שיעור 4 הצפנים הבסיסיים (המשך)

4.1 צפני זרם

עד כה דיברנו על צפנים המבוססים על מפתח k אילו הטקטסט מוצפן על ידי הכלל מצפין

$$y = y_1 y_2 \cdots = e_k(x_1) e_k(x_2) \cdots.$$

צפנים מסוג זה נקראים צפני בלוק.

כעת נדבר על צפני זרם. להתחיל נגדיר **צופן זרם סינכרוני**.

הגדרה 4.1 צופן זרם סינכרוני

יחד עם פונקציה (synchronized stream cipher) צופן זרם סינכרוני (synchronized stream cipher) צופן זרם סינכרוני (רפאר: מוצג באמצעות קבוצה אחדי עם פונקציה קבינ פונקציה יחד עם פונקציה אופן זרם סינכרוני (ריד אחדי פונקציה אחדי פונקציה יחד עם פונקציה אופן זרם סינכרוני (ריד אחדי פונקציה יחד עם פונ

- ,(plaintexts) מסמן קבוצה של טקסטים גלויים אפשריים E (1
- (ciphertexts) מסמן קבוצה של טקסטים מוצפנים אפשריים (C
 - (keyspace) מסמן קבוצה של המפתחות אפשריים K
- .(key-stream alphabet) מסמן את האלפיבית של המפתח L (4
- אותיות ומחזירה אותיות g (keystream generator). מסמן את הg (5 מסמן את הg (5 גער גים בינים אותיות כאשר בינים $z_1 \in L$ כאשר בינים אינסופי אינסופי בינים לכל בינים אותיות כאשר בינים אותיות מחול מ
 - $:d_z \in D$ יש כלל מצפין וכלל מפענח לכל $e_z \in E$ יש כלל מצפין יש לכל (6

$$e_z: P \to C$$
, $d_z: C \to P$,

כד ש-

$$d_z(e_z(x)) = x$$

 $x \in P$ לכל איבר של מרחב הטקסט גלוי

הגדרה 4.2 צופן אוטו מפתח (Autokey cipher)

 $P=C=K=L=\mathbb{Z}_{26}$ נניח כי

נגדיר מפתח הפנימי

$$g: \qquad z_1 = k , \qquad z_i = x_{i-1} \ \forall i \geq 2 .$$

לכל $z\in\mathbb{Z}_{26}$ נגדיר כלל מצפין

$$e_z(x) = (x+z) \mod 26$$

לכל מפענח ונגדיר לכל $x \in \mathbb{Z}_{26}$

$$d_z(y) = (y - z) \mod 26$$

 $y \in \mathbb{Z}_{26}$ לכל

דוגמה 4.1 (צופן אוטו-מפתח)

.k=8 נתון צופן אוטו-מפתח עם מפתח

מצאו את הטקטס מוצפן של המילה (1

rendezvous.

2) פענחו את הטקטס מוצפן המתקבל וודאו שקיבלתם את הטקטסט הגלוי.

פתרון:

\mathbb{Z}_{26} -בעיף 1) נרשום את האותיות של הטקטסט גלוי ב \mathbb{Z}_{26}

$\mathbf{x} \in P$										
$x \in \mathbb{Z}_{26}$	17	4	13	3	4	25	21	14	20	18

המפתח הפנימי הוא

$x_i \in \mathbb{Z}_{26}$	17	4	13	3	4	25	21	14	20	18
$z_i \in \mathbb{Z}_{26}$	8	17	4	13	3	4	25	21	14	20

על פי המפתח הפנימי נפעיל את הכלל מצפין

$$e_z(x_i) = x_i + z_i \mod 26$$

על הטקטס גלוי ונחשב את ה- x_i של הטקסט מצפון באמצעות הכלל מצפין:

$$\begin{array}{llll} y_1 = & e_8(17) & = (8+17) \mod 26 = 25 \ , \\ y_2 = & e_{17}(4) & = (17+4) \mod 26 = 21 \ , \\ y_3 = & e_4(13) & = (4+13) \mod 26 = 17 \ , \\ y_4 = & e_{13}(3) & = (13+3) \mod 26 = 16 \ , \\ y_5 = & e_3(4) & = (3+4) \mod 26 = 7 \ , \\ y_6 = & e_4(25) & = (4+25) \mod 26 = 3 \ , \\ y_7 = & e_{25}(21) & = (25+21) \mod 26 = 20 \ , \\ y_8 = & e_{21}(14) & = (21+14) \mod 26 = 9 \ , \\ y_9 = & e_{14}(20) & = (14+20) \mod 26 = 8 \ , \\ y_{10} = & e_{20}(18) & = (20+18) \mod 26 = 12 \ . \end{array}$$

