Diffusion Neural Sampler: review, caveats and open questions

Jiajun He

Imperial College London

27/03/2025

Collaborators

Joint work with Yuanqi du; collaborating with Francisco Vargas, Dinghuai Zhang, Shreyas Padhy, RuiKang OuYang; supervised by Carla Gomes, José Miguel Hernández-Lobato

Sampling

Unnormalized density function:

$$p_{\text{target}}(x) = \frac{\tilde{p}(x)}{Z}, \qquad Z = \int \tilde{p}(x) dx$$

Obtain sample $x \sim p_{\text{target}}$.

Sampling

Unnormalized density function:

$$p_{\text{target}}(x) = \frac{\tilde{p}(x)}{Z}, \qquad Z = \int \tilde{p}(x) dx$$

Obtain sample $x \sim p_{\text{target}}$.

 \leftarrow Bayesian inference: p_{target} \propto likelihood \times prior

Sampling

Unnormalized density function:

$$p_{\text{target}}(x) = \frac{\tilde{p}(x)}{Z}, \qquad Z = \int \tilde{p}(x) dx$$

Obtain sample $x \sim p_{\text{target}}$.

- \leftarrow Bayesian inference: p_{target} \propto likelihood \times prior
- \leftarrow Boltzmann distribution (molecules, etc): p_{target} ∝ exp(−βU)

Sampling – classical approach

Markov chain Monte Carlo (MCMC)

Sampling - classical approach

Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

$$dX_t = \nabla \log \tilde{p}(X_t) dt + \sqrt{2} dW_t$$

Sampling - classical approach

Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

$$dX_t = \nabla \log \tilde{p}(X_t) dt + \sqrt{2} dW_t$$
score
$$\nabla \log \tilde{p}(X_t) \Delta t \qquad \sqrt{2\Delta t} \epsilon, \epsilon \sim N(0, 1)$$

Sampling – classical approach

Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

$$dX_t = \nabla \log \tilde{p}(X_t) dt + \sqrt{2} dW_t$$

e dependent samples; auto-correlation reduces efficiency sample size

Sampling - classical approach

Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

$$dX_t = \nabla \log \tilde{p}(X_t) dt + \sqrt{2} dW_t$$

- e dependent samples; auto-correlation reduces efficiency sample size
- ergodicity; only guarantee convergence with infinite steps

Neural samplers

Train a neural network to amortize the sampling process

Neural samplers

Train a neural network to amortize the sampling process

- independent samples!
- can mix in finite time

Neural samplers

Train a neural network to amortize the sampling process

- independent samples!
- can mix in finite time

Neural samplers are in fact generative models:

Diffusion Neural samplers

Train a diffusion (like) model

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t,$$

Diffusion Neural samplers

Train a diffusion (like) model

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t,$$

transporting samples from $p_{
m prior}$ to $p_{
m target}$:

$$X_0 \sim p_{
m prior}$$
 , and want $X_T \sim p_{
m target}$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$$
, we want $X_T \sim p_{\text{target}}$.

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$$
, we want $X_T \sim p_{\text{target}}$.

If we have a "target" process

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$$
, we want $X_T \sim p_{\text{target}}$.

If we have a "target" process

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

And
$$X_t \sim Y_{T-t}$$
,

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}$$
, we want $X_T \sim p_{\mathrm{target}}$.

If we have a "target" process

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

And $X_t \sim Y_{T-t}$,

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}$$
, we want $X_T \sim p_{\mathrm{target}}$.

If we have a "target" process

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

And $X_t \sim Y_{T-t}$, "time-reversal"

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}$$
, we want $X_T \sim p_{\mathrm{target}}$.

If we have a "target" process

$$\mathrm{d}Y_t = g(Y_t,t) \,\mathrm{d}t + \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$
 can be a simple, prescribed function, like 0 or $-\beta_t Y_t$

And $X_t \sim Y_{T-t}$, "time-reversal"

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \text{ we want } X_T \sim p_{\text{target}}$$

If we have a "target" process

$$\mathrm{d}Y_t = g(Y_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$
 can be a simple, prescribed function, like 0 or $-\beta_t Y_t$

And $X_t \sim Y_{T-t}$, "time

'time-reversal'

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \text{ we want } X_T \sim p_{\text{target}}$$

Want a sample process (prior to target),

$$dY_t = g(Y_t, t) dt$$
 To be the time-reversal,

And
$$X_t \sim Y_{T-t}$$
,

And $X_t \sim Y_{T-t}$, "time-reveof a simple target process (target to prior)

We will have
$$X_T \sim Y_{T-T} = Y_0$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \text{ we want } X_T \sim p_{\text{target}}$$

Want a sample process (prior to target),

$$dY_t = g(Y_t, t)dt$$
 To be the **time-reversal**,

And
$$X_t \sim Y_{T-t}$$
,

And $X_t \sim Y_{T-t}$, "time-reveof a simple target process (target to prior)

We will have $X_T \sim Y_T$ -How to achieve this?

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad Y_0 \sim p_{\text{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad Y_0 \sim p_{\text{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad Y_0 \sim p_{\text{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$\begin{bmatrix} X_{t_n} \sim N(X_{t_n} | X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t) \Delta t, 2\sigma^2 \Delta t), & X_0 \sim p_{\text{prior}} \end{bmatrix}$$

$$p_{\text{prior}}(X_0) N(X_{t_1} | X_0) N(X_{t_2} | X_{t_1}) \dots N(X_{t_N} | X_{t_{N-1}})$$

$$dY_t = g(Y_t, t) dt + \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n} | Y_{t_{n-1}} + g(Y_{t_{n-1}}, t) \Delta t, 2\sigma^2 \Delta t), \qquad Y_0 \sim p_{\text{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1}) \dots N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

 $Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad Y_0 \sim p_{\text{target}}$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}})$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}})$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}})$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}},t)\Delta t, 2\sigma^2\Delta t), \qquad Y_0 \sim p_{\text{target}}$$

