Curvas e Indicadores para Vigilancia en Tiempo Real de COVID-19

Edgar Muñoz, Stat., MS Epid.
Estadístico Senior – UT Health San Antonio*
San Antonio, TX, USA
2020

Preliminares

- Mis opiniones no representan necesariamente la opinión de mi empleador, ni del grupo de análisis
- COVID-19 es la enfermedad causada por el virus SARS-CoV-2
 - En aras de la fluidez de la presentación, usaré términos cortos como COVID-19, Coronavirus, Corona para referirme a la enfermedad y al virus y aclararé cuando se considere pertinente
- Epidemiólogo/Estadístico: Mi área de experiencia es en la aplicación de modelos al estudio de enfermedades infecciosas, en lesiones y violencia, y en crónicas

Instalación de programas Obtención de datos del INS

• R

Descargar e instalar la última versión de R:

Windows: https://cran.r-project.org/bin/windows/base/

Mac: https://cran.r-project.org/bin/macosx/

R Studio

Descargar e instalar la última versión disponible de R Studio apropiada para su sistema operativo:

https://www.rstudio.com/products/rstudio/download/#download

Datos INS

Descargar y familiarizarse con la base de datos del INS (CSV o Excel) https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx

- Código fuente ejemplos y ejercicios
 - https://github.com/munozedg/taller-covid-19

Grupo de Análisis COVID-19 - Cali

- Universidad del Valle
 - Daniel Cuartas
 - Lyda Osorio
 - Fabian Méndez
- Pontificia Universidad Javeriana Cali
 - David Arango
 - Delia Ortega
 - Diana Caicedo

- Secretaría de Salud Pública Municipal
 - Jorge Holguín
 - Silvio Duque
 - Jorge Mena
 - Mauricio Hernández
 - Guillermo Perlaza
- UT Health San Antonio
 - Edgar Muñoz

Finales de los 90... en la era pre-SIVIGILA

Plan (sesión 1)

- Parte 1. Algunos criterios y discusión sobe modelos
 - 5 preguntas
 - Demo: Algunos modelos populares
- Parte 2. Modelación con enfoque local
 - Motivación
 - Acción (que hemos hecho en el grupo)
- Parte 3. Práctica
 - Demostración usando R
 - Ejercicios en el computador (participantes)
- Preguntas y Discusión
- Plan para la siguiente sesión

Parte 1. Algunos criterios y discusión sobe modelos

5 preguntas sobre modelos Demo: Algunos modelos populares

5 preguntas sobre modelos...

Propósito y horizonte de proyección?

- Estadístico o Mecanicista?
- Corto o largo plazo?

Supuestos básicos del modelo?

- Inmunidad? Trasmisión asintomática?
- Parámetros de contacto?

Como se maneja la incertidumbre?

- ICs (estadísticos), Rango en los parámetros (mecanicistas)
- Predicciones a muy largo plazo?

Se ajustan los datos de la epidemia?

• Fecha de notificación, FIS, casos confirmados, hospitalizados, defunciones?

Es general o refleja un contexto particular?

• Nacional, regional, local? Contactos, densidad poblacional?

Demo: Algunos modelos populares

Modelos

Referenced Covid-19 Pandemic Models.	
Model	Source
IHME COVID-19 Predictions	https://covid19.healthdata.org
Los Alamos National Laboratory COVID-19 Confirmed and Forecasted Case Data	https://covid-19.bsvgateway.org
University of Geneva and Swiss Data Science Center, COVID-19 Epidemic Forecasting	https://renkulab.shinyapps.io/COVID-19-Epidemic-Forecasting
Ferguson et al., Imperial College Covid-19 Response Team, Report 9	www.imperial.ac.uk/media/imperial-college/medicine/ mrc-gida/2020-03-16-COVID19-Report-9.pdf
Kissler et al., Projecting the transmission dynamics of Covid-19 through the postpandemic period	https://doi.org/10.1126/science.abb5793
Aleta et al., Modeling the impact of social distancing, test- ing, contact tracing and household quarantine on sec- ond-wave scenarios of the COVID-19 epidemic	https://cosnet.bifi.es/wp-content/uploads/2020/05/main.pdf
Hellewell et al., Feasibility of controlling COVID-19 out- breaks by isolation of cases and contacts	https://doi.org/10.1016/S2214-109X(20)30074-7

All models are wrong but some are useful

George E. P. Box (1978)

Parte 2. Modelación con enfoque local

Motivación Acción (que hemos hecho en el grupo)

Motivación

Fuente: modelo https://alhill.shinyapps.io/COVID19seir/

Modelo de información para toma de decisiones en vigilancia de COVID-19

Intervalo de Generación Intervalo Serial

Key Parameters in Infectious Disease Epidemiology

Johan Giesecke. Modern Infectious Disease Epidemiology, Hodder Arnold, London, UK, 2nd ed., 2002.

