

This year:

• Verder uitdiepen regression, tree based, clustering....

- Meer met github werken
- Meer model implementatie

Lineaire regressie identificeert de vergelijking/lijn die het kleinste verschil oplevert tussen alle **waargenomen** waarden en hun **geschatte** waarden.

Om precies te zijn, vindt lineaire regressie de kleinste som van kwadratische **residuen** die mogelijk is voor de dataset.

Remember!

Simple Linear Regression

What is a Cost Function?

 Cost Function quantifies the error between predicted values and expected values and presents it in the form of a single real number.

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

Opdracht:

The real estate market is a dynamic and complex environment, and accurately predicting house prices is crucial for various stakeholders, including buyers, sellers, and investors. This project aims to develop a predictive model that can enhance decision-making in the real estate domain.

Objectives

Develop a robust regression model for predicting house prices.

Implement effective outlier treatment of numerical variables and feature engineering techniques.

Explore and visualize data relationships through EDA (Exploratory Data Analysis).

Apply encoding methods for categorical variables.

Deploy the model and develop an estimation tool in Excel

- Open Jupyter notebook
- Choose Code > Heading

Press "OK"

- Type in "Hedonic Price Estimation"
- Press "Run"

Select "Markdown"

Copy past the text from the assignment in the cell

Import libraries

import pandas as pd, numpy as np, statsmodels.api as sm
import matplotlib.pyplot as plt, matplotlib.cm as cm, matplotlib.font_manager as fm
import matplotlib.mlab as mlab
import seaborn as sns
from scipy.stats import pearsonr, ttest_rel
from scipy.stats import spearmanr
from scipy.stats import kendalltau
%matplotlib inline

Import data

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

data="C://Users/bours/Documents/Les_Syntra/DataScience2/les_1/bestanden/belgium_community_les1.csv"
immo = pd.read_csv(data,sep=';',header=0)
immo.head()

• Import data

locality	type of property	subtype of property	price	sale type	number of rooms	area	furnished	open fire	terrace	terrace area	number of facades	building state
0 Mouscron	Appartement	None	204584	notariale	2	4	0	0	TRUE	40	2	2
1 Mouscron	Appartement	None	395000	notariale	6	212	0	0	None	None	2	1
2 Mouscron	Appartement	None	182500	notariale	2	50	0	0	None	None	2	1
3 Mouscron	Appartement	None	229500	notariale	2	70	0	0	None	None	2	1
4 Mouscron	Appartement	None	239500	notariale	3	50	0	0	None	None	2	1

• Check on missing values

immocopy = immo.copy()
immocopy.isnull().sum()

- EDA: significant prices difference between localities, number of rooms, building state
- Localities vs price

sns.boxplot(data=immo, x="locality", y="price")

1. localities vs price

sns.boxplot(data=immo, x="locality", y="price")

<matplotlib.axes._subplots.AxesSubplot at 0x21ec2da3860>

- EDA: significant prices difference between localities, number of rooms, building state
- number of rooms vs price

sns.boxplot(data=immo, x="number of rooms", y="price")

localities vs price

```
In [33]: sns.boxplot(data=immo, x="number of rooms", y="price")
Dut[33]: <matplotlib.axes._subplots.AxesSubplot at 0x21ec2e14668>
```


- EDA: significant prices difference between localities, number of rooms, building state
- Building state vs price

sns.boxplot(data=immo, x="number of rooms", y="price")

```
[35]: sns.boxplot(data=immo, x="building state", y="price")

:[35]: <matplotlib.axes._subplots.AxesSubplot at 0x21ec2f1dda0>

500000

400000

200000

100000

20uilding state

3
building state
```


Correlation Matrix

The correlation matrix shows the correlation between all the variables in the dataset.
 It will help you identify which variables are strongly correlated, for cases like simple
 linear regression or those that are not correlated, for cases when you're trying to
 models with multiple features adding to your model's performance.

```
corr = immo.corr()
f, ax = plt.subplots(figsize=(12, 8))
sns.heatmap(corr, annot=True, square=False, ax=ax, linewidth = 1)
plt.title('Pearson Correlation of Features')
```


- Correlation is a statistical measure that helps us understand the strength and direction of the linear relationship between two variables.
- The Pearson correlation coefficient, often used for continuous variables, ranges from -1 to 1.
 - A positive value indicates a positive correlation,
 - a negative value indicates a negative correlation
 - 0 indicates no correlation.

$$r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

How is Correlation calculated?

Open belgium_community_les1_calcs

									Correlation	0,38			Ave	erage Price	222.813,49	Sum(SquarePrice)	3.073.902.768.827,41
													Ave	erage Area	93,31	Sum(Square Area)	1.264.683,25
type of property	subtype of property	price	sale type	number of rooms	area	furnishe	d open fire	terrace	terrace area	number of facades	buil	ding state	pri	ce	area	Square Price	Square Area
Appartement	None	204584	notariale	2		4	0 0	TRUE	40) 2	2	2	-	18.229,49	- 89,31	332.314.192,32	7.975,43
Appartement	None	395000	notariale	6	2:	2	0 0	None	None	2	2	1		172.186,51	118,69	29.648.195.296,50	14.088,45
Appartement	None	182500	notariale	2		i0	0 0	None	None	2	2	1	-	40.313,49	- 43,31	1.625.177.225,34	1.875,34
Appartement	None	229500	notariale	2	Ī	0	0 0	None	None	2	2	1		6.686,51	- 23,31	44.709.457,55	543,13
Appartement	None	239500	notariale	3		i0	0 0	None	None	2	2	1		16.686,51	- 43,31	278.439.719,72	1.875,34
Appartement	None	189500	notariale	2		15	0 0	None	None	2	2	1	-	33.313,49	- 48,31	1.109.788.408,86	2.333,40
Appartement	None	259900	notariale	2	10	14	0 0	None	None	2	2	1		37.086,51	10,69	1.375.409.454,56	114,38

 Significance and P-value: will tell us if the correlation is significantly different from zero.

