1 Vorbedingungen

Gehen Sie ins Verzeichnis von dieser Woche mit dem Befehl: cd ~/praktika/bte5024-digital/mini_project

2 Mini Projekt

Wir werden folgendes System realisieren:

Das System hat drei Basis-Blocks. Die Funktionalität und Anforderungen an diese drei Basis-Blocks wird unten beschrieben.

Wichtig: Es ist nicht erlaubt, abgeleitete Clocks zu verwenden, z.B. müssen alle Flipflops mit dem 48MHz Clock getaktet werden.

2.1 Der Empfänger

Der Roboter ist fernbedienbar und hat einen Empfänger, welcher ein digitales Signal generiert, siehe unten. Dieses digitale Signal ist als $Channel\ x$ zum FPGA geführt und ist ein $Pulse\ Width\ Modulated\ (PWM)$ Signal.

Wenn die Fernbedienung eingeschaltet wird (sender on) empfängt der Empfänger ein periodisches Signal mit einer Periode von $\frac{1}{45}$ s $\leq T_{rep} \leq \frac{1}{55}$ s. Wenn die Fernbedienung ausgeschaltet wird (sender off) empfängt der Empfänger ein

zufällig pulsierendes Signal, welches nicht perdiodisch ist. Wenn die Fernbedienung eingeschaltet ist, definiert die Breite des Pulses:

- Keine Bewegung. Wenn die Pulsbreite 1.5 ms beträgt, befindet sich das Steuerrad und der Abzug der Fernbedienung in der Mittelposition.
- Maximum forwärts/rechts. Wenn die Pulsbreite 2.0 ms beträgt, ist das Steuerrad in der maximalen Position im Uhrzeigersinn gedreht und der Abzug ist auch in Maximalstellung gezogen.
- Maximum rückwärts/links. Wenn die Pulsbreite 1.0 ms beträgt, ist das Steuerrad in der maximalen Position im Gegen-Uhrzeigersinn gedreht und der Abzug ist auch in Maximalstellung gezogen.

Funktionalität: Der Empfänger transformiert das empfangene digitale Signal in einen 4-Bit Vektor mit "Sign and Magnitude" Interpretation, wobei das Sign-Bit forwärts/rückwärts definiert, bzw. links/rechts. Die Magnitude repräsentiert die Geschwindigkeit.

Des Weiteren, wenn die Fernbedienung ausgeschaltet ist, sollte der Empfänger den Dezimalwert +0 auf den 4-Bit Vektor legen. Ein Einzel-Bit-Signal definiert, ob die Fernbedienung ein- (1) oder ausgeschaltet (0) ist; dieses Signal kann auf eine LED auf dem Roboter gelegt werden. **Hinweis:** Denken Sie an *Meta-Stabilität*!

2.2 Der Transmitter

Der Transmitter generiert ein PWM Signal, welches gleich ist wie das jenige von der Fernbedienung, wenn diese eingeschaltet ist (siehe oben). Die Periode von diesem Signal ist $T_{rep} = \frac{1}{50}$ s.

Funktionalität: Der Transmitter empfängt einen 4-Bit Vektor mit "Sign and Magnitude" Interpretation, wobei das Vorzeichenbit (sign bit) forwärts/rückwärts repräsentiert, bzw. links/rechts und die Magnitude definiert die Geschwindigkeit. Der Empfänger transformiert diesen S&M Wert in das beschriebene PWM Signal. Hinweis: Denken Sie an Hazards!

2.3 Der Rechner

Der Rechner empfängt diese zwei 4-Bit Vektoren, welche die vorwärts/rückwärts, bzw. links/rechts Bewegung definieren. Der Rechner transformiert diese Information in zwei 4-Bit Vektoren, welche zum linken und rechten Motor geführt werden. Folgende Berechnungen müssen ausgeführt werden:

- Wenn keine links/rechts Bewegung vorhanden ist, müssen beide Motoren mit gleicher Geschwindigkeit vorwärts/rückwärts fahren, was durch den 4-Bit Vektor angegeben wird, welcher vom vorwärts/rückwärts Empfänger kommt.
- Wenn es eine links Bewegung gibt, muss der linke Motor auf den vorgegebene Wert eingestellt werden, langsamer als der rechte Motor.
- Wenn es eine rechts Bewegung gibt, muss der rechte Motor auf den vorgegebene Wert eingestellt werden, langsamer als der linke Motor.

Anforderungen: Nur für diesen Block ist es erlaubt eine Test-Bench zu generieren.

Hinweis: Deknen Sie an overflow and underflow!

3 FPGA Pins

Die unten abgebildete Tabelle beschreibt die Pins, auf welche die Leds/Clock/Engines/Channels verbunden sind. Diese Informationen sind auch in der project.ucf Datei beschrieben.

Component	FPGA Pin	Component	FPGA Pin
Channel 1	N5	Channel 2	M8
Channel 3	M7	Left engine	R14
Right engine	T14	Clock	N9
LED 0	P13	LED 1	P12
LED 2	N11	LED 3	P11
LED 4	P10	LED 5	P9
LED 6	P8	LED 7	P7
LED 8	P6	LED 9	N6
LED 10	P5	LED 11	T2
LED 12	Т3	LED 13	R3
LED 14	T4	LED 15	T5
LED 16	R5	LED 17	Т6
LED 18	T7	LED 19	R7

4 Bewertung:

Jede Gruppe wird am Ende des Semesters während 10 Minuten ihre Resultate demonstrieren. Die Bewertung sieht folgendermassen aus:

- **Empfänger:** Nur funktionierende Simulation in Modelsim: $\frac{1}{2}$ Punkt. Demonstration der korrekten Funktionalität auf dem Roboter: 1 Punkt.
- Transmitter: Nur funktionierende Simulation in Modelsim: $\frac{1}{2}$ Punkt. Demonstration der korrekten Funktionalität auf dem Roboter: 1 Punkt.
- Rechner: Nur funktionierende Simulation in Modelsim: $\frac{1}{2}$ Punkt. Auch ein C-Model vorhanden: $\frac{1}{2}$ Punkt. Auch eine Test-Bench vorhanden: $\frac{1}{2}$ Punkt. Kompletter Rechner mit Demonstration: 2 Punkte. Z.B. dieses Modul gibt maximal 2 Punkte.
- Komplettes System: Komplett funktionsfähiges System auf dem Roboter: 1 Punkt.

Wenn das System nicht mit "Sign and Magnitude" Interpretation implementiert ist, wird bei jedem aufgelisteten Bewertungskriterium $-\frac{1}{4}$ Punkt abgezogen.

Maximalpunktzahl: 5.