Mass and Moments

Chase Mathison¹

Shenandoah University

19 March 2024

Announcements

- Exam next Monday.
- 2 Office hours, 10am 11am.

Center of mass and moment of masses on a line

We'll start with masses on a line. If we have 2 (not necessarily equal) masses on a line (think of a see-saw) then what would be the point where we could perfectly balance that line? This is called the _____.

Let's find this:

Center of mass

In general, if we have n point masses at n points, we have the following:

Theorem (Center of mass)

If m_1, m_2, \ldots, m_n are masses at the points x_1, x_2, \ldots, x_n respectively, then we have the center of mass

$$\bar{x} =$$

The value $M = m_1x_1 + m_2x_2$ is called the of the system.

Find the center of mass and the moment of the system with respect to the origin for the system of masses:

$$m_1 = 2kg$$
 at $x_1 = 0.2m$, $m_2 = 3kg$ at $x_2 = 1m$, $m_3 = 7kg$ at $x_3 = -0.5m$, $m_4 = 3.5kg$ at $x_4 = -0.75m$

Center of mass and moments of system in the plane

We can generalize the previous ideas to masses in the xy-plane. Let's do this for 2 masses:

Center of mass and moments of system in the plane

Again, we can generalize this to n masses in the plane at n points:

Theorem (Center of mass and moments in the plane)

If m_1, m_2, \ldots, m_n are point masses at the points $(x_1, y_1), (x_2, y_2), \ldots (x_n, y_n)$ respectively, then we define the quantities

$$M_{\times} =$$

$$M_y =$$

$$\bar{x} =$$

$$\bar{y} =$$

Find the moments M_x , M_y and the center of mass of the system of masses:

$$m_1 = 2kg$$
, at $(-1,3)$

$$m_2 = 6kg$$
, at $(1,1)$

$$m_3 = 4kg$$
, at $(2, -2)$

But what if we want to find the center of mass (or centroid, which is the geometric center of an object) of a 2 dimensional object, like a thin plate or some other thin object defined by a function?

For what follows, we're going to find the moments about the x and y axis and the center of mass for what's called a *lamina*, which is a thin sheet of uniform density ρ represented as a region in the xy-plane.

Can you guess what we're about to do?

Theorem (Center of mass of a thin sheet)

Suppose R is the region bounded above by the continous function y = f(x), below by y = 0 and on the left and right by x = a and x = b respectively. Let ρ (rho) denote the density of the associated lamina. Then we have the following:

2

$$M_{\times} =$$

and

$$M_{\nu} =$$

3

$$\bar{x} =$$

and

$$\bar{y} =$$

Let R be the region bounded by the curve $y = \sqrt{x}$, the x-axis and x = 4. This region has a constant density of $2kg/m^2$ where x is measured in meters. Find the center of mass of this region (lamina). What is the centroid?

More general lamina

Let's look at what happens if the lamina we are examining is defined by an upper curve y = f(x) and a lower curve y = g(x), again with a constant density ρ which has units of mass per length².

More general lamina

In general, assume R is the region bounded above by the graph of y = f(x), below by the graph of y = g(x) and on the left and right by x = a and x = b respectively. Also, suppose that the density of the associated lamina is the constant ρ . Then:

Find the center of mass of the region bounded by the curves $y=1-x^2$ and y=x, with a constant density of $\rho=1 \text{kg/m}^2$ where x is in m.

Example (The symmetry principal)

Find the center of mass of the region bounded by the curves $y=x^2-1$ and $\sqrt{1-x^2}$, with constant density of $\rho=3{\rm kg/m^2}$ where x is in m.

One more example

Find the center of mass of the region bounded by the curve $y=\cos(x)$ and the x-axis between $x=-\pi/2$ and $x=\pi/2$, where the lamina has a constant density of 1kg/m^2 where x is in meters.