1. If
$$\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$
 is an eigenvalue of $A = \begin{bmatrix} a & 2 & -2 \\ 2 & b & 0 \\ -2 & 0 & 7 \end{bmatrix}$, find the value for a, b .

Sol:
$$A \overrightarrow{v} = \lambda \overrightarrow{v}$$
 if \overrightarrow{v} is an eigenvector of A .

$$|A \overrightarrow{v}| = \lambda \overrightarrow{v}$$

$$|A \overrightarrow$$

To find all eigenvalues & eigenvectors of A.

$$\begin{aligned}
&\text{det} \left(A - \lambda I \right) = 0 \\
&= \text{det} \left(\frac{6 - \lambda}{2} + \frac{\lambda}{2} - \frac{\lambda}{2} \right) = -2 \left| \frac{\lambda}{5} - \frac{\lambda}{2} \right| + \left(\frac{\lambda}{2} - \frac{\lambda}{2} \right) \\
&= -2 \left| 0 + 2 \left(\frac{5}{5} - \frac{\lambda}{2} \right) \right| + \left(\frac{\lambda}{2} - \frac{\lambda}{2} \right) - 4 \right|.
\end{aligned}$$

$$= -2 \left(0 + 2 (5-\lambda_1) + (7-\lambda) \left((6-\lambda)(5-\lambda) - 4 \right) \right)$$

$$= -\lambda^3 + [8\lambda^2 - 99\lambda + 8 \cdot 18]$$

$$= (\lambda - 3) \left(-\lambda^2 + [5\lambda - 54) \right)$$

$$= (\lambda - 3) \left(-(\lambda - 6) (\lambda - 9) \right)$$

$$\lambda_2 = 6$$

$$\lambda_3 = 9$$

$$= (\lambda - 3) (-(\lambda - 6) (\lambda - 9))$$

$$\frac{1}{2} + \frac{15}{2} - \frac{54}{45} + \frac{162}{2} - \frac{15}{45} + \frac{162}{2} - \frac{15}{45} + \frac{162}{2} - \frac{162}{24} + \frac{162}{2}$$

A is orthogonally diagonalizable.
$$A = PDP^T$$
,

$$P = \begin{pmatrix} 2 & 1 & -1 \\ -2 & 1 & -1 \end{pmatrix}$$

$$A = PDP^T$$

- 2. It is given the symmetric matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.
- (a) find the eigenvalues of A; (b) find the eigenvectors corresponding to each of these eigenvalues; A=PDPT
 - (c) find an orthogonal matrix P such that $P^{T}AP$ gives a diagonal matrix D and calculates
 - (d) Determine the eigenvalues of the matrix $B = A^5 + (A^2)^{\top}$

$$B = A^{5} + (A^{2})^{7}$$

$$= (PDP^{7})^{5} + (PDP^{7})^{2}$$

$$= (PDP^{7})^{5} + (PDP^{7})^{7}$$

$$= (PDP^{7})^{7} + (PD^{7})^{7}$$

$$= PD^{5}P^{7} + (PD^{2}P^{7})^{7}$$

$$= PD^{5}P^{7} + PD^{2}P^{7}$$

$$= P(D^{7}+D^{2})P^{7}$$

$$= P(D^{7}+D^{2})P^{7}$$

$$= P(D^{7}+D^{2})P^{7}$$

$$= P(D^{7}+D^{2})P^{7}$$

$$= P(D^{7}+D^{2})P^{7}$$

$$= P(D^{7}+D^{2})P^{7}$$

eigenvalues of B are 2 12, 35+32

3. A quadratic form Q in the components x_1, \ldots, x_n of a vector $\vec{x} = [x_1, \ldots, x_n]^{\top}$ with symmetric coefficient matrix $A = (a_{ij})_{1 \leq i,j \leq n}$ is defined to be

$$Q(\vec{x}) := \vec{x}^{\top} A \vec{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j.$$

Determine whether each of the following quadratic forms in two variables is positive or negative

definite or semidefinite, or indefinite.

(a)
$$3x_1^2 + 8x_1x_2 - 3x_2^2$$
.

