International Rectifier

- Ultra Low On-Resistance
- P-Channel
- Surface Mount (IRFR9024NCPbF)
- Straight Lead (IRFU9024NCPbF)
- Advanced Process Technology
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D-Pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for throughhole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

IRFR9024NCPbF IRFU9024NCPbF

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -10V	-11	
I _D @ T _C = 100°C	Continuous Drain Current, VGS @ -10V	-8	Α
I _{DM}	Pulsed Drain Current ①	-44	
P _D @T _C = 25°C	Power Dissipation	38	W
	Linear Derating Factor	0.30	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
EAS	Single Pulse Avalanche Energy®	62	mJ
I _{AR}	Avalanche Current①	-6.6	Α
EAR	Repetitive Avalanche Energy®	3.8	mJ
dv/dt	Peak Diode Recovery dv/dt ③	-10	V/ns
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
Reuc	Junction-to-Case	10-2	3.3	
R _{BJA}	Junction-to-Ambient (PCB mount)**		50	°C/W
ReJA	Junction-to-Ambient		110	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-55			٧	$V_{GS} = 0V$, $I_{D} = -250\mu A$	
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient	-	-0.05	-	V/°C	Reference to 25°C, I _D = -1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.175	Ω	V _{GS} = -10V, I _D = -6.6A ④	
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	
g fs	Forward Transconductance	2.5			S	V _{DS} = -25V, I _D = -7.2A®	
France	Dunin to Course Leakage Courset		_	-25		$V_{DS} = -55V$, $V_{GS} = 0V$ $V_{DS} = -44V$, $V_{GS} = 0V$, $T_J = 150$ °C	
DSS	Drain-to-Source Leakage Current		-	-250	μA		
Common Co	Gate-to-Source Forward Leakage			100	A	V _{GS} = 20V	
GSS	Gate-to-Source Reverse Leakage		_	-100	nA	V _{GS} = -20V	
Q _a	Total Gate Charge		-	19		$I_D = -7.2A$	
Q _{gs}	Gate-to-Source Charge			5.1	nC	V _{DS} = -44V V _{GS} = -10V, See Fig. 6 and 13 ③⑤	
Q_{gd}	Gate-to-Drain ("Miller") Charge	-		10			
t _{d(on)}	Turn-On Delay Time		13	_		$V_{DD} = -28V$	
tr	Rise Time		55			$I_D = -7.2A$	
t _{d(off)}	Turn-Off Delay Time	-	23	-	ns	$R_G = 24\Omega$	
tf	Fall Time		37			R _D = 3.7Ω, See Fig. 10 ④ ⑤	
L _D	Internal Drain Inductance	_	4.5	-		Between lead, 6mm (0.25in.)	
L _S	Internal Source Inductance	\ -	7.5	-	nΗ	from package and center of die contact®	
Ciss	Input Capacitance		350			V _{GS} = 0V	
Coss	Output Capacitance		170		pF	$V_{DS} = -25V$	
Crss	Reverse Transfer Capacitance		92		177	f = 1.0MHz, See Fig. 56	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			-11	A	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①	-		-44		integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.6	V	$T_J = 25^{\circ}C$, $I_S = -7.2A$, $V_{GS} = 0V$ ①
trr	Reverse Recovery Time		47	71	ns	T _J = 25°C, I _F = -7.2A
Qrr	Reverse Recovery Charge		84	130	nC	di/dt = 100A/µs ⊕ ⊕
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25^{\circ}\text{C}$, L = 2.8mH $R_G = 25\Omega$, $I_{AS} = -6.6A$. (See Figure 12)
- ③ $I_{SD} \le -6.6A$, di/dt $\le 240A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{LS} \le 150^{\circ}C$
- $\ \, \bigoplus \,$ Pulse width $\leq 300 \mu s; \,$ duty cycle $\leq 2 \%.$
- $\mbox{\@iff}$ This is applied for I-PAK, $L_{\ensuremath{\mathbb{S}}}$ of D-PAK is measured between lead and center of die contact
- 6 Uses IRF9Z24N data and test conditions.
- ** When mounted on 1" square PCB (FR-4 or G-10 Material).
 For recommended footprint and soldering techniques refer to application note #AN-994

International TOR Rectifier

IRFR/U9024NCPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

- * Reverse Polarity for P-Channel
- ** Use P-Channel Driver for P-Channel Measurements

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14 For P Channel HEXFETS

International IOR Rectifier

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

- 1,- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS]
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & 63 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION & E DO NOT INCLUDE MOLD FLASH, WOLD FLASH SHALL NOT EXCEED .005 [0,13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION bI & c1 APPLIED TO BASE METAL ONLY.

