GPU Parallel Programming: CUDA Summary

National Tsing-Hua University 2017, Summer Semester

Outline

- **■** Execution
- Memory
- Synchronization
- Stream

CUDA program framework

GPU code (parallel)

CPU code (serial or parallel if p-thread/ OpenMP/T BB/MPI is used.)

```
#include <cuda_runtime.h>
  global void my_kernel(...) {
int main() {
   cudaMalloc(...)
   cudaMemcpy(...)
      my_kernel<<<nblock,blocksize>>>(...)
   cudaMemcpy(...)
```


Function qualifiers	limitations
device function	
globalfunction	
host function	
Functions without qualifiers	
host devicefunction	

Function Qualifiers

Function qualifiers	limitations
device function	Executed on the device Callable from the device only
globalfunction	Executed on the device Callable from the host only (must have void return type!)
host function	Executed on the host Callable from the host only
Functions without qualifiers	Compiled for the host only
host devicefunction	Compiled for both the host and the device

CUDA Programming Terminology

- Host?
- Device?
- Kernel?
- Thread?
- Block is a group of what?
- Grid is a group of what?

CUDA Programming Terminology

■ Host : CPU

Device : GPU

Kernel: functions executed on GPU

Thread: the basic execution unit

■ Block : a group of threads

■ Grid: a group of blocks

- Threads are grouped into thread blocks
 - Kernel = gird of thread blocks
 - > Each thread has a unique threadIdx and blockIdx identifier

Thread and Block IDs

- Build-in device variables
 - threadIdx; blockIdx; blockDim; gridDim
- The index of threads and blocks can be denoted by a 3 dimensional struct
 - > dim3 defined in vector_types.h
 struct dim3 { x; y; z; };
- Example:

```
b dim3 grid(3, 2);
b dim3 blk(5, 3);
b my_kernel<<< grid, blk >>>();
```

 Each thread can be uniquely identified by a tuple of index (x,y) or (x,y,z)

Q: When will we use multi-dimensional index?

Thread and Block IDs

// Kernel definition

How to index a 100 elements of an array under the following kernel launch setting?

```
int i =
A[i] = A[i] + 1;
}

my_kernel <<< 1, 100 >>>(A);
my_kernel <<< 100, 1 >>>(A);

my_kernel <<< 100, 1 >>>(A);

my_kernel <<< 10, 10 >>>(A);

size=10; dim3 blk(size, size);
```

my kernel < < 1, blk >>>(A, size);

__global__ void VecAdd(float* A)

м

Thread and Block IDs

How to index a 100 elements of an array under the following kernel launch setting?

```
// Kernel definition
__global__ void VecAdd(float* A)
{
    int i = ____
    A[i] = A[i] + 1;
}
```

```
1. my_kernel <<< 1, 100 >>>(A); → inti=threadIdx;
2. my_kernel <<< 100, 1 >>>(A); → inti=blockIdx;
3. my_kernel <<< 10, 10 >>>(A);
  → inti=blockIdx*blockDim+threadIdx;
4. size=10; dim3 blk(size, size);
  my_kernel <<< 1, blk >>>(A, size);
  → inti=threadIdx.x*blockDim.x+threadIdx.y;
```


- Software: grid(kernel), blocks, threads
- Hardware: GPU(device), SM(multicore processor), core

- Can a kernel run on two different devices at the same time?
- Can a kernel run across multiple SM processors?
- Can the threads from a same block run across multiple SM processors?
- What is the difference between the two kernals below?

```
    my_kernel<<< 1, 100 >>>(A);
    my kernel<<< 100, 1 >>>(A);
```

- Wshared block memory can only be accessed by the threads in the same blocks?
- Why __syncthreads() is not supported across blocks?

