

Greedy Algorithms

Mohammad Javad Dousti

Changelog

- □ Rev. 1
 - > Used a more consistent notation (i.e., f_x and f_y) for frequency of x and y nodes. (slide 26)
- □ Rev. 2
 - > If it *is* different ... (slide 9)

Overview

- □ Introduction
- ☐ Fractional knapsack problem
- □ Activity-selection problem
- ☐ Huffman codes
- ☐ Sample problems

Introduction

- □ Greedy algorithms, like dynamic programming, used to solve optimization problems.
 - > Dynamic programming is powerful but yet overkill for certain problems.
- ☐ Problems of interest must exhibit
 - > Optimal substructure (like dynamic programming).
 - > The **greedy-choice** property.
 - When we have a choice to make, make the one that looks best *right now*.
 - o Make a locally optimal choice in hope of getting a globally optimal solution.
- □ Clearly, greedy algorithms don't always yield optimal solutions.
 - > ...but for many problems they do ©

Greedy Algorithms Fractional Knapsack Problem

Fractional Knapsack Problem

- \square Given *n* objects, with weights $w_1, w_2, ..., w_n$ and values $v_1, v_2, ..., v_n$.
- □ 0-1 knapsack problem: Objects can be taken as a whole.

Maximize
$$\sum_{i=1}^{n} x_i v_i$$

subject to
$$\sum_{i=1}^{n} x_i w_i \le W$$
 and $x_i \in \{0, 1\}$

> Solution: Dynamic programming. We have seen it before.

□ Fractional knapsack problem: Objects can be taken partially.

Maximize
$$\sum_{i=1}^{n} x_i v_i$$

subject to
$$\sum_{i=1}^{n} x_i w_i \le W$$
 and $0 \le x_i \le 1$

> Solution: Greedy algorithm. Let's see how it works.

A Greedy Solution

- \Box In every step, take as much as possible of any remaining object with the highest $\frac{v_i}{w_i}$.
- \square Greedy choice: Taking an object with the highest $\frac{v_i}{w_i}$.
- \square Runtime complexity: $O(n \log n)$
- □ Example:

But does it yield an optimum solution?

Proof of Optimality

- \square Assume object indices are sorted with decreasing order by $\frac{v_i}{w_i}$.
- □ Suppose by contradiction, $ALG = \{p_1, p_2, ..., p_n\}$ is a greedy algorithm which isn't optimal, whereas $OPT = \{q_1, q_2, ..., q_n\}$ is. In other words, $\sum_{i=1}^{n} p_i v_i < \sum_{i=1}^{n} q_i v_i$.
- \square Let *i* be the smallest index where $p_i \neq q_i$.
 - > Greedy choice tell us than $p_i > q_i$.
 - > By the optimality of *OPT*, there exists a j where $p_i < q_i$.
- \square Now consider another solution $OPT'=\{q'_1, q'_2, ..., q'_n\}$, where $q'_k=q_k$ for all $k\neq i,j$.
 - \triangleright *OPT*' takes a little more of item *i* and a little less of item *j* compared to OPT:
 - o $q'_i = qi + \varepsilon$ $(q'_i \le 1)$ and $q'_j = q_j \varepsilon w_i/w_j$. The total weight remains the same: $\sum_{i=1}^n q'_i w_i = \sum_{i=1}^n q_i w_i$.
 - o Total value increases though: $\sum_{i=1}^{n} q_i' v_i = \sum_{i=1}^{n} q_i v_i + \varepsilon v_i \varepsilon \frac{w_i}{w_j} v_j > \sum_{i=1}^{n} q_i v_i$.
- \square *OPT*' is a better solution than *OPT*, which is a contradiction. Hence, *ALG* is optimum.

A Way to Prove Optimality of Greedy Algorithms

- □ Use contradiction.
- ☐ Find the most similar solution to the greedy solution.
 - > If it's identical to the greedy solution, the problem is solved.
 - > If it is different than the greedy solution, make another solution, which is not worse than the optimal solution but is more similar to the greedy solution.
 - Use this new solution arrive reach a contradiction.

Wrap Up

- □ Define the greedy choice.
- □ Prove that the greedy choice is optimal.
- □ Due to the optimal subproblem property, the remaining smaller problem is still similar to the original problem. Hence, using recursing and the greedy choice, one can solve the entire problem.
 - > Usually, it's easy (and recommended) to convert a recursive greedy algorithm to iterative.

