2008 年全国硕士研究生入学统一考试数学二试题

一、选择题: 1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项 符合题目要求,把所选项前的字母填在题后的括号内.

- (A)0
- (B) 1
- (C)2
- (D)3

(2) 如图, 曲线段方程为 y = f(x),

函数在区间[0,a]上有连续导数,则

定积分 $\int_0^a xf'(x)dx$ 等于()

- (A) 曲边梯形 ABOD 面积.
- (B)梯形 ABOD 面积.
- (C)曲边三角形 ACD 面积.
- (D)三角形ACD面积.

(3) 在下列微分方程中,以 $y = C_1 e^x + C_2 \cos 2x + C_3 \sin 2x (C_1, C_2, C_3)$ 为任意常数)为通解 的是()

(A)
$$y''' + y'' - 4y' - 4y = 0$$
. (B) $y''' + y'' + 4y' + 4y = 0$.

(B)
$$y''' + y'' + 4y' + 4y = 0$$
.

$$(C) v''' - v'' - 4v' + 4v = 0$$

(C)
$$y''' - y'' - 4y' + 4y = 0$$
. (D) $y''' - y'' + 4y' - 4y = 0$.

(4) 判断函数 $f(x) = \frac{\ln x}{|x-1|} \sin x (x > 0)$ 间断点的情况()

- (A)有1个可去间断点,1个跳跃间断点
- (B)有1个跳跃间断点,1个无穷间断点
- (C)有两个无穷间断点
- (D)有两个跳跃间断点

(5) 设函数 f(x) 在 $(-\infty, +\infty)$ 内单调有界, $\{x_n\}$ 为数列,下列命题正确的是()

(A)若 $\{x_n\}$ 收敛,则 $\{f(x_n)\}$ 收敛. (B)若 $\{x_n\}$ 单调,则 $\{f(x_n)\}$ 收敛.

(C) 若 $\{f(x_n)\}$ 收敛,则 $\{x_n\}$ 收敛. (D) 若 $\{f(x_n)\}$ 单调,则 $\{x_n\}$ 收敛.

(6) 设函数 f 连续. 若 $F(u,v) = \iint_{D} \frac{f(x^2 + y^2)}{\sqrt{x^2 + y^2}} dx dy$, 其中区域 D_{uv} 为图中阴影部分,则

(A) $vf(u^2)$

$$(B)\frac{v}{u}f(u^2)$$

(C) vf(u)

(7) 设A为n阶非零矩阵,E为n阶单位矩阵. 若 $A^3 = O$,则()

(A) E - A不可逆,E + A不可逆.

(B) E-A不可逆,E+A可逆.

(C) E-A 可逆, E+A 可逆. (D) E-A 可逆, E+A 不可逆.

(8) 设 $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$,则在实数域上与A合同的矩阵为()

$$(A)\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}. \qquad (B)\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}.$$

$$(B)\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$(C)\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

$$(C)\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}. \qquad (D)\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}.$$

二、填空题: 9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

(9)
$$f(x)$$
 连续, $\lim_{x\to 0} \frac{1-\cos(\sin x)}{(e^{x^2}-1)f(x)} = 1$,则 $f(0) =$ ______

(10) 微分方程 $(y + x^2e^{-x})dx - xdy = 0$ 的通解是 y =

(11) 曲线 $\sin(xy) + \ln(y-x) = x$ 在点(0,1)处的切线方程为______.

(12) 求函数
$$f(x) = (x-5)x^{\frac{2}{3}}$$
 的拐点_____.

(13) 已知
$$z = \left(\frac{y}{x}\right)^{\frac{x}{y}}$$
,则 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = \underline{\qquad}$.

(14) 矩阵 A 的特征值是 λ , 2, 3,其中 λ 未知,且 |2A| = -48,则 $\lambda =$ _____

三、解答题: 15-23 小题, 共 94 分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.

(15)(本题满分9分)

求极限
$$\lim_{x\to 0} \frac{\left[\sin x - \sin(\sin x)\right]\sin x}{x^4}$$
.

