Содержание

1	Виды сходимости случайных векторов и связи между ними	2
2	Закон больших чисел, усиленный закон больших чисел	3
3	Вероятно-статистическая модель	5
4	Эмпирическое распределение и эмпирическая функция распределения	6
5	Статистики и оценки	8
6	О наследовании состоятельностей	9
7	Метод подстановки и метод моментов	9
8	Квантили и выборочные квантили	11
9	Сравнение оценок, функция потерь и функция риска	13
10	Понятие плотности в дискретном случае	13
11	Экспоненциальные семейства распределений	16
12	Достаточные статистики	17
13	Полные статистики, оптимальные оценки	18
14	Доверительные интервалы	19
15	Метод максимального правдоподобия	21
16	Дополнительные свойства ОМП	23
17	Линейная регрессионная модель	24
18	Гауссовская линейная модель	25
19	Безумные распределения и их свойства	27

1 Виды сходимости случайных векторов и связи между ними

Пусть ξ , $\{\xi_n\}_{n=1}^{\infty}$ — случайные векторы размерности m.

Определение 1.1. Сходимость почти наверное:

$$\xi_n \stackrel{\text{\tiny II.H.}}{\to} \xi \Leftrightarrow P(\xi_n \to \xi) = 1$$

Определение 1.2. Сходимость по вероятности:

$$\xi_n \xrightarrow{P} \xi \Leftrightarrow \forall \varepsilon > 0 : \lim_{n \to \infty} P(\|\xi_n - \xi\|_2 > \varepsilon) = 0$$

Определение 1.3. Сходимость в L_p (в среднем):

$$\xi_n \stackrel{L_p}{\to} \xi \Leftrightarrow \lim_{n \to \infty} \mathbb{E} \|\xi_n - \xi\|_p^p = 0$$

Определение 1.4. Сходимость по распределению:

$$\xi_n \stackrel{\mathrm{d}}{\to} \xi \Leftrightarrow \forall f \in \mathrm{BC}(\mathbb{R}^m) : \mathbb{E}f(\xi_n) \stackrel{n \to \infty}{\to} \mathbb{E}f(\xi)$$

Утверждение 1.1. Связь между сходимостями:

- 1. $n.H. \Rightarrow P$
- 2. $L_p \Rightarrow P$
- 3. $P \Rightarrow d$

Утверждение 1.2. $\xi_n \stackrel{d}{\to} const \Rightarrow \xi_n \stackrel{P}{\to} const$

Утверждение 1.3. Связь между сходимостью векторов и сходимостью их компонент:

1.

$$\xi_n \stackrel{n.n.}{\to} \xi \Leftrightarrow \forall i: \xi_n^{(i)} \stackrel{n.n.}{\to} \xi^{(i)}$$

2.

$$\xi_n \xrightarrow{P} \xi \Leftrightarrow \forall i: \ \xi_n^{(i)} \xrightarrow{P} \xi^{(i)}$$

3.

$$\xi_n \stackrel{L_p}{\to} \xi \Leftrightarrow \forall i: \ \xi_n^{(i)} \stackrel{L_p}{\to} \xi^{(i)}$$

4.

$$\xi_n \stackrel{d}{\to} \xi \Rightarrow \forall i : \xi_n^{(i)} \stackrel{d}{\to} \xi^{(i)}$$

Доказательство. 1.

$$\cap_{i=1}^m \{\xi_n^{(i)} \rightarrow \xi^{(i)}\} = \{\xi_n \rightarrow \xi\} \subset \{\xi_n^{(i)} \rightarrow \xi^{(i)}\}$$

Тогда для ⇒ используем включение и свойство меры:

$$1 = P(\{\xi_n \to \xi\}) \leqslant P(\{\xi_n^{(i)} \to \xi^{(i)}\})$$

А для ⇐:

$$1 = P(\cap_{i=1}^{m} \{\xi_{n}^{(i)} \to \xi^{(i)}\}) = P(\{\xi_{n} \to \xi\})$$

2. Для ⇒:

$$\{|\xi_n^{(i)} - \xi^{(i)}| > \varepsilon\} \subset \{\|\xi_n - \xi\|_2 > \varepsilon\}$$

А для ⇐:

$$\{\|\xi_n - \xi\|_2 > \varepsilon\} \subset \bigcup_{i=1}^m \left\{ |\xi_n^{(i)} - \xi^{(i)}| > \frac{\varepsilon}{\sqrt{m}} \right\}$$

3. Заметим, что

$$\forall i: \lim_{n\to\infty} \mathbb{E}|\xi_n^{(i)} - \xi^{(i)}|^p = 0 \Leftrightarrow \lim_{n\to\infty} \mathbb{E}||\xi_n - \xi||_p^p = \lim_{n\to\infty} \mathbb{E}\sum_{i=1}^n |\xi_n^{(i)} - \xi^{(i)}|^p = 0$$

4. Для \Rightarrow в качестве f возьмём функцию-проектор.

Теорема 1.1. О наследовании сходимостей.

Пусть ξ , $\{\xi_n\}_{n=1}^{\infty}$ — случайные векторы в \mathbb{R}^m , причём $\exists B \in \mathcal{B}(\mathbb{R}^m): P(\xi \in B) = 1 \ u$ $h: \mathbb{R}^m \to \mathbb{R}^k$ непрерывна в каждой точке множества B. Тогда

$$\xi_n \stackrel{n.n.,P,d}{\to} \xi \Rightarrow h(\xi_n) \stackrel{n.n.,P,d}{\to} h(\xi) \tag{1}$$

Доказательство. • Случай п.н.:

$$P(h(\xi_n) \to h(\xi)) \geqslant P(h(\xi_n) \to h(\xi), \xi \in B) \geqslant P(\xi_n \to \xi, \xi \in B) = 1$$

Случай P:

Пусть $h(\xi_n) \not\to h(\xi) \Rightarrow$:

$$\exists \varepsilon_0, \delta_0, \{n_k\}_{k=1}^{\infty} : P(\|h(\xi_{n_k}) - h(\xi)\| > \varepsilon_0) \geqslant \delta_0$$

Но из неё мы можем выбрать $\{\xi_{n_{k_m}}\}_{m=1}^{\infty}$, сходящуюся почти всюду (по прошлому семестру), но тогда мы получили противоречие с предыдущим пунктом доказательства.

• Докажем для непрерывных h:

Тогда

$$\forall f \in BC(\mathbb{R}^k): f(h(x)) \in BC(\mathbb{R}^m)$$

Значит мы можем взять $f \circ h$ в качестве функции из определения сходимости по распределению и получить требуемое.

2 Закон больших чисел, усиленный закон больших чисел...

Теорема 2.1. *3БЧ.*

 $\Pi y cm b \ \{\xi_n\}_{n=1}^{\infty}$ – попарно некорелированные вектора $u \sup_{n,i} \mathbb{V} \xi_n^{(i)} \leqslant C$. Тогда

$$\frac{s_n - \mathbb{E}s_n}{n} \stackrel{P}{\to} 0$$

 $\partial e \{s_n\}_{n=1}^{\infty} = \{\sum_{i=1}^{n} \xi_i\}_{n=1}^{\infty}$

Теорема 2.2. УЗБЧ.

Пусть $\{\xi_n\}_{n=1}^\infty$ – независимые одинаково распределённые, причём $\mathbb{E}\xi_1<+\infty$. Тогда

$$\frac{s_n}{n} \stackrel{n.n.}{\to} \mathbb{E}\xi_1$$

Теорема 2.3. *ЦПТ*.

Пусть $\{\xi_n\}_{n=1}^{\infty}$ — независимые одинаково распределённые, причём \exists ковариационные матрица $\mathbb{V}\xi_1$. Тогда

$$\sqrt{n}\left(\frac{s_n}{n} - \mathbb{E}\xi\right) \xrightarrow{d} \mathcal{N}(0, \mathbb{V}\xi_1)$$

Лемма 2.1. Лемма Слуцкого.

Пусть $\xi_n \stackrel{d}{\to} \xi$ и $\eta_n \stackrel{d}{\to} c \ (const)$. Тогда

$$\xi_n + \eta_n \stackrel{d}{\to} \xi + \eta; \quad \xi_n \cdot \eta_n \stackrel{d}{\to} \xi \cdot c$$

Доказательство. По некому утверждению без доказательства, будет верно

$$\begin{pmatrix} \xi_n \\ \eta_n \end{pmatrix} \stackrel{d}{\to} \begin{pmatrix} \xi \\ c \end{pmatrix}$$

Тогда, применив теорему о наследовании сходимостей с функциями $+, \cdot$ всё получится. \Box

Пример. Применение леммы Слуцкого.

Пусть $\xi_n \stackrel{d}{\to} \xi$ — последовательность случайных величин и $H: \mathbb{R} \to \mathbb{R}$ — дифференцируемая в точке a и $b_n \to 0$, причём $b_n \neq 0$. Тогда

$$\frac{H(a+\xi_n b_n) - H(a)}{b_n} \xrightarrow{d} H'(a)\xi$$

Доказательство. Введём

$$h(x) := \begin{cases} \frac{H(a+x) - H(a)}{x}, & x \neq 0 \\ H'(a), & x = 0 \end{cases}$$

Tогда h непрерывна в 0.

По лемме Слуцкого:

$$b_n \xi_n \stackrel{d}{\to} 0$$

По теореме о наследовании сходимости

$$h(b_n\xi_n) \stackrel{d}{\to} h(0) = H'(a) \Rightarrow \frac{H(a+\xi_nb_n) - H(a)}{b_n} = h(b_n\xi_n)\xi_n \stackrel{d}{\to} H'(a)\xi$$

Теорема 2.4. Обобщение на многомерный случай.

Пусть $\xi_n \stackrel{d}{\to} \xi$ в \mathbb{R}^m , и $H: \mathbb{R}^m \to \mathbb{R}^s$, у которой в точке $a \in \mathbb{R}^m$ \exists матрица частных производных $H'(x) = \left(\frac{\partial H_i}{\partial x_j}\right)_{i=1,j=1}^{s,m}$, а также числовая последовательность $b_n \to 0, b_n \neq 0$. Тогда

$$\frac{H(a+\xi_n b_n) - H(a)}{b_n} \xrightarrow{d} H'(a)\xi$$

3 Вероятно-статистическая модель...

Пусть (Ω, \mathcal{F}) и (E, \mathcal{E}) – измеримые пространства.

Определение 3.1. Если $\xi: \Omega \to E$ такова, что

$$\forall B \in \mathcal{E} : \xi^{-1}(B) \in \mathcal{F}$$

то ξ называется **случайным элементом**.

Если $(E,\mathcal{E})=(\mathbb{R}^m,\mathcal{B}(\mathbb{R}^m))$, то ξ называется случайным вектором.

Более того, если m=1, то ξ называется **случайном величиной**.

Определение 3.2. Распределением случайного элемента ξ называется мера P_{ξ} на \mathcal{E} , такая что $P_{\xi}(B) = P(\xi \in B)$

Определение 3.3. Выборочное пространство \mathcal{X} – множество всевозможных исходов одного эксперимента (обычно \mathbb{R}^m).

 $\mathcal{B}_{\mathcal{X}}$ – σ -алгебра на \mathcal{X} будем считать Барелевской.

