

CS396: Security, Privacy & Society

Fall 2022

Lecture 5: Cryptographic System I

Instructor: Abrar Alrumayh

September 14, 2022

Outline

- Basic concepts and terms
- Cryptographic System I
 - Symmetric-key Encryption

Example of threat

• Eavesdropping: the interception of information intended for someone else during its transmission over a communication channel

Example of threat

- Alteration: unauthorized modification of information
 - Example: the man-in-the-middle attack, where a network stream is intercepted, modified, and retransmitted

Example of threat

 Denial-of-service: the interruption or degradation of a data service or information access

 Example: email spam, to the degree that it is meant to simply fill up a mail queue and slow down an email server

Examples of threats

- Masquerading: the fabrication of information that is claimed to be from someone who is not actually the author
 - e.g., IP spoofing attack: maliciously altering the source IP address of a message

- Repudiation: the denial of a commitment or data receipt
 - this involves an attempt to back out of a contract/protocol that, e.g., requires the different parties to provide receipts acknowledging that data has been received

Example of vulnerability

- Software bugs: Code is not doing what is supposed to be doing
 - Example: Some application code is mistakenly using an algorithm for encryption that has been broken
 - Example: There is no checking of array bounds

An hard-to-win game: Varied threats

Threats

- from natural to human
- from benign to malicious
- from random to targeted (APTs)

A hard-to-win game: Unknown enemy

Attackers

- beyond isolated "crazy" hackers
- organized groups/crime
 - may use computer crime
 (e.g., stealing CC#s) in order
 to finance other crimes
- terrorists
 - computers/assets as target, method, enabler, or enhancer

A hard-to-win game: Choose your battle

Risk management

- choose priorities
 - which threats to control
 - estimate possible harm & impact
 - what / how many resources to devote
 - estimate solution cost & protection level
- consider trade-offs balancing cost Vs. benefit Protects
- compute the residual risk
 - decide on transfering risk or doing nothing

Never a "one-shot" game

A hard-to-win game: Best-effort approach

Deciding on controls relies on incomplete information

- likelihood of attack and impact of possible harm is impossible to measure perfectly
- full set of vulnerabilities is often unknown
 - weak authentication, lack of access control, errors in programs, etc.
- system's attack surface is often too wide
 - physical hazards, malicious attacks, stealthy theft by insiders, benign mistakes, impersonations, etc.

A useful strategy: The "method – opportunity – motive" view of an attack

deny any of them and the attack will (likely) fail

A hard-to-win game: Best-effort approach (continued)

Controls offer a wide range of protection level / efficacy

they counter or neutralize threats or remove vulnerabilities in different ways

Types of controls

- prevent (attack is blocked)
- deter (attack becomes harder)
- deflect (change target of attack)
- mitigate (make impact less severe)
- contain (stop propagation of harm)
- detect (real time/after the fact)
- recover (from its effects)

Hard to balance cost/effectiveness of controls with likelihood/severity of threats

Example of control: HTTPS protocol

Hypertext Transfer Protocol Secure (HTTPS)

- Confidentiality
- Integrity
- Availability
- Authenticity
- Anonymity

Example of control: RAID technology

Redundant Array of Independent Disks (RAID)

- RAID 1 Disk Mirroring Confidentiality
- Integrity
- Availability
- Authenticity
- Anonymity

Example of controls: TOR protocol

- Confidentiality
- Integrity
- Availability
- Authenticity
- Anonymity

As we will see: Exciting times to study (or work in) IT Security!

Relevance to practice & real-world importance

- plethora of real-world problems & real needs for security solutions
- combination of different research areas within CS and across other fields
- multi-dimensional topic of study
 - protocol design, system building, user experience, social/economic aspects
- wide range of perspectives
 - practical / systems foundations / theory, attacker's Vs. defender's view

Symmetric-key encryption

Recall: Confidentiality

Fundamental security property

- an asset is viewed only by authorized parties
- "C" in the CIA triad

"computer security seeks to prevent unauthorized viewing (confidentiality) or modification (integrity) of data while preserving access (availability)"

Eavesdropping

 main threat against confidentiality of in-transit data

Problem setting: Secret communication

Two parties wish to communicate over a channel

- Alice (sender/source) wants to send a message m to Bob (recipient/destination)
- Underlying channel is unprotected
- Eve (attacker/adversary) can eavesdrop any sent messages
- e.g., packet sniffing over networked or wireless communications

Solution concept: Symmetric-key encryption

Main idea

- secretly transform message so that it is unintelligible while in transit
 - Alice encrypts her message m to ciphertext c, which is sent instead of plaintext m
 - Bob decrypts received message c to original message m
 - Eve can intercept c but "cannot learn" m from c
 - Alice and Bob share a **secret key k** that is used for both message transformations

Security tool: Symmetric-key encryption scheme

Abstract cryptographic primitive, a.k.a. cipher, defined by

- ◆ a message space M; and
- a triplet of algorithms (Gen, Enc, Dec)
 - Gen, Enc are probabilistic algorithms, whereas Dec is deterministic
 - ullet Gen outputs a uniformly random key k (from some key space ${\mathcal K}$)

Desired properties for symmetric-key encryption scheme

By design, any symmetric-key encryption scheme should satisfy the following

efficiency: key generation & message transformations "are fast"

• correctness: for all m and k, it holds that Dec(Enc(m, k) , k) = m

security: one "cannot learn" plaintext m from ciphertext c

Kerckhoff's principle

"The cipher method must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience."

Reasoning

- due to security & correctness, Alice & Bob must share some secret info
- if no shared key captures this secret info, it must be captured by Enc, Dec
- but keeping Enc, Dec secret is problematic
 - harder to keep secret an algorithm than a short key (e.g., after user revocation)
 - harder to change an algorithm than a short key (e.g., after secret info is exposed)
 - riskier to rely on custom/ad-hoc schemes than publicly scrutinized/standardized ones

Symmetric-key encryption

Also referred to as simply "symmetric encryption"

Symmetric Vs. Asymmetric encryption

Main application areas

Secure communication

- encrypt messages sent among parties
- assumption
 - Alice and Bob securely generate, distribute & store shared key k
 - attacker does not learn key k

Secure storage

- encrypt files outsourced to the cloud
- assumption
 - Alice securely generates & stores key k
 - attacker does not learn key k

Brute-force attack

Generic attack

- ullet given a captured ciphertext c and known key space ${\mathcal K}$, Dec
- strategy is an exhaustive search
 - ullet for all possible keys k in ${\mathcal K}$
 - determine if Dec (c,k) is a likely plaintext m
- ullet requires some knowledge on the message space ${\mathcal M}$
 - i.e., structure of the plaintext (e.g., PDF file or email message)

Countermeasure

ullet key should be a **random** value from a **sufficiently large** key space ${\mathcal K}$ to make exhaustive search attacks **infeasible**

