哈爾濱Z紫大學 实验报告

实验(一)

题			目	汉语分词系统
专			业	自然语言处理
学			号	1161000309
班			级	1603104
学			生	高靖龙
指	류	教	师	杨沐昀
实	验	地	点	G208
实	验	日	期	10.9.2018-10.30.2018

计算机科学与技术学院

目 录

第1章 实验基本信息3	-
1.1 实验目的3	_
1.2 实验环境与工具3	_
1.2.1 硬件环境3	_
1.2.2 软件环境3	-
第 2 章 实验内容4	-
2.1 词典的构建	_
要求4	
PFR 语料库格式4	_
隔断正则表达式4	-
字典文件格式说明4	-
字典统计分析4	-
字典内标点符号统计5	-
2.2 正反向最大匹配分词实现5	
内容5	
实现心得5	
2.3 正反向最大匹配分词性能分析6	
内容6	
实现思路6	
实现心得6	
FMM 与 BMM 分词精度差异分析	
2.4 基于机械匹配的分词系统的速度优化8	
内容8	
- 8	
2.5 基于统计语言模型的分词系统实现10	
内容10	
前缀词典	
全切分有向图DAG	
BigramModel - 12	
性能对比13	
参考文献14	-

第1章 实验基本信息

1.1 实验目的

本次实验目的是对汉语自动分词技术有一个全面的了解,包括从词典的建立、分词算法的实现、性能评价和优化等环节。本次实验所要用到的知识如下:

- 基本编程能力(文件处理、数据统计等)
- 相关的查找算法及数据结构实现能力
- 语料库相关知识
- 正反向最大匹配分词算法
- N 元语言模型相关知识
- 分词性能评价常用指标

1.2 实验环境与工具

1.2.1 硬件环境

处理器:Corei7内存:8G系统类型:64位

1.2.2 软件环境

系统: manjaro gnome linux1.80(主)、win10(辅)

IDE: jetbrains pycharm 文本编辑器: noteapp、atom、vim

编程语言: python3

第2章 实验内容

2.1 词典的构建

要求

输入文件: 199801_seg.txt (1998 年 1 月《人民日报》的分词语料库,有版权限制!)

输出: dic.txt(自己形成的分词词典)

PFR 语料库格式

PFR 语料库标注词性的格式为"词语/词性",语料中除了词性标记以外,还有"短语标记",以方括号括住若干 "词语/词性"对,紧跟"/短语类别"。每行开头是时间标识以"/m"结尾,然后是空格,之后是该行句子的词性、短语标记。

隔断正则表达式

"^.*?/m +|/[a-zA-Z\]]+ *|\["

字典文件格式说明

每行一个记录,为"词词频",即词+空格+词频,按词频从大到小排列。

字典统计分析

字典总长度: 55310

词长分布:不同长度的词在字典中出现的频率

字典内标点符号统计

11 种标点符号: , 。 、 () ? ! ——— …… — ——

2.2 正反向最大匹配分词实现

内容

输入文件: 199801_sent.txt (1998 年 1 月《人民日报》语料,未分词) dic.txt(自己形成的分词词典)

输出: seg_FMM.txt 和 seg_BMM.txt(正反向最大匹配分词结果,格式参照分词语料)

实现心得

1. 字符串索引

编写实现中,对于字符串的索引str[i,j]的变化要清晰,特别是BMM,实现上较为反直觉。

2. 最大词长截断

使用字典最大词长截断字符串,能得到可接受的速度,如果不截断的话则无法处理长串。

3. 匹配失败

如果某个位置匹配失败,即没有任何字典词以它为前缀(FMM)或后缀(BMM),则要将其作为一个独立的词。

4. F/B相似

FMM\BMM两者结构非常相似,区别主要集中在循环方向以及匹配成功

一个词后的匹配目标更新。

5. BMM分词逆序

BMM的分词结果不能直接输出,还要进行顺序的倒置,这是因为BMM是由后向前匹配查词的。

2.3 正反向最大匹配分词性能分析

内容

输入文件: 199801_seg.txt(1998 年 1 月《人民日报》的分词语料库) seg_FMM.txt、seg_BMM.txt

输出: score.txt(包括准确率 (precision)、召回率 (recall), F 值的结果文件)

