

$$I(J^P) = 1(\frac{1}{2}^+)$$
 Status: ***

We have omitted some results that have been superseded by later experiments. See our earlier editions.

Σ^+ MASS

The fit uses Σ^+ , Σ^0 , Σ^- , and Λ mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1189.37±0.07 OUR	FIT Error i	ncludes scale facto	or of 2	2.2.	
1189.37 ± 0.06 OUR	AVERAGE	Error includes sca	le fact	tor of 1.8	. See the ideogram
below.		4			
1189.33 ± 0.04	607	$^{ m 1}$ BOHM	72	EMUL	
1189.16 ± 0.12		HYMAN	67	HEBC	
$1189.61\!\pm\!0.08$	4205	SCHMIDT	65	HBC	See note with Λ mass
1189.48 ± 0.22	58	² BHOWMIK	64	EMUL	
1189.38 ± 0.15	144	² BARKAS	63	EMUL	

 $^{^1}$ BOHM 72 is updated with our 1973 K^- , π^- , and π^0 masses (Reviews of Modern Physics **45** S1 (1973)).

² These masses have been raised 30 keV to take into account a 46 keV increase in the proton mass and a 21 keV decrease in the π^0 mass (note added 1967 edition, Reviews of Modern Physics **39** 1 (1967)).

Σ^+ MEAN LIFE

Measurements with fewer than 1000 events have been omitted.

$VALUE~(10^{-10}~{\rm s})$	EVTS	DOCUMENT ID	TECN	COMMENT					
0.8018±0.0026 OUR AVERAGE									
$0.8038 \pm 0.0040 \pm 0.0014$		BARBOSA 00	E761	hyperons, 375 GeV					
$0.8043 \pm 0.0080 \pm 0.0014$		³ BARBOSA 00	E761	hyperons, 375 GeV					
0.798 ± 0.005	30k	MARRAFFINO 80	HBC	K [−] p 0.42–0.5 GeV/ <i>c</i>					
0.807 ± 0.013	5719	CONFORTO 76	HBC	$K^- p 1 - 1.4 \text{ GeV}/c$					
0.795 ± 0.010	20k	EISELE 70	HBC	K^-p at rest					
0.803 ± 0.008	10664	BARLOUTAUD 69	HBC	K [−] p 0.4–1.2 GeV/ <i>c</i>					
0.83 ± 0.032	1300	⁴ CHANG 66	HBC	,					

 $^{^3}$ This is a measurement of the $\overline{\Sigma}^-$ lifetime. Here we assume *CPT* invariance; see below for the fractional Σ^{+} - $\overline{\Sigma}^{-}$ lifetime difference obtained by BARBOSA 00.

$$(\tau_{\Sigma^+} - \tau_{\overline{\Sigma}^-}) / \tau_{\Sigma^+}$$

A test of CPT invariance.

VALUE	DOCUMENT ID		TECN	COMMENT
$(-6\pm12)\times10^{-4}$	BARBOSA	00	E761	hyperons, 375 GeV

Σ^+ MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" in the Λ Listings. Measurements with an error \geq 0.1 μ_N have been omitted.

VALUE (μ_N)	EVTS	DOCUMENT ID		TECN	COMMENT
2.458 ±0.010 OUR AVERAG	E Error	includes scale factor	r of 2	2.1. See	the ideogram
below.					
$2.4613 \pm 0.0034 \pm 0.0040$	250k		93	SPEC	<i>p</i> Cu 800 GeV
$2.428\ \pm0.036\ \pm0.007$	12k	⁵ MORELOS	93	SPEC	<i>p</i> Cu 800 GeV
$2.479 \pm 0.012 \pm 0.022$	137k	WILKINSON	87	SPEC	<i>p</i> Be 400 GeV
2.4040 ± 0.0198	44k	⁶ ANKENBRA	83	CNTR	<i>p</i> Cu 400 GeV

⁴We have increased the CHANG 66 error of 0.018; see our 1970 edition, Reviews of Modern Physics 42 87 (1970).

