# Reinforcement Learning

Julien Prat (CNRS, IP Paris)
November 2022

## **Dynamic Programming**

 Dynamic Programming (DP) is an optimization method that solves complex problems by breaking them down into simpler subproblems in a recursive manner.

- Dynamic Programming asumes that the agent knows:
  - ☐ The structure of the model
  - ☐ The law of motion of the state variable, including the impact of the control variable

## **Bayesian Learning**

 Combining Bayesian Learning with DP alllows one to relax the assumption that the law of motion of the state variable is known with certainty.

- Bayesian learning still requires that the agent knows:
  - ☐ The structure of the model
  - ☐ The probabilistic structure of the law of motion of the state
- Furthermore Bayesian learning also requires that we specify the prior of the agent

### Reinforcement Learning

- In practice, the environment can be too complex to build an explicit model.
- Reinforcement learning is model free. It does not require knowledge of the payoff function and law of motion of the state.
- Agent learns how to maximize her reward by repeateadly interacting with the environment.



## Reinforcement Learning

DP can be seen as subfield of RL.

(Note: MDP stands for Markov Decision Process)



#### Monte-Carlo

• Fix the policy function g and define the associated value function

$$V^{g}(x_{0}) = E^{g} \left[ \sum_{t=0}^{T} \beta^{t} U(x_{t+1}, x_{t} | x_{0}, g) \right]$$

- Run Monte-Carlo experiments to approximate the expected return of the policy function *g* with the empirical mean return.
- By the law of large number, the average value should converge to the expected value.
- Note that a simulator for the payoff and transition functions are required.

### Temporal-Difference Learning

Monte-Carlo learns from completed episodes

$$V^g(x) \longleftarrow V^g(x) + \alpha \left[ G - V^g(x) \right]$$

where  $\alpha$  is the learning rate parameter and  $G \equiv \sum_{t=0}^{T} \beta^t U(x_{t+1}, x_t | x_0 = x, g)$  is the simulated return.

• By contrast Temporal-Difference uses bootstrapping to learn from incompleted episodes. Learning occurs at *every step*:

$$V^g(x) \longleftarrow V^g(x) + \alpha \underbrace{\left[U(x, x', a) + \beta V^g(x') - V^g(x)\right]}_{\text{TD Error}}$$

#### DP vs. TD

#### **DP Backups**

$$V^g(x) \longleftarrow E^g \left[ U(x, x', a) + \beta V^g(x') \right]$$



#### **TD Backups**

$$V^g(x) \longleftarrow V^g(x) + \alpha \left[ U(x, x', a) + \beta V^g(x') - V^g(x) \right]$$



**Source: David Silver's class notes** 

## **Unifying Matrix**

#### Monte-Carlo

- Pros: No bias, little dependence to initial conditions, works in non-Markovian settings
- Cons: needs completed episodes, high variance

#### Temporal Difference

- Pros: Usually faster than MC, works in non-terminating environments (infinite horizon), low variance
- Cons: requires completed episodes, sensitive to initial conditions, biased



Source: David Silver's class notes

#### **Model Free Control**

• Extend insights from prediction to *optimise* the value function of an unknown MDP.

- Model Free control applicable when:
  - ✓ MDP model is unknown, but experience can be sampled.
  - ✓ MDP model is known, but is too big to use, except by samples.
- Define Q-function or state-action value function

$$Q(x,a) \equiv U(x,a) + \beta E [V^*(x')]$$
$$= U(x,a) + \beta E \left[ \max_{a'} Q(x',a') | x, a \right]$$

## **Q-learning**

• In a deterministic context, the algorithm below approximates the Q-function

#### Deterministic Q-learning Algorithm

Initialize:  $\widehat{Q}_0(x, a) = Q_0(x, a)$ , for all (x, u)

**for** *r*=1,2,... do

Update:  $\hat{Q}_{r+1}(x_k, a_k) = U(x_k, a_k) + \beta max_a \hat{Q}_r(x_{k+1}, a)$ 

end

**Theorem**: If the MDP is deterministic, the approximation  $\hat{Q}_r(x,a)$  resulting from the algorithm above converges to the true Q-function Q(x,a) provided that each state-action pair is visited infinitely often as the number of iterations round r diverges to infinity.

## **Q-learning**

• Since  $V(x) = max_a Q(x, a)$ , it should not be surprising that the Q-learning algorithm is similar to Value Function iteration.

- However, there is one key difference:
  - Value function iteration requires knowledge of the MDP.
  - Q-learning can be performed without an explicit model of the MDP. Instead, one needs to simulate enough exploration paths to scan the stateaction space.

#### **Greedy policy improvements**



Note:  $\pi$  denotes the policy function

## **Q-learning**

- Implementation issues:
  - $\Box$  **Exploration**: Greedy algorithm might prevent exploration (remember the state-action space must be scanned). Simplest remedy is to implement ε-greedy exploration:
    - ✓ With probability 1-ɛ select greedy action
    - ✓ With probability ε select action at random
  - ☐ **Learning rate**: Borrow from TD to fine tune learning rate

$$Q(x,a) \leftarrow Q(x,a) + \alpha \left[ U(x,a) + \beta \max_{a'} Q(x',a') - Q(x,a) \right]$$

☐ Off-policy vs On-policy: Sarsa use behaviour policy to update the Q-function

$$Q(x,a) \leftarrow Q(x,a) + \alpha \left[ U(x,a) + \beta Q(x',a') - Q(x,a) \right]$$

### Large Scale MDPs

- In large scale problem, the table representation of the Q-function is too big and has to be approximated:
- Linear approximation of the value function

$$Q_{ heta}(x,a) = \sum_{r=1}^K heta_r \phi_r(x,a) = \phi^T(x,a) heta$$

where vector  $\theta$  is identified by gradient descent to minimize error.

Neural network as function approximater.



Source: "Deep reinforcement learning enabled self-learning control for energy efficient driving", Qi et al., 2019