Package 'HDXBoxeR'

August 24, 2024

```
Type Package
Title Analysis of Hydrogen-Deuterium Exchange Mass-Spectrometry Data
Version 0.0.2
Author Maria K. Janowska [aut, cre] (<a href="https://orcid.org/0000-0002-8232-461X">https://orcid.org/0000-0002-8232-461X</a>),
      Katherine Reiter [ctb],
      Pearl Magala [ctb],
      Miklos Guttman [ctb],
      Rachel E. Klevit [ctb]
Maintainer Maria K. Janowska <mka. janowska@gmail.com>
Description A protocol that facilitates the processing and analysis of Hydrogen-
      Deuterium Exchange Mass Spectrometry data using p-
      value statistics and Critical Interval analysis.
      It provides a pipeline for analyzing data from 'HDXExaminer' (Sierra Analytics, Trajan Scientific),
      automating matching and comparison of protein states through Welch's T-
      test and the Critical Interval statistical framework.
      Additionally, it simplifies data export, generates 'PyMol' scripts, and ensures calcula-
      tions meet publication standards.
      'HDXBoxeR' assists in various aspects of hydrogen-deuterium exchange data analysis, includ-
      ing reprocessing data, calculating parameters, identifying significant peptides,
      generating plots, and facilitating comparison between protein states.
      For details check papers by Hageman and Weis (2019) <doi:10.1021/acs.analchem.9b01325>
      and Masson et al. (2019) <doi:10.1038/s41592-019-0459-y>.
      'HDXBoxeR' citation: Janowska et al. (2024) <doi:10.1093/bioinformatics/btae479>.
License GPL (>= 2)
Imports dplyr, graphics, grDevices, RColorBrewer, stats, stringr,
      tidyr, utils, methods, wrapr
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr, rmarkdown
Encoding UTF-8
RoxygenNote 7.2.3
Config/testthat/edition 3
```

NeedsCompilation no

2 Contents

Repository CRAN

Date/Publication 2024-08-24 07:30:10 UTC

Contents

all_summary	4
arguments_call1	5
arguments_call2	5
arguments_call3	6
arg_df	6
arg_UN_FD	7
average_timecourse	7
ave_timepoint	8
av_tc	8
av_tp	9
backHX_calculations	9
boxplot_tp	10
CI_2pts	10
CI_single	11
CI_tc	12
CI_tp	12
color_ranges_Blue_Red_heat_map	13
color_ranges_Spectral	14
coverage_residue	14
deuteration_woods_timecourse	15
deuteration_woods_timepoints	16
dif_ave	17
dif_tp	17
dif_tp_proc	18
duplicate_sets	18
extreme_input_gap	19
	19
general_info	20
getCoords1	21
heat_map_tc	21
heat_map_tp	22
heat_map_tp_maxuptake	22
heat_map_tp_maxuptake_proc	23
	24
	25
	25
lab_dif_proc	26
lab_vol	26
	27
	27
legend_heat_map_timecourse	28
	28

Contents 3

legend_heat_map_tp_proc	29
legend_nm_bottom	29
legend_raw_ave	
legend_raw_ave_proc	
legend_raw_ave_tc	
legend_sig_peptides	31
legend_states_PerD_bottom	32
legend_tc_bottom	32
nb_exch_deut	33
nm_states	33
output_FD	
output_FD_proc	
output_prep	
output_tc	
output_tp	
output_UD	
output_UD_proc	
pallette_legend	
pallette_ll	
peptide_pv_tp	
peptide_pv_tp_proc	
plots_av_tcourse	
plots_av_tp	
plots_av_tp_proc	
plots_diff_tp	
plots_diff_tp_proc	
plots_vol_tp	
plot_heat_map_max_uptake_tp	
plot_heat_map_max_uptake_tp_proc	
plot_heat_map_tc	
plot_heat_map_tp	48
plot_heat_map_tp_proc	
plot_peptide_sig_tp	
plot_peptide_sig_tp_proc	
pl_gen_ch2	
pl_gen_uptake	
ppar	
pparLM	53
ppar_bottom_legend	54
ppar_wider	54
prep_timecourse_plot_ave	55
prep_timecourse_plot_sd	55
pv_timecourse	56
pv_timepoint	56
pymol_script_average_residue	57
pymol_script_average_residue	58
pymol_script_significant_peptide_proc	
pymol_script_significant_residue	60

4 all_summary

mol_script_significant_residue_proc	61
mol_str	62
cr.cbind.na	62
nges_function	63
nges_function_tc	63
ind_na	64
set_par	65
bot_2states_indexes	
bot_indexes	
bot_indexes_df	67
bot_plot_All	68
_timecourse	69
_timecourse_proc	7 0
_timepoint	7 0
lect_indices	71
gnificant_peptide_uptake	72
mmary_sd_CI	72
take_plots	73
rbose_timecourse_output	74
rbose_timepoint_output	74
l_tp	75
oods_CI_plot	76
	78

all_summary

Returns full summary table.

Description

Index

Returns summary data. Function returns: Protein states, timepoints, number of replicates, # peptides, % coveregae, average peptide length and redundancy. backexchange calculations (average and range), Critical interval and standard deviation. Function requires undeuterated and Fully deuterated sets marked in Deut.time as 0s and FD respectively.

Usage

```
all_summary(filepath, replicates = 3, Dfact = 0.85)
```

Arguments

filepath	filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.
replicates	number of replicates. Default set to 3.
Dfact	Dfact is the fraction of D/H in the labeling buffer used. Default set up to 0.85

arguments_call1 5

Value

Returns summary table.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- all_summary(file_nm, replicates=3, Dfact=0.85)</pre>
```

arguments_call1

Returns default arguments for the output_tp functions. States

Description

Function used as internal function

Usage

```
arguments_call1(filepath)
```

Arguments

filepath

input file location

Value

The default arguments to output_tp functions.

arguments_call2

Returns default arguments for the output_tp functions. Deut.Time

Description

Function used as internal function

Usage

```
arguments_call2(filepath, states)
```

Arguments

filepath input file location states states used

Value

The default arguments to output_tp functions.

6 arg_df

arguments_call3

Returns default arguments for the output_tp functions. # replicates

Description

Function used as internal function

Usage

```
arguments_call3(filepath, states, times)
```

Arguments

filepath input file location

states states used

times deuteration times

Value

The default arguments to output_tp functions.

 arg_df

Returns initially processed data.frame from the export from the HDX-Examiner

Description

Function used as internal function

Usage

```
arg_df(filepath)
```

Arguments

filepath input file location

Value

Data.frame for further processing

arg_UN_FD 7

arg_UN_FD

Returns initially processed data.frame from the export from the HDX-Examiner

Description

Function used as internal function

Usage

```
arg_UN_FD(filepath)
```

Arguments

filepath

input file location

Value

Data.frame for further processing

 $average_timecourse$

Calculates average for time course data.

Description

Calculates average for time course data.

Usage

```
average_timecourse(filepath)
```

Arguments

filepath

filepath to the All_results input file.

Value

data frame with average deuteration uptake data.

8 av_tc

ave_timepoint

Returns average value for either uptake of procent data.

Description

Calculates average of uptake or procent data. Returns data frame with average values. Default for the number of replicates is 3.

Usage

```
ave_timepoint(df, replicates = 3)
```

Arguments

df output from functions output_tp or output_tp_proc.
replicates number of replicates used. Default is set to replicates=3

Value

Data.frame with average values

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
ave<-ave_timepoint(df=a) ##if number of replicates is equal 3
ave<-ave_timepoint(df=a, replicates=4) ##if number of replicates is equal 4</pre>
```

av_tc

Preparatory function for average plot for timecourses

Description

Returns plots with average deuteration at each peptide.

Usage

```
av_tc(df, cola)
```

Arguments

df output from functions output_tp or output_tp or output_tp_proc.

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

Value

plots of averages

av_tp

av_tp	Preparatory function for average plot
~ op	1 reparation y function for arrenage pro-

Description

Returns plots with average deuteration at each peptide.

Usage

```
av_tp(df, cola)
```

Arguments

df output from functions output_tp or output_tp or output_tp_proc.

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

Value

plots of averages

backHX_calculations

Description

Returns average and ranges of backexchange. Function calculates as: 1 - (m100%-m0%)/N/Dfact. m0% is the non-deuterated peptide centroid mass, m100% is the maximally labeled peptide centroid mass, N is the theoretical number of backbone amides in the peptide and Dfrac is the fraction of D/H in the labeling buffer used. Function requires undeuterated and Fully deuterated sets marked in Deut.time as 0s and FD respectively.

Usage

```
backHX_calculations(filepath, Dfact = 0.85)
```

Arguments

filepath filepath to the input file. Input file is All_results table from HDX_Examiner,

where all the fields are marked for export.

Dfact is the fraction of D/H in the labeling buffer used. Default set up to 0.85

Value

Returns summary table for backexchange.

