

USARTL-TR-78-23D

INTERACTIONAL AERODYNAMICS OF THE SINGLE ROTOR HELICOPTER CONFIGURATION

VOLUME IV-C - One-Third Octave Band Spectrograms of Wake Split-Film Data, Solid Hubcaps

A063 214

Philip F. Sheridan

■ Boeing Vertol Company

P.O. Box 16858

M Philadelphia, Pa. 19142

DDC

PROPINITE

JAN 26 1979

C

September 1978

Final Report for Period March 1977 - February 1978

FILE COPY

63

Approved for public release; distribution unlimited.

Prepared for

APPLIED TECHNOLOGY LABORATORY

U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM)

Fort Eustis, Va. 23604

69 01 22 057

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

In 1975 a wind tunnel test program was conducted in the Boeing-Vertol 20-foot V/STOL Wind Tunnel on a 1/5th-scale UTTAS model to investigate and find solutions for several aerodynamic problems encountered during the UTTAS flight-testing. Specifically, these tests focused upon (a) the structure of the hub/rotor wake in the vicinity of the empennage, (b) the formulation of the ground vortex and its relation to hub loads and fuselage loads during transition, and (c) the occurrence of vibratory air pressures from the blade passing over the fuselage. Only portions of the above-mentioned wind tunnel test data were reduced and analyzed in addressing the flight-test problems of the UTTAS aircraft.

Under Contract DAAJ02-77-C-0020, Boeing-Vertol completed analyses on the data to understand more completely the aerodynamic interactions that are involved and to formulate instructions for the guidance of designers in these respects. The results of these studies are applicable to all existing and future single-rotor/tail rotor helicopters. The data have been segregated according to aerodynamic interactions and associated phenomena/problem areas. From this body of knowledge, a generalized set of design guidelines meaningful to the single-rotor helicopter design concept formulation were developed and are included in these reports.

Mr. Robert P. Smith of the Aeronautical Technology Division, Aeromechanics Technical Area, served as project engineer for this effort.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

		BEFORE COMPLETING FORM
		3. RECIPIENT'S CATALOG NUMBER
-	USARTU TR-78-23D	(7)
4.	TITLE (and Submitted INTERACTIONAL AERODYNAMICS OF THE	5. TYPE OF REPORT & PERIOD COVERED
1	SINGLE ROTOR HELICOPTER CONFIGURATION,	FINAL REPORT
	Volume IV-Cone-Third Octave Band Spectrograms of	15 Mar 1977 - 13 Feb 1978
1	Wake Split Film Data, Sub-Volume C, Solid Hubcaps,	61 PERFORMING ORG. REPORT NUMBER
1	AUTHOR(8)	8. CONTRACT OR GRANT NUMBER(s)
	Philip F./Sheridan IV-C.	DAAJØ2-77-C-0020
3.	PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
1		AREA & WORK UNIT NUMBERS
	Boeing Vertol Company P.O. Box 16858	622000 11 26229001176
		62209A 11L262209AH76
11.	Philadelphia, Pa. 19142 CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
	Applied Technology Laboratory, U.S. Army	September 1978
	Research & Technology Laboratories (AVRADCOM)	18: NUMBER OF PAGES
	Fort Eustis, Virginia 23604	255
	MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
1	(12/12)	ono a do di i i ca
16.	DISTRIBUTION STATEMENT (of this Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
	Approved for public release; distribution unlimite	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
17		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE d. m. Report)
17	Approved for public release; distribution unlimite DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro SUPPLEMENTARY NOTES Volume IV of an eight volume report	15.a. DECLASSIFICATION/DOWNGRADING d. m. Report)
18	Approved for public release; distribution unlimite DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro SUPPLEMENTARY NOTES Volume IV of an eight volume report Volume IV is comprised of seven sub-volumes (A throwaver with the company and identity by block number) KEY WORDS (Continue on reverse side if necessary and identity by block number) Wake Flow Environment	15.a. DECLASSIFICATION/DOWNGRADING d. m. Report) Powered Model
18	Approved for public release; distribution unlimite DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro Supplementary notes Volume IV of an eight volume report Volume IV is comprised of seven sub-volumes (A throwaver with the compression of the company and identity by block number) KEY WORDS (Continue on reverse side if necessary and identity by block number) Wake Flow Environment Flow Configuration	15.a. DECLASSIFICATION/DOWNGRADING d. m. Report)
18	Approved for public release; distribution unlimite DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro SUPPLEMENTARY NOTES Volume IV of an eight volume report Volume IV is comprised of seven sub-volumes (A throwaver with the company and identity by block number) KEY WORDS (Continue on reverse side if necessary and identity by block number) Wake Flow Environment	15.a. DECLASSIFICATION/DOWNGRADING d. m. Report) Powered Model

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

PREFACE

The entire report describing the investigation of INTERACTIONAL AERODYNAMICS OF THE SINGLE-ROTOR HELICOPTER CONFIGURATION comprises eight numbered volumes bound as 33 separate documents. The complete list of these documents is as follows:

