h(k)	keys
0	
1	19->10
2	2->20
3