Departamento de Matemática da Universidade de Aveiro

Cálculo II - agr. 4

2016/17

exame de recurso Duração: 2h30

• Todos os raciocínios devem ser convenientemente justificados e todas as respostas devem ser cuidadosamente redigidas. A cotação e o formulário de transformadas de Laplace encontram-se no verso.

- 1. Considera a função real de duas variáveis reais definida pela expressão $f(x,y):=2x^3+xy^2+5x^2+y^2$.
 - (a) Determina e classifica os quatro pontos críticos de f.
 - (b) Escreve (não resolvas!) o sistema que permite determinar os pontos críticos de f restrita à condição $x^2 + y^2 = 5$.
 - (c) Sabendo que os pontos críticos referidos na alínea anterior são os seis pontos $(\pm\sqrt{5},0), (-1,\pm2), (-\frac{5}{3},\pm\frac{2}{3}\sqrt{5}),$ calcula, se existirem, o máximo e o mínimo absolutos de f sujeita à condição indicada. Se ajudar, repara que $\sqrt{5}=2,236\ldots$ Não te esqueças de justificar o teu raciocínio.
- 2. Classifica e resolve as seguintes equações diferenciais ordinárias:
 - (a) $(2xy + 3y)dx = -(4y^3 + x^2 + 3x + 4)dy$;
 - (b) $y' = \frac{-2xy}{1+x^2}$.
- 3. Resolve o PVI 2y'' + y' = -4 + 2t, y(0) = 1, y'(0) = 0.
- 4. Considera a série de potências $\sum_{n=1}^{\infty} \frac{3^n}{5^n} (1-2x)^n.$
 - (a) Determina o seu intervalo de convergência.
 - (b) Observando que a série dada é também, para cada x, uma série geométrica, determina a expressão para a sua soma no intervalo de convergência.
- 5. Seja f a função 2π -periódica que em $[-\pi, \pi[$ se expressa como $f(x) := \begin{cases} 0, & -\pi \le x < 0 \\ 1, & 0 \le x \le \frac{\pi}{2} \\ 0, & \frac{\pi}{2} < x < \pi. \end{cases}$
 - (a) Determina os coeficientes de Fourier de f.
 - (b) Esboça o gráfico da soma da série de Fourier de f no intervalo $[-2\pi, 2\pi]$. Justifica o teu raciocínio.
- 6. Considera a função real de duas variáveis reais definida pela expressão $f(x,y) := 2x^2 + 6y^2$.
 - (a) Determina a direção e o sentido em que f mais decresce em cada ponto (x,y) do seu domínio.
 - (b) Determina a curva g(t) = (x(t), y(t)) tal que g(0) = (1, 1) e $(x'(t), y'(t)) = -(\nabla f)(x(t), y(t))$.
 - (c) Se a variável t representar instantes de tempo, explica por palavras tuas como achas que evolui a curva $\gamma(t) = (g(t), f(g(t)))$ com o tempo na superfície definida pelo gráfico de f.

Cotação:

1. 4; 2. 3; 3. 4; 4. 3; 5. 3; 6. 3.

Formulário (Transformadas de Laplace):

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace(s), \quad s > s_f; \qquad G(s) = \mathcal{L}\lbrace g(t)\rbrace(s), \quad s > s_g$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a} , \ s > a$
$\sin(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$\sinh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $
f(t) + g(t)	$F(s) + G(s), \ s > s_f, s_g$
$\alpha f(t) \ (\alpha \in \mathbb{R})$	$\alpha F(s), \ s > s_f$
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda), s > s_f + \lambda$
$H_a(t)f(t-a) (a>0)$	$e^{-as}F(s), s > s_f$
f(at) $(a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right), \ s > a s_f$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$, $s > $ ordem exp. de f
f'(t)	s F(s) - f(0), $s > $ ordem exp. de f
f''(t)	$s^2 F(s) - s f(0) - f'(0), s > \text{ordens exp. de } f, f'$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^n F(s) - \sum_{k=1}^n s^{n-k} f^{(k-1)}(0)$, onde $f^{(0)} \equiv f$,
	$s > $ ordens exp. de $f, f', \dots, f^{(n-1)}$
(f*g)(t)	F(s) G(s), $s > $ ordens exp. de f, g
$\int_0^t f(\tau) d\tau$	$\frac{F(s)}{s}$, $s > 0$, ordem exp. de f

Nota: O facto de se indicarem restrições numa dada linha do quadro acima não significa que não haja restrições adicionais a considerar para que a fórmula indicada nessa linha seja válida.