# CAMC and NHD

YEGOR BUGAYENKO

Lecture #9 out of 24 80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from public Internet sources, such as web sites. Copyright belongs to their respected authors.





"Without a well-defined process, your development team will develop in an *ad hoc* manner, with success relying on the <u>heroic efforts</u> of a few dedicated individual contributors. This is not a sustainable condition."

— Philippe Kruchten. *The Rational Unified Process: An Introduction*. Addison-Wesley, 2004. doi:10.5555/518604

## Rational Unified Process (RUP)



Source: Ahmad K. Shuja and Jochen Krebs. IBM Rational Unified Process (RUP) Reference and Certification Guide: Solution Designer, 2007

## Decoupling via Interfaces (in Java)

```
interface Shape
double area();

class Circle implements Shape
int r;
@Override
double area()
return r * r * 3.14d;

void main(Shape s)
double a = s.area();

main()
Shape

Circle

**Circle**
**Circle**
**Circle**
**Circle**
**Circle**
**Circle**
**Couple of the couple of the coupl
```



Jagdish Bansiya

"CAMC: Cohesion Among Methods of Classes (CAMC) evaluates the <u>relatedness</u> of methods in the interface of a class using the parameter lists defined for the methods. It can be applied <u>earlier</u> in the development than can traditional cohesiveness metrics because it relies only on method prototypes declared in a class."

— Jagdish Bansiya. Class Cohesion Metric for Object Oriented Designs, 1999

```
Alert(AlertType, byte, *text = 0, Bitmap *bm = 0);
    ~Alert();
VObject *DoCreateDialog();
int Show(char *fmt);
int ShowV(char *fmt, va_list ap);
class Menu *GetMenu();
void InspectorId(char *buf, int sz);
```

k — total number of methods

l — total number of types

$$\mathtt{CAMC} = \tfrac{1}{k \times l} \times \sum\nolimits_{i=1}^k \sum\nolimits_{j=1}^l o_{ij}$$

| 0                      | AlertType | byte | Bitmap | char | va_list | int |
|------------------------|-----------|------|--------|------|---------|-----|
| Alert                  | 1         | 1    | 1      | 0    | 0       | 0   |
| $^{\sim}$ Alert        | 0         | 0    | 0      | 0    | 0       | 0   |
| ${\tt DoCreateDialog}$ | 0         | 0    | 0      | 0    | 0       | 0   |
| Show                   | 0         | 0    | 0      | 1    | 0       | 0   |
| ${	t ShowV}$           | 0         | 0    | 0      | 1    | 1       | 0   |
| GetMenu                | 0         | 0    | 0      | 0    | 0       | 0   |
| ${\tt InspectorId}$    | 0         | 0    | 0      | 1    | 0       | 1   |

(b) The parameter occurrence matrix.

Source: Jagdish Bansiya. Class Cohesion Metric for Object Oriented Designs, 1999

CAMC and NHD



STEVE COUNSELL

"NHD: The hamming distance (HD) provides a measure of disagreement between rows in a binary matrix. The Normalised Hamming Distance (NHD) metric measures agreement between rows in a binary matrix."

— Steve Counsell, Stephen Swift, and Jason Crampton. The Interpretation and Utility of Three Cohesion Metrics for Object-Oriented Design. *ACM Transactions on Software Engineering and Methodology (TOSEM)*, 15(2):123–149, 2006. doi:10.1145/1131421.1131422

k — total number of methods

l — total number of types

$$NHD = \frac{2}{l \times k \times (k-1)} \times \sum_{j=1}^{k-1} \sum_{i=j+1}^{k} a_{ij}$$

| 0                      | AlertType | byte | Bitmap | char | va_list | int |
|------------------------|-----------|------|--------|------|---------|-----|
| Alert                  | 1         | 1    | 1      | 0    | 0       | 0   |
| $^{\sim}$ Alert        | 0         | 0    | 0      | 0    | 0       | 0   |
| ${\tt DoCreateDialog}$ | 0         | 0    | 0      | 0    | 0       | 0   |
| Show                   | 0         | 0    | 0      | 1    | 0       | 0   |
| ${\tt ShowV}$          | 0         | 0    | 0      | 1    | 1       | 0   |
| GetMenu                | 0         | 0    | 0      | 0    | 0       | 0   |
| ${\tt InspectorId}$    | 0         | 0    | 0      | 1    | 0       | 1   |

(b) The parameter occurrence matrix.

| A                      | Alert | $^{\sim}$ Alert | DoCreateDialog | Show | ShowV | GetMenu |
|------------------------|-------|-----------------|----------------|------|-------|---------|
| $^\sim$ Alert          | 3     |                 |                |      |       |         |
| ${\tt DoCreateDialog}$ | 3     | 6               |                |      |       |         |
| Show                   | 2     | 5               | 5              |      |       |         |
| ${\tt ShowV}$          | 1     | 4               | 4              | 5    |       |         |
| GetMenu                | 3     | 6               | 6              | 5    | 4     |         |
| InspectorId            | 1     | 4               | 4              | 5    | 4     | 4       |
|                        | 13    | 25              | 19             | 15   | 8     | 4       |

(c) The parameter agreement matrix.





