

150 mA low noise high PSRR linear voltage regulator

Datasheet - production data

Features

- Input voltage from 2.4 to 5.5 V
- Very low quiescent current (31 μA typ. at noload, 75 μA typ. at 150 mA load, 1 μA max. in OFF mode)
- Very low noise (20 μV_{RMS} at V_{OUT} = 1.5 V)
- Output voltage tolerance: ± 1.8% at 25 °C
- 150 mA guaranteed output current
- Wide range of output voltages available on request: 1.2 V to 3.3 V in 100 mV steps
- Logic-controlled electronic shutdown
- · Compatible with ceramic capacitors
- Very high PSRR (80 dB @ 100 Hz, 76 @ 10 kHz, 54 @ 100 kHz)
- Internal current and thermal limit
- Package: SOT323-5L
- Temperature range: -40 °C to 125 °C

Description

The LD59015 provides 150 mA maximum current with an input voltage range from 2.4 V to 5.5 V, and a typical dropout voltage of 150 mV. It is stable with ceramic capacitors. High PSRR, low quiescent current and low noise features make it suitable for low power battery-powered applications. Power supply rejection is 80 dB at low frequency and starts to roll off at 10 kHz. The enable logic control function puts the LD59015 in shutdown mode, allowing a total current consumption lower than 1 µA. The device also includes short-circuit constant current limiting and thermal protection. Typical applications are mobile phones, personal digital assistants (PDAs), cordless phones and similar batterypowered systems.

Table 1. Device summary

Order code	Output voltages
LD59015C12R	1.2 V
LD59015C15R	1.5 V
LD59015C18R	1.8 V
LD59015C25R	2.5 V
LD59015C30R	3.0 V
LD59015C33R	3.3 V

July 2017 DocID17488 Rev 5 1/18

Contents LD59015

Contents

1	Block diagram 3
2	Pin configuration
3	Typical application5
4	Maximum ratings
5	Electrical characteristics
6	Typical performance characteristics
7	Package information
	7.1 SOT323-5L package information
	7.2 SOT323-5L packing information
8	Revision history

LD59015 Block diagram

1 Block diagram

BandGap
0.8 V

Trimming

Thermal
Protection

Enable

EN

GND

Figure 1. LD59015 block diagram

Pin configuration LD59015

2 Pin configuration

Figure 2. Pin connection (top view)

Table 2. Pin description

Pin	Symbol	Function
1	IN	Input voltage
2	GND	Ground
3	EN	Enable input Set $V_{EN} > 0.9$ to turn on the device Set $V_{EN} < 0.4$ to turn off the device
4	N.C.	Not connected
5	OUT	Output voltage

LD59015 Typical application

3 Typical application

V_{IN} IN OUT 1 μF Load

V_{EN} EN GND

Figure 3. Typical application circuit

Maximum ratings LD59015

4 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	DC input voltage	- 0.3 to 7	V
V _{OUT}	DC output voltage	- 0.3 to V _I + 0.3 (max. 7)	V
V _{EN}	Enable input voltage	- 0.3 to V _I + 0.3 (max. 7)	V
I _{OUT}	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
ESD	Human body model	± 3	kV
E3D	Machine model	± 300	V
T _{STG}	Storage temperature range	-65 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R_{thJA}	Thermal resistance junction-ambient	645.69	°C/W
R _{thJC}	Thermal resistance junction-case	116	°C/W

5 Electrical characteristics

 T_J = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 1 V, C_{IN} = C_{OUT} = 1 $\mu F,\,I_{OUT}$ = 1 mA, V_{EN} = $V_{IN},\,unless$ otherwise specified.

