

MATEMATICA I SECCIÓN: U1

CLASE N° 20

- Derivadas
 - Pendiente de la recta tangente.
 - Interpretación física de la derivada.
 - Derivada de una función.
 - Derivadas laterales.
 - Derivabilidad y continuidad.
 - Ejercicios

Derivadas

Pendiente de la Recta Tangente. (Interpretación geométrica de la Derivada).

La derivada se define como la pendiente de la recta tangente a la función f(x) en el punto x_0 .

Cuando calculamos la derivada en un punto (x_0) estamos calculando la pendiente de la Recta Tangente a la función f(x) en x_0 .

Supongamos que deseamos encontrar la ecuación de la Recta Tangente al gráfico de la función y = f(x) en el punto $P(x_0, f(x_0))$.

La pendiente de la recta secante al gráfico de f en los puntos $P(x_0, f(x_0))$ y $Q(x_0 + h, f(x_0 + h))$ es la razón:

$$m_{sec} = \frac{f(x_0+h)-f(x_0)}{(x_0+h)-x_0} = \frac{f(x_0+h)-f(x_0)}{h}$$
 (Razón de cambio promedio)

Si h tiende a cero $(h \to 0)$, geométricamente podemos observar que el punto Q (móvil) se acerca al punto P (fijo) y la recta secante tiende a la recta tangente. Con base en esta idea geométrica, la pendiente de la tangente de y = f(x) en el punto P se obtendrá como el valor límite del cociente (razón) anterior, cuando h tienda a cero, es decir:

$$m_{tan} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Si este límite existe y es finito recibe el nombre de derivada de f en x_0 .

Se denota por:
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 y se dirá que f es derivable en x_0 . (Razón de cambio instantánea)

Ejemplo:

Determine la pendiente de la recta tangente a la función $f(x) = 2x^2 + 3x$ cuando $x = -\frac{2}{3}$

Solución:

El valor numérico de la función para $x = -\frac{2}{3}$ es:

$$f\left(-\frac{2}{3}\right) = 2\left(-\frac{2}{3}\right)^2 + 3\left(-\frac{2}{3}\right)$$

$$\Rightarrow f\left(-\frac{2}{3}\right) = 2\left(\frac{4}{9}\right) - 2 \iff \frac{8}{9} - 2 = -\frac{10}{9}$$

Es decir,
$$f\left(-\frac{2}{3}\right) = -\frac{10}{9}$$

Así,

$$f'\left(-\frac{2}{3}\right) = \lim_{h \to 0} \frac{f\left(-\frac{2}{3} + h\right) - f\left(-\frac{2}{3}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right)^2 + 3\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{9}\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{3} + h\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{3} + h\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{3} + h\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{3} + h\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right) - \left(-\frac{10}{3} + h\right)}{h} = \lim_{h \to 0} \frac{2\left(-\frac{2}{3} + h\right)}{h} = \lim_{h \to 0} \frac{2$$

$$\lim_{h \to 0} \frac{2\left(\frac{4}{9} - \frac{4}{3}h + h^2\right) - 2 + 3h + \frac{10}{9}}{h} = \lim_{h \to 0} \frac{\frac{8}{9} - \frac{8}{3}h + 2h^2 - 2 + 3h + \frac{10}{9}}{h}$$

$$= \lim_{h \to 0} \frac{2h^2 + \frac{h}{3}}{h} = \lim_{h \to 0} \frac{h\left(2h + \frac{1}{3}\right)}{h}$$

$$= \lim_{h \to 0} 2h + \frac{1}{3} = 2(0) + \frac{1}{3} = \frac{1}{3}$$

Por lo tanto, la pendiente de la curva en el punto $A\left(-\frac{2}{3}, -\frac{10}{9}\right)$ tiene un valor de $\frac{1}{3}$

INTERPRETACIÓN FÍSICA DE LA DERIVADA.

Interpretación física de la derivada

Si f(t) representa la posición instantánea de una partícula que se mueve en línea recta, entonces, la velocidad promedio en el intervalo de tiempo [t, t+h] viene dada por:

$$Vp = \frac{f(t+h) - f(t)}{(t+h) - t} = \frac{f(t+h) - f(t)}{h}$$

y la velocidad instantánea es el límite cuando el tiempo transcurrido tiende a cero $(h \rightarrow 0)$. Es decir:

$$V(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h} = f'(t)$$

INTERPRETACIÓN FÍSICA DE LA DERIVADA.

Ejemplo:

Suponga que un objeto se mueve a lo largo de un eje coordenado de modo que su distancia dirigida después de t segundos es $\sqrt{2t+1}m$.

