	ii. The how zero strigular values of A are the square roots of the eigenvalues
	of ATA and is also true for ATA.
	(c) i. FMSE. There are linear operators with no eigenvalues, and actually, it
	should be that there are at most n distinct eigenvalues.
-	ii. FALSE. For example, A=[0] and [0] is the eigenvector of eigenvalue
	1. and [,] is the eigenvector of eigenvalue 2. However, [,] is not an
	eigenvector of A. iii. True. $xTAx = xTRARTx = (QTx)TA(QTX) = \sum_{i=1}^{n} \lambda_i (q_iTx)^2 > \lambda_n \sum_{i=1}^{n} (q_iTx)^2 = \lambda_n x ^2$
	Then, Anlix112 >0, and this ensures its eigenvalues are non-negative.
	IV. TRUE. Suppose L: IR" -> IR", then rank(L) (= dim R(L)) + nullity(L) = m, then
	the no: of non-zero eigenvalues must be less or equal to the rank of a matrix
-	v. FARSE Since these two eigenvectors are corresponding to one eigenvalue, then
_	they can be linearly independent so that their sum may not be an eigen wester.
^ .	de la mate no de produció aprodes nos portes es estados en estados est
)	(A) i. p(head "H50") = 0.5, p(head "H60") = 0.6, find p("H50" tail)?
	(A) i. p(head "H50") = 0.5, p(head "H60") = 0.6, find p("H50" tail)? p("H50" tail) = p(tail "H50") p("H50") = p(tail "H50") p("H50") P(tail) \(\bar{\gamma} \)
	ρ(tail) = ρ(tail) = ρ(tail) Της του) το (tail) Της του) το (του)
	\$ (that (150) pt H50) do (150) the first of
	The state of the s
	$= \frac{0.5 \times 0.5}{0.5 \times 0.5} = \frac{5}{9}$
t f	ii. If the coin is of type 450, the probability of THIH is (0.5)4
_	If the coin is of type H bo, the probability of THHH is out x p. 6)?
	The probability of it will be H50 is: $\frac{(0.5)^{4}}{(6.5)^{4}} = 0.42$ $\frac{(6.5)^{4}}{(6.5)^{4}} = 0.42$ $\frac{(6.5)^{4}}{(6.5)^{4}} = 0.42$
	$\frac{(0,5)^{4}}{(0,5)^{4}} = 0.43$
	the of the courts of competition of a needs out of ten this
	15 (0,5) C10(0.5)
9	If the coin is of type 1155, the probability of a heads out of ten flips
	1's Cto (0.55) "(10(1-0.55)
	If the coin is of type \$160, the probability of 9 heads out of ten flips
	Then, the probability of coin being 450 is C10(0,5) C10(0
	$(0,5)^{1} \circ \qquad \qquad C_{10}^{10}(0,3) + C_{10}^{10}(0,3) + C_{10}^{10}(0,4)$
	(0,5)°+(0,55)(0,45)+(0,6)9(0,4) = 0.138
1	

```
The probability of the win being H55 is \frac{(0.55)^9(0.45)}{(0.55)^9(0.45)+(0.55)^9(0.45)+(0.6)^9(0.4)} = 0.293
The probability of the win being H60 is \frac{(0.6)^9(0.4)}{(0.55)^9(0.45)+(0.6)^9(0.4)} = 0.569
                                            (b) Find p(pregnant | +ve)

p(pregnant | +ve) = p(+ve) pregnant) p(pregnant)

n(+ve) pregnant) p(pregnant) +
                                                                                                                                                                                                                                                                                                                                                                                                  p(tre| pregnant) p (pregnant) + p(tre|not) p(not)
                                                                                                                                                                                                                                                                                                                                                = 99% × 1% + 19% × 99% = 9.09%
                                                                                                                 Since 99% of the woman population is not pregnant at any time point.
                                                                                                                          even the test indicates positive, it may just be a false positive, and this
                                                                                                                           can also be interred by high false positive rate (=10%) given in the question.
                                               (c) E[AX+b] = Z(AX+b) 1(x) = ZAXp(x) + Zb1(x) = AZXp(x) + b Zp(x)
                                                                                                                    - AECX) tb
                                                (d) cov(x) = E((x-Ex)(x-Ex)^T), Find cov(Ax+b)
                                                                              Let Y= Ax+b, then cov(Y) = E[[4-EY][Y-EY]]
                                                                                                                                         Y-EY)= Ax+b-ECA×+b) = Ax+b-AECx)-b = Ax-AECx) = A(x-E[x])
                                                                                                               =) cov(Y) = E(A(x-E(x))(x-E(x))^TA^T) = AE((x-E(x))(x-E(x))^TA^T = A cov(x) A^T
3. (a) XEIR", YEIR", AER"XM, find OxXTAY
                                                                                                                           Let Z= xTAY

\[
\frac{\partial z}{\partial x_1} = \frac{\partial x_1}{\partial x_1} = \frac{\partial x

\frac{\partial^{2}}{\partial x} = Ay \qquad \Rightarrow \nabla_{x} x^{T} Ay = Ay

(b) \nabla_{y} x^{T} Ay \qquad \text{Let } z = x^{T} Ay \qquad \frac{\partial^{2}}{\partial y} = \frac{\partial^{2} z^{T} x (A)}{\partial y} = \frac{\partial^{2} z^{T} x (A)}{\partial y} = \sum_{i=1}^{N} x^{T} A_{i} \qquad \frac{\partial^{2} z^{T}}{\partial y} = \sum_{i=1}^{
                                                                                                                  \frac{\partial z}{\partial A_{11}} = \frac{\partial z}{\partial z} = \frac{\partial z}{\partial 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ZATAX = Zajxj+Zax
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       = (AX), + (ATX),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  X(TA +A)= XATX6 &
                                                                                     \Rightarrow \nabla_{A} x^{T} A y = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{n}y_{m} \\ \vdots & \ddots & \vdots \\ x_{n}y_{1} & \cdots & x_{n}y_{m} \end{bmatrix} = xyT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               b_1 \times b_2 \times b_3 \times b_4 
                                      (A) f=xTAx+bTx, find Vxf
                                                                                                f=X^TA \times +b^T x, find \nabla x f

\nabla x f = (A+A^T) \times +b since \nabla x (x^TAx) = \frac{\partial x^TAx}{\partial x} = \frac{\partial za_{ij} x_i x_j}{\partial x} \Rightarrow \nabla x f = (A+A^T) x
```

