Fall 2021

MLE vs. MAP

Let D denote the observed data and θ the parameter. Whereas MLE only assumes and tries to maximize a likelihood distribution $p(D|\theta)$, MAP takes a more Bayesian approach. MAP assumes that the parameter θ is also a random variable and has its own distribution. Recall that using Bayes' rule, the posterior distribution can be seen as the product of likelihood and prior:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} \propto \underbrace{p(D|\theta)}_{\text{likelihood}} \underbrace{p(\theta)}_{\text{prior}}$$

Suppose that the data consists of n i.i.d. observations $D = \{x_1, \dots, x_n\}$. MAP tries to infer the parameter by maximizing the posterior distribution:

$$\theta_{\text{MAP}} = \underset{\theta}{\text{arg max}} p(\theta|D)$$

$$= \underset{\theta}{\text{arg max}} p(D|\theta)p(\theta)$$

$$= \underset{\theta}{\text{arg max}} \left[\prod_{i=1}^{n} p(x_i|\theta) \right] p(\theta)$$

$$= \underset{\theta}{\text{arg max}} \left(\sum_{i=1}^{n} \log p(x_i|\theta) \right) + \log p(\theta)$$

Note that since both of these methods are point estimates (they yield a value rather than a distribution), neither of them are completely Bayesian. A faithful Bayesian would use a model that yields a posterior distribution over all possible values of θ , but this is oftentimes intractable or very computationally expensive.

Now suppose we have a coin with unknown bias θ . We are trying to find the bias of the coin by maximizing the underlying distribution. You tossed the coin n = 10 times and 3 of the tosses came as heads.

(a)	What is the MLE of the bias of the coin θ ?
(b)	Suppose we know that the bias of the coin is distributed according to $\theta \sim N(0.8, 0.09)$, i.e., we are rather sure that the bias should be around $0.8.^1$ What is the MAP estimation of θ ? You can leave your result as a polynomial equation on θ .

This is a somewhat strange choice of prior, since we know that $0 \le \theta \le 1$. However, we will stick with this example for illustrative purposes.

		What if our prior is $\theta \sim N(0.5, 0.09)$ or $N(0.8, 1)$? How does the difference between MAP at MLE change and why?	and
((d)	What if our prior is that θ is uniformly distributed in the range $(0, 1)$?	

2 Tikhonov Regularization

As defined in the homework, Tikhonov regularized regression is a generalization of ridge regression specified by the optimization problem

$$\arg\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{y} - \mathbf{X}\mathbf{w}||_{2}^{2} + \lambda ||\mathbf{\Gamma}\mathbf{w}||_{2}^{2},$$

For some full rank matrix $\Gamma \in \mathbb{R}^{d \times d}$.

In this problem, we look at Tikhonov regularization from a probabilistic standpoint and how it relates to the MAP estimator for a certain choice of prior on the parameters w.

Let $\mathbf{x} \in \mathbb{R}^d$ be a d-dimensional vector and $Y \in \mathbb{R}$ be a one-dimensional random variable. Assume a linear-Gaussian model: $Y|\mathbf{x}, \mathbf{w} \sim N(\mathbf{x}^{\mathsf{T}}\mathbf{w}, 1)$. Suppose that $\mathbf{w} \in \mathbb{R}^d$ is a d-dimensional Gaussian random vector $\mathbf{w} \sim N(0, \Sigma)$, where Σ is a known symmetric positive-definite covariance matrix.

(a) Let us assume that we are given n training data points $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$. Derive the posterior distribution of \mathbf{w} given the training data. What is the MAP estimate of \mathbf{w} ? Compare this result to the solution you achieve in your homework. Comment on how Tikhonov regularization is a generalization of ridge regression from a probabilistic perspective.

[Hint: You may find the following lemma useful. If the probability density function of a random variable is of the form

$$f(\mathbf{v}) = C \cdot \exp\left\{-\frac{1}{2}\mathbf{v}^{\mathsf{T}}\mathbf{A}\mathbf{v} + \mathbf{b}^{\mathsf{T}}\mathbf{v}\right\},\,$$

where C is some constant to make $f(\mathbf{v})$ integrate to 1 and \mathbf{A} is a symmetric positive definite matrix, then \mathbf{v} is distributed as $N(\mathbf{A}^{-1}\mathbf{b}, \mathbf{A}^{-1})$.

(b) Let us extend this result from the previous part to the case where the observation noise variables Z_i are no longer independent across samples, i.e. **Z** is no longer $N(\mathbf{0}, \mathbb{I}_n)$ but instead distributed as $N(\boldsymbol{\mu}_z, \boldsymbol{\Sigma}_z)$ for some mean $\boldsymbol{\mu}_z$ and some covariance $\boldsymbol{\Sigma}_z$ (still independent of the parameter **w**). We make the reasonable assumption that the $\boldsymbol{\Sigma}_z$ is invertible. Derive the posterior distribution of **w** by appropriately changing coordinates.

(Hint: Write **Z** as a function of a standard normal Gaussian vector $\mathbf{V} \sim N(\mathbf{0}, \mathbb{I}_n)$ and use the result in (a) for an equivalent model of the form $\widetilde{\mathbf{y}} = \widetilde{\mathbf{X}}\mathbf{w} + \mathbf{V}$.)