

How to Solve a Linear System

Goran Flegar

W/: Hartwig Anzt, Yen-Chen Chen, Terry Cojean, Pratik Nayak, Enrique S. Quintana-Ortí, Mike Tsai

- Real-world problem transformed into a linear system via:
 - PDE discretizations, graph representations
 - Large number of unknowns (1M+, full matrix 8TB)
 - Most matrix elements are zero

- Real-world problem transformed into a linear system via:
 - PDE discretizations, graph representations
 - Large number of unknowns (1M+, full matrix 8TB)
 - Most matrix elements are zero
- Possible approach: iterative methods
 - Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver
 - Preconditioners
 - reduce the number of iterations

- Real-world problem transformed into a linear system via:
 - PDE discretizations, graph representations
 - Large number of unknowns (1M+, full matrix 8TB)
 - Most matrix elements are zero
- Possible approach: iterative methods
 - Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver
 - Preconditioners
 - reduce the number of iterations
 - Special hardware (e.g. GPUs)
 - Probably not a good idea to implement everything from scratch...

- Real-world problem transformed into a linear system via:
 - PDE discretizations, graph representations
 - Large number of unknowns (1M+, full matrix 8TB)
 - Most matrix elements are zero
- Possible approach: iterative methods
 - Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver
 - Preconditioners
 - reduce the number of iterations
 - Special hardware (e.g. GPUs)
 - Probably not a good idea to implement everything from scratch...
 - Use a library instead:

- Real-world problem transformed into a linear system via:
 - PDE discretizations, graph representations
 - Large number of unknowns (1M+, full matrix 8TB)
 - Most matrix elements are zero
- Possible approach: iterative methods
 - Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver
 - Preconditioners
 - reduce the number of iterations
 - Special hardware (e.g. GPUs)
 - Probably not a good idea to implement everything from scratch...
 - Use a library instead:

The Ginkgo library

- Linear operator algebra library
 - Matrices, preconditioners, (Krylov) solvers

Joint effort: Innovative Computing Lab at University of Tennessee, Knoxvile; Karlsruhe Institute of Technology; University Jaume I

The Ginkgo library

- Linear operator algebra library
 - Matrices, preconditioners, (Krylov) solvers
- Supports execution on different devices
 - GPU
 - Sequential reference CPU
 - OpenMP under development
 - Plans for multi GPU, CPU + GPU, full node

Joint effort: Innovative Computing Lab at University of Tennessee, Knoxvile; Karlsruhe Institute of Technology; University Jaume I


```
int main()
 // Instantiate a CUDA executor
  auto exec = gko::CudaExecutor::create(0, gko::OmpExecutor::create());
 // Read data
  auto A = gko::read<gko::matrix::Csr<>>(std::cin, exec);
  auto b = gko::read<gko::matrix::Dense<>>(std::cin, exec);
  auto x = gko::read<gko::matrix::Dense<>>(std::cin, exec);
 // Create the solver
  auto solver = gko::solver::Cg<>::Factory::create()
    .with preconditioner(
      qko::preconditioner::BlockJacobiFactory<>::create(exec, 32))
    .with_criterion(gko::stop::Combined::Factory::create()
      .with criteria(
        gko::stop::Iteration::Factory::create()
          .with_max_iters(20u)
          .on_executor(exec),
        gko::stop::ResidualNormReduction<>::Factory::create()
          .with_reduction_factor(1e-15)
          .on_executor(exec))
      .on executor(exec))
    .on_executor(exec);
 // Solve system
  solver->generate(give(A))->apply(lend(b), lend(x));
 // Write result
 write(std::cout, lend(x));
```

Library features

Library features: extensibility

users can provide new matrices, solvers, preconditioners, stopping criteria, loggers

Without recompiling the library!

- Real-world problem transformed into a linear system via:
 - PDE discretizations, graph representations
 - Large number of unknowns (1M+, full matrix 8TB)
 - Most matrix elements are zero
- Possible approach: iterative methods
 - Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver
 - Preconditioners
 - reduce the number of iterations
 - Special hardware (e.g. GPUs)
 - Probably not a good idea to implement everything from scratch...
 - Use a library instead:

$$Ax = b, \ A \in \mathbb{R}^{n \times n}$$

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$\longrightarrow M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$
 M^{-1} easy to compute

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$
 M^{-1} easy to compute

Do not compute the preconditioned system matrix explicitly!

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute

$$y := (M^{-1}A)x$$

Do not compute the preconditioned system matrix explicitly!

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

 M^{-1} easy to compute

Do not compute the preconditioned system matrix explicitly!

$$y := (M^{-1}A)x$$

$$z := Ax$$

$$y := M^{-1}z$$

$$y := M^{-1}z$$

Preconditioner application

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute

 $y := (M^{-1}A)x$

Do not compute the preconditioned system matrix explicitly!

