Home / CRAN / adagio / testfunctions: Optimization Test Functions

testfunctions: Optimization Test Functions

Description

Simple and often used test function defined in higher dimensions and with analytical gradients, especially suited for performance tests. Analytical gradients, where existing, are provided with the <code>gr</code> prefix. The dimension is determined by the length of the input vector.

Usage

```
1
       fnRosenbrock(x)
 2
       grRosenbrock(x)
       fnRastrigin(x)
 3
 4
       grRastrigin(x)
 5
       fnNesterov(x)
       grNesterov(x)
 6
 7
       fnNesterov1(x)
 8
       fnHald(x)
9
       grHald(x)
       fnShor(x)
10
11
       grShor(x)
```

Arguments

x numeric vector of a certain length.

Details

Rosenbrock – Rosenbrock's famous valley function from 1960. It can also be regarded as a least-squares problem:

$$\sum_{i=1}^{n-1} (1-x_i)^2 + 100 (x_{i+1}-x_i^2)^2$$

No. of Vars.: $n \ge 2$

Bounds: $-5.12 \le xi \le 5.12$ Local minima: at f(-1, 1, ..., 1) for $n \ge 4$

Minimum: 0.0

Solution: xi = 1, i = 1:n

Nesterov – Nesterov's smooth adaptation of Rosenbrock, based on the idea of Chebyshev polynomials. This function is even more difficult to optimize than

rdrr.io Home R Docs Packages Snippets R Notebooks

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.

package title, doc text, source code...

1/18/2017

No. of Vars.: $n \ge 2$

Bounds: -5.12 <= xi <= 5.12

Local minima: ?
Minimum: 0.0

Solution: xi = 1, i = 1:n

Rastrigin – Rastrigin's function is a famous, non-convex example from 1989 for global optimization. It is a typical example of a multimodal function with many local minima:

$$10 n + \sum_{i=1}^{n} (x_i^2 - 10 \cos(2 \pi x_i))$$

No. of Vars.: $n \ge 2$

Bounds: -5.12 <= xi <= 5.12

Local minima: many Minimum: 0.0

Solution: xi = 0, i = 1:n

Hald – Hald's function is a typical example of a non-smooth test function, from Hald and Madsen in 1981.

$$\max_{1 \le i \le n} \frac{1 \le i \le n}{1 + x_2 t_i}{1 + x_3 t_i + x_4 t_i^2 + x_5 t_i^3} - \exp(t_i)$$

where $t_i = -1 + (i - 1)/10$ for $1 \le i \le 21$.

No. of Vars.: n = 5

Bounds: -1 <= xi <= 1

Local minima:?

Minimum: 0.0001223713

Solution: (0.99987763, 0.25358844, -0.74660757, 0.24520150, -0.03749029) **Shor** – Shor's function is another typical example of a non-smooth test function, a benchmark for Shor's R-algorithm.

Value

Returns the values of the test function resp. its gradient at that point. If an analytical gradient is not available, a function computing the gradient numerically will be provided.

References

Search the Internet.

Examples

rdrr.io

Packages

Snippets

R Notebooks

Powered by Google

Visual Analysis Guide

Ad tableau.com

Ron Paul's Gold Warning

Ad Stansberry Research

dygraphs: dygraph options

rdrr.io

LiveWatch Home Security - No. 1 home security

Ad pages.livewatch.com

Graph Edge Computations for Sp Point Patterns

rdrr.io

spatgraphs: Compute the edges of spatial graph

rdrr.io

wildlifeDI: Half-weight Association

rdrr.io

pomp: IF2: Maximum likelihood by iterated, perturbed Bayes maps

rdrr.io

Network Analysis and Visualizatic

rdrr.io

igraph: The Reingold-Tilford grapl algorithm

rdrr.io

RClone: export data file to Adege Genetix and Arlequin

rdrr.io

tidyr: Spread a key-value pair acremultiple columns.

rdrr.io

package title, doc text, source code...

rdrr.io

Home

R Docs