were accepted. Light passes on a belt sander removed surface and edge irregularities and oxidation. The surface preparation described resulted in the following advantages:

- a. Accuracy of hardness measurements were increased.
- b. Thermocouple attachment was facilitated.
- c. Data scatter was reduced.

C. TEST ECUTPMENT

1. Marquardt Elevated Temperature Test Machine (TM-1)

This machine was developed by The Marquardt Corporation to evaluate the mechanical properties of materials from cryogenic temperatures, to their melting points. The test machine is hydraulically loaded and has a capacity of 50,000 pounds in tension or compression. Tests are generally run by controlling strain or load rate. A built-in programmer maintains positive rate control continuously and automatically. The programmer is fed by electrical feedback signals from the extensometer (strain rate control) or the load cell (load rate control) depending upon which control method is being used. The testing speed may be varied at any time during the test.

Strain measurements are made with a separable, differential transformer type extensometer which is clipped directly to the test portion of the specimen. Special high temperature gripping tips are used. The extensometer is water cooled. The extensometer remains in place until the specimen ruptures and a complete tensile stress-strain curve is obtained for each tensile test. These curves are automatically plotted on a high response Moseley Autograf X-Y recorder.

Test temperatures in excess of 5000°F and heating rates in excess of 200°F/second were attained by using self-resistance heating. The source of the heating current was a 10 KVA cycle step-down transformer. Heating current to the specimen was automatically controlled by a Variac, which in turn was controlled by the output of thermocouples attached to the test specimen.

Constant improvement in both the physical machine and procedural methods have provided Marquardt with a sophisticated piece of elevated temperature mechanical test equipment that can provide information no other equipment can duplicate.

Because of the combination of high test temperatures and low load required, certain modifications to the TM-1 were necessary. These were:

- a. The use of aluminum (vs. steel) spacer blocks to reduce the inertia of the ram system when tensile loading starts.
- b. The complete redesigning of the tailstock of the TM-1 to reduce friction by installing linear bearings.
- c. Support rails utilizing roller bearings were designed and installed to eliminate any tendency for the load cell to rotate.
- d. To insure smooth operation, at the low loads expected, a new threaded attachment for the load cell and a new collar for thermal expansion "take up" were made. In addition, all threaded components were hand lapped.

Special friction grips were designed, fabricated, and tested. In addition to gripping the test coupons to apply the tensile load, friction grips must also transmit high amperage current to heat the specimen to the required test temperature. The friction grips were therefore fabricated from copper because of its low electrical resistivity, high thermal conductivity, and high ductility. High ductility was necessary to insure that the gripping force would tend to deform the copper blocks rather than shatter the tungsten strip. Numerous tests were run to determine necessary grip engagement length to prevent pullout or slippage, minimum engagement for electrical conduction across the tungsten specimen and optimum and uniform bolting torque to apply a uniform gripping force. Various shim thicknesses were also investigated.

D. TEST PROCEDURES

1. Hardness

Initial hardness readings obtained using the Rockwell 45-N scale were not consistent, due to surface variations. The Rockwell A scale gave more consistent values because of its deeper indentation.

Rockwell A hardness measurements were taken on each test specimen after machining. The measurements were taken on a belt sanded surface of the grip area approximately one-half inch from the reduced area.

2. Creep Rupture Tests

A static loading system was incorporated on the TM-1 machine for conducting the high temperature (low load) creep-rupture testing. Dead weight loading was used and the force transmitted by pulley and cable directly to the specimen grips. At the start of each test a hydraulic system was used to apply the load at a consistent rate.

The specimens were resistance heated to the required test temperature at 200°F/seconds, the same rate used for tensile tests. The specimens were held at temperature for one minute to insure stabilization. The required stress was applied rapidly, within 1-2 seconds, in order to avoid variable or excessive deformation during the loading period. The creep deformation (strain) was recorded from the moment that the required stress level was reached. Strain was measured with the extensometer attached directly to the test portion of the specimen as in the tensile tests. The creep vs. time curves were automatically recorded on a Wheelco single channel strip chart recorder calibrated to read 0.100 inch full scale, with the smallest increment being 0.001 inch.

The Hugher Tool Company requested that four stress levels be used for each temperature and powder lot to be tested. Specifically "---One of the four creep stress levels shall be the 0.2% offset yield stress taken from the short-time tensile stress-strain curves. Based on prior tests, it is expected that this stress will cause 2% creep in approximately ten minutes. The remaining three creep stress levels shall be chosen by the seller such that 2% creep will occur in approximately 0.5, 2.0, and 60 minutes. After several exploratory tests, Marquardt found that creep testing at the yield strength gave 2% creep in 10 minutes at only a few temperatures. It was assumed that the emphasis was meant to be on obtaining 2% creep in 10 minutes, not in testing at the yield strength. For the remainder of the creep testing, the yield strength requirement was disregarded and testing to obtain 2% creep in 10 minutes was substituted for this specific requirement.

3. Tensile Tests

Each lot of material was tensile tested using four different sets of test conditions. These conditions were:

,	Strain (in/		Hold Time (minutes)				
Test Condition	To Yield	To Rupture	1000-2000°F Tensile Tests	2500-5000°F Tensile Tests			
1	0.005	0.05	5	3			
2	0.05	0.5	5	3			
3	0.005	0.05	30	30			
4	0.05	0.5	30	30			

The tensile specimens tested at elevated temperatures were heated by electrical self-resistance at a controlled rate of 200°F/second.

The TM-1 programmer was activated at the completion of the hold time. The feedback system held the desired strain rate and the specimen was stressed to the yield strength. The strain rate was then increased by a factor of ten and the loading was continued until the specimen failed.

4. Temperature Measurements

Temperature measurements from 1500 to 3000°F were taken using Platinum-6% Rhodium vs. Platinum-30% Rhodium thermocouples (Baker Platinum, Div. Englehard Industries). Tungsten vs. Tungsten-26% Rhenium (Hoskins Manufacturing Company) thermocouples were used for temperatures of 3500°F to 5000°F. A Leeds and Northrup millivolt potentiometer was used to read both types of thermocouples.

Initially, two thermocouples were attached to the reduced portion of each test specimen. After runs at various test temperatures it was apparent that temperatures could be held within approximately + 1% along the gage length with the specimen configuration being used. Thereafter, only one thermocouple was used.

Initially, there was no thermocouple calibration for Tungsten vs. Tungsten-26% Rhenium at 4500 and 5000°F. Based on extrapolation and past experience, values of 40.68 millivolts at 4500°F and 43.0 at 5000°F were used. Recent data published by Hoskins Manufacturing Company closely agree with these values.

5. Protective Atmosphere

The TM-1 Atmosphere Enclosure and an atmosphere of 93% Argon-7% Hydrogen were used for all elevated temperature tensile and creep rupture tests. Complete coverage of the reduced area of the test specimen is afforded by this chamber which has been utilized many times on other programs.

III RESULTS

A. HARDNESS

The Rockwell A hardness values for each specimen used in this program are listed in Tables I through III.

B. CREEP

The stress vs. time creep-rupture curves for powder Lots A, B, and C, for temperatures of 1500°F to 5000°F, are presented in Figures 2 through 9, 10 through 17, and 18 through 25 respectively. The data are listed in Tables IV through XI, XII through XIX, and XX through XXVII, respectively.

On a stress vs. time basis, the 2% creep lines for each test temperature have been plotted on one graph for each powder lot. Figures 26 through 28 present these graphs for Powder Lots A, B, and C, respectively.

Composite graphs and a table were made up to show the stress required to reach 2% creep in 30, 120, 600, and 3600 seconds for each powder lot. Each graph includes this data for all test temperatures (1500-5000°F). Figures 29 through 31 contain these composite graphs for Powder Lots A, B, and C, respectively. Table XXVIII contains the data used to develop these figures.

Figures 32 and 33 were prepared to compare creep properties of the three powder lots. Figure 32 shows 2% creep in 30 seconds at temperatures from 1500 to 5000°F. Figure 33 shows 2% creep in 3600 seconds at temperatures from 1500 to 5000°F.

C. TENSILE TESTS

The results of the Room Temperature to 5000°F tensile tests for Test Condition 1, Powder Lots 5, B, and C are reported in Tables XXIX through XXXIV. Similar results for Test Condition 2 are reported in Tables XXXV through XXXIX. Results for Test Condition 3 are presented in Table XXXX through XXXXII. Results for Test Condition 4 are presented in Tables XXXXIII through XXXXV.

D. CHEMICAL COMPOSITION

Samples from all three powder lots were analyzed for oxygen, hydrogen, carbon, and nitrogen and thirty-four (34) other elements. The results are presented in Table XXXXVI.

IV DISCUSSION

A. HARDNESS

1. Hardness

The hardness values for Powder Lots A and C were similar, with the majority of values from both lots falling between Rockwell A 73.0 and 74.0. Powder Lot B had a slightly higher hardness, with most values between 74.0 and 75.0.

2. Hardness versus Tensile

In addition to higher hardness values, Powder Lot B also had higher ultimate and yield strength values than Lots A and C for test temperatures of 2000°F and below. If there were a true correlation between hardness and tensile values, it would be operative only at temperatures below the recrystallization temperature of the metal. For tungsten, the recrystallization emperature is between 2500 and 3000°F. There appears to be a valid correlation between hardness and tensile values at test temperatures of 2000°F and below.

B. CREEP TESTS

All creep lines plotted were determined using the most conservative points. This was particularly justified because of the slight cooling experienced at the extreme ends of the two-inch gage length.

In Figure 32, presenting stress to reach 2% creep in 30 seconds, all three powder lots had similar properties up to 3500°F. Above 3500°F, Powder Lot B is inferior to either A or C.

In Figure 32, presenting stress to reach 2% creep in 3600 seconds, from 1500 to 3000°F Powder Lot A is slightly inferior to B or C, which are almost equal. From 3500 to 5000°F, Lot B is inferior to A or C, which are almost equal.

The creep properties obtained from these identical powder lots also show behavior not normal to identical heats. All powder lots had similar creep-rupture properties from 1500°F to 3000°F although B was clightly superior at 1500°F. At 3500°F and above, the creep-rupture properties of Lot B fall well below those of Lot C or A which are about equal.

C. TENSILE TESTS

1. Tensile Tests - Effect of Strain Rate on Strength and Elongation

a. Strength

A detailed statistical study was not made, however, certain trends were apparent. For Lots B and C, the higher strain rates (for Y.S. 0.05 in/min. vs. 0.005 in/min.; for U.T.S. 0.5 in/min. vs. 0.05 in/min.) gave higher values for most test temperatures from R.T. to 5000°F. This increase varied from 1 to 40 percent.

For Lot A, the higher strain rates gave higher Y.S. and U.T.S. values for most test temperatures of 2000°F and above. For temperatures below 3500°F there were some cases in which the slower strain rates gave higher values or resulted in no change.

b. Elongation

Strain rate changes the elongation values of wrought tungsten only at temperatures in excess of 3000°F. In 71% of all tests above 3000°F, where strain rate was increased by a factor of ten, increases in total elongation of up to 7% (elongation %) were noted. This behavior was noted in all powder lots.

2. Tensile Tests - Effect of Hold Time on Strength and Elongation

a. Strength

For each powder lot, data for comparison of tensile and yield strength vs. hold time were available only at test temperatures of 2000, 2500, 3000 and 3500°F. The hold times investigated were:

	-2		1
	Nold Time (Min.)	Test Temperatures °F	
į	3	2500 - 3500°	→
	5	5000	
	30	2000 - 3500°	

at 3000 and 3500°F, the 30 minute hold time tests had no apparent effect on ultimate tensile and yield strengths. At 2000°F, the 5 minute hold time tests gave ultimate and yield values of 0 -38% greater than the 30 minute hold time tests. At 2500°F, a 3 minute hold time gave yield strength values 100% greater than tests with a 30 minute hold time, ultimate tensile strength values for the 3 minute hold times were up to 50% greater.

The modest decrease in ultimate tensile strength and yield strength at 2000°F is due to the material being stress relieved while under test. Those 2500°F samples, held for 30 minutes, exhibited a consequent large drop in strength values. This drop was caused by considerable recrystallization.

The large drops in tensile strength values between 2000°F and 2500°F, found for test conditions 1 through 4, are caused by a combination of two factors. These factors are the normal drop in strength accompanying increased test temperatures combined with the lowering in strength associated with recrystallization.

b. Elongation

Exposure for prolonged periods at temperature (30 minutes) did not affect elongation properties at 2000°F. However, at 2500 and 3000°F the 30 minute hold time appears to greatly increase total elongation values. In 83% of the tests conducted at 2500 and 3000°F, ductility increased with the 30 minute hold time. Elongation values doubled at 2500°F in several cases. Lesser increases occurred at 3000°F in all but one case.

3. Tensile Tests - Effect of Powder Lot on Strength and Elongation

a. Strength

From room temperature to 2000°F the ultimate and yield strengths of Powder Lot B were consistently higher than both Lots A and C for all test conditions. For all test conditions from 3000°F to 5000°F little difference was found to exist between the lots, although Powder Lot C had slightly higher values.

Data obtained from each test condition were examined for general trends. Approximate values are given below.

Test Condition 1

Below 2500°F Lot B is superior to Lot A in yield strength by 7-17% and tensile strength by 8-9%, it is superior to Lot C by 5-28% and 21% respectively. At 2500°F and above, Lot C is superior in yield strength to A by 17-95% and in ultimate tensile strength to Lot A by 16% and Lot B by 14%.

Test Condition 2

From room temperature through 2000°F, Lot B was superior to Lot A in tensile strength by 6-47% and yield strength by 5-30%. Lot B was also superior to Lot C in tensile strength by 16-37% and yield strength by 17-28%. At four of the six higher test temperatures (2500 to 5000°F) Lot C had the highest ultimate tensile and yield strengths.

Test Condition 3

At 2000°F Lot B had the highest tensile and yield strengths (12% higher than C and 19% higher than A). For the remaining three test temperatures, Lot C had slightly higher tensile strengths.

Test Condition 4

The results were similar to Test Condition 3, Lot B had higher ultimate tensile strengths at 2000°F than A or C by 36% and 7% and higher yield strengths by 35% and 13% respectively. For the remaining three temperatures, Lot C had generally higher ultimate tensile and yield strength properties in all cases.

b. Elongation

Powder Lot C exhibited zero elongation at room temperature whereas Lots A and C had 0.5 - 0.9%. At 1000°, 1500°, and 2000°F Lot C had slightly higher total elongation values than A or B, which were almost equal. Elongation at 2500°F (approximate recrystallization temperature) increased for all lots to approximately 1 to 3 1/2 times those obtained at 2000°F (below the recrystallization temperature). In the temperature range of 2500°F to 5000°F elongation values varied widely from lot to lot. At 2500 and 3000°F, Lot B generally has higher elongation than A or C. From 3500-5000°F, Lot A generally has highest elongation.

V CONCLUSIONS

A. HARDNESS

1. Hardness versus Tensile Strength

Hardness, tensile, and yield strengths can be correlated

directly for entire powder lots below 2500°F.

B. CREEP

Creep-rupture properties were generally similar from lot to lot. But the creep-rupture properties of Powder Lot B at 3500°F and above were well below those of Lots A and C.

