Cool Train

INFOH423 Data Mining Project 2023/24

Students:

- Mohamed Louai Bouzaher 000585861
- Hieu Nguyen Minh 000583782
- Jesús Celada García 000588299
- Eva Groth 000588492

Professors:

- Mahmoud SAKR
- Raphaël GYORI

Table of Content

- 1. Introduction
- 2. Business Understanding
- 3. Data Understanding
- 4. Data Preparation
- 5. Modeling
- 6. Evaluation
- 7. Conclusion

Business Understanding

What are the SNCB's business goals?

- Safety
- Increase passenger satisfaction
- Innovation
- Continuous improvement

What are the mains tasks of B-technics SNCB's section?

- Preventive maintenance
- Repairs

Data Understanding

2GB

CSV Data

12

Features

Aug 22 - Sep 23

92

Number of Vehicles

Fields & Significance

- 1. Mapped Vehicle ID: Unique identifier for each vehicle. Helps in tracking individual vehicles throughout the dataset.
- 2. Timestamps (UTC): Indicates the time at which each sample was taken. Facilitates time-based analysis, trend identification, and temporal patterns.
- **3. Latitude & Longitude**: GPS coordinates of the vehicles. Provides spatial information, enabling mapping and geospatial analysis to track the movement and location of vehicles.
- **4.** RS_E_InAir Temp_PC1 & RS_E_InAir Temp_PC2: Temperature readings from redundant engine cooling systems (e.g., primary and secondary cooling systems). Monitoring these temperatures helps identify cooling system efficiency, potential overheating, or anomalies.
- **5.** RS_E_OilPressure_PC1 & RS_E_OilPressure_PC2: Pressure readings from engine oil systems (primary and secondary). Crucial for assessing engine health, oil system efficiency, and detecting potential issues like leaks or pressure irregularities.
- **6. RS_E_RPM_PC1 & RS_E_RPM_PC2**: RPM (Revolutions Per Minute) of the engines. Helps in evaluating engine performance, detecting engine malfunctions, and identifying irregularities in engine speed.
- 7. RS_E_WaterTemp_PC1 & RS_E_WaterTemp_PC2: Water temperature readings from engine systems. Monitoring water temperature is vital for engine health and detecting issues like overheating or cooling system inefficiencies.
- **8.** RS_T_OilTemp_PC1 & RS_T_OilTemp_PC2: Oil temperature readings from engine systems. Significant for assessing engine performance, oil viscosity, and identifying issues related to oil temperature such as overheating or inadequate lubrication.

- Initial inspection of the Air Temperature in PC1 data reveils the existence of outliers which affect the data distribution and can be considered as **noise**.

Range of Air Temperature in PC1: [0, 65535.0]

- Same goes for Air Temperature in PC2.

Range of Air Temperature in PC2: [0, 65535.0]

- Inspecting Water Temperature in PC1 shows that some values fall outside the permissible maximum value (100°C).

Range of Water Temperature in PC1: [-15.0, 109.0]

- Same applies to Water Temperature in PC2.

Range of Water Temperature in PC2: [-17.0 , 119.0]

- Initial inspection of the Oil Temperature in PC1 data reveils the existence of outliers which affect the data distribution.

This can considered as form of noise.

Range of Oil Temperature in PC1: [-128.0, 127.0]

- As for the Oil Temperature in PC2, most data point fall within the range, and only few fall outside the range of 3 Standard Deviations.

Range of Oil Temperature in PC2: [0.0, 117.0]

- Most data points of RPM in PC1 fall in range of [700, 2000]. However, There are many instances of 0 values.

Range of RPM PC1 Values: [0.0, 2309.0]

- Also, most data points of RPM in PC2 fall in range of [700, 2000]. However, There are many instances of 0 values and outliers that go beyond 2000.

Range of RPM PC2 Values: [0.0, 9732.0]

Data Preparation

In order to facilitate data manipulation, we loaded the source data to an Azure PostgreSQL Server, Where we performed the data cleaning operations.

Data Preparation Data Cleaning

- After exploring the data distribution, we decided to clean the data by:
 - + Drop all NULL values
 - + Drop cases where latitude and longitude values are not specified
 - + Drop cases where value>mean+6*std (noises)
 - + Drop the duplicates

Data Preparation Weather Data

- After cleaning the data, we integrated weather data from Open Meteo API.
- Link: https://open-meteo.com/

- To reduce API calls:
 - o Round the latitudes and longitudes (e.g. 50.7698183 --> 50.8)
 - o Get the weather data every hour (e.g. 7:00:00, 8:00:00)
- Weather data:
 - Temperature (°C)
 - Humidity (%)
 - Rain (mm)
 - Snow (m)

- Weather code (for weather description)
- Cloud cover (%)
- Evapotranspiration (mm)
- Wind speed (km/h)

