

Universidade do Minho

DEPARTAMENTO DE INFORMÁTICA

Reconhecimento de Sinais de Transito com Redes Neuronais

José Ferreira (A83683), Jorge Mota (A85272)

June 8, 2021

Contents

1	Introdução	3
2	Estrutura do Projeto	4
3	Redes Desenvolvidas	5
	3.1 Rede Neural Convolucional 1	
	3.1.1 Estruturas Recorrentes	. 6
	3.2 Rede Neural Convolucional 2	. 7
	3.3 Rede Neural Convolucional 3	. 8
	3.3.1 Data Augmentation	. 8
4	Resultados	10

Introdução

Este projeto consiste em criar uma rede neuronal convolucional com a capacidade de identificar sinais de transito com a maior precisão na classificação possível. O dataset de imagens de sinais de transito utilizados foi o *dataset* alemão GTSRB (German Traffic Sign Recognition Benchmark) (Imagem 1.1).

Ao longo deste relatório iremos descrever as varias etapas tomadas para atingir o melhor resultado possível. Inicialmente iremos descrever a estrutura do projeto e como ele foi construído. Em seguida iremos descrever e comparar as 3 redes neuronais convolucionais desenvolvidas. Por fim iremos analisar os resultados obtidos com essas mesmas redes com o intuito de entender o que leva uma rede neuronal a classificar de forma eficaz as imagens do dataset alvo.

Figure 1.1: dataset GTSRB (German Traffic Sign Recognition Benchmark)

Estrutura do Projeto

Com o intuito de facilitar e agilizar o desenvolvimento de varias redes neuronais convolucionais distintas para o projeto, assim como proporcionar um melhor ambiente de desenvolvimento, organizamos este projeto de forma a conseguir cumprir os seguintes objetivos:

- Modularidade do código no que diz respeito as varias etapas que constroem e treinam a rede.
- A possibilidade de **reutilização** de cada componente entre módulos para facilitar a composição de vários membros e testar várias arquiteturas.
- Organização de cada parte do projeto.
- Poder escrever-se código em *scripts python* e utilizar arquiteturas com os módulos num *jupyter notebook*.

Para cumprir estes objetivos, a estrutura de ficheiros deste projeto foi organizada da seguinte forma:

Segmentamos o ciclo de vida da rede em 3 funções principais para **obter o** dataset, fazer o modelo e treina-lo:

- fetch_data() Carrega o dataset alemão para um train set, validation set e test set.
- make_model() Constrói o modelo da rede.
- train() Treina o modelo ou carrega-o a partir de um ficheiro se este tiver sido treinado previamente

Redes Desenvolvidas

Foram desenvolvidas três redes neuronais convolucionais distintas com o objectivo de as comparar e tentar obter aquela com a melhor performance possível.

3.1 Rede Neural Convolucional 1

Para uma primeira implementação de uma rede que classificasse sinais de transito, decidimos basear-nos num modelo que foi explorado nas aulas práticas da unidade curricular.

Layer (type)		Param #
conv2d (Conv2D)		4864
batch_normalization (BatchNo		
leaky_re_lu (LeakyReLU)	(None, 28, 28, 64)	0
conv2d_1 (Conv2D)	(None, 24, 24, 128)	204928
batch_normalization_1 (Batch	(None, 24, 24, 128)	512
leaky_re_lu_1 (LeakyReLU)	(None, 24, 24, 128)	0
max_pooling2d (MaxPooling2D)		0
conv2d_2 (Conv2D)	(None, 8, 8, 256)	819456
batch_normalization_2 (Batch	(None, 8, 8, 256)	1024
leaky_re_lu_2 (LeakyReLU)	(None, 8, 8, 256)	0
max_pooling2d_1 (MaxPooling2	(None, 4, 4, 256)	0
	(None, 4096)	0
dense (Dense)	(None, 128)	524416
leaky_re_lu_3 (LeakyReLU)		0
	(None, 128)	0
	(5547
Total params: 1,561,003 Trainable params: 1,560,107 Non-trainable params: 896		

Esta foi a nossa primeira tentativa utilizada para o módulo cnn1 e que nos orientou para entender os blocos estruturais necessários para a criação de uma rede neuronal convolucional e da vantagem de utilizar a função de activação LeakyReLU em comparação à normal ReLU.

