

Facultad de Ciencias Escuela de Matemáticas

Año de la Consolidación de la Calidad en la Gestión Universitaria

Programa de: ALGEBRA LINEAL Y MATRICIAL Clave MAT-2390 Créditos: 04

Cátedra: Algebra (A E) Horas/Semana

Preparado por: Cátedra Algebra Horas Teóricas 03 Fecha: Abril 2013 Horas Practicas 02

Actualizado por: Semanas 16

Fecha: Abril 2013 Nivel **Grado**

DESCRIPCIÓN DE LA ASIGNATURA:

El Algebra Lineal y matricial en su estructura holística desarrolla los siguientes aspectos: Los espacios vectoriales, las operaciones definidas en un espacio vectorial, dependencia e independencia lineal, bases. Aplicaciones Lineales. Productos escalares y ortogonalidad. El espacio dual .Forma bilineales y cuadráticas. Vectores y valores propios. Teorema de Hamilton-Cayley. El Teorema espectral

• JUSTIFICACIÓN:

El Algebras Lineal y matricial está diseñado para contribuir a formar profesionales con la capacidad de observar, conceptualizar, deducir, y sintetizar con carácter científico la esencia de los objetos que estudia, de modo que a través de las estructuras algebraicas de espacio vectorial, se tenga la capacidad de procesar, modelar, y analizar de manera estructurada, Fomentando la construcción de los conocimientos y competencias propios de las aplicaciones lineales en matemática.

OBJETIVOS:

Introducir los fundamentos y herramientas necesarias para que los estudiantes en las diversas áreas del quehacer humano puedan reconocer e interpretar el lenguaje universal de las ciencias, aplicado a los espacios vectoriales, utilizar procedimientos propios de las aplicaciones lineales para obtener respuestas concretas y lógicas a las interrogantes y descubrimientos, que se presenten en cada una de dichas áreas.

• METODOLOGÍA:

El docente presentará los conceptos fundamentales, en un lenguaje estructurado algebraicamente para introducir los estudiantes en el manejo formal de los contenidos de la asignatura. Promoverá la investigación y la participación activa de los estudiantes, haciendo uso de, mapas mentales y conceptuales, trabajos y prácticas dirigidos. Valorará en estos el manejo de las estructuras el lenguaje formal y la socialización en un ambiente de trabajo armónico, con niveles técnicos y científicos acorde con la misión y visión de nuestra universidad.

• COMPETENCIAS A DESARROLLAR EN LA ASIGNATURA:

Manejo de las estructuras algebraicas, Pensamiento abstracto y algebraico, identificación de las partes de problemas básicos y los procedimientos a través de las aplicaciones lineales para su solución; organización, claridad, exactitud, creatividad, trabajo individual y en equipo.

• RECURSOS:

Recursos del aula. Libros de consulta, Software y WEB recomendados en la bibliografía

• BIBLIOGRAFÍA:

Algebra Lineal .Juan de Burgos.Edit McGraw-Hill.

Algebra Lineal con aplicaciones .Stanley Grossmann. Edit McGraw-Hill.

Álgebra Lineal.Serge Lang.

Algebra Lineal. Quilvio Cabral.

Introducción al Algebra Lineal. Howard Anton. Edit Limusa

Software: Maple, Octave, Winplot, Graph, Scientific Workplace, Geogebra 4.0

Facultad de Ciencias Escuela de Matemáticas

Año de la Consolidación de la Calidad en la Gestión Universitaria

Programa de: ALGEBRA LINEAL Y MATRICIAL Clave MAT-2390 Créditos: 04

No. 1 El Espacio vectorial

No. Horas

Teóricas 06 OBJETIVOS Establecer y generar los espacios vectoriales, operaciones, la

Prácticas 04 independencia lineal y bases . Describir los espacios Euclídeos y normados, sus

relaciones y operaciones.