(16)(本题满分10分)

设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = x(t) \\ y = \int_0^{t^2} \ln(1+u) du \end{cases}$$
 确定,其中 $x(t)$ 是初值问题

$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0\\ x \Big|_{t=0} = 0 \end{cases} \text{ in } \text{ in } \text{ in } \frac{d^2y}{dx^2}.$$

(17)(本题满分9分)

计算
$$\int_0^1 \frac{x^2 \arcsin x}{\sqrt{1-x^2}} dx$$

(18)(本题满分11分)

计算
$$\iint_D \max\{xy,1\}dxdy$$
, 其中 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 2\}$

(19)(本题满分11分)

设 f(x) 是区间 $[0,+\infty)$ 上具有连续导数的单调增加函数,且 f(0)=1. 对于任意的 $t\in[0,+\infty)$,直线 x=0, x=t,曲线 y=f(x) 以及 x 轴所围成曲边梯形绕 x 轴旋转一周生成一旋转体. 若该旋转体的侧面面积在数值上等于其体积的 2 倍,求函数 f(x) 的表达式.

(20)(本题满分11分)

- (I) 证明积分中值定理: 若函数 f(x) 在闭区间 [a,b] 上连续,则至少存在一点 $\eta \in [a,b]$,使得 $\int_a^b f(x)dx = f(\eta)(b-a)$;
- (II) 若函数 $\varphi(x)$ 具有二阶导数,且满足, $\varphi(2) > \varphi(1), \varphi(2) > \int_2^3 \varphi(x) dx$,则至少存在一点 $\xi \in (1,3)$, 使得 $\varphi''(\xi) < 0$.

(21)(本题满分11分)

求函数 $u = x^2 + y^2 + z^2$ 在约束条件 $z = x^2 + y^2$ 和 x + y + z = 4 下的最大和最小值.

(22)(本题满分 12 分)

设n 元线性方程组Ax = b, 其中

$$A = \begin{pmatrix} 2a & 1 & & \\ a^2 & 2a & \ddots & \\ & \ddots & \ddots & 1 \\ & & a^2 & 2a \end{pmatrix}_{n \times n}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

- (I) 证明行列式 $|A| = (n+1)a^n$
- (II) 当a为何值时,该方程组有唯一解,并求 x_1
- (III) 当a为何值时,该方程组有无穷多解,并求通解

(23)(本题满分 10 分)

设 A 为 3 阶矩阵, α_1,α_2 为 A 的分别属于特征值 -1,1 的特征向量,向量 α_3 满足 $A\alpha_3=\alpha_2+\alpha_3$,

- (I) 证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关;
- (II) $\diamondsuit P = (\alpha_1, \alpha_2, \alpha_3)$, $\vec{x} P^{-1}AP$

2008 年全国硕士研究生入学统一考试数学二试题解析

一、选择题

(1)【答案】 D

【详解】因为 f(0) = f(1) = f(2) = 0,由罗尔定理知至少有 $\xi_1 \in (0,1)$, $\xi_2 \in (1,2)$ 使 $f'(\xi_1) = f'(\xi_2) = 0$,所以 f'(x) 至少有两个零点.由于 f'(x) 是三次多项式,三次方程 f'(x) = 0 的实根不是三个就是一个,故 D 正确.

(2)【答案】 C

【详解】
$$\int_0^a xf'(x)dx = \int_0^a xdf(x) = xf(x)\Big|_0^a - \int_0^a f(x)dx = af(a) - \int_0^a f(x)dx$$

其中 af(a) 是矩形 ABOC 面积, $\int_0^a f(x)dx$ 为曲边梯形 ABOD 的面积,所以 $\int_0^a xf'(x)dx$ 为曲边三角形的面积.

