COGS 118A, Winter 2020

Supervised Machine Learning Algorithms

Lecture 5: Linear Regression

Zhuowen Tu

Midterm 1

Midterm I, 01/30/2020 (Thursday)

Time: 12:30-13:50PM

Location: Ledden Auditorium

You can bring one page "cheat sheet". No use of computers/smart-phones during the exam.

Bring your pen.

Bring your calculator.

A study guide and practice questions will be provided.

No homework assignment for the next week.

Birthweight based on the mother's Estriol

<u>Estriol</u>	<u>Birthweight</u>
(mg/24h)	(g/1000)
1	1
3	1.9
2	1.05
5	4.1
4	2.1

https://www.dailyclipart.net/

 \mathcal{X}

y

The basic idea of linear regression is to learn a linear function:

$$f(\mathbf{x}; \mathbf{w}, b) = <\mathbf{w}, \mathbf{x} > +b$$
$$= \mathbf{w} \cdot \mathbf{x} + b$$
$$= \mathbf{w}^T \mathbf{x} + b$$

$$\mathbf{x} = \mathbb{R}^m$$
 $\mathbf{w} = \mathbb{R}^m$ $b \in \mathbb{R}$

Linear Regression

Further: $W = (\mathbf{w}, b)$ since b can be also viewed as a parameter in W when a constant 1 is appended to every \mathbf{x} .

This is a linear function and our job is find the optimal **w** and **b** to best fit the prediction in learning.

Once learned, the linear regression function can be readily computed.

raining data		
<u>Estriol</u>		
(mg/24h)(g/1000)		
1		
3		
2		
5		
4		
\boldsymbol{x}		

Birthweight

Birthweight y

Which is a more preferred model for fitting the data?

A.
$$W_a$$

B.
$$W_b$$

Training data

Estriol (mg/24h)(g/1000) 1 3 2 5 \mathcal{X}

<u>Birthweight</u>

1 1.9 1.05 4.1 2.1

y

Birthweight y

 \mathbf{w}_{b}

Which is a more preferred model for fitting the data?

A. W_a

 W_b \gtrsim B.

It depends.

Training data Estriol (mg/24h)(g/1000)	Birthweight	Birthweight y	T(X) Mb) X W X+p
(Hig/24H/(g/1000)	1	4 🕈	/ ·
1	1	3	h-3
3	1.9	3	b = 3
2	1.05	2 .	
5	4.1	1	
4	2.1	0	
X	J	0 1 2 3	Wa Striol level x

Which is a more preferred model for fitting the data?

A.
$$W_a$$

B.
$$W_b$$

Training data

airiiig data
<u>Estriol</u>
(mg/24h)(g/1000)
1
3
2
5
4

Birthweight

Birthweight y

 \mathbf{w}_{b}

$$S_{training} = \{(x_i, y_i), i = 1..n\} = \{(1, 1), (3, 1.9), (2, 1.05), (5, 4.1), (4, 2.1)\}$$

$$W_a \qquad \text{If } \mathbf{w}_a = (w_0, w_1) = (1, -0.5)$$

$$e_{training}(\mathbf{w}_a) = \frac{1}{5} \sum_{i=1}^5 (y_i - (1 - 0.5x_i))^2 = 9.62$$

 \mathbf{w}_b is better than \mathbf{w}_a since $e_{training}(\mathbf{w}_b) < e_{training}(\mathbf{w}_a)$

Training data Estriol	Birthweight	Birthweight y	\mathbf{w}_b
(mg/24h)(g/1000)			
1	1	4	. .
3	1.9	а	, F
2	1.05	2	1
5	4.1	1 77	. S er
4	2.1		, 13 16,
_	~		Estriol level z
71		J. /- /	√.
			Wa

$$S_{training} = \{(x_i, y_i), i = 1..n\} = \{(1, 1), (3, 1.9), (2, 1.05), (5, 4.1), (4, 2.1)\}$$

$$W_a \qquad \text{If } \mathbf{w}_a = (w_0, w_1) = (1, -0.5)$$

$$e_{training}(\mathbf{w}_a) = \frac{1}{5} \sum_{i=1}^5 (y_i - (1 - 0.5x_i))^2 = 9.62$$

$$W_b \qquad \text{If } \mathbf{w}_b = (w_0, w_i) = (1, 0.5)$$

$$W_b \qquad \text{If } \mathbf{w}_b = (w_0, w_i) = (1, 0.5) \\ e_{training}(\mathbf{w}_b) = \frac{1}{5} \sum_{i=1}^5 (y_i - (1 + 0.5x_i))^2 = 0.54$$

