Boolean model

Boolean model

Vector space model

Probabilistic model

Boolean model

- The Boolean model is a simple retrieval model based on
 - set theory, Boolean algebra
- Index term's significance is represented by binary weights
 - $w_{i,j} \in \{0,1\}$
- The set of index terms for a document d_j is denoted as R_{d_j}
- The set of documents for an index term t_i is denoted as R_{t_i}
- Queries are defined as Boolean expressions over index terms
 - Boolean operators AND, OR, NOT
- The relevance is modelled as a binary property of the documents

•
$$SC(q, d_j) = 0$$
 or $SC(q, d_j) = 1$

Boolean model: example

- Given a set of index terms {t₁, t₂, t₃}
- Given a set of documents
 - $d_1 = [1,1,1]^T$
 - $d_2 = [1,0,0]^T$
 - $d_3 = [0,1,0]^T$
- Calculate the set of documents for each index term
 - $R_{t_1} = \{d_1, d_2\}$
 - $R_{t_2} = \{d_1, d_3\}$
 - $R_{t_3} = \{d_1\}$

Boolean model: example

- Each query can be expressed in terms of R_{t_i}
- $q = t_1 \rightarrow R_{t_1} = \{d_1, d_2\}$
- $q = t_1 \land t_2 \to R_{t_1} \cap R_{t_2} = \{d_1, d_2\} \cap \{d_1, d_3\} = \{d_1\}$
- $\quad q = t_1 \vee t_2 \to R_{t_1} \cup R_{t_2} = \{d_1, d_2\} \cup \{d_1, d_3\} = \{d_1, d_2, d_3\}$
- $q = \neg t_3 \to R_{t_3}^C = \{d_1\}^C = \{d_2, d_3\}$

Boolean model: queries in DNF

Each query can be also expressed in a Disjunctive Normal Form

•
$$q = t_3 \land \neg(t_1 \land t_2) \rightarrow R_{t_3} \cap (R_{t_1} \cap R_{t_2})^C$$

t_1	t_2	t_3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

•
$$q_{dnf} = (\neg t_1 \land \neg t_2 \land t_3) \lor (\neg t_1 \land t_2 \land t_3) \lor (t_1 \land \neg t_2 \land t_3)$$

Boolean model: queries in DNF

- $q = t_3 \land \neg(t_1 \land t_2)$
- $q_{dnf} = (\neg t_1 \land \neg t_2 \land t_3) \lor (\neg t_1 \land t_2 \land t_3) \lor (t_1 \land \neg t_2 \land t_3)$ t_1

- Each disjunction represents an ideal set of documents
- The query is satisfied by a document if such document is contained in a disjunction term

Boolean model: conclusions

- Pros
 - Precise semantics
 - Structured queries
 - Intuitive for experts
 - Simple and neat formalism
 - Adopted by many of early commercial bibliographic systems
- Cons
 - No ranking
 - Retrieval strategy is based on a binary decision criterion
 - Not simple to translate an information need into a Boolean expression

Vector space model

Boolean model

Vector space model

Probabilistic model

Vector space model

- Documents and queries are represented as vectors in the index terms space
- M = number of index terms = index terms space dimensionality = dictionary size
- Index term's significance is represented by real valued weights
 - $w_{i,j} \ge 0$ is associated to the pair (t_i, d_j)
- Index terms are represented by unit vectors and form a canonical basis for the vector space
 - Index term vector for term t_i

$$- \mathbf{t}_i = [0, ..., 1, ..., 0]^T$$

Vector space model

- Document d_j is represented by a vector \mathbf{d}_j which is a linear combination of index term vectors weighted by the index term significance for the document
 - $\mathbf{d}_j = \sum_{i=1}^M w_{i,j} \cdot \mathbf{t}_i$
- Query q is represented by a vector q in the index terms space

•
$$q = [w_{1,q}, w_{2,q}, ..., w_{M,q}]^T$$

- The Similarity Coefficient between a query and each document is real valued, thus producing a ranked list of documents
 - It takes into consideration documents which match the query terms only partially
 - Ranked document answer set is more effective than document answer set retrieved by the Boolean model
 - Better match of user information need
- There are various measures that can be used to asses the similarity between documents/query
- A measure of similarity between documents shall fulfil the following
 - If d_1 is near d_2 , then d_2 is near d_1
 - If d_1 is near d_2 , and d_2 is near d_3 , then d_1 is not far from d_3
 - No document is closer to d than d itself

