日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 8月 4日

出 願 番 号 Application Number:

特願2004-227811

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-227811

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人

トヨタ自動車株式会社

Applicant(s):

2005年 8月17日

特許庁長官 Commissioner, Japan Patent Office

首切石』 打 訂 成 【整理番号】 TY354 【提出日】 平成16年 8月 4日 【あて先】 特許庁長官殿 【国際特許分類】 F02D 19/02 F02D 41/08【発明者】 【住所又は居所】 愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内 【氏名】 伊藤 泰志 【特許出願人】 【識別番号】 000003207 【氏名又は名称】 トヨタ自動車株式会社 【代理人】 【識別番号】 100106150 【弁理士】 【氏名又は名称】 高橋 英樹 【電話番号】 03-5379-3088 【代理人】 【識別番号】 100082175 【弁理士】 【氏名又は名称】 高田 守 【電話番号】 03-5379-3088 【選任した代理人】 【識別番号】 100120499 【弁理士】 【氏名又は名称】 平山 淳 【電話番号】 03-5379-3088 【連絡先】 担当 【手数料の表示】 【予納台帳番号】 008268 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲 【物件名】 明細書 【物件名】 図面 !

要約書 1

【物件名】

【官棋句】村訂胡小ツ軋団

【請求項1】

燃焼の燃料として炭化水素燃料と共に水素ガスを用いる水素添加内燃機関の制御装置であって、

炭化水素燃料の性状を判別する燃料性状判別手段と、

炭化水素燃料の性状が重質と判定された場合に、炭化水素燃料に対する水素ガスの添加割合を増加させる添加割合増加手段と、

を備えたことを特徴とする水素添加内燃機関の制御装置。

【請求項2】

前記添加割合増加手段は、炭化水素燃料の性状が重質であるほど、前記水素ガスの添加割合を増加させることを特徴とする請求項1記載の水素添加内燃機関の制御装置。

【請求項3】

前記燃料性状判別手段は、始動直後の機関回転数、始動直後の点火時期のフィードバック補正値、又は始動直後の炭化水素燃料の噴射量のフィードバック補正値に基づいて、炭化水素燃料の性状を判別することを特徴とする請求項1又は2記載の水素添加内燃機関の制御装置。

【請求項4】

燃焼の燃料として炭化水素燃料と共に水素ガスを用いる水素添加内燃機関の制御装置であって、

始動時に、炭化水素燃料に対する水素ガスの添加割合の初期値を所定値に設定する添加割合初期値設定手段と、

始動後から所定時間が経過した後、炭化水素燃料に対する水素ガスの添加割合を減少させる添加割合減少手段と、

を備えたことを特徴とする水素添加内燃機関の制御装置。

【請求項5】

炭化水素燃料の性状を判別する燃料性状判別手段を備え、

前記添加割合減少手段は、炭化水素燃料の性状に基づいて得られた下限値まで前記水素ガスの添加割合を減少させることを特徴とする請求項4記載の水素添加内燃機関の制御装置。

【請求項6】

前記燃料性状判別手段は、始動直後の機関回転数、始動直後の点火時期のフィードバック補正値、又は始動直後の炭化水素燃料の噴射量のフィードバック補正値に基づいて、炭化水素燃料の性状を判別することを特徴とする請求項5記載の水素添加内燃機関の制御装置。

【請求項7】

燃焼の燃料として炭化水素燃料と共に水素ガスを用いる水素添加内燃機関の制御装置であって、

始動直後の機関回転数の低下量、始動直後の点火時期のフィードバック補正値、又は始 動直後の炭化水素燃料の噴射量のフィードバック補正値を取得する手段と、

前記機関回転数の低下量、前記点火時期のフィードバック補正値、又は前記炭化水素燃料の噴射量のフィードバック補正値が所定値以上の場合に、炭化水素燃料に対する水素ガスの添加割合を増加させる添加割合増加手段と、

