# Lenguajes

### Lenguajes Formales, Autómatas y Computabilidad

Departamento de Computación FCEyN, UBA

28 de agosto de 2024

### Definiciones básicas

Un alfabeto es un conjunto finito de símbolos.

- Los nombramos con letras griegas mayúsculas.
- Ejemplos:
  - $\bullet \ \Sigma = \{l, f, a, c\}$
  - $\Gamma = \{0, 1\}$
  - $\Pi = \{\Box, \triangle, \bigcirc\}$

### Cadenas

Una **cadena** es una secuencia finita de símbolos de un alfabeto.

- También llamadas secuencias o strings.
- Los nombramos con letras griegas minúsculas.
- Ejemplos sobre  $\Sigma = \{a, b, c\}$ :
  - $\bullet$   $\alpha = ab$
  - $\beta = babcca$
  - $\bullet$   $\sigma = c$
  - $\lambda$  = (cadena vacía)

### La cadena vacía

- Usamos la notación  $\lambda$  para denotar una cadena que no contiene símbolos.
- En la bibliografía es común encontrarla como  $\varepsilon$ .
- λ no es un símbolo del alfabeto. Es un meta-símbolo que usamos para referirnos a una cadena (una secuencia de símbolos) en particular.

### Potencia de un alfabeto

- Dado un alfabeto  $\Sigma$ , podemos pensar que una cadena sobre  $\Sigma$  de longitud n es una **tupla** de n elementos de  $\Sigma$ .
- Por ejemplo, si  $\Sigma = \{a, b\}$ ,

$$aba = (a, b, a) \in \Sigma \times \Sigma \times \Sigma = \Sigma^3$$

Usamos la notación  $\Sigma^n$  para denotar el conjunto de todas las cadenas de longitud n sobre  $\Sigma$ , la n-ésima **potencia** de  $\Sigma$ .

## Clausura de Kleene y clausura positiva

La **clausura de Kleene** de un alfabeto  $\Sigma$  es el conjunto  $\Sigma^*$  de todas las cadenas sobre  $\Sigma$ .

Formalmente, 
$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ... = \bigcup_{i > 0} \Sigma^i$$
.

La **clausura positiva** de un alfabeto  $\Sigma$  es el conjunto  $\Sigma^+$  de todas las cadenas *no vacías* sobre  $\Sigma$ .

Formalmente, 
$$\Sigma^+ = \bigcup_{i>1} \Sigma^i$$
.

## Ejercicio 1

Sea  $\Sigma = \{a, b, c\}$ . Determinar verdadero o falso:

a. 
$$a \in \Sigma$$

b. 
$$\lambda \in \Sigma$$

c. 
$$\lambda \subseteq \Sigma$$

d. 
$$\lambda \in \Sigma^0$$

(Verdadero) f. 
$$\{ac, bb\} \subseteq \Sigma^2$$
 (Verd.)

$$g. \lambda \in \mathbb{Z}$$

(Falso) 
$$g. \lambda \in \Sigma^*$$
 (Verdadero)

(Falso) 
$$h. \lambda \in \Sigma^+$$

(Verdadero) i. 
$$|\Sigma^n| = 3^n, n \ge 0$$
 (V.)

(Falso)

### Concatenación de cadenas

 La operación básica para operar con cadenas es la concatenación.

Dadas  $\alpha, \beta \in \Sigma^*$ , su **concatenación** es una cadena

$$\alpha.\beta \in \Sigma^*$$

que contiene los símbolos de  $\alpha$  seguidos por los símbolos de  $\beta$ .

• Si el contexto es claro podemos omitir el punto y escribir  $\alpha\beta$ .

### Propiedades de la concatenación

- ¿Es asociativa? **Sí**:  $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$ .
- ¿Es conmutativa? **No**:  $\alpha.\beta \neq \beta.\alpha$ .
- ¿Tiene elemento neutro? **Sí**,  $\lambda$ :  $\alpha . \lambda = \alpha = \lambda . \alpha$ .

