Institute of Engineering & Management Department of Computer Science & Engineering Computer Architecture Laboratory for 2nd year 4th semester 2018 Code: CS 493

Date: 24/02/2018

WEEK-5

<u>Assignment:</u> Implementation of encoders and decoders Binary using Xilinx ISE.

Objective: Implement 2:4 decoder using case.

Software used:

Property Name	Value
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

Input	Output
00	0001
01	0010
10	0100
11	1000

Code:

Using Case:

```
entity a2 is
  Port ( a : in STD_LOGIC_VECTOR (1 downto 0);
        b : out STD_LOGIC_VECTOR (3 downto 0));
end a2;
architecture Behavioral of a2 is
begin
process(a)
begin
case a is
when "00"=> b<="0001";
when "01"=> b<="0010";
when "10"=> b<="0100";
when "11"=> b<="1000";
when others=> b<="XXXX";
end case;
end process;
end Behavioral;
```

Output:

Current Simulation Time: 1000 ns		100 ns	150 ns	200 ns	250 ns	300 ns	350 ns	400 m	450 ns	500 ns	550 ns	600 ns	650 ns
■ 🔊 a[1:0]	3		0	X	-1-	Χ	2	X	3	Χ	0	X	1
3 a[1]	1												
3 a[0]	1												
■ (b[3:0]	8		111	X	2	X	4	X	8	X	1	X	2
3 b[3]	1			134		A.G.				TÎ.		5,12	
3 b[2]	0												
3 b[1]	0												
3 p[0]	0												

Objective: Implement 4:2 encoder using data flow and case loop.

Software used:

Property Name	Value
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

Input	Output
0001	00
0010	01
0100	10
1000	11

Data flow Model:

Code:

```
Data flow:
entity a2 is
  Port (a: in STD_LOGIC_VECTOR (3 downto 0);
      b: out STD_LOGIC_VECTOR (1 downto 0));
end a2;
architecture Behavioral of a2 is
begin
b(1) \le a(3) \text{ or } a(2);
b(2) \le a(3) \text{ or } a(1);
end Behavioral;
Using Case:
entity a2 is
  Port (a:in STD_LOGIC_VECTOR (3 downto 0);
      b: out STD_LOGIC_VECTOR (1 downto 0));
end a2;
architecture Behavioral of a2 is
begin
process(a)
begin
case a is
when "0001"=> b<="00";
when "0010"=> b<="01";
when "0100"=> b<="10";
when "1000"=> b<="11";
when others=> b<="XXXX";
end case;
```

Output:

end process;
end Behavioral;

		20		372.	9 ns					
Current Simulation Time: 1000 ns		200 ns 250 ns	300 ns	350 ns	400 ns	450 ns	500 ns	550 ns	600 ns	650 n
■ 🗖 a[3:0]	4	2	X	4	X	8	X	0	X	1
🎳 [a[3]	0	9								
a[2] وَ	1		4							
a[1] [a	0									
a[0]	0	6	(4)		9					
■ ⑤ ∮ b[1:0]	2	1	Χ	2	$\overline{\chi}$		3		X	0
b [1]	1									
6 [] b[0]	0									

Objective: Implement 8:3 encoder using for loop.

Software used:

Property Name	Value
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- iv. Make VHDL with required port specification.
- v. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- vi. Make test bench waveform and check for the given inputs.

Truth Table:

Input	Output	Input	Output
0000001	000	00010000	100
0000010	001	00100000	101
00000100	010	01000000	110
00001000	011	10000000	111

Behavioral Model:

Code:

Behavioral Model:

```
entity a1 is
  Port (a:in STD_LOGIC_VECTOR (7 downto 0);
      b: out STD_LOGIC_VECTOR(2 downto 0));
end a1;
architecture Behavioral of a1 is
begin
process(a)
variable d : INTEGER;
begin
for i in 0 to 7 loop
if a(i)='1' then
d:=i;
end if;
end loop;
b<=conv_STD_LOGIC_VECTOR(d,3);</pre>
end process;
end Behavioral;
```

Output:

Current Simulation Time: 1000 ns		100 n	s 150	ns 	200 n	ıs II	250 n	s 	300 ns	1.1	350 ns	4	00 ns	45	50 ns	50 	0 ns	550 n	s
■ 5 /4 a[7:0]	32		1	28	X		16		X		1		X		2		X	8	
31 a[7]	0																		
3 [6]	0																		
3.1 a[5]	1																		
∂∏ a[4]	0	16			1														
3.1 a[3]	0																ž.		
3 [2]	0																		
3 [1]	0	7/3															Į.		
3N a[0]	0	16																	
■ 5 b[2:0]	5		-	7	Х		4				0		X		1		Χ	3	
3,1 b[2]	1								$\overline{}$								/		
3(1)	0								ile -										
3N p[0]	1	16			T								7						