Fundamental concepts of acid-base equilibrium

Key terms and concepts

- > Brønsted, and Lewis acids and bases
- > Strength of acids and bases
- > Dissociation of weak monoprotic acids and bases
- > Autoionization of water and pH, pOH, pKa, pKb
- > Percent ionization, Henderson-Hasselbach equation
- > Buffer solutions and hydrolysis of salts

Concept of the conjugate acid-base

➤ The conjugate base of a Brønsted acid is the species that remains when one proton has been removed from the acid. Conversely, a conjugate acid results from the addition of a proton to a Brønsted base

For an acid to behave as an acid, it must have a base present to accept a proton...

Fundamental concepts of acid-base Chemistry

Defining acids and bases

 H_3O^+

 BF_3

 H_2SO_4

 H_2O

 NH_4^+

 CH_3NH_2

Conjugate acid-base pairs have the following properties:

- ➤ If an acid is strong, its conjugate base has no measurable strength.
- ➤ H₃O+ is the strongest acid that can exist in aqueous solution. Acids stronger than H₃O+ react with water to produce H₃O+ and their conjugate bases
- ➤ Acids weaker than H₃O+ react with water to a much smaller extent, producing H₃O+ and their conjugate bases

- ➤ The OH- ion is the strongest base that can exist in aqueous solution. Bases stronger than OH- react with water to produce OH- and their conjugate acids
- > For any conjugate acid-base pair it is always true that

$$K_{\rm a} = \frac{K_{\rm w}}{K_{\rm b}} \qquad K_{\rm b} = \frac{K_{\rm w}}{K_{\rm a}}$$

➤ Thus, the stronger the acid (the larger K_a), the weaker its conjugate base (the smaller K_b), and vice versa

> Those that are weak electrolytes (partly ionized) are weak acids and weak bases

$$HF(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + F^-(aq)$$

➤ At equilibrium, aqueous solutions of weak acids contain a mixture of non-ionized acid molecules, H3O+ ions, and the conjugate base

$$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$$

➤ At equilibrium, aqueous solutions of weak bases contain a mixture of non-ionized base molecules, OHions, and the conjugate acid

The strength of acids and bases

Acids and bases that are strong electrolytes (completely ionized in solution) are strong acids and strong bases

$$HCl(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$$

$$HNO_3(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + NO_3^-(aq)$$

$$KOH(s) \xrightarrow{H_2O} K^+(aq) + OH^-(aq)$$

$$Ba(OH)_2(s) \xrightarrow{H_2O} Ba^{2+}(aq) + 2OH^-(aq)$$

> At equilibrium, solutions of strong acids and bases will not contain any non-ionized acid molecules

Weak acids and acid ionization constants

➤ Consider a weak monoprotic acid, HA. Its ionization in water is represented by

$$HA(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + A^-(aq)$$

or simply

$$HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$$

The equilibrium expression for this ionization is

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm A}^-]}{[{\rm H}{\rm A}]}$$
 or

where K_a, the acid ionization constant, is the equilibrium constant for the ionization of an acid

➤ At a given temperature, the strength of the acid HA is measured quantitatively by the magnitude of K_a. The larger K_a, the stronger the acid

Weak bases and base ionization constants

Consider a weak base, B. Its ionization in water is represented by

$$B(aq) + H_2O(l) \Longrightarrow HB^+(aq) + OH^-(aq)$$

The equilibrium-constant expression for this reaction can be written as

$$K_b = \frac{[\mathrm{BH}^+][\mathrm{OH}^-]}{[\mathrm{B}]}$$

where Kb, the base ionization constant, is the equilibrium constant for the ionization of a base

