Static timing analysis

VLSI CAD

Compiled by Oleg Venger

Representation of combinational circuits

- •Timing graph: G(V, E) where
- V includes all terminals of cells
- *E* has two types of elements:
 - Timing arcs:
 - Combinational cell:
 - from each input to output propagation delay
 - Sequential cell:
 - From clock input to output(s) propagation delay
 - From clock input to data input setup, hold checks
 - Interconnect delays: connect cell output to the inputs of its fanout gates

Background

- Netlist is represented as Directed Acyclic Graph
 (DAG) timing graph
- Delay values associated with edges of timing graph
- •Timing information is associated with topological paths:
 - Start point
 - End point
 - Path delay
- Total path delay is the sum of stage delays (cell and net delays) along the path
- Maximum path delay through a combinational block defines the speed of the circuit

What is max path delay for this circuit?

Delay parameters

- t_r: rise transition time
 - From output crossing 0.1 VDD to 0.9 VDD
- t_f: fall transition time
 - From output crossing 0.9 VDD to 0.1 VDD
- •t_{pdr}: rising propagation delay
 - From input crossing VDD/2 to rising output crossing VDD/2
- •t_{pdf}: falling propagation delay
 - From input crossing VDD/2 to falling output crossing VDD/2
- •Can t_{pd} be negative?

Inverter timing response

Gate delay models

- •Standard cell delays are pre-characterized for various capacitive loads \mathcal{C}_L and input transition time au_{in}
- Some commonly used cell delay models:
 - Look-up tables with each entry in the table corresponding to the delay under different capacitive loads and different input transition times
 - $D = k_1 + C_L k_2$. Where k_1 intrinsic delay. k_2 drive strength
 - $D = \alpha \tau_{in} + \beta C_L + \gamma \tau_{in} C_L + \delta$
 - Etc
- •After calculation, delay is scaled by the operating conditions:
 - $FinalDelay = CalculatedDelay * K_{voltage} * K_{temperature} * K_{process}$

Interconnect delay: wire load model

- •Net delay results from the need for charging/discharging all the parasitics of a given net. It is a function of net capacitance and net resistance
- Wire load model (pre-layout)
 - Net length is a function of net fanout and block area
 - For a given block area, averages of R and C are estimated for different fanouts
 - Net delay is calculated simply as R * C

Capacitance as a	
function of fanout:	

1	0.015
2	0.030
3	0.046

Resistance as a function of fanout:

1	0.012
2	0.016
3	0.020

For fanout =
$$3$$

Net delay = $0.046 * 0.020$

Interconnect delay: Elmore model

- Pullup or pulldown network modeled as RC ladder
- •Elmore delay of RC ladder:

$$\tau_{DN} = \sum_{k=1}^{N} C_k \left(\sum_{j=1}^{k} R_k \right) = \sum_{k=1}^{N} C_k R = RC \frac{N(N+1)}{2} = rcL^2 \frac{N+1}{2N} \xrightarrow{N \to \infty} \frac{rcL^2}{2}$$

$$R = \frac{r * L}{N}$$

$$C = \frac{c * L}{N}$$

Multiple segment nets

•The distributed RC delay can be modeled by breaking up a wire into one or more segments and using a lumped π -model for each segment.

Elmore delay: multiple segment nets

Resistance-oriented Formula:

$$T_{delay} = \sum_{i \text{ on path}} R_i C_{downstream, i}$$

$$R_2 \qquad R_4$$

$$T_{delay,4}=R_1(C_1+C_2+C_3+C_4+C_5)+R_2(C_2+C_4+C_5)+R_4C_4$$

Critical path and slack

- •Arrival time of a signal is the time elapsed for a signal to arrive at a certain point.
- **Required arrival time** is the latest time at which a signal can arrive without making the clock cycle longer than desired.
- $\blacksquare slack(v) = Req(v) Arr(v)$
- **Critical path**, defined as the path between an input and an output with the minimal slack
- Slack is constant along the critical path

Arrival time propagation

- 1. for each vertex ν : v.num_ready_inputs = 0 if v is primary input: add v into To_Compute vertex queue 2. **while** *To_Compute* queue is not empty : • Get *v* from *To_Compute* queue • if v is primary input : Arrmax(v) = 0• else: • **for** each input edge (u, v): • Arrmax(v) = max(Arrmax(v), Arrmax(u) + d(u, v))• for each output edge (v, w): • w.num_ready_inputs += 1
 - if w.num_ready_inputs == w.num_inputs:
 - add vertex w into To_Compute queue

Max delay propagation for rise/fall delay (circuit with inverting gates)

Required time propagation

- 1. **for** each vertex v:
 - v.num_ready_outputs = 0
 - if v is primary output : add v into $To_Compute$ vertex queue
- 2. while To_Compute queue is not empty:
 - get *v* from *To_Compute* queue
 - if v is primary output : $Reqmax(v) = T_{clock} T_{setup}$
 - else:
 - **for** each output edge (v, u):
 - Regmax(v) = min(Regmax(v), Regmax(u) d(v, u))
 - **for** each input edge (w, v):
 - v.num_ready_outputs += 1
 - if v.num_ready_outputs == v.num_outputs :
 - add vertex w into To_Compute queue

