ANÁLISIS DEL RETO 4

Catalina Isabel Muñoz ,202121606, ci.munoz@uniandes.edu.co

Yaisa Catalina Ramírez, 202021914, y.ramirezc@uniandes.edu.co

Ana María Patrón, 201714291, am.patron@uniandes.edu.co

Carga de Datos

Para la carga de datos se usaron tres estructuras de datos: dos tablas de hash y un grafo dirigido. En primer lugar, se recorrió el archivo "bus_stops" y cada una de las paradas se almacenó en la tabla "vértices" junto con su información de latitud, longitud y vecindario. Adicionalmente, se consideró que si la parada era de tipo "S", esta también se debía agregar a la tabla "transbordos" en la cual si el transbordo ya se había incluido, se añadía el bus a la lista de buses asociados a la estación de transbordo. Posteriormente, se recorre el archivo "bus_edges" a partir del cual se toman los vértices de inicio y fin, se añaden al grafo, se calcula su distancia (peso) y finalmente se añade el arco entre dichos vértices. Una vez creados todos los arcos del archivo, se toma la tabla "transbordos", se crean vértices para cada uno de las llaves de la tabla (estaciones de transbordo) y se generan arcos (en ambas direcciones) entre la llave y todos los elementos de su lista.

Resultados carga de datos:

```
El rango del area rectangular de la forma [Longitud minima, Longitud maxima] y [Latitud minima, Latitud maxima] es:
Longitudes: [ 2.055835 2.221753]
Latitudes: [ 41.32164 41.46759]
Total de estaciones exclusivas 1244
Total de transbordos 1080
Numero de arcos utilizados: 15834
Nota: Key representa el Code-Ruta
Las 5 primeras estaciones son:
| Identificador estacion | Geolocalizacion | Numero de estaciones conectadas |
                                 ['2.159124', '41.45014']

['2.160857', '41.42953']

['2.154352', '41.43958']

['2.17833', '41.46362']

['2.175149', '41.46383']
             8-106
             9-106
             10-106
             11-106
                                                                                            2
             12-106
Las 5 últimas estaciones son:
  Identificador estacion | Geolocalizacion | Numero de estaciones conectadas |
                                 ['2.12288', '41.40709']

['2.150898', '41.38442']

['2.152377', '41.3784']

['2.130285', '41.39952']

['2.154602', '41.37665']
           2331-V9
           2330-V9
            2329-V9
            2328-V9
            2327-V9
```

Requerimiento 1

Descripción

Se hace uso del algoritmo DFS para buscar todas las posibles rutas que existen entre la estación de origen y de destino. Asimismo, una vez obtenido el camino usando "PathTo", se obtuvieron las distancias a cada estación siguiente usando la función "haversine".

Entrada	La estación de origen y de destino registradas de la forma Code- IdBus
Salidas	Si existe camino, informar la distancia total del recorrido, el total de estaciones y de transbordos y las estaciones del recorrido indicando su identificador y distancia a la siguiente estación.
Implementado (Sí/No)	Si. Yaisa C. Ramírez

Análisis de complejidad

Se define V como el número de vértices y E como el número de arcos

Pasos	Complejidad
Paso 1. Hacer el recorrido DFS sobre el grafo usando	O(E + V)
como punto de partida el origen	
Paso 2. Obtener si existe camino o no hacia el vértice	O(1)
destino	
Paso 3. Recorrer la pila de estaciones que	O(N) donde N es el número de estaciones del
corresponden al camino	camino, N << V
Paso 4. Obtener la longitud y latitud de cada estación	O(N)
Paso 5. Obtener la distancia entre las estaciones	O(1)
usando haversine	
TOTAL	O(E+V)

Pruebas Realizadas

Se realizó la prueba con un computador Dell Inspiron core i7 con 12GB de RAM y 1.3GHz de procesamiento. Se buscó camino de 35-109 a 58-V7

Entrada	Tiempo (s)
large	0.356

rabias ac aatos		
Estacion inicial: 35-109 Estacion final: 58-V7 Distancia del camino planteado: 80.37531970292524 El camino planteado tiene 67 estaciones El camino planteado tiene 2 transbordos Las estaciones del camino planteado son: 67		
Identificador estacion	Distancia a la siguiente estacion	
35-109	5.897942417406026	
36-109	5.715554521923522	
37-109	1.3908692094375423	
38-109	7.637311670422826	
39-109	2.73982760950849	
40-109	2.475523097609836	
41-109	1.0878674816637002	
42-109	0.6373548219186733	
43-109	5.545455847538612	
44-109	1.9041325239623466	
45-109	1.9145436746923608	
46-109	0.3645024060923372	
47-109	0.4298792915079227	
48-109	0.4208265184647341	
49-109	0.4520124537171439	
50-109	0.3817814862042315	
51-109	0.14630202237933776	
52-109	3.0468263591508222	
53-109	0.5214794433317042	
54-109	0.2744815818672842	
55-109	0.4537715385823353	
56-109	0.429707912943077	
57-109	1.9469757794049458	
58-109	5.311033804278349	

58-109	5.311033804278349
853-109	0.693880300292971
854-109	0.5026647800026656
855-109	1.2304761301188711
856-109	0.49767831047709293
857-109	0.37523811883422453
858-109	1.2495138681118572
859-109	0.6030517192846034
860-109	0.7234013936776537
861-109	1.088429049137055
862-109	1.8856171599970397
863-109	2.8552033843417526
864-109	2.0216906922337805
865-109	1.8036035294070683
866-109	0.25716068108608625
909-109	0.8141030000763735
910-109	0.09477477636938511
911-109	0.27504818852775176
912-109	0.11768025381311034
913-109	2.857948722914829
46-CJ	0.010424916543695229
44-CJ	9 1
T-44	j e j
44-V7	0.010424916543695229
46-V7	0.4031151189350021
58-V7	9

Graficas

No se realizaron gráficas dado que se hizo una única prueba con large para obtener el grafo completo

Análisis

Este requerimiento tiene una complejidad temporal alta. Sin embargo, si se plantean muchas búsquedas para un mismo origen, solo se tiene una complejidad de O(1) ya que solo se debe ejecutar una vez el algoritmo DFS sobre el grafo. En cuanto a la complejidad espacial, esta es de O(V).

Requerimiento 2

Descripción

Implementamos el algoritmo BFS para encontrar el camino con menos paradas. Para encontrar las distancias entre cada estación que hacía parte del camino y la anterior extraemos las respectivas longitudes y latitudes, y con esas hallamos la distancia con la función harvesine

Entrada	Identificadores de estación de origen y de llegada en la forma code-	
	bus	
Salidas	Estaciones que hacen parte del camino, distancia total de este,	
	número de transbordos y distancias entre estaciones	
Implementado (Sí/No)	Sí, Ana M.	

Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

Pasos	Complejidad
Paso 1. Hacer el recorrido BFS sobre el grafo usando	O(E + V), E= # arcos, V=# vértices
como punto de partida el origen	
Paso 2. Obtener si existe camino o no hacia el vértice	O(1)
destino	
Paso 3. Recorrer la pila de estaciones que	O(N),N= tamaño de la pila
corresponden al camino	
Paso 4. Obtener la longitud y latitud de cada estación	O(N), N=tamaño de la pila
Paso 5. Obtener la distancia entre las estaciones	O(1)
usando haversine	
TOTAL	O(E+V)

Pruebas Realizadas

Se realizó la prueba en computador con procesador 1.6 GHz Intel Core i5, memoria RAM de 8GB y sistema operativo MacOS High Sierra, usando la base large y con estación inicial 220-116 y final 890-87

Entrada	Tiempo (s)
large	0.284

estacion inicial: 220-116 estacion final: 890-87 Distancia del camino planteado: 5.915273122782805 El camino planteado tiene 15 estaciones El camino planteado tiene 1 transbordos Las estaciones del camino planteado son:		
Identificador estacion Distancia a la siguiente estacion		
221–116	0.36488587909348086	
222-116	0.14066173330454448	
223-116	0.36492760190125545	
224-116	0.6356213110432379	
225–116	0.2970830148499219	
226–116	0.7907751926465045	
227–116	1.079870701694794	
228–116	0.09132163827427284	
883-116	0.48672340021696525	
T-883	j 0 j	
883–87	0.0	
884–87	0.3329406113592043	
885–87	0.4470533339629668	
886–87	0.5138380777801579	
890-87	0.36957062665549983	
±	 	

Graficas

Se omite dado que solo se evaluó con large

Análisis

Se omite dado que solo se evaluó con large

Requerimiento 3

Descripción

Se desea conocer si existen componentes conectados en el grafo y de ser así cuántos son y conocer sus características.