Experimentamos algumas variações para observar os resultados durante e depois do treino, e no final obtemos resultados que são discutidos no capitulo 4.

Figure 3.1: Comparação ReLU e LeakyReLU

3.1.1 Estruturas Recorrentes

Para esta arquitetura de rede, e muitas outras, podemos notar conjuntos de *layers* regulares que funcionam blocos estruturais na rede, que se podem agrupar em camadas Convolucionais e *layers* Densas.

Figure 3.2: Figura ilustrativa de uma CNN típica

As layers convolucionais normalmente são compostas por:

Conv2D -> BatchNormalization -> LeakyReLU -> MaxPooling2D

e contribuem para a aprendizagem das características da imagem ao se sobrepor estrategicamente estas camadas

Depois de se extraírem as características da imagem, usa-se <u>camadas densas</u> que estão todas interligadas de forma a aprender a relação de combinações dessas características. Podem-se compôr estas camdas de várias maneiras, Ex: **Flatten -> Dense -> LeakyReLU**.

Com o objetivo de obter o melhor resultado possível e aprimorar os resultados obtidos experimentamos diversas variacoes de valores.

3.2 Rede Neural Convolucional 2

Depois de se testar para uma implementação que já estávamos familiarizados, decidimos tomar uma abordagem mais completa e procuramos basear-nos no desenvolvimento de uma rede inspirada nos modelos que dominam a classificação de sinais para este *dataset*, que neste caso escolhemos a **MicronNet**.

Rank	Model	Accuracy 1
1	CNN with 3 Spatial Transformers	99.71%
2	Sill-Net	99.68%
3	MCDNN	99.5%
4	MicronNet (fp16)	98.9%

Figure 3.3: Top 4 Redes Neuronais do dataset alemão

A micronnet é uma Deep Convolutional Neural Network compacta que realiza classificações de sinais em tempo útil a ponto de se usar em sistemas computacionalmente limitados. Esta rede encaixa perfeitamente nos requisitos que queríamos sendo que a arquitetura da rede é reduzida, e não leva tanto tempo para treinar.

Layer (type)	Output		Param #
conv2d (Conv2D)		32, 32, 1)	4
batch_normalization (BatchNo	(None,	32, 32, 1)	4
re_lu (ReLU)	(None,	32, 32, 1)	0
conv2d_1 (Conv2D)	(None,	28, 28, 29)	754
batch_normalization_1 (Batch	(None,		116
re_lu_1 (ReLU)	(None,	28, 28, 29)	0
max_pooling2d (MaxPooling2D)	(None,	13, 13, 29)	0
conv2d_2 (Conv2D)	(None,	13, 13, 59)	15458
batch_normalization_2 (Batch	(None,	13, 13, 59)	236
re_lu_2 (ReLU)	(None,	13, 13, 59)	0
max_pooling2d_1 (MaxPooling2	(None,	6, 6, 59)	0
conv2d_3 (Conv2D)	(None,	6, 6, 74)	39368
batch_normalization_3 (Batch	(None,		296
re_lu_3 (ReLU)	(None,	6, 6, 74)	0
max_pooling2d_2 (MaxPooling2		2, 2, 74)	0
	(None,	296)	0
dense (Dense)	(None,		89100
batch_normalization_4 (Batch	(None,		1200
re_lu_4 (ReLU)	(None,	300)	0
dense_1 (Dense)	(None,	300)	90300
	(None,	300)	0
dense_2 (Dense)	(None,		12943
softmax (Softmax)	(None,	43)	0
Total params: 249,779 Trainable params: 248,853 Non-trainable params: 926			

Alguns aspetos que são relevantes apontar relativamente a esta rede:

- As Layers convolucionais organizam-se de maneira semelhante ao que já tinhamos visto para a primeira rede, e ainda se aproveita de algumas otimizações sugeridas no artigo original.
- Para seguir o artigo da *Micronnet*, utilizamos o otimizador SGD (Stochastic Gradient Descent) com *learning rate* 0.007, e momentum 0.9

Este foi um recurso fundamental para compreendermos de forma mais detalhada como se deve desenvolver redes neuronais convolucionais para este tipo de dataset.

