Lecture ₩ 16

Spatial Data and Cartography (Part 2)

3/22/2018

Plotting

Example Data - NC SIDS

```
nc = st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE) %>%
 select(-(AREA:CNTY ID), -(FIPS:CRESS ID))
tbl df(nc)
## # A tibble: 100 x 8
##
     NAME BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
                                                               geometry
   <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                  <sf geometry [degree]>
##
                                        <dbl>
                                        19. MULTIPOLYGON (((-81.4727~
## 1 Ashe 1091.
                   1.
                       10. 1364.
                                     Θ.
                                        12. MULTIPOLYGON (((-81.2398~
##
   2 Alle~ 487.
                   Θ.
                      10. 542.
                                     3.
   3 Surry 3188.
                      208. 3616.
                                           260. MULTIPOLYGON (((-80.4563~
##
                   5.
                                     6.
##
   4 Curr~ 508.
                   1.
                      123. 830.
                                     2.
                                        145. MULTIPOLYGON (((-76.0089~
##
   5 Nort~ 1421.
                   9.
                      1066. 1606.
                                     3.
                                          1197. MULTIPOLYGON (((-77.2176~
##
   6 Hert~ 1452. 7.
                      954. 1838.
                                     5.
                                          1237. MULTIPOLYGON (((-76.7450~
                                           139. MULTIPOLYGON (((-76.0089~
## 7 Camd~ 286.
                   Θ.
                      115. 350.
                                     2.
   8 Gates 420.
                      254. 594.
                                     2.
                                           371. MULTIPOLYGON (((-76.5625~
##
                   0.
                     748. 1190.
                                        844. MULTIPOLYGON (((-78.3087~
##
  9 Warr~ 968.
                   4.
                                     2.
## 10 Stok~ 1612.
                      160. 2038.
                                     5.
                                           176. MULTIPOLYGON (((-80.0256~
                   1.
## # ... with 90 more rows
```

Base Plots

plot(nc)

Geometry Plot

plot(st_geometry(nc), axes=TRUE)

plot(nc[,"SID79"], graticule=st_crs(nc), axes=TRUE)

Graticules (EPSG:3631)

plot(st_transform(nc[,"SID79"], 3631), graticule=st_crs(nc), axes=TRUE)

ggplot2 (dev)

```
{\tt devtools::install\_github("tidyverse/ggplot2")}
```

```
ggplot(nc) +
  geom_sf(aes(fill=SID79))
```


ggplot2 + projections

```
ggplot(st_transform(nc, 3631)) +
  geom_sf(aes(fill=SID79 / BIR79))
```


Example Data - Meuse

```
data(meuse. meuse.riv. package="sp")
meuse = st as sf(meuse, coords=c("x", "v"), crs=28992)
meuse riv = st_polygon(list(meuse.riv)) %>% st_sfc() %>% st_set_crs(28992)
tbl df(meuse)
## # A tibble: 155 x 13
##
     cadmium copper lead zinc elev dist
                                          om ffreg soil lime
      <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <fct><<fct><</pre>
## *
## 1
      11.7
              85. 299. 1022. 7.91 0.00136 13.6 1
                                                       1
## 2
              81. 277. 1141. 6.98 0.0122 14.0 1
      8.60
## 3
      6.50 68. 199. 640. 7.80 0.103 13.0 1
                                                  1
                                                       1
## 4 2.60 81. 116. 257. 7.66 0.190 8.00 1
## 5 2.80 48. 117. 269. 7.48 0.277 8.70 1
## 6 3.00 61. 137. 281. 7.79 0.364 7.80 1
## 7
      3.20 31. 132. 346. 8.22 0.190 9.20 1
## 8 2.80 29. 150. 406. 8.49 0.0922 9.50 1
## 9 2.40 37, 133, 347, 8.67 0.185 10.6 1
                                                  1
                                                       0
## 10
      1.60
              24.
                   80. 183. 9.05 0.310 6.30 1
## # ... with 145 more rows, and 3 more variables: landuse <fct>,
## #
      dist.m <dbl>, geometry <sf_geometry [m]>
```

Meuse

plot(meuse, pch=16)

Layering plots

```
plot(meuse[,"lead"], pch=16, axes=TRUE)
plot(meuse_riv, col=adjustcolor("lightblue", alpha.f=0.5), add=TRUE, border = NA)
```


