

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 2023 EXAMINATION Model Answer – Only for the Use of RAC Assessors

Subject Name: Data Structure Using C

Subject Code:

22317

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1		Attempt any <u>FIVE</u> of the following:	10 M
	a)	Write any four operations performed on data structure.	2 M
	Ans	Insert Travese	Each one carries ½ M
		Create	
		Destroy	
		Select	
		Update	
		Сору	
		Merge	
		Search	
		Sort	

b)	Draw the diagram of Linear Queue to represent front and rear pointers.	2 M
Ans	Queue Deletion 10 20 30 40 50	Correct diagram carries 2 M
c)	State the following terms:	2 M
	(i) Leaf node of a tree (ii) Degree of a tree	
Ans	Leaf Node: Lead node is a terminal node of a tree. It does not have any nodes connected to it. K, F, G, and D are leaf nodes. All other nodes are called non-leaf nodes or internal nodes Degree of the Tree: The degree of a tree is the maximum degree of the nodes in the tree. The degree of the shown tree is 3.	Each definition with example carries —
	B C D	
d)	Write any two operations performed on the stack.	2 M
Ans	1) Push 2) Pop 3) Stack overflow 4) Stack underflow.	Each operatio carries – M
e)	What are directed and undirected graphs?	2 M
Ans	Directed Graph: A directed graph G is also called digraph which is same as a multigraph except that each edge e in G is assigned a direction or in other words, each edge in G is identified with an ordered pair (U,V) of nodes in G rather than an unordered pair.	Each typ carries – M

		V1 V3 G=(V,E)				
		V(G)={V1,V2,V3,V4}				
		E(g)={(V1,V2),(V1,V4),(V2,V4), (V1,V3)}				
		V2 V4				
		Undirected Graph: An undirected graph G is a graph in which each edge e is not assigned				
		a direction.				
		A B B B				
	f)	Explain linear and non-linear data structures.	2 M			
	Ans	A linear data structure is one in which the components are stored in a sequential order and	Explanation			
	are linked to the elements before and after them. Array, Stack, Queue, Linked list, a other linear data structures are examples.					
		When the data items or pieces of a data structure are not placed sequentially or linearly, the data structure is called to be non-linear.				
		Because the items are not stored sequentially, they cannot be traversed or retrieved in a single iteration that is the single level is not engaged in non-linear data structures.				
		In terms of implementation , a non-linear data structure is difficult. When compared to linear data structures, they make better use of system memory.				
		Tree and graph are examples of non-linear data structures. The tree data structure contains a				
		hierarchical relationship. Non-linear data structures are memory efficient because they do not require a memory allocation in advance, as previously stated.				
	g)	Define Searching. What are its types?	2 M			
	Ans	Searching is an operation or a technique that helps finds the place of a given element or value in the list. Any search is said to be successful or unsuccessful depending upon whether the element that is being searched is found or not. Some of the standard searching technique that is being followed in the data structure is listed below:	Correct def: 1m, types- 1m			
		 Linear Search or Sequential Search Binary Search 				
2.		Attempt any THDEE of the following:	12 M			
4.		Attempt any <u>THREE</u> of the following:				
	a)	Sort the following elements using Radix Sort Method:	4 M			

Ans	First Iteration: Sort the numbers according to Unit place										Eac	
	Inputs Pockets										iteration carries -	
		0	1	2	3	4	5	6	7	8	9	M
	0361		0361									
	0012			0012								
	0527								0527			
	0143				0143							
	0009										0009	
	0768									0768		
	3481		3481									
												,
	Inputs					Poc	kets					
	Inputs	0	1	2	3	Poc 4	kets 5	6	7	8	9	
	Inputs 0361	0	1	2	3	1		6 0361	7	8	9	
		0	1	2	3	1			7	8 3481	9	
	0361	0	0012	2	3	1			7		9	
	0361	0		2	3	1			7		9	
	0361 3481 0012	0		0527	3	4			7		9	
	0361 3481 0012 0143				3	4			7		9	
	0361 3481 0012 0143 0527 0768 0009	0009	0012	0527		0143	5	0361	7		9	
	0361 3481 0012 0143 0527 0768 0009 Output =	0009	0012	0527 7,0143, 0	0361,076	0143	5	0361	7		9	
	0361 3481 0012 0143 0527 0768 0009	0009	0012	0527 7,0143, 0	0361,076	0143 08,3481} ding to	5 100 th	0361	7		9	
	0361 3481 0012 0143 0527 0768 0009 Output =	0009	0012	0527 7,0143, 0	0361,076	0143 08,3481} ding to	5	0361	7		9	

