A study of the skewed generalized t-distribution

14:14 18 May 2024

Contents

Estimating the parameters of a sum skewed t distributed r.v's	1
Estimating the m parameter of the skewed t distribution	2
Verify $m(n) = n \cdot m(0) \cdot \dots \cdot $	3
Estimating the s parameter of the skewed t distribution	5
Estimating the ν parameter of the skewed t distribution	10
Estimating the ξ parameter of the skewed t distribution	11
Analytical m and s from α	11
Analytical moments	11
Analytical mean	17
Analytical sd	18
Convergence	18
Compare estimation packages	21

Estimating the parameters of a sum skewed t distributed r.v's

```
num_simulations <- 1000
num_paths <- 10000
num_periods <- 20
sim_params <- c(0.08, 0.12, 3.18, 0.02)</pre>
```

Estimated parameters for sum, S_{20} :

	m	\mathbf{s}	nu	xi
m s		$0.522 \\ 0.006$		

```
num_simulations <- 100
num_paths <- 10000
num_periods <- 20
sim_params <- c(0.08, 0.12, 3.18, 0.02)</pre>
```

Estimating the m parameter of the skewed t distribution

Means of simulations of m-parameter for skewed t $95\% \ \text{c.i.}$

This looks like:

$$m(n) = n \cdot m(0)$$

	1	2	3	4	5	6	7	8	9	10
formula	0.080	0.160	0.240	0.320	0.400	0.480	0.560	0.640	0.720	0.800
m_n	0.081	0.163	0.243	0.324	0.404	0.484	0.564	0.644	0.725	0.805
<u></u>	0.001	0.100	0.210	0.021	0.101	0.101	0.501	0.011	0.120	0.00

	11	12	13	14	15	16	17	18	19	20
formula	0.880				1.200	1.280	1.360	1.440	1.520	1.600
m_n	0.885	0.965	1.045	1.125	1.205	1.285	1.365	1.446	1.526	1.606

Verify $m(n) = n \cdot m(0)$

Test if the sample means of a sum of F-S Skewed t r.v.'s are equal to n times the mean of a single r.v. from that distribution.

Even with only 50 samples to estimate the sample mean, the fit is spot on.

```
num_sim <- 50
n <- 100
mu <- 1.7
sigma <- 2
nu <- 3
xi <- 0.25
```


Estimating the s parameter of the skewed t distribution Means of simulations of s-parameter for skewed t 95% c.i.

This looks like:

$$s(n) = \sqrt{ns(1)^2}$$

	1	2	3	4	5	6	7	8	9	10
formula	0.120	0.170	0.208	0.240	0.268	0.294	0.317	0.339	0.360	0.379
s_n	0.115	0.158	0.194	0.226	0.253	0.279	0.302	0.324	0.345	0.364
<u></u>	0.110	0.100	0.101	0.220	0.200	0.210	0.002	0.021	0.010	

	11	12	13	14	15	16	17	18	19	20
formula	0.398	0.416	0.433	0.449	0.465	0.480	0.495	0.509	0.523	0.537
s_n	0.382	0.400	0.417	0.433	0.449	0.464	0.479	0.493	0.507	0.520

Let's use that (according to Taleb, ch. 8)

$$\mathbb{M}(n) = n^{1/\tilde{\alpha}} \mathbb{M}(1) = n^{1/\tilde{\alpha}} \sqrt{\frac{2}{\pi}} \sigma$$

where

$$\tilde{\alpha} = \alpha I\{\alpha < 0\} + 2I\{\alpha < \ge 0\}$$

for the Power Law class and otherwise

$$\tilde{\alpha}=2$$

We'll implement this as formula 1.