12

Layering plots (oops)


```
ggplot() +
  geom_sf(data=st_sf(meuse_riv), fill="lightblue", color=NA) +
  geom_sf(data=meuse, aes(color=lead), size=1)
```


ggplot2 - axis limits

```
ggplot() +
  geom_sf(data=st_sf(meuse_riv), fill="lightblue", color=NA) +
  geom_sf(data=meuse, aes(color=lead), size=1) +
  ylim(50.95, 50.99)
```


ggplot2 - axis limits

```
ggplot() +
  geom_sf(data=st_sf(meuse_riv), fill="lightblue", color=NA) +
  geom_sf(data=meuse, aes(color=lead), size=1) +
  ylim(329714, 333611)
```


ggplot2 - bounding box

```
ggplot() +
  geom_sf(data=st_sf(meuse_riv), fill="lightblue", color=NA) +
  geom_sf(data=meuse, aes(color=lead), size=1) +
  ylim(st_bbox(meuse)["ymin"], st_bbox(meuse)["ymax"])
```


Geometry Manipulation

Casting

```
nc pts = st cast(nc, "MULTIPOINT")
tbl df(nc pts)
## # A tibble: 100 x 8
##
     NAME BTR74 STD74 NWBTR74 BTR79 STD79 NWBTR79
                                                                geometry
##
   * <fct> <dbl> <dbl>
                        <dbl> <dbl> <dbl>
                                           <dbl>
                                                   <sf geometry [degree]>
   1 Ashe 1091.
                         10. 1364.
                                            19. MULTIPOINT (-81.47276 36~
##
                   1.
                                      0.
   2 Alle~ 487.
##
                   Θ.
                         10. 542.
                                      3.
                                            12. MULTIPOINT (-81.23989 36~
##
   3 Surry 3188.
                   5.
                      208. 3616.
                                      6.
                                            260. MULTIPOINT (-80.45634 36~
   4 Curr~ 508.
                   1.
                       123. 830.
                                      2.
                                         145. MULTIPOINT (-76.00897 36~
##
##
   5 Nort~ 1421.
                   9.
                        1066. 1606.
                                      3.
                                           1197. MULTIPOINT (-77.21767 36~
##
   6 Hert~ 1452.
                   7. 954. 1838.
                                      5.
                                           1237. MULTIPOINT (-76.74506 36~
##
   7 Camd~ 286.
                   0.
                      115. 350.
                                      2.
                                         139. MULTIPOINT (-76.00897 36~
##
   8 Gates 420.
                   Θ.
                         254. 594.
                                      2.
                                            371. MULTIPOINT (-76.56251 36~
   9 Warr~ 968.
                      748. 1190.
                                      2.
                                            844. MULTIPOINT (-78.30876 36~
##
                   4.
## 10 Stok~ 1612.
                                      5.
                   1.
                         160. 2038.
                                            176. MULTIPOINT (-80.02567 36~
## # ... with 90 more rows
```

```
plot(st_geometry(nc), border='grey')
plot(st_geometry(nc_pts), pch=16, cex=0.5, add=TRUE)
```


Casting - POINT

```
st cast(nc, "POINT")
## Simple feature collection with 2529 features and 7 fields
## geometry type:
                 POINT
## dimension:
                  XY
## hhox:
                 xmin: -84.32385 vmin: 33.88199 xmax: -75.45698 vmax: 36.58965
## epsg (SRID): 4267
## proj4string: +proj=longlat +datum=NAD27 +no defs
## First 10 features:
##
     NAME BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
                                                                  geometry
## 1 Ashe 1091
                    1
                          10 1364
                                             19 POINT (-81.47276 36.23436)
                                       0
## 2 Ashe 1091
                    1
                          10 1364
                                       0
                                              19 POINT (-81.54084 36.27251)
## 3 Ashe 1091
                          10 1364
                                              19 POINT (-81.56198 36.27359)
## 4 Ashe 1091
                          10 1364
                                       0
                                              19 POINT (-81.63306 36.34069)
                    1
                                              19 POINT (-81.74107 36.39178)
## 5 Ashe 1091
                          10 1364
                                       0
## 6
     Ashe 1091
                          10 1364
                                              19 POINT (-81.69828 36.47178)
## 7 Ashe 1091
                    1
                                              19 POINT (-81.7028 36.51934)
                          10 1364
                                       0
## 8
    Ashe 1091
                    1
                          10 1364
                                       0
                                              19
                                                    POINT (-81.67 36.58965)
## 9 Ashe 1091
                          10 1364
                                       0
                                                  POINT (-81.3453 36.57286)
                    1
## 10 Ashe 1091
                          10 1364
                                       0
                                              19 POINT (-81.34754 36.53791)
```

```
plot(st_geometry(nc), border='grey')
plot(st_geometry(st_cast(nc, "POINT")), pch=16, cex=0.5, add=TRUE)
```


