

Basic Python for AI

Memorization Matters!

Quang-Vinh Dinh PhD in Computer Science

Objectives

Data Representation

Integer	1, 2, 3, 0, -1, -2
Float	1.5, 0.5, -3.21, 1.0
String	'Joe', 'Schmoe', "Joe", "Schmoe"
Boolean	True, False

Conditions

==	Equal
!=	Not equal
>	Greater than
<	Less than
>=	Greater or equal than
<=	Less or equal than

Functions

Outline

SECTION 1

Introduction

SECTION 2

Data Representation

Variable		
_ Declare a variable: variable_name = variable_value _ Variable types:		
	Integer	1, 2, 0, -1, -2
	Float	1.5, 0.5, -3.21
	String	'AI', "VIETNAM"
	Boolean	True, False

SECTION 3

Functions

SECTION 4

Conditions

SECTION 1 PAGE 1

Python history

Ý tưởng từ 1980s

Được đặt tên theo

nhóm hài Monty Python

Bắt đầu cài đặt từ 12/1989

Guido van Rossum

228,855 python packages

Hỗ trợ rất mạnh cho Data Science và Machine Learning

SECTION 1 PAGE 2

Python ecosystem

SECTION 1 PAGE 3

- ***** First Python program
 - ***** Using Google Colab

https://colab.research.google.com/notebooks/intro.ipynb#recent=true

```
File Edit View Insert Runtime Tools Help

+ Code + Text

[1] print('my first program !!!')

my first program !!!
```


SECTION 1

PAGE 4

***** What should a programming language provide?

SECTION 1 PAGE 5

***** What should a programming language provide?

0, 1, 2, 3

100, 101, 102, 103

a, b, c, d

Data Representation in Python

SECTION 1

PAGE 6

Logic, number and text

variable_name = variable_value

```
1. # tạo biến number_of_days có giá trị là 10
2. number_of_days = 10
3.
4. # tạo biến số distance có giá trị là 20.5
5. distance = 20.5
6.
7. # tạo biến chuỗi greeting có giá trị là "Hello AI-VIET-NAM"
8. greeting = "Hello AI-VIET-NAM"
9.
10. # tạo biến boolean is_student có giá trị là True
11. is_student = True
```

Variable values

Integer	1, 2, 3, 0, -1, -2
Float	1.5, 0.5, -3.21, 1.0
String	'Joe', 'Schmoe', "Joe", "Schmoe"
Boolean	True, False

Data Representation in Python

SECTION 1

PAGE 7

Logic, number and text

variable_name = variable_value

variable_name

Should has a meaning

Cannot use keywords

and	exec	not
as	finally	or
assert	for	pass
break	from	print
class	global	raise
continue	if	return
def	import	try
del	in	while
elif	is	with
else	lambda	yield
except	True	False

Example

```
return = 5
Kết quả
  File "/tmp/sessions/90e4ade1bc0a8087/main.py", line 1
      return = 5
  SyntaxError: invalid syntax
```

Overflow and Underflow

SECTION 1 PAGE 8

***** Why?

```
# aivietnam
    result = 1e-100
    print(result)
1e-100
    # aivietnam
    result = 1e-1000
    print(result)
0.0
```

```
# aivietnam
    result = 1e100
    print(result)
1e+100
    # aivietnam
    result = 1e1000
    print(result)
inf
```


Text Representation in Python

SECTION 1 PAGE 9

String creation

```
1 text1 = 'Tôi yêu AI VIET NAM'
2 print(text1)
```

Tôi yêu AI VIET NAM

```
1 text2 = "Tôi yêu AI VIET NAM"
2 print(text2)
```

Tôi yêu AI VIET NAM

```
1 text3 = '''Tôi yêu AI VIET NAM'''
2 print(text3)
```

Tôi yêu AI VIET NAM

Text Representation in Python

SECTION 1 PAGE 10

String

***** Logic operators

```
1 	ext{ s1} = 'a'
2 s2 = 'b'
   print(s1 == s1)
   print(s1 == s2)
6
   print(s1 != s2)
   print(s1 < s2)</pre>
   print(s1 > s2)
True
False
True
True
False
```