C. TENSILE TESTS

1. Tensile Tests - Effect of Strain Rate on Strength and Elongation

a. Strength

The higher strain rates generally gave higher tensile and yield strength values at all test temperatures for Powder Lots B and C. For Lot A, faster strain rates generally gave higher tensile values, at temperatures of 2000°F to 5000°F only.

b. Elongation

Below 3000°F increases in strain rate did not affect the elongation values. From 3000-5000°F, a noticeable increase in elongation values resulted from increases in strain rate.

2. Tensile Tests - Effect of Hold Time on Strength and Elongation

a. Strength

Higher tensile values were found at 2000 and $2500^{\circ}F$ for short hold time (3 and 5 minutes vs. 30 minutes).

b. Elongation

Higher elongation values were found at the 2500 and 3000°F test temperatures for the longer hold time (30 minutes vs. 3 or 5 minutes). This effect of hold time did not exist for any other test temperatures.

3. Tensile Tests - Effect of Powder Lot on Strengths and Elongation

Although processed identically, all powder lots did not exhibit identical or even similar behavior in elevated temperature tensile testing. Experimental techniques and normal scatter in testing no doubt contributed to these variations, however, there exists certain trends which indicate a basic difference among powder lots. The first indication was in hardness values. Lots A and C exhibited definitely lower hardnesses than did Lot B. Secondly, the tensile strengths of Lots A and C are definitely lower than Lot B at temperatures of 2000°F and lower. This would indicate a valid correlation of tensile properties with hardness values at these temperatures and a definite difference between Lot B and Lots A and C.

Differences in elongation values between powder lots further strengthens the possibility that variations do exist in the basic makeup of the three powder lots and/or the processes involved in fabrication of the material.

VI RECOMMENDATIONS

Great care should be taken when designing and producing assemblies from wrought tungsten because of the variations that exist in different lots of material. Large variations can be expected when using material produced at different times or from different producers. Designing from mechanical properties developed for one or two powder lots and producing parts from other undocumented lots is particularly discouraged.

While this program indicated that the creep properties did not vary as much as tensile properties, variations were found in both that were large enough to affect design requirements. These variations were found even after great care had been taken in specification writing, vendor choice and in-plant quality assurance tests.

The scatter obtained indicates that the state of the art in the production of wrought tungsten, while advancing rapidly, is still in need of improvement to meet aerospace industry needs. Continuing work is needed on the determination of mechanical properties of wrought tungsten. More data are required in order to establish statistical values and confidence levels for use by designers. Additional data will also allow monitoring of the continuing improvement in the state of the art in the production of wrought tungsten. It is therefore recommended that a program be initiated to continue the work wrought tungsten. This program should include:

- a. Tightening and modification of the tungsten specification with respect to mechanical properties.
- b. Evaluation of tungsten material produced to meet the more stringent specification requirements.
- c. Establishment of statistical confidence levels for tungsten mechanical properties for design purposes.

LIST OF REFERENCES

1. Leggett, H. and Parechanian, H. (Unclassified Title),

Mechanical Properties of Wrought Tungsten, Volume I. WADC-TDR-63-585.

Wright Air Development Center, Wright-Patterson Air Force Base,
Ohio. July 1963. (Unclassified Report).

SCALE - HALF SIZE

FIGURE 1. FLAT TENSILE AND CREEP SPECIMEN

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL). 050" THICK TUNGSTEN SHEET AT 1500°F POWDER LOT "A" FIGURE 2.

FIGURE 5.

5. 2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) .050" THICK TUNGSTEN SHEET AT 3000°F POWDER LOT "A".

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL), 050" THICK TUNGSTEN SHEET AT 4000°F POWDER LOT "A" FIGURE 7.

21

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) . 050" THICK TUNGSTEN SHEET AT 4500°F POWDER LOT "A" FIGURE 8.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL), 050" THICK TUNGSTEN SHEET AT 5000°F POWDER LOT "A" FIGURE 9.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) .050" THICK TUNGSTEN SHEET AT 1500°F POWDER LOT "B" FIGURE 10.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) . 050" THICK TUNGSTEN SHEET AT 20000F POWDER LOT "B" FIGURE 11.

ý

Total sele

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL), 050" THICK TUNGSTEN SHEET AT 2500°F POWDER LOT "B" FIGURE 12.

FIGURE 13.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) .050" THICK TUNGSTEN SHEET AT 3000°F POWDER LOT "B"

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) .050" THICK TUNGSTEN SHEET AT 3500°F POWDER LOT "B" FIGURE 14.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL), 050" THICK TUNGSTEN SHEET AT 4000°F POWDER LOT "B" FIGURE 15.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL), 050" THICK TUNGSTEN SHEET AT 4500°F POWDER LOT "B" FIGURE 16.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) . 050" THICK TUNGSTEN SHEET AT 50000F POWDER LOT "B"

FIGURE 17.

31

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL). 050" THICK TUNGSTEN SHEET AT 1500°F POWDER LOT "C" FIGURE 18.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) . 050" THICK TUNGSTEN SHEET AT 2000°F POWDER LOT "C" FIGURE 19.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL), 050" THICK TUNGSTEN SHEET AT 2500°F POWDER LOT "C" FIGURE 20.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) .050" THICK TUNGSTEN SHEET AT 3000°F POWDER LOT "C" FIGURE 21.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) , 050" THICK TUNGSTEN SHEET AT 3500°F POWDER LOT "C" FIGURE 22.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) . 050" THICK TUNGSTEN SHEET AT 4000°F POWDER LOT "C" FIGURE 23.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL), 050" THICK TUNGSTEN SHEET AT 4500°F POWDER LOT "C" FIGURE 24.

2% CREEP RUPTURE PROPERTIES (MINIMUMS) OF COMMERCIALLY PURE (FANSTEEL) . 050" THICK TUNGSTEN SHEET AT 5000°F POWDER LOT "C" FIGURE 25.

FIGURE 26. TIME AND STRESS REQUIRED TO REACH 2% CREEP AT VARIOUS TEST TEMPERATURES

POWDER LOT A

FIGURE 27.

TIME AND STRESS REQUIRED TO REACH 2% CREEP AT VARIOUS TEST TEMPERATURES

POWDER LOT B

FIGURE 28. TIME AND STRESS REQUIRED TO REACH 2% CREEP AT VARIOUS TEST TEMPERATURES

POWDER LOT C

TEST TEMPERATURE, OF

FIGURE 29. MINIMUM STRESS REQUIRED TO REACH 2% CREEP AT TEMPERATURES FROM 1500°F to 5000°F

POWDER LOT A

TEST TEMPERATURE, °F

FIGURE 30. MINIMUM STRESS REQUIRED TO REACH 2% CREEP AT TEMPERATURES FROM 1500°F TO 5000°F

POWDER LOT B

TEST TEMPERATURE, °F

FIGURE 31. MINIMUM STRESS REQUIRED TO REACH 2% CREEP AT TEMPERATURES FROM 1500°F TO 5000°F

POWDER LOT C

FIGURE 32. MINIMUM STRESS REQUIRED TO REACH 2% CREEP IN 30 SECONDS AT TEMPERATURES FROM 1500°F TO 5000°F

FIGURE 33. MINIMUM STRESS REQUIRED TO REACH 2% CREEP IN 3600 SECONDS AT TEMPERATURES FROM 1500 TO 5000°F

One or two measurements taken on each test specimen

Rockwell A Scale

Specimen Number	Res	dings	Specimen Number	Rea	dings	Specimen Number	Rea	dings
BA-1 BA-3 BA-5 BA-6 BA-15 BA-15 BA-16 BA-16 BA-16 BA-17 BA-17 BA-17 BA-17 BA-17 BA-17 BA-17 BA-17 BA-22 BA-22 BA-33 BA-3	74.00.00.55.55.55.55.55.55.55.55.55.55.55.	74.0 73.0 73.0 73.0 74.0 73.5 74.0 73.5 74.0 73.5 74.0 73.5 72.5 72.5 73.0 73.5 73.5 73.5 73.5 73.5 73.5 73.5 73.5	BA-40 BA-41 BA-42 BA-43 BA-44 BA-45 BA-47 BA-46 BA-55 BA-51 BA-55 BA-56 BA-57 BA-56 BA-66 BA-66 BA-66 BA-66 BA-67 BA-68 BA-77 BA-78 BA-77 BA-77 BA-77 BA-77	74.2.5.0.5.0.5.0.5.0.5.0.5.0.0.0.0.0.0.5.0.5.0.5.0.5.0.5.0.5.0.0.0.0.0.0.5.0.5.0.5.0.5.0.5.0.0.0.0.0.5.0.5.0.5.5.0.0.0.0.0.5.5.5.0.0.0.0.0.5.5.5.0.0.0.0.0.5.5.5.0.0.0.0.0.5.5.5.0.0.0.0.0.5.5.5.0.0.0.0.0.5.5.5.0.0.0.0.0.5.5.5.0.0.0.0.0.5.5.5.0.0.0.0.0.5.5.5.0.0.0.0.0.0.5.5.5.0.0.0.0.0.0.5.5.5.0.0.0.0.0.0.5.5.5.0.0.0.0.0.0.5.5.5.0.0.0.0.0.0.0.5.5.5.0.0.0.0.0.0.5.5.5.0.0.0.0.0.0.0.5.0.5.0.0.0.0.0.0.5.0.5.0	71.5 72.0 74.0 73.5 72.0 73.5 73.5 73.0 73.5 74.0 73.5 74.0 73.5 74.5 73.5 73.5 73.5 73.5 73.5 73.5 73.5 73	BA-79 BA-80 BA-81 BA-82 BA-83 BA-84 BA-85 BA-86 BA-87 BA-86 BA-99 BA-90 BA-91 BA-92 BA-93 BA-96 BA-97 BA-98 BA-97 BA-98 BA-100 BA-101 BA-102 BA-103 BA-104 BA-105 BA-106 BA-107 BA-108 BA-107 BA-108 BA-111 BA-112 BA-113 BA-114 BA-117	73.0 73.5 74.0 73.0 74.0 73.0 74.0 73.0 74.0 73.0 74.0 73.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74	05000050500000000000000000000000000000

TABLE I (Continued)

HARDNESS MEASUREMENTS - POWDER LOT A

Specimen Number	Read	ings	Specimen Number	Rea	dings	Specimen Number	Read	ings	
BA-118 BA-120 BA-121 BA-122 BA-123 BA-124 BA-125 BA-126 BA-126 BA-127 BA-130 BA-131 BA-132 BA-133 BA-134 BA-135 BA-136 BA-137 BA-137	73.5 73.5 74.5 74.5 74.5 74.0 74.0 74.5 74.5 74.5 74.5 74.5 74.5 73.5 73.5 73.5 73.5 73.5 73.5 73.5 73	74.05.05.05.74.05.05.75.55.00.57.74.05.77.74.05.77.74.05.77.74.05.77.74.05.77.74.05.77.74.05.77.77.77.77.77.77.77.77.77.77.77.77.77	BA-139 BA-140 BA-141 BA-142 BA-143 BA-144 BA-145 BA-146 BA-147 BA-148 BA-149 BA-150 BA-151 BA-152 BA-153 BA-154 BA-155 BA-157 BA-157	74.55 74.55 74.05 74.05 73.50 73.50 73.50 74.05 74.05 74.05 74.05 74.05 74.05	73.000050555555050000555 774.55.5555050000555 774.774.774.74	BA-159 BA-160 BA-161 BA-162 BA-163 BA-165 BA-166 BA-167 BA-168 BA-169 BA-170 BA-171 BA-172 BA-173 BA-174 BA-175 BA-175 BA-177	74.5 73.0 72.0 74.0 74.5 73.5 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0	74.5 73.0 73.0 74.0 74.0 73.5 73.5 73.5 73.5 73.5 73.5 73.5 73.5	,

TABLE II

HARDNESS MEASUREMENTS - POWDER LOT B

One or two measurements taken on each test specimen

Rockwell A Scale

Specimen Number	Readings	Specimen Number	Read	ings	Specimen Number	Readings
BB-1 BB-3 BB-4 BB-5 BB-1 BB-1 BB-1 BB-1 BB-1 BB-1 BB-1 BB-1 BB-1 BB-1 BB-1 BB-1 BB-1 BB-2 BB-2 BB-2 BB-2 BB-3	75.0 74.5 74.5 74.5 74.5 74.5 74.5 74.5 75.6 75.6 76.5 77.7 74.5 75.6	BB-41 BB-42 BB-43 BB-44 BB-45 BB-46 BB-46 BB-55 BB-55 BB-55 BB-55 BB-56 BB-66 BB-66 BB-67 BB-67 BB-78	74.55.55.00.00.50.05.00.50.50.55.50.05.00.50.5	76.0 74.0 75.5 75.5 75.0 75.5 76.0 75.5 74.0 75.0 75.0 75.0	BB-81 BB-82 BB-83 BB-84 BB-85 BB-86 BB-87 BB-88 BB-99 BB-90 BB-91 BB-92 BB-93 BB-94 BB-95 BB-97 BB-98 BB-99 BB-100 BB-101 BB-105 BB-106 BB-107 BB-108 BB-109 BB-111 BB-112 BB-113 BB-114 BB-115 BB-116 BB-116 BB-117 BB-118 BB-119	74.5.00.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5

TABLE II (Continued)

HARDNESS MEASUREMENTS - POWDER LOT B

Specimen Number	Readings	Specimen Number	Readings	Specimen Number	Read	ings
BB-121 BB-122 BB-123 BB-124 BB-125 BB-126 BB-127 BB-128 BB-130 BB-131 BB-131 BB-131 BB-133 BB-133 BB-134 BB-135 BB-136	74.0 74.5 75.5 75.5 74.5 75.0 74.5 75.0 75.0 74.5 74.5 74.5	BB-137 BB-138 BB-139 BB-140 BB-141 BB-142 BB-143 BB-144 BB-145 BB-146 BB-147 BB-146 BB-149 BB-150 BB-151 BB-151	73.0 74.5 74.0 75.0 75.0 75.0 73.0 74.5 74.5 74.5 74.5 73.5	BB-153 BB-154 BB-155 BB-156 BB-157 BB-158 BB-160 BB-161 BB-162 BB-163 BB-163 BB-165 BB-165 BB-165	74.0 74.0 74.0 74.0 75.0 75.0 75.0 75.0 76.0	74.0 75.0 76.0 74.5 75.0 75.0