### Estructura recursiva de las cadenas

- Si fijamos un alfabeto  $\Sigma$ , todas las cadenas de  $\Sigma^*$  corresponden a uno de estos dos casos:
  - $\mathbf{0}$   $\lambda$ , la cadena vacía.
  - 2  $x.\alpha$ , donde  $x \in \Sigma$  y  $\alpha \in \Sigma^*$ .
- Esto es útil para:
  - Definir funciones de manera recursiva.
  - Demostrar propiedades usando recursión estructural.

## Longitud de una cadena

La **longitud** de una cadena,  $|\bullet|: \Sigma^* \to \mathbb{N}$ , es la cantidad de símbolos que contiene.

¿Cómo podemos definir la longitud de manera recursiva?

$$|\lambda| = 0$$

$$|x.\alpha| = 1 + |\alpha|$$

## Cantidad de apariciones

Dado  $x\in \Sigma$ , la **cantidad de apariciones** de x en una cadena,  $|\bullet|_x: \Sigma^* \to \mathbb{N}$ , es la cantidad de veces que x aparece en la cadena.

#### Definición recursiva:

$$\begin{vmatrix} \lambda \end{vmatrix}_x = 0$$

$$\begin{vmatrix} y \cdot \alpha \end{vmatrix}_x = \begin{cases} 1 + |\alpha|_x & \text{si } y = x \\ |\alpha|_x & \text{si } y \neq x \end{cases}$$

# Ejercicio 2

Sea  $\Sigma$  un alfabeto y  $\alpha, \beta \in \Sigma^*$ . Demostrar que  $|\alpha.\beta| = |\alpha| + |\beta|$ 

# Solución ej. 2

Demostramos por casos, haciendo inducción estructural sobre  $\alpha$ :

1 Si  $\alpha = \lambda$ :

$$|\lambda \cdot \beta| = |\beta| = 0 + |\beta| = |\lambda| + |\beta|$$

2 Si  $\alpha = x \cdot \alpha'$ , suponemos que vale para  $\alpha'$ , y:

$$|(x \cdot \alpha') \cdot \beta| = |x \cdot (\alpha' \cdot \beta)| \qquad (\text{def. } \alpha)$$

$$= 1 + |\alpha' \cdot \beta| \qquad (\text{def. } |\bullet|)$$

$$= 1 + |\alpha'| + |\beta| \qquad (\text{hip. ind.})$$

$$= |x \cdot \alpha'| + |\beta| \qquad (\text{def. } |\bullet|)$$

$$= |\alpha| + |\beta| \qquad (\text{def. } \alpha)$$

### Potencia de cadenas

Dados  $\alpha \in \Sigma^*$  y  $n \in \mathbb{N}$ , la n-ésima **potencia** de  $\alpha$  es una cadena

$$\alpha^n \in \Sigma^*$$

que contiene a  $\alpha$  repetida n veces.

¿Podemos definir la potencia de manera recursiva? Sí, pero la recursión no es sobre  $\alpha$ , sino sobre n:

$$\alpha^0 = \lambda$$
$$\alpha^{n+1} = \alpha.\alpha^n$$

# Ejercicio 3

Sea  $\Sigma$  un alfabeto y  $\alpha \in \Sigma^*$ . Demostrar que

$$|\alpha^n| = n \cdot |\alpha|$$

## Solución ej. 3

Demostramos por inducción en n:

**1** Si n = 0:

$$\left|\alpha^0\right| = \left|\lambda\right| = 0 = 0 \cdot \left|\alpha\right|$$

2 Si n = m + 1, suponemos que vale para m y:

$$|lpha^n|=ig|lpha^{m+1}ig|=ig|lpha.lpha^mig|$$
 (def.  $lpha^n$ )
 $=|lpha|+|lpha^mig|$  (ej. anterior)
 $=|lpha|+m\cdot |lpha|$  (hip. ind.)
 $=(1+m)\cdot |lpha|$  (factor común)
 $=n\cdot |lpha|$ 

#### Reversa

La **reversa** de una cadena,  $\bullet^{r}: \Sigma^{*} \to \Sigma^{*}$ , es una cadena que contiene los mismos símbolos que  $\alpha$ , pero en orden inverso.