- Can a kernel run on two different devices at the same time?
 No
- Can a kernel run across multiple SM processors? Yes
- Can the threads from a same block run across multiple SM processors? No
- What is the difference between the two kernals below?

```
    my_kernel<<< 1, 100 >>>(A);
    my kernel<<< 100, 1 >>>(A);
```

- Why shared block memory can only be accessed by the threads in the same blocks?
- Why __syncthreads() is not supported across blocks?

The actual software running instances to hardware computing unit mapping is done by the hardware thread execution manager at runtime

15

Block Level Scheduling

- Blocks are independent to each other to give scalability
 - A kernel scales across any number of parallel cores by scheduling blocks to SMs

Thread Level Scheduling - Warp

- Inside the SM, threads are launched in groups of 32, called warps
 - Warps share the control part (warp scheduler)
 - At any time, only one warp is executed per SM
 - Threads in a warp will be executing the same instruction (SIMD)
- In other words ...
 - Threads in a wrap execute physically in parallel
 - Warps and blocks execute logically in parallel
 NTHULSALab

м

Thread Level Scheduling - Warp

- Hardware implements zero-overhead Warp scheduling
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - > Wraps are switched when memory stalls
- There are limited number of active blocks & warps
 - Maximum number of active blocks per SM is 8 (Fermi)
 - Maximum number of active warps per SM is 48 (Fermi)
 - Maximum number of active threads per SM is 48*32=1,536

18

- Does the kernel below have to run on 10 different SM processors?
 - my_kernel<<< 10, 10 >>>();
- Can multiple blocks run on a single SM processors?
- If a SM only has 128 cores, does it mean there can only be 128 active threads on the SM?
- Why we have to call __syncthreads() within a block if there are data dependency between statements
 - A[threadIdx] = threadIdx; A[threadIdx] += A[threadIdx/2];
- Why branch will cause divergence?
 - If (A[threadIdx] > 0) A[threadIdx]=1; else A[threadIdx]=-1;

100

- Does the kernel below have to run on 10 different SM processors? No
 - my_kernel<<< 10, 10 >>>();
- Can multiple blocks run on a single SM processors? Yes
- If a SM only has 128 cores, does it mean there can only be 128 active threads on the SM? No
- Why we have to call __syncthreads() within a block if there are data dependency between statements
 - A[threadIdx] = threadIdx;
 - A[threadIdx] += A[threadIdx/2];
- Why branch will cause divergence?
 - If (A[threadIdx] > 0) A[threadIdx]=1; else A[threadIdx]=-1;

Outline

- Execution
- Memory
- Synchronization
- Stream

Outline

- Execution
- Memory
- Synchronization
- Stream

CUDA program flow

Q: Why we have to copy the memory content?

GPU Servers

Device pointer & host pointer are in two different address space!

- Device memory is controlled by GPU
 - Must use device pointer
- Host memory is controlled by CPU
 - Must use host pointer
- Zero copy can allow GPU directly access host memory, but GPU still use the device pointer not host pointer

- Registers
- Shared memory
- Global/Local memory (DRAM)
- **Constant memory**

NTHU LSA Lab

CUDA Variables within a Kernel

Local variable

Shared variable

Global variable

Register

Local Memory Shared Memory Global Memory Constant Memory

GPU Memory Hierarchy

Q: What is the data scope of each variable, and what is the mapping between software and hardware?

CUDA Variables within a Kernel

GPU Memory Hierarchy

Q: What is the data scope of each variable, and what is the mapping between software and hardware?

27

Outline

- Execution
- Memory
 - ➤ Local variable
 - ➤ Global variable
 - > Shared variable
- Synchronization
- Stream

Local Variable: Register vs Local Memory

- A local variable declared in a kernel function can be reside in **register** (on chip memory) or **local memory** (off chip memory). What are the differences between them?
 - When will a local variable be stored in local memory? (hint: only in 2 situations)

```
__global___ void distance(int *m, int *n, int *V){
    int i, j, k;
    int a[10], b[10], c[10];
}
```

Q: Where are the variables (i, j, k, a, b, c, m, n, V) stored (register, local memory, global memory, shared memory)?

