NÚMERODACONTA, SALDO numérico) {Abertura dos arquivos} abra TECLADO leitura abra TELA escrita abra CONTASCORRENTES leitura {Leitura dos arquivos} repita leia TECLADO.CONTA se TECLADO.FDA então interrompa fim se leia item [CONTA] CONTASCORRENTES.CLIENTE se CONTASCORRENTES.INV TEXTO ← "NÚMERO DA CONTA NÃO EXISTE" então escreva TELA.TEXTO LINHA.NOMEDOCLIENTE ← CLIENTE.NOMEDOCLIENTE senão LINHA.NÚMERODACONTA ← CONTA.CAMPO LINHA.SALDO ← CLIENTE.SALDO escreva TELA.LINHA fim se fim repita {Fechamento dos arquivos} feche TECLADO, TELA, CONTASCORRENTES fim algoritmo.

2.5. EXERCÍCIOS PROPOSTOS

2.5.1. Variáveis compostas unidimensionais

PROBLEMAS GERAIS

Fazer um algoritmo que calcule e imprima:

- * a menor temperatura ocorrida;
- · a maior temperatura ocorrida;
- a temperatura média;
- o número de dias nos quais a temperatura foi inferior à temperatura média.

▲ 2.5.1.2. Fazer um algoritmo que:

- a) leia uma frase de 80 caracteres, incluindo brancos;
- b) conte quantos brancos existem na frase;
- c) conte quantas vezes a letra A aparece;
- d) conte quantas vezes ocorre um mesmo par de letras na frase e quais são elas;
- e) amprima o que foi calculado nos itens b, c e d.
- - a) leia o valor de n (n ≤ 1000) e os n valores de uma variável composta A de valores numéricos, ordenados de forma crescente;
 - b) determine e imprima, para cada número que se repete no conjunto, a quantidade de vezes em que ele aparece repetido;
 - c) elimine os elementos repetidos, formando um novo conjunto;
 - d) imprima o conjunto obtido no item c.
 - ▲ 2.5.1.4. Dado um conjunto de 100 valores numéricos disponíveis num meio de entrada qualquer, fazer um algoritmo para armazená-los numa variável composta B, e calcular e imprimir o valor do somatório dado a seguir:

$$S = (b_1 - b_{100})^3 + (b_2 - b_{99})^3 + (b_3 - b_{98})^3 + ... + (b_{50} - b_{51})^3$$

Exemplo:

	В	SOOM LOSE HIDOUSEANNOS, UMERIA SEE		
210	160	(***)	33	97
1	2	₩5 DH	99	100

$$S = (210 - 97)^3 + (160 - 33)^3 + ...$$

♠ ▲ 2.5.1.5. Fazer um algoritmo que:

- a) leia um conjunto de valores inteiros correspondentes a 80 notas dos alunos de uma turma, notas estas que variam de 0 a 10;
- b) calcule a frequência absoluta e a frequência relativa de cada nota;
- c) imprima uma tabela contendo os valores das notas (de 0 a 10) e suas respectivas freqüências absoluta e relativa.

Observações:

- 1. Freqüência absoluta de uma nota é o número de vezes em que ela aparece no conjunto de dados.
- 2. Frequência relativa é a frequência absoluta dividida pelo número total de dados.
- 3. Utilizar como variável composta somente aquelas que forem necessárias.
- ▲ 2.5.1.6. Fazer um algoritmo que leia diversos pares de conjuntos numéricos e que imprima a identificação dos pares de conjuntos disjuntos (aqueles que não possuem elementos comuns a ambos). Os elementos de cada par de conjuntos são precedidos pelo nome que identifica o par e pelo número de elementos de cada conjunto. Após o último par de conjuntos vem como identificação do par o literal VAZIO. O número máximo de elementos de cada conjunto é 250.
- ∆ 2.5.1.7. Um armazém trabalha com 100 mercadorias diferentes identificadas pelos números inteiros de 1 a 100. O dono do armazém anota a quantidade de cada mercadoria vendida durante o mês. Ele tem uma tabela que indica, para cada mercadoria, o preço de venda. Escreva um algoritmo para calcular o faturamento mensal do armazém. A tabela de preços é fornecida seguida pelos números das mercadorias e as quantidades vendidas. Quando uma mercadoria não tiver nenhuma venda, é informado o valor zero no lugar da quantidade.
- ▲ 2.5.1.8. Uma grande firma deseja saber quais os três empregados mais recentes. Fazer um algoritmo para ler um número indeterminado de informações (máximo de 300) contendo o número do empregado e o número de meses de trabalho deste empregado e imprimir os três mais recentes.

