

BEST AVAILABLE COPY

NO1P 1566US

日 **PATENT**

別紙添付の書類に記載されている事項は下記の出願書類に記載され いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年10月13日

出願番 Application Number:

特願2000-313239

Applicant(s):

ソニー株式会社

2001年 8月24日

Commissioner, Japan Patent Office

出証特2001-3075698

【書類名】

特許願

【整理番号】

0000602703

【提出日】

平成12年10月13日

【あて先】

特許庁長官殿

【国際特許分類】

HO4N 7/16

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

濱田 一郎

【特許出願人】

【識別番号】

000002185

【氏名又は名称】 ソニー株式会社

【代表者】

出井 伸之

【代理人】

【識別番号】

100082131

【弁理士】

【氏名又は名称】

稲本 義雄

【電話番号】

03-3369-6479

【手数料の表示】

【予納台帳番号】 032089

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9708842

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 情報処理装置および方法、並びに記録媒体

【特許請求の範囲】

【請求項1】 暗号化されたデータを復号する復号手段と、

前記復号手段による復号が失敗したか否かを判断する判断手段と、

前記判断手段により前記復号手段による復号が失敗したと判断された場合、前記復号手段により復号された前記データの後段の処理への出力を停止する出力停止手段と

を含むことを特徴とする情報処理装置。

【請求項2】 前記出力停止手段により前記データの出力が停止された場合、無効な出力であることを示すデータを前記後段の処理のデータとして出力する 出力手段を

さらに含むことを特徴とする請求項1に記載の情報処理装置。

【請求項3】 前記出力停止手段により前記データの出力が停止された後、 前記判断手段により前記復号手段による復号が失敗していないと判断された場合 、所定時間経過後に前記出力停止手段による前記データの出力を停止する処理は 解除される

ことを特徴とする請求項1に記載の情報処理装置。

【請求項4】 暗号化されたデータを復号する復号ステップと、

前記復号ステップの処理による復号が失敗したか否かを判断する判断ステップ と、

前記判断ステップの処理で前記復号ステップの処理による復号が失敗したと判断された場合、前記復号ステップの処理により復号された前記データの後段の処理への出力を停止する出力停止ステップと

を含むことを特徴とする情報処理方法。

【請求項5】 暗号化されたデータを復号する復号ステップと、

前記復号ステップの処理による復号が失敗したか否かを判断する判断ステップ と、

前記判断ステップの処理で前記復号ステップの処理による復号が失敗したと判

断された場合、前記復号ステップの処理により復号された前記データの後段の処理への出力を停止する出力停止ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが記録されている記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は情報処理装置および方法、並びに記録媒体に関し、特に、暗号化されたデータを復号する装置に用いて好適な情報処理装置および方法、並びに記録媒体に関する。

[0002]

【従来の技術】

例えば、衛星を介して番組を配信する衛星放送においては、契約していない視聴者が番組を視聴できないように、番組のデータは、暗号化されて配信される。 契約をしている視聴者の受信装置が、その暗号化されたデータを受信した場合、 その暗号は解除され、視聴者は番組を視聴することができるが、契約をしていない視聴者の受信装置が、その暗号化されたデータを受信しても、そのデータが復 号されないので、結果として、契約をしていない視聴者は、番組を視聴することができないようになっている。

[0003]

【発明が解決しようとする課題】

上述した暗号化されたデータを受信する受信装置には、暗号を解読する(認証を行う)ためのキーが記憶されており、そのキーが用いられて、暗号が解除されるようになっている。このキー自体の情報が、契約をしていない契約者に不当に使われるようなことがないように、所定の周期で更新されるようになっている。

[0004]

また、IEEE1394のようなデジタルインターフェースにおいても、暗号通信が行われいる。このような暗号通信の場合、通信を行うデバイス(装置)同士が認証処理を実行し、その結果、コンテンツの授受を行っても良いと判断されたとき、

暗号を解除するための鍵を共有することにより、コンテンツを受信する側で暗号を解除することが可能となる。このような暗号通信の場合も、鍵が所定の周期で 更新されるようになっている。

[0005]

