ECON 301 - FINAL

Price Elasticity of Fish Demand

4	
1	-

. reg lprice t	t t2 mon tues	wed thurs				
Source	ss	df	MS	Number of obs		97
				F(6, 90)		2.23
Model	2.03081336	6	.338468893	Prob > F		0.0476
Residual	13.6822968	90	.15202552	R-squared		0.1292
				Adj R-squared	=	0.0712
Total	15.7131102	96	.163678231	Root MSE		.3899
lprice	Coef.	Std. Err.	t F	P> t [95% (onf.	Interval]
t	0157773	.0057205	-2.76	0.00702714	21	0044125
t2	.0001202	.0000565	2.13).036 7.91e-	-06	.0002325
mon	0119865	.1269225	-0.09	0.92526414	03	.2401672
tues	.0009034	.1249963	0.01	.99424742	36	.2492304
wed	.0379775	.1233313	0.31	.75920704	17	.2829967
thurs	.0908549	.1233069	0.74	.46315411	.57	.3358255
_cons	.1199856	.1449338	0.83).41016795	07	.407922

According to results, the explanatory power of the model is not big. Adjusted R-Square is around 7% which states, only 7% of the variation in the price level can be explained by the time and day variables.

In terms of independent variables; effect of day Monday is negatively correlated on price, price of fish is 1.1% lower on Monday as compared to Friday, yet since the t-value is -0.09 (p-value 0.925) this result is not statistically significant.

On other days such as Tuesday, Wednesday and Thursday the effect of days on price is positive. On Tuesday, prices are almost same as the prices on Friday, however since the t-value is 0.01 this is not statistically significant. On Wednesday, prices are 3.8% higher than prices on Friday but again since the t-value is 0.31 result is insignificant. Lastly, on Thursday the average price of fish is 9% higher than the prices on Friday but because of the t-value(0.74) result is not significant.

As a result, it can be said that there is no any systematic variation on prices within a week.

If we look at the affect of time trend, it can be divided into 2 parts. In the first part, until the day 63, time is negatively correlated with average price of fish. In each day, average price of fish decreases by 1.5%. After the day 62, time trend turns out to positive. In each day prices increase by around 0.12%. Since both t-values of time-trend variables are bigger/smaller than 1.96/-1.96, the effect of time is significant on average fish prices.

2- With the new variables, explanatory power of the model is increased to 30%. According to results, if the average maximum height of the waves in last 2 days increase by 1 meter, it increases the average prices of fish 9%. Since the t-value is 4.29 (greater than 1.96), the effect is statistically significant.

In addition to that, if the average maximum wave height of 3 and 4 day before

= 97	s =	mber of ob	Numb	MS	df	SS	Source
= 6.11		3, 88)	F(8,				
= 0.0000		b > F	Prob	.701053615	8	5.60842892	Model
= 0.3569		quared	R-sq	.114825924	88	10.1046813	Residual
= 0.2985	ed =	R-square	Adj				
= .33886		t MSE	Root	.163678231	96	15.7131102	Total
nf. Interval]	Conf.	[95%	P> t	t	td. Err.	Coef.	lprice
80034806	3138	0233	0.009	-2.68	.00499	0133972	t
6 .000223	276	.0000	0.013	2.55	0000492	.0001253	t2
2 .2005777	1332	2394	0.861	-0.18	1107063	0194277	mon
3 .2173303	133	2154	0.993	0.01	1088778	.0009585	tues
2 .2646289	3972	1663	0.652	0.45	1084457	.0491159	wed
1 .3363816	971	0916	0.259	1.14	1077042	.1223422	thurs
9 .1324635	499	.0485	0.000	4.29	0211126	.0905067	wave2
6 .0894916	1596	.0091	0.017	2.44	0202115	.0493256	wave3
0 .0094910							

the observation increase by 1 meter, then the average price of fish increase by around 5%. Since the t-value of the variable is 2.44, result is statistically significant.

The positive correlation between waves and average price can be explained by supplydemand equilibrium. In the stormy days, fishers most probably can not sail and therefore they can not hunt enough fish. In this condition, since the amount of the fish are lower as compared to equilibrium quantity, prices increase, ceteris paribus.