	Phys. Ivan			(1	13U/IEC	4/UU1 - 2U	13 Certine	u)				
	0012	0012										
	0527						0527					
	0143		0143									
	0361				0261							
					0361							
	0768								0768			
	3481					3481						
	Output =		012,0143	3,0361,		1 27,0768]	<u> </u>					
	Fourth It	eration:	Sort th	e numl	bers acc	ording 1	to 1000 th	blace	2			
	Inputs						ckets	P 2000				
	inputs				1							
		0	1	2	3	4	5	6	7	8	9	
	0009	0009										
	0012	0012										
	0143	0143										
	0361	0361										
	3481				3481							
	0527	0527										
	0768	0768										
	Output =	[{0009 . 00	012,0143	3.0361.		68.3481	<u> </u>					
	Sorted Nu							M21				
	Dorted 11d	illibels t	11 C — 00	02,001	2,0173,0	301,032	7,0700,5	701				
	Write an List.	algorith	m to de	elete a	node at	the beg	ginning f	from a	singly L	inked		4 M
Ans	Deletefirst	(start)										Correct
	1. [check for Underflow]									logic carries - 4 M		
			NULL t	hen pri	nt 'List i	s Empty	<i>'</i>					1111
		exit										
	2	endif										
		set Ptr=		may t								
		set start			is Ptr->i	nfo						
	4.	free(Ptr	icinciii (icicied	13 I U->1.	шо						1

	Start 10 20 30 Null	
	After Deletion	
`	Start 20 30 Null	435
c)	Explain stack overflow and underflow conditions with example.	4 M
Ans	Stack Overflow condition: When stack is completely full (i.e. TOP= MaxSize -1) and we try to insert more element onto stack then this condition is called overflow condition and no further element could be inserted now until any element is deleted. Stack Overflow: This is the situation when the stack becomes full, and no more elements can be pushed onto the stack. At this point the stack top is present at the highest location of the stack. Push e D Top=4 C Top=3 B Top=2 A Top=0 Underflow Condition: When a stack is empty (i.e. TOP= -1) and we try to delete more element from it, then this condition is called underflow condition. Stack empty or underflow: This is the situation when the stack contains no element. At this point, the top of stack is present at the bottom of the stack. Pop	stack overflow and underflow carries 2 M with example
d)	Implement a C program to insert an element in an array.	4 M
Ans	#include <stdio.h> #include<conio.h> void main() {</conio.h></stdio.h>	Any correct suitable program

(ISO/IEC - 27001 - 2013 Certified)

```
int x,i,max=10,pos,K,n,a[10];
                                                                                                  4 M
clrscr();
printf("Enter number of element");
scanf("%d",&n);
if(n<max)
printf("Enter the element:\n");
for(i=0;i< n;i++)
printf("Enter element %d\t",i+1);
scanf("%d",&a[i]);
printf("Array");
for(i=0;i<n;i++)
printf("\n element no %d is %d",i+1,a[i]);
printf("\n Enter the element to be added:");
scanf("%d",&x);
printf("Enter the postion of the element where element to be added");
scanf("%d",&pos);
for(i=n;i>=pos;i--)
a[i]=a[i-1];
a[pos-1]=x;
printf("Array with element inserted:");
for(i=0;i< n+1;i++)
printf("\n Element no %d is %d",i+1,a[i]);
else
printf("Memory not available....\n try again 1=y,2=n");
scanf("%d",&K);
if(K==1)
main();
else
exit();
getch();
//OUTPUT
/*Enter number of element5
Enter the element:
Enter element 1 23
Enter element 2 32
```