Local Memory

Q: What is register pressure?

- Name refers to memory where registers and other thread-data (array) is spilled
 - > Runs out of SM resources due to register pressure
 - Registers aren't indexable, so arrays have to be placed in local memory
 - "Local" because each thread has its own private access scope
- Details:
 - Not really a "memory" bytes are stored in global memory(DRAM)Q: Where is L1 cache?
- Differences from global memory:
 - Addressing is resolved by the compiler
 - > Stores are cached in L1

Register Pressure

- Too few threads
 - can't hide pipeline / memory access latency
- Too many threads
 - register pressure
 - Limited number of registers among concurrent threads
 - > Limited shared memory among concurrent blocks

Register file Thread 0
Thread 1
Thread 2
Thread 3

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8
Thread 9
Thread 10
Thread 11
Thread 12
Thread 13
Thread 14
Thread 15

Memory Cache

- L1 & L2 are used to cache local memory contents
 - > L1: On chip memory. Same as share memory
 - Programmers can decide the ratio of shared memory and L1 cache
 - > L2: Off chip memory Cache. Same as global memory

■ Coalesced access addresses from a warp

Prefer linear and aligned memory access pattern

Unaligned sequential addresses that fit into two 128byte L1-cache lines

Outline

- Execution
- Memory
 - > Local variable
 - ➤ Global variable
 - > Shared variable
- Synchronization
- Stream

Global Variable: Global Memory vs Constant Memory

■ What are the two key differences between them?

Global Variable: Global Memory vs Constant Memory

- What are the two key differences between them?
 - Constant memory is read only
 - Constant memory can be cached

How to Allocate Device (Global) Memory

- 1. cudaMalloc(void **devPtr, size_t size)
 - devPtr: return the address of the allocated memory on device
 - size: the allocated memory size (bytes)

NTHU LSA Lab 37

- cudaMemcpy(void *dst, const void *src, size_t count, enum cudaMemcpyKind kind)
 - count: size in bytes to copy

cudaMemcpyKind	Meaning	dst	src
cudaMemcpyHostToHost	Host → Host	host	host
cudaMemcpyHostToDevice	Host → Device	device	host
cudaMemcpyDeviceToHost	Device → Host	host	device
cudaMemcpyDeviceToDevice	Device → Device	device	device

host to host has the same effect as memcpy()

Complier does not distinguish between the device pointer & host pointer. You have to check by yourself very carefully.

NTHU LSA Lab

38

Copy 3 Int between Device & Host

```
int main(void) {
  int a=1, b=2, c; // host copies of a, b, c
  int *d_a, *d_b, *d_c; // device copies of a, b, c
  // Allocate space for device copies of a, b, c
  cudaMalloc((void **)&d_a, sizeof(int));
  cudaMalloc((void **)&d_b, sizeof(int));
  cudaMalloc((void **)&d_c, sizeof(int));
  // Copy inputs to device
  cudaMemcpy(d_a,&a,sizeof(int),cudaMemcpyHostToDevice);
  cudaMemcpy(d_b,&b,sizeof(int),cudaMemcpyHostToDevice);
  // Launch add() kernel on GPU
  add<<<1,1>>>(d_a, d_b, d_c);
  // Copy result back to host
  cudaMemcpy(&c, d_c, sizeof(int), cudaMemcpyDeviceToHost);
  // Cleanup
  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
  return 0;
```


