Contents

Week 1: Welcome to R — Fundamentals & Foundations	2
Week 2: Data Wrangling with dplyr — Speak Data Fluently	
Week 3: Data Cleaning, Tidying & Time Handling	3
Week 4: Data Visualization with ggplot2 and plotly	4
Week 5: Statistics, Hypothesis Testing & Modeling Foundations	6
Week 6: Machine Learning with tidymodels, caret, and mlr3	7
Week 7: Big Data & Pipelines with sparklyr, arrow, and targets	9
Week 8: Advanced Data Wrangling, APIs & Web Scraping	. 11
Week 9: Capstone Project (Part 1) — From Raw Data to Insightful Dashboard	. 12
Week 10: Capstone Project (Part 2) — Finalization, Automation & Dashboard	
Reporting	
Week 11: Bonus – Portfolio, Job Prep & Advanced R Topics	. 15

Week 1: Welcome to R — Fundamentals & Foundations

Objective: Learn R syntax, basic data types, structures, and functions

Key Topics & Tools:

RStudio setup

• Vectors, lists, matrices, data frames

· Basic arithmetic, indexing, functions

Built-in datasets

• Tools: Base R, RStudio, Swirl

Retention Techniques:

• **Story**: R as your data cooking kitchen — vectors are ingredients, functions are recipes.

• **Mnemonic**: *DEF* = Define, Execute, Function

• Visual: Lists = "bento box" 👟 , data frame = Excel sheet

Day	Focus	Activity
1	RStudio Setup + Syntax	Install R + RStudio, write your first R script, explore basic math
2	Vectors	Create and subset vectors, use logical filtering
3	Lists, Matrices, Factors	Work with structured but varied data
4	Data Frames	Understand the most-used data structure in R
5	Indexing & Subsetting	Learn how to retrieve and filter data
6	Writing Functions	Define and use basic functions
7	Mini-Project	Create a basic spending tracker + summary table

Practice Project:

• "Personal Budget Tracker" using data.frame, basic stats, and plots

Week 2: Data Wrangling with dplyr — Speak Data Fluently

Objective: Use dplyr verbs to manipulate and summarize real data

Key Topics & Tools:

- dplyr: filter, select, mutate, summarise, group_by, arrange, joins
- The %>% pipe operator
- Built-in datasets: mtcars, starwars, gapminder
- Tools: dplyr, readr, janitor

Retention Techniques:

- Mnemonic: FSSMJ = Filter, Select, Summarise, Mutate, Join
- **Story**: Treat data as a restaurant order:
 - o **Filter** the menu **!●**!
 - Select your dishes
 - Mutate ingredients
 - o Summarize your bill 💵
- **Visual**: %>% = "and then..."

Day	Focus	Activity
8	Intro to dplyr + pipe	Learn core verbs and chaining with %>%
9	Filtering & Selecting	Extract rows and columns based on conditions
10	Mutating & Arranging	Create new variables, reorder rows
11	Summarising & Grouping	Group data, compute summaries
12	Joins	Combine data frames using left_join, inner_join, etc.
13	Real-World Airbnb Dataset	Clean and summarize NYC Airbnb data
14	Mini Project: Data Doctor	Clean, transform, and summarize any real dataset (Kaggle or built-in)

Practice Project:

• "Airbnb Insights" — filter listings, compute stats by neighborhood, apply joins

Week 3: Data Cleaning, Tidying & Time Handling

Objective: Clean messy data, reshape it, and handle dates/times like a pro.

