Mastering Embedded System Diploma.

www.learn-in-depth.com

First term (Final Project 1).

Eng.: Anwar Ahmad Anwar Adly.

My Profile: https://www.learn-in-depth.com/online-diploma/anwarahmadanwaradly%40gmail.com

Contents

1.	Case Study	2
2.	Method	3
3.	System Requirements	4
4.	HW/SW Partitioning & Design Space Exploration.	5
5.	System Analysis	6
	Use Case Diagram.	6
	Activity Diagram	6
	Sequence Diagram.	6
6.	System Design	7
	State Machine Diagram	7
	Flowcharts	7
	Interactive Simulation.	8
7.	Simulation	9
	Mapfile	10

1. Case Study.

The client wants the software of the following system with this

- Specifications:
 - > Pressure controller informs the crew of cabin with an alarm when the pressure exceeds 20 bars in the cabin.
 - > The alarm duration equals 60 seconds.
- Assumptions:
 - ➤ Microcontroller used is STM32F103xxx.
 - > Alarm will be buzzer and led indicator.
 - > The cabin must be closed to appropriate measuring
- Versioning:
 - ➤ Version1: the output will not save the value of pressure at each instance and all in the cabin can not know the instance pressure.
 - ➤ Version2 : the output will save the pressure values in flash memory and can be traced.
 - ➤ Version3: the output will save the pressure values and showed it on console (LCD or Monitor in the cabin).

2. Method.

We will use V-model to Software Development Life Cycle (SDLC) and Software Testing Life Cycle (STLC)

Advantages of V-model:

- Straightforward and easy for the development of software.
- Helps to save a lot of time compared to the general process of implementation.
- Provides a proactive error tracking feature for developers.
- No problem with the downward data flow.

3. System Requirements.

4. HW/SW Partitioning & Design Space Exploration.

Implements a specification on some sort of multiprocessor architecture to speed up the software and reduce energy. It's all about allocation and scheduling of the system and it's response to different architecture.

Analysing various functions equivalent implementation alternatives To affects in these parameters :

- Speed.
- Power consumption.
- Silicon area.
- Generation of heat.
- Development effort.

5. System Analysis.

Use Case Diagram.

Activity Diagram.

Sequence Diagram.

6. System Design.

State Machine Diagram.

Flowcharts.

Interactive Simulation.

7. Simulation.

Mapfile.

12	Memory Configuration				
13					
14	Name	Origin	Length	Attributes	
15	flash	0x08000000	0x00020000	xr	
16	ram	0x20000000	0x00005000	xrw	
17	*default*	0x00000000	0xffffffff		
18					
19	Linker script a	and memory map			
20					
21					
22	.text	0x08000000	0x408		
23	*(.vectors)				
24	.vectors	0x08000000	0x10 startup.o		
25		0x08000000	g_p_fn_Ve	ctors	
26	*(.text)				
27	.text	0x08000010	0xbc startup.o		
28		0x08000010	Hfault_ha	ndler	
29		0x08000010	Default_h		
30		0x08000010	NMI_handl	er	
31		0x0800001c	Reset_han	dler	
32	.text	0x080000cc	0x10c GPIO.o		
33		0x080000cc	Delay		
34		0x080000f0	getPressu	reVal	
35		0x08000108	Set_Alarm	_actuator	
36		0x08000158	GPIO_INIT	IALIZATION	
37	.text	0x080001d8	0x78 app.o		
38		0x080001d8	setup		
39		0x08000220	main		
40	.text	0x08000250	0x8c Alarm.o		
41		0x08000250	start_tim	er	
42		0x0800026c	stop_time	r	
43		0x08000288	AL_init		
44		0x080002a4	ST_Alarm_0	OFF	
45		0x080002c0	ST_Alarm_0	ON	
46	.text	0x080002dc	<pre>0xac CheckPval.o</pre>		
47		0x080002dc	read_pval		
48		0x08000338	ST_CP_Che	cking	
49		0x08000350	ST_CP_Wai	ting	
50	.text	0x08000388	0x80 PSensor.o		
51		0x08000388	PS_init		
52		0x080003a4	ST_PS_Rea	ding	
53		0x080003dc	ST_PS_Sen	ding	
54		0x08000408	_E_text =		
55					