183 Hg ε decay:XUNDL-3 2017Ve04

Parent: ¹⁸³Hg: E=0.0; $J^{\pi}=1/2^-$; $T_{1/2}=9.4$ s 7; $Q(\varepsilon)=6385$ 12; $\%\varepsilon+\%\beta^+$ decay=88.3 20

 183 Hg-J $^{\pi}$,T $_{1/2}$: From Adopted Levels of 183 Hg in ENSDF database.

¹⁸³Hg-Q(ε): From 2012Wa38.

 183 Hg-% ϵ + $\%\beta$ ⁺ decay: From Adopted Levels of 183 Hg in ENSDF database.

Compiled (unevaluated) dataset from 2017Ve04: Nucl Inst Meth Phys Res A 849, 112 (2017).

Compiled by J. Chen (NSCL, MSU), March 17, 2017.

2017Ve04: 183 Hg ions were produced by spallation of 1.4 GeV proton beam provided from the ISOLDE facility at CERN in a molten lead target. Beam ions were separated and selected by the General Purpose Separator and delivered to the TATRA tape transportation system. γ rays were detected with an array of three different HPGe detectors including a non-bulletized disc shape Broad Energy Germanium detector (BEGe) for γ rays within 40-980 keV. Measured E γ , $\gamma\gamma$ -coin. Deduced levels.

¹⁸³Au Levels

E(level) [†]	E(level) [†]	E(level) [†]	E(level) [†]
0.0	91.257 16	263.702 14	779.817 <i>13</i>
12.732 11	172.849 9	289.377 <i>13</i>	811.251 <i>19</i>
34.930 <i>15</i>	247.057 <i>17</i>	314.669 <i>24</i>	818.069 <i>18</i>
73.100 <i>14</i>	252.460 <i>10</i>	317.781 <i>12</i>	977.974 21
88.088 24	254.546 <i>23</i>	440.750 <i>15</i>	1682.297 <i>21</i>

[†] From a least-squares fit to γ -ray energies (by compiler).

γ (183Au)

E_{γ}^{\ddagger}	$E_i(level)$	E_f	E_{γ}^{\ddagger}	E_i (level)	E_f	E_{γ}^{\ddagger}	$E_i(level)$	E_f
60.37 1	73.100	12.732	250.96 2	263.702	12.732	688.52 [†] 7	779.817	91.257
90.84 <i>3</i>	263.702	172.849	252.46 <i>1</i>	252.460	0.0	704.33 2	1682.297	977.974
91.25 6	91.257	0.0	276.66 2	289.377	12.732	730.93 2	977.974	247.057
160.11 <i>I</i>	172.849	12.732	289.37 2	289.377	0.0	767.09 5	779.817	12.732
166.46 <i>1</i>	254.546	88.088	305.05 <i>1</i>	317.781	12.732	779.81 <i>3</i>	779.817	0.0
172.85 <i>I</i>	172.849	0.0	317.78 2	317.781	0.0	798.52 2	811.251	12.732
173.96 <i>1</i>	247.057	73.100	462.04 2	779.817	317.781	805.34 <i>3</i>	818.069	12.732
181.44 2	254.546	73.100	490.45 2	779.817	289.377	811.31 [†] 7	811.251	0.0
188.29 <i>1</i>	440.750	252.460	516.11 <i>1</i>	779.817	263.702	864.21 <i>3</i>	1682.297	818.069
198.12 <i>I</i>	289.377	91.257	638.33 [†] 7	811.251	172.849	871.05 <i>3</i>	1682.297	811.251
217.53 <i>1</i>	252.460	34.930	645.21 2	818.069	172.849	902.42 8	1682.297	779.817
226.58 1	314.669	88.088	663.29 <i>3</i>	977.974	314.669			

[†] Very weak.

[‡] Additional information 1.

$^{183}{\rm Hg}~\varepsilon$ decay:XUNDL-3 2017Ve04

Decay Scheme

183 Hg ε decay:9.4 s:XUNDL-4 2017Ve02

Parent: ¹⁸³Hg: E=0.0; $J^{\pi}=1/2^{-}$; $T_{1/2}=9.4$ s 7; $Q(\varepsilon)=6387$ 12; $\%\varepsilon+\%\beta^{+}$ decay=88.3 20

 183 Hg-J $^{\pi}$, $T_{1/2}$: From 183 Hg Adopted Levels in the ENSDF database (April 2015 update).

Compiled (unevaluated) dataset from 2017Ve02: Jour Phys G44, 074003 (2017). See also paper by the same group in Nucl Instr and Methods A849, 112 (2017), where methodology is discussed with a partial decay scheme given.

Compiled by B. Singh (McMaster), July 15, 2017.

2017Ve02: ¹⁸³Hg source was produced in Pb(p,X),E(p)=1.4 GeV at the ISOLDE-CERN facility. The ¹⁸³Hg ions were selected by the General Purpose Separator and delivered to the HIGH-TATRA tape transport system. Measured E γ , I γ , ce, $\gamma\gamma$ -coin and (ce) γ -coin using broad energy germanium detector for γ rays, and Si(Li) detector for conversion electrons. Deduced levels, J^{π} , multipolarities, mixing ratios. Discussed systematics of intruder states and shape coexistence in odd-A Au isotopes.

¹⁸³Au Levels

E(level)	${ m J}^{\pi \#}$	Comments
0.0	(5/2-)	
12.74 <i>I</i>	$(3/2^{-})$	J^{π} : other: $(9/2)^{-}$ in ¹⁸³ Au Adopted Levels in the ENSDF database.
34.93 [‡] 1	$(9/2^{-})$	
73.10 <i>I</i>	$(1/2^+)$	
88.06 [‡] <i>3</i>	$(3/2^+)$	
91.25 <i>1</i>	$(7/2^{-})$	
172.85 <i>I</i>	$(3/2^-,5/2^-)$	
247.06 [‡] 2	$(3/2^+)$	
252.46 [‡] 1	$(7/2^{-})$	
253.23 [‡] 1	$(11/2^{-})$	
254.52 [‡] 2	$(5/2^+)$	
263.69 2		
289.37 1	$(5/2^{-})$	
314.65 [‡]	$(5/2^+)$	
317.78 <i>1</i>	$(1/2^-,3/2^-,5/2^-)$	
384.62 [‡] 2	$(3/2^+)$	
440.75 [‡] <i>1</i>	$(5/2^-,7/2^-,9/2^-)$	
539.65 [‡] 2	$(7/2^{-})$	
779.80 2		
811.25 2		
818.06 2		
977.96 [‡] 2		
1122.75 [‡] <i>3</i>	$(3/2^{-})$	
1682.30 2	$(1/2^-, 3/2^-)$	J^{π} : from log $ft=4.9 +5-1$, based on $I(\varepsilon+\beta^+)=13\% +15-5$ for this level, as given by 2017Ve02.

[†] As given by 2017Ve02. Compiler's least-squares fit to E γ data using GTOL code gives very similar results.

¹⁸³Hg-Q(ε): From 2017Wa10: AME-2016.

¹⁸³Hg-%ε+%β⁺ decay: %ε+%β⁺=88.3 20 for the decay of ¹⁸³Hg, taken from ¹⁸³Hg Adopted Levels in the ENSDF database (April 2015 update).

[‡] New level in 2017Ve02.

[#] As given in 2017Ve02, based on previous assignments and some in the present work from multipolarities determined from their ce data.

 $^{183}{\rm Hg}~\varepsilon$ decay:9.4 s:XUNDL-4 \qquad 2017Ve02 (continued)

$\gamma(^{183}\mathrm{Au})$

The decay scheme cannot be normalized as sufficient information about multipolarities and mixing ratios is lacking, in addition to the incompleteness of the proposed level scheme.

