

Digital Design Spring 2024 Instructor: Ms. Umarah Qaseem

LOGIC CIRCUITS

LOGIC CIRCUITS: \begin{cases} 1. Combinational \\ 2. Sequential \end{cases}

COMBINATIONAL CIRCUITS

Combinational logic circuits (circuits without a memory):

A combinational circuit consists of gates whose outputs at any time depend only on the current combination of inputs.

Sequential logic circuits (circuits with memory):

In sequential circuits, the outputs depend on the current inputs and the previous inputs. These networks employ storage elements and logic gates. [Chapters 5 and 9]

COMBINATIONAL CIRCUITS

- X Recall
 - X Single/multiple inputs → Single output
- X Many realistic problems use multiple outputs
 - X Named as combinational circuits
- X Combinational circuit
 - X Output depends only on input(s)

7

COMBINATIONAL CIRCUITS

X Most important standard combinational circuits are:

X Adders

X Subtractors

X Comparators

X Decoders

X Encoders

X Multiplexers

Available in IC's as MSI

10

COMBINATIONAL CIRCUIT ANALYSIS

What is Combinational Circuit Analysis?
 Ans: To determine the function of circuit!
 (Instead of developing the circuit based on the function, as we did before)

- X Two approaches of Circuit analysis
 - 1- Determine the output functions as algebraic expressions

OR

2- Determine the truth table of the outputs

Approach 1: Determining the output functions as algebraic expressions

X Analysis steps

- 1. Label all gate outputs with symbols
- 2. Determine Boolean function at the output of each gate
- 3. Express functions in terms of input variables + simplify

13

COMBINATIONAL CIRCUIT ANALYSIS: EXAMPLE

Approach 1: Determining the output functions as algebraic expressions

X Step 1

Label all gate outputs with symbols

14

Digital Design Spring 2024 Instructor: Ms. Umarah Qaseem

Approach 1: Determining the output functions as algebraic expressions

X Step 2

Determine Boolean function at the output of each gate

15

COMBINATIONAL CIRCUIT ANALYSIS: EXAMPLE

Approach 1: Determining the output functions as algebraic expressions

X Step 3

Express functions in terms of input variables + simplify

$$T_{1} = (xy)'$$

$$T_{2} = (xT_{1})'$$

$$T_{3} = (yT_{1})'$$

$$F = (T_{2}T_{3})' = ((xT_{1})'(yT_{1})')'$$

$$= xT_{1} + yT_{1} = x(xy)' + y(xy)'$$

$$= x(x' + y') + y(x' + y')$$

$$= xx' + xy' + x'y + yy'$$

$$= xy' + x'y = x \oplus y$$

Approach 2: Determining the truth table of outputs

X

Analysis steps

- 1. Label all gate outputs with symbols
- 2. Determine Boolean function at the output of each gate
- 3. Determine the truth table of outputs

17

COMBINATIONAL CIRCUIT ANALYSIS: EXAMPLE 2

Approach 2: Determining the truth table of outputs

X Step 1

Label all gate outputs with symbols

18

Digital Design Spring 2024 Instructor: Ms. Umarah Qaseem

Approach 2: Determining the truth table of outputs

X Step 2

Determine Boolean function at the output of each gate

$$X$$
 $T_2 = ABC$

$$X$$
 $T_1 = A+B+C$

$$X F_2 = T4+T5+T6$$

$$X T_3 = F_2' T_1$$

$$X F_1 = T_3 + T_2$$

19

COMBINATIONAL CIRCUIT ANALYSIS: EXAMPLE2

Approach 2: Determining the truth table of outputs

X Step 3

Determine the truth table of outputs

Α	В	С	T1=A +B+C	T2= A.B.C	T4=A.B	T5=A.C	T6=B.C	F2=T4+T5 +T6	F2'	T3= F2'.T1	F1=T2 +T3
0	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	1	1	1
0	1	0	1	0	0	0	0	0	1	1	1
0	1	1	1	0	0	0	1	1	0	0	0
1	0	0	1	0	0	0	0	0	1	1	1
1	0	1	1	0	0	1	0	1	0	0	0
1	1	0	1	0	1	0	0	1	0	0	0
1	1	1	1	1	1	1	1	1	0	0	1