(e)
$$\int = tr(AB)$$
, find $\nabla A \int tr(AB) = tr \begin{bmatrix} -\alpha_1 \\ -\alpha_2 \end{bmatrix} \begin{bmatrix} b_1 & b_2 \\ b_1 & b_2 \end{bmatrix}$

$$= tr \begin{bmatrix} -\alpha_1 b_1 & \alpha_1 b_2 \\ -\alpha_2 b_1 & \alpha_2 b_2 & \alpha_3 b_1 \\ -\alpha_2 b_1 & \alpha_2 b_2 & \alpha_3 b_1 \end{bmatrix}$$

$$= \sum_{i=1}^{N} \alpha_i (b_i) + \sum_{i=1}^{N} \alpha_i (b_i) + \dots + \sum_{i=1}^{N} \alpha_n (b_i$$

Linear regression workbook

This workbook will walk you through a linear regression example. It will provide familiarity with Jupyter Notebook and Python. Please print (to pdf) a completed version of this workbook for submission with HW #1.

ECE 239AS, Winter Quarter 2018, Prof. J.C. Kao, TAs C. Zhang and T. Xing

```
In [1]: import numpy as np
   import matplotlib.pyplot as plt

# x = np.arange(0,3*np.pi, 0.1)
# y = np.sin(x)

# plt.plot(x, y, label = 'Sine')
# plt.xlabel('x axis label')
# plt.ylabel('y axis label')
# plt.title('Sine')
# plt.legend()
# plt.grid()
# plt.show()

#allows matlab plots to be generated in line
%matplotlib inline
```

Data generation

For any example, we first have to generate some appropriate data to use. The following cell generates data according to the model: $y = x - 2x^2 + x^3 + \epsilon$

```
In [2]: np.random.seed(0) # Sets the random seed.
    num_train = 200 # Number of training data points

# Generate the training data
    x = np.random.uniform(low=0, high=1, size=(num_train,))
    y = x - 2*x**2 + x**3 + np.random.normal(loc=0, scale=0.03, size=(num_train))
    ax = f.gca()
    ax.plot(x, y, '.')
    ax.set_xlabel('$x$')
    ax.set_ylabel('$y$')
```

Out[2]: Text(0,0.5,'\$y\$')

QUESTIONS:

Write your answers in the markdown cell below this one:

- (1) What is the generating distribution of x?
- (2) What is the distribution of the additive noise ϵ ?

ANSWERS:

- (1) Uniform distribution.
- (2) Normal(Gaussian) distribution with a mean of 0, standard deviation of 0.03, and the output shape of num_train samples.

Fitting data to the model (5 points)

Here, we'll do linear regression to fit the parameters of a model y = ax + b.

[-0.10599633 0.13315817]

```
In [4]: # Plot the data and your model fit.

f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

# Plot the regression line
xs = np.linspace(min(x), max(x),50)
xs = np.vstack((xs, np.ones_like(xs)))
plt.plot(xs[0,:], theta.dot(xs))
```


QUESTIONS

- (1) Does the linear model under- or overfit the data?
- (2) How to change the model to improve the fitting?

ANSWERS

- (1) The linear model is underfitting the data.
- (2) Need to change the model to a polynomial model, eg. a quadratic function.

