Aprovechamiento del Biogás de las aguas residuales

Descripción

En el año 2010 la producción anual de Aguas Residuales Municipales (ARM) y Aguas Residuales Industriales (ARI) en el país fue aproximadamente **2.182** M de m3 y **42,4** M de m3 respectivamente. ¹

Durante el tratamiento de estos efluentes se generan emisiones de Metano (CH4) y Oxido Nitroso (N2O) asociadas con los procesos de degradación de la materia orgánica en las plantas de tratamiento de aguas residuales (PTARs).

En el año 2010, las emisiones estimadas fueron **1,7** M Ton CO2e provenientes de ARM y **2,6** M Ton CO2e provenientes de ARI.

Acorde al Plan de Acción Sectorial (PAS) para el sector de residuos y el Estudio de la Universidad de los Andes, las opciones de mitigación identificadas para el tratamiento y aprovechamiento de las aguas residuales son el aprovechamiento energético y quema del biogás que se genera en las PTARS.

Los niveles a continuación, presentan los respectivos impactos en reducción de emisiones que se pueden llegar a tener si se hace un mejor aprovechamiento de las aguas residuales.

Nivel 1

El Nivel 1 representa el escenario base en el que se tienen en cuenta las políticas del sector en cuanto a mejora en la cobertura de la población y mejora en la cantidad de materia orgánica tratada. Sin embargo se asume que no se implementan medidas de aprovechamiento de biogás en las PTARS.

Para el periodo 2010 a 2050 la cantidad de aguas residuales industriales incrementan cuatro veces el valor con respecto al año 2010. Así mismo las aguas residuales municipales incrementan un 46% con respecto al año 2010. Las emisiones equivalentes acumuladas para el periodo 2010-2050 periodo son 83,3 M Ton CO_{2e}.

Nivel 2

El Nivel 2 supone que se implementan medidas de manejo para el biogás que se genera en las PTARs. Un **5%** (del total del biogás producido) se destina para la generación de energía ya sea con fines comerciales o para autoabastecimiento y un **10%** (del total del biogás producido) que se destina para quema en Teas reduciendo las emisiones de metano (CH4) a dióxido de carbono (CO2).

Implementando esta medida se logran reducir las emisiones a **81,6** M Ton CO_{2e} para el periodo 2010-2050 y se obtiene un potencial energético de hasta **0,004** Twh en el año 2050.

Nivel 3

En el Nivel 3, se asume que se aumenta el aprovechamiento del biogás para generar energía en un **10%** (del total del biogás producido) y un **15%** es usado para quema en Tea.

Implementando esta medida se logran reducir las emisiones a **79,8** M Ton CO_{2e} para el periodo 2010-2050 y se obtiene un potencial energético de hasta **0,007** Twh en el año 2050.

Nivel 4

En el Nivel 4, se asume que se aumenta el aprovechamiento del biogás para generar energía en un **50%** (del total del biogás producido) y no se destina ningun porcentaje del biogás para quema en Tea, con el objetivo de dar un óptimo uso del mismo.

Implementando esta medida se logran reducir las emisiones a **66,2** M Ton CO2e para el periodo 2010-2050 y se obtiene un potencial energético de hasta **0,04** Twh en el año 2050

Interacción

El potencial energético del metano que se captura en los STAR es considerado como insumo energético para la calculadora en el vector de bioenergía.

Foto: Planta de Tratamiento de Aguas Residuales Rio Frío, Bucaramanga, 2007. Adriana Pedraza.

Grafica 1: Representa la reducción en emisiones al implementar prácticas de manejo del biogás en un 15%. 25% y 50% de los efluentes producidos en el país.