Convergence proof of CMA-ES Analysis of underlying Markov chains

Dagstuhl seminar
Theory of Randomized Optimization Heuristics

Armand Gissler

Tuesday 2nd July, 2024

RandOpt team, Inria & École polytechnique Advisors: Anne Auger & Nikolaus Hansen

Innin-

Find
$$x^* \in \operatorname{Arg\,min}_{x \in \mathbb{R}^d} f(x)$$
 (P)

Find
$$x^* \in \operatorname{Arg\,min} f(x)$$
 (P)

$$x \in \mathbb{R}^d \longrightarrow f: \mathbb{R}^d \to \mathbb{R} \longrightarrow f(x)$$

Find
$$x^* \in \operatorname{Arg\,min} f(x)$$
 (P)

$$x \in \mathbb{R}^d \longrightarrow f: \mathbb{R}^d \to \mathbb{R} \longrightarrow f(x)$$

 $\overline{\mathbf{Goal:} \min_{x \in \mathbb{R}^d} f(x)}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat $(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat
$$(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$$

1.
$$x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$$

 $\lambda = \text{population size}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat $(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$:

 $\lambda = \text{population size}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat $(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leqslant \cdots \leqslant f(x_{t+1}^{\lambda:\lambda})$

 $\lambda = \text{population size}$

Goal: $\min_{x \in \mathbb{R}^d} \overline{f(x)}$

Repeat
$$(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$$

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leqslant \cdots \leqslant f(x_{t+1}^{\lambda:\lambda})$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

 $\lambda = \text{population size}$

 $\mu = \mathsf{parent} \ \mathsf{number}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat
$$(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$$

- 1. $x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leqslant \cdots \leqslant f(x_{t+1}^{\lambda:\lambda})$

- 3. $m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$
- 4. $\sigma_{t+1} = \sigma_t \times \text{increasing function (} \|\text{path}\|)$

 $\lambda = \text{population size}$

 $\mu = \mathsf{parent} \ \mathsf{number}$

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Repeat
$$(m_t \in \mathbb{R}^d, \sigma_t > 0, C_t \succ 0)$$

- 1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, \sigma_t^2 C_t)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$

- 3. $m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$
- 4. $\sigma_{t+1} = \sigma_t \times \text{increasing function (} \|\text{path}\|)$
- 5. $C_{t+1} = \text{Positive combination}\left(C_t, \overrightarrow{\text{path}}, \text{Average}\left[(x_{t+1}^{i:\lambda} m_t)\right]\right)$

 $\lambda = \text{population size}$

 $\mu = \mathsf{parent} \ \mathsf{number}$

Mean update:

$$m_{t+1} = \mathsf{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

Mean update:

$$m_{t+1} = \mathsf{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

$$= \sum_{i=1}^{\mu} \underbrace{\mathsf{weight}_{i}}_{w_{i}} x_{t+1}^{i:\lambda}$$

$$\sigma_{t+1} = \sigma_t \times \text{increasing function} (\|\text{path}\|)$$

$$\sigma_{t+1} = \sigma_t \times \text{increasing function (} \parallel \text{path} \parallel \text{)}$$

$$\mathrm{path} = p_{t+1}^{\sigma} = \underbrace{(1-c_{\sigma})}_{\mathsf{decay\ rate}} p_t^{\sigma}$$

$$\sigma_{t+1} = \sigma_t \times \text{increasing function (} \parallel \text{path} \parallel \text{)}$$

$$path = p_{t+1}^{\sigma} = \underbrace{(1 - c_{\sigma})}_{\text{decay rate}} p_{t}^{\sigma} + \sqrt{c_{\sigma}(2 - c_{\sigma})} \frac{m_{t+1} - m_{t}}{\sigma_{t} C_{t}^{1/2} \|\text{weights}\|}$$

$$egin{aligned} \sigma_{t+1} &= \sigma_t imes ext{increasing function (} \| ext{path} \|) \ &= \sigma_t imes ext{exp} \left(rac{c_\sigma}{d_\sigma} \left(rac{\| p_{t+1}^\sigma \|}{\mathbb{E} \| \mathcal{N} \|} - 1
ight)
ight) \end{aligned}$$

$$\text{path} = p_{t+1}^{\sigma} = \underbrace{(1 - c_{\sigma})}_{\text{decay rate}} p_{t}^{\sigma} + \sqrt{c_{\sigma}(2 - c_{\sigma})} \frac{m_{t+1} - m_{t}}{\sigma_{t} C_{t}^{1/2} \|\text{weights}\|}$$

