Esercizio 7.8 2)

Si utilizzi il Pumping Lemma per i linguaggi regolari per dimostrare che il seguente linguaggio non è regolare:

$$L = \{ w \in X^* \mid w = a^n b^m c^k, n > k, k, m, n > 0 \}$$

Per assurdo, se L fosse regolare, per il Teorema di Kleene esisterebbe M FSA, $M=(Q, \delta, q_0, F)$: T(M)=L.

|Q|=p, p>0

Scelgo $z \in L=T(M)$, |z|>=|Q|

$$z = a^{(p+1)}bc^p$$
 $(n=p+1 > k=p)$

Considero la computazione $\delta^*(q_o, z)$.

1°passo di computazione	$\delta^*(q_0, a) = q_{z1}$
2°passo di computazione	$\delta^*(q_0, aa)=q_{z_2}$
3°passo di computazione	$\delta^*(q_0, aaa)=q_{z3}$

•••

<i>p</i> -esimo di computazione $\delta^*(q_0, a^p)=q_{zp}$	
---	--

Ma avremmo p+1 stati distinti: q_0 , q_{z1} , q_{z2} ,... q_{zp} mentre |Q|=p.

Dunque, 2 stati devono coincidere, ossia esiste un ciclo nel diagramma di transizione di M. Formalmente

 $\exists i,j, 0 <= i < j < p: q_{zi} = q_{zj}$

Posso scrivere:

$z=uvw$, dove $u=a^i$,	$v=a^{(j-i)}$,	$w=a^{(p+1-j)}bc^p$
--------------------------	-----------------	---------------------

Considero la (3) del Teorema *uvw* con *i*=0:

 $uv^{0}w = a^{i} \lambda a^{(p+1-j)}bc^{p} = a^{(p+1-(j-i))}bc^{p}$

 $uv^0w \notin L$ Contraddizione.

Dunque, L non è un linguaggio regolare.