M-53 Pr: Emmanuel Fricain

NTÉGRALES À PARAMÈTRES

éries de Fourier

- 1. Intégrales définies dépendant d'un paramètre : continuité, dérivabilité ; cas où les bornes d'intégration dépendent du paramètre.
- 2. Intégrales généralisées dépendant d'un paramètre : continuité, dérivabilité ; mise en parallèleavec des résultats connus pour des séries de fonctions.
- 3. Critères de Cauchy pour la convergence uniforme des intégrales ; la convergence normale implique la convergence uniforme. (if time left)
- 4. Polynômes et séries trigonométriques, calcul pratique des coefficients de Fourier, forme complexe de la série de Fourier.
- 5. Formes hermitiennes et identité de Parseval ; convergence en moyenne quadratique pour les fonctions continues par morceaux. 6. Lemme de Riemann-Lebesgue, théorème de convergence simple de Dirichlet pour les fonctions C^1 par morceaux, théorème de convergence uniforme pour les fonctions continues C^1 par morceaux.

(I) f,g: [a, 6[-> IR tchmt integ M53-Intégrales à Paramètres → JUN cont & Ix J xi V E>0 P soit f: [a, b[→R spps (i) Ic E [a,b[, Yx E [a,b[, f(x)],0 (C1) Contrinité UN & Integ Génér. cont & spps que lim y(x) $\sqrt{(z_1-x_2)^2+(y_1-y_2)^2} \leqslant f$ (& est finie) alors (ii) $f(x) \sim g(n)$ (D) C-S: I de R, f: I → R $\Rightarrow | f(x_1, y_1) - f(x_2, y_2) | \leq \varepsilon$ alors f est cont, $\forall x \in I$, $\int f(n) dn$ (V). (ie: ∃ E: [c,b[→ R tq lim E(n) = 0) : 0<2E,0<3 \ 2.1. Intég. Géméralisées & Vx & [c, b [, f(n) = g(n) (1+ E(n)) / Vy ∈ I, In-yl ≤ S 2.3. Cut (CV) in f signe cte De soit I de R, f: I→IK. $\Rightarrow | f(x) - f(y)| \leq \varepsilon$ Alors: S f(n) dn (V) ssi S g(n) dn. Em dit que f'est bount intégrable TH soit f,g: [a,G[→R (au sens de Riemann) si (D) C-U: ..., f cont & UN - Ichm+ integ & spps que : Jest Riemann integrable or :0 < & E ,0 < 3 & in I no (i) ∃ c €[a, f[, ∀x € [c, f[: 2.4. Git de CV en Valeur Absolue It intervalle compact. ¥2,y ∈ I, |2-4| < f f(n) > 0Tu f: [a, 6[-> R fi & spps que $\Rightarrow |f(n)-f(y)| \leq \varepsilon.$ \bigcirc soit $f: [a,b[\rightarrow \mathbb{R} \ \& spps]$ (xi) $f(x) = O(g(x)), x \rightarrow b$ / J UN cont & I => f cont & I. (RF) f loclmt integ & [a, b[, on dit q $\iint |f(t)| dt @v \Rightarrow \iint f(t) dt @v.$ (ie: ∃M>0, ∀x € [G, B[,] l'intégrable de f n [a,b[est $f(x) \leq M. g(x)$ Alors: b.
(a) Si $\int g(x) dx$ (b) $= \int f(x) dx$ (c) 2.5. Cut de Cauchy (Ty) Heine a une limite finie gd n -> b. soit I compact de 1R TW soit f: [a,b[→R & f: I -> IR cont alors Em mote I f(+) dt = lim f(+) dt. (b) si fg(x) dx (DV) = f(x) dx (DV) alors JAH dt W [mi] YE>0, I est <u>un</u> cont. lette limite s'appelle l'ég de fon [a,b[. (-n/a/b(n) Fre E [a, B[, Y x, 2': W Heine R2 soct I, J compacto de R $n_{\epsilon} \langle n \langle n' = \rangle \left| \int_{a}^{b} \int_$ soit j: IxJ→R cont 2.2. Fausse Généralité alors feat UN cont in Ix J.

