

Data Mining

Junta Zeniarja, M.Kom, M.CS junta@dsn.dinus.ac.id

Profil

Nama : Junta Zeniarja, M.Kom

Alamat : Semarang

Kontak

Phone : -

E-mail : junta@dsn.dinus.ac.id

Room : Ruang Dosen TI-S1 (H.2.3)

- S1 => TI UDINUS
- S2 => TI UDINUS
- S2 => Computer Science UTeM (Universiti Teknikal Malaysia Melaka)
- Konsultasi Sharing
 - 1:00 pm 4:00 pm, Senin-Kamis.
 - Appointment via phone or e-mail preferred

Textbooks

Association Rules

Association Rules

- Adalah proses mendeteksi kumpulan atribut-atribut yang muncul bersamaan (co-occur) dalam frekuensi yang sering, dan membentuk sejumlah kaidah dari kumpulan-kumpulan tersebut.
- Contoh: 90% orang yang berbelanja di suatu supermarket yang membeli roti juga membeli selai, dan 60% dari semua orang yang berbelanja membeli keduanya.

Definisi Association Rules (dari bbrp pakar)

- Association rule mining adalah analisa dari kebiasaan belanja konsumen dengan mencari asosiasi dan korelasi antara item-item berbeda yang diletakkan konsumen dalam keranjang belanjaannya(Yang, 2003)
- Contoh Association rule misalnya: "70% dari orangorang yang membeli mie, juice dan saus akan membeli juga roti tawar".
- Dengan kemajuan teknologi, data penjualan dapat disimpan dalam jumlah besar yang disebut dengan "basket data."
- Aturan asosiasi yang didefinisikan pada basket data tersebut, dapat digunakan untuk menganalisa data dalam rangka:
 - keperluan desain katalog promosi,
 - proses pembuatan keputusan bisnis,
 - segmentasi konsumen dan
 - target pemasaran.

Contoh aplikasi kaidah asosiasi

- Marketing and Sales Promotion
 - Misal:
 - Ketergantungan {bagels, ... } → {Potato Chips}
 - Potato Chips sebagai consequent → dapat digunakan untuk menentukan apa yang dilakukan untuk meningkatkan penjualan
 - Bagels di dalam antecedent → dapat digunakan untuk melihat produk mana yang akan terkena dampak jika tidak lagi menjual bagels.
- Supermarket Shelf Management
- Inventory Management

Apriori Algorithm

- Algoritma Apriori pertama kali dikenalkan oleh Agrewal, Imielinski dan Swami.
- Algoritma Apriori merupakan salah satu algoritma yang digunakan di dalam memecahkan persoalan association rule mining.
- Yang mengolah suatu database transaksi dengan setiap transaksi adalah suatu himpunan item-item. Kemudian mencari seluruh kaidah apriori yang memenuhi kendala minimum support dan minimum confidence yang diberikan user.
- Algoritma Apriori dapat digunakan untuk menemukan tren bisnis dengan menganalisa transaksi konsumen.
- Contoh: 30% dari transaksi yang memuat bir juga memuat popok 5% yang artinya 30% merupakan confidence dan 5% merupakan support dari kaidah ini.

Pseudo-Code Apriori Algorithm

```
Ck: Kandidate itemset dari ukuran k;
Lk: Frequent itemset dari ukuran k.
L1 = \{frequent items\};
for (k = 1; Lk !=0; k++) do begin
     Ck+1 = \{kandidat dibangun dari\}
for each transaksi t yang dimuat dalam
database do naikkan hitungan dari seluruh
kandidat dalam Ck+1 yang dimuat dalam t
     Lk+1 = \{kandidat\ dalam\ Ck+1\ dengan\}
     min support}
end
return .k Lk;
```

Ilustrasi Algoritma Apriori

Contoh Soal:

Berikut ini Contoh dari 4 Transaksi belanja konsumen, akan dicari hubungan asosiasi antar item dengan minimal support 50%

No	Itemset
1	A.Kopi, C.Gula, D.Bir
2	B.Teh, C.Gula, E.Roti
3	A.Kopi, B.Teh, C.Gula, E.Roti
4	B.Teh, E.Roti

Contoh Soal

Langkah 1: L1 = {large 1-itemset}

Jumlah transaksi = 4.

Min support = 50% artinya 2 dari 4 transaksi.

Langkah 1: L1={large 1-itemset}

Itemset	Support
A	50%
В	75%
С	75%
D	25%
Е	75%

- Langkah 2 : Mencari kandidat itemset untuk L2
 - 2.1 Gabungkan itemset pada L1 (algoritma apriori gen)

{ A B, A C, A D, A E, B C, B D, B E, C D, C E, D E}

Itemset { B D, DE} dihapus karena tidak ada dalam itemset

2.2 Hapus yang tidak ada dalam itemset

Contoh Soal

Langkah 3: Hitung Support dari tiap kandidat itemset

Itemset	Support
A B	25 %
A C	50 %
A D	25 %
ΑE	25%
ВС	50%
ВЕ	75%
CD	25%
CE	50%

Contoh Soal

❖ Langkah 4 : L2 {Large 2-itemset}

- Langkah 5 : Ulangi langkah 2-4
 - 5.1 Gabungkan itemset pada
 L2 dan L2 :
 - 5.2 Hapus yang tidak ada dalam itemset : {ACE}
- Langkah 6: Hitung Support dari setiap kandidat itemset L3
- Langkah 7 : L3 {Large 3Itemset} {BCE}
- Langkah 8 : STOP karena sudah tidak ada lagi kandidat untuk 4-itemset

Itemset	Hasil Gabungan (3 itemset)	
A C + B C	ACB	Langkah 5
AC+BE	A C B, A C E, A B E	
A C + C E	ACE	
BC+BE	BCE	
BC+CE	BCE	
BE+CE	BCE	

Itemset	Support	Langkah 6
ABC	25 %	
ABE	25 %	
ВСЕ	50 %	

O Hasil Akhir:

L1

50%

A C	50%

75% 75%

25% 75% L2

A C	50%

ВС 50% ΒE 75%

CE 50% L3

BCE 50%

 Untuk mencari aturan asosiasi diperlukan juga min-confidence:

O Misal min-conf: 50%.

O Aturan yang mungkin terbentuk:

Aturan (X → Y)	$Sup(X \cup Y)$	Sup(X)	Confidence
B C → E	50%	50%	100%
BE→C	50%	75%	66.67%
C E → B	50%	50%	100%
$A \rightarrow C$	50%	50%	100 %
$C \rightarrow A$	50%	75%	66.67%
$B \rightarrow C$	50%	75%	66.67%
$C \rightarrow B$	50%	75%	66.67%
$B \rightarrow E$	75%	75%	100%
$E \rightarrow B$	75%	75%	100%
$C \rightarrow E$	50%	75%	66.67%
E → C	50%	75%	66.67%

References

Fajar Astutui Hermawati – Data Mining -2013

