华南理工大学硕士学位论文

LaTeX 模板使用说明

redfu

指导教师: 周嘉嘉 教授

华南理工大学 2025 年 4 月 4 日

摘要

流变学是研究物质变形和流动的科学,流变学本构方程作为流变学的核心内容之一,是描述材料在外力作用下变形和流动行为的数学模型,用于研究材料的应力、应变、应变率之间的关系。这些方程广泛应用于描述复杂材料的力学行为,如聚合物、胶体、血液、泥浆等,帮助理解和预测材料的力学行为,从而优化工艺、提高产品质量和推动科学研究。传统本构方程的获取和研究方法主要包括实验测定、理论推导和数值模拟,但这些方法存在成本高、耗时长、适用范围有限、计算资源需求大等问题。

近年来,基于数据驱动的机器学习方法开始被应用于流变学本构方程的构建研究中。然而,纯数据驱动的方法缺乏物理约束,难以捕捉复杂的物理关系,如流变学中的非线性黏弹性等。鉴于此,本文采用神经网络(深度学习)方法对流变学本构方程进行建模和预测,并通过引入物理约束,提升模型的训练效果和可解释性。具体而言,本文使用门控循环单元循环神经网络(GRU)和物理信息神经网络(PINN)分别对经典本构方程的模拟数据和动态力学分析(DMA)的实验数据进行深度学习建模和预测。

首先,本文通过数值模拟方法获取 Maxwell、Doi-Edwards、Giesekus 模型的时间域应力应变模拟数据,并使用 GRU 对其进行建模预测。创新性地利用 GRU 的门控机制 捕捉时间序列应力应变数据的记忆效应和应变历史依赖性。与传统深度前馈神经网络(DNN)相比,GRU 在 R²、MAE、MAPE 各项预测指标上表现更优。结果表明,GRU 能够泛化到不同的应变加载协议和变化历史,捕捉流变学中复杂的非线性关系。

随后,本文对真实 DMA 实验数据进行建模。本文采用物理信息神经网络(PINN),在损失函数中引入物理方程残差,为模型提供物理约束,并与数据损失共同训练模型。同时,针对实验中多个制备参数作为特征的稀疏性和分散性,本文使用注意力特征融合方法进行特征降维,进一步优化了模型效果。结果表明,PINN 的预测效果各项指标均优于纯数据驱动的深度学习模型,而哈达玛特征融合和注意力特征融合方法有效解决了特征稀疏分散问题。

最后,本文使用条件变分自编码器(CVAE)对实验数据进行反向建模,通过特定的流变学性质数据生成实验制备参数,为高分子材料的设计提供辅助支持。

关键词:流变学;本构方程;门控循环单元;物理信息神经网络;条件变分自编码器

Abstract

Rheology is the science that studies the deformation and flow of matter. Constitutive equations in rheology, as one of the core components of rheology, are mathematical models that describe the deformation and flow behavior of materials under external forces. They are used to study the relationships between stress, strain, and strain rate in materials. These equations are widely applied to describe the mechanical behavior of complex materials such as polymers, colloids, blood, and slurries, helping to understand and predict the mechanical behavior of materials, thereby optimizing processes, improving product quality, and advancing scientific research. Traditional methods for obtaining and studying constitutive equations mainly include experimental measurement, theoretical derivation, and numerical simulation. However, these methods have issues such as high cost, long time consumption, limited applicability, and high computational resource requirements.

In recent years, data-driven machine learning methods have begun to be applied to the construction of constitutive equations in rheology. However, purely data-driven methods lack physical constraints and struggle to capture complex physical relationships, such as nonlinear viscoelasticity in rheology. In light of this, this paper employs neural network (deep learning) methods to model and predict constitutive equations in rheology, and enhances the training effectiveness and interpretability of the models by introducing physical constraints. Specifically, this paper uses Gated Recurrent Unit (GRU) and Physics-Informed Neural Networks (PINN) to perform deep learning modeling and prediction on simulation data of classical constitutive equations and experimental data from Dynamic Mechanical Analysis (DMA).

First, this paper obtains time-domain stress-strain simulation data for the Maxwell, Doi-Edwards, and Giesekus models through numerical simulation methods and uses GRU to model and predict them. Innovatively, the gating mechanism of GRU is utilized to capture the memory effects and strain history dependence of time-series stress-strain data. Compared to traditional Deep Feedforward Neural Networks (DNN), GRU performs better in terms of R², MAE, and MAPE prediction metrics. The results show that GRU can generalize to different strain loading protocols and change histories, capturing complex nonlinear relationships in rheology.

Subsequently, this paper models real DMA experimental data. The Physics-Informed Neu-

ral Network (PINN) is employed, introducing physical equation residuals into the loss function to provide physical constraints for the model, and training the model jointly with data loss. Additionally, to address the sparsity and dispersion of multiple preparation parameters as features in the experiments, this paper uses attention feature fusion methods for feature dimensionality reduction, further optimizing the model's performance. The results indicate that PINN's prediction performance metrics are superior to those of purely data-driven deep learning models, and the Hadamard feature fusion and attention feature fusion methods effectively solve the issue of sparse and dispersed features.

Finally, this paper uses Conditional Variational Autoencoder (CVAE) for inverse modeling of experimental data, generating experimental preparation parameters through specific rheological property data, providing auxiliary support for the design of polymer materials.

Keywords: Rheology; Constitutive Equations; Gated Recurrent Unit; Physics-Informed Neural Networks; Conditional Variational Autoencoder

目 录

摘 要 ···································
Abstract · · · · II
插图目录 ············ VI
表格目录 ·························VII
主要符号对照表VIII
英文缩略词 ······· IX
第一章 绪论 ····· 1
1.1 引言
1.1.1 流变学的核心研究内容 1
1.1.2 流变学应用方向 2
1.2 本构方程 2
1.2.1 线性本构方程 2
1.2.2 非线性本构方程
1.2.3 传统的本构方程的构建方法 8
1.3 机器应用于本构方程研究现状 9
1.3.1 机器学习方法介绍 9
1.3.2 数据驱动方法 10
1.3.3 引入物理约束的神经网络研究 10
1.4 本课题研究介绍 10
1.4.1 研究内容 10
1.4.2 创新之处 11
1.4.3 研究意义 11
第二章 模板简介
2.1 主文件 · · · · · · 12
2.2 章节文件
第三章 常用环境及参考文献设置
3.1 图
3.2 表

3.3 公式	· 17
3.4 定理	· 23
3.5 参考文献	· 24
第四章 列举环境 · · · · · · · · · · · · · · · · · · ·	· 28
4.1 调整间距	· 28
4.1.1 垂直间距	· 30
4.1.2 水平间距	· 30
4.2 enumerate 标签样式	· 32
4.2.1 小括号阿拉伯数字	· 32
4.2.2 斜体字母	· 32
4.2.3 大写罗马字母	· 32
结 论	. 33
参考文献	. 34
附 录1	· 36
1.1 测试一级标题 section ····································	· 36
1.1.1 测试二级标题 subsection ······	· 36
1.2 测试测试测试	. 37
1.2.1 测试测试测试	. 37
附 录 2	. 38
2.1 测试测试测试	· 38
2.1.1 测试测试测试	· 38
攻读博士/硕士学位期间取得的研究成果 · · · · · · · · · · · · · · · · · · ·	. 39
致 谢	. 40

插图目录

图 1-1	(A) 施加的应变曲线以及对应的剪切应力; (B) 理想弹性固体; (C)	
理	!想粘性液体; (D) 粘弹性样品 ^[3]	3
图 1-2	Maxwell 模型示意图	4
图 1-3	多尺度模拟	9
图 2-1	TeXstudio 环境	13
图 2-2	TeXstudio 编译选项	13
图 3-1	(a) CVAE 示意图; (b) VAE 示意图	17
图 3-2	(a) CVAE 示意图; (b) VAE 示意图	18
图 3-3	(a) CVAE 示意图; (b) VAE 示意图	18
图 3-4	(a) CVAE 示意图; (b) VAE 示意图	19
图 3-5	(a) CVAE 示意图; (b) VAE 示意图	19
图 3-6	常规	26
图 4-1	enumitem 包对各种间距的定义	29