1

C2: Integ définies à parametres

1. Continuité de F

o I inf de IR bouné ou mon

 $o J = [a,b], \quad f: I \times I \longrightarrow \mathbb{R}$ $(n,b) \mapsto f(x,b)$

m spps $\forall x \in I, t \mapsto f(x,t)$ est

Riemann Intégrable n I. The Spps J: Ix J -> R cont

alors $F(n) = \int f(n,t) dt$, $x \in I$,

da f Feet bien def & cont n I.

△ a, b dut ê néels fimes!

Ne f pas pr (G).

2. Condids ju F soit C 1

(TV) soit $f: I \times [a, b] \longrightarrow \mathbb{R}$, spps (i) f cont on Ix [a,b]

(ii) I d cont n Ix [a, 6]

alow $f: I \to \mathbb{R}, a \mapsto \int f(x,t) dt$ est bien déf & classe C1 n I.

et Vx EI, $F'(n) = \int_{a}^{b} \frac{\partial f}{\partial n}(n,t) dt$

Land and the second

ere jagor e eye şi y

the properties that all

with a linear king out the wife had need to be a linear in the

The same of point the same of the same of

C2: Integ définies à paramètres 1. Continuité de F o I inf de R bouné ou mon o J = [a,b], $f: I \times I \longrightarrow \mathbb{R}$ $(x,t) \mapsto f(x,t)$ m spps treI, + + j(n,+) est Riemann Intégrable n I. (T4) Spp J: Ix J → R cont alos $F(n) = \int f(n,t) dt$, $x \in I$, da f Fest bien def & cont & I. ∆ a, b dut ê néels fimes! Ne f pos pr (16). 2. Condids ju F soit C2 (TU) soit f: Ix [a, b] -> R, spps (i) f cont so Ix [a,b] (ii) 3 d cont & Ix [a, 6] alow f F: I → R, 2 +> f(x,t) dt est bien déf & classe C1 n I.

et Vx E I, $F'(n) = \int_{a}^{b} \frac{\partial f}{\partial x} (n,t) dt$ (W) de Fabini soct I = [d, B], J= [a, b] & $f: I \times J \longrightarrow IR$, spec cont $(n,t) \longmapsto f(n,t)$, so $I \times J$ alons $f: I \rightarrow \mathbb{R}$ $x \mapsto F(x) = \int f(x,t) dt$ est cont & I & G:J-IR où $G(t) = \int f(n,t) dn$ at cont n σ et JF(n) dr = SG(H) dt $\int_{a}^{\beta} \left(\int_{a}^{b} f(a,t) dt \right) dt = \int_{a}^{b} \left(\int_{a}^{b} f(a,t) dx \right) dt$ 2.4. Ind a Param of bornes dipoltiasi du Param interat ax f $n \mapsto b(x)$ $\int f(n,t) dt$ a(n)w soit I, J from's, bornes f: IxJ→R, a,h: I→J Spps: · a, b stde C¹ se I · f cont Ix J · 2 3 & cont Ind

alors of 4: I -> IR $\lambda \mapsto \int_{-\infty}^{b(n)} f(x,t)$ wt C1 & tre I: $()^{2}(n) = f(n;b(n)).b^{2}(n)$ -f(x,a(x)).a'(x)to find (a,t) dt a(n) dn C3: Int ginis a param of: $Ix [a,b] \rightarrow R$ cont $(n,t) \mapsto f(n,t)$ I int qq de IR, 700 (a (b) (a) 1 Continuité TW J: Ix Ea, G[→R cont & m spp: 9

∃ g: [a,b[→R (1) tq (i) \((x,+) ∈ Ix [a, b[, $|f(x,t)| \leq g(t)$ (ii) f g(t) dt (V) alors $F: I \longrightarrow \mathbb{R}$ $n \mapsto \int_{-\infty}^{\infty} f(n,t) dt$ est bien dif & cont n I.