(3)【答案】 D

【详解】由微分方程的通解中含有 e^x 、 $\cos 2x$ 、 $\sin 2x$ 知齐次线性方程所对应的特征方程有根 $r=1, r=\pm 2i$,所以特征方程为(r-1)(r-2i)(r+2i)=0,即 $r^3-r^2+4r-4=0$.故以已知函数为通解的微分方程是 y'''-y''+4y'-4=0

(4) 【答案】 A

【详解】x=0, x=1时 f(x) 无定义,故x=0, x=1是函数的间断点

因为
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\ln x}{\csc x} \cdot \lim_{x \to 0^{+}} \frac{1}{|x - 1|} = \lim_{x \to 0^{+}} \frac{1/x}{-\csc x \cot x}$$
$$= -\lim_{x \to 0^{+}} \frac{\sin^{2} x}{x \cos x} = -\lim_{x \to 0^{+}} \frac{x}{\cos x} = 0$$

同理
$$\lim_{x\to 0^-} f(x) = 0$$

$$\mathbb{Z} \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{\ln x}{x - 1} \cdot \lim_{x \to 1^{+}} \sin x = \left(\lim_{x \to 1^{+}} \frac{1}{x}\right) \sin 1 = \sin 1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{\ln x}{1 - x} \cdot \lim_{x \to 1^{+}} \sin x = -\sin 1$$

x=0是可去间断点, x=1是跳跃间断点.

(5)【答案】 B

所以

【详解】因为 f(x) 在 $(-\infty, +\infty)$ 内单调有界,且 $\{x_n\}$ 单调. 所以 $\{f(x_n)\}$ 单调且有界. 故

 $\{f(x_n)\}$ 一定存在极限.

(6)【答案】 A

【详解】用极坐标得
$$F(u,v) = \iint_{D} \frac{f(u^{2}+v^{2})}{\sqrt{u^{2}+v^{2}}} du dv = \int_{0}^{v} dv \int_{1}^{u} \frac{f(r^{2})}{r} r dr = v \int_{1}^{u} f(r^{2}) dr$$
所以
$$\frac{\partial F}{\partial u} = v f(u^{2})$$

(7) 【答案】 C

【详解】
$$(E-A)(E+A+A^2) = E-A^3 = E$$
, $(E+A)(E-A+A^2) = E+A^3 = E$ 故 $E-A, E+A$ 均可逆.

(8) 【答案】 D

【详解】记
$$D = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$
,

$$\mathbb{E}[|\lambda E - D|] = \begin{vmatrix} \lambda - 1 & 2 \\ 2 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 4, \quad \mathbb{E}[|\lambda E - A|] = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 4$$

所以 $A \cap D$ 有相同的特征多项式,所以 $A \cap D$ 有相同的特征值. 又 $A \cap D$ 为同阶实对称矩阵,所以 $A \cap D$ 相似.由于实对称矩阵相似必合同,故 D 正确.

二、填空题

(9)【答案】2

【详解】
$$\lim_{x \to 0} \frac{1 - \cos[xf(x)]}{(e^{x^2} - 1)f(x)} = \lim_{x \to 0} \frac{2\sin^2[xf(x)/2]}{x^2 f(x)} = \lim_{x \to 0} \frac{2\sin^2[xf(x)/2] \cdot f(x)}{[xf(x)/2]^2 \cdot 4}$$
$$= \frac{1}{2} \lim_{x \to 0} f(x) = \frac{1}{2} f(0) = 1$$

所以 f(0) = 2

(10)【答案】
$$x(-e^{-x} + C)$$

【详解】微分方程
$$(y+x^2e^{-x})dx-xdy=0$$
可变形为 $\frac{dy}{dx}-\frac{y}{x}=xe^{-x}$

所以
$$y = e^{\int_{-x}^{1} dx} \left[\int x e^{-x} e^{-\int_{-x}^{1} dx} dx + C \right] = x \left(\int x e^{-x} \cdot \frac{1}{x} dx + C \right) = x(-e^{-x} + C)$$

(11)【答案】 y = x + 1

【详解】设
$$F(x,y) = \sin(xy) + \ln(y-x) - x$$
,则 $\frac{dy}{dx} = -\frac{F'_x}{F'_y} = -\frac{y\cos(xy) - \frac{1}{y-x} - 1}{x\cos(xy) + \frac{1}{y-x}}$,

将
$$y(0) = 1$$
 代入得 $\frac{dy}{dx}\Big|_{x=0} = 1$, 所以切线方程为 $y-1=x-0$,即 $y=x+1$

(12)【答案】(-1,-6)

