(9日本国特許庁

公開特許公報

. ① 特許出願公開

昭53—11841

⑤Int. Cl².C 23 F 7/06

B 05 D

0)特

識別記号

砂日本分類 12 A 41 24(7) A 12 庁内整理番号 7537-42 7006-37 ❸公開 昭和53年(1978)2月2日

発明の数 1 審査請求 未請求

(全 4 頁)

❷アルミニウム表面にベ−マイト皮膜を形成す る方法

願 昭51-86689

②出 願昭51(1976)7月20日

⑦発 明 者 内山利光

3/10

堺市海山町6丁224番地 昭和

アルミニウム株式会社内

同 長谷川実

堺市海山町 6 丁224番地 昭和

アルミニウム株式会社内

⑩発 明 者 礒山永三

堺市海山町 6 丁224番地 昭和

アルミニウム株式会社内

同 浦谷和哉

堺市海山町6丁224番地 昭和

アルミニウム株式会社内

⑪出 願 人 昭和アルミニウム株式会社

堺市海山町6丁224番地

⑭代 理 人 弁理士 岸本守一 外2名

明. 細膏

1. 発明の名称

アルミニウム表面にベーマイト皮膜を形成 する方法

2. 特許請求の範囲

リチウム塩と塩基性有機化合物とを含有しかつ pH が 6 ~ 1 3 である処理液に、 6 0 ℃~沸騰温度でアルミニウムを浸渍処理するアルミニウム表面にベーマイト皮膜を形成する方法。

3. 発明の詳細な説明

この発明は、アルミニウム表面に化学酸化皮 腹、特にペーマイト皮膜を形成する方法に関する。

この明細春において、「アルミニウム」という用語は、純アルミニウム、少量の不純物を含む市販のアルミニウムおよびアルミニウムがそ

の大部分を占めるアルミニウム合金を含むものとする。

代わつて嫩装下地処理にも利用されてきていた。 しかしながら、この方法は以下のようないく つかの欠点を有していた。すなわち、

- (4) この方法により形成されたベーマイト皮膜は、適常の水、温水および無水に対しては十分な耐食性を有しているが、海水のような腐食性の強い液体に対しては、良好な耐食性を有しているとは言い難いものであった。
- (C) この方法は、アルミニウムの加熱処理として、煮沸処理とこれに続く加圧蒸気処理とを必要とするので、作業が長期間に及んで非能率的であつた。
- 付 この方法で用いられる処理液の建浴水は、 脱イオン水または無智水でなければならない。 工業用水、水道水、地下水などのように種々 のイオンを含む水を用いた場合には、ペーマ

るアルミニウム表面にベーマイト皮膜を形成する方法を要旨としている。

特別昭53-11841(2)
イト皮膜が生成しないばかりかアルミニウム
要面が褐色乃至黒色に変色する。そのため進
裕水として、劣化したイオン交換樹脂で製造
された脱イオン水を用いた場合や、前処理で
用いた水洗水などが混入した建浴水を用いた 場合には、アルミニウム表面に上記の変色現 象をきたすおそれがある。したがつて遮浴水の管理には常時十分な配慮が要求された。

という点である。

この発明は、上記のようないくつかの欠点に 遭みてなされたものであり、これらの欠点をす べて克服するペーマイト皮膜の形成方法を提供 することを目的としている。

この発明は、リチウム塩と塩素性有機化合物 とを含有しかつ pH が 6 ~1 3 である処理液に、 6 0 ℃~沸騰温度でアルミニウムを浸渍処理す

乳酸塩のようなリチウムの有機塩を用いた場合には、半透明かつ緻密で、無機塩の場合に比べて薄い皮膜が生成する。処理核におけるリチウム塩の濃度は、10⁻¹~5 モル/ℓ が好ましく。特に10⁻²~0.5 モル/ℓ が好ましい。濃度が10⁻² モル/ℓ未満の場合には、ベーマイト皮膜の形成が不均一なものとなり、逆に濃度が5 モル/ℓ を魅えると処理液中にリチウムの水酸化物が沈殿するので、いずれの場合も好ましくない。