+ and * operators

```
1  s1 = 'Tôi thích '
2  s2 = 'AI!'
3
4  s3 = s1 + s2
5  s4 = s3*2
6
7  print(s3)
8  print(s4)

Tôi thích AI!
Tôi thích AI!Tôi thích AI!
```

Insert into a string

```
1 name = "John"
2 age = 21
3 print(f'Hello {name}. Are you {age} years old?')
```

Hello John. Are you 21 years old?

* replace() Function

```
1 # Thay thế chuỗi
2 mystr = "Đây là bài học của AI VIET NAM"
3 mystr.replace('AI VIET NAM', 'AIVIETNAM')
'Đây là bài học của AIVIETNAM'
```


Forward

index

SECTION 1 PAGE 11

A container that can contain elements

data[0]

4 5 6 7 8 9

data[3]

7

Dictionary

SECTION 1 PAGE 12

Structure

clever (klev' ar) adjective [from Norwegian klover, "skillful"] skillful, quick thinking, intelligent antonym: stupid, slow, dumb

ep•i•der•mis (ep i dur' mis) noun [from Greek epi, "upon" + derma, "the skin"] the outermost layer of skin; it has no blood vessels and covers the next lower skin level, the dermis

ex•am (eg zam') noun [shortened from examination from Latin examinare, "to weigh"] a test of a person's knowledge or skill in a certain area, for example, a driving

ex•pen•sive (ek spen' siv) adjective [from Latin expendere, "to pay"] costly, high-priced antonym: inexpensive, cheap

eye (i) noun [from German auge, "to see"] the sense organ used for sight, one of the five senses; the other four are hearing, tasting, smelling, and touching

Feb•ru•ary (feb' roo wer e) noun [from Latin, februum, "purification"] ... second month of the year, having 28 days in regular years and 29 days every fourth year—leap year

Create a dictionary

```
{'learning_rate': 0.1, 'optimizer': 'Adam', 'metric': 'Accuracy'}
<class 'dict'>
```


Other Data Representation

SECTION 1 PAGE 13

❖ Tabular and image data

```
import pandas as pd

df = pd.read_csv('advertising_simple.csv')
print(df)
```

	TV	Radio	Newspaper	Sales
0	44	39	45	10
1	17	45	69	12
2	151	41	58	16
3	180	10	58	17
4	8	48	75	7
5	57	32	23	11
6	120	19	11	13
7	8	2	1	4

```
import cv2

# read an image
img = cv2.imread('image.jpg', 1)
```


Outline

SECTION 1

Introduction

SECTION 2

Data Representation

SECTION 3

Functions

SECTION 4

Conditions

Built-in Functions

print(params)	Print value onto the screen
type(params)	Return class type of variable
input(prompt)	Ask user to input a string
<pre>int(), float()</pre>	Type conversion

Functions

SECTION 1 PAGE 14


```
Input: what the function needs to do a task

Output: what comes out of the function

add

(Compute the addition between two numbers)
```

```
# having variables v1 and v2
v1 = 1
v2 = 7
# compute addition between v1 and v2
addition1 = v1 + v2
print(addition1)
# now, having variables v3 and v4
v3 = 4
v4 = 2
#_compute_addition_between v3 and v4
addition2 = v3 + v4
print(addition2)
```

Functions

SECTION 1 PAGE 15

perl

per2

***** Motivation: separate a task

```
# give two number
number1 = 4
number2 = 6
# check if the two numbers are positive
# compute percentage
total = number1 + number2
per1 = number1/total
per2 = number2/total
# print the output
print(per1)
print(per2)
0.4
```