 $Y_t \sim X_{T-t}$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}})$$

$$X_{t_N}X_{t_{N-1}}...$$

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$p_{\text{target}}(X_{t_N})N(X_{t_{N-1}}|X_{t_N})N(X_{t_{N-2}}|X_{t_{N-1}})...N(X_{t_0}|X_{t_1})$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}}) := q(X_{0:t_N})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dY_t = g(Y_t, t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim p_{\text{target}}$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$p_{\text{target}}(X_{t_N})N(X_{t_{N-1}}|X_{t_N})N(X_{t_{N-2}}|X_{t_{N-1}})...N(X_{t_0}|X_{t_1}) := p(X_{0:t_N})$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$p_{\text{target}}(X_{t_N})N(X_{t_{N-1}}|X_{t_N})N(X_{t_{N-2}}|X_{t_{N-1}})...N(X_{t_0}|X_{t_1}) := p(X_{0:t_N})$$

$$:= q(X_{0:t_N})$$

$$Y_0 \sim p_{\text{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_\mathrm{prior},$$

$$X_{t_n} \sim N(X_{t_n}|X_{t_{n-1}} + f_{\theta}(X_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \qquad X_0 \sim p_{\text{prior}}$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}})$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$Y_{t_n} \sim N(Y_{t_n}|Y_{t_{n-1}} + g(Y_{t_{n-1}}, t)\Delta t, 2\sigma^2 \Delta t), \quad Y_0 \sim p_{\text{target}}$$

$$\tilde{p}_{\text{target}}(X_{t_N})N(X_{t_{N-1}}|X_{t_N})N(X_{t_{N-2}}|X_{t_{N-1}})...N(X_{t_0}|X_{t_1}) := \tilde{p}(X_{0:t_N})$$

$$\coloneqq q(X_{0:t_N})$$

$$|X_{t_1}\rangle \qquad := \tilde{\tilde{p}}(X_{0:t_N})$$

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

It is fine to have a different sampling process

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

$$D_{\text{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = E_{\pi} \left[\left(\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k \right)^2 \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

$$D_{\text{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = E_{\pi} \left[\left(\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k \right)^2 \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$: Let's go continuous!

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

$$D_{\text{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = E_{\pi} \left[\left(\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k \right)^2 \right]$$

Match
$$q(X_{0:t_N})$$
 with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

$$D_{\text{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = E_{\pi} \left[\left(\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k \right)^2 \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$D_{\mathrm{KL}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{E}_{\overrightarrow{\mathbf{Q}}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\text{LV}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \text{Var}_{\overrightarrow{\boldsymbol{\pi}}} \left[\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\text{TB}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = E_{\overrightarrow{\boldsymbol{\pi}}} \left[\left(\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)} - k \right)^2 \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

$$D_{\mathrm{LV}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{Var}_{\overrightarrow{\pi}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\mathrm{TB}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{E}_{\overrightarrow{\boldsymbol{\pi}}}\left[\left(\log\frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} - k\right)^{2}\right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

We can calculate this by Girsanov theorem when two paths are in the same direction

$$D_{\mathrm{TB}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathbf{E}_{\overrightarrow{\boldsymbol{\pi}}} \left[\left(\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} - k \right)^{2} \right]$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$: $\mathbf{Q}(X), \mathbf{P}(X)$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

$$= \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{Q}}(X)}{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)} + \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)}{\overrightarrow{d} \overleftarrow{\mathbf{P}}(X)}$$

$$D_{\mathrm{TB}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{E}_{\overrightarrow{\boldsymbol{\pi}}} \left[\left(\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} - k \right)^2 \right]$$

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

$$= \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{Q}}(X)}{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)} + \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)}{\overrightarrow{d} \overleftarrow{\mathbf{P}}(X)}$$

$$D_{TR} = \log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overrightarrow{\mathbf{P}_r}(X)} + \log \frac{d\overleftarrow{\mathbf{P}_r}(X)}{d\overleftarrow{\mathbf{P}}(X)} + \log \frac{d\overleftarrow{\mathbf{P}_r}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

We can choose any P_r

$$= \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{Q}}(X)}{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)} + \log \frac{\overrightarrow{d} \overrightarrow{\mathbf{P}_r}(X)}{\overrightarrow{d} \overleftarrow{\mathbf{P}}(X)}$$

$$= \log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overrightarrow{\mathbf{P}_r}(X)} + \log \frac{d\overleftarrow{\mathbf{P}_r}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$\overrightarrow{\mathbf{Q}}(X), \overleftarrow{\mathbf{P}}(X)$$

$$\log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$
?

We can choose any P_r

$$= \log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overrightarrow{\mathbf{P}_r}(X)} + \log \frac{d\overrightarrow{\mathbf{P}_r}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$

Choose it to have known $\overrightarrow{P_r}$ and $\overleftarrow{P_r}$

$$= \log \frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overrightarrow{\mathbf{P}_r}(X)} + \log \frac{d\overleftarrow{\mathbf{P}_r}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$: $\overline{\mathbf{Q}}(X), \overline{\mathbf{P}}(X)$

Want a sample process (prior to target),

To be the time-reversal,

of a simple target process (target to prior)

How to achieve this?

matching forward and backward processes

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$: $\mathbf{Q}(X), \mathbf{P}(X)$

Want a sample process (prior to target),

To be the **time-reversal**,

We can choose any P_r of a simple target process (target to prior) $= \log \frac{1}{dP_r(X)} + \log \frac{1}{dP(X)}$

Choose it to have Any other choices to achieve this? YES! known $\overrightarrow{P_r}$ and $\overleftarrow{P_r}$ $= \log \frac{dQ(X)}{d\overrightarrow{P_r}(X)} + \log \frac{dP_r(X)}{d\overrightarrow{P}(X)}$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

For simplicity, we consider g=0

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models,

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$
 What is this term?

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$

What is this term?

The "score" at T-t

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$

What is this term?

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$

The "score" at T-t

Recall $X_t \sim Y_{T-t}$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$

What is this term?

The "score" at T-t $\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$

The "score" at t

Recall $X_t \sim Y_{T-t}$

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}}$$

At time
$$t$$
, $p_t(Y_t) = \int p_{\text{target}}(Y_0)N(Y_t|Y_0, v_tI)dY_0$

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}}$$

At time
$$t$$
, $p_t(Y_t) = \int p_{\text{target}}(Y_0)N(Y_t|Y_0, v_tI)dY_0$

We want to have a network to regress its score

$$dY_t = \sigma \sqrt{2} dW_t$$
, $Y_0 \sim p_{\text{target}}$

At time
$$t$$
, $p_t(Y_t) = \int p_{\text{target}}(Y_0)N(Y_t|Y_0, v_tI)dY_0$

We want to have a network to regress its score

With data $Y_0 \sim p_{\text{target}}$: denoising score matching

$$dY_t = \sigma \sqrt{2} dW_t$$
, $Y_0 \sim p_{\text{target}}$

At time
$$t$$
, $p_t(Y_t) = \int p_{\text{target}}(Y_0)N(Y_t|Y_0, v_tI)dY_0$

We want to have a network to regress its score

With data $Y_0 \sim p_{\text{target}}$: denoising score matching

What if without data?

