1 结论: 1

1 结论:

目前的计算,主要改变了 regulator 的选取和磁矩中 cT 参数使用 c1 还是 c2 表示。对目前的计算方案,在包含了 bubble 和 tadpole 图的时候,最后得到的结果有这样的结论:1、形状因子的拟合结果都在 Λ 取 0.9 到 1.0 的时候能够拟合的比较好,2、奇异因子的拟合,有的计算方案下不论 Λ 取 什么值,最后的拟合结果都不是很好,而有的计算方案下,能够在 Λ 取 0.8 左右得到一个比较接近格点结果的拟合曲线。3、前两条表明形状因子和奇异因子的拟合结果对 Λ 取值有一个出入,形状因子曲线在 0.9 更好,而奇异因子在 0.8 比较好。目前是希望能够在 0.8 到 0.9 之间寻找到一个比较平衡的中间点。

2 具体计算结果:

首先是 regulator 为分子上是 $\Lambda^2 - m^2$, cT 使用 c2 表示的计算:

图 1: $\Lambda = 0.9$ 时,质子形状因子 GE、GM 的曲线

图 2: $\Lambda = 0.9$ 时,中子形状因子 GE、GM 曲线

图 3: $\Lambda = 0.8$ 时,质子形状因子 GE、GM 曲线

图 4: $\Lambda = 0.8$ 时,中子形状因子 GE、GM 曲线

图 5: $\Lambda = 0.9$ 时,奇异因子 GE、GM 曲线

图 6: $\Lambda = 0.8$ 时,奇异因子 GE、GM 曲线

这时奇异因子的 GM 曲线的最好结果也只有取 0.9 的时候这样,也就是上面结论中提到的始终无法取得非常好的曲线。

选取和上面一样的 regulator, cT 使用 c1 表示的计算方案,最终结果变化为:

图 7: $\Lambda = 0.9$ 时,质子形状因子 GE、GM 曲线

图 8: $\Lambda = 0.9$ 时,中子形状因子 GE、GM 曲线

图 9: $\Lambda = 0.8$ 时,奇异因子 GE、GM 曲线

图 10: $\Lambda = 0.9$ 时,奇异因子 GE、GM 曲线

同样也会面临奇异因子的 GM 曲线没办法取得非常好的结果的问题,如果选取 regulator 为分子只有 Λ^4 的形式,cT 参数用 c1 表示的时候,对应结果如下:

图 11: $\Lambda = 0.8$ 时,质子形状因子 GE、GM 曲线

图 12: $\Lambda = 0.8$ 时,中子形状因子 GE、GM 曲线

图 13: $\Lambda = 0.9$ 时,质子形状因子 GE、GM 曲线

图 14: $\Lambda = 0.9$ 时,中子形状因子 GE、GM 曲线

图 15: $\Lambda = 0.8$ 时,奇异因子 GE、GM 曲线

图 16: $\Lambda = 0.9$ 时,奇异因子 GE、GM 曲线

图 17: $\Lambda = 0.7$ 时,奇异因子 GE、GM 曲线

此时奇异因子的曲线出现的问题是 GE 和 GM 虽然都有比较好的拟合

3 目前的计划 8

结果但是并不能在同一个参数位置上取到,同时奇异因子和形状因子也不能同时达到非常好的结果。

3 目前的计划

目前在针对上面第三种方案计算 Λ 在 0.8 至 0.9 之间会不会有一个相对较好的结果。