南京信息工程大学试卷答案及评分标准

2019 - 2020 学年 第 1 学期 线性代数 课程试卷(<u>B</u>卷)

一、填空题(每小题 3 分,共 15 分.请将答案填在答题册上对应题号后面的横线上)

答: $\frac{1}{8}A^*$.

(2) 设矩阵
$$A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & a & 1 \\ 5 & 0 & 3 \end{pmatrix}$$
, 且 A 的秩为 2,则 $a = \underline{\hspace{1cm}}$.

答: 6.

(3) 已知三维向量空间 R^3 的基为 $\alpha_1 = (1,0,0)^T$, $\alpha_2 = (0,1,0)^T$, $\alpha_3 = (0,1,1)^T$,则向量 $\beta = (1,1,1)^T$ 在此基下的坐标是

答: 1,0,1.

- (4) 设 3 阶矩阵 A 的特征值分别为 1, 2, 3, 则 $|A^2 3E| =$ ______. 答: -12.
- (5) 设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$, 且 $\mathbf{A} + k\mathbf{E}$ 是正定矩阵,则k 的取值范围是______.

答: k > 2.

- 二、选择题(每小题 3 分,共 15 分. 下列每题给出的四个选项中,只有一个符合题目要求,请将所选项前的字母填在答题册上对应题号后面的横线上)
- (1) 下列等式正确的是(D).

(A)
$$\begin{vmatrix} a+x & b+y \\ c+z & d+w \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} x & y \\ z & w \end{vmatrix};$$
 (B) $\begin{vmatrix} a & 2a \\ 3a & 4a \end{vmatrix} = a \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix};$

(C)
$$\begin{vmatrix} x & y \\ z & 0 \end{vmatrix} = \begin{vmatrix} x & y \\ z & a \end{vmatrix} + \begin{vmatrix} x & y \\ z & -a \end{vmatrix}$$
;

(D)
$$\begin{vmatrix} a & 2 \\ 3a & 4 \end{vmatrix} = -a \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}.$$

(2) 设向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关,则下列向量组中线性无关的是(A).

(A)
$$\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_4 - \boldsymbol{\alpha}_1;$$

(A)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 - \alpha_1;$$
 (B) $\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_4, \alpha_4 - \alpha_1;$

(C)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$$
;

(C)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$$
; (D) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 - \alpha_4, \alpha_4 - \alpha_1$.

(3) 设
$$\boldsymbol{A}$$
 为 3 阶矩阵, 且 $\boldsymbol{B} = \boldsymbol{A} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 关于 $\boldsymbol{A}^{\mathsf{T}}, \boldsymbol{B}^{\mathsf{T}}$ 的说法, 正确的是(\boldsymbol{A}).

(A)
$$A^{\mathrm{T}}$$
的第2行乘以2得到 B^{T} ;

(B)
$$A^{T}$$
的第2列乘以2得到 B^{T} ;

(C)
$$\mathbf{A}^{\mathrm{T}}$$
的第 2 行乘以 $\frac{1}{2}$ 得到 \mathbf{B}^{T} ;

(C)
$$A^{T}$$
的第 2 行乘以 $\frac{1}{2}$ 得到 B^{T} ; (D) A^{T} 的第 2 列乘以 $\frac{1}{2}$ 得到 B^{T} .

(4) 设 $A \in m \times n$ 矩阵,A 的秩R(A) = r,则齐次线性方程组Ax = 0有非零解的 充要条件是(B).

(A)
$$r > n$$
;

(B)
$$r < n$$

(B)
$$r < n$$
; (C) $r > m$;

(D)
$$r < m$$
.

(5) n 阶方阵 A 有 n 个不同的特征值是与对角阵相似的(B).

(A) 充分必要条件;

(B) 充分非必要条件;

(C) 必要非充分条件;

(D) 既非充分也非必要条件.

三、计算题(每小题 6 分, 共 18 分. 解答应写出文字说明、证明过程或演算步 骤,请直接在答题册对应题号下面的空白处作答)

(1) 设
$$D = \begin{vmatrix} 1 & 3 & -3 & 0 \\ 2 & 0 & 1 & 2 \\ -1 & 1 & 2 & 5 \\ 3 & 8 & -8 & 2 \end{vmatrix}$$
, M_{ij} 是 D 中元素 a_{ij} 的余子式,求 $M_{21} + M_{22} + M_{23} + M_{24}$.

解:
$$M_{21} + M_{22} + M_{23} + M_{24} = -A_{21} + A_{22} - A_{23} + A_{24} = \begin{vmatrix} 1 & 3 & -3 & 0 \\ -1 & 1 & -1 & 1 \\ -1 & 1 & 2 & 5 \\ 3 & 8 & -8 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 3 & -1 & 0 \\ 0 & 4 & -4 & 1 \\ 0 & 4 & -1 & 5 \\ 0 & -1 & 1 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & 3 & -1 & 0 \\ 0 & -1 & 1 & 2 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 9 \end{vmatrix} = 27.$$

(2) 设矩阵
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 3 & 0 \end{pmatrix}$$
, 求 A^{n} ($n \ge 3$ 为正整数).

