8 Homotopy Invariance

So far we computed the fundamental group for very few spaces. In order to extend these computations to other spaces we will use three basic tools: homotopy invariance of π_1 , the product formula for π_1 , and the van Kampen theorem. In this chapter we discuss the first of these topics and in the subsequent ones we deal with the other two.

8.1 Definition. Let $f, g: X \to Y$ be continuous functions. A *homotopy* between f and g is a continuous function $h: X \times [0, 1] \to Y$ such that h(x, 0) = f(x) and h(x, 1) = g(x):

If such homotopy exists then we say that the functions f and g are homotopic and we write $f \simeq g$. We will also write $h: f \simeq g$ to indicate that h is a homotopy between f and g.

- **8.2 Note.** Given a homotopy $h: X \times [0,1] \to Y$ it will be convenient denote by $h_t: X \to Y$ the function defined by $h_t(x) = h(x,t)$. If $h: f \simeq g$ then $h_0 = f$ and $h_1 = g$.
- **8.3 Example.** Any two functions $f, g: X \to \mathbb{R}^n$ are homotopic. Indeed, define $h: X \times [0,1] \to \mathbb{R}$ by h(x,t) = (1-t)f(x) + tg(x). Then $h_0 = f$ and $h_1 = g$.

A useful generalization of Definition 8.1 is the notion of a relative homotopy:

- **8.4 Definition.** Let X be a space and let $A \subseteq X$. If $f, g: X \to Y$ are functions such that $f|_A = g|_A$ then we say that f and g are homotopic relative to A if there exists a homotopy $h: X \times [0,1] \to Y$ such that $h_0 = f$, $h_1 = g$ and $h_t|_A = f|_A = g|_A$ for all $t \in [0,1]$. In such case we write $f \simeq g$ (rel A).
- **8.5 Example.** Let $\omega, \tau: [0,1] \to X$ be paths in X. Recall that path homotopy is defined only if $\omega|_{\{0,1\}} = \tau|_{\{0,1\}}$ and it is given by a map $h: [0,1] \times [0,1] \to X$ such that $h_0 = \omega$, $h_1 = \tau$ and $h_t|_{\{0,1\}} = \omega|_{\{0,1\}} = \tau|_{\{0,1\}}$ for each $t \in [0,1]$. Thus, in the paths ω and τ are path homotopic if and only if $\omega \simeq \tau$ (rel $\{0,1\}$).
- **8.6 Definition.** A map $f: X \to Y$ is a homotopy equivalence if there exists a map $g: Y \to X$ such that $gf \simeq \mathrm{id}_X$ and $fg \simeq \mathrm{id}_Y$. If such maps exist we say that the spaces X and Y are homotopy equivalent and we write $X \simeq Y$.
- **8.7 Note.** If f and g are maps as in Definition 8.6 then we say that g is a *homotopy inverse* of f.
- **8.8 Example.** We will show \mathbb{R}^n is homotopy equivalent to the space $\{*\}$ consisting of a single point. Let $f: \mathbb{R}^n \to \{*\}$ be the constant function and let $g: \{*\} \to \mathbb{R}^n$ be given by $f(*) = x_0$ for some $x_0 \in \mathbb{R}^n$. We have $fg = \operatorname{id}_{\{*\}}$ so $fg \simeq \operatorname{id}_{\{*\}}$. On the other hand by Example 8.3 any two functions into \mathbb{R}^n are homotopic, so in particular $gf \simeq \operatorname{id}_{\mathbb{R}^n}$
- **8.9 Note.** Example 8.8 shows that a homotopy inverse of a homotopy equivalence $f: X \to Y$ in general is not unique: any function $g: \{*\} \to \mathbb{R}^n$ is a homotopy inverse of the constant function $f: \mathbb{R}^n \to \{*\}$.
- **8.10 Definition.** If X is a space such that $X \simeq \{*\}$ then we say that X is a *contractible space*.
- **8.11 Proposition.** Let X be a topological space. The following conditions are equivalent:
 - 1) X is contractible;
 - 2) the identify map id_X is homotopic to a constant map;
 - 3) for each space Y and any maps $f, g: Y \to X$ we have $f \simeq g$.

Proof. Exercise. □

Many examples of homotopy equivalences can be obtained using deformation retractions:

- **8.12 Definition.** A subspace $A \subseteq X$ is a *deformation retract* of a space X if there exists a homotopy $h: X \times [0,1] \to X$ such that
 - 1) $h_0 = id_X$
 - 2) $h_t|_A = id_A$ for all $t \in [0, 1]$

3) $h_1(x) \in A$ for all $x \in X$

In such case we say that h is a deformation retraction of X onto A.