Generate the preconditioner matrix, and store it in a form suitable for application

$$A \rightsquigarrow M^{-1}$$

Preconditioner setup

Preconditioner application

$$Ax = b, A \in \mathbb{R}^{n \times n}$$

$$M^{-1}Ax = M^{-1}b$$

Replace the original system with an equivalent preconditioned system

$$M \approx A$$

$$M^{-1}$$
 easy to compute

 $y := (M^{-1}A)x$

Do not compute the preconditioned system matrix explicitly!

Generate the preconditioner matrix, and store it in a form suitable for application

$$A \rightsquigarrow M^{-1}$$

Generation via factory

$$z := Ax$$

$$y := M^{-1}z$$

Linear operator application

Example: Block-Jacobi preconditioning

- Block-Jacobi preconditioning
 - Use only diagonal blocks for approximation

$$\operatorname{diag}(A) = [D_1, \dots, D_k]$$
$$M := \operatorname{diag}(D_1, \dots, D_k)$$

Anzt, Dongarra, Flegar, Quintana-Ortí, Variable-size batched Gauss—Jordan elimination for block-Jacobi preconditioning on graphics processors, ParCo

Benefits of block-Jacobi

- 56 matrices from SuiteSparse with inherent block structure
- MAGMA-sparse open source library
 - IDR solver
 - Scalar Jacobi preconditioner
 - Supervariable agglomeration
 - Detects block structure of the matrix
- Improves the robustness of the solver

Benefits of block-Jacobi

- 56 matrices from SuiteSparse with inherent block structure
- MAGMA-sparse open source library
 - IDR solver
 - Scalar Jacobi preconditioner
 - Supervariable agglomeration
 - Detects block structure of the matrix
- Improves the robustness of the solver
- Improves convergence of the solver

Complete solver runtime

Chebyshev3

nd24k

G3_circuit

bcsstk38

ship_003

Current Research: Adaptive precision block-Jacobi

Preconditioner is an approximation of the system matrix

- Applying a preconditioner inherently carries an error
- For block-Jacobi the relative error of z is usually around 0.01-0.1

$$z := M^{-1}y \approx A^{-1}y$$

Current Research: Adaptive precision block-Jacobi

Preconditioner is an approximation of the system matrix

- Applying a preconditioner inherently carries an error
- For block-Jacobi the relative error of z is usually around 0.01-0.1

$$z := M^{-1}y \approx A^{-1}y$$

Preconditioner application is memory bounded

- Most of the cost comes from reading the matrix from memory
- Idea: use lower precision to store the matrix

Adaptive precision in inversion-based block-Jacobi:

- All computation is done in double precision
- Preconditioner matrix is stored in lower precision, with roundoff error "u"
- Error bound:

$$\frac{||\delta z_i||}{||z_i||} \lesssim (c_i \kappa(D_i) u_d + u) \kappa(D_i)$$

Anzt, Dongarra, Flegar, Higham, Quintana-Ortí, Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers, CCPE

- Real-world problem transformed into a linear system via:
 - PDE discretizations, graph representations
 - Large number of unknowns (1M+, full matrix 8TB)
 - Most matrix elements are zero
- Possible approach: iterative methods
 - Krylov-subspace based linear solvers
 - SpMV
 - BLAS-1 operations
 - Sparse matrix formats & SpMV
 - accelerate each iteration of the solver
 - Preconditioners
 - reduce the number of iterations
 - Special hardware (e.g. GPUs)
 - Probably not a good idea to implement everything from scratch...
 - Use a library instead:

 3.2
 0
 1.2
 0

 0
 0
 0.4
 0

 2.7
 1.3
 0
 4.1

 0.1
 0
 0
 2.7

3.2 0 1.2 0	3.2 1.2
0 0.4 0	0.4
2.7 1.3 0 4.1	2.7 1.3 4.1
0.1 0 0 2.7	0.1 2.7

3.2 0 1.2 0	3.2 1.2	0 2
0 0.4 0	0.4	2
2.7 1.3 0 4.1	2.7 1.3 4.1	0 1 3
0.1 0 0 2.7	0.1 2.7	0 3

... leads to CSC

Sparse matrix formats

... leads to CSC

"Standard" approach

3.2	1.2	0.4	2.7	1.3	4.1	0.1	2.7	Values (val)
0	2	2	0	1	3	0	3	Column indexes (colidx)
0	2	3	6					Row pointers (rowptr)

```
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
  for (int i = 0; i < m; ++i) {
    for (int j = rowptr[i]; j < rowptr[i+1]; ++j)
       y[i] += val[j] * x [ colidx[j] ];
}</pre>
```

~ cuSPARSE SpMV

```
3.2 1.2 0.4 2.7 1.3 4.1 0.1 2.7 Values (val)

0 2 2 0 1 3 0 3 Column indexes (colidx)

0 2 3 6 Row pointers (rowptr)

y := Ax
void SpMV_CSR(int m, int *rowptr, int *colidx, float *val, float *x, float *y) {
for (int i = 0; i < m; ++i) {
```

for (int j = rowptr[i]; j < rowptr[i+1]; ++j)</pre>

y[i] += val[j] * x [colidx[j]];

parallelize outer loopcuSPARSE SpMV

Bell & Garland '08

Load imbalance!

Example

Freescale/transient

Example

* GTX 1080

Can we do better than HYB using CSR?

Example

* GTX 1080

Can we do better than HYB using CSR?

55x speedup

YES!

Publish a paper about it?

You can...

Flegar, Quintana-Ortí, Balanced CSR Sparse Matrix-Vector Product on Graphics Processors, Euro-Par'17

Flegar, Anzt, Overcoming Load Imbalance for Irregular Sparse Matrices, IA3'17

<irony>

- Think of a "new" algorithm / format for sparse matrix-vector product.
 - Does not have to be great, can do stuff in software that the hardware will already do automatically, or not even give correct results (no one checks).

Copyright notice: the "<irony>" tag was shamelessly stolen from Georg Hager's "Thirteen modern ways to fool the masses with performance results on parallel computers" talk, see https://blogs.fau.de/hager/archives/category/fooling-the-masses

<irony>

- Think of a "new" algorithm / format for sparse matrix-vector product.
 - Does not have to be great, can do stuff in software that the hardware will already do automatically, or not even give correct results (no one checks).
- Find 10 20 matrices from the SuiteSparse collection where your algorithm is faster than any other algorithms / formats you compare.
 - Not that difficult, there's 3000 matrices with different properties, no algorithm handles all the corner cases properly.

Copyright notice: the "<irony>" tag was shamelessly stolen from Georg Hager's "Thirteen modern ways to fool the masses with performance results on parallel computers" talk, see https://blogs.fau.de/hager/archives/category/fooling-the-masses

<irony>

- Think of a "new" algorithm / format for sparse matrix-vector product.
 - Does not have to be great, can do stuff in software that the hardware will already do automatically, or not even give correct results (no one checks).
- Find 10 20 matrices from the SuiteSparse collection where your algorithm is faster than any other algorithms / formats you compare.
 - Not that difficult, there's 3000 matrices with different properties, no algorithm handles all the corner cases properly.
- Write a paper claiming that your algorithm is "on average 50% faster than the competitors", on a "representative" subset.
- Send it to a conference / journal and hope the reviewers do not know a lot about SpMV (most likely true).

Copyright notice: the "<irony>" tag was shamelessly stolen from Georg Hager's "Thirteen modern ways to fool the masses with performance results on parallel computers" talk, see https://blogs.fau.de/hager/archives/category/fooling-the-masses

<irony>

- Think of a "new" algorithm / format for sparse matrix-vector product.
 - Does not have to be great, can do stuff in software that the hardware will already do automatically, or not even give correct results (no one checks).
- Find 10 20 matrices from the SuiteSparse collection where your algorithm is faster than any other algorithms / formats you compare.
 - Not that difficult, there's 3000 matrices with different properties, no algorithm handles all the corner cases properly.
- Write a paper claiming that your algorithm is "on average 50% faster than the competitors", on a "representative" subset.
- Send it to a conference / journal and hope the reviewers do not know a lot about SpMV (most likely true).
- Victory! Think of another format and repeat.

Copyright notice: the "<irony>" tag was shamelessly stolen from Georg Hager's "Thirteen modern ways to fool the masses with performance results on parallel computers" talk, see https://blogs.fau.de/hager/archives/category/fooling-the-masses

In the real world...

THERE IS NO "BEST" SPARSE MATRIX FORMAT / SpMV ALGORITHM

Can we figure out which format is going to give best performance for a given problem?

Maybe...

Choosing the winner a priori

CSR-I designed for irregular patterns

How to measure irregularity?

Deviation of row lengths from the mean.

Is "5" regular or irregular?

Depends on the density of the matrix (mean #rows)

Scatter plot of speedup vs normalized std. dev.

Choosing the winner a priori

CSR-I designed for irregular patterns

How to measure irregularity?

Deviation of row lengths from the mean.

Is "5" regular or irregular?

Depends on the density of the matrix (mean #rows)

Scatter plot of speedup vs normalized std. dev.

Combining both approaches

Outlook

Choosing the correct combination of

matrix format solver preconditioner

... requires expert knowledge or significant trial and error.

Design a tool that does it (semi-)automatically?

