

University of Colorado **Boulder**

Lecture 33-34: Recursion

Spring 2019 Tony Wong

CSCI 1300: Starting Computing

Announcements and reminders

- Project 3 posted
 - By Wednesday -- TA/CA design meeting
 - ... & submit classes and code skeleton

- Project 2 interview grading
- Homework 9Due Wednesday April 17 by 11 PM

Last time on *Intro Computing...*

We sorted!

- Bubble sort
- Cocktail sort
- Merge sort
- Quick sort

DEFINE JOBINTERVIEW QUICKSORT (LIST): OK SO YOU CHOOSE A PIVOT

> THEN DIVIDE THE LIST IN HALF FOR EACH HALF:

CHECK TO SEE IF IT'S SORTED

NO, WAIT, IT DOESN'T MATTER

COMPARE EACH ELEMENT TO THE PIVOT

THE BIGGER ONES GO IN A NEW LIST

THE EQUALONES GO INTO, UH THE SECOND LIST FROM BEFORE

HANG ON, LET ME NAME THE LISTS

THIS IS LIST A THE NEW ONE IS LIST B

PUT THE BIG ONES INTO LIST B

NOW TAKE THE SECOND LIST CALL IT LIST, UH, A2 WHICH ONE WAS THE PIVOT IN?

SCRATCH ALL THAT ITJUST RECURSIVELY CAUS ITSELF

> UNTIL BOTH LISTS ARE EMPTY RIGHT?

NOT EMPTY, BUT YOU KNOW WHAT I MEAN AM I ALLOWED TO USE THE STANDARD LIBRARIES?

Quick sort

Like merge sort, this is a divide and conquer algorithm

- Pick one of the elements of the list to sort as the pivot
- **Divides** the original list into parts <= pivot, and > pivot...
- ... and calls itself on those smaller parts to sort them (conquers)

Example: S'pose we want to sort the list {27, 10, 43, 3, 9, 82, 38}.

 Let's arbitrarily pick the last element as the pivot, always (different versions do different things)

Quick sort

27	10	43	3	9	82	38

Quick sort

27 10 43 3	9 82 38
------------	---------

Recursion

Recursion is a computational technique to break complex problems up into **smaller versions** of the **larger problem**, and solving the smaller, simpler problems.

Recursion is often the most natural way to think about a problem, and there are some calculations that are difficult to perform without recursion.

Definition: A recursive function is a function that calls itself, reducing the "size" of the input with each call.

```
Example: the factorial function, f(n) = n^*(n-1)^*...^*3^*2^*1 int factorial(int n) { return n^*factorial(n-1); }
```

How can start to think recursively?

The big question: How can we break the problem down into a smaller version of itself?

Example: Walk from Point A to Point Z.

How can start to think recursively?

The big question: How can we break the problem down into a smaller version of itself?

Example: Walk from Point A to Point Z.

Solution: S'pose our function to give us a route from A to Z is route(A, Z).

• Answer: Walk $A \rightarrow B$, then route(B, Z). Done!

How can start to think recursively?

The big question: How can we break the problem down into a smaller version of itself?

Example: Walk from Point A to Point Z.

Solution: S'pose our function to give us a route from A to Z is route(A, Z).

- Answer: Walk $A \rightarrow B$, then route(B, Z). Done!
- Behind the curtains: route(B, Z) = walk B \rightarrow C, then route(C, Z)

... and route(C, Z) = walk $C \rightarrow D$, then route(D, Z)

... and route(D, Z) = walk D \rightarrow E, then route(E, Z)

Triangle of boxes -- recursive

Example: Write code to print to the screen a triangle of boxes with an input parameter side length.

```
[][]
[][][]
[][][][]
void printTriangle(int side_length);
```

Triangle of boxes -- recursive

Example: Write code to print to the screen a triangle of boxes with an input parameter side length.

```
[]
[][][]
[][][][]

void printTriangle(int side_length);
```

Strategy: Think: what is a **smaller version** of this problem?

Triangle of boxes -- recursive

Example: Write code to print to the screen a triangle of boxes with an input parameter side length.

```
void printTriangle(int side length) {
   if (side length < 1) {
       return;
   printTriangle(side length - 1);
   for (int i=0; i < side length; i++) {
       cout << "[]";
    cout << endl;
```

Thinking recursively

There are two key requirements for successful recursive functions:

- 1) Every recursive function call must simplify the task in some way
- 2) There must be special case(s) to handle the simplest forms, so the function will eventually stop calling itself.

```
void printTriangle(int side length) {
    if (side length < 1) {
       return;
   printTriangle(side length - 1);
    for (int i=0; i < side length; i++) {
       cout << "[]";
    cout << endl;
```

Common error -- infinite recursion

Infinite recursion occurs when we either

- 1) forget to write the end test, or
- 2) the test to end the recursion never becomes true

Example: Maybe we screwed up our printTriangle function as follows:

```
void printTriangle(int side_length) {
    printTriangle(side_length - 1);
    for (int i=0; i < side_length; i++) {
        cout << "[]";
    }
    cout << endl;
}</pre>
```

Consider: What would happen? Say, we call printTriangle(3).

