Points in 3-space and beyond

In the same way that we can specify a point in the plane with two numbers, we can specify a point in space with three numbers (x, y, z). In general, in *n*-space (\mathbb{R}^n) , we can specify a point with a list of *n* numbers (x_1, \ldots, x_n) .

Given two points in \mathbb{R}^3 , we can define addition on them by adding corresponding coordinates:

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) := (a_1 + b_1, a_2 + b_2, a_3 + b_3).$$

In general,

$$(a_1,\ldots,a_n)+(b_1,\ldots,b_n):=(a_1+b_1,\ldots,a_n+b_n).$$

Example. Let A = (2,3), B = (-1,1). Then A + B = (1,4). The figure looks like a parallelogram.

Example. Let A = (3, 1), B = (1, 2). Then A + B = (4, 3). We obtain a parallelogram again. This is always the case. Starting from the origin O = (0, 0), we obtain B by moving 1 unit right and then 2 units up. We get A + B by first moving 3 to the right, then 1 up, and then repeating the same movement we did from the origin to B. In other words, the segment connecting O to B and the one connecting A to A + B are equal length and parallel. Similarly, the segments from O to A and B to B + A = A + B will also be equal length and parallel.

We have some not-so-surprising properties of point addition

- (A+B) + C = A + (B+C)
- \bullet A+B=B+A
- O + A = A + O = A
- $\bullet \ A + (-A) = O$

where O = (0, ..., 0) and $-A = (-a_1, ..., -a_n)$. We note that $A \mapsto -A$ corresponds to reflection about the origin.

We can also multiply (or scale) a point $A = (a_1, \ldots, a_n)$ by a number c, yielding a point

$$cA = (ca_1, \dots, ca_n).$$

For example, if A = (2, -1, 5) and c = 7, then cA = (14, -7, 35). We again have some easy properties:

- c(A+B) = cA + cB
- \bullet $(c_1 + c_2)A = c_1A + c_2A$
- $(c_1c_2)A = c_1(c_2A)$.

We should comment on the geometric meaning of scaling by a number c. Let A = (1,2) and c = 3. Then cA = (3,6). We see that the effect of multiplying by 3 is to stretch the point A away from the origin by a factor of 3. If we set c = 1/2, this shrinks A in towards the origin. If we draw a segment from the origin to A, in the former case, scaling by c = 3 multiplies the length by 3, and scaling by c = 1/2 cuts the length in half.

Vectors

The discussion above leads us naturally to vectors. Given two points A and B, we can define a **located vector** as an ordered pair of points (A, B), which is more often written \overrightarrow{AB} . We think of this as an arrow connecting A and B, pointing towards B. Two located vectors \overrightarrow{AB} and \overrightarrow{CD} are said to be **equivalent** if B - A = D - C. We always have that \overrightarrow{AB} is equivalent to $\overrightarrow{O(B-A)}$. This is actually the unique vector starting at the origin that is equivalent to \overrightarrow{AB} .

 \overrightarrow{AB} and \overrightarrow{PQ} are said to be **parallel** if for some $c \neq 0$, we have A - B = c(Q - P). If c > 0 we say the vectors have the *same direction*, and if c < 0, we say they have the *opposite direction*.

 \overrightarrow{AB} and \overrightarrow{PQ} are said to be **perpendicular** if B-A and Q-P are perpendicular in the usual geometric sense.

A located vector starting from the origin is completely determined by its endpoint. So an *n*-tuple will be called either a point or a **vector** depending on the context and interpretation.

The Dot Product

If $\vec{x} = (x_1, x_2, \dots, x_n)$ and $\vec{y} = (y_1, y_2, \dots, y_n)$, their **dot product** is

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Some useful properties are

- 1. $A \cdot B = B \cdot A$
- 2. $A \cdot (B+C) = A \cdot B + A \cdot C = (B+C) \cdot A$
- 3. If x is a number, $(xA) \cdot B = x(A \cdot B)$, $A \cdot (xB) = x(A \cdot B)$
- 4. If A = O, then $A \cdot A = 0$. Otherwise, $A \cdot A > 0$.

Two vectors A and B are said to be **perpendicular** if $A \cdot B = 0$.