Tablica 7.187. Vrednosti parametara funkcije izdržljivosti

Materijal i termička obrada	Izdrž.	bokova	zubaca		Izdi	žljivos	t podn	ožja
Materijar i terimeka obrada	$N_{ m D}$	m	$N_{\rm S}$	$Z_{\rm s}$	$N_{\rm D}$	m	N_s	Y _{NTmax}
Opšti konstrukcioni, poboljšani čelici, perlitni i bainitni nodularni liv, perlitni temperliv	50.106	13	105	1,63	3.106	6,25	104	2,5
Površinski otvrdnuti čelici	50.106	13	105	1,63	3.106	8,7	10^{3}	2,5
Isti materijali sa dozvoljenim malim brojem rupica	300.106	13	6.105	1,63				
za $10^7 < n_{\sum} < 10^9$ prema preporukama ISO i DIN	1000.106	17,5						
Nitrirani čelici za poboljšanje i nitriranje, sivi liv, feritni nodularni liv	2.106	11,4	105	1,3	3.10^{3}	17	103	1,5
Čelici za poboljšanje nitrirani u kupatilu ili kratkotrajno gasno	2.106	31	105	1,1	3.10^{3}	83	103	

Tablica 7.164. Vrednosti veličine k

inv α_{y}	≤0,003	0,0030,008	0,0080,016	0,0160,026	0,0260,035
k	3	2,95	2,9	2,85	2,8
inv α_{y}	0,0350,045	0,0450,075	0,0750,105	0,1050,140	≥0,140
k	2,75	2,7	2,6	2,5	2,42

Prva približna vrednost napadnog ugla α_k dobija se neposredno po izboru veličine k

$$\alpha_{\rm k} = \sqrt[3]{k \, \text{inv} \, \alpha_{\rm y}}$$

a sa njim i evolventni ugao

$$inv \alpha_k = tg \alpha_k - \alpha_k$$

Pozitivna razlika između zadanog i dobijenog evolventnog ugla

$$\operatorname{inv}\alpha_{k} - \operatorname{inv}\alpha_{y} = \delta_{k}$$

pokazuje da je izračunat napadni ugao veći od napadnog ugla α_y koji bi odgovarao evolventnom, i obratno. Ako je izračunata razlika δ manja od neke unapred određene $\delta_{\rm doz}$, koja se usvaja u zavisnosti od željene tačnosti $\delta_{\rm doz} = 10^{-4}$ ili 10^{-5} , izračunati napadni ugao dovoljno tačno odgovara evolventnom. Ukoliko je izračunata razlika veća od dozvoljene,

proba se sa prvim manjim ako je razlika δ pozitivna, a sa prvim većim ako je razlika negativna, prema jednačini

$$\alpha_{k+1} = \alpha_k \mp \delta_k / tg^2 \alpha_k$$

(znak minus je za pozitivnu razliku δ , a znak plus za negativnu). Za ovaj k+1 napadni ugao određuje se ponovo razlika inv α_{k+1} — $-\operatorname{inv}\alpha_y = \delta_{k+1}$ a ako je manja od dozvoljene, traženi napadni ugao $\alpha_y = \alpha_{k+1}$ u radijanima, a $\alpha_y = \alpha_{k+1} 180/\pi$ u stepenima. Ako je i dalje razlika veća od dozvoljene, čini se sledeći korak $\alpha_{k+2} = \alpha_{k+1} \mp \delta_{k+1}/\operatorname{tg}^2\alpha_{k+1}$, sve dok se ne dostigne željena razlika δ . Sa datim veličinama za k najčešće je dovoljan jedan ili dva koraka. U principu, proračun se može vršiti samo sa najvećom vrednošću k=3, ali je potreban broj koraka znatno veći.

