3 Álgebra Booleana

Nesta parte veremos uma definição formal de álgebra booleana, a qual é feita via um conjunto de axiomas (ou postulados). Veremos também algumas leis ou propriedades de álgebras booleanas. Todas essas leis podem ser derivadas algebricamente a partir dos postulados.

Para as formalizações apresentadas aqui, procure associar os equivalentes vistos na parte de álgebra dos conjuntos e lógica proposicional. Recomenda-se também que o leitor faça o inverso: prestar atenção como os conceitos apresentados via álgebra de conjunto podem ser formalizados (tratados de forma abstrata).

Referências para esta parte do curso: [Hill and Peterson, 1981], [Garnier and Taylor, 1992], [Whitesitt, 1961], [Micheli, 1994], [Katz, 1994], entre outros.

3.1 Definição axiomática

Um conjunto de elementos A, juntamente com duas operações binárias $+ e \cdot$, é uma **álgebra booleana** se, e somente se, os seguintes postulados (Postulados de Huntington) são satisfeitos:

• (A1) As operações $+ e \cdot são$ comutativas, ou seja, para todo x e y em A,

$$x + y = y + x$$
 e $x \cdot y = y \cdot x$

• (A2) Cada operação é distributiva sobre a outra, isto é, para todo x, y e z em A,

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$
 e $x + (y \cdot z) = (x+y) \cdot (x+z)$

• (A3) Existem em A elementos identidade 0 e 1, distintos, com relação às operações + e \cdot , respectivamente. Ou seja, para todo $x \in A$,

$$x + 0 = x$$
 e $x \cdot 1 = x$

A partir disto podemos dizer que há pelo menos dois elementos distintos em A.

• (A4) Para cada elemento $x \in A$ existe um elemento \overline{x} em A tal que

$$x + \overline{x} = 1$$
 e $x \cdot \overline{x} = 0$

O elemento \overline{x} será chamado **complemento** de x.

Denotaremos uma álgebra booleana por uma sextupla ordenada. No caso da definição acima, temos a álgebra booleana $\langle A, +, \cdot, \bar{}, 0, 1 \rangle$.

Observação: Alguns autores incorporam outros axiomas como parte da definição de uma álgebra booleana. Vale registrar que os postulados de Huntington correspondem a um conjunto minimal de postulados, isto é, nenhum deles pode ser derivado a partir dos demais. Mais ainda, é um conjunto completo no sentido de que qualquer propriedade de uma álgebra booleana pode ser derivada/provada a partir desses postulados. Mais adiante mostraremos como a propriedade associativa (frequentemente incorporada à definição de álgebra booleana) e várias outras podem ser derivadas a partir dos postulados acima.

3.2 Exemplos de álgebra booleana

Exemplo 1 O conjunto $B = \{0, 1\}$ onde definimos

$$\overline{1} = 0$$
 $\overline{0} = 1$
 $1 \cdot 1 = 1 + 1 = 1 + 0 = 0 + 1 = 1$
 $0 + 0 = 0 \cdot 0 = 0 \cdot 1 = 1 \cdot 0 = 0$

é uma álgebra booleana.

Os axiomas A1, A3 e A4 são satisfeitos por definição. Para verificar o axioma A2 podemos construir uma tabela verdade com todas as possíveis combinações de valores para x, y e z. Vejamos a validade da distributividade em relação a \cdot , ou seja, que $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.

x y z	(y+z)	$x \cdot (y+z)$	$(x \cdot y)$	$(x \cdot z)$	$(x \cdot y) + (x \cdot z)$
0 0 0	0	0	0	0	0
0 0 1	1	0	0	0	0
0 1 0	1	0	0	0	0
0 1 1	1	0	0	0	0
1 0 0	0	0	0	0	0
1 0 1	1	1	0	1	1
1 1 0	1	1	1	0	1
1 1 1	1	1	1	1	1
		*			*

Denotamos esta álgebra booleana por $\langle B, +, \cdot, \bar{}, 0, 1 \rangle$.