を備えたことを特徴とする水素添加内燃機関の制御装置。

【官烘竹】叭和官

【発明の名称】水素添加内燃機関の制御装置

【技術分野】

[0001]

この発明は、水素添加内燃機関の制御装置に関する。

【背景技術】

[0002]

燃料としてガソリンを用いる内燃機関では、ガソリンに加えてさらに水素ガスを供給することによって、排気ガス中の窒素酸化物(NO_X)の更なる低減が可能となることが知られている。例えば、特開 2004-116398 号公報には、 NO_X の排出量が少なくなるように水素添加割合を決定し、決定した割合に従ってガソリン、水素を噴射して内燃機関を運転する技術が記載されている。

[0003]

【特許文献1】特開2004-116398号公報

【特許文献2】特開平6-200805号公報

【発明の開示】

【発明が解決しようとする課題】

 $[0\ 0\ 0\ 4\]$

しかしながら、上記従来の技術ではガソリンの性状を考慮していないため、ガソリンの性状が変動した場合は、筒内の燃焼が悪化することがある。特に冷間始動時にガソリンの性状が重質であると、筒内でのガソリンの霧化の度合いが低下するため、冷間へジテーションが発生し易くなり、加速のもたつき、機関停止などドライバビリティが悪化するという問題が生じる。また、ガソリンの性状に起因して燃焼状態が悪化すると、エミッションが悪化するという問題も生じる。

[0005]

この発明は、上述のような問題を解決するためになされたものであり、燃焼の燃料としてガソリンと共に水素ガスを用いる水素添加内燃機関において、ガソリンの性状が変化した場合であっても、燃焼状態を良好にすることを目的とする。

【課題を解決するための手段】

[0006]

第1の発明は、上記の目的を達成するため、燃焼の燃料として炭化水素燃料と共に水素ガスを用いる水素添加内燃機関の制御装置であって、炭化水素燃料の性状を判別する燃料性状判別手段と、炭化水素燃料の性状が重質と判定された場合に、炭化水素燃料に対する水素ガスの添加割合を増加させる添加割合増加手段と、を備えたことを特徴とする。

[0007]

第2の発明は、第1の発明において、前記添加割合増加手段は、炭化水素燃料の性状が 重質であるほど、前記水素ガスの添加割合を増加させることを特徴とする。

[0008]

第3の発明は、第1又は第2の発明において、前記燃料性状判別手段は、始動直後の機関回転数、始動直後の点火時期のフィードバック補正値、又は始動直後の炭化水素燃料の噴射量のフィードバック補正値に基づいて、炭化水素燃料の性状を判別することを特徴とする。

[0009]

第4の発明は、上記の目的を達成するため、燃焼の燃料として炭化水素燃料と共に水素ガスを用いる水素添加内燃機関の制御装置であって、始動時に、炭化水素燃料に対する水素ガスの添加割合の初期値を所定値に設定する添加割合初期値設定手段と、始動後から所定時間が経過した後、炭化水素燃料に対する水素ガスの添加割合を減少させる添加割合減少手段と、を備えたことを特徴とする。

 $[0\ 0\ 1\ 0]$

第5の発明は、第4の発明において、炭化水素燃料の性状を判別する燃料性状判別手段

で聞る、則乱が仰削ロ呱グナ权は、灰山小糸松村のは外に至っいで行りれた「敗退よで則記水素ガスの添加割合を減少させることを特徴とする。

$[0\ 0\ 1\ 1]$

第6の発明は、第5の発明において、前記燃料性状判別手段は、始動直後の機関回転数、始動直後の点火時期のフィードバック補正値、又は始動直後の炭化水素燃料の噴射量のフィードバック補正値に基づいて、炭化水素燃料の性状を判別することを特徴とする。

[0012]