$$\mathrm{d} Y_t = \sigma \sqrt{2} \mathrm{d} W_t, Y_0 \sim p_{\mathrm{target}}$$
 Gaussian convolution
$$\nabla \log p_t(Y_t) = \nabla \log \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d} Y_0$$

$$\begin{aligned} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \end{aligned} \qquad \text{Gaussian convolution} \\ \nabla \log p_t(Y_t) &= \nabla \log \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \\ &= \nabla \left(p_{\mathrm{target}} * N(\cdot | 0, v_t I) \right) (Y_t) / p_t(Y_t) \end{aligned}$$

$$\begin{aligned} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \end{aligned} \qquad \text{Gaussian convolution} \\ \nabla \log p_t(Y_t) &= \nabla \log \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \\ &= \nabla \left(p_{\mathrm{target}} * N(\cdot | 0, v_t I) \right) (Y_t) / p_t(Y_t) \end{aligned}$$
 Gradient of Conv = Conv of gradient
$$= \left(\nabla p_{\mathrm{target}} * N(\cdot | 0, v_t I) \right) (Y_t) / p_t(Y_t)$$

$$\begin{aligned} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \end{aligned} \qquad \text{Gaussian convolution} \\ \nabla \log p_t(Y_t) &= \nabla \log \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \\ &= \nabla \left(p_{\mathrm{target}} * N(\cdot | 0, v_t I) \right) (Y_t) / p_t(Y_t) \end{aligned}$$

$$\text{Gradient of Conv} = \text{Conv of gradient} = \left(\nabla p_{\mathrm{target}} * N(\cdot | 0, v_t I) \right) (Y_t) / p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 / p_t(Y_t) \end{aligned}$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \end{split}$$

$$\begin{aligned} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 / p_t(Y_t) \end{aligned}$$

$$\begin{aligned} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ & p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) \end{aligned}$$

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}}$$

$$\nabla\log p_t(Y_t)$$

$$= \int \nabla p_{\text{target}}(Y_0) N(Y_t|Y_0, v_t I) dY_0 / p_t(Y_t)$$

$$= \int p_{\text{target}}(Y_0) \nabla \log p_{\text{target}}(Y_0) N(Y_t | Y_0, v_t I) dY_0 / p_t(Y_t)$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \end{split}$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \ / p_t(Y_t) \nabla \log p_{\mathrm{target}}(Y_0) \mathrm{d}Y_0 \end{split}$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \ / p_t(Y_t) \nabla \log p_{\mathrm{target}}(Y_0) \mathrm{d}Y_0 \end{split}$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \ / p_t(Y_t) \nabla \log p_{\mathrm{target}}(Y_0) \mathrm{d}Y_0 \end{split}$$

$$\begin{split} \mathrm{d}Y_t &= \sigma \sqrt{2} \mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}} \\ & \nabla \log p_t(Y_t) \\ &= \int \nabla p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) \nabla \log p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \mathrm{d}Y_0 \ / p_t(Y_t) \\ &= \int p_{\mathrm{target}}(Y_0) N(Y_t | Y_0, v_t I) \ / p_t(Y_t) \nabla \log p_{\mathrm{target}}(Y_0) \mathrm{d}Y_0 \\ &= \int p(Y_0 | Y_t) \nabla \log p_{\mathrm{target}}(Y_0) \mathrm{d}Y_0 \end{split}$$

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}}$$

$$\nabla \log p_t(Y_t) = \int p(Y_0|Y_t) \nabla \log p_{\text{target}}(Y_0) dY_0$$

Target score identity (TSI)

$$dY_t = \sigma \sqrt{2} dW_t$$
, $Y_0 \sim p_{\text{target}}$

$$\nabla \log p_t(Y_t) = \int p(Y_0|Y_t) \nabla \log p_{\text{target}}(Y_0) dY_0$$

Target score identity (TSI)

But we still do not know how to sample from $p(Y_0|Y_t)$

$$dY_t = \sigma \sqrt{2} dW_t$$
, $Y_0 \sim p_{\text{target}}$

$$\nabla \log p_t(Y_t) = \int p(Y_0|Y_t) \nabla \log p_{\text{target}}(Y_0) dY_0$$

Target score identity (TSI)

But we still do not know how to sample from $p(Y_0|Y_t)$

$$\nabla \log p_t(Y_t) = \int q(Y_0|Y_t) \frac{p(Y_0|Y_t)}{q(Y_0|Y_t)} \nabla \log p_{\text{target}}(Y_0) dY_0$$

$$dY_t = \sigma \sqrt{2} dW_t$$
, $Y_0 \sim p_{\text{target}}$

$$\nabla \log p_t(Y_t) = \int p(Y_0|Y_t) \nabla \log p_{\text{target}}(Y_0) dY_0$$

Target score identity (TSI)

But we still do not know how to sample from $p(Y_0|Y_t)$

$$\nabla \log p_t(Y_t) = \int q(Y_0|Y_t) \frac{p(Y_0|Y_t)}{q(Y_0|Y_t)} \nabla \log p_{\text{target}}(Y_0) dY_0$$

Importance Sampling using q

Want a sample process (prior to target),

To be the **time-reversal**, $V_{\text{target}} = V_{\text{target}} = V$

of a simple target process (target to prior)

But we still do not know how to sample from $p(Y_0|Y_t)$

 $\nabla \log p_t(Y_t) = \int q(Y_0|Y_t) \frac{p(Y_0|Y_t)}{q(Y_0|Y_t)} \nabla \log p_{\text{target}}(Y_0) dY_0$

Estimate score by TSI+IS, and regress it with a score net

Want a sample process (prior to target),

 $\nabla \log p_{\star}(Y_{\star}) = \int (Y_{\star}) \nabla \log p_{\mathrm{target}}(Y_{0}) dY_{0}$ To be the **time-reversal**,

of a simple target process (target to prior)

But we still do not know how to sample from $p(Y_0|Y_t)$

Any other choices to achieve this? YEEEES!

 $\nabla \log p_t(Y_t) = \int q(Y_0|Y_t) \frac{P(Y_0|Y_t)}{q(Y_0|Y_t)} \nabla \log p_{\text{target}}(Y_0) dY_0$

Importance Sampling using q

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Recall in diffusion models, we learn

$$f_{\theta}(X_t, t) = 2\sigma^2 \nabla \log p_{T-t}(X_t)$$

$$\mathrm{d}Y_t = \sigma\sqrt{2}\mathrm{d}W_t, Y_0 \sim p_{\mathrm{target}},$$

$$dX_t = 2\sigma^2 \nabla \log p_{T-t}(X_t) dt + \sigma \sqrt{2} dW_t, X_0 \sim p_{\text{prior}},$$

$$dY_t = \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = 2\sigma^2 \nabla \log p_{T-t}(X_t) dt + \sigma \sqrt{2} dW_t, X_0 \sim p_{\text{prior}},$$

$$dX_t = 2\sigma^2 \nabla \log p_{T-t}(X_t) dt + \sigma \sqrt{2} dW_t, X_0 \sim p_{\text{prior}},$$

We want the marginal density of this SDE at T-t, to be $p_{T-t}(X_t)$

$$dX_t = 2\sigma^2 \nabla \log p_{T-t}(X_t) dt + \sigma \sqrt{2} dW_t, X_0 \sim p_{\text{prior}},$$

We want the marginal density of this SDE at T-t, to be $p_{T-t}(X_t)$

What connects an SDE with its marginal density?

$$dX_t = 2\sigma^2 \nabla \log p_{T-t}(X_t) dt + \sigma \sqrt{2} dW_t, X_0 \sim p_{\text{prior}},$$

We want the marginal density of this SDE at T-t, to be $p_{T-t}(X_t)$

What connects an SDE with its marginal density?

