2018-02-07

Electric Charge

- Electrical charge comes in positive and negative
 - Measured in Coulombs(C)
 - The charge of an elementary particle is $e = 1.602 \times 10^{-19} C$
- Charge is also quantized
 - Really just a fancy way of saying it only increases in discrete chunks of \boldsymbol{e}

Force Laws in E&M

- Dynamics learned in 8.01 still apply
 - But new force laws will be introduced
- Coulomb's Law = force law for charged particles

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

Fields

- One big difference between 8.02 and 8.01 is that 8.02 is oriented around fields
 - **Field** = a function that takes in parameters that span space and returns a value
 - * Value can be a vector or a scalar
 - · Scalar field examples (temperature map, density map, etc)
 - · Vector field examples (wind map, force field, etc)
- Generally, force fields obey the principle of superposition

Field Lines

• Field line = a continuous curve that indicates a direction along itself that represents the direction of acceleration at each point in an electrical field

1

2018-02-12

Dipoles and Continuous Charge Distribution

Monopoles

- Monopole = any charge element
 - Called a "pole", because field lines either diverge from or converge onto its spacial location
 - * Think "north pole"

Electric Dipole

- Electric Dipole = two monopoles of opposite charge, separated by a
- **Dipole moment** = a metric associated with any given electrical dipole
 - Notationally, dipole moment is represented by \vec{p}
 - $-\vec{r}_{-}$ is the vector pointing from the midpoint to the negative particle
 - $-\vec{r}_{+}$ is the vector pointing from the midpoint to the positive particle particle
 - Then,

$$\vec{p} = \sum_{i=1}^{n} q_i \vec{r}_i$$

$$|\vec{p}| = 2aq, a = |\vec{r}_+|$$

- Note similarity to formula for center of mass
 - * We can't divide by total charge, since that might be undefined(divide by zero)
- Dipoles are a very natural phenomenon
 - Hydrogen atom

Continuous Charge Distribution

- We can model systems of charged particles by using **charge densities**
 - Same exact idea as moving from discrete elements to mass to continuous mass distributions
 - $-\lambda = linear charge density$

 - * Units: $\frac{C}{m}$ σ = surface charge density

 * Units: $\frac{C}{m^2}$ ρ = volumetric charge density

 * Units: $\frac{C}{m^3}$

 $\bullet\,$ Often times, at points of importance with regards to symmetry, we can use that symmetry to simplify the problem