16. 某工厂采用如下工艺处理镍钴矿硫酸浸取液含(Ni^{2+} 、 Co^{2+} 、 Fe^{2+} 、 Fe^{3+} 、 Mg^{2+} 和 Mn^{2+})。实现镍、钴、镁元素的回收。

己知:

物质	$Fe(OH)_3$	Co(OH) ₂	Ni(OH) ₂	$Mg(OH)_2$
K _{sp}	$10^{-37.4}$	$10^{-14.7}$	$10^{-14.7}$	$10^{-10.8}$

回答下列问题:

- (1) 用硫酸浸取镍钴矿时,提高浸取速率的方法为 (答出一条即可)。
- (2)"氧化"中,混合气在金属离子的催化作用下产生具有强氧化性的过一硫酸 (H_2SO_5) , $1molH_2SO_5$ 中过氧键的数目为 。
- (3) "氧化"中,用石灰乳调节 pH = 4 , Mn^{2+} 被 H_2SO_5 氧化为 MnO_2 ,该反应的离子方程式为_____(H_2SO_5 的电离第一步完全,第二步微弱); 滤渣的成分为 MnO_2 、_____(填化学式)。
- (4) "氧化"中保持空气通入速率不变,Mn (II)氧化率与时间的关系如下。 SO_2 体积分数为 ________ 时,Mn (II)氧化速率最大;继续增大 SO_2 体积分数时,Mn (II)氧化速率减小的原因是______。

(5) "沉钴镍"中得到的Co(II)在空气中可被氧化成CoO(OH),该反应的化学方程式为

_____0

(6) "沉镁"中为使 Mg^{2+} 沉淀完全 $\left(25^{\circ}C\right)$,需控制 pH 不低于_____(精确至 0.1)。