Fokker-Planck equation!

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0$$

Do not worry on this formula

Let's focus on the high-level idea

$$\mathrm{d}X_t = f(X_t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}},$$

Fokker-Planck equation (in log space)

$$\partial_t \log p_t + \boxed{\nabla \cdot f} + \sqrt{\log p_t} \boxed{\cdot f} - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0$$

f only contains σ and score of marginal: $\nabla \log p_t$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t \big| = 0$$

LFS will have only one unknown term $\log p_t$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0$$

LFS will have only one unknown term $\log p_t$

We can parameter network for $\log p_t$, and learn it by $\min ||\text{LFS}||^2$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Want a sample process (prior to target),

Fokker-Planck equation (in log space)

To be the time-reversal,

$$\frac{\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 ||\nabla \log p_t||^2 - \sigma^2 \Delta \log p_t}{\text{of a simple target process (target to prior)}} = 0$$

LFS will have only one unknown term $\log p_t$

We can parameter network for $\log p_t$, and learn it by $\min ||\text{LFS}||^2$

matching the PDE induced by SDE

Want a sample process (prior to target),

To be the time-reversal,

of a simple target process (target to prior)

- 1.1 align forward with backward
- 1.2 align the marginal to the desired marginal by
 - 1.2.1 score matching
 - 1.2.2 satisfy PDE

This includes

- (1) DDS (denoising diffusion sampler)
- (2) PIS (path integral sampler)
- (3) DIS (diffusion time-reversal sampler)
- (4) GFlowNet (generative flow network)
- (5) iDEM (iterated denoising energy matching)
- (6) RDMC (reversal diffusion monte carlo)
- (7) PINN (physics-informed neural networks) sampler

aligning forward with backward

score matching/estimation with IS

satisfying PDE

• • •

 $dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$, we want $X_T \sim p_{\text{target}}$.

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}, \text{ we want } X_T \sim p_{\mathrm{target}}.$$

We can define a sequence of interpolants π_t :

$$\pi_0 = p_{\mathrm{prior}}, \pi_T = p_{\mathrm{target}}$$

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}, \text{ we want } X_T \sim p_{\mathrm{target}}.$$

We can define a sequence of interpolants π_t :

$$\pi_0 = p_{ ext{prior}}, \pi_T = p_{ ext{target}}$$

We want the marginal of X_t to be π_t .

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}$$
, we want $X_T \sim p_{\mathrm{target}}$.

We can define a sequence of interpolants π_t :

$$\pi_0 = p_{\mathrm{prior}}, \pi_T = p_{\mathrm{target}}$$

We want the marginal of X_t to be π_t .

One example for
$$\pi_t$$
: $\pi_t \propto p_{\mathrm{prior}}^{\beta_t} p_{\mathrm{target}}^{1-\beta_t}$

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \text{ we want } X_T \sim p_{\text{target}}$$

We can define a sequence of interpolants π_t

$$\pi_0 = p_{ ext{prior}}, \pi_T = p_{ ext{target}}$$

We want the marginal of X_t to be π_t .

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \text{ we want } X_T \sim p_{\text{target}}$$

Want a sample process (prior to target),

We can define a sequence of interpolants π_t :

whose marginal density at every time step,

$$\pi_0 = p_{ ext{prior}}, \pi_T = p_{ ext{target}}$$

aligns with known interpolants between prior and target

We want the marginal of X_t to be π_t

 $dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{prior}$, we want $X_T \sim p_{target}$

Want a sample process (prior to target),

We can define a sequence of interpolants π_t :

whose marginal density at every time step,

$$\pi_0 = p_{ ext{prior}}, \pi_T = p_{ ext{target}}$$

aligns with known interpolants between prior and target

We want the marginal of X_t to be π_t .

How to achieve this?

 $dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$, we want $X_T \sim p_{\text{target}}$

Want a sample process (prior to target),

We can define a sequence of interpolants π_t :

whose marginal density at every time step,

$$\pi_0 = p_{ ext{prior}}, \pi_T = p_{ ext{target}}$$

aligns with known interpolants between prior and target

We want the marginal of X_t to be π_t

How to achieve this?

Satisfy the PDE!

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 ||\nabla \log p_t||^2 - \sigma^2 \Delta \log p_t = 0$$

$$\log \pi_t \qquad \log \pi_t \qquad \log \pi_t \qquad \log \pi_t$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$\begin{split} \partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0 \\ \log \pi_t & \log \pi_t & \log \pi_t \end{split}$$

For example,
$$\pi_t = p_{\mathrm{prior}}^{\beta_t} p_{\mathrm{target}}^{1-\beta_t}/Z_{\pi_t}$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

For example,
$$\pi_t = p_{\mathrm{prior}}^{\beta_t} p_{\mathrm{target}}^{1-\beta_t}/Z_{\pi_t}$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$\begin{split} \partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0 \\ \partial_t \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} - \partial_t Z_{\pi_t} & \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} & \log \pi_t \end{split}$$

For example,
$$\pi_t = p_{\mathrm{prior}}^{\beta_t} p_{\mathrm{target}}^{1-\beta_t}/Z_{\pi_t}$$

$$\mathrm{d}X_t = f(X_t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}},$$

$$\begin{split} \partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0 \\ \partial_t \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} - \partial_t Z_{\pi_t} & \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} & \text{tr} \left(\nabla \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} \right) \end{split}$$

For example,
$$\pi_t = p_{\mathrm{prior}}^{\beta_t} p_{\mathrm{target}}^{1-\beta_t}/Z_{\pi_t}$$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\begin{split} \partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0 \\ \partial_t \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} - \partial_t Z_{\pi_t} & \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} & \text{tr} \left(\nabla \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} \right) \end{split}$$

Again, do not worry on this formula

Let's focus on the high-level idea

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Fokker-Planck equation (in log space)

$$\begin{split} \partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 \big| |\nabla \log p_t| \big|^2 - \sigma^2 \Delta \log p_t = 0 \\ \partial_t \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} - \partial_t Z_{\pi_t} & \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} & \text{tr} \left(\nabla \nabla \log p_{\text{prior}}^{\beta_t} p_{\text{target}}^{1-\beta_t} \right) \end{split}$$

The LHS only has **2 unknown terms**: scalar func $Z_{\pi_t}(t)$ and vector func f(X,t)

We can parameter network for $Z_{\pi_t}(t)$, f(X,t), and learn it by min $||LFS||^2$

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Want a sample process (prior to target),

whose marginal density at every time step,

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 ||\nabla \log p_t||^2 - \sigma^2 \Delta \log p_t = 0$$

aligns with known interpolants between prior and target

How to achieve this?

