Aislinn E. Smith

aislinnsmith@utexas.edu PMA 10.138

EDUCATION

University of Texas at Austin - College of Natural Sciences

Overall GPA: 3.9/4.00

Bachelor of Science - Mathematics

Certificate Program: Scientific Computation and Data Sciences

Master of Arts - Mathematics - Current Degree Program

RESEARCH/PROJECTS

Mathematics MA Thesis: "The Nielsen-Realization Problem in Dimensions 2-4"

Aug. 2025

• In progress

Max Planck Institute for Math in the Natural Sciences - Guest Researcher

June 2023 - July 2024

- Led a remote reading course focused on Riemann surfaces and complex algebraic geometry with a survey of other topics including Deligne-Mumford compactification, Teichmuller space, and mapping class groups.
- Attended in-person summer lecture series on ergodic theory and character varieties

Mathematics BSc Thesis: "Minimal surfaces in hyperbolic manifolds and link complements"

Dec. 2022

- Advised by Prof. John Luecke
- The project is motivated by REU research, specifically on the topic of geodesics formed by horocyclic edges within minimal surfaces of hyperbolic manifolds with parabolic cusps.

SUMRY REU – Yale U.: "Combinatorial and geometric aspects of hyperbolic manifolds"

May 2022 - July 2022

- Undergraduate NSF-funded research in low dimensional topology and combinatorial hyperbolic geometry mentored by Dr.
 Franco Vargas-Pallete
- Project was motivated by the converging interests of Karen Uhlenbeck and William Thurston on closed geodesics within hyperbolic surfaces of constant mean curvature.
- One of my contributions was the development of a finite element method that could simulate mean curvature flow such that it was compatible with a hyperbolic metric.

Moncrief Internship w/ The UT ODEN Institute for Computational Sciences

May 2021 - May 2022

- Developed mathematical models/algorithms using principles of stochastic path integral control to aid automated vehicles in avoiding obstacles with a degree of randomized motion and varying levels of allowed risk under advisement of Dr. Takashi Tanaka
- Compared the computational complexity and success of two different models of diffusion-based optimal control. One of
 which used reinforcement learning and a weighted average of randomly sampled trajectories, while the second method
 numerically found solutions to the Hamilton-Jacobi-Bellman differential equation

NSF RTG Undergraduate fellowship w/ UT Analysis and PDEs group

Aug. 2020 - May 2022

- Independent research project guided by Dr. Stefania Patrizi on the topic non-local diffusion operators/the Fractional Laplacian
- · Studied derivation and applications of harmonic extension of Laplacian to model energy minimization of crystal dislocations
- Took a series of three independent study courses on various topics in harmonic analysis and complex analysis following the completion of the year-long fellowship.

Complex Systems REU- University of Minnesota

May 2020 - July 2020

- Undergraduate NSF-funded research in nonlinear fluid dynamics led by Dr. Arnd Scheel
- Researched the stability and resonances of non-linear Fischer KPP reaction-diffusion equations.
- The goal of this project was to use heteroclinic bifurcation analysis to explain and characterize a strange resonance pattern that occurred at the threshold of absolute and convective instability in the control parameter of the non-linear ODE.

ACADEMIC AWARDS

NSF Graduate Fellowship – Topology	2023 - 2028	
UT Austin Dean's Strategic Fellowship	2023 - 2028	
Nancy Francis and William Arnold McMinn Presidential Scholarship	Aug. 2021 - May 2022	
NSF Undergraduate Research Training Grant	Aug 2020 - May 2021	
TALKS/CONFERENCES		
Combinatorial and gauge theoretical methods in low dim-topology - CRM De Giorgi	June 2024	
Homology Growth in Topology and Group Theory - MPIM Bonn	May 2024	
CIRM Research School - Renormalization and Visualization for Packing, Billiards, and Surfaces	July 2023	
Research school participant		
Joint Mathematics Meeting (JMM)	Jan. 2023	
 Presented on Yale REU research @ Pi Mu Epsilon undergraduate research forum 		
The Young Mathematicians Conference @ Ohio State University	Aug. 2022	
• Presentation: Finding the Minimal Splitting Surface of the Ideal Regular Octahedron in the Poincare Ball		
Texas Undergraduate Mathematicians Conference	Oct. 2022	
 Presented on Yale REU research and hyperbolic geometry for early undergraduates, and spoke or research opportunities 	n panel on undergraduate	
• Presentation: Finding the Minimal Splitting Surface of the Ideal Regular Octahedron in the Poin	care Ball	
UT Austin College of Natural Sciences Research Forum	May 2021	
• Poster presentation on work/reading done on the Fractional Laplacian during year-long fellowsh	nip	
with the UT Analysis and PDEs RTG		
TEACHING / WORK EVDEDIENCE/SVILLS		

TEACHING/ WORK EXPERIENCE/SKILLS

Graduate Teaching Assistant - UT Austin Department of Mathematics	Aug 2023 - Present
College Math and Physics tutor - UT Austin Sanger Learning Center	July 2019 - Dec 2021
Math and Physics Instructor/Tutor - The Liberal Arts and Science Academy	Aug 2020 - Dec 2021
Undergraduate Learning Assistant - UT Austin Department of Physics	Aug 2020 - Jan 2021
Coding Experience: C++, Fortran, Python (SciPy), Matlab	

PUBLICATIONS

- [1] Avery, M., Dedina, C., Smith, A, Scheel, A. (2021). Instability in large bounded domains—branched versus unbranched resonances. Nonlinearity, 34(11), 7916–7937. https://doi.org/10.1088/1361-6544/ac2a15
- [2] Patil, A., Duarte, A., Smith, A., Tanaka, T., & Bisetti, F. (2022). Chance-Constrained Stochastic Optimal Control via Path Integral and Finite Difference Methods. arXiv. https://doi.org/10.48550/arXiv.2205.00628