Data Preparation Weather Data

API Call

```
for _, row in short_time_location_data.iterrows():
    params = {
        "latitude": row['lat'],
        "longitude": row['lon'],
        "hourly": ["temperature_2m", "relative_humidity_2m", "rain", "snow_depth", "weather_code", "cloud_cover", "et0_fao_evapotranspiration", "wind_speed_10m"],
        "start_date": row['timestamp'],
        "end_date": row['timestamp']
}
responses = openmeteo.weather_api(url, params=params)
```

mapped_veh_id	timestamps_UTC	lat	on	RS_E_InAirTemp_P	RS_E_InAirTemp_P	RS_E_OilPress_PC1	RS_E_OilPress_PC2	RS_E_RPM_PC1	RS_E_RPM_PC2	RS_E_WatTemp_PC	RS_E_WatTemp_PC RS_1	Γ_OilTemp_PC RS	S_T_OilTemp_PC; te	mperature	humidity	rain	snow_depth	weather_code	cloud_cover	evapotranspiration	wind_speed
116	2023-06-13 9:01:11	51.016409	3.7729487	34	40	193	169	803	2 80	1 87	85	85	82	25.039	39.178665	0		0	0	0 0.4631820	6 16.07149
146	2023-06-13 9:01:11	51.014318	3.7792497	40	34	220	244	79	80	1 78	82	79	75	25.039	39.178665	0		0	0	0.4631820	6 16.07149
176	2023-06-13 9:01:12	50.9953063	3.8122252	46	43	355	379	178	175	2 87	87	87	87	25.039	39.178665	0		0	0	0.4631820	6 16.07149
148	2023-06-13 9:01:13	51.0216133	3.7626621	37	32	351	224	79	80	1 51	75	52	76	25.039	39.178665	0		0	0	0.4631820	6 16.07149
102	2023-06-13 9:01:21	51.0137487	3.779246	38	32	213	207	79	79	3 80	85	75	80	25.039	39.178665	0		0	0	0.4631820	6 16.07149
146	2023-06-13 9:01:21	51.0141058	3.7798364	40	34	224	244	80	79	8 78	82	76	76	25.039	39.178665	0		0	0	0.4631820	6 16.07149
102	2023-06-13 9:01:24	51.0139681	3.7786963	38	32	213	207	79	79	1 80	85	75	80	25.039	39.178665	0		0	0	0.4631820	6 16.07149
194	2023-06-13 9:01:29	51.0210669	3.763724	35	41	220	244	80	80	5 78	80	73	79	25.039	39.178665	0		0	0	0.4631820	6 16.07149
147	2023-06-13 9:01:37	50.99301	3.8198325	45	42	200	203	79	80	4 90	86	84	89	25.039	39.178665	0		0	0	0.4631820	6 16.07149
170	2023-06-13 9:01:47	51.016194	3.7735464	32	37	196	251	79-	4 80	4 78	86	76	82	25.039	39.178665	0		0	0	0.4631820	6 16.07149
119	2023-06-13 9:01:51	51.0130876	3.7808002	33	32	3	10)	0 31	31	31	27	25.039	39.178665	0		0	0	0.4631820	6 16.07149
102	2023-06-13 9:01:54	51.013974	3.7787042	38	32	210	203	79	79	9 80	85	76	79	25.039	39.178665	0		0	0	0.4631820	6 16.07149
148	2023-06-13 9:01:57	51.0213395	3.7631515	37	32	351	220	80	79	9 51	74	52	73	25.039	39.178665	0		0	0	0.4631820	6 16.07149
112	2023-06-13 9:01:57	50.9919067	3.8270181	41	43	251	244	79	7 80	4 80	83	79	81	25.039	39.178665	0		0	0	0.4631820	6 16.07149
170	2023-06-13 9:01:57	51.0164015	3.7729755	32	37	200	251	79	81	0 78	86	77	81	25.039	39.178665	0		0	0	0.4631820	6 16.07149
112	2023-06-13 9:02:00	50.991751	3.8288266	41	43	251	244	79	80	4 80	83	79	81	25.039	39.178665	0		0	0	0.4631820	6 16.07149

Data Modeling

Upon the completion of data preparation, we started investigating different anomaly detection methods, namely:

- 1. Statistical Methods
- 2. Time Series Analysis
- 3. Machine Learning Models

Statistical Methods

This was mainly looking for one of the three:

- **1. Finding temperatures thresholds: A**bove 65°C (for air), 100°C (for water), or 115°C (for oil) as anomalies (Realistic but calls for stopping the engine)
- **2. Detecting sensor malfunction:** Unrealistic temperatures (> 200°C) and/or pressure values; Pressure < mean 3 SD Or Pressure > mean + 3 SD.
- 3. Detecting engine failure: huge difference between RPM in PC1 and PC2.