Утверждение 3.1. Построим модель эксперимента, как случайной величины. Пусть

$$\forall x \in \mathcal{X} : X(x) = x$$

получим отображение $X: \mathcal{X} \to \mathcal{X}$, которое является случайным элементом на вероятностном пространстве $(\mathcal{X}, \mathcal{B}_{\mathcal{X}}, P)$ и имеет распределение $P_X = P$

Доказательство. Проверим, что данная случайная величина действительно имеет необходимое нам распределение

$$P_X(B) = P(X \in B) = P(x : X(x) \in B) = P(x \in B) = P(B)$$

Утверждение 3.2. Построим модель n независимых повторений нашего эксперимента. Рассмотрим $\mathcal{X}^n = \mathcal{X} \times \cdots \times \mathcal{X}$ и $\mathcal{B}^n_{\mathcal{X}} = \mathcal{B}(\mathcal{X}^n) = \sigma(B_1 \times \cdots \times B_n), B_i \in \mathcal{B}_{\mathcal{X}}, a P^n = P \otimes \cdots \otimes P$ – мера на $(\mathcal{X}^n, \mathcal{B}^n_{\mathcal{X}})$, такая что $P^n(B_1 \times \cdots \times B_n) = P(B_1) * \cdots * P(B_n)$.

Для этого рассмотрим тождественное отображение $X: \mathcal{X}^n \to \mathcal{X}^n$. Его i-я компонента X_i (по сути i-й проектор) является случайным вектором c распределением P, причём X_1, \dots, X_n независимы в совокупности.

Доказательство. Фиксируем i, рассмотрим вероятность

$$P^{n}(X_{i} \in B_{i}) = P^{n}((x_{1}, \dots, x_{n}) \in \mathcal{X} : X_{i}(x_{1}, \dots, x_{n}) \in B_{i}) = P^{n}((x_{1}, \dots, x_{n}) \in \mathcal{X} : x_{i} \in B_{i}) = P^{n}(\mathcal{X} \times \dots \times B_{i} \times \dots \times \mathcal{X}) = 1 * \dots * P(B_{i}) * \dots * 1$$

Теперь докажем независимость:

$$P^{n}(X_{1} \in B_{1}, \dots, X_{n} \in B_{n}) = P^{n}((x_{1}, \dots, x_{n}) \in \mathcal{X} : X_{1}(x_{1}, \dots, x_{n}) \in B_{1}, \dots) =$$

$$P^{n}(B_{1} \times \dots \times B_{n}) = \prod_{i=1}^{n} P(B_{i}) = \prod_{i=1}^{n} P^{n}(X_{i} \in B_{i})$$

Определение 3.4. Совокупность $X = (X_1, \dots, X_n)$ независимых одинаково распределённых случайных величин (или векторов) с распределением P называется **выборкой** размера n из распределения P.

Также выборку X иногда будем называть **наблюдением**.

Замечание. Для бесконечных выборок определим $\mathcal{X}^{\infty} = \mathcal{X} \times \mathcal{X} \times \cdots$ и $\mathcal{B}^{\infty}_{\mathcal{X}} = \sigma(\{B_1 \times \cdots \times B_n \times \mathcal{X} \times \mathcal{X} \times \mathcal{X} \times \cdots \}_{n=1}^{\infty})$, а меру $P^{\infty}(B_1 \times \cdots \times B_n \times \mathcal{X} \times \cdots) = P(B_1) * \cdots * P(B_n)$, такая мера существует и единственна.

Аналогично предыдущим пунктам определяем **бесконечную серию эскперимен**тов.

Определение 3.5. Тройка $(\mathcal{X}, \mathcal{B}_{\mathcal{X}}, \mathcal{P})$ называется вероятностно-статистической моделью.

Замечание. Пусть X_1, \dots, X_n – случайные величины (или векторы), и $X_1(\omega) = x_1, \dots, X_n(\omega) = x_n$ – их значения, называются **реализацией выборки**.

Задачей статистики является сделать вывод о неизвестном распределении по реализации выборки.

Определение 3.6. Вероятно-статистическая модель $(\mathcal{X}, \mathcal{B}_{\mathcal{X}}, \mathcal{P})$ называется параметрической, если семейство \mathcal{P} параметризованно, то есть

$$\mathcal{P} = \{ P_{\theta}, \theta \in \Theta \}$$

обычно $\Theta \subset \mathbb{R}^m$.

4 Эмпирическое распределение и эмпирическая функция распределения

Определение 4.1. Для $\forall B \in \mathcal{B}(\mathbb{R}^m)$ положим

$$P_n^*(B) := \frac{\sum_{i=1}^n \mathbb{I}\{X_i \in B\}}{n}$$

распределение P_n^* называется **эмпирическим распределением**, построенным по выборке X_1, \cdots, X_n .

Это случайное распределение (зависит от ω)

Определение 4.2. Функция $F_n^*(x) = \frac{\sum_{i=1}^n \mathbb{I}\{X_i \leqslant x\}}{n}$ называется эмпирической функцией распределения.

Утверждение 4.1. Пусть X_1, \dots, X_n – выборка на вероятностном пространстве (Ω, \mathcal{F}, P) из распределения P_X . Пусть $B \in \mathcal{B}(\mathbb{R}^m)$. Тогда

$$P_n^*(B) \stackrel{n.n.}{\to} P_X(B), n \to +\infty$$

Доказательство. Заметим, что $\mathbb{I}\{X_i \in B\}$ – независимые, одинаково распределённые величины.

Тогда мы можем применить УЗБЧ:

$$P_n^*(B) = \frac{s_n}{n} \stackrel{\text{\tiny II.H.}}{\to} \mathbb{E}\mathbb{I}\{X_1 \in B\} = P_X(B)$$

Теорема 4.1. Гливенко-Кантелли.

 $\mathit{\Pi ycmb}\ X_1,\,\cdots,X_n$ – независимые случайные величины с функцией распределения F(x). Tог ∂a

$$D_n = \sup_{x \in \mathbb{R}} |F_n^*(x) - F(x)| \stackrel{n.n.}{\to} 0$$

Доказательство. Почему D_n – случайная величина?

F непрерывна справа, и $\forall \omega: \, F_n^*$ также непрерывна справа \Rightarrow

$$D_n(\omega) = \sup_{x \in \mathbb{R}} |F_n^*(x) - F(x)| = \sup_{x \in \mathbb{Q}} |F_n^*(x) - F(x)|$$

Значит D_n является случайной совокупностью случайных величин $\Rightarrow D_n$ – случайная величина.

Фиксируем $N \in \mathbb{N}$, тогда $\forall k \in \{1, \dots, N-1\}$ положим

$$X_{N,K} = \inf \left\{ x \in \mathbb{R} \mid F(x) \geqslant \frac{K}{N} \right\}$$

Заметим, что это число конечно, а также определим $X_{N,0} = -\infty, X_{N,N} = +\infty.$

Если $x \in [X_{N,K}, X_{N,K+1}) \Rightarrow$

$$F_n^*(x) - F(x) \leqslant F_n^*(X_{N,K+1} - 0) - F(X_{N,K}) = F_n^*(X_{N,K+1} - 0) - F(X_{N,K+1} - 0) + F(X_{N,K+1} - 0) - F(X_{N,K}) \leqslant F_n^*(X_{N,K+1} - 0) - F(X_{N,K+1} - 0) + \frac{1}{N}$$

Последний переход получили благодаря тому, что $F(X_{N,K+1}-0)$ – отсуп чуть влево, от нижней границы значения, где $F(x)\geqslant \frac{K+1}{N}$, значит там $\leqslant \frac{K+1}{N}$. Ну а $F(X_{N,K})$ по определению $\geqslant \frac{K}{N}$. Аналогично $F_n^*(x) - F(x) \geqslant F_n^*(X_{N,K}) - F(X_{N,K}) - \frac{1}{N}$. Тогда

$$|F_N^*(x) - F(x)| \le \max(|F_n^*(X_{N,K+1} - 0) - F(X_{N,K+1} - 0)|, |F_n^*(X_{N,K}) - F(X_{N,K})|) + \frac{1}{N}$$

Но тогда супремум по всей прямой

$$\sup_{x \in \mathbb{R}} |F_N^*(x) - F(x)| \leq \max_{0 \leq K \leq N-1} \max(|F_n^*(X_{N,K+1} - 0) - F(X_{N,K+1} - 0)|, |F_n^*(X_{N,K}) - F(X_{N,K})|) + \frac{1}{N} \max_{x \in \mathbb{R}} |F_N^*(x) - F(x)| \leq \max_{0 \leq K \leq N-1} \max(|F_N^*(X_{N,K+1} - 0) - F(X_{N,K+1} - 0)|, |F_N^*(X_{N,K}) - F(X_{N,K})|) + \frac{1}{N} \max_{x \in \mathbb{R}} |F_N^*(x) - F(x)| \leq \max_{0 \leq K \leq N-1} \max(|F_N^*(X_{N,K+1} - 0) - F(X_{N,K+1} - 0)|, |F_N^*(X_{N,K}) - F(X_{N,K})|) + \frac{1}{N} \max_{x \in \mathbb{R}} |F_N^*(x) - F(x)| \leq \max_{0 \leq K \leq N-1} \max(|F_N^*(X_{N,K+1} - 0) - F(X_{N,K+1} - 0)|, |F_N^*(X_{N,K}) - F(X_{N,K})|) + \frac{1}{N} \max_{x \in \mathbb{R}} |F_N^*(x) - F(x)| \leq \max_{x \in \mathbb{R}} \max_{x \in \mathbb{R}} |F_N^*(x) - F(x)| + \frac{1}{N} \min_{x \in \mathbb{R}} |F_N^*(x) - F(x)| + \frac{1}{N} \min_{x \in \mathbb{R}} |F_N^*(x)|$$

Из предыдущего утверждения следует, что $F_n^*(y-0) = P_n^*((-\infty,y)) \to P_X((-\infty,y)) = P_X(y-0)$

Теперь для ε фиксируем $\frac{1}{N} < \varepsilon \Rightarrow$

$$\overline{\lim}_N \sup_{x \in \mathbb{R}} |F_N^*(x) - F(x)| \stackrel{\text{\tiny n.H.}}{<} \varepsilon$$

В силу произвольности ε получаем требуемое.

5 Статистики и оценки

Определение 5.1. Пусть $(\mathcal{X}, \mathcal{B}_{\mathcal{X}}, \mathcal{P})$ – вероятно-статистическая модель, X – наблюдение, (E, \mathcal{E}) – измеримое пространство, и $S: \mathcal{X} \to E$ – измеримое отображение. Тогда S(x) называется **статистикой**.

Определение 5.2. Пусть X — наблюдение в параметрической модели $(\mathcal{X}, \mathcal{B}_{\mathcal{X}}, \{P_{\theta}\}_{\theta \in \Theta})$ и S(X) — статистика со значениями в Θ . Тогда S(X) называется **оценкой** неизвестного параметра Θ .

Пример. Пусть $X = (X_1, \dots, X_n)$ – выборка из распределения в \mathbb{R}^n .

1. Если g(x) – борелевская функция, то

$$\overline{g(X)} = \frac{1}{n} \sum_{i=1}^{n} g(X_i)$$

называется выборочной характеристикой функции g(x). Например $\overline{X} = \frac{\sum X_i}{n}$ – выборочное среднее. $\overline{X^k} = \frac{1}{n} \sum_{i=1}^n X_i^k$ – выборочный момент k-го порядка.

