本试卷适应范围 工学院本科一年级

南京农业大学试题纸

2017-2018 学年 第 2 学期 课程类型: 必修 试卷类型: A

课程号MATH2602							_	学分				
学号				姓名				<u> </u>				
题号	_		三	四	五.	六	七	八	九		签名	
得分												
注意: 1.不得使用计算器 2.所有解答都必须写在本试卷规定处 3.解答题只写主要过程,字迹工整清楚,大小适当. 一、单项选择题(把每题答案序号按先后顺序写在下面对应处,写在其它地方不给分)(每题 2 分,共 50 分)												
1—5 题:			6—10 题:				11-15 题:					
16-20 题:				21-	-25 题: _							
1. $\[\] b f(x+y,x-y) = x^2 - y^2, \] \[\] f(x,y) = (1) \] A, \[\] x^2 - y^2 \] B, \[\] x^2 + y^2 \] C, \[\] (x-y)^2 \] D, \[\] xy$												
2. $\lim_{(x,y)\to(0,0)} \frac{\sqrt{xy+4}-2}{xy} = (2) \text{ A}, \frac{1}{4} \text{B}, \infty \text{C}, 1 \text{D}, 0$												
3. 函数 $z = f(x, y)$ 在点 (x_0, y_0) 处具有偏导数 $f'_x(x_0, y_0), f'_y(x_0, y_0)$ 是函数在该点可微的 (3)												
A、 必要但非充分条件 B、充分但非必要条件 C、 充分必要条件 D、 既非充分也非必要条件												
4. 设 $z = x^4 y^3 + 2x$,则 $dz _{(1,1)} = (4)$ A、 $(4x^3 y^3 + 2)dx + 3x^4 y^2 dy$ B、9 C、 $6dx + 3dy$ D、0												
5. 函数 $u = x + xy + xyz$ 在点 $(1,2,0)$ 的所有方向导数中,最大的方向导数是 沿方向 (5)												
A. $(-3,-1,-2)$ B. $(3,1,2)$ C. $(1,3,2)$ D. $(3,2,1)$												
6. 曲面 $z^2 = xy - 1$ 在点 $(0,1,-1)$ 处的切平面的方程为(6)												
A. $x+y+z=0$ B. $2y+2z=0$ C. $x-2y+z=0$ D. $x+2z+2=0$												
7. 由曲线	$\begin{cases} x^2 + 2y^2 \\ z = 0 \end{cases}$	² =12 绕	y 轴旋转−	一周所得到	的旋转曲面	面的方程为	(7)					
A, $x^2 + 1$	$2y^2 + z^2 =$	=12 в	x^2+2y	$v^2 - z^2 =$	12 c.	$x^2 + y^2$	$+2z^2=1$	2 D, x	$y^2 + y^2 - 2$	$2z^2 = 12$		
8. α, β ,	γ 是三角形	的三个内角	角,用拉格	朗日乘数法	去求 $coslpha$	$\cos \beta \cos$	s γ 的最大 [,]	值时 拉格 郞	月函数 为	(8)		
A. $\cos \alpha \cos \beta \cos \gamma + \lambda (\alpha + \beta + \gamma - \pi)$ B. $(\alpha + \beta + \gamma - \pi) + \lambda \cos \alpha \cos \beta \cos \gamma$												
C. $\cos \alpha \cos \beta \cos \gamma + \lambda(\alpha + \beta + \gamma)$ D. $(\alpha + \beta + \gamma) + \lambda \cos \alpha \cos \beta \cos \gamma$												
9. 设 $z(x,y)$ 由方程 $2xz - 2xyz + \ln(xyz) = 0$ 确定,则 $\frac{\partial z}{\partial x} = (9)$												

A,
$$\frac{z}{x}$$
 B, $\frac{x}{z}$ C, $-\frac{z}{x}$ D, $-\frac{x}{z}$

10. 设
$$f(x,y)$$
是连续函数,交换二次积分 $\int_1^e dx \int_0^{\ln x} f(x,y) dy$ 的积分次序,结果为(10)

A
$$\int_{1}^{e} dy \int_{0}^{\ln x} f(x, y) dx$$
 B $\int_{e^{y}}^{e} dy \int_{0}^{1} f(x, y) dx$ C $\int_{0}^{\ln x} dy \int_{1}^{e} f(x, y) dx$ D $\int_{0}^{1} dy \int_{e^{y}}^{e} f(x, y) dx$

11. 若区域
$$D$$
 为 $0 \le y \le x^2$, $|x| \le 2$, 则 $\iint_D xy^2 dx dy = (11)$ A、 0 B、 1 C、2 D、3

12. 设域
$$D: x^2+y^2 \le 1$$
, f 是域 D 上的连续函数,则 $\iint_D f(\sqrt{x^2+y^2}) dx dy = (12)$

$$A \cdot 2\pi \int_0^1 \rho f(\rho) d\rho \qquad B \cdot 4\pi \int_0^1 \rho f(\rho) d\rho \qquad C \cdot 2\pi \int_0^1 f(\rho) d\rho \qquad D \cdot 4\pi \int_0^1 f(\rho) d\rho$$

