

Environmental Control Technology Activities of the Department of Energy in FY 1977

November 1977

U.S. Department of EnergyDivision of Environmental Control Technology
Washington, DC 20545

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Available from:

National Technical Information Service (NTIS)

U.S. Department of Commerce

5285 Port Royal Road

Springfield, Virginia 22161

Price:

Printed Copy:

\$ 6.00

Microfiche:

\$ 3.00

PREFACE

This inventory covers environmental control related activities carried out during Fiscal Year (FY) 1977 by the Energy Research and Development Administration (ERDA). For clarity, no attempt has been made within the body of the report to translate ERDA organizational terminology to that of the Department of Energy (DOE). The FY 1978 edition will survey all the DOE energy technology projects.

TABLE OF CONTENTS

			Page <u>Number</u>
PREF	ACE		
Ι.	ВА	CKGROUND	1
II.	PU	RPOSE	2
III.	SU	MMARY	3
IV.	RE:	SULTS	
	Α.	Conservation	22
	В.	Fossil Energy	24
	с.	Nuclear Energy	33
	D.	Solar, Geothermal and Advanced	48
		Energy Systems	54
	E.	Environment and Safety	66
/.	BIBL	JOGRAPHY	77
′I .	GLO	SSARY	78

LIST OF FIGURES

Figure		Page Number
III-1	Distribution of Total ERDA Environmental Control Activities Related to FY 1977 Funding by Administration	6
III-2	Distribution of Total ERDA Environmental Control Activities Related to FY 1977 Funding by Energy Category	7
III-3	Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Conservation	9
III-4	Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Fossil Energy	11
III-5	Distribution of Environmental Control Technology Funding in the Coal Program within the Office of the Assistant Administrator for Fossil Energy	13
III-6	Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Nuclear Energy	15
III-7	Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Solar, Geothermal, and Advanced Energy Systems	17
III-8	Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Environment and Safety	20
III-9	Distribution of Environmental Control Technology Funding by Energy Category in the Office of the Assistant Administrator for Environment and Safety	21

TABLE OF CONTENTS

PRI	EFACE		Page <u>Number</u>
Novel .		ACKGROUND	
		TRPOSE	. 1
III.		MMARY	2
IV.		SULTS	. 3
	Α.		22
	В.	Conservation	24
	с.	Fossil Energy	33
		Nuclear Energy	48
	D.	Solar, Geothermal and Advanced Energy Systems	
	E.	Environment and Safety	54
·-	BIBL	IOGRAPHY	66
I.	GLO.	SSARY	77
			78

LIST OF FIGURES

<u>Figure</u>		Page Number
III-1	Distribution of Total ERDA Environmental Control Activities Related to FY 1977 Funding by Administration	6
III-2	Distribution of Total ERDA Environmental Control Activities Related to FY 1977 Funding by Energy Category	7
III-3	Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Conservation	9
III-4	Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Fossil Energy	11
III-5	Distribution of Environmental Control Technology Funding in the Coal Program within the Office of the Assistant Administrator for Fossil Energy	13
III-6	Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Nuclear Energy	15
III-7	Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Solar, Geothermal, and Advanced Energy Systems	17
III-8	Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Environment and Safety	20
III-9	Distribution of Environmental Control Technology Funding by Energy Category in the Office of the Assistant Administrator for Environment and Safety	21

LIST OF TABLES

<u>Table</u>		Page <u>Number</u>
III-1	Total ERDA Environmental Control Activities Funding Allocations	5
III-2	Conservation Environmental Control Activities Related Funding	8
III-3	Fossil Energy Environmental Control Activities Related Funding	10
III-4	Coal Program Environmental Control Activities Related Funding	12
III-5	Nuclear Energy Environmental Control Activities Related Funding	14
III-6	Solar, Geothermal, and Advanced Energy Systems Environmental Control Activities Related Funding	16
III-7	Environment and Safety Environmental Control Activities Related Funding	18
III-8	Environment and Safety Breakdown of FY 1977 Funding Related to Environmental Control Activities	19
IV-ļ	Criteria for Applicability to Environmental Control Technology	23
IV-2	Projects with Environmental Control Aspects; Conservation; Building and Community Systems	25
IV-3	Projects with Environmental Control Aspects; Conservation; Conservation Research and	
IV-4	Technology Projects with Environment 1.2	26
14-4	Projects with Environmental Control Aspects; Conservation; Electric Energy Systems	28
IV-5	Projects with Environmental Control Aspects; Conservation; Energy Storage Systems	29
IV-6	Projects with Environmental Control Aspects; Conservation; Industrial Energy Conservation	31
IV-7	Projects with Environmental Control Aspects; Conservation; Transportation Energy Conservation	22

<u>Table</u>		<u>1</u>	Page Number
IV-8	Projects with Environmental Control Aspects; Fossil Energy; Coal; Liquefaction		34
IV-9	Projects with Environmental Control Aspects; Fossil Energy; Coal; High-Btu Gasification		35
IV-10	Projects with Environmental Control Aspects; Fossil Energy; Coal; Low-Btu Gasification		36
IV-11	Projects with Environmental Control Aspects; Fossil Energy; Coal; Advanced Power Systems		37
IV-12	Projects with Environmental Control Aspects; Fossil Energy; Coal; Direct Combustion		38
IV-13	Projects with Environmental Control Aspects; Fossil Energy; Coal; Advanced Research and Support Technology		39
IV-14	Projects with Environmental Control Aspects; Fossil Energy; Coal; Demonstration Plants		40
IV-15	Projects with Environmental Control Aspects; Fossil Energy; Coal; Magnetohydrodynamics		41
IV-16	Projects with Environmental Control Aspects; Fossil Energy; Petroleum and Natural Gas; Enhanced Oil Recovery		42
IV-17	Projects with Environmental Control Aspects; Fossil Energy; Petroleum and Natural Gas; Enhanced Gas Recovery		43
VI-18	Projects with Environmental Control Aspects; Fossil Energy; Petroleum and Natural Gas; Drilling, Exploration, and Offshore Technology		44
IV-19	Projects with Environmental Control Aspects; Fossil Energy, Petroleum and Natural Gas; Processing and Utilization		45
IV-20	Projects with Environmental Control Aspects; Fossil Energy; Oil Shale and In Situ Technology; Oil Shale		46
IV-21	Projects with Environmental Control Aspects; Fossil Energy; Oil Shale and In Situ Technology; In Situ Coal Gasification		47
IV-22	Projects with Environmental Control Aspects; Nuclear Energy; Nuclear Research and Applications		49

<u>Table</u>		Page <u>Number</u>
IV-23	Projects with Environmental Control Aspects; Nuclear Energy; Reactor Development and Demonstration	50
IV-24	Projects with Environmental Control Aspects; Nuclear Energy; Waste Management, Production, and Reprocessing-Commercial Waste Program	52
IV-25	Projects with Environmental Control Aspects; Solar, Geothermal, and Advanced Energy Systems; Geothermal Energy	55
IV-26	Projects with Environmental Control Aspects; Solar, Geothermal, and Advanced Energy Systems; Magnetic Fusion Energy	59
IV-27	Projects wtih Environmental Control Aspects; Solar, Geothermal, and Advanced Energy Systems; Physical Research	60
IV-28	Projects with Environmental Control Aspects; Solar, Geothermal, and Advanced Energy Systems; Solar Energy	61
IV-29	Projects with Environmental Control Aspects; Environmental and Safety; Biomedical and Environmental Research	67
[V-30	Projects wtih Environmental Control Aspects; Environmental and Safety; Environmental Control Technology	69

I. Background

The Department of Energy (DOE) is responsible for the Research, Development, and Demonstration (RD&D) of emerging energy technologies and the promotion of energy conservation. An integral and significant part of that responsibility includes the balancing of energy goals with environmental requirements to protect and enhance the general health, safety, and welfare of the nation. This requires that environmental effects be considered and mitigating measures by taken in all energy processes through incorporation of environmental and safety controls which are developed as an integral part of energy system design.

The Division of Environmental Control Technology (ECT) within the office of the Assistant Secretary for Environment (ASEV) is responsible for ensuring, through overview and independent assessment, the timely development of adequate environmental control technology capability with DOE's energy technology RD&D programs. The projects directly under the cognizance of ECT are primarily independent overview and assessments designed to provide this assurance or to establish the Research and Development (R&D) requirements for environmental controls. The energy technology offices have the direct responsibility for conduct of RD&D of environmental controls in conjunction and in phase with their respective energy technology RD&D programs to assure environmental acceptability of the energy technology at commercialization.

This inventory of environmental control technology activities was initiated by the Administrator, ERDA, prior to the incorporation of that administration within the Department of Energy. This compilation of total Energy Research and Development Administration (ERDA) environmental control technology activities, and associated funding, related to environmental control technology identifies the resources committed by ERDA to demonstrate its objective to protect and enhance the general health, safety, and welfare of the nation in the Research, Development, and Demonstration of energy systems. Again, it should be stressed that only ERDA research, development, and demonstration activities are covered in this report. The compilation for FY 1978 will encompass all of the DOE activities.

II. Purpose

The primary purpose of this first in a series of annual reports is to identify and catalog the DOE's environmental control activities conducted in support of developing environmentally acceptable energy technologies. Since environmental control technology is an integral part of the DOE energy technology RD&D effort, the total program activity in this area is not clearly identifiable. This inventory provides visibility into the total DOE environmental control activity for use by councils of government, other agencies, and the private sector. It is useful to distinguish explicitly actual DOE efforts in this area so as to provide a basis for establishment of future needs and requirements. This report will provide an initial reference source to be used for future environmental control planning within the DOE and to serve as a reference base from which related activities outside of the DOE may be evaluated and compared.

As the first in a series of annual reports on environmental control technology activities within the DOE, this report will serve as a basis for evaluating progress in the development of environmental controls. As a baseline comparison datum, it will provide the background material required to evaluate and assess the environmental control accomplishments, issues, gaps, and overlaps associated with energy development within the DOE, in conjunction with other agencies, and in the private sector.

III. Summary

The total ERDA FY 1977 funding allocation related to environmental control activities, as shown in Table III-1, was \$184,683,000. This corresponds to approximately 3% of the Total FY 1977 ERDA budget. The distribution of this \$184,683,000 by each office is depicted in Figure III-1. Detail project listings are provided in Section IV. The office of the Assistant Administrator for Fossil Energy (AFE) and the office of the Assistant Administrator for Nuclear Energy (ANE) together accounted for 80% of the total ERDA FY 1977 funding allocation related to environmental control technology.

The distribution by energy technology category is depicted in Figure III-2. The coal program was almost half (48 percent) of the total, followed by nuclear with 38 percent, of which 30 percent was related to waste management, production, and reprocessing. Geothermal comprised 5 percent and conservation 3 percent while the remaining categories were each 2 percent or less of the total FY 1977 funding related to environmental control technology. Tables III-2 through III-8 present further details for the office of the Assistant Administrator for Conservation (AC), AFE, ANE, the office of the Assistant Administrator for Solar, Geothermal, and Advanced Energy Systems (ASGA), and the office of the Assistant Administrator for Environment and Safety (AES).

Table III-2 presents the funding breakdown for Conservation. As shown in Figure III-3, 46 percent of the funding was in the Division of Electric Energy Systems. This work is mainly directed at electric field effects of direct current lines, research in the biological effects of high voltage electric fields, and animal studies regarding transmission line effects.

Fossil Energy funding allocations are shown in Table III-3 with breakdowns for Coal, Oil Shale and In-Situ Technology, and Petroleum and Natural Gas. The associated distribution of funding, within these three programs, is depicted in Figure III-4. Since the Coal program comprises the majority (95 percent) of the AFE funding associated with environmental control activities, Table III-4 and Figure III-5 are presented to show the distribution within the coal program. More than half (62 percent) of the coal program environmental control activities were supported by direct combustion and liquefaction programs. The remaining 38 percent is associated with gasification projects (20 percent), demonstration plants (7 percent), and advanced coal technology (11 percent) of the coal program within Fossil Energy.

Nuclear Energy summary funding data is presented in Table III-5. As shown therein and in Figure III-6, the major portion of the ANE funding related to environmental control activities was in the area of commercial waste management of which 90 percent is estimated to be allocated.

Associated funding breakdowns and corresponding distributions for the Solar, Geothermal, and Advanced Energy Administration (ASGA) are depicted in Table III-6 and Figure III-7, respectively. Geothermal energy comprised 71 percent of the total FY 1977 funding related to environmental control technology within ASGA. The majority was in H₂S control, subsidence control, drilling technology, resource exploration and assessment, and hydrothermal technology applications. Solar energy activities in the environmental control technology area comprised 22 percent with advanced ASGA projects in the divisions of physical research and magnetic fusion making up the remaining 7 percent.

The office of the Assistant Administrator for Environment and Safety (AES) FY 1977 funding breakdown related to environmental control activities is shown in Table III-7 by divisional structure. The total was \$17,973,000 of which the Division of Environmental Control Technology was responsible for 93 percent as shown in Figure III-8. The AES distribution within the main energy related sub-programs is shown in Table III-8 and depicted in Figure III-9. Within AES, nuclear related projects accounted for almost half (45 percent) with fossil energy related projects accounting for 33 percent of the environmental control related activities. The remainder was divided up into solar, geothermal, and advanced energy systems, conservation, and multi-technology which included the ECT efforts in the area of energy materials transportation. The distribution of environmental control related projects is shown in Figure III-9 with the management of surplus facilities and fossil projects accounting for the majority.

TABLE III-1

TOTAL DOE ENVIRONMENTAL CONTROL ACTIVITIES FUNDING ALLOCATIONS

	FY 1977 Funding Allocation Related to Environmental Control Activities	Portion of Total FY 1977 Budget Related to Environmental Control Activities
Administration**	(\$ in thousands)	(Percent)*
Conservation (AC)	5,984	4.8
Fossil Energy (AFE)	86,194	19.4
Nuclear Energy (ANE)	62,195	2.5
Solar, Geothermal, and Advanced Energy Systems (ASGA)	12,337	1.4
Environment and Safety (AES)	17,973	8.1
Total	184,683	3.4

TOTAL DOE FY 1977 Budget: \$5,383,982,000

* To nearest tenth of a percent ** National Security (ANS) excluded - See Section IV

TOTAL ERDA FY 1977 FUNDING RELATED TO ENVIRONMENTAL CONTROL: \$184,683,000

FIGURE III-1 Distribution of Total ERDA Environmental Control Activities Related to FY 1977 Funding by Administration.

