Základy numerické matematiky 2014/2015 Jan Papež, 9. července 2014

Tahák pro MATLAB

Začínáme (help general)

help nápověda, pro konkrétní fci help sin doc dokumentace, pro konkrétní fci doc sin lookfor vyhledání funkce (lookfor cosine) clc vymazání Command Window

Proměnné

MATLAB rozlišuje velikost znaků. Název proměnné musí začínat písmenem. Základní proměnnou je dvourozměrné pole reálných čísel (64 bitů).

 $\mathit{Skal\'ar}$ je pole $1\times1.$

 \check{R} ádkový vektor délky n je pole $1 \times n$. Sloupcový vektor délky m je pole $m \times 1$. Matice s m řádky a n sloupci je pole $m \times n$. \check{R} etězec obsahuje text. (help strfun)

clear a smazání proměnné a clear smazání všech proměnných

Předdefinované konstanty

ans výsledek předchozího výpočtu
eps tzv. strojová přesnost
Inf nekonečno, např. 1/0 = Inf
NaN nedefinovaný výraz, např. 0/0 = NaN

pi hodnota π (3.1415...) 1i, 1j komplexní jednotka

Vytvoření matice/vektoru

Prvky na řádku jsou odděleny mezerou nebo čárkou, středník ukončuje řádek.

 $v = [1\ 2\ 3\ 4\ 5]$ řádkový vektor $w = [5;\ 2;\ 3;\ 4]$ sloupcový vektor $A = [1,2,3;\ 4,5,6;\ 7,8,9]$ matice

A = [1,2,3; 4,5,6; 7,8,9] ma Nebo též takto

 $A = [1,2,3 \\ 4,5,6 \\ 7,8,9]$

length délka vektoru nebo největší rozměr pole size rozměry pole, [m,n] = size(A)

Vytvoření speciálních matic/vektorů

linspace (a,b,N) pravidelné dělení intervalu [a,b] obsahující

N bodů (včetně a, b)

 $\mathtt{i}\mathtt{:}\mathtt{j}\mathtt{:}\mathtt{k}$ aritmetická posloupnost, první prvek i, diference

j, horní mez k (resp. dolní mez pro záporné j)

i:k aritmetická posloupnost s diferencí 1

 $\begin{array}{lll} {\tt zeros(m,n)} & {\tt pole \; nul \; } m \times n \\ {\tt zeros(n)} & {\tt pole \; nul \; } n \times n \\ {\tt ones(m,n)} & {\tt pole \; jedniček \; } m \times n \\ {\tt ones(n)} & {\tt pole \; jedniček \; } n \times n \end{array}$

eye(m,n) pole nul $m \times n$ s jedničkami na diagonále

eye(n) jednotková matice $n \times n$ rand(m,n) pole $m \times n$ náhodných čísel rand(n) pole $n \times n$ náhodných čísel

Indexování proměnných

Číslování začíná od jedničky!

v(1)první prvek vektoru vv(end)poslední prvek vektoru v

v(2:3:9) druhý, pátý a osmý prvek vektoru v

A(2,3) prvek matice A ve druhém řádku, třetím sloupci A(:,3) třetí sloupec matice A

A(:,3) třetí sloupec matice A A(1,:) první řádek matice A

 ${\tt A(1:2:end,:)}\,$ matice obsahující liché řádky matice A

 $\begin{array}{ll} {\tt A(1:2,2:4)} & {\tt podmatice}\ A\ {\tt obsahuj\acute{c}i}\ 1.-2.\ \check{\tt r\'adek},\ 2.-4.\ {\tt sloupec} \\ {\tt A(1,end)} & {\tt posledn\'i}\ {\tt prvek}\ {\tt prvn\'iho}\ \check{\tt r\'adku}\ {\tt matice}\ A \\ \end{array}$

Operace s maticemi/vektory (help arith, help ops)

+ sčítání

- odčítání

* násobení.* násobení po složkách/ dělení./ dělení po složkách

^ mocnění .^ mocnění jednotlivých složek

' komplexní sdružení .' transpozice

Matematické funkce (help elfun, help matfun)

Následující funkce mají očekávaný význam:

abs, exp, log, log10, log2, sqrt, sin, asin, cos, acos, tan, atan, floor, ceil, round, max, min, norm, rank, det, inv, sort, sum.

Vstupem těchto funkcí mohou být i vektory a matice.

Skripty ("m-files")

Posloupnost příkazů, tzv. skript je uložen v textovém souboru s příponou .m. Skript lze spustit zadáním jména souboru (bez přípony) v příkazovém řádku, nebo tlačítkem "Run" v okně editoru.

; potlačení výstupu, umísťuje se na konec příkazu

% začátek komentáře (celý zbytek řádku)

... pokračování příkazu/výrazu na dalším řádku

Funkce

Funkce jsou definovány v jednotlivých souborech pojmenovaných stejně jako funkce NazevFunkce.m následovně:

function [out1,...,outN] = NazevFunkce(in1,...inM)
% NazevFunkce: Stručný popis (volitelně)
% ...
příkazy;

Funkci poté spustíme takto

[výstup1,...,výstupN] = NazevFunkce(vstup1,...vstupM)

Logické operátory (help relop)

```
< menší než</p>
<= menší nebo rovný</p>
> větší než
>= větší nebo rovný
== rovný
~= různý
& logické AND ("a zároveň")
| logické OR ("nebo")
~ negace
```

Cykly (help lang)

```
for k = Vektor
    příkazy;
end
Obvykle: for k = 1:n
while LogickýVýraz
    příkazy;
end
```

Pro náročnější výpočty je žádoucí se cyklům vyhýbat.

Větvení kódu (help lang)

Vykreslování výsledků (help graph2d, help graph3d)

vytvoření nového okna pro graf figure zavření aktuálního okna close zavření všech oken close all plot základní 2D graf 2D graf s logaritmicky škálovanou osou y semilogy imagesc zobrazení obrázku, vhodné pro zobrazení prvků zobrazení křivky/bodů ve 3D plot3 zobrazení plochy ve 3D surf legend legenda ke grafu title název grafu popisek osy x xlabel ylabel popisek osy y