$$C_{t+1} = \text{Positive combination}\left(\overbrace{C_t, \text{path}}, \text{Average}\left[\overbrace{(x_{t+1}^{i:\lambda} - m_t)}^{ci:\lambda} \right] \right)$$

$$C_{t+1} = \text{Positive combination}\left(\overbrace{C_t, \text{path}}, \text{Average}\left[\overbrace{(x_{t+1}^{i:\lambda} - m_t)}^{i:\lambda} \right] \right)$$

$$path = p_{t+1}^c = \underbrace{(1 - c_c)}_{\text{decay rate}} p_t^c + \sqrt{c_c(2 - c_c)} \frac{m_{t+1} - m_t}{\sigma_t \|\text{weights}\|}$$

$$C_{t+1}$$
 = Positive combination $\left(\begin{matrix} C_t, \overrightarrow{\text{path}}, Average \end{matrix} \left[\begin{matrix} \overleftarrow{(x_{t+1}^{i:\lambda} - m_t)} \end{matrix} \right] \right)$
= $(1 - c_1 - c_\mu)C_t$

$$\text{path} = p_{t+1}^c = \underbrace{(1 - c_c)}_{\text{decay rate}} p_t^c + \sqrt{c_c(2 - c_c)} \frac{m_{t+1} - m_t}{\sigma_t \| \text{weights} \|}$$

$$egin{aligned} & C_{t+1} = \mathsf{Positive\ combination}\left(egin{aligned} & C_t, \overleftarrow{\mathrm{path}}, \mathsf{Average}\left[\overleftarrow{\left(x_{t+1}^{i:\lambda} - \emph{\emph{m}}_t
ight)} \right] \end{aligned} \end{aligned} \ = (1 - c_1 - c_\mu) C_t + c_1 \underbrace{\left[p_{t+1}^c \right] \left[p_{t+1}^c \right]^\top}_{\mathsf{rank-one\ update}}$$

$$path = p_{t+1}^c = \underbrace{(1 - c_c)}_{\text{decay rate}} p_t^c + \sqrt{c_c(2 - c_c)} \frac{m_{t+1} - m_t}{\sigma_t \|\text{weights}\|}$$

$$\begin{aligned} \textit{\textit{C}}_{t+1} &= \mathsf{Positive\ combination}\left(\overbrace{\textit{\textit{C}}_t, \mathsf{path}}^c, \mathsf{Average}\left[\overbrace{(x_{t+1}^{i:\lambda} - \textit{\textit{m}}_t)}^{i:\lambda} \right] \right) \\ &= (1 - c_1 - c_\mu) \textit{\textit{C}}_t + c_1 \underbrace{\left[p_{t+1}^c \right] \left[p_{t+1}^c \right]^\top}_{\mathsf{rank-one\ update}} \\ &+ \underbrace{\frac{c_\mu}{\sigma_t^2} \underbrace{\sum_{i=1}^\mu w_i (x_{t+1}^{i:\lambda} - \textit{\textit{m}}_t) (x_{t+1}^{i:\lambda} - \textit{\textit{m}}_t)^\top}_{\mathsf{rank-mu\ update}} \end{aligned}$$

$$path = p_{t+1}^c = \underbrace{(1 - c_c)}_{\text{decay rate}} p_t^c + \sqrt{c_c(2 - c_c)} \frac{m_{t+1} - m_t}{\sigma_t \|\text{weights}\|}$$

Prove linear convergence of CMA-ES

Prove linear convergence of CMA-ES:

$$\operatorname{distance}(\textcolor{red}{m_t}, x^*) \underset{t \to \infty}{\sim} \rho^t \times \operatorname{distance}(\textcolor{red}{m_0}, x^*) \quad (\rho < 1)$$

Prove linear convergence of CMA-ES:

$$\operatorname{distance}(\mathbf{m}_t, x^*) \underset{t \to \infty}{\sim} \rho^t \times \operatorname{distance}(\mathbf{m}_0, x^*) \quad (\rho < 1)$$

and learning of the inverse Hessian on convex-quadratic functions $f(x) = x^{\top} \mathbf{H} x/2$

Prove linear convergence of CMA-ES:

$$\operatorname{distance}(\mathbf{m}_t, x^*) \underset{t \to \infty}{\sim} \rho^t \times \operatorname{distance}(\mathbf{m}_0, x^*) \quad (\rho < 1)$$

and learning of the inverse Hessian on convex-quadratic functions $f(x) = x^{T} \mathbf{H} x/2$:

$$\lim_{t o \infty} \mathbb{E}\left[rac{\mathsf{C}_t}{\mathsf{normalization}}
ight] \propto \mathsf{H}^{-1}$$