解: 由题知:
$$\mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 6 & 0 & 0 \end{pmatrix}$$
, $\mathbf{A}^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

进而 $A^n = \mathbf{O} (n \ge 3$ 为正整数).

(3) 设 3 阶实对称矩阵 A 的特征值分别为1,-1,0,对应于1,-1的特征向量依次为 $p_1 = (1,2,2)^T$, $p_2 = (2,1,-2)^T$,求 A 的属于特征值 0 的特征向量.

解: 设 \boldsymbol{A} 的属于特征值 $\boldsymbol{0}$ 的特征向量为 $\boldsymbol{p}_3 = (x_1, x_2, x_3)^{\mathrm{T}}$ 。由于实对称矩阵不同特征值对应的特征向量必正交,

故
$$\left\{ \begin{bmatrix} \boldsymbol{p}_1, \boldsymbol{x} \end{bmatrix} = 0 \\ \begin{bmatrix} \boldsymbol{p}_2, \boldsymbol{x} \end{bmatrix} = 0 \right\}$$
 即 $\left\{ x_1 + 2x_2 + 2x_3 = 0 \\ 2x_1 + x_2 - 2x_3 = 0 \right\}$

解得基础解系为 $\boldsymbol{\xi} = (2,-2,1)^{\mathrm{T}}$,

于是A的属于特征值0的特征向量 $k\xi$ (k不等于零).

四、**(本题满分 10 分)**设
$$A+B=AB$$
,且 $A=\begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 2 & 2 \end{pmatrix}$,求矩阵 B .

解: 由 A + B = AB知: A = AB - B = (A - E)B, 则 $B = (A - E)^{-1}A$.

$$\overrightarrow{\text{m}} A - E = \begin{pmatrix} 0 & 2 & 1 \\ 3 & 3 & 2 \\ 1 & 2 & 1 \end{pmatrix},$$

$$\mathbb{X}(\mathbf{A} - \mathbf{E}|\mathbf{A}) = \begin{pmatrix} 0 & 2 & 1 & 1 & 2 & 1 \\ 3 & 3 & 2 & 3 & 4 & 2 \\ 1 & 2 & 1 & 1 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 & 2 & 2 \\ 0 & -3 & -1 & 0 & -2 & -1 \\ 0 & 2 & 1 & 1 & 2 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 & 2 & 2 \\ 0 & -1 & 0 & 1 & 0 & -3 \\ 0 & 2 & 1 & 1 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 & 3 \\ 0 & 0 & 1 & 3 & 2 & -5 \end{pmatrix},$$

所以
$$\mathbf{B} = (\mathbf{A} - \mathbf{E})^{-1} \mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 3 \\ 3 & 2 & -5 \end{pmatrix}.$$

五、**(本题满分 10 分)** 设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 3 & 0 \\ 2 & 5 & -1 & 4 \end{pmatrix}$$
,求该矩阵的秩以及列向量组的

一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示.

解:对矩阵进行初等行变换:

$$\mathbf{A} \triangleq (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}) = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 3 & 0 \\ 2 & 5 & -1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 1 & -1 & -2 \\ 0 & 5 & -5 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以R(A)=3.

且极大线性无关组为 $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_4$,且 $\boldsymbol{\alpha}_3=2\boldsymbol{\alpha}_1-\boldsymbol{\alpha}_2+0\cdot\boldsymbol{\alpha}_4$.

六、**(本题满分 10 分)** 当
$$\lambda$$
 取何值时,线性方程组
$$\begin{cases} (\lambda+3)x_1+x_2+2x_3=\lambda\\ \lambda x_1+(\lambda-1)x_2+x_3=\lambda \end{cases}$$
有 $3(\lambda+1)x_1+\lambda x_2+(\lambda+3)x_3=3$

唯一解、无解、无穷多解? 当方程组有无穷多解时求出它的通解.

解: 方程组的系数行列式为
$$\begin{vmatrix} \lambda+3 & 1 & 2 \\ \lambda & \lambda-1 & 1 \\ 3(\lambda+1) & \lambda & \lambda+3 \end{vmatrix} = \lambda^2 (\lambda-1),$$

则当 $\lambda \neq 0$ 且 $\lambda \neq 1$ 时,方程组唯一解.

 $4\lambda = 0$ 时,对方程组的增广矩阵做初等行变换:

$$(\mathbf{A}|\mathbf{b}) = \begin{pmatrix} 3 & 1 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 3 & 0 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 1 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 1 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix},$$

因此R(A)=2,R(A|b)=3,所以方程组无解.