この更新処理に失敗した場合、暗号化されたデータを復号することができないときがある。また、その他の原因により、復号に失敗する場合も想定される。復号に失敗した場合、その失敗したデータのために、ハングアップする可能性があった。また、ハングアップするまでにはいたらなくても、ホワイトノイズなどが発生する可能性があった。

[0006]

本発明はこのような状況に鑑みてなされたものであり、復号が失敗したと判断 される場合、ミュート処理を実行することにより、ノイズの発生を防ぐことを目 的とする。

[0007]

【課題を解決するための手段】

請求項1に記載の情報処理装置は、暗号化されたデータを復号する復号手段と、復号手段による復号が失敗したか否かを判断する判断手段と、判断手段により復号手段による復号が失敗したと判断された場合、復号手段により復号されたデータの後段の処理への出力を停止する出力停止手段とを含むことを特徴とする。

[0008]

前記出力停止手段によりデータの出力が停止された場合、無効な出力であることを示すデータを後段の処理のデータとして出力する出力手段をさらに含むようにすることができる。

[0009]

前記出力停止手段によりデータの出力が停止された後、判断手段により復号手段による復号が失敗していないと判断された場合、所定時間経過後に出力停止手段によるデータの出力を停止する処理は解除されるようにすることができる。

[0010]

請求項4に記載の情報処理方法は、暗号化されたデータを復号する復号ステッ

プと、復号ステップの処理による復号が失敗したか否かを判断する判断ステップ と、判断ステップの処理で復号ステップの処理による復号が失敗したと判断され た場合、復号ステップの処理により復号されたデータの後段の処理への出力を停 止する出力停止ステップとを含むことを特徴とする。

[0011]

請求項5に記載の記録媒体のプログラムは、暗号化されたデータを復号する復 号ステップと、復号ステップの処理による復号が失敗したか否かを判断する判断 ステップと、判断ステップの処理で復号ステップの処理による復号が失敗したと 判断された場合、復号ステップの処理により復号されたデータの後段の処理への 出力を停止する出力停止ステップとを含むことを特徴とする。

[0012]

請求項1に記載の情報処理装置、請求項4に記載の情報処理方法、および請求項5に記載の記録媒体においては、暗号化されたデータの復号が失敗したか否かが判断され、失敗したと判断された場合、復号されたデータの後段の処理への出力が停止される。

[0013]

【発明の実施の形態】

以下に、本発明の実施の形態について図面を参照して説明する。図1は、受信装置2の一実施の形態の構成を示す図である。以下の説明においては、通信用のインタフェースとしてIEEE1394を用いた場合を例に挙げて説明する。アンテナ1により受信されたデジタルデータは、受信装置2のチューナ11に入力される。チューナ11は、ユーザが指示した番組のデータを抽出し、デスクランブラ12に出力する。通常、デジタル放送で配信されるデジタルデータは、契約していない視聴者が視聴できないようにするためのスクランブルがかけられている。デスクランブラ12は、視聴が許可されていると判断される場合、入力されたデジタルデータにかかっているスクランブルを解除する処理を実行する。

[0014]

スクランブルが解除されたデジタルデータは、IEEE1394インタフェース13と スイッチ14の端子aに出力される。IEEE1394インタフェース13は、IEEE1394

規格のバスが接続され、そのバスを介して、HDDビデオレコーダやデジタルテレビジョン受像機(いずれも不図示)と接続されている。

[0015]

スイッチ14の端子aに出力されたデジタルデータは、スイッチ14が端子a側と接続されているときは、デマルチプレクサ15に出力される。デマルチプレクサ15は、入力されたデジタルデータから、ビデオデータ、オーディオデータなどを抽出し、デコーダ16に出力する。デコーダ16は、所定の方式に従ったデコード処理を、入力されたビデオデータやオーディオデータに施すことにより、アナログのビデオ信号やオーディオ信号を生成する。デコーダ16からの出力は、所定のケーブルで接続されたビデオテープレコーダ(不図示)などに出力される。

[0016]

制御部17は、受信装置2内の各部を制御する。また、上述した各部は、バス 18により相互に接続されている。

[0017]

