CSc 106 Fall 2012

Lab 3: Logic and Circuits, Sorting and Running times

Boolean Algebra review

- Boolean Operators:
 - AND ^
 - OR V
 - NOT ¬
 - XOR ⊕

- NAND
- NOR

Order of Operations

BNAO

- I. Brackets
- 2. Not
- 3. And
- 4. Or

AND, OR, XOR, NOT Truth Tables

AND

Α	В	A∧B
0	0	0
0	I	0
	0	0
_	Ι	I

OR

Α	В	A∨B
0	0	0
0	I	I
-	0	- 1
_	- 1	I

XOR

Α	В	A⊕B
0	0	0
0	- 1	- 1
-	0	- 1
ı	I	0

NOT

A	¬A
0	I
-	0

NAND, NOR Truth Tables

AND

A	В	A∧B
0	0	0
0	-	0
	0	0
- 1	-1	- 1

OR

Α	В	A∨B
0	0	0
0	I	- 1
-	0	- 1
-	I	I

NAND

Α	В	¬(A∧B)
0	0	-
0	I	1
I	0	I
_	I	0

NOR

Α	В	¬(A∨B)
0	0	- 1
0	I	0
	0	0
	I	0

¬(A OR B)

What is the answer if: A=I, B=0?

A. 0

B. I

Quick Quiz ¬(A OR B)

What is the answer if: A=I, B=0?

A. 0

B. I

ANSWER: 0

(¬AXORB)

What is the answer if: A=I, B=I?

A. 0

B. I

Quick Quiz (¬AXOR B)

What is the answer if: A=I, B=I?

A. 0

B. I

ANSWER: I

Boolean Operators and Gates

- Each Operator can be physically built as a gate to build more complex circuits
- We can represent these gates as symbols to draw circuits

Logic Gates

Boolean Formulas and Circuits

Boolean Formula

Circuit:
Breadboard*

^{*} http://webhome.csc.uvic.ca/~mcheng/samples/hoole/wiring.html

Translating from Formula to Circuit

- $(A \land B) \lor (C \land \neg A)$
 - each operator is a gate

Translating from Formula to Circuit

- (A∧B)∨(C∧¬A)
 - each operator is a gate
 - each variable is an input

Translating from Formula to Circuit

- (A∧B)∨(C∧¬A)
 - each operator is a gate
 - each variable is an input
 - lines represent wires that connect them

$$(A \land B) \lor (C \land \neg A)$$

Let's draw the circuit representation of this boolean formula

$$(A \land B) \lor (C \land \neg A)$$

First: inputs

B

A

C

$$(A \land B) \lor (C \land \neg A)$$

$$(A \land B) \lor (C \land \neg A)$$

$$(A \land B) \lor (C \land \neg A)$$

$$(A \land B) \lor (C \land \neg A)$$

Translating from Circuit to Formula

Work it out...

Translating from Circuit to Formula

Simple ALU_{B[0]}

• 2 2-bit inputs + carry

control input

- 2-bit output + carry
- can perform AND, OR,
 XOR and addition

Multiplexors

Simple ALU

- 2 2-bit inputs + carry
- control input
- 2-bit output + carry
- can perform AND, OR,
 XOR and addition

