Intrinsic Verification of Parsers in Dependent Lambek Calculus

Steven Schaefer ¹ Nathan Varner ¹ Pedro H. Azevedo de Amorim ²

Max S. New ¹

November 22, 2024

¹University of Michigan

²University of Oxford

Parsing is Everywhere!

Parsing is Everywhere!

• Incorrect parsers jeopardize verified developments

Parsing is Everywhere!

- Incorrect parsers jeopardize verified developments
- Early versions of CompCert
 - 0 middle or backend bugs, 6 parser bugs (Yang et al., 2011)

1

A parser for grammar A is a partial function $f : String \rightharpoonup Parse(A)$

A parser for grammar A is a partial function $f: String \rightarrow Parse(A)$ f is correct if it is sound and complete

A parser for grammar A is a partial function $f : String \rightarrow Parse(A)$

f is correct if it is sound and complete

Soundness of f

f(w), if it exists, is a parse tree of w for the grammar A

A **parser** for grammar A is a partial function $f : String \rightarrow Parse(A)$

f is correct if it is sound and complete

Soundness of f

f(w), if it exists, is a parse tree of w for the grammar A

Completeness of f

If a parse tree of w for A exists, then f(w) is defined

A **parser** for grammar A is a partial function $f : String \rightarrow Parse(A)$

f is correct if it is sound and complete

Soundness of f

f(w), if it exists, is a parse tree of w for the grammar A

Completeness of f

If a parse tree of w for A exists, then f(w) is defined

Our Approach

Define a domain-specific language in which all parsers are sound-by-construction

1. A DSL for Verified Parsing

2. An Example Parser

3. Implementation

4. Future Work

1. A DSL for Verified Parsing

2. An Example Parse

3. Implementation

4. Future Work

Dependent Lambek Calculus

Dependent Lambek Calculus

Grammars	Linear Types
Grammar A	Linear type A

Dependent Lambek Calculus

Grammars	Linear Types
Grammar A	Linear type A
Parse of string w	$\mathtt{w} \vdash \mathtt{A}$

Dependent Lambek Calculus

Grammars	Linear Types
Grammar A	Linear type A
Parse of string w	$\mathtt{w} \vdash \mathtt{A}$
Parser	$\mathtt{String} \vdash \mathtt{A} \oplus \mathtt{A}_{\neg}$

Dependent Lambek Calculus

Grammars	Linear Types
Grammar A	Linear type A
Parse of string w	$\mathtt{w} \vdash \mathtt{A}$
Parser	$\mathtt{String} \vdash \mathtt{A} \oplus \mathtt{A}_{\neg}$
Parse transformer	$\Delta \vdash \mathtt{A}$

Dependent Lambek Calculus

Non-commutative linear logic

Grammars	Linear Types
Grammar A	Linear type A
Parse of string w	$\mathtt{w} \vdash \mathtt{A}$
Parser	$\mathtt{String} \vdash \mathtt{A} \oplus \mathtt{A}_{\neg}$
Parse transformer	$\Delta \vdash \mathtt{A}$

Implemented in Agda and instantiated with verified parsers for regular expressions and selected context-free grammars

An $\underline{\text{ordered}}$ and $\underline{\text{linear}}$ type system

An ordered and linear type system

 $\texttt{"cat"} \vdash \texttt{A}$

An ordered and linear type system

$$x: 'c', y: 'a', z: 't' \vdash (x, (y, z)): 'c' \otimes 'a' \otimes 't'$$

An ordered and linear type system

```
x: 'c', y: 'a', z: 't' \vdash (x, (y, z)): 'c' \otimes 'a' \otimes 't'
x: 'c', y: 'a', z: 't' \not\vdash (y, (x, z)): 'a' \otimes 'c' \otimes 't'
```

An ordered and linear type system

"cat"⊢A

```
\begin{array}{l} x: \ 'c', y: \ 'a', z: \ 't' \vdash (x, (y, z)): \ 'c' \otimes \ 'a' \otimes \ 't' \\ x: \ 'c', y: \ 'a', z: \ 't' \not\vdash (y, (x, z)): \ 'a' \otimes \ 'c' \otimes \ 't' \\ x: \ 'c', y: \ 'a', z: \ 't' \not\vdash (x, (y, (z, z))): \ 'c' \otimes \ 'a' \otimes \ 't' \otimes \ 't' \end{array}
```

An ordered and linear type system

"cat"⊢A

```
\begin{array}{l} x: \ 'c', y: \ 'a', z: \ 't' \vdash (x, (y, z)): \ 'c' \otimes \ 'a' \otimes \ 't' \\ x: \ 'c', y: \ 'a', z: \ 't' \not\vdash (y, (x, z)): \ 'a' \otimes \ 'c' \otimes \ 't' \\ x: \ 'c', y: \ 'a', z: \ 't' \not\vdash (x, (y, (z, z))): \ 'c' \otimes \ 'a' \otimes \ 't' \otimes \ 't' \\ x: \ 'c', y: \ 'a', z: \ 't' \not\vdash (y, z): \ 'a' \otimes \ 't' \end{array}
```

