Life Expectancies for selected populations

Jon Minton

2022-07-23

Aim

This appendix will show the life expectancies for the populations compared in the paper.

Data

```
library(tidyverse)
## -- Attaching packages ----- tidyverse 1.3.1 --
## v ggplot2 3.3.6
                     v purrr
                               0.3.4
## v tibble 3.1.7
                     v dplyr
                               1.0.9
## v tidyr
           1.2.0
                     v stringr 1.4.0
           2.1.2
## v readr
                     v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
                   masks stats::lag()
## x dplyr::lag()
# load data
hmd_lt <- read_rds("https://github.com/JonMinton/change-in-ex/blob/main/data/lifetables.rds?raw=true")
# Labels for codes
country_code_lookup <-</pre>
 tribble(
   ~code, ~country,
   "DEUTNP", "Germany",
"DEUTE", "East Germany",
   "DEUTW", "West Germany",
   "ESP", "Spain",
   "FRATNP", "France",
   "ITA", "Italy",
   "GBRTENW", "England & Wales",
   "GBR_SCO", "Scotland",
   "DEUTSYNTH", "Synthetic Germany",
   "NLD", "Netherlands"
countries_of_interest <- c(</pre>
 "GBRTENW",
 "GBR SCO",
 "GBR UK",
```

```
"FRATNP",
"ESP",
"ITA",
"DEUTNP",
"DEUTTW",
"NLD"
)

source("https://raw.githubusercontent.com/JonMinton/change-in-ex/main/R/make_synthetic_germany_function
source("https://raw.githubusercontent.com/JonMinton/change-in-ex/main/R/make_pop_selection.R")
```

Graphs

Life Expectancy at birth

```
hmd_ex_selected_countries_with_synth %>%
  left_join(country_code_lookup) %>%
  mutate(country = factor(country, levels = c("England & Wales", "Scotland", "Synthetic Germany", "Spain
  filter(!is.na(country)) %>%
  filter(between(year, 1980, 2020)) %>%
  filter(x == 0) \%%
  ggplot(aes(x = year, y = ex, group = sex, colour = sex, linetype = sex)) +
  geom_line() +
  facet_wrap(~country) +
  labs(
   x = "Year",
   y = "Life Expectancy at birth",
   title = "Life expectancies at birth for selected nations",
    subtitle = "1980 to 2020 or latest available year",
    caption = "Source: Human Mortality Database"
 )
```

Life expectancies at birth for selected nations

1980 to 2020 or latest available year

Source: Human Mortality Database

Equivalently

```
hmd_ex_selected_countries_with_synth %>%
  left_join(country_code_lookup) %>%
  mutate(country = factor(country, levels = c("England & Wales", "Scotland", "Synthetic Germany", "Spair filter(!is.na(country)) %>%
  filter(between(year, 1980, 2020)) %>%
  filter(x == 0) %>%
  ggplot(aes(x = year, y = ex, group = country, colour = country, linetype = country)) +
  geom_line() +
  facet_wrap(~sex) +
  labs(
    x = "Year",
    y = "Life Expectancy at birth",
    title = "Life expectancies at birth for selected nations",
    subtitle = "1980 to 2020 or latest available year",
    caption = "Source: Human Mortality Database"
)
```

Life expectancies at birth for selected nations

1980 to 2020 or latest available year

Life expectancy at age 65

Life expectancies at age 65 years for selected nations

1980 to 2020 or latest available year

Source: Human Mortality Database

Equivalently:

```
hmd_ex_selected_countries_with_synth %>%
left_join(country_code_lookup) %>%
mutate(country = factor(country, levels = c("England & Wales", "Scotland", "Synthetic Germany", "Spain filter(!is.na(country)) %>%
filter(between(year, 1980, 2020)) %>%
filter(x == 65) %>%
ggplot(aes(x = year, y = ex, group = country, colour = country, linetype = country)) +
geom_line() +
facet_wrap(~sex) +
labs(
    x = "Year",
    y = "Life Expectancy at age 65",
    title = "Life expectancies at age 65 years for selected nations",
    subtitle = "1980 to 2020 or latest available year",
    caption = "Source: Human Mortality Database"
)
```

Life expectancies at age 65 years for selected nations 1980 to 2020 or latest available year

