255046 SEQUENCE LISTING

<110>	THE GOVERNMENT OF THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES Marchetti, Antonio Buttitta, Fiamma Smith, Gilbert H. Callahan, Robert
<120>	NUCLEOTIDE AND DEDUCED AMINO ACID SEQUENCES OF TUMOR GENE INT6
<130>	4239-59122
<150> <151>	09/858,152 2001-05-14
<160>	36
<170>	PatentIn version 3.2
<210> <211> <212> <213>	1 1505 DNA Murine INT6
<400>	1
	cgct cctttccccc ggcaagatgg cggagtacga cctgactact cgcatcgcgc 60
	tgga tcggcacctg gtctttccgc ttcttgagtt tctctctgtg aaagagattt 120
	aaaa agaattatta caaggaaaat tagatcttct tagtgatacc aatatggtgg 180
	ctat ggatgtttac aaaaaccttt attctgatga tatccctcat gctttgagag 240
	gaac cacagttgtt gcgcagctga aacagctcca ggcagaaaca gaaccaattg 300
	tgtt tgaagatcca gaaactacaa ggcagatgca gtcaaccagg gatggcagga 360
	ttga ctacctggca gacaaacatg ggtttaggca agagtactta gatacactct 420
	acgc aaaattccag tatgagtgtg gaaattactc tggagctgca gagtatcttt 480
	ttag agttttggtc ccagcaacag atagaaatgc tttaagttcg ctctggggaa 540
	cctc tgaaatctta atgcagaatt gggatgcagc catggaagac cttactcgat 600
	aaac catagacaat aattctgtga gttctccact ccagtctctt cagcagcgaa 660
	tcat tcattggtct ctatttgttt ttttcaacca tccaaagggc cgtgataaca 720
ttattg	atct cttcctttac caaccacagt atcttaatgc aattcagaca atgtgtccac 780
atattc	tacg ctatttgact actgccgtca taaccaacaa agatgtgcgg aaacgccggc 840
aggtgc	tgaa agatctggtg aaagtgattc aacaggagtc ttacacatat aaagacccaa 900
ttacag	aatt tgttgaatgc ctatatgtta actttgattt tgacggggct cagaaaaagc 960
tgagag	aatg tgaatcagtg ctcgtgaatg acttcttcct ggtagcgtgt ctggaggact 1020
tcattg	agaa tgcccgtctc ttcatatttg agacgttttg tcgtatccac cagtgtatca 1080

255046

gcattaatat	gttagcagat	aaactgaata	tgactccaga	agaagctgaa	agatggattg	1140
tgaatttgat	tagaaatgcg	aggttggatg	ccaagattga	ttctaaacta	ggtcatgtgg	1200
taatgggcaa	caatgcagtc	tcgccctacc	agcaagtgat	tgaaaagacc	aaaagccttt	1260
cttttagaag	ccaaatgttg	gccatgaata	ttgaaaagaa	acttaatcag	aacagtagat	1320
cagaggctcc	caactgggca	acccaagact	ctggcttcta	ttaaaggatt	ataaagaaaa	1380
gaagaaaaag	gaataagtga	aagacacagt	agccattgtg	tataaaggat	gacatacatt	1440
tttagaagca	attaacatgt	ttgctacaaa	ttttggagaa	tttgaataaa	attggctatg	1500
attaa						1505