Definición recursiva:

$$\lambda^{r} = \lambda$$
$$(x \cdot \alpha)^{r} = \alpha^{r} \cdot x$$

Intuitivamente, ¿qué propiedades sobre la reversa será posible demostrar esta definición?

### Lenguajes

Dado un alfabeto  $\Sigma$ , un **lenguaje** sobre  $\Sigma$  es un conjunto de cadenas sobre  $\Sigma$ .

- En otras palabras, un lenguaje es cualquier subconjunto de  $\Sigma^*$ .
- Los nombramos con letras latinas mayúsculas, salvo casos especiales. En general:  $\mathcal{L}, \mathcal{L}_1, \mathcal{L}_2, ....$

# Ejemplos de lenguajes

- Ejemplos sobre  $\Sigma = \{a, b, c\}$ :
  - $\mathcal{L}_1 = \{a, aa, aba, bc\}$
  - $\bullet \ \mathcal{L}_2 = \Sigma^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$
  - $\mathcal{L}_3 = \bigcup_{i \geq 0}^2 \Sigma^i = \{\lambda, a, b, c, aa, ab, ac, \\ ba, bb, bc, ca, cb, cc\}$

  - $\mathcal{L}_5 = \Sigma^0 = \{\lambda\} = \Lambda$
  - $\mathcal{L}_6 = \emptyset$
  - $\mathcal{L}_7 = \{ \alpha \in \Sigma^* \mid |\alpha| \text{ es par} \}$
  - $\mathcal{L}_8 = \{ \alpha \in \Sigma^* \mid \alpha^r = \alpha \}$

# Unión de lenguajes

Dados  $\mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*$ , su **unión**  $\mathcal{L}_1 \cup \mathcal{L}_2$  es el conjunto de cadenas que pertenecen a  $\mathcal{L}_1$  o a  $\mathcal{L}_2$ .

$$\mathcal{L}_1 \cup \mathcal{L}_2 = \{\alpha \in \Sigma^* \mid \alpha \in \mathcal{L}_1 \vee \alpha \in \mathcal{L}_2\}$$

- Es la unión de conjuntos habitual.
- La única salvedad es que ambos lenguajes deben estar definidos sobre el mismo alfabeto.
- Su elemento neutro es el lenguaje vacío, Ø.

## Intersección de lenguajes

Dados  $\mathcal{L}_1, \mathcal{L}_2 \subseteq \Sigma^*$ , su **intersección**  $\mathcal{L}_1 \cap \mathcal{L}_2$  es el conjunto de cadenas que pertenecen a  $\mathcal{L}_1$  y a  $\mathcal{L}_2$ .

$$\mathcal{L}_1 \cap \mathcal{L}_2 = \{\alpha \in \Sigma^* \mid \alpha \in \mathcal{L}_1 \land \alpha \in \mathcal{L}_2\}$$

- Valen las mismas aclaraciones que para la unión.
- Su elemento neutro es el lenguaje de todas las cadenas,  $\Sigma^*$ .

## Complemento de un lenguaje

Dados  $\mathcal{L} \subseteq \Sigma^*$ , su **complemento**  $\mathcal{L}^c$  es el conjunto de cadenas sobre  $\Sigma$  que no pertenecen a  $\mathcal{L}$ .

$$\mathcal{L}^{\mathrm{c}} = \Sigma^* \setminus \mathcal{L}$$

• Es muy importante notar que el complemento de un lenguaje está definido sobre el mismo alfabeto.

