Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resumer

Marco Teorico Banco de filtros

Resultados
Imagenes de prueba
Parametros optimos

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹ M.Santiago ² S.Lautaro Andres ³ V.Xavier ⁴

1-2-3-4 Universidad Nacional del Comahue Buenos Aires , Neuquen

Resume

Marco Teorico
Banco de filtros

Resultados Imagenes de prueba Parametros optimos Comparación de

1 Resumen

- 2 Marco Teorico
 - Banco de filtros
- 3 Resultados
 - Imagenes de prueba
 - Parametros optimos
 - Comparacion de filtros

Resumen

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resumen

Marco Teorico
Banco de filtros

Resultados

Imagenes de prueba Parametros optimos Comparación de filtros Resumen del trabajo (alguna imagen que represente nuestro trabajo) Sugerencia usar a lenna $\,$

¿Comó solucionamos el inconveniente del producto interno?

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resumei

Marco Teoric Banco de filtros

Resultados
Imagenes de prueba
Parametros optimo:
Comparación de

Estrategia: Algoritmo que relacione las bases ortonormales y la idea de banco de filtros.

Si partimos de la ecuación ?? y recordamos como se descomponían estas funciones, tenemos el inconveniente de los productos internos.

Resumen

Banco de filtros

Imagenes de prueba
Parametros optimos
Comparación de

Reescribiendo la ecuación ??

$$A_j(t) = \sum_{k \in \mathbb{Z}} a_k^j \phi_{j,k}(t) \tag{1}$$

$$D_j(t) = \sum_{k \in \mathbb{Z}} d_k^j \psi_{j,k}(t)$$
 (2)

con

$$a_k^j = \langle A_j(t), \phi_{j,k}(t) \rangle \tag{3}$$

$$d_k^j = \langle A_j(t), \psi_{j,k}(t) \rangle \tag{4}$$

Resultados
Imagenes de prueba
Parametros optimos
Comparacion de

Podemos obtener $a^j y d^j$ a partir de A_{j-1} , partiendo de del producto interno de A_{j-1} y las funciones de escala y wavelet

$$< A_{j-1}(t), \psi_{j,k}(t) > = < A_j(t) + D_j, \psi_{j,k}(t) >$$
 (5)

$$< A_{j-1}(t), \phi_{j,k}(t) > = < A_j(t) + D_j, \phi_{j,k}(t) >$$
 (6)

Resultados
Imagenes de prueb
Parametros optimo

A su ves sabemos que

$$A_{j-1}(t) = \sum_{k \in \mathbb{Z}} a_k^{j-1} \phi_k^{j-1}(t)$$
 (7)

con lo que obtenemos que

$$a_k^j = \sum_{p \in \mathbb{Z}} a_p^{j-1} < \phi_{j-1,p}, \phi_{j,k} >$$
 (8)

$$d_{k}^{j} = \sum_{p \in \mathbb{Z}} a_{p}^{j-1} < \phi_{j-1,p}, \psi_{j,k} >$$
 (9)

Resultados
Imagenes de prueba
Parametros optimos
Comparacion de
filtros

Pero tanto los productos internos de $<\phi_{j-1,p},\phi_{j,k}>$ $<\phi_{j-1,p},\psi_{j,k}>$, son productos internos de funciones conocidas que ya fueron calculadas por lo cual podríamos tomarlo como coeficientes conocidos mas aun como coeficientes de filtros.

$$\sqrt{2}a_{p-2k} = \langle \phi_{j-1,p}(t), \phi_{j,k}(t) \rangle$$
 (10)

$$\sqrt{2}b_{p-2k} = \langle \phi_{j-1,p}(t), \psi_{j,k}(t) \rangle$$
(11)

Resultados
Imagenes de prueba
Parametros optimos
Comparación de

Por lo que se definen los coeficientes de los filtros

$$[LD]_n = \sqrt{2}a_{-n} \tag{12}$$

$$[HD]_n = \sqrt{2}b_{-n} \tag{13}$$

Donde LD es un filtro pasa bajos y HD es un filtro pasa altos. Por lo que reescribimos a a_k^j y d_k^j

$$a_k^j = \sum_{\rho \in \mathbb{Z}} a_\rho^{j-1} [LD]_{2k-\rho} \tag{14}$$

$$d_k^j = \sum_{p \in \mathbb{Z}} a_p^{j-1} [HD]_{2k-p}$$
 (15)

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teoric Banco de filtros

Resultados
Imagenes de prueba
Parametros optimos
Comparación de

Graficamente lo visualizamos

Figura: Descomposición con banco de filtros para 1D.

