Relacja (tabela) — jedyna struktura dla danych w modelu; ma ustaloną liczbę kolumn, w które można wpisywać wartości ustalonego typu i dowolną liczbę wierszy.

Relacja (tabela) — jedyna struktura dla danych w modelu; ma ustaloną liczbę kolumn, w które można wpisywać wartości ustalonego typu i dowolną liczbę wierszy.

Więzy (warunki poprawności, warunki spójności) — dane wpisywane do tabel muszą spełniać zdefiniowane warunki: typ danych, zakres,...

- Relacja (tabela) jedyna struktura dla danych w modelu; ma ustaloną liczbę kolumn, w które można wpisywać wartości ustalonego typu i dowolną liczbę wierszy.
- Więzy (warunki poprawności, warunki spójności) dane wpisywane do tabel muszą spełniać zdefiniowane warunki: typ danych, zakres,...
 - Baza danych zbiór tabel z danymi spełniającymi nałożone na nie więzy.

- Relacja (tabela) jedyna struktura dla danych w modelu; ma ustaloną liczbę kolumn, w które można wpisywać wartości ustalonego typu i dowolną liczbę wierszy.
- Więzy (warunki poprawności, warunki spójności) dane wpisywane do tabel muszą spełniać zdefiniowane warunki: typ danych, zakres,...
 - Baza danych zbiór tabel z danymi spełniającymi nałożone na nie więzy.
- Język zapytań (query language) algebra relacji, relacyjny rachunek krotek i relacyjny rachunek dziedzin — formalne języki pozwalające wyszukać w relacjach określona informacje.

Osoba

Nazwisko	PESEL	dataUr
:varchar(20)	:char(11)	:date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
:char(11)	:varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
:varchar(20)	:char(11)	:date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
:char(11)	:varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
:varchar(20)	:char(11)	:date
Abacki 	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
:char(11)	:varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
:varchar(20)	:char(11)	:date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
:char(11)	:varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
:varchar(20)	:char(11)	:date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
: char(11)	: varchar(50)	: real
80121304455	Ełk, Kwiatowa 100	60,2
80121304455	Poznań, Szeroka 10/2	30,2
NULL	Ełk, Kwiatowa 102	64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
:varchar(20)	:char(11)	:date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
:char(11)	:varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
:varchar(20)	:char(11)	:date
Abacki	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
:char(11)	:varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Osoba

Nazwisko	PESEL	dataUr
:varchar(20)	:char(11)	:date
Abacki 	80121304455	'20-02-1980'

Mieszkanie

PESEL	Adres	Metraż
:char(11)	:varchar(50)	:real
80121304455 80121304455 NULL	Ełk, Kwiatowa 100 Poznań, Szeroka 10/2 Ełk, Kwiatowa 102	60,2 30,2 64,2

- Atrybut nazwa kolumny;
- Dziedzina typ danych;
- Krotność (arność) liczba atrybutów;
- Krotka (wiersz) element relacji;
- Atrybuty krotki Osoba[3] lub Mieszkanie. Adres;
- Schemat relacji nazwa relacji, nazwy i typy kolumn;
- Stan relacji to zawarte w niej krotki.

Notacja matematyczna

Dla atrybutów A_1, \dots, A_k i związanych z nimi dziedzin D_1, \dots, D_k relacja R ma:

schemat
$$R = A_1 \dots A_k$$
 lub $R(A_1, \dots, A_k)$,
arność k ,
stan $r \subseteq D_1 \times \dots \times D_k$,
krotki $(v_1, v_2, \dots, v_k) \in r$.

Relacyjna baza danych (schemat i stan) to zbiór relacji o różnych nazwach.

Notacja matematyczna

Dla atrybutów A_1, \dots, A_k i związanych z nimi dziedzin D_1, \dots, D_k relacja R ma:

schemat
$$R = A_1 \dots A_k$$
 lub $R(A_1, \dots, A_k)$,
arność k ,
stan $r \subseteq D_1 \times \dots \times D_k$,
krotki $(v_1, v_2, \dots, v_k) \in r$.

Relacyjna baza danych (schemat i stan) to zbiór relacji o różnych nazwach.

W przykładzie:

- Osoba(Nazwisko,PESEL,dataUr),
- Mieszkanie(PESEL,Adres,Metraż)

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL 	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	← t₁ ← t₂

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	

• t_1 .PESEL = t_2 .PESEL

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	$\Leftarrow t_1 \\ \Leftarrow t_2$

• t_1 .PESEL = t_2 .PESEL UNKNOWN!!!

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	$ \begin{array}{c} \Leftarrow t_1 \\ \Leftarrow t_2 \end{array} $

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres UNKNOWN!!!

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	$\Leftarrow t_1 \\ \Leftarrow t_2$

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres UNKNOWN!!!
- t_1 .Metraż = t_2 .Metraż

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres UNKNOWN!!!
- t_1 .Metraż = t_2 .Metraż TRUE

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	##

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres UNKNOWN!!!
- t_1 .Metraż = t_2 .Metraż TRUE
- t_1 .Adres = t_2 .Adres

t₁

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	##

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres UNKNOWN!!!
- t_1 .Metraż = t_2 .Metraż TRUE
- t_1 .Adres = t_2 .Adres FALSE

t₁

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	#

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres UNKNOWN!!!
- t_1 .Metraż = t_2 .Metraż TRUE
- t_1 .Adres = t_2 .Adres FALSE
- t_1 .PESEL = NULL

t1

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	$\Leftarrow t_1 \\ \Leftarrow t_2$

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres UNKNOWN!!!
- t_1 .Metraż = t_2 .Metraż TRUE
- t_1 .Adres = t_2 .Adres FALSE
- t_1 .PESEL = *NULL* UNKNOWN!!!