Experimental conversion coefficients and K/L ratios are from ce data in 2017Ve02.

1

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult. [†]	δ	α^{\ddagger}	Comments
(12.73) (14.96) (34.97) (56) 60.37 <i>I</i>	440 80	12.74 88.06 34.93 91.25 73.10	(3/2 ⁻) (3/2 ⁺) (9/2 ⁻) (7/2 ⁻) (1/2 ⁺)	0.0 34.93	(5/2 ⁻) (1/2 ⁺) (5/2 ⁻) (9/2 ⁻) (3/2 ⁻)	E1		0.325	$\alpha(L)$ exp=0.22 4; $\alpha(M)$ exp=0.04 2 Mult.: E1 assigned by 2017Ve02 with no abnormal
(79) 90.84 <i>3</i> 91.25 <i>6</i>	14 <i>4</i> 3 <i>1</i>	91.25 263.69 91.25	$(7/2^{-})$ $(7/2^{-})$	172.85	(3/2 ⁻) (3/2 ⁻ ,5/2 ⁻) (5/2 ⁻)				behavior.
160.11 <i>I</i>	100 10	172.85	(3/2 ⁻ ,5/2 ⁻)	12.74	(3/2-)	M1(+E2)			K/L=4.7 18 Compiler's note: δ (E2/M1)<0.96, but E1 is also possible from K/L(theory)=5.72 12 for E1.
161 <i>I</i> 166.46 <i>I</i>	13 <i>3</i> 50 <i>5</i>	252.46 254.52	(7/2 ⁻) (5/2 ⁺)		$(7/2^{-})$ $(3/2^{+})$	M1+E2	0.82 18	1.30 12	$\alpha(L)$ exp=0.24 5; K/L=3.4 5 δ deduced by compiler from mult=M1+40% 10 E2 in Table 1 of 2017Ve02. Note that in the text on page 12, authors quote K/L=3.2 5 and mult=M1+44% 10.
172.85 <i>I</i>	82 8	172.85	(3/2 ⁻ ,5/2 ⁻)	0.0	(5/2-)	M1		1.529	$\alpha(K)$ exp=1.25 28 Compiler obtains $\delta(E2/M1)<0.63$. $\alpha(K)$ exp: combined for 172.85+173.96 doublet.
173.96 <i>1</i>	46 5	247.06	(3/2+)	73.10	(1/2+)	M1		1.502	$\alpha(K)\exp = 1.25 \ 28$ Compiler obtains $\delta(E2/M1) < 0.60$. $\alpha(K)\exp = combined for 172.85 + 173.96 doublet.$
181.44 2	6 1	254.52	$(5/2^+)$	73.10	$(1/2^+)$				<i>a</i> (K)exp. comomed for 172.65 + 175.90 doublet.
188.29 <i>1</i>	19 2	440.75	$(5/2^-,7/2^-,9/2^-)$	252.46		M1(+E2)			$\alpha(K)$ exp=0.87 20
198.12 <i>I</i>	19 2	289.37	(5/2-)	91.25	(7/2-)	M1		1.043	Compiler obtains $\delta(\text{E2/M1}) < 0.82$. $\alpha(\text{K}) \exp = 0.88 \ 20$ Compiler obtains $\delta(\text{E2/M1}) < 0.59$.
217.53 <i>1</i>	14 2	252.46	$(7/2^{-})$	34.93	(9/2-)	M1(+E2)			compiler obtains $\delta(E2/M1) < 0.59$. $\alpha(K) \exp=0.54 \ 13$ Compiler obtains $\delta(E2/M1) < 0.96$.
218.30 <i>I</i> 226.58 <i>I</i> 250.96 2 252.46 <i>I</i> 276.66 2	11 2 29 6 11 2 16 2 20 2	253.23 314.65 263.69 252.46 289.37	(11/2 ⁻) (5/2 ⁺) (7/2 ⁻) (5/2 ⁻)	88.06 12.74 0.0	(9/2 ⁻) (3/2 ⁺) (3/2 ⁻) (5/2 ⁻) (3/2 ⁻)				
^x 284.40 2	11 2	_0,,	(-1-)	12.71	(-1-)	E0+M1+E2			$\alpha(K) \exp = 1.21 \ 33$