$$W_b = \frac{1}{1000} (w_b) = \frac{1}{5} \sum_{i=1}^{5} (y_i - (1 + 0.5x_i))^2 = 0.54$$

$$\mathbf{w}_b \text{ is better than } \mathbf{w}_a \text{ since } e_{training}(\mathbf{w}_b) < e_{training}(\mathbf{w}_a) \quad \mathbf{W}, \mathbf{X} + \mathbf{W}_b$$

$$\left(\left[- \left(1 - 0.5 \mathbf{X} \mathbf{I} \right) \right]^2 + \left[1.9 - \left(1 - 0.5 \mathbf{X} \mathbf{Z} \right) \right]^2 + \dots \right]$$

Training data <u>Estriol</u>	<u>Birthweight</u>	Birthweight y	(x_4, y_4) \mathbf{W}^*
(mg/24h)(g/1000)		4 🕇	
1	1		
3	1.9	3 (x_2)	(y_2)
2	1.05	$2 \mid (x_1, y_1)$	• (x_5, y_5)
5	4.1	1 (x_3, y_3)	
4	2.1	0	-
		0 1 2	3 4 Es $\overline{\bullet}$ riol level x

$$S_{training} = \{(x_i, y_i), i = 1..n\} = \{(1, 1), (3, 1.9), (2, 1.05), (5, 4.1), (4, 2.1)\}$$

Our goal is to find the optimal $\mathbf{w}^* = (w_0, w_1)^*$:

$$\mathbf{w}^* = \arg_{\mathbf{w}} \min e_{training}(\mathbf{w}) = \frac{1}{5} \sum_{i=1}^{5} (y_i - (w_0 + w_1 \times x_i))^2$$

Why do we study/care about derivatives?

1. Find the optimal solution using an analytical (closed) form for a convex function that is everywhere differentiable.

$$\frac{\partial L(w)}{\partial w}|_{w^*} = 0$$

Analytical (closed) form refers to a direct solution as:

 $w^* = q(X, Y)$ where X and Y consists of your training data with the corresponding ground-truth labels.

That is, you obtain your model by one-shot (no iterations needed).

More Complex Linear Combinations

• Univariate linear regression

• Polynomial Linear Regression

• Multivariate Linear Regression

Linear regression algorithm

- Step 1: Select a model.
 - $y = w_0 + w_1x$ (For us right now not always)

Linear Regression Algorithm

- Step 1: Select a model.
 - $y = w_0 + w_1x$ (For us right now not always)
- Step 2: Put data into matrix form.
 - y = Xw;

Step 3: Solve for the weights

- Step 1: Select a model.
 - $y = w_0 + w_1x$ (For us right now not always)
- Step 2: Put data into matrix form.
 - y = Xw;
- Step 3: Solve for the weights (w) in Python.
 - from numpy.linalg import inv
 - $\quad w = np.dot(inv(np.dot(np.transpose(X), X)), np.dot(np.transpose(X), Y))$

Step 4: Report the model

- Step 1: Select a model.
 - $y = w_0 + w_1x$ (For us right now not always)
- Step 2: Put data into matrix form.
 - y = Aw;
- Step 3: Solve for the weights (w) in Python.
 - from numpy.linalg import inv
 - w=np.dot(inv(np.dot(np.transpose(X), X)),np.dot(np.transpose(X),Y))
- Step 4: Report the model.
 - Fill in the w values in our model (step 1) and write out again.
 - y = -0.145 + 0.725x (For us right now not always)

Step 5: Visualize the model

- Step 1: Select a model.
 - $y = w_0 + w_1x$ (For us right now not always)
- Step 2: Put data into matrix form.
 - y = Aw;
- Step 3: Solve for the weights (w) in Python.
 - from numpy.linalg import inv
 - w=np.dot(inv(np.dot(np.transpose(X), X)),np.dot(np.transpose(X),Y))
- Step 4: Report the model.
 - Fill in the w values in our model (step 1) and write out again.
 - y = -0.145 + 0.725x (For us right now not always)
- Step 5: Visualize the model using model predictions.

