1. Isolar os zeros da função $f(x) = x^3 - 9x + 3$.

Resolução: Pode-se construir uma tabela de valores para f(x) e analisar os sinais:

х	-4	-3	-2	-1	0	1	2	3
f(x)	1	+	+	+	+	1	-	+

Como $f(-4) \cdot f(-3) < 0$, $f(0) \cdot f(1) < 0$ e $f(2) \cdot f(3) < 0$, conclui-se, de acordo com o teorema 1, que existem zeros de f(x) nos intervalos [-4,-3], [0,1] e [2,3]. Como f(x)=0 tem exatamente 3 raízes, pode-se afirmar que existe exatamente um zero em cada um destes intervalos.

Pode-se também chegar às mesmas conclusões partindo da equação $f(x)=x^3-9x+3=0$, obtendo-se a equação equivalente $x^3=9x-3$. Neste caso, tem-se que $g(x)=x^3$ e h(x)=9x-3. Traçando os gráficos de g(x) e h(x), verifica-se que as abscissas dos pontos de intersecção destas curvas estão nos intervalos [-4,-3], [0,1] e [2,3].

Outra forma de se verificar a unicidade de zeros nestes intervalos, é traçar o gráfico da função derivada de f(x), $f'(x) = 3x^2 - 9$ e confirmar que a mesma preserva o sinal em cada um dos intervalos]-4,-3[,]0,1[e]2,3[, conforme a **Erro! Fonte de referência não encontrada.**.

2. Isolar os zeros da função $f(x) = x \ln x - 3.2$.

Resolução: Pode-se construir uma tabela de valores para f(x) e analisar os sinais:

х	1	2	3	4
f(x)	-	1	+	+

Como $f(2) \cdot f(3) < 0$, conclui-se, de acordo com o teorema 1, que existem zeros de f(x) no intervalo [2,3].

Pode-se ainda verificar graficamente que a função derivada da função f(x), $f'(x) = 1 + \ln x$ preserva o sinal no intervalo]2,3[, neste caso $f'(x) > 0 \ \forall x \in$]2,3[, o que pela **Erro! Fonte de referência não encontrada.** garante que só existe um zero de f(x) neste intervalo.

3. Isolar os zeros da função $f(x) = 5 \log x - 2 + 0.4x$.

Resolução: Pode-se construir uma tabela de valores para f(x) e analisar os sinais:

х	1	2	3
f(x)	1	+	+

Como $f(1) \cdot f(2) < 0$, conclui-se, de acordo com o teorema 1, que existem zeros de f(x) no intervalo [1,2].

Pode-se também chegar a esta mesma conclusão partindo da equação $f(x) = 5\log x - 2 + 0,4x = 0$, obtendo-se a equação equivalente $5\log x = 2 - 0,4x$. Neste caso, tem-se que $g(x) = 5\log x$ e h(x) = 2 - 0,4x. Traçando os gráficos de g(x) e h(x), verifica-se que a abscissa do <u>único</u> ponto de intersecção destas curvas está no intervalo [1,2].

4. Isolar os zeros da função $f(x) = \sqrt{x} - 5e^{-x}$.

Resolução: Pode-se construir uma tabela de valores para f(x) e analisar os sinais:

х	0	1	2	3
f(x)	1	1	+	+

Como $f(1) \cdot f(2) < 0$, conclui-se, de acordo com o teorema 1, que existem zeros de f(x) no intervalo [1,2].

Pode-se também chegar a esta mesma conclusão partindo da equação $f(x) = \sqrt{x} - 5e^{-x} = 0$, obtendo-se a equação equivalente $\sqrt{x} = 5e^{-x}$. Neste caso, tem-se que $g(x) = \sqrt{x}$ e $h(x) = 5e^{-x}$. Traçando os gráficos de g(x) e h(x), verifica-se que a abscissa do <u>único</u> ponto de intersecção destas curvas está no intervalo [1,2].