Key Topics & Tools:

- Cleaning: janitor, dplyr
- Tidying: tidyr pivot_longer(), pivot_wider(), separate(), unite()
- Dates: lubridate ymd(), mdy(), floor_date(), wday(), intervals()
- Real-world messy datasets (e.g., COVID-19, weather, retail)

Retention Techniques:

- **Story**: Imagine your dataset is a closet 🦣 tidying = sorting clothes by type, size, season.
- Mnemonic:
 - o **CLEAN** = Column names, Logical values, Empty rows, Arrange rows, Nulls

- o **TIDY** = Tidy = One row per observation, one column per variable
- **Visual**: pivot_longer() = stack columns, pivot_wider() = spread rows into columns

Day	Focus	Activity
15	Cleaning with janitor	Use clean_names(), remove empty rows, identify duplicates
16	Tidy Data Principles	Understand "tidy" format (long vs. wide), use tidyr
17	Reshaping Data	Use pivot_longer() and pivot_wider() on messy health data
18	Splitting & Combining Columns	Use separate() and unite() for string columns
19	Working with Dates	Parse and format dates with lubridate, extract day/month/year
20	Time-Based Features	Create week, month, and duration-based summaries
21	Project: "Messy to Model-	Take a messy real dataset (e.g. COVID-19), clean and transform it
21	Ready"	into tidy format

Practice Project:

"COVID Trends Cleanup"

- Dataset: Johns Hopkins COVID-19 dataset
- Tasks:
 - o Clean column names
 - o Tidy the format
 - o Parse date columns
 - o Summarize daily new cases by country
 - o Plot trends over time

Tools & Resources:

- Packages: tidyr, janitor, lubridate, dplyr
- R for Data Science Chapters 12–16
- Cheatsheets:
 - o Data Wrangling Cheatsheet
 - Lubridate Reference
- **K** Tidy Data in R YouTube

Week 4: Data Visualization with ggplot2 and plotly

Objective: Create clear, attractive, and insightful static and interactive plots using the grammar of graphics.

Key Topics & Tools:

- ggplot2: Grammar of graphics (layers, aesthetics, geoms)
- Plot types: scatter, line, bar, histogram, boxplot, facet
- Themes and customization
- plotly: Interactive plots
- Datasets: gapminder, diamonds, nycflights13, your own cleaned data

Retention Techniques:

- Story: Think of ggplot2 as LEGO blocks 🏥 you build plots layer by layer.
- Mnemonic:
 - A.G.G. = Aesthetics (what to show), Geoms (how to show), Grammar (rules)
- Analogy:
 - aes() = like a map legend (what variable goes where)
 - o += like Photoshop layers add one element at a time
- **Chunking**: Break visual building into 3 key parts:
 - Data + aesthetics
 - Geometric object
 - Labels, scales, and themes

Day	Focus	Activity
22	Intro to ggplot2	Understand ggplot(data) + aes(x, y) + geom_* structure
23	Scatter & Line Plots	Visualize relationships and trends over time
24	Bar, Column & Histograms	Compare categories and distributions
25	Boxplots & Density Plots	Compare numeric distributions between groups
26	Facets, Themes & Colors	Add facets (subplots), improve aesthetics, use themes like theme_minimal()
27	Interactive Plots with plotly	Convert ggplots to interactive versions, hover & zoom
28	Project: "Tell a Story with	Use any dataset to tell a compelling story with 3–5 well-designed
	Data"	visualizations

Practice Project:

"Data Storyboard Challenge"

• Choose a dataset (e.g. Gapminder, your COVID/Airbnb data)

- Build:
 - 1 line chart showing time trends
 - 1 bar chart comparing categories
 - o 1 boxplot of group-wise stats
 - o Add tooltips & zoom using plotly

Tools & Resources:

- Packages: ggplot2, plotly, dplyr, viridis, scales
- Book: R for Data Science Chapter 3 & 28 (ggplot2)
- Cheatsheet: ggplot2 Cheatsheet (PDF)
- Explore: <u>Gapminder Dataset</u>
- \(\begin{align*}
 \text{ \text{M} YouTube: } \(ggplot2 \) from Scratch (Data School, StatQuest)

Week 5: Statistics, Hypothesis Testing & Modeling Foundations

Objective: Learn statistical thinking, hypothesis testing, and build your first regression models in R.