The LHS only has **2 unknown terms**: scalar func $Z_{\pi_t}(t)$ and vector func f(X,t)

$$dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Want a sample process (prior to target),

whose marginal density at every time step,

$$\partial_t \log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 |\nabla \log p_t|^2 - \sigma^2 \Delta \log p_t = 0$$

aligns with known interpolants between prior and target

Any other ways? YES! The LHS only has 2 unknown terms: scalar func $Z_{\pi_t}(t)$ and vector func f(X,t)

 $dX_t = f(X_t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$

Want a sample process (prior to target),

Fokker-Planck equation (in log space

whose marginal density at every time step,

 $\log p_t + \nabla \cdot f + \nabla \log p_t \cdot f - \sigma^2 ||\nabla \log p_t||^2 - \sigma^2 \Delta \log p_t = 0$

aligns with known interpolants between prior and target

Any other ways? YES! The LHS only has 2 unknown terms: scalar func $Z_{\pi_t}(t)$ and vector func f(X,t)

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$\mathrm{d}X_t = f(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}},$$

If the marginal at diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If the marginal at diffusion time t is π_t

its time-reversal is given by

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If the marginal at diffusion time t is π_t

its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

$$\mathrm{d}X_t = f(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}},$$

If the marginal at diffusion time t is π_t

its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

"Nelson's Condition"

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If the marginal at diffusion time t is π_t

its **time-reversal** is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If its time-reversal is given by

known term

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Time-dependent network

If its time-reversal is given by

The same network

known term

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

If its time-reversal is given by

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

then the marginal for at X_t diffusion time t is π_t

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}}) := q(X_{0:t_N})$$

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}},$$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}}) := p(X_{0:t_N})$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}}) := q(X_{0:t_N})$$

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}}$$

$$p_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}}) := p(X_{0:t_N})$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$p_{\text{prior}}(X_0)N(X_{t_1}|X_0)N(X_{t_2}|X_{t_1})...N(X_{t_N}|X_{t_{N-1}}) := q(X_{0:t_N})$$

$$dY_t = -f(Y_t, T - t)dt + 2\sigma^2 \nabla \log \pi_{T-t}(Y_t)dt + \sigma \sqrt{2}dW_t, Y_0 \sim \pi_T = p_{\text{target}}$$

$$\tilde{p}_{\text{target}}(Y_0)N(Y_{t_1}|Y_0)N(Y_{t_2}|Y_{t_1})...N(Y_{t_N}|Y_{t_{N-1}}) := \tilde{p}(X_{0:t_N})$$

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

We can use all objectives in the previous slide (idea 1.1)

Match $q(X_{0:t_N})$ with $\tilde{p}(X_{0:t_N})$:

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q\left[\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}\right]$$

$$D_{\mathrm{LV}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{Var}_{\pi} \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

$$D_{\text{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = E_{\pi} \left[\left(\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k \right)^2 \right]$$

Other choices exist, including sub-TB, DB, etc...

Match
$$q(X_{0:t_N})$$
 with $\tilde{p}(X_{0:t_N})$:

Want a sample process (prior to target),

$$D_{\mathrm{KL}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_q \left[\log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} \right]$$

whose marginal density at every time step,

$$D_{\text{LV}}[q(X_{0:t_N})|\tilde{p}(X_{0:t_N})] = \text{Var}_{\pi} \log \frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})}$$
 aligns with known interpolants between prior and target

$$D_{\mathrm{TB}}[q(X_{0:t_N})||\tilde{p}(X_{0:t_N})] = \mathrm{E}_{\pi}\left[\left(\log\frac{q(X_{0:t_N})}{\tilde{p}(X_{0:t_N})} - k\right)^2\right]$$
 match forward and backward process!

Other choices exist, including sub-TB, DB, etc...

Want a sample process (prior to target),

whose marginal density at every time step,

aligns with known interpolants between prior and target

- 1.1 align the marginal to the desired marginal by satisfying PDE
- 1.2 align forward with backward

This includes

- (1) NETS (non-equilibrium transport sampler)
- (2) PINN (physics-informed neural networks) sampler satisfying PDE
- (3) LFIS (Liouville Flow Importance Sampler)
- (4) CMCD (Controlled Monte Carlo Diffusions) aligning forward with backward

• • •

 $dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$, we want $X_T \sim p_{\text{target}}$.

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \text{ we want } X_T \sim p_{\text{target}}.$$

What if we do not train it?

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

What if we do not train it?

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, X_T \neq p_{\text{target}}$$

What if we do not train it?

$$\mathrm{d}X_t = f(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}, X_T \not\sim p_{\mathrm{target}}$$

What if we do not train it? How to rescue?

$$\mathrm{d}X_t = f(X_t,t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}, X_T \not\sim p_{\mathrm{target}}$$

What if we do not train it?

How to rescue?

Importance Sampling

$$\mathrm{d}X_t = f(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}},$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \quad \Rightarrow \quad \overrightarrow{\mathbf{Q}}(X)$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}}, \quad \Rightarrow \quad \mathbf{\bar{p}}(X)$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{prior}, \implies \vec{\mathbf{Q}}(X)$$

$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}}, \quad \Longrightarrow \quad \overleftarrow{\mathbf{p}}(X)$$

Importance weight:
$$\frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{prior}, \implies \vec{\mathbf{Q}}(X)$$

$$dY_t = g_{\theta}(Y_t, t) dt + \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}}, \implies \mathbf{\bar{p}}(X)$$

Also possible to learn it

Importance weight:
$$\frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \quad \overrightarrow{\mathbf{Q}}(X)$$

align

$$dY_t = g_{\theta}(Y_t, t) dt + \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}}, \implies \overleftarrow{\mathbf{p}}(X)$$

Also possible to learn it

Small variance

Importance weight: $\frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \quad \overrightarrow{\mathbf{Q}}(X)$$

align

$$dY_t = g_{\theta}(Y_t, t) dt + \sigma \sqrt{2} dW_t, Y_0 \sim p_{\text{target}}, \implies \overleftarrow{\mathbf{p}}(X)$$

Also possible to learn it

Small variance

Importance weight: $\frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}}(X)}$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \quad \Rightarrow \quad \vec{\mathbf{Q}}(X)$$