¹⁸³ Hg ε decay:9.4 s:XUNDL-4	2017Ve02 (continued)
---	----------------------

$\gamma(^{183}\text{Au})$ (continued)

	E_{γ}	I_{γ}	$E_i(level)$	J_i^π	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}
	286.42 <i>I</i> 289.37 2	13 2 37 <i>4</i>	539.65 289.37	(7/2 ⁻) (5/2 ⁻)	253.23 0.0	(11/2 ⁻) (5/2 ⁻)	M1+E2	0.24 1.
l	296.54 2	6 1	384.62	(3/2+)	88.06	(3/2+)	E0+M1+E2	
	305.05 1	81 8	317.78	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	12.74	(3/2-)	M1	0.317
	311.53 2 317.78 2 462.04 2 490.45 2 516.11 <i>I</i> 583.10 2 607 <i>I</i> 638.33 7 645.21 2 663.29 3 688.52 7 704.33 2 730.93 2 767.09 5 779.81 3 798.52 2 805.34 3 811.31 7	10 2 17 2 17 2 5 1 32 3 12 2 11 3 4 2 19 2 5 1 4 2 13 3 7 1 20 2 12 2 20 2 16 2 6 2	384.62 317.78 779.80 779.80 779.80 1122.75 779.80 811.25 818.06 977.96 779.80 1682.30 977.96 779.80 779.80 811.25 818.06 811.25	$(3/2^{+})$ $(1/2^{-},3/2^{-},5/2^{-})$ $(3/2^{-})$ $(1/2^{-},3/2^{-})$	0.0 317.78 289.37 263.69 539.65 172.85 172.85 314.65 91.25 977.96 247.06 12.74 0.0	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻) (5/2 ⁻) (7/2 ⁻) (3/2 ⁻ ,5/2 ⁻) (3/2 ⁻ ,5/2 ⁻) (3/2 ⁻ ,5/2 ⁻) (5/2 ⁺) (7/2 ⁻) (3/2 ⁺) (3/2 ⁻) (5/2 ⁻) (3/2 ⁻) (3/2 ⁻) (3/2 ⁻) (3/2 ⁻)		
	864.21 <i>3</i> 871.05 <i>3</i> 902.42 <i>8</i> 1242 <i>I</i> 1297 <i>I</i> 1364 <i>I</i>	13 <i>I</i> 18 2 17 2 7 2 12 <i>I</i> 10 <i>I</i>	1682.30 1682.30 1682.30 1682.30 1682.30	(1/2 ⁻ ,3/2 ⁻) (1/2 ⁻ ,3/2 ⁻)	818.06 811.25 779.80 440.75 384.62	(5/2-,7/2-,9/2-)		
	1393 <i>I</i> 1428 <i>I</i> *1437 <i>I</i> 1509 <i>I</i>	20 2 83 8 16 2 32 3	1682.30 1682.30 1682.30	$(1/2^-, 3/2^-)$ $(1/2^-, 3/2^-)$ $(1/2^-, 3/2^-)$	289.37 254.52	$(5/2^{-})$		
п								

 $^{^{\}dagger}$ As assigned by 2017Ve02 based on their ce data.

 ω

This γ ray could not be placed due to lack of observation of coincidences, and limited counting statistics in 2017Ve02.

Comments

13 $\alpha(K)\exp=0.25 6$

Compiler obtains M1(+E2) with δ (E2/M1)<0.95.