DESIGNING A COMBINATIONAL CIRCUIT

- X From the Specification of the circuit, determine the number of inputs and output – Assign a symbol to each
- X Derive the Truth Table that defines required relationship between inputs and outputs
- X Obtain (simplified) Boolean function for each output as a function of the input variable
- X Draw the logic diagram and verify the correctness of the design

COMBINATIONAL CIRCUIT DESIGN Design procedure

- 1. Determine the number of inputs and outputs
- 2. Assign symbols
- 3. Derive the truth table
- 4. Obtain minimized output functions
- 5. Obtain simplified output functions
- 6. Draw the logic diagram
- Truth tables: input and output columns
- Multiple methods to solve
 - X Boolean algebra, map methods, computer aided solution
- Issues to consider
 - Number of gates
 - Gate inputs
 - Propagation delay
 - Number of interconnections

23

COMBINATIONAL CIRCUIT DESIGN: EXAMPLE

X Design a circuit that converts a BCD digit to Excess-3 code

CIRCUIT DESIGN - EXAMPLE

X BCD to Excess-3 Code Converter

Specification

- Transforms BCD code for the decimal digits to Excess-3 code for the decimal digits
- □ BCD code words for digits 0 through 9: 4-bit patterns 0000 to 1001, respectively
- □ Excess-3 code words for digits 0 through 9: 4-bit patterns consisting of 3 (binary 0011) added to each BCD code word
- □ 4-Inputs & 4-outputs

2

25

COMBINATIONAL CIRCUIT DESIGN: EXAMPLE

- X Design a circuit that converts a BCD digit to Excess-3 code
- X Step 1&2: Inputs and Outputs
 - X Input: BCD digit
 - 4 inputs: A, B, C, D
 - X Output: Excess-3 digit
 - 4 outputs: w, x, y, z

COMBINATIONAL CIRCUIT DESIGN: EXAMPLE

- X Design a circuit that converts a BCD digit to Excess-3 code
- X Step 1&2: Inputs and Outputs

X Input: BCD digit

4 inputs: A, B, C, D

X Output: Excess-3 digit

■ 4 outputs: w, x, y, z

X Step 3: Truth table

Α	В	С	D	w	x	у	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

27

CIRCUIT DESIGN - EXAMPLE

- X BCD to Excess-3 Code Converter
- X Step 3: Truth table

Trutl	n Table	
BCD:		
	A,B,C,D)

Excess-3

W,X,Y,Z

Don't Cares - BCD 1010

to 1111

Input BCD	Output Excess-3
A B C D	WXYZ
0000	0011
$0\ 0\ 0\ 1$	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100

COMBINATIONAL CIRCUIT DESIGN: EXAMPLE

X Step 5: Simplification

```
X z = D'
X y = CD+C'D'
= CD+(C+D)'
X x = B'C+B'D+BC'D'
= B'(C+D)+B(C+D)'
X w = A+BC+BD
= A+B(C+D)
```

31

COMBINATIONAL CIRCUIT DESIGN: EXAMPLE

X Step 6: Circuit Diagram

Circuit Design - Example

X Find the circuit truth table from the equations and compare to specification truth table:

Verification

Input BCD A B C D	Output Excess3 WXYZ
0000	0011
0001	0100
0 0 1 0 0 0 1 1	0101 0110
0100	0111
0101	1000
0110	1001
0 1 1 1 1 0 0 0	1 0 1 0 1 0 1 1
1000	1011

The tables match!

TWO TYPES OF ADDERS

Half Adder

X 2 Inputs (A & B)
X 2 Outputs (Sum & Cout)
X Used for LSB only

X Used for all other bits

A B Sum B Cout
B Cout
Cout
Cout

Full Adder
X 3 Inputs (A, B, Cin)
X 2 Outputs (Sum & Cout)
X Used for all other bits

BINARY ADDER-SUBTRACTOR

- X Most Basic arithmetic function is Addition of two binary digits
 - X 0+0=0, 1+0=1, 0+1=1, 1+1=10 (Carry)
 - X Carry is added to the next higher order pair of significant values
- X A combinational circuit that performs addition of two bit is called Half Adder
- X A combinational circuit that performs addition of three bits is called Full Adder (Adding two half adder)

