Devoir Maison n°2.

Exercice 1 : Soit la fonction f définie par $f(x) = \frac{3x^2 - 2x}{x^2 + 1}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Déterminent les variations de la fonction f.
- 3. Soit C_f la courbe représentative de f dans un repère. Soit T_{-2} la tangente au point d'abscisse -2 à la courbe C_f . Déterminer une équation de T_{-2} .
- 4. Le point $A\left(1; \frac{61}{25}\right)$ appartient-il à T_{-2} ?

Exercice 2 : Soit la suite (u_n) définie par $u_0=3$ et $u_{n+1}=2u_n-1$ pour tout $n \in \mathbb{N}$ Démontrer par récurrence que pour tout $n \in \mathbb{N}$ $u_n=2^{n+1}+1$

Exercice 3 : Soit la suite (u_n) définie sur \mathbb{N} par $u_0 = 3$, et pour tout entier n, $u_{n+1} = \frac{2}{1+u_n}$.

- 1. Calculer u_1 et u_2 .
- 2. La suite (u_n) est-elle arithmétique ? Géométrique ? Justifier votre réponse.
- 3. Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n > 0$.
- 4. Soit la suite (v_n) définie sur lNpar $v_n = 1 \frac{3}{u_n + 2}$.
 - a. Calculer les premiers termes de la suite (v_n) puis conjecturer la nature de la suite (v_n) . Démontrer cette conjecture.
 - b. En déduire une expression de v_n en fonction de n.
 - c. Justifier que pour tout $n \in \mathbb{N}$, $u_n = \frac{3}{1 v_n} 2$
 - d. En déduire une expression de u_n en fonction de n.