

(V) Preliminary Specifications () Final Specifications

Module	15 Inch Color TFT-LCD
Model Name	G150XAN02.0

Customer Date	Approved by Date
	Sean Lin 2019/01/24
Checked & Approved by	Prepared by
	General Display Business Unit / AU Optronics corporation

Contents

1.	Operating Precautions	4
	General Description	
	2.1 Display Characteristics	5
	2.2 Optical Characteristics	6
3.	Functional Block Diagram	9
4.	Absolute Maximum Ratings	10
	4.1 Absolute Ratings of TFT LCD Module	10
	4.2 Absolute Ratings of Environment	10
	5.1 TFT LCD Module	11
	5.2 Backlight Unit	13
6.	Signal Characteristic	14
	6.1 Pixel Format Image	14
	6.2 Scanning Direction	14
	6.3 Signal Description	15
	6.4 The Input Data Format	16
	6.5 Interface Timing	17
	6.6 Power ON/OFF Sequence	18
7.	Connector & Pin Assignment	19
	7.1 TFT LCD Module: LVDS Connector	19
	7.2 LED Backlight Unit: LED Driver Connector	20
	7.2 LED Backlight Unit: LED Driver Connector	21
	7.3 LED Driver Connector Pin Assignment	21
8.	Reliability Test Criteria	22
9.	Mechanical Characteristics	23
	9.1 LCM Outline Dimension (Front View)	23
	9.2 CM Outline Dimension (Rear View)	24
10	D. Label and Packaging	25
	10.1 Shipping Label (on the rear side of TFT-LCD display)	25
	10.2 Carton Package	25
	10.3 Palletizing	26
11	1 Safety	27
	11.1 Sharp Edge Requirements	27
	11.2 Materials	27
	11.3 Capacitors	27
	11.4 National Test Lab Requirement	27

Version and Date	Page	Old description	New Description
0.0 2018/09/06	All	First Edition	
0.1 2019/01/24	5	2.1 Display Characteristics	2.1 Display Characteristics
		Typical Power Consumption : 10.2W	Typical Power Consumption: 10.56W
	11	5.1.1 Power Specification	5.1.1 Power Specification
		IDD: 0.46(Typ), 0.55(Max.)	IDD: 0.43(Typ), 0.52(Max.)
	11	5.1.1 Power Specification	5.1.1 Power Specification
		PDD: 1.52(Typ), 1.82(Max.)	PDD: 1.41(Typ), 1.70(Max.)
	13	5.2.1 Parameter guideline for LED	5.2.1 Parameter guideline for LED
		lvcc: 0.72(Typ.), 0.79(Max.)	lvcc: 0.76(Typ.), 0.84(Max.)
	13	5.2.1 Parameter guideline for LED	5.2.1 Parameter guideline for LED
		PLED: 8.68(Typ.), 9.52(Max.)	PLED: 9.15(Typ.), 10.03(Max.)
	13	5.2.1 Parameter guideline for LED	5.2.1 Parameter guideline for LED
		IF: 56(Typ.)	I _F : 59(Typ.)
	23	9.1 LCM Outline Dimension (Front View)	9.1 LCM Outline Dimension (Front View)
			Drawing update
	24	9.2 LCM Outline Dimension (Rear View)	9.2 LCM Outline Dimension (Rear View)
			Drawing update

1. Operating Precautions

- 1) Since front polarizer is easily damaged, please be cautious and not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED Reflector edge. Instead, press at the far ends of the LED Reflector edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) TFT-LCD Module is not allowed to be twisted & bent even force is added on module in a very short time. Please design your display product well to avoid external force applying to module by end-user directly.
- 12) Small amount of materials without flammability grade are used in the TFT-LCD module. The TFT-LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950-1 or UL60950-1), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time.
- 14) Continuous operating TFT-LCD Module under high temperature environment may accelerate LED light bar exhaustion and reduce luminance dramatically.
- 15) The data on this specification sheet is applicable when TFT-LCD module is placed in landscape position.
- 16) Continuous displaying fixed pattern may induce image sticking. It's recommended to use screen saver or moving content periodically if fixed pattern is displayed on the screen.

G150XAN02.0 is a Color Active Matrix Liquid Crystal Display composed of a TFT-LCD display, a driver circuit, and a backlight system. The screen format is intended to support XGA (1024(H) x 768(V)) screen and 16.2M (RGB 6+2FRC) colors. All input signals are LVDS interface compatible.

