Attention Based Image Captioning in a Merge Architecture

W266 Final Project
Catherine Cao

What is Image Captioning?

"Image caption generation is the task of generating a natural language description of the content of an image." (Bernardi et al., 2016)

The General Approach

Encoder

Decoder

Inject vs. Merge Architecture

Inject Architecture

Merge Architecture

Attention Mechanism in Image Captioning

Data

COCO 2014 Dataset Training Set: 82,723 images, 5 captions per image Total of 414,114 unique image/captions

- Training: 30,000 images with unique captions
- Validation: 5,000 images with unique captions
- Test: 5,000 images with unique captions

A giraffe eating food from the top of the tree.
A giraffe standing up nearby a tree
A giraffe mother with its baby in the forest.
Two giraffes standing in a tree filled area.
A giraffe standing next to a forest filled with trees.

Model

Encoder

Last layer of InceptionV3 ImageNet model as input (8, 8, 2048) -> fully connected layer to (8, 8, 200) Attention is given to the 8x8 grid

Decoder

Word embeddings with 200 dimensions Single GRU layer with 512 units Two fully connected layer with softmax at the end

Attention in Inject Architecture

Hidden state of GRU as query to attend over the 8x8 grid of image matrix Resulting context vector is concatenated to original hidden state

Attention in Merge Architecture

Output from GRU as query to attend over the 8x8 grid of image matrix Resulting context vector is concatenated to output vector

Pre-trained Word Embeddings

- GloVe embeddings with 200 dimensions were used without further fine tuning
- Pre-trained embeddings improved results by 27% on average

Beam Search

- A length-weighted beam search is implemented at inference to predict captions
- Probability of the entire sequence is calculated as:

$$P_{sequence} = \frac{\sum_{i=0}^{n} log(P_i)}{n}$$

- Beam search k=3 improves results by 8%
- Higher value of k has diminishing returns

Results

Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	ROUGE-L	CIDEr
Attention Inject Baseline	0.3531	0.2327	0.1459	0.0889	0.1621	0.3852	0.4225
Attention Inject w/ GloVe ²	0.4797	0.3170	0.1969	0.1185	0.1648	0.3940	0.4124
Attention Inject w/ GloVe Beam-3	0.4894	0.3211	0.2053	0.1272	0.1664	0.3860	0.4232
Attention Inject w/ GloVe Beam-5	0.4737	0.3069	0.1955	0.1196	0.1649	0.3791	0.4112
Attention Merge Baseline	0.2582	0.1560	0.0914	0.0518	0.1216	0.3001	0.2614
Attention Merge w/ GloVe ³	0.3295	0.2164	0.1356	0.0827	0.1395	0.3486	0.3319
Attention Merge w/ GloVe Beam-3	0.3937	0.2595	0.1679	0.1043	0.1432	0.3523	0.3549
Attention Merge w/ GloVe Beam-5	0.3787	0.2455	0.1583	0.0986	0.1393	0.3424	0.3392

- Inject architecture outperforms merge architecture in the attention framework
- Pre-trained embeddings greatly improves results and reduces training time
- Beam search with k=3 has the most benefit, k=5 has diminishing returns

Results

200

250

True Caption: <start> a boy smiling over a birthday cake on a kitchen counter <end> Predicted Caption: a man holding a cake with candles on a cake <end>

Results

Discussion

- Why does merge architecture not work well in attention framework?
- Captions with persistent phrases repeating itself
- Leverage pre-trained RNN in merge architecture
- How are the two architectures related to how human process image/text?
- Future works
 - Train on more data
 - Embeddings with context, e.g. BERT
 - Hyper-parameter tuning
 - Other evaluation metrics that measure diversity of words

Questions?