Common error -- infinite recursion

Example: Maybe we screwed up our printTriangle function as follows:

```
void printTriangle(int side_length) {
    printTriangle(side_length - 1);
    for (int i=0; i < side_length; i++) {
        cout << "[]";
    }
    cout << endl;
}</pre>
```

Consider: What would happen? Say, we call printTriangle (3).

Common error -- infinite recursion

Example: Maybe we screwed up our printTriangle function as follows:

```
void printTriangle(int side_length) {
    printTriangle(side_length - 1);
    for (int i=0; i < side_length; i++) {
        cout << "[]";
    }
    cout << endl;
}</pre>
```

Consider: What would happen? Say, we call printTriangle (3).

- Inside the function for the first time, we call printTriangle (2)
 - ... the second time, we call printTriangle(1)
 - ... the third time, we call printTriangle(0)
 - ... the fourth time, we call printTriangle (-1)
 - ... and so on... until our laptop battery dies.

Definition: a <u>palindrome</u> is a string that is equal to itself if you reverse the order of all its characters

Examples:

- kayak
- racecar
- 1101011

Note: Sometimes, all capitalization, punctuation and spaces are removed, so we can have more fun:

No 'x' in Nixon

Example: Write a function to test if a string is a palindrome.

```
For example, is_palindrome("rotor") = true and
    is_palindrome("elvis") = false
```

Step 1: Break the problem into smaller parts that can themselves be inputs to the problem

→ How can we simplify the input?

Example: Write a function to test if a string is a palindrome.

```
For example, is_palindrome("rotor") = true and
    is palindrome("elvis") = false
```

Step 1: Break the problem into smaller parts that can themselves be inputs to the problem

- → How can we simplify the input?
 - → remove the first character?
 - → remove the last character?
 - → remove *both* the first and last characters?
 - → remove a character from the middle?
 - → cut the string into two halves?

Step 1: Break the problem into smaller parts that can themselves be inputs to the problem

Every palindrome's first and second halves are the same, so cutting the string into two halves **seems** like a good idea, but...

... how do we chop up "rotor"?

Step 1: Break the problem into smaller parts that can themselves be inputs to the problem

Every palindrome's first and second halves are the same, so cutting the string into two halves **seems** like a good idea, but...

... how do we chop up "rotor"?

And since the palindrome needs to be a *mirror* of itself, removing a **single** character at a time also isn't a good idea.

Instead, what about comparing two characters at a time?

Step 1: Break the problem into smaller parts that can themselves be inputs to the problem

Instead, what about comparing **two characters** at a time?

```
"rotor"

(chop) (chop)

"r" "oto" "r"
```

Now our problem is reduced to the **middle** of the original string ("oto"), and comparing the two characters at the ends:

Step 2: Combine solutions with simpler inputs to create a solution to the original problem → **reduction step** (*reduce* to a smaller problem)

```
"rotor"

(chop) (chop)

"r" "oto" "r"
```

Now our problem is reduced to the **middle** of the original string ("oto"), and comparing the two characters at the ends:

If (the end letters are the same AND is_palindrome(the middle string)) then the original string is a palindrome!

Step 3: Find solutions to the simplest inputs

A recursive computation keeps simplifying its inputs.

Eventually, it arrives at the simplest reasonable inputs. To make sure that the recursion comes to a stop, deal with the simplest inputs separately.

Question: What are the simplest possible palindrome situations?

Step 3: Find solutions to the simplest inputs

A recursive computation keeps simplifying its inputs.

Eventually, it arrives at the simplest reasonable inputs. To make sure that the recursion comes to a stop, deal with the simplest inputs separately.

Question: What are the simplest possible palindrome situations?

- → strings of length 0 or 1 are **always** palindromes!
- \rightarrow we have this stopping condition: if (str.length() <= 1) { return true; }

Step 4: Implement the solution by combining the simplest cases and the reduction step

First, pseudocode from our previous slides:

```
bool is_palindrome(string str) {
    // simplest cases
    if (str.length() <= 1) { return true; }

    // reduction step
    If ( the end letters are the same AND
        is_palindrome( the middle string ) ) then
    the original string is a palindrome!
}</pre>
```

Now we can tidy it up...

```
bool is palindrome(string str) {
   // simplest cases
    if (str.length() <= 1) {
       return true;
    // reduction step
   char first = tolower(str[0]);
   char last = tolower(str[str.length()-1]);
    if (first==last) {
       string shorter = str.substr(1, str.length()-2);
       return is palindrome (shorter);
    } else {
       return false;
```

Example: The **Fibonacci sequence** is a sequence of integers defined by:

initial conditions: $f_0 = 0$ and $f_1 = 1$, and

recursion equation: $f_n = f_{n-1} + f_{n-2}$

So the first 10 terms in the sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

The task: Write both a **recursive** and an **iterative** (i.e., with a **for** loop) functions to get the nth Fibonacci number.