(b) $9x_1^2 + 6x_1x_2 + x_2^2$. $= (x_1, x_2) \begin{pmatrix} x_1 \\ 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} \begin{pmatrix} x_1 \\$

4. Determine the values of a for which the quadratic form $x^2 + 2xz + y^2 + 2ayz + 2z^2$ is positive definite.

definite.

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & a \\ 1 & a & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & a \\ 1 & a & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & a \\ 0 & 1 & a \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & a \\$$

5. Find the limit of f as $(x,y) \to (0,0)$ or show that the limit does not exist.

$$f(x,y) = \frac{2x}{x^2 + x + y^2}$$

$$\ell_1 = \{(x,0), x>0\} \qquad x-\alpha xis$$

$$\ell_2 = \{(0,3), y>0\} \qquad \mathcal{J}-\alpha xis$$

$$\lim_{(x,y) \xrightarrow{\ell} (0,0)} \frac{2x}{x^{\ell} + x + y^{\ell}} = \lim_{x \to 0} \frac{2x}{x^{\ell} + x + 0} = \lim_{x \to 0} \frac{2x}{$$

6. Let

$$f(x,y) = \left\{ \begin{array}{ll} 0, & xy \neq 0 \\ 1, & xy = 0 \end{array} \right. \quad \text{one of juputs is 0}.$$

- (a) Find the limit of f as (x, y) approaches (0, 0) along the line y = x.
- (b) Prove that f is not continuous at the origin.
- (c) Show that both partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ exist at the origin.

a)
$$\lim_{(x,y) \xrightarrow{\ell} (0,0)} f(x,y) = \lim_{x \to 0} f(x,x) = \lim_{x \to 0} f(x,x) = 0$$

$$\lim_{(x,y) \xrightarrow{\ell} (0,0)} f(x,y) = \lim_{x \to 0} f(x,x) = 0$$

b)
$$f(o,o) = 1 + \lim_{(x,j) \to (o,o)} f(x,y) \Rightarrow f$$
 is not continues

C)
$$\frac{\partial f(0,0)}{\partial x} = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{1 - 1}{x} = 0$$

7. It is given that
$$f(x,y) = x \cos y + ye^x$$
. Find all the first and second order partial derivatives of f ,

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial y \partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$.

8. Suppose
$$2z^3 - 2yz + x^2 = 1$$
 determines the function $z = z(x, y)$ as a function of x, y locally at $(x, y, z) = (1, 1, 1)$.

$$(x,y,z) = (1,1,1).$$
 (a) Find the linear approximation of z at $(x,y,z) = (1,1,1)$

(b) Find the quadratic surface approximation of z at
$$(x, y, z) = (1, 1, 1)$$
,

Find the quadratic surface approximation of
$$z$$
 at $(x, y, z) = (1, 1, 1)$.

Take $\frac{2}{\partial x}$ for both sidel, treating y as constant x y .

Heating z as function in

$$\frac{\partial}{\partial x} \left(2 \frac{2^3}{2^3} - 2 \frac{1}{2} + x^2 \right) = \frac{\partial}{\partial x} 1$$

$$\Rightarrow 6 \frac{\partial^2}{\partial x} - 2 \frac{\partial^2}{\partial x} + 2 = 0 \Rightarrow \frac{\partial^2}{\partial x}(1,1) = -\frac{7}{4}$$

$$\int_{-1}^{2} \frac{\partial^2}{\partial x^2} dx = 0$$

$$\frac{\partial}{\partial y} \left(2 + \frac{1}{2} - 2 + \frac{1}{2} + \frac{1}{2} \right) = \frac{\partial}{\partial y}$$

$$=) 2.32^{2}.\frac{32}{39}-2.(\frac{37}{39}.2+9.\frac{32}{39})+0=0$$

$$\frac{\partial z}{\partial y}(1,1) = \frac{z}{4}$$

$$L(x,j) = \frac{1}{2}(x-1) + \frac{2}{3}(x-1) + \frac{2}{3}(y-1)$$

$$= \frac{1}{2}(x-1) + \frac{1}{2}(y-1)$$

- 9. It is given that $f(x,y) = e^{2x} \sin 2y$.
 - (a) Use Taylor's formula to find a linear approximation of f(x,y) at the origin.
 - (b) Estimate the error in the linear approximation if $|x| \le 0.1$ and $|y| \le 0.1$.