A small p-value (< 0.05) suggests a statistically significant correlation. A large p-value (> 0.05) suggests no significant correlation.

The test statistics for Pearson's correlation coefficient and Spearman's correlation coefficient have the same

$$t = \frac{r \times \sqrt{n-2}}{\sqrt{1-r^2}}$$

The p-value is $2 \times P(T > t)$ where T follows a t distribution with n-2 degrees of freedom.

IMPORTANT

• Generate a correlation matrix with significance

^{** 99%} are the times the correlation is significant from 0

^{* 95%} are the times the correlation is significant from 0

Which are the most important variables to use?

Run the regression

```
#select predictor variables
x = immo[['area','number of facades','building state']]
#select response variable
y = immo["price"]
#define response variable
y = y
#define predictor variables
x = x
#add constant to predictor variables
x = sm.add_constant(x)
#fit linear regression model
model = sm.OLS(y, x).fit()
#view model summary
print(model.summary())
```

	OI	LS Regress:	ion Results				
						====	
Dep. Variable:			R-squared:		0	.239	
Model:			Adj. R-square	d:	0	.235	
Method:	Least	Squares	F-statistic:		5.	5.59	
Date:	Sun, 08 9	Sep 2024	Prob (F-stati	stic):	2.95	e-31	
Time:	1	19:03:27	Log-Likelihoo	d:	-66	85.1	
No. Observations:		534	AIC:		1.338	e+04	
Df Residuals:		530	BIC:		1.340	e+04	
Df Model:		3					
Covariance Type:	no	onrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	2.34e+05	1.14e+04	20.446	0.000	2.11e+05	2.56e+05	
area	638.7447	59.403	10.753	0.000	522.050	755.439	
number of facades	-3.423e+04	4357.544	-7.855	0.000	-4.28e+04	-2.57e+04	
building state	-1.369e+04	5034.861	-2.719	0.007	-2.36e+04	-3797.258	
Omnibus.		45.474	Durbin-Watson		4	207	
Omnibus:					_	.307	
Prob(Omnibus):		0.000	,	lR):	107.223		
Skew:			Prob(JB):		5.21		
Kurtosis:		4.997	Cond. No.).	447.	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

R-squared is a goodness-of-fit measure for linear regression models. This statistic indicates the percentage of the variance in the dependent variable that the independent variables explain collectively. R-squared measures the strength of the relationship between your model and the dependent variable on a convenient 0 – 100% scal

• 23% is not really good

Maybe we can add locality

• Locality is like Deurne, Genk, Moucron, Wavre...

One Hot Encoding

- One hot encoding transforms categorical variables into a binary matrix, where each category is represented by a unique binary vector.
- This approach is particularly useful for algorithms that cannot work with categorical data directly, such as logistic regression.
- Essentially One-Hot encoding creates a binary column for each category, but only the active category is only set to 1 and all the other columns are set to 0.

One hot encoding

Wate	r Temperature
Α	Hot
В	Cold
C	Warm
D	Cold

Water	Temperature	var_hot	var_warm	var_cold
Α	Hot	1	0	0
В	Cold	0	0	1
С	Warm	0	1	0
D	Cold	1	0	0

One hot encoding also known as Dummy Variable

What is a Dummy Variable?

A dummy variable (is, an indicator variable) is a numeric variable that represents categorical data, such as gender, location, etc.

What are the benefits of a Dummy Variable?

Regression results are easiest to interpret when dummy variables are limited to two specific values, 1 or 0. Typically, 1 represents the presence of a qualitative attribute, and 0 represents the absence.

The sign of each coefficient indicates the direction of the relationship between a predictor variable and the response variable.

- A **positive** sign indicates that as the predictor variable increases, the Target variable also **increases**.
- A negative sign indicates that as the predictor variable increases, the Target variable decreases.

• Add locality and dummy variables

immo_dummy = pd.get_dummies(immo, columns = ['locality'])
immo_dummy.head()

51]:	subtype of property	price	sale type	number of rooms	area	furnished	open fire	terrace	terrace area	number of facades	building state	locality_Deurne	locality_Genk	locality_Mouscron	locality_Wavre
	None	204584	notariale	2	4	0	0	TRUE	40	2	2	0	0	1	0
	None	395000	notariale	6	212	0	0	None	None	2	1	0	0	1	0
	None	182500	notariale	2	50	0	0	None	None	2	1	0	0	1	0
	None	229500	notariale	2	70	0	0	None	None	2	1	0	0	1	0
	None	239500	notariale	3	50	0	0	None	None	2	1	0	0	1	0
	4														·

((SYNTRA®

ReRun the regression

```
x = immo dummy[['area','number of facades','building
state','locality Deurne','locality Genk','locality Mouscron','locality Wavre']]
y = immo["price"]
import statsmodels.api as sm
#define response variable
y = y
#define predictor variables
x = x
#add constant to predictor variables
x = sm.add constant(x)
#fit linear regression model
model = sm.OLS(y, x).fit()
#view model summary
print(model.summary())
```

ReRun the regression

	OI	S Regress	ion Results				
						===	
Dep. Variable:		price	R-squared:		0.	525	
Model:		OLS	Adj. R-square	d:	0.520		
Method:	Least	Squares	F-statistic:		97	.23	
Date:	Sun, 08 9	Sep 2024	Prob (F-stati	stic):	5.04e	-82	
Time:		20:59:15	Log-Likelihoo	d:	-655	9.2	
No. Observations:		534			1.313e	+04	
Df Residuals:			BIC:		1.316e	+04	
Df Model:		6					
Covariance Type:	no	onrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	1.342e+05		16.846		1.19e+05		
area	574.8768	47.714	12.048	0.000	481.144	668.610	
number of facades							
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04	
locality_Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04	-2.4e+04	
locality_Genk	4.159e+04	4493.380	9.256	0.000	3.28e+04	5.04e+04	
locality_Mouscron	1.965e+04	4416.044	4.449	0.000	1.1e+04	2.83e+04	
locality_Wavre					9.87e+04	1.17e+05	
Omnibus:			Durbin-Watson		1.	782	
Prob(Omnibus):		0.000	Jarque-Bera (JB):	607.	628	
Skew:		0.594	Prob(JB):		1.14e-	132	
Kurtosis:		8.089	Cond. No.		1.09e	+18	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

