We will be a serious of the serious

1. Chatbots & Customer Support

- **Example:** You ask a question on a website and a chatbot replies.
- **How it works:** ML helps the chatbot understand your question and find the right answer
- Why it's helpful: No need to wait for a human faster help!

2. Movie or Shopping Recommendations

- **Example:** Netflix suggests a movie. Amazon recommends a product.
- **How it works:** ML looks at what you watched or bought before and finds similar things.
- Why it's helpful: Saves time and helps you discover new stuff.

3. Spam Email Detection

- **Example:** Your email inbox automatically moves junk emails to spam.
- **How it works:** ML learns the common words or patterns in spam emails.
- Why it's helpful: Keeps your inbox clean and protects you from scams.

4. Face Recognition

- **Example:** Your phone unlocks using your face.
- **How it works:** ML learns how your face looks and checks if it matches.
- Why it's helpful: Fast, easy, and secure way to unlock devices.

5. Voice Assistants (Alexa, Siri, Google Assistant)

- Example: You say, "What's the weather?" and your assistant replies.
- How it works: ML turns your voice into text and finds the right answer.
- Why it's helpful: Hands-free help with daily tasks.

6. Self-Driving Cars

• **Example:** A car drives itself.

- **How it works:** ML helps the car recognize roads, signs, people, and make driving decisions.
- Why it's helpful: Reduces accidents and helps people who can't drive.

7. Medical Diagnosis

- **Example:** Doctors use ML to detect diseases like cancer from scans.
- How it works: ML analyzes thousands of past medical cases to find signs of illness.
- Why it's helpful: Faster and more accurate health checks.

8. Fraud Detection in Banks

- **Example:** You get an alert if someone tries to use your card from another country.
- **How it works:** ML looks for unusual activity in your account.
- Why it's helpful: Stops theft and keeps your money safe.

9. Weather Forecasting

- **Example:** Your app tells you it will rain tomorrow.
- **How it works:** ML uses past weather data to predict what will happen next.
- Why it's helpful: Helps plan your day better.

10. Language Translation

- **Example:** Google Translate turns English into French.
- **How it works:** ML learns different languages and how words relate.
- Why it's helpful: Makes travel and global communication easier.

What is PAC Learning?

PAC Learning is a theoretical framework in machine learning that answers this core question:

"How many training samples are enough to ensure that our model performs well on new, unseen data?"

It gives a **mathematical relationship** between:

- The number of training samples m
- The true error (ϵ)
- The **confidence** (1δ) that the learned model is close to the best

6 Motivation

In real-world machine learning:

- We **train** a model on some samples.
- We then **test** it to see how well it performs.
- But: the performance estimate from the test set may **not reflect** how the model performs on all possible inputs.

So we ask:

How confident can we be that the model's real error is low?

That's exactly what **PAC learning** addresses!

✓ Hypothesis Space (н)

A set of all possible models we could choose from.

Example: All straight lines for a linear model.

✓ Target Concept (c)

The true underlying rule (function) generating the labels in our data.

✓ Version Space

The set of hypotheses in H that perfectly fit the training data.

? Where Does ''Approximately'' Come From?

Even if a model fits the training data **perfectly**, it can still make errors on new data.

PAC learning says:

With more training data, the **probability** of picking a bad model goes **down exponentially**.

Key Bound:

 $P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(\text{k} A \ bad \ model \ fits \ training \ data \ perfectly}) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ training \ data \ perfectly) < |H| \cdot e^{-\epsilon m} P(A \ bad \ model \ fits \ had \ model \ had \ had \ had \ had \$

Here:

- |H||H||H|: number of hypotheses
- $\epsilon \neq \text{epsilon} \epsilon$: true error rate
- mmm: number of training samples

? Where Does "Probably" Come From?

To ensure that this probability is **less than some small** δ (like 5%), we set:

 $|H|e-\epsilon m \le \delta |H|e^{-\epsilon m} \le \delta |H|e^{-\epsilon m} \le \delta$

Solving for m gives the **minimum number of training samples** needed:

 $m \ge 1 \in (\ln[f_0]|H| + \ln[f_0]1\delta) m \ge (1) \{ \cdot \ln|H| + \ln \cdot f_0 \le (1) \}$ \right\)

This is called **sample complexity**.