【详解】
$$y = x^{5/3} - 5x^{2/3} \Rightarrow y' = \frac{5}{3}x^{2/3} - \frac{10}{3}x^{-1/3} = \frac{10(x+2)}{3x^{1/3}}$$

$$\Rightarrow y'' = \frac{10}{9}x^{-1/3} + \frac{10}{9}x^{-4/3} = \frac{10(x+1)}{9x^{4/3}}$$

$$x = -1$$
时, $y'' = 0$; $x = 0$ 时, y'' 不存在

在
$$x = -1$$
 左右近旁 y'' 异号,在 $x = 0$ 左右近旁 $y'' > 0$,且 $y(-1) = -6$

故曲线的拐点为(-1,-6)

(13)【答案】
$$\frac{\sqrt{2}}{2}$$
(ln 2-1)

【详解】设
$$u = \frac{y}{x}, v = \frac{x}{y}$$
,则 $z = u^v$

所以
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = vu^{v-1}(-\frac{y}{x^2}) + u^v \ln u \cdot \frac{1}{y}$$

$$= u^{v} \left(-\frac{vy}{ux^{2}} + \frac{\ln u}{y} \right) = \left(\frac{y}{x} \right)^{x/y} \cdot \frac{1}{y} \left(-1 + \ln \frac{y}{x} \right)$$

所以
$$\frac{\partial z}{\partial x}\Big|_{(1,2)} = \frac{\sqrt{2}}{2} (\ln 2 - 1)$$

(14)【答案】-1

【详解】::
$$|A| = 2 \times 3 \times \lambda = 6\lambda$$
 $|2A| = 2^3 |A|$

$$\therefore 2^3 \times 6\lambda = -48$$
 $\Rightarrow \lambda = -1$

数学(二)试题 第7页 (共14页)

三、解答题

(15)【详解】

(16)【详解】

方法一: 由
$$\frac{dx}{dt} - 2te^{-x} = 0$$
 得 $e^x dx = 2tdt$, 积分并由条件 $x\big|_{t=0}$ 得 $e^x = 1 + t^2$, 即 $x = \ln(1 + t^2)$

所以
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\ln(1+t^2) \cdot 2t}{1+t^2} = (1+t^2)\ln(1+t^2)$$
$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}[(1+t^2)\ln(1+t^2)]}{\frac{dx}{dt}} = \frac{2t\ln(1+t^2) + 2t}{\frac{2t}{1+t^2}}$$
$$= (1+t^2)[\ln(1+t^2) + 1]$$

方法二: 由
$$\frac{dx}{dt}$$
 - $2te^{-x} = 0$ 得 $e^x dx = 2tdt$, 积分并由条件 $x|_{t=0}$ 得 $e^x = 1 + t^2$, 即 $x = \ln(1 + t^2)$

所以
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\ln(1+t^2) \cdot 2t}{\frac{2t}{1+t^2}} = (1+t^2)\ln(1+t^2) = e^x x$$

所以
$$\frac{d^2y}{dx^2} = e^x(x+1)$$

(17)【详解】

方法一: 由于
$$\lim_{x \to 1^-} \frac{x^2 \arcsin x}{\sqrt{1-x^2}} = +\infty$$
,故 $\int_0^1 \frac{x^2 \arcsin x}{\sqrt{1-x^2}} dx$ 是反常积分.
令 $\arcsin x = t$,有 $x = \sin t$, $t \in [0, \pi/2)$

$$\int_0^1 \frac{x^2 \arcsin x}{\sqrt{1 - x^2}} dx = \int_0^{\frac{\pi}{2}} \frac{t \sin^2 t}{\cos t} \cos t dt = \int_0^{\frac{\pi}{2}} t \sin^2 t dt = \int_0^{\frac{\pi}{2}} (\frac{t}{2} - \frac{t \cos 2t}{2}) dt$$

$$= \frac{t^2}{4} \Big|_0^{\frac{\pi}{2}} - \frac{1}{4} \int_0^{\frac{\pi}{2}} t d \sin 2t = \frac{\pi^2}{16} - \frac{t \sin 2t}{4} \Big|_0^{\frac{\pi}{2}} + \frac{1}{4} \int_0^{\frac{\pi}{2}} \sin 2t dt$$

$$= \frac{\pi^2}{16} - \frac{1}{8} \cos 2t \Big|_0^{\frac{\pi}{2}} = \frac{\pi^2}{16} + \frac{1}{4}$$