> The equilibrium constant for the autoionization of water, according to the above equation, is

$$K_{c} = [H_{3}O^{+}][OH^{-}]$$
 OR $K_{c} = [H^{+}][OH^{-}]$

$$K_{\rm w} = [{\rm H_3O}^+][{\rm OH}^-] = [{\rm H}^+][{\rm OH}^-]$$

where Kw is called the ion-product constant

In pure water at 25°C, the concentrations of H⁺ and OH⁻ ions are equal and found to be [H⁺] = $1.0 \times 10^{-7} M$ and [OH⁻] = $1.0 \times 10^{-7} M$. Thus, from Equation (16.3), at 25°C

$$K_{\rm w} = (1.0 \times 10^{-7})(1.0 \times 10^{-7}) = 1.0 \times 10^{-14}$$

➤ At a given temperature, the strength of the base B is measured quantitatively by the magnitude of K_b. The larger K_b, the stronger the base

Acid-base properties of water

➤ Water is a very weak electrolyte and therefore a poor conductor of electricity, but it does undergo ionization to a small extent:

$$H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$$

$$\triangleright$$
 OR $H_2O + H_2O \Longrightarrow H_3O^+ + OH^ acid_1 \quad base_2 \quad acid_2 \quad base_1$

> This reaction is sometimes called the **autoionization** of water

➤ Whether we have pure water or an aqueous solution of dissolved species, the following relation always holds at 25°C:

$$K_{\rm w} = [{\rm H}^+][{\rm OH}^-] = 1.0 \times 10^{-14}$$

- ➤ Whenever [H+] = [OH-] the aqueous solution is said to be **neutral**.
- ➤ In an acidic solution, there is an excess of H+ ions and [H+] > [OH-]
- ➢ In a basic solution, there is an excess of hydroxide ions, so [H+] < [OH-]</p>

pH—A measure of acidity

The pH of a solution is defined as the negative logarithm of the hydrogen ion concentration (in mol/L):

$$pH = -log[H_3O^+]$$
 or $pH = -log[H^+]$

➤ A pOH scale analogous to the pH scale can be devised using the negative logarithm of the hydroxide ion concentration of a solution. Thus, we define pOH as

$$pOH = -log[OH^{-}]$$

The pH and pOH of a solution is a dimensionless quantity

> From the definitions of pH and pOH we obtain

$$pH + pOH = 14.00$$

Because pH is simply a way to express hydrogen ion concentration, acidic and basic solutions at 25°C can be distinguished by their pH values, as follows:

Acidic solutions: $[H^+] > 1.0 \times 10^{-7} M$, pH < 7.00 Basic solutions: $[H^+] < 1.0 \times 10^{-7} M$, pH > 7.00 Neutral solutions: $[H^+] = 1.0 \times 10^{-7} M$, pH = 7.00

Notice that pH increases as [H+] decreases.

Calculating the pH of weak acids and weak bases

Example 16.8

Calculate the pH of a 0.036 M nitrous acid (HNO2) solution:

$$HNO_2(aq) \Longrightarrow H^+(aq) + NO_2^-(aq)$$

Strategy Recall that a weak acid only partially ionizes in water. We are given the initial concentration of a weak acid and asked to calculate the pH of the solution at equilibrium. It is helpful to make a sketch to keep track of the pertinent species.

Major species at equilibrium

$$[HNO_2]_0 = 0.036 M \qquad Ignore$$

$$HNO_2 \rightleftharpoons H^+ + NO_2^- \qquad H^+ NO_2^- \qquad H_2 O \rightleftharpoons H^+ + OH^-$$

$$HNO_2$$

As in Example 16.6, we ignore the ionization of $\mathrm{H}_2\mathrm{O}$ so the major source of H^+ ions is the acid. The concentration of OH^- ions is very small as we would expect from an acidic solution so it is present as a minor species.

Solution We follow the procedure already outlined.

Step 1: The species that can affect the pH of the solution are HNO₂, H⁺, and the conjugate base NO₂. We ignore water's contribution to [H⁺].