図2は、IEEE1394インタフェース13の内部構成を示す図である。デスクランブラ12からデスクランブルされたデータは、暗号化復号化部21に入力され、必要に応じ暗号化され、入出力部22を介してIEEE1394バスで接続されている他の装置に対して出力される。また、IEEE1394インタフェース13を介して入力されたデータは、入出力部22を介して暗号化復号化部21に入力される。ここで、入力されたデータが暗号化されていた場合、暗号化復号化部21で復号化され、誤復号検出部23を介してスイッチ14の端子bに出力されるように構成されている。

[0018]

このような構成をもつ受信装置2が扱うデータについて説明する。以下の説明においては、IEEE1394規格におけるIEC60958規格の通信を例に挙げて説明する。また、主に、オーディオデータについて説明する。IEC60958規格は、光デジタル音声通信に用いられる方式であり、MD (Mini Disk) やCD (Compact Disc)などのデジタルオーディオ機器に音声のデジタル通信手段として具備されている

。このデータ通信方式により、CDからMDへの楽曲のデジタルコピーが行われる。

[0019]

IEC60958規格のデータ構造を図3と図4に示す。図3は、オーディオデータのSub-frameフォーマットを示す。Sub-frameは、オーディオデータの1サンプル分で、例えば、44.1 KHzのサンプリング周波数の音楽データの場合、1サンプルの左チャンネルまたは右チャンネル1つのデータにあたる。従って、44.1 KHzのサンプリング周波数の音楽データの場合、1秒間にSub-frameデータが 44100×2個分含まれる。Sub-frameは、データの先頭を示すSync Preambleとデータ部から構成されている。

[0020]

図4のFrameフォーマットは、Sub-frameが2つでFrameデータを表し、Frameデータが192個でBlockデータである事を示している。Blockデータの集合がオーディオデータとなる。ここで、Sub-Frameの頭にあるSync Preambleは、Blockの頭のchannel 1の頭がB、その他のChannel 1(右チャンネルまたは左チャンネル)の頭がM、Channel 2(Channel 1の逆側のチャンネル)の頭がWのコードを取る。これを検出して、Sub-frameの頭、Blockの場所が検出される。

[0021]

図5は、IEEE1394規格のアイソクロナスパケット(Isochronous packet)のフォーマットを示している。アイソクロナスパケットは、1394アイソクロナスパケットへッダ、ヘッダCRC、CIPヘッダ、データフィールド、およびデータCRCから構成されている。これらのうち、暗号化されたデータが伝送される場合、データフィールドのデータのみ暗号化されて伝送される。また、データフィールドのデータは、図3と図4を参照して説明したオーディオデータが複数入れられる。

[0022]

アイソクロナスパケットの先頭の2クワドレッド(2×8バイト)は、IEEE13 94アイソクロナスパケットヘッダであり、図6にその詳細を示す。このヘッダは 、このヘッダの2クワドレッド以降に入るデータのサイズを表すdata_length、

データフィールド (data_field) 中にCIPヘッダが付加されているか否かを表すtag、送信側のチャネルを表すchannel、処理のコードを示すtcode (transacti on code) 、およびシンクロナイジェーションコードを示す s y が配置されている。そして、最後にヘッダ内における誤りの検出符号であるheader_CRCが配置されている。

[0023]

図7は、CIPヘッダの詳細を示す図である。CIPヘッダは、送信元のノードIDを示すSID (Source node ID)、データのブロックサイズを表すDBS (Data B lock Size in quadlets)が配置される。その次には、FN (Fraction Number)が配置されている。これは、1つのソースパケットが分割されているブロックの数を表している。次のQPC (Quadlet Padding Count)は、付加されたダミークワドレッドの数を示している。次のSPE (Source Packet Header flag)は、ソースパケットがソースパケットヘッダを有しているか否かを表すフラグである。

[0024]

次の、Res (reserved) は、将来のために保留されている。DBC (Data Block C ontinuity counter) は、データブロックの損失を検知するための連続するデータブロックのカウンタの値を表している。次の行には、データフォーマットの種類を示すFMT (Format ID) 、およびFormatに応じた値が記録されているFDF (Format Dependent Field) を有している。次のSYTは、タイムスタンプのフィールドであり、DVCR (デジタルビデオカセットレコーダ) では、フレームの同期をとるために用いられる。

