9 Alg. de Horner: Polynomial evaluation

Consider

$$p(x) = \sum_{i=0}^{n} a_i x^i$$

We wish to compute p(k) for a given $k \in \mathbb{R}$ minimizing the number of operations. Directly computing $a_0 + a_1 k_1 + \ldots$ leads to n sums. The ith term requires computing k^i , which means i product operations, for a totall of $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ products. The total number of operations is then

$$\Theta = n + n(n+1)/2$$

The associated complexity is $\mathcal{O}(n^2)$.

Horner's method consists of re-writing p(x) so that the number of products is reduced. One writes

$$p(x) = a_0 + xb_0$$

where $b_{n-1} = a_n$ and for $0 \le i < n-1$:

$$b_{i-1} = a_i + xb_i$$

Let $p(x) = 3 + 5x - 4x^2 + 0x^3 + 6x^4$, giving n = 4. Then $b_3 = 6$ and

$$b_2 = a_3 + xb_3 = 6x,$$
 $b_1 = a_2 + xb_2 = -4 + x(6x),$ $b_0 = a_1 + xb_1 = 5 + x(-4 + x(6x))$

This finally gives

$$p(x) = 3 + xb_0 = 3 + x(5 + x(-4 + x(6x)))$$

Here, one must perform n sums again but only n products. Thus, there are $\Theta = n + n = 2n$ operations, giving a complexity of $\mathcal{O}(n)$ (in the operation space). See the algorithm below:

```
\begin{aligned} & \textbf{input} \ \ n; a_i, i = 0, \dots, n; x \\ & b_{n-1} \leftarrow a_n \\ & \textbf{for} \ \ i = n-2 \ \ \textbf{to} \ \ i = 0 \\ & b_i = a_{i+1} + x * b_{i+1} \end{aligned} \textbf{od} y \leftarrow a_0 + x * b_0 \textbf{return} \ \ y
```

It is easy to see in this code that the **for** loop performs n-1 iterations, in each of which a single sum and a single product are computed. The nth sum and nth product are performed in the computation of y, the final result.

A more polished version includes the last computation (the one in the assignment of y) within the loop and makes no use of indexes:

$$egin{aligned} \mathbf{input} & n; a_i, i = 0, \dots, n; x \ b \leftarrow a_n \ & \mathbf{for} & i = n-2 & \mathbf{to} & i = -1 \ & b = a_{i+1} + x * b \ & \mathbf{od} \ & \mathbf{return} & b \end{aligned}$$

In Python,

```
def horner(coefs, x):
    n = len(coefs)-1
    b = coefs[n]

for i in reversed(range(-1, n-1)):
    b = coefs[i+1] + x*b

return b
```

It is trivial to adapt the code so that it returns the coefficients b_0, \ldots, b_{n-1} and not the final result, if needed.

10 Error

Let r, \overline{r} be two real numbers s.t. the latter is an approximation of the first. We define the **error** of the approximation to be $r - \hat{r}$, and

$$\Delta r = |r - \overline{r}|, \qquad \delta r = \frac{\Delta r}{|r|}$$

With r unknown the strategy is to work with a known bound of r.

11 Non-linear equations

The general problem is to find members of the set \mathcal{R}_f of roots of $f \in \mathbb{R} \to \mathbb{R}$. The numerical strategy is to iteratively approximate some $r \in \mathcal{R}_f$ until some pre-established threshold in the error of approximation is met.

More formally, the numerical strategy produces a sequence $\{x_k\}_{k\in\mathbb{N}}$ which satisfies

- $\lim_{k\to\infty} \{x_k\} = r \text{ for some } r \in \mathcal{R}_f$
- Either $e(x_k) < e(x_{k-1})$ or, more strongly, $\lim_{k\to\infty} e(x_k) = 0$, where $e(x_k)$ is some appropriate measure of the error of approximation.