10 CI_2pts

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- backHX_calculations(filepath=file_nm, Dfact=0.85)</pre>
```

boxplot_tp

Plots boxplots for all the averages in the set

Description

Returns boxplots to compare sets between each other

Usage

```
boxplot_tp(df, replicates = 3, ...)
```

Arguments

df average data frame. Generated using ave_timepoint() function.
replicates number of replicates in sample. Default set to 3.
... inherited boxplot parameters

Value

boxplots for average deuterium uptake per set.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
boxplot_tp(df=a, replicates=3)</pre>
```

CI_2pts

Global confidence interval treshold from experimental standard deviation for 2 samples.

Description

Calculation of global confidence interval using approach by: Reliable Identification of Significant Differences in Differential Hydrogen Exchange-Mass Spectrometry Measurements Using a Hybrid Significance Testing Approach Tyler S. Hageman and David D. Weis Analytical Chemistry 2019 91 (13), 8008-8016 DOI: 10.1021/acs.analchem.9b01325 calculations for alpha 0.99

Usage

```
CI_2pts(s1, s2, replicates = 3)
```

CI_single

Arguments

s1	standard deviation from one sample
s2	standard deviation from seconda sample
replicates	number of replicates. Default set to 3.

Value

treshold for determining significance.

Examples

```
sd1<-data.frame(c(0.1, 0.12, 0.13, 0.09, 0.11, 0.10))
sd2<-data.frame(c(0.18, 0.11, 0.13, 0.08, 0.11, 0.06))
CI_2pts(s1=sd1, s2=sd2, replicates=3)
```

CI_single

Global confidence interval treshold from experimental standard deviation for 1 sample

Description

Calculation of global confidence interval using approach by: Reliable Identification of Significant Differences in Differential Hydrogen Exchange-Mass Spectrometry Measurements Using a Hybrid Significance Testing Approach Tyler S. Hageman and David D. Weis Analytical Chemistry 2019 91 (13), 8008-8016 DOI: 10.1021/acs.analchem.9b01325 calculations for alpha 0.99

Usage

```
CI_single(s1, replicates = 3)
```

Arguments

s1 standard deviation from one sample replicates number of replicates. Default set to 3.

Value

treshold for determining significance.

Examples

```
sd1<-data.frame(c(0.1, 0.12, 0.13, 0.09, 0.11, 0.10))
CI_single(s1=sd1, replicates=3)</pre>
```

 CI_{tp}

CI_tc Crite	al interval calculation two sets of timecourses
-------------	---

Description

Preparatory function for calculation of pvalue between sets.

Usage

```
CI_tc(sd_c, sd_v, replicates = 3, pv_cutoff = 0.01)
```

Arguments

sd_c dataframe of control sd_v dataframe for variant

replicates number of replicates. Default set to 3. pv_cutoff pvalue cutoff. Default set to 0.01

Value

Critical interval for 2 sets

CI_tp	Global confidence interval treshold from experimental standard devi-	
	ation	

Description

Calculation of global confidence interval using approach by for all protein states compared to first state in the data.frame. Reliable Identification of Significant Differences in Differential Hydrogen Exchange-Mass Spectrometry Measurements Using a Hybrid Significance Testing Approach Tyler S. Hageman and David D. Weis Analytical Chemistry 2019 91 (13), 8008-8016 DOI: 10.1021/acs.analchem.9b01325

Usage

```
CI_tp(df, replicates = 3, alpha = 0.01)
```

Arguments

df standard deviation dataframe.

replicates number of replicates. Default set to 3. alpha significance level. Set as default to 0.01

Value

treshold for determining significance.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tc(file_nm, seq_match=FALSE)
sd<-sd_timepoint(df=a, replicates=3)
CI_tp(df=sd, replicates=3, alpha=0.01)
CI_tp(sd)</pre>
```

```
color_ranges_Blue_Red_heat_map
```

Returns color pallete from red to blue with number of colors for defined ranges

Description

Returns color pallete from red to blue with number of colors for defined ranges

Usage

```
color_ranges_Blue_Red_heat_map(ranges, colors_initial)
```

Arguments

ranges vector of numbers. Should have the same mumber of positive and negative

values and contain 0.

colors_initial additional color that should be first in the pallette.

Value

color scheme for number

Examples

```
color_ranges_Blue_Red_heat_map(ranges=c(-Inf, -100, -50, 0, 50, 100, Inf), colors_initial="white")
```

14 coverage_residue

color_ranges_Spectral Returns Spectral pallette with colors matching defined ranges

Description

Spectral pallette for timecourse data

Usage

```
color_ranges_Spectral(ranges, colors_initial)
```

Arguments

ranges vector of numbers. Should have the same mumber of positive and negative

values and contain 0.

colors_initial additional color that should be first in the pallette.

Value

color scheme for number

Examples

```
color_ranges_Spectral(ranges=c(-Inf, -100, -50, 0, 50, 100, Inf), colors_initial="white")
```

coverage_residue

Returns coverage per residue

Description

returns vector with coverage information

Usage

```
coverage_residue(df1, start_col, end_col)
```

Arguments

df1 output from functions output_tp or output_tp_proc.

start_col number of "Start" column in data.frame end_col number of "Start" column in data.frame

Value

vector with coverage per residue

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
coverage_residue(df1=a,start_col=2, end_col=3)</pre>
```

deuteration_woods_timecourse

Return woods plots for the timecourse

Description

All the peptides are plotted based on their uptake.

Usage

```
deuteration_woods_timecourse(
  input_data,
  states,
  replicates = 3,
  ylim = c(0, 120),
  ...
)
```

Arguments

Value

Woods plots for the timecourse

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tc(file_nm, percent=TRUE)
deuteration_woods_timecourse(a)</pre>
```

```
deuteration_woods_timepoints
```

Return woods plots for the timepoints

Description

All the peptides are plotted based on their uptake.

Usage

```
deuteration_woods_timepoints(
  input_data,
  times,
  replicates = 3,
  cola = NA,
  ylim = c(0, 120),
  ...
)
```

Arguments

```
input_data output from function output_tp(..., percent=TRUE)

times Deuteration times, if missing all deuteration times used replicates replicates

cola colors, default NA

ylim y axis limits

... other parameters
```

Value

Woods plots for the timepoints

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm, percent=TRUE)
deuteration_woods_timepoints(a[1:12,])</pre>
```

dif_ave 17

dif_ave	Returns data frame with difference of averages between State1 and other states provided.
	1

Description

Returns average difference data.frame. Sets are compared to the first state in the input file. If other order of the sets is required use Default for the number of replicates is 3.

Usage

```
dif_ave(df)
```

Arguments

df

output from functions output_tp, output_tp_proc, output_tp_states or output_tp_proc_states.

Value

Data.frame with difference values btw control and other protein states.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
pv<-pv_timepoint(df=a) ##if number of replicates is equal 3
pv1<-pv_timepoint(df=a, replicates=3) ##if number of replicates is equal 4
#b<-output_tp_states(file_nm, states=c("4EHP", "State2", "State3"))
#pv_states<-pv_timepoint(df=b) ### here means of State4, will be compared to State2 and State4</pre>
```

dif_tp

Preparatory function for difference plot

Description

Returns plots with difference deuteration at each peptide.

Usage

```
dif_tp(df, cola)
```

Arguments

df output from functions output_tp or output_tp_proc.

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

18 duplicate_sets

Value

plots of difference in average

dif_tp_proc

Preparatory function for difference plot

Description

Returns plots with difference deuteration at each peptide.

Usage

```
dif_tp_proc(df, cola)
```

Arguments

df output from functions output_tp or output_tp_proc.

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

Value

plots of difference in average

duplicate_sets

Duplicate set function

Description

Internal function

Usage

```
duplicate_sets(df)
```

Arguments

df

dataframe

Value

duplicate sets

19 extreme_input_gap

extreme_	input	gap

Makes input for Extreme for bimodal analysis.

Description

Makes input for Extreme for bimodal analysis.

Usage

```
extreme_input_gap(hm_dir, replicates, timepoints, output_path = "NA")
```

Arguments

hm_dir directory in which all the folders which needs to be processed are

replicates number of replicates in sample timepoints lists timepoints used in experiments.

directory where the output files will be saved, hm_dir default output_path

Value

Inputs for extreme for all data prepared.

Examples

```
path_to_folders<-system.file("extdata", package = "HDXBoxeR")</pre>
extreme_input_gap(hm_dir =path_to_folders, replicates = 3,
timepoints =c(3, 60, 1800, 72000), output_path=tempdir())
```

Description

If data is missing it returns non-deuterated data in these columns.

Usage

```
extreme_input_undeut(hm_dir, replicates, timepoints, output_path = "NA")
```

Arguments

hm_dir directory in which all the folders which needs to be processed are

replicates number of replicates in sample lists timepoints used in experiments. timepoints directory where output should be written output_path

20 general_info

Value

Inputs for extreme for all data prepared.

Examples

```
path_to_folders<-system.file("extdata", package = "HDXBoxeR")
extreme_input_undeut(hm_dir=path_to_folders, replicates = 3,
timepoints =c(3, 60, 1800, 72000), output_path=tempdir())</pre>
```

general_info

Provides summary table for all data.sets.

Description

Returns data frame sumamrizing general information about the data sets. Function returns: Protein states, timepoints, number of replicates, # peptides, % coveregae, average peptide length and redundancy.

Usage

```
general_info(filepath)
```

Arguments

filepath

filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

Value

Returns summary table.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- general_info(file_nm)</pre>
```

getCoords1 21

	^	
get	Coord	เรเ

function from plotfunctions package

Description

Margin coordinates

Usage

```
getCoords1(pos = 1.1, side = 1, input = "p")
```

Arguments

pos position side side of plot

input plot or figure position

Value

coordinates of margins

heat_map_tc

Plots heat maps for time courses.

