

Bùi Tiến Lên

Đai học Khoa học Tư nhiên TPHCM

1/1/2018

Đồ thị phẳng (cont.)

Quy ước về **cắt** nhau

- Hai cạnh có đỉnh chung thì không được xem là cắt nhau
- Mỗi cách vẽ đồ thị trên mặt phẳng sao cho không có cạnh cắt nhau được gọi là biểu diễn phẳng (planar representation) của đồ thị

ắt nhau (b) hai cạnh không cắt nhau

Hình 3.2: Các cạnh cắt và không cắt

Đồ thị phẳng

Định nghĩa 3.1

Một đồ thị vô hướng được gọi là **đồ thị phẳng (planar graph)** nếu tồn tại một cách vẽ đồ thị trong mặt phẳng sao cho không có hai cạnh nào của nó **cắt (cross)** nhau

(a) Cách vẽ không phẳng

(b) Cách vẽ phẳng

Hình 3.1: Hai cách vẽ cho đồ thị K_4

Spring 2018 Graph Theory

Đồ thị phẳng (cont.)

Định nghĩa 3.2

Một đồ thị phẳng và biểu diễn phẳng của đồ thị sẽ tạo ra các **miền** (**region**). Có hai loại miền: hữu hạn và vô hạn

- Miền hữu hạn là phần mặt phẳng được giới hạn bởi một chu trình sơ cấp mà không chứa bên trong nó một chu trình sơ cấp khác
- Miền vô hạn là phần mặt phẳng nằm bên ngoài tất cả các miền hữu hạn
- ► Chu trình sơ cấp bao quanh một miền được gọi là **đường biên**
- Chu trình sơ cấp tiếp giáp với miền vô hạn được gọi là đường biên ngoài

pring 2018 Graph Theory 3 Spring 2018 Graph Theory

Đồ thị phẳng (cont.)

Quy ước

Các đỉnh của một đường biên được viết theo thứ tự sao cho khi đi dọc theo đường biên theo thứ tự đó thì miền bao quanh ở phía bên tay phải

Hình 3.3: Các đỉnh của đường biên được viết theo quy ước là a b c d e

Spring 2018 Graph Theory

Đồ thị phẳng (cont.)

Tính chất 3.1

Một đồ thị phẳng G

- Là một đồ thị thưa
- Là đồ thị 4 màu

Đồ thị phẳng có rất nhiều ứng dụng trong xây dựng, thiết kế mạch VLSI...

Đồ thị phẳng (cont.)

 $F_2 = \{1, 3, 4, 6\}$ $F_3 = \{2, 5, 4, 3\}$

 $F_4 = \{4, 5, 6\}$

(b) đồ thị có 1 miền F_{∞}

Hình 3.4: Các miền của các đồ thi

Spring 2018 Graph Theory 6

Phép biến đổi đồng phôi

Định nghĩa 3.3

Phép **biến đổi đồng phôi** (homeomorphism) bao gồm

- Tách một cạnh thành hai cạnh (thêm đỉnh)
- Gộp hai cạnh có chung một đỉnh bậc 2 thành một cạnh hay (bỏ đỉnh)

Hình 3.5: Biến đổi đồng phôi trên canh

Spring 2018 Graph Theory 7 Spring 2018 Graph Theory

Phép biến đổi đồng phôi (cont.)

Định nghĩa 3.4

Hai đồ thị được gọi là đồng phôi nếu tồn tại một chuỗi các biến đổi đồng phôi biến đồ thị này thành đồ thị kia

Hình 3.6: Đồ thị K_5 và đồ thị đồng phôi của nó

Spring 2018 Graph Theory

Một số nhận xét về tính phẳng của đồ thị

Nhân xét

Tính chất phẳng hay không phẳng của một đồ thị không ảnh hưởng bởi

- ightharpoonup Cạnh khuyên \Longrightarrow bỏ cạnh khuyên
- Các cạnh song song ⇒ bỏ các cạnh song song (chỉ giữ lại một cạnh)
- Các phép biến đổi đồng phôi

Phép biến đổi co

Định nghĩa 3.5

Phép **biến đổi co** (shrink) là phép biến đổi gộp đỉnh ("xóa cạnh")

Hình 3.7: Phép biến đổi co

Spring 2018 Graph Theory 10

Định lý Euler

Bổ đề 3.1

Cây có n đỉnh là một đồ thị phẳng có số cạnh ${\it e}={\it n}-1$ và số miền ${\it f}=1$

Chứng minh

Sinh viên tự chứng minh ■

Spring 2018 Graph Theory 11 Spring 2018 Graph Theory 12

Định lý Euler (cont.)