表格目录

表 3-1	涵道模型参数	20
表 3-2	涵道模型参数	20

主要符号对照表

【本节论文规范为可选,如果你的论文没有相关内容那么去除这一节;如果有,则删除这一行注释。】

 $X_nY_nZ_n$ -地理坐标系

 ψ -偏航角

 φ -滚转角

G-NED 系的重力

w-系统的外部扰动

F-机体系的气动力

ρ-空气密度

 A_x 、 A_y 、 A_z -沿机体轴的截面面积

la-机身气动阻力作用点与重心的距离

 T_d -涵道体升力

 T_a -总升力

prr-桨盘上表面压强

 $V_c + V_i$ -桨盘上下表面气体速度

 V_i -桨盘处气流诱导速度

Q-风扇扭矩

μ-环绕涵道角度变量

 \hat{j} -沿机体系 y 轴方向的单位矢量

 $C_{d,d}(\alpha_d)$ 涵道翼型阻力曲线

 C_{lo} -风管翼型升力曲线斜率

 $C_{d,o}$ 、 $C_{d,o}$ -拟合阻力曲线经验常数

 C_{duct} - 常值比例系数

ks-操纵面气动升力系数

I_b-风扇转动惯量

 L_r -风扇角动量

 $X_bY_bZ_b$ -机体坐标系

 θ -俯仰角

 R_h^n 、R-机体系到 NED 系的旋转矩阵

 φ_0 -气动面安装角

T-系统采样周期

M-机体系的气动力矩

 $C_{D,x}$ 、 $C_{D,y}$ 、 $C_{D,z}$ -沿机体轴阻力系数

v-机身相对于空气的速度分量

 V_c -气体在无穷远处的速度

 T_p -风扇升力

 q_a -涵道升力分配系数

 p_L -桨盘下表面压强

S-桨盘面积

V_{cr}-理想自转下降速率

₩-风扇转速

 \hat{i} -沿机体系 x 轴方向的单位矢量

 $C_{l,d}(\alpha_d)$ -涵道翼型升力曲线

 c_d -涵道翼型弦长

 $C_{l,\min}$ 、 $C_{l,\max}$ -升力系数极限

R-风扇半径

l_d-重心与涵道气动力作用点的距离

 α_d -攻角

 d_{af} 、 d_{ds} -风扇扭矩常系数

英文缩略词

【本节论文规范为可选,如果你的论文没有相关内容那么去除这一节;如果有,则 删除这一行注释。】

SCUT South China University of Technology 华南理工大学

第一章 绪论

1.1 引言

1.1.1 流变学的核心研究内容

流变学是研究物质在外力作用下变形和流动的科学,其研究对象涵盖了流体、软固体以及在特定条件下可以流动的固体^[1]。流变学的核心在于揭示材料的应力、应变和时间之间的内在关系,并通过本构方程(流变状态方程)对这些关系进行定量描述。流变学的研究不仅深化了对材料力学行为的理解,还为工程应用和科学研究提供了重要的理论基础。流变学的核心研究内容主要包括以下几个方面^[2]:

- (1) 材料的流动与变形行为: 材料的流动与变形行为是流变学研究的核心内容之一。通过实验和理论模型,流变学揭示了材料在外力作用下的复杂力学行为。例如,蠕变现象(即在恒定应力下,材料的变形随时间逐渐增加)和应力松弛现象(即在恒定应变下,材料的应力随时间逐渐减小)是流变学中重要的研究对象。这些现象不仅反映了材料的时间依赖性行为,还为材料的长期性能评估提供了理论依据。此外,流变学还研究了材料的非线性力学行为,如屈服、塑性变形和断裂等,这些研究对于理解材料的宏观力学性能具有重要意义。
- (2) 本构方程的构建:本构方程是流变学中用于描述材料力学行为的数学工具,其核心在于建立应力、应变和时间之间的定量关系。对于牛顿流体,其本构方程基于牛顿黏性定律,即应力与应变率成正比。然而,对于非牛顿流体和软固体,其本构方程则更为复杂,通常需要考虑材料的非线性、黏弹性以及时间依赖性等特性。通过构建合理的本构方程,流变学能够对各种物理现象进行精确的数学描述,从而为工程设计和材料开发提供理论支持。
- (3) 实验与模拟方法:流变学实验是研究材料流变性能的重要手段,常见的实验方法包括蠕变实验、应力松弛实验和动力试验等。这些实验能够直接测量材料在不同条件下的力学响应,为理论模型的验证和优化提供实验数据。近年来,随着计算模拟技术的发展,流变学研究逐渐从唯象模型向定量科学转变。微观实验技术(如 X 射线散射、中子散射)与计算模拟的结合,使得研究者能够在微观尺度上揭示材料的流变机制,从而推动流变学向更高精度和更深层次发展。

1.1.2 流变学应用方向

流变学的研究方向广泛,涵盖了多个学科和领域,例如高分子流变学研究高分子材料的分子结构与其流变行为的关系,例如聚合物熔体和溶液的拉伸流变行为。生物流变学研究生物材料(如血液、肌肉)的流变特性,揭示生理和病理过程中的力学机制。地质流变学研究岩石、土壤等地质材料的流变行为,应用于地震预测、矿产资源开发等领域。工业流变学在材料加工、食品工业、化妆品和医药制造等领域,流变学用于优化工艺和产品性能。非牛顿流体力学研究不符合牛顿黏性定律的流体(如油漆、泥浆、血液)的流动特性。

1.2 本构方程

1.2.1 线性本构方程

凝聚相物质分为固体或液体,固体和液体之间的一个区别特征是它们对施加的力的响应。固体在变形时储存能量,如果变形很小,则在消除力后会恢复到原来的形状。相比之下,液体则会通过耗散能量和调整其形状来抵抗力 $^{[3]}$ 。这种区别可以通过两种经典的力学模型来描述:胡克固体(Hookean Solid)和牛顿流体(Newtonian Fluid)。胡克定律(Hooke's Law)可以来描述小变形下的弹性固体行为。胡克定律表明,固体的应力 σ 与应变 γ 成正比,如公式(1-1)所示。其中,G 为弹性模量,用于描述材料在弹性变形范围内抵抗外力的能力。它反映了材料的刚度,即材料在受力时发生变形的难易程度。弹性模量越大,材料越难变形;弹性模量越小,材料越容易变形。胡克固体是理想化的弹性固体模型,适用于描述金属、陶瓷等材料在小变形条件下的力学行为。

$$\sigma = G\gamma \tag{1-1}$$

而对于液体,其对外力的响应则完全不同。液体无法储存能量以恢复形状,而是通过内部的粘性阻力来耗散能量,并持续流动以适应外力。这种行为可以用牛顿流体的本构方程来描述,即剪切应力与剪切速率成正比,如公式(1-2)所示。其中,η为粘性系数,用于描述液体在运动过程中耗散能量的能力。粘性系数越大,液体越容易耗散能量,反之亦然。牛顿流体是理想化的粘性流体模型,适用于描述水、空气等液体在运动过程中耗散能量的行为。

$$\sigma = \eta \dot{\gamma} \tag{1-2}$$

然而,这些特征都是理想化的,代表了特定条件的行为。许多凝聚相材料不容易归入这些经典类别,因为它们的机械性能取决于变形的大小、速率、变形历史,加载过程等等。例如,考虑牙膏,它像液体一样流动,可以将其从管中挤出,但一旦放在牙刷上,它就会像固体一样保持其形状。这类物质同时具有黏性和弹性,被认为是黏弹性材料,被称为软物质或者复杂流体。

线性黏弹性理论认为在小变形范围(线性范围内)应力-应变关系是线性的,即应力与应变成正比。同时线性黏弹性区间内材料具有时间依赖性,材料的力学响应不仅取决于当前的应力或应变,还依赖于时间或加载历史。图1-1概述了两种不同类型的粘弹

图 1-1 (A)施加的应变曲线以及对应的剪切应力;(B)理想弹性固体;(C)理想粘性液体;(D)粘弹性样品 $^{[3]}$

Figure 1-1 (A) Applied strain profile and resulting shear stress;(B) ideal elastic solid;(C) ideal viscous liquid;(D) viscoelastic samples^[3]

性材料的简单剪切行为。对于粘弹性固体和液体,阶跃应变会引起瞬时弹性响应,从而产生 σ 峰值。然而,应力不是保持不变或立即降至零,而是逐渐降低。它在很长一段时

间内接近粘弹性固体的有限平台值,而粘弹性液体则完全衰减到零[3]。

线性本构理论中最经典的是 Maxwell 模型,如图1-2所示,Maxwell 模型将材料的弹性行为和粘性行为结合起来,它用一个弹簧(弹性元件)和一个粘壶(粘性元件)串联表示黏弹性关系。Maxwell 模型的微分形式如公式(1-3)所示,其中 τ 表示松弛时间,等于 eta/G。将两边积分得到 Maxwell 模型的积分形式如公式(1-4)所示。

$$\frac{d\sigma}{dt} + \frac{\sigma}{\tau} = G\frac{d\gamma}{dt} \tag{1-3}$$

$$\sigma(t) = \int_{-\infty}^{t} Ge^{-\frac{t-t'}{\tau}} \frac{d\gamma(t')}{dt'} dt'$$
 (1-4)

积分形式的方程显示了任何时刻的应力是松弛模量乘以应变速率的积分,该时刻之前材料的整个历史。由于被积函数中的衰减指数,模型具有衰落的记忆,因此最近的应变历史比过去的应变历史更重要。如果将多个 Maxwell 模型并联,便可以得到广义 Maxwell

图 1-2 Maxwell 模型示意图

Figure 1-2 Maxwell model schematic

模型方程,如公式(1-5)所示。

$$\sigma(t) = \int_{-\infty}^{t} G(t - t') \frac{d\gamma(t')}{dt'} dt'$$
 (1-5)

其中松弛模量 G(t) 定义为公式(1-6)。

$$G(t) = \sum_{i=1}^{n} G_i e^{-\frac{t}{\tau_i}}$$
 (1-6)

Maxwell 模型通过将黏弹性抽象为黏性元件和弹性元件串联来得到本构方程。如果将弹簧和粘壶进行并联,则得到 Kelvin-Voigt 模型的本构方程,即公式(1-7)。

$$\sigma(t) = G\gamma(t) + \eta \frac{d\gamma(t)}{dt}$$
(1-7)

