Advanced Calculus II

Ji, Yong-hyeon

November 1, 2024

We cover the following topics in this note.

- Convergence of Real Sequences
- Inequality Rule for Real Sequences
- Limit Theorems for Real Sequences

Sequence

Definition. A **real sequence**(or a sequence in \mathbb{R}) is a function defined on the set N whose range is contained in the set \mathbb{R} .

Remark. A function *a* is a real sequence if

$$a : \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto a(n) =: a_n$

for $n = 1, 2, \dots$. We write $\{a_n\}_{n=1}^{\infty}$ (or $\{a_n\}$).

Definition 1 (Convergence). A real sequence $\{a_n\}$ is said to converge to $L \in \mathbb{R}$ or L is said to be a limit of $\{a_n\}$, if $\forall \varepsilon > 0$, $\exists N(\varepsilon) \in \mathbb{N}$ such that

$$n \ge N(\varepsilon) \implies |a_n - L| < \varepsilon$$
.

If a sequence has a limit, we say that the sequence is convergent; if it has no limit, we say that the sequence is divergent.

Remark 1.

$$\lim_{n\to\infty} a_n = L \iff \forall \varepsilon > 0, \ \exists N(\varepsilon) \in \mathbb{N} \text{ such that } n \ge N(\varepsilon) \implies |a_n - L| < \varepsilon$$
$$\iff \forall \varepsilon > 0, \ \# \{ n \in \mathbb{N} : a_n \notin (x - \varepsilon, x + \varepsilon) \} < \infty.$$

Remark 2. We can abbreviate $\lim_{n\to\infty} a_n = L$ to $a_n \to L$.

Definition 2 (Divergence). Let $\{a_n\}$ be a real sequence. We say that

• $\{a_n\}$ diverges to infinity(or tends to infinity) if $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ such that

$$n \ge N \implies a_n > M$$

and write

$$\lim_{n\to\infty}a_n=+\infty.$$

• $\{a_n\}$ diverges to minus infinity(or tends to minus infinity) if $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ such that

$$n \ge N \implies a_n < M$$

and write

$$\lim_{n\to\infty}a_n=-\infty.$$

• $\{a_n\}$ is **properly divergent** in case we have either

$$\lim_{n\to\infty} a_n = -\infty \text{ or } \lim_{n\to\infty} a_n = -\infty.$$

Remark 3.

$$\lim_{n\to\infty} a_n = +\infty \iff \forall M \in \mathbb{R}, \ \exists N \in \mathbb{N} \text{ such that } n \ge N \implies M < a_n$$

$$\lim_{n\to\infty} a_n = -\infty \iff \forall M \in \mathbb{R}, \ \exists N \in \mathbb{N} \text{ such that } n \geq N \implies a_n < M.$$

0.1 Theorems 1

Theorem 1 (Uniqueness of Limits). *The limit of a real sequence is unique.*

Proof. Let a real sequence $\{a_n\}$ has limit L_1 and L_2 , and let $\varepsilon > 0$. Since $\lim_{n \to \infty} a_n = L_1$,

$$\exists N_1 \in \mathbb{N} : n \ge N_1 \implies |a_n - L_1| < \frac{\varepsilon}{2}.$$

Also we have

$$\exists N_2 \in \mathbb{N} : n \ge N_2 \implies |a_n - L_2| < \frac{\varepsilon}{2}.$$

Let $N = \max \{N_1, N_2\}$, then if $n \ge N$,

$$|L_2 - L_1| = |L_2 - L_1 + a_n - a_n|$$

$$= |(a_n - L_1) - (a_n - L_2)|$$

$$\leq |a_n - L_1| + |a_n - L_2| \quad (\because |a - b| \leq |a| + |b|)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Remark 4. Let $\lim_{n\to\infty}$ is a function as $\lim_{n\to\infty}: F_{\operatorname{Con}}^1 \to \mathbb{R}$ given by

$$\{a_n\} \mapsto \lim_{n \to \infty} a_n$$
.

Then

$${a_n} = {b_n} \implies \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n,$$

that is, $\lim_{n\to\infty}$ preserves "equality(=)".

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 6. 해석학 개론 (c) 수열의 수렴성." YouTube Video, 26:29. Published September 20, 2019. URL: https://www.youtube.com/watch?v=jwLfzJyIxmU.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 7. 해석학 개론 (d) 극한 정리" YouTube Video, 26:46. Published September 26, 2019. URL: https://www.youtube.com/watch?v=1TRD34QbIaw.

 $^{{}^{1}}F_{\text{Con}} := \{\text{Convergent sequences on } \mathbb{R} \}$