Source: Human Mortality Database

Average life expectancy change

The following shows the average change in life expectancy for each population over the full period, and including East Germany and West Germany as separate populations

```
hmd_ex_selected_countries_with_synth %>%
   filter(year >= 1979) %>%
   group_by(code, x, sex) %>%
   arrange(year) %>%
   mutate(delta_ex = ex - lag(ex)) %>%
   nest() %>%
   mutate(
      rwd_model = map(data, ~lm(delta_ex ~ 1, data = . )),
      ar_model = map(data, ~lm(delta_ex ~ lag(delta_ex), data = .))
   ) %>%
   mutate(
     aic_rwd = map_dbl(rwd_model, AIC),
      aic_ar = map_dbl(ar_model, AIC)
   ) %>%
   mutate(
     diff_aic = aic_ar - aic_rwd
   ) %>%
  # filter(diff_aic > 0)
  mutate(
   tidied_ar_model = map(ar_model, broom::tidy)
  ) %>%
  unnest(tidied_ar_model) %>%
  filter(term == "(Intercept)") %>%
```

```
arrange(desc(estimate)) %>%
left_join(country_code_lookup) %>%
mutate(country = factor(country, levels = c("England & Wales", "Scotland", "East Germany", "West Germ
select(code, country, x, sex, estimate, std.error) %>%
mutate(display_label = glue::glue("{country}_{x}_{sex}")) %>%
mutate(estimate_weeks = estimate * 52.25) %>%
ggplot(aes(estimate_weeks, fct_reorder(display_label, estimate_weeks))) +
geom_point(aes(colour = x), show.legend = FALSE) +
expand_limits(x = 0) +
geom_vline(xintercept = 0) +
labs(
  x = "Average annual life expectancy change",
  y = "Country-sex combination",
  title = "Average annual improvements by country and sex",
  subtitle = "Range: 1980 to 2020 or nearest available years",
  caption = "Source: Human Mortality Database"
) +
facet_wrap(~x)
```

Joining, by = "code"

Average annual improvements by country and sex Range: 1980 to 2020 or nearest available years

The figure below shows the same for those populations considered in the main paper.

```
hmd_ex_selected_countries_with_synth %>%
  filter(year >= 1979) %>%
  filter(!(code %in% c("DEUTE", "DEUTW", "DEUTNP"))) %>% # Using only synthetic germany for longer t
  group_by(code, x, sex) %>%
```

```
arrange(year) %>%
 mutate(delta_ex = ex - lag(ex)) %>%
 nest() %>%
 mutate(
   rwd_model = map(data, ~lm(delta_ex ~ 1, data = . )),
   ar_model = map(data, ~lm(delta_ex ~ lag(delta_ex), data = .))
 ) %>%
 mutate(
   aic_rwd = map_dbl(rwd_model, AIC),
   aic_ar = map_dbl(ar_model, AIC)
 ) %>%
 mutate(
   diff_aic = aic_ar - aic_rwd
  ) %>%
# filter(diff_aic > 0)
mutate(
 tidied_ar_model = map(ar_model, broom::tidy)
) %>%
unnest(tidied_ar_model) %>%
filter(term == "(Intercept)") %>%
arrange(desc(estimate)) %>%
left_join(country_code_lookup) %>%
mutate(country = factor(country, levels = c("England & Wales", "Scotland", "Synthetic Germany", "Spain
filter(!is.na(country)) %>%
select(code, country, x, sex, estimate, std.error) %>%
mutate(display_label = glue::glue("{country}_{x}_{sex}")) %>%
mutate(estimate weeks = estimate * 52.25) %>%
ggplot(aes(estimate_weeks, fct_reorder(display_label, estimate_weeks))) +
geom_point(aes(colour = x), show.legend = FALSE) +
expand_limits(x = 0) +
geom_vline(xintercept = 0) +
labs(
 x = "Average annual life expectancy change (weeks per year)",
 y = "Country-sex combination",
 title = "Average annual improvements by country and sex",
 subtitle = "Range: 1980 to 2020 or nearest available years",
 caption = "Source: Human Mortality Database"
) +
facet_wrap(~x)
```

Average annual improvements by country and sex Range: 1980 to 2020 or nearest available years