Greedy Algorithms Activity-Selection Problem

Activity-Selection Problem

- \square Given: *n* activities with start and finish times denoted by $[s_i, f_i]$.
- □ Problem: Find a maximum set of compatible activities. Activity i and j are compatible if they don't overlap, i.e., either $f_i < s_j$ or $f_j < s_i$.
- □ Example:

Mohammad Javad Dousti

Greedy Choices: A Few Examples

Greedy Choices: Earliest Finish Time

Greedy Algorithm

- \square Runtime complexity: O(n)
 - > Considering the sort runtime complexity: $O(n \log n)$

Proof of Optimality

- □ Suppose $A = \{a_1, a_2, ..., a_p\}$ be a greedy solution, $B = \{b_1, b_2, ..., b_q\}$ be the maximum-size subset of mutually compatible activities which, and |A| < |B|.
 - \triangleright Among all optimum solutions, B is chosen such that it has the most common intervals with A.
 - > Both A and B activities are sorted in increasing order of finish time.
- \square a_i and b_i are the first different activities in A and B.
- \square One can create B' as follows: $B'=B-\{b_i\}\cup\{a_i\}$.
 - > B' is still a set of compatible activities because all activities would start after b_i finishes which happens after a_i finishes.
 - > |B'|=|B|
- \square This process can continue until B becomes identical to A, i.e., |A| = |B|, which is a contradiction. Hence, the greedy solution is optimum.

Huffman Codes

Some slides are courtesy of Dr. Mahini.

Lossless Data Compression (1)

Lossless Data Compression (2)

What is lossless data compression?

No code should be the prefix of the other one

Lossless Data Compression: Problem

Input: a file with n characters such that the frequency of character i is f_i

Goal: Assign code c_i with length of h_i to character i to minimize $\sum h_i \times f_i$ (length of the stored file) such that no code is the prefix of the other one.

You can model "prefix codes" with a binary tree

Huffman Codes: A Greedy Algorithm

- \square Runtime complexity: $O(n \log n)$
- □ Note that the heap doesn't correspond to the Huffman tree.

Huffman Codes: Example

(a) f:5 e:9 c:12 b:13 d:16 a:45

Greedy Choice

Exchanging the lowest nodes (i.e., i and j) with x and y does not increase the cost.

Optimal Subproblem Property

□ Do we have the same sub-problem?

$$Cost(T) - Cost(T') = f_x h + f_y h - f_*(h-1) = (f_x + f_y)h - (f_x + f_y)(h-1) = f_x + f_y$$

† Constant

Optimal Subproblem Property (cont'd)

- \Box T can be created from an optimal prefix tree T' by replacing a leaf node z with x and y.
- □ Suppose T does not represent an optimal prefix code, while T" does, i.e., Cost(T)' < Cost(T).
 - > We can assume than x and y are sibling leaf nodes in T". Why?
 - Due to greedy choice property.
- \square Now suppose T''' is created from T'' by merging x and y into z leaf node:
 - $Cost(T''') = Cost(T'') f_{x} f_{y} < Cost(T) f_{x} f_{y} = Cost(T')$
 - > This is a contradiction as we assumed T' is an optimal tree. Hence, T represents an optimal prefix code.

Another Example

Character	Frequency	Code
A	5	0
В	3	10
С	2	110
D	1	1110
Е	1	1111

Sample Problems

True or False?

□ A greedy algorithm always makes the choice that looks best at the moment.

□ Problems solved using dynamic programming cannot be solved thru greedy algorithms.

☐ If a problem can be solved using both the greedy method and dynamic programming, greedy will always give you a lower time complexity.

Fill in the Blanks

□ A ______ algorithm may produce an optimal solution when algorithm cannot, because _____ algorithm will exclude some possible solutions while _____ algorithm will examine all possible solutions.

> Use either "greedy" or "dynamic programming".

Coin/Money Change Problem: Greedy Algorithm

- \Box The objective of the *Coin Problem* is to come up with the minimum number of coins to pay X cents.
 - > Consider the greedy approach to solving the coin problem for US coins (25¢, 10¢, 5¢, and 1¢):
 - We start with the largest coin (25¢ coin) and use it as many times as possible, then use as many 10¢ coins as possible on the remainder, then 5¢, then 1¢.
 - Prove or disprove that "this greedy algorithm always gives an optimal solution", i.e. gives the minimum number of coins to pay X cents.
 - > Now suppose that 5ϕ coins are not allowed, only 1ϕ , 10ϕ , and 25ϕ .
 - Prove or disprove that "the corresponding greedy approach (25¢ then 10¢ then 1¢) always gives an optimal solution".

Gradient Descent

☐ An approach used to find the local minimum of a function.