- Euclidean distance
 - Length of difference vector

$$d_{L_2}(\boldsymbol{q}, \boldsymbol{d}_j) = \|\boldsymbol{q} - \boldsymbol{d}_j\|_2 = \sqrt{\sum_{i=1}^{M} (w_{i,q} - w_{i,j})^2}$$

Can be converted in a similarity coefficient in different ways

$$-SC(q,d_j) = e^{-\|\boldsymbol{q}-\boldsymbol{d}_j\|_2}$$

$$-SC(q, d_j) = \frac{1}{1 + \|q - d_j\|_2}$$

- Issue of normalization
 - Euclidian distance applied to un-normalized vectors tend to make any large document to be not relevant to most queries, which are typically short

- Cosine similarity
 - Cosine of the angle between two vectors

$$SC(q, d_{j}) = \cos(\alpha) = \frac{q^{T} d_{j}}{\|q\| \|d_{j}\|} = \frac{\sum_{i=1}^{M} w_{i,q} w_{i,j}}{\sqrt{\sum_{i=1}^{M} (w_{i,q})^{2} \sum_{i=1}^{M} (w_{i,j})^{2}}}$$

- It's a similarity, not a distance!
 - Triangle inequality holds for distances but not for similarities
- The cosine measure normalizes the results by considering the length of the document vector
- Given two vectors, their similarity is determined by their directions
- For normalized vectors, the cosine similarity is equal to the inner product

Jaccard's similarity

$$SC(q, d_{j}) = \frac{q^{T} d_{j}}{q^{T} q + d_{j}^{T} d_{j} - q^{T} d_{j}} =$$

$$= \frac{\sum_{i=1}^{M} w_{i,q} w_{i,j}}{\sum_{i=1}^{M} (w_{i,q})^{2} + \sum_{i=1}^{M} (w_{i,j})^{2} - \sum_{i=1}^{M} w_{i,q} w_{i,j}}$$

- Extension of Jaccard's similarity coefficient for binary vectors
- Other similarity measures
 - Dice's similarity coefficient
 - Overlap coefficient

- Boolean model used binary weights for index terms in a document
 - terms with different discriminative power have the same weight
 - normalization might not be enough to compensate for differences in documents lengths. A longer document has more opportunity to have some components that are relevant to a query

- In Vector Space Model index terms weights are non-negative realvalued
 - Index term weights should be made proportional to its importance, both in the document and in the document collection

In Vector Space Model the index term weighting is defined as

$$w_{i,j} = t f_{i,j} \cdot i d f_i$$

- $tf_{i,j} \rightarrow \text{frequency of term } t_i \text{ in document } d_j$
 - provides one measure of how well term t_i describes the document contents
- idf_i → inverse document frequency of term t_i for the whole document collection
 - terms which appear in many documents are not very useful for distinguishing a relevant document from a non-relevant one
- $W_{i,j}$
 - increases with the *number of occurrences* of term t_i within document d_i
 - Increases with the *rarity* of term t_i across the whole document collection

- $tf_{i,j} \rightarrow \text{frequency of term } t_i \text{ in document } d_j$
- Define $freq_{i,j}$ = number of occurrences of term t_i in document d_j
- Three possible models for $tf_{i,j}$
 - $tf_{i,j} = freq_{i,j}$
 - simplest model
 - $tf_{i,j} = \frac{freq_{i,j}}{\max_i freq_{i,j}}$
 - normalized model
 - $tf_{i,j} = \begin{cases} 1 + \log_2(freq_{i,j}) & \text{if } freq_{i,j} \ge 1 \\ 0 & \text{otherwise} \end{cases}$
 - prevents bias toward longer documents