Tablica 7.169. Dozvoljena gornja $(+A_{tg})$ i donja $(-A_{td})$ odstupanja podeonog koraka u mikrometrima prema JUS M.CI.035

u mikr					Pre	čn	ik p	000	dec	ne									K	valite	et					
Modul	4	2	36 100	106	021	976	326 484	484 676	000		9001156	11561444	14441764	17642116	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	7			Ė		Ŧ	7			F	Ŧ	+	1	1	2	3	5	9	12	17	24	35	49	68
2	+	1	1	-			+	+	+	-		+	+	+	1	1	2	4	6	9	13	19	26	37	52	73
3	H	1	1		_	\vdash	+	+	+		-	+	+	+	1	2	2	4	6	10	14	20	27	40	56	78
4	H	/	1	1		+	+	+	+	-		+	-	+	1	2	3	4	7	11	15	21	29	42	59	83
5	H	/	1	1	1	+	+	+	+		-	+	+	+	1	2	3	4	7	11	16	22	31	45	63	88
6	H		Y.	1	/	1	+	+	+		H	+	+	+	1	2	3	5	7	12	16	24	33	47	66	93
7	H		Y	1	7	+	+	+	-			+	+	+	1	2	3	5	8	12	17	25	35	50	70	98
8	H	/	Y	1	7	1	1	+	\dashv		-	+	+	+	1	2	3	5	8	13	18	26	36	52	73	103
9	H	/	V	4	1	1	1	+	-	-	-	+	+	+	1	2	3	5	9	14	19	27	38	55	77	108
10	H	/	/	//	/	1	1	1	\dashv	_	-	+	+	+	1	-2	4	6	9	14	20	29	40	57	81	113
11	H		/	//	-	1	1	7		_	\vdash	+	+	+	1	2	4	6	9	15	21	30	42	60	84	118
12	H		/	/	-	1	1	1	/		+	+	+	+	2	2	4	6	10	16	22	31	44	62	88	123
13	H		/	/	/	1	1	1	1.	/	1	+	+	+	2	3	4	6	10	16	23	32	45	65	91	128
14	H	/	/	/	/	1	X	1	/	/	1	1	+	+	2	3	4	7	11	17	24	34	47	67	95	133
15	H	/	/	/	1	1	1	1	1	/	1	X	7	+	- 2	3	4	7	11	17	25	35	49	70	98	138
16	H	/	/	/	1	1	1	1	7		1	1	X	+	2	3	5	7	11	18	25	36	51	72	102	143
17	H		/	/	1	1	1	1	7	/	1	X	1	1	2	3	5	7	12	19	26	37	53	75	105	148
18	H	/	/	1	1	1	1	1	$\overline{\gamma}$		1	X	1	+	2	3	5	8	12	19	27	39	54	77	109	153
19	H	/		/	7	1	1	1	7		1	1	1	+	2	3	5	8	13	20	28	40	56	80	112	158
20	H	/	/	/	/	1	1	Y	7	-	1	1	X	+	- 2	3	5	8	13	21	29	41	58	82	116	163
	-	/	/	/	/	1	1	1	7	-	1	1	X	1	- 2	3	5	8	13	21	30	42	60	85	120	168
			/	//	/	1	1	1	7	-	1	1	1	1	2	3	6	9	14	22	31	44	62	87	123	173
				/	/	1	1,	1	7		1	Y.	1	1	2	4	6	9	14	22	32	45	63	90	127	178
					/	1	1	1	7		1	1	Y	1	2	4	6	9	15	23	33	46	65	92	130	183
							1		/		1	1	1	Y	2	4	6	9	15	24	34	47	67	95	134	188
									7		1	1	Y	1	2	4	6	10	15	24	34	49	69	97	137	193
									/	1	1	1	1	1	2	4	6	10	16	25	35	50	71	100	141	198
										1	1	1	1	1	2	4	6	10	16	26	36	51	72	102		-
											1	1	Y	1	- 3	4	7	10	17	26	37	52	74	105	148	
												,	Y	1	3	4	7	+	17	27	38	54	76	107		
														1	3	4	7	11	17	28	39	55	78	+	155	

