plt Set the	ort tensorflow as tf in tensorflow import keras in tensorflow.keras import layers ort pandas ort matplotlib.pyplot as plt rcParams["figure.figsize"] = (10,6) # Increase default size of plots erandom seed, for reproducibility random.seed(42) random.set_seed(42)
We wind Sunspinhibit The data data y =	oad and prepare the data Il build a model for predicting the number of sunspots. We work with a data set that has been published on Kaggle, with the description: ots are temporary phenomena on the Sun's photosphere that appear as spots darker than the surrounding areas. They are regions of reduced surface temperature caused by concentrations of magnetic field flux to convection. Sunspots usually appear in pairs of opposite magnetic polarity. Their number varies according to the approximately 11-year solar cycle. ata consists of the monthly mean total sunspot number, from 1749-01-01 to 2017-08-31. and the data appandas.read_csv('Sunspots.csv', header=0) as = data['Nonthly Mean Total Sunspot Number'].values data['Nonthly Mean Total Sunspot Number'].values
ndat prin # We ntra ntes prin Tota Numb	ca=len(y) ct(f'Total number of data points: {ndata}') ct define a train/test split, here with 70 % training data cin = int(ndata*0.7) ct = ndata-ntrain ct(f'Number of training data points: {ntrain}') cl number of data points: 3252 cer of training data points: 2276 plot(dates[:ntrain], y[:ntrain]) plot(dates[ntrain:], y[ntrain:]) xticks(range(0, ndata, 300), dates[::300], rotation = 90); # Show only one tick every 25th year for clarity
400 - 350 - 300 - 250 - 200 -	
	is a clear seasonality to the data, but the amplitude of the peaks very quite a lot. Also, we note that the data is nonnegative, which is natural since it consists of counts of sunspots. However, for simplicity we will not protraint into account in this lob accompany and allow cursolves to model the data writing. Accounts in this lob accompany and allow cursolves to model the data writing.
MAX_y =	Instraint into account in this lab assignment and allow ourselves to model the data using a Gaussian likelihood (i.e. using MSE as a loss function). The plot we see that the range of the data is roughly [0,400] so as a simple normalization we divide by the constant MAX_VAL=400. The plot we see that the range of the data is roughly [0,400] so as a simple normalization we divide by the constant MAX_VAL=400. The plot we see that the range of the data is roughly [0,400] so as a simple normalization we divide by the constant MAX_VAL=400. The plot we see that the range of the data is roughly [0,400] so as a simple normalization we divide by the constant MAX_VAL=400. The plot we see that the range of the data is roughly [0,400] so as a simple normalization we divide by the constant MAX_VAL=400. The plot we see that the range of the data is roughly [0,400] so as a simple normalization we divide by the constant MAX_VAL=400.
We ev	ne second baseline is an AR(p) model (based on the implementation used for lab 1). aluate the performance of these method in terms of mean-squared-error and mean-absolute-error, to compare the more advanced models with later on. evalutate_performance(y_pred, y, split_time, name=None): """This function evaluates and prints the MSE and MAE of the prediction. Parameters y_pred: ndarrary Array of size (n,) with predictions. y : ndarray Array of size (n,) with target values.