Description

Returns heat map on timecourses with raw data.

Usage

```
heat_map_tc(df, ranges = c(seq(0, 100, by = 10), Inf))
```

Arguments

df timecourse input

ranges ranges for coloring scheme. Default set to c(seq(0, 100, by=10), Inf)

Value

heat map for timecourses

heat_map_tp

Preparatory function for heat map

Description

Returns heat map

Usage

```
heat_map_tp(
    df,
    pv,
    sd,
    ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
    pv_cutoff = 0.01,
    replicates = 3
)
```

Arguments

average data frame. Generated using ave_timepoint() function.

pv pvalues dataframes calculated using pv_timepoint() function

sd standard deviation data.frame generated using sd_timepoint function

ranges ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)

pv_cutoff p-value cutoff here set up to 0.01

replicates number of replicates in sample. Default set to 3.

Value

heat map for timepoints

heat_map_tp_maxuptake Preparatory function for heat map of maximum uptake per residue.

Description

Returns heat map

Usage

```
heat_map_tp_maxuptake(
   df,
   pv,
   sd,
   ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
   pv_cutoff = 0.01,
   replicates = 3
)
```

Arguments

df average data frame. Generated using ave_timepoint() function.

pv pvalues dataframes calculated using pv_timepoint() function

sd standard deviation data.frame generated using sd_timepoint function

ranges ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)

pv_cutoff p-value cutoff here set up to 0.01

replicates number of replicates in sample. Default set to 3.

Value

maxiumum uptake heat map for timepoints

```
heat_map_tp_maxuptake_proc
```

Preparatory function for heat map of maximum procent deuteration per residue.

Description

Returns heat map

Usage

```
heat_map_tp_maxuptake_proc(
    df,
    dfup,
    pv,
    sd,
    ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
    pv_cutoff = 0.01,
    replicates = 3
)
```

24 heat_map_tp_proc

Arguments

df	average data frame for procent deuteration. Generated using ave_timepoint() function.
dfup	average data frame for deuteration uptake. Generated using ave_timepoint() function.
pv	pvalues dataframes calculated using pv_timepoint() function
sd	standard deviation data.frame generated using sd_timepoint function
ranges	ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv cutoff	p-value cutoff here set up to 0.01

number of replicates in sample. Default set to 3. replicates

Value

Maximum uptake heat map for timepoints

Preparatory function for heat map for procent deuteration heat_map_tp_proc

Description

Returns heat map

Usage

```
heat_map_tp_proc(
  df,
  dfup,
  pν,
  sd,
  ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
  pv\_cutoff = 0.01,
  replicates = 3
)
```

Arguments

df	average data frame for procent de	euteration. Generated	l using ave_timepoint()
	function		

function.

dfup average data frame for deuteration uptake. Generated using ave_timepoint()

function.

pvalues dataframes calculated using pv_timepoint() function pν

standard deviation data.frame generated using sd_timepoint function sdranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf) ranges

p-value cutoff here set up to 0.01 pv_cutoff

replicates number of replicates in sample. Default set to 3. is.nan.data.frame 25

Value

heat map for timepoints

is.nan.data.frame

Checks for NaN is data.frame

Description

Function by Hong Ooi; https://stackoverflow.com/questions/18142117/how-to-replace-nan-value-with-zero-in-a-huge-data-frame

Usage

```
## S3 method for class 'data.frame'
is.nan(x)
```

Arguments

Х

Data frame to be checked for NaN

Value

logical. Returns info if data.frame contains NaNs.

Examples

```
## this function will overwrite the is.nan function that works only on vectors and matrices df<-data.frame(c(0,NaN), c(1, 2)) is.nan(df) df[is.nan(df)]<- 0
```

lab_dif

Legend for difference in averages plot.

Description

Returns legend for difference in average plots. Preparatory function.

Usage

```
lab_dif(df, cola)
```

Arguments

df output from functions average difference

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

26 lab_vol

Value

legend for difference in average plot for time points

lab_dif_proc

Preparatory function for difference plot for procent deuteration

Description

Returns legends for plots procent deuteration at each peptide.

Usage

```
lab_dif_proc(df, cola)
```

Arguments

df output from functions output_tp or output_tp_proc.

cola color pallette for different Protein States. As default Paired pallette from RCol-

orBrewer is used.

Value

legends for procent deuteration plots

lab_vol

Preparatory function for volcano plot legends

Description

Returns volcano plots

Usage

```
lab_vol(df, cola)
```

Arguments

df output from functions output_tp

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

Value

legends for volcano plots

legend_heat_map 27

legend_heat_map

Legend for the heatmaps prep function.

Description

Returns names for legend for the heatmaps

Usage

```
legend_heat_map(ranges = c(-Inf, seq(-30, 30, by = 10), Inf))
```

Arguments

ranges

ranges that are to be colored in the legend. Default ranges=c(-Inf,seq(-30, 30, by=10), Inf)

Value

legend for the heatmap

legend_heat_map_tc

Legend for the heatmaps for timecourses.

Description

Returns names for legend for the heatmaps. Extracts names from data.frame

Usage

```
legend_heat_map_tc(df)
```

Arguments

df

generated using output_tcourse()

Value

legend for the heatmap

legend_heat_map_tp

```
legend_heat_map_timecourse
```

Legend for the heatmaps prep function for timecourses.

Description

Returns names for legend for the heatmaps

Usage

```
legend_heat_map_timecourse(ranges = c(-Inf, seq(0, 100, by = 10), Inf))
```

Arguments

ranges

ranges that are to be colored in the legend. Default ranges=c(-Inf,seq(-30, 30, by=10), Inf)

Value

legend for the heatmap

legend_heat_map_tp

Legend for the heatmaps. Extracts names from data.frame

Description

Returns names for legend for the heatmaps

Usage

```
legend_heat_map_tp(df)
```

Arguments

df

average data frame. Generated using ave_timepoint() function.

Value

legend for the heatmap

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
legend_heat_map_tp(df=a)</pre>
```

legend_heat_map_tp_proc

Legend for the heatmaps percent. Extracts names from data.frame

Description

Returns names for legend for the heatmaps

Usage

```
legend_heat_map_tp_proc(df)
```

Arguments

df average data frame.

Value

legend for the heatmap prercent

 ${\tt legend_nm_bottom}$

Legend, bottom of the plots

Description

Internal function

Usage

```
legend_nm_bottom(names, cols)
```

Arguments

names labels cols colors

Value

legend at the bottom of the plot

legend_raw_ave

Legend for average plot.

Description

Returns legend with average plots. Preparatory function.

Usage

```
legend_raw_ave(df, cola)
```

Arguments

df output from functions output_tp or output_tp_proc.

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

Value

legend for average plot for time points

legend_raw_ave_proc

Preparatory function to draw legends for average procent

Description

Returns legend with average procent deuteration at each peptide.

Usage

```
legend_raw_ave_proc(df, cola)
```

Arguments

df output from functions output_tp or output_tp_proc.

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

Value

legend for average deuteration procent for timepoints

legend_raw_ave_tc 31

legend_raw_ave_tc

Legend for average deuteration plot for timecourse.

Description

Returns legend with average plots. Preparatory function.

Usage

```
legend_raw_ave_tc(df, cola)
```

Arguments

df output from functions output_tp or output_tp_proc.

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

Value

legend for average plot for time course

legend_sig_peptides

Legend for the significant peptides

Description

Returns names for legend for the significant peptides plots.

Usage

```
legend_sig_peptides(ranges = c(-Inf, seq(-30, 30, by = 10), Inf))
```

Arguments

ranges

ranges that are to be colored in the legend. Default ranges=c(-Inf,seq(-30, 30,

by=10), Inf)

Value

legend for the heatmap

32 legend_tc_bottom

```
legend\_states\_PerD\_bottom
```

Legend, bottom of the plots

Description

Internal function

Usage

```
legend_states_PerD_bottom(df, cols)
```

Arguments

df dataframe cols colors

Value

legend at the bottom of the plot

 ${\tt legend_tc_bottom}$

Preparatory function returns legends for the timecourses.

Description

Preparatory function

Usage

```
legend_tc_bottom(df, cols)
```

Arguments

df data frame from which names will be extracted

cols colors to be used in legend

Value

legend at the bottom of the plot

nb_exch_deut 33

nb_exch_deut

Number of exchangeable protons

Description

Provides a vector with number of exchangeable protons, calculated from the input table. Number of protons calculated as peptide_length - 2 - number of Prolines in the peptide that are not in the first position

Usage

```
nb_exch_deut(df)
```

Arguments

df

standard deviation from one sample

Value

vector with number of exchangeable protons

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
nb_exch_deut(a)</pre>
```

nm_states

Lists names of states in data sets

Description

Returns vector with name of states used for choosing states for input functions generation.

