FIRDAUS SOLIHIN

 Suatu bahasa yang didefinisikan melalui Regular Expression (RE) mempunyai bahasa ekuivalen yang digambarkan dalam bentuk Finite Automata (FA), begitu juga sebaliknya

Menggambarkan FA dari RE

1.
$$RE = (a+b)*a$$

- 2. $RE = (a+b)^+$
- 3. $RE = b^+$

Menggambarkan FA dari RE

Dapatkan RE dari FA

Menggambarkan FA dari RE

1.
$$RE = (a+b)*a$$

- 2. $RE = b^{+}$
- 3. $RE = bb^{+}$

NFA vs DFA

- PENGGABUNGAN (+) DUA FA
- Jika terdapat FA₁ yang mewakili bahasa dengan RE=r₁ dan terdapat FA₂ yang mewakili bahasa dengan RE=r₂, maka dapat dibuat FA₃ yang mewakili bahasa dengan RE = r₁ + r₂

Contoh Penggabungan

- FA₁ = menerima semua string yang diakhiri dengan a → RE = r₁ = (a+b)*a
- FA_2 = menerima semua string yang diakhiri dengan b → $RE = r_2 = (a+b)*b$

 Jika 2 FA ini digabungkan sesuai Theorema Kleene 2 maka akan didapat FA₃ dimana merupakan hasil penggabungan

 $FA_3 = FA_1 + FA_2$

LANGKAH PENGGABUNGAN

- Gabungkan State Awal FA₁ dan FA₂
- Buat Tabel Transisi untuk FA₃

State	а	b
$(X_1+Y_1)Z_1$	$(X_2+Y_1)Z_2$	$(X_1+Y_2)Z_3$
$(X_2+Y_1)Z_2$	$(X_2+Y_1)Z_2$	$(X_1+Y_2)Z_3$
$(X_1+Y_2)Z_3$	$(X_2+Y_1)Z_2$	$(X_1+Y_2)Z_3$

LANGKAH PENGGABUNGAN

- Penentuan State Awal pada FA₃ dengan memilih Hasil Penggabungan yang mengandung state awal FA₁ dan state awal FA₂ → Z₁
- 4. Penetuan State Akhir pada FA_3 dengan memilih Hasil Penggabungan yang mengandung state akhir FA_1 atau state akhir $FA_2 \rightarrow Z_2$, Z_3

LANGKAH PENGGABUNGAN

5. Gambarkan FA₃ sesuai informasi yang didapat pada langkah sebelumnya

 Z_2

b

a

 $RE_3 = RE_2 + RE_1$

 $r_3 = (a+b)*a + (a+b)*b$

- PENYAMBUNGAN (*) DUA FA
- Jika terdapat FA₁ yang mewakili bahasa dengan RE=r₁ dan terdapat FA₂ yang mewakili bahasa dengan RE=r₂, maka dapat dibentuk FA₃ yang merupakan penyambungan (concatenation) FA₁ dan FA₂ yang mewakili bahasa = r₁.r₂

- FA₁: semua string yang diawali oleh a
- RE_1 : $a(a+b)^*$
- FA₂: semua string yang diakhiri oleh b
- RE₂: (a+b)*b
- $FA_3 = FA_1 \cdot FA_2$
- $r_3 = r_1 \cdot r_2$

sambungkan gambar 2 FA

Buat Tabel Transisi untuk FA₃

State	а	b
$X_1 = Z_1 (-)$	$X_3Y_1 = Z_2$	$X_2 = Z_3$
$X_3Y_1 = Z_2$	$X_3Y_1 = Z_2$	$X_3Y_1Y_2 = Z_4$
$X_2 = Z_3$	$X_2 = Z_3$	$X_2 = Z_3$
$X_3Y_1Y_2 = Z_4(+)$	$X_3Y_1 = Z_2$	$X_3Y_1Y_2 = Z_4$

- Penentuan State Awal pada FA₃ dengan memilih State awal FA yang pertama
- 4. Penetuan State Akhir pada FA₃ didapat dari State FA₃ yang mengandung state akhir FA kedua

 Gambarkan FA₃ sesuai informasi yang didapat pada langkah sebelumnya

FA₃ = Menerima semua string yang diawali oleh a dan diakhiri b

Tugas