Za međuvrednosti modula usvajaju se tolerancije prvog bližeg modula, a za 0,5 prvi veći. Odstupanje osnovnog koraka pravih zubaca $A_{\rm tb}=A_{\rm to}$, a kosih zubaca upravno na bokove $A_{\rm tBb}=A_{\rm to}$, $\cos\beta$

Tablica 7.171. Dozvoljena odstupanja evolventnih profila $T_{\rm ev}$ u μm prema JUS M.C1.035

Standardni	Prečnik podeone kružn. d u mm						Kva	alitet					39
$m_{ m n} \ mm$	25 25 225 225 625 6251225 12252025	1	2	3	4	5	6	7	8	9	10	11	1:
1		- 2	3	3	4	5	7	9	12	19	29	46	7
2		- 2	3	3	5	6	8	10	13	21	33	53	8
3		- 2	3	3	5	6	8	11	15	24	37	59	9
4		2	3	4	5	7	9	12	16	26	41	65	10
5		- 2	3	4	5	7	9	13	18	29	45	72	11
6		2.	3	4	6	7	10	14	20	31	49	78	12
7		2	3	4	6	8	11	15	21	34	53	84	13
8		- 2	3	4	6	8	11	16	23	36	57	90	14
9		- 3	3	4	6	9	12	17	24	39	61	97	1:
10		- 3	4	5	7	9	13	18	26	41	65	103	10
11		- 3	4	5	7	9	13	19	28	44	69	109	17
12 .		- 3	4	5	7	10	14	20	29	46	73	116	18
13		- 3	4	5	7	10	14	21	31	49	77	122	19
14		- 3	4	5	8	11	15	22	32	51	81	128	20
15		3	4	5	8	11	16	23	34	54	85	135	2
16		- 3	4	6	8	11	16	24	36	56	89	141	2:
17	1////	3	4	6	8	12	17	25	37	59	93	147	23
18	1////	3	4	6	9	12	18	26	39	61	97	153	24
19	1////	- 3	4	6	9	13	18	27	40	64	101	160	25
20	1111	- 3	5	6	9	13	19	28	42	66	105	166	26
	1111	- 3	5	6	9	13	20	29	44	69	109	172	27
	111	3	5	7	10	14	20	30	45	71	113	179	28
		3	5	7	10	14	21	31	47	74	117	185	29
		3	5	7	10	15	21	32	48	86	121	191	30

Tablica 7.172. Dozvoljena odstupanja bočnih linija zubaca T_{β} u μm prema JUS M.C1.033

Širina zu b u i							Kva	liteti					
preko	do	1	2	3	4	5	6	7	8	9	10	11	12
10	30	3	4	5	6	7	9	11	18	29	46	73	115
30	40	3	4	5	7	9	11	13	22	35	54	87	136
40	50	4	5	6	7	9	12	14	23	37	58	93	147
50	65	4	5	6	8	10	13	15	25	40	63	100	157
65	80	4	5	7	8	11	14	17	27	43	68	108	169
80	100	5	6	7	9	12	14	18	29	46	72	116	161
100	120	5 5 5	6 7	8	10	12	15	19	31	49	77	124	193
120	140	5	7	8	10	13	16	20	33	52	82	131	205
140	160	5	7	9	11	14	17	21	34	55	86	138	216
160	180	6	7	9	11	14	18	22	36	57	90	144	226
180	200	6	8	9	12	15	19	23	38	59	94	150	235
200	225	6	8	10	12	16	20	24	39	62	98	156	243
225	250	6	8	10	13	16	20	25	41	65	102	163	256
250	280	7	8	11	13	17	21	26	42	67	106	170	266
280	315	7	9	11	14	18	22	28	44	70	111	178	279
315	355	7	9	12	15	19	23	29	47	74	116	186	291
355	400	8	10	12	15	20	24	30	49	77	122	195	306
400	450	8	10	13	16	20	26	32	51	81	128	205	321
450	500	8	11	13	17	21	27	33	54	85	134	214	335
. Prema IS	O standardu	1328—1	975, F	β									
	40	2,8	3,6	4,5	5,5	7	9	11	18	28	45	71	112
40	100	4	5	6	8	10	12	16	25	40	63	100	160
100	160	5	6	8	10	12	16	20	32	50	80	125	200

