

Motion Estimation and Classification in Compressive Sensing from Dynamic Measurements

Aug 28, 2014

Vijay Rengarajan, A.N. Rajagopalan, R. Aravind

Department of Electrical Engineering Indian Institute of Technology Madras http://www.ee.iitm.ac.in/ipcvlab

OUTLINE

- Compressed sensing (CS) an overview
- Motion in CS
- Motion estimation using CS measurements
 - Estimation of a single warp
 - Blockwise motion estimation
- Application: Compressive classification

CS HARDWARE

DMD : Digital micromirror device RNG : Random number generator

CS MEASUREMENT AND RECONSTRUCTION

Measurement:

$$\mathbf{y} = \mathbf{\Phi} \mathbf{x} \tag{1}$$

Reconstruction:

$$\widehat{\mathbf{x}} = \Psi \widehat{\alpha}, \tag{2}$$

 $\widehat{\alpha} = \arg\min_{\alpha} \|\alpha\|_1$ subject to $\mathbf{y} = \mathbf{\Phi} \mathbf{x}$ and $\mathbf{x} = \Psi \alpha$

x: signal/image $\in \mathbb{R}^N$

y: measurement vector $\in \mathbb{R}^M$, $M \ll N$

 Φ : measurement matrix $\in \mathbb{R}^{M \times N}$

 Ψ : basis, in which **x** is sparse

 α : basis coefficients $\in \mathbb{R}^N$

THE PROBLEM

- Sequential acquisition of measurements in a compressed sensing (CS) camera, such as a single pixel camera, lures temporal artifacts
- Manifestation of such artifacts is different from that of a conventional optical camera
- Relative motion between the camera and the scene renders the CS reconstruction process noisy
- We estimate the relative motion using a CS measurement vector against a CS reference vector (which is acquired when there is no motion)
- We assume a planar scene captured with only a global relative motion

RELATED WORKS

- Davenport et al. (2007) Electronic Imaging
 - Compressive classification problem is discussed in which the probe measurement is considered to be affected by only a single warp
 - o Gallery contains CS measurements of all possible warps of images
- O Duarte et al. (2007) ICIP
 - CS measurements are acquired at various image resolutions, and a multi-scale classification is discussed
- Both the methods consider the case where the observed CS vector is affected by a single warp

MOTION IN CS

 Given an image x and its warped version x_p, it is possible to estimate the warp p using an energy minimisation based on Taylor series

$$\widehat{\mathbf{p}} = \underset{\mathbf{p}}{\text{arg min}} \|\mathbf{x}_{\mathbf{p}} - \mathbf{x}(\mathbf{p})\|_{2}^{2}$$
with $\mathbf{x}(\mathbf{p}) = \mathbf{x} + \nabla \mathbf{x} \cdot \mathbf{J}(\mathbf{x}) \cdot \mathbf{p}$ (3)

- On iterative algorithm could be developed such that the residual energy $\|\mathbf{x_p} \mathbf{x(p)}\|_2^2$ reduces in each iteration (Baker and Matthews, 2003)
- Problem: Given y, CS measurement with no motion, and yp, CS measurement with a single warp, how to estimate the parameter vector p?
- Is it possible to develop an algorithm to iteratively estimate p? Will it converge?

8

Image domain

$$\mathbf{x}_{\mathbf{p}} = \mathbf{x} + \mathcal{D}(\nabla \mathbf{x}) \; \mathbf{p} + \mathbf{e}_{\mathbf{x}} \tag{4}$$

where *u*th row, $\mathcal{D}(\nabla \mathbf{x})[u,:] = \nabla \mathbf{x}[u,:] \mathbf{J}(u)$, for u = 1,...,N

CS domain

$$\begin{aligned} \mathbf{y}_{p} &= \mathbf{\Phi} \mathbf{x}_{p} \\ &= \mathbf{\Phi} (\mathbf{x} + \mathcal{D}(\nabla \mathbf{x}) \mathbf{p} + \mathbf{e}_{\mathbf{x}}) \\ \mathbf{y}_{p} &= \mathbf{y} + \mathbf{\Phi} \mathcal{D}(\nabla \mathbf{x}) \mathbf{p} + \mathbf{e}_{\mathbf{y}} \end{aligned} \tag{5}$$

CS problem

$$\widehat{\mathbf{p}} = \arg\min_{\mathbf{p}} ||\mathbf{e}_{\mathbf{y}}||_2 \tag{6}$$

Will this converge?

