

Randomness in Computing

LECTURE 10

Last time

Chernoff Bounds

Today

- Hoeffding Bounds
- Applications of Chernoff-Hoeffding Bounds
- Estimating a Parameter
- Set Balancing

Chernoff Bound (Upper Tail). Let $X_1, ..., X_n$ be independent Bernoulli RVs.

Let
$$X = X_1 + \cdots + X_n$$
 and $\mu = \mathbb{E}[X]$. Then

• (stronger) for any $\delta > 0$,

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

• (easier to use) for any $\delta \in (0,1]$, $\Pr[X \ge (1+\delta)\mu] \le e^{-\mu\delta^2/3}.$

Chernoff Bound (Lower Tail). Let $X_1, ..., X_n$ be independent Bernoulli RVs.

Let
$$X = X_1 + \cdots + X_n$$
 and $\mu = \mathbb{E}[X]$. Then

• (stronger) for any $\delta \in (0,1)$,

$$\Pr[X \le (1 - \delta)\mu] \le \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^{\mu}.$$

• (easier to use) for any $\delta \in (0,1)$, $\Pr[X \le (1-\delta)\mu] \le e^{-\mu\delta^2/2}.$

Chernoff Bound (Both Tails). Let $X_1, ..., X_n$ be independent Bernoulli RVs.

Let
$$X = X_1 + \cdots + X_n$$
 and $\mu = \mathbb{E}[X]$. Then

• for any $\delta \in (0,1)$,

$$\Pr[|X - \mu| \ge \delta \mu] \le 2e^{-\mu \delta^2/3}.$$

• The Halting Problem Team wins each hockey game they play with probability 1/3. Assuming outcomes of the games are independent, derive an upper bound on the probability that they have a winning season in *n* games.

• The Halting Problem Team hires a new coach, and critics revise their probability of winning each game to 3/4. Derive an upper bound on the probability they suffer a losing season.

We throw n balls uniformly and independently into n bins. Let Y_1 be the number of balls that fell into bin 1.

Determine m such that $\Pr[Y_1 > m] \leq \frac{1}{n^2}$.

Hoeffding Bound. Let $X_1, ..., X_n$ be independent RVs with $\mathbb{E}[X_i] = \mu_0$ and $\Pr[a \le X_i \le b] = 1$. Let $X = X_1 + \cdots + X_n$. Then

- (upper tail) $\Pr[X \ge \mu_0 n + \epsilon n] \le e^{-2n\epsilon^2/(b-a)^2}$.
- (lower tail) $\Pr[X \le \mu_0 n \epsilon n] \le e^{-2n\epsilon^2/(b-a)^2}$

Application: Estimating a parameter

- Unknown: probability p that a feature occurs in the population.
- Obtain an estimate by taking *n* samples
- $X \sim \text{Bin}(n, p)$
- Suppose $X = \tilde{p}n$.
- A 1γ confidence interval for parameter p is $[\tilde{p} \delta, \tilde{p} + \delta]$ such that $\Pr[p \in [\tilde{p} \delta, \tilde{p} + \delta]] \ge 1 \gamma$.
- Find a tradeoff between γ , δ and n.

Application: Estimating a parameter

- A 1γ confidence interval for parameter p is $[\tilde{p} \delta, \tilde{p} + \delta]$ such that $\Pr[p \in [\tilde{p} \delta, \tilde{p} + \delta]] \ge 1 \gamma$.
- Find a tradeoff between γ , δ and n.

Solution: $\mathbb{E}[X] = np$

- Suppose $p \notin [\tilde{p} \delta, \tilde{p} + \delta]$
- Case 1: $p < \tilde{p} \delta$. Then $\tilde{p} > p + \delta$
- Case 2: $p > \tilde{p} + \delta$. Then \tilde{p}
- $\gamma = 2 \cdot e^{-2\delta^2 n}$

Application: Set Balancing

- Given: an $n \times m$ matrix A with 0-1 entries
- **Definition:** $||(x_1, ..., x_n)||_{\infty} = \max_{i \in [n]} |x_i|$
- Find: $b \in \{-1,1\}^m$ minimizing $||Ab||_{\infty}$

Partition subjects into two groups, so that each feature is balanced.

Application: Set Balancing

- Algorithm: Choose each b_i u.a.r. from $\{-1,1\}$.
- Theorem. $\Pr[||Ab||_{\infty} \ge \sqrt{4m \ln n}] \le 2/n$.

