

AMENDMENTS

In the Claims:

This listing of claims replaces all prior versions and listings of claims in the application.

- 1 1. (Currently Amended) A space-saving scanner assembly, comprising:
2 a housing having a substantially vertical source-contact surface with a member
3 forming a channel that protrudes from the housing, said channel member having a first
4 surface side that is substantially parallel to, and opposed from, said source-contact
5 surface, said channel member having a second surface side substantially orthogonal to
6 the first surface side, wherein the member extends to an exterior surface of said housing;
7 and
8 a flap coupled to the source-contact surface, the flap having a source-backing
9 surface substantially parallel to the source-contact surface of the housing, wherein the
10 source-contact surface, the source-backing surface, and the first and second surface sides
11 of the channel member form an aperture for receiving an edge of a source to be scanned.

- 1 2. (Previously Presented) The assembly of claim 1, wherein a portion of the
2 vertical source-contact surface of the housing comprises a platen to permit scanning of a
3 source document in a vertical position.

- 1 3. (Currently Amended) The assembly of claim 1, wherein a front panel of
2 the housing includes comprises an inclined surface adjacent to the aperture.

- 1 4. (Currently Amended) The assembly of claim 1, wherein the flap includes
2 comprises an inclined surface adjacent to the aperture.

- 1 5. (Currently Amended) The assembly of claim 1, wherein the flap includes
2 comprises a slot.

1 6. (Currently Amended) The assembly of claim 1, wherein the source-
2 backing surface of the flap ~~includes~~ comprises a clip arranged to receive a portion of a
3 source document to be scanned.

1 7. (Currently Amended) The assembly of claim 1, wherein the housing
2 further comprises a recess configured to receive a portion of the ~~channel member~~ when
3 an operator closely adjusts the source contact surface to the substantially vertical surface
4 of the housing.

1 8. (Currently Amended) The assembly of claim 2, wherein the platen has an
2 upper edge, an opposing lower edge, a front edge relatively coexistent with a front panel
3 of the housing, and a distal edge and wherein the ~~channel member~~ is adjacent to the
4 lower edge of the platen.

1 9. (Currently Amended) The assembly of claim 3, wherein the ~~channel~~
2 member has a first end proximal to a ~~the~~ front panel of the housing and a distal end that
3 extends at least to an edge of the platen.

1 10. (Previously Presented) The assembly of claim 4, wherein the flap is
2 coupled to the housing with at least one post assembly having a plurality of spatially
3 separated detent positions.

1 11. (Previously Presented) The assembly of claim 4, wherein the flap is
2 coupled to the housing with at least one adjustable fastener for closely contacting the
3 source-backing surface to the vertical source-contact surface.

1 12. (Currently Amended) The assembly of claim 5, wherein the slot is
2 positioned to permit the placement of a relatively short source document on edge on the
3 ~~channel member~~ wherein such that information to be scanned is aligned with at least a
4 portion of a platen.

1 13. (Currently Amended) The assembly of claim 7, wherein the housing is
2 configured to extend the channel member away from the vertical source-contact surface
3 when an operator adjusts the source-backing surface in relation to the vertical source-
4 contact surface of the housing to increase the width of the aperture.

1 14. (Currently Amended) The assembly of claim 2, wherein the width of a
2 first end of the channel member proximal to a front panel of the housing increases over a
3 that portion of the channel length of the member that extends beyond the platen.

1 15. (Currently Amended) The assembly of claim 9, wherein the channel
2 member is coated with a layer of material having a relatively low coefficient of friction.

1 16. (Currently Amended) A space-saving scanner assembly, comprising:
2 means for housing an optical scanning means; and
3 means for forming an aperture configured to closely receive a leading edge of a
4 source, such that the source can be spatially arranged with the optical scanning means
5 without adjusting the aperture, the source being supported along a second horizontal edge
6 different from the leading edge of said source along a channel means when the source is
7 aligned with the means for optically scanning while in the aperture and spatially arranged
8 with the means for optically scanning, wherein said channel means protrudes from said
9 means for housing and comprises a source retaining means substantially parallel to, and
10 opposed from, said optical scanning means and a source support means substantially
11 orthogonal to said source retaining means.