- idf_i → inverse document frequency of term t_i for the whole documents collection
- Define N = number of documents in the collection
- Define n_i = number of documents containing term t_i

$$idf_i = \log_2 \frac{N}{n_i}$$

- Given
 - Query
 - q = "gold silver truck"
 - Documents collection
 - d_1 = "shipment of gold damaged in a fire"
 - d_2 = "delivery of silver arrived in a silver truck"
 - $-d_3$ = "shipment of gold arrived in a truck"
 - The term frequency model
 - $-tf_{i,j} = freq_{i,j}$
- Determine the ranking of the documents collection with respect to the given query using a Vector Space Model with the following similarity measures
 - Euclidean distance
 - Cosine similarity

- Dictionary = {"shipment", "of", "gold", "damaged", "in", "a", "fire", "delivery", "silver", "arrived", "truck"}
- $N = 3 \rightarrow$ number of documents in the collection
- idf_i for each term t_i

t _i	ship ment	of	gold	dam aged	in	а	fire	deliv ery	silver	arriv ed	truck
n_i	2	3	2	1	3	3	1	1	1	2	2
idf_i	0.58	0	0.58	1.58	0	0	1.58	1.58	1.58	0.58	0.58

- Purge dictionary removing terms with $idf_i = 0$
 - Dictionary = {"shipment", "gold", "damaged", "fire", "delivery", "silver", "arrived", "truck"}

• $tf_{i,j}$ for each couple (t_i, d_j)

t_i	shipment	gold	damaged	fire	delivery	silver	arrived	truck
$tf_{i,1}$	1	1	1	1	0	0	0	0
$tf_{i,2}$	0	0	0	0	1	2	1	1
$tf_{i,3}$	1	1	0	0	0	0	1	1

• $w_{i,j}$ for each couple (t_i, d_j)

t_{i}	shipment	gold	damaged	fire	delivery	silver	arrived	truck
$w_{i,1}$	0.58	0.58	1.58	1.58	0	0	0	0
$W_{i,2}$	0	0	0	0	1.58	3.16	0.58	0.58
$W_{i,3}$	0.58	0.58	0	0	0	0	0.58	0.58

• $tf_{i,q}$ and $w_{i,q}$ for each term t_i

t_i	shipment	gold	damaged	fire	delivery	silver	arrived	truck
$tf_{i,q}$	0	1	0	0	0	1	0	1
$W_{i,q}$	0	0.58	0	0	0	1.58	0	0.58

- Let's write the documents and the query as vectors
 - $d_1 = [0.58, 0.58, 1.58, 1.58, 0, 0, 0]$
 - $d_2 = [0, 0, 0, 1.58, 3.16, 0.58, 0.58]$
 - $d_3 = [0.58, 0.58, 0, 0, 0, 0, 0.58, 0.58]$
 - q = [0, 0.58, 0, 0, 0, 1.58, 0, 0.58]

Euclidean distance as Similarity Coefficient

•
$$d_{L_2}(\boldsymbol{q}, \boldsymbol{d}_1) = \sqrt{0.58^2 + 1.58^2 + 1.58^2 + 1.58^2 + 0.58^2} = 2.86$$

•
$$d_{L_2}(\mathbf{q}, \mathbf{d}_2) = \sqrt{0.58^2 + 1.58^2 + 1.58^2 + 0.58^2} = 2.38$$

•
$$d_{L_2}(\mathbf{q}, \mathbf{d}_3) = \sqrt{0.58^2 + 1.58^2 + 0.58^2} = 1.78$$

•
$$SC(q, d_1) = \frac{1}{1 + d_{L_2}(q, d_1)} = 0.26$$

•
$$SC(q, d_2) = \frac{1}{1 + d_{L_2}(q, d_2)} = 0.30$$

•
$$SC(q, d_3) = \frac{1}{1 + d_{L_2}(q, d_3)} = 0.36$$

• Rank: $d_3 > d_2 > d_1$

Cosine similarity as Similarity Coefficient

•
$$SC(q, d_1) = \frac{q^T d_1}{\|q\| \|d_1\|} = \frac{0.34}{1.79 \cdot 2.39} = 0.08$$

•
$$SC(q, d_2) = \frac{q^T d_2}{\|q\| \|d_2\|} = \frac{5.37}{1.79 \cdot 3.64} = 0.82$$

•
$$SC(q, d_3) = \frac{q^T d_3}{\|q\| \|d_3\|} = \frac{0.68}{1.79 \cdot 1.17} = 0.33$$