Asynchronous Global Memory Copy

cudaMemcpyAsync: the host memory must be pinned using cudaMallocHost() or cudaHostAlloc() with the flag cudaHostAllocMapped

```
int main(void) {
                                If host memory is not pinned, error may occur at
   int *in, out;
                                 runtime when the memory is swapped by OS
   int *d_in, *d_out;
   cudaMallocHost(&in, sizeof(int));
   int* = 1;
   cudaMalloc((void **)&d_in, sizeof(int));
   cudaMalloc((void **)&d_out, sizeof(int));
   cudaMemcpyAsync(d_in,in,sizeof(int), cudaMemcpyHostToDevice);
   add<<<1,1>>>(d_in, d_out);
   cudaMemcpyAsync(&out, d_out, sizeof(int),
cudaMemcpyDeviceToHost);
   cudaFree(d_in); cudaFree(d_out);
   return 0;
```

4C

Host Memory Constant Memory

Use cudaMemcpyToSymbol() & cudaMemcpyFromSymbol()

```
__constant__ int constData[100];
int main(void) {
   int A[100];
   cudaMemcpyToSymbol(constData, A, sizeof(A));
   add<<<grid_size,blk_size>>>();
   cudaMemcpyFromSymbol(A, constData, sizeof(A));
}
__global__ kernel() {
   int v = constData[threadIdx];
}
```


Page-Locked Data Transfers (Zero-copy)

- "Zero-copy" refers to direct device access to host memory
 - Device threads can read directly from host memory over PCI-e without using cudaMemcpy H2D or D2H

Q: What are the two purposes of using zero-copy?

NTHU LSA Lab

42

Page-Locked Data Transfers (Zero-copy)

- "Zero-copy" refers to direct device access to host memory
 - Device threads can read directly from host memory over PCI-e without using cudaMemcpy H2D or D2H

Q: What are the two purposes of using zero-copy?

Ans: (1) avoid the overhead of memory copy

(2) used as a shared memory between 2 GPU devices

NTHU LSA Lab

43

10

Page-Locked Data Transfers (Zero-copy)

- Allocate host memory using cudaHostAlloc()
 - It returns a host pointer. It can enable faster host memory access.
 - Must add flag cudaHostAllocMapped for page-locked
 - Add flag cudaHostAllocPortable for sharing among all devices
- Bind host pointer to device pointer using cudaHostGetDevicePointer(void**, void*, 0)

cudaHostAlloc()vs cudaMallocHost()

- Both allocate memory on host
 - cudaMalloc() allocate memory on device
- Page-locked
 - cudaMallocHost() pins memory by default
 - cudaHostAlloc() has to use the flag cudaHostAllocMapped to pin the memory
- Page-shared
 - cudaMallocHost() doesn't support
 - cudaHostAlloc()has the flag cudaHostAllocPortable

*cudaHostAlloc() is only supported after CUDA2.2

Outline

- Execution
- Memory
 - > Local variable
 - ➤ Global variable
 - > Shared variable
- Synchronization
- Stream

Shared Variable: Shared Memory

- What is the difference between shared memory and global memory?
 - Data scope?
 - ➤ Speed?
 - ➤ Size?

Using Shared Memory for Optimization

```
__global__ void FW_APSP(int k, int D[n][n]) {
    int i = threadIdx.x;
    int j = threadIdx.y;
    if (D[i][j]>D [i][k]+D[k][j])
        D[i][j]= D[i][k]+D[k][j];
}
Q: How many global memory accesses?
```

```
extern __shared__ int S[][];
__global__ void FW_APSP(int k, int D[n][n]) {
    int i = threadIdx.x;
    int j = threadIdx.y;
    S[i][j]=D[i][j]; // move data to shared memory
    __syncthreads();
    // do computation
    if (S[i][j]>S[i][k]+S[k][j])
        D[i][j]= S[i][k]+S[k][j];
}
```


Using Shared Memory for Optimization

```
__global__ void FW_APSP(int k, int D[n][n]) {
    int i = threadIdx.x;
    int j = threadIdx.y;
    if (D[i][j]>D[i][k]+D[k][j])
        D[i][j]= D[i][k]+D[k][j];
}
Q: Why only move 1 element, and need sync?
```

```
extern __shared__ int S[][];
__global__ void FW_APSP(int k, int D[n][n]) {
    int i = threadIdx.x;
    int j = threadIdx.y;
    S[i][j]=D[i][j]; // move data to shared memory
        __syncthreads();
    // do computation
    if (S[i][j]>S[i][k]+S[k][j])
        D[i][j]= S[i][k]+S[k][j];
}
```