Predefine a sample process (prior to target),

$$dY_t = g_{\theta}(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}}, \Rightarrow \mathbf{\bar{P}}(X)$$

Also possible to learn it

Importance weight:
$$\frac{d\mathbf{Q}(X)}{d\mathbf{P}(X)}$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \quad \Rightarrow \quad \vec{\mathbf{Q}}(X)$$

Predefine a sample process (prior to target),

define or train a backward process (target to prior),
$$dY_t = g_\theta(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}}, \qquad \mathbf{P}(X)$$

Also possible to learn it

Small variance

Importance weight:
$$\frac{d\overline{\mathbf{Q}}(X)}{d\overline{\mathbf{P}}(X)}$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \quad \Rightarrow \quad \vec{\mathbf{Q}}(X)$$

Predefine a sample process (prior to target),

define or train a backward process (target to prior),
$$dY_t = g_\theta(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}}, \qquad P(X)$$

Also possible to learn it

perform importance sampling

Small variance

Importance weight: $\frac{d\overrightarrow{\mathbf{Q}}(X)}{d\overrightarrow{\mathbf{P}}(X)}$

This includes

. . .

- (1) AIS (Annealed Importance Sampling)
- (2) MCD (Monte Carlo Diffusions)
- (3) LDVI (Langevin Diffusion Variational Inference)

b) LDVI (Langeviii Diiiasion variationat iinteren

Fixed target and proposal

Fixed proposal, learned target

Diffusion Neural samplers

Overall framework:

- 1. Time-reversal sampler
- 2. Escorted transport sampler
- 3. Annealed variance reduction sampler

Objectives:

Write down backward and forward, align them (path measure alignment)

• Write down the marginal, align it with the sampling process (marginal alignment)

Diffusion Neural samplers

	Time-reversal sampler	Escorted transport sampler	Annealed Variance Reduction Sampler
Path measure alignment	DDS, DIS, PIS, GFN	CMCD, SLCD	MCD
Marginal alignment	iDEM, RDMC, PINN- sampler	NETS, PINN- sampler, LFIS	

Let's look at the loss again, for example:

Let's look at the loss again, for example:

$$D_{\mathrm{KL}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{E}_{\overrightarrow{\mathbf{Q}}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\mathrm{LV}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{Var}_{\overrightarrow{\boldsymbol{\pi}}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\text{TB}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathbf{E}_{\overrightarrow{\boldsymbol{\pi}}} \left[\left(\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} - k \right)^2 \right]$$

Let's look at the loss again, for example:

$$D_{\mathrm{KL}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathbf{F}_{\overline{\mathbf{Q}}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\mathrm{LV}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{Var}_{\overrightarrow{\pi}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\text{TB}}[\vec{\mathbf{Q}}||\dot{\vec{\mathbf{P}}}] = \mathbf{P}_{\widehat{\pi}} \left[\left(\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\dot{\vec{\mathbf{P}}}(X)} - k \right)^{2} \right]$$

Let's look at the loss again, for example:

$$D_{\mathrm{KL}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathbf{F}_{\overline{\mathbf{Q}}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\mathrm{LV}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{Var}_{\overrightarrow{\pi}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\mathrm{TB}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathbf{P}_{\overrightarrow{\boldsymbol{\pi}}} \left[\left(\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} - k \right)^{2} \right]$$

eneed to simulate the trajectory – expensive!

Let's look at the loss again, for example:

$$D_{\mathrm{KL}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathbf{F}_{\overline{\mathbf{Q}}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\mathrm{LV}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{Var}_{\overrightarrow{\pi}} \left[\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} \right]$$

$$D_{\mathrm{TB}}[\overrightarrow{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathbf{P}_{\overrightarrow{\boldsymbol{\pi}}} \left[\left(\log \frac{\mathrm{d}\overrightarrow{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} - k \right)^{2} \right]$$

eneed to simulate the trajectory – expensive!

Any ways for "simulation-free" training?

avoid simulating the trajectory (entirely) during training.

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t)$, $Z \sim p_{\text{base}}$

The second way of sampling

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t)$, $Z \sim p_{\text{base}}$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), Z \sim p_{\text{base}}$

The second way of sampling $X_0 = F_{\theta}(Z,0), Z \sim p_{\mathrm{base}}$ $\mathrm{d}X_t = \partial_t F_{\theta}(Z,t) \mathrm{d}t$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t)$, $Z \sim p_{\text{base}}$

The second way of sampling $X_0 = F_\theta(Z,0), Z \sim p_{\rm base}$ ${\rm d} X_t = \partial_t F_\theta(Z,t) {\rm d} t$

$$Z = F_{\theta}^{-1}(X_t, t)$$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t)$, $Z \sim p_{\text{base}}$

The second way of sampling $X_0 = F_{\theta}(Z,0), Z \sim p_{\text{base}}$ $\mathrm{d}X_t = \partial_t F_{\theta} \big(F_{\theta}^{-1}(X_t,t), t \big) \mathrm{d}t$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot,t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t)$, $Z \sim p_{\text{base}}$

$$X_t = F_{ heta}(Z,t), \quad Z \sim p_{ ext{base}}$$

The second way of sampling

$$X_0 = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$$

$$dX_t = \partial_t F_{\theta} (F_{\theta}^{-1}(X_t, t), t) dt$$
Standard form of ODE

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The second way of sampling
$$X_0 = F_{\theta}(Z,0), Z \sim p_{\text{base}}$$

$$\mathrm{d}X_t = \partial_t F_{\theta} \big(F_{\theta}^{-1}(X_t,t), t \big) \mathrm{d}t + \sigma_t \sqrt{2} \mathrm{d}W_t$$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The second way of sampling
$$X_0 = F_{\theta}(Z,0), Z \sim p_{\text{base}}$$

$$\mathrm{d} X_t = \partial_t F_{\theta} \big(F_{\theta}^{-1}(X_t,t), t \big) \mathrm{d} t$$

$$\mathrm{d} X_t = \partial_t F_{\theta} \big(F_{\theta}^{-1}(X_t,t), t \big) \mathrm{d} t + \sigma_t^2 \nabla \mathrm{log} q_{\theta}(X_t,t) \mathrm{d} t + \sigma_t \sqrt{2} \mathrm{d} W_t$$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The second way of sampling
$$X_0 = F_{\theta}(Z,0), Z \sim p_{\text{base}}$$

$$\mathrm{d}X_t = \partial_t F_{\theta}\big(F_{\theta}^{-1}(X_t,t),t\big)\mathrm{d}t \quad \text{Easily obtained by NF}$$

$$\mathrm{d}X_t = \partial_t F_{\theta}\big(F_{\theta}^{-1}(X_t,t),t\big)\mathrm{d}t + \sigma_t^2 \nabla \mathrm{log}q_{\theta}(X_t,t)\mathrm{d}t + \sigma_t \sqrt{2}\mathrm{d}W_t$$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot,t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t)$, $Z \sim p_{\text{base}}$ directly sample from time t

