

DERWENT-ACC-NO: 1971-76447S

DERWENT-WEEK: 197148

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: Expanded plastic vehicle bodies with fibrous
or metallic
- reinforcement

PATENT-ASSIGNEE: PRESSED STEEL FISHER LTD[PRET]

PRIORITY-DATA: 1970GB-0026359 (June 1, 1970)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE
PAGES MAIN-IPC		
BE 767716 A		N/A
000 N/A		
DE 2126032 A		N/A
000 N/A		
FR 2093943 A		N/A
000 N/A		
JP 47000193 A		N/A
000 N/A		
NL 7107481 A		N/A
000 N/A		

INT-CL (IPC): B29D000/00, B62D000/00

ABSTRACTED-PUB-NO: BE 767716A

BASIC-ABSTRACT:

In an process for fabricating a vehicle body from two separate principal elements of cellular plastic material, the polymer reactants are mixed in a head compartment and supplied to a mould for each part; the mixture is allowed to polymerise and harden, each part being extracted from the mould and the moulded elements are assembled following a longitudinal or lateral junction line of the body.

The moulding may be reinforced by placing woven or non-woven fabric, carbon

fibres or a metal framework in the mould before adding the plastic premix.

The mould may be of metal, pref. of a superplastic alloy of Zn and Al which can be formed under pressure.

The injection orifice may be rendered non-stick by coating with PTFE.

The two separate elements may be joined by providing complementary ribs and slots.

A strong lightweight moulded body is provided.

TITLE-TERMS: EXPAND PLASTIC VEHICLE BODY FIBRE METALLIC REINFORCED

DERWENT-CLASS: A14 A32 A95 Q22

CPI-CODES: A12-S04; A12-T02;

POLYMER-MULTIPUNCH-CODES-AND-KEY-SERIALS:

Multipunch Codes: 01- 150 308 309 371 376 42& 448 456 461 491 50- 672
720 722
723 01- 062 064 087 371 376 445 477 491 53- 623 629 688 720

⑤1

Int. Cl.:

B 62 d, 29/04

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES

PATENTAMT

⑤2

Deutsche Kl.:

63 c, 43/15

39 a3, 27/00

⑩
⑪

Offenlegungsschrift 2126 032

⑫
⑬
⑭

Aktenzeichen: P 21 26 032.2

Anmeldetag: 26. Mai 1971

Offenlegungstag: 9. Dezember 1971

Ausstellungsriorität: —

⑯ Unionspriorität

Datum: 1. Juni 1970

⑰ Land: Großbritannien

⑱ Aktenzeichen: 26359-70

⑲ Bezeichnung: Fahrzeugkarosserie aus zellenförmigem Kunststoff sowie Verfahren und Vorrichtung zu ihrer Herstellung

⑳ Zusatz zu: —

㉑ Ausscheidung aus: —

㉒ Anmelder: Pressed Steel Fisher Ltd., Cowley, Oxford (Großbritannien)

Vertreter gem. § 16 PatG: Busse, V., Dipl.-Ing. Dr. jur.; Busse, D., Dipl.-Ing.: Patentanwälte,
4500 Osnabrück

㉓ Als Erfinder benannt:

Hill, Alan Charles; Tillotson, Robert; Oxford;
Bennett, Alexander, Bicester, Oxon (Großbritannien)

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960): —

DT 2126 032

PATENTANWÄLTE

DIPLO-ING. DR. IUR.
VOLKER BUSSE

DIPLO-ING.
DIETRICH BUSSE

45 OSNABRÜCK, den 25. Mai 1971
MOSENSTRASSE 20/24 VB/St 2126032

PRESSED STEEL FISHER LIMITED

Cowley, Oxford, England

Fahrzeugkarosserie aus zellenförmigem
Kunststoff sowie Verfahren und Vorrichtung
zu ihrer Herstellung

Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Herstellung von Fahrzeugkarosserien aus zellenförmigem Kunststoff sowie auf in dieser Weise hergestellte Fahrzeugkarosserien.