Volume I, Final Report

Volume II, Harmonic Analyses of Airframe Surface Pressure Data

- A Runs 7-14, Forward Section
- B Runs 7-14, Mid Section
- C Runs 7-14, Aft Section
- D Runs 15-22, Forward Section
- E Runs 15-22, Mid Section
- F Runs 15-22, Aft Section
- G Runs 23-33, Forward Section
- H Runs 23-33, Mid Section
- I Runs 23-33, Aft Section

Volume III, Flow Angle and Velocity Wake Profiles in Low-Frequency Band

- A Basic Investigations and Hubcap Variations
- B Air Ejector Systems and Other Devices

Volume IV, One-Third Octave Band Spectrograms of Wake Split-Film Data

- A Buildup to Baseline
- B Basic Configuration Wake Explorations
- C Solid Hubcaps
- D Open Hubcaps
- E Air Ejectors
- F Air Ejectors With Hubcaps; Wings
- G Fairings and Surface Devices

Volume V, Harmonic Analyses of Hub Wake

Volume VI, One-Third Octave Band Spectrograms of Wake Single Film Data

- A Buildup to Baseline
- B Basic Configuration Wake Exploration
- C Hubcaps and Air Ejectors

Volume VII, Frequency Analyses of Wake Split-Film Data

- A Buildup to Baseline
- B Basic Configuration Wake Explorations
- C Solid Hubcaps

This volume is

D - Open Hubcaps

E - Air Ejectors

F - Air Ejectors With Hubcaps; Wings

G - Fairings and Surface Devices

Volume VIII, Frequency Analyses of Wake Single Film Data

A - Buildup to Baseline

B - Basic Configuration Wake Exploration

C - Hubcaps and Air Ejectors

TABLE OF CONTENTS

				PAGE
INTRODUCTION		٠	•	6
OUTLINE OF WAKE INVESTIGATIONS (TABLE 1)	•	٠	•	7
LIST OF TEST RUNS (TABLE 2)			•	11
INDEX TO RAKE POSITIONS (TABLE 3)	•			18
RAKE ORIENTATION DIAGRAM (FIGURE 1)		•		24
HOT FILM RAKE LOCATIONS (FIGURE 2-6)				25
UTTAS 1/4.85 - SCALE MODEL GEOMETRY				20
AND PRESSURE TRANSDUCER LOCATIONS (FIGURE 7).	•	•	•	30
ONE-THIRD OCTAVE BAND IDENTIFICATION (TABLE 4)				31
SPLIT-FILM 1/3 OCTAVE BAND CHARTS				32

INTRODUCTION

Volume IV presents spectrograms of the flow angles and velocity components for each run and its test points. Specifically, these machine plots show the root mean square value of each wake parameter over discrete frequency intervals one-third of an octave band in width. The octave arrangement is selected to provide 19 spectral increments from 3.9 to 250.0 Hz centerband frequency. A special computer program is employed to derive wake parameters within these bands consistent with corresponding basic spectral functions depicted in Volume VII.

The graphs showing the one-third octave band values are sequenced in the same order as the Outline of Wake Investigations (Table 1). These graphs are distributed among Volumes IV-A through IV-G by the major categories of Table I in the following arrangement:

Volume IV-A Volume IV-B	Build-up to Baseline Basic Configuration
Volume IV-C	Effect of Hub Caps Section 1 & 2
Volume IV-D	Effect of Hub Caps Section 3 & 4
Volume IV-E	Effect of Hub Caps Section 5 and
	Effect of Air Ejectors
Volume IV-F	Air Ejectors with Open Hub Caps and
	Effect of Wings and Misc. Section
Volume IV-G	Effect of Wings and Misc. Sections
	2 and 3

The Table I outline and other material is included for reference and as a context to the work of each sub-volume. Table 2, the List of Test Runs, arranges the runs in numerical order and gives pertinent text parameters.

The Index of Rake Positions, Table 3, lists the hot film transducer rake positions in the model coordinate system for each run and its test points. The main feature of Table 3 is the indexing of the test point number to the model waterline station and butt line as it varied from run to run. The table groups the runs as they shared the indexing correspondence of point with position. It is emphasized that the runs in a group do not necessarily all share the same number of test points but they do have same correspondence within their respective ranges of test points.

The orientation of the rake is shown pictorially in Figures 1 through 6 for the various test runs. Figure 7 presents a scaled drawing of the model with reference to the three-axis coordinate system. Table 4 lists the center frequency and the upper and lower band limits for each of the numbered one-third octave bands.