When to Synchronize between Threads

When there is data dependency between threads, __syncthreads() is required

```
__global___ void FW_APSP(int* A, int* B) {
    int i = threadIdx;
    __shared__ S[10];
    S[i] = A[i];
    // do computation
    int V = S[i] + S[i+1];
    S[10-i] = V;
    B[i]=V;
    Q: Where to add __syncthreads()?
}
```


When to Synchronize between Threads

When there is data dependency between threads, __syncthreads() is required

```
__global___ void FW_APSP(int* A, int* B) {
    int i = threadIdx;
    __shared__ S[10];
    S[i] = A[i];
    __syncthreads();
    // do computation
    int V = S[i] + S[i+1];
    __syncthreads();
    S[10-i] = V;
    B[i]=V;
}
```


Using Shared Memory for Optimization

```
__global___ void FW_APSP(int k, int D[n][n]) {
    int i = threadIdx.x;
    int j = threadIdx.y;
    if (D[i][j]>D[i][k]+D[k][j])
        D[i][j]= D[i][k]+D[k][j];
}
Q: Why declare shared variable using extern?
```

```
extern __shared__ int S[][];
__global__ void FW_APSP(int k, int D[n][n]) {
    int i = threadIdx.x;
    int j = threadIdx.y;
    S[i][j]=D[i][j]; // move data to shared memory
    __syncthreads();
    // do computation
    if (S[i][j]>S[i][k]+S[k][j])
        D[i][j]= S[i][k]+S[k][j];
}
```


Dynamic Allocate Shared Memory

- Use extern variable, and 3rd kernel launch argument
- Limitation: All shared variables point to the same memory buffer address

```
extern _ shared_ int S[];
 global void FW APSP(int* k, int* D, int* n) {
    int i = threadIdx.x;
    int j = threadIdx.y;
   S[i*(*n)+j]=D[i*(*n)+j]; //move data to shared memory
   __syncthreads();
   // do computation
    if (S[i*(*n)+j]>S[i*(*n)+k]+S[k*(*n)+j])
        D[i*(*n)+j] = S[i*(*n)+k]+S[k*(*n)+j];
              Q: Why the massy index for shared variable?
void main(){
   FW_APSP<<<1,n*n, n*n*sizeof(int)>>>(...);
```


Address Issue of Dynamic Allocation

If you have multiple extern declaration of shared:

```
extern __shared__ float As[];
extern __shared__ float Bs[];
this will lead to As pointing to the same address as Bs.
```

■ Solution: keep As and Bs inside the 1D-array.

```
extern ___shared___ float smem[];
```

- Need to do the memory management yourself
 - > When calling kernel, launch it with size of sAs+sBs, where sAs and sBs are the size of As and Bs respectively.
 - When indexing elements in As, use smem[0:sAs-1];
 when indexing elements in Bs, use smem[sAs:sAs+sBs].

Shared memory address translation

■ Mul<<<1, N, N>>>(A, B, C, N); //C=A*B
The third parameter is the size of shared memory.

```
extern __shared__ int S[];
inline int Addr(int matrixIdx, int i, int N) {
    return (N*matrixIdx + i);
 global void Mul(int* A, int* B,int* C, int* N) {
    int i = threadIdx.x;
   //move data to shared memory
   S[Addr(0, i)]=A[i];
    S[Addr(1, i)]=B[i];
   syncthreads();
   // do computation
    C[i]=S[Addr(0, i)]*S[Addr(1, i)];
```