 $^{^5}$ We assume CPT invariance: this is (minus) the $\overline{\Sigma}^-$ magnetic moment as measured by MORELOS 93. See below for the moment difference testing CPT . 6 ANKENBRANDT 83 gives the value 2.38 \pm 0.02 μ_N . MORELOS 93 uses the same hyperon magnet and channel and claims to determine the field integral better, leading to the revised value given here.

 $(\mu_{\Sigma^+} + \mu_{\overline{\Sigma}^-}) / \mu_{\Sigma^+}$

A test of CPT invariance.

 Σ^+ magnetic moment (μ_N)

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 0.014±0.015
 7 MORELOS
 93 SPEC
 p Cu 800 GeV

Σ^+ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
	$p\pi^0$	(51.57±0.30) %	
Γ_2	$n\pi^+$	(48.31 ± 0.30) %	
Γ3	$p\gamma$	$(1.23\pm0.05)\times10^{-1}$	0-3
Γ_4	$n\pi^+\gamma$	[a] (4.5 ± 0.5) \times 10	0^{-4}
Γ_5	$\Lambda e^+ u_e$	($2.0~\pm0.5$) $ imes~10$	0^{-5}

$\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 1$ weak neutral current (S1) modes

			•		
Γ_6	$\textit{ne}^+ \nu_e$	SQ	< 5	\times 10 ⁻⁶	90%
Γ_7	n $\mu^+ u_\mu$	SQ	< 3.0	\times 10 ⁻⁵	90%
Γ ₈	p e ⁺ e ⁻	<i>S</i> 1	< 7	$\times 10^{-6}$	
Γ_9	$p\mu^+\mu^-$	<i>S</i> 1	$(9 + \frac{9}{-8})$	$) \times 10^{-8}$	

HTTP://PDG.LBL.GOV

Page 3

⁷This is our calculation from the MORELOS 93 measurements of the Σ^+ and $\overline{\Sigma}^-$ magnetic moments given above. The statistical error on $\mu_{\overline{\Sigma}^-}$ dominates the error here.

[a] See the Listings below for the pion momentum range used in this measurement.

CONSTRAINED FIT INFORMATION

An overall fit to 2 branching ratios uses 14 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=$ 7.7 for 12 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to

Σ^+ BRANCHING RATIOS

$\Gamma(n\pi^+)/\Gamma(I$	$V\pi)$				$\Gamma_2/(\Gamma_1+\Gamma_2)$
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.4836 ± 0.003	O OUR FIT				
0.4836 ± 0.003	O OUR AVERAGE				
0.4828 ± 0.003	6 10k	⁸ MARRAFFINC	08 (HBC	$K^- p 0.42 – 0.5 \text{ GeV}/c$
$0.488\ \pm0.008$	1861	NOWAK	78	HBC	
$0.484\ \pm0.015$	537	TOVEE	71	EMUL	
0.488 ± 0.010	1331	BARLOUTAUI	D 69	HBC	$K^- p 0.4-1.2 \text{ GeV}/c$
0.46 ± 0.02	534	CHANG	66	HBC	
$0.490\ \pm0.024$	308	HUMPHREY	62	HBC	

⁸ MARRAFFINO 80 actually gives $\Gamma(p\pi^0)/\Gamma({
m total})=0.5172\pm0.0036$.

$\Gamma(p\gamma)/\Gamma(p\pi^0)$					Γ_3/Γ_1
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
2.38±0.10 OUR FIT					
2.38±0.10 OUR AVE	RAGE				
$2.32\!\pm\!0.11\!\pm\!0.10$	32k	TIMM	95	E761	Σ^+ 375 GeV
$2.81\pm0.39^{+0.21}_{-0.43}$	408	HESSEY	89		$K^-p \rightarrow \Sigma^+\pi^-$ at
2.52 ± 0.28	190	⁹ KOBAYASHI	87	CNTR	$\pi^+\stackrel{rest}{p} o \ \Sigma^+ \mathcal{K}^+$
$2.46^{igoplus 0.30}_{-0.35}$	155	BIAGI	85	CNTR	CERN hyperon beam
2.11 ± 0.38	46	MANZ	80	HBC	$K^- p \rightarrow \Sigma^+ \pi^-$
2.1 ± 0.3	45	ANG	69 B	HBC	K^-p at rest
$2.76 \!\pm\! 0.51$	31	GERSHWIN	69 B	HBC	$K^- p \rightarrow \Sigma^+ \pi^-$
3.7 ± 0.8	24	BAZIN	65	HBC	K^-p at rest
_					_

⁹ KOBAYASHI 87 actually gives $\Gamma(p\gamma)/\Gamma(\text{total}) = (1.30 \pm 0.15) \times 10^{-3}$.