Entrada	Ninguno
Salidas	 El total de componentes conectados dentro del grafo. Mostrar los 5 componentes conectados más grandes (de mayor a menor número de estaciones en la
	componente fuertemente conectada): Elnúmerodeestacionesquepertenecenadichocomponente .

	 Los identificadores de las tres primeras y tres últimas estaciones pertenecientes al
	componente.
Implementado (Sí/No)	Si, catalina Muñoz

Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

Pasos	Complejidad
Paso 1 kosaraju	O(E+V)
Paso 2 ciclo sobre los identificadores	O(V)
Paso 3 merge	O(VlogV)
TOTAL	O(NlogN) donde N es el numero de
	estaciones que tiene el componente mas
	grande.

Pruebas Realizadas

Descripción de las pruebas de tiempos de ejecución y memoria utilizada. Incluir descripción del procedimiento, las condiciones, las herramientas y recursos utilizados (librerías, computadores donde se ejecutan las pruebas, entre otros).

Entrada	Tiempo (s)
Large	7.296031951904297

Tablas de datos

```
El total de componentes conectados dentro del grafo es: 6

En el componente 6 hay 5557 elementos.
Identificadores de las Primeras tres estaciones en el componente:
1174-65
1817-1810
288-V29

Identificadores de las ultimas tres estaciones en el componente:
1294-55

En el componente 4 hay 98 elementos.
Identificadores de las Primeras tres estaciones en el componente:
561-128
555-128
237-118

Identificadores de las ultimas tres estaciones en el componente:
599-128
231-118

En el componente 5 hay 38 elementos.
Identificadores de las Primeras tres estaciones en el componente:
1932-1813
134-118

En el componente 5 hay 38 elementos.
Identificadores de las ultimas tres estaciones en el componente:
1913-8CT0
1913-BCT0
1913-BCT0
1913-BCT0

En el componente 1 hay 33 elementos.
Identificadores de las ultimas tres estaciones en el componente:
1913-BCT0
1913
```

Requerimiento 4

Descripción

Para obtener las estaciones mas cercanas, se recorren todos los vértices para obtener las menores distancias a cada punto. A partir de ello, se recorre el grafo con dijsktra y se obtiene la ruta para llegar a la estación de destino más cercana al punto deseado.

Entrada	Localización geográfica del origen y del destino.
Salidas	Distancia entre las localizaciones y sus estaciones más cercanas,
	distancia total del recorrido, total de estaciones y estaciones de
	transbordo del recorrido y finalmente, una lista con la información
	de las estaciones usando identificador y distancia a la siguiente
	estación.
Implementado (Sí/No)	Si. Yaisa C. Ramírez

Análisis de complejidad

En este caso se define V como el número de vértices y E como el número de arcos

Pasos	Complejidad

Paso 1. Recorrer las Keys de la tabla de hash donde estaban almacenados los vértices	O(V)
Paso 2. Obtener las distancias entre los puntos dados	O(1)
y cada uno de las estaciones usando la función haversine	
Paso 3. Implementar Dijkstra sobre el grafo usando como origen el vértice origen hallado	O(E log V)
Paso 4. Revisar si existe camino entre hacia el vértice destino	O(1)
Paso 5. Si hay camino, obtener la lista de vértices a recorrer junto con sus propiedades	O(1)
Paso 6. Si no hay camino, ejecutar de nuevo la función pero eliminando los vértices previamente hallados de	O(V)
la copia del grafo. TOTAL	O(V)

Pruebas Realizadas

Se realizó la prueba con un computador Dell Inspiron core i7 con 12GB de RAM y 1.3GHz de procesamiento. Se probó con la siguiente entrada:

[Long, Lat] (inicio): [2.14807, 41.3742] [Long, Lat] (destino): [2.13802, 41.3742]

Entrada	Tiempo (s)
large	8.4561

Tablas de datos

```
Longitud del origen: 2.14807
Latitud del origen: 41.3742
Longitud del destino: 2.13802
Latitud del destino: 41.3742
Distancia entre localizacion de origen y estacion de bus mas cercana: 0.03497582300820631
Distancia total entre estaciones del recorrido: 2.1222165882385653
Distancia entre estacion destino y localizacion de origen: 0.13512296503911966
Total de estaciones del camino: 10
Total de transbordos del camino: 3
Las estaciones del camino planteado son:
| Identificador estacion | Distancia a la siguiente estacion
        T-1494 |
1494-CJ |
                                         0
                                0.843236117801968
        1636-CJ
                                        0
         T-1636
                                          0
                               0.15164638860128732
        1636-78
         1637-78
                                          0
         T-1637
                                          0
         1637-115
                                 0.20657216965817057
         984-115
                                  0.9207619121771392
         T-202
                                          0
```

Graficas

No se realizaron gráficas dado que se evaluó únicamente con large para tener el grafo completo.