2. Dénimbilite (Ty) f: Ix [a, 6[-> R cont "(i) VxEI, Sof(x,t) dt (CV) (ii) of 3& cont n Ix [a, 5[(iii) 3 g: [a,5[→R (i) tg $\cdot \forall (n, t) \in I_{x}(a, b)$ $\left|\frac{\partial f}{\partial x}(x,t)\right| \leq g(t)$ ·· / g(t) dt (cv) colons $F: I \longrightarrow \mathbb{R}$ $x \mapsto F(x) = \int J(x,t) dt$ est de danse C n I & $\forall n \in I, F(n) = \int_{\partial n}^{\infty} (n,t) dt$

Min compare Till 198.

The state of the state of

sol - ox < d < B< ox; f: [d, B] x Lage L -> IR cont, spps ∃g [a,b[->R @ & tg • $\forall (n,t) \in [a,\beta]_{\times} [a,b[, | f(n,t)| \leq g(t)]$ of g(t)dt CV Alors $\iint_{a} f(\mathbf{n}, \mathbf{t}) d\mathbf{n} dt = \iint_{a} f(\mathbf{n}, \mathbf{t}) dt d\mathbf{n}$ CP: transformée de Fourier Séries de Fourier:

wit $f: \mathbb{R} \longrightarrow \mathbb{R}$ 2π -périodiq + hypo de régularité $f(n) = \sum_{m=-\infty}^{\infty} \widehat{f}(m) e^{imt}$ où $f(m) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-imt} dt$ Pa fo non-périodigo, remplace m E Z_sER,

Con écrimait: $f(t) = \int \hat{f}(s) e^{ist} ds$ ai $\hat{f}(s) = \frac{1}{2\pi} \int f(s) e^{ist}$

noit f: R -> R cont p mress, spps fight) dt a alors on pose $\hat{f}(s) = \int f(t) e^{-s} dt$ The soit f: R -> R cont, spps / 19(+) dt < 00 alors J'est cont & R. (nt°: J: transformée de Fourier). The soit $f: \mathbb{R} \to \mathbb{R}$ cont, $\int |t f(t)| dt < \infty$ alors Ĵut de classe C¹n R, Vo∈R, $f'(s) = -i \int t f(t) e^{-its} dt$ The Riemann-Lebesgue so f(t) dt $<\infty$ alors soit $f: \mathbb{R} \to \mathbb{R}$ cont $n \mathbb{R}$, $\int |f(t)| dt <\infty$ alors $\lim_{s \to \infty} \hat{f}(s) = 0$ et $\lim_{s \to -\infty} \hat{f}(s) = 0$. soit $f: [a, b] \longrightarrow \mathbb{R}$ (- ∞ (a< b< ∞) cont alors $\exists (f_m)_m$ suite de f_s en escalis f_g $\sup_{n \in [a,b]} |f_m(n) - f_m(n)| \xrightarrow{m \to \infty} p$

The first R de classe C^{1} to $\int_{-\infty}^{\infty} |f(t)| dt$ Chors $f'(s) = is \hat{f}(s)$, $s \in \mathbb{R}$.

4.1. Séries Trigonométriques

D'Une serie trigonométriq est une série de fsdont le terme général est: m > 0 $U_m(x) = a_m \cdot cos(m) + b_m \cdot sin(n)$ $a_m, b_m \in \mathbb{C}$ $x \in \mathbb{R}$.

(R) $cos(mn) = \frac{e^{imn} + e^{-imn}}{2}$, $sin(mn) = \frac{e^{imn} - imn}{2i}$

 $\frac{N}{m=0}\left(a_{m}\cos\left(mx\right)+b_{m}\sin\left(mx\right)\right)=\sum_{m=-N}^{N}c_{0}\cdot e^{imx}\sin\left(\frac{1}{2}\left(a_{m}-ib_{m}\right)\right)m_{1}$ $=\sum_{m=-N}^{N}c_{0}\cdot e^{imx}\sin\left(a_{m}-ib_{m}\right)m_{2}$ $=\sum_{m=-N}^{N}c_{0}\cdot e^{imx}\cos\left(a_{m}-ib_{m}\right)m_{2}$ $=\sum_{m=-N}^{N}c_{0}\cdot e^{imx}\cos\left(a_{m}-ib_{m}\right)m_{2}$

Une St & écrit ani ? $V_{m}(n) = c_{m} \cdot e^{imn}$, $m \in \mathbb{Z}$, $c_{m} \in \mathbb{C}$, $n \in \mathbb{R}$.

