# Travel Insurance Claim Prediction

Optimizing Travel Insurance Risk and Customer Experience

By Adrian Irshad

## Executive Summary

#### The Challenge:

- Inefficient & costly claims management.
- Lack of predictive insights into potential claims.

#### Our Solution:

- Developed an ML model (EasyEnsemble + AdaBoost).
- Predicts individual customer claim likelihood.

#### Key Impact:

- 13% annual loss reduction.
- ~\$4.3M in annual savings.

### Data Dictionary

| Feature               | Description                          |
|-----------------------|--------------------------------------|
| Agency                | Name of agency                       |
| Agency Type           | Type of travel insurance agency      |
| Distribution Channel  | Channel used by the insurance agency |
| Product Name          | Name of the travel insurance product |
| Gender                | Gender of the insured individual     |
| Duration              | Duration of the travel               |
| Destination           | Destination of travel                |
| Net Sales             | Sales amount of the insurance policy |
| Commission (in value) | Commission earned by the agency      |
| Age                   | Age of the insured individual        |

### Data Description

| Feature               | Data Type | Missing Values | % Missing | Unique Values | Sample                                                 |
|-----------------------|-----------|----------------|-----------|---------------|--------------------------------------------------------|
| Agency                | object    | 0              | 0.00%     | 16            | [C2B, EPX, JZI]                                        |
| Agency Type           | object    | 0              | 0.00%     | 2             | [Airlines, Travel Agency]                              |
| Distribution Channel  | object    | 0              | 0.00%     | 2             | [Online, Offline]                                      |
| Product Name          | object    | 0              | 0.00%     | 26            | [Annual Silver Plan, Cancellation<br>Plan, Basic Plan] |
| Gender                | object    | 31,647         | 71.39%    | 2             | [F, nan, M]                                            |
| Duration              | int64     | 0              | 0.00%     | 437           | [365, 4, 19]                                           |
| Destination           | object    | 0              | 0.00%     | 138           | [SINGAPORE, MALAYSIA, INDIA]                           |
| Net Sales             | float64   | 0              | 0.00%     | 1006          | [216.0, 10.0, 22.0]                                    |
| Commission (in value) | float64   | 0              | 0.00%     | 915           | [54.0, 0.0, 7.7]                                       |
| Age                   | int64     | 0              | 0.00%     | 89            | [57, 33, 26]                                           |

### Why Our Solution Works

### 1. Data-Driven Foundation

- Commenced analysis with a robust dataset of 44,328 customer records.
- Emphasized data integrity through meticulous processing:
  - Eliminated 4,667 duplicate records to enhance data accuracy.
  - Disregarded unreliable features (e.g., Gender, exhibiting 71% missing data) to prevent model bias.
- Successfully mitigated severe class imbalance:
  - Only 1.7% of the dataset comprised actual claims, posing a significant analytical challenge.
  - Applied specialized techniques to ensure comprehensive learning from the critical minority class.

# 2. Strategic Model Selection & Optimization

- Conducted a comprehensive benchmark across multiple advanced machine learning models (e.g., Logistic Regression, Random Forest, XGBoost, EasyEnsemble).
- Strategically selected EasyEnsemble with AdaBoost for its superior performance, specifically attributed to:
  - Exceptional recall for the minority class (claims), which is paramount for loss prevention.
  - Proven effectiveness of its ensemble approach in managing imbalanced datasets.
- Executed precise hyperparameter tuning:
  - Prioritized recall to minimize costly false negatives, a critical business objective.
  - Refined model parameters to achieve optimal predictive performance.

### 3. Demonstrable Business Value

- Calculated the financial consequences of prediction errors:
  - False positives: Led to unnecessary investigations and increased operational expenditure.
  - False negatives: Resulted in missed claims, significant financial payouts, and potential reputational damage.
- Targeted model tuning yielded tangible benefits:
  - Delivered significant cost savings.

Enhanced overall operational efficiency.

# Supporting Evidence & Detailed Insights

## 1. Data Preparation

- Successfully removed duplicates, accounting for 10.5% of the initial dataset.
- The 'Gender' column was systematically removed due to 71% missing values, ensuring data reliability.
- Rare categories within 'Agency',
   'Product Name', and 'Destination'
   were judiciously grouped into
   "Others" to reduce noise and prevent
   overfitting.

# 2. Feature Engineering

- Implemented one-hot encoding for all relevant categorical variables (e.g., Agency, Product Name) to prepare them for model consumption.
- Applied robust scaling to numerical features (e.g., Duration, Net Sales, Commission) to normalize their distribution.
- Utilized quantile binning for 'Age' to effectively capture non-linear relationships and mitigate the impact of outliers.

### 3. Model Evaluation

- Rigorous comparison of default and tuned models was conducted using key metrics such as recall, precision, and confusion matrices.
- Key Performance Indicators:
  - Recall for claims significantly improved from 0.78 to 0.81 following optimization.
  - Precision, while impacted by class imbalance, remained a consideration.
  - A strategic trade-off was acknowledged: higher recall translates to more claims identified, albeit with an increase in false alarms.