An ordered and linear type system

"cat" ⊢ A

```
\begin{array}{l} x: \ 'c', y: \ 'a', z: \ 't' \vdash (x, (y, z)): \ 'c' \otimes \ 'a' \otimes \ 't' \\ \\ x: \ 'c', y: \ 'a', z: \ 't' \not\vdash (y, (x, z)): \ 'a' \otimes \ 'c' \otimes \ 't' \\ \\ x: \ 'c', y: \ 'a', z: \ 't' \not\vdash (x, (y, (z, z))): \ 'c' \otimes \ 'a' \otimes \ 't' \otimes \ 't' \\ \\ x: \ 'c', y: \ 'a', z: \ 't' \not\vdash (y, z): \ 'a' \otimes \ 't' \end{array}
```

These restrictions ensure parsers are sound-by-construction

Linear Types

• Characters in the alphabet — i.e. 'a'

- Characters in the alphabet i.e. 'a'
- Empty string I

- Characters in the alphabet i.e. 'a'
- Empty string I
- ullet Concatenation \otimes

- Characters in the alphabet i.e. 'a'
- Empty string I
- Concatenation ⊗
- Linear function types →, →

- Characters in the alphabet i.e. 'a'
- Empty string I
- ullet Concatenation \otimes
- Linear function types →, →
- Disjunction $(\oplus, 0)$, conjunction $(\&, \top)$

- Characters in the alphabet i.e. 'a'
- Empty string I
- Concatenation ⊗
- Linear function types →, →
- Disjunction $(\oplus, 0)$, conjunction $(\&, \top)$
- Indexed disjunction $\bigoplus_{x:X} A x$, indexed conjunction & X A x over a non-linear type X

- Characters in the alphabet i.e. 'a'
- Empty string I
- Concatenation ⊗
- Linear function types →, →
- Disjunction (⊕, 0), conjunction (&, ⊤)
- Indexed disjunction $\bigoplus_{x:X} A x$, indexed conjunction $\bigotimes_{x:X} A x$ over a non-linear type X
- Indexed inductive linear types

Linear Types

- Characters in the alphabet i.e. 'a'
- Empty string I
- Concatenation ⊗
- Linear function types →, →
- Disjunction $(\oplus, 0)$, conjunction $(\&, \top)$
- Indexed disjunction $\bigoplus_{x:X} A x$, indexed conjunction $\bigotimes_{x:X} A x$ over a non-linear type X
- Indexed inductive linear types

Linear Types

- Characters in the alphabet i.e. 'a'
- Empty string I
- ullet Concatenation \otimes
- Linear function types →, →
- Disjunction (⊕, 0), conjunction (&, ⊤)
- Indexed disjunction $\bigoplus_{x:X} A x$, indexed conjunction $\bigotimes_{x:X} A x$ over a non-linear type X
- Indexed inductive linear types

Non-linear Types

• Ordinary dependent types

Linear Types

- Characters in the alphabet i.e. 'a'
- Empty string I
- ullet Concatenation \otimes
- Linear function types →, →
- Disjunction $(\oplus, 0)$, conjunction $(\&, \top)$
- Indexed disjunction \$\int A \times, indexed conjunction \$\int X \times A \times over a non-linear type X
- Indexed inductive linear types

- Ordinary dependent types
- \uparrow : LinTy \rightarrow NonLinTy

Linear Types

- Characters in the alphabet i.e. 'a'
- Empty string I
- ullet Concatenation \otimes
- Linear function types →, →
- Disjunction (⊕, 0), conjunction (&, ⊤)
- Indexed disjunction \$\iiint A \times, indexed conjunction \$\mathbb{X} A \times over a non-linear type X
- Indexed inductive linear types

- Ordinary dependent types
- \uparrow : LinTy \rightarrow NonLinTy
 - ullet \uparrow A is the type of A-parses for the empty string

Linear Types

- Characters in the alphabet i.e. 'a'
- Empty string I
- Concatenation ⊗
- Linear function types →, →
- Disjunction $(\oplus, 0)$, conjunction $(\&, \top)$
- Indexed disjunction \$\int A \times\$, indexed conjunction \$\int_{x:X} A \times\$ over a non-linear type X
- Indexed inductive linear types

- Ordinary dependent types
- \uparrow : LinTy \rightarrow NonLinTy
 - ullet \uparrow A is the type of A-parses for the empty string
 - ! in linear logic, □ in separation logic

1. A DSL for Verified Parsing

2. An Example Parser

3. Implementation

4. Future Work

• Context-free grammar of balanced parentheses

- Context-free grammar of balanced parentheses
- Define as an inductive linear type

