

Pass-Transistor Logic

- · In many cases, uses fewer transistors
- · Can be difficult to design
- Usually requires complemented versions of all signals
- · Difficult to layout
- · Transmission gate looks like a RC line
- Delay analysis is not as well defined in terms of sizing choices

3 March 200

Dynamic CMOS

- In static circuits at every point in time (except when switching) the output is connected to either GND or VDD via a low resistance path.
 - fan-in of *n* requires 2*n* transistors (*n* N-type and *n* P-type)
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - requires only n+2 (n+1 N-type and 1 P-type) transistors (can be further reduced to n+1)

3 March 2009

Dynamic CMOS

 nMOS logic structure with pre-charged pullup

3 March 2009

Dynamic Gate CIk Mon Out ((AB)+C) A June 1000 Two phase operation Precharge (CIk = 0) Evaluate (CIk = 1)

Conditions on Output

- Once the output of a dynamic gate is discharged, it cannot be charged again until the next pre-charge operation.
- Inputs to the gate can make at most one transition during evaluation.
- Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C_L

3 March 2009

3 March 2009

Properties of Dynamic Gates

- Logic function is implemented by the PDN only
 - number of transistors is N + 2 (versus 2N for static complementary CMOS)
- Full swing outputs (V_{OL} = GND and V_{OH} = V_{DD})
- Sizing of the devices does not affect the logic levels (ratioless)

...

Properties of Dynamic Gates

- Faster switching speeds
 - reduced load capacitance due to smaller input capacitance (C_{in})
 - reduced load capacitance due to smaller output loading ($C_{\rm out}$)
 - Ideally, no $\rm I_{sc}$, so all the current provided by PDN goes into discharging $\rm C_L$

Properties of Dynamic Gates

- Overall power dissipation usually higher than static CMOS (mainly due to clock)
 - no static current path exists between VDD and
 - no glitching (static CMOS has many glitches)
 - higher transition probabilities
 - extra load on Clk

Properties of Dynamic Gates

- PDN starts to work as soon as the input signals exceed V_{Tn} ,
 - low noise margin (NML)
- Needs a pre-charge/evaluate clock

3 March 2009

Dynamic CMOS

- Advantages
 - Fewer transistors than CMOS
 - Smaller load capacitance faster speed
- Disadvantages
 - Leakage
 - Charge sharing
 - Cannot be cascaded directly
 - Only $0\rightarrow 1$ transitions allowed at inputs, thus cannot be connected to static gate directly

3 March 2009

Issues in Dynamic Design 1: Charge Leakage

Dominant component is sub-threshold current

3 March 2009

Solution to Charge Leakage

Increase size of inverter to increase capacitance

3 March 2009