Key Topics & Tools:

- Descriptive statistics: mean, median, variance, sd, IQR
- Probability distributions: normal, binomial
- Inferential statistics: confidence intervals, p-values
- Hypothesis testing: t-test, chi-squared, ANOVA
- Intro to modeling: Linear regression with lm()
- Tools: Base R, infer, broom, ggpubr, ggstatsplot

Retention Techniques:

- Story: Statistics is your detective toolkit 🏂 you collect evidence (data) to support or reject claims.
- Analogy:
 - Hypothesis test = court trial:
 - H₀ = "Innocent until proven guilty"
 - p-value = strength of evidence

Mnemonic:

o CIPT = Confidence Interval, p-value, T-test, Tidy model

Visuals:

- Use bell curves to explain normal distributions
- Show regression lines overlaying scatter plots

Day	Focus	Activity
29	Descriptive Stats	Use summary(), mean(), sd(), quantile()
30	Distributions & Visuals	Visualize normal vs skewed distributions, use rnorm(), hist()
31	Hypothesis Testing Basics	Learn p-values, confidence intervals, null vs alternative hypotheses
32	t-tests, chi-square, ANOVA	Use t.test(), chisq.test(), aov() with visual explanations
33	Linear Regression	Fit models with Im(), visualize with ggplot2, interpret coefficients
34	Model Evaluation	Residual plots, R ² , assumptions of linear regression
35	Mini Project: "Does Price Affect Sales?"	Use regression and hypothesis tests on a real retail dataset

Practice Project:

📊 "Retail Analytics Report"

• Dataset: Online Retail Dataset

Tasks:

- o Describe key numeric variables (mean, sd, etc.)
- Run t-tests (e.g., avg spend UK vs France)
- o Model sales quantity ~ price using linear regression
- Report: interpret R² and coefficients

Tools & Resources:

- Specific properties of the properti
- StatQuest YouTube Series (Highly Recommended!)
- R for Data Science Model Basics
- Cheatsheet: <u>Modeling with broom & infer</u>

Week 6: Machine Learning with tidymodels, caret, and mlr3

Objective: Learn how to build, train, tune, and evaluate machine learning models using R's best ML ecosystems.

Key Topics & Tools:

- ML pipeline: training, testing, validation
- Supervised learning: classification & regression
- tidymodels: a unified ML framework (recipes, workflows, resampling, metrics)
- caret: classic and versatile ML package
- mlr3: modern ML with high performance
- Model types: linear regression, logistic regression, decision trees, random forests, k-NN
- Tools: tidymodels, caret, mlr3, yardstick, vip, parsnip

Retention Techniques:

- Story: Think of ML in R as building a robot chef under the control of the cont
- Mnemonic:
 - o FREMT = Formula, Recipe, Engine, Metrics, Tune
- Analogy:
 - Train/Test Split = like giving a student past exams to study (train), then giving a new one (test)
 - o **Overfitting** = student memorizes past questions but fails a new test

Day	Focus	Activity
36	Intro to ML + tidymodels	Build a workflow: recipe() → model_spec() → workflow()
37	Classification: Logistic Regression	Classify Titanic survival or loan defaults
38	Decision Trees & Random Forests	Use rpart and ranger for tree-based models
39	Model Evaluation Metrics	Use yardstick for accuracy, precision, recall, ROC
40	Hyperparameter Tuning	Use tune_grid() and cross-validation
41	Using caret and mlr3	Compare classic caret vs modern mlr3 on same dataset
42	Project: "Churn Prediction Engine"	Build a full ML pipeline to predict customer churn

Practice Project:

"Customer Churn Predictor"

Dataset: Telco Customer Churn (Kaggle)

- Tasks:
 - Preprocess data with recipe()
 - Build and compare logistic regression and random forest
 - Tune hyperparameters
 - o Evaluate using accuracy, ROC curve, confusion matrix
 - o Present model insights using variable importance

Tools & Resources:

- Specific properties of the properti
- <u>Tidymodels website</u>
- StatQuest ML Playlist
- Cheatsheets:
 - o <u>Tidymodels Cheatsheet (PDF)</u>
 - o Caret Quickstart

Week 7: Big Data & Pipelines with sparklyr, arrow, and targets

Objective: Learn how to process big data efficiently and build scalable, automatable workflows and pipelines in R.

