Data Mining with Spare Grids

Seminar: Computational Aspects of Machine Learning

Sebastian Kreisel October 27, 2015

Technische Universität München

Overview

- Motivation
- Sparse Grids: Basics
- Sparse Grids: Data Mining
- Examples
- Implementation

Motivation

Grid based approaches in ML

- Discretizes the space into a grid
- Basis functions around grid points, not data points

Motivation

Suitable for

- · Large, high-dimensional datasets
- Medical data, seismic data, finance, astrophysics

Curse of dimensionality

- The volume of a space is exponential in its dimensions
- The amount of training data required becomes unmanageable
 - because of lacking computational power and storage capacities
 - because data acquisition can be expensive
- Becomes relevant for d > 3

Function to discretize

Full, regular grid

Basis functions (standard hat function)

4. Coefficient α (surplus)

Sum over all weighted basis functions

Sum over all weighted basis functions

Full grid discretization in one dimension

- 1. A function f(x) to discretize
- 2. Grid points indexed by $i \in \{1, 2, ..., N\}$
- 3. Basis functions; i.e. hat function $\phi(x) = \max(1 |x|, 0)$
- 4. Coefficients α_i (surpluses)

$$f(x) \approx \hat{f}(x) = \sum_{i} \alpha_{i} \phi_{i}(x)$$

d > 1 dimensions

- Grid points as index vector \vec{i} , i.e. (1,3,1)
- Tensor product over the one dimensional basis functions

$$\phi_i(\vec{x}) = \prod_{j=1}^d \phi_{i_j}(x_j)$$

Tensor product for d = 2

Full grid with d = 2

Full grid discretization $\hat{f}(\vec{x})$

Full grid with d = 2

Full grid discretization $\hat{f}(\vec{x})$

Summary

- Grid points $\vec{i} \in \{1, 2, ..., N\}^d$ defining $\phi_i(x)$
- Product of 1D basis functions:

$$\phi_i(\vec{x}) = \prod_{j=1}^d \phi_{i_j}(x_j)$$

• Sum over all weighted basis functions:

$$\hat{f}(\vec{x}) = \sum_{i=1}^{N} \alpha_i \phi_i(\vec{x})$$

Hierarchical vs. nodal basis

Hierarchical basis

- Grouping grid points into levels $I \in \{1, 2, 3, ..., n\}$
- Basis function by index and level: $\phi_{I,i}(x)$

$$\hat{f}(x) = \sum_{I \le n, i \in G_I} \alpha_{I,i} \cdot \phi_{I,i}(x)$$

Hierarchical Basis

Discretization with hierarchical basis

Discretization with hierarchical basis

Hierarchical basis for d > 1

- Index and level vector \vec{i} , \vec{l}
- Combination of levels in all dimensions
- Notion of subspaces

Hierarchical basis: Grid points

Sparse grid – Changes

- · Certain subspaces get disregarded
- Finding those is a a-priori solvable optimization problem
- The resulting grid is sparse

Profit

- Reducing the computational effort "a lot"
- Maintaining "high" accuracy

A sparse grid

A sparse grid

d	1	2	3	5	10	20
Full	15	225	3375	$> 10^{5}$	$> 10^{11}$	$> 10^{23}$
Sparse	15	49	111	351	2001	13201

Full grid vs. sparse grid with n = 4

- Massive difference in high dimensions
- Note: No boundary grid points!

Sparse grid for $n = \{4, 5, 6, 7\}$

Hierarchical subspaces

Adaptivity

- A-posteriori modifications to model the function better
- Adding level of detail around a grid point: l+1
- Overfitting possible and considerable computational effort
- Multiple strategies possible

Summary

- Hierarchical basis through grouping grid points into levels
- · Creating subspaces through combination of levels in dimensions
- Selecting only certain subspaces
- Adaptive refinement

$$\hat{f}(\vec{x}) = \sum_{l,i} \alpha_{l,i} \phi_{l,i}(\vec{x})$$

Machine learning tasks

- Classification
- Regression

Training-data

$$X = \{x^{(j)} \mid x^{(j)} \in [0,1]^d\}_{j=1}^M$$

$$Y = \{y^{(j)} \mid y^{(j)} \in \mathbb{R}\}_{j=1}^{M}$$

Least squares

$$\hat{c} = \arg\min_{f} \left(\frac{1}{M} \sum_{j=0}^{M} \left(y^{(j)} - f(x^{(j)}) \right)^2 + \lambda R(f) \right)$$