- a) Encuentre su velocidad instantánea en $t = \alpha$, $\alpha > 0$
- b) Cuando alcanzará una velocidad de $\frac{1}{2}$ m/s

a)
$$V(\alpha) = \lim_{h \to 0} \frac{f(\alpha+h) - f(\alpha)}{h} = \lim_{h \to 0} \frac{\sqrt{2(\alpha+h) + 1} - \sqrt{2\alpha + 1}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{2\alpha + 2h + 1} - \sqrt{2\alpha + 1}}{h}$$

$$= \lim_{h \to 0} \frac{(\sqrt{2\alpha + 2h + 1} - \sqrt{2\alpha + 1})}{h} \cdot \frac{(\sqrt{2\alpha + 2h + 1} + \sqrt{2\alpha + 1})}{(\sqrt{2\alpha + 2h + 1} + \sqrt{2\alpha + 1})}$$

$$= \lim_{h \to 0} \frac{(\sqrt{2\alpha + 2h + 1})^2 - (\sqrt{2\alpha + 1})^2}{h(\sqrt{2\alpha + 2h + 1} + \sqrt{2\alpha + 1})}$$

INTERPRETACIÓN FÍSICA DE LA DERIVADA.

a)
$$V(\alpha) = \lim_{h \to 0} \frac{f(\alpha+h) - f(\alpha)}{h} = \lim_{h \to 0} \frac{2\alpha + 2h + 1 - (2\alpha + 1)}{h(\sqrt{2\alpha + 2h + 1} + \sqrt{2\alpha + 1})}$$

$$= \lim_{h \to 0} \frac{2\alpha + 2h + 1 - 2\alpha - 1}{h(\sqrt{2\alpha + 2h + 1} + \sqrt{2\alpha + 1})}$$

$$= \lim_{h \to 0} \frac{2h}{h(\sqrt{2\alpha + 2h + 1} + \sqrt{2\alpha + 1})}$$

$$= \lim_{h \to 0} \frac{2}{\sqrt{2\alpha + 2h + 1} + \sqrt{2\alpha + 1}}$$

$$= \frac{2}{\sqrt{2\alpha + 2(0) + 1} + \sqrt{2\alpha + 1}}$$

$$= \frac{2}{\sqrt{2\alpha + 1} + \sqrt{2\alpha + 1}}$$

$$= \frac{2}{\sqrt{2\alpha + 1}} = \frac{1}{\sqrt{2\alpha + 1}}$$

Así,
$$V(\alpha) = \frac{1}{\sqrt{2\alpha+1}}$$
 m/seg

DERIVADA DE UNA FUNCIÓN.

b)
$$\frac{1}{\sqrt{2\alpha+1}} = \frac{1}{2} \iff 2 = \sqrt{2\alpha+1} \iff 4 = 2\alpha+1 \iff 2\alpha = 3 \iff \alpha = \frac{3}{2}$$

Por lo tanto, el objeto alcanzará una velocidad de $\frac{1}{2}$ m/seg cuando $t = \frac{3}{2}$ seg

Derivada de una función

La derivada de la función f es la función f', tal que su valor en un número x del dominio de f es la derivada de f en x. Es decir:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (Límite del cociente incremental)

La derivada de una función y = f(x) puede expresarse de diferentes formas, cada una de las cuales posee el mismo significado. Algunas de uso frecuente son:

$$y'$$
 $f'(x)$ $D_x y$ $D_x f(x)$ $\frac{dy}{dx}(x)$ $\frac{df}{dx}(x)$ $\frac{df}{dx} \Big|_x$ $\frac{dy}{dx} \Big|_x$

17/03/2022

Prof. Robert Espitia

DERIVADA DE UNA FUNCIÓN.

Ejemplo:

Probar que la derivada de $f(x) = \frac{1}{x^2}$ es: $D_x f(x) = -\frac{2}{x^3}$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{\frac{1}{x^2 + 2xh + h^2} - \frac{1}{x^2}}{h}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{x^2 - (x^2 + 2xh + h^2)}{x^2} - \frac{1}{x^2}}{\frac{h}{1}}$$

$$= \lim_{h \to 0} \frac{\frac{x^2 - x^2 - 2xh - h^2}{h}}{h}$$

DERIVADA DE UNA FUNCIÓN.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{-2xh - h^2}{h(x^4 + 2x^3h + h^2x^2)}$$

$$= \lim_{h \to 0} \frac{h(-2x - h)}{h(x^4 + 2x^3h + h^2x^2)}$$

$$= \lim_{h \to 0} \frac{-2x - h}{x^4 + 2x^3h + h^2x^2}$$

$$= \frac{-2x - (0)}{x^4 + 2x^3(0) + (0)^2x^2}$$

$$= \frac{-2x}{x^4}$$

$$= \frac{-2}{x^3}$$

De modo que
$$D_x f(x) = \frac{-2}{x^3}$$

DERIVADAS LATERALES.

Derivadas laterales.

