(担当:佐藤)

問題 5.5.

(1)
$$\log_6 18 + \log_6 12 = \log_6 216 = \log_6 6^3 = 3$$

(2)
$$\log_7 21 - \log_7 3 = \log_7 \frac{21}{3} = \log_7 7 = 1$$

(3)
$$\log_2 64 \div \log_3 27 = \log_2 2^6 \div \log_3 3^3 = 6 \div 3 = 2$$

(4)
$$\log_a b^2 + \log_a \frac{1}{b} - \log_a \sqrt{b} = 2\log_a b - \log_a b - \frac{1}{2}\log_a b = \frac{1}{2}\log_a b$$

(5)
$$\log_8 125 - \log_4 10 - \log_2 \left(\frac{1}{\sqrt{10}}\right) = \frac{\log_2 125}{\log_2 8} - \frac{\log_2 10}{\log_2 4} + \frac{1}{2}\log_2 10$$

= $\frac{\log_2 5^3}{3} - \frac{\log_2 10}{2} + \frac{1}{2}\log_2 10 = \log_2 5$

問題 5.6.

(1)
$$\log_2 3 + 2 = \log_2 3 + 2 \log_2 2 = \log_2 3 + \log_2 4 = \log_2 \boxed{12}$$

(2)
$$\log_3 5 - 1 = \log_3 5 - \log_3 3 = \log_3 \boxed{\frac{5}{3}}$$

問題 5.7.

- (1) $3^7 = 10^x$ は $x = \log_{10} 3^7$ と同値である。 $x = 7 \times \log_{10} 3 = 7 \times 0.4771 = 3.3397$.
- (2) (1) の計算結果より、 $3^7=10^{3.3397}$. これは $10^3 \le 3^7 < 10^4$ を満たすので、 3^7 は 4 桁の数である.
- $(3) \log_{10} 3^{50} = 50 \times 0.4771 = 23.855$. したがって、 3^{50} は 24 桁.