TABLE 1			
OUTLINE OF WAKE IN	VESTIGATIONS		
Description	Configuration Code		Base- line
Build-up to Baseline			
1. Nacelles removed	K ₁₃ +H ₁ -N	149	150
2. Blades off, rotating hub	$K_{13}-M+H_{1.0}$	160	156
3. " , non-rotating hub	K ₁₃ -M+H _{1.0}	158	156
4. " , hub off	K ₁₃ -M-H _{1.0}	159	156
Basic Configuration			
1. Wake Explorations near Empennage			
(a) 15" Long. + traverse at T/R C.L.	K ₁₁	111	
(b) 9" Vert. + " above T/R " (c) 2" " in vortex	11	112	
(d) 8" " (continue 112)	n .	113	
(e) 13" " behind stab.	n u	115	
(f) Lateral traverse, left stab. (One T.P. only)		116	
(g) Same continued	11	117	
(h) Same continued (One T.P. only)(i) Lateral traverse right stab.	n	118	
(j) T/R effect on wake	$K_{11}+T_2^0$	121	115
2. Climb/Descent Studies			
(a) Climb 900 FPM	K _{1 1}	135	
(b) Descent 800 FPM	"	136	
Effect Of Hub Caps			
1. Solid Caps on Canister			
(a) 7.6" diam. 2.17" ht. soft Pitch Arms	K ₁₁ -H _{1.0} +H _{1.2}	137	136
(b) 7.6" diam. 2.17" ht. stiff Pitch Arms	K ₁₃ +H _{1.2}	153	156
(b) 7.6" diam. 2.45" ht. flt. test config.	K ₁₃ +H _{1.2.1} +I ₁ +E _{1.0}	207	188

TABLE 1 (CONTINUED)

OUTLINE OF WAKE INVESTIGATIONS

Description	Configuration Code*	Run No.	Base- line
Effect of Hub Caps (Continued)			
2. Solid Caps Raised Above Canister			
(a) 7.6" diam. 2.45" ht. 70"	H _{1.2.2} +I ₁ +E _{1.0}	208	188
depth, .55 gap	1.2.2.2.21.21.0		100
(b) 10.0" diam. 3.25" ht. 1.55"	H _{1.8.1} +I ₁ +E _{1.0}	189	188
depth, .50" gap (c) 10.0" diam. 4.125" ht.	H TT TE	190	188
2.05" depth, .875" gap	H _{1.8.2} +I ₁ +E _{1.0}	130	100
(d) Repeat of 189	11 11 11	210	188
3. Open Caps Without Underbody			
(a) 10.0" diam. 1.25" gap, blades	H+I.+E.	193	188/166
(a) 10.0" diam. 1.25" gap, blades (b) " " gap, no	$H_{1}^{1.0.2}-M^{1.0}$	166	158
Diages		211	100
(c) " " 2.05" gap,blades (d) " " 1.75" gap, no	H1.14.1+11+E1.0	211 165	188 158
blades		1	133
(e) " " 1.87" gap,blades	H _{1.0.3} +I ₁ +E _{1.0}	191	
(f) 16" diam. 2.00" gap,blades (g) " " gap, no	$H_{1.7.1}^{1.7.1}-M$	167	156/167 158
blades	1.7.1	10,	130
(h) " " 4.00" gap,blades	H _{1.7.2}	169	156
4. Open Caps with Underbody			
(a) 7.6" diam. 1.25" gap	H _{1.11.1} +I ₂ +E _{1.0}	194	188
(b) " " " "	1 1 1 1 1 2 1 0	198	188
(c) " " " center	H _{1.11.2} +I ₂	202	194
post		200	150
(d) 10.0" diam5" gap, no blades	H _{1.5.1} -M	164	158
(e) " " 1.25" gap, no	H _{1.5.2} -M	161	158
blades		12.50	150
(f) " " 2.0" gap, no blades	H _{1.5.4} -M	163	158
(g) " " 4.0" gap, no	H _{1.5.3} -M	162	158
blades			
(h) " " 1.25" gap	H _{1.5.2}	154	156/161

TABLE 1 (CONTINUED)

OUTLINE OF WAKE INVESTIGATIONS

Description	Configuration Code*	Run No.	Base- line
5. Miscellaneous Hub Covers (a) Hub fairing 16" diam. (b) Wham-O-Frisbee 10" diam. (c) Fab. glass Frisbee 16" diam.	H _{1.3} H _{1.9.0} +E _{1.2} H _{1.9.1} +E _{1.2}	151 182 183	150 181 181
Effect of Air Ejectors			
3. " " 150 psi	H _{1.0} +E _{1.0} H _{1.0} +E _{2.5.1} H _{1.0} +E _{3.5.2} H _{1.0} +E _{3.5.4} 1.0 +E _{3.5.4}	174 175 176 184 187 203 204	156 156/172 156/173 156/174 156/173 156/174 156 156/203 156/203
Air Ejectors with Open Hub Caps with Underbodies			
1. 7.6" diam. 1.25" gap, 0 psi 2. " " " 20 psi 3. " " " 40 psi 4. " " " 150 psi 5. " " " 0 psi 6. " " " 40 psi 7. " " 150 psi 8. Same with center post 9. 10.0" diam. 2.0" gap wide ch'd. shroud (150 psi)	H _{1.11.1} +1 ₂ +E _{1.0} """ H _{1.11.1} +I ₂ +E _{4.0} """ H _{1.11.2} +I ₂ +E _{4.6} H _{1.5.4} +E _{2.5.1}	195 196 197 198 199 200 201	188/172 188 188/173 188/174 188/194 188/196 188/196 188/200 156/176
Effect of Wings and Misc.			
1. Wings (a) Nacelle-mounted stub wing (b) Single slotted flapped wing (c) Dougle slotted flapped wing (d) Boom-mounted stub wing	H _{1.0} +W _{1.0} +E _{1.1} H _{1.0} +W _{3.0} +E _{1.0} H _{1.0} +W _{2.0} +E _{1.0} H _{1.0} +W _{4.0}	178 180 179 186	181 181 181 156