TOTAL ERDA FY 1977 FUNDING RELATED TO ENVIRONMENTAL CONTROL: \$184,683,000

FIGURE III-2 Distribution of Total ERDA Environment Control Activities Related to FY 1977 Funding by Energy Category.

TABLE III-2

CONSERVATION ENVIRONMENTAL CONTROL ACTIVITIES RELATED FUNDING

	FY 1977 Funding Allocation Related to Environmental Control Activities	Portion of Total FY 1977 Budget Related to Environmental Control
Division or Sub-Program	(\$ in thousands)	Activities (Percent)*
Buildings & Community Systems	520	1.9
Conservation Research & Technology	813	6.4
Electric Energy Systems	2,817	13.6
Energy Storage Systems	606	3,3
Industrial Energy Conservation	413	3.3
Transportation Energy Conservation	512	2.1
Total	5, 984	4.8

TOTAL AC FY 1977 Budget: \$124,950,000

 * To nearest tenth of a percent

TOTAL CONSERVATION FY 1977 FUNDING RELATED TO ENVIRONMENTAL CONTROL: \$5,984,000

FIGURE III-3 Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Conservation.

TABLE III-3

FOSSIL ENERGY VIRONMENTAL CONTROL ACTIVITIES RELATED FUNDING

	FY 1977 Funding Allocation Related to Environmental Control Activities	Portion of Total FY 1977 Budget Related to Environmental Control
or Sub-Program	(\$ in thousands)	$^{\rm Acuvines}_{\rm (Percent)*}$
	81,897	20.0
tand In Situ Technology	1,820	5.9
Petroleum and Natural Gas	2,477	5.7
Total	86,194	17.8

TOTAL AFE FY 1977 Budget: \$483, 145, 000

* To nearest tenth of a percent

TOTAL FOSSIL ENERGY FY 1977 FUNDING RELATED TO ENVIRONMENTAL CONTROL TECHNOLOGY: \$86,194,000

FIGURE III-4 Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Fossil Energy.

TABLE III-4

COAL PROGRAM ENVIRONMENTAL CONTROL ACTIVITIES RELATED FUNDING

	FY 1977 Funding Allocation Related Environmental Control Activities	Portion of Total FY 1977 Budget Related to
		Environmental Control Activities
Coal Sub-Program	(\$ in thousands)	$({ t Percent})*$
Liquefaction	29, 794	40.9
High-BTU Gasification	7,781	17.1
Low-BTU Gasification	8,231	24.9
Advanced Power Systems	1,769	7.9
Direct Combustion	20,782	40.0
Advanced Research & Support Technology	4,301	11.6
Demonstration Plants	5,795	10.9
Magnetohydrodynamics	3,444	8 •6
Tota1	81,897.	20.0

TOTAL AFE Coal Program FY 1977 Budget: \$408, 974,000

* To nearest tenth of a percent

TOTAL COAL PROGRAM FY 1977 FUNDING RELATED TO ENVIRONMENTAL CONTROL: \$81,897,000

FIGURE III-5 Distribution of Environmental Control Technology Funding in the Coal Program within the Office of the Assistant Administrator for Fossil Energy.

TABLE III-5

NUCLEAR ENERGY ENVIRONMENTAL CONTROL ACTIVITIES RELATED FUNDING

	1 100	
	Related to Environmental Control Activities	Portion of Total FY 1977 Budget Related to Environmental Control Activities
Division or Sub-Program	(\$ in thousands)	(Percent)*
Naval Reactors	0	0
Nuclear Research and Applications	2,092	1.3
Reactor Development and Demonstration	4,078	0.7
Uranium Resources and Enrichment	0	0
Waste Management, Production, and Reprocessing	56,025	85.4
Total	62,195	2.5

TOTAL ANE FY 1977 Budget: \$2,491,406,000

* To nearest tenth of a percent

TOTAL NUCLEAR ENERGY FY 1977 FUNDING RELATED TO ENVIRONMENTAL CONTROL: \$62,195,000

FIGURE III-6 Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Nuclear Energy.

TABLE III-6

SOLAR, GEOTHERMAL, AND ADVANCED ENERGY SYSTEMS ENVIRONMENTAL CONTROL ACTIVITIES RELATED FUNDING

		101 WIT 1-1- IT 3
	FY 1977 Funding Allocation Related to Environmental Control Technology	Fortion of lotal F 1 1977 Budget Related to Environmental Control Technology
Division or Sub-Program	(\$ in thousands)	(Percent)*
Geothermal Energy	8,771	17.9
Magnetic Fusion Energy	780	0.3
Physical Research	100	0,1
Solar Energy	2,686	1.4
Total	12,337	1,4

TOTAL ASGA FY 1977 Budget: \$874,910,000

* To nearest tenth of a percent

TOTAL SOLAR, GEOTHERMAL, AND ADVANCED ENERGY SYSTEMS FY 1977 FUNDING RELATED TO ENVIRONMENTAL CONTROL TECHNOLOGY: \$12,337,000

FIGURE III-7 Distribution of Environmental Control Technology Funding in the Office of the Assistant Administrator for Solar, Geothermal, and Advanced Energy Systems.

TABLE III-7

ENVIRONMENTAL CONTROL ACTIVITIES RELATED FUNDING

	FY 1977 Funding Allocation Related to Environmental Control Activities	Portion of Total FY 1977 Budget Related to Environmental Control Activities
Division or Sub-Program	(\$ in thousands)	(Percent)*
Biomedical and Environmental Research	1,196	2.0
Environmental Control Technology	16,777	100.0
Operational Safety	0	0
Reactor Safety Facilities	0	0
<i>A</i>		
Tota1	17, 973	8.1

TOTAL AES FY 1977 Budget: \$222,819,000

* To nearest tenth of a percent

TABLE III-8

ENVIRONMENT AND SAFETY BREAKDOWN OF FY 1977 FUNDING RELATED TO ENVIRONMENTAL CONTROL ACTIVITIES

		O La V J C T C C C C C C C C C C C C C C C C C
	FY 1977 Funding Allocation Related to Environmental Control Activities	Apportionment of ALD FY 1977 Funding For Environmental Control Activities
Energy Category	(\$ in thousands)	(Percent)*
Conservation	316	2
Fossil Energy	(5, 969)	(33)
Coal Petroleum and Natural Gas Oil Shale	3,551 2,034 384	20 11 2
Multi-Technology	2,737**	15
Nuclear	(8, 157)	(45)
Nuclear Energy Management of Surplus Facilities	1,802 6,355	10 35
Solar, Geothermal, and Advanced Energy Systems	794	Ŋ
Total	17, 973	100
LOCAL		

* To nearest whole percent ** Includes \$2,330,000 for Energy Materials Transportation (13%)

TOTAL ENVIRONMENT AND SAFETY FY 1977 FUNDING RELATED TO ENVIRONMENTAL CONTROL TECHNOLOGY: \$17,973,000

al Control Technology Funding in the ninistrator for Environment and Safety.

TOTAL ENVIRONMENT AND SAFETY FY 1977 FUNDING RELATED TO ENVIRONMENTAL CONTROL TECHNOLOGY: \$17,973,000

INCLUDES 13% FOR ENERGY MATERIALS TRANSPORTATION

FIGURE III-9 Distribution of Environmental Control Technology Funding by Energy Category in the Office of Assistant Administrator for Environment and Safety.

IV. Results

To aid in obtaining the necessary consistent inputs to the inventory, specific ground rules and requirements were established. The primary ground rule involved the definition of environmental control which is:

"Those activities directed at Research, Development, and Demonstration of processes, procedures, systems, subsystems, and strategies which directly or indirectly eliminate, minimize, or mitigate environmental impacts."

Examples:

- o Add-on Process (e.g., Claus Unit for Tailgas Cleanup)
- o Energy Process Design (e.g., Fluidized-Bed Combustion of Coal)
- o Energy Process "Tuning" Efforts (e.g., Reuse of Waste Water)

The criteria for activity applicability to environmental control was as defined in Table IV-1. It was recognized that a clear "black-and-white" set of guidelines was not possible across the board for all energy RD&D programs. A series of panel sessions was conducted to reconcile the vast majority of applicability uncertainties.

As part of the input requirements, a standardized tabular format was developed. This table, as depicted in the following sub-sections, provides the following information:

- a. A heading defining the administration and the main title for the specific sessions.
- b. "Project/Element" Title A descriptive title including main words describing the principal nature of the project and element. A "project" was categorized as a discrete, definitely formulated task and an "element" was a division of a program consisting of two or more projects which are technology or subject interrelated.
- c. A checklist to define the primary categories of the project and element relationship to environmental control technology such as research, studies, design, etc.
- d. A description of the relationship of the project or element to environmental control technology. For example, the use of scrubbers, filters, washers, or precipitators to remove noxious gases or particulates from a combustion process.
- e. Finally, the FY 1977 funding allocation related to environmental control technology. Funding was to include operating, capital equipment, and plant Budget Outlay (B/O) dollars that were determined to be related to environmental control technology.

The following sub-sections describe the detailed inputs obtained. Missing from the listings are inputs from National Security (ANS) for which it was agreed that attempting to include ANS projects would not serve the purpose of the inventory. This was due to the fact that an extremely small portion of their funding might have environmental control aspects.

TABLE IV-1

CRITERIA FOR APPLICABILITY TO ENVIRONMENTAL CONTROL TECHNOLOGY

NOT APPLICABLE

CATEGORY	APPLICABLE	NOT APPLICABLE
MAJOR FACILITIES	RD&D	ENERGY PRODUCTION OPERATIONAL FACILITIES (e.g., POWER STATIONS AND OFFICE SPACE)
PROCESS DESIGN	ENVIRONMENTAL IMPACT MITIGATION	ASSOCIATED SOLELY WITH PROCESS OPERATIONS AND RELIABILITY
RESEARCH, ANALYSES AND STUDIES	DIRECTLY OR INDIRECTLY NECESSARY TO CONTROL ENVIRONMENTAL IMPACT	DO NOT IMPACT THE ENVIRONMENT
ASSESSMENTS	PARTIALLY OR DIRECTLY RELATED TO DETERMINING THE NEED FOR NEW OR AD- DITIONAL ENVIRONMENTAL	TO EVALUATE THE CHARACTERISTICS OF A PROCESS THAT DOES NOT IMPACT THE ENVIRONMENT
PROCESS STREAM SAMPLING AND ANALYSIS	CONTROLS EVALUATE OR DETERMINE THE EFFECTIVENESS AND PERFORMANCE OF EXISTING OR ANTICIPATED ENVIRON-	ROUTINE OPERATIONAL MONITORING
TRAINING PROGRAMS,	MENTAL CONTROL PROVISIONS RELATED TO ENVIRON- MENTAL CONTROL	FOR ENERGY DEVELOPMENT THAT IS NOT COINCIDENT WITH ENVIRON-

MENTAL CONTROL TECHNOLOGY

SEMINARS, ETC.

A. Conservation

Working meetings were held with the divisions within AC. Primarily these meetings were for the purpose of clarifying and defining the needs of the inventory and the requirements for completing the inputs. Each of the six divisions within Conservation submitted tabular data for review. Comments, as required, were coordinated and in all cases resolved. Tables IV-2 through IV-7 are the final product and constitute the AC portion of the environmental control technology inventory.

The total AC FY 1977 funding to environmental control activities was \$5,984,000. The Division of Electric Energy Systems projects accounts for 47 percent of that total mainly due to three projects in the electric field effects of power lines. The division of Energy Storage Systems (STOR) and Conservation Research and Technology (CONRT) account for 15 percent and 14 percent of the AC funding respectively. The STOR project with the highest funding is associated with conducting research into containment materials for hydrogen storage and transport. Within CONRT, there is no particular project that stands out; however, the majority of the related funding was in the area of combustion and fuels technology research to improve emission controls or to decrease the emissions. The Divisions of Buildings and Community Systems (BCS), Industrial Energy Conservation (INDUS), and Transportation Energy Conservation (TEC) were approximately equally divided in their funding levels for the remaining 24 percent of the AC total. The total number of AC projects with environmental control aspects was over 70 with CONRT having the most at 21 and BCS with the least at 4.

The AC funding related to environmental control technology constituted 5 percent of the total FY 1977 funding for AC. The objectives of AC are basically reflected in the relatively low percentage. These are: promotion of energy conservation, conversion of existing facilities and equipment, and development of new, energy-efficient methodologies and technologies. The first objective involves very little environmental control effort since it is directed towards consumer conservation and not energy development. The last two objectives do involve environmental control either by providing the same energy services with less energy input (less pollutants) or by the development of new techniques which more effectively utilize the available energy protentials. In either case, the control is by design and not as an add-on unit.

