Esboço de gráficos:

Para esboçar o gráfico de uma função deve-se sempre que possível seguir as seguintes etapas:

- Indicar o domínio;
- Determinar os zeros (caso existam);
- Estudar a paridade;
- Estudar a continuidade;
- Identificar as assímptotas;
- Estudar a monotonia e indicar os extremos relativos;
- Determinar o sentido das concavidades do gráfico e indicar os pontos de inflexão.
- Depois destas "etapas cumpridas" tenta-se esboçar o gráfico, indicando por último o contradomínio.

Exercício:

Considere a função definida por:

$$f(x) = \begin{cases} 1 + x + e^{-\frac{1}{x}} & se \quad x \neq 0 \\ 0 & se \quad x = 0 \end{cases}$$

- 1) Faça o estudo da função referindo os seguintes aspectos:
 - a) Domínio

f) Extremos relativos

b) Paridade

g) Intervalos de monotonia

c) Continuidade

h) Pontos de inflexão e

d) Assímptotas

i) Concavidades

- a) Hissimptotus
- e) Pontos críticos
- 2) Faça um esboço do gráfico de f.
- 3) Indique o contradomínio de f.

Resolução:

- a)
- 1. Domínio: IR

2. Paridade:

$$f(-x)=1-x+e^{\frac{1}{x}} \neq f(x)$$
 $\forall x \neq 0$

$$f(-x) = 1 - x + e^{\frac{1}{x}} \neq -f(x)$$
 $\forall x \neq 0$

f não é par nem ímpar.

3. Continuidade

Se $x \neq 0$, f é continua porque é soma de uma função polinomial 1+x com a função $e^{-\frac{1}{x}}$ sendo que esta é a composta da função exponencial com uma função racional, $-\frac{1}{x}$.

Se
$$x = 0$$
 então $\lim_{x \to 0^{-}} \left(1 + x + e^{-\frac{1}{x}} \right) = 1 + \infty = +\infty$ e $\lim_{x \to 0^{+}} \left(1 + x + e^{-\frac{1}{x}} \right) = 1 + 0 = 1$.

Como $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$, f é descontínua em x=0.

Conclusão: f é contínua em $IR \setminus \{0\}$.

4. Assímptotas:

• Assímptotas verticais:

Pontos onde pode existir assímptotas verticais: x = 0.

Já vimos que:

$$\lim_{x \to 0^{-}} \left(1 + x + e^{-\frac{1}{x}} \right) = 1 + \infty = +\infty; \qquad \lim_{x \to 0^{+}} \left(1 + x + e^{-\frac{1}{x}} \right) = 1 + 0 = 1$$

 \therefore x = 0 é uma assímptota vertical (unilateral) do gráfico de f.

• Assímptotas horizontais:

$$\lim_{x \to \pm \infty} \left(1 + x + e^{-\frac{1}{x}} \right) = 1 \pm \infty + 1 = \pm \infty$$

 \therefore o gráfico de f não admite assímptotas horizontais.

Assímptotas oblíquas:

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{1 + x + e^{-\frac{1}{x}}}{x} = \lim_{x \to \pm \infty} \left(\frac{1}{x} + 1 + \frac{e^{-\frac{1}{x}}}{x} \right) = 1$$

$$b = \lim_{x \to \pm \infty} (f(x) - mx) = \lim_{x \to \pm \infty} \left(1 + x + e^{-\frac{1}{x}} - x \right) = \lim_{x \to \pm \infty} \left(1 + e^{-\frac{1}{x}} \right) = 2$$

 \therefore y = x + 2 é uma assímptota oblíqua bilateral.

1º derivada:

f é descontínua em x = 0 pelo que neste ponto não está definida a derivada.

Se
$$x \neq 0$$
, $f'(x) = 1 + \frac{e^{-\frac{1}{x}}}{x^2} = \frac{x^2 + e^{-\frac{1}{x}}}{x^2}$

5. Pontos críticos

$$x = 0$$
 pois $0 \in D_f$ mas $0 \notin D_f$

Não existe outro pontos críticos porque a função derivada não tem zeros:

$$f'(x) = 0 \Leftrightarrow \frac{x^2 + e^{-\frac{1}{x}}}{x^2} = 0 \Leftrightarrow x^2 + e^{-\frac{1}{x}} = 0 \land x^2 \neq 0$$
$$\Leftrightarrow \underbrace{e^{-\frac{1}{x}} = -x^2}_{impossivel} \land x \neq 0$$

(A derivada nunca se anula pois $e^{-\frac{1}{x}} > 0 \quad \forall x \ e - x^2 \le 0$)

6. Extremos relativos:

	$-\infty$	0	+∞
Sinal de f'	+	n.d.	+
f	▼		▼

n.d. - não definida

Como f é <u>descontínua</u> em x = 0 é necessário ver o que acontece as imagens em torno deste ponto:

- $\bullet \quad f(0) = 0$
- para x > 0 é fácil ver que $f(x) = 1 + x + e^{-\frac{1}{x}} > 1$
- para x < 0 já vimos que $\lim_{x \to 0^{-}} f(x) = +\infty$

• existe uma vizinhança em torno de x = 0 onde f(0) é a menor imagem e portanto f(0) é um mínimo relativo.

