MAGE: a python package for Meta-analysis of gene expression studies

Ioannis A. Tamposis*, Georgios A. Manios*, Theodosia Charitou, Konstantina E. Vennou, Panagiota I. Kontou and Pantelis G. Bagos*

Department of Computer Science and Biomedical Informatics, University of Thessaly, 35100 Lamia, Greece
These authors contributed equally

*To whom correspondence should be addressed.

Supplementary Material

Usage scenario

PART A – Set up tool parameters

Meta-analysis of gene expression data is widely used to identify differentially expressed genes that can be used as diagnostic and prognostic biomarkers of a disease. MAGE (Meta-Analysis of Gene Expression) can be used to perform a broad range of tasks related to meta-analysis of gene expression data. Figure 1 shows a schematic representation of the workflow, which is the example presented in this scenario.

A dataset of ten published microarray case-control studies on placental samples, regarding preeclampsia [1-10] was used. These data were previously analyzed in a meta-analysis conducted by Vennou et al [11]. In the first step each study file should be uploaded in tab-delimited format (.txt) as shown in the Figure 2. The first row should be named ID and the next columns contain the experiment subjects' name (e.g., GSMxxx). The second row should be named CLASS and the next columns contain subjects' status (for an analysis with a single outcome the CONTROL and the CASE was used to indicate the status of the controls and the patients of the study). The subsequent lines should have either the gene symbols identifiers of the experiment or the platforms probe identifiers (if the GISU module will be used) and the expression value of each probe per subject.

Figure 1. Schematic representation of the workflow

Open the file Browser Click the individual cell to activate each process. Drag and drop or select

Click the individual cell to activate each process. Drag and drop or select a file to add a new data set. The maximum total number of studies allowed is 15. When all data sets have been processed, Click Start Upload Files button to proceed.

maximum file size per upload is 30M. Data can be uploaded as a tabdelimited text file (.txt). Example:

ID	GSM1432676	GSM1432677	GSM1432646
CLASS	CONTROL	CONTROL	CASE
639396	-0.079391	0.1156792	-0.260034

Download sample files from here for meta-analysis

ID	GSM1432676	GSM1432677	GSM1432646
CLASS	CONTROL	CASE	CASE2
639396	-0.079391	0.1156792	-0.260034

Download sample files from here for multivariate

Figure 2. The web interface of the tool.

