INSTITUTE OF QUALITY & TECHNOLOGY MANAGEMENT UNIVERSITY OF THE PUNJAB

Class: BSc Industrial Engineering & Management Subject: Operations Research – 1

Instructor: Dr. Hakeem-Ur-Rehman

Lab Activity: Mixed Integer Linear Programming Problems

Problem: Capacitated Facility Location Problem

Consider a company with three potential sites for installing its facilities/warehouses and five demand points. Each site j has a yearly activation cost (fixed cost) f_j , i.e., an annual leasing expense that is incurred for using it, independently of the volume it services. This volume is limited to a given maximum amount that may be handled yearly, M_j . Additionally, there is a transportation cost c_{ij} per unit serviced from facility j to the demand point i. These data are shown in Table Data for the facility location problem: demand, transportation costs, fixed costs, and capacities.

Data for the facility location problem: demand, transportation costs, fixed costs, and capacities

Customer i	1	2	3	4	5		
Annual	80	270	250	160	180		
demand d_j							
Facility <i>j</i>	c_{ij}					f_{j}	M_{j}
1	4	5	6	8	10	1000	500
2	6	4	3	5	8	1000	500
3	9	7	4	3	4	1000	500

Model for the Problem:

Consider *n* customers i = 1, 2, ..., n and *m* sites for facilities j = 1, 2, ..., m.

Define continuous variables $x_{ij} \ge 0$ as the amount serviced from facility j to demand point i, and binary variables $y_j = 1$ if a facility is established at location j, $y_j = 0$ otherwise. An integer-optimization model for the capacitated facility location problem can now be specified as follows:

- The **objective of the problem** is to minimize the sum of facility activation costs and transportation costs.
- The **first constraints** require that each customer's demand must be satisfied.
- The capacity of each facility *j* is limited by the **second constraints**: if facility *j* is activated, its capacity restriction is observed; if it is not activated, the demand satisfied by *j* is zero.
- Third constraints provide variable upper bounds; even though they are redundant, they yield a much tighter linear programming relaxation than the equivalent.
- **Fourth constraints** are non-negativity constraints.
- **Fifth** indicates that variables are binary.