Zhengfeng (Jeff) Lai

Tel: +1 (530)-574-9480 | Email: lzhengfeng@ucdavis.edu | LinkedIn

EDUCATION

University of California, Davis

Ph.D. student in Electrical and Computer Engineering Sept. 2019 – June 2023

Zhejiang University

B.Eng. in Information Engineering

Hangzhou, China Sept. 2015 – June 2019

Davis, CA

RESEARCH INTERESTS

Semi-supervised learning and its robustness & applicability study on gigapixel pathology images, machine learning in healthcare, active learning, few-shot learning.

PREPRINTS

• Z. Lai, C. Wang, L. Cerny Oliveira, B. Dugger, S-C. Cheung, C-N. Chuah, "SemA-Path: Semi-supervised Active Learning with Hierarchical Selection for Pathology Image Classification and Segmentation", under review by IEEE Transactions on Medical Imaging.

Published/Accepted Papers

- Z. Lai, C. Wang, H. Gunawan, S-C. Cheung, and C-N. Chuah, "Smoothed Adaptive Weighting for Imbalanced Semi-Supervised Learning: Improve Reliability Against Unknown Distribution Data", The 39th International Conference on Machine Learning (ICML) 2022.
- Z. Lai, C. Wang, S-C. Cheung, and C-N. Chuah, "SaR: Self-adaptive Refinement on Pseudo Labels for Multiclass-Imbalanced Semi-supervised Learning", 2022 CVPR Workshop on Learning with Limited Labelled Data for Image and Video Understanding.
- Z. Lai, L. Cerny Oliveira, R. Guo, W. Xu, Z. Hu, K. Mifflin, C. DeCarlie, S-C. Cheung, C-N. Chuah, and B. N. Dugger, "BrainSec: Automated Brain Tissue Segmentation Pipeline for Scalable Neuropathological Analysis", IEEE Access, 2022.
- Z. Lai*, C. Wang*, L. Cerny Oliveira, B. Dugger, S-C. Cheung, C-N. Chuah, "Joint Semi-supervised and Active Learning for Segmentation of Gigapixel Pathology Images with Cost-Effective Labeling", in Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 591-600).
- Z. Lai, C. Wang, Z. Hu, B. Dugger, S-C. Cheung, C-N. Chuah, "A Semi-supervised Learning for Segmentation of Gigapixel Histopathology Images from Brain Tissues," 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oct 31-Nov 4, 2021.
- Z. Lai, P. Vadlaputi, D. J. Tancredi, M. Garg, R. I. Koppel, M. Goodman, W. Hogan, N. Cresalia, S. Juergensen, E. Manalo, S. Lashminrusimha, C-N. Chuah, and H. Siefkes, "Enhanced Critical Congenital Cardiac Disease Screening by Combining Interpretable Machine Learning Algorithms," 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oct 31-Nov 4, 2021.
- Z. Lai, K. Guo, W. Xu, Z. Hu, B. Dugger, S. Cheung, and C-N. Chuah, "Automated Grey and White Matter Segmentation in Digitized Ab Human Brain Tissue Slide Images, IEEE ICME 2020 Workshop on Multimedia Services and Technologies for Smart Health (MUST-SH), July 2020.
- L. Cerny Oliveira, **Z. Lai**, W. Geng, H. Siefkes, C-N. Chuah, "A Machine Learning Driven Pipeline for Automated Photoplethysmogram Signal Artifact Detection", 1st Workshop on Artificial Intelligence and Internet of Things for Digital Health (AIIOT4DH) at IEEE CHASE, Dec 16-17, 2021.
- K. Doshi, G. Rehm, P. Vadlaputi, **Z. Lai**, S. Lakshminrusimha, C-N. Chuah, and H. M Siefkes, "A Novel System to Collect Dual Pulse Oximetry Data for Critical Congenital Heart Disease Screening Research," Journal of Clinical and Translational Science, pp. 1-25, October 2020.
- C. Linhu, C. Wang, C. Nuo, J. Wu, **Z. Lai**, J. Song, "Rapidly tunable and highly reversible bio-inspired dry adhesion for transfer printing in air and a vacuum," Soft Matter 15, no. 1 (2019): 30-37.

Graduate Student Researcher

Major advisors: Prof. Chen-Nee Chuah, Fellow, IEEE, and Prof. Sen-Ching Cheung, Fellow, IEEE.

SemA-Path: Semi-supervised Active Learning Pathology Image Analysis Sept. 2021 – March 2022 Graduate Student Researcher

Davis, CA

- Proposed a semi-supervised active learning framework (SemA-Path) with Hierarchical Selection for pathology image analysis.
- SemA-Path can reduce both labeling efforts and computational complexity in AL cycles.
- This is the first work that deeply fuses SSL and AL for pathology images.