Usage

```
nm_states(filepath)
```

Arguments

filepath

filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

Value

list of Protein States.

34 output_FD_proc

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
names_states<- nm_states(file_nm)</pre>
```

output_FD

Prepares output for HDX-MS Full deuteration data

Description

Returns a data frame for Full deuteration set

Usage

```
output_FD(filepath)
```

Arguments

filepath

filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

Value

data frame with reorganized data where in columns is uptake data for Protein States.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<-output_FD(file_nm)</pre>
```

output_FD_proc

Prepares output for HDX-MS Full deuteration data for procent deuteration.

Description

Returns a data frame for Full deuteration set

Usage

```
output_FD_proc(filepath)
```

Arguments

filepath

filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

output_prep 35

Value

data frame with reorganized data where in columns is procent deuteration for Protein States.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_FD_proc(file_nm)</pre>
```

output_prep

Prepares output with HDX-MS data for publications

Description

Format prepared based of example from: Masson, G.R., Burke, J.E., Ahn, N.G. et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods 16, 595–602 (2019). https://doi.org/10.1038/s41592-019-0459-y It generates csv file in format ready for publication of the data.

Usage

```
output_prep(filepath, output_name, states, replicates, times, percent = FALSE)
```

Arguments

filepath	filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.
output_name	Name of output file. It has to be csv file
states	function allows to choose what states should be used for analysis. Default all states are used.
replicates	number of replicates to be used in analysis. The function takes number of replicates up to specified number. If no argument provided number maximal common number of replicates it used.
times	lists the deuteration times to be used in analysis. Default all states used.
percent	return either uptake or percent deuteration, default=FALSE, return uptake

Value

Returns&saves data.frame in format that is accepted for the publications.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
output_prep(filepath=file_nm, output_name=tempfile())</pre>
```

36 output_tc

output_tc	Prepares output for HDX-MS for the deuteration uptake or percent deuteration for the time courses.
	dedictation for the time courses.

Description

Returns a data frame organized for additional analysis. In columns are deuteration uptake or percent deuteration data for the given protein states. Function allows for writing csv with data, matching sequences of peptide. Protein.States, Deut.times, or number of replicates can be specified.

Usage

```
output_tc(
   filepath,
   replicates,
   states,
   times,
   seq_match = FALSE,
   csv = "NA",
   percent = FALSE
)
```

Arguments

filepath	filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.
replicates	number of replicates to be used in analysis. The function takes number of replicates up to specified number. If no argument provided number maximal common number of replicates it used.
states	function allows to choose what states should be used for analysis. Default all states are used.
times	lists the deuteration times to be used in analysis. Default all states used.
seq_match	Flag allows to choose if the peptide sequences should be matched between states. seq_match=FALSE signifies no sequence matching, seq_match=TRUE states that the sequences are matched between the sets.
CSV	Flag allowing saving the output as csv. With default csv="NA", data is not saved. If csv output is desided, provide output name.
percent	Flag allowing to choose output as deteuration uptake (FALSE) or percent deuteration (TRUE). Default deuteration uptake.

Value

data frame with reorganized data where in columns is the deuteration uptake for Protein States.

output_tp 37

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tc(filepath=file_nm) ###all default parameters used

# all possible flags listed & percent deuteration output,
#with sequences matching for protein states.

a<-output_tc(filepath=file_nm, replicates=3, states=c("bound", "Unbound"),
times=c("3.00s", "72000.00s"), seq_match=TRUE, csv="NA", percent=TRUE)</pre>
```

output_tp

Prepares output for HDX-MS for the deuteration uptake or percent deuteration for the time points.

Description

Returns a data frame organized for additional analysis. In columns are deuteration uptake or percent deuteration data for the given protein states. Function allows for writing csv with data, matching sequences of peptide. Protein.States, Deut.times, or number of replicates can be specified.

Usage

```
output_tp(
   filepath,
   replicates,
   states,
   times,
   seq_match = FALSE,
   csv = "NA",
   percent = FALSE
)
```

Arguments

filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

replicates number of replicates to be used in analysis. The function takes number of replicates up to specified number. If no argument provided number maximal common

number of replicates it used.

states function allows to choose what states should be used for analysis. Default all

states are used.

times lists the deuteration times to be used in analysis. Default all states used.

seq_match Flag allows to choose if the peptide sequences should be matched between

states. seq_match=FALSE signifies no sequence matching, seq_match=T states

that the sequences are matched between the sets.

38 output_UD

csv Flag allowing saving the output as csv. With default csv="NA", data is not saved.

If csv output is desided, provide output name.

percent Flag allowing to choose output as deteuration uptake (FALSE) or percent deuter-

ation (TRUE). Default deuteration uptake.

Value

data frame with reorganized data where in columns is the deuteration uptake for Protein States.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(filepath=file_nm) ###all default parameters used

# all possible flags listed & percent deuteration output,
# with sequences matching for protein states.

a<-output_tp(filepath=file_nm, replicates=3, states=c("bound", "Unbound"),
times=c("3.00s", "72000.00s"), seq_match=TRUE, csv="NA", percent=TRUE)</pre>
```

output_UD

Prepares output for HDX-MS Undeuterated sample data.

Description

Returns a data frame for Full deuteration set

Usage

```
output_UD(filepath)
```

Arguments

filepath

filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

Value

data frame with reorganized data where in columns is uptake data for Protein States.

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_UD(file_nm)</pre>
```

output_UD_proc 39

	repares output for HDX-MS Undeuterated data for procent deutera- on.
--	---

Description

Returns a data frame for Undeuterated control set

Usage

```
output_UD_proc(filepath)
```

Arguments

filepath

filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

Value

data frame with reorganized data where in columns is procent deuteration for Protein States.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_UD_proc(file_nm)</pre>
```

pallette_legend

Color scheme using heatmap. Legend Extracts names from data.frame

Description

Returns names for legend for the heatmaps

Usage

```
pallette_legend(col_pallette)
```

Arguments

```
col_pallette pallette to be used in the heat map
```

Value

legend for the heatmap

40 peptide_pv_tp

pallette_ll

Color scheme using heatmap. Legend extracts names from data frame

Description

Returns names for legend for the heatmaps

Usage

```
pallette_ll(pallette, lab)
```

Arguments

pallette pallette to be used in the heat map labels to be used in pallette

Value

legend for the heatmap

peptide_pv_tp

Preparatory function for significant peptide plots

Description

Returns plot where significant peptides are colored in blue-red scheme.

Usage

```
peptide_pv_tp(
    df,
    pv,
    sd,
    nb_row,
    ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
    pv_cutoff = 0.01,
    replicates = 3
)
```

peptide_pv_tp_proc 41

Arguments

df	average data frame. Generated using ave_timepoint() function.
pv	pvalues dataframes calculated using pv_timepoint() function
sd	standard deviation data.frame generated using sd_timepoint function
nb_row	number of peptides in each row. Plotting parameter.
ranges	ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff	p-value cutoff here set up to 0.01
replicates	number of replicates in sample. Default set to 3.

Value

plot with peptides which are significantly different between sets.

peptide_pv_tp_proc	Preparatory function for showing peptides with significant differences between sets.

Description

Returns plot where significantly different peptides are colored in blue-red scheme.

Usage

```
peptide_pv_tp_proc(
    df,
    dfup,
    pv,
    sd,
    nb_row = 100,
    ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
    pv_cutoff = 0.01,
    replicates = 3
)
```

Arguments

df	average data frame for procent deuteration. Generated using ave_timepoint() function.
dfup	average data frame for deuteration uptake. Generated using ave_timepoint() function.
pv	pvalues dataframes calculated using pv_timepoint() function
sd	standard deviation data.frame generated using sd_timepoint function
nb_row	number of peptides in each row. Plotting parameter.
ranges	ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff	p-value cutoff here set up to 0.01
replicates	number of replicates in sample. Default set to 3.

plots_av_tp

Value

plot with peptides which are significantly different between sets.

plots_av_tcourse

Generates average deuteration plot for the time-course.

Description

Returns plots with average deuteration at each peptide.

Usage

```
plots_av_tcourse(df, replicates = 3, cola)
```

Arguments

df output from functions output_tcourse or output_tcourse_proc.

replicates number of replicates in set as default set to 3.

cola color pallette for different Protein States. As default Paired pallette from RCol-

orBrewer is used.

Value

average deuteration plots

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tc(file_nm)
plots_av_tcourse(df=a, replicates=3, cola=c(1:4))
plots_av_tcourse(df=a)</pre>
```

plots_av_tp

Returns average deuteration plot for timepoints in the data frame

Description

Returns plots with average deuteration at each peptide.

Usage

```
plots_av_tp(df, replicates = 3, cola)
```

plots_av_tp_proc 43

Arguments

df output from functions output_tp or output_tp_proc.

replicates number of replicates in set as default set to 3.

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

Value

average deuteration plots

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
plots_av_tp(df=a, replicates=3, cola=c(1:4))
plots_av_tp(df=a)</pre>
```

plots_av_tp_proc

Returns average procent deuteration plot for time points

Description

Returns plots with average procent deuteration at each peptide.