Let formula 2 be:

$$\mathbb{M}(n) = \frac{\sum_{k=1}^{m} |S_{n,k} - n\mu_{X_i}|}{n}$$

where μ_{X_i} is the location parameter we use to generate $\{X_i\}$, and $S_{n,k}$, is the sum of $X_{k,1}, X_{k,2}, \ldots, X_{k,n}$ for the k'th simulation.

```
num_simulations <- 1000
num_paths <- 10000
num_periods <- 20
sim_params <- c(0.08, 0.12, 3.18, 0.02)</pre>
```

	1	2	3	4	5	6	7	8	9	10
f1	0.0957	0.1191	0.1353	0.1481	0.1588	0.1682	0.1766	0.1841	0.1911	0.1975
f2	0.0743	0.1119	0.1413	0.1662	0.1883	0.2084	0.2268	0.2441	0.2602	0.2755
s_n	0.0743	0.1119	0.1413	0.1662	0.1883	0.2083	0.2268	0.2440	0.2602	0.2755

	11	12	13	14	15	16	17	18	19	20
f1	0.2035	0.2092	0.2145	0.2196	0.2244	0.229	0.2334	0.2376	0.2417	0.2456
f2	0.2902	0.3041	0.3176	0.3305	0.3429	0.355	0.3667	0.3781	0.3892	0.3999
s_n	0.2901	0.3041	0.3175	0.3304	0.3429	0.355	0.3667	0.3780	0.3891	0.3999

Formula 2 matches the realized MAD of $\{S_{n,k}\}_k^m$ very well. Formula 1 matches the realized MAD of $\{S_{n,k}\}_k^m$ very badly.

We notice that:

$$\sqrt{\frac{2}{\pi}}\sigma_{X_i} = 0.09575$$

$$\sqrt{\frac{2}{\pi}}\hat{\sigma}_{X_i} = \text{approx.}0.09$$

[1] 0.09695222

while

$$\mathbb{M}(1) = \frac{\sum_{k=1}^{m} |X_{k,i} - n\overline{X_i}|}{m} = \text{approx.} 0.07$$

f_mad(rsstd(1e5, mean = sim_params[1], sd = sim_params[2], nu = sim_params[3], xi = sim_params[4]))

[1] 0.07403937

But are we supposed to see that

$$\mathbb{M}(1) = \sqrt{\frac{2}{\pi}}\sigma$$

??

Actually no:

The relation $\mathbb{M}^{\nu}(1) = \sqrt{\frac{2}{\pi}}\sigma$ only holds for the standard normal distribution, and only asymptotically. The ratio $\frac{\text{MAD}(X)}{\text{sd}(X)}$ varies between 0 and 1.

 $https://en.wikipedia.org/wiki/Average_absolute_deviation\#Mean_absolute_deviation_around_the_mean$

For a Student t with 3 df, the ratio is $\frac{\pi}{2}$. (See Taleb ch. 4 for further discussion.)

 $sd(rsstd(1e5, mean = sim_params[1], sd = sim_params[2], nu = sim_params[3], xi = sim_params[4])) * 2/pix = sim_params[4])) * 2/pix = sim_params[4])$

[1] 0.07714997

That's better!

So let's use this ratio instead:

	1	2	3	4	5	6	7	8	9	10
f1	0.0764	0.1080	0.1323	0.1528	0.1708	0.1871	0.2021	0.2161	0.2292	0.2416
f2	0.0743	0.1119	0.1413	0.1662	0.1883	0.2084	0.2268	0.2441	0.2602	0.2755
s_n	0.0743	0.1119	0.1413	0.1662	0.1883	0.2083	0.2268	0.2440	0.2602	0.2755

	11	12	13	14	15	16	17	18	19	20
f1	0.2534	0.2646	0.2754	0.2858	0.2959	0.3056	0.3150	0.3241	0.3330	0.3416
f2	0.2902	0.3041	0.3176	0.3305	0.3429	0.3550	0.3667	0.3781	0.3892	0.3999
s_n	0.2901	0.3041	0.3175	0.3304	0.3429	0.3550	0.3667	0.3780	0.3891	0.3999

Now formula 1 matches the realized MAD of $\{S_{n,k}\}_k^m$ better, but still not very well. Formula 2 is the way to go.

