DM 1 : corrigé.

A) Les fonctions puissances

- 1°) Soit $x \in \mathbb{R}_+^*$ et $n \in \mathbb{Z}$. On sait d'après le cours de Terminale que $\ln(x^n) = n \ln x$, donc en passant à l'exponentiel, $x^n = \exp(\ln(x^n)) = \exp(n \ln x) = e^{n \ln x}$.
- **2°)** Notons f l'application $x \mapsto x^{\alpha} = e^{\alpha \ln x}$. f est égale à la composée $u \circ v$ en posant $u = \exp$ et $v = (x \mapsto \alpha \ln x)$, donc f est bien dérivable sur \mathbb{R}_+^* en tant que composée d'applications dérivables, et pour tout $x \in \mathbb{R}_+^*$,

$$f'(x) = v'(x)u'(v(x)) = \frac{\alpha}{x}e^{\alpha \ln x} = \alpha e^{-\ln(x)}e^{\alpha \ln x} = \alpha e^{(\alpha - 1)\ln x}, \text{ donc } f'(x) = \alpha x^{\alpha - 1}.$$

$$\mathbf{3}^{\circ}) \text{ Soit } x \in]1, +\infty[. \int_{1}^{x} \frac{dt}{t^{2}} = \left[-\frac{1}{t}\right]_{1}^{x} = 1 - \frac{1}{x}, \text{ donc } \int_{1}^{x} \frac{dt}{t^{2}} \underset{x \to +\infty}{\longrightarrow} 1.$$

$$\mathbf{4}^{\circ}) \quad \int_{x}^{1} \frac{dt}{\sqrt{t}} = \left[2\sqrt{t}\right]_{x}^{1} = 2 - 2\sqrt{x} \underset{x \to 0}{\longrightarrow} 2.$$

 $\mathbf{5}^{\circ})$

- \diamond D'après les questions précédentes on a immédiatement l'existence des deux premières intégrales avec $\int_1^{+\infty} \frac{dt}{t^2} = 1$ et $\int_0^1 \frac{dt}{\sqrt{t}} = 2$.
- \diamond Étudions d'abord le cas où $\alpha = 1$.

Pour tout
$$x > 1$$
, $\int_1^x \frac{dt}{t} = \ln(x) \xrightarrow[x \to +\infty]{} +\infty$, donc $\int_1^{+\infty} \frac{dt}{t}$ n'est pas définie.

De même, pour tout x < 1, $\int_x^1 \frac{dt}{t} = -\ln(x) \xrightarrow[x \to 0]{} +\infty$, donc $\int_0^1 \frac{dt}{t}$ n'est pas définie. \diamond Soit $\alpha \in \mathbb{R}$ avec $\alpha \neq 1$.

D'après la question 2, l'application $t \longmapsto \frac{t^{1-\alpha}}{1-\alpha}$ est dérivable sur \mathbb{R}_+^* et

$$\frac{d}{dt}\left(\frac{t^{1-\alpha}}{1-\alpha}\right) = t^{-\alpha} = e^{-\alpha \ln t} = \frac{1}{e^{\alpha \ln t}} = \frac{1}{t^{\alpha}}, \text{ donc } t \longmapsto \frac{t^{1-\alpha}}{1-\alpha} \text{ est une primitive de la fonction } t \longmapsto \frac{1}{t^{\alpha}} \text{ sur } \mathbb{R}_{+}^{*}.$$

$$\diamond$$
 Soit $x > 1$. $\int_{1}^{x} \frac{dt}{t^{\alpha}} = \left[\frac{t^{-\alpha+1}}{1-\alpha}\right]_{1}^{x} = \frac{e^{(-\alpha+1)\ln x}-1}{1-\alpha}$. Lorsque x tend vers $+\infty$, cette

dernière quantité converge vers un réel si et seulement si $-\alpha + 1 < 0$. Ainsi $\int_{1}^{+\infty} \frac{dt}{t^{\alpha}}$