We consider

$$z_t = \frac{m_t - x^*}{\sigma_t}$$

We consider

$$z_t = \frac{m_t - x^*}{\sigma_t}$$

and we prove that $\{z_t\}_{t\in\mathbb{N}}$ is a stationary Markov chain

We consider

$$z_t = \frac{m_t - x^*}{\sigma_t}$$

and we prove that $\{z_t\}_{t\in\mathbb{N}}$ is a stationary Markov chain $(m_t \text{ converges to } x^* \text{ as fast as } \sigma_t \text{ to 0})$

We consider

$$z_t = \frac{m_t - x^*}{\sigma_t}$$

and we prove that $\{z_t\}_{t\in\mathbb{N}}$ is a stationary Markov chain $(m_t \text{ converges to } x^* \text{ as fast as } \sigma_t \text{ to 0})$

We consider

$$z_t = \frac{m_t - x^*}{\sigma_t}$$

and we prove that $\{z_t\}_{t\in\mathbb{N}}$ is a stationary Markov chain $(m_t \text{ converges to } x^* \text{ as fast as } \sigma_t \text{ to 0})$

$$\frac{1}{T}\log\frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \frac{1}{T}\sum_{t=0}^{T-1}\log\|z_{t+1}\| - \log\|z_t\| - \log\frac{\sigma_{t+1}}{\sigma_t}$$

We consider

$$z_t = \frac{m_t - x^*}{\sigma_t}$$

and we prove that $\{z_t\}_{t\in\mathbb{N}}$ is a stationary Markov chain $(m_t \text{ converges to } x^* \text{ as fast as } \sigma_t \text{ to 0})$

$$\frac{1}{T} \log \frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \frac{1}{T} \sum_{t=0}^{T-1} \log \|z_{t+1}\| - \log \|z_t\| - \log \frac{\sigma_{t+1}}{\sigma_t}$$

$$\lim_{T \to \infty} \frac{1}{T} \log \frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \mathbb{E}_{\pi}[\log \|z\|] - \mathbb{E}_{\pi}[\log \|z\|] - \mathbb{E}_{\pi}\left[\log \frac{\sigma_1}{\sigma_0}\right]$$

We consider

$$z_t = \frac{m_t - x^*}{\sigma_t}$$

and we prove that $\{z_t\}_{t\in\mathbb{N}}$ is a stationary Markov chain $(m_t \text{ converges to } x^* \text{ as fast as } \sigma_t \text{ to 0})$

$$\frac{1}{T} \log \frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \frac{1}{T} \sum_{t=0}^{T-1} \log \|z_{t+1}\| - \log \|z_t\| - \log \frac{\sigma_{t+1}}{\sigma_t}$$

$$\lim_{T \to \infty} \frac{1}{T} \log \frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \mathbb{E}_{\pi} [\log \|z\|] - \mathbb{E}_{\pi} [\log \|z\|] - \mathbb{E}_{\pi} \left[\log \frac{\sigma_1}{\sigma_0}\right]$$

$$\|m_T - x^*\| \underset{t \to \infty}{\sim} e^{-T\mathbb{E}_{\pi} \left[\log \frac{\sigma_1}{\sigma_0}\right]} \|m_0 - x^*\|$$

$$\log rac{\sigma_1}{\sigma_0} = rac{c_\sigma}{d_\sigma} imes \left(rac{\|\sum w_i z_1^{i:\lambda}\|}{\| ext{weights}\|\mathbb{E}\|\mathcal{N}\|} - 1
ight)$$

$$\log \frac{\sigma_1}{\sigma_0} = \frac{c_{\sigma}}{d_{\sigma}} \times \left(\frac{\|\sum w_i z_1^{i:\lambda}\|}{\|\text{weights}\|\mathbb{E}\|\mathcal{N}\|} - 1 \right)$$

We are able to prove

$$\mathbb{E}_{\pi}\left[\frac{\|\sum w_i z^{r:\lambda}\|^2}{\|\text{weights}\|^2 \mathbb{E} \|\mathcal{N}\|^2} - 1\right] > 0$$

How can we prove that $\{z_t\}_{t\in\mathbb{N}}$ is a stationary Markov chain?

How can we prove that $\{z_t\}_{t\in\mathbb{N}}$ is a stationary Markov chain?

(and under which conditions?)