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	$ \begin{array}{c} \Leftarrow t_1 \\ \Leftarrow t_2 \end{array} $

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres UNKNOWN!!!
- t_1 .Metraż = t_2 .Metraż TRUE
- t_1 .Adres = t_2 .Adres FALSE
- t_1 .PESEL = *NULL* UNKNOWN!!!
- t_1 .PESEL = ''

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	$\Leftarrow t_1 \\ \Leftarrow t_2$

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres UNKNOWN!!!
- t_1 .Metraż = t_2 .Metraż TRUE
- t_1 .Adres = t_2 .Adres FALSE
- t_1 .PESEL = *NULL* UNKNOWN!!!
- t_1 .PESEL = '' UNKNOWN!!!

PESEL	Adres	Metraż	
:char(11)	:varchar(50)	:real	
NULL NULL	Poznań, Szeroka 10/12 Ełk, Kwiatowa 102	64,2 64,2	##

- t_1 .PESEL = t_2 .PESEL UNKNOWN!!!
- t_1 .PESEL = t_1 .Adres UNKNOWN!!!
- t_1 .Metraż = t_2 .Metraż TRUE
- t_1 .Adres = t_2 .Adres FALSE
- t_1 .PESEL = *NULL* UNKNOWN!!!
- t_1 .PESEL = '' UNKNOWN!!!
- IS NULL t₁.PESEL TRUE
- IS NOT NULL *t*₁.Adres TRUE

t1

Klucz relacji

Podzbiór atrybutów relacji, których wartości zawsze pozwalają jednoznacznie zidentyfikować krotkę relacji. Oznacza, to że nie dopuszczamy, by w danych znalazły się dwie różne krotki o jednakowych wartościach klucza. Relacja może mieć kilka kluczy: Student (indeks, PESEL, Nazwisko, . . .)

Klucz relacji

Podzbiór atrybutów relacji, których wartości zawsze pozwalają jednoznacznie zidentyfikować krotkę relacji. Oznacza, to że nie dopuszczamy, by w danych znalazły się dwie różne krotki o jednakowych wartościach klucza. Relacja może mieć kilka kluczy: Student (indeks, PESEL, Nazwisko, . . .)

Klucz główny

Jeden z kluczy relacji. Zazwyczaj wybieramy ten, według którego najczęściej będziemy wyszukiwać dane z relacji. Pozostałe klucze nazywamy *kandydującymi* lub *alternatywnymi*. Na przykład indeks może być kluczem głównym relacji Student, a PESEL — kluczem alternatywnym.

Klucz relacji

Podzbiór atrybutów relacji, których wartości zawsze pozwalają jednoznacznie zidentyfikować krotkę relacji. Oznacza, to że nie dopuszczamy, by w danych znalazły się dwie różne krotki o jednakowych wartościach klucza. Relacja może mieć kilka kluczy: Student (indeks, PESEL, Nazwisko, . . .)

Klucz główny

Jeden z kluczy relacji. Zazwyczaj wybieramy ten, według którego najczęściej będziemy wyszukiwać dane z relacji. Pozostałe klucze nazywamy *kandydującymi* lub *alternatywnymi*. Na przykład indeks może być kluczem głównym relacji Student, a PESEL — kluczem alternatywnym.

Klucz z wielu atrybutów

Stosujemy takie rozwiązanie, gdy jeden atrybut nie wystarcza do zidentyfikowania krotki. Na przykład w relacji

Zaliczenie (<u>indeks</u>, <u>kod_przedmiotu</u>, ocena, data). Problem stanowią klucze zbudowane z wielu atrybutów z pozostawionymi pustymi polami, na przykład Dom (<u>miasto</u>, <u>ulica</u>, <u>dom</u>, <u>lokal</u>, metraż).

Klucz obcy

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą **klucze obce**.

Zaliczenie:

indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5

Student:

Ctaaciit.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

Klucz obcy

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą **klucze obce**.

Zaliczenie:

indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5

Student:

indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

 Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą **klucze obce**.

Zaliczenie:

indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5

Cladent.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka
	123456 654321	indeks PESEL 123456 AB123456 654321 CD345678

- Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.
- W relacji Student atrybut indeks jest kluczem.

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą **klucze obce**.

Zaliczenie:

indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5

Cladent.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka
	123456 654321	indeks PESEL 123456 AB123456 654321 CD345678

- Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.
- W relacji Student atrybut indeks jest kluczem.
- W relacji Zaliczenie atrybut indeks może powtarzać się lub być pusty.

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą **klucze obce**.

Zaliczenie:

indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5

Otaaont.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

- Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.
- W relacji Student atrybut indeks jest kluczem.
- W relacji Zaliczenie atrybut indeks może powtarzać się lub być pusty.
- Jeśli indeks jest użyty w relacji Zaliczenie, to w relacji Student powinna występować osoba o tym indeksie (integralność referencyjna).

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą **klucze obce**.

Zaliczenie:

indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5
999999	BD2012	2.0

Otaaont.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

- Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.
- W relacji Student atrybut indeks jest kluczem.
- W relacji Zaliczenie atrybut indeks może powtarzać się lub być pusty.
- Jeśli indeks jest użyty w relacji Zaliczenie, to w relacji Student powinna występować osoba o tym indeksie (integralność referencyjna).

Dane w bazie muszą często zostać rozmieszczone w różnych relacjach, pomimo że się ze soba wiążą. Do połączenia danych z różnych relacji służą **klucze obce**.

Zaliczenie:

indeks	kod_przedm	ocena
123456	BD2011	5.0
123456	SK2011	4.5
654321	BD2011	3.5

Otaaont.		
indeks	PESEL	nazwisko
123456	AB123456	Abacka
654321	CD345678	Babacka
987654	DE534343	Cabacka

- Zamieszczony w relacji Zaliczenie atrybut indeks służy do zidentyfikowania osoby z relacji Student.
- W relacji Student atrybut indeks jest kluczem.
- W relacji Zaliczenie atrybut indeks może powtarzać się lub być pusty.
- Jeśli indeks jest użyty w relacji Zaliczenie, to w relacji Student powinna występować osoba o tym indeksie (integralność referencyjna).