方法二:
$$\int_0^1 \frac{x^2 \arcsin x}{\sqrt{1-x^2}} dx = \frac{1}{2} \int_0^1 x^2 d(\arcsin x)^2$$

$$= \frac{1}{2}x^{2}(\arcsin x)^{2}\Big|_{0}^{1} - \int_{0}^{1}x(\arcsin x)^{2}dx = \frac{\pi^{2}}{8} - \int_{0}^{1}x(\arcsin x)^{2}dx$$

 \Rightarrow arcsin x = t, 有 $x = \sin t$, $t \in [0, \pi/2)$

$$\int_0^1 x(\arcsin x)^2 dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} t^2 \sin 2t dt = -\frac{1}{4} \int_0^{\frac{\pi}{2}} t^2 d\cos 2t$$

$$= -\frac{1}{4}(t^2\cos 2t)\Big|_0^{\frac{\pi}{2}} + \frac{1}{2}\int_0^{\frac{\pi}{2}}t\cos 2tdt = \frac{\pi^2}{16} - \frac{1}{4}$$

故,原式=
$$\frac{\pi^2}{16} + \frac{1}{4}$$

(18)【详解】 曲线 xy = 1 将区域分成两

个区域 D_1 和 D_2+D_3 ,为了便于计算继续对

区域分割, 最后为

$$\iint_{D} \max(xy,1) dxdy$$

$$= \iint_{D_{1}} xydxdy + \iint_{D_{2}} dxdy + \iint_{D_{3}} dxdy$$

$$= \int_{0}^{\frac{1}{2}} dx \int_{0}^{2} 1 dy + \int_{\frac{1}{2}}^{2} dx \int_{0}^{\frac{1}{x}} 1 dy + \int_{\frac{1}{2}}^{2} dx \int_{\frac{1}{x}}^{2} xydy$$

$$= 1 + 2\ln 2 + \frac{15}{4} - \ln 2 = \frac{19}{4} + \ln 2$$

(19) 【详解】旋转体的体积
$$V = \pi \int_0^t f^2(x) dx$$
,侧面积 $S = 2\pi \int_0^t f(x) \sqrt{1 + f'^2(x)} dx$,由题

设条件知

$$\int_0^t f^2(x) dx = \int_0^t f(x) \sqrt{1 + f'^2(x)} dx$$

上式两端对 t 求导得 $f^2(t) = f(t) \sqrt{1 + f'^2(t)}$, 即 $y' = \sqrt{y^2 - 1}$
由分离变量法解得 $\ln(y + \sqrt{y^2 - 1}) = t + C_1$, 即 $y + \sqrt{y^2 - 1} = Ce^t$
将 $y(0) = 1$ 代入知 $C = 1$,故 $y + \sqrt{y^2 - 1} = e^t$, $y = \frac{1}{2}(e^t + e^{-t})$
于是所求函数为 $y = f(x) = \frac{1}{2}(e^t + e^{-t})$

(20)【详解】(I) 设M与m是连续函数 f(x)在[a,b]上的最大值与最小值,即

$$m \le f(x) \le M$$
 $x \in [a,b]$

由定积分性质,有 $m(b-a) \le \int_a^b f(x)dx \le M(b-a)$,即 $m \le \frac{\int_a^b f(x)dx}{b-a} \le M$

由连续函数介值定理,至少存在一点 $\eta \in [a,b]$,使得 $f(\eta) = \frac{\int_a^b f(x)dx}{b-a}$

即
$$\int_{a}^{b} f(x)dx = f(\eta)(b-a)$$

(II) 由(I)的结论可知至少存在一点 $\eta \in [2,3]$,使 $\int_2^3 \varphi(x) dx = \varphi(\eta)(3-2) = \varphi(\eta)$