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat $(m_t \in \mathbb{R}^d, \sigma_t > 0)$

- 1. $x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{m}_t, \sigma_t^2 I_d)$
- 2. sort $f(x_{t+1}^i)$:

$$f\left(x_{t+1}^{1:\lambda}\right) \leqslant \cdots \leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

4.
$$\sigma_{t+1} = \sigma_t \times \text{increasing function (} \|\text{path}\|)$$

$$\lambda = \text{population size}$$

$$\mu = \mathsf{parent} \ \mathsf{number}$$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat
$$(z_t = m_t/\sigma_t)$$

- $1. \ x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(\textbf{\textit{m}}_t, \sigma_t^2 \textbf{\textit{I}}_d)$
- 2. sort $f(x_{t+1}^i)$:

$$f\left(x_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

4.
$$\sigma_{t+1} = \sigma_t \times \text{increasing function (} \|\text{path}\|)$$

$$\lambda = \text{population size}$$

$$\mu = \mathsf{parent} \; \mathsf{number}$$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat
$$(z_t = m_t/\sigma_t)$$

- 1. $z_{t+1}^1, \ldots, z_{t+1}^{\lambda} \sim \mathcal{N}(z_t, I_d)$
- 2. sort $f(x_{t+1}^i)$:

$$f\left(x_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1:\lambda}, \dots, x_{t+1}^{\mu:\lambda})$$

4.
$$\sigma_{t+1} = \sigma_t \times \text{increasing function (} \|\text{path}\|)$$

3.
$$m_{t+1} = \text{Average}(x_{t+1}^{1, ...}, \dots, x_{t+1}^{post})$$

4. $\sigma_{t+1} = \sigma_t \times \text{increasing function}(\|\text{path}\|)$

$$\lambda = \text{population size}$$

$$\mu = \mathsf{parent} \; \mathsf{number}$$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat
$$(z_t = m_t/\sigma_t)$$

- 1. $\mathbf{z}_{t+1}^1, \dots, \mathbf{z}_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{z}_t, I_d)$
- 2. sort $f(x_{t+1}^i)$:

$$f\left(x_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

3.
$$z_{t+1} = \text{Average}(z_{t+1}^{1:\lambda}, \dots, z_{t+1}^{\mu:\lambda})$$

4.
$$\sigma_{t+1} = \sigma_t \times \text{increasing function (} \|\text{path}\|\text{)}$$

 $\lambda = \text{population size}$

 $\mu = \mathsf{parent} \; \mathsf{number}$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat $(\mathbf{z}_t = \mathbf{m}_t/\sigma_t)$

- 1. $\mathbf{z}_{t+1}^1, \dots, \mathbf{z}_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{z}_t, I_d)$
- 2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$

3.
$$z_{t+1} = \frac{\text{Average}(z_{t+1}^{1:\lambda},...,z_{t+1}^{\mu:\lambda})}{\text{increasing function}(\|\text{path}\|)}$$

$$\lambda = \text{population size}$$

 $\mu = \mathsf{parent} \ \mathsf{number}$

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Repeat $(\mathbf{z}_t = \mathbf{m}_t/\sigma_t)$

1.
$$\mathbf{z}_{t+1}^1, \dots, \mathbf{z}_{t+1}^{\lambda} \sim \mathcal{N}(\mathbf{z}_t, I_d)$$

2. sort $f(x_{t+1}^i)$:

$$f\left(x_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)$$

3.
$$z_{t+1} = \frac{\text{Average}(z_{t+1}^{1:\lambda}, ..., z_{t+1}^{\mu:\lambda})}{\text{increasing function}(\|\text{path}\|)}$$

 $\lambda = \text{population size}$

 $\mu = \mathsf{parent} \ \mathsf{number}$

$$f\left(x_{t+1}^{1:\lambda}\right) \leqslant \cdots \leqslant f\left(x_{t+1}^{\lambda:\lambda}\right) \stackrel{?}{\Leftrightarrow} g\left(z_{t+1}^{1:\lambda}\right) \leqslant \cdots \leqslant g\left(z_{t+1}^{\lambda:\lambda}\right)$$

Scaling-invariant functions [TGAH21]

Scaling-invariant functions [TGAH21]

$$f\left(x_{t+1}^{i}\right) \leqslant f\left(x_{t+1}^{j}\right) \Leftrightarrow f\left(\star + \frac{x_{t+1}^{i} - \star}{\sigma_{t}} \right) \leqslant f\left(\star + \frac{x_{t+1}^{j} - \star}{\sigma_{t}} \right)$$

Scaling-invariant functions [TGAH21]

$$f\left(x_{t+1}^{i}\right) \leqslant f\left(x_{t+1}^{j}\right) \Leftrightarrow f\left(\star + \frac{x_{t+1}^{i} - \star}{\sigma_{t}}\right) \leqslant f\left(\star + \frac{x_{t+1}^{j} - \star}{\sigma_{t}}\right)$$

Proposition ([AH16])

If $f \in \left\{ igotimes_t, igotimes_t, igotimes_t \right\}$, then $\{z_t\}_{t \in \mathbb{N}}$ is a Markov chain.