*Basic Code is Kl3.

TABLE 1 (CONTINUED)

OUTLINE OF WAKE INVESTIGATIONS

	OUILINE OF WARE INV	ESTIGATIONS		
	Description	Configuration Code*	Run No.	Base- line
2.	Crown Fairings (a) Flat top behind shaft (b) Round top behind shaft (c) Extended flat top fairing (d) Flat top + 16" cap, 4" gap (e) Forward fairing/nacelle fairing	K ₁₁ +D ₁ K ₁₁ +D ₂ H ₁ +D ₄ H _{1·7·2} +D ₄ P _{1·0}	140 141 170 171 152	138 138 156 170 156
3.	Surface Devices (a) Vortex generators (b) Guidevane between nacelles (c) Longitudinal strakes (d) 14% porosity spoiler	K ₁₁ +VG ₂ , 1 K ₁₁ +FV ₁ H _{1•5,3} +S ₄ K ₁₁ +X ₁	139 142 155 143	138 138 156 138

*Basic Code is K13 unless noted otherwise.

NODEL NACTOR NA		TABLE 2 LIST OF TEST RUNS BASIC INVESTIGATIONS OF THE HUB WAKE	rest RUN	IS IE HUB W	AKE				
KNOTS MR/TR DOC DOC DOC DOC DOC	RUN	CONFIGURATION/CONDITION	Vrun	RPM	DISK	MOL	EL	MR HT.	TAIL
K11/15" Long. wake traverse at 80 1433/0 8 6.0 -2.0 2.0 2.0 4.3	NO.		KNOTS	MR/TR	pst.	, p	o p	p/	ROTOR
'9" Vert. wake traverse	111	Long. wake traverse TR center line	80	1433/0	8	0.9	-2.0	8	Off
/2" Vert traverse through MR	112	/9" Vert. above	±	=	=	s	=	=	=
'/8" Vert. traverse below TR	113	/2" Vert traverse through vortex	=	=	=	=	=	=	=
/13" Vert. traverse behind	114	/8" Vert. traverse below center line	=	=	=	=	=	=	=
/Lateral traverse - left	115	/13" Vert. traverse stabilizer	=	=		=	=	=	=
'/116 continued	116	/Lateral traverse - stabilizer	=	=	=	=	=	=	=
'/ll6 continued	117	/116 cont	E	=	=	u	=		=
'Lateral traverse - right	118	/116 cont		=	=			=	
K ₁₁ +T ₂ /Effect of tail rotor flow " 1433/ " " " " " " " " " " " " " " " " " "	119	/Lateral traverse - stabilizer	=	=	=	=	=	=	=
K ₁₁ /Wake in 900 fpm climb " "-6.0 -4.5 " " "/Wake in 800 fpm descent " " 6.0 -2.0 "	121	tail rotor	=	1433/ 4500	=	=	E	=	u _O
"/Wake in 800 fpm descent " 6.0 +2.0 "	135	in 900 fpm	=	=	=	0.9-	-4.5	=	JJ0
	136	/Wake in 800 fpm	4	=	=		-2.0	=	E

TABLE 2 (CONTINUED)

LIST OF TEST RUNS

EVALUATION OF WAKE-ALTERING DEVICES

RUN	CONFIGURATION/CONDITION	VTUN	RPM	DISK	MODEL	MODEL	MR HT.	TAIL
NO.		KNOTS	MR/TR	pst.	8	,	h/d	ROTOR
137	Kll-Hl.0+Hl.2/Effect of 7.6 inch diam. solid hub cap	80	1433/0	8	9	-3.8	8	O£É
138	K ₁₁ /Repeat of base run	=	=	=	•		=	
139	K _{11+VG2,1} /Effect of vortex gener- ators on aft crown	=	=	=	=	=	=	=
140	$\mathrm{K_{11}^{+}D_{1}/Flat-topped}$ "doghouse" fairing on aft crown		=	=	=		=	=
141	$K_{11}^{+D_2/Rounded-top}$ fairing	=		=		=	=	
142	K ₁₁ +FV ₁ /Deflection vane on crown between nacelles	=	=	=		=	=	=
143	$K_{11}^{+}X_{1}^{-}$ /Variable porosity spoiler	=	=	.				
149	$K_{13}^{+H_1-N_1}/Effect$ of nacelles off also add stiff pitch arms (K_{13})	60	1075/0	4.5	=	=		=
150	$K_{13}+H_{1}/60$ knot baseline	=	=	=		:		
151	$K_{13}^{+H_1,3/16}$ inch diam. helmet fair-	=	=	=	=	=	=	=
152	K ₁₃ +P _{1.0} /Pylon and intake fairings	80	1433/0	8	=	=	u	=
153	$K_{13}^{+H}_{1.2}$ /Repeat 137 with K_{13} pitch arms	=	=	=	=	2	z	z

