Introduction to Computational Finance and Financial Econometrics Return Calculations

Eric Zivot

Sept 11, 2012

The Time Value of Money

Future Value

- ullet \$V invested for n years at simple interest rate R per year
- Compounding of interest occurs at end of year

$$FV_n = \$V \cdot (1+R)^n,$$

where FV_n is future value after n years

Example: Consider putting \$1000 in an interest checking account that pays a simple annual percentage rate of 3%. The future value after n=1,5 and 10 years is, respectively,

$$FV_1 = \$1000 \cdot (1.03)^1 = \$1030,$$

 $FV_5 = \$1000 \cdot (1.03)^5 = \$1159.27,$
 $FV_{10} = \$1000 \cdot (1.03)^{10} = \$1343.92.$

FV function is a relationship between four variables: FV_n, V, R, n . Given three variables, you can solve for the fourth:

• Present value:

$$V = \frac{FV_n}{(1+R)^n}.$$

• Compound annual return:

$$R = \left(\frac{FV_n}{V}\right)^{1/n} - 1.$$

• Investment horizon:

$$n = \frac{\ln(FV_n/V)}{\ln(1+R)}.$$

Compounding occurs m times per year

$$FV_n^m = \$V \cdot \left(1 + \frac{R}{m}\right)^{m \cdot n},$$

$$\frac{R}{m} = \text{periodic interest rate}.$$

Continuous compounding

$$FV_n^{\infty} = \lim_{m \to \infty} \$V \cdot \left(1 + \frac{R}{m}\right)^{m \cdot n} = \$Ve^{R \cdot n},$$

$$e^1 = 2.71828.$$

Example: If the simple annual percentage rate is 10% then the value of \$1000 at the end of one year (n=1) for different values of m is given in the table below.

Compounding Frequency	Value of \$1000 at end of 1 year $(R=10\%)$
Annually $(m=1)$	1100.00
Quarterly $(m = 4)$	1103.81
Weekly $(m = 52)$	1105.06
Daily $(m=365)$	1105.16
Continuously $(m = \infty)$	1105.17

Effective Annual Rate

Annual rate R_A that equates FV_n^m with FV_n ; i.e.,

$$\$V\left(1+\frac{R}{m}\right)^{m\cdot n}=\$V(1+R_A)^n.$$

Solving for R_A

$$\left(1 + \frac{R}{m}\right)^m = 1 + R_A \Rightarrow R_A = \left(1 + \frac{R}{m}\right)^m - 1.$$

Continuous compounding

$$$Ve^{R \cdot n} = $V(1 + R_A)^n$
$$\Rightarrow e^R = (1 + R_A)$$

$$\Rightarrow R_A = e^R - 1.$$$$

Example. Compute effective annual rate with semi-annual compounding

The effective annual rate associated with an investment with a simple annual rate R=10% and semi-annual compounding (m=2) is determined by solving

$$(1+R_A) = \left(1+\frac{0.10}{2}\right)^2$$

 $\Rightarrow R_A = \left(1+\frac{0.10}{2}\right)^2 - 1 = 0.1025.$

Compounding Frequency	Value of \$1000 at end of 1 year $(R=10\%)$	R_A
Annually $(m=1)$	1100.00	10%
Quarterly $(m=4)$	1103.81	10.38%
Weekly $(m = 52)$	1105.06	10.51%
Daily $(m=365)$	1105.16	10.52%
Continuously $(m=\infty)$	1105.17	10.52%

Asset Return Calculations

Simple Returns

- ullet $P_t = \text{price at the end of month } t \text{ on an asset that pays no dividends}$
- P_{t-1} = price at the end of month t-1

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}} = \% \triangle P_t = \text{net return over month } t,$$

$$1 + R_t = \frac{P_t}{P_{t-1}} = \text{gross return over month } t.$$

Example. One month investment in Microsoft stock.

Buy stock at end of month t-1 at $P_{t-1}=\$85$ and sell stock at end of next month for $P_t=\$90$. Assuming that Microsoft does not pay a dividend between months t-1 and t, the one-month simple net and gross returns are

$$R_t = \frac{\$90 - \$85}{\$85} = \frac{\$90}{\$85} - 1 = 1.0588 - 1 = 0.0588,$$

 $1 + R_t = 1.0588.$

The one month investment in Microsoft yielded a 5.88% per month return.

Multi-period Returns

Simple two-month return

$$R_t(2) = \frac{P_t - P_{t-2}}{P_{t-2}}$$
$$= \frac{P_t}{P_{t-2}} - 1.$$

Relationship to one month returns

$$R_t(2) = \frac{P_t}{P_{t-2}} - 1 = \frac{P_t}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}} - 1$$
$$= (1 + R_t) \cdot (1 + R_{t-1}) - 1.$$

Here

$$1+R_t=$$
 one-month gross return over month $t,$ $1+R_{t-1}=$ one-month gross return over month $t-1,$ $\Longrightarrow 1+R_t(2)=(1+R_t)\cdot(1+R_{t-1}).$

two-month gross return = the product of two one-month gross returns

Note: two-month returns are not additive:

$$R_t(2) = R_t + R_{t-1} + R_t \cdot R_{t-1}$$

 $\approx R_t + R_{t-1}$ if R_t and R_{t-1} are small

Example: Two-month return on Microsoft

Suppose that the price of Microsoft in month t-2 is \$80 and no dividend is paid between months t-2 and t. The two-month net return is

$$R_t(2) = \frac{\$90 - \$80}{\$80} = \frac{\$90}{\$80} - 1 = 1.1250 - 1 = 0.1250,$$

or 12.50% per two months. The two one-month returns are

$$R_{t-1} = \frac{\$85 - \$80}{\$80} = 1.0625 - 1 = 0.0625$$
 $R_t = \frac{\$90 - 85}{\$85} = 1.0588 - 1 = 0.0588,$

and the geometric average of the two one-month gross returns is

$$1 + R_t(2) = 1.0625 \times 1.0588 = 1.1250.$$

Simple *k*-month Return

$$R_{t}(k) = \frac{P_{t} - P_{t-k}}{P_{t-k}} = \frac{P_{t}}{P_{t-k}} - 1$$

$$1 + R_{t}(k) = (1 + R_{t}) \cdot (1 + R_{t-1}) \cdot \dots \cdot (1 + R_{t-k+1})$$

$$= \prod_{j=0}^{k-1} (1 + R_{t-j})$$

Note

$$R_t(k) \neq \sum_{j=0}^{k-1} R_{t-j}$$

Portfolio Returns

ullet Invest \$V in two assets: A and B for 1 period

• $x_A = \text{share of } \$V \text{ invested in A; } \$V \times x_A = \$ \text{ amount}$

• $x_B = \text{share of } \$V \text{ invested in B; } \$V \times x_B = \$ \text{ amount}$

• Assume $x_A + x_B = 1$

ullet Portfolio is defined by investment shares x_A and x_B

At the end of the period, the investments in A and B grow to

$$$V(1 + R_{p,t}) = $V \left[x_A (1 + R_{A,t}) + x_B (1 + R_{B,t}) \right]$$

$$= $V \left[x_A + x_B + x_A R_{A,t} + x_B R_{B,t} \right]$$

$$= $V \left[1 + x_A R_{A,t} + x_B R_{B,t} \right]$$

$$\Rightarrow R_{p,t} = x_A R_{A,t} + x_B R_{B,t}$$

The simple portfolio return is a share weighted average of the simple returns on the individual assets.

Example: Portfolio of Microsoft and Starbucks stock

Purchase ten shares of each stock at the end of month t-1 at prices

$$P_{msft,t-1} = \$85, \ P_{sbux,t-1} = \$30,$$

The initial value of the portfolio is

$$V_{t-1} = 10 \times \$85 + 10 \times 30 = \$1,150.$$

The portfolio shares are

$$x_{msft} = 850/1150 = 0.7391, \ x_{sbux} = 300/1150 = 0.2609.$$

The end of month t prices are $P_{msft,t} = \$90$ and $P_{sbux,t} = \$28$.

Assuming Microsoft and Starbucks do not pay a dividend between periods t-1 and t, the one-period returns are

$$R_{msft,t} = \frac{\$90 - \$85}{\$85} = 0.0588$$

$$R_{sbux,t} = \frac{\$28 - \$30}{\$30} = -0.0667$$

The return on the portfolio is

$$R_{p,t} = (0.7391)(0.0588) + (0.2609)(-0.0667) = 0.02609$$

and the value at the end of month t is

$$V_t = \$1,150 \times (1.02609) = \$1,180$$

In general, for a portfolio of n assets with investment shares x_i such that $x_1 + \cdots + x_n = 1$

$$1 + R_{p,t} = \sum_{i=1}^{n} x_i (1 + R_{i,t})$$

$$R_{p,t} = \sum_{i=1}^{n} x_i R_{i,t}$$

$$= x_1 R_{1t} + \dots + x_n R_{nt}$$

Adjusting for Dividends

$$\begin{split} D_t &= \text{ dividend payment between months } t-1 \text{ and } t \\ R_t^{total} &= \frac{P_t + D_t - P_{t-1}}{P_{t-1}} = \frac{P_t - P_{t-1}}{P_{t-1}} + \frac{D_t}{P_{t-1}} \\ &= \text{capital gain return} + \text{ dividend yield (gross)} \\ 1 + R_t^{total} &= \frac{P_t + D_t}{P_{t-1}} \end{split}$$

Example. Total return on Microsoft stock.

Buy stock in month t-1 at $P_{t-1}=\$85$ and sell the stock the next month for $P_t=\$90$. Assume Microsoft pays a \$1 dividend between months t-1 and t. The capital gain, dividend yield and total return are then

$$R_t^{total} = \frac{\$90 + \$1 - \$85}{\$85} = \frac{\$90 - \$85}{\$85} + \frac{\$1}{\$85}$$

$$= 0.0588 + 0.0118$$

$$= 0.0707$$

The one-month investment in Microsoft yields a 7.07% per month total return. The capital gain component is 5.88%, and the dividend yield component is 1.18%.

Adjusting for Inflation

The computation of real returns on an asset is a two step process:

ullet Deflate the nominal price P_t of the asset by an index of the general price level CPI_t

• Compute returns in the usual way using the deflated prices

$$\begin{split} P_t^{\mathsf{Real}} &= \frac{P_t}{CPI_t} \\ R_t^{\mathsf{Real}} &= \frac{P_t^{\mathsf{Real}} - P_{t-1}^{\mathsf{Real}}}{P_{t-1}^{\mathsf{Real}}} = \frac{\frac{P_t}{CPI_t} - \frac{P_{t-1}}{CPI_{t-1}}}{\frac{P_{t-1}}{CPI_{t-1}}} \\ &= \frac{P_t}{P_{t-1}} \cdot \frac{CPI_{t-1}}{CPI_t} - 1 \end{split}$$

Alternatively, define inflation as

$$\pi_t = \% \Delta CPI_t = \frac{CPI_t - CPI_{t-1}}{CPI_{t-1}}$$

Then

$$R_t^{\mathsf{Real}} = rac{1 + R_t}{1 + \pi_t} - 1$$

Example. Compute real return on Microsoft stock.

Suppose the CPI in months t-1 and t is 1 and 1.01, respectively, representing a 1% monthly growth rate in the overall price level. The real prices of Microsoft stock are

$$P_{t-1}^{\mathsf{Real}} = \frac{\$85}{1} = \$85, \ P_t^{\mathsf{Real}} = \frac{\$90}{1.01} = \$89.1089$$

The real monthly return is

$$R_t^{\mathsf{Real}} = \frac{\$89.10891 - \$85}{\$85} = 0.0483$$

The nominal return and inflation over the month are

$$R_t = \frac{\$90 - \$85}{\$85} = 0.0588, \ \pi_t = \frac{1.01 - 1}{1} = 0.01$$

Then the real return is

$$R_t^{\mathsf{Real}} = rac{1.0588}{1.01} - 1 = 0.0483$$

Notice that simple real return is almost, but not quite, equal to the simple nominal return minus the inflation rate

$$R_t^{\mathsf{Real}} pprox R_t - \pi_t = 0.0588 - 0.01 = 0.0488$$

Annualizing Returns

Returns are often converted to an annual return to establish a standard for comparison

Example: Assume same monthly return R_m for 12 months:

Compound annual gross return
$$= 1 + R_A = 1 + R_t(12) = (1 + R_m)^{12}$$

Compound annual net return =
$$R_A = (1 + R_m)^{12} - 1$$

Example. Annualized return on Microsoft

Suppose the one-month return, R_t , on Microsoft stock is 5.88%. If we assume that we can get this return for 12 months then the compounded annualized return is

$$R_A = (1.0588)^{12} - 1 = 1.9850 - 1 = 0.9850$$

or 98.50% per year. Pretty good!

Example. Annualized two-year return

Suppose that the price of Microsoft stock 24 months ago is $P_{t-24} = \$50$ and the price today is $P_t = \$90$. The two year gross return is

$$1 + R_t(24) = \frac{\$90}{\$50} = 1.800$$

which yields a two year net return of $R_t(24) = 0.80 = 80\%$. The compound annual return for this investment is defined as

$$(1 + R_A)^2 = 1 + R_t(24) = 1.800 \Rightarrow$$

 $R_A = (1.800)^{1/2} - 1 = 1.3416 - 1 = 0.3416$

or 34.16% per year.

Contnuously Compounded (cc) Returns

$$r_t = \ln(1 + R_t) = \ln\left(\frac{P_t}{P_{t-1}}\right)$$
 $\ln(\cdot) = \text{natural log function}$

Note:

 $\ln(1+R_t)=r_t$: given R_t we can solve for r_t $R_t=e^{r_t}-1 \text{ : given } r_t \text{ we can solve for } R_t$ r_t is always smaller than R_t

Digression on natural log and exponential functions

•
$$ln(0) = -\infty, ln(1) = 0$$

•
$$e^{-\infty} = 0$$
, $e^0 = 1$, $e^1 = 2.7183$

$$\bullet \ \frac{d\ln(x)}{dx} = \frac{1}{x}, \, \frac{de^x}{dx} = e^x$$

$$\bullet \ \ln(e^x) = x, \, e^{\ln(x)} = x$$

•
$$\ln(x \cdot y) = \ln(x) + \ln(y)$$
; $\ln(\frac{x}{y}) = \ln(x) - \ln(y)$

 $\bullet \ \ln(x^y) = y \ln(x)$

•
$$e^x e^y = e^{x+y}, e^x e^{-y} = e^{x-y}$$

 $\bullet (e^x)^y = e^{xy}$

Intuition

$$e^{r_t} = e^{\ln(1+R_t)} = e^{\ln(P_t/P_{t-1})}$$

$$= \frac{P_t}{P_{t-1}}$$

$$\Longrightarrow P_{t-1} \cdot e^{r_t} = P_t$$

 $\Longrightarrow r_t =$ cc growth rate in prices between months t-1 and t

Result. If R_t is small then

$$r_t = \ln(1 + R_t) \approx R_t$$

Proof. For a function f(x), a first order Taylor series expansion about $x = x_0$ is

$$f(x) = f(x_0) + \frac{d}{dx}f(x_0)(x - x_0) + \text{ remainder}$$

Let $f(x) = \ln(1+x)$ and $x_0 = 0$. Note that

$$\frac{d}{dx}\ln(1+x) = \frac{1}{1+x}, \ \frac{d}{dx}\ln(1+x_0) = 1$$

Then

$$ln(1+x) \approx ln(1) + 1 \cdot x = 0 + x = x$$

Computational Trick

$$r_t = \ln \left(\frac{P_t}{P_{t-1}} \right)$$

$$= \ln(P_t) - \ln(P_{t-1})$$

$$= p_t - p_{t-1}$$

$$= \text{ difference in log prices}$$

where

$$p_t = \ln(P_t)$$

Example. Compute cc return

Let $P_{t-1} = 85, P_t = 90$ and $R_t = 0.0588$. Then the cc monthly return can be computed in two ways:

$$r_t = \ln(1.0588) = 0.0571$$

 $r_t = \ln(90) - \ln(85) = 4.4998 - 4.4427 = 0.0571.$

Notice that r_t is slightly smaller than R_t .