Step 2: Letting x be the equilibrium concentration of H⁺ and NO₂ ions in mol/L, we summarize:

Initial (M):
$$O(3a) = O(3a) =$$

Step 3: From Table 16.3 we write

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm NO}_2^-]}{[{\rm HNO}_2]}$$
$$4.5 \times 10^{-4} = \frac{x^2}{0.036 - x}$$

Applying the approximation $0.036 - x \approx 0.036$, we obtain

$$4.5 \times 10^{-4} = \frac{x^2}{0.036 - x} \approx \frac{x^2}{0.036}$$
$$x^2 = 1.62 \times 10^{-3}$$
$$x = 4.0 \times 10^{-3}$$

To test the approximation,

$$\frac{4.0 \times 10^{-3} M}{0.036 M} \times 100\% = 11\%$$

Because this is greater than 5%, our approximation is not valid and we must solve the quadratic equation, as follows:

$$x^{2} + 4.5 \times 10^{-4}x - 1.62 \times 10^{-5} = 0$$

$$x = \frac{-4.5 \times 10^{-4} \pm \sqrt{(4.5 \times 10^{-4})^{2} - 4(1)(-1.62 \times 10^{-5})}}{2(1)}$$

$$= 3.8 \times 10^{-3} M \text{ or } -4.3 \times 10^{-3} M$$

The second solution is physically impossible, because the concentration of ions produced as a result of ionization cannot be negative. Therefore, the solution is given by the positive root, $x = 3.8 \times 10^{-3} M$.

Step 4: At equilibrium,

$$[H^+] = 3.8 \times 10^{-3} M$$

 $pH = -\log (3.8 \times 10^{-3})$
 $= 2.42$

Example 16.11

What is the pH of a 0.40 M ammonia solution?

Strategy The procedure here is similar to the one used for a weak acid (see Example 16.8). From the ionization of ammonia, we see that the major species in solution at equilibrium are NH₃, NH₄, and OH⁻. The hydrogen ion concentration is very small as we would expect from a basic solution, so it is present as a minor species. As before, we ignore the ionization of water. We make a sketch to keep track of the pertinent species as follows:

Major species at equilibrium

$$[NH_3]_0 = 0.40 \,\text{M}$$
 $NH_3 + H_20 \rightleftharpoons NH_4^+ + OH^ NH_3 + H_20 \rightleftharpoons NH_4^+ + OH^ NH_3$
 $NH_3 + H_20 \rightleftharpoons NH_4^+ + OH^ NH_3$

Check Note that the calculated pH indicates that the solution is acidic, which is what we would expect for a weak acid solution. Also, compare the calculated pH with that of a 0.036 *M* strong acid solution such as HCl to convince yourself of the difference between a strong acid and a weak acid.

Practice Exercise What is the pH of a 0.122 M monoprotic acid whose K_a is 5.7×10^{-4} ?

Practice Exercise The pH of a 0.060 M weak monoprotic acid is 3.44. Calculate the K_a of the acid.

A student prepared a 0.10 M solution of formic acid (HCOOH) and found its pH at 25 °C to be 2.38. Calculate K_a for formic acid at this temperature.

Solution We proceed according to the following steps:

- Step 1: The major species in an ammonia solution are NH₃, NH₄, and OH⁻. We ignore the very small contribution to OH⁻ concentration by water.
- Step 2: Letting x be the equilibrium concentration of NH $_4^+$ and OH $^-$ ions in mol/L, we summarize:

Step 3: Table 16.5 gives us K_b:

$$K_{\rm b} = \frac{[{\rm NH_4^+}][{\rm OH^-}]}{[{\rm NH_3}]}$$
$$1.8 \times 10^{-5} = \frac{x^2}{0.40 - x}$$

Applying the approximation $0.40 - x \approx 0.40$, we obtain

$$1.8 \times 10^{-5} = \frac{x^2}{0.40 - x} \approx \frac{x^2}{0.40}$$
$$x^2 = 7.2 \times 10^{-6}$$
$$x = 2.7 \times 10^{-3} M$$

To test the approximation, we write

$$\frac{2.7 \times 10^{-3} M}{0.40 M} \times 100\% = 0.68\%$$

Therefore, the approximation is valid.

