Parametrics Test

- 1. At time $t \ge 0$, a particle moving in the xy-plane has velocity vector given by $v(t) = \langle t^2, 5t \rangle$.
 - 1. What is the acceleration vector of the particle at time t = 3?
 - 2. What is the speed of the particle at time t = 2?
 - 3. If the initial position at time t=0 is (1,2), find the position of the particle at time t=4
 - 4. What distance is covered by the particle from time t = 0 to time t = 4?
- 2. Write an integral expression for the length of the path described by $x(t) = \sin(t^3)$ and $y(t) = e^{3t}$ from t = 0 to $t = \pi$
- 3. The position of a particle moving in the xy-plane is given by the vector $\langle 4t^3, y(2t) \rangle$ At time $t = \frac{1}{2}$, what is the acceleation vector of the particle?
- 4. If $x(t) = t^2 + 4$ and $y(t) = t^4 + 3$ for any t > 0 then what is $\frac{d^2y}{dx^2}$ in terms of t?
- 5. A particle moves in the xy-plane so that its position for $t \ge 0$ is given by $x(t) = \ln(t+1)$ and $y = kt^2$, for some positive constant k. The tangent line to the particle's path at the point where t = 3 has slope 8. What is the value of k?
- 6. A particle moves on a plane curve such that at any time t > 0, its x-coordinate is $t t^2 + t^3$ while its y-coordinate is $(2 t^2)^2$. Find the magnitude of the particle's acceleration at t = 1.
- 7. The position of an object moving in the xy-plane with position function $f(t) = \langle 1 + \sin t, t + \cos t \rangle$, for t > 0. What is the maximum speed attained by the object?
- 8. A particle moves along the path $f(t) = \langle 2t^{3/2}, 3t 1 \rangle$, for $t \ge 0$. What is the average speed (average rate of change) of the particle from time t = 0 to time t = 3?
- 9. If $x(t) = 3t^2 4$ and $y(t) = e^{2t} 1$, write y as a function of x when $t \ge 2$.
- 10. Using the fifth-degree Taylor polynomial for $\sin x$, what is the error in approximating $\sin(1)$ by $P_5(1)$? That is, give an upper bound on $|P_5(1) \sin(1)|$.