#### **MANOVA**

October 29, 2017





MANOVA October 29, 2017 1 / 5

### One-way MANOVA

Often measures are made on several dependent variables on each experimental unit instead of just one variable.

| Group | $Y_1$ | $Y_2$ | $Y_3$ |
|-------|-------|-------|-------|
| 1     | 1.11  | 2.57  | 3.58  |
| 1     | 1.13  | 3.06  | 3.63  |
| :     | ÷     | :     | :     |
| 2     | 0.75  | 0.85  | 3.14  |
| 2     | 0.99  | 2.20  | 3.27  |
| :     | :     | :     | :     |
| 4     | 1.05  | 1.95  | 3.34  |
| 4     | 1.20  | 3.60  | 4.27  |



2 / 5

#### Model

The model for each response vector is

$$Y_{ijr} = \mu_r + \alpha_{ir} + \epsilon_{ijr}$$
  $i = 1, \dots, k$   $j = 1, \dots, n$   $r = 1, \dots, p$ 

- *i* is the index for the group
- ullet j is the index for the sample
- *r* is the index for the response variable



3 / 5



# Hypothesis

The null hypothesis to be tested is that the means of each of the response variables is the same for each group.

$$H_0: \begin{pmatrix} \mu_{11} \\ \mu_{12} \\ \vdots \\ \mu_{1p} \end{pmatrix} = \begin{pmatrix} \mu_{21} \\ \mu_{22} \\ \vdots \\ \mu_{2p} \end{pmatrix} = \cdots = \begin{pmatrix} \mu_{k1} \\ \mu_{k2} \\ \vdots \\ \mu_{kp} \end{pmatrix}$$



October 29, 2017

#### Tests following rejection of overall MANOVA test

Suppose k = 3, p = 2 the MANOVA null hypothesis is

$$\mu_1 = \left(\begin{array}{c} \mu_{11} \\ \mu_{12} \end{array}\right) = \mu_2 = \left(\begin{array}{c} \mu_{21} \\ \mu_{22} \end{array}\right) = \mu_3 = \left(\begin{array}{c} \mu_{31} \\ \mu_{32} \end{array}\right)$$

Which is equivalent to testing

$$H_{01}: \mu_{11} = \mu_{21} = \mu_{31}$$

and

$$H_{02}: \mu_{12} = \mu_{22} = \mu_{32}$$



October 29, 2017

# Tests following rejection of overall MANOVA test

- If a MANOVA test rejects the null hypothesis, you can conduct one-way ANOVA tests to see which variable(s) have different means.
- Once you determine which response variables have different means, you can do multiple comparisons to see which groups have different means.