Las derivadas laterales se definen usando la misma idea de los límites laterales:

Derivada lateral derecha:

$$f'_{+}(x_0) = \lim_{h \to 0^{+}} \frac{f(x_0 + h) - f(x_0)}{h}$$

Derivada lateral izquierda:

$$f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$

si estos límites existen y son finitos.

Obviamente, si $f'_{+}(x_0) \neq f'_{-}(x_0)$ entonces, $f'(x_0)$ no existe.

DERIVADAS LATERALES.

Ejemplo:

Determine la derivada de $f(x) = |x^2 - 4|$ en $x_0 = 2$.

Solución:

Derivada lateral derecha:

$$f'_{+}(2) = \lim_{h \to 0^{+}} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0^{+}} \frac{|(2+h)^{2} - 4| - |2^{2} - 4|}{h}$$

$$= \lim_{h \to 0^{+}} \frac{|2^{2} + 4h + h^{2} - 4| - |0|}{h} = \lim_{h \to 0^{+}} \frac{|4h + h^{2}|}{h} = \lim_{h \to 0^{+}} \frac{|h(4+h)|}{h}$$

$$= \lim_{h \to 0^{+}} \frac{|h||4+h|}{h} = \lim_{h \to 0^{+}} \frac{h(4+h)}{h} = \lim_{h \to 0^{+}} (4+h) = 4 + 0^{+} = 4$$

Por lo tanto, $f'_{+}(2) = 4$.

DERIVADAS LATERALES.

Derivada lateral izquierda:

$$\begin{split} f'_{-}(2) &= \lim_{h \to 0^{-}} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0^{-}} \frac{|(2+h)^{2} - 4| - |2^{2} - 4|}{h} \\ &= \lim_{h \to 0^{-}} \frac{|2^{2} + 4h + h^{2} - 4| - |0|}{h} = \lim_{h \to 0^{-}} \frac{|4h + h^{2}|}{h} = \lim_{h \to 0^{-}} \frac{|h(4+h)|}{h} \\ &= \lim_{h \to 0^{-}} \frac{|h||4+h|}{h} = \lim_{h \to 0^{-}} \frac{-h(4+h)}{h} = \lim_{h \to 0^{-}} -(4+h) = -4 - 0^{-} = -4 \end{split}$$

Por lo tanto, $f'_{-}(2) = -4$.

En consecuencia la función $f(x) = |x^2 - 4|$ no es derivable en $x_0 = 2$.

DERIVABILIDAD Y CONTINUIDAD.

Derivabilidad y Continuidad

Teorema: Si f es derivable en x_0 , entonces, f es continua en x_0 .

El enunciado es equivalente a: Si f no es continua en x_0 , entonces, f no es derivable en x_0 .

El inverso de este teorema no es necesariamente cierto.

Ejemplo:

La función f(x) = |x| es continua en x = 0. Sin embargo, no tiene una derivada allí.

Veamos:
$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|0+h| - |0|}{h} = \lim_{h \to 0} \frac{|h|}{h}$$

DERIVABILIDAD Y CONTINUIDAD.

Asi,
$$\lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1$$

Mientras que
$$\lim_{h\to 0^-} -\frac{h}{h} = \lim_{h\to 0^-} (-1) = -1$$

Ahora, como los límites laterales son diferentes, entonces, $\lim_{h\to 0}\frac{f(0+h)-f(0)}{h}$ no existe y por lo tanto, f'(0) no existe.

DERIVABILIDAD Y CONTINUIDAD.

Un argumento similar muestra que cualquier punto en donde la gráfica de una función continua tenga una esquina o vértice, la función no es derivable.

 x_1 : f no es continua, por lo tanto, no es derivable.

 x_2 y x_3 : f es continua, pero no es derivable.

 x_4 : f es continua y derivable.

Ejercicios

Usando la definición, calcular las derivadas de:

a)
$$f(x) = 4x - 2$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \implies f'(x) = \lim_{h \to 0} \frac{4(x+h) - 2 - (4x - 2)}{h}$$
$$= \lim_{h \to 0} \frac{4x + 4h - 2 - 4x + 2}{h} = \lim_{h \to 0} \frac{4h}{h} = \lim_{h \to 0} 4 = 4$$

Así,
$$f'(x) = 4$$

b)
$$f(x) = \frac{2x+3}{5}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \implies f'(x) = \lim_{h \to 0} \frac{\frac{2(x+h) + 3}{5} - \left(\frac{2x + 3}{5}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{2x + 2h + 3}{5} - \left(\frac{2x + 3}{5}\right)}{h} = \lim_{h \to 0} \frac{\frac{2x + 2h + 3 - 2x - 3}{5}}{\frac{h}{1}} = \lim_{h \to 0} \frac{2h}{5h} = \lim_{h \to 0} \frac{2}{5} = \frac{2}{5}$$

