

Real-Time Media in a Cloud-Native World

Giles Heron, Principal Engineer @gilesheron

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated until February 24, 2023.

Agenda

- Motivation
- Benefits
- Use-Cases
- Architecture
- Demo
- Call to Action

A (fuzzy) Application Taxonomy

Non Real-Time Real-Time Interactive Web Applications Online Games (request/response) **Streaming** Message Buses Live Media (publish/subscribe)

Kubernetes Media Connectivity Options

		TCP	HTTP	UDP	RTP-based media (RTSP, SIP, etc.)
	Service Mesh & Load Balancers	*	**	0	0
One Pod Per Node!!!	Kube Proxy & NodePort	*	*	*	0
	Host Networking	*	*	*	*
	Media Streaming Mesh	*	*	*	**

Benefits of Media Streaming Mesh

Observability

Media Streaming Mesh monitors jitter and packet loss across the mesh, enabling DevOps teams to quickly locate and resolve connectivity issues.

Low-Latency

The Media Streaming Mesh RTP data plane proxy adds minimal latency, in contrast to web proxies that terminate TCP connections at each hop.

Security

Media Streaming Mesh authenticates traffic senders using SPIFFE/SPIRE and can encrypt traffic using SRTP. Proxies reduce attack surface and ensure protocol conformance.

Deployability

Lightweight per-node data plane proxy, and per-cluster control plane proxy ensures a much lower footprint than per-pod web proxies, making it suitable for deployment at the edge.

Use-Cases for Media Streaming Mesh

- Contribution video (high bandwidth, RTP-based, no tolerance for loss/jitter)
- Live video distribution (RTP-based, low tolerance for loss/jitter)
- Retail/Industrial Edge (need low footprint, lots of RTSP video streaming/analytics)
- Real-Time Collaboration (WebRTC etc.)

Previously – no longer in focus (though potential scope to leverage RTP here):

- Gaming (latency is key so "action" games use UDP rather than TCP)
- Finance (high frequency trading etc. latency critical)
- Mobile (GTP is tunnelled over UDP and is latency sensitive)

The Live Video Chain

- Camera feeds (SDI or IP)
- Mixing (generating a broadcast quality feed)
- 3. Encoding into multiple formats (resolutions, bitrates, protection...)
- 4. Distribution to CDN caches (diverse unicast feeds?)
- 5. Delivery to End users over DASH, HLS etc.

Live Video Use-Cases for Media Streaming Mesh

- Contribution video (camera to studio and in-studio mixing)
- Longer-term goal perhaps as cameras/mixers are dedicated hardware platforms
- 2. Interconnection of cloud-based encoders
 - Most likely an intra-cluster Kubernetes use-case
- 3. Distributing live streams from encoders to caches
 - Proxies handle fan out, and can add FEC, send dual streams over dual paths etc.
- 4. Streaming RTP to clients

Interconnection of Cloud-Based Encoders

- We assume that for one input stream we may wish to:
 - Create multiple lower resolution / bitrate streams
 - Add content protection
- Deployment model is a single K8S cluster for multiple input streams
 - The same cluster can be used for distribution towards caches

Distributing Live Streams from Encoders to Caches

- Egress node has one or more MSM proxies and can "pull" any stream
- MSM proxy can replicate towards multiple caches
 - Can add FEC to streams from egress nodes towards caches
 - Caches could also use MSM at ingress to remove FEC etc.

Streaming RTP over QUIC to Clients

- Edge proxy translates from RTP (over UDP) to RTP over QUIC
- Can use FEC, Live-Live etc. to optimise delivery to edge node
- Fan-out from proxy to multiple users
- Filter-based architecture enables plugging in congestion control algorithms
- Modified control plane required (negotiate flow IDs, not pairs of UDP ports)

Video Monitoring Use-Cases for MSM

- Large number of cameras
 - few per site in many small sites (e.g. retail)
 - large numbers in a few big sites (airports, factories etc.)
- Multiple viewers probably remote from the camera locations
- One or more proxies per camera site and a proxy at each viewer site

MSM Software Architecture

MSM Admission Webhook

- Admission Webhooks are HTTP callbacks that receive admission requests and do something with them
- MSM implementation uses mutating admission webhooks to automatically inject the MSM stub (sidecar proxy) into an application pod
- Implemented an Admission Controller that listens for Pod/Deployment events and modifies the pod spec on runtime
- Controller is triggered if the pod or deployment specification is annotated with a custom key:

"sidecar.mediastreamingmesh.io/inject"="true"

MSM CNI Plugin

- Any MSM enabled pod will need to redirect incoming traffic to the injected MSM stub
- Works as a chained plugin, meaning that it appends to the existing CNI configuration of a cluster, and its task is to install the appropriate iptables or eBPF rules
- As with the MSM Admission Webhook, it only acts on pods annotated with our custom key:
 - "sidecar.mediastreamingmesh.io/inject"="true"
- Uses netns commands on an MSM enabled pod and runs on every node in the cluster

Per-Cluster Control Plane

Deploys as a Kubernetes Service

Likely 3 replicas with RAFT etc.