将多个 Kelvin-Voigt 模型的元件进行串联,便可以得到广义 Kelvin-Voigt 模型,如公式(1-8)。

$$\sigma(t) = \sum_{i=1}^{n} \left(G_i \gamma_i(t) + \eta_i \frac{d\gamma_i(t)}{dt} \right)$$
 (1-8)

原则上,任何广义 Voigt 模型都可以在数值上映射到等效的广义 Maxwell 模型, 这是线性本构方程构建的基本研究方法的不同角度。

如果将传统的整数阶导数模型改为分数阶导数,能够更加准确描述材料的记忆效应,即材料的当前状态不仅依赖于当前时刻的输入,还依赖于过去的历史。这种特性在黏弹性材料中非常重要,因为材料的应力或应变响应通常具有时间依赖性。例如 Bagley和 Torvik等在 20 世纪 80 年代提出的分数阶 Maxwell模型,是对传统 Maxwell模型的推广。无论是什么形式的线性本构方程,均满足一个基本假设材料的响应是线性的,即多个应变历史的叠加效应等于各自效应的线性相加,当公式(1-5)中的松弛模量 G表示为公式(1-6)时是 Maxwell模型的形式,事实上当 G为一个抽象的松弛函数时,公式(1-5)抽象为更一般的线性本构方程,被称为玻尔兹曼叠加原理(BSP),玻尔兹曼叠加原理广泛应用于描述线性黏弹性材料的行为,例如应力松弛、蠕变、动态力学响应等。

1.2.2 非线性本构方程

线性本构方程只能用于描述只能描述简单的材料行为,例如弹性变形、小应变下的 黏弹性行为。适用于材料在小变形范围内的线性响应。能够描述复杂的材料行为,而 非线性本构方程可以用来描述更为复杂的行为例如塑性变形、硬化或软化、各向异性、 大变形、剪切稀化、剪切增稠等行为。绝大部分高分子材料具有较复杂的非线性关系。 Binham 提出模型认为屈服性流体当剪应力低于屈服应力时,流体表现为刚性固体;当 剪应力超过屈服应力时,流体开始流动,且流动行为类似于牛顿流体.Herschel-Bulkley 模型在此基础之上引入了剪切稀化和剪切增稠的表示,如公式(1-9),是描述非线性本构 方程的一套公式。

$$\sigma = \sigma_0 + K\dot{\gamma}^n \tag{1-9}$$

松弛模量函数不仅是时间的函数,也是应变的函数,能够表征大变形下的非线性响应。 改进的 Bingham 模型在 Herschel-Bulkley 模型的基础上,通过引入额外的参数或修正项, 显著提升了对流体行为的描述精度。例如,在 Herschel-Bulkley 模型中引入高阶项(如 剪切速率的二阶项),可以更准确地刻画非线性流变行为。此外,通过引入 Papanastasiou 正则化方法,有效解决了原始模型在低剪切速率下的数值不稳定性问题,这一改进模型 被称为 Herschel-Bulkley-Papanastasiou (HBP) 模型。HBP 模型在磁流变液等复杂流体的 流变特性描述中得到了广泛应用。Herschel-Bulkley 类模型不涉及弹性流体,主要用于 解决屈服应力流体的本构问题,对于黏弹性流体的非线性本构方程而言,可以写出一般 的通式,如公式(1-10),非线性黏弹性流体的本构方程可以从宏观连续介质力学和微观分子角度分别进行描述。

$$\sigma(t) = \int_{-\infty}^{t} G(t - t', \gamma) \frac{d\gamma(t')}{dt'} dt'$$
(1-10)

宏观介质力学中 Oldroyd-B 模型,如公式(1-11)是在 Maxwell 模型的基础上作了修正,增加了延迟时间项 λ_2 ,从而能够描述更复杂的流变行为,同时这个模型引入了上随体导数来代替普通导数,在物理上更加符合真实世界的材料行为。Oldroyd-B 模型本意可以在 Weissenberg 数($W_i = \lambda_1\dot{\gamma}_i$)较小的情况下描述线性黏弹性,但是其中的上随体导数在一定程度上包含了部分非线性效应,特别是在高应变率或大变形条件下。Oldroyd-B 模型是非线性本构方程的经典基础模型,研究者在此基础上为了更准确地描述非线性黏弹性行为,研究者提出了多种修正的 Oldroyd-B 模型。

$$\boldsymbol{\sigma} + \lambda_1 \frac{\mathcal{D}\boldsymbol{\sigma}}{\mathcal{D}t} = \eta \left(\dot{\boldsymbol{\gamma}} + \lambda_2 \frac{\mathcal{D}\dot{\boldsymbol{\gamma}}}{\mathcal{D}t} \right) \tag{1-11}$$

Giesekus 模型 (公式(1-12)) 在 Oldryd-B 模型基础上,增加了一个非线性项,通过非线性系数 α 来表示非线性行为。Giesekus 模型常用于描述高聚物溶液、熔体以及其他粘弹性流体的流变行为。这些流体通常表现出剪切稀化和弹性效应。尤其是在中等至高剪切速率范围内。其模型参数(如迁移因子 α)可以调节剪切稀化的强度和拐点形状,具有较高的灵活性。Giesekus 模型在高 Weissenberg 数(Wi)条件下仍能保持数值稳定性,适用于强弹性效应的流动场景。通过引入对数构象重构等方法,可以进一步提高其在高Wi 条件下的计算稳定性。

$$\boldsymbol{\sigma} + \lambda_1 \frac{\mathcal{D}\boldsymbol{\sigma}}{\mathcal{D}t} + \alpha \frac{\lambda_1}{\eta} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma} = \eta \left(\dot{\boldsymbol{\gamma}} + \lambda_2 \frac{\mathcal{D}\dot{\boldsymbol{\gamma}}}{\mathcal{D}t} \right)$$
(1-12)

PTT 模型 (公式(1-13)) 通过引入一个非线性应力函数 f 扩展了 Oldroyd-B 模型。该函数 通常取指数形式。

$$f(\operatorname{tr}(\boldsymbol{\sigma}))\boldsymbol{\sigma} + \lambda_1 \frac{\mathcal{D}\boldsymbol{\sigma}}{\mathcal{D}t} = \eta \left(\dot{\boldsymbol{\gamma}} + \lambda_2 \frac{\mathcal{D}\dot{\boldsymbol{\gamma}}}{\mathcal{D}t} \right)$$
(1-13)

FENE-P 模型 (公式(1-14)) 在 Oldroyd-B 模型的基础上引入了有限拉伸效应,通过项 $\frac{\Delta_1}{\eta} \frac{\sigma}{1-\text{tr}(\sigma)/b}$ 描述聚合物链的有限拉伸行为。参数 b 表示聚合物链的最大拉伸比。该模型 适用于描述聚合物溶液在强流动条件下的非线性行为。

$$\boldsymbol{\sigma} + \lambda_1 \frac{\mathcal{D}\boldsymbol{\sigma}}{\mathcal{D}t} = \eta \left(\dot{\boldsymbol{\gamma}} + \lambda_2 \frac{\mathcal{D}\dot{\boldsymbol{\gamma}}}{\mathcal{D}t} \right) - \frac{\lambda_1}{\eta} \frac{\boldsymbol{\sigma}}{1 - \operatorname{tr}(\boldsymbol{\sigma})/b}$$
(1-14)

通过将 Oldroyd-B 模型与分数阶导数结合,可以得到分数阶 Oldroyd-B 模型,如公式(1-15)。分数阶 Oldroyd-B 模型通过引入分数阶导数描述非局部记忆效应。参数 α 和 β 是分数阶导数的阶数,该模型能够捕捉更复杂的流变行为,适用于具有非局部记忆效应的复杂流体。

$$\boldsymbol{\sigma} + \lambda_1^{\alpha} \frac{\mathcal{D}^{\alpha} \boldsymbol{\sigma}}{\mathcal{D} t^{\alpha}} = \eta \left(\dot{\boldsymbol{\gamma}} + \lambda_2^{\beta} \frac{\mathcal{D}^{\beta} \dot{\boldsymbol{\gamma}}}{\mathcal{D} t^{\beta}} \right) \tag{1-15}$$

Oldroyd-B 类本构模型均为微分型本构模型,源于微分型 Maxwell 模型公式(1-3)。另一类本构模型如 K-BKZ 模型源于积分型 Maxwell 模型公式(1-4)。K-BKZ 模型如公式(1-16)所示。在 K-BKZ 模型中,h 称为阻尼函数,它是形变张量的第一不变量 I_1 和第二不变量 I_2 的函数。 $\mathbf{C}^{-1}(t,t')$ 是 Finger 形变张量的逆,用于描述从时间 t' 到 t 的形变历史。m(t-t') 是瞬态函数或记忆函数,用于表征材料对历史形变的记忆效应。K-BKZ模型广泛应用于聚合物加工(如挤出、注塑、热成型等)、生物流体力学(如血液、蛋白质悬浮液等复杂流体的流变行为研究)以及涂料和润滑剂的流动行为和流变特性分析。

$$\sigma(t) = \int_{-\infty}^{t} m(t - t') h(I_1, I_2) \mathbf{C}^{-1}(t, t') dt'$$
(1-16)

