Вместо x и y ввести новые переменные u и v и определить пределы интегрирования в следующих двойных интегралах:

3957.
$$\int_a^b dx \int_{\alpha x}^{\beta x} f(x, y) dy$$
 (0 < a < b; 0 < α < β), если $u = x$, $v = y/x$.

если
$$u=x$$
, $v=y/x$.

3958. $\int_{0}^{2} dx \int_{1-x}^{2} f(x, y) dy$, если $u=x+y$, $v=x-y$.

3959. $\int_{\Omega}^{\Omega} f(x, y) dx dy$, где область Ω ограничена кривыми $\sqrt{x} + \sqrt{y} = \sqrt{a}$, $x=0$, $y=0$ $(a>0)$, если $x=u\cos^{4}v$, $y=u\sin^{4}v$.

3960. Показать, что замена переменных

$$x + y = \xi$$
, $y = \xi \eta$

переводит треугольник $0 \leqslant x \leqslant 1$, $0 \leqslant y \leqslant 1-x$ в единичный квадрат $0 \le \xi \le 1$, $0 \le \eta \le 1$.

3961. При какой замене переменных криволинейный четырехугольник, ограниченный кривыми xy = 1, xy = 2, x-y+1=0, x-y-1=0 (x>0, y>0), перейдет в прямоугольник, стороны которого паралпельны осям координат?

Произведя соответствующие замены переменных, свести двойные интегралы к однократным:

3962.
$$\iint_{|x|+|y| \le 1} f(x+y) dx dy$$
.
3963. $\iint_{x^2+|x| \le 1} f(ax+by+c) dx dy (a^2+b^2 \ne 0)$.
3964. $\iint_{\Omega} f(xy) dx dy$, где область Ω ограничена кривыми $xy=1$, $xy=2$, $y=x$, $y=4x$ ($x>0$, $y>0$). Вычислить следующие двойные интегралы:

3965.
$$\iint_{\Omega} (x + y) dx dy$$
, где область Ω ограничена вривой $x^2 + y^2 = x + y$.
3966. $\iint_{|x|+|y| \le 1} (|x|+|y|) dx dy$.

3967.
$$\int_{\Omega}^{|x|+|y| \leqslant 1} \sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}} \, dx \, dy$$
, где область Ω

ограничена эллипсом $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.