Step 4: At equilibrium, $[OH^{-}] = 2.7 \times 10^{-3} M$. Thus,

$$pOH = -\log (2.7 \times 10^{-3})$$

= 2.57

From Equation (16.9)

$$pH = 14.00 - 2.57$$
$$= 11.43$$

Percent dissociation

➤ It is often useful to specify the amount of weak acid or weak base that has dissociated in achieving equilibrium in an aqueous solution. It is another measure of the strength of an acid, which is defined as

$$Percent \ dissociation = \frac{amount \ dissociated \ (mol/L)}{initial \ concentration \ (mol/L)} \times 100\%$$

Referring to Example 16.8, we see that the percent ionization of a $0.036\,M\,\mathrm{HNO_2}$ solution is

percent ionization =
$$\frac{3.8 \times 10^{-3} M}{0.036 M} \times 100\% = 11\%$$

Check Note that the pH calculated is basic, which is what we would expect from a weak base solution. Compare the calculated pH with that of a 0.40 M strong base solution, such as KOH, to convince yourself of the difference between a strong base and a weak base.

Practice Exercise Calculate the pH of a 0.26 M methylamine solution (see Table 16.5).

Calculate the pH for a 15.0 M solution of NH₃ ($K_b = 1.8 \times 10^{-5}$).

Calculate the pH of a 1.0 M solution of methylamine ($K_b = 4.38 \times 10^{-4}$).

Lactic acid (HC₃H₅O₃) is a waste product that accumulates in muscle tissue during exertion, leading to pain and a feeling of fatigue. In a 0.100 M aqueous solution, lactic acid is 3.7% dissociated. Calculate the value of K_a for this acid.

PRACTICE EXERCISE

A 0.020 M solution of niacin has a pH of 3.26. Calculate the percent ionization of the niacin.

**Answer: 2.7%

PRACTICE EXERCISE

The K_a for niacin (Practice Exercise 16.10) is 1.5 \times 10⁻⁵. What is the pH of a 0.010 M solution of niacin? **Answer:** 3.41

Calculate the percent dissociation of acetic acid ($K_{\rm a}=1.8\times 10^{-5}$) in each of the following solutions.

- a. 1.00 M HC₂H₃O₂
 b. 0.100 M HC₂H₃O₂
- ➤ In general, for a given weak acid, the percent dissociation increases as the acid becomes more dilute

Buffer solutions

As many reactions depend greatly upon the concentration of hydrogen ions in the solutions being used, it is important to control the pH. This is usually achieved by using a solution which has a pH that is accurately known and that resists any change in pH as solvent for the experiment. Such solutions are called buffers.

A buffer solution is defined as a solution of:

- ☐ A weak acid and its conjugate base (the salt of the weak acid) or
- ☐ A weak base and its conjugate acid (the salt of the weak base)

Example 16.2

Which of the following solutions can be classified as buffer systems? (a) KH_2PO_4/H_3PO_4 , (b) $NaClO_4/HClO_4$, (c) C_5H_5N/C_5H_5NHCl (C_5H_5N is pyridine; its K_b is given in Table 15.4). Explain your answer.

Strategy What constitutes a buffer system? Which of the preceding solutions contains a weak acid and its salt (containing the weak conjugate base)? Which of the preceding solutions contains a weak base and its salt (containing the weak conjugate acid)? Why is the conjugate base of a strong acid not able to neutralize an added acid?

Solution The criteria for a buffer system is that we must have a weak acid and its salt (containing the weak conjugate base) or a weak base and its salt (containing the weak conjugate acid).

