Harris corner detection

By: 会飞的吴克

د	L						L
	د	L	د	L _o	د	L	
г	י	Г	7	Г	7		7
楚河				汉界			
	乏	راح			>X	亦	
L	乏	١	ر ـ	L	>X 	、亦	
L 	乏	_ _ _	<u>ر</u> ٦	L F	>X -	· 亦	
L	で、 」 「「	L 	7	L F	>X	· 亦)]
<u>.</u>	1	L [7	L -		· 亦	

角的特征:

平坦区域 在所有方向没有 明显梯度变化

边缘区域 在某个方向有明显 梯度变化

角度边缘 在各个方向梯度值 有明显变化

$$E(u,v) = \sum_{x,y} w(x,y) \big[I(x+u,y+v) - I(x,y) \big]^2$$
Window function Shifted intensity Intensity

$$f(x+u,y+v) = f(x,y) + uf_x(x,y) + vf_y(x,y) +$$

First partial derivatives

$$\frac{1}{2!} \left[u^2 f_{xx}(x,y) + u v f_{xy} x, y + v^2 f_{yy}(x,y) \right] +$$

Second partial derivatives

$$\frac{1}{3!} \left[u^3 f_{xxx}(x,y) + u^2 v f_{xxy}(x,y) + u v^2 f_{xyy}(x,y) + v^3 f_{yyy}(x,y) \right]$$

Third partial derivatives

$$f(x+u,y+v) \approx f(x,y) + uf_x(x,y) + vf_y(x,y)$$

$$E(u,v) = \sum_{x,y} w(x,y) \big[I(x+u,y+v) - I(x,y) \big]^2$$
Window function Shifted intensity Intensity
$$\sum_{x,y} \big[I(x+u,y+v) - I(x,y) \big]^2$$

$$\approx \sum [I(x,y) + uI_x + vI_y - I(x,y)]^2$$
 First order approx

$$= \sum u^2 I_x^2 + 2uv I_x I_y + v^2 I_y^2$$

$$= \sum \begin{bmatrix} u & v \end{bmatrix} \begin{vmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{vmatrix} \begin{vmatrix} u \\ v \end{vmatrix}$$
 Rewrite as matrix equation

$$= \begin{bmatrix} u & v \end{bmatrix} \left(\sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(u, v) \simeq \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

正交担似对称化

$$P[\lambda, 0]P^{T}$$

 $P' = P^{T}$
 $E(U,V) = [UV]P[\lambda, 0]P^{T}[U,V]^{T}$
 $E(U,V) = [U'V][\lambda, 0]V^{T}$
 $= \lambda_{1}(U')^{2} + \lambda_{2}(V')^{2}$
 $= (U')^{2} + (V')^{2}$
 $= (U')^{2} + (V')^{2}$

$$det \ M = \lambda_1 \lambda_2$$
$$trace \ M = \lambda_1 + \lambda_2$$

Classification of image points using eigenvalues of *M*:

 $\lambda_1 \sim \lambda_2$ *E* increadirection λ_1 and λ_2 are small; *E* is almost constant in all directions

"Flat" region

 $R = det M - k (trace M)^2$