Więzy kolumnowe — nakładanie ograniczeń na wartość atrybutu: dziedzina, wartość nie pusta (NOT NULL), zakres;

Więzy kolumnowe — nakładanie ograniczeń na wartość atrybutu: dziedzina, wartość nie pusta (NOT NULL), zakres;

Więzy tabeli — własność klucza, unikalność w ramach tabeli;

Więzy kolumnowe — nakładanie ograniczeń na wartość atrybutu: dziedzina, wartość nie pusta (NOT NULL), zakres;

Więzy tabeli — własność klucza, unikalność w ramach tabeli;

Więzy między tabelami — własność klucza obcego;

Więzy kolumnowe — nakładanie ograniczeń na wartość atrybutu: dziedzina, wartość nie pusta (NOT NULL), zakres;

Więzy tabeli — własność klucza, unikalność w ramach tabeli;

Więzy między tabelami — własność klucza obcego;

Inne więzy ogólne — bardziej złożone warunki (np. maksymalnie dwa podejścia do przedmiotu w sesji, dostęp do wybranych przedmiotów dla studentów określonej sekcji, limit liczby osób zapisanych na zajęcia itp.)

Język definiowania danych

Musi pozwolić opisać schematy relacji oraz więzy (warunki poprawności) danych.

Język definiowania danych

Musi pozwolić opisać schematy relacji oraz więzy (warunki poprawności) danych.

Język manipulacji danymi

Pozwala dodawać/usuwać krotki z relacji.

Język definiowania danych

Musi pozwolić opisać schematy relacji oraz więzy (warunki poprawności) danych.

Język manipulacji danymi

Pozwala dodawać/usuwać krotki z relacji.

Języki zapytań

Mamy trzy propozycje:

algebra relacji — kilka operacji pozwalających działać na relacjach jako na zbiorach; relacyjny rachunek dziedzin — język wykorzystujący formuły logiczne do opisu wartości, które należy znaleźć;

relacyjny rachunek krotek — język wykorzystujący formuły logiczne do opisu krotek, które należy znaleźć;

Język definiowania danych

Musi pozwolić opisać schematy relacji oraz więzy (warunki poprawności) danych.

Język manipulacji danymi

Pozwala dodawać/usuwać krotki z relacji.

Języki zapytań

Mamy trzy propozycje:

algebra relacji — kilka operacji pozwalających działać na relacjach jako na zbiorach;

relacyjny rachunek dziedzin — język wykorzystujący formuły logiczne do opisu wartości, które należy znaleźć;

relacyjny rachunek krotek — język wykorzystujący formuły logiczne do opisu krotek, które należy znaleźć;

Standard: SQL

Różne podejścia do budowania zapytań

 $\bullet \ \{(indeks, adres) \mid \exists nazwisko \ \ Student(indeks, nazwisko, adres)\}$

Różne podejścia do budowania zapytań

- $\bullet \ \{(indeks, adres) \mid \exists nazwisko \ \ Student(indeks, nazwisko, adres)\}$
- π_{indeks,adres} (Student)

Różne podejścia do budowania zapytań

- {(indeks, adres) | ∃nazwisko Student(indeks, nazwisko, adres)}
- π_{indeks,adres} (Student)
- for krotka in Student print (krotka.indeks, krotka.adres)

Argumentami są całe relacje (tabele), na których wykonujemy operacje.

Argumentami są całe relacje (tabele), na których wykonujemy operacje. Zestaw operacji jest nieliczny: rzutowanie, selekcja, iloczyn kartezjański, suma, różnica i przemianowanie

Argumentami są całe relacje (tabele), na których wykonujemy operacje.

Zestaw operacji jest nieliczny: rzutowanie, selekcja, iloczyn kartezjański, suma, różnica i przemianowanie

Zapytanie to poprawne wyrażenie algebry relacji, a odpowiedź, to wartość tego wyrażenia obliczona na podstawie aktualnego stanu bazy danych.

Rzut — $\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha \subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$.

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

Rzut — $\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha \subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$. Duplikaty mogą być eliminowane.

Student

Ottadont		
Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

Wynik rzutu na Nazwisko

wynnk izata
Nazwisko
Abacka
Babacka
Cabacka
Abacka

Rzut — $\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha \subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$. Duplikaty mogą być eliminowane.

Selekcja — $\sigma_F(R)$ zwraca krotki wybrane z relacji R spełniające warunek F. Na przykład $\sigma_{Adres='Koszalin'}(Student)$.

Indeks	Nazwisko	Adres	
123456	Abacka	cka Koszalin	
654321	Babacka	Szczecin	
765678	Cabacka	Koszalin	
234565	Abacka	Legnica	

Rzut — $\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha \subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$. Duplikaty mogą być eliminowane.

Selekcja — $\sigma_F(R)$ zwraca krotki wybrane z relacji R spełniające warunek F. Na przykład $\sigma_{Adres='Koszalin'}(Student)$.

Student

Indeks	Nazwisko	Adres	
123456	Abacka	Koszalin	
654321	Babacka	Szczecin	
765678	Cabacka	Koszalin	
234565	Abacka	Legnica	

Wynik selekcji Adres=' Koszalin'

my min dolonoji maz co		110024211	
	Indeks	Nazwisko	Adres
	123456	Abacka	Koszalin
	765678	Cabacka	Koszalin

```
Rzut -\pi_{\alpha}(R) zwraca relację o schemacie \alpha \subseteq attr(R) powstałą z obcięcia relacji R do kolumn \alpha. Na przykład \pi_{nazwisko}(Student). Duplikaty mogą być eliminowane.
```

Selekcja — $\sigma_F(R)$ zwraca krotki wybrane z relacji R spełniające warunek F. Na przykład $\sigma_{Adres='Koszalin'}(Student)$.

