Columbia MA Math Camp

Linear Algebra

Vinayak Iyer ^a

August 21, 2019

^aMaterial adapted from notes by David Thompson and Xingye Wu

Motivation

- Linear systems show up all the time in economics
 - Systems because we deal with more than one quantity at a time (multiple agents, multiple goods/prices, multiple choice variables, etc.)
 - Linearity sometimes comes naturally (e.g. budget constraints), and sometimes we impose it by necessity (fully nonlinear system too hard to analyze) i.e. we "linearize" the equations.
- Linear algebra provides tools for working with these kinds of systems: can we solve them? If so, how? Many different techniques
- My two cents: get comfortable with this section. It's important to be comfortable
 working with vectors and matrices "as a single object" it will save you notation
 and brain space (and computing time if you're into that kind of stuff)

Table of Contents

Vectors and Matrices

Elementary Operations

Linear Spaces

The Determinant

Vectors

The basic unit in linear algebra is a **vector**. A vector **v** is an element of \mathbb{R}^n : $\mathbf{v} = (v_1, v_2, ..., v_n)$, where each $v_i \in \mathbb{R}$. In these notes I will denote vectors with boldface, lowercase type.

Two basic operations on vectors are addition and scalar multiplication:

ullet Addition: for two vectors of the same length, ${f v}$ and ${f w}$

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, ..., v_n + w_m)$$

• Scalar multiplication: given a vector \mathbf{v} and a scalar $\alpha \in \mathbb{R}$

$$\alpha \mathbf{v} = (\alpha v_1, ..., \alpha v_n)$$

4

Inner Product

There's another common operation between vectors, known as the **inner product** (or dot product). For two vectors, $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, we have:

$$\mathbf{v}\cdot\mathbf{w}=\sum_{i=1}^n v_iw_i$$

You may also see the inner product written as $\langle \mathbf{v}, \mathbf{w} \rangle$.

While it's not immediately clear that the dot product is a useful notion, the following hints at its importance:

- $\|\mathbf{v}\|^2 = \sum_{i=1}^n v_i^2 = \mathbf{v} \cdot \mathbf{v}$, where $\|\cdot\|$ represents the **norm**, or length, of a vector.
- $d(\mathbf{v}, \mathbf{w})^2 = \sum_{i=1}^n (v_i w_i)^2 = (\mathbf{v} \mathbf{w}) \cdot (\mathbf{v} \mathbf{w}) = \|\mathbf{v} \mathbf{w}\|^2$

5

Cauchy-Schwarz

Theorem 1.1

(Cauchy-Schwarz) For any vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $|\mathbf{v} \cdot \mathbf{w}| \leq ||\mathbf{v}|| ||\mathbf{w}||$.

Proof.

We'll show this in \mathbb{R}^2 . The law of cosines tells us:

$$\|\mathbf{v} - \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\|\mathbf{v}\|\|\mathbf{w}\|\cos\theta$$

Note
$$\|\mathbf{v} - \mathbf{w}\|^2 = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w}) = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\mathbf{v} \cdot \mathbf{w}$$
. Simplify:

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta$$

The result follows since $\cos \theta \leq 1$

Cauchy-Schwarz (cont.)

In \mathbb{R}^n , we use Cauchy-Schwarz to define the angle between two vectors.

$$\cos\theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

We say two vectors are **orthogonal** to each other if $\mathbf{v} \cdot \mathbf{w} = 0$.

Inner product (cont.)

Let's note a few things about the inner product:

- The inner product is **symmetric**: $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
- The inner product is linear :

$$(\alpha \mathbf{v}) \cdot \mathbf{w} = \alpha (\mathbf{v} \cdot \mathbf{w})$$

 $(\mathbf{v} + \mathbf{z}) \cdot \mathbf{w} = \mathbf{v} \cdot \mathbf{w} + \mathbf{z} \cdot \mathbf{w}$

• The inner product is **positive definite**: $\mathbf{v} \cdot \mathbf{v} \geq 0$, with equality iff $\mathbf{v} = \mathbf{0}$

Q

Matrices

A matrix is just a rectangular array of numbers. An $m \times n$ matrix has m rows and n columns:

$$\mathbf{A} = (a_{ij})_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

A vector \mathbf{v} is a $n \times 1$ matrix (a column vector) or a $1 \times n$ matrix (a row vector).