11.1 Bisection

A very simple procedure: if a root exists in [a, b], it iteratively shrinks [a, b] in halves (keeping the halves which contain the root) until the interval is of sufficiently small length.

[Intermediate value] If f is continuous in [a,b] and f(a)f(b) < 0, then $\exists r \in \mathcal{R}_f$ s.t. $r \in [a,b]$.

Assume f is continuous. A root exists in [a, b] if f(a)f(b) < 0 (**Theorem 1**). If that is the case, the midpoint (a+b)/2 is taken as the approximation x_0 . It is also trivial to observe that x_0 is at most at a distance of (b-a)/2 from the real root, so $e_0 = |x_0 - r| \le (b-a)/2$.

If $f(x_0) = 0$ the procedure must end because a root was found. Otherwise, sufficies to find which half of the interval contains a root computing f(a)f(c) and, if needed, f(c)f(b).

The iterations may stop after reaching a maximum number of steps, when |f(c)| is sufficiently close to zero, or when the error bound $|e_k| \leq (b_k - a_k)/2$ (where $[a_k, b_k]$ is the interval of this iteration) is sufficiently small.

(!) The algorithm not always converges. Take f(x) = 1/x. Clearly, it has no root. Yet setting a = -1, b = 1 in the initial iteration falsely passes the test. (The problem obviously is that f is not continuous in [-1,1].) If one sets

```
\mathbf{Input}: a, b, \delta, M, f
\mathbf{Output}: Tupla de la forma: (r, \cot de \ error)
f_a \leftarrow f(a)
f_b \leftarrow f(b)
if f_a * f_b > 0
      return?
fi
for i = 1 to i = M do
      c \leftarrow a + (b - a)/2
      f_c \leftarrow f(c)
      if f_c = 0 then
             return (c,0)
      fi
      \epsilon = \frac{b-a}{2}
      if \epsilon < \delta then
            break
      fi
      if f_a * f_c < 0 then
            b \leftarrow c
            f_b = f(b)
      else
            a \leftarrow c
            f_a = f(a)
      fi
od
return (c, \epsilon)
```

```
def bisection(f : callable, a : float, b : float, delta : float, M : int):
 s, e = f(a), f(b) # function values at (s)tart, (e)nd of interval
 if s*e > 0:
   raise ValueError("Interval [a, b] contains no root.")
 for i in range(M):
   c = a + (b-a)/2
   m = f(c) # value of f at (m)idpoint
   if m == 0:
     return c, 0
   e = (b-a)/2
   if e < delta:
     return c, e
   if s*m < 0:
     b = c
     e = f(b)
   else:
     a = c
      s = f(a)
 return c, e
```

If $\{[a_i, b_i]\}_{i=0}^{\infty}$ are the intervals generated by the bisection method on iterations $i = 0, 1, \ldots$, then:

1. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$ is a member of \mathcal{R}_f .

2. If
$$c_n = \frac{1}{2}(a_n + b_n)$$
, $r = \lim_{n \to \infty} c_n$, then $|r - c_n| \le \frac{1}{2^{n+1}}(b_0 - a_0)$

Proof. (1) It is clear that $a_i \leq a_{i+1}$ and $b_i \geq b_{i+1}$, since the interval on each iteration shrinks in one direction.

 $\therefore a_n, b_n$ are monotonous.

But clearly a_n is bounded by b_0 and b_n is bounded by a_0 .

- $\therefore a_n, b_n$ are monotonous and bounded.
- ... Their limits exist.

