Секция «Математика и механика»

О мощности языка, заданного матрицей кратностей биграмм Петюшко Александр Александрович

Acnupahm

Mосковский государственный университет имени M.B. Ломоносова, Mеханико-математический факультет, Mосква, Pоссия E-mail: petsan@newmail.ru

Пусть $A = \{a_1, ..., a_n\}$ - конечный алфавит. **Биграммой** в алфавите A называется двухбуквенное слово $ab \in A^*, a, b \in A$. **Кратностью** β в слове α , $\beta \in A^*, \beta \neq \Lambda, \alpha \in A^*$, называется количество различных представлений слова α в виде $\alpha = \alpha' \beta \alpha''$ (α' и α'' могут быть пустыми). По каждому слову $\alpha \in A^*$ можно построить квадратную матрицу кратностей биграмм $(\Theta(\alpha))_{i,j=1}^n$ размера $n \times n$ такую, что на месте (i,j) матрицы будет стоять значение $n_{a_ia_i}(\alpha)$.

Построим по матрице Θ ориентированный граф G_{Θ} на плоскости. Вершинами у этого графа будут все буквы из алфавита A, при этом ребра будут соответствовать биграммам с учетом их кратностей, т.е. кратность $n_{ab}(\alpha)$ будет порождать $n_{ab}(\alpha)$ ориентированных ребер $a \to b$. Аналогично, кратность $n_{cc}(\alpha)$ будет порождать $n_{cc}(\alpha)$ петель $c \to c$.

Матрицей Лапласа L, построенной по матрице биграмм Θ , называется квадратная матрица размером $n \times n$, т.ч. на месте (i,j) стоит элемент

$$\mathbf{l}_{ij} = \begin{cases} -n_{a_i a_j}, i \neq j; \\ \sum_{a_j \neq a_i} n_{a_i a_j}, i = j. \end{cases}$$

Замечание. В случае эйлерова графа G_{Θ} все главные миноры $L^{(i,i)}$, полученные вычеркиванием из L i-ой строки и i-го столбца, равны (=L').

Теорема. Пусть задана матрица биграмм Θ , т.ч. соответствующий орграф G_{Θ} (полу)эйлеров, причем в этом графе нет изолированных вершин. Тогда:

1) Если
$$\exists i'$$
, т.ч. $\sum_{a_i \in A} n_{a_i a_{i'}} > \sum_{a_i \in A} n_{a_{i'} a_i}$, то
$$N_{\Theta} = \frac{\prod_{a_i \in A} (\sum_{a_j \in A} n_{a_i a_j} - 1 + \delta_{i'i})!}{\prod_{a_i, a_j \in A} n_{a_i a_j}!} L^{(i'i')},$$

где $\delta_{i'i}$ - символ Кронекера;

2) Если
$$\forall i, j \sum_{a_i \in A} n_{a_i a_j} = \sum_{a_i \in A} n_{a_j a_i}$$
, то
$$N_{\Theta} = \left(\sum_{a_i, a_j \in A} n_{a_i a_j}\right) \frac{\prod_{a_i \in A} (\sum_{a_j \in A} n_{a_i a_j} - 1)!}{\prod_{a_i, a_j \in A} n_{a_i a_j}!} L'.$$

Литература

1. John P. Hutchinson and Herbert S. Wilf. On Eulerian Circuits and Words with Prescribed Adjacency Patterns // Journal of Combinatorial Theory (A) 18, 1975. P. 80-87.