R2 is 52,5%

• ReRun the regression

	O.	LS Regress	ion Results			
Day Vanishia			D			505
Dep. Variable:		price	R-squared:			525
Model:			Add P squar	ed:	0.	520
Method:		Squares				
Date:		Sep 2024	•			
Time:		20:59:15	Log-Likeliho	ood:	-022	
No. Observations:		534	AIC: BIC:		1.313e	
	f Residuals: 527				1.316e	+04
Df Model:		6				
Covariance Type:	ne	onrobust				
	coef	std err	t	P> t	[0.025	0.975
const	1.342e+05	7967.219		0.000	1.19e+05	1.5e+05
area	574.8768	47.714		0.000	481.144	668.616
number of facades		3915.752	-0.466	0.642	-9515.632	5869.167
0	4572.6226					
locality_Deurne				0.000	-4.54e+04	-2.4e+04
	4.159e+04			0.000		5.04e+04
locality_Mouscron	1.965e+04	4416.044	4.449	0.000	1.1e+04	2.83e+04
locality_Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.17e+0
Omnibus:		95.240	Durbin-Watso	n:	1.	782
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	607.	628
Skew:		0.594	Prob(JB):		1.14e-	132
Kurtosis:		8.089	Cond. No.		1.09e	+18

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

(SYNTRA

OLS which stands for Ordinary Least Square. The model tries to find out a linear expression for the dataset which minimizes the sum of residual squares.

<u>Linear Regression - statsmodels</u> 0.14.1

ReRun the regression

Dep. Variable:		price	R-squared:		0.525		
Model:		OLS	Adj. R-square	d:	0.520		
Method:	Least		F-statistic:			.23	
Date:		Sep 2024		stic):	5.04e	-82	
Time:		20:59:15	Log-Likelihoo				
No. Observations:		534	744				
Df Residuals:		527	BIC:		1,720		
Df Model:		6				13021	
Covariance Type:	no	onrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	1.342e+05	7967.219		0.000		1.5e+05	
area	574.8768	47.714					
number of facades			-0.466				
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04	
locality_Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04	-2.4e+04	
locality_Genk	4.159e+04	4493.380	9.256	0.000	3.28e+04	5.04e+04	
locality_Mouscron	1.965e+04	4416.044	4.449	0.000	1.1e+04	2.83e+04	
locality_Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.17e+05	
Omnibus:		95.240	Durbin-Watson	:	1.	782	
Prob(Omnibus):		0.000	Jarque-Bera (JB):	607.	628	
Skew:		0.594	Prob(JB):		1.14e-132		
Kurtosis:		8.089	Cond. No.		1.09e+18		

We have total 534 observation and 7 features. Out of 7 features,6 features are independent. DF Model is therefore 6. DF residual is calculated from total observation-DF model-1 which is 534-6-1 = 527 in our case.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified

[2] The smallest eigenvalue is 4.96e-30. This might indicate that the strong multicollinearity problems or that the design matrix is singul

L	area	number of facades	building state	locality_Deurne	locality_Genk	locality_Mouscron	locality_Wavre
0	4	2	2	0	0	1	0
1	212	2	1	0	0	1	0
2	50	2	1	0	0	1	0
3	70	2	1	0	0	1	0
4	50	2	1	0	0	1	0

ReRun the regression

	OLS Regres	sion Results	
Dep. Variable:	price	R-squared:	0.525
Model:	OLS	Adj. R-squared:	0.520
Method:	Least Squares	F-statistic:	97.23
Date:	Sun, 08 Sep 2024	Prob (F-statistic):	5.04e-82
Time:	20:59:15	Log-Likelihood:	-6559.2
No. Observations:	534	AIC:	1.313e+04
Df Residuals:	527	BIC:	
Df Model:	6		

	coef	std err	t	P> t	0.025	
const	1.342e+05	7967.219	16.846	0.000	1.19e+05	1.5e+05
area	574.8768	47.714	12.048	0.000	481.144	668.610
number of facades	-1823.2323	3915.752	-0.466	0.642	-9515.632	5869.167
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04
locality Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04	-2.4e+04
locality_Genk	4.159e+04	4493.380	9.256	0.000	3.28e+04	5.04e+04
locality Mouscron	1.965e+04	4416.044	4.449	0.000	1.1e+04	2.83e+04
locality_Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.17e+05

Omnibus:	95.240	Durbin-Watson:	1.782
Prob(Omnibus):	0.000	Jarque-Bera (JB):	607.628
Skew:	0.594	Prob(JB):	1.14e-132
Kurtosis:	8.089	Cond. No.	1.09e+18

Warnings

Covariance Type:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

- Covariance type is typically **nonrobust** which means there is no elimination of data to calculate the covariance between features.
- Covariance shows how two variables move with respect to each other. If this value is greater than 0, both move in same direction and if this is less than 0, the variables mode in opposite direction.
- Covariance is difference from correlation. Covariance does not provide the strength of the relationship, only the direction of movement whereas, correlation value is normalized and ranges between -1 to +1 and correlation provides the strength of relationship.
- If we want to obtain robust covariance, we can declare cov_type=HC0/HC1/HC2/HC3.
- The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set

