Part 9 Steiner Forest Problem

(**Definition 1**) (**Steiner Forest Problem**, SFP) Given a graph G=(V, E), edge cost $c: E \to R^+$ (associated with each edge), and several vertex sets $S_i \subseteq V$ (where all the vertices in a set S_i are **connected**), find a **minimum cost subgraph** F such that <u>each pair of vertices belonging to the same set S_i are connected</u>. Note that vertices in two different sets S_i and S_j can be connected as well, but any two sets must be disjoint, i.e., $S_i \cap S_j = \emptyset$.

Problem Restatement: Define a **connectivity requirement function** r that maps unordered pairs of vertices to $\{0, 1\}$ as follow:

$$r(u,v) = \begin{cases} 1, & u,v \in S_i \\ 0, \text{ otherwise} \end{cases}$$

Note that $\underline{r(u, v)}=0$ doesn't mean \underline{u} and \underline{v} aren't connected (i.e., there is no path between \underline{u} and \underline{v}) in the original graph \underline{G} . In fact, $\underline{r(u, v)}=1$ means that we want that there is a path between \underline{u} and \underline{v} . Notes:

(**Definition 2**) (**ILP & LP-Relaxation** for **SFP**) For any set $S \subseteq V$, let \overline{S} denote (V-S). Let $\delta(S)$ denote the <u>set of edges</u> with exactly one end point in S. Alternatively, $\delta(S)$ represents the set of edges that 'cross' the cut (S, \overline{S}) .

We associate each edge $e \in E$ with a binary variable such that

$$x_e = \begin{cases} 1, & e \in F \\ 0, \text{ otherwise} \end{cases}$$

SFP can be reformulated as the following **ILP**:

$$\begin{aligned} & \min \sum_{e \in E} c_e x_e \\ & \text{s.t.} \sum_{e \in \delta(S)} x_e \geq 1, \forall S \in S^* \text{ '} \\ & x_e \in \{0,1\}, \forall e \in E \end{aligned}$$

where S^* is the **collection of all sets** S such that (S, \overline{S}) separates each vertex pair (u, v) with r(u, v) = 1. Note that if $S \in S^*$, then $\overline{S} \in S^*$.

Consider any cut (S, \overline{S}) in G that separates a vertex pair (u, v), i.e., (1) $u \in S$ and $v \in \overline{S}$ or (2) $v \in S$ and $u \notin \overline{S}$. If r(u, v)=1, then we must pick at least one edge $e \in \delta(S)$. Clearly, this is **necessary** and also **sufficient** (proved in **Lemma 1**).

For the aforementioned ILP, we have the corresponding LP-Relaxation:

$$\begin{split} \min \sum_{e \in E} c_e x_e \\ \text{s.t.} \sum_{e \in \delta(S)} x_e \geq 1, \forall S \in S^* \\ x_e \geq 0, \forall e \in E \end{split}.$$

Note: For both the **ILP** and **LP-Relaxation**, there're |E| variables, but the number of constraints is exponential. However, we don't need to really solve the LP when we consider a **Primal-Dual Algorithm** for **SFP**.

(**Lemma 1**) A vertex pair (u, v) is **connected** if and only if for all cuts (S, \overline{S}) that separate (u, v), there's an edge $e \in \delta(S)$.

Proof of Lemma 1. (Converse-Negative Proposition) Suppose that u and v are not connected. Let S be the set of vertices reachable from u (which can be derived by applying BFS/DFS to u). Then, v must be in \overline{S} and there is no edge between (S, \overline{S}) . It indicates that for a vertex set S if there is no edge between (S, \overline{S}) , then any vertex pair (u, v) separated by (S, \overline{S}) is not connected, which complete the proof.

(**Definition 3**) (**Dual LP** for **SFP**) Treat the **LP-Relaxation** of **SFP** (in **Definition 2**) as the **Primal LP**, we have the following **Dual LP**:

$$\max \sum_{S \in S^*} y_S$$
s.t.
$$\sum_{S \in S^*: e \in \tilde{\sigma}(S)} y_S \le c_e, \forall e \in E'$$

$$y_S \ge 0, \forall S \in S^*$$

where we associate each set $S \in S^*$ with a variable y_S . Consider the constraint $\sum_{e \in \delta(S)} y_S \le c_e$

associated with an edge e=(u, v), there should be multiple set $S \in S^*$ with each one associated with a weight ('charge') y_S . And the sum of all the weight y_S is at most c_e .

