

Números Complejos I

http://selectividad.intergranada.com

Conjugado, opuesto, representaciones gráficas. Tipos de complejos

- 1. Clasificar los siguientes números complejos en reales e imaginarios. Para cada uno, cuál es la parte real y cuál la imaginaria. a) (3i); b) 1/3-5/2 i; c) 6/5; d)-3i; e) 5i; f) 0; g) i; h) (1/3)-i.
- 2. Escribir tres números complejos imaginarios puros, tres números imaginarios y tres números reales.
- 3. Representar gráficamente los números complejos: a) (3+4i); b) -4; c) -2i; d) (-2+3i); e) (1+3i); f) (6-i); g) -2; h) 3i; g) (-1+i).
- 4. Representar gráficamente el opuesto y el conjugado de: a) -3+5i; b) 3-2i; c) 1-2i; d) -2+i; e) 6; f) 5i; g) 3; h) -4i.
- 5. Indicar cuáles de los siguientes números son reales, imaginarios o complejos:

a) -9; b) -3i; c) -3i+1; d) $\sqrt{3}$ +(1/2)i; e) (1/3)i; f) $\sqrt{2}$; g) -2i; h) (1+3i).

Sol: R, I, C, C, I, R, I, C

- Representar gráficamente los afijos de todos los números complejos z tales que al sumarlos con su respectivo conjugado, se obtenga dos; es decir: z+ z̄ =2.

 Sol: recta x=1
- 7. Representar gráficamente los números complejos z tales que z- \overline{z} =2. ¿Qué debe verificar z?. Sol: es imposible
- 8. Representar gráficamente los opuestos y los conjugados de a) -2-i; b) 1+i; c) 3i.
- 9. Escribir en forma trigonométrica y polar los complejos: a) 4+3i; b) -1+i; c) 5-12i. Sol: a) $5_{36.87^\circ}$; b) $\sqrt{2}_{135^\circ}$; c) $13_{292.6^\circ}$
- 10. Escribir en las formas binómica y trigonométrica los números complejos: a) $3_{\pi/3}$; b) $3_{135^{\circ}}$; c) $1_{270^{\circ}}$. Sol: a) $3(\cos 60^{\circ} + i \sin 60^{\circ}) = 3/2 + 3\sqrt{3}/2$ i; b) $3(\cos 135^{\circ} + i \sin 135^{\circ}) = -3\sqrt{2}/2 + 3\sqrt{2}/2$ i; c) $\cos 270^{\circ} + i \sin 270^{\circ} = -i$
- 11. Calcular tres argumentos del número complejo 1-i.

Sol: a) 315°, 675°; 1035°

- 12. ¿Cuáles son el módulo y el argumento del conjugado de un número complejo cualquiera r_α.? sol: r_{360-α}.
- 13. Expresar en forma binómica y en forma polar el conjugado y el opuesto del número complejo: 6_{30° . Sol: a) 6_{330° , $(3\sqrt{3} 3i)$; b) 6_{210° , $(-3\sqrt{3} 3i)$
- 14. Escribir en forma polar los números complejos: a) 6-8i; b) 2 + $\sqrt{14}$ i; c) -3+4i. Sol: a) $10_{306,9}$; b) $4_{69,3}$; c) $5_{126,9}$
- 15. Escribir en forma binómica el complejo R=2(cos45º+isen45º). Representarlo gráficamente. sol: a) √2 + √2 i
- 16. El módulo de un número complejo es 5 y su argumento 600º. Escribir el número en forma trigonométrica.

 Sol: 5(cos240º+isen240º)
- 17. ¿Qué argumento tiene el siguiente número complejo?: 4(3-2i)+5(-2+i).
- 18. Averiguar como debe ser un complejo r_α para que sea: a) un número real b) un número imaginario puro.
- 19. Escribir en forma polar: a) $1+\sqrt{3}$ i; b) $-1+\sqrt{3}$ i; c) $1-\sqrt{3}$ i; d) $-1-\sqrt{3}$ i; e) $3\sqrt{3}+3$ i; f) $-3\sqrt{3}-3$ i. Sol: a) 2_{60° ; b) 2_{120° ; c) 2_{300° ; d) 2_{240° ; e) $\sqrt{6}$ 3_{00° , f) $\sqrt{6}$ 2_{10°
- 20. Escribir en forma binómica:a) 2_{60° ; b) $1_{(3\pi/2)}$; c) 5_{450° ; d) 2_{180° ; e) 4_{750° ; f) $6_{(\pi/3)}$. Sol: a) $(1 + \sqrt{3} i)$; b) -i; c) 5i; d) -2; e) $(2\sqrt{3} + 2i)$; f) $(3 + 3\sqrt{3} i)$
- 21. Escribir todos los números complejos cuyos afijos estén en la circunferencia de centro (1,2) y radio 5. Sol: (5 cosα+1,(5 senα+2)i)
- 22. Escribir en forma polar y trigonométrica los números complejos: a) $\sqrt{3}$ +3i; b) 1-i; c) 2-2i. Sol: a) $\sqrt{12}$ 609, $\sqrt{12}$ (cos609+isen609); b) $\sqrt{2}$ 2259, $\sqrt{2}$ (cos2259+isen2259); c) 2 $\sqrt{2}$ 3159, 2 $\sqrt{2}$ (cos3159+isen3159)
- 23. Escribir en forma binómica y trigonométrica los números complejos: a) $6_{\pi/3}$, b) $2_{45^{\circ}}$, c) $2_{300^{\circ}}$. Sol: a) $6(\cos 60 + i \sec 60) = (3, 3, \sqrt{3} i)$; b) $2(\cos 45 + i \sec 45) = (\sqrt{2} + \sqrt{2} i)$; c) $2(\cos 300 + i \sec 300) = 1 \sqrt{3} i$
- 24. Representar gráficamente los opuestos y los conjugados de: a) -3-i; b) 1+i; c) +3i.
- 25. Escribir en forma binómica: 6(cos30º+isen30º).

