Problem Set 3

- 1. (P13 Exer 2.)
- (1) 求证每个二次 (数) 域均可表达成 $\mathbb{Q}(\sqrt{d})$, 其中 d 是无平方因子整数;
- (2) 如果 d 和 d' 均是无平方因子整数, 并且 $d \neq d'$, 则 $\mathbb{Q}(\sqrt{d}) \neq \mathbb{Q}(\sqrt{d'})$;
- (3) 二次域 K 必然是 \mathbb{Q} 的 Galois 扩张, 试求其 Galois 群.
- 2. (P13 Exer 6.) 设 $f(x) \in K[x]$ 是数域 K 上的 n 次不可约首 1 多项式, $\alpha_1, \ldots, \alpha_n$ 是它的 n 个根, 称 $d(f) = \prod_{1 \le r < s \le n} (\alpha_r \alpha_s)^2$ 是多项式 f(x) 的判别式.
- (1) 求证 d(f) 是 K 中元素;
- (2) 设 $f(x) = x^n + a, a \in \mathbb{Q}, \sqrt[n]{-a} \notin \mathbb{Q},$ 求证

$$d(f) = (-1)^{n(n-1)/2} n^n a^{n-1};$$

(3) 设 $f(x) = x^n + ax + b$ 是 $\mathbb{Q}[x]$ 中不可约多项式, 求证

$$d(f) = (-1)^{n(n-1)/2}((-1)^{n-1}(n-1)^{n-1}a^n + n^nb^{n-1}).$$

(注: 当 n=2 和 3 时, d(f) 即为 2 次和 3 次多项式通常所谓的判别式).

3. (P14 Exer 8) 如果 $n \neq n'$, $n \not\equiv 2 \pmod{4}$, $n' \not\equiv 2 \pmod{4}$, 求证 $\mathbb{Q}(\zeta_n) \neq \mathbb{Q}(\zeta_{n'})$.

- 4. (P14 Exer 9) 令 $K = \mathbb{Q}(\zeta_n)$, 则:
- (1) 当 $n \equiv 1 \pmod{2}$ 时, $W_K = \{\zeta_{2n}^k \mid 0 \le k \le 2n 1\}, |W_K| = 2n;$
- (2) $\stackrel{\text{def}}{=} n \equiv 0 \pmod{4}$ BF, $W_K = \{\zeta_n^k \mid 0 \le k \le n-1\}, |W_K| = n$.
- 5. (P14 Exer 13) 设 L|K 是数域的扩张. 对于 $\alpha \in L$, 定义映射

$$\varphi_{\alpha}: L \to L$$

$$\beta \mapsto \varphi_{\alpha}(\beta) = \alpha\beta.$$

求证

- (1) φ_{α} 是 K-向量空间 L 中的线性变换;
- (2) 如果 A_{α} 是线性变换 φ_{α} 对于向量空间 L 的任意一组 K-基的变换方阵, 则

$$N_{L|K}(\alpha) = \det(A_{\alpha}), T_{L|K}(\alpha) = tr(A_{\alpha}),$$

其中 $tr(A_{\alpha})$ 表示方阵 A 的迹.

- 6. (P24 Exer 1) 求证
- (1) 如果 α 是代数整数, 则 α 的每个共轭元素也是代数整数;
- (2) 设 L|K 是数域的扩张,则

$$N_{L|K}(\mathcal{O}_L) \subset \mathcal{O}_K, T_{L|K}(\mathcal{O}_L) \subset \mathcal{O}_K;$$

- (3) 设 L|K 是数域的扩张, $\alpha \in L$, 则 $\alpha \in \mathcal{O}_L \iff \alpha$ 在 K 上的极小多项式属于 $\mathcal{O}_K[x]$.
- 7. (P24 Exer 2) 求证对于每个代数数 α , 均存在整数 $n \in \mathbb{Z}$ 使得 $n\alpha$ 是代数整数.

- 8. (P24 Exer 3 Dedekind)
- (1) 证明 $x^3 + x^2 2x + 8$ 是 $\mathbb{Q}[x]$ 中的不可约多项式. 下令 θ 为此多项式的一个根, $K = \mathbb{Q}(\theta)$;
- (2) 证明 $d_K(1, \theta, \theta^2) = 4 \cdot 503$;
- (3) 证明 $\theta' = \frac{4}{\theta} \in \mathcal{O}_K$, $\{1, \theta, \theta'\}$ 是域 K 的一组整基, 并且 d(K) = 503;
- (4) 证明对于每个 $\alpha \in \mathcal{O}_K$, $\{1, \alpha, \alpha^2\}$ 均不可能是域 K 的一组整基.

