PAT-NO:

JP403225445A

DOCUMENT-IDENTIFIER: JP 03225445 A

TITLE:

LOAD DISPERSION STRIPING SYSTEM

PUBN-DATE:

October 4, 1991

INVENTOR-INFORMATION:

NAME

COUNTRY

NAKA, SEIICHIRO YASUGADAIRA, MICHIKO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

NEC CORP

N/A

TOHOKU NIPPON DENKI SOFTWARE KK N/A

APPL-NO: JP02021341

APPL-DATE: January 30, 1990

INT-CL (IPC): G06F012/00 , G06F003/06

ABSTRACT:

PURPOSE: To prevent input and output from being congested on a specific storage device by determining storage devices to be assigned in predetermined order and updating a storage device control table according to the number of storage device and an assignment quantity which are calculated from the states of the respective storage devices stored in a storage device control table.

CONSTITUTION: The storage device control table 25 is referred to pieces of information on the input and output of the respective storage devices 4 to select a necessary number of storage devices in order from the device having the least input/output request quantity; when there are devices having the same quantity, the lengths of their queues are compared to select a shorter-length storage device and then a storage device having the largest data storage capacity.

Further, the storage device having the largest data storage capacity is selected in the storage device control table 25 and after the storage devices to be stored with data are determined, the data storage capacity of each storage device is updated. Actual input and output operation is performed by an input/output control part 3 and the length of the input/output queue and input/ output request quantity in the referred storage device control table 25 are updated. Consequently, a load is prevented from being concentrated on a specific storage device.

COPYRIGHT: (C) 1991, JPO&Japio

⑫ 公 開 特 許 公 報 (A)

平3-225445

®Int. Cl. 5

庁内整理番号 識別記号

❸公開 平成3年(1991)10月4日

G 06 F 12/00 3/06

301 3 0 1 J

8944 - 5B7232 - 5B

審査請求 未請求 請求項の数 1 (全6頁)

負荷分散ストライピング方式 会発明の名称

> 願 平2-21341 ②)特

願 平2(1990)1月30日 22)出

誠 - 郎 @発 明 中 者

東京都港区芝5丁目33番1号 日本電気株式会社内

安ケ平 達 子 明 者 勿発

宮城県仙台市青葉区中央4丁目6番1号 東北日本電気ソ

フトウエア株式会社内

日本電気株式会社 の出 願 λ

東京都港区芝5丁目7番1号

東北日本電気ソフトウ 人

宮城県仙台市青葉区中央4丁目6番1号

エア株式会社

弁理士 内 原 個代 理 人

郌

発明の名称

勿出

顋

負荷分散ストライピング方式

特許請求の範囲

入出力を制御する機構を備えたファイルシステ ムが、同一な入出力の処理速度を持つ複数の記憶 装直上に、同一容量で分割して格納されている仮 想パーティション方式における負荷分散ストライ ピング方式において、前記記憶装置の転送速度、 ・処理効率を保つために必要なデータ量、要求され る処理速度、記憶装置数を格納している仮想パー ティジョン管理テーブルと、割り当て処理の際 に、要求されているデータ割り当て量と前記仮想 パーティション管理テーブルに格納された要求さ れる処理速度から、前記要求される処理速度を満 足するようにデータを分散させる記憶装置数と割 り当て量を算出する手段と、各記憶装置の状態を 示す格納できるデータ量、入出力に対する待ち行

列の長さ、入出力要求量とが格納されている記憶 装置管理テーブルと、前記記憶装置管理テーブル に格納された前記各記憶装置の状態から前記算出 された記憶装置数および割り当て量に従って予め 定めた順に割り当てる記憶装置を決定するととも に前記記憶装置管理テーブルを更新する手段とを 有することを特徴とする負荷分散ストライピング 方式.

発明の詳細な説明

〔産業上の利用分野〕

本発明は、複数の記憶装置を資源とするコン ヒュータシステムのファイルシステムに関する。 〔従来の技術〕

従来のデータ格納方式は、データ量が多く一つ の記憶装置に格納できない場合に、格納限度を越 えた分を次の記憶装置に格納するような方式、ま たは割り当てを行う各記憶装置の情報をシステム のテーブルに格納しておき、その情報を基に記憶 装置を選択割り当てを行う方式、ユーザプログラ

ムでファイルを作成する際に使用する記憶装置を 指定するような方式をとっていた。

(発明が解決しようとする課題)

上記従来のデータ格納方式では、ある特定のデータ格納方式では、それのようののでは、それにの要求が認定は対すると、存在を選定が増えている。というでは、カーザの数では、カーザに物理的な記憶装置を意識させてしまうといった問題点がある。

(課題を解決するための手段)

(実施例)

次に本発明について図面を参照して説明する。 第1図は、本発明の構成を表す図である。

本発明は、ユーザアログラム1からの入出力に関する処理について、同一の処理速度と容量を持つ「個からなる記憶装置4(DK1、DK2、…、DKn)と、それら記憶装置を制御する部分からなる・記憶装置4には既に仮想パーティションン方式で生成されたファイルがパーティションソトとして格納されている・制御する部分はファイルシステム2としてファイル管理装置2と、

