

Universidad Nacional Autónoma de México Facultad de Ingeniería

Clustering Particional

Guillermo Molero-Castillo guillermo.molero@ingenieria.unam.edu

Contexto

- La Inteligencia Artificial aplicada a la definición de cluster consiste en la segmentación y delimitación de grupos de elementos de manera automática, que son unidos por características comunes que éstos comparten.
- El objetivo es dividir una población heterogénea en un número de grupos naturales (regiones o segmentos homogéneos), de acuerdo a la similitud de los elementos. Es un tipo de aprendizaje automático no-supervisado.

Los grupos nacen a partir de los datos y se descubre una serie de patrones ocultos en éstos.

Contexto

Aplicaciones

- Marketing. Para caracterizar y descubrir segmentos de clientes con fines de marketing.
- Biología. Para organizar diferentes especies de plantas y animales.
- Bibliotecas. Para agrupar libros a través de temas o autores.
- Seguro. Para reconocer a los clientes, sus pólizas e identificar los fraudes.
- Urbanismo. Para organizar tipos de viviendas y analizar sus valores en función de su ubicación geográfica.
- Otras. Estudios demográficos, regiones afectadas por terremotos, identificación de zonas peligrosas, regionalizaciones climáticas, comunidades de usuarios para los sistemas de recomendación, entre otros.

El **algoritmo particional**, conocido también como de particiones, organiza los registros dentro de k clústeres. Tiene ventajas en aplicaciones que involucran gran cantidad de datos.

Pasos para formar clústeres:

- 1. Utilizar un método para medir la similitud de los elementos.
- 2. Utilizar un método para agrupar a los elementos.
- 3. Utilizar un método para decidir la cantidad adecuada de grupos.

Algoritmo K-means

K-means

- K-means es uno de los algoritmos ampliamente utilizado en el mundo académico y la industria.
- Crea k clústeres a partir de un conjunto de elementos (objetos), de modo que los miembros de un grupo sean similares.
- Ejemplo: Pacientes por edad, pulso, presión arterial, colesterol, entre otros.

Pulsouna dimensiónPresión arterialotra dimensiónColesterolotra dimensión

• • •

Estas mediciones sobre el paciente representan un vector de datos.

El algoritmo *k-means* resuelve **problemas de optimización**, dado que la función es minimizar (optimizar) la suma de las distancias de cada elemento al centroide de un cluster.

Cetroide:

- El centroide es el punto que ocupa la posición media en un cluster.
- Al inicio, cuando se empieza a definir el cluster, es probable que el centroide no tenga relación con algunos de los elementos.
- Posteriormente, la ubicación del centroide se calcula de manera iterativa.

Pseudocódigo

- 1 Inicio: Se establecen *k* centroides para la formación de *k* grupos. Estos centroides (elementos) se eligen aleatoriamente.
- **2 Asignación:** Cada elemento es asignado al centroide más cercano.
- **3 Actualización**: Se actualiza la posición del centroide con base en la media de los elementos asignados en el cluster.
- 4 Repetir: Se repiten los pasos 2 y 3 de manera iterativa hasta que los centroides no cambien más.

```
K-MEANS(P, k)
    Input: a dataset of points P = \{p_1, \dots, p_n\}, a number of clusters k
    Output: centers \{c_1, \ldots, c_k\} implicitly dividing P into k clusters
   choose k initial centers C = \{c_1, \ldots, c_k\}
    while stopping criterion has not been met
         do ⊳ assignment step:
            for i = 1, ..., N
                 do find closest center c_k \in C to instance p_i
                    assign instance p_i to set C_k

    □ update step:

            for i = 1, ..., k
9
                 do set c_i to be the center of mass of all points in C_i
```

Pseudocódigo

Para la asignación: Se asigna cada objeto al cluster más cercano, aplicando alguna medida de distancia (por ejemplo, distancia euclidiana, Manhattan, Chebyshev, y otros) entre el objeto y el centroide del cluster.