How to prove that $\{z_t\}_{t\in\mathbb{N}}$ is stationary

- 1. Irreducibility and aperiodicity of $\{z_t\}$
- 2. Drift condition:

$$\mathbb{E}[V(z_1)] \leqslant (1-\varepsilon)V(z_0) \qquad \forall z_0 \not\in \mathsf{K}$$

How to prove that $\{z_t\}_{t\in\mathbb{N}}$ is stationary

- 1. Irreducibility and aperiodicity of $\{z_t\}$
- 2. Drift condition:

$$\mathbb{E}[V(z_1)] \leqslant (1-\varepsilon)V(z_0) \qquad \forall z_0 \not\in \mathsf{K}$$

Theorem ([MT09])

If 1. and 2. hold for a small set K, then $\{z_t\}$ is stationary (V-geometrically ergodic).

 $\{z_t\}_{t\in\mathbb{N}}$ is irreducible when

$$\forall z_{\text{start}}, z_{\text{end}} \in \mathcal{Z}, \underbrace{\exists k > 0, \ \mathbb{P}[z_k = z_{\text{end}} \mid z_0 = z_{\text{start}}] > 0}_{z_{\text{start}} \leadsto z_{\text{end}}}$$

 $\{z_t\}_{t\in\mathbb{N}}$ is irreducible when

$$\forall z_{\mathrm{start}} \in \mathcal{Z}, \forall \mathcal{Z}_{\mathrm{end}} \subset \mathcal{Z}, \ \mathrm{Volume}(\mathcal{Z}_{\mathrm{end}}) > 0 \Rightarrow z_{\mathrm{start}} \leadsto \mathcal{Z}_{\mathrm{end}}$$

Theorem ([MC91], [MT09], [CA19], [GDA24]) The Markov chain

$$z_{t+1} = F(z_t, U_{t+1})$$

is irreducible and aperiodic when

- (i) there exists a steadily attracting state z^* ;
- (ii) there exists a path U_1^*, \ldots, U_k^* at which $F^k(z^*, \cdot)$ is submersive.

Assumptions: F is loc. Lipschitz and $U_{t+1} \sim p_{z_t}$ where $(z, u) \mapsto p_z(u)$ is l.s.c.

Theorem ([MC91], [MT09], [CA19], [GDA24]) The Markov chain

$$z_{t+1} = F(z_t, U_{t+1})$$

is irreducible and aperiodic when

- (i) there exists a steadily attracting state z*;
- (ii) there exists a path U_1^*, \ldots, U_k^* at which $F^k(z^*, \cdot)$ is submersive.

For us:

$$z_{t+1} = F(z_t, z_{t+1}^{i:\lambda}) = \frac{\mathsf{Average}(z_{t+1}^{1:\lambda}, \dots, z_{t+1}^{\mu:\lambda})}{\mathsf{normalization}}$$

Assumptions: F is loc. Lipschitz and $U_{t+1} \sim p_{z_t}$ where $(z, u) \mapsto p_z(u)$ is l.s.c.

(i) steadily attracting state

$$z_{t+1} = F(z_t, U_{t+1})$$

z* is steadily attracting when

$$\forall z_0, \ \exists \{U_k\}_{k \in \mathbb{N}}, \quad \lim_{k \to \infty} F^k(z_0, U_1, \dots, U_k) = z^*$$

(i) steadily attracting state

$$z_{t+1} = F(z_t, U_{t+1})$$

z* is steadily attracting when

$$\forall z_0, \ \exists \{U_k\}_{k \in \mathbb{N}}, \quad \lim_{k \to \infty} F^k(z_0, U_1, \dots, U_k) = z^*$$

Proposition

0 is steadily attracting

Proof.

Choose $z_{t+1}^{i:\lambda} = 0$. Then

$$z_{t+1} = \frac{\mathsf{Average}(0, \dots, 0)}{\mathsf{normalization}} = 0$$

(ii) submersion

 $F(\cdot)$ is a submersion at x when $\mathcal{D}F(x)$ is surjective.

(ii) submersion

 $F(\cdot)$ is a submersion at x when $\mathcal{D}F(x)$ is surjective.