Statistical Methods - Findings

- Air Temperature Anomalies:
 - + Number of instances: **78446**
- Water Temperature Anomalies:
 - + Number of instances: **1986**
- Oil Temperature Anomalies:
 - + Number of instances: **76**
- Engine Failure Anomalies:
 - + Number of instances: 864551

Time Series Analysis

In order to catch a pattern/trend in the changes happening on the level of <u>one train at a time</u>, we used **Seasonal Decomposition.**

However, this method did not yield useful results as it reported a very high percentage of instances as anomalies.

Machine Learning Methods

We experimented with the following methods:

- 1. Elleptic Envelope
- 2. Isolation Forest
- 3. Local Outlier Factor
- 4. K-Means Clustering

Data Modeling Elleptic Envelope

The Elliptic Envelope is an algorithm used for outlier detection in machine learning and statistical analysis. Its primary purpose is to identify outliers in a dataset by assuming the inlying data to be Gaussian distributed and fitting an ellipse to the central data points. Data points lying outside this ellipse are considered potential outliers.

Data Modeling Isolation Forest

Isolation Forest is an unsupervised machine learning algorithm used for outlier detection. It stands out for its ability to efficiently detect anomalies (outliers) in datasets, especially in large datasets, by leveraging the concept of decision trees.

Data Modeling Local Outlier Factor

 The Local Outlier Factor (LOF) is an unsupervised machine learning algorithm used for outlier detection. It assesses the local deviation of density for each data point concerning its neighbors, identifying instances that have a significantly different density compared to their local neighborhood.

Note in the second of the seco

• K-means clustering is an unsupervised machine learning algorithm used for partitioning a dataset into K distinct, non-overlapping clusters. The primary objective of this algorithm is to group data points into clusters where each data point belongs to the cluster with the nearest mean (centroid), serving as a prototype of the cluster.

Training Setup

- Divide the data into a training set (80%) and a test set (20%)
- Apply data cleaning procedure to training set only (because test set is supposed to be unknown, or unseen)
- In order to classify types of anomaly:
 - Detect anomalies separately for every data feature (except for RPM)
 'RS_E_InAirTemp_PC1', 'RS_E_InAirTemp_PC2', 'RS_E_OilPress_PC1', 'RS_E_OilPress_PC2', 'RS_E_WatTemp_PC1', 'RS_E_WatTemp_PC2', 'RS_T_OilTemp_PC1', 'RS_T_OilTemp_PC2'
 - o Rules for anomaly classification:
 - If anomaly detected in a feature and:
 - + RMP==0: Sensor problem if feature #0, normal if feature==0 exactly
 - + RPM#0: Engine problem if feature #0, sensor problem if feature==0 exactly
- --> We train a separate model with specific parameters for each feature

Label Generation

- Since the data do not have labels, we define the labels for model evaluation.
- Convention: label=1 for anomalies, else label=0
- Rules for label generation:
 - RS_InAirTemp_PC1, RS_E_InAirTemp_PC2: label=1 for value>65 or value==0, else label=0
 - o RS_E_OilPress_PC1, RS_E_OilPress_PC2: label=1 for value>mean+3*std or value==0, else label=0
 - RS_E_WatTemp_PC1, RS_E_WatTemp_PC2: label=1 for value>100 or value==0, else label=0
 - RS_T_OilTemp_PC1,RS_T_OilTemp_PC2: label=1 for value>115 or value==0, else label=0
- Note: An anomaly in a feature does not mean an anomaly in the system, e.g. feature value==0 and RMP==0, then it is a normal point because the train is not running.

Label Generation

Feature	Percentage of anomalies in labels
RS_InAirTemp_PC1	0.8647%
RS_InAirTemp_PC2	0.9685%
RS_E_OilPress_PC1	3.8428%
RS_E_OilPress_PC2	3.9149%
RS_E_WatTemp_PC1	0.6333%
RS_E_WatTemp_PC2	0.6779%
RS_T_OilTemp_PC1	0.0787%
RS_T_OilTemp_PC2	0.254%

Metrics

Confusion Matrix Actually Actually Positive (1) Negative (0) True False Predicted **Positives Positives** Positive (1) (TPs) (FPs) False True Predicted **Negatives Negatives** Negative (0) (FNs) (TNs)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F_{1} = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

- As the labels is highly unbalanced, it does not make much sense to use only accuracy
- F1 score gives a more reliable metric for model evaluation

Elliptic Envelope	Accuracy	F1
RS_E_InAirTemp_PC1	0.987098213	0.3670369342
RS_E_InAirTemp_PC2	0.98350866	0.3411241901
RS_E_OilPress_PC1	0.9712153678	0.6403171561
RS_E_OilPress_PC2	0.9922834374	0.8815363559
RS_E_WatTemp_PC1	0.9998570745	0.9857694367
RS_E_WatTemp_PC2	0.9999852829	0.9989992687
RS_T_OilTemp_PC1	1	1
RS_T_OilTemp_PC2	0.9999971698	0.9998430141
Average	0.9917431507	0.7768282945