2. Функции от выборочных квантилей:

$$S(X) = h(\overline{g_1(X)}, \cdots, \overline{g_k(X)})$$

где h — борелевская.

Например, $s^2 = \overline{X^2} - (\overline{X})^2$ – выборочная дисперсия. $M_k = \frac{1}{n} \sum (X_i - \overline{X})^k$ – выборочный центральный момент k-го порядка.

3. Порядковые статистики:

$$X_{(1)} = \min(X_1, \cdots, X_n)$$

 $X_{(2)}$ — второй элемент в отсортированной выборке

$$X_{(n)} = \max(X_1, \cdots, X_n)$$

вектор $(X_{(1)}, \cdots, X_{(n)})$ называется вариационным рядом.

Пусть $X=(X_1,\cdots,X_n)$ – выборка из неизвестного распределения $P\in\{P_\theta,\theta\in\Theta\},\Theta\subset\mathbb{R}^k.$

Определение 5.3. Оценка $\theta^*(X)$ называется **несмещённой** оценкой параметра θ , если

$$\forall \theta \in \Theta : \mathbb{E}_{\theta} \theta^*(X) = \theta$$

где \mathbb{E}_{θ} – матожидание в случае, когда элементы выборки имеют распределение P_{θ} .

Определение 5.4. Оценка $\theta_n^*(X_1, \cdots, X_n)$ (а точнее последовательность оценок) называется **состоятельной**, если

$$\forall \theta \in \Theta : \theta^*(X) \stackrel{P_{\theta}}{\to} \theta$$

и называется сильно состоятельной если

$$\forall \theta \in \Theta : \ \theta^*(X) \stackrel{P_{\theta^{-\Pi. H.}}}{\to} \theta$$

Определение 5.5. Оценка $\theta^*(X_1, \dots, X_n)$ называется асимптотически нормальной оценкой θ , если

$$\forall \theta \in \Theta : \sqrt{n}(\theta_n^* - \theta) \xrightarrow{d_{\theta}} \mathcal{N}(0, \sigma^2(\theta))$$

Утверждение 5.1. Пусть T(X) – асимптотически нормальная оценка для $\tau(\theta)$. Тогда T(X) – состоятельная оценка для $\tau(\theta)$.

Доказательство. Используя лемму Слуцкого, получаем

$$\frac{1}{\sqrt{n}} \cdot \sqrt{n} (T_n - \tau(\theta)) \stackrel{d_{\theta}}{\to} 0$$

Но мы знаем, что из сходимости по распределению к константе следует сходимость по мере. \Box

Утверждение 5.2. Из сильной состоятельности и асимптотической нормальности оценки следует её состоятельность.

Доказательство. Следствие из сильной состоятельности автоматически следует из связи сходимостей.

Следствите из асимптотической нормальности было доказано в предыдущем утверждении. \Box

6 О наследовании состоятельностей

Утверждение 6.1. Наследование состоятельности и сильной состоятельности при взятии непрерывной функции.

Пусть $\theta_n^*(X)$ – сильно состоятельная (состоятельная) оценка θ . Если $\tau: \mathbb{R}^k \to \mathbb{R}^s$ непрерывна на $\Theta \subset \mathbb{R}^k$, то $\tau(\theta_n^*)$ – сильно состоятельная (состоятельная) оценка $\tau(\theta)$.

Доказательство. Смотри доказательство теоремы о наследовании сходимости.

Лемма 6.1. О наследовании асимптотической нормальности.

Пусть $\theta_n^*(X)$ – асимптотически нормальная оценка $\theta \in \Theta$ с асимптотической дисперсией $\sigma^2(\theta)$ и числовая функция $T: \mathbb{R} \to \mathbb{R}$ дифференцируема в $\forall \theta \in \Theta$. Тогда $T(\theta_n^*)$ – асимптотически нормальная оценка $T(\theta)$ с асимптотической дисперсией $\sigma^2(\theta)(T'(\theta))^2$

Доказательство. Фиксируем $\theta, \xi_n := \sqrt{n}(\theta_n^*(X) - \theta) \xrightarrow{d_{\theta}} \xi \sim \mathcal{N}(0, \sigma^2(\theta)), b_n := \frac{1}{\sqrt{n}} \to 0.$ Вспомним дельта метод, взяв

$$a = \theta, h = T \Rightarrow \frac{T(\theta + \xi_n b_n) - T(\theta)}{b_n} \stackrel{d_{\theta}}{\to} T'(\theta) \xi \Rightarrow \sqrt{n} (T(\theta_n^*) - T(\theta)) \stackrel{d_{\theta}}{\to} T'(\theta) \mathcal{N}(0, \sigma^2(\theta))$$

7 Метод подстановки и метод моментов

Определение 7.1. Пусть в параметрическом семействе $\{P_{\theta}, \theta \in \Theta\}$ для некоторой функции G выполнено:

$$\forall \theta \in \Theta : \theta = G(P_{\theta})$$

Тогда оценкой по **методу подстановки** называется $\theta^*(X_1, \cdots, X_n) = G(P_n^*)$

Пусть X_1, \dots, X_n — выборка из $P \in \{P_\theta, \theta \in \Theta\}, \Theta \subset \mathbb{R}^k$. Рассмотрим барелевские функции $g_1(x), \dots, g_k(x)$ со значениями в \mathbb{R} .

Пусть $m_1(\theta) = \mathbb{E}_{\theta} g_i(X_1)$ конечно при $1 \leqslant i \leqslant k$.

Определение 7.2. Если $\exists !$ решение системы

$$\begin{cases}
m_1(\theta) = \overline{g_1(X)} \\
\dots \\
m_k(\theta) = \overline{g_k(X)}
\end{cases}$$

Тогда оценкой по **методу моментов** называется $\theta^* = m^{-1}(\overline{g})$, где

$$m(\theta) := \begin{pmatrix} m_1(\theta) \\ \vdots \\ m_k(\theta) \end{pmatrix}; \quad \overline{g} = \begin{pmatrix} \frac{\sum_{i=1}^n g_1(X_i)}{n} \\ \vdots \\ \frac{\sum_{i=1}^n g_k(X_i)}{n} \end{pmatrix}$$

Стандартные **пробные функции**: $g_i(X) = X^i$ (*i*-й момент).

Замечание. О связи методов.

Заметим, что

$$\theta = m^{-1} \begin{pmatrix} \int_{\mathcal{X}} g_1(x) dP_{\theta}(x) \\ \vdots \\ \int_{\mathcal{X}} g_k(x) dP_{\theta}(x) \end{pmatrix} = G(P_{\theta})$$

Тогда по методу подстановки получим

$$\theta_n^* = m^{-1} \begin{pmatrix} \int_{\mathcal{X}} g_1(x) dP_n^*(x) \\ \vdots \\ \int_{\mathcal{X}} g_k(x) dP_n^*(x) \end{pmatrix} = G(P_n^*)$$

Таким образом, метод моментов – это частный случай метода подстановки.

Теорема 7.1. Сильная состоятельной оценки методом моментов.

Если т биективна и функцию m^{-1} можно доопределить до функции, заданной на всём \mathbb{R}^k и непрерывной в каждой точке множества $m(\Theta)$ тогда оценка по методу моментов является сильно состоятельной оценкой параметра θ .

Доказательство. Фиксируем θ , по УЗБЧ знаем, что

$$\overline{g} \stackrel{P_{\theta} \xrightarrow{\text{п.н.}}}{\to} m(\theta)$$

Используя теорему о наследовании сходимости, навесим m^{-1} :

$$\theta_n^* = m^{-1}(\overline{g}) \stackrel{P_{\theta} \text{ \tiny II.H.}}{\to} m^{-1}(m(\theta)) = \theta$$

Теорема 7.2. Асимптотическая нормальность ОММ.

Если в условиях предыдущей теоремы m^{-1} дифференцируема на $m(\Theta)$ и $\forall i \leqslant k$: $\mathbb{E}_{\theta}g_i^2(X_1) < +\infty$. Тогда ОММ θ_n^* является асимптотически нормальной оценкой параметра θ .

Доказательство. По ЦПТ:

$$\sqrt{n}(\overline{g} - m(\theta)) \stackrel{d_{\theta}}{\to} \mathcal{N}(0, \Sigma)$$

Применяем многомерный дельта-метод и получаем требуемое.

8 Квантили и выборочные квантили

Определение 8.1. Пусть P – распределение вероятности на \mathbb{R} . Пусть $p \in (0,1)$. p**квантилью** распределения *P* называют

$$z_p = \inf\{x \in \mathbb{R} \mid F(x) \geqslant p\}$$

Определение 8.2. Пусть X_1, \dots, X_n – выборка, статистика

$$z_{n,p} = \begin{cases} X_{(\lceil np \rceil)}, np \notin \mathbb{Z} \\ X_{(np)}, np \in \mathbb{Z} \end{cases}$$

называется выборочной р-квантилью.

Теорема 8.1. О выборочной квантили.

Пусть X_1, \dots, X_n – выборка из распределения P с плотностью f(x). Пусть z_n – это p-квантиль распределения P, причём f(x) непрерывно дифференцируема в окрестности z_p , причём $f(z_p) > 0$. Тогда

$$\sqrt{n}(z_{n,p}-z_p) \stackrel{d}{\to} \mathcal{N}\left(0, \frac{p(1-p)}{f^2(z_p)}\right)$$

Доказательство. Пусть $k := \lceil np \rceil$.