		TAIL	ROTOR	JJ0	=		:	2	E		:				=
		MR HT.	h/d	8	=	=	=	2	=	=	=	=		ш	E
		MODEL	0 1	-3.8	=		=		=	=	=	=	=	=	=
		MODEL	g o	9	=		=	2	=	=	=	=	=	=	=
	ES	DISK	LDG. P\$f	8	=	п	н	и			=	=	=		=
8	NG DEVIC	RPM	MR/TR	1433/0	=		0/0	n	1433/0	0/0	=	=	=		
2 (CONTINUED) OF TEST RUN	-ALTERIN	Vrun	KNOTS	80	=	=	=	×	=	=		= .	=	=	п
TABLE 2 (CONTINUED) LIST OF TEST RUNS	EVALUATION OF WAKE-ALTERING DEVICES	CONFICIIDATION/CONDITION	CONFIDENCE CONDITION	K13+H1.5.2/10" open hub cap, 7" underbody, 1.25"qap	K ₁₃ +H _{1.5.2} +S ₄ /Same as 154 except strakes on aft crown	K ₁₃ +H _{1.0} /Baseline with K ₁₃ ,i.e., stiff pitch arms	K ₁₃ -M+H _{1.0} /Wake studies with blades off, hub not rotating	$ m K_{13}^{-M-H_1,0}/Wake$ studies with hub off	K ₁₃ -M+H _{1.0} /Same as 158 except hub is rotating	K ₁₃ -M+H _{1.5.2} /Repeat of 154 without blades	K ₁₃ -M+H _{1.5.3} /Same as 161 except 4"	K ₁₃ -M+H _{1.5.4} /Same as 161 except 2" gap	K ₁₃ -M+H _{1.5.1} /Same as 161 except 0.5" gap	K ₁₃ -M+H _{1.0.1} /10" open hub cap, no underbody, same cap vert.position as Run 154	K ₁₃ -M+H _{1.0.2} /Same as 165 with cap lowered by 0.5"
		RUN	NO.	154	155	156	158	159	160	191	162	163	164	165	166

	TATE	ROTOF	Off	=	=	=	=	=	=	=	=	-	=	=
	MR HT.	h/d	8	=	=	=	=	=	=	=	=	-	=	=
	MODEL	o /h	-3.8	=	=	=	=	=	=	-	-	-	=	=
	MODEL	° 0	9	=	=	=	=	=	=	=	=	=	=	=
Ş	DISK	rDG. psf	8		=			=	=	=		-		=
NS G DEVICE	RPM	MR/TR	0/0	1433/0				ll .				=		=
(CONTINUED) TEST RUN:	Vrun	KNOTS	- 80		н			=			-	=		=
TABLE 2 (CONTINUED) LIST OF TEST RUNS EVALUATION OF WAKE-ALTERING DEVICES	CONFIGURATION/CONDITION		K ₁₃ -M+H _{1.7.1} /16" open cap, no under- body, 2" gap	K ₁₃ +H _{1,7,1} /Blades on, same cap config. as 167	K ₁₃ +H _{1.7.2} /16" open cap, no under- body, 4" gap	K ₁₃ +H _{1.0} +D _{4.0} /Extended flat top fairing on aft crown	K ₁₃ +H _{1.7.2} +D _{4.0} /Same fairing as 170 same cap as 169	K13+H1.0+E1.0(Opsi)/Basic air ejector zero blowing baseline	$ m K_{13}^{+H}_{1.0}^{+E}_{1.0}^{(40~psi)/Same}$ as 172 with 40 psi supply	$_{\rm K_{13}^{+H}_{1.0}^{+E}_{1.0}^{+E}_{1.0}^{(150~psi)/Same}}$ as 172 with 150 psi supply	r w	K ₁₃ +H _{1.0} +E _{2.5.1} (150 psi)/Same as 174 with 150 psi supply	K ₁₃ +H ₁ .5 ₁ 4+E ₂ ,5,1(150 psi)/Same as 1/6 with 10" cap like 163	K ₁₃ +H _{1.0} +W _{1.0} +E _{1.1} (0 psi)/Nacelle mounted wing
	RUN	02	167	168	169	170	171	172	173	174	175	1/6	177	178

