math33011 - mathematical logic

available at JTANG.DEV/RESOURCES

set theory

```
poset: a pair (X, \leq) where X is a set and \leq is a binary operation on X, such that:
  (i) \leq is reflective, i.e. \forall x \in X : x \leq x
 (ii) \leq is anti-symmetric, i.e. \forall x, y \in X : x \leq y and y \leq x \implies x = y
 (iii) \leq is transitive, i.e. \forall x, y, z \in X : x \leq, y \leq z \implies x \leq z
partial order (on X): \leq as defined above
comparable: x, y \in X are comparable if either x \leq y or y \leq x
strict partial order: x < y, i.e. x \le y and x \ne y
totality axiom: \forall x, y \in X : x \leq \text{ or } y \leq x
chain / totally ordered set: a poset that satisfies the totality axiom
trivial partial order: x \le x \iff x = x
product of two posets: (x,y) \le (x',y') \iff x \le_1 x' \text{ and } y \le_2 y'
lexicographic product of two posets: (x,y) \leq_{lex} (x',y') \iff x <_1 x' \text{ or } (x=x' \text{ and } y \leq_2 y').
ordered sum of two posets: X \cup Y with \leq := \leq_1 \cup \leq_2 \cup (X \times Y)
upper bound of S (in X): x \in X such that \forall s \in S : s < x, i.e. S < x
lower bound of S (in X): x \in X such that \forall s \in S : x \leq s, i.e. x \leq S
largest element of S: x \in S such that S \leq x (unique if it exists)
smallest element of S: x \in S such that x \leq S (unique if it exists)
supremum of S: the smallest upper bound of S (one at most)
infimum of S: the largest lower bound of S (one at most)
maximal element of S: x \in S such that there is no s \in S with x < s
minimal element of S: x \in S such that there is no s \in S with s < x
poset-homomorphism / monotone: f: X \to Y such that \forall x, x' \in X: x \leq_1 x' \implies f(x) \leq_2 f(x')
poset embedding: f: X \to Y such that \forall x, x' \in X: x \leq_1 x' \iff f(x) \leq_2 f(x')
isomorphism of posets: a poset-homomorphism which is bijective and an embedding
initial segment / down-set: Y \subseteq X such that \forall x, y \in X, x \leq y \in X \implies x \in Y, denoted Y \subseteq X
example down-set X_{\leq a}: \{x \in X \mid x < a\} of X
well ordered set: a chain where every nonempty subset has a smallest element
proposition: if X, Y are well ordered, then so is the ordered sum and the lexicographic product of X and Y
lemma: a chain X is well ordered \iff it does not possess infinite sequence x_1 > x_2 > \dots
observation: if X is well ordered then each Y \subseteq X, Y \neq X is of the form Y = X_{< a} where a = \min(X \setminus Y)
observation: X_{\leq a} = \emptyset if a is the smallest element of X
lemma of zorn: let X = (X, \leq) be a nonempty, poset, such that each W \subseteq X that is well ordered by \leq, has an upper
bound in X, then X possesses at least one maximal element
well ordering principle: every set can be well ordered, i.e. for every set M there is a well order with universe M
notation: X \subseteq Y if there is a poset embedding f: X \to Y such that f(X) \in Y for well ordered sets X, Y.
in other words, X \sqsubseteq Y \iff there is some Z \subseteq Y such that X and Z are isomorphic
theorem: if X, Y are well ordered sets and X \subseteq Y, then the poset-embedding (f: X \to Y \text{ such that } f(x) \subseteq Y) is unique
theorem: if X, Y are well ordered sets, then
  (i) X \sqsubset Y and Y \sqsubset X \implies X \cong Y
 (ii) X \sqsubset Y or Y \sqsubset X
transitive set: a set X such that each of its elements is a subset of X, so y \in x \in X \implies x \in X
ordinal (number): a transitive set \alpha such that the element relation is a strict well order on \alpha, i.e. x \leq y defined as
x = y or x \in y is a well order on \alpha
successor of \alpha: \alpha^* := \alpha \cup \{\alpha\}
proposition: for ordinals \alpha, \beta: \alpha \sqsubseteq \beta \iff \exists poset-embedding \alpha \to \beta \iff \alpha \subseteq \beta \iff \alpha = \beta or \alpha \in \beta
ordering on ordinals: for ordinals \alpha, \beta, we write \alpha \leq \beta instead of \alpha \subseteq \beta and \alpha < \beta for \alpha \in \beta
corollary: if \alpha, \beta are ordinals, then \alpha \in \beta or \beta \in \alpha, \alpha \subseteq \beta or \beta \subseteq \alpha, and \alpha \le \beta or \beta \le \alpha
corollary: if I is an index set and \alpha_i is an ordinal for all i \in I, then \bigcup_{i \in I} \alpha_i is also an ordinal
corollary: every ordinal \alpha is equal to the set of ordinals that are strictly less than \alpha, \alpha = \{\beta \mid \beta \text{ is an ordinal and } \beta < \alpha \}
successor ordinal: \alpha is called a successor ordinal if there is an ordinal \beta such that \alpha = \beta^*, else called a limit ordinal
theorem: if W is a well ordered set, then there is a unique ordinal \alpha that is isomorphic to W (exactly one isomorphism)
```