Observações: A última informação contém os dois números iguais a zero. Não existem dois empregados admitidos no mesmo mês.

Exemplo:

EMPREGADOS

224	1731	2210	4631	3000	526
1	2	3	4		300
AESES	S				
17	3	9	2		10

Empregado mais recente: 4631.

\triangle **2.5.1.9.** Fazer um algoritmo que:

- a) leia uma variável composta A com 30 valores numéricos;
- b) leia uma outra variável composta B com 30 valores numéricos;
- c) leia o valor de uma variável X;
- d) verifique qual o elemento de A que é igual a X;
- e) imprima o elemento de B de posição correspondente à do elemento de A igual a X.

a 2.5.1.10. Intercalação é o processo utilizado para construir uma tabela ordenada, de tamanho n + m, a partir de duas tabelas já ordenadas de tamanhos $n \in m$. Por exemplo, a partir das tabelas:

$$A = \begin{bmatrix} 1 & 3 & 6 & 7 \end{bmatrix}$$

e

$$B = \begin{bmatrix} 2 & 4 & 5 \end{bmatrix}$$

construímos a tabela

						80000		
C	=	1	2	3	4	5	6	7

Fazer um algoritmo que:

- a) leia NA, número de elemenos do conjunto A (NA ≤ 100);
- b) leia, em seguida, os elementos do conjunto A;
- c) leia, logo após o valor de NB, número de elementos do conjunto B (NB ≤ 100);
- d) leia, finalmente, os elementos do conjunto B;
- e) crie e imprima um conjunto C, ordenado, de tamanho NA + NB, a partir dos conjuntos originais A e B.

Observações:

- 1. Considerar os elementos de A e B como inteiros.
- 2. Os elementos de A e B já são lidos ordenados.

PROBLEMAS DE APLICAÇÃO EM CIÊNCIAS EXATAS

- ▲ 2.5.1.11. Fazer um algoritmo que:
 - a) leia o valor de M ($M \le 30$) e os M valores de uma variável composta A;
 - b) leia o valor de N ($N \le 20$) e os N valores de uma variável composta B;
 - c) determine o conjunto C = A U B (união de A com B), onde C não deverá conter elementos repetidos (A e B não contêm elementos repetidos);
 - d) imprima os elementos contidos em A, B e C.
- ▲ 2.5.1.12. Seja

$$P = a_n X^n + a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + ... + a_1 X + a_0$$

Escrever um algoritmo que:

- a) leia o valor de n, sendo $n \le 20$;
- b) leia os coeficientes a_i , i = 0, 1, 2, ..., n;
- c) calcule o valor de P para 10 valores lidos para x;
- d) imprima o valor de x e o valor de P correspondente.

2.5.2. Variáveis compostas multidimensionais

PROBLEMAS GERAIS

△ 2.5.2.1. Seja a seguinte variável composta bidimensional A;

9			1		Ţ	·
1	175	225	10	9000	3,7	4,75
2	9.8	100	363	432	156	18
3	40	301	30,2	6381	1	0
4	402	4211	7213	992	442	7321
5	21	3	2	1	9000	2000
L	1	2	3	4	5	6

onal in

- a) Quantos elementos fazem parte do conjunto?
- b) Qual o conteúdo do elemento identificado por A[4,5]?
- c) Qual o conteúdo de X após a execução do comando X ← A[3,2] + A[5,1]?
- d) O que aconteceria caso fosse referenciado o elemento A[6,2] no algoritmo?
- e) Somar os elementos da quarta coluna (A[1,4] + A[2,4] + A[3,4] + A[4,4] + A[5,4]).
- f) Somar os elementos da terceira linha: (A[3,1] + A[3,2] + A[3,3] + A[3,4]).
- △ 2.5.2.2. Dada a variável bidimensional B, de 100 linhas por 200 colunas, escrever o trecho de algoritmo que calcula o somatório dos elementos da quadragésima coluna.
- △ 2.5.2.3. Com a mesma variável composta do exercício anterior, escrever o trecho de algoritmo que calcula o somatório dos elementos da trigésima linha.
- △ 2.5.2.4. Dadas as variáveis compostas A e B abaixo:

Ą	1		
7	8	4	9
2	1	7	3

ь			
6	9,	11	15
32	19	3	4

Calcular o conjunto C = A + B.

▲ 2.5.2.5. Fazer um algoritmo que:

- a) leia duas variáveis compostas bidimensionais de dimensão m × n (m ≤ 20, n ≤ 30). Os valores de m e n são fornecidos inicialmente. A seguir, são informadas cada uma das linhas de cada uma das variáveis:
- b) calcule e imprima a soma dessas variáveis.