又由
$$\varphi(2) > \int_2^3 \varphi(x) dx = \varphi(\eta)$$
,知 $2 < \eta \le 3$

对 $\varphi(x)$ 在[1,2][2, η]上分别应用拉格朗日中值定理,并注意到 $\varphi(1) < \varphi(2)$, $\varphi(\eta) < \varphi(2)$ 得

$$\varphi'(\xi_1) = \frac{\varphi(2) - \varphi(1)}{2 - 1} > 0 \qquad 1 < \xi_1 < 2$$

$$\varphi'(\xi_2) = \frac{\varphi(\eta) - \varphi(2)}{\eta - 2} < 0 \qquad 2 < \xi_1 < \eta \le 3$$

在 $[\xi_1,\xi_2]$ 上对导函数 $\varphi'(x)$ 应用拉格朗日中值定理,有

$$\varphi''(\xi) = \frac{\varphi'(\xi_2) - \varphi'(\xi_1)}{\xi_2 - \xi_1} < 0 \qquad \xi \in (\xi_1, \xi_2) \subset (1,3)$$

(21)【详解】

方法一: 作拉格朗日函数 $F(x, y, z, \lambda, \mu) = x^2 + y^2 + z^2 + \lambda(x^2 + y^2 - z) + \mu(x + y + z - 4)$

$$\begin{cases} F'_{x} = 2x + 2\lambda x + \mu = 0 \\ F'_{y} = 2y + 2\lambda y + \mu = 0 \\ F'_{z} = 2z - \lambda + \mu = 0 \\ F'_{\lambda} = x^{2} + y^{2} - z = 0 \\ F'_{\mu} = x + y + z - 4 = 0 \end{cases}$$

解方程组得 $(x_1, y_1, z_1) = (1,1,2), (x_2, y_2, z_2) = (-2,-2,8)$

故所求的最大值为72,最小值为6.

方法二: 问题可转化为求 $u = x^2 + y^2 + x^4 + 2x^2y^2 + y^4$ 在 $x + y + x^2 + y^2 = 4$ 条件下的最值

设
$$F(x, y, \lambda) = u = x^4 + y^4 + 2x^2y^2 + x^2 + y^2 + \lambda(x + y + x^2 + y^2 - 4)$$

$$\begin{cases} F_x' = 4x^3 + 4xy^2 + 2x + \lambda(1+2x) = 0\\ F_y' = 4y^3 + 4x^2y + 2y + \lambda(1+2y) = 0\\ F_\lambda' = x + y + x^2 + y^2 - 4 = 0 \end{cases}$$

解得 $(x_1, y_1) = (1,1), (x_2, y_2) = (-2,-2)$,代入 $z = x^2 + y^2$,得 $z_1 = 2, z_2 = 8$ 故所求的最大值为 72,最小值为 6.

(22)【详解】(I)证法一:

$$\underbrace{\frac{r_{n} - \frac{n-1}{n} a r_{n-1}}{n}}_{n} = \underbrace{\frac{2a \quad 1}{0 \quad \frac{3a}{2} \quad 1}}_{0 \quad \frac{4a}{3} \quad \cdots \quad \cdots \quad \cdots}_{0 \quad \frac{(n+1)a}{n}} = 2a \cdot \frac{3a}{2} \cdot \frac{4a}{3} \cdot \cdots \cdot \frac{(n+1)a}{n} = (n+1)a^{n}$$

证法二: 记 $D_n = |A|$, 下面用数学归纳法证明 $D_n = (n+1)a^n$.

当n=1时, $D_1=2a$,结论成立.

当
$$n = 2$$
 时, $D_2 = \begin{vmatrix} 2a & 1 \\ a^2 & 2a \end{vmatrix} = 3a^2$,结论成立.

假设结论对小于n的情况成立.将 D_n 按第1行展开得

$$D_{n} = 2aD_{n-1} - \begin{vmatrix} a^{2} & 1 \\ 0 & 2a & 1 \\ & a^{2} & 2a & 1 \\ & \ddots & \ddots & \ddots \\ & & & \ddots & \ddots & 1 \\ & & & & a^{2} & 2a \end{vmatrix}$$