- (a) H₃PO₄ is a weak acid, and its conjugate base, H₂PO₄⁻, is a weak base (see Table 15.5). Therefore, this is a buffer system.
- (b) Because HClO₄ is a strong acid, its conjugate base, ClO₄⁻, is an extremely weak base. This means that the ClO₄⁻ ion will not combine with a H⁺ ion in solution to form HClO₄. Thus the system cannot act as a buffer system.
- (c) As Table 15.4 shows, C₃H₅N is a weak base and its conjugate acid, C₅H₅NH (the cation of the salt C₅H₅NHCl), is a weak acid. Therefore, this is a buffer system.

Practice Exercise Which of the following are buffer systems? (a) KF/HF, (b) KBr/HBr, (c) Na₂CO₃/NaHCO₃.

□ Salts of a dibasic (or tribasic) acid such as phosphoric acid, H3PO4-. For example, potassium dihydrogen phosphate, KH2PO4, and disodium hydrogen phosphate, Na2HPO4.

Buffer Capacity

- ➤ This is the amount of acid (or alkali) that, when added to 1 liter of buffer, will change its pH by 1 unit. The more concentrated the buffer, the greater will be its buffer capacity.
- ➤ A buffer solution containing equal concentration of a weak acid and its salt or a weak base and its salt has a maximum buffer capacity and is known as a Halfneutralized solution.

Calculation of the pH of a buffer solution

> For a buffer composed of a weak acid and its salt,

$$pH = pKa + log ([A']/[HA])$$
Or
$$pH = pKa + log ([salt]/[acid])$$

➤ This equation is known as Henderson Hasselbalch equation.

For example: Calculate the pH of a solution which is 1.0. M in CH₃COOH and 1.0 M in CH₃COONa.

SAMPLE EXERCISE 17.3 Calculating the pH of a Buffer

What is the pH of a buffer that is 0.12 M in lactic acid [CH₃CH(OH)COOH, or HC₃H₅O₃] and 0.10 M in sodium lactate [CH₃CH(OH)COONa, or NaC₃H₃O₃]? For lactic acid, $K_a = 1.4 \times 10^{-4}$.

> Similarly for a buffer composed of a weak base and its salt,

$$pOH = pKb + log ([salt]/ [base])$$

And then, pH = 14 - pOH

For example: Calculate the pH of a solution which is 1.0 M in NH₃ and 0.1 M in NH₄Cl.

Practice exercise

A buffered solution contains 0.25 M NH $_3$ ($K_b=1.8\times10^{-5}$) and 0.40 M NH $_4$ Cl. Calculate the pH of this solution.

SAMPLE EXERCISE 17.4 Preparing a Buffer

How many moles of $\mathrm{NH_4Cl}$ must be added to 2.0 L of 0.10 M $\mathrm{NH_3}$ to form a buffer whose pH is 9.00? (Assume that the addition of $\mathrm{NH_4Cl}$ does not change the volume of the solution.)

Solution (a) We summarize the concentrations of the species at equilibrium as follows:

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm CH}_3{\rm COO}^-]}{[{\rm CH}_3{\rm COOH}]}$$
$$1.8 \times 10^{-5} = \frac{(x)(1.0 + x)}{(1.0 - x)}$$

Assuming $1.0 + x \approx 1.0$ and $1.0 - x \approx 1.0$, we obtain

$$1.8 \times 10^{-5} = \frac{(x)(1.0 + x)}{(1.0 - x)} \approx \frac{x(1.0)}{1.0}$$

OI

$$x = [H^+] = 1.8 \times 10^{-5} M$$

Thus,

$$pH = -log(1.8 \times 10^{-5}) = 4.74$$

(b) When HCl is added to the solution, the initial changes are

Calculating the pH of a Buffer

Example 17.2

(a) Calculate the pH of a buffer system containing $1.0\ M\ CH_3COOH$ and $1.0\ M\ CH_3COONa$. (b) What is the pH of the buffer system after the addition of $0.10\ mole$ of gaseous HCl to $1.0\ L$ of the solution? Assume that the volume of the solution does not change when the HCl is added.