TABLE IV-2

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY IECHNOLOGY: Conservation
PANEL SESSION: Buildings & Community Systems

FY 1977 Funding	Allocation Related to Environmental Control Technology (\$ in thousands)	30 250 200	
	Portion of the Project or Element Related to Environmental Control Technology	Reduction of solid waste and water pollution, 2% Recovery of waste materials, 5% Reduction of water pollution, 100% Reduction of water pollution, 100%	
f	General	×	
ry o	Isnoitourtani		
tegor	Assessment	*	
y Ca	bns gnilqms2 sisylsnA		
Check Primary Category of Environmental Control Aspects	Development	×	
	Design	×	
	Studies		
	Кевеатсһ	×××	
	Project/Element Title	Pompano Beach - Methane from Waste NCRR Task Orders ANFLOW Process Activated Carbon for Sludge Digestion Activated Carbon for Sludge Digestion Bottom - Anacrobic Digester using Fluidized Bed Combustion NCRR - National Center for Resource Reserve	

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOCY: Conservation
PANEL SESSION: Conservation Research and Technology

	Che	시	rima	Check Primary Category of	atego	ry o	ij.		
	Environmental	uuo.	ental	ŭ	,	Aspects	cts		FY 1977 Funding
Project/Element Title	Кеѕеатсћ	Studies	Design	Development Sampling and	Anslysis Assessment	Instructional	General	Portion of the Project or Element Related to Environmental Control Technology	Allocation Related to Environmental Control Technology (\$ in thousands)
FUEL CELLS									
Fuels Utilization		*					<u> </u>	Residue Disposal, 15%	15
HEAT UTILIZATION									
High Grade Heat Utilization		×					H	Thermionic Converter Materials, 5%	10
Middle Grade Heat Utilization	×		*	×			щ	Bottoming Cycle Working Fluids, 5%	35
Low Grade Heat Utilization		×		*			ж	Reduction in Waste Heat, 5%	S.
THERMODYNAMICS & HEAT TRANSFER									
Heat Pipes		×	×				<u> </u>	Working Fluids, 35%	15
PLANNING AND ANALYSIS PREPARATION									
Environmental Development Plan Preparation		×	-,				——	Prepare Environmental Development Plan, 100%	20
COMBUSTION AND FUELS TECHNOLOGY									
Internal combustion engine research	×						띠	Emission Control, 100%	150
Study and development of catalyzed combustion	×						ᄪ	Emission Control, 100%	75
Boiler/furnace burner & industrial process heater improvement	×							Improved Emission Control, 75%	37.5
Efficient burner characterization by acoustic measurements	×						Д	Decrease Emissions, 75%	19
Effect of turbulence on LASER instrumentation	×						Ц	Decrease Emissions, 50%	20
Wall quench and flammability limit effects on exhaust hydrocarbon emissions	×						ᅜ	Emission Control, 100%	50
Fuel injection studies for stratified charge rotary engines	×	· · · · ·					Н	Decrease Emissions, 50%	10
		1	1	1	-	-			A

TABLE IV-3 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Conservation
PANEL SESSION: Conservation Research and Technology

Combustion optimization studies for stratified charge Combustion optimization studies for stratified charge Combustion optimization studies for stratified charge Rate of combustion of wood residue faels Rate of combustion of wood residue faels Rate of combustion of wood residue faels Reduction in Emissions, 50% Reduction in Emissions, 75% Reduction in Emissions, 50% Alternate faels Fundamental and semiglobal kinetic mechanisms of hydrocarbon combustion Air assisted fael injection and ignition—a new concept to improve the automotive diesel engine Lean engine efficiency and flammability limits: the x influence of engine geometry via turbulence Reduction in Emissions, 50% Emission Control, 100% Emission Control, 100% Emission Control, 100% Emission Control, 100%	Check Primary Category of	FY 1977 Funding
Emission Control, 100% X Reduction in Emissions, Reduction in Emissions, Emission Control, 100% to Emission Control, 100% to Emission Control, 100% X Emission Control, 100% X Emission Control, 100%	Instructional General	d, 10
ers of X Reduction in Emissions, Reduction in Emissions, Emission Control, 100% Emission Control, 100% to Emission Control, 100% x Emission Control, 100% Emission Control, 100%	×	80
ers of X Emission Control, 100% Reduction in Emissions, Emission Control, 100% to X Emission Control, 100% X Emission Control, 100% X	Reduction in Emissions,	25
cal control of fuel X mbustion parameters of x c mechanisms of X tion-a new concept to x billity limits: the x rrbulence X	X Reduction in Emissions,	37.5
× × × ×	×	99
t to	×	3, 5
* *	×	50
×	×	40
	×	05

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Conservation

PANEL SESSION: Electric Energy Systems

					1				:
	Check Primary Categ	Sh H	Check Primary Category of nvironmental Control Aspec	ury C Con	Sateg trol	ory of Aspects	of	Ē	
Project/Element Title	Кеѕеатсћ	səibutZ	Design	Development Sampling and	sisylsnA JusmessesaA	Instructional	General	Portion of the Project or Element All Related to Environmental to Control Technology Conf. (\$\$(\$\frac{1}{4}\)	FY 1977 Funding Allocation Related to Environmental Control Technology (\$\frac{\psi}{\psi}\$ in thousands)
Instrumentation Study for Electrostatic Field Effects	×	×		×				Establish requirements for traceability, etc. for electric field measurement equipment, 30%	123
Research to Investigate the Biological Effects of High Voltage Electric Fields	×	×			× ×			Study Biological Effects of High Strength Electric Fields on Small Animals, 100%	550
Transmission Line Audible Noise Measurements	×	×	×	× ×	×			Investigate audible noise generated by EHV lines and relate to human response, 100%	173
Optimization of Transmission Line Support Systems	×		'	×	×			Minimize environmental impact of new support systems, 80%	275
HVDC Test Line - Electric Field Effects of DC Lines	×		. 1	× ×	×	<u> </u>		Investigate Field Effects of DC Lines, 100%	1065
Determination of the Barriers and Incentives for Using Sodium Conductor Distribution Cable	× ×				×			Assess environmental barriers to use of sodium conductor cable, 100%	13
Animal Study	×		~	× ×	×			Study Electric Field Effects on Animals, 100%	200
Future Insulation System	×		· 1	× ·	*			Assess fire hazards of insulating fluids used to replace PCB's and other traditional fluids, 40%	38
Study and Determine The Potential Use of Silicone Fluids in Transformers	×	×	r 7	×	×			Develop alternate insulation fluids safe to personnel and environment, 100%	80
Notes: EHV - Extra High Voltage HVDC - High Voltage Direct Current DC - Direct Current PCB - Polychlorinated Biphenyls							- Min		

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Conservation

PANEL SESSION: Energy Storage Systems

		ţ.		1	1	۲	_			
i i	Environmental Control Aspec	inen	mary tal C	ontro	1 Asj	Aspects	· .		FY 1977 Funding	
Project/Element Title	Research	Design)evelopment	bns gnilqmsd sisylsnA		General		Portion of the Project or Element Related to Environmental Control Technology	Allocation research to Environmental Control Technology (\$ in thousands)	
Lithium/Sulfur Battery Development	*	*	1	5		I	Exal batte cal	Examining recycling possibilities for these batteries, designing thermal insulation and electrical safety features, and vehicle crash safety	40	
Sodium/Sulfur Battery Development	×	*		×			Con	Conducting all rupture tests and designing measures to prevent the rapid mixing of reactants as well as vehicle crash safety measures, 4%	25 .	
Zinc/Chlorine Battery Development	×	<u> </u>		×			Des the rec	Designing and testing measures to prevent the possible leakage of chlorine and methods to recombine small quantities of hydrogen as well as vehicle crash safety designs, 10%	100	
Batteries for EHV Act		×.					Des	Designing high voltage D.C. electrical safety measures, 10%	100	
Environmental Impact Assessment of Electric and Hybrid Vehicle Batteries		×			×		Paj pro	Paper study assessing the environmental problems associated with batteries used in electric and hybrid vehicles, 100%	49	
Aquifer Storage					ж		Th. of pol	This project may be funded prior to the end of FY 1977. It will assess the technical, sociopolitical, and environmental aspects of aquifer storage. This project will be jointly funded with BCS, 33%	10 (from STOR)	
Containment Materials for Hydrogen Storage and Transport	×	×	×				Co de: a11	Conducting research as well as designing and developing containment materials for hydrogen to alleviate the problem of hydrogen embrittlement, 100%	350	
			\dashv	\dashv	_	_				

TABLE IV.5 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Conservation

PANEL SESSION: Energy Storage Systems

	Chec	k Pri	y'a Eth	Check Primary Catuoric of		-		
	Environmental Control Aspects	nmen	tal C	ontrol	Aspe	ets		AND IN THE PARTY OF THE PARTY O
Project/Element Title	Research	Design	Development	bns gnilqms2 sisylsnA	Assessment Instructional	General	Portion of the Project or Element Related to Environmental Control Technology	FY 1977 Funding Allocation Related to Environmental Control Technology (\$ in thousands)
Thermochemical Hydrogen Production				×	ļ		Paper study assessing the toxicity of the size	And the second of the second o
F vwhoels							selenium cycle in the production of hydrogen, 1%	15
	×	×	×	×			Paper study plus designing and developing safe composite flywheels for use in hybrid vehicles	170
Notes:							Determination of failure mode of composite flywheels, 15%	
BCS - Division of Buildings and Community Systems D.C Direct Current EHV - Electric and Hybrid Vehicle STOR - Division of Energy Storage Systems								
								
			-					
			····					
		·		-		**		
			~					

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Conservation

PANEL SESSION: Industrial Energy Conservation

	Check Primary Category of Environmental Control Aspec	FITTIE		Control Aspects	spec	ts.		FY 1977 Funding	
Project/Element Title	Research	Design	Development Sampling and	eieylsnA tnomesoesA	Instructional	General	Portion of the Project or Element Related to Environmental Control Technology	Allocation Related to Environmental Control Technology (\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\	
Automatic Boiler Fuel Control		×	×			Д 8 0 0	Development and demonstration of automatic control systems for boilers. Intended to achieve complete combustion for energy efficiency and air emission reduction, 100%	155	
Fuel Saving Paint Plant		×	×				Process redesign, development, and demonstration to use unburned solvent vapors as fuel, thus improving energy efficiency and reducing emissions, 10%	30	
Cupola Furnace Modifications		×	×				Process redesign, development, and demonstration to improve energy efficiency and reduce emissions, 25%	23	
Coal Fired Aluminum Remelt		×	×				Development and demonstration of burner for coal firing; design for energy efficiency and reduced emissions, 25%	100	
Slot Forge Furnace		×	×				Development and demonstration of furnace modifications to improve energy efficiency and to reduce emissions, 10%	16	
Glass Conglomerates		×	×				Design, development, and demonstration of new furnace to reduce emissions and to save fuel, 75%	75* (Indus.)	
New Fertilizer Process		×	×				Process redesign, development and demonstration to improve energy efficiency and reduce emissions, 10%	44	
*Joint funding with EPA					-hor				
					N11				

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS
ENERGY TECHNOLOGY: Conservation

PANEL SESSION: Transportation Energy Conservation

	빙	eck P	imar	r Categ	Check Primary Category of				
	Envi	Environmental	ntal C	Control	Aspects	s			
Project/Element Title	Кеѕеатсћ	Studies	Development	bns gnifqms2 sisylsnA	Assessment Instructional	General	Portion of the Project or Element Related to Environmental Control Technology	FY 1977 Funding Allocation Related to Environmental Control Technology (\$\\$\$\$ in thousands)	
Low Emission Advanced Combustors	×	×				To E	To Evolve and Evaluate Advanced Combustor Concepts,	223	
Variable Displacement Engine		×		×		33% Emis	33% Emission Analysis as a result of Engine Mapping, 15%	30	
Rankine Bottoming		×		×		Emi	Emissions testing as part of prototype development, 10%	70	
Combustion Research Center	×			-		By g engi	By going to higher temperature for external combustion engineslower emissions, 10%	20	
Investigation of Alcohol/Gasoline Blends	×			×		Asse	Assessment of emissions, including unregulated, 100%	40	
Characterization of Alcohol/Gasoline Blends				×		Asse	Assessment of emissions, including unregulated, 10%	25	
Investigation of Methanol Fuel	×					Emis	Emissions and effects; ecology, 30%	30	
Modification of Alcohol Fuels	×			· · · · · · · · · · · · · · · · · · ·		Emis	Emissions, toxicological effects, 5%	12	
Modification of Engine to Use Alcohol		×				Emis	Emission effects, 5%	ហ	
Composition of Shale & Coal Fuels		×				Inter	Interaction of emissions/regulations, 10%	10	
Refueling of Vehicular Hydride Storage		×				Dire	Directly impacts handling health & Safety, 100%	37	
Design Data for Hydrogen Engine	×					Desig	Design influence on emissions, 10%	10	
				·		·			
						77.4			
				······································					
		· · · · · · · · · · · · · · · · · · ·							
				····			1		
	-								
	1	-		4					

B. Fossil Energy

At their request, panel sessions with AFE were not held. Inputs to this inventory were received from AFE and are shown in Table IV-8 through IV-21 inclusive. The format is slightly different from the remainder of the report due to time limitations and AFE commitment conflicts.

In the AFE supplied tables a description of the portion of the category related to environmental control technology was not presented, therefore a detailed description of the environmental control activities is not possible. The major portion of the applicable funding was in the coal program which comprised 95 percent of the total AFE funding related to environmental control activities. The remaining 5 percent was associated with petroleum and natural gas (3 percent) and oil shale and in-situ technology (2 percent).

Within the coal program, liquefaction accounted for 37 percent of the total AFE related funding with solvent extraction processes (\$21,150,000), followed by direct hydrogenation processes (\$6,340,000) accounting for the majority of the liquefaction project activities related to environmental control technology. Direct combustion followed with 25 percent of the AFE total mainly in the areas of atmospheric fluidized-bed combustion (\$10,582,000) and pressurized systems (\$8,600,000). Gasification (high and low BTU) accounted for 20 percent, with the major funding related to environmental control technology noted in the development of gasification techniques and processes. The remainder (18 percent) of the coal program environmental control activities were, in the order of funding levels, associated with demonstration plants (\$5,795,000), advanced research and support technology (\$4,301,000), magnetohydrodynamics (\$3,444,000), and advanced power systems (\$1,769,000).

The petroleum and natural gas program (Tables IV-16 through IV-19) accounted for 3 percent (\$2,477,000) of the total AFE funding related to environmental control technology. The environmental control activities in this program are almost entirely related to environmental studies and support.

The oil shale and in-situ technology program, Tables IV-20 and IV-21, comprised the remaining 2 percent (\$1,820,000) of the AFE funding related to environmental control technology. These activities are all in the category of environmental support and supporting research.