est définie si et seulement si $\alpha>1$ et dans ce cas, $\int_1^{+\infty}\frac{dt}{t^{\alpha}}=\frac{1}{\alpha-1}$. \diamond Soit $\alpha\in\mathbb{R}$ avec $a\neq 1$. Soit x<1. $\int_x^1\frac{dt}{t^{\alpha}}=\left[\frac{t^{-\alpha+1}}{1-\alpha}\right]_x^1=\frac{1-e^{(-\alpha+1)\ln x}}{1-\alpha}$. Lorsque x tend vers 0, cette dernière quantité converge vers un réel si et seulement si $-\alpha+1>0$. Ainsi $\int_0^1\frac{dt}{t^{\alpha}}$ est définie si et seulement si $\alpha<1$ et dans ce cas, $\int_0^1\frac{dt}{t^{\alpha}}=\frac{1}{1-\alpha}$.

B) Une intégrale doublement impropre

6°) f(x) est défini si et seulement si x>0 et 1-x>0, donc le domaine de définition de f est]0,1[.

7°) Soit $u \in \mathbb{R}$. $\cos u = 0 \iff u \equiv \frac{\pi}{2} [\pi]$, donc le domaine de définition de tan est $D = \mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z}).$

En tant que quotient de fonctions dérivables, tan est dérivable sur D et, pour tout $u \in D$, $\tan'(u) = \frac{\cos^2 u - (-\sin u)\sin u}{\cos^2 u} = \frac{1}{\cos^2 u}$.

8°)

♦ L'intégrale de l'énoncé, que l'on notera $I(\alpha)$, est bien définie car $\left[\frac{1}{2},\sin^2\alpha\right]\subset]0,1[$ et f est continue sur]0,1[.

Posons $J(x) = \int_{1}^{x} f(t) dt$, pour tout $x \in]0,1[$. Ainsi J est dérivable sur]0,1[et $I(\alpha)=J(\sin^2\alpha)$, donc par dérivation d'une fonction composée, I est dérivable sur $]0,\frac{\pi}{2}[$

et $I'(\alpha) = 2\cos\alpha\sin\alpha J'(\sin^2\alpha) = 2\cos\alpha\sin\alpha \frac{\ln(\sin^2\alpha)}{\sin\alpha\cos^3\alpha}$, car $\sin\alpha > 0$ et $\cos\alpha > 0$.

Ainsi,
$$I'(\alpha) = \frac{4 \ln \sin \alpha}{\cos^2 \alpha}$$
, or I' étant continue,
 $I(\alpha) = I(\frac{\pi}{4}) + \int_{\frac{\pi}{4}}^{\alpha} I'(u) \ du$, donc $I(\alpha) = \int_{\frac{\pi}{4}}^{\alpha} \frac{4 \ln \sin u}{\cos^2 u} \ du$.

♦ En intégrant par parties, d'après la question précédente,

 $I(\alpha) = \left[4(\ln\sin u)\tan u\right]_{\frac{\pi}{4}}^{\alpha} - \int_{\frac{\pi}{4}}^{\alpha} 4\tan u \frac{\cos u}{\sin u} \ du = 4\tan\alpha\ln\sin\alpha + 2\ln2 - 4(\alpha - \frac{\pi}{4}).$

Finalement, $I(\alpha) = 4(\tan \alpha) \ln(\sin \alpha) - 4\alpha + 2 \ln 2 + \pi$

9°) Par définition de la dérivée de ln en 1, $\frac{\ln t - \ln 1}{t-1} \xrightarrow[t\to 1]{} \ln'(1) = 1$. Or,

$$4(\tan \alpha) \ln(\sin \alpha) = 2 \frac{\sin \alpha}{\cos \alpha} \ln(\sin^2 \alpha)$$

$$= 2 \frac{\sin \alpha}{\cos \alpha} \frac{\ln(\sin^2 \alpha)}{1 - \sin^2 \alpha} (1 - \sin^2 \alpha)$$

$$= 2 \sin \alpha \cos \alpha \frac{\ln(\sin^2 \alpha)}{1 - \sin^2 \alpha},$$
donc par composition des limites, $4(\tan \alpha) \ln(\sin \alpha) \xrightarrow[\alpha \to \frac{\pi}{2}]{0}$.