Least Square Solution

$$S_{training} = \{(x_i, y_i), i = 1..n\} = \{(1, 1), (3, 1.9), (2, 1.05), (5, 4.1), (4, 2.1)\}$$

Basic Equations Matrix Form Birthweight y $y = w_0 + w_1 x$ Y = XW $1 = w_0 + w_1 \times 1$ $1.9 = w_0 + w_1 \times 3$ $1.05 = w_0 + w_1 \times 2$ $1.05 = w_0 + w_1 \times 5$ $2.1 = w_0 + w_1 \times 4$ $3.05 = w_0 + w_1 \times 3$ $3.05 = w_0 + w_1 \times 3$

$$\begin{pmatrix}
1 \\
1.9 \\
1.05 \\
4.1 \\
2.1
\end{pmatrix} = X W$$

$$\begin{pmatrix}
1,1 \\
1,3 \\
1,2 \\
1,5 \\
1,4
\end{pmatrix} \begin{pmatrix}
w_0 \\
w_1
\end{pmatrix} \begin{pmatrix}
-0.145 \\
0.725
\end{pmatrix}$$

$$W^* = (X^T X)^{-1} X^T Y$$

In python from numpy.linalg import inv W* = np.dot(inv(np.dot(np.transpose(X), X)),np.dot(np.transpose(X), Y))

Least Square Solution

$$S_{\text{conting}} = \{(x_0, y_1) = 1, \ldots, y_n\} \in \{(x_0, y_1) \in (x_0, y_1)$$

Least square estimation

$$S_{training} = \{(x_i, y_i), i = 1..n\} \quad y_i \in \mathcal{R}$$

Obtain/train: $f(x, W) = w_0 + w_1 x$

$$W^* = \arg\min_{W} \sum_{i} (\mathbf{x}_i^T W - y_i)^2 \quad \bullet$$

$$W = \left(\begin{array}{c} w_0 \\ w_1 \end{array}\right) \quad \mathbf{x}_i = \left(\begin{array}{c} 1 \\ x_i \end{array}\right)$$

Let:
$$X = (\mathbf{x}_1, ..., \mathbf{x}_n)^T$$
 $Y = (y_1, ..., y_n)^T$

$$W^* = \arg\min_{W} = \arg\min_{W} L(W) = (XW - Y)^T (XW - Y)$$

Least square estimation


```
Obtain/train: f(x, W) = w_0 + w_1 x
```

$$W^* = \arg\min_{W} \sum_{i} (\mathbf{x}_i^T \cdot W - y_i)^2$$

$$W = \left(\begin{array}{c} w_0 \\ w_1 \end{array}\right) \quad \mathbf{x}_i = \left(\begin{array}{c} 1 \\ x_i \end{array}\right)$$

```
W^* = \arg\min_{W} = \arg\min_{W} L(W) = (XW - Y)^T (XW - Y)
L(W) = W^T X^T X W - W^T X^T Y - Y^T X W + Y^T Y
\frac{dL(W)}{dW} = 2X^T X W - 2X^T Y = 0
W^* = (X^T X)^{-1} X^T Y
```

```
In []:
For simplification
A = (X<sup>T</sup>X)

# Comput X^T X and denote it as A
A = np.dot(np.transpose(X), X)
# Obtain optimal W
W = np.dot(inv(A),np.dot(np.transpose(X),Y))
```

Least square estimation

```
Obtain/train: f(x, W) = w_0 + w_1 x
W^* = \arg \min_{W} \sum_{i} (\mathbf{x}_i^T \cdot W - y_i)^2
W = \begin{pmatrix} w_0 \\ w_1 \end{pmatrix} \quad \mathbf{x}_i = \begin{pmatrix} 1 \\ x_i \end{pmatrix}
```

$$W^* = \arg \min_{W} = \arg \min_{W} L(W) = \underbrace{(XW - Y)^T (XW - Y)}_{L(W)}$$
$$L(W) = W^T X^T X W - W^T X^T Y - Y^T X W + Y^T Y$$
$$\frac{dL(W)}{dW} = 2X^T X W - 2X^T Y = 0$$
$$W^* = (X^T X)^{-1} X^T Y$$

```
In [ ]:
import numpy as np
    from numpy.linalg import inv
# Comput X^T X and denote it as A
A = np.dot(np.transpose(X), X)
# Obtain optimal W
W = np.dot(inv(A),np.dot(np.transpose(X),Y))
```