TABLE III
HARDNESS MEASUREMENTS - POWDER LOT C

One or two measurements taken on each test specimen

Rockwell A Scale

Specimen Number	Read	ings	Specimen Number	Read	lings	Specimen Number	Read	ings
BC-1	73.5	74.5	BC-40	75.0		BC-79	73.5	74.0
BC-2	72.5	72.5	BC-41	73.5		BC-80	72.5	73.5
BC-3	74.5	74.0	BC-42	73.5		BC-81	73.0	73.0
BC-4	73.0	74.0	BC-43	73.5		BC-82	73.0	73.0
BC-5	73.0	73.5	BC-44	73.5		BC-83	73.0	74.0
BC-6	74.5	73.5	BC-45	73.0		BC-84	72.5	73.0
BC-7	74.0	73.5	BC-46	73.0		BC-85	73.5	73.5
BC-8	73.0	74.0	BC-47	74.0		BC-86	75.0	73.5
BC-9	73.0	73.5	BC-48	73.0		BC-87	72.5	73.5
BC-10	72.5	74.0	BC-49	74.0		BC-88	73.5	74.0
BC-11	73.5	74.5	BC-50	72.0	73.0	BC-89	73.0	71.5
BC-12	74.0	74.0	BC-51	73.0	' ;		75.0	74.5
BC-13	73.0	74.0	BC-52	72.0	72.0	BC-90	74.0	73.0
BC-14	75.0	74.5	BC-53	72.5		BC-91	74.5	72.5
BC-15	73.0	74.0	BC-54	73.0		BC-92	73.5	73.0
BC-16	73.0	73.5	BC-55	73.0		BC-93	73.0	75.5
BC-17	73.5	74.0	BC-56	74.0	}	BC-94	72.5	74.0
BC-18	74.0	74.0	BC-57	73.5	1	BC-95	72.5	73.0
BC-19	74.0	73.0	BC-58	72.0	73.5	BC-96	73.5	74.0
BC-20	74.0	73.5	BC-59	73.5		BC-97	73.0	73.5
BC-21	73.0	72.0	BC-60	74.0	1 1	BC-98	73.5	73.5
BC-22	73.5	73.5	BC-61	72.5	'	BC-99	73.5	74.0
BC-23	73.0	74.0	BC-62	73.0	;	BC-100	73.5	74.0
BC-24	73.5	73.5	BC-63	73.5		BC-101	74.0	73.0
BC-25	73.5		BC-64	73.0	1	BC-102	73.5	73.5
BC-26	73.0		BC-65	73.0	73.5	BC-103	73.0	73.5
BC-27	72.0	73.0	BC-66	73.5	74.0	BC-104	73.5	72.5
BC-28	72.0	71.5	BC-67	73.0	72.5	BC-105	73.0	73.0
BC-29	7 3•5		BC-68	73.5	74.0	BC-106	73.5	73.5
BC-30	73.5		BC-69	73.0	74.0	BC-107	73.0	72.5
BC-31	73.5		BC-70	74.0	73.0	BC-108	73.0	74.0
BC-32	73.5	1	BC-71	73.0	73.5	BC-109	72.5	74.0
BC-33	74.5		BC-72	73.0	72.5	BC-110	73.5	73.5
BC-34	72.5		BC-73	72.5	72.5	BC-111	73.5	74.0
BC-35	74.0		BC-74	73.0	73.0	BC-112	73.0	73.5
BC-36	73.5		BC-75	73.0	73.0	BC-113	72.5	74.0
BC-37	73.5		BC-76	72.0	73.0	BC-114	74.0	73.5
BC-38	73.0		BC-77	73.5	73.0	BC-115	73.0	73.5
BC-39	7 3.5		BC-78	72.5	74.0	BC-116	73.5	73.5
					L			

TABLE III (Continued)

HARDNESS MEASUREMENTS - POWDER LOT C

Specimen Number	Read	ings	Specimen Number	Read	lings	Specimen Number	Read	ings
BC-117 BC-118 BC-119 BC-120 BC-121 BC-122 BC-123 BC-124 BC-125 BC-126 BC-127 BC-128 BC-129 BC-130 BC-131 BC-131 BC-132	73.0 73.5 74.5 73.5 73.5 73.5 73.5 73.5 73.5 73.0 73.0 73.0 73.0 73.0 73.0	73.5 73.5 75.5 73.5 73.5 73.5 73.5 73.5	BC-135 BC-136 BC-137 BC-138 BC-140 BC-141 BC-142 BC-143 BC-144 BC-145 BC-146 BC-146 BC-146 BC-147 BC-148 BC-149 BC-150 BC-151 BC-151	73.5 74.0 73.5 73.0 73.5 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.5 73.0 73.5 73.0	73.000 74.00 73.50	BC-153 BC-154 BC-155 BC-156 BC-157 BC-159 BC-160 BC-161 BC-162 BC-163 BC-164 BC-165 BC-166 BC-166 BC-166 BC-166	73.0 c o o o o o o o o o o o o o o o o o o	74.0 73.0 73.0 74.5 73.5 73.5 73.5 73.5 73.5 73.6 74.0 74.0

TABLE IV

1500°F CREEP-RUPTURE PROPERTIES FOR COMMERCIALLY FURE SINTERED TUNGSTEN SHEET (FANSTEEL)

Machine - ETTM
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Legon-TW Eydrogen

Test Conditions:

44	
wder Lot	
욊	

Time To Elongation		3	19.0 3.5	145.0 3.5 202.0 3.5	985.0 3.5 340.0 3.0 547.0 4.0	4570.0 4.0	.1300.0 3.5
Tin		1		- 1 (1)	σο κότιλ.	45	113
in	750			1 1		1 1	
oduce p Stra	20.5		1	, 1.1	0.0	1 1	ı
To Pr	1.0%	,	1	1 1	820.0 544.0	4235.0	!
econds) Plasti	0.5%		15.0	135.0 128.0	490.0 310.0 301.0	240.0 2160.0 4	5400.0
Time (Seconds) To Produce Indicated Plastic Creep Strain	0.2		4.6	38.0	95.0 62.0 46.0	240.0	50.0 345.0 5400.0
I	0.1% 0.2% 0.5% 1.0% 2.0%		4.5	13.0	25.0 20.0 10.0	60.0	50.0
Creep In	30 sec.		1	0.16	0.16 0.13 0.17	0.08	90.0
Loading	Strain (%)	9.0	7.0	0.50	0.45 0.43 0.43	0.35	0.3
Approx. Thermal	fxp. (in/in)	0.0073	0.0072	0.0071	0.0070 0.0069 0.0070	0.0075	0.0073
į	(ksi)	115.0	112.5	110.0	105.0	100.0	95.0
, , ,	No.	Bv83	BA-177	BA-132 BA-82	BA-131 BA-131 BA-136	BA-95 BA-86	BA-91

TABLE V

2000°F CREEP-RUPTURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TUNGSTEN SHEET (FANSTEET,)

	u .			•			
ydrogen	Elongation in 2 in.	i www i wwo	4 m4 m	0.0°	www.4 ~~0~	3.0	0.4
- EITM - Resistance - 2.0 inches - 0.050 inch - Argon-7% Hydrogen	Time To Rupture (sec.)	205.0 4.0 34.0	7.0 12.0 372.0 10.0	2120.0	152.0 353.0 798.0 1001.0	555.0	3830.0
. 60	70.4	1 1 1 1	1 1 1 1	1 1	111	1	1
nditio of Hea ngth hickne	duce Strain 2.0%	1 1 1 1	1.1,1.1	1 1	t 1 1 1	ı	t
Test Conditions: Machine Method of Heating Gage Length Sheet Thickness Atmosphere	Time (Seconds) To Produce Indicated Plastic Creep Strain 0.2% 0.5% 1.0% 2.0%	195.0	335.0	1680.0	346.0 750.0 944.0	540.0	3600.0
	Plastic	135.0	- 8.0 21 7. 0 6.0	265.0 1020.0 1690.0 8.0 21.0 50.0	140.0 252.0 390.0 520.0	360.0	428.0 2030.0 3600.0
	lime (Selicated 0.2%	60.0	3.5	265.0	65.0 91.0 95.0 134.0	8.0	0°824
	Ind Ind 0.1%	13.0	- 2.0 12.0 1.0	% ı	20.0 32.0 33.0	0.04	0.76
	Creep In 30 sec. (\$)	0.18	0.13	0.08	0.15 0.10 0.10 0.10	0.1	0.05
	Loading Strain (%)	0.25	0.30 0.35 0.25 0.40	0.2	0.25	0.2	0.18
	Approx. Thermal Exp. (in/in)	0.0089 0.0094 0.0096 0.0097	0.0095 0.0092 0.0097 0.0092	0.0098	0.01 0.0098 0.0094 0.0098	0.01	0.0094
Lot A	Stress (ksi)	0000	75.0 75.0 75.0	70.0	65.0	62.0	0.09
Powder Lot A	Spec. No.	BA-88 BA-89 BA-138 BA-178	BA-169 BA-176 BA-159 BA-174	BA-160 BA-135	BA-161 BA-134 BA-162 BA-137	B/:-163	BA-175

TABLE VI

2500°F CREEP-RUPTURE PROPERTIES FOR COMFERCIALLY PURE SINTERED TUNGSTEN SHEET (FANSTEEL)

Powder Lot A

	- ETITA	- Resistance	- 2.0 inches	- 0.050 inch	- frgon-7% Hydrogen
Test Conditions:	Machine	Method of Heating	Gage Length	Sheet Thickness	Atmosphere

		Approx. Thermal	Loading	Creep	T Tug	Time (Seconds) To Produce Indicated Plastic Creep Strain	conds) '	lo Prod Creep	uce Strain	!	Time To	Elongation
Spec.	Stress (ksi)	Exp. (in/in)	Strain (%)	30 sec. (%)	0.1%	0.2% 0.5% 1.0% 2.0%	5.5%	1.0%		4.0%	Rupture (sec.)	in 2 in. (%)
BA-133	30.0	0.0126	0.08	0.1	30.0		78.0 180.0 201.0 214.0	201.0	214.0	219.0	221.0	5.5
BA-165	29.0	0,0060	0.15	0.21	12.0	29.0	29.0 67.0 105.0	105.0	185.0	1	310.0	4.0
BA-170 BA-112 BA-167	27.0 27.0 27.0	0.013 0.0129 0.0129	0.10	0.15	20.0 8.4 130.0	37.0 16.0 332.0	52.0 27.0 505.0	66.0 38.0 565.0	81.0 51.0 622.0	92.0 53.0 667.0	95.0 60.0 670.0	5.5 6.0 7.
BA-95	25.0	0.005	या.0 आ.0	0.32 0.05	14.0 350.0	21.0		61.0	42.0 61.0 84.0 93.0 93.0 900.0 1257.0 1803.0 2175.0	93.0	94.0 2560.0	0.6
BA-97 BA-130	23.0	0.005	0.04	40.0 90.0	1620.0 85.0	65.0 201.0 305.0 6740.0 3600.014400.0 85.0 201.0 305.0 340.0 392.0 473.0	305.0	340.0	9600.01 392.0	0.674 473.0	16150.0 51 7. 0	10.0
BA-93	21.0	0.005	0.60	0.01	4.0 820.0	4.0 13.0 84.0 820.0 1200.0 1830.0	84.0 1830.0	655.0	84.0 655.0 2070.0 9415.0 830.0 2955.0 4860.0 6240.0	9415.0 6240.0	23000.0 6290.0	12.0

TABLE VII

3000° F CREEP-HUPTURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TUNGSTEN SHERT (FANSTEEL)

Test Conditions:

Powder Lot A

Machine - EITM Method of Heating - Resistance Gage Length - 2 inches

Sheet Thickness - 0.050 inch Atmosphere - Argon-7% Hydrogen

Elong. in 2 in. (%) 21.0 16.0 19.0 25.0 15.0 14.0 13.0 18.0 13.0 14.0 0.3 Time To Rupture (sec.) 2441.0 2140.0 2406.0 7017.0 6765.0 7471.0 290.0 640.0 771.0 467.0 1430.0 4260.0 9270.0 15807.0 548.0 2030.0 4500.0 9480.06320.0 23550.0 1,90.0 1247.0 363.0 980.0 390.0 1065.0 81.0 271.0 255.0 160.0 1525.0 3843.0 160.0 565.0 1783.0 390.0 1220.0 3275.0 \$.0° Time (Seconds) To Produce Indicated Plastic Creep Strain 8,848 0.00 0.00 20.0 6.0 7.0 0.75 173.0 1.0% 139.0 23.0 3.0 5.0 65.0 35.0 47.0 0.5% 95.0 2.52 6 6 6 6 6 6 17.5 8.0 13.0 0.2% 7.5 3.0 5.0 8 60 0 7 0 30.0 205.0 3.0 0.1% Creep In 30 Sec. 0.3 0.46 0.36 2.3 0.62 1.07 0.2 0.4 0.25 0.03 8 Strain Load 1.0 0.15 0.45 0.14 0.25 0.19 0.05 0.03 0.3 8 Exp. (in/in) Thermal 0.0165 0.0156 0.0152 0.0148 0.0149 0.0154 0.0159 0.0156 0.0155 0.0167 0.020 Stress ははは 이 이 이 이 이 이 10.0 8.5 6.9 (ksi) BA-142 BA-5 BA-7 BA-10 Spec. BA-6 BA-4-3 1-84 184-9 184-9

TABLE VIII

3500°F CREEP-RUPTURE PROPERTIES FOR COMMERCIALLY FURE SINTERED TUNGSTEN SHEET (FARSTEREL)

Powder Lot A

Test Conditions:

Machine
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-7% Hydrogen

		Approx. Thermal	Loading	Creep	I	Time (Seconds) To Produce Indicated Plastic Creep Strain	conds)	To Prod Creep	luce Strain		Time To	Elongation
Spec.	Stress (ksi)	Exp. (in/in)	Strain (%)	30 sec. (%)	0.1%	0.2%	0.5%	1.0%	2.0%	4.0%	Rupture (sec.)	in 2 in. (%)
BA-11	0.21	0.0198	1.0	3.7	1	0.5	1.5	0.4	11.0		124.0	20.0
BA-12	12.0	0.0199	1.0	2.0	'	0.5	1.5	3.0	10.0	30.0	125.0	20.0
BA-13	0.21	0.0194	1.0	5.8	1	t	1.0	2.5	8		8	19.0
BA-14	10.0	0.0211	1.0	2.0	1	0.5	1.6	5.0			210.0	18.0
BA-15	10.0	0.0193	0.5	0.8	0.5	0.1	0	10.0	30.0	88	292.0	18.0
BA-16	10.0	0.0195	0.5	1.9	0.3		3.0	10.0			284.0	16.0
BA-17	8.0	0.0198	0.25	8.0	1.0		13.5	0.44			808.0	14.0
BA-20	0.0	0.0192	0.15	2,0	2.5	6.5	29.0	8		503.0	1042.0	15.0
BA-30	ာ	0.0205	0. 0.	0.51	o m		0.0% 0.0%	85.0	230.0		1164.0	16.0
BA-38	5.5	0.0191	0.01	टा.0	25.0	55.0		516.0	1275.0	1275.0 2808.0	4820.0	12.0
BA-42	5.5	0.0198	0.1	٥.2	10.0		155.0		1	ı	1	1
BA-41	5.0	0.0188	0.01	†0°0	190.0		1537.0	3537.0	7497.0	462.0 1537.0 3537.0 7497.d13977.0	ı	ı
BA-35	4.5	0.0192	0.01	0.015	490.0	480.0 1080.0 3085.0 6790.013740.025003.0	3085.0	6790.01	3740.0	25003.0	ı	. 1
	_			•	_	_	-	-	-	-	-	-

TABLE IX

4000° F CREEP-RIPTURE PROPERTIES FOR COAMERCIALLY PURE SINTERED TUNGSTEN SHEET (FANSTEEL)

Machine - EFTM
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-7% Hydrogen Test Conditions: Powder Lot A

		Approx. Thermal	Loading	Creep	n Ind	Time (Seconds) To Produce Indicated Plastic Creep Strain	conds) Plastic	To Prod Creep	uce Strain		Time To	Time To Elongation
Spec.	Stress (ksi)	Exp. (in/in)	Strain (%)	30 sec.	0.1%	0.1% 0.2% 0.5%	0.7%	1,0%	20.0	4.0%	Rupture (sec.)	in 2 in. (%)
BA-51	0.9	0.0235	0.45	2.13	0. L	1. 	0,4	28.0	28.0	67.0	111.0	14.0
BA-53	0.9	0.0216	0.50	2.0	i o	2	4.5	12.0	30.0	0.69	198.0	20.0
BA-57	5.5	0.021	0.07	0.24	10.0	24.0	83.0	175.0	372.0	700.0	1290.0	22.0
BA-44 BA-45 BA-45	W.W.W.	0.022	0.1 0.05 0.06	0.47 0.85 0.27	7.5	10.0 5.0 17.0	32 16.0 50.0	72.0 40.0 101.0	153.0 98.0 190.0	290.0 204.0 334.0	360.0 404.0 491.0	14.0 20.0 17.0
B1-47 B6-48	00	0.0236	0.015	0.085	38.0 0.0	95.0	325.0	645.0	645.0 1165.0 1457.0 1105.0 1800.0 1910.0	1457.0 1910.0	1871.0 2209.0	10.0
Bi54	3.3	0.0225	0.015	0.045	96.0	210.0	578.0	1040.0	578.0 1040.0 2075.0 2215.0	2215.0	2254.0	17.0
B55 B4-56	3.75	0.0218	0.02	0.04 0.05	₹8 0.0	215.0		1395.0	630.0 1395.0 2745.0 2840.0 622.0 1282.0 2490.0 2555.0	2840.0 2555.0	294 7. 0 2740.0	18.0 16.0

T.B.E X

Test Conditions: 4500°F CREEZ-RUPTURE PROPERTIES FOR. COMMERCIALLY PURE SINTERED TUNGSTERN SHEET (FARSTEET.) Fowder Lot ..

