Álgebra I Segundo recuperatorio del Segundo parcial 17/12/2019

- 1. Hallar el resto de de la división de $12^{(2^n)}$ por 7 para cada $n \in \mathbb{N}$.
- 2. Probar que: $|1+iz| = |1-iz| \iff z \in \mathbb{R}$.
- 3. Sea $\omega \in G_5$ una raíz quinta primitiva de la unidad. Hallar todos los $n \in \mathbb{N}$ tales que:

$$\sum_{i=0}^{3n+2} (\overline{\omega^{-11}} + \omega^{10} + \omega^{-3} + \omega^4 + \omega^{14^2} \overline{\omega^{12}})^j = \omega + 1$$

- 4. Sea $f = X^6 3X^4 (2+8i)X^3 + 24iX + 16i$. Hallar todas las raíces complejas de f, sabiendo que tiene al menos una raíz entera.
- 5. Hallar $f \in \mathbb{Q}[X]$ de grado mínimo que cumpla las siguientes condiciones simultáneamente:
 - f comparte una raíz con $X^3 3X^2 + 7X 5$.
 - $X + 3 \sqrt{2}$.
 - 1 2i es raíz de f y f'(X 2i) = 0.

A continuación, factorizar f en $\mathbb{C}[X],\,\mathbb{R}[X]$ y $\mathbb{Q}[X].$

Solución de 1:

1

- Quiero encontrar $x = r_7((12)^{2^n})$, para esto, uso Fermat. Como 7 es primo y (12:7) $= 1 \implies (12)^{2^n} \equiv (12)^{r_6(2n)}(7)$.
- Recordemos que, dados $a,b \in \mathbb{Z}$ y que si r es el resto de dividir a por b, $a \equiv r(b)$, $\implies (12)^{r_6(2^n)} \equiv x(7) \implies (12)^{r_6(2^n)} \equiv x(7)$. Entonces, busco $r_6(2^n)$ para seguir.
- Sea $y = r_6(2^n)$, se me ocurre encontrar y mediante TCR, ya que (2:3) = 1.

$$2^n \equiv y(6) \iff \begin{cases} 2^n \equiv y(2) \\ 2^n \equiv y(3) \end{cases} \iff \begin{cases} y \equiv 0(2) \\ 2^n \equiv y(3) \end{cases}$$

¹Código fuente

Por Fermat, $2^n \equiv 2^{r_2(n)}(3)$, los posibles restos de n son 0 ó 1, que se corresponden con n par o impar.

• Asumo n par: $\implies 2^{r_2(n)} \equiv 2^0 \equiv 1(3) \implies y \equiv 1(3)$, entonces, se tiene que:

$$\begin{cases} y \equiv 0(2) \iff y = 2q, \text{ para algún } q \in \mathbb{Z} \\ y \equiv 1(3) \iff 2q \equiv 1(3) \iff -q \equiv 1(3) \iff q \equiv -1(3) \iff q \equiv 2(3) \end{cases}$$

Así, $y = 2q = 2(3k + 2) = 6k + 4 \equiv 4(4)$, para algún $k \in \mathbb{Z}$ Entonces, $2^n \equiv 4(6) \implies (12)^{r_6(2^n)} \equiv 12^4 \equiv 2(7) \implies r_7(12^{2^n}) = 2$, sé que es 2 ya que el resto es único.

• Asumo n impar: se llega a que, con un proceso similar al anterior, $2^n \equiv 2(6)$ y que $r_7(12)^{(2^n)} = 4$.

Solución de 2:

• Quiero ver que:

$$|1+iz| = |1-iz| \iff z \in \mathbb{R}$$

• \Longrightarrow), qvq: $|1+iz| = |1-iz| \Longrightarrow z \in \mathbb{R}$

Asumo que $z \in \mathbb{C}$ con forma binomial z = a + bi con $a, b \in \mathbb{R}$ tal que |1 + iz| = |1 - iz|

$$\implies |1 + i(a + bi)| = |1 - i(a + bi)|$$

$$\implies |1 + ai - b| = |1 - ai + b|$$

$$\implies |(1-b) + ai| = |(1+b) - ai|$$

$$\implies \sqrt{(1-b)^2 + a^2} = \sqrt{(1+b)^2 + a^2}$$

$$\implies (1-b)^2 + a^2 = (1+b)^2 + a^2$$

$$\implies (1-b)^2 = (1+b)^2$$

$$\implies 1 - 2b + b^2 = 1 + 2b + b^2$$

$$\implies -b = b$$

$$\implies b = 0$$

$$\implies z = a + 0i$$

$$\implies z \in \mathbb{R}$$

 $\bullet \ \ \, \Longleftrightarrow),\, {\rm qvq} \colon z \in \mathbb{R} \ \Longrightarrow \ |1+iz| = |1-iz|$

$$z = z \iff 1 + z^2 = 1 + z^2$$

$$\implies \sqrt{1+z^2} = \sqrt{1+z^2}$$

$$\implies \sqrt{1+z^2} = \sqrt{1+(-z^2)}$$

$$\implies |1 + iz| = |1 - iz|$$

Solución de 3:

• Sé que $\omega \in G_5*$, esto me dice que si tengo ω^n , $n \in \mathbb{Z} \implies \omega^n = w^{r_5(n)}$, además, $\overline{\omega} = \omega^{-1}$ que voy a usar para reescribir la expresión de la sumatoria a algo más amigable. $\overline{\omega^{-11}} = \omega$, $\omega^{10} = 1$, $\omega^{-3} = \omega^2$, $\omega^{14^2} = \omega^{196} = \omega$, $\overline{\omega}^{12} = \omega^{-12} = w^3$. Por lo tanto:

$$\overline{\omega^{-11}} + \omega^{10} + \omega^{-3} + \omega^4 + \omega^{14^2} + \overline{\omega^{12}} = 1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega$$
$$= (\sum_{j=0}^4 \omega^j) + w = \frac{\omega^5 - 1}{\omega - 1} + \omega = \omega$$

Notar que $\omega - 1 \neq 0$, ya que $\omega \in G_5 *$.

Así,

$$\sum_{j=0}^{3n+2} (\overline{\omega^{-11}} + \omega^{10} + \omega^{-3} + \omega^4 + \omega^{14^2} \overline{\omega^{12}})^j = \sum_{j=0}^{3n+2} \omega^j = \frac{\omega^{3n+2+1} - 1}{\omega - 1} = \frac{\omega^{3(n+1)} - 1}{\omega - 1}$$

• Ahora, quiero ver para cuáles $n \in \mathbb{N}$ se cumple que:

$$\frac{\omega^{3(n+1)} - 1}{\omega - 1} = \omega + 1$$

$$\frac{\omega^{3(n+1)} - 1}{\omega - 1} = \omega + 1 \iff \omega^{3(n+1)} - 1 = (\omega + 1)(\omega - 1)$$

$$\iff \omega^{3(n+1)} - 1 = \omega^2 - 1$$

$$\iff \omega^{3(n+1)} = \omega^2$$

$$\iff 3(n+1) \equiv 2(5)$$

$$\iff n \equiv 3(5)$$

Entonces, los $n \in \mathbb{N}$ que cumplen son $n \equiv 3(5)$

Solución de 4:

- Me piden todas las raíces en \mathbb{C} de f.
- Reescribo f: $f(x) = X^6 - 3X^4 - 2X^3 - 8iX^3 + 24iX + 16i$ $f(x) = X^6 - 3X^4 - 2X^3 + 8i(-X^3 + 3X + 2)$ $f(x) = X^3(X^3 - 3X + 2) + 8iX^3(-X^3 + 3X + 2)$ $f(x) = (X^3 + 8iX^3)(-X^3 + 3X + 2)$

- Sea $g(x) = -x^3 + 3x + 2$, busco sus raíces: Como $g(x) \in \mathbb{Z}[X]$, por Gauss, las posibles raíces de g(x) en \mathbb{Q} son $\{\pm 2, \pm 1\}$. De estas, 2 resulta ser raíz de g(x). 2 es raíz de $g(x) \iff X - 2|g(x)$. Si divido a g(x) por X - 2, obtengo que $g(x) = (X - 2)(-X^2 - 2x - 1) = -(X - 2)(+X^2 + 2X + 1) = -(X - 2)(+X + 1)^2$ Las raíces de g(x) son, entonces, 2 y -1, -1 siendo doble.
- Sea $j(x) = -X^3 + 8i$, sus raíces son las soluciones de $-X^3 + 8i = 0 \iff 8i = X^3$. 2 números complejos son iguales si comparten módulo y argumento, entonces veo para cuáles $X \in \mathbb{C}$ se cumplen ambos. Módulo: $|X|^3 = |8i| \iff |X^3| = \sqrt(8^2) \iff |X^3| = 8 \iff |X| = 2$
- Argumento: veo para cuáles X se cumple que $\arg(X^3) = \arg(8i)$ $\arg(8i) = \frac{\pi}{2}$, ya que es imaginario puro y positivo Planteo $\arg(X^3) = \frac{\pi}{2}$, por De Moivre, $\arg(X^3) = 3\arg(X) + 2k\pi$ donde $k \in \mathbb{Z}$ tal que $3\arg(X) + 2k\pi \in [0, 2\pi)$ $\Longrightarrow 3\arg(X) + 2k\pi = \frac{\pi}{2} \Longrightarrow 3\arg(X) = -2k\pi + \frac{\pi}{2} \Longrightarrow \arg(X) = \frac{\pi}{3}(\frac{1}{2} 2k)$ Ahora, hay que ver para cuáles $k \in \mathbb{Z}$, $\arg(X) \in [0, 2\pi)$: $0 \le \frac{\pi}{3}(\frac{1}{2} 2k) < 2\pi \iff 0 \le 1 2k < 6 \iff -1 \le -2k < 5 \iff \frac{1}{2} \ge k < -\frac{5}{2} \implies k \in \{0, -1, -2\}$. Entonces, las soluciones de $8i = X^3$ son $a_k = 2e^{i\frac{\pi}{3}(1-2k)}$, donde $k \in \{0, -1, -2\}$.
- Así, todas las raíces de f en \mathbb{C} son $\{-1, 2, a_k\}$.