The second way of sampling
$$X_0 = F_{\theta}(Z,0), Z \sim p_{\text{base}}$$

$$\mathrm{d} X_t = \partial_t F_{\theta} \big(F_{\theta}^{-1}(X_t,t), t \big) \mathrm{d} t$$

$$\mathrm{d} X_t = \partial_t F_{\theta} \big(F_{\theta}^{-1}(X_t,t), t \big) \mathrm{d} t + \sigma_t^2 \nabla \mathrm{log} q_{\theta}(X_t,t) \mathrm{d} t + \sigma_t \sqrt{2} \mathrm{d} W_t$$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot,t)$ as an invertible function

The first way of sampling
$$X_t = F_{\theta}(Z, t)$$
, $Z \sim p_{\text{base}}$ directly sample from time t

The second way of sampling

$$X_0 = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$$
$$dX_t = \partial_t F_{\theta} (F_{\theta}^{-1}(X_t, t), t) dt$$

Calculate the same loss as other diffusion samplers

$$dX_t = \partial_t F_\theta \left(F_\theta^{-1}(X_t, t), t \right) dt + \sigma_t^2 \nabla \log q_\theta(X_t, t) dt + \sigma_t \sqrt{2} dW_t$$

$$\mathrm{d}X_t = \partial_t F_\theta \big(F_\theta^{-1}(X_t, t), t \big) \mathrm{d}t + \sigma_t^2 \nabla \log q_\theta(X_t, t) \mathrm{d}t + \sigma_t \sqrt{2} \mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}$$

$$\mathrm{d}X_t = \partial_t F_\theta \big(F_\theta^{-1}(X_t,t),t \big) \mathrm{d}t + \sigma_t^2 \nabla \mathrm{log} q_\theta(X_t,t) \mathrm{d}t + \sigma_t \sqrt{2} \mathrm{d}W_t, X_0 \sim p_\mathrm{prior}$$
 time-reversal
$$\mathrm{d}X_t = \partial_t F_\theta \big(F_\theta^{-1}(X_t,t),t \big) \mathrm{d}t - \sigma_t^2 \nabla \mathrm{log} q_\theta(X_t,t) \mathrm{d}t + \sigma_t \sqrt{2} \mathrm{d}W_t^-, X_T \sim q_\theta(\cdot,T)$$
 Align
$$\mathrm{d}X_t = g(X_t) \mathrm{d}t + \sigma_t \sqrt{2} \mathrm{d}W_t^-, X_T \sim p_\mathrm{target}$$
 a simple function, e.g., 0

same direction – Girsanov Theorem applicable

$$\mathrm{d}X_t = \partial_t F_\theta \big(F_\theta^{-1}(X_t,t),t \big) \mathrm{d}t + \sigma_t^2 \nabla \mathrm{log} q_\theta(X_t,t) \mathrm{d}t + \sigma_t \sqrt{2} \mathrm{d}W_t, X_0 \sim p_\mathrm{prior}$$
 time-reversal
$$\mathrm{d}X_t = \partial_t F_\theta \big(F_\theta^{-1}(X_t,t),t \big) \mathrm{d}t - \sigma_t^2 \nabla \mathrm{log} q_\theta(X_t,t) \mathrm{d}t + \sigma_t \sqrt{2} \mathrm{d}W_t^-, X_T \sim q_\theta(\cdot,T)$$
 Align
$$\mathrm{d}X_t = g(X_t) \mathrm{d}t + \sigma_t \sqrt{2} \mathrm{d}W_t^-, X_T \sim p_\mathrm{target}$$
 a simple function, e.g., 0

- same direction Girsanov Theorem applicable
- $lue{z}$ simulation-free evaluation can always obtain sample by 1-step $X_t = F_{ heta}(Z,t)$, $Z \sim p_{\mathrm{base}}$

Great! How does it perform?

Great! How does it perform?

unfortunately...

Great! How does it perform?

unfortunately...

Great! How does it perform?

unfortunately...

Why?

Why?

Objective? Same as DDS

Why?

Objective? Same as DDS

Capacity? We target is so simple

Why?

Objective? Same as DDS

Capacity? We target is so simple

Network parameterization? 🚱 might be the reason

a. DDS/PIS/DDS/GFN...

$$f_{\theta}(\cdot, t) = \text{NN}_{1,\theta}(\cdot, t) + \text{NN}_{2,\theta}(t) \circ \nabla \log p_{\text{target}}(\cdot)$$

a. DDS/PIS/DDS/GFN...

$$f_{\theta}(\cdot,t) = \text{NN}_{1,\theta}(\cdot,t) + \text{NN}_{2,\theta}(t) \circ \nabla \log p_{\text{target}}(\cdot)$$

b. CMCD/NETS

$$dX_{t} = (f_{\theta}(X_{t}, t) + \sigma_{t}^{2} \nabla \log \pi_{t}(X_{t}))dt + \sqrt{2} \sigma_{t} dW_{t} \qquad \overrightarrow{\mathbf{Q}_{\theta}}(X)$$

$$dX_{t} = (f_{\theta}(X_{t}, t) - \sigma_{t}^{2} \nabla \log \pi_{t}(X_{t}))dt + \sqrt{2} \sigma_{t} dW_{t}^{-} \qquad \overleftarrow{\mathbf{P}_{\theta}}(X)$$

a. DDS/PIS/DDS/GFN...

$$f_{\theta}(\cdot,t) = \text{NN}_{1,\theta}(\cdot,t) + \text{NN}_{2,\theta}(t) \circ \nabla \log p_{\text{target}}(\cdot)$$

b. CMCD/NETS

$$dX_{t} = (f_{\theta}(X_{t}, t) + \sigma_{t}^{2} \nabla \log \pi_{t}(X_{t}))dt + \sqrt{2} \sigma_{t} dW_{t} \qquad \overrightarrow{\mathbf{Q}_{\theta}}(X)$$

$$dX_{t} = (f_{\theta}(X_{t}, t) - \sigma_{t}^{2} \nabla \log \pi_{t}(X_{t}))dt + \sqrt{2} \sigma_{t} dW_{t}^{-} \qquad \overleftarrow{\mathbf{P}_{\theta}}(X)$$

a. DDS/PIS/DDS/GFN...

$$f_{\theta}(\cdot,t) = \text{NN}_{1,\theta}(\cdot,t) + \text{NN}_{2,\theta}(t) + \nabla \log p_{\text{target}}(\cdot)$$
 When we do simulation, we are secretly running a Langevin!