• Rank: $d_2 > d_3 > d_1$

Vector space model: conclusions

Pros

- Term-weighting scheme improves retrieval performance w.r.t.
 Boolean model
- Partial matching strategy allows retrieval of documents that approximate the query conditions
- Ranked output and output magnitude control
- Flexibility and intuitive geometric interpretation

Cons

- Assumption of independency between terms
- Impossibility of formulating "structured" queries (No operator (OR, AND, NOT, etc..)
- Terms are axes of a vector space (Even with stemming, may have 20.000+ dimensions)

Boolean model

Vector space model

Probabilistic model

 The probabilistic model computes the Similarity Coefficient between queries and documents as the probability that a document will be relevant to a query

• Given a query q, let R_q denote the set of documents relevant to the query q (the ideal answer set)

• The set R_q is unknown

- First, generate a preliminary probabilistic description of the ideal answer set R_a which is used to retrieve a first set of documents.
 - From relevant documents if some are known
 - relevance feedback
 - Prior domain knowledge

- The probabilistic model can be used together with relevance feedback
- An interaction with the user is then initiated with the purpose of improving the probabilistic description of the ideal answer set.
 - The user takes a look at the retrieved documents and decides which ones are relevant and which ones are not (in truth, only the first top documents need to be examined).
 - The *system* then uses this information to *refine the description* of the ideal answer set.
 - By repeating this process many times, it is expected that such a description will evolve and become closer to the real description of the ideal answer set.

Probabilistic model: probability basics

$$p(a) + p(\bar{a}) = 1$$

$$p(a,b) = p(a \cap b)$$

$$p(a|b) = \frac{p(a \cap b)}{p(b)} = \frac{p(a,b)}{p(b)}$$

$$p(a) = \sum_{x \in \{b, \bar{b}\}} p(a|x) \cdot p(x)$$

$$p(a|b) \cdot p(b) = p(b|a) \cdot p(a)$$

$$O(a) = \frac{p(a)}{p(\bar{a})} = \frac{p(a)}{1 - p(a)}$$

Probabilistic model: Prob. Ranking Principle

- Probabilistic model captures IR problem in a probabilistic framework
- The probability ranking principle (PRP)
 - "If a reference retrieval system's response to each request is a ranking of the documents in the collection in order of decreasing probability of relevance to the user who submitted the request, ..., the overall effectiveness of the system to its user will be the best that is obtainable..."

 [Robertson and Jones, 1976]
- Classic probabilistic models are also known as binary independence retrieval (BIR) models

Probabilistic model: Prob. Ranking Principle

- Let d be a document in the collection
- Let R represent relevance of a document w.r.t a given (fixed)
 query q and let NR represent non-relevance
- Need to find $p(R|q,d_j)$: probability that a document d_j is relevant given the query q
- According to PRP, rank documents in descending order of $p(R|q,d_i)$

- Model hypothesis: Binary Independence Model
 - Distribution of terms in relevant documents is different from of terns in non relevant documents
 - Terms that occur in many relevant documents, and are absent in many irrelevant documents, should be given greater importance
- Binary = Boolean: documents are represented as binary incidence vectors of terms (remember the Boolean model?)
 - $w_{i,j} \in \{0,1\}$
 - $-w_{i,j} = 1$ if term t_i is present in document d_j
 - otherwise $w_{i,j} = 0$
- Independence: terms occur in documents independently one from each other
- Remark: different documents can be modelled by same vector

- Documents are binary incidence vectors (as for Boolean model)
 - $d_j \rightarrow d_j$
- Also queries are binary incidence vectors (remember that in Boolean models queries were logical expressions)
 - $q \rightarrow q$
- Given a query q
 - For each document d_i need to compute $p(R|q,d_i)$
 - Replace with computing $p(R|q,d_j)$, where d_i is the binary incidence vector representing d_j and q is the binary incidence vector representing q

- Prior probabilities (independent from a specific document)
 - p(R|q) probability of retrieving a relevant document
 - p(NR|q) probability of retrieving a non-relevant document
- $p(d_j|q,R)$ probability that if a relevant document is retrieved, it is document d_j .
- $p(d_j|q,NR)$ probability that if a non-relevant document is retrieved, it is document d_i .