5. Determinar um valor aproximado para $\sqrt{5}$, com erro inferior a 10^{-2} .

Resolução: Determinar $\sqrt{5}$ é equivalente a obter o zero positivo da função $f(x) = x^2 - 5$. Sabe-se que o intervalo [2,3] contém este zero e a tolerância neste caso é $\varepsilon = 10^{-2}$. Assim, a quantidade mínima de iterações para se obter a resposta com a precisão exigida é:

$$n \ge \frac{\log(b-a) - \log \varepsilon}{\log 2} \Rightarrow n \ge \frac{\log(3-2) - \log 10^{-2}}{\log 2} \Rightarrow n \ge \frac{\log 1 + 2\log 10}{\log 2} \Rightarrow n \ge \frac{0 + 2 \cdot 1}{\log 2} \Rightarrow n \ge \frac{1 + 2\log 10}{\log 2} \Rightarrow n \ge \frac{1 + 2\log 1$$

 $\Rightarrow n \ge 6,643856$. Como *n* deve ser intero, tem-se n = 7.

n	а	х	b	f(a)	f(x)	f(b)	(b-a)/2
1	2,0	2,5	3,0	_	+	+	0,5
2	2,0	2,25	2,5	_	+	+	0,25
3	2,0	2,125	2,25	_	1	+	0,125
4	2,125	2,1875	2,25	_	_	+	0,0625
5	2,1875	2,21875	2,25	_	_	+	0,03125
6	2,21875	2,234375	2,25	_	_	+	0,015625
7	2,234375	2,2421875	2,25	_	+	+	0,0078125

Portanto $\sqrt{5} \cong 2,2421875 \pm 0,0078125$

6. Um tanque de comprimento L tem uma secção transversal no formato de um semicírculo com raio r (veja a figura). Quando cheio de água até uma distância h do topo, o volume V da água é: $V = L \cdot \left[0.5 \cdot \pi \cdot r^2 - r^2 \text{arcsen} \left(\frac{h}{r} \right) - h \sqrt{(r^2 - h^2)} \right]$. Supondo que L = 10 ft, r = 1 ft e V = 12.4 ft^3 , encontre a profundidade da água no tanque com precisão de 0.01 ft.

Resolução: Para calcular a profundidade r-h da água, substitui-se os valores de r, L e V na expressão anterior para obter a equação $\operatorname{arcsen}(h) + h \sqrt{1-h^2} + 1,24-0,5\pi = 0$ cuja raiz é h. Assim, deve-se calcular o zero da função $f(h) = \operatorname{arcsen}(h) + h \sqrt{1-h^2} + 1,24-0,5\pi$, com precisão de $\varepsilon = 10^{-2}$. Para isto, primeiramente isola-se o zero desta função num intervalo da seguinte forma.

Pode-se construir uma tabela de valores para f(h) e analisar os sinais:

h	-1	0	1
f(h)	-	-	+

Como $f(0) \cdot f(1) < 0$, conclui-se, de acordo com o teorema 1, que existem zeros de f(h) no intervalo [0,1].

Para se confirmar a unicidade deste zero neste intervalo, pode-se utilizar a OBS. 1, isto é, calcula-se a derivada f'(h) de f(h) para verificar que a mesma preserva o sinal m intervalo]0,1[. Assim, obtém-se $f'(h) = \frac{1}{\sqrt{1-h^2}} + \sqrt{1-h^2} + \frac{h}{2}(1-h^2)^{-1/2} \cdot (2h)$

$$f'(h) = \frac{2(1-h^2)}{\sqrt{1-h^2}} > 0 \ \forall h \in]0,1[$$
, o que significa que $f(h)$ é estritamente crescente neste

intervalo, o que garante a unicidade do zero de f(h) em]0,1[.

Agora determina-se o número de iterações necessárias para se obter a precisão exigida:

$$n \ge \frac{\log(b-a) - \log \varepsilon}{\log 2} \Rightarrow n \ge \frac{\log 1 - \log 10^{-2}}{\log 2} \Rightarrow n \ge 6,643856$$

Logo são necessárias n = 7 iterações.

n	а	h	b	f(a)	f(h)	f(b)	(b-a)/2
1	0	0,5	1	_	+	+	0,5
2	0	0,25	0,5	_	+	+	0,25
3	0	0,125	0,25	_	1	+	0,125
4	0,125	0,1875	0,25	_	+	+	0,0625
5	0,125	0,15625	0,1875	_	_	+	0,03125
6	0,15625	0,171875	0,1875	_	+	+	0,015625
7	0,15625	0,1640625	0,171875	_	_	+	0,0078125

Assim, $\overline{h} = 0.1640625 \pm 0.0078125$ e a profundidade r - h da água da água solicitada é aproximadamente 1 - (0.1640625) ft.

