Intro to Quantum Computating - Homework 1

Pranav Tikkawar

February 14, 2025

1. In the class, we showed that the eigenvectors of the Pauli Z operator are given by $|0\rangle$, $|1\rangle$ with eigenvalues 1, -1 respectively:

$$Z|0\rangle = |0\rangle, \quad Z|1\rangle = -|1\rangle,$$

where

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Find the eigenvectors of the Pauli X operator and the corresponding eigenvalues. Find the 2×2 matrix that relates the eigenvectors of the X operator to the eigenvectors of the Z operator.

Solution: We can do this by solving the eigenvalue equation

$$X|v\rangle=\lambda|v\rangle,$$

where X is the Pauli X operator given by

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

The eigenvalues of the Pauli X operator are $\lambda = 1$ and $\lambda = -1$. The eigenvectors corresponding to these eigenvalues are

$$|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad |-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

The 2x2 matrix that relates the eigenvectors of the X operator to the eigenvectors of the Z operator is given by

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

- 2. Recall that the commutator of two operators is given by [A, B] = AB BA. Show that (below the symbol † indicates Hermitian conjugation)
 - (a) $[A,B]^{\dagger} = [B^{\dagger},A^{\dagger}]$
 - (b) [A, B] = -[B, A]
 - (c) If A, B are Hermitian, then i[A, B] is also Hermitian

Solution: a

$$[A, B]^{\dagger} = (AB - BA)^{\dagger}$$
$$= (AB)^{\dagger} - (BA)^{\dagger}$$
$$= B^{\dagger}A^{\dagger} - A^{\dagger}B^{\dagger}$$
$$= [B^{\dagger}, A^{\dagger}]$$

b

$$[A, B] = AB - BA$$
$$= -BA + AB$$
$$= -[B, A]$$

c Suppose A,B are Hermitian, then $A=A^\dagger$ and $B=B^\dagger$. Then we need that $i[A,B]=i[A,B]^\dagger$. We have

$$(i[A, B])^{\dagger} = -i[B^{\dagger}, A^{\dagger}]$$

$$= i[A^{\dagger}, B^{\dagger}]$$

$$= i[A, B]$$

$$= i[A, B]$$

Thus i[A, B] is Hermitian.

- 3. An operator A is called anti-Hermitian if $A^{\dagger} = -A$.
 - (a) Show that eigenvalues of anti-Hermitian operators are purely imaginary.
 - (b) Show that expectation values of anti-Hermitian operators are purely imaginary for any given state $|\psi\rangle$.

Solution: a Suppose A is an anti-Hermitian operator with eigenvalue a and eigenvector $|a\rangle$. Then we have

$$A|a\rangle = a|a\rangle$$

$$A^{\dagger}|a\rangle = a^*|a\rangle$$

$$-A|a\rangle = a^*|a\rangle$$

$$-a|a\rangle = a^*|a\rangle$$

$$-a = a^*$$

Thus a is purely imaginary. **b** Suppose A is an anti-Hermitian operator and $|\psi\rangle$ is any state. We want to show that $\langle\psi|A|\psi\rangle^* = -\langle\psi|A|\psi\rangle$. We have

$$\begin{split} \langle \psi | A | \psi \rangle^* &= \langle \psi | A^\dagger | \psi \rangle \\ &= - \langle \psi | A | \psi \rangle \end{split}$$

Thus $\langle \psi | A | \psi \rangle$ is purely imaginary.