Usage

```
plots_av_tp_proc(df, replicates = 3, cola)
```

Arguments

df output from functions output_tp_proc.

replicates number of replicates in set as default set to 3.

cola color pallette for different Protein States. As default Paired pallette from RCol-

orBrewer is used.

Value

average deuteration plots

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm, percent=TRUE)
plots_av_tp_proc(df=a, replicates=3, cola=c(1:4))
plots_av_tp_proc(df=a)</pre>
```

44 plots_diff_tp_proc

plots_diff_tp

Returns difference in average plot for timepoints in the data frame

Description

Returns plots with difference in avarage for each peptide.

Usage

```
plots_diff_tp(df, replicates = 3, cola)
```

Arguments

df output from functions output_tp or output_tp_proc. replicates number of replicates in set as default set to 3.

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

Value

plots of difference of averages

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
plots_diff_tp(df=a, replicates=3, cola=c(1:4))
plots_diff_tp(df=a)</pre>
```

plots_diff_tp_proc

Returns difference in average procent deuteration plot for timepoints in the data frame

Description

Returns plots with difference in procent deuteration for each peptide.

Usage

```
plots_diff_tp_proc(df, replicates = 3, cola)
```

Arguments

df output from functions output_tp_proc.
replicates number of replicates in set as default set to 3.

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

plots_vol_tp 45

Value

plots of difference of average procent deuteration

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm, percent=TRUE)
plots_diff_tp_proc(df=a, replicates=3, cola=c(1:4))
plots_diff_tp_proc(df=a)</pre>
```

plots_vol_tp

Returns volcano plots for timepoints in the data frame

Description

Returns volcano plots for each peptide. Critical interval is calculated according to #' Reliable Identification of Significant Differences in Differential Hydrogen Exchange-Mass Spectrometry Measurements Using a Hybrid Significance Testing Approach Tyler S. Hageman and David D. Weis Analytical Chemistry 2019 91 (13), 8008-8016 DOI: 10.1021/acs.analchem.9b01325 calculations for alpha 0.99 pvalues calculated using Welch t-test.

Usage

```
plots_vol_tp(df, replicates = 3, pv_cutoff = 0.01, cola)
```

Arguments

df output from functions output_tp

replicates number of replicates in set as default set to 3.

pv_cutoff p-value cutoff here set up to 0.01

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

Value

volcano plots

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
plots_vol_tp(df=a, replicates=3, cola=c(1:4), pv_cutoff=0.01)
plots_vol_tp(df=a, pv_cutoff=0.05)</pre>
```

```
plot_heat_map_max_uptake_tp
```

Plots heat maps for maximum uptake per residue.

Description

Returns heat map with maximum uptake per residue.

Usage

```
plot_heat_map_max_uptake_tp(
   df,
   replicates = 3,
   mar_x = 3.5,
   ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
   pv_cutoff = 0.01
)
```

Arguments

```
average data frame. Generated using ave_timepoint() function.

replicates

number of replicates in sample. Default set to 3.

mar_x

margin x width. Default=3.5

ranges

ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)

pv_cutoff

p-value cutoff here set up to 0.01
```

Value

heat map for maximum uptake per residue

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
plot_heat_map_max_uptake_tp(df=a, replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf) )
plot_heat_map_max_uptake_tp(df=a)</pre>
```

```
plot_heat_map_max_uptake_tp_proc
```

Plots heat maps for maximum procent deuteration per residue.

Description

Returns heat map with maximum precent_deuteration per residue.

Usage

```
plot_heat_map_max_uptake_tp_proc(
   input_proc,
   input_up,
   mar_x = 3.5,
   ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
   pv_cutoff = 0.01,
   replicates = 3
)
```

Arguments

input_proc	Dataframe with organized procent deuteration data. Input generated using output_tp_proc() function.
input_up	Dataframe with organized deuteration uptake. Input generated using output_tp() function.
mar_x	margin x width. Default=3.5
ranges	ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff	p-value cutoff here set up to 0.01
replicates	number of replicates in sample. Default set to 3.

Value

heat map for average uptake per residue for significant peptides.

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a_up<- output_tp(file_nm)
a_proc<- output_tp(file_nm, percent=TRUE)
plot_heat_map_max_uptake_tp_proc(input_proc=a_proc, input_up=a_up, replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf) )
plot_heat_map_max_uptake_tp_proc(input_proc=a_proc, input_up=a_up)</pre>
```

48 plot_heat_map_tp

plot_heat_map_tc

Plots heat maps for time courses.

Description

Returns heat map on timecourses with raw data.

Usage

```
plot_heat_map_tc(
   df,
   replicates = 3,
   mar_x = 3.5,
   ranges = c(-Inf, seq(0, 100, by = 10), Inf)
)
```

Arguments

df output from function output_tcourse

replicates number of replicates in sample. Default set to 3.

mar_x margin x width. Default=3.5

ranges ranges for coloring scheme. Default set to c(seq(0, 100, by=10), Inf)

Value

heat map for time courses

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tc(file_nm)
plot_heat_map_tc(df=a, replicates=3, ranges=c(seq(0, 100, by=5), Inf))
plot_heat_map_tc(df=a)</pre>
```

plot_heat_map_tp

Plots heat maps for significant peptides.

Description

Returns heat map with average values for significant uptake per residue.

Usage

```
plot_heat_map_tp(
    df,
    mar_x = 3.5,
    ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
    pv_cutoff = 0.01,
    replicates = 3
)
```

Arguments

```
average data frame. Generated using ave_timepoint() function.

mar_x margin x width. Default=3.5

ranges ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)

pv_cutoff p-value cutoff here set up to 0.01

replicates number of replicates in sample. Default set to 3.
```

Value

heat map for average uptake per residue for significant peptides.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
plot_heat_map_tp(df=a, replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf) )
plot_heat_map_tp(df=a)</pre>
```

plot_heat_map_tp_proc Plots heat maps for significant peptides.

Description

Returns heat map with average values for significant uptake per residue.

Usage

```
plot_heat_map_tp_proc(
    input_proc,
    input_up,
    mar_x = 3.5,
    ranges = c(-Inf, -3, -2, -1, 0, 1, 2, 3, Inf),
    pv_cutoff = 0.01,
    replicates = 3
)
```

50 plot_peptide_sig_tp

Arguments

input_proc	Dataframe with organized procent deuteration data. Input generated using out-put_tp_proc() function.
input_up	Dataframe with organized deuteration uptake. Input generated using output_tp() function.
mar_x	margin x width. Default=3.5
ranges	ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff	p-value cutoff here set up to 0.01
replicates	number of replicates in sample. Default set to 3.

Value

heat map for average uptake per residue for significant peptides.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a_up<- output_tp(file_nm)
a_proc<- output_tp(file_nm, percent=TRUE)
plot_heat_map_tp_proc(input_proc=a_proc, input_up=a_up, replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf) )
plot_heat_map_tp_proc(input_proc=a_proc, input_up=a_up)</pre>
```

```
plot_peptide_sig_tp Significant peptide plots.
```

Description

Returns plot where significant peptides are colored in blue-red scheme.

Usage

```
plot_peptide_sig_tp(
    df1,
    replicates = 3,
    nb_pep_row = 100,
    ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
    pv_cutoff = 0.01
)
```

Arguments

```
average data frame. Generated using ave_timepoint() function.

number of replicates in sample. Default set to 3.

number of peptides in each row. Plotting parameter. Default set to 100.

ranges ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)

pv_cutoff p-value cutoff here set up to 0.01
```

Value

plot with peptides which are significantly different between sets.

```
plot_peptide_sig_tp_proc
```

Draws peptides with significant difefrences between sets.

Description

Returns plot where significant peptides are colored in blue-red scheme.

Usage

```
plot_peptide_sig_tp_proc(
   input_proc,
   input_up,
   nb_pep_row = 100,
   ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
   pv_cutoff = 0.01,
   replicates = 3
)
```

Arguments

input_proc	Dataframe with organized procent deuteration data. Input generated using out-put_tp_proc() function.
input_up	Dataframe with organized deuteration uptake. Input generated using output_tp() function.
nb_pep_row	number of peptides in each row. Plotting parameter. Default set to 100.
ranges	ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff	p-value cutoff here set up to 0.01
replicates	number of replicates in sample. Default set to 3.

Value

plot with peptides which are significantly different between sets.

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a_up<- output_tp(file_nm)
a_proc<- output_tp(file_nm, percent=TRUE)
plot_peptide_sig_tp_proc(input_proc=a_proc, input_up=a_up, replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf), nb_pep_row=40 )</pre>
```

52 pl_gen_uptake

pl_gen_ch2

Prepares the plot window for the woods functions

Description

Internal function

Usage

```
pl_gen_ch2(df, ddlab = 1, ...)
```

Arguments

df dataframe ddlab label ... other

Value

Plot window

pl_gen_uptake

Prepares the plot window for the woods functions

Description

Internal function

Usage

```
pl_gen_uptake(df, timepoints, ddlab = 1, ...)
```

Arguments

df dataframe

timepoints deuteration times used

ddlab label ... other

Value

Plot window

ppar 53

ppar

Preparation of figure window.