Proposition

 $F(0,\cdot)$ is submersive at 0

Proof.

$$F(0, 0 + h^{i}) = \frac{\mathsf{Average}(h^{1}, \dots, h^{\mu})}{\mathsf{normalization}} = \underbrace{\mathsf{Average}(h^{1}, \dots, h^{\mu})}_{\mathsf{surjective}} + o(h^{i})$$

Consequence

 $\{z_t\}$ is an irreducible aperiodic Markov chain

$$V(z)=\|z\|^2$$

$$\mathbb{E}[\|z_1\|^2]\leqslant (1-\varepsilon)\|z_0\|^2$$
 when $\|z_0\|\gg 1$ and $f\in\left\{$

Theorem ([TAH23]) If $f \in \left\{ \bigcirc, \bigcirc, \bigcirc, \right\}$, $\left\{ z_t \right\}$ is a stationary Markov chain.

Theorem ([TAH23]) If $f \in \left\{ \bigcirc, \bigcirc, \bigcirc, \right\}$, $\left\{ z_t \right\}$ is a stationary Markov chain.

Conclusion:

Theorem ([TAH23]) *ES with step-size adaptation converges linearly*

Back to CMA-ES

$$z_{t} = \frac{m_{t}}{\sigma_{t} \sqrt{\lambda_{\min}(C_{t})}}$$
$$\Sigma_{t} = \frac{C_{t}}{\lambda_{\min}(C_{t})}$$

If
$$f \in \left\{ \bigcirc\right\}$$

$$\begin{split} & \textbf{Proposition*} \text{ ([GWAH])} \\ & \textit{If } f \in \left\{ \textcircled{0}, \textcircled{1}, \textcircled{2}, \textcircled{1} \right\} \text{ , then } \{(z_t, \Sigma_t)\}_{t \in \mathbb{N}} \text{ is a Markov chain.} \end{split}$$

How to prove that $\{(z_t, \Sigma_t)\}_{t \in \mathbb{N}}$ is stationary

- 1. Irreducibility and aperiodicity of $\{(z_t, \Sigma_t)\}$
- 2. Drift condition:

$$\mathbb{E}[V(z_1, \Sigma_1)] \leqslant (1 - \varepsilon)V(z_0, \Sigma_0) \qquad \forall (z_0, \Sigma_0) \not\in \mathsf{K}$$

Theorem ([MC91], [MT09], [CA19], [GDA24])
The Markov chain

$$(z_{t+1}, \Sigma_{t+1}) = F(z_t, \Sigma_{t+1}, z_{t+1}^{i:\lambda})$$

is irreducible and aperiodic when

- (i) there exists a steadily attracting state (z^*, Σ^*) ;
- (ii) there exists a path $z_1^{i:\lambda}, \ldots, z_k^{i:\lambda}$ at which $F^k(z^*, \Sigma^*, \cdot)$ is submersive.

Assumptions: F is loc. Lipschitz and $U_{t+1} \sim p_{z_t}$ where $(z, u) \mapsto p_z(u)$ is l.s.c.

Proposition* ([GWAH])

 $(z^*, \Sigma^*) = (0, (1 - c_1 - c_{\mu})I_d)$ is steadily attracting and there exists $z_1^{i:\lambda}, \ldots, z_k^{i:\lambda}$ at which $F^k(z^*, \Sigma^*, \cdot)$ is submersive.

Proof.

More complicated than before...

Proposition* ([GWAH])

 $(z^*, \Sigma^*) = (0, (1 - c_1 - c_\mu)I_d)$ is steadily attracting and there exists $z_1^{i:\lambda}, \ldots, z_k^{i:\lambda}$ at which $F^k(z^*, \Sigma^*, \cdot)$ is submersive.

Proof.

More complicated than before...

Consequence:

 $\{(z_t, \Sigma_t)\}$ is irreducible and aperiodic.

$$V(z, \Sigma) = \alpha ||z||^2 + \beta |||\Sigma|||$$

$$V(z, \Sigma) = \alpha ||z||^2 + \beta |||\Sigma|||$$

(a) When $\||\Sigma_0|| \gg 1 + ||z_0||^2$:

$$\mathbb{E}[\|\boldsymbol{\Sigma}_1\|]\leqslant (1-\varepsilon)\|\boldsymbol{\Sigma}_1\|$$

$$V(z, \Sigma) = \alpha ||z||^2 + \beta |||\Sigma|||$$

(a) When $\||\Sigma_0|| \gg 1 + ||z_0||^2$:

$$\mathbb{E}[\|\boldsymbol{\Sigma}_1\|]\leqslant (1-\varepsilon)\|\boldsymbol{\Sigma}_1\|$$