Note que apesar de f(0) ser um mínimo, a primeira derivada em torno de x = 0 não muda de sinal, mas isto não contradiz o **critério da 1**^a **derivada para classificação de extremos** (ver página 122) pois neste critério exige-se que a função seja contínua o que não acontece (a função dada é descontinua em x = 0).

7. Intervalos de monotonia:

f é estritamente crescente se $x \in]-\infty,0[$ e se $x \in]0,+\infty[$.

(<u>note que</u> é incorrecto afirmar que a função é estritamente crescente em todo o seu domínio, basta analisar o que se passa à volta de x = 0).

2º derivada:

Se
$$x \neq 0$$
, $f''(x) = \frac{(1-2x)e^{-\frac{1}{x}}}{x^4}$

Pontos candidatos a pontos de inflexão:

• x = 0 pois não está definida a segunda derivada mas $0 \in D_f$

•
$$x = \frac{1}{2}$$
 pois $f''\left(\frac{1}{2}\right) = 0$

8. Pontos de inflexão:

	$-\infty$	0		1/2	+∞
f''	+	n.d.	+	0	-
f	U		U		\cap

n.d. – não definida

Portanto $x = \frac{1}{2}$ é um ponto de inflexão.

9. Concavidades:

Voltada para cima se $x \in]-\infty,0[$ e se $x \in]0,\frac{1}{2}[$ Voltada para baixo se $x \in]\frac{1}{2},+\infty[$

b) Esboço do gráfico

Apesar da função f ter dois zeros, não é fácil determinar um deles pois implica a resolução da equação $1+x=e^{-\frac{1}{x}}$.

c) Contradomínio: $CD_f = IR$.

Extremos absolutos de funções definidas em intervalos fechados

Já sabemos, pelo teorema de Weierstrass (ver página 97), que uma função definida num intervalo fechado [a,b] atinge tem um máximo e um mínimo

Como proceder para encontrar os extremos de uma função definida num intervalo fechado [a,b]?

- 1. Determinar os pontos críticos de f no intervalo a,b.
- 2. Calcular a imagem de cada um dos pontos críticos obtido em 1.
- 3. Calcular as imagens dos extremos f(a) e f(b).
- 4. Os valores máximo e mínimo de f em [a,b], caso existam, são o maior e o menor valores da função calculados em 2 e 3.

Exercício 1:

Considere a função f definida por $f(x) = x^3 - 12x$ onde $x \in [-3,5]$.

Calcule os extremos absolutos de f.

Resolução:

$$D_f = [-3,5] \text{ porque } x \in [-3,5].$$

f é contínua pois é polinomial.

$$f'(x) = 3x^2 - 12$$

A derivada está definida em todos os pontos, pelos que os pontos críticos se existirem terão que anular a derivada.

Pontos críticos: x = -2 e x = 2

$$f'(x) = 0 \Leftrightarrow 3x^2 - 12 = 0 \Leftrightarrow x^2 = 4 \Leftrightarrow x = -2 \lor x = 2$$

Para determinar os extremos absolutos basta calcular as imagens dos pontos críticos e dos extremos do domínio da função f e compará-las. O valor da maior imagem será o máximo absoluto e o valor da menor imagem será o mínimo absoluto.

Como f(-3)=9; f(-2)=16; f(2)=-4 e f(5)=65 resulta que 65 e o máximo absoluto e -4 é o mínimo absoluto.

Note que não é necessário fazer o quadro do estudo da monotonia da função.

Exercício 2:

Calcule os extremos absolutos, caso existam, da função definida por $f(x) = 4x^2 - 2x^4$ para $x \in [-2,2]$.

Resolução:

 $D_f = [-2,2]$ pois $x \in [-2,2]$; f é contínua pois é polinomial.

$$f'(x) = 8x - 8x^3$$

$$f'(x) = 0 \Leftrightarrow 8x(1-x^2) = 0 \Leftrightarrow x = 0 \lor x^2 = 1$$

 $\Leftrightarrow x = -1 \lor x = 0 \lor x = 1$

Pontos críticos: x = -1, x = 0 e x = 1.

Como f(-2)=-16; f(-1)=2; f(0)=0; f(1)=2 e f(2)=-16 resulta que 2 é o máximo absoluto e -16 é o mínimo absoluto.

Note que quando consideramos $f(x) = 4x^2 - 2x^4$ definida em *IR* podemos verificar facilmente pela análise do quadro da monotonia da função:

	$-\infty$	-1		0		1	+ ∞
Sinal de f'	+	0	-	0	+	0	-
f			_		→		\

que a função definida em IR

- tem um máximo absoluto f(-1) = f(1) = 2
- mas não tem mínimo absoluto: f(0) = 0 é um mínimo mas não é absoluto.

