

KONKURS MATEMATYCZNY

dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 2016/2017

Modele odpowiedzi i schematy punktowania

UWAGA 1.

Łącznie uczeń może zdobyć 20 punktów.

Do etapu rejonowego zakwalifikowani będą uczniowie, którzy w etapie szkolnym uzyskają co najmniej 80% punktów możliwych do zdobycia (co najmniej 16 punktów).

UWAGA 2.

Za każde poprawne rozwiązanie, inne niż przewidziane w schemacie punktowania rozwiązań zadań, przyznajemy maksymalną liczbę punktów.

ROZWIĄZANIA ZADAŃ ZAMKNIĘTYCH

Nr zadania	1.	2.	3.	4.	5.	6.	7.
Maks. liczba punktów	1 pkt						
Prawidłowa odpowiedź	D	A	С	D	В	D	C

ROZWIĄZANIA ZADAŃ OTWARTYCH

Zadanie 8. (2 pkt)

Jeżeli od liczby dwucyfrowej M odejmiemy 4, to otrzymamy liczbę podzielną przez 4. Jeżeli od liczby M odejmiemy 7, to otrzymamy liczbę podzielną przez 7. Jeżeli od liczby M odejmiemy 8, to otrzymamy liczbę podzielną przez 8. Znajdź liczbę M.

Uczeń	:				
1.	zauważa, że liczba M jest podzielna przez 4, 7 i 8, a więc jest wspólną	1p			
	wielokrotnością tych liczb				
2.	sprawdza (np. poprzez wypisanie co najmniej dwóch początkowych wspólnych				
	dodatnich wielokrotności liczb 4, 7, 8), że NWW(4,7,8)= 56 jest jedyną liczbą ¹ p				
	dwucyfrową, będącą wielokrotnością liczb 4, 7, 8				
	i podaje odpowiedź: $M = 56$.				

Zadanie 9. (3 pkt)

Na poniższym rysunku odcinki *AD* i *EF* są równoległe. Odcinek *DE* dzieli kąt *BEF* na dwa kąty, z których jeden jest mniejszy od drugiego o 10°. Kąt *EDB* ma miarę 30°. Znajdź miarę kąta *ABC*. Rozważ dwie możliwości.

Uczeń:

1. zauważa, że kąty FED i EDB mają równe miary (jako kąty naprzemianległe przy prostych równoległych), zatem $| \not \sim FED | = 30^{\circ}$

1 | 1p

1p

2. określa miary kąta BED w dwóch przypadkach. $| \not \triangleleft BED | = 20^{\circ} lub 40^{\circ}$. Oblicza miary kąta FEB w tych przypadkach: 50° i 70°

1p

3. ustala, że $| \not \prec FEB | = | \not \prec DBC |$ (kąty odpowiadające przy prostych równoległych), zatem $| \not \prec ABC | = 180^\circ - | \not \prec DBC |$. Oblicza $| \not \prec ABC | = 180^\circ - 50^\circ = 130^\circ$ lub $| \not \prec ABC | = 180^\circ - 70^\circ = 110^\circ$

Przy poprawnym wyznaczeniu jednego przypadku miary kąta ABC uczeń otrzymuje 2 p.

Zadanie 10. (2 pkt)

Trzy proste na płaszczyźnie mogą się przecinać najwięcej w trzech punktach, cztery – najwięcej w sześciu punktach. Określ w ilu najwięcej punktach może przecinać się 10 prostych. Odpowiedź uzasadnij.

Uczeń:

- sprawdza kolejne przypadki i zauważa, że liczba punktów przecięcia prostych zwiększa się o kolejne liczby naturalne : 2 proste: 1 punkt przecięcia, 3 proste: 1 + 2 = 3 punkty przecięcia, 4 proste: 3 + 3 = 6 punktów przecięcia, itd.;
- 2. wyznacza liczbę punktów przecięcia dla 10 prostych i zapisuje wniosek: 10 prostych przecina się najwięcej w 45 punktach.

1p

1p

Zadanie 11. (3 pkt)

Na pokaz pielęgnacji paznokci przyszło dużo dziewcząt. Po pół godzinie $\frac{3}{4}$ wszystkich dziewcząt otrzymało sztuczne paznokcie i wyszło. Potem 0,2 pozostałych dziewcząt zakupiło fosforyzujący lakier do paznokci i też wyszło. Pozostałym 24 dziewczętom pomalowano paznokcie na zielono. Ile dziewcząt przyszło na pokaz?

Uczeń:

- 1. oblicza, że po wyjściu dziewcząt, które otrzymały sztuczne paznokcie, 1p pozostało $\frac{1}{4}$ wszystkich dziewcząt: $1 \frac{3}{4} = \frac{1}{4}$;
- oblicza, że ¹/₂₀ wszystkich dziewcząt zakupiła fosforyzujący lakier do paznokci, więc pozostało ¹/₅ wszystkich dziewcząt:

$$0.2 \cdot \frac{1}{4} = \frac{1}{20}$$

$$\frac{1}{4} - \frac{1}{20} = \frac{5-1}{20} = \frac{4}{20} = \frac{1}{5}$$

3. znajduje liczbę, której ¹/₅ jest równa 24:
5 · 24 = 120 i formułuje odpowiedź: Na pokaz przyszło 120 dziewcząt.

Zadanie 12. (3 pkt)

Krawiec obiecał, że po roku terminowania czeladnik otrzyma jako wynagrodzenie 160 dukatów i 6 metrów wełnianej tkaniny. Czeladnik przepracował tylko 9 miesięcy. Jako wynagrodzenie otrzymał 90 dukatów i 12 metrów obiecanej tkaniny. Ile wart był metr tej tkaniny?

Uczeń:

1. oblicza ile dukatów i metrów tkaniny czeladnik powinien otrzymać 1p po 9 miesiącach pracy:

$$\frac{160}{12} \cdot 9 = 120, \qquad \frac{6}{12} \cdot 9 = 4,5$$

2. znajduje różnicę między ustaloną kwotą dukatów a otrzymaną i różnicę między ustaloną liczbą metrów tkaniny, a otrzymaną:

$$120 - 90 = 30$$
, $12 - 4.5 = 7.5$

3. oblicza ile wart był metr tkaniny:

$$30:7,5=4$$
 i podaje odpowiedź, że metr tkaniny wart był 4 dukaty.