$$d_{e}(X,\mu) = \sqrt{\sum_{i=1}^{n} (x_{i} - \mu_{i})^{2}} \qquad d_{Manh}(p,q) = \sum_{i=1}^{n} |p_{i} - q_{i}| \qquad d_{Cheb}(p,q) = \max |p_{i} - q_{i}|$$

Para la actualización: Se calcula los nuevos centroides con base en la media de los elementos asignados en el cluster.

$$\mu = \frac{1}{N} \sum_{j=1}^{N} x_j$$

Procedimiento

Paso previo: Se elije el número de K de grupos en los que se asignarán los elementos.

1

Paso 1: Seleccionar *k* centroides aleatoriamente. Estos serán los centros iniciales en los k grupos. Por ejemplo, 3 centroides (elementos).

Procedimiento

Paso 2: Se asigna cada elemento al centroide más cercano, creando así k clústeres.
Para la asignación se utiliza mediciones de **distancia mínima** entre el elemento y el centroide.

Procedimiento

Paso 3: Una vez asignados todos los elementos, se actualiza la posición de los **centroides**, tomando como nuevo centro la posición del promedio de los elementos pertenecientes a cada cluster.

Procedimiento

Paso 4: Se repiten los pasos **2 y 3**, se vuelven a asignar los elementos y se recalculan los centroides, hasta que éstos (centroides) no se modifiquen más, o se alcance un número máximo de iteraciones.

Lo que se busca

La similitud entre los elementos del mismo clúster sea alta. **Similitud intraclúster alta**.

La similitud entre los elementos de distintos clústeres sea baja. **Similitud interclúster baja**.

k = 3

 $c_1 = 16$ $c_2 = 22$ $c_3 = 60$

Procedimiento con una matriz de datos

Se quiere dividir una población de usuarios de un determinado sitio Web (Netflix) con base en sus edades: n = 18

15, 15, 16, 19, 19, 20, 20, 21, 22, 28, 35, 40, 41, 42, 43, 44, 60, 61

Distancia Euclidiana:
$$dist(p,q) = di_j = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}$$

Distancia de Manhattan:
$$d_{Manh}(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

Distancia de Chebyshev:
$$d_{Cheb}(p,q) = \max |p_i - q_i|$$

Procedimiento con una tabla de datos

ID	Xi	$\mathbf{c_1}$	\mathbf{c}_2	c ₃			Distancia	Cluster	Nuevo
					1	2	3	Cercano	Centroide
1	15	16	22	60	1	7	45	1	
2	15	16	22	60	1	7	45	1	
3	16	16	22	60	0	6	44	1	16.8
4	19	16	22	60	3	3	41	1	
5	19	16	22	60	3	3	41	1	
6	20	16	22	60	4	2	40	2	
7	20	16	22	60	4	2	40	2	
8	21	16	22	60	5	1	39	2	
9	22	16	22	60	6	0	38	2	28.4
10	28	16	22	60	12	6	32	2	20.4
11	35	16	22	60	19	13	25	2	
12	40	16	22	60	24	18	20	2	
13	41	16	22	60	25	19	19	2	
14	42	16	22	60	26	20	18	3	
15	43	16	22	60	27	21	17	3	
16	44	16	22	60	28	22	16	3	50.0
17	60	16	22	60	44	38	0	3	
18	61	16	22	60	45	39	1	3	