ID				GSM106275				GSM106279	GSM106280	GSM10628		GSM106283		GSM106285
CLASS	CONTROL	CONTROL	CONTROL	CONTROL	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE	CASE
A1BG	0.07175	-0.00749	0.06815	0.063	0.00335	0.0205	0.00099	0.03792	0.0278	0.03205	-0.02005	0.03245	0.01948	0.05175
A1BG-AS1	-0.0637	0.182	-0.148	-0.176	-0.28	-0.174	-0.0894	-0.333	-0.232	-0.13	0.0734	-0.203	-0.0949	-0.215
A1CF	0.0927	0.117	-0.0838	-0.00781	-0.0689	-0.0132	-0.0774	-0.617	-0.11	0.0539	-0.0637	-0.0975	-0.132	-0.183
A2M	-0.00156	0.0791	0.0443	-0.0961	-0.251	-0.279	-0.15	-0.217	0.0465	-0.128	0.0422	-0.0206	-0.351	-0.206
A2ML1	0.0367	-0.0748	0.0633	0.138	0.104	0.039	0.0184	0.0108	0.262	-0.000297	-0.112	0.0158	0.0654	0.0512
A4GALT	-0.253	0.0246	-0.0369	0.0294	-0.205	-0.115	-0.142	-0.213	0.098	-0.195	-0.0864	-0.0518	0.0143	-0.106
A4GNT	0.0103	-0.174	-0.000934	0.168	0.216	0.0965	0.0852	0.115	0.107	-0.0177	-0.197	0.0167	-0.127	0.045
AAAS	-0.0785	-0.0139	-0.0564	-0.0718	-0.0997	-0.0892	-0.0491	-0.116	-0.0841	-0.0991	-0.039	-0.0849	-0.103	-0.0678
AACS	-0.0277	0.0988	-0.0469	-0.159	0.12	0.139	0.0441	0.0506	-0.0381	0.00619	0.14	-0.0544	0.0352	-0.0435
AADAC	-0.0393	-0.0871	0.163	-0.0743	-0.0301	0.0784	-0.0819	-0.0669	-0.0219	-0.201	-0.319	-0.0289	0.0576	-0.0164
AADACL2	0.0327	0.0431	0.0815	0.0727	0.0769	0.0991	0.092	0.088	0.0553	-0.0515	0.0652	0.0134	0.116	0.0225
AADAT	0.0761	0.0525	-0.079	0.199	0.0124	-0.0215	0.0822	0.104	0.0013	0.143	0.356	0.0865	0.237	0.0485
AAED1	0.234	0.109			-0.118					0.166				
AAGAB	0.0257	-0.0424			-0.0523									
AAK1	0.0042	-0.0449			-0.05199					0.0245				
AAMDC	0.0272	0.191545			0.049705					0.0718				
AAMP	-0.3	0.0348			-0.135					0.0379				
AANAT	0.0101	0.0243			-0.0408					0.0147				
AAR2	-0.0205	0.0112			0.00483					0.0081				
AARS	-0.119	0.129			-0.0713					0.107				
AARS2	0.017	0.0391			-0.0247					-0.0276				
AARSD1	-0.0195	-0.057			0.0485									
AASDH	0.027233	-0.008567			-0.0854									
AASDHPPT		0.0027			-0.011233									
AASS	0.0282	0.159			0.0725					0.0368				
AATF	-0.194	0.05195			0.1216					0.05325				
AATK	-0.0705	0.038533			-0.109333									
ABAT	0.10305	0.11255			-0.0238					-0.10194				
ABCA1	-0.024275	0.054984			0.028134									
ABCA10	-0.0837	-0.106			-0.144					-0.164				
ABCA11P	-0.0758	-0.119			-0.00636									
ABCA12	-0.0942	-0.118			0.463									
ABCA13	0.0542	-0.09			-0.0442					0.077				
ABCA2	-0.0597	0.0314			-0.175					-0.0471				
ABCA3	0.0978	0.16			-0.188									
ABCA4	0.0202	-0.246			-0.105									
ABCA5	0.0775	0.005			0.1695					-0.147				
ABCA6	0.226	0.195			0.211					0.28				
ABCA7	-0.109	0.0552			0.0523									
ABCA8	0.0772	0.0444			0.258					0.144				
ABCA9	0.0772	-0.422			0.238					0.503				
ABCB1	-0.000332	0.0627			0.438					0.0603				
ABCB10	0.01615	0.10258			0.0234									
ABCB10	0.01013	-0.183			0.000151					-0.0431				
ABCB11	0.00442	0.0807			0.000131					0.366				
ABCB5	0.103	-0.0849			0.150									
ABCB5	-0.03845	0.02485			-0.09485									
ABCB7		0.02483			0.0143					0.092				
ABCB7	0.0859 1.37	-0.256			-0.181					-0.0584				
	0.05825													
ABCB9 ABCC1	-0.0401	0.1435 0.00802			0.04805					0.0667 0.0618				
					-0.348									
ABCC10	-0.0144	-0.144			-0.0309									
ABCC11	0.0832	-0.116			0.029					-0.0272				
ABCC12	0.539	-0.214			-0.403					-0.316				
ABCC13	-0.027953	0.024			0.047767								-0.089633	
ABCC2	0.04045	0.1804			-0.034915					0.10355				
ABCC3	0.102	-0.177			-0.254					0.0127				
ABCC4	-0.225333	-0.417667	0.0972	-0.05	-0.124	-0.2021	-0.114533	-0.081	-0.208433	-0.364667	-0.405	0.1274	0.036	0.167367

Figure 3. Study file example

The next step is to define the tool parameters (Figure 4). While setting up the parameters, the user may choose the type of meta-analysis. The univariate meta-analysis is the default type. For multivariate meta-analysis, the user may select YES in the multivariate meta-analysis option. Moreover, the user may choose the level of significance from the drop-down menu, select the multiple comparison correction methods, and perform functional enrichment analysis. When all parameters were set, the user should click the execute button (Optionally the user may enter an email address to get the results). In this scenario, we conducted univariate meta-analysis with 0.01 level of significance, selecting all the multiple comparison correction methods, and performing functional enrichment analysis using the Benjamini – Hochberg FDR significance threshold.

