Adjacency Matrix 1

An adjacency matrix A is the $|V| \times |V|$ matrix representation of a graph G =(V, E). As we are only considering simple graphs, i.e., no loops exist, the diagonal alues are all 0, i.e., $A_{i,i} = 0, i \in [1, |V|]$.

 $A_{i,j}$ indicates if an edge from v_i to v_j exists, i.e., $A_{i,j} = 1 \equiv (v_i, v_j) \in E$. In the case of undirected graphs, we simply set $A_{i,j} = A_{j,i}$ which results in an adjacency matrix mirrored at the diagonal, i.e., $A_{i,j} = A_{j,i} = 1 \equiv \{v_i, v_j\} \in E$.

As an example take the following two graphs:

graph / adjacency matrix example

The adjacency matrix of a directed graph can be written as a sequence of boolean values of length $|V| \cdot (|V| - 1)$. The adjacency matrix of an undirected graph is mirrored at the diagonal and can therefore be represented as a sequence of length $\frac{|V| \cdot (|V|-1)}{2}$.

$$a = a_1, a_2, \dots a_{\frac{|V| \cdot (|V| - 1)}{2}} = A_{1,2}, A_{1,2}, \dots A_{1,|V|}, A_{2,3}, A_{2,4}, \dots A_{|V| - 1,|V|}$$

As examples, consider the boolean sequence representation for 3-, 4-, and 5-vertex graphs:

- $A_{1,2}, A_{1,3}, A_{2,3} = a_1, a_2, a_3$ 3:
- $A_{1,2}, A_{1,3}, A_{1,4}, A_{2,3}, A_{2,4}, A_{3,4} = a_1, a_2, \dots a_6$ 4:
- $A_{1,2}, A_{1,3}, A_{1,4}, A_{1,5}, A_{2,3}, A_{2,4}, A_{2,5}, A_{3,4}, A_{3,5}, A_{4,5} = a_1, a_2, \dots a_{10}$ 5:

Therefore, all possible adjacency matrices for a given graph size $\left|V\right|$ can be represented as the set $\mathcal{A}^{|V|} = \{0,1\}^{\frac{|V| \cdot (|V|-1)}{2}}$. Each element from this set can also be interpreted as a number $n(a) \in \mathbb{N}$ as follows:

$$n(a) = n(A) = \sum_{i=1}^{\frac{|V| \cdot (|V| - 1)}{2}} 2^{i-1} \cdot a_i$$

Hence, we can represent adjacency matrices as simple numbers:

example of adjacency matrix and their key

introduce the nummber as "key' of an adjacency matrix

introduce the induced adjacency matrix of a set of nodes (mentioning he order

2 Motifs

We consider an undirected graph to be connected if there exists a path between each pair of vertices. We denote the set of connected adjacency matrices of k-vertex graphs $(k \geq 2)$ as $\mathcal{A}^{|V|}_{con} \subset \mathcal{A}^{|V|}$.

As motifs of size k, also called k-vertex motifs or k-motifs, we consider the equivalence classes of isomorph connected k-vertex graphs which we denote as \mathcal{M}_k .

Each connected adjacency matrix is assigned to exactly one motif $m \in \mathcal{M}$. This assignment can be expressed as a function that maps a connected adjacency matrix to a motif, i.e.,

$$r: \mathcal{A}^k \to \mathcal{M}_k$$

This assignment can be easily computed by enumerating all connected adjacency matrices and determining their equivalence class by performing an isomorphism check with all existing motifs.

define as mapping from \mathbb{N}

3 Implementation

For simplicity, we store the function r as integer pairs (a, b) where a is he key of a connected adjacency matrix and b the equivalence class it belongs to.

4 Statistics

nodes	ams	motifs	maxKey
2	1	1	1
3	4	2	7
4	38	6	63
5	728	21	1023
6	26704	112	32767
7	1866256	853	2097151

5 k-Neighborhood of an edge

As the k-Neighborhood N(a,b) of an edge $\{a,b\}$, we denote the set of all (k-2)-tuples of vertices that are connected to vertices a or b. Thereby, each element of N(a,b) corresponds to a connected subgraph of G that contains a and b.

For each induced subgraph $G \cap (\{a,b\} \cup n \in N(a,b))$, we can determine the corresponding motif as follows:

Figure 1: stats of undirected motifs

Figure 2: stats of undirected motifs

$$r(n(A_{\{a,b\}\cup N(a,b)}))$$

in case the edge exists already, we can determine the new motif after the edge removal as follows:

$$r(n(A_{\{a,b\}\cup N(a,b)})-1)$$

In case the edge is added, the new state of the motif is computed as follows:

$$r(n(A_{\{a,b\}\cup N(a,b)})+1)$$

6 Algorithm

```
Data: G, \{a, b\}, type \in \{add, rm\}
begin
      for n \in N(a,b) do
           if type = add then
                                                                                    /* edge is added */
                 \mathcal{F}(r(n(A_{\{a,b\}\cup n})+1)) += 1;
                                                                                  /* incr new motif */
                 if n(A_{\{a,b\}\cup n}) \in \mathcal{N}_{con}^k then
                  \mid \mathcal{F}(r(n(A_{\{a,b\}\cup n}))) -= 1;
                                                                                  /* decr old motif */
           else if type = rm then
                                                                                 /* edge is removed */
                  \begin{array}{l} , \\ \mathcal{F}(r(n(A_{\{a,b\}\cup n}))) \mathrel{-}{=} 1 \; ; \\ \mathbf{if} \; n(A_{\{a,b\}\cup n}) - 1 \in \mathcal{N}_{con}^k \; \mathbf{then} \\ \mid \; \mathcal{F}(r(n(A_{\{a,b\}\cup n}) - 1)) \; + = 1 \; ; \end{array} 
                                                                                  /* decr old motif */
                                                                                  /* incr new motif */
      end
end
```

Algorithm 1: $StreaM_k$ for maintaining \mathcal{F} in dynamic graphs

change set of connected keys to defined version