TABLE IV-8 ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Coal SUBPROGRAM: Liquefaction

FY 1977 Funding	<u> </u>	6,340	21,150	540	55	1,709	
Portion of	Category Funding Related to Environmental Control Technology	20%	* %98	10%	25%	17%	
	General		×	×	×	·	
enta1	Istructional		×				
ronm	tasessa	×	×			×	
Envir	bns gnilqms2 sisylsnA	×	×			×	
eck Applicable Environmental Control Aspects	Development		×			· · · · · · · · · · · · · · · · · · ·	
pplica	Design		×		Tillian de marke		
ck A	səipnig	×	×		·	×	
Сће	Кеsеатсh		×				
	Category	a. Direct Hydrogenation	b. Solvent Extraction	c. Pyrolysis	d. Indirect Liquefaction	e. Support Studies and Engineering Evaluations	

* Coal Cleaning via SRC associated with environmental control requirements.

TABLE IV-9

ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Coal

SUBPROGRAM: High-Btu Gasification

FY 1977 Funding	Related to Environ- mental Control Technology (\$ in thousands)	6,772 1,009	
Portion of	Category Funding Related to Environmental Control Technology	20%	
	General	×	
lta1	Instructional		
nmen	JuəmssəssA	×	
nviro	bns gnilqms2 sisylsnA	×	
le Er Aspe	Development		
Applicable Envir Control Aspects	Design	×	
c App Coi	səipn 1 S	×	
Check Applicable Environmental Control Aspects	Research		
	Category	 a. Development of Second Generation Gasification Techniques b. Support Studies and Engineering Evaluations 	

ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Coal

SUBPROGRAM: Low-Btu Gasification

TV 1077 T	Related to Environ- mental Control Technology (\$ in thousands)	5,530	2,701					
Portion of	Category Funding Related to Environmental Control Technology	20%	50%					
	General			***************************************				
nta1	Instructional							
onme	tnəmasəsaA		×					·
Check Applicable Environmental Control Aspects	bns gnilqms2 sisylsnA	×	×	Harry Andrews Control of the Control	***************************************			
Applicable Envir Control Aspects	Development						-	
plica	Design	×		****		T		
ck Ar	Studies		×	**************************************				
Che	Research				**************************************			
	Category	a. Gasification Processes	Engineering Evaluations					

TABLE IV-11

ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Coal

SUBPROGRAM: Advanced Power Systems

FY 1977 Funding	Related to Environ- mental Control Technology (\$ in thousands)	820 144 805
Portion of	Category Funding Related to Environmental Control Technology	5% 5% 25%
	General	××
al	[snoitourten]	
nent	ļ tuəmssəssA	×
roni	sisylsnA	
Envi	bas gailqms2	×
ble l As	Development	
Applicable Envir Control Aspects	ngisəC	
k Ap	səipnig	×
Check Applicable Environmental Control Aspects	Research	
	Category	 a. Open Cycle Gas Turbine b. Closed Power Systems c. Support & Additional Projects

TABLE IV-12 ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Coal

SUBPROGRAM: Direct Combusion

	FY 1977 Funding Related to Environ- mental Control Technology (\$\\$\$ in thousands)	10,582 8,600 215 1,385	
C	Category Funding Related to Environmental Control Technology	50% 50% 5% 1 5%	
	General	×××	
ental	Instructional		
ommo	Assessment	×	
Envir	bns gnilqms2 sisylsnA	×	
able of As	Development		
Check Applicable Environmental Control Aspects	Design	××	
ck A	Studies	×	
Che	Кевеатсћ		
	Category	 a. Fluidized-Bed Boiler, Atmospheric* b. Pressurized Systems* c. Coal Oil Slurries d. Support Studies and Engineering Evaluations 	*See Special Cases.

TABLE IV-13

ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Coal

SUBPROGRAM: Advanced Research & Support Technology

FY 1977 Funding	Related to Environ- mental Control Technology (\$ in thousands)	429	160	554	.2, 558	
Portion of	Category Funding Related to Environmental Control Technology	5%	5%	10%	33%	
	General	×	×			
lta1	Instructional					
nmer	tasmesseaA					·
nviro	bas gailqms2 sisylsaA		•	×	×	
Applicable Envir Control Aspects	Development				×	
plical	Design					
k Apj Co	səibuj2			×		
Check Applicable Environmental Control Aspects	Research					
	Category	Motorials & Commonents		c. Direct Utilization	d. Program Development & Coordination	

ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Coal

SUBPROGRAM: Demonstration Plants

		1	····					· · · · · · · · · · · · · · · · · · ·	
	FY 1977 Funding Related to Environ- mental Control Technology (\$		0 (2,000	2,400	0	0	1, 395	
D	Category Funding Related to Environmental Control Technology	20%	0/ 00 C	0/ 0 C	ZO%	20%	50%	4.5%	
	General					×	×		
intal	Instructional						·		
Check Applicable Environmental Control Aspects	Assessment	×						×	
Applicable Envir	bas gailqms2 sisylsaA						• • • • • • • • • • • • • • • • • • •	•	·
ble E l Asp	Development						**************************************	 	
plica	Design								
k Ap Cc	səipn1g	×	×	×	·	· · · · · · ·			
Chec	Кеѕеатсh		·				>	٩	
	Category	a. Clean Boiler Fuel Demonstration Plant	b. High-Btu Synthetic PipelineGas Demonstration Plant	c. Low-Btu Fuel Gas Demonstration Plant	d. Low-Btu Fuel Gas Small Industrial Demonstration Plants	e. Direct Combustion Demon-	stration Plant* f. Design & Technical Support		
	The state of the state of the state of	40 .				<u> </u>	·		

*See Special Cases (fluidized bed boilers).

TABLE IV-15 ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Coal
SUBPROGRAM: Magnetohydrodynamics

FY 1977 Funding	Related to Environ- mental Control Technology (\$ in thousands)	3, 389
Portion of	Category Funding Related to Environmental Control Technology	10%
	General	××
ental	Instructional	
onme	Assessment	
nvir	bns gnifqms2 sisylsnA	
ble E I Asp	Development	
Applicable Envir Control Aspects	Design	
k Apj Cc	səipn1S	
Check Applicable Environmental Control Aspects	Research	
	Category	a. Open Cycle Systems b. Closed Cycle Systems

ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Petroleum & Natural Gas

SUBPROGRAM: Enhanced Oil Recovery

		ing ron- ol y s)	
	FV 1077 E	Related to Environ- mental Control Technology (\$ in thousands)	1,320
	Portion of	Category Funding Related to Environmental Control Technology	25%
		General	
enta1		Instructional	
Check Applicable Environmental Control Aspects		Assessment	×
Applicable Envir Control Aspects	hecri	bns gnilqms2 sisylsnA	
able ol As	77. 70	Development	
pplic Contr		Design	
sck A		səipn‡S	
Che		Кеsearch	×
		Category	Environmental Studies & Support in the Areas of: a. Micellar - Polymer Process b. Carbon Dioxide Flooding c. Improved Waterflooding d. Thermal Recovery

TABLE IV-17

ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Petroleum & Natural Gas

SUBPROGRAM: Enhanced Gas Recovery

TABLE IV-18

ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Petroleum & Natural Gas

SUBPROGRAM: Drilling, Exploration & Offshore Technology

FV 1077 F1	Related to Environ- mental Control Technology (\$ in thousands)	300	
Portion of	Category Funding Related to Environmental Control Technology	50%	
	General	×	
ntal	Instructional		
onme	hassessA		
Chvir	bns gnilqms2 sisylsnA		
ble E	Development		
Applicable Envir Control Aspects	Design		
eck Applicable Environmental Control Aspects	Studies	×	
Che	Веsearch	×	
	Category	Environmental & Advanced Concepts Support in Drilling and Exploration	

TABLE IV-19

ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Petroleum & Natural Gas

SUBPROGRAM: Processing & Utilization

Category Funding Category Funding Related to Besterrichional Forbiddes Analysis Assessment Analysis Assessment Analysis Analys	k Applicable Environmental Control Aspects Portion of	
Research Studies Design Development Sampling and Analysis Assessment Instructional	Category Funding Related to Environmental	nding Related to Environ- mental Control Ital Technology
Research Studies Developu Sampling Analys Assessn Assessn Matruct	sis taen Isnoi	y (\$ in thousands)
11 X X	Anslys Assesan Jourtenl	
×		26

ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Oil Shale & In Situ Technology

SUBPROGRAM: Oil Shale

		FY 1977 Funding Related to Environ- mental Control Technology (\$\psi\$ in thousands)	1,168	152			
	ţ	Category Funding Related to Environmental Control Technology	.100%	10%			
		General					
on to 1	7 77	Instructional					
, au uo.		hamssəssA					
Envir	pects	bns gniIqms2 sisyIsnA	×				
eck Applicable Environmental	Control Aspects	Development				·	
plica	ontro	Design					
ck Aj	O.	Studies	×	×		•	
Che		Resestch	×				
		Category	Environmental studies in shale oil and gas production Supporting Research in shale	on and gas production			
		41	-				

TABLE IV-21

ENVIRONMENTAL CONTROL ASPECTS OF FOSSIL ENERGY PROGRAM

PROGRAM: Oil Shale & In Situ Technology

SUBPROGRAM: In Situ Coal Gasification

FV 1077 Fr	Related to Environ- mental Control Technology	(\$ in thousands)	500							
Portion of	ling al	Technology	100%			ne version in the state of the		-		
		General					····			
nta.l	្រែរ	Instruction								
Check Applicable Environmental Control Aspects	ţи	Assessme	×							
Chvird	put	s gnilqms2 siaylsnA	×		a' Transference		**************************************			
ble E	ţue	Developme								Marie Control of the
Applicable Envir Control Aspects		Design			7				·•	Total Brands & Bullion Barrier
ck Ar C		Studies	×		***************************************					**************************************
Che		Resesrch								
	Category		Environmental Support in the Areas of:	a. Linked Vertical Wall/ Medium Thick Seams	b. Packed Bed/Thick Seams	c. Longwall Generator/Thin Seams	d. Steeply Dipping Beds			

C. Nuclear Energy

The Nuclear Energy (ANE) inputs to this inventory are contained in Tables IV-22 through IV-24. The total ANE funding associated with environmental control technology was \$62,195,000. Waste management, production and reprocessing accounted for 90 percent (\$56,025,000) of that total with the major projects being the national waste terminal storage program, commercial High Level Waste (HLW) vitrification, and the radioactive waste demonstration program as shown in Table IV-24.

Reactor development and demonstration environmental control activities are depicted in Table IV-23 and constituted 7 percent of the ANE total related funding (\$4,078,000). The largest project, in terms of funding, was in the area of radioactivity control technology. Sodium processing and tritium behavior and control were significant activities with four separate projects. Meteorological studies, jointly funded with the National Oceanic and Atmospheric Administration (NOAA), were also a significant environmental control activity.

Table IV-22 lists the Nuclear Research and Application environmental control activities. These comprised the remaining 3 percent (\$2,092,000) of the total ANE funding related to environmental control technology. The projects fall into the categories of effluent control, radioactive material handling, waste heat recycling, diffusion studies, environmental impact assessments, and nuclear fuel behavior safety studies.

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Nuclear Energy

PANEL SESSION: Nuclear Research and Applications

	Check Primary Category of Environmental Control Aspects	Ck P	rima	ry Ca	Check Primary Category of nvironmental Control Aspect	ry of	u		
Project/Element Title	Кевеатсћ	Studies	Design	bns gnilqms2 sisylsnA	tnomesoseA	Instructional	General (Portion of the Project or Element Related to Environmental Control Technology	FY 1977 Funding Allocation Related to Environmental Control Technology (\$ in thousands)
Engineering Analysis and Development of an Advanced Technology Low Cost Dry Cool Transfer Surface	×	×	×		×			All (Effluent Control)	
Advanced Wet/Dry Gooling Tower Concept	×	×	×					An	14 /
Study Support for Energy Center		×			×			(Elliuent Control) All (Handline)	275
Nuclear Energy Center Evaluation		<u></u> ⋈		×	×			All All	150
Desalting Dual Purpose Plant Coupling and Control	×	×			×			(rianging) Ali	u v
Analysis of Submerged Diffusor Discharges	×	×			×			(Recycle) All	5 1
Benoficial Uses of Waste Heat	×	×			×			(Elituent Control) All	125
District Heating Studies	×	×			×			(Recycle) All	00 00 00 00 00 00 00 00 00 00 00 00 00
Chalk Point Cooling Tower Study	×	×		×	×			(Recycle) All	0.50
Atmospheric Efforts of NEC's	×	×		×	×	P		All All	400
VHTR Environmental Assessment	×	×			×	······································		(Enfluent Control) All (Environmental Immact)	30
Environmental Radiation Safety	×	×			×			Nuclear Fuel Behavior (One-third)	40
Advanced Safety Technology	×	×	×		×			Nuclear Fuel Behavior (One-third)	425
Safety Support	×	×	***		×			Diffusion Studies (One-third)	120
Notes: NEC - Nuclear Energy Center VHTR - Very High Temperature Reactor			7			N	•		
		\dashv	4]		\dashv			

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS
ENERGY TECHNOLOGY: Nuclear Energy

PANEL SESSION: Reactor Development and Demonstration

	Che	sck I	Check Primary Category of	ry C	ate	Orv	Jc.		
	Envir	Conm	Environmental Control Aspects	Con	trol	Aspe	cts		
Project/Element Title	Research	səibutZ	Design	Development Sampling and	sisylsnA messessA	Instructional	General	Portion of the Project or Element Related to Environmental Control Technology	FY 1977 Funding Allocation Related to Environmental Control Technology (\$ in thousands)
Environmental Effects of Advanced LMFBR Fuels	×	×		×	×			All	208
Evaluation of Army Meteorological and Diffusion Data		×						All	0,5
Evaluation of Models for Assessment of LMFBR Radioactivity Releases		×			*			All	214
Tritium Control in LMFBR Systems	×	*	×	×				All	α ư
Sodium Processing and Tritium Behavior	×	× ×	, i	×	×			All	0 00 00 00 00 00 00 00 00 00 00 00 00 0
Meteorological Studies - NOAA*	×	×		×				(~80%) Diffusion Studies	200
LMFBR Radiological Dose Assessment Code Improvements		×			×			All	4 K
Radiation and Effluent Control Technology	× ×	- ×	*	×	×			(~50%)	225
					· · · · · · · · · · · · · · · · · · ·			Effluent Control Technology Portion	
FFTF Operations and Training				×	×	×		(~4%) Environmental Control Equipment Use Training	200
Fuel Failure Monitoring	× ×	*			×	×		(~50%) Effluent Control Technology	155
Radioactivity Control Technology	× ×	<u> </u>			×			All	200
Decontamination of LMFBR Components	×	×						A11	217
FFTF Test Engineering					×		~	$(\sim 5\%)$ Preparation of Instructions for Environmental Control Equipment Use	170
* Joint Funding with NRC which contributes approximately funding equal to ERDA's.								•	
	$\frac{1}{1}$	+	\downarrow	4			-		