 $\Gamma(n\pi^+\gamma)/\Gamma(n\pi^+)$ Γ_4/Γ_2

The π^+ momentum cuts differ, so we do not average the results but simply use the latest value in the Summary Table.

<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
0.93 ± 0.10	180	EBENHOH	73	HBC	$\pi^+~< 150~{ m MeV}/c$
• • • We do not use th	e following	g data for average	s, fits,	limits,	etc. • • •
0.27 ± 0.05	29	ANG			$\pi^+~<110~{ m MeV}/c$
~ 1.8		BAZIN	65 B	HBC	$\pi^+~<$ 116 MeV $/c$

 $\Gamma(\Lambda e^+ \nu_e)/\Gamma_{\text{total}}$ Γ_5/Γ

VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
2.0±0.5 OUR AVERAG	E			-	
1.6 ± 0.7	5	BALTAY	69	HBC	K^-p at rest
2.9 ± 1.0	10	EISELE	69	HBC	K^-p at rest
2.0 ± 0.8	6	BARASH	67	HBC	K^-p at rest

 $\Gamma(ne^+\nu_e)/\Gamma(n\pi^+)$ Γ_6/Γ_2

Test of $\Delta S = \Delta Q$ rule. Experiments with an effective denominator less than 100,000 have been omitted.

EFFECTIVE DENOM. EVTS DOCUMENT ID TECN COMMENT $< 1.1 \times 10^{-5}$ OUR LIMIT Our 90% CL limit = (2.3 events)/(effective denominator)sum). [Number of events increased to 2.3 for a 90% confidence level.] ¹⁰ EBENHOH 74 HBC 111000

 $\Gamma(n\mu^+\nu_\mu)/\Gamma(n\pi^+)$

 Γ_7/Γ_2

Created: 5/30/2017 17:22

Test of $\Delta \dot{S} = \Delta \dot{Q}$ rule.

EFFECTIVE DENOM. EVTS DOCUMENT ID

< 6.2 x 10⁻⁵ OUR LIMIT Our 90% CL limit = (6.7 events)/(effective denominator)sum). [Number of events increased to 6.7 for a 90% confidence level.]

33800	0	BAGGETT	69 B	HBC
62000	2	¹¹ EISELE	000	HBC
10150	0	¹² COURANT		
1710	0	¹² NAUENBERG	64	HBC
120	1	GALTIERI	62	EMUL

¹¹ Effective denominator calculated by us.

 $\Gamma(pe^+e^-)/\Gamma_{\rm total}$ Γ_8/Γ 13 ANG 69R HRC K- 2 2 4 70 VALUE (units 10^{-6}) 69B HBC K^-p at rest <7

¹⁰ SECHI-ZORN 73 HBC K^-p at rest 105000

¹⁰ Effective denominator calculated by us.

¹² Effective denominator taken from EISELE 67.

¹³ANG 69B found three pe^+e^- events in agreement with $\gamma \rightarrow e^+e^-$ conversion from $\Sigma^+ o p \gamma$. The limit given here is for neutral currents.

 $\Gamma(p\mu^+\mu^-)/\Gamma_{\text{total}}$ Γ_{0}/Γ

A test for a $\Delta S=1$ weak neutral current, but also allowed by higher-order electroweak interactions.