Strategy (a) The pH of the buffer solution before the addition of HCl can be calculated from the ionization of CH₃COOH. Note that because both the acid and the sodium salt of the acid are present, the initial concentrations of CH₃COOH and CH₃COO⁻ (from CH₃COONa) are both 1.0 M. The K_a of CH₃COOH is 1.8×10^{-5} (see Table 16.3). (b) It is helpful to make a sketch of the changes that occur in this case.

The Cl⁻ ion is a spectator ion in solution because it is the conjugate base of a strong acid.

The H^+ ions provided by the strong acid HCl react completely with the conjugate base of the buffer, which is $\mathrm{CH_3COO}^-$. At this point it is more convenient to work with moles rather than molarity. The reason is that in some cases the volume of the solution may change when a substance is added. A change in volume will change the molarity, but not the number of moles. The neutralization reaction is summarized next:

	CH ₃ COO (aq)	+ H'(aq)	\rightarrow CH ₃ COOH(aq)
Initial (mol):	1.0	0.10	1.0
Change (mol):	-0.10	-0.10	+0.10
Final (mol):	0.90	0	1.1

Finally, to calculate the pH of the buffer after neutralization of the acid, we convert back to molarity by dividing moles by 1.0 L of solution.

	$CH_3COOH(aq) \Longrightarrow H^+(aq) + CH_3COO^-(aq)$		
Initial (M):	1.1	0	0.90
Change (M):	-x	+x	+x
Equilibrium (M):	1.1 - x	x	0.90 + x

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm CH}_3{\rm COO}^-]}{[{\rm CH}_3{\rm COOH}]}$$
$$1.8 \times 10^{-5} = \frac{(x)(0.90 + x)}{1.1 - x}$$

Assuming $0.90 + x \approx 0.90$ and $1.1 - x \approx 1.1$, we obtain

$$1.8 \times 10^{-5} = \frac{(x)(0.90 + x)}{1.1 - x} \approx \frac{x(0.90)}{1.1}$$

OI

$$x = [H^+] = 2.2 \times 10^{-5} M$$

Thus

$$pH = -\log(2.2 \times 10^{-5}) = 4.66$$

Practice Exercise Calculate the pH of the 0.30 *M* NH₃/0.36 *M* NH₄Cl buffer system. What is the pH after the addition of 20.0 mL of 0.050 *M* NaOH to 80.0 mL of the buffer solution?

What if some base (OH-) is added instead?

The added base (OH-) will neutralize some of the acid HA and produce more of the conjugate base, A-

$$HA + OH^- \longrightarrow H_2O + A^-$$

➤ This reaction causes [HA] to decrease and [A-] to increase. But, as long as some HA remains, the system is still a mixture of HA and A-, and it is still a buffer solution

Buffering action: How does it work?

What if some acid (H+) is added?

➤ If H+ ions are added, they react with the base component of the buffer:

$$H^+ + A^- \longrightarrow HA$$

➤ This reaction causes [HA] to increase and [A-] to decrease. But, as long as some A- remains, the system is still a mixture of HA and A-, and it is still a buffer solution

For example: Look at example 17.2 b.

Practice exercise

Calculate the change in pH that occurs when 0.010 mol gaseous HCl is added to 1.0 L of each of the following solutions:

Solution A: $5.00 M HC_2H_3O_2$ and $5.00 M NaC_2H_3O_2$

Solution B: 0.050 M HC₂H₃O₂ and 0.050 M NaC₂H₃O₂

For acetic acid, $K_a = 1.8 \times 10^{-5}$.

Sample exercise 15.5

A buffered solution contains 0.25 M NH₃ ($K_b=1.8\times10^{-5}$) and 0.40 M NH₄Cl. Calculate the pH of this solution.

Calculate the pH of the solution that results when 0.10 mol gaseous HCl is added to 1.0 L of the buffered solution from Sample Exercise 15.5.

