071_Folien

December 8, 2018

```
In [1]: import numpy as np # mathematical methods
from scipy import stats # statistical methods
from matplotlib import pyplot as plt # plotting methods
from scipy import stats # statistic methods
%matplotlib inline
```

0.0.1 Beschreibende Statistik

0.0.2 Wahrscheinlichkeitstheorie

- Zufallsvariable und keitsverteilungen
- i.i.d
- Sätze der Statistik

0.0.3 Schließende Statistik

Punktschätzungen

- Stochastik: Statistik und Wahrscheinlichkeitstheorie
- Punktschätzer
 - Arithmetisches Mittel
 - Stichproben-Varianz
- Max-Likelihood-Prinzip
- Robuste Schätzung

Intervallschätzungen

0.0.4 Beschreibende Statistik

Charakteristische Kennzahlen von Daten

- Mittelwert, Median
- Varianz, Standardabweichung, Quantile ...
- Form

0.0.5 Wahrscheinlichkeitstheorie

Charakteristische Kennzahlen einer Wahrscheinlichkeits(dichte)-Verteilung

- Erwartungswert
- Varianz, Standardabweichung, Quantile ...
- Form der Verteilung
 - Parameter λ, μ, σ

0.1 Fragestellung:

- 0.1.1 Grundgesamtheit, wenn nur Stichprobe?
- 0.1.2 Parameter einer Verteilung, wenn nur Stichprobe?

0.2 Wahrscheinlichkeitstheorie

Zufallsvariable X

Charakteristische Parameter von Modellverteilungsfunktionen μ , σ , N, π , λ ... Daraus berechenbar:

- Erwartungswert $\mathcal{E}(X)$, Median, ...
- Varianz *Var*(*X*), Standardabweichung, ...
- Wahrscheinlichkeiten für Bereiche ...

• ..

0.3 Wiederholung

Satz von Bernoulli

$$h_i \to p(X = x_i)$$

Hauptsatz der Statistik

$$F_n(x) \to F(x)$$

Gesetz der großen Zahlen

$$\overline{X}_n \to \mu$$

Zentraler Grenzwertsatz

$$F_n(z) \to \Phi(z)$$

 $n \to \infty$! Frequentistische Statistik

1 Schließende Statistik

"ars conjectandi" Kombiniert empirische Daten mit Wahrscheinlichkeitstheorie

1.0.1 Stichprobe ⇒ Schlussfolgerung auf Grundgesamtheit

2 Fragen der Schließenden Statistik

- Welche Verteilung hat die Grundgesamtheit?
 - ⇒ Theorie, Ockhams Rasiermesser, Vergleich
- Welcher Parameterwert paßt am besten zu den Beobachtungen?
 - → Schätzungen
- Sind die Beobachtungen mit einem angenommenen Parameter vereinbar?
 - ⇒ Testen einer Nullhypothese
- Welche Parameterwerte sind mit den Beobachtungen vereinbar?
 - **-** ⇒ Vertrauensintervall
- Wie kamen die Beobachtungen zustande?
 - ⇒ Versuchsplanung

3 Beispiel:

3.1 Grenzwertüberschreitung bei Asbestfasern

- Grenzwert liegt bei 1000 Fasern/m³.
- Teure Messung 3× durchführen mit jeweils 5*l* Raumluft
- Ergebnis: x = (6, 4, 9)
 - entspräche (1200, 800, 1800) Fasern/m³.

3.2 Welche Verteilung hat die Grundgesamtheit?

3.2.1 Modell

Poisson-Verteilung $\mathcal{P}(\lambda)$ für $x \in \{0, 1, 2, \dots\}$

$$P(X = x) = \frac{\lambda^x}{x!}e^{-\lambda}$$

- Erwartungswert $\mathcal{E}(X) = \lambda$
- Varianz $Var(X) = \lambda$

Grenzwert In $5l = \frac{1}{200}$ m³ erwarten wir $\frac{1000}{200} = 5$ Fasern.