$$=2aD_{n-1}-a^2D_{n-2}=2ana^{n-1}-a^2(n-1)a^{n-2}=(n+1)a^n$$

故
$$|A|=(n+1)a^n$$

证法三: 记 $D_n = |A|$, 将其按第一列展开得 $D_n = 2aD_{n-1} - a^2D_{n-2}$,

所以
$$D_n - aD_{n-1} = aD_{n-1} - a^2D_{n-2} = a(D_{n-1} - aD_{n-2})$$

$$= a^2(D_{n-2} - aD_{n-3}) = \dots = a^{n-2}(D_2 - aD_1) = a^n$$

$$\mathbb{P} D_n = a^n + aD_{n-1} = a^n + a(a^{n-1} + aD_{n-2}) = 2a^n + a^2D_{n-2}$$

$$= \dots = (n-2)a^n + a^{n-2}D_2 = (n-1)a^n + a^{n-1}D_1$$

$$= (n-1)a^n + a^{n-1} \cdot 2a = (n+1)a^n$$

(II)因为方程组有唯一解,所以由 Ax = B 知 $|A| \neq 0$,又 $|A| = (n+1)a^n$,故 $a \neq 0$.

由克莱姆法则,将 D_n 的第1列换成b,得行列式为

所以
$$x_1 = \frac{D_{n-1}}{D_n} = \frac{n}{(n+1)a}$$

(III)方程组有无穷多解,由|A|=0,有a=0,则方程组为

$$\begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

此时方程组系数矩阵的秩和增广矩阵的秩均为n-1,所以方程组有无穷多解,其通解为 $k\begin{pmatrix}1&0&0&\cdots&0\end{pmatrix}^T+\begin{pmatrix}0&1&0&\cdots&0\end{pmatrix}^T,k$ 为任意常数.

(23)【详解】(I)

证法一: 假设 $\alpha_1,\alpha_2,\alpha_3$ 线性相关. 因为 α_1,α_2 分别属于不同特征值的特征向量,故 α_1,α_2 线性无关,则 α_3 可由 α_1,α_2 线性表出,不妨设 $\alpha_3=l_1\alpha_1+l_2\alpha_2$,其中 l_1,l_2 不全为零(若 l_1,l_2 同时为 0,则 α_3 为 0,由 $A\alpha_3=\alpha_2+\alpha_3$ 可知 $\alpha_2=0$,而特征向量都是非 0 向量,矛盾)

$$A\alpha_1 = -\alpha_1, A\alpha_2 = \alpha_2$$

$$\therefore A\alpha_3 = \alpha_2 + \alpha_3 = \alpha_2 + l_1\alpha_1 + l_2\alpha_2, \quad X A\alpha_3 = A(l_1\alpha_1 + l_2\alpha_2) = -l_1\alpha_1 + l_2\alpha_2$$

$$\therefore -l_1\alpha_1 + l_2\alpha_2 = \alpha_2 + l_1\alpha_1 + l_2\alpha_2$$
, 整理得: $2l_1\alpha_1 + \alpha_2 = 0$

则 α_1, α_2 线性相关,矛盾. 所以, $\alpha_1, \alpha_2, \alpha_3$ 线性无关.

证法二: 设存在数
$$k_1, k_2, k_3$$
, 使得 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$ (1)

用 A 左乘(1)的两边并由 $A\alpha_1 = -\alpha_1$, $A\alpha_2 = \alpha_2$ 得

$$-k_1\alpha_1 + (k_2 + k_3)\alpha_2 + k_3\alpha_3 = 0 (2)$$

(1)—(2)
$$\#$$
 $2k_1\alpha_1 - k_3\alpha_2 = 0$ (3)

因为 α_1,α_2 是A的属于不同特征值的特征向量,所以 α_1,α_2 线性无关,从而 $k_1=k_3=0$,代入(1)得 $k_2\alpha_2=0$,又由于 $\alpha_2\neq 0$,所以 $k_2=0$,故 $\alpha_1,\alpha_2,\alpha_3$ 线性无关.

(II) 记
$$P = (\alpha_1, \alpha_2, \alpha_3)$$
,则 P 可逆,

$$AP = A(\alpha_1, \alpha_2, \alpha_3) = (A\alpha_1, A\alpha_2, A\alpha_3) = (-\alpha_1, \alpha_2, \alpha_2 + \alpha_3)$$

$$= (\alpha_1,\alpha_2,\alpha_3) \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = P \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 所以
$$P^{-1}AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$