chemical potential calculation

Jacob Jeffries

February 9, 2024

1 Insertions

We first perform insertions onto a lattice starting for an initial configuration. This initial configuration has type $t(\sigma)$ at each site σ . The solution has atom types $\alpha \in \mathcal{A}$ and the atomic fraction of α in the solution is x_{α} .

Then, to calculate chemical potentials, we first note that, given a system with free energy G° , we can add an extra atom of type α' , yielding a free energy:

$$G_{\alpha'} = G^{\circ} + \mu_{\alpha'} \tag{1}$$

So:

$$G_{\alpha'} - G_{\alpha} = \mu_{\alpha'} - \mu_{\alpha} \tag{2}$$

which then measures the free energy difference from swapping an α atom to an α' atom. Then, approximating (at 0 K and 0 bar) the free energy as internal energy yields:

$$\left\langle E_{\sigma}^{(\alpha')} - E_{\sigma}^{(\alpha)} \right\rangle = \mu_{\alpha'} - \mu_{\alpha} \tag{3}$$

Additionally, we can form an Euler equation for the reference configuration:

$$\frac{1}{N}E_{\sigma}^{(t(\sigma))} = \sum_{\alpha} \mu_{\alpha} x_{\alpha} \tag{4}$$

where N is the number of sites in the lattice. For an alloy with k elements, we can form $\frac{1}{2}k(k-1)$ equations for each α - α' pair. So, including the Euler equation below, we can form a system of $\frac{1}{2}k(k-1)+1$ equations, which forms either a fully determined system for k=2, or an overdetermined system for k>2. Both cases can be solved using least squares.

2 Fitting

We have multiple data points, i.e. a set of chemical potentials for each composition, by creating multiple solutions with specified compositions. Then, we can fit the chemical potentials as a function of concentration:

$$\mu_{\alpha} = \mu_{\alpha}^{\circ} + \sum_{\beta} A_{\alpha\beta} (x_{\beta} - x_{\beta}^{\circ}) \tag{5}$$

where μ_{α}° and $A_{\alpha\beta}$ are fitting parameters and x_{α}° is some reference concentration. Then, without loss of generality, we can always set $x_{\beta}^{\circ} = 0$, since:

$$\mu_{\alpha} = \mu_{\alpha}^{\circ} + \sum_{\beta} A_{\alpha\beta} x_{\beta}^{\circ} + \sum_{\beta} A_{\alpha\beta} x_{\beta} \tag{6}$$

where $\mu_{\alpha}^{\circ} + \sum_{\beta} A_{\alpha\beta} x_{\beta}^{\circ}$ is a constant. So, setting $x_{\beta}^{\circ} = 0$, we fit:

$$\mu_{\alpha} = \mu_{\alpha}^{\circ} + \sum_{\beta} A_{\alpha\beta} x_{\beta} \tag{7}$$

This can be achieved with multivariate multiple linear regression. Note that, though, there are only k-1 independent variables since $\sum_{\alpha} x_{\alpha} = 1$. So, one element γ must be excluded from the fit for unique $A_{\alpha\beta}$'s. Therefore:

$$\mu_{\alpha} = \mu_{\alpha}^{\circ} + \sum_{\beta \neq \gamma} A_{\alpha\beta} x_{\beta} \tag{8}$$

The function 1m in R automatically excludes columns to enforce linear independence between independent variables.