```
require('igraph')
require('ggplot2')
require('reshape')
# require('lsr')
source("MGCSampleStat.R")
source("MGCPermutationTest.R")
require("ggplot2")
require("fields")
setwd("~/git/subgraph/mgc_based/")
listGs<- list.files(path = "../graphml/", pattern = "*.graphml")</pre>
#read in covariates and graph list
#find those with common ids, sort by id
covariates<- read.csv("../covariates/predictors.csv",stringsAsFactors = F)</pre>
ids <- unlist( lapply(listGs,function(x)strtrim(x,6)))</pre>
common_id<- intersect(covariates$RUNNO , ids)</pre>
covariates <- covariates[covariates$RUNNO%in%common_id,]</pre>
covariates <- covariates[order(covariates$RUNNO),]</pre>
listGs<- listGs[ids%in%common_id]</pre>
listGs<- listGs[order(listGs)]</pre>
graphList<- lapply(listGs, function(x){</pre>
  read.graph( file = paste("../graphml/",x,sep = ""),format = "graphml")
AdjacencyList<- lapply(graphList, function(x){
  get.adjacency(x)
})
HemisphereList<- lapply(graphList, function(x){</pre>
  get.vertex.attribute(x,name="hemisphere")
})
DegreeList<- lapply(AdjacencyList, function(x){</pre>
  rowSums(as.matrix(x))
  })
n = nrow(AdjacencyList[[1]])
############################
## Compute all local corr
library(ecodist)
library(energy)
library(HHG)
source("MGCLocalCorr.R")
source("MGCSampleStat.R")
LowerTriMatrix = sapply(AdjacencyList,function(x){
```

```
x = as.matrix(x)
x[lower.tri(x)]
})

AdjMatrix = t(LowerTriMatrix[,covariates$GENOTYPE>=1])
GenoType = covariates$GENOTYPE[covariates$GENOTYPE>=1]
Gender = covariates$GENDER[covariates$GENOTYPE>=1]

A = as.matrix(dist(AdjMatrix))
B = as.matrix(dist(GenoType))
C = as.matrix(dist(Gender))
m = nrow(A)

image.plot(A)
```


Test over Genotype

```
orderByGenotype = order(GenoType)

df = data.frame( "idx"=rep(c(1:m),m),"dist" = c(A), "id"=as.factor(rep(c(1:m),each=m)),"GenoType"=as.fa

ggplot(df, aes(x=idx, y=dist,col=GenoType)) + geom_point(shape=1)+ facet_grid(~id)
```



```
mgc_result = MGCSampleStat(A,B)
mgc_result
```

[1] 0.1013322

MGCLocalCorr(A,B,option='mcor')\$corr

```
##
               [,1]
                          [,2]
   [1,] 0.00000000 0.00000000
## [2,] 0.09243169 0.08525495
## [3,] 0.10047875 0.08799893
## [4,] 0.11947777 0.10400986
## [5,] 0.11953964 0.10133216
## [6,] 0.09896962 0.07821629
## [7,] 0.09672132 0.07474661
## [8,] 0.09846038 0.07497433
## [9,] 0.10800302 0.08357894
## [10,] 0.10643611 0.08121826
## [11,] 0.10665352 0.08110696
## [12,] 0.10422467 0.07865220
## [13,] 0.10703107 0.08220562
## [14,] 0.10333601 0.07951882
## [15,] 0.10306176 0.08073138
## [16,] 0.09727297 0.07724313
## [17,] 0.10996845 0.09318260
## [18,] 0.09971848 0.08637174
## [19,] 0.08045508 0.07173693
## [20,] 0.06749143 0.06249813
```

```
## [21,] 0.05663861 0.05546064
permuate_test = MGCPermutationTest(A,B,rep=1000,option='mcor')
permuate_test
## $pMGC
## [1] 0.146
##
## $statMGC
## [1] 0.1013322
##
## $pLocalCorr
##
         [,1] [,2]
##
   [1,]
            1 1.000
##
   [2,]
            1 0.071
  [3,]
##
            1 0.092
  [4,]
            1 0.058
##
  [5,]
            1 0.061
##
   [6,]
            1 0.117
##
  [7,]
            1 0.126
## [8,]
            1 0.121
## [9,]
            1 0.093
## [10,]
            1 0.104
## [11,]
            1 0.104
## [12,]
            1 0.106
## [13,]
            1 0.093
## [14,]
            1 0.098
## [15,]
            1 0.094
## [16,]
            1 0.109
## [17,]
            1 0.062
## [18,]
            1 0.075
## [19,]
            1 0.111
## [20,]
            1 0.123
## [21,]
            1 0.115
##
## $localCorr
##
               [,1]
   [1,] 0.00000000 0.00000000
##
  [2,] 0.09243169 0.08525495
## [3,] 0.10047875 0.08799893
##
  [4,] 0.11947777 0.10400986
## [5,] 0.11953964 0.10133216
## [6,] 0.09896962 0.07821629
## [7,] 0.09672132 0.07474661
##
   [8,] 0.09846038 0.07497433
## [9,] 0.10800302 0.08357894
## [10,] 0.10643611 0.08121826
## [11,] 0.10665352 0.08110696
## [12,] 0.10422467 0.07865220
## [13,] 0.10703107 0.08220562
## [14,] 0.10333601 0.07951882
## [15,] 0.10306176 0.08073138
## [16,] 0.09727297 0.07724313
## [17,] 0.10996845 0.09318260
```

