PERHITUNGAN NILAI BETA DARI BEBERAPA SAHAM UNGGULAN DI INDONESIA DENGAN MENGGUNAKAN METODE GARCH

Ni Kadek Puspitayanti^{§1}, Komang Dharmawan², I Putu Eka N. Kencana³

¹Jurusan Matematika, Fakultas MIPA – Universitas Udayana [Email: adex_math05@yahoo.com]

²Jurusan Matematika, Fakultas MIPA – Universitas Udayana [Email: dharmawan.komang@gmail.com]

³Jurusan Matematika, Fakultas MIPA – Universitas Udayana [Email: i.putu.enk@gmail.com]

§Corresponding Author

ABSTRACT

The objective of investment in the capital market is to acquire dividends and capital gain. The fact proves that the advantage of investation risky assets is uncertain. This is because of the difficulty in analyzing and predicting Return and stock losses due to factors that affect the movement of the stock price, such as economic factors, political, social, and security. The model can be used by investors in predicting stock returns expected that Generalized Autoregressive Conditional Heteroscedaticity (GARCH). In this study calculations beta value of some leading stocks in Indonesia by using Generalized Autoregressive Conditional Heteroscedaticity (GARCH) are presented. The data used this search is secondary data covering daily data sampled 5 shares of PT Unilever Indonesia Tbk, PT Indosat Tbk, PT Indofood Sukses Makmur Tbk, PT Telkom Indonesia Tbk, PT Holcim Indonesia Tbk. From the results described fifth beta value of these shares using the method GARCH beta greater than the market in the period from 23 September 2013 until 24 September 2014.

Keywords: Beta, Capital Gain, Dividen, GARCH, return

1. PENDAHULUAN

Investasi dibedakan menjadi dua yaitu investasi riil (gedung, kendaraan, mesin, tanah) dan investasi finansial (saham pada pasar modal). Tingkat pendapatan yang diharapkan dari investasi saham tergantung dari bagaimana sikap investor dalam menghadapi risiko. Pada umumnya investor bersifat menghindari risiko, walaupun sebagian ada yang berani mengambil risiko. Investor akan mempertimbangkan tingkat penghasilan yang diharapkan (*expeted return*) atas investasinya untuk periode tertentu pada masa yang akan datang terhadap risiko (*risk*) yang akan mungkin ditanggung.

Pasar modal menyediakan banyak sekali informasi yang tersedia bagi para investor. Informasi merupakan kebutuhan yang mendasar bagi para investor dalam mengambil keputusan. Seorang investor harus memiliki perencanaan investasi yang efektif agar memperoleh keuntungan di pasar modal. Perencanaan ini meliputi pertimbangan keputusan yang diambil

untuk mengalokasikan dana yang dimiliki dalam bentuk aktiva tertentu dengan harapan mendapat keuntungan ekonomis di masa mendatang. Salah satu bentuk investasi yang dilakukan investor adalah membeli saham, dengan harapan akan memperoleh *return* baik berupa dividen maupun *capital gain*.

Dalam pelaksanaan investasi, para pemilik (investor) sangat membutuhkan modal informasi yang jelas, wajar, dan tepat waktu sebagai dasar pertimbangan dalam proses pengambilan keputusan. Salah satu informasi yang dibutuhkan oleh investor (baik investor ritel maupun investor institusional) adalah informasi tentang tingkat pengembalian (return) dan risiko investasi. Metode yang digunakan untuk mengestimasi beta dengan varians adalah metode Generalized Autoregressive Conditional Heteroscedaticity (GARCH). Nilai beta yang telah diperoleh dengan metode GARCH dapat digunakan untuk estimasi sensivitas pengembalian saham beta yang akan datang sehingga dapat digunakan oleh investor sebagai bahan pertimbangan untuk membuat keputusan investasi.

2. METODE PENELITIAN

Data yang digunakan dalam penelitian ini adalah data sekunder yang bersifat kuantitatif. Data sekunder adalah data yang diambil tidak dari sumber langsung dan merupakan pengumpulan dari pihak lain. Sedangkan data yang bersifat kuantitatif adalah data yang berupa angka yang bisa dihitung atau dioperasikan. Data dalam penelitian ini diakses melalui internet.

