- 1. Dados $A \in \mathbb{R}^{m \times n}$ una matriz de rango n y $b \in \mathbb{R}^m$, indique cuál de las siguientes afirmaciones es necesariamente cierta:
 - (a) hay un único $oldsymbol{x} \in \mathbb{R}^n$ tal que $oldsymbol{A}^{\mathrm{t}} oldsymbol{A} oldsymbol{x} = oldsymbol{A}^{\mathrm{t}} oldsymbol{b}$;
 - (b) hay un único $oldsymbol{x} \in \mathbb{R}^m$ tal que $oldsymbol{A}^{\mathrm{t}} oldsymbol{x} = oldsymbol{b}$;
 - (c) hay un único $oldsymbol{x} \in \mathbb{R}^n$ tal que $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$;
 - (d) ninguna de las anteriores.

2. El punto del plano generado por los vectores ${m v}=\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$ y ${m w}=\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$ más cercano al punto P=(1,1,1) es ${m x}=\alpha {m v}+\beta {m w}$, con (α,β) solución en el sentido de mínimos cuadrados de:

(a)
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix};$$

(b)
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix};$$

(c)
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix};$$

(d) ninguno de las anteriores.

3. Para ajustar los parámetros a, b y c del modelo $y=ae^{(bx+c/x)}$ se dispone de dos vectores (columna) de datos, x e y, ambos de tamaño m.

Los comandos Matlab necesarios para calcular los valores de los parámetros son:

(a)
$$A = [x \exp(x) \exp(1./x)];$$

 $d = A \setminus y;$
 $a = d(1)$
 $b = d(2)$
 $c = d(3)$

```
(b) A = [ones(m,1) exp(x) exp(1./x)];
d = A \setminus y;
a = log(d(1))
b = d(2)
c = d(3)
```

```
(c) A = [ones(m,1) \times 1./x];
      d = log(A \setminus y);
      a = d(1)
      b = d(2)
      c = d(3)
      A=[ones(m,1) \times 1./x];
(d)
      d=A \log(y);
      a = \exp(d(1))
      b = d(2)
      c = d(3)
```

4. Sean x_0, \ldots, x_n (n > 1) números distintos y sean ℓ_0, \ldots, ℓ_n los polinomios de Lagrange asociados:

$$\ell_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \left(\frac{x-x_j}{x_i-x_j}\right), \qquad i = 0, \dots, n.$$

Entonces, el polinomio que interpola la función $f(\boldsymbol{x}) = \boldsymbol{x}$ en esos puntos es

$$p(x) = \sum_{i=0}^{n} x_i \ell_i(x).$$

Indique cuál es exactamente el grado del polinomio *p*:

- (a) n;
- (b) 1;
- (c) 0;
- (d) ninguno de las anteriores.

5. Sea p el polinomio que interpola la siguiente tabla de la función $f(x) = \sin x$:

Indique cuál de las siguientes acotaciones es más precisa para $0 < x < \frac{\pi}{2}$:

- (a) $|\sin x p(x)| \le 1$;
- (b) $|\sin x p(x)| \le \frac{1}{24} \left(\frac{\pi}{2}\right)^4$;
- (c) $|\sin x p(x)| \le \frac{1}{120} \left(\frac{\pi}{2}\right)^5$;
- (d) ninguna de las anteriores.

Sugerencia: recuerde que el error de interpolación satisface

$$E(x) = \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi_x).$$

6. Indique cuál de los siguientes polinomios interpola la función $f(\boldsymbol{x}) = \boldsymbol{x}^3$ en

$$x_0 = -1, x_1 = 0$$
 y $x_2 = 1$:

- (a) $p(x) = \frac{1}{6}x(x^2 1);$
- (b) $p(x) = x^2$;
- (c) p(x) = x;
- (d) ninguno de las anteriores.

7. Indique cuál de las siguientes funciones es un *spline cúbico* que interpola la siguiente tabla:

$$\begin{array}{c|cccc} x & -1 & 0 & 1 \\ \hline y & 0 & 0 & 1 \\ \hline \end{array}$$

(a)
$$s(x) = \begin{cases} 0, & -1 \le x \le 0, \\ x^3, & 0 \le x \le 1; \end{cases}$$

(b)
$$s(x) = \begin{cases} -x^3, & -1 \le x \le 0, \\ x^3, & 0 \le x \le 1; \end{cases}$$

(c)
$$s(x) = \begin{cases} x^2 + x, & -1 \le x \le 0, \\ x^3, & 0 \le x \le 1; \end{cases}$$

(d) ninguna de las anteriores.

8. Se quiere calcular la integral $\int_a^b f(x)\,dx$ mediante el método de $\it trapecios$ (elemental).

Sea E(x)=f(x)-p(x), donde p es el polinomio de grado 1 que interpola a f en x=a y x=b.

El error R del método es:

(a)
$$R = E(\theta), \quad \theta \in [a, b];$$

(b)
$$R = \int_a^b E(x) dx$$
;

(c)
$$R = E'(\theta), \quad \theta \in [a, b];$$

(d) ninguna de las anteriores.

9. Se quiere calcular el valor de la integral $\int_a^b f(x)dx$ para una función de la cual sólo se conocen sus valores en algunos puntos **no equiespaciados** x_i , $i=1,\ldots,n$.

Se dispone de dos vectores x y f de longitud n con los puntos x_i y los valores de la función $f_i = f(x_i)$, respectivamente.

Indique cuál de los siguientes programas MATLAB permite calcular la integral mediante el método de los *trapecios* (para puntos no equiespaciados):

```
(a) I=0.0;

for i=2:n-1

I=I+(f(i+1)+f(i-1))*(x(i+1)-x(i-1));

end
```

```
(b) I=0.0;

for i=1:n-1

I=I+0.5*(f(i+1)+f(i))*(x(i+1)-x(i));

end
```

end