Step-1

We have to prove that the inverse of a Hermitian matrix is also Hermitian.

Step-2

Let *A* be a Hermitian matrix.

Then
$$A^H = A$$

Let A^{-1} be the inverse of A.

Then $AA^{-1} = I$

Now

$$(AA^{-1})^{H} = (I)^{H}$$

$$\Rightarrow (A^{-1})^{H} A^{H} = I \quad (\text{ since } I^{H} = I)$$

$$\Rightarrow (A^{-1})^{H} A = I \quad (\text{ since } A^{H} = A)$$

Therefore $(A^{-1})^H$ is the inverse of A.

Hence A^{-1} is also Hermitian matrix.

Hence the inverse of a Hermitian matrix is again a Hermitian matrix.