

Cross Validation

Generally: Cross Validation (CV)

Set of **validation techniques** that use the training dataset itself to validate model

- Allows maximum allocation of training data from original dataset
- Efficient due to advances in processing power

Cross validation is used to test the effectiveness of any model or its modified forms.

Validation Goal

- Estimate Expected Prediction Error
- Best Fit model
- Make sure that the model does not Overfit

HoldOut Validation

Dataset

HoldOut Validation

Training Sample

Testing Sample

HoldOut Validation

Training Sample

Testing Sample

Advantage: Traditional and Easy

Disadvantage: Varying Error based on how to sample testing

Often used in practice with k=5 or k=10.

Create equally sized *k* partitions, or **folds**, of training data

For each fold:

- Treat the *k-1* other folds as training data.
- Test on the chosen fold.

The average of these errors is the validation error

Dataset

Suppose K = 10, 10-Fold CV

Training Sample Training Sampl

Training Sample Training Sampl

Calculate RMSE = rmse1

Training Sample Training Sampl

Training Sample Training Sample Training Sample

Training Sample Training Sample Training Sample

Testing Sample

Training Sample

Training Sample

Training Sample

Calculate RMSE = rmse2

Training Sample Training Sample

Training Sample

Testing Sample

Training Sample

Training Sample

Calculate RMSE = rmse3

And so on

Testing Sample Training Sample

Training Sample

Training Sample

Training Sample

Training Sample

Training Sample

Training Sample

Training Sample

Training Sample

Calculate RMSE = rmse10

Testing Sample

Training Sample

Training Sample

Training Sample

RMSE = Avg(rmse1...10)

Less matters how we divide up

Selection bias not present

Dataset

Training Sample

What just happened?

Leave-P-Out Validation

For each data point:

- Leave out p data points and train learner on the rest of the data.
- Compute the test error for the p data points.

Define average of these _nC_p error values as validation error

Leave-P-Out Validation

A really exhaustive and thorough way to validate

High Computation Time

Question:

How are *k*-fold and leave-p-out different?

Subset Selection

- **Best subset selection:** Test all 2^p subset selections for best one
- Forward subset selection
 - Iterate over k = 0 ... (p-1) predictors
 - At each stage, select the best model with (p-k) predictors
 - Find best model out of the p-1 selected candidates with CV
- Backward selection Reverse of forward subset selection
 - Start from p predictors and work down

In practice, best subset selection method is rarely used, why?

Coming Up

Your problem set: Project E

Next week: Thanksgiving?!

Aw yeah.

