

Engr. Ahmad M. Abdel-Hafeez

Tips:

How to solve a Combinational circuit problem:

- 1. Determine the number of inputs
- 2. Determine the number of outputs
- 3. Build the truth table (# of rows = # of combinations = 2# of inputs)
- 4. Produce the output(s)
- 5. Use K-Map (or anyway related) to simplify the output function
- 6. Design the output function if it's not given

How to solve a Sequential circuit problem:

- 1. Determine the number of external inputs
- 2. Determine the number of external outputs
- 3. Determine the number of flip-flops = max number of bits in states or need to store
- 4. Determine the number of D-flip-flop inputs (D-flip-flop stores 1 bit and has 1 input only)
- 5. Determine the number of outputs (D-flip-flop has 2 outputs only A and A complement)
- 6. Build the truth/state table (# of rows = # of combinations = 2^{# of total inputs})
 - a. Total inputs = # of external inputs + # of D-flip-flop inputs
- 7. Produce the output(s) (such as A_{n+1} , B_{n+1} , ...etc.)
- 8. Use K-Map (or anyway related) to simplify the next state output function and external output(s)
- 9. Build the state diagram if it's not given
- 10. Design the output function if it's not given

Engr. Ahmad M. Abdel-Hafeez

Question 1: Design a 2's complement circuit for 3-bit input, for input zero let its 2's complement is also zero.

Solution:

- 1. It's combinational circuit problem (no need to store bit(s))
- 2. # of inputs = 3
- 3. # of outputs = 3
- 4. # of rows (combinations) = $2^3 = 8$
- 5. Build the truth table

X	Y	Z	A	В	С
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	0	0	1

6. Use K-Map to produce/simplify the output function

$$A = X_X + X_X + XX_X$$
$$A = X_X + XX_X + XX_X$$

C = Z

7. Design this circuit according to #6

Question 2: Implement the following function using suitable multiplexer F (A, B, C, D) = \sum (0, 3, 5, 6, 8, 9, 14, 15)

Solution:

8x1 mux (the number of its selection lines equals the number of input variables - 1): A, B and C on **selections** and D on **inputs** as follows: I0= D', I1= D, I2= D, I3= D', I4= 1, I5= 0, I6= 0 and I7= 1

Engr. Ahmad M. Abdel-Hafeez

Question 3: Implement practically the following function using a suitable multiplexer F(W, X, Y, Z) = (0, 1, 3, 4, 8, 9, 15)

Solution:

8x1 mux: W, X and Y on **selections** and Z on **inputs** as follows: I0=1, I1=Z, I2=Z', I3=0, I4=1, I5=0, I6=0 and I7=Z

Question 4: Implement the full subtractor using suitable multiplexers.

Solution:

for the truth table of the full subtractor use **two** 4x1 muxs one for **B borrow** and one for **D difference**.

X	Y	Z	В	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Engr. Ahmad M. Abdel-Hafeez

Question 5: Design the following a sequential circuit using two D flipflops A and B and one external input x according to the following state diagram.

Solution:

- 1. # of external inputs = 1
- 2. # of external outputs = 0
- 3. # of flip-flops = max number of bits in states or need to store = $\frac{2}{3}$
- 4. # of D-flip-flop inputs = $\frac{2}{}$
- 5. Determine the number of outputs = 4 (2 for each D flip-flop)
- 6. Build the truth/state table (# of rows = # of combinations = 2# of total inputs)
 - a. Total inputs = # of external inputs + # of D-flip-flop inputs = 3
 - b. # of number of rows = 8

X	$\mathbf{A}_{\mathbf{n}}$	Bn	A_{n+1}	B _{n+1}
0	0	0	1	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	0

Engr. Ahmad M. Abdel-Hafeez

- 7. Produce the output(s) (such as A_{n+1} , B_{n+1} , ...etc.)
- 8. Use K-Map (or anyway related) to simplify the next state output function and external output(s)

$$A_{n+1} = X \odot A_n \odot B_n$$

 $B_{n+1} = B_n$

9. Build the characteristic table

X	$\mathbf{A}_{\mathbf{n+1}}$	B_{n+1}
0	$A_n \odot B_n$	B_n
1	$A_n \oplus B_n$	B_n

10. Design the output function according to #8

Engr. Ahmad M. Abdel-Hafeez

Question 6: Design the following a sequential circuit using D flipflops.

Solution:

- 1. # of external inputs = 1
- 2. # of external outputs = 1
- 3. # of flip-flops = max number of bits in states or need to store = $\frac{2}{3}$
- 4. # of D-flip-flop inputs = $\frac{2}{2}$
- 5. Determine the number of outputs = 4 (2 for each D flip-flop)
- 6. Build the truth/state table (# of rows = # of combinations = 2^{# of total inputs})
 - a. Total inputs = # of external inputs + # of D-flip-flop inputs = 3
 - b. # of number of rows = 8

X	$\mathbf{A}_{\mathbf{n}}$	B _n	A_{n+1}	B_{n+1}	Y
0	0	0	0	0	1
0	0	1	0	0	0
0	1	0	X	X	X
0	1	1	1	1	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	X	X	X
1	1	1	0	0	1

Engr. Ahmad M. Abdel-Hafeez

- 7. Produce the output(s) (such as A_{n+1} , B_{n+1} , ...etc.)
- 8. Use K-Map (or anyway related) to simplify the next state output function and external output(s)

$$A_{n+1} = X \odot A_n$$

$$B_{n+1} = X \odot A_n$$

$$Y = X + B_n$$

9. Build the characteristic table

X	$\mathbf{A}_{\mathbf{n+1}}$	B_{n+1}
0	A_n	A_n
1	A _n `	A _n `

10. Design the output function according to #8

Engr. Ahmad M. Abdel-Hafeez

Question 7: Design and implement the following a sequential circuit with external output Y using D flipflops.

Solution:

- 1. # of external inputs = 0
- 2. # of external outputs = 1
- 3. # of flip-flops = max number of bits in states or need to store = $\frac{2}{3}$
- 4. # of D-flip-flop inputs = 2
- 5. Determine the number of outputs = 4 (2 for each D flip-flop)
- 6. Build the truth/state table (# of rows = # of combinations = 2# of total inputs)
 - a. Total inputs = # of external inputs + # of D-flip-flop inputs = 2
 - b. # of number of rows = 4

An	Bn	A _{n+1}	B _{n+1}	Y
0	0	0	1	1
0	1	0	0	1
1	0	1	1	0
1	1	0	0	0

- 7. Produce the output(s) (such as A_{n+1} , B_{n+1} , ...etc.)
- 8. Use K-Map (or anyway related) to simplify the next state output function and external output(s)

$$A_{n+1} = A_n \bullet B_n$$

$$B_{n+1} = B_n$$

$$Y = A_n$$

9. Design the output function according to #8

Engr. Ahmad M. Abdel-Hafeez

If you have any question, email us:

- 1. Engr. Ahmad M Abdel-Hafeez: akassem@nu.edu.eg or ahmadabdelhafeez1@gmail.com
- 2. Engr. Mohammad Rady: mrady@nu.edu.eg