- Context-free grammar of balanced parentheses
- Define as an inductive linear type

```
data Dyck : LinTy where

nil : ↑ Dyck

bal : ↑('(' → Dyck → ')' → Dyck → Dyck)
```

- Context-free grammar of balanced parentheses
- Define as an inductive linear type

```
data Dyck : LinTy where

nil : ↑ Dyck

bal : ↑('(' → Dyck → ')' → Dyck → Dyck)
```

"()()" \vdash bal 11 nil r1 (bal 12 nil r2) : Dyck

Dyck Parser

A parser for Dyck is a function

$$\uparrow$$
 (String \multimap Dyck \oplus Dyck $_{\neg}$)

where Dyck & Dyck $\neg \cong 0$

Dyck Parser

A parser for Dyck is a function

$$\uparrow$$
 (String \multimap Dyck \oplus Dyck \neg)

where Dyck & Dyck $_{\neg} \cong 0$

Soundness: guaranteed by the linear type system

Dyck Parser

A parser for Dyck is a function

$$\uparrow$$
 (String \multimap Dyck \oplus Dyck $_{\neg}$)

where Dyck & Dyck $\neg \cong 0$

Soundness: guaranteed by the linear type system

Completeness: guaranteed by the disjointness of Dyck and Dyck-

Dyck Parser

A parser for Dyck is a function

$$\uparrow$$
 (String \multimap Dyck \oplus Dyck \neg)

where Dyck & Dyck $\neg \cong 0$

Soundness: guaranteed by the linear type system

Completeness: guaranteed by the disjointness of Dyck and Dyck-

Need an automaton to define the parser!


```
data Trace : Bool \rightarrow \mathbb{N} \rightarrow \text{LinTy where} eof : \uparrow (Trace true 0) leftovers : \forall n \rightarrow \uparrow (Trace false (suc n)) push : \forall b n \rightarrow \uparrow ('(' \multimap Trace b (suc n) \multimap Trace b n) pop : \forall b n \rightarrow \uparrow (')' \multimap Trace b n \multimap Trace b (suc n)) unexpected : \uparrow (')' \multimap \top \multimap Trace false 0)
```



```
data Trace : Bool \rightarrow \mathbb{N} \rightarrow \text{LinTy where} eof : \uparrow (Trace true 0) leftovers : \forall n \rightarrow \uparrow (Trace false (suc n)) push : \forall b n \rightarrow \uparrow ('(' \multimap Trace b (suc n) \multimap Trace b n) pop : \forall b n \rightarrow \uparrow (')' \multimap Trace b n \multimap Trace b (suc n)) unexpected : \uparrow (')' \multimap \top \multimap Trace false 0)
```



```
data Trace : Bool \rightarrow \mathbb{N} \rightarrow \text{LinTy where} eof : \uparrow (Trace true 0) leftovers : \forall n \rightarrow \uparrow (Trace false (suc n)) push : \forall b n \rightarrow \uparrow ('(' \multimap Trace b (suc n) \multimap Trace b n) pop : \forall b n \rightarrow \uparrow (')' \multimap Trace b n \multimap Trace b (suc n)) unexpected : \uparrow (')' \multimap \top \multimap Trace false 0)
```



```
data Trace : Bool \rightarrow \mathbb{N} \rightarrow \text{LinTy where} eof : \uparrow (Trace true 0) leftovers : \forall n \rightarrow \uparrow (Trace false (suc n)) push : \forall b n \rightarrow \uparrow ('(' \multimap Trace b (suc n) \multimap Trace b n) pop : \forall b n \rightarrow \uparrow (')' \multimap Trace b n \multimap Trace b (suc n)) unexpected : \uparrow (')' \multimap \top \multimap Trace false 0)
```



```
data Trace : Bool \rightarrow \mathbb{N} \rightarrow \text{LinTy where} eof : \uparrow (Trace true 0) leftovers : \forall n \rightarrow \uparrow (Trace false (suc n)) push : \forall b n \rightarrow \uparrow ('(' \multimap Trace b (suc n) \multimap Trace b n) pop : \forall b n \rightarrow \uparrow (')' \multimap Trace b n \multimap Trace b (suc n)) unexpected : \uparrow (')' \multimap \top \multimap Trace false 0)
```



```
data Trace : Bool \rightarrow \mathbb{N} \rightarrow \text{LinTy where} eof : \uparrow (Trace true 0) leftovers : \forall n \rightarrow \uparrow (Trace false (suc n)) push : \forall b n \rightarrow \uparrow ('(' \multimap Trace b (suc n) \multimap Trace b n) pop : \forall b n \rightarrow \uparrow (')' \multimap Trace b n \multimap Trace b (suc n)) unexpected : \uparrow (')' \multimap \top \multimap Trace false 0)
```



```
data Trace : Bool \rightarrow \mathbb{N} \rightarrow \text{LinTy where} eof : \uparrow (Trace true 0) leftovers : \forall n \rightarrow \uparrow (Trace false (suc n)) push : \forall b n \rightarrow \uparrow ('(' \multimap Trace b (suc n) \multimap Trace b n) pop : \forall b n \rightarrow \uparrow (')' \multimap Trace b n \multimap Trace b (suc n)) unexpected : \uparrow (')' \multimap \top \multimap Trace false 0)
```