 DIMENSION BI & c1 APPLIED TO BASE METAL ONLY.

 DATUM A & B TO BE DETERMINED AT DATUM PLANE H.

 9.— OUTLINE CONFORMS TO JEDEC OUTLINE TO—252AA.

S			N		
₩во	MILLIM	LIMETERS INCHES		O I	
L	MIN.	MAX.	MIN.	MAX.	É
Α	2.18	2.39	.086	.094	
A1	-	0.13	-	.005	
b	0.64	0.89	.025	.035	
ь1	0.65	0,79	.025	.031	7
b2	0,76	1,14	.030	.045	
ь3	4,95	5,46	.195	.215	4
¢	0,46	0.61	.018	.024	
c1	0.41	0.56	.016	.022	7
c2	0,46	0,89	.018	.035	
D	5.97	6.22	.235	.245	6
D1	5.21	-	.205	-	4
Ε	6,35	6.73	.250	.265	6
E1	4,32	-	.170	-	4
е	2.29	BSC	.090	BSC	
Н	9.40	10.41	.370	.410	
L	1,40	1,78	.055	.070	
L1	2.74		.108		
L2	0.51	BSC	.020 BSC		
L3	0.89	1.27	.035	.050	4
L4	-	1.02	-	.040	
L5	1,14	1.52	.045	.060	3
ø	0.	10*	0,	10°	
ø1	0.	15*	0.	15*	
02	25*	35*	25*	35*	

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE 2.- DRAIN
- 3.- SOURCE 4.- DRAIN

IGBT & CoPAK

- 1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information

EXAMPLE: THIS IS AN IRFR120

WITH ASSEMBLY LOT CODE 1234

ASSEMBLED ON WW 16, 2001 IN THE ASSEMBLY LINE "A"

Note: "P" in assembly line position indicates "Lead-Free"

OR

"P" in assembly line position indicates "Lead-Free" qualification to the Consumer-level

International IOR Rectifier

IRFR/U9024NCPbF

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- △ DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.
- ⚠- LEAD DIMENSION UNCONTROLLED IN L3.
- A- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- 7.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA (Date 06/02).
- 8.- CONTROLLING DIMENSION : INCHES.

S		Ŋ				
M B O L	MILLIM	ETERS	INC	NCHES T		
L	MIN.	MAX.	MIN.	MAX.	Ë	
Α	2.18	2.39	.086	.094		
A1	0.89	1,14	.035	.045		
b	0.64	0.89	.025	.035		
b1	0.65	0.79	.025	.031	6	
b2	0.76	1,14	.030	.045		
ь3	0.76	1.04	.030	.041	6	
b4	4,95	5,46	.195	.215	4	
С	0.46	0.61	.018	.024		
с1	0.41	0.56	.016	.022	6	
c2	0.46	0.89	.018	.035		
D	5.97	6.22	.235	.245	3	
D1	5.21	-	.205	-	4	
Ε	6.35	6.73	.250	.265	3	
E1	4,32	-	.170	-	4	
е	2.29	29 BSC .090 BSC		BSC		
L	8.89	9.65	.350	.380		
L1	1.91	2.29	.075	.090		
L2	0.89	1,27	.035	.050	4	
L3	1,14	1.52	.045	.060	5	
ø1	0.	15*	0.	15*		
ø2	25*	35*	25*	35*		

LEAD ASSIGNMENTS

HEXFET

- 1,- GATE
- 2.- DRAIN 3.- SOURCE
- 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information

EXAMPLE: THIS IS AN IRFU120 WITH ASSEMBLY LOT CODE 5678 ASSEMBLED ON WW 19, 2001 IN THE ASSEMBLY LINE 'A'

Note: 'P' in assembly line position indicates Lead-Free'

OR

International IOR Rectifier

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. OUTLINE CONFORMS TO EIA-481.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 05/2006