9 - Image generation

Generative vs. discriminative models

Discriminative models

- Learn conditional probability of class Y given attributes X: p(y|x)
- Input is an image
- Output is a probability density function over labels p(y|x)

Generative models

- Generative models can generate new samples from the learned distribution
- Learn joint probability of attributes X and class Y: p(x,y)
- Generative model contains discriminative model: you can use the joint probability to get
 p(y|x)
- AND generative can do the reverse: p(x|y)
- Conditional generative model
 - o Input is a label
 - Output is a probability density function over images p(x|y)

• Unconditional generative model

- Output is a probability distribution p(x)
- What is the probability that this is an image?

Bayes' rule

· Relationships between these models:

Discriminative model
$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$
 Unconditional generative model Prior over labels

Summary - Generative vs. discriminative models

- Discriminative models produce a probability distribution over labels, given an image
- Generative models produce a probability distribution over images, given a label (conditional) or in general (unconditional)
- Difficult problem what makes one set of pixels more probable than another?

Autoencoders

Unsupervised learning

- · Learn a model for unlabeled data
- Goal is to find a model that represents the data as well as possible, usually with fewer parameters
- Uses:
 - Simpler model for another ML system

- Form of dimensionality reduction
- Potentially better generalization
- Like supervised machine learning algorithms, unsupervised algorithms may not work well in "raw" input spaces (text, images)
 - e.g. May not fit well. Distance(frog1, frog2) may be near to Distance(frog1, cat).
 - Because of light, pose, angle...
- Solution: Embeddings (e.g., from neural networks) might work better
 - But we have no labels to learn the embeddings for our task
 - Embeddings learned for a different task may not give a complete representation of the data

Autoencoders

- Essentially, neural networks for unsupervised learning (no labels)
- Sometimes called "self-supervised" learning
- Output of the network is whatever was passed to the network (e.g., an image)
- Hidden layer learns a lower-dimensional representation of the input: lower-dimensional set of features that explains the data
 - "Bottleneck" layer smaller than the input
 - Represents the input in terms of latent variables
 - In the simplest case (one hidden layer with linear activation functions), this layer learns PCA
 - Need to be smaller than the input to form a good representation. If it has the same size as the input, it is just a copy.
 - Latent representation: Simplified representation of the input
 - Can be used as a feature embedding for other tasks
- Encoder/decoder architecture
 - Encode in a hidden layer
 - Hidden layer is smaller than the input (fewer neurons)
 - Decode to an output layer
 - Often the encoding and decoding weights are forced to be the same
- Goal: output the input

----- Encoder ----- Decoder -----

Output and loss

- Unlike a standard NN, the output is not a class or regression value it's the same type as the input (e.g., an image)
- Activation function is chosen appropriately:
 - For a binary image, tanh or sigmoid
 - For a regular image, linear activation
- Loss function = difference between input and output (e.g., MSE)
- Not a true generative model no way to sample new data
 - You could "sample" by giving random latent variable values to the decoder, but no guarantee that these will produce real images

Variational autoencoder (VAE)

- Probabilistic version of an autoencoder: learn latent representation and sample from the model to generate new images
- Assume images are generated from some distribution over latent variables z
- Assume a simple prior p(z), e.g., uniform or Gaussian distribution
- Probabilistic decoder learns p(x|z)
 - Input: latent variables z
 - Output: mean μ_{x|z} and diagonal covariance Σ_{x|z}, parameters of a Gaussian distribution that generates x conditional on z

- $p(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$
- Goal: maximize $p(x) = \frac{p(x|z)p(z)}{p(z|x)}$
- Probabilistic encoder learns p(z|x)
 - Input: image x
 - Output: mean $\mu_{z|x}$ and diagonal covariance $\Sigma_{z|x}$, a Gaussian distribution over latent variables conditional on x

• Learns approximation of p(z|x):

$$q(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$

• Encoder and decoder are concatenated and trained jointly

 α is a random variable from the standard normal distribution N(0,1)

- Goal: maximize the likelihood p(x)
- Loss is based on variational lower bound on p(x):

$$\log(p(x)) \geq E_{z \sim q(z|x)}[\log(p(x|z))] - D_{KL}(q(z|x), p(z))$$

Log likelihood of image x Reconstruction quality: expected log likelihood of Decoder's reconstruction, with respect to Encoder's distribution over inputs Kullback-Leibler
divergence between the
Encoder's estimate of
p(z|x) and our prior
p(z)=standard normal
distribution

- Loss consists of two terms: reconstruction loss and regularisation loss
 - Reconstruction loss: encourages network to create output images as similar as possible to input images
 - Regularisation loss: encourages network to learn a latent representation z that is similar to the prior (standard normal distribution)
- Properties of the latent space
 - To be useful for generation, the latent space should be:
 - Continuous: nearby points in the latent space correspond to similar images
 - Complete: every point in the latent space corresponds to a valid image
 - Standard normal distribution satisfies both of these requirements
 - Use of diagonal covariance matrices ensures latent variables are independent
 - Latent space visualisation L9.1 P43
- Applications
 - Sampling new images L9.1 P41-42
 - Image manipulation L9.1 P44-46
 - Given the latent-variable representation z of image x, can change values of z to create variations on x
 - Nearby points in latent space correspond to similar images (continuity requirement) and axes are independent
 - But directions in latent space may not correspond to recognizable image properties (without additional constraints)
- Advantages
 - \circ Learn approximations of p(z|x) and p(x|z), where z is a latent variable representation of the input x
 - Can be used to generate new instances of x
- Disadvantage: Outputs often blurry
 - Because of compression
 - More recent VAEs use better image representations to reduce blur

