Review of Probability Theory

$$S: a \text{ sample } space$$
 $E, F(CS): \text{ events}$
 $p: S \rightarrow (o, 1]: \text{ probability } s.t \sum p(s)=1$
 $P(E) = \sum_{s \in E} p(s)$
 $E, F: \text{ independent } \Leftrightarrow p(E\cap F) = p(E) \cdot p(F)$
 $X, Y: S \rightarrow IR: \text{ random } vaniables$
 $E(X) = \sum_{s \in S} p(s) \times (s): \text{ expected } value$
 $E(X+Y) = E(X) + E(Y)$
 $E(AX+b) = a E(X) + b$

o. $X, Y: \text{ independent}$
 $\Leftrightarrow p(X=r, \text{ and } Y=rs) = p(X=r_1) \cdot p(Y=r_2)$

o. $X, Y: \text{ independent } \text{ random } vaniables$
 $\Rightarrow E(XY) = E(X) \cdot E(Y)$
 $V(X) = \sum_{s \in S} (X(s) - E(X)^{2} p(s): \text{ vaniance}$
 $V(X) = \sum_{s \in S} (X(s) - E(X)^{2} - E(X)^{2}$
 $V(X+Y) = V(X) + V(Y)$

The Choice of
$$C = W^TW$$
 $P = (e_1, \dots, e_m)^T : errors$
 $E(e_i) = 0 : unbiased$
 $evariance = E(e_i e_j) = \int (e_i)(e_j) \cdot (foint probability)$

of e_i and e_j
 $E(e_i e_j) = E(e_i e_j) = 0.0 = 0$

$$||W(t)-AR)||^2 = ||We||^2 = \frac{e_1^2}{\Lambda^2} + \cdots + \frac{e_n^2}{\Lambda^2}$$

W and $C = WTW$ are diagonal matrices

B) In the general (dependent) case,

$$V = E(22T)$$
: covariance matrix

 $V = E(e^e)$: covariance matrix $V_{ij} = E(e^e)$: diagonal entries $V_{ij} = E(e^e)$: off-diagonal entries

E[
$$\overrightarrow{v}$$
] = E[\overrightarrow{v} -A \overrightarrow{v}] = \overrightarrow{v} : umbiased \overrightarrow{v} \overrightarrow{v} = L \overrightarrow{v} : estimation of the true but unknown parameters \overrightarrow{v} from the measurments \overrightarrow{v} . So linear (\overrightarrow{v} is a matrix) \overrightarrow{v} umbiased (\overrightarrow{v} = \overrightarrow{v} = \overrightarrow{v}) \overrightarrow{v} = \overrightarrow{v}

B: measurements

==B-AZ: errors

$$P = E[(\overrightarrow{x} - \overrightarrow{x})(\overrightarrow{x} - \overrightarrow{x})^{T}]$$

$$= E[(\overrightarrow{x} - L\overrightarrow{x})(\overrightarrow{x} - L\overrightarrow{x})^{T}]$$

$$= E[(\overrightarrow{x} - L\overrightarrow{x})(\overrightarrow{x} - L\overrightarrow{x})^{T}]$$

$$= E[(\overrightarrow{x})(L\overrightarrow{x})^{T}] \quad (°° \overrightarrow{x} = L\overrightarrow{x})$$

$$= LE[\overrightarrow{x}]L^{T} \quad (°° L: linear)$$

$$= LVL^{T}$$

$$= [Lo+(L-Lo)]V[Lo+(L-Lo)]^{T}$$

$$= LoVL_{0}^{T} + (L-Lo)VL_{0}^{T} + LoV(L-Lo)^{T} \quad (o)$$

$$= LoVL_{0}^{T} + (L-Lo)V(L-Lo)^{T} = LoVL_{0}^{T}$$

$$= (LoV_{0}^{T} + (L-Lo)V(L-Lo)^{T} = LoVL_{0}^{T}$$

$$= (L-Lo)A(A^{T}V^{T}A)^{T}$$

$$= (L-Lo)A(A^{T}V^{T}A)^{T}$$

$$= (A^{T}V^{T}A)^{T}A^{T}V^{T}V^{T}V^{T}A(A^{T}V^{T}A)^{T}$$

$$= (A^{T}V^{T}A)^{T}A^{T}V^{T}A(A^{T}V^{T}A)^{T}$$

$$= (A^{T}V^{T}A)^{T}A^{T}V^{T}A$$

Remark

Let $V'=C=W^TW$, $\hat{\partial}=W\hat{\partial}=W(\hat{\partial}-A\hat{Z})\Rightarrow E[\hat{\partial}]=0$ $F[\hat{\partial},\hat{\partial}^T]=F[(W\hat{\partial})(W\hat{\partial}^T)]$

$$E[e.eT] = E[(we)(we)T]$$

a change of variables reduces the problem to a unit covariance problem

Example:

m different measurments, each equally reliable $\Rightarrow \hat{x}$ will be the average $E[(x-x_i)^2] = r^2$

$$P' = ATV + A = C_1 - C_1$$

$$V = \sigma^2 \Rightarrow P = \sigma^2/m$$