		ROTOR	Off	=	=	=	=	=	=	=	=	:	=	=
	MR HT.	h/d	8	=	=	=	=	=	=	=	=		=	=
	MODEL	9	-3.8	=	=	=	=	=	=	=	=	=	=	=
	MOI	°	9	=	=	-	=	=	=	=	=	=	=	=
w	DISK	LDG. psf	8	z	=		=	=	=	=		:	=	=
4S 5 DEVICE		MR/TR	1433/0	=	=		=			=	=	=	=	=
2 (CONTINUED) OF TEST RUN KE-ALTERING	N N	KNOTS	80	=	=		=	=	=	=		=	=	=
TABLE 2 (CONTINUED) LIST OF TEST RUNS EVALUATION OF WAKE-ALTERING DEVICES		CONFIGURATION/CONDITION	K ₁₃ +H _{1.0} +W _{2.0} +E _{1.0} (0 psi)/Double slotted flapped wing	K ₁₃ +H _{1.0} +W _{3.0} +E _{1.0} (0 psi)/Single slotted flapped wing	K ₁₃ +H _{1.0} +E _{1.2} (0 psi)/Baseline with ejector tube moved aft	K ₁₃ +H _{1.9.0} +E _{1.2} (0 psi)/Standard 10" frisbee	K ₁₃ +H _{1.9.1} +E _{1.2} (0 psi)/16" fabri- cated frisbee	K ₁₃ +H _{1.0} +E _{3.5.2} (40 psi)/Wide chord with lip at 40 psi	K ₁₃ +H _{1.0} +E _{3.5.2} (150 psi)/Same as 184 with 150 psi air	K ₁₃ +H _{1.0} +W _{4.0} /Boom mounted stub wing	Kl3+Hl.0+E3.5.4 (150 psi)/Like 185 with modified shroud	K ₁₃ +H _{1.0} +I ₁ +E _{1.0} (0 psi)/Baseline with I ₁ instr. ring	K ₁₃ +H ₁ .8.1+I ₁ +E ₁ .0(0 psi)/Solid cap, 10" diam. 3.25" height	0 (0 except
	NIG	NO.	179	180	181	182	183	184	185	186	187	188	189	190

	TAIL	ROTOR	Off	=	=	=	=	=	=	E	=	=	=	2
	MR HT.	h/d	8	=	=	=	z	=	=		=	=	=	=
	MODEL	o /h	-3.8	=	=	=	=	=	=	u	9	=	=	=
	MODEL	° p	9	=	=	=	=	=	=	11	=	=	=	=
ω v	DISK	LDG. psf	æ	=	=		=	=		=		=	=	=
NS G DEVICE	RPM	MR/TR	1433/0	=	=	=	=	=	=	=	=	=	=	=
(CONTINUED) TEST RUN -ALTERING	VTUN	KNOTS	80	=	=	=	=	=		=	E	=	=	=
TABLE 2 (CONTINUED) LIST OF TEST RUNS EVALUATION OF WAKE-ALTERING DEVICES	CONFIGURATION/CONDITION		Kl3+Hl.0.2+Il+El.0 (0 psi)/10" cap, no underbody, 1.87" gap	(0)	Kl3+Hl.11.1+I2+E1.0(0 psi)/7.6" cap, underbody, 1.25" qap	K13+H1.11.1+I2+E1.0(20 psi)/Same as 194 with 20 psi air	K13+H1.11.1+I2+E1.0(40 psi)/Same as 194 with 40 psi air	K13+H1.11.1+I2+E1.0(150 psi)/Same as 194 with 150 psi air	K13 ^{+H} 1.11.1 ⁺ I2 ^{+E} 4.0 (0 psi)/Same as 194 except blowing tube 2" aft	K13+H1.11.1+I2+E4.0 (40 psi)/Same as 198 with 40 psi air	K13+H1,11,1+I2+E4.0 (150 psi)/Same as 198 with 150 psi air	K ₁₃ +H _{1.11.2} +I ₂ +E _{4.0} (150 psi)/Same as 200 except center support cap	2+I2/Baseline	
	RUN	NO.	191	193	194	195	196	197	198	199	200	201	202	203

	TAIL	ROTOR	Off	=	=	=	=	=			
	MR HT.	h/d	8		=	=	=	=			
	MODEL	9	-3.8	=	=	=	=	=			
	MOI	8	9	=	=	=	=	-			
ស្ល	DISK	pst.	ω	=	=	=	=	=			
VS G DEVICE	RPM	MR/TR	1433/0		=	=	=	=			
TABLE 2 (CONTINUED) LIST OF TEST RUN OF WAKE-ALTERING	VTUN	KNOTS	80		a ا	-	=				
TABLE 2 (CONTINUED) LIST OF TEST RUNS EVALUATION OF WAKE-ALTERING DEVICES	CONFIGURATION		K ₁₃ +H _{1.0} +E _{5.0} (150 psi)/Bifurcated duct with 150 psi air	K ₁₃ +H _{1.0} +E _{5.0} (40 psi)/Same as 204 with 40 psi air	K ₁₃ +H _{1.2.1} +I ₁ +E _{1.0} (0 psi)/7.6" solid cap, no gap	K ₁₃ +H _{1.2.2} +I ₁ +E _{1.0} (0 psi)/Same as 207 except 0.55" gap	K ₁₃ +H _{1.15.1} +I ₁ +E _{1.0} (0 psi)/Repeat of 189	K ₁₃ +H _{1.14.1} +I ₁ +E _{1.0} (0 psi)/Like 189 and 210 except cap is open			
	RUN	NO.	204	205	207	208	210	211			