Addition and scalar multiplication are defined just as with vectors:

$$\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})_{m \times n}, \quad \alpha \mathbf{A} = (\alpha a_{ij})_{m \times n}$$

۵

Addition and scalar multiplication

Matrix addition and scalar multiplication are well-behaved:

$$\begin{array}{rcl} \mathbf{A} + \mathbf{B} & = & \mathbf{B} + \mathbf{A} \text{ (commutative)} \\ \mathbf{A} + (\mathbf{B} + \mathbf{C}) & = & (\mathbf{A} + \mathbf{B}) + \mathbf{C} \text{ (associative)} \\ \mathbf{A} + \mathbf{0} & = & \mathbf{A} \text{ (zero element)} \\ \mathbf{A} + (-1)\mathbf{A} & = & \mathbf{0} \text{ (additive inverse)} \\ (\alpha + \beta)(\mathbf{A} + \mathbf{B}) & = & \alpha \mathbf{A} + \beta \mathbf{A} + \alpha \mathbf{B} + \beta \mathbf{B} \text{ (distributive)} \end{array}$$

Matrix Multiplication

Matrix multiplication is hugely useful, but a little strange at first glance. We do not simply multiply element-by-element.

Let **A** be an $m \times n$ matrix and **B** a $n \times p$ matrix. Their product, **C** = **AB** is the $m \times p$ matrix whose ij element is the inner product of the i-th row of **A** with the j-th column of **B**:

$$c_{ij} = \sum_{r=1}^{n} a_{ir} b_{rj}$$

- Matrices must be conformable: No. cols of A = no. rows of B
- Matrix multiplication lets us write inner products: $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w}$

Matrix Multiplication: Perspectives

- A collection of dot products
- Linear combinations of columns/rows
 - Let A_i denote the i-th column of A
 - If **A** is $m \times n$ and x is an $n \times 1$ vector, then:

$$\mathbf{A}\mathbf{x} = \mathbf{A}_1 x_1 + ... + \mathbf{A}_n x_n$$

• If **A** is $m \times n$ and **B** is $n \times p$:

$$AB = (AB_1 AB_2 \dots AB_p)$$

• A linear function: $f(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}^m$ with $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ where \mathbf{A} is an $m \times n$ matrix.

Matrix Multiplication: Properties

Matrix multiplication is generally well-behaved, with the important exception that it is not commutative.

- (AB)C = A(BC) (associative)
- A(B + C) = AB + AC (left distributive)
- (A + B)C = AC + BC (right distributive)
- $\bullet \ \ AB \neq BA \ \ \text{generally}$
- AB = 0 does not imply A or B is 0

Matrix Multiplication: Properties (cont.)

Matrices have an identity element:

$$(\mathbf{I}_n)_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- For any $m \times n$ matrix **A**, $\mathbf{AI}_n = \mathbf{I}_m \mathbf{A} = A$.
- For a square matrix A, if $AB = BA = I_n$, we call B the **inverse** of A, and write $B = A^{-1}$.

Matrix Multiplication: Why?

Why do we have such a strange definition for matrix multiplication? It's useful for representing **linear systems**. Consider:

$$2x_1 + x_2 = 3$$

 $x_1 + 2x_2 = 3$

We can write this as

$$\underbrace{\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}}_{\mathbf{A}} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{\mathbf{x}} = \underbrace{\begin{pmatrix} 3 \\ 3 \end{pmatrix}}_{\mathbf{b}}$$

Let's step back and think for a bit :

- Our goal is to find a tuple $(x_1, x_2) \in \mathbb{R}^2$ that satisfies both equations simultaneously.
- How do we know that a solution exists? Does it always? Can there be many?
- Is there a general method to solve linear systems, or must it be "by inspection" all the time?

Note: if we knew \mathbf{A}^{-1} we could find \mathbf{x} by calculating $\mathbf{A}^{-1}\mathbf{b}$. We'll come back to the question of how to (and when we can) find inverses of a square matrix

Matrices: Two Last Operations

The **transpose** of a $m \times n$ matrix **A**, written **A**' or **A**^T, is the $n \times m$ matrix with $a'_{ij} = a_{ji}$. A square matrix is **symmetric** if **A** = **A**'.