R9 Une strie $\sum_{m \in \mathbb{Z}} v_{m} \in \mathbb{C}$ $m \in \mathbb{Z}$ $m \in \mathbb{Z}$

(ie lim ∑ vn ∃)
N→∞ n=-N

Spps $(a_m)_{m \geqslant 0}$, $(b_m)_{m \geqslant 0}$ $\in \mathbb{C}^{(n)}$ satisfort: $\sum_{n} |a_n| < \infty$, $\sum_{n} |b_n| < \infty$ $\implies \text{of } \iff \sum_{n} (a_n \cos(nx) + b_n \sin(nx)) \text{ (i) normaliment}$ Sur \mathbb{R} et x_i $S(x) = \sum_{n=0}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$, $x \in \mathbb{R}$ alors S cont $x_i \mathbb{R}$.

The soit (am)mo, (bm)mo, ERTV to (am)mo, (bm)mo, ost 2 miles , tolt vers 0 alors

(i) of <A> (v) on R\2717/.

(ii) st (iv) n [211h+2, 2(h+1) 17-2]

(III) $N:=\sum_{m=0}^{\infty}\left(a_{m}\cos\left(nx\right)+b_{m}\sin\left(mx\right)\right)$ $x\in\mathbb{R}\setminus2\pi\mathbb{Z}$ alow S cont n $\mathbb{R}\setminus2\pi\mathbb{Z}$.

In $f: \mathbb{R} \to \mathbb{R}$ de classe $C^{1} t_{q} = \int_{-\infty}^{\infty} |f(t)| dt$ Chors $\widehat{f}'(x) = i \delta \widehat{f}(x)$, $x \in \mathbb{R}$.

4.1. Séries Trigonométriques

D'Une seue trigonométriq est une série de fs dont le terme général est: m>,0 $U_m(x) = a_m \cdot coo(m) + b_m \cdot sin(m)$ $a_m, b_m \in \mathbb{C}$ zeR.

(Re) $\cos(mn) = \frac{e^{imn} + e^{-imn}}{2}$, $\sin(mn) = \frac{e^{imn} - e^{-imn}}{2i}$

Ly Une St & écrit ani ? $V_m(n) = c_m \cdot e^{imn}$, $m \in \mathbb{Z}$, $c_m \in \mathbb{C}$, $n \in \mathbb{R}$. Rg) Une série $\sum_{m \in \mathbb{Z}} v_m \otimes v_m = \sum_{m \geq 0} (v_m + v_m) \otimes v_m$

(ie lim ∑ vn ∃). N→∞ n=-N

(Thi) spipe (am)m), o, (bm)m), o ∈ C N satisfont: [am < m, [bm < m => st 47> = (an cos(nx) + bm sin(nx)) (V) normalement Sur \mathbb{R} et \mathcal{N} $\mathcal{S}(x) = \sum_{m=0}^{\infty} (a_m \cos(mx) + b_m \sin(mx)), x \in \mathbb{R}$ alors of cont in R.

The soit $(a_m)_{m \geq 0}$, $(b_m)_{m \geq 0} \in \mathbb{R}^m$ to $(a_m)_{m \geq 0}$, $(b_m)_{m \geq 0}$ st 2 suites \searrow , tolt vers 0 alors

(i) st <A> (ii) st (iii) st (iv) on R\2777/.
(ii) st (iv) on [277k+2, 2(h+1)77-2]

(III) si $S(n) := \sum_{m=0}^{\infty} (a_m \cos(nx) + b_m \sin(nx))$ $si \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ alors S cont in IR \ 2717.

M B Z Cm. e im Z @ on n GR. (@ UN n I).

