Main approaches to determine posterior distributions in graphical models:

 Variable Elimination, recursive conditioning: exploit the structure of the network to eliminate (sum out) the non-observed, non-query variables one at a time.

Main approaches to determine posterior distributions in graphical models:

- Variable Elimination, recursive conditioning: exploit the structure of the network to eliminate (sum out) the non-observed, non-query variables one at a time.
- Stochastic simulation: random cases are generated according to the probability distributions.

Main approaches to determine posterior distributions in graphical models:

- Variable Elimination, recursive conditioning: exploit the structure of the network to eliminate (sum out) the non-observed, non-query variables one at a time.
- Stochastic simulation: random cases are generated according to the probability distributions.
- Variational methods: find the closest tractable distribution to the (posterior) distribution we are interested in.

Main approaches to determine posterior distributions in graphical models:

- Variable Elimination, recursive conditioning: exploit the structure of the network to eliminate (sum out) the non-observed, non-query variables one at a time.
- Stochastic simulation: random cases are generated according to the probability distributions.
- Variational methods: find the closest tractable distribution to the (posterior) distribution we are interested in.
- Bounding approaches: bound the conditional probabilites above and below and iteratively reduce the bounds.
- . . .

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.
- We can assign some or all of the variables of a factor:
 - ▶ $f(X_1 = v_1, X_2, ..., X_j)$, where $v_1 \in dom(X_1)$, is a factor on $X_2, ..., X_j$.
 - $f(X_1 = v_1, X_2 = v_2, ..., X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .

The former is also written as $f(X_1, X_2, ..., X_j)_{X_1 = v_1}$, etc.

	Χ	Y	Ζ	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

	Y	Z	val
	t	t	0.1
r(X=t, Y, Z):	t	f	
	f	t	
	f	f	

	Χ	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

	Y	Z	val
	t	t	0.1 0.9
r(X=t, Y, Z):	t	f	0.9
	f	t	
	f	f	

	Χ	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

	Y	Z	val
	t	t	0.1
(X=t, Y, Z):	t	f	0.9
	f	t	0.2
	f	f	

	Χ	Y	Ζ	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

	Y	Ζ	val
	t	t	0.1
r(X=t,Y,Z):	t	f	0.9
	f	t	0.2
	f	f	0.8

	Χ	Y	Ζ	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t, Y, Z=f)$$
:

	Χ	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t, Y, Z)$$
: $\begin{vmatrix} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \end{vmatrix}$

$$r(X=t, Y, Z=f)$$
: t f

	Χ	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7
,				

$$r(X=t, Y, Z)$$
: $\begin{vmatrix} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \end{vmatrix}$

	Χ	Y	Ζ	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t, Y, Z)$$
: $\begin{vmatrix} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \end{vmatrix}$

	Χ	Y	Ζ	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t, Y, Z)$$
: $\begin{vmatrix} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \end{vmatrix}$

$$r(X=t, Y, Z=f) : \begin{array}{|c|c|}\hline Y & \text{val} \\ \hline t & 0.9 \\ \hline f & 0.8 \\ \hline \end{array}$$
$$r(X=t, Y=f, Z=f) =$$

	Χ	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X, Y, Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t, Y, Z)$$
: $\begin{vmatrix} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \end{vmatrix}$

Multiplying factors

The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 * f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 * f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

	Α	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	D	C	vai
	t	t	0.3
f_2 :	t	f	0.7
	f	t	0.6
	f	f	0.4

	Α	В	С	val
	t	t	t	0.03
	t	t	f	
	t	f	t	
$f_1 * f_2$:	t	f	f	
	t f f f	t	t	
	f	t	f	
	f	f	t	
	f	f	f	

	<i>A</i>	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	Α	В	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	
$f_1 * f_2$:	t	f	f	
	t f	t	t	
	f f	t	f	
	f	f	t	
	f	f	f	

	<i>A</i>	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	В	C	val
	t	t	0.3
f_2 :	t	f	0.7
	f	t	0.6
	f	f	0.4

	Α	В	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 * f_2$:	t	f	f	
	f	t	t	
	f	t	f	
	f	f	t	
	f	f	f	

	<i>A</i>	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	В	C	val
	t	t	0.3
f_2 :	t	f	0.7
	f	t	0.6
	f	f	0.4

	Α	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 * f_2$:	t	f	f	0.36
	f	t	t	
	f	t	f	
	f	f	t	
	f	f	f	

	<i>A</i>	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	В	C	val
	t	t	0.3
f_2 :	t	f	0.7
	f	t	0.6
	f	f	0.4