- $\bullet \ (\mathbf{A}')' = \mathbf{A}$
- $\bullet \ (\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$
- $(\alpha \mathbf{A})' = \alpha \mathbf{A}'$
- $\bullet \ (AB)' = B'A'$

The **trace** of a $n \times n$ matrix **A** is the sum of its diagonal elements:

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

A little more about the trace

Being able to manipulate traces effectively can make some calculations dramatically simpler. Here are a few useful properties to keep in mind :

- For a scalar α , $tr(\alpha) = \alpha$
- So long as **A** and **B** are conformable, the trace commutes:

$$tr(AB) = tr(BA)$$

The above implies that the trace is invariant under cyclic permutations:

$$tr(ABC) = tr(CAB) = tr(BCA)$$

Table of Contents

Vectors and Matrices

Elementary Operations

Linear Spaces

The Determinant

Approach to solving linear systems

Consider how you would solve the system

$$2x_1 + x_2 = 3$$

 $x_1 + 2x_2 = 3$

One solution might be:

- Add the second equation to the first: $3x_1 + 3x_2 = 6$
- Divide by 3: $x_1 + x_2 = 2$
- Subtract this equation from the second: $x_2 = 1$
- Insert $x_2 = 1$ into the first equation: $x_1 = 1$

So the solution is $(x_1, x_2) = (1, 1)$

Elementary row operations

The types of steps we just performed are called the **elementary row operations** for matrices.

- Switching two rows of a matrix
- Multiplying one row by a non-zero scalar
- · Adding a multiple of one row to another row

We could replicate the steps above in matrix notation:

$$\begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 3 & 6 \\ 1 & 2 & 3 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

The corresponding action for columns are called elementary column operations

Matrix representation for elementary operations

Switching

- Let T_{ij} to be the identity matrix with rows i, j switched; T_{ij}A is the matrix with rows i, j of A switched
- T_{ij} is its own inverse

Scalar multiplication

- Let $\mathbf{D}_i(\alpha)$ be the identity matrix with α on the *i*-th diagonal; $\mathbf{D}_i(\alpha)\mathbf{A}$ is the matrix with the *i*-th row multiplied by α
- $\mathbf{D}_i\left(\frac{1}{\alpha}\right)$ is the inverse of $\mathbf{D}_i(\alpha)$

Row addition

- Let $L_{i,j}(m)$ be the identity matrix with m in the (i,j) position; $L_{i,j}(m)\mathbf{A}$ is the matrix with m times row j added to row i
- $L_{ij}(-m)$ is the inverse of $L_{ij}(m)$

To get column operations, multiply on the right instead of on the left

Using row operations to solve linear systems

- Let R be some row operation.
- Since R is invertible, a vector x solves the system Ax = b iff it solves RAx = Rb
- To solve the system, we simply apply row operations on both sides until the solution is "easy" to read off
- What's "easy"? One common setup is row echelon form:
 - All non-zero rows are above all zero rows
 - The leading coefficient (first non-zero entry) of each row is strictly to the right of the leading coefficient of the prior row
- Another common setup is reduced row echelon form, which adds the following requirements:
 - All leading coefficients are 1
 - The leading coefficients are the only nonzero entries in their column

Using row operations to find inverses

- Finding a matrix inverse is the same as finding vectors \mathbf{x}_i such that $\mathbf{A}\mathbf{x}_i = \mathbf{e}_i$, the *i*-th canonical basis vector.
- So just solve all n equations at once using the augmented matrix $(A \mid I)$.

Example:

$$\begin{pmatrix}
2 & 1 & 1 & 0 \\
1 & 2 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 1 & 1 & 0 \\
2 & 4 & 0 & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 1 & 1 & 0 \\
0 & 3 & -1 & 2
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
2 & 1 & 1 & 0 \\
0 & 1 & -\frac{1}{3} & \frac{2}{3}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 0 & \frac{4}{3} & -\frac{2}{3} \\
0 & 1 & -\frac{1}{3} & \frac{2}{3}
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & 0 & \frac{2}{3} & -\frac{1}{3} \\
0 & 1 & -\frac{1}{3} & \frac{2}{3}
\end{pmatrix}$$

A note about column operations

- In general, column operations do not preserve the solutions of systems of equations. If Ax = b, can we say anything about ACx?
- Interestingly, we can use column operations to find inverses. This is due to the fact that left inverses are equal to right inverses, so if $R_n...R_1A = I$, then $AR_n...R_1 = I$
- Warning: do not mix and match column and row operations to find an inverse.