TABLE IV-23 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Nuclear Enersy

PANEL SESSION: Reactor Development and Demonstration

	FY 1977 Funding	Allocation Related to Environmental Control Technology (\$\psi in thousands)	163	293	102	275	Ŋ	130	30	0.2					 			
		Portion of the Project or Element Related to Environmental Control Technology	A11	A11	A11	A11	A11	A11	A11	A11								
-	S	General									 							
of o	Aspects	Instructional									 	 		 			 	 _
Chack Drimary Category of		tnemasesaA		×	×	×	×	×		×							 	
1	ontro	bns gnilqms2 sisylsnA						×	×	×					 		 	
72 87	al C	Development				×			×						 		 	
Drii	nenta	Design	×	×	×	×	×		×	×						 		
12	r on	Studies						×	×	×								
1	Environmental Control	Research	×					×	×	×	 							
		Project/Element Title	Decontamination Process Development	Radioactive Waste System	Waste Water Treatment System	Inert Gas Receiving and Processing System	Intake Design	Environmental Effects of Advanced LMFBR Fuels	Tritium Control in LMFBR Systems	Sodium Processing and Tritium Behavior								

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Nuclear Energy

PANEL SESSION: Waste Management, Production and Reprocessing - Commercial Waste Pr

					rep.	roces	Acprocessing - Commercial Waste Program	
	Che	k Pr	imar	Check Primary Category	sgor	o v		
	Environmental	numer	tal C	Control	l As	Aspects		
Project/Element Title	Кезеатсћ	Studies Design	Development	Sampling and SiaylanA	Assessment	Instructional General	Portion of the Project or Element Related to Environmental Control Technology	FY 1977 Funding Allocation Related to Environmental Control Technology (\$ in thousands)
Ultrafiltration/Inorganic Absorption	×	-	×		 	+-	R&D on separation techniques for research	
Fluidized-Bed Incineration							pollutants and heavy metals from waste streams	370
Encapsulation of HLW in Metal			×				Development of fluidized bed incinerator for incineration of contaminated radioactive fuel cycle waste	470
Criteria for Hull Treatment			×				Selection of metal matrix waste form and process and preparation of conceptual design of plant facility	400
			×				Specify criteria and identify suitable forms and	
Krypton Deep Well Disposal	×		×				Packaging	190
Fluid Bed Calcination and Post Treatment Wests				-			Development of concept of storing fission product noble gases (solution and gas phases) in deep wells	75
Characterization Molten Salt Incineration			×				Waste form development, process engineering devel- opment, equipment design verification	500
		×	×				Design, constructing, and operation of prototype full	
National Waste Terminal Storage Program (NWTS)	×	>	>				full scale combustor	500
Removal and Commention of Mr. 111		4	×				Program management, geological studies, engineering, construction	38 200
Nuclides (ILW)	×		×				R&D on methods to separate TRU and other radioactive	,,,
Volume Reduction and Resource Recovery			×				nucines from LLW and HLW liquid waste streams Establishment of foreithing	190
Controlled Air Incineration							metals from a molten metal alloy	300
Commercial HI.W Vitnistication	×		×				Testing and review of existing and prototype incineration systems	ر د د
TO			×				Development of spray calcination/in-can glassification	
ILW Solidification	×		×				R&D on economic techniques for solidification of 12200	5,950
Acid Digestion of Solid Waste							volumes of ILW	1,750
			×				Development of methods for production of radioactive	
Immobilization and Fixation of TRU Waste	×		×				Studies on fixation of incinemator of	500
							resins by vitrification, cement and glass techniques	300

TABLE IV-24 (Cont)
PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Nuclear Energy

PANEL SESSION: Waste Management, Production and Reprocessing - Commercial Waste Program

Check Primary Category of Environmental Control Aspects Research Ritle Studies Studies Analysis Analysis Analysis Analysis Assessment Title Assessment Title Assessment Control Aspects Assessment Control Co				
	rimary C ental Con	Check Primary Category of nvironmental Control Aspects		
	Development Sampling and Analysis	Assessment Assessment Instructional Instructional	Portion of the Project or Element Related to Environmental Control Technology	FY 1977 Funding Allocation Related to Environmental Control Technology (\$ in thousands)
Off Gas Monitoring	×		Development and operation of gaseous monitoring instruments	135
C-14 and I-129 Fixation	×		Evaluation of options for solidification and/or fixation of C-14 and I-129	135
Krypton Solidification	×		Study feasibility of the glass and metal foil fixation process	210
Radioactive Waste Demonstration Program x x x	×		To demonstrate glass fixation process on HLW from reprocessing spent LWR fuel	4,400
Volume Reduction System for TRU Waste	×		Studies to evaluate feasibility of adapting the cyclone incinerator for processing radioactive contaminated waste	300
Notes: R&D - Research and Development HLW - High Level Waste ILW - Intermediate Level Waste TRU - Transuranic Waste LWR - Light Water Reactor				

D. Solar, Geothermal, and Advanced Energy Systems

The environmental control activities within the Office of the Assistant Administrator for Solar, Geothermal, and Advanced Energy Systems (ASGA) accounted for \$12,337,000, or 7 percent, of the total ERDA related funding. Of the \$12,337,000, Geothermal energy development, with \$8,771,000, comprised the majority (71 percent) of the ASGA funding related to environmental control technology. The geothermal projects are shown in Table IV-25. There were over seventy projects listed with the prime emphasis on H₂S control, subsidence control, drilling technology, resource exploration and assessment, and hydrothermal technology applications.

The environmental control activities in solar energy development are shown in Table IV-28 and amount to \$2,686,000 or 22 percent of the ASGA total funding associated with environmental control technology. There were almost 60 projects with partial or total environmental control aspects. They covered all of the subprograms within solar energy which are: heating and cooling; thermal power systems; photovoltaics; and biomass, ocean, and wind systems.

The remaining 7 percent of the total ASGA funding related to environmental control technology was in the categories of magnetic fusion energy and physical research. The former constituted \$780,000 for the majority of the 7 percent remainder with primary emphasis on tritium containment, control permeation studies, and cleanup systems as denoted in Table IV-26. Physical research activities with \$100,000 in associated funding are shown in Table IV-27. As noted, there were no separately identified projects. Some design and minor development efforts were associated with environmental control technology in the six line item construction projects listed therein.

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Solar, Geothermal, and Advanced Energy Systems

	Charle Drivery Category of	Ď	1	100	11000	40			
	Environmental	nmer	tal (Control	1 As	Aspects	.,,		FY 1977 Funding
Project/Element Title	Research	ngisəU	Development	bns gnilqms2 sisylsnA	Assessment	Instructional	General	Portion of the Project or Element Related to Environmental Control Technology	Allocation Related to Environmental Control Technology (\$\frac{1}{3}\$ in thousands)
Acoustical Drill Monitoring	×	×					E	Environmental Data Monitoring, 15%	6.75
Electromagnetic Signal Transmission	*	×						Environmental Data Monitoring, and Transmission,	
							_	15%	14.4
Descaling Techniques	×	×	×	×			Ď	Determination of Scale Composition, 25%	50.0
High Temperature Drilling Fluid			×				Ä	Development of Nontoxic Drilling Fluids, 15%	14.85
Drilling Fluid Instrument (test bed)	×	×					<u>–</u>	Development of Nontoxic Drilling Fluids, 25%	37.5
Electronic Circuits	×	×	×				<u>급</u>	Environmental Data Monitoring and Transmission,	
								10%	22.0
Computer Model Brine/Mineral System	×		×		· 		×	Model Fluid Thermodynamics, 75%	93.75
Concrete Polymer Composite Material			×				Z —	Material Development to Increase Well Safety, 50%	0.06
High Temperature Polymer Well Cement	×		×				<u>`</u>	Well Material Development to Improve Integrity, 15%	39.0
High Temperature Inorganic Cement	×		×				≱	Well Material Development to Improve Integrity, 15%	25.05
Corrosiyity of Brines	×		*	×			Ă	Determination of Corrosion Rates, 50%	112.5
Precipitation and Scaling	×	×	×	×	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		≱	Waste Materials Control, 50%	150.0
Iron Base Alloys vs Alternate Materials	×	<u>×</u>	×	×			Z	Materials Corrosion Analysis, 10%	32.5
Standardized Fluid Analysis Techniques	×	*	*	×	×	,	드	Fluid Composition Determination, 100%	340.0
Downhole Fluid Analysis	×	×	×	×	×		-	In-Situ Fluid Composition Analysis, 50%	180.0
Silica Precipitation and Brine Management	×			×	×		_ —	Waste Materials Control, 75%	75.0
Well Completion Evaluation	*	*	*				M	Well Completion Safety and Technique Evaluation,	
•								15%	64.65
In Service Drill Pipe		*	*				Ĥ	Test of Pipe Materials for Failure Rates, 25%	46.5
Materials Identification	×	×			×		<u></u> ≍	Materials Design Specifications, 50%	47.5
Materials for Corrosive Environment	×		×				<u>m</u>	Bore Hole Material Evaluation and Development,	
								15%	7.5
Study of Injection	×	×					<u> </u>	Waste Disposal, Analysis, 50%	25.0
Corrosion Fatigue of Geothermal System			×				Ä ——	Baseline Materials Development, 10%	10.0
		\dashv	\dashv	4		7	-		

TABLE IV-25 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Solar, Geothermal, and Advanced Energy Systems

	•			1				8)	
	Envi	eck	Check Primary Category of Environmental Control Aspects	ary (Cate ntro]	gory	of ects	£	701 74
Project/Element Title	Кеѕеатсћ	səibutZ	Design	Development bas sailamed	bns gnilqms2 sisylsnA	framssassa Isnoitourtsul	General	Portion of the Project or Element All Related to Environmental to Control Technology Cor	F 1977 Funding Allocation Related Control Technology (\$ in thousands)
High Temperature Inorganic Gement	×							Well Materials Development to Improve Integrity,	
								15%	37.5
Conversion Systems - Site Specific Analysis		×	×			×		Site Specific Environmental Consideration in Con-	
								version Systems Design, 100%	199.0
Rock Mechanics	×	×			×			Determination of Reservoir Rock Properties, 50%	131.5
Geothermal Well Logging Device				×				Data Acquistion and Instrumentation Development,	
					,			30%	135.0
Improved Logging Tools				×				Data Acquisition and Instrumentation Development,	
		-						10%	18.8
Mechanical Refrigerator				×				Data Acquisition and Instrumentation Development,	
								10%	14.0
Ultra High Temperature Amplifier				×				Data Acquisition and Instrumentation Development,	
								10%	18.3
Log Interpretation	×	×						Reservoir Properties Determination, 20%	40.0
Passive Electronic Components - Well Logging				×				Data Acquisition and Instrumentation Development,	
								10%	20.2
Liquid Dominated Reservoir Analysis	×	×			×			Analysis of Reservoir Conditions and Behavior, 10%	12.0
Resistivity of Rocks	×	×			×			Determination of Reservoir Rock Properties, 10%	6.0
Raft River Core and Log Interpretation		×			×		-	Measuring of Reservoir Rock Properties, 10%	8.0
Reservoir Analysis and Modeling	×	×						Modeling of Reservoir Properties and Performance,	
								25%	87.5
Reservoir Engineering Support		×			×			Measuring of Reservoir Properties and Performance,	
					·····			15%	15.0
Subsidence Study Cerro Prieto		×			×	×		Determination and Evaluation of Subsidence, 100%	150.0
Reservoir Engineering Management	×	×						Management of Reservoir Engineering Prog., 50%	75.0
Reservoir Engineering Techniques	×		***********	×				Testing of Reservoir Assessment Tools and Techniques, 50%	50.0
								A STATE OF THE PERSON OF THE P	

TABLE IV-25 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Solar, Geothermal, and Advanced Energy Systems

Wanagement		Allocation Related to Environmental
trial Support est Facility meering cest Facility meering meer	Study of Seismicity Associated with Geothern Reservoirs, 25%	Control Technology (\$ in thousands)
ts (LBL) x	Reservoirs, 25%	
ts (LBL) x		36.0
ts (LBL) ssment ssment x	x Evaluation of Subsidence Potential, 100%	75.0 .
Assessment	Reservoir Model Development,	142.5
bort hoot	x Reservoir Properties and Performance Studies and	nd
pport		170.5
pport		put
x x x x x x x x x x x x x x x x x x x	Sample Analysis Techniques, 5%	42.8
* * * * * * * * * * * * * * * * * * *	x Determination and Evaluation of Subsidence, 100%	100.0
*	x Environmental Factors — In Site Evaluation,	25% 325.0
*	×	15.0
*		
*	*	300.0
x		35.0
x x x x x x x x x x x x x x x x x x x	x Reservoir Properties and Performance, 5%	8,5
* * * * * * * * * * * * * * * * * * *	x Design and Evaluation of Environmental Control	
* * * * * * * * * * * * * * * * * * *	Systems, 10%	0.66
* * *	×	126.75
× × × ×		620.0
×		20% 50.0
		75.0
* *		734.25
DIC Well Lesis		5% 375.0
		Ģ
Hot Dry Rock Technology Development $x \mid x $	<u>н</u>	
	Design Considerations in Technology Development,	
%5	9%9	250.7

TABLE IV-25 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Solar, Geothermal, and Advanced Energy Systems