Przemianowanie — $\rho_{S(B_1,...,B_k)}(R)$ zmienia nazwę relacji R na S i nazwy odpowiednich atrybutów R na $B_1,...B_k$. Na przykład $\rho_{Osoba(id,nazwisko,miasto)}(\pi_{indeks,nazwisko,adres}(Student))$.

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

- Rzut $\pi_{\alpha}(R)$ zwraca relację o schemacie $\alpha \subseteq attr(R)$ powstałą z obcięcia relacji R do kolumn α . Na przykład $\pi_{nazwisko}(Student)$. Duplikaty mogą być eliminowane.
- Selekcja $\sigma_F(R)$ zwraca krotki wybrane z relacji R spełniające warunek F. Na przykład $\sigma_{Adres='Koszalin'}(Student)$.
- Przemianowanie $\rho_{S(B_1,...,B_k)}(R)$ zmienia nazwę relacji R na S i nazwy odpowiednich atrybutów R na $B_1,...B_k$. Na przykład $\rho_{Osoba(id,nazwisko,miasto)}(\pi_{indeks,nazwisko,adres}(Student))$.

Student

Student			
Indeks	Nazwisko	Adres	
123456	456 Abacka Koszalin		
654321	Babacka	Szczecin	
765678	Cabacka	Koszalin	
234565	Abacka	Legnica	

Tabela po przemianowaniu: Osoba

rabola po prizonnanomaniai obox		
ld	Nazwisko	Miasto
123456	Abacka	Koszalin
654321	Babacka	Szczecin
765678	Cabacka	Koszalin
234565	Abacka	Legnica

Suma (∪), różnica (\), przekrój (∩) — "zwykłe" operacje na zbiorach; R \ S i R ∪ S wymagają, by attr(R) = attr(S); w praktyce mogł być zastępowane operacjami na wielozbiorach. Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres	
123456	56 Abacka Koszalin		
654321	Babacka	Szczecin	
234565	Abacka	Legnica	

StudentIM

Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

Relacja wynikowa:

Suma (U), różnica (\), przekrój (\cap) — "zwykłe" operacje na zbiorach; $R \setminus S$ i $R \cup S$ wymagają, by attr(R) = attr(S); w praktyce mogł być zastępowane operacjami na **wielozbiorach**. Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

	Indeks	Nazwisko	Adres
Relacja wynikowa:			

Suma (U), różnica (\), przekrój (∩) — "zwykłe" operacje na zbiorach; R \ S i R U S wymagają, by attr(R) = attr(S); w praktyce mogł być zastępowane operacjami na wielozbiorach. Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin
	012345	012345 Zetowski

	Indeks	Nazwisko	Adres
Relacja wynikowa:			

Suma (∪), różnica (\), przekrój (∩) — "zwykłe" operacje na zbiorach; R \ S i R ∪ S wymagają, by attr(R) = attr(S); w praktyce mogł być zastępowane operacjami na wielozbiorach. Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

	Indeks	Nazwisko	Adres
Relacja wynikowa:			

Suma (∪), różnica (\), przekrój (∩) — "zwykłe" operacje na zbiorach; R \ S i R ∪ S wymagają, by attr(R) = attr(S); w praktyce mogł być zastępowane operacjami na wielozbiorach. Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

	Indeks	Nazwisko	Adres
Relacja wynikowa:	123456	Abacka	Koszalin
	654321	Babacka	Szczecin
	234565	Abacka	Legnica
	012345	Zetowski	Kielce
	654321	Babacka	Szczecin

Suma (U), różnica (\), przekrój (\cap) — "zwykłe" operacje na zbiorach; $R \setminus S$ i $R \cup S$ wymagają, by attr(R) = attr(S); w praktyce mogł być zastępowane operacjami na **wielozbiorach**. Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin
	012345	012345 Zetowski

	Indeks	Nazwisko	Adres
Relacja wynikowa:			

Suma (U), różnica (\), przekrój (\cap) — "zwykłe" operacje na zbiorach; $R \setminus S$ i $R \cup S$ wymagają, by attr(R) = attr(S); w praktyce mogł być zastępowane operacjami na **wielozbiorach**. Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

	Indeks	Nazwisko	Adres
Relacja wynikowa:			

Suma (∪), różnica (\), przekrój (∩) — "zwykłe" operacje na zbiorach; R \ S i R ∪ S wymagają, by attr(R) = attr(S); w praktyce mogł być zastępowane operacjami na wielozbiorach. Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Nazwisko	Adres
Zetowski	Kielce
Babacka	Szczecin
	Zetowski

	Indeks	Nazwisko	Adres
	123456	Abacka	Koszalin
Relacja wynikowa:	234565	Abacka	Legnica

Suma (U), różnica (\), przekrój (\cap) — "zwykłe" operacje na zbiorach; $R \setminus S$ i $R \cup S$ wymagają, by attr(R) = attr(S); w praktyce mogł być zastępowane operacjami na **wielozbiorach**. Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Indeks	Nazwisko	Adres
012345	Zetowski	Kielce
654321	Babacka	Szczecin

	Indeks	Nazwisko	Adres
Relacja wynikowa:			

Suma (U), różnica (\), przekrój (\cap) — "zwykłe" operacje na zbiorach; $R \setminus S$ i $R \cup S$ wymagają, by attr(R) = attr(S); w praktyce mogł być zastępowane operacjami na **wielozbiorach**. Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

	Indeks	Nazwisko	Adres
Ì	012345	Zetowski	Kielce
	654321	Babacka	Szczecin

	Indeks	Nazwisko	Adres
Relacja wynikowa:			

Suma (U), różnica (\), przekrój (\cap) — "zwykłe" operacje na zbiorach; $R \setminus S$ i $R \cup S$ wymagają, by attr(R) = attr(S); w praktyce mogł być zastępowane operacjami na **wielozbiorach**. Dodawane (odejmowane, krojone) relacje muszą mieć zgodne schematy.

