FONCTIONS RÉELLES

1. Généralités sur les fonctions

Définition 1.1. Soit E une partie de \mathbb{R} . Une **fonction réelle** f sur E associe à chaque élément $x \in E$ au plus un élément $f(x) \in \mathbb{R}$. Pour $x \in E$, le nombre f(x) est appelé **l'image** de x par f si il existe. En général, on note

$$f: \begin{cases} E \to \mathbb{R} \\ x \mapsto f(x) \end{cases}$$

ou

$$f: x \in E \mapsto x \in \mathbb{R}$$

Le domaine de définition D de f est l'ensemble des éléments $x \in E$ pour lesquels f(x) existent.

Exemples 1.2. • Considérons la fonction

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2. \end{cases}$$

Le domaine de définition de f est $D = \mathbb{R}$.

• Considérons la fonction

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x) = \frac{1}{x}. \end{cases}$$

Le domaine de définition de f est $D = \mathbb{R} - \{0\} = \mathbb{R}^*$.

• Considérons la fonction

$$f: \begin{cases}]0, +\infty[: \to \mathbb{R} \\ x \mapsto f(x) = \frac{1}{x}. \end{cases}$$

Le domaine de définition de f est $D =]0, +\infty[$.

Définition 1.3. Soit f une fonction définie sur E. L'image de E par f, que l'on note f(E) est l'ensemble des valeurs prises par f dans \mathbb{R} . On a

$$f(E) = \{ f(x) | x \in E \}.$$

Définition 1.4. Soit $f: E \to F \subset \mathbb{R}$ une fonction. On dit que f est bijective si pour tout $y \in F$, il existe un unique $x \in E$ tel que y = f(x). Dans ce cas, on note $f^{-1}: F \to E$ la fonction réciproque de f qui à $y \in F$ on a associe $g^{-1}(y) = x$ où x l'unique élément de E tel que y = f(x). Dans ce cas $(f \circ f^{-1})(y) = y$ pour tout $y \in F$ et $(f^{-1} \circ f)(x) = x$ pour tout $x \in E$.

Définition 1.5. Soient $f: E \to \mathbb{R}$ et $g: F \to \mathbb{R}$ deux fonctions telles que $f(E) \subset F$. La composée de g par f, que l'on note par $g \circ f$ est définie par $(g \circ f)(x) = g(f(x))$ pour tout $x \in E$.

Exemples 1.6. • Considérons $f: x \in \mathbb{R} \mapsto x^2 + 1$ et $g: x \in [0, +\infty[\mapsto \sqrt{x}, \text{ on a }$

$$(q \circ f)(x) = q(f(x)) = q(x^2 + 1) = \sqrt{x^2 + 1}.$$

• Considérons $f: x \in \mathbb{R} \mapsto x^2 + 1$ et $g: x \in [0, +\infty[\mapsto \frac{1}{x^2 + 1}]$, on a

$$(g \circ f)(x) = g(f(x)) = g(x^2 + 1) = \frac{1}{(x^2 + 1)^2 + 1} = \frac{1}{x^4 + 2x^2 + 2}.$$

1.1. Fonctions monotones.

Définitions 1.7. Soit $f: E \to \mathbb{R}$ une fonction réelle. On dit que

- f est croissante sur E si pour tous $a, b \in E$, on a $a \le b \Rightarrow f(a) \le f(b)$.
- f est décroissante sur E si pour tous $a, b \in E$, on a $a \le b \Rightarrow f(a) \ge f(b)$.
- \bullet f est monotone sur E si f est croissante ou f est décroissante.
- f est strictement croissante sur E si pour tous $a, b \in E$, on a $a < b \Rightarrow f(a) < f(b)$.
- f est strictement décroissante sur E si pour tous $a, b \in E$, on a $a < b \Rightarrow f(a) > f(b)$.
- f est strictement monotone sur E si f est strictement croissante ou f est strictement décroissante.