(b) When $\|\Sigma_0\| \gg \|z_0\|^2$:

$$\mathbb{E}[\|z_1\|^2] \leqslant (1-\varepsilon)\|z_0\|^2$$

$$V(z, \Sigma) = \alpha ||z||^2 + \beta |||\Sigma|||$$

(a) When $\|\Sigma_0\| \gg 1 + \|z_0\|^2$:

$$\mathbb{E}[\|\boldsymbol{\Sigma}_1\|]\leqslant (1-\varepsilon)\|\boldsymbol{\Sigma}_1\|$$

(b) When $\|\Sigma_0\| \gg \|z_0\|^2$:

$$\mathbb{E}[\|z_1\|^2] \leqslant (1-\varepsilon)\|z_0\|^2$$

Proposition*

If (a) and (b) are true:

$$\exists \mathsf{K} \ \textit{compact}, \ \mathbb{E}[V(z_1, \Sigma_1)] \leqslant (1 - \varepsilon)V(z_0, \Sigma_0) \quad \forall (z_0, \Sigma_0) \not \in \mathsf{K}$$

(a) When $\||\Sigma_0|| \gg 1 + ||z_0||^2$

(a) When $\||\Sigma_0|| \gg 1 + ||z_0||^2$

(a) When $\||\Sigma_0|| \gg 1 + ||z_0||^2$

(a) When $\||\Sigma_0|| \gg 1 + ||z_0||^2$

(a) When $\|\Sigma_0\| \gg 1 + \|z_0\|^2$

Proposition* ([GAH23], [GAHa])

When $f = \bigcirc$ and $|||\Sigma_0||| \gg 1 + ||z_0||^2$:

$$\mathbb{E}[\|\Sigma_1\|] \leqslant (1-\varepsilon)\|\Sigma_1\|$$

(b) When $\|\Sigma_0\| \gg \|z_0\|^2$

(b) When
$$|||\Sigma_0||| \gg ||z_0||^2$$

$$z_1 = \frac{\mathsf{Average}(z_1^{1:\lambda}, \dots, z_1^{\mu:\lambda})}{\mathsf{normalization}}$$

(b) When
$$|||\Sigma_0||| \gg ||z_0||^2$$

$$z_1 = \frac{\mathsf{Average}(z_1^{1:\lambda}, \dots, z_1^{\mu:\lambda})}{\mathsf{normalization}}$$

normalization = increasing function(
$$\|m_{t+1} - m_t\|$$
) $imes \sqrt{\lambda_{\mathsf{min}}(\Sigma_1)}$

(b) When
$$|||\Sigma_0||| \gg ||z_0||^2$$

$$z_1 = rac{\mathsf{Average}(z_1^{1:\lambda},\dots,z_1^{\mu:\lambda})}{\mathsf{normalization}}$$

normalization = increasing function(
$$\|m_{t+1} - m_t\|$$
) $imes \sqrt{\lambda_{\mathsf{min}}(\Sigma_1)}$

Proposition* ([GAHa])

When
$$f = \square$$
 and $||\Sigma_0|| \gg ||z_0||^2$:

$$\mathbb{E}[\|m_{t+1} - m_t\|] > \mathbb{E}\|\mathcal{N}\|$$

(b) When
$$|||\Sigma_0||| \gg ||z_0||^2$$

$$z_1 = rac{\mathsf{Average}(z_1^{1:\lambda}, \dots, z_1^{\mu:\lambda})}{\mathsf{normalization}}$$

normalization = increasing function(
$$\|m_{t+1} - m_t\|$$
) $imes \sqrt{\lambda_{\min}(\Sigma_1)}$

Proposition* ([GAHa])

When
$$f = \square$$
 and $||\Sigma_0|| \gg ||z_0||^2$:

$$\mathbb{E}[\|m_{t+1} - m_t\|] > \mathbb{E}\|\mathcal{N}\|$$

If we choose the hyperparameters correctly:

$$\mathbb{E}[\textit{normalization}] > 1$$

(b) When
$$|||\Sigma_0||| \gg ||z_0||^2$$

$$z_1 = rac{\mathsf{Average}(z_1^{1:\lambda},\dots,z_1^{\mu:\lambda})}{\mathsf{normalization}}$$

normalization = increasing function($\|m_{t+1} - m_t\|$) $imes \sqrt{\lambda_{\mathsf{min}}(\Sigma_1)}$

Proposition* ([GAHa])

When $f = \square$ and $|||\Sigma_0||| \gg ||z_0||^2$:

$$\mathbb{E}[\|m_{t+1} - m_t\|] > \mathbb{E}\|\mathcal{N}\|$$

If we choose the hyperparameters correctly:

$$\mathbb{E}[normalization] > 1$$

and

$$\mathbb{E}[\|z_1\|^2] \leqslant (1-\varepsilon)\|z_0\|^2$$

Theorem* ([GAHa]) When $f = \bigcirc$

$$\exists \mathsf{K} \ \textit{compact}, \ \mathbb{E}[V(z_1, \Sigma_1)] \leqslant (1 - \varepsilon)V(z_0, \Sigma_0) \quad \forall (z_0, \Sigma_0) \not \in \mathsf{K}$$

Theorem* ([GAHb])

When $f = \bigcirc$, CMA-ES converges linearly.

