CS 170 Efficient Algorithms and Intractable Problems

Lecture 7:

Strongly Connected Components (aka DFS is awesome!)

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

We have released discussion solutions a bit earlier this week

→ You can refer to them to help with HW 3.

Please fill out HW party feedback form:

- → https://tinyurl.com/cs170-hwp
- → We'd like to know what's working and what needs to be improved.

Recap of last lecture

Exploring graphs

- explore(u) visited exactly the set of edges reachable from u.
- DFS: repeatedly calling explore. Runs in time O(n + m).
- → Found connected components of undirected graphs.
- → Edge types: tree edge, back edge, forward edge, cross edge (directed graphs only)

```
\begin{array}{ll} \textbf{explore}(G,u) & \textbf{dfs}(G) \\ \textbf{visited}[u] = true & \textbf{boolean array } \textbf{visited}(n) \\ \textbf{pre}[u] = \textbf{clock}; \textbf{clock++} \\ \textbf{For } v \text{ such that } \{u,v\} \in E \quad //\text{alphabetic order} \\ \textbf{If } \textbf{visited}[v] = false \text{ then } \textbf{explore}(G,v) \\ \textbf{post}[u] = \textbf{clock}; \textbf{clock++} \end{array} \quad \begin{array}{ll} \textbf{dfs}(G) \\ \textbf{boolean array } \textbf{visited}(n) \\ // \text{ initialize to all false.} \\ \textbf{clock} = 1 \\ \text{int array } \textbf{pre}(n), \textbf{post}(n) \\ \textbf{For } v \in V \\ \textbf{If } \textbf{visited}[v] = false \text{ then } \textbf{explore}(G,v) \end{array}
```

DFS Tree/Forest for Directed Graphs

Edge (u, v):

• Tree edge Recursive explore calls pre[u] < pre[v] < post[v] < post[u]

• Forward edge:

From ancestor to non-child descendent pre[u] < pre[v] < post[v] < post[u]

Back edge:

From descendent to ancestor pre[v] < pre[u] < post[u] < post[v]

• Cross edge:

Between neither descendent or ancestor.

Cross Edge

Imagine $(u, v) \in E$ is a <u>cross edge</u>.

What is the relationship between [pre[v], post[v]] and [pre[u], post[u]]?

Edges Types and Intervals Summary

Edge $(u, v) \in E$	
Tree / Forward edge	pre[u] < pre[v] < post[v] < post[u]
Back edge:	pre[v] < pre[u] < post[u] < post[v]
Cross edge:	pre[v] < post[v] < pre[u] < post[u]

All other relationships between intervals are impossible!

This lecture

Using DFS and pre/post times in other algorithm design problems.

- → Topological sort
- → Strongly Connected components

Topological Sort

Topological Sort

Find an ordering of vertices so that no edges go backward.

 \rightarrow i.e., If *u* comes before *v* in the ordering, there is no edge (v, u).

E.g., software package dependency

Topological Sort

Find an ordering of vertices so that no edges go backward.

 \rightarrow i.e., If *u* comes before *v* in the ordering, there is no edge (v, u).

E.g., software package dependency

Source: Any node that has no incoming edges and has only outgoing edges.

Sink: Any node that has no outgoing coming edges and has only incoming edges.

Topological Sort, DAGS, and Back edges

Definition: a directed acyclic graph (DAG) is a graph with no directed cycles.

Claim: Suppose we run a DFS on on G. G is a DAG if and only if it has no back edges!

Back Edges and Post-times are special!

Edge $(u, v) \in E$

Tree / Forward edge

Back edge:

Cross edge:

pre[u] < pre[v] < post[v] < post[u]

pre[v] < pre[u] < post[u] < post[v]

pre[v] < post[v] < pre[u] < post[u]

An edge $(u, v) \in E$ is a back edge if and only if post[u] < post[v].

Corollary: In a DAG, every edge $(u, v) \in E$ has the property that post[v] < post[u].

Topological Sort Algorithm

How should we use the DFS to find a topological sort for a DAG?

3 min break! Please close the doors to the auditorium!

Strongly Connected Components

Connected Components in directed Graphs

In undirected graphs, connected components can be found via DFS

Questions for directed graphs:

- How should we define connected components in a directed graph?
- How do we compute them, fast?

Strongly Connected Graphs

Vertices *u*, *v* are **strongly connected** if

- there is a path from u to v, and
- there is a path from v to u.