(Compute percentage of two numbers)

```
# give two number
number1 = 4
number2 = 6
# check if the two numbers are positive
# compute percentage
per1, per2 = compute(number1, number2)
# print the output
print(per1)
print(per2)
```

Built-in Functions

Built-in Functions

SECTION 1 PAGE 16

print(parameters)

```
# tạo biến number of days có giá trị là 10
1.
      number of days = 10
      print(number of days)
      # tạo biến số distance có giá trị là 20.5
      distance = 20.5
      print(distance)
      # tạo biến chuỗi greeting có giá trị là "Hello AI-VIET-NAM"
      greeting = "Hello AI-VIET-NAM"
10.
      print(greeting)
11.
12.
      # tạo biến boolean is student có giá trị là True
13.
14.
      is student = True
      print(is student)
15.
```

```
10
20.5
Hello AI-VIET-NAM
True
```

type(parameter)

```
1.
      # tạo biến number of days có giá trị là 10
      number of days = 10
      data type of number of days = type (number of days)
      print(data type of number of days)
 5.
      # tạo biến số distance có giá trị là 20.5
      distance = 20.5
      data type of distance = type(distance)
      print(data type of distance)
10.
      # tao biến chuỗi greeting có giá tri là "Hello AI-VIET-NAM"
11.
      greeting = "Hello AI-VIET-NAM"
12.
      data type of greeting = type(greeting)
13.
      print(data type of greeting)
14.
15.
      # tạo biến boolean is student có giá trị là True
16.
      is student = True
17.
      data type of is student = type(is_student)
18.
19.
      print(data type of is student)
        <class 'int'>
        <class 'float'>
        <class 'str'>
        <class 'bool'>
```


Random and Math Modules

SECTION 1 PAGE 17

```
1 # log(x)
2
3 import math
4
5 x = 4
6 print(math.log(x))
7 print(math.log(math.e))
1.3862943611198906
1.0
```

```
1 # sine of x
2
3 import math
4
5 x = 2
6 print(math.sin(x))
0.9092974268256817
```

```
1 # the e number
2
3 import math
4
5 print(math.e)
2.718281828459045
```

```
1  # exponential of x
2
3  import math
4
5  x = 2
6  print(math.exp(x))
7.38905609893065
```

```
1  # square root of x
2
3  import math
4
5  x = 4
6  print(math.sqrt(x))
```

```
1  # cosine of x
2
3  import math
4
5  x = 2
6  print(math.cos(x))
-0.4161468365471424
```

```
1 # the PI number
2
3 import math
4
5 print(math.pi)
3.141592653589793
```

Demo

Random Module

```
1 # log(x)
2
3 import math
4
5 x = 4
6 print(math.log(x))
7 print(math.log(math.e))
1.3862943611198906
1.0
```


Design a loss function

A: Get a red ball

B: Get a blue ball

$$p(A) = \frac{9}{10} = 0.9$$

$$p(B) = \frac{1}{10} = 0.1$$

E: Pick a ball from the basket

Experiment 1

Got a red ball

Experiment 2

Got a blue ball

Which experiment makes you more surprised?

How to measure the surprises?

Observation

 $Surprise(E) \mid p(E)$

⇒ $Surprise(E) = \frac{1}{p(E)}$

Problem?

Monotonic decrease of the function surprise(E)

$$log(Surprise(E)) = log\left(\frac{1}{p(E)}\right)$$
$$= -log(p(E))$$

In information theory

$$Information(x) = -log(p(x))$$

Random Module

Compute percentage

Data

$$X = \{X_1, \dots, X_N\}$$

Formula

$$S = \sum_{i=1}^{N} X_i \qquad P_i = \frac{X_i}{S}$$

Given the data

$$X = \{2,5,3\}$$

$$S = 10$$

$$X = \{2,5,3\}$$

$$\Rightarrow$$
 $P = \{20\%, 50\%, 30\%\}$

Example

Softmax function

$$P_i = f(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

$$0 \le f(z_i) \le 1$$

$$\sum_{i} f(z_i) = 1$$

Implementation (straightforward)