1 17. (Currently Amended) The assembly of claim 16, wherein the a source
2 retaining means of said channel means extends vertically from a base of said channel
3 means and said source support means is substantially parallel to said base of said channel
4 means.

1 18. (Previously Presented) The assembly of claim 16, wherein the means for
2 forming an aperture comprises a flap having a slot.

1 19. (Previously Presented) The assembly of claim 16, wherein the means for
2 forming an aperture comprises a first inclined surface associated with a housing and a
3 second inclined surface associated with a flap.

1 20. (Currently Amended) A method for saving space on a desktop,
2 comprising:

3 providing an optical scanner having a housing, the housing having a substantially
4 vertical source-contact surface with a member forming a channel protruding from the
5 housing, ~~the channel having a surface that is substantially parallel to, and opposed from,~~
6 ~~said source-contact surface, the vertical source-contact surface including a transparent~~
7 ~~platen portion, wherein the channel is adjacent to a lower edge of the transparent platen~~
8 ~~portion and further comprises a second surface substantially orthogonal to the first~~
9 ~~surface; and~~

10 providing coupling a flap coupled to the source-contact surface, the flap having a
11 slot extending to an edge of the flap and source-backing surface substantially parallel to
12 the source-contact surface of the housing, wherein the source-contact surface, the source-
13 backing surface, and the ~~first and second surfaces of the channel member~~ form an
14 aperture for horizontally receiving a source to be scanned.

1 21. (Currently Amended) The method of claim 20, further comprising
2 inserting a leading edge of a source to be scanned into the aperture formed by the source-
3 contact surface, the source-backing surface, and the channel member such that a
4 horizontal edge of the source different from the leading edge is supported along a second
5 edge by the channel member.

1 22. (Previously Presented) The method of claim 21, further comprising
2 spatially arranging the flap and the housing wherein pressure is applied to a non-scan
3 surface of the source and the scan surface of the source closely contacts the transparent
4 platen portion.

1 23. (Previously Presented) The method of claim 22, further comprising
2 enabling the optical scanner to scan the source.

1 24. (Original) The method of claim 23, further comprising spatially arranging
2 the flap and the housing wherein pressure is removed from the non-scan surface of the
3 source.

1 25. (Previously Presented) The method of claim 24, further comprising
2 removing the source from the aperture.

1 26. (Currently Amended) A space-saving scanner assembly, comprising:
2 a housing having a substantially vertical source-contact surface;
3 a member forming a channel protruding from the housing, ~~said channel having a~~
4 ~~first surface that is substantially parallel to, and opposed from, said source contact~~
5 ~~surface and a second surface that is substantially orthogonal to the first surface;~~ and
6 a flap coupled to the housing, the flap having a source-backing surface
7 substantially parallel to the source-contact surface of the housing, wherein the source-
8 contact surface, the source-backing surface, and the ~~first and second surfaces of the~~
9 ~~channel member~~ form an aperture for horizontally receiving ~~an edge~~ of a source to be
10 scanned without necessitating relative movement between the flap and the housing.

1 27. (Currently Amended) The assembly of claim 26, wherein the housing
2 contains a front panel with an inclined surface adjacent to the opening aperture, the
3 inclined surface forming a wider opening at the surface of the front panel.

1 28. (Currently Amended) The assembly of claim 26, wherein the flap
2 includes comprises an inclined surface adjacent to the opening, the inclined surface
3 arranged to increase the opening along a front edge of the flap, wherein the front edge is
4 substantially perpendicular to the source-backing surface.

1 29. (Currently Amended) The assembly of claim 26, wherein the flap
2 includes comprises a slot.

1 30. (Currently Amended) The assembly of claim 29, wherein the slot is
2 positioned to permit the placement of a relatively short source document on edge on said

3 channel member and wherein information to be scanned from the source document is
4 aligned with at least a portion of a platen.