△ 2.5.2.6. Fazer um algoritmo que:

- a) leia uma matriz A, de dimensão $M \times N$ ($M \le 20$; $N \le 50$). Os valores de M e N são dados e, a seguir, são fornecidas as linhas da matriz;
- b) determine a matriz transposta de A;
- c) imprima a matriz A e a sua transposta.

Exemplo:

TRANSPOSTA DE A

0,0	- U.i
9	32
16	11
34	17

▲ 2.5.2.7. Fazer um algoritmo que:

- a) leia uma matriz inteira A de $M \times N$, onde os elementos de cada linha e os valores de M e N são fornecidos ($M \le 20$, $N \le 10$);
- b) imprima a matriz lida;
- c) calcule e imprima uma matriz modificada B ($M \times N + 1$), sendo que os elementos da (N + 1)-ésima coluna são formados com o produto dos elementos da mesma linha.

Exemplo:

A

2	3
4	5

В

2	3	6
4	5	20

△ 2.5.2.8. Uma biblioteca possui oito departamentos. Cada departamento contém 40 estantes capazes de conter, cada uma, 150 livros. Supondo que o livro-padrão tenha 200 páginas de 35 linhas por 60 colunas de caracteres, declarar uma variável composta capaz de conter todos os caracteres presentes nos livros da biblioteca.

△ 2.5.2.9. Um grupo de pessoas respondeu a um questionário composto de 10 perguntas. Cada pergunta contém cinco opções ou respostas possíveis, codificadas de 1 a 5. Cada pergunta é respondida com a escolha de apenas uma opção dentre as cinco opções possíveis.

São fornecidos os nomes das pessoas e suas respectivas respostas. A última informação, utilizada

como flag, contém o nome da pessoa igual a "VAZIO".

Fazer um algoritmo para ler e imprimir os dados lidos e calcular e imprimir o número de pessoas

que responderam a cada uma das cinco opções de cada pergunta.

≥ △ 2.5.2.10. Fazer um algoritmo para controlar as reservas de passagem dos vôos de uma companhia aérica e verificar os lucros e prejuízos da mesma.

O algoritmo deverá:

- 1. Ler os dados de 10 vôos. Os dados de cada vôo são formados pelo:
 - · número de vôo;
 - tipo de avião utilizado (707, 727, 737);

· preço da passagem.

- 2. Ler um número indeterminado de pedidos de reservas, contendo cada um:
 - · número da identidade do passageiro; e
 - · número do vôo desejado;

(flag: número da identidade = 0).

- Werificar, para cada passageiro, se há disponibilidade no vôo. Em caso afirmativo, atualizar o número de lugares disponíveis e imprimir:
 - número da identidade do passageiro;
 - · número do vôo desejado;
 - · preço da passagem;
 - * a mensagem "RESERVA CONFIRMADA".

Em caso negativo, imprimir os dois primeiros itens e a mensagem "VÔO LOTADO".

4. Ao final, imprimir uma estatística de lucros e prejuízos por vôo e no total da companhia aérea. Considerar que a lotação de 60% de capacidade de cada avião não produz lucros nem prejuízos. Sendo assim, acima deste valor é lucro e abaixo é prejuízo.

Observação: Capacidade de cada avião: 707 — 200 lugares; 727 — 170 lugares; 737 — 120 lugares. **A** 2.5.2.11. Fazer um algoritmo que leia e imprima uma variá; el composta bidimensional cujo conteúdo é a população dos 10 municípios mais populosos de cada um dos 23 estados brasileiros.

	1		10
l			
	10 11		
3			

POPULAÇÃO [i.j]

população do j-ésimo município do i-ésimo estado.

Determinar e imprimir o número do município mais populoso e o número do estado a que pertence. Considerando que a primeira coluna contém sempre a população da capital do estado, calcular a média da população das capitais dos 23 estados.

▲ 2.5.2.12. A composição dos custos das diversas atividades de construção de um prédio é feita a partir da elaboração de um quadro de quantitativos dos diversos recursos envolvidos em cada atividade. Estes recursos são de vários tipos e envolvem principalmente os custos mais diretos, como, por exemplo, matérias-primas, mão-de-obra, hora de equipamento etc.

Sendo conhecidos os custos unitários para cada recurso envolvido, chega-se facilmente ao custo final unitário de cada atividade. A este custo são acrescidos os percentuais de custos indiretos (administra-

tivos), impostos, depreciação de equipamentos, leis sociais etc., totalizando o preço final para a execução de cada fase.

Este procedimento básico é adotado em várias empreiteiras de obras e o objetivo deste trabalho é fazer um algoritmo que execute estes cálculos para auxiliar o analista de custos de uma empreiteira.