Из соображений комбинаторики, заметим, что

$$P(X_{(k)} \le x) = \sum_{m=k}^{n} C_n^m F^m(x) (1 - F(x))^{n-m}$$

Засчёт свойств биномиальных коэффициентов, после дифференцирования выражения выше, получим

$$p_{X_{(k)}}(x) = nC_{n-1}^{k-1}F^{k-1}(x)(1 - F(x))^{n-k}f(x)$$

Введём

$$\eta_n = (z_{n,p} - z_p) \sqrt{\frac{nf^2(z_p)}{p(1-p)}}$$

Плотность такого линейного преобразования легко считается

$$p_{\eta_n}(x) = \sqrt{\frac{p(1-p)}{nf^2(z_p)}} p_{X_{(k)}}(t_n(x))$$

где $t_n(x)=z_p+\frac{x}{f(z_p)}\sqrt{\frac{p(1-p)}{n}}$ Откуда это взялось? Вспомним, как меняется плотность при линейном преобразовании:

$$p_{a\xi+b}(x) = F'_{a\xi+b}(x) = P'(a\xi+b \leqslant x) = P'(\xi \leqslant \frac{x-b}{a}) = F'_{\xi}(\frac{x-b}{a}) = \frac{1}{a}p_{\xi}(\frac{x-b}{a})$$

Раскроем $p_{X_{(k)}}$ по формуле, которую получили в начале доказательства и разложим полученную плотность η_n в следующее произведение:

$$p_{\eta_n}(x) = A_1(n)A_2(n)A_3(n)$$

где

$$A_1(n) = \sqrt{npq} C_{n-1}^{k-1} p^{k-1} q^{n-k}$$

$$A_2(n) = \frac{f(t_n(x))}{f(z_p)}$$

$$A_3(n) = \left(\frac{F(t_n(x))}{p}\right)^{k-1} \left(\frac{1 - F(t_n(x))}{q}\right)^{n-k}$$

Осталось заметить, что

$$A_1(n) \rightarrow \frac{1}{\sqrt{2\pi}}; \quad A_2(n) \rightarrow 1;$$

Для $A_3(n)$ немного сложнее, разложим $F(t_n(x))$ в ряд Тейлора в окрестности z_p . (так как $t_n(x) \to z_p$):

$$F(t_n(x)) = F(z_p) + (t_n - z_p)F'(z_p) + \frac{1}{2}(t_n - z_p)^2 F''(z_p) + o(t_n - z_p)^2$$

Давайте упростим это выражение, раскрыв t_n и применив свойство квантиля $F(z_p) = p$:

$$F(t_n(x)) = p + x\sqrt{\frac{pq}{n}} + \frac{1}{2}\frac{x^2pq}{n} \cdot \frac{f'(z_p)}{f^2(z_p)} + o(\frac{1}{n}), n \to +\infty$$

Теперь должны расписать приближение $\ln\left(\frac{F(t_n(x))}{p}\right)$, используя формулу $\ln(1+x) = x - \frac{x^2}{2} + o(x^3)$, причём в квадрате нам нужен будет только $x\sqrt{\frac{pq}{n}}$:

$$\ln\left(\frac{F(t_n(x))}{p}\right) = x\sqrt{\frac{q}{pn}} + \frac{1}{2}\frac{x^2q}{n}\frac{f'(z_p)}{f^2(z_p)} + o\left(\frac{1}{n}\right) - \frac{x^2}{2}\frac{q}{np}$$

Аналогично разложив для $\ln\left(\frac{1-F(t_n(x))}{q}\right)$, получим

$$\ln A_3(n) \to -\frac{x^2}{2}$$

Таким образом, $p_{\eta_n(x)} \to \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ и эта сходимость равномерна на $\forall [-N,N]$. Используя теорему из теории вероятностей,

$$\eta_n \stackrel{d}{\to} \mathcal{N}(0,1)$$

Определение 8.3. Медианой распределения P называется $\frac{1}{2}$ квантиль. Выборочной медианой называется

$$\hat{\mu} = \begin{cases} X_{(k)}, n = 2k + 1\\ \frac{X_{(k)} + X_{(k+1)}}{2}, n = 2k \end{cases}$$

Теорема 8.2. О выборочной медиане.

В условиях теоремы о выборочной квантили:

$$\sqrt{n}(\hat{\mu}-z_{\frac{1}{2}}) \stackrel{d}{\to} \mathcal{N}\left(0, \frac{1}{4f^2(z_{\frac{1}{2}})}\right)$$

9 Сравнение оценок, функция потерь и функция риска

Определение 9.1. Борелевская неотрицательная функция g(x,y) называется **функцией потерь**.

Если $\theta^*(X)$ – оценка, то $g(\theta^*(X), \theta)$ называется **величиной потерь**.

Определение 9.2. Если задана функция потерь g, то функцией риска оценки θ^* называется $R(\theta^*, \theta) = \mathbb{E}_{\theta} g(\theta^*, \theta)$

Определение 9.3. Оценка $\theta^*(X)$ лучше оценки $\hat{\theta}(X)$ в **равномерном подходе**, если

$$\forall \theta \in \Theta : R(\theta^*(X), \theta) \leqslant R(\hat{\theta}(X), \theta)$$

и для некоторого θ неравенство строгое.

Определение 9.4. Оценка $\theta^*(X)$ называется наилучшей в **минимаксном подходе**, если

$$\sup_{\theta \in \Theta} R(\theta^*(X), \theta) = \inf_{\hat{\theta}} \sup_{\theta \in \Theta} R(\hat{\theta}(X), \theta)$$

то есть у $\theta^*(X)$ наименьший максимум функции риска.

Определение 9.5. Предположим, что на Θ задано некоторое **априорное** распределение вероятности Q и θ выбирается случайно в соответствии с распределением Q.

Если $\hat{\theta}(X)$ – оценка θ и $R(\hat{\theta}, \theta)$ – её функция риска, тогда

$$R(\hat{\theta}(X)) = \mathbb{E}_{\theta} R(\hat{\theta}(X), \theta) = \int_{\Theta} R(\hat{\theta}(X), t) Q(dt)$$

Оценка $\theta^*(X)$ называется наилучшей в **байесовском** подходе, если

$$R(\theta^*(X)) = \min_{\hat{\theta}} R(\hat{\theta}(X))$$

Определение 9.6. Пусть $\hat{\theta}_1, \hat{\theta}_2$ – две асимптотически нормальных оценки параметра θ с дисперсиями $\sigma_1^2(\theta), \sigma_2^2(\theta)$.

Оценка $\hat{\theta}_1$ лучше $\hat{\theta}_2$ в асимптотическом подходе, если

$$\forall \theta \in \Theta: \ \sigma_1^2(\theta) \leqslant \sigma_2^2(\theta)$$

10 Понятие плотности в дискретном случае

Определение 10.1. Считающей мерой μ на \mathbb{Z} называется функция $\mu: \mathcal{B}(\mathbb{R}) \to \mathbb{Z}_+ \cup \{+\infty\}$, определённая по правилу

$$\mu(B) = \sum_{k \in \mathbb{Z}} \mathbb{I}\{k \in B\}$$

Определение 10.2. Интегралом по считающей мере от функции f(x) называется

$$\int_{\mathbb{R}} f(x)\mu(dx) = \sum_{k \in \mathbb{Z}} f(k)$$

если ряд в правой части сходится абсолютно.

Определение 10.3. Пусть ξ – дискретная случайная величина, принимающая значения в \mathbb{Z} . Её плотностью относительно считающей меры μ называется функция

$$p(x) = P(\xi = x), x \in \mathbb{Z}$$

Замечание. Всюду далее, когда говорим о плотности, считаем, что либо это обычная плотность в абсолютно непрерывном случае, либо это плотность в дискретном случае по считающей мере на \mathbb{Z}^n .

Определение 10.4. Пусть X – наблюдение из неизвестного распределения $P \in \{P_{\theta}, \theta \in \Theta\}$, причём $\forall \theta \in \Theta : p_{\theta}(x)$ имеет плотность $p_{\theta}(x)$ по одной и той же мере μ .

В этом случае семейство $\{P_{\theta}, \theta \in \Theta\}$ называется **доминируемым** относительно μ .

Определение 10.5. Пусть X – наблюдение с неизвестным распределением $P \in \{P_{\theta}, \theta \in \Theta\}$, где семейство доминируемо относительно μ (значит, что либо все дискретные, либо все абсолютно непрерывные).

Функцией правдоподобия называют

$$f_{\theta}(X) := p_{\theta}(X)$$

где $p_{\theta}(X)$ – плотность p_{θ} по мере μ .

Пример. Пусть $X = (X_1, \dots, X_n)$ – выборка с плотностью $p_{\theta}(x)$, то $f_{\theta}(X) = \prod_{i=1}^n p_{\theta}(X_i)$

Определение 10.6. Определим

$$L_{\theta}(X) = \ln f_{\theta}(X)$$

называется логарифмической функцией правдоподобия.

Определение 10.7. Случайная величина $u_{\theta}(x) = \frac{\partial}{\partial \theta} L_{p_{\theta}}(x)$ называется вкладом наблюдения X, и функция $I_X(\theta) = \mathbb{E}_{\theta} u_{\theta}^2(X)$ называется количеством информации о параметре θ содержащемся в X (информация по Фишеру).

Замечание. Будем считать, что выполнено условие регулярности:

- 1. $\Theta \subset \mathbb{R}$ открытый интервал
- 2. Множество $A = \{x \in \mathcal{X} \mid p_{\theta}(x) > 0\}$ не зависит от θ .
- 3. Для \forall статистики S(X) с условием $\mathbb{E}_{\theta}S^2(X) < +\infty$ выполнено $\forall \theta$ выполнено

$$\frac{\partial}{\partial \theta} \int_{A} S(x) p_{\theta}(x) \mu(dx) = \int_{A} S(x) \frac{\partial}{\partial \theta} p_{\theta}(x) \mu(dx)$$

Левая часть это $\frac{\partial}{\partial \theta} \mathbb{E}_{\theta} S(X)$, а правая часть

$$\int_{A} S(x) \frac{\partial}{\partial \theta} p_{\theta}(x) \frac{1}{p_{\theta}(x)} p_{\theta}(x) \mu(dx) = \mathbb{E}_{\theta} S(X) \frac{\partial}{\partial \theta} \ln p_{\theta}(X) = \mathbb{E}_{\theta} S(X) u_{\theta}(X)$$

4. $\forall \theta \in \Theta : 0 < I_X(\theta) < +\infty$

Теорема 10.1. Неравенство Рао-Крамера.

Пусть выполнено условие регулярности и $\hat{ heta}(X)$ – несмещённая оценка au(heta) с условием

$$\forall \theta \in \Theta : \mathbb{E}_{\theta}(\hat{\theta}(X))^2 < +\infty$$

Tог ∂a

$$\mathbb{V}_{\theta}\hat{\theta}(X) \geqslant \frac{(\tau'(\theta))^2}{I_X(\theta)}$$

Доказательство. В силу условия 3, при S(X) = 1 имеем

$$\frac{\partial}{\partial \theta} \mathbb{E}_{\theta} S(X) = \frac{\partial}{\partial \theta} 1 = \mathbb{E}_{\theta} u_{\theta}(X) = 0$$

Также в силу условия 3, при $S(X) = \hat{\theta}(X)$ имеем (в силу несмещённости нашей оценки)

$$\tau'(\theta) = \mathbb{E}_{\theta}\hat{\theta}(X)u_{\theta}(X)$$

Умножим первое равенство на $-\tau(\theta)$ и сложим со вторым:

$$\tau'(\theta) = \mathbb{E}(\hat{\theta} - \tau(\theta))u_{\theta}(X)$$

Возведём обе части в квадрат и применим КБШ:

$$(\tau'(\theta))^2 \leqslant \left(\mathbb{E}_{\theta}(\hat{\theta} - \tau(\theta))^2\right) \cdot \left(\mathbb{E}_{\theta}u_{\theta}^2(X)\right) = \mathbb{V}_{\theta}\hat{\theta} \cdot I_X(\theta)$$

Определение 10.8. Если в неравенстве Рао-Крамера для оценки $\hat{\theta}(X)$ достигается равенство, то $\hat{\theta}(X)$ называется эффективной.

Теорема 10.2. Критерий эффективности.

В условиях регулярности $\hat{\theta}(X)$ эффективная для $\tau(\theta) \Leftrightarrow \hat{\theta}(X)$ – линейная функция от $u_{\theta}(X)$ вида $\hat{\theta} - \tau(\theta) = c(\theta)u_{\theta}(X)$.

