

What is claimed is:

1. A process for the preparation of a compound of Formula (I)

5

wherein

X and Y are each independently selected from the group consisting of H, Cl, Br, I and R¹;

10 R¹ is substituted or unsubstituted alkyl, alkenyl or (CH₂)_nCOR²;

n is an integer from 1 to 10;

R² is OH, OR³ or NH₂; and

15 R³ is substituted or unsubstituted alkyl, alkenyl, C₃₋₇cycloalkyl or substituted or unsubstituted aryl;

by stereoselective reduction of a compound of Formula (II)

wherein

X and Y are each independently selected from the group consisting of H, Cl, Br, I and R¹;

20 R¹ is substituted or unsubstituted alkyl, alkenyl, or (CH₂)_nCOR²;

n is an integer from 1 to 10;

R² is OH, OR³ or NH₂; and

R^3 is substituted or unsubstituted alkyl, alkenyl,
 C_{3-7} cycloalkyl or substituted or unsubstituted
 aryl;

5 by reaction with an oxidoreductase enzyme capable of catalyzing the
 enzymatic reduction of ketones represented by Formula (II).

2. A process for the preparation of a compound of Formula (I)

10 wherein

X and Y are each independently selected from the group consisting of H, Cl, Br, I and R^1 ;

R^1 is substituted or unsubstituted alkyl, alkenyl, or $(CH_2)_nCOR^2$;

15 n is an integer from 1 to 10;

R^2 is OH, OR³ or NH₂; and

R^3 is substituted or unsubstituted alkyl, alkenyl,
 C_{3-7} cycloalkyl or substituted or unsubstituted
 aryl;

20 by stereoselective reduction of a compound of Formula (II)

wherein

X and Y are each independently selected from the group consisting of H, Cl, Br, I and R^1 ;

R¹ is substituted or unsubstituted alkyl, alkenyl or (CH₂)_nCOR²;

n is an integer from 1 to 10;

R² is OH, OR³ or NH₂; and

5

R³ is substituted or unsubstituted alkyl, alkenyl, C₃₋₇ cycloalkyl or substituted or unsubstituted aryl;

10

comprising reacting said compound of Formula (II) with a microorganism that supplies an oxidoreductase enzyme capable of catalyzing the enzymatic reduction of ketones represented by Formula (II).

3. The process of claim 1 wherein said oxidoreductase enzyme is the *Pichia methanolica* ketoreductase of Figure 1 as expressed in *Escherichia coli*.
- 15 4. The process of claim 2 wherein said microorganism that supplies an oxidoreductase enzyme is selected from the group consisting of *Pichia methanolica* ATCC 56510, *Pichia methanolica* ATCC 56508 and *Pichia methanolica* ATCC 58403 and wherein said oxidoreductase is a ketoreductase.