Die zum gerade noch erlaubten Grenzwert passende Verteilung der 51-Proben wäre daher

$$P(\lambda = 5): P(x) = \frac{5^x}{x!}e^{-5}$$

mit in einem Kubikmeter erwarteten

$$\mathcal{E}\left(\sum_{i=1}^{200} x_i\right) = 200 \cdot \lambda = 200 \cdot 5 = 1000$$

Fasern

3.3 Welcher Parameterwert paßt am besten zu den Beobachtungen?

Die Stichprobe (6, 4, 9) würde zu

$$\lambda = \mathcal{E}(X) \stackrel{n \to \infty}{\Leftarrow} \overline{x} = \frac{1}{3} \sum_{i=1}^{3} x_i = \frac{6+4+9}{3} = 6.33$$

am besten passen

⇒ Grenzwert überschritten. Sanierung!

3.3.1 Ergebnis: überschritten

3.3.2 Ok?

Ist es möglich, die gleichen Stichprobenwerte auch mit dem (gerade noch unbedenklichen) $\lambda=5$ zu erhalten? Wie genau ist das "wahre" λ durch diese drei Messungen festgelegt?

expected fibres in 51; within one standard deviation: 3.817 .. 8.850

4 Statistik - Modell Zufallsvariable

Aus der Grundgesamtheit werden n Werte gemessen.

- Stichprobe besteht aus Zufallsvariablen $\{X_1, \dots, X_n\}$
- endlicher Erwartungswert, endliche Varianz
- unabhängige Messungen
- aus ein und derselben Grundgesamtheit, identische Wiederholung
- Stochastisches Modell

4.1 Schätzungen sind Zufallsvariable

Punktschätzer (Intervallschätzer, siehe später)

für Kennzahlen

- Erwartungswert
- Varianz
- Korrelation
- ...

oder für Parameter

- λ einer Poissonverteilung
- μ und σ^2 einer Normalverteilung
- π bei Binomialverteilung
- ..

4.2 Bekannte Punktschätzer

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text{für den Erwartungswert } \mu, \quad \mathcal{E}(X) = \mu \text{ von } \mathcal{N}(\mu, \sigma^{2})$ $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text{für die Eintrittswahrscheinlichkeit } \pi, \quad \mathcal{E}(X) = \pi \text{ eines Bernoulli-Experiments } \mathcal{B}(\pi)$ $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \quad \text{für die Stichprobenvarianz } \text{Var}(X) = \sigma^{2}$ $\tilde{S}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \quad \text{für die empirische Varianz } \text{Var}(X) = \sigma^{2}$

4.3 Allgemeine Schätzfunktion

Schätzfunktion $T_{\theta} = g(X_1, \dots, X_n)$ mit Schätzwert $t = g(x_1, \dots, x_n)$ für den Parameter θ der Grundgesamtheit.

Realisierung Realisierung der Stichprobe $\{x_1, \dots, x_n\}$ bestimmt den Wert des Schätzers.

Schätzstatistik Wissen um die Verteilung der Zufallsvariable Schätzer.

4.4 Eigenschaften von Schätzstatistiken

4.4.1 Erwartungstreue

Erwartungswert der Schätzstatistik = Erwartungswert der Grundgesamtheit - weder über- noch unterschätzen - $\mathcal{E}_{\theta}(T) = \theta$

Restfehler *Bias* $Bias_{\theta}(T) = \mathcal{E}_{\theta}(T) - \theta$

- idealerweise Bias = 0
- · zumindest klein

4.4.2 Beispiel Stichprobenmittel

Das Stichprobenmittel

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

ist erwartungstreu für den Erwartungswert $\mathcal{E}(X)=\mu$ der Grundgesamtheit. $\hat{\mu}$ ist ein erwartungstreuer Schätzer:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Beweis
$$\mathcal{E}(\hat{\mu}) = \mathcal{E}(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n}\sum_{i=1}^{n}\mathcal{E}(X) = \mu$$

4.4.3 Beispiel Stichprobenvarianz

Die Stichprobenvarianz

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

ist erwartungstreu für die Varianz $Var(X) = \sigma^2$ der Grundgesamtheit.