[0025]

data fieldは、上述したように、図3と図4のところで説明したソースパケットが挿入されている。そして、data CRCは、data fieldにおける誤りの検出符号である。

[0026]

このようなパケットデータを扱う図1に示した受信装置2の動作について、図8のフローチャートを参照して説明する。ステップS1において、IEEE1394インタフェース13の入出力部22に対してデータが入力される。入出力部22に入

力されたデータは、暗号化復号化部21にさらに入力される。暗号化復号化部21は、入力されたデータが暗号化されたデータであった場合、そのデータを復号し、誤復号検出部23に出力する。誤復号検出部23は、ステップS2において、入力されたデータは、IEC60958規格の方式で伝送されてきたデータであるか否かが判断される。IEC60958規格の方式で伝送されてきたデータであるか否かを判断するのは、換言すれば、復号しているデータは、オーディオデータであるのか否かを判断することである。

[0027]

誤復号検出部23は、IEC60958規格の方式で伝送されてきたデータであるか否かを、データを参照することにより判断する事ができる。すなわち、図5に示したIEEE1394アイソクロナスパケットのフォーマットのうちの、CIPヘッダ(図7)のFMTフィールドにかかれているデータにより判断する事が可能である。ステップS2において、復号するデータは、IEC60958規格の方式で伝送されてきたデータであると判断された場合、ステップS3に進み、データフィールド(図5)に書き込まれてるいるデータは、暗号化されたデータであるのか否かが判断される。

[0028]

ステップS3において行われる判断は、アイソクロナスパケットヘッダ(図6)のsyフィールドにかかれているデータを参照する事により行われる。具体的には、syフィールドにかかれている4bitのデータのうち、最初の2bitが、" 00"以外であった場合、暗号化されたデータであると判断される。ステップS3において、暗号化されたデータであると判断された場合、ステップS4に進み、Sync Preambleが正しく復号されたか否かが判断される。

[0029]

Sync Preambleが正しく復号されなかったと判断される場合としては、受信したデータの復号に失敗したときや、受信自体が失敗した時が考えられる。いずれの場合においても、復号に失敗したオーディオデータを、そのまま、後段の処理に出した場合、意味のないデータを処理することになり、結果として、ノイズの原因となってしまう。

[0030]

そこで、ステップS4において、Sync Preambleが正しくとれたと判断された 場合、換言すれば、オーディオデータとして正しい復号ができたと判断された場合、ステップS5に進み、後段の処理、今の場合、端子bに出力される。ステップS5の処理には、ステップS3において、暗号通信ではないと判断された場合 もくる。

[0031]

一方、ステップS4において、Sync Preambleが正しくとれなかったと判断された場合、換言すれば、オーディオデータとして正しい復号はできなかったと判断された場合、ステップS6に進む。ステップS6において、ミュートの処理が行われる。これは、上述したように、オーディオデータとして正しく復号できなかったデータを、そのまま処理した場合、ノイズの原因となってしまうため、そのようなことを防ぐために(ノイズを発生させないために)、ミュート(音を出さない)処理を実行する。

[0032]

ステップS6におけるミュートの処理としては、誤復号検出部23から、端子 bにデータを出さないようにしても良いし、無音というデータ(IEC60958のフォーマットに基づいた無音を示すデータ)を出力するようにしても良い。ステップS6への処理は、ステップS2において、IEC60958規格の方式で伝送されてきたデータではないと判断された場合もくる。これは、IEC60958規格の方式で伝送されてきたデータではないと判断されたということは、オーディオデータではないことを示しているため、ミュート処理を実行する。なお、ミュート処理としては、上述した方法以外にも、他の方法のミュート処理を実行するようにしても良い

[0033]

このようにして、IEC60958規格で規定されるSync Preambleが正しく復号されているか否かを判断し、正しく復号されている場合のみ、最終的に、スピーカ(音声出力デバイス)に出力されるようにすることにより、ノイズの発生を防ぐことが可能となる。

[0034]