Softmax function

Chuyển các giá trị của một vector thành các giá trị xác suất

```
Formula
f(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}
0 \le f(x_i) \le 1
\sum_i f(x_i) = 1
```

```
Input

x_1 = 1.0

x_2 = 2.0

x_3 = 3.0

Probability

f(x_1) = 0.09

f(x_2) = 0.24

f(x_3) = 0.67
```

```
import math

# Given three values

v1 = 1.0

v2 = 2.0

v3 = 3.0

# compute softmax

total = math.exp(v1) + math.exp(v2) + math.exp(v3)

s1 = math.exp(v1)/total
s2 = math.exp(v2)/total
s3 = math.exp(v3)/total

# print out
print(f"{s1:.5f} {s2:.5f} {s3:.5f}")
```

```
import math
    # Given three values
    v1 = 1001.0
    v2 = 1002.0
    v3 = 1003.0
 8 # compute softmax
 9 total = math.exp(v1) + math.exp(v2) + math.exp(v3)
10
    s1 = math.exp(v1)/total
                                               OverflowError
                                               C:\Users\DINHVI~1\AppData\Local\Temp/ipy
   s2 = math.exp(v2)/total
   s3 = math.exp(v3)/total
                                                    8 # compute softmax
14
                                               ----> 9 total = math.exp(v1) + math.exp(
15 # print out
16 print(f"{s1:.5f} {s2:.5f} {s3:.5f}")
                                                   11 s1 = math \cdot exp(v1)/total
17
                                               OverflowError: math range error
```

Implementation (straightforward)

Softmax function

Chuyển các giá trị của một vector thành các giá trị xác suất

Giá trị nan vì e^x vượt giới hạn lưu trữ của biến

```
import math
     Given three values
    v1 = 1001.0
    v2 = 1002.0
   v3 = 1003.0
   # compute softmax
   total = math.exp(v1) + math.exp(v2) + math.exp(v3)
10
    s1 = math.exp(v1)/total
                                               OverflowError
                                               C:\Users\DINHVI~1\AppData\Local\Temp/ipy
    s2 = math.exp(v2)/total
   s3 = math.exp(v3)/total
                                                     8 # compute softmax
14
                                               ----> 9 total = math.exp(v1) + math.exp(
   # print out
   print(f"{s1:.5f} {s2:.5f}
                                   {s3:.5f}")
                                                    11 s1 = math \cdot exp(v1)/total
17
                                               OverflowError: math range error
```


Implementation (stable)

Softmax function (stable)

(Stable) Formula **Probability** X-m $x \in (-\infty, 0)$ $m = \max(\mathbf{x})$ $x_1 = 1.0$ $x_1 = -2.0$ $f(x_1) = 0.09$ $e^x \in (0,1)$ $x_2 = 2.0 \implies x_2 = -1.0 \implies$ Softmax $f(x_2) = 0.24$ $x_3 = 3.0$ $x_3 = 0$ $f(x_3) = 0.67$ 3 # Given three values 3 # Given three values 3 # Given three values 4 v1 = 1001.04 v1 = 1.04 v1 = 1.05 v2 = 1002.05 v2 = 1001.05 v2 = 2.0v3 = 1003.0v3 = 1002.06 v3 = 3.0# get max # get max 8 # get max 9 max value = v3max value = v3 max value = v310 10