	Ans	Step 1: IF START = N	NULL		Correct algorithm – 4 M	
	b)	Write an algorithm t	o delete an intermediate node in a si	ngly linked list.	4 M	
		Application	Decision nee, soluing	optimization.		
		relationship Application	Decision tree, sorting	exists Finding shortest path, route		
		Parent child	Parent child relationship exists	No parent child relationship		
		Damant 1211	Decree della calculata della della	depth first search		
		Traversal technique	Preorder, postorder and inorder	Breadth first search and		
				to tree		
		complexity	Less complex as compared to graph	More complex as compared		
		No. of edges	N-1	Not defined		
		Loop	No loop are permitted	Graph can have a loop		
				root node		
		Root node	It has exactly one root node	Graph may or may not have	points –	
		Path	Only one between two vertices	More than one path allowed	correct points –	
	Ans	Parameter	Tree	Graph	Any 4	
	a)	Differentiate between	n tree and graph with respect to any	four parameters.	4 M	
3.		Attempt any <u>THREE</u> of the following:				
		*/				
		Element no 5 is 12 Element no 6 is 45				
		Element no 4 is 65				
		Element no 3 is 32				
		Element no 1 is 89 Element no 2 is 23				
		Array with element in				
			element to be added:89 he element where element to be added 1	[
		element no 5 is 45	1			
		element no 4 is 12				
		element no 2 is 32 element no 3 is 65				
		element no 1 is 23				
		Array				
		Enter element 4 12 Enter element 5 45				

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Write UNDERFLOW

Go to Step 1 [END OF IF]

Step 2: SET PTR = START

Step 3: SET PREPTR = PTR

Step 4: Repeat Steps 5 and 6 while PREPTR DATA != NUM

Step 5: SET PREPTR = PTR

Step 6: SET PTR = PTR NEXT [END OF LOOP]

Step 7: SET TEMP = PTR

Step 8: SET PREPTR NEXT = PTR NEXT

Step 9: FREE TEMP

Step 10: EXIT

Consider the linked list shown in Fig. Suppose we want to delete the node that succeeds the node which contains data value 4. Then the following changes will be done in the linked list.

(c)	Sort the following numbers in ascending order using Insertion sort:	4 M
	{25, 15, 4, 103, 62, 9} and write the output after each iteration.	
Ans	Pass1: 1 st element is compared with all previous element (i.e., 0 th element)	Any Correct
	<u> </u>	answer – 4 M
	25 15 4 103 62 9	
	Since 25>15, move 25 to right and insert (place) 15 to its correct position.	
	Array elements after pass 1	
	15 25 4 103 62 9	
	Pass 2: Second element is compared with all previous element (i.e., 0 th and 1 st)	
	15 25 4 103 62 9	
	Since 15>4 and 25>4 move 15 and 25 to right by one position and insert (place) 4 to its correct position.	
	Array element after pass 2	
	4 15 25 103 62 9	
	Pass 3: 3 rd element is compared with all previous elements (i.e., 0 th , 1 st and 2 nd)	
	4 15 25 103 62 9	
	Since 4<103, 15<103 and 25<103, 103 is at its correct position.	
	Array element after pass 3	
	4 15 25 103 62 9	
	- the standard	
	Pass 4: 4 th element is compared with all its previous elements(i.e. 0 th , 1 st , 2 nd and 3 rd)	
	↓ ↓ ↓ ↓	
	4 15 25 103 62 9	

Page No: 10 | 25

	4 15 25 103 62 9
	Compare 62 with 4, Since 62> 4,
	Compare 62 with 15, since 62> 15,
	Compare 62 with 25, since 62> 25.
	Again compare 62 with 103, since 62<103, move 103 to its right position by 1 element and insert (place) 62 to its right position i. e. a[3].
	Array after pass 4
	4 15 25 62 103 9
	Compare 9 with 4, Since 9> 4, compare 9 with 15, since 9< 15, Compare 9 with 25, since 9< 25. Compare 9 with 103, since 9< 103.
	Shift or move 15, 25, 62 and 103 to its right by 1 position and insert(place) 9 to its correct position i. e. a[1].
)	Construct the Binary Search Tree using following elements: (35, 15, 40, 7, 10, 100, 28, 82, 53, 25, 3). Show diagrammatically each Step of
	construction of BST.
ns	Step 1:- Inserting Element 35