TABLE 3

INDEX TO RAKE POSITIONS

		·			
RUN NUMBER	TEST POINT	WATER LINE	MODEL STATION	BUTT LINE	LOCATION FIGURE
111	20 21 22 24 26 28 30 32 34 36	53.5 n n n n n n n n n n n n n n n n n n n	103.1 105.0 107.0 109.0 111.0 112.9 114.9 116.9 118.9	-7.25	1
112	2 4 6 8 10 12	48.9 50.8 52.7 54.5 56.2 57.2	107.3	-7.25 " " "	1
113	2 4 6 8 10 11	51.7 52.3 52.8 53.3 53.9 53.3	103.3	-3.25 " " "	1
114	2 4 6 8 10	44.5 46.4 48.2 50.0 51.9	103.0	-3.25 " "	1
115	3 4 6 9 10 12 14 16 18 20	52.9 52.0 50.0 48.0 46.0 44.1 42.1 53.0 54.0 55.0	124.7	-3.25	1

TABLE 3 (CONTINUED) INDEX TO RAKE POSITIONS

RUN NUMBER	POINT	WATER LINE	MODEL	LINE	LOCATION FIGURE
116	7	36.9	100.5	-17.5	1
117	2 4 6 8 10	37.6 "37.3	100.5 99.6	-16.0 -14.0 -12.0 -10.0 - 8.0	1
118	2	37.6	100.5	- 6.0	1
119	2 5 8 9 14 16 20 25	37.3 "" "" 51.5 52.3	99.6 " " 102.5 101.7	+ 6.0 8 10 " 14 16 17.5 -17.5	1
121	3 4 6 8 10	62.9 53.5 50.1 46.0 42.1	129.0	+ 5.7	2
135	2 4 6 8 10 12 14	56.9 54.5 52.5 50.5 48.5 46.5 44.5	106.3	- 5.7 "	3
136	2 4 6 8 10 12 14 17 18	56.5 54.5 52.5 50.6 48.5 46.5 44.5 37.1 39.0 41.0	104.0	- 8.0	4

TABLE 3 (CONTINUED)

INDEX TO RAKE POSITIONS

RUN NUMBER	TEST POINT	WATER LINE	MODEL STATION	BUTT	LOCATION FIGURE
137	3 5 7 9 11 13 15 17	38.7 39.9 42.0 44.0 46.0 48.0 50.0 52.0 54.0	98.4 100.5 103.6	- 8.0	5
138-41, 143	2 3 4 5 6 7 8 9	38.8 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0	98.4 100.5 103.6	- 8.0	5
142	7 8 9 10 11 12 13 14 15 16	37.8 40.2 42.0 44.0 46.0 48.0 50.0 52.0 54.0 56.8	98.4 " 100.5 " 103.6	- 8.0	5

TABLE 3 (CONTINUED)

INDEX TO RAKE POSITIONS

				,	
RUN NUMBER	TEST POINT	WATER LINE	MODEL STATION	BUTT LINE	LOCATION FIGURE
149-151	2 3 4 5 6 7 8 9	38.8 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0	98.5 100.6 103.5	- 8.0 " " " "	5
152-6, 158 161-4, 166 167, 169-71 175, 177-9 180,182,184 186-8, 190 191,193,194 196,198,201 204,207,208 211	5 6 7 8 9	42.9 44.9 46.9 48.9 50.9 52.9 54.9 56.9	97.9 100.6 " 104.6	0.0	6
159	1 2 3 4 5	54.9 52.9 50.7 48.6 46.7	104.6	0.0	6
160,203	5 6 7 8 9 10	42.9 44.9 46.9 48.9 50.9 52.9 54.9	97.9 100.6 104.6	0.0	6
165	3 4 5 6 7 8	44.9 42.9 46.9 48.9 50.9 52.9	97.9 100.6 104.6	0.0	6

TABLE 3 (CONTINUED)