$$k = 3$$

$$c_1 = 16$$

$$c_2 = 22$$

$$c_3 = 60$$

$$d_{Manh}(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

Distancia
$$1 = |x_i - c_1|$$

Distancia
$$2 = |x_i - c_2|$$

Distancia
$$3 = |x_i - c_3|$$

Procedimiento con una tabla de datos

ID	T .				Distancia	Distancia	Distancia	Cluster	Nuevo
ID	Xi	c ₁	\mathbf{c}_2	C 3	1	2	3	Cercano	Centroide
1	15	16.8	28.4	50	1.8	13.4	35	1	
2	15	16.8	28.4	50	1.8	13.4	35	1	
3	16	16.8	28.4	50	0.8	12.4	34	1	
4	19	16.8	28.4	50	2.2	9.4	31	1	
5	19	16.8	28.4	50	2.2	9.4	31	1	18.6
6	20	16.8	28.4	50	3.2	8.4	30	1	
7	20	16.8	28.4	50	3.2	8.4	30	1	
8	21	16.8	28.4	50	4.2	7.4	29	1	
9	22	16.8	28.4	50	5.2	6.4	28	1	
10	28	16.8	28.4	50	11.2	0.4	22	2	31.5
11	35	16.8	28.4	50	18.2	6.6	15	2	31.5
12	40	16.8	28.4	50	23.2	11.6	10	3	
13	41	16.8	28.4	50	24.2	12.6	9	3	
14	42	16.8	28.4	50	25.2	13.6	8	3	
15	43	16.8	28.4	50	26.2	14.6	7	3	47.3
16	44	16.8	28.4	50	27.2	15.6	6	3	
17	60	16.8	28.4	50	43.2	31.6	10	3	
18	61	16.8	28.4	50	44.2	32.6	11	3	

$$k = 3$$

$$c_1 = 16.8$$

$$c_2 = 28.4$$

$$c_3 = 50.0$$

$$d_{Manh}(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

$$Distancia 1 = |x_i - c_1|$$

$$Distancia 2 = |x_i - c_2|$$

Distancia
$$3 = |x_i - c_3|$$

Procedimiento con una tabla de datos

ID					Distancia	Distancia	Distancia	Cluster	Nuevo
ID	Xi	\mathbf{c}_1	\mathbf{c}_2	C 3	1	2	3	Cercano	Centroide
1	15	18.6	31.5	47.3	3.6	16.5	32.3	1	
2	15	18.6	31.5	47.3	3.6	16.5	32.3	1	
3	16	18.6	31.5	47.3	2.6	15.5	31.3	1	
4	19	18.6	31.5	47.3	0.4	12.5	28.3	1	
5	19	18.6	31.5	47.3	0.4	12.5	28.3	1	18.6
6	20	18.6	31.5	47.3	1.4	11.5	27.3	1	
7	20	18.6	31.5	47.3	1.4	11.5	27.3	1	
8	21	18.6	31.5	47.3	2.4	10.5	26.3	1	
9	22	18.6	31.5	47.3	3.4	9.5	25.3	1	
10	28	18.6	31.5	47.3	9.4	3.5	19.3	2	31.5
11	35	18.6	31.5	47.3	16.4	3.5	12.3	2	31.8
12	40	18.6	31.5	47.3	21.4	8.5	7.3	3	
13	41	18.6	31.5	47.3	22.4	9.5	6.3	3	
14	42	18.6	31.5	47.3	23.4	10.5	5.3	3	
15	43	18.6	31.5	47.3	24.4	11.5	4.3	3	47.3
16	44	18.6	31.5	47.3	25.4	12.5	3.3	3	
17	60	18.6	31.5	47.3	41.4	28.5	12.7	3	
18	61	18.6	31.5	47.3	42.4	29.5	13.7	3	