	Check Primary Category of Environmental Control Aspects	ik Pi	ima: ntal	ry C. Cont	Check Primary Category of nvironmental Control Aspec	ry o	f		
Project/Element Title	Research	Seibute	Development	bns gnilqms2 sieylsnA	JusmassasA	Instructional	General	Portion of the Project or Element Related to Environmental Control Technology	FY 1977 Funding Allocation Related to Environmental Control Technology (\$\frac{1}{2}\$ in thousands)
INEL Environmental Monitoring	×			×	×			Baseline Monitoring and Environmental Assessment,	
								10%	29.0
Subsidence Control Program	×	*	*	×	×			Subsidence Research and Control Technology, 100%	500.0
H ₂ S Control - Steam Scrubbing	×	*	*	×	×			H ₂ S Control Technology - Steam Scrubbing, 100%	268.0
H ₂ S Control - Oxygen Injection	×	×	×	×	×			H ₂ S Control Technology - Brine Oxidation, 100%	300.0
H2S Control Pilot Test Facility	×	*	*	×	×			H ₂ S Control Technology - Steam Scrubbing, 100%	500.0
Well Blow Out Control Analysis	×				*			Study and Assess Well Blow Out Control, 100%	50.0
Induced Seismic Studies	×							Study and Evaluation of Induced Seismic Potential	
								Related to Geothermal Development, 100%	100.0
H ₂ S Control — Undesignated	×	×	×	×	×			H ₂ S Control Technology, 100%	100.0
Noise Control	×				×			Study and Assess Noise Control Technology, 100%	50.0
EIA/EIS Evaluations					×	×		NEPA Environmental Reviews, 10%	46.0
Raft River Thermal Loop Facility		×	*	×				Environmental Control Systems Design and Environ-	
								mental Sampling, 15%	0.099
Raft River Non-electric Applications	*				×			Environmental Studies and Assessments, 15%	30.0
Moderate Temperature Reservoir Engineering	*							Reservoir Behavior, 10%	5.0
Hawaii Geothermal Project	× ×			×	×			Environmental Monitoring, Effects, and Evaluation,	
	<u> </u>							20%	50.0
				-	·				
Notes: LBL - Lawrence Berkeley Laboratory									
GC - Gulf Coast									
EIA - Environmental Impact Assessment	************		···						
EIS - Environmental Impact Statement									
INEL - Idaho National Engineering Laboratory				·					
NEPA - National Environmental Policy Act		_	_				\neg		

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Solar, Geothermal, and Advanced Energy Systems

PANEL SESSION: Magnetic Fusion Energy

	7.01 VI	F 1 1977 Funding Allocation Related to Environmental Control Technology (\$\$\$\$ in thousands)		200 (OP) 100 (EQ)	140 (OP)	25 (OP)	150 (PACE) 15 (OP)	75 (PACE) 75 (OP)
		Portion of the Project or Element Related to Environmental Control Technology		A major purpose of this facility is the demonstration of tritium containment and control technology, under both normal and accident conditions, for the Prototype Experimental Power Reactor to be operated in the mid 1980's. Approximately 20% of the FY'77 budget is committed to containment and control technology development.	Approximately 5% of this program element in FY177 is devoted to studies of tritium permeation through potential fusion reactor materials. Successful development of low permeation alloys will significantly reduce routine tritium releases from fusion power plants.	Some fusion reactor conceptual designs have suggested that large quantities of activated structural materials may be produced during operation of these plants. Approximately 6% of the FY'77 budget for this program element is being applied to evaluating the waste management implications of fusion power.	Tritium cleanup systems to contain routine and accidental spills of tritium within facility. Development of these systems will provide design and operating experience for later magnetic fusion facilities. These represent approximately 1% of the FY177 project budget.	Tritium cleanup systems to contain routine and accidental spills of tritium within facility. Development of these systems will provide design and operating experience for later magnetic fusion facilities. These represent approximately 10% of the FY'77 project budget.
	cts	General						
	ory ot Aspects	Instructional						
		framssassA				×		
1	7 Ca onti	bns gnilgms2 sisylsnA		×				
.	Check Primary Cates Environmental Control	Development		×			×	×
	Prir	Design						
-	conn	səibutZ			VAT 1181			
ī	Chy	Кеѕегисћ			× .			
H	14							
		Project/Element Title	A. Development and Technology	 Tritium Systems Test Assembly 	2. Alloy Development	3. Fusion Reactor Safety Research		2. Rotating Target Neutron Source Facility NOTES: OP - Operating Expenses EQ - Equipment Costs PACE- Plant and Capital Equipment

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Solar, Geothermal and Advanced Energy Systems

PANEL SESSION: Physical Research

FV 1977 Funding	F 1 1977 Funding Allocation Related to Environmental Control Technology (\$ in thousands)	Estimated \$ 100
	Portion of the Project or Element Related to Environmental Control Technology	The Division has underway in FY 1977 six line items construction projects. Although none of these involves separately identified R&D concerning environmental control technology, some design and minor development efforts are properly associated with environmental control in each case. The trust of the work of this type is to assure fully adequate use of existing environmental control technologies. The projects underway are: (1) SuperHILAC Initial Upgrading, LBL (2) Holifield Heavy Ion Research Facility, ORNL (3) Positron-Electron Project (PEP), SLAC (4) High Flux Beam Reactor (HFBR) Power Increase, BNL (5) Steam Plant Modifications, ORNL (6) Bates Linear Electron Accelerator, 2nd Experimental Area, MIT
ts	General	
Check Primary Category of nvironmental Control Aspects	IsnoitourtenI	
Cat	bns gnilqms2 sisylsnA	
nary al C	Development	ж
Prin	ngiao O	×
eck	səibutZ	
Check Primary Categ	Research	
	Project/Element Title	DIVISION OF PHYSICAL RESEARCH

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Solar, Geothermal, & Advanced Energy Systems

PANEL SESSION: Solar Energy

guipung 1677 Fanding	Allocation Related to Environmental Control Technology (\$ in thousands)	. 31	7	65	21	4	12	23	9	7	20	26	10	20	4.3	
	Portion of the Project or Element Related to Environmental Control Technology	Flame & toxic gas barrier to be added, 10% Double-wall approach	Develop double-wall approach to eliminate, 10% contamination	Determine significant environmental effects, 65%	Investigate environmental aspects, 5%	Measure toxicity, 5%	Measure toxicity, 5%	Preliminary Assessment of environmental Issues, 5%	Measure toxicity, 5%	Measure toxicity, 5%	Preliminary Assessment of environmental Issues, 5%	Preliminary Assessment of environmental Issues, 5%	Assessment of environmental issues	Assessment of environmental issues	Identification of impacts, formulation of research plan	
ts	General															
ory of Aspects	Instructional												×			
		×	×	×				×			×	×	×	×	×	
Cati	bns gnildms2 sisylsnA					×	×		×	×						
ary 1 Co	Development	×	×			×	×		×	×			-			
rim	ngisəQ			ا الله الله المالية الموسوس								***************************************	V-1-4			
Ck F	Studies				×	·										
Check Primary Category of Environmental Control Aspect	Кезеатсћ												_		×	
) 	Project/Element Title	Existing Systems that require additional development	Existing Systems that require additional development	Environmental Impact Assessment of solar heating and cooling program	Mission Analysis of photovoltaic energy systems	Improved Semiconductors for photovoltaic solar cells (coevaporation of ${\rm CuinSe}_2$ 1.01ev)	Improved Semiconductors for photovoltaic solar cells	Conceptual Design and systems analysis of photovoltaic power systems	Improved Semiconductors for photovoltaic solar cells (electrochemical method of depositing CdTe on glass)	Improve Semiconductors for photovoltaic solar cells	Conceptual Design and systems analysis of photovoltaic solar energy systems	Conceptual Design and systems analysis of photovoltaic solar energy systems	Community workshops to assess environmental and social effects	Technology Assessment of solar energy studies	Desert Ecology impacts study	

*TABLE IV-28 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Solar, Geothermal, & Advanced Energy Systems

	Check Primary Category of Environmental Control Aspects	유민	rima	Check Primary Category of nvironmental Control Aspec	tego rol A	ry of	ts		
Project/Element Title	Research	Studies	Design	bns gnilqms2 sisylsnA	Assessment	Instructional	General	Portion of the Project or Element A) Related to Environmental to Control Technology Co.	FY 1977 Funding Allocation Related to Environmental Control Technology (\$\$\$\$ in thousands)
Environmental Impact Assessments - photovoltaic power plant					×			Assessment of potential environmental effects	12
Solar Preliminary Technology Assessment					×		1 MP food	Assessment of environmental issues	25
SPS Environmental Analysis/Integration					×			Assessment of environmental effects	35
Environmental Development Plans for eight technologies		_			×			Identification of Environmental research, assessments, etc., 50%	55
NBS Standards Activities			×					Materials, safety, etc., standards for SHACOB, 15%	263
Standards & Test Procedures			*					Procedures & Standards for SHACOB Test Facilities, 2%	rv
Direct Contact Liquid/Liquid, Heat Exchanger			×					Develop a liquid to liquid heat exchanger toxicologial studies, 50%	10
Marine Biota Impact Assessment for Ocean Thermal Energy Conversion(OTEC)(RFP#EG-77-R-06-1032)	×	<u>×</u>			×			Plan for mitigational control, 75%	75
Environmental Impact Assessments (EIA,s) of ocean test platforms for Ocean Thermal Energy Conversion (OTEC) (RFP #EG-77-R-06-1033)					×			Identification of control measures on OTEC test platforms, 50%	25
OTEC Program Management Support		×	×				×	Physical oceanographic impact control for OTEC, 50%	30
Experimental Study Flow Problems related to OTEC	×	× ×	<u>,,</u>					Physical oceanographic impact control for OTEC, 25%	12
OTEC - Program Management Support		×	×				×	Marine Biota impact control for OTEC, 50%	15
OTEC Research Contracts to Review	×	× ×						Physical oceanographic impact control for OTEC, 50%	т
Environmental Impact Assessment for WECS candidate sites	***				×			Identify environmental issues, 50%	10
Biomass to Methane	×		ووروج والمحمد والأحياد الأما					Identification of products & by products requiring environmental analysis	80
	1	4	\dashv	_		\dashv	\dashv		

TABLE IV-28 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Solar, Geothermal, & Advanced Energy Systems

	Check Primary Category of Environmental Control Aspec	Pri men	mar tal (ry Cate Control	tego:	ory of Aspects			FV 1977 Funding
Project/Element Title	Hesearch Studies	Design	Development	bns gnilqms2 sisylsnA	tnemaseaaA	Instructional Israen	Portion of the Project or Element Related to Environmental Control Technology	Allocation to Em	Allocation Related to Environmental Control Technology (\$ in thousands)
Anoerobic Digestion	×						Identification of products & by products requiring environmental analysis	ing	50
Feedlot Energy	×		×				Idenfification of products & by products requiring environmental analysis	ing	20
Livestock Manures and crop residues	×						Identification of products & by products requiring environmental analysis	ing	10
Recovered Fuel Gas From Residue	×						Identification of products & by products requiring environmental analysis	ing	10
Operation Digestion - 350 cattle unit	×		×				Identification of products & by products requiring environmental analysis	ing	20
Pilot Feedlot		×	×				Identification of products & by products requiring environmental analysis	ing	300
Cellulose to Sugar and Ethanol	×						Identification of products & by products requiring environmental analysis	ing	40
Biological Production of organic solvents from cellulosic wastes	×	×					Identification of products & by products requiring environmental analysis	ing	50
Fermentation Heat Tolerant Molds to Alcohol	×						Identification of products & by products requiring environmental analysis	ing	34
Enzyme Hydrolysis - Acetone - Butanol & Acetic Acid	×						Identification of products & by products requiring environmental analysis	ing	50
Control Digesters	×	×	×				Identification of products & by products requiring environmental analysis	ing	16
Mutants of Trichoderma/Virde	×						Identification of products & by products requiring environmental analysis	ing	40
Fermentation of Seed Weeds	×						Identification of products & by products requiring environmental analysis	8 ui	18
		-							

TABLE IV-28 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Solar, Geothermal, & Advanced Energy Systems

	FY 1977 Funding Allocation Related to Environmental Control Technology (\$ in thousands)	02	120	20	50	150	100	150	20	40	0	30		
	FY 197 Allocati to Envi Control (\$ in th		71	С	w	1.5	10	1	ιΩ.	4,	40	en .	09	
	Portion of the Project or Element Related to Environmental Control Technology	Identification of products & by products requiring environmental analysis	identification of products & by products requiring environmental analysis	Identification of products & by products requiring environmental analysis	Identification of products & by products requiring environmental analysis	Identification of products & by products requiring environmental analysis	Identification of products & by products requiring environmental analysis	Identification of products & by products requiring environmental analysis	Identification of products & by products requiring environmental analysis	Identification of products & by products requiring environmental analysis	Identification of products & by products requiring environmental analysis	Identification of products & by products requiring environmental analysis	Identification of products $\&$ by products requiring environmental analysis	
of	General													
Primary Category of mental Control Aspects	Instructional				-	*								
ateg rol	Assessment													
ry C Cont	bns gnilqms2 sisylsnA													
Check Primary Categ Environmental Control	Development	×	×							****				
k Pr	Design	*			×	×	×							
Check	səibutZ													
이별	Иевеатсh	×	×	×	×	×	×	×	×	×	×	×	×	
	Project/Element Title	Bench Scale - Experimental Thermochemical Conversion	Operation of Wood-to-Oil pilot plant	Water/Steam Gas	Application of SGFM Technology to other feedstocks	Direct Combustion, collection, harvesting, & conversion of Biomass	Conversion of Biomass into Gaseous Products	Gasification	Catalytic Gasification	Georgia Tech Biomass Conversion Study	Systems Study of energy forming concepts based on sugarcane, sweet sorghum and sugar beets	Cultivation of Filamentous blue-green algae in solar bioconversion	Biological Investigation of kelp as a source of energy	T

TABLE IV-28 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Solar, Geothermal, & Advanced Energy Systems

	FY 1977 Funding Allocation Related to Environmental Control Technology (\$\frac{1}{2}\$ in thousands)	30	80	50	
	Portion of the Project or Element Related to Environmental Control Technology	Identification of products & by products requiring environmental analysis	Identification of products & by products requiring environmental analysis	Identification of products & by products requiring environmental analysis	
f t	General				
ry o	Instructional		·		
tego	fnəmesəseA				
Ca Cutr	bns gnilqms2 sisylsnA				
nary	Development				
Prin	Design				
Check Primary Category of	səibutZ				
Check Primary Category of	Research	X	×	×	
	Project/Element Title	Algae Systems Study	Energy Farm	Direct Combustion - Forest Energy Program	Notes: NBS - National Bureau of Standards OTEC - Ocean Thermal Energy Conversion SGFM - Synthetic Gas from Feedstock Material SHACOB - Solar Heating & Cooling of Buildings SPS - Solar Power System WECS - Wind Energy Conversion System RFP - Request for Proposal

E. Environment and Safety

The environmental control related projects within the office of the Assistant Administrator for Environment and Safety (AES) were primarily located in the Division of Environmental Control Technology (ECT). They are denoted in Tables IV-29 and IV-30. The total AES FY 1977 funding associated with environmental control activities was \$17,973,000 of which ECT projects comprised 93 percent, mainly in the areas supporting fossil and nuclear energy development. Fossil energy related activities comprised 33 percent and nuclear energy 45 percent of the total. The remaining 22 percent was divided into multi-technology (15 percent), solar and geothermal (5 percent), and conservation (2 percent).

