有限覆盖定理、闭区间上连续函数性质的证明

数学分析I

第24讲

November 30, 2022

实数的6个基本定理

到目前为止, 我们已经给出了如下(1)-(5)五个关于实数的基本定理, 并证明了它们都是互相等价的命题. 而命题(6)则是本节将要介绍的最后一个基本定理.

- (1) 确界原理
- (2) 单调收敛定理
- (3) 区间套定理
- (4) 致密性定理
- (5) 柯西收敛原理
- (6) 有限覆盖定理

"有限覆盖定理",又被称为"海涅-波莱尔(Heine-Borel)定理". 我们要证明以上六个命题都是互相等价的,只需要再证明(3) \Rightarrow (6) \Rightarrow (4)就足够了.

区间集的并集

设 \mathcal{J} 是一个区间集,即对 \mathcal{J} 中的每一个元素 $I \in \mathcal{J}$,I都是一个区间.那么,把 \mathcal{J} 中所有的区间合并成一个集合,记为 $\bigcup \mathcal{J}$ 或者 $\bigcup \{I | I \in \mathcal{J}\}$.它的意义是:对任意X,

$$x \in \bigcup \mathcal{I} \iff$$
存在一个 $I \in \mathcal{I}$ 使得 $x \in I$.

例 1

(1) 若 \mathcal{J}_1 是有穷集合, 即 $\mathcal{J}_1 = \{I_1, I_2, \dots, I_n\}$, 则

$$\bigcup \mathcal{J}_1 = \bigcup_{i=1}^n I_i = I_1 \cup I_2 \cup \cdots \cup I_n;$$

这个例子说明在区间集是有限集的情形,区间集的并集就是这有限多个区间的并.

区间集的并集的例子

例 1

(2) 若
$$\mathcal{J}_2 = \left\{ \left(\frac{1}{n+1}, \frac{1}{n} \right) \middle| n = 1, 2, 3, \dots \right\},$$
则
$$\bigcup \mathcal{J}_2 = \left(\frac{1}{2}, 1 \right) \cup \left(\frac{1}{3}, \frac{1}{2} \right) \cup \dots \cup \left(\frac{1}{n+1}, \frac{1}{n} \right) \cup \dots$$

$$= \left\{ x \in (0, 1) \middle| x \neq \frac{1}{n}, n = 2, 3, \dots \right\};$$

例 1

(3) 若
$$\mathcal{J}_3 = \left\{ \left(x - \frac{1}{3}, x + \frac{1}{3} \right) \middle| x \in (a, b] \right\}, 则$$

$$\bigcup \mathcal{J}_3 = \left(a - \frac{1}{3}, b + \frac{1}{3} \right).$$

覆盖和开覆盖的概念

定义1

设S是一个数集, \mathcal{J} 是一个区间集. 如果 $S \subseteq \bigcup \mathcal{J}$, 即: 对任意 $x \in S$, 都存在一个 $I \in \mathcal{J}$, 使得 $x \in I$. 我们就称区间集 \mathcal{J} 是数集S的一个 \overline{a} , 或者说. \mathcal{J} 覆盖S.

进一步地,如果 \mathcal{J} 是一个开区间集,即属于 \mathcal{J} 中的区间都是开区间,我们称 \mathcal{J} 是数集S的一个<mark>开覆盖</mark>.

覆盖和开覆盖的例子

例 2

(1) 若
$$S = [0,1]$$
, $\mathcal{J} = \left\{ (-1,0], \left(\frac{1}{n+1}, \frac{1}{n} \right) \middle| n = 1,2,3, \ldots \right\}$. 则 \mathcal{J} 覆盖 S , 但是, 从 \mathcal{J} 中任意减少一个区间, 都不能够再覆盖 S .

例 2

(2) 若
$$S = (0,1)$$
, $\mathcal{J} = \left\{ \left(\frac{1}{n+1}, \frac{1}{n-1} \right) \middle| n = 2, 3, 4 \dots \right\}$. 同样有, \mathcal{J} 覆 盖 S , 但是, 从 \mathcal{J} 中任意减少一个区间, 都不能够再覆盖 S .