$$k = 3$$

$$c_1 = 18.6$$

$$c_2 = 31.5$$

$$c_3 = 47.3$$

$$d_{Manh}(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

Distancia
$$1 = |x_i - c_1|$$

$$Distancia 2 = |x_i - c_2|$$

Distancia
$$3 = |x_i - c_3|$$

Procedimiento con una tabla de datos

ID					Distancia	Distancia	Distancia	Cluster	Nuevo	k = 3
ID	Xi	\mathbf{c}_1	\mathbf{c}_2	c ₃	1	2	3	Cercano	Centroide	
1	15	18.6	31.5	47.3	3.6	16.5	32.3	1		$c_1 = 18.6$
2	15	18.6	31.5	47.3	3.6	16.5	32.3	1		$c_2 = 31.5$
3	16	18.6	31.5	47.3	2.6	15.5	31.3	1		$c_3 = 47.3$
4	19	18.6	31.5	47.3	0.4	12.5	28.3	1		
5	19	18.6	31.5	47.3	0.4	12.5	28.3	1	(18.6)	n
6	20	18.6	31.5	47.3	1.4	11.5	27.3	1	~	
7	20	18.6	31.5	47.3	1.4	11.5	27.3	1		$d_{Manh}(p,q) = p_i - q_i$
8	21	18.6	31.5	47.3	2.4	10.5	26.3	1		$d_{Manh}(p,q) = \sum_{i=1}^{n} p_i - q_i $
9	22	18.6	31.5	47.3	3.4	9.5	25.3	1		
10	28	18.6	31.5	47.3	9.4	3.5	19.3	2	(31.5)	Distancia $1 = x_i - c_1 $
11	35	18.6	31.5	47.3	16.4	3.5	12.3	2	31.5	Distancia $2 = x_i - c_2 $
12	40	18.6	31.5	47.3	21.4	8.5	7.3	3		· · · - ·
13	41	18.6	31.5	47.3	22.4	9.5	6.3	3		$Distancia 3 = x_i - c_3 $
14	42	18.6	31.5	47.3	23.4	10.5	5.3	3		
15	43	18.6	31.5	47.3	24.4	11.5	4.3	3	(47.3)	
16	44	18.6	31.5	47.3	25.4	12.5	3.3	3	77227	
17	60	18.6	31.5	47.3	41.4	28.5	12.7	3		
18	61	18.6	31.5	47.3	42.4	29.5	13.7	3		

Método para decidir la cantidad de grupos

La idea básica de los algoritmos de partición, como k-means, es definir el número de grupos.

Elbow method

Elbow method es una herramienta gráfica útil para estimar el número óptimo de grupos. El propósito es identificar el valor de k donde la distorsión (efecto del codo) cambia de manera significativa.

Para esto

Para aplicar este método se debe calcular SSE -tot.withiness- (suma de la distancia al cuadrado entre cada elemento del cluster y su centroide) para varias configuraciones de k. Por ejemplo, k = 2, 3, 4, 5, 6, 7, 8 ... n.

SSE

$$SSE = \sum_{k=1}^{k} dist(x_i, uk) = \sum_{k=1}^{k} \sum_{x_i \in C_k} (x_i - u_k)^2$$

ID	Xi	c ₁	c ₂	c ₃	Distancia 1	Distancia 2	Distancia 3	Cluster Cercano	Nuevo Centroide	$ \mathbf{x}_i - \mathbf{u}_k $	$ x_i-u_k ^2$	SSE
1	15	18.6	31.5	47.3	3.6	16.5	32.3	1		3.6	12.96	
2	15	18.6	31.5	47.3	3.6	16.5	32.3	1		3.6	12.96	
3	16	18.6	31.5	47.3	2.6	15.5	31.3	1		2.6	6.76	
4	19	18.6	31.5	47.3	0.4	12.5	28.3	1		0.4	0.16	
5	19	18.6	31.5	47.3	0.4	12.5	28.3	1	18.6	0.4	0.16	54.24
6	20	18.6	31.5	47.3	1.4	11.5	27.3	1		1.4	1.96	
7	20	18.6	31.5	47.3	1.4	11.5	27.3	1		1.4	1.96	
8	21	18.6	31.5	47.3	2.4	10.5	26.3	1		2.4	5.76	
9	22	18.6	31.5	47.3	3.4	9.5	25.3	1		3.4	11.56	
10	28	18.6	31.5	47.3	9.4	3.5	19.3	2	31.5	3.5	12.25	24.50
11	35	18.6	31.5	47.3	16.4	3.5	12.3	2	31.3	3.5	12.25	24.30
12	40	18.6	31.5	47.3	21.4	8.5	7.3	3		7.3	53.29	
13	41	18.6	31.5	47.3	22.4	9.5	6.3	3		6.3	39.69	
14	42	18.6	31.5	47.3	23.4	10.5	5.3	3		5.3	28.09	
15	43	18.6	31.5	47.3	24.4	11.5	4.3	3	47.3	4.3	18.49	499.4
16	44	18.6	31.5	47.3	25.4	12.5	3.3	3		3.3	10.89	
17	60	18.6	31.5	47.3	41.4	28.5	12.7	3		12.7	161.29	
18	61	18.6	31.5	47.3	42.4	29.5	13.7	3		13.7	187.69	