Note: The number of dual variables is exponential, but this will not bother us, because <u>only a polynomial number of dual variables will be non-zero</u> (i.e., most of the dual variables are zero).

(Example 1) Consider a <u>complete graph</u> with (k+1) vertices. All edges have <u>unit weight</u>. Let the **connectivity requirement function** be r(u, v)=1 for all $u, v \in V$. Let $OPT_{D-LP}(I)$, $OPT_{LP}(I)$ and $OPT_{ILP}(I)$ be the optimal value of the **Dual LP**, **LP Relaxation**, and **Primal ILP** for **SFP**. By **Strong Duality**, we have $OPT_{D-LP}(I)=OPT_{LP}(I)$.

Without the loss of generality, for an arbitrary vertex $s \in V$, we denote the rest k vertices as $\{t_1, t_2, \dots, t_k\}$.

For the **ILP**, to satisfy all the connectivity requirements (i.e., $r(s,t_i)=1$ for $i \in \{1,2,\dots,k\}$), k edges should be selected. Hence, we have $OPT_{ILP}(I)=k$.

For the **Dual LP**, consider the set $\{s\}$ and we have $\{s\} \in S^*$. If we raise the 'charge' of $\{s\}$ to 1, i.e., $y_{\{s\}}=1$, then all the edges $\{(s,t_1),(s,t_2),\cdots,(s,t_k)\}$ become '**tight**'. In this case, <u>we cannot raise</u> the 'charge' of other sets contained $\underline{\{t_1,t_2,\cdots,t_k\}}$, e.g., $y_{\{t_1\}}$, $y_{\{t_2\}}$, etc. (where $\{t_1\} \in S^*$, $\{t_2\} \in S^*$, etc.). Thus, we have found a **feasible solution** to the **Dual LP** and we know $OPT_{D\text{-LP}}(I) \ge 1$.

In summary, the approximation ratio is bounded by

$$\frac{OPT_{\text{ILP}}(I)}{OPT_{\text{LP}}(I)} = \frac{OPT_{\text{ILP}}(I)}{OPT_{\text{D-LP}}(I)} \le k \; ,$$

which is not a good bound for the approximation ratio. In fact, we can further improve the lower bound of $OPT_{D-LP}(I)$ (i.e., get <u>larger lower bound of $OPT_{D-LP}(I)$ </u>) by finding <u>a better **feasible solution** to the **Dual LP**.</u>

Furthermore, consider another strategy that raise the 'charge' of the sets $\{\{s\},\{t_1\},\{t_2\},\cdots,\{t_k\}\}\}$ simultaneously. For an arbitrary edge (s,t_i) , it becomes '**tight**' when we simultaneously raise the 'charge' of $\{s\}$ and $\{t_1\}$ to 0.5, i.e., $y_{\{s\}} = y_{\{t_i\}} = 0.5$. In this case, all the other edges (e.g., (t_i,t_j)) become 'tight'. Thus, we have $OPT_{D-LP}(I) \ge (k+1)/2$. The corresponding **approximation ratio** is bounded by

$$\frac{OPT_{\text{ILP}}(I)}{OPT_{\text{LP}}(I)} = \frac{OPT_{\text{ILP}}(I)}{OPT_{\text{D-LP}}(I)} \le 2(1 + \frac{1}{k}) \approx 2.$$

Notes: The latter example gives a new idea to design the **Primal-Dual Algorithm** for **SFP**. Namely, we can raise **duals** $\{y_S\}$ in a <u>synchronized manner</u> instead of trying to satisfy a single unsatisfied primal constraint. We can try out many possibilities at the same time.

(Algorithm 1) (Primal-Dual Algorithm) We say that an edge e 'feels' a dual variable y_S if $y_S > 0$ and $e \in \delta(S)$. We say that an edge e is 'tight' if the total amount of duals it feels equals its cost, i.e., $\sum_{e \in \delta(S): S \in S^*} y_S = c_e$. We say that a set S has been 'raised' if $y_S > 0$.