convex (quadratic) 2 XTX W-2 XTY=0 / given given

1580vnd-trust $x^T \times w = x^T Y$ $w = (x^T \times y^T)^T \times x^T Y$

Matrix calculus

Condition	Expression	Numerator layout, i.e. by x ^T ; result is row vector	Denominator layout, i.e. by x; result is column vector
a is not a function of x	$egin{aligned} rac{\partial (\mathbf{a} \cdot \mathbf{x})}{\partial \mathbf{x}} &= rac{\partial (\mathbf{x} \cdot \mathbf{a})}{\partial \mathbf{x}} &= \\ & rac{\partial \mathbf{a}^ op \mathbf{x}}{\partial \mathbf{x}} &= rac{\partial \mathbf{x}^ op \mathbf{a}}{\partial \mathbf{x}} &= \end{aligned}$	\mathbf{a}^{\top}	a
A is not a function of x b is not a function of x	$\frac{\partial \mathbf{b}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	$\mathbf{b}^{\top}\mathbf{A}$	$\mathbf{A}^{\top}\mathbf{b}$
A is not a function of x	$\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	$\mathbf{x}^\top(\mathbf{A}+\mathbf{A}^\top)$	$(\mathbf{A} + \mathbf{A}^\top)\mathbf{x}$
A is not a function of x A is symmetric	$\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	$2\mathbf{x}^{\top}\mathbf{A}$	$2\mathbf{A}\mathbf{x}$
A is not a function of x	$\frac{\partial^2 \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}^2} =$	$\mathbf{A} + \mathbf{A}^\top$	
A is not a function of x A is symmetric	$\frac{\partial^2 \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}^2} =$	$2\mathbf{A}$	

Linear Regression with the Least Square Estimation

The basic idea of linear regression is to learn a linear function:

$$f(\mathbf{x}; \mathbf{w}, b) = \mathbf{w} \cdot \mathbf{x} + b$$
 $\mathbf{w} = \mathbb{R}^m$ $b \in \mathbb{R}$ $\mathbf{x} = \mathbb{R}^m$

Further: $W = (\mathbf{w}, b)$ since b can be also viewed as a parameter in W when a constant 1 is appended to every \mathbf{x} .

$$f(\mathbf{x}; W) = W \cdot \mathbf{x}$$

$$W^* = \arg\min_{W} \sum_{i} (\mathbf{x}_i^T W - y_i)^2$$

least square estimation

Linear Regression with the Least Square Estimation

$$f(\mathbf{x}; W) = W \cdot \mathbf{x}$$

Closed-form with an analytic solution.

 $W^* = (X^T X)^{-1} X^T Y$

More Complex Linear Combinations

• Univariate linear regression

Now we extend the basic linear regression into more generalized forms.

Polynomial Linear Regression

Output:
$$y = w_0 + w_1 x_1 + w_2 x_1^2 + ... + w_q x_m^q$$

Multivariate Linear Regression

Output:
$$y = w_0 + w_1 x_1 + w_2 x_2 + ... + w_m x_m$$

Linear in terms of W

The good news is that the estimation function is still linear in terms of W.

Output:
$$y = w_0 + w_1 x_1 + w_2 x_1^2 + \dots + w_q x_m^q$$
 Output: $y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_m x_m$

Output function:
$$f(\mathbf{x}; W) = W \cdot \mathbf{x}$$
 $\mathbf{x} = \begin{pmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^q \end{pmatrix}$ $\mathbf{x} = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

$$X = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$$

$$L(W) = W^T X^T X W - W^T X^T Y - Y^T X W + Y^T Y$$

Estimation in learning:

$$\frac{dL(W)}{dW} = 2X^T X W - 2X^T Y = 0$$

Univariate linear regression

Why is this supervised? How is it labeled?

We are treating the variable we are plotting on the y-axis as a label - as a truth that we want to estimate and predict for new data.

There are different types of regressors, leading to different levels of complexity.

Polynomial

Polynomial Linear Regression

$$S_{training} = \{(x_i, y_i), i = 1..n\}$$

Input: $x, x \in R$

Model parameter: $\mathbf{w} = (w_0, w_1, ..., w_d), w_i \in R$

Output: $y = w_0 + w_1 x_1 + w_2 x_1^2 + \dots + w_q x_m^q$

The combination of terms has your input variable raised to an addition power for each subsequent term.