Sparse grid setting

- Do least squares in a sparse grid setting
- Discretize \hat{c} using a sparse grid

$$\hat{c} = \arg\min_{\alpha} \left(\frac{1}{M} \sum_{j=0}^{M} \left(y^{(j)} - \sum_{i} \alpha_{i} \phi_{i}(x^{(j)}) \right)^{2} + \lambda \sum_{i} \alpha_{i}^{2} \right)$$

Matrix formulation

$$\left(\frac{1}{M}BB^{T} + \lambda I\right)\alpha = \frac{1}{M}By$$

$$\mathbb{R}^{N\times M}\ni B=\begin{bmatrix}\phi_1(x^{(1)})&\ldots&\phi_1(x^{(M)})\\\vdots&\ddots&\vdots\\\phi_N(x^{(1)})&\ldots&\phi_N(x^{(M)})\end{bmatrix}$$

Observations

- $BB^T \in \mathbb{R}^{N \times N}$ where N = number of grid points
- Number of freedoms not dependent on M
- Linear scaling in M

Solving the system of linear equations

- The SLE is not sparse but positive definite
- Numerical methods like Conjugate Gradients (GC)

Sparse Grids – Examples

Checkerboard dataset: non-linearity

Checkerboard dataset and sparse grid (293 grid points) after 40 refinements

(Dirk Pflüger – Spatially Adaptive Sparse Grids for High-Dimensional Problems)

Sparse Grids – **Examples**

Checkerboard dataset: non-linearity

Decision manifold

(Dirk Pflüger – Spatially Adaptive Sparse Grids for High-Dimensional Problems)

Sparse Grids – Examples

Ripely dataset: noise and overfitting

Ripely dataset and sparse grid (34 grid points) after 8 refinements

(Dirk Pflüger – Spatially Adaptive Sparse Grids for High-Dimensional Problems)

Sparse Grids – Implementation

Computational efficient implementation

- Tensor-product structure
- Nested structure
- Recursive, tree-like traversal

Problems

- Scattered memory access patterns
- Inherently recursive, hard to parallelize

Hierarchical, nested structure

Sparse Grids – Implementation

Iterative implementation

- Disregards the hierarchical, nested structure
- Calculates $\phi_i(x^{(j)})$ for every ϕ_i and $x^{(j)}$
- 3 for-loops: data points, grid points, dimensions

Trade-off

- Parallelization/Vectorization
- · Linear memory access allowing pre-fetching
- Many (!) unnecessary computations (zero-evaluations)

Sparse Grids – Implementation

Hierarchical subspaces

Summary

Data mining with sparse grids

- Discretization with hierarchical basis
- Sparseness and adaptivity
- Classification/Regression through least squares
- Iterative implementation to exploit parallelization

Conclusions

- Linear scaling in the number of data points
- Mitigation of the curse of dimensionality
- Robust technique capable of dealing with non-linear data

Number of grid points vs. accuracy

- Holds only if D^2f is bounded
- Maximal level n, maximal dimension d
- Number of grid points:

$$\mathcal{O}(2^{nd}) \rightarrow \mathcal{O}(2^n \cdot n^{d-1})$$

• Error:

$$\mathcal{O}(2^{-2n}) \rightarrow \mathcal{O}(2^{-2n} \cdot n^{d-1})$$

Implementation

$$\left(\frac{1}{M}BB^{T} + \lambda I\right)\vec{\alpha} = \frac{1}{M}B\vec{y}$$
$$\equiv \lambda I\vec{\alpha} + \frac{1}{M}B(B^{T})\vec{\alpha} = \frac{1}{M}B\vec{y}$$

- $\vec{\mathbf{v}}_j = (B^T \vec{\alpha})_j = \hat{f}(\mathbf{x}^{(j)})$
- $\vec{w} = B\vec{v}$

Implementation

(Alexander F. Heinecke – Boosting Scientific Computing Applications through Leveraging Data Parallel Architectures)