 $\hat{\sigma}^2$ ist ein erwartungstreuer Schätzer:

$$\hat{\sigma}^2 = \frac{1}{n-1} (\sum_{i=1}^n X_i^2 - n \overline{X}^2)$$

Beweis Sei o.b.d.A $\mathcal{E}(X) = 0$, dann folgt mit $\mathcal{E}(\overline{X}^2) = \text{Var}(\overline{X}) = \frac{\sigma^2}{n}$:

$$\mathcal{E}(\hat{\sigma}^2) = \mathcal{E}\left(\frac{1}{n-1}\left[\sum_{i=1}^n X_i^2 - n\overline{X}^2\right]\right)$$

$$=\frac{1}{n-1}\big(\sum_{i=1}^n\mathcal{E}(X_i^2)-n\mathcal{E}(\overline{X}^2)\big)=\frac{1}{n-1}(n\sigma^2-n\frac{1}{n}\sigma^2)=\sigma^2=\mathrm{Var}(X)=S^2$$

Bemerkung: Hier liegt der tiefere Grund für den Faktor $\frac{1}{N-1}$ der (empirischen) Stichproben-Varianz.

4.4.4 Ergebnis: Eigenschaften Stichprobenvarianz

- Die Stichproben-Varianz S^2 ist für alle Verteilungen ein erwartungstreuer Schätzer der Varianz σ^2
- Die Verteilung von σ² hängt von der Verteilung von X_i ab
 (Wenn X normalverteilt ist, dann hat (n 1)σ²/σ² eine χ²-Verteilung mit m = n 1 Freiheitsgraden)

Gegenbeispiel Empirische Varianz

Für die empirische Varianz \tilde{S}^2 gilt

$$\mathcal{E}(\tilde{S}^2) = \frac{n-1}{n}\sigma^2$$

• es bleibt eine systematische Messabweichung Bias

$$\operatorname{Bias}_{\sigma^2}(\tilde{S}^2) = \mathcal{E}_{\sigma^2}(\tilde{S}^2) - \sigma^2 = -\frac{1}{n}\sigma^2$$

- womit die Varianz tendentiell unterschätzt wird
- aber sie ist *asymptotisch erwartungstreu* für $n \to \infty$

Schätzfunktion

Woher bekommen wir eine Schätzfunktion T für einen Parameter θ ? Bisher: Plausibel und nachgewiesen: - Arithmetischer Mittelwert für Erwartungswert $\mathcal{E}(X)$ - Stichprobenvarianz für Var(X)

Die Wahrscheinlichkeitsverteilung F(x) bzw. Wahrscheinlichkeitsdichte f(x) hänge von Parameter(n) θ ab.

Beispiel Bernoulli-Experiment:

$$f(x|\pi) = P(X=x|\pi) = \pi^x (1-\pi)^{1-x}$$
 für $x \in \{0,1\}$

Beispiel Normalverteilung:

$$f(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 für $x \in \mathbb{R}$

entweder 1. Methode der kleinsten Quadrate

Anfitten der parametrischen Verteilung an die Daten der Stichprobe durch Minimieren der Fehlerquadratsumme (sum of squared residua): $SSR = \sum (x_i - \mu)^2$

$$\underset{\mu}{\operatorname{argmin}} \sum_{i} (x_i - \mu)^2$$

5.2 oder 2. Satz von Bayes

- Gegeben: Modellverteilung f(x)
- mit Parameter θ
- Satz von Bayes

$$f(\theta|x) = \frac{f(x|\theta)f(\theta)}{f(x)}$$

• Gesuchter Parameter θ :

$$\underset{\theta}{\operatorname{argmax}} \big(f(\theta|x) \big)$$

Siehe Angewandte Statistik II

5.3 oder 3. Maximum-Likelihood-Prinzip

Likelihood-Funktion

$$L(\theta) = f(x|\theta)$$

5.3.1 Bekannte Verteilung, unbekannter Parameter, realisierte Stichprobe

Ist der Wert der Stichprobe x gegeben (das Zufallsexperiment X also durchgeführt), dann ist

$$L(\theta) = f(x|\theta)$$

eine Funktion von θ

6 Maximum Likelihood Prinzip

Der Schätzer $\hat{\theta}$ zum realisierten Messwert x ergibt sich aus der Maximierung der Likelihood-Funktion $L(\theta)$:

$$L(\widehat{\theta}) = \max_{\theta} L(\theta)$$

6.1 Ein Beispiel: geometrische Verteilung:

$$P(X=x) = p_{\pi}(x) = (1-\pi)^{x-1} \cdot \pi^{1}$$

Experiment: Messung x = 3

Frage: Welche Verteilung p_{π} bzw. welcher Parameter π paßt am besten zur Messung?