VALUE (units 10^{-8}) TECN COMMENT $8.6^{+6.6}_{-5.4}\pm 5.5$ 14 PARK 05 HYCP p Cu, 800 GeV

 $^{14}\,\mathrm{The}$ masses of the three dimuons of PARK 05 are within 1 MeV of one another, perhaps indicating the existence of a new state P^0 with mass 214.3 \pm 0.5 MeV. In that case, the decay is $\Sigma^+ \to pP^0$, $P^0 \to \mu^+\mu^-$, with a branching fraction of $(3.1^{+2.4}_{-1.9} \pm 1.5) \times$ 10^{-8}

 $\Gamma(\Sigma^+ \to ne^+\nu_e)/\Gamma(\Sigma^- \to ne^-\overline{\nu}_e)$

 $\Gamma_6/\Gamma_3^{\Sigma^-}$

VALUE CL% EVTS VALUE CL% EVTS DOCUMENT ID TECN COMMENT COMMENT COMPOSED TO TECH COMMENT COMPOSED TO THE COMP

• • • We do not use the following data for averages, fits, limits, etc. • •

< 0.019	90	0	EBENHOH	74	HBC	K^-p at rest
< 0.018	90	0	SECHI-ZORN	73	HBC	K^-p at rest
< 0.12	95	0	COLE	71	HBC	K^-p at rest
< 0.03	90	0	EISELE	69 B	HBC	See EBENHOH 74

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$$0.06^{+0.045}_{-0.03}$$
 2 EISELE 69B HBC K^-p at rest

$$\Gamma(\Sigma^{+} \to n\ell^{+}\nu)/\Gamma(\Sigma^{-} \to n\ell^{-}\overline{\nu})$$
Test of $\Delta S = \Delta Q$ rule.

 $(\Gamma_6 + \Gamma_7)/(\Gamma_3^{\Sigma^-} + \Gamma_4^{\Sigma^-})$

<0.043 OUR LIMIT Our 90% CL limit, using $\left[\Gamma(ne^+\nu_e) + \Gamma(n\mu^+\nu_\mu)\right]/\Gamma(n\pi^+)$.

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 0.08	1	NORTON	69	HBC
< 0.034	0	BAGGETT	67	HBC

Σ^+ DECAY PARAMETERS

See the "Note on Baryon Decay Parameters" in the neutron Listings. A few early results have been omitted.

α_0 FOR $\Sigma^+ \rightarrow p\pi^0$

 $-0.980^{+0.017}_{-0.015}$ OUR FIT

$-0.980^{f +0.017}_{f -0.013}$ OUR AVERAGE

$$-0.945^{+0.055}_{-0.042}$$
 1259 15 LIPMAN 73 OSPK $\pi^+ p \to \Sigma^+$ -0.940 ± 0.045 16k BELLAMY 72 ASPK $\pi^+ p \to \Sigma^+ K^+$

HTTP://PDG.LBL.GOV Page 6 Created: 5/30/2017 17:22

$-0.98 \begin{array}{l} +0.05 \\ -0.02 \end{array}$	1335	¹⁶ HARRIS	70	OSPK	$\pi^+ p \rightarrow \Sigma^+ K^+$
-0.999 ± 0.022	32k	BANGERTER	69	HBC	$K^- p \ 0.4 \ \text{GeV}/c$

 $^{^{15}}$ Decay protons scattered off aluminum.

ϕ_0 ANGLE FOR $\Sigma^+ \to p\pi^0$

 $(\tan \phi_0 = \beta/\gamma)$

φυ /	· P	•			(5040 6/1)
VALUE (°)	EVTS	DOCUMENT ID		TECN	COMMENT
36 ±34 OUR AVER	AGE				
$38.1^{+35.7}_{-37.1}$	1259	¹⁷ LIPMAN	73	OSPK	$\pi^+ p \rightarrow \Sigma^+ K^+$
22 ±90		¹⁸ HARRIS	70	OSPK	$\pi^+ p \rightarrow \Sigma^+ K^+$
17					

¹⁷ Decay proton scattered off aluminum.

α_+ / α_0

Older results have been omitted.

VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
-0.069 ± 0.013 OUR FI	Т			
-0.073 ± 0.021	23k	MARRAFFINO 80	HBC	$K^- p 0.42 – 0.5 \text{ GeV}/c$

α_{\perp} FOR $\Sigma^{+} \rightarrow n\pi^{+}$

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.068±0.013 OUR	FIT				
0.066 ± 0.016 OUR	AVERAGE				
0.037 ± 0.049	4101	BERLEY	70 B	HBC	
$0.069\!\pm\!0.017$	35k	BANGERTER	69	HBC	$K^- p 0.4 \text{ GeV}/c$

ϕ_+ ANGLE FOR $\Sigma^+ o n\pi^+$

 $(\tan\phi_+=\beta/\gamma)$

Created: 5/30/2017 17:22

VALUE (°)	EVTS	DOCUMENT ID		TECN	COMMENT
167±20 OUR AVERAGE					
184 ± 24	1054 19	BERLEY	70 B	HBC	
143 ± 29	560	BANGERTER	69 B	HBC	K^-p 0.4 GeV/ c
10					

 $^{^{19}}$ Changed from 176 to 184° to agree with our sign convention.

α_{γ} FOR $\Sigma^+ \rightarrow p\gamma$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.76 ±0.08 OUR AV	ERAGE				
$-0.720 \pm 0.086 \pm 0.045$	35k	²⁰ FOUCHER	92	SPEC	Σ^+ 375 GeV
$-0.86\ \pm0.13\ \pm0.04$	190	KOBAYASHI	87	CNTR	$\pi^+ p \rightarrow \Sigma^+ K^+$
$-0.53 \begin{array}{l} +0.38 \\ -0.36 \end{array}$	46	MANZ	80	HBC	$K^- p \rightarrow \Sigma^+ \pi^-$
$-1.03 \begin{array}{l} +0.52 \\ -0.42 \end{array}$	61	GERSHWIN	69 B	НВС	$K^- p \rightarrow \Sigma^+ \pi^-$
20					

²⁰ See TIMM 95 for a detailed description of the analysis.

¹⁶ Decay protons scattered off carbon.

¹⁸ Decay protons scattered off carbon.

