Finite Temperature EOS driver & Tablulated EOSs

C. D. Ott and E. O'Connor

September 7, 2009

1 EOS Driver

2 Tabulated EOSs

2.1 Table format

Our EOS driver accepts tablulated EOS in $\mathtt{HDF5}$ format. Table 1 lists the required fields and a short description.

Variable	Units	Description
pointsrho	dimensionless	number of table points in $\log_{10}(\rho)$
pointstemp	dimensionless	number of table points in $log_{10}(T)$
pointsye	dimensionless	number of table points in Y_e
logrho	$\log_{10}(\rho[\mathrm{g/cm^3}])$	index variable ρ
logrho	$\log_{10}(T[\mathrm{MeV}])$	index variable T
logrho	number fraction	index variable Y_e
Abar	A	average heavy nucleus mass number
Zbar	Z	average heavy nucleus atomic number
Xa	mass fraction	α particle mass fraction
Xh	mass fraction	average heavy nucleus mass fraction
Xn	mass fraction	neutron mass fraction
Хр	mass fraction	proton mass fraction
cs2	$\rm cm^2/s^2$	speed of sound squared
dedt	$\rm erg/g/MeV$	C_v
dpderho	$dynes g/cm^2/erg$	$dP/d\epsilon$ at constant ρ
dpdrhoe	$dynes cm^3/cm^2/g$	$dP/d\rho$ at constant ϵ
$energy_shift$	erg/g	energy shift for table storage a
entropy	k_B /baryon	specific entropy
gamma	dimensionless	$d\log[P]/d\log[\rho]$
logenergy	$\log_{10}(\epsilon[\mathrm{erg/g}])$	specific internal energy
logpress	$\log_{10}(P[\mathrm{dynes/cm^2}])$	pressure
$\mathtt{mu}_{-}e$	MeV/baryon	electron chemical potential b
mu_p	MeV/baryon	proton chemical potential ^c
mu_n	MeV/baryon	neutron chemical potential d
muhat	Mev/baryon	mu_n - mu_p
munu	Mev/baryon	mu_e - muhat

 $[^]a \mathrm{see}$ below

Table 1: EOS driver HDF5 variables

 $[^]b$ includes rest mass

 $^{^{}c} \mathrm{includes}$ rest mass, see specific EOS for detials

 $[^]d\mathrm{includes}$ rest mass, see specific EOS for detials

2.2 Shen EOS

2.2.1 Table Construction

Our Shen EOS is constructed on the basis of the Shen et al. 1998 relativistic-mean field nuclear EOS table. Electrons (fully general, based on TimmesEOS) and Photons are added.

Original Shen EOS table extent:

$$\begin{array}{c|c} {\rm Density} & 10^{5.1} \ \mbox{--} \ 10^{15.4} \ \mbox{g/cm}^3 \\ {\rm Temperature} & 0.1 \ \mbox{--} \ 100 \ \mbox{MeV} \\ & Y_e & 0.01 \ \mbox{--} \ 0.56 \\ \end{array}$$

Table extent of current table [myshen_test_220r_180t_50y_extT_20090312.h5]:

$$\begin{array}{c|c} {\rm Density} & 10^3 \ \mbox{-} \ 10^{15.36} \ \mbox{g/cm}^3 \\ {\rm Temperature} & 0.01 \ \mbox{-} \ 250 \ \mbox{MeV} \\ Y_e & 0.015 \ \mbox{-} \ 0.56 \end{array}$$

This bigger table is realized by extending the original Shen table in multiple ways in multiple directions:

(a) density:

Match of pure ideal gas of Ni^{56} + electrons/positrons + photons at densities below $10^7 g/cm^3$ - at this density pressures, energies and entropies match okayish with the values in the Shen table. The compositions (Abar,Zbar,Xh,Xa,Xp,Xn) are kept constant in the low-density region and mu_n and mu_p are set to 0 - ideally, at low densities, a full NSE EOS with nuclear reaction network (at low T) should be stitched onto the Shen; working on that, but not yet ready.

(b) temperature (extrapolation):

At high density: linear extrapolation of everything in T to lower temperatures and higher temperatures. At low densities (below 10^7g/cm^3), ideal gas of Ni⁵⁶ + electrons/positrons + photons.

2.2.2 Chemical Potentials

The nucleon chemical potentials are fully relativistic in the Shen EOS. They include the rest mass but are given with respect to a mass of M=938 MeV, i.e. $\mu_n=\tilde{\mu}_n-M$. Therefore $\hat{\mu}=\mu_n-\mu_p$ includes the neutron-proton mass difference.

2.2.3 Energy Shift

In some regions the negative nuclear binding energy is larger in magnitude than the thermal/excitation energy. In this case the specific internal energy (ϵ) becomes negative. To allow for storage and interpolation of ϵ in logarithmic fashion, the energy is shifted up by an energy shift specified in the variable energy_shift. This energy shift is handled internally in the EOS routines.

2.3 LS EOSs

2.3.1 Chemical Potentials

The nucleon chemical potentials are fully relativistic in the LS EOSs in the sense that they include the rest mass of the particles. The chemical potentials are given with respect to the neutron rest mass. Therefore $\hat{\mu} = \mu_n - \mu_p$ includes the neutron-proton mass difference.

2.3.2 Energy Shift

In some regions the negative nuclear binding energy is larger in magnitude than the thermal/excitation energy. In this case the specific internal energy (ϵ) becomes negative. To allow for storage and interpolation of ϵ in logarithmic fashion, the energy is shifted up by an energy shift specified in the variable energy_shift. This energy shift is handled internally in the EOS routines.