It is also clear that the interval shrinks to half its size on each iteration:

$$b_n - a_n = \frac{1}{2}(b_{n-1} - a_{n-1}), \qquad n \ge 1$$
 (1)

By recurrence on (1),

$$b_n - a_n = \frac{1}{2^n}(b_0 - a_0), \qquad n \ge 0$$
 (2)

Then

$$\lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} \frac{1}{2^n} (b_0 - a_0) = 0$$
 (3)

 $\therefore \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n.$

Since the limit of a_n, b_n exists and f is by assumption continuous, the composition limit theorem applies and:

$$\lim_{n \to \infty} (f(a_n) \cdot f(b_n))$$

$$= \lim_{n \to \infty} f(a_n) \cdot \lim_{n \to \infty} f(b_n)$$

$$= f\left(\lim_{n \to \infty} a_n\right) \cdot f\left(\lim_{n \to \infty} b_n\right)$$

$$= [f(r)]^2$$
{Composition limit theorem}
$$\left\{r = \lim_{n \to \infty} a_n\right\}$$
(4)

The invariant of the algorithm is $f(a_n)f(b_n) < 0$. But due to the last result,

$$\lim_{n \to \infty} f(a_n) f(b_n) \le 0 \iff [f(r)]^2 \le 0 \iff f(r) = 0$$

- $\therefore r = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ is a root.
- (2) Follows directly from result (2)

$$|r - c_n| = \left| r - \frac{1}{2} (b_n - a_n) \right|$$

$$\leq \left| \frac{1}{2} (b_n - a_n) \right|$$

$$= \left| \frac{1}{2^{n+1}} (b_0 - a_0) \right|$$
 {Result (2)}

11.2 Newton's method

Taylor: repasito. El desarrollo de una f suficientemente diferenciable alrededor de un punto r espa

$$f(x) = f(r) + f'(r)(x - r) + \frac{f''(r)}{2!}(x - r)^2 + \ldots + \frac{f^{(n)}(r)}{n!}(x - r)^n + R_n(x)$$

donde $R_n(x)$ es el resto.

Usualmente, queremos tomar r = x + h, donde x es una aproximación de r y h el error de aproximación. Entonces es provechoso expandir f(r) alreededor de su estimación x:

$$f(r) = f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \dots + \frac{f^{(n)}(x)}{n!}h^n + R_n(h)$$

Esto es **recontra** útil porque nos dice cuánto se diferencia f(r) de nuestra aproximación f(x) (pues expresa f(r) como f(x) más algo).

Usualmente r, h son desconocidos pero h puede acotarse.

Assume $r \in \mathcal{R}_f$ and r = x + h, with x an approximation of r and h its error. Assume f'' exists and is continuous in some I around x s.t. $r \in I$. What we explained on Taylor expansions around a point gives:

$$0 = f(r) = f(x+h) = f(x) + f'(x)h + \mathcal{O}(h^2)$$

If x is sufficiently close to r, h is small and h^2 even smaller, so that $\mathcal{O}(h^2)$ is unconsiderable:

$$0 \approx f(x) + hf'(x)$$

Therefore,

$$h \approx -\frac{f(x)}{f'(x)} \tag{5}$$

From this follows that r = x + h is approximated by

$$r \approx x - \frac{f(x)}{f'(x)}$$

Since the approximation in (5) truncated the terms of $\mathcal{O}(h^2)$ complexity, this new approximation is closer to r than x originally was. In other words, x - f(x)/f'(x) is a better approximation to r than x itself.

Thus, if x_0 is an original approximation, we can define

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \tag{6}$$

to produce a sequence of approximations. This is the fundamental idea of Newton's method.

Input:
$$x_0, M, \delta, \epsilon$$
; $v \leftarrow f(x_0)$ if $|v| < \epsilon$ then return x_0 fi for $k = 1$ to $k = M$ do $x_1 \leftarrow x_0 - \frac{v}{f'(x_0)}$ $v \leftarrow f(x_1)$ if $|x_1 - x_0| < \delta \lor v < \epsilon$ then return x_1 fi $x_0 \leftarrow x_1$ od return x_0

The predicate $|x_1 - x_0| < \delta$ checks whether our algorithm is adjusting x in a negligible degree. If that is the case, we should stop.

11.2.1 Error in Newton's method