StudentII

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Nazwisko	Adres
Zetowski	Kielce
Babacka	Szczecin
	Zetowski

	Indeks	Nazwisko	Adres	
	654321	Babacka	Szczecin	
Relacja wynikowa:				

lloczyn kartezjański (\times) — dla relacji o rozłącznych schematach $(attr(R) \cap attr(S) = \emptyset) \ R \times S$ jest relacją o atrybutach $attr(R) \cup attr(S)$ zawierająca krotki t = rs, gdzie $r \in R$ i $s \in S$ oraz t.attr(R) = r i t.attr(S) = s.

lloczyn kartezjański (\times) — dla relacji o rozłącznych schematach $(attr(R) \cap attr(S) = \emptyset) \ R \times S$ jest relacją o atrybutach $attr(R) \cup attr(S)$ zawierająca krotki t = rs, gdzie $r \in R$ i $s \in S$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Przedmiot

Kod	Nazwa	Тур
BD	Bazy danych	podst
AM	Analiza mat.	obow

lloczyn kartezjański (\times) — dla relacji o rozłącznych schematach $(attr(R) \cap attr(S) = \emptyset) \ R \times S$ jest relacją o atrybutach $attr(R) \cup attr(S)$ zawierająca krotki t = rs, gdzie $r \in R$ i $s \in S$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Przedmiot

Kod	Nazwa	Тур
BD	Bazy danych	podst
AM	Analiza mat.	obow

Student × Przedmiot

Indeks	Nazwisko	Adres	Kod	Nazwa	Тур
123456	Abacka	Koszalin	BD	Bazy danych	podst
654321	Babacka	Szczecin	BD	Bazy danych	podst
234565	Abacka	Legnica	BD	Bazy danych	podst
123456	Abacka	Koszalin	AM	Analiza mat.	obow
654321	Babacka	Szczecin	AM	Analiza mat.	obow
234565	Abacka	Legnica	AM	Analiza mat.	obow
	123456 654321 234565 123456 654321	123456 Abacka 654321 Babacka 234565 Abacka 123456 Abacka 654321 Babacka	123456 Abacka Koszalin 654321 Babacka Szczecin 234565 Abacka Legnica 123456 Abacka Koszalin 654321 Babacka Szczecin	123456 Abacka Koszalin BD 654321 Babacka Szczecin BD 234565 Abacka Legnica BD 123456 Abacka Koszalin AM 654321 Babacka Szczecin AM	123456AbackaKoszalinBDBazy danych654321BabackaSzczecinBDBazy danych234565AbackaLegnicaBDBazy danych123456AbackaKoszalinAMAnaliza mat.654321BabackaSzczecinAMAnaliza mat.

lloczyn kartezjański (\times) — dla relacji o rozłącznych schematach $(attr(R) \cap attr(S) = \emptyset) \ R \times S$ jest relacją o atrybutach $attr(R) \cup attr(S)$ zawierająca krotki t = rs, gdzie $r \in R$ i $s \in S$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Przedmiot

Kod	Nazwa	Тур
BD	Bazy danych	podst
AM	Analiza mat.	obow

 $\textbf{Student} \times \textbf{Przedmiot}$

Otaaont A					
Indeks	Nazwisko	Adres	Kod	Nazwa	Тур
123456	Abacka	Koszalin	BD	Bazy danych	podst
654321	Babacka	Szczecin	BD	Bazy danych	podst
234565	Abacka	Legnica	BD	Bazy danych	podst
123456	Abacka	Koszalin	AM	Analiza mat.	obow
654321	Babacka	Szczecin	AM	Analiza mat.	obow
234565	Abacka	Legnica	AM	Analiza mat.	obow
		-			

lloczyn kartezjański (\times) — dla relacji o rozłącznych schematach $(attr(R) \cap attr(S) = \emptyset) \ R \times S$ jest relacją o atrybutach $attr(R) \cup attr(S)$ zawierająca krotki t = rs, gdzie $r \in R$ i $s \in S$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres
123456	Abacka	Koszalin
654321	Babacka	Szczecin
234565	Abacka	Legnica

Przedmiot

Kod	Nazwa	Тур
BD	Bazy danych	podst
AM	Analiza mat.	obow

Student × Przedmiot

Student × 1 izediniot						
Indeks	Nazwisko	Adres	Kod	Nazwa	Тур	
123456	Abacka	Koszalin	BD	Bazy danych	podst	
654321	Babacka	Szczecin	BD	Bazy danych	podst	
234565	Abacka	Legnica	BD	Bazy danych	podst	
123456	Abacka	Koszalin	AM	Analiza mat.	obow	
654321	Babacka	Szczecin	AM	Analiza mat.	obow	
234565	Abacka	Legnica	AM	Analiza mat.	obow	

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

In	ideks	Nazwisko	Adres
65	4321	Babacka	Szczecin
23	34565	Abacka	Legnica
12	23456	Abacka	Koszalin

Ocena

Occiia						
Indeks	Kod	Stopien				
654321	BD	5.0				
234565	BD	4.5				
234565	AM	4.5				
012345	AM	3.5				

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres
654321	Babacka	Szczecin
234565	Abacka	Legnica
123456	Abacka	Koszalin

Ocena

Occiia		
Indeks	Kod	Stopien
654321	BD	5.0
234565	BD	4.5
234565	AM	4.5
012345	AM	3.5

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres		
654321	Babacka	Szczecin		
234565	Abacka	Legnica		
123456	Abacka	Koszalin		

<u>Ocena</u>

Indeks	Kod	Stopien			
654321	BD	5.0			
234565	BD	4.5			
234565	AM	4.5			
012345	AM	3.5			

Indeks	Nazwisko	Adres	Kod	Stopien

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks Nazwisko		Adres		
654321	Babacka	Szczecin		
234565	Abacka	Legnica		
123456	Abacka	Koszalin		