A. Mencari Tingkat Pengembalian (Return)

Return saham adalah keuntungan yang di peroleh dari kepemilikan saham investasi yang dilakukan. Perhitungan return saham menggunakan metode konvensional sebagai berikut:

$$R_{i,t} = \frac{S_{i,t} - S_{i,t-1}}{S_{i,t-1}} \tag{1}$$

dengan $R_{i,t}$ adalah *return* saham i pada periode t, $S_{i,t}$ adalah indeks saham i pada periode t, dan $S_{i,t-1}$ adalah indeks saham i pada periode t-1

Pada analisis sekuritas umumnya menggunakan metode *natural logarithm ratio*, dimana hasil dari keuntungan yang diharapkan tidak terlalu besar dibandingkan metode konvensional. Metode *natural logarithm ratio* di formulasikan sebagai (Husnan [5])

$$R_{i,t} = \ln\left(\frac{S_{i,t}}{S_{i,t-1}}\right) \tag{2}$$

Penggunaan metode *natural logarithm ratio* digunakan agar dalam analisis statistika perhitungan *return* tidak bisa.

B. Fungsi ACF dan PACF

Fungsi *autokorelasi* digunakan untuk meng ukur ketergantungan bersama (*mutual dependen*) antara nilai-nilai suatu runtun waktu yang sama pada periode waktu yang berlainan.

$$\rho_k = \frac{\sum_{t=1}^{n-k} (Z_t - \bar{Z})(Z_{t+k} - \bar{Z})}{\sum_{t=1}^{n} (Z_t - \bar{Z})^2}$$
(3)

dengan nilai ρ_k berkisar antara -1 sampai 1. Untuk fungsi PACF diberikan sebagai berikut

$$\widehat{\emptyset}_{kk}$$

$$= \frac{\rho_k - \sum_{j=1}^{k-1} \widehat{\emptyset}_{k-1,j} \rho_{k-j}}{1 - \sum_{j=1}^{k-1} \widehat{\emptyset}_{k-1,j} \rho_j} \tag{4}$$

dengan $\widehat{\emptyset}_{kj} = \widehat{\emptyset}_{k-1,j} - \emptyset_{kk} \widehat{\emptyset}_{k-1,k-j}$ untuk j = 1,2,3,...,k-1.

C. Uji Ljung Box

Pada Uji Ljung Box akan dilakukan pengujian terhadap data apakah mempunyai unsur autokorelasi atau tidak.

- a. Menetapkan hipotesis H_0 : data tidak berautokorelasi H_1 : data memiliki autokorelasi
- b. Menghitung uji statistik Ljung-Box

$$LB = n(n+2) \sum_{k=1}^{m} \left(\frac{\hat{\rho}_k^2}{n-k} \right)$$
 (5)

dengan LB menyatakan statistik Ljung Box, n menyatakan banyaknya data pengamatan, $\hat{\rho}_k^2$ merupakan taksiran autokorelasi, dan m adalah panjang lag.

c. Daerah penolakan Kriteria uji dilakukan jika H_0 ditolak jika LB $>x_{a;df}^2$ atau p-value < 0. Apabila H_0 ditolak maka akan dipilih H_1 yang berarti data berautokorelasi.

D. Uji ARCH LM

Uji ARCH LM dilakukan untuk melihat kehadiran unsur *heteroscedasticity* atau efek GARCH.

a. Menetapkan hipotesis

*H*₀: *homoscedasticity*, tidak ada efek ARCH-GARCH

 H_1 : heteroscedasticity, terdapat efek ARCH-GARCH

b. Menghitung nilai statistik uji ARCH LM

$$U = (n - m)R^2 \tag{6}$$

 R^2 merupakan koefisien determinasi, n banyaknya data dan m panjang lag.

c. Daerah penolakan Kriteria uji dilakukan apabila tolak H_0 jika $U>x_{a,m}^2$ atau p-value $<\alpha$, maka akan dipilih H_1 yang berarti ada efek ARCH-GARCH pada data

E. Peramalan dengan model Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

Model ARCH pada umumnya digunakan untuk memperkirakan volatilitas yang diperkenalkan oleh Engle pada tahun 1982 di mana ε_t tidak saling berkorelasi. Residual (ε_t) mengikuti model ARCH (q) yang dimodelkan sebagai

$$\varepsilon_{t} = \sigma_{t} Z_{t}$$

$$\sigma_{t}^{2} = \omega + \beta_{1} \varepsilon_{t-1}^{2} + \dots + \beta_{q} \varepsilon_{t-q}^{2}$$

$$\sigma_{t}^{2} = \omega + \sum_{i=1}^{q} \beta_{i} \varepsilon_{t-i}^{2}$$
(7)

dengan $\beta_1, ..., \beta_i$, dan ω merupakan parameter konstan. Bollerslev mengembangkan model ARCH menjadi model GARCH di mana residual (ε_t) mengikuti model GARCH (p,q) dengan q merupakan orde ARCH dan p merupakan orde dari GARCH yang dapat dimodelkan sebagai

$$\begin{split} \varepsilon_t &= \sigma_t Z_t \\ \sigma_t^2 &= \omega + \alpha_1 \sigma_{t-1}^2 + \dots + \alpha_p \sigma_{t-p}^2 + \beta_1 \varepsilon_{t-1}^2 + \dots \\ &+ \beta_q \varepsilon_{t-q}^2 \end{split}$$

Untuk GARCH (p,q) variansnya dapat dirumuskan sebagai berikut:

$$\sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i \, \sigma_{t-j}^2 + \sum_{i=1}^q \beta_i \varepsilon_{t-i}^2$$
 (8)

dengan $\alpha_1, \alpha_2, ..., \alpha_j$ adalah nilai parameter ke i dari GARCH dan $\sigma^2_{t-1}, \sigma^2_{t-2}, ..., \sigma^2_{t-i}$ adalah nilai varians ke t.