Table of Contents

Vectors and Matrices

Elementary Operations

Linear Spaces

The Determinant

Motivation

- Our ultimate goal is to understand the behavior of linear systems of equations
- To facilitate this, it's useful to develop a few concepts from linear spaces
- These phrases appear often enough that it's worth knowing what they are, even if you don't use them every day

Subspaces

Let $W \subseteq \mathbb{R}^n$. We say that W is a **vector subspace** or **linear subspace** of \mathbb{R}^n if:

- W contains 0
- W is closed under addition: $u, v \in W \Rightarrow u + v \in W$
- W is closed under scalar multiplication: $u \in W, \alpha \in \mathbb{R} \Rightarrow \alpha u \in W$

Linear Independence

Let $\mathbf{x}_1, ..., \mathbf{x}_k$ be k vectors in \mathbb{R}^n .

- A linear combination of $\mathbf{x}_1,...,\mathbf{x}_k$ is a vector $\lambda_1\mathbf{x}_1+...+\lambda_k\mathbf{x}_k$.
- The vectors $\mathbf{x}_1, ..., \mathbf{x}_k$ are **linearly dependent** if there exist numbers $c_1, ..., c_k$, not all equal to 0, such that

$$c_1\mathbf{x}_1+\ldots+c_k\mathbf{x}_k=\mathbf{0}$$

• If this equation only holds when $c_1 = ... = c_k = 0$ we say the vectors are **linearly** independent.

Linear Independence (cont.)

Proposition 3.1

Let $\mathbf{x}_1, ..., \mathbf{x}_k$ be linearly independent vectors and suppose there are 2 different representations of the same vector \mathbf{y} i.e.

$$\lambda_1 \mathbf{x}_1 + \ldots + \lambda_k \mathbf{x}_k = \mathbf{y} = \mu_1 \mathbf{x}_1 + \ldots + \mu_k \mathbf{x}_k$$

Then the representation is unique i.e. $\lambda_i = \mu_i$ for all i = 1, ..., k.

Proof: Move all terms to one side and so $\lambda_i - \mu_i = 0 \ \forall i \ \text{Note}$: This is a nice result

because any vector that is a linear combination of the x's can be written so in a unique way. Will use this property soon.

Corollary: If the columns of $\bf A$ are linearly independent, the system $\bf Ax=b$ has at most one solution.

Why? Note that you can think of the vector ${\bf b}$ as a linear combination of the columns of ${\bf A}$

Let $\mathbf{x}_1,...,\mathbf{x}_k$ be k vectors of \mathbb{R}^n . The **span** of $\mathbf{x}_1,...,\mathbf{x}_k$ is the collection of all linear combinations of $\mathbf{x}_1,...,\mathbf{x}_k$:

$$\mathsf{Span}(\mathbf{x}_1,...,\mathbf{x}_k) = \left\{\sum_{i=1}^k \lambda_i \mathbf{x}_i | \{\lambda_i\}_{i=1}^k \in \mathbb{R}^k
ight\}$$

Claim: the span of a collection of vectors is a vector subspace. (Why?)

Definition 3.1

Suppose W is a subspace of \mathbb{R}^n , and that $x_1,...,x_k$ has the following two properties:

- $Span(\mathbf{x}_1,\ldots,\mathbf{x}_k)=W$
- $\mathbf{x}_1, ..., \mathbf{x}_k$ are linearly independent

Then $x_1, ..., x_k$ is called a basis for W.

Notes:

- By our earlier result, every element of W can be uniquely written as a linear combination of elements of x₁,...,x_k
- If $\mathbf{w} = \lambda_1 \mathbf{x}_1 + \ldots + \lambda_k \mathbf{x}_k$, we call $\lambda_1, \ldots, \lambda_k$ the **coordinates** of w

In \mathbb{R}^n , we typically use the **canonical basis vectors**: $e_1=(1,0,\ldots,0)$, $e_2=(0,1,\ldots,0)$ and so on

Dimension

Proposition 3.2

Let $\mathbf{x}_1,...,\mathbf{x}_j$ be a basis for W. Then any collection of more than j vectors of W is linearly dependent.

Proof:

- Let $\mathbf{w}_1, ..., \mathbf{w}_k$ be a collection of vectors of W with k > j.
- By definition of a basis, $\mathbf{x}_1, ..., \mathbf{x}_j, \mathbf{w}_1$ are linearly dependent:

$$\lambda_1 \mathbf{x}_1 + \ldots + \lambda_j \mathbf{x}_j = w_1$$

with λ_i not all 0.