Deterministic Automaton

String \cong Trace true $0 \oplus$ Trace false 0

Deterministic Automaton

 $\mathtt{String} \cong \mathtt{Trace} \ \mathtt{true} \ \mathtt{0} \oplus \mathtt{Trace} \ \mathtt{false} \ \mathtt{0}$

The Dyck Grammar is Recognized by the Automaton

 $\texttt{Dyck} \cong \texttt{Trace true 0}$

Deterministic Automaton

String \cong Trace true $0 \oplus$ Trace false 0

The Dyck Grammar is Recognized by the Automaton

 $Dyck \cong Trace true 0$

 $\label{eq:String} \text{---o Trace true } 0 \oplus \text{Trace false } 0$ $\label{eq:String} \text{---o Dyck} \oplus \text{Trace false } 0$

Deterministic Automaton

String \cong Trace true $0 \oplus$ Trace false 0

The Dyck Grammar is Recognized by the Automaton

 $\texttt{Dyck} \cong \texttt{Trace true 0}$

 $\label{eq:String} \begin{tabular}{ll} String & \multimap Trace true $0 \oplus Trace false 0 \\ & \multimap Dyck \oplus Trace false 0 \\ & \begin{tabular}{ll} A parser! \\ \hline \end{tabular}$

A Parser for Dyck Traces

Looks like an ordinary functional program

```
parse :
 \uparrow(String \multimap &[ n \in N ] \oplus[ b \in Bool ] Trace b n)
parse nil zero = \sigma true eof
parse nil (suc n) = \sigma false leftovers
parse (cons (\sigma '(' a) w) n =
  let \sigma b tr = parse w (suc n) in
  \sigma b (push a tr)
parse (cons (\sigma ')' a) w) zero =
  \sigma false (unexpected a _)
parse (cons (\sigma')' a) w) (suc n) =
  let \sigma b tr = parse w n in
  \sigma b (pop a tr)
```

1. A DSL for Verified Parsing

2. An Example Parse

3. Implementation

4. Future Work

Semantics and Implementation

Denotational semantics

$$[\![A]\!]: \mathtt{String} \to \mathtt{Set} \qquad [\![A]\!] \ \mathtt{w} = \{\mathtt{parse} \ \mathsf{trees} \ \mathsf{of} \ \mathtt{w} \ \mathsf{for} \ \mathtt{A}\}$$

Semantics and Implementation

Denotational semantics

$$[\![A]\!]: \texttt{String} \to \texttt{Set} \qquad [\![A]\!] \ \texttt{w} = \{\texttt{parse trees of w for A}\}$$

Implementation of Dependent Lambek Calculus shallowly embedded in Cubical Agda $\ref{Control}$

- ullet LinTy := String o Set
- Pros: reuses the Agda typechecker
- Cons: poor performance and enforced combinatory style

Parsers Implemented in Agda

Dyck grammar (LL(0))

Parsers Implemented in Agda

```
Dyck grammar (LL(0))
```

Arithmetic expressions with a binary operation (LL(1))

Parsers Implemented in Agda

Dyck grammar (LL(0))

Arithmetic expressions with a binary operation (LL(1))

Regular expressions

- Equivalences between NFAs, DFAs, and regexes
- Thompson's construction, powerset construction

1. A DSL for Verified Parsing

2. An Example Parsei

3. Implementation

4. Future Work

Parsing

• LL/LR parser generator

Parsing

- LL/LR parser generator
- Semantic actions

Parsing

- LL/LR parser generator
- Semantic actions

Implementation

Parsing

- LL/LR parser generator
- Semantic actions

Implementation

• Performance, ergonomics

Parsing

- LL/LR parser generator
- Semantic actions

Implementation

• Performance, ergonomics

Typechecking?

Dependent Lambek Calculus

Grammars	Linear Types
Grammar A	Linear type A
Parse of string w	$\mathtt{w} \vdash \mathtt{A}$
Parser	$\mathtt{String} \vdash \mathtt{A} \oplus \mathtt{A}_{\neg}$
Parse transformer	$\Delta \vdash \mathtt{A}$

Grammars are types! Automata are types!

Language and examples implemented in Cubical Agda 🖑

github.com/maxsnew/grammars-and-semantic-actions

Preprint of this work

maxsnew.com/docs/lambek.pdf