Doi 和 Edwards 尝试从分子角度构建本构方程,在管子模型的基础上提出了 Doi-Edwards 模型(公式(1-17))。Doi-Edwards 模型的核心思想是将高分子链的缠结效应简化为一条光滑管道对链的限制作用,链在管道中的运动通过松弛和扩散来描述。其中 G_0 表示松弛时间,而 Q表示为公式(1-18),反映了高分子链在形变历史下的方向分布变化,即链的取向如何随形变而变化。

$$\boldsymbol{\sigma}(t) = G_0 \int_{-\infty}^{t} \frac{\partial Q(\mathbf{E}(t, t'))}{\partial t'} dt'$$
(1-17)

$$Q(\mathbf{E}(t,t')) = \frac{5}{2} \left\langle \frac{\mathbf{E}(t,t') \cdot \mathbf{u}\mathbf{u}}{|\mathbf{E}(t,t') \cdot \mathbf{u}|^2} \right\rangle_{\mathbf{u}}$$
(1-18)

传统的 Doi-Edwards 模型基于单链平均场近似,将缠结效应简化为一条光滑的"管子"对高分子链的限制作用。然而,这种简化忽略了链-链间的直接相互作用,难以解释快速大形变条件下的非线性流变现象(如应力过冲、缠结点破损和重组等)。近年来,研究者通过引入多链相互作用,提出了修正的管子模型,例如 GLaMM 理论,在此基础之上能够更好地描述缠结高分子流体的非线性行为。

1.2.3 传统的本构方程的构建方法

传统本构方程尤其是 Oldroyd-B、Doi-Edwards 等复杂的非线性模型具有较多的待定参数,通过数学形式描述材料的应力-应变关系及其对时间、温度和形变历史的依赖性。 其构建方法主要基于实验观测、理论推导和数值模拟的结合,通常分为以下几个步骤。

首先,实验观测是构建本构方程的基础。通过流变学实验(如剪切流变、拉伸流变等),研究者可以获取材料在不同形变条件下的应力响应数据。这些实验数据为理论模型的构建提供了关键依据。例如,通过动态力学分析(DMA)测量材料的存储模量和损耗模量,可以确定其粘弹性特性;通过应力松弛和蠕变实验,可以推断材料的记忆效应和时间依赖性。实验数据的精确性和全面性直接决定了本构方程的适用性和预测能力。

其次,理论推导是本构方程构建的核心环节。对于线性粘弹性材料,通常采用弹簧和粘壶的组合模型(如 Maxwell 模型、Kelvin-Voigt 模型)来描述其力学行为,通过不同的组合可以表示不同的本构方程。对于非线性材料,则需要引入更复杂的本构关系,这里主要还是基于线性黏弹性方程,通过各类引入非线性关系的方法来进行非线性关系推导,理论推导的关键在于如何将微观结构信息(如高分子链的缠结、颗粒的相互作用等)与宏观力学行为联系起来。而对于理论推导的结果,每一个非线性项或参数应当从数学角度进行证明。例如近年来,数学研究者对 Doi-Edwards 模型的适定性进行了深入研究。Chupin 等人通过 Schauder 不动点定理和 Galerkin 近似方法,证明 Doi-Edwards 模型在二维情况下的全局解存在性和唯一性。这一结果为模型的数学基础提供了严格的理论支持。

此外,数值模拟在本构方程的构建和验证中起到了重要作用。有限元分析(FEA),有限有限差分法(FDM),有限体积法(FVM)是一种常用的数值方法,能够将本构方程嵌入到复杂几何和边界条件下的力学问题中,模拟材料的应力分布、形变行为和流动特性。例如,在聚合物加工中,研究者通过有限元分析结合 Doi-Edwards 模型,可以预测熔体在挤出或注塑过程中的流动行为,优化加工参数。分子动力学模拟(MD)则是另一种重要的数值工具,能够从分子尺度模拟材料的力学行为,为宏观本构方程的构建提供微观依据。例如,通过粗粒度分子动力学模拟(CGMD),研究者可以研究高分子链的缠结动力学,验证管子模型的假设。由于聚合物液体具有单体、中观和宏观流尺度的多尺度特征,因此关联不同层次的多尺度模拟 (MSS) 足以准确再现流动特性

传统本构方程的研究方法主要依赖于物理实验和理论推导,通过建立数学方程来描述材料的力学行为。这种方法虽然具有明确的物理意义,但在处理复杂材料或非线性行

图 1-3 多尺度模拟

Figure 1-3 MSS

为时,往往面临模型精度不足、参数识别困难等问题。随着数据驱动技术的快速发展,机器学习为材料本构关系的研究提供了新的思路。通过利用大量实验或仿真数据,机器学习能够自动挖掘材料行为中的潜在规律,构建高精度的预测模型,从而弥补传统方法的不足,并为材料科学的研究开辟了更加智能化的路径。

1.3 机器应用于本构方程研究现状

1.3.1 机器学习方法介绍

机器学习是人工智能的一个重要分支,其核心是通过算法从数据中自动学习规律,并利用这些规律进行预测或决策。与传统编程不同,机器学习不依赖于明确的规则,而是通过训练数据优化模型参数,从而实现对复杂问题的建模和解决。它在图像识别、自然语言处理、推荐系统等领域取得了显著成果。

监督学习是最常见的机器学习类型,适用于有标签的数据集。常见的算法包括线性回归和逻辑回归,分别用于连续值的预测和二分类问题。决策树通过树状结构进行决策,适用于分类和回归任务。随机森林是多个决策树的集成,通过投票或平均提高预测准确性。支持向量机(SVM)通过寻找最优超平面进行分类,适用于高维数据。K 近邻算法(KNN)基于距离度量进行分类或回归,简单但计算量大。朴素贝叶斯基于贝叶斯定理,适用于文本分类等任务。无监督学习则更多处理无标签数据,主要用于数据聚类和降维。

随着数据规模和计算能力的提升,深度学习作为机器学习的一个子领域迅速崛起。 深度学习通过构建多层的神经网络结构,能够自动提取数据中的多层次特征,从而在处

理高维、非线性问题(如图像、语音和文本)时表现出更强的能力,成为推动人工智能发展的核心技术之一。卷积神经网络(CNN)通过卷积层提取图像特征,广泛应用于图像分类和目标检测。循环神经网络(RNN)及其变体 LSTM 和 GRU,适用于序列数据如时间序列和自然语言处理。Transformer 模型通过自注意力机制处理长序列,成为自然语言处理的主流架构。生成对抗网络(GAN)通过生成器和判别器的对抗训练,能够生成逼真的图像和文本。

1.3.2 数据驱动方法

近年来在物理学领域,机器学习与物理学问题的研究结合也日益密切。在流变学领域,人工神经网络(ANN)已被用于自动监测合成油基泥浆的各种流变特性。混合 ML模型结合了 ANN 和支持向量机(SVM)准确预测了纳米基水基钻井液的流变性和过滤特性。此外,ML模型可以与微流体或其他设备集成,用于复杂流体的原位粘度测量。例如,Mustafa等设计了一种微流体传感设备,利用流固耦合和 ML 算法来测量复杂流体的粘度。他们采用 SVM 和(KNN)算法,分别实现了 89.7% 和 98.9% 的平均准确率。Ponick 等利用卷积神经网络(CNN)通过立体相机图像预测 Bingham 流体的流变特性。

1.3.3 引入物理约束的神经网络研究

物理约束神经网络研究通过引入物理约束,将本构方程嵌入到复杂几何和边界条件下的力学问题中,模拟材料的应力分布、形变行为和流动特性。例如,在聚合物加工中,研究者通过有限元分析结合 Doi-Edwards 模型,可以预测熔体在挤出或注塑过程中的流动行为,优化加工参数。分子动力学模拟(MD)则是另一种重要的数值工具,能够从分子尺度模拟材料的力学行为,为宏观本构方程的构建提供微观依据。例如,通过粗粒度分子动力学模拟(CG)

1.4 本课题研究介绍

1.4.1 研究内容

本课题研究通过利用机器学习算法,对多尺度材料本构方程进行深度学习研究,以解决多尺度材料本构方程的数值问题。通过引入物理约束,将本构方程嵌入到复杂几何和边界条件下的力学问题中,模拟材料的应力分布、形变行为和流动特性。例如,在聚合物加工中,研究者通过有限元分析结合 Doi-Edwards 模型,可以预测熔体在挤出或注塑过程中的流动行为,优化加工参数。分子动力学模拟(MD)则是另一种重要的数值

工具,能够从分子

1.4.2 创新之处

本课题研究通过利用机器学习算法,对多尺度材料本构方程进行深度学习研究,以解决多尺度材料本构方程的数值问题。通过引入物理约束,将本构方程嵌入到复杂几何和边界条件下的力学问题中,模拟材料的应力分布、形变行为和流动特性。例如,在聚合物加工中,研究者通过有限元分析结合 Doi-Edwards 模型,可以预测熔体在挤出或注塑过程中的流动行为,优化加工参数。分子动力学模拟(MD)则是另一种重要的数值工具,能够从分子