F. Perhitungan Nilai Beta Saham Unggulan

Menghitung Nilai Beta tiap-tiap saham menggunakan GARCH. Beta merupakan ukuran sensitivitas pengembalian saham terhadap perubahan pengembalian pasar. Perhitungan beta sangat penting dilakukan untuk mengetahui berapa besar risiko saham tersebut. Saham dengan nilai $\beta>1$ memiliki risiko lebih tinggi dari risiko pasar, sebaliknya saham dengan nilai $\beta<1$ memiliki risiko lebih rendah dari risiko pasardan sedangkan saham dengan nilai $\beta=1$ menunjukkan bahwa risiko saham sama dengan risiko pasar. Risiko sistematis merupakan risiko yang berasal dari kondisi ekonomi dan kondisi pasar secara umum, dimana risiko ini tercermin dari nilai betanya.

G. Perbandingan Nilai Beta saham Unggulan.

Melakukan perbandingan nilai beta pasar saham unggulan.

3. HASIL PENELITIAN DAN DISKUSI

A. Tingkat Pengembalian (Return)

Menentukan nilai *return* dari data historis penutupan tiap-tiap saham dengan menggunakan metode Metode *natural logarithm ratio* di formulasikan sebagai (Husnan [5]).

$$R_{i,t} = ln\left(\frac{S_{i,t}}{S_{i,t-1}}\right)$$

Berikut adalah plot data return tiap-tiap saham

B. Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

Penggunaan model GARCH yang digunakan dalam meramalkan model data yang bersifat acak dan volatilitasnya tidak konstan perlu memerhatikan langkah-langkah sebagai berikut, yaitu tahap pra-estimasi dengan melakukan uji terhadap autokorelasi data. Dengan melihat residual kuadratpada data

akan dilihat bahwa data berautokorelasi atau tidak stasioner pada Tabel 3.1

		Sahar	n IHSG		
Uii Lii	ing Box I			ARCH Re	esidual
- JJ	Kuadrat			Kuadra	
р	Ostat	CV	р	Ostat	CV
0.8902	0.0191	3.8415	0.8893	0.0194	3.8415
0.4882	4.4382	11.0705	0.6545	3.2959	
0.5478	7.8649	16.9190	0.5554	7.7908	16.9190
0.6150	10.9504	22.3620	0.6177	10.9175	22.3620
0.4553	16.9866	27.5871	0.3708	18.2900	27.5871
0.2917	24.0278	32.6706	0.4755	20.7301	32.6706
			lcim		
p	Qstat	CV	p	Qstat	CV
0.1474	2.0987	3.8415	0.1506	2.0660	3.8415
0.6533	3.3035	11.0705	0.6461	3.3509	11.0705
0.2409	11.5335	16.9190	0.1794	12.6440	16.9190
0.0489	22.4399	22.3620	0.1303	18.7741	22.3620
0.0270	29.9122	27.5871	0.1141	24.2014	27.5871
0.0249	35.4959	32.6706	0.1949	26.3086	32.6706
			ofood		
p	Qstat	CV	p	Qstat	CV
0.0042	8.2058	3.8415	0.0045	8.0710	3.8415
0.0036	17.5508	11.0705	0.0014	19.7588	11.0705
0.0005	29.6503	16.9190	0.0007	28.7490	16.9190
0.0025	31.9264	22.3620	0.0000	43.4200	22.3620
0.0129	32.5277	27.5871	0.0159	31.8022	27.5871
0.0443	33.1801	32.6706	0.0267	35.2250	32.6706
			losat		
р	Qstat	CV	р	Qstat	CV
0.0029	8.8761	3.8415	0.0031	8.7417	3.8415
0.0050	16.7279	11.0705	0.0349	11.9923	11.0705
0.0056	23.2624	16.9190	0.0794	15.4465	16.9190
0.0178	25.8593	22.3620	0.2293	16.3781	22.3620
0.0175	31.4599	27.5871	0.3581	18.4982	27.5871
0.0314	34.5793	32.6706	0.4690	20.8368	32.6706
	Qstat	CV	llever	Qstat	CV
p 0.3604	0.8363	3.8415	p 0.3624	0.8296	3.8415
0.5933	3.7004	11.0705	0.3024	3.4682	11.0705
0.8039	5.3380	16.9190	0.6282	6.4020	16.9190
0.9509	5.8658	22.3620	0.9078	6.8877	22.3620
0.9309	7.9103	27.5871	0.9370	9.1022	27.5871
0.9579	11.2400	32.6706	0.9097	12.9704	32.6706
0.7317	11.2700		lkom	12.7704	32.0700
р	Qstat	CV	р	Qstat	CV
0.1801	1.7965	3.8415	0.1811	1.7883	3.8415
0.0933	9.4230	11.0705	0.1224	8.6826	11.0705
0.1932	12.3718	16.9190	0.1391	13.5552	16.9190
0.4219	13.3404	22.3620	0.2821	15.4161	22.3620
0.4126	17.6286	27.5871	0.2041	21.5155	27.5871
0.5590	19.4072	32.6706	0.2649	24.5991	32.6706