b. CMCD/NETS

$$dX_{t} = (f_{\theta}(X_{t}, t) + \sigma_{t}^{2} \nabla \log \pi_{t}(X_{t}))dt + \sqrt{2} \sigma_{t} dW_{t} \qquad \overrightarrow{\mathbf{Q}_{\theta}}(X)$$

$$dX_{t} = (f_{\theta}(X_{t}, t) - \sigma_{t}^{2} \nabla \log \pi_{t}(X_{t}))dt + \sqrt{2} \sigma_{t} dW_{t} \qquad \overleftarrow{\mathbf{P}_{\theta}}(X)$$

a. DDS/PIS/DDS/GFN...

$$f_{\theta}(\cdot,t) = \text{NN}_{1,\theta}(\cdot,t) + \text{NN}_{2,\theta}(t) \triangleleft \nabla \log p_{\text{target}}(\cdot)$$
 When we do simulation, we are secretly running a Langevin!

b. CMCD/NETS

What if we remove this Langevin?

$$dX_t = (f_{\theta}(X_t, t) + \sigma_t^2 \nabla \log \pi_t(X_t))dt + \sqrt{2} \sigma_t dW_t \qquad \overrightarrow{\mathbf{Q}_{\theta}}(X)$$

$$dX_t = (f_{\theta}(X_t, t) - \sigma_t^2 \nabla \log \pi_t(X_t)) dt + \sqrt{2} \sigma_t dW_t^- \qquad \overleftarrow{\mathbf{P}_{\theta}}(X)$$

a. DDS/PIS/DDS/GFN...

$$f_{\theta}(\cdot, t) = NN_{1,\theta}(\cdot, t) + \overline{NN_{2,\theta}(t)} \circ \overline{\nabla} \log p_{\text{target}}(\cdot)$$

b. CMCD

$$dX_t = (f_{\theta}(X_t, t) + \sigma_t^2 \nabla \log \pi_t(X_t))dt + \sqrt{2} \sigma_t dW_t \qquad \overrightarrow{\mathbf{Q}_{\theta}}(X)$$

$$dX_t = (f_{\theta}(X_t, t) - \sigma_t^2 \nabla \log \pi_t(X_t))dt + \sqrt{2} \sigma_t dW_t^- \qquad \overleftarrow{\mathbf{P}_{\theta}}(X)$$

c. PINN (NETS)

$$dX_t = (f_{\theta}(X_t, t) + \sigma_t^2 \nabla \log \pi_t(X_t)) dt + \sqrt{2} \sigma_t dW_t \qquad \overrightarrow{\mathbf{Q}_{\theta}}(X)$$

a. DDS/PIS/DDS/GFN...

$$f_{\theta}(\cdot, t) = NN_{1,\theta}(\cdot, t) + \overline{NN_{2,\theta}(t)} \circ \overline{\nabla} \log p_{\text{target}}(\cdot)$$

b. CMCD

$$dX_{t} = (f_{\theta}(X_{t}, t) + \sigma_{t}^{2} \nabla \log \pi_{t}(X_{t}))dt + \sqrt{2} \sigma_{t} dW_{t} \qquad \overrightarrow{\mathbf{Q}_{\theta}}(X)$$

$$dX_{t} = (f_{\theta}(X_{t}, t) - 2\sigma_{t}^{2} \nabla \log \pi_{t}(X_{t}))dt + \sqrt{2} \sigma_{t} dW_{t} \qquad \overleftarrow{\mathbf{P}_{\theta}}(X)$$

c. PINN (NETS)

$$dX_t = (f_{\theta}(X_t, t) + \sigma_t^2 \nabla \log \pi_t(X_t)) dt + \sqrt{2} \sigma_t dW_t \qquad \overrightarrow{\mathbf{Q}_{\theta}}(X)$$

a. DDS/PIS/DDS/GFN...

$$f_{\theta}(\cdot, t) = NN_{1,\theta}(\cdot, t) + \overline{NN_{2,\theta}(t)} \circ \overline{\nabla} \log p_{\text{target}}(\cdot)$$

b. CMCD

$$dX_t = (f_{\theta}(X_t, t) + \sigma_t^2 \nabla \log \pi_t(X_t))dt + \sqrt{2} \sigma_t dW_t \qquad \overrightarrow{\mathbf{Q}_{\theta}}(X)$$

$$dX_t = (f_{\theta}(X_t, t) - 2\sigma_t^2 \nabla \log \pi_t(X_t))dt + \sqrt{2} \sigma_t dW_t^- \qquad \overleftarrow{\mathbf{P}_{\theta}}(X)$$

c. PINN (NETS)

$$dX_t = (f_{\theta}(X_t, t) + \overline{\sigma_t^2 \nabla \log \pi_t(X_t)})dt + \sqrt{2} \sigma_t dW_t \qquad \overrightarrow{\mathbf{Q}_{\theta}}(X)$$

When we do simulation with \mathbf{Q}_{θ} , we do not have the secret Langevin anymore

a. Langevin precondition is necessary to prevent mode collapse

DDS

a. Langevin precondition is necessary to prevent mode collapse

CMCD

b. Mode collapse can happen even starting with "perfect" initialization.

DDS w/o Langevin for GMM-3:

c. PINN objective is different

- 1. Sensitive to interpolant
- 2. Sensitive to prior size
- 3. Robust to Langevin

Sample Efficiency?

If neural samplers need to run Langevin secretly,

Why not directly run MCMC to collect data?

SOTA MCMC in MD simulation

Wighly parallel

Correlated samples

high temperature $p_{\mathrm{target}}^{\mathrm{1/temp}}$

Need more simulation for new samples

Correlated samples

high temperature $p_{\mathrm{target}}^{\mathrm{1/temp}}$

Need more simulation for new samples

Generative models can easily address them! But is it worth it?

low temperature $p_{
m target}$

Figure 2: Sample quality vs target evaluation times for different approaches with different objectives on GMM-40 target. *NETS uses mode interpolation, which is distinct from that employed in others.

1. Langevin term plays an importance role in neural samplers

- 1. Langevin term plays an importance role in neural samplers
- 2. If we need Langevin gradient anyway, we need to **think more on the sample efficiency** (might need to be open to using data)

- 1. Langevin term plays an importance role in neural samplers
- 2. If we need Langevin gradient anyway, we need to **think more on the sample efficiency** (might need to be open to using data)
- 3. Incorporating with / use network to improve **PT** might be a promising direction

- 1. Langevin term plays an importance role in neural samplers
- 2. If we need Langevin gradient anyway, we need to **think more on the sample efficiency** (might need to be open to using data)
- 3. Incorporating with / use network to improve **PT** might be a promising direction
- 4. Better prior, interpolant, explorative objectives still needed

Thank you!

Jiajun He

https://jiajunhe98.github.io/

jh2383@cam.ac.uk