<u>Ocena</u>

0 00114					
Indeks	Kod	Stopien			
654321	BD	5.0			
234565	BD	4.5			
234565	AM	4.5			
012345	AM	3.5			
	654321 234565 234565	654321 BD 234565 BD 234565 AM			

Indeks	Nazwisko	Adres	Kod	Stopien		

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks Nazwisko		Adres		
654321	Babacka	Szczecin		
234565	Abacka	Legnica		
123456	Abacka	Koszalin		

<u>Ocena</u>

0 00114					
Indeks	Kod	Stopien			
654321	BD	5.0			
234565	BD	4.5			
234565	AM	4.5			
012345	AM	3.5			
	654321 234565 234565	654321 BD 234565 BD 234565 AM			

Indeks	Nazwisko	Adres	Kod	Stopien
654321	Babacka	Szczecin	BD	5.0

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko	Adres	
654321	Babacka	Szczecin	
234565	Abacka	Legnica	
123456	Abacka	Koszalin	

<u>Ocena</u>

O 0 0 1 1 u			
Indeks	Kod	Stopien	
654321	BD	5.0	
234565	BD	4.5	
234565	AM	4.5	
012345	AM	3.5	
	654321 234565 234565	654321 BD 234565 BD 234565 AM	

Indeks	Nazwisko	Adres	Kod	Stopien
654321	Babacka	Szczecin	BD	5.0
234565	Abacka	Legnica	BD	4.5
234565	Abacka	Legnica	AM	3.5

Złączenie naturalne (\bowtie) Dla relacji R i S złączeniem naturalnym $R \bowtie S$ jest relacja o schemacie $attr(R) \cup attr(S)$ zawierająca krotki t, dla których istnieją krotki $r \in R$ i $s \in S$, takie że $r.(attr(R) \cap attr(S)) = s.(attr(R) \cap attr(S))$ oraz t.attr(R) = r i t.attr(S) = s.

Student

Indeks	Nazwisko Adres	
654321	Babacka Szczec	
234565	Abacka	Legnica
123456	Abacka	Koszalin
	654321 234565	654321 Babacka 234565 Abacka

Ocena

Occilia				
Indeks	Kod	Stopien		
654321	654321 BD			
234565	BD	4.5		
234565	AM	4.5		
012345	AM	3.5		

Student ⋈ Ocena

Indeks	Nazwisko	Adres	Kod	Stopien
654321	Babacka	Szczecin	BD	5.0
234565	Abacka	Legnica	BD	4.5
234565	Abacka	Legnica	AM	3.5

Krotki, które nie mają pary, nie wchodzą do wyniku!

Złączenie θ_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenie θ_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenia zewnętrzne to złączenie naturalne, do którego wyniku dorzuca się krotki, które nie znalazły pary. W polach, które są niewypełnione, wpisywana jest wartość NULL.

Złączenie θ_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenia zewnętrzne to złączenie naturalne, do którego wyniku dorzuca się krotki, które nie znalazły pary. W polach, które są niewypełnione, wpisywana jest wartość NULL.

Półzłączenia to operacja wybierająca z relacji krotki, które połączyłyby się, gdyby wykonywano złączenie naturalne.

Złączenie θ_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenia zewnętrzne to złączenie naturalne, do którego wyniku dorzuca się krotki, które nie znalazły pary. W polach, które są niewypełnione, wpisywana jest wartość NULL.

Półzłączenia to operacja wybierająca z relacji krotki, które połączyłyby się, gdyby wykonywano złączenie naturalne.

Inne operacje np. iloraz, złączenie lewostronne i prawostronne.

Złączenie θ_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenia zewnętrzne to złączenie naturalne, do którego wyniku dorzuca się krotki, które nie znalazły pary. W polach, które są niewypełnione, wpisywana jest wartość NULL.

Półzłączenia to operacja wybierająca z relacji krotki, które połączyłyby się, gdyby wykonywano złączenie naturalne.

Inne operacje np. iloraz, złączenie lewostronne i prawostronne.

Zapytania budujemy poprawne wyrażenia używając operatorów algebry relacji, nawiasów i stałych.

Złączenie θ_F to iloczyn kartezjański połączony z selekcją:

$$R \bowtie_F S = \sigma_F(R \times S)$$

Złączenia zewnętrzne to złączenie naturalne, do którego wyniku dorzuca się krotki, które nie znalazły pary. W polach, które są niewypełnione, wpisywana jest wartość NULL.

Półzłączenia to operacja wybierająca z relacji krotki, które połączyłyby się, gdyby wykonywano złączenie naturalne.

Inne operacje np. iloraz, złączenie lewostronne i prawostronne.

Zapytania budujemy poprawne wyrażenia używając operatorów algebry relacji, nawiasów i stałych.

Wszystkie operacje algebry relacji są wyrażalne za pomocą: π , σ , ρ , \times , \cup , \setminus .

Baza do przykładów

- Student=(indeks,nazwisko, rok), czyli indeks, nazwisko i rok studiów studenta;
- Przedmiot=(nazwa, typ), czyli nazwa i typ przedmiotu;
- Ocena=(indeks,przed,data,stop), czyli ocena uzyskana przez studenta za przedmiot wraz z datą wystawienia.