(578.17)

Elbow method

Algoritmo

- 1. Calcular el agrupamiento para **diferentes valores de k**. Por ejemplo, k de 2 a 10 grupos.
- 2. Para cada *k*, calcular la suma total de la distancia al cuadrado dentro de cada grupo (**SSE**, conocido también como **WSS** o *tot.withiness*).
- 3. Trazar la curva de SSE de acuerdo con el número de grupos k.
- 4. La ubicación de una curva (efecto del codo) en el gráfico se considera como un indicador del número adecuado de grupos.

Número de cluster
$$SSE = tot.withiness = \sum_{k=1}^{k} \operatorname{dist}(x_i, uk) = \sum_{k=1}^{k} \sum_{x_i \in C_k} (x_i - u_k)^2$$
 Elemento del cluster Centroide

Elbow method

La idea básica de los métodos de partición, como k-medias, es definir el número de grupos.

Práctica 6 Clustering Particional

Retomando el ejemplo sobre 'Empleados'

DatosEmp <- read.table("/Users/guille/Documents/1 FI-UNAM/1 Cursos/2021-1/1 IA2021-1/2 CasosPracticos/3 Similitudes/Empleados.txt", header=T, sep="\t")

DatosEmp

	ID	Salario	Casado	Coche	Hijos	Vivienda	Sindicato	FaltasAno	Antiguedad	Sexo
1	E1	10000	1	0	0	0	0	7	15	1
2	E2	20000	0	1	1	0	1	3	3	0
3	E3	15000	1	1	2	1	1	5	10	1
4	E4	30000	1	1	1	0	0	15	7	0
5	E5	10000	1	1	0	1	1	1	6	1
6	E6	40000	0	1	0	0	1	3	16	0
7	E7	25000	0	0	0	0	1	0	8	1
8	E8	20000	0	1	0	1	1	2	6	0
9	E9	20000	1	1	3	1	0	7	5	1
10	E10	30000	1	1	2	1	0	1	20	1
11	E11	45000	0	0	0	0	0	2	12	0
12	E12	8000	1	1	2	1	0	3	1	1
13	E13	20000	0	0	0	0	0	27	5	0
14	E14	10000	0	1	0	0	1	0	7	1
15	E15	8000	0	1	0	0	0	3	2	1

1

Método para segmentar elementos (K-means)

```
k2 <- kmeans(DatosEmp[2:10], centers = 2, nstart = 10)
k3 <- kmeans(DatosEmp[2:10], centers = 3, nstart = 10)
k4 <- kmeans(DatosEmp[2:10], centers = 4, nstart = 10)
...</pre>
```

nstart = 10, generará 10 posibles centroides iniciales (configuraciones iniciales). Este debe ser mayor a 1.

