

OpenSMART: Single-cycle Multi-hop NoC Generator in BSV and Chisel

Hyoukjun Kwon and Tushar Krishna

Georgia Institute of Technology Synergy Lab (http://synergy.ece.gatech.edu)

hyoukjun@gatech.edu

April 25, 2017

Hardware Development Cost

Low cost challenge

Many-IP Heterogeneous System

- Scalability challenge
- Flexibility challenge

Diverse System Requirements

source: MNIST, Engadget, TheStack

Challenges for NoCs

Low-cost

- Low design/verification costs of custom/generic NoCs
- Design automation of high-performance, low-energy NoCs

Scalability

- Many-IP heterogeneous system support
- Low latency
- Low energy
- Low area

Flexibility

- Diverse connectivity
- Diverse latency/throughput requirements

OpenSMART

OpenSMART

- Motivation: Scalable, Flexible, and Low-cost NoCs
- Background: SMART NoCs
- OpenSMART
 - Design Flow
 - Building Blocks
 - Walk-through Examples
- Case Studies
 - Mesh vs. SMART
 - High-radix vs. Low-radix
- Conclusions

- Motivation: Scalable, Flexible, and Low-cost NoCs
- Background: SMART NoCs
- OpenSMART
 - Design Flow
 - Building Blocks
 - Walk-through Examples
- Case Studies
 - Mesh vs. SMART
 - High-radix vs. Low-radix
- Conclusions

SMART NoC

 Single-cycle Multi-hop Asynchronous Repeated Traversal

Is 1-cycle Network Possible?

Is wire fast enough to support 1-cycle network?

Yes

- Wire traversal length within 1ns (1Ghz): 10-16mm
- Wire delay over technology: constant
- Chip dimension: remain similar (~20mm)

On-chip wires are fast enough to transmit across the chip within 1-2 cycles at 1GHz even if the technology scales

Features of SMART

Low latency network

- Dynamic bypass of intermediate routers between any two routers
- Limit: **HPCmax** (hops per cycle max), maximum number of "hops" that the underlying wire allows the flit to traverse within a clock cycle

Separate control path

- HPCmax bits from every router along each direction
- Arbitration of multiple bypass requests on the same link
- No ACK required

- Motivation: Scalable, Flexible, and Low-cost NoCs
- Background: SMART NoCs
- OpenSMART
 - Design Flow
 - Building Blocks
 - Walk-through Examples
- Case Studies
 - Mesh vs. SMART
 - High-radix vs. Low-radix
- Conclusions

OpenSMART Design Flow

OpenSMART NoC

- Motivation: Scalable, Flexible, and Low-cost NoCs
- Background: SMART NoCs
- OpenSMART
 - Design Flow
 - Building Blocks
 - Walk-through Examples
- Case Studies
 - Mesh vs. SMART
 - High-radix vs. Low-radix
- Conclusions

OpenSMART Building Blocks

input buffer + input VC arbitration

output VC selection + output port arbitration+ credit management

Output Unit

switching (via crossbar) + routing calculation

SSR communication & arbitration + bypass flag

OpenSMART Router

OpenSMART Router

OpenSMART Router

OpenSMART Router (SMART)

Prioritization by distance

-> SSR from a nearer router gets the higher priority (Local (distance = 0) has the highest prirority)

Local Houter

Selection

OpenSMART Router (1cycle)

OpenSMART Router (2cycle/SMART)

- Motivation: Scalable, Flexible, and Low-cost NoCs
- Background: SMART NoCs
- OpenSMART
 - Design Flow
 - Building Blocks
 - Walk-through Examples
- Case Studies
 - Mesh vs. SMART
 - High-radix vs. Low-radix
- Conclusions

Walk-through Example 1

- Router r4 sends a flit to router r7
- HPCmax = 3

Walk-through Example 2

OpenSMART: Features

- Language
 - BSV and Chisel
- Flow control
 - VC and SMART
- Buffer management
 - Credit-based buffer management
- Router microarchitecture
 - 1- and 2-cycle state-of-the-art packet switching router
 - SMART router

OpenSMART: Features

Routing calculation

- XY, YX, and source-routing
- One-hot encoding hop count + shift-based routing calculation
- For SMART, routing calculation is done during bypasses

VC selection

- FIFO-based dynamic VC selection
- Next VC is stored in a separate register
- For SMART, VC selection is done during bypasses

- Motivation: Scalable, Flexible, and Low-cost NoCs
- Background: SMART NoCs
- OpenSMART
 - Design Flow
 - Building Blocks
 - Walk-through Examples
- Case Studies
 - Mesh vs. SMART
 - High-radix vs. Low-radix
- Conclusions

Case Study Configuration

- Network Topology: 8x8 mesh
- Number of VCs: 4
- Traffic: Uniform-random and bit-complement
- HPCmax: 7
- Flit Size : 52 bit (data: 32 bit)
- Synthesis Environment: Synopsys Design Compiler with NanGate 15nm PDK standard cell library // Xilinx Vivado (target: VC709 board)
- Simulation Method: Cycle-accurate RTL simulation using BSV testbench and Garnet simulation

Latency

Energy Consumption

Repeaters require less energy than clocked latches

HPCmax

- Motivation: Scalable, Flexible, and Low-cost NoCs
- Background: SMART NoCs
- OpenSMART
 - Design Flow
 - Building Blocks
 - Walk-through Examples
- Case Studies
 - Mesh vs. SMART
 - High-radix vs. Low-radix
- Conclusions

Router Area

Router Power

Maximum Clock Frequency

- Motivation: Scalable, Flexible, and Low-cost NoCs
- Background: SMART NoCs
- OpenSMART
 - Design Flow
 - Building Blocks
 - Walk-through Examples
- Case Studies
 - Mesh vs. SMART
 - High-radix vs. Low-radix
- Conclusions

Conclusion

- NoCs are crucial components to support many-IP heterogeneous systems
- OpenSMART provides automatic generation of NoCs RTL for many-IP heterogeneous systems
- OpenSMART generates not only state-of-the-art packet switching network but also low latency network, SMART.

Thank you!

Paper and Source code

- Paper is available this link:
 http://synergy.ece.gatech.edu/wp-content/uploads/sites/332/2017/03/OpenSMART_ISPASS17.pdf
- Source code is available via this link: https://hyoukjun.github.io/OpenSMART/