a)	Differentiate between Binary search and							
	Differentiate between Binary search and Linear search with respect to any four parameters.							
Ans	Linear Search Binary Search							
	Search element is compared Sea	arch element is compared with mid	correct points – 4 M					
	1							
	Easy to implement Co	omparatively difficult to implement						
	- 1							
	O(n).							
	be used with large lists due to eff	icient method that could be used with						
b)			4 M					
Ans	for new node and initialised its data part to to the first node of linked list. 10 X Start Step 2: To add 20 in singly linked list, creat	10 and next part to null. Start address will point te new node (second node) allocate memory for	Correct answer – 4 M					
	10 20 x							
	new node and initialised its data part to 30	· · · · · · · · · · · · · · · · · · ·						
_		Easy to implement Colored Given list of numbers can be sorted or unsorted order Linear search only requires Biequality Comparisons. Linear search has complexity O(n). Linear search is too slow to be used with large lists due to its o (n) average case performance. Linear search only requires Biesequential Access. b) Create a singly Linked List using data procedure step-by-step with the help of description of the first node of linked list. 10	Simplest method of searching Easy to implement Given list of numbers can be sorted or unsorted order Linear search only requires equality Comparisons. Linear search las complexity O(n). Linear search las complexity O(n). Linear search only requires comparison. Binary search requires an ordering comparison. Binary search is considered to be a more efficient method that could be used with large lists due to its o (n) average case performance. Linear search only requires sequential Access. Binary search requires random access to the data. b) Create a singly Linked List using data fields 10, 20, 30, 40, 50 and show procedure step-by-step with the help of diagram from start to end. Ans Step 1: For creating a singly linked list, first create new node (first node) allocate memory for new node and initialised its data part to 10 and next part to null. Start address will point to the first node of linked list. 10					

Page No: 16 | 25

	55	top =6	
	60		
	50		
	40		
	30		
	20		
	10		
	(;;)	PUSH 70	
	(ii)	PUSIT /U	
	70	top =7	
		τορ – 7	
	55		
	60		
	50		
	40		
	30		
	20		
	10		
	10		
	(iii)	POP	
	(111)		
	55	top =6	
	60		
	50		
	40		
	30		
	20		
	10		
	(iv)	POP	
	60	top =5	

	50 40 30 20 10	
d)	For the following directed graph:	4 M
	(i) Give adjacency matrix representation.(ii) Give adjacency list representation.	
	A B D	
Ans	Adjacency matrix representation	Matrix representation – 2 M,
	A B C D A 0 1 0 0 B 0 0 0 1 C 1 0 0 1 D 1 0 0 0	List representation – 2 M
	Adjacency list representation	
	A B X	
	B D X	
	C A X D X	
	D A X	

Convert the infix expression to its postfix expression using stack ((A+B)*D)^(E-F).Show diagrammatically each step of conversion. Correct postfix expression		Attempt any TWO of the following:									
#	a)	_	_		D)^(E-	6 M					
# EMPTY	Ans	Input Symbol	Stack	Postfix Expression		postfix					
			#			_					
		(EMPTY							
A		(,					
+		A									
B		+		Α		_					
		В		АВ							
* # (* AB+ D 1/2 M) 1/2 M) D # (* AB+D AB+D* AB+)		AB+							
D		*		AB+							
		D		AB + D		·					
)		AB + D*							
E		^	#^	AB + D*							
- #^(- AB+D*E F #^(- AB+D*E F] #^ AB+D*E F] #^ AB+D*E F] By		(#^(AB + D*							
F		E	#^(AB + D *E							
b) #^ AB+D*EF- Stack empty AB+D*EF-^ b) Show the effect of INSERT and DELETE operation onto the linear queue of size 10. The linear queue sequential contains 10,20,30,40 and 50 where 10 is at front queue. Show diagrammatically the effect of — INSERT (75) INSERT (85) DELETE INSERT (60) DELETE INSERT (90) Ans Given Queue Each correct operation		-	#^(-	AB + D *E							
Stack empty AB + D *E F - ^		F	#^(-	AB + D *E F							
b) Show the effect of INSERT and DELETE operation onto the linear queue of size 10. The linear queue sequential contains 10,20,30,40 and 50 where 10 is at front queue. Show diagrammatically the effect of – INSERT (75) INSERT (85) DELETE INSERT (60) DELETE INSERT (90) Ans Given Queue Each correct operation)	#^	AB + D *E F -							
The linear queue sequential contains 10,20,30,40 and 50 where 10 is at front queue. Show diagrammatically the effect of — INSERT (75) INSERT (85) DELETE INSERT (60) DELETE INSERT (90) Ans Given Queue Tear Each correct operation			Stack empty	AB + D *E F - ^							
Show diagrammatically the effect of -	b)										
Ans Given Queue Each correct operation 10 20 30 40 50 Image: Contract operation operation operation Image: Contract operation operation operation operation Image: Contract operation operation operation operation operation Image: Contract operation operation operation operation operation Image: Contract operation operation operation operation operation operation Image: Contract operation Image: Contract operation		Show diagrammatically INSERT (75) INSERT (85)		9,30,40 and 50 where 10 is at	front queue.						
front rear correct operation		DELETE									
front rear operation		DELETE									
	Ans	DELETE INSERT (90) Given Queue									
	Ans	DELETE INSERT (90) Given Queue	30 40 50			correct					