第7の発明は、上記の目的を達成するため、燃焼の燃料として炭化水素燃料と共に水素ガスを用いる水素添加内燃機関の制御装置であって、始動直後の機関回転数の低下量、始動直後の点火時期のフィードバック補正値、又は始動直後の炭化水素燃料の噴射量のフィードバック補正値を取得する手段と、前記機関回転数の低下量、前記点火時期のフィードバック補正値、又は前記炭化水素燃料の噴射量のフィードバック補正値が所定値以上の場合に、炭化水素燃料に対する水素ガスの添加割合を増加させる添加割合増加手段と、を備えたことを特徴とする。

【発明の効果】

[0013]

第1の発明によれば、炭化水素燃料の性状が重質と判定された場合は、炭化水素燃料に対する水素ガスの添加割合を増加させるため、重質燃料に起因して燃焼状態が悪化してしまうことを抑止できる。従って、エミッション、ドライバビリティを良好にすることが可能となる。

$[0\ 0\ 1\ 4\]$

第2の発明によれば、炭化水素燃料の性状が重質であるほど、水素ガスの添加割合を増加させるようにしたため、重質の度合いが変動した場合であっても、燃焼状態の悪化を確実に抑止することができる。

[0015]

第3の発明によれば、炭化水素燃料の性状が重質の場合は、始動直後の機関回転数が低下するため、始動直後の機関回転数に基づいて性状を判別することができる。また、炭化水素燃料の性状が重質の場合は、始動直後の点火時期のフィードバック補正値、又は始動直後の炭化水素燃料の噴射量のフィードバック補正値が大きくなるため、これらの補正値に基づいて性状を判別することができる。

$[0\ 0\ 1\ 6]$

第4の発明によれば、始動時に、炭化水素燃料に対する水素ガスの添加割合の初期値を 所定値に設定することができるため、初期値を通常よりも高く設定することで、始動時に 燃焼状態が悪化してしまうことを抑止できる。従って、エミッション、ドライバビリティ を良好にすることが可能となる。

$[0\ 0\ 1\ 7]$

第5の発明によれば、始動後から所定時間が経過した後、炭化水素燃料の性状に基づいて得られた下限値まで水素ガスの添加割合を減少させるため、水素の使用量を最小限に抑えることができ、システム効率を高めることが可能となる。

[0018]

第6の発明によれば、炭化水素燃料の性状が重質の場合は、始動直後の機関回転数が低下するため、始動直後の機関回転数に基づいて性状を判別することができる。また、炭化水素燃料の性状が重質の場合は、始動直後の点火時期のフィードバック補正値、又は始動直後の炭化水素燃料の噴射量のフィードバック補正値が大きくなるため、これらの補正値に基づいて性状を判別することができる。

[0019]

第7の発明によれば、始動直後の機関回転数の低下量、点火時期のフィードバック補正値、又は前記炭化水素燃料の噴射量のフィードバック補正値が所定値以上の場合は、筒内の燃焼状態が悪化していると判断できるため、炭化水素燃料に対する水素ガスの添加割合を増加させることで、燃焼状態の悪化を抑止することができる。従って、エミッション、

ドノコハビファ1で反対にすることが円形になる。

【発明を実施するための最良の形態】

[0020]

以下、図面に基づいてこの発明の一実施形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。なお、以下の実施の形態によりこの発明が限定されるものではない。

[0021]

実施の形態1.

図1は、本発明の実施の形態1に係る水素添加内燃機関10を備えたシステムの構成を説明するための図である。内燃機関10の筒内には、その内部を往復運動するピストン12が設けられている。また、内燃機関10は、シリンダヘッド14を備えている。ピストン12とシリンダヘッド14との間には、燃焼室16が形成されている。燃焼室16には、吸気ポート18および排気ポート20が連通している。吸気ポート18および排気ポート20には、それぞれ吸気弁22および排気弁24が配置されている。

[0022]

吸気ポート18には、ポート内にガソリン(炭化水素燃料)を噴射するガソリン噴射弁26が配置されている。また、吸気ポート18には、ポート内に水素を噴射する水素燃料ポート噴射弁28が配置されている。