A directed graph G = (V,E) is **strongly connected** if all of its vertices are strongly connected.

Strongly Connected Components

We can partition a graph into strongly connected components (SCCs).

Formal definition:

"strong connectivity" is an equivalence relationship between vertices.

→ Reflexive, symmetric, and transitive!

Strongly connected components are the equivalence classes under "strong connectivity" relationship.

Observation: If we reverse all edges of *G*, the SCCs don't change!

Meta Graph for SCC

We can partition a graph into **strongly connected components** (SCCs).

Why would we care about SCC?

Useful broadly in science and engineering.

- Structure of graphs more generally: model checking, advertising, etc.
- SCCs tell you about communities of people, objects, similarities.
- Many graph algorithms only make sense on a SCC
- → Used a preprocessing step a lot.

How to find SCCs?

We won't go into the details here, these are bad algorithms anyway!

Slow attempt 1:

Consider all possible decompositions and check.

Slow attempt 2: something like

- Run an *explore* for every node to get the set of reachable nodes.
- For every node u, and any $v \in explore(u)$, run explore(v) and add v to the same component as u if u is visited in explored list of v

Runs in time $\Omega(n^2)$ at the very least.

How to find SCCs?

There is an algorithm for finding all SCCs that runs in time O(n+m)!

 \rightarrow Just as efficient as one (or O(1)) rounds of DFS!

We will use just two calls to DFS!

How to find SCCs?

• What do you get when you run DFS from A?

• What about from **G**?

• What about D?

• Suggested algorithm: run DFS from the "right" place to identify SCCs.

Where is the "right" place to start DFS?

Start from any node in a sink of the meta graph!

Say, start from node G:

• *explore* (node G) visits the SCC of the sink.

Where is the "right" place to start DFS?

Start from any node in a sink of the meta graph!

Say, start from node G:

- *explore*(node G) visits the SCC of the sink.
- No edge coming out of the sink component
- → It does not explore any node outside of SCC!

Where is the "right" place to start DFS?

Start from any node in a sink of the meta graph!

Say, start from node G:

- *explore*(node G) visits the SCC of the sink.
- No edge coming out of the sink component
- → It does not explore any node outside of SCC!

Where is the "right" place to start DFS?

Start from any node in a sink of the meta graph!

Say, start from node G:

- *explore*(node G) visits the SCC of the sink.
- No edge coming out of the sink component
- → It does not explore any node outside of SCC!

Remove this component, and continue

• *explore* any node in the sink of the remaining meta graph.

Sinks, Sources, and DFS post numbers

Claim: Suppose we run DFS on graph *G*. Let C and C' be two SCCs such

highest post[v] for $v \in C >$ highest post[u] for $u \in C'$

Sinks, Sources, and DFS post numbers

Corollary: Suppose we run DFS on graph G. The highest post[v] belongs to a node v that is in the source SCC of the meta graph!

Reverse all the edges of G, first. Then, run the DFS!

The Reverse Graph Properties

Claim [we saw at the beginning of class]: G and G^R (reverse of G) have the same connected components! Also, edges in the meta graph of G^R are the reverse of edges in the meta graph of G.

Corollary: Suppose we run DFS on graph G^R . The highest post[v] belongs to a node v that is in the sink SCC of the meta graph!

Algorithm for finding the SCCs

```
Compute the reverse of G, call it G^R.

Run DFS (using alphabetic order or any arbitrary order) on G^R.

Store the post numbers of this DFS, say in an array called post-r.

Run DFS on G. This time, explore any unvisited node in the decreasing order post-r.

Each new call from DFS to explore, finds a new SCC.
```

```
explore(G, u)
visited[u] = true
sccnum[u] = count
For v such that <math>(u, v) \in E
If visited[v] = false then explore(G, v)
```

```
Find SCCs(G)
boolean array visited(n) // init all false.

[pre-r, post-r] \leftarrow dfs(G^R)

count = 1

For v \in V from highest to lowest post-r[v]

If visited[v] = false then

explore(G, v)

count ++
```