Casting - LINESTRING

```
st cast(nc, "MULTILINESTRING") %>% as tibble()
## # A tibble: 100 x 8
##
    NAME BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
                                                           geometry
  * <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
                                                       <sf geometry>
  1 Ashe 1091.
                                   0. 19. MULTILINESTRING st ((-81~
##
                  1. 10. 1364.
##
   2 Alle~ 487. 0. 10. 542. 3. 12. MULTILINESTRING st ((-81~
   3 Surry 3188. 5. 208. 3616. 6. 260. MULTILINESTRING st ((-80~
##
## 4 Curr~ 508. 1. 123. 830.
                                   2. 145. MULTILINESTRING st ((-76~
## 5 Nort~ 1421.
                  9.
                     1066. 1606.
                                   3.
                                      1197. MULTILINESTRING st ((-77~
  6 Hert~ 1452. 7.
                     954. 1838.
                                   5.
                                       1237. MULTILINESTRING st ((-76~
##
## 7 Camd~ 286.
                                   2. 139. MULTILINESTRING st ((-76~
                  0. 115. 350.
## 8 Gates 420. 0. 254. 594.
                                   2. 371. MULTILINESTRING st ((-76~
## 9 Warr~ 968. 4. 748. 1190.
                                   2. 844. MULTILINESTRING st ((-78~
## 10 Stok~ 1612. 1. 160. 2038. 5. 176. MULTILINESTRING st ((-80~
## # ... with 90 more rows
```

st_cast(nc, "MULTILINESTRING") %>% st_geometry() %>% plot()

Grouping Features

```
nc_state = st_union(nc)
plot(nc_state)
```



```
nc_state
## Geometry set for 1 feature
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
## epsg (SRID): 4267
## proj4string: +proj=longlat +datum=NAD27 +no_defs
## MULTIPOLYGON (((-76.54427 34.58783. -76.55515 3...
```

More Grouping

```
nc cut = nc %>%
  mutate(X = st centroid(nc) %>% st coordinates() %>% .[,1]) %>%
  mutate(region = cut(X. breaks = 5))
nc_cut
## Simple feature collection with 100 features and 9 fields
## geometry type: MULTIPOLYGON
## dimension:
                XY
## bbox:
         xmin: -84.32385 vmin: 33.88199 xmax: -75.45698 vmax: 36.58965
## epsg (SRID): 4267
## proi4string: +proi=longlat +datum=NAD27 +no defs
## First 10 features:
##
           NAME BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
## 1
           Ashe 1091
                        1
                               10 1364
                                                19 -81,49826
## 2 Alleghany 487
                                          3 12 -81.12515
                        0 10
                                   542
                        5
                              208 3616
                                          6
                                               260 -80.68575
## 3
          Surry 3188
## 4
       Currituck 508
                        1
                              123 830
                                                145 -76.02750
## 5 Northampton 1421
                             1066 1606
                                               1197 -77.41056
## 6
        Hertford 1452
                            954 1838
                                               1237 -76.99478
## 7
        Camden 286
                        0
                              115 350
                                          2
                                                139 -76.23435
## 8
        Gates 420
                        0
                              254 594
                                                371 -76.70448
                                          2 844 -78.11043
## 9
       Warren 968
                        4
                              748 1190
## 10
      Stokes 1612
                         1
                              160 2038
                                                176 -80.23428
##
           region
                                     geometry
## 1 (-82.4,-80.8] MULTIPOLYGON (((-81.47276 3...
## 2 (-82.4,-80.8] MULTIPOLYGON (((-81.23989 3...
## 3 (-80.8.-79.1] MULTIPOLYGON (((-80.45634 3...
```

/ (77 E 7E 0] MULTIPOLYCON (// 7C 00007 2

```
ggplot(nc_cut) +
  geom_sf(aes(fill=region))
```


dplyr and sf

```
nc_cut %>%
  group_by(region) %>%
  summarize() %>%
  ggplot() +
   geom_sf(aes(fill=region))
```


Affine Transfomations

```
rotate = function(a) matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2)

ctrd = st_centroid(nc_state)
state_rotate = (nc_state - ctrd) * rotate(-pi/4) + ctrd
plot(state_rotate, axes=TRUE)
```