[0023]

ガソリン噴射弁26には、ガソリン供給管32を介してガソリンタンク34が連通している。ガソリン供給管32は、ガソリン噴射弁26とガソリンタンク34との間に、ポンプ36を備えている。ポンプ36は、ガソリン噴射弁26に所定の圧力でガソリンを供給することができる。このため、ガソリン噴射弁26は、外部から供給される駆動信号を受けて開弁することにより、その開弁の時間に応じた量のガソリンを吸気ポート18内に噴射することができる。

[0024]

本実施形態のシステムは、気体状態にある水素を高圧で貯留するための水素タンク38を備えている。水素タンク38には、水素供給管40が連通している。水素供給管40は、水素燃料ボート噴射弁28に連通している。尚、本実施形態のシステムでは、水素燃料ボート噴射弁28に供給される水素燃料として、外部から水素タンク38内に充填される水素ガスを使用しているが、これらの噴射弁に供給される水素燃料はこれに限定されるものではなく、車両上で生成、あるいは外部より供給される高濃度の水素を含む水素リッチガスを使用するものであってもよい。

[0025]

水素供給管40には、レギュレータ44が配置されている。このような構成によれば、 水素燃料ポート噴射弁28には、レギュレータ44により減圧された所定の圧力で、水素 タンク38内にある水素が供給される。このため、水素燃料ポート噴射弁28は、外部か ら供給される駆動信号を受けて開弁することにより、その開弁の時間に応じた量の水素を 吸気ポート18内に噴射することができる。

[0026]

また、水素供給管40には、レギュレータ44と水素燃料ポート噴射弁28との間に、燃圧センサ48が配置されている。燃圧センサ48は、水素燃料ポート噴射弁28に供給される水素の圧力に応じた出力を発するセンサである。本実施形態のシステムでは、燃圧センサ48が発する出力に基づいてレギュレータ44を制御することとしている。このため、水素タンク38から供給される水素の圧力が変動する場合であっても、水素燃料ポート噴射弁28に安定した圧力で水素を供給することができる。

[0027]

本実施形態のシステムは、ECU50を備えている。ECU50には、上述した燃圧センサ48に加え、内燃機関10の運転状態を把握すべく、ノッキングの発生を検知するKCSセンサや、スロットル開度、機関回転数、排気温度、冷却水温度、潤滑油温度、触媒床

皿及なこで映山りるためい日僅でイッ(小四小)が按概されている。また、ピししるりには、上述したガソリン噴射弁26、水素燃料ポート噴射弁28、ポンプ36などのアクチュエータが接続されている。このような構成によれば、ECU50は、内燃機関10の運転状態に応じて、燃料噴射を実行する噴射弁を任意に選択することができる。

[0028]

従って、内燃機関10の運転状態に応じて水素燃料ポート噴射弁28から水素を噴射することで、筒内(燃焼室16内)の燃焼状態を良好にすることができ、NOXの排出量を低減させることができる。

[0029]

ところで、ガソリンの性状にはバラツキがあり、ガソリンの性状は筒内の燃焼状態に影響を与える。特に、ガソリンの性状が重質の場合、ガソリン噴射弁26から噴射されたガソリンが吸気ボート18の壁面または筒内壁面に付着し易くなり、ガソリンの霧化の度合いが低下して燃焼状態が不安定になる場合がある。

[0030]

このため、本実施形態のシステムでは、ガソリンの性状を判別し、ガソリンの性状が重質の場合は水素燃料ポート噴射弁28からの水素の噴射量を増加するようにしている。これにより、ガソリンの性状が重質の場合であっても、燃焼状態を良好にすることが可能となる。

[0031]