Định lý 3.1 (công thức về số cạnh, số miền và số đỉnh của một đồ thị phẳng)

Cho một đồ thị phẳng, liên thông gồm n đỉnh, e cạnh và f miền thì ta có công thức sau:

$$f = e - n + 2 \tag{3.1}$$

Chứng minh

Cho G là một đồ thị liên thông phẳng có n đỉnh, e cạnh và f miền

- ▶ Nếu G có chu trình thì bỏ đi một canh của chu trình
- Khi đó số cạnh e giảm đi một, và số miền f bớt đi một, nhưng số đỉnh giữ nguyên
- Tiếp tục quá trình bỏ cạnh cho đến khi không thực hiện được nữa thì đồ thị con cuối cùng là một cây

Spring 2018

Graph Theory

13

Spring 2018

Graph Theory

14

16

Định lý Euler (cont.)

Bổ đề 3.2

Một đồ thị đơn, phẳng và liên thông gồm n đỉnh, e cạnh (e ≥ 3) và f miền thì ta có bất đẳng thức sau

$$e \ge \frac{3}{2}f\tag{3.2}$$

Chứng minh

Xét một đồ thị phẳng, đơn, liên thông G thì (**Lưu ý về suy luận cho miền vô hạn**)

- ► Mỗi miền được bao bởi ít nhất 3 cạnh
- ► Mỗi canh kề nhiều nhất là 2 miền
- ▶ Do đó

$$2e \ge 3f \Rightarrow e \ge \frac{3}{2}f$$

Định lý Euler (cont.)

Dinh lý Euler (cont.)

Dồ thi dang cây luôn thỏa công thức Euler

▶ Vây đồ thi ban đầu phải thỏa công thức Euler

Hệ quả 3.1

Một đồ thị đơn, phẳng và liên thông gồm n đỉnh, e cạnh (e ≥ 3) và f miền thì ta có bất đẳng thức sau

$$e \le 3n - 6 \tag{3.3}$$

Chứng minh

► Theo định lý Euler ta có

$$f = e - n + 2$$

► Theo bổ đề trước ta có

$$\frac{2}{3}e \ge f$$

Spring 2018 Graph Theory 15 Spring 2018 Graph Theory

Định lý Euler (cont.)

Do đó

$$\frac{2}{3}e \ge e - n + 2 \Rightarrow e \le 3n - 6$$

Spring 2018 Graph Theory

Định lý Euler tổng quát

Định lý 3.2

Cho một đồ thị phẳng gồm n đỉnh, e cạnh, f miền và p thành phần liên thông thì ta có công thức sau:

$$f = e - n + p + 1 \tag{3.5}$$

Chứng minh

Sinh viên tự chứng minh ■

Định lý Euler (cont.)

Hệ quả 3.2

Một đồ thị đơn, phẳng và liên thông gồm n đỉnh, e cạnh (e ≥ 4), f miền và các chu trình đều có độ dài ≥ 4 thì ta có bất đẳng thức sau

$$e \le 2n - 4 \tag{3.4}$$

Chứng minh

Sinh viên tự chứng minh ■

Spring 2018 Graph Theory 18

Định lý Euler tổng quát (cont.)

Nhân xét

Công thức Euler cũng đúng cho các khối đa diện lồi

Hình 3.8: Năm khối đa diên lồi đều

Spring 2018 Graph Theory 19 Spring 2018 Graph Theory 20

Định Lý Kuratowski

Định lý 3.3

Đồ thị đủ K_5 là đồ thị không phẳng

Định lý 3.4

Đồ thị phân đôi đủ $K_{3,3}$ là đồ thị không phẳng

Định lý 3.5

Điều kiện cần và đủ để một đồ thị liên thông có tính phẳng là đồ thị không chứa đồ thị con nào đồng phôi với K_5 hoặc $K_{3,3}$

Spring 2018 Graph Theory

Định Lý Kuratowski (cont.)