实现思路

- TP+FP=len (tarseg),TP+FN=len (corpusseg) 故对于precision、recall、F,我们只需要统计TP。
- 2. 分别从corpus、targetsegfile中读取分词序列,存储到clist, tlist中。
- 3. 使用两个指针i、j同步的在两列表上移动,并统计移动到当前位置的**总字 数差值ct。**

ct=clist[: i]的总字数-tlist[: i]的总字数。

- 4. ct为0则匹配成功, TP+1。否则说明当前分词失败, 进入重定位模式。
- 5. 重定位模式负责重新找到下一个成功分词的开头,即下一个ct为0的地方。实现上即当ct>0时说明corpus超前,就移进j; 反之移进i。

实现心得

1. 一个python容易惯性思维写错的地方:

```
#TODO 特别容易写错的地方! 下面是错误实例
#if word == '' or '\n':
if word == '' or word=='\n':
continue
```

在判断语句中,'\n'单独出现时被作为True判定。则循环永远进入,continue语句被执行,跳过其后的代码。

2. 实现细节上,对于 ct 的更新不能简单的更新为 ct += len(corpusseg[i]) - len(targetseg[j]) 因为在重定位阶段,一次只移动 i、j之一,这样就将旧的词语新词对 比,不符合设计初衷。解决方案是针对 i、j 重定位中移动的情况区别处

理。

```
# 使用flag 区分匹配、重定位j、重定位i 这三种情况
# 移进的字符数量差 corpos-target
ct=0
while True:
   if i==lcorpus or j==ltarget:
      break
   if flag==0:
       ct += len(corpusseg[i]) - len(targetseg[j])
   elif flag==1:
       ct -= len(targetseg[j])
   else:
       ct += len(corpusseg[i])
   if ct==0:
       if flag==0:
          TP+=1
       i+=1
       j+=1
       flag = 0
   elif ct>0:
       j+=1
       flag = 1
   else:
       i+=1
       flag = 2
```

3. 实现中做了两个版本,第一个版本不是基于list的而是基于字符串的,看起来非常不直观(基于list的已经非常不直观了!)所以写了第二个版本,第一个版本作为一个对比函数使用。

FMM 与 BMM 分词精度差异分析

1. 分词精度统计结果

	TP	TP+FP	TP+FN	P	R	F
FMM SEG	1088311	1113018	1121447	0.977802	0.970452	0.974113
BMM _{SEG}	1090501	1112991	1121447	0.979793	0.972405	0.976085
$\mathbf{FMM}_{\mathbf{BMM}}$	1083746	1113018	1112991	0.973700	0.973723	0.973712

BMM性能对于FMM有提升:分词数减少、TP增多。

- 2. 精度差异分析
 - a) 理论差异

FMM和BMM的差别在于查询的方向不同,即FMM倾向前缀匹配而BMM倾向于后缀匹配。

b) 理论差异对分词的影响

实验中由于训练集和测试集是相同的,所以不存在集外词,因此性能 影响就主要在于分词歧义。

对于无歧义的词显然FMM、BMM没有差别,对于组合型的词FMM和BMM都不分割。但是对于交集型歧义,如ABC,FMM倾向: ABC,而BMM倾向ABC。

因此性能的差异是出现在对集中型歧义的分割上。

c) 对词分布的猜测

由于BMM精度较高,猜测样本中集中型歧义中A BC出现概率更高。

d) 分析分布

实际上BMM与FMM算法的运行过程就是对集中型歧义的探究。 通过统计即可分析出前缀集中、后缀集中、组合歧义、在seg被分割 的组合歧义、在seg中没有分割的组合歧义在文本的占比。

SEG=无歧义+后缀集中+前缀集中+非切分组合歧义+切分组合型歧义=1121447

BMMseg. TP=无歧义+后缀集中+非切分组合歧义=1090501

FMMseg. TP=无歧义+前缀集中+非切分组合歧义=1088311

SEG-BMMseg. TP=切分组合型歧义+前缀集中 =30946

SEG-FMMseg. TP=切分组合型歧义+后缀集中=33136

FMM_{BMM}. TP =无歧义词+非切分组合型歧义=1083746

对上述等式进行变换:

尤歧义+非切分组合	前缀集中	后缀集中	切分组合	合计	
1083746	4565	6755	26381	1121447	-
0.966381	0.004070	0.006023	0.023524	1	

e) 结论:由于在文本中集中歧义划分时,ABC型比ABC型占比更多, 所以后项匹配比前项匹配性能更好。

2.4 基于机械匹配的分词系统的速度优化

内容

输入文件: 199801_sent.txt (1998 年 1 月《人民日报》语料,未分词)输出: timeCost.txt (分词所用时间)