39

39

BINARY ADDERS

- X Addition is important function in computer system
- X What does an adder do?
 - X Add binary digits
 - X Generate carry if necessary
 - X Consider carry from previous computation
- X Binary adders operate bit-wise
 - X A 16-bit adder uses 16 one-bit adders
- X Binary adders come in two flavors
 - X <u>Half adder</u> adds two bits and generates result and carry
 - X Full adder considers carry input in addition to half adder
 - X Two half adders make one full adder

BINARY HALF ADDER

- X Specification
 - \boldsymbol{X} Design a circuit that adds two bits and generates the sum and a carry
- X Input/Output
 - X Two inputs: x, y
 - X Two output: S (sum), C (carry)
- X Functionality

41

FULL ADDER

- X Half adder works only for a single bit
 - X When multiple bits are involved, carry bits should be considered
 - X Solution → Full adder
- X Specifications
 - X A circuit that adds three bits and generates sum and carry
- X Input/output
 - X Three inputs: x, y, C_{in}
 - X Two outputs: S (Sum), C_{out} (Carry)
- X Truth table

х	У	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

45

FULL ADDER

Α	В	C_{in}	Sum	C_{out}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

46

FULL ADDER

$$Sum = \overline{A} \ \overline{B} \ C_{_{IN}} + \overline{A} \ B \ \overline{C}_{_{IN}} + A \ B \ C_{_{IN}} + A \ \overline{B} \ \overline{C}_{_{IN}}$$

$$Sum = \overline{A} \left(\overline{B} \ C_{_{IN}} + B \ \overline{C}_{_{IN}} \right) + A \left(B \ C_{_{IN}} + \overline{B} \ \overline{C}_{_{IN}} \right)$$

$$Sum = \overline{A} \left(B \oplus C_{_{IN}} \right) + A \left(\overline{B \oplus C_{_{IN}}} \right)$$

Let $K = B \oplus C_{_{I\!N}}$ and substitute

$$Sum = \overline{A}(K) + A(\overline{K})$$

 $Sum = A \oplus K$

Replacing $B \oplus C_{\mathbb{N}}$ for K

 $Sum = A \oplus B \oplus C_{_{IN}}$

49

49

FULL ADDER

$$S = x'y'C_{in} + x'yC'_{in} + xy'C'_{in} + xyC_{in} = x \oplus y \oplus C_{in}$$

$$C_{out} = xy + xC_{in} + yC_{in} = (x \oplus y)C_{in} + xy$$

FULL ADDER FROM HALF ADDERS

- X How can two half adders make a full adder?
- X Observations
 - X Three inputs x, y, z can be added in two steps
 - = x+y+z = (x+y) + z
 - X What about the carry?
 - \blacksquare Carry can occur when adding x+y and when adding z
- X Full adder: $S = x \oplus y \oplus z$, $C = xy + (x \oplus y)z$

53

FULL ADDER - IMPLEMENTATION WITH TWO HALF ADDERS

$$C = xy + xy'z + x'yz$$
$$C = xy + (x \oplus y)z$$

57

FULL ADDER - IMPLEMENTATION WITH TWO HALF ADDERS

$$S = z \oplus (x \oplus y)$$
 $C = xy + (x \oplus y)z$

58

Binary Adder

- X Binary Adder is a circuit that produces sum of two binary numbers
- X It can be constructed with full adders (FA) connected in cascade, with output carry from one connected to the input carry of the next full adder

59

59

CASCADING ADDERS - FOUR BITS

60

BINARY N-BIT ADDER

- X How can we build an *n*-bit adderX from full adders?
 - X One adder for each bit (n total)
 - X Connect carry to next adder's input
- X Output: sequence of sums and a final carryX 4-bit adder circuit (Ripple Carry Adder)

1	0	1	1	
	1	0	0	1
	1	0	1	1
	0	1	0	0

C4	C3	C2	C1	C0
	АЗ	A2	A1	A0
	ВЗ	B2	B1	B0
	S3	S2	S1	S0

61

Digital Design Spring 2024 Instructor: Ms. Umarah Qaseem