Причём последнее равенство может быть выполнено $\Leftrightarrow c(\theta) = \frac{\tau'(\theta)}{I_X(\theta)}$

Доказательство. Пусть $\hat{\theta}$ – эффективная для $\tau(\theta) \Rightarrow \tau'(\theta) = \mathbb{E}(\hat{\theta} - \tau(\theta))u_{\theta}(X)$. А мы знаем, что равенство в КБШ достигается $\Leftrightarrow (\hat{\theta} - \tau(\theta))$ и $u_{\theta}(X)$ линейно зависимы:

$$\alpha(\theta) + \beta(\theta)(\hat{\theta} - \tau(\theta)) + \gamma(\theta)u_{\theta}(X) = 0$$

Матожидания рассматриваемых величин равны нулю $\Rightarrow \alpha(\theta) \equiv 0$.

Можем поделить обе части на $\gamma(\theta) \neq 0$, это верно ведь иначе

$$\mathbb{V}_{\theta}\beta(\theta)u_{\theta}(X) = 0 \Rightarrow \beta = 0 \Rightarrow \bot$$

To есть $\hat{\theta} - \tau(\theta) = r(\theta)u_{\theta}(X)$.

Обратно, пусть $\hat{\theta} - \tau(\hat{\theta}) = c(\theta)u_{\theta}(X) \Rightarrow \hat{\theta} = \tau(\theta) + c(\theta)u_{\theta}(X) \Rightarrow \hat{\theta}$ – несмещённая оценка $\tau(\theta)$. Умножим обе части на $u_{\theta}(X)$ и берём матож:

$$\tau'(\theta) = \mathbb{E}_{\theta}(\hat{\theta} - \tau(\theta))u_{\theta}(X) = \mathbb{E}_{\theta}c(\theta)u_{\theta}^{2}(X) = c(\theta)I_{X}(\theta)$$

Замечание. Эффективная оценка $\tau(\theta)$ – наилучшая оценка $\tau(\theta)$ в классе несмещённых L_2 оценок в равномерном подходе с квадратичной функцией потерь.

11 Экспоненциальные семейства распределений

Определение 11.1. Пусть $\theta = (\theta_1, \dots, \theta_k)$

Экспоненциальным семейством распределений называют все распределения, обобщённая плотность которых имеет вид

$$h(x) \exp \left(\sum_{i=1}^{k} a_i(\theta) T_i(x) + V(\theta) \right)$$

и где $a_0(\theta) \equiv 1, a_1(\theta), \cdots, a_k(\theta)$ линейно независимы на Θ .

Замечание. Проверим, существует ли эффективная оценка, если семейство экспоненциальное:

$$f_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i); \quad p_{\theta}(x_i) = h(x_i)e^{a(\theta)T(x_i) + V(\theta)}$$

Тогда распишем вклад

$$u_{\theta}(X) = \frac{\partial}{\partial \theta} \ln f_{\theta}(x) = \frac{\partial}{\partial \theta} (a(\theta) \sum_{i=1}^{n} T(x_i) + nV(\theta)) = a'(\theta) \sum_{i=1}^{n} T(x_i) + nV'(\theta)$$

Работаем в предположении $T \neq const$, так как иначе

$$p_{\theta}(x) = h(x)e^{b(\theta)} \Rightarrow \int_{\mathcal{X}} p_{\theta}(x)d\mu = 1 \Rightarrow b(\theta) = const \Rightarrow p_{\theta}(x)$$
 не зависит от θ

Пусть также $a'(\theta) \neq 0$, тогда

$$\frac{1}{na'(\theta)}u_{\theta}(x) = \frac{\sum_{i=1}^{n} T(x_i)}{n} - \frac{-V'(\theta)}{a'(\theta)}$$

По критерию эффективности получаем, что $T^*(X) = \frac{\sum_{i=1}^n T(x_i)}{n}$ является эффективной оценкой для $\tau(\theta) = \frac{-V'(\theta)}{a'(\theta)}$

Обратно, пусть \exists эффективная оценка T для $\tau(\theta)$, пусть $\forall \theta: \tau'(\theta) \neq 0$. Значит достигается равенство в Рау-Крамера:

$$\exists \tau'(\theta) < +\infty : \mathbb{V}_{\theta}\hat{\theta} = \frac{(\tau'(\theta))^2}{I_X(\theta)} < +\infty \Rightarrow \hat{\theta} \in L_2$$

Значит

$$\forall \theta : T(X) - \tau(\theta) = c(\theta)u_{\theta}(x) = \frac{\tau'(\theta)}{I_X(\theta)}u_{\theta}(X)$$

Выразив вклад, получим

$$\frac{\partial}{\partial \theta} \ln f_{\theta}(X) = \frac{T(X) - \tau(\theta)}{c(\theta)}$$

Проинтегрируем, предполагая корректность:

$$\ln f_{\theta}(X) = \int \frac{T(X) - \tau(\theta)}{c(\theta)} d\theta + g(X)$$

Возведём экспоненту в обе части равенства и получим, что правдоподобие имеет нужный нам вид. Но как перейти от произведения плотностей с плотности определённого X_i ? Зафиксируем остальные $X_j, j \neq i$ из носителя A и заметим, что вид остался экспоненциальным.

12 Достаточные статистики

Определение 12.1. Статистика T(X) называется **достаточной** для параметра θ , если

$$P_{\theta}(X \in B \mid T(X) = t)$$

не зависит от θ .

Теорема 12.1. Критерий факторизации Неймана-Фишера.

Пусть $\{P_{\theta}, \theta \in \Theta\}$ — доминирующее семейство. Статистика T является достаточной для параметра $\theta \Leftrightarrow \phi$ ункция правдоподобия $f_{\theta}(X)$ представима в виде

$$f_{\theta}(X) = \psi(T(X), \theta)h(X)$$

где функции ψ , h неотрицательны, $\psi(t,\theta)$ измерима по t и h измерима по X.

Доказательство. Для дискретного случая.

To есть $f_{\theta}(x) = P_{\theta}(X = x)$. Пусть $f_{\theta}(X) = \psi(S(X), \theta)h(X) \Rightarrow$

$$P_{\theta}(X = x \mid T(X) = t) = \frac{P_{\theta}(X = x, T(X) = t)}{P_{\theta}(T(X) = t)} = \begin{cases} 0, T(X) \neq t \\ \frac{P_{\theta}(X = x)}{\sum_{y: T(y) = t} P_{\theta}(X = y)} = \frac{\psi(T(X), \theta)h(X)}{\sum_{y: T(y) = t} \psi(T(y), \theta)h(y)} \end{cases}$$

После сокращения имеем

$$P_{\theta}(X = x \mid T(X) = t) = \begin{cases} 0, T(X) \neq t \\ \frac{h(X)}{\sum_{y: T(y) = t} h(y)}, T(X) = t \end{cases}$$

То есть получили что-то, независящее от θ , что подходит под определение достаточной статистики.

Обратно, пусть статистика T достаточная:

$$f_{\theta}(x) = P_{\theta}(X = x) = P_{\theta}(X = x, T(X) = T(x)) = P_{\theta}(T(X) = T(x)) \cdot P_{\theta}(X = x \mid T(X) = T(x)) = \psi(T(x), \theta)h(x)$$

Лемма 12.1. Пусть $\eta \in L_1$, тогда $\mathbb{E}(\mathbb{E}(\eta \mid \xi) - \mathbb{E}\eta)^2 \leqslant \mathbb{V}\eta$.

Более того, если $\eta \in L_2$, то равенство в неравенстве выше достигается $\Leftrightarrow \eta = \mathbb{E}(\eta \mid \xi) \Leftrightarrow \eta$ является ξ -измеримой.

Доказательство. Докажем лишь для L_2 .

Пусть $\varphi = \mathbb{E}(\eta \mid \xi)$. Тогда по неравенству Йенсена

$$\varphi^2 = (\mathbb{E}(\eta \mid \xi))^2 \leqslant \mathbb{E}(\eta^2 \mid \xi)$$

Навесив матожидание, получим $\mathbb{E}\varphi^2 \leqslant \mathbb{E}\eta^2 < +\infty$. Далее,

$$\mathbb{V}\eta = \mathbb{E}(\eta - \mathbb{E}\eta)^2 = \mathbb{E}(\eta - \varphi + \varphi - \mathbb{E}\eta)^2 = \mathbb{E}(\eta - \varphi)^2 + \mathbb{E}(\varphi - \mathbb{E}\eta)^2 + 2\mathbb{E}(\eta - \varphi)(\varphi - \mathbb{E}\eta)$$

Распишем последнее слагаемое:

$$\mathbb{E}(\mathbb{E}((\eta - \varphi)(\varphi - \mathbb{E}\eta) \mid \xi)) = \mathbb{E}(\varphi - \mathbb{E}\eta)\mathbb{E}((\eta - \varphi) \mid \xi) = 0$$

Заметим, что мы всё доказали: оценим первое слагаемое нулём снизу и всё получится.

Теорема 12.2. Колмогорова-Блэкуэлла-Рао.

Пусть T(X) – достаточная статистика для θ и пусть d(X) – несмещённая для $\tau(\theta)$, положим $\varphi(T) = \mathbb{E}_{\theta}(d(X) \mid T)$. Тогда $\varphi(T)$ зависит от выборки только через T(X) (и не зависит от θ), причём

$$\mathbb{E}_{\theta}\varphi(T) = \tau(\theta); \quad \mathbb{V}_{\theta}\varphi(T) \leqslant \mathbb{V}_{\theta}d(X)$$

Доказательство. Рассмотрим $\varphi(T) := \mathbb{E}_{\theta}(d(X)|T)$. Распределение X (при фиксированном значении T) не зависит от $\theta \Rightarrow$ распределение d(X) тоже не зависит $\Rightarrow \mathbb{E}_{\theta}(d(X)|T)$ является измеримой функцией только от T (и, как функция, не зависит от θ) $\Rightarrow \varphi(T)$ действительно статистика.

Очевидно, что d(X) – несмещённая $\Rightarrow \varphi$ тоже (св-во УМО).

$$\mathbb{V}_{\theta}\varphi(T) = \mathbb{E}_{\theta}(\varphi - \mathbb{E}_{\theta}\varphi)^{2} = \mathbb{E}_{\theta}(\mathbb{E}_{\theta}(d \mid T) - \mathbb{E}_{\theta}d)^{2} \stackrel{\text{по лемме}}{\leqslant} \mathbb{V}_{\theta}d(X)$$

Если $d \in L_2 \Rightarrow$ неравенство переходит в равенство $\Leftrightarrow d = \varphi \Leftrightarrow d(X)$ – борелевская функция от T.

13 Полные статистики, оптимальные оценки

Определение 13.1. Наилучшая оценка $T(\theta)$ в классе несмещённых оценок в равномерном подходе с квадратичной функцией потерь называется **оптимальной** оценкой.

Определение 13.2. Статистика S(X) называется **полной** для параметра $\theta,$ если из условия

$$\forall \theta \in \Theta : \mathbb{E}_{\theta} f(S(X)) = 0$$

следует, что

$$\forall \theta \in \Theta : f(S(X)) \stackrel{P_{\theta} \text{ \tiny fi.H.}}{=} 0$$

Теорема 13.1. Лемана-Шеффе.

Пусть T – полная достаточная статистика для $\{P_{\theta}, \theta \in \Theta\}$, d(X) – несмещённая для $\tau(\theta)$. Тогда $\varphi = \mathbb{E}(d \mid T)$ – несмещённая оценка с равномерно минимальной дисперсией для $\tau(\theta)$.