Description

Prepares a plotting window with specified margins with specific number of figure row and columns.

Usage

```
ppar(mfrow2)
```

Arguments

mfrow2

mfrow: number of Multiple Figures (use ROW-wise).

Value

modified par function with adjusted parameters

Examples

```
ppar(c(2,1))
```

pparLM

Preparation of figure window. small margins

Description

Prepares a plotting window with specified margins with specific number of figure row and columns.

Usage

```
pparLM(mfrow2)
```

Arguments

mfrow2

mfrow: number of Multiple Figures (use ROW-wise).

Value

modified par function with adjusted parameters

```
pparLM(c(2,1))
```

54 ppar_wider

ppar_bottom_legend

Preparation of figure window with area for figure at the bottom.

Description

Prepares a plotting window with specified margins with specific number of figure row and columns.

Usage

```
ppar_bottom_legend(mfrow2)
```

Arguments

mfrow2

mfrow: number of Multiple Figures (use ROW-wise).

Value

modified par function with adjusted parameters

Examples

```
ppar_bottom_legend(c(2,3))
```

ppar_wider

Preparation of figure window with more area on west side of plot.

Description

Prepares a plotting window with specified margins with specific number of figure row and columns.

Usage

```
ppar_wider(mfrow2)
```

Arguments

mfrow2

mfrow: number of Multiple Figures (use ROW-wise).

Value

default plotting window

```
ppar_wider(c(2,1))
```

```
prep_timecourse_plot_ave
```

Prepares function for plotting averages in timecourse

Description

Preparatory function

Usage

```
prep_timecourse_plot_ave(control_df, variant_df, replicates = 3)
```

Arguments

replicates number of replicates. Default set to 3.

Value

dataframes with matched peptides in time course

```
prep_timecourse_plot_sd
```

Prepares function for Critical interval for timecourses

Description

Preparatory function

Usage

```
prep_timecourse_plot_sd(
  control_df_up,
  variant_df_up,
  replicates = 3,
  pv_cutoff = 0.01
)
```

Arguments

```
control_df_up dataframe of control
variant_df_up dataframe for variant
```

replicates number of replicates. Default set to 3.

pv_cutoff cut off of pvalue used in calculation of critical interval. Default set to 0.01

56 pv_timepoint

Value

Critial interval for all sets

pv_timecourse

pvalue calculation between two sets of the data at certain timepoint

Description

Preparatory function for calculation of pvalue between sets.

Usage

```
pv_timecourse(df_c, df_v, replicates = 3)
```

Arguments

df_c dataframe of control df_v dataframe for variant

replicates number of replicates. Default set to 3.

Value

pvalue comparisons between two sets.

pv_timepoint

Calculation of pvalue between first protein state and any other state from all_states file

Description

Compares means of sets of uptake data and return dataframe with pvalues. Welch t.test is used for analysis. Sets are compared to the first state in the input file. If other order of the sets is required use Default for the number of replicates is 3.

Usage

```
pv_timepoint(df, replicates = 3)
```

Arguments

df output from functions output_tp or output_tp_proc.
replicates number of replicates used. Default is set to replicates=3

Value

Data.frame with p-values

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
pv<-pv_timepoint(df=a) ##if number of replicates is equal 3
# pv1<-pv_timepoint(df=a, replicates=4) ##if number of replicates is equal 4
#b<-output_tp_states(file_nm, states=c("State4", "State2", "State3"))
#pv_states<-pv_timepoint(df=b) ### here means of State4, will be compared to State2 and State4</pre>
```

```
pymol_script_average_residue
```

Writes a text files with pymol scripts to list significant residues.

Description

Function write a script that can be used in pymol to color structure. Number of colors and corresponding to them ranges can be defined by user. Residues are being colored by average uptake values from the significant peptides per residues.

Usage

```
pymol_script_average_residue(
   df,
   path = "",
   ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
   pv_cutoff = 0.01,
   replicates = 3
)
```

Arguments

```
output from functions output_tp

output folder location

ranges ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)

pv_cutoff p-value cutoff here set up to 0.01

replicates number of replicates in sample. Default set to 3.
```

Value

pymol script with residues colored based on average of uptake per residue.

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
pymol_script_average_residue(df=a, replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf), path=tempdir())
pymol_script_average_residue(df=a, path=tempdir())</pre>
```

```
pymol_script_significant_peptide
```

Writes a text files with pymol scripts to list significant peptides

Description

Function write a script that can be used in pymol to color structure. Number of colors and corresponding to them ranges can be defined by user.

Usage

```
pymol_script_significant_peptide(
   df,
   path = "",
   ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
   pv_cutoff = 0.01,
   replicates = 3,
   order.pep = TRUE
)
```

Arguments

df	output from functions output_tp
path	location where the scripts will be saved
ranges	ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff	p-value cutoff here set up to 0.01
replicates	number of replicates in sample. Default set to 3.
order.pep	flag allowing to either order peptide according to the peptide length (default), or to position in the protein sequence.

Value

pymol script with colors assigned per peptide

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
pymol_script_significant_peptide(df=a, replicates=3, path=tempdir(), pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf), order.pep=TRUE )
pymol_script_significant_peptide(df=a, path=tempdir())</pre>
```

```
pymol_script_significant_peptide_proc
```

Writes a text files with pymol scripts to list significant peptides

Description

Function write a script that can be used in pymol to color structure. Number of colors and corresponding to them ranges can be defined by user.

Usage

```
pymol_script_significant_peptide_proc(
  input_proc,
  input_up,
  path = "",
  ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
  pv_cutoff = 0.01,
  replicates = 3,
  order.pep = TRUE
)
```

Arguments

input_proc	Dataframe with organized procent deuteration data. Input generated using out-put_tp(, percent=T) function.
input_up	Dataframe with organized deuteration uptake. Input generated using output_tp() function.
path	location where the Pymol scripts will be saved
ranges	ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff	p-value cutoff here set up to 0.01
replicates	number of replicates in sample. Default set to 3.
order.pep	flag allowing to either order peptide according to the peptide length (default), or to position in the protein sequence.

Value

pymol script with colors assigned per peptide

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a_up<- output_tp(file_nm)
a_proc<- output_tp(file_nm, percent=TRUE)
pymol_script_significant_peptide_proc(input_proc=a_proc,
input_up=a_up, path=tempdir(),replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf), order.pep=TRUE)</pre>
```

```
pymol_script_significant_residue
```

Writes a text files with pymol scripts to list significant residues.

Description

Function write a script that can be used in pymol to color structure. Number of colors and corresponding to them ranges can be defined by user. Residues are being colored by maximum uptake from significant peptides per residues.

Usage

```
pymol_script_significant_residue(
   df,
   path = "",
   ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
   pv_cutoff = 0.01,
   replicates = 3
)
```

Arguments

df average data frame. Generated using ave_timepoint() function.

path location where the Pymol scripts will be saved

ranges ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)

pv_cutoff p-value cutoff here set up to 0.01

replicates number of replicates in sample. Default set to 3.

Value

pymol script with colors assigned per residues by maximum uptake per residue

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
pymol_script_significant_residue(df=a, path=tempdir(), replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf) )
pymol_script_significant_residue(df=a, path=tempdir())</pre>
```

```
pymol_script_significant_residue_proc
```

Writes a text files with pymol scripts to list significant residues.

Description

Function write a script that can be used in pymol to color structure. Number of colors and corresponding to them ranges can be defined by user. Residues are colored by average procent_deuteration from the significant peptides per residues.

Usage

```
pymol_script_significant_residue_proc(
  input_up,
  input_proc,
  path = "",
  ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
  pv_cutoff = 0.01,
  replicates = 3
)
```

Arguments

input_up	Dataframe with organized deuteration uptake. Input generated using output_tp() function.
input_proc	Dataframe with organized procent deuteration data. Input generated using output_tp_proc() function.
path	location where the Pymol scripts will be saved
ranges	ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff	p-value cutoff here set up to 0.01
replicates	number of replicates in sample. Default set to 3.

Value

pymol script with residues colored based on average of procent deuteration per residue.

62 qpcr.cbind.na

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a_up<- output_tp(file_nm)
a_proc<- output_tp(file_nm, percent=TRUE)
pymol_script_significant_residue_proc(input_proc=a_proc,
input_up=a_up, path=tempdir(), replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf))</pre>
```

pymol_str

Preparatory function writing pymol scripts

Description

Function rearrange vector to string by adding + sign between the numbers.

Usage

```
pymol_str(ind1)
```

Arguments

ind1

vector of numbers (residues)

Value

string with + as a separator.