Hình 3.9: Hai đồ thị không phẳng đơn giản nhất K_5 và $K_{3,3}$

Chứng minh

Phương pháp chứng minh phản chứng

▶ Giả sử đồ thị K_5 phẳng. Đồ thị này có số đỉnh n=5 và số cạnh e=10. Theo hệ quả $e\leq 3n-6$; nhưng $10\leq 3.5-6$ là vô lý. Vây ta có điều phải chứng minh

Định Lý Kuratowski (cont.)

Nhận xét

Hai đồ thị K_5 và $K_{3,3}$ là hai đồ thị không phẳng đơn giản nhất

- Nếu xóa bất kỳ một đỉnh hoặc một cạnh thì sẽ được một đồ thị phẳng
- ightharpoonup Đồ thị K_5 là đồ thị không phẳng có ít đỉnh nhất
- ightharpoonup Đồ thị $K_{3,3}$ là đồ thị không phẳng có ít cạnh nhất

Spring 2018 Graph Theory 22

Định Lý Kuratowski (cont.)

▶ Giả sử đồ thị $K_{3,3}$ phẳng. Đồ thị $K_{3,3}$ có số đỉnh n=6 và số cạnh e=9. Đồ thị $K_{3,3}$ chỉ có các chu trình từ 4 cạnh trở lên vậy theo hệ quả $e\leq 2n-4$; nhưng $9\leq 2.6-4$ là vô lý. Vậy ta phải có điều chứng minh

vô lý. Vậy ta có điều phải chứng minh

pring 2018 Graph Theory 23 Spring 2018 Graph Theory 24

Định Lý Wagner

Định lý 3.6

Điều kiện cần và đủ để một đồ thị liên thông có tính phẳng là đồ thị không chứa đồ thị con nào có thể co thành K_5 hoặc $K_{3,3}$

Chứng minh

Sinh viên tự chứng minh ■

Spring 2018 Graph Theory

Ví dụ minh họa

Chứng minh đồ thị Peterson không phẳng bằng

- Sử dụng định lý Wagner
- Sử dung định lý Kuratowski

Hình 3.10: Đồ thị Petersen

Kiểm tra tính phẳng của một đồ thị

Có nhiều phương pháp để kiểm tra tính phẳng của đồ thị

- ► Sử dụng định lý Euler
- ► Sử dụng định lý Kuratowski
- Sử dụng định lý Wagner
- Sử dụng thuật toán Demoucron, Malgrange and Pertuiset (DMP)

Spring 2018 Graph Theory 26

Ví dụ minh họa (cont.)

Áp dụng định lý Wagner

- ► Thực hiện phép co 5 lần
- ightharpoonup Đồ thị kết quả là K_5

Hình 3.11: Đồ thị và kết quả sau khi thực hiện phép co 5 lần

Spring 2018 Graph Theory 27 Spring 2018 Graph Theory 28

Ví dụ minh họa (cont.)

Áp dụng định lý Kuratowski

- Loại bỏ một số cạnh
- ightharpoonup Đồ thị kết quả đồng phôi với $K_{3,3}$

Graph Theory

Hình 3.12: Đồ thị và kết quả loại bỏ các cạnh

Thuật toán DMP (cont.)

Định nghĩa 3.6

Spring 2018

Cho một đồ thị G=(V,E) và đồ thị con G'=(V',E'). S được gọi là một **mảnh** (segment) của đồ thị G theo G' nếu thỏa một trong hai điều sau

- Nó là một cạnh không thuộc E' nhưng có hai đỉnh thuộc V'
- Nó là một thành phần liên thông của đồ thị G-V' cùng với các canh nối nó với G'

Định nghĩa 3.7

Các đỉnh của một mảnh được gọi là **đỉnh tiếp xúc** (contact vertex) nếu nó thuộc đồ thị con G'

Thuật toán DMP

Một số giả thiết đối với đồ thị G = (V, E) cần kiểm tra tính phẳng

- 1. G là một đồ thị đơn, vô hướng
- **2.** $G \text{ có } |E| \le 3|V| 6$
- 3. G là một đồ thị liên thông
- 4. G là một đồ thị song liên thông

Spring 2018 Graph Theory 30

Thuật toán DMP (cont.)

