(1) **Problem 13.8**

A word is a 5-letter string using the characters a, b, c, . . . , z. How many words

- (a) In all: $26*26*26*26*26 = 25^5$
- (b) No repeated: 26*25*24*23*22
- (c) Begin with abc: $26*26 = 26^2$
- (d) Begin with abc or end with xyz: $26*26+26*26 = 2*26^2$
- (e) Begin with abc or end with cde: $26*26+26*26-1 = 2*26^2-1$

There are 10 ice-cream sundae toppings from which you select 4. How many sundaes are possible if:

(a) You do not repeat a topping and the order in which the toppings are added does not matter to you?

(10) (4) = 10!/(6!4!) = 210

(b) You do not repeat a topping and the order in which the toppings are added matters to you?

$$10*9*8*7 = 5040$$

(c) You may repeat toppings and the order in which the toppings are added does not matter to you?

```
(10+4-1)
(10-1) = 13!/(9!4!) = 715
```

(d) You may repeat toppings and the order in which the toppings are added matters to you?

$$10*10*10*10 = 10^4$$

How many integer solutions are there to x1 + x2 + x3 + x4 = 10 if

(a) xi are positive?

It is same as inserting delimiters between 11111111111=10

(9)

(3) = 9!/(6!3!) = 84(b) xi are non-negative?

It is same as inserting delimiters between 1111111111111=14

(13)

(3) = 13!/(10!3!) = 286(c) $x1 \ge -3$, $x2 \ge -2$, $x3 \ge 1$, $x4 \ge 2$?

It is same as inserting delimiters between 1111111111111111=16

(3) = 15!/(12!3!) = 455

(15)

Yifan Wang

How many 20-bit binary strings contain 00. [Hint: Count strings not containing 00.]

Not containing 00

1 digit (2 cases): 0,1

2 digits (3 cases): 01,10,11

3 digits (5 cases): 010,011,101,110, 111

4 digits (8 cases): 0101,0110,0111,1010,1011,1101,1110,1111

Guess: the number of cases is a fibonacci sequence

Prove:

when counting cases for n+1 digits

We can add 1 to every binary string with n digits

We can also add 0 to every binary string that ends with 1

For binary with n digits that ends with 1, they are formed by adding 1 to the n-1 digit binary

So, #of n+1 digits binary strings

= #of n digit binary add 1 after + #of n digits binary string that can only add 0

= #of n digit binary strings + #of n-1 digit binary strings

It's a fibonacci sequence start with 2,3,5,8

By the fibonacci sequence, 20th fib number above is 17711

of 20 digits binary strings don't contain 00 is 17711

of 20 digits binary strings that contain 00 is 2^{20} -17711 = 1030865

(5) Problem 13.61

What are the coefficients of x³, x⁴, x⁵, x⁶, x⁷ in the expansion of

$$(\sqrt{x} + 2x)^{10}$$
?

$$(10)$$
 (10) (10)

=
$$(0)[\operatorname{sqrt}(x)]^{10}(2x)^{0}+(1)[\operatorname{sqrt}(x)]^{9}(2x)^{1}+(2)[\operatorname{sqrt}(x)]^{8}(2x)^{2}+...$$
(10)

...+
$$(10)[sqrt(x)]^0(2x)^{10}$$

 x^3 : not in the sequence, coeff = 0

 x^4 : not in the sequence, coeff = 0

(10)

 x^5 : in the first term of the sequence. coeff = (0) * 1 = 1

(10)

 x^6 : in the third term, coeff = (2) * 4 = 180

(10)

 x^{7} : in the fifth term, coeff = (4) * 16 = 3360

(6) Problem 14.5

In each case, determine the number of ways.

- (a) 10 identical candies must be distributed among 4 children.
 - (13)

$$(3) = 13!/(10!3!) = 286$$

- (b) A 15-letter sequences must be made up of 5 A's, 5B's and 5C's.
 - (15) (10) (5)

$$(5)*(5)*(5)=3303*252*1=756756$$

- (c) 10 identical rings must be placed on your 10 fingers.
 - (19)

$$(9) = 19!/(10!9!) = 92378$$

- (d) 3 red, 3 green and 3 blue flags are to be arranged along the street for the parade.
 - (9) (6) (3)

$$(3)*(3)*(3) = 84*20*1 = 1680$$

Consider the binary strings consisting of 10 bits.

(a) How many contain fewer 1's than 0's?

$$\frac{1}{2}(2^{10}-(5))=386$$

(b) How many contain 5 or more consecutive 1's?

Every case has consecutive 1's in the middle, begin, end. Add up

have 5:
$$2^{3}*C(4,1)+2^{4}+2^{4}=64$$

have 6:
$$2^{2}*C(3,1)+2^{3}+2^{3}=28$$

have 7:
$$2^{1}*C(2,1)+2^{2}+2^{2}=12$$

have 8:
$$1+2+2=5$$

have 9:
$$1+1=2$$

have 10: 1

$$total = 64 + 28 + 12 + 5 + 2 + 1 = 112$$

(c) How many contain 5 or more consecutive 0's?

Same as in (b) just change 1 to 0. So the answer is 112

(d) How many contain 5 or more consecutive 0's or 5 or more consecutive 1's?

The union of these two cases are 0000011111 and 1111100000

Result =
$$112+112-2 = 222$$