Examples

```
res<-c(1,5, 19, 100, 109)
pymol_str(res)
```

qpcr.cbind.na

Hidden function from qpcR package, typical usage as qpcR:::cbind.na

Description

Combine data of unequal row length avoiding repetition or errors by filling with NAs. In contrast to classical cbind, cbind.na can be used to combine data such as

Usage

```
qpcr.cbind.na(..., deparse.level = 1)
```

ranges_function 63

Arguments

```
... vectors
deparse.level set to 1 as default
```

Value

data frame with NA

Examples

```
qpcr.cbind.na(1:10, 1:3)
```

 $ranges_function$

Gives ranges for the averages

Description

Function used as internal function to get ranges in the function.

Usage

```
ranges_function(df_ave, values_df)
```

Arguments

df_ave average per residues values_df data frame with values.

Value

ranges per set

ranges_function_tc

Gives ranges for the averages for time course analysis

Description

Function used as internal function to get ranges in the function.

Usage

```
ranges_function_tc(df_ave, values_df)
```

rbind_na

Arguments

df_ave average per residues
values_df data frame with values.

Value

ranges per set

rbind_na

bind non equal row

Description

kmezhoud/canceR: A Graphical User Interface for accessing and modeling the Cancer Genomics Data of MSKCC https://rdrr.io/github/kmezhoud/canceR/src/R/rbind.na.R

Usage

```
rbind_na(..., deparse.level = 1)
```

Arguments

... (generalized) vectors or matrices.

deparse.level

integer controlling the construction of labels in the case of non-matrix-like arguments (for the default method): deparse.level = 0 constructs no labels; the default, deparse.level = 1 or 2 constructs labels from the argument names.

Value

a data frame with merged rows

```
row1 <- c("a","b","c","d")
row2 <- c("A", "B", "C")
row3 <- rbind_na(row1, row2)
```

reset_par 65

reset_par

Reset plotting window parameters to default

Description

function by Farid Cheraghi, https://stackoverflow.com/questions/9292563/reset-the-graphical-parameters-back-to-default-values-without-use-of-dev-off function resets plotting window parameters

Usage

```
reset_par()
```

Value

default plotting window parameters

Examples

```
reset_par()
```

robot_2states_indexes Returns a robot plot for selected peptides for 2 protein states.

Description

Modification of butterfly plot. x axis residues. y axis % deuteration for one variant above the axis and for second peptide below the axis. Peptides are compared between the sets for the significance change between sets. If there is significant change between sets peptides are plotted for all timepoints. Significanty different timepoints for the peptides are colored. Peptides ranges are plotted as a line at corresponding % deuteration values.

Usage

```
robot_2states_indexes(
   thP,
   th,
   indexes,
   states,
   replicates = 3,
   pvalue = 0.01,
   ylim,
   xlim,
   CI_factor = 1
)
```

66 robot_indexes

Arguments

thP output of output_tcourse_proc() function. Raw data for procent deuteration for

time courses

th output of output_tcourse() function. Raw data for uptake deuteration for time

courses

indexes indexes of peptides to be drawn.

states Need to choose only two protein states

replicates number of replicates in sample. Default set to 3.

pvalue p-value cutoff here set up to 0.01

ylim y-axis range

x1im x-axis range. Set as default from max and minimum residues for the protein

CI_factor Multiplication factor for Critical Interval. Allows for more restrictive selection

of Critial interval.

Value

Robot maps for timecourses for 2 protein states and selected indexes.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
tm_df<-output_tc(filepath=file_nm)
tmP_df<-output_tc(filepath=file_nm, percent=TRUE)
names_states<- nm_states(file_nm) ### returns states names
ind1<-robot_indexes(thP = tmP_df, th=tm_df, pvalue=0.001, CI_factor=3, states=names_states[1:2])
robot_2states_indexes(thP = tmP_df, th=tm_df,
    states=names_states[1:2],indexes =ind1, pvalue=0.001, CI_factor=3)</pre>
```

robot_indexes	Returns indexes for peptides with significant difference between two
	sets

Description

Function to help decide which peptides will be drawn on Robot plots.

Usage

```
robot_indexes(thP, th, replicates = 3, pvalue = 0.01, states, CI_factor = 1)
```

robot_indexes_df 67

Arguments

thP output of output_tcourse_proc() function. Raw data for procent deuteration for

time courses

th output of output_tcourse() function. Raw data for uptake deuteration for time

courses

replicates number of replicates in sample. Default set to 3.

pvalue p-value cutoff. Default set up to 0.01

states Protein states from the set. As default all states are chosen.

CI_factor Multiplication factor for Critical Interval. Allows for more restrictive selection

of Critial interval.

Value

Returns indexes of significant peptides

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
tm_df<-output_tc(filepath=file_nm)
tmP_df<-output_tc(filepath=file_nm, percent=TRUE)

# more restictive peptide selection
robot_indexes(thP = tmP_df, th=tm_df, pvalue=0.01, CI_factor=1.5)</pre>
```

robot_indexes_df

Returns dataframe with peptides which exhibit significant difference

between two sets

Description

Function to help decide which peptides will be drawn on Robot plots.

Usage

```
robot_indexes_df(thP, th, replicates = 3, pvalue = 0.01, states, CI_factor = 1)
```

Arguments

thP output of output_tcourse_proc() function. Raw data for procent deuteration for

time courses

th output of output tcourse() function. Raw data for uptake deuteration for time

courses

replicates number of replicates in sample. Default set to 3.

pvalue p-value cutoff. Default set up to 0.01

states Protein states from the set. As default all states are chosen.

CI_factor Multiplication factor for Critical Interval. Allows for more restrictive selection

of Critial interval.

robot_plot_All

Value

Returns dataframe listing peptides that are significantly different between sets.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
tm_df<-output_tc(filepath=file_nm)
tmP_df<-output_tc(filepath=file_nm, percent=TRUE)

# more restictive peptide selection
robot_indexes_df(thP = tmP_df, th=tm_df, pvalue=0.01, CI_factor=1.5)</pre>
```

robot_plot_All

Returns a robot plot for comparisons of the timepoints samples

Description

Modification of butterfly plot. x axis residues. y axis % deuteration for one variant above the axis and for second peptide below the axis. Peptides are compared between the sets for the significance change between sets. If there is significant change between sets peptides are plotted for all timepoints. Significanty different timepoints for the peptides are colored. Peptides ranges are plotted as a line at corresponding % deuteration values.

Usage

```
robot_plot_All(
   thP,
   th,
   replicates = 3,
   pv_cutoff = 0.01,
   states,
   CI_factor = 1
)
```

Arguments

thP	output of output_tcourse_proc() function. Raw data for procent deuteration for time courses
th	output of output_tcourse() function. Raw data for uptake deuteration for time courses
replicates	number of replicates in sample. Default set to 3.
pv_cutoff	p-value cutoff here set up to 0.01
states	Protein states from the set. As default all states are chosen.
CI_factor	Multiplication factor for Critical Interval. Allows for more restrictive selection of Critial interval.

sd_timecourse 69

Value

Robot maps for timecourses

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
tm_df<-output_tc(filepath=file_nm)
tmP_df<-output_tc(filepath=file_nm, percent=TRUE)
robot_plot_All(thP = tmP_df, th=tm_df, pv_cutoff=0.001)

# more restrictive peptide selection
robot_plot_All(thP = tmP_df, th=tm_df, pv_cutoff=0.001, CI_factor=3)</pre>
```

sd_timecourse

Returns standard deviation for uptake data for timecourses.

Description

Calculates standard deviation for timecourse data.

Usage

```
sd_timecourse(filepath)
```

Arguments

filepath

filepath to the All_results input file.

Value

Data.frame with standard deviation.

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
sd_timecourse(filepath=file_nm)</pre>
```

70 sd_timepoint

sd_timecourse_proc

Returns standard deviation for percent deuteration data for time-courses.

Description

Calculates standard deviation for time course data.

Usage

```
sd_timecourse_proc(filepath)
```

Arguments

filepath

filepath to the All_results input file.

Value

Data.frame with standard deviation.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
sd_timecourse(filepath=file_nm)</pre>
```

sd_timepoint

Returns standard deviation for dataframe.

Description

Calculates standard deviation for the number of replicates in the function.

Usage

```
sd_timepoint(df, replicates = 3)
```

Arguments

df output from functions output_tp or output_tp_proc.

replicates number of replicates used. Default is set to replicates=3

Value

Data.frame with standard deviation.

select_indices 71

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
sd<-sd_timepoint(df=a, replicates=3)</pre>
```

select_indices

Allows for selecting some peptide from input data

Description

Function allows for picking indices from the inputs based on: peptide start or end residue, length, state or timepoint. If parameters set to NA, condition is skipped.

Usage

```
select_indices(df, start = NA, end = NA, length = NA, times = NA, states = NA)
```

Arguments

df	input file (output of output_tc or output_tp)
start	provide number for the staring residue, default NA
end	provide number for the end residue, default NA
length	provide max length of the peptide
times	timepoints, only for the output_tp functions
states	states, only for the output_tc functions

Value

Row indices of the peptides that are fulfilling the conditions required.

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
indb<-select_indices(a,length=12, start=100, end=200)
smaller_df<-a[indb,]</pre>
```

72 summary_sd_CI

```
significant_peptide_uptake
```

Function returns which peptides are significantly based of pv_cutoff and Critial interval

Description

Returns data frame with significant peptides.