- Need to find the posterior probability for a specific document.
 By Bayes' theorem:
 - $p(R|q,d_j) = p(d_j|q,R) \cdot \frac{p(R|q)}{p(d_j|q)}$
 - $p(NR|q,d_j) = p(d_j|q,NR) \cdot \frac{p(NR|q)}{p(d_j|q)}$
 - $p(R|q,d_j) + p(NR|q,d_j) = 1$
- Given a query q
 - Estimate how terms contribute to relevance
 - Compute the probability of each document d_j to be relevant with respect to the query $q \to p(R|q,d_j)$
 - Order documents by decreasing probability $p(R|q,d_i)$

Starting from the odds

$$O(R|\mathbf{q}, \mathbf{d}_{j}) = \frac{p(R|\mathbf{q}, \mathbf{d}_{j})}{p(NR|\mathbf{q}, \mathbf{d}_{j})} = \frac{\frac{p(\mathbf{d}_{j}|\mathbf{q}, R)p(R|\mathbf{q})}{p(\mathbf{d}_{j}|\mathbf{q}, NR)p(NR|\mathbf{q})}}{\frac{p(\mathbf{d}_{j}|\mathbf{q}, NR)p(NR|\mathbf{q})}{p(\mathbf{d}_{j}|\mathbf{q})}}$$

$$= \frac{p(\mathbf{d}_{j}|\mathbf{q}, R)p(R|\mathbf{q})}{p(\mathbf{d}_{j}|\mathbf{q}, NR)p(NR|\mathbf{q})} = \frac{p(R|\mathbf{q})}{p(NR|\mathbf{q})} \frac{p(\mathbf{d}_{j}|\mathbf{q}, R)}{p(NR|\mathbf{q})}$$

constant for a given query

$$-O(R|\mathbf{q}) = \frac{p(R|\mathbf{q})}{p(NR|\mathbf{q})}$$

needs to be estimated for each document

- Using the independence assumption
 - Consider a dictionary of M terms

$$p(\mathbf{d}_{j}|\mathbf{q},R) = \prod_{\substack{i=1\\M}} p(w_{i,j}|\mathbf{q},R)$$
$$p(\mathbf{d}_{j}|\mathbf{q},NR) = \prod_{\substack{i=1\\M}} p(w_{i,j}|\mathbf{q},NR)$$

$$\frac{p(\boldsymbol{d}_{j}|\boldsymbol{q},R)}{p(\boldsymbol{d}_{j}|\boldsymbol{q},NR)} = \prod_{i=1}^{M} \frac{p(w_{i,j}|\boldsymbol{q},R)}{p(w_{i,j}|\boldsymbol{q},NR)}$$

$$O(R|\mathbf{q},\mathbf{d}_j) = O(R|\mathbf{q}) \prod_{i=1}^{M} \frac{p(w_{i,j}|\mathbf{q},R)}{p(w_{i,j}|\mathbf{q},NR)}$$

$$O(R|\mathbf{q},\mathbf{d}_j) = O(R|\mathbf{q}) \prod_{i=1}^{M} \frac{p(w_{i,j}|\mathbf{q},R)}{p(w_{i,j}|\mathbf{q},NR)}$$

• Given that $w_{i,j} \in \{0,1\}$

$$\prod_{i=1}^{M} p(w_{i,j}|\boldsymbol{q},R) = \prod_{i|w_{i,j}=1} p(w_i = 1|\boldsymbol{q},R) \prod_{i|w_{i,j}=0} p(w_i = 0|\boldsymbol{q},R)$$

$$\prod_{i=1}^{M} p(w_{i,j}|\boldsymbol{q},NR) = \prod_{i|w_{i,j}=1} p(w_i = 1|\boldsymbol{q},NR) \prod_{i|w_{i,j}=0} p(w_i = 0|\boldsymbol{q},NR)$$

- $p_i \triangleq p(w_i = 1 | q, R) \rightarrow \text{probability of term } t_i \text{ appearing in a document relevant to the query}$
- $u_i \triangleq p(w_i = 1 | \mathbf{q}, NR) \rightarrow \text{probability of term } t_i \text{ appearing in a document non relevant to the query}$
- Assuming that for all the terms not occurring in the query

$$p_i = u_i$$

Continues...