思考题

思考题1

给出S = (0,1)的一个覆盖 \mathcal{J} ,使得 \mathcal{J} 中每一个区间都是S的闭子区间,且从 \mathcal{J} 中任意减少一个区间,都不能够再覆盖S.

思考题2

给出S = (0,1]的一个覆盖 \mathcal{J} ,使得 \mathcal{J} 中每一个区间都是开区间,且 \mathcal{J} 的任何有限子集都不能够覆盖S.

判断题

判断下面的命题是否成立.

设 \mathcal{J} 是 $\mathbb{R}\setminus\mathbb{Q}$ 的一个开覆盖,则 $\mathbb{R}\setminus\bigcup\mathcal{J}$ 沒有聚点.

- (A) 成立
- (B) 不成立

子覆盖和有限子覆盖的概念

定义 2

设区间集 \mathcal{J} 是数集S的一个覆盖. 如果 \mathcal{J} 的一个子集 \mathcal{J}_1 仍然是S的一个覆盖. 称 \mathcal{J}_1 是 \mathcal{J} 的子覆盖.

进一步地, 如果 \mathcal{J}_1 是一个有穷集合, 则称 \mathcal{J}_1 是 \mathcal{J} 的有限子覆盖.

区间套定理蕴涵有限覆盖定理

定理 1 (有限覆盖定理)

闭区间的任意开覆盖都存在有限子覆盖.

证明

我们用区间套定理来证明.

设S = [a, b], 开区间集 \mathcal{J} 覆盖S. 我们要证明: 能够在 \mathcal{J} 中选出有限个开区间来覆盖S.

反证法,假设[a, b]不能被 \mathcal{J} 中的任意有限个开区间所覆盖. 把[a, b]等分为两个闭区间 $\left[a,\frac{a+b}{2}\right]$ 和 $\left[\frac{a+b}{2},b\right]$,其中至少有一个不能被 \mathcal{J} 中的有限个开区间所覆盖,记该区间为[a_1 , b_1]. 如果两个闭区间都不能被 \mathcal{J} 中的有限个开区间所覆盖,就任取一个记为[a_1 , b_1].

区间套定理蕴涵有限覆盖定理(续)

再等分[a_1, b_1]为 $\left[a_1, \frac{a_1 + b_1}{2}\right]$ 和 $\left[\frac{a_1 + b_1}{2}, b_1\right]$,其中又至少有一个不能被 \mathcal{J} 中的有限个开区间所覆盖,将它记为[a_2, b_2].依此类推,我们得到一列闭区间{ $[a_n, b_n]$ },每一个[a_n, b_n]都不能被 \mathcal{J} 中的有限个开区间所覆盖,并且:

(i)
$$[a,b] \supseteq [a_1,b_1] \supseteq [a_2,b_2] \supseteq \cdots \supseteq [a_n,b_n] \supseteq \cdots$$
;

(ii)
$$b_n - a_n = \frac{b-a}{2^n} \to 0 \ (n \to \infty).$$

由区间套定理, 有唯一的 $\xi \in [a,b]$ 使得 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \xi$.

区间套定理蕴涵有限覆盖定理(续完)

由于 \mathcal{J} 覆盖[a,b],在 \mathcal{J} 中必有一个开区间(α , β)使 $\xi \in (\alpha,\beta)$,即

$$\alpha < \xi < \beta$$
.

又由 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \xi$, 存在正整数N, 当n > N时, 成立

$$\alpha < a_n < b_n < \beta$$
.

即[a_n, b_n] $\subseteq (\alpha, \beta)$. 这表明, \mathcal{J} 中的一个区间就覆盖[a_n, b_n], 矛盾. 这就完成了定理的证明.

判断题

判断下面的命题是否成立.

设/是一个区间,且区间/的任意开覆盖都存在有限子覆盖,则/是闭区间.