1

Método para segmentar elementos (K-means)

k3

```
Cluster means:
    Salario Casado Coche Hijos Vivienda Sindicato FaltasAnno Antiguedad Sexo
1 42500.00 0.0000000 0.5000000 0.0000000 0.5000000 2.500000 14.000000 0.0000000
2 23571.43 0.4285714 0.7142857 1.0000000 0.4285714 0.4285714 7.857143 7.714286 0.4285714
3 10166.67 0.6666667 0.8333333 0.66666667 0.5000000 0.5000000 3.166667 6.833333 1.0000000
```

Clustering vector:

[1] 3 2 3 2 3 1 2 2 2 2 1 3 2 3 3

Within cluster sum of squares by cluster: [1] 12500010 135715078 32833511

K-means clustering with 3 clusters of sizes 2, 7, 6

(between_SS / total_SS = 90.2 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" "size" "iter" "ifault"

1

Método para segmentar elementos (K-means)

str(k3) # str muestra de forma compacta la estructura interna del objeto

```
List of 9
$ cluster : int [1:15] 3 2 3 2 3 1 2 2 2 2 ...
$ centers : num [1:3, 1:9] 4.25e+04 2.36e+04 1.02e+04 0.00 4.29e-01 ...
  ..- attr(*, "dimnames")=List of 2
 .. ..$ : chr [1:3] "1" "2" "3"
  ....$ : chr [1:9] "Salario" "Casado" "Coche" "Hijos" ...
$ totss
              : num 1.85e+09
 $ withinss : num [1:3] 1.25e+07 1.36e+08 3.28e+07
 $ tot.withinss: num 1.81e+08
$ betweenss : num 1.67e+09
$ size
             : int [1:3] 2 7 6
             : int 2
$ iter
$ ifault
             : int 0
 - attr(*, "class")= chr "kmeans"
```

2

Obtención de número de grupos (Elbow method)

2

Obtención de número de grupos (Elbow method)

Línea en el número deseado de grupos abline(v = 4, lty =2)


```
Interpretación
k4 <- kmeans(DatosEmp[2:10], centers = 4, nstart = 10)
k4
K-means clustering with 4 clusters of sizes 3, 2, 5, 5
Cluster means:
   Salario
                        Coche Hijos Vivienda Sindicato FaltasAnno Antiguedad
             Casado
1 28333.33 0.6666667 0.6666667
                                1.0 0.3333333 0.3333333
                                                          5.333333
                                                                     11.66667 0.6666667
                                0.0 0.0000000 0.5000000
                                                          2.500000
                                                                     14.00000 0.0000000
2 42500.00 0.0000000 0.5000000
3 9200.00 0.6000000 0.8000000
                                0.4 0.4000000 0.4000000
                                                          2.800000
                                                                      6.20000 1.0000000
4 19000.00 0.4000000 0.8000000
                                1.2 0.6000000 0.6000000
                                                          8.800000
                                                                      5.80000 0.4000000
Clustering vector:
 [1] 3 4 4 1 3 2 1 4 4 1 2 3 4 3 3
Within cluster sum of squares by cluster:
[1] 16666917 12500010 4800159 20000468
 (between_SS / total_SS = 97.1 \%)
Available components:
```

"size"

3

Interpretación

Available components:

```
[1] "cluster"
                     "centers"
                                                      "withinss"
                                                                       "tot.withinss" "betweenss"
                                                                                                         "size"
                                                                                                                         "iter"
                                      "totss"
k4$cluster
k4$centers
k4$totss
                                               > k4$size
k4$withinss
k4$tot.withinss
                                               > k4$withinss
k4$size
                                               [1] 16666917 12500010
                                                                        4800159 20000468
                                               > k4$tot.withinss
                                               [1] 53967554
                                                                                                  \sum_{x_i \in C_k} (x_i - u_k)^2
                               SSE = tot.withiness = \sum_{k=1}^{k} dist(x_i, uk) = \sum_{k=1}^{k} dist(x_i, uk)
```

"ifault"

3

Interpretación

cluster::clusplot(DatosEmp[2:10], k4\$cluster, color=T, shade=T, main='Empleados')