<210> 2

<211> 396

<212> PRT

<213> Murine INT6

<400> 2

Met Val Asp Phe Ala Met Asp Val Tyr Lys Asn Leu Tyr Ser Asp Asp 10 15

Ile Pro His Ala Leu Arg Glu Lys Arg Thr Thr Val Val Ala Gln Leu 20 25 30

Lys Gln Leu Gln Ala Glu Thr Glu Pro Ile Val Lys Met Phe Glu Asp 35 40 45

Pro Glu Thr Thr Arg Gln Met Gln Ser Thr Arg Asp Gly Arg Met Leu 50 60

Phe Asp Tyr Leu Ala Asp Lys His Gly Phe Arg Gln Glu Tyr Leu Asp 65 70 75 80

Thr Leu Tyr Arg Tyr Ala Lys Phe Gln Tyr Glu Cys Gly Asn Tyr Ser 85 90 95

Gly Ala Ala Glu Tyr Leu Tyr Phe Phe Arg Val Leu Val Pro Ala Thr 100 105 110

Asp Arg Asn Ala Leu Ser Ser Leu Trp Gly Lys Leu Ala Ser Glu Ile 115 120 125

Leu Met Gln Asn Trp Asp Ala Ala Met Glu Asp Leu Thr Arg Leu Lys 130 140

Glu Thr Ile Asp Asn Asn Ser Val Ser Ser Pro Leu Gln Ser Leu Gln 145 150 155 160 Gln Arg Thr Trp Leu Ile His Trp Ser Leu Phe Val Phe Phe Asn His 165 170 175