# Ejercicio 4

Sea

$$\mathcal{L} = \{a^n \mid n \ge 3\}$$

#### Calcular:

- a.  $\mathcal{L}^{c}$  con  $\Sigma = \{a\}$
- **b**.  $\mathcal{L}^{c}$  con  $\Sigma = \{a, b\}$

# Solución ej. 4

a. 
$$\mathcal{L}^c = \{a^m \mid m < 3\} = \{\lambda, a, aa\}$$
  
b.  $\mathcal{L}^c = \{a^m \mid m < 3\} \cup \{\alpha \in \{a, b\}^* \mid |\alpha|_b \ge 1\}$   
 $= \{\lambda, a, aa, b, ab, ba, bb, aab, aba, abb, ...\}$ 

## Concatenación de lenguajes

Dados  $\mathcal{L}_1, \mathcal{L}_2 \in \Sigma^*$ , su **concatenación**  $\mathcal{L}_1.\mathcal{L}_2$  es el conjunto de cadenas que se obtiene concatenando una cadena de  $\mathcal{L}_1$  con una de  $\mathcal{L}_2$ .

$$\mathcal{L}_1.\mathcal{L}_2 = \{\alpha.\beta \mid \alpha \in \mathcal{L}_1 \land \beta \in \mathcal{L}_2\}$$

- Es una especie de "producto cartesiano" de lenguajes.
- Si el contexto lo permite, escribimos  $\mathcal{L}_1\mathcal{L}_2$ .

### Propiedades de la concatenación

- Al igual que la concatenación de cadenas, la concatenación de lenguajes:
  - es asociativa:  $(\mathcal{L}_1.\mathcal{L}_2).\mathcal{L}_3 = \mathcal{L}_1.(\mathcal{L}_2.\mathcal{L}_3).$
  - no es **conmutativa**:  $\mathcal{L}_1.\mathcal{L}_2 \neq \mathcal{L}_2.\mathcal{L}_1.$
- ¿Existe un **elemento neutro** para la concatenación? Es decir, un lenguaje  $\mathcal{X}$  tal que para todo  $\mathcal{L}$  se cumpla  $\mathcal{X}.\mathcal{L} = \mathcal{L} = \mathcal{L}.\mathcal{X}.$  **Sí**: es  $\Lambda$ .
- ¿Existe un **elemento absorbente** para la concatenación? Es decir, un lenguaje  $\mathcal{X}$  tal que para todo  $\mathcal{L}$  se cumpla  $\mathcal{X}.\mathcal{L} = \varnothing = \mathcal{L}.\mathcal{X}.$  **Sí**: es  $\varnothing$ .

## Potencia de un lenguaje

Así como definimos la concatenación para lenguajes, podemos pensar en las versiones análogas de otras operaciones sobre cadenas.

Dado  $\mathcal{L} \subseteq \Sigma^*$ , su n-ésima **potencia**  $\mathcal{L}^n$  es el conjunto de cadenas que se pueden obtener concatenando n cadenas de  $\mathcal{L}$ .

$$\mathcal{L}^n = \begin{cases} \Lambda & \text{si } n = 0\\ \mathcal{L}.\mathcal{L}^{n-1} & \text{si } n > 0 \end{cases}$$

## Clausura de Kleene y clausura positiva

Dado  $\mathcal{L} \subseteq \Sigma^*$ , su **clausura de Kleene**  $\mathcal{L}^*$  es el conjunto de cadenas que se pueden obtener concatenando cero o más cadenas de  $\mathcal{L}$ .

Dado  $\mathcal{L} \subseteq \Sigma^*$ , su **clausura positiva**  $\mathcal{L}^+$  es el conjunto de cadenas que se pueden obtener concatenando una o más cadenas de  $\mathcal{L}$ .

$$\mathcal{L}^* = \bigcup_{i \geq 0} \mathcal{L}^i$$
 
$$\mathcal{L}^+ = \bigcup_{i \geq 1} \mathcal{L}^i$$

## Reverso de un lenguaje

Dado  $\mathcal{L} \subseteq \Sigma^*$ , su **reverso**  $\mathcal{L}^r$  es el conjunto de las reversas de las cadenas de  $\mathcal{L}$ .

$$\mathcal{L}^{\mathbf{r}} = \{ \alpha^{\mathbf{r}} \mid \alpha \in \mathcal{L} \}$$

