Summary of discrete distributions

Distribution	Parameters	P(x)	E[X]	$\operatorname{Var}[X]$	$M_{_{X}}(t)$
Uniform	N > 0, Integer	$\frac{1}{N}, x=1,\ldots,N$	$\frac{N+1}{2}$	$\frac{N^2-1}{12}$	$\frac{e^t (e^{Nt}-1)}{N(e^t-1)}$
Binomial	n > 0,	$\binom{n}{x}p^x (1-p)^{n-x}$	np	np(1-p)	$(1-p+pe^t)^n$
	0	$x=0,1,2,\ldots,n$			
Poisson	$\lambda > 0$	$\frac{e^{-\lambda}\lambda^{x}}{x!}$	λ	λ	$e^{\lambda(e^t-1)}$
		$x \stackrel{x}{=} 0, 1, 2, \dots$			
Geometric	0	$(1-p)^x p$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{1-(1-p)e^t}$
		$x=0,1,2,\ldots$		•	` ''
Negative Binomial	r > 0,	$\binom{r+x-1}{x}p^r \ (1-p)^x$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{p}{1-(1-p)e^t}\right]^r$
•	0	$x=0,1,2,\ldots$		•	
Hypergeometric	$N > 0, 0 \le r \le N$	$\binom{N-r}{n-x}\binom{r}{x}$	$\frac{nr}{N}$	$\frac{nr}{N} \frac{N-r}{N} \frac{N-n}{N-1}$	$\sum_{x=0}^{n} \frac{\binom{r}{r} \binom{N-r}{n-x}}{\binom{N}{n}} e^{x^{r}}$
	$1 \le n \le N$, integers	$x \leq \min(n,r)$			\",
Multinomial	$n, p_1, \ldots, p_k,$	$\frac{n!}{x_1!x_2!\dots x_k!} p_1^{x_1}\dots p_k^{x_k},$	$E[X_i] =$	Var[X] =	
	$0 < p_i < 1$	$x_1+x_2+\ldots+x_k=n$	np_i	$np_i(1-p_i)$	

Summary of continuous distributions

Distribution	Parameters	f(x)	E[X]	$\operatorname{Var}[X]$	$M_{x}(t)$
Uniform	a < b	$\frac{1}{b-a}, \ a \le x \le b$	$\frac{b-a}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt}-e^{at}}{(b-a)t}$
Normal	μ (any number), $\sigma^2 > 0$	$\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty$	μ	σ^2	$e^{\mu t + \frac{1}{2}\sigma^2 t^2}$
Exponential	$\frac{1}{\lambda} = \theta > 0$	$ \frac{1}{\theta} e^{-\frac{\pi}{\theta}}, x>0$	θ	θ^2	$\frac{1}{1-\theta t}$
Gamma	$k>0, \ \theta>0$	$\frac{1}{\Gamma(k)} \frac{1}{\theta^k} x^{k-1} e^{-\frac{x}{\theta}}, x > 0$	kθ	$k heta^2$	$\left(\frac{1}{1-\theta t}\right)^k$
Chi-Square	k deg. of freedom.	$\frac{1}{\Gamma(\frac{k}{2}) \ 2^{\frac{k}{2}}} \ x^{\frac{k}{2}-1} \ e^{-\frac{x}{2}}, \ x>0$	k	2k	$\left(\frac{1}{1-2t}\right)^{\frac{k}{2}}$
Pareto	$k > 0, \ \theta > 0$	$\left(\frac{k}{\theta}\left(\frac{\theta}{x}\right)^{k+1}, k>2, x\geq \theta>0\right)$	$\frac{k\theta}{k-1}$	$\frac{k \theta^2}{(k-2)(k-1)^2}$	
Lognormal	μ (any number), $\sigma^2 > 0$	$\frac{1}{y\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{\ln y - \mu}{\sigma})^2}, y > 0$	$e^{\mu + \frac{1}{2}\sigma^2}$	$(e^{\sigma^2}-1)e^{2\mu+\sigma^2}$	
Weibull	$k > 0, \ \lambda > 0$	$k\lambda x^{k-1}e^{-\lambda x^k}, x>0$	$\frac{\Gamma(1+\frac{1}{k})}{\lambda^{\frac{1}{k}}}$	$\frac{\Gamma(1+\frac{7}{k})\Gamma(1+\frac{7}{k})^2}{\lambda^{\frac{7}{k}}}$	
Beta	$a > 0, \ b > 0$	$\frac{(a+b+1)!}{(a-1)! (b-1)!} x^{a-1} (1-x)^{b-1}, 0 < x < 1$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	

- 1. If X and Y are independent χ^2 distributions with n_1 and n_2 degrees of freedom, then X + Y has χ^2 distribution with $n_1 + n_2$ degrees of freedom.
- 2. If X_1, X_2, \ldots, X_n is a random sample from a normal distribution $N(\mu, \sigma^2)$, then $Z = \sum_{i=1}^n \frac{(X_i \mu)^2}{\sigma^2}$ is $\chi^2(n)$.
- 3. If X_1, X_2, \ldots, X_n is a random sample from a normal distribution $N(\mu, \sigma^2)$, then $Z = \sum_{i=1}^n \frac{(X_i \bar{X})^2}{\sigma^2}$ is $\chi^2(n-1)$.
- 4. If $X \sim N(0,1)$, then $X^2 \sim \chi^2(1)$.

$$\Gamma(n) = \int_{-\infty}^{\infty} x^{n-1} e^{-x} dx$$

$$\Gamma(n) = (n-1)\Gamma(n-1) = (n-1)!, \qquad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\beta(a,b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$$

$$= \frac{\Gamma(a).\Gamma(b)}{\Gamma(a+b)} = \frac{(a-1)!.(b-1)!}{(a+b+1)!}$$