Exemplo 2: Dado um conjunto S, $\mathcal{P}(S)$ denota o conjunto das partes de S, isto é, $\mathcal{P}(S) = \{X : X \subseteq S\}$. Então, $\langle \mathcal{P}(S), \cup, \cap, c^c, \emptyset, S \rangle$ é uma álgebra booleana.

Como já vimos na parte de álgebra dos conjuntos, os equivalentes aos 4 postulados são:

- (1) $X \cup Y = Y \cup X$ e $X \cap Y = Y \cap X$
- (2) $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ e $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$
- (3) $\emptyset \cap X = \emptyset$ e $U \cup X = U$
- (4) $X \cap X^c = \emptyset$ e $X \cup X^c = U$

Exemplo 3: A lógica (ou cálculo) proposicional visto nas aulas anteriores é uma álgebra booleana. De fato, ela tem uma correspondência um-para-um com $\langle B, +, \cdot, \bar{}, 0, 1 \rangle$, conforme mostrado a seguir:

Lógica proposicional	álgebra booleana ${\cal B}$			
V	+			
\wedge	•			
\mathbf{F}	0			
V	1			
x'	\overline{x}			

Como conseqüência, temos também a correspondência entre as tabelas-verdade:

x	y	x'	$x \vee y$	$x \wedge y$				x + y	
			F		0	0	1	0	0
			V		0	1	1	1	0
			V		1	0	0	1	0
V	V	F	V	V	1	1	0	1	1

Exemplo 4: O conjunto $B^n = B \times B \times ... \times B$, com as operações +, \cdot e $\bar{}$ herdadas de B e definidas, para quaisquer $(x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \in B^n$, da seguinte forma

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$
$$(x_1, x_2, \dots, x_n) \cdot (y_1, y_2, \dots, y_n) = (x_1 \cdot y_1, x_2 \cdot y_2, \dots, x_n \cdot y_n)$$

$$\overline{(x_1, x_2, \dots, x_n)} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$$

é uma álgebra booleana.

Exemplo 5: A teoria de chaveamentos, que veremos mais adiante, é uma álgebra booleana.

Exercício:

- a) Mostre que o conjunto B^n mais as operações definidas no exemplo 4 acima é uma álgebra booleana.
- b) Considere o conjunto dos números reais R, juntamente com as operações usuais de adição e multiplicação. Quais dos axiomas A1, A2, A3 não são satisfeitos? É possível definir uma operação unária em R tal que o axioma A4 seja satisfeito?
- c) Seja $A = \{1, 2, 3, 5, 6, 10, 15, 30\}$, ou seja, o conjunto de divisores de 30. Defina operações binárias $+ e \cdot e$ uma operação unária $\bar{}$ da seguinte forma: para quaiquer $a_1, a_2 \in A$,

$$a_1+a_2=$$
o menor múltiplo comum entre a_1 e a_2
$$a_1\cdot a_2=$$
o maior fator comum entre a_1 e a_2

$$\overline{a}_1 = 30/a_1$$

Quais são os elementos identidade com respeito a + e \cdot ? Mostre que A com as três operações acima é uma álgebra booleana.

3.3 Leis fundamentais da álgebra booleana

Princípio da dualidade: Cada expressão ou identidade algébrica dedutível a partir dos postulados em uma álgebra booleana continua válida se todas as ocorrências dos operadores $+ e \cdot e$ os elementos identidade 0 e 1 são trocados um pelo outro.

De fato, o dual de cada um dos axiomas é também um axioma. Observe:

Assim, se na prova de uma proposição E trocarmos cada proposição pela sua dual obtemos uma outra prova (válida, pois axiomas são trocadas por axiomas). Esta nova prova é uma prova da dual de E.

Desta parte em diante omitiremos o símbolo · na maioria das vezes; em vez de $x \cdot y$, escreveremos simplesmente xy. Suponha que $\langle A, +, \cdot, \bar{}, 0, 1 \rangle$ é uma álgebra booleana. As seguintes igualdades (leis, propriedades) são válidas.

[Unicidade do 0 e 1] Os elementos 0 e 1 são únicos.