Tablica 7.173. Dozvoljena odstupanja centričnosti T_r — radijalnog bacanja u μm prema JUS M.C1.035

		}	Prekru	čni žni	k p	od d u	eoi m	ne m									Kva	liteti				nender-Fran	
Modul m mm	4	-	:			:		9001156	11561444	14441764	17642116	1	2	3	4	5	6.	7	8	9	10	11	12
1		1	1	T	T	Ľ	F	F	ľ	F	T	- 3	5	8	12	19	30	43	54	. 68	86	108	135
2		+	+	+	+	-		-	+	+	+	3	5	8	13	21	32	46	58	73	93	116	145
3	HI	1	+	+	+	+	-	H	+	-	+	4	6	9	14	22	35	49	62	78	99	124	155
4		1	1	+	+	-	-	+	+	+	+	4	6	9	15	24	37	53	66	83	105	132	165
5	1	1	1	1	+	\vdash		-	+	+	+	4	6	10	16	25	39	56	70	88	112	140	175
6	H	1	1	1	1	+	-	+	+	+	+	4	7	10	16	26	41	59	74	93	118	148	185
7	HI	1	1	1	1	+	-	-	+	+	+	5	7	- 11	17	28	44	62	78	98	124	156	195
8	H	1	X	1	1	+	-	-	+	+	+	5	7	11	18	29	46	65	82	103	130	164	205
9	H	1	1	X	1	-	-	-	+	+	+	5	8	12	19	31	48	68	. 86	108	137	172	215
10	H	//	X	/	1	1	-	-	+	+	+	- 5	8	13	20	32	50	72	90	113	143	180	225
11	H	/	X	1	1	1	-	\vdash	+	+	+	5	8	13	21	33	53	75	94	118	149	188	235
12	HI	/	1	1	1	1	-	-	+	+	+	6	9	14	22	35	55	78	98	123	156	196	245
13	1		X	1	1	1	1	-	+	+	+	6	9	14	23	36	57	81	102	128	162	204	255
14	H		X	1	1	1	1	1	1	+	+	6	9	15	24	38	59	84	106	133	168	212	265
15	1	1	X	1	1	1	1	/	1	-	+	6	10	15	25	39	62	87	110	138	175	220	275
16	H	1	X	1	1	/	1	1	/	1	+	7	10	16	25	40	64	90	114	143	181	228	285
17	H	1	1	X	1	1	1	1	/	1	1	7	11	17	26	42	66	94	118	148	187	236	295
18	H	//	1	X	1	1	1	1	1	1	1	7	11	17	27	43	68	97	122	153	193	244	305
19	1	/	1	1	1	1	1	1	1	1	+	7	11	18	28	45	71	100	126	158	200	252	315
20	1	1		1	1	1	1	1	1	1	-	7	12	18	29	46	73	103	130	163	206	260	325
	/	1		1	/	1	/	1	1	1	1	- 8	12	19	30	47	75	106	134	168	212	268	335
		/		K	/	1	1	1	/	1	+	8	12	19	31	49	77	109	138	173	219	276	345
			/	X	1	/	/	/	1	1	1	8	13	20	32	50	80	112	142	178	225	284	355
				4	1	1	1	/	/	1	+	- 8	13	20	33	52	82	116	146	183	231	292	365
				•	4	1	7	1	1	1	+	9	13	21	34	53	84	119	150	188	238	300	375
					\	4	1	1	/	1		9	14	22	34	54	86	122	154	193	244	308	385
						1	4	1	1	1	1	9	14	22	35	56	88	125	158	198	250	316	395
							1	1	1	1	1	9	14	23	36	57	91	128	162	203	256	324	405
								1	4	1	1	9	15	23	37	59	93	131	166	208	263	332	415
									1	4		10	15	24	38	60	95	135	170	213	269	340	425
											V	10	16	24	39	61	97	138	174	218	275	348	435
Za međuvre	dnosti	mo	odu	ıla	usv	aja	ati	pr	ve	bl	iže	veliči	ne										