1 31. (Currently Amended) The assembly of claim 26, wherein the housing
2 further comprises a recess configured to receive a portion of said channel member when
3 the source-backing surface is in close proximity to the source-contact surface.

1 32. (Currently Amended) The assembly of claim 26, wherein said channel
2 member has a first end proximal to a front panel of the housing and a distal end that
3 extends at least to a distal edge of a platen.

1 33. (Previously Presented) The assembly of claim 26, wherein the flap is
2 coupled to the housing with at least one post assembly having a plurality of spatially-
3 separated detent positions.

1 34. (Currently Amended) The assembly of claim 26, wherein the housing is
2 ~~configured to extend said channel member moves relative to~~ the source-contact surface
3 when an operator adjusts the source-backing surface in relation to the source-contact
4 surface to increase the width of the aperture.

1 35. (Currently Amended) The assembly of claim 26, wherein the width of
2 said channel member ~~at a first end of said channel proximal to a front panel of the~~
3 ~~housing increases over that portion of said channel that extends beyond a platen varies~~
4 over the length of the member.

1 36. (Currently Amended) The assembly of claim 26, wherein said channel
2 member is coated with a material having a relatively low coefficient of friction.

1 37. (Currently Amended) A method for arranging a source in a scanner
2 comprising:

3 horizontally inserting a leading edge of the source into an aperture formed by a
4 channel member that protrudes from a housing, the channel having a first surface that is
5 substantially parallel to, and opposed from, a platen of the scanner such that a surface of
6 the source having information thereon that is desired to be imaged by the scanner is
7 adjacent to a sensor arranged in a substantially vertical plane and such that a second edge
8 of the source, different from the leading edge, is supported by a base surface of said
9 channel member, said base surface extending adjacent to an edge of said platen having a
10 width that varies along the length of the member; and

11 adjusting the source such that the information desired to be imaged is aligned
12 with the sensor.

1 38. (Previously Presented) The method of claim 37, further comprising:
2 inserting a plug into a slot formed in a flap, the flap substantially parallel with the
3 platen of the scanner; and
4 enabling the sensor to scan the information.

1 39. (Previously Presented) The method of claim 38, further comprising:
2 removing the plug; and
3 removing the source from the aperture.

1 40. (Currently Amended) A space-saving scanner assembly, comprising:
2 a housing having a substantially vertical source-contact surface;
3 a flap coupled to the source-contact surface, the flap having a source-backing
4 surface substantially parallel to the source-contact surface of the housing; and
5 a support track member interposed between said housing and said flap, said
6 support track comprising a first member in juxtaposition with the substantially vertical
7 source-contact surface and the source-contact surface, and extending to a front panel of
8 the housing, wherein the source-contact surface, the source-backing surface, and said
9 support track member form an aperture for horizontally receiving an edge of a source to
10 be scanned without necessitating relative movement between the flap and the housing.

1 41. (Previously Presented) The assembly of claim 40, wherein a portion of
2 the vertical source-contact surface of the housing comprises a platen to permit scanning
3 of a source document in a vertical position.

1 42. (Currently Amended) The assembly of claim 41, wherein the platen has
2 an upper edge, an opposing lower edge, a front edge relatively coexistent with a front
3 panel of the housing, and a distal edge and wherein said support track member is adjacent
4 to the lower edge of the platen.

1 43. (Currently Amended) The assembly of claim 42, wherein said support
2 track member has a ~~first end proximal to the front panel of the housing and a distal end~~
3 that extends at least to the distal edge of the platen.

1 44. (Currently Amended) The assembly of claim 42, wherein the width of a
2 ~~first end of said support track member proximal to the front panel of the housing~~
3 ~~increases over that portion of said support track that extends beyond the platen varies.~~

1 45. (Previously Presented) The assembly of claim 40, wherein said housing
2 comprises a front panel having an inclined surface adjacent to the aperture.

1 46. (Previously Presented) The assembly of claim 40, wherein the flap
2 comprises an inclined surface adjacent to the aperture.

1 47. (Previously Presented) The assembly of claim 40, wherein the flap
2 comprises a slot.