Provides additional controls. Annotation / Define the subject's class for controls and cases Control Class CONTROL Case Class CASE Case2 Class CASE2 Only for Multivariate Analysis Meta-analysis options Select Level of Significance of Mulitple Comparisons: 0.01 Select multiple comparison Type: All One step: Bonferroni, Sidak, Step Up: Simes, Hochberg, Step Down: Holm, Holland. Select If Multivariate Analysis is running NO Provides additional controls. Set Functional Enrichment Analysis YES

Email address:

Figure 4. Web Interface tool parameters.

Enter your email address to get notification of results:

PART B – Meta-analysis Results

The results file contains information about the Effect size, the Standard Error, the *z*-value, the *p*-value, the metrices for heterogeneity and the statistical significance of each gene according to the *p*-value of each correction method (Holmes, Bonferroni, FDR/Simes etc.) (Figure 5). The Effect size reveals which genes are overexpressed (the genes with a positive value) or underexpressed (the genes with negative value). In our example, differentially expressed genes (DEGs) were considered those identified at a False Discovery Rate of 0.01, which is shown in the column "Simes". The number 1 indicates the statistically significant DEGs and the 0 the non-statistically significant DEGs (the same for Holmes, Bonferroni, and the other correction methods). Meta-analysis identified 629 DEGs associated with preeclampsia. The molecular interactions among these DEGs and the biochemical pathways in which these genes participate were investigated with functional enrichment analysis. Finally, histograms were used to portray the measures of heterogeneity (Figure 6) and qqplot that shows the theoretical distribution of the corrected effect sizes compared against the actual

distribution of the corrected effect sizes (Figure 7). Also, the volcano plot is available depicting the effect sizes against the negative decimal logarithm ($-\log 10$) of the *p*-values (Figure 8).

Genes	Effect size (Hedge's g)	Standard_Error	Q	I_Squared	Tau_Squared p_Q	value	z_test_value	p_value	bonferroni	sidak	holm	holland	hochbe	erg simes	
A1BG	-0.187483812	0.124675674	10.65026	24.88	0.03300505	0.225	1.503772199	0.139		0	0	0	0	0	0
A1BG_ASI	-0.464371052	0.23264274	0.790917	0	0	0.851	1.996069387	0.046		0	0	0	0	0	0
A1CF	-0.05634002	0.175202881	23.94549	62.41	0.17268501	0.004	0.321570169	0.748		0	0	0	0	0	0
A2M	-0.361338851	0.17602856	23.95134	62.42	0.17440305	0.004	2.052728544	0.04		0	0	0	0	0	1
A2ML1	0.100899543	0.13155626	11.64866	31.32	0.04536663	0.173	0.766968765	0.445		0	0	0	0	0	0
A4GALT	0.071338351	0.125804837	12.96911	30.6	0.04501624	0.17	0.567055706	0.572		0	0	0	0	0	0
A4GNT	0.150358024	0.103690355	8.481419	5.68	0.00582605	0.389	1.450067596	0.154		0	0	0	0	0	0
AAAS	-0.182881964	0.201491671	31.56084	71.48	0.26466705	0	0.907640315	0.366		0	0	0	0	0	0
AACS	0.054171429	0.097786	5.796878	0	0	0.67	0.553979391	0.58		0	0	0	0	0	0
AADAC	0.087611513	0.158216439	16.68008	52.04	0.106149	0.034	0.553744688	0.58		0	0	0	0	0	0
AADACL2	0.212328147	0.109663242	6.10259	1.68	0.00163949	0.413	1.936183376	0.053		0	0	0	0	0	0
AADAT	0.081504594	0.258347902	35.8873	80.49	0.39974553	0	0.315483861	0.753		0	0	0	0	0	0
AAED1	-0.181036976	0.273535618	28.4666	78.92	0.3765811	0	0.661840594	0.508		0	0	0	0	0	0
AAGAB	0.078658842	0.151484908	15.3819	47.99	0.08993425	0.052	0.519252005	0.604		0	0	0	0	0	1
AAK1	0.041828521	0.188381777	17.9377	60.98	0.15629099	0.013	0.222041227	0.825		0	0	0	0	0	1
AAMDC	-0.312541845	0.107029493	8.734696	8.41	0.00902262	0.367	2.920146927	0.004		0	0	0	0	0	0
AAMP	-0.094961823	0.23049829	34.84092	77.04	0.33760929	0	0.411984936	0.681		0	0	0	0	0	0
AANAT	0.254716422	0.171089418	19.18733	58.31	0.13899459	0.015	1.488791213	0.143		0	0	0	0	0	0
AAR2	-0.174780083	0.132059733	11.99427	33.3	0.04860457	0.159	1.323492626	0.188		0	0	0	0	0	0
AARS	0.073040255	0.166558083	18.3289	56.35	0.12694764	0.019	0.438527233	0.662		0	0	0	0	0	0
AARS2	-0.025722358	0.101091297	6.857593	0	0	0.445	0.254446805	0.799		0	0	0	0	0	1
AARSD1	0.210028491	0.264434632	20.88218	71.27	0.32733657	0.002	0.794254861	0.428		0	0	0	0	0	0
AASDH	-0.155280198	0.154850122	12.90514	45.76	0.07965925	0.075	1.002777369	0.317		0	0	0	0	0	0
AASDHPP	-0.257812739	0.243648023	37.86854	78.87	0.38453311	0	1.058135978	0.291		0	0	0	0	0	0
AASS	-0.020126664	0.099814004	8.154321	1.89	0.0018639	0.419	0.201641682	0.84		0	0	0	0	0	0