当 $\lambda = 1$ 时,对方程组的增广矩阵做初等行变换:

$$(A|\mathbf{b}) = \begin{pmatrix} 4 & 1 & 2 & 1 \\ 1 & 0 & 1 & 1 \\ 6 & 1 & 4 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

因此R(A)=R(A|b)=2<3,所以方程组无穷多解.

其通解为
$$\mathbf{x} = k \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}$$
.

七、**(本题满分 12 分)** 已知二次型 $f(x_1,x_2,x_3) = x_1^2 + x_2^2 + 9x_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$,

- (1) 求正交变换 x = Qy 化二次型为标准形;
- (2) 判断此二次型是否正定.

解: (1) 由题知: 二次型对应的矩阵为 $\mathbf{A} = \begin{pmatrix} 1 & -1 & 3 \\ -1 & 1 & -3 \\ 3 & -3 & 9 \end{pmatrix}$,

$$\pm |\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} 1 - \lambda & -1 & 3 \\ -1 & 1 - \lambda & -3 \\ 3 & -3 & 9 - \lambda \end{vmatrix} = -\lambda^{2} (\lambda - 11) = 0 ,$$

得矩阵 \boldsymbol{A} 的特征值为 $\boldsymbol{\lambda_1} = \boldsymbol{\lambda_2} = \boldsymbol{0}, \boldsymbol{\lambda_3} = \boldsymbol{11}$,

解线性方程组 $(A-0\cdot E)x=0$ 得基础解系为 $\xi_1=(1,1,0)^T$, $\xi_2=(-3,0,1)^T$

解线性方程组 $(A-11\cdot E)x=0$ 得基础解系为 $\xi_3=(1,-1,3)^T$,

将
$$\xi_1, \xi_2$$
 正交化, 令 $\boldsymbol{\beta}_1 = \boldsymbol{\xi}_1 = (1,1,0)^T$, $\boldsymbol{\beta}_2 = \boldsymbol{\xi}_2 - \frac{[\boldsymbol{\xi}_2, \boldsymbol{\beta}_1]}{[\boldsymbol{\beta}_1, \boldsymbol{\beta}_1]} \boldsymbol{\beta}_1 = \frac{1}{2} (-3,3,2)^T$,

再将
$$\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\xi}_3$$
 单位化有 $\eta_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \eta_2 = \frac{1}{\sqrt{22}} \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix}, \quad \eta_3 = \frac{1}{\sqrt{11}} \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix},$

则
$$\mathbf{Q} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{3}{\sqrt{22}} & \frac{1}{\sqrt{11}} \\ \frac{1}{\sqrt{2}} & \frac{3}{\sqrt{22}} & -\frac{1}{\sqrt{11}} \\ 0 & \frac{2}{\sqrt{22}} & \frac{3}{\sqrt{11}} \end{pmatrix}$$
, 正交变换为 $\mathbf{x} = \mathbf{Q}\mathbf{y}$, 且标准形为 $f = 11y_3^2$.

(2) 由(1)知: 二次型的对应的矩阵 A 的特征值分别为 0, 0, 11.

因此特征值不是全大于0,即正惯性指数小于3,所以 / 不是正定二次型.

八、(本题满分 10 分)已知 A 为 n 阶矩阵.

(1) 若A满足 $A^2 = E$, 证明: R(A+E)+R(A-E)=n.

(2) 若
$$|A| = -1$$
且 $AA^{T} = E$,证明: $|A + E| = 0$.

证明: (1) 因为 $A^2 = E$, 所以(A + E)(A - E) = O,

则
$$R(A+E)+R(A-E)\leq n$$
,

又因为
$$R(A+E)+R(A-E)=R(A+E)+R(E-A)\geq R(2E)=n$$
,

所以
$$R(A+E)+R(A-E)=n$$
.

(2) 由于
$$|\mathbf{A}| = -1$$
且 $\mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{E}$,

所以
$$|A + E| = |A + AA^{T}| = |A(E + A^{T})| = |A(E^{T} + A^{T})|$$
,
$$= |A(E + A)^{T}| = |A||E + A| = -|E + A|,$$

所以|A+E|=0.

解:对矩阵进行初等行变换:

$$\mathbf{A} \triangleq (\mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3, \mathbf{\alpha}_4) = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 3 & 0 \\ 2 & 5 & -1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 1 & -1 & -2 \\ 0 & 5 & -5 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以R(A)=3.

且极大线性无关组为 $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_4$,且 $\boldsymbol{\alpha}_3=2\boldsymbol{\alpha}_1-\boldsymbol{\alpha}_2+0\cdot\boldsymbol{\alpha}_4$.

注:有的题目有多种解法,以上解答和评分仅供参考.