The **Dual LP** tries to maximize the sum of the dual variables $\{y_S\}$ subject to the condition that no edge is 'over-tight', i.e., no edge feels more dual than it cost. **Degree** of set S is defined as the number of picked edges crossing the cut (S, \overline{S}) .

We use F to indicate the set of edge picked. We say that a **set** S is **unsatisfied** if $S \in S^*$, but there're no picked edges crossing the cut (S, \overline{S}) . Clearly, if F is not **Primal Feasible**, there must be a **connected component** in F that is **unsatisfied**. We say such a **connected component** is 'active'.

For example, consider the following **forest** F with 4 **connected components**. Suppose that we only have 2 **connectivity requirements**: r(u, v)=1 and r(s, t)=1.

 S_1 and S_3 are **unsatisfied**, because we have r(s, t)=1 (i.e., $S_1, S_2 \in S^*$) but there're no edges crossing S_1 and S_3 . In contrast, S_2 and S_4 are already **satisfied**, where we know $S_2 \notin S^*$ and $S_4 \notin S^*$ according to the 2 connectivity requirements.

Note that if we revised the aforementioned example as follow, we still have $S_2 \notin S^*$ (w.r.t. the connectivity requirement r(s, t)=1):

Initialization: Initially, we set $x_e = 0$ for each edge $e \in E$, so we have $F = \emptyset$. For each set $S \in S^*$, we set $y_S = 0$.

Iterative Procedure: In each iteration, we raise the dual variables for all the <u>active component</u> in a synchronized manner, until some edges go 'tight'. We then <u>pick one of these 'tight' edges</u> and go to the next iteration.

We stop the iterative procedure when a **primal feasible solution** F is found.

(Example 1) Consider the following graph with only 1 connectivity requirement r(s, t)=1 for Algorithm 1:

Initially, each single vertex forms a connected component. There're 2 **active components** $\{s\}$ and $\{t\}$. In the 1st iteration, we simultaneously raise the **duals** of $\{s\}$ and $\{t\}$ by 1 unit. Especially, the edge (s, t) feels 2 sets $\{s\}$ and $\{t\}$, but it isn't 'tight'. All the rest edges $\{(s, a_i)\}$ feel only 1 set $\{s\}$ and are all 'tight'.

According to **Algorithm 1**, we need to pick one of the 'tight' edges. Suppose we pick the edge (s, a_1) . Then, we have 2 **active components** $\{s, a_1\}$ and $\{t\}$. We cannot raise the **duals** for $\{s, a_1\}$ and $\{t\}$, because edges $\{(s, a_2), (s, a_3), \dots, (s, a_k)\}$ are already '**tight**'.

We need to pick one of the 'tight' edges. Suppose we pick the edge (s, a_2) . Then, we still have 2 **active components** $\{s, a_1, a_2\}$ and $\{t\}$. And we cannot raise the **duals** for them.

Finally, we pick all the edges $\{(s,a_1),(s,a_2),\cdots,(s,a_k)\}$ and still have 2 **active components** $\{s,a_1,a_2,\cdots,a_k\}$ and $\{t\}$.

In the last iteration, we raise the **duals** for $\{s, a_1, a_2, \dots, a_k\}$ and $\{t\}$ by 0.5 unit. Then, we pick the

'tight' edge (s, t). In this case, we obtain a feasible solution $F = \{(s,t), (s,a_1), (s,a_2), \dots, (s,a_k)\}$. Let

c(F) be the cost of such a feasible solution. We have c(F)=3+k, which is the **upper bound** of c(F).

For the aforementioned example, the optimal cost is $OPT_{ILP}(I)=3$, which equals the total sum of duals we raised (i.e., $2\times1+2\times0.5=3$). It's the **lower bound** of c(F) (if we pick the 'tight' edge (s, t) in the 1st iteration).

In summary, Algorithm 1 has a good lower bound but bad upper bound.

(Algorithm 2) (Modified Primal-Dual Algorithm) For the feasible solution F given by Algorithm 1, it may contain redundant edges (e.g., $\{(s,a_1),(s,a_2),\cdots,(s,a_k)\}$ in Example 1). We say an edge $e \in F$ is redundant if F- $\{e\}$ is still feasible.