### **Cross Validation**

| Algorithm                 | All Scores                     | Mean Score | Std. Dev. |
|---------------------------|--------------------------------|------------|-----------|
| Easy Ensemble             | [0.77, 0.75, 0.7, 0.68, 0.72]  | 0.723      | 0.032     |
| Logistic<br>Regression    | [0.73, 0.75, 0.67, 0.64, 0.70] | 0.697      | 0.040     |
| SVM                       | [0.73, 0.72, 0.67, 0.66, 0.66] | 0.688      | 0.031     |
| Balanced Random<br>Forest | [0.71, 0.69, 0.66, 0.64, 0.71] | 0.680      | 0.028     |
| LightGBM                  | [0.60, 0.48, 0.54, 0.53, 0.52] | 0.534      | 0.037     |
| CatBoost                  | [0.49, 0.46, 0.43, 0.45, 0.39] | 0.444      | 0.032     |
| XGBoost                   | [0.42, 0.44, 0.41, 0.40, 0.36] | 0.405      | 0.029     |
| Random Forest             | [0.07, 0.13, 0.04, 0.06, 0.08] | 0.074      | 0.032     |

### Classification Report

Before:

| Class        | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0 (No Claim) | 0.99      | 0.76   | 0.86     | 7,730   |
| 1 (Claim)    | 0.05      | 0.78   | 0.10     | 135     |
| Accuracy     |           |        | 0.76     | 7,865   |
| Macro Avg    | 0.52      | 0.77   | 0.48     | 7,865   |
| Weighted Avg | 0.98      | 0.76   | 0.85     | 7,865   |

After:

| Class        | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0 (No Claim) | 1.00      | 0.73   | 0.84     | 7,730   |
| 1 (Claim)    | 0.05      | 0.81   | 0.09     | 135     |
| Accuracy     |           |        | 0.73     | 7,865   |
| Macro Avg    | 0.52      | 0.77   | 0.47     | 7,865   |
| Weighted Avg | 0.98      | 0.73   | 0.83     | 7,865   |

# Confusion Matrix

|                                  |                                                                 | Predicted                                                                |                                                                      |  |  |
|----------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
|                                  |                                                                 | Not Claim (0)                                                            | Claim (1)                                                            |  |  |
| Not Claim (0)  Actual  Claim (1) | TRUE NEGATIVE (TN)  Model predicts no claim, actual is no claim | FALSE POSITIVE<br>(FP)<br>Model predicts<br>claim, actual is no<br>claim |                                                                      |  |  |
|                                  | Claim (1)                                                       | FALSE NEGATIVE<br>(FN)<br>Model predicts no<br>claim, actual is claim    | TRUE POSITIVE<br>(TP)<br>Model predicts<br>claim, actual is<br>claim |  |  |

#### **Confusion Matrix**



### Receiver Operating Curve (ROC)





### Precision-Recall (PR) Curve



#### 4. Financial Analysis

PERFORMED A COMPREHENSIVE CALCULATION OF ANNUAL LOSSES ATTRIBUTABLE TO BOTH FALSE POSITIVES AND FALSE NEGATIVES.

DEFAULT MODEL: EXHIBITED AN ESTIMATED TOTAL ANNUAL LOSS OF \$32.2 MILLION.

TUNED MODEL: SIGNIFICANTLY REDUCED THE TOTAL ANNUAL LOSS TO \$27.9 MILLION.

THIS OPTIMIZATION RESULTED IN SUBSTANTIAL ANNUAL SAVINGS OF \$4.3 MILLION, REPRESENTING A 13% REDUCTION IN TOTAL LOSSES.

#### Comparative Financial Evaluation

| Model            | False<br>Positives | False<br>Negatives | Cost of<br>False<br>Positives | Cost of False<br>Negatives | Total Estimated<br>Loss |
|------------------|--------------------|--------------------|-------------------------------|----------------------------|-------------------------|
| Default<br>Model | 1,855              | 30                 | \$84,403                      | \$32,100,000               | \$32,184,403            |
| Tuned<br>Model   | 2,087              | 26                 | \$94,939                      | \$27,820,000               | \$27,914,939            |

#### Annual Savings from Model Tuning

Absolute Savings: \$4,269,464

 Percentage Reduction in Losses: 13.27%

#### Conclusion

A comprehensive approach to data cleaning and model development led to more reliable predictions of travel insurance claims.

Despite a highly imbalanced dataset, the final solution significantly improved our ability to identify valid claims with minimal risk to overall accuracy.

The optimized model helped reduce the potential annual financial loss by **over \$4.2 million**, representing a **13.27% improvement** compared to the baseline.

The business now has a data-driven tool that supports **smarter risk management decisions** and enhances claim prediction strategies.

This project demonstrates how strategic use of machine learning can deliver tangible financial value and drive better operational outcomes.

#### Recommendations



Monitor Model Performance Review metrics quarterly; focus on reducing costly false negatives.



Enhance Data Quality
Increase valid claims via crossteam efforts; run regular data
audits.



Update Key Features
Reassess inputs like age,
agency, and destination; add
behavioural trends.



Maintain & Benchmark Model Keep using EasyEnsemble; compare with new models as data evolves.



**Optimize Risk Threshold**Adjust threshold (e.g., 0.48) to balance detection and review cost.



Embed into Operations
Use predictions to flag risks or adjust premiums; ensure workflow integration.



Improve Communication
Build dashboards; clearly report
model scope and limitations.

### Thank You