Machine
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argox-7% Hydrogen

Approx. Creep Thermal Loading In Stress Exp. Strain 30 sec.	L Loading Strain 3	 ജ.	Creep In 30 sec.		Ind	ime (Se	Time (Seconds) To Produce Indicated Plastic Creep Strain	To Prod Creep	uce Strain		Time To Rupture	Elongation in 2 in.
(ksi) (in/in) (%)		8	1	(F)	0.1%	0.2%	0.5%	1.0%	80 2	4.0%	(sec.)	(%)
4.0 0.0258 -	0.0258	1		1	1		t		ı		1.0	l
3.5 0.021 -	0.021	ı		1	ı	1	1.0	1.8	3.0	0.9	8.5	13.0
3.25 0.0275 0.04 3.25 0.0254 0.05		0.04		0.72 0.48	6.0	9.0 12.0	32.0	0.04	54.0	73.0	78.0	
2.9 0.0241 0.075 (0.1			0.7	0.0	6.0	20.0	44.0 133.0	206.0	74.0 233.0	91.0	16.0
2.5 0.0248 0 0 0 2.5 0.0248 0.05 0	0.05		00	0.09	35.0	85.0 14.5	32.0	321.0 52.0	330.0	336.0 150.0	362.0 377.0	19.0
2.25 0.0236 0.015 0	0.015		00	0.015 0.02	314.0 375.0	545.0 840.0	730.0	972.0 1590.0	1239.0 1818.0 1611.0 1666.0	1818.0 1666.0	2911.0 1900.0	21.0
2.0 0.025 0 0 2.0 2.0 0.0253 0.1 0	000		00	0.015	285.0	320.0	710.0	730.0	770.0	854.0 980.0	124 7. 0 12 66. 0	25.0
1.8 0.0249 0.01 0	0.01		00	0.02	30.0	60.0 345.0	205.0	320.0 489.0	363.0 632.0	493.0 974.0	801.0 2015.0	16.0
1.5 0.0228 0.15 0.	0.15		o .	0.16	0.4	240.0		896.0 1420.0 2946.0	2946.0	ι	1	l
							1		_			

TABLE XI

5000°F CREEP-RUPTURE PROPERTIES FOR COMBERCIALLY FURE SINTERED TUNCSTEN SHEET (FARSTEEL)

Machine - ETTM

Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Irgon-TW Hydrogen Test Conditions: Powder Lot A

TABLE XII

1500°F CREEP-RUPTURE PROPERTIES FOR COMMERCIALLY PURE SINCERED TUNGSTEIN SHEET (FANSTERL)

Test Conditions:

Powder Lot B

Machine
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-7% Hydrogen

		Approx. Thermal		Creep	Inć	Time (Seconds) To Produce Indicated Plastic Greep Strain	conds)	To Prod	luce Strain		Time To	Time To Elongation
Spec.	Stress (ksi)	Exp. (1n/1n)	Strain (%)	30 sec.	0.1%	0.1% 0.2% 0.5% 1.0% 2.0% 4.0%	0.5%	1.0%	2.0%	4.0%	Rupture (sec.)	in 2 in.
BB-149 130.0	130.0	0.0065	9.0	1	1	ı	2.5	0.4	1	ı	7.0	3.0
1148 118-123 118-124	125.0 125.0 125.0	0.007	000	د. نابان نابان	15.0	0.00.00	155.0 120.0	155.0 302.0 420.0 1050.0 615.0 1480.0	1 1 1	111	305.0 1115.0 1745.0	4 w4
BB-150	BB-150 122.5	0.0069	0.5	0.35	4.5		65.0	65.0 133.0			140.0	3.0
BB-147	120.0	0.0068	7.0	2.0	12.0		65.0 455.0 950.0	950.0	t	1	1020.0	4.5
BB-151	117.5	0.007	0.45	0.2	9.0		30.0 180.0 490.0	0.064	ı	1	502.0	3.0
BB-146	BB-146 115.0	0.007	0.35	0.13	28.0		92.0 1230.0 3410.0	3410.0	ı	ı	4540.0	4.0
	_								_			

TABLE XIII

2000°F CREEP-RUPIUHE PROPERTIES FOR COMMERCIALLY FURE SINTERED TUNKSTEN SHEET (FANSTERL)

Powder Lot B

Test Conditions:

Machine
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-T% Hydrogen

Time To Rlongation	Rupture (sec.)	92.0	0.4	61.0 3.5	185.0 4.5	321.0 3.5	888.0 4.0	8742.0 4.5
se brain	77 %	'-			- <u>'</u>			<u>.</u>
Time (Seconds) To Produce Indicated Plastic Creep Strain	0.1% 0.2% 0.5% 1.0% 2.0% 4.0%	94.0			175.0	312.0	838.0	6405.0
conds)	0.5%	53.0	1	36.0	70.0 130.0	48.0; 205.0	142.0 482.0	120.0 390.0 2310.0 6405.0
ime (Se	0.2%	6.0 15.0 53.0		11.0			142.0	390.0
Ind	0.1%	0*9	1	0.4	38.0	17.0	45.0	120.0
Creep	30 sec. (%)	0.3	1	0.45	60.0	0.25	0.08	40.0
Approx. Thermal Loading	Strain (%)	4.0	0.35	0.3	0.23	0.25	0.2	0.15
Approx. Thermal	Exp. (in/in)	0.0094	9600.0	0.0099	1600.0	0.0095	0.01	0.0093
	Stress (ksi)	93.0	98.0	95.0	90.0	75.0	70.0	60.0
	Spec.	BB-152	BB-153	BB-157	BB-154	BB-155	09- 9	BB-156

TABLE XIV

2500°F CREEP-RUPIURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TURCETEN SHEET (FANSTEREL)

Powder Lot B

Machine
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-7% Hydrogen

Test Conditions:

Elongation	(%)	9.0	10.0	9.0	10.0	13.0	10.0 14.0 12.5 13.0	14.0
Time To	(sec.)	28.0	392.0	2520.0	2235.0 3070.0	4116.0	1948.0 705.0 2835.0 1504 7. 0	90500
	4.0%	90.0	381.0 4 67. 0	2494.0 417.0	1100.0 1415.0 1905.0 722.0 1068.0 1840.0	920.0 1355.0 2157.0	885.0 1325.0 160.0 370.0 1080.0 1790.0 2685.0 5120.0	4410.0
luce Strain	2.0% 4.0%	2.0	345.0 392.0	2129.0 248.0	1100.0 1415.0 1905.0 722.0 1068.0 1840.0	1355.0	- 14	2565.0
Time (Seconds) To Produce Indicated Plastic Creep Strain	1.0%	1.2	301.0	1058.0 1585.0 1846.0 2129.0 2494.0 63.0 122.0 165.0 248.0 417.0	1100.0		635.0 60.0 695.0 1713.0	642.0 1150.0 1740.0 2565.0 4410.0
sconds)	0.2% 0.5% 1.0%	9.0	246.0	1585.0	910.0 1	723.0	480.0 20.0 578.0 1250.0	1150.0
Fine (Se	0.2%	0.3	138.0	1058.0	390.0	528.0	315.0 6.0 377.0 955.0	
Ind	0.1%	0.2	56.0 71.0	30.0	300.0	335.0	162.0 1.5 200.0 785.0	181.0
Creep In	(%)	1 1	0.07	0.02	0.02	0.05	0.04 0.07 0.05	0.05
Loading	(%)	0.3	0.1	0.05	0.05	0.055	0.04 0.05 0.05	0.05
Approx. Thermal	(in/in)	0.0080	0.0125	0.0070 0.0096	0.010?	0.0108	0.013 0.0144 0.013 0.011	0.0122
Stress	(ksi)	31.0	30.0	28.0	0° †2	22.0	20°0 20°0 20°0 20°0	18.0
Spec.	No.	BB-130 BB-83	BB-133 BB-134	BB-131 BB-128	BB-132 BB-127	BB-126	BB-65 BB-56 BB-64 BB-129	BB-120

TABLE XV

3000°F CREEP-RIPTURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TUNGSTEN SHEET (FANSTERL)

Powder Lot B

Test Conditions:

Machine - ETIM
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-7% Hydrogen

			_										
Elong. in 2 in.	(%)	13.5	5.51	13.0	14.0	13.0	14.0	7.8	7.0	8.5	8.2	ing thermo-	8.5
Time to Rupture	(sec.)	318.0	356.0	257.0	515.0	570.0	535.0	1656.0	1813.0	0.096	5283.0	930.0 Specimen cracked rewelding	0,0049
	4.0%	155.0	0.621			255.0		788.0	530.0 1220.0	540.0	2640.0	n crack	4550.0
Time (Seconds) To Produce Indicated Plastic Creep Strain	2.0%	61.0			89.0						550.0 1260.0 2640.0	Specime	950.0 2300.0 4550.0
) To Pr c Creep	1.0%	32.0	16.0	14.0	34.0	0.04	33.0	75.0	185.0	0.97			
Time (Seconds) To Produce Icated Plastic Creep Stra	0.5%	8.3	5.5	5.0	11.5	18,0	13.0		65.0		205.0	345.0	370.0
Time (0.2%	1.7	1.0	1.5	3.8	7.0	3.5	0.4	14.0	6.7	43.0	0.06	80.0
Ā	0.1%	0.8	4.0	0.5	2.0	1.9	1.5	1.0	5.0	1.8	15.0	27.0	30.0
Creep in 30 sec.	(%)	1.3	1.5	1.8	1.0	6.0	0.95	9.0	0.3	0.55	ሳፒ•0	0.1	0.1
Load	(%)	9.0	0.65	0.8	9.0	0.5	9.0	0.3	۳ . 0	0.3	0.05	0.03	ф. ф
Thermal Exp.	(in/in)	0.0148	0.0154	0,0160	0.0158	0.0150	0.0150	0.0165	0.0161	0.0162	0,0160	0.0159	0.0159
Stress	(ks1)	14.41	14.41	14.4	13.2	13.2	13.2	11.3	11.3	11.3	9.2	4.€	₹.8
Spec.	S	BB-54	BB-139	BB-140	BB-77	BB-73	BB- 81	BB-158	BB-159	BB-163	BB-95	BB-79	BB-82

TABLE XVI

3500°F CREEP-RUPTURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TUNGSTEN SHEET (FANSTEEL)

Powder Lot B

Test Conditions:

Machine - ETTM
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-7% Hydrogen

Stress Exp. St		<u>~ ~</u>	Load	Creep in	Ā	Time (Seconds Plasti	Time (Seconds) To Produce Indicated Plastic Creep Strain	oduce Strair		Time to Rupture	Elong. in 2 in.
ln) (%)	ln) (%)		(%)		0.1%	0.2%	0.5%	1.0%	2.0%	4.0%	(sec.)	(\$)
		0.4 1.5	1.5		1.0	4.S	6.0	16.0	43.0	97.0	172.0	10.5
	1		1		•	No Test		١,				1
	0.35		1. L		8.0	2.1	7.0	18.0	0.74	106.0	174.0	10.5
0.0175 0.2	0.2		0.17		3.7	9.0		81.0	188.0			9.5
7:5 0.0178 0.2 0.15	0.2		0.15		0.0	8.0	29.0	75.0	183.0	391.0	280.0	10.0
0.0188 0.25	0.25		0.14		2.5	8.9		53.0	127.0			10.0
0.0175 0.07	0.07		71.0		15.0	40.0				860.0 1462.0	1835.0	0.6
6.0 0.0178 0.06 0.15	90.0		0.15		20.0	0.84	180.0	425.0		1524.0	1741.0	10.0
0.0188 0.05	0.05		0.14		26.0	57.0				1525.0	1951.0	0.6
5.4 0.0175 0.05 0.05	0.05		0.05		116.0	257.0		1935.0	3780.0	895.0 1935.0 3780.0 6275.0	8725.0	11.0
0.021	- す。 o		0.05	•	0.0	165.0		1230.0	2450.0	4150.0		15.0
4.8 0.018 0.02 0.03	80.0		0.03		255.0	595.0	1830.0	3780.0	7450.0	595.0 1830.0 3780.0 7450.011870.0	19800.0	10.0
							,			•		

TABLE XVII

4000°F CREEP-RUPTURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TUNGSTEN SHEET (FARSTEEL)

Powder Lot B

Test Conditions:

Machine
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-7% Hydrogen

Elong. in 2 in.	(§	8.5	10.0	0.41 5.01	i*	0.5 5.0	*	15.0	}	*
Time to Rupture	(sec.)	136.0	517.0	285.0	4500.0	1412.0	8940.0	5550.0		10060.0
-	†.05	70°0 78°0		4.8	** 1	1,98.0	*	860.0 1560.0 1900.0		*
oduce Strain	2.0%	28.0	290.0	86	໙	285.0	6200.0	1560.0	•	4380.0
Creep	1.0%	10.0	164.0	10.0	7	150.0 3810.0	3300.0	360.0		840.0 1920.0 4380.0
Time (Seconds) To Froduce Indicated Plastic Creep Strain	0.5%	3.5	85.0	7 4		70.0	1620.0	180.0		
Time (0.2%	1°0	36.0	0 C	185.0	23.0		215.0		230.0
	0.1%	η·0 η·0	13.0	9.0	75.0	10.0	205.0	130.0		85.0
Creep in 30 sec.	(%)	2.1	2.0	1.7	0.05	0.3	20.0	0.0) }	90.0
Load Strain	(%)	4°0 0.6	0.1	0.6	8 8	0.05	0.02	0.01	}	20.0
Thermal Exp.	(in/in)	0.0238	0.0225	0.023	0.0227	0.028	0.021	0.0225		0.0225
Stress	(ks1)	8.4 8.4	80	60 c	, e	0 0 0 0	e Q	4.0	 	2.0
Spec.	No.	38-57 38-58	BB-59	8-8	B-143	BB-85 BB-137	338-145	BB-74	<u>`</u>	24-76 188-76