Usage

```
significant_peptide_uptake(df_av, pv, sd, pv_cutoff = 0.01, replicates = 3)
```

Arguments

df_av	data.frame with averages created using ave_timepoint() function
pv	data.frame with pvalues created using pv_timepoint() function

sd data.frame with standard deviations created using sd_timepoint() function

pv_cutoff cuttoff for Critical interval. Default=0.01 replicates number of replicates as default set to 3.

Value

ranges per set

summary_sd_CI	Provides summary table with Critical interval and standard deviation
	within the set.

Description

Returns summary data. Function returns: Protein states, timepoints, number of replicates, # peptides, % coveregae, average peptide length and redundancy.

Usage

```
summary_sd_CI(filepath, replicates = 3)
```

Arguments

filepath filepath to the input file. Input file is All_results table from HDX_Examiner,

where all the fields are marked for export.

replicates number of replicates. Default set to 3.

uptake_plots 73

Value

Returns summary table.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- summary_sd_CI(file_nm, replicates=3)</pre>
```

uptake_plots

Uptake plots

Description

Uptake plots per peptide

Usage

```
uptake_plots(
  input_data,
  timepoints,
  replicates = 3,
  cola = NA,
  seq_match = TRUE
)
```

Arguments

replicates replicates

cola colors, default NA

seq_match Flag TRUE or FALSE, default TRUE, match sequence of the protein states

Value

Uptake plots

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tc(file_nm, percent=TRUE)
x=c(3,60, 1800, 72000)
uptake_plots(a, x)</pre>
```

verbose_timecourse_output

Returns csv with averages from analysis for procent deuteration file, standard deviation for time courses.

Description

Returns information from analysis and save it as csv file. Sets are compared to the first state in the input file.

Usage

```
verbose_timecourse_output(filepath, output_name, replicates = 3, ...)
```

Arguments

```
filepath path to All.Data.csv input from HDX-Examiner.
output_name name of the output in csv format.
replicates number of replicates used
... other variables for output_tc
```

Value

csv with analysis for procent deuteration: standard deviation, for all protein states for time courses.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
verbose_timecourse_output(file_nm,tempfile(), replicates=3)
names_states<- nm_states(file_nm)
verbose_timecourse_output(file_nm, tempfile(), seq_match=TRUE, percent=TRUE,
states=names_states, replicates=3, times="3.00s")</pre>
```

```
verbose_timepoint_output
```

Returns csv with averages from analysis for uptake file, standard deviation, p-values.

Description

Returns information from analysis and save it as csv file. Sets are compared to the first state in the input file.

vol_tp 75

Usage

```
verbose_timepoint_output(filepath, output_name, replicates = 3, ...)
```

Arguments

filepath path to All.Data.csv input from HDX-Examiner.

output_name name of the output in csv format.

replicates number of replicates used
... other variables for output_tp

Value

csv with analysis for uptake file, standard deviation, p-values for all protein states.

Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
verbose_timepoint_output(file_nm, tempfile())
names_states<- nm_states(file_nm)
verbose_timepoint_output(file_nm, tempfile(), seq_match=TRUE, percent=TRUE,
states=names_states, replicates=3, times="3.00s")</pre>
```

vol_tp

Preparatory function for volcano plot

Description

Returns volcano plots

Usage

```
vol_tp(df1, pv, CI, pv_cutoff = 0.01, cola)
```

Arguments

df1 differences in averages data.frame calculated using diff_ave function

pv pvalues dataframes calculated using pv_timepoint function

CI critical interval, here is multiple sets are using maximun CI is used.

pv_cutoff p-value cutoff here set up to 0.01

cola color pallette for different Protein States. As default Paired pallette from color.Brewer

is used.

Value

volcano plots

76 woods_CI_plot

woods_CI_plot

Returns a woods plot for comparisons of the timepoints samples

Description

Modification of butterfly plot. x axis residues. y axis % deuteration for Peptides are compared between the sets for the significance change between sets. If there is significant change between sets peptides are plotted for all timepoints. Significanty different timepoints for the peptides are colored. Peptides ranges are plotted as a line at corresponding % deuteration values.

Usage

```
woods_CI_plot(
  thP,
  th,
  replicates = 3,
  pv_cutoff = 0.01,
  states,
  CI_factor = 1,
  ylim = c(0, 120),
  ...
)
```

Arguments

thP	output of output_tcourse_proc() function. Raw data for procent deuteration for time courses $$
th	output of output_tcourse() function. Raw data for uptake deuteration for time courses $% \left(1\right) =\left(1\right) \left(1\right) \left($
replicates	number of replicates in sample. Default set to 3.
pv_cutoff	p-value cutoff here set up to 0.01
states	Protein states from the set. As default all states are chosen.
CI_factor	Multiplication factor for Critical Interval. Allows for more restrictive selection of Critial interval.
ylim	y axis limit
	other variables

Value

Woods plots with chosen statistically different peptides

woods_CI_plot 77

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tc(file_nm)
b<-output_tc(file_nm, percent=TRUE)
woods_CI_plot(thP=b, th=a, pv_cutoff = 0.001, CI_factor = 1, replicates=3)</pre>
```

Index

all_summary,4	is.nan.data.frame, 25
arg_df, 6	7 1 110 05
arg_UN_FD, 7	lab_dif, 25
arguments_call1,5	lab_dif_proc, 26
arguments_call2,5	lab_vol, 26
arguments_call3,6	legend_heat_map, 27
av_tc, 8	<pre>legend_heat_map_tc, 27</pre>
av_tp, 9	<pre>legend_heat_map_timecourse, 28</pre>
$ave_timepoint, 8$	<pre>legend_heat_map_tp, 28</pre>
average_timecourse, 7	<pre>legend_heat_map_tp_proc, 29</pre>
	legend_nm_bottom, 29
backHX_calculations, 9	legend_raw_ave, 30
boxplot_tp, 10	legend_raw_ave_proc, 30
	<pre>legend_raw_ave_tc, 31</pre>
CI_2pts, 10	<pre>legend_sig_peptides, 31</pre>
CI_single, 11	<pre>legend_states_PerD_bottom, 32</pre>
CI_tc, 12	<pre>legend_tc_bottom, 32</pre>
CI_tp, 12	
<pre>color_ranges_Blue_Red_heat_map, 13</pre>	nb_exch_deut, 33
color_ranges_Spectral, 14	nm_states, 33
coverage_residue, 14	
	output_FD, 34
deuteration_woods_timecourse, 15	output_FD_proc, 34
deuteration_woods_timepoints, 16	output_prep, 35
dif_ave, 17	output_tc, 36
dif_tp, 17	output_tp, 37
dif_tp_proc, 18	output_UD, 38
duplicate_sets, 18	output_UD_proc, 39
<pre>extreme_input_gap, 19</pre>	pallette_legend, 39
extreme_input_undeut, 19	pallette_11, 40
	<pre>peptide_pv_tp, 40</pre>
general_info, 20	<pre>peptide_pv_tp_proc, 41</pre>
getCoords1, 21	pl_gen_ch2, 52
	pl_gen_uptake, 52
heat_map_tc, 21	<pre>plot_heat_map_max_uptake_tp, 46</pre>
heat_map_tp, 22	<pre>plot_heat_map_max_uptake_tp_proc, 47</pre>
heat_map_tp_maxuptake, 22	plot_heat_map_tc, 48
heat_map_tp_maxuptake_proc, 23	plot_heat_map_tp, 48
heat_map_tp_proc, 24	plot_heat_map_tp_proc, 49

INDEX 79

```
plot_peptide_sig_tp, 50
plot_peptide_sig_tp_proc, 51
plots_av_tcourse, 42
plots_av_tp, 42
plots_av_tp_proc, 43
plots_diff_tp, 44
plots_diff_tp_proc, 44
plots_vol_tp, 45
ppar, 53
ppar_bottom_legend, 54
ppar_wider, 54
pparLM, 53
prep_timecourse_plot_ave, 55
prep_timecourse_plot_sd, 55
pv_timecourse, 56
pv_timepoint, 56
pymol_script_average_residue, 57
pymol_script_significant_peptide, 58
pymol_script_significant_peptide_proc,
pymol_script_significant_residue, 60
pymol_script_significant_residue_proc,
pymol_str, 62
qpcr.cbind.na, 62
ranges_function, 63
ranges_function_tc, 63
rbind_na, 64
reset_par, 65
robot_2states_indexes, 65
robot_indexes, 66
robot_indexes_df, 67
robot_plot_All, 68
sd_timecourse, 69
sd_timecourse_proc, 70
sd_timepoint, 70
select_indices, 71
significant\_peptide\_uptake, 72
summary_sd_CI, 72
uptake_plots, 73
verbose_timecourse_output, 74
verbose_timepoint_output, 74
vol_tp, 75
woods_CI_plot, 76
```