ここで、受信されたデータが何らかの原因で、復号に失敗したと判断された場合、ミュート処理を実行する事により、ノイズの発生を防ぐことができるが、そのまま、ミュート処理を継続させておくわけにはいかない。例えば、データの復号が正しく行われている場合に、何らかの原因で復号が正しく行われなかったと判断され、ミュート処理が実行されたとき、そのまま、ミュート処理を実行し続けていると、視聴者に、受信装置2が壊れたなどの誤った認識を与えるばかりでなく、サービスをきちんと提供できないといった問題が発生してしまう。

[0035]

そこで、復号が失敗したと判断され、ミュート処理が実行されているときに、 再び、復号が成功したと判断された時点で、ミュート処理を解除する必要がある。しかしながら、復号が成功したと判断された時点で、すぐに、ミュート処理を 解除してしまうと、例えば、すぐに、また、復号が失敗しミュート処理の状態に なってしまうと、音声が途切れ途切れになってしまい、聞きづらいものとなって しまう。そこで、復号が失敗したと判断された場合、すぐにミュート処理を実行 し、その後、連続してN個(例えば、時間にして 0.5秒位のデータ)が復号に 成功したと判断された時点で、ミュート処理を解除するようにする。このように することにより、視聴者に対して自然なミュート処理を提供することが可能とな る。

[0036]

上述した説明においては、IEC60958規格の方式で伝送されたデータを例に挙げて説明したが、MPEG規格の方式で伝送されたデータに対しても本発明を適用することが可能である。MPEG規格のIEEE1394規格の方式での伝送は、ISO/IEC13818-1 Generic Codin of Moving Picture and Associated Audio: System Recomendation H.222.0の企画書で規定されるMPEG Transport PaketがIEEE1394で伝送される。IEEE1394の伝送は、上述したIEC61883-4で規定されるオーディオデータの場合と同じフォーマット(図5)であるが、データフィールドには、タイムスタンプとともに、図9に示したトランスポートパケットが入れられる。

[0037]

図9に示したトランスポートパケットのパケットヘッダについて説明する。sy nc_byteは、8ビットの同期バイトを示すフィールドである。transport_error_i ndicatorは、1ビットのフラグであり、例えば、1に設定されている場合、少なくとも1ビットの訂正できないビットエラーがトランスポートストリームに存在していることを示す。payload_unit_start_indicatorは、1ビットのフラグであり、1である場合、このトランスポートストリームパケットのペイロードがPES パケットの第1バイトから開始することを示しており、0である場合、このトランスポートパケットでPESパケットが開始していないことを示している。

[0038]

transport_priorityは、1ビットの識別子であり、1に設定されていると、当該パケットは、同一のPIDをもつこのビットを1にしていない他のパケットよりも優先度が高いことを示している。PIDは、13ビットのフィールドであり、パケットペイロード中に蓄積されるデータの種類を示す。transport_scrambling_controlは、2ビットのフィールドであり、トランスポートストリームパケットのペイロードのスクランブルモードを示す。

[0039]

adaptation_field_controlは、2ビットのフィールドであり、このトランスポートストリームパケットヘッダの後に、アダプテーションフィールドとペイロードの少なくとも一方がくることを示している。continuity_counterは、同一のPIDを有する各トランスポートストリームパケット毎に増加する4ビットのフィールドである。

[0040]

MPEG方式で伝送されたデータに対するIEEE1394インタフェース13の動作について図10のフローチャートを参照して説明する。図10に示したフローチャートのステップS11乃至S16の処理は、図8に示したフローチャートのステップS1乃至S6の処理と基本的に同様である。ただし、ステップS12においては、MPEG伝送であるか否かが判断される。ステップS12における判断は、復号しているパケットのCIPヘッダのFMTフィールドに書かれているデータを参照することにより行われる。

[0041]

また、ステップS14におけるSync Preambleが正しくとれたか否かの判断は、図9に示したトランスポートパケットヘッダのSync byteの値を参照することにより行われる。すなわち、トランスポートパケットヘッダのSync byteの値は、" $0 \times 4 \ 7$ "の固定値が設定されているため、この値が得られたか否かを判断することにより、ステップS14における、Sync Preambleが正しくとれたか否かを判断することが可能である。

[0042]

ミュート処理は、上述した場合と同様にデータを出力しない、または、PIDフィールドの値を"0x1FFF"としたヌルパケットを出力するようにする。また、復号が正確に行われるようになった時点での、ミュート処理の解除も、上述したように行われる。