INDEX TO RAKE POSITIONS

	,				
RUN NUMBER	TEST POINT	WATER LINE	MODEL STATION	BUTT LINE	LOCATION FIGURE
168, 183	4 5 6 7 8 9	42.9 44.9 46.9 48.9 50.9 52.9 54.9	97.9 "100.6 104.6	0.0 " " "	6
172	3 4 6 7 8 9 10	42.9 44.9 44.9 46.9 48.9 50.9 52.9 54.9	97.9 " 100.6 " 104.6	0.0 "" "" ""	6
173,174,176 185,195,197 199,200,205 210	2	42.9 44.9 46.9 48.9 50.9 52.9 54.9	97.9 100.6 104.6	0.0 " " "	6
181	2 3 4 5 6 7 9 10 11 12 13	42.9 44.9 46.9 48.9 50.9 52.9 54.9	97.9 100.6 104.6 "	0.0	6

TABLE 3 (CONTINUED) INDEX TO RAKE POSITIONS

RUN NUMBER	TEST POINT	WATER LINE	MODEL STATION	BUTT LINE	LOCATION FIGURE
189	29 30 31 32 33 34 35 36 37 38 39	42.9 44.9 46.9 48.9 50.9 50.9 52.9 54.9	97.9 100.6 " 104.6 100.6 104.6	0.0	6
202	3 4 5 6 7	43.4 44.9 46.9 48.9 50.9	97.9 100.6 104.6	0.0	6

FIGURE 1 - RAKE ORIENTATION DIAGRAM

FIGURE 2 -HOT FILM RAKE LOCATIONS

FIGURE 3 -HOT FILM RAKE LOCATIONS

FIGURE 4 -HOT FILM RAKE LOCATIONS

RUN 137, 138, 139, 140, 141, 142, 143, 148, 149, 150, 151

FIGURE 5 -HOT FILM RAKE LOCATIONS

FIGURE 6 -HOT FILM RAKE LOCATIONS

TABLE 4
1/3 OCTAVE BAND IDENTIFICATION

BAND NUMBER	BAND WIDTH - Hz						
DIAND NONDER	MINIMUM	CENTER	MAXIMUM				
0	3.5	3.4	4.4				
1	4.4	4.9	5.5				
2	5.5	6,2	7.0				
3	7.0	7.8	8.7				
4	8.7	9,8	11.0				
5	11.0	12.4	13.9				
6	13.4	15,6	17.5				
7	17.5	19.7	22,1				
8	22.1	24.8	27.8				
9	27.8	31.25	35,1				
10	35.1	39.4	44.2				
11	44.2	49.6	55.7				
12	55.7	62.5	70,2				
13	70.2	78.7	88.9				
14	88.9	99.2	111.4				
15	111.4	125.0	140.3				
16	140.3	157.5	176.8				
17	176.8	198.4	222.7				
18	222.7	250.0	280.6				

HOT FILM WAVE 1/3 DETAYE ANALYSIS SOLID CAP-7.6DIA. 2.17HT. SOFT P.A. RUN 137 TP 7

LEGEND SYM CH PARAMETER D 65 BETA

HOT FILM WAKE 1/3 DCTAVE ANALYSIS SOLID CAP-7.6DIA. 2-17HT. SOFT P.A. RUN 137 TP 15 LEGEND SYM CH PARAMETER © 65 BETA

HOT FILM WAVE 1/3 OCTAVE ANALYSIS SOLID CAP-7-6DIA- 2-17HT- SOFT P-A-RUN 137 TP 5 LEGEND SYM CH PARAMETER © 66 V-ALPHA

HOT FILM WAKE 1/3 DCTAVE ANALYSIS SOLID CAP-7.6DIA. 2.17HT. SOFT P.A. RUN 137 TP 13

LEGEND SYM CH PARAMETER CD 66 V-ALPHA

HOT FILM WARE 1/3 DETAVE ANALYSIS LEGEND SYM PARAMETER V-BETA SOLID CAP-7.6DIA. 2-17HT. SOFT P.A. RUN 137 TP 19 10-09. DB-87. X-2 VELDCITY COMPONENT V-PSIA FPS 06-• 05-04-03-05-01-00-1/3 OCTAVE NUMBER 24. 50-00-04. 67

HOT FILM WAKE 1/3 OCTAVE ANALYSIS SOLID CAP-7-16DIA-2-17HT. STIFF P-A-RUN 153 TP 5

LEGEND SYM CH PARAMETER © 66 ALPHA

HOT FILM WAKE 1/3 DCTAVE ANALYSIS SOLID CAP-7.16DIA.2.17HT. STIFF P.A. RUN 1S3 TP 2

LEGEND SYM CH PARAMETER CI 65 BETA

HOT FILM WAKE 1/9 DCTAVE ANALYSIS SOLID CAP-7.16DIA.2.17HT. STIFF P.A. RUN 159 TP 6 LEGEND SYM CH PARAMETER CD 65 BETA

DEPARTMENT OF THE ARMY

Applied Technology Laboratory
U.S. Army Research and Technology
Laboratories (AVRADCOM)
DAVDL-EU-TSD
Fort Eustis, Virginia 23604

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID DEPARTMENT OF THE ARMY DOD-314

FOURTH CLASS