# Ejercicio 5

Sean  $\Sigma=\{a,b,c\}, \mathcal{L}_1=\{a,aa,baba,ab,cab\}, \mathcal{L}_2=\{\lambda,a,b\}.$  Calcular:

a. 
$$\mathcal{L}_1 \cup \mathcal{L}_2$$

$$b.$$
  $\mathcal{L}_1 \cap \mathcal{L}_2$ 

$$\mathcal{L}_1 \mathcal{L}_2$$

$$d.$$
  $\mathcal{L}_1 \emptyset$ 

e. 
$$\mathcal{L}_1\Lambda$$

f. 
$$(\mathcal{L}_2)^c$$

$$g. \left(\mathcal{L}_1\right)^0$$

$$h. \left(\mathcal{L}_2\right)^2$$

i. 
$$(\mathcal{L}_2)^*$$

j. 
$$(\mathcal{L}_2)^+$$

$${\it k.}~~{\it L}_2\Sigma^*$$

$$L$$
  $\mathcal{L}_1 \setminus (\mathcal{L}_2)^*$ 

$$m. (\mathcal{L}_1)^r$$

# Solución ej. 5 (1/2)

- a.  $\mathcal{L}_1 \cup \mathcal{L}_2 = \{a, aa, baba, ab, cab, \lambda, b\}$
- $\boldsymbol{b}$ .  $\mathcal{L}_1 \cap \mathcal{L}_2 = \{a\}$
- $\mathcal{L}_1\mathcal{L}_2 = \{a,aa,baba,ab,cab,aaa,babaa,aba, \\ caba,aab,babab,abb,cabb\}$
- d.  $\mathcal{L}_1 \varnothing = \varnothing$
- e.  $\mathcal{L}_1\Lambda = \mathcal{L}_1$
- f.  $(\mathcal{L}_2)^{\mathrm{c}} = \{c\} \cup \bigcup_{i \geq 2} \Sigma^i$
- $g. (\mathcal{L}_1)^0 = \Lambda$

# Solución ej. 5 (2/2)

**h.** 
$$(\mathcal{L}_2)^2 = \{\lambda, a, b, aa, ab, ba, bb\}$$

i. 
$$(\mathcal{L}_2)^* = \{a, b\}^*$$

$$\mathbf{j}. \ (\mathcal{L}_2)^+ = \{a, b\}^*$$

$$k$$
.  $\mathcal{L}_2\Sigma^*=\Sigma^*$ 

$$L \mathcal{L}_1 \setminus (\mathcal{L}_2)^* = \{cab\}$$

$$m. (\mathcal{L}_1)^{\mathbf{r}} = \{a, aa, abab, ba, bac\}$$

## Ejercicio 6

Sean  $\mathcal{L}, \mathcal{L}_1, \mathcal{L}_2$  lenguajes cualesquiera. Determinar verdadero (demostrar) o falso (dar contraejemplo):

a. 
$$\mathcal{L}^+ \subset \mathcal{L}^*$$

$$b.$$
  $\mathcal{L}^+ \subseteq \mathcal{L}^*$ 

c. Si 
$$\mathcal{L}_1 \subseteq \mathcal{L}_2$$
 y  $n \geq 0$ ,  $(\mathcal{L}_1)^n \subseteq (\mathcal{L}_2)^n$ 

d. Si 
$$\mathcal{L}_1 \subseteq \mathcal{L}_2$$
,  $(\mathcal{L}_1)^* \subseteq (\mathcal{L}_2)^*$ 

$$e. (\mathcal{L}^*)^* = \mathcal{L}^*$$

$$f. \ (\mathcal{L}_1 \cup \mathcal{L}_2)^* = (\mathcal{L}_1)^* \cup (\mathcal{L}_2)^*$$

$$g. \left(\mathcal{L}^2\right)^* = \mathcal{L}^*$$

$$h. (\mathcal{L}^*)^r = (\mathcal{L}^r)^*$$

(Verdadero)