Dari Tabel 3.1 dapat dilihat bahwa berdasarkan Uji Ljung-box residual kuadrat dan uji ARCH LM terhadap nilai dugaan residual kuadratnya diperoleh bahwa nilai Q lebih besar dari Critical Value (CV) atau nilai P lebih kecil dari a=0.05 yang mengindikasikan tolak H_0 atau terima H_1 yang artinya nilai dugaan residual kuadrat IHSG berautokorelasi atau

tidak stasioner dan terdapat efek ARCH-GARCH pada data *return* IHSG sehingga memungkinkan peramalan menggunakan model GARCH. Penentuan model GARCH dapat dilihat dari plot ACF dan PACF residual kuadrat pada Gambar berikut

Peramalan dengan model GARCH akan dilakukan dengan mengestimasi parameter-parameter model GARCH untuk memperoleh model GARCH yang terbaik. Beberapa model GARCH yang dapat dibentuk berdasarkan plot ACF dan PACF residual kuadrat IHSG dapat dilihat pada Tabel 3.2

Tabel 3.2. Model GARCH

Model	GARCH (1,1)	GARCH (1,2)	GARCH (2,1)	GARCH (2,2)
K	2e-007 [0.1055]	2e-007 [0.1083]	2e-007 [0.1040]	2e-007 [0.0620]
G_1	0,9708 [27,5780]*	0.96969 [28.3250]*	0.97033 [0.3450]	0.081502 [0.5776]
G_2			0.00048781 [0.0002]	0.86447 [5.7269]
A_1	0,023387 [1.3407]		0.023371 [0.3581]	
A_2		0.024336 [0.3641]		
AIC	-1.5792	-1.5776	-1.5772	-1.5772
BIC	-1.5654	-1.5603	-1.5599	1.5564

diketahui hasil estimasi koefisien model GARCH IHSG, dimana peramalan

menggunakan model GARCH (1,1) paling baik dibanding model GARCH yang lainnya. Hal ini dapat dilihat dari uji AIC dan BIC yang memberikan nilai minimum pada peramalan model GARCH (1,1). Sehingga model GARCH (1,1) pada IHSG adalah

$$\begin{split} \sigma_t^2 &= 0,\!0000002 + 0,\!9708\sigma_{t-1}^2 \\ &+ 0,\!023387~\varepsilon_{t-1}^2 \end{split}$$

dengan σ_t^2 adalah ramalan nilai variansi periode t, ε_{t-1}^2 adalah nilai residual periode t-1, dan σ_{t-1}^2 adalah nilai variansi periode t-1.

Tabel 3.3. Estimasi Parameter Model GARCH pada Holcim

Model	GARCH	GARCH	GARCH	GARCH
	(1,1)	(1,2)	(2,1)	(2,2)
K	1.7014e-	1.6979e-	2.5803e-	2.58e-
	005	005	005	005
	[1.5564]	[1.2872]	[1.4442]	[1.3279]
G_1	0.89166	0.89176	0.084879	0.084899
	[22.8302]*	[17.2216]*	[0.7989]	[0.6078]
G_2			0.74043 [6.4438]*	0.74041 [5.9838]*
A_1	0.069975	0.069968	0.11548	0.11548
	[2.6688]*	[1.8117]*	[3.0235]*	[2.8273]*
A_2				
AIC	-1.1838	-1.1818	-1.1842	-1.1822
BIC	-1.1700	-1.1645	-1.1669	-1.1615

