Week 3: Fundamental quantum mechanics, particle in a box, spherical coordinates

Simon Elias Schrader

September 6th 2024

 Q5.14 Why must the amplitudes of the energy eigenfunctions in the finite depth box and in the adjoining barrier regions have the same value at the boundary?

- Q5.14 Why must the amplitudes of the energy eigenfunctions in the finite depth box and in the adjoining barrier regions have the same value at the boundary?
- Q5.16 Explain qualitatively why the speed of the particle needs to be taken into account in calculating the probability for transmission over a step potential.

- Q5.14 Why must the amplitudes of the energy eigenfunctions in the finite depth box and in the adjoining barrier regions have the same value at the boundary?
- Q5.16 Explain qualitatively why the speed of the particle needs to be taken into account in calculating the probability for transmission over a step potential.
- Q6.11 Which result of the Stern–Gerlach experiment allows us to conclude that the operators for the z and x components of the magnetic moment do not commute?

- Q5.14 Why must the amplitudes of the energy eigenfunctions in the finite depth box and in the adjoining barrier regions have the same value at the boundary?
- Q5.16 Explain qualitatively why the speed of the particle needs to be taken into account in calculating the probability for transmission over a step potential.
- Q6.11 Which result of the Stern–Gerlach experiment allows us to conclude that the operators for the z and x components of the magnetic moment do not commute?
- Q6.13 Explain the following statement: if $\hbar=0$, it would be possible to measure the position and momentum of a particle exactly and simultaneously.

- Q5.14 Why must the amplitudes of the energy eigenfunctions in the finite depth box and in the adjoining barrier regions have the same value at the boundary?
- Q5.16 Explain qualitatively why the speed of the particle needs to be taken into account in calculating the probability for transmission over a step potential.
- Q6.11 Which result of the Stern–Gerlach experiment allows us to conclude that the operators for the z and x components of the magnetic moment do not commute?
- Q6.13 Explain the following statement: if $\hbar=0$, it would be possible to measure the position and momentum of a particle exactly and simultaneously.
- Q6.15 How would the results of the Stern-Gerlach experiment be different if they had used a Mg beam instead of an Ag beam? What about a beam of Hydrogen atoms?

Polar coordinates and spherical coordinates 1

- In general, we can represent a point in D dimensions by it's length r, and D-1 angles θ, ϕ, \ldots uniquely.
- So we can write any function f(x, y, z, ...) as $f(r, \theta, \phi, ...)$
- In two dimensions, we have
 - $x = r\cos(\theta)$, $y = r\sin(\theta)$ where $r \in [0, \infty]$, $\theta \in [0, 2\pi]$.
 - So we can write any function as $f(x, y) = f(r, \theta)$.
 - When integrating, one has to be careful to take the determinant of the Jacobian into account:

$$\mathbf{J}_{\mathbf{F}}(r,\theta) = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$$

and
$$dxdy = \det(J_F(r,\theta))drd\theta = rdrd\theta$$

Polar coordinates and spherical coordinates 2

In three dimensions, we have

$$x = r \sin \theta \cos \phi,$$
 $r = \sqrt{x^2 + y^2 + z^2}$
 $y = r \sin \theta \sin \phi,$ $\phi = \arctan\left(\frac{y}{x}\right)$
 $z = r \cos \theta,$ $\theta = \arccos\left(\frac{z}{r}\right)$

where $r \in [0, \infty], \theta \in [0, \pi]$ and $\phi \in [0, 2\pi]$. And the Jacobian reads

$$\mathbf{J_F}(r,\theta,\phi) = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi} \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi & r\cos\phi\cos\phi & -r\sin\theta\sin\phi \\ \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi \\ \cos\theta & -r\sin\theta & 0 \end{bmatrix}$$

Then the volume element becomes

$$dxdydz = r^2 \sin(\theta) dr d\theta d\phi$$

Example exercises calculated by me

- Calculate the volume of a sphere of radius r.
- Write $\frac{\partial}{\partial x}$ in spherical coordinates.
- P6.7 Evaluate the commutator $\left[\left(d^2/dy^2\right),y\right]$ by applying the operators to an arbitrary function f(y).
- Show that the state

$$\Psi(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \exp\left(-\frac{m\omega}{2\hbar}x^2\right)$$

has minimum uncertainty $\sigma_x \sigma_p = \frac{\hbar}{2}$.

Exercises on quantum mechanics

- P6.8 Evaluate the commutator $\left[d/dx,1/x^2\right]$ by applying the operators to an arbitrary function f(x).
- P6.9 Evaluate the commutator $[\hat{x}, \hat{p}_x]$ by applying the operators to an arbitrary function f(x). What value does the commutator $[\hat{p}_x, \hat{x}]$ have?
- P6.13 For linear operators A, B, C, show that [A, BC] = [A, B]C + B[A, C].
- Consider the particle in a box of length a. For the energy eigenstates $\Psi_n(x)$, calculate the expectation values $\langle x \rangle, \langle x^2 \rangle$, $\langle p \rangle$ and $\langle p^2 \rangle$. (Hint: $\langle x \rangle, \langle p^2 \rangle$ and $\langle p \rangle$ can be solved without doing any integrals.) Calculate the standard deviations $\sigma_x = \sqrt{\langle x^2 \rangle \langle x \rangle^2}$ and $\sigma_p = \sqrt{\langle p^2 \rangle \langle p \rangle^2}$ and the product $\sigma_x \sigma_p$. Indeed, Heisenbergs uncertainty principle states that $\sigma_x \sigma_p \geq \frac{\hbar}{2}$. Did you get that?

Exercises on mathematics

Solve the integral

$$I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{a}\sqrt{x^2 + y^2 + z^2}} dx dy dz$$

- Quite challenging: Write $\frac{\partial}{\partial z}$ in spherical coordinates.
- Challenging: Write $\frac{\partial^2}{\partial z^2}$ in spherical coordinates.
- Very challenging: Show that the Laplacian, which in Cartesian coordinates reads

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

reads in spherical coordinates

$$\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$