Remarque 1.8. Une fonction strictement croissante (resp. strictement décroissante) est toujours croissante (resp. décroissante). En effet, soient $a, b \in E$ tels que $a \leq b$. Si a = b, alors $f(a) \leq f(a) = f(b)$ (resp. $f(b) = f(a) \geq f(a)$). Si a < b, comme f est strictement croissante (resp. strictement décroissante) on a f(a) < f(b) (resp. f(b) > f(a)). Ainsi $f(a) \leq f(b)$ (resp. $f(b) \geq f(a)$).

Exemples 1.9. • La

$$f: \begin{cases} \mathbb{R} : \to \mathbb{R} \\ x \mapsto f(x) = 2x + 1 \end{cases}$$

est strictement croissante. En effet, soient a < b. On a 2a < 2b, donc f(a) = 2a + 1 < 2b + 1 = f(b).

• La fonction

$$f: \begin{cases} [0, \infty[: \to \mathbb{R} \\ x \mapsto f(x) = x^2 \end{cases}$$

est strictement croissante. En effet soient $a, b \in [0, \infty[$ tels que a < b. On a $f(b) - f(a) = b^2 - a^2 = (b - a)(b + a)$. Or b - a > 0 et a + b > 0, donc f(b) - f(a) = (b - a)(b + a) > 0. Ainsi f(a) < f(b).

• La

$$f: \begin{cases}]0, +\infty[: \to \mathbb{R} \\ x \mapsto f(x) = \frac{1}{x}. \end{cases}$$

est strictement décroissante. En effet, soient a, b tels que a < b. On a $\frac{1}{a} > \frac{1}{b}$, donc f(a) > f(b).

• La

$$f: \begin{cases} \mathbb{R} : \to \mathbb{R} \\ x \mapsto f(x) = -3x + 2. \end{cases}$$

est strictement décroissante. En effet, soient a, b tels que a < b. On a -3a > -3b, donc f(a) = -3a + 2 > -3b + 2 = f(b).

1.2. Périodicité, parité et symétrie.

Définitions 1.10. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. On dit que

• f est paire si pour tout $x \in \mathbb{R}$, on a f(-x) = f(x).

Exemple 1.11. La fonction $f: x \in \mathbb{R} \mapsto x^4 \in \mathbb{R}$ est paire. En effet, on a $f(-x) = (-x)^4 = x^4 = f(x)$ pour tout $x \in \mathbb{R}$.

• f est impaire si pour tout $x \in \mathbb{R}$, on a f(-x) = -f(x).

Exemple 1.12. La fonction $f: x \in \mathbb{R} \mapsto x^3$ est impaire. En effet, on a $f(-x) = (-x)^3 = -x^3 = -f(x)$ pour tout $x \in \mathbb{R}$.

• f est périodique de période T > 0 si pour tout $x \in R$, on a f(x + T) = f(x).

Exemple 1.13. La fonction $x \in \mathbb{R} \mapsto \cos(x)$ est périodique de période $T = 2\pi$.

1.3. Concavité et Convexité.

Définitions 1.14. Soit f une fonction définie sur un intervalle I. On dit que :

• f est convexe si

$$\forall (x,y) \in I \times I, \forall t \in [0,1], f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

• f est concave si -f est convexe.

Exemple 1.15. La fonction $x \in \mathbb{R} \mapsto x^2$ est convexe.

2. Limites

Définition 2.1. • Soient $f:]a, +\infty[\to \mathbb{R}$ une fonction et $l \in \mathbb{R}$. On dit que la limite de f en $+\infty$ est l, et on écrit

$$\lim_{x \to +\infty} f(x) = l$$

si pour x assez grand, f(x) - l est assez petit.

• Soient f une fonction définie sur un intervalle $]-\infty, a[$ et $l \in \mathbb{R}$. On dit que la limite de f en $-\infty$ est l, et on écrit

$$\lim_{x \to -\infty} f(x) = l$$

si pour -x assez grand, f(x) - l est assez petit.