Example: The **Fibonacci sequence** is a sequence of integers defined by:

initial conditions: $f_0 = 0$ and $f_1 = 1$, and

recursion equation: $f_n = f_{n-1} + f_{n-2}$

So the first 10 terms in the sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

The task: Write both a **recursive** and an **iterative** (i.e., with a **for** loop) functions to get the nth Fibonacci number.

Then, compare how long each takes to compute f₄₃

Code in the Moodle materials, and at end of these slides

Okay! So, we should have just seen that the recursive solution takes **A LOT** longer to compute f_{43} than the iterative solution.

... why??

Okay! So, we should have just seen that the recursive solution takes **A LOT** longer to compute f_{43} than the iterative solution.

... why??

Turns out, **recursion** ends up computing a lot of the values **multiple times**

Okay! So, we should have just seen that the recursive solution takes **A LOT** longer to compute f_{43} than the iterative solution.

- \rightarrow f₄₃ requires 1,402,817,465 function evaluations in the **recursive** solution!!
- → whereas the **iterative** solution computes each Fibonacci number **exactly one time**

Example: The **handshake problem**.

S'pose *n* people show up to a meeting. How many handshakes are needed for each person to have shaken every other person's hand exactly one time?

Example: The **handshake problem**.

S'pose *n* people show up to a meeting. How many handshakes are needed for each person to have shaken every other person's hand exactly one time?

Step 1) Break the input into parts that are smaller inputs to the problem.

→ Question: What's a smaller version of the problem?

 \rightarrow Answer: A meeting with n-1 people

Example: The **handshake problem**.

S'pose *n* people show up to a meeting. How many handshakes are needed for each person to have shaken every other person's hand exactly one time?

Step 2) Combine solutions with simpler inputs into a solution of the original problem.

handshakes (n) = $[\# new handshakes from n^{th} person] + handshakes (n-1)$

Example: The **handshake problem**.

S'pose *n* people show up to a meeting. How many handshakes are needed for each person to have shaken every other person's hand exactly one time?

Step 3) Find solutions to the simplest inputs.

Question: what are the simplest cases?

Answer: a meeting with only 1 person needs 0 handshakes

Example: The **handshake problem**.

S'pose *n* people show up to a meeting. How many handshakes are needed for each person to have shaken every other person's hand exactly one time?

Step 4) Implement the solution by combining the simple cases and the reduction step.

```
int handshakes(int n) {
   if (n==1) {return 0;}
   return [# new handshakes from nth person] + handshakes(n-1);
}
```

Example: The **handshake problem**.

S'pose *n* people show up to a meeting. How many handshakes are needed for each person to have shaken every other person's hand exactly one time?

Step 4) Implement the solution by combining the simple cases and the reduction step.

```
int handshakes(int n) {
   if (n==1) {return 0;}
   return (n-1) + handshakes(n-1);
}
```

Last time: selection sort (Special Topic 6.2)

Input: X = [13, 3, 9, 5, 1]

Output: The sorted version of X, in increasing order: [1, 3, 5, 9, 13]

Step 1: Find the smallest element out of X[0 - end]. Swap X[0] and smallest element.

Step 2: Find the smallest element out of X[1 - end]. Swap X[1] and smallest element.

Step 3: Find the smallest element out of X[2 - end]. Swap X[2] and smallest element.

And so on...

Your mission is to *rewrite a recursive version* of the selection sort algorithm and *compare the timing* to the iterative version, for various sizes of input arrays/vectors.

What just happened?!

We just saw... recursion!

• A problem-solving approach in which we break the big problem down into smaller versions of that problem, and solve those.

- 1) Break the input into parts that are smaller inputs to the problem.
- 2) Combine solutions with simpler inputs into a solution of the original problem.
- **3)** Find solutions to the simplest inputs.
- 4) Implement the solution by combining the simple cases and the reduction step.

Recursion:

```
int fib_r(int n) {
    if (n==0) {
        return 0;
    } else if (n==1) {
        return 1;
    } else {
        return fib_r(n-1) + fib_r(n-2);
    }
}
```


Iteration:

```
int fib i(int n) {
   if (n==0) {
       return 0;
    } else if (n==1) {
      return 1;
    } else {
       int f[n+1];
       f[0] = 0;
       f[1] = 1;
       for (int i=2; i<=n; i++) {
           f[i] = f[i-1] + f[i-2];
       return f[n];
```