Table 5. Electrical characteristics (1)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage		2.4		5.5	
V	Turn-on threshold			2.0	2.15	V
V _{UVLO}	Turn-off threshold		1.90	1.95		
V _{OUT}	V _{OUT} accuracy	I _{OUT} = 1 mA, -40 °C < T _J < 125 °C	-1.8		1.8	%
ΔV_{OUT}	Static line regulation	V_{OUT} +1 V \leq V _{IN} \leq 5.5 V, I _{OUT} = 1 mA		0.001		%/V
ΔV_{OUT}	Static load regulation	I _{OUT} = 1 mA to 150 mA		0.001		%/mA
V _{DROP}	Dropout voltage (2)	I _{OUT} = 150 mA, V _{OUT} > 2.2 V -40 °C < T _J < 125 °C		150	210	mV
e _N	Output noise voltage	10 Hz to 100 kHz, I _{OUT} = 10 mA, V _{OUT} = 1.5 V		20		μV _{RMS} /V _{OUT}
SVR	Supply voltage rejection V _{OUT} = 1.5 V	$V_{IN} = V_{OUTNOM} + 1 \text{ V +/-}V_{RIPPLE}$ $V_{RIPPLE} = 0.5 \text{ V, frequency} = 1 \text{ kHz}$ $I_{OUT} = 1 \text{ mA}$		76		dB
		$V_{IN} = V_{OUTNOM} + 1 \text{ V +/-}V_{RIPPLE}$ $V_{RIPPLE} = 0.5 \text{ V,}$ frequency =10 kHz $I_{OUT} = 1 \text{ mA}$		76		
		$V_{IN} = V_{OUTNOM} + 1 \text{ V +/-}V_{RIPPLE}$ $V_{RIPPLE} = 0.5 \text{ V,}$ frequency =100 kHz $I_{OUT} = 1 \text{ mA}$		54		
		I _{OUT} = 0 mA		31		
	Quiescent current	$I_{OUT} = 0$ mA, -40 °C < T_{J} < 125 °C			60	μΑ
		I _{OUT} = 0 to 150 mA		75		
IQ		I _{OUT} = 0 to 150 mA -40 °C < T _J < 125 °C			110	
		V_{IN} input current in OFF mode: $V_{EN} = GND$		0.001	1	
I _{SC}	Short-circuit current	R _L = 0	200			mA
V	Enable input logic low	V _{IN} = 2.4 V to 5.5 V, -40 °C < T _J < 85 °C			0.4	V
V _{EN}	Enable input logic high	V _{IN} = 2.4 V to 5.5 V, -40 °C < T _J < 85 °C	0.9			V

Electrical characteristics LD59015

Table 5. Electrical characteristics (continued)⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{EN}	Enable pin input current	V _{SHDN} = 5.5V		0.1	100	nA
T _{ON}	Turn-on time (3)			200		μs
т	Thermal shutdown			160		°C
ISHDN	Hysteresis			20		C
C _{OUT}	Output capacitor	Capacitance (see Section 6)	1		4.7	μF

^{1.} For $V_{OUT(NOM)}$ < 1.3 V, V_{IN} = 2.4 V.

Note: All transient values are guaranteed by design, not tested in production.

^{2.} Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply to output voltages below 1.7 V.

^{3.} Turn-on time is time measured between the enable input just exceeding V_{EN} high value and the output voltage just reaching 95% of its nominal value.

6 Typical performance characteristics

$$C_{IN} = C_{OUT} = 1 \mu F$$

577

 C_{OUT} = 1 μ F; V_{IN} = V_{EN} = from 2.4 to 3.3 V; V_{OUT} = 0.8 V; I_{OUT} = 1 mA; t_{rise} = t_{fall} = 25 μ s

10/18 DocID17488 Rev 5

LD59015 Package information

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

7.1 SOT323-5L package information

Figure 21. SOT323-5L package outline

Package information LD59015

Table 6. SOT323-5L package mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
А	0.80		1.10		
A1	0		0.10		
A2	0.80	0.90	1		
b	0.15		0.30		
С	0.10		0.22		
D	1.80	2	2.20		
E	1.80	2.10	2.40		
E1	1.15	1.25	1.35		
е		0.65			
e1		1.30			
L	0.26	0.36	0.46		
<	0°		8°		

LD59015 Package information

7.2 SOT323-5L packing information

A Po Note: Drawing not in scale

Figure 22. SOT323-5L tape and reel outline

Package information LD59015

Table 7. SOT323-5L tape and reel mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
А	175	180	185		
С	12.8	13	13.2		
D	20.2				
N	59.5	60	60.5		
Т			14.4		
Ao		2.25			
Во		3.17			
Ko		1.2			
Po	3.9	4.0	4.1		
Р	3.9	4.0	4.2		

LD59015 Revision history

8 Revision history

Table 8. Document revision history

Date	Revision	Changes
10-May-2010	1	Initial release.
21-Dec-2011	2	Modified: operating input voltage (V _{IN}) min. value <i>Table 5 on page 7</i> . Availability LD59015C08R code <i>Table 1 on page 1</i> .
06-Jul-2012	3	Updated: Table 1 on page 1.
24-Apr-2014	4	Part number LD59015xx changed to LD59015. Updated the description in cover page and Section 7: Package mechanical data. Added Section 8: Packaging mechanical data. Minor text changes.
05-Jul-2017	5	Updated features and <i>Table 1: Device summary</i> . Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

577

18/18 DocID17488 Rev 5

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

LD59015C33R LD59015C12R LD59015C15R LD59015C18R LD59015C25R LD59015C30R