Α	В	С	val
t	t	t	0.03
t	t	f	0.07
t	f	t	0.54
t	f	f	0.36
f	t	t	0.06
f	t	f	
f	f	t	
f	f	f	
	t t t t f	t t t t t t f f t f t	t t t t t t t f t f t f t t f f t f t f

	Α	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	Α	В	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 * f_2$:	t	f	f	0.36
	t f	t	t	0.06
	f	t	f	0.14
	f	f	t	
	f	f	f	

	Α	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	Α	В	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 * f_2$:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	

	A	В	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	В	C	val
	t	t	0.3
f_2 :	t	f	0.7
	f	t	0.6
	f	f	0.4

	Α	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 * f_2$:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

Summing out variables

We can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_i)$, resulting in a factor on X_2, \ldots, X_i defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j)$$
= $f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$

	Α	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
<i>f</i> ₃ :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	Α	С	val
	t	t	0.57
$\sum_B f_3$:	t	f	
	f	t	
	f	f	

	Α	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
<i>f</i> ₃ :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	Α	С	val
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
	f	t	
	f	f	

	Α	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
<i>f</i> ₃ :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	Α	С	val
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
	f	t	0.54
	f	f	

	Α	В	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
<i>f</i> ₃ :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	Α	С	val
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
	f	t	0.54
	f	f	0.46

Exercise

Given factors:

	A	val
s:	t	0.75
	f	0.25

Α	В	val
t	t	0.6
t	f	0.4
f	t	0.2
f	f	8.0

	Α	val
0:	t	0.3
	f	0.1

What are the following factors over?

- (a) s * t
- (b) $\sum_A s * t$
- (c) $\sum_{B} s * t$
- (d) $\sum_{A} \sum_{B} s * t$
- (e) s * t * o
- (f) $\sum_{B} s * t * o$

Evidence

• If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_i = v_i$:

$$P(Z \mid Y_1 = v_1, \ldots, Y_j = v_j)$$

=

Evidence

• If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_i = v_i$:

$$P(Z \mid Y_1 = v_1, ..., Y_j = v_j) = \frac{P(Z, Y_1 = v_1, ..., Y_j = v_j)}{P(Y_1 = v_1, ..., Y_j = v_j)}$$

Evidence

• If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_i = v_i$:

$$P(Z \mid Y_1 = v_1, \dots, Y_j = v_j)$$

$$= \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{P(Y_1 = v_1, \dots, Y_j = v_j)}$$

$$= \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{\sum_{Z} P(Z, Y_1 = v_1, \dots, Y_j = v_j)}.$$

- So the computation reduces to the probability of $P(Z, Y_1 = v_1, ..., Y_i = v_i)$.
- Normalize at the end, by summing out Z and dividing.

Probability of a conjunction

Suppose the variables of the belief network are X_1, \ldots, X_n . To compute $P(Z, Y_1 = v_1, \ldots, Y_j = v_j)$, we sum out the other variables, $Z_1, \ldots, Z_k = \{X_1, \ldots, X_n\} - \{Z\} - \{Y_1, \ldots, Y_j\}$. We order the Z_i into an elimination ordering.

$$P(Z, Y_1 = v_1, \ldots, Y_j = v_j)$$

Probability of a conjunction

Suppose the variables of the belief network are X_1, \ldots, X_n . To compute $P(Z, Y_1 = v_1, \ldots, Y_j = v_j)$, we sum out the other variables, $Z_1, \ldots, Z_k = \{X_1, \ldots, X_n\} - \{Z\} - \{Y_1, \ldots, Y_j\}$. We order the Z_i into an elimination ordering.

$$P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

$$= \sum_{Z_k} ... \sum_{Z_1} P(X_1, ..., X_n)_{Y_1 = v_1, ..., Y_j = v_j}.$$

Probability of a conjunction

Suppose the variables of the belief network are X_1, \ldots, X_n . To compute $P(Z, Y_1 = v_1, \ldots, Y_j = v_j)$, we sum out the other variables, $Z_1, \ldots, Z_k = \{X_1, \ldots, X_n\} - \{Z\} - \{Y_1, \ldots, Y_j\}$. We order the Z_i into an elimination ordering.

$$P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

$$= \sum_{Z_k} ... \sum_{Z_1} P(X_1, ..., X_n)_{Y_1 = v_1, ..., Y_j = v_j}.$$

$$= \sum_{Z_k} ... \sum_{Z_1} \prod_{i=1}^n P(X_i \mid parents(X_i))_{Y_1 = v_1, ..., Y_j = v_j}.$$

Computation in belief networks reduces to computing the sums of products.