优化方案

- 1. 截断优化查询
 - a) 字典最大词长截断 对于一个字典,若词长最大为maxL,则我们在FMM、BMM是,查询 的词长最大也应是maxL。
 - b) 字典词长截断 受最大词长截断的启发,我们存储字典中出现的词长L1,L2,, Ln,我们只对目标文本中长度在这些范围中的词进行查询。

c) 性能提升分析

词长分布的稀疏性

我们之前对于字典进行过分析,可知字典的词长为1-26,因此空间代价可以忽略不计。同时词长19、20、21、24、26没有出现,因此循环次数比最大词长截断减少20%。

可选的进一步筛选

我们看到有的词长在字典中的词频实际上非常少,我们可以直接省去这些词长,而不会带来很大的准确性损失。

但是即使不这么做,使用简单的最大词长截断,算法总运行时长仍然能控制在3min内(包括FMM、BMM、IO、准确性分析、计时函数)。

2. 散列表优化:一种时空的tradeoff

使用散列表对查询速度进行优化,是一种时空的tradeoff。

a) 算法描述

散列

散列表算法使用散列函数对内容进行散列,将散列结果作为数组索引,将内容存储到对应数组索引处。因此数组并不是完全填满的,会出现冗余的空间。

冲突

由于散列函数通常不满足单射,因此会出现多个内容的散列相同,对同一数组索引竞争,这种现象成为散列冲突。

冲突的解决

本次实现使用线性开放定址法,即冲突发生是,线性寻找下一个可用位置存储内容。负载因子取0.5-0.75之间,经测试超出该范围性能提升不显著。

b) 性能提升分析

散列表拿空间换时间,所以能提升性能,特别的是需要设计好散列函数,散列函数决定hashlist的性能。

这里参考java.String.hashCode()的实现对字符串进行散列。

c) 算法实现

核心的散列函数,经典实现。

31作为乘数的原因:

cpu能通过位移来优化计算。31*t=t<<5-1 31散列具有统计上的优势。

2.5 基于统计语言模型的分词系统实现

内容

输入文件: test_sent.txt(1998年人民日报局部语料,未分词,最终测试集) dev seg.txt(1998年人民日报局部语料,分词,用于调试优化语言

模型) 199801 seg.txt

dic.txt(自己形成的分词词典)

输出: seg LM.txt (利用统计语言模型分词结果,格式参照分词语料)

须对程序中的重点实现代码进行说明(可用流程图对算法进行辅助说明);对比分析各种不同分词方法的性能;

前缀词典

1. 算法原理

前缀词典:元词典记录词和词频,将元词典中词语的所有前缀词都添加词典中,如果前缀词没有在原词典出现则其频率设为0,若有则设为原词 频。

2. 算法实现 简单的对每一个词,反向遍历,提取出前缀添加到词典中,并设置词频。

全切分有向图 DAG

1. 算法原理

对于字符串s,考察其每个字s[k],对于s[k:i+1],i=0,1,2..,依次到前缀词典lfreq中查找,若查到且频率非零,则对k存储i,若没有查到则说明没有以s[k]为开头的词在lfreq查尽了。最终得到每个k的一组i,s[k:i+1]表示一个可能分词。

2. 算法实现

DAG存储: dict{k: [k, j, ...], m: [m, p, q], ...},s[k:j+1]表示一个可能分词。

按上述原理编写循环分支。

3. 实现细节

可能存在对于某个字s[k],在lfreq中没有其前缀词,则此时也必须给出分词,将该字本身s[k:k+1]作为一个分词存入DAG。

UnigramModel

1. 算法原理

在DAG的基础上,动态规划寻找1-GramModel最大概率分词序列。

a) 概率公式

Seg = argmax
$$P(Seg|Sentence, Dict) = argmax \prod_{i=0}^{len(Seg)-1} P(word_i|Seg, Dict)$$

b) 动态规划转移方程

定义问题
$$L(j)$$
为sentence $[j:]$ 的1-GramModel最大概率分词序列。
$$L(j) = \max(P(\text{sentence}[j:i+1]) * P(L(i+1)), i \in DAG[j]$$

c) 重叠子问题

若DAG[j_1]、DAG[j_2]均包含 i_0 则子问题重叠。

2. 算法实现

路径存储: route=[], route[idx词首索引]=(子问题概率,词尾索引)

```
#初始化,该实现中所有值均 Log 化,有效防止下溢出
route[N] = (0, -1)
logtotal = log(ltotal)
for idx in range(N - 1, -1, -1):
动态规划转移方程: getFreq 对概率进行了加一平滑
route[idx] = max((log(getFreq(lfreq,sentence[idx:x + 1]))
- logtotal + route[x + 1][0], x) for x in DAG[idx])
```