- (A) 成立
- (B) 不成立

有限覆盖定理蕴涵致密性定理

证明

设 $\{x_n\}$ 是一个有界数列,即有实数a,b使 $a \le x_n \le b$ (n = 1, 2, 3, ...). 我们要证明 $\{x_n\}$ 有收敛子列. 由6.2节的定理3,我们只须证,存在 $\xi \in [a,b]$,满足: 在 ξ 的任意邻域内都含有 $\{x_n\}$ 的无穷多项.

反证法, 假设对任意 $\xi \in [a, b]$, 都有 $\varepsilon_{\xi} > 0$, 使得在邻域($\xi - \varepsilon_{\xi}, \xi + \varepsilon_{\xi}$)中只含有 $\{x_n\}$ 的有穷多项. 于是我们得到一个开区间集

$$\mathcal{J} = \{ (\xi - \varepsilon_{\xi}, \xi + \varepsilon_{\xi}) | \xi \in [a, b] \}.$$

显 然,闭 区 间[a,b]中 的 每 一 个 点 ξ 都 属 于 \mathcal{J} 中 的 一 个 开 区 间,即 \mathcal{J} 是[a,b]的一个开覆盖. 根据有限覆盖定理,我们知道 \mathcal{J} 有一个有限子覆盖

$$\mathcal{J}_1 = \{(\xi_1 - \varepsilon_{\xi_1}, \xi_1 + \varepsilon_{\xi_1}), \dots, (\xi_m - \varepsilon_{\xi_m}, \xi_m + \varepsilon_{\xi_m})\}.$$

有限覆盖定理蕴涵致密性定理(续完)

由 ε_{ξ} 的选取知道, 对于 $i=1,2,\ldots,m$, 在开区间($\xi_{i}-\varepsilon_{\xi_{i}},\xi_{i}+\varepsilon_{\xi_{i}}$)内只含有{ x_{n} }的有穷多项, 即有正整数 N_{i} , 当 $n>N_{i}$ 时, 成立

$$X_n \notin (\xi_i - \varepsilon_{\xi_i}, \xi_i + \varepsilon_{\xi_i}).$$

注意到 \mathcal{J}_1 是 \mathcal{J} 的子覆盖,因而 \mathcal{J}_1 覆盖[a,b],即

$$\bigcup_{i=1}^m (\xi_i - \varepsilon_{\xi_i}, \xi_i + \varepsilon_{\xi_i}) \supseteq [a, b].$$

现在, $\diamondsuit N = \max\{N_1, N_2, \ldots, N_m\}$, $\exists n > N$ 时,

$$x_n \notin \bigcup_{i=1}^m (\xi_i - \varepsilon_{\xi_i}, \xi_i + \varepsilon_{\xi_i}) \supseteq [a, b].$$

这与 $a \le x_n \le b \ (n = 1, 2, 3, ...)$ 矛盾. 完成证明.

思考题

思考题3

怎样应用有限覆盖定理证明区间套定理?

思考题4

怎样用确界原理证明有限覆盖定理?

数集的任意开覆盖都存在至多可数的子覆盖

若把有限子覆盖的要求放宽,只要求 \mathcal{J}_1 是一个至多可数的集合,则有下面的定理.

任何一个数集的任意开覆盖都存在至多可数的子覆盖.

思考题5

任意开区间能用一列端点是有理数的子开区间来覆盖. 请说明理由.

思考题6

集合 $\{(a,b)|a,b\in\mathbb{Q},\ a< b\}$ 是可数无限集还是不可数无限集?

上面的两个思考题是一种提示,请自己思考上面定理的证明思路.

用确界原理证明有界定理

有界定理

闭区间上的连续函数必有界.

证明

设f(x)在闭区间[a,b]上连续. 定义[a,b]的一个子集如下:

$$S = \{s \in [a, b] | f(x) \in [a, s]$$
上无界}.

我们只需证明 $S = \emptyset$ 即可.

反证法, 假设 $S \neq \emptyset$. 可设 $\xi = \inf S$, 于是 $\xi \in [a, b]$.

因此假设不成立, $S = \emptyset$, f(x)在[a, b]上有界.