 $\alpha(K) \exp = 2.84 \ 74$

Mult.: 2017Ve02 list mult=E0+M1⁺... α (K)exp=0.26 6; α (L)exp=0.04 I

Compiler obtains $\delta(E2/M1) < 0.65$ from K-conversion coefficient,

and <3.0 from L-conversion coefficient.

Mult.: 2017Ve02 list mult=E0+M1+...

From XUNDL

 $^{^{\}ddagger}$ Theoretical values from BrIcc code, included by compiler.

 $^{^{}x}$ γ ray not placed in level scheme.

183 Hg ε decay:9.4 s:XUNDL-4 2017Ve02

Intensities: Relative I_{γ}

Legend

 \mathcal{S}

$$\%\varepsilon + \%\beta^{+} = 88.3$$

$$\sqrt{\begin{array}{c} 1/2^{-} & 0.0 \\ Q_{\varepsilon} = 6387 \ I2 \\ 183 \\ 80 \\ Hg_{103} \end{array}} 9.4 \text{ s } 7$$

Compiled (unevaluated) dataset from 2020Na27: Phys Rev Lett 125, 132501 (2020). Compiled by J. Chen (NSCL, MSU), April 8, 2021.

2020Na27: E=146 MeV 20 Ne beam was produced from the K-130 cyclotron at the Variable Energy Cyclotron Center, Kolkata. Target was 23 mg/cm 2 169 Tm foil. γ rays were detected with the Indian National Gamma Array consisting of 8 Compton-suppressed clover HPGe detectors and 2 HPGe planar LEPS detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma\gamma$ -

¹⁸³Au Levels

E(level) [†]	$J^{\pi \#}$	E(level) [†]	$J^{\pi \#}$	E(level) [†]	$J^{\pi \#}$	E(level) [†]	$J^{\pi \#}$
12.78 [‡] &	9/2-	1488 <mark>a</mark>	23/2-	2684 ^c	31/2+	4464 ^c	43/2+
68 [@]	$7/2^{-}$	1492 <mark>&</mark>	$25/2^{-}$	2690 <mark>&</mark>	33/2-	4760 <mark>&</mark>	$45/2^{-}$
232 <mark>&</mark>	$13/2^{-}$	1530 ^b	$25/2^{+}$	2742 [@]	$31/2^{-}$	4986 ^b	49/2+
274 [@]	$11/2^{-}$	1544 [@]	$23/2^{-}$	3049 ^b	$37/2^{+}$	5133 ^a	$47/2^{-}$
566 <mark>&</mark>	$17/2^{-}$	1670 ^d	$23/2^{+}$	3148 ^a	35/2-	5497 <mark>&</mark>	$49/2^{-}$
600 [@]	$15/2^{-}$	1739 ^c	$23/2^{+}$	3243 ^c	35/2+	5677 ^b	53/2+
702 <mark>b</mark>	$13/2^{+}$	1983 ^b	$29/2^{+}$	3358 <mark>&</mark>	$37/2^{-}$	5912 ^a	$51/2^{-}$
867 <mark>b</mark>	$17/2^{+}$	1987 <mark>a</mark>	$27/2^{-}$	3389 [@]	35/2-	6242 <mark>&</mark>	53/2-
898 <mark>d</mark>	$15/2^{+}$	2063 <mark>&</mark>	$29/2^{-}$	3655 ^b	$41/2^{+}$	6375 ^b	57/2+
990 <mark>&</mark>	$21/2^{-}$	2118 [@]	$27/2^{-}$	3796 ^a	39/2-	7103 ^b	$61/2^{+}$
1024 [@]	$19/2^{-}$	2178 ^c	27/2+	3840 ^c	39/2+	7848 ^b	$65/2^{+}$
1056 <mark>a</mark>	$19/2^{-}$	2206 ^d	$(27/2^+)$	4050 <mark>&</mark>	$41/2^{-}$		
1151 <mark>b</mark>	$21/2^{+}$	2492 <mark>b</mark>	$33/2^{+}$	4308 ^b	45/2+		
1213 ^d	19/2+	2540 ^a	$31/2^{-}$	4457 ^a	$43/2^{-}$		

 $^{^{\}dagger}$ As given in 2020Na27, from a least-squares fit to γ -ray energies, unless otherwise noted.

