Théorèmes - Réductions géométriques

Sommes directe d'une famille de sev

Soit $m \in \mathbb{N}^*$

Définition : (Somme de sev)

Soient F_1,\ldots,F_m des sev de E . On appelle somme des sev F_1,F_2,\ldots,F_m l'ensemble :

$$F_1 + F_2 + \dots + F_m = \{ f_1 + \dots + f_m \mid \forall i \in [1; n], f_i \in F_i \}$$

$$= \{ e \in E \mid \exists (f_1, \dots, f_m) \in F_1 \times \dots \times F_m, e = f_1 + \dots + f_m \}$$

Propriété:

Soient F_1, \dots, F_m des sev de E, alors $F_1 + \dots + F_m$ est un sev de E.

<u>Définition</u>: (Somme directe de sev)

Soient F_1, \dots, F_m des sev de E. On dit que la somme $F_1 + \dots + F_m$ est directe si :

$$\forall x \in F_1 + \dots + F_m, \exists! (f_1, \dots, f_m) \in F_1 \times \dots \times F_m, x = f_1 + \dots + f_m$$

Autrement dit, il y a unicité de la décomposition.

On note alors $F_1 \oplus ... \oplus F_m$ ou $\bigoplus_{i=1}^m F_i$

Propriété: (Unique décomposition en somme directe)

Soient F_1, \dots, F_m des sev de E. Alors

Les sev F_1, \dots, F_m sont en somme directe

 \Leftrightarrow

$$\forall (f_1,\ldots,f_m) \in F_1 \times \ldots \times F_m, f_1 + \cdots + f_m = 0_E \Rightarrow \forall i \in [1;n], f_i = 0_E$$

<u>Propriété</u>: Intersection des sev en somme directe

Soient F_1, \dots, F_m des sev de E. Si F_1, \dots, F_m est en somme directe, alors :

$$\forall i, j \in [1; n], i \neq j, F_i \cap F_i = \{0_E\}$$

Propriété: (Dimension des sev en somme directe)

Soit E un \mathbb{K} -ev de dimension $\underline{\mathrm{finie}}$. Soient F_1,\ldots,F_m des sev de E. On a :

La somme $F_1 + \cdots + F_m$ est directe

 \Leftrightarrow

$$\dim(F_1 + \dots + F_m) = \sum_{i=1}^m \dim(F_i)$$

Théorème : (Bases de sev en somme directe)

Soient E un \mathbb{K} -ev de dimension $\underline{\mathrm{finie}}$ et F_1,\ldots,F_m des sev de E . On a :

$$E = \bigoplus_{i=1}^{m} F_i$$

 \rightleftharpoons

Pour toutes bases respectives B_1, \dots, B_m de F_1, \dots, F_m ,

 $B = B_1 \cup ... \cup B_m$ forme une base de E

$$\begin{cases}
E = F_1 + \dots + F_m \\
\dim E = \sum_{i=1}^{m} \dim(F_i)
\end{cases}$$

Définition: (Base adaptée)

Soit F_1, \dots, F_m des sev de E tq $E = \bigoplus_{i=1}^m F_i$

On appelle <u>base adaptée</u> à la décomposition $E = \bigoplus_{i=1}^m F_i$ toute base B de E obtenue par concaténation de bases respectives B_1, \ldots, B_m de F_1, \ldots, F_m , ie toute base de la forme $B = B_1 \cup \ldots \cup B_m$ où $\forall i \in [\![1,n]\!], B_i$ est une base de F_i .

Sous-espaces stables

<u>Définition</u>: (Sous-espace stable)

Un sev F de E est dit stable par $u \in \mathcal{L}(E)$ si $u(F) \subset F$

Propriété : (Inter & Union stables)

Soient F et G deux sev de E stables par $u \in \mathcal{L}(E)$. Alors F + G et $F \cap G$ sont aussi stables par u.

Propriété : (Stabilité des images et noyaux)

Soient $u, v \in \mathcal{L}(E)$, tels que $u \circ v = v \circ u$. Alors $\ker u$ et $\operatorname{Im}(u)$ sont stables par v.

Définition: (Endomorphismes induite)

Soient $u \in \mathcal{L}(E)$ et F un sev de E stable par u. On définit l'endomorphisme induit par u sur F par :

$$u_F: F \to F$$

$$x \mapsto u(x)$$

Propriété: (Combinaisons linéaires d'endomorphismes stables)

Soient $u, v \in \mathcal{L}(E)$ et F un sev de E stable par $u \in V$. Alors $\forall \lambda \in K$, F est stable par $\lambda u, u + v, u \circ v$

De plus, $(\lambda u)_F = \lambda u_F$, $(u + v)_F = u_F + v_F$, $(u \circ v)_F = u_F \circ v_F$

<u>Propriété</u>: Soient $u \in \mathcal{L}(E)$, F un sev de E stable de u. Alors $\ker u_F = \ker u \cap F$, $\operatorname{Im} u_f \subset \operatorname{Im} u \cap F$

Corollaire : Soient $u \in \mathcal{L}(E)$ et F un sev de E stable par u. Si u est injectif, u_F l'est aussi.

