Kraśkiewicz-Pragacz modules and some positivity properties of Schubert polynomials

Masaki Watanabe

Graduate School of Mathematical Sciences, the University of Tokyo

Formal Power Series and Algebraic Combinatorics, Jul. 7 2015, KAIST

Schubert Polynomials

- w: permutation $\leadsto \mathfrak{S}_w \in \mathbb{Z}[x_1, x_2, ...]$ $\begin{cases} \mathfrak{S}_{ws_i} = \partial_i \mathfrak{S}_w = \frac{\mathfrak{S}_w s_i \mathfrak{S}_w}{x_i x_{i+1}} & (\ell(ws_i) < \ell(w)) \\ \mathfrak{S}_{w_0} = x_1^{n-1} x_2^{n-2} \cdots x_{n-1} \end{cases}$
- $\{\mathfrak{S}_w\} \leftrightarrow \mathsf{Schubert}$ classes in the cohomology rings of flag varieties.
- w: grassmannian i.e.

$$\exists i, \ w(1) < \dots < w(i), \ w(i+1) < w(i+2) < \dots$$

 $\implies \mathfrak{S}_w = (a \text{ Schur polynomial in } x_1, \dots, x_i).$

Examples for $w \in S_3$:

$$\mathfrak{S}_{123} = 1$$
 $\mathfrak{S}_{132} = x_1 + x_2$
 $\mathfrak{S}_{213} = x_1$
 $\mathfrak{S}_{231} = x_1x_2$
 $\mathfrak{S}_{312} = x_1^2$
 $\mathfrak{S}_{321} = x_1^2x_2$

Kraśkiewicz-Pragacz modules

- Schur polynomials: characters of irreducible representations of $\mathfrak{gl}_n(\mathbb{C})$.
- Schubert polynomials: characters of Kraśkiewicz-Pragacz modules.

Kraśkiewicz-Pragacz modules: Definition

- K: field with characteristic 0
- $\mathfrak{b} = \mathfrak{b}_n = \text{Lie}$ algebra of $n \times n$ upper triangular matrices
- $K^n = \bigoplus_{1 \le i \le n} Ku_i$: vector representation of \mathfrak{b}
- D(w): Rothe diagram of a permutation $w \rightsquigarrow S_w$: KP module

Example: w = 3142

Kraśkiewicz-Pragacz modules: Definition

- K: field with characteristic 0
- $\mathfrak{b} = \mathfrak{b}_n = \text{Lie}$ algebra of $n \times n$ upper triangular matrices
- $K^n = \bigoplus_{1 \le i \le n} Ku_i$: vector representation of \mathfrak{b}
- D(w): Rothe diagram of a permutation $w \rightsquigarrow S_w$: KP module

Example: w = 3142

$$D(w) = \{(i, w(j)) : i < j, w(i) > w(j)\}$$

= \{(1, 1), (1, 2), (3, 2)\}

Kraśkiewicz-Pragacz modules: Definition

- K: field with characteristic 0
- $\mathfrak{b} = \mathfrak{b}_n = \text{Lie}$ algebra of $n \times n$ upper triangular matrices
- $K^n = \bigoplus_{1 \le i \le n} Ku_i$: vector representation of \mathfrak{b}
- D(w): Rothe diagram of a permutation $w \rightsquigarrow S_w$: KP module

Example: w = 3142

$$u_w = u_1 \otimes (u_1 \wedge u_3) \in K^n \otimes \bigwedge^2(K^n)$$

$$S_w = \mathcal{U}(\mathfrak{b})u_w = \langle u_1 \otimes (u_1 \wedge u_3), u_1 \otimes (u_1 \wedge u_2) \rangle$$

Kraśkiewicz-Pragacz modules: Property

For a \mathfrak{b} -module M and $\lambda \in \mathbb{Z}^n$, let $M_{\lambda} = \{ m \in M : hm = \sum_i \lambda_i h_i \ (\forall h = \operatorname{diag}(h_1, \dots, h_n) \in \mathfrak{b}) \}$ and let $\operatorname{ch}(M) = \sum_{\lambda} \dim M_{\lambda} x^{\lambda}$: character of M.

