Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>Р3215</u>	К работе допущен		
Студент <u>Павличенко Софья Алексеевна</u>	Работа выполнена		
Преподаватель <u>Пулькин Н.С.</u>	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени.

2. Задачи, решаемые при выполнении работы.

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования.

Случайная величина – результат измерения промежутка времени 5 секунд.

4. Метод экспериментального исследования.

Многократное прямое измерение определенного интервала времени (5 секунд) и проверка закономерностей распределения значений этой случайной величины.

5. Рабочие формулы и исходные данные.

$$\langle t \rangle_N = \frac{1}{N} \, (t_1 + t_2 + \ldots + t_N) = \frac{1}{N} \, \sum_{i=1}^N t_i$$
 — среднее арифметическое всех результатов измерений.

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2}$$
 – выборочное среднеквадратичное отклонение.

$$ho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$$
 – максимальное значение плотности распределения.

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$
 — среднеквадратичное отклонение среднего значения.

$$ho(t)=rac{1}{\sigma\sqrt{2\pi}}exp\left(-rac{(t-\langle t
angle)^2}{2\sigma^2}
ight)$$
 — нормальное распределение, описываемое функцией Гаусса.

$$\Delta t = t_{lpha,N} \, \cdot \, \sigma_{\langle t \rangle}$$
 – доверительный интервал.

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	0 - 10c	0.005c

7. Схема установки (перечень схем, которые составляют Приложение 1).

-

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1: Результаты прямых измерений

N <u>o</u>	<u>;а 1: Результаты г</u>	$t_i - \langle t \rangle_N$, с	$(t_i - \langle t \rangle_N)^2$, \mathbf{c}^2
1	5,06	0,04	0,00181476
2	5,00	-0,02	0,00030276
3	4,81	-0,21	0,04301476
4	5,27	0,25	0,06380676
5	5,10	0,08	0,00682276
6	5,07	0,05	0,00276676
7	4,88	-0,14	0,01887876
8	5,07	0,05	0,00276676
9	5,13	0,11	0,01267876
10	5,20	0,18	0,03334276
11	5,22	0,20	0,04104676
12	5,13	0,11	0,01267876
13	5,11	0,09	0,00857476
14	5,18	0,16	0,02643876
15	5,02	0,00	0,0000676
16	4,89	-0,13	0,01623076
17	4,94	-0,08	0,00599076
18	5,20	0,18	0,03334276
19	4,80	-0,22	0,04726276
20	4,93	-0,09	0,00763876
21	4,91	-0,11	0,01153476
22	5,00	-0,02	0,00030276
23	4,84	-0,18	0,03147076
24	4,94	-0,08	0,00599076
25	4,96	-0,06	0,00329476
26	4,97	-0,05	0,00224676
27	5,06	0,04	0,00181476
28	5,18	0,16	0,02643876
29	4,81	-0,21	0,04301476
30	5,09	0,07	0,00527076
31	5,14	0,12	0,01503076
32	4,95	-0,07	0,00454276
33	4,92	-0,10	0,00948676
34	4,95	-0,07	0,00454276
35	5,08	0,06	0,00391876
36	5,04	0,02	0,00051076
37	4,98	-0,04	0,00139876
38	4,94	-0,08	0,00599076

39	5,19	0,17	0,02979076	
40	5,02	0,00	0,0000676	
41	4,85	-0,17	0,02802276	
42	4,96	-0,06	0,00329476	
43	5,03	0,01	0,00015876	
44	4,89	-0,13	0,01623076	
45	5,00	-0,02	0,00030276	
46	5,03	0,01	0,00015876	
47	4,98	-0,04	0,00139876	
48	5,14	0,12	0,01503076	
49	4,94	-0,08	0,00599076	
50	5,07	0,05	0,00276676	
	$\langle t \rangle_N = 5,0174 \text{ c}$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0.00 c$	$\sigma_N = 0.1165 \text{ c}$ $\rho_{max} = 3.4236 \text{ c}^{-1}$	