Version matricielle en dimension finie

Soit E un \mathbb{K} -ev, $n \in \mathbb{N}^*$

<u>Théorème</u>: Soit F un sev de E de dimension $p \in \mathbb{N}^*$, et $F = (e_1, ..., e_p)$ une base de F. On complète F en une base $B = (e_1, ..., e_n)$ de E.

On a équivalence entre :

- (i) F est stable par u
- (ii) La matrice de u dans B est de la forme $Mat_B(u) = \begin{pmatrix} A & B \\ (0) & C \end{pmatrix}$

Si c'est le cas, $A = Mat_F(u_F)$

<u>Propriété</u>: Soient $F_1, ..., F_m$ des sev de E tq $E = F_1 \oplus ... \oplus F_m$. Soit $B = B_1 \cup ... \cup B_m$ une base adaptée à la décomposition $E = \bigoplus_{i=1}^m F_i$.

Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i) $\forall i \in [1, n], F_i$ est stable par u
- (ii) La matrice de u dans B est de la forme :

$$\begin{pmatrix} A_1 & (0) \\ & \ddots & \\ (0) & A_n \end{pmatrix} \text{ où } \forall i \in [[1, n]], A_i \in M_{d_i}(\mathbb{K}), d_i = \dim(F_i)$$

De plus, si c'est le cas, $\forall i \in [1, n], A_i = Mat_{B_i}(u_{F_i})$

Éléments propres

On considère E un \mathbb{K} -ev non réduit à $\{0_E\}$, et $u \in \mathcal{L}(E)$.

Valeurs propres, vecteurs propres

<u>Définition</u>: $x \in E$ est un <u>vecteur propre</u> de u si $x \neq 0_E$ et $\exists \lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$.

Dans ce cas, il y a unicité de λ

Le scalaire λ est appelé <u>valeur propre</u> à laquelle est associée le vecteur propre x.

<u>Définition</u>: On appelle <u>valeur propre</u> tout $\lambda \in \mathbb{K}$ tel que $\exists x \in E, x \neq 0_E, u(x) = \lambda x$

<u>Définition</u>: L'ensemble des valeurs propres de u est appelé spectre de u, noté Sp(u).

Sous-espace propre

Définition:

Pour $\lambda \in \mathbb{K}$, on note $E_{\lambda}(u) = \ker(u - \lambda Id) = \{x \in E | u(x) = \lambda x\}$ l'espace formé des vecteurs $x \in E$ solutions de $u(x) = \lambda x$.

Propriété:

Soit $\lambda \in \mathbb{K}$. On a équivalence entre :

- (i) $\lambda \in Sp(u)$
- (ii) $E_{\lambda}(u) \neq 0$
- (iii) $u \lambda I d_E$

<u>Définition</u>: (Sous-espace propre)

Soit $\lambda \in \mathbb{K}$. Si λ est une valeur propre de u, le sev $E_{\lambda}(u)$ est appelé sous-espace propre de u associé à λ .

Stabilité et somme directe des sous-espaces propres

Propriété : Les sous-espaces propres de $u \in \mathcal{L}(E)$ sont stables par u et $\forall \lambda \in Sp(u)$,

$$u_{E_{\lambda}(u)} = \lambda Id_{E_{\lambda}(u)}$$

Propriété : Si $u, v \in \mathcal{L}(E)$, avec $v \circ u = u \circ v$, alors les sous-espaces propres de u sont stables par v.

<u>Théorème</u>: Des sous-espaces propres de $u \in \mathcal{L}(E)$ associés à des valeurs propres 2 à 2 distinctes de u sont en somme directe, c'est-à-dire si $n \in \mathbb{N}^*, \lambda_1, \dots, \lambda_n \in Sp(u)$, avec $\forall i, j \in [\![1,n]\!], i \neq j, \lambda_i \neq \lambda_j$, alors $E_{\lambda_1}(u), \dots, E_{\lambda_n}(u)$ est en somme directe.

<u>Corollaire</u>: Une famille de vecteurs propres de u associés à des valeurs propres de u 2 à 2 distinctes est libre.

<u>Corollaire</u>: Si E est de dimension <u>finie</u>, dim E = n, alors $u \in \mathcal{L}(E)$ admet au plus n valeurs propres distinctes.

Éléments propres en dimension finie

Dans cette partie E est un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}^*$, $u \in \mathcal{L}(E)$.

Éléments propres d'une matrice carrée

<u>Définition</u>: Soit $A \in M_n(\mathbb{K})$. On dit que $\lambda \in \mathbb{K}$ est une <u>valeur propre</u> de A si $\exists x \in M_{n,1}(\mathbb{K}), X \neq \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ et $AX = \lambda X$

On dit que X est un vecteur propre de A, associé à la valeur propre λ . L'ensemble des valeurs propres de A est appelé spectre de A noté Sp(A).

<u>Définition</u>: Soit $A \in M_n(\mathbb{K})$. On note $E_{\lambda}(A) = \ker(A - \lambda I_n)$ le sev formé des éléments

$$X \in M_{n,1}(\mathbb{K}), AX = \lambda X$$