Graph Search Algorithms

Breadth First Search Visits nearest neighbors first

Depth First Search Walks down each branch first

Pathfinding Algorithms

Shortest Path hortest path between nodes (A to C shown)

(A, B) = 8 (A, C) = 4 via D (A, D) = 1 (A, E) = 5 via D (B, C) = 6 (B, D) = 9 via A or C And so on...

All-Pairs Shortest Paths

Optimized calculations for shortest paths from all nodes to all other nodes

Single Source Shortest Path

Shortest path from a root node (A shown) to all other nodes

Traverses to the next unvisited node via the lowest cumulative weight from the root

Minimum S

Shorte

connectin (A start Traverses unvisited n lowest weig visite

Introduction to A* Algorithm

The A* algorithm is a widely used pathfinding algorithm that efficiently finds the shortest path between two points. It utilizes a heuristic function to estimate the cost to the goal, allowing it to prioritize the most promising routes and avoid exploring unnecessary areas.

Random Pathfinding Algorithm

Random Walk

Provides a set of random, connected nodes by following any relationship, selected somewhat randomly

Also called the drunkard's walk

Pathfinding and Shortest Path Problems

Problem Definition

Determine the optimal path between a starting point and a destination, considering obstacles and costs.

Solving Techniques

Algorithms like Dijkstra's, breadth-first search, and A* are commonly used to find the shortest path.

Real-World Applications

Pathfinding is crucial in fields like robotics, video games, transportation, and logistics.

Heuristic Functions and their Importance

Defining Heuristics

Heuristic functions estimate the cost-to-go from the current node to the goal.

They guide the A* algorithm towards the most promising paths.

Importance of Heuristics

Well-designed heuristics can significantly improve the efficiency of the A* algorithm, leading to faster and more accurate pathfinding.

Examples of Heuristics

Common heuristics include Euclidean distance, Manhattan distance, and weighted combinations of these.

The A* Algorithm Step-by-Step Explanation

2 3 4

Initialize

Start with the initial node and an open list of nodes to explore.

Evaluate

Calculate the f-cost (g-cost + h-cost) for each neighboring node.

Expand

Add the node with the lowest f-cost to the closed list and explore its neighbors.

Repeat

Continue this process until the goal node is reached or no more nodes can be explored.

Advantages and Disadvantages of A* Algorithm

1 Advantages

Finds the shortest path, is optimal, and can handle complex environments with obstacles.

2 Disadvantages

May require significant memory for large search spaces, and the performance depends on the quality of the heuristic function.

3 Trade-offs

The A* algorithm
balances efficiency and
optimality, making it a
widely adopted choice
for pathfinding
problems.

Applications of A* Algorithm

Robotics

Used for robot

navigation, path

obstacle avoidance.

planning, and

Employed for nonplayer character (NPC) pathfinding and navigation.

Transportation

Otilized for route optimization in logistics, GPS navigation, and traffic management.

GIS

Applied in geographic information systems for finding optimal paths and routes.

Conclusion and Key Takeaways

Efficient Pathfinding

The A* algorithm is a powerful tool for finding the shortest path in various applications.

Versatile Applications

A* algorithm is widely used in robotics, video games, transportation, and geographic information systems.

Heuristic Design

The choice of heuristic function is crucial for the algorithm's performance and accuracy.

Continuous Improvement

Ongoing research and advancements in the A* algorithm aim to enhance its capabilities.

Thank you

- satvik verma (221030173)
- akash gupta (221030174)
- samarth sharma (221030183)