PROVA: Suponha que existem dois elementos zero, 0_1 e 0_2 . Sejam x_1 e x_2 dois elementos quaisquer em A. Por A3, temos que

$$x_1 + 0_1 = x_1$$
 e $x_2 + 0_2 = x_2$

Tome, em particular, $x_1 = 0_2$ e $x_2 = 0_1$. Assim temos

$$0_2 + 0_1 = 0_2$$
 e $0_1 + 0_2 = 0_1$

Por A1 e a transitividade de =, resulta que $0_1 = 0_2$.

A unicidade de 1 pode ser provada usando o princípio da dualidade.

[Idempotência] Para todo elemento $x \in A$, x + x = x e x = x.

PROVA:

$$x + x = (x + x) \cdot 1$$
 (A3) $xx = xx + 0$ (A3)
 $= (x + x)(x + \overline{x})$ (A4) $= xx + x\overline{x}$ (A4)
 $= x + x\overline{x}$ (A2) $= x(x + \overline{x})$ (A2)
 $= x + 0$ (A3) $= x \cdot 1$ (A4)
 $= x$ (A3)

[**Identidade**] Para todo $x \in A$, x + 1 = 1 e x0 = 0.

$$x+1 = 1 \cdot (x+1) \qquad (A3)$$

$$= (x+\overline{x})(x+1) \quad (A4)$$

$$= x+\overline{x} \cdot 1 \qquad (A2)$$

$$= x+\overline{x} \qquad (A3)$$

$$= 1 \qquad (A4)$$

[Complemento do um (zero)] $\overline{1} = 0$ e $\overline{0} = 1$.

$$\overline{1} = \overline{1} \cdot 1 \quad (A3) \\
= 0 \quad (A4)$$

[Absorção] Para todo $x, y \in A, x + xy = x$ e x(x + y) = x.

$$x + xy = x \cdot 1 + xy \quad (A3)$$

$$= x(1+y) \quad (A2)$$

$$= x \cdot 1$$

$$= x \quad (A3)$$

[Unicidade de \overline{x}] O inverso de qualquer elemento $x \in A$ é único, isto é, se x + y = 1 e xy = 0 para algum $y \in A$, então $y = \overline{x}$.

PROVA: Por contradição. Suponha que existem dois elementos distintos \overline{x}_1 e \overline{x}_2 em A tais que

$$x + \overline{x}_1 = 1 \quad \text{e} \quad x + \overline{x}_2 = 1 \quad \text{e} \quad x \, \overline{x}_1 = 0 \quad \text{e} \quad x \, \overline{x}_2 = 0$$

$$\overline{x}_2 = 1 \cdot \overline{x}_2 \qquad (A3)$$

$$= (x + \overline{x}_1) \overline{x}_2 \quad (\text{hipótese})$$

$$= x \overline{x}_2 + \overline{x}_1 \overline{x}_2 \quad (A2)$$

$$= 0 + \overline{x}_1 \overline{x}_2 \quad (\text{hipótese})$$

$$= x \overline{x}_1 + \overline{x}_1 \overline{x}_2 \quad (\text{hipótese})$$

$$= (x + \overline{x}_2) \overline{x}_1 \quad (A2)$$

$$= 1 \cdot \overline{x}_1 \quad (\text{hipótese})$$

$$= \overline{x}_1 \quad (A3)$$

[Involução] Para todo $x \in A$, $\overline{\overline{x}} = x$.

PROVA: Seja $\overline{\overline{x}} = y$. Então, por A3 temos que $\overline{x}y = 0$ e $\overline{x} + y = 1$. Mas por A4, $\overline{x}x = 0$ e $\overline{x} + x = 1$. Por causa da unicidade do complemento, $\overline{\overline{x}} = y = x$.

[Lema] Para quaisquer $x, y, z \in A$, x[(x+y)+z] = [(x+y)+z]x = x.

$$x[(x+y)+z] = [(x+y)+z]x$$
 (A1)
 $x[(x+y)+z] = x(x+y)+xz$ (A2)
 $= x+xz$ (absorção)
 $= x$ (absorção)

[Associatividade] Para quaisquer $x, y, z \in A$, x + (y + z) = (x + y) + z e x(yz) = (xy)z.