Polynomial

Put Data Into Matrix Form

$$S_{training} = \{(x_i, y_i), i = 1..n\} = \{(1, 1), (3, 1.9), (2, 1.05), (5, 4.1), (4, 2.1)\}$$

Basic Equations Matrix Form

$$y = w_0 + w_1 x + w_2 x^2 Y = XW$$

$$1 = w_0 + w_1 \times 1 + w_2 \times 1$$

$$1.9 = w_0 + w_1 \times 3 + w_2 \times 9$$

$$1.05 = w_0 + w_1 \times 2 + w_2 \times 4$$

$$4.1 = w_0 + w_1 \times 5 + w_2 \times 25$$

$$2.1 = w_0 + w_1 \times 4 + + w_2 \times 16$$

In python from numpy.linalg import inv
W* = np.dot(inv(np.dot(np.transpose(X), X)),np.dot(np.transpose(X),Y))

$$\begin{array}{cccc}
Y & = & X & W \\
\begin{pmatrix} 1 \\ 1.9 \\ 1.05 \\ 4.1 \\ 2.1 \end{pmatrix} & \begin{pmatrix} 1,1,1 \\ 1,3,9 \\ 1,2,4 \\ 1,5,25 \\ 1,4,16 \end{pmatrix} & \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix}$$

 $e_{training}(\mathbf{w}^*) = 0.063$

$$\begin{pmatrix} 0.01 \\ 0.2321 \end{pmatrix}$$

$$e_{training}(\mathbf{w}_a) = 9.62$$

$$e_{training}(\mathbf{w}_b) = 0.54$$

$$e_{training}(\mathbf{w}^*) = 0.21$$
previous linear model

Quadratic function: least square estimation

$$S_{training} = \{(x_i, y_i), i = 1..n\} \quad y_i \in \mathcal{R}$$

Obtain/train: $f(x, W) = w_0 + w_1 x + w_2 x^2$ $W^* = \arg\min_W \sum_i (\mathbf{x}_i^T W - y_i)^2$

$$W^* = \arg\min_W \sum_i (\frac{\mathbf{x}_i^T W}{\mathbf{x}_i^T W} - y_i)^2$$

$$W = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix} \qquad \mathbf{x}_i = \begin{pmatrix} 1 \\ x_i \\ x_i^2 \end{pmatrix}$$

Let:
$$X = (\mathbf{x}_1, ..., \mathbf{x}_n)^T$$
 $Y = (y_1, ..., y_n)^T$

$$W^* = \arg\min_{W} = \arg\min_{W} L(W) = (XW - Y)^T (XW - Y)$$

Quadratic function: least square estimation


```
Obtain/train: f(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2

W^* = \arg\min_W \sum_i (\mathbf{x}_i^T \cdot W - y_i)^2
```

$$W = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix} \quad \mathbf{x}_i = \begin{pmatrix} 1 \\ x_i \\ x_i^2 \end{pmatrix}$$

```
W^* = \arg\min_{W} = \arg\min_{W} L(W) = (XW - Y)^T (XW - Y)
L(W) = W^T X^T X W - W^T X^T Y - Y^T X W + Y^T Y
\frac{dL(W)}{dW} = 2X^T X W - 2X^T Y = 0
W^* = (X^T X)^{-1} X^T Y
```

```
In []:
    import numpy as np
    from numpy.linalg import inv
# Comput X^T X and denote it as A
A = (X<sup>T</sup>X)
A = np.dot(np.transpose(X), X)
# Obtain optimal W
W = np.dot(inv(A),np.dot(np.transpose(X),Y))
```

More Complex Linear Combinations

• Univariate linear regression

Polynomial Linear Regression

Multivariate Linear Regression

Multi-variate Linear Regression

Input:
$$\mathbf{x} = (x_1, ..., x_m), x_i \in R$$

Model parameter: $\mathbf{w} = (w_0, w_1, ..., w_m), w_i \in R$

Output: $y = w_0 + w_1 x_1 + w_2 x_2 + ... + w_m x_m$

We apply do the least squre fitting method again.