0.09003 0.24473

```
-20.0 -17.5 -15.0 -12.5 -10.0 -7.5 -5.0
                                                  11 # compute stable softmax
                                                                                                 11 # compute stable softmax
11 # compute stable softmax
                                                  12 e_v1 = math.exp(v1 - max_value)
                                                                                                 12 e v1 = math.exp(v1 - max value)
12 e v1 = math.exp(v1 - max value)
                                                  13 e_v2 = math.exp(v2 - max_value)
                                                                                                 13 e_v2 = math.exp(v2 - max_value)
13 e_v2 = math.exp(v2 - max_value)
14 e_v3 = math.exp(v3 - max_value)
                                                  14 e v3 = math.exp(v3 - max value)
                                                                                                 14 \mid e v3 = math.exp(v3 - max value)
15
                                                  15
                                                                                                 15
16 total = e v1 + e v2 + e v3
                                                  16 total = e v1 + e v2 + e v3
                                                                                                 16 total = e v1 + e v2 + e v3
                                                  17
                                                                                                 17
18 \mid s1 = e \ v1/total
                                                  18 s1 = e v1/total
                                                                                                 18 s1 = e v1/total
19 s2 = e v2/total
                                                                                                 19 s2 = e v2/total
                                                  19 s2 = e v2/total
20 	ext{ s3} = e 	ext{ v3/total}
                                                     s3 = e v3/total
                                                                                                     s3 = e v3/total
                                                                                                 21
                                                  21
22 # print out
                                                  22 # print out
                                                                                                 22 # print out
23 print(f"{s1:.5f} {s2:.5f} {s3:.5f}")
                                                  23 print(f"{s1:.5f} {s2:.5f} {s3:.5f}")
                                                                                                 23 print(f"{s1:.5f} {s2:.5f} {s3:.5f}")
```

0.66524

0.00000 0.26894

0.73106

0.09003 0.24473 0.66524

User-defined Functions

Functions in Python

SECTION 1 PAGE 27

Syntax

Notes for function construction

Define function name
Lowercase with underscores
and begin with a verb

Indentation
Use 4 spaces for indentation

Determine function parameters
Input data help the function done

Do docstring
Explain and describe the function

Output of the function

Functions in Python

SECTION 1 PAGE 28

```
def function_name(parameters):
    '''
    do docstring here.
    ''''
    code here
    return result
```

Define function name
Lowercase with underscores,
usually begin with a verb

Determine function parameters
Input data help the function done

Do docstring
Explain and describe the function

Output of the function

Name	compute_rectangle_area
Parameter	height, width
Output	area

Functions in Python

SECTION 1 PAGE 29

Default values


```
area1 = compute rectangle area(5, 6)
   print('area 1: ', areal)
    area2 = compute rectangle area(height=5, width=6)
    print('area 2: ', area2)
    area3 = compute rectangle area(width=6, height=5)
    print('area 3: ', area3)
    area4 = compute rectangle area (width=6,
11
                                   height=5)
    print('area 4: ', area4)
13
    area5 = compute rectangle area()
   print('area 5: ', area5)
area 1:
area 2: 30
area 3: 30
area 4: 30
area 5: 0
```


Example: Derivative

SECTION 1 PAGE 30

❖ Đạo hàm cho hàm liên tục

SECTION 1 PAGE 30

❖ Đạo hàm cho hàm liên tục

$$\frac{d}{dx}f(x), \frac{dy}{dx}, y', f'(x)$$

$$\frac{\text{Dạo hàm}}{\text{Thay đổi theo } x} = \frac{\Delta y}{\Delta x}$$

$$\frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Δx cần tiến về 0 để đường tiếp tuyến tiến về hàm f(x) trong vùng lân cận tại x

Example: Derivative

SECTION 1 PAGE 31

***** Implementation


```
# python code
   def func(x):
        return x**2 + 2*x
 5
   def func derivative(x):
       return 2*x + 2
 1 d value = func derivative(2.0)
 2 print('f\'(x=2) is', d value)
f'(x=2) is 6.0
```

Example: Derivative

SECTION 1 PAGE 32

***** Implementation

Cho hàm số f(x)

$$f(x) = x^2 + 2x$$

Phương trình đạo hàm

$$f'(x) = 2x + 2$$

Công thức đạo

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

```
def f_x(x):
    return x*x + 2*x
def derivetive(x, eps):
    x = 0x
    f0 = f_x(x0)
    x1 = x0 + eps
    f1 = f_x(x1)
    derivative = (f1 - f0) / eps
    return derivative
x = 2
df_dx = derivetive(x, 0.0001)
print(df_dx)
6.000100000012054
```