Problemas de optimização:

Capítulo V: Derivação

Etapas da resolução de um problema de optimização:

- **Ler** atentamente o problema fundamental!
- Identificar as incógnitas.
- Fazer um esquema do problema representando as incógnitas e as quantidades conhecidas.
- Encontrar as possíveis condições a que estão sujeitas as incógnitas.
- Exprimir a função a optimizar em função de uma única incógnita.
- Encontrar os pontos críticos e extremos da função anteriormente obtida.
- Dar resposta ao problema.

Problema 1:

Determine dois números positivos cujo produto seja máximo e a sua soma seja 40.

Resolução:

• <u>Identificar as variáveis</u>

Sejam x e y os números procurados.

• Restrições das variáveis:

Sabe-se que:

$$0 \quad x > 0 , \qquad y > 0$$

$$0 \quad x + y = 40 \qquad (\Leftrightarrow y = 40 - x)$$

• Função a maximizar:

Função produto: xy = x(40 - x)

Defina-se
$$f(x) = x(40 - x)$$

• Determinar pontos críticos de f:

$$D_f =]0, +\infty[\qquad \text{(note-se que } x > 0)$$

f é continua no seu domínio porque é polinomial.

$$f(x) = x(40 - x) \implies f'(x) = 40 - 2x$$

Pontos críticos: x = 20:

$$f'(x) = 0 \Leftrightarrow 2x = 40 \Leftrightarrow x = 20$$

	0		20	$+\infty$
Sinal de f'		+	0	-
f	n.d.	→		/

n.d. – não definida

Logo em x = 20 ocorre um máximo relativo

Como a função não está definida nos extremos do D_f , o máximo encontrado é o máximo absoluto.

• Resposta do problema:

Os números procurados são: x = 20 e y = 40 - x = 40 - 20 = 20.

<u>Note que</u> o enunciado pede os números que maximizam o produto e não o produto máximo que seria f(20) = 20(40 - 20) = 400.

Problema 2:

Qual o ponto pertencente à hipérbole de equação xy = 1, de abcissa positiva, que está mais próximo da origem.

Resolução:

• Identificar as variáveis

Seja (x, y) o ponto da hipérbole procurado.

• Restrições das variáveis:

Sabe-se que:

$$\circ x > 0$$

$$o \quad xy = 1 \ \left(\Leftrightarrow \quad y = \frac{1}{x} \right)$$

• Esquema do problema:

<u>Ideia:</u> coloca-se um ponto sobre o ramo da hipérbole cujas abcissas são positivas e para cada um destes pontos determina-se o comprimento do segmento que une o ponto (x, y) à origem – este processo sugere qual deve ser a função a optimizar.

Função a minimizar:

Pretende-se minimizar o comprimento do segmento que une os pontos (0,0) e (x,y):

$$\sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2} = \sqrt{x^2 + \frac{1}{x^2}}$$

Defina-se
$$d(x) = \sqrt{x^2 + \frac{1}{x^2}}$$

Note que:

O mínimo da função d , caso exista, é atingido no mesmo ponto que o mínimo da função $f=d^2$.

Por simplicidade dos cálculos vamos trabalhar com a função f definida por:

$$f(x) = x^2 + \frac{1}{x^2}$$

• Determinar pontos críticos de f:

$$D_f =]0, +\infty[\qquad \text{(note-se que } x > 0)$$

f é continua no seu domínio porque é soma de funções racionais

$$f(x) = x^2 + \frac{1}{x^2} \implies f'(x) = 2x - \frac{2}{x^3}$$

Pontos críticos: x = 1:

$$f'(x) = 0 \Leftrightarrow 2x - \frac{2}{x^3} = 0$$

$$\Leftrightarrow x^4 - 1 = 0 \land x^3 \neq 0$$

$$\Leftrightarrow (x^2 - 1)(x^2 + 1) = 0 \land x \neq 0$$

$$\Leftrightarrow (x = -1 \lor x = 1) \land x \neq 0$$

Note que $-1 \notin D_f$ pelo que não é ponto crítico.

	0		1	+ ∞
Sinal de f'		-	0	+
f	n.d.	`		1

n.d. – não definida

Logo em x = 1 ocorre um mínimo relativo.

Como a função não está definida nos extremos do $\,D_f\,$, o mínimo encontrado é o mínimo absoluto.

• Resposta do problema:

O ponto procurado da hipérbole tem coordenadas (1,1) pois $y = \frac{1}{x}$.

<u>Note que</u> o enunciado pede o ponto da hipérbole de abcissa positiva que está mais próximo da origem e não a distância da origem à hipérbole que seria

$$d(1) = \sqrt{1^2 + \frac{1}{1^2}} = \sqrt{2}.$$