3.3 Rede Neural Convolucional 3

Finalmente, após o desenvolvimento de duas redes com o intuito de entender as principais características de uma rede eficaz na classificação de sinais de transito, desenvolvemos uma rede neuronal a partir dos fundamentos aprendidos que idealmente conseguisse trazer resultados mais fiáveis.

Layer (type)		Shape	Param #
conv2d (Conv2D)	(None,	32, 32, 1)	4
batch_normalization (BatchNo	(None,	32, 32, 1)	4
re_lu (ReLU)	(None,	32, 32, 1)	0
conv2d_1 (Conv2D)	(None,	28, 28, 64)	1664
batch_normalization_1 (Batch	(None,	28, 28, 64)	256
leaky_re_lu (LeakyReLU)	(None,	28, 28, 64)	0
max_pooling2d (MaxPooling2D)	(None,	14, 14, 64)	0
conv2d_2 (Conv2D)	(None,	12, 12, 128)	73856
batch_normalization_2 (Batch	(None,	12, 12, 128)	512
leaky_re_lu_1 (LeakyReLU)	(None,	12, 12, 128)	0
max_pooling2d_1 (MaxPooling2	(None,	6, 6, 128)	0
conv2d_3 (Conv2D)	(None,	4, 4, 256)	295168
batch_normalization_3 (Batch	(None,	4, 4, 256)	1024
leaky_re_lu_2 (LeakyReLU)	(None,	4, 4, 256)	0
max_pooling2d_2 (MaxPooling2	(None,	2, 2, 256)	0
flatten (Flatten)	(None,	1024)	0
dense (Dense)	(None,	256)	262400
batch_normalization_4 (Batch	(None,	256)	1024
re_lu_1 (ReLU)	(None,	256)	0
dropout (Dropout)	(None,	256)	0
dense_1 (Dense)	(None,	128)	32896
re_lu_2 (ReLU)	(None,	128)	0
dense_2 (Dense)	(None,	43)	5547
softmax (Softmax)	(None,		0
Total params: 674,355 Trainable params: 672,945 Non-trainable params: 1,410			

3.3.1 Data Augmentation

Para além desta rede, decidimos ainda ampliar o conjunto de dados e fazer data augmentation do dataset para o dobro do tamanho com o intuito de combater o overfitting do modelo, e obter melhores resultados no Test Set.

Para fazer esta augmentation duplicamos o conjunto de treino e transformamos essa metade com parâmetros aleatórios de:

- Brilho
- Contraste
- Saturação
- Translação da imagem
- Rotação da imagem

Ao aplicar estas transformações todas ao mesmo tempo a cada imagem ficamos com uma variante relevante da imagem original, mantendo as caraterísticas o suficiente para continuar a ser classificado pela label respetiva.

Figure 3.4: Imagem original e imagem depois de aplicar as tranformações

Resultados

Por fim, treinamos as redes descritas anteriormente e registamos os resultamos da precisão de classificação do conjunto de teste:

Net	Epochs	Accuracy
cnn1	20	97.32%
cnn2	50	93.42%
cnn2	72	95.36%
cnn2 DA	150	94.89%
cnn3	20	95.49%
cnn3	50	95.29%

Table 4.1: Tabela de precisão das redes

Para avaliar a eficácia das redes, tomamos a decisão de que as redes só seriam boas a classificar sinais, se tivessem uma boa percepção do que é o sinal, e não da junção de sinais com fundos do mundo real, portanto juntamos um conjunto muito limitado de teste com imagens artificiais explicitas de alguns sinais, ao qual nós chamamos de "testes de ouro", e caso a rede não consiga identificar corretamente estes casos, que não têm noção das caraterísticas dos sinais.

Analisando os resultados, podemos notar claramente que os melhores resultados obtidos foram para a **primeira rede cnn1** que não so apresenta a melhor *accuracy* com o menor número de *epochs*, como também classifica os nossos casos de ouro corretamente.

Por outro lado, a segunda rede conseguiu até 95.36% e já não cumpre o nosso requesito de ouro, apesar disso tentamos treina-la com aumento dos dados até 150 epochs, o que não se mostrou relevante.

Por último, a terceira rede que desenvolvemos dispôs de uma accuracy de 95.49% para apenas 20 épocas, mas infelizmente não conseguiu classificar corretamente os nossos casos de ouro