Algoritmi Avanzati

Provetta intercorso

Roberto Battiti

Paolo Campigotto

14 ottobre 2010

Istruzioni e regole:

Si usino unicamente una penna ed i fogli protocollo forniti dai docenti.

Si scriva subito il proprio nome su ciascun foglio e lo si firmi.

Segnare con chiarezza a quale quesito si sta rispondendo. Si scriva con chiarezza la propria risposta e si dimostrino i propri risultati. (**I risultati senza dimostrazione o spiegazione non verranno presi in considerazione**). Un atteggiamento disonesto (come copiare) portera' all'espulsione immediata dall'aula. *Buon lavoro!*

Esercizio 1

- **1.1**) Definire la decomposizione LUP di una generica matrice quadrata A.
- **1.2)** Mostrare come applicare la decomposizione LUP per risolvere il sistema di equazioni lineari $A\mathbf{x} = \mathbf{b}$, dove A e' la matrice quadrata associata alla trasformazione lineare, \mathbf{x} e' il vettore delle incognite e \mathbf{b} e' il vettore dei termini noti.
- **1.3**) Assumendo che la decomposizione LUP di *A* sia data, definire il costo computazionale del metodo descritto al punto precedente, calcolando il numero di operazioni (somme, sottrazioni, moltiplicazioni, divisioni) effettuate e determinando il comportamento asintotico del metodo.
- **1.4)** Applicare la decomposizione LUP per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$, dove $\mathbf{b} = (4,5,3)^T$ e:

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 1 & 3 & 4 \end{array}\right)$$

Esercizio 2

- **2.1)** Definire il metodo di approssimazione secondo il criterio dei minimi quadrati, spiegando con chiarezza a cosa serve, quali sono i dati del problema e quale grandezza si vuole determinare.
- **2.2)** Data la serie di n dati sperimentali (x_i, y_i) , $i = 1 \dots n$, si desidera ricavare una dipendenza funzionale della forma y = F(x), dove F(x) e' la combinazione lineare di m funzioni base note $f_i(x)$, $i = 1 \dots m$. Dimostrare che determinare la dipendenza funzionale in base al criterio dei minimi quadrati consiste nel risolvere l'equazione $\mathbf{c} = A^+\mathbf{y}$, dove \mathbf{c} e' il vettore delle incognite, $\mathbf{y} = (y_1, \dots, y_n)^T$. Motivare con chiarezza tutti i passaggi della dimostrazione fornita.
- **2.3**) Siano A (1,1,4) e B (3,1,8) due punti di coordinate (x,y,z) in \mathbb{R}^3 . Si vuole trovare un dipendenza funzionale della forma $z=F(x,y)=a+b2^{x+y}$, dove a,b sono i coefficienti da determinare in base al criterio dei minimi quadrati. Rispondere alle seguenti domande:
 - scrivere le funzioni base;
 - ullet scrivere una qualsiasi funzione G(x,y) che sia una combinazione non-lineare delle funzioni di base individuate;
 - trovare i valori di a, b che determinano l'approssimazione della forma F(x, y) ai punti dati secondo il criterio dei minimi quadrati.

Esercizio 3

- 3.1) Definire il problema degli autovalori, specificando cosa si intende per autovalore dominante.
- **3.2)** Descrivere il metodo dello potenze, specificando a cosa serve, come funziona ed indicando un criterio di arresto appropriato.
- **3.3**) Dimostrare che tutti gli autovalori associati agli autovettori reali di una matrice definita positiva sono positivi.
- **3.4)** Dimostrare per induzione che il prodotto di due matrici triangolari inferiori e' ancora una matrice triangolare inferiore.

Esercizio 4

- 4.1) Dare la definizione di matrice definita positiva.
 4.2) Dimostrare che per ogni matrice A a rango colonna pieno, la matrice A^T A e' definita positiva.
 4.3) Dimostrare che ogni matrice A definita positiva e' non-singolare.