Outline

SECTION 1

Introduction

SECTION 2

Data Representation

SECTION 3

Functions

SECTION 4

Conditions

Condition

_ Comparision Operators:

==	Equal
!=	Not equal
>	Greater than
<	Less than
>=	Greater than or equal
<=	Less than or equal

Conditional sentence:

```
if condition1:
    # your code
elif condition2:
    # your code
else:
    # your code
```

SECTION 1 PAGE 33

***** Comparison operators

Operator	Meaning
==	Equal
!=	Not equal
>	Greater than
<	Less than
>=	Greater than or equal
<=	Less than or equal

```
a = 5
   b = 8
    # hỏi biến a có bằng biến b hay không?
   print(a == b)
    # hỏi biến a có khác biến b hay không?
   print(a != b)
    # hỏi biến a có lớn hơn biến b hay không?
   print(a > b)
12
    # hỏi biến a có lớn hơn hoặc bằng biến b hay không?
   print(a >= b)
15
    # hỏi biến a có nhỏ hơn biến b hay không?
   print(a < b)</pre>
18
    # hỏi biến a có lớn hơn hoặc bằng biến b hay không?
20 | print(a <= b)
```

```
True
False
False
True
True
```

False

SECTION 1 PAGE 34

***** if condition

if condition

$$ReLU(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$

 $data_a = ReLU(data)$


```
def ReLU(x):
        1.1.1
        This function aims to compute ReLU for a value x.
        x -- an input value
                                         value1 = ReLU(x=5)
                                         value2 = ReLU(x=-2)
        This function returns the
        1.1.1
                                         print(value1)
                                         print(value2)
10
        result = 0
11
        if x > 0:
12
                                     0
            result = x
13
14
        return result.
15
```


SECTION 1 PAGE 36

***** if-else condition

SECTION 1 PAGE 37

***** if-elif-else condition

SECTION 1 PAGE 37

***** if-else condition

```
Input: a and b

if a > 0 then

y = b^2

if a \le 0 then

y = \sqrt{b}
```

```
import math
2
   def a_function(a, b):
        result = 0
        if a>0:
            result = b*b
        elif a<=0:
            result = math.sqrt(b)
10
                            16
        return result
11
                             2.0
12
   print(a_function(2, 4))
   print(a_function(-2, 4))
```

```
if a > 0 if a \le 0
```

```
import math
 2
    def a_function(a, b):
        result = 0
 4
 5
 6 -
        if a>0:
            result = b*b
        else:
 8 -
            result = math.sqrt(b)
10
                              16
        return result
11
                              2.0
12
    print(a_function(2, 4))
   print(a_function(-2, 4))
```

```
if a > 0 if a \le 0
```

SECTION 1 PAGE 39

***** if-elif-else condition

```
Input: a and b

if a = 0 then y = b^2

if a = 1 then y = \sqrt{b}

if a = 2 then y = b
```

```
if a == 0
if a == 1
if a == 2
```

```
if a == 0 if a == 1
```

```
import math
 3 def a_function(a, b):
        result = 0
 5
 6 -
        if a==0:
            result = b*b
        elif a==1:
 8 -
            result = math.sqrt(b)
10 -
        elif a==2:
11
            result = b
                              16
12
                              2.0
13
        return result
14
    print(a_function(0, 4))
    print(a_function(1, 4))
    print(a_function(2, 4))
```

```
import math
   def a_function(a, b):
        result = 0
 5
        if a==0:
            result = b*b
 8 -
        elif a==1:
            result = math.sqrt(b)
10 -
        else:
11
            result = b
                              16
12
                              2.0
13
        return result
14
    print(a_function(0, 4))
    print(a_function(1, 4))
    print(a_function(2, 4))
```