• ReRun the regression

	OLS Regres	sion Results	
Dep. Variable:	price	R-squared:	0.525
Model:	OLS	Adj. R-squared:	0.520
Method:	Least Squares	F-statistic:	97.23
Date:	Sun, 08 Sep 2024	Prob (F-statistic):	5.04e-82
Time:	20:59:15	Log-Likelihood:	-6559.2
No. Observations:	534	AIC:	1.313e+04
Df Residuals:	527	BIC:	1.316e+04
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	1.342e+05	7967.219	16.846	0.000	1.19e+05	1.5e+05
area	574.8768	47.714	12.048	0.000	481.144	668.610
number of facades	-1823.2323	3915.752	-0.466	0.642	-9515.632	5869.167
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04
locality Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04	-2.4e+04
locality_Genk	4.159e+04	4493.380	9.256	0.000	3.28e+04	5.04e+04
locality Mouscron	1.965e+04	4416.044	4.449	0.000	1.1e+04	2.83e+04
locality_Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.17e+05
Omnibus:		95.240	Durbin-Watson	:	1.	782
Proh(Omnihus):		9 999	Tarque-Rera (1R) ·	697	628

Warnings

Kurtosis:

Skew:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB):

Cond. No.

1.14e-132

1.09e+18

[2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

8.089

R-squared

 R-squared value is the coefficient of determination which indicates the percentage of the variability if the data explained by the selected independent variables.

Adj. R-squared

- As we add more and more independent variables to our model, the R-squared values increases but in reality, those variables do not necessarily make any contribution towards explaining the dependent variable.
- Therefore addition of each unnecessary variables needs some sort of penalty. The original R-squared values is adjusted when there are multiple variables incorporated. In essence, we should always look for adjusted Rsquared value while performing multiple linear regression. For a single independent variable, both R-squared and adjusted R-squared value are same.

ReRun the regression

	OLS Regress	sion Results	
Dep. Variable:	price	R-squared:	0.525
Model:	OLS	Adj. R-squared:	0.520
Method:	Least Squares	F-statistic:	97.23
Date:	Sun, 08 Sep 2024	Prob (F-statistic):	5.04e-82
Time:	20:59:15	Log-Likelihood:	-6559.2
No. Observations:	534	AIC:	1.313e+04
Df Residuals:	527	BIC:	1.316e+04
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	PALET		
const	1.342e+05	7967.219	16.846	0.000	1.19e+05	1.5e+05
area	574.8768	47.714	12.048	0.000	481.144	668.610
number of facades	-1823.2323	3915.752	-0.466	0.642	-9515.632	5869.167
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04
locality_Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04	-2.4e+04
locality_Genk	4.159e+04	4493.380	9.256	0.000	3.28e+04	5.04e+04
locality_Mouscron	1.965e+04	4416.044	4.449	0.000	1.1e+04	2.83e+04
locality_Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.17e+05

Kurtosis:	8.089	Cond. No.	1.09e+18			
Skew:	0.594	Prob(JB):	1.14e-132			
Prob(Omnibus):	0.000	Jarque-Bera (JB):	607.628			
Omnibus:	95.240	Durbin-Watson:	1.782			

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

The coef column represents the coefficients for each independent variable along with intercept value.

Std err is the standard deviation of the corresponding variable's coefficient across all the data points.

When using only **one predicting variable**, the standard error can be obtained from this two dimensional space as shown below

$$Y = a + bx$$

$$a = \frac{[(\Sigma y)(\Sigma x^2) - (\Sigma y)(\Sigma xy)]}{[n(\Sigma x^2) - (\Sigma x)^2]}$$

$$b = \frac{[n(\Sigma xy) - (\Sigma x)(\Sigma y)]}{[n(\Sigma x^2) - (\Sigma x)^2]}$$

• ReRun the regression

	01	LS Regress:	ion Results				
						===	
Dep. Variable:		price	R-squared:		0.	525	
Model:		OLS	Adj. R-square	d:	0.	520	
Method:	Least	Squares	F-statistic:		97	.23	
Date:	Sun, 08 5	Sep 2024	Prob (F-stati	stic):	5.04e	-82	
Time:		20:59:15	Log-Likelihoo	d:	-655	9.2	
No. Observations:		534	AIC:		1.313e	+04	
Df Residuals:		527	BIC:		1.316e	+04	
Df Model:		6					
Covariance Type:	no	onrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	1.342e+05	7967.219	16.846	0.000	1.19e+05	1.5e+05	
area	574.8768	47.714	12.048	0.000	481.144	668.610	
number of facades	-1823.2323	3915.752	-0.466	0.642	-9515.632	5869.167	_
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04	
locality_Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04		
locality_Genk	4.159e+04	4493.380	9.256	0.000	3.280		
locality_Mouscron	1.965e+04	4416.044	4.449	0.000			
locality_Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.170	
							
Omnibus:		95.240	Durbin-Watson	:	1.	782	
Prob(Omnibus):		0.000	Jarque-Bera (JB):	607.	628	
Skew:		0.594	Prob(JB):		1.14e-	132	
Kurtosis:		8.089	Cond. No.		1.09e	+18	

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

The t-column provides the t-values corresponding to to each independent variables.

T-statistics are used to calculate the p-values. Typically when p-value is less than 0.05, it indicates a **strong evidence against null hypothesis** which states that the corresponding independent variable has no effect on the dependent variable. **Or the independent variable coefficient is significantly different from zero.**

P-value of 0.642 for **Number of facades** says us that there is 64.2% chance that **Number of facades** variables has no effect on Price. It seems are got 0 p-value indicating that the data for area is statistically significant since is is less than the critical limit (0.05). In this case, we can reject the null hypothesis and say that area data is significantly controlling the Price.