用确界原理证明连续函数的有界定理(另证)

另证

设f(x)在闭区间[a,b]上连续. 定义[a,b]的一个子集如下:

$$S = \{s \in [a, b] | f(x) \in [a, s] \perp f \}.$$

由f(x)在点a连续知f(x)在点a的某邻域中有界,因此S非空. 由确界原理知S有上确界. 记 $\xi = \sup S$, 则 $\xi \in (a,b]$.

由于f(x)在点 ξ 连续,故f(x)在 ξ 的某邻域($\xi - \delta, \xi + \delta$)与[a, b]之交上有界. 由 $\xi = \sup S$ 知必有 $s_0 \in (\xi - \delta, \xi]$,使得f(x)在[a, s_0]上有界,从而f(x)在[$a, \xi + \delta$) \cap [a, b]上有界.

闭区间上的函数在每一点局部有界,则整体有界

练习6.4的第一题

设函数f(x)在[a,b]上没有第二类间断点. 证明f(x)在[a,b]有界.

上面的命题还可以更一般一些: 设函数f(x)在[a, b]的每一点局部有界,即对任意 $x \in [a, b]$,存在 $\delta_x > 0$,使得f(x)在($x - \delta_x$, $x + \delta_x$) \cap [a, b]上有界,则f(x)在[a, b]有界.

思考题7

怎样应用有限覆盖定理证明上面更一般的命题?

思考题8

闭区间上的函数还有哪些局部性质蕴涵相应的整体性质?

用致密性定理证明有界定理

证明

若不然, 设函数f(x)在闭区间[a,b]上连续但无界. 于是对每个 $n \in \mathbb{N}^*$, 都 有 $x_n \in [a,b]$, 使得

$$|f(x_n)|>n.$$

这样,我们得到一个有界数列 $\{x_n\}$,从而由致密性定理知 $\{x_n\}$ 有收敛子列 $\{x_{n_k}\}$.记

$$\lim_{k\to\infty}x_{n_k}=\xi\in[a,b].$$

因为f(x)在[a,b]上连续, 当然在点 ξ 连续, 所以有

$$\lim_{k\to\infty}f(x_{n_k})=f(\xi).$$

由此知 $\{f(x_{n_k})\}$ 有界. 但由 $|f(x_n)| > n$ 又知 $\{f(x_{n_k})\}$ 无界, 矛盾. 所以f(x)必于[a,b]上有界.

用确界原理和致密性定理证明最大最小值定理

最大最小值定理

闭区间上的连续函数必能取到最大值和最小值.

证明

设函数f(x)在[a, b]上连续. 由有界定理, f(x)在[a, b]上有界. 因而有上确界和下确界, 记 $\alpha = \inf\{f(x)|x \in [a,b]\}$, $\beta = \sup\{f(x)|x \in [a,b]\}$. 我们要证明f(x)在[a, b]上可以达到上确界 β 和下确界 α .

我们只证明上确界情形. 由上确界定义, 对任意正整数n, 令 $\varepsilon_n = \frac{1}{n} > 0$, 存在 $x_n \in [a, b]$, 使得

$$\beta - \frac{1}{n} < f(x_n) \leqslant \beta.$$

于是我们得到一个[a, b]中的数列{ x_n }, 使得 $\lim_{n\to\infty} f(x_n) = \beta$.

用确界原理和致密性定理证明最大最小值定理(续完)

由致密性定理, 有界数列 $\{x_n\}$ 有收敛子列 $\{x_{n_k}\}$. 设 $\lim_{k\to\infty} x_{n_k} \to \xi$, 则 $\xi \in [a,b]$. 注意到 $\{f(x_{n_k})\}$ 也是 $\{f(x_n)\}$ 的子列, 因而有

$$\lim_{k\to\infty}f(x_{n_k})=\beta.$$

最后, 由于f(x)在点 ξ 的连续性, 即 $\lim_{x \to \xi} f(x) = f(\xi)$. 因此

$$\beta = \lim_{k \to \infty} f(x_{n_k}) = f(\xi).$$

所以 β 是f(x)在[a,b]上的最大值.