In the fossil energy area, the majority of the applicable AES funding was devoted to environmental control activities related to the production of energy from coal. The remainder was primarily related to petroleum and natural gas programs with oil shale and in-situ technology development accounting for the smallest effort because of the limited RD&D efforts in that area, due to the present state-of-the-art in these energy disciplines.

Solar, geothermal, and conservation activities were a small portion of the total AES funding related to environmental control technology, primarily due to the recent emergence of these energy technologies. Principal emphasis was placed on heat transfer materials development for solar application, on waste disposal and H_2S control for geothermal energy related activities, and on urban and industrial waste control and electric power transmission environmental impacts for conservation related efforts.

Nuclear energy related activities were divided into two main areas. The first involved the analysis of nuclear fuel cycles to assess the adequacy of existing environmental controls and the need for additional control requirements. The remainder of the nuclear energy associated activities were in decommissioning and decontamination efforts involved in managing surplus nuclear facilities.

The energy materials transport efforts within ECT are devoted to transportation studies including risk assessments and testing, including testing of shipping casks for radioactive wastes. Additionally, transportation statistics on attack impact, severity of accidents, and relevant environmental transport accidents were kept up to date utilizing the latest computer technology.

TABLE IV-29

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Environment & Safety

PANEL SESSION: Biomedical & Environmental Research

		,	(
H	Check	rrim imenta	Uneck Frimary Category of Environmental Control Aspects	regory	or sects		FY 1977 Funding
Project/Element Title	Research Studies	Design	Development Sampling and Analysis	hrsessare	Instructional General	Portion of the Project or Element Related to Environmental Control Technology	Allocation Related to Environmental Control Technology (\$ in thousands)
Bioengineering Research	×					Bioprocess development for energy production $\&$ pollution abatement, 20%	40
Ecological Investigation of Uranium Mine $\&$ Mill Tailings in the Southwest U.S.			*****		×	Evaluate revegetation trials, alternative rehabilition measures, & recommend rehabilitation protocol, 60%	09
Biophysical Chemistry	×					Photosynthesis & Biomass - solid waste utilization, 50%	297
Covalent Structure Analysis of Proteins	×					Properties of enzymes which detoxify poisons, 50%	29
IVEP Geothermal: Water Quality	×					Explore ways that geothermal resources could be used to improve water quality in Imperial Valley, 20%	101
Environmental Effects of Solid Waste as a Supplemental Fuel	×					Environmental effects of co-combustion, 50%	89
Study of Microbiological Air Quality in Relation to the Ames Municipal Solid Waste Disposal System	×	×				Analysis & suggested solutions for mitigating potential hazards, 20%	14
Assessment & Control of Radioactive Air Contaminants	×	*	× ———	×		Assess, monitor & control contaminants in public and occupational environments, 50%	42
Assessment of Environmental Conditions of the Great Lakes in Relation to Power Production	×					Evaluate control technology & resource management option for mitigating adverse impacts, 25%	35
Assessment & Control of non-nuclear Air Contaminants	×					Basic elements of control technology are evaluated for effectiveness, deficiencies are remedied by improving existing methods,or devising alternatives, 50%	8
Biomedical Treatment of Waste Streams from Conversion Processes	×					Research & development of proposed schemes for bioreactor systems, 100%	75
Terrestrial Effects of Oil Shale Developmen	×					Minimize environmental impact & set standards of performance for pollution control equipment, 100%	207
						·	

TABLE IV-29 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Environment & Safety

PANEL SESSION: Biomedical & Environmental Research

		FY 1977 Funding Allocation Related to Environmental Control Technology (\$\$\$\$ in thousands)	09	50	09							
		Portion of the Project or Element Related to Environmental Control Technology	Information file to assist in identifying problems in environmental control, 100%	Instrumentation designed to aid the analysis & design of pollution abstement equipment for particulates and aerosols, 100%	Demonstration of natural ecosystem to recycle water and nutrients, 100%							
4	cts	General				 					 	\dashv
Check Primary Category of	Environmental Control Aspects	Instructional	×				***************************************					\dashv
ego	ol A	Assessment									 ***	
Cat	ntr	bns gnilqms2 sisylsnA									 	-
arv	ŭ	Development			×	 					 	_
rim	enta	Design							·		 	
Y.	, EL					 		1000		***********		
hec	viro	SeibutZ										
L	뜁	Research		×	-						 	
		Project/Element Title	Environmental Control Tech. Data Base	Applications of Holography	Ecological Waste Water Recycling							

TABLE IV-30

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Environment and Safety

Envir	Check Prima Invironmental	imar ntal (Check Primary Category of nvironmental Control Aspec	egory al Asp	ory of Aspects			FV 1977 Funding
Project/Element Title	Studies ngisə (I	Development	bns gnilqms2 sisylsnA	Assessment	Instructional General	Portion of the Project or Element Related to Environmental Control Technology		Allocation Related to Environmental Control Technology (\$ in thousands)
Environmental Control Technology for Generation of Power from Coal (ANL)	×			×		Comparative assessments of $coal/control$ technologies, 100%		1,035
Environmental Control Technology Survey of U.S. Stripmining Sites (ANL)	×		×	×		Evaluate control technologies for new and expanding mines, 100%	expanding	270
Assessment of Once-Through Cooling Water Control Technology (ANL)	×			×		Cooling water controls, 100%		55
Preliminary Overview of Environment Control Technology for CO_2 Emissions (BNL)	×		,	×		Emission control option, 100%		10
Evaluation of Pollutants from Flash-Hydro Gasifier (BNL)	×					Evaluate pollutants for control requirements, 100%	its, 100%	25
Environmental Control Technology Aspects of In-Situ Gasification (LLL)	×	**************************************	×	×		Identify control requirements, 100%		339
Assessment of Environmental Control Technology for Coal Conversion Wastewater Systems (ORNL)				×		Determine adequacy of existing control methods and identification of new control techniques, 100%	thods and 30%	200
Control of Hydrocarbon and CO Emissions Associated with First Generation Gasifiers (ORNL)			×	×		Emission control, 100%		35
Assessment of Environmental Control Technology for First Generation Coal Gasifiers, Excluding Lurgi (PNL)				×		Provide economic basis for evaluation control methods for commercial coal gasification systems, 100%	trol methods 100%	53
Assessment of Environmental Control Technology for Waste Systems in In-Situ Coal Gasification (LERC)	×		×	×		Evaluate waste systems control, 100%		208
Assessment of Radiological Impact of Western Coal Utilization (MOUND)				×		Control of radiological emissions, 100%		58
Inventory of Environmental Control Technology Activities (Aerospace Corporation)	· · · · · · · · · · · · · · · · · · ·				*	Define and catalog all the ERDA projects related to environmental control technology, 100%	elated to	120

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Environment and Safety

Technology
t Control
Environment
PANEL SESSION:
μ

lect/Element Title lest Support on the Homer-City t (EPA) and Environmental Considerations t, Berenek, and Newman) siffer, Two-Stage Quench for r G. McKee) mental Control Technology and Water Quality (MIT) Needs for Entrained Gasifier x x	Development Sampling and Analysis Analysis Themsessam	IsnotiourtenI [Isnotiona]	Portion of the Project or Element Related to Environnental Control Technology	F.Y 1977 Funding Allocation Related to Environmental Control Technology (\$ in thousands)
he Homer-City tal Considerations Newman) e Quench for Technology tity (MIT) med Gasifier				
tal Considerations Newman) a Quench for Technology x tty (MIT) ined Gasifier x			Evaluate control requirements and performance, 100%	200
re Quench for Technology tty (MIT) x ined Gasifier x	× × ×		Assess noise control options, 100%	20
Technology x tty (MIT) x ined Gasifier x	××		Water pollution control studies, 100%	2.5
Needs for Entrained Gasifier	×		Evaluate options for waste heat and water quality, 100%	304
(Eyrang metruce, BIU)	_		Evaluate control requirements for entrained gasifier, 100%	88
Treatment of Synthane Gasification Wastewaters (PERC)	×		Assess wastewater controls and treatment, 100%	55
Assessment of Environmental Control Technology for x x Lurgi Gasifiers (U. of North Dakota)	×		Provide new term assessment of Lurgi process, 100%	30
Evaluation Control Assessment of Coal Preparation x Plants (BCR)	×		Assess coal preparation techniques and controls, 100%	375
Environmental Control Technology Aspects of Coal Slurry x x Transportation (UCLA)			Studies on environmental impacts of coal slurries, 100%	. 40
Trace Element Characterization Removal/Recovery x x (LASL)	×		Identify trace elements and control requirements, 100%	325 (EPA pass thru fundine)
Identification of Refractory Organic Compounds in Treated Refinery Wastes (ANL)	×		Evaluation of the effectiveness of activated sludge and activated carbon waste water treatment, 100%	27
Integrated LNG Safety and Control Program (PNL)	×		Identify environmental impacts, 100%	420
LNG-Wind Tunnel and Instrumentation Assessments (R & D Associates)	×		Assess environmental impacts and site criteria, 100%	120

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Environment and Safety

	Envis	Check Prima Environmental	Check Primary Category of nvironmental Control Aspec	ry C. Cont	ry Category of Control Aspects	Aspe	of cts		FY 1977 Funding
Project/Element Title	Девеагсh	seibut2	Development	bns gnilqms2 sisylsnA	Assessment	Instructional	General	Portion of the Project or Element Related to Environmental Control Technology	Allocation Related to Environmental Control Technology (\$\frac{1}{2}\$ in thousands)
LNG-Analysis of LNG Storage and Transportation Characteristics (IGT)		×						Evaluate environmental control needs, 100%	15
LNG-Scale Effects in LNG Hazards Analysis and Testing (MIT)		×						Impact of scaling on LNG site selection, 100%	69
Oil-Oil and Hazardous Materials Simulated Environmental Test (EPA)		×		×				Field test of oil spill cleanup equipment, 100%	75
Oil Spill Training School (Texas A & I University)						×		Develop curriculum for oil spill training, 100%	120
Assessment of Practicability of Oil Spill Treatment (University of Rhode Island)		×			×			Assess advantages/disadvantages of treating oil spills, 100%	400
Assessment of Hazards and Control of LNG Spills on Water (USCG)	×				×			Identify environmental impacts, 100%	100
Medium Scale LNG Tests (NWC, China Lake)	×			*	.,			Identify environmental impacts, 100%	. 50
Assessment of Hydrocarbon Sensors (MIT)		×			×			Assess feasibility of three types of sensors to detect methane, 100%	48
Off-Shore Cleanup Assessment (EPA)			· · ·	м	×			Field test of oil spill cleanup equipment, 100%	330
Boiling of LPG on Water (MIT)	×				×			Safety of the transportation of hydrocarbon fuels, 100%	46
Assessment of Control Implications for Enhanced Oil Recovery Wastewaters (University of Tulsæ)	×				×			Assess wastewater treatment techniques, 100%	32
Site Criteria for Large Scale LNG Tests (LLL)		*						Identify test site characteristics, 100%	35
Design for Medium Scale LNG Tests (Holmes and Narver)		×	*					Determine preliminary requirements for medium scale test site, 100%	76
							[

TABLE IV- 30 (Cont)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Environment and Safety

	Check Primary Category of Environmental Control Aspects	k Pr	imar ital (Check Primary Category of nvironmental Control Aspect	egor ol As	y of	l si		
Project/Element Title	Research	ngiaed	Development	Sampling and sisylanA	tnəmssəssA	Instructional	General	Portion of the Project or Element Related to Environmental Control Technology	FY 1977 Funding Allocation Related to Environmental Control Technology (\$ in thousands)
Assessment of Environmental Control Technology for Wastewaters in In-Situ Oil Shale Retorting (PNL)	×				×		M	Wastewater control and management, 100%	100
Environmental Control Implications of Tar Sands Development (University of Utah)	×				×		10 Q	Determine environment control implications,	57
Development of Control Strategy for In-Situ Oil Shale (Denver Research Institute)	×				×		10 10	Determine environmental control implications,	20
Environmental and Fire Hazards of Materials used for Solar Heating and Cooling (SANDIA)	×				×		ы́ Ё	Evaluate environmental impacts of heat transfer materials, 100%	115
Environmental Impacts of Energy Production using Solar Derived Fuels (Ames Lab)	*			Ж	×		Ď	Defermine environment impact, 100%	25
GLGP Applications Environment and Safety Assessment (LLL)					×		A£	Assess environmental and safety issues, 100%	ю 44
IVEP: Control Technology Assessment (LLL)	×				*		<u>"</u>	Geothermal energy control assessment, 100%	46
Research Program Plan for Geothermal Liquid Waste Disposal (PNL)	×			n	×		<u>×</u>	Waste disposal, 100%	150
Evaluation of H ₂ S Control Technology for Geothermal Energy (MR1)	×			n	м		Pc	Pollution control evaluation, 100%	26
Assessment of Environmental Control for High Magnetic Fields (LASL)				<u> </u>	×		ပိ	Control assessment, 100%	50
Compressed Air Energy StorageEnvironmental Concerns (PNL)	×			n	×		핍	Environmental control implications, 100%	19
Energy Conserving Industrial Waste Treatment Process (PNL)	* *	·····		ж	u		De	Determine control requirements, 100%	22
					_	_			