Likelihood: Betrachte $p_{\pi}(x)$ als Funktion von π

$$L(\pi) = p_{\pi}(x) = (1 - \pi)^{x - 1} \cdot \pi$$

Likelihood: $L(\pi) = p_{\pi}(x) = (1 - \pi)^{x-1} \cdot \pi$

Maximieren Notwendige Bedingung: Ableitung

$$\frac{\partial L(\pi)}{\partial \pi} = -\pi (x - 1)(1 - \pi)^{x - 2} + 1 \cdot (1 - \pi)^{x - 1} = (1 - \pi)^{x - 2}[1 - \pi \cdot x]$$

Nullsetzen

$$\frac{\partial L(\pi)}{\partial \pi} = (1 - \pi)^{x-2} [1 - \pi \cdot x] = 0$$

Auflösen nach π maximiert $L(\pi)$ bzw. $p_{\pi}(x)$ für $\hat{\pi}$

$$\widehat{\pi} = \frac{1}{x} = \frac{1}{3}$$

Zweite Ableitung kleiner Null? Randwerte?

Ergebnis: Für das Beispiel, nach 3 Stunden den ersten Rechnerabsturz gesehen zu haben, erhält man als plausibelsten *Likelihood*-Parameter für die geometrische Verteilung den Wert $\hat{\pi} = \frac{1}{3}$

Der Erwartungswert für $X \sim \mathcal{G} \wr \mathfrak{J}(\frac{1}{3}) = \dots$

6.2 Bisher: Stichprobe ein Wert

6.3 Jetzt: *mehrere* i.i.d. Zufallsvariable

Experiment *X* wird *n*-mal durchgeführt: $x_1, x_2, \dots x_n$

Bei gegebenem θ sind die x_i gemäß f(x) verteilt, die Verbund-Wahrscheinlichkeit diese n Werte zu erhalten beträgt also:

$$f(x_1, x_2, \dots x_n | \theta) = f(x_1 | \theta) \cdot f(x_2 | \theta) \cdot \dots \cdot f(x_n | \theta)$$

6.4 Likelihood-Funktion

6.4.1 Bekannte Verteilung, unbekannter Parameter, realisierte Stichprobe

Sind die Werte x_i gegeben (das Experiment X also n-mal i.i.d. durchgeführt), dann ist die Likelihood-Funktion

$$L(\theta) = f(x_1, x_2, \dots x_n | \theta) = \prod_{i=1}^n f(x_i | \theta)$$

6.5 Log-Likelihood-Funktion

Mit Hilfe der streng monotonen Logarithmus-Funktion ergibt sich aus der Likelihood-Funktion die Log-Likelihood-Funktion l = log(L)

$$l(\theta) = \log L(\theta) = \log \prod_{i=1}^{n} f(x_i|\theta) = \sum_{i=1}^{n} \log f(x_i|\theta)$$

die sich leichter optimieren läßt und trotzdem das selbe Maximum für θ liefert.

6.6 Maximum-Log-Likelihood-Prinzip

Die Zufallsvariable X habe die Wahrscheinlichkeitsverteilung $f(x|\theta)$ mit unbekanntem zu bestimmenden Parameter θ . Der Schätzer $\widehat{\theta}$ zu n i.i.d. Messwerten x_i maximiert die Log-Likelihood-Funktion $l(\theta) = \sum_{i=1}^n \log f(x_i|\theta)$:

$$l(\widehat{\theta}) = \max_{\theta} l(\theta)$$

Ableitung vereinfacht sich mit

$$\Psi(x,\theta) := \frac{\partial}{\partial \theta} \log f(x|\theta)$$

zu

$$\frac{\partial l(x_i, \theta)}{\partial \theta} = \sum_i \Psi(x_i, \theta)$$

[ÜA] Schätzer für μ und σ der Normalverteilung

6.7 Maximum-Log-Likelihood-Prinzip

6.7.1 Anmerkungen

- Log-Likelihood-Prinzip ist allgemein anwendbar
- kann oft geschlossen gelöst werden.
- eignet sich **nicht** für Abschätzung der *Verteilung* von θ