Generation time (GT) and serial interval (SI)

Números Reproductivos

Número Básico de Reproducción, Ro

• Número efectivo de reproducción, Rt

El Número Básico de Reproducción, Ro

• "El número esperado de casos secundarios infectados por un caso primario en una población completamente susceptible"

- Ro > 1 determina si un patógeno puede invadir un población
- Umbral de inmunidad de rebaño: s* = 1 / Ro
- Meta crítica de vacunación: $p_c = 1 1/Ro$

El Número Básico de Reproducción, Ro

- "El número esperado de casos secundarios infectados por un caso primario en una población completamente susceptible"
- Componentes de R
 - La probabilidad de volverse infeccioso habiendo sido infectado
 - El periodo promedio de infección
 - Tasa de trasmisión (tasa de contactos)

- Métodos de Estimación de Ro
 - Analíticos e.g. SEIR
 - "fase exponencial"
 - Mas complejos: Inspirados en SEIR y similares, semi-Bayesianos

Ro: Métodos analíticos (e.g. SEIR)

- Ro es aproximado por el producto de:
 - La probabilidad de volverse infeccioso habiendo sido infectado
 - El periodo promedio de infección
 - Tasa de trasmisión
- SEIR, asumiendo que todos los individuos son susceptibles

$$\begin{split} \frac{dS}{dt} &= \mu(N-S) - \frac{\beta IS}{N} + \omega R, \\ \frac{dE}{dt} &= \frac{\beta IS}{N} - (\mu + \sigma)E, \\ \frac{dI}{dt} &= \sigma E - (\mu + \gamma)I, \\ \frac{dR}{dt} &= \gamma I - (\mu + \omega)R. \end{split}$$

$$R_0 = (\sigma/(\sigma + \mu)) \times (1/(\gamma + \mu)) \times \beta N/N = \frac{\sigma}{\sigma + \mu} \frac{\beta}{\gamma + \mu}$$
.

In the above incarnation μ is the birth/death rate, β is the transmission rate, $1/\omega$ is the average duration of immunity, $1/\sigma$ is the average latent period, and $1/\gamma$ is the average infectious period. The logic of the transmission term is that β is the contact rate among hosts times the probability of infection given a contact. The I infectious individuals in the population will by assumption contact some random number of other individuals, a fraction s = S/N of which will be susceptible (or equivalently the S susceptibles will contact some number of individuals a fraction I/N of which will be infectious).

Número efectivo de reproducción, Rt

Números Reproductivos Individuales

Wallinga & Teunis (2004)

$$R_t = \int_{x=t}^{\infty} \frac{\hat{b}_x g(x-t)}{\int_{a=0}^{\infty} \hat{b}_{x-a} g(a) da} dx$$

$$p_{ij} = \frac{g(t_j - t_i)}{\sum_{j \neq i} g(t_j - t_i)}. \qquad R_i = \sum_j p_{ij}.$$

Fraser (2007), Cori et al. (2013)

- Asume un proceso de Poisson
- Usando los datos de incidencia N1,..Nt,

$$L(N_t|N_1,\ldots,N_{t-1},w,R_t) = \frac{(R_t\Lambda_t)^{N_t}e^{-R_t\Lambda_t}}{N_t!}$$

Uso de Rt

Ejemplos de texto

Acción

(que hemos hecho en el grupo)

Parte 3. Práctica

Demostración Ejercicios en el computador

Demostración

Ejercicios en el computador

código fuente – ejemplos y ejercicios

https://github.com/munozedg/taller-covid-19

Preguntas y Discusión

- Preguntas y Discusión
- Plan para la siguiente sesión