(提示: 对每个 $\alpha \in \mathcal{O}_K$, 证明 $d_K(1,\alpha,\alpha^2)$ 必为偶数).

9. (P24 Exer 4) 对于每个数域 K, 记它的复嵌入有 r_2 对, 证明

$$(-1)^{r_2}d(K) > 0.$$

- 10. (P24 Exer 5 Stickelberger) 对于每个数域 K, 证明 $d(K) \equiv 0$ 或者 $1 \pmod{4}$.
- 11. (P24 Exer 6) 设 θ 是 $f(x) = x^3 + 5x + 4$ 的一个根, $K = \mathbb{Q}(\theta)$, 证明 $d(K) = -4 \cdot 233$.
- 12. (P24 Exer 7) 设 p 为奇素数, $\omega = \zeta_p$, $K = \mathbb{Q}(\omega)$.
- (1) 证明 $K_0 = \mathbb{Q}(\omega + \omega^{-1})$ 是 k 的极大实子域 (即 K 的每个实子域均是 K_0 的子域), 并且 $[K_0:\mathbb{Q}] = \frac{p-1}{2}$;
- (2) 证明 $\mathcal{O}_{K_0} = \mathbb{Z}[\omega + \omega^{-1}]$,并且 $\{\omega + \omega^{-1}, \omega^2 + \omega^{-2}, \dots, \omega^{(p-1)/2} + \omega^{-(p-1)/2}\}$ 是 域 K_0 的一组整基;
- (3) 计算域 $K_0 = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$ 的判别式.

- 13. (P35 Exer 2) 设 A 和 B 是 Dedekind 整环 R 中的两个理想, $A = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$, $B = \mathfrak{p}_1^{f_1} \cdots \mathfrak{p}_r^{f_r}$, 其中 $\mathfrak{p}_1 \cdots \mathfrak{p}_r$ 是 R 中不同的素理想, 而 $e_i, f_i \geq 0$, 证明,
- (1) $A|B \iff e_i \leq f_i$. $(1 \leq i \leq r)$;
- (2) $A \cap B = \mathfrak{p}_1^{t_1} \cdots \mathfrak{p}_r^{t_r}, \ t_i = \max(e_i, f_i), \ (1 \le i \le r); \ A + B = \mathfrak{p}_1^{m_1} \cdots \mathfrak{p}_r^{m_r},$ $m_i = \min(e_i, f_i), \ (1 \le i \le r).$
- 14. (P35 Exer 3) 设 A 为数域 K 的分式理想, 证明

$$A^{-1} = \{ \alpha \in K \mid \alpha A \subset \mathcal{O}_K \}.$$

- 15. (P35 Exer 6) 设 A 和 B 是数域 K 的两个理想.
- (1) 证明若 A|B, 则 $N_K(A)|N_K(B)$. 试问反过来是否成立?
- (2) 若 $N_K(A)$ 为素数, 证明 A 必为 \mathcal{O}_K 的素理想. 试问反过来是否成立?
- 16. (P35 Exer 7) 设 A 是数域 K 的理想, $A = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$ 为 A 的素理想分解式, 以 $(\mathcal{O}_K/A)^{\times}$ 表示有限环 \mathcal{O}_K/A 的单位群, 令 $\varphi(A) = |(\mathcal{O}_K/A)^{\times}|$, 证明,
- (1) $\varphi(\mathfrak{p}_i^{e_i}) = N_K(\mathfrak{p}_i)^{e_{i-1}}(N_K(\mathfrak{p}_i) 1);$
- (2) $\varphi(A) = N_K(A) \cdot \prod_{\mathfrak{p} \mid A} (1 \frac{1}{N_K(\mathfrak{p})}).$
- 17. (P36 Exer 8) 设 $K = \mathbb{Q}(\alpha)$, $\alpha^3 = \alpha + 1$. 证明,
- (1) $\mathcal{O}_K = \mathbb{Z}(\alpha)$;
- (2) $23\mathcal{O}_K = \mathfrak{p}_1^2\mathfrak{p}_2$, $\sharp \mathfrak{p} \mathfrak{p}_1 = (23, \alpha 10), \mathfrak{p}_2 = (23, \alpha 3);$
- (3) $\mathfrak{p}_1,\mathfrak{p}_2$ 是 \mathcal{O}_K 中不同的素理想;
- (4) $N_K(\mathfrak{p}_1) = N_K(\mathfrak{p}_2) = 23.$
- 18. (P36 Exer 9) 试问二次域 $\mathbb{Q}(\sqrt{10})$ 中的理想 $(2,\sqrt{10})$ 是否为主理想?