Figure 5. Meta-analysis results file. This table provides detailed information about the results from meta-analysis for each gene: the effect size, the standard error, the metrics for heterogeneity (Q, I squared and Tau Squared), the p-value for heterogeneity (p-q-value), the z test value, the p-value, and the results per method of corrected p-values.

Figure 6. Heterogeneity histograms for I-Squared, Tau-Squared and Q as shown in the meta-analysis results.

Figure 7. QQ plot

Figure 8. Volcano plot

PART C - Functional Enrichment Analysis

We also performed functional enrichment analysis, also known as over-representation analysis (ORA), or gene set enrichment analysis, using the differentially expressed genes (DEGs) derived from the meta-analysis. The functional enrichment analysis of the input gene list is performed using the g:Profiler toolkit in python using the g:GOSt core tool that detects statistically significantly enriched biological processes, molecular functions, cellular components, biological pathways, regulatory motifs and protein complexes using a hypergeometric test with default parameters (alpha = 0.01, enrichment_analysis = YES, organism = hsapiens, threshold = 0.05, threshold_method=fdr).

The enrichment results in g:GOSt are highlighted in a Manhattan plot (Figure 9). The enrichment results are presented in a Manhattan Plot with all significant terms identified per source and it is accompanied by a more extensive readable output format with detailed information about every term with gene list and p-values. Each functional enriched term is derived from the most common data sources which are regularly updated such as Gene Ontology, KEGG, Reactome, WikiPathways, miRTarBase, TRANSFAC, Human Protein Atlas, CORUM, and the Human Phenotype Ontology. Furthermore, a heatmap visualization illustrates results for genes participating in significant enrichment terms (Figure 10).

In more detail, enrichment analysis returned DEGs that are highly overrepresented in terms in GO biological processes, molecular functions, cellular components and regulatory motifs (GO:BP, GO:MF, GO:CC, TF). There weren't any significant results in functional terms from KEGG, Reactome, WikiPathways, miRTarBase, Human Protein Atlas, CORUM, and the Human Phenotype Ontology sources. The top 5 significant terms at each source are represented in Table 1 with the corresponding heatmap visualization per source in Figure 10.

Figure 9. Manhattan Plot. This plot maps genes to known functional information sources and detects statistically significant enriched terms using the well-proven cumulative hypergeometric test. The x-axis shows the functional terms, and the y-axis shows the corresponding enrichment p-values in negative log10 scale. Each circle represents the significant functional term across all the analysed term categories. The circles are colour-grouped by data source.