Key Topics & Tools:

- Big data formats: Parquet, Arrow
- Working with large datasets: sparklyr for distributed processing
- Workflow automation and reproducibility: targets, drake
- Lazy evaluation, memory efficiency, pipeline logic
- Practical use cases: ETL pipelines, production-ready data science workflows

Retention Techniques:

- **Story**: Imagine you're building a **data factory** . Big data needs forklifts (Spark), efficient packaging (Arrow), and conveyor belts (Targets) to run smoothly.
- Mnemonic:
 - SPA = Spark, Parquet, Arrow tools to Scale
 - TARP = Targets Automates Reproducible Pipelines

Visuals:

- o Pipeline = a flowchart of steps: input → transform → model → report
- Arrow = compressed fast-shipping boxes
- Spark = distributed engine with workers

Day	Focus	Activity
43	Intro to Big Data & arrow	Read/write large Parquet files, memory-efficient I/O
44	Scalable Processing with sparklyr	Connect to Spark, run dplyr-style code on big data
45	Working with Remote Data	Load & process data from cloud-like environments
46	Pipeline Design Concepts	Understand DAGs (Directed Acyclic Graphs), pipeline structure
47	Build Pipelines with targets	Automate multi-step R workflows: raw → clean → model
48	Combining Big Data + Pipelines	Use arrow and targets together in a pipeline
49	Project: "Retail ETL & ML Pipeline"	Build an end-to-end ETL pipeline with Spark & Targets

Practice Project:

Particular Services "Retail ETL + ML Pipeline"

- Dataset: Simulate a large CSV (>1M rows) or use NYC Taxi Data
- Tasks:
 - o Load with arrow or via sparklyr
 - Clean and transform the data
 - o Train a model (e.g., predict tip %)
 - Automate everything using targets

Tools & Resources:

- Packages: sparklyr, arrow, targets, fst, data.table, dplyr
- Targets Documentation
- sparklyr Guide
- Cheatsheets:
 - o Sparklyr Cheatsheet
 - o Targets Cheatsheet (PDF)
- **&** YouTube: *Using targets in R* (RStudio YouTube Channel)

Week 8: Advanced Data Wrangling, APIs & Web Scraping

Objective: Master high-performance data transformation, handle messy data, and extract data from APIs & web pages using R.

Key Topics & Tools:

- High-performance data wrangling: data.table, dplyr, janitor
- · String cleaning, missing values, date handling
- Working with nested data (JSON, lists, APIs)
- Web scraping with rvest
- Working with REST APIs using httr, jsonlite
- Real-world use cases: live financial data, weather, news, public APIs

Retention Techniques:

• Story: Think of messy data like a dirty kitchen 😤 — your job is to clean, prep, and make it ready for use.

• Mnemonic:

- STICKY = Strings, Tables, Imputing (missing), Columns, Klean (janitor),
 Ymd (dates)
- HERO = httr, extract, rvest, organize

Analogy:

- o API = digital waiter: you "order" data, and it "serves" you back
- Web scraping = treasure hunting on a website

Day	Focus	Activity
50	High-Performance Wrangling	Use data.table for fast filtering, grouping, joins
51	String & Text Cleaning	Use stringr, janitor, tidyr, regex for messy text
52	Missing, Dates, & Nested Data	Handle NA, impute, clean dates (lubridate), unpack JSON
53	Intro to APIs	Use httr to GET/POST data from public APIs (OpenWeather, etc.)
54	JSON Handling & Parsing	Use jsonlite::fromJSON() to work with nested structures
55	Web Scraping with rvest	Extract tables, headlines, or listings from real websites
56	Project: "Real-World Data Harvester"	Scrape or call API to build a real-time dataset (weather, stock, news, etc.)