BigramModel

1. 算法原理

在DAG的基础上,动态规划寻找2-GramModel最大概率分词序列。

a) 概率公式

$$\begin{split} \text{Seg} &= \text{argmax P}\big(\text{Seg}\big|\text{sentence, Dict}\big) = \\ \text{argmax} \prod_{0}^{len(Seg)-1} P(word_i|word_{i-1}, Seg, \text{Dict}) \end{split}$$

b) 动态规划转移方程

```
定义问题组\{L_{idx}^i|i \in DAG[idx]\},\
L_{idx}^i = argmax\ P(Seg\ for\ sentence[i+1::]|word[idx:i],Dict) 转移方程
```

 L_{idx}^i

 $= argmax P(L_i^k)$

* P(sentence[i:k+1]|sentence[idx:i+1]), for k in DAG[i]

c) 重叠子问题

若DAG[j_1]、DAG[j_2]均包含 i_0 则子问题重叠。

2. 算法实现

- a) **路径存储:** routeDAG=[[]], routeDAG[idx]=[$L_{idx}^0, L_{idx}^1, L_{idx}^n$]
- b) **平滑算法:**加一平滑
- c) 初始化:

```
routeDAG[N - 1] = []
routeDAG[N - 1].append((N - 1, "TAIL", 1))
```

d) 动态规划迭代:

```
value, y = max((getPYX(sentence[idx:x + 1], sentence[x + 1:y + 1], dict) * v, y) for y, m, v in routeDAG[x + 1])
routeDAG[idx].append((x, y, value))
```

e) 二元条件概率字典构造:

根据文件,获取包括^\$的二元概率列表格式:

dict{条件词:{(目标词1,概率),(目标词2,概率),,,(目标词n,概率)}} 遍历seg文件,统计条件概率,对于所有频率均+1,实现平滑算法。

f) 分词结果构造

由reouteDAG[0]开始递归查询,获取索引形式的分词形式,之后将该序列转换成词序列。

性能对比

1. 集内性能

	TP	Pall	Tall	P	R	F
FMM		1113018				0.9741
\mathbf{BMM}	1090501	1112991	1121447	0.9797	0.9724	0.9760
	1088308	1113019	1121447	0.9778	0.9704	0.9741
Unigram	1103483	1113484	1121447	0.9910	0.9839	0.9874

- a) 性能排序: 在本次实验中, Unigram>BMM>FMM≈Bigram
- b) 性能分析: 为什么 Bigram 性能表现不如 Unigram?
 - i. Bigram 概率空间比 Unigram 大一个数量级,数据量 可能对 Unigram 还算充足但是在 Bigram 中已经稀疏了。
 - ii. 平滑算法选择的较为简单,导致 Bigram 不能更好的反映语言 分布。使用 Good-Turing smoothing 或简单的调整加 x 平滑法 中的 x 都能带来小幅度的提升。

自然语言处理实验报告

iii. 在计算概率过程中程序可能存在问题,但是暂时没有排查到。

2. 集外性能

	TP	Pall	Tall	P	R	${f F}$
FMM	3387	3948	3734	0.857903	0.90707	0.881802
BMM	3383	3948	3734	0.85689	0.905999	0.88076
Bigram	3384	3949	3734	0.856926	0.906267	0.880906
Unigram	3436	3957	3734	0.868335	0.920193	0.893512

针对语料库,分割出训练集和测试集,在测试集上性能排名和集内性能排名差别不大。

参考文献

- [1]Thomas H.Cormen. Introduction to Algorithms[M]. 北京: 机械工业出版社, 2013: 142-160
- [2]Christopher D. Manning, Hinrich Schutez. 统计自然语言处理基础[M]. 北京: 电子工业出版社,2005: 1-289
- [3]周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 23-46
- [4]宗成庆. 统计自然语言处理 (2nd ed.) [M]. 北京:清华大学出版社,2013:1-289
- [5] Python3.7.1 Documentation. Docs.python.org. https://docs.python.org/3/, November 3, 2018.