On en déduit que $\int_{\frac{1}{2}}^{\sin^2(\alpha)} f(x) dx \xrightarrow{\alpha \to \frac{\pi}{2}} -2\pi + 2\ln 2 + \pi = 2\ln 2 - \pi$.

10°) Soit $x \in]0,1[$. D'après l'énoncé, $x=\sin^2(\arcsin(\sqrt{x}))$ et d'après la continuité de arcsin, $\arcsin(\sqrt{x}) \underset{x \to 1}{\longrightarrow} \arcsin(1) = \frac{\pi}{2}, \ \text{car} \ \sin(\frac{\pi}{2}) = 1 \ \text{et} \ \frac{\pi}{2} \in [-\frac{\pi}{2}, \frac{\pi}{2}].$

À nouveau par composition des limites, on en déduit que
$$\int_{\frac{1}{2}}^{x} f(t) \ dt = \int_{\frac{1}{2}}^{[\sin(\arcsin\sqrt{x})]^2} f(t) \ dt \xrightarrow[x \to 1]{} -\pi + 2\ln 2.$$

Ceci montre que $\int_{1}^{1} f(x) dx$ est bien définie et que $\int_{1}^{1} f(x) dx = -\pi + 2 \ln 2$.

11°) Lorsque $\alpha \in]0, \frac{\pi}{4}[$, le calcul de la question 8 reste valable. Ainsi,

$$\int_{\sin^2 \alpha}^{\frac{1}{2}} f(x) \ dx = -(4(\tan \alpha) \ln(\sin \alpha) - 4\alpha + 2 \ln 2 + \pi).$$

 $\tan \alpha \ln(\sin \alpha) = \frac{\sin(\alpha) \ln(\sin(\alpha))}{\cos(\alpha)}, \text{ or } \sin \alpha \xrightarrow{\alpha \to 0} 0 \text{ et d'après les croissances comparées,}$ $x \ln x \xrightarrow[x \to 0]{} 0, \text{ donc } \sin(\alpha) \ln(\sin(\alpha)) \xrightarrow[\alpha \to 0]{} 0, \text{ puis } \tan \alpha \ln(\sin \alpha) \xrightarrow[\alpha \to 0]{} 0. \text{ On en déduit que}$

$$\int_{\sin^2 \alpha}^{\frac{1}{2}} f(x) \ dx \xrightarrow[\alpha \to 0]{} -2 \ln 2 - \pi.$$

De même qu'en question 10, $\int_{x}^{\frac{1}{2}} f(t) dt = \int_{\left[\sin(\arcsin\sqrt{x})\right]^{2}}^{\frac{1}{2}} f(t) dt \xrightarrow[x\to 0]{} -\pi - 2\ln 2$, car

On a ainsi montré que $\int_0^{\frac{1}{2}} f(x) dx$ est bien définie et que $\int_0^{\frac{1}{2}} f(x) dx = -2 \ln 2 - \pi$.

$$\int_{a}^{c'} g(t) dt + \int_{c}^{b} g(t) dt = \lim_{x \to a} \int_{x}^{c} g(t) dt + \lim_{y \to b} \int_{c}^{y} g(t) dt$$

$$= \lim_{x \to a} \left(\int_{x}^{c} g(t) dt + \lim_{y \to b} \int_{c}^{y} g(t) dt \right)$$

$$= \lim_{x \to a} \lim_{y \to b} \left(\int_{x}^{c} g(t) dt + \int_{c}^{y} g(t) dt \right),$$

donc d'après la relation de Chasles pour les intégrales ordinaires,

 $\int_a^c g(t) \ dt + \int_c^b g(t) \ dt = \lim_{x \to a} \lim_{y \to b} \Big(\int_x^y g(t) \ dt \Big), \text{ ce qui permet de conclure car cette dernière quantité ne dépend pas de } c.$

13°) D'après les questions précédentes, avec $c = \frac{1}{2}$, $\int_0^1 \frac{\ln x}{\sqrt{x(1-x)^{\frac{3}{2}}}} dx$ est bien définie et $\int_{0}^{1} \frac{\ln x}{\sqrt{x}(1-x)^{\frac{3}{2}}} dx = -2\pi.$

C) Un peu de théorie

 $14^{\circ})$

 \diamond f étant continue, elle possède une primitive que l'on notera F.

