→ Regression Model to Predict Cement Compressive Strength

Compressive strength of cement at 7 and 28 days

import library
import pandas as pd
import numpy as np

import data

 $\texttt{cement = pd.read_csv('} \\ \underline{\texttt{https://github.com/ybifoundation/Dataset/raw/main/Concrete\%20Compressive\%20Strength.csv')} \\ \\ \texttt{a.s.v.'} \\ \underline{\texttt{pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Concrete\%20Compressive\%20Strength.csv')} \\ \\ \underline{\texttt{pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Concrete\%20Compressive\%20Strength.csv')} \\ \underline{\texttt{pd.read_csv('https://github.csv')} \\ \underline{\texttt{pd.read_csv'}} \\ \underline{\texttt{pd$

view data
import numpy as np

info of data
import numpy as np

summary statistics

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)	Concre Compress: Strength(MI megapasca:
count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.0000
mean	281.165631	73.895485	54.187136	181.566359	6.203112	972.918592	773.578883	45.662136	35.817{
std	104.507142	86.279104	63.996469	21.355567	5.973492	77.753818	80.175427	63.169912	16.7056
min	102.000000	0.000000	0.000000	121.750000	0.000000	801.000000	594.000000	1.000000	2.3318
25%	192.375000	0.000000	0.000000	164.900000	0.000000	932.000000	730.950000	7.000000	23.707
50%	272.900000	22.000000	0.000000	185.000000	6.350000	968.000000	779.510000	28.000000	34.4427
75%	350.000000	142.950000	118.270000	192.000000	10.160000	1029.400000	824.000000	56.000000	46.1362
max	540.000000	359.400000	200.100000	247.000000	32.200000	1145.000000	992.600000	365.000000	82.5992

check for missing value
cement.describe()

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)	Concre Compress: Strength(Mi megapasca:
col	unt 1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.0000
me	an 281.165631	73.895485	54.187136	181.566359	6.203112	972.918592	773.578883	45.662136	35.8178
st	d 104.507142	86.279104	63.996469	21.355567	5.973492	77.753818	80.175427	63.169912	16.7056
m	in 102 000000	0 000000	0 000000	121 750000	0 000000	8N1 NNNNNN	504 000000	1 በበበበበበ	2 3311

check for categories
cement.nunique()

Cement (kg in a m^3 mixture)	280
Blast Furnace Slag (kg in a m^3 mixture)	187
Fly Ash (kg in a m^3 mixture)	163
Water (kg in a m^3 mixture)	205
Superplasticizer (kg in a m^3 mixture)	155
Coarse Aggregate (kg in a m^3 mixture)	284
Fine Aggregate (kg in a m^3 mixture)	304
Age (day)	14
Concrete Compressive Strength(MPa, megapascals) dtype: int64	938

visualize pairplot
import seaborn as sns
sns.pairplot(cement)

```
<seaborn.axisgrid.PairGrid at 0x7f2eb8c9fbb0>
                400
                300
# columns name
cement.columns
           Index(['Cement (kg in a m^3 mixture)',
                           'Blast Furnace Slag (kg in a m^3 mixture)',
                          'Fly Ash (kg in a m^3 mixture)', 'Water (kg in a m^3 mixture)',
                           'Superplasticizer (kg in a m^3 mixture)
                          'Coarse Aggregate (kg in a m^3 mixture)',
                          'Fine Aggregate (kg in a m^3 mixture)', 'Age (day)',
                          'Concrete Compressive Strength(MPa, megapascals) '],
                        dtype='object')
                                                                                                                            1...
           g 9150
                                                                         :
                                                                                                                                                                                   S . . . . .
# define y
y=cement['Concrete Compressive Strength(MPa, megapascals) ']
                                                                                                                                                        _ <del>_ _ _ ••</del>
                              # define X
X=cement[['Cement (kg in a m^3 mixture)',
'Blast Furnace Slag (kg in a m^3 mixture)',
'Fly Ash (kg in a m^3 mixture)', 'Water (kg in a m^3 mixture)',
'Superplasticizer (kg in a m^3 mixture)',
'Coarse Aggregate (kg in a m^3 mixture)',
'Fine Aggregate (kg in a m^3 mixture)', 'Age (day)']]
              # split data
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.7,random_state=2559)
                                         The sadden of the country of a country that the country of the cou
# verify shape
X_train.shape,X_test.shape,y_train.shape,y_test.shape
           ((721, 8), (309, 8), (721,), (309,))
# select model
from sklearn.linear_model import LinearRegression
model=LinearRegression()
# train model
model.fit(X_train,y_train)
           LinearRegression()
# predict with model
y_pred=model.predict(X_test)
```

model evaluation

 $from \ sklearn.metrics \ import \ mean_absolute_error, mean_absolute_percentage_error, mean_squared_error$

model MAE

mean_absolute_error(y_test,y_pred)

7.814891951068712

model MAPE

mean_absolute_percentage_error(y_test,y_pred)

0.28040027489426594

model MSE

 ${\tt mean_squared_error(y_test,y_pred)}$

102.62674212692517

future prediction

X.sample()

	` `	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)
917	148.0	175.0	0.0	171.0	2.0	1000.0	828.0	28

define X_new

X_new=X.sample()

X_new

1	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)
392	333.0	17.5	163.0	167.0	17.9	996.0	652.0	28

predict for X_new
model.predict(X_new)

array([48.77143516])