$$O(R|\mathbf{q}, \mathbf{d}_{j}) = O(R|\mathbf{q}) \prod_{i=1}^{M} \frac{p(w_{i,j}|\mathbf{q}, R)}{p(w_{i,j}|\mathbf{q}, NR)}$$

$$= O(R|\mathbf{q}) \prod_{i|w_{i,j}=1} \frac{p(w_{i} = 1|\mathbf{q}, R)}{p(w_{i} = 1|\mathbf{q}, NR)} \prod_{i|w_{i,j}=0} \frac{p(w_{i} = 0|\mathbf{q}, R)}{p(w_{i} = 0|\mathbf{q}, NR)}$$

$$= O(R|\mathbf{q}) \prod_{i|w_{i,j}=1} \frac{p_{i}}{u_{i}} \prod_{i|w_{i,j}=0} \frac{1-p_{i}}{1-u_{i}}$$

• Since for the terms not occurring in the query $p_i = u_i$ we consider only the terms t_i occurring in the query $(w_{i,q} = 1)$

$$O(R|\mathbf{q}, \mathbf{d}_{j}) = O(R|\mathbf{q}) \left[\prod_{\substack{i \mid w_{i,j}=1 \\ w_{i,q}=1}} \frac{p_{i}}{u_{i}} \right] \prod_{\substack{i \mid w_{i,j}=0 \\ w_{i,q}=1}} \frac{1 - p_{i}}{1 - u_{i}}$$

- Terms occurring both in the query and in the document
- Terms occurring only in the query

Continues...

- Terms occurring both in the query and in the document
- All the terms occurring in the query: document independent

$$O(R|\mathbf{q}, \mathbf{d}_{j}) = O(R|\mathbf{q}) \begin{bmatrix} \prod_{\substack{i | w_{i,j}=1 \\ w_{i,q}=1}} \frac{p_{i}|(1-u_{i})}{u_{i}|(1-p_{i})} \end{bmatrix} \prod_{\substack{i | w_{i,q}=1}} \frac{1-p_{i}}{1-u_{i}}$$

$$O(R|\mathbf{q}, \mathbf{d}_{j}) = O(R|\mathbf{q}) \left[\prod_{\substack{i \mid w_{i,j}=1 \\ w_{i,q}=1}} \frac{p_{i} (1 - u_{i})}{u_{i} (1 - p_{i})} \right] \prod_{\substack{i \mid w_{i,q}=1}} \frac{1 - p_{i}}{1 - u_{i}}$$

- Constant for each query
- Only quantity to be estimated for ranking

$$SC(q, d_j) \triangleq \log_2 \prod_{\substack{i \mid w_{i,j}=1 \ w_{i,q}=1}} \frac{p_i (1 - u_i)}{u_i (1 - p_i)} = \sum_{\substack{i \mid w_{i,j}=1 \ w_{i,q}=1}} \log_2 \frac{p_i (1 - u_i)}{u_i (1 - p_i)}$$

How do we estimate p_i and u_i from data?

• For each term t_i consider the following table of document counts

	Relevant	Non-Relevant	Total
documents containing t_i	s_i	$n_i - s_i$	n_i
documents not containing t_i	$S-s_i$	$(N-S)-(n_i-s_i)$	$N-n_i$
Total	S	N-S	N

Estimates

•
$$p_i = p(w_i = 1 | q, R) = \frac{s_i}{s}$$

•
$$u_i = p(w_i = 1 | q, NR) = \frac{n_i - s_i}{N - S}$$

- u_i is initialized as $\frac{n_i}{N}$, as non relevant documents are approximated by the whole documents collection
- p_i can be initialized in various ways
 - From relevant documents if known some (e.g. relevance feedback, prior knowledge)
 - Constant (e.g. $p_i = 0.5$ (even odds) for any given document)
 - Proportional to probability of occurrence in collection
- An iterative procedure is used to refine p_i and u_i
 - 1. Determine a guess of relevant document set
 - Top-S ranked documents or user's relevance feedback
 - 2. Update the estimates for p_i and u_i

$$-p_i = \frac{s_i}{S} \quad u_i = \frac{n_i - s_i}{N - S}$$

Go to 1 until convergence then return ranking

- Given
 - Query incidence vector

$$- q = [0 1 0 0 1 1]$$

- Documents incidence vectors
 - $-d_1 = [100101]$
 - $-d_2 = [100100]$
 - $-d_3 = [0\ 0\ 1\ 1\ 1\ 0]$
 - $d_4 = [1 \ 1 \ 0 \ 0 \ 1 \ 0]$
- Initialize
 - $-p_i = 0.5$
- Consider as relevant the top-2 documents (S = 2)