Alors $\int_{x}^{b} f(t) dt = F(b) - F(x)$. F est dérivable, donc elle est continue en a.

Ainsi, $F(x) \xrightarrow[x \to a]{} F(a)$ ce qui prouve que

$$\int_{x}^{b} f(t) \ dt = F(b) - F(x) \underset{x \to a}{\longrightarrow} F(b) - F(a) = \int_{a}^{b} f(t) \ dt.$$

De même, on montre que $\int_a^x f(t) dt \xrightarrow[x \to a]{} \int_a^b f(t) dt$.

Cela signifie que la définition de $\int_a^b f(t)\ dt$ donnée après la question 4 est cohérente avec la notion usuelle d'intégrale.

 \diamond On a vu que $\frac{\sin t}{t} \xrightarrow[t \to 0]{} 1$, donc si l'on pose $f(t) = \frac{\sin t}{t}$ pour $t \in \mathbb{R}_+^*$ et f(0) = 1, on définit une application f continue de \mathbb{R}_+ dans \mathbb{R} . D'après ce qui précède, $\int_{x_-}^1 f(t) \ dt \xrightarrow[x \to 0]{} \int_0^1 f(t) \ dt$, donc $\int_x^1 \frac{\sin t}{t} \ dt \xrightarrow[x \to 0]{} \int_0^1 f(t) \ dt$, ce qui prouve que

 $\int_0^1 \frac{\sin t}{t} dt \text{ est bien définie.}$

15°) Posons, pour tout $x \in [a, b[, F(x) = \int_a^x f(t) dt]$.

 $F'(x) = f(x) \ge 0$, donc F est croissante. Alors, d'après le théorème de la limite monotone, il existe $L \in \mathbb{R}$ telle que $F(x) \xrightarrow[x \to b]{} L$ si et seulement si l'application

 $x \longmapsto \int_a^x f(t) \ dt$ est majorée, ce qu'il fallait démontrer.

 $16^{\circ})$

 \diamond D'après la question précédente, il existe $M \in \mathbb{R}$ tel que, pour tout $x \in [a, b[$, $\int_{-\infty}^{x} f(t) dt \leq M$. Par croissance de l'intégrale, on en déduit que pour tout $x \in [a, b[$,

 $\int_a^x f(t) dt \le M$. Far croissance de l'integrale, on en deduit que pour tout $x \in [a, b]$, $\int_a^x g(t) dt \le \int_a^x f(t) dt \le M$, donc l'application $x \longmapsto \int_a^x g(t) dt$ est majorée, or pour

 $\int_a^b g(t) dt \le \int_a^b f(t) dt \le M$, donc l'apprecation $x = \int_a^b g(t) dt$ est majorce, or pour tout $t, g(t) \ge 0$, donc toujours d'après la question précédente, $\int_a^b g(t) dt$ est définie.

 \diamond Pour tout $t \in [1, +\infty[$, $0 \le \frac{|\cos t|}{t^2} \le \frac{1}{t^2}$, or d'après la question 3, $\int_1^{+\infty} \frac{1}{t^2} dt$ est

définie, donc $\int_1^{+\infty} \frac{|\cos t|}{t^2} dt$ est définie.

 $17^{\circ})$

 \diamond Soit $t \in [a, b[$. Supposons d'abord que $f(t) \ge 0$. Alors $f^+(t) = f(t) = |f(t)|$ et $f^-(t) = 0$, donc $|f(t)| = f^+(t) + f^-(t)$ et $f(t) = f^+(t) - f^-(t)$.