Scaling Size

```
ctrd = st_centroid(st_geometry(nc))
area = st_area(nc) %>% strip_attrs()

nc_rot = nc
st_geometry(nc_rot) = (st_geometry(nc) - ctrd) * rotate(pi/2) * .5 + ctrd

plot(nc_rot[,"SID79"])
```


Highway Example

Highways

```
hwy = st_read("../data/gis/us_interstates/", quiet=TRUE, stringsAsFactors=FALSE) %>% s
ggplot() +
  geom_sf(data=nc) +
  geom_sf(data=hwy, col='red')
```


NC Interstate Highways

```
hwy_nc = st_intersection(hwy, nc)
## although coordinates are longitude/latitude, st_intersection assumes that they are

ggplot() +
   geom_sf(data=nc) +
   geom_sf(data=hwy nc, col='red')
```


Counties near the interstate (Projection)

```
nc_utm = st_transform(nc, "+proj=utm +zone=17 +datum=NAD83 +units=m +no_defs")
ggplot() +
   geom_sf(data=nc_utm) +
   geom_sf(data=hwy_nc, col='red')
```


Counties near the interstate (Buffering)

```
hwy_nc_buffer = hwy_nc %>%
    st_transform("+proj=utm +zone=17 +datum=NAD83 +units=m +no_defs") %>%
    st_buffer(10000)

ggplot() +
    geom_sf(data=nc_utm) +
    geom_sf(data=hwy_nc, color='red') +
    geom_sf(data=hwy_nc_buffer, fill='red', alpha=0.3)
```


Counties near the interstate (Buffering + Union)

```
hwy_nc_buffer = hwy_nc %>%
  st_transform("+proj=utm +zone=17 +datum=NAD83 +units=m +no_defs") %>%
  st_buffer(10000) %>%
  st_union() %>%
  st_sf()

ggplot() +
  geom_sf(data=nc_utm) +
  geom_sf(data=hwy_nc, color='red') +
  geom_sf(data=hwy_nc, buffer, fill='red', alpha=0.3)
```


Example

How many counties in North Carolina are within 5, 10, 20, or 50 km of an interstate highway?

Example

How many counties in North Carolina are within 5, 10, 20, or 50 km of an interstate highway?

Gerrymandering Example

2014 NC House Districts

```
nc_house = st_read("../data/nc_districts114.shp", stringsAsFactors = FALSE,
  select(ID. DISTRICT)
tbl_df(nc house)
## # A tibble: 13 x 3
##
     ID
                   DISTRICT
                                                  geometry
                                    <sf geometry [degree]>
##
   <chr> <chr>
   1 037113114002 2
                            MULTIPOLYGON (((-80.05325 3...
##
##
   2 037113114003 3
                            MULTIPOLYGON (((-75.52398 3...
##
   3 037113114004 4
                            MULTIPOLYGON (((-79.47249 3...
##
   4 037113114001 1
                            MULTIPOLYGON (((-76.68697 3...
   5 037113114005 5
                            MULTIPOLYGON (((-81.91805 3...
##
   6 037113114006 6
                            MULTIPOLYGON (((-80.97462 3...
##
##
   7 037113114007 7
                            MULTIPOLYGON (((-79.37719 3...
##
   8 037113114008 8
                            MULTIPOLYGON (((-80.72606 3...
##
   9 037113114009 9
                            MULTIPOLYGON (((-81.10803 3...
## 10 037113114010 10
                            MULTIPOLYGON (((-82.6516 35...
## 11 037113114011 11
                            MULTIPOLYGON (((-84.3218 34...
## 12 037113114012 12
                            MULTIPOLYGON (((-80.97461 3...
## 13 037113114013 13
                            MULTIPOLYGON (((-78.87711 3...
```

```
nc_house = nc_house %>%
    st_transform("+proj=utm +zone=17 +datum=NAD83 +units=km +no_defs")
plot(nc house[,"DISTRICT"], axes=TRUE)
```


Measuring Compactness - Reock Score

The Reock score the a measure of compactness that is calculated as the the ratio area of a shape to the area of its minimum bounding circle.

```
circs = nc_house %>% st_geometry() %>% lwgeom::st_minimum_bounding_circle()
sub = nc_house$DISTRICT == 1
plot(circs[sub])
plot(nc_house[sub,"DISTRICT"], add=TRUE)
```


plot(nc_house[,"DISTRICT"])
plot(circs,add=TRUE)