All the **redundant edges** can be dropped simultaneously from F. Let F' denote the final forest after pruning, which is also the output of the **modified Primal-Dual Algorithm**.

(**Example 2**) Consider the following example graph with only 2 connectivity requirements r(s, t)=1 and r(u, v)=1:

In iteration #1, we have 4 active components $\{s\}$, $\{t\}$, $\{u\}$, and $\{v\}$. We raise the duals of $\{s\}$, $\{t\}$, $\{u\}$, and $\{v\}$ by 6. Thus, we have $y_{\{s\}}=y_{\{t\}}=y_{\{u\}}=y_{\{v\}}=6$. Edges (u, a) and (v, b) become tight. Suppose we pick the tight edge (u, a).

In iteration #2, we have 4 active components $\{s\}$, $\{t\}$, $\{u, a\}$, and $\{v\}$. Since edge (v, b) is tight, we don't raise the duals but pick the tight edge (u, a).

In iteration #3, we have 4 active components $\{s\}$, $\{t\}$, $\{u, a\}$, and $\{v, b\}$. We raise the duals of $\{s\}$, $\{t\}$, $\{u, a\}$, and $\{v, b\}$ by 2. Then, we have $y_{\{s\}} = y_{\{t\}} = 8$, $y_{\{u\}} = y_{\{v\}} = 6$, $y_{\{u, a\}} = y_{\{v, b\}} = 2$. Edge (u, s) becomes tight. We pick the tight edge (u, s).

In iteration #4, we have 3 active components $\{s, u, a\}$, $\{v, b\}$, and $\{t\}$. We raise the duals of $\{s, u, a\}$, $\{v, b\}$, and $\{t\}$ by 1. Then, we have $y_{\{s\}} = 8$, $y_{\{u\}} = y_{\{v\}} = 6$, $y_{\{t\}} = 9$, $y_{\{u, a\}} = 2$, $y_{\{v, b\}} = 3$. Edge (b, t) becomes tight. We pick the tight edge (b, t).

In iteration #5, we have 2 active components $\{s, u, a\}$ and $\{t, v, b\}$. We raise the duals of $\{s, u, a\}$ and $\{t, v, b\}$ by 1.5. Then, we have $y_{\{s\}} = 8$, $y_{\{u\}} = y_{\{v\}} = 6$, $y_{\{t\}} = 9$, $y_{\{u, a\}} = 2$, $y_{\{v, b\}} = 3$, $y_{\{s, u, a\}} = y_{\{t, v, b\}} = 1.5$. Edge (u, v) becomes tight. We pick the tight edge (u, v).

In iteration #6, there're no active components. We have a feasible forest $F = \{(s, u), (t, b), (u, v), (u, a), (v, b)\}$.

We can drop (prune) one edge (u, a) and derive a feasible forest $F' = \{(s, u), (t, b), (u, v), (v, b)\}.$

The **cost** of such a **feasible solution** is c(F')=16+20+6+12=54.

In contrast, the objective value of the **Dual LP** is $y_{\{s\}}+y_{\{u\}}+y_{\{v\}}+y_{\{t\}}+y_{\{u,a\}}+y_{\{v,b\}}+y_{\{s,u,a\}}+y_{\{t,v,b\}}+y_{\{t,v,a\}}+y_{\{t,v,b\}}+y_{\{t,v,a\}}+y_{\{t,v,b\}}+y_{\{t,v,a\}}+y_{\{t,v,b\}}+y_{\{t,v,a\}}+y_{\{t,v,b\}}+y_{\{t,v,a\}}+y_{\{t,v$

The **optimal solution** to the aforementioned SFP is $\{(u, a), (s, a), (a, b), (v, b), (t, b)\}$. Thus, the **optimal cost** of the Stiner Forest is 6+12+9+6+12=45.

Note that the approximation factor of Algorithm 2 in Example 2 is better than (\leq) 54/37. In fact, the approximation factor of Algorithm 2 is always less than or equal to 2.

(Claim 1) The Dual solution (i.e., $\{y_s \mid \forall S \in S^*\}$) and Primal solution (i.e., the picked edges) derived by Algorithm 2 are both feasible at termination.