We can assume that wave variables are exogenous because, they can not be determined by any other determinants of the average price in the model. Since the wave height is given and we are not producing it by the same model that we use to calculate the average price of fish, it can be said that wave variables are exogenous.

3- In the new model that we use growth rate of price, there are 3 variables which are statistically significant at 10% significance level. The first one is effect of Wednesday. According to results, growth rate of average fish price on Wednesday is 0.2 percentage point higher as compared to growth rate on Friday. The second significant variable is Thursday effect on growth rate. According to results, growth rate of average price of fish is 0.17 percentage point higher as compared to growth rate on Friday.

Source	SS	df	MS	Numi	ber of obs		96
				- F(8	, 87)		1.98
Model	1.59476471	8	.199345589	Prol	b > F		0.058
Residual	8.77654349	87	.10087981	L R-s	quared		0.153
				– Adj	R-squared		0.076
Total	10.3713082	95	.109171665	Root	t MSE		.3176
growthprice	Coef.	Std. Err.		P> t	[95% Cor	nf.	Interval
t	0040458	.0048301	-0.84	0.405	0136462	2	.005554
t2	.0000558	.0000474	1.18	0.243	0000385	5	.000150
mon	.1672186	.1055221	1.58	0.117	0425181	ι	.376955
tues	.1008136	.1020524	0.99	0.326	1020265	5	.303653
wed	.2019699	.1016756	1.99	0.050	0001214	1	.404061
thurs	.176946	.1009541	1.75	0.083	0237112	2	.377603
wave2	.0597081	.0197939	3.02	0.003	.0203655	5	.099050
wave3	.0063115	.0193373	0.33	0.745	0321235	5	.044746
_cons	3873655	.186505	-2.08	0.041	7580643	3	016666

The last statistically significant inde-

pendent variable is average maximum height of the waves in last 2 days. As it can be seen, if maximum height of wave in last 2 days increase by 1 meter, then the growth in average price of fish increase by around 0.06 percentage point on average. Since all the p-values of the these 3 variables (Wednesday: 0.50, Thursday: 0.83 Wave2: 0.03) smaller then 10% results are statistically significant

Thursday:0.83, Wave2:0.03) smaller then 10%, results are statistically significant.

In this model, time trend is not statistically significant because p-values are even higher than 10% significance level.

In the first model, we do not consider the possible effect of previous day's price on average price of fish on the observation day. On the other hand, in the second model, since we use the growth rate, we do not omit the possible effect of the previous day's price therefore trend effect on average price became insignificant in the new model.

4- Explanatory power the model is around 17%.

According to results, 1% increase in the average price of fish, decreases the demand for fish by 0.598%. p-value is 0.002 (<0.01), the effect is statistically significant. So the price elasticity is 0.598/1 = 0.598. Since the elasticity is smaller than 1 it can be said that it is inelastic. However, this result may that be true so further investigation is needed to be sure.

. reg ltotqty	lprice mon tu	es wed thu	rs t t2			
Source	ss	df	MS	Number of ob	s =	97
				F(7, 89)		3.82
Model	12.9801993	7	1.85431419	Prob > F		0.0011
Residual	43.1522342	89	.484856564	R-squared		0.2312
				- Adj R−square	ed =	0.1708
Total	56.1324335	96	.584712849	Root MSE		.69632
ltotqty	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
lprice	5983342	.1882466	-3.18	0.0029723	762	2242922
mon	3200239	.2266776	-1.41	0.1617704	274	.1303796
tues	6740226	.2232265	-3.02	0.003 -1.117	569	2304763
wed	5330649	.220369	-2.42	0.0189709	333	0951965
thurs	.0730521	.2208725	0.33	0.7423658	167	.511921
t	0136252	.010639	-1.28	0.2040347	647	.0075143
t2	.0001242	.0001035	1.20	0.2330000	814	.0003298
_cons	8.496822	.2598158	32.70	0.000 7.980	573	9.01307

There are 2 variables which are statistically significant at 10% level beside price. First variable is Tuesday. According to results, average demand for fish is 67.4% less than the average demand for fish on Friday. Since the p-value is 0.003 (<0.01) the effect is statistically significant.