1.4.3 研究意义

研究意义是解决多尺度材料本构方程的数值问题,提高材料科学研究效率,为材料工程师提供更好的工具。

第二章 模板简介

与很多外文杂志社不同,大部分中文期刊都不提供 LATEX 模板给投稿者使用,也很少有学校给学生提供官方的毕业论文模板。目前 github 上的大部分模板都是由学生发起的非官方模板。在此感谢 Shun Xu 以及 yecfly 等人的工作,他们的无私贡献使得华南理工大学硕博士毕业论文也可以使用 LATEX 撰写。

本模板是直接修改前人的模板得到的,更详细的介绍可到[4-5] 下载。本章仅从用户的角度简要介绍模板的使用,而尽量避免涉及 LAT_EX 的模板制作细节(实际上是因为本人也不会)。正如我们使用手机并不需要了解麦克斯韦方程组,使用 LAT_EX 写作也无需了解模板是如何制作的。

LATEX 的源代码保存在后缀名为.tex 的文件中。当编写长篇文档时,例如当编写书籍、毕业论文时,单个源文件会使修改、校对变得十分困难。将源文件分割成若干个文件,例如将每章内容单独写在一个文件中,会大大简化修改和校对的工作。为方便,本文将 scutthesis.tex 文件称为主文件,而将 abstract.tex、chapter0x.tex、conclusion.tex 等文件称为章节文件。

值得注意的是,要每次编译时都更新参考文献著录,TeXstudio 软件的选项->设置中的构建并查看、编译器需要设置成如图2-1、2-2所示。此时只需在任意一个文件中点击构建并查看按钮即可编译文档。每次编译都更新参考文献会使得编译时间很长。

2.1 主文件

scutthesis.tex 文件相当于主函数,调用各章的内容。LATEX源代码以一个\documentclass命令作为开头,它指定了文档使用的文档类。文档类规定了LATEX源代码所要生成的文档的性质——普通文章、书籍、演示文稿、个人简历等等。

\documentclass[<options>]{<class-name>}

其中 class-name 为文档类的名称,如 LATEX 提供的 article, book, report,可在其基础上派生的一些文档类或者有其它功能的一些文档类。LATEX 提供的基础文档类见文献[6]。还可以自定义文档类,如华南理工大学硕博士论文文档类 scutthesis,其实现保存在后缀名为.cls 的文件中。可选参数 options 为文档类指定选项。

document 环境当中的内容是文档正文:

\begin{document} 正文内容 \end{document}

图 2-1 TeXstudio 环境

图 2-2 TeXstudio 编译选项

正文中包含各章节内容:

\include{abstract} % 中英文摘要 \tableofcontents % 目录 \listoftables % 表格目录 (可选) \listoffigures % 插图目录 (可选)

```
\include{symbols} % 符号对照表(可选)
\include{abbreviation} % 缩略词
...
\include{chapter01} % 第一章
\include{chapter02} % 第二章
\include{chapter03} % 第三章
% 自行根据需要添加章节。
...
\include{conclusion} % 结论
...
\printbibliography % 参考文献著录
\include{appendix} % 附录
\include{pub} % 成果
\include{ack} % 致谢
```

其中%之后的内容为注释,...表示省略其他代码,仅保留论文内容主体部分。\include{xxx}指令用于包含 xxx.tex 文件的内容,各章节的内容主要在 xxx.tex 中保存。在\documentclass 和\begin{document} 之间的位置称为导言区。在导言区中一般会使用\usepackage 调用宏包,以及会进行对文档的全局设置。本模板的导言区除调用所需的宏包外,还进行了页眉页脚的设置。有的模板会把所有调用宏包的指令放到一个.sty宏包文件中,页面的设置放在文档类文件.cls 文件中。因本人时间有限,就不做整理,欢迎有志之士加入完善。使用本模板并不需要了解导言区的指令,在需要时额外添加即可(要注意宏包冲突)。特别地,\includeonly{xxx}指令用于使文档仅编译 xxx.tex 文件的内容,这就是分章节包含(include)的好处,可大大减少编译时间。

将封面打印保存为 thesis_cover.pdf 文件,硕士使用 master_cover.docx,博士使用 doctor_cover.doc。如果有更新版本的封面,可自行替换。文档类默认是博士论文,下面 指令将控制添加封面与否:

```
\documentclass[unicode,master,pdfcover]{scutthesis} % 使用pdf文件封面的 硕士模板 \documentclass[unicode,master]{scutthesis} % 不使用pdf文件封面的 硕士模板 \documentclass[unicode,pdfcover]{scutthesis} % 使用pdf文件封面的博士模板 \documentclass[unicode]{scutthesis} % 不使用pdf文件封面的博士模板
```

不使用 thesis_cover.pdf 文件指定的封面时,将使用草稿封面。草稿封面也可以减少编译时间,因此可以在最终提交论文时再使用论文封面。草稿封面用以下指令设置:

2.2 章节文件

章节文件如 chapter0x.tex 等,其内容由\chapter{章名} 开头。新建一章可新建一个文件并由\chapter{新建章名} 开头填写内容即可。节及小节分别用\section{新建节名}、\subsection{新建小节名} 命令。

正文的的书写和 txt 文本文件的书写类似。IsTeX 源代码中,空格键和 Tab 键输入的空白字符视为"空格"。连续的若干个空白字符视为一个空格。一行开头的空格忽略不计。行末的回车视为一个空格;但连续两个回车,也就是空行,会将文字分段。多个空行被视为一个空行。也可以在行末使用\par 命令分段。在本模板中,英文之间的空格被保留,中文之间的空格被忽略。特别地,摘要,附录,结论等两个字的大纲级别为章的章名,中间使用空格隔开。对此论文撰写规范并没有明文要求,只是为了美观。也可以全部不加空格。一般情况下,在文本文字中添加空格使用\quad 命令,但由于文献[7] 所述原因,直接使用\quad 命令会报警,因而使用\texorpdfstring{\quad}{}, 其中最后一个{}里面可以加一个空格,不影响使用。目录二字之间添加空格在 scutthesis.cls 文件 317行设置。

正文本环境中使用公式,即行内公式,需要用两个 \$ 包围,如源码: \$a+b=c\$ 显示为 a+b=c。使用其他字符可自行百度或阅读参考文献。再次提醒,使用 \LaTeX 撰写论文不需要研究其原理,在达到某种效果(图文显示、公式显示效果)时百度或查书寻找其代码即可。

综上,论文撰写只需要将自己的文本(包含行内公式)放到相应的章节处,并添加 行间公式、图表环境并填写图表即可。行间公式、图表将在下一章介绍。

第三章 常用环境及参考文献设置

强烈建议在使用公式、表格、定理环境时进行百度,没必要研究各种用法,只需要知道自己需要什么。因本人的论文所用表格较少,因而对表格不是很熟悉,本章对表格的介绍相应的较少。本章仅介绍本人在论文撰写过程中常用的环境以及参考文献设置。

3.1 图

图的导入需要提前准备好图片文件,最好是.png、.eps、.pdf 或.jpg 文件。另外,如果是从 matlab 导出图片文件,可使用 print 函数或手动导出,print 函数的使用可参考 ICGNC2020plot.m 以及 PlotToFileColorPDF.m 文件等。手动导出(matlab 的 figure 界面的"文件"->"导出设置"设置好大小、分辨率和线宽等然后点击"应用于图窗")主要用于观察效果,可设置某种样式名称后保存该样式,下次使用时加载,具体可百度"matlab 导出高清图片"。需要特别注意的是一定要 1:1 导入 matlab 生成的图片,并且图中文字设置好字体字号。否则缩放之后,图片的字号就变了,盲审老师一眼就能看出来字号不对,就很麻烦。这就是为什么要在 matlab 点击"应用于图窗"进行预览,观测效果后再 1:1 使用图片。

下面看一下图片的字体

通常一个 figure 内含有其他小的 figure, 可以使用一些宏包,但最初本着简单的原则,本模板并没有使用这些子图包。后来应同学们要求在,把子图的功能加上,主要是修改了模板文件(scutthesis.cls 文件)的功能包参数。注意,很多网上拿到的代码不一定可以精确的调子图标题字体字号,因为此模板的子图标题字体字号是利用 subfig 宏包的选项进行设置的(在 scutthesis.cls 文件的"图表环境"中),而有些教程使用 subcaption进行同样的设置,还需进一步验证可行性。另外图的排版方法很多,有些宏包已经被弃用,所以尽量使用本文给出的案例的格式进行排版图片。

3.2 表

本节仅展示使用常见的三线表

\begin{table}

\centering % 表居中

\small %表内字体小一号(即设置成和表题字号一致)

\begin{tabular}{cccc} % cccc表示4列并居中,若列之间需要分隔符则设置为|c|c|c|c| \hline % \hline表示横线。列之间的元素用&分隔,\tabularnewline表示换行 参数符号 & 数值 & 参数符号 & 数值 \tabularnewline \hline

图 3-1 (a) CVAE 示意图: (b) VAE 示意图

Figure 3-1 (a) CVAE option

```
$I_x$ & $054593$ & $I_y$ & $0.017045 $ \tabularnewline
$l_1$ & $0.0808\,\text{m}$ & $l_2$ & $0.175\,\text{m} $ \tabularnewline
$l_4$ & $0.2415\,\text{m}$ & $l_5$ & $0.1085\,\text{m} $ \tabularnewline
\hline
\end{tabular}
\end{table}
```

