3.3 Realizable finite hypothesis classes

We make some assumptions to make PAC more concrete. Assumptions:

- (i) Finite hypothesis space: H is finite.
- (ii) Realizable: 3 h + & H s.t. L(h+) = 0

[Theorem 4] realizable finite hypothesis class.

Assume $H = fh: X \rightarrow Y$, $L((x,y),h) = I[y \neq h(x)]$. Let p^* be any distribution over $X \times Y$. Assume Assumptions (i) & (ii) hold. Let \hat{h} be ERM, then the following two equivalent statements hold:

- 1 with prob. >1-8, L(ĥ) ≤ \(\hat{h}\) (log |H| + log (1/8))
- ② with prob. > 1-8: n>(log|H| +log(1/8))/€ => L(ĥ) ≤ €

Pf: Idea: bound the probability of & L(h) > &).

Let $B = \{h \in H : L(h) > \epsilon\}$, then we have $P\{L(\hat{h}) > \epsilon\} = P\{\hat{h} \in B\}$

Since $\hat{L}(h^*) = L(h^*) = 0$, then $\hat{L}(\hat{h}) = 0$, we have $P(\hat{h} \in B) \leq P(\hat{h} \in B)$: $\hat{L}(h) = 0$

Step 1: bound P{ L(h) = 0} for a fixed h & B.

Since data is i.i.d., for heB: $P \hat{L}(h) = 03 = (1 - L(h))^n \leq (1 - \epsilon)^n \leq e^{-\epsilon n}$,

Step 2: Union bound for any $h \in B$ P? $h \in B$: $\hat{L}(h) = 0$? $\leq \sum_{h \in B} P$? $\hat{L}(h) = 0$? $\leq |H|e^{-\epsilon n} = : \delta$.

Taking logs of the last equality and rearranging:

Note: (i) $P^{\hat{L}(h)=0} = (I-L(h))^n$ is because h does not err with prob. = I-L(h) on each sample.

Since
$$L(h) = E_{(x,y)\sim p^*} [L((x,y),h)]$$

$$= \int \int f y + h(x) dp^*$$

$$= p^* \{ y + h(x) \}$$