Combinational Circuit Design

Design the following circuits using Verilog and create a testbench (directed or randomized) for each design to check its functionality

1)

- The design has 7 inputs and 2 outputs
- Use assign statements (structural coding style) to design the following

2)

- The design has 5 inputs and 2 outputs
- Use Behavioral coding style to implement the basic gates

FACEBOOK GRP: DIGITAL ELECTRONICS COURSES (VERILOG) MOBILE NO.: 01009279775

3) Design a 4-bit priority encoder, the following truth table is provided where x is 4-bit input and y is a 2-bit output

x3	x2	x1	x0	у1	у0
1	Х	Х	Χ	1	1
0	1	X	X	1	0
0	0	1	X	0	1
0	0	0	X	0	0

- 4) Implement N-bit adder using Dataflow modeling style
 - The design takes 2 inputs (A, B) and the summation is assigned to output (C) ignoring the carry
- 5) Design N-bit ALU that perform the following operations
 - The design has 3 inputs and 1 output
 - Instantiate the half adder from the previous design
 - For the subtraction, subtract B from A "A B"

Inputs		Outputs			
opcode		Operation			
0	0	Addition			
1	0	Subtraction			
0	1	OR			
1	1	XOR			

6) Implement 4-bit ALU display on 7 Segment LED Display

- The design has 4 inputs: A, B, opcode, enable.
- The design has 7 outputs (a-g)
- Instantiate the N-bit ALU designed in the previous design with parameter N = 4
- ALU should execute the operation on A and B depending on the input opcode
- ALU output should be considered as the digit to be displayed on the 7 segment LED display
- Below the truth table of the 7-segment decoder

	Input	Output						
Digit	enable	a	b	С	d	e	f	g
0	1	1	1	1	1	1	1	0
1	1	0	1	1	0	0	0	0
2	1	1	1	0	1	1	0	1
3	1	1	1	1	1	0	0	1
4	1	0	1	1	0	0	1	1
5	1	1	0	1	1	0	1	1
6	1	1	0	1	1	1	1	1
7	1	1	1	1	0	0	0	0
8	1	1	1	1	1	1	1	1
9	1	1	1	1	1	0	1	1
Α	1	1	1	1	0	1	1	1
b	1	0	0	1	1	1	1	1
С	1	1	0	0	1	1	1	0
d	1	0	1	1	1	1	0	1
E	1	1	0	0	1	1	1	1
F	1	1	0	0	0	1	1	1
x	0	0	0	0	0	0	0	0

FACEBOOK GRP: DIGITAL ELECTRONICS COURSES (VERILOG) MOBILE NO.: 01009279775

Deliverables:

- 1) The assignment should be submitted as a PDF file with this format <your_name>_Assignment1 for example Kareem_Waseem_Assignment1
- 2) Snippets from the waveforms captured from Modelsim for each design with inputs assigned values and output values visible

Note that your document should be organized as 6 sections corresponding to each design above, and in each section, I am expecting the Verilog code and the waveforms snippets