Die Erfindung umfaßt zunächst ein Verfahren zur Herstellung einer Fahrzeugkarosserie aus zumindest zwei gesondert gegossenen Hauptteilen aus polymerisiertem zellenförmigem Kunststoff, das durch folgende Schritte gekennzeichnet ist:

- a) die für Reaktion zur Bildung des Kunststoffmaterials geeigneten Flüssigkeitskomponenten werden einem Mischkopf zugeführt;

109850/1243

- b) die Flüssigkeitskomponenten werden mittels des Mischkopfes gemischt;
- c) die gemischten Komponenten werden vom Mischkopf einer für jedes Teil der Karosserie vorgesehenen Form zugeleitet;
- d) der Mischung wird ermöglicht, zur Bildung des Kunststoffmaterials zu reagieren, und dem Kunststoffmaterial wird ermöglicht, zu polymerisieren und auszuhärten;
- e) jedes Karosserieteil wird aus seiner Form entfernt; und
- f) die Karosserieteile werden entlang einer längs oder quer verlaufenden Verbindungs fuge des Karosseriekörpers miteinander verbunden.

Eine erste bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens zeichnet sich dadurch aus, daß die Karosserieteile durch Streifen miteinander verbunden werden, die in komplementäre Schlitzpaare an jeder Seite der längs oder quer verlaufenden Verbindungs fuge fest eingesetzt werden.

Gemäß einer zweiten bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, daß in wenigstens eine der Formen, vor dem Zuleiten der gemischten Flüssigkeitskomponenten vom

Mischkonf in die Form, wenigstens ein Bestandteil, ausgewählt aus folgender Gruppe: gewebte oder nichtgewebte Struktur, Carbon-Fibermaterial, Metall-Skeletteile und Lastverteilungseinsätze für eine ständige Verstärkung der gegossenen Karosserieteile, eingebracht wird.

Die weiter nach der Erfindung vorgesehene Vorrichtung zur Herstellung von Fahrzeugkarosserien aus Kunststoff besteht aus einer einen Hohlraum begrenzenden Form, in welche die zur Bildung des zellenförmigen Kunststoffs reagierenden Komponenten für eine Reaktion miteinander eingesetzt werden, und zeichnet sich dadurch aus, daß die Form so hergestellt ist, daß zumindest die mit dem zellenförmigen Kunststoffmaterial in Anlage kommende Fläche der Form aus Metall besteht, und daß Wärmeaustauschmittel vorgesehen sind, so daß der Wärmefluß zwischen der Formfläche und dem hiermit in Anlage befindlichen Kunststoffmaterial gesteuert werden kann.

Vorzugsweise besteht bei dieser erfindungsgemäß Vorrichtung das Metall der Form aus einer auf Zink-Aluminium basierten Legierung, die in superplastischem Zustand gebracht wurde und in die gewünschte Gestalt druckverformt worden ist. Weiterhin zeichnet sich die erfindungsgemäß Vorrichtung vorteilhaft dadurch aus, daß die Form durch zumindest ein gegossenes Material verstärkt ist, z.B. durch ein ausgewähltes Material aus der Gruppe: Beton, expandierter Ton oder zellenförmiges Kunststoffmaterial.

Eine weiter vorgesehene bevorzugte Ausführung der erfindungsge-

mäßigen Vorrichtung sieht vor, daß der Form die Komponenten eines zellenförmigen Kunststoffmaterials mittels einer Zuleitung zugeführt werden, die eine in der Leitung angeordnete "berdruck-Kammer" umfaßt, um durch Veränderungen in der Materialzuführung bewirkte Strömungsschwankungen vor dem Eintritt des Materials in den Formraum abzuschwächen.

Schließlich zeichnet sich die erfindungsgemäß Vorrichtung vorteilhaft dadurch aus, daß die Form zum Einspritzen der Komponenten des zellenförmigen Materials in diese mit einem Fülltrichter versehen ist, der mit einem nichtklebenden Kunststoffmaterial ausgekleidet ist. Zweckmäßig besteht dabei das nichtklebende Kunststoffmaterial aus Polytetrafluorathylen.