(Falso)

(Verdadero)

(Verdadero)

(Verdadero)

(Falso)

(Falso)

(Verdadero)

# Solución ej. 6 (1/3)

a. Verdadero. Por definición,

$$\mathcal{L}^* = \bigcup_{i \geq 0} \mathcal{L}^i = \mathcal{L}^0 \cup \bigcup_{i \geq 1} \mathcal{L}^i \supseteq \bigcup_{i \geq 1} \mathcal{L}^i = \mathcal{L}^+.$$

- **b.** Falso si  $\lambda \in \mathcal{L}$ . Por ejemplo,  $\{\lambda, a\}^+ = \{a\}^* = \{\lambda, a\}^*$ .
- c. Verdadero. Por inducción en n:
  - si n=0,  $(\mathcal{L}_1)^0=\Lambda=(\mathcal{L}_2)^0$ .
  - si n=m+1, sea  $\alpha\in (\mathcal{L}_1)^n$ ; en tal caso  $\alpha=\beta\gamma$  con  $\beta\in \mathcal{L}_1$  y  $\gamma\in (\mathcal{L}_1)^m$ . Entonces  $\beta\in \mathcal{L}_2$  y, por hipótesis inductiva,  $\gamma\in (\mathcal{L}_2)^{m-1}$ . Luego  $\alpha=\beta\gamma\in \mathcal{L}_2.(\mathcal{L}_2)^m=(\mathcal{L}_2)^{m+1}=(\mathcal{L}_2)^n$ .

# Solución ej. 6 (2/3)

- d. Verdadero. Sea  $\alpha \in (\mathcal{L}_1)^*$ . Entonces  $\alpha \in (\mathcal{L}_1)^n$  para algún  $n \geq 0$ . Por el inciso anterior,  $\alpha \in (\mathcal{L}_2)^n \subseteq (\mathcal{L}_2)^*$ .
- e. Verdadero. Probamos la doble inclusión:
  - $\subseteq$ : Sea  $\alpha \in (\mathcal{L}^*)^*$ . Entonces  $\alpha = \beta_1...\beta_n$ , con cada  $\beta_i \in \mathcal{L}^*$ . Cada  $\beta_i \in \mathcal{L}^{m_i}$  para algún  $m_i \geq 0$ . Luego  $\alpha \in \mathcal{L}^{m_1}...\mathcal{L}^{m_n} = \mathcal{L}^{m_1+...+m_n} \subseteq \mathcal{L}^*$ .
  - $\supseteq$ : Por definición  $\mathcal{L} \subseteq \mathcal{L}^*$ . Entonces, por el inciso anterior,  $(\mathcal{L})^* \subseteq (\mathcal{L}^*)^*$ .
- $\textbf{\textit{f.}} \ \ \textbf{Falso}. \ \ \textbf{Tomando} \ \mathcal{L}_1 = \{a\}, \mathcal{L}_2 = \{b\}, ab \in (\mathcal{L}_1 \cup \mathcal{L}_2)^* \ \ \textbf{pero} \ ab \notin (\mathcal{L}_1)^* \cup (\mathcal{L}_2)^*$

# Solución ej. 6 (3/3)

- g. Falso. Tomando  $\mathcal{L} = \{a\}, a \in \mathcal{L}^*$  pero  $a \notin (\mathcal{L}^2)^*$ .
- $\begin{array}{ll} \textit{h. Verdadero.} \ \alpha \in \left(\mathcal{L}^*\right)^{\mathrm{r}} \\ & \mathrm{sii} \ \alpha^{\mathrm{r}} \in \mathcal{L}^* \\ & \mathrm{sii} \ \alpha^{\mathrm{r}} \in \mathcal{L}^n \quad \text{ para algún } n \geq 0 \\ & \mathrm{sii} \ \alpha^{\mathrm{r}} = \alpha_1 ... \alpha_n \quad \text{con } \alpha_i \in \mathcal{L} \\ & \mathrm{sii} \ \alpha = \left(\alpha_1 ... \alpha_n\right)^{\mathrm{r}} \\ & \mathrm{sii} \ \alpha = \alpha_n^{\mathrm{r}} ... \alpha_1^{\mathrm{r}} \\ & \mathrm{sii} \ \alpha \in \left(\mathcal{L}^{\mathrm{r}}\right)^n \subseteq \left(\mathcal{L}^{\mathrm{r}}\right)^*. \end{array}$