Static Shared Memory Allocation

■ Mul<<<1, N>>>(A, B, C); //C=A*B
The third parameter is the size of shared memory.

```
global__ void Mul(int* A, int* B,int* C) {
  int N=10;
  int i = threadIdx.x;
 static int SA[10]; //static allocation
 static int SB[10]; //static allocation
 //move data to shared memory
  SA[i]=A[i];
  SB[i]=B[i];
 syncthreads();
  // do computation
  C[i]=SA[i]*SB[i];
```


Summary of CUDA Variables in Kernel

Static Variable declaration	Memory	Scope	Lifetime	Speed	Total # of variables	Visible by # of threads
int var	Register	Thread	Thread	1x	100,000	1
<pre>int array_var[10]</pre>	Local	Thread	Thread	100x	100,000	1
shared int shared_var	Shared	Block	Block	1x	100	100
device int global_var	Global	Grid	Арр	100x	1	100,000
constant_ int constant_var	Constant	Grid	Арр	1x	1	100,000

NTHU LSA Lab

Outline

- Execution
- Memory
- Synchronization
- Stream

What does asynchronous function mean in CUDA programming?

NTHU LSA Lab

- What does asynchronous function mean in CUDA programming?
 - Functions that can facilitate concurrent execution between host and device
 - Control is returned to the host thread before the device has completed the requested task

- What does asynchronous function mean in CUDA programming?
 - Functions that can facilitate concurrent execution between host and device
 - Control is returned to the host thread before the device has completed the requested task

Prog. void main() { kernel1<<1,1>>(); // need 10s kerne2<<1,1>>(); // need 10s cpu_method(); // need 20s } cpu

kernel1 kernel2

61

GPU

NTHU LSA Lab

- What are the asynchronous functions?
 - kernel launch?
 - cudaMemcpy?
 - cudaMemcpyAsync?
 - cudaMalloc?
 - cudaFree?
 - cudaEventRecord?
 - cudaEventElapsedTime?

- What are the asynchronous functions?
 - kernel launch? Yes
 - cudaMemcpy? No
 - cudaMemcpyAsync? Yes
 - > cudaMalloc? No
 - cudaFree? No
 - cudaEventRecord? Yes
 - cudaEventElapsedTime? Yes

- Check CUDA API reference.
- Think about whether the operations need to involve both CPU and GPU cooperation together.

 Overlap CPU computation with the GPU computation or data transfer

```
void main() {
  cudaMemcpy ( /**/, H2D );
  kernel2 <<< grid, block>>> ();
  kernel3 <<< grid, block>>> ();
  cudaMemcpy ( /**/, D2H );
  cpu_method();
}
```

```
H2D memcpy

kernel1

kernel2

H2D memcpy

cpu_method()
```

GPU

CPU

Q: How to overlap the time?

H2D memcpy

cpu_method()

kernel1

kernel2

H2D memcpy 64

 Overlap CPU computation with the GPU computation or data transfer

```
void main() {
  cudaMemcpy ( /**/, H2D );
  kernel2 <<< grid, block>>> ();
  kernel3 <<< grid, block>>> ();
  cudaMemcpyAsync ( /**/, D2H );
  cpu_method();
}
```


 Overlap CPU computation with the GPU computation or data transfer

```
void main() {
  cudaMemcpy ( /**/, H2D );
  kernel2 <<< grid, block>>> ();
  kernel3 <<< grid, block>>> ();
  cpu_method();
  cudaMemcpy ( /**/, D2H );
}
```


 Overlap CPU computation with the GPU computation or data transfer

```
void main() {
  cudaMemcpy ( /**/, H2D );
  kernel2 <<< grid, block>>> ();
  cpu_method();
  kernel3 <<< grid, block>>> ();
  cudaMemcpy ( /**/, D2H );
}
```


Programmer must enforce synchronization between GPU and CPU when there is data dependency

```
void main() {
  cudaMemcpyAsync ( d_a, h_a, count, H2D );
  kernel <<< grid, block>>> (d_a);
  cudaMemcpyAsync ( h_a, d_a, count, D2H );
  cpu_method(h_a);
}
```

Q: Is it correct? What's wrong?