なお、ガソリンの性状に起因するエミッション、ドライバビリティの悪化は主として始動直後のファーストアイドル時に発生するため、水素ガスの増量はファーストアイドル時に行うことが好適であるが、ファーストアイドル時以降のアイドリング時、又は通常の運転時に水素ガスを増量することによっても重質燃料に起因する燃焼状態の悪化を抑えることができる。

[0032]

ガソリンの性状判定は、例えば始動直後の機関回転数に基づいて行う。ガソリンの性状が重質の場合、通常の性状に比べて始動直後の機関回転数が低下する。従って、重質判定のためのしきい値を予め定めておき、始動直後の機関回転数がしきい値よりも低下した場合は、ガソリンの性状が重質であると判定する。

[0033]

また、始動直後の機関回転数が低下した場合は、点火時期を進角させる制御、またはガソリンの噴射量を増大させる制御によってフィードバック補正が行われる。従って、点火時期の補正量、またはガソリン噴射量の補正量に基づいてガソリンの性状を判定しても良い。

[0034]

ガソリンの性状が重質と判定された場合は、重質度合いに基づいて水素の添加量を決定する。このとき、冷却水温に応じて筒内の燃焼状態は変動するため、冷却水温を考慮に入れて水素の添加量を決定することが好適である。

[0035]

次に、図2のフローチャートに基づいて、本実施形態のシステムにおける処理の手順を説明する。先ず、ステップS1では、始動直後の機関回転数に基づいてガソリンの性状を判定する。このとき、上述したように点火時期、またはガソリン噴射量のフィードバック補正量に基づいてガソリンの性状を判定しても良い。

[0036]

ステップS1でガソリンの性状が重質であると判定された場合は、ステップS2へ進む。ステップS2では、ガソリンの性状の重質度合い、および冷却水温などの運転状態を表すパラメータに基づいて、目標水素添加割合を算出する。ここでは、重質のガソリンに対応したマップを用い、マップに重質度合い、及び冷却水温などのパラメータを当てはめて目標水素添加割合を算出する。このとき、ガソリンの性状が重質であるほど目標水素添加割合が高く設定される。また、冷却水温が低いほと燃焼状態が低下するため、目標水素添

[0037]

一方、ステップS1でガソリンの性状が重質と判定されず、通常の性状と判定された場合は、ステップS3へ進む。この場合は、通常の性状のガソリンに対応したマップを用いて、マップに冷却水温などの運転状態を表すバラメータを当てはめて目標水素添加割合を算出する。なお、ステップS2、S3で算出された目標水素添加割合は、機関の負荷率に対して水素ガスの燃焼のエネルギーが負担する割合を表している。

[0038]

ステップS2, S3の後はステップS4へ進む。ステップS4では、ステップS2, S3で決定した目標水素添加割合に基づいて、実際に水素燃料ポート噴射弁28から噴射する水素添加量を決定する。具体的には、アクセル開度と機関回転数から求めた負荷率に目標水素添加割合を乗算し、更に所定の係数を乗算することで水素添加量が決定される。そして、決定した水素添加量によって内燃機関10が運転される。

[0039]

以上説明したように実施の形態1によれば、ガソリンの性状が重質と判定された場合は、水素ガスの添加量を増加することができる。従って、重質燃料に起因する燃焼状態の悪化を確実に抑えることができ、エミッション、ドライバビリティを良好にすることが可能となる。

[0040]

実施の形態2.

次に、この発明の実施の形態2について説明する。実施の形態2におけるシステム構成は図1に示したものと同様である。実施の形態2は、特に始動直後のファーストアイドル時に、エミッション、ドライバビリティの悪化を抑制するものである。

[0041]

ガソリンの性状が重質の場合、ガソリンが吸気ボート18の壁面、筒内の壁面に付着するため、特に冷間始動時に冷間へジテーションが発生し易くなり、エミッション、ドライバビリティが悪化する場合がある。このため、実施の形態2では、ファーストアイドル時に水素添加割合の初期値を高く設定して水素の添加量を増大させるようにしている。そして、ファーストアイドル時を経過した後は、ガソリンの性状に応じた下限値まで水素の添加量を減少させる制御を行う。