De même, si $f(t) \le 0$, alors $f^{-}(t) = -f(t) = |f(t)|$ et $f^{+}(t) = 0$ donc $|f(t)| = f^+(t) + f^-(t)$ et $f(t) = f^+(t) - f^-(t)$.

En conclusion, $f = f^+ - f^-$ et $|f| = f^+ + f^-$. \Leftrightarrow On en déduit que $f^+ = \frac{1}{2}(f + |f|)$ et $f^- = \frac{1}{2}(|f| - f)$, donc f^+ et f^- sont continues.

 \diamond Supposons que $\int_{a}^{b} |f(t)| dt$ est définie.

Pour tout $t \in [a, b]^a$, $0 \le f^+(t) \le f^+(t) + f^-(t) = |f(t)|$, donc d'après la question précédente, $\int_{0}^{b} f^{+}(t) dt$ est définie.

De même, $0 \le f^- \le |f|$, donc $\int_a^b f^-(t) dt$ est aussi définie. Alors, pour tout $x \in [a, b[$, $\int_a^x f(t) \ dt = \int_a^x f^-(t) \ dt - \int_a^x f^-(t) \ dt \xrightarrow[t \to b]{} \int_a^b f^+(t) \ dt - \int_a^b f^-(t) \ dt \in \mathbb{R}. \text{ Ceci}$ prouve que $\int_{-\infty}^{\infty} f(t) dt$ est définie.

D) Calcul de $\int_{0}^{+\infty} \frac{\sin t}{t} dt$

18°) D'après la question 14, $\int_0^1 \frac{\sin t}{t} dt$ est définie, donc d'après la question 12, il suffit de montrer que $\int_{1}^{+\infty} \frac{\sin t}{t} dt$ est définie.

En intégrant par parties, pour $x \in]1, +\infty[$, on obtient $\int_1^x \frac{\sin t}{t} dt = \left[\frac{-\cos t}{t}\right]_1^x - \int_1^x \frac{\cos t}{t^2} dt$.

 $\left|\frac{\cos x}{x}\right| \le \frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0$, donc d'après le principe des gendarmes, $\frac{\cos x}{x} \underset{x \to +\infty}{\longrightarrow} 0$.

D'après la question 16, $\int_{1}^{+\infty} \frac{|\cos t|}{t^2} dt$ est définie, donc d'après la question 17, $\int_{1}^{+\infty} \frac{\cos t}{t^2} dt$

est définie. On en déduit que $\int_1^x \frac{\sin t}{t} dt \xrightarrow[x \to +\infty]{} \cos(1) - \int_1^{+\infty} \frac{\cos t}{t^2} dt$, ce qu'il fallait démontrer, car cette dernière quantité est réelle

19°) Soit $t \in]0, \frac{\pi}{2}].$

Pour tout $n \in \mathbb{N}$, notons R(n) l'assertion suivante : $\frac{\sin((2n+1)t)}{\sin t} = 1 + 2\sum_{n=0}^{\infty} \cos(2kt)$.

Pour n=0, une somme vide étant nulle, il s'agit de montrer que $\frac{\sin t}{\sin t}=1$, ce qui est vrai.

Pour $n \ge 0$, supposons R(n). Alors $1 + 2\sum_{t=1}^{n+1} \cos(2kt) = \frac{\sin((2n+1)t)}{\sin t} + 2\cos(2n+2)t$, donc pour établir R(n+1), il suffit de montrer que

$$(C) : \frac{\sin((2n+1)t)}{\sin t} + 2\cos(2n+2)t = \frac{\sin((2n+3)t)}{\sin t}.$$
 Or $(C) \Longleftrightarrow \sin(2n+3)t - \sin(2n+1)t = 2\cos(2n+2)t \sin t$, ce qui est vrai d'après la formule $\sin a - \sin b = 2\sin\frac{a-b}{2}\cos\frac{a+b}{2}$.

