Reading
Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits 7th Edition, Oxford University Press,
2014.
• Chapter <u>3.1-3.3</u>

Example
Calculate the value of n_i for silicon at room temperature $(T \ge 300 \text{ K})$.
$N_i = B + \frac{3}{n} e^{-\frac{\pi}{2}} \frac{2kT}{n}$
= 7.3 ×105. 300. e
$n_i = 1.5 \times 10^{10} \text{ carriers/cm}$
$ \begin{array}{c} $

N-Type Semiconductor

$$S\hat{i} = S'_1 = S'_1$$
 $S\hat{i} = S'_1 = S'_1$
 $S\hat{i} = S'_1 = S'_2$
 $S\hat{i} = S'_1 = S'_1$
 $S\hat{i} = S'_$

$$Si = Si = Si$$

$$\frac{10^{18}}{\sqrt[3]{8}} \rho / cm^{2}$$

$$\frac{10^{18}}{\sqrt[3]{8}} \rho / cm^{2}$$

$$\left[N = N_{\mathcal{P}} \right]$$

P-Type Semiconductor

Periodic Table of the Elements

$$\frac{N_A}{=} 10^{18} B cm^3$$

$$\int \rho = N_A$$

$$NA \qquad \qquad NA \qquad \Rightarrow \Lambda = \frac{\Lambda i^2}{P}$$

$$S_{1}^{2} = S_{1}^{2} = S_{2}^{2}$$
 $S_{2}^{3} = S_{2}^{3} = S_{2}^{3}$
 $S_{3}^{3} = S_{2}^{3} = S_{3}^{3}$
 $S_{3}^{3} = S_{3}^{3} = S_{3}^{3}$

$$Si = Si = Si$$
 $Si = B = Si$
 $Si = Si = Si$
 $Si = Si = Si$

$$\begin{array}{c} 1P \rightarrow 1 \\ N_D \rightarrow \boxed{N_0 = N} \end{array}$$

$$1B \to 1h$$

$$N_A \to N_{A=P}$$

Example

Consider an *n*-type silicon for which the dopant concentration $N_{\overline{D}} = 10^{17} / \text{cm}^3$. Find the electron and hole concentrations at T = 300 K.

$$\frac{\int N = \sqrt{0} = 10^{17} e^{-1/2} e^{-1/2}}{\int N = \sqrt{10^{17}}} = \frac{1.5 \times 10^{10}}{10^{17}} = \frac{2.25 \times 10^{3} \text{ h/cm}^{3}}{10^{17}}$$

Example
Find the resistivity of (a) intrinsic silicon and (b) <i>p</i> -type silicon with $N_A = 10^{16}/\text{cm}^3$. Use $n_i = 1.5 \times 10^{10}/\text{cm}^3$, and assume that for intrinsic silicon $\mu_n = 1350 \text{ cm}^2/\text{V} \cdot \text{s}$ and $\mu_p = 480 \text{ cm}^2/\text{V} \cdot \text{s}$, and for the doped silicon $\mu_n = 1110 \text{ cm}^2/\text{V} \cdot \text{s}$ and $\mu_p = 400 \text{ cm}^2/\text{V} \cdot \text{s}$. (Note that doping results in reduced carrier mobilities.)

Diffusion Current

Example

Consider a bar of silicon in which a hole concentration profile described by

$$\underline{p(x)} = p_0 e^{-x/L_p}$$

is established. Find the hole-current density at x=0. Let $p_0=10^{16}/\text{cm}^3$, $L_p=1~\mu\text{m}$, and $D_p=12~\text{cm}^2/\text{s}$. If the cross-sectional area of the bar is $100~\mu\text{m}^2$, find the current I_p .

$$\int_{0}^{\infty} = q \frac{\rho_{p}}{L_{p}} \rho_{o} = 192 A / cm^{2}$$