Programmer must enforce synchronization between GPU and CPU when there is data dependency

```
void main() {
  cudaMemcpyAsync ( d_a, h_a, count, H2D );
  kernel <<< grid, block>>> (d_a);
  cudaMemcpyAsync ( h_a, d_a, count, D2H );
  cpu_method(h_a);
}
```

Q: Is it correct? What's wrong? Ans: "h_a" has data dependency

NTHU LSA Lab

Programmer must enforce synchronization between GPU and CPU when there is data dependency

```
void main() {
    cudaEventRecord(start);
    kernel<<<block, thread>>>();
    cudaEventRecord(stop);
    cudaEventElapsedTime(&time, start, stop);
}
```

Q: Is it correct? What's wrong?

Programmer must enforce synchronization between GPU and CPU when there is data dependency

```
void main() {
    cudaEventRecord(start);
    kernel<<<block, thread>>>();
    cudaEventRecord(stop);
    cudaEventElapsedTime(&time, start, stop);
}
```

Q: Is it correct? What's wrong?

Ans: "stop" has data dependency

M

How to Synchronize CPU & GPU?

- **Device based:** cudaDeviceSynchronize()
 - > Block a CPU thread until all issued CUDA calls to a device complete
- Context based: cudaThreadSynchronize()
 - > Block a CPU thread until all issued CUDA calls from the thread complete
- Stream based: cudaStreamSynchronize(stream-id)
 - Block a CPU thread until all CUDA calls in stream stream-id complete
- Event based:
 - cudaEventSynchronize (event)
 - Block a CPU thread until event is recorded
 - cudaStreamWaitEvent (steam-id, event)
 - Block a GPU stream until event reports completion


```
void main() {
  cudaSetDevice(0);
  kernel1 <<< grid, block>>> ();
  kernel2 <<< grid, block>>> ();
  cudaSetDevice(1);
  kernel3 <<< grid, block>>> ();
  cudaDeviceSynchronize()
  cpu_method();
}
```

Q: What happens?


```
void main() {
cudaSetDevice(0);
kernell <<< grid, block>>> ();
kernel2 <<< grid, block>>> ();
cudaSetDevice(1);
kernel3 <<< grid, block>>> ();
cudaDeviceSynchronize()
cpu_method();
        Q: What happens?
                 GPU0
                                GPU1
   CPU
                  kernel1
                                 kernel3
                  kernel2
 cpu_method()
```

NTHU LSA Lab


```
void main() {
  cudaSetDevice(0);
  kernel1 <<< grid, block>>> ();
  kernel2 <<< grid, block>>> ();
  cudaSetDevice(1);
  kernel3 <<< grid, block>>> ();
  cudaThreadSynchronize()
  cpu_method();
}
```

Q: What happens?


```
void main() {
cudaSetDevice(0);
kernell <<< grid, block>>> ();
kernel2 <<< grid, block>>> ();
cudaSetDevice(1);
kernel3 <<< grid, block>>> ();
cudaThreadSynchronize()
cpu_method();
        Q: What happens?
                 GPU0
                                GPU1
   CPU
                 kernel1
                                kernel3
                 kernel2
```

cpu_method()

NTHU LSA Lab

76


```
void main() {
  cudaSetDevice(0);
  kernel1 <<< grid, block>>> ();
  cudaEventRecrod(event)
  kernel2 <<< grid, block>>> ();
  cudaSetDevice(1);
  kernel3 <<< grid, block>>> ();
  cudaEventSynchronize (event)
  cpu_method();
}

  Q: What happens?
```



```
void main() {
cudaSetDevice(0);
kernel1 <<< grid, block>>> ();
cudaEventRecrod(event)
kernel2 <<< grid, block>>> ();
cudaSetDevice(1);
kernel3 <<< grid, block>>> ();
 cudaEventSynchronize (event)
cpu_method();
                 Q: What happens?
   CPU
                 GPU0
                                GPU1
                  kernel1
                                 kernel3
                  kernel2
 cpu_method()
```