	Array of size (n,) with target values. split_time : int The leading number of elements in y_pred and y that belong to the training data set. The remaining elements, i.e. y_pred[split_time:] and y[split_time:] are treated as test data. """ # Compute error in prediction resid = y - y_pred # We evaluate the MSE and MAE in the original scale of the data, i.e. we add back MAX_VAL train_mse = np.mean(resid[:split_time]**2)*MAX_VAL**2 test_mse = np.mean(resid[split_time:]**2)*MAX_VAL**2 train_mae = np.mean(np.abs(resid[:split_time]))*MAX_VAL test_mae = np.mean(np.abs(resid[split_time:]))*MAX_VAL
Q1: In values # 51 # 56 # 56 # 56 # 56	# Print print(f'Model {name}\n Training MSE: {train_mse:.4f}, MAE: {train_mae:.4f}\n Testing MSE: {test_mse:.4f}, MAE: {test_mae:.4f}') in plement the naive baseline method which predicts according to $\hat{y}_{t t-1} = y_{t-1}$. Since the previous value is needed for the prediction we do not get a prediction at $t=1$. Hence, we evaluate the method by predict is at $t=2,\ldots,n$ (cf. an AR(p) model where we start predicting at $t=p+1$). Since the predictions in an array of length ndata-1. Note that there is a shift in the indices between the prediction and the observation sequence, since there is no prediction available for the first observation. The prediction are a prediction of y and y
Mode. Tre. Next,	Lutate_performance(y_pred_naive, # Predictions
# PI # ai y_pi	# Order of the AR model (set by a few manual trials) coef = fit_ar(y[:ntrain], p) # Fit the model to the training data redict. Note that y contains both training and validation data, and the prediction is for the values y_{p+1},, y_{n}. red_ar = predict_ar_istep(ar_coef, y) Lutate_performance(y_pred_ar, # The prediction array is of length n-p
Transfer Telescope Transfer Telescope Transfer T	Simple RNN If now construct a model based on a recurrent neural network. We will initially use the SimpleRNN class from Keras, which correspond to the basic Jordan-Elman network presented in the lectures. If now construct a model based on a recurrent neural network. We will initially use the SimpleRNN class from Keras, which correspond to the basic Jordan-Elman network presented in the lectures. If now construct an "RNN cell" using the call layers.SimpleRNN(units = d, return_sequences=True). Now, assume that an array X with the dimensions [Q, M, P] is fed as the input to the with the length of the sequences (time series) with equal lengths. Specify which of the symbols Q, M, P that corresponds to each of the items below: The length of the sequences (number of time steps), i.e. the dimension of each time series
• To Further Hint: F A2: [Q • Q • M	The number of sequences Q, M, P for the data at hand (treated as a single time series). Seed the documentation for SimpleRNN to find the answer. $Q, M, P = [batch, timesteps, feature] = [1, 3252, 1]$ The number of sequences $Q, M, P = [batch, timesteps, feature] = [1, 3252, 1]$ The number of sequences (number of time steps) $Q, M, P = [batch, timesteps, feature] = [1, 3252, 1]$ The number of features (at each time step), i.e. the dimension of each time series
• W • A • If A3: • d • (1	Intrinsify the question above, answer the following: If hat is the meaning of setting units = d? If some that we pass a single time series of length n as input to the layer. Then what is the dimension of the output? If we would had set the parameter return_sequences=False when constructing the layer, then what would be the answer to the previous question? If is the number of hidden layers that pass information from one hidden state to the next i.e hidden state dimension If n,n,d) If is one case the parameter of hidden layers that pass information from one hidden state to the next i.e hidden state dimension If n,n,d) If is one case the parameter of hidden layers that pass information from one hidden state to the next i.e hidden state dimension If n,n,d) If is one case the parameter of hidden layers that pass information from one hidden state to the next i.e hidden state dimension If n,n,d) If n,n,d) If is one case the parameter of hidden layers that pass information from one hidden state to the next i.e hidden state dimension If n,n,d) If n,n,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d
Note: that it d = mode	$\mathbf{h}_t = \sigma(W\mathbf{h}_{t-1} + Uy_{t-1} + b),$ $\hat{y}_{t t-1} = C\mathbf{h}_t + c,$ It is not necessary to explicitly specify the input shape, since this can be inferred from the input on the first call. However, for the summary function to work we need to tell the model what the dimension of the input on infer the correct sizes of the involved matrices. Also note that in <i>Keras</i> you can sometimes use None when some dimensions are not known in advance. $\mathbf{h}_t = \mathbf{h}_t + \mathbf{h}_t$