8.13 Proposition. If $A \subseteq X$ is a deformation retract of X then $A \simeq X$.

Proof. Let $h: X \times [0,1] \to X$ be a deformation retraction, let $r: X \to A$ be given by $r(x) = h_1(x)$ and let $j: A \to X$ be the inclusion map. We have $rj = \mathrm{id}_A$. Also, h is a homotopy between id_X and jr. \square

8.14 Example. For any n > 0 the sphere S^{n-1} is a deformation retract of $\mathbb{R}^n \setminus \{0\}$. Indeed, a deformation retraction $h \colon \mathbb{R}^n \setminus \{0\} \to S^{n-1}$ is given by

$$h(x, t) = \frac{x}{(1 - t) + t||x||}$$

As a consequence $\mathbb{R}^n \setminus \{0\} \simeq S^{n-1}$.

Interesting examples of homotopy equivalences can be also obtained using the constructions of a mapping cylinder and a mapping cone:

8.15 Definition. Let $f: X \to Y$ be a continuous function. The *mapping cylinder* of f is the space

$$M_f = (X \times [0,1] \sqcup Y)/\sim$$

where \sim is the equivalence relation given by $(x,1) \sim f(x)$ for all $x \in X$.

The mapping cone of f is the space obtained from M_f by collapsing the subspace $X \times \{0\} \subseteq M_f$ to a point:

$$C_f = M_f/(X \times \{0\})$$

8.16 Proposition. For any map $f: X \to Y$ we have $M_f \simeq Y$.

Proof. Exercise.

8.17 Proposition. Let $f, g: X \to Y$ be continuous functions. If $f \simeq g$ then $C_f \simeq C_q$.

Proof. Exercise.

8.18 Example. Consider maps $f, g: \{-1, 1\} \to S^1$ where f is a constant map and g is non-constant (e.g. g maps 1 and -1 to antipodal points of S^1). Mapping cylinders of the these functions can be depicted as follows:

The mapping cones, in turn, look as follows:

Notice that $f \simeq g$, and so $C_f \simeq C_g$. Notice also that the space C_f is homeomorphic to $S^1 \vee S^1$ while C_g is homeomorphic to the space obtained as a union of S^1 and one of its diagonals. In effect we obtain a homotopy equivalence:

Our next goal is to examine how the fundamental group behaves with respect to homotopic maps and homotopy equivalent spaces. First, recall that a map of pointed spaces $f:(X,x_0)\to (Y,y_0)$ induces a homomorphism of fundamental groups $f_*:\pi_1(X,x_0)\to\pi_1(Y,y_0)$ which is given by $f_*([\omega])=[f\circ\omega]$. We have:

8.19 Proposition. If $f, g: (X, x_0) \to (Y, y_0)$ are maps of pointed spaces such that $f \simeq g$ (rel $\{x_0\}$) then $f_* = g_*$.

Proof. For $[\omega] \in \pi_1(X, x_0)$ we want to show that $f_*([\omega]) = g_*([\omega])$, or equivalently that

$$f \circ \omega \simeq g \circ \omega \text{ (rel } \{0,1\})$$

Let $h: X \times [0,1] \to Y$ be a homotopy between f and g (rel $\{x_0\}$). Then the map

$$h \circ (\omega \times id_{[0,1]}) : [0,1] \times [0,1] \to Y$$

gives a path homotopy between $f \circ \omega$ and $g \circ \omega$.

Proposition 8.19 can be generalized to the setting where we do not assume that homotopy preserves basepoints. Recall (4.2) that if Y is a space, $y_0, y_1 \in Y$ then a path τ in Y with $\tau(0) = y_0$ and $\tau(1) = y_1$ induces an isomorphism $s_\tau \colon \pi_1(Y, y_0) \to \pi_1(Y, y_1)$ given by $s_\tau([\omega]) = [\bar{\tau} * \omega * \tau]$.

8.20 Proposition. Let $f, g: X \to Y$ be homotopic maps and let $h: f \simeq g$. For $x_0 \in X$ let τ be the path in Y given by $\tau(t) = h(x_0, t)$. The following diagram commutes:

Proof. Exercise. □

8.21 Corollary. If $f,g:X\to Y$ are maps such that $f\simeq g$ then the homomorphism $f_*\colon \pi_1(X,x_0)\to \pi_1(Y,f(x_0))$ is an isomorphism (or is trivial or is 1-1 or onto) if and only if the homomorphism $g_*\colon \pi_1(X,x_0)\to \pi_1(Y,g(x_0))$ has the same property.

8.22 Proposition. If $f: X \to Y$ is a homotopy equivalence then for any $x_0 \in X$ the homomorphism $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is an isomorphism.