* Failed at Radius

TABLE XVIII

4500°F CREEP-RUPTURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TUNGSTEN SHEET (FANSTEEL)

E H	
Powder]	

nagorpa	Elonga	in 2 in. (%)	13.0 17.0 8.0	8.0 14.0 8.0*	η, φ. η, τ. φ. 1. τ. φ.	ı	18.0 15.0 19.0
- ETTM - Resistance - 2.0 inches - 0.050 inch - Argon-7% Hydrogen	Time To	Rupture (sec.)	38.5 100.0 143.5	1746.0 131.0 10 0. 0	3704.0 432.0 2161.0		770.0 3720.0 2899.0
. IIIII . E0		4.0%	23.0 65.0	435.0 1090.0 30.0 69.0 7.0 14.0	3420.0 - 602.0 427.0 1156.0 2089.0	1	495.0 3612.0 2440.0
Test Conditions: Machine Method of Heating Gage Length Sheet Thickness Atmosphere	Time (Seconds) To Produce Indicated Plastic Greep Strain	2.0% 4.0%	11.0 38.0 139.0			1	54.0 95.0 182.0 303.0 405.0 495.0 700.0 1620.0 - 3400.0 3570.0 3612.0 530.0 1150.0 - 1830.0 2440.0
Test Condit Machine Method of H Gage Length Sheet Thick Atmosphere	To Pro Creep	1.0%	4.5 20.0 114.0	181.0 13.0 3.0	1730.0 180.0 659.0	6070.0	303.0 3400.0
	conds) Plastic	0.5%	2.5 10.0 15.0	73.0	1230.0 104.0 254.0	3180.0	182.0
	Time (Seconds) To Produce dicated Plastic Creep Str	0.2%	1.0 4.0 18.5	21.0	460.0 1 41.0 62.0	549.0 1240.0 3180.0 6070.0	95.0 1620.0 1150.0
	E Dat	0.1%	000	9.0	200.0 26.0 19.0	549.0	700.0 730.0
	Creep	30 sec. (%)	10.4 1.5 0.32	0.27 2.0	0.035 0.12 0.13	0.02	0.05 0.015 0.0
	Loading	Strain (%)	0.0	P-48	0.0 0.015 0.05	10.0	0.005
	Approx. Thermal	Exp. (in/in)	0.0261 0.0271 0.0258	0.0230 0.0278 0.0220	0.0262 0.0271 0.0245	0.0222	0.0271 0.0248 0.0232

* Failed at thermocouple weld

8280.0

4515.0 6240.0 7725.0 9600.017190.0 - 1510.0 1955.0 2410.0 3105.0 6120.0 8220.0

0.0

0.0

0.0215

1.25

181-88 181-171

1.75

BB-141

28-72 28-73 28-73

0 0 0 0 0 0

38-70 38-71 38-136

BB-135 BB-69 BB-121

Stress

Spec.

(ksi)

000

BB-67 BB-63 TABLE XIX

5000°F CREEP-RIPTURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TUNGSTEN SHEET (FANSTERL)

Powder Lot B

Test Conditions:

Machine - ETTM
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-7% Hydrogen

Stress	Thermal Exp.	Load Strain	Creep in		Time (Seconds) To Produce Indicated Plastic Creep Strain	Seconds Plasti	Time (Seconds) To Produce icated Plastic Creep Stra	oduce Strain		Time to Rupture	Elong. in 2 in.
$(ksi) \mid (in/i)$	(J	(%)	(%)	0.1%	0.26	0.5%	1.0%	2.0%	4.0%	(sec.)	(%)
3.07 0.0318	80	2.0	ı	ı	0.5	1.0	2.0	3.0	1	18.0	17.0
2.0 0.0310	0 1	0.0	0.4	5.0	13.0	38.0	0.0	115.0	114.0	151.0	0.09
) (V	1.6	0.35	1.3	3.0		16.0		56.0	73.5	7.0
1.7 0.0332	Ø	0.0	0.105	29.0	63.0	145.0	0.722	277.0	287.0	288.0	3.0
1.5 0.028 1.5 0.026 1.5 0.0305	~~ '	0.03	0.32 2.6 5.05	78.0	20.0 163.0 3.0	45.0 337.0 7.0	87.0 50.0 6.0	136.0 8.0 8.0 8.0	225.0 565.0 50.0	298.0 567.0 131.0	12.5 5.0 14.0
1.25 0.0303	æ	0.0	0.035	135.0	234.0	575.0	830.0	980.0	1003.0	1004.0	2.0
1.0 0.0301 1.0 0.0322 1.0 0.0302	538	0.00	0.04 0.25 0.0	180.0 15.0 255.0		1590.0 53.0 712.0	540.0 1590.0 3120.0 4072.0 4162.0 25.0 53.0 85.0 148.0 312.0 425.0 712.0 1275.0 1600.0 1602.0	3120.0 4072.0 4162.0 85.0 148.0 312.0 1275.0 1600.0 1602.0	4162.0 312.0 1602.0	4163.0 483.0 1603.0	5.0 0.31 7.4
_			_	_					•		

TABLE XX

1500°F CREEP-RUPIUME PROPERTIES FOR COLERCILLY PURE SINIERED TUNGSTEN SHEET (FANSTEEL)

Powder Lot C

Machine
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-7% Hydrogen

Test Conditions:

		Approx. Thermal	Loading	Creep In	In	Time (S	Time (Seconds) To Produce Indicated Plastic Creep Strain	To Prod Creep	uce Strain		Time To	Elongation
Spec. No.	Stress (ksi)	Exp. (in/in)	Strain (%)	30 sec. (%)	0.1%	0.1% 0.2% 0.5%	0.5%	1.0% 2.0% 4.0%	2.0%	4.0%	Rupture (sec.)	in 2 in. (%)
BC-58	106.0	0.0072	29.0	1	1.5	C*9	22.0	,	•		25.0	2.5
BC-59	103.0	0.0071	0.55	ı	3.5	10.0	149.0		1	•	61.0	2.5
BC-57	100.0	0.0071	0,40	0.19	5.0	40.0	310.0	,	1	ı	795.0	0.0
BC-65 BC-66	8,8	0.0074	0.45	0.20	Specim 8.0	en Craci 32.0	Specimen Gracked Setting Up 8.0 32.0 320.0 -	ing Up		• 1 1	506.0	3.0
BC-56 BC-108 BC-109	95.0 95.0 95.0	0.0074 0.0072 0.0075	0.30	0.14 0.13 0.14	7.0	170.0 130.0 115.0	1950.0 - Mac 1295.0	1950.0 3740.0 - - Machine Malfo 1295.0 3360.0 -		ion.	3980.0	3.5
L9-28	93.5	0.0072	0.45	0.30	6.0	20.0	100.0	100.0 178.0	1	I	180.0	3.5
BC-55	0.26	0.0078	0.25	60.0	38.0	260.0	2700.0 6000.0	0.0009	1	1	7050.0	3.0

The state of the s

TABLE XXI

2000°F CREEP-RUPTURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TUNGSTER SHEET (FANSTEEL)

Test Conditions: Powder Lot C

Machine - EITM
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-Th Hydrogen

		Approx. Thermal	Loading	Creep	Indi	Time (Seconds) To Produce Indicated Plastic Creep Strain	conds)	To Prod Creep	uce Strain			Elongation
Spec.	Stress (ksi)	Exp. (1n/1n)	Strain (%)	30 sec.	0.1% 0.2% 0.5% 1.0% 2.0% 4.0%	0.2%	5.5%	1.0%	20.08	4.0%	Rupture (sec.)	in 2 in.
BC-69	0.06	0.0104	0.35	1	3.0	3.0 7.5 20.0	20.0	29.5	30.0	ı	32.0	3.5
BC-62 BC-69	0 0 8 8	0.0093	0.40	0.26	7.0	23.0	72.0	109.0	111.0	1 1 .	115.0	3.5
BC-71	75.0	0.0105	0.25	0.17	20.0	56.0	210.0	395.0	418.0	1	420.0	3.5
BC-61 BC-74	0.0 2.0 2.0	0.0095	0.23	0.10	28.0	148.0 62.0	790.0	790.0 1740.0 1966.0 580.0 1300.0 1314.0	1314.0	1 1	1980.0	4.4 7.0
BC-73	65.0	0.0100	0.20	0.05	67.0	240.0		630.0 2520.0 3898.0	3898.0	. 1	3900.0	0.4
			_				-		_			

TABLE XXII

2500°F CREEP-RUPTURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TUNGSTEN SHEET (FANSTERL)

Powder Lot C

Method of Heating - Resistance Sheet Thickness - 0.050 inch Gage Length - 2.0 inches Atmosphere - Argon-7% Hydrogen Machine

Test Conditions:

Elongation	in 2 in. (%)	5.0	1	•	5.5	2.0	5.5	5.5	5.0	5.5	5.0	9.0
Time To	Rupture (sec.)	36.0	1	•	166.0	135.0	138.0	372.0	106.0	940.0	372.0 1373.0	817.0 777.0
	4.0%	1	t	•	164.0	131.0	136.0	351.0	102.0	936.0	1363.0	765.0
luce Strain	1 1	34.0	tress	يد ا	• -	128.0	130.0	338.0	390.0	874.0	Machine Malfunction 870.0 1102.0 1284.0	648.0 645.0
To Proc	1.0% 2.0%	31.0,	Lying St	. No Test	145.0			320.0	368.0	630.0 785.0	Machine Malfunction 870.0 1102.0 1284.0	560.0
sconds)	0.5%	27.0	tus App.	ction		103.0	110.0	304.0	295.0			501.0
Time (Seconds) To Produce Indicated Plastic Creep Strain	0.2%	15.0	Failed in Radius Applying Stress	Machine Malfunction -	34.0	•	55.0	145.0	120.0	240.0	243.0	253.0
a.	0.1%	0.9	Failed	Machin	14.0	20.0	19.0	58.0	0.04	75.0	96.0	105.0
Creep	30 sec. (%)	1.0	1	,	0.18	0.15	0.13	90.0	01.0	0.05	0.05	90.0
Loading	Strain (%)	0.25	ı	1	0.15	0.15	0.15	90.0	0.08	70.0	0.08	70.0 0.07
Approx. Thermal	Exp. (in/in)	0.013	0.012	0.0126	0.0132	0.0123	0.0121	0.0125	0.0125	0.0123	0.0131	0.0128 0.0127
	Stress (ksi)	45.0	45.0	45.0	40.0	٠ <u>٠</u>	0.04	33.0	32.0	31.0	30.0	27.5
	Spec.	BC-99	BC-165	BC-168	BC-102	BC-106	BC-107	BC-103	BC-105	BC-10#	BC-100 BC-101	BC-63 BC-64

TABLE XXIII

COMMERCIALLY PURE SINTERED TUNGSTEN SHEET (FANSTEEL) 3000°F CHEEP-RUPTURE PROPERTIES FOR

ပ Powder Lot

Method of Heating - Resistance Gage Length - 2.0 inches Sheet Thickness - 0.050 inch Atmosphere - Argon-7% Hydrogen EII W Test Conditions: Machine

Atmosphere

Elongation in 2 in. (%) 0.년 6.0 8.0 10.0 11.0 19.0 19.0 15.0 983.0 2900.0 8540.0 *Discontinued Test at 12,600 sec. 510.0 1660.0 6030.0 *Machine malfunction Time To Rupture 2273.0 370.0 1070.0 1886.0 1368.0 3395.0 3830.0 763.0 (sec.) 7600 sec. 392.0 1004.0 300.0 909.0 615.0 1460.0 205.0 156.0 424.0 1158.0 2520.0 4.0% 141.0 62.0 24.0 175.0 Indicated Plastic Creep Strain 2.0 Time (Seconds) To Produce 11.0 128.0 84.0 313.0 19.0 7.0 33.0 1.0% 151.0 9 N 80 14.0 0.04 2.04 2.04 3.04 75.0 0.5 300 28.0 80.0 130.0 0000 3.0 0.2 - 0 O 0.1 4 04 10.0 22.0 38.0 0.1% In 30 sec. Creep 0.08 0.50 0.12 1.45 2.4 0.95 0.33 (%) Loading Strain 0.35 0.03 0.45 0.15 0.03 1.0 3 Thermal (in/in) 0.0140 0.0120 0.0118 0.0112 0.0135 0.0164 0.0112 0.0150 0.010 0.0135 Approx Exp. Stress 3.0 (ksi) 10.0 ဝ 12.0 12.0 6.0 16.0 16.0 14.0 ୦. ମୁ BC-75 8C-73 8C-73 8C-39 BC-38 BC-83 BC-91 BC-38 Spec. BC-77

į

TABLE XXIV

3500°F CREEP-RUPIUME PROPERTIES FOR COMMERCIALLY PURE SIMILIADI TUNGSTEN SHEET (FANSTEEL)

Powder Lot C

Test Conditions:

Machine
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-77 Hydrogen

Elongation	in 2 in. (%)	15.0	17.0	17.0	15.0	11.0	7.0	13.0	1	15.0 18.0 10.5	
Time To	Rupture (sec.)	2287.0 374.0	929.0	902.0	536.0	4320.0	9.5.0	9205.0	3519.0	16005.0 16121.0 8975.0	
	4.0%	1920.0 65.0		143.0		951.0 2410.0	930.0	0.0909	0.0471 0.086	3150.0 7285.0 4240.0 8745.0	
luce Strain	2.0%	785.0	_	323				985.0 2790.0 6060.0			
To Proc	1.0%	265.0		31.0			155.0		507.0	1300.0	•
conds)	0.5% 1.0%	95.0	% %	39.0	9.0	98	- 0. 0. 0.	326.0	236.0	525.0 700.0 420.0	
Time (Seconds) To Produce Indicated Plastic Creep Strain	0.2%	19.0	0.9	7.0	2.0	15.0	15.0	74.0	30.0	157.0	
r d	0.1%	6.0	2.0	2,0	0.5	0.0	9	24.0	14.0	78.0 0.00	;
Creep In	30 sec. (%)	0.25	0.55	0.43	1.0	0.27	0.35	0.12	0.20	40.0 40.0 41.0	
Loading	Strain (%)	0.12 0.54	0.30	0.22	0.30	य ः	0.14	20.0	0.10	0.00 0.03 0.03	}
Approx.	Exp. (in/in)	0.0150 0.0189	0.0189	0.0187	0.0187	0.0150	0.0186	0.015	0.0185	0.0182 0.0173 0.0178)
	Stress (ksi)	10.0	10.0	0.6	0.6	0.0	ာ တ	7.7	7.0	999	}
	Spec.	BC-38 BC-89	9C-90	BC-92	BC-95	BC-85	BC-94	BC-87	BC-93	86-58 84-58	\ }

TABLE XXV

4000°F CREEP-RIPTURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TUNGSTEN SHEET (FANSTEEL)