塩基性有機化合物は、アルミニウム表面に生 成するベーマイト皮膜を均一な厚さのものとする ためのものであり、pH を調整しかつりチウムの水酸化物の沈澱を防止する作用を果すものである。この例としては、ヒドラジン、モノエタノールアミン、ジェタノールアミン、モノエチルアミン、ジェチル

アミン、トリエチルアミンなどのアミン類が挙げられる。塩基性有機化合物の濃度は、10⁻⁶~1 モル/8 が好ましく、特に10⁻¹~0.1 モル/8 が好ましい。濃度が10⁻⁶ 未満の場合には、ベーマイト皮膜の形成が十分に進まずかつ処理被中にリチゥムの水酸化物が沈報することを防止できず、逆に濃度が1 モル/2 を魅えると、処理被のpH が高くなりすぎるので、いずれの場合も好ましくない。

処理液の pH は 6 ~ 1 3 の範囲内にある。pH が 6 未高ではアルミニウム表面におけるペーマイト皮膜の形成が乏しく、逆に pH が 1 3 を越えるとアルカリによるアルミニウム表面のエッチングが進行してぎるので、いずれの場合も好ましくない。特に好ましい pH の範囲は 8~1 2である。 pH 観整剤としては、上述の塩基性有

さの皮膜を得ることができる。

37

処理液の調製に用いられる整浴水は、脱イオン水、 器留水のほか水道水、 地下水のように種々のイオンを含有する水であつてもよい。 この理由は明確ではないが、 つぎのように考えられる。 すなわち、 この発明における リチウム 塩は、アルミニウム 要面を梅色乃至 黒色に 変色 させる現象をもたらす鉄イオン等のイオンが処理液中でアルミニウム 表面に付着することを妨げる作用を有するからである。

この浸漬処理によって、アルミニウム表面に 原さ約 0.1~5 μのベーマイト皮質が形成される。そしてこの皮質は孔を生じるおそれがなく、・
耐水に対しても優れた耐食性を有するものである。

なお、この発明における処理被に、さらにり

特別形53-11841(3) 機化合物類のほか、アンモニア水、アルカリ金属のほか、アンモニア水、アルカリ金属の水酸化物、同炭酸塩、同重炭酸塩、同即酸塩、同リン酸塩、同水 ウ酸塩、同かイ酸塩のような塩類、アルミン酸 塩などが挙げられる。アルカリ金属またはアルカリ土類金属の塩類を用いた場合には、酸密で 堅牢な皮膜が生成する。またアルミン酸塩を用いた場合には、皮膜の溶解が抑制されて、均一で厚い皮膜が短時間のうちに生成する。

アルミニウムの浸渍処理は、処理被の温度が60℃~沸燥温度において行なわれる。処理液の温度が60℃未満ではペーマイト皮膜の生成に長時間を要するので好ましくない。温度は上記範囲内において高いほど厚い皮膜が得られる。

浸漬処理時間は、長時間である方が厚い皮膜を形成できるが、通常は5~60分で十分な厚

....

チウム塩以外のアルカリ金塩塩またはアルカリ土類金属塩を含有したものを用いた場合に比べて一層 写く て耐 食性に優れたペーマイト 皮膜が生成する。またこの発明により形成されたペーマイト 皮膜に、約1~5%の圧力で加圧蒸気処理を施すことにより皮膜の耐食性を一層向上させることがアウス-

この発明は以上のとおり構成されているので、 建浴水として脱イオン水、 無留水のほかに工業 - 用水、水道水、地下水などを用いることができ、 処理時間を単糖させて作業能率の同上を図ることができる。そして得られたペーマイト皮膜は、 優れた耐食性を有するものであり、 海水に対し てもアルミニウムを効果的に保護することがで

特限部53-11841 (4)

以下、この発明の実施例を示す。もつともとの発明はこれら実施例によつて限定されるものではない。

各実施例において、JIS A1100-H24 の アルミニウム材を用いて、数1の条件で表面に ベーマイト皮積を形成した。さらに得られた皮 膜について数2のとおり性能試験を行つた。 (以下余白)

