

King Mongkut's University of Technology Thonburi Final Examination of First Semester, Academic Year 2016

COURSE CPE 111 Computer Engineering Exploration **Automation Engineering 1st year** Thursday, December 1, 2016

13.00 – 16.00 h.

Instructions

- 1. This examination contains 4 parts, 12 pages (including this cover page), total 100 points.
- 2. Write your answers in the spaces provided in the examination paper.
- 3. This exam is open exam. Students are allowed to bring documents, dictionary and calculator that conforms to the university rules.

Students must raise their hand to inform to the proctor upon their completion of the examination, to ask for permission to leave the examination room.

Students must not take the examination and the answers out of the examination room.

Students will be punished if they violate any examination rules. The highest punishment is dismissal.

Examination compiled by Asst. Prof. Jumpol Polvichai, Ph.D.

Tel. 02-470-9261

This examination has been approved by the Department of computer engineering.

m. Junh

Assoc. Prof. Peerapon Siripongwutikorn, Ph.D.

Program Chairperson

Part 1: POP-168 Microcontroller (25 points)

1.1 From the following code, the developer tries to build an embedded device. The device is designed to detect the object in range by IR distance sensor. If the device is too closed, then LED1 is turned on. The device also generates a sound in case of the bumper PB2 is pushed while hitting the object.

```
int nearObject() {
        int value = analogRead(6);
 2
        if(value > 300) { return 1; }
 3
        else { return 0; }
 4
 5
    }
 6
 7
    void setup()
 8
        pinMode(6, OUTPUT);
 9
10
        pinMode (5, OUTPUT);
11
        pinMode (4, INPUT);
12
    }
13
14
    void loop()
15
16
        if(nearObject() == 1) {
            digitalWrite(5, LOW); // Turn light on
17
18
        }
19
        else {
20
             digitalWrite(5, HIGH); // Turn light off
21
22
        if(digitalRead(4) == 1) {
             for(int i=0; i<500; i++) {
23
24
                 delayMicroseconds (1911);
                 digitalWrite(6, LOW);
25
                 delayMicroseconds (1911);
26
                 digitalWrite(6, HIGH);
27
28
             }
29
        }
30
    }
```

Draw all necessary lines and components to connect the circuit below as the developer want. (5 points)

1.2 Please explain what would happen if this program is compiled and uploaded for executing on this POP-168 board (after reset is pressed) when PB2 is pushed. (5 points)

```
void
         setup() {
        pinMode (4, INPUT);
 3
        pinMode (6, OUTPUT);
   void loop() {
        int IN = digitalRead(4);
        if (IN == 0) \times 1();
 8
        if (IN == 1) \times 2();
 9
10 void X1() {
11
        digitalWrite(6, HIGH); delayMicroseconds(1911);
12
        digitalWrite(6, LOW); delayMicroseconds(1911);
13
14
   void X2() {
        digitalWrite(6, HIGH); delayMicroseconds(955);
15
        digitalWrite(6, LOW); delayMicroseconds(955);
16
17 }
```

1.3 In order to program a POP-168 mobile robot to pass the blind racing (แปรถแบบมองไม่เห็น), please explain in some details about how to solve this problem. (5 points)

1.4 In order to program a POP-168 mobile robot to pass the hit TAs (โล่ ชนผู้ช่วยสอน), please explain in some details about how to solve this problem. (5 points)

Name	Student ID.
Name	Student ID.

1.5 In order to program a POP-168 mobile robot to pass the untouchable blue wall (กำแพงฟ้าใครอย่าแตะ), please explain in some details about how to solve this problem. (5 points)

1.6 Please write a program for running on this POP-168 board and making above circuits to happen (after reset is pressed) as follows... (5 Points)

LED1 ON

Wait 2 seconds

LED1 OFF

Have sound for 4 seconds

Wait one and a half second

Repeat all

Part 2: Engineering Drawing (25 points) Answer the following questions:

2.1 Sketch the lost drawing side. (10 points)

Name		Stude	ent ID.	

2.2 Sketch the top and left side of orthographic drawing. (15 points)

Name	Student ID.	

2.3 SolidWorks: In order to get this rendered donut, please list all commands we have to use in SolidWorks. (Bonus 5 points)

Name	Student ID.	
1 dille	Student 1D.	

Part 3: Engineering Fields (25 points)

3.1 How does selecting material affect product made by engineers? (2 points)

3.2 What is the purpose of civil engineering? (2 points)

3.3 Fill in the components of control system in the graphic below, and explain what each component does. (3 points)

CONTROL SYSTEM

a.	[Example]	(Plant)	the ob	ject that is	s going	to be	controlled.

b. (()	
	<u> </u>	

3.4	Why can an airplane fly? (2 points)
3.5 engi	Give a <u>short</u> explanation of the following terms in the aspect of neering. (อธิบายคำต่อไปนี้ในมุมมองทางวิศวกรรมโดยสังเขป) (16 points)
a.	Material Properties
b.	Permanent deformation
c.	Structural engineering
d.	Water management
e.	"Digital" and "Analog" system
f.	Mechatronics
g.	Equation of motions
h.	Aerodynamics

Name_____Student ID._____

Name	Student ID).
1 Tallic	Studentil	71

Part 4: Engineering Design Process (25 Points)

4.1 Please write a design process flowchart that explains workflow steps of your course project by using the Engineering Design Process concept. (10 points)

Name	Student ID.
4.2 Please describe about your	course project as follow (15 points)
Project Topic	
Project Objectives	
Project Outcomes	

Project System Diagram