Preparing a buffer solution with a specific pH

- Choose a weak acid whose pKa is close to the desired pH
- ➤ Substitute pKa and pH values into the Henderson-Hasselbach Equation. This will give a ratio of [conjugate Base]/[Acid]
- > Convert ratio to molar quantities

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Example 16.4

Describe how you would prepare a "phosphate buffer" with a pH of about 7.40.

Strategy For a buffer to function effectively, the concentrations of the acid component must be roughly equal to the conjugate base component. According to Equation (16.4), when the desired pH is close to the pK_a of the acid, that is, when pH $\approx pK_a$,

(Continued,

Acid-base properties of salt solutions

- > A salt is an ionic compound formed by the reaction between an acid and a base
- > Salts are strong electrolytes that completely dissociate in water and in some cases react with water
- The term salt hydrolysis describes the reaction of an anion or a cation of a salt, or both, with water
- ➤ Salt hydrolysis usually affects the pH of a solution. Thus, the pH of an aqueous salt solution can be predicted qualitatively by considering the salt's cations and anions

Salts that produce neutral solutions

➤ Salts that consist of the cations of strong bases and the anions of strong acids have no effect on [H+] when dissolved in water. This means that aqueous solutions of salts such as KCl, NaCl, NaNO₃, and KNO₃ are neutral

Salts that produce basic solutions

➤ In general, for any salt whose cation has neutral properties (such as Na+ or K+) and whose anion is the conjugate base of a weak acid, the aqueous solution will be basic. This means that aqueous solutions of salts such as NaClO, RbF, BaSO₃ are basic

Salts that produce acidic solutions

> In general, salts in which the anion is not a base and the cation is the conjugate acid of a weak base produce acidic solutions. This means that aqueous solutions of salts such as NH₄NO₃, AlCl₃, Fe(NO₃)₃ are acidic.

The Acid-Base Properties of Salts

Predict whether an aqueous solution of each of the following salts will be acidic, basic, or neutral.

a. NH₄C₂H₃O₂ b. NH₄CN c. Al₂(SO₄)₃

PRACTICE EXERCISE

Indicate which salt in each of the following pairs forms the more acidic (or less basic) 0.010 M solution: (a) NaNO3 or Fe(NO3)3, (b) KBr or KBrO, (c) CH3NH3Cl or BaCl2, (d) NH4NO2 or

Answers: (a) Fe(NO₃)₃, (b) KBr, (c) CH₃NH₃Cl, (d) NH₄NO₃

Example 16.13

Calculate the pH of a 0.15 M solution of sodium acetate (CH₃COONa). What is the percent hydrolysis?

Solution

Step 1: Because we started with a 0.15 M sodium acetate solution, the concentrations of the ions are also equal to 0.15 M after dissociation:

	CH ₃ COONa(aq) -	\longrightarrow Na ⁺ (aq) +	CH ₃ COO ⁻ (aq)
Initial (M):	0.15	0	0
Change (M):	-0.15	+0.15	+0.15
Final (M):	0	0.15	0.15

Of these ions, only the acetate ion will react with water

$$CH_3COO^-(aq) + H_2O(l) \rightleftharpoons CH_3COOH(aq) + OH^-(aq)$$

At equilibrium, the major species in solution are CH₃COOH, CH₃COO⁻, and OH-. The concentration of the H+ ion is very small as we would expect for a basic solution, so it is treated as a minor species. We ignore the ionization of

SAMPLE EXERCISE 16.18 Determining Whether Salt Solutions Are Acidic, Basic, or Neutral

Determine whether aqueous solutions of each of these salts are acidic, basic, or neutral: (a) Ba(CH3COO)2, (b) NH4Cl, (c) CH3NH3Br, (d) KNO3, (e) Al(ClO4)3.

Solving salt hydrolysis problems

> Follow the same procedure we used for the determination of the pH of a weak acids and a weak

Salts as Weak Bases

Calculate the pH of a 0.30 M NaF solution. The K_a value for HF is 7.2×10^{-4} .