- A set of affine transformed images of the same scene forms a 6D manifold
- O Suppose images \mathbf{x}_1 and \mathbf{x}_2 are points on this manifold \mathcal{M} . If Φ is an orthoprojector from \mathbb{R}^N to \mathbb{R}^M , then the projections of all images in the affine set using Φ will form another manifold $\Phi \mathcal{M}$
- O The vectors $\mathbf{y}_1 = \mathbf{\Phi} \mathbf{x}_1$ and $\mathbf{y}_2 = \mathbf{\Phi} \mathbf{x}_2$ are points on this manifold $\mathbf{\Phi} \mathcal{M}$
- For $M = O(d \log (\mu N \epsilon^{-1})/\epsilon^2) < N$, where μ depends on the properties of the manifold such as volume and curvature, d is the dimension of the manifold, and $0 < \epsilon < 1$, the following holds with high probability (Baraniuk and Wakin 2009):

$$(1 - \epsilon)\sqrt{\frac{M}{N}} \le \frac{\|\mathbf{\Phi}\mathbf{x}_1 - \mathbf{\Phi}\mathbf{x}_2\|_2}{\|\mathbf{x}_1 - \mathbf{x}_2\|_2} \le (1 + \epsilon)\sqrt{\frac{M}{N}}$$
 (7)

In our case, we have

$$(1 - \epsilon)\sqrt{\frac{M}{N}}\|\mathbf{x}_{\mathbf{p}} - \mathbf{x}_{\widehat{\mathbf{p}}}\|_{2}^{2} \leq \|\mathbf{\Phi}\mathbf{x}_{\mathbf{p}} - \mathbf{\Phi}\mathbf{x}_{\widehat{\mathbf{p}}}\|_{2}^{2} \leq (1 + \epsilon)\sqrt{\frac{M}{N}}\|\mathbf{x}_{\mathbf{p}} - \mathbf{x}_{\widehat{\mathbf{p}}}\|_{2}^{2}$$

 \bigcirc For $\epsilon \approx 0$,

$$\|\boldsymbol{\Phi}\boldsymbol{x}_{\boldsymbol{p}} - \boldsymbol{\Phi}\boldsymbol{x}_{\widehat{\boldsymbol{p}}}\|_2^2 \approx \lambda \|\boldsymbol{x}_{\boldsymbol{p}} - \boldsymbol{x}_{\widehat{\boldsymbol{p}}}\|_2^2$$

for some constant λ . Hence, a monotonic decrease of residual energy is assured with high probability

Since

$$M = O(d \log (\mu N \epsilon^{-1})/\epsilon^2)$$

$$\propto (\log \epsilon^{-1})/\epsilon^2 = O(1/\epsilon^2),$$

choose M sufficiently large to ensure that the algorithm converges

```
Algorithm 1: (\widehat{\mathbf{p}}, e) = estimate_motion(\mathbf{y_p}, \mathbf{y}, \mathbf{\Phi})
Initialise \widehat{\mathbf{p}} = [1, 0, 0, 1, 0, 0]^T. Determine \mathbf{x} from \mathbf{y} repeat
```