[0042]

このように、水素添加割合の初期値を一律に高い値に設定することで、ファーストアイドル時の燃焼がガソリンの性状に影響を受けてしまうことを抑止することができる。これにより、アイドル回転数を低い値に設定することができ、ファーストアイドル時の燃費を向上させることができ、エミッション、ドライバビリティを良好にすることができる。また、ファーストアイドル時以降は必要なレベルまで水素添加量を減少させるため、水素の使用量を最小限に抑えることができ、システム効率を高めることが可能となる。

[0043]

次に、図3及び図4のフローチャートに基づいて、実施の形態2のシステムにおける処理の手順を説明する。ここで、図3のフローチャートは、ファーストアイドル時に水素添加割合を高く設定し、ファーストアイドル時以降は水素添加割合を下限値まで減少させる処理を示している。また、図4のフローチャートは、ファーストアイドル時以降に水素添加割合を減少させる際の下限値を、ガソリンの重質度合いに基づいて算出する処理を示している。

[0044]

最初に、図3の処理について説明する。先ず、ステップS11では、始動直後から2秒が経過しているか否かを判定し、現在の運転がファーストアイドル時の運転であるか否かを判定する。始動直後から2秒以内の場合はファーストアイドル時の運転であるため、ステップS12へ進む。

[0045]

ヘリップロ14では、小糸が川前口の初期限で設定する。小糸が川前口の初期限は行型水温に基づいてマップ算出される値であって、ガソリンの性状に関わらず燃焼が良好となるように十分に大きな値に設定されている。これにより、ファーストアイドル時の燃焼状態を常に良好にすることができ、安定してアイドリングを行うことが可能となる。従って、燃料の性状に起因してファーストアイドル時にエミッション、ドライバビリティが悪化してしまうことを確実に抑止できる。

[0046]

一方、ステップS11で始動後から2秒を超えている場合は、ステップS13へ進む。この場合、ステップS12の処理によって既にファーストアイドル時のアイドリングは安定した状態に維持されている。従って、必要量の水素ガスのみを供給するため、ステップS13以降の処理では水素添加割合を減少させる処理を行う。

[0047]

すなわち、ステップS13では、現在の水素添加割合が下限値よりも大きいか否かを判定する。ここで、水素添加割合の下限値は、後で図4のフローチャートで説明するようにガソリンの性状の重質度合いを表す重質指数から定められる。

[0048]

ステップS13で現在の水素添加割合が下限値よりも大きい場合は、ステップS14へ進み、水素添加割合を所定値だけ減少させる処理を行う。一方、ステップS13で現在の水素添加割合が下限値以下の場合は、ステップS15へ進む。

[0049]

ステップS12, S14の後はステップS15へ進む。ステップS15では、ステップS12, S14で決定した目標水素添加割合に基づいて、実際に水素燃料ボート噴射弁28から噴射する水素添加量を決定する。具体的には、アクセル開度と機関回転数から求めた負荷率に目標水素添加割合を乗算し、更に所定の係数を乗算することで水素添加量が決定される。そして、決定した水素添加量によって内燃機関10が運転される。

[0050]

次に、図4に基づいて図3のステップS13で使用する水素添加割合の下限値を算出する処理を説明する。先ず、ステップS21では、始動直後から2秒が経過しているか否かを判定し、現在の運転がファーストアイドル時の運転であるか否かを判定する。始動後から2秒以内の場合はファーストアイドル時の運転であるため、ステップS12へ進む。一方、始動後から2秒を超えている場合は、処理を終了する(RETURN)。

[0051]

ステップS22へ進んだ場合、図3のステップS12~S15の処理によって、水素添加割合の初期値に基づいて水素ガスが添加されている。ステップS22では、水素添加割合の初期値に基づいて水素が添加されている状態で、ガソリン噴射量を増減することによってアイドリング回転数を制御する。