Algorithm step 1: Reverse G

- Not been there yet
- Been there, still exploring.
- Finished exploring

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[1, G

- Not been there yet
- Been there, still exploring.
- Finished exploring

[1, 2]G

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3, [1, 2]G

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3, [1, 2][4, G

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3, [1, 2][4,5]G

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [1, 2][4,5]G

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [1, 2][4,5]G

- () Not been there yet
- Been there, still exploring.
- Finished exploring

- () Not been there yet
- Been there, still exploring.
- Finished exploring

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [1, 2][4,5] [8,9] G

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [7,10][1, 2][4,5] [8,9] E G

- () Not been there yet
- Been there, still exploring.
- Finished exploring

- () Not been there yet
- Been there, still exploring.
- Finished exploring

- () Not been there yet
- Been there, still exploring.
- Finished exploring

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [7,10][1, 2][11,12][4,5] [8,9] E [13, G

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [7,10][1, 2][11,12][4,5] [8,9] E [13, G

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [7,10][1, 2][11,12]**[4,5]** [8,9] E [13, G [16,

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [7,10][1, 2][11,12]**[4,5]** [8,9] E [17, [13, G [16,

- Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [7,10][1, 2][11,12]**[4,5]** [8,9] E [18, [17, [13, G [16,

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [7,10][1, 2]B [11,12]**[4,5]** [8,9] E [18,19] [17, [13, G [16,

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [7,10][1, 2]B [11,12]**[4,5]** [8,9] E [18,19] [17,20] [13, G [16,

- Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [7,10][1, 2]B [11,12]**[4,5]** [8,9] E [18,19] [17,20] [13, G [16,21]

- Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [7,10][1, 2]B [11,12] **[4,5]** [8,9] E [18,19] [17,20] [13, G [16,21]

- () Not been there yet
- Been there, still exploring.
- Finished exploring

- () Not been there yet
- Been there, still exploring.
- Finished exploring

[3,6] [7,10][1, 2]B [11,12] **[4,5]** [8,9] E [18,19] [17,20] [13,24]G [16,21]

Sink node and the highest post number

Consider the graph G, not reverse of G.

Sink node and the highest post number

Consider the graph G, not reverse of G.

Consider the graph G, not reverse of G.

Highest post-r

Run DFS and call explore in the decreasing order of post-r numbers.

Consider the graph G, not reverse of G.

Highest post-r

Run DFS and call explore in the decreasing order of post-r numbers.

Consider the graph *G*, not reverse of *G*.

[3,6] Run DFS and call explore in the decreasing order of post-r numbers. [11,12][4,5] [8,9] Highest remaining post-r-[18,19] sccnum = 1

Consider the graph *G*, not reverse of *G*. [3,6] Run DFS and call explore in the decreasing order of post-r numbers. [11,12][4,5] [8,9] Highest remaining post-r-[18,19] sccnum = 1

Consider the graph *G*, not reverse of *G*.

[3,6] Run DFS and call explore in the decreasing order of post-r numbers. [4,5] [8,9] sccnum = 2[18,19] sccnum = 1

Alg step 3: Run DFS on G in the decreasing post Highest remaining

post-r Consider the graph G, not reverse of G. [3,6] Run DFS and call explore in the decreasing A order of post-r numbers. [4,5] [8,9] sccnum = 2[18,19] sccnum = 1

Alg step 3: Run DFS on G in the decreasing post Highest remaining

post-r Consider the graph G, not reverse of G. [3,6] Run DFS and call explore in the decreasing A order of post-r numbers. [4,5] [8,9] sccnum = 2[18,19] sccnum = 1

sccnum = 3

sccnum = 3Highest remaining post-r Consider the graph *G*, not reverse of *G*. [3,6] Run DFS and call explore in the decreasing A order of post-r numbers. [4,5] [8,9] sccnum = 2[18,19] sccnum = 1

sccnum = 3Highest remaining scenum = 4post-r Consider the graph *G*, not reverse of *G*. [3,6] Run DFS and call explore in the decreasing A order of post-r numbers. [4,5] [8,9] sccnum = 2[18,19] sccnum = 1

sccnum = 3sccnum = 4sccnum = 5Consider the graph *G*, not reverse of *G*. [3,6]Run DFS and call explore in the decreasing order of post-r numbers. [4,5] [8,9] sccnum = 2[18,19] sccnum = 1

Wrap up

DFS is awesome!

- → Edge types are important → Topological sort and DAGs
- → Simple book keeping tells us about edge types too.
- → Book keeping helps a lot with other algorithm design problems, like finding SCCs.

Next time

- More with graphs
- Paths