• Soient $f: E \to \mathbb{R}$ une fonction, $x_0 \in E$ et $l \in \mathbb{R}$. On dit que la limite de f en x_0 est l, et on écrit

$$\lim_{x \to \infty} f(x) = l$$

si pour $x - x_0$ assez petit, f(x) - l est assez petit.

• Soient $f:]a, +\infty[\to \mathbb{R}$ une fonction. On dit que la limite de f en $+\infty$ est $+\infty$ (resp. $-\infty$), et on écrit

$$\lim_{x \to \infty} f(x) = +\infty \text{ (resp. } -\infty)$$

si pour x assez grand, f(x) (resp. -f(x)) est assez grand.

• Soient $f:]-\infty, a[\to \mathbb{R}$ une fonction. On dit que la limite de f en $-\infty$ est $+\infty$ (resp. $-\infty$), et on écrit

$$\lim_{x \to -\infty} f(x) = +\infty \text{ (resp. } -\infty)$$

si pour -x assez grand, f(x) (resp. -f(x)) est assez grand.

• Soient $f: E \to \mathbb{R}$ une fonction et $x_0 \in E$. On dit que la limite de f en x_0 est $+\infty$ (resp. $-\infty$), et on écrit

$$\lim_{x \to x_0} f(x) = +\infty \text{ (resp. } -\infty)$$

si pour $x - x_0$ assez petit, f(x) (resp. -f(x)) est assez grand.

• Soient f une fonction définie sur un intervalle I =]a, b[. On dit que la limite de f en a^+ est l, que l'on par

$$\lim_{x \to a^+} f(x) = l$$

si pour x-a positif et assez petit, f(x) est proche de l.

• Soient f une fonction définie sur un intervalle I =]a, b[. On dit que la limite de f en b^- est l, que l'on par

$$\lim_{x \to b^{-}} f(x) = l$$

si pour x - b négatif et assez petit, f(x) est proche de l.

• Soient f une fonction définie sur un intervalle I =]a, b[. On dit que la limite de f en a^+ est $+\infty$, que l'on par

$$\lim_{x \to a^+} f(x) = +\infty$$

si pour x - a positif et assez petit, f(x) est assez grand.

• Soient f une fonction définie sur un intervalle I = a, b. On dit que la limite de f en best $+\infty$, que l'on par

$$\lim_{x \to a^+} f(x) = +\infty$$

si pour x - b négatif et assez petit, f(x) est assez grand.

• Soient f une fonction définie sur un intervalle I = |a, b|. On dit que la limite de f en a^+ est $-\infty$, que l'on par

$$\lim_{x \to a^+} f(x) = -\infty$$

si pour x - a positif et assez petit, -f(x) est assez grand.

• Soient f une fonction définie sur un intervalle I =]a, b[. On dit que la limite de f en $b^$ est $-\infty$, que l'on par

$$\lim_{x \to a^+} f(x) = -\infty$$

 $\lim_{x\to a^+} f(x) = -\infty$ si pour x-b négatif et assez petit, -f(x) est assez grand.

3. Continuité

Soit f une fonction réelle définie sur un intervalle I.

• Soit $x_0 \in I$. On dit que f est **continue** en x_0 si pour tout Définition 3.1.

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Théorème 3.2 (Théorème des valeurs intermédiaires). Soit f une fonction continue sur un intervalle I. Alors, pour tous x_0 et y_0 dans I et pour tout y entre $f(x_0)$ et $f(y_0)$, il existe $x \in I \text{ tel que } y = f(x).$

Théorème 3.3 (Théorème de la bijection). Si f est une fonction continue et strictement monotone sur un intervalle I, alors f(I) est un intevalle, $f: I \to f(I)$ est bijective et f^{-1} : $f(I):\to I$ est une bijection continue et strictement monotone dans le même sens que f.

• Les fonctions polynomiales $x \mapsto a_n x^n + \cdots + a_1 x + a_0$ sont continues Propriétés 3.4. $sur \mathbb{R}$.