Định nghĩa 3.8

Một miền của đồ thị con G' là **miền tiếp nhận (admissible face)** của một mảnh nếu nó chứa tất cả các đỉnh tiếp xúc của mảnh này.

Định nghĩa 3.9

Đường đi- α (α -path) của một mảnh là đường đi nối hai đỉnh tiếp xúc của mảnh này.

Spring 2018 Graph Theory 31 Spring 2018 Graph Theory 32

29

Thuật toán DMP (cont.)

Graph Theory

Thuật toán DMP (cont.)

Spring 2018

Hình 3.15: Các đỉnh tiếp xúc của các mảnh

Thuật toán DMP (cont.)

Hình 3.14: Hãy xác đinh các mảnh của đồ thi

Spring 2018 Graph Theory 34

Thuật toán DMP (cont.)

Hình 3.16: Các miền tiếp nhận của các mảnh

Spring 2018 Graph Theory 35 Spring 2018 Graph Theory 36

33

Thuật toán DMP (cont.)

Hình 3.17: Các đường đi- α của S_1

Spring 2018 Graph Theory 3

Ví dụ minh họa thuật toán DMP

Hình 3.18: Áp dụng thuật toán DMP để kiểm tra tính phẳng của đồ thị *G*? Nếu đồ thị phẳng hãy vẽ ra một biểu diễn phẳng của đồ thị?

Thuật toán DMP (cont.)

Cho một đồ thi G

Algorithm 1 Thuật toán Demoucron, Malgrange and Pertuiset

- 1: Chon một chu trình G' của G
- 2: while $G' \neq G$ do
- 3: Xác định các mảnh của G-G'
- 4: Xác định các miền tiếp nhận của các mảnh
- 5: **if** tồn tại một mảnh không có miền tiếp nhận **then**
- 6: Dừng, đồ thị G không phẳng
- 7: Chọn một mảnh và một miền tiếp nhận của mảnh (*ưu tiên mảnh có 1 miền tiếp nhận*)
- 8: Nhúng đường đi- α của mảnh vào miền tiếp nhận này
- 9: Cập nhật $G' = G' + \alpha$
- 10: Đồ thị G phẳng

Spring 2018 Graph Theory 38

Ví dụ minh họa thuật toán DMP (cont.)

Hình 3.19: Đồ thi *G'*

Spring 2018 Graph Theory 39 Spring 2018 Graph Theory 40

Ví dụ minh họa thuật toán DMP (cont.)

Hình 3.20: Đồ thị G - G'

Spring 2018

Graph Theory

41

Spring 2018

Bài tâp

một biểu diễn phẳng

Graph Theory

► Hãy xét tính phẳng của đồ thi sau. Nếu phẳng thì hãy tìm ra

42

Định lý về biểu diễn phẳng

Định lý 3.7

Một biểu diễn phẳng của đồ thị luôn luôn có thể biến đổi thành một biểu diễn phẳng khác sao cho miền hữu han của nó trở thành miền vô han của kia

Hình 3.21: Biến đổi biểu diễn phẳng

Tài liêu tham khảo

Diestel, R. (2005).

Graph theory. 2005.

Springer-Verlag.

Moore, E. F. (1959).

The shortest path through a maze.

Bell Telephone System.

Rosen, K. H. and Krithivasan, K. (2012).

Discrete mathematics and its applications.

McGraw-Hill New York.

Tarjan, R. (1972).

Depth-first search and linear graph algorithms.

SIAM journal on computing, 1(2):146-160.

Spring 2018 **Graph Theory Graph Theory** 44 Spring 2018

Tài liệu tham khảo (cont.)

- Trần, T. and Dương, D. (2013).

 Giáo trình lý thuyết đồ thị. 2013.

 NXB Đại Học Quốc Gia TPHCM.
- West, D. B. et al. (2001).

 Introduction to graph theory.

 Prentice hall Englewood Cliffs.

Spring 2018 Graph Theory 45