Another variable which is statistically significant at 10% level is Wednesday. According to results, demand for fish on Wednesday is 53.3% less than the demand for fish on Friday. Since the p-value is 0.018, result is statistically significant.

If there is a random measurement error in demand, it may not effect the final result of the model. Because demand is dependent variable and any random measurement error on observations may not change the overall result for the observations. Yet, it might change the sample error since the variance is increased due to measurement error. As long as the measurement error is uncorrelated to the values of the explanatory variables, average results will not be affected.

On the other hand, if the measurement error in the price variable which is independent variable, it affects the results drastically. Because, what we found as a result will become biased since the price does not reflect the true value of the observation. Under this circumstances, magnitude of the effect will be attenuated towards zero and incorrect.

- 5- To use any variable as an instrumental variable 3 conditions must be satisfied:
- 1- It should not be directly related with the dependent variable in the model. In this context, "wave2" and "wave3" should not be directly related with demand variable. The only channel that "wave2" and "wave3" show their effect is fish price. There should not be any other channels.
- 2- It should be highly correlated with endogenous variable. In this context, we may consider the average price of fish as an endogenous variable since it might be affected by many other factors beside control variables.
 - 3- It should be uncorrelated with error term.

As it was stated in question 2, wage is assumed exogenous or uncorrelated with error term. 3rd condition is satisfied.

Since there are not any other possible channel that wage can show its affect on demand except price and this is not directly related, 1st condition is satisfied.

For the 2nd condition, equation in the question 2 can be used. According to findings, wage variables are highly correlated with price and results are statistically significant. Sin-

ce price variable is endogenous and wage variables are remarkably related with it, 2nd condition for being instrumental variable is satisfied as well.

6- By using 2SLS method, we can eliminate the endogeneity problem since we use the new price variable which depends on instrumental variables wave2 and wave3.

In the new results, 1% increase in fish prices leads to 0.945% decrease in fish demand on average. Since the p-value is 0.013 the result is statistically significant. As compared to previous results, the prices elasticity of fish demand is now 0.945/1= 0.945. It is still inelastic but now the effect of price on demand is more consistent with our expectations. The difference between the results in question 4 and question 6, might be caused by the endogeneity problem of price. Since price can be influenced by many other factors that also affect the demand, omitted variable bias may occur. In this circumstance, results might be over/underestimated in OLS method. By using instrumental variable method, bias on the price can be eliminated and it can be seen that previous calculated result of effect of price on fish demand is underestimated.

. reg ltotqty	lpricehat mon	tues wed	thurs t t2			
Source	ss	df	MS	Number		٠.
				F(7, 89		= 3.20
Model	11.290185	7	1.61288357			= 0.0045
Residual	44.8422485	89	.503845488	R-squar	ed =	= 0.2011
				- Adj R-s	quared =	= 0.1383
Total	56.1324335	96	.584712849	Root MS	E =	.70982
ltotqty	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
lpricehat	9469797	.3752769	-2.52	0.013 -	1.692647	2013124
mon	3242029	.2311061	-1.40	0.164 -	.7834058	.1349999
tues	6737076	.2275559	-2.96	0.004 -	1.125856	2215589
wed	5198242	.2249764	-2.31	0.023 -	.9668476	0728009
thurs	.1047283	.2270546	0.46	0.646 -	.3464244	.5558809
t	0191259	.0119796	-1.60	0.114 -	.0429292	.0046774
t2	.0001661	.0001124	1.48	0.143 -	.0000571	.0003894
_cons	8.538654	.2676665	31.90	0.000	8.006806	9.070502
	<u> </u>					