G150XAN02.0 is designed for industrial display applications.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 °C condition:

Items	Unit	Specifications
Screen Diagonal	[inch]	15
Active Area	[mm]	304.128(H) x 228.096(V)
Pixels H x V		1024x3(RGB) x 768
Pixel Pitch	[mm]	0.297 x 0.297
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		AHVA
Nominal Input Voltage VDD	[Volt]	3.3 typ.
Typical Power Consumption	[Watt]	10.56
Weight	[Grams	920g (max.)
Physical Size	[mm]	326.5(H) x 253.5(V) x 9.0 (D)
Electrical Interface		LVDS
Surface Treatment		Anti-glare, Hardness 3H
Support Color		16.2M colors
Temperature Range Operating Storage (Non-Operating)	[°C]	-30 to +85°C (+85°C as panel surface temperature) -30 to +85
RoHS Compliance		RoHS Compliance
Light Bar Unit		LED, Non-Replaceable

2.2 Optical CharacteristicsThe optical characteristics are measured under stable conditions at 25°C (Room Temperature):

ltem	Unit	Conditions	Min.	Тур.	Max.	Note		
White Luminance	[cd/m2]		400	500	-	1		
Uniformity	%	9 Points	75	80	-	1, 2, 3		
Contrast Ratio			800	1000	-	4		
Cross talk	%		-		1.5	5		
	[msec]	Rising	-					
Response Time	[msec]	Falling	-			6		
	[msec]	Raising + Falling	-	25	30	1		
Viewing Angle	[degree]	Horizontal (Right)	80	89	-			
	[degree]	CR = 10 (Left)	80	89	-	_		
viewing Angle	[degree]	Vertical (Upper)	80	89	-	7		
	[degree]	CR = 10 (Lower)	80	89	-			
		Red x	0.569	0.619	0.669			
		Red y	0.302	0.352	0.402			
		Green x	0.279	0.329	0.379			
Color / Chromaticity Coordinates		Green y	0.559	0.609	0.659			
(CIE 1931)		Blue x	0.100	0.150	0.200			
		Blue y	0.068	0.118	0.168			
		White x	0.263	0.313	0.363			
		White y	0.279	0.329	0.379			
Color Gamut	%			60	-			

Note 1: Measurement method

Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (SR_3 or equivalent)

Aperture 10 with 50cm viewing distance

Test Point Center Environment < 1 lux

Module Driving Equipment

Note 2: Definition of 9 points position (Display active area: 304.128(H) x 228.096(V))

Note 3: The luminance uniformity of 9 points is defined by dividing the minimum luminance values by the maximum test point luminance

 $\delta_{\text{W9}} = \frac{\text{Minimum Brightness of nine points}}{\text{Maximum Brightness of nine points}}$

Note 4: Definition of contrast ratio (CR):

Note 5: Definition of cross talk (CT)

$$CT = | YB - YA | / YA \times 100 (\%)$$

Where

YA = Luminance of measured location without gray level 0 pattern (cd/m2)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

Note 6: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "White" to "Black" (falling time) and from "Black" to "White" (rising time), respectively. The response time interval is between 10% and 90% of amplitudes. Please refer to the figure as below.

Note 7: Definition of viewing angle

Viewing angle is the measurement of contrast ratio ≥ 10 , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as below: 90° (θ) horizontal left and right, and 90° (Φ) vertical high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated to its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 15 inch color TFT/LCD module:

MSB240420HD

Entery 3808K-F05N-12R

Mating Type: P240420

H208K-P05N-02B

4. Absolute Maximum Ratings

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit
Logic/LCD Drive Voltage	Vin	-0.3	+3.6	[Volt]

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit
Operating Temperature	TOP	-30	+85*	[°C]
Operation Humidity	HOP	8	90	[%RH]
Storage Temperature	TST	-30	+85	[°C]
Storage Humidity	HST	8	90	[%RH]

Note: Maximum Wet-Bulb should be 39°C and no condensation.

^{* 85°}C is panel surface temperature

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Symbol	Parameter	Min	Тур	Max	Units	Remark
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	±10%
IDD	VDD Current	-	0.43	0.52	[A]	All White Pattern (VDD=3.3V, at 60Hz)
Irush	LCD Inrush Current			3	[A]	Note 1
PDD	VDD Power	-	1.41	1.70	[Watt]	All White Pattern (VDD=3.3V, at 60Hz)

Note 1: Measurement condition:

VDD rising time

5.1.2 Signal Electrical CharacteristicsInput signals shall be low or Hi-Z state when VDD is off.

Symbol	Item	Min.	Тур.	Max.	Unit	Remark
VTH	Differential Input High Threshold	1	-	100	[mV]	VCM=1.2V
VTL	Differential Input Low Threshold	-100	-	-	[mV]	VCM=1.2V
VID	Input Differential Voltage	100		600	[mV]	
VICM	Differential Input Common Mode Voltage	1.0	1.2	1.5	[V]	VTH/VTL=±100mV

Note: LVDS Signal Waveform.