Schließlich umfaßt die Erfindung eine aus zumindest zwei gesondert gegossenen Hauptteilen hergestellte Fahrzeugkarosserie aus zellenförmigem Kunststoff, die sich dadurch auszeichnet, daß ihre Hauptteile entlang einer längs oder quer verlaufenden Fuge des Karosseriekörpers miteinander verbunden sind.

Vorzugsweise sind bei dieser erfindungsgemäßen Fahrzeugkarosserie deren Hauptteile durch Streifen miteinander verbunden, die in komplementäre Schlitzpaare in den Teilen an jeder Seite der längs oder quer verlaufenden Fuge fest eingesetzt sind. Zweckmäßig haben dabei die Streifen eine gewellte und perforierte Form und sind mittels eines Klebers in wenigstens einen Schlitz jedes komplementären Schlitzpaars fest eingesetzt.

Eine bevorzugte Ausführungsform der erfindungsgemäßen Fahrzeugkarosserie zeichnet sich weiter dadurch aus, daß wenigstens eines der Karosserieteile verstärkt ist, zumindest durch einen Bestandteil folgender Gruppe: gewebte oder nichtgewebte Struktur, Carbon-Fiber, Metall-Skeletteile, örtliche Lastverteilungseinsätze.

Der Gegenstand der Erfindung wird nachstehend anhand eines Ausführungsbeispiels in Verbindung mit der Zeichnung näher beschrieben, in der die Fig. 1 und 2 perspektivische Ansichten eines Teiles einer Fahrzeugkarosserie und Fig. 3 einen Mittelschnitt durch einen Eingußtrichter zeigen.

Vorrichtung und Verfahren:

Die Gußformen für Fahrzeugkarosserien sind aus Aluminium, Stahl, einer auf Zink-Aluminium basierenden superelastischen Legierung hergestellt oder sind in geeigneter Weise mit Epoxy-Kunststoffmaterial gefüllt. Die Gußform ist weiter so hergestellt, daß sie eine hohe Wärmeleitfähigkeit besitzt, sie ist weiter versehen mit Heiz- und/oder Kühlmitteln, um die Temperatur der Form aufrechtzuerhalten oder leicht zu verändern, so daß die Dicke einer integrierten Randzone bzw. Außenschicht des gegossenen Materials ebenfalls gesteuert werden kann. Die Heiz- oder Kühlmittel können aus Rohren, Leitungen oder ausgekernten Kanälen in der Form bestehen, die für einen Wärmeaustausch mit der Formoberfläche angeordnet sind. Durch die Rohre kann Flüssigkeit und/oder Dampf gepumpt werden, um entweder die Form aufzuheizen oder diese während einer exothermischen Reaktion innerhalb der Form zu kühlen.

Die Formen können in ein Verstärkungsmaterial eingebettet sein, z.B. in Beton oder zellenförmigen Kunststoff oder expandierten Ton, um Starrheit bzw. Steifigkeit zu erhalten. In diesem Fall sind die der Form zugeordneten Heiz- und Kühlmittel so angeordnet, daß übermäßige Temperaturveränderungen in dem Verstärkungsmaterial nahe der Form verhindert werden.

Gegebenenfalls umfaßt die Gießvorrichtung Mittel für ein teilweises Evakuieren des Innern einer oder mehrerer Formen, um die Wahrscheinlichkeit einer Lunkerbildung während des Gießens zu verringern; diese Mittel bestehen aus einer die Form umgebenden Vakuumkammer, die mit dem Innern der Form in Verbindung steht, z.B. durch einen Anschluß zwischen den Sektionen der Form.