Source	ss	df	MS	Numb	er of obs		97
				- F(7,	89)		3.20
Model	11.3170661	7	1.61672372	! Prot) > F		0.0045
Residual	44.8153674	89	.503543454	R-sc	quared		0.2016
				- Adj	R-squared		0.1388
Total	56.1324335	96	.584712849	Root	MSE		.70961
ltotqty	Coef.	Std. Err.	t	P> t	[05% Co	n f	Interval]
ctotqty	cuer.	Jtu. Liii.		1-14	[33% 60	····	Intervati
lprice	9469797	.3751644	-2.52	0.013	-1.69242	3	201536
mon	3242029	.2310368	-1.40	0.164	783268	2	.1348623
tues	6737076	.2274877	-2.96	0.004	-1.12572	1	2216944
wed	5198242	.224909	-2.31	0.023	966713	6	0729349
thurs	.1047283	.2269865	0.46	0.646	346289	1	.5557457
	0191259	.0119761	-1.60	0.114	042922	1	.0046703
t2	.0001661	.0001123	1.48	0.143	000057	1	.0003893
_cons	8.538654	.2675862	31.91	0.000	8.00696	6	9.070342

In addition to endogeneity, simultaneity bias also may exits. For instance, when the demand for fish increases price increases, on the other side, when price increases demand decreases. This may also leads to a bias, therefore instrumental variable approach might be useful to eliminate this issue.

7- After eliminating outliers in the sample, price elasticity of fish demand changed drastically. According to new results show that 1% increase in fish price leads to a decrease in fish demand by 1.32% on average. New price elasticity is 1.32/1 = 1.32. Since the new value is greater than 1, it can be said that price elasticity of fish demand is now elastic.

Another approach to eliminate the effects of outliers can be using log transformation on wave2 and wave3. By applying log transformation on wave va-

Source	ss	df	MS	Numi	er of obs		9
				- F(7	, 86)		3.3
Model	7.41348071	7	1.05906867	Prol) > F	= 0	.003
Residual	47.8258916	86	.556115019	R-so	quared	= 0	.134
				– Adj	R-squared	= 0	.063
Total	55.2393723	93	.593971745	Root	MSE		7457
ltotqty	Coef.	Std. Err.		P> t	[95% Con	f. Inte	rval
lprice	-1.327654	.4357373	-3.05	0.003	-2.193872	46	1437
mon	403454	.2466969	-1.64	0.106	8938712	.08	6963
tues	7084423	.2430651	-2.91	0.005	-1.19164	2	2524
wed	5335099	.2390388	-2.23	0.028	-1.008703	05	8316
thurs	.1405286	.2391879	0.59	0.558	3349612	.61	6018
	0199943	.0125704	-1.59	0.115	0449835	.0	0499
t2	.0001729	.000118	1.47	0.146	0000616	.00	0407
_cons	8.455177	.285692	29.60	0.000	7.88724	9.0	2311

riables the distribution price and wage become more consistent. The price elasticity of fish demand which is calculated by using log values of wave variables is more than 1 which means it is elastic (around 1.024). So the result is consistent with the previous approach's outcome.

Determinants of Crime Rate

- **8-** In Question 9, I used 20 variables to estimate the model. As it can be seen from the summary statistics table:
- Average crime rate committed per person in North Carolina counties is around 3% on average with standard deviation 0.018.
- Probability that being arrested is around 30% on average with standard deviation 0.17.
- Probability of conviction is 68.8% on average with standard deviation 1.69.
- Probability of prison sentence is 42.5% on average with standard deviation 0.08.
- Average sentence days is around 9 days in overall with standard deviation 2.65 days.
- Police per capita in counties is around 0.002 on average with standard deviation 1.40.
- People per square mile (density) is around 1.4 with standard deviation 1.44 on average.
- Percentage of minorities in 1980 is around 25 on average with standard deviation 16.9.
- Young males in counties is around 0.088 percent on average with standard deviation 0.024.
- Weekly wage of construction workers is around \$245.66 on average with standard deviation 121.98.
- Weekly wage of workers in transportation, utilities and communication industry is around \$406.1 on average with standard deviation 266.51.
- Weekly wage of workers in finance, insurance and real estate industry is \$272 on average with standard deviation 55.76.
- Weekly wage of workers in wholesale and retail trade industry is around \$193 on average.
- Weekly wage of workers in service industry is around \$225 on average with standard deviation 104.86.
- Weekly wage of workers in manufacturing industry is around \$285 on average with standard deviation 82.3.
- Weekly wage of fed employees is around \$404 on average with standard deviation 63.06.
- Weekly wage of state employees is around \$297 on average with standard deviation 53.43