Sol: 3 √3 -3i

26. Hallar el módulo y el argumento de: a) (1+i)/(1-i). b) (1+i)(2i).

Sol: a) $1_{90^{\circ}}$; b) $\sqrt{8}_{135^{\circ}}$

- 27. ¿Qué figura representan en el plano los puntos que tienen de coordenadas polares 3_{α} , α variable? ¿y los que tienen $\rho_{90^{\circ}}$, ρ variable?. Sol: a) circunferencia de centro (0,0) y radio 3; b) semieje OY positivo
- 28. Dado $z = \rho_{\alpha}$. Expresar en forma polar: a) -z, b) z^{-1} , c) el conjugado de z, d) z^{3} .

Sol: a)
$$\rho_{180^{\circ}+\alpha}$$
; b) $\left(\frac{1}{\rho}\right)_{-\alpha}$; c) $\rho_{-\alpha}$; d) $\rho^3_{3\alpha}$

Números Complejos I

Sumas, restas, productos, divisiones, mixtos

- Efectuar las siguientes operaciones entre números complejos:
 a) (2+3i)+(4-i); b) (3+3i) (6+2i); c) (3-2i) + (2+i) 2(-2+i); d) (2-i)-(5+3i) + (1/2)(4-4i).
 Sol: a) (6+2i); b) (-3+i); c) (9-3i); d) -1-6i
- Multiplicar los siguientes números complejos:
 a) (1+2i)(3-2i); b) (2+i) (5-2i); c) (i+1)(3-2i)(2+2i); d) 3(2-i)(2+3i)i.
 Sol: a) 7+4i; b) 12+i; c) 8+12i; d) -12+21i
- 3. Efectuar las siguientes divisiones de números complejos:
 a) (2+i)/(1-2i); b) (7-i)/(3+i); c) (5+5i)/(3-i); d) (3-i)/(2+i); e) (18-i)/(3+4i).