Proof. Let $g: Y \to X$ be a homotopy inverse of f. Consider the sequence of homomorphisms

$$\pi_1(X, x_0) \xrightarrow{f_*} \pi_1(Y, f(x_0)) \xrightarrow{g_*} \pi_1(X, qf(x_0)) \xrightarrow{f_*} \pi_1(Y, fqf(x_0))$$

Composition of the first two homomorphisms satisfies $g_*f_*=(gf)_*$. Since $gf\simeq \mathrm{id}_X$ and id_{X*} is an isomorphism by Proposition 8.21 we obtain that g_*f_* is an isomorphism. This implies in particular that g_* is onto. Similarly, composing the last two homomorphisms we obtain $f_*g_*=(fg)_*$ and since $fg\simeq \mathrm{id}_Y$ we get that f_*g_* is an isomorphism. This means that g_* is 1-1. As a consequence g_* is an isomorphism. It follows that the first homomorphism f_* is a composition of two isomorphisms: $f_*=g_*^{-1}(g_*f_*)$, and so f_* is an isomorphism.

8.23 Corollary. If X, Y are path connected spaces and $X \simeq Y$ then $\pi_1(X, x_0) \cong \pi_1(Y, y_0)$ for any $x_0 \in X$, $y_0 \in Y$.

Proof. Let $f: X \to Y$ be a homotopy equivalence. By Proposition 8.22 we get an isomorphism $f_*: \pi_1(X, x_0) \xrightarrow{\cong} \pi_1(Y, f(x_0))$. Since Y is path connected by Corrolary 4.3 we also have $\pi_1(Y, f(x_0)) \cong \pi_1(Y, y_0)$.

- **8.24 Note.** In the proof above we used only that Y is path connected, so the assumption in Corollary 8.23 that both X and Y are path connected may seem too strong. However, if Y is path connected and $X \simeq Y$ then X must be path connected as well (exercise).
- **8.25 Example.** As we have seen before (8.14) the space $\mathbb{R}^n \setminus \{0\}$ is homotopy equivalent to the sphere S^{n-1} . This gives $\pi_1(\mathbb{R}^n \setminus \{0\}) \cong \pi_1(S^{n-1})$. In particular $\pi_1(\mathbb{R}^2 \setminus \{0\}) \cong \pi_1(S^1) \cong \mathbb{Z}$.
- **8.26 Example.** Let Θ be the space obtained as a union of S^1 and one of its diagonals. By Example 8.18 this space is homotopy equivalent to $S^1 \vee S^1$, so $\pi_1(\Theta) \cong \pi_1(S^1 \vee S^1)$.

Exercises to Chapter 8

E8.1 Exercise. Recall that if X is a space then $\pi_0(X)$ denotes the set of path connected components of X. If $x \in X$ then by $[x] \in \pi_0(X)$ we will denote the path connected component of the point x. Recall that a continuous function $f: X \to Y$ induces a map of sets $f_*: \pi_0(X) \to \pi_0(Y)$ given by $\pi_0([x]) = [f(x)]$. Show that if f is a homotopy equivalence then f_* is a bijection.

- **E8.2** Exercise. Prove Proposion 8.11.
- **E8.3 Exercise.** Let $f, g: X \to Y$ be two homeomorphisms and let $f^{-1}, g^{-1}: Y \to X$ be their respective inverses. Show that if $f \simeq g$ then $f^{-1} \simeq g^{-1}$.
- **E8.4 Exercise.** a) For i = 1, 2 let X_i be a topological space and let $Y_i \subseteq X_i$. Assume that we have a commutative diagram:

$$Y_{1} \xrightarrow{j_{1}} X_{1} \xrightarrow{r_{1}} Y_{1}$$

$$f' \downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow f'$$

$$Y_{2} \xrightarrow{j_{2}} X_{2} \xrightarrow{r_{2}} Y_{2}$$

where $j_i \colon Y_i \to X_i$ is the inclusion map, and $r_i \colon X_i \to Y_i$ is a retraction. Show that if f is a homotopy equivalence then f' is a homotopy equivalence as well.

- b) Let X be a contractible space and let $A \subseteq X$ be a retract of X. Show that A is contractible.
- **E8.5 Exercise.** Let X, Y be topological spaces. Show that any map $f: X \times \mathbb{R}^k \to Y \times \mathbb{R}^k$ is homotopic to a map $g \times \mathrm{id}_{\mathbb{R}^k} \colon X \times \mathbb{R}^k \to Y \times \mathbb{R}^k$ for some $g: X \to Y$.
- **E8.6 Exercise.** For spaces X and Y let [X, Y] denote the set of homotopy classes of maps $X \to Y$. That is, each map $f: X \to Y$ defines an element $[f] \in [X, Y]$ and [f] = [f'] if $f \simeq f'$. Notice that any map $g: X \to X'$ defines a function $g^*: [X', Y] \to [X, Y]$ given by $g^*([f]) = [fg]$.

