Protocol Layering - Introduction

Protocol

Rules that both the sender and receiver and all intermediate devices need to follow to be able to communicate effectively

Protocol Layering Simple Communication: only one simple protocol

Complex Communication, we need a protocol at each layer, or Protocol Layering

Protocol Layering - Example Scenario 1

Protocol Layering - Example Scenario 2

Protocol Layering - Advantages and Disadvantages

Advantages

- ✓ Modularity
- ✓ Separation of Service & Implementation
- ✓ Reduced Complexity & Cost

Disadvantages

✓ None Really!

Protocol Layering - Principles

Two Principles

- ✓ Bidirectional

 Communication → Each

 Layer performs two

 opposite tasks in each

 direction
- ✓ Two objects under each layer at both sites should be identical

Protocol Layering - Logical Connections

- Logical Connections
 - ✓ Imaginary connection between each layer

Protocol Layering

TCP/IP Protocol Suite

- TCP/IP Protocol Suite
 - ✓ Protocol suite used in Internet today
 - ✓ Each Layer provides specific functionality
 - ✓ Hierarchical Protocol
 - ✓ Presented in 1973 and chosen to be the official protocol of Internet in 1983

TCP/IP Protocol Suite

a. Original layers

b. Layers used in this book

TCP/IP Protocol Suite - Layered Architecture

TCP/IP Protocol Suite – Function of Layers

 Logical Connections between TCP/IP Layers

TCP/IP Protocol Suite – Function of Layers

TCP/IP Protocol Suite – Function of Layers

Notes: We have not shown switches because they don't change objects.

TCP/IP Protocol Suite – Layer Description

Application Layer 5

Transport Layer 4

Network Layer 3

Data link Layer 2

Physical

Layer 1

TCP/IP Protocol Suite – Layer Description

TCP/IP Protocol Suite – Layer Description

Encapsulation & Decapsulation

- Important Concept in Internet Protocol Layering
 - Layer Header

Encapsulation & Decapsulation

Addressing in TCP/IP Protocol Suite

- Every communication needs at least two addresses:
 - √ Source Address &
 - ✓ Destination Address
- Addressing by Layer
- Physical Layer is an exception

Addressing in TCP/IP Protocol Suite

Packet names	Layers	Addresses
Message	Application layer	Names
Segment / User datagram	Transport layer	Port numbers
Datagram	Network layer	Logical addresses
Frame	Data-link layer	Link-layer addresses
Bits	Physical layer	

The Open System Interconnection (OSI) Model

- International Organization for Standardization (ISO)
- ISO established in 1947
- Close to three-fourths of countries represented
- Introduced OSI Model in late 1970s
- OSI: a 7-Layer Model

The Open System Interconnection (OSI) Model

Layer 7	Application
Layer 6	Presentation
Layer 5	Session
Layer 4	Transport
Layer 3	Network
Layer 2	Data link
Layer 1	Physical

OSI Model vs TCP/IP Protocol suite

- Two Layers of OSI missing from TCP/IP
- Application (TCP/IP) =Application + Presentation+ Session (OSI)

OSI Model vs TCP/IP Protocol suite

Lack of OSI Model's Success

- Three reasons OSI did not replace TCP/IP:
 - ✓ OSI was completed when TCP/IP was fully in place
 - ✓ Some layers in OSI not fully defined
 - ✓ Performance of TCP/IP better than that of OSI

Data Communication versus Computer Networks

Data Communication versus Computer Networks

Application Transport Network Data link Physical TCP/IP Protocol Suite

- Analog & Digital
 Transmission
- Transmission Media
- Switching
- Error Detection and Correction
- Media Access and Data Link Control
- Wired and Wireless LANs