Keterangan: tanda [...]* menunjukkan T-Stat > T-tab pada $\alpha = 0.05$

Berdasarkan Tabel 3.3 diketahui hasil estimasi koefisien model GARCH IHSG, dimana peramalan menggunakan model GARCH (1,1) paling baik dibanding model GARCH yang lainnya. Hal ini dapat dilihat dari uji AIC dan BIC yang memberikan nilai minimum pada peramalan model GARCH (1,1). Sehingga model GARCH (1,1) pada Holcim adalah

$$\begin{split} \sigma_t^2 = &0.0017014 + 0.89166 \, \sigma_{t-1}^2 + 0.069975 \, \varepsilon_{t-1}^2 \\ \text{dengan } \sigma_t^2 \text{ adalah ramalan nilai variansi periode } t, \, \varepsilon_{t-1}^2 \text{ adalah nilai residual periode } t-1 \text{ , dan } \\ \sigma_{t-1}^2 \text{ adalah nilai variansi periode } t-1 \text{ .} \end{split}$$

Tabel 3.4 menunjukkan hasil estimasi koefisien model GARCH IHSG, dimana peramalan menggunakan model GARCH (1,1) paling baik dibanding model GARCH yang lainnya. Hal ini dapat dilihat dari uji AIC dan BIC yang memberikan nilai minimum pada peramalan model GARCH (1,1). Sehingga model GARCH (1,1) pada Indofood adalah

$$\sigma_t^2 = 0.0019365 + 0.76183 \,\sigma_{t-1}^2 + 0.1268 \,\varepsilon_{t-1}^2$$

$$\begin{split} \sigma_t^2 &= 0{,}0019365 + 0.76183 \, \sigma_{t-1}^2 \\ &\quad + 0.1268 \, \varepsilon_{t-1}^2 \\ \text{dengan } \sigma_t^2 \text{ adalah ramalan nilai variansi periode } t, \, \varepsilon_{t-1}^2 \text{ adalah nilai residual periode } t-1 \text{ , dan } \\ \sigma_{t-1}^2 \text{ adalah nilai variansi periode } t-1 \text{ .} \end{split}$$

Tabel 3.4. Estimasi Parameter Model GARCH pada Indofood

Model	GARCH	GARCH	GARCH	GARCH
	(1,1)	(1,2)	(2,1)	(2,2)
K	1.9365e-	1.9376e-	5.5137e-	5.4817e-
	005	005	007	007
	[1.8892]*	[1.6658]*	[0.3238]	[0.3016]
G_1	0.76183	0.76187		
_	[7.4772]*	[6.3123]*		
G_2			0.93618	0.93622
_			[29.8967]*	[27.0843]*
A_1	0.1268	0.1267	0.051026	0.051015
_	[2.2788]*	[1.8563]*	[2.7831]*	[2.6557]*
A_2				
AIC	-1.4122	-1.4102	-1.4202	-1.4182
BIC	-1.3984	-1.3929	-1.4029	-1.3975

Keterangan: tanda [...]* menunjukkan T-Stat > T-tab pada

Tabel 3.5 Estimasi Parameter Model GARCH pada Indosat

Model	GARCH	GARCH	GARCH	GARCH
	(1,1)	(1,2)	(2,1)	(2,2)
K	1.7467e-	1.7527e-	1.745e-	3.2945e-
	005	005	005	005
	[3.1300]*	[2.4390]*	[2.9998]*	[3.0310]*
G_1	0.76615	0.76538	0.76632	
_	[21.1240]*	[14.0916]*	[2.4319]*	
G_2				0.54682
				[4.7066]*
A_1	0.18938	0.18823	0.18925	0.16089
	[4.6456]*	[3.1080]*	[3.1159]*	[3.0757]*
A_2		0.0017844		0.21993
_		0.0267		3.1189*
AIC	-1.3358	-1.3338	-1.3338	-1.3325
BIC	-1.3219	-1.3165	-1.3165	-1.3117

Keterangan: tanda [...]* menunjukkan T-Stat > T-tab pada $\alpha = 0.05$

dengan melihat Tabel 3.5 diketahui hasil estimasi koefisien model GARCH IHSG, dimana peramalan menggunakan model GARCH (1,1) paling baik dibanding model GARCH yang lainnya. Hal ini dapat dilihat dari uji AIC dan BIC yang memberikan nilai minimum pada peramalan model GARCH (1,1). Sehingga model GARCH (1,1) pada Indosat adalah

$$\begin{split} \sigma_t^2 &= 0,\!0017467 + 0.76615 \, \sigma_{t-1}^2 \\ &+ 0.18938 \, \varepsilon_{t-1}^2 \end{split}$$

dengan σ_t^2 adalah ramalan nilai variansi periode t, ε_{t-1}^2 adalah nilai residual periode t-1, dan σ_{t-1}^2 adalah nilai variansi periode t-1.