Pro Lys Gly Arg Asp Asn Ile Ile Asp Leu Phe Leu Tyr Gln Pro Gln 180 185 190

Tyr Leu Asn Ala Ile Gln Thr Met Cys Pro His Ile Leu Arg Tyr Leu 195 200 205

Thr Thr Ala Val Ile Thr Asn Lys Asp Val Arg Lys Arg Arg Gln Val 210 215 220

Leu Lys Asp Leu Val Lys Val Ile Gln Gln Glu Ser Tyr Thr Tyr Lys 235 240

Asp Pro Ile Thr Glu Phe Val Glu Cys Leu Tyr Val Asn Phe Asp Phe 245 250 255

Asp Gly Ala Gln Lys Lys Leu Arg Glu Cys Glu Ser Val Leu Val Asn 260 265 270

Asp Phe Phe Leu Val Ala Cys Leu Glu Asp Phe Ile Glu Asn Ala Arg 275 280 285

Leu Phe Ile Phe Glu Thr Phe Cys Arg Ile His Gln Cys Ile Ser Ile 290 295 300

Asn Met Leu Ala Asp Lys Leu Asn Met Thr Pro Glu Glu Ala Glu Arg 305 310 315 320

Trp Ile Val Asn Leu Ile Arg Asn Ala Arg Leu Asp Ala Lys Ile Asp 325 330 335

Ser Lys Leu Gly His Val Val Met Gly Asn Asn Ala Val Ser Pro Tyr 340 345 350

Gln Gln Val Ile Glu Lys Thr Lys Ser Leu Ser Phe Arg Ser Gln Met 355 360 365

Leu Ala Met Asn Ile Glu Lys Lys Leu Asn Gln Asn Ser Arg Ser Glu 370 375 380

Ala Pro Asn Trp Ala Thr Gln Asp Ser Gly Phe Tyr 385 390 395

<210> 3 <211> 1500 <212> DNA <213> Homo sapiens

<400> 3 actccctttt	ctttggcaag	atggcggagt	acgacttgac	tactcgcatc	gcgcactttt	60
tggatcggca	tctagtcttt	ccgcttcttg	aatttctctc	tgtaaaggag	atatataatg	120
aaaaggaatt	attacaaggt	aaattggacc	ttcttagtga	taccaacatg	gtagactttg	180
ctatggatgt	atacaaaaac	ctttattctg	atgatattcc	tcatgctttg	agagagaaaa	240
gaaccacagt	ggttgcacaa	ctgaaacagc	ttcaggcaga	aacagaacca	attgtgaaga	300
tgtttgaaga	tccagaaact	acaaggcaaa	tgcagtcaac	cagggatggt	aggatgctct	360
ttgactacct	ggcggacaag	catggtttta	ggcaggaata	tttagataca	ctctacagat	420
atgcaaaatt	ccagtacgaa	tgtgggaatt	actcaggagc	agcagaatat	ctttatttt	480
ttagagtgct	ggttccagca	acagatagaa	atgctttaag	ttcactctgg	ggaaagctgg	540
cctctgaaat	cttaatgcag	aattgggatg	cagccatgga	agaccttaca	cggttaaaag	600
agaccataga	taataattct	gtgagttctc	cacttcagtc	tcttcagcag	agaacatggc	660
tcattcactg	gtctctgttt	gttttcttca	atcaccccaa	aggtcgcgat	aatattattg	720
acctcttcct	ttatcagcca	caatatctta	atgcaattca	gacaatgtgt	ccacacattc	780
ttcgctattt	gactacagca	gtcataacaa	acaaggatgt	tcgaaaacgt	cggcaggttc	840
taaaagatct	agttaaagtt	attcaacagg	agtcttacac	atataaagac	ccaattacag	900
aatttgttga	atgtttatat	gttaactttg	actttgatgg	ggctcagaaa	aagctgaggg	960
aatgtgaatc	agtgcttgtg	aatgacttct	tcttggtggc	ttgtcttgag	gatttcattg	1020
aaaatgcccg	tctcttcata	tttgagactt	tctgtcgcat	ccaccagtgt	atcagcatta	1080
acatgttggc	agataaattg	aacatgactc	cagaagaagc	tgaaaggtgg	attgtaaatt	1140
tgattagaaa	tgcaagactg	gatgccaaga	ttgattctaa	attaggtcat	gtggttatgg	1200
gtaacaatgc	agtctcaccc	tatcagcaag	tgattgaaaa	gaccaaaagc	ctttccttta	1260
gaagccagat	gttggccatg	aatattgaga	agaaacttaa	tcagaatagc	aggtcagagg	1320
ctcctaactg	ggcaactcaa	gattctggct	tctactgaag	aaccataaag	aaaagatgaa	1380
aaaaaaaact	atcaaagaaa	gatgaaataa	taaaactatt	atataaaggg	tgacttacat	1440
tttggaaaca	acatattacg	tataaatttt	gaagaattgg	aataaaattg	attcatttta	1500