6.7.2 Vergleich zu Kleinste-Quadrate

- Ergebnis ist meist dasselbe
- Log-Likelihood benötigt Gesamt-Wahrscheinlichkeitsverteilung
 - Kleinste-Quadrate kommt mit Mittelwert (und Varianz/Kovarianz) aus
- · Log-Likelihood kann manchmal nur numerisch simuliert werden

6.8 Zurück zum Beispiel Asbestfasern

Grenzwert $x_G = 5.0$

n=3 Messwerte $x_1=6, \ x_2=4, \ x_3=9$ entstammen einer Poissonverteilung mit unbekanntem Parameter λ . Die Likelihood-Funktion dafür ist

$$L(\lambda) = f(x_1|\lambda) \cdot f(x_2|\lambda) \cdot f(x_3|\lambda) = e^{-\lambda} \frac{\lambda^6}{6!} \cdot e^{-\lambda} \frac{\lambda^4}{4!} \cdot e^{-\lambda} \frac{\lambda^9}{9!} = e^{-3\lambda} \frac{\lambda^{19}}{6!4!9!}$$

Die Log-Likelihood-Funktion ist

$$l(\lambda) = \ln L(\lambda) = -3\lambda + 19\ln \lambda - \ln 6!4!9!$$

$$l(\lambda) = \ln L(\lambda) = -3\lambda + 19\ln \lambda - \ln 6!4!9!$$

Ableitung nullsetzen

$$\frac{\partial l(\lambda)}{\partial \lambda} = -3 + \frac{19}{\lambda} = 0$$

ergibt Extremwert für

$$\widehat{\lambda} = \frac{19}{3} = 6.33$$

Zweite Ableitung bestätigt Maximum

$$\frac{\partial^2 l(\lambda)}{\partial \lambda^2} = -\frac{19}{\lambda^2} < 0$$

und damit $\hat{\lambda} = \overline{x}$

6.9 Zwischenergebnis: Poissonverteilung

Der Maximum-Likelihood-Schätzer (MLE) für den Parameter λ der Poissonverteilung ist das Stichprobenmittel

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

7 Zusammenfassung Maximum-Log-Likelihood-Prinzip

1. Modellverteilung mit Parameter θ für die Zufallsvariable X

$$f_{\theta}(X)$$

2. Daraus Likelihood für Parameter θ bei Meßwerten x angeben

$$L_X(\theta) = f_{\theta}(\mathbf{x}) = f_{\theta}(x_1) \cdot f_{\theta}(x_2) \cdots f_{\theta}(x_n)$$

beziehungsweise Log-Likelihood-Funktion

$$l_X(\theta) = \ln f_{\theta}(\mathbf{x}) = \sum_{i=1}^{n} \ln f_{\theta}(x_i)$$

und diese 3. maximieren:

$$\frac{\partial l(\theta)}{\partial \theta} = 0$$

$$\frac{\partial^2 l(\theta)}{\partial \theta^2} < 0$$

4. Messung der Stichprobe

$$\mathbf{x} = \{x_i\}$$

5. Berechnen des Maximum-Likelihood-Parameters

 $\widehat{\theta}$

7.0.1 Antwort auf Frage

7.0.2 Welcher Parameterwert paßt am besten zu den Beobachtungen?

- Bestimme Schätzer
- Max-Log-Likelihood-Prinzip

7.1 Ist die Beobachtung mit einem gegebenen Parameterwert vereinbar?

Insbesondere hier vereinbar mit dem Grenzwert?

⇒ nächstes Kapitel "Statistische Tests"

7.2 Welche Parameterwerte sind mit der Beobachtung vereinbar?

⇒ nächstes Kapitel "Vertrauensintervalle"

8 Robuste Schätzung

Problem Schätzungen gelten nur, wenn die Voraussetzungen der Modellverteilung die richtige ist.

Umgehung des Problems Oft wird (zu Recht) die Normalverteilung angenommen. Jedoch ist die Schätzung einer Normalverteilung empfindlich gegen *Ausreisser*.