corollary: every set is in bijection with some ordinal

ordinal minimisation principle: let P be a property of ordinals and assume there is an ordinal with property P, then there is a smallest ordinal with property P

cardinality / size of X: the smallest ordinal α that is in bijection with X. $card(X) = |X| = \alpha$ cardinal (number): an ordinal α whose cardinality is α . in particular, the size of any set is a cardinal number proposition: for sets $X, Y, X \neq \emptyset$, $card(X) \leq card(Y) \iff \exists$ injective map $X \to Y \iff \exists$ surjective map $Y \to X$ theorem of bernstein: for sets X, Y, the following are equivalent:

- (i) there are injective maps $X \to Y$ and $Y \to X$
- (ii) there are surjective maps $X \to Y$ and $Y \to X$
- (iii) there is a bijective map $X \to Y$
- (iv) card(X) = card(Y)

size of a power set: for every set X, we have $card(X) < card(\mathcal{P}(X))$

corollary: if X is a set, then there is a cardinal $\kappa > card(X)$

pairing function: Pair: $\omega \times \omega \to \omega$, defined as $Pair(x,y) := \frac{1}{2}(x+y)(x+y+1) + x$ is bijective

size of products: if $X, Y \neq \emptyset$ and at least one of them is infinite, then $card(X \times Y) = max\{card(X), card(Y)\}$

size of arbitrary unions: let I be an index set and for each $i \in I$, let X_i be a set. let κ be an infinite cardinal with $card(X_i) \leq \kappa$ for all i, then $card(\bigcup_{i \in I} X_i) \leq max\{card(I), \kappa\}$

corollary: if X, Y are sets and at least one of them is infinite, then $card(X \cup Y) = max\{card(X), card(Y)\}$

revision of predicate logic

for this section, let $\mathscr L$ be a language.

alphabet of \mathscr{L} consists of: a set logical symbols $\{\neg, \rightarrow, \forall, \dot{=}, \}, (, ,, v_0, v_1, v_2, \dots)\}$ and three mutually disjoint sets $\mathscr{R}, \mathscr{F}, \mathscr{C}$ called the set of relation symbols, function symbols and constant symbols, respectively. Maps $\lambda : \mathscr{R} \to \mathbb{N}$ and $\mu : \mathscr{F} \to \mathbb{N}$, called the arity of relation symbols and arity of function symbols, respectively

letter / symbol: every logical element and every element from $\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ variables: $Vbl = \{v_n \mid n \in \mathbb{N}_0\}$

finite: the alphabet of $\mathscr L$ is finite if $\mathscr R,\mathscr F$ and $\mathscr C$ are finite. otherwise, infinite **countable**: the alphabet of $\mathscr L$ is countable if $\mathscr R,\mathscr F$ and $\mathscr C$ is countable or finite. otherwise, uncountable. **cardinality** of the alphabet of $\mathscr L$: the cardinality of $\mathscr R \cup \mathscr F \cup \mathscr C$