[0043]

上述した実施の形態においては、IEEE1394バスを用いた場合を例に挙げて説明したが、他のバスを用いた場合にも、本発明を適用することは可能である。また、デジタル通信のみでなく、アナログ通信、シリアル通信、パラレル通信などの通信における場合も、本発明を適用することは可能である。また、上述した実施の形態においては、オーディオデータについて説明したが、他のデータに対しても本発明を適用することは可能である。

[0044]

上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。

[0045]

この記録媒体は、図11に示すように、コンピュータとは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク

121 (フロッピディスクを含む)、光ディスク122 (CD-ROM (Compact Disk-Read Only Memory), DVD (Digital Versatile Disk)を含む)、光磁気ディスク123 (MD (Mini-Disk)を含む)、若しくは半導体メモリ124などよりなるパッケージメディアにより構成されるだけでなく、コンピュータに予め組み込まれた状態でユーザに提供される、プログラムが記憶されているROM 102や記憶部108が含まれるハードディスクなどで構成される。

[0046]

なお、本明細書において、媒体により提供されるプログラムを記述するステップは、記載された順序に従って、時系列的に行われる処理は勿論、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。

[0047]

また、本明細書において、システムとは、複数の装置により構成される装置全体を表すものである。

[0048]

【発明の効果】

以上の如く請求項1に記載の情報処理装置、請求項4に記載の情報処理方法、 および請求項5に記載の記録媒体によれば、暗号化されたデータの復号が失敗し たか否かを判断し、失敗したと判断された場合、復号されたデータの後段の処理 への出力を停止するようにしたので、復号が失敗したデータによりノイズが発生 するといったことを防ぐことが可能となる。

【図面の簡単な説明】

【図1】

本発明を適用した受信装置の一実施の形態の構成を示す図である。

【図2】

IEEE1394インタフェースの内部構成を示す図である。

【図3】

サブフレームフォーマットを示す図である。

【図4】

フレームフォーマットを示す図である。

【図5】

アイソクロナスパケットのフォーマットを示す図である。

【図6】

アイソクロナスパケットヘッダのフォーマットを示す図である。

【図7】

CIPヘッダのフォーマットを示す図である。

【図8】

IEEE1394インタフェースの動作について説明するフローチャートである。

【図9】

MPEGトランスポートパケットのフォーマットを示す図である。

【図10】

IEEE1394インタフェースの動作について説明するフローチャートである。

【図11】

媒体を説明する図である。

【符号の説明】

2 受信装置, 11 チューナ, 12 デスクランブラ, 13 IEEE13 94インタフェース, 14 スイッチ, 15 デマルチプレクサ, 16 デコーダ, 17 制御部, 18 バス, 21 復号部, 22 入出力部,

23 誤復号検出部

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

М	Channel 1	w	Channel	2 F	3	Channel 1	₩	Channel	2	M	Channel 1	W	Channel	2	
Frame 191				Sub-frame Sub-frame											
				Frame 0				Frame 1							
Γ <u>-</u>	End of Block				Start of Block				-1						
					•										

【図5】

0	3
IEEE1394 Isochrono	ous Packet Header
Header Cl	RC
CIP Heads	er
·	
data field	
Data CRC	

【図6】

【図7】.

0_		7	8 15	16 17	18 20	22 23	24 3
0	0	SID	DBS	FN	QPC	SPH Rsv	DBC
1	0	FMT	FDF			SYT	

【図8】

【図9】

【図10】

【図11】

【書類名】 要約書

【要約】

【課題】 ノイズを発生させないようにする。

【解決手段】 暗号化復号化部21に入力されたデータは、誤復号検出部23に入力される。誤復号検出部23は、入力されたデータが正しく復号されたか否かを判断する。例えば、誤復号検出部23は、入力されたオーディオデータが正しく復号されていないと判断した場合、そのオーディオデータを出力しないか、または、無音を示すデータを出力すことにより、ミュート処理を実行する。

【選択図】 図2

出願人履歴情報

識別番号

[000002185]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都品川区北品川6丁目7番35号

氏 名

ソニー株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.