VP-VN = | VID| > VTH="High" VP-VN =- |VID| < VTL="Low"

Single-end Signal

Differential Signal

5.2.1 Parameter guideline for LED

Following characteristics are measured under stable condition using a LED driving board at 25°C (Room

Temperature).

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
Vcc	Input Voltage	10.8	12	13.2	Volt	
lvcc	Input Current	-	0.76	0.84	Α	100% Dimming
PLED	Power Consumption	-	9.15	10.03	Watt	100% Dimming
Irush	Inrush Current			3	Α	
\\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	On Control Voltage	2.5	3.3	5.5	Volt	
VLED on/off	Off Control Voltage			0.5	Volt	
	PWM Dimming Frequency	200		20k	Hz	
FPWM	High Voltage	2.5	3.3	5.5	Volt	
	Low Voltage			0.5	Volt	
	Dimming Duty Cycle	5	-	100	%	
l _F	LED Forward Current		59		mA	Ta = 25°C
Operating Life		50,000			Hrs	Ta = 25°C

Note 1: Ta means ambient temperature of TFT-LCD module.

Note 2: If G150XAN02.0 module is driven at high ambient temperature & humidity condition. The operating life will be reduced.

Note 3: Definition of life time: LED brightness becomes 50% of its original value. The minimum life time of LED unit is defined at the condition of $IR_{LED} = 60$ mA and $25\pm2^{\circ}C$ (Room temperature).

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship between input signal and LCD pixel format.

		1			2		:	102	23	1	.02	4
1 st Line	R	G	В	R	G	в.	 R	G	В	R	G	В
768th Line	R	G	В	R	G	В	 R	G	В	R	G	В

6.2 Scanning Direction

The following figures show the image seen from the front view. The arrow indicates the direction of scan.

6.3 Signal DescriptionLVDS is a differential signal technology for LCD interface and high speed data transfer device.

MSB240	420E(STM)	
Pin No.	Symbol	Description
1	VDD	Power Supply, 3.3V (typical)
2	VDD	Power Supply, 3.3V (typical)
3	NC	No Connect
4	NC	No Connect
5	Rin1-	- LVDS differential data input (R0-R5, G0)
6	Rin1+	+ LVDS differential data input (R0-R5, G0)
7	vss	Ground
8	Rin2-	- LVDS differential data input (G1-G5, B0-B1)
9	Rin2+	+ LVDS differential data input (G1-G5, B0-B1)
10	vss	Ground
11	Rin3-	- LVDS differential data input (B2-B5, HS, VS, DE)
12	Rin3+	+ LVDS differential data input (B2-B5, HS, VS, DE)
13	vss	Ground
14	CIkIN-	- LVDS differential clock input
15	ClkIN+	+ LVDS differential clock input
16	GND	Ground
17	Rin4-	- LVDS differential data input (R6-R7, G6-G7,B6-B7)
18	Rin4+	- LVDS differential data input (R6-R7, G6-G7,B6-B7)
19	VSS	Ground
20	vss	Ground

Note 1: Input signals shall be in low status when VDD is off.

6.4 The Input Data Format

Rx CLKIN		
RxIN1	G0 R5 R4 R3	R2 R1 R0
RxIN2	B1 B0 G5 G4	G3 G2 G1 X
RxIN3	DE B5	B4 B3 B2 X
RxIN4	RSV B7 B6 G7	G6 R7 R6

Note1: Please follow PSWG.

Note2: R/G/B data 7:MSB, R/G/B data 0:LSB

Signal Name	Description	Remark
R7	Red Data 7	Red-pixel Data
R6	Red Data 6	
R5	Red Data 5	For 8Bits LVDS input
R4	Red Data 4	MSB: R7 ; LSB: R0
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0	
G7	Green Data 7	Green-pixel Data
G6	Green Data 6	
G5	Green Data 5	For 8Bits LVDS input
G4	Green Data 4	MSB: G7 ; LSB: G0
G3	Green Data 3	
G2	Green Data 2	
G1	Green Data 1	
G0	Green Data 0	
B7	Blue Data 7	Blue-pixel Data
B6	Blue Data 6	
B5	Blue Data 5	For 8Bits LVDS input
B4	Blue Data 4	MSB: B7 ; LSB: B0
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0	
RxCLKIN	LVDS Data Clock	
DE	Data Enable Signal	When the signal is high, the pixel data
		shall be valid to be displayed.

Note: Output signals from any system shall be low or Hi-Z state when VDD is off.