$\gamma(^{183}Au)$

R_{DCO} and POL values given under comments are read off from FIG.2 of 2020Na27 by compiler.

E_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
165	867	17/2+	702	13/2+			
196 [‡]	898	$15/2^{+}$	702	$13/2^{+}$			
205	274	$11/2^{-}$	68	$7/2^{-}$			
220	232	$13/2^{-}$	12.78	$9/2^{-}$			
262	274	$11/2^{-}$	12.78	9/2-	M1+E2	$-0.12\ 2$	R _{DCO} =0.64 4, POL=-0.30 11.
266	867	$17/2^{+}$	600	$15/2^{-}$			
283	1151	$21/2^{+}$	867	$17/2^{+}$			
301	867	$17/2^{+}$	566	$17/2^{-}$			
315 [‡]	1213	19/2+	898	15/2+			

[‡] From Adopted Levels of ¹⁸³Au in ENSDF database (2016 update).

[#] As given in 2020Na27 based on band assignments and deduced multipolarity.

[@] Band(A): Signature-partner band based on 7/2⁻.

[&]amp; Band(B): $h_{9/2}$ band based on $9/2^-$.

^a Band(C): Traverse-wobbling band based on 19/2⁻.

^b Band(D): $i_{13/2}$ band based on $13/2^+$.

^c Band(E): Traverse-wobbling band based on 23/2⁺.

^d Band(F): Signature-partner band based on 15/2⁺.

¹⁶⁹Tm(²⁰Ne,6nγ):XUNDL-5 **2020Na27** (continued)

γ (183Au) (continued)