データ解放制御部22と、入出力制御部3と、 データの割り当てを制御するデータ割当制御手段 23と、仮想パーティション管理テーブル24 と、記憶装置管理テーブル25で構成されている。

データ割当制御部23は、分散格納する記憶装置数と割り当て量を算出する手段231と、データを格納する記憶装置を決定する手段232とによって構成される。

第2図は、仮想パーティション管理テーブル2 4を示す概念図であり、パーティションVPの転送速度下、要求処理速度V、記憶装置の処理効率を保つために必要なデータ処理量U、記憶装置数Nが格納されている。

第3回は、記憶装置管理テーブル25を示す概念図であり、第2図のパーティションVPに対応する。各記憶装置DK1~DKnの格納可能なデータ量M1~Mn、入出力の待ち行列の長さQ1~Qn、入出力の待ち行列全体のデータ量し1~Lnが格納されている。ここで、入出力の待ち行

列の長さと入出力の特ち行列全体のデータ量は入出力制御部3において、入出力要求発生時に更新されているものとする。

仮想パーティション方式によって構築されたファイルシステムVPに、ユーザプログラム1からXバイトの書き込み要求が発生する。ユーザプログラム1からの命令は、ファイル管理装置21でREAD制御部223、WRITE制御部221、DELETE制御部222に分けられ、それぞれの実行機構に制御が移る。

要求データXバイトを分割する際の手順は、次の通りである。

まず、仮想パーティション管理テーブル24よりパーティションVPの実際の記憶装置の転送速度がT、要求されている処理速度はV、記憶装置の処理効率を保つために必要なデータ処理量がUであることが分かる。

ここで、α×Uバイト(α>Ο 整数)をα台の記憶装置にUバイトずつ同時にアクセスした場合、その転送速度V(α)は、

 $V(\alpha) = \alpha \times T$ (式1) で表すことができる。

よって、要求されたXバイトを q 個の記憶装置に p × Uバイトずつ平均的に分割格納するとすると、次の関係が成り立たなければならない。

$$p \times U \times q \ge X$$

(式2)

 $V \leq q \times T$

(式3)

ただし、p≥1(整数)、1≤q≤n(整数)と する。この関係式より、

$$q \ge V / T$$

(式4)

ただし、XくUの場合は、性能低下を避けるために常に1つの記憶装置にXバイト全てを割り当てることとする。

このようにして、 X パイトを q ″ 個の記憶装置に

 $X - (p_1 \times U \times (q_2 - 1))$

で分割する量が算出される。

次に、記憶装置選択手段232について説明する

記憶装置数・割り当て量算出手段231より、 q2個の記憶装置に分割することを決定したが、

で复出することができる。

本発明においては、各記憶装置に対する負荷をできるだけ均等化するために、記憶装置管理テーブル25より、各々の記憶装置の入出力に対する情報を参照し、入出力要求量の最も少ないものから順に q 2 個の記憶装置を選択することとする。同一のものがあった場合は、待ち行列の長さを比

p ≥ X / (q × U) (式5) が成り立つ。

式4を満足する最小の記憶装置数 q を q i で表すと

$$q_1 = [V/T] \qquad (£6)$$

([]はガウス記号である。)

このg」を基に式5は次のように変形される。

式7を満足する最小のデータ割り当て量pをpiで表すと

ゆえに、

よって、実際に割り当てる記憶装置数を q ₂ とすると、

$$q_2 = [X/(p_1 \times U)] \le q_1$$

で求めることができる。

較し、その知いものを正さととする。 の題い記憶装置から選択することとデータを をできない記憶装置から選択することをデータを をできない記憶装置から選択することを ではまでである。のでは、 をを格納する記憶装置が決定した後で を記憶をできる。がでいまでである。では、 を記憶をできるのでは、 を記憶をできるのでは、 を記憶をできるのでである。ででいまでである。 を記憶をできるのでは、 を記憶をできるのでできる。を を記憶をできる。を を記憶をできる。を を記憶をできる。を を記憶をできる。を を記憶を を記憶を を記憶を を記したできる。 のののののののののできる。 のののののできる。 のののののできる。 のののののできる。 のののののできる。 のののののののののできる。 ののののののできる。 ののののできる。 のののできる。 ののののできる。 のののできる。 のののできる。 のののできる。 のののできる。 のののできる。 のののできる。 のののできる。 のののできる。 のののできる。 ののできる。 のののできる。 のののできる。 のののできる。 のののできる。 ののできる。 のののできる。 ののできる。 ののでできる。 ののでで。 ののできる。 ののできる。 ののできる。 ののできる。 ののできる。 ののできる。 ののできる。 ののでできる

次にXバイトのデータ解放要求がユーザアログラム1から発生した場合について述べる。

この場合は、ファイル管理装置 2 1 のD E L E T E 制御部 2 2 2 を経て、データ解放制御部 2 2 に制御が移る。ここで、各記憶装置に対応する記憶装置管理テーブル 2 5 のデータ格納可能量の更新を行い、入出力制御部 3 で実際のデータ領域の解放処理が行われる。