- Soient f et g deux fonctions continues sur un intervalle I et $\alpha, \beta \in \mathbb{R}$. Alors $\alpha \cdot f + \beta \cdot g$ et $f \cdot q$ sont continues sur I
- Soient f et g deux fonctions continues sur un intervalle I tels que $g(x) \neq 0$ pour tout $x \in I$. Alors la fonction $\frac{f}{g}$ est continue sur I.
- ullet Soient f et g deux fonctions continues respectivement sur l'invervalle I et l'intervalle Jtelles que $f(I) \subset J$. Alors $g \circ f$ est continue sur I.

4. Fonction exponentialle

Définition 4.1. Soit a>0. La fonction exponentielle de base a est la fonction continue $x\in\mathbb{R}\mapsto$ $a^x \in]0, +\infty[$. Dans le cas où a=e, on retrouve la fonction exponentielle usuelle exp.

Exemples 4.2. La fonction exponentielle de base 8 est la fonction $f: x \in \mathbb{R} \mapsto 8^x$.

Propriétés 4.3. Soit a > 0.

- Pour tous $x, y \in \mathbb{R}$, on a $a^{x+y} = a^x a^y$ et $a^{x-y} = \frac{a^x}{a^y}$.
- Pour tous $x, y \in \mathbb{R}$, on $a(a^x)^y = a^{xy}$.

Propriétés 4.4. Soit a > 0.

- La fonction logarithme induit une bijection entre $]0, +\infty[$ et \mathbb{R} .
- \bullet Supposons a > 1. La fonction exponentielle de base a est strictement croissante. On a $\lim_{x \to +\infty} a^x = +\infty \ et \lim_{x \to -\infty} a^x = 0.$
- ullet Supposons a < 1. La fonction exponentielle de base a est strictement décroissante. On $a \lim_{x \to +\infty} a^x = 0$ et $\lim_{x \to -\infty} a^x = +\infty$.

5. Fonction Logarithme

Définition 5.1. Soit a>0. La fonction logarithme de base a est $\log_a:]0,+\infty[\to\mathbb{R}$ est la fonction réciproque de la fonction exponentielle de base a. Dans le cas où a=e, on retrouve le logarithme népérien ln.

Propriétés 5.2. Soit a > 0.

- $On \ a \log_a(a) = 1$
- Pour tous x, y > 0, on $a \log_a(xy) = \log_a(x) + \log_a(y)$.
- Pour tous x, y > 0, on $a \log_a(x/y) = \log_a(x) \log_a(y)$.
- Pour tous x, y > 0, on $a \log_a(x^y) = y \log_a(x)$.

Propriétés 5.3. Soit a > 0.

- On $a \log_a(a^x) = x$ pour tout $x \in \mathbb{R}$ et $a^{\log_a(x)} = x$ pour tout $x \in]0, \infty[$. En particulier, on $a \ln(e^x) = x$ pour tout $x \in \mathbb{R}$ et $e^{\ln(x)} = x$ pour tout $x \in]0, \infty[$.
- La fonction exponentielle induit une bijection entre \mathbb{R} et $]0,+\infty[$.
- Supposons a > 1. La fonction logarithmé de base a est strictement croissante. On a

$$\lim_{x \to +\infty} \log_a(x) = +\infty$$

et

$$\lim_{x \to 0} \log_a(x) = -\infty.$$

• Supposons a < 1. La fonction logarithme de base a est strictement décroissante. On a

$$\lim_{x \to 0} a^x = +\infty$$

et

$$\lim_{x \to +\infty} \log_a(x) = -\infty.$$

6. Dérivabilité

Définition 6.1. Soient f une fonction définie sur un intervalle I et $x_0 \in I$. On dit que f est dérivable en x_0 si la limite

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existe et on la note par $f'(x_0)$. On dit que f est dérivable sur I si elle est dérivable en tout point de I. Dans ce cas, la fonction dérivée de f, que l'on note f', est la fonction $f': x \in I \mapsto f'(x)$.

