Hausaufgabe 4

Aufgabe 5

a)

```
A:
         \varepsilon \in L
B:
         A \wedge (1): \quad x = \varepsilon,
                                    y = \varepsilon, z = \varepsilon
                                                                            \implies abc \in L
C:
         B \wedge (1): \quad x = a,
                                       y = b,
                                                                                  aabbcc \in L
                                                          z = c
D:
         C \wedge (1): \quad x = aa,
                                       y = bb,
                                                                            \implies aaabbbccc \in L
                                                          z = cc
E:
         D \wedge (2): \quad x = aaa,
                                       y = bbb,
                                                                                   cbbbccaaa \in L
                                                           z = cc
```

b) Sei

$$L' = \{a^n b^n c^n \mid n \in \mathbb{N}_{>0}\} \cup \{c b^n c^{n-1} a^n \mid n \in \mathbb{N}_{>0}\} \cup \{\varepsilon\}$$

Dann ist L = L'. Wir zeigen zuerst $L \subseteq L'$.

Wir führen Induktion über den Aufbau von L. Wir fangen mit der Basisregel an. Sei also $w = \varepsilon$. Dann gilt trivialerweise $w \in L'$.

Sei nun $w \in L \land w \in L'$ (IV). Wir überprüfen die Rekursionregeln:

Fall 1: Anwenden der Rekursionregel (1).

Dann ist w=xyz mit $x=a^n, y=b^n$ und $z=c^n$ für ein $n\in\mathbb{N}$, da $w\in L'$ und Rekursionregel (1) diesen Aufbau von Wort benötigt. Durch anwenden der Rekursionregel (1) auf w erhalten wir ein w' und es folgt

$$w' = axbucz = aa^{n}bb^{n}cc^{n} = a^{n+1}b^{n+1}c^{n+1} \in L'$$

Fall 2: Anwenden der Rekursionregel (2).

Dann ist w=xyzc mit $x=a^n, y=b^n$ und $z=c^{n-1}$ für ein $n\in\mathbb{N}$, da die Rekursionregel (2) benötigt, dass das gegebene Wort diese Form hat. Weiter ist ja nach (IV) auch $w\in L'$, also insgesamt $w=xyzc=a^nb^nc^{n-1}c=a^nb^nc^n$. Durch anwenden der Rekursionsregel (2) auf w erhalten wir ein w' und es folgt:

$$w' = cyzx = cb^nc^{n-1}a^n \in L'$$

Insgesamt folgt für jedes ableitbare Wort $w \in L$, dass auch $w \in L'$. Also $L \subseteq L'$.

Wir zeigen nun $L' \subseteq L$. Offensichtlich gilt $\varepsilon \in L'$ und $\varepsilon \in L$ nach Basisregel.

Wir notieren das anwenden der Rekursionregel auf ein wort w als $R_1(w)$ bzw. $R_2(w)$.

Wir führen Induktion über $n \in \mathbb{N}_{>0}$ und zeigen, dass stets $a^n b^n c^n \in L$ sowie $cb^n c^{n-1} a^n \in L$

Sei also n=1. Es gilt $a^nb^nc^n=abc=R_1(\varepsilon)$ und $\varepsilon\in L$ also auch $abc\in L$. Weiter ist $cb^nc^{n-1}a^n=cba=R_2(abc)=R_2(R_1(\varepsilon))$ also auch $cba\in L$.

Sei nun $n \in \mathbb{N}_{>0}$ gegeben, sodass $a^n b^n c^n \in L$ (IV). Es folgt

$$a^{n+1}b^{n+1}c^{n+1} = R_1(a^nb^nc^n)$$
 sowie $cb^{n+1}c^na^{n+1} = R_2(a^{n+1}b^{n+1}c^{n+1}) = R_2(R_1(a^nb^nc^n))$

Da $a^nb^nc^n\in L$ nach IV, folgt also auch $a^{n+1}b^{n+1}c^{n+1}\in L$ sowie $cb^{n+1}c^na^{n+1}\in L$. Nach Prinzip der vollständigen Induktion gilt also, dass $a^nb^nc^n\in L$ und $cb^nc^{n-1}a^n\in L$ für alle $n\in\mathbb{N}_{>0}$. Insgesamt gilt also nach Konstruktion von L', dass $L'\subseteq L$.

Aus beiden Induktionen folgt dann L = L'.

Aufgabe 6

a) Wir definieren q rekursiv wie folgt für ein $w \in \Sigma^*$

$$q(w) = \begin{cases} 0 & \text{für } w = \varepsilon \\ a + q(v) & \text{für } w = av \text{ mit } a \in \Sigma \text{ und } v \in \Sigma^* \end{cases}$$

b)

Wir zeigen q(vw) = q(v) + q(w) für $v, w \in \Sigma^*$ mittels Induktion über v. Sei also w beliebig aber fest. Für $v = \varepsilon$ ist

$$q(vw) = q(\varepsilon w) = q(w) = 0 + q(w) = q(\varepsilon) + q(w) = q(v) + q(w)$$

Sei also nun v so dass q(vw) = q(v) + q(w) (IV). Wir verlängern also v um ein Präfix $a \in \Sigma$:

$$q(avw) = a + q(vw) \stackrel{\text{IV}}{=} a + q(v) + q(w) = q(av) + q(w)$$

Folglich gilt für alle $v, w \in \Sigma^*$, dass q(vw) = q(v) + q(w). Da wir aber mindestens im abelschen Monoid der natürlichen Zahlen (da hier $0 \in \mathbb{N}$) rechnen, ist die Addition kommutativ. Folglich gilt für $v, w \in \Sigma^*$

$$q(vw) = q(v) + q(w) = q(w) + q(v) = q(wv)$$

Aufgabe 7

Es sei im Sinne der Lesbarkeit im folgenden Σ^* als $(\sum_{a\in\Sigma}a)^*$, also konkret $(a+b+c)^*$ zu interpretieren.

$$r_1 = (a(b+c)^*a)^* r_2 = (c^*a + b^*a)^* + (c^* + b^*)$$
$$r_3 = \Sigma^*(ab(c + \Sigma^*bc) + bc\Sigma^*ab)\Sigma^* r_4 = (b+c)^* + \Sigma^*bc\Sigma^*$$

Aufgabe 8

b)

