

Fundamentos de la Seguridad Informática

Seguridad en Redes TCP/IP

Introducción

- Las redes conectan computadoras.
 ¿Que problemas se presentan?
- Mayor interacción es posible, a costa de interacciones no deseadas
- Veremos los retos y problemas específicos de las redes, y como contribuye y depende de la seguridad de las computadoras
- En particular hablaremos de redes TCP/IP (Internet)

Plan

- Conceptos básicos redes TCP/IP
- Problemas de seguridad en redes TCP/IP
- Mecanismos de mitigación
 - Seguridad IP (IPSec)
 - Redes privadas virtuales (VPN)
 - Virtual LAN (VLAN)
 - Firewalls
 - Sistemas de detección de intrusos (IDS)

Conceptos Básicos de redes TCP/IP

Redes de datos TCP/IP

- Pequeñas o grandes, su objetivo es llevar información de un computador a otro
- La mayor red de datos pública, Internet, funciona sobre protocolos e ideas de hace al menos 40 años
- Para simplificar su estudio, las redes se modelan separando su funcionalidad en "capas"
- Nos basaremos en el modelo OSI modificado para adaptarse a la arquitectura de TCP/IP

Internet

- Internet es el resultado de la interconexión de múltiples redes de computadoras que utilizan un mismo conjunto de protocolos
- Utiliza la tecnología de conmutación de paquetes (unidades de datos con un formato definido)

Modelo de capas

- Se utiliza un modelo organizado en capas para el diseño y análisis de las redes de datos
- Se trata de atacar el problema complejo mediante la división en problemas de menor complejidad
- Cada capa debe resolver un problema específico y dar servicios a las capas superiores

Modelo de capas en Internet

Funciones principales

- Aplicación (http, ftp, ssh, telnet, pop3, imap, ...)
 - Clientes y servidores de aplicaciones concretas
 - Ej: transferencia de archivos, correo electrónico, navegación...
- Transporte (tcp, udp)
 - Comunicación de datos entre cliente y servidor
 - Diferentes tipos de servicio y calidades
- Red (ip)
 - Encaminamiento de paquetes a través de la red para alcanzar el destino

Funciones principales (cont.)

- Enlace de datos (ethernet, ppp, hdlc, ...)
 - Transmisión de datos entre equipos directamente conectados. Ej: Ethernet, PPP, HDLC. También se pueden considerar ATM, FrameRelay cuando se usan como redes de transporte de IP
- Física (par telefónico, fibra óptica, coaxial, wireless)
 - Transmisión de datos en cada medio físico particular

Ejemplo: Navegación

- En mi navegador escribo:
 - http://www.fing.edu.uy
- Se despliega en mi pantalla un conjunto de textos, imágenes, animaciones
- ¿Qué funciones son necesarias para que esto funcione?

Ejemplo: Navegación

- Los usuarios se manejan mejor con nombres (www.fing.edu.uy), pero las computadoras no
- Hay que <u>transformar esa etiqueta en una dirección</u> de máquina. Protocolo de capa de aplicación: DNS
- Para intercambiar información entre el cliente y el servidor necesito un protocolo de capa de transporte: TCP en el ejemplo
- Para transportar los paquetes a través de la red uso el protocolo de capa de red: IP
- En las capas inferiores depende de la tecnología de conexión a la red en cada extremo

Capa de aplicación

- Múltiples protocolos: smtp, pop3, imap, http, https, ftp, etc.
 - Vulnerabilidades en protocolos e implementaciones
- Servicio DNS: Domain Name system
 - Servicio de capa de aplicación usado por las demás aplicaciones
 - Se implementa como una base de datos distribuida a nivel mundial
 - Opera con un mecanismo de consultas y respuestas
 - Es un servicio crítico para el usuario de Internet

Capa de transporte

- En Internet, 2 protocolos:
 - TCP: Orientado a conexión, confiable
 - Garantiza un flujo confiable de información entre dos entidades
 - Usado por http, ftp, correo electrónico (SMTP), etc.
 - UDP: No orientado a conexión, no confiable
 - Usado por DNS, VoIP,

Encabezado TCP

Puerto de origen						Puerto de destino
Número de secuencia						
Número de reconocimiento						
Header length		U A	Р	R S	F	Window size
Checksum						Urgent Pointer
Opciones (opcional)						
Datos (opcional)						
→ 32 bits →						

Establecimiento de conexión en TCP

GRUPO DE SEGURIDAD INFORMÁTICA

Algunos problemas de TCP

- Por cada conexión establecida o en proceso de establecerse el equipo consume recursos
 - Ataques de negación de servicio (SYN Flooding)
- Si el número de secuencia es predecible, podría establecer una conexión "ciega" o insertar datos en otra conexión
 - Session Hijacking

UDP

- Muy sencillo. Básicamente puertos origen y destino
- No ofrece garantías de entrega en destino
- No tenemos ningún campo que nos permita reconocer una solicitud válida de una inválida
 - Muy fácil realizar solicitudes "a nombre de otro"

Capa de Red IP

- Arquitectura de datagramas
- Cada datagrama contiene en su encabezado la dirección del destino
- Es un servicio "mejor esfuerzo". No hay garantía de entrega, ni de retardos, ni de orden
- La decisión de enrutamiento se realiza paquete a paquete en base a dirección de destino
- La red no mantiene información de estado de los flujos de paquetes que circulan por ella

Encaminamiento de datagramas (forwarding function)

Direcciones IP

- Identificador "único" en la red
- En IP versión 4: 32 bits (164.73.38.2)
- En IP versión 6: 128 bits (2001:1328:6::5)
- Asignadas por "Registros de Internet"
 - Hay rangos de direcciones para uso privado
- · Cada paquete lleva dirección de origen y destino
- Típicamente se puede enviar paquetes con cualquier dirección de origen

Enrutamiento

- Cada enrutador en el camino de origen a destino debe conocer como llegar al destino
- Rutas estáticas: configuradas manualmente
- Rutas dinámicas: protocolos de ruteo
- Los enrutadores e información de ruteo son targets atractivos para un atacante
 - Negación de servicio
 - Redirección de tráfico
- No hay indicación del origen real del paquete

Bibliografía y referencias

- A. Tanenbaum. Redes de Computadoras.
 4Ta ed. Prentice Hall, 2003.
- R. Anderson, Security Engineering A Guide to Building Dependable Distributed Systems, Wiley, 2001.
- D. Gollman, Computer Security, Wiley, 2006.