Análise Combinatória, Probabilidades e Aplicações - Lista 01

Arthur Cardoso Leite, Cleibson Aparecido de Almeida 18 de janeiro de 2017

Exercício 03

Dados $A, B_1, ..., B_n \ge 1$, subconjuntos de $\mathcal{U} = \mathbb{Z}$, mostre que: a) $(A^c)^c = A$ Seja: $A^c = 1 - A$; Então: $(1 - A)^c = (1 - (1 - A)) = 1 - 1 + A = A$ b) $(\bigcup_{i=1}^n B_i)^c = \bigcap_{i=1}^n B_i^c$ e $(\bigcap_{i=1}^n B_i)^c = \bigcup_{i=1}^n B_i^c$ Seja: $(\bigcup_{i=1}^n B_i)^c$ $= (B_1 \cup B_2 \cup ... \cup B_n)^c$ $= B_1^c \cup B_2^c \cup ... \cup B_n^c$ $= B_1 \cap B_2 \cap ... \cap B_n$ $= \bigcap_{i=1}^n B_i^c$ e seja: $(\bigcap_{i=1}^n B_i)^c$ $= (B_1 \cap B_2 \cap ... \cap B_n)^c$ $= B_1^c \cap B_2^c \cap ... \cap B_n^c$ $= B_1 \cup B_2 \cup ... \cup B_n$ $= \bigcup_{i=1}^n B_i^c$

c) Se $\mathcal{B} = \{B_1, ..., B_n\}$ é uma partição de \mathcal{U} , então a coleção $\{B_1 \cap A, ..., B_n \cap A\}$ é uma partição de A.

Aplicando a propriedade $(\cup A_i) \cup B = \bigcup\limits_{i \in I} (A_i \cup B)$ ao problema, temos que:

$$(\bigcup B_i) \cup A$$

$$= \bigcup_{i \in I} (B_i \cup A)$$

$$= (B_1 \cap A) \cup (B_2 \cap A) \cup \dots \cup (B_n \cap A)$$

$$= \{B_1 \cap A, B_2 \cap A, \dots, B_n \cap A\}$$

Exercício 09

De quantas maneiras podemos distribuir n objetos em duas caixas de modo que nenhuma caixa fique vazia, quando:

a) Os objetos e as caixas são diferentes?

Quando os objetos e caixas são diferentes, existindo n objetos, tem, dessa forma, 2^n modos de arranjá-los em duas caixas distintas.

Porém, excluí-se duas dessas opções, uma vez que nenhuma das duas caixas pode ficar vazia. Dessa forma, têm-se como resposta do exercício 2^n-1 modos de distribuir n objetos distintos em duas caixas distintas.

b) Os objetos são iguais e as caixas diferentes?

Considerando as caixas A e B, têm-se:

Utilizando-se o conceito de Combinações Completas, têm-se:

$$\frac{(n+1)!}{n!} = n+1$$

Uma vez que as caixas devem ter no mínimo um objeto, deve-se desconsiderar dois arranjos. Assim sendo, a resposta do problema é n+1-2=n-1. Portanto, n-1 modos de arranjar os objetos.

Exercício 11

a) Um químico possui 10 tipos de substâncias: $/A_1, A_2, ..., A_n/$. De quantos modos poderá combinar 6 dessas substâncias se, entre as dez, duas não podem estar juntas?

1º Caso: A_1 está na reação Arranjemos do seguinte modo: $A_1 \times 8 \times 7 \times 6 \times 5 \times 4 = 6720$.

Como a ordem não importa neste caso, dividiremos o resultado por 5!, resultando em 56 modos distintos.

2º Caso: A_2 está na reação Arranjemos do seguinte modo: $A_2 \times 8 \times 7 \times 6 \times 5 \times 4 = 6720$.

Como a ordem não importa neste caso, dividiremos o resultado por 5!, resultando em 56 modos distintos.

3º Caso: Nem A_1 , nem A_2 estão na reação. Arranjemos do seguinte modo: $8 \times 7 \times 6 \times 5 \times 4 \times 3 = 20160$.

Como a ordem não importa neste caso, dividiremos o resultado por 6!, resultando em 28 modos distintos.

Assim sento, pelo Princípio Aditivo, têm-se 56 + 56 + 28 = 140 reações distintas.

b) O mesmo químico tem a hipótese de que ao dissolver 5 doses de 2 ml das substâncias $/A_1,..,A_10/$ (as doses podem ser repetidas) em 5 ml de água, obterá uma solução útil ao combate da dengue. O químico precisa fazer um experimento no laboratório com todas as soluções possíveis. Qualé o número máximo de testes a serem feitos pelo químico? (suponha que a ordem de dissolução não afeta a solução final).

Como a ordem das substâncias não importa, temos pelo princípio da Combinação Completa a seguinte resolução:

Assim sendo, temos $\frac{14!}{5! \times 9!} = 2002$. Logo, há 2002 testes a serem feitos.

Exercício 13

Seja \mathcal{F} a classe das funções que associam o conjunto $\{1, 2, ..., 2n + 1\}$ ao conjunto $\{1, 2, ..., 2n\}, n \geq 1$, isto é:

$$\mathcal{F} = \{f : \{1, 2, ..., 2n + 1\} \rightarrow \{1, 2, ..., 2n\}\}$$

Sejam ainda os seguintes subconjuntos de \mathcal{F} :

 \mathcal{I} : constituído pelas funções de \mathcal{F} que associam a cada número ímpar um número par,

 \mathcal{S} : constituído pelas funções sobrejetoras de \mathcal{F} .

Determine $|\mathcal{F}|, |\mathcal{I}|e|\mathcal{S}|$.

Exercício 15

Determine os números de possíveis anagramas das palavras SUSSURRO, VESTIBULAR e BATATA.

a) SUSSURRO - Esta palavra possui repetição de letras, portanto será aplicada a regra da *permutação com elementos nem todos distintos*.

Temos então a seguinte organização das 8 letras: SSS UU RR O (3 S, 2 U, 2 R e 1 O), e com isso a fórmula será P_8^{3221}

$$= C_8^3 \times C_5^2 \times C_3^2 \times C_1^1$$

$$=56\times10\times3\times1=1680$$
anagramas

b) VESTIBULAR - Esta palavra não possui letras repetidas,
portanto trata-se de uma $permutação\ simples.$

Temos então P_{10}

- = 10!
- $=10\times9\times...\times1$
- = 3628800 anagramas
- c) BATATA Esta palavra possui repetição de letras,portanto será aplicada a regra da permutação com elementos nem todos distintos.

Temos então a seguinte organização das 6 letras: AAA TT B (3 A, 2 T e 1 B), e com isso a fórmula será P_6^{321}

$$= C_6^3 \times C_3^2 \times C_1^1$$

$$=20 \times 3 \times 1 = 60$$
 anagramas

Exercício 20

Quantas são as soluções não negativas da inequação $x + y + z \le 2$?