- WLOG, assume $\lambda_1 \neq 0$
- Claim: $\mathbf{w}_1, \mathbf{x}_2, ..., \mathbf{x}_j$ is a basis for W
- ullet Repeat this process j times, and we find $\mathbf{w}_1,\ldots,\mathbf{w}_j$ is a basis for W
- Therefore $\mathbf{w}_1, ..., \mathbf{w}_j, \mathbf{w}_{j+1}, ..., \mathbf{w}_k$ is linearly dependent

Dimension (cont.)

The result above has two nice corollaries. Let W be a subspace of \mathbb{R}^n :

- All bases of W have the same number of elements. This is called the **dimension** of W. For example in \mathbb{R}^2 , the basis has 2 elements For example, $e_1=(1,0)$ and $e_2=(0,1)$
- If W has dimension j, any collection of j linearly independent vectors of W forms a
 basis for W (proof: if it didn't, we could find a set of j + 1 linearly independent
 vectors)
- Note $\{0\}$ is subspace of \mathbb{R}^n . We say it has dimension 0.

Let $\mathbf{x}_1, \ldots, \mathbf{x}_k$ be a family of vectors of \mathbb{R}^n

- The rank of x_1, \ldots, x_k is the dimension of $Span(x_1, \ldots, x_k)$
- ullet Equivalently, the rank is the largest group of linearly independent vectors of ${f x}_1,\ldots,{f x}_k.$

Given an $m \times n$ matrix **A**, its rank, $r(\mathbf{A})$ is the rank of the columns of **A**, which are elements of \mathbb{R}^m .

- The span of the columns of A is also called the image of A or the column space of
 A. In other words it is the set of vectors that can be expressed as linear
 combinations of the columns of A
- Note $r(\mathbf{A}) \leq \min(m, n)$

Kernel

Definition 3.2 Let A be an $m \times n$ matrix. Define the kernel of A as

$$ker(A) \equiv \{\mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = \mathbf{0}\}$$

Claim: The kernel of **A** is a subpsace of \mathbb{R}^n (problem set)

Rank-Nullity Theorem

Theorem 3.1

Let **A** be an $m \times n$ matrix with rank k. Then the kernel of **A** is a subspace of \mathbb{R}^n with dimension n-k.

 Essentially implies that Rank of a Matrix + Nullity = Number of Columns of the Matrix

Calculating the rank

Consider a $m \times n$ matrix **A** as a collection of n columns vectors. We need one key result:

Proposition 3.3

The rank of A is unaffected by elementary row and column operations.

Proof.

It should be clear that column operations do not affect the dimension of column space of **A**. For row operations, note $\mathbf{RAx} = \mathbf{0} \Leftrightarrow \mathbf{Ax} = \mathbf{0}$, so row operations do not affect the kernel of A, so by the Rank-Nullity Theorem, the rank is preserved.

An implication of this theorem is that the rank of a matrix is equal to the rank of its transpose.

Calculating the rank (cont.)

There are two nice implications of this result:

- The rank of a matrix is the number of nonzero rows when in reduced row echelon form
- The rank of a matrix is equal to the rank of its transpose.
- Idea: row operations on ${\bf A}$ are column operations on ${\bf A}^T$ and vice-versa. Put ${\bf A}^T$ in reduced column echelon form

Results for square systems

Let **A** be an $n \times n$ matrix. The following are equivalent:

- (a) A is invertible
- (b) A is rank n (i.e. the columns of A are linearly independent)
- (c) The kernel of **A** is trivial: $ker(\mathbf{A}) = \{0\}$

We'll show (1) \Leftrightarrow (2). The fact that (2) \Leftrightarrow (3) is immediate.

- ⇒ : Assume A is invertible. Then Ax = 0 only has the trivial solution, so the columns of A are linearly independent, so A is rank n.
- \Leftarrow : Now assume **A** is rank *n*. The columns of **A** form a basis for \mathbb{R}^n , so there exist \mathbf{b}_i such that $\mathbf{A}\mathbf{b}_i = \mathbf{e}_i$. Let $\mathbf{B} = \begin{pmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_n \end{pmatrix}$. Then $\mathbf{A}\mathbf{B} = \mathbf{I}$

Finally, we need to show BA = I. You'll do this on your problem set.

Non-square, homogeneous systems

Let **A** be an $m \times n$ matrix and consider the equation $\mathbf{A}\mathbf{x} = \mathbf{0}$.

• From Rank-Nullity Theorem, $dim(ker(\mathbf{A})) = n - k$

Now let's suppose **A** is full rank:

- If m < n, $rank(\mathbf{A}) = m$, so $dim(ker(\mathbf{A})) = n m$. Idea: more unknowns than equations, so we get many solutions. n m free variables
- If $m \ge n$, $rank(\mathbf{A}) = n$, so $dim(ker(\mathbf{A})) = 0$.