Tabel 3.6. Estimasi Parameter Model GARCH pada Unilever

	pada Olinever			
Model	GARCH	GARCH	GARCH	GARCH
	(1,1)	(1,2)	(2,1)	(2,2)
K	2e-007	2e-007	2e-007	2e-007
	[0.0602]	[0.0588]	[0.0365]	[0.0291]
G_1	0.98736	0.98733	0.058022	0.060979
-	[40.2778]*	[39.5789]*	[0.3352]	[0.2575]
G_2			0.91594	
			[5.5444]*	
A_1	0.0088373	0.0088629	0.019531	0.019494
	[0.8683]	[0.2168]	[1.2163]	[1.1531]
A_2				
AIC	-1.3305	-1.3285	-1.3293	-1.3273
BIC	-1.3167	-1.3112	-1.3120	-1.3065

Keterangan: tanda [...]* menunjukkan T-Stat > T-tab pada

dengan melihat Tabel 3.6 diketahui hasil estimasi koefisien model GARCH IHSG. peramalan menggunakan dimana model GARCH (1,1) paling baik dibanding model GARCH yang lainnya. Hal ini dapat dilihat dari uji AIC dan BIC yang memberikan nilai minimum pada peramalan model GARCH (1,1). Sehingga model GARCH (1,1) pada Unilever adalah

$$\begin{array}{c} \sigma_t^2 = & 0.0000002 + 0.98736 \sigma_{t-1}^2 + \\ & 0.0088373 \; \varepsilon_{t-1}^2 \end{array}$$

dengan σ_t^2 adalah ramalan nilai variansi periode t, ε_{t-1}^2 adalah nilai residual periode t-1, dan σ_{t-1}^2 adalah nilai variansi periode t-1.

Tabel 3.7. Estimasi Parameter Model GARCH pada Telkom

Model	GARCH	GARCH	GARCH	GARCH
1110001	(1,1)	(1,2)	(2,1)	(2,2)
K	5.5684e-	0.0001346	5.5735e-	0.00015687
	005	[2.4351]*	005	[2.1471]*
	[1.4115]		[1.1287]	
G_1	0.70715	0.28013	0.70696	
_	[3.9479]*	[1.1288]	[0.9094]	
G_2				0.16534
_				[0.7245]
A_1	0.091605	0.057514	0.091648	0.066124
_	[1.8646]*	[0.9304]	[1.0747]	[1.1147]
A_2		0.19186		0.21945
		[2.5018]*		[2.8288]*
AIC	-1.2848	-1.2869	-1.2828	-1.2857
BIC	-1.2710	-1.2696	-1.2655	-1.2649
T7 /	. 1 F	1*	11 7 04 4 5	7F + 1 1

Keterangan: tanda [...]* menunjukkan T-Stat > T-tab pada $\alpha = 0.05$

Berdasarkan Tabel 3.7 diketahui hasil estimasi koefisien model GARCH Telkom, dimana peramalan menggunakan model GARCH (1,1) paling baik dibanding model GARCH yang lainnya. Hal ini dapat dilihat dari uji AIC dan BIC yang memberikan nilai minimum pada peramalan model GARCH (1,1). Sehingga model GARCH (1,1) pada Telkom adalah

$$\begin{array}{c} \sigma_t^2 = & 0.0055684 + 0.70715 \sigma_{t-1}^2 + \\ & 0.091605 \varepsilon_{t-1}^2 \end{array}$$

dengan σ_t^2 adalah ramalan nilai variansi periode t, ε_{t-1}^2 adalah nilai residual periode t-1, dan σ_{t-1}^2 adalah nilai variansi periode t-1.

Tahap selanjutnya dalam peramalan menggunakan model GARCH setelah dilakukan estimasi dan diperoleh model terbaik adalah melakukan uji Ljung-Box terhadap residual kuadrat yang distandarisasi (z_t) dan uji ARCH terhadap residual yang distandarisasi (z_t) dari model yang diperoleh.