# We mode init	# A linear output layer layers.Dense(units = 1, activation='linear') # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact copy of the model when trying different training procedures # store the initial weights in order to get an exact co
Tota Trai Non- Q4: Fi definit A4:	(None, None, 1) 11 Liparams: 131 hable params: 131 trainable params: 0 Tom the model summary we can see the number of paramters associated with each layer. Relate these numbers to the dimensions of the weight matrices and bias vectors $\{W, U, b, C, c\}$ in the mathematical motion above. $V = d * d = 10 * 10 = 100$ $= d * P(input_shape) = 10 * 1 = 10$
bWCcCO	= d * 1 = 10 * 1 = 10 (+ U + b = 120 which is the number of parameters of the RNN cells = d * 1(dense layer unit) = 10 = 1 (dense layer unit) + c = 11 which is the number of parameters of the prediction dense layer param_number = output_channel_number (input_channel_number + 1) = 1 (10 + 1) iraining the RNN model
test da The ta contai Furthe step t Taking	section we will consider a few different ways of handling the data when training the simple RNN model constructed above. As a first step, however, we construct explicit input and target (output) arrays for the training tax, which will simplify the calls to the training procedures below. Sk that we consider in this lab is one-step prediction, i.e. at each time step we compute a prediction $\hat{y}_{t t-1} \approx y_t$ which depend on the previous observations $y_{1:t-1}$. However, when working with RNNs, the information of interest prediction in the state of the RNN, and we will only use y_{t-1} as the explicit input at time step t . Interest provious observations is aggregated in the state of the RNN, and we will only use y_{t-1} as the explicit input at time step t . Interest provious observations is aggregated in the state of the RNN, and we will only use y_{t-1} as the explicit input at time step t . Interest provious observations is aggregated in the state of the RNN, and we will only use y_{t-1} as the explicit input at time step t . Interest provious observations $y_{1:t-1}$. However, when working with RNNs, the information in the input at time step t . Interest provious observations $y_{1:t-1}$. However, when working with RNNs, the information $y_{1:t-1}$ is the explicit input and $y_{1:t-1}$. However, when working with RNNs, the information $y_{1:t-1}$ is the explicit input and $y_{1:t-1}$. However, when working with RNNs, the information $y_{1:t-1}$ is the explicit input and $y_{1:t-1}$. However, when working with RNNs, the information $y_{1:t-1}$ is the explicit input and $y_{1:t-1}$ in the explicit input and $y_{1:t-1}$ is the explicit input and output arrays as shifted versions of the data series $y_{1:t-1}$ in the explicit input and output arrays as shifted versions of the data series $y_{1:t-1}$ in the explicit input and output arrays as shifted versions of the data series $y_{1:t-1}$ in the explicit input and output arrays as shifted versions of the data series $y_{1:t-1}$ in the explic
# Te yt_1 # Te yt_1 # Re x_ti yt_1 x_te	rain = y[:ntrain-1] # Input is denoted by x, training inputs are x[0]=y[0],, x[ntrain-1]=y[ntrain-1] rrain = y[1:ntrain] - x_train # Output is denoted by yt, training outputs are yt[0]=y[1]-y[0],, yt[ntrain-1] = y[ntrain]-y[ntrain-1] est data est = y[ntrain-1:-1] # Test inputs are x_test[0] = y[ntrain-1],, x_test[ntest] = y[n-1] est = y[ntrain:] - x_test # Test outputs are yt_test[0] = y[ntrain]-y[ntrain-1],, yt_test[ntest] = y[n]-y[n-1] eshape the data rain = x_train.reshape((1,ntrain-1,1)) errain = yt_train.reshape((1,ntrain-1,1)) est = x_test.reshape((1,ntest,1)) est = yt_test.reshape((1,ntest,1))
The fine mode mode work. Wote: in the mode	on 1. Process all data in each gradient computation ("do nothing") st option is to process all data at each iteration of the gradient descent method. still = keras.models.clone_model(model0) # This creates a new instance of the same model elil.set_weights(init_weights) # We set the initial weights to be the same for all models that should we set the batch size to, in order to compute the gradient based on the complete training data sequence at each iteration? Complete the code below! You can set verbose=1 if you want to monitor the training progress, but if you do, please clear the output of the cell before generating a pdf with your solutions, so that we don't get multiple pages with training submitted reports.
