3. domaća zadaća iz Raspodijeljenih sustava

Student: Porco Dio (0036845632)

Zadatak: Oblikovati proizvoljnu raspodijeljenu aplikaciju i ostvariti analizu performansi ostvarene aplikacije

1) Definirati logičku i fizičku arhitekturu aplikacije

Slika 1 Logička arhitektura

Slika 2 Fizička arhitektura

2) Izgraditi model aplikacije primjenom teorije repova

- Odrediti analitičko rješenje funkcije zadržavanja zahtjeva u aplikaciji T = f(λ)

Slika 3 Model aplikacije

$$\lambda_{AES} = p_{AES} * \lambda + p_{BPE} * \lambda_{AES}$$

$$\lambda_{BPE} = p_{BPE} * \lambda_{AES}$$

$$\nu_{BPW} = \frac{p_{AWS} * p_{BPW}}{1 - p_{BPW}}$$

$$\nu_{ZZ} = 1, \nu_{PO} = 1$$

$$\nu_{ZZ} = 1, \nu_{PO} = 1$$

$$\nu_{AWS} = p_{AWS} * \lambda + p_{BPW} * \lambda_{AWS}$$

$$\lambda_{BPW} = p_{BPW} * \lambda_{AWS}$$

$$\lambda_{BPW} = p_{BPW} * \lambda_{AWS}$$

$$\lambda_{ZZ} = \lambda, \lambda_{PO} = \lambda$$

$$\nu_{AES} = \frac{p_{AES}}{1 - p_{BPE}} * S_{AES}$$

$$\nu_{AES} = \frac{p_{AES}}{1 - p_{BPE}} * S_{BPE}$$

$$\nu_{AES} = \frac{p_{AES} * p_{BPE}}{1 - p_{BPE}} * S_{AWS}$$

$$\nu_{BPE} = \frac{p_{AES} * p_{BPE}}{1 - p_{BPE}} * S_{AWS}$$

$$\nu_{BPE} = \frac{p_{AWS} * p_{BPW}}{1 - p_{BPW}} * S_{AWS}$$

$$\nu_{AWS} = \frac{p_{AWS}}{1 - p_{BPW}} * S_{BPW}$$

$$T = \frac{D_{AES}}{1 - \lambda * D_{AES}} + \frac{D_{BPE}}{1 - \lambda * D_{BPE}} + \frac{D_{ALS}}{1 - \lambda * D_{ALS}} + \frac{D_{AWS}}{1 - \lambda * D_{AWS}} + \frac{D_{BPW}}{1 - \lambda * D_{BPW}} + \frac{D_{PO}}{1 - \lambda * D_{PO}} + \frac{D_{ZZ}}{1 - \lambda * D_{ZZ}}$$

- 3) Izgraditi model aplikacije za alat PDQ
 - Primjenom izgrađenog modela odrediti vrijednosti funkcije zadržavanja zahtjeva $T = f(\lambda)$ u nekoliko točaka

Model aplikacije za alat PDQ se nalazi u prilogu kao model.c. Rezultati se računaju u rasponu $\pmb{\lambda} = [0.1, 1.9]$ sa inkrementom od 0.1. Varijabla $\pmb{\lambda}$ je u rezultatima prikazana kao L. Ispisuje se sumarno i srednje vrijeme zadržavanja po podsustavima u ovisnosti o učestalosti zahtjeva.

L	AES0		BPE0	ALS0	AWS0	BPW0	ZZ	PO	T
0.100000	0.169492	0.10	1010	0.050251	0.026068	0.335917	0.001000	0.001000	0.684738
0.200000	0.172414	0.10	2041	0.050505	0.026136	0.347594	0.001000	0.001000	0.700690
0.300000	0.175439	0.10	3093	0.050761	0.026204	0.360111	0.001000	0.001000	0.717609
0.400000	0.178571	0.10	4167	0.051020	0.026273	0.373563	0.001000	0.001000	0.735596
0.500000	0.181818	0.10	5263	0.051282	0.026342	0.388060	0.001001	0.001001	0.754767
0.600000	0.185185	0.10	6383	0.051546	0.026412	0.403727	0.001001	0.001001	0.775255
0.700000	0.188679	0.10	7527	0.051813	0.026482	0.420712	0.001001	0.001001	0.797215
0.800000	0.192308	0.10	8696	0.052083	0.026552	0.439189	0.001001	0.001001	0.820830
0.900000	0.196078	0.10	9890	0.052356	0.026623	0.459364	0.001001	0.001001	0.846313
1 . 000000	0.200000	0.11	1111	0.052632	0.026694	0.481481	0.001001	0.001001	0.873920
1.100000	0.204082	0.11	2360	0.052910	0.026765	0.505837	0.001001	0.001001	0.903956
1 . 200000	0.208333	0.11	3636	0.053192	0.026837	0.532787	0.001001	0.001001	0.936788
1.300000	0.212766	0.11	4943	0.053476	0.026910	0.562771	0.001001	0.001001	0.972867
1 . 400000	0.217391	0.11	6279	0.053763	0.026982	0.596330	0.001001	0.001001	1.012749
1 . 500000	0.222222	0.11	7647	0.054054	0.027055	0.634146	0.001002	0.001002	1.057128
1 . 600000	0.227273	0.11	9048	0.054348	0.027129	0.677083	0.001002	0.001002	1.106883
1 . 700000	0.232558	0.12	0482	0.054645	0.027202	0.726257	0.001002	0.001002	1.163148
1 . 800000	0.238095	0.12	1951	0.054945	0.027277	0.783133	0.001002	0.001002	1.227404
1 . 900000	0.243902	0.12	3457	0.055249	0.027351	0.849673	0.001002	0.001002	1.301636

Slika 4 Rezultati modela

4) Usporediti i obrazložiti dobivene rezultate

Za iste parametre koji su zadani u kodu modela programom *analiticki.c* računaju se rezultati analitičke metode:

L	T
0.100000	0.684738
0.200000	0.700690
0.300000	0.717609
0.400000	0.735596
0.500000	0.754767
0.600000	0.775254
0.700000	0.797215
0.800000	0.820830
0.900000	0.846313
1.000000	0.873920
1.100000	0.903956
1.200000	0.936788
1.300000	0.972867
1 . 400000	1.012749
1 . 500000	1.057128
1 . 600000	1.106883
1 . 700000	1.163148
1 . 800000	1.227404
1 . 900000	1.301636

Slika 5 Rezultati analitičke metode

T 0.684738
0.700690
0.717609
0.735596
0.754767
0.775255
0.797215
0.820830
0.846313
0.873920
0.903956
0.936788
0.972867
1.012749
1.057128
1.106883
1.163148
1.227404
1.301636

Slika 6 Rezultati modela

Usporedbom rezultata analitičke metode i modela možemo vidjeti kako za dani raspon se podudaraju u 6 decimalnih mjesta što potvrđuje ispravnost modela. Ovakvom sustavu performanse eksponencijalno ([L,T], [2.6, 2.61], [2.7, 3.18], [2.8, 4.15], [2.9, 6.2], [3.0, 13.57]) padaju do granice od λ =3.1 kod koje se sustav zasićuje i nije u mogućnosti obrađivati daljnje zahtjeve u realnom vremenu.