Eсли $\mathbb{V}_{\theta}(\varphi) < +\infty$, то φ – оптимальная оценка.

Доказательство. Очевидно, что φ несмещённая по той же логике, что и в теореме Колмогорова-Блекуэлла-Рао (свойство УМО).

Пусть \tilde{d} — другая несмещённая оценка. Тогда улучшим её $\tilde{\varphi} = \mathbb{E}(\tilde{d} \mid T)$ не хуже d по (12) и несмещённая.

Имеем

$$\mathbb{E}_{\theta}(\varphi(T) - \tilde{\varphi}(T)) = \tau(\theta) - \tau(\theta) = 0$$

то есть для $h=\varphi-\tilde{\varphi}$ имеем $\forall \theta: \mathbb{E}_{\theta}h(T)=0$. В силу полноты T получаем, что $\forall \alpha: h(T) \stackrel{P_{\theta}\text{-п.н.}}{=} 0$. То есть наши оценки на самом деле равны почти наверное.

То есть любая несмещённая оценка, пройдя процедуру улучшения с помощью T почти наверное превращается в φ .

То есть

$$\forall \tilde{d}: \, \mathbb{V}_{\theta}(\tilde{d}) \geqslant \mathbb{V}_{\theta}(\tilde{\varphi}) = \mathbb{V}_{\theta}(\varphi)$$

Пусть $\mathbb{V}_{\theta}(\varphi) < +\infty$, теперь предполагаем, что неравенство на самом деле равенство. Это по (12.1) означает, что \tilde{d} уже была T-измеримой, то есть $\tilde{d} = \tilde{\varphi}$

Теорема 13.2. Об экспоненциальном семействе.

 $\Pi y cm b \ X_i$ — выборка из экспоненциального семейства. Если область значений векторной функции

$$\overline{a}(\theta) = (a_1(\theta), \cdots, a_k(\theta)), \theta \in \Theta$$

содержит к-мерный параллелепипед, то

$$T(X) = (\sum_{i=1}^{n} T_1(X_i), \dots, \sum_{i=1}^{n} T_k(X_i))$$

является полной и достаточной для θ .

Замечание. Алгоритм поиска оптимальной оценки:

- 1. Ищем достаточную статистику T
- 2. Проверяем на полноту
- 3. Если полная, то решаем уравнение

$$\forall \theta \in \Theta : \mathbb{E}_{\theta} g(T(X)) = \tau(\theta)$$

14 Доверительные интервалы

Определение 14.1. Пара статистик $(T_1(X), T_2(X))$ называются доверительным интервалом уровня доверия γ для параметра θ , если

$$\forall \theta \in \Theta : P_{\theta}(T_1(X) \leqslant \theta \leqslant T_2(X)) \geqslant \gamma$$

Если равество достигается при всех $\theta \in \Theta$, то доверительный интервал называют **точным**.

Определение 14.2. Множество $S(X) \subset \Theta$ называют доверительным множеством уровня доверия γ для параметра θ , если

$$\forall \theta \in \Theta : P_{\theta}(S(X) \in \theta) \geqslant \gamma$$

Замечание. Метод центральных статистик.

Пусть \exists известная одномерная функция $G(x,\theta)$, такая что её распределение не зависит от параметра θ . Такая функция G называется **центральной статистикой**.

Пусть $\gamma_1, \gamma_2 \in (0,1)$ таковы, что $\gamma_2 - \gamma_1 = \gamma$ и при i = 1,2 : $\exists g_i - \gamma_i$ -квантиль $G(X,\theta)$. Тогда

$$\forall \theta \in \Theta : P_{\theta}(g_1 \leqslant G(X, \theta) \leqslant g_2) \geqslant \gamma_2 - \gamma_1 = \gamma$$

Введём обозначение

$$S(X) = \{ \theta \in \Theta \mid g_1 \leqslant G(X, \theta) \leqslant g_2 \}$$

для $\forall \theta \in \Theta$ имеем

$$P_{\theta}(\theta \in S(X)) \geqslant \gamma$$

то есть S(X) – доверительное множество уровня доверия γ . Докажем корректность данного метода, заметим, что

$$g_i = F^{-1}(\gamma_i) = \inf\{x : F(x) \geqslant \gamma_i\} \Rightarrow F(g_i) \geqslant \gamma_i$$

и при $t < g_i$: $F(t) < \gamma_i \Rightarrow$ устремляя $t \to g_i - 0$ получим $F(g_i - 0) \leqslant \gamma_i$. Тогда

$$P_{\theta}(g_1 \leqslant G(X, \theta) \leqslant g_2) = P_{\theta}(G(X, \theta) \leqslant g_2) - P_{\theta}(G(X, \theta) \leqslant g_1) \geqslant \gamma$$

что и требовалось.

Для поиска центральных статистик в общем случае можно пользоваться следующей леммой:

Пемма 14.1. X_1, \dots, X_n – независимые одинаково распределённые с непрерывной функцией распределения F(x). Тогда

$$G(X_1, \dots, X_n) = -\sum_{i=1}^n \ln F(X_i) \sim \Gamma(1, n)$$

Доказательство. Заметим, что

$$P(F(y) \le x) = P(y \le F^{-1}(x)) = F(F^{-1}(x)) = x, x \in [0, 1] \Rightarrow F(x) \sim U[0, 1]$$

Несложным упражнением докажите, что $-\ln U[0,1] \sim \exp(1)$ и тогда из свойства аддитивности экспоненциальных распределений, утверждение леммы станет очевидным.

Определение 14.3. Пусть $\{X_n\}_{n=1}^{\infty}$ – выборка неограниченного размера из неизвестного распределения $P \in \{P_{\theta}, \theta \in \Theta\}$. Последовательность пар статистик

$$(T_n^{(1)}(X_1, \cdots, X_n), T_n^{(2)}(X_1, \cdots, X_n))$$

называют асимптотическим доверительным интервалом уровня доверия γ для θ , если

$$\forall \theta \in \Theta : \underline{\lim}_{n \to +\infty} P_{\theta}(T_n^{(1)}(X_1, \dots, X_n) \leqslant \theta \leqslant T_n^{(2)}(X_1, \dots, X_n)) \geqslant \gamma$$

Если неравенство выше заменить на равенство (при условии, что нижний предел равен верхнему), то асимптотический доверительный интервал называют **точным**.

Замечание. Построение асимптотических интервалов.

Пусть $\hat{\theta}_n(X_1, \dots, X_n)$ – асимптотически нормальная оценка θ с асимптотической дисперсией $\sigma^2(\theta) > 0$, то есть

$$\forall \theta \in \Theta : \sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2(\theta))$$

Тогда при условии $\sigma(\theta)$ – непрерывна, будем иметь, что $\hat{\theta}_n \stackrel{P_{\theta}}{\to} \theta$. Значит

$$\sqrt{n} \frac{\hat{\theta}_n - \theta}{\sigma(\hat{\theta}_n)} = \sqrt{n} \frac{\hat{\theta}_n - \theta}{\sigma(\theta)} \cdot \frac{\sigma(\theta)}{\sigma(\hat{\theta}_n)} \xrightarrow{d_{\theta}} \sqrt{n} \frac{\hat{\theta}_n - \theta}{\sigma(\theta)} \sim \mathcal{N}(0, 1)$$

по лемме Слуцкого.

И теперь не сложно догадаться, как будет выглядеть доверительный интервал

$$P_{\theta}\left(\sqrt{n}\left|\frac{\hat{\theta}_n - \theta}{\sigma(\hat{\theta}_n)}\right| < u_{\frac{1+\gamma}{2}}\right) \stackrel{n \to +\infty}{\to} \gamma$$

15 Метод максимального правдоподобия

Определение 15.1. Пусть X – наблюдения с функцией правдоподобия $f_{\theta}(X)$, тогда оценкой параметра θ по методу максимального правдоподобия (ОМП) называется такая статистика $\hat{\theta}(X)$, что

$$\hat{\theta}(X) = \operatorname{argmax}_{\theta \in \Theta} f_{\theta}(X)$$

Замечание. Будем использовать новые условия регулярности:

- 1. $\{P_{\theta}, \theta \in \Theta\}$ параметрическое семейство доминируемое относительно меры μ , причём $P_{\theta_1} \neq P_{\theta_2}$ при $\theta_1 \neq \theta_2$ и для $\forall \theta$ определена $P_{\theta}(X)$ плотность P_{θ} относительно меры μ .
- 2. $A = \{x \in X : P_{\theta}(x) > 0\}$ не зависит от θ
- 3. Наблюдение X есть выборка из неизвестного распределения $p \in \{P_{\theta}, \theta \in \Theta\}$
- 4. Θ открытый интервал в \mathbb{R} (возможно бесконечный)
- 5. Функция $p_{\theta}(x)$ непрерывно дифференцируемая по θ при всех $x \in A$.
- 6. $p_{\theta}(x)$ трижды непрерывно дифференцируема по $\theta \ \forall x \in A$.
- 7. Интеграл $\int_A p_{\theta}(x)\mu(dx)$ трижды дифференцируем по θ под знаком интеграла.
- 8. $\mathbb{E}(\frac{\partial}{\partial \theta} \ln p_{\theta}(X_1))^2 = i(\theta) \in (0, +\infty)$
- 9. Выполняется

$$\forall \theta_0 \in \Theta \ \exists c > 0 \ \exists H(x) \ \forall \theta \in (\theta_0 - c, \theta_0 + c) \ \forall x \in A : \left| \frac{\partial^3}{\partial \theta^3} \ln p_\theta(x) \right| < H(x)$$

причём $\mathbb{E}_{\theta_0}H(X_1)<+\infty$

Теорема 15.1. Экстремальное свойство правдоподобия.

Пусть выполнены условия регулярности 1-3. Тогда

$$\forall \theta_0, \theta \in \Theta \ \theta_0 \neq \theta : \ P_{\theta_0}(f_{\theta_0}(X_1, \cdots, X_n) > f_{\theta}(X_1, \cdots, X_n)) \stackrel{n \to +\infty}{\to} 1$$

Доказательство. Пусть $X_i \in A$. Заметим, что

$$f_{\theta_0}(X_1, \dots, X_n) > f_{\theta}(X_1, \dots, X_n) \Leftrightarrow \frac{1}{n} \ln \frac{f_{\theta}(X_1, \dots, X_n)}{f_{\theta_0}(X_1, \dots, X_n)} < 0 \Leftrightarrow \frac{1}{n} \sum_{i=1}^n \ln \frac{f_{\theta}(X_i)}{f_{\theta_0}(X_i)} < 0$$

Хотим применить ЗБЧ, а для этого нужно

$$\mathbb{E}_{\theta} \frac{f_{\theta}(X)}{f_{\theta_0}(X)} < 0$$

то есть

$$\int_{A} \ln \frac{p_{\theta}(x)}{p_{\theta_{0}}(x)} p_{\theta_{0}}(x) dx = \int_{A} \ln \left(1 + \frac{p_{\theta}(x)}{p_{\theta_{0}}(x)} - 1 \right) p_{\theta_{0}}(x) dx \le \int_{A} \left(\frac{p_{\theta}(x)}{p_{\theta_{0}}(x)} - 1 \right) p_{\theta_{0}}(x) = \int_{A} p_{\theta}(x) dx - \int_{A} p_{\theta_{0}}(x) dx = 1 - 1 = 0$$

Причём равенство выполняется тогда и только тогда, когда

$$\mu(x \in A : p_{\theta}(x) \neq p_{\theta_0}(x)) = 0$$

что противоречит первому условию регулярности.