7. Obter algumas funções de ponto fixo para a função $f(x) = x^2 + x - 6$.

Resolução: Efetuando diferentes manipulações algébricas sobre a equação f(x)=0 ou $x^2 + x - 6 = 0$, podem-se obter diferentes funções de ponto fixo, como por exemplo:

a)
$$x^2 + x - 6 = 0 \Rightarrow x = 6 - x^2$$
, logo $\phi_1(x) = 6 - x^2$. Como $\phi_1(-3) = -3$ e $\phi_1(2) = 2$, tem-se que -3 e 2 são pontos fixos de $\phi_1(x)$.

b) $x^2 + x - 6 = 0 \Rightarrow x = \pm \sqrt{6 - x}$, logo pode-se ter $\phi_2(x) = \sqrt{6 - x}$ e neste caso tem-se que 2 é ponto fixo de $\phi_2(x)$, pois $\phi_2(2) = 2$, ou $\phi_2(x) = -\sqrt{6 - x}$ e neste caso tem-se que -3 é ponto fixo de $\phi_2(x)$, pois $\phi_2(-3) = -3$.

c)
$$x^2 + x - 6 = 0 \Rightarrow x \cdot x + x - 6 = 0 \Rightarrow x = \frac{6}{x} - \frac{x}{x} \Rightarrow x = \frac{6}{x} - 1$$
, logo $\phi_3(x) = \frac{6}{x} - 1$. Como $\phi_3(-3) = -3$ e $\phi_3(2) = 2$, tem-se que -3 e 2 são pontos fixos de $\phi_3(x)$.

d)
$$x^2 + x - 6 = 0 \Rightarrow x \cdot x + x - 6 = 0 \Rightarrow x(x+1) - 6 = 0 \Rightarrow x = \frac{6}{x+1}$$
, $\log \phi_4(x) = \frac{6}{x+1}$.

Como $\phi_4(-3) = -3$ e $\phi_4(2) = 2$, tem-se que -3 e 2 são pontos fixos de $\phi_4(x)$.

No próximo passo algumas destas funções serão utilizadas na tentativa de gerar sequências aproximadoras dos zeros α de f(x).

7

Aproximar o maior zero da função $f(x) = x^2 + x - 6$, utilizando a função $\phi_2(x) = \sqrt{6-x}$, e $x_0 = 1.5$.

Resolução: Neste caso a fórmula de recorrência $x_{n+1} = \phi(x_n)$, $n=0, 1, 2, \dots$ será: $x_{n+1} = \phi_2(x_n) = \sqrt{6 - x_n}$, e pode-se construir a seguinte tabela:

n	\mathcal{X}_n	$x_{n+1} = \phi_2(x_n) = \sqrt{6 - x_n}$
0	1,5	2,12132
1	2,12132	1,96944
2	1,96944	2,00763
3	2,00763	1,99809
4	1,99809	2,00048
:	:	:

Percebe-se que neste caso a sequência $\{x_n\}$ converge para a raiz α =2 da equação $x^2 + x - 6 = 0$.

9. Aproximar o maior zero da função $f(x) = x^2 + x - 6$, utilizando a função $\phi_1(x) = 6 - x^2$, e $x_0 = 1,5$.

Resolução: Neste caso a fórmula de recorrência $x_{n+1} = \phi(x_n)$, $n = 0, 1, 2, \dots$ será: $x_{n+1} = \phi_1(x_n) = 6 - x_n^2$, e pode-se construir a seguinte tabela:

n	\mathcal{X}_n	$x_{n+1} = \phi_1(x_n) = 6 - x^2$
0	1,5	3,75
1	3,75	-8,0625
2	-8,0625	-59,003906
3	-59,003906	-3475,4609
:	:	:

Percebe-se que neste caso a sequência $\{x_n\}$ não converge para a raiz $\alpha=2$ da equação $x^2+x-6=0$.

