Chapter 10

Prove the following statements with either induction, strong induction or proof by smallest counterexample.

Exercise (3). Prove that $1^3 + 2^3 + 3^3 + 4^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$ for every positive integer n.

Proof: (Weak Induction)

Base Case: Observe that when n = 1 that $n^3 = (1)^3 = \frac{(1)^2((1)+1)^2}{4} = \frac{4}{4} = 1$ which is true.

Induction Hypothesis: Suppose there is a $k \in \mathbb{Z}$ such that $1^3 + 2^3 + 3^3 + 4^3 + \cdots + k^3 = \frac{k^2(k+1)^2}{4}$.

<u>Inductive Step:</u> We wish to show that the statement holds for n = k + 1, i.e., that $1^3 + 2^3 + 3^3 + 4^3 + \cdots + k^3 + (k+1)^3 = \frac{(k+1)^2((k+1)+1)^2}{4}$. Observe the following:

$$1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + k^{3} + (k+1)^{3} = [1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + k^{3}] + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + \frac{4(k+1)^{3}}{4}$$

$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$

$$= \frac{(k+1)^{2}(k^{2} + 4(k+1))}{4}$$

$$= \frac{(k+1)^{2}(k^{2} + 4k + 4)}{4}$$

$$= \frac{(k+1)^{2}(k+2)^{2}}{4}$$

$$= \frac{(k+1)^{2}((k+1) + 1)^{2}}{4}.$$

Showing that the statement holds for n = k + 1.

<u>Conclusion</u>: Therefore, by induction on n, the statement $1^3 + 2^3 + 3^3 + 4^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$ is true for every positive integer $n \ge 1$.

Exercise (4). If
$$n \in \mathbb{N}$$
, then $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n(n+1) = \frac{n(n+1)(n+2)}{3}$.

Proof: Base Case: Observe that when n = 1 that $\left[n(n+1) = \frac{n(n+1)(n+2)}{3} \right] = \left[(1)((1)+1) = \frac{(1)((1)+1)((1)+2)}{3} \right]$ $[(1)(2) = \frac{6}{3}] = 2$ is true.

Induction Hypothesis: Suppose for all all k with $1 \le k < n$ that

$$1(2) + 2(3) + 3(4) + \dots + k(k+1) = \frac{k(k+1)(k+2)}{3}.$$

In particular, suppose that k = n - 1 such that

$$1(2) + 2(3) + 3(4) + \dots + n(n-1) = \frac{(n-1)(n)(n+1)}{3}$$

<u>Induction Step:</u> We need to show that $1(2) + 2(3) + 3(4) + ... + n(n+1) = \frac{n(n+1)(n+2)}{3}$. Observe that

$$1(2) + 2(3) + 3(4) + \dots + n(n+1) = 1(2) + 2(3) + 3(4) + \dots + (n-1)(n) + n(n+1)$$

$$= \left(1(2) + 2(3) + 3(4) + \dots + (n-1)n\right) + n(n+1)$$

$$= \frac{(n-1)(n)(n+1)}{3} + n(n+1)$$

$$= \frac{(n-1)(n)(n+1)}{3} + \frac{3n(n+1)}{3}$$

$$= \frac{(n-1)(n)(n+1) + 3n(n+1)}{3}$$

$$= \frac{(n(n+1))((n-1) + 3)}{3}$$

$$= \frac{n(n+1)(n+2)}{3}$$

Therefore, by principle of mathematical induction, $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n(n+1) =$ $\frac{n(n+1)(n+2)}{3}$ is true for all $n \in \mathbb{N}$.

(Note, this one uses the induction extras problem as a skeleton.)

Exercise (5). If $n \in \mathbb{N}$, then $2^1 + 2^2 + 2^3 + \cdots + 2^n = 2^{n+1} - 2$.

Proof: Let P(n) be the statement $2^1 + 2^2 + 2^3 + \cdots + 2^n = 2^{n+1} - 2$. We will demonstrate that the left hand side is equal to the right hand side.

<u>Base Case:</u> When n = 1, $P(n) = 2^{(1)} = 2^{(1)+1} - 2 = 4 - 2 = 2$. So P(1) holds.

Induction Hypothesis: Suppose for all $k \in \mathbb{N}$ and $n = k \ge 1$ that P(k) is true. That means that $2^1 + 2^2 + 2^3 + \dots + 2^k = 2^{k+1} - 2$. We want to show that P(k+1) holds, that is that $2^1 + 2^2 + 2^3 + \dots + 2^{(k+1)} = 2^{(k+1)+1} - 2$.

Induction Step: Observe that when n = k + 1 that

HW #10

$$P(n) = 2^{1} + 2^{2} + 2^{3} + \dots + 2^{(k+1)}$$

$$= 2^{1} + 2^{2} + 2^{3} + \dots + 2^{k} + 2^{k+1}$$

$$= \left(2^{1} + 2^{2} + 2^{3} + \dots + 2^{k}\right) + 2^{k+1}$$

$$= 2^{k+1} - 2 + 2^{k+1}$$

$$= 2(2^{k+1}) - 2$$

$$= 2^{k+2} - 2$$

$$= 2^{(k+1)+1} - 2$$

Thus we have $2^1 + 2^2 + 2^3 + \cdots + 2^k + 2^{k+1} = 2^{(k+1)+1} - 2$. Hence the statement is true for n = k + 1, by mathematical induction P(n) is true for all $n \in \mathbb{N}$.

Exercise (8). If $n \in \mathbb{N}$, then $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$

Proof: Let P(n) be the statement $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$ Base Case: Observe that when n = 1, that $P(n) = \frac{1}{((1)+1)!} = \frac{1}{2!} = \frac{1}{2} = 1 - \frac{1}{((1)+1!)}$. So P(1) is true.