We plo	cory = model1.fit(x_train, yt_train, epochs = 200, batch_size = len(yt_train), verbose = 0, validation_data = (x_test, yt_test)) of the training and test error vs the iteration (epoch) number, using a helper function from the tssltools_lab4 module. In tssltools_lab4 import plot_history tt_at = 10 # Skip the first few epochs for clarity :_history(history, start_at) Fest error
0.018 0.016 0.014 0.012 0.010	Taining error
Hint: \	nally we compute the predictions of $\{y_t\}$ for both the training and test data uning the model's predict function. Complete the code below to compute the predictions. You need to reshape the data when passing it to the predict to comply with the input shape used in <i>Keras</i> (cf. above). Since the model is trained on the residuals \tilde{y}_t , don't forget to add back y_{t-1} when predicting y_t . However, make sure that you dont "cheat" by using a non-causal predictor (i.e. using y_t when predicting y_t)!
# We # T/ y_pi Using	redict on all data using the final model. **predict using y_1,,y_{n-1} as inputs, resulting in predictions of the values y_2,, y_n. **predict using y_1,,y_{n-1} as inputs, resulting in predictions of the values y_2,, y_n. **prediction should be an (n-1,) array where element y_pred[t] is based only on values y[:t] **redi = model1.predict(y[:ndata-1].reshape((1,ndata-1,1))).flatten() + y[:ndata-1] **the prediction computed above we can plot them and evaluate the performance of the model in terms of MSE and MAE. **plot_prediction(y_pred): **# Plot prediction on test data plt.plot(dates[ntrain:], y[ntrain:]) plt.plot(dates[ntrain:], y_pred[ntrain-1:]) plt.plot(dates[ntrain:], y_pred[ntrain:300], rotation = 90); # Show only one tick every 25th year for clarity
# Ploto # Eval Mode.	plt.legend(['Data', 'Prediction']) plt.title('Predictions on test data') Lot prediction :_prediction(y_pred1) Lot prediction(y_pred1) Lot predi
0.6 -	— Data — Prediction
0.2 - 0.0 -	on 2. Random windowing
randor initialize To important value General from the	d of using all the training data when computing the gradient for the numerical optimizer, we can speed it up by restricting the gradient computation to a smaller window of consecutive time steps. Here, we sample an window within the traing data and "pretend" that this window is independent from the observations outside the window. Specifically, when processing the observations within each window the hidden state of the tred to zero at the first time point in the window. Idement this method in Python, we will make use of a <i>generator function</i> . A generator is a function that can be paused, return an intermediate value, and then resumed to continue its execution. An intermediate retire is produces using the yield keyword. In the window, we will make use of a generator function. A generator is a function that can be paused, return an intermediate value, and then resumed to continue its execution. An intermediate retire is produces using the yield keyword. In the window, with inputs and corresponding the training data. Each epoch of the training procedure will then call the generator for a total of steps_per_epoch such yield statements. In the window is a smaller window of consecutive time steps. Here, we sample at the processing the gradient computation to a smaller window of consecutive time steps. Here, we sample at the processing the window, size is a smaller window of consecutive time steps. Here, we sample at the processing the window, size is a smaller window of consecutive time steps. Here, we sample at the window. Specifically, when processing the observations within each window is independent interesting the window. Specifically, when processing the observations within each window is independent interesting the window. Specifically, when processing the observations within each window. Specifically, when
mode mode	while True: """The upper value is excluded in randint, so the maximum value that we can get is tt = ntrain-window_size-1. Hence, the maximum end point of a window is ntrain-1, in agreement with the fact that the size of input/output is ntrain-1 when working with one-step-ahead prediction.""" start_of_window = np.random.randint(0, ntrain - window_size) # First time index of window (inclusive) end_of_window = start_of_window + window_size # Last time index of window (exclusive, i.e. this is really the first index _after_ the window) yield x_train[:,start_of_window:end_of_window,:], yt_train[:,start_of_window:end_of_window,:] #212 = keras.models.clone_model(model0) # This creates a new instance of the same model #212.set_weights(init_weights) # We set the initial weights to be the same for all models ssume that we process a window of observations of length window_size at each iteration. Then, how many gradient steps per epoch can we afford, for computational cost per epoch to be comparable to the metered in Option 1? Set the steps_per_epoch parameter of the fitting function based on your answer.