10. Verificar as condições i) e ii) do teorema anterior quando do uso da função $\phi_2(x) = \sqrt{6-x}$ no 8.

Resolução:

Verificação da condição i):

- $\phi_2(x) = \sqrt{6-x}$ é contínua no conjunto $S = \{x \in \Re/x \le 6\}$.
- $\phi_2'(x) = \frac{-1}{2 \cdot \sqrt{6-x}}$ é contínua no conjunto $T = \{x \in \Re/x < 6\}$.

Verificação da condição ii):

• $|\phi_2'(x)| < 1 \Leftrightarrow \left| \frac{-1}{2 \cdot \sqrt{6-x}} \right| < 1 \Leftrightarrow x < 5.75$

Logo, é possível obter um intervalo I, tal que $\alpha=2 \in I$, onde as condições i) e ii) estão satisfeitas.

11. Verificar as condições i) e ii) do teorema anterior quando do uso da função $\phi_1(x) = 6 - x^2$.

Resolução:

Verificação da condição i):

- $\phi_1(x) = 6 x^2$ e $\phi_1'(x) = -2x$ são contínuas em \Re . Verificação da condição ii):
- $|\phi_1'(x)| < 1 \Leftrightarrow |-2x| < 1 \Leftrightarrow -\frac{1}{2} < x < \frac{1}{2}$.

Logo, não existe um intervalo I, com $\alpha=2\in I$, e tal que $\left|\phi_1'(x)\right|<1,\ \forall\ x\in I$.

12. Encontrar o zero de $f(x) = e^x - x^2 + 4$ com precisão $\varepsilon = 10^{-6}$, utilizando o método do ponto fixo.

Resolução: Pode-se construir uma tabela de valores para f(x) e analisar os sinais:

Х	-3	-2	-1
f(x)	_	+	+

Como $f(-3) \cdot f(-2) < 0$, conclui-se, de acordo com o **Erro!** Fonte de referência não encontrada, que existem zeros de f(x) no intervalo [-3,-2].

Fazendo $h(x) = e^x$ e $g(x) = x^2 - 4$, pode-se verificar que os gráficos das mesmas se intersectam em apenas um ponto, o que garante que só existe um zero de f(x) neste intervalo.

Assim, o zero de f(x) está isolado em [-3,-2].

Procurando uma função de ponto fixo adequada pode-se fazer:

$$e^{x} - x^{2} + 4 = 0 \Rightarrow x^{2} = e^{x} + 4 \Rightarrow x = -\sqrt{e^{x} + 4} \Rightarrow \phi(x) = -\sqrt{e^{x} + 4}$$

Verificando as hipóteses i) e ii) do Erro! Fonte de referência não encontrada.:

i)
$$\phi'(x) = -\frac{e^x}{2\sqrt{e^x + 4}}$$

 $\phi(x) e \phi'(x)$ são contínuas em [-3,-2], o que garante a primeira condição do **Erro!** Fonte de referência não encontrada.

ii)
$$k = \max_{x \in [-3, -2]} |\phi'(x)|$$

$$\phi'(x) = -\frac{e^x}{2\sqrt{e^x + 4}}$$

$$\phi'(-3) = -\frac{e^{-3}}{2.\sqrt{e^{-3} + 4}} = -0.01237$$

$$\phi'(-2) = -\frac{e^{-2}}{2.\sqrt{e^{-2} + 4}} = -0.03328$$

Como $\phi'(x)$ é decrescente no intervalo I = [-3, -2], k = 0,03328 < 1, o que garante a segunda condição do **Erro! Fonte de referência não encontrada.**.