similarity type of \mathcal{L} : $(\lambda : \mathcal{R} \to \mathbb{N}, \mu : \mathcal{F} \to \mathbb{N}, \mathcal{C})$

given the similarity type $(\lambda: \mathcal{R} \to \mathbb{N}, \mu: \mathcal{F} \to \mathbb{N}, \mathscr{C})$, we define $tm_k(\mathcal{L})$ by induction on $k \in \mathbb{N}_0$ as follows:

$$tm_0(\mathcal{L}) = Vbl \cup \mathcal{C}$$
 and $tm_{k+1}(\mathcal{L}) = tm_k(\mathcal{L}) \cup \left\{ F(t_1, t_2, \dots, t_n) \mid n \in \mathbb{N}, F \in \mathscr{F}, \mu(F) = n, t_1, \dots, t_n \in tm_k(\mathcal{L}) \right\}$

terms: $tm(\mathcal{L}) = \bigcup_{k \in \mathbb{N}_0} tm_k(\mathcal{L})$

complexity of a term c(t) is the least $k \in \mathbb{N}_0$ such that $t \in tm_k(\mathscr{L})$

unique readability theorem for terms: if t is an \mathscr{L} -term, then either t is a variable or t is a constant symbol or there are uniquely determined $n \in \mathbb{N}, F \in \mathscr{F}$ of arity n and $t_1, \ldots, t_n \in tm(\mathscr{L})$ such that $t = F(t_1, \ldots, t_n)$

corollary: for $n \in \mathbb{N}$, all terms t_1, \ldots, t_n and each $F \in \mathcal{F}$, $\mu(F) = n$, we have $c(F(t_1, \ldots, t_n)) = 1 + \max\{c(t_1), \ldots, c(t_n)\}$

atomic formula: a string of the alphabet of $\mathscr L$ of the form $t_1 \doteq t_2$ where t_1, t_2 are $\mathscr L$ -terms or $R(t_1, \ldots, t_n)$ where $R \in \mathscr R, \lambda(R) = n$ and t_1, \ldots, t_n are $\mathscr L$ -terms. the set of atomic $\mathscr L$ -formulas is denoted at- $Fml(\mathscr L)$

we define Fml_k by induction on $k \in \mathbb{N}_0$ as follows:

$$Fml_{\ell}(\mathcal{L}) = \text{at-}Fml(\mathcal{L}) \quad \text{and} \quad Fml_{k+1}(\mathcal{L}) = Fml_{k}(\mathcal{L}) \cup \{(\neg \varphi), (\varphi \to \psi), (\forall x \varphi) \mid \varphi, \psi \in Fml_{k}(\mathcal{L}), x \in Vbl\}$$

formulas: $Fml(\mathcal{L}) = \bigcup_{k \in \mathbb{N}_0} Fml_k(\mathcal{L})$

quantifier free: a formula φ is quantifier free if the letter \forall does not occur in it

unique readability theorem for formulas: let $\mathscr{L} = (\lambda : \mathscr{R} \to \mathbb{N}, \mu : \mathscr{F} \to \mathbb{N}, \mathscr{C})$ be a language and let φ be an \mathscr{L} -formula. then exactly one of the following holds true:

(i) φ is atomic and there are unique determined $t_1, t_2 \in tm(\mathcal{L})$ such that φ is $t_1 \doteq t_2$

- (ii) φ is atomic and there is a unique $n \in \mathbb{N}$, $R \in \mathcal{R}$ and uniquely determined \mathcal{L} -terms t_1, \ldots, t_n such that φ is $R(t_1,\ldots,t_n)$
- (iii) φ is equal to a string of the form $(\neg \psi)$ for a uniquely determined $\psi \in Fml(\mathcal{L})$
- (iv) φ is equal to a string of the form $(\varphi_1 \to \varphi_2)$ for uniquely determined $\varphi_1, \varphi_2 \in Fml(\mathscr{L})$
- (v) φ is a string of the form $(\forall x\psi)$ for uniquely determined $\psi \in Fml(\mathcal{L})$ and $x \in Vbl$