- ε is how close we want to be to the truth (accuracy)
- δ is how confident we want to be (confidence)

Partition Recap

Term Meaning
Probably We allow a small chance (δ) of being wrong
Approximately We accept a small error (ϵ) in accuracy

Term

Meaning

Correct

The model is close to the true concept

Real-World Takeaway

In practice:

- You can't guarantee a perfect model.
- But with **enough data**, you can get a **probably approximately correct** model.
- PAC helps you estimate how much data is enough to be confident.
- PAC = Probably Approximately Correct
- A way to measure learning performance
- Used to answer:
 - "How much data is enough to learn well?"

3: Goal of PAC Learning

- Learn a good hypothesis from data
- Goal: Small error on new (unseen) data
- Even if **perfect accuracy** isn't possible, we want a model that's **close enough** — most of the time

4: Key Terms

Term Meaning

Hypothesis (h) A possible model/solution

Concept (c) The true rule generating the data

Distribution (D) How data is spread in the world

Error Difference between prediction and truth

5: What Does "Probably" Mean?

- We allow a small chance (δ) of being wrong
- Example: 95% probability that our model is good

6 6: What Does "Approximately" Mean?

- We accept a small error rate (ε)
- Example: Our model can be 90% accurate

7: The PAC Guarantee

If a problem is PAC-learnable:

There exists an algorithm that can find a "probably approximately correct" hypothesis given enough data

8: Sample Complexity

How much data do we need? Formula:

 $m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | 1\delta) m \ge 1 \in (\ln f_0 | H| + \ln f_0 | H| + \ln$

Where:

- m = number of samples needed
- |H| = size of hypothesis space
- ϵ = allowed error
- δ = allowed failure probability

9: Real-World Analogy

Imagine guessing a recipe:

- You try different ingredient combos (hypotheses)
- You want your dish to taste almost perfect
- You're okay with slight variations, as long as they usually taste good

10: Key Takeaway

PAC Learning helps us:

• Estimate how much training data is enough

- Balance accuracy and confidence
- Design algorithms that work well in theory and practice

✓ 11: Summary

- PAC stands for **Probably Approximately Correct**
- Focuses on learning with high probability and low error
- Helps guide how much data and how accurate a model can be
- A foundational theory in Machine Learning!

1. Email Spam Filter

- Concept (c): The actual rule that determines whether an email is spam or not.
- **Hypothesis** (h): The model your spam filter creates based on past email data.
- **Distribution (D):** The types of emails people receive (e.g., promotions, personal, work).
- Error: When the model wrongly classifies a legitimate email as spam, or vice versa.

PAC Perspective:

You train the model on past emails. If it classifies new emails correctly 90% of the time, and you're 95% confident in that performance, the model is **probably approximately correct**.

2. Diagnosing Disease with Symptoms

- Concept (c): The actual relationship between symptoms and the disease.
- **Hypothesis** (h): A decision rule the model learns from patient records.
- **Distribution (D):** Real-world distribution of patient cases and symptoms.
- Error: Misdiagnosing a patient based on learned rules.

PAC Perspective:

You can't be 100% perfect, but if your model gets diagnoses right 92% of the time, and you're 98% confident, it's a PAC-learned model.

✓ 3. Predicting Student Grades

- **Concept (c):** The true (but unknown) function that maps study hours, attendance, etc., to final grades.
- **Hypothesis** (h): The model learned from previous student data.
- **Distribution (D):** Distribution of different types of student behaviors.

• **Error:** Predicting a student will pass when they actually fail.

PAC Perspective:

A model that correctly predicts final grades with 90% accuracy, and we're 95% confident in this estimate, is PAC-learned.

✓ 4. Loan Approval System

- Concept (c): The actual rule that should decide if a person will repay a loan.
- **Hypothesis** (h): A model that uses income, credit score, etc., to decide.
- **Distribution (D):** Real-world distribution of borrowers.
- Error: Approving a risky loan or rejecting a good customer.

PAC Perspective:

You may not get it right all the time, but with enough data, your model gives correct decisions 93% of the time with 97% confidence — PAC achieved!