Tabel 3.8 Uji Ljung-Box Residual IHSG Setelah Estimasi

	Saham IHSG				
U:	ji Ljung l	Box	Uj	i ARCH	LM
р	Qstat	\mathbf{CV}	р	Qstat	CV
0.6403	0.2184	3.8415	0.5686	0.3250	3.8415
0.4525	4.7082	11.0705	0.7462	2.6992	11.0705
0.7405	5.9942	16.9190	0.9209	3.8514	16.9190
0.7448	9.3659	22.3620	0.9689	5.2649	22.3620
0.7453	12.8633	27.5871	0.9829	7.0463	27.5871
0.5220	19.9888	32.6706	0.4331	21.4276	32.6706
		Hol	cim		
р	Qsta	at	p	Qsta	at
CV			CV		
0.4028	0.6998	3.8415	0.3571	0.8481	3.8415
0.7425	2.7238	11.0705	0.8591	1.9271	11.0705
0.2749	11.0116	16.9190	0.4521	8.8409	16.9190
0.4845	12.5334	22.3620	0.6879	10.0742	22.3620
0.2785	19.9177	27.5871	0.7698	12.4877	27.5871
0.3430	23.0190	32.6706	0.9047	13.1105	32.6706
		Indo	food		
р	Qstat	CV	p	Qstat	\mathbf{CV}
0.9654	0.0019	3.8415	0.8629	0.0298	3.8415
0.7755	2.5064	11.0705	0.9973	0.3167	11.0705
0.7646	5.7505	16.9190	1.0000	0.4884	16.9190
0.9198	6.6379	22.3620	1.0000	0.6235	22.3620
0.9796	7.2788	27.5871	1.0000	0.6771	27.5871
0.9914	8.6974	32.6706	1.0000	0.8404	32.6706
		Ind	osat		
p	Qstat	CV	p	Qstat	CV
0.9453	0.0047	3.8415	0.8651	0.0289	3.8415
0.8803	1.7677	11.0705	0.9978	0.2909	11.0705
0.9007	4.1586	16.9190	0.9999	0.5631	16.9190
0.9649	5.4156	22.3620	1.0000	0.8041	22.3620
0.9755	7.5368	27.5871	1.0000	1.0305	27.5871
0.9938	8.2950	32.6706	1.0000	1.3315	32.6706

	Unilever				
р	Qstat	CV	р	Qstat	CV
0.4731	0.5146	3.8415	0.9920	0.0001	3.8415
0.9380	1.2703	11.0705	0.8499	1.9946	11.0705
0.9824	2.4434	16.9190	0.9793	2.5583	16.9190
0.9953	3.5152	22.3620	0.9975	3.1171	22.3620
0.9945	5.7876	27.5871	0.9997	3.6389	27.5871
0.9934	8.3720	32.6706	0.9994	6.0715	32.6706
		Tell	kom		
р	Qstat	CV	р	Qstat	CV
0.5588	0.3418	3.8415	0.6534	0.2016	3.8415
0.4850	4.4616	11.0705	0.2047	7.2209	11.0705
0.4820	8.5278	16.9190	0.2216	11.8544	16.9190
0.6921	10.0229	22.3620	0.4975	12.3711	22.3620
0.6575	14.1348	27.5871	0.7093	13.3963	27.5871
0.7435	16.4557	32.6706	0.8305	14.8476	32.6706

dengan melihat Tabel 3.8 dapat dilihat bahwa berdasarkan Uji Ljung-box residual kuadrat yang distandarisasi (z_t) dan uji ARCH LM terhadap nilai dugaan residual kuadratnya diperoleh bahwa nilai Q lebih kecil dari *Critical Value* (CV) atau nilai P lebih besar dari a=0,05 yang mengindikasikan tolak H_0 atau terima H_1 yang artinya nilai dugaan residual kuadrat IHSG sudah tidak berautokorelasi atau stasioner dan sudah tidak terdapat efek ARCH-GARCH dalam residual.

C. Perhitungan Nilai Beta Saham Unggulan

Tabel 3.9. Nilai beta pasar dari saham unggulan.

Nama Saham	Nilai Beta	Variansi
	Saham	
IHSG	0.0092	8.3931e-005
HOLCIM	0.0208	4.3457e-004
INDOFOOD	0.0133	1.7749e-004
INDOSAT	0.0161	2.5803e-004
UNILEVER	0.0153	2.3389e-004
TELKOM	0.0169	2.8402e-004

Berdasarkan Tabel 3.9 terlihat bahwa perhitungan beta pasar berada dalam kelompok $\beta < 1$ dimana saham unggulan memiliki risiko lebih rendah dari risiko pasar. Nilai beta tertinggi dimiliki oleh saham HOLCIM dengan $\beta = 0.0208$ dengan risiko saham sebesar 4.3457e-004. Hal ini sesuai dengan asumsi bahwa semakin besar nilai beta suatu saham maka semakin tinggi tingkat risiko saham tersebut dan semakin besar pula pengembalian yang diberikan saham tersebut.

Tabel 3.10. Nilai Beta Pasar dari Saham Unggulan Menggunakan Model GARCH.

Nama Saham	Nilai Beta	Variansi
	Saham	
HOLCIM	0.3107	0.0965
INDOFOOD	0.1808	0.0327
INDOSAT	0.2881	0.0830
UNILEVER	0.1041	0.0108
TELKOM	0.2086	0.0435

Berdasarkan Tabel 3.10 terlihat bahwa perhitungan beta pasar berada dalam kelompok $\beta < 1$ dimana saham unggulan memiliki risiko lebih rendah dari risiko pasar. Nilai beta tertinggi dimiliki oleh saham HOLCIM dengan $\beta = 0.3107$ dengan risiko saham yang ditanggung sebesar 0.0965. Hal ini sesuai dengan asumsi bahwa semakin besar nilai betasuatu saham maka semakin tinggi tingkat risiko saham tersebut dan semakin besar pula pengembalian yang diberikan saham tersebut.