Calculating Reock

```
nc_house = nc_house %>%
  mutate(reock = st_area(nc_house) / st_area(circs))
plot(nc_house[,"reock"])
```



```
tbl_df(nc house) %>%
 arrange(reock) %>%
 print(n=13)
## # A tibble: 13 x 4
##
     ID
                  DISTRICT reock
                                                                  geometr
                                                         <sf geometry [km]
##
     <chr>
                  <chr>
                        <S3: units>
##
   1 037113114012 12
                      0.0711997215878126 MULTIPOLYGON (((502.31 3899...
##
   2 037113114009 9
                     0.169405525617443
                                            MULTIPOLYGON (((490.2361 39...
   3 037113114004 4
                                             MULTIPOLYGON (((637.4776 39..
##
                        0.1735809490213
   4 037113114006 6
                                             MULTIPOLYGON (((502.2744 40..
##
                    0.240919191926239
                                             MULTIPOLYGON (((995.1797 39..
##
   5 037113114003 3 0.251285019523225
##
   6 037113114011 11
                     0.264255107593438
                                             MULTIPOLYGON (((196.7812 38..
##
   7 037113114001 1
                      0.289934134507595
                                             MULTIPOLYGON (((888.2895 40...
##
   8 037113114010 10
                    0.34012606752961
                                             MULTIPOLYGON (((350.3919 39...
##
   9 037113114008 8
                          0.353232490504049
                                             MULTIPOLYGON (((524.9335 38..
## 10 037113114013 13
                     0.382195549931454
                                             MULTIPOLYGON (((691.9403 39..
                                             MULTIPOLYGON (((417.5582 40..
## 11 037113114005 5
                     0.397082589710882
                                             MULTIPOLYGON (((648.136 387..
## 12 037113114007 7
                          0.414888641986656
## 13 037113114002 2
                          0.42590009492903
                                             MULTIPOLYGON (((585.5425 39...
```

Raster Data

Example data - Meuse

```
plot(meuse_rast)
plot(meuse_riv, add=TRUE, col=adjustcolor("lightblue",alpha.f = 0.5), border=NA)
```


raster class

```
str(meuse rast)
## Formal class 'RasterLayer' [package "raster"] with 12 slots
    ..@ file :Formal class '.RasterFile' [package "raster"] with 13 slots
##
##
    ..... name : chr "/usr/local/lib/R/3.4/site-library/raster/external/te
    .. .. .. datanotation: chr "FLT4S"
##
    ..... byteorder : Named chr "little"
##
    ..... attr(*, "names")= chr "value"
##
##
    .. .. .. a nodatavalue : num -3.4e+38
##
    .. .. .. .. NAchanged : logi FALSE
##
    .. .. .. nbands : int 1
##
    .. .. .. a bandorder : Named chr "BIL"
    .. .. .. - attr(*, "names")= chr "value"
##
##
    .. .. .. offset : int 0
##
    .. .. ..@ toptobottom : logi TRUE
##
    ..... a blockrows : int 0
##
    .. .. ..@ blockcols : int 0
    .. .. .. a driver : chr "raster"
##
    ..... open : logi FALSE
##
    ..@ data :Formal class '.SingleLayerData' [package "raster"] with 13 slots
##
    .. .. .. .. a values : logi(0)
##
##
    .. .. .. .. offset : num 0
##
    .. .. .. a gain : num 1
    ..... .. inmemory : logi FALSE
##
##
    .. .. .. a fromdisk : logi TRUE
    .. .. ..@ isfactor : logi FALSE
##
##
    .. .. .. attributes: list()
##
    .. .. .. a haveminmax: logi TRUE
                                                                             48
##
    .. .. ..a min
                       : num 128
```

raster features

```
extent(meuse rast)
## class
              : Extent
## xmin
              : 178400
              : 181600
## xmax
## vmin
              : 329400
## vmax
              : 334000
dim(meuse rast)
               1
## [1] 115 80
res(meuse rast)
## [1] 40 40
projection(meuse rast)
## [1] "+init=epsg:28992 +towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035
meuse_rast[20,]
## [1]
                    NA
                            NA
                                    NA
                                           NA
                                                   NA
                                                           NA
                                                                   NA
            NA
  [9]
##
            NA
                    NA
                           NA
                                    NA
                                           NA
                                                   NA
                                                           NA
                                                                   NA
## [17]
            NA
                    NA
                           NA
                                    NA
                                           NA
                                                   NA
                                                           NA
                                                                   NA
## [25]
            NA
                    NA
                           NA
                                           NA
                                                           NA
                                    NA
                                                   NA
                                                                   NA
## [33]
            NA
                    NA
                           NA
                                    NA
                                           NA
                                                   NA
                                                           NA
                                                                   NA
## [41]
            NA
                    NA
                                           NA
                           NA
                                    NA
                                                   NA
                                                           NA
                                                                   NA
## [49]
            NA
                    NA
                            NA
                                    NA
                                           NA
                                                   NA
                                                           NA
                                                                   NA
## [57]
            NA
                    NA
                            NA 749.536 895.292 791.145 607.186 511.044
## [65] 468.404 399.325 350.362 306.180 300.483 310.082 283.940 285.771
## [73] 304.709 309.690 301.799 308.753 328.357 345.611
                                                           NΑ
                                                                   NA
```