[18,] 0.09971848 0.08637174

```
## [19,] 0.08045508 0.07173693
## [20,] 0.06749143 0.06249813
## [21,] 0.05663861 0.05546064
##
## $optimalInd
## [1] 42
```

Test over Gender

```
#####
orderByGender = order(Gender)
ggplot(df, aes(x=idx, y=dist,col=Gender)) + geom_point(shape=1)+ facet_grid(~id)
 100 -
 75 -
<u>is</u> 50 -
                                                                   0 1
                                                                   o 2
 25 -
  ##### test against Gender ####
mgc_result = MGCSampleStat(A,C)
mgc_result
## [1] -0.03734535
MGCLocalCorr(A,C,option='mcor')$corr
             [,1]
                       [,2]
## [1,] 0.00000000 0.00000000
```

```
[2,] -0.032701339 -0.04276832
##
   [3,] -0.036417839 -0.05062316
  [4,] -0.027188558 -0.04434214
## [5,] -0.021308672 -0.04075261
   [6,] -0.009605870 -0.03088728
## [7,] -0.010020610 -0.03325580
## [8,] -0.019273083 -0.04451121
## [9,] -0.014944718 -0.04158579
## [10,] -0.011374813 -0.03914925
## [11,] -0.007121142 -0.03555079
## [12,] -0.007788633 -0.03663087
## [13,] -0.012150104 -0.04067225
## [14,] -0.017330865 -0.04504808
## [15,] -0.014567991 -0.04066463
## [16,] -0.015916399 -0.03986216
## [17,] -0.007574509 -0.02869580
## [18,] -0.014685780 -0.03237852
## [19,] -0.009843337 -0.02096507
## [20,] -0.029526943 -0.03560670
## [21,] -0.036559813 -0.03734535
permuate_test = MGCPermutationTest(A,C,rep=1000,option='mcor')
permuate_test
## $pMGC
## [1] 0.754
##
## $statMGC
## [1] -0.03734535
##
## $pLocalCorr
##
         [,1] [,2]
   [1,]
            1 1.000
##
##
   [2,]
            1 0.774
  [3,]
##
            1 0.781
  [4,]
            1 0.746
  [5,]
##
            1 0.733
##
   [6,]
            1 0.665
##
  [7,]
            1 0.683
   [8,]
            1 0.751
##
  [9,]
            1 0.736
## [10,]
            1 0.721
## [11,]
            1 0.702
## [12,]
            1 0.710
## [13,]
            1 0.736
## [14,]
            1 0.769
## [15,]
            1 0.738
## [16,]
            1 0.736
## [17,]
            1 0.659
## [18,]
            1 0.687
## [19,]
            1 0.615
## [20,]
            1 0.722
## [21,]
            1 0.754
##
```

\$localCorr

```
[,1]
                             [,2]
##
   [1,] 0.000000000 0.00000000
##
   [2,] -0.032701339 -0.04276832
  [3,] -0.036417839 -0.05062316
   [4,] -0.027188558 -0.04434214
##
  [5,] -0.021308672 -0.04075261
  [6,] -0.009605870 -0.03088728
## [7,] -0.010020610 -0.03325580
   [8,] -0.019273083 -0.04451121
  [9,] -0.014944718 -0.04158579
## [10,] -0.011374813 -0.03914925
## [11,] -0.007121142 -0.03555079
## [12,] -0.007788633 -0.03663087
## [13,] -0.012150104 -0.04067225
## [14,] -0.017330865 -0.04504808
## [15,] -0.014567991 -0.04066463
## [16,] -0.015916399 -0.03986216
## [17,] -0.007574509 -0.02869580
## [18,] -0.014685780 -0.03237852
## [19,] -0.009843337 -0.02096507
## [20,] -0.029526943 -0.03560670
## [21,] -0.036559813 -0.03734535
##
## $optimalInd
## integer(0)
```

##############################