Practice Project:

(III) "Live Data Harvester"

- Pick 1:
 - Scrape latest news headlines from <u>BBC</u>
 - o Pull live weather data from OpenWeatherMap API
 - o Extract trending repositories from GitHub using its API
- Tasks:
 - Retrieve and clean the data
 - o Transform into tidy format
 - Visualize (bar chart, line chart, etc.)
 - Automate with targets

Tools & Resources:

- Packages: data.table, janitor, lubridate, stringr, rvest, httr, jsonlite
- API + Web Scraping with R Tutorial (R-bloggers)
- rvest Web Scraping Guide
- Cheatsheets:
 - o Stringr
 - rvest Cheatsheet (PDF)

Week 9: Capstone Project (Part 1) — From Raw Data to Insightful Dashboard

Objective: Apply all the R skills you've learned so far to a real-world, multi-stage data analytics and modeling project with full automation and reporting.

What You'll Build:

An end-to-end data product that:

- Extracts & cleans large data (CSV/API/web)
- Builds visual dashboards (static + interactive)
- Creates ML models to predict or explain outcomes
- Automates everything with pipelines

• Generates dynamic reports or dashboards

Project Theme (Choose One):

Option 1: Real Estate Price Predictor

- Data: Housing prices (e.g., Kaggle House Prices Dataset)
- Goal: Predict house sale prices, visualize key features, automate the whole process

Option 2: E-Commerce Sales & Churn Dashboard

- Data: Online retail or simulated customer data
- Goal: Analyze sales patterns, model churn, and build a business dashboard

Option 3: Weather + Energy Use Tracker

- Data: API (weather) + CSV (electricity usage)
- Goal: Predict energy consumption based on weather; automate data pulls + ML

Day	Focus	Tasks
57	Project Planning	Define objectives, choose project, sketch pipeline
58	Data Collection	Ingest data (CSV, API, or web scraping)
59	Data Wrangling	Clean & transform using dplyr, data.table, janitor
60	EDA & Visualization	Use ggplot2, plotly, ggstatsplot for trends, patterns
61	Feature Engineering	Transform variables, handle missing values, encode categoricals
62	Modeling v1	Build regression/classification model (with tidymodels)
63	Pipeline Setup	Automate the above using targets or drake

Tools You'll Apply:

- for readr, data.table, janitor for wrangling
- | ggplot2, plotly, ggthemes for visuals
- fidymodels, caret, or mlr3 for ML
- fargets, arrow for pipelines and performance
- formarkdown, flexdashboard, quarto for final reporting

Resources:

• **Language State of the State**

- Quarto Dashboard Templates
- <u>Target Pipeline Guide (Beginner)</u>

Week 10: Capstone Project (Part 2) — Finalization, Automation & Dashboard Reporting

Objective: Finalize, automate, and present your end-to-end data project using pipelines, dashboards, and reproducible reports.

What You'll Do:

- Wrap your workflow with targets for automation
- Build a beautiful dashboard with flexdashboard or quarto
- Generate reproducible, shareable RMarkdown reports
- Save your project to GitHub as a portfolio piece
- Present your results as if you're a data consultant

Day	Focus	Tasks
64	Final Model Tuning	Use cross-validation & hyperparameter tuning (tune_grid())
65	Feature Importance & Interpretation	Use vip, SHAP values, or coefficient analysis
66	Automating with targets	Complete pipeline: data → model → plot → report
67	Build Static Dashboard	Use flexdashboard or quarto to create a multi-page report
68	Make it Interactive	Add interactivity with plotly, DT, or filters
69	Reproducible Reporting	Create dynamic .Rmd or .qmd files with auto-generated plots, tables, insights
70	Polish, Push, Present	Final polish, push project to GitHub, write README, prepare slides or video walkthrough

Deliverables by End of Week 10:

- Automated pipeline (targets)
- Interactive dashboard or report
- Documented GitHub repo with:
 - o Project overview
 - o Code + data folder
 - o Visuals / metrics

- o Instructions to reproduce
- Presentation-ready pitch (slides, screencast, or notebook)