ReRun the regression

	0	LS Regress:	ion Results			
Dep. Variable:		price	R-squared:		0.	525
Model:		OLS	Adj. R-square	ed:	0	520
Method:	Least	Squares	F-statistic:		97	.23
Date:	Sun, 08	Sep 2024	Prob (F-stati	istic):	5.04e	-82
Time:		20:59:15	Log-Likelihoo	od:	-655	9.2
No. Observations:		534	AIC:		1.313e	+04
Df Residuals:		527	BIC:		1.316e	+04
Df Model:		6				
Covariance Type:	ne	onrobust				
	coef	std err	t	P> t	[0.025	0.975]
					·	
const	1.342e+05	7967.219	16.846	0.000	1.19e+05	1.5e+05
area	574.8768	47.714	12.048	0.000	481.144	668.610
number of facades	-1823.2323	3915.752	-0.466	0.642	-9515.632	5869.167
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04
locality Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04	-2.4e+04
locality_Genk	4.159e+04	4493.380	9.256	0.000	3.28e+04	5.04e+04
locality Mouscron				0.000	1.1e+04	2.83e+04
locality_Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.17e+05
Omnibus:		95.240	Durbin-Watsor	n:	1.	782
Prob(Omnibus):		0.000	Jarque-Bera ((JB):	607.	628
Skew:		0.594	Prob(JB):	Tu 15	1.14e-	132
Kurtosis:		8.089	Cond. No.		1.09e	+18

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

F-test provides a way to check all the independent variables all together if any of those are related to the dependent variable.

- If **Prob(F-statistic)** is greater than 0.05, there is no evidence of relationship between any of the independent variable with the output.
- If it is less than 0.05, we can say that there is at least one variable which is significantly related with the output.

In our example, the p-value is less than 0.05 and therefore, one or more than one of the independent variable are related to output variable Price.

ReRun the regression

	0	LS Regress:	ion Results			
Dep. Variable:		price	R-squared:		0.	525
Model:		OLS	Adj. R-square	ed:	0	520
Method:	Least	Squares	F-statistic:		97	.23
Date:	Sun, 08	Sep 2024	Prob (F-stati	istic):	5.04e	-82
Time:		20:59:15	Log-Likelihoo	od:	-655	9.2
No. Observations:		534	AIC:		1.313e	+04
Df Residuals:		527	BIC:		1.316e	+04
Df Model:		6				
Covariance Type:	ne	onrobust				
	coef	std err	t	P> t	[0.025	0.975]
					·	
const	1.342e+05	7967.219	16.846	0.000	1.19e+05	1.5e+05
area	574.8768	47.714	12.048	0.000	481.144	668.610
number of facades	-1823.2323	3915.752	-0.466	0.642	-9515.632	5869.167
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04
locality Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04	-2.4e+04
locality_Genk	4.159e+04	4493.380	9.256	0.000	3.28e+04	5.04e+04
locality Mouscron				0.000	1.1e+04	2.83e+04
locality_Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.17e+05
Omnibus:		95.240	Durbin-Watsor	n:	1.	782
Prob(Omnibus):		0.000	Jarque-Bera ((JB):	607.	628
Skew:		0.594	Prob(JB):	Tu 15	1.14e-	132
Kurtosis:		8.089	Cond. No.		1.09e	+18

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

F-test provides a way to check all the independent variables all together if any of those are related to the dependent variable.

- If **Prob(F-statistic)** is greater than 0.05, there is no evidence of relationship between any of the independent variable with the output.
- If it is less than 0.05, we can say that there is at least one variable which is significantly related with the output.

In our example, the p-value is less than 0.05 and therefore, one or more than one of the independent variable are related to output variable Price.

ReRun the regression

	OLS Regres:	sion Results	
Dep. Variable:	price	R-squared:	0.525
Model:	OLS	Adj. R-squared:	0.520
Method:	Least Squares	F-statistic:	97.23
Date:	Sun, 08 Sep 2024	Prob (F-statistic):	5.04e-82
Time:	20:59:15	Log-Likelihood:	-6559.2
No. Observations:	534	AIC:	1.313e+04
Df Residuals:	527	BIC:	1.316e+04
Df Model:	6		
Covariance Type:	nonrobust		
Df Model:	6 nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	1.342e+05	7967.219	16.846	0.000	1.19e+05	1.5e+05
area	574.8768	47.714	12.048	0.000	481.144	668.610
number of facades	-1823.2323	3915.752	-0.466	0.642	-9515.632	5869.167
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04
locality_Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04	-2.4e+04
locality Genk	4.159e+04	4493.380	9.256	0.000	3.28e+04	5.04e+04
locality_Mouscron	1.965e+04	4416.044	4.449	0.000	1.1e+04	2.83e+04
locality Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.17e+05
						===
Omnibus:		95.240	Durbin-Watson	:	1.	782
Prob(Omnibus):		0.000	Jarque-Bera (JB):	607.	628

Omnibus:	95.240	Durbin-Watson:	1.782
Prob(Omnibus):	0.000	Jarque-Bera (JB):	607.628
Skew:	0.594	Prob(JB):	1.14e-132
Kurtosis:	8.089	Cond. No.	1.09e+18

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

The **log-likelihood** value is a measure for fit of the model with the given data. It is useful when we compare two or more models. The higher the value of log-likelihood, the better the model fits the given data. It can range from negative infinity to positive infinity.

ReRun the regression

	OLS Regres	sion Results	
Dep. Variable:	price	R-squared:	0.525
Model:	OLS	Adj. R-squared:	0.520
Method:	Least Squares	F-statistic:	97.23
Date:	Sun, 08 Sep 2024	Prob (F-statistic):	5.04e-82
Time:	20:59:15	Log-Likelihood:	-6559.2
No. Observations:	534	AIC:	1.313e+04
Df Residuals:	527	BIC:	1.316e+04
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	1.342e+05	7967,219	16.846	0.000	1.19e+05	1.5e+05
area	574.8768	47.714	12.048	0.000	481.144	668.610
number of facades		3915.752	-0.466	0.642	-9515.632	5869.167
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04
locality_Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04	-2.4e+04
locality Genk	4.159e+04	4493.380	9.256	0.000	3.28e+04	5.04e+04
locality_Mouscron	1.965e+04	4416.044	4.449	0.000	1.1e+04	2.83e+04
locality_Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.17e+05

Omnibus:	95.240	Durbin-Watson:	1.782
Prob(Omnibus):	0.000	Jarque-Bera (JB):	607.628
Skew:	0.594	Prob(JB):	1.14e-132
Kurtosis:	8.089	Cond. No.	1.09e+18

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

AIC (stands for Akaike's Information Criteria developed by Japanese statistician Hirotugo Akaike) and BIC (stands for Bayesian Information Criteria) are also used as criteria for model robustness.