Klucze główne relacji są podkreślone. Dodatkowo w relacji O występują klucze obce:

- O.indeks odnoszący się do S.indeks,
- O.przed odnoszący się do P.nazwa,
- Zastanowimy się, czy pola data i stop w relacji Ocena mogł być puste.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), \ P = (\underline{nazwa}, typ), \ O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$

Znaczenie zapytań

1. Indeksy i nazwiska studentów, którzy dostali 5.0 z BD.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$

- 1. Indeksy i nazwiska studentów, którzy dostali 5.0 z BD.
- Pełne dane studentów, którzy dostali jakąś ocenę 5.0.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- 1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$
- 2. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$

- 1. Indeksy i nazwiska studentów, którzy dostali 5.0 z BD.
- 2. Pełne dane studentów, którzy dostali jakaś ocenę 5.0.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- 1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$
- 2. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$

- 1. Indeksy i nazwiska studentów, którzy dostali 5.0 z BD.
- 2. Pełne dane studentów, którzy dostali jakąś ocenę 5.0.
- 3. Studenci, którzy podchodzili do BD co najmniej dwa razy.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- 1. $\pi_{S.indeks,nazwisko}(\sigma_{stop=5.0 \land przed='BD'}(S \bowtie O));$
- 2. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$
- 3. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{i1=indeks,\rho1=przed,\rhorzed='BD',data\neq d1}(\rho_{O1(i1,\rho1,d1,s1)}(O) \times O))$.

- 1. Indeksy i nazwiska studentów, którzy dostali 5.0 z BD.
- 2. Pełne dane studentów, którzy dostali jakąś ocenę 5.0.
- 3. Studenci, którzy podchodzili do BD co najmniej dwa razy.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

4a.
$$\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$$

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

4a.
$$\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$$

Znaczenie zapytań

4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop\neq 5,0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$

Znaczenie zapytań

4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop} \bowtie NULL(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5,0}(O));$
- 4b. $\pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop} \mid S, NULL(O));$
- 4c. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5,0}(O));$
- 4b. $\pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop} \mid S \mid NULL(O));$
- 4c. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5.0}(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)
- 4c. Studenci, którzy nie dostali żadnej piątki.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5,0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop} \mid S \mid NULL(O));$
- 4c. $\pi_{S,indeks,nazwisko,rok}(S) \setminus \pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5,0}(O));$
- 4d. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$

- 4a. Studenci, którzy dostali jakaś ocene inna niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)
- 4c. Studenci, którzy nie dostali żadnej piątki.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5,0}(O));$
- 4b. $\pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 4c. $\pi_{S,indeks,nazwisko,rok}(S) \setminus \pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5,0}(O));$
- 4d. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)
- 4c. Studenci, którzy nie dostali żadnej piątki.
- 4d. Studenci, którzy mają tylko oceny 5.0 (być może nie mają żadnych).

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop\neq 5,0}(O));$
- 4b. $\pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop} \mid S, NULL(O));$
- 4c. $\pi_{S,indeks,nazwisko,rok}(S) \setminus \pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5,0}(O));$
- 4d. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4e. $\pi_{S.ind,naz,rok}(S \bowtie O) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)
- 4c. Studenci, którzy nie dostali żadnej piątki.
- 4d. Studenci, którzy mają tylko oceny 5.0 (być może nie mają żadnych).

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Studenci, którzy nie dostali 5.0.

- 4a. $\pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop\neq 5,0}(O));$
- 4b. $\pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop \mid S \mid NULL}(O));$
- 4c. $\pi_{S,indeks,nazwisko,rok}(S) \setminus \pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop=5,0}(O));$
- 4d. $\pi_{S.indeks,nazwisko,rok}(S) \setminus \pi_{S.indeks,nazwisko,rok}(S \bowtie \sigma_{stop \neq 5.0}(O));$
- 4e. $\pi_{S,ind,naz,rok}(S \bowtie O) \setminus \pi_{S,indeks,nazwisko,rok}(S \bowtie \sigma_{stop} \neq 5.0(O));$

- 4a. Studenci, którzy dostali jakąś ocenę inną niż 5.0.
- 4b. Studenci, którzy nie dostali wpisu (niezgodne z więzami relacji)
- 4c. Studenci, którzy nie dostali żadnej piątki.
- 4d. Studenci, którzy mają tylko oceny 5.0 (być może nie mają żadnych).
- 4e. Studenci, którzy dostają tylko piątki, przy czym bierzemy pod uwagę tylko tych, którzy mają jakikolwiek wpis.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

5a.
$$\pi_{S.indeks,nazwisko}(S) \setminus \pi_{S.indeks,nazwisko}(S \bowtie O);$$

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

5a.
$$\pi_{S.indeks,nazwisko}(S) \setminus \pi_{S.indeks,nazwisko}(S \bowtie O);$$

Znaczenie zapytań

5a. Studenci, którzy nie mają wpisu.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

- 5a. $\pi_{S.indeks,nazwisko}(S) \setminus \pi_{S.indeks,nazwisko}(S \bowtie O);$
- 5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$

Znaczenie zapytań

5a. Studenci, którzy nie mają wpisu.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

- 5a. $\pi_{S.indeks,nazwisko}(S) \setminus \pi_{S.indeks,nazwisko}(S \bowtie O);$
- 5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$

- 5a. Studenci, którzy nie mają wpisu.
- 5b. Studenci, którzy mają jakiś niewypełniony wpis.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

- 5a. $\pi_{S.indeks,nazwisko}(S) \setminus \pi_{S.indeks,nazwisko}(S \bowtie O);$
- 5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 5c. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop=NULL}(O));$

- 5a. Studenci, którzy nie mają wpisu.
- 5b. Studenci, którzy mają jakiś niewypełniony wpis.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

- 5a. $\pi_{S.indeks,nazwisko}(S) \setminus \pi_{S.indeks,nazwisko}(S \bowtie O);$
- 5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 5c. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop=NULL}(O));$

- 5a. Studenci, którzy nie mają wpisu.
- 5b. Studenci, którzy mają jakiś niewypełniony wpis.
- 5c. Nikt.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

- 5a. $\pi_{S,indeks,nazwisko}(S) \setminus \pi_{S,indeks,nazwisko}(S \bowtie O);$
- 5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 5c. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop=NULL}(O));$
- 5d. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \neq NULL}(O));$

- 5a. Studenci, którzy nie mają wpisu.
- 5b. Studenci, którzy mają jakiś niewypełniony wpis.
- 5c. Nikt.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

- 5a. $\pi_{S,indeks,nazwisko}(S) \setminus \pi_{S,indeks,nazwisko}(S \bowtie O);$
- 5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 5c. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop=NULL}(O));$
- 5d. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \neq NULL}(O));$

- 5a. Studenci, którzy nie mają wpisu.
- 5b. Studenci, którzy mają jakiś niewypełniony wpis.
- 5c. Nikt.
- 5d. Nikt.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

Jak szukać czegoś, czego nie ma?