20°)
$$\frac{\sin((2n+1)t)}{\sin t} = 1 + 2\sum_{k=1}^{n}\cos(2kt) \xrightarrow[t\to 0]{} 2n+1$$
, donc l'application $t\longmapsto \frac{\sin((2n+1)t)}{\sin t}$ se prolonge en une application continue sur $[0,\frac{\pi}{2}]$, notée g . Ainsi, de même qu'en question 14, on en déduit que $\int_{0}^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{\sin t} dt = \int_{0}^{\frac{\pi}{2}} g(t) dt$. Notons J_n cette intégrale.

D'après la question précédente, et le fait qu'en $t = 0, 1+2\sum_{n=0}^{\infty}\cos(2kt) = 2n+1 = g(0)$

$$J_n = \int_0^{\frac{\pi}{2}} \left(1 + 2 \sum_{k=1}^n \cos(2kt) \right) dt = \frac{\pi}{2} + 2 \sum_{k=1}^n \left[\frac{\sin(2kt)}{2k} \right]_0^{\frac{\pi}{2}}. \text{ On en déduit que } J_n = \frac{\pi}{2}.$$

21°)
$$\diamond$$
 Posons $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin(2n+1)t}{t} dt$, qui est bien définie car
$$\frac{\sin(2n+1)t}{t} = \frac{\sin(2n+1)t}{(2n+1)t} \times (2n+1) \xrightarrow[t\to 0]{} 2n+1, \text{ donc } t \longmapsto \frac{\sin(2n+1)t}{t} \text{ se prolonge}$$
 en 0 en une application continue sur $[0,\frac{\pi}{2}]$.

$$I_n - J_n = \int_0^{\frac{\pi}{2}} h(t) \sin(2n+1)t \ dt$$
. h étant C^1 , on peut intégrer par parties :

$$I_n - J_n = \left[h(t) \frac{-\cos(2n+1)t}{2n+1} \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} h'(t) \frac{\cos(2n+1)t}{2n+1} dt,$$

donc
$$I_n - J_n = \frac{1}{2n+1} \int_0^{\frac{\pi}{2}} h'(t) \cos(2n+1)t \ dt$$
, car $\cos(2n+1)\frac{\pi}{2} = 0$ et $h(0) = 0$.

Alors, par inégalité triangulaire, $|I_n - J_n| \le \frac{1}{2n+1} + \int_0^{\frac{\pi}{2}} |h'(t)| dt = \frac{C}{2n+1}$, où C est une quantité indépendante de n. Ainsi, d'après le principe des gendarmes,

$$I_n - J_n \xrightarrow[n \to +\infty]{} 0$$
, or $J_n = \frac{\pi}{2}$. Ceci démontre que $I_n \xrightarrow[n \to +\infty]{} \frac{\dot{\pi}}{2}$.

 \diamond Reprenons la fonction f définie à la fin de la question 14. f étant continue sur \mathbb{R}_+ elle possède au moins une primitive, que l'on notera F.

Alors,
$$\frac{d}{dt} \left(\frac{F((2n+1)t)}{2n+1} \right) = F'((2n+1)t) = f((2n+1)t) = \frac{\sin((2n+1)t)}{(2n+1)t}$$
,

donc $t \longmapsto \frac{F((2n+1)t)}{2n+1}$ est une primitive de $t \longmapsto \frac{\sin((2n+1)t)}{(2n+1)t}$, ce qui montre que

$$I_n = (2n+1) \left[\frac{F((2n+1)t)}{2n+1} \right]_0^{\frac{\pi}{2}} = \int_0^{(2n+1)\frac{\pi}{2}} f(t) dt$$

$$I_{n} = (2n+1) \left[\frac{F((2n+1)t)}{2n+1} \right]_{0}^{\frac{\pi}{2}} = \int_{0}^{(2n+1)\frac{\pi}{2}} f(t) \ dt.$$
 On a donc montré que $\int_{0}^{(2n+1)\frac{\pi}{2}} f(x) \ dx \underset{n \to +\infty}{\longrightarrow} \frac{\pi}{2}.$