The goal is to minimize these values to get a better model.

$$AIC_k = n \ln(SSE) - n \ln(n) + 2(k+1)$$
 $BIC_k = n \ln(SSE) - n \ln(n) + (k+1) \ln(n)$

Here, SSE is squared sum of error, n is number of records and k is number of variables incorporated in the model. In essence, **AIC and BIC penalize** adding more variables to the model.

When developing a model, the goal is to minimize the values of AIC and BIC whereas if we use R² as the metric, the goal is to increase its value.

The challenge is to find out a model that minimizes AIC/BIC or increase R^2 . If the dataset is small, we can find out all possible models but this approach is not feasible if the dataset is large. It is also computationally expensive. We only need to find out those models which have the highest R^2 value or the lowest AIC/BIC.

ReRun the regression

	0	LS Regress:	ion Results			
						===
Dep. Variable:		price	R-squared:		0.	525
Model:		OLS	Adj. R-square	ed:	0.	520
Method:	Least	Squares	F-statistic:		97	.23
Date:	Sun, 08	Sep 2024	Prob (F-stati	stic):	5.04e	-82
Time:		20:59:15	Log-Likelihoo	od:	-655	9.2
No. Observations:		534	AIC:		1.313e	+04
Df Residuals:		527	BIC:		1.316e	+04
Df Model:		6				
Covariance Type:	n	onrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	1.342e+05	7967.219	16.846	0.000	1.19e+05	1.5e+05
area	574.8768	47.714	12.048	0.000	481.144	56
number of facades	-1823.2323	3915.752	-0.466	0.642	-9515.632	
building state	4572.6226	4208.775	1.086	0.278	-3695	
locality_Deurne	-3.471e+04	5424.176	-6.398	0.000		rc+04
locality_Genk	4.159e+04	4493.380	9.256	0.000		5.04e+04
locality_Mouscron	1.965e+04	4416.044	4.449		1.1e+04	2.83e+04
locality_Wavre	1.077e+05	4555.817	23.637	.000	9.87e+04	1.17e+05
						===
Omnibus:		95.240	Darbin-Watson	1:	1.	782
Prob(Omnibus):		0.000	Jarque-Bera ((JB):	607.	628
Skew:		0.594	Prob(JB):		1.14e-	132
Kurtosis:		8.089	Cond. No.		1.09e	+18
						===

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Omnibus test checks the normality of the residuals once the model is deployed. If the value is zero, it means the residuals are perfectly normal. Here, in the example prob(Omnibus) is 0 indicating that there is 0% chance that the residuals the normally distributed.

For a model to be robust, besides checking R-squared and other rubrics, the residual distribution is also required to be normal ideally. In other words, the residual should not follow any pattern when plotted against the fitted values.

ReRun the regression

	0	LS Regress:	ion Results			
						===
Dep. Variable:		price	R-squared:		0.	525
Model:		OLS	Adj. R-squar	ed:	0.	520
Method:	Least	Squares	F-statistic:		97	.23
Date:	Sun, 08 :	Sep 2024	Prob (F-stat	istic):	5.04e	-82
Time:		20:59:15	Log-Likeliho	od:	-655	9.2
No. Observations:		534	AIC:		1.313e	+04
Df Residuals:		527	BIC:		1.316e	+04
Df Model:		6				
Covariance Type:	ne	onrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	1.342e+05	7967.219	16.846	0.000	1.19e+05	1.5e+05
area	574.8768	47.714	12.048	0.000	481.144	668
number of facades	-1823.2323	3915.752	-0.466	0.642	-9515.632	50
building state	4572.6226	4208.775	1.086	0.278	-3695.413	
locality_Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.540	
	4.159e+04	4493.380	9.256	0.000	3	04e+04
locality_Mouscron	1.965e+04	4416.044	4.449	0.000		2.83e+04
locality_Wavre	1.077e+05	4555.817	23.637	9	6/e+04	1.17e+05
				=		
Omnibus:		95.240	Durbin-Wat		1.	782
Prob(Omnibus):	0.000		Jarque	(JB):	607.	628
Skew:		0.594	Pp (JB):		1.14e-	132
Kurtosis:		8.089	Cond. No.		1.09e	+18
						===

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Skew values tells us the **skewness** of the residual distribution. Normally distributed variables have 0 skew values.

Kurtosis is a measure of light-tailed or heavy-tailed distribution compared to normal distribution. High kurtosis indicates the distribution is too narrow and low kurtosis indicates the distribution is too flat. A kurtosis value between -2 and +2 is good to prove normalcy.

ReRun the regression

	OI	LS Regress:	ion Results			
Dep. Variable:		price	R-squared:			525
Model:	18.5.5		Adj. R-square	d:		520
Method:			F-statistic:	1 1000 W	0.00	.23
Date:			Prob (F-stati		5.04e	
Time:	2		Log-Likelihoo	d:	-655	
No. Observations:		534	AIC:		1.313e	+04
Df Residuals:		527	BIC:		1.316e	+04
Df Model:		6				
Covariance Type:	no	onrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	1.342e+05	7967.219	16.846	0.000	1.19e+05	1.5e+05
area	574.8768	47.714	12.048	0.000	481.144	668.610
number of facades	-1823.2323	3915.752	-0.466	0.642	-9515.632	5869.167
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04
locality_Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04	-2.4e+04
locality Genk	4.159e+04	4493.380	9.256	0.000	3.28e+04	5.04e+9
locality_Mouscron	1.965e+04	4416.044	4.449	0.000	1.1e+04	2.839
locality_Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.17 105
Omnibus:		95.240	Durbin-Watson			782
Prob(Omnibus):			Jarque-Bera (JB):	607.	
Skew:		0.594	Prob(JB):		1.14e-	
Kurtosis:		8.089	Cond. No.		1.09e	+18
						===

Durbin-Watson statistic provides a measure of autocorrelation in the residual. If the residual values are autocorrelated, the model becomes biased and it is not expected. This simply means that one value should not be depending on any of the previous values. An ideal value for this test ranges from 0 to 4.