Tablica 7.175. Tolerancija polja i granična odstupanja mere preko zubaca i osnog rastojanja za izabrana područja bočnog zazora u μm

Modul m mm	и	Boč	ni zazor <i>j</i> n	$T_{ m jn}$	T_{W1}	Awig Awig	$A_{ m W1d}$	T_{W2}	$A_{ m W2d}$	T _a	$A_{\rm a}$
2	1 2,5 2,6 6 1 2,5 2,6 6 1 2,5 2,6 6	III	61—122 63—121 60—136 61—133 61—151 62—150	61 58 76 72 90 88	20 18 26 22 30 26	-36 -36 -36 -36 -38 -38	- 56 - 54 - 62 - 58 - 68 - 64	20 22 26 28 30 34	- 56 - 58 - 62 - 64 - 68 - 72	30 26 36 32 44 40	±15 ±13 ±18 ±16 ±22 ±20
3	1 2,5 2,6 6 1 2,5 2,6 6 1 2,5 2,6 6	III II	82—158 83—158 83—177 85—175 88—200 81—196	76 73 94 90 112 115	24 22 30 26 36 34	-48 -48 -50 -50 -54 -50	- 72 - 70 - 80 - 76 - 90 - 84	24 28 30 34 36 44	72 -76 -80 -84 -90 -94	40 36 50 44 58 54	± 20 ± 18 ± 25 ± 22 ± 29 ± 27
4	1 2,5 2,6 6 1 2,5 2,6 6 1 2,5 2,6 6	III II	112—196 113—196 112—220 113—219 111—245 113—242	84 83 108 106 134 129	26 24 34 32 42 36	-64 -66 -66 -68	- 90 - 88 - 100 - 96 - 110 - 104	26 30 34 38 42 48	-90 -94 -100 -104 -110 -116	46 42 58 54 74 66	±23 ±21 ±29 ±27 ±37 ±33
5	12,5 2,66 12,5 2,66 12,5 2,66	III	140—224 141—224 142—258 140—256 139—292 138—292	84 83 116 116 153 154	26 24 36 32 48 44	- 78 - 82 - 80 - 84	- 104 - 102 - 118 - 112 - 132 - 126	26 32 36 44 48 58	- 104 - 108 - 118 - 124 - 132 - 140	46 42 64 58 84 76	±23 ±21 ±32 ±29 ±42 ±38
6	12,5 2,66 12,5 2,66 12,5 2,66	111 11	160—264 158—262 160—303 159—299 158—338 160—337	104 104 143 140 180 177	32 30 44 40 56 50	- 88 - 94 - 92 - 96	- 122 - 118 - 138 - 132 - 152 - 146	32 38 44 50 56 64	- 122 - 126 - 138 - 142 - 152 - 160	58 54 80 72 100 92	±29 ±27 ±40 ±36 ±50 ±46
7	1 2,5 2,6 6 1 2,5 2,6 6 1 2,5 2,6 6	III	186—298 188—300 189—347 188—344 188—392 186—394	112 112 158 156 206 208	34 32 48 44 62 58	-104 -104 -110 -108 -114 -112	- 158 - 152 - 176	34 40 48 56 62 74	- 138 - 144 - 158 - 164 - 176 - 186	64 58 90 82 116	±32 ±29 ±45 ±41 ±58 ±55
8	12,5 2,66 12,5 2,66 12,5 2,66	III II	214—326 215—329 215—385 217—386 216—440 215—439	112 114 170 169 224 225	34 32 52 48 68 62	-118 -118 -124 -124 -130 -128	- 150 - 176 - 172 - 198	34 40 52 60 68 80	- 152 - 158 - 176 - 184 - 198 - 208	64 62 98 90 130 120	±32 ±31 ±49 ±45 ±65 ±60
9	1 2,5 2,6 6 1 2,5 2,6 6 1 2,5 2,6 6	111 11	244—364 245—368 242—429 243—424 244—488 244—486	120 123 187 181 244 242	36 34 56 50 74 68	- 134 - 134 - 140 - 138 - 146 - 144	- 168 - 196 - 188 - 220	36 44 56 64 74 86	- 170 - 178 - 196 - 202 - 220 - 230	70 66 110 98 140 130	±35 ±33 ±55 ±49 ±70 ±65
10	1 2,5 2,6 6 1 2,5 2,6 6 1 2,5 2,6 6	III	262—406 261—400 261—471 260—471 263—540 261—531	144 139 210 211 277 270	42 38 62 58 82 74	- 146 - 144 - 152 - 150 - 160 - 156	-182 -214 -208 -242	42 48 62 74 82 94	- 188 - 192 - 214 - 224 - 242 - 250	88 78 126 116 166 150	± 44 ± 39 ± 63 ± 58 ± 83 ± 75