Summary - Autoencoder

- Autoencoders assume images can be generated from a low-dimensional space of latent variables
- Regular autoencoder learns latent representation to reconstruct images
- Variational autoencoder probabilistic version of autoencoder, can sample from the latent space

Generative Adversarial Networks (GANs)

GAN architecture

- Generative Adversarial Networks (GANs) are neural networks that learn to generate instances from a particular distribution (e.g., images of faces)
- Actually consist of two neural networks: a generator and a discriminator
- Training involves a sort of competition between the two networks
- GAN is a pair of networks trained together: generator creates images based on latent input z, discriminator judges whether images are real vs. fake

Generator

- GAN Generator doesn't actually learn the probability distribution p(x), but learns to sample from it
- Generator input is a latent variable z with a simple prior (e.g., uniform random or standard normal)
- Generator output is an image
- Generator network learns a function to map p(z) to a distribution that approximates p(x)

Output: 64 x 64 pixel colour image

Discriminator

- Discriminator learns to identify real inputs vs. fake inputs created by generator
- Neural network classifier with two output classes (real, fake)
- Architecture depends on task: e.g., for images the discriminator might be a CNN with several convolutional layers, followed by softmax

Training

- The networks are trained together on a combination of real data x and generator input z
- Given a generator *G* and discriminator *D*:
 - o Discriminator's goal is to correctly classify real vs. fake
 - Discriminator wants to maximize $D(\mathbf{x})$ and minimize $D(G(\mathbf{z}))$
 - Generator's goal is to fool the Discriminator
 - Generator wants to maximize $D(G(\mathbf{z}))$
- Can treat this as a zero-sum game with the goal of finding equilibrium between G and D
- GAN training objective is a minimax game:

$$\min_{G} \max_{D} \left(E_{x \sim p_{data}} [\log(D(x))] + E_{z \sim p(z)} [\log(1 - D(G(z)))] \right)$$
Discriminator's 1 - Discriminator's response to real response to fake images images produced by Generator

The Discriminator tries to maximize this by

The Discriminator tries to maximize this by learning weights for D that will give D(x)=1 for real images and D(G(z))=0 for fake images

The Generator tries to minimize this by learning weights that will give D(G(z)) = 1

- If the discriminator is too good:
 - Easily rejects all fake inputs
 - Not much information to train the generator
- If the discriminator is too bad:
 - Easily confused by fake inputs that don't look real
 - Generator will learn a poor solution
- Training can be difficult hard to find a balance between discriminator and generator

Evaluating GANs

- GAN equilibrium does not necessarily mean the GAN has found a good solution
- GAN evaluation is important, because successful training does not necessarily mean the generator's output is similar to p(x)
- Generally check for:
 - Memorisation
 - o Realism
 - o Diversity
- How to tell if a GAN has learned? Ideally:
 - Outputs should not be identical to inputs (memorised training data)

- Visualise k nearest neighbours in training dataset L9.2 P22
- Outputs should look like inputs (look "real" and not "fake")
 - Evaluating realism L9.2 P24-26
 - Gold standard: human evaluation (but this is slow and expensive)
 - Automatic methods compare responses of an image classifier (e.g., a CNN trained on ImageNet) to real vs. GAN-generated images
 - Inception score
 - Within a class, all images should be confidently classified with the correct label
 - Across classes, the GAN should produce a wide variety of confidentlyclassified images
 - Advantages
 - Automatic, efficient
 - Neural network responses correlate with human judgements of image quality
 - Disadvantages
 - Doesn't require high diversity within categories
 - Sensitive to noise, adversarial images
- Outputs should be as diverse as real data (avoid mode collapse = the generator only creates one or a few outputs)
 - The GAN isn't just memorizing training examples
 - But does it capture all of the diversity in the training set?
 - Birthday paradox L9.2 P31
 - Suppose a generator that can produce *N* discrete outputs, all equally likely
 - Experiment: take a small sample of *s* outputs and count duplicates
 - The odds of observing duplicates in a sample of size *s* can be used to compute *N*
 - A sample of about sqrt(N) outputs is likely to contain at least one pair of duplicates
 - Example duplicates L9.2 P33
 - Most GANs tested produced about the same diversity (number of different images) as was in their training set

Conditional GANs

- Conditional model: learn p(x|y) rather than p(x)
- Both Discriminator and Generator take y as additional input

- If x-y pairs are available, can use the standard GAN architecture with additional input y
- What if you don't have a dataset of real x-y pairs?
 - CycleGAN: train a pair of Generators to map x->y and y->x L9.2 P38-40

Summary - GANs

Advantages

• GANs can generate samples from complex probability distributions without actually representing the distribution

Disadvantages

- Can be unstable / hard to train
- Difficult to evaluate
- Even models that don't show complete mode collapse tend to have lower-than-desired diversity