amadeus

Search Findability Machine learning on Journey Server for flight search optimization

Agenda

- 1. Introduction & problem description
- 2. Solution design : ML model
- 3. Experiments
- 4. Some techniques & next steps

amadeus

Introduction & Problem description

Introduction Amadeus IT Group

- Amadeus IT Group is a major IT provider for the global travel and tourism industry
- Two major components :
 - <u>Global distribution system</u> provides search, pricing, booking, ticketing and other processing services in real-time to travel providers and travel agencies
 - <u>Information and technology business</u> Offers computer software that automates processes : reservations, departure control, ...etc.

Amadeus Business model

"Powering better journeys through travel technology"

Introduction

Flight Search Process

Introduction Flight Search complexity

Flight search is a complexe task:

Example Boston – San Francisco

- Number of outbound flights considered (BOS-SFO):
 403
- Number of return flights considered (BOS-SFO): 402
- Total number of journey itineraries: 403 x 402 = 162
 006
- Average number of ways to overlay fares onto each journey itinerary: 14 749
- ~10 000 paths are normalized by removing unworkable itineraries

3,604,439,023 possible solutions with 2,389,402,117 that are available for purchase

Focus on Findability!

How many time do people choose the cheapest price?

What is findability?

The percentage of times when Amadeus returns the cheaper travel solution compared to its competitors

- Critical metric: 80% clients choose top 20 cheapest flights.
- Are machine learning tools intelligent enough to help reducing the complexity of flight search w.r.t the findability metric? ===> this internship

Problem description FSDA architecture

Fare Search Dynamic Architecture

Problem description Machine Learning on Journey Server

Problem description Machine Learning scheme

Setup

Route + other information :

origin, connection1, connection2, destination, dates, distance, ...

Price/Class

Problem description Machine Learning scheme

Setup

Route + other information :

origin, connection1, connection2, destination, dates, distance, ...

Regression vs Classification

- Regression : predict the price
- _ Classification : predict the class (cheapest / non cheapest)

Problem description Machine Learning scheme

Setup

Route + other information :

origin, connection1, connection2, destination, dates, distance, ...

Regression vs Classification

- Regression : predict the price
- Classification : predict the class (cheapest / non cheapest)

Price is tricky!

- Example : NICE LONDON, 20th July 2021 one way direct:
 - Possibility 1 : price = 500 \$
 - Possibility 2 : price = 600 \$
 - Possibility 3 : price = 900 \$
 - === > price (NICE LONDON) = 500
- Price ratio : imagine we found also for one way with one leg :
 - Possibility NICE PARIS LONDON : price = 800\$
 - Possibility NICE PARIS LONDON : price = 750\$
 - === > price ratio (NICE LONDON) = 500/500
 - === > price ratio (NICE PARIS LONDON) = 750/500

Problem description Machine Learning scheme

Setup

Route + other information :

origin, connection1, connection2, destination, dates, distance, ...

Regression vs Classification

- Regression : predict the price
- Classification : predict the class (cheapest / non cheapest)

Classification vs Regression

- _ Classification:
 - Price ratio ≥ 1,05 === > non cheapest
 - Price ratio ≤ 1,05 === > cheapest
- _ Regression much richer than classification :
 - Classification: two values vs Regression: many values
 - Predicting perfectly price will lead to extremely accurate ranking of cheapest routes in production
 - From last internship: Improving regression === > Improving findability

amadeus

2. Solution design: ML model

Solution design Machine Learning

_Challenge:

- A lot of categorical variables with high cardinality
- 72% of routes are new in test set ==> Algorithm with <u>high</u> generalization capabilities

Solution design Embeddings For Generalization?

Routes $R_i = [origin, connection 1, connection 2, destination].$

- **Traditional ML models**: The route R_5 is unseen \rightarrow they can't generalize for it.
- **_ Embeddings**: The route R_5 is unseen but very similar to $R_2 \rightarrow$ the same behavior that model learned for R_2 will be adopted for R_5 .

Solution design What are embeddings

•We have just to learn this weight matrix!

Solution design Good / Bad points

- Learning the weights might done :
 - Supervised way: low representations are learned with respect to the target (suitable case)
 - Unsupervised way: with deep learning also (auto-encoders)
- New representations :
 - Continuous == > Good for deep nets models

- BUT!
 - Cannot directly handle sentences
 - Work with <u>Route</u>: PAR NCE BOS NYC instead of separate categorical variables

Solution design Sequence Embeddings

Solution design

Zoom in on Sequence Embeddings

Solution design Zoom in on Sequence Embeddings

Solution design Deep learning model

Solution design Deep learning model

Remain to do from last year :

- GBM vs DL?
- How much DL is robust to data distributions shift?
- Feature importance ?
- How can the model adapt to a different env with less features?