✓ 5. Image Classification (e.g., Cats vs. Dogs)

- Concept (c): The true rule distinguishing cats and dogs in images.
- **Hypothesis** (h): A classifier trained on labeled images.
- **Distribution (D):** Variety of cat/dog image styles and lighting.
- Error: Misclassifying a dog as a cat.

PAC Perspective:

If your classifier mislabels less than 5% of images, and you're 99% confident in that, it's a PAC-compliant model.

Algorithms in ML:

In machine learning,

Classification predicts categorical outcomes (like spam/not spam), while

Regression predicts continuous numerical values (like temperature or price).

© What is Linear Regression?

Linear Regression is a method used to **predict a number (output)** based on **some input** features (variables).

Example:

You want to predict the **price of a house** based on **its size**.

📕 Formula:

Y=w1x+w0

It calculates a weighted sum of input features, then applies a decision rule:

$$y = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_n x_n$$

Then:

- If $y \ge 0$, predict class 1
- If y < 0, predict class 0

This is the equation of a straight line. Let's explain each part:

***** x: Input Variable

• This is your feature or independent variable.

• Example: Size of the house (in square feet) — say x = 1500.

***** w₁: Weight or Coefficient (Slope)

- This tells us **how much y (output)** changes **when x increases by 1 unit**.
- It's the **slope** of the line.
- For example: If $w_1 = 100$, then for every extra 1 sq. ft., the house price increases by $\gtrsim 100$.

So:

- Bigger $w_1 \to \text{steeper slope} \to \text{stronger effect of } x \text{ on } y$.
- If $w_1 = 0$, then x has no effect (flat line).

& w₀: Bias or Intercept

- This is where the line starts on the y-axis (when x = 0).
- It's the base value or starting prediction when no input is given.
- In the house example, if $w_0 = 50,000$, that means:

Even a 0 sq. ft. house is estimated to cost ₹50,000 (just a theoretical base value for math—it doesn't mean a house really has zero area).

***** y^: Predicted Output

- This is the **price we predict** using the formula.
- We plug in x, w_1 , and w_0 to get $y^{\hat{}}$.

Example: Let's say:

- $\bullet \qquad w_1 \ = \ 100$
- $w_0 = 50,000$
- x = 1500

Then:

So, the predicted price of a 1500 sq. ft. house is ₹2,00,000.

9

But Where Do w₁ and w₀ Come From?

- These are **learned by the algorithm** from the data.
- Linear regression looks at all data points and finds the **best line that minimizes the prediction error**.
- This is usually done by minimizing **Mean Squared Error (MSE)**—more on this later if you're interested.

Summary of Each Term:

Term	Meaning	Example
x	Input feature	Square footage $= 1500$
w_1	Slope/weight — how much y changes when x increases	₹100 per sq. ft.
w_0	Intercept/bias — base value when $x = 0$	₹50,000
y^	Prediction based on formula	₹2,00,000

***** x: Input Variable

- This is your feature or independent variable.
- Example: Size of the house (in square feet) say x = 1500.

***** w₁: Weight or Coefficient (Slope)

- This tells us how much y (output) changes when x increases by 1 unit.
- It's the **slope** of the line.
- For example: If $w_1 = 100$, then for every extra 1 sq. ft., the house price increases by $\gtrsim 100$.

So:

- Bigger $w_1 \to \text{steeper slope} \to \text{stronger effect of } x \text{ on } y$.
- If $w_1 = 0$, then x has no effect (flat line).

****** w₀: Bias or Intercept

- This is where the line starts on the y-axis (when x = 0).
- It's the base value or starting prediction when no input is given.
- In the house example, if $w_0 = 50,000$, that means:

Even a 0 sq. ft. house is estimated to cost ₹50,000 (just a theoretical base value for math—it doesn't mean a house really has zero area).

***** y^: Predicted Output

- This is the **price we predict** using the formula.
- We plug in x, w_1 , and w_0 to get $y^{\hat{}}$.

Example: Let's say:

- $w_1 = 100$
- $w_0 = 50,000$
- x = 1500

Then:

So, the predicted price of a 1500 sq. ft. house is 2,00,000.

Property But Where Do w₁ and w₀ Come From?