Uses gRPC Southbound:

- send/receive commands to/from MSM Stubs
- program the RTP Proxies

Uses K8s API and DNS Northbound

In future use xDS interface here?

Written in Golang

Leverage existing media libraries

L7 protocols implemented as plug-ins:

- RTSP
- WebRTC
- RIST
- SIP
- Others?

MSM Control Plane - Future Architecture

MSM Control Plane is K8s service

- Only required for call-setup and keepalives
- Runs a goroutine for each stream segment
- Segment is from CP to endpoint (via stub)
- Maintains svc mapping from URL/URI to pod
- Writes logical stream graphs to etcd cluster

Network Controller is K8s service

- Maintains Pod to Node mapping (from xDS)
- Reads logical stream graphs from etcd cluster
- Creates physical stream graphs
- Pushes stream segments to RTP proxies
- Supports multiple control planes

Use xDS to externalise K8s dependencies

- URL to pod IP mapping
- Pod CIDR to node mapping

The MSM Stub

cisco live!

Deployed:

- 1. In each application pod that uses MSM
- With RTP Proxy as "gateway"

Terminates App Control Plane

Punts to per-cluster CP over gRPC

May intercept the Data Plane

- RTSP interleaved data case
- Monitoring at pod
- "Live-Live" replication/de-duplication?

Potentially uses SPIFFE/SPIRE

 RTP Proxy does RTP/SRTP, will need endto-end authentication

"Stub" because footprint is minimal

- Complexity is in the CP and the RTP Proxy
- Written in Rust to reduce footprint/latency

The MSM Stub

cisco life!

Deployed:

- 1. In each application pod that uses MSM
- With RTP Proxy as "gateway"

Terminates App Control Plane

Punts to per-cluster CP over gRPC

May intercept the Data Plane

- RTSP interleaved data case
- Monitoring at pod
- "Live-Live" replication/de-duplication?

Potentially uses SPIFFE/SPIRE

 RTP Proxy does RTP/SRTP, will need endto-end authentication

"Stub" because footprint is minimal

- Complexity is in the CP and the RTP Proxy
- Written in Rust to reduce footprint/latency

The RTP Proxy

Deployed as a per-node DaemonSet

- In host network namespace
- supports North/South and East/West flows

RTP Translator (RFC3550)

- Unicast to multicast, IPv4 to IPv6, RFC1918 to public IP, tunnelling, MTU conversion etc.
- RTP/UDP, RTP/TCP and RTP/QUIC support
- Also acts as a UDP, TCP and QUIC proxy
- Minimises attack surface

Prototype implementation in Golang

Performance limited by kernel sockets and GC

Future is Async Rust with WASM filters

- Validation, replication, encryption, protection, congestion control etc.
- Key is to drive a filter ecosystem

Demo

cisco live!

Lab Setup K8s Core MSM **MSM** DNS API RTP RTP Stub Stub Proxy Proxy Gateway Gateway Pod Pod Control Plane MSM Video Stub Feed RTSP Server RTSP Server Pod Worker 2 - 10.200.97.21 Worker 1 - 10.200.97.20 CP - 10.200.97.14

BRKETI-2006

In conclusion

- Media Streaming Mesh enables real-time media applications to be first-class citizens in today's cloud native world
- MSM is a work in progress and is in open-source
 - https://www.mediastreamingmesh.io
 - https://www.github.com/media-streaming-mesh
- Please collaborate with us to make it a success!

Complete your Session Survey

- Please complete your session survey after each session. Your feedback is important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (open from Thursday) to receive your Cisco Live t-shirt.

https://www.ciscolive.com/emea/learn/sessions/session-catalog.html

Continue Your Education

Visit the Cisco Showcase for related demos.

Book your one-on-one Meet the Engineer meeting.

Attend any of the related sessions at the DevNet, Capture the Flag, and Walk-in Labs zones.

Visit the On-Demand Library for more sessions at <u>ciscolive.com/on-demand</u>.

Thank you

cisco live!