RY D En (am coo(nx) + bm sin(nw) W on x & IR alms ette W en nilkt $\forall k \in \mathbb{Z} \ k \text{ si } S(n). \text{ Gen a } S(n+2k\pi) = S(n), \ \forall k \in \mathbb{Z}.$

 $\frac{RO}{1} \sum_{m=0}^{N} \left(a_m \cos(mx) + b_m \sin(mx) \right) = \sum_{m=-N}^{N} c_0 \cdot e^{imx} \cos c_0 = \begin{cases} \frac{1}{2} (a_m - ib_m) \cdot m \right), & RO \in \mathbb{N} \text{ is } \widehat{\mathbb{D}} \otimes \mathbb{N} \text{ in } \widehat{\mathbb{D}} \otimes \mathbb{N} \otimes \mathbb{N} \text{ in } \widehat{\mathbb{D}} \otimes \mathbb{N} \otimes \mathbb{N} \otimes \mathbb{N} \otimes \mathbb{N} = \mathbb{N} \otimes \mathbb{N}$ (R) si (A) (O) simplent on I & I (-m. an sin(nn) + mb codens)

On a que Sept C^4 & I, $\forall z \in I : S'(z) = \sum_{m=0}^{\infty} \binom{m}{m} \binom{m}{m} \sum_{m=0}^{\infty} \binom{m}{m} \binom{m}{m} \binom{m}{m} \binom{m}{m} \binom{m}{m} \binom{m}{m} \binom{m}{m} \binom{m}{$

Marie and I see the section of the section of

Prop sort $f \in CM_{2\pi}(\mathbb{R})$, a) so f est paire $\Rightarrow \forall m > 0$, $b_m = 0$ et $q_n = \begin{cases} \frac{1}{\pi} \int_{\mathbb{R}} f(x) dx & m = 0 \\ \frac{2}{\pi} \int_{\mathbb{R}} f(x) cos(nx) dx & m = 0 \end{cases}$ Calculo coefficients (st) (Pr pb séries de Fourier, C, f f, on A coef de Fourier)

Le CM_{2T} (R), f ∈ CM_{2T} (R), on EA cdF J: $a_0 = c_0 = \int_{-\infty}^{\infty} f(x) dx$, m? b) si fet impaire => +m>, 0, q=0 of fm= 2 fla) sin(mx) du Règle Wolf: (Wpondrell) (Ma) Le / The Fejer (quadratiq) (O) UN.) $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ soit f: [a, b] -> Ht, spps inter(Rism) alors $G_{n} = \frac{1}{T} \int f(n) \sin(nn) dn$ $I(\lambda) = \int_{A}^{b} f(x) e^{i\lambda x} dx$, $A \in \mathbb{R}$; on a $I(\lambda) \xrightarrow{|\lambda| \to \infty}$ Et les coefficients de Fourier complexes de j pr n 6 24, $c_m = \frac{1}{2\pi} \int f(x) e^{-inx} dx$ -> la sdF =A> f est of of self sels { im on Gn. not J∈ CHen (IR), sppo ∃no ∈ R, ∃S>0 tg John $\sum_{m \in \mathbb{N}} (a_m \cos(nn) + b_m \sin(nn))$ or $\sum_{m \in \mathbb{Z}_{+}} c_m e^{imn}$ $u \mapsto \frac{1}{u} \left(f(n_0 + u) + f(n_0 - u) - f(n_0^+) - f(n_0^-) \right)$ est bornée n Jo, δ By comme $n \mapsto f(x)e^{-imx}$ est 2π -périodiques, on a: $e_m = \frac{1}{2\pi} \int f(x)e^{-imx} dx \quad \forall \alpha \in \mathbb{R}$ $\forall m \in \mathbb{Z}$ alors $\lim_{n\to\infty} \left(\int_{m} f \right) \left(n_{0} \right) = \underbrace{\int \left(n_{0}^{+} \right) + \int \left(n_{0}^{-} \right)}_{2} \cdot \left(\int \left(n_{0}^{+} \right) - \lim_{n\to\infty} \int \left(n_{0}^{+} \right)$ and J:R→R, C± QQ & 2π phiod n R $\implies \lim_{m \to \infty} (S_m f)(x) = \frac{f(x^*) + f(x^*)}{\epsilon}, \forall x \in \mathbb{R}.$ De mi pram & bm. ex sidd cont, on a $\lim_{n\to\infty} (\sin j)(n) = j(n)$