## Prefijos, sufijos y subcadenas

### Dado un lenguaje $\mathcal{L}$ ,

- el lenguaje de sus **prefijos**,  $\operatorname{Ini}(\mathcal{L})$ , se obtiene quitando cero o más símbolos del final de las cadenas de  $\mathcal{L}$ .
- el lenguaje de sus **sufijos**,  $Fin(\mathcal{L})$ , se obtiene quitando cero o más símbolos del principio de las cadenas de  $\mathcal{L}$ .
- el lenguaje de sus **subcadenas**,  $\operatorname{Sub}(\mathcal{L})$ , se obtiene quitando cero o más símbolos del principio y del final de las cadenas de  $\mathcal{L}$ .

## Prefijos, sufijos y subcadenas

#### Formalmente,

- $\operatorname{Ini}(\mathcal{L}) = \{ \alpha \in \Sigma^* \mid \exists \beta \in \Sigma^* \text{ t.q. } \alpha\beta \in \mathcal{L} \}$
- $\operatorname{Fin}(\mathcal{L}) = \{ \alpha \in \Sigma^* \mid \exists \beta \in \Sigma^* \text{ t.q. } \beta \alpha \in \mathcal{L} \}$
- Sub $(\mathcal{L}) = \{ \alpha \in \Sigma^* \mid \exists \beta, \gamma \in \Sigma^* \text{ t.q. } \beta \alpha \gamma \in \mathcal{L} \}$

# Ejercicio 7

Considerar el siguiente lenguaje sobre  $\Sigma = \{a, b, c\}$ :

$$\mathcal{L} = \{aba, abc\}$$

- a. Calcular  $\operatorname{Ini}(\mathcal{L})$ ,  $\operatorname{Fin}(\mathcal{L})$  y  $\operatorname{Sub}(\mathcal{L})$ .
- b. Realizar un diagrama de Euler para los lenguajes  $\mathcal{L}$ ,  $\operatorname{Ini}(\mathcal{L})$ ,  $\operatorname{Fin}(\mathcal{L})$ ,  $\operatorname{Sub}(\mathcal{L})$  y  $\Sigma^*$ .
  - Dar una cadena de ejemplo para cada región del diagrama. Ubicar también la cadena  $\lambda$ .
- c. De las inclusiones visibles en el diagrama, ¿cuáles valen para cualquier lenguaje?



# Solución ej. 7 (1/3)

- a.  $\operatorname{Ini}(\mathcal{L}) = \{\lambda, a, ab, aba, abc\}$ 
  - $\operatorname{Fin}(\mathcal{L}) = \{\lambda, a, ba, aba, c, bc, abc\}$
  - Sub $(\mathcal{L}) = \{\lambda, a, ab, aba, b, ba, abc, bc, c\}$

# Solución ej. 7 (2/3)



# Solución ej. 7 (3/3)

- c. Todas las inclusiones valen en general. Es decir, para todo  $\mathcal{L}$ :
  - $\mathcal{L} \subseteq \operatorname{Ini}(\mathcal{L}) \subseteq \operatorname{Sub}(\mathcal{L}) \subseteq \Sigma^*$
  - $\mathcal{L} \subseteq \operatorname{Fin}(\mathcal{L}) \subseteq \operatorname{Sub}(\mathcal{L}) \subseteq \Sigma^*$

Además, siempre que  $\mathcal{L} \neq \emptyset$ , vale que  $\lambda \in \operatorname{Ini}(\mathcal{L}) \cap \operatorname{Fin}(\mathcal{L})$ .