mode hist	Now_size = 100 Pl2.compile(loss='mse', optimizer='rmsprop', metrics=['mse']) Place
0.004	
A8:	the training error there are more amplitude because in every iteration there will be different learned weights which will not be linked to previous iteration. Hence time dependency is lost and there will be no improv
• In • In • Q9: C # P1 # We y_p1 # P2	accuracy with more iterations. Because gradient oscillates over the space in every iteration due to the different weights learned in each epoch the test error, the amplitudes are less because its just calculating for y estimates and weights are already learned. The prediction for all values of $\{y_2, \ldots, y_n\}$ analogously to $\mathbf{Q6}$. The prediction of all data using the final model. The predictions of the values y_1, \ldots, y_n as inputs, resulting in predictions of the values y_n, \ldots, y_n are y_n, \ldots, y_n as inputs, resulting in predictions of the values y_n, \ldots, y_n and y_n, \ldots, y_n as inputs, resulting in predictions of the values y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and y_n, \ldots, y_n are inputs of y_n, \ldots, y_n and $y_n,$
eval Mode Tr	valuate MSE and MAE (both training and test data) Lutate_performance(y_pred2, y[1:], ntrain-1, name='Simple RNN, windowing') L Simple RNN, windowing aining MSE: 602.6192, MAE: 17.5562 sting MSE: 570.0144, MAE: 17.3017 Predictions on test data Data Prediction
0.4 -	
As a fi	on 3. Sequential windowing with stateful training and option we consider a model aimed at better respecting the temporal dependencies between consequtive windows. This is based on "statefulness" which simply means that the RNN remembers its hidden state en calls. That is, if model is in stateful mode and is used to process two sequences of inputs after each other, then the final state from the first sequence is used as the initial state for the second sequence. The enable stateful training, we need to create model where we set stateful=True in the RNN layer The simple RNN layer with stateful=True
]) mode Q10: \ 1. F th	layers.SimpleRNN(units = d, batch_input_shape=(1, None, 1), return_sequences=True, stateful=True, activation='tanh'), # A linear output layer layers.Dense(1, activation='linear') # SimpleRNN(units = d, batch_input_shape=(1, None, 1), return_sequences=True, stateful=True, activation='tanh'), # A linear output layer layers.Dense(1, activation='linear') # A linear output
Taking def	here the final state at time step $t=n_{\mathrm{train}}$ would be used as the initial state at time $t=1$. To avoid this, we can manually reset the state of the model by calling <code>model.reset_states()</code> . It this two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the code for the stateful data generator below. It is two points into consideration, complete the stateful data generator below. It is two points into consideration, complete the stateful data generator below. It is two points into consideration and consi
	<pre>for i in range(number_of_windows): # First time index of window (inclusive) start_of_window = i * window_size # Last time index of window (exclusive, i.e. this is the index to the first time step after the window) # Note 3. Python allows using end_of_window > ntrain-1, it will simply truncate the indexing at the final element of the array! end_of_window = start_of_window + window_size yield x_train[:,start_of_window:end_of_window,:], yt_train[:,start_of_window:end_of_window,:] model.reset_states() """NOTE! In addition to replacing the ????? with the correct code, you need to move the line""" """to the correct place in the function definition above!"""</pre>
wind mode hist	ne generator defined we can train the model. low_size = 100 el3.compile(loss='mse', optimizer='rmsprop', metrics=['mse']) e
0.004 0.004 0.004	Test error Training error
Optior	Comparing this error plot to the one you got for training Options 1 and 2, can you see any <i>qualitative</i> differences?