3.3 公式

除了前面讲行内公式,常用的还有行间公式。公式中的数学符号可自行百度,本章 仅介绍常用的几种公式环境。

单独成行的行间公式在 LATEX 里由 equation 环境包裹。equation 环境为公式自动生成一个编号,这个编号可以用\label 和\ref 生成交叉引用,amsmath 宏包的\eqref 可为引用自动加上圆括号;如式(3-1)所示。

\begin{equation}

图 3-2 (a) CVAE 示意图; (b) VAE 示意图

Figure 3-2 (a) CVAE option

图 3-3 (a) CVAE 示意图; (b) VAE 示意图

Figure 3-3 (a) CVAE option

a+b=c \label{eq_1} \end{equation}

$$a + b = c (3-1)$$

图 3-4 (a) CVAE 示意图; (b) VAE 示意图

Figure 3-4 (a) CVAE option

图 3-5 (a) CVAE 示意图; (b) VAE 示意图

Figure 3-5 (a) CVAE option

表 3-1 涵道模型参数

Table 3-1 Parameters of Ducted Fan Model

参数符号	数值	参数符号	数值
I_x	054593	I_y	0.017045
l_1	$0.0808\mathrm{m}$	l_2	$0.175\mathrm{m}$
l_4	$0.2415\mathrm{m}$	l_5	$0.1085\mathrm{m}$
l_{σ}	xdf	df	扫描电镜

表 3-2 涵道模型参数

Table 3-2 Parameters of Ducted Fan Model

参数符号	数值	参数符号	数值
I_x	054593	I_y	0.017045
l_1	$0.0808\mathrm{m}$	l_2	$0.175\mathrm{m}$
l_4	$0.2415\mathrm{m}$	l_5	0.1085 m
l_{σ}	xdf	df	扫描电镜

若不需要编号则加星号,改为

\begin{equation*}
 a+b=c
\end{equation*}

其他环境类似。当使用 \$ 开启行内公式输入,或是使用 equation 环境时,LAT_EX 就进入了数学模式。数学模式相比于文本模式有以下特点:

- 1. 数学模式中输入的空格被忽略。数学符号的间距默认由符号的性质(关系符号、运算符等)决定。需要人为引入间距时,使用 \quad 和 \qquad 等命令。
- 2. 不允许有空行(分段)。行间公式中也无法用\\命令手动换行。排版多行公式需要用到其他各种环境。
- 3. 所有的字母被当作数学公式中的变量处理,字母间距与文本模式不一致,也无法生成单词之间的空格。如果想在数学公式中输入正体的文本,简单情况下可用\mathrm 命令。或者用 amsmath 提供的\text 命令(仅适合在公式中穿插少量文字。如果你的情况正好相反,需要在许多文字中穿插使用公式,则应该像正常的行内

公式那样用,而不是滥用\text 命令)。

实际上更常用的的是多行公式,不需要对齐的公式组可以使用 gather 环境,需要对齐的公式组用 align 环境。长公式内可用 \\ 换行。

这是一个正文公式: Mn¹²

如果需要罗列一系列公式,并令其按照等号对齐,可用 align 环境,它将公式用 & 隔为两部分并对齐。分隔符通常放在等号左边:

```
\begin{align}
    a & = b + c \\
    & = d + e
\end{align}
```

$$a = b + c \tag{3-2}$$

$$= d + e \tag{3-3}$$

align 环境会给每行公式都编号。

如果不需要按等号对齐,只需罗列数个公式,可用 gather 环境:

```
\begin{gather}
  a = b + c \notag \\
  f = d + e
\end{gather}
```

$$a = b + c$$

$$f = d + e \tag{3-4}$$

gather 环境同样会给每行公式都编号,如果某行不需要编号可在行末用\notag 仅去掉某行的编号。

align 和 gather 有对应的不带编号的版本 align* 和 gather*。

另一个常见的需求是将多个公式组在一起公用一个编号,编号位于公式的居中位置。为此,amsmath 宏包提供了诸如 aligned、gathered 等环境,与 equation 环境套用。以-ed 结尾的环境用法与前一节不以-ed 结尾的环境用法一一对应。我们仅以 aligned 举例:

```
\begin{equation}
  \begin{aligned}
    a &= b + c \\
    d &= e + f + g \\
    h + i &= j + k \\
    l + m &= n
  \end{aligned}
```

\end{equation}

$$a = b + c + \sigma_{121234}$$

$$d = e + f + g$$

$$h + i = j + k$$

$$l + m = n$$

$$(3-5)$$

split 环境和 aligned 环境用法类似,也用于和 equation 环境套用,区别是 split 只能将每行的一个公式分两栏,aligned 允许每行多个公式多栏。

分段函数通常用 amsmath 宏包提供的 cases 环境,可参考文献[6]

amsmath 宏包还直接提供了多种排版矩阵的环境,包括不带定界符的 matrix,以及带各种定界符的矩阵 pmatrix、bmatrix、Bmatrix、vmatrix、Vmatrix。其中中括号版的 bmatrix 最常用。这些矩阵环境需要在公式中使用,比如 gather 环境。

```
begin{gather}
    \boldsymbol{A}= \begin{bmatrix}
        x_{11} & x_{12} & \ldots & x_{1n} \\
        x_{21} & x_{22} & \ldots & x_{2n} \\
        \vdots & \vdots & \vdots \\
        x_{n1} & x_{n2} & \ldots & x_{nn} \\
        \end{bmatrix}
\end{gather}
```

这是一个正文公式

$$f(x) = x^2 + 1, \quad \text{m} \mathbb{R} x \ge 0$$

= $-x^2, \quad \text{m} \mathbb{R} x < 0$ (3-6)

$$\mathbf{A} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{bmatrix}$$
(3-7)

其中矩阵/向量加粗使用\boldsymbol{} 命令,\bm{} 命令和 unicode-math 包有兼容性问题。另外还可以使用 array 环境排版矩阵,类似 tabular 环境,用\\和&用来分隔行和列,这里不再赘述。

```
\begin{array }[外部对齐tcb]{列对齐1cr}
行列内容
\end{array}
```

另外注意排版分式时,有两种方法: \frac 或者\dfrac,效果分别为 $\frac{1}{2}$ 和 $\frac{1}{2}$ 。以上介绍的数学环境中,空格可参考文献[6],例如常用\quad。

需要局部更改字号时,可以使用 tutorial 文件夹 lshort-zh-cn.pdf 的 5.1 节进行更改,如加\small 使得字号小一号。

3.4 定理

在 scutthesis.cls 文件的最后,已经用\newtheorem 命令定义了几种定理环境,包括:定义、假设、定理、结论、引理、公理、推论、性质等等,统称定理环境,关于\newtheorem 的用法,可参考^[6,8]或自行百度。要下面提供几个例子,在横线之间的深色区域是代码,效果在相应下方表示:

\begin{assumption}

加权矩阵\${{\boldsymbol{W}}_{1}}\$和 \${{\boldsymbol{W}}_{2}}\$ 是对称矩阵,且\$ {{\boldsymbol{W}}_{2}}\$非奇异。 \label{assum_dca1} \end{assumption}

假设 3.1: 加权矩阵 W_1 和 W_2 是对称矩阵,且 W_2 非奇异。

定理用法和假设类似:

\begin{theorem}

如果假设\ref{assum_dca1}成立,\$\boldsymbol{F}\$满足式\eqref{eq_F}的定义,且\${{\boldsymbol{W}}_{1}}\$非奇异,则有\$0\le e \left(\boldsymbol{F}\right) < 1\$,其中\$e\left(\boldsymbol{F}\right)\$是 \$\boldsymbol{F}\$的特征值。 \label{the_dca2}\end{theorem}

定理 3.1: 如果假设3.1成立, F 满足上式的定义, 且 W_1 非奇异, 则有 $0 \le e(F) < 1$, 其中 e(F) 是 F 的特征值。

注 3.1: 定理环境的编号可自定义,但通常不需要再进行设置,因为模板文件 scutthesis.cls 文件已经定义好。

2022年5月更新:

根据最新的博士论文送审结果,定理等环境统一把原来的斜体改成正体。在此引用 一下参考文献^[8]的内容:

amsthm 提供了 \theoremstyle 命令支持定理格式的切换,在用 \newtheorem 命令定义 定理环境之前使用。amsthm 预定义了三种格式用于 \theoremstyle:plain 和 LATEX 原始 的格式一致; definition 使用粗体标签、正体内容; remark 使用斜体标签、正体内容。

以上部分在 scutthesis.cls 文件最后一部分设置。

amsthm 还提供了一个 proof 环境用于排版定理的证明过程。proof 环境末尾自动加上一个证毕符号:

证明: 显然有

$$E = mc^2$$

证毕 □

proof 的大更多用法见参考文献^[8]。scutthesis.cls 文件的最后,跟所有定理环境一样,只是把英文"Proof"改成中文"证明"。

3.5 参考文献

再次强调,使用其他参考文献管理软件的用户以及不使用任何软件的"裸奔"的用户不需要关注任何关于 zetero 的东西。

关于参考文献这块,很多同学有疑问。只有记住一点:不管用什么参考文献管理工具,最终目的是生成一个bib文件,bib文件里是特定格式的文献信息。bib文件当作文本打开,里面就是文献的元数据。