Следствие. Если Θ конечно, то $OM\Pi$ существует, единственная с вероятностью $\to 1$, и состоятельная

Доказательство. Максимум $f_{\theta}(X_1, \dots, X_n)$ с ростом n будет достигаться на истинном значении θ с вероятностью $\rightarrow 1$.

Почему вообще оценка измеримая?

$${x : \operatorname{argmax} \dots = \theta_2} = {f_{\theta_1(x)} < f_{\theta_2}(x)} \cap {f_{\theta_3}(x) < f_{\theta_2}(x)} \cap \dots$$

то есть конечное пересечение измеримых множеств.

Как проверить, что \exists измеримая версия ОМП, если максимум может достигаться при разных θ ?

Если кандидатов несколько, то выберем с наименьшими номером. Тогда если введём $c_{i < j} = \{x : f_{\theta_i}(x) < f_{\theta_j}(x)\}, \text{ TO}$

$$\{\hat{\theta} = \theta_1\} = \bigcap_{j \neq 1} c_{j \leqslant 1}; \quad \{\hat{\theta} = \theta_2\} = c_{2>1} \cap (\bigcap_{j \geqslant 3} c_{j \leqslant 2}); \quad \cdots$$

Определение 15.2. Уравнением правдоподобия называют

$$\frac{\partial \ln f_{\theta}}{\partial \theta} = 0 \Leftrightarrow \frac{\partial f_{\theta}}{\partial \theta} = 0$$

Теорема 15.2. Аналог состоятельности $OM\Pi$.

Пусть выполняются условия регулярности 1-5 и пусть элементы выборки имеют распределение P_{θ_0} . Тогда \exists отображение $\hat{\theta}_n(X_1,\cdots,X_n,\theta_0)$ со значениями в Θ :

$$(P_{\theta_0})^*(\{\theta_n \ \text{не решение уравнения правдоподобия}\})\stackrel{n\to+\infty}{\to} 0$$

u

$$\forall \varepsilon > 0 : (P_{\theta_0})^* (\{|\hat{\theta}_n - \theta_0| > \varepsilon\}) \stackrel{n \to +\infty}{\to} 0$$

Доказательство. Определим $\hat{\theta}_n$, фиксируя X_1, \cdots, X_n из множества A. Если у уравнения $\frac{\partial \ln f}{\partial \theta} = 0$ есть хотя бы 1 корень, то возьмём ближайший корень к θ_0 (в силу непрерывности $\frac{\partial f}{\partial \theta}$ такое возможно, так как предел последовательности корней сам является корнем).

Если же у уравнения нет корней, то доопределим $\hat{\theta}_n := \theta_0$.

Фиксируем $\varepsilon>0$, что $[\theta_0-\varepsilon,\theta_0+\varepsilon]\subset\Theta$. Рассмотрим

$$s_n(\theta_0,\varepsilon) = \{x: f_{\theta_0-\varepsilon}(x_1, \cdots, x_n) < f_{\theta_0}(x_1, \cdots, x_n), f_{\theta_0}(\cdots) > f_{\theta_0+\varepsilon}(\cdots)\}$$

Но по предыдущей теореме мы можем сказать, что $P_{\theta_0}(s_n) \stackrel{n \to +\infty}{\to} 1.$

Далее, $\forall x \in s_n \exists$ точка $\tilde{\theta}_n$, в которой f_{θ} имеет локальный максимум $\Rightarrow f'(\tilde{\theta}_n) = 0$, причём $\theta_n \in U_{\varepsilon}(\theta_0)$.

A так как $\hat{\theta}_n$ – ближайший к θ_0 корень, то $|\hat{\theta}_n - \theta_0| < \varepsilon$.

Тогда $\{\hat{\theta}_n$ - не решение уравнения $\} \subset \{\mathcal{X}^n \setminus s_n\}$, навесив внешнюю меру, то получим первое неравенство из теоремы.

Теперь осталось заметить, что если у нас не выполненяется неравенство $|\hat{\theta}_n - \theta| > \varepsilon$, то мы точно не в s_n , а значит снова сможем оценить сверху мерой $(P_{\theta_0}^*)(\mathcal{X}^n \setminus s_n) \stackrel{n \to +\infty}{\longrightarrow} 0$

Замечание. Почему это почти состоятельность? Не проверяли измеримость $\hat{\theta}_n$ и всё равно $\hat{\theta}_n$ зависит от θ_0 .

Если корней несколько, то неясно, какой ближе к θ_0 .

Не факт, что корень – глобальный максимум.

Корень существует не всегда.

Следствие. Пусть выполняются условия регулярности 1-5 и $\forall n \, \forall X_1, \cdots, X_n : \exists !$ решение $\hat{\theta}_n(X_1, \cdots, X_n)$ уравнения правдоподобия и пусть оно является измеримой функцией от выборки.

 $Tor\partial a \ \hat{\theta}_n$ — cocmosmeльная оценка θ и c вероятностью стремящейся κ $1,\ \hat{\theta}_n$ является $OM\Pi.$

Доказательство. Первая часть теоремы следует из предыдущей.

Как и ранее, с большой вероятностью выполняется

$$f_{\theta_0-\varepsilon}(x_1,\cdots,x_n) < f_{\theta_0}(x_1,\cdots,x_n), f_{\theta_0+\varepsilon}(x_1,\cdots,x_n) < f_{\theta_0}(x_1,\cdots,x_n)$$

На отрезке $[\theta_0 - \varepsilon, \theta_0 + \varepsilon]$ достигается максимум, это следует из непрерывности плотности, а это следует из предположения регулярности.

Этот максимум достигается на внутренней точке отрезка, которую обозначим θ_n^* , и в ней $\frac{\partial}{\partial \theta} f = 0$, так как корень единственный, то $\hat{\theta}_n = \theta_n^*$.

То есть $\hat{\theta}_n$ – локальный максимум, но пусть существует $\tilde{\theta}_n$, в которой значение f не меньше, чем в $\hat{\theta}_n$. Но тогда между $\hat{\theta}_n$, $\tilde{\theta}_n$ будет точка, в которой занулится производная (локального минимума), что противоречит с единственностью корня уравнения правдоподобия.

16 Дополнительные свойства ОМП

Теорема 16.1. $(6/\partial)$

В условиях регулярности 1-9 \forall состоятельной последовательности оценок $\hat{\theta}_n$, являющихся решениями уравнения правдоподобия, выполняется

$$\forall \theta \in \Theta : \sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d_{\theta}}{\to} \mathcal{N}\left(0, \frac{1}{i(\theta)}\right)$$

Теорема 16.2. $\textit{Бахадура.}\ (\textit{6}/\textit{d})$

 $\hat{\Pi}$ усть выполнены условия регулярности 1-9 и $\hat{\theta}_n(X_1, \cdots, X_n)$ – асимптотически нормальная оценка θ , причём $\sigma(\theta)$ непрерывна по θ . Тогда

$$\forall \theta \in \Theta : \ \sigma^2(\theta) \geqslant \frac{1}{i(\theta)}$$

Определение 16.1. Если $\sqrt{n}(\hat{\theta}_n(X_1,\cdots,X_n)-\theta)\stackrel{d_{\theta}}{\to} \mathcal{N}(0,\frac{1}{i(\theta)}),$ то $\hat{\theta}_n$ называется асимптотически эффективной оценкой θ .

Утверждение 16.1. Пусть выполняются условия регулярности для неравенство Крамера-Рао, $\hat{\theta}(X)$ – эффективная оценка и равенство из критерия эффективности для $\hat{\theta}(X)$ выполняется $\forall x \ \forall \theta$. Тогда $\hat{\theta}(X)$ – ОМП.

Доказательство. Распишем это равенство

$$\hat{\theta}(X) - \theta = \frac{1}{I_X(\theta)} \frac{\partial}{\partial \theta} \ln f_{\theta}(X)$$

Тогда при $\theta < \hat{\theta}(X)$: $\frac{\partial}{\partial \theta} \ln f_{\theta}(X) > 0$, а при $\theta > \hat{\theta}(X)$: $\frac{\partial}{\partial \theta} \ln f_{\theta}(X) < 0 \Rightarrow \theta = \hat{\theta}(X)$ – точка максимума $\ln f_{\theta}(X) \Rightarrow \text{ОМ}\Pi$.

17 Линейная регрессионная модель

В линейной модели наблюдения — случайный вектор $X \in \mathbb{R}^n$, который представляется в виде $X = l + \varepsilon$, где l неслучайный неизвестный вектор, а ε — случайный вектор (ошибка).

Про ε известно, что $\mathbb{E}\varepsilon = 0$ и $\mathbb{V}\varepsilon = \sigma^2 I_n$, где I_n – единичная матрица $n \times n, \sigma^2 > 0$.

Про l известно, что $l \in L$ – линейное подпространство \mathbb{R}^n .

Задача: оценить неизвестные параметры l, σ^2 .

L задано с помощью своего базиса $\{z_1, \dots, z_k\}$ из вектор-столбцов, dim L=k. Составим $Z=(z_1, \dots, z_k)$, то есть $l=Z\theta$, где θ – неизвестные координаты в базисе z_1, \dots, z_k . То есть задача свелась к оценке θ, σ^2 , где $\theta \in \mathbb{R}^k$.

Определение 17.1. $\hat{\theta}(X) = \mathrm{argmin}_{\theta} \|X - Z\theta\|^2$ называется оценкой наименьших квадратов для θ .

Лемма 17.1. Решением задачи выше является

$$\hat{\theta} = (Z^T Z)^{-1} Z^T X$$

Доказательство. Вначале раскроем скалярку

$$||X - Z\theta||^2 = \langle X - Z\theta, X - Z\theta \rangle = X^T X - 2X^T Z\theta + \theta^T Z^T Z\theta$$

Функция минимальна в точке, где частные производные равны нулю.

Дифференцируем по $\theta_i \Rightarrow$

$$-2(X^T Z)_i + 2(\theta^T Z^T Z)_i = 0$$

Это должно выполняться для всех координат, то есть

$$X^TZ = \theta^T Z^T Z \Rightarrow Z^T X = Z^T Z \theta \Rightarrow \hat{\theta} = (Z^T Z)^{-1} Z^T X$$

Утверждение 17.1. Данная оценка обладает следующими свойствами:

$$\mathbb{E}\hat{\theta} = \theta; \quad \mathbb{V}\hat{\theta} = \sigma^2(Z^T Z)^{-1}$$

Доказательство. Распишем матож:

$$\mathbb{E}\hat{\theta} = \mathbb{E}(Z^T Z)^{-1} Z^T X = (Z^T Z)^{-1} Z^T \mathbb{E} X$$

Но мы знаем, что $X=Z\theta+\varepsilon\Rightarrow \mathbb{E}X=Z\Theta\Rightarrow$ всё кроме θ сократится и доказали. Теперь дисперсия:

$$\mathbb{V}\hat{\theta} = \mathbb{V}(Z^T Z)^{-1} Z^T X = (Z^T Z)^{-1} Z^T \mathbb{V} X ((Z^T Z)^{-1} Z^T)^T = \sigma^2 I_n (Z^T Z)^{-1}$$

Теорема 17.1. $(6/\partial)$

Пусть $t = T\hat{\theta}$ - линейная вектор-функция от $\theta, T \in Mat_{m \times k}$. Тогда оценка $\hat{t} = T\hat{\theta}$ является оптимальной оценкой t в классе линейных несмещённых оценок.