- 19. (P36 Exer 10)
- (1) 设 A 是数域 K 中的理想, $N_K(A) = g$, 求证 $g \in A$;
- (2) 对于每个正整数 g, 求证 K 中满足 $N_K(A) = g$ 的理想 A 只有有限多个.
- 20. (P36 Exer 12) 设 \mathfrak{p} 为数域 K 的素理想, A 和 B 是 K 中的两个理想, 以 $\nu_{\mathfrak{p}}(A)(\geq 0)$ 表示 A 的素因子分解式中 \mathfrak{p} 的指数 (若 \mathfrak{p} 在分解式中不出现, 则 $\nu_{\mathfrak{p}}(A)=0$). 证明,
- (1) $\nu_{\mathfrak{p}}(AB) = \nu_{\mathfrak{p}}(A) + \nu_{\mathfrak{p}}(B);$
- (2) $\nu_{\mathfrak{p}}(A+B) = \min(\nu_{\mathfrak{p}}(A), \nu_{\mathfrak{p}}(B)), \ \nu_{\mathfrak{p}}(A\cap B) = \max(\nu_{\mathfrak{p}}(A), \nu_{\mathfrak{p}}(B)).$
- 21. (P36 Exer 13) 设 \mathfrak{p} 为数域 K 的素理想, 对于 $0 \neq a \in \mathcal{O}_K$, 定义 $\nu_{\mathfrak{p}}(a) = \nu_{\mathfrak{p}}(a\mathcal{O}_K)$. 并且令 $\nu_{\mathfrak{p}}(0) = +\infty$, 同时对 $n \in \mathbb{Z}$, 规定

$$n + (+\infty) = (+\infty) + (+\infty) = (+\infty) \cdot n = (+\infty) \cdot (+\infty) = +\infty.$$

证明当 $a, b \in \mathcal{O}_K$ 时,

- (1) $\nu_{\mathfrak{p}}(ab) = \nu_{\mathfrak{p}}(a)\nu_{\mathfrak{p}}(b), \ \nu_{\mathfrak{p}}(a+b) \ge \min(\nu_{\mathfrak{p}}(a), \nu_{\mathfrak{p}}(b));$
- (2) 如果 $\nu_{\mathfrak{p}}(a) \neq \nu_{\mathfrak{p}}(b)$, 则 $\nu_{\mathfrak{p}}(a+b) = \min(\nu_{\mathfrak{p}}(a), \nu_{\mathfrak{p}}(b))$;
- (3) 试问当 $\nu_{\mathfrak{p}}(a) = \nu_{\mathfrak{p}}(b)$ 时, $\nu_{\mathfrak{p}}(a+b) = \min(\nu_{\mathfrak{p}}(a), \nu_{\mathfrak{p}}(b))$ 是否成立?
- 22. (P87 Exer 3)
- (1) 求以下实二次域的类群和类数

$$K = \mathbb{Q}(\sqrt{d})$$

d = 2, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 21, 22, 23;

(2) 求以下虚二次域的类群和类数

$$K = \mathbb{Q}(\sqrt{-d})$$

d = 1, 2, 3, 5, 6, 7, 10, 11, 13, 15, 17, 19, 23, 43, 163;

(3) 求数域 $K = \mathbb{Q}(\omega)$, $\omega^3 + \omega + 1 = 0$ 的理想类数.

补充题

1. 设 $[K:\mathbb{Q}]=n, \, \alpha\in\mathcal{O}_K, \, \sigma_1,\ldots,\sigma_n:K\to\mathbb{C}$ 是 K 上的全部嵌入, 记

$$\prod_{i=1}^{n} (x - \sigma_i(\alpha)).$$

证明 $f(x) \in \mathbb{Z}[x]$.

2. 关于第 5 题 (P14 Exer 13) 和第 14 题 (P35 Exer 3) 的注记. 这两道题本身也可以作为定义,请自行思考如果以题中方式为定义,相关结论如何"直接"证明. (这是开放性问题,所谓"直接"证明不是 well-defined.)