Max	Min	Std. Dev.	Mean	0bs	Variable
.163835	.0018116	.0181209	.0315876	630	crmrte
2.75	.0588235	.1712047	.3073682	630	prbarr
37	.0683761	1.690345	.6886176	630	prbconv
.678571	.148936	.0872452	.4255184	630	prbpris
25.83	4.22	2.658082	8.95454	630	avgsen
.0355781	.0004585	.0027349	.0019168	630	polpc
8.827652	.1977186	1.439703	1.386062	630	density
1	0	.4232887	.2333333	630	west
1	0	.4852169	.3777778	630	central
1	0	.2848094	.0888889	630	urban
64.3482	1.28365	16.90354	25.71285	630	pctmin80
2324.598	65.62158	121.9837	245.6661	630	wcon
3041.958	28.8577	266.5138	406.1028	630	wtuc
2242.747	16.87376	88.40727	192.8231	630	wtrd
509.4655	3.51568	55.76809	272.0593	630	wfir
2177.068	1.843794	104.8667	224.6705	630	wser
646.85	101.83	82.36807	285.1701	630	wmfg
597.95	255.4	63.06669	403.8959	630	wfed
548	173.02	53.43161	296.9075	630	wsta
388.09	163.59	41.35802	257.9762	630	wloc
.2743584	.0621577	.0243493	.0889739	630	pctvmle

- Weekly wage of local government employees is around \$258 on average with standard deviation 41.35.
- 9- To be able to find more consistent results, I transformed independent variables (except location variables) and dependent variable into log form. So results can be interpreted as elasticity.

According to results, there are 13 independent variables which have statistically significance at 10% significance level.

- * If the probability of being arrested due to committed crime is increase by 1%, crimes committed per person decrease by 0.53% on average. Since the p-value is around 0, result is statistically significant.
- * If the probability of conviction increase by 1%, crimes committed per person decrease by
 - 0.43% on average. P-value is around 0, so this is statistically significant.
- * If the probability of prison sentence increase by 1%, crimes committed per person decrease by 0.11% on average. P-value is 0.017, so this is statistically significant.
- * If average sentence days increase by 1%, crimes committed per person decrease by 0.09% on average. Since the t-value is -2.26 (smaller than -1.96), result is statistically significant.
- * If the police per capita increase by 1%, crimes committed per person increase by 0.36% on average, p-value is around 0 so result is statistically significant. In fact, this result is different than my expectation so further investigation might be needed.
- * If people per square mile increase by 1%, crimes committed per person increase by 0.30 % on average, t-value is 10.55 which is bigger than 1.96 so result is statistically significant.
- * If the number of minorities increase by 1%, crimes committed per person increase by 0.17% on average, t-value is 9.15 therefore result is statistically significant.
- * If weekly wage of state employees increase by 1%, crimes committed per person decrease by 0.201% on average. Since t-value is around -2.17 result is statistically significant.
- * If percent of young males in population increase by 1%, crimes committed per person decrease by 0.144 % on average, p-value is 0.022 so result is significant. However, the sign of the result is no inline with my expectation. Therefore further investigation might be needed.
- * Crimes committed per person in the west side of the North Carolina counties is 22.8% lower as compared to other regions since the p-value is around 0 result is statistically significant.