8.0.1 Ein Beispiel:

9 values

Arithmetisches Mittel

$$\overline{x_9} = \frac{1}{9} \sum_{i=1}^{9} x_i$$

ein neuer Messwert dazu:

$$\overline{x_{10}} = \frac{1}{10} \sum_{i=0}^{9} x_i$$
$$= \frac{9}{10} \overline{x_9} + \frac{1}{10} x_0$$

```
In [5]: '''outliers influence mean (and median)'''
        np.random.seed(56789)
                                                    # obtain the same, but random result again
        x9 = stats.norm.rvs(size=9)
                                                   # nine standard-normally distributed values
        x0 = np.linspace(-4., 4., 81)
                                                   # one of these additional values to the nine x_1...9
        xmeans = np.asarray( [np.append(x9, x).mean() for x in x0] ) # mean - depending on x0
        print('means: ', xmeans[:3], ' - ', xmeans[-3:])
        plt.figure(figsize=(12,5))
        plt.plot(x0, xmeans, label='mean')
        xmeds = np.asarray( [np.median(np.append(x9, x)) for x in x0] ) # median - depending on x0
        print('medians: ', xmeds[:3], ' - ', xmeds[-3:])
        plt.plot(x0, xmeds, 'g-', label='median')
        plt.scatter(x9,np.zeros_like(x9), color='r', label='x[1..9] measurements')
        plt.plot((-4, 4), 2*[x9.mean()], 'r--', label='x[1..9] mean')
        plt.plot((-4, 4), 2*[np.median(x9)], 'r:', label='x[1..9] median')
        plt.xlabel('outlier x0')
        plt.ylabel('estimated value')
        plt.title('mean and median depend on one outlier x0')
        plt.legend(loc='lower right');
           \hbox{ $[-0.46192852$ $-0.45192852$ $-0.44192852$] $-$ [ 0.31807148 $ 0.32807148 $ 0.33807148] } 
means:
medians: [-0.10973318 -0.10973318 -0.10973318] - [ 0.06628869  0.06628869  0.06628869]
```

mean and median depend on one outlier x0

8.1 Robuste Verfahren

Wichtigste Kenngrößen

- Lage
- Streuung einer Verteilung.

Problem

- Die Lage wird durch Ausreisser stark beeinflußt.
- Die Streuung wird durch Ausreisser stark beeinflußt.

Ausweg Gib Vorgabe *Normalverteilung* auf, zugunsten einer langschwänzigen (*high kurtosis*) Verteilung.

Vorteil

- berechnet arithmetisches Mittel besser, wenn Ausreisser in den Beobachtungen.
- stört wenig, wenn doch normalverteilt