Supondo-se que na execução do prédio são realizados quatro tipos de atividades e que cada uma consome os recursos especificados na tabela dada a seguir

Recurso Atividade	Cimento (kg)	Areia m³	Brita m³	Hora de pedreiro (h)	Hora de servente (h)	Tijolo (u)	Betoneira (h)
1 — Fundação m³	50	0,4	0,6	5	3	0	3
2 - Alvenaria m ²	20	0,3	0	2	1	100	1
3 - Estrutura m ³	70	0,3	0,7	6	3	0	35
4 - Acabamento m ²	40	0,2	0	9	5	0	1

e que as despesas indiretas (administração) são dados levantados a cada mês, fazer um algoritmo que:

- a) leia o percentual de administração do mês;
- b) leia os custos unitários dos sete recursos envolvidos;
- c) leia um conjunto indeterminado de dados (máximo de 15 atividades) contendo os quantitativos de recursos envolvidos em cada atividade;
- d) calcule e imprima:
 - d.1) o preço unitário de custo (direto + administração) de cada atividade;
 - d.2) o preço unitário que a empreiteira deve cobrar em cada atividade, para que tenha 36% de lucro;
 - d.3) considerando o percentual de 16% para as leis sociais, incidentes sobre a mão-de-obra, quanto deve ser recolhido para cada unidade de atividade;
 - d.4) considerando o percentual de administração fornecido + 36% de lucro + 16% de leis sociais, qual será o preço a ser cobrado pela empreiteira para a construção de uma obra que envolva as seguintes atividades:

50 m³ de fundação,

132 m² de alvenaria,

200 m³ de estrutura,

339 m² de acabamento;

- d.5) para a mesma obra acima, qual será a quantidade total de cada recurso envolvido?
- \triangle 2.5.2.13. Desenvolver um algoritmo para imprimir uma tabela com o *índice de afinidade* existente entre cada moça e cada rapaz de um grupo de M moças e um grupo de R rapazes (R \leq 50 e M \leq 60).

Foi distribuído entre eles um questionário de 100 perguntas, tais como:

- 1. Você se incomoda que seu parceiro fume?
- 2. Você é vidrado em música sertaneja?
- 3. Você gosta de cebola?

100. Você gosta do AMÉRICA FUTEBOL CLUBE?

Cada resposta tem as seguintes opções:

SIM

INDIFERENTE

NAO

O índice de afinidade de um rapaz com uma moça é dado pelo número de perguntas em que ambos deram a mesma resposta ou em que um deles deu a resposta indiferente.

O algoritmo poderá ler:

- os valores de R e M;
- as 100 respostas de cada rapaz;
- as 100 respostas de cada moça.

A tabela que será impressa deverá ter o aspecto:

	1	2 "	3		M
Ĕ	60	70	20	1444	
	10	30	82	***	
1	41	73	91	***	
		•			
			2		
		(4)	. *		

onde se pode observar, por exemplo, que o índice de afinidade do segundo rapaz com a terceira moça é 82.

PROBLEMAS DE APLICAÇÃO EM CIÊNCIAS EXATAS

→ 2.5.1.14. Fazer um algoritmo que:

- a) leia uma matriz quadrada real A, de dimensão M × M (M ≤ 20). O valor de M é fornecido inicialmente:
- b) verifique se a matriz é simétrica, ou seja, se A[I,J] = A[J,I] para $\forall I, J \leq M$;
- c) imprima a palavra simétrica, se a matriz A for simétrica, e não-simétrica, em caso contrário.
- → 2.5.2:15. Escrever um algoritmo que calcule e imprima as "n" raízes do seguinte sistema particular de "n" equações com "n" incógnitas.

$$\begin{array}{rcl} a_{11}X_1 & = & b_1 \\ a_{21}X_1 + a_{22}X_2 & = & b_2 \\ a_{11}X_1 + a_{12}X_2 + a_{13}X_3 & = & b_3 \\ \\ & & & & & & \\ a_{n1}X_1 + a_{n2}X_2 + \dots + a_{nn}X_n & = & b_n \end{array}$$

Para isto, ler:

- número de equações, N ≤ 20;
- · a matriz triangular A dos coeficientes;
- · o vetor B dos termos independentes.

2.5.3. Registros

PROBLEMAS GERAIS

△ 2.5.3.1. Declarar o registro cuja representação gráfica é dada a seguir.

△ 2.5.3.2. Escrever o comando que atribui 7840212,00 ao campo de nome SALÁRIO do registro REG.
△ 2.5.3.3. Uma indústria faz a folha mensal de pagamentos de seus empregados baseada no seguinte:
Existe uma tabela com os dados do funcionário