lcrmrte	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
lprbarr	5373019	.0295517	-18.18	0.000	5953387	4792651
lprbconv	4305394	.021541	-19.99	0.000	4728439	3882348
lprbpris	1158175	.0485	-2.39	0.017	2110668	0205682
lavgsen	0907	.0401314	-2.26	0.024	1695142	0118858
lpolpc	.3601124	.0222813	16.16	0.000	.316354	.4038708
ldensity	.2994077	.0283729	10.55	0.000	.243686	.3551293
lpctmin80	.1787638	.0195357	9.15	0.000	.1403975	.2171301
lwcon	.0852942	.0545355	1.56	0.118	0218084	.1923967
lwtuc	.021606	.0312172	0.69	0.489	0397016	.0829136
lwtrd	.0430638	.062275	0.69	0.490	0792384	.165366
lwfir	0018835	.0446601	-0.04	0.966	0895918	.0858248
lwser	0265476	.0312174	-0.85	0.395	0878556	.0347603
lwmfg	079091	.0528722	-1.50	0.135	182927	.024745
lwfed	.0842811	.113893	0.74	0.460	1393941	.3079563
lwsta	201884	.0930241	-2.17	0.030	3845745	0191935
lwloc	.0554338	.1399882	0.40	0.692	2194898	.3303574
lpctymle	1447863	.0631831	-2.29	0.022	268872	0207006
west	2287133	.0459447	-4.98	0.000	3189445	1384822
central	1783897	.027608	-6.46	0.000	2326092	1241702
urban	1364731	.0536989	-2.54	0.011	2419327	0310136
year						
82	0014061	.0403917	-0.03	0.972	0807315	.0779193
83	084797	.0443643	-1.91	0.056	1719244	.0023304
84	1241425	.0464421	-2.67	0.008	2153503	0329347
85	1114031	.0549531	-2.03	0.043	2193258	0034804
86	0837597	.0631076	-1.33	0.185	2076971	.0401777
87	0496623	.0708925	-0.70	0.484	1888885	.0895639

- * Crimes committed per person in the central side of the North Carolina counties is 17.8% lower as compared to other regions since the p-value is around 0 result is statistically significant.
- * Crimes committed per person in the urban side of the North Carolina counties is 13.6% lower as compared to other regions since the p-value is around 0 result is statistically significant.
- * As compared to base year 1981, in 1983 crime rate is 8% lower, in 1984 12.4% lower and in 1985 11.1% lower. Since both variables' p-value is smaller than 0.10, results are statistically significant.

According to results, most of the significant variables' signs are inline with my expectations. But the signs of police per capita variable and percent of young male variables are not as expected. So the reason for police per capita sign being positive might be the issue of endogeneity. For instance, when the number of crime increases, government may need to increase the number of police. On the other hand, when there are more police officers, reported number of crimes increases as well. Therefore this might be a biased coefficient.

The reason behind the negative sign of percent of young male variable might be rooted from the effects that are constant over the time such as percentage minority or location of the county like west or urban. So there might be perfect collinearity issue.

10-When the model estimated with Fixed Effect method, some critical changes occurred.

First of all, since some variables do not vary over time, these are omitted (Percent of minorities, west ,central and urban areas).

Secondly, some regressors become insignificant with the new results. As compared to previous model, effect of average sentence days lost its significance (p-value was 0.024, in new model p-value is 0.925 which is not significant). Density also lost its significance on the dependent variable at 10% significance level (p-value was around 0, in new model p-value is 0.143 which is not significant at 10% significance

lcrmrte	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lprbarr	3548296	.0322049	-11.02	0.000	4180978	2915614
lprbconv	281569	.0211376	-13.32	0.000	323095	240043
lprbpris	173104	.0323027	-5.36	0.000	2365644	1096436
lavgsen	002453	.026119	-0.09	0.925	0537652	.0488592
lpolpc	.413162	.0266232	15.52	0.000	.3608593	.4654647
ldensity	.4143876	.2825414	1.47	0.143	1406803	.9694555
lpctmin80	0	(omitted)				
lwcon	0377918	.0390756	-0.97	0.334	1145579	.0389744
lwtuc	.0455253	.0190115	2.39	0.017	.0081761	.0828745
lwtrd	0205016	.0404789	-0.51	0.613	1000246	.0590215
lwfir	0038992	.0282572	-0.14	0.890	059412	.0516135
lwser	.0088773	.0191314	0.46	0.643	0287074	.046462
lwmfg	3598514	.1118352	-3.22	0.001	5795578	1401451
lwfed	309318	.1761642	-1.76	0.080	6554022	.0367662
lwsta	.0528862	.1135306	0.47	0.642	1701508	.2759232
lwloc	.1816069	.1176542	1.54	0.123	0495312	.4127449
lpctymle	.6267484	.3636063	1.72	0.085	0875759	1.341073
west	0	(omitted)				
central	0	(omitted)				
urban	0	(omitted)				
year						
82	.0226837	.025931	0.87	0.382	0282592	.0736265
83	0405144	.0357204	-1.13	0.257	110689	.0296603
84	0434467	.0464791	-0.93	0.350	1347575	.0478641
85	0165515	.0634444	-0.26	0.794	1411916	.1080885
86	.0347729	.0781033	0.45	0.656	1186653	.188211
87	.0997554	.0930563	1.07	0.284	0830587	.2825696

level). Weekly wage of state employees also lost its effectiveness on the crime rate(p-value was 0.03, in new model p-value is 0.642 which is not significant). Lastly, impact of year dummy variables on dependent variable became insignificant with the new method.