Powder Lot C

Test Conditions:

Method of Heating - Resistance Gage Length - 2.0 inches Sheet Thickness - 0.050 inch Atmosphere - Argon-7% Hydrogen - ETIM Machine

		Approx. Thermal	Loading	Creep	Inc	Time (Se	Time (Seconds) To Produce Indicated Plastic Creep Strain	To Prod Creep	uce Strain		Time To	Elongation
Spec.	Stress (ksi)	Exp. (in/in)	Strain (%)	30 sec. (%)	0.1% 0.2%	1 1	0.5%	1.0%	2.0%	4.0%	Rupture (sec.)	in 2 in. (%)
BC-50 BC-110	8.5 8.5	0.0225	0.90 0.80	3.8 2.7	0.25	0.75	2.0	7.5	20.02	32°0 18°0	105.0 155.0	19.0 20.0
BC-49	8.0	0.0229	04.0	4. [1.0	2.0	6.0	18.0	51.0	130.0	100.0	19.0
BC-111	7.0	0.0218	9.0	2·1	1.0	2.0	7.0	18.0	42.5	100.0	233.0	18.0
BC-114	6.5	0.0223	0.30	1.3	1.0	0.0	8	21.0	58.5	172.0	174.0	18.0
BC-115 BC-116 BC-117	r.r.r.	0.0212 0.0215 0.0216	0.15	0.48 0.54 0.33	4 m.0	10.0	34.0 27.0 52.0	79.0 68.5 127.0	197.0 160.0 290.0	410.0 341.0 585.0	672.0 705.0 840.0	18.0 18.0 13.0
BC-164 BC-167	44 NN	0.022	0.05	0.11	27.0	66.0	198.0 145.0	388.0	740.0	740.0 1250.0 701.0 1262.0	1278.0 1313.0	17.0
BC-137	4.25	0.0220	0.015	0.09	0.04	98.0	280.0	0.469	634.0 1342.0 2220.0	2220.0	2315.0	14.0
BC-136 BC-138	0.0	0.0230	0.005	0.025	245.0 110.0	575.0 300.0	1475.0 3095.0 4828.0 4848.0 975.0 2140.0 4341.0 7260.0	475.0 3095.0 4828.0 4848.0 975.0 2140.0 4341.0 7260.0	4828.0 4341.0	4848.0 7260.0	1998.0 7323.0	17.0

T.BLE XXVI

4500°F CREEP-AUPTURE PROPERTIES FOR COMMERCIALLY PURE SINTERED TUNGSTEN SHEET (FANSTEEL)

Machine - ETTM Method of Heating - Resistance Gage Length - 2.0 inches Sheet Thickness - 0.050 inch Atmosphere - Argon-7% Hydrogen
Powder Lot C

		Approx. Thermal	Loading	Creep	Ing	ime (Se	Time (Seconds) To Produce Indicated Plastic Creep Strain	To Prod	uce Strain		Time To	Elongation
Spec.	Stress (ksi)	Exp. (in/in)	Strain (%)	30 sec. (%)	0.1%	0.2%	0.5% 1.0%		2.0%	4.0%	Rupture (sec.)	in 2 in.
BC-139	0.4	0.0270	2.0	:	,	,	ı	1.0	1.5	20.0	5.0	15.0
BC-140	3.0	0.0229	0.20	1.15	0°0		0.27	86.0	0,0	80.0	184.0	15.0
BC-141 BC-147	0.0	0.0265	0.03	0.0 8.1	22.0	7.4±	25. 38.0	34.0 120.0	148.0	172.0	190.0	11.0
BC-143 BC-150	ભ ભ ભ ભ	0.0268	0.05	0.21 0.035	10.5	28.0 197.0	309.0	155.0	255.0 573.0	466.0 850.0	1000.0	16.0
BC-142 BC-144 BC-145	000	0.0230 0.0279 0.0275	0.015	0.07 0.44 0.15	79.0 3.0	170.0 49.5	367.0 36.0 121.0		590.0 1020.0 2167.0 67.0 110.0 185.0 278.0 1007.0	2167.0 185.0 1007.0	1524.0	0.51
BC-145	1.6	0.0281	0.005	20.0	152.0	320.0	545.0		631.0 1075.0 1983.0	1983.0	5591.0	15.0
BC-146 BC-151	1.5	0.0260	0.005	0.03	241.0 305.0	415.0		714.0 1020.0 1465.0 2520.0 1103.0 1593.0 2335.0 4440.0	1465.0 2335.0	2520.0	8353.0 8407.0	15.0
BC-149	1.25	0.0277	0.025	0	1440.C	3270.0	1440.c 3270.011400.0		inued w	hen 0.59	Discontinued when 0.5% reached	

TABLE XXVII

5000°F CREEP-RUPTURE PROPERTIES FOR COMMERCIALLY FURE-SINTERED TUNGSTEN SHEET (FARSTEEL)

Powder Lot C

Machine
Method of Heating - Resistance
Gage Length - 2.0 inches
Sheet Thickness - 0.050 inch
Atmosphere - Argon-7% Hydrogen Test Conditions:

<u>_</u>		T						
Elongation	1n 2 1n.	14.5	13.0 0.61	1	12.0	8	3.	
Time To	Rupture (sec.)	ł	113.0	68.0	96.0 453.0	376.0 137.0 648.0	5057.0	
		1	8 2.0	Failed outside gage	414.0	70.0 129.0 220.0 342.0 312.0	720.0 1341.0 1795.0 2710.0 4317.0 396.0 1318.0 Failed outside gage	5340.0
luce Strain	2.0% 4.0%		3.12 0.12	outsic	366.0	220.0 342. gage length outside gag length	2710.0 outside	4775.0
To Pro:	1.0%		25.0	Faile	313.0	70.0 129.0 220.0 342.0 iled outside gage length 73.5* Failed outside gage	1795.0 Failed	4300.0
conds) Plastic	0.5% 1.0%		10.5	67.0	77.0*		1341.0	3787.0
Time (Seconds) To Produce Indicated Plastic Creep Strain	0.2%	2.5	0 0 N M	22.5	31.0	24.0 112.0 F	720.0 396.0	545.0 1410.0 3787.0 4300.0 4775.0 5340.0
, H	0.1%	1.0	000	5.0	14.5	9.0 12.0	312.0	545.0
Creep	30 sec. (%)	1.05	1.18	0.24	0.20	0.24 0.085 0.20	0.03	0.005
Loading	Strain (%)	0.3	n a 0 0	0.05	0.005	0.005 0.015 0.01	0.005	0.005
Approx. Thermal	Exp. (in/in)	0.030	0.0271	0.0324	0.0290	0.0302 0.0295 0.0285	0.0297	0.030
	Stress (ksi)	0,0	20	1.75	1.75	141 775	0.1	0.1
	Spec.	BC-152	BC-15#	BC-157	BC-160 BC-163	BC-155 BC-158 BC-161	BC-155 BC-159	BC-162

* Extrapolated Point

TABLE XXVIII

STRESS REQUIRED TO REACH
2% CREEP IN 30, 120, 600, AND 3600 SECONDS

	Test	St	ress (kpsi) To	Reach 2% Cre	ep*
Powder Lot	Temperature (°F)	30 Seconds	120 Seconds	60 Seconds	3600 Seconds
A	1500 2000 2500 3000 3500 4000 4500	111.5 69.0 29.0 14.0 10.0 5.9 (3.6) ¹	107.5 65.0 24.5 12.0 8.1 4.9 2.25 1.45	103.0 62.0 22.5 10.0 6.2 4.2 1.7	98.0 60.0 20.0 7.7 5.0 3.6 1.5 (0.92) ¹
B	1500 2000 2500 3000 3500 4000 4500 5000	127.0 90.0 - 15.0 9.7 4.1 2.35 2.0	123.0 80.0 (32.0) ¹ 12.0 7.6 3.5 1.9	117.0 71.5 22.5 10.0 6.3 2.85 1.45	115.0 63.0 (17.0)1 (7.7)1 5.2 2.1 1.25 (0.9)1
C	1500 2000 2500 3000 3500 4000 4500 5000	105.0 (87.0) ¹ 15.5 10.5 7.3 3.2 (2.1) ¹	101.0 78.0 40.0 13.5 8.7 5.7 2.6 1.7	98.0 72.0 28.0 11.0 7.3 4.5 1.8	93.0 65.0 8.5 5.8 4.0 1.3 0.97

^{*} The line on each creep graph indicating minimum stress to reach 2% creep has been used in making up this table.

^{()1} Extrapolated or interpolated.

TABLE XXIX

Œ

MECHANICAL PROPERTIES FOR COMMERCIALLY PURE TUNGSTEN SHEET (FANSTEEL)

Test Condition 1 Strain Rate Y.S. to U.T.S. - 0.05 in/min.
Atmosphere - Argon-76 Hydrogen
Cage Length - 2 inches
Sheet Thickness - 0.050 inch
Specimen Direction - Longitudinal Hold Time at Temp.-5 min.(1000 to 2000°F Tests), 3 min.(2500 to 5000°F Tests), 3train Rate to Y.S. - 0.005 in/min. Powder Lot A Michine

				
Remarks	 Cracked Loading	Failed at Grip	111	!
Reduction of Area (%)	1 1 1	۲۲ - 80	47 39	16
Modulus of Elasticity x lO ⁶ psi	4.64 4.64	42.0 43.9	38.9 37.6 39.0	37.0
Elongation in 2 in. (%)	0.95	a ! w 5. ₹	www o n o	0.4
U.T.S. (ksi)	232.0	99.1 161.5	94.0 114.0 112.0	73.8
0.2% Y.S. (ksi)	200.0	90.0 112.0 141.0	98.0 102.0 103.0	65.4
Thermal Expansion (in/in)	111	0.0042 0.0040 0.0038	0.0067 0.0065 0.0064	0.0087
Hold Time (min.)	1 1 1	הייה	10 10 10	ī.
Test Temp.	E E E	1000	1500 1500 1500	3000
pec.	B119 B139 B139	B144 B145 B145	3'-147 8'-143 8'-93	в99

The second secon

TABLE XXX

Test Condition 1	S - 0.05 in/min Argon-74 Hydrogen - 2 inches - 0.050 inch - Longitudinal
MECHANICAL PROPERTIES FOR COMBERCIALLY PURE TUNGSTEN SHEET (FANSTEEL)	Strain Rate YS to UTS - 0.05 in/min. Atmosphere - Argon-Th Hydrogen Gage Length - 2 inches Sheet Thickness - 0.050 inch Specimen Direction - Longitudinal
MECHANICAL COMMERCIALLY FURE IT	- ETIM - Resistance - 5 min.(1000°-2000° Tests), 3 min.(2500°-5000° Tests) - 0.005 in/min.
Powder Lot A	Machine - ETTW Method Heating - Resistance Hold Time at Temp 5 min.(1000°-2 3 min.(2500°-5 Strain Rate to Y.S 0.005 in/min.

	Reduction	of Area	(%)	56	L9	,	1	88	%	89	1		747	33	28	8	37	ı	8	%	53	21.5	82	1
- Longituminal	Modulus of	Elasticity	x 10 ⁶ psi	36.0	36.5	1	1	34.5	16.5	16.3	15.5		10.7	11.6	9•टा	6.8	8,0	ı	1.4	3.8	3.6	2.6	8°3	ı
Specimen Direction	Elongation	in 2 in.	(%)	3.5	3.5	1			16.0	17.0	8.0	No Fracture	20.0	15.0	17.0	16.0	17.0	o Test	15.0	14.0	16.0	7.5	16.0	16.0
uam⊤pads		U.T.S.	(ksi)	80.5	0.48	broke setting up test	ot - no tes	35.1 37.0	16.5	16.3	17.0		6.6	10.5	8.8	4. 8	0.9	racked - N	7°7	ຜູ້	3.4	1.5		1.4
		0.2% Y.S.	(ksi)	69.0	73.5	Broke sett:	Heat overs	35.1	6.6	9.5	6.6		5.5	9.9	5.2	3.4 4.8	0.4	Specimen Co	1.2	1.4	2.3	1.1	8,0	 0
mın.	Thermal	Expansion	(in/in)	0.0104	0.0104	1	0.0134	0.0136	0.0162	0.0163	0.0165		0.0186	0.0184	0.0192	0.0227	0.0225	0.0223	0.027 ⁴	0.0262	0.0279	0.0303	0.0313	0.0315
o.co.	Hold	Time	(min.)	2	Ľ	m	m	m	ო	m	m		m	ო	m	m	ო							
Strain rate to I.S 0.007 in/min.	Test	Temperature	(°F)	2000	2000	2500	2500	2500	3000	3000	3000		3500	3500	3500	000†	000+	0004	h500	4500	1+500	2000	2000	2000
Strain M		Specimen	Number	BA-100	BA-101	BA-104	BA-105	BA-106	BA-107	BA-109	BA-109		BA-22	BA-23	BA-24	BA-27	Br28	BA-31	BA-32	BA-37	BA-39	BA-40	BA-43	BA-50

TABLE XXXI

Powder Lot B	th H		CONTERCIAL	MECHANICAL PROPERTIES FOR COMMERCIALLY PURE TUNGSTEN SHEET (FANSTEEL)	ROPERTIES 1 STEN SHEET	FOR (FANSTEEL)	Test	Test Condition 1
Mothine Method Heating Hold Time At Th Strain Rate to	- Page - 1	ETTH Resistance 5 min.(1000 t 3 min.(2500 t 0.005 in/min.	RETIM Resistance 5 min.(1000 to 2000°F Tests) 3 min.(2500 to 5000°F Tests) 0.005 in/min.	Tests), Tests)	Strain Rate Y.S Atmosphere Gage Length Sheet Thickness Specimen Direct	Strain Rate Y.S. to U.T.S. Atmosphere Gage Length Sheet Thickness Specimen Direction	1111	0.05 in/min. Argon-7% Hydrogen 2 inches 0.050 inch
Specimen Number	Test Temperature (°F)	Hold Time (min.)	Thermal Expansion (in/in)	0.2% Y.S. (ksi)	U.T.S. (ksi)	Elongation in 2 in. (%)	Modulus of Elasticity x 10 ⁶ psi	Reduction of Area (%)
BB-1 BB-2 BB-3	R.T. R.T.	111	1 1	222.0 221.0	245.0 224.0 198.0*	0.97 0.75	0.74 0.04 0.44	000
BB-4 BB-5 BB-6	1000 1000 1000	הייי	0.0045 0.0046 0.0045	132.5 137.5 131.5	149.0 150.5 141.0		47.0 43.0 43.0	40 38 31
BB-15 BB-16 BB-17	1500 1500 1500	NNN	0.0069 0.0069 0.0070	114.0 110.5 111.0	129.0 125.0 130.0	w w w w w w	37.0 40.3 42.0	8888
BB-18 BB-19 BB-20	2000 2000 2000	וע וע וע	0.0095	78.5 79.3 81.0	988 98.0	0.44	26.0 34.7 37.0	84 44 44
38-21 38-22 38-44	2500 2500 2500	๛๛๛	0.0129 0.0125 0.0128	28.3 24.0 140.0	30.8 429.9	9.5 10.0 6.5	18.5 27.0 32.0	888
BB-25 BB-26 BB-27	3000 3000 3000	ოოო	0.0154 0.0156 0.0152	9.2 10.5 9.8	13.5 18.0 17.6	7.5 15.0 16.0	13.0 11.7 1.11	ಜಜನಿ