Storytelling Tips:

- Think like a consultant: "What does this mean for the business?"
- Tell the story of your data: problem → exploration → insight → solution
- Use visuals to highlight your key findings (one chart = 1000 words)

Tools & Resources:

- | flexdashboard, quarto, rmarkdown, DT, plotly
- Quarto Dashboard Docs
- Targets Workflow Book
- RMarkdown Reporting & Dashboard Tutorials

Week 11: Bonus – Portfolio, Job Prep & Advanced R Topics

Objective: Position yourself as an expert with a data portfolio, prepare for jobs/freelance work, and explore advanced R capabilities.

Your 3 Goals for This Week:

- 1. Build Your Data Science Portfolio Website
- 2. Prepare for Job Interviews / Freelancing
- 3. Get Introduced to Advanced R Topics (so you know what to learn next)

Day	Focus	Tasks
71	Set Up GitHub Pages or Quarto Website	Create a personal data science site or blog (quarto, Netlify)
72	Showcase Your Projects	Publish capstone project + 2–3 mini projects from earlier weeks
73	Resume + LinkedIn for Data Jobs	Optimize resume, write R/data-focused LinkedIn profile
74	Interview Prep – Technical	Review data science R questions (see below) + code challenges
75	Interview Prep – Case Studies	Practice "Explain your project" and business impact analysis
76	Explore Advanced R Topics	Get a taste of time series, deep learning, Shiny apps, or geospatial in R
77	Plan Your Next 30– 90 Days	Create a personalized learning/career roadmap beyond this program

e Day 71–72: Build Your Data Portfolio Website

- Tools:
 - o 🌓 quarto, blogdown, or GitHub Pages
 - o Free hosting on Netlify or GitHub Pages
- What to include:
 - Hero headline: "Data Scientist with expertise in R, ML, and Pipelines"
 - o Projects: Link to GitHub repos
 - Visuals: Screenshots from dashboards
 - Blog: Short write-ups explaining your capstone & process

Day 73-75: Job Prep & Freelancing

Resume Tips:

- List tools: R, dplyr, ggplot2, tidymodels, sparklyr, targets
- List projects: show scope, problem solved, tools used, outcomes
- Use metrics: "Improved prediction accuracy by 18%..."

R Interview Topics:

- Tidyverse vs base R
- Vectorized operations
- Pipe chaining (%>%)
- Grouped operations with dplyr
- Model tuning with tidymodels
- Lazy evaluation (with targets, arrow)
- Data.table vs dplyr

© Practice:

- Mock interviews (record yourself or with a peer)
- HackerRank/LeetCode (data questions using R)
- Case: "Build a pipeline to predict sales drop using messy retail data"

Day 76: Advanced R Topics (Intro)

Choose 1 or 2 that interest you most for deeper learning:

Area	Topics	Tools
Time Series	Forecasting, seasonality	fable, tsibble, prophet
Geospatial	Maps, GPS, geocoding	sf, leaflet, ggmap
Web Apps	Interactive dashboards	shiny, golem, shinydashboard
Deep Learning	Neural nets in R	keras, torch, tidymodels
Experimentation	A/B testing, uplift	infer, designr, experimentr

Day 77: Your Next 90-Day Plan

You've now built a **full-stack R portfolio**. Here's how to go beyond:

Next 90-Day Focus Ideas:

- • Package Your Code → turn pipelines into reusable R packages
- ■ Advanced ML & MLOps → AutoML, model monitoring, CI/CD

Bonus Tools & Resources

- Quarto Portfolio Tutorial
- Data Science Resume Templates
- R for Job Interviews Playlist (YouTube)
- \(\cap \text{r/DataScience} + \text{r/rstats communities} \)

Final Challenge:

- Present your capstone project (record yourself or do a Zoom with a friend): Explain your:
 - Problem & objective
 - Dataset & wrangling
 - Visuals
 - Modeling approach

- Business insight or recommendation
- Next steps or improvements