Tablica 7.176. Dozvoljena gornja $(+A_{ag})$ i donja $(-A_{ad})$ odstupanja osnog rastojanja u μm prema JUS M.C1.036

no rastojanje a u mm		K	valiteti tolerai	ncija zupčanik	a	
o do	1 2	3 4	5 6	7 8	9 10	11 12
10 18 30 50 80 120 180 250 315 400 500 630 800 1000 1250 1600 2000	2 3 3 4 4 5 6 7 8 9	5 6 7 8 10 11 13 15 16 18 20 22 25 28 33 39 46	8 9 11 13 15 18 20 23 26 29 32 35 40 45 53 63 75	11 14 17 20 23 27 32 36 41 45 49 55 63 70 83 98 115	18 22 26 31 37 44 50 58 65 70 78 88 100 115 130 155 185	45 55 65 80 95 110 125 145 160 180 200 220 250 280 330 390 460
rema ISO 1328-1975						
	2 .	$\frac{1}{2}$ IT6	$\frac{1}{2}$ IT7	$\frac{1}{2}$ IT8	$\frac{1}{2}$ IT9	$\frac{1}{2}IT11$ $IT11$
		1 <u>1</u> 1T4	$\frac{1}{2}$ IT4 $\frac{1}{2}$ IT6	$\frac{1}{2}$ IT4 $\frac{1}{2}$ IT6 $\frac{1}{2}$ IT7	$\frac{1}{2}IT4 \qquad \frac{1}{2}IT6 \qquad \frac{1}{2}IT7 \qquad \frac{1}{2}IT8$	$\frac{1}{2}$ IT4 $\frac{1}{2}$ IT6 $\frac{1}{2}$ IT7 $\frac{1}{2}$ IT8 $\frac{1}{2}$ IT9

Tablica 7.178. Dozvoljena ukupna radijalna odstupanja $F_{i}^{''}(T_{i}^{''})$ pri kontroli sprezanjem prema ISO 1328 u μm