13. 设
$$\Omega$$
 是由 $x=0,y=0,z=0$ 及 $x+y+z-1=0$ 所围的有界闭域,则 $\iint_{\Omega} f(x,y,z)dv = (13)$

$$A \int_{0}^{1} dy \int_{0}^{1} dx \int_{0}^{1-x-y} f dz \qquad B \int_{0}^{1} dy \int_{0}^{1-y} dx \int_{0}^{1-x-y} f dz \qquad C \int_{0}^{1} dy \int_{0}^{1} dx \int_{0}^{1} f dz \qquad D \int_{0}^{1} dy \int_{0}^{1-x} dx \int_{0}^{1-y} f dz$$

14.
$$L$$
 是圆周 $x^2 + y^2 = 1$, 则 $\oint_L (2+x)ds = (14)$ A、2 B、0 C、2 π D、4 π

15. 设曲线积分
$$\int_L xy^2 dx + y\varphi(x)dy$$
 与路径无关,其中 $\varphi(x)$ 具有连续导数,且 $\varphi(0)=0$,

则
$$\int_{(0,0)}^{(1,1)} xy^2 dx + y\varphi(x) dy = (15) \text{ A}, 3/8$$
 B, 1/2 C, 3/4 D,

16. 设 S 是平面
$$x+y+z=4$$
 被圆柱面 $x^2+y^2=1$ 截出的有限部分,则曲面积分 $\iint_S yds$ 的值是(16)

A, 0 B,
$$\frac{3}{4}\sqrt{3}$$
 C, $4\sqrt{3}$ D, π

17. 已知曲线 C:
$$x^2 + y^2 = 1$$
, 则 $\oint_C \frac{xdy - ydx}{x^2 + y^2} = (17)$ A、 0 B、 2π C、 -2π D、 π

18. 若级数
$$\sum_{n=1}^{\infty} 2q^n$$
 收敛,则 q 满足条件是(18). A、 $|q| > 1$ B、 $|q| > 2$ C、 $|q| < 1$ D、 $|q| < 2$

19. 下列级数条件收敛的是(19).
$$A \cdot \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}} \quad B \cdot \sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{2}{3}\right)^n \quad C \cdot \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2} \quad D \cdot \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n!}$$

20. 幂级数
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n^2 \cdot 3^n}$$
 的收敛半径是(20).(A) A、 $R=3$ B、 $R=\sqrt{3}$ C、 $R=\frac{1}{3}$ D、 $R=\frac{1}{\sqrt{3}}$;

21. 函数 $f(x) = \cos 2x$ 展开成 x 的幂级数是(21).

$$A_{5}x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots B_{5}1 - \frac{2^{2}x^{2}}{2!} + \frac{2^{4}x^{4}}{4!} - \frac{2^{6}x^{6}}{6!} + \cdots C_{5}2x - \frac{2^{3}x^{3}}{3!} + \frac{2^{5}x^{5}}{5!} - \frac{2^{7}x^{7}}{7!} + \cdots D_{5}1 - x^{2} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots$$

22. f(x) 是以 2π 为周期的函数, 当 f(x) 是奇函数时, 其傅里叶系数为(22).

A.
$$a_n = 0$$
, $b_n = \frac{1}{\pi} \int_0^{\pi} f(x) \sin nx dx$ B. $b_n = 0$, $a_n = \frac{1}{\pi} \int_0^{\pi} f(x) \cos nx dx$

C.
$$a_n = 0, b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx$$
 D. $b_n = 0, a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx$

23.微分方程
$$x^2 \frac{dy}{dx} = x^2 + y^2$$
是(23)

A、可分离变量方程 B、齐次方程 C、二阶微分方程 D、一阶线性方程

24. 微分方程 y'' - 2y' - 3y = 0 的通解为 (24)

A,
$$\frac{c_1}{r} + c_2 x^3$$
 B, $c_1 x + \frac{c_2}{r^3}$ C, $c_1 e^x + c_2 e^{-3x}$ D, $c_1 e^{-x} + c_2 e^{3x}$

25.微分方程 $y''-y'=e^x$ 的一个特解形式为(25) A、 ae^x B、 axe^x C、 ae^{-x} D、 axe^{-x}

二、**(10 分) 求函数** $z = x^2 + xy + y^2 + x - y + 1$ 的极值并判断是极大值还是极小值.

三、(10 分) 求微分方程 $y' + \frac{1-x}{x}y = \frac{e^{2x}}{x}(0 < x < +\infty)$ 满足条件 $\lim_{x \to 0^+} y(x) = 1$ 的解.

四、(10 分) 用高斯公式求 $I = \iint_{\Sigma} x^2 dy dz + y^2 dz dx + z^2 dx dy$ Σ 是圆锥面	$x^2 + y^2 = z^2 (0 \le z \le a)$ 的外侧.
五、 $(10 分)$ 给出幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{3^n \cdot n}$, (1) 求幂级数的收敛域 (2) 求幂级数的	1和函数
$\sum_{n=1}^{\infty} 3^n \cdot n$	
六、(10 分)设 $f(x, y, z)$ 在区域 D 内可微,且 $\sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2 + (\frac{\partial f}{\partial z})^2} \le R$	M , $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ $\not\equiv$
D 内任意两个点,线段 AB 包含在 D 内 (1) 写出线段 AB 所在直线的参数式 (2) 证明: $ f(x_2,y_2,z_2)-f(x_1,y_1,z_1) \leq M AB $, 其中 $ AB $ 是线段 AB 的	
教研室主任出卷人	