Mini Project # 1

Name: Niveditha Varadha Chandrasekaran

Section 1

Given:

A program is divided into 3 blocks that are being compiled on 3 parallel computers. Each block takes an Exponential amount of time, 5 minutes on the average, independently of other blocks.

Steps:

Let X1, X2 and X3 be the random variables representing the first, second and third block of the program respectively and X be the variable representing the time taken to compile the whole program.

<u>Step 1:</u> The block compilation times X1, X2 and X3 follow an exponential distribution, where lambda is given as 0.2 (1/5). Simulate X1, X2 and X3 by using rexp() function and compute the time taken to compile the whole program, i.e. X = max(X1, X2, X3).

<u>Step 2:</u> Repeat step 1 for 10000 times (N = 10000) to get 10,000 draws from the distribution of X and construct a histogram of X and superimpose the theoretical density function of X using curve() function.

Theoretical density function of X:

$$f(x) = 3\lambda(1 - e^{-\lambda x})^2 e^{-\lambda x}$$

<u>Step 3:</u> Use step 2 and calculate the mean of X given by Mean(X) and variance of X given by Var(X) and calculate the value of $E(X^2)$ using the formula $E(X^2) = Var(X) + [Mean(X)]^2$.

<u>Step 4:</u> Compare the estimated value of $E(X^2)$ from the simulation with the theoretical value of $E(X^2)$ which is given as 118.1962.

Section 2

1. Simulate the block compilation times X1, X2 and X3. Use the simulated values to simulate X, the compilation time of the whole program.

$$E(X) = 1/\lambda$$

Given: $E(X) = 5$
 $\lambda = 1/E(X) = 1/5 = 0.2$

Time taken by the first module to be complied:

$$X1 = rexp(1, 0.2)$$

Time taken by the second module to be complied:

X2 = rexp(1, 0.2)

Time taken by the third module to be complied:

X3 = rexp(1, 0.2)

Then time taken by the whole program to be compiled:

 $X = \max(X1, X2, X3)$

The R code is given in Section 3.

2. Repeat the previous step 10,000 times. This will give you 10,000 draws from the distribution of X.

Consider N = 10000, use the replicate function to get the distribution of X.

The R code is given in Section 3.

3. Make a histogram of the draws of X. Superimpose the theoretical density function of X. Try using the R function `curve' for drawing the density. Note what you see.

The R code is given in Section 3.

Form the figure below, X follows Normal Distribution with the curve skewed to the right.

The Density function of X is:

$$f(x) = 3\lambda(1 - e^{-\lambda x})^2 e^{-\lambda x}$$

Histogram of X for 10000 draws

4. Use the draws to estimate $E(X^2)$. Compare your answer with the exact answer of $E(X^2)$. Note what you see.

The R code is given in Section 3.

The given theoretical value for E(X²) is 118.1962

The value of $E(X^2)$ estimated from the simulation using the formula $E(X^2) = Var(X) + [Mean(X)]^2$ is: 116.2526

The estimated value varies from the theoretical value of $E(X^2)$.

5. Repeat the process of obtaining an estimate of E(X²) five times. Compare each estimate with the exact value. Note what you see.

Attempts	1	2	3	4	5
E(X ²)	116.2526	118.3709	116.9677	119.0796	117.2117

Since the value n (= 10000) is large the estimated value is closer to the theoretical value for each time the experiment is repeated.

6. Comment on how your results would change if you use 1,000 Monte Carlo replications instead of 10,000. What if you use 100,000 replications? Justify your answers.

N = 1000

Attempts	1	2	3	4	5
E(X ²)	113.3796	125.2162	112.2896	118.934	122.6561
N = 100000					
Attempts	1	2	3	4	5
E(X ²)	118.4143	118.0157	118.0954	117.5704	118.2620

Histogram of X for 1000 draws

Histogram of X for 100000 draws

On comparing the estimated values of $E(X^2)$ for the distribution of X with 1000, 10000, and 100000 draws we can see that as number of draws (N) increases, the estimated value of $E(X^2)$ is closer to that of the theoretical value of $E(X^2)$ (118.1962).

