Hash-Based Indexes

SUN YAT-SEN UNIVERSITY

Review

- 索引技术概述
 - □ 可以为关系建立索引,都是文件
 - □ 索引文件由两部份组成
 - 1. 数据项部分
 - □ Data Entry(数据项) data record (数据记录)
 - 2. 引导部份
 - 树索引技术

$$Cost = log_F N \qquad (2~3 l/Os)$$

Hash索引

1~2 I/Os

Introduction

- Hash-based indexes are best for equality selections. Cannot support range searches.
- Static and dynamic hashing techniques exist;
 trade-offs similar to ISAM vs. B+ trees.

Static Hashing(静态哈希)

Index entries direct search for data entries

Data entries

(Index File)

(Data file)

- 索引文件由一系列桶(bucket)组成
 - □ 每个桶有一个主页(primary page),也可能有一些 溢出页(overflow pages) ——

■静态性

Number of buckets is fixed

 Primary pages are allocated sequentially, never deallocated;

overflow pages if needed.

- $h(k) \mod N = bucket to which data entry with key k belongs.$
- N = number of buckets
- Hash function(哈希函数) works on search key field of record r. Must distribute values over range 0 ... N-1.
 - h(key) = (a * key + b) usually works well.
 - a and b are constants;

- Long overflow chains(长溢出链) can develop and degrade performance.
 - Extendible and Linear Hashing: Dynamic techniques to fix this problem.