• How can we compute ab + ac efficiently?

Computation in belief networks reduces to computing the sums of products.

- How can we compute ab + ac efficiently?
- Distribute out the a giving a(b+c)

Computation in belief networks reduces to computing the sums of products.

- How can we compute ab + ac efficiently?
- Distribute out the a giving a(b+c)
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i \mid parents(X_i))$ efficiently?

Computation in belief networks reduces to computing the sums of products.

- How can we compute ab + ac efficiently?
- Distribute out the a giving a(b+c)
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i \mid parents(X_i))$ efficiently?
- Distribute out those factors that don't involve Z_1 .

Variable elimination algorithm

To compute
$$P(Z \mid Y_1 = v_1 \land \ldots \land Y_j = v_j)$$
:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- Sum out each of the other variables (the $\{Z_1, \ldots, Z_k\}$) according to some elimination ordering.
- Multiply the remaining factors. Normalize by dividing the resulting factor f(Z) by $\sum_{Z} f(Z)$.

Summing out a variable

To sum out a variable Z_i from a product f_1, \ldots, f_k of factors:

- Partition the factors into
 - ▶ those that don't contain Z_j , say f_1, \ldots, f_i ,
 - ▶ those that contain Z_j , say f_{i+1}, \ldots, f_k

We know:

$$\sum_{Z_j} f_1 * \cdots * f_k = f_1 * \cdots * f_i * \left(\sum_{Z_j} f_{i+1} * \cdots * f_k \right).$$

• Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1}, \ldots, f_k by the new factor.

$$P(E \mid g) =$$

$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$
$$= \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D}$$

$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$= \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$= \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$\left(\sum_{D} P(D \mid C)P(g \mid ED)\right)$$

$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$= \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$\left(\sum_{A} P(A)P(B \mid AC)\right)$$
$$\left(\sum_{D} P(D \mid C)P(g \mid ED)\right)$$

$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$= \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$=$$

$$\sum_{C} \left(P(C) \left(\sum_{A} P(A) P(B \mid AC) \right) \right)$$
$$\left(\sum_{D} P(D \mid C) P(g \mid ED) \right)$$

$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$= \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$=$$

$$\sum_{B} P(E \mid B) \sum_{C} \left(P(C) \left(\sum_{A} P(A)P(B \mid AC) \right) \left(\sum_{D} P(D \mid C)P(g \mid ED) \right) \right)$$

$$P(E \mid g) = \frac{P(E \land g)}{\sum_{E} P(E \land g)}$$

$$= \sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A)P(B \mid AC)$$

$$P(C)P(D \mid C)P(E \mid B)P(F \mid E)P(g \mid ED)$$

$$= \left(\sum_{F} P(F \mid E)\right)$$

$$\sum_{B} P(E \mid B) \sum_{C} \left(P(C) \left(\sum_{A} P(A)P(B \mid AC)\right)\right)$$

$$\left(\sum_{D} P(D \mid C)P(g \mid ED)\right)$$

Variable Elimination example

Query: $P(G \mid f)$; elimination ordering: A, H, E, D, B, C $P(G \mid f) \propto$

Variable Elimination example

Query: $P(G \mid f)$; elimination ordering: A, H, E, D, B, C $P(G \mid f) \propto \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A)P(B \mid A)P(C \mid B)$ $P(D \mid C)P(E \mid D)P(f \mid E)P(G \mid C)P(H \mid E)$

Variable Elimination example

Query: $P(G \mid f)$; elimination ordering: A, H, E, D, B, C $P(G \mid f) \propto \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{H} \sum_{A} P(A)P(B \mid A)P(C \mid B)$ $P(D \mid C)P(E \mid D)P(f \mid E)P(G \mid C)P(H \mid E)$

$$= \sum_{C} \left(\sum_{B} \left(\sum_{A} P(A)P(B \mid A) \right) P(C \mid B) \right) P(G \mid C)$$
$$\left(\sum_{D} P(D \mid C) \left(\sum_{E} P(E \mid D)P(f \mid E) \sum_{H} P(H \mid E) \right) \right)$$

Pruning Irrelevant Variables (Belief networks)

Suppose you want to compute $P(X \mid e_1 \dots e_k)$:

- Prune any variables that have no observed or queried descendents.
- Connect the parents of any observed variable.
- Remove arc directions.
- Remove observed variables.
- Remove any variables not connected to X in the resulting (undirected) graph.