8.1.1 Beispiel für langschwänzige Verteilungsfunktion: tanh(x)

```
In [6]: '''create a complete distribution by just defining the cdf'''
        class tanh_gen(stats.rv_continuous):
             def _cdf(self, x):
                 return .5+.5*np.tanh(x)
                                                # the tanh-function as cdf
In [7]: highkurtosis = tanh_gen(name="high kurt tanh") # call once to establish
In [8]: '''show cumulative distribution function of high kurtotic tanh'''
        fig = plt.figure(figsize=(9, 4))
        xs = np.linspace(-4., 4., 601)
        plt.plot(xs, highkurtosis.cdf(xs), label='tanh')
        plt.plot(xs, stats.norm.cdf(xs), 'r--', label='normal')
                                                                   # compare with standard normal distribution
        plt.title('high kurtotic distribution')
        plt.xlabel('x')
        plt.ylabel('probability')
        plt.legend(loc='lower right');
        kurtosis = highkurtosis.stats(moments='mvsk')[3]
                                                                   # gives mean, var, skew and kurt
        print('kurtosis of tanh-distribution is {:.3f}'.format(np.float(kurtosis)))
```



```
In [9]: '''show probability density function of "high kurt tanh" - despite not defined'''
       x = np.linspace(-10., 10., 1001)
                                                   # x in 0.01 resolution
       p_n = stats.norm.pdf(x)
                                                   # comparison: standard normal distribution
                                                   # comparison: tighter normal distribution
       p_s = stats.norm(0, .8).pdf(x)
       p_t = highkurtosis.pdf(x)
                                                   # the defined high kurtotic distribution
       f=plt.figure(figsize=(12, 5))
       f.add_subplot(1, 2, 1)
                                                   # main plot: x=-3 to 1
       plt.xlim(-3.0, 1.0)
       plt.ylim(0., 0.6)
       plt.plot(x, p_t, 'b-')
       plt.plot(x, p_n, 'r--')
       plt.plot(x, p_s, 'g--')
       plt.title('pdf: tanh & normal')
       plt.xlabel('x')
       plt.ylabel('probability');
       f.add_subplot(1, 2, 2)
                                                   # 10x magnified: x=1 to 6
       plt.xlim(2.0, 6.0)
       plt.ylim(0., 0.06)
       plt.plot(x, p_t, 'b-', label='$1-tanh^2(s)$')
                                                          # pdf of tanh.cdf
       plt.plot(x, p_n, 'r--', label='standard normal') # standard normal pdf
       plt.plot(x, p_s, 'g--', label='normal std=0.8') # tighter normal pdf
       plt.xlabel('x')
       plt.legend(loc='upper right');
```



```
In [10]: '''outliers influence mean but less high kurtotic distribution'''
        # same as above
        np.random.seed(56789)
        x9 = stats.norm.rvs(size=9)
        x0 = np.linspace(-4., 4., 81)
        xmeans = np.asarray( [np.append(x9, x).mean() for x in x0] )
                       ', xmeans[:3], ' - ', xmeans[-3:])
        print('means:
        plt.figure(figsize=(12,5))
        plt.plot(x0, xmeans, label='mean')
        xmeds = np.asarray( [np.median(np.append(x9, x)) for x in x0] )
        print('medians: ', xmeds[:3], ' - ', xmeds[-3:])
        plt.plot(x0, xmeds, 'g-', label='median')
        hkms = [highkurtosis.fit(np.append(x9, x))[0] for x in x0] # means of high-kurtotic fit
        plt.plot(x0, hkms, 'r-', label='high kurtotic mean')
                                                                    # the new plot here
        plt.scatter(x9, np.zeros_like(x9), color='k', label='x[1..9] measurements')
        plt.plot((-4, 4), 2*[x9.mean()], 'k--', label='x[1..9] mean')
        plt.plot((-4, 4), 2*[np.median(x9)], 'k:', label='x[1..9] median')
        plt.xlabel('outlier x0')
        plt.ylabel('estimated value')
        plt.title('mean and median depend on one outlier x0')
        plt.legend(loc='lower right');
          [-0.46192852 - 0.45192852 - 0.44192852] - [0.31807148 0.32807148 0.33807148]
means:
         [-0.10973318 - 0.10973318 - 0.10973318] - [0.06628869 0.06628869]
medians:
```

mean and median depend on one outlier x0

8.2 Ausblick

Testen, wie viele Ausreisser die Berechnung verträgt, um dennoch sinnvolle Werte zu erhalten:

- Bruchpunkt, Anteil m an Ausreissern an gesamten Beobachtungen n.
- Spätestens bei $m > \frac{n}{2}$ bricht die Schätzung zusammen.

Siehe auch Kapitel "Bootstrap".

9 Zusammenfassung Punktschätzer

Stochastik

- Zufallsvariable mit Wahrscheinlichkeitsverteilung(sdichte) f(x)
- i.i.d. als Voraussetzung

Punktschätzer

- Für Parameter
 - μ und σ^2 der Normalverteilung
 - λ der Poissonverteilung
 - **–** ..
- Für Kenngrößen
 - Arithmetisches Mittel schätzt Erwartungswert, Mittelwert der Grundgesamtheit
 - Stichproben-Varianz schätzt Varianz der Grundgesamtheit
 - ..

10 ...

Punkschätzer finden

- Kleinste-Quadrate-Methode
- Max-Log-Likelihood-Prinzip
- Bayes-Statistik

Robuste Schätzung

- verringert Fehler des Lageparameters gegenüber Ausreißern
- gelockerte Verteilung, akzeptiert Ausreißer mit höherer Wahrscheinlichkeit
- obwohl nur näherungsweise zur Theorie passend (\mathcal{N})

11 Ausblick

Intervallschätzer

• Konfidenzintervalle

Teststatistik

- Unterschied von Werten
- Verhältnis von Werten

12 Fragen?