Jede Form wird mittels eines oder mehrerer Eingußtrichter gefüllt, die mit PTFE ausgekleidet sind und konische Bohrungen haben. Die Fig. 3 zeigt einen solchen Eingußtrichter 31 mit einem eingesetzten Einsatz 32 aus Polytetrafluoräthylen (PTFE), der zur Schaffung einer konischen Bohrung 33 ausgeräumt worden ist. Zur Befestigung an eine Zuleitung ist ein Gewindeteil 34 vorgesehen. Ein abgeschrägtes Ende 35 wird in eine entsprechende Öffnung in der Form eingesetzt. Der Einsatz 32 schafft einen nichtklebenden Kanal für die Komponenten des Kunststoffmaterials, die durch diesen hindurch in die Formen eingespritzt werden, und dient weiter dazu, einen nicht aufgerauhten bzw. ungekerbten Einguß des polymerisierten Kunststoffs zu erhalten.

Die Formteile sind auf einem Grundteil oder Grundrahmen ange-

bracht, das geschwenkt bzw. gekippt wird, so daß die Flüssigkeits einspritzung und die nachfolgende Polymerisation in der am besten geeigneten Ausrichtung der Form stattfindet. Zweckmäßigerverweise sollte das Gießen von im wesentlichen gekrümmten Stücken mit einer derart gekippten bzw. schräg gestellten Form ausgeführt werden, daß das gekrümmte Stück eine im wesentlichen konkav, nach oben gerichtete Ausrichtung hat. Auf diese Weise können für das Aussehen wichtige Flächen (z.B. die Außenflächen eines Fahrzeugdaches) mit nach unten zugewandter Fläche gegossen werden, so daß Luft hiervon leicht abgeführt werden kann.

Die Formen werden über einen Mischkopf und ein Isolierventil gefüllt. Der Mischkopf wird von wenigstens zwei Zuleitungen gespeist, durch die die Komponenten im richtigen Verhältnis durch Förderpumpen zugeführt werden. Die Zuführungsleitung vom Isolierventil zur Form umfaßt eine Überdruck-Kammer (surge arresting chamber), die ungemischte Flüssigkeit vom Mischkopf zu Beginn und am Ende einer Einspritzfolge zurückhält.

Vor dem Gießen wird die Form mit einem Freigabe-Agens oder -Agenzien und/oder einem pigmentierten Grundüberzug ausgespritzt, der einen ersten Überzug auf der nachfolgend gegossenen Karosserie ergibt.

Fahrzeugkarosserie:

Gemäß einer bevorzugten Ausführungsform wird eine Fahrzeugkarosserie nach der Erfindung aus einem steifen, zellenförmigen

bzw. vorigen Polyurethanmaterial mit einer integrierten Außenhaut hergestellt. Die Komponenten, die dieses Material bilden, bestehen aus einem flüssigen polyhydroxidschen Material des Polyäther- und/ oder Polyesthertyps mit Hydroxyl-Werten innerhalb des Bereiches von 50 bis 800 mg KOH/g des Harzes und einem Polyisocyanat, typischerweise des Diphenylmethan - 4,4" - Diisocyanats (MDI) oder 2,4 - oder 2,6 - Tolylen-Diisocyanats (TDI). In den Polyol-Komponenten sind verschiedene Additive enthalten, die ein Häsagens, typischerweise ein chloriertes Fluorcarbon, z.B. Trifluorchlormethan, ein die Zellen bzw. Pooren steuerndes Additiv, wie z.B. eine hydroxylierte (hydroxyl tipped) Siliconflüssigkeit, einen oder mehrere Katalysatoren, typischerweise aus tertiären Arminen, aus Organo-Zinn- oder Organo-Blei-Verbindungen, umfassen. Andere Additive, wie z.B. Feuerhemmer, können ebenfalls in dem Polyol enthalten sein.

