现代程序设计技术

赵吉昌

jichang@buaa.edu.cn

本周内容

- Python基础
 - 关键字
 - 代码格式
 - 标识符与变量
 - 数据类型

Python关键词

• 关键词

- -import keyword
- -print(keyword.kwlist)
- -with open ("test.txt", "w") as f:
 - 上下文管理器,常在资源管理中用到,能够处理异常
- None和任何其他数据类型比较永远返回False
- nonlocal在函数或其他作用域中使用外层 (非全局)变量

代码格式

- 缩进
 - 缩进空格数可变,但是同一个代码块的语句必须包含相同的缩进空格数
- 多语句
 - 可以用;在同一行显示多条语句
 - 语句很长时可使用\来实现多行语句
 - 在 [], {},或()中的多行语句不需要使用\
- 注释
 - 单行注释用#
 - 多行注释用\'/或"""

Python标识符

- 标识符
 - 标识符由字母、数字、下划线(_)组成
 - 所有标识符可以包括英文、数字以及下划线, 但不能以数字开头
 - · 非ASCII码亦可
 - 标识符区分大小写
 - 以下划线开头的标识符有特殊意义
 - 以单下划线开头代表 不能直接访问 的类属性
 - 以双下划线开头代表类的私有成员
 - · 以双下划线开头和结尾代表 Python 里特殊方法专用的标识

Python变量

- · 变量
 - 变量不需要声明
 - 每个变量在使用前都必须赋值
 - 赋值以后该变量才会被创建
 - 变量没有类型
 - Python是动态类型语言
 -a, b, c = 1, 2, "runoob"
 - del 语句删除对象引用
 - del var_a, var_b
 - 删除后不能再引用,除非再次赋值

Python变量

变量

- 获取变量所指对象的内存地址
- -id(var)
- print (hex (id (var)))
- <mark>а=</mark>2
- del a
- -print(id(2))
- -c=2
- -print(id(c))

- 标准数据类型
 - 变量所指的内存中对象的类型
 - Number(int, bool, float, complex):
 数字
 - String(str):字符串
 - List(list):列表
 - Tuple(tuple):元组
 - **Set(**set**)**:集合
 - Dictionary(dict):字典

- 类型的划分
 - 不可变数据: Number、String、Tuple
 - 可变数据: List、Dictionary、Set
- 类型的查询
 - type() 函数可以用来查询变量所指的对象类型
 - type()不会认为<mark>子类是一种父类类型</mark>
- 类型的判断
 - isinstance(a, int)可以用来判断是否是某类型
 - isinstance()会认为子类是一种父类类型

- 数字(Number)类型
 - 整数、布尔型、浮点数和复数。
 - int (整数), 长整型
 - -bool (布尔), 如 True和False。
 - type (True) 和isinstance (True, int) 的返回结果?
 - float (浮点数),如3.14
 - -complex (复数),如1+3j
 - 数据类型不允许改变,这就意味着如果改变数字数据类型的值,将重新分配内存空间
 - a=20
 - b=20
 - id(a) ==id(b) 是否成立?

• 内存分配

- 为提高内存利用效率,对于简单对象如int对象或字符串对象等,会采取重用对象内存的办法
- -x=2
- -print(id(2))
- print(id(x))
- -x=3
- -print(id(3))
- print(id(x))

- 数字类型运算
 - 常规运算比较简单
 - 需要注意的一些地方
 - True 和 False 关键字的值是 1 和 0 , 它们可以和数字相加
 - if −1 if 0 if 2 **如何判断**
 - /:除法,得到浮点数
 - //:除法,得到整数(不一定,分子分母为浮点时得到浮点)
 - **:幂
 - complex:a + bj,或者complex(a,b)表示,复数的实部a和虚部b都是浮点型
 - 比较操作可以传递 (a < b == c)
 - 洪炜可以哈哈笑了

- · 字符串(String)
 - 单引号和双引号使用完全相同
 - 使用三引号("'或""")可以指定一个多行字符串。
 - 转义符 '\'
 - 反斜杠可以用来转义,使用r可以让反斜杠不发生转义
 - 按字面意义级联字符串,如"this " "is " "string"会被自动转换为this is string
 - 字符串可以用 + 运算符连接在一起,用 * 运算符重复。

- · 字符串(String)
 - 字符串有两种索引方式,从左往右以0开始, 从右往左以-1开始。
 - 字符串不能改变
 - s[0] = 'a'
 - s+= 'b'
 - 这时还是不是同样的内存地址?
 - 没有单独的字符类型,一个字符就是长度为1的字符串

- · 字符串(String)
 - 字符串常用的函数
 - find()
 - strip()
 - split()
 - zfill(width)

- 列表(List)
 - 使用最频繁的数据类型
 - list1=['a','b','c']
 - list2=['d','e','f']
 - print(list1*2)
 - print(list1+list2)

- 有步长的元素截取

- list1[1:4:2]
- nl=[0,1,2,3,4,5,6,7,8,9,10]
- print(nl[0::2])将输出?
- print(nl[::2]将输出?