Thirdly, by applying Fixed Effect method, we eliminate the variables that are constant over time as a result of this, impact of probability of arrest on crime rate decreased to 0.35%

from 0.53%. Similarly effect of conviction probability on crime rate decreased to 0.28% from 0.43% on average. Effect of weekly wage of workers in transportation, utilities and communication industry on crime rates became significant with p-value 0.017. So according to that 1% increase in weekly wage leads to 0.45% increase in crime rate on average.

Another wage related change is about weekly wage of workers in manufacturing industry. According to new results, 1% increase in weekly wages leads to 0.35% decrease in crime rate on average, since the p-value is 0.001 result is statistically significant event at 5% significance level. In addition, weekly wage of fed employees has also significant effect on crime rate, 1% increase in weekly wage decrease the crime rate by 0.30% with p-value 0.08.

The last significant change that comes with FE method is the change in effect of percent of young male on crime rate. In new results, impact is became positive on crime (It was negative on previous model and suspicious due to perfect collinearity). According to new results, 1% increase of young male percent, increases the crime rate by 0.62 % on average with p-value 0.085 which is statistically significant at 10% significance level.

To sum up, positive side of using FE is it might eliminates the endogeneity issue by dropping the unobserved invariant variable which may correlated with explanatory variables. Therefore as it can be seen from the results, we can fix the underestimation in this case. So using Fixed Effect method is more consistent as compared to OLS estimation.

11-

The reason of endogeneity behind the police per capita might be result from simultaneity bias. For instance, when there are more police per capita reporting the crime may be increase hence crime per capita also increases. On the other side, when the rate crime per capita is high more police is needed therefore it increases the number of police. Under these circumstances, polpc might be endegenous and biased.

To prevent from this, we may use tax revenue per capita as an instrumental variable. The logic behind using this as instrumental variable is the following: Tax revenue means how much tax federal government gets per person, so people may be willing to pay higher taxes for higher security in their county. Hence, to hire more security power (in this context it is police per capita), federal government may collect more tax from people.

In the context of instrumental variable, 3 conditions must be satisfied:

According to relevance assumption tax revenue per capital should have a casual effect on police per capita. When we run a regression using tax revenue as independent variable and police per capita as dependent variable with control variables, it can be seen that tax revenue has a big impact on police per capita on average with statistically significance.

The second condition, exclusion, is also satisfied since police per capita is the only channel that tax revenue can show its effect on crime rate. And this is not a direct effect.

The third condition, independence assumption, is satisfied as well since there are no any correlation between the error term of crime rate model and tax revenue.

As a result it seems valid to use tax per capita as an instrumental variable.

Ulaş Eraslan 25058

According to new results, there is not a dramatical change in the polpc variable as compared to previous model that does not have instrumental variable. In the new model, 1% increase in police per capita, leads to a 0.34% (it was 0.35% on previous OLS model) increase in crime rate on average with t-value 4.12 which is statistically significance at 5% significance level.