Procura-se agora, o extremo do intervalo I = [-3,-2] mais próximo do zero α de f(x): Para isto, segue-se o indicado na observação 10, isto é, calcula-se o ponto médio do intervalo I = [-3,-2]: $\hat{x} = \frac{(-3+(-2))}{2} = -2,5$ e $\phi(\hat{x}) = \phi(-2,5) = -\sqrt{e^{-2,5}+4} = -2,02042$. Como $\hat{x} < \phi(\hat{x})$, isto é $\hat{x} = -2,5 < \phi(\hat{x}) = \phi(-2,5) = -2,02042$, então α está entre $\hat{x} = -2,5$ e -2, ou seja, -2 é o extremo de I mais próximo de α . Desta forma, iniciando o processo recursivo pelo ponto $x_0 = -2$, garante-se que todos os termos da seqüência aproximadora pertencerão ao intervalo I = [-3,-2].

Logo, utilizando $\phi(x) = -\sqrt{e^x + 4}$ a partir de $x_0 = -2$, gera-se uma sequência convergente para o zero α de f(x).

n	x_n	x_{n+1}	$\left x_{n+1}-x_n\right $
0	-2	-2,0335524	$0.0335524 > 10^{-6}$
1	-2,0335524	-2,0324541	$0,0010983 > 10^{-6}$
2	-2,0324541	-2,0324895	$0,0000354 > 10^{-6}$
3	-2,0324895	-2,0324884	$0,0000011 > 10^{-6}$
4	-2,0324884	-2,0324884	$0 < 10^{-6}$

Portanto, $\bar{x} = -2,0324884$.

13. Encontrar a solução para a equação $x = \cos x$ com precisão $\varepsilon = 10^{-6}$.

Resolução: $x = \cos x \Rightarrow \cos x - x = 0 \Rightarrow f(x) = \cos x - x$

Pode-se construir uma tabela de valores para f(x) e analisar os sinais:

x	0	<u>p</u> 2
f(x)	+	_

Como $f(0) \cdot f(\frac{\pi}{2}) < 0$, conclui-se, de acordo com o **Erro! Fonte de referência não**

encontrada., que existem zeros de f(x) no intervalo $[0, \frac{p}{2}]$.

Fazendo g(x) = x e $h(x) = \cos x$, pode-se verificar que os gráficos das mesmas se intersectam em apenas um ponto, o que garante que só existe um zero de f(x) neste intervalo. Esta informação também pode ser verificada observando que a função $f'(x) = -\sin x - 1$, preserva o sinal $\forall x \in]0, \frac{p}{2}[$, isto é, tem-se que neste caso f'(x) < 0,

 $\forall x \in]0, \frac{\mathbf{p}}{2}[$ (e também em $[0, \frac{\mathbf{p}}{2}]$). Isto significa dizer que a função f(x) é estritamente decrescente no intervalo $]0, \frac{\mathbf{p}}{2}[$.

Como $f''(x) = -\cos x$, também preserva o sinal em $[0, \frac{\mathbf{p}}{2}]$, $(f''(x) < 0, \forall x \in]0, \frac{\mathbf{p}}{2}[$, tem-se que as condições i), ii) e iii) do teorema 3 são satisfeitas.

Assim, a fórmula recursiva de Newton para este caso fica: $x_{n+1} = x_n - \frac{\cos(x_n) - x_n}{-\sin(x_n) - 1}$

para $n \ge 0$. Agora deve-se escolher x_0 convenientemente: Pode-se verificar que $x_0 = \frac{\pi}{4}$ é

uma boa escolha (o que garantirá que todos os termos da seqüência gerada pertencerão ao intervalo considerado. Outra opção é seguir a dica da observação 14.

n	x_n	x_{n+1}	$\left x_{n+1}-x_n\right $
0	0,785398163	0,739536133	$0.04586203 > 10^{-6}$
1	0,739536133	0,739085178	$4,50955.10^{-4} > 10^{-6}$
2	0,739085178	0,739085133	$4,5.10^{-8} < 10^{-6}$

Portanto, $\bar{x} = 0.739085133$.

Nos exercícios seguintes, considerando cada método especificado, determine uma aproximação para o zero da função.

14. Pelo método da Bissecção, determine uma aproximação para $\bar{x} \in (1,2)$ da função $f(x) = e^{-x^2} - \cos x$ com aproximação $\varepsilon_1 = 10^{-4}$ tal que $(b-a)/2 < \varepsilon_1$.