- 5a. $\pi_{S.indeks,nazwisko}(S) \setminus \pi_{S.indeks,nazwisko}(S \bowtie O);$
- 5b. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \ IS \ NULL}(O));$
- 5c. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop=NULL}(O));$
- 5d. $\pi_{S.indeks,nazwisko}(S \bowtie \sigma_{stop \neq NULL}(O));$

Znaczenie zapytań

- 5a. Studenci, którzy nie mają wpisu.
- 5b. Studenci, którzy mają jakiś niewypełniony wpis.
- 5c. Nikt.
- 5d. Nikt.

Krotka jest wybierana przez selekcję, gdy warunek ma dla niej wartość TRUE. Wartość UNKNOWN nie wystarcza.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Można pytać o to samo na różne sposoby. Czy to ma jakieś znaczenie?

 $\sigma_{rok=3}(S)$;

(6)
$$\pi_{nazwisko,indeks}($$
 $\sigma_{stop=5.0 \land typ=''zaaw''}(\sigma_{nazwa=przed}(P \times O)) \bowtie$
 $\sigma_{rok=4}(S))$
 $\cup \pi_{nazwisko,indeks}($
 $\sigma_{stop=5.0 \land typ=''obow''}(\sigma_{nazwa=przed}(P \times O)) \bowtie$

(6a)
$$\pi_{nazwisko,indeks}($$

$$\sigma_{((rok=3 \land typ=' obow') \lor (rok=4 \land typ=' zaaw'))}(\sigma_{rok=3 \lor rok=4}(S) \bowtie$$

$$\pi_{indeks,typ}(\rho_{P(przed,typ)}(\sigma_{typ=' zaaw' \lor typ=' obow'}(P))) \bowtie$$

$$\pi_{indeks,orzed}(\sigma_{stop=5,0}(O)))))$$

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, \underline{przed}, \underline{data}, stop)$$

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

(7a)
$$\pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$$

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

(7a)
$$\pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$$

Znaczenie zapytań

 Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

(7a)
$$\pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$$

- Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- (7a) $\pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7b) $\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$

- Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- (7a) $\pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7b) $\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7c) $\pi_{indeks}(S) \setminus \pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$

- Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- (7a) $\pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7b) $\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7c) $\pi_{indeks}(S) \setminus$

$$\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$$

- Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).
- 7c. Indeksy studentów, którzy nie są od nikogo gorsi z BD.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- (7a) $\pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7b) $\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7c) $\pi_{indeks}(S) \setminus$

$$\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O))))$$

(7d)
$$\pi_{indeks}(\sigma_{przed="BD"}(O)) \setminus \pi_{indeks}(\sigma_{stop < s1 \land przed="BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$$

- Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).
- 7c. Indeksy studentów, którzy nie są od nikogo gorsi z BD.

Baza danych

$$S = (\underline{indeks}, nazwisko, rok), P = (\underline{nazwa}, typ), O = (\underline{indeks}, przed, \underline{data}, stop)$$

- (7a) $\pi_{indeks}(\sigma_{stop>s1 \land przed="BD" \land p1=przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7b) $\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$
- (7c) $\pi_{indeks}(S) \setminus$

$$\pi_{indeks}(\sigma_{stop < s1 \land przed = "BD" \land p1 = przed}(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O))))$$

(7d)
$$\pi_{indeks}(\sigma_{przed="BD"}(O)) \setminus \pi_{indeks}(\sigma_{stop < s1 \land przed="BD"} \land p1=przed(O \bowtie \rho_{O1(i1,p1,d1,s1)}(O)))$$

- Indeksy studentów, którzy z BD mają ocenę lepszą niż ktoś inny, czyli nie są najgorsi.
- 7b. Indeksy studentów, którzy z BD mają ocenę gorszą niż ktoś inny, czyli nie są najlepsi (dopełnienie tego, czego szukamy).
- 7c. Indeksy studentów, którzy nie są od nikogo gorsi z BD.
- 7d. Indeksy studentów, którzy są najlepsi z BD.

Algebra relacji jest językiem imperatywnym (operacyjnym).

- Algebra relacji jest językiem imperatywnym (operacyjnym).
- Znaczenie zapytania (w języku naturalnym) nie zawsze jest oczywiste, gdyż algebra relacji nie przypomina języka naturalnego.

- Algebra relacji jest językiem imperatywnym (operacyjnym).
- Znaczenie zapytania (w języku naturalnym) nie zawsze jest oczywiste, gdyż algebra relacji nie przypomina języka naturalnego.
- To samo zapytanie może mieć wiele równoważnych postaci mogą one różnić się złożonością wykonania.

- Algebra relacji jest językiem imperatywnym (operacyjnym).
- Znaczenie zapytania (w języku naturalnym) nie zawsze jest oczywiste, gdyż algebra relacji nie przypomina języka naturalnego.
- To samo zapytanie może mieć wiele równoważnych postaci mogą one różnić się złożonością wykonania.
- Na podstawie samego opisu trudno określić moc tego języka.

- Algebra relacji jest językiem imperatywnym (operacyjnym).
- Znaczenie zapytania (w języku naturalnym) nie zawsze jest oczywiste, gdyż algebra relacji nie przypomina języka naturalnego.
- To samo zapytanie może mieć wiele równoważnych postaci mogą one różnić się złożonością wykonania.
- Na podstawie samego opisu trudno określić moc tego języka.
- Algebra relacji jest podstawą SQL.