Induction Hypothesis: Suppose that for some $n = k \ge 1$, where $k \in \mathbb{N}$ that P(k) is correct. That is to say $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{k}{(k+1)!} = 1 - \frac{1}{(k+1)!}$. We want to show that P(k+1) holds.

Inductive step: Observe that when n = k + 1 that

$$P(n) = \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{(k+1)}{((k+1)+1)!}$$

$$= \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!} + \frac{(k+1)}{((k+1)+1)!}$$

$$= \left(\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{k}{(k+1)!}\right) + \frac{(k+1)}{((k+1)+1)!}$$

$$= 1 - \frac{1}{(k+1)!} + \frac{(k+1)}{((k+1)+1)!}$$

$$= 1 - \frac{((k+1)+1)}{((k+1)+1)!} + \frac{(k+1)}{((k+1)+1)!}$$

$$= 1 - \frac{1}{((k+1)+1)!}$$

Thus by induction we have shown $P(n) = 1 - \frac{1}{(n+1)!}$ is true for all $n \in \mathbb{N}$.

Exercise (10). Prove that $3 \mid (5^{2n} - 1)$ for every integer $n \geq 0$.

Proof: We will prove via induction on n.

<u>Base Case:</u> Consider the case where n = 0. Observe that $(5^{2n} - 1) = (5^{2(0)} - 1) = (5^0 - 1) = (1 - 1) = 0$. So we have $3 \mid 0$ which is true.

<u>Induction Hypothesis:</u> Now suppose the statement is true for some $n = k \ge 0$, that is to say $3 \mid (5^{2k} - 1)$. This means $5^{2k} - 1 = 3a$ for some $a \in \mathbb{Z}$. From this we get 52k = 3a + 1

Inductive Step: Observe that

$$5^{2(k+1)} - 1 = 5^{2k+2} - 1$$

$$= 5^{2k}5^{2} - 1$$

$$= 5^{2}(24a + 1) - 1$$

$$= 25(24a + 1) - 1$$

$$= 25(24a) + 25 - 1$$

$$= 25(24a) + 24$$

$$= 3(25(8a) + 8)$$

This shows that $5^{2(k+1)} - 1 = 3(25(8a) + 8)$, which means $3 \mid (5^{2(k+1)} - 1)$. Thus by induction, $3 \mid (5^{2n} - 1)$ for all $n \in \mathbb{Z}$.

Exercise (13). Prove that $6 \mid (n^3 - n)$ for every integer $n \ge 0$.

Proof: Base Case: Consider the case where n=0. Observe that $6 \mid (n^3-n)=6 \mid ((0)^3-n)=0$ (0) = 6 | 0 which is true.

Induction Hypothesis: Assume the statement is true for $n = k \ge 0$. That is to say that $6 \mid (k^3 - k)$. This means that $k^3 - k = 6a$ for some $a \in \mathbb{Z}$. We want to show the statement is true for n = k + 1, that is to say $6 \mid ((k+1)^3 - (k+1))$.

Induction Step: Observe that

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - k - 1$$
$$= (k^3 - k) + 3k^2 + 3k$$
$$= 6a + 3k^2 + 3k$$
$$= 6a + 3k(k+1).$$

Since one of k or (k + 1) must be even, it follows that k(k + 1) is even. Thus k(k+1) = 2b for some $b \in \mathbb{Z}$. So $(k+1)^3 - (k+1) = 6a + 3k(k+1) = 6a + 3*2b = 6(a+b)$.

Therefore $6 \mid ((k+1)^3 - (k+1))$. Thus showing that $6 \mid (n^3 - n)$ for all integers $n \ge 0$.

Exercise (18). Suppose A_1, A_2, \ldots, A_n are sets in some universal set U, and $n \geq 2$. Prove that $\overline{A_1 \cup A_2 \cup \cdots A_n} = \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_n}$.

Proof: Write your answer here. \Box

Exercise (19). Prove that $\frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$ for every $n \in \mathbb{N}$.

Proof: Write your answer here. \Box

Exercise (22). If $n \in \mathbb{N}$, then

$$\left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{4}\right) \left(1 - \frac{1}{8}\right) \left(1 - \frac{1}{16}\right) \cdots \left(1 - \frac{1}{2^n}\right) \ge \frac{1}{4} + \frac{1}{2^{n+1}}.$$

Proof: Write your answer here.

Exercise (25). Concerning the Fibonacci sequence, prove that $F_1 + F_2 + F_3 + F_4 + \cdots + F_n = F_{n+2} - 1$.

Proof: Write your answer here. \Box

Exercise (30). Here F_n is the nth Fibonacci number. Prove that

$$F_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.$$

Hint: There are multiple ways to do this... one is to use the fact that $a^{n-1} = \frac{a^n}{a}$, while others involve things like the fact if $\phi = \frac{1+\sqrt{5}}{2}$, then $\phi^2 - \phi - 1 = 0$.

Proof: Write your answer here. \Box

Exercise (33). Suppose n (infinitely long) straight lines lie on a plane in such a way that no two of the lines are parallel, and no three of the lines intersect in a single point. Show that this arrangement divides the plane into $\frac{n^2+n+2}{2}$ regions.

Proof: Write your answer here. \Box

Exercise (Reflection Problem).

• How long did it take you to complete each problem?

Answer: \Box

• What was easy?

	Answer:	
•	What was challenging? What made it challenging?	
	Answer:	
•	Compare your answers to the odd numbered exercises to those in the back of textbook. What did you learn from this comparison?	the
	Answer:	

.