Theorem* ([GAHb])

When $f = \bigcirc$, CMA-ES converges linearly.

How to extend to $f = \bigcirc$?

Affine-invariance

Theorem ([HA14], [A16]) *CMA-ES is affine-invariant*

Theorem* ([GAHb])

When $f = \bigcirc$, CMA-ES converges linearly.

Theorem* ([GAHb])

When $f = \Box$, CMA-ES converges linearly.

(with the same convergence rate than (with the same convergence)

Learning of the inverse Hessian

When
$$f = \bigcirc$$
, we find

$$\lim_{t \to \infty} \mathbb{E}\left[\frac{C_t}{\text{normalization}}\right] = I_d$$

Learning of the inverse Hessian

When
$$f = \bigcirc$$
, we find

$$\lim_{t \to \infty} \mathbb{E}\left[\frac{C_t}{\text{normalization}}\right] = I_d$$

Since
$$= \text{Hessian}^{-1/2} \times$$
:

$$f = \boxed{} \Rightarrow \lim_{t \to \infty} \mathbb{E}\left[\frac{C_t}{\text{normalization}}\right] = \text{Hessian}^{-1/2} \times I_d \times \text{Hessian}^{-1/2}$$

$$= \text{Hessian}^{-1}$$

Learning of the inverse Hessian

When
$$f = \bigcirc$$
, we find

$$\lim_{t \to \infty} \mathbb{E}\left[\frac{C_t}{\text{normalization}}\right] = I_d$$

Since
$$= \text{Hessian}^{-1/2} \times$$
:

$$f = \bigcirc \Rightarrow \lim_{t \to \infty} \mathbb{E}\left[\frac{C_t}{\text{normalization}}\right] = \text{Hessian}^{-1/2} \times I_d \times \text{Hessian}^{-1/2}$$

$$= \text{Hessian}^{-1}$$

Theorem* ([GAHb])

CMA-ES learns the inverse Hessian of

Conclusions

• CMA-ES converges linearly when $f = \bigcirc$

• The covariance matrix approximates the inverse Hessian

Thank you

Bibliography (1/4)

- [MC91] Meyn & Caines, 1991, Asymptotic Behavior Stochastic Systems Possessing Markov Processes
- [HO01] Hansen & Ostermeier, 2001, Completely Derandomized Self-Adaptation in Evolution Strategies
- [HAK03] Hansen, Müller & Koumoutsakos, 2003, Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES)
 - [MT09] Meyn & Tweedie, 2009, Markov Chains and Stochastic Stability

Bibliography (2/4)

- [HA14] Hansen & Auger, 2014, Principled Design of Continuous Stochastic Search: From Theory to Practice
- [AH16] Auger & Hansen, 2016, Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains
 - [A16] Auger, 2016, Analysis of Comparison-based Stochastic Continuous Black-Box Optimization Algorithms
- [CA19] Chotard & Auger, 2019, Verifiable conditions for the irreducibility and aperiodicity of Markov chains by analyzing underlying deterministic models

Bibliography (3/4)

- [TGAH21] Touré, Gissler, Auger & Hansen, 2021, Scaling-invariant Functions versus Positively Homogeneous Functions
 - [TAH23] Touré, Auger & Hansen, 2023, Global linear convergence of evolution strategies with recombination on scaling-invariant functions
 - [GAH23] Gissler, Auger & Hansen, 2023, Asymptotic estimations of a perturbed symmetric eigenproblem
 - [GDA24] Gissler, Durmus & Auger, 2024, On the irreducibility and convergence of a class of nonsmooth nonlinear state-space models on manifolds

Bibliography (4/4)

- [GWAH] Gissler, Wolfe, Auger & Hansen, soon submitted, Irreducible nonsmooth state-space models and application to CMA-ES
 - [GAHa] Gissler, Auger & Hansen, soon submitted, A (state-dependent) Foster-Lyapunov drift condition for CMA-ES
 - [GAHb] Gissler, Auger & Hansen, soon submitted, Linear convergence of CMA-ES and learning of second-order information of ellipsoid functions