language \mathcal{L} : the triple consisting of the alphabet of \mathcal{L} , the set of \mathcal{L} and the set of \mathcal{L} -formulas. finite / infinite / countable / uncountable: \mathcal{L} has this property if its alphabet has this property **cardinality**: $card(\mathcal{L})$, is the cardinality of the alphabet of \mathcal{L}

model theory

let \mathcal{L} be a language and \mathcal{M}, \mathcal{N} be \mathcal{L} -structures

map between \mathcal{M} and \mathcal{N} : a map $f: |\mathcal{M}| \to |\mathcal{N}|$, but we write $f: \mathcal{M} \to \mathcal{N}$ instead **preserved by a map**: a formula $\varphi(x_1,\ldots,x_n)\in \mathrm{Fml}(\mathscr{L})$ is preserved by a map $f:\mathscr{M}\to\mathscr{N}$ if for all a_1,\ldots,a_n

$$\mathcal{M} \models \varphi(a_1, \dots, a_n) \implies \mathcal{N} \models \varphi(f(a_1), \dots, f(a_n))$$

f respects φ : φ is preserved by f

homomorphism: a map $f: \mathcal{M} \to \mathcal{N}$ between \mathcal{L} -structures which respects all atomic formulas **lemma**: let $f: \mathcal{M} \to \mathcal{N}$ be a map between \mathcal{L} -structures. the following are equivalent:

- (i) f is an \mathcal{L} -homomorphism
- (ii) f satisfies each of the following conditions:
 - (a) for all $R \in \mathcal{R}$ of arity n and all $a_1, \ldots, a_n \in |\mathcal{M}|$ we have $(a_1, \ldots, a_n) \in R^{\mathcal{M}} \implies (f(a_1), \ldots, f(a_n)) \in R^{\mathcal{N}}$
 - (b) for all $F \in \mathscr{F}$ of arity n and all $a_1, \ldots, a_n \in |\mathscr{M}|$ we have $f(F^{\mathscr{M}}(a_1, \ldots, a_n)) \implies F^{\mathscr{N}}(f(a_1), \ldots, f(a_n))$
 - (c) for all $c \in \mathscr{C}$ we have $f(c^{\mathscr{M}}) = c^{\tilde{\mathscr{N}}}$
- (iii) f respects each of the following formulas:
 - (a) all formulas of the form $R(v_1,\ldots,v_n)$ where $R\in\mathcal{R}$ is a relation symbol of \mathcal{L} or arity n
 - (b) all formulas of the form $v_0 \doteq F(v_1, \dots, v_n)$ where $F \in \mathscr{F}$ is a function symbol of \mathscr{L} of arity n
 - (c) all formulas of the form $v_0 \doteq c$, where $c \in \mathscr{C}$ is a constant symbol of \mathscr{L}

embedding: a map $f: \mathcal{M} \to \mathcal{N}$ between \mathcal{L} -structures which respects all quantifier free formulas \mathcal{M} is a substructure of \mathcal{N} : if $|\mathcal{M}| \subseteq |\mathcal{N}|$ and the inclusion map $|\mathcal{M}| \to |\mathcal{N}|$ is an embedding, then \mathcal{M} is called a substructure of \mathcal{M} . in addition, if $|\mathcal{M}| \neq |\mathcal{N}|$, then \mathcal{M} is called a **proper substructure** of \mathcal{N} **lemma**: let $f: \mathcal{M} \to \mathcal{N}$ be a map between \mathcal{L} -structures. the following are equivalent:

- (i) f is an embedding
- (ii) f is an injective \mathcal{L} -homomorphism such that for all $a_1, \ldots, a_n \in |M|$ we have

$$(a_1, \dots, a_n) \in R^{\mathcal{M}} \iff (f(a_1), \dots, f(a_n)) \in R^{\mathcal{N}}$$