Resolução:

n	а	X	b	f(a)	f(x)	f(b)	(b-a)/2
1	1	1,5	2	1	+	+	0,5
2	1	1,25	1,5	1	-	+	0,25
3	1,25	1,375	1,5	ı	ı	+	0,125
4	1,375	1,4375	1,5	1	1	+	0,0625
5	1,4375	1,46875	1,5	-	+	+	0,03125
6	1,4375	1,453125	1,46875	1	+	+	0,015625
7	1,4375	1,4453125	1,453125	1	ı	+	0,0078125
8	1,4453125	1,44921875	1,453125	1	+	+	0,00390625
9	1,4453125	1,447265625	1,44921875	1	ı	+	0,001953125
10	1,447265625	1,448242188	1,44921875	1	+	+	0,000976563
11	1,447265625	1,447753906	1,448242188	-	+	+	0,000488281
12	1,447265625	1,447509766	1,447753906	-	+	+	0,000244141
13	1,447265625	1,447387695	1,447509766	-		+	0,00012207
14	1,447387695	1,44744873	1,447509766	-	+	+	6,10352E-05

Logo, $\bar{x} = 1,44744873$

15. Pelo método do Ponto Fixo ou Aproximações Sucessivas, determine uma aproximação para $\overline{x} \in (1,2)$ da função $f(x) = e^{-x^2} - \cos x$ com aproximação $\varepsilon_1 = \varepsilon_2 = 10^{-4}$ tal que $|f(x_{n+1})| < \varepsilon_1$ ou $|x_{n+1} - x_n| < \varepsilon_2$. Utilize $x_0 = 1,5$.

Resolução:

$$f(x)=e^{-x^{2}}-\cos x$$

$$f(x)=0 \Rightarrow e^{-x^{2}}-\cos x+x-x=0$$

$$\phi_{1}(x)=-\cos x+e^{-x^{2}}+x \Rightarrow \phi_{1}'(x)>1 \text{ em } (1,2)$$

$$\phi_{2}(x)=\cos x-e^{-x^{2}}+x \Rightarrow \phi_{2}'(x)<1 \text{ em } (1,2)$$

$$\Rightarrow \phi(x)=\cos x-e^{-x^{2}}+x \Rightarrow x_{n+1}=\phi(x_{n})$$

n	\mathcal{X}_n	x_{n+1}	$ x_{n+1}-x_n $	$ f(x_{n+1}) $	Parada
0	1,5	1,465337977	0,034662023	0,01154599	
1	1,465337977	1,453791987	0,01154599	0,004075472	
2	1,453791987	1,449716515	0,004075472	0,001466938	
3	1,449716515	1,448249577	0,001466938	0,000531683	
4	1,448249577	1,447717894	0,000531683	0,000193187	
5	1,447717894	1,447524708	0,000193187	7,02578E-05	$ f(x_{n+1}) < \varepsilon_1$

Logo, $\bar{x} = 1,447524708$.

16. Pelo método de Newton-Raphson, determine uma aproximação para $\overline{x} \in (1,2)$ da função $f(x) = e^{-x^2} - \cos x$ com aproximação $\varepsilon_1 = \varepsilon_2 = 10^{-4}$ tal que $|f(x_{n+1})| < \varepsilon_1$ ou $|x_{n+1} - x_n| < \varepsilon_2$. Utilize $x_0 = 1,5$.

Resolução:

$$f(x) = e^{-x^{2}} - \cos x \implies f'(x) = -2x e^{-x^{2}} + \sec x$$

$$\phi(x) = x - \frac{f(x)}{f'(x)} \implies \phi(x) = x - \frac{e^{-x^{2}} - \cos x}{-2xe^{-x^{2}} + \sec x} \implies x_{n+1} = \phi(x_{n})$$

n	x_n	x_{n+1}	$ x_{n+1}-x_n $	$ f(x_{n+1}) $	Parada
0	1,5	1,4491235	0,0508765	0,001088623	
1	1,4491235	1,447416347	0,001707153	1,32044E-06	$ f(x_{n+1}) < \varepsilon_1$

Logo, $\bar{x} = 1,447416347$.