# Universidad Internacional de Valencia (VIU)

# 56GIIN – Teoría de la Computación

Actividad #2

**Alumno:** Gagliardo Miguel Angel

## **Ejercicio #1**

Construya gramáticas libres de contexto que generen los siguientes lenguajes:

(a)  $\{w \in \{0, 1\}^* \mid w \text{ contiene al menos tres 1's}\}$ 

## **Solucion**

```
G = (V, T, P, S)
V = \{S, B\}
T = \{0, 1\}
S = S
P = \{
S \rightarrow B1B1B1B
B \rightarrow 0B \mid 1B \mid \epsilon
}
```

**(b)**  $\{w \in \{0, 1\}^* \mid w = w^R \text{ y } |w| \text{ es par}\}$ 

## **Solucion**

G = (V, T, P, S)  
V = {S}  
T = {0, 1}  
S = S  
P = { S 
$$\rightarrow$$
 0S0 | 1S1 |  $\epsilon$  }

(c)  $\{w \in \{0, 1\}^* \mid |w| \text{ es impar y el símbolo del medio es 0}\}$ 

#### **Solucion**

G = (V, T, P, S)  
V = {S}  
T = {0, 1}  
S = S  
P = { S 
$$\rightarrow$$
 0S0 | 0S1 | 1S0 | 1S1 | 0 }

(d) 
$$\{a^i b^j c^k \mid i, j, k \ge 0 \text{ y } i+j = k\}$$

#### **Solucion**

Si  $\mathbf{k} = \mathbf{i} + \mathbf{j}$ , entonces podemos reescribir este lenguaje de la forma:

$${a^i b^j c^i c^j | i, j \ge 0}$$

Con esta representacion podemos verificar que la siguiente gramatica genera el lenguaje:

```
G = (V, T, P, S)

V = {S, B}

T = {a, b, c}

S = S

P = {

S \rightarrow aSc \mid B

B \rightarrow bBc \mid \epsilon

}
```

**(e)** El lenguaje L de cadenas de corchetes izquierdo y derecho estén correctamente equilibrados: cada corchete izquierdo se puede emparejar con un corchete derecho subsiguiente único, y cada corchete derecho se debe emparejar con un corchete izquierdo anterior único.

Además, la subcadena entre cualquiera de estos pares tiene la misma propiedad. Por ejemplo:  $[][[]][]][]] \in L$ .

#### Solucion

L (G) = {  $w \in \{ [,] \}^* \mid w \text{ es una lista de corchetes equilibrados} \}$ 

G = (V, T, P, S)  
V = {S}  
T = {[,]}  
S = S  
P = { S 
$$\rightarrow \epsilon$$
 | SS | [S] }

## Ejercicio #2

(a) Construya un autómata de pila con  $\Sigma = \{(,)\}$  que acepte cadenas con paréntesis balanceados por estado final. Por ejemplo, la cadena ((( ))) es aceptada pues al terminar su procesamiento se ha alcanzado un estado final del autómata.

#### Solucion

Estados del automata:  $Q = \{q_0, q_f\}$ Alfabeto del automata:  $\sum = \{(,)\}$ Alfabeto de pila:  $\Gamma = \{a, \$\}$ 

Estado inicial:  $q_0$ Estado final:  $F = q_f$ 

#### Tabla de transiciones:

| Entrada          | (                      |                       | )                    | 3                     |   |
|------------------|------------------------|-----------------------|----------------------|-----------------------|---|
| Cima             | \$                     | a                     | \$<br>a              | \$                    | a |
| $\mathbf{q}_{0}$ | (q <sub>0</sub> , a\$) | (q <sub>0</sub> , aa) | (q <sub>0</sub> , ε) | (q <sub>f</sub> , \$) |   |

## Ejemplo para ((( ))):

|                                                | Simbolo | Operacion de Pila | Transicion          |
|------------------------------------------------|---------|-------------------|---------------------|
| $\delta(q_0, '(', \$) = \{(q_0, a\$)\}$        | (       | Colocar a         | Para q₀             |
| $\delta(q_0, '(', a) = \{(q_0, aa)\}$          | (       | Colocar a         | Para q <sub>0</sub> |
| $\delta(q_0, '(', a) = \{(q_0, aa)\}$          | (       | Colocar a         | Para q₀             |
| $\delta(q_0, ')', a) = \{(q_0, \epsilon)\}$    | )       | Remover a         | Para $q_0$          |
| $\delta(q_0, ')', a) = \{(q_0, \epsilon)\}$    | )       | Remover a         | Para $q_0$          |
| $\delta(q_0, ')', a) = \{(q_0, \epsilon)\}$    | )       | Remover a         | Para $q_0$          |
| $\delta(q_0,  \epsilon,  \$) = \{(q_f,  \$)\}$ |         |                   | Para q <sub>f</sub> |

Dado que estamos en el estado final  $q_{\scriptscriptstyle f_{\scriptscriptstyle i}}$  la cadena es valida.

#### Eiemplo para ((( ):

|                                             | Simbolo | Operacion de Pila | Transicion          |
|---------------------------------------------|---------|-------------------|---------------------|
| $\delta(q_0, '(', \$) = \{(q_0, a\$)\}$     | (       | Colocar a         | Para q <sub>0</sub> |
| $\delta(q_0, '(', a) = \{(q_0, aa)\}$       | (       | Colocar a         | Para q₀             |
| $\delta(q_0, '(', a) = \{(q_0, aa)\}$       | (       | Colocar a         | Para q₀             |
| $\delta(q_0, ')', a) = \{(q_0, \epsilon)\}$ | )       | Remover a         | Para q₀             |

Dado que el ultimo estado donde estamos es q<sub>0</sub>, la cadena es rechazada.

(b) Construya un autómata de pila con  $\Sigma = \{(,)\}$  que acepte cadenas con paréntesis balanceados por pila vacía. Por ejemplo, la cadena ((( ))) es aceptada pues al terminar su procesamiento la pila del autómata está vacía.

#### Solucion

Estados del automata:  $Q = \{q_0, q_f\}$ Alfabeto del automata:  $\sum = \{(,)\}$ Alfabeto de pila:  $\Gamma = \{a, \$\}$ 

Estado inicial:  $q_0$ Estado final:  $F = q_f$ 

#### Tabla de transiciones

| Entrada                    | (                      |                       | )                    | 3                    |   |  |
|----------------------------|------------------------|-----------------------|----------------------|----------------------|---|--|
| Cima                       | \$                     | а                     | \$<br>a              | \$                   | a |  |
| $q_{\scriptscriptstyle 0}$ | (q <sub>0</sub> , a\$) | (q <sub>0</sub> , aa) | (q <sub>0</sub> , ε) | (q <sub>f</sub> , ε) |   |  |

## Ejemplo para ((())):

|                                              | Simbolo | Operacion de Pila | Transicion          |
|----------------------------------------------|---------|-------------------|---------------------|
| $\delta(q_0, '(', \$) = \{(q_0, a\$)\}$      | '('     | Colocar a         | Para q₀             |
| $\delta(q_0, '(', a) = \{(q_0, aa)\}$        | '('     | Colocar a         | Para q₀             |
| $\delta(q_0, '(', a) = \{(q_0, aa)\}$        | '('     | Colocar a         | Para q₀             |
| $\delta(q_0, ')', a) = \{(q_0, \epsilon)\}$  | ')'     | Remover a         | Para q₀             |
| $\delta(q_0, ')', a) = \{(q_0, \epsilon)\}$  | ')'     | Remover a         | Para q₀             |
| $\delta(q_0, ')', a) = \{(q_0, \epsilon)\}$  | ')'     | Remover a         | Para q₀             |
| $\delta(q_0,\epsilon,\$)=\{(q_0,\epsilon)\}$ |         | Remover \$        | Para q <sub>f</sub> |

Dado que el estado de la pila es **vacio**, la cadena es valida.

Ejemplo para ((( ):

|                                             | Simbolo | Operacion de Pila | Transicion          |
|---------------------------------------------|---------|-------------------|---------------------|
| $\delta(q_0, '(', \$) = \{(q_0, a\$)\}$     | '('     | Colocar a         | Para q <sub>0</sub> |
| $\delta(q_0, '(', a) = \{(q_0, aa)\}$       | '('     | Colocar a         | Para q <sub>0</sub> |
| $\delta(q_0, '(', a) = \{(q_0, aa)\}$       | '('     | Colocar a         | Para q <sub>0</sub> |
| $\delta(q_0, ')', a) = \{(q_0, \epsilon)\}$ | ')'     | Remover a         | Para q <sub>0</sub> |

Dado que el estado de la pila es **aa\$**, esto es, la pila **no** esta vacia, la cadena es invalida.

(c) Construya un autómata de pila que acepte las cadenas/palabras por estado final del siguiente lenguaje:  $\{a^ib^ic^jd^j \mid i, j \ge 1\}$ 

#### **Solucion**

Nos estan solicitando un automata de pila que acepte cualquier cadena donde la cantidad de **a's** y **b's** es igual o mayor a 1 e identica, y donde la cantidad de **c's** y **d's** es igual o mayor a 1 e identica, y a la vez que se mantenga el orden (abcd) de las mismas.

Ejemplos validos serian:

- abcd
- aabbcd
- abccdd
- aabbccdd

Estados del automata:  $Q = \{q_0, q_1, q_2, q_3, q_4\}$ 

Alfabeto del automata:  $\Sigma = \{a, b, c, d\}$ Alfabeto de pila:  $\Gamma = \{a, b, \$\}$ 

Estado inicial:  $q_0$ Estado final:  $F = q_4$ 

## Tabla de transiciones

|                            | a                     |   |                        | b                    |   |    | С |                       |                        |
|----------------------------|-----------------------|---|------------------------|----------------------|---|----|---|-----------------------|------------------------|
|                            | a                     | b | \$                     | а                    | b | \$ | a | b                     | \$                     |
| $q_{\scriptscriptstyle 0}$ | (q <sub>0</sub> , aa) |   | (q <sub>0</sub> , a\$) | (q <sub>1</sub> , ε) |   |    |   |                       |                        |
| q <sub>1</sub>             |                       |   |                        | (q <sub>1</sub> , ε) |   |    |   |                       | (q <sub>2</sub> , b\$) |
| $q_{\scriptscriptstyle 2}$ |                       |   |                        |                      |   |    |   | (q <sub>2</sub> , bb) |                        |
| q <sub>3</sub>             |                       |   |                        |                      |   |    |   |                       |                        |

|                            | d |                                        |    | 3 |   |                       |
|----------------------------|---|----------------------------------------|----|---|---|-----------------------|
|                            | a | b                                      | \$ | a | b | \$                    |
| $q_{\scriptscriptstyle 0}$ |   |                                        |    |   |   |                       |
| $q_1$                      |   |                                        |    |   |   |                       |
| $q_2$                      |   | (q <sub>3</sub> , ε)                   |    |   |   |                       |
| qз                         |   | $(q_3, \epsilon)$<br>$(q_3, \epsilon)$ |    |   |   | (q <sub>4</sub> , \$) |

El automata que corresponde a esta tabla es:



#### Podemos observar:

- Cada vez que enviamos "a", apilamos "a" en nuestro stack.
- Cada vez que enviamos "b", desapilamos "a" de nuestro stack.
- Primero moviendonos de  $q_0$  a  $q_1$ , esto solo es posible si en el stack tenemos "a" dado que la condicion necesaria es  $a^ib^i$  con  $i \ge 1$ .
- Luego podemos seguir el loop en  $q_1$  para terminar de desapilar todas las a's de nuestro stack.
- Cada vez que enviamos "c", apilamos "b" en nuestro stack
- Condicion necesaria para poder pasar de  $q_1$  a  $q_2$  es que en el stack se encuentre solamente el simbolo "\$" dado que la condicion necesaria es que  $a^ib^i$  con  $i \ge 1$ .
- Tanto en la transicion  $q_1 \to q_2$  como en  $q_2 \to q_2$  cada vez que enviamos "c", apilamos "b" en nuestro stack.
- Cada vez que enviamos "d", desapilamos "b" de nuestro stack.
- Primero moviendonos de  $q_2$  a  $q_3$ , esto solo es posible si en el stack tenemos "b" dado que la condicion necesaria es  $c^j d^j$  con  $j \ge 1$ .
- Luego podemos seguir el loop en  $q_3$  para terminar de desapilar todas las b's de nuestro stack.
- Por ultimo, solo nos moveremos a la estado final  $q_4$  si la pila esta vacia, en este caso todo el stack fue vaciado exceptuando el simbolo "\$", donde se cumple la condicion  $\{a^ib^ic^jd^j\mid i,j\geq 1\}$

(d) Construya un autómata de pila que acepte las cadenas/palabras por pila vacía del siguiente lenguaje:

$$\{ w \mid w \in \{a, b\}^*, |w|_a = |w|_b \}$$

## **Solucion**

Este automata de pila debe aceptar un lenguaje que tiene igual numero de a's que de b's. Por tanto:

Estados del automata:  $Q = \{q_0, q_f\}$ 

Alfabeto del automata:  $\Sigma = \{a, b\}$ Alfabeto de pila:  $\Gamma = \{a, b, \$\}$ 

Estado inicial:  $q_0$ Estado final:  $F = q_f$ 

Ejemplos:

- ab
- aabb
- abba
- aababb
- etc..

## Tabla de transiciones

| Entrada                    | a                      |                       | b                    |                        |                      | 3                     |                      |   |   |
|----------------------------|------------------------|-----------------------|----------------------|------------------------|----------------------|-----------------------|----------------------|---|---|
| Cima                       | \$                     | a                     | b                    | \$                     | a                    | b                     | \$                   | a | b |
| $q_{\scriptscriptstyle 0}$ | (q <sub>0</sub> , a\$) | (q <sub>0</sub> , aa) | (q <sub>0</sub> , ε) | (q <sub>0</sub> , b\$) | (q <sub>0</sub> , ε) | (q <sub>0</sub> , bb) | (q <sub>f</sub> , ε) |   |   |

a, \$ | a\$

a, a | aa

a, b | ε

b, \$ | b\$

b, b | bb

b, a | ε



Ejemplo para **aabb**:

|                                                      | Simbolo | Operacion de Pila | Transicion          |
|------------------------------------------------------|---------|-------------------|---------------------|
| $\delta(q_0, a, \$) = \{(q_0, a\$)\}$                | a       | Colocar a         | Para q <sub>0</sub> |
| $\delta(q_0, a, a) = \{(q_0, aa)\}$                  | a       | Colocar a         | Para q₀             |
| $\delta(q_0, b, a) = \{(q_0, \epsilon)\}$            | b       | Remover a         | Para q₀             |
| $\delta(q_0, b, a) = \{(q_0, \epsilon)\}$            | b       | Remover a         | Para q₀             |
| $\delta(q_0,  \epsilon,  \$) = \{(q_0,  \epsilon)\}$ |         | Remover \$        | Para q <sub>f</sub> |

Dado que el estado de la pila es **vacio**, la cadena es valida.

Ejemplo para **abba**:

|                                                      | Simbolo | Operacion de Pila | Transicion          |
|------------------------------------------------------|---------|-------------------|---------------------|
| $\delta(q_0, a, \$) = \{(q_0, a\$)\}$                | a       | Colocar a         | Para q₀             |
| $\delta(q_0, b, a) = \{(q_0, \epsilon)\}$            | b       | Remover a         | Para q₀             |
| $\delta(q_0, b, \$) = \{(q_0, b\$)\}$                | b       | Colocar b         | Para q₀             |
| $\delta(q_0, a, b) = \{(q_0, \epsilon)\}$            | a       | Remover b         | Para q₀             |
| $\delta(q_0,  \epsilon,  \$) = \{(q_0,  \epsilon)\}$ |         | Remover \$        | Para q <sub>f</sub> |

Dado que el estado de la pila es **vacio**, la cadena es valida.

Ejemplo para **aba**:

| =jempie para <b>aba</b> :                 |                                                    |           |                     |
|-------------------------------------------|----------------------------------------------------|-----------|---------------------|
|                                           | Simbolo Operacion de Pila $(q_0, a_0)$ a Colocar a |           | Transicion          |
| $\delta(q_0, a, \$) = \{(q_0, a\$)\}$     |                                                    |           | Para q <sub>0</sub> |
| $\delta(q_0, b, a) = \{(q_0, \epsilon)\}$ | b                                                  | Remover a | Para q₀             |
| $\delta(q_0, a, \$) = \{(q_0, a\$)\}$     | a                                                  | Colocar a | Para q <sub>0</sub> |

Dado que el estado de la pila es **'a\$'**, esto es, la pila **no** esta vacia, la cadena es invalida.