Interactive Theorem Proving in HOI 4

Course 09: number system

Dr Chun TIAN chun.tian@anu.edu.au

Acknowledgement of Country

We acknowledge and celebrate the First Australians on whose traditional lands we meet, and pay our respect to the elders past and present.

More information about Acknowledgement of Country can be found here and here

Abbreviations: local definitions in the proof (1)

Introduces an abbreviation into a goal

- ► The tactic Q.ABBREV_TAC q (or qabbrev_tac q) parses the quotation q in the context of the goal to which it is applied.
- ▶ The result must be a term of the form v = e with v a variable.
- ► The effect of the tactic is to replace the term e wherever it occurs in the goal by v (or a primed variant of v if v already occurs in the goal), and to add the assumption Abbrev(v = e) to the goal's assumptions.

Substitution in the goal

```
> Q.ABBREV_TAC 'n = 10' ([], ''10 < 9 * 10'');
val it = ([([''Abbrev (n = 10)''], ''n < 9 * n'')], fn):
    goal list * validation</pre>
```


HOL mini course C. Tian

Abbreviations: local definitions in the proof (2)

Substitution in the assumptions

```
> Q.ABBREV_TAC 'm = n + 2' ([''f (n + 2) < 6''], ''n < 7'');
val it = ([([''Abbrev (m = n + 2)'', ''f m < 6''], ''n < 7'')], fn)</pre>
```

Substitution in both goal and assumptions

```
> Q.ABBREV_TAC 'u = x ** 32' ([''x ** 32 = f z''],''g (x ** 32 + 6) - 10 < 65'');
val it =
  ([([''Abbrev (u = x ** 32)'', ''u = f z''], ''g (u + 6) - 10 < 65'')], fn)</pre>
```

Abbreviate functions

C Tian

HOL mini course

Use (remove) abbreviations

Abbreviations make your proofs and goals clean and controllable.

Expand abbreviations while rewriting

```
Abbr provides the theorem as input to rewriting tactics, e.g. SIMP_TAC std_ss [Abbr 'a'] or fs [Abbr 'a']
```

Abbr : term quotation -> thm

Cancel abbreviations (without doing anything else)

```
Q.UNABBREV_TAC : term quotation -> tactic
qunabbrev_tac : term quotation -> tactic
```

qunabbrevl_tac : term quotation list -> tactic

C Tian

HOL mini course

Define abbreviations by pattern matching

```
Q.MATCH_ABBREV_TAC : term quotation -> tactic qmatch_abbrev_tac : term quotation -> tactic
```


Number systems in HOL

Relationship of different number systems

$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}, \qquad \mathbb{R} \subseteq \overline{\mathbb{R}} \ (= \mathbb{R} \cup \{+\infty, -\infty\})$$

- ightharpoonup In traditional mathematics (textbook), the symbols \subseteq literally mean *subset* relationship;
- ▶ In higher order logic, the symbols \subseteq are shorthands of *embeddings*.

Embedding natural numbers into integers (int_of_num)

```
[integerTheory.INT] \vdash ((&SUC (n : num)) :int) = ((&n) :int) + (1 :int) \vdash &SUC n = &n + 1
```

Theories of numbers in HOL

numTheory/arithmeticsTheory, integerTheory, ratTheory, realTheory, intrealTheory, real_of_ratTheory, complexTheory, extrealTheory, ...

7 HOL mini course C. Tian

Overloaded arithmetic operators

Common arithmetic operators like +, -, \cdot , / are overloaded across different number systems:

operator	:num	:int	:rat	:real	:extreal
+	ADD	int_add	rat_add	real_add	extreal_add
-	SUB	int_sub	rat_sub	real_sub	extreal_sub
~	-	int_neg	rat_ainv	real_neg	extreal_ainv
*	MULT	int_mul	rat_mul	real_mul	extreal_mul
/	DIV	int_div	rat_div	real_div	extreal_div
inv	-	-	rat_minv	real_inv	extreal_inv
**	EXP	int_exp	rat_expn	real_pow (pow)	extreal_pow (pow)
<	<	int_lt	rat_lt	real_lt	extreal_lt
<=	<=	int_le	rat_le	real_le	extreal_le
&	-	int_of_num	rat_of_num	real_of_num	extreal_of_num

For real numbers (only) in HOL, $\vdash 0^{-1} = 0$ and thus $\vdash \forall x. x/0 = 0$ (division-by-zero).

8 HOL mini course C. Tian

Operators on set of real numbers

Σ and Π (for finite sets only)

```
[real_sigmaTheory.REAL_SUM_IMAGE_THM] 

\vdash \sum f \emptyset = 0 \land 

\forall e \ s. \ FINITE \ s \Rightarrow \sum f \ (e \ INSERT \ s) = f \ e \ + \sum f \ (s \ DELETE \ e) 

[real_sigmaTheory.REAL_PROD_IMAGE_THM] 

\vdash \prod f \emptyset = 1 \land 

\forall e \ s. \ FINITE \ s \Rightarrow \prod f \ (e \ INSERT \ s) = f \ e \times \prod f \ (s \ DELETE \ e)
```

Note: In HOL, $\sum_{i=0}^{n} f_i$ is usually represented by $\sum f\{m \mid m < n\}$ (count n).

sup and inf

$$\vdash \sup P = \varepsilon s. \ \forall y. \ (\exists x. \ P \ x \land y < x) \iff y < s$$
 [realTheory.sup] $\vdash \inf p = -\sup (\lambda r. \ p \ (-r))$ [realTheory.inf_def]

Note: For real numbers, $\sup \mathbb{R}$ and $\inf \emptyset$ do not exist.

Decision procedures

Natural numbers

numLib.ARITH_CONV : conv

numLib.ARITH PROVE : term -> thm

numLib.ARITH_TAC : tactic

numLib.DECIDE : term -> thm

numLib.DECIDE_TAC : tactic

Integers (Presburg decision procedure)

intLib.ARITH_CONV : conv

intLib.ARITH_PROVE : term -> thm

intLib.ARITH_TAC : tactic

Real numbers (semiring decision procedure)

realLib.REAL_ARITH : term -> thm

realLib.REAL_ARITH_TAC : tactic