

Contrôle de cinématique

1 - Analyse d'un moulin à farine

Le système étudié est représenté sur la figure ci-dessus.

Il est constitué de trois solides principaux notés S₀, S₁ et S₂ :

- La partie en pierre horizontale est fixée rigidement sur le sol. Ce sera le **bâti** noté S_0 . On lui associe un repère R_0 ($O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$) orthonormé direct. On pose $\overrightarrow{OB} = z$. $\overrightarrow{z_0}$.

- Le **solide S**₁ est constitué de **deux bras solidaires l'un vertical l'autre horizontal**. Il est en liaison pivot glissant d'axe vertical ($O; \overline{z_0}$). On lui associe un repère R_1 ($B, \overline{x_1}, \overline{y_1}, \overline{z_1}$) orthonormé direct (avec $\overline{z_1} = \overline{z_0}$). On note α l'angle qui repère R_1 par rapport R_0 .

- La **meule S₂**, de rayon R est en liaison pivot d'axe (B; $\overrightarrow{x_1}$,). On lui associe un repère R₂ (B, $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_2}$) orthonormé direct (avec $\overrightarrow{x_2} = \overrightarrow{x_1}$). On note **6** l'angle qui repère R₂ par rapport R₁.

Les solides S_0 et S_2 sont en contact le long d'un segment de droite noté JK. Nous allons étudier ce qui se passe en **un point I de ce segment JK**. On note $\overrightarrow{OI} = \lambda$. $\overrightarrow{x_1}$, $\overrightarrow{BI} = \lambda$. $\overrightarrow{x_1}$ - z. $\overrightarrow{z_0}$.

<u>Attention</u>: la quantité z n'est pas constante car l'objectif d'une meule étant de moudre du grain, il faut bien que celui-ci « passe » entre la meule S_2 et la partie S_0 . Il est donc nécessaire de prévoir un déplacement possible de S_2 par rapport à S_0 le long de l'axe vertical lors du démarrage. En fonctionnement établi la quantité z peut devenir constante.

Questions

- 1 Nommez les liaisons entre les différents solides. Réalisez le graphe des liaisons du système en indiquant pour chaque liaison son centre et son axe principal
- 2 Réalisez le schéma cinématique spatial du système en utilisant les symboles des liaisons normalisées
- 3 Tracez les figures de changement de base. Indiquez les vecteur vitesse de rotation $\overrightarrow{\Omega}_{R_1/R_0}$., $\overrightarrow{\Omega}_{R_2/R_1}$., $\overrightarrow{\Omega}_{R_2/R_0}$.
- 4 Donnez le nombre de paramètres de mobilité pour chaque liaison entre les solides S₀ et S₁, S₁ et S₂, et S₂ et S₀.
- 5 Déterminez la vitesse $\vec{V}_{B~R_2/R_0}$ puis $\vec{V}_{I~R_2/R_0}$ par changement de point
- 6 On suppose que l'on travaille en régime permanent donc qu'il y a une **épaisseur fixe** (et négligeable par rapport au rayon de la meule) de grains entre les solides S₀ et S₂.

Le vecteur vitesse trouvé est-il compatible avec le contact entre S_2 et S_0 ? Sinon donnez l'expression à retenir.

- 7 Donnez la définition du vecteur vitesse de glissement entre S_0 et S_2 .
- 8 A quelle condition a-t-on un roulement sans glissement au point I?

Le non-glissement est-il donc possible pour plusieurs valeurs de λ ?

2 - Etude d'un ouvre-portail

L'étude porte sur un système d'ouvre-portail représenté sur les schéma ci-après

Un motoréducteur a limiteur de couple a friction est fixé au bâti (1) et transmet un mouvement de rotation d'axe (0, $\overrightarrow{z_1}$.) au bras motorisé (2).

Le bras motorisé (2).est en liaison pivot d'axe (C, $\vec{z_1}$.) avec le bras motorisé (3)

La bras motorisé (3) est en liaison pivot d'axe (D, $\overrightarrow{z_1}$.) avec le vantail (4)

Le vantail (4) est lié au bati (1) par une liaison pivot d'axe (A, $\vec{z_1}$)

On considérera que le mouvement des pièces 2, 3, et 4 est un mouvement plan dans (x_1,y_1)

La norme en matière de sécurité veut que la **vitesse maximum** du point le plus rapide du portail ne dépasse pas 0.5m/sec.

 $\Theta_r = (\overrightarrow{x_1}, \overrightarrow{x_2})$ angle de position du bras moteur (1)

 $\Theta_{v} = (\overrightarrow{x_1}, \overrightarrow{x_4})$ angle de position du vantail (4)

$$\beta = (\overrightarrow{x_2}, \overrightarrow{x_3})$$

$$\overrightarrow{OC} = I. \overrightarrow{x_2}; \overrightarrow{AD} = d. \overrightarrow{x_4}; \overrightarrow{DC} = I. \overrightarrow{x_3}; \overrightarrow{AE} = L. \overrightarrow{x_4}; \overrightarrow{OA} = a. \overrightarrow{x_1} + b. \overrightarrow{y_1}$$

Questions

- 1 Réalisez le graphe des liaisons du système en indiquant pour chaque liaison son centre et son axe principal
- 2 Tracez les figures de changement de base. Indiquez les vecteur vitesse de rotation $\overrightarrow{\Omega}_{R_2/R_1}$., $\overrightarrow{\Omega}_{R_3/R_2}$., $\overrightarrow{\Omega}_{R_4/R_1}$.
- 3 Déterminez la vitesse $\vec{V}_{C|R_2/R_1}$ puis $\vec{V}_{D|R_3/R_1}$ par changement de point
- 4 Déterminez la vitesse $\vec{V}_{D~R_4/R_1}$ Que peut-on dire de $\vec{V}_{D~R_3/R_1}$ et $\vec{V}_{D~R_4/R_1}$? Justifiez

5 - Etablir une relation vectorielle entre Θ_r , Θ_v , β , $\dot{\beta}$, $\dot{\Theta}_r$, et $\dot{\Theta}_v$

Par projection sur les axes Ox_1 et Oy_1 , en déduire deux relations scalaires entre Θ_r , Θ_v , β , $\dot{\beta}$, $\dot{\theta}_r$, et $\dot{\theta}_v$

6 - La figure ci-contre donne la courbe d'évolution de la vitesse de rotation du vantail en rad/s
La condition " **vitesse maximum** du point le plus rapide du portail ne dépasse pas 0.5m/sec" estelle vérifiée si L = 2 m . Justifiez