Empleados

3

Interpretación

```
Coche Hijos Vivienda Sindicato FaltasAnno Antiquedad
  Salario
              Casado
1 28333.33 0.6666667 0.6666667
                                 1.0 0.3333333 0.3333333
                                                           5.333333
                                                                      11.66667 0.6666667
2 42500.00 0.0000000 0.5000000
                                 0.0 0.0000000 0.5000000
                                                           2.500000
                                                                      14.00000 0.0000000
                                 0.4 0.4000000 0.4000000
                                                           2.800000
  9200.00 0.6000000 0.8000000
                                                                       6.20000 1.0000000
                                 1.2 0.6000000 0.6000000
4 19000.00 0.4000000 0.8000000
                                                           8.800000
                                                                       5.80000 0.4000000
```

Cluster 1: 3 empleados

Salario : 28333

Casado : Si = 0.67 / No = 0.33Coche : Si = 0.67 / No = 0.33

Hijos: 1

Vivienda: Prop = 0.33

Alguiler = 0.67

Sindicato : Si = 0.33 / No = 0.67

Faltas/Año : 5.3 (5) Antigüedad : 11.6 (12)

Sexo: M = 0.67 / F = 0.33

	ID	Salario	Casado	Coche	Hijos	Vivienda	Sindicato	FaltasAno	Antiguedad	Sexo
1	E1	10000	1	0	0	0	0	7	15	1
2	E2	20000	0	1	1	0	1	3	3	0
3	E3	15000	1	1	2	1	1	5	10	1
4	E4	30000	1	1	1	0	0	15	7	0
5	E5	10000	1	1	0	1	1	1	6	1
6	E6	40000	0	1	0	0	1	3	16	0
7	E7	25000	0	0	0	0	1	0	8	1
8	E8	20000	0	1	0	1	1	2	6	0
9	E9	20000	1	1	3	1	0	7	5	1
10	E10	30000	1	1	2	1	0	1	20	1
11	E11	45000	0	0	0	0	0	2	12	0
12	E12	8000	1	1	2	1	0	3	1	1
13	E13	20000	0	0	0	0	0	27	5	0
14	E14	10000	0	1	0	0	1	0	7	1
15	E15	8000	0	1	0	0	0	3	2	1

• Cluster 1 [3 elementos –4, 7, 10–]. Empleados con salario promedio de \$28333, casados en su mayoría (67%), con coche en su mayoría (67%) y con un hijo. No tienen vivienda propia en su mayoría (67%), no sindicalizados en su mayoría (67%), con varias faltas al año (5), con una antigüedad promedio de 12 años y la mayoría varones (67%).

K-means

Salario Casado Coche Hijos Vivienda Sindicato FaltasAnno Antiguedad Sexo 1 28333.33 0.6666667 0.6666667 1.0 0.3333333 0.3333333 11.66667 0.6666667 5.333333 0.0 0.0000000 0.5000000 2.500000 14.00000 0.0000000 6.20000 1.0000000 9200.00 0.6000000 0.8000000 0.4 0.4000000 0.4000000 2.800000 4 19000.00 0.4000000 0.8000000 1.2 0.6000000 0.6000000 8.800000 5.80000 0.4000000

Jerárquico Ascendente

	Salario	Casado	Coche	Hijos	Vivienda	Sindicato	FaltasAnno	Antiguedad	Sexo
[1,]	9200.00	0.6000000	0.8000000	0.4	0.4000000	0.4000000	2.800000	6.20000	1.0000000
[2,]	19000.00	0.4000000	0.8000000	1.2	0.6000000	0.6000000	8.800000	5.80000	0.4000000
[3,]	28333.33	0.6666667	0.6666667	1.0	0.3333333	0.3333333	5.333333	11.66667	0.6666667
[4,]	42500.00	0.0000000	0.5000000	0.0	0.0000000	0.5000000	2.500000	14.00000	0.0000000

Cluster Dendrogram