Rasters and Projections

178500

180000

181500

```
library(rgdal)
meuse_rast_ll = projectRaster(meuse_rast, crs="+proj=longlat +datum=NAD27 +no_defs")
par(mfrow=c(1,2))
plot(meuse_rast)
plot(meuse_rast_ll)
334000
                                                                                       15 00
                                                50.98
                                       1500
332000
                                                                                       1000
                                       1000
                                                50.97
                                       500
                                                                                       50 0
                                                50.96
330000
```

5.72

5.74

5.76

```
meuse rast
```

class : RasterLayer

dimensions : 115, 80, 9200 (nrow, ncol, ncell)

resolution : 40, 40 (x, v)

extent : 178400, 181600, 329400, 334000 (xmin, xmax, ymin, ymax)

coord. ref.: +init=epsg:28992 +towgs84=565.237,50.0087,465.658,-0.406857

data source : /usr/local/lib/R/3.4/site-library/raster/external/test.grd : test

names

values : 128.434, 1805.78 (min, max)

meuse_rast_ll

class : RasterLayer

dimensions : 131, 91, 11921 (nrow, ncol, ncell)

resolution : 0.000569, 0.00036 (x, y)

extent : 5.717362, 5.769141, 50.95089, 50.99805 (xmin, xmax, ymin,

coord. ref.: +proj=longlat +datum=NAD27 +no defs +ellps=clrk66 +nadgrids

data source : in memory

names : test

values : 135.647, 1693.578 (min. max)

Simple Features \longleftrightarrow Rasters

```
meuse_riv_rast = rasterize(meuse_riv, meuse_rast)
## Error in (function (classes, fdef, mtable) : unable to find an inherited method for
meuse_riv_rast = rasterize(as(meuse_riv, "Spatial"), meuse_rast)
plot(meuse riv rast)
```


Rasters and Spatial Models

##

1 181072 333611 ## 2 181025 333558

3 181165 333537

```
head(meuse)
## Simple feature collection with 6 features and 12 fields
## geometry type:
                POINT
## dimension:
                 XY
## bbox: xmin: 181025 ymin: 333260 xmax: 181390 ymax: 333611
## epsg (SRID): 28992
## proj4string: +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0
                                            om ffreg soil lime landuse
##
    cadmium copper lead zinc elev
                                     dist
## 1
       11.7
               85 299 1022 7.909 0.00135803 13.6
                                                                  Δh
    8.6
               81 277 1141 6.983 0.01222430 14.0
## 2
                                                                  Ah
## 3
    6.5 68 199 640 7.800 0.10302900 13.0
                                                                  Ah
    2.6
               81 116 257 7.655 0.19009400 8.0
## 4
                                                                  Ga
## 5 2.8 48 117 269 7.480 0.27709000 8.7
                                                                  Ah
## 6
       3.0
               61 137 281 7.791 0.36406700 7.8
                                                                  Ga
##
    dist.m
                      geometry
    50 POINT (181072 333611)
## 1
## 2 30 POINT (181025 333558)
## 3 150 POINT (181165 333537)
## 4 270 POINT (181298 333484)
## 5
       380 POINT (181307 333330)
       470 POINT (181390 333260)
## 6
head(st coordinates(meuse))
```

53

```
library(fields)

tps = Tps(x = st_coordinates(meuse), Y=meuse$elev)
pred_grid = xyFromCell(meuse_rast, seq_along(meuse_rast))

meuse_elev_pred = meuse_rast
meuse_elev_pred[] = predict(tps, pred_grid)
```

plot(meuse_elev_pred)

ggplot and rasters

```
p = rasterToPolygons(meuse_elev_pred) %>% st_as_sf()
(ggplot() + geom_sf(data=meuse, aes(color=elev), size=1)) +
(ggplot() + geom_sf(data=p, aes(fill=test), color=NA))
```