Bei einer bevorzugten Ausführungsform einer Fahrzeugkarosserie besteht der Karosseriekörper aus zwei gegossenen Stücken, die entlang einer vertikalen Längstrennung des Körpers miteinander verbunden sind; die Fig. 1 und 2 zeigen jeweils das linke Stück 10 einer solchen, aus zwei gegossenen Stücken bestehenden Karosserie. Die beiden Stücke werden über Längen perforierter und gerippter bzw. gewellter Streifen 11 (Fig. 1) miteinander verbunden, wobei jeder Streifen von etwa 15 cm x 3,8 cm aus etwa 1,2 mm dickem, gewelltem Stahl besteht und mit Löchern von etwa 4,8 mm Durchmesser versehen ist, die in einem beliebigen Muster durchgebohrt sind. Dübel bzw. Bolzen 12 und Stahlrohre 13 rund um den Rand der Stücke sorgen für ein Fluchten beim Zusammen-

2126032

setzen vor dem festen Verbinden; stattdessen könnten zum Fluchten bzw. Ausrichten auch angegossene Zentrieransätze und entsprechende Ausnehmungen an den gegossenen Stücken vorgesehen sein. Die Streifen werden eingegossen oder eingekittet in die gegossenen Stücke in entsprechenden Schlitten, die in Abständen voneinander in die zu verbindenden Ränder maschinell eingearbeitet sind; in die komplementären Schlitte wird Harzkleber eingebracht und so dann werden die beiden Stücke ausgerichtet und miteinander verklammert, bis der Harzkleber um die Einsätze in den Schlitten und an der Verbindungsfläche ausgehärtet ist.

Die Wellungen und Perforationen des Streifenmaterials gewährleisten eine innige Einlagerung der Streifen in dem gebundenen Harzkleber.

Zumindest eines der beiden Stücke ist so gegossen, daß es Betriebsleitungen bzw. -gänge für Brennstoff, Hydraulikflüssigkeit, Luft oder andere Leitungen oder für elektrische Drähte umfaßt bzw. enthält, so daß diese in der Fahrzeugkarosserie eingeschlossen sind. Die Gußstücke können mit gewebter oder nichtgewebter Struktur (woven or non-woven fabric) verstärkt sein, um ein Splittern zu mildern, wenn die Karosserie von einem Unfall betroffen ist. Eine Verstärkung aus Carbon-Fiber kann verwendet werden, um die Biege-Charakteristik örtlicher oder auch weiter ausgedehnter Bereiche der Karosserie zu verbessern. Stahl-Skelettteile und ebenso auch Befestigungspunkte für Hilfssysteme (z.B. für den Motor oder für Hilfs-Rahmenteile) in Form von Metall-

platten können mit eingegossen sein, um eine Lastverteilung zu erreichen und gleichzeitig einen Korrosionsschutz für diese Teile und Platten sicherzustellen. Ein Metalleinsatz 14 für eine Sicherheitsgurt-Verankerung ist in Fig. 2 gezeigt, zusammen mit offenen Enden 15 von rohrförmigen Metall-Skeletteilen, die in das Karosserieteil eingegossen sind.

Patentansprüche:

1. Verfahren zum Herstellen einer Fahrzeugkarosserie, bestehend zumindest aus zwei gesondert gegossenen Hauptteilen aus polymerisiertem zellenförmigen Kunststoffmaterial, gekennzeichnet durch folgende Schritte:

- a) die für Reaktion zur Bildung des Kunststoffmaterials geeigneten Flüssigkeitskomponenten werden einem Mischkopf zugeführt;
- b) die Flüssigkeitskomponenten werden mittels des Mischkopfes gemischt;
- c) die gemischten Komponenten werden vom Mischkopf einer für jedes Teil der Karosserie vorgesehenen Form zugeleitet;
- d) der Mischung wird ermöglicht, zur Bildung des Kunststoffmaterials zu reagieren, und dem Kunststoffmaterial wird ermöglicht zu polymerisieren und auszuhärten;
- e) jedes Karosserieteil wird aus seiner Form entfernt; und
- f) die Karosserieteile werden entlang einer längs oder quer verlaufenden Verbindungs fuge des Karosseriekörpers miteinander verbunden.

