Первоначальное исследование модели Лотки-Вольтерры

Коннова Татьяна Алексеевна

Содержание

1	L Цель работы				5									
2 Рассматриваемые статьи3 Краткий экскурс по статьям														
	4.1 Модель Лотки-Вольтерра				8									
	4.2 Основные положения модели:				8									
	4.3 Модель взаимодействия хищников и жертв				8									
	4.4 Динамика системы:				9									
	4.5 Применение:				9									
	4.6 Код модели на Python	•			9									
5	5 Выводы				12									
Сг	Список литературы				13									

Список иллюстраций

11	Выполнение кода																			1	1
+. L	рыполнение кода	•			•		•				•	•	•			•		•			_

Список таблиц

1 Цель работы

Цель данной работы заключается в исследовании динамики взаимодействия популяций хищников и жертв с использованием модели Лотки-Вольтерры, которая представляет собой математическую абстракцию, позволяющую понять сложные экосистемные процессы.

2 Рассматриваемые статьи

Использование математических моделей в экологии при компьютерном моделирование системы "хищник - жертва" [1].

Математическая модель "ХИЩНИК - ЖЕРТВА" [2].

Об одной модели динамики популяций "хищник - жертва" [3].

3 Краткий экскурс по статьям

В статьях рассматривается модель «хищник-жертва», известная как модель Лотки-Вольтерры, которая изучает взаимодействие популяций хищников и жертв и их изменение со временем. Основная проблема заключается в сложности аналитического решения, позволяющего точно предсказать численность этих видов в определённый момент. Модель описывает, как увеличение количества жертв ведет к росту популяции хищников, что затем приводит к уменьшению численности жертв и, соответственно, хищников, создавая циклические колебания.

Кроме биологических взаимодействий, модель также применяется в социально-экономических исследованиях, описывая динамику популяций в условиях ограниченных ресурсов и в контексте природопользования. В демографическом контексте жертвой может выступать население, а хищником – социальная среда, что позволяет использовать эту модель для анализа социально-экономической динамики.

4 Теоретическое введение

4.1 Модель Лотки-Вольтерра

Модель Лотки-Вольтерра, также известная как уравнения хищник-жертва, описывает динамику взаимодействия между двумя видами: хищниками и жертвами. Эта модель была разработана итальянским математиком Виторио Лоткой и американским биологом Альфредом Вольтеррой в начале 20 века.

4.2 Основные положения модели:

- 1. Жертвы (например, кролики) размножаются экспоненциально, если хищников нет. Их популяция растет, пока есть достаточно ресурсов.
- 2. **Хищники** (например, волки) зависят от наличия жертв. Когда жертв много, хищники могут размножаться и их популяция растет. Однако, если жертв становится недостаточно, популяция хищников начинает уменьшаться.

4.3 Модель взаимодействия хищников и жертв

Популяция жертв изменяется по уравнению:

$$\frac{dX}{dt} = \alpha X - \beta XY$$

где: - X — популяция жертв - Y — популяция хищников - α — коэффициент

размножения жертв - β — коэффициент взаимодействия (уменьшение жертв из-за хищников)

4.4 Динамика системы:

- **Циклы**: Популяции жертв и хищников колеблются в циклах. Когда количество жертв увеличивается, хищники тоже начинают размножаться, но затем количество жертв уменьшается, что приводит к снижению популяции хищников.
- **Стабильность**: Модель показывает, что популяции могут достигать устойчивого состояния, но также может быть и хаотичное поведение в зависимости от начальных условий.

4.5 Применение:

Модель Лотки-Вольтерра находит применение в экологии, экономике (например, в моделировании конкуренции), а также в других областях, где происходит взаимодействие между двумя популяциями.

Эта модель является основой для понимания сложных экосистем и взаимодействий в природе.

4.6 Код модели на Python

```
import numpy as np
import matplotlib.pyplot as plt

# Параметры модели
alpha = 0.1 # коэффициент размножения жертв
beta = 0.02 # коэффициент смертности жертв от хищников
```

```
delta = 0.01 # коэффициент размножения хищников
gamma = 0.1 # коэффициент смертности хищников
# Начальные условия
prey_initial = 40 # начальное количество жертв
predator_initial = 9 # начальное количество хищников
time_steps = 200 # количество временных шагов
# Временная сетка
t = np.linspace(0, time_steps, time_steps)
# Массивы для хранения значений популяций
prey_population = np.zeros(time_steps)
predator_population = np.zeros(time_steps)
# Установка начальных условий
prey_population[0] = prey_initial
predator_population[0] = predator_initial
# Моделирование динамики популяций
for i in range(1, time_steps):
    prey_population[i] = prey_population[i-1] + (alpha * prey_population[i-1] - beta *
    predator_population[i] = predator_population[i-1] + (delta * prey_population[i-1]
# Визуализация результатов
plt.figure(figsize=(12, 6))
plt.plot(t, prey_population, label='Жертвы (Prey)', color='green')
plt.plot(t, predator_population, label='Хищники (Predators)', color='red')
plt.title('Модель Хищник-Жертва')
```

```
plt.xlabel('Время')
plt.ylabel('Популяция')
plt.legend()
plt.grid()
plt.show()
```


Рис. 4.1: Выполнение кода

5 Выводы

В рамках выполнения данной работы выполнено ознакомление с моделью "хищник-жертва".

Список литературы

- 1. Громазина И.С. Использование математических моделей в экологии при компьютерном моделирование системы "хищник жертва". борник материалов IX Всероссийской научно-практической конференции молодых ученых с международным участием "Россия молодая": Конференция проходит при поддержке Российского фонда фундаментальных исследований, Кемерово, 18–21 апреля 2017 года, 2017.
- 2. Гладких К.А. Математическая модель "ХИЩНИК ЖЕРТВА". Студенческая наука и XXI век., 2015.
- 3. Шубина Е.В. Об одной модели динамики популяций "хищник жертва". Студенческая наука и XXI век., 2016.