Equivalence classes of mesh patterns with a Dominating Pattern

Murray Tannock (murray14@ru.is)

May 12, 2016

Outline

- 1. Introduction
 - ▶ Permutations
 - ▶ Classical Permutation Patterns
 - ▶ Mesh Patterns

Permutations

A permutation is a bijection, π , from the set $\llbracket n \rrbracket = \{1, \ldots, n\}$ to itself. More intuitively "A permutation of n objects is an arrangement of n distinct objects in a row" (Knuth).

We write permutations in *one-line notation*, writing the entries of the entries of the permutation in order π

$$\pi = \pi(1)\pi(2)\dots\pi(n)$$

Example

The 6 permutations on [3] are

123, 132, 213, 231, 312, 321

We can display a permutation in a *plot* to give a graphical represention. We plot the points $(i, \pi(i))$ in a Cartesian coordinate system.

Figure: Plot of the permutation 231

In this setting we call the elements of the permutations *points*. The set of all permutations of length n is \mathfrak{S}_n and has size n!. The set of all permutations is $\mathfrak{S} = \bigcup_{i=0}^{\infty} \mathfrak{S}_i$.

Classical Permutation Patterns

Classical permutation patterns capture many interesting combinatorial objects and properties.

Definition (Order Isomorphism)

Two substrings $\alpha_1 \alpha_2 \cdots \alpha_n$ and $\beta_1 \beta_2 \cdots \beta_n$ are said to be *order isomorphic* if $\alpha_r < \alpha_s$ if and only if $\beta_r < \beta_s$.

Definition

A permutation π is said to *contain* the *classical permutation pattern* σ (denoted $\sigma \leq \pi$) if there is some subsequence $i_1 i_2 \cdots i_k$ such that the sequence $\pi(i_1)\pi(i_2)\cdots\pi(i_k)$ is order isomorphic to $\sigma(1)\sigma(2)\cdots\sigma(k)$.

If π does not contain σ we say that π avoids σ .

We the set of permutations of length n avoiding a pattern σ is denoted as $\operatorname{Av}_n(\sigma)$ and $\operatorname{Av}(\sigma) = \bigcup_{i=0}^{\infty} \operatorname{Av}_i(\sigma)$.

Example

The permutation $\pi=$ 24153 contains the pattern $\sigma=$ 231

Figure: Plot of the permutation 24153 with an occurrence of 231 indicated

Mesh Patterns

Mesh patterns are a natural extension of classical permutation patterns.

Definition

A mesh pattern is a pair

$$p = (\tau, R)$$
 with $\tau \in \mathfrak{S}_k$ and $R \subseteq [0, k] \times [0, k]$.

We say that τ is the *underlying classical pattern* of p.

Example

The pattern

$$p = (213, \{(0,1), (0,2), (0,3), (1,0), (1,1), (2,1), (2,2)\}) =$$
 is contained in $\pi = 34215$.

Figure: An occurrence of p in π

Example

The pattern $q = (21, \{(0,1), (0,2), (1,0), (1,1)\}) = 2$ is contained in $p = (213, \{(0,1), (0,2), (0,3), (1,0), (1,1), (2,1), (2,2)\}) = 2$ as a subpattern.

Figure: An occurrence of q in p