

decomposing multistate models

Tim Riffe

28 May, 2021 REVES annual meeting

decomposing discrete time multistate models

Tim Riffe

28 May, 2021 REVES annual meeting

Consider parameterizing in terms of conditional probabilities when decomposing discrete time multistate models

Tim Riffe

28 May, 2021 REVES annual meeting

A typical multistate model

A typical multistate model

$$\xi = f(\theta)$$

$$\xi = f(\theta)$$

where ξ can be any synthetic quantity calculated with θ .

- often ξ is an expectancy

$$\Delta \xi = \xi^2 - \xi^1$$

$$\Delta \xi = \xi^2 - \xi^1$$

$$= f(\theta^2) - f(\theta^1)$$

$$\Delta \xi = \xi^2 - \xi^1$$

$$= f(\theta^2) - f(\theta^1)$$

$$\Delta \xi = \sum \mathbf{c}_i$$

$$\Delta \xi = \xi^2 - \xi^1$$

$$= f(\theta^2) - f(\theta^1)$$

$$\Delta \xi = \sum \mathbf{c}_i$$

$$\mathbf{c} = \mathcal{D}(f, \theta^2, \theta^1)$$

Decomposition, $\mathcal{D}()$

- ► LTRE (Caswell 1989)
- ► Stepwise (Andreev et al 2002)
- ► Pseudo continuous (Horiuchi et al 2008)

Let's talk about θ

Pick two colors to make θ

$$\xi = f(\theta) = f(\theta)$$

$$\xi = f(\theta) = f(\theta)$$

$$\Delta \xi = \xi^2 - \xi^1 = \xi^2 - \xi^1$$

$$\xi = f(\theta) = f(\theta)$$

$$\Delta \xi = \xi^2 - \xi^1 = \xi^2 - \xi^1$$

$$\mathcal{D}(f, \theta^2, \theta^1) \neq \mathcal{D}(f, \theta^2, \theta^1)$$

$$\sum \mathbf{c}^i = \sum \mathbf{c}^i$$

but

$$\mathbf{c}^i \neq \mathbf{c}^i$$

Example

DFLE increased from 30.75 in 2006 to 32.33 in 2014. That's $\Delta \xi = 1.58$ years

(HRS, age 50 women with secondary education)

Example

Same result, ξ whether we omit:

- self-transitions
- mortality transitions
- health transitions

But very different stories if we decompose:

omits	Stay healthy	Get disabled	Die healthy	Recover	Stay disab.	Die disabled
self		-0.01	1.32	-0.28		0.54
mort	1.28	0.04		-1.86	2.13	
health	0.21		1.10		-0.41	0.67

"Thank you" intermission

We would like a solution that gives consistent interpretable results

We would like a solution that gives consistent interpretable results

Solution

We would like a solution that gives consistent interpretable results

Solution

Make θ consist in conditional probabilities

For standard calcs we use (two of)

$$[p^{stay}, p^{switch}, p^{die}]$$

For standard calcs we use (two of)

$$[p^{stay}, p^{switch}, p^{die}]$$

Transform this into two multiplicative probabilities

$$[p^{stay}|survive, p^{survive}]$$

DF mort	Dis. mort	$DF \!\! o Dis$	$Dis \!\! o \!\! Df$
1.29	0.58	0.02	-0.31

DF mort	Dis. mort	$DF \!\! o Dis$	$Dis \!\! o \!\! Df$
1.29	0.58	0.02	-0.31

Transitions can be framed in terms of mortality or survival, in terms of staying in the state of transfering out of it. Results *identical*

DF mort	Dis. mort	$DF \!\! o Dis$	$Dis \!\! o \!\! Df$
1.29	0.58	0.02	-0.31

Transitions can be framed in terms of mortality or survival, in terms of staying in the state of transfering out of it. Results *identical*

Really, IDENTICAL

DF mort	Dis. mort	$DF \!\! o Dis$	$Dis \!\! o \!\! Df$
1.29	0.58	0.02	-0.31

Transitions can be framed in terms of mortality or survival, in terms of staying in the state of transfering out of it. Results *identical*

Really, IDENTICAL Thanks