Σ^+ REFERENCES

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

PARK	05	PRL 94 021801	H.K. Park et al.	(FNAL HyperCP Collab.)
BARBOSA	00	PR D61 031101	R.F. Barbosa et al.	(FNAL E761 Collab.)
TIMM	95	PR D51 4638	S. Timm et al.	(FNAL E761 Collab.)
MORELOS	93	PRL 71 3417	A. Morelos <i>et al.</i>	(FNAL E761 Collab.)
FOUCHER	92	PRL 68 3004	M. Foucher et al.	(FNAL E761 Collab.)
HESSEY	89			`
		ZPHY C42 175	N.P. Hessey <i>et al.</i>	(BNL-811 Collab.)
KOBAYASHI	87	PRL 59 868	M. Kobayashi <i>et al.</i>	(KYOT)
WILKINSON	87	PRL 58 855	C.A. Wilkinson et al.	(WISC, MICH, RUTG+)
BIAGI	85	ZPHY C28 495	S.F. Biagi <i>et al.</i>	(CERN WA62 Collab.)
ANKENBRA	83	PRL 51 863	C.M. Ankenbrandt et al.	(FNAL, IOWA, ISU+)
MANZ	80	PL 96B 217	A. Manz <i>et al.</i>	(MPIM, VAND)
MARRAFFINO	80	PR D21 2501	J. Marraffino et al.	(VAND, MPIM)
NOWAK	78	NP B139 61	R.J. Nowak et al.	(LOUC, \overrightarrow{BELG} , \overrightarrow{DURH} + $\overset{'}{1}$
CONFORTO	76	NP B105 189	B. Conforto et al.	(RHEL, LOIC)
EBENHOH	74	ZPHY 266 367	H. Ebenhoh <i>et al.</i>	(HEIDT)
EBENHOH	73	ZPHY 264 413	W. Ebenhoh <i>et al.</i>	(HEIDT)
LIPMAN	73	PL 43B 89		(RHEL, SUSS, LOWC)
			N.H. Lipman <i>et al.</i>	A
PDG	73	RMP 45 S1	T.A. Lasinski <i>et al.</i>	(LBL, BRAN, CERN+)
SECHI-ZORN	73	PR D8 12	B. Sechi-Zorn, G.A. Snow	(UMD)
BELLAMY	72	PL 39B 299	E.H. Bellamy <i>et al.</i>	(LOWC, RHEL, SUSS)
ВОНМ	72	NP B48 1	G. Bohm <i>et al.</i>	(BERL, KIDR, BRUX, IASD+)
Also		IIHE-73.2 Nov	G. Bohm (BERL,	KIDR, BRUX, IASD, DUUC+)
COLE	71	PR D4 631	J. Cole <i>et al.</i>	(STON, COLU)
TOVEE	71	NP B33 493	D.N. Tovee et al.	(LOUC, KIDR, BERL+)
BERLEY	70B	PR D1 2015	D. Berley et al.	` (BNL, MASA, YALE)
EISELE	70	ZPHY 238 372	F. Eisele <i>et al.</i>	(HEID)
HARRIS	70	PRL 24 165	F. Harris <i>et al.</i>	(MICH, WISC)
PDG	70	RMP 42 87	A. Barbaro-Galtieri <i>et al.</i>	(LRL, BRAN+)
ANG	69B	ZPHY 228 151	G. Ang et al.	` (
			9	(HEID)
BAGGETT	69B	Thesis MDDP-TR-973	N.V. Baggett	(COLLI STON)
BALTAY	69	PRL 22 615	C. Baltay et al.	(COLU, STON)
BANGERTER	69	Thesis UCRL 19244	R.O. Bangerter	(LRL)
BANGERTER	69B	PR 187 1821	R.O. Bangerter <i>et al.</i>	(LRL)
BARLOUTAUD	69	NP B14 153	R. Barloutaud <i>et al.</i>	(SACL, CERN, HEID)
EISELE	69	ZPHY 221 1	F. Eisele <i>et al.</i>	(HEID)
Also		PRL 13 291	W. Willis et al.	(BNL, CERN, HEID, UMD)
EISELE	69B	ZPHY 221 401	F. Eisele <i>et al.</i>	(HEID)
GERSHWIN	69B	PR 188 2077	L.K. Gershwin et al.	`(LRL)
Also		Thesis UCRL 19246	L.K. Gershwin	(LRL)
NORTON	69	Thesis Nevis 175	H. Norton	(COLU)
BAGGETT	67	PRL 19 1458	N. Baggett <i>et al.</i>	(UMD)
Also	01	Vienna Abs. 374		```
Also			N.V. Baggett, B. Kehoe N.V. Baggett	(UMD)
	67	Private Comm.		(UMD)
BARASH	67	PRL 19 181	N. Barash <i>et al.</i>	(UMD)
EISELE	67	ZPHY 205 409	F. Eisele <i>et al.</i>	(HEID)
HYMAN	67	PL 25B 376	L.G. Hyman <i>et al.</i>	(ANL, CMU, NWES)
PDG	67	RMP 39 1	A.H. Rosenfeld et al.	(LRL, CERN, YALE)
CHANG	66	PR 151 1081	C.Y. Chang	(COLU)
Also		Thesis Nevis 145	C.Y. Chang	(COLU)
BAZIN	65	PRL 14 154	M. Bazin <i>et al.</i>	(PRIN, COLU)
BAZIN	65B	PR 140 B1358	M. Bazin <i>et al.</i>	(PRIN, RUTG, COLÚ)
SCHMIDT	65	PR 140 B1328	P. Schmidt	(COLU)
BHOWMIK	64	NP 53 22	B. Bhowmik <i>et al.</i>	(DELH)
COURANT	64	PR 136 B1791	H. Courant et al.	(CERN, HEID, UMD+)
NAUENBERG	64	PRL 12 679	U. Nauenberg <i>et al.</i>	(COLU, RUTG, PRIN)
BARKAS	63	PRL 11 26	W.H. Barkas, J.N. Dyer, H.F	
	US			· · · · · · · · · · · · · · · · · · ·
Also	60	Thesis UCRL 9450	J.N. Dyer	(LRL)
GALTIERI	62	PRL 9 26	A. Barbaro-Galtieri <i>et al.</i>	(LRL)
HUMPHREY	62	PR 127 1305	W.E. Humphrey, R.R. Ross	(LRL)