Required time and slack

Extensions of basic algorithm

- Non-zero arrival times at the primary inputs
 - For instance, in hierarchical models
- •Minimum delay calculations
 - Propagate earliest arrival time instead of latest
- •Minmax delay calculations
 - If the gate delay is specified in terms of an interval $[d_{min}, d_{max}]$
- Non-inverting gates
 - Rise[fall] transition at the output affected by a rise[fall] transition at the input
- •Incorporating input signal transition times
 - Propagate arrival time/ transition time pairs
 - Which of two pairs to propagate if $at_1 > at_2$ and $tt_1 < tt_2$?

False paths

- Static analysis is fast but leads to false paths
- Path of length 4 can never be sensitized (events on this path are not propagated to the output)
 - In fact it can be dynamically sensitizable
- Approaches:
 - Throw out user-specified "non-sensitizable" (false) paths
 - Circuit delay = Length of longest path
 - Too pessimistic

This leads to functional timing analysis for false paths

Sequential circuits

- For STA purpose it is possible to represent a sequential circuit as combinational logic with additional inputs and outputs
 - storage elements outputs are considered as primary inputs (PI) to combinational logic
 - storage element inputs are considered as primary outputs (PO) of combinational logic
- STA depends on type of registers
 - Level-clocked latches
 - Edge-triggered flip-flops

Clock skew

- •Clock signals do not arrive at all the registers at the same time. This is referred to as 'skew'
- Conventional approach to clock tree synthesis tries to minimize the skew
- Playing with the clock skew might be beneficial:
 - May change the required arrival time for late or early signals
 - Deliberate clock skew is used to reduce dynamic transient current that happens during register switching and could create a significant voltage drop on the power distribution network

Setup and hold times (flip-flop)

- Setup time: amount of time data must be stable at the data pin of flip-flop before the clock capturing edge
- •Hold time: amount of time data must remain stable at the data pin of flip-flop after the clock capturing edge

STA Constraints

- •Main path constraints include:
 - Setup time (Input-to-Reg and Reg-to-Reg paths)
 - Hold time (Input-to-Reg and Reg-to-Reg paths)
 - Input arrival time (Input-to-Reg and Input-to-Output paths)
 - Output required arrival time (Reg-to-Output and Input-to-Output paths)
- Electrical constraints: min and max limits for:
 - Net / Port capacitance
 - Net Transition times

Edge-triggered circuits

- The data input of a register must receive data at least T_{setup} units before the active edge of clock
- The data input of a register must be kept stable for a time of T_{hold} so that data is stored correctly in the flip-flop
- Each register has delay between the time the clock and the data are both available and when it is latched (clock-to-Q delay)
- •For timing verification of edge-triggered circuits, it is possible to decompose the circuit into combinational blocks and verify the validity of constraints on each such block independently

Level-clocked circuits

- •More complex analysis: combinational blocks are not insulated from each other and multicycle path are possible
- Offer more flexibility both in terms of minimum clock period and minimum amount of memory elements required

Time borrowing

Level-clocked circuits allow time borrowing i.e. permitting the logic to automatically borrow time from next cycle, thereby reducing the time available for data to arrive for the following cycle

Statistical STA (SSTA)

- Under true operating conditions, device parameters are perturbed from their nominal values due to various type of variations
- SSTA is an attempt to account for variation while doing timing analysis
- SSTA treats delays not as fixed numbers, but as probability density functions (PDFs), taking the statistical distribution of parametric variations into consideration while analyzing the circuit

Variations classification

- Process variations: result from perturbation in the fabrication process leading to deviations from the nominal values of parameters such as effective channel length, dopant concentration, or interlayer dielectric thickness
 - Inter-die: affect all the devices on the same chip in the same way
 - Intra-die: correspond to variability within single chip
 - Random variations: depict random behavior that can be characterized in terms of distribution. The distribution may either be explicit (built from fabrication line measurements), or implicit (e.g. Gaussian)
 - Systematic variations: show predictable variational trends across the chip, and are caused by known physical phenomena during manufacturing
- Environmental variations: due to changes in the operating environment such as temperature or voltage

Summary

- Static timing analysis applied at various phases of the design
- Linear complexity w.r.t. circuit size
- •The closer to final layout the more accurate timing models used
- •Accurate timing analysis is very important for circuit optimization

References

- •Electronic Design Automation for Integrated Circuits Handbook. EDA for IC Implementation, Circuit Design, and Process Technology. Chapter 6 by Sachin S. Sapatnekar
- Zhou, Shuo, Static timing analysis in VLSI design
- Christiano Forzan. Introduction to Static Timing Analysis
- J.A.N. Rabaey, Digital Integrated Circuits
- N. Weste, D. Harris, CMOS VLSI Design