通常学位论文参考文献是基于 BibTeX 进行的,本模板使用的是 BibLaTeX,或者叫 Biber。关于这部分知识可参考文献[6,8] 的第六章,6.1 节参考文献和 BIBTEX 工具。所 以使用 TeXstudio 或者 vscode 的时候需要注意调整正确的参数进行编译。

引用前手动加空格,如:

引用前没有加空格[6,8]的第六章,引用后面有空格。

引用前手动加空格 [6,8] 的第六章,引用后面有空格。

手写方括号[6]。引用后面没空格。

生成方括号[9]。引用后面没空格。

参考文献引用和著录是基于 ZOTERO 这个软件进行的。视频教程见[9]。此外,为了符合毕业论文撰写规范,需设置参数。按照视频教程安装完必要的插件(如 Better BibTeX)后,在编辑-> 首选项进行设置。图3-6到图??所示的是我的 zotero 软件设置。其中最重要的是??的设置要排除的选项,多余的显示会让审稿人反感,按照论文撰写规范进行即可。在毕业论文撰写时,在编辑-> 首选项->Better BibLTeX->Fields 中,Fields to omit from export 填 month,abstract,note,extra,file,keywords,type,url,doi,就是在参考文献

著录中排除这些多余的项,避免过于复杂。而在写本模板使用说明时,没有排除 url,因为很多参考资料是网页。

在 zotero 软件点击文件-> 导出文献库,如图??所示,再在导出对话框图??选择导出格式为 Better BibLaTeX,同时勾选 Keep updated 选项保持自动更新,再点击 ok,在弹出的对话框图??确定保存路径和文件名,例如我的是 MyLibrary.bib,这也是我整个读书生涯的文献库 bib 文件。如果写小论文的话通常导出格式是 BibTeX 或者 Better BibTeX (这里按照期刊的要求来即可,文献管理软件的好处就是快速自动生成一个文件库)。关于 BibTeX 和 BibLaTeX 的区别这里不做展开。

得到文献库后,在 scutthesis.tex 文件第九行使用\addbibresource 命令,添加文献库。引用某文献时秩序在 zotero 选中某文献条目,然后按 Ctrl+Shift+C,复制引用关键字(Citation Key)到剪切板(快捷键可自定义)。然后在 tex 文件编辑界面直接粘贴,默认的时上标形式,若需要非上标形式,可以改为\parencite{xxx},其中 xxx 是 Citation Key。这里的操作和认为设置的首选项参数有关,需要在编辑-> 首选项-> 导出界面的默认格式一栏选中相应的项,同时在编辑-> 首选项-> 高级-> 快捷键设置为默认值。

2020年12月2日测试:下载最新 zotero,从知网和谷歌捕获文献(刚打开网页最好稍等一会再点击插件,谷歌可能需要现人机验证),对文献[10]、[11] 进行引用。

2021年9月14日测试:使用 endnote 的用户也可以利用导出的 bib 文件生成参考文献著录信息,导出选项是 bibTeX,貌似没有更多导出设置选项。导出设置没有 zotero 那

么灵活丰富,得到 bib 文件后要引用某论文需要自行查找标签(label,也有软件叫引用 关键字 Citation Key){xxx} 然后手打\cite{xxx}。欢迎熟悉 endnote 的同学来信告诉我更

好的办法。

2023 年 3 月 8 日测试:参考文献管理软件经常更新,但还是那句话,无论什么工具,最终得到 bib 文件即可,在期刊的文章页或者谷歌学术搜索页,只需要复制/下载 bibtex 的内容。得到这些元数据后甚至自己往 bib 文件甲加都可以。

2023 年 11 月测试。论文写完记得断掉 bib 文件自动更新,在 zotero 的插件 Better

BibTeX 自动导出设置里删除不希望再继续同步到项。否则更改软件中的文献后,论文的 bib 文件也同步更改,但有时候这不是想要的。

另外有同学反映,换了电脑后重新导出的bib文件Citation Key值不同,记得设置好Better BibTeX之后,在著录条目界面全选著录(或仅选想更新的著录)然后右键选Better BibTeX更新 refresh一下。然后在Automatic export选项点击Export now立即更新bib文件(按理说勾选了自 动更新选项他会自动更新,但为了确保万无一失还是点一下)。

图 3-6 常规

接下来我们引用几篇文献来说明问题,首先是期刊论文 [J], 正如 lennon 所说的那样 $^{[12]}$ 现在引用一篇中文作者的英文期刊试一下 $^{[13]}$, 接下来引用一篇会议论文 $^{[14]}$

第四章 列举环境

以下资料来自宏包说明和网络,翻译不一定正确:

在 LaTeX 中有三种基本的列举 (列表) 环境,即 enumerate(编号)、itemize(分条目) 和 description(描述) 环境。调整 latex 的列表环境时,使用 enumitem 宏包可以方便的调整间距(注意区分包名和环境名)和自定义编号样式。

4.1 调整间距

三种基本环境无论哪一种,间距的调整都是一样的。调整间距的参数命令包括两类:垂直间距和水平间距。各种距离的定义如图4-1所示。下图的来源一直找不到,可能是旧版本的宏包说明,新版已经删掉了下面的注释了。

现先总结出所推荐的间距设置,无编号的:

\end{itemize}

效果:

有编号的:

\begin{enumerate}[topsep = 0 pt, itemsep= 0 pt, parsep=0pt, partopsep=0pt, leftmargin
=44pt, itemindent=0pt, labelsep=6pt, label=(\arabic*)]

\end{enumerate}

效果:

\topsep rubber space between first item and preceding paragraph.

\partopsep extra rubber space added to \topsep when environment starts a new paragraph.

\itemsep rubber space between successive items.

\parsep rubber space between paragraphs within an item.

\leftmargin space between left margin of enclosing environment (or of page if top-level list) and left margin of this list. Must be non-negative. Its value depends on the list level.

\rightmargin similar to \leftmargin but for the right margin. Its value is usually Opt.

\listparindent extra indentation at beginning of every paragraph of a list except the one started by \item. Can be negative, but is usually 0pt. \itemindent extra indentation added to the horizontal indentation of the text part of the first line of an item. The starting position of the label is calculated with respect to this reference point by subtracting the values of \labelsep and \labelwidth. Its value is usually 0pt.

\labelwidth the nominal width of the box containing the label. If the natural width of the label is ≤\labelwidth, then by default the label is typeset flush right inside a box of width \labelwidth. Otherwise, a box of the natural width is employed, which causes an indentation of the text on that line. It is possible to modify the way the label is typeset by providing a definition for the \makelabel command.

\labelsep the space between the end of the label box and the text of the first item. Its default value is 0.5 em.

图 4-1 enumitem 包对各种间距的定义

内容内容内容内容内容内容内容内容内容内容内容内容内容内容内容

4.1.1 垂直间距

摘抄宏包说明:

- topsep 控制列表环境与上文之间的距离。第一项和前一段之间的空间。
- itemsep 条目之间的距离
- parsep 条目里面段落之间的距离
- partopsep 条目与下面段落的距离。当环境开始一个新段落时,额外的空间被添加到 \topsep。

论文中希望上述距离都为 0pt, 如:

```
\begin{itemize}[topsep = 0 pt, itemsep= 0 pt, parsep=0pt, partopsep=0pt]
    \item 第一项。
    \item 第二项
    \item 第三项。
\end{itemize}
```

效果为:

- 第一项。
- 第二项
- 第三项。

4.1.2 水平间距

水平间距调整比较复杂,对照宏包说明给出的图,下面内容参考了宏包原文和网络资料:

- 为页面的左边距)和该列表的左边距之间的空间。必须是非负数。它的值取决于表,则为页面的左边距)和该列表的左边距之间的空间。必须是非负数。它的值取决于列表级别。
- rightmargin 列表环境右边的空白长度。类似于 \leftmargin 但用于右边距。它的值 通常是 0pt。
- labelsep 标号与列表第一项文本左侧的距离。标签框的末尾和第一项的文本之间的空间。它的默认值为 0.5 em。
- itemindent 条目的缩进距离。添加到项目第一行文本部分的水平缩进的额外缩进。通过减去 labelsep 和 labelwidth 的值,相对于该参考点计算标签的起始位置。它的值通常是 0pt。注:理解这个变量时,查看图4-1的顺序应该按照箭头从左到右,先 leftmargin 再 itemindent,然后再 labelsep,最后 labelwidth。即箭头的起始点是

基准点。若 itemindent=0pt,则 leftmargin-labelsep-编号长度的结果就是编号起始位置。

- labelwidth 包含标签的框的标称宽度。如果标签的自然宽度为 < labelwidth,则默 认情况下,标签在宽度为 (labelwidth) 的框内右对齐排版。否则,使用自然宽度 的框,这会导致该行上的文本缩进。可以通过为 \makelabel 命令提供定义来修改 标签的排版方式。
- listparindent 条目下面段落的缩进距离。除了以 litem 开头的段落之外,列表的每个段落的开头都有额外的缩进。可以为负数,但通常为 0pt。

无编号的水平间距,给出两张方案

第一种:

第二种:

推荐第一种。

有编号的水平间距,下面给出三种方案:注: labelsep 是某一项文字和编号框的距离,一般就设为一个空格 6pt,要使编号左侧缩进两格,itemindent-labelsep 要等于编号长度。注意编号是右对齐,向左扩展的。

- 第二种方案是和论文撰写规范的格式一样,注意不是论文撰写规范规定的格式,规

范里没有规定这些格式。如:

第三种方案是整体右移两格,文字距离编号一个空格,第二行文字不再右移:

4.2 enumerate 标签样式

除上述小括号数字的编号方法外,还有斜体字母等。在使用 enumerate 的时候, label 的问题就是使用计数的字符, 是阿拉伯数字、罗马、中文、还是希腊字符的问题。

4.2.1 小括号阿拉伯数字

- 1) 第一项。
- 2) 第二项
- 3) 第三项。

4.2.2 斜体字母

- a. 第一项。
- b. 第二项
- c. 第三项。

4.2.3 大写罗马字母

- (I) 第一项。
- (II) 第二项
- (III) 第三项。

结论

本文主要是展示如何使用修改"祖传模板"得到的新模板,在使用时直接替换成自己的论文内容即可。

本模板难免有不足之处,主要是我本人的论文涉及的格式有限,有些地方没探索到自然就没去设置。比如附录,附录的图文并茂等等,我本人是没有研究的,这里仅仅做了一些初步的工作,不过对很多同学来说本模板是够用的。希望有能帮助到华工的同学们,有不足之处请多多理解,可以通过邮件联系我,我会尽量回复。

参考文献

- [1] Dealy J M, Wissbrun K F. Introduction to Rheology[M]//Melt Rheology and Its Role in Plastics Processing: Theory and Applications. Boston, MA: Springer US, 1990: 1-41.
- [2] Ellero M, Housiadas K D, Phan-Thien N. Tanner: 90 Years of Rheology[J]. PHYSICS OF FLUIDS, 2024, 36(11).
- [3] Ricarte R G, Shanbhag S. A Tutorial Review of Linear Rheology for Polymer Chemists: Basics and Best Practices for Covalent Adaptable Networks[J]. POLYMER CHEMISTRY, 2024, 15(9): 815-846.
- [4] Alwintsui Overview[EB/OL]. GitHub. https://github.com/alwintsui.
- [5] Yecfly Overview[EB/OL]. GitHub. https://github.com/yecfly.
- [6] 一份其实很短的 LaTeX 入门文档[EB/OL]. 始终. https://liam.page/2014/09/08/latex-introduction/index.html.
- [7] 莲枝专栏-关于 Hyperref 的二三事 LaTeX 科技排版工作室[EB/OL]. https://www.latexstudio.net/archives/4800.html.
- [8] CTAN: Package Lshort-Zh-Cn[EB/OL]. https://ctan.org/pkg/lshort-zh-cn.
- [9] Struggle_with_me 的个人空间 哔哩哔哩 (°- °) つロ乾杯 ~ Bilibili[EB/OL]. https://space.bilibili.com/452736484?from=search&seid=12208069428001748893.
- [10] Renduchintala A, Jahan F, Khanna R, et al. A Comprehensive Micro Unmanned Aerial Vehicle (UAV/Drone) Forensic Framework[J]. Digital Investigation, 30: 52-72.
- [11] Milz D. Design and Evaluation of a Unified Control Framework for Electric Vertical Take-off and Landing Vehicles[D]. Technical University of Munich, 2020.
- [12] Lennon K R, McKinley G H, Swan J W, et al. Scientific Machine Learning for Modeling and Simulating Complex Fluids[J]. Proceedings of the National Academy of Sciences, 2023, 120(27): e2304669120.
- [13] Zhao P, Zhang Y, Chen X, et al. Versatile Hydrogel Dressing with Skin Adaptiveness and Mild Photothermal Antibacterial Activity for Methicillin-Resistant Staphylococcus Aureus-Infected Dynamic Wound Healing[J]. Advanced Science, 2023, 10(11): 2206585.
- [14] Cho K, Van Merrienboer B, Gulcehre C, et al. Learning Phrase Representations Using RNN Encoder–Decoder for Statistical Machine Translation[C]//Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014: 1724-1734.

附 录 1

在论文撰写规范中,下面两段话让人费解:

- 1. 对需要收录于学位论文中但又不适合书写于正文中的附加数据、方案、资料、详细公式推导、计算机程序、统计表、注释等有特色的内容,可做为附录排写,序号采用"附录 1"、"附录 2"等。
- 2. 公式序号按章编排,如第一章第一个公式序号为"(1-1)",附录 2 中的第一个公式 为"(2-1)"等。

论文撰写规范要求的附录和通常书籍上使用附录 A、附录 B等编号的不一样,容易和正文混淆。特殊的要求和代码的耦合,使我不得不使用比较笨的方法来设计附录部分的模板。这部分还需要有附录需求的同学来完善,为了目录中美观且不命名冲突,还是不在附录使用图表。

1.1 测试一级标题 section

1.1.1 测试二级标题 subsection

1.1.1.1 测试三级标题 subsubsection

$$\begin{cases} \dot{v}_1(t) = v_2(t) \\ \dot{v}_2(t) = R^2 \left(-\zeta_1 \left[v_1(t) - v_c(t) \right]^{\alpha} - \zeta_2 \left[\frac{v_2(t)}{R} \right]^{\beta} \right) \end{cases}$$
 (1-1)

$$\begin{cases}
\dot{v}_1(t) = v_2(t) \\
\dot{v}_2(t) = R^2 \left(-\zeta_1 \left[v_1(t) - v_c(t) \right]^{\alpha} - \zeta_2 \left[\frac{v_2(t)}{R} \right]^{\beta} \right)
\end{cases}$$
(1-2)

1.2 测试测试测试

1.2.1 测试测试测试

附 录 2

在论文撰写规范中,下面两段话让人费解:

- 1. 对需要收录于学位论文中但又不适合书写于正文中的附加数据、方案、资料、详细公式推导、计算机程序、统计表、注释等有特色的内容,可做为附录排写,序号采用"附录 1"、"附录 2"等。
- 2. 公式序号按章编排,如第一章第一个公式序号为"(1-1)",附录 2 中的第一个公式 为"(2-1)"等。

论文撰写规范要求的附录和通常书籍上使用附录 A、附录 B等编号的不一样,上述 要求最终的效果是这些编号容易和正文的混淆。特殊的要求和代码的耦合,使我不得不 使用比较笨的方法来设计附录部分的模板。这部分还需要有附录需求的同学来完善,为 了目录中美观且不命名冲突,还是不在附录使用图表。

2.1 测试测试测试

2.1.1 测试测试测试

测试测试测试测试测试测试测试测试测试测试测试测试测试

$$\begin{cases} \dot{v}_{1}(t) = v_{2}(t) \\ \dot{v}_{2}(t) = R^{2} \left(-\zeta_{1} \left[v_{1}(t) - v_{c}(t) \right]^{\alpha} - \zeta_{2} \left[\frac{v_{2}(t)}{R} \right]^{\beta} \right) \end{cases}$$
 (2-1)

$$\begin{cases} \dot{v}_{1}(t) = v_{2}(t) \\ \dot{v}_{2}(t) = R^{2} \left(-\zeta_{1} \left[v_{1}(t) - v_{c}(t) \right]^{\alpha} - \zeta_{2} \left[\frac{v_{2}(t)}{R} \right]^{\beta} \right) \end{cases}$$
 (2-2)

攻读博士/硕士学位期间取得的研究成果

一、已发表(包括已接受待发表)的论文,以及已投稿、或已成文打算投稿、或拟成文投稿的 论文情况**(只填写与学位论文内容相关的部分)**:

序号	作者(全体 作者,按顺 序排列)	题目	发表或投稿刊 物名称、级别	发表的卷期、年月、页码	与学位论文 哪一部分 (章、节)相 关	被索引收录情
1	redfu	在 LaTeX 中有三种基本的列举	acm	2000.04,100(10)		况 已见 刊
2						

注:在"发表的卷期、年月、页码"栏:

- 1. 如果论文已发表,请填写发表的卷期、年月、页码;
- 2. 如果论文已被接受,填写将要发表的卷期、年月;
- 3. 以上都不是,请据实填写"已投稿","拟投稿"。

不够请另加页。

二、与学位内容相关的其它成果(包括专利、著作、获奖项目等)

致 谢

这次你离开了没有像以前那样说再见,再见也他妈的只是再见我们之间从来没有想象的那么接近,只是两棵树的距离你是否还记得山阴路我八楼的房间,房间里唱歌的日日夜夜那么热的夏天你看着外面,看着你在消逝的容颜我多么想念你走在我身边的样子,想起来我的爱就不能停止南京的雨不停地下不停地下,就像你沉默的委屈一转眼,我们的城市又到了夏天,对面走来的人都眯着眼人们不敢说话不敢停下脚步,因为心动常常带来危险我多么想念你走在我身边的样子,想起来我的爱就不能停止南京的雨不停地下不停地下,有些人却注定要相遇你是一片光荣的叶子,落在我卑贱的心像往常一样我为自己生气并且歌唱那么乏力,爱也吹不动的叶子

作者姓名 2020 年 7 月 10 日 于华南理工大学