Alternative to If-Else (1)

```
Input: a and b

if a = 0 then y = b^2

if a = K then y = \sqrt{b}
```



```
Input: a and b
```

$$y = \frac{a}{K} \left(\sqrt{b} \right) + \frac{(K - a)}{K} b^2$$

```
import math
    def function 1(a,b):
        # a constant
        K = 10
       result = 0
        if a==0:
            result = b*b
        elif a==K:
10
            result = math.sqrt(b)
11
12
13
        return result
14
    print(function 1(0, 4))
16 print(function 1(10, 4))
16
2.0
```

```
import math

def function_2(a,b):
    # a constant
    K = 10

result = (a/K)*math.sqrt(b) + ((K-a)/K)*b*b

return result

print(function_2(0, 4))
print(function_2(10, 4))

16.0
2.0
```


Alternative to If-Else (2)

```
Input: a and b

if a > 0 then

y = b^2

if a < 0 then

y = \sqrt{b}
```



```
Input: a and b
```

$$y = \frac{(b^2 + \sqrt{b})}{2} + \frac{(b^2 - \sqrt{b})}{2} \frac{|a|}{a}$$

```
import math
    def function 3(a,b):
        result = 0
        if a>0:
             result = b*b
        elif a<0:</pre>
 9
             result = math.sqrt(b)
10
        return result
11
12
    print(function 3(2, 4))
    print(function 3(-2, 4))
16
2.0
```

Alternative to If-Else (3)

SECTION 1 PAGE 42

One more example

Feature	Label
Datal Langth	Label
Petal_Length	
1.4	0
1.3	0
1.5	0
4.5	1
4.1	1
4.6	1
5.2	2
5.6	2
5.9	2

#features = 1
#classes = 3
$$y \in \{0,1,2\}$$

$$y = 0 \rightarrow L(\mathbf{\theta}) = -\log(\hat{y}_0)$$

$$y = 1 \rightarrow L(\mathbf{\theta}) = -\log(\hat{y}_1)$$

$$y = 2 \rightarrow L(\mathbf{\theta}) = -\log(\hat{y}_2)$$

How to convert into a single function?

If-Else Condition and Math (3)

SECTION 1 PAGE 43

Feature	Label
Petal_Length	Label
1.4	0
1.3	0
1.5	0
4.5	1
4.1	1
4.6	1
5.2	2
5.6	2
5.9	2

#features = 1
#classes = 3
$$y \in \{0,1,2\}$$

$$L(\mathbf{\theta}) = -\frac{y(1-y)}{-2} \log(\hat{y}_2) - y(2-y)\log(\hat{y}_1) - (1-y)(\frac{2-y}{2})\log(\hat{y}_0)$$

$$y = 2 \qquad y = 1 \qquad y = 0$$

Ok! but awkward!!! ... and how to improve?

Alternative to If-Else (3)

SECTION 1 PAGE 44

Feature	Label
D 4 1 T 41	T 1 1
Petal_Length	Label
1.4	0
1.3	0
1.5	0
4.5	1
4.1	1
4.6	1
5.2	2
5.6	2
5.9	2
4.5 4.1 4.6 5.2 5.6	1 1 1 2 2

 $y \in \{0,1,2\}$

One-hot encoding for label

$$y = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}$$
 $y_i \in \{0,1\}$ $\sum_i y_i = 1$

$$y = 0 \to \mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \ y = 1 \to \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \ y = 2 \to \mathbf{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Loss function

$$L(\mathbf{y}, \hat{\mathbf{y}}) = -y_2 \log(\hat{\mathbf{y}}_2) - y_1 \log(\hat{\mathbf{y}}_1) - y_0 \log(\hat{\mathbf{y}}_0)$$
$$= -\sum_{i} y_i \log(\hat{\mathbf{y}}_i)$$