eg.
$$S_{3142} = \langle u_1 \otimes (u_1 \wedge u_3), u_1 \otimes (u_1 \wedge u_2) \rangle \leadsto \operatorname{ch}(S_{3142}) = x_1^2 x_3 + x_1^2 x_2.$$

Theorem (Kraśkiewicz-Pragacz)

$$\operatorname{ch}(\mathcal{S}_w) = \mathfrak{S}_w.$$

Kraśkiewicz-Pragacz modules: Examples

 $w = s_i$: simple transposition

Kraśkiewicz-Pragacz modules: Examples

w: grassmannian i.e. $w(1) < \cdots < w(i)$, $w(i+1) < w(i+2) < \cdots$ eg. w=13524

 $u_w = a$ lowest weight vector in an irreducible representation of $\mathfrak{gl}_i(\mathbb{C})$ $\mathcal{S}_w = an$ irreducible representation of $\mathfrak{gl}_i(\mathbb{C})$ $\operatorname{ch}(\mathcal{S}_w) = (a \text{ Schur polynomial in } x_1, \dots, x_i) = \mathfrak{S}_w$

Remark: the examples we have seen are all special cases of Demazure modules, but in general they are different (equal only for 2143-avoiding w).

Schubert positivity

- For permutations w, v, is the product $\mathfrak{S}_w\mathfrak{S}_v$ a positive sum of Schubert polynomials?
 - (Yes: classical, one of very fundamental properties of Schubert polynomials. Previously known proof is through the cohomology ring of flag varieties)

Schubert positivity

- For permutations w, v, is the product S_wS_v a positive sum of Schubert polynomials?
 (→ Yes: classical, one of very fundamental properties of Schubert
 - (Yes: classical, one of very fundamental properties of Schubert polynomials. Previously known proof is through the cohomology ring of flag varieties)
- For a partition λ and a permutation w, is the plethysm
 s_λ[S_w] = s_λ(x^α, x^β,...) (S_w = x^α + x^β + ···) a positive sum of Schubert polynomials?
 (→ Yes: not known before (to my best knowledge). A new result obtained in this research)

How are such questions related with KP modules?

Schubert positivity

- For permutations w, v, is the product S_wS_v a positive sum of Schubert polynomials?
 (→ Yes: classical, one of very fundamental properties of Schubert
 - (Yes: classical, one of very fundamental properties of Schubert polynomials. Previously known proof is through the cohomology ring of flag varieties)
- For a partition λ and a permutation w, is the plethysm
 s_λ[S_w] = s_λ(x^α, x^β,...) (S_w = x^α + x^β + ···) a positive sum of Schubert polynomials?
 (→ Yes: not known before (to my best knowledge). A new result obtained in this research)

How are such questions related with KP modules?

Recall the case of Schur functions: the Schur positivities of the product $s_{\lambda}s_{\mu}$ and the plethysm $s_{\lambda}[s_{\mu}]$ can be both explained by interpreting them as characters of certain modules over $\mathfrak{gl}_n(\mathbb{C})$.

Schubert positivity and KP modules

- For permutations w, v, is the product $\mathfrak{S}_w\mathfrak{S}_v$ a positive sum of Schubert polynomials? \longleftrightarrow For permutations w, v, does the tensor product module $\mathcal{S}_w\otimes\mathcal{S}_v$ have a KP filtration, i.e. a filtration $\mathcal{S}_w\otimes\mathcal{S}_v=M_r\supset M_{r-1}\supset\cdots\supset M_0=0$ such that each M_i/M_{i-1} is isomorphic to some KP module?
- For a partition λ and a permutation w, is the plethysm $s_{\lambda}[\mathfrak{S}_w] = s_{\lambda}(x^{\alpha}, x^{\beta}, \ldots)$ ($\mathfrak{S}_w = x^{\alpha} + x^{\beta} + \cdots$) a positive sum of Schubert polynomials? \longleftrightarrow Does the Schur-functor image $s_{\lambda}(\mathcal{S}_w)$ of a KP module have a KP filtration?