*Failed in radius prior to Y.S. 0.005 in/min. rate

Test Condition 1	- 0.05 in/min frgon-7% Hydrogen - 2 inches - 0.050 inch
MECHANICAL PROPERTIES FOR COLERCIALLY PURE TUNGSTEN SHEET (FANSTEEL)	Strain Rate YS to UTS - 0.05 in/min. Atmosphere - Argon-7% Hyd. Gage Length - 2 inches Sheet Thickness - 0.050 inch Specimen Direction - Longitudinal
MECHVNICA COMERCIALLY FURE 1	<pre>dachine lethod Heating - Resistance Hold Time At Temp 5 min.(1000 to 2000°F Tests), 3 min.(2500 to 5000°F Tests) Strain Rate to YS - 0.005 in/min.</pre>
Powder Lot B	Machine Jethod Heating Hold Time At Temp. Strain Rate to YS

· 1		20 17 25		
Modulus of Elasticity * 10 ⁶ psi	13.6 12.0 14.0	8.2 7.6	 	111
Elongation in 2 in. (%)	22.01 10.01	9.0 7.0 8.0	0.71 9.0 6.0	7.0 8.0 7.0
U.T.S. (ksi)	9.5 10.2 10.0	999 995	0 0 m	น น ก น น น
0.2% Y.S. (ksi)	6.3 7.0 6.5	0.9.4	u u a	(1.7)*
Thermal Expansion (in/in)	0.0184 0.0192 0.0196	0.0238 0.0237 0.0230	0.0272 0.0270 0.0265	0.0267 0.0270 0.0260
Hold Time (min.)	നനന	നനന	നനന	ოოო
Test Temperature (°F)	3500 3500 3500	COO1	#200 #200 #200	2000
Specimen Number	88-50 12-88 88-52	HB-106 HB-107 HB-108	38-109 38-110 38-114	BB-165 BB-166 BB-164

* Extrapolated

TABLE XXXIII

MECHANICAL PROPERTIES FOR COMMERCIALLY PURE TUNGSTEN SHEET (FANSTEEL)

Powder Lot C

Test Condition 1

0.05 in/min. - Argon-7% Hydroger	- 2 inches - 0.050 inch - Longitudinal
Strain Rate Y.S. to U.T.S 0.05 in/min. Atmosphere - Argon-74 Hydroger	Gage Lengto Sheet Thickness Specimen Direction
- EVIM - Resistance	<pre>Hold Time at Temp 5 min.(1000 to 2000'F Tests), 3 min.(2500 to 5000'F Tests) Strain Rate to Y.S 0.005 in/min.</pre>
Machine Method Heating	Hold Time at Temp. Strain Rate to Y.S.

1 1 1	26.0 11.0 36.0	43.0 35.0 33.0	91.0	888 000	62.0 61.0 69.0
48.5 48.0 46.1	39.5 40.0 40.5	36.5 38.5 38.1	34.0 32.0 31.5	25.3 26.0 26.9	16.2 16.2 16.0
1 1 1	4.0 4.0 7.7	444	444	7.0.7.0	18.0 17.0 18.0
138.0* 181.0* 204.0* 5 in/min.	122.0 123.5 121.5	107.0 102.5 102.5	888 89.00 1.80	35.5 35.5 35.4	16.2 16.0 16.3
.s. at 0.000	105.0 105.0 103.5	95.5 89.5 89.7	73.0 75.5 78.0	32.5 32.5 0.05	0,00 6,00 6,00 6,00
- - prior to	0.0047 0.0047 0.0047	0.0073 0.0075 0.0075	0.0107 0.0105 0.0106	0.0134 0.0138 0.0138	0.0158 0.0155 0.0156
- - *Faile	היהי	יניניני	rvrv	നനന	ოოო
В.Т. В.Т.	1000 1000 1000	1500	2000 2000 5000	2500 2500 2500	3000
BC-1 BC-2 BC-70	BC-3 BC-4-3 BC-5	BC-6 BC-11 BC-12	BC-17 BC-18 BC-19	BC-50 BC-21 BC-22	BC-43 BC-44 BC-45
	R.T 138.0* 138.0* 181.0*	R.T + 138.0* - 48.5 R.T + 138.0* - 48.0 R.T + 131.0* - 48.0 R.T + 181.0* - 48.0 18.0 + 181.0* - 46.1 *Failed prior to Y.S. at 0.005 in/min. 1000 5 0.0047 105.0 123.5 4.0 40.0 1000 5 0.0047 103.5 121.5 4.0	R.T* 138.0* - 48.5 R.T* 138.0* - 48.5 R.T	R.T* 138.0* - 48.5 R.T* 138.0* - 48.5 R.T* 181.0* - 48.5 R.T	R.T* 138.0* - 48.5 R.T* 138.0* - 48.0 R.T* 138.0* - 48.0 R.T

(Continued)

TABLE XXXIV

MECHANICAL PROFERFIES FOR COLARROLALLY PURE TUNGSTER SHEET (FANSTEEL)

Test Condition 1

Powder Lot C

Specimen Number	Test n Temperature (°F)	Hold Time (min.)	Thermal Expansion (in/in)	0.2% Y.S. (ksi)	U.T.S. (ksi)	Elongation in 2 in. (%)	Modulus of Elasticity x 100 psi	Reduction of Area (%)
BC-46 BC-47 BC-122	3500 3500 3500	ოოო	0.0189 0.0185 0.0182	6.6 6.6 7.2	10.7	10.0 20.0 16.5	11.6 11.6 11.2	49.0 51.0
BC-123 BC-124 BC-125	000† 000†	ოოო	0.0223 0.0220 0.0215	44 V	7.0 7.8 7.7	8.0 17.5 15.0	8.8 8.1 7.6	1 1 1
BC-126 BC-127 BC-129	1,500 1,500 1,500	ოოო	0.0268 0.0270 0.0275	4.00 4.00 4.00	3.3.4. 3.3.4.	14.0 8.5 17.5	പ്പുന്ന പ്രവ	1 1 1
BC-130 BC-131 BC-133	2000	mmm	0.0272 0.0274 0.0272	1.3* 1.6* *Extrapolated	2.0 2.1 1.7	14.0 7.0 13.5	1 1 1	

TABLE XXXV

MECHANICAL PROPERTIES FOR COMMERCIALLY PURE TUNGSTEN SHEET (FANSTEEL)

Test Condition 2

	Powder Lot A								
Machine Method Heating Hold Time at Temp. Strain Rate to Y.5	sting at Tem	7. 1. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	Method Heating - Resistance Hold Time at Temp 5 min.(1000 to 2000°F Tests), 3 min.(2500 to 5000°F Tests) Strain Rate to Y.S 0.05 in/min.	to 2000°F T	ests), ests)	Strain Rate Y.S. to U.T.S. Atmosphere Gage Length Sheet Thickness Specimen Direction	r.s. to U.T.; ess ection	11111	0.5 in/min. Argon-76 Hydrogen 2 inches 0.050 inch Longitudinal
ļ	Test Temp.	Hold Time	Thermal Expansion (in/in)	0.2% Y.S.	U.T.S. (ksi)	Elongation in 2 in.	Modulus of Elasticity x 10 ⁶ psi	Reduction of Area (%)	Remarks
BA-123 1			-	1	*0.911	•	0.94	٥	*Broke outside
B124	R.T.	1	1	219.3	22h.5	0.55	F. 3	0	ŧ
BA-120	1000	ייי	0.00425	97.9 106.0	108.5	8.6 6.6	42.9 42.7	Æ3	11
BA-125 BA-126	1500	רע וע	0.0064	86.7 105.0	94.5	w a rir	37.8 36.0	35 55	11
Br127 Br128	2000	2	0,0096 0,0091	86.8 86.3	44	0.4	36.7	63	11
B4140 B4141	2500 2500	ოო	0.0125	27.1 51.3	31.3	0.0	27.0 30.4	88	1 1
B(-142 B(-143	3000	നന	0.0169	7.0	13.6 16.8	6.5	16.2	9.8	1 1

TABLE XXXVI

NECHANICAL PROPERTIES FOR COMMERCIALLY FURE TUNGSTEN SHEET (FANSTEEL)

- - 1	Powder Lot A	ot A						Test	Test Condition 2	_
HAH W	Machine Method Heating Hold Time at Temp. Strain Rate to YS	1111	- EIIM - Resistance - 5 win. (1000 - 3 win. (2500 - 0.05 in/win.	EFITM Resistance 5 min.(1000 to 2000°F Tests), 3 min.(2500 to 5000°F Tests) 0.05 in/min.	Tests), Tests)	Strain Rate YS Atmosphere Gage Length Sheet Thickness Specimen Direct	Strain Rate YS to UIS Atmosphere Gage Length Sheet Thickness Specimen Direction	Strain Rate YS to UIS - 0.5 in/min. Atmosphere - Argon-7# Hydrogen Gage Length - 2 inches Sheet Thickness - 0.050 inch Specimen Direction - Longitudinal	drogen .1	
- 01	Specimen	Test Temperature (°F)	Hold Time (min.)	Thermal Expansion (in/in)	0.2% Y.S. (ksi)	U.T.S. (ksi)	Elongation in 2 in. (%)	Modulus of Elasticity x 10 ⁶ psi	Reduction of Area (%)	
	BA-155 BA-156	3500 3500	ເກເກ	0.0191 0.0182	7.e 6.6	14.0 12.6	18.0 19.0	10.1	50.	
	BA-157 BA-158	1,000 1,000	ოო	0.0226	4.7 8.4	8.0 9.5	18.0	8.3 7.9	84 60	
	BA-30 BA-25	4500 4500	നന	0.0278 0.0273	6.00 1.00	8°0.	29.0	5.2 4.3	88	
	BA-26 BA-29	5000	mm	0.0298	2.2 1.2	3.4	11.5	4.3 1.2	ಕಕ	

TABLE XXXVII

Test Condition 2	- 0.5 in/min. - Argon-7% Hydrogen - 2 inches - 0.050 inch - Longitudinal
MECHANICAL PROPERTIES FOR CONTINUITY FURE TUNGSTEN SHEET (FANSTEEL)	Strain Rate Y.S. to U.T.S 0.5 in/min. //tmosphere - Argon-7% Hyd Gage Length - 2 inches Sheet Thickness - 0.050 inch Specimen Direction - Longitudinal
MECHANICAL COMPERCIALLY FURE TON	Machine - ETT: Method Heating - Resistance Hold Time at Temp 5 min.(2500 to 2000°F Tests), 3 min.(2500 to 5000°F Tests) Strain Rate to Y.S 0.05 in/min.
	due
Powder Lot B	Machine - ETTM Method Heating - Resistance Hold Time at Temp 5 min.(1000 - 3 min.(2500 - 5 train Rate to Y.S 0.05 in/min.

	y 1 7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Reduction of Area (%)	1 1	33	45 39	57	ı at	84.5 83.0
Modulus of Elasticity x 10 ⁶ psi	46.5 49.0	43.5 42.5	0.04	33°0	t Not Valid 23.0	12.1
Elongation in 2 in. (%)	1.0	9.3.0	0 0 m ni	wa rv	rmocouple - Test 15.0	16.5 18.0
U.T.S. (ks1)	259.5 (242.0)*	157.0 156.0	133.5	99.7 100.3	Bad Thera 30.9	21.9
0.2% Y.S. (ksi)	239.0	140.5 139.0	120.0	97.0	17.1	11.3
Thermal Expansion (in/in)	! !	2,000.0	0.0069	0.0095	0.0130	0.0152 0.0157
Hold Time (min.)	1 1	NN	νīν	יטיט	ოო	ოო
Test Tempersture (°F)	R.T.	1000	1500	2000	2500 2500	3000
Specimen Number	BB-7 BB-3	BB-9 BB-10	BB-11 BB-12	BB-13 BB-14	BB-23 BB-24	BB-33 BB-34

* Failed prior to Y.S. at 0.05 in/min. rate.

TABLE XXXVIII

MECHANICAL PROPERTIES FOR COMMERCIALLY PURE TUNISTEN SHEET (FANSTEEL)

Test Condition 2

- Resistance - 5 min.(1000 to 2000°F Tests), 3 min.(2500 to 5000°F Tests) - 0.05 in/min. - ETTM Machine Method Heating Hold Time at Temp. Strain Rate to YS Powder Lot B

Strain Rate YS to UIS - 0.5 in/win.

Atmosphere - Argon-7% Hydrogen
Gage Length - 2 inches
Sheet Thickness - 0.050 inch
Specimen Direction - Longitudinal Atmosphere Gage Length Sheet Thickness Specimen Direction

Reduction of Area (%)	47.0 42.0	52.0 h	•	24.5 23.0	18.0
Modulus of Elasticity x 10 ⁶ psi	9.4 8.5	 de gage length	_	4.4 7.6.	3.5
Elongation in 2 in. (%)	10.0	7.5 Failed outside	Control - No Test	10.0	12.0 8.0
U.T.S.		8.0	rature Cont	3.5	3.0
0.2% Y.S.	7.3	8.4	Poor Temperature	2.9	4.6
Thermal Expansion	0.0198	0.0230	1	0.0230	0.0313
Hold Time	3	က	m	നന	mm
Test H	3500 3500	000t	000†	4500 4500	0 1 91 2005
d	Numoer BB-46 BB-47	BB-48	BB-49	BB-97 BB-103	BB-98 BB-105

TABLE XXXIX

Powder Lot C) (3		MECHANICAL PROPERTIES FOR COMMERCIALY PURE TUNGSTEN SHEET (FANSTERL)	MECHANICAL PROPERTIES FOR LY PURE TUNGSTEN SHEET (F	OPERTIES FO	r Fansteel)	Pes	Test Condition 2
Machine Method Heating Hold Time at T Strain Rate to	emp	EIIM Resistance 5 min. (1600 3 min. (2500 0.05 in/min.	ce 000 to 2000°F 500 to 5000°F min.	Tests), Tests)	Stra Atmo Gage Shee Spec	Strain Rate Y.S. to Atmosphere Gage Length Sheet Thickness Specimen Direction	o U.T.S.	0.5 in/min. Argon-7% Hydrogen 2 inches 0.050 inch Longitudinel
Specimen Number	Test Temperature (°F)	Hold Time (min.)	Thermal Expansion (in/in)	0.2% Y.S. (ksi)	U.T.S. (ksi)	Elongation in 2 in.	Modulus of Elasticity x 100 psi	Reduction of Area (%)
BC-7 BC-8	R K H	- *FTU 8	at 0.05 in/min.	* * ! !	164.5* 200.0*	1 1	46.0 46.0	1 1
BC-10	1000	22	7400°0	112.0	129.0 124.0	4.0	14.0 11.0	27.0 34.0
BC-13 BC-14	1500	'nν	0.0075	89.0 99.7	102.7 108.5	44	41.0 39.5	63.0 43.0
BC-15 BC-16	2000	7.7	0.0103 0.0105	75.9 80.0	85.9 88.8	0.4	32.5 34.5	65.0 65.0
3C-23 3C-24	2500	ოო	0.0142	1,3.3 1,4.9	9°24 6'94	0.0	25.5 27.7	92.0
BC-35 BC-36	3000	ოო	0.0158 0.0156	11.1	22.9	17.0	19.5 15.6	29.0 28.0
BC-37	3500	നന	0.0188 0.0188	7.6	14.9 14.9	21.0	15.1	18.0 10.0
BC-39 BC-40	000† 000†	ოო	0.0227	₹. %4	0.0 0.4	19.0 21.0	7.6 7.1	0.09
8C-41 BC-42	7 200 1 200	ოო	0.0274 0.0274	1. 0. 0.	4.3	20.0	നയ	70.0 91.0
BC-120 BC-121	5000 5000	3 3 *Extre	3 0.0272 3 0.0276 *Extrapolated	1.5* 2.4*	9 K	9.0	1 1	l 1

T'BLE XXXX

HECHANICAL PROPERTIES FOR COLFERCIALLY PURE TUNGSTEN SHEET (FANSTEEL)

Powder Lot A

Test Condition 3 Atmosphere - Argon-76 Hydrogen
Gage Length - 2 inches
Sheet Thickness - 0.050 inch
Specimen Direction · Longitudinal - EITM - Resistance - 30 minutes - 0.005 in/min. Actine
Method Heating
Hold Time at Temperature
Strain Rate to Y.S.
Strain Rate Y.S.