Лемма 17.2.

$$\mathbb{E}||X - Z\theta||^2 = (n - k)\sigma^2$$

Доказательство. Так как $\mathbb{E}(X-Z\hat{\theta})=0$, то

$$\mathbb{E}||X - Z\theta||^2 = \operatorname{tr} \mathbb{V}(X - Z\hat{\theta})$$

Распишем ковариационную матрицу:

$$\mathbb{V}(X - Z\hat{\theta}) = \mathbb{V}[(I_n - Z(Z^T Z)^{-1} Z^T) X] = (I_n - A) \mathbb{V} X (I_n - A)^T = (I_n - A) \mathbb{V} X (I_n - A) = \sigma^2 (I_n - 2A + A^2) = \sigma^2 (I_n - A)$$

Перейдём обратно к числам:

$$\mathbb{E}||X - Z\theta||^2 = \sigma^2 \operatorname{tr}(I_n - A) = \sigma^2 (\operatorname{tr}I_n - \operatorname{tr}A) = \sigma^2 (n - \operatorname{tr}I_k) = \sigma^2 (n - k)$$

Следствие. • $X - Z\hat{\theta} = proj_{L^{\perp}}X$

ullet $rac{\|X-Z heta\|^2}{n-k}=rac{\|proj_{L^\perp}X\|^2}{n-k}$ — несмещённая оценка $\sigma^2.$

Доказательство. Из линала помним, что

$$X=\mathrm{proj}_LX+\mathrm{proj}_{L^\perp}X$$

Но по определению оценки $\operatorname{proj}_L X = Z\hat{\theta}.$

Второй факт следует из предыдущей леммы.

18 Гауссовская линейная модель

Если в линейной регрессионной модели $\varepsilon \sim \mathcal{N}(0, \sigma^2 E) \Rightarrow$ модель называется **гаусовской линейной** моделью.

Замечание. χ -квадрат распределением с k степенями свободы называют

$$\chi_k^2 = \Gamma\left(\frac{1}{2}, \frac{k}{2}\right) \stackrel{d}{=} \xi_1^2 + \dots + \xi_k^2$$

где ξ_i – независимые стандартные нормальные.

Утверждение 18.1. Статистика $S(X)=(proj_LX,\|proj_{L^{\perp}}X\|^2)$ является достаточной для (l,σ^2)

Доказательство. Будем искать достаточную статистику с помощью критерия факторизации, для этого выпишем правдоподобие

$$p(X) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{\sum_{i=1}^n (X_i - l_i)^2}{2\sigma^2}}$$

Заметим, что $\sum_{i=1}^{n} (X_i - l_i)^2 = ||X - l||^2$, применим теорему Пифагора:

$$||X - l||^2 = ||\operatorname{proj}_L X - \operatorname{proj}_L l||^2 + ||\operatorname{proj}_{L^{\perp}} X - \operatorname{proj}_{L^{\perp}} l||^2 \stackrel{l \in L}{=} ||\operatorname{proj}_L X - l||^2 + ||\operatorname{proj}_{L^{\perp}} X||^2$$

То есть

$$p(X) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{1}{2\sigma^2}(\|\mathrm{proj}_L X - l\|^2 + \|\mathrm{proj}_{L^{\perp}} X\|^2)\right)$$

Видно, что мы привели правдоподобие к виду, необходимому для применения критерия Неймана-Фишера \Rightarrow рассматриваемые статистики действительно достаточные.

Теорема 18.1. $(6/\partial)$

S(X) – полная статистика.

Следствие. • $\hat{\theta}$ – оптимальная оценка для θ

- ullet $Z\hat{ heta}$ оптимальная оценка для l
- ullet $\frac{1}{n-k}\|X-Z\hat{ heta}\|^2$ оптимальная оценка для σ^2

Доказательство. Несмещённость всех оценок очевидна из предыдущих рассуждений. Покажем, что все они являются функциями от полных достаточных статистик:

$$Z\hat{\theta} = \text{proj}_L X; \quad \hat{\theta} = (Z^T Z)^{-1} Z^T \text{proj}_L X; \quad \frac{1}{n-k} ||X - Z\hat{\theta}||^2 = \frac{1}{n-k} ||\text{proj}_{L^{\perp}} X||^2$$

Утверждение 18.2. В гаусовской линейной модели $\hat{\theta}$ и $X-Z\hat{\theta}$ независимы, причём

$$\frac{1}{\sigma^2} \|Z\hat{\theta} - Z\theta\|^2 \sim \chi_k^2; \quad \frac{1}{\sigma^2} \|X - Z\hat{\theta}\|^2 \sim \chi_{n-k}^2; \quad \hat{\theta} \sim \mathcal{N}(\theta, \sigma^2(Z^TZ)^{-1})$$

Доказательство. Знаем, что

$$\begin{cases} Z\hat{\theta} = \text{proj}_L X \\ X - Z\hat{\theta} = \text{proj}_{L^{\perp}} X \end{cases}$$

Согласно теореме об ортогональном разложении гауссовские вектора $Z\hat{\theta}, X-Z\hat{\theta}$ независимы, причём

$$\frac{1}{\sigma^2} \|Z\hat{\theta} - \mathbb{E}(Z\hat{\theta})\|^2 = \frac{1}{\sigma^2} \|Z\hat{\theta} - Z\theta\|^2 \sim \chi_k^2$$

И для другого

$$\frac{1}{\sigma^2} \|X - Z\hat{\theta} - \mathbb{E}(X - Z\hat{\theta})\|^2 = \frac{1}{\sigma^2} \|X - Z\hat{\theta}\|^2 \sim \chi_{n-k}^2$$

Мы знаем, что $Z\hat{\theta}$, $X-Z\hat{\theta}$ независимы, но по выкладкам выше мы знаем, что $\hat{\theta}$ – линейная функция от $Z\hat{\theta}$, поэтому искомая независимость существует.

Осталось заметить, что θ – гаусовская функция, как линейная функция от гаусовского X, причём её матожидание и дисперсия считались выше, поэтому её распределение, очевидно, $\mathcal{N}(\theta, \sigma^2(Z^TZ)^{-1})$

19 Безумные распределения и их свойства

Определение 19.1. Пусть $\xi \sim \mathcal{N}(0,1), \eta \sim \chi_k^2$, причём ξ и η независимые. Тогда случайная величина

$$\zeta = \frac{\xi}{\sqrt{\frac{\eta}{k}}}$$

имеет распределение Стьюдента с k степенями свободы, обозначение $\zeta \sim T_k$.

Лемма 19.1. Свойства распределения Стьюдента:

- 1. $\zeta \sim T_k \Rightarrow -\zeta \sim T_k$
- 2. $T_1 \sim Cauchy, p(x) = \frac{1}{\pi(1+x^2)}$
- 3. $\zeta_k \sim T_k \Rightarrow \zeta_k \xrightarrow{d} \mathcal{N}(0,1)$

Определение 19.2. Пусть $\xi \sim \chi_k^2, \eta \sim \chi_m^2$, причём они независимы. Тогда случайная величина

$$\frac{\frac{\xi}{k}}{\frac{\eta}{m}} \sim F_{k,m}$$

имеет **распределение Фишера** с параметрами k, m.

Лемма 19.2. Свойства распределения Фишера:

- 1. $\xi \sim T_m \Rightarrow \xi^2 \sim F_{1,m}$
- 2. $\xi \sim F_{k,m} \Rightarrow \frac{1}{\xi} \sim F_{m,k}$
- 3. Если k фиксированно $u \, \xi_m \sim F_{k,m} \Rightarrow k \xi_m \stackrel{d}{\to} \chi_k^2; \, m \to +\infty$
- 4. $\xi_{k,m} \sim F_{k,m} \Rightarrow \xi_{k,m} \stackrel{d}{\rightarrow} \xi \equiv 1; \ k,m \rightarrow +\infty$

Теорема 19.1. Об ортогональном разложении. $(6/\partial)$

Пусть $(X_1, \dots, X_n) \sim \mathcal{N}(l, \sigma^2 I_n)$ и L_1, \dots, L_r – попарно ортогональные подпространства \mathbb{R}^n , причём

$$L_1 \oplus \cdots \oplus L_r = \mathbb{R}^n$$

 $Torða\ Y_i:=proj_{L_i}X, i=\overline{1,r}$ – независимые в совокупности нормальные случайные векторы, причём $\mathbb{E}Y_i=proj_{L_i}l$ и

$$\frac{1}{\sigma^2} \|Y_i - \mathbb{E}Y_i\|^2 \sim \chi_{\dim L_i}^2$$

Замечание. Доверительные интервалы для параметров гаусовской линейной модели:

1. Доверительный интервал для σ^2 :

$$\frac{1}{\sigma^2} \|X - Z\hat{\theta}\|^2 \sim \chi_{n-k}^2$$

и $u_{1-\gamma}$ – квантиль χ^2_{n-k} . Тогда

$$\gamma = P\left(\frac{1}{\sigma^2} \|X - Z\hat{\theta}\|^2 > u_{1-\gamma}\right) = P\left(\sigma^2 \in \left(0, \frac{\|X - Z\hat{\theta}\|^2}{u_{1-\gamma}}\right)\right)$$

2. Доверительный интервал для θ_i

Мы знаем распределение вектора $\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2(Z^TZ)^{-1})$, пусть $A := (Z^TZ)^{-1}$. Тогда компонента имеет распределение $\hat{\theta}_i \sim \mathcal{N}(\theta_i, \sigma^2 A_{ii})$.

Сейчас мы знаем, что

$$\begin{cases} \frac{\hat{\theta}_i - \theta_i}{\sqrt{\sigma^2 A_{ii}}} \sim \mathcal{N}(0, 1) \\ \frac{1}{\sigma^2} \|X - Z\hat{\theta}\|^2 \sim \chi_{n-k}^2 \end{cases}$$

Причём эти случайные величины независимы (доказали выше), значит

$$\sqrt{\frac{n-k}{A_{ii}}} \frac{\hat{\theta}_i - \theta_i}{\|X - Z\hat{\theta}\|} \sim T_{n-k}$$

Теперь мы можем написать доверительный интервал, используя табличку квантилей распределения Стьюдента.

3. Доверительный интервал для θ :

Опять знаем распределения следующих независимых случайных величин:

$$\begin{cases} \frac{1}{\sigma^2} ||Z\hat{\theta} - Z\theta||^2 \sim \chi_k^2 \\ \frac{1}{\sigma^2} ||X - Z\hat{\theta}||^2 \sim \chi_{n-k}^2 \end{cases}$$

Тогда

$$\frac{n-k}{k} \frac{\|Z\hat{\theta} - Z\theta\|^2}{\|X - Z\hat{\theta}\|^2} \sim F_{k,n-k}$$

Используя эту случайную величину мы можем построить доверительный эллипсоид для θ (так как это многомерная величина).