Name:		
	Matthew Tang	
Netid:		
	mhtang2	

CS 441 - HW3: PDFs and Outliers

Complete the sections below. You do not need to fill out the checklist.

Total F	Points A	Available	[]/160
1.	Estima	iting PDFs	
	a.	Segmentation with per-channnel PDFs	[]/15
	b.	Segmentation with clustered value PDFs	[]/15
	C.	Segmentation with GMMs	[]/20
2.	Robus	t Estimation	
	a.	Assume no noise	[]/10
	b.	Robust estimation with percentiles	[]/15
	C.	Robust estimation with EM	[]/25
3.	Stretch	n Goals	
	a.	Impact of school on salary	[]/20
	b.	Impact of experience on salary	[]/20
	C.	Mutual information: discrete pdf	[]/10
	d.	Mutual information: GMM	[]/10

1. Estimating PDFs

Include the generated images (score map and thresholded RGB) from the display code. List any parameters.

Note: Not sure exactly which images I should include, so I included all the displayed images by the helper function.

a. Method 1 (Per-channel discrete):

Number of bins / discrete values per channel, threshold			
	Nbins = 256 Threshold = 2		
b. Method 2 (Clustering, disc	crete):		

Clusters= 64 Threshold = 1

		_			
C.	Method	3	(Gaussian	Mixture	Model):

Number of components, variance model, threshold

Components: 10 Covariance: full Threshold: 1.25

2. Robust Estimation

Round to nearest whole number.

	a. No noise	b. Percentiles	c. EM
Min	64694	75494	64694
Mean	123750	113879	111984
Std	61954	15876	17966
Max	611,494	159,901	169,008

First five indices of invalid data (based on EM solution, you add last 3)

18	28	49	127	128

3. Stretch Goals

a. Impact of school on salary

Report mean salary overall and for each school

	Average Salary
Overall	
School 0 (UIUC)	
School 1 (MIT)	
School 2 (Cornell)	

Describe your approach to estimate this.

b. Impact of years of experience on salary
How much are salaries expected to increase with one year of experience?
\$ 1107.17
Describe your approach to estimate this.
I used the EM algorithm from the previous part to filter out samples which were likely to be invalid. To account for school, I added the school as a numerical feature (-1,0,1,2). Then I trained a linear regressor and took the coefficient for the experience feature, since this represents the change in salary per change in years of experience.
c. Mutual information of sex and age, discrete approach
Mutual information (base natural log)
0.092593
d. Mutual information of sex and age, GMM approach
Mutual information (base natural log)
0.02427

Acknowledgments / Attribution

Code for EM is taken from lecture slides and adapted to the problem.