Seja

$$Z = [(x+y)+z][x+(y+z)]$$

$$= [(x+y)+z]x+[(x+y)+z](y+z) (A2)$$

$$= x+[(x+y)+z](y+z) (lema)$$

$$= x+\{[(x+y)+z]y+[(x+y)+z]z\} (A2)$$

$$= x+\{[(y+x)+z]y+[(x+y)+z]z\} (A1)$$

$$= x+\{y+[(x+y)+z]z\} (lema)$$

$$= x+(y+z)$$

De forma similar,

$$Z = (x+y)[x+(y+z)] + z[x+(y+z)]$$
 (A2)

$$= (x+y)[x+(y+z)] + z$$
 (lema)

$$= \{x[x+(y+z)] + y[x+(y+z)]\} + z$$
 (A2)

$$= \{x[x+(y+z)] + y\} + z$$
 (lema)

$$= (x+y) + z$$
 (lema)

Logo,
$$x + (y + z) = (x + y) + z$$

[Teorema de DeMorgan] Para quaisquer $x, y \in A$, $\overline{(x+y)} = \overline{x} \overline{y}$ e $\overline{x} \overline{y} = \overline{x} + \overline{y}$.

Vamos mostrar que $(x + y) + \overline{xy} = 1$ e que $(x + y)(\overline{xy}) = 0$.

$$\begin{array}{rcl} (x+y)+\overline{xy} &=& [(x+y)+\overline{x}][(x+y)+\overline{y}] & (A2) \\ &=& [\overline{x}+(x+y)][\overline{y}+(x+y)] & (A1) \\ &=& [(\overline{x}+x)+y)][x+(\overline{y}+y)] & (Identidade+A1) \\ &=& 1\cdot 1 & (A4) \\ &=& 1 & (Identidade) \end{array}$$

$$\begin{array}{rcl} (x+y)\cdot \overline{x}\overline{y} & = & x(\overline{x}\overline{y}) + y(\overline{y}\overline{x}) & (A2+A1) \\ & = & (x\overline{x})\overline{y} + (y\overline{y})\overline{x} & (associativa) \\ & = & 0\cdot 0 & (A4) \\ & = & 0 & (Identidade) \end{array}$$

Portanto, pela unicidade do complemento, podemos concluir que $\overline{(x+y)} = \overline{x}\,\overline{y}$.

A igualdade dual pode ser demonstrada pelo princípio da dualidade, ou usando o fato de que as igualdades acima valem também para \overline{x} e \overline{y} no lugar de x e y.

Note a similaridade destas propriedades com as propriedades dos conjuntos e com as da lógica proposicional. Enquanto lá fizemos uso dos diagramas de Venn e das tabelas-verdade, respectivamente, para nos convencermos da validade das propriedades, aqui as demonstrações são algébricas.

Exercícios: Prove as seguintes igualdades

- a) $x + \overline{x}y = x + y$ (e sua dual $x(\overline{x} + y) = xy$)
- b) $x + y = \overline{\overline{xy}}$ (e sua dual $xy = \overline{\overline{x} + \overline{y}}$)
- c) $(x+y)(x+\overline{y}) = x$ (e sua dual $xy + x\overline{y} = x$)
- d) (Teorema do consenso) $xy + yz + \overline{x}z = xy + \overline{x}z$ (e sua dual, $(x+y)(y+z)(\overline{x}+z) = (x+y)(\overline{x}+z)$
- e) $[yx = zx \land y\overline{x} = z\overline{x}] \rightarrow (y = z)$
- f) (x + y + z)(x + y) = x + y

Exercícios: Simplifique as seguintes expressões

- a) $y\overline{z}(\overline{z}+\overline{z}x)+(\overline{x}+\overline{y})(\overline{x}y+\overline{x}z)$
- b) $x + xyz + yz\overline{x} + wx + \overline{w}x + \overline{x}y$

Exercício: Mostre que em qualquer álgebra booleana $\langle A, +, \cdot, \bar{}, 0, 1 \rangle$, $x\overline{y} = 0$ se, e somente se, xy = x.