Dougy's question on money

7/16/2025

Problem. Doug asked a very interesting question: How many coins do we need to carry if we were to be able to pay any denomination from 0 to 99 cents?

I took the liberty to change his question into something completely different: Given we have enough coins of each kind (Quarters, Dimes, Nickles, and Pennies) in how many different ways can we represent money from 1 to 100 cents?

So here we will examine my question, and ignore his.

Solution. We introduce a function, C(100, Q, D, N, P), representing the number of such combinations, using quarters (Q), dimes (D), nickles (N), and pennies (P)

We make some simple observations. One is that $C(0, \dots) = 1$: There is one combination to pay 0 cents (that is to use no coins!)

Also C(100, Q) = 1 (use 4 quarters), and so on...

As we begin to dive deeper, we see that C(5, N, P) = 2, the two combinations that can be visualized with the table:

N	P
0	5
1	0

And what if we were to represent 100 cents, using only Nickles and Pennies? $C(100,N,P)=21,\ because:$

N	P
0	100
1	95
2	90
20	0

Now let's explore C(100, D, N, P):

D	N	P	Notice
0	0	100	
0	1	95	
0	2	90	C(100, N, P) = 21 combinations
0			
0	20	0	
1	0	90	
1	1	85	C(90, N, P) combinations
1			
2			C(80, N, P)
3	C(70, N, P)		
10	C(0, N, P)=1		

Hence we that C(100,D,N,P) depends on various C(100,N,P), C(90,N,P), etc. Similarly, it's easy to see that:

Q	$D \mid N \mid P$
0	C(100, D, N, P)
1	C(75, D, N, P)
2	C(50, D, N, P)
3	C(25, D, N, P)
4	C(0, D, N, P)=1