CONTENIDOS:

1.1. Definición de espacio Vectorial.

1.2. Norma de un vector.

1.3. Producto Vectorial.

1.4. Subespacios vectoriales.

1.5. Independencia lineal bases.

No. 2 Aplicaciones Lineales

No. Horas Teóricas **06 OBJETIVOS:** Definir el concepto de aplicación Lineal, núcleo e imagen,

Prácticas 04 composición de aplicaciones, sus propiedades .Establecer la asociación entre

aplicación lineal y matriz y viceversa. Resolver problemas típicos.

CONTENIDOS:

2.1. Definición de aplicaciones Lineales.

2.2. El núcleo y la imagen de una aplicación lineal.

2.3. Composición de aplicaciones lineales inversas.

2.4. La aplicación Lineal asociada con una matriz.

2.5. La matriz asociada con una aplicación Lineal.

2.6. Bases, matrices y aplicaciones lineales.

No. 3 Vectores y formas lineales, el espacio Dual.

No. Horas

Teóricas

O6 OBJETIVOS: Introducir el espacio Euclídeo, Definir los productos escalares y bases

O6 OBJETIVOS: Introducir el espacio Euclídeo, Definir los productos escalares y bases

Prácticas **04** ortogonales. Analizar la correspondencia entre los vectores y formas lineales.

Construir y analizar el espacio dual.

CONTENIDOS:

3.1. Productos escalares y ortogonalidad

3.2. Productos escalares,

3.3. Bases ortogonales, caso definitivamente positivo.

3.4. Aplicación a las ecuaciones lineales.

3.5. Aplicaciones bilineales y matrices

3.6. Bases ortogonales generales.

3.7. El espacio dual.

Uníversidad Autónoma de Santo Bomingo

Primada de América Fundada el 28 de octubre de 1538

Facultad de Ciencias Escuela de Matemáticas

Año de la Consolidación de la Calidad en la Gestión Universitaria

Programa de: ALGEBRA LINEAL Y MATRICIAL Clave MAT-2390 Créditos: 04

No. 4 Formas bilineales y cuadráticas.

No. Horas

Teóricas

OB OBJETIVOS: Definir formas bilineales, cuadráticas y hermíticas, Emplear los

Prácticas 06 operadores simétricos en aplicaciones concretas. Analizar y utilizar el Teorema

de Sylvester y sus consecuencias

CONTENIDOS:

4.1. Formas bilineales y operadores estándar,

4.2. Formas bilineales.

4.3. Formas cuadráticas.

4.4. Operadores simétricos.

4.5. Operadores hermitianos.

4.6. Operadores unitarios.

4.7. Teorema de Sylvester.

No. 5 Vectores Propios

No. Horas

Teóricas 06 OBJETIVOS: Analizar las propiedades de los valores y vectores propios ,Establecer Prácticas 04 el polinomio característico. Efectuar problemas de aplicación

CONTENIDOS:

5.1. Polinomios, matrices.

5.2. Polinomios,

5.3. polinomios de matrices y de las aplicaciones lineales.

5.4. Vectores propios y valores propios.

5.5. El polinomio característico.

No. 6 El Teorema de Hamilton – Cayley

No. Horas Teóricas **08 OBJETIVOS:** Diagonalizar matrices. Demostrar el teorema de Hamilton – Cayley.

Prácticas **04** Diagonalizar aplicaciones unitarias. Enunciar el teorema espectral, Aplicar el teorema de Hamilton – Cayley a casos particulares.

CONTENIDOS:

6.1. Triangulación de matrices y de aplicaciones lineales.

6.2. Existencia de la triangulación.

6.3. Teorema de Hamilton - Cayley.

6.4. Diagonalización de aplicaciones unitarias

No. 7 El Teorema Espectral

No. Horas Teóricas **08 OBJETIVOS:** Aplicar el teorema espectral a casos particulares.

Prácticas 06

CONTENIDOS:

7.1. El Teorema espectral.

7.2. Vectores propios de aplicaciones lineales simetricas.

7.3. El teorema espectral

7.4. El caso ejemplo.

7.5. Operadores unitarios.