1 48. (Currently Amended) The assembly of claim 47, wherein the slot is
2 positioned to permit the placement of a relatively short source document on edge on said
3 support track member wherein information to be scanned is aligned with at least a
4 portion of a platen.

1 49. (Previously Presented) The assembly of claim 40, wherein the flap is
2 coupled to the housing with at least one post assembly having a plurality of spatially
3 separated detent positions.

1 50. (Previously Presented) The assembly of claim 40, wherein the flap is
2 coupled to the housing with at least one adjustable fastener for closely contacting the
3 source-backing surface to the vertical source-contact surface.

1 51. (Previously Presented) The assembly of claim 40, wherein the source-
2 backing surface of the flap comprises a clip arranged to receive a portion of a source
3 document to be scanned.

1 52. (Currently Amended) The assembly of claim 40, wherein the housing
2 further comprises a recess configured to receive a second member of said support ~~track~~
3 member when an operator closely adjusts the source contact surface to the substantially
4 vertical surface of the housing.

1 53. (Currently Amended) The assembly of claim 52, wherein the ~~housing is~~
2 ~~configured to extend said support track member moves relative to from~~ the vertical
3 source-contact surface when an operator adjusts the source-backing surface in relation to
4 the vertical source-contact surface of the housing to increase the width of the aperture.

1 54. (Currently Amended) The assembly of claim 40, wherein said support
2 ~~track~~ member is coated with a layer of material having a relatively low coefficient of
3 friction.

1 55. (Currently Amended) A space-saving scanner assembly, comprising:
2 means for housing an optical scanning means; and
3 means for forming an aperture configured to closely receive a leading edge of a
4 source transferred horizontally along a plane substantially orthogonal to a front surface of
5 the means for housing, such that the source can be spatially arranged with the optical
6 scanning means without adjusting the aperture, the source being supported along a
7 second edge of said source by a support means in the aperture, said support means
8 extending to a front panel of the means for housing, wherein said support means is
9 interposed between a first source-retaining means and said optical scanning means.

1 56. (Previously Presented) The assembly of claim 55, wherein said support
2 means comprises a second source retaining means substantially parallel to the optical
3 scanning means.

1 57. (Previously Presented) The assembly of claim 55, wherein the first source
2 retaining means comprises a flap having a slot.

1 58. (Previously Presented) The assembly of claim 55, wherein the means for
2 forming an aperture comprises a first inclined surface associated with said means for a
3 housing and a second inclined surface associated with the first source retaining means.

1 59. (Currently Amended) A method for saving space on a desktop,
2 comprising:

3 providing an optical scanner within a housing, the housing having a substantially
4 vertical source-contact surface with a support track member protruding from the housing,
5 the support track member having a first member comprising a first source backing
6 surface substantially parallel to, and opposed from, said source contact surface extending
7 to the exterior of the housing; and

8 providing a flap closely coupled to the source-contact surface, the flap, having a
9 second source backing surface substantially parallel to the source contact surface of the
10 housing, the second source backing surface substantially parallel to and opposed from, a
11 second surface of the first member, the second source backing surface also opposed to
12 said first source backing surface, wherein the source contact surface, the second source-
13 backing surface, and the first source backing surface form support member, and source-
14 contact surface forming an aperture for receiving a source moved horizontally to be
15 scanned.

1 60. (Currently Amended) The method of claim 59, further comprising
2 inserting a leading edge of a source to be scanned into the aperture formed by the source-
3 contact surface, the second source backing surface, and the support track such that the
4 source is supported along a second edge by the support track.

1 61. (Currently Amended) The method of claim 60, further comprising
2 spatially arranging the flap and the housing wherein the second source backing surface
3 and the first source backing surface are juxtaposed to a non-scan surface of the source
4 and a scan surface of the source is juxtaposed to the source contact surface wherein
5 inserting is accomplished absent relative movement between the flap and the housing.

1 62. (Previously Presented) The method of claim 61, further comprising
2 enabling the optical scanner to scan the source.