• 列表(List)

- 逆序

- ll=['A','B','C','D','E','F','G']
- print(ll[-1::-1])
- print(ll.reverse())

- 元素的删除

- del 11[0]
- ll.remove('A')
- a.clear() 相当于 del a[:]
- del a

- 元素的增加

- a.append(x) 相当于 a[len(a):]=[x]
- a. extend(1) 相当于 a[len(a):]=1

- 列表(List)
 - -排序
 - a.sort()
 - 复制
 - a.copy() 相当 a[:]
 - · slice copy,在可能对原列表有修改的操作中较常见
 - 推导式
 - a=[x**2 for x in range(6)]
 - a=list(map(lambda x:x**2,range(6)))
 - pis=[str(round(pi, i)) for i in range(1, 6)]
 - a=[(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]

- 列表(List)
 - -一些复杂但可能有用的操作
 - ll=[[1,3,4],[5,6,7,8],[9,10,11]]
 - ll_f=[e for ele in ll for e in ele] #flatten list
 - 矩阵交换行列
 - matrix=[[1,2,3],[2,3,4],[3,4,5]]
 - matrix2=[[row[i] for row in matrix] for i in range(3)]
 - 怎么按列遍历矩阵?
 - 比较大小
 - 序列对象可以与其它序列对象比较

• 内存分配

- -L=[1,2,3]
- -L2=[1,2,3]
- -id(L) == id(L2)??
- L1=L[:]
- -id(L1) == id(L)??

- 元组 (tuple)
 - 与列表类似,不同之处在于元素不可修改
 - 可以把字符串看作一种特殊的元组
 - 虽然tuple的元素不可改变,但它可以包含可变的对象
 - 给个栗子?
 - 构造包含 0 个或 1 个元素的元组
 - tup1 = () # 空元组
 - tup2 = (20,) # 一个元素,需要在元素后添加逗号, 否则含义不明确
 - 元组中的元素值不允许删除,但del能删除整个 元组

- · 集合(Set)
 - 一般用于进行成员关系测试和删除重复元素
 - 可以使用大括号 { } 或者 set() 函数创建集合
 - $s1=\{e1, e2, e3\}$
 - s2=set(value)
 - **创建空集合必须用** set() **而非** { }
 - { } 用来创建一个空字典
 - 集合的运算
 - - | & ^ (|-&)
 - update()可实现批量添加元素
 - 集合的实现
 - 散列实现

- 字典(Dictionary)
 - 一种映射类型,其元素是键值对
 - <mark>无序的键(key):值(value) 集合</mark>
 - 键(key)必须使用不可变类型
 - 同一个字典中键(key)必须是唯一的
 - 函数 dict() 可以直接从键值对序列中构建字
 - 构造函数
 - dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
 - dict(sape=4139, guido=4127, jack=4098)
 - dict(list(enumerate(['one','two','three'],start=1)))
 - 散列实现

- 字典(Dictionary)
 - 如何有充地输出?
 - -for key in sorted(dic.keys()):
 - print(key, dic[key])
 - 如何构建有序字典
 - 即对字典排序
 - import collections
 - dic = collections.OrderedDict()
 - dic=collections.OrderedDict (sorted(un sorted_d.items(), key=lambda dc:dc[1], reverse = True))

- 判断相等
 - is运算符
 - a is b 相当于 id(a) == id(b)
 - is 用于判断两个变量引用对象是否为同一个
 - -== 用于判断引用变量的值是否相等

• 强制类型转换

- int(x [, base]) 将x转换为一个整数
- float(x) 将x转换到一个浮点数
- complex(real [,imag]) 创建一个复数
- str(x) 将对象 x 转换为字符串
- repr(x) 返回对象 x 的字符串表达
- eval(str) 用来计算在字符串中的有效Python表达式,并返回一个对象
- tuple(s) **将序列** s **转换为一个元组**
- list(s) **将序列** s **转换为一个列表**

• 强制类型转换

- set(s) 转换为可变集合
- dict(d) **创建一个字典**, d **必须是一个** (key, value) 元组序列。
- frozenset(s) 转换为不可变集合
- chr(x) 将一个整数转换为一个字符
- ord(x) 将一个字符转换为它的整数值
- hex(x) 将一个整数转换为一个十六进制字符串

• 随机数函数

- choice (seq) 从序列中随机挑选一个元素
- randrange ([start,] stop [,step])
 从指定范围内,按指定基数递增的集合中获取
 一个随机数,基数默认值为 1
- random() **随机生成下一个实数,在**[0,1)范 **围内**
- seed([x]) 改变随机数生成器的种子seed
- shuffle(list) 将序列的所有元素随机排序
- uniform(x, y) 随机生成下一个实数,在 [x,y]范围内

Demo

- 针对一个文本文档,读入并分词,过滤停用词, 统计所有词的频率,排序输出前topn个词。
- 对所有出现的词依一定规则进行过滤,得到特征词,将文档用特征词表示为向量。
- 可视化为关键词云。
- 待分析的文本文件: doc1.txt
- 停用词表: stopwords_list.txt
- -代码:w2demo1.py

本周作业

根据提供的评论数据(online_reviews_texts.txt,见资源/data,一行一条评论,因此一行可以视为一个文档,行号可以作为文档编号),读入所有文档并分词,统计词频,找到高频词,确实特征集,为每一条评论生成向量表示,计算一下不同评论之间的距离(自定义,如欧氏或余弦),能不能找到所有评论的"重心"或者所有评论中的代表性评论并输出原文?除了词云外,针对多文档数据还有别的可视化方式没有?