121	被某件在我少人的			
1	価的な自体に行動	中の毎	Ø pH	*
ı	0.2 Eave 1914/m 737 0.025Eave	TAKY # 1-4 00,05=51/8	11.0	950以上の 編成で20分 観覧値する
L1M3 01 EW/	•	校観ナトリラム 0.0 1 ゼル/8	10.3	,
CH 200Li 0.1 451/8	•	1	10.1	•
Li, CO, 03 & ~/	€/±fnT?> 0.0 5 €v/\$	ı	11.3	-
COOL i COOL i 0.2 56//	918/-44? 0.0 5 44/2	1	10.3	
LiCe 0.05 & W/	1)18/-47?7 0.0 4 44/2	Mg SO 0.0 1 ₹11/18	9.8	•
Lino, 0.2 5m/t	tiss/~ut?v 0.04 m/l	1	10.2	
X#1-NT		0.025 En/8	9.8	病職権限で 20分割数する
	3.03 をW/8 0.03 をW/8 0.05 をW/8 x x x / - w T	10.03 をW/1 0.05	3.0.3 モル/ 0.0.5 モル/ 0.0.5 モル/ 0.0.5 モル/ 0.0.5 モル/ 0.0.5 モル/ 0.0.5 モル/ 0.0.4 モル/ 0.0.1 モル/ 0.0.1 モル/ 0.0.4 エル 0.0.2.5 モル/ 0.0.4 モル/ 0.0.4 モル/ 0.0.4 エル 0.0.2.5 モル/ 0.0.4 モル/ 0.0.4 エル 0.0.2.5 モル/ 0.0.4 モル/ 0.0.4 エル 0.0.2.5 モル/ 0.0.4 エル 0.0.4 エル 0.0.2.5 モル/ 0.0.4 モル/ 0.0.4 エル 0.0.5 モル/ 0.0.4 エル 0.0.4 エル 0.0.5 モル/ 0.0.4 エル 0.	0.03 モレバ 0.05 モルバ 0.02 モルバ 0.05 モルバ 0.05 モルバ 0.05 モルバ 0.04 モルバ ロルガミン 水道水は大野 転換がら 0.000 0.04 ロルガミン 水道水は大野

(なお、皮膜質量の測定は、JISH8680「腸

		表		2 .	
試料	外観	皮膜重量 (m&/dm²)	耐アルカ り値 (砂)	自然海水浸漉 試験(期間: 5ヶ月間)	孔食発生促進 液による腐食 試験(浸漬時間:100時間)
実施例1 で得た試 科	乳白色	6 2.1	5 5	貝類、海藻が 付着したが孔 食の発生は殆 んど認められ なかつた。	孔食の発生は ほとんど認め られなかつた。
実施例2 で得た試 料	,	5 5.8	5 2		g
実施例3 で得た試料	•	4 7.9	4 9	,	,
実施例 4 で得た試 料	灰白色	5 8.3	5.5	,	•
実施例 5 で得た試 料	ごく脚 い乳白 色	4 0.5	4 4	8	,
実施例 6 で得た試 料	,	5 3.8	4 1		a .
実施例 7 で得た試 料	¥	4 5.8	4 9	P	f
比較例で 得た試料	銀白色	1 1.3	1 2	良職、梅薬が 付着し、斑点 状の腐食が生 じた。	残い孔食が全 面に少数発生 した。
無処理のアルバニウム	,	_	1	貝類、海藻が 付着すると共 にアルミニウム素 地には孔食が 多数発生した。	深い孔食が全 面に多数発生 した。

12/

極酸化皮膜厚さ試験方法」における皮膜重量試験方法に単じて行った。耐アルカリ値は、J 1 S H 8 6 8 1 「陽極酸化皮膜の耐食試験方法」におけるアルカリ滴下試験方法と同様の条件で、NaOH 液を滴下してからアルミニウム表面より気泡が発生するまでの時間により、アルカリ性に対する耐食性を評価したものである。孔食発生促進校による腎食試験は、NaCe (0.005 重量%)を含む液に試料を浸漉することにより行つた。]

B L

特許出願人 昭和アルミニウム株式会社 代 理 人 岸 本 守 ー データ 外 2 名