1 63. (Previously Presented) The method of claim 62, further comprising
2 removing the source from the aperture.

1 64. (Currently Amended) A space-saving scanner assembly, comprising:
2 a housing having a substantially vertical source-contact surface comprising a
3 platen;
4 a flap coupled to the housing, the flap having a source-backing surface
5 substantially parallel to the source-contact surface of the housing; and
6 a support track member interposed between the source-contact surface and the
7 source-backing surface proximal to a perimeter segment of the platen, ~~said support track~~
8 comprising a first member having a first surface juxtaposed from the source-contact
9 surface and a second surface juxtaposed from the source-backing surface and a support
10 member, wherein the source-contact surface, the source-backing surface, and the support
11 track member form an aperture for receiving a first edge of a source ~~to be scanned moved~~
12 horizontally without necessitating relative movement between the flap and the housing to
13 align a second edge of the source with the perimeter segment of the platen.

1 65. (Previously Presented) The assembly of claim 64, wherein the housing
2 contains a front panel with an inclined surface adjacent to the aperture, the inclined
3 surface arranged such that the aperture is larger adjacent to the front panel.

1 66. (Currently Amended) The assembly of claim 64, wherein the flap
2 includes comprises an inclined surface adjacent to the aperture, the inclined surface
3 arranged such that the aperture is larger adjacent to a front edge of the flap, wherein the
4 front edge is substantially perpendicular to the source-backing surface.

1 67. (Currently Amended) The assembly of claim 64, wherein the flap
2 includes comprises a slot.

1 68. (Currently Amended) The assembly of claim 67, wherein the slot is
2 positioned to permit the placement of a relatively short source document ~~on edge~~ on said
3 support track member and wherein information to be scanned from the source document
4 is aligned with at least a portion of the platen.

1 69. (Currently Amended) The assembly of claim 64, wherein the housing
2 further comprises a recess configured to receive a portion of said support ~~track member~~
3 when the source-backing surface is in close proximity to the source-contact surface.

1 70. (Currently Amended) The assembly of claim 64, wherein said support
2 ~~track member~~ has a first end proximal to a front panel of the housing and a distal end that
3 extends at least to a distal edge of the platen.

1 71. (Previously Presented) The assembly of claim 64, wherein the flap is
2 coupled to the housing with at least one post assembly having a plurality of spatially-
3 separated detent positions.

1 72. (Currently Amended) The assembly of claim 64, wherein the housing is
2 configured to extend said support ~~track member~~ from the source-contact surface when an
3 operator adjusts the source-backing surface in relation to the source-contact surface to
4 increase the width of the aperture.

1 73. (Currently Amended) The assembly of claim 64, wherein the width of
2 said support ~~track member~~ at a first end of said support ~~track proximal to a front panel of~~
3 ~~the housing increases over that portion of said support track that extends beyond the~~
4 ~~platen-varies.~~

1 74. (Currently Amended) The assembly of claim 64, wherein an upper
2 surface of said support ~~track member~~ is coated with a material having a relatively low
3 coefficient of friction.

1 75. (Currently Amended) A method for arranging a source in a scanner
2 comprising:

3 horizontally inserting a leading edge of the source into an aperture formed by a
4 support track member that protrudes from a housing, the support track comprising a first
5 member and a second member, the first member having a surface that is substantially
6 parallel to, and opposed from, a platen of the scanner interposed between a platen and a
7 flap such that a surface of the source having information thereon that is desired to be
8 imaged by the scanner is adjacent to a sensor arranged in a substantially vertical plane
9 and such that said leading edge is supported by an upper surface of the second member,
10 said upper surface extending adjacent to an edge of said platen; and

11 adjusting the source such that the information desired to be imaged is aligned
12 with the sensor.

1 76. (Previously Presented) The method of claim 75, further comprising:
2 inserting a plug into a slot formed in a flap, the flap substantially parallel with the
3 platen of the scanner; and
4 enabling the sensor to scan the information.

1 77. (Previously Presented) The method of claim 76, further comprising:
2 removing the plug; and
3 removing the source from the aperture.