[0052]

次のステップS23では、アイドリング回転数が所望の値に安定した時点で、このときのガソリン噴射量の増加量 Δf を求める。ガソリンの性状が重質の場合、ガソリンの霧化の度合いが低いため、ファーストアイドル時における Δf の値は通常よりも大きくなる。

[0053]

次のステップS24では、ステップS23で求めた増加量 Δ fに基づいて、増加量 Δ f とガソリンの性状の重質度合い(重質指数)との関係を規定したマップから重質指数を算出する。ここで、増加量 Δ f が大きいほど重質度合いが高いため、重質指数の値は大きくなる。

[0054]

次のステップS25では、重質指数と冷却水温に基づいて、水素添加割合の下限値を算出する。ここで、重質指数が大きいほどガソリンの性状の重質度合いが高く、水素の添加量を多くして燃焼を安定させる必要があるため、下限値は大きな値に設定される。また冷却水温が低いほと、水素の添加量を多くして燃焼を良好にする必要があるため、下限値は

八さは旭に政化される。ヘノソノコムリツ仅は処理を於19つ。

[0055]

図4の処理によれば、ファーストアイドル時のガソリン噴射量の増加量 Δ f に基づいて水素添加割合の下限値を求めることができる。そして、求めた水素添加割合の下限値には、ガソリンの性状が考慮されているため、図3の処理によりファーストアイドル時以降は下限値以上の水素を添加することで、ガソリンの性状に起因して燃焼が不安定になることを抑止できる。従って、エミッション、ドライバビリティを良好にすることが可能となる

[0056]

以上説明したように実施の形態2によれば、ファーストアイドル時に水素添加割合の初期値を高く設定して水素の添加量を増大させるようにしたため、ファーストアイドル時の燃焼状態がガソリンの性状によって悪化してしまうことを抑止できる。これにより、安定したアイドリングを行うことが可能となり、エミッション、ドライバビリティを良好にすることができる。また、ファーストアイドル時以降は必要なレベルまで水素添加量を減少させるため、水素の使用量を最小限に抑えることができ、システム効率を高めることが可能となる。

[0057]

実施の形態3.

次に、この発明の実施の形態3について説明する。実施の形態3は、ガソリンの性状に起因して始動直後の燃焼状態が不安定になった場合の他、その他の要因で始動直後の燃焼が不安定になった場合に、水素の添加量を増加することで筒内の燃焼状態を良好にするものである。なお、実施の形態3におけるシステム構成は図1に示したものと同様である。

[0058]

ガソリンの性状以外の要因で始動時の燃焼が不安定になる場合として、例えば点火ブラグに液滴状のガソリンが付着して燃料への着火性が低下した場合が挙げられる。また、高温時などに、ガソリン噴射弁26による噴射前のガソリンに気泡が生じ、ガソリン噴射弁26から噴射されるガソリンの量が指示値よりも減少した場合にも、やはり燃焼が不安定になる。

[0059]

実施の形態3は、ガソリンの性状、または上記の要因を含む他の要因によって筒内の燃焼が不安定になった場合に、水素ガスの添加量を増加することで燃焼状態を良好にするものである。

[0060]

以下、図5のフローチャートに基づいて、本実施形態のシステムにおける処理の手順を 説明する。先ず、ステップS31では、始動直後の機関回転数に基づいて筒内の燃焼状態 を判定する。ガソリンの性状による要因、または上述した要因で筒内の燃焼状態が悪化し ている場合は、始動直後の機関回転数が低下するため、ステップS31では、燃焼状態を 判定するためのしきい値を予め定めておき、始動直後の機関回転数がしきい値よりも低下 した場合は筒内の燃焼状態が悪化しているものと判定する。

[0061]