· · · · · I				
Reduction of Area (%)	811	888	1928	69 64
Modulus of Elasticity x 10 psi	36.5 32.5 32.5	31.5 27.1 25.5	20.2 18.7	13.0 10.4 12.5
Elongation in 2 in. (%)	000	15.0 14.0 12.0	17.0	15.0 17.0 17.0
U.T.S. (ks1)	%2.2 62.0 76.0	23.8 26.8 27.0	17.8 15.0	9.8
0.2% Y.S. (ksi)	73.0 58.8 69.0	12.6 15.7 19.0	Loading - No Test 10.0 9.0	6.5.0 6.5.0
Therwal Expansion (in/in)	0.0097 0.0099 0.0098	0.0128 0.0126 0.0128	Cracked Lo 0.0162 0.0161	0.0194 0.0198 0.0198
Test Temperature (°F)	2000 2000 2000	2500 2500 2500	3000	3500 3500 3500
Specimen	BA-113 BA-18 BA-19	B%-110 B%-111 B%-112	BA-152 BA-153 BA-154	Bi-149 Bi-150 Bi-151

TIBLE XXXXI

NECHANICAL PROPERTIES FOR COMERCILLY PURE TUNCSTEN SHEET (FINSTEEL)

meet Condition 3		- Argon-7% Hydrogen n - 2 inches kness - 0.050 inch irection - Longitudinal
COMERCIALLY FURE TUNESTER SPEED ASSESSED		Atmosphere - Argon-7% Hydro Gage Length - 2 inches Sheet Thickness - 0.050 inch Specimen Direction - Longitudinal
COMMERCIALLY PUR		- ETTW - Resistance - 30 minutes - 0.005 in/min. I.S 0.05 in/min.
	Powder Lot B	Machine Method Heating Hold Time at Temperature Strain Rate to Y.S. Strain Rate to Y.S. Strain Rate to Y.S. to U.T.S 0.05 in/min.

Reduction of Area (%)	17 88 88	# 66 6L	
Modulus of Elasticity x 10 ⁶ psi	33.0 0.4 3.4 6.0 3.4 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	22.5 22.5 22.5	
Elongation in 2 in. (%)	4 w4 6 rv	12.0 15.0 15.0	
U.T.S. (ks1)	92.0 90.0 82.5	27.3 24.3 26.0	
0.2% Y.S. (ksi)	94.0 74.7	14.2 13.6	
Thermal Expansion (in/in)	0.0095 0.0058 0.00975	0.0124 0.0124 0.0125	
Test Temperature (°F)	2000 8000 2000	2500 2500 2500	
Specimen	BB-30 BB-31 BB-32	BB-39 BB-40 BB-41	1

(TABLE XXXXI Continued on Next Page)

TABLE XXXXI (Continued)

MÉCHANICAL PROPERTIES FOR COMMERCIALLY PURE TUNGSTEN SHEET (FANSTEEL)

Powder Lot B

Test Condition 3

Strain Rate YS to UTS - 0.05 in/min.

Atmosphere - Argon-7% Hydrogen
Gage Length - 2 inches
Sheet Thickness - 0.050 inch - Longitudinal Gage Length Sheet Thickness Specimen Direction Method Heating - Resistance Hold Time at Temp. - 30 minutes Strain Rate to YS - 0.005 in/min. Machine

Reduction of Area (%) 69.0 47.0 52.0 39.0 34.0 27.5 Elasticity x 100 psi Modulus of 14.5 15.9 16.0 11.1 10.6 10.5 Elongation in 2 in. (%) 13.0 15.0 15.0 13.0 15.0 13.0 U.T.S. (ksi) 16.5 16.2 15.0 10.5 11.8 10.2 0.2% Y.S. (ksi) 6.7.9 0,08 4,1,0 Expansion (in/in) Thermal 0.0151 0.0154 0.0158 0.0195 0.0190 0.0200 (min.) Time Hold 222 888 Temperature (°F) 3000 3500 3500 3500 Test Specimen Number BB-42 BB-43 BB-45 BB-62 BB-63 BB-63

TABLE XXXXII

MECHANICAL PROPERTIES FOR COMMERCIALLY PURE TUNGSTEN SHEET (FANSTEEL)

Powder Lot C

Test Condition 3

Atmosphere - Argon-76 Hydrogen Gage Length - 2 inches Sheet Thickness - 0.050 inch Specimen Direction - Longitudinal Method Heating - EFFM
- Resistance
Hold Time at Tempercture - 30 minutes
Strain Rate to Y.S. - 0.005 in/min.
Strain Rate Y.S. to U.F.S.- 0.05 in/min.

Specimen '	Test Temperature (°F)	Thermal Expansion (in/in)	0.2% Y.S. (ksi)	U.T.S. (ksi)	Elongation in 2 in. (%)	Modulus of Elasticity x 10 ⁶ psi	Reduction of Area (%)
	2000	0.0105 0.0105 0.0104	70.07 73.0		4.0 5.0	33.0 35.0 35.0	91.0 49.0 75.0
	2500 2500 2500	0.0139	18.0 Heat Oversi 16.6	28.5 not - No Test 27.3	o. 김 - 김	27.5 29.0	93.0 93.0
	3000	0.015 0.0156	0,80,1 0,7,		23.0	16.9	1 1 1
	3500 3500 3500	0.0173 0.0197 0.0174	7.5 6.9 7.0	12.8 11.8 12.4	16.0 15.0 13.0	12.9 11.8 11.5	1 1 1

TABLE XXXXIII

NECHANICAL PROPERFIES FOR COMMENCIALLY PURE TUNKSTEN SHEET (FANSTEEL)

Test Condition 4

Test Count	- Argon-7% Hydrogen - 2 inches - 0.050 inch on - Longitudinal
	Atmosphere - Argon-7% Hydr Gage Length - 2 inches Sheet Thickness - 0.050 inch Specimen Direction - Longitudinal
	- ETT4 - Resistance - 30 minutes - 0.05 in/min.
Powder Lot A	Machine - ETTM - Resistance Method Heating - 30 minutes Hold Time at Temperature - 30 minutes Strain Rate to Y.S 0.05 in/min. Strain Rate Y.S. to U.T.S 0.5 in/min.

Reduction of Area (%)	95	88	33.55	1 1
Modulus of Elasticity x 10 ⁰ psi	22.0	16.1	12.6	34.4
Elongation in 2 in. (%)	12.0	20.0	21.0	
			15.3	73.5
0.2% Y.S. (ksi)	15.0	7.5	7.t 6.7	68.8
	1.	0.0157 0.0162	0.0192 0.0194	0.0099
Test Temperature (°F)	2500	3000	350 0 350 0	2000
		B116 B117	BA-118 B119	В. –33

TABLE XXXXIV

MECHANICAL PROPERTIES FOR COMMERCIALLY PURE TUNGSTEN SHEET (FANSTEEL)

Powder Lot B

Test Condition 4

- Argon-7% Hydrogen - 2 inches ss - 0.050 inch ction - Longitudinal
Atmosphere Gage Length Sheet Thickness Specimen Direction
- Resistance - Resistance re - 30 minutes - 0.05 in/min.
Machine Method Heating - Resistance Hold Time at Temperature - 30 minutes Strain Rate to Y.S 0.05 in/min. Strain Rate Y.S. to U.T.S 0.5 in/min.

Reduction of Area (%)	£8	48	33.1	36
Modulus of Elasticity x 10º psi	36.2 32.0	23.1 18.6	15.1	11.5
Elongation in 2 in.	3.5	8.0	25.0	8.0
U.T.S.	87.3 100.0	32.0 32.2	19.8	15.0
0.2% Y.S.	84.1 91.5	21.5	9.9 5.9	6.1
Thermal Expansion	0.0094	0.0119	0.0157 0.0162	0.0187 0.0188
Test Temperature	2000	2500 2500	3000	3500 3500
	Number BB-28 BB-29	BB-35	BB-37 BB-38	338-53 338-54

T'BIE XXXXV

RECEANICAL PROFERIES FOR COMMERCIALLY PURE TUNCSTEN SHEET (FANSTEAL)

Test Condition 4	- Argon-7% Hydrogen - 2 inches - 0.050 inch - Longitudinal	Reduction of frea (\$)	55.0 48.0	93.0 93.0	1 1	·
	Ion	Modulus of Elasticity x 10° psi	38.0 35.0	27.0	15•3 16•6	13.4 10.5
	Atmosphere Gage Length Sheet Thickness Specimen Directi	Elongation in 2 in. (%)	4.0 3.5	12.0 11.5	22.0 15.5	13.5 19.0
		U.T.S. (ksi)	87.0 88.0	32.3 31.6	22.6	16.9
	ince ites i/min.	0.2% Y.S. (ks1)	77.2 78.5	20.0	10.5	8.5 8.5
	- ETTM - Resistance : - 30 minutes - 0.05 in/min. S 0.5 in/min.	Thermal Expansion (in/in)	0.0106	0.0138 0.0136	0.0153	0.0179
ט	FITM - ETTM - ETTM - Extrance bettod Heating - Resistance Eold Time it Temperature - 30 minutes Strain Rate to Y.S 0.05 in/min Strain Rate Y.S. to U.T.S 0.5 in/min.	Test Temperature (°F)	2000	2500 2500	3000	3500 3500
Powder Lot C	Machine Method Heating Fold Time At Temper Strain Rate to Y.S. Strain Rate X.S. to	Specimen Number	BC-31 BC-32	BC-33	BC-51 BC-52	BC-113 BC-114

The state of the s

TABLE XXXXVI
CHEMICAL COMPOSITION

	(b)	Million, p y weight) der Lot	pm	Method
Element	Λ	В		Used
Oxygen	20.0	21.7	16.0	a
Hydrogen	0.3	0.6	1.0	a
Carbon	49.0	40.0	25.0	c
Nitrogen	5.0	11.0	11.0	ъ
Mn	<10.0	20.0	10.0	đ
Co, Pb, Ni, Zn, Sr, P, Ta, Nb, Ga, Zr	Less than powder lo	n 100 ppm i	for all	đ
Cd, Be, Fe, B, Si, Mg, Cr, Sn, Bi, Al, Mo, V, Ba, Ca, Au, Ti, Ag, Cu, Ge, Pt, Na, Li, K	Less that	n 10 ppm fo	or all	đ

- a Vacuum Fusion (National Research Corp., Cambridge, Mass.)
- b Micro Kjeldahl (National Research Corp., Cambridge, Mass.)
- c Conductrometric (National Research Corp., Cambridge, Mass.)
- d Semi-Quantitative Spectrographic (The Marquardt Corporation)

APPENDIX

TUNGSTEN SHEET SPECIFICATION

HMS 6-1066

MATERIAL SPECIFICATION

NUMBER HMS 6-1066 ISSUED 5-4-61

ISSUED 5-4-6 REVISED 7-13-6

TITLE

COMMERCIALLY PURE TUNGSTEN SHEET

- A vendor shall mention this specification in all quotations and when acknowledging purchase orders.
- 2. Form. . 050 inch thick sheet, rolled from ingots which are pressed from powder and consolidated by sintering.
- 3. Application. For parts requiring exposure at high temperatures.
- 4. Composition.

Tungsten Major
Molybdenum 0, 10% max.
Jron 0, 05% max.
Any other single 0, 01% max.
element

5. Condition

- 5.1 High degree of cold reduction
- 5.2 No stress relief heat treatment will be used.
- 5.3 Matte surface due to acid or caustic cleaning is acceptable.
- 5.4 Surface roughness as measured with a profilometer shall be less than 200 microinches.

6. Technical Requirements

6. 1 Bend Ductility

A minimum of three bend angle test values shall be reported.

Specimen size - .050 x .500 x length as required

Stress direction - parallel to rolling direction

Bend radius - .062 inches

Ram deflection rate - 0.5 inches/min. (approximate)

Test temperature - 350°F (+0°, -20°)

Bend angle - 80° minimum

MATERIAL SPECIFICATION

NUMBER HMS 6-1066 ISSUED 5-4-61 REVISED 7-13-61

TITLE.

COMMERCIALLY PURE TUNGSTEN SHEET

6.2 Hardness

A minimum of five test values on Rockwell Superficial Hardness Scale 45-N shall be reported. No single value shall be less than 46.0 and the average shall be 48.0 or greater.

6.3 Microstructure

A highly elongated structure as shown in Figure 52 is desired. The minimum acceptable is shown in Figure 53, and Figure 54 is an example of unacceptable structure.

7. Quality

- 7.1 Material shall be uniform in quality and condition, clean, sound and free from internal and external imperfections.
- 7.2 Internal defect area revealed by ultrasonic inspection shall not exceed 1% of the surface area; excluding defects occurring within 1/8 inch of the sheet edge. Edge cracks shall not extend further than 1/8 inch into the sheet.
- 7. 3 Flatness sheet shall be flat within 1% of the distance between contact points of a straight edge laid in any direction upon the material. The amount of variation shall be determined by measuring the distance from the straight edge to the material at the point of greatest deviation. Figure 55 illustrates the method of measurement.

8. Tolerances

 Thickness
 ±
 .004 inches

 Width
 ±
 .060 inches

 Length
 ±
 .060 inches

9. Identification

Material shall be marked with manufacturer's identification and manufacturer's powder lot number.

10. Rejection

Material not conforming to this specification or to authorized modifications will be subject to rejection.

HMS-6-1066 5-4-61 7-13-61

Figure 34 Desired Microstructure. 200 X. Murikami's Etch. Longitudinal Section.

Figure 35 Minimum Acceptable Microstructure. 200 X.
Murikami's Etch. Longitudinal Section.

Figure 36 Unacceptable Microstructure. 200 X. Murikami's Etch. Longitudinal Section.

		MATERIAL SPECIFICATION	NUMBER 11MS 6-1066 (SSUED 5-4-61 REVISED 7-13-61
TITLE	сомм	ERCIALIA PURE TUNGSTEN SHEE	T

 $\frac{D}{L}$ shall not be greater than .01

Figure 37. Measurement of Flatness