Schubert positivity and KP modules

- For permutations w, v, is the product $\mathfrak{S}_w \mathfrak{S}_v$ a positive sum of Schubert polynomials?
 - For permutations w, v, does the tensor product module $S_w \otimes S_v$ have a KP filtration, i.e. a filtration
 - $S_w \otimes S_v = M_r \supset M_{r-1} \supset \cdots \supset M_0 = 0$ such that each M_i/M_{i-1} is isomorphic to some KP module?
- For a partition λ and a permutation w, is the plethysm $s_{\lambda}[\mathfrak{S}_w] = s_{\lambda}(x^{\alpha}, x^{\beta}, \ldots)$ ($\mathfrak{S}_w = x^{\alpha} + x^{\beta} + \cdots$) a positive sum of Schubert polynomials? \longleftrightarrow Does the Schur-functor image $s_{\lambda}(\mathcal{S}_w)$ of a KP module have a KP

filtration?

Question

So.

When does a \mathfrak{b} -module M have a KP filtration?

Criterion for KP filtration

For $k \in \mathbb{Z}$ let $K_{\rho+k1}$ be the 1-dimensional \mathfrak{b} -module with weight $\rho+k1=(n-1+k,n-2+k,\ldots,k)\in\mathbb{Z}^n$.

Theorem (W.)

M has a KP filtration

$$\iff \operatorname{Ext}^{i}(M, \mathcal{S}_{v}^{*} \otimes K_{\rho+k1}) = 0 \ (\forall v, \ \forall k, \ \forall i \geq 1)$$

Criterion for KP filtration

For $k \in \mathbb{Z}$ let $K_{\rho+k1}$ be the 1-dimensional \mathfrak{b} -module with weight $\rho+k1=(n-1+k,n-2+k,\ldots,k)\in\mathbb{Z}^n$.

Theorem (W.)

M has a KP filtration

$$\iff \operatorname{Ext}^{i}(M, \mathcal{S}_{v}^{*} \otimes K_{\rho+k1}) = 0 \ (\forall v, \ \forall k, \ \forall i \geq 1)$$

Key step: introduce an order \leq on \mathbb{Z}^n using the lexicographic order on the inverse of the permutation, for example,

$$code(25143) \le code(15423)$$
 since $25143^{-1} \ge 15423^{-1}$.

Proposition (W.)

 S_w is the projective cover of $K_{\operatorname{code}(w)}$ in $C_{\leq \operatorname{code}(w)}$, the category of all modules whose weights are $\leq \operatorname{code}(w)$.

M has a KP filtration $\iff \operatorname{Ext}^i(M, \mathcal{S}^*_{\mathbf{v}} \otimes \mathcal{K}_{\rho+k\mathbf{1}}) = 0 \ (\forall \mathbf{v}, k, i \geq 1)$

Corollary

- $M = M_1 \oplus \cdots \oplus M_r$ has KP filtration iff each M_i does.
- If $0 \to L \to M \to N \to 0 \& M, N$ have KP filtrations then so does L.

With this corollary:

- Plethysm question can be reduced to Tensor product question since $S_w^{\otimes m} = \bigoplus_{\lambda \vdash m} (s_{\lambda}(S_w))^{f^{\lambda}}$.
- Tensor product question can be reduced to a simpler case $S_w \otimes S_{s_i}$ where the expansion of its character into a sum of Schubert polynomials is explicitly known (Monk's formula).

M has a KP filtration $\iff \operatorname{Ext}^i(M, \mathcal{S}^*_{\mathbf{v}} \otimes \mathcal{K}_{\rho+k\mathbf{1}}) = 0 \ (\forall \mathbf{v}, k, i \geq 1)$

Corollary

- $M = M_1 \oplus \cdots \oplus M_r$ has KP filtration iff each M_i does.
- If $0 \to L \to M \to N \to 0$ & M, N have KP filtrations then so does L.

With this corollary:

- Plethysm question can be reduced to Tensor product question since $S_w^{\otimes m} = \bigoplus_{\lambda \vdash m} (s_{\lambda}(S_w))^{f^{\lambda}}$.
- Tensor product question can be reduced to a simpler case $S_w \otimes S_{s_i}$ where the expansion of its character into a sum of Schubert polynomials is explicitly known (Monk's formula).

Theorem (W.)

- $S_w \otimes S_v$ has a KP filtration for any w, v.
- $s_{\lambda}(S_w)$ has a KP filtration for any w, λ .

