Student: Boris Ivanov Student Number: 2969300

2

Plan of Approach

Designing an Autonomous Robot Player for Connect-4

<u>Name of client</u>: ALTEN <u>Name of supervisor</u>: Michael van der Velden <u>Publication date</u>: 2-Mar-23

Version History						
Version	Date	State	Comment			
1	10-02-2023	Draft	First draft set-up			
2	13-02-2023	Draft	Put main bodies of text			
3	16-02-2023	Finalizing draft	Correction from the feedback from the technical supervisor			
4						

Acronyms and Abbreviations

Term Explanation

PoA Plan of approach

BSP Board support package

OS Operating system

Referenced documents

ID Reference Title Date Author

Index

5	1. Background information:	2
6	2. Project results:	3
7	2.1 Goals of the project:	3
8	2.2 Problem definition:	3
9	2.3 Description of the project result:	3
10	2.4 Design model	4
11	3. Project activities:	4
12	4. Project limits:	4
13	5. Intermediate milestones:	5
14	6. Planning:	5
15	7. Risks:	6

1. Background information:

1 2 3

- My graduation internship for Fontys Hogeschool will be conducted at the company ALTEN,
- 4 with my task being to realize an embedded software architecture on an STM32H7
- 5 processor, for their 4-in-a-row robot, which was previously designed by another graduation
- 6 project. c
- 7 ALTEN is an international Technology and IT consultancy and Engineering company.
- 8 Originally ALTEN was created in 1988 in France and currently they span over thirty countries
- 9 with over 54100 employees, having established themselves in all the major sectors:
- 10 Aeronautics & Space, Defence & Naval, Security, Automotive, Rail, Energy, Life Sciences,
- 11 Finance, Retail, Telecommunications and Services.
- 12 Within the Netherlands, their expertise falls within the following categories: ALTEN IT,
- 13 Technical Software and Mechatronics. The 4-in-a-row project falls within the Mechatronics
- 14 department. Where my technical supervisor, Michael van der Velden, is also working as a
- 15 consultant for ASML. With over 20 years of experience in the electrical engineering industry
- 16 and weekly progress meetings, he has enough technical knowledge to guide me
- 17 successfully through the project. Additionally, I have an appointed business manager, Gijs
- 18 Haans, who is responsible for our personal development within the company and progress
- 19 as engineers.
- 20 ALTEN has in-house projects, which are often used to develop new skills for consultants or
- 21 the ones of interns. The 4-in-a-row (Connect4, Four Up) robot was developed for demos at
- 22 trade fairs and open days at universities. The robot game is meant to demonstrate the
- 23 knowledge of the consultants of ALTEN, and it is therefore developed with industrial
- 24 components.
- 25 The game is simple, there is a seven-by-six rack board, with slots at each spot for two
- 26 coloured tokens. A red one and a yellow one. The first player to Connect 4 tokens in any
- 27 direction wins. In our case, one player is a human, the other one is a robot. It is a
- 28 completely autonomous process. After a token has been placed in the idle robot, the
- 29 machine can calculate its next move based on a difficulty setting. To be able to execute
- 30 everything, the 4-in-a-row robot is equipped with 'X' and 'Z' plane motors, a rotating
- 31 vacuum gripper, and a routine to clear the board and reset the tokens.

2. Project results:

2.1 Goals of the project:

- 3 Implement the previously designed software architecture for the new STM32H755ZIT6U
- 4 controller. Previously this system and its last iteration was running on a single Cortex-M4
- 5 core. Which was not powerful enough to provide resources for the software and hardware
- 6 expansions ALTEN wanted to introduce to it. Therefore, they decided to upgrade the
- 7 system with a dual-core processor. With this new requirement, a new architecture was
- 8 designed and partially implemented, but only to demonstrate the functionality of the
- 9 architecture.

1

2

- 10 My task will involve designing the modules to make the system reliable and functional to
- 11 the best of its capacity. That will involve writing code for the needed modules, improving
- 12 and adapting flowcharts/logic, and redesigning modules that do not function as expected
- 13 from the software architecture. Further steps will include the further optimization of the BSP
- 14 and testing on the robot itself. Moreover, research on ethernet communication with the
- robot will also be investigated, as a secondary goal.
- 16 The project will not involve integrating the game-logic part (the module where the next
- 17 decision for the robot is made), on the Cortex-M7 core, but it will keep its function as it is
- 18 currently.

19

30

31

32

34

35

36

37

38

39

2.2 Problem definition:

- 20 As mentioned before, the system has had an upgrade in hardware and because of that a
- 21 new architecture was designed. My task is to implement the new dual-core architecture by
- 22 validating/testing the design and by implementing the necessary software modules to
- 23 make the 4-in-a-row robot perform more reliably. Secondary to that goal, is the researching
- 24 of the Ethernet communication with the system. That will ensure that future upgrades of the
- 25 system have a starting point to go off of.
- 26 Within the software architecture, I have complete freedom of design and choice on
- 27 implementing the functions and how they are programmed. Alongside with the ability to
- 28 redesign modules if they aren't behaving as needed and if the changes are justified in front
- 29 of the client.

2.3 Description of the project result:

- 1. Designed software modules from the architecture design.
- 2. Tested modules on the Connect4 robot.
- 33 3. Research on ethernet communication for the system.

1

6 7

8

9

10

11 12

14

15 16

17

18

19

2 2.4 Design model

- 3 The V-Model is a useful tool to manage and deliver projects. By using this model, the
- 4 student can ensure that their project is completed in a systematic and efficient manner,
- 5 and that the requirements set out at the beginning of the project are met.

3. Project activities:

- 1. Research key concepts about STM32
 - a. Memory, Timers, Interrupts, Communication protocols, etc.
- 2. Redesigning flowcharts for software modules
- 3. To study and get familiar with the environment of the STM32 controller
- 4. Programming modules from the architecture
- 5. Implementing modules from the architecture on the hardware
- 13 The programming done on this project will be in C/++.

4. Project boundaries:

The project is concerned with the implementation of the previously designed software architecture. The dual-core communication is worked out, but the rest of the modules (blocks) have to be implemented. There are more modules building up the ones seen in the diagrams bellow.

Figure 2: Cortex-M7 block diagram

Figure 3: Cortex-M4 block diagram

Table 1: Scope of project

Project boundaries	Within Scope ?	
Implement software modules	Yes	
Redesign software modules	Yes	
Research ethernet communication	Yes	
Implementing ethernet communication	No	
Redesign hardware/mechanics	No	
Changes to the gameplay	No	

5. Intermediate milestones:

- 1. System Requirements Document / System Design Document
- 2. Implementation of modules
- 3. Test Plan

6. Planning:

Figure 4: Planning of the project

PoA

7. Risks:

1

Risk description	Likelihood	Impact	Risk
Context: Hardware failure Event: Component malfunction	2	3	
Context: Software bugs Event: Software modules not working as expected	2	4	
Context: Integration issues Event: Unresponsive while testing new software modules	4	2	
Context: Time constrain Event: Failure to complete tasks due to poor time management and/or unexpected events	2	2	
Context: Unclear scope of project Event: Unclear user requirements	1	3	
Context: Wrong logic in state machines Event: Wrong behaviour of the system	1	1	

3 Table 2: Risk list

Likelihood	Consequences of impact				
	1	2	3	4	
4	4	8	12	16	
3	3	6	9	12	
2	2	4	6	8	
1	1	2	3	4	

Table 3: Qualitative risk analysis matrix