Alternative to If-Else (3)

```
Input: a and b

if a = 0 then y = b^2

if a = 1 then y = \sqrt{b}

if a = 2 then y = b
```

```
Input: a and b

Convert a into a one-hot vector \mathbf{v}

\mathbf{u} = \begin{bmatrix} b^2 & \sqrt{b} & b \end{bmatrix}

\mathbf{v} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}

\mathbf{v} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}

\mathbf{v} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}

\mathbf{v} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}

\mathbf{v} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}

\mathbf{v} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}
```

```
import math
    def function 5(a,b):
        result = 0
        if a==0: result = b*b
        elif a==1: result = math.sqrt(b)
        elif a==2: result = b
 8
 9
10
        return result
11
    print(function 5(0, 4))
    print(function 5(1, 4))
14 print(function 5(2, 4))
16
2.0
```

```
import math
    import numpy as np
    def function 6(a,b):
        vector v = np.array([0, 0, 0])
        vector v[a] = 1
 8
        vector u = np.array([b*b, math.sqrt(b), b])
 9
        result = np.dot(vector v, vector u)
        return result
11
12
    print(function 6(0, 4))
   print(function 6(1, 4))
    print(function 6(2, 4))
16.0
2.0
4.0
```

If-Else and Dictionary

SECTION 1 PAGE 46

Mixed conditions

```
Input: a

if a = 1 then y = 5

if a = 'lr' then y = 0.1

if a = 'opt' then y = 'SGD'
```

```
def get_y(a):
       if a == 1:
           y = 5
       elif a == 'learning_rate':
           y = 0.1
       elif a == 'optimizer':
           y = 'SGD'
       return y
11 y = get_y('optimizer')
12 print(y)
SGD
```



```
1 options = {1: 5, 'learning_rate': 0.1, 'loptimizer': 'SGD'}
2
3 print(options[1])
4 print(options['optimizer'])
5
SGD
```


SECTION 1 PAGE 47

Getting Started

PAGE 48 **SECTION 1**

SECTION 1 PAGE 49

***** Flowchart

Cheat Sheet

Run a Python program

_ Python files have ".py" at the end of the filename

_ To run a Python file:

python file.py

Virtual Environment

_ Install Python Virtual Environment (in Linux):

sudo apt-get install -y python3-env

Create a virtual environment:

python3 -m venv a name

Activate a virtual environment:

source a name/bin/activate

Install new package

_ e.g: to install *matplotlib*:

pip install matplotlib

Variable

Declare a variable:

variable name = variable value

_ Variable types:

Integer	1, 2, 0, -1, -2
Float	1.5, 0.5, -3.21
String	'AI', "VIETNAM"
Boolean	True, False

Basic Operators

Operators	Meaning
+	Summation
-	Subtraction
*	Multiplication
/	Division
0/0	Modulo
//	Floor Division
**	Power

Function

_ Define a function:

111

your code goes here

return result

Default values:

def function_name(p1=0, p2=0):
 # your code goes here

Condition

_ Comparision Operators:

==	Equal
!=	Not equal
>	Greater than
<	Less than
>=	Greater or equal than
<=	Less or equal than

Conditional sentence:

```
if condition1:
    # your code
elif condition2:
    # your code
else:
    # your code
```

Built-in Functions

print(params)	Print value onto the screen
type(params)	Return class type of variable
input(prompt)	Ask user to input a string
<pre>int(), float()</pre>	Type conversion

Overflow/Underflow

Underflow:

```
result = 1e-100
print(result) # 1e-100
result = 1e-1000
print(result) # 0.0
```

Overflow:

```
result = 1e100
print(result) # 1e+100
result = 1e1000
print(result) # inf
```

For Loop

_ Create a loop using for:

for element in iterable:
 # code inside your for

_ Some iterables:

String	"aivietnam"
Tuple	(1, 2, 3)
List	[1, 2, 3]
Dictionary	{'key1': 1}
range()	range(0, 5, 1)

_ Special keywords:

break	Exit the loop
continue	Move to next iteration