また、筒内の燃焼状態の悪化に起因して始動直後の回転数が低下した場合は、点火時期を進角させる制御、またはガソリンの噴射量を増大させる制御によってフィードバック補正が行われる。従って、ステップS31では、点火時期の補正量、またはガソリン噴射量の補正量に基づいて筒内の燃焼状態を判定してもよい。

[0062]

ステップS31で燃焼状態が悪化していると判定された場合は、ステップS32へ進む。ステップS32では、燃焼状態の悪化の度合い、および冷却水温など運転状態を表すパラメータに基づいて、目標水素添加割合を算出する。具体的には、燃焼状態が悪化している場合に使用するマップを用いて、機関回転数の低下量、点火時期の補正量、またはガソリン噴射量の補正量と、冷却水温などの運転状態を表すパラメータをマップに当てはめて

口际小光が川前口で身山りる。このこと、城民回転奴の四丁里人は上礼畑止里が入るいは と目標水素添加割合が高く設定される。また、冷却水温が低いほと燃焼状態が低下するため、目標水素添加割合は高く設定される。

[0063]

一方、ステップS31で燃焼状態が正常と判定された場合は、ステップS33へ進む。 この場合は、通常のマップを用いて、マップに冷却水温などの運転状態を表すバラメータ を当てはめて目標水素添加割合を算出する。

[0064]

ステップS32,S33の後はステップS34へ進む。ステップS34では、ステップS32,S33で決定した目標水素添加割合に基づいて、実際に水素燃料ポート噴射弁28から噴射する水素添加量を決定する。具体的には、アクセル開度と機関回転数から求めた負荷率に目標水素添加割合を乗算し、更に所定の係数を乗算することで水素添加量が決定される。そして、決定した水素添加量によって内燃機関10が運転される。

[0065]

以上説明したように実施の形態3によれば、始動直後の機関回転数の低下量、点火時期の補正量、またはガソリン噴射量の補正量が所定値を超えている場合は、水素ガスの添加量を増加することができる。従って、始動時における燃焼状態の悪化を確実に抑えることができ、エミッション、ドライバビリティを良好にすることが可能となる。

【図面の簡単な説明】

[0066]

【図1】本発明の各実施形態に係る水素添加内燃機関のシステムを示す模式図である

- 【図2】実施の形態1の処理の手順を示すフローチャートである。
- 【図3】実施の形態2の処理の手順を示すフローチャートである。
- 【図4】実施の形態2の処理の手順を示すフローチャートである。
- 【図5】実施の形態3の処理の手順を示すフローチャートである。

【符号の説明】

[0067]

- 10 水素添加内燃機関
- 26 ガソリン噴射弁
- 28 水素燃料ポート噴射弁
- 50 ECU

【盲烘白】女形盲

【要約】

【課題】 燃焼の燃料としてガソリンと共に水素ガスを用いる水素添加内燃機関において、ガソリンの性状が変化した場合であっても、燃焼状態を良好にすること。

【解決手段】 燃焼の燃料として炭化水素燃料と共に水素ガスを用いる水素添加内燃機関 10の制御装置であって、炭化水素燃料の性状を判別する燃料性状判別手段と、炭化水素燃料の性状が重質と判定された場合に、炭化水素燃料に対する水素ガスの添加割合を増加させる添加割合増加手段と、を備える。炭化水素燃料の性状が重質と判定された場合は、炭化水素燃料に対する水素ガスの添加割合を増加させるため、重質燃料に起因して燃焼状態が悪化してしまうことを抑止でき、エミッション、ドライバビリティを良好にすることが可能となる。

【選択図】

図 2

0 0 0 0 0 0 3 2 0 7 19900827 新規登録 5 0 1 3 2 4 7 8 6

愛知県豊田市トヨタ町1番地トヨタ自動車株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/014158

International filing date: 27 July 2005 (27.07.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-227811

Filing date: 04 August 2004 (04.08.2004)

Date of receipt at the International Bureau: 01 September 2005 (01.09.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