ROBERT C. MARTIN

"Classes that have 'fat' interfaces are classes whose interfaces are not cohesive. In other words, the interfaces of the class can be broken up into groups of methods."

— Robert C. Martin. *Agile Software Development, Principles, Patterns, and Practices.* Prentice Hall, 2002. doi:10.5555/515230

### InputStream in Java 1.0

#### Bad:

```
abstract class InputStream
int read();
int read(byte[] b);
int read(byte[] b, int o, int 1);

class FileInputStream
implements InputStream
native int read();
native int read(byte[] b, int o, int 1);
int read(byte[] b)
return read(b, 0, b.length);
```

#### Better (but slower!):

```
interface InputStream {
  int read(byte[] b, int o, int l);

class FileInputStream
  implements InputStream
  native int read(byte[] b, int o, int l);

class OneByteStream
  InputStream s;
  int read()
  byte[] b = new byte[1];
  s.read(b, 0, 1);
  return (int) b[0];
```

Source: Yegor Bugayenko. Why InputStream Design Is Wrong. https://www.yegor256.com/160426.html, 4 2016. [Online; accessed 22-09-2024]

## Also Known As...

- "interface" in Java
- "protocol" in Objective-C
- "interface" in C#
- "abstract class" in C++

- absent in Python
- absent in JavaScript
- "interface" in Go
- •"trait" in Rust

Source: Yegor Bugayenko. Fat vs. Skinny Design. https://www.yegor256.com/200219.html, 2 2020. [Online; accessed 26-10-2024]

## Correlation between cohesion metrics

| Table 1. Correlation Analysis among Metrics |        |       |       |       |        |        |       |  |
|---------------------------------------------|--------|-------|-------|-------|--------|--------|-------|--|
|                                             | LCOM2  | LCOM5 | MMAC  | NHD   | PCC    | TCC    | LCC   |  |
| LCOM2                                       | 1      | 0.83  | -0.46 | 0.5   | 0.125  | -0.687 | 0.67  |  |
| LCOM5                                       | 0.83   | 1     | -0.52 | 0.485 | 0.137  | -0.75  | 0.156 |  |
| MMAC                                        | -0.46  | -0.52 | 1     | -0.72 | -0.23  | 0.493  | -0.41 |  |
| NHD                                         | 0.5    | 0.485 | -0.72 | 1     | 0.21   | -0.54  | 0.23  |  |
| PCC                                         | 0.125  | 0.137 | -0.23 | 0.21  | 1      | -0.114 | 0.335 |  |
| TCC                                         | -0.687 | -0.75 | 0.493 | -0.54 | -0.114 | 1      | 0.02  |  |
| LCC                                         | 0.67   | 0.156 | -0.41 | 0.23  | 0.335  | 0.02   | 1     |  |

Source: Dmitry Alexandrov, Maqsudjon Ismoilov, Artem Kozlov, Anton Savachenko, and Sergey Zykov. Validating New Method for Measuring Cohesion in Object-Oriented Projects. *Procedia Computer Science*, 192(1): 4865–4876, 2021. doi:10.1016/j.procs.2021.09.265

## Bibliography

Dmitry Alexandrov, Maqsudjon Ismoilov, Artem Kozlov, Anton Savachenko, and Sergey Zykov. Validating New Method for Measuring Cohesion in Object-Oriented Projects. *Procedia Computer Science*, 192(1):4865–4876, 2021. doi:10.1016/j.procs.2021.09.265.

Jagdish Bansiya. Class Cohesion Metric for Object Oriented

Designs, 1999.

Yegor Bugayenko. Why InputStream Design Is Wrong. https://www.yegor256.com/160426.html, 4 2016. [Online; accessed 22-09-2024].

Yegor Bugayenko. Fat vs. Skinny Design. https://www.yegor256.com/200219.html, 2 2020. [Online; accessed 26-10-2024].

Steve Counsell, Stephen Swift, and Jason Crampton. The Interpretation and Utility of Three Cohesion Metrics for Object-Oriented Design. *ACM Transactions on* 

*Software Engineering and Methodology (TOSEM)*, 15(2): 123–149, 2006. doi:10.1145/1131421.1131422.

Philippe Kruchten. *The Rational Unified Process: An Introduction*. Addison-Wesley, 2004. doi:10.5555/518604.

Robert C. Martin. *Agile Software Development, Principles, Patterns, and Practices.* Prentice Hall, 2002. doi:10.5555/515230.

Ahmad K. Shuja and Jochen Krebs. IBM Rational Unified Process (RUP) Reference and Certification Guide: Solution Designer, 2007.