Exemple 6.2. On considère la fonction $f: x \in \mathbb{R} \mapsto x^2 \in \mathbb{R}$. Soit $x_0 \in \mathbb{R}$. On a

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0) = x_0 + x_0 = 2x_0.$$

Définition 6.3. Soient f une fonction dérivable sur un intervalle I et $x_0 \in I$. La droite tangente à la courbe de f en x_0 est la droite d'équation

$$y = f'(x_0)(x - x_0) + f(x_0).$$

Exemple 6.4. On considère la fonction $f: x \in \mathbb{R} \mapsto x^2$. L'équation de la tangente en -3 est $y = f'(-3)(x - (-3)) + f(-3) = 2(-3)(x + 3) + (-3)^2 = -6x - 18 + 9 = -6x - 9$.

Théorème 6.5. Soit f une fonction dérivable sur un intervalle I.

- Si pour tout $x \in I$ $f'(x) \ge 0$ (resp. $f'(x) \le 0$), alors f est croissante (décroissante) sur I.
- Si pour tout $x \in I$ f'(x) > 0 (resp. f'(x) < 0), alors f est strictement décroissante sur I.
- Si pour tout $x \in I$ f(x) = 0, alors f est constante sur I.
- $Si\ f'$ est croissante sur I, alors f est convexe sur I.
- Si f' est décroissante sur I, alors f est concave sur I.

Supposons de plus que f' est dérivable sur I.

- $Si\ f''(x) > 0$ pour tout $x \in I$, alors f est convexe sur I.
- $Si\ f''(x) < 0$ pour tout $x \in I$, alors f est concave sur I.

Propriétés 6.6. Soient f et g deux fonctions définies sur un intervalle I. Soient $x_0 \in I$ et $a, b \in \mathbb{R}$.

• Si f et g sont dérivables en x_0 , alors $a \cdot f + b \cdot g$ l'est aussi et on a

$$(a \cdot f + b \cdot g)'(x_0) = a \cdot f'(x_0) + b \cdot g'(x_0).$$

• Si f et g sont dérivables en x_0 , alors $f \cdot g$ l'est aussi et on a

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0) + g'(x_0).$$

• Si f et g sont dérivables en x_0 et $g(x_0) \neq 0$, alors $\frac{f}{g}$ l'est aussi et on a

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}.$$

• Si h est une fonction dérivable sur un intervalle J telle que $f(I) \subset J$, alors $h \circ f$ est dérivable sur I et on a

$$(h \circ f)'(x_0) = f'(x_0) \cdot h'(f(x_0)).$$

On a donc $(h \circ f)' = f' \cdot (h' \circ f)$.

• Si f(I) est un intervalle, f est une bijection de I sur f(I) et la fonction réciproque $f^{-1}: f(I) \to I$ est dérivable, alors pour tout $y_0 \in f(I)$, on a

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$

6.1. Dérivées usuelles.

Fonction	Domaine de dérivabilité	Dérivée
$x^n \ (n \in \mathbb{N}^*)$	\mathbb{R}	nx^{n-1}
$\frac{1}{x^n} \ (n \in \mathbb{N}^*)$	\mathbb{R}^*	$-\frac{n}{x^{n+1}}$
$\frac{1}{x}$	ℝ*	$-\frac{1}{x^2}$
\sqrt{x}	\mathbb{R}_+^*	
$x^{\alpha} \ (\alpha < 0)$	\mathbb{R}^* ou \mathbb{R}_+^*	$\begin{bmatrix} \overline{2\sqrt{x}} \\ \alpha x^{\alpha-1} \\ \alpha x^{\alpha-1} \end{bmatrix}$
$x^{\alpha} (\alpha > 0)$	\mathbb{R} ou \mathbb{R}_{+}	
$\ln(x)$	\mathbb{R}_+^*	$\frac{1}{x}$
$\log_a(x) \ (a > 0 \ a \neq 1)$	\mathbb{R}_+^*	$\frac{1}{x \ln(a)}$
e^x	\mathbb{R}	e^{x}
$a^x (a>0)$	\mathbb{R}	$a^x \ln(a)$
$\cos(x)$	\mathbb{R}	$-\sin(x)$
$\sin(x)$	\mathbb{R}	$\cos(x)$
$\tan(x)$	$\mathbb{R} - \{\frac{\pi}{2} + k\pi\}$	$\frac{1}{\cos^2(x)}$