Salts as Weak Acids I

Calculate the pH of a 0.10 M NH₄Cl solution. The K_h value for NH₃ is 1.8×10^{-5} .

Salts as Weak Acids II

Calculate the pH of a 0.010 M AlCl₃ solution. The K_a value for Al(H_2O)₆³⁺ is 1.4 × 10⁻⁵.

Step 2: Let x be the equilibrium concentration of CH_3COOH and OH^- ions in mol/L, we summarize:

Step 3: From the preceding discussion and Table 16.3 we write the equilibrium constant of hydrolysis, or the base ionization constant, as

$$K_{b} = \frac{\text{[CH_3COOH][OH^-]}}{\text{[CH_3COO^-]}}$$
$$5.6 \times 10^{-10} = \frac{x^2}{0.15 - x}$$

Because K_b is very small and the initial concentration of the base is large, we can apply the approximation $0.15 - x \approx 0.15$:

$$5.6 \times 10^{-10} = \frac{x^2}{0.15 - x} \approx \frac{x^2}{0.15}$$

 $x = 9.2 \times 10^{-6} M$

Step 4: At equilibrium:

$$[OH^{-}] = 9.2 \times 10^{-6} M$$

$$pOH = -\log (9.2 \times 10^{-6})$$

$$= 5.04$$

$$pH = 14.00 - 5.04$$

$$= 8.96$$

Thus the solution is basic, as we would expect. The percent hydrolysis is given by

% hydrolysis =
$$\frac{[\text{CH}_3\text{COO}^-]_{\text{hydrolyzed}}}{[\text{CH}_3\text{COO}^-]_{\text{initial}}}$$
$$= \frac{9.2 \times 10^{-6} M}{0.15 M} \times 100\%$$
$$= 0.0061\%$$

Check The result shows that only a very small amount of the anion undergoes hydrolysis. Note that the calculation of percent hydrolysis takes the same form as the test for the approximation, which is valid in this case.

Practice Exercise Calculate the pH of a 0.24 M sodium formate solution (HCOONa).

- ➤ Equal Ka and Kb values mean a neutral solution
- The acid-base properties of aqueous solutions of various salts are summarized in Table 14.6

Type of Salt	Examples	Comment	pH of Solution
Cation is from strong base; anion is from strong acid	KCl, KNO ₃ , NaCl, NaNO ₃	Neither acts as an acid or a base	Neutral
Cation is from strong base; anion is from weak acid	NaC ₂ H ₃ O ₂ , KCN, NaF	Anion acts as a base; cation has no effect on pH	Basic
Cation is conjugate acid of weak base; anion is from strong acid	NH ₄ Cl, NH ₄ NO ₃	Cation acts as acid; anion has no effect on pH	Acidic
Cation is conjugate acid of weak base; anion is conjugate base of weak acid	NH ₄ C ₂ H ₃ O ₂ , NH ₄ CN	Cation acts as an acid; anion acts as a base	Acidic if $K_a > K_b$ basic if $K_b > K_b$ neutral if $K_a = K_b$
Cation is highly charged metal ion; anion is from strong acid	Al(NO ₃) ₃ , FeCl ₃	Hydrated cation acts as an acid; anion has no effect on pH	Acidic

Salts in which both the cation and the anion hydrolyze

- If the salt contains an anion and a cation both capable
 of reacting with water, both hydroxide ions and
 hydronium ions are produced. Examples: NH₄CIO,
 AI(CH₃COO)₃, CrF₃
- ➤ To predict whether the solution will be basic, acidic, or neutral, it depends on the K_a value for the acidic ion and the K_b value for the basic ion
- ➤ If the K_a value for the acidic ion is larger than the K_b value for the basic ion, the solution will be acidic
- ➤ If the K_b value is larger than the K_a value, the solution will be basic

THANK YOU

