UPGRADE TO PRO ✔	≡
Step-by-Step Solutions with Pro Get a step ahead with your homew	vork
STEP 2 The humor 2 for som in -2 are -1 and -2 are	
FROM THE MAKERS OF WOLFRAM LANGUAGE AND MATHEMATICA WOLFRAM LANGUAGE AND MATHEMATICA	
e^ipi	
	<u>*</u> *
+ Assuming i is the imaginary unit	
Input	
$e^{i\pi}$	*
	(i)
Result -1	rite
Step-by-step solution	•
■ WolframlAlpha Step-by-step solution	×
Result:	
SIMPlify the following:	
$e^{i\pi}$	
Hint: Evaluate $e^{i\pi}$.	
To unlock the full solution	
Go Pro Now	
Learn more about Wolfram Alpha Pro »	
Already have Pro? Sign in »	
Number line	
Number line -1.5 -1.0 -0.5	
Alternative representations	*
$e^{i\pi} = (-1)^{-ii}$	*
$e^{i\pi}=e^{180^{\circ}i}$ $e^{i\pi}=e^{-i^2\log(-1)}$	\$
$e^{i\pi} = e^{i\pi} = \exp^{i\pi}(z)$ for $z = 1$	*
$e^{i\pi} = \exp^{i180\circ}(z)$ for $z=1$	*
$e^{i\pi} = e^{2i^2 \log((1-i)/(1+i))}$	*
$e^{i\pi} = \exp^{i(-i)\log(-1)}(z) \text{ for } z = 1$ $e^{i\pi} = \exp^{i2\left(i\log\left(\frac{1-i}{1+i}\right)\right)}(z) \text{ for } z = 1$	‡
$e^{x} = \exp^{-(x+t)/t}(z) \text{ for } z = 1$ Less	*
	()
Series representations	
$e^{i\pi} = \left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4i\sum_{k=0}^{\infty} (-1)^k / (1+2k)}$	
$e^{i\pi} = \left(\sum_{k=0}^{\infty} \frac{(-1+k)^2}{k!}\right)^{4i\sum_{k=0}^{\infty} (-1)^k / (1+2k)}$	**
	*
$e^{i\pi} = \left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{i\sum_{k=1}^{\infty} 4^{-k} \left(-1+3^{k}\right) \zeta(1+k)}$	‡
$e^{i\pi} = \left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^k}{k!}}\right)^{4i\sum_{k=0}^{\infty} (-1)^k / (1+2k)}$	
	*
$e^{i\pi} = \left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4i\sum_{k=1}^{\infty} \tan^{-1}\left(1/F_{1+2k}\right)}$	‡
$e^{i\pi} = \left(\sum_{k=0}^{\infty} \frac{(-1+k)^2}{k!}\right)^{4i\sum_{k=1}^{\infty} \tan^{-1}\left(1/F_{1+2k}\right)}$	
$\frac{\left(\sum_{k=0}^{\infty} k!\right)}{\left(\sum_{k=1}^{\infty} 4^{-k} \left(-1+3^{k}\right) \zeta(1+k)\right)}$	*
$e^{i\pi} = \left[\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^k}{k!}}\right]^{-k-1}$	•
$ \left(\frac{1}{1} \right)^{4i\sum_{k=1}^{\infty} \tan^{-1}\left(1/F_{1+2k}\right)} $	-
$e^{i\pi} = \left[\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^k}{k!}}\right]^{-k=1}$	‡
Less	
	(i)
Integral representations $e^{i\pi}=e^{2i imes\int_0^\infty 1/\left(1+t^2 ight)dt}$	
$e^{i\pi} = e^{4i \int_0^1 \sqrt{1-t^2} \ dt}$	** **
$e^{i\pi} = e^{2i\int_0^\infty \sin(t)/tdt}$	‡
$\frac{e^{i\pi} = e^{2i\int_0^\infty \sin^2(t)/t^2 dt}}{e^{i\pi} = e^{3i\int_0^\infty \sin^4(t)/t^4 dt}}$	‡
$e^{i\pi} = e^{-30}$ $e^{i\pi} = e^{(8i)/3} \int_0^{\infty} \sin^3(t)/t^3 dt$	*
$e^{i\pi} = e^{(40i)/11 \int_0^\infty \sin^6(t)/t^6 dt}$	*
$e^{i\pi} = e^{(384 i)/115 \int_0^\infty \sin^5(t)/t^5 dt}$	‡
Less	
	(i)
▶ Download Page	
Related Queries: e^(i x)	=
CAPTCHA exp(i π)	=
how old would Daniel Bernoulli be today?	<u> </u>
pi^(i e)	=
Euler identities	=
Give us your feedback »	
Have a question about using Wolfram Alpha? Contact Pro Premium Expert Support »	
contact i to riemium expert Support »	
Pro Mobile Apps	
Products Business API LLM About Contact ■	
©2025 Wolfram Terms Privacy	