<210> 4 <211> 396 <212> PRT <213> Homo sapiens

Met Val Asp Phe Ala Met Asp Val Tyr Lys Asn Leu Tyr Ser Asp Asp Page 4

<400> 4

Ile Pro His Ala Leu Arg Glu Lys Arg Thr Thr Val Val Ala Gln Leu 20 25 30

Lys Gln Leu Gln Ala Glu Thr Glu Pro Ile Val Lys Met Phe Glu Asp 35 40 45

Pro Glu Thr Thr Arg Gln Met Gln Ser Thr Arg Asp Gly Arg Met Leu 50 60

Phe Asp Tyr Leu Ala Asp Lys His Gly Phe Arg Gln Glu Tyr Leu Asp 65 70 75 80

Thr Leu Tyr Arg Tyr Ala Lys Phe Gln Tyr Glu Cys Gly Asn Tyr Ser 85 90 95

Gly Ala Ala Glu Tyr Leu Tyr Phe Phe Arg Val Leu Val Pro Ala Thr 100 105 110

Asp Arg Asn Ala Leu Ser Ser Leu Trp Gly Lys Leu Ala Ser Glu Ile 115 120 125

Leu Met Gln Asn Trp Asp Ala Ala Met Glu Asp Leu Thr Arg Leu Lys

Glu Thr Ile Asp Asn Asn Ser Val Ser Ser Pro Leu Gln Ser Leu Gln

Gln Arg Thr Trp Leu Ile His Trp Ser Leu Phe Val Phe Phe Asn His

Pro Lys Gly Arg Asp Asn Ile Ile Asp Leu Phe Leu Tyr Gln Pro Gln 180 185 190

Tyr Leu Asn Ala Ile Gln Thr Met Cys Pro His Ile Leu Arg Tyr Leu 195 200 205

Thr Ala Val Ile Thr Asn Lys Asp Val Arg Lys Arg Arg Gln Val 210 220

Leu Lys Asp Leu Val Lys Val Ile Gln Gln Glu Ser Tyr Thr Tyr Lys 235 230 235 240

Asp Pro Ile Thr Glu Phe Val Glu Cys Leu Tyr Val Asn Phe Asp Phe 245 250 255

Asp Gly Ala Gln Lys Lys Leu Arg Glu Cys Glu Ser Val Leu Val Asn Asp Phe Phe Leu Val Ala Cys Leu Glu Asp Phe Ile Glu Asn Ala Arg Leu Phe Ile Phe Glu Thr Phe Cys Arg Ile His Gln Cys Ile Ser Ile 290 295 300 Asn Met Leu Ala Asp Lys Leu Asn Met Thr Pro Glu Glu Ala Glu Arg 305 310 315 320 Trp Ile Val Asn Leu Ile Arg Asn Ala Arg Leu Asp Ala Lys Ile Asp 325 330 335 Ser Lys Leu Gly His Val Val Met Gly Asn Asn Ala Val Ser Pro Tyr 340 345 350 Gln Gln Val Ile Glu Lys Thr Lys Ser Leu Ser Phe Arg Ser Gln Met 355 360 365 Leu Ala Met Asn Ile Glu Lys Lys Leu Asn Gln Asn Ser Arg Ser Glu 370 380 Ala Pro Asn Trp Ala Thr Gln Asp Ser Gly Phe Tyr <210> 25 <211> <212> DNA Artificial Sequence <213> <220> <223> Oligonucleotide primer <400> accaataaag ttttagtgag cacag 25 <210> <211> 20 <212> DNA <213> Artificial Sequence <220> Oligonucleotide primer <223> <400> 6 gcgcccaaag acccctcac 20 <210> <211> 20 <212>

DNA

<213>	255046 Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> ttaatca	7 agtt tctttgggga	20
<212>	8 22 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> agtttc	8 taat gacaaaactt ac	22
<210> <211> <212> <213>	9 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> tcttctg	gcat ttttaattag	20
<210> <211> <212> <213>	10 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> caaaatt	10 taag acgagtttac	20
<210> <211> <212> <213>	11 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> cttatt1	11 ttgt ttctgtggcc	20

Page 7

<210> 12 <211> 23 <212> DNA <213> Artificial Sequence

<220>

	2	255046
<223>	Oligonucleotide primer	
<400> catgaca	12 aact ttaaaatatt ttt	23
<210> <211> <212> <213>	13 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> aattac	13 aatg gggttttaaa	20
<210> <211> <212> <213>	14 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> gaagaa	14 ccaa gggaatccta	20
<210> <211> <212> <213>		
<220> <223>	Oligonucleotide primer	
<400> ttcaag	15 agta ttcacaatat	20
<210> <211> <212> <213>	16 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> tgtgaa	16 aaag acgaactcac	20
<210> <211> <212> <213>	17 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	

Page 8

<400> 17

agtttt	cttt atctcaccct	255046	20
<210> <211> <212> <213>			
<220> <223>	Oligonucleotide primer		
<400> caatat	18 atat tttagtttta c		21
<210> <211> <212> <213>			
<220> <223>	Oligonucleotide primer		
<400> ccgttg	19 actt attttacag		20
<210> <211> <212> <213>			
<220> <223>	Oligonucleotide primer		
<400> aaataa	20 aaat tcacacttac		20
<210> <211> <212> <213>	21		
<220> <223>	Oligonucleotide primer		
<400> ttgttg	21 tatt tgtacatata g		21
<210> <211> <212> <213>			
<220> <223>	Oligonucleotide primer		
<400> atcaaa	22 tcac ggtgttctta c		21

	255046	
<210> <211> <212> <213>	23 20 DNA	
<220> <223>	Artificial Sequence Oligonucleotide primer	
<400>	23 caagt ttttaggccc	20
	3	
<210> <211> <212> <213>	24 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
	24 caaca taatactcac	20
<210> <211> <212> <213>	25 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
	25 cgtgt ttccttttag	20
210		
<210> <211>	26 21	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> atagaa	26 agatg tgtggtctta c	21
210	27	
<210> <211>	27 22	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> gatttc	27 ctttt tgcatatttt ag	22
24.2	20	
<210> <211> <212>	28 20 DNA	