Solución de 5

- Enumero cada condición:
 - 1. f tiene una raíz de q.
 - 2. $X + (-\sqrt{2} + 3)|f$.
 - 3. f(1-2i) = 0 y f'(1-2i) = 0.
 - 4. $f \in \mathbb{Q}[X]$, y además, f tiene grado mínimo.
 - 1. Busco las raíces de g, que como pertenece a $\mathbb{Z}[X]$, veo si las puedo encontrar mediante Gauss. Las posibles raíces de g en \mathbb{Q} son $\{\pm 5, \pm 1\}$, de estas, 1 resulta ser raíz de g. Si divido a g por X-1, se tiene que $g=(X-1)(X^2-2X+5)$. El discriminante de (X^2-2X+5) es -36, es decir, tiene raíces en $\mathbb{C}-\mathbb{R}$. Quiero que f comparta una raíz de g, y que sea de grado mínimo, supongamos que la raíz que comparten es una de las raíces de (X^2-2X+5) , como se tiene que cumplir que $f\in\mathbb{Q}[X]$, si tomo una de esas raíces, necesito su conjugado, es decir, en este caso f tiene f raízes (y mayor grado por el Teorema Fundamental del Álgebra), pero si la raíz que comparten f y g es f0, solamente tengo una raíz, y por consecuente, menor grado que elegir otra raíz de g0.
 - 2. $X + (-\sqrt{2} + 3)|f \iff \sqrt{2} 3$ es raíz de f, y como $f \in \mathbb{Q}[X]$, y ya que $\sqrt{2} \notin \mathbb{Q} \implies \sqrt{2} + 3$ también es raíz de $f \iff X + (-\sqrt{2} 3)|f$, además,

al ser $X+(-\sqrt{2}-3)$ y $X+(-\sqrt{2}+3)$ coprimos (ambos grado 1 con distinta raíz) $\implies (X+(-\sqrt{2}+3))(X+(-\sqrt{2}-3))|f$.

- 3. Necesito que f(1-2i) = 0 y $f'(1-2i) = 0 \iff X (1+2i)|f$ y X (1+2i)|f $\implies (X (1+2i))^2|f \implies (X (\overline{(1+2i)})^2|f$, esta última implicación es por la condición 4.
- Entonces, un f que cumple es: $f(x) = (X-1)(X+(-\sqrt{2}+3))(X+(-\sqrt{2}-3))(X-(1+2i))^2(X-(1+2i))^2$ Que al ser todas expresiones de grado 1, son irreducibles en $\mathbb{C}[X]$.
- La expresión irreducible de f en $\mathbb{R}[X]$ es : $f(x) = (X-1)(X+(-\sqrt{2}+3))(X+(-\sqrt{2}-3))(X^2-2X+4)^2$ Que son expresiones de grado 1, y un polinomio de grado 2 con discriminante negativo, por lo que son irreducibles en $\mathbb{R}[X]$.
- En $\mathbb{Q}[X]$, la expresión irreducible de f es: $f(x) = (X-1)(X^2+3X+5)(X^2-2X+4)^2$ La primera y última expresión son irreducibles por la misma razón que en $\mathbb{R}[X]$, la segunda, de ser reducible en $\mathbb{Q}[X]$, deberían existir p y q en $\mathbb{Q}[X]$ tales que su producto sea igual a (X^2+3X+5) , pero ya vimos que p y q están en $\mathbb{R}[X]$ y sé que la factorización en irreducibles es única.
- Por último, veamos que el f al que llegué, es de grado mínimo: Supongamos que $\exists w \in \mathbb{Q}[X]$, que cumple las condiciones 1 (con raíz 1), 2 y 3, y que además cumple gr(w) < gr(f) = 7:

Por 1, w tiene 1 raíz

Por 2, w tiene 2 raíces

Por 3, w tiene 4 raíces

Por el Teorema Fundamental del Álgebra, w tiene grado 7, pero habíamos supuesto gr(w) < 7, ¡Absurdo! $\implies f$ es de grado mínimo. ¹

¹Código fuente de este pdf: