MATH 250: TOPOLOGY I PROBLEM SET #3

FALL 2025

Due Wednesday, October 1. Please attempt all of the problems. <u>Six</u> of them will be graded. You may consult books, papers, and websites as long as you cite all sources and write up your solutions in your own words.

Problem 1 (Munkres 128, #4(1)). Consider the product, uniform, and box topologies on \mathbb{R}^{ω} . In which topologies are the following functions continuous?

$$f(t) = (t, 2t, 3t, ...),$$
 $g(t) = (t, t, t, ...),$ $h(t) = (t, \frac{1}{2}t, \frac{1}{3}t, ...).$

Problem 2 (Munkres 128, #4(2)). Same setup as Problem 1. In which topologies do the following sequences converge?

$$(w_i)_i \text{ where } w_1 = (1, 1, 1, 1, \ldots),$$

$$w_2 = (0, 2, 2, 2, \ldots),$$

$$w_3 = (0, 0, 3, 3, \ldots),$$

$$\dots$$

$$(y_i)_i \text{ where } y_1 = (1, 0, 0, 0, \ldots),$$

$$y_2 = (\frac{1}{2}, \frac{1}{2}, 0, 0, \ldots),$$

$$y_3 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, \ldots),$$

$$(x_i)_i \text{ where } x_1 = (1, 1, 1, 1, \ldots),$$

$$x_2 = (0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots)$$

$$x_3 = (0, 0, \frac{1}{3}, \frac{1}{3}, \ldots),$$

$$\vdots$$

$$(z_i)_i \text{ where } z_1 = (1, 1, 0, 0, \ldots),$$

$$z_2 = (\frac{1}{2}, \frac{1}{2}, 0, 0, \ldots),$$

$$z_3 = (\frac{1}{3}, \frac{1}{3}, 0, 0, \ldots),$$

Problem 3 (Munkres 118, #7). Let $\mathbf{R}^{\infty} \subseteq \mathbf{R}^{\omega}$ be the subset of sequences $(a_i)_{i>0}$ such that $a_i \neq 0$ for only finitely many i. What is the closure of \mathbf{R}^{∞} ...

- (1) ... in the box topology on \mathbf{R}^{ω} ?
- (2) ... in the product topology on \mathbf{R}^{ω} ?

Problem 4 (Munkres 118, #8). Fix sequences $(a_1, a_2, ...), (b_1, b_2, ...) \in \mathbf{R}^{\omega}$ such that $a_i > 0$ for all i. Let $h : \mathbf{R}^{\omega} \to \mathbf{R}^{\omega}$ be defined by

$$h(x_1, x_2, \ldots) = (a_1x_1 + b_1, a_2x_2 + b_2, \ldots)$$

- (1) Show that in the product topology, h is a self-homeomorphism of \mathbf{R}^{ω} .
- (2) What happens in the box topology?

Problem 5 (Munkres 127, #7). Now consider the map h in Problem 4 in the uniform topology on \mathbf{R}^{ω} . Under what conditions on $(a_i)_i$ and $(b_i)_i$ is h...

- (1) ... continuous?
- (2) ... a homeomorphism?

Problem 6 (Munkres 92, #3). Endow [-1, 1] with the analytic topology: *i.e.*, the subspace topology it inherits from analytic **R**. Determine which of the following sets are open in [-1, 1], and which are open in **R**.

$$A = \{x \mid \frac{1}{2} < |x| < 1\},$$

$$B = \{x \mid \frac{1}{2} < |x| \le 1\},$$

$$D = \{x \mid \frac{1}{2} \le |x| \le 1\},$$

$$E = \{x \mid 0 < |x| < 1 \text{ and } \frac{1}{x} \notin \mathbf{Z}_{+}]\}.$$

Problem 7 (Munkres 92, #6). Show that the countable collection

$$\{(a,b) \times (c,d) \mid a < b \text{ and } c < d \text{ and } a,b,c,d \text{ are rational}\}$$

is a basis for \mathbb{R}^2 . You may assume Problem 5 from Problem Set 1.

Problem 8 (Munkres 101, #11-13). Show that:

- (1) A product of two Hausdorff spaces is Hausdorff (in the product topology).
- (2) A subspace of a Hausdorff space is Hausdorff (in the subspace topology).
- (3) X is Hausdorff if and only if its diagonal $\Delta_X = \{(x, x) \mid x \in X\}$ is closed in (the product topology on) $X \times X$.

Problem 9 (Munkres 118, #6). Let $(X_{\alpha})_{\alpha}$ be an arbitrary collection of topological spaces, and let $x^{(1)}, x^{(2)}, \ldots$ be a sequence of points in $\prod_{\alpha} X_{\alpha}$. Observe that each point $x^{(i)}$ has the form

$$x^{(i)} = (x_{\alpha}^{(i)})_{\alpha}$$
, where $x_{\alpha}^{(i)} \in X_{\alpha}$ for all α .

- (1) Show that in the product topology, the sequence converges to a point $x = (x_{\alpha})_{\alpha}$ if and only if, for all α , the sequence $x_{\alpha}^{(1)}, x_{\alpha}^{(2)}, \ldots$ converges to x_{α} .
- (2) What happens if we replace the product topology with the box topology?

Problem 10 (Munkres 144, #2). Let $p: X \to Y$ be a continuous map.

- (1) Show that if there is a continuous map $f: Y \to X$ such that $p \circ f$ is the identity map on Y, then p is a quotient map.
- (2) A retraction from X onto a subset A is a continuous map $r: X \to A$ such that r(a) = a for all $a \in A$. Deduce from (1) that retractions are quotient maps.

Problem 11 (Munkres 152, #2). Let $(A_n)_{n=1}^{\infty}$ be a sequence of connected subspaces of X, such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\bigcup_{n=1}^{\infty} A_n$ is connected.

Problem 12 (Munkres 152, #9). Let X, Y be connected, and let $A \subseteq X$ and $B \subseteq Y$ be proper subsets. Show that

$$(X \times Y) - (A \times B)$$

is a connected subspace of $X \times Y$.

Problem 13 (Munkres 152, #11). Let $p: X \to Y$ be a quotient map. Show that if Y is connected and each subspace $p^{-1}(y) \subseteq X$ is connected, then X is connected.

Problem 14 (Munkres 152, #5). We say that X is *totally disconnected* if and only if its only nonempty connected subspaces are one-point sets.

- (1) Show that if X is discrete, then X is totally disconnected.
- (2) Show that the set of rational numbers \mathbf{Q} , as a subspace of (analytic) \mathbf{R} , is totally disconnected, but not discrete.