Chapter 7. Cluster Analysis

Dong-Kyu Chae

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University

DBSCAN Algorithm

```
ALGORITHM 1: Pseudocode of Original Sequential DBSCAN Algorithm
    Input: DB: Database
    Input: \varepsilon: Radius
    Input: minPts: Density threshold
    Input: dist: Distance function
    Data: label: Point labels, initially undefined
 1 foreach point p in database DB do
                                                                                     // Iterate over every point
         if label(p) \neq undefined then continue
                                                                                     // Skip processed points
        Neighbors N \leftarrow \text{RANGEQUERY}(DB, dist, p, \varepsilon)
                                                                                     // Find initial neighbors
 3
         if |N| < minPts then ~) not core Pointで笑
                                                                                     // Non-core points are noise
 4
              label(p) \leftarrow Noise
 5
              continue
 6
        c \leftarrow \text{next cluster label} \quad \mathcal{C}_{\mathcal{D}}(\tau, \cdot)
                                                                                     // Start a new cluster
        label(p) \leftarrow c
                              ox Clude
         Seed set S \leftarrow N \setminus \{p\}
                                                                                     // Expand neighborhood
         foreach q in S do
10
             if label(q) = Noise then label(q) \leftarrow c \longrightarrow Milss girth noise <math>\rightarrow border
11
              if label(q) \neq undefined then continue
12
              Neighbors N \leftarrow \text{RANGEQUERY}(DB, dist, q, \varepsilon)
13
             if |N| < minPts then continue \longrightarrow border point initially undertied \nearrow border S \leftarrow S \cup N
14
                                                                                     // Core-point check
15
                                     expand the seed set
              S \leftarrow S \cup N
16
```


DBSCAN Algorithm: Example

Parameter

- ε = 2 cm
- MinPts = 3


```
for each o \in D do

if o is not yet marked then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```


DBSCAN Algorithm: Example

Parameter

- ε = 2 cm
- MinPts = 3


```
for each o \in D do

if o is not yet marked then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```


DBSCAN Algorithm: Example

Parameter

- ε = 2 cm
- MinPts = 3


```
for each o \in D do

if o is not yet marked then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

Point Types Marked by DBSCAN

Original Points

Point types: core, border and outliers

$$\varepsilon$$
 = 10, MinPts = 4

When DBSCAN Works Well

Original Points

Clusters

- Resistant to Noise
- Can handle clusters of different shapes and sizes

DBSCAN: Sensitive to Parameters

Original Points

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

DBSCAN Summary

Advantages

- Clusters can have arbitrary shape and size
- □ Number of clusters is determined automatically
- Can separate clusters from noise and outliers

Disadvantages

- □ Input parameters may be difficult to determine
- In some situations very sensitive to input parameter setting

OPTICS

- Based on DBSCAN
- Does not produce clusters explicitly
- Rather generate an ordering of data objects representing densitybased clustering structure

OPTICS: Some Extension from DBSCAN

- □ OPTICS: Ordering Points To Identify the Clustering Structure
 - It aims to answer: "how to choose proper ε value?"
 - Produces a linear order of objects such that spatially closest points become neighbors in the ordering
 - □ This ordering can produce a **graphical information** equivalent to density-based clustering structure corresponding to a broad range of parameter settings (ε)
 - OPTICS can be seen as a visualization technique for clustering,
 rather than a clustering solution
 - □ Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure

OPTICS: Some Extension from DBSCAN

$$\begin{tabular}{ll} \square reachability-dist}_{\varepsilon, MinPts}(o,p) = \begin{cases} $\operatorname{UNDEFINED}$ & if $|N_\varepsilon(p)| < MinPts$ \\ $\max(\operatorname{core-dist}_{\varepsilon, MinPts}(p), \operatorname{dist}(p,o))$ & otherwise \end{cases}$$

"smallest distance that makes o

directly density-reachable from p''

OPTICS: Some Extension from DBSCAN

□ldea

detail ship

- Order data points by shortest reachability distance
- □ The clusters show up as **valleys** in the **reachability plot**. The deeper the valley, the denser the cluster (having shorter reachability distances).
- Extracting clusters from this plot can be done manually by selecting a threshold on the y-axis
- \square Needs an initial ε^* , but it does not require a careful decision.

The Pseudocode of OPTICS (skip)

cluster-ordered

file

ControlList

Output: ordered data points

```
foreach o \in Database
 // initially, o.processed = false for all objects o
 if o.processed = false;
   insert (o, "undefined") into ControlList;
                                                                      database
 while ControlList is not empty
     select first element (o, r-dist) from ControlList;
     retrieve N_{\varepsilon}(o) and determine c\_dist=core\_distance(o);
     set o.processed = true;
     write (o, r\_dist, c\_dist) to file;
     if o is a core object at any distance \leq \varepsilon
       foreach p \in N_{\varepsilon}(o) not yet processed;
           determine r\_dist_p = reachability-distance(p, o);
           if (p, \_) \notin ControlList
              insert (p, r\_dist_p) in ControlList;
           else if (p, old\_r\_dist) \in ControlList and r\_dist_p < old\_r\_dist
              update (p, r\_dist_p) in ControlList;
```


OPTICS: The Reachability Plot

Cluster-order of the objects

OPTICS: The Reachability Plot

Cluster-order of the objects

OPTICS: The Reachability Plot

- Represents the density-based clustering structure
- Easy to analyze
- Independent of the dimension of the data

DBSCAN VS OPTICS

	DBSCAN	OPTICS
Density	Boolean value (high/low) Lorder or orlller	Numerical value (core distance)
Density- connected	Boolean value (yes/no)	Numerical value (reachability distance)
Searching strategy	random	greedy

Thank You