7. Limites(suites)

7.1. Opérations sur les limites.

Propriétés 7.1 (Opérations sur les limites). • $\pm \infty + a = \pm \infty$;

•
$$\frac{a}{\pm \infty}$$

$$\bullet \ \frac{+\infty}{0^+} = +\infty$$

$$\bullet$$
 $\frac{+\infty}{0^-} = -\infty$

$$\bullet \frac{+\infty}{0^+} = +\infty$$

$$\bullet \frac{+\infty}{0^-} = -\infty$$

$$\bullet \frac{-\infty}{0^+} = -\infty$$

$$\bullet \frac{-\infty}{0^-} = +\infty$$

$$\bullet +\infty + a = +\infty$$

$$\bullet$$
 $\frac{-\infty}{0} = +\infty$

$$\bullet$$
 $+\infty + a = +\infty$

• Si
$$a > 0$$
 (resp. $a < 0$), alors $\frac{+\infty}{a} = +\infty$ (resp. $\frac{+\infty}{a} = -\infty$).

• Si
$$a > 0$$
 (resp. $a < 0$), alors $\frac{a}{a} = +\infty$ (resp. $\frac{a}{a} = +\infty$).

7.2. Levée d'indéterminée. Les formes suivantes sont des formes indéterminées :

$$\bullet$$
 $\pm \infty$

$$\begin{array}{c}
\bullet \\
\pm \infty \\
\bullet \\
0
\end{array} - \infty \text{ et } -\infty + \infty$$

$$\bullet \quad \frac{\circ}{0}$$

• $0 \times \pm \infty$ Dans ce cas, il faut **lever l'indéterminée!**

Théorème 7.2 (Croissances comparées). Soient a, b > 0. On a

$$\lim_{x\to +\infty}\frac{e^{ax}}{x^b}=+\infty$$

$$\lim_{x \to -\infty} |x|^b e^{ax} = 0$$

$$\lim_{x \to +\infty} \frac{(\ln(x))^b}{x^a} = 0$$

$$\lim_{x \to 0^+} x^a |\ln(x)|^b = 0$$

Remarque 7.3. Devant une forme indéterminée, la fonction exponentielle domine la fonction polynomiale et la fonction polynomial domine la fonction logarithme.

• Mise en facteur du terme dominant

Exemples 7.4. – Calculer $\lim_{x\to+\infty}(e^x-x)$. Ici $e^x\to+\infty$ et $x\to+\infty$, donc on a la forme indéterminée $+\infty - \infty$. On a

$$\lim_{x \to +\infty} (e^x - x) = \lim_{x \to +\infty} \left(e^x \left(1 - \frac{x}{e^x} \right) \right) = \lim_{x \to +\infty} \left(e^x \left(1 - \frac{1}{\frac{e^x}{x}} \right) \right) = +\infty \left(1 - \frac{1}{+\infty} \right) = +\infty \times 1 = +\infty.$$

$$\lim_{x \to +\infty} (\ln(x) - x) = \lim_{x \to +\infty} \left(x \left(1 - \frac{\ln(x)}{x} \right) \right) = +\infty (1 - 0) = +\infty.$$

$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\ln(x)} \right) = \lim_{x \to 0^+} \frac{1}{x} \left(1 - \frac{x}{\ln(x)} \right) = +\infty (1 - \frac{0}{-\infty}) = +\infty \times 1 = +\infty.$$

• Utilisation de la dérivée

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = \lim_{x \to 1} \frac{\ln(x) - \ln(1)}{x - 1} = (\ln)'(1) = \frac{1}{1} = 1.$$

– On a

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\sin(x) - \sin(0)}{x - 0} = (\sin)'(0) = \cos(0) = 1.$$