10. Find the stationary points of the function $f(x,y) = xye^{-(x^2+2y^2)}$ and determine their nature. Solution. From,

$$f_x = y(1 - 2x^2)e^{-x^2 - 2y^2} = 0, \quad f_y = x(1 - 4y^2)e^{-x^2 - 2y^2} = 0.$$

which is equivalent to solving $y(1-2x^2)=0$ and $x(1-4y^2)=0$. We get

$$\begin{cases} y = 0 \text{ or } x = \pm \frac{1}{\sqrt{2}}, \\ x = 0 \text{ or } y = \pm \frac{1}{2}. \end{cases}$$

Hence, stationary points are $(0,0), (\frac{1}{\sqrt{2}},\frac{1}{2}), (\frac{1}{\sqrt{2}},-\frac{1}{2}), (-\frac{1}{\sqrt{2}},\frac{1}{2}), (-\frac{1}{\sqrt{2}},-\frac{1}{2}).$

Note that

$$f_{xx} = 2xy(2x^2 - 3)e^{-x^2 - 2y^2},$$

$$f_{yy} = 4xy(4y^2 - 3)e^{-x^2 - 2y^2},$$

$$f_{xy} = (1 - 2x^2)(1 - 4y^2)e^{-x^2 - 2y^2}.$$

Then,

$$D = f_{xx}f_{yy} - f_{xy}^2 = e^{-2x^2 - 4y^2} [8x^2y^2(2x^2 - 3)(4y^2 - 3) - (1 - 2x^2)^2(1 - 4y^2)^2].$$

We have Table 1 showing the nature of the stationary points.

point	f_{xx}	f_{yy}	f_{xy}	$D = f_{xx}f_{yy} - f_{xy}^2$	Nature
(0,0)	0	0	1	-1 < 0	saddle point
$\left(\frac{1}{\sqrt{2}},\frac{1}{2}\right)$	$\frac{-\sqrt{2}}{e} < 0$	$\frac{-2\sqrt{2}}{e}$	0	$\frac{4}{e^2}$	local max.
$(\frac{1}{\sqrt{2}}, -\frac{1}{2})$	$\frac{\sqrt{2}}{e} > 0$	$\frac{2\sqrt{2}}{e}$	0	$\frac{4}{e^2}$	local min.
$(-\frac{1}{\sqrt{2}}, \frac{1}{2})$	$\frac{\sqrt{2}}{e} > 0$	$\frac{2\sqrt{2}}{e}$	0	$\frac{4}{e^2}$	local min.
$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{2}\right)$	$\frac{-\sqrt{2}}{e} < 0$	$\frac{-2\sqrt{2}}{e}$	0	$\frac{4}{e^2}$	local max.

Table 1: Table for Q3

- 11. Let $f(x,y) = x^2 xy + y^2 y$. Find the directions \vec{u} and the values of $D_{\vec{u}}f(1,-1)$ for which
- Dif(1,+)= \(\frac{\hat{u}}{\pi}\) \(\frac{\hat{u}}{\pi
- $\nabla f(1,-1) = (f_{x}, f_{y})\Big|_{x=1}$ $= (2x-y, -x+2y-1) |_{x=1}$ = (3, -4)
 - c). $\dot{u} = \frac{(-4, 3)}{(-4, -4)}$

- 12. Find eigenvalues and eigenvectors of $A = \begin{bmatrix} 13 & 5 & 2 \\ 2 & 7 & -8 \\ 5 & 4 & 7 \end{bmatrix}$.
- 13. If $\begin{pmatrix} 3 \\ 4 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvalue of $A = \begin{bmatrix} -1 & 0 & 12 & 0 \\ 0 & c & 0 & 12 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & -4 & -1 \end{bmatrix}$. Determine the value for c and find