最小值情形同理可证.

用确界原理和反证法证明最大最小值定理

证明

设函数f(x)在[a, b]上连续. 由有界定理, f(x)在[a, b]上有界. 因而有上确界和下确界, 记 $\alpha = \inf\{f(x)|x \in [a, b]\}, \beta = \sup\{f(x)|x \in [a, b]\}.$ 我们要证明f(x)在[a, b]上可以达到上确界 β 和下确界 α .

我们只证明上确界情形. 反证. 若f(x)不能取得最大值,则对任何 $x \in [a,b]$,均有 $f(x) < \beta$. 令

$$g(x) = \frac{1}{\beta - f(x)},$$

则g(x)是[a,b]上的连续函数. 由有界定理知g(x)于[a,b]上有界.

用确界原理和反证法证明最大最小值定理(续完)

设K > 0为g(x)在[a,b]上的一个上界,即有

$$K \geqslant g(x) = \frac{1}{\beta - f(x)}, \quad a \leqslant x \leqslant b,$$

于是

$$f(x) \leqslant \beta - \frac{1}{K}, \quad a \leqslant x \leqslant b.$$

这表明 $\beta - \frac{1}{K}$ 为f(x)的一个上界, 此与 β 为上确界矛盾. 从而证明了f(x)必能取得最大值 β .

最小值情形同理可证.

思考题9

用区间套定理证明根的存在定理

根的存在定理

设f(x)在[a,b]上连续且有f(a)f(b) < 0,则在(a,b)内必有方程f(x) = 0的一个根 ξ .

证明

用闭区间套定理来证明.

不妨设f(a) < 0, f(b) > 0. 把[a,b]等分为两个闭区间 $\left[a,\frac{a+b}{2}\right]$ 和 $\left[\frac{a+b}{2},b\right]$. 分成以下三种情形:

(1) 若
$$f\left(\frac{a+b}{2}\right)=0$$
, 则令 $\xi=\frac{a+b}{2}$, 完成证明;

(2) 若
$$f\left(\frac{a+b}{2}\right) > 0$$
, $\[id[a_1,b_1] = \left[a,\frac{a+b}{2}\right]; \]$

(3) 若
$$f\left(\frac{a+b}{2}\right)$$
 < 0, 记[a_1,b_1] = $\left[\frac{a+b}{2},b\right]$.

在后两种情形下, 总成立 $f(a_1) < 0$, $f(b_1) > 0$.

用区间套定理证明根的存在定理(续完)

再将[a_1 , b_1]等分为两个闭区间 $\left[a_1, \frac{a_1 + b_1}{2}\right]$ 和 $\left[\frac{a_1 + b_1}{2}, b_1\right]$. 重复以上过程, 有以下两种可能:

(a) 存在某个
$$n$$
, 使 $f\left(\frac{a_n+b_n}{2}\right)=0$, 则令 $\xi=\frac{a_n+b_n}{2}$, 完成证明;

(b) 对每一个
$$n$$
, $f\left(\frac{a_n+b_n}{2}\right)$ 都不等于 0 . 于是得到闭区间列{ $[a_n,b_n]$ },

满足: 对任意n, 有 $f(a_n) < 0$, $f(b_n) > 0$, 并且

(i)
$$[a,b] \supseteq [a_1,b_1] \supseteq [a_2,b_2] \supseteq \cdots \supseteq [a_n,b_n] \supseteq \cdots$$
;

(ii)
$$b_n - a_n = \frac{b-a}{2^n} \rightarrow 0 \ (n \rightarrow \infty).$$

根据区间套定理, $\overline{a}_{\xi} \in [a, b]$, 使得 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \xi$. 由f(x)在点 ξ 的 连续性,

$$f(\xi) = \lim_{n \to \infty} f(a_n) \leqslant 0, \quad f(\xi) = \lim_{n \to \infty} f(b_n) \geqslant 0.$$

即 $f(\xi) = 0$.

用二分法求方程的根的近似值

思考题10

怎样应用有限覆盖定理证明根的存在定理?