Basics of Cryptography

1. What is Cryptography?

Cryptography is the science of securing information so that only the intended person can read or use it.

It protects confidentiality, integrity, authentication, and non-repudiation.

2. Core Principles (CIA + AN)

- Confidentiality → Data is secret (encryption).
- Integrity → Data is not altered (hashing).
- Authentication → Verify identity (digital signatures, certificates).
- Non-repudiation → Sender cannot deny sending (signatures, logs).

3. Types of Cryptography

◆ 1. Symmetric Encryption

- Same key for encryption & decryption.
- Fast, used for bulk data encryption.
- Examples: AES, DES, 3DES, Blowfish.

◆ 2. Asymmetric Encryption

- Uses a public key (encrypt) and a private key (decrypt).
- Slower but more secure for communication.
- Examples: RSA, ECC, Diffie-Hellman.
- Used in: SSL/TLS, digital certificates, email encryption.

◆ 3. Hash Functions

One-way cryptographic functions.

- No decryption possible.
- Used for password storage, integrity checks.
- Examples: MD5, SHA-1, SHA-256.

4. Digital Signatures

- Provide authentication, integrity, non-repudiation.
- Example: RSA signatures, ECDSA.

4. Cryptographic Attacks

- Brute Force Attack → Trying all possible keys.
- Dictionary Attack → Using wordlists to crack hashes.
- Man-in-the-Middle (MITM) → Intercepting communication.
- Replay Attack → Reusing valid data packets.
- Quantum Threat → Future quantum computers breaking RSA, ECC.

5. Applications in Cybersecurity

- Secure Communication → HTTPS, VPNs.
- Data Protection → Disk encryption (BitLocker, VeraCrypt).
- User Authentication → Password hashing, MFA.
- Blockchain & Cryptocurrency → Hashing + public key cryptography.
- Digital Forensics & Evidence → Digital signatures.