CS2030 Programming Methodology

Semester 2 2018/2019

20 March – 22 March 2019 Tutorial 6 Suggested Guidance Java Primitive Streams

1. To approximate the value of π , one can sum up the first n terms of the following series:

$$\frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \dots$$

You are given the following stream implementation,

```
import java.util.stream.IntStream;

double approxPI(int n) {
   int sign = 1;

   double ans = IntStream
        .rangeClosed(1, n)
        .mapToDouble(x -> {
            double term = 4.0 * sign / (2 * x - 1);
            sign = sign * -1;
            return term;
        })
        .sum();
   return ans;
}
```

Identify the error(s) and provide an alternative functioning stream implementation. Do not use any methods in java.lang.Math.

2. Using Java Stream, write a method omega with signature LongStream omega(int n) that takes in an int n and returns a LongStream containing the first n omega numbers. The ith omega number is the number of distinct prime factors for the number i. The first 10 omega numbers are 0, 1, 1, 1, 1, 2, 1, 1, 1, 2.

```
import java.util.stream.IntStream;
import java.util.stream.LongStream;
boolean isPrime(int n) {
    return IntStream
        .range(2, n)
        .noneMatch(x \rightarrow n%x == 0);
}
IntStream primeFactors(int x) {
    return factors(x)
        .filter(d -> isPrime(d));
}
IntStream factors(int x) {
    return IntStream
        .rangeClosed(2, x)
        .filter(d \rightarrow x % d == 0);
}
LongStream omega(int n) {
    return IntStream
        .range(1, n + 1)
        .mapToLong(x -> primeFactors(x).count());
}
omega(10).forEach(System.out::println)
```

3. The sum of squares of a series of numbers can be implemented as follows:

On the other hand, to find the sum of absolute values of a given series will require implementing the following:

```
int sumAbs(int... list) {
    int sum = 0;
    for (int value : list) {
        sum += abs(value);
    }
    return sum;
}
```

Notice that sumSq and sumAbs methods are almost identical apart from the function application of each element of the list. By adhering to the *principle of abstraction*, demonstrate how we can replace them with a single method sum that takes in the list of elements as well as the function to be applied on each element.

Hint: Make use of IntUnaryOperator.

```
import java.util.function.IntUnaryOperator
int sum(IntUnaryOperator func, int... list) {
   int sum = 0;
   for (int value : list) {
      sum += func.applyAsInt(value);
   }
   return sum;
}
sum(x -> x * x, 1, -2, 3)
```

- 4. You are given two functions f(x) = 2 * x and g(x) = 2 + x.
 - (a) By creating an abstract class Func with a public abstract method apply, evaluate f(10) and g(10). abstract class Func { abstract int apply(int a); } Func f = new Func() { int apply(int x) { return 2 * x; }}; Func g = new Func() { int apply(int x) { return 2 + x; }}; f.apply(10); g.apply(10); We cannot use a lambda here since Func is not a functional interface. interface Func { int apply(int a); } Func $f = x \rightarrow 2 * x$; Func $g = x \rightarrow 2 + x$; f.apply(10); g.apply(10); (b) The composition of two functions is given by $f \circ g(x) = f(g(x))$. As an example, $f \circ g(10) = f(2+10) = (2+10) * 2 = 24$. Extend the abstract class in question 4a so as to support composition, i.e. f.compose(g).apply(10) will give 24. abstract class Func { abstract int apply(int a); Func compose(Func g) { return new Func() { public int apply(int x) { return Func.this.apply(g.apply(x)); // <-- take note! }; }

}

```
Func f = new Func() {
    int apply(int x) {
        return 2 * x;
    }};

Func g = new Func() {
    int apply(int x) {
        return 2 + x;
    }};

f.compose(g).apply(10);
```

What happens if we replace the statement return Func.this.apply(g.apply(x)) with return this.apply(g.apply(x)) instead? The apply method will recursive call itself! The this in Func.this is known as a "qualified this" and it refers not to it's own object, but the enclosing object. Here, the enclosing object's apply method is the one that returns 2 * x.

5. By now, we are familiar with the IntUnaryOperator which takes one integer as argument and returns another integer result. As an example,

```
IntUnaryOperator f = x -> x + 1;
f.applyAsInt(3);
```

(a) Make use of IntBinaryOperator to evaluate g(x,y) = x + y.

```
IntBinaryOperator g = (x, y) -> x + y;
g.applyAsInt(3, 4);
```

(b) **Currying** is the technique of translating the evaluation of a function that takes multiple arguments into evaluating a sequence of functions, each with a single argument, g(x,y) = h(x)(y). Using the context of lambdas in Java, the lambda expression $(x, y) \rightarrow x + y$ can be translated to $x \rightarrow y \rightarrow x + y$.

Show how the use of IntFuction and IntUnaryOperator functional interfaces can achieve the curried function evaluation of two arguments.

```
IntFunction<IntUnaryOperator> h = x -> y -> x + y;
h.apply(3).applyAsInt(4);
```

If the lambda above looks intriguing, one can replace the lambda with anonymous inner classes instead to make sense of the scope of the variables x and y.

```
IntFunction<IntUnaryOperator> h = new IntFunction<IntUnaryOperator>() {
    public IntUnaryOperator apply(int x) {
        return new IntUnaryOperator() {
            public int applyAsInt(int y) {
                return x + y;
            }
        };
    }
};
```

(c) Implement a curried version of p(x, y, z) = x + y + z

```
IntFunction<IntUnaryOperator>> p = x -> y -> z -> x + y + z; p.apply(3).apply(4).applyAsInt(4);
```