M has a KP filtration $\iff \operatorname{Ext}^i(M, \mathcal{S}_{v}^* \otimes K_{\rho+k1}) = 0 \ (\forall v, k, i \geq 1)$

Corollary

- $M = M_1 \oplus \cdots \oplus M_r$ has KP filtration iff each M_i does.
- If $0 \to L \to M \to N \to 0$ & M, N have KP filtrations then so does L.

With this corollary:

- Plethysm question can be reduced to Tensor product question since $S_w^{\otimes m} = \bigoplus_{\lambda \vdash m} (s_{\lambda}(S_w))^{f^{\lambda}}$.
- Tensor product question can be reduced to a simpler case $S_w \otimes S_{s_i}$ where the expansion of its character into a sum of Schubert polynomials is explicitly known (Monk's formula).

Theorem (W.)

- $S_w \otimes S_v$ has a KP filtration for any $w, v. \leadsto \mathfrak{S}$ -positivity of $\mathfrak{S}_w \mathfrak{S}_v$
- $s_{\lambda}(S_w)$ has a KP filtration for any $w, \lambda. \leadsto \mathfrak{S}$ -positivity of $s_{\lambda}[\mathfrak{S}_w]$

- $S_w \otimes S_v$ has a KP filtration for any w, v. ($\leadsto \mathfrak{S}$ -positivity of $\mathfrak{S}_w \mathfrak{S}_v$)
- $s_{\lambda}(S_w)$ has a KP filtration for any w, λ . (\leadsto \mathfrak{S} -positivity of $s_{\lambda}[\mathfrak{S}_w]$)

The multiplicities of Schubert polynomials in these expansions can be also described by KP modules: if M has a KP filtration, then it can be seen that the number of times \mathcal{S}_w ($w \in \mathcal{S}_n$) appears in M is given by $\dim Hom(M \otimes \mathcal{S}_{w_0w}, \mathcal{K}_\rho)$. So in this case we have,

Theorem (W.)

• If $\mathfrak{S}_w\mathfrak{S}_v=\sum c^u_{wv}\mathfrak{S}_u$, then

$$c_{wv}^u = \dim Hom(\mathcal{S}_w \otimes \mathcal{S}_v \otimes \mathcal{S}_{w_0u}, K_\rho) \quad (w, v, u \in \mathcal{S}_n).$$

• If $s_{\lambda}[\mathfrak{S}_w] = \sum d_{\lambda w}^{\nu} \mathfrak{S}_{\nu}$, then

$$d_{\lambda w}^{v} = \dim \mathit{Hom}(s_{\lambda}(\mathcal{S}_{w}) \otimes \mathcal{S}_{w_{0}v}, K_{
ho}) \quad (w,v \in \mathcal{S}_{n}, \ \lambda : \mathsf{partition})$$

- $S_w \otimes S_v$ has a KP filtration for any w, v. ($\leadsto \mathfrak{S}$ -positivity of $\mathfrak{S}_w \mathfrak{S}_v$)
- $s_{\lambda}(S_w)$ has a KP filtration for any w, λ . (\leadsto \mathfrak{S} -positivity of $s_{\lambda}[\mathfrak{S}_w]$)

The multiplicities of Schubert polynomials in these expansions can be also described by KP modules: if M has a KP filtration, then it can be seen that the number of times \mathcal{S}_w ($w \in \mathcal{S}_n$) appears in M is given by $\dim Hom(M \otimes \mathcal{S}_{w_0w}, \mathcal{K}_\rho)$. So in this case we have,

Theorem (W.)

• If $\mathfrak{S}_w\mathfrak{S}_v=\sum c^u_{wv}\mathfrak{S}_u$, then

$$c_{wv}^u = \dim Hom(\mathcal{S}_w \otimes \mathcal{S}_v \otimes \mathcal{S}_{w_0u}, K_\rho) \quad (w, v, u \in \mathcal{S}_n).$$

• If $s_{\lambda}[\mathfrak{S}_w] = \sum d_{\lambda w}^{\nu} \mathfrak{S}_{\nu}$, then

$$d_{\lambda w}^{v} = \dim \mathit{Hom}(s_{\lambda}(\mathcal{S}_{w}) \otimes \mathcal{S}_{w_{0}v}, \mathcal{K}_{
ho}) \quad (w,v \in \mathcal{S}_{n},\; \lambda : \mathsf{partition})$$

arXiv: 1406.6203, 1410.7981