Put Data Into Matrix Form

W

$$S_{training} = \{((x_{i1}, x_{i2}), y_i), i = 1..n\}$$

= \{((1, 0.5), 1), ((3, 0.9), 1.9), ((2, 1.0), 1.05), ((5, 6.7), 4.1), ((4, 2.5), 2.1)\}

Basic Equations

Matrix Form

$$y = w_0 + w_1 x_1 + w_2 x_2 Y = XW$$

$$1 = w_0 + w_1 \times 1 + w_2 \times 0.5$$

$$1.9 = w_0 + w_1 \times 3 + w_2 \times 0.9$$

$$1.05 = w_0 + w_1 \times 2 + w_2 \times 1.0$$

$$4.1 = w_0 + w_1 \times 5 + w_2 \times 6.7$$

$$2.1 = w_0 + w_1 \times 4 + w_2 \times 2.5$$

$$\begin{array}{ccc}
Y & = & X & W \\
\begin{pmatrix} 1 \\ 1.9 \\ 1.05 \\ 4.1 \\ 2.1 \end{pmatrix} & \begin{pmatrix} 1,1,0.5 \\ 1,3,0.9 \\ 1,2,1.0 \\ 1,5,6.7 \\ 1,4,2.5 \end{pmatrix} & \begin{pmatrix} w_0 \\ w_1 \\ w_2 \end{pmatrix}$$

$$W^* = (X^T X)^{-1} X^T Y$$

$$\begin{pmatrix} 0.482 \\ 0.2552 \\ 0.338 \end{pmatrix}$$

Select your model

 $e_{training}(\mathbf{w}^*) = 0.21$

$$e_{training}(\mathbf{w}^*) = 0.063$$

Polynomial

$$e_{training}(\mathbf{w}^*) = 0.052$$

Conclusions for linear regression with the least square estimation

Linear regression:

• Univariate linear regression

Output:
$$y = w_0 + w_1 x_1$$

Polynomial linear regression

Output:
$$y = w_0 + w_1 x_1 + w_2 x_1^2 + \dots + w_q x_m^q$$

• Multivariate linear regression

Output:
$$y = w_0 + w_1 x_1 + w_2 x_2 + ... + w_m x_m$$

They all share a general form (when generalizing X):

$$Y = X$$
 W linear w.r.t. the $W!$

With an analytical solution:

$$W^* = (X^T X)^{-1} X^T Y$$

Linear regression:

They all share a general form (when generalizing X):

$$Y = X \qquad W$$

Conclusions for linear regression with the least square estimation

Linear regression is the definition for the estimation function.

With an analytical solution:

$$W^* = (X^T X)^{-1} X^T Y$$

Least square estimation is about the estimation method. We can use methods other than the least square estimation to solve the linear regression problem.

Intuition Math/Stat

Recap: Linear Regression

Implementation/

Intuition: Linear (polynomial) regression is one of the most widely used machine learning models. Typically, a squared loss is adopted in training to minimize the averaged difference between the ground-truth values and model predictions for all the input data samples. In this case, the loss/objective function is in a quadratic (convex) form w.r.t. the model parameters, hence a convex function with a unique closed-form (analytical) solution by setting the gradient of the loss function to be zero. The learned model predicts a real number (e.g. length, price, weight) for a given input.

Math:

$$\begin{pmatrix} 1\\1.9\\1.05\\4.1\\2.1 \end{pmatrix} = \begin{pmatrix} 1,1,0.5\\1,3,0.9\\1,2,1.0\\1,5,6.7\\1.4,2.5 \end{pmatrix} \begin{pmatrix} w_0\\w_1\\w_2 \end{pmatrix}$$

```
W^* = \arg \min_{W} = \arg \min_{W} L(W) = (XW - Y)^T (XW - Y)L(W) = W^T X^T X W - W^T X^T Y - Y^T X W + Y^T Y\frac{dL(W)}{dW} = 2X^T X W - 2X^T Y = 0W^* = (X^T X)^{-1} X^T Y
```

Implementation:

```
In [ ]:
    import numpy as np
    from numpy.linalg import inv
# Comput X^T X and denote it as A
A = np.dot(np.transpose(X), X)
# Obtain optimal W
W = np.dot(inv(A),np.dot(np.transpose(X),Y))
```

Robust Estimation

Estimation and optimization

$$S_{training} = \{(\mathbf{x}_i, y_i), i = 1..n\}$$

Different choices of the penalty will lead to different robustness measure:

L2 norm:

$$e = \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i; \theta))^2$$

L1 norm:

$$e = \sum_{i=1}^{n} |y_i - f(\mathbf{x}_i; \theta)|$$

Estimation and optimization

$$S_{training} = \{(\mathbf{x}_i, y_i), i = 1..n\}$$

$$cost(y_i - f(\mathbf{x}_i; \theta)) = (y_i - f(\mathbf{x}_i; \theta))^2$$

A general form:

$$\mathbf{w} = \arg\min_{\theta} \sum_{i=1}^{m} \frac{cost(y_i - f(\mathbf{x}_i; \mathbf{w}))}{cost(y_i - f(\mathbf{x}_i; \mathbf{w}))}$$