See "taleb_kappa.pdf" for further discussion.

Estimating the ν parameter of the skewed t distribution Means of simulations of nu–parameter for skewed t 95% c.i.

We don't have a good guess here.

Estimating the ξ parameter of the skewed t distribution

Means of simulations of xi-parameter for skewed t 95% c.i.

Again, no good guess.

Analytical m and s from α

According to Taleb, the better way to estimate dispersion is to estimate the tail parameter using MLE and then computing the analytical mean and standard deviation as a function of ν .

Analytical moments

According to help(std), you obtain sd(rt()) by sd() / sqrt(nu / (nu - 2)).

So this should give sd of 1:


```
df = 30
x_rt <- ((rt(n = 1e6, df = df) * sqrt((df - 2) / df)) * 0.9 + 0.4)
x_std <- rsstd(n = 1e6, mean = 0.4, sd = 0.9, nu = df)
x_sstd <- rsstd(n = 1e6, mean = 0.4, sd = 0.9, nu = df, xi = 0.2)

mean(x_rt)

## [1] 0.4016395

mean(x_std)

## [1] 0.401295

mean(x_sstd)

## [1] 0.399975

sd(x_rt)

## [1] 0.8986633

sd(x_std)

## [1] 0.9015723

sd(x_sstd)</pre>
```

The mean seems fine for all df > 2:

[1] 0.8984435

Simulation mean = 0.4, sd = 0.9, n = 1e6

For less than approx. 3 df (nu) it doesn't hold:

Simulation sd = 0.9, n = 1e6

Simulation sd = 0.9, n = 1e6

MAD/sd ratio (simulation sd = 0.9, n = 1e6)

Analytical mean

"A review of Student's t distribution and its generalizations.pdf", p. 10

$$f(x) = \frac{2\xi}{\xi^2 + 1} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu}\Gamma\left(\frac{\nu}{2}\right)} \left[1 + \frac{x^2}{\nu} \left(\frac{1}{\xi^2} I\{x \ge 0\} + \xi^2 I\{x < 0\} \right) \right]^{-\frac{\nu+1}{2}}$$
$$\mathbb{E}[X^r] = M_r \frac{\xi^{r+1} + \frac{(-1)^r}{\xi^{r+1}}}{\xi + \frac{1}{\xi}}$$

where

$$M_r = \int_0^\infty 2x^r f(x) dx$$

Input mean param: 0.08

Analytical mean param:

\$value

[1] -0.0008603894

##

\$integration.abs.error

[1] 2.295918e-05

fGarch vignette:

Input mean param: 0.08

```
## Analytical mean param:
## [1] 4.932924e-05
```

Analytical sd

"A review of Student's t distribution and its generalizations"

(See above)

- ## Input sd param: 0.12
- ## Analytical sd param:
- ## \$value
- ## [1] 0.002153768

##

\$integration.abs.error

[1] 9.062533e-07

fGarch vignette:

"Parameter Estimation of ARMA Models with GARCH/APARCH Errors An R and SPlus Software Implementation", p. 12

$$f(x \mid \xi) = \frac{2}{\xi + \frac{1}{\xi}} \left[f(\xi x) I\{x \ge 0\} + f\left(\frac{x}{\xi}\right) I\{x < 0\} \right]$$
$$\mu_{\xi} = M_1 \left(\xi - \frac{1}{\xi}\right)$$
$$\sigma_{\xi}^2 = (M_2 - M_1^2) \left(\xi^2 + \frac{1}{\xi^2}\right) + 2M_1^2 - M_2$$

where M_r is defined as above.