(iii) for all $\varphi(x_1,\ldots,x_n) \in \text{at-Fml}(\mathcal{L})$ and all $a_1,\ldots,a_n \in |\mathcal{M}|$ we have

$$\mathcal{M} \models \varphi(a_1, \dots, a_n) \iff \mathcal{N} \models \varphi(f(a_1), \dots, f(a_n))$$

corollary: let \mathscr{M} be an \mathscr{L} -structure and let $A \subseteq |\mathscr{M}|$. if $c^{\mathscr{M}}$ and for each n-ary function symbol F of \mathscr{L} , the function $F^{\mathcal{M}}$ maps A^n to A, then A is the universe of a unique substructure \mathscr{A} of \mathscr{M} , which is called the **substructure of** \mathscr{M} **induced on** A, which interprets the non-logical symbols as follows:

- (i) $R^{\mathscr{A}} = R^{\mathscr{M}} \cap A^n$ for all $R \in \mathscr{R}$ of arity n
- (ii) $F^{\mathscr{A}}(a_1,\ldots,a_n)=F^{\mathscr{M}}(a_1,\ldots,a_n)$ for all $F\in\mathscr{F}$ or arity n (iii) $c^{\mathscr{A}}=c^{\mathscr{M}}$ for all $c\in\mathscr{C}$

corollary: let \mathcal{M} be an \mathcal{L} -structure. then any nonempty intersection of universes of substructures of \mathcal{M} is again the universe of a substructure of \mathcal{M} . consequently, if $A \subseteq |\mathcal{M}|$ is nonempty, then there is a smallest (for inclusion) universe U of a substructure of \mathcal{M} containing A, namely the intersection of all the universes of substructures of \mathcal{M} containing A, and the substructure with universe U is called the substructure of \mathcal{M} generated by A

elementary embedding: a map $f: \mathcal{M} \to \mathcal{N}$ between \mathcal{L} -structures which respects all formulas \mathcal{M} is a elementary substructure of \mathcal{N} : if $|\mathcal{M}| \subseteq |\mathcal{N}|$ and the inclusion map $|\mathcal{M}| \to |\mathcal{N}|$ is an elementary embedding, then \mathcal{M} is called an elementary substructure of \mathcal{N} , denoted $\mathcal{M} \prec \mathcal{N}$, and \mathcal{N} is called an elementary extension of \mathcal{M}

isomorphism: a map $f: \mathcal{M} \to \mathcal{N}$ between \mathcal{L} -structures which is a bijective embedding.

isomorphic: two \mathscr{L} -structures \mathscr{M} and \mathscr{N} are isomorphism, denoted $\mathscr{M} \cong \mathscr{N}$, if there is an isomorphism $\mathscr{M} \to \mathscr{N}$ lemma: every \mathscr{L} -isomorphism is an elementary embedding

elementary equivalent: two \mathcal{L} -structures \mathcal{M} and \mathcal{N} that satisfy the same \mathcal{L} -sentences, denoted $\mathcal{M} \equiv \mathcal{N}$

lemma: if $f: \mathcal{M} \to \mathcal{N}$ is an elementary embedding then $\mathcal{M} \equiv \mathcal{N}$. if particular, isomorphic structures are elementary equivalent.

proposition: if \mathcal{M} is finite and $\mathcal{N} \equiv \mathcal{M}$, then $\mathcal{M} \cong \mathcal{N}$

tarski-vaught test: let \mathcal{M} be an \mathcal{L} -structure and let $A \subseteq |\mathcal{M}|$. the following are equivalent:

- (i) A is the universe of an elementary substructure of \mathcal{M}
- (ii) for every \mathscr{L} -formula $\varphi(x,\overline{y})$ and all $\overline{a} \in A^{\overline{y}}$, if $\mathscr{M} \models (\exists x \varphi)(\overline{a})$, then there is some $b \in A$ with $\varphi(b,\overline{a})$

lemma: for any language \mathcal{L} , the cardinality of $Fml(\mathcal{L})$ is $max\{\aleph_0, card(\mathcal{L})\}$

skolem-löwenheim downwards: let \mathscr{M} be an \mathscr{L} -structure and let $A \subseteq |\mathscr{M}|$. then there is an elementary substructure \mathscr{N} of \mathscr{M} with $A \subseteq |\mathscr{N}|$ such that $\operatorname{card}(\mathscr{N}) \leq \max\{\aleph_0, \operatorname{card}(A), \operatorname{card}(\mathscr{L})\}$