Page No: 20 | 25

		10	20	30	40	50	75						
		front					rear						
		Insert	(85)										
		10	20	30	40	50	75	85					
		front						rear					
		Delete	!									_	
			20	30	40	50	75	85					
		10 is d	front eleted					rear					
		Insert	(60)										
			20	30	40	50	75	85	60				
			front						rear				
		Delete	<u>!</u>										
				30	40	50	75	85	60				
				front					rear			•	
		20 is d	eleted										
		Insert	(90)	T		Π	1	1	1	1	1	1	
				30	40	50	75	85	60	90			
c)		0	_ 1 + 1	front						rear			6 M
	B E		C O O O	H									
	From the given tree, complete the following answers:												
	(ii) De (iii)Le (iv)Ind (v) (V)	gree of gree of vel of n legree () Outde) Heigh	node I ode H: of node egree o	3: e C: f node	 B:								
Ans		gree of											Each
		gree of											correct answer –
	(iii)Le	vel of n	ode H:	2									answer –

		(iv)Indegree of node C: 1 (v) Outdegree of node B: 3 (vi)Height of the tree: 3	1 M
6.		Attempt any <u>TWO</u> of the following:	12 M
	a)	Find the position of element 29 using Binary search method in an array given as : { 11,5,21,3,29,17,2,43}	6 M
	Ans	Given Array :	Each correct
		0 1 2 3 4 5 6 7	pass-2M
		a 11 5 21 3 29 17 2 43	
		sorted array	
		0 1 2 3 4 5 6 7	
		a 2 3 5 11 17 21 29 43	
		Pass-1	
		a 2 3 4 5 6 7 2 3 5 11 17 21 29 43	
		a 2 3 5 11 17 21 29 43 L H	
		mid= $(L+H)/2 = (0+7)/2 = 7/2=3$	
		a	
		L mid H	
		a[mid]=a[3]=11 11 is not equal to 29 Since 29 > 11 L = mid+1 = 4 H = n-1=7	
		Pass-2 4 5 6 7 17 21 29 43 L H $mid = 5$	
		a 4 5 6 7 17 21 29 43 L mid H	

	21 Sir L :	mid]=a[5]=2 is not equa nce 29 > 21 = mid+1 = 6 = n-1=7	1 to 29						
	Pa 6 29 L mi a[1 29 29	$\frac{1}{43}$ H $\frac{1}{43}$ H $\frac{1}{43}$ ed = 6 mid]=a[6]=2 is equal		ınd at nosi	tion 7th of				
b)		ray				6 M			
	4 6 24 + *6 3 / -								
	Show diagra	mmatically	each step	of evaluati	on using stack.				
Ans	postfix expression	operand 1	operand 2	result		Each correct steps- 1			
	4			4					
	6			4 6					
	24			4 6 24					
	+	6	24	4 30					
	*	4	30	120					
	6			120 6					
	3			120 6 3					
	//	6	3	120 2					
	_	120	2	118					
	Result is 118								
c)					0, 20, 30, 40, 50. Search a node 40 re step-by-step with the help of the	6 M			

Ans		For correct
		answer 6m
	10 20 30 40 50	
	Node to be searched = 40	
	Consider pointer ptr is used for traversal of Singly linked List	
	10 20 30 40 50 ptr	
	will check ptr->infor =10	
	Since 10 is not equal to 40	
	set ptr = ptr->next	
	10 20 30 40 50 ptr	
	will check ptr->infor = 20	
	Since 20 is not equal to 40 set ptr = ptr->next	
	10 20 30 40 50	
	ptr	

will check ptr->infor = 30 Since 30 is not equal to 40 set ptr = ptr->next	
10 20 30 40 50 ptr	
will check ptr->infor = 40	
Since 40 is equal to 40	
Hence Node 40 is present in Linked list	