Análisis

A comparación de los primeros requerimientos, por ejemplo, con este se obtuvo la mayor complejidad temporal (a pesar de que el algoritmo Djikstra tiene una complejidad considerablemente inferior a DFS y BFS). Esto se debe a que se recorrieron todos los vértices para obtener las menores distancias. Una posible solución a dicho problema podría ser plantear de forma temporal los puntos de origen y destino como vértices y recorrer desde cada uno el algoritmo Dijkstra para obtener la menor distancia a cada vértice.

Requerimiento 5

Descripción

Hallamos todos los caminos posibles que logran que el camino sea más rápido (pues el enunciado menciona "le puedo facilitar a los usuarios visitar múltiples lugares de la manera más rápida posible ") y a estos caminos le aplicamos la condición de que su número de conexiones sea menor o igual que el máximo permitido y una vez obtenemos los que cumple la condición, obtenemos su información

Entrada	Estación de origen (code-bus) y número máximo de conexiones	
Salidas	Identificador de estación alcanzable, su geolocalización y la longitud	
Implementado (Sí/No)	Sí, Ana M.	

Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

Pasos	Complejidad
Paso 1. Algoritmo Dijkstra para obtener caminos	O(E log V), E= # arcos, V=# vértices
posibles más rápidos	
Paso 2. Acotar con la condición del máximo número	O(N), N = # total de estaciones alcanzables
de estaciones	posibles
Paso 3. Obtener la información de las estaciones	O(M), M=# estaciones alcanzables con la
alcanzables	condición
TOTAL	O(E logV)

Pruebas Realizadas

Se realizó la prueba en computador con procesador 1.6 GHz Intel Core i5, memoria RAM de 8GB y sistema operativo MacOS High Sierra, usando la base large y con estación inicial 220-116 y 4 conexiones máximas

Entrada	Tiempo (s)
large	0.736

Tablas de datos

Las tablas con la recopilación de datos de las pruebas.

Graficas

Se omite dado que solo se evaluó con large

Análisis

Se omite dado que solo se evaluó con large

Requerimiento 6

Descripción

Se creó un mapa cuyas llaves eran los vecindarios y los valores eran las listas con las estaciones. Después se filtraba por vecindario y para cada elemento de esa lista se codificada la llave única code-bus, y se calculaba el camino de mínima distancia entre la estación de partida y cada estación posible. Finalmente se comparaban estas distancias y se elegía la de menor valor.

Entrada	Estación de origen (code-bus) y vecindario
Salidas	Estaciones que hacen parte del camino, distancia total de este, número de transbordos y distancias entre estaciones
Implementado (Sí/No)	Sí, Ana M.

Análisis de complejidad

Pasos	Complejidad
Paso 1. Crear el mapa de vecindarios	O(1)
Paso 2. Filtrar por vecindario	O(1)

Paso 3. Hallar distancias mínimas entre cada estación	O(E log V), E= # arcos, V=# vértices
posible y estación de origen con algoritmo Dijkstra	
Paso 4. Extraer información de la estación	O(1)
TOTAL	<i>O(</i> E log V <i>)</i>

Pruebas Realizadas

Se realizó la prueba en computador con procesador 1.6 GHz Intel Core i5, memoria RAM de 8GB y sistema operativo MacOS High Sierra, usando la base large y con estación inicial 220-116 y final 890-87

Entrada	Tiempo (s)
large	0.793

Tablas de datos

Las tablas con la recopilación de datos de las pruebas.