Fitting data to the model (10 points)

Here, we'll now do regression to polynomial models of orders 1 to 5. Note, the order 1 model is the linear model you prior fit.

```
In [5]:
       N = 5
       xhats = []
       thetas = []
        # ======= #
        # START YOUR CODE HERE #
        # ====== #
       # GOAL: create a variable thetas.
        # thetas is a list, where theta[i] are the model parameters for the polyn
           i.e., thetas[0] is equivalent to theta above.
           i.e., thetas[1] should be a length 3 np.array with the coefficients of
           ... etc.
       thetas.append(theta)
       xhat = np.vstack((x, np.ones like(x)))
        # xhats.append(xhat)
        for degree in range(2,N+1):
           xhat = np.vstack((x**degree, xhat))
           new theta = np.linalg.lstsq(xhat.T, y)[0]
           thetas.append(new theta)
             xhats.append(xhat)
       print(thetas)
       pass
        # ======= #
        # END YOUR CODE HERE #
        # ====== #
```

```
In [6]: # Plot the data
        f = plt.figure()
        ax = f.gca()
        ax.plot(x, y, '.')
        ax.set_xlabel('$x$')
        ax.set ylabel('$y$')
        # Plot the regression lines
        plot xs = []
        for i in np.arange(N):
            if i == 0:
                plot x = np.vstack((np.linspace(min(x), max(x), 50), np.ones(50)))
            else:
                plot x = np.vstack((plot x[-2]**(i+1), plot x))
            plot xs.append(plot x)
        # print(plot xs)
        for i in np.arange(N):
            ax.plot(plot_xs[i][-2,:], thetas[i].dot(plot_xs[i]))
        labels = ['data']
        [labels.append('n={}'.format(i+1)) for i in np.arange(N)]
        bbox to anchor=(1.3, 1)
        lgd = ax.legend(labels, bbox to anchor=bbox to anchor)
```


Calculating the training error (10 points)

Here, we'll now calculate the training error of polynomial models of orders 1 to 5.

```
In [7]: training_errors = []

# ============ #

# START YOUR CODE HERE #
# ========= #

# GOAL: create a variable training_errors, a list of 5 elements,
# where training_errors[i] are the training loss for the polynomial fit of

for i in np.arange(N):
    theta_ = thetas[i]
    error = sum((np.dot(theta_, xhat[-(i+2):, :])-y)**2)/x.size
    training_errors.append(error)

pass

# =========== #
# END YOUR CODE HERE #
# ========== #
print ('Training errors are: \n', training_errors)
```

```
Training errors are:
[0.0023799610883627016, 0.0010924922209268528, 0.00081696038011053683, 0.0008165353735296978, 0.00081614791955252996]
```

QUESTIONS

- (1) What polynomial has the best training error?
- (2) Why is this expected?

ANSWERS

- (1) The polynomial model of order 5 has the best training error.
- (2) It is because the model with high capacity can solve complex tasks, so that the regression line will be more approaching to true points. Therefore the training error will be decreasing as the order increases.

Generating new samples and testing error (5 points)

Here, we'll now generate new samples and calculate testing error of polynomial models of orders 1 to 5.

```
In [8]: x = np.random.uniform(low=1, high=2, size=(num_train,))
y = x - 2*x**2 + x**3 + np.random.normal(loc=0, scale=0.03, size=(num_tra
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
```

Out[8]: Text(0,0.5,'\$y\$')


```
In [10]: # Plot the data
         f = plt.figure()
         ax = f.gca()
         ax.plot(x, y, '.')
         ax.set_xlabel('$x$')
         ax.set ylabel('$y$')
         # Plot the regression lines
         plot xs = []
         for i in np.arange(N):
             if i == 0:
                 plot x = np.vstack((np.linspace(min(x), max(x), 50), np.ones(50)))
             else:
                 plot x = np.vstack((plot x[-2]**(i+1), plot x))
             plot xs.append(plot x)
         for i in np.arange(N):
             ax.plot(plot_xs[i][-2,:], thetas[i].dot(plot_xs[i]))
         labels = ['data']
         [labels.append('n={}'.format(i+1)) for i in np.arange(N)]
         bbox to anchor=(1.3, 1)
         lgd = ax.legend(labels, bbox to anchor=bbox to anchor)
```



```
In [11]: testing_errors = []

# ============ #

# START YOUR CODE HERE #
# ========== #

# GOAL: create a variable testing_errors, a list of 5 elements,
# where testing_errors[i] are the testing loss for the polynomial fit of
for i in np.arange(N):
    theta_ = thetas[i]
    error = sum((np.dot(theta_, xhat[-(i+2):, :])-y)**2)/x.size
    testing_errors.append(error)

pass

# ============ #
# END YOUR CODE HERE #
# ========== #
# print ('Testing errors are: \n', testing_errors)
```

```
Testing errors are:
[0.80861651845505844, 2.1319192445058217, 0.031256971083404202, 0.011
870765198475226, 2.1491021807250208]
```

QUESTIONS

- (1) What polynomial has the best testing error?
- (2) Why polynomial models of orders 5 does not generalize well?

ANSWERS

- (1) The polynomial with the order 4 has the best tesing error.
- (2) A polynomial model of degree 5 suffers from overfitting. It has too many parameters for the actual structure so that it focuses too much on the training data themselves but not generalization.

```
In [ ]:
```