Class-imbalanced Semi-supervised Learning (SSL) in Real-world Scenarios Oct. 2020 – May 2021 Graduate Student Researcher Davis, CA

- Proposed Smoothed Adaptive Weighting (SAW) scheme to update per-example weight for each unlabeled data.
- SAW improves the state-of-the-art SSL algorithms significantly and outperforms other class-imbalanced methods.
- This is the first work that does not make any assumption on the unlabeled set.

Joint Active and Semi-supervised Learning: Minimize Labeling Costs

Oct. 2020 – May 2021

Davis, CA

- Proposed a joint active and semi-supervised learning framework towards minimizing labeling costs.
- Designed a region-based selection criterion to effectively expand the diversity of the labeled set with less labeling efforts. This criterion quantifies the whole region's uncertainty to guarantee the robustness.
- Evaluated the proposed framework on a pathology dataset, and achieved competitive results compared to supervised learning when only 0.1% regions are labeled.

ML-driven System for Critical Congenital Heart Defect Screening

Feb. 2020 – June 2021

Co-advised by Dr. Heather Siefkes at UC Davis Children's Hospital

Sacramento, CA

- Created an automated real-time data collection system to collect additional pulse oximetry data in newborns.
- Developed an end-to-end pipeline from data cleaning, feature extraction, to machine learning diagnosis for detecting Critical Congenital Heart Defect (CCHD).
- Proposed system enhanced the current standard screening system installed at children's hospital.

Automated Segmentation Pipeline for Gigapixel Pathology Images

Sept. 2019 – June 2020

Co-advised by Dr. Brittany Dugger at UC Davis Alzheimer's Disease Center

Sacramento, CA

- Proposed an automated pipeline combining CNN-based module and Image Processing module for segmentation of grey/white Matter in brain tissue slide of ultra-high resolution (gigapixel level).
- Incorporated ResNet-18 with a Neural Conditional Random Field layer for modeling spatial relationship, outperforms U-Net and FCN with 1% and 10% improvements of IoU.
- Explored the applicability of self-attention module (CBAM) on neuropathology images.
- Provided interpretable explanation in neuropathology for the proposed CNN models by Grad-CAM.

Industrial Experience

PhD Data Science Intern at Electronic Arts

June 2021 - Sept. 2021

Advisor: Jason Park

Redwood city, CA

- Designed a few-shot toxic object detection pipeline with transfer learning.
- Explored zero-shot learning for unseen classes in the dataset.

National Science Foundation's Innovation Corps Program (I-Corps)

Jan. 2021 – Mar. 2021

Team with Dr. Heather Siefkes, Dr. Jim Swick, Pranjali Vadlaputi

Washington, D.C.

- Successfully completed the requirements of I-Corps by finishing more than 100 interviews in pediatric field.
- Named as one of the inventors on a patent application "Systems and Methods for Classifying Critical Heart Defects."

Artificial Intelligence Engineer Intern

June 2018 – Aug. 2018

DeepThink (Top 10 AI Startup Company in Hangzhou)

Hangzhou, China

- Implemented an ICO Scan Identification System based on RNN with real-world white books.
- Designed a LSTM model to predict Ethereum trends using blockchain activity data with 65% of accuracy.
- Maintained the Linux Server for 20 members in the group.

TEACHING & MENTORING EXPERIENCE

Lead Teaching Assistant for EEC 193AB

University of California, Davis

Sept. 2019 – Mar. 2021 Davis, CA

- Helped develop and teach EEC 193 AB (AI Systems Senior Design) for two years.
- Independently hosted lab sessions and mentored four teams over 2 academic quarters.
- Designed three lab assignments involving classical ML algorithms (Logistic Regression, SVM), CNN and basic Python in the application of ML on health.

Summer Undergraduate Research Mentor

University of California, Davis

June 2021 – Sept. 2021 Davis, CA

- Mentored one undergraduate on website design for visualizing waveform from photoplethysmogram signals.
- Mentored one undergraduate on waveform artifact detection by using machine learning algorithms.
- Designed three lab assignments involving classical ML algorithms (Logistic Regression, SVM), CNN and basic Python in the application of ML on health.

PROFESSIONAL SERVICES

Reviewer:

- NeurIPS 2021 & 2022
- ICML 2022
- IEEE Transaction on Image Processing
- CVPR Workshop 2022
- BIBE 2021

TECHNICAL SKILLS

Programming: Python, C/C++, Matlab

Developer Tools: Git, Docker, Google Cloud Platform, VS Code, Visual Studio, PyCharm

Frameworks: PyTorch, Tensorflow, Caffe, OpenCV, Scikit-Learn

Awards

- 2018 Interdisciplinary Contest In Modeling: Meritorious Winner
- Outstanding Senior Design Project Award of UC Davis, 2019
- The Best Senior Design of ISEE, ZJU in 2019: Multiple Objects Detection
- $\bullet\,$ 2019 ZJU Overseas Senior Design Scholarship