- These are **learned by the algorithm** from the data.
- Linear regression looks at all data points and finds the **best line that minimizes the prediction error**.
- This is usually done by minimizing **Mean Squared Error (MSE)**

2. K-Means Clustering (Unsupervised Learning)

★ Goal:

Group similar data points into **K clusters** without knowing the labels.

Example:

Grouping customers into segments based on buying behavior.

Customer Spending Visits/Month

- A \$200 5 B \$800 15
- C \$220 4
- D \$780 16

4 How it works:

- 1. Choose number of clusters (K), e.g., K=2.
- 2. Initialize K random cluster centers (centroids).
- 3. Assign each data point to the **nearest centroid**.
- 4. Recompute the centroids based on the assigned points.
- 5. Repeat steps 3–4 until cluster assignments stop changing.

Result:

- A and C might form one cluster (low spenders)
- B and D another (high spenders)

In **K-Means Clustering**, **K-Nearest Neighbors**, and other algorithms, Euclidean distance is used to:

- Measure how similar two data points are
- Group close points together
- Find nearest neighbors

© Example in ML (Customer Data):

Customer Spending (\$) Visits/Month

- A 200
- 5
- B 800
- 15

To find the Euclidean distance:

$$d = \sqrt{(800 - 200)^2 + (15 - 5)^2} = \sqrt{600^2 + 10^2} = \sqrt{360000 + 100} = \sqrt{360100} \approx 600.08$$

So, A and B are 600.08 units apart in "customer behavior space."

Term Meaning

Euclidean Distance

Formula (2D)

Used in

Straight-line distance between two points

$$\sqrt{[(x_2-x_1)^2+(y_2-y_1)^2]}$$

Clustering, classification, anomaly detection

Why it matters

Decision Tree (Supervised Learning)

★ Goal:

Used for classification or regression. It splits data based on rules to reach a decision.

Example:

Decide whether someone will buy a product based on age and income.

Age Income Buy?

- 22 Low No
- 30 High Yes
- 40 Medium Yes

How it works:

- 1. Pick the **best feature** to split the data (e.g., age).
- 2. Divide data based on that feature's values.
- 3. Repeat recursively for each subset.
- 4. Stop when all data in a leaf belongs to the same class.

Sample Decision Tree:

1. Medical Diagnosis

Term Meaning

Task: Predict if a patient has diabetes based on age and BMI.

Age BMI Diabetes

```
25 28 No45 35 Yes50 33 Yes30 22 No
```

Decision Tree Logic:

```
Age > 40?

No: Diabetes = No
Yes:

BMI > 30?

No: Diabetes = No
Yes: Diabetes = Yes
```

2. Credit Approval

Task: Approve or reject a loan application based on salary and credit score.

Salary Credit Score Approved?

```
      50K
      700
      Yes

      30K
      500
      No

      80K
      650
      Yes

      25K
      600
      No
```

Decision Tree Logic:

```
Salary > 40K?

No: Approved = No
Yes:

Credit Score > 600?

No: Approved = No
Yes: Approved = Yes
```

3. Email Classification

Task: Classify emails as spam or not spam based on keywords and sender.

Term Meaning

Keyword ("Buy Now") Known Sender Spam?

Yes	No	Yes
No	Yes	No
Yes	Yes	No
No	No	Yes

Part Proposition Pree Logic:

4. Student Performance

Task: Predict pass/fail based on hours studied and attendance.

Hours Studied Attendance (%) Passed?

2	60	No
5	85	Yes
6	90	Yes
3	50	No

Decision Tree Logic:

```
Hours Studied > 4?

No: Passed = No

Yes:

Attendance > 80%?

Yes: Passed = Yes

No: Passed = No
```

5. Product Purchase Behavior

Task: Predict if a user will buy a product based on device type and session time.

Term Meaning

Device Session Time (min) Purchased?

Mobile 3 No
Desktop 15 Yes
Mobile 12 Yes
Desktop 5 No

Decision Tree Logic:

```
Device = Mobile?

Yes:
Session Time > 10?
Yes: Purchased = Yes
No: Purchased = No
No:
Session Time > 10?
Yes: Purchased = Yes
No: Purchased = No
```