Presentación Algoritmo Lepp-Delaunay

Gabriel Sanhueza Sanhueza

Arquitectura y librerías

- Arquitectura ModelView
- Lenguaje: C++
- Interfaz: Qt 5.8

Archivos relevantes (.h,.cpp)

Angle : Abstracción de ángulos

Canvas : Pantalla de dibujo

Constants : Alto y ancho de pantalla

Edge : Detección de arista más larga

Model : Algoritmos de refinamiento

Triangle : Triángulos de Vertexs

Vertex : Vértices (Puntos parseados)

View : Ventana principal

Main : Archivo para correr programa

Estructuras de datos

- Vertex
 - int x
 - int y
- Edge
 - Vertex va
 - Vertex vb
- Angle
 - double val
 - Bool isDegree

Estructuras de datos

- Triangle
 - Vertex va
 - Vertex vb
 - Vertex vc
 - Vertex notInLongest
 - EdgelongestEdge

Estado inicial

- Triangulación parseada desde archivo
 - Input de tolerancia por parte del usuario

Algoritmo base

- Encontrar triangulos malos (O < O_{tol})
- Mientras hayan triángulos malos:
 - Tomar uno
 - Crear lista Lepp
 - Insertar en:
 - Centro de Edge más largo si en borde
 - Centroide si hay 2 triángulos terminales
 - Actualizar triángulos malos

Encontrar triángulos malos

- Para cada triángulo de la triangulación:
 - Si ángulo mínimo menor que tolerancia:
 - Agregar a lista de triángulos malos
- Retornar lista

Lista Lepp

- Por ahora está con fuerza bruta
- Para cada triángulo de la triangulación:
 - Si ya estoy viendo este triángulo, omitir
 - Si no,
 - Si triángulo lleva a borde
 - Agregar triángulo y marcar borde
 - Si triángulo A lleva a B y el vecino más largo vuelve a A
 - Agregar triángulo y marcar terminal
 - Actualizar edge más largo visto
- Retornar lista

Inserción en borde

- Tomar borde más largo del triángulo
- Dividirlo
 - Crear 2 triángulos respecto al dividido
 - Borrar el dividido

Inserción de centroide

- Tomar los 2 triángulos terminales
- Calcular centroide como el promedio de sus coordenadas
- Crear 4 triángulos con 2 de los Vertex anteriores y el centroide para cada uno
- Eliminar los 2 triángulos terminales de la triangulación
- Agregar los 4 nuevos triángulos

Actualizar triángulos

- Volver a escanear la triangulación
- Detectar los ángulos mínimos nuevamente

Resultados

