《计算方法》期末试题答案

题号	_	1 1	\equiv	四	五	六	七	八	总分
分数									

-. (10分)设 $f(x) = 2014x^4 + 2013x^2 + 2012$,试用插值多项 式余项公式写出以-2,-1,0,1为节点的三次插值多项式。

解 因为
$$f-P_3 = \frac{4! \cdot 2014}{4!} \cdot (x+2)(x+1)x(x-1)$$
 所以

$$P_3(x) = 2014x^4 + 2013x^2 + 2012$$
$$-\frac{4! \cdot 2014}{4!} \cdot (x+2)(x+1)x(x-1)$$

二. (10 分) 试确定两点高斯求积公式 $\int_{-10}^{8} f(x)dx = B_1 f(x_1) + B_2 f(x_2)$ 的求积

节点 x_1, x_2 及求积系数 B_1, B_2 。

三. $(10 \ \beta)$. 试导出计算 $\sqrt[3]{c} (c>0)$ 的牛顿迭代公式,对初值 $x_0 = 3$, 计算 $\sqrt[3]{14}$ (要求计算到 x_4), 结果保留到小数点后 4 位。

解: 牛顿迭代格式为:
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - c}{3x_k^2} = \frac{2x_k^3 + c}{3x_k^2}$$

因为f(0) = -c < 0, 由f(x)的连续性知,在0点的邻域内存在一点 $x_L > 0$,使 $f(x_L) < 0$, 又取 $x_R = 1 + c > 0$, 则 $f(x_R) > 0$. 在 $[x_L, x_R]$ 上 , $f'(x) = 3x^2 > 0$, f''(x) = 6x > 0, 不变号, 取初始值 x_0 满足 $f(x_0)f''(x_0) > 0$, 则上述牛顿迭代序列 收敛于 $f(x) = x^3 - c = 0$ 的根.

四. (10分) 试对方程组

$$\begin{cases} x_1 + 8x_2 - 20x_3 = 10 \\ -18x_1 + 5x_2 + 2x_3 = 8 \\ 4x_1 + 16x_2 - 2x_3 = 15 \end{cases}$$

 $\begin{cases} x_1 + 8x_2 - 20x_3 = 10 \\ -18x_1 + 5x_2 + 2x_3 = 8 \\ 4x_1 + 16x_2 - 2x_3 = 15 \end{cases}$ 建立收敛的雅可比(Jacobi)迭代格式,并取

初值 $x^{(0)} = (0,0,0)'$, 计算到 $x^{(3)}$ 。结果保留到小数点后 4 位。

澊 守 考 扬 纪. 律

注

煮

衦

为

规

范

主管 领导 审核 签字

设
$$A = \begin{bmatrix} -2017 & -9999 & -8888 \\ -9999 & -2013 & -7777 \\ -8888 & -7777 & -1920 \end{bmatrix}$$
, $x = (-8, -7, -6, -5)^T$,

$$||X|||A||_1, ||A||_{\infty}, ||X||_1, ||X||_2, ||X||_{\infty}.$$

六. (10分)

取步长h=0.2, 用标准 4 阶 Runge-Kutta 公式:

$$\begin{cases} y_{n+1} = y_n + (k_1 + 2k_2 + 2k_3 + k_4)/6 \\ k_1 = hf(x_n, y_n) \\ k_2 = hf(x_n + h/2, y_n + k_1/2) \\ k_3 = hf(x_n + h/2, y_n + k_2/2) \\ k_4 = hf(x_n + h, y_n + k_3) \end{cases}$$

求初值问题

$$\begin{cases} \frac{dy}{dx} = -y + x + 1, & 0 \le x \le 1 \\ y(0) = 1 & \text{的数值解 } \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_4, & \text{结果保留小数点后 4 位.} \end{cases}$$

七. (10分)

利用适当的迭代格式证明
$$\lim_{k\to\infty} \sqrt{2+\sqrt{2+\cdots+\sqrt{2}}} = 2$$
.

证明: 考虑迭代格式
$$\begin{cases} x_0 = 0 \\ x_{k+1} = \sqrt{2 + x_k}, & k = 0,1,2,\cdots \end{cases}$$
 , 则 $x_1 = \sqrt{2}$, $x_2 = \sqrt{2 + \sqrt{2}}$, ……, $x_k = \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}$.

$$\diamondsuit \varphi(x) = \sqrt{2+x} , \quad \emptyset \varphi'(x) = \frac{1}{2\sqrt{2+x}}.$$

当
$$x \in [0,2]$$
 时, $\varphi(x) \in [\varphi(0), \varphi(2)] = \left[\sqrt{2}, 2\right] \subset [0,2]$,并且 $\frac{1}{4} \le \varphi'(x) \le \frac{1}{2\sqrt{2}}$ 因而迭代格式产生的序列收敛于方程 $x = \sqrt{2+x}$ 在 $[0,2]$ 内的唯一根 $x^* = 2$.

八. (10分)

给定函数 f(x),设对一切 x,f'(x) 存在且 $0 < m \le f'(x) \le M$,试证明:对于 $0 < \lambda < \frac{2}{M}$ 的任意 λ ,迭代过程 $x_{k+1} = x_k - \lambda f(x_k)$ 均收敛于 f(x)=0 的根 α .

分析 此迭代过程可看作

 $x_{k+1} = \varphi(x_k)$, $\varphi(x) = x - \lambda f(x)$. 这样,要判断该迭代过程收敛,需对 $|\varphi'(x)|$ 进行考察,进而得出应有的结论.

证 设方程 f(x)=0 的等价形式为

$$x = x - \lambda f(x)$$

则

$$\varphi(x) = x - \lambda f(x)$$
, $|\varphi'(x)| = |1 - \lambda f'(x)|$

因为
$$0 < m \le f'(x) \le M$$
, $0 < \lambda < \frac{2}{M}$,

班号:

$$0 < \lambda m \le \lambda f'(x) \le \lambda M < 2$$

$$-2 < -\lambda f'(x) < 0$$

$$-1 < 1 - \lambda f'(x) < 1, \quad |1 - \lambda f'(x)| < 1$$

因此迭代格式收敛于 f(x)=0 的根 α