D. Perbandingan Nilai Beta Saham Unggulan

Beta Pasar Saham Unggulan				
Nama Saham	Nilai Beta	Variansi		
HOLCIM	0.0208	4.3457e-004		
INDOFOOD	0.0133	1.7749e-004		
INDOSAT	0.0161	2.5803e-004		
UNILEVER	0.0153	2.3389e-004		
TELKOM	0.0169	2.8402e-004		

Beta Pasar Saham Model GARCH		
Nama Saham	Nilai Beta	Variansi
HOLCIM	0.3107	0.0965
INDOFOOD	0.1808	0.0327
INDOSAT	0.2881	0.0830
UNILEVER	0.1041	0.0108
TELKOM	0.2086	0.0435

Pada tabel di atas terlihat bahwa nilai beta menggunakan model GARCH lebih besar dibandingkan beta pasar saham unggulan. Semakin besar nilai beta yang diperoleh maka saham tersebut semakin baik digunakan dalam berinvestasi. Selain beta nilai variansi atau risiko juga sangat penting dalam melakukan investasi saham. Terlihat bahwa variansi model GARCH lebih besar dibandingkan beta pasar saham unggulan. Semakin besar risiko yang dihadapi oleh investor maka semakin besar keuntungan yang diperoleh.

4. KESIMPULAN DAN SARAN

Berdasarkan uraian dan analisisnya, dapat diambil kesimpulan saham-saham unggulan pada periode 23 September 2013 sampai 24 September 2014 memperoleh $\beta < 1$ dimana saham unggulan memiliki risiko lebih rendah dari risiko pasar. Dan berdasarkan perhitungan beta pasar saham unggulan dan diperoleh nilai beta menggunakan model GARCH lebih besar dibandingkan dibandingkan nilai beta pasar.

Dari penelitian di atas maka saran yang dapat penulis berikan adalah untuk investor yang berminat untuk melakukan investasi dengan menanam modalnya di bursa saham namun bukan bertujuan untuk spekulasi semata, sangat penting untuk melakukan analisa terhadap kinerja saham tersebut terlebih dahulu sehingga dapat mengetahui tingkat risiko dan tingkat pengembalian dari masing-masing saham dan untuk penelitian selanjutnya selain model GARCH dapat digunakan metode lain dalam pehitungan beta saham seperti metode CAPM dan juga lebih banyak lagi jenis saham yang dibandingkan nilai β , misalnya indeks sektoral atau indeks LQ45.

DAFTAR PUSTAKA

- [1] Agus Sartono. 1999. *Manajemen Keuangan*.edisi 3. BPFE UGM.
- [2] Ang, R. 1997. *Pasar Modal Indonesia*. Media SoftIndonesia. Jakarta.
- [3] Bollerslev, T.et all. 1986. Glosary to ARCH (GARCH). *Volatility and Time Series* 8,137-164.
- [4] Francis, Jack Clark. Wiley Finance, Volume 795. *Modern Portofolio Theory+WS*. Foundations, Analysis, and New Developments. Wiley, p. 311.
- [5] Husnan, Suad. 1998. Dasar-dasar Teori Portofolio. UPP AMP YKPM. Yogyakarta.
- [6] Hwang. SY., Basawa, I.V. Stationarity and Moment Structure for Box Coxtransformed Threshold GARCH(1,1) Processes. *Journal Statistics and Probability Letters*, 68 (20040, 209) A, S220.
- [7] Jogiyanto, Hartono 1998. *Teori Portofolio dan Analisis Sekuritas*.edisi ketiga. BPFE. Yogyakarta.

- [8] Jogiyanto, Hartono 2000. *Teori Portofolio dan Analisis Investasi*. edisi keempat. BPFE. Yogyakarta.
- [9] Luenberger, D.G. 1998. *Investment Science*.Oxford University Press. New York.
- [10] Riyanto, B. 1999. Dasar-dasar Pembelanjaan Perusahaan. BPFE. Yogyakarta.
- [11] Sawidji, Widoatmojo. 1996. *Cara Sehat Investasi di Pasar Modal*. Jakarta: Jurnalindo Aksan Grafika.
- [12] Weston, J. Fred dan Thomas E. Copeland. 1995. *Manajeman Keuangan Jilid I*, Edisi Keempat, Bina Aksara-Jakarta.