Jarque-Bera (JB) and Prob(JB) is similar to Omni test measuring the normalcy of the residuals.

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

High condition number indicates that there are possible multicollinearity present in the dataset. If only one variable is used as predictor, this value is low and can be ignored. We can proceed like stepwise regression and see if there is any multicollinearity added when additional variables are included.

How to improve the model?

- Remove outliers. Some observations are not relevant for our business
- Remove features (number of facades, building state...)
- Variable transformation

How to improve the model?

Make a jointplot to illustrate the relation between area and price

g = sns.jointplot("area", "price", data=immo, kind="reg", scatter_kws={"s": 10}, size=10)

- Remove observations with price>400.000 and area>200
- Rerun the jointplot


```
x = immo_dummy[['area','locality_Deurne','locality_Genk','locality_Mouscron','locality_Wavre']]
y = immo dummy["price"]
import statsmodels.api as sm
#define response variable
y = y
#define predictor variables
x = x
#add constant to predictor variables
x = sm.add constant(x)
#fit linear regression model
model = sm.OLS(y, x).fit()
#view model summary
print(model.summary())
```


	OI	LS Regress	ion Results			
						===
Dep. Variable:		price	R-squared:			525
Model:			Adj. R-square	ed:		520
Method:			F-statistic:			.23
Date:	Sun, 08 9		Prob (F-stat:		5.04e	
Time:	:	20:59:15	Log-Likeliho	od:	-655	9.2
No. Observations:		534	AIC:		1.313e	+04
Df Residuals:		527	BIC:		1.316e	+04
Df Model:		6				
Covariance Type:	no	onrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	1.342e+05	7967.219	16.846	0.000	1.19e+05	1.5e+05
area	574.8768	47.714	12.048	0.000	481.144	668.618
number of facades	-1823.2323	3915.752	-0.466	0.642	-9515.632	5869.167
building state	4572.6226	4208.775	1.086	0.278	-3695.413	1.28e+04
locality_Deurne	-3.471e+04	5424.176	-6.398	0.000	-4.54e+04	-2.4e+04
locality_Genk	4.159e+04	4493.380	9.256	0.000	3.28e+04	5.04e+04
locality_Mouscron	1.965e+04	4416.044	4.449	0.000	1.1e+04	2.83e+04
locality_Wavre	1.077e+05	4555.817	23.637	0.000	9.87e+04	1.17e+05
Omnibus:		95.240	Durbin-Watson	n:	1.	782
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	607.	628
Skew:		0.594	Prob(JB):		1.14e-	132
Kurtosis:	8.089 Cond. No. 1.09e+18					+18
						===

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.96e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

When developing a model, the goal is to minimize the values of AIC and BIC whereas if we use R² as the metric, the goal is to increase its value.

The challenge is to find out a model that minimizes AIC/BIC or increase R².

OLS Regression Results

		ro wegi es				
Dep. Variable:		price	R-squared:		0.	615
Model:		OLS	Adj. R-squar	red:	0.	611
Method:	Leur	Squares	F-statistic:	:	26	2.5
Date:	Sun, 08 :	Sep 2024	Prob (F-stat	tistic):	1.09e-	103
Time:			Log-Liker		-619	0.0
No. Observations:		513	AIC:		1.2396	+04
Df Residuals:		508	BIC:		1.2416	+04
Df Model:		4				
Covariance Type:	ne	onrobust				
				- 1.1		
	coet	std err	t	P> t	[0.025	0.975]
const	1.122e+05	4801.840	23.361	0.000	1.03e+05	1.22e+05
area	887.7203	64.959	13.666	0.000	760.098	1015.342
locality_Deurne	-3.703e+04	3528.536	-10.494	0.000	-4.4e+04	-3.01e+04
locality_Genk	3.758e+04	3390.807	11.084	0.000	3.09e+04	4.42e+04
locality_Mouscron	1.315e+04	3302.230	3.983	0.000	6663.829	1.96e+04
locality_Wavre	9.847e+04	3805.262	25.878	0.000	9.1e+04	1.06e+05
Omnibus:		14.255	Durbin-Watso	on:	1.	765
Prob(Omnibus):		0.001	Jarque-Bera		100	427
Skew:		0.351	Prob(JB):	(50).	0.000	
Kurtosis:		3.479	Cond. No.		9.626	
						===

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.78e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

How to improve the model?

Exponents and logarithms

- A logarithm is a mathematical function used to determine the power to which a number, also known as the base, must be raised to obtain another number.
 Expressed mathematically:
- If $b^y = x$, then $\log b(x) = y$.
- The "b" is the base, "x" is the number we are trying to find the logarithm of, and "y" is the result of the operation.
- To understand the practical application, consider the example 2^3 = 8. The logarithm (base) 2 of 8 is 3, which can be written as log2(8) = 3.

How to improve the model?

Why logarithms

- Quite often data arising in real studies are so skewed that standard statistical analyses of these data yield invalid results.
- Many methods have been developed to test the normality assumption of observed data.
- When the distribution of the continuous data is non-normal, transformations of data are applied to make the data as "normal" as possible and, thus, increase the validity of the associated statistical analyses.
- popular use of the log transformation is to reduce the **variability of data**. especially in data sets that include outlying observations

How to improve the model?