 \mathcal{L} -theory: a set of \mathcal{L} -sentences

model \mathscr{M} of an \mathscr{L} -theory: an \mathscr{L} -structure \mathscr{M} with $\mathscr{M} \models \varphi$ for all $\varphi \in T$, denoted $\mathscr{M} \models T$

 ${\bf consistent}$ / ${\bf satisfiable}:$ a theory is consistent or satisfiable if it has a model

complete: a theory is complete if all its models are elementary equivalent

theory of \mathcal{M} : defined as $Th(\mathcal{M}) = \{ \varphi \in Sen(\mathcal{L}) \mid \mathcal{M} \models \varphi \}$ is always complete

compactness theorem: if T is a set of \mathscr{L} -sentences such that any finite subset of T has a model, then T itself has a model

lemma: let \mathscr{M} be an infinite \mathscr{L} -structure and let κ be any cardinal. then there is an elementary extension \mathscr{N} of \mathscr{M} with $\operatorname{card}(|\mathscr{N}|) \geq \kappa$

skolem-löwenheim upwards: let \mathscr{M} be an infinite \mathscr{L} -structure and let κ be an cardinal $\geq \operatorname{card}(\mathscr{M}), \operatorname{card}(\mathscr{L})$. then there is an elementary extension $\mathscr{N} \succ \mathscr{M}$ of cardinality κ

definable in \mathscr{M} : a subset S of $|\mathscr{M}|^n$ is called definable in \mathscr{M} if there is some \mathscr{L} -formula $\varphi(x_1,\ldots,x_n,y_1,\ldots,y_n)$ and a k-tuple $\overline{a} \in |\mathscr{M}|^k$ such that

$$S = \varphi(\mathcal{M}^n, \overline{a}) := \{ (m_1, \dots, m_n) \in \mathcal{M}^n \mid \mathcal{M} \models \varphi(m_1, \dots, m_n, a_1, \dots, a_k) \}$$

we say that S is **defined by** $\varphi(\overline{x}, \overline{a})$ in \mathcal{M} and the elements a_1, \ldots, a_k are called **parameters**

proposition: let \mathcal{M} be an \mathcal{M} -structure with universe $M = |\mathcal{M}|$, then

- (i) if S, T are definable subsets of M^n , then also $S \cap T, S \cup T$ and $S \setminus T$ are definable. if p is the projection $M^n \to M^k$ and S is a definable subset of M^n , then p(S) is a definable subset of M^k
- (ii) if $f: \mathcal{M} \to \mathcal{N}$ is an isomorphism between \mathcal{L} -structures and $S \subseteq M^n$ is defined by $\varphi(\overline{x}, \overline{a})$, then f(S) is defined by $\varphi(\overline{x}, f(\overline{a}))$, here we also consider f as a map $M^n \to |\mathcal{N}|^n$ obtained from f by applying f coordinate wise; thus $f(S) \subseteq |\mathcal{N}|^n$ and $f(\overline{a}) \in |\mathcal{N}|^n$

definable in \mathcal{M} : let \mathcal{M} be an \mathcal{L} -structure with universe M and let $S \subseteq M^n$. a function $f: S \to M^k$ is called definable in M if its graph is a subset of $M^n \times M^k$ that is definable in \mathcal{M}

proposition: let \mathscr{M} be an \mathscr{L} -structure with universe M and let $S \subseteq M^n$. let $f: S \to M^k$ be a function

- (i) f is definable if and only if each component of f is a definable map $S \to M$
- (ii) if f is definable, then S and the image of f are definable
- (iii) the composition of definable maps (when well-defined) is definable

proposition: any two countable and dense total orders without endpoints are isomorphic

categorial in an infinite cardinal κ : an \mathcal{M} -theory T that has an infinite model is called categorial in an infinite cardinal κ , or simply κ -categorial, if all models of T of cardinality κ are isomorphic

theorem: if T has no finite models and T is categorial in some infinite cardinal $\geq \operatorname{card}(\mathcal{M})$, then T is complete