Questão 3

Seja $f:[a,b] o\mathbb{R}$ contínua. Se f é derivável em (a,b), então existe um ponto $c\in(a,b)$ tal que $f'(c)=rac{f(b)-f(a)}{b-a}.$

1. Seja f(x) = sen(x). Pelo Teorema do Valor Médio, $|sen(b) - sen(a)| \leq |b-a|$, $\forall a,b \in \mathbb{R}$.

2. f(x) = sen(x) é limitada: $|sen(x)| \leq 1$, $\forall x \in \mathbb{R}$.

Assinale a opção correta:

1. 1 e 2 são verdadeiras, e 2 é justificativa de 1

2. 1 e 2 são verdadeiras mas 2 não é justificativa de 1

3. 1 é verdadeira e 2 é falsa

4. 1 é falsa e 2 é verdadeira

5. 1 e 2 são falsas

 $|f(b)-f(a)|\leq |b-a|$. A diferença na imagem é menor ou igual à diferença no domínio. Só ocorrerá se |f(x)|<|x|, $\forall x\in\mathbb{R}$, ou se |b-a| |f(b)-f(a)| forem infinitesimais.

Teorema do Valor Médio: Suponha f contínua em [a,b] e diferenciável em (a,b). Então, existe um elemento c entre a e b cuja derivada f'(c) é igual à razão entre as diferenças na imagem e no domínio de f entre a e b; ou o slope entre a e b; ou $\frac{\Delta f(x)}{\Delta x}$ entre a e b; ou $\frac{f(b)-f(a)}{b-a}$.

Porém, 1) não advém do Teorema do Valor Médio; advém do fato de ser contínua. Falso.

2) é verdade.

Resposta:

"A alternativa correta é B. Aqui é verdade com uso do Teorema do Valor Médio, sem ele não conseguirmos provar que ela é verdade. E o fato de f(x)=sen(x) ser contínua é a hipótese do teorema, ou seja, f(x)=sen(x) é contínua e então pelo Teorema do Valor Médio a desigualdade é verdadeira.

Como f(x)=sen(x) é contínua então existe c, tal que $f'(c)=\frac{f(b)-f(a)}{b-a}=\frac{sen(b)-sen(a)}{b-a}$. Então, f'(c)=cos(c) e $|cos(c)|\leq 1$ e $\frac{sen(b)-sen(a)}{b-a}=cos(c)$. Aplicando o módulo em ambos os lados sai a desigualdade."