Given a map $q: X \to X'$ show that the following conditions are equivalent:

- 1) The map q is a homotopy equivalence.
- 2) For each space *Z* the function $q^*: [X', Z] \rightarrow [X, Z]$ is a bijection.
- **E8.7 Exercise.** The antipodal map $f: S^n \to S^n$ is the map given by f(x) = -x. Show that if $g: S^n \to S^n$ is any map such that $g(x) \neq x$ for all $x \in S^n$ then $g \simeq f$.
- **E8.8 Exercise.** Let X be a topological space. Assume that $f, g: X \to S^n$ are maps such that for some non-empty open set $U \subseteq S^n$ we have $f^{-1}(U) = g^{-1}(U) = V \subseteq X$ and $f|_V = g|_V$. Show that $f \simeq g$.
- **E8.9 Exercise.** Prove Proposition 8.17.
- **E8.10** Exercise. Prove Proposition 8.20.
- **E8.11 Exercise.** Let M be the Möbius band and let ∂M denote the boundary of M. Show that ∂M is not a retract of M.
- **E8.12 Exercise.** Recall (8.15) that the cone of a map $f: X \to Y$ is the space

$$C_f = (X \times [0, 1] \sqcup Y)/\sim$$

where $(x, 1) \sim f(x)$ for all $x \in X$ and $(x, 0) \sim (x', 0)$ for all $x, x' \in X$. We can consider Y as a subspace of C_f . Show that Y is contractible if any only if for every map $f: X \to Y$ the space Y is a retract of C_f .

E8.13 Exercise. a) Let $f: S^1 \to X$ be a continuous function. Show that f is homotopic to a constant map if and only if there exists $\bar{f}: D^2 \to X$ such that $\bar{f}|_{S^1} = f$.

b) Show that if $f: S^1 \to S^1$ is homotopic to a constant map then there exists $x_0 \in S^1$ such that $f(x_0) = x_0$.

E8.14 Exercise. Let $F: D^2 \to D^2$ be a function such that $F(S^1) \subseteq S^1$, and let $f: S^1 \to S^1$ be given by f(x) = F(x) for all $x \in S^1$. Show that if f is not homotopic to a constant map, then for each function $G: D^2 \to D^2$ there is a point $x_0 \in D^2$ such that $F(x_0) = G(x_0)$.

E8.15 Exercise. Recall that for $n \ge 1$ multiplication in the group $\pi_n(X, x_0)$ can be defined using the pinch map $p: S^n \to S^n \vee S^n$: if $[\omega], [\tau] \in \pi_n(X, x_0)$ then $[\omega] \cdot [\sigma] = [(\omega \vee \sigma) \circ p]$. The goal of this exercise is to generalize this observation.

For pointed spaces (X, x_0) and (Y, y_0) let $[X, Y]_*$ denote the set of pointed homotopy classes of maps $X \to Y$. That is, each pointed map $f: (X, x_0) \to (Y, y_0)$ defines an element $[f] \in [X, Y]_*$ and [f] = [g] if $f \simeq g$ relative the basepoint. Let (X, x_0) be a space such that

- (i) for each space (Y, y_0) the set $[X, Y]_*$ has the structure of a group;
- (ii) for each pointed map $f:(Y,y_0)\to (Y',y_0')$ the induced function $f_*:[X,Y]_*\to [X,Y']_*$ is a group homomorphism.
- a) Show that for any space space (Y, y_0) there exists a bijection of sets $\varphi_Y : [X \lor X, Y]_* \to [X, Y]_* \times [X, Y]_*$ such that for any pointed map $f : (Y, y_0) \to (Y', y_0')$ the following diagram commutes:

$$[X \lor X, Y]_{*} \xrightarrow{\varphi_{Y}} [X, Y]_{*} \times [X, Y]_{*}$$

$$\downarrow f_{*} \downarrow \qquad \qquad \downarrow f_{*} \times f_{*}$$

$$[X \lor X, Y']_{*} \xrightarrow{\cong} [X, Y']_{*} \times [X, Y']_{*}$$

b) Show that there exists a map $p: X \to X \lor X$ such that for each space (Y, y_0) the multiplication in the group $[X, Y]_*$ is given by $[f] \cdot [q] = [(f \lor q) \circ p]$.

Hint: For a space (Y, y_0) let μ_Y denote the multiplication in the group $[X, Y]_*$:

$$\mu_Y \colon [X, Y]_* \times [X, Y]_* \to [X, Y]_*$$

Notice that the condition (ii) above is equivalent to saying that for any map $f:(Y,y_0)\to (Y',y_0')$ the following diagram commutes:

$$[X, Y]_{*} \times [X, Y]_{*} \xrightarrow{\mu_{Y}} [X, Y]_{*}$$

$$f_{*} \times f_{*} \downarrow \qquad \qquad \downarrow f_{*}$$

$$[X, Y']_{*} \times [X, Y']_{*} \xrightarrow{\mu_{Y'}} [X, Y']_{*}$$