# Coordinate Reference Systems

Rolf Becker





https://de.wikipedia.org/wiki/Datei:Gloabl and Regional Ellipsoids.svg

# Global Ellipsoid: Center?

- Geometric Center (GC): green dot
- Center of Mass (CM), Center of Gravity: yellow dot
- Example: one block made of two materials, half iron, half wood



#### GRS80

- GRS 80, or Geodetic Reference System 1980, is a geodetic reference system consisting of a **global reference ellipsoid** and a **gravity field model**.
- The reference ellipsoid is regular.
- The geoid (/ˈdʒiːɔɪd/) is the shape that the surface of the oceans would take under the influence of Earth's gravity and rotation alone, in the absence of other influences such as winds and tides.
- Gravitational equipotential surface
- The geoid is irregular.

#### Deviation of the Geoid from the idealized figure of the Earth

(difference between the EGM96 geoid and the WGS84 reference ellipsoid)



Red areas are above the idealized ellipsoid; blue areas are below.



https://commons.wikimedia.org/wiki/File:Geoid height red blue averagebw.png

# World Geodetic System WGS84 (EPSG:4326)

- Used by GPS
- Origin located in Earth's center of mass
- Ref. elipsoid differs slightly from GRS80
- Equatorial (a), polar (b) and mean Earth radii as defined in the 1984 World Geodetic System revision (not to scale)



https://commons.wikimedia.org/wiki/File:WGS84\_mean\_Earth\_radius.svg https://en.wikipedia.org/wiki/World\_Geodetic\_System#WGS84 Different Reference Ellipsoids

NOAA:
National Oceanic
and Atmospheric
Agency



Ellipsoid
 approximates
 geoid locally



The red ellipsoid fits the geoid well in North America.



The blue ellipsoid fits the geoid well in Europe.





center of mass of geoid
 center of ellipsoid

http://www.geography.hunter.cuny.edu/~jochen/gtech361/lectures/lecture04/concepts/Datums/Components%20of%20a%20datum.htm

# WGS 84: Latitude, Longitude (lat, lon)

- Prime Meridian: λ = 0°
   (approx. Greenwich)
- Latitude (Breite) φ, φ : measured from equator, North +, South -
- Logitude (Länge) λ : measured from PM, East + , West -



• Lat: N – S

• Lon: E – W





# Longitude



https://commons.wikimedia.org/wiki/File:Longitude (PSF).png

## Metropolis

#### Kamp-Lintfort:

• WGS84: 51° 30′ 0″ N 6° 32′ 0″ E

• WGS84: 51.5° 6.533333°

UTM: 32U 328794 5708314

#### Which city?

• WGS84: 40° 42′ 46″ N 74° 0′ 21″ W

• WGS84: 40.712778° -74.005833°

• UTM: 18T 583973 4507349

https://tools.wmflabs.org/geohack/geohack.php?pagename=Kamp-Lintfort&language=de&params=51.5 N 6.53333333333 E region:DE-NW type:city(37346)

# Map Projections

- Geographic coordinates: lat, lon (radius)
- Cartesian coordinates:x, y (z)
- Mostly optimized locally!



## Map Projections



The coordinate system of the Netherlands is derived from an oblique azimuthal stereographic projection.

http://kartoweb.itc.nl/geometrics/Introduction/introduction.html

# Different Azimuthal Projections



http://www.geo.hunter.cuny.edu/~jochen/gtech201/lectures/lec6concepts/Map%20coordinate%20systems/Perspective.htm

# Projection Invariants (what is preserved)

- Preserving direction (azimuthal or zenithal), a trait possible only from one or two points to every other point
- Preserving shape locally (conformal or orthomorphic)
- Preserving area (equal-area or equiareal or equivalent or authalic)
- Preserving distance (equidistant), a trait possible only between one or two points and every other point
- Preserving shortest route, a trait preserved only by the gnomonic projection
- Because the sphere is not a developable surface, it is impossible to construct a map projection that is both equal-area and conformal.

# Map Projection - Tissot's Indicatrices





https://www.researchgate.net/publication/273517879 User preferences for world map projections

# **Mecator Projection**



Red Dots: Tissot's Indicatrix / Indicatrices



# **Mercator Projection**



Directions along a Rhumb line are true between any two points on a map. Distances are true only along the Equator. Although it has a conformal property, areas are greatly distorted increasing size at poles.

https://gisgeography.com/cylindrical-projection/

#### Rhumb Line

• In navigation, a rhumb line, rhumb, (/rʌm/) or loxodrome is an arc crossing all meridians of longitude at the same angle, that is, a path with constant bearing as measured relative to true or magnetic north.



https://en.wikipedia.org/wiki/Rhumb line

## Tranverse Mercator Projection



Lambert introduced the
Transverse Mercator in 1772. It
uses a horizontally oriented
cylinder tangent to a Meridian.
This is particular useful for
mapping large areas that are
mainly north-south in extent.

https://gisgeography.com/cylindrical-projection/

# Universal Transverse Mercator (UTM): Conformal Projection



# Nordrhein-Westfalen: ETRS89 / UTM, Realisation of WGS84

• ETRS89: European Terrestial Reference System

| Bezugssystem           | Europäisch terrestrisches<br>Referenzsystem 1989                                             |
|------------------------|----------------------------------------------------------------------------------------------|
| Bezugsfläche           | GRS80-Ellipsoid,<br>Große Halbachse a: 6 378 137 m und<br>Abplattung f: 1 : 298, 257 222 101 |
| Datum/Lagerung         | Fundamentalstationen des ITRS<br>zum Zeitpunkt Januar 1989                                   |
| Abbildung              | Universale Transversale<br>Mercatorabbildung (UTM)                                           |
| Projektion             | Schnittzylinder - siehe Abb. 2                                                               |
| Meridianstreifensystem | 6° breite Meridianstreifen (Zonen)                                                           |
| Hauptmeridian          | nicht längentreu,<br>Maßstabsfaktor 0,9996                                                   |
| Netzgrundlage          | ETRS89                                                                                       |

X X

Tab. 1: Wesentliche Merkmale von ETRS89/UTM

Abb. 1: Dreidimensionales kartesisches geozentrisches Koordinatensystem

https://www.bezreg-

koeln.nrw.de/brk internet/publikationen/abteilung07/pub geobasis etrs89.pdf

## Nordrhein-Westfalen: ETRS89 / UTM



Abb. 2: Schnittzylinder der UTM-Abbildung

Abb. 3: Die Lage von NRW in der UTM-Zone 32

https://www.bezreg-

koeln.nrw.de/brk internet/publikationen/abteilung07/pub geobasis etrs89.pdf

## EPSG: Unique ID for CRS

- EPSG: European Petroleum Survey Group Geodesy
- Provides a unique numeric key for all registered CRS
- EPSG:4326 -> WGS84 (GPS coord.), <a href="https://epsg.io/4326">https://epsg.io/4326</a>
- **EPSG:25832** -> ETRS89 / UTM zone 32N, <a href="https://epsg.io/25832">https://epsg.io/25832</a>
  - Ka-Li coord: 327896.29, 5710585.12
- EPSG:4647 -> ETRS89 / UTM zone 32N (zE-N), <a href="https://epsg.io/4647">https://epsg.io/4647</a>
  - Ka-Li coord: **32**327896.29, 5710585.12
  - Remarks: Variant of ETRS89 / UTM zone 32N
     (CRS code 25832) in which easting has zone prefix.
- EPSG:3857 -> WGS 84 / Pseudo-Mercator, <a href="https://epsg.io/3857">https://epsg.io/3857</a>
  - Spherical Mercator, Google Maps, OpenStreetMap, Bing, ArcGIS, ESRI



http://theconversation.com/five-maps-that-will-change-how-you-see-the-world-74967

### WGS 84: GPS Trilateration



https://gisgeography.com/wgs84-world-geodetic-system/

# Geoid, Ellipsoid, Topography



https://gis.stackexchange.com/questions/80533/which-of-egm96-geoid-or-wgs84-ellipsoid-fits-the-earth-better



https://nptel.ac.in/courses/105104100/lectureB 8/B 8 8coordinate.htm