Properties of Materials

Metal Processing

Kinetics

Dr Matthew Peel
matthew.peel@bristol.ac.uk
2.7 Queens Building

Preview

Intended Learning Outcomes	
Understanding	The idea of a thermodynamic driving force and the kinetic limits on tranformations.
Skills	Able to predict the likely phases/microconstituents after different cooling rates.
Values	Acknowledge the complexity of metal transformations but also the opportunities
	this presents for property customisation.

- Driving force and kinetics
- Form of TTT and CCT diagrams
- Application to aluminium and steel systems
- Qualitative/Quantitative analysis using TTT and CCT diagrams

Driving force and kinetics

Key idea: We expect faster solidification at lower temperature

Key idea: Limited by diffusion at very low temperature

Time-Temperature-Transformation

(finer microstructure)

leave the steel once quenched to T?

1

Install the app from pollev.com/app

2

Start the presentation

TTT and CCT

Time-Temperature-Transformation

Isothermal mostly used when uniformity is desired

Continuous-Cooling-Transformation

Cooling used when simplicity is desired (or no choice)

Critical Cooling Rate – just fast enough to prevent transformation

Aluminium

5xxx series aluminium (Al-Mg)

Even slow cooling traps Mg in Al solid solution – no age hardening

Aluminium

Fe-C Phase Diagram

This is out of order compared to the notes

Eutectic Liquid (molten iron) Solid 1 (austenite) + Solid 2 (Fe₃C or graphite)

Fe-C Microstructure

Low carbon steel All ferrite

Mid carbon steel
Ferrite + Mostly pearlite

High carbon steel
All pearlite

Steel – Fast Cooling

Two FCC unit cells (austenite) BCC unit cell (martensite)

Supersaturated solid solution of carbon in ferrite

Properties:

- High strength (yield, tensile)
- High hardness
- Low ductility
- Low fracture toughness

VERY, VERY SCARY TO ENGINEERS

But ...

High strength

1

Install the app from pollev.com/app

2

Start the presentation

Quenching

Steel - Martensite

time just function of T

Real TTT Diagrams

New microconstituent – Bainite Stronger *and* tougher than pearlite/ferrite Less strong than martensite, but tougher

Reading Steel TTT

Metal at 900°C Quench to 400 ° C Hold for 2000s Quench to ambient (20 ° C).

What is the microstructure?

Quench 1:

Miss pearlite so 0% pearlite

Hold:

Pass bainite start and finish so 100% bainite

Quench 2:

Restart at t=0 and drop

No austenite to change to martensite

1

Install the app from pollev.com/app

2

Start the presentation

1

Install the app from pollev.com/app

2

Start the presentation

1

Install the app from pollev.com/app

2

Start the presentation

1

Install the app from pollev.com/app

2

Start the presentation

Preview

Intended Learning Outcomes	
Understanding	The idea of a thermodynamic driving force and the kinetic limits on tranformations.
Skills	Able to predict the likely phases/microconstituents after different cooling rates.
Values	Acknowledge the complexity of metal transformations but also the opportunities
	this presents for property customisation.

• COMPLETE QUESTIONS ->12