最後に、Xバイトのデータ読み込み要求がユーザアログラム 1 から発生した場合について述べる

ファイル管理装置 2 1 の R E A D 制御部 2 3 3 を経て、入出力制御部 3 において、実際のデータ競み込みが行われるが、ここで、データが割り付けられている各記憶装置に対応する記憶装置管理テーブル 2 5 の入出力待ち行列の長さ、入出力要求量が更新される。

次に、ここまでに述べた負荷分散パーティション方式について、具体的な数字をあげてその処理を説明する。

第4図、第5図は仮想パーティションVPに対する仮想パーティション管理テーブル 24と記憶装置管理テーブル 25を示す概念図である。

仮想パーティションVPは、4台の記憶装置(DK1,DK2,DK3,DK4)で構成されており、その処理速度は100で皆同一である。この性能を満足するために必要なデータ量が20であり、ユーザから要求されている処理速度は150である。この環境の中に、ユーザより140のデータ割り当て要求が発生したとする。

まず、記憶装置数・割り当て量案出手段231

よって、DK1とDK3を2台の記憶装置として 選択することになる。

したがって、この例の場合、要求量140は次のようにストライピングは、

(DK1, DK2, DK3, DK4) - (60,0,60,0)

この分散を施したあとの記憶装置テーブルを第6回に示す。

前記データ割り当てを実施した後で、ユーザより100のデータ解放要求が発生したとすると、ファイル管理装置21において、実際データが割り付けられている記憶装置を得る。ここでは、(DK2、DK4) = (60、40)の割合で割り付けられていたと仮定する。

データ解放要求は D E L E T E 制御部 2 2 2 を 経て、データ解放制御部 2 2 に制御が移り、第 6 図で表される記憶装置管理テーブル 2 5 の格納可 能量を更新する。

 $D K 2 \cdots 4 8 0 \rightarrow 4 8 0 + 6 0 = 5 4 0$

 $D K 4 \cdots 5 0 0 \rightarrow 5 0 0 + 4 0 = 5 4 0$

により、割り当てるべき装置台数 q i 及びその割り当て量 p i を計算する。式 6、式 8 より、

 $q_1 = [150/100] = 2$

 $p_1 = [140/(2 \times 20)] = 4$

よって、式12より実際に割り当てる台数 q z

q 2 = [140/(3×20)] = 2 以上より、要求量140は2台の記憶装置に(8 0,60)と分散させることとする。

次に、第5図より各記憶装置の入出力負荷状態を参照して、2台の記憶装置を決定する。

組合せとしては装置が4台あるので、4 C 2 = 6 通り考えられるが、まず、入出力要求量(必要格納量20を単位として表す)の最も少ない順で考えると、

D K 1 < D K 2 = D K 3 < D K 4

しかし、DK2とDK3の入出力要求量が同一であるので、次に、入出力特ち行列の長さを参照すると、

D K 1 < D K 3 < D K 2 < D K 4

この解放を施したあとの記憶装置管理テーブル 25を第7図に示す。

(発明の効果)

図面の簡単な説明

 放を実施したあと更新した記憶装置管理テーブル を示した図である。

1 … ユーザアログラム、 2 … ファイルシステム、 3 … 入出力制御部、 4 … 記憶装置、 2 1 … ファイル管理装置、 2 2 … データ解放制御部、 2 3 … データ割当制御部、 2 4 … 仮想パーティション管理テーブル、 2 5 … 記憶装置数・割り当て量算出手段、 2 3 2 … 記憶装置選択手段。

代理人 弁理士 内 原 晋

第2回

24仮想パーティション管理テーブル

5	
パーティション	VP.
乾送速度	Т
心要格納量	U ·
要求処理建度	V
装置款	N

第3回

25 記憶装置管理テフル

記憶裝置ID	DK1	DK2		DKn
格彻可能量	M 1	M2		Mn
入出力符5行列長	21	22	•••	Qn
入出力要求量	L1	L2		Ln

第4回

24 仮想パーティカン管理テフル

· · · · · · · · · · · · · · · · · · ·	
バーティション	VP
転送速長	100
心存格例是	20
要於処理速度	150
装置款	4

第 5 図

25 記憶装置管理テーガレ

記帳接直ID	DK 1	DK2	DK3	DK4
格納可能量	600	480	550	500
入出力符5行列長	1	3	2	4
入土力要求量	2	4	4	6

第 6 図 25 記憶装置管理デブル 5

)			
記憶裝置ID	DK I	DK2	DK3	DK4
格納可能量	520	480	490	500
入土力符5行列長	2	3	3	4
入土力专术量		4	7	6
入江ガヤ水里	0	·	<u> </u>	

第7回 25 記憶設置管理テーブル (

)			
記憶裝置ID	DKI	DK2	DK3	DK4
格納可能量	520	540	490	540
入出力符5行列長	2	3	3	4
入出力要求量	6	4	7	6