Isolation Forest	Accuracy	F1
RS_E_InAirTemp_PC1	0.9828500706	0.3037343445
RS_E_InAirTemp_PC2	0.9795259911	0.2942961106
RS_E_OilPress_PC1	0.962720215	0.5788687859
RS_E_OilPress_PC2	0.9667843939	0.3664347141
RS_E_WatTemp_PC1	0.9998570745	0.9857694367
RS_E_WatTemp_PC2	0.9999852829	0.9989992687
RS_T_OilTemp_PC1	0.9992449005	0
RS_T_OilTemp_PC2	0.9999971698	0.9998430141
Average	0.9863706373	0.5659932093

Local Outlier Detector	Accuracy	F1
RS_E_InAirTemp_PC1	0.991312393	0.1129349208
RS_E_InAirTemp_PC2	0.9902052156	0.3265877958
RS_E_OilPress_PC1	0.9561711133	0.001264051284
RS_E_OilPress_PC2	0.968389971	0.0001969385015
RS_E_WatTemp_PC1	0.9942368471	0.03652708777
RS_E_WatTemp_PC2	0.9916842824	0.003189035147
RS_T_OilTemp_PC1	0.9985110275	0
RS_T_OilTemp_PC2	0.990265216	0
Average	0.9850970082	0.06008747866

K-Means	Accuracy	F1
RS_E_InAirTemp_PC1	0.9913302233	0
RS_E_InAirTemp_PC2	0.988348033	0
RS_E_OilPress_PC1	0.9584417893	0
RS_E_OilPress_PC2	0.9712883872	0
RS_E_WatTemp_PC1	0.9949067574	0
RS_E_WatTemp_PC2	0.9926408927	0
RS_T_OilTemp_PC1	0.9992449005	0
RS_T_OilTemp_PC2	0.9909843719	0
Average	0.9858981694	0

Comparison

Method	Average Accuracy	Average F1
Elliptic Envelope	0.9917431507	0.7768282945
Isolation Forest	0.9863706373	0.5659932093
Local Outlier Detector	0.9850970082	0.06008747866
K-Means	0.9858981694	0

Best method: Elliptic Envelope

Unsuitable methods: Local Outlier Detector, K-Means

- Tools for building dashboard: plotly (https://plotly.com/), dash (https://dash.plotly.com/)
- Main dashboard functions:
 - Choose VehicleID for showing data
 - Choose start date and end date for showing data
 - Choose Anomaly Detection Method
 - Visualization of data signal with anomalies
 - A map for showing locations of data points
 - Weather data information card
 - A table for summarizing data status and note
 - Types of data note: normal, high air temperature, high oil temperature high oil pressure, high water temperature, exactly zero, other problem

Time		Weather		Temperat	ure		Humidity		
2023-09-12 07:51:11		Partly cloudy	17.59°C		9		2.68%		
Wind Speed Ra			Snow		Cloud Cover		Evapotranspiration		
11.18 km/h	0.0 mm		0.0 m		60.0%		0.05 mm		
Feature	Status			Note					
RS_E_InAirTemp_PC1		Normal		Normal					
RS_E_InAirTemp_PC2			Normal		Normal				
RS_E_OilPress_PC1			Abnormal		High oil pressure				
RS_E_OilPress_PC2		Abnormal		High oil pressure					
RS_E_WatTemp_PC1			Normal	Normal					
RS_E_WatTemp_PC2		Normal	Normal						
RS_T_OilTemp_PC1			Normal		Normal				
RS_T_OilTemp_PC2		Normal		Normal					
RS_E_RPM_PC1		802		Train is running					
RS_E_RPM_PC2		797		Train is running		g			

Conclusion

- Lots of noises, NA values in data
- Data cleaning and preprocessing is of importance in data mining
- Anomalies can be detected without pre-defined labels (unsupervised learning)
- Some methods are unsuitable for anomaly detection
- Data augmentation gives context information about data
- Interactive visualization gives a comprehensive view and deep understanding of data

References

- Detecting and preventing abuse on Linkedln using isolation forests: https://engineering.linkedin.com/blog/2019/isolation-forest
- SK Learn Elliptic Envelope: https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html
- SK Learn Local Outlier Detection: https://scikit-learn.org/stable/auto-examples/neighbors/plot-lof-outlier-detection.html
- Unsupervised Anomaly detection: K-Means vs Local Outlier Factor: https://towardsdatascience.com/unsupervised-anomaly-detection-on-spotify-data-k-means-vs-local-outlier-factor-f96ae783d7a7