Es decir,
$$f'(x) = \frac{2}{5}$$

c)
$$f(x) = \frac{2}{2x-3}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{2}{2(x+h) - 3} - \frac{2}{2x - 3}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{2}{2x + 2h - 3} - \frac{2}{2x - 3}}{h} = \lim_{h \to 0} \frac{\frac{2(2x - 3) - 2(2x + 2h - 3)}{(2x + 2h - 3)(2x - 3)}}{\frac{h}{1}}$$

$$= \lim_{h \to 0} \frac{\frac{4x - 6 - 4x - 4h + 6}{h(2x + 2h - 3)(2x - 3)}}{\frac{-4}{(2x + 2h - 3)(2x - 3)}} = \lim_{h \to 0} \frac{\frac{4x - 6 - 4x - 4h + 6}{h(2x + 2h - 3)(2x - 3)}}{\frac{-4}{(2x + 2h - 3)(2x - 3)}} = \frac{\frac{-4}{(2x - 3)^2}}{\frac{-4}{(2x - 3)^2}}$$

Así,
$$f'(x) = \frac{-4}{(2x-3)^2}$$

d)
$$g(x) = 5x^3 - 4x^2 + x - 1$$

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \Rightarrow g'(x)$$

$$= \lim_{h \to 0} \frac{5(x+h)^3 - 4(x+h)^2 + (x+h) - 1 - (5x^3 - 4x^2 + x - 1)}{h}$$

$$= \lim_{h \to 0} \frac{5(x^3 + 3x^2h + 3xh^2 + h^3) - 4(x^2 + 2xh + h^2) + x + h - 1 - 5x^3 + 4x^2 - x + 1}{h}$$

$$= \lim_{h \to 0} \frac{5x^3 + 15x^2h + 15xh^2 + 5h^3 - 4x^2 - 8xh - 4h^2 + x + h - 1 - 5x^3 + 4x^2 - x + 1}{h}$$

$$= \lim_{h \to 0} \frac{15x^2h + 15xh^2 + 5h^3 - 8xh - 4h^2 + h}{h}$$

$$= \lim_{h \to 0} \frac{h(15x^2 + 15xh + 5h^2 - 8x - 4h + 1)}{h} = \lim_{h \to 0} 15x^2 + 15xh + 5h^2 - 8x - 4h + 1$$

$$= 15x^2 + 15x(0) + 5(0)^2 - 8x - 4(0) + 1 = 15x^2 - 8x + 1$$

Es decir,
$$g'(x) = 15x^2 - 8x + 1$$

$$e)$$
 $f(x) = sen(x)$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{sen(x+h) - sen(x)}{h}$$

$$= \lim_{h \to 0} \frac{sen(x)\cos(h) + sen(h)\cos(x) - sen(x)}{h}$$

$$= \lim_{h \to 0} \frac{[sen(x)\cos(h) - sen(x)] + sen(h)\cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{sen(x)[\cos(h) - 1] + sen(h)\cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{sen(x)[\cos(h) - 1]}{h} + \lim_{h \to 0} \frac{sen(h)\cos(x)}{h}$$

$$= sen(x) lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x) lim_{h \to 0} \frac{sen(h)}{h}$$

$$= sen(x) lim_{h \to 0} \frac{\cos(h) - 1}{h} \cdot \frac{\cos(h) + 1}{\cos(h) + 1} + \cos(x) \cdot 1$$

$$= sen(x) lim_{h \to 0} \frac{cos^{2}(h) - 1^{2}}{h(\cos(h) + 1)} + \cos(x)$$

$$= -sen(x) lim_{h \to 0} \frac{1 - cos^{2}(h)}{h(\cos(h) + 1)} + \cos(x)$$

$$= -sen(x) lim_{h \to 0} \frac{sen^{2}(h)}{h(\cos(h) + 1)} + \cos(x)$$

$$= -sen(x) lim_{h \to 0} \frac{sen(h)}{h(\cos(h) + 1)} + \cos(x)$$

$$= -sen(x) \lim_{h \to 0} \frac{sen(h)}{h} \cdot \lim_{h \to 0} \frac{sen(h)}{\cos(h) + 1} + \cos(x)$$

$$= -sen(x) \cdot 1 \cdot \frac{sen(0)}{\cos(0) + 1} + \cos(x)$$

$$= -sen(x) \cdot 1 \cdot \frac{0}{1+1} + \cos(x)$$

$$= -sen(x) \cdot 1 \cdot 0 + \cos(x)$$

$$= 0 + \cos(x)$$

$$= \cos(x)$$

Por lo tanto, $f'(x) = \cos(x)$

Usando la definición, calcular las derivadas de:

- a) cos(x)
- b) tan(x)
- c) ctan(x)
- d) sec(x)
- e) cosec(x)
- f $\ln(x)$
- $g) e^{\lambda}$