Multi-period Returns

$$r_t(2) = \ln(1 + R_t(2))$$

$$= \ln\left(\frac{P_t}{P_{t-2}}\right)$$

$$= p_t - p_{t-2}$$

Note that

$$e^{r_t(2)} = e^{\ln(P_t/P_{t-2})}$$

$$\Rightarrow P_{t-2}e^{r_t(2)} = P_t$$

 $\implies r_t(2) = \text{cc}$ growth rate in prices between months t-2 and t

Result: cc returns are additive

$$r_t(2) = \ln\left(\frac{P_t}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}}\right)$$

$$= \ln\left(\frac{P_t}{P_{t-1}}\right) + \ln\left(\frac{P_{t-1}}{P_{t-2}}\right)$$

$$= r_t + r_{t-1}$$

where $r_t=$ cc return between months t-1 and $t,\,r_{t-1}=$ cc return between months t-2 and t-1

Example. Compute cc two-month return

Suppose $P_{t-2} = 80$, $P_{t-1} = 85$ and $P_t = 90$. The cc two-month return can be computed in two equivalent ways: (1) take difference in log prices

$$r_t(2) = \ln(90) - \ln(80) = 4.4998 - 4.3820 = 0.1178.$$

(2) sum the two cc one-month returns

$$r_t = \ln(90) - \ln(85) = 0.0571$$

 $r_{t-1} = \ln(85) - \ln(80) = 0.0607$
 $r_t(2) = 0.0571 + 0.0607 = 0.1178$.

Notice that $r_t(2) = 0.1178 < R_t(2) = 0.1250$.

General Result

$$r_t(k) = \ln(1 + R_t(k)) = \ln(\frac{P_t}{P_{t-k}})$$

$$= \sum_{j=0}^{k-1} r_{t-j}$$

$$= r_t + r_{t-1} + \dots + r_{t-k+1}$$

Portfolio Returns

$$R_{p,t} = \sum_{i=1}^{n} x_i R_{i,t}$$
 $r_{p,t} = \ln(1 + R_{p,t}) = \ln(1 + \sum_{i=1}^{n} x_i R_{i,t}) \neq \sum_{i=1}^{n} x_i r_{i,t}$
 \Rightarrow portfolio returns are not additive

Note: If $R_{p,t} = \sum_{i=1}^n x_i R_{i,t}$ is not too large, then $r_{p,t} \approx R_{p,t}$ otherwise, $R_{p,t} > r_{p,t}$.

Example. Compute cc return on portfolio

Consider a portfolio of Microsoft and Starbucks stock with

$$x_{msft} = 0.25, x_{sbux} = 0.75,$$

$$R_{msft,t} = 0.0588, R_{sbux,t} = -0.0503$$

$$R_{p,t} = x_{msft}R_{msft,t} + x_{sbux,t}R_{sbux,t} = -0.02302$$

The cc portfolio return is

$$r_{p,t} = \ln(1 - 0.02302) = \ln(0.977) = -0.02329$$

Note

$$r_{msft,t} = \ln(1+0.0588) = 0.05714$$

$$r_{sbux,t} = \ln(1-0.0503) = -0.05161$$

$$x_{msft}r_{msft} + x_{sbux}r_{sbux} = -0.02442 \neq r_{p,t}$$

Adjusting for Inflation

The cc one period real return is

$$r_t^{\mathsf{Real}} = \mathsf{ln}(1 + R_t^{\mathsf{Real}})$$

$$1 + R_t^{\mathsf{Real}} = \frac{P_t}{P_{t-1}} \cdot \frac{CPI_{t-1}}{CPI_t}$$

It follows that

$$\begin{split} r_t^{\text{Real}} &= \ln \left(\frac{P_t}{P_{t-1}} \cdot \frac{CPI_{t-1}}{CPI_t} \right) = \ln \left(\frac{P_t}{P_{t-1}} \right) + \ln \left(\frac{CPI_{t-1}}{CPI_t} \right) \\ &= \ln(P_t) - \ln(P_{t-1}) + \ln(CPI_{t-1}) - \ln(CPI_t) \\ &= r_t - \pi_t^{cc} \end{split}$$

where

$$r_t = \ln(P_t) - \ln(P_{t-1}) = \text{nominal cc return}$$

 $\pi_t^{cc} = \ln(CPI_t) - \ln(CPI_{t-1}) = \text{cc inflation}$

Example. Compute cc real return

Suppose:

$$R_t = extstyle 0.0588$$
 $\pi_t = extstyle 0.01$ $R_t^{\mathsf{Real}} = extstyle 0.0483$

The real cc return is

$$r_t^{\text{Real}} = \ln(1 + R_t^{\text{Real}}) = \ln(1.0483) = 0.047.$$

Equivalently,

$$r_t^{\mathsf{Real}} = r_t - \pi_t^{cc} = \mathsf{In}(1.0588) - \mathsf{In}(1.01) = 0.047$$