Projeto e Análise de Algoritmos Notação Assintótica

Matheus Gabriel

Agosto de 2024

1 Crescimento de funções (CLR)

Quando um algoritmo possui entradas suficientemente grandes, focamos principalmente na ordem de crescimento do tempo de execução relevante, isso é definido como a eficiência **assintótica** dos algoritmos.

As notações usadas para descrever o tempo de execução assintótico de um algoritmo são definidas em termos das funções cujos domínios são os conjunto dos números naturais $\mathbb{N} = \{0, 1, 2, \dots\}$.

Em geral, a notação assintótica é usada para caracterizar o **tempo** de execução dos algoritmos, mas ela pode ser usada para caracterizar outros aspectos dos algoritmos, como o **espaço** usado.

2 Notação O

Para uma função g(n), denotamos por O(g(n)) o conjunto de funções f(n) que são limitadas superiormente por g(n) multiplicadas por uma constante positiva, para valores suficientemente grandes de n. Formalmente, temos:

$$O(g(n)) = \{f(n) \mid \text{ existem constantes positivas } c \in n_0 \text{ tais que}$$

 $0 \le f(n) \le c \cdot g(n) \text{ para todo } n \ge n_0 \}.$

3 Notação Ω

Para uma função g(n), denotamos por $\Omega(g(n))$ o conjunto de funções f(n) que são limitadas inferiormente por g(n) multiplicadas por uma constante positiva, para valores suficientemente grandes de n. Formalmente, temos:

$$\Omega(g(n)) = \{f(n) \mid \text{existem constantes positivas } c \in n_0 \text{ tais que}$$

$$f(n) \geq c \cdot g(n) \text{ para todo } n \geq n_0 \}.$$

4 Notação Θ

Para uma função g(n), denotamos por $\Theta(g(n))$ o conjunto de funções f(n) que são limitadas superior e inferiormente por g(n) multiplicadas por constantes positivas, para valores suficientemente grandes de n. Formalmente, temos:

$$\Theta(g(n)) = \left\{ f(n) \mid \text{existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \text{ para todo } n \geq n_0 \right\}.$$

5 Resumindo as definições

Notação	Descrição	Uso	Exemplo
O(g(n))	Limite superior.	Descreve o pior caso.	$f(n) = O(n^2)$
$\Omega(g(n))$	Limite inferior.	Descreve o melhor caso.	$f(n) = \Omega(n^2)$
$\Theta(g(n))$	Limite exato.	Descreve o caso médio.	$f(n) = \Theta(n^2)$