L1

$$S_{training} = \{(x_i, y_i), i = 1..n\}$$

E.g.
$$S_{training} = \{(x_i, y_i), i = 1..n\}$$

= $\{(1, 1), (3, 1.9), (2, 1.05), (5, 4.1), (4, 2.1)\}$

$$X = \begin{pmatrix} 1,1\\1,3\\1,2\\1,5\\1,4 \end{pmatrix} \qquad Y = \begin{pmatrix} 1\\1.9\\1.05\\4.1\\2.1 \end{pmatrix}$$

Obtain/train: $f(x, \mathbf{w}) = w_0 + w_1 x$

$$W^* = \arg\min_{W} \sum_{i=1}^{n} |\mathbf{x}_i^T \cdot W - y_i|$$

$$W = \begin{pmatrix} w_0 \\ w_1 \end{pmatrix} \qquad \mathbf{x}_i = \begin{pmatrix} 1 \\ x_i \end{pmatrix}$$

1. Loss (Cost) Function

$$L(W) = \sum_{i=1}^{n} |\mathbf{x}_i^T W - y_i|$$

2. Obtain the gradient

$$\frac{\partial L(W)}{\partial W} = \sum_{i=1}^{n} sign(\mathbf{x}_{i}^{T}W - y_{i}) \times \mathbf{x}_{i}$$

3. Update parameter W

$$W_{t+1} = W_t - \lambda_t \frac{\partial L(W)}{\partial W}$$

Robust estimation

$$Y = X W$$

$$\begin{pmatrix} 1 \\ 1.9 \\ 1.05 \\ 4.1 \\ 2.1 \\ 6.0 \end{pmatrix} \begin{pmatrix} 1,1 \\ 1,3 \\ 1,2 \\ 1,5 \\ 1,4 \\ 1,1.1 \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \end{pmatrix}$$

$$W^* = (X^T X)^{-1} X^T Y$$

$$W^* = \arg\min_{W} \sum_{i} (\mathbf{x}_i^T W - y_i)^2$$

$$W^* = \arg\min_{W} \sum_{i} |\mathbf{x}_i^T W - y_i|$$

L1 Loss

$$S_{training} = \{(x_i, y_i), i = 1..n\}$$

$$y_i \in \mathcal{R}$$

Obtain/train: $f(x, \mathbf{w}) = w_0 + w_1 x$

$$W^* = \arg\min_{W} \sum_{i=1}^{n} |\mathbf{x}_i^T \cdot W - y_i|$$

$$W = \begin{pmatrix} w_0 \\ w_1 \end{pmatrix} \quad \mathbf{x}_i = \begin{pmatrix} 1 \\ x_i \end{pmatrix}$$

$$\frac{\partial |f(w)|}{\partial w} = \begin{cases} \frac{\partial f(w)}{\partial w} & f(w) > 0\\ 0 & f(w) = 0\\ -\frac{\partial f(w)}{\partial w} & otherwise \end{cases}$$

$$= sign(f(w)) \cdot \frac{\partial f(w)}{\partial w} \qquad sign(z) = \begin{cases} +1 & z > 0\\ 0 & z = 0\\ -1 & otherwise \end{cases}$$

- 1. Loss (Cost) Function
- $L(W) = \sum_{i=1}^{n} |\mathbf{x}_i^T W y_i|$
- 2. Obtain the gradient
- $\frac{\partial L(W)}{\partial W} = \sum_{i=1}^{n} sign(\mathbf{x}_{i}^{T}W y_{i})\mathbf{x}_{i}$

$$W_{t+1} = W_t - \lambda_t \frac{\partial L(W)}{\partial W}$$

Robust estimation

- 1. Loss (Cost) Function
- 2. Obtain the gradient
- 3. Update parameter W

$$W^* = \arg\min_W \sum_i |\mathbf{x}_i^T W - y_i|$$

$$\frac{\partial L(W)}{\partial W} = \sum_{i=1}^{n} sign(\mathbf{x}_{i}^{T}W - y_{i})\mathbf{x}_{i}$$

$$W_{t+1} = W_t - \lambda_t \frac{\partial L(W)}{\partial W}$$