Outline

- Execution
- Memory
- Synchronization
- Stream

CUDA Function Execution on GPU

 All the CUDA functions (regardless asynchronous or not) issued from the same CPU thread on the same device is serialized and executed in order

```
void main() {
  cudaMemcpyAsync (/**/, H2D);
  kernel1 <<< grid, block>>> ();
  cpu_method();
  cudaMemcpyAsync (/**/, D2H);
  cudaEventRecrod(event)
  kernel2 <<< grid, block>>> ();
}
```


CUDA Function Execution on GPU

CUDA functions from different CPU threads/processes
 can always be executed in parallel as long as the
 device has sufficient resources

GPU

<pre>#pragma omp parallel</pre>		
<pre>{ kernel <<< grid, block>>> (); }</pre>		
}		

kernel	kernel	kernel
(thread1)	(thread2)	(thread3)
kernel	kernel	kernel
(thread4)	(thread5)	(thread6)

.

CUDA Function Execution on GPU

CUDA functions issued from the same CPU thread, but on different devices can be executed at the same time

```
for(int i=0; i<3; i++) {
  cudaSetDevice(i);
  kernel <<< grid, block>>> ();
}
```


CUDA Streams

- CUDA Stream is a technique to overlap the execution of a kernel, and hide data transfer delay from computations
 - Operations in different streams can be interleaved and, when possible, they can even run concurrently
 - Operations in the same stream are still serialized and executed in order
- Consider a kernel process a huge dataset
 - Without stream, the kernel computation can only start after the dataset is transferred

With stream, we can partition the dataset, assign each partition to a stream, and execute them in a pipeline

CUDA Streams

- kernel launch
 - kernel<<<grid,block,0,stream-id>>>(/*...*/);
- Stream-id must be allocated and destroyed
 - cudaStream_t *stream;
 - cudaStreamCreate(&stream);
 - cudaStreamDestroy(stream);
- Memory copy can be either synchronous or asynchronous. But synchronous memcpy prevents streams from running in parallel
- If asynchronous copy is used, host memory must be pinned

CUDA Streams

```
cudaStream t stream[2];
cudaStreamCreate(&stream[0]);
cudaStreamCreate(&stream[1]);
cudaMallocHost(&hostPtr, 2 * size); // pined(page)
locked mem)
for (int i = 0; i < 2; ++i) {
  cudaMemcpyAsync(/*...*/, // async memcpy
     cudaMemcpyHostToDevice, stream[i]);
  kernel <<<100,512,0,stream[i]>>>(/*...*/);
  cudaMemcpyAsync(/*...*/,
     cudaMemcpyDeviceToHost, stream[i]);
cudaStreamDestroy(stream[0]);
cudaStreamDestroy(stream[1]);
```


CUDA Stream Synchronization

 Operations in different streams can be interleaved and, when possible, they can even run concurrently

Operations in the same stream are still serialized and executed in order

```
cudaMemcpyAsync(d_A, A, H2D, stream[0]);
cudaMemcpyAsync(d_B, B, H2D, stream[0]);
kernel<<<n,m,0,stream[0]>>>(d_A, d_B, d_C);
cudaEventRecord(event, stream[0]);
cudaMemcpyAsync(C, d_C, D2H, stream[0]);
cudaMemcpyAsync(d_D, D, H2D, stream[1]);
cudaStreamWaitEvent ( stream[1], event );
kernel<<<n,m,0,stream[1]>>>(d_C, d_D, d_E);
cudaMemcpyAsync(E, d_E, D2H, stream[1]);
cudaDeviceSynchronize()
print(E);
```


NTHU LSA Lab

stream1