- Determine the ranking of the documents collection with respect to the given query using a Probabilistic Model under the Binary Independence assumption.
- $N=4 \rightarrow$ number of documents in the collection
- Reduce the documents incidence vectors considering only the terms that appear in the query

$$-d_1 = [0\ 0\ 1]$$

$$-d_2 = [0\ 0\ 0]$$

$$-d_3 = [0\ 1\ 0]$$

$$- d_4 = [1 \ 1 \ 0]$$

Initialize u_i for each term t_i

	t_1	t_2	t_3
n_i	1	2	1
u_i	0.25	0.50	0.25

• Recall that $p_i = 0.5 \ \forall \ t_i$

- 1st iteration
 - Determine the SC for each document

$$-SC(d_1, q) = \log_2 \frac{p_3}{1 - p_3} + \log_2 \frac{1 - u_3}{u_3} = 1.59$$

- $SC(d_2, q) = -\infty$ (d_2 contains no query terms)

$$-SC(d_3, q) = \log_2 \frac{p_2}{1 - p_2} + \log_2 \frac{1 - u_2}{u_2} = 0$$

$$-SC(d_4, q) = \log_2 \frac{p_1}{1 - p_1} + \log_2 \frac{1 - u_1}{u_1} + \log_2 \frac{p_2}{1 - p_2} + \log_2 \frac{1 - u_2}{u_2} = 1.59$$

- Rank the documents and consider the first top-k as relevant (in case of tie keep documents ordering
 - $-d_1 > d_4 > d_3 > d_2$
 - Relevant documents = $\{d_1, d_4\}$

- 1st iteration (continues...)
 - Calculate s_i and update p_i and u_i

$$-s_1=1$$

$$-s_2=1$$

$$-s_3=1$$

$$-p_1 = \frac{s_1}{s} = \frac{1}{2} = 0.5$$

$$-p_2 = \frac{s_2}{s} = \frac{1}{2} = 0.5$$

$$-p_3 = \frac{s_3}{s} = \frac{1}{2} = 0.5$$

$$-u_1 = \frac{n_1 - s_1}{N - s} = \frac{0}{2} = 0$$

$$- u_2 = \frac{n_2 - s_2}{N - S} = \frac{1}{2} = 0.5$$

$$-u_3 = \frac{n_3 - s_3}{N - S} = \frac{0}{2} = 0$$

- 2nd iteration
 - Determine the SC for each document

$$-SC(d_1,q) = \log_2 \frac{p_3}{1-p_3} + \log_2 \frac{1-u_3}{u_3} = \log_2 \frac{1-\epsilon}{\epsilon}$$

$$-SC(d_2,q) = -\infty$$

$$-SC(d_3,q) = \log_2 \frac{p_2}{1-p_2} + \log_2 \frac{1-u_2}{u_2} = 0$$

$$-SC(d_4,q) = \log_2 \frac{p_1}{1-p_1} + \log_2 \frac{1-u_1}{u_1} + \log_2 \frac{p_2}{1-p_2} + \log_2 \frac{1-u_2}{u_2} = \log_2 \frac{1-\epsilon}{\epsilon}$$

- Rank the documents and consider the first top-k as relevant (in case of tie keep documents ordering
 - $-d_1 > d_4 > d_3 > d_2$
 - Relevant documents = $\{d_1, d_4\}$ → Convergence reached

Probabilistic model: conclusions

- Pros
 - Documents are ranked in decreasing order of probability of being relevant
 - It includes a mechanism for relevance feedback

Cons

- The need to guess the initial separation of documents into relevant and irrelevant
- It does not take into account the frequency with which a term occurs inside a document
- The assumption of independence of index terms