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Environment and Safety

	Che	ck Pi	rimar ntal (Check Primary Categ		ory of Aspects		FV 1977 Funding
Project/Element Title	Кевеатсћ	Soibuta	Development	bns gnilqms2 sisylsnA		Instructional General	Portion of the Project or Element Related to Environmental Control Technology	Allocation Related to Environmental Control Technology (\$\frac{1}{3}\$ in thousands)
Assessment of Waste Utilization Control Technology (Ames Lab)		×		×	×		Assess Urban waste management and impact on electric power generation, 100%	88 88
Feasibility Study of Transformer Noise Reduction System (Westinghouse)		×					Noise control, 100%	22
Environmental Control Technology Requirements for Future A. C., High-Voltage, Overhead Transmission (SRI)		×			×		Determine environmental control requirements, 100%	33
Analysis of Nuclear Fuel Cycles (PNL)		×			×		Adequacy of environmental controls considerations and control improvements, 100%	700
Evaluation of Ocean Bed DisposalHigh Level Waste (HLW) (SANDIA)	×	×			×		investigate methods for emplacement of HLW in submarine geologic formation of deep oceans, 100%	1,000
Critical Review and Assessment of Hydrogen Economy Transport (LASL)		×	····		×		Assess control technology for hydrogen, 100%	115
EnergyMaterials Transport (PNL)		×			×		Identify potential problems, establish needs and objectives, and examine future transportation systems, 100%	285
Assessment and Application of Endochronic Plasticity for Transportation (ANL)		×			×		Assess control options, 100%	20
Development of Computer Analysis Methods (LASL)		×	×		×		Assess package designs, 100%	160
Review Criteria for Nuclear Criticality Safety Evaluation for Fission Material Transport (ORNL)		×					Evaluate radioactive material safety, 100%	25
Testing of Large Obsolete Casks (ORNL)		······································		×			Destruction tests to yield information on damage to casks and to contents, 100%	150

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Environment and Safety

		Check Primary Category of	Prin	ary	Cate	POLV	of		
	ű	Environmental Control Aspects	nent	11 C	ntrol	Asp	ects	Ø	
Project/Element Title	Research	Studies	Design	Development	sisylsnA	Assesment	Instructional General	Portion of the Project or Element Related to Environmental Control Technology	FY 1977 Funding Allocation Related to Environmental Control Technology (\$ in thousands)
Transportation Safety Studies (PNL)		×		×	×			Develop methodology and perform risk assessments, 100%	
Package Eailure from Malevolent Attack (SANDIA)		×	~		× ×			Determine attack impact and improvement measures. 100%	240
Study of Physical Parameters of Transportation Accidents (SANDIA)	·	×						Qualify severity of accidants 1000	09
Full-Scale Vehicle Testing Program (SANDIA)	×			×	×			Assess validity of analyses and scale model testing 100%	85
Structural Response of Shipping Containers Under Accident Conditions (BATTELLE)		×		×				Determine structural integrity and dynamic material properties of waste containers, 100%	
Transportation Statistics Data Bank (ORNL)		×	~ 					Maintain data bank on ERDA statistics, 100%	50
Maintenance of Transportation Accident Environmental Data Bank (SANDIA)		×						Storage of relevant environmental accident data, 100%	,
Films-Transport and Packaging of Radioactive Waste (SANDIA)						×		Production of films on packaging and shipping of radioactive waste. 100%	09
Exhibit (Operating)-Transporting Radioactive Cargoes (Oak Ridge Associated Universities)						×		Increase public awareness of environmental control requirements, 100%	50
Transport Exhibit Operations (NORCUS)						×		Increase public awareness of environmental control requirements, 100%	n v
Transport Consultant							×	Independent law analyses, 100%	F
Surplus Facility Surveillance (ANL)				*				Monitor radiation hazards, 100%	2 21
Salvage of Alpha Contaminated Metals (ANL)	×	×						To provide and evaluate techniques for decontamination of metals, 100%	75

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Environment and Safety

Environment Control Technology
PANEL SESSION:

FY 1977 Funding	Allocation Related to Environmental Control Technology (\$\frac{\psi}{\psi}\$ in thousands)	105	160	7.0	640	228	2	09	350	310	130	2,600	ιΩ	200	50	100
ø	Portion of the Project or Element Related to Environmental Control Technology	Monitor radiation hazards, 100%	Monitor radiation hazards, 100%	Study alternatives for making reactors indefinitely, environmentally safe, 100%	Planning for Hanford D&D (80%) and development of D&D techniques (20%)	Define the hazards of buried radionucleides to the environment, 100%	Radiation monitoring, 100%	Radiation monitoring, 100%	Radiation monitoring, 100%	Reduction of volume of contaminated equipment to a size and form suitable for terminal storage of disposal, 100%	x Removal of a potential environmental hazard, 100%	x Removal of a potential environmental hazard, 100%	Radiation monitoring, 100%	Design and construct a portable ferrous smelter for recycling contaminated scrap, 100%	Prepare decontamination plan for CEER reactor facility; Mayaquez, Puerto Rico, 100%	x Removal of a potential environmental hazard, 100%
Check Primary Category of Environmental Control Aspects	Instructional General				·	·	···				×	×				<u> </u>
Primary Category of nental Control Aspec	InsmesseaA			·	×	×			7		×	×		×		*
Cate	Sampling and sisylsana	×	×		×	×	×	×	×		×	×	×			н
ary 1 Cc	Development			-	×					×				×		
rim	ngiesQ									×				×		
ck F	səibutZ			×	×							×			×	
Check	Кеѕеатсћ			<u></u>												
<u> </u>						М				×						
	Project/Element Title	Surplus Facility Surveillance (ORNL)	FPDL Facility Surveillance (ORNL)	Planning for Disposition of Excess Reactor Facilities (ORNL)	Disposition of Hanford Retired Facility (PNL)	Geologic, Geophysical, and Biologic Characterization of Solid Waste Burial Grounds (PNL)	Hallam and Piqua Surveillance (BATTELLE)	Surveillance-INEL Shutdown Reactors (Aerojet Nuclear)	Surplus Facility Surveillance (Atlantic Richfield)	Contaminated Equipment Volume Reduction (Atlantic Richfield)	D & D of SNAP Facility (Atomics International)	D & D of SRE Facility (Atomics International)	Surplus Facility Surveillance-HWCTR Stand-by (Du Pont)	Disposal of Contaminated Metal (NLO)	D & D of PRNC Reactor Facility (PRNC)	Project GNOME Site Disposal (REECO)

PROJECTS WITH ENVIRONMENTAL CONTROL ASPECTS

ENERGY TECHNOLOGY: Environment and Safety

	Chock	Chork Drim, and Charles			
	Environm	Environmental Control Aspects	y or pects		
Project/Element Title	Research	Development Sampling and Analysis Assessment	Instructional General	Portion of the Project or Element Related to Environmental Control Technology	FY 1977 Funding Allocation Related to Environmental Control Technology (\$ in thousands)
Weldon Spring Site Decommissioning (NLO)	×	×	×	Removal of a potential environmental hazard, 100%	25
Decontamination of Niagara Falls Site (NLO)	×	×	×	Removal of a potential environmental hazard, 100%	0 0
Surplus Facility Surveillance (REECO)		×		Radiation Monitoring, 100%	o u
NRDS Fuel Packaging Site Surveillance and Disposition (REECO)		×	×	Clean up and removal of radioactive wastes, 100%	
Surplus Facility Surveillance (United Muclear)	The Control of the Co	×		Radiation Monitoring, 100%	02

- V. Bibliography
- 1. Federal Wind Energy Program; Summary Report, ERDA 77-32, ERDA/ASGA Division of Solar Energy (January 1977).
- 2. Fossil Energy Research Program of the Energy Research and Development Administration FY 1977, ERDA 76-63, ERDA/AFE Office of Program Planning and Analysis (April 1976).
- 3. Fuels from Biomass Program: Program and Project Status, ERDA 76-137, ERDA/ASGA Division of Solar Energy (November 1976).
- 4. Geothermal Project Summaries, ERDA 76-53/1, ERDA/ASGA Division of Geothermal Energy (September 1976).
- 5. Inventory of Federal Energy-Related Environment and Safety Research for FY 1976, ERDA 77-50, ERDA/AES Division of Biomedical and Environmental Research (April 1977).
- 6. <u>Materials Sciences Programs FY 1976</u>, ERDA 76-123, ERDA/ASGA Division of Physical Research (September 1976).
- 7. National Program Plan for Research and Development in Solar Heating and Cooling, ERDA 76-144, ERDA/ASGA Division of Solar Energy (November 1976).
- 8. National Program Plan for Solar Heating and Cooling of Buildings, Project Summaries, ERDA 76-145, ERDA/ASGA Division of Solar Energy (November 1976).
- 9. Ocean Thermal Energy Conversion (OTEC). Program Summary, ERDA 76-138, ERDA/ASGA Division of Solar Energy (October 1976).
- 10. Photovoltaic Conversion Program: Summary Report, ERDA 76-161, ERDA-/ASGA Division of Solar Energy (November 1976).
- 11. Preliminary Environmental Review of the Energy Conservation Research,
 Development, and Demonstration Programs, ERDA 76-36, ERDA Office of
 the Assistant Administrator for Conservation (May 1976).
- 12. Research Contracts in the Physical Sciences, ERDA 76-164, ERDA/ASGA Division of Physical Research (October 1976).
- 13. Solar Energy Environmental and Resource Assessment Program Summary Report, ERDA 76-138, ERDA/ASGA Division of Solar Energy (October 1976).
- 14. Solar Energy Program Anthology, ERDA 77-31, ERDA/ASGA Division of Solar Energy (January 1977).
- 15. Solar Thermal Energy Conversion: Program Summary, ERDA 76-159, ERDA/ASGA Division of Solar Energy (October 1976).
- 16. Summary Outline of ERDA Geosciences and Geoscience Related Research, ERDA 76-114, ERDA/ASGA Division of Physical Research (August 1976).

VI. Glossary

A.C. Alternating Current

AC Assistant Administrator for Conservation

AES Assistant Administrator for Environment and Safety

AFE Assistant Administrator for Fossil Energy
ANE Assistant Administrator for Nuclear Energy

ANFLOW Anaerobic Digester Using Fluidized Bed Combustion

ANL Argonne National Laboratory

ANS Assistant Administrator for National Security
ASEV Assistant Administrator for Environment

ASGA Assistant Administrator for Solar, Geothermal, and Advanced

Energy Systems

BER Division of Biomedical and Environmental Research

BCR Bituminous Coal Research, Incorporated BCS Division of Buildings and Community Systems

BNL Brookhaven National Laboratory

B/O Budget Outlays
BTU British Thermal Unit
BYU Brigham Young University

CEER Center for Energy and Environment Research
CONRT Division of Conservation Research and Technology

D.C. Direct Current

D&D Decontamination and Decommissioning

DOE Department of Energy

ECT Division of Environmental Control Technology

EHV Extra High Voltage

EIA Environmental Impact Assessment
EIS Environmental Impact Statement
EPA Environmental Protection Agency

EQ Equipment

ERDA Energy Research and Development Administration

FFTF Fast Flux Test Facility

FPDL Fission Power Development Laboratory

FY Fiscal Year

GE Division of Geothermal Energy

CC Cult Cara-

n Guarantee Program

eactor

ct Current

ponents Test Reactor

IGT Institute of Gas Technology Intermediate Level Waste ILW

INEL Idaho National Engineering Laboratory **INDUS** Division of Industrial Energy Conservation **IVEP** Imperial Valley Environmental Project

LASL Los Alamos Scientific (National) Laboratory LBL Lawrence Berkeley (National) Laboratory

LERC Laramie Energy Research Center

Lawrence Livermore (National) Laboratory LLL

LMFBR Liquid Metal Fast Breeder Reactor

LNG Liquified Natural Gas LPG Liquified Petroleum Gas LWR Light Water Reactor

MFE Division of Magnetic Fusion Energy MIT Massachusetts Institute of Technology

NBS National Bureau of Standards

NCRR National Center for Resource Reserve

NEC Nuclear Energy Center

NEPA National Environmental Policy Act National Lead Company of Ohio National Oceanic and Atmospheric Administration NLO

NOAA

Division of Naval Reactors NR

Division of Nuclear Research and Applications NRA

NRC Nuclear Regulatory Commission Nuclear Rocket Development Station NRDS **NWC** Naval Weapons Center, China Lake

National Waste Terminal Storage Program **NWTS**

OC Office of the Controller OP Operating Expenses

ORNL Oak Ridge National Laboratory OTEC Ocean Thermal Energy Conversion

PACE Plant and Capital Equipment PAD Program Approval Document **PCB** Polychlorinated Biphenyls PEP Positron-Electron Project

PERC Pittsburgh Energy Research Center

Pacific Northwest Laboratory PNL **PRNC** Puerto Rico Nuclear Center

Division of Physical Research

REECO Reynolds Electric and Engineering Company

RDD Division of Reactor Development and Demonstration

R&D Research and Development

RD&D Research, Development and Demonstration

RFP Request for Proposal

Research Project Identification System **RPIS**

Synthetic Gas from Feedstock Material **SGFM** Solar Heating and Cooling of Buildings SHABOC Stanford Linear Accelerator Center SLAC **SNAP** Space Nuclear Auxiliary Power Division of Solar Energy SOLAR Solar Power System SPS SRC Solvent Refined Coal Sodium Reactor Experiment SRE Stanford Research Institute SRI STOR Division of Energy Storage Systems Division of Transportation Energy Conservation **TEC** Transuranic Waste TRU UCLA University of California at Los Angeles URE Division of Uranium Resources and Enrichment United States Coast Guard **USCG** Very High Temperature Gas Cooled Reactor **VHTR** WECS Wind Energy Conversion System

WPR

Division of Waste Management, Production and Reprocessing