A11: I afterw Q12: 0 # PI # We y_pi # P2 plot	no option 1, we can notice that the training and test sets tend to linearly decrease. In option 2, training error decreases and there is one amplitude at epoch 200. For testing set, it started of decreasing but it gets wo ard since the gradient is no longer initialized from a random point but rather from where it left of from the the previous window. Compute a prediction for all values of $\{y_2, \ldots, y_n\}$ analogously to $\mathbf{Q6}$. Tredict on all data using the final model. The predict using y_1, \ldots, y_n as inputs, resulting in predictions of the values y_n, \ldots, y_n and y_n, \ldots, y_n as inputs, resulting in predictions of the values y_n, \ldots, y_n and
eval Mode Tr	valuate MSE and MAE (both training and test data) Lutate_performance(y_pred3, y[1:], ntrain-1, name='Simple RNN, windowing/stateful') L Simple RNN, windowing/stateful aining MSE: 624.6471, MAE: 17.8758 sting MSE: 616.7063, MAE: 18.0701 Predictions on test data Data Prediction
0.4 -	
Q13: Vesenter A13:	odel 1
# Mode. Tre Mode. Tre Mode. Tre Mode. Tre Te	Lutate_performance(y_pred1, y[1:], ntrain-1, name='do nothing') Lutate_performance(y_pred2, y[1:], ntrain-1, name='Random windowing') Lutate_performance(y_pred3, y[1:], ntrain-1, name='Sequential windowing with stateful training') Lutate_performance(y_pred3, y[1:], ntrain-1, name='Sequential windowing with stateful training') Lutate_performance(y_pred3, y[1:], ntrain-1, name='Sequential windowing with stateful training') Lutate_performance(y_pred3, y[1:], ntrain-1, name='Random windowing with stateful training with stateful training windowing windowing Lutate_performance(y_pred2, y[1:], ntrain-1, name='Random windowing windowing with stateful training windowing window
Each of default across windown 6. A lift you	of the 3 RNN models have it's own drawback. Even though "Random windowing" gives better result, we cannot use this as this model because of the random effect. Here, the initial state of the RNN cells will be set value at the start of each window. This means that we cannot capture temporal dependencies that are longer than the size of the window and boundary effect is more. With stateful training the RNN state is retain is iterations. Specifically, the final state after processing the first window of observations is used as initial state when processing the second window of observations and boundary effect is less compared to random wing but boundary effect is still there. With do nothing model, the whole sequence is computationally expensive because the number of RNN layers will as long as the sequence. A more complex network (OPTIONAL) are interested, feel free to play around with more complex models and see if you can improve the predictive performance! It is very easy to build stacked models in Keras, see the example below. Stacked model with 3 layers of LSTM cells, two Dense layers with Relu activation and a final linear output layer 14 = tf.keras.models.Sequential([
mode ti ti ti ti ti ti ti ti ti t	### ### ##############################
lstm lstm lstm dense dense dense Tota Trai	
We can check mode	rainable params: 0 In store the best model in a file, so that we can load it after analyising the training procedure. Exkpoint_filepath = './' El_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_filepath, save_weights_only=True, monitor='val_loss', save_best_only=True) # Save only the best model, determined by the validation loss the model
mode hist	<pre>dow_size = 100 el4.compile(loss='mse', optimizer='rmsprop', metrics=['mse']) cory = model4.fit(generator_train_stateful(window_size, model4),</pre>
0.0066 0.0056 0.0056 0.0046 0.0036	Training error Training error
0.0026 0.0026 Q14 (6 A14: We los	5-
mode <ten: # PI # We y_pI Fi.</ten: 	
# We y_pi	redict on all data using the final model. repredict using y_1,,y_{n-1} as inputs, resulting in predictions of the values y_2,, y_n red4 = model4.predict(y[:-1].reshape(1, ndata-1, 1)).flatten() + y[:-1] red5 prediction on test data reprediction(y_pred4) red4 = model4.predict(y[:-1].reshape(1, ndata-1, 1)).flatten() + y[:-1] red5 prediction on test data reprediction(y_pred4) red4 = model4.predict(y_pred4) red5 prediction on test data reprediction(y_pred4) red6 pred6 pre