Proof of Claim 1. In each iteration of Algorithm 2, we raise the dual variables w.r.t. active components util some edges become **tight**. We then select a tight edge and all the dual variables felt by the tight edge are frozen (i.e., will not change in the rest iterations). Hence, the **Dual solution** derived by **Algorithm 2** is feasible, i.e., $\{y_S \mid \forall S \in S^*\}$ satisfy all the tight constraints in Dual LP.

Before the **pruning step** of **Algorithm 2**, the **Primal solution** is clearly feasible, because we stop the algorithm only when all the components of the forest are inactive, i.e., all the **connectivity requirements** are satisfied.

Consider any two vertices u and v with **connectivity requirement** r(u, v)=1. There's exactly <u>one</u> <u>unique path</u> between u and v in the derived forest before the **pruning step**, because in each iteration we merge smaller components (which are forests) into a larger component, which ensures that the derived result is always a forest (<u>without any circles</u>).

In the **pruning step**, we try to <u>drop some edges while ensuring the connectivity requirements in the forest</u>, so <u>all the edges in the path between u and v will not be deleted</u>. Thus, <u>the **pruning step** does no 'damage' to the connectivity of the **Primal solution**.</u>

In summary, the **Primal solution** derived by **Algorithm 2** is also feasible.

(**Theorem 1**) Let $OPT_{SFP}(I)$ be the cost of optimal Steiner forest. Let F' be the final Stiner forest given by **Algorithm 2** (i.e., after the pruning step) and cost(F') be the cost of F'. The approximation ratio of **Algorithm 2** satisfies

$$\frac{cost(F')}{OPT_{SFP}(I)} \le 2.$$

Proof of Theorem 1. By the Weak Duality Theorem, we have

$$\sum_{S \in S^*} y_S \leq OPT_{SFP}(I) \cdot$$

Let Δ_i be the **amount** by which the **dual variable** of each **active component** is raised in the *i*-th iteration. Let c_i be the number of **active components** in the *i*-th iteration. For the dual variables, we also have

$$\sum_{S \in S^*} y_S = \sum_i \Delta_i \times c_i .$$

Let d_i be the sum of **degree** of all **active components** in the *i*-th iteration and \overline{d}_i be the **average degree** of all **active components** in the *i*-th iteration. For the cost of F, we have

$$cost(F') = \sum_{i} (\Delta_{i} \times d_{i}) = \sum_{i} (\Delta_{i} \times \overline{d}_{i} \times c_{i})$$

Note that a tree with n vertices has (n-1) edges. Thus, the average degree of a tree is

$$\frac{2(n-1)}{n} = 2 - \frac{2}{n} < 2$$

Further, for a **forest** with *n* vertices has at most (\leq) (n-1) edges. Thus, the average degree of a forest is also less than 2. Such a condition also holds for connected components in a forest.

In the *i*-th iteration of **Algorithm 2**, there may be both **active components** and **inactive components**. Consider the special case when **inactive components** could be 'leaves':

In this case, the <u>average degree</u> of all <u>active components</u> will not be less than 2. Note that the edges connected to these **inactive 'leaves'** will be deleted in the pruning step. Thus, we can ensure that $\bar{d}_i < 2$.

For the cost of F, we further have

$$cost(F') = \sum_{i} (\Delta_{i} \times \overline{d}_{i} \times c_{i}) < \sum_{i} (2\Delta_{i} \times c_{i}) = 2\sum_{S \in S^{*}} y_{S}$$

Since we already have $\sum_{S \in S^*} y_S \leq OPT_{SFP}(I)$, we can derive an upper bound of the **approximation**

ratio of Algorithm 2:

$$\frac{cost(F')}{OPT_{\text{SFP}}(I)} < \frac{2\sum_{S \in S^*} y_S}{OPT_{\text{SFP}}(I)} = \leq \frac{2 \cdot OPT_{\text{SFP}}(I)}{OPT_{\text{SFP}}(I)} = 2 \cdot \frac{1}{OPT_{\text{SFP}}(I)} = \frac{1}{O$$

Notes: Suppose in the *i*-th iteration of **Algorithm 2**, we have the following connected components (including **active** and **inactive** components):

The total degree of active components is 1+1+1+3+1+1=8. We simultaneously raise the duals of all the active components (by Δ_i) until some edges become tight, e.g., (u, v).