camino planteado tiene camino planteado tiene s estaciones del camino	5 transbordos	
Identificador estacion	Distancia a la siguiente estacion	ID_Vecindario
220–116	0.36488587909348086	la Salut
221-116	0.14066173330454448	i la Salut i
222-116	0.36492760190125545	i la Salut i
223-116	0.6356213110432379	i la Salut i
224-116	0.2970830148499219	la Vila de Grà cia
225-116	0.7907751926465045	la Vila de Grà cia
226-116	1.079870701694794	la Vila de Grà cia
227-116	0.09132163827427284	i la Salut i
228-116	0.48672340021696525	la Salut i
883-27	0.3329406113592043	la Vila de Grà cia
884-27	0.3445550698025558	la Vila de Grà cia
890-87	0.07237139686254128	el Putxet i el Farró
926-87	0.20728986137210603	la Vila de Grà cia
954-87	0.2684526620282339	Vallcarca i els Penitents
985-27	3.3450795107869684	Vallcarca i els Penitents
984-115	0.20657216965817057	la Nova Esquerra de l'Eixample
1637-V7	1.1299462873399242	Sants
1639-V7	1.0206393202600534	les Corts
1640-V7	0.5028234698846936	Sants
1641-V7	0.41274738820668405	les Corts
1642-V7	1.645200717161601	i Sants i
2298-V7	0.28659798799691255	les Tres Torres
2299-V7	1.2862129307437598	SarriÃ
2300-V7	1.2796075318000315	SarriÃ
2301-V7	0.7794744748165241	les Tres Torres
2302-V7	2.1999521750569317	les Corts

Graficas

Se omite dado que solo se evaluó con large

Análisis

Se omite dado que solo se evaluó con large

Requerimiento 7

Descripción

Como pasajero deseo encontrar un camino circular saliendo de una estación inicial. Esto me sirve para planear rutas turísticas rápidas dentro de la ciudad. E importante, este camino debe permitirme volver al origen (estación inicial) a través de una estación de transbordo de ser necesario.

Entrada	Estacion origen
Salidas	 La distancia total que tomará el recorrido del camino circular. La distancia total de desplazamiento debe ser mayor a 0.0. El total de estaciones que contiene el camino. El total de estaciones debe ser mayor a 1. El total de transbordos de ruta que deben realizarse. El camino calculado entre las estaciones (incluyendo el origen y el destino) y para cada estación en el camino se debe mostrar la siguiente información: o Elidentificadordelaestación. La distancia a la siguiente estación en el camino.
Implementado (Sí/No)	Sí, Catalina.

Análisis de complejidad

Pasos	Complejidad
Paso 1. dfs	O(E+V)
Paso 2. Se recorre el largo del ciclo para sacar el path	O(N)
Paso 3. Se recorre el largo del ciclo para imprimir	O(N)
TOTAL	O(E+V)

Pruebas Realizadas

Entrada	Tiempo (s)
large	0.28478384017944336

```
Identificador de la estación de origen: 238-V29
la distancia del camino es: 1.542551651430329
el numero de estaciones en el camino es: 2
el numero de transbordos en el camino es: 0
el camino que se siguio es:
Desde Estacion 238-V29 Hasta Estacion 277-V29 Peso a la siguiente estacion: 0.7712758257151645
Desde Estacion 277-V29 Hasta Estacion 238-V29 Peso a la siguiente estacion: 0.7712758257151645
```

Graficas

Se omite dado que solo se evaluó con large

Análisis

Se omite dado que solo se evaluó con large

Requerimiento 8

Se hace uso de la librería folium y una lista de longitudes y latitudes obtenida de cada requerimiento. Con ello, se dibujan puntos en el mapa y según si son paradas de transbordo, origen o destino se pintan de color naranja, verde o rojo, respectivamente.

Entrada	Se definió como entrada que el usuario decidiera si deseaba	
	visualizar el mapa una vez ejecutado cada requerimiento	
Salidas	El mapa indicando las estaciones a recorrer	
Implementado (Sí/No)	Si. Yaisa C. Ramírez	

Análisis de complejidad

Se define N como el número de estaciones de la ruta obtenida en el requerimiento

Pasos	Complejidad
Paso 1. Recorrer la lista de latitudes y longitudes	O(N) , se sabe que N << V
Paso 2. Agregar coordenada al mapa	O(1)
TOTAL	O(N)

Pruebas Realizadas

Entrada	Tiempo (s)
large	0.566

Es importante aclarar que, si en el recorrido existían estaciones de transbordo, estas se dibujaban de naranja y se omitían las paradas pertenecientes a la misma estación de transbordo.

Mapa del requerimiento 2 usando como entradas 35-109 y 42-109

Mapa del requerimiento 2 usando como entradas 220-116 y 890-87

Mapa del requerimiento 4 usando como entradas

Mapa del requerimiento 5 usando como entradas 220-116 y 4

Mapa del requerimiento 6 usando como entradas inicial 220-116 y el barrio San Antoni

Graficas

No se realizaron gráficas. Sin embargo, como era de esperarse, entre más estaciones tenía la ruta, mayor era el tiempo que tomaba la función en finalizar.