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

$$\langle t \rangle_{N} = \frac{1}{50} \sum_{i=1}^{50} t_{i} N_{i} = 5,0174 c$$

$$\sigma_{N} = \sqrt{\frac{1}{50-1}} \sum_{i=1}^{50} (t_{i} - 5,0174)^{2} = 0,1165 c$$

$$\rho_{\text{max}} = \frac{1}{0,1165\sqrt{2\pi}} = 3,4236 c^{-1}$$

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{50*49}} \sum_{i=1}^{50} (t_{i} - 5,0174)^{2} = 0,0165 c$$

$$t_{min} = 5,80 c, t_{max} = 5,27 c, \sqrt{N} \approx 7$$

Для построения гистограммы возьмем 7 интервалов.

$$\Delta t = t_{\alpha,N} * \sigma(t) = 2,01 * 0,0165 = 0,033165 c$$

Таблица 2. Данные для построения гистограммы

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, c^{-1}	t, c	ρ, c ⁻¹
4,8	5	1,4893617	4,835	1,00563834
4,87				
4,87	5	1,4893617	4,9	2,06096435
4,93				
4,93	12	2 57446900	4,965	3,09435377
5		3,57446809		
5	10	10 2,9787234	5,035	3,3847418
5,07	10	2,9101234	3,000	
5,07	9	2,68085106	5,105	2,58085302

5,14				
5,14	5	1,4893617	5,17	1,45239967
5,2	5			
5,2	3	0.90261702	F 225	0,59879731
5,27		0,89361702	5,235	

Опытное значение плотности вероятности (третий интервал):

$$\frac{\Delta N}{N\Delta t} = \frac{12}{50 \cdot 0,067} = 3,5745 c^{-1}$$

Нормальное распределение, описываемое функцией Гаусса:

$$\rho(4,965) = \frac{1}{0,1165\sqrt{2\pi}} \exp\left(-\frac{(4,965 - 5,0174)^2}{2 * 0,1165^2}\right) = 3,0944 c^{-1}$$

Таблица 3: Стандартные доверительные интервалы

	Интер	вал, с	ANI	ΔΝ	P	
	ОТ	до	ΔΝ	N		
$\langle \mathbf{t} \rangle_{\mathrm{N}} \pm \sigma_{\mathrm{N}}$	4,90	5,1339	33	0,66	0,683	
$\langle t \rangle_{N} \pm 2\sigma_{N}$	4,78434364	5,25045636	49	0,98	0,954	
$\langle t \rangle_{N} \pm 3\sigma_{N}$	4,66781547	5,36698453	50	1	0,997	

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\Delta_{ux} = 0.005 c$$

$$\Delta t == t_{\alpha,N} \cdot \sigma_{\langle t \rangle} \approx 2.01 \cdot 0.0165 = 0.033165; t_{\alpha,N} \approx 2.01;$$

Абсолютная погрешность с учетом погрешности прибора:

$$\Delta_t = \sqrt{(\Delta t)^2 + (\frac{2}{3}\Delta_{ux})^2} \approx 0,0666 c$$

Относительная погрешность измерения: $\varepsilon_t = \frac{\Delta t}{\langle t \rangle} \cdot 100\% = 4,036\%$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1 – Гистограмма и функция Гаусса

12. Окончательные результаты.

Среднеквадратичное отклонение среднего значения $\sigma_{(t)}$ = 0,0165 c

Табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha=0.95$: $t_{\alpha,N}=2.01$

Доверительный интервал $\Delta t = 0.033165 \ c$

Среднее арифметическое всех результатов измерений $\langle t \rangle_N = 5,0174 \ c$

Выборочное среднеквадратичное отклонение: $\sigma_N = 0,1165 \ c$

Максимальное значение плотности распределения ρ_{max} = 3,4236 c^{-1}

13. Выводы и анализ результатов работы.

В результате лабораторной работы было изучено распределение случайной величины на основе 50 измерений временных интервалов. Сравнение гистограммы, полученной экспериментально, с теоретической функцией Гаусса показало их схожесть. Это дало возможность подтвердить соответствие данных закону распределения и глубже понять его особенности.

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).