Markov Chain Review

A sequence of random variables X_0, X_1, X_0, \dots is called a Markov chain if $P\{X_n=j\mid X_0=\chi_0, X_1=\chi_1, \dots, X_{n-1}=i\}$ $= P\{X_n=j\mid X_{n-1}=i\}$

for all n>1 and states i, j.

That is, the chain is governed by one-step transition probabilities, which can be represented by a transition matrix P if the state space is finite.

Powers Pin yield the mostep transition prob PIXn=j 1 Xo=is

Limiting distribution $\bar{\lambda}$: $\lim_{n\to\infty} P_{ij}^{n} = \lambda_{ij}$ for all states i λ_{ij} (doesn't depend on initial state i)

Equivalently, $\lim_{n\to\infty} P^{n} = \begin{bmatrix} \bar{\lambda} \\ \bar{\lambda} \end{bmatrix}$ (all nows converge to $\bar{\lambda}$)

Stationary distribution TT: TT = TTP

(also called invariant distribution)

Tj = ZT, P.j. for all states j

Limiting distributions are stationary distributions, but not vice versa. Summary of matrix methods for chain computations

- (1) For irreducible, apperiodic MC, the long-term probability of Visiting each state is given by TT (left eigenvector for eigenvalue 1) The first return time for state j is given by 1/TTj
- ② For a reducible MC, organize transition metrix P= * [Q; R]

 For transment states, M=(I-Q) has entries

Mji = expected to of visits to transmit state is
if start at transmit state j

Sum ith vow of M to obtain takel expected it

Sum jth vow of M to obtain total expected it of visits to transient states if start at transient state;

3) To apply to irreducible chain, we can compute the expected the of visits to state is before hitting state k if start at j by turning k into an absorbing state (50 rest of states become transient). Then use matrix M.

For irreducible MC, to find the probability of hithing states before state c, let 6 & c be absorbing states.

Let A be the matrix with entries $A_{ij} = P_i \times_{n=j}$ for some $n \ge 1$:
For transient state i and absorbing statej, $X_0 = i$?

Aij = IP \(\times \times \) eventually \(\times \) \\ = \(\times \) \\ \(\times \) \

= ESPEX,=kIX,=i3 [PEX,-i3 eventually 1X,=k]
transment R aik

+ ET PEX,=KIX=i3 PIXn=j eventually 1 X = K?
recurrent Rik

Rik

= EQQikAki + Rii => A=QA+R Heuslatk => (I-Q)A=R => A-(I-Q)'R=MR

Chapter 4 Branching Processes

- stockastic model for population growth
- late 1800s, Galton & Watson developed to track male surnames from generation to generation
- historical note: Galton was an influential statistician who created the concept of correlation. He also advocasted social Darwinism, eugenics, and scientific racism.
 - Watson was a methematician working on electricity & magnetism.

Defin: A branching process is a sequence of RVs Z_0, Z_1, Z_2, \cdots with a state space $\{0,1,2,\cdots\}$, where $Z_n = *$ individuals in generation n, in which each individual independently produces of spring according to an offspring distribution $a = (a_0, a_1, a_2, \cdots)$, $0 \le a_k \le 1$, $\sum_{k=0}^{\infty} a_k = 1$, $a_k = 1$,

Typically start with Z=1:

Note that O will be an absorbing state (extinction)

What can we say about the population size over time?

If $a_0=0$, then always positive. If $a_0=1$, instant extinction.

Will usually assume $0 < a_0 < 1$ and $a_0+a_1 < 1$, so positive probot multiple dispring.

Lemma 4.1 If $0 < a_0 < 1$ and $a_0 + a_1 < 1$, then all nonzero states are transient.

Proof: Note that prob of going from i to 0 is $(a_0)^{i}$ all i individuals had 0 offspring Calculate f:= prob of eventually hilling i again if startati (f:<1) implies i transient)

Section 4.2 Mean generation sire

Let $X_n = \frac{1}{2}$ offspring of it individual in $(n-1)^{st}$ generation (i.i.d with distribution a.) Note $Z_n = \sum_{i=1}^{2n-1} X_i$ (sum offspring over the individuals in $(n-1)^{st}$ generation)

Mean of offspring distribution: $\mu = \sum_{k=0}^{\infty} k a_k = \mathbb{E}[X_i]$ Variance is $\sigma^2 = \sum_{k=0}^{\infty} a_k (k-\mu)^2$

Expected value of nt generation is then [[Zn]=

So if
$$Z_o=1$$
, then $\mathbb{E}[Z_n]=\mu^n$.
(In general, $\mathbb{E}[Z_n]=\mu^n\mathbb{E}[Z_o]$.)

Three cases can occur:

(1) Subertical M<1

- 2) Critical M=1 3) Supercritical M>1

When can extinction occur? When can population explosions occur?

Variance of generation size

If
$$Z_0=1$$
, then $Vav[Z_0]=0$

$$Vav[Z_1]=\sigma^2$$

$$Vav[Z_2]=\sigma^2\mu^2+\sigma^2\mu=\sigma^2\mu(1+\mu)$$

$$\vdots$$

$$Var[Z_n]=\sigma^2\mu^{n-1}\sum_{k=0}^{n-1}\mu^k=\sum_{k=0}^{n-1}(\frac{\mu^{n-1}}{\mu^{-1}}) \text{ if } \mu\neq 1$$
(Anothory induction)

(food by induction)

$$Var[Z_n] = \sigma^2 \mu^{n-1} \sum_{k=0}^{n-1} \mu^k = \begin{cases} n \sigma^2 & \text{if } \mu = 1 \\ \sigma^2 \mu^{n-1} \left(\frac{\mu^{n-1}}{\mu^{n-1}} \right) & \text{if } \mu \neq 1 \end{cases}$$

B) Supercritical
$$\mu > 1$$
: $\lim_{n \to \infty} \mathbb{E}[z_n] = \infty$

(groung exponentially fast as $n > \infty$)

 $\lim_{n \to \infty} \text{Var}[z_n] = \infty$

Can get either extinction or exponential pop growth in cases @ & 3. What are the probabilities of each, depending on offspring distribution a?