<213>	Artificial Sequence	55046
<220> <223>	Oligonucleotide primer	
<400> caagaa	28 aact gacagcaaga	20
<210> <211> <212> <213>	29 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> tgtcca	29 cata tṛctacgcta	20
<210> <211> <212> <213>	30 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> tgtatg	30 tcat cctttataca	20
<210> <211> <212> <213>	31 23 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> gtgaaa	31 atga catgaaattt cag	23
<210> <211> <212> <213>	32 20 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> tgcagt	32 gtga caatatgggc	20
<210> <211> <212> <213>	33 687 DNA Mus musculus tumor 1139	

Page 11

<400> 33

255046

gatggcagga	tgttatttga	ctacctggca	gacaaacatg	ggtttaggca	agagtactta	60
gatacactct	acagatacgc	aaaattccag	tatgagtgtg	gaaattactc	tggagctgca	120
gagtatcttt	acttctttag	agttttgaat	tgaagatgta	ttgactgtca	atggcatatt	180
agaaccttta	acagcacttt	ccatcatgca	cagctgccgc	agtcggccga	cctgagggcc	240
accggggtct	gcggggggac	cctctggaag	gtaatggata	agtgacgagc	ggagacggga	300
tggcgaacag	acacaaacac	acgagagacg	aatgttagga	ctgttgcaag	tttactcaaa	360
aatcagcact	ctttatatca	tggtttacat	aagcatttac	ataagacttg	gatagattcc	420
aaaagaacat	aggaggttag	aacactcaga	gcttagatca	aaacatttga	taccaaacca	480
ggtcaggaaa	ccacttgtct	cacatccttg	ttttaagaac	agtttgtaac	catgaaatta	540
tttgaacctt	gggaaccgca	gcaatacctt	aatatgtatc	ataaacagtc	agaggtaatg	600
ccttaatatg	ttttataata	tgttctttgc	cctcttcctt	acttttagga	tttattctcc	660
aatgttttat	ccctgtgcct	aaataaa				687

<210> 34 <211> 23

<211> 23 <212> PRT

<213> Mus musculus tumor 1139

<400> 34

Leu Pro Gln Ser Ala Asp Leu Arg Ala Thr Gly Val Cys Gly Gly Thr 1 10 15

Leu Trp Lys Val Met Asp Lys
20

<210> 35 <211> 657

<212> DNA

<213> Mus musculus tumor 22

<400> 35

gagtcttaca catataaaga cccaattaca gaatttgttg aatgcctata tgttaacttt 60 120 gattttgacg gggctcagaa aaagctgaga gaatgtgaat cattaaaaat aaagttcttt cagagcaagt ctggaattcg atatgtaaac caagcagtca gtggatttat ggagatacat 180 cgtgccgcag tcggccgacc tgagggccac cggggtctgc gggggggaccc tctggaaggt 240 300 aatggataag tgacgagcgg agacgggatg gcgaacagac acaaacacac gagagacgaa tgttaggact gttgcaagtt tactcaaaaa atcagcactc ttttatatca tggtttacat 360 aagcatttac ataagacttg gatagattcc aaaagaacat aggaggttag aacactcaga 420 gcttagatca aaacatttga taccaaacca ggtcaggaaa ccacttgtct cacatccttg 480 ttttaagaac agtttgtaac catgaaatta tttgaacctt gggaaccgca gcaatacctt 540 Page 12

255046

aatatgtatc ataaacagtc agaggtaatg ccttaatatg ttttataata tgttctttgc	600
cctcttcctt acttttagga tttattctcc aatgttttat ccctgtgcct aaataaa	657
<210> 36 <211> 21 <212> PRT <213> Mus musculus tumor 22	
<400> 36	
Ala Ala Val Gly Arg Pro Glu Gly His Arg Gly Leu Arg Gly Asp Pro 1 15	
Leu Glu Gly Asn Gly 20	