- ## Input sd param: 0.12
- ## Analytical sd param:
- ## [1] 7.936333e-06

Convergence

```
num_simulations <- 100
n_exponent <- 15
sim_params <- c(0.08, 0.12, 3.18, 0.02)
sim_data <- replicate(num_simulations, rsstd(2^n_exponent, sim_params[1], sim_params[2], sim_params[3],</pre>
```

Simulate parameter estimation

Means of simulations of mean for skewed t $95\%\ \text{c.i.}$

Means of simulations of sd for skewed t $95\%\ \mathrm{c.i.}$

Means of simulations of f_mad for skewed t 95% c.i.

Compare estimation packages

```
num_simulations <- 100
n_exponent <- 13
sim_params <- c(0.058, 0.123, 2.265, 0.477) ## pmr
sim_data <- as.data.frame(replicate(num_simulations, rsstd(2^n_exponent, sim_params[1], sim_params[2],
## Warning: Removed 108 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 108 rows containing missing values or values outside the scale range
## (`geom_point()`).</pre>
```

Means of simulations of m for skewed t sim. params: m=0.058 s=0.123 nu=2.265 xi=0.477

Warning: Removed 8 rows containing missing values or values outside the scale range
(`geom_line()`).

Means of simulations of m for skewed t sim. params: m=0.058 s=0.123 nu=2.265 xi=0.477

^{##} Warning: Removed 108 rows containing non-finite outside the scale range
(`stat_boxplot()`).

^{##} Warning: Removed 108 rows containing missing values or values outside the scale range
(`geom_point()`).

Means of simulations of s for skewed t sim. params: m=0.058 s=0.123 nu=2.265 xi=0.477

Warning: Removed 8 rows containing missing values or values outside the scale range
(`geom_line()`).

Means of simulations of s for skewed t sim. params: m=0.058 s=0.123 nu=2.265 xi=0.477

^{##} Warning: Removed 108 rows containing non-finite outside the scale range
(`stat_boxplot()`).

^{##} Warning: Removed 108 rows containing missing values or values outside the scale range
(`geom_point()`).

Means of simulations of nu for skewed t sim. params: m=0.058 s=0.123 nu=2.265 xi=0.477

Warning: Removed 8 rows containing missing values or values outside the scale range
(`geom_line()`).

Means of simulations of nu for skewed t sim. params: m=0.058 s=0.123 nu=2.265 xi=0.477

(No boxplot for xi, because fitdistr fits to a t-distribution, i.e. no xi parameter.)

- ## Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning
 ## -Traf
- ## Warning: Removed 11 rows containing missing values or values outside the scale range
 ## (`geom_line()`).
- ## Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning
 ## Tof
- ## Warning: Removed 7 rows containing missing values or values outside the scale range
 ## (`geom_line()`).

Means of simulations of xi for skewed t sim. params: m=0.058 s=0.123 nu=2.265 xi=0.477


```
## Data object dimensions:
##########################
## sim_data: 2^n_exponent x num_simulations
## hat_vals: num_simulations x n_exponent
## hat_stats: n_exponent x 5 (n, mean, sd, ci_1, ci_u)
## package_df:
## packages_comparison_list:
    n_exponent lists containing 1 data frame for each package:
      each data frame: num_simulations x 4 ("m", "s", "nu", "xi")
##
##
## hat vals list:
##
    list of 4 lists, one list for each of ("m", "s", "nu", "xi")
##
      list of 3 data frames, one for each package
##
        hat_vals data frames: num_simulations x n_exponent
##
## packages_comparison_stats_list:
    list of 4 lists, one list for each of ("m", "s", "nu", "xi")
      list of 3 data frames - with hat_stats(hat_vals)
##
##
        each data frame (hat_stats): n_exponent x 5 (n as factor, m, sd, ci_l, ci_u)
##
## From each hat_stats df, make hat_stats_plot
##
## packages_comparison_stats_list_for_plot:
   list of 4 data frames, one for each of ("m", "s", "nu", "xi"):
```

packages_comparison_stats_df: 3 * n_exponent x 6 (n as factor, m, sd, ci_1, ci_u, package)