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resumer

Marco Teorico
Banco de filtros

Resultados
Imagenes de prueba
Parametros optimos
Comparacion de
filtros

Para el caso que nosotros estudiamos, de imágenes, la descomposición en 2D, ve como un doble filtrado

Figura: Descomposición con banco de filtros para 2D.

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teoric Banco de filtros

Resultados Imagenes de prueba Parametros optimos Comparación de Es posible realizar el proceso inverso y recuperar la señal original

Figura: Recomposición con banco de filtros para 2D.

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorio

Banco de filtro

Resultados

Imagenes de prueba

Parametros optimos Comparacion de Imagenes con ruido gaussiano con $\sigma=0.3$

Comparacion de Niveles

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Banco de filtros

Resultados
Imagenes de prueba
Parametros optimos
Comparación de
filtros

PSNR	noise	1	2	4	6
Lenna	17.65	23.92	27.03	22.29	22.29
House	19.87	22.90	25.58	24.57	23.51
Wave	18.63	23.34	26.70	24.71	24.65
SSIM	noise	1	2	4	6
Lenna	0.518	0.742	0.856	0.847	0.808
House	0.620	0.806	0.882	0.839	0.814
Wave	0.586	0.761	0.839	0.820	0.803

Comparacion de Niveles

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico Banco de filtros

Resultados Imagenes de prueba Parametros optimos

Comparacion de modos

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Banco de filtros

Resultados
Imagenes de prueba
Parametros optimos
Comparación de

PSNR	noise	soft	hard
Lenna	17.65	27.03	21.41
House	19.87	25.58	20.20
Wave	18.63	26.70	20.85
SSIM	noise	soft	hard
Lenna	0.518	0.856	0.757
House	0.620	0.882	0.789
Wave	0.586	0.839	0.755

Comparacion de modos

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teoric Banco de filtros

Resultados Imagenes de prueba Parametros optimos

Comparacion de umbrales

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Banco de filtros

Resultados Imagenes de prueba Parametros optimos Comparación de filtros

PSNR	noise	universal	bayes	level	normal	awt
Lenna	17.65	25.86	25.71	25.40	27.03	25.24
House	19.87	22.91	23.32	23.19	25.58	23.41
Wave	18.63	26.74	26.70	26.86	26.70	25.56
SSIM	noise	universal	bayes	level	normal	awt
Lenna	0.518	0.848	0.847	0.849	0.856	0.838
House	0.620	0.851	0.850	0.857	0.882	0.849
Wave	0.586	0.830	0.829	0.833	0.839	0.823

Comparacion de umbrales

Filtrado de ruido en imagenes con transformada de Wavelet

Parametros optimos

Comparacion de la Wavelet madre

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resumer

Banco de filtros

Resultados
Imagenes de prueba
Parametros optimos
Comparacion de

PSNR	noise	haar	db4	sym8
Lenna	17.65	23.44	25.19	27.03
House	19.87	26.38	24.78	25.58
Wave	18.63	24.67	26.87	26.70
SSIM	noise	haar	db4	sym8
Lenna	0.518	0.819	0.853	0.856
House	0.620	0.848	0.875	0.882
Wave	0.586	0.805	0.836	0.839

Comparacion de la Wavelet madre - db4

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico
Banco de filtros

Resultados

Imagenes de prueba Parametros optimos Comparación de

Comparacion de la Wavelet madre - haar

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resumei

Marco Teorico Banco de filtros

Resultados

Parametros optimos
Comparacion de

Comparacion de la Wavelet madre - sym8

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resumei

Marco Teorico Banco de filtros

Resultados

Parametros optimos
Comparacion de

Parametros optimos

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resumer

Marco Teorico Banco de filtros

Resultados
Imagenes de prueba
Parametros optimos
Comparación de

level	wavelet	mode	umbral
2	sym8	soft	normal

Resultado del filtrado

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Banco de filtro

Resultados

Imagenes de prueb

Comparacion de filtros