To better off, some other instrumental variables can be used. In this context, *grants* for police incentives might be useful as an instrumental variable. For example, the effect of grants such as Cops Hiring Program (CHP)¹ may have a significant effect on the number of police in counties. Since these grants are not directly related with

			Ulaş		an 23036	
lcrmrte	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
lpolpc	.3473331	.0843652	4.12	0.000	.1816479	.5130184
lprbarr	5306976	.0372093	-14.26	0.000	6037732	457622
lprbconv	4240675	.0357648	-11.86	0.000	4943061	3538289
lprbpris	1116797	.0485416	-2.30	0.022	2070107	0163486
lavgsen	0911962	.0404257	-2.26	0.024	1705885	0118038
ldensity	.297579	.0286892	10.37	0.000	.2412361	.353922
lpctmin80	.1772669	.0208862	8.49	0.000	.1362484	.2182853
lwcon	.079919	.0610594	1.31	0.191	039996	.1998339
lwtuc	.0232905	.0316061	0.74	0.461	038781	.0853619
lwtrd	.0473707	.0624633	0.76	0.449	0753015	.1700428
lwfir	0039467	.0452201	-0.09	0.930	0927548	.0848614
lwser	0278799	.0312796	-0.89	0.373	0893101	.0335504
lwmfg	0787704	.0585668	-1.34	0.179	19379	.0362492
lwfed	.0945845	.131013	0.72	0.471	1627128	.3518818
lwsta	2171807	.0936002	-2.32	0.021	4010027	0333587
lwloc	.0585213	.1410652	0.41	0.678	2185175	.3355601
pctymle	9242078	.5768261	-1.60	0.110	-2.05704	.2086244
west	2267908	.0460209	-4.93	0.000	3171716	13641
central	1762738	.0277424	-6.35	0.000	2307572	1217903
urban	1292964	.0650967	-1.99	0.047	2571402	0014526
_Iyear_82	0001838	.040736	-0.00	0.996	0801854	.0798178
_Iyear_83	0830487	.0449485	-1.85	0.065	1713234	.005226
_Iyear_84	1201493	.0466828	-2.57	0.010	2118298	0284687
_Iyear_85	1055032	.0553933	-1.90	0.057	2142904	.0032841
_Iyear_86	0750468	.0634896	-1.18	0.238	1997344	.0496408
_Iyear_87	0375355	.0707122	-0.53	0.596	1764076	.1013367
cons	-2 330806	1 313883	_1 77	0 077	-4 91115	2495368

crime rate but only through the police level, grants might be used as an instrumental variable. In their paper, "Police levels and crime rates: An instrumental variables approach", John L. Worrall and Tomislav V. Kovandzic used this method to eliminate simultaneity between police level and crime rate. According to their data and results, using grant as an instrumental variable has a significant effect of eliminating bias.²

12- To see the effect of coronavirus on total death trends between the before and after period of pandemic might be checked. However, in this analysis some other factors may affect the results in a bad way. Therefore, since coronavirus is an exogenous event, difference-in-differences method can be used to see the effect of pandemic on total death and then reported deaths by the government and the real change can be compared to see whether stated numbers are not that real. To use DiD method, the parallel trend assumption must be made. In this context, it can be said that coronavirus is a huge effect on total deaths and without coronavirus pandemic, trend of total deaths are quite similar to each other in separate years.

To build the empirical model, we may use total number of deaths as a dependent variable.

In difference-in-differences method, we need two groups to compare them with each other: control and treatment group. In the context of coronavirus, we may use the data that are between March 2019 to June 2019 as control group (takes 0) and March 2020 to June 2020 as treatment group (takes 1).

Since coronavirus related deaths take 0 before March 2020, we may use coronavirus_death as an after-change variable.

So the final model can be written as the following:

total_death = β 0+ σ 0corona_death + β 1treatment_group + σ 1corona_death*treatment_group + u

¹ https://cops.usdoj.gov/chp

 $^{^2}$ https://www.sciencedirect.com/science/article/abs/pii/S0049089X10000062#:~:text=The%20instrumental%20variables%20(IV)%20approach,locating%20instruments%20for%20police%20levels.&text=We%20found%20fairly%20robust%20inverse,but%20mainly%20in%20large%20cities.

In this model, our main interest is in the interaction term ($\sigma1corona_death^*treatment_gro-up$). Since the value of $\sigma1$ gives the treatment effect, we should interpret its coefficient. The null hypothesis for this coefficient is the following: "Coronavirus pandemic has no effect on total number of deaths in Turkey". If one can find a statistically significant result for the interaction variable's coefficient, the change on total death that resulted from the coronavirus can be detected. And this change can be compared with the government's official reports to check whether death numbers are stated correctly or not.