2. Verfahren nach Anspruch 1, gekennzeichnet durch den weiteren Schritt der Verbindung der Karosserieteile mittels Ver-

laschungs- oder Verbindungstreifen, die in komplementäre Schlitze in den Karosserieteilen an jeder Seite der Längs oder quer verlaufenden Verbindungs fuge bei entsprechender Aneinandersetzung der Karosserieteile fest eingesetzt werden.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in wenigstens einer der Formen, vor dem Zuleiten der gemischten Flüssigkeitskomponenten vom Mischkopf in die Form, wenigstens ein Bestandteil, ausgewählt aus folgender Gruppe: gewebte oder nichtgewebte Struktur, Carbon-Fibermaterial, Metall-Skeletteile und Lastverteilungseinsätze für eine ständige Verstärkung der gegossenen Karosserieteile, eingebracht wird.

4. Vorrichtung zur Herstellung einer Fahrzeugkarosserie aus Kunststoff, bestehend aus einer einen Hohlraum begrenzenden Form, in welche die zur Bildung eines zellenförmigen Kunststoffmaterials reagierenden Komponenten für eine Reaktion miteinander eingespritzt werden, dadurch gekennzeichnet, daß die Form so hergestellt ist, daß zumindest die mit dem zellenförmigen Kunststoffmaterial in Anlage kommende Fläche der Form aus Metall besteht, und daß Wärmeaustauschmittel vorgesehen sind, so daß der Wärmefluß zwischen der Formfläche und dem hiermit in Anlage befindlichen Kunststoffmaterial gesteuert werden kann.

5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß das Metall der Form aus einer auf Zink-Aluminium basierten Legierung besteht, die superplastisch gemacht wurde und unter

Druck in die erforderliche Gestalt verformt worden ist.

6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Form durch zumindest ein gegossenes Material verstärkt ist, z.B. durch ein ausgewähltes Material aus der Gruppe: Beton, expandierter Ton oder zellenförmiges Kunststoffmaterial.

7. Vorrichtung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß der Form die Komponenten eines zellenförmigen Kunststoffmaterials mittels einer Zuleitung zugeführt werden, die eine in der Leitung angeordnete Überdruck-Kammer umfaßt, um durch Veränderungen in der Materialzuführung bewirkte Strömungsschwankungen vor dem Eintritt des Materials in den Formraum abzuschwächen.

8. Vorrichtung nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die Form zum Einspritzen der Komponenten des zellenförmigen Materials in die Form mit einem Fülltrichter versehen ist, der mit einem nichtklebenden Kunststoffmaterial ausgekleidet ist.

9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß das nichtklebende Kunststoffmaterial Polytetrafluorathylen ist.

(10.) Fahrzeugkarosserie, bestehend aus mindestens zwei gesondert gegossenen Hauptteilen aus zellenförmigem Kunststoffmaterial, dadurch gekennzeichnet, daß die Karosserieteile entlang einer

langs oder quer verlaufenden Fuge des Karosseriekörpers miteinander verbunden sind.

11. Fahrzeugkarosserie nach Anspruch 10, dadurch gekennzeichnet, daß die Karosserieteile miteinander durch Streifen verbunden sind, die in komplementäre Schlitzpaare in den Karosserieteilen an jeder Seite der Längs- oder Querfuge fest eingesetzt sind.

12. Fahrzeugkarosserie nach Anspruch 11, dadurch gekennzeichnet, daß die Streifen eine gewellte und perforierte Form haben und mittels eines Klebers in wenigstens einem Schlitz jedes komplementären Schlitzpaars eingekittet sind.

13. Fahrzeugkarosserie nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß wenigstens eines der Karosserieteile verstärkt ist, zumindest durch einen Bestandteil folgender Gruppe: gewebte oder nichtgewebte Struktur, Carbon-Fiber, Metall-Skeletteile, örtliche Lastverteilungseinsätze.

14. Fahrzeugkarosserie nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß das zellenförmige Kunststoffmaterial geschäumtes Polyurethan ist.

15
Leerseite

17
63 c 43-15 AT: 26.05.1971 OT: 09.12.1971

2126032

Fig. 1.

109850/1243

16

2126032

Fig. 2.

Fig. 3.

109850/1243