Table 1. Functional enrichment output. The first 5 significant terms are shown for Gene Ontology (Biological Processes (BP), Molecular Function (MF), Cellular Component (CC) and Transcription Factor Regulatory Motifs source with term name, ID and adjusted p-values.

source	term_name	term_id	adjusted_p_value	negative_log10_of_adjusted_p_value
GO:BP	response to organic substance	GO:0010033	5.54E-07	6.256117189
GO:BP	cellular response to chemical stimulus	GO:0070887	1.25257E-06	5.902196824
GO:BP	response to chemical	GO:0042221	4.66537E-06	5.331113705
GO:BP	cellular response to organic substance	GO:0071310	1.01484E-05	4.993600908
GO:BP	multicellular organism development	GO:0007275	0.002198326	2.657907808
GO:CC	vesicle	GO:0031982	3.24914E-05	4.488232185
GO:CC	cytoplasm	GO:0005737	5.69367E-05	4.244607716

GO:CC	endomembrane system	GO:0012505	0.000145738	3.83642802
GO:CC	cytoplasmic vesicle	GO:0031410	0.000193625	3.713038346
GO:CC	integral component of plasma membrane	GO:0005887	0.000193625	3.713038346
GO:MF	monosaccharide binding	GO:0048029	0.004247765	2.371839509
GO:MF	peptidyl-proline dioxygenase activity	GO:0031543	0.019347834	1.713367656
GO:MF	L-ascorbic acid binding	GO:0031418	0.019347834	1.713367656
GO:MF	procollagen-proline dioxygenase activity	GO:0019798	0.023866897	1.622204046
GO:MF	peptidyl-proline 4-dioxygenase activity	GO:0031545	0.033468303	1.475366311
TF	Factor: MAZ; motif:	TF:M09636_1	9.57247E-05	4.018976204
	GGGMGGGGSSGGGGGGGGGG;			
	match class: 1			
TF	Factor: PATZ; motif:	TF:M10026	0.000143196	3.844068332
	GGGGNGGGGMKGGRRNGGNRN			
TF	Factor: MAZ; motif:	TF:M09636	0.000936755	3.028373962
	GGGMGGGSSGGGGGGGGGG			
TF	Factor: MAZ; motif:	TF:M09984	0.000936755	3.028373962
	GGGGAGGGGGNGRGRRRGNRG			
TF	Factor: GKLF; motif:	TF:M07289_1	0.001458223	2.836175963
	NNNRGGNGNGGSN; match class: 1			

Figure 10. Heatmap plot of regulatory motifs in DNA according to putative transcription factor binding sites (TFBSs) from TRANSFAC database (TF). In the x-axis there are genes enriched for terms of TF in y-axis.

References

- 1. Guo, L., et al., Differentially expressed microRNAs and affected biological pathways revealed by modulated modularity clustering (MMC) analysis of human preeclamptic and IUGR placentas. Placenta, 2013. **34**(7): p. 599-605.
- 2. Jebbink, J.M., et al., *Increased glucocerebrosidase expression and activity in preeclamptic placenta*. Placenta, 2015. **36**(2): p. 160-9.
- 3. Leavey, K., et al., *Unsupervised Placental Gene Expression Profiling Identifies Clinically Relevant Subclasses of Human Preeclampsia*. Hypertension, 2016. **68**(1): p. 137-47.
- 4. Liang, M., et al., Gene expression profiling reveals different molecular patterns in G-protein coupled receptor signaling pathways between early- and late-onset preeclampsia. Placenta, 2016. **40**: p. 52-9.

- 5. Meng, T., et al., *Identification of differential gene expression profiles in placentas from preeclamptic pregnancies versus normal pregnancies by DNA microarrays.* OMICS, 2012. **16**(6): p. 301-11.
- 6. Nishizawa, H., et al., Comparative gene expression profiling of placentas from patients with severe preeclampsia and unexplained fetal growth restriction. Reprod Biol Endocrinol, 2011. 9: p. 107.
- 7. Nishizawa, H., et al., *Microarray analysis of differentially expressed fetal genes in placental tissue derived from early and late onset severe pre-eclampsia.* Placenta, 2007. **28**(5-6): p. 487-97.
- 8. Sitras, V., et al., *Differential placental gene expression in severe preeclampsia*. Placenta, 2009. **30**(5): p. 424-33.
- 9. Tsai, S., et al., Transcriptional profiling of human placentas from pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune signalling pathways. Placenta, 2011. **32**(2): p. 175-82.
- 10. Winn, V.D., et al., Severe preeclampsia-related changes in gene expression at the maternal-fetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2. Endocrinology, 2009. **150**(1): p. 452-62.
- 11. Vennou, K.E., et al., *Meta-analysis of gene expression profiles in preeclampsia*. Pregnancy Hypertens, 2020. **19**: p. 52-60.