

obtain the ciphertext

ited table column-by-column from top to bottom to

4. Read the permuted table column-by-column from top to bottom to obtain the ciphertext

2

Decryption process:

- Fill the letters of the cipher-text into a table of n columns, where n is the length of the permutation. We fill the entries column-by-column, top-to-bottom, and left-to-right.
- 2. Label each column from left to right with $1,2,\dots,n$. Then rearrange the columns so that the given permutation appears.
- 3. Read the text from step 2 row-by-row, left-to-right, and top-to-bottom. Then break the resultant text into pairs.
- 4. Translate each pair into the plaintext using its coordinates in the ADFGVX table. Coordinates are ordered as (row index, column index).

4

Vernam cipher

 $\label{theorem 1} \mbox{ (Quotient-Remainder Theorem). } \mbox{ Given an integer A and a positive integer B. Then there exist integers q,r (obtained through long division)}$ such that $A = B \cdot q + r$ where $0 \le r < B$. Here, q is quotient and r is remainder. We say $r = A \mod B$

Theorem 1 (Quotient-Remainder Theorem). Given an integer A and a positive integer B. Then there exist integers q, r (obtained through long division) such that
$$\frac{1}{8} = \frac{1}{9} + r$$
 before $0 \le r \le B$.

Here, q is quotient and r is remainder. We say $\frac{1}{1} = 26 \times (-20) + (-1)$

$$= 26 \times (-20) + 26 + (-1)$$

$$= 26 \times (-20) + 26 + (-1)$$

$$= 26 \times (-21) + 25$$

$$= 264 = 26 \times (0 + 4)$$

$$= 264 = 4 \text{ mod } 26$$

$$= 1 + 4 \text{ (mod } 26)$$

$$= 5 \text{ (mod } 26)$$

$$= 63 \text{ (mod } 26 \text{)} = 11 \text{ (mod } 26 \text{)}$$

Original Vernam cipher uses binary struig Vernam cipher - Encryption process: XOR • Translate the given plaintext into numbers $A \rightarrow 0, B \rightarrow 1, \dots, Z \rightarrow 25.$ nize two short keys U and V and compute the long key V, as perfect $K(i) = U(i) + V(i) \mod 26$ for each $1 \le i \le n$ where n is the length of the plaintext. secrecy. • Compute $C(i):=M(i)+K(i)\mod 26$, for each i, and use substitute each M(i) by the corresponding letter in the alphabet. **Example.** Encrypt the message NO MORE AMMO using the keys $\{U,V\}=\{(3,1,2),(7,3,8,4,5)\}$ Solution. The long key K is Decrypt:

M = C - K

mod 26 Plaintext N O M О \mathbf{R} 13 14 12 14 17 4 0 10 4 10 7 6 9 6 9 6 8 C = N + K 23 18 22 21 23 mod 26 Ciphertext X S W V X 6

 $\begin{tabular}{ll} \textbf{Definition 1} & (Inverse in modular arithmetic). If $A \cdot C = 1 \mod B$ then C is the modular inverse of A under mod B. Denote $C = A^{-1} \mod B$ \\ \end{tabular}$

Use the multiplication table to find the inverses under mod 26