Consider the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where \mathbf{A} is $m \times n$ with m > n and rank $r \leq n$

- Overconstrained system: more equations than unknowns
- Span of the columns of **A** is *r*-dimensional subspace of \mathbb{R}^m much "smaller" than \mathbb{R}^m . For most vectors **b**, a solution will not exist
- $\mathbf{A} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Then $\mathbf{A}\mathbf{x} = \begin{pmatrix} x \\ x \end{pmatrix}$
- For $\mathbf{b} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, there is no x that can satisfy both equations
- ullet This is similar to regression contexts: many observations and only a few parameters to match the data with. Focus on solutions that minimize $\| {f b} {f A} {f x} \|$.

Nonhomogeneous systems: m < n

Consider the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where \mathbf{A} is $m \times n$ with m < n

- Underconstrained system: more unknowns than equations
- If **A** is full rank, columns of **A** are a basis for \mathbb{R}^m , so a solution x^* exists
- However, for any $z \in ker(A)$, $A(x^* + z) = b$, so $x^* + z$ is also a solution
- Set of solutions is essentially n-m dimensional

This situation can also arise in regression settings, when the number of regressors exceeds the number of data points. Trick is to restrict the set of \mathbf{x} 's you consider.

Table of Contents

Vectors and Matrices

Elementary Operations

Linear Spaces

The Determinant

Motivation

Calculating matrix inverses is an important part of solving systems of equations. How do we know when an inverse exists? The **determinant** helps us answer this question.

Consider the 2×2 case. Let

$$\mathbf{A} = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

- This matrix is not invertible iff its columns are linearly dependent
- This happens iff $a = \lambda b$ and $c = \lambda d$ for some $\lambda \neq 0$
- This happens iff $\lambda ad = \lambda bc$, or if ad bc = 0

To check whether a 2×2 matrix is invertible, we simply calculate ad-bc and check whether it is 0. Therefore we define:

$$det(\mathbf{A}) \equiv |\mathbf{A}| = ad - bc$$

The Determinant

We won't prove this result, but there is a nice recursive formula for calculating determinants

Definition 4.1

Let A be an $n \times n$ matrix, and let A_{ij} denote the matrix formed by deleting the i-th row and j-th column of A. The determinant of A, det(A) or |A| is the real number defined recursively as:

- If n = 1 (that is, if $A = a_{11}$), $|A| = a_{11}$
- If $n \ge 2$, $|\mathbf{A}| = (-1)^{1+1} a_{11} |\mathbf{A}_{11}| + ... + (-1)^{1+n} a_{1n} |\mathbf{A}_{1n}|$

For a 3×3 matrix:

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$= a(ei - hf) - b(di - fg) + c(dh - eg)$$

Determinant: Properties

- If two rows (columns) of **A** are interchanged, |A| changes sign
- If a row (column) of $\bf A$ is multiplied by c, |A| is multiplied by c
- \bullet If a multiple of one row (column) is added to another row (column), |A| is unchanged
- If two rows (columns) of **A** are proportional, |A| = 0
- |AB| = |A||B|
- $|\mathbf{A}'| = |\mathbf{A}|$
- \mathbf{A}^{-1} exists iff $|A| \neq 0$
- There's actually an explicit formula for ${\bf A}^{-1}$ (FMEA Section 1.1); the only one worth memorizing is the 2 \times 2 case

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \underbrace{\frac{1}{ad - bc}}_{|\mathbf{A}|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Cramer's Rule

Proposition 4.1

Consider the system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ where \mathbf{A} is a $n \times n$ matrix. If \mathbf{A} is invertible, then

$$x_j = \frac{|\mathbf{A}_j|}{|\mathbf{A}|}$$

where \mathbf{A}_{j} is the matrix with \mathbf{b} in place of the j-th column of \mathbf{A} .

Proof.

Define

$$X_{1} = \begin{pmatrix} x_{1} & 0 & \dots & 0 \\ x_{2} & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ x_{n} & 0 & \dots & 1 \end{pmatrix}$$

We see $x_1 = det(X_1)$. Note also that $\mathbf{A}X_1 = \mathbf{A}_1$. Taking determinants on both sides gives $det(\mathbf{A})det(X_1) = det(\mathbf{A}_1)$.