 Sol: a) i; b) 2-i; c) 1+2i; d) 1-i; e) 2-3i
- 4. Efectuar las siguientes operaciones y simplificar:
 a) 5-3[3+(2/3)i]; b) [2i (-i+2)] / (1+i); c) [(-2i)²(1+3i)]/(4+4i); d) [(1+3i)(1+2i)]/(1+i). Sol: a) -4-2i; b) 3+i; c) -2-i; d) 5i
- 5. Dado el número complejo z=2+2i, calcular y representar: a) su conjugado (\bar{z}) ; b) la suma $z + \bar{z}$; c) el producto $z \cdot \bar{z}$.
- 6. Calcular: a) (3+i)(2+i)-(1-i)(2-2i); b) (3-2i)+(1+2i)(6-2i)-(2-i); c) (3+2i)+(2-4i)6. Sol: a) (5+9i); b) 11+9i; c) 15-22i
- 7. Efectuar los siguientes productos y expresa el resultado en forma polar y binómica: a) $(\cos 30^{\circ} + i \sin 30^{\circ})[2(\cos 15^{\circ} + i \sin 15^{\circ})]$ b) $[2(\cos 23^{\circ} + i \sin 23^{\circ})][3(\cos 37^{\circ} + i \sin 37^{\circ})];$ c) $[5(\cos 33^{\circ} + i \sin 33^{\circ})]2_{57^{\circ}}$ d) (2+2i)(1-i); e) $(3+4i)1_{180^{\circ}}.$ Sol: a) $2_{45^{\circ}} = \sqrt{2} + \sqrt{2}$ i; b) $6_{60^{\circ}} = 3$ $\sqrt{3}$ +3i); c) $10_{90^{\circ}} = 10i;$ d) $4_{0^{\circ}} = 4;$ e) $5_{233^{\circ}} = -3-4i$
- 8. Efectuar las operaciones: a) $1_{150^\circ}3_{30^\circ}$; b) $6_{60^\circ}:2_{15^\circ}$; c) $2_{20^\circ}1_{30^\circ}2_{70^\circ}$; d) $6_{(2\pi/3)}:3_{90^\circ}$; e) $(5_{\pi/9})^9$; f) $(2+2i)^4$. Sol: a) 3_{180° ; b) 3_{45° ; c) 4_{120° ; d) 2_{30° ; e) 5_{180° ; f) $6_{4_{180^\circ}}$
- 9. Efectuar las operaciones: a) $2_{105^{\circ}}3_{85^{\circ}}$; b) $4_{65^{\circ}}:2_{15^{\circ}}$; c) $5_{22^{\circ}}2_{28^{\circ}}1_{30^{\circ}}$; d) $4_{150^{\circ}}:2_{(\pi/2)}$; e) $(2_{20^{\circ}})^3$; f) $(3_{60^{\circ}})^4$ Sol: a) 6_{190} ; b) 2_{50} ; c) 10_{80} ; d) 2_{60} ; e) 8_{60} ; f) 81_{240}
- 10. Calcular el inverso de los números complejos siguientes y representar gráficamente el resultado: a) 2_(π/2) b) 4i c) -3+i. Sol: a) (1/2)_(-π/2); b) -0,25i; c) (-3/10)-(1/10)i
- 11. ¿Cómo es gráficamente el inverso de un número complejo?. ¿Cuál es su módulo?. ¿Y su argumento?. Sol: a) perpendicular; b) módulo=(1/r), argumento=-α
- 12. Simplificar las expresiones: $a) \frac{3_{45^{\circ}} 2_{15^{\circ}}}{6_{30^{\circ}}}, b) \frac{2_{30^{\circ}} 3_{60^{\circ}}}{3_{120^{\circ}} 1_{300^{\circ}}}, c) \frac{2_{45^{\circ}} 2_{15^{\circ}}}{4_{90^{\circ}}}$ Sol: a) $1_{30^{\circ}}$; b) $2_{30^{\circ}}$; c) $1_{330^{\circ}}$
- 13. Efectuar algebraica y gráficamente las operaciones con números complejos:
 a) (3+2i)+(2-3i);
 b) (-3+2i)+(-2-i); c) (2-i)i; d) (-2+i)i.
 Sol: a) (5-i); b) (-5+i); c) (1+2i); (-1-2i)
- 14. Calcular los siguientes productos:
 - a) $2(\cos 23^{\circ} + i \sin 23^{\circ}).5(\cos 12^{\circ} + i \sin 12^{\circ}).$ b) $(1+i)(2_{30^{\circ}}).$ c) $2(\cos 18^{\circ} + i \sin 18^{\circ})$ $(3_{22^{\circ}}).$ Sol: a) $10(\cos 35^{\circ} + i \sin 35^{\circ})$; b) $(-1+\sqrt{3})+(1+\sqrt{3})i$; c) $6_{40^{\circ}}$
- 15. Resolver las ecuaciones: a) x³-27=0 b) x⁵+32=0. Sol: a) x=3; x=3_{120°}; x=3_{240°}; b) 2_{36°+72°k k=0,1,2,3,4}
 16. Dados z=(1,3), w=(2,1) Hallar z-w; zw; z⁻¹.
- 17. Dados z=-1+3i, w=-2+i. Calcular y representar a) z+w; b) zw; c) z², d) z+ w; e) z/w, sol: a) -3+4i; b) -1-7i; c) -8-6i; d) -3+2i; e) 1-i
- 18. Efectuar las siguientes operaciones: a) $6_{90^{\circ}}\sqrt{2}_{15^{\circ}}$. b) $8_{120^{\circ}}/4_{\pi/2}$. Sol. a) $6\sqrt{2}_{105^{\circ}}$, b) $2_{30^{\circ}}$
- 19. Hallar $\frac{i^{32}i^{17}}{i^2t^3}$ Sol: 1
- 20. Hallar el módulo de los complejos: a) z=-2i(1+i)(-2-2i)(3); y b) $w = \frac{(2-i)\cdot(-1+2i)}{(1-i)\cdot(1+i)}$ Sol: a) 24; b) 5/2
- 21. Representar gráficamente las sumas: a) (-i)+(3-i); b) (-2+i)+(3-2i).
- 22. Representar gráficamente el número complejo 3-2i. Aplicarle un giro de 90º alrededor del origen.
 ¿Cuál es el nuevo número complejo?. Multiplica ahora 3-2i por i. sol: 2+3i; 12+5i
- 23. Hallar el módulo de $z = \frac{2-4i}{4+2i}$.