6.5 Interface Timing

6.5.1 Timing Characteristics

Signal	Parame	ter	Symbol	Min.	Тур.	Max.	Unit
Clock Timing	Clock frequency		1/ T _{Clock}	63	65	67	MHz
Vsync Timing	Vertical	Period	Tv	804	806	808	
	Section	Active	T_VD	768	768	768	T _{Line}
		Blanking	T _{VB}	36	38	40	
Hsync Timing	Horizontal	Period	Тн	1328	1344	1360	
	Section	Active	T _{HD}	1024	1024	1024	T _{Clock}
		Blanking	Тнв	304	320	336	
Frame Rate			F	59	60	61	Hz

Note: Support DE mode only.

Note: Typical value refer to VESA STANDARD

6.5.2 Input Timing Diagram

6.6 Power ON/OFF Sequence

VDD power and backlight on/off sequence is as below. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Devemeter		l lnit			
Parameter	Min.	Тур.	Max.	Unit	
T1	0.5	-	10	[ms]	
T2	30	40	50	[ms]	
Т3	200	-	-	[ms]	
T4	0.5	-	10	[ms]	
T5	10	-	-	[ms]	
T6	10	-	-	[ms]	
T7	0	-	-	[ms]	
T8	10	-	-	[ms]	
Т9	-	-	200	[ms]	
T10	110	-	-	[ms]	
T11	0	16	50	[ms]	
T12	-	-	200	[ms]	
T13	1000	-	-	[ms]	

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

7. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module: LVDS Connector

Connector Name / Designation	Signal Connector
Manufacturer	STM or compatible
Connector Model Number	MSB240420HD or compatible
Adaptable Plug	P240420 or compatible

Pin#	Signal Name	Pin#	Signal Name
1	VDD	2	VDD
3	NC	4	NC
5	Rin1-	6	Rin1+
7	VSS	8	Rin2-
9	Rin2+	10	VSS
11	Rin3-	12	Rin3+
13	VSS	14	CIkIN-
15	ClkIN+	16	GND
17	Rin4-	18	Rin4+
19	VSS	20	VSS

7.1.1 Connector Illustration

7.2 LED Backlight Unit: LED Driver Connector

Connector Name / Designation	LED Connector
Manufacturer	Entery or compatible
Connector Model Number	3808K-F05N-12R or compatible
Mating Model Number	H208K-P05N-02B or compatible

7.3 LED Driver Connector Pin Assignment

Pin#	Symbol	Signal Name
1	Vcc	12V
2	GND	GND
3	Enable	VLED On/Off
4	Dimming	PWM Dimming
5	NC	NC

8. Reliability Test Criteria

Items	Required Condition	Note
Temperature Humidity Bias	50°C/80%,300 hours	
High Temperature Operation	85°С,300 hours	*
Low Temperature Operation	-30°Ç300 hours	
Hot Storage	85°C,300 hours	*
Cold Storage	-30°Ç300 hours	
Thermal Shock Test	-20°0'30 min ,60°0'30 min ,100cycles	
Shock Test (Non-Operating)	50G,20ms,Half-sine wave,(±X, ±Y, ±Z)	
Vibration Test (Non-Operating)	1.5G, (10~200Hz, P-P) 30 mins/axis (X, Y, Z)	
On/off test	On/10 sec, Off/10 sec, 30,000 cycles	
ESD	Contact Discharge: \pm 8KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point Air Discharge: \pm 15KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point	Note 1

Note1: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost Self-recoverable. No hardware failures.

Note 2:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- The reliability test is performed only to examine the TFT-LCD module capability.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.
- No function failure occurs. Mura shall be ignored after high temperature reliability test.
- 85°C is panel surface temperature

9. Mechanical Characteristics

9.1 LCM Outline Dimension (Front View)

9.2 LCM Outline Dimension (Rear View)

10. Label and Packaging

10.1 Shipping Label (on the rear side of TFT-LCD display)

10.2 Carton Package

Max capacity: 20 PCS TFT-LCD module per carton

Max weight: 20 kg per carton

Outside dimension of carton: 430mm(L)* 370mm(W)*350mm(H)

Pallet size: 1140 mm * 890 mm * 132mm

10.3 Palletizing

Module by air_Max: (2 *3) *4 layers , one pallet put 24 boxes , total 480pcs module Module by sea_Max: (2 *3) *4 layers + (2 *3) *1 layers , two pallet put 30 boxes , total 600pcs module two pallet put 36 boxes, total

Module by sea_HQ_Max: (2 *3) *4 layers+(2 *3) *2 layers,

720pcs module

By air: one pallet

By sea: two pallet

11.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

11.2 Materials

11.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

11.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

11.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

11.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to:

UL 60950-1, Second Edition

U.S.A. Information Technology Equipment