Question Number	Answer		Mark
18(a)	• Use of $p = mv$	(1)	
	Use of conservation of momentum	(1)	
		(1)	3
	• $v = 6.3 \text{ m s}^{-1}$	(1)	3
	Example of calculation		
	Before: $p_{\text{mallet}} = 0.17 \text{ kg} \times 1.6 \text{ m s}^{-1} = 0.272 \text{ kg m s}^{-1}$ After: $p_{\text{mallet}} = 0.17 \text{ kg} \times 0.3 \text{ m s}^{-1} = 0.051 \text{ kg m s}^{-1}$		
	$0.272 \text{ kg m s}^{-1} = 0.051 \text{ kg m s}^{-1} + (0.035 \text{ kg} \times \nu)$		
	$v = 6.3 \text{ m s}^{-1}$		
18(b)	METHOD 1	(1)	
	• Use of $E_k = \frac{1}{2}mv^2$		
	• Use of sin 30° to determine vertical height moved by disc	(1)	
	• Use of $E_{\text{grav}} = mgh$	(1)	
	• Use of $W = Fd$	(1)	
	• Use of conservation of energy e.g. $E_k = E_{grav} + W$	(1)	
	• $F_{\rm F} = 6.6 \rm N$	(1)	
	Example of calculation		
	$E_k = \frac{1}{2} \times 0.035 \text{ kg} \times (5.0 \text{ m s}^{-1})^2 = 0.44 \text{ J}$		
	$E_{\text{grav}} = 0.035 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 0.065 \text{ m} \times \sin 30^{\circ} = 1.12 \times 10^{-2} \text{ J}$		
	$0.44 \text{ J} = 1.12 \times 10^{-2} \text{ J} + (F_F \times 0.065 \text{ m})$ $0.44 \text{ J} - 0.0112 \text{ J} = 0.43 \text{ J}$		
	$F_{\rm F} = 6.56 \rm N$		6
	METHOD 2		
	• Use of $v^2 = u^2 + 2as$ to determine deceleration along ramp		
	• $v = 0$ and a negative		
	 Use of sin 30° to determine component of weight of disc down slope Use of ΣF = m a to determine resultant force along ramp 		
	 Subtraction of weight component from resultant force. 		
	$\bullet F_{\rm F} = 6.6 \text{ N}$		
	Total for question 18		9