Rules for interpretation

- •Only the dependent/response variable is log-transformed. Exponentiate the coefficient. This gives the multiplicative factor for every one-unit increase in the independent variable. Example: the coefficient is 0.198. exp(0.198) = 1.218962. For every one-unit increase in the independent variable, our dependent variable increases by a factor of about 1.22, or 22%. Recall that multiplying a number by 1.22 is the same as increasing the number by 22%. Likewise, multiplying a number by, say 0.84, is the same as decreasing the number by 1 0.84 = 0.16, or 16%.
- •Only independent/predictor variable(s) is log-transformed. Divide the coefficient by 100. This tells us that a 1% increase in the independent variable increases (or decreases) the dependent variable by (coefficient/100) units. Example: the coefficient is 0.198. 0.198/100 = 0.00198. For every 1% increase in the independent variable, our dependent variable increases by about 0.002. For x percent increase, multiply the coefficient by log(1.x). Example: For every 10% increase in the independent variable, our dependent variable increases by about 0.198 * log(1.10) = 0.02
- •Both dependent/response variable and independent/predictor variable(s) are log-transformed. Interpret the coefficient as the percent increase in the dependent variable for every 1% increase in the independent variable. Example: the coefficient is 0.198. For every 1% increase in the independent variable, our dependent variable increases by about 0.20%. For x percent increase, calculate 1.x to the power of the coefficient, subtract 1, and multiply by 100 Example: For every 20% increase in the independent variable, our dependent variable increases by about (1.20 0.198 1) TRA 1.20 0 = 3.7 percent.

- Let us do some transformation
 - Calculate price per sqm (price / area)
 - Take the log of area and price / area

immo_dummy['log_price_sqm']= np.log(immo_dummy['price']/immo_dummy['area'])
immo_dummy['log_area']= np.log(immo_dummy['area'])

• Rerun the regression

```
x = immo_dummy[['log_area','locality_Deurne','locality_Genk','locality_Mouscron','locality_Wavre']]
y = immo dummy["log price sqm"]
import statsmodels.api as sm
#define response variable
y = y
#define predictor variables
x = x
#add constant to predictor variables
x = sm.add constant(x)
#fit linear regression model
model = sm.OLS(y, x).fit()
#view model summary
print(model.summary())
((2) JAINY
```

before

OLS Regression Results

Dep. Variable:	price	R-squared:	0.615
Model:	OLS	Adj. R-squared:	0.611
Method:	Least Squares	F-statistic:	202.5
Date:	Sun, 08 Sep 2024	Prob (F-statistic):	1.09e-103
Time:	23:09:58	Log-Likelihood:	-6190.0
No. Observations:	513	AIC:	1.239e+04
Df Residuals:	508	BIC:	1.241e+04
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	1.122e+05	4801.840	23.361	0.000	1.03e+05	1.22e+05
area	887.7203	64.959	13.666	0.000	760.098	1015.342
locality Deurne	-3.703e+04	3528.536	-10.494	0.000	-4.4e+04	-3.01e+04
locality_Genk	3.758e+04	3390.807	11.084	0.000	3.09e+04	4.42e+04
locality_Mouscron	1.315e+04	3302.230	3.983	0.000	6663.829	1.96e+04
locality_Wavre	9.847e+04	3805.262	25.878	0.000	9.1e+04	1.06e+05
Omnibus:		14.255	Durbin-Watson	1:	1	.765
Prob(Omnibus):		0.001	Jarque-Bera (JB):	15	.427
Skew:		0.351	Prob(JB):		0.00	9447
Kurtosis:		3.479	Cond. No.		9.62	e+17

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.78e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

after

OLS Regression Results

Dep. Variable:	log_price_sqm	R-squared:	0.781
Model:	OLS	Adj. R-squared:	0.780
Method:	Least Squares	F-statistic:	453.7
Date:	Sun, 08 Sep 2024	Prob (F-statistic):	4.11e-166
Time:	23:26:15	Log-Likelihood:	56.616
No. Observations:	513	AIC:	-103.2
Df Residuals:	508	BIC:	-82.03
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975
const	9.1444	0.079	116.176	0.000	8.990	9.29
log_area	-0.8164	0.022	-36.685	0.000	-0.860	-0.77
locality_Deurne	1.9391	0.026	75.263	0.000	1.889	1.99
locality_Genk	2.3645	0.027	88.276	0.000	2.312	2.41
locality_Mouscron	2.2324	0.024	91.546	0.000	2.184	2.28
locality_Wavre	2.6084	0.027	96.666	0.000	2.555	2.66
						==
Omnibus:		5.834	Durbin-Watson:		1.757	
Prob(Omnibus):		0.054	Jarque-Bera (JB):		8.007	
Skew:		0.028	Prob(JB):		0.0183	
Kurtosis:		3.610	Cond. No.		3.83e+	16

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 7.29e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Implement the model

Simple Linear Regression

Perform a cross validation

```
from sklearn.model selection import train test split
from sklearn.model selection import KFold
from sklearn.model selection import cross val score
from sklearn.linear model import LinearRegression
from numpy import mean
from numpy import absolute
from numpy import sqrt
import pandas as pd
#define predictor and response variables
X = immo dummy[['log area','locality Deurne','locality Genk','locality Mouscron','locality Wavre']]
y = immo dummy["log price sqm"]
#define cross-validation method to use
cv = KFold(n splits=3, random state=1, shuffle=True)
#build multiple linear regression model
model = LinearRegression()
#use k-fold CV to evaluate model
scores = cross_val_score(model, X, y, scoring='r2',
             cv=cv, n jobs=None)
#view mean absolute error
print(scores)
mean(absolute(scores))
```

• Perform a cross validation

[0.68627212 0.74201595 0.85051939]]: 0.7596024856593727

Make a salary estimator