Pred pode kruž d u	eone nice	Mod m	5					Kvaliteti				
preko	do	od	do	4	5	6	7	8	9	10	11	12
_	125	1 > 3,5 > 6,3	3,6 6,3 10	20 25 28	32 40 45	50 63 71	71 90 100	90 112 125	112 140 160	140 180 200	180 224 250	224 280 315
125	400	1 > 3,5 > 6,3 > 10 > 16	3,5 6,3 10 16 25	22 28 32 36 45	36 45 50 56 71	56 71 80 90 112	80 100 112 125 160	100 125 140 160 200	125 160 180 200 250	160 200 224 250 315	200 250 280 315 400	250 315 355 400 500
400	800	1 > 3,5 > 6,3 > 10 > 16 > 25	3,5 6,3 10 16 25 40	25 28 32 40 50 63	40 45 50 63 80 100	63 71 80 100 125 160	90 100 112 140 180 224	112 125 140 160 224 280	140 160 180 224 280 355	180 200 224 280 355 450	224 250 280 355 450 560	280 315 355 450 560 710
800	1 600	1 > 3,5 > 6,3 > 10 > 16 > 25	3,5 6,3 10 16 25 40	28 32 36 40 50 63	45 50 56 63 80 100	71 80 90 100 125 160	100 112 125 140 180 224	125 140 160 180 224 280	160 180 200 224 280 355	200 224 250 280 355 450	250 280 315 355 450 560	315 355 400 450 560 710
1 600	2 500	1 > 3,5 > 6,3 > 10 > 16 > 25	3,5 6,3 10 16 25 40	32 36 40 45 56 71	50 55 63 71 90 112	80 90 100 112 140 180	112 125 140 160 200 250	140 160 180 200 250 315	180 200 224 250 315 400	224 250 280 315 400 500	280 315 355 400 500 630	355 400 450 500 630 800
2 500	4 000	1 > 3,5 > 6,3 > 10 > 16 > 25	3,5 6,3 10 16 25 40	36 40 45 50 56 71	56 63 71 80 90 112	90 100 112 125 140 180	125 140 160 180 200 250	160 180 200 224 250 315	200 224 250 280 315 400	250 280 315 355 400 500	315 355 400 450 500 630	400 450 500 550 630 800

Tablica 7.179. Dozvoljena pojedinačna radijalna odstupanja $f_i^{"}(\Delta T_i^{"})$ pri kontroli sprezanjem prema ISO 1328 $u \mu m$

pod kruž	čnik eone žnice mm	Mod m mr	1					Kvaliteti				
preko	do	od	do	4	5	6	7	8	9	10	11	12
	125	> 3,5 > 6,3	3,5 6,3 10	7 9 10	10 13 14	14 15 20	20 25 28	28 35 40	36 45 50	45 56 63	56 71 80	71 90 100
125	400	1 > 3,5 > 6,3 > 10 > 16	3,5 6,3 10 16 25	8 10 11 13 16	11 14 16 18 22	16 20 22 25 32	22 28 32 36 45	22 40 45 50 63	40 50 56 63 80	50 63 71 80 100	63 80 90 100 125	80 100 112 125 160
400	800	1 > 3,5 > 6,3 > 10 > 16 > 25	3,5 6,3 10 16 25 40	9 10 11 14 18 22	13 14 16 20 25 32	18 20 22 28 36 45	25 28 32 40 50 63	36 40 45 56 71 90	45 50 55 71 90 112	56 63 71 80 112 140	71 80 90 112 140 180	90 100 112 140 180 224
800	1 600	1 > 3,5 > 6,3 > 10 > 16 > 25	3,5 6,3 10 16 25 40	10 11 13 14 18 25	14 15 18 20 25 33	20 22 25 20 36 50	28 32 36 40 50 71	40 45 50 56 71 100	50 56 63 71 90 125	63 71 80 90 112 160	80 90 100 112 140 200	100 112 125 140 180 250
1 600	2 500	1 > 3,5 > 6,3 > 10 > 16 > 25	3,5 6,3 10 16 25 40	11 13 14 16 20 25	16 18 20 22 28 36	22 25 28 32 40 50	32 36 40 45 56 71	45 50 56 63 80 100	56 63 71 80 100 125	71 80 90 100 125 160	90 100 112 125 160 200	112 125 140 160 200 250
2 500	4 000	1 > 3,5 > 6,3 > 10 > 16 > 25	3,5 6,3 10 16 25 40	13 14 16 18 20 25	18 20 22 25 28 36	25 28 32 36 40 50	36 40 45 50 56 71	50 56 63 71 80 100	63 71 80 90 100 125	80 90 100 112 125 160	100 112 125 140 160 200	125 140 160 180 200 250