

Matrix Code Equivalence

footnote

3-tensor

Can think of a matrix code as a 3-tensor over \mathbb{F}_q

Equivalence then becomes tensor isomorphism

$$\mathcal{D} \subseteq \mathbb{F}_q^{m \times n \times k}$$

1110.

Equivalence

Can think of a matrix code as a 3-tensor over \mathbb{F}_q

Equivalence then becomes tensor isomorphism

$$\mathcal{D} \subseteq \mathbb{F}_q^{m \times n \times k}$$

symmetry

Viewed as a 3-tensor, we can see & from three directions

- an k-dimensional code in $\mathbb{F}_q^{m \times n}$
- an m-dimensional code in $\mathbb{F}_q^{n\times k}$ an n-dimensional code in $\mathbb{F}_q^{m\times k}$