Section 3

R Code:

```
> lambda <- 0.2 # rate of the expotential function.
> #X1, X2, X3 - random variables representing the compilation time for first,
second and third block respectively.
> X1 <- rexp(1, lambda)
> X2 <- rexp(1, lambda)
> X3 <- rexp(1, lambda)
> X <- 0  # X is the random variable representing the compilation time for th
e whole program.
> X <- max(X1, X2, X3)
> X1
[1] 2.177446
> X2
[1] 0.6191411
> X3
[1] 6.585034
> X
[1] 6.585034
```

> #-----

```
> # for 10000 draws
> n <- 10000 # number of replications.
> X < - \text{replicate(n, max(X1 = rexp(1, lambda), X2 = rexp(1, lambda), X3 = rexp(1, lambda), X4 = rexp(1, lambda), X5 = rexp(1, lambda), X6 = rexp(1, lambda), X7 = rexp(1, lambda), X8 = rexp(1, lambda), X8 = rexp(1, lambda), X9 = rexp(1, la
(1, lambda)))
> #Histogram of X
> hist(X, probability = TRUE, col = "grey", main = "Histogram of X for 10000 d
> #Density curve of X
> curve(3*lambda*(1-exp(-lambda*x))^2*(exp(-lambda*x)), ylab="Density",xlab="
X",col = "red", add = TRUE)
> Mean_X <- mean(X) #Gives the mean of the distribution X
> VAR_X <- var(X) #Gives the variance of the distribution X
> Exp_X_Square <- Mean_X^2 + VAR_X \#E(X^2) = Var(X) + [Mean(X)]^2
> Exp_X_Square #Expected value of X^2 from the simulation.
[1] 116.1898
> # for 1000 draws
> n <- 1000 # number of replications.
> X < - \text{replicate(n, max(X1 = rexp(1, lambda), X2 = rexp(1, lambda), X3 = rexp(1, lambda), X4 = rexp(1, lambda), X5 = rexp(1, lambda), X6 = rexp(1, lambda), X7 = rexp(1, lambda), X8 = rexp(1, lambda), X8 = rexp(1, lambda), X9 = rexp(1, la
(1, lambda)))
> #Histogram of X
> hist(X, probability = TRUE, col = "grey", main = "Histogram of X for 1000 d
> #Density curve of X
> curve(3*lambda*(1-exp(-lambda*x))^2*(exp(-lambda*x)), ylab="Density",xlab="
X",col = "red", add = TRUE)
> Mean_X <- mean(X) #Gives the mean of the distribution X
> VAR_X <- var(X) #Gives the variance of the distribution X
> Exp_X_Square <- Mean_X^2 + VAR_X \#E(X^2) = Var(X) + [Mean(X)]^2
> Exp_X_Square #Expected value of X^2 from the simulation.
[1] 126.7381
> #-----
> # for 100000 draws
> n <- 100000 # number of replications.
> X < - \text{replicate(n, max(X1 = rexp(1, lambda), X2 = rexp(1, lambda), X3 = rexp(1, lambda), X4 = rexp(1, lambda), X5 = rexp(1, lambda), X6 = rexp(1, lambda), X7 = rexp(1, lambda), X8 = rexp(1, lambda), X8 = rexp(1, lambda), X9 = rexp(1, la
(1, lambda)))
> #Histogram of X
> hist(X, probability = TRUE, col = "grey", main = "Histogram of X for 100000
draws")
> #Density curve of X
> curve(3*lambda*(1-exp(-lambda*x))^2*(exp(-lambda*x)), ylab="Density", xlab=
"X",col = "red", add = TRUE)
> Mean_X <- mean(X) #Gives the mean of the distribution X
> VAR_X <- var(X) #Gives the variance of the distribution X
> Exp_X_Square <- Mean_X^2 + VAR_X \#E(X^2) = Var(X) + [Mean(X)]^2
> Exp_X_Square #Expected value of X^2 from the simulation.
[1] 117.6574
```