$\mathbf{x} \in P$	r	e	n	d	e	Z	v	О	u	s
$x_i \in \mathbb{Z}_{26}$	17	4	13	3	4	25	21	14	20	18
· 20	8				l					
$y_i = e_{z_i}(x_i)$	25	21	17	16	7	3	20	9	8	12

$\mathbf{x} \in P$	r	e	n	d	e	z	v	О	u	s
$x_i \in \mathbb{Z}_{26}$	17	4	13	3	4	25	21	14	20	18
$z_i \in \mathbb{Z}_{26}$	8	17	4	13	3	4	25	21	14	20
$y_i = e_{z_i}(x_i)$	25	21	17	16	7	3	20	9	8	12
$y \in C$	Z	V	R	Q	Н	D	U	J	I	M

לתחיל עם הטקטס מוצפן: (נתחיל עם הטקטס מוצפן:

ZVRQHDUJIM

נחשב את ה- x_i של הטקסט גלוי באמצעות הכלל מפענח:

$$\begin{array}{lll} x_1 = & d_8(25) & = (25-8) \mod 26 = 17 \; , \\ x_2 = & d_{17}(21) & = (21-17) \mod 26 = 4 \; , \\ x_3 = & d_4(17) & = (17-4) \mod 26 = 13 \; , \\ x_4 = & d_{13}(16) & = (16-13) \mod 26 = 3 \; , \\ x_5 = & d_3(7) & = (7-3) \mod 26 = 4 \; , \\ x_6 = & d_4(3) & = (3-4) \mod 26 = 25 \; , \\ x_7 = & d_{25}(20) & = (20-25) \mod 26 = 21 \; , \\ x_8 = & d_{21}(9) & = (9-21) \mod 26 = 14 \; , \\ x_9 = & d_{14}(8) & = (8-14) \mod 26 = 20 \; , \\ x_{10} = & d_{20}(12) & = (12-20) \mod 26 = 18 \; . \end{array}$$

$y \in C$	C	Z	V	R	Q	Н	D	U	J	I	M
$y_i = Z$		1			1	l .			1		I
$x_i = d_z$	$\overline{(y_i)}$	17	4	13	3	4	25	21	14	20	18

לבסוף נעבור מאיברים של \mathbb{Z}_{26} דתווים של טקטסט גלוי:

	Z									
$y_i = \mathbb{Z}_{26}$										
$x_i = d_{z_i}(y_i)$	17	4	13	3	4	25	21	14	20	18
X	r	e	n	d	e	Z	v	О	u	s

4.2 צופן חד פעמי

הגדרה 4.3 צופן חד פעמי

נגדיר כלל מצפין גדיר נגדיר לכל $K\in (\mathbb{Z}_2)^n$ לכל $X=Y=K=(\mathbb{Z}_2)^n$ יהי שלם ויהי

$$e_k(x) = (x_1 + k_1, \dots, x_n + k_n) \mod 2$$
,

ונגדיר כלל מפענח

$$d_k(y) = (y_1 - k_1, \dots, y_n - k_n) \mod 2$$

= $(y_1 + k_1, \dots, y_n + k_n) \mod 2$.

דוגמה 4.2

L=1110100010 נתון הסקטס ונתון הטקטס $K=\{0,1,1,0,0\}$ של צופן הד-פעמי ונתון הקבוצת מפתחות

- .) מצאו את הטקסט מוצפן (1
- .יודאו כי הכלל מפענח מחזירה הטקטס גלוי המקורי.

פתרון:

(1

$$e_k(x) = \{1+0 \ , \ 1+1 \ , \ 1+1 \ , \ 0+0 \ , \ 1+1 \ , \ 0+0 \ , \ 0+1 \ , \ 0+1 \ , \ 1+0 \ , \ 0+1 \} \mod 2$$

$$= \{1,0,0,0,0,0,1,1,1,1\} \ .$$

(2

$$d_k(y) = \{1+0 \ , \ 0+1 \ , \ 0+1 \ , \ 0+0 \ , \ 0+1 \ , \ 0+0 \ , \ 1+1 \ , \ 1+1 \ , \ 1+0 \ , \ 1+1 \} \mod 2$$

$$= \{1,1,1,0,1,0,0,0,1,0\} \ .$$

נשים לב כי בצופן חד-פעמי

$$|X| = |Y| = |K| = \mathbb{Z}_2^n$$

לפיכך לפי משפט שאנון לצופן חד-פעמי יש סודיות מושלמת.