E_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	δ#	Comments
326 334	600 566	15/2 ⁻ 17/2 ⁻	274 11/2 ⁻ 232 13/2 ⁻			
347 [‡] 368 379 424	1213 600 1530 990	19/2 ⁺ 15/2 ⁻ 25/2 ⁺ 21/2 ⁻	867 17/2 ⁺ 232 13/2 ⁻ 1151 21/2 ⁺ 566 17/2 ⁻	M1+E2 M1+E2	0.02 <i>10</i> -0.08 <i>3</i>	R _{DCO} =0.97 6, POL=-0.34 11. R _{DCO} =0.64 4, POL=-0.30 11.
424 428 432 439 453	1024 702 1488 2178 1983	19/2 ⁻ 13/2 ⁺ 23/2 ⁻ 27/2 ⁺ 29/2 ⁺	600 15/2 ⁻ 274 11/2 ⁻ 1056 19/2 ⁻ 1739 23/2 ⁺ 1530 25/2 ⁺	E1+M2	-0.08 2	R _{DCO} =0.68 2, POL=+0.31 8.
456 457 457 [‡] 465 470 478 [‡]	1056 1024 1670 1488 702 2540	19/2 ⁻ 19/2 ⁻ 23/2 ⁺ 23/2 ⁻ 13/2 ⁺ 31/2 ⁻	600 15/2 ⁻ 566 17/2 ⁻ 1213 19/2 ⁺ 1024 19/2 ⁻ 232 13/2 ⁻ 2063 29/2 ⁻	M1+E2	-0.08 5	R _{DCO} =0.62 5, POL=-0.34 12.
490 [‡] 495	1056 1987	19/2 ⁻ 27/2 ⁻	566 17/2 ⁻ 1492 25/2 ⁻	E2+M1	-2.9 7	R _{DCO} =0.50 5, POL=+0.14 10.
498 [‡] 498 502 505 509	1488 1987 1492 2684 2492	23/2 ⁻ 27/2 ⁻ 25/2 ⁻ 31/2 ⁺ 33/2 ⁺	990 21/2 ⁻ 1488 23/2 ⁻ 990 21/2 ⁻ 2178 27/2 ⁺ 1983 29/2 ⁺	E2+M1	-2.9 9	R _{DCO} =0.48 7, POL=+0.12 12.
519 [‡] 520	1670 1544	23/2 ⁺ 23/2 ⁻	1151 21/2 ⁺ 1024 19/2 ⁻			
535 [‡] 553 557 559 571 574	2206 2540 3049 3243 2063 2118	(27/2 ⁺) 31/2 ⁻ 37/2 ⁺ 35/2 ⁺ 29/2 ⁻ 27/2 ⁻	1670 23/2+ 1987 27/2- 2492 33/2+ 2684 31/2+ 1492 25/2- 1544 23/2-	E2+M3	-0.05 5	R _{DCO} =1.03 2, POL=+0.46 9.
588 597 607 607	1739 3840 3148 3655	23/2 ⁺ 39/2 ⁺ 35/2 ⁻ 41/2 ⁺	1151 21/2 ⁺ 3243 35/2 ⁺ 2540 31/2 ⁻ 3049 37/2 ⁺	E2+M1	-3.1 13	R _{DCO} =0.44 7, POL=+0.14 12.
624 624 ^{‡@} 627 646 648 648	2742 4464 2690 3389 2178 3796 4308	31/2 ⁻ 43/2 ⁺ 33/2 ⁻ 35/2 ⁻ 27/2 ⁺ 39/2 ⁻ 45/2 ⁺	2118 27/2 ⁻ 3840 39/2 ⁺ 2063 29/2 ⁻ 2742 31/2 ⁻ 1530 25/2 ⁺ 3148 35/2 ⁻ 3655 41/2 ⁺	E2+M1	-3.2 13	R _{DCO} =0.46 6, POL=+0.16 11.
661 668 676 [‡] 679 691 692 698 701 710	4457 3358 5133 4986 5677 4050 6375 2684 4760	43/2 ⁻ 37/2 ⁻ 47/2 ⁻ 49/2 ⁺ 53/2 ⁺ 41/2 ⁻ 57/2 ⁺ 31/2 ⁺	3796 39/2 ⁻ 2690 33/2 ⁻ 4457 43/2 ⁻ 4308 45/2 ⁺ 4986 49/2 ⁺ 3358 37/2 ⁻ 5677 53/2 ⁺ 1983 29/2 ⁺ 4050 41/2 ⁻	E2+M1	-3.5 15	R _{DCO} =0.47 7, POL=+0.14 12.
710	7103	45/2 ⁻ 61/2 ⁺	4050 41/2 6375 57/2 ⁺			

¹⁶⁹Tm(²⁰Ne,6nγ):XUNDL-5 2020Na27 (continued)

γ (183Au) (continued)

E_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult.#	δ#	Comments
736	5497	49/2-	4760	45/2-			
745 [‡]	6242	53/2-	5497	$49/2^{-}$			
746 [‡] 751	7848 3243	65/2 ⁺ 35/2 ⁺		61/2 ⁺ 33/2 ⁺	E2+M1	-3.9 19	R _{DCO} =0.49 7, POL=+0.13 13.
779 [‡] 791 809 [‡]	5912 3840 4464	51/2 ⁻ 39/2 ⁺ 43/2 ⁺	3049	47/2 ⁻ 37/2 ⁺ 41/2 ⁺			

 $^{^{\}dagger}$ From 2020Na27. ‡ Newly observed transitions in 2020Na27. $^{\sharp}$ Deduced by 2020Na27 based on measured $\gamma\gamma(\text{DCO})$ and $\gamma(\text{lin pol}).$ @ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

---- γ Decay (Uncertain)

 $^{183}_{79}\mathrm{Au}_{104}$

Level Scheme (continued)

 $^{183}_{79}\mathrm{Au}_{104}$