New developement:

- Answer previous questions
- Understand the role of encoding
- Find a way to improve regression and classification
- Suggest new modifications to the model

Solution design

Simple multi-output model

Solution design

amadeus

3. Experiments

ExperimentsData Collection

Overview:

- 30 million travel solutions with more than 4 million OneWay flights.
- A large number of travel solutions from different countries and continents (Europe, America, Asia, ...)

Features:

- Many categorical variables with high cardinality (more than cities of origin and destination, and connections, 400 office cities, ...).
- Dates variables that we encode using cyclic features encoding techniques.
- Continuous variables like flight time and distance.

Targets:

- Price: The continuous variable target is skewed!
- === > log price as target !

ExperimentsTarget variable for regression

ExperimentsTraining setup

_ Minimization problem:

Loss function : MAE

$$\mathcal{L}(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

_Constraints:

- Focus on <u>cheapest class</u> of routes
- The trick of weighting the loss:

$$\mathcal{L}(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} w_i |y_i - \hat{y}_i|$$
 $\omega_i = \frac{1}{\text{price_ratio}_i}$

Possible weighting schemes :

$$\omega_i \propto e^{-(\text{price_ratio}_i - 1.0)}$$
 $\omega_i \propto \frac{1}{\text{price_ratio}_i^{\alpha}}$

Experiments Evaluation metrics

Area under the Precision-Recall curve

 $DCG_n = \sum_{k=1}^{n} \frac{rel_k}{\log_2(k+1)}$

 AP_k : average precision of class kn: number of classes

 rel_k : relevance of class k

- Regression DL model + weighted loss
- Multi-output DL model (classification part)
- GBM classification model

amadeus

4. Some techniques

Skip connection layer (ref [0, 1])

Linear skip connection

ResNet-56 Loss by Microsoft with and without skip-connection

- We've used TensorFlow gradient-based training to fit the model to the data
- Gradient update equation (gradient step) :

- Usually, the learning rate is kept constant
- But! Loss landscape is not convex, nor concave!

Learning rate dynamics (ref [2])

Theory :

- $\eta_t = \frac{\tau \eta_0}{\min(\tau, t^{\alpha})}$ (τ =20 for example, Francis Bach, Eric Moulines : choose $\alpha \leq 1$ for convex case)
- But ! In a plateau need a push to escape !
- Practice :
 - Take the best of theory (previous update)
 - Increase learning rate in each plateau encountred

Confidence bounds of the predictions with dropout (ref [3,4])

- Initially dropout was introduced to overcome the problem of overfitting
- Recent research show it can be used to give the model's confidence

Interpretability of machine learning model (ref [5,6])

Figure taken from SHAP documentation page

Interpretability (ref [5,6])

<u>PFI</u>

- <u>Pemutation</u> <u>Feature</u> <u>Importance</u>
- Get an idea about how much the model is robust w.r.t to a shift of each feature values.

182	155
175	147
	(A
156	142
153	130

<u>LIME</u>

- <u>L</u>ocal <u>I</u>nterpretable <u>M</u>odel-Agnostic <u>E</u>xplanations
- Construct linear regression model as a local approximation of the model
- Explain local predictions

<u>SHAP</u>

- SHapley Additive exPlanations
- Distribute fairly the outcome (prediction) between the players (features) in a coalitional game.
- Explain local and batch of predictions

$$\xi(x) = \operatorname*{arg\,min}_{g \in {}^{\mathsf{c}}\mathcal{G}} \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

$$\phi_i := rac{1}{M} \sum_{S \subseteq F \setminus \{i\}} rac{1}{inom{M-1}{|S|}} C(i|S)$$

$$f(x) - \mathbb{E}_{y \sim \mathcal{D}}[f(y)] = \sum_{i=1}^{M} \phi_i$$

Interpretability

Permutation feature importance results

Shap feature impotance results

Next steps challenges

Loss function :

$$\mathcal{L}_{total} = \beta \mathcal{L}_{regression} + (1 - \beta) \mathcal{L}_{classification}$$

- Challenges :
 - How to choose β ?
 - Highly imbalanced data set!
 - Unclear encoding: are the low representations learned w.r.t price better/worser than those w.r.t class?

- [0]: Hao Li et al. "Visualizing the Loss Landscape of Neural Nets", Arxiv
- [1]: Kaiming He, Xiangyu Zhang, Jian Sun "Deep Residual Learning for Image **Recognition**", Arxiv
- [2] : Yoshua Bengio "Practical recommendations for gradient-based training of deep *architectures*", Arxiv
- [3]: Yarin Gal, Zoubin Ghahramani, "*Dropout as a Bayesian Approximation*: **Representing Model Uncertainty in Deep Learning**", Arxiv
- [4] : Geoffrey Hinton "Dropout: A Simple Way to Prevent Neural Networks from *Over-fitting*", JMLR
- [5] : Christoph Molnar, "Interpretable Machine Learning", online Book
- [6] : Marco Tulio Ribeiro "Why should I trust you? Explaining the Predictions of Any *Classifier*", Arxiv

amadeus

Thank you!