- Warp ${\bf x}$ and $\nabla {\bf x}$ by $\widehat{{\bf p}}$ to get ${\bf x}_{\widehat{{\bf p}}}$ and $\nabla {\bf x}_{\widehat{{\bf p}}}$ respectively
- Calculate descent matrix, $\mathbf{S} = \mathbf{\Phi} \ \mathcal{D}(\nabla \mathbf{x}_{\widehat{\mathbf{p}}}) \in \mathbb{R}^{M \times 6}$
- Calculate Hessian, $\mathbf{H} = \mathbf{S}^T \mathbf{S} \in \mathbb{R}^{6 \times 6}$
- Calculate $\widehat{\mathbf{y}} = \mathbf{\Phi} \ \mathbf{x}_{\widehat{\mathbf{p}}}$
- Calculate $\Delta \mathbf{p} = \mathbf{H}^{-1} \mathbf{S}^T (\mathbf{y}_{\mathbf{p}} \widehat{\mathbf{y}})$
- Update $\widehat{\mathbf{p}} = \widehat{\mathbf{p}} + \Delta \mathbf{p}$

until p converges

return $\hat{\mathbf{p}}$ and residual energy $e = \|\mathbf{y_p} - \hat{\mathbf{y}}\|_2^2$

In real cases, sequential acquisition affects the CS measurement vector continuously

BLOCKWISE ESTIMATION

```
Algorithm 2:
    (\{\widehat{\mathbf{p}}^{(j)}\}, \{e^{(j)}\}) = recursive_estimator(\mathbf{y}_{\mathbf{p}}, \mathbf{y}, \mathbf{\Phi})
    Let L = \text{length}(\mathbf{y_p}), j = 0
    (\widehat{\mathbf{p}}, e) = \text{estimate\_motion}(\mathbf{y}_{\mathbf{p}}, \mathbf{y}, \mathbf{\Phi})
    if e > \tau and L \ge 2B_{\min} then
         recursive_estimator(\mathbf{y}_{\mathbf{p}}[1:\frac{L}{2}], \mathbf{y}, \mathbf{\Phi}[1:\frac{L}{2},:])
         recursive estimator(\mathbf{y}_{\mathbf{p}}[\frac{L}{2}+1:L], \mathbf{y}, \mathbf{\Phi}[\frac{L}{2}+1:L,:])
    else
        i = i + 1
         return \widehat{\mathbf{p}}^{(j)} = \widehat{\mathbf{p}} and e^{(j)} = e
    end if
```

ADAPTIVE BLOCKWISE ESTIMATION

RESULTS

 \bigcirc **x** : 64 × 64 image from FERET database

 Φ : scrambled Hadamard matrix

 y_p : horizontal translatory motion

x-axis: measurement number blue shading: divided blocks

y-axis: camera translation in pixels blue circle: estimated motion for a block

red line: actual camera motion

RESULTS

 \bigcirc **x** : 64 × 64 image from FERET database

 $\boldsymbol{\Phi}$: scrambled Hadamard matrix

 $\mathbf{y_p}$: 2D translation camera motions

red line: actual camera motion blue circle: estimated motion

COMPRESSIVE CLASSIFICATION

- 200 persons in FERET database
- One CS gallery vector per person
- To assign the incoming probe vector to a gallery person

$$c^* = \arg\min_{1 \le c \le C} \{e_c\}, \text{ where } e_c = \frac{1}{M} \sum_{j=1}^{Q} e_c^{(j)}$$

and j = 1, ..., Q represents the block number in Algorithm 2.

Recognition results (in %) on FERET database for continuous camera motion during acquisition

	M = 200	
Type of motion	Adaptive	No motion estimation
(r_z)	93.5	55.0
(t_x, t_y)	95.5	52.5
$(t_x, t_y) $ $(t_x, t_y, r_z) $ Affine	95.0	53.0
Affine	88.0	48.5

CONCLUSION

- Proposed an algorithm to estimate relative motion between camera and scene during acquisition of CS measurements
- Discussed how a descent algorithm can be formulated to estimate the motion parameter vector from these measurements
- Demonstrated the utility of our motion estimation framework in the CS domain for the face recognition problem