Generating Sets of Ideals of Endomorphism Monoids

Robert Gray

University of St Andrews

Setting the scene

Given a mathematical structure M the set of endomorphisms of M (written as $\operatorname{End}(M)$) forms a monoid (i.e. a semigroup with identity).

Examples

- When $M = \{1, ..., n\}$ then $\operatorname{End}(M) \cong T_n$ the full transformation semigroup.
- When M = V an n-dimentional vector space then $\operatorname{End}(M) \cong \operatorname{GLS}(n, F)$ the *general linear semigroup* of <u>all</u> $n \times n$ matrices over the field F.
- When $M=Y_n$ an n-element chain then $\operatorname{End}(M)\cong O_n$ the semigroup of order preserving mappings of $\{1,\ldots,n\}$.

History

Theorem(Howie, 1966) Every singular map of T_n is a product of idempotent maps (maps that satisfy $\alpha^2 = \alpha$):

$$\operatorname{Sing}_n = \{ \alpha \in T_n : 1 \le |\operatorname{Im}(\alpha)| < n \}.$$

Theorem(Erdos, 1967) Every singular $n \times n$ matrix of GLS(n, F) is a product of idempotent matrices (matrices M satisfying $M^2 = M$):

$$\operatorname{Sing}(V) = \{ A \in \operatorname{End}(V) : 1 \le \dim(\operatorname{Im}(A)) < n \}.$$

Question What is the smallest number of idempotent maps (matrices) that we need in order to generate all the singular maps (matrices)?

More generally

Given a finite idempotent generated semigroup *S*:

1. What is the smallest number of elements required to generate *S*?

$$rank(S) = min\{|A| : \langle A \rangle = S\}.$$

2. What is the smallest number of idempotents required to generate *S*?

$$idrank(S) = min\{|A| : A \subseteq E(S), \langle A \rangle = S\}.$$

3. How do these numbers compare i.e. how much more difficult is it to generate *S* if we restrict our choice of generators to the set of idempotents?

A few more examples

Ideals of T_n and $\operatorname{End}(V)$

- $K(n,r) = \{\alpha \in T_n : |\operatorname{Im}(\alpha)| \le r\};$
- $I(r, n, q) = \{A \in \operatorname{End}(V) : \dim(\operatorname{Im}(A)) \le r\};$

Order preserving maps

• $O_n = \{ \alpha \in \operatorname{Sing}_n : (\forall x, y \in X_n) \ x \leq y \Rightarrow x\alpha \leq y\alpha \};$

Partial transformations

- $K'(n,r) = \{\alpha \in P_n : |\operatorname{Im}(\alpha)| \le r\};$
- PO_n partial order preserving transformations.

Idempotent ranks

Semigroup	Rank	Idrank
$\overline{\mathrm{Sing}_n}$	$\frac{n(n-1)}{2}$	$\frac{n(n-1)}{2}$
$\operatorname{Sing}(V)$	$ \frac{q^n-1}{q-1} $	$\frac{q^n-1}{q-1}$ where $q= F $
K(n,r)	$\int S(n,r)$	$\int S(n,r)$
I(r, n, q)	$\left[\begin{array}{c} n \\ r \end{array} \right]_q$?
K'(n,r)	S(n+1,r+1)	S(n+1,r+1)
O_n	$\mid n \mid$	2n-2
PO_n	2n-1	3n-2.

Green's relations

Green's relations in T_n

 T_n - full transformation semigroup, $\alpha, \beta \in T_n$

$$\alpha \mathcal{R} \beta \iff \operatorname{Im}(\alpha) = \operatorname{Im}(\beta)$$

$$\alpha \mathcal{L} \beta \iff \ker(\alpha) = \ker(\beta)$$

$$\alpha \mathcal{J} \beta \iff |\operatorname{Im}(\alpha)| = |\operatorname{Im}(\beta)|$$

$$J_r = \{ \alpha \in T_n : |\mathrm{Im}(\alpha)| = r \}$$

$$K(n,r) = \{\alpha \in T_n : |\operatorname{Im}(\alpha)| \le r\}$$

= $J_r \cup \ldots \cup J_1$.

$$K(n,r) = \langle J_r \rangle, \ 1 \le r < n.$$

Rees matrix semigroups

Definition

- G a finite group.
- I, Λ non-empty finite index sets.
- $P = (p_{\lambda i})$ a regular $\Lambda \times I$ matrix over $G \cup \{0\}$.
- $S = (I \times G \times \Lambda) \cup \{0\}$ with multiplication

$$(i,g,\lambda)(j,h,\mu) = \left\{ \begin{array}{ll} (i,gp_{\lambda j}h,\mu) & : & p_{\lambda j} \neq 0 \\ 0 & : & \text{otherwise} \end{array} \right.$$

$$(i, g, \lambda)0 = 0(i, g, \lambda) = 00 = 0.$$

Rectangular 0-bands

Definition A rectangular 0-band is a 0-Rees matrix semigroup over the trivial group written as $\mathcal{M}^0[\{1\};I,\Lambda;Q]$ where Q is a regular $|\Lambda| \times |I|$ matrix over $\{0,1\}$ and:

$$(i,\lambda)(j,\mu) = \left\{ egin{array}{ll} (i,\mu) & : & p_{\lambda j} = 1 \\ 0 & : & {
m otherwise} \end{array}
ight.$$

Lemma Let $S = \mathcal{M}^0[G; I, \Lambda; P]$ be an idempotent generated completely 0-simple semigroup and T be the natural rectangular 0-band homomorphic image of S $(q_{\lambda i} = 1 \Leftrightarrow p_{\lambda i} \neq 0)$. Then

- $\operatorname{rank}(S) = \operatorname{rank}(T) = \max(|I|, |\Lambda|);$
- $\operatorname{idrank}(S) = \operatorname{idrank}(T)$.

The graph $\Delta(P)$

Definition Let $S = \mathcal{M}^0[G; I, \Lambda; P]$ be a completely 0-simple semigroup. We let $\Delta(P)$ denote the undirected bipartite graph with set of vertices $I \cup \Lambda$ and an edge between i and λ if and only if $p_{\lambda i} \neq 0$.

$$S = \mathcal{M}^0[G; I, \Lambda; P]$$

Paths and products

There is a natural correspondence between non-zero products of idempotents in the rectangular 0-band T and paths from I to Λ in $\Delta(Q)$.

Product :
$$(1,2)(3,3)(4,1) = (1,1)$$

since $q_{23} = q_{34} = 1$.

Question

Question When does a square idempotent generated 0-Rees matrix semigroup *S* satisfy:

$$idrank(S) = rank(S) = max(|I|, |\Lambda|) = n?$$

Necessary $\Delta(P)$ has a perfect matching.

Hall's Condition: for all $X \subseteq I$, $|N(X)| \ge |X|$.

Sufficient $\Delta(P)$ is hamiltonian.

Every second edge of the hamiltonian circuit constitutes a generating set of idempotents with size n.

Answer

Theorem Let $S = \mathcal{M}^0[G; I, \Lambda; P]$ be an idempotent generated completely 0-simple semigroup with $|I| = |\Lambda| = n$. Then the following are equivalent:

- 1. rank(S) = idrank(S);
- 2. S satisfies SHC. ($\varnothing \subsetneq X \subsetneq I, |N(X)| > |X|$);
- 3. The minimum generating sets of S are precisely the subsets that intersect every (non-zero) \mathcal{R} -class in exactly one place and every (non-zero) \mathcal{L} -class of S in exactly one place.

Application to ideals of $\mathrm{End}(V)$

Let V be an n dimensional vector space over the finite field F where |F|=q. Let J(r,n,q) denote the top \mathcal{J} -class of the ideal I(r,n,q) where:

$$I(r, n, q) = \{ A \in \text{End}(V) : \dim(\text{Im}(A)) \le r \};$$

Greens relations in $\operatorname{End}(V)$ are given by:

$$A\mathcal{R}B \Leftrightarrow \ker(A) = \ker(B);$$

 $A\mathcal{L}B \Leftrightarrow \operatorname{Im}(A) = \operatorname{Im}(B);$
 $A\mathcal{D}B \Leftrightarrow \dim(\operatorname{Im}(A)) = \dim(\operatorname{Im}(B)).$

Theorem (Dawlings, 1980)

$$idrank(I(n-1, n, q)) = rank(I(n-1, n, q)) = \frac{q^{n-1}}{q-1}.$$

$I(2,4,2) \subseteq GF(2)^4$

Uniform distribution of idempotents

Definition We will say that $S = \mathcal{M}^0[G; I, \Lambda; P]$ has a k-uniform distribution of idempotents if the graph $\Delta(P)$ is k-regular.

Corollary Every idempotent generated completely 0-simple semigroup S with $|I| = |\Lambda|$ and a k-uniform distribution of idempotents has an idempotent basis.

Corollaries

Corollary Let V be an n dimensional vector space over the finite field F where |F|=q. Then:

$$rank(I(r, n, q)) = idrank(I(r, n, q)) = \begin{bmatrix} n \\ r \end{bmatrix}_{q}.$$

Corollary A subset of I(r, n, q) is a generating set of minimum cardinality for I(r, n, q) if and only if it consists of matrices of rank r no two of which have the same nullspace or the same image space.

Independence Algebras

Definition An *independence algebra* is an algebra (in the sense of universal algebra) that satisfies:

[E] If
$$z \in \langle X \cup \{y\} \rangle$$
 and $z \notin \langle X \rangle$ then $y \in \langle X \cup \{z\} \rangle$.

A minimal generating set is called a *basis* for A and its size is the *dimension* of A. (they all have the same size by **[E]**) **[F]** Any map from a basis of A into A can be extended to an endomorphism of A.

Examples Both sets and vector spaces are examples of independence algebras. Chains satisfy [E] but not [F].

Definition
$$K(n,r) = \{\alpha \in \operatorname{End}(A) : \dim(\operatorname{Im}(\alpha)) \leq r\}.$$

Theorem(Fountain and Lewin, 1990) If A is an independence algebra of finite rank n, then

$$K(n,r) = \langle E(J_r) \rangle$$
 for $r = 1, \ldots, n-1$.

Independence Algebras

Theorem Let A be a finite independence algebra with dimension $n \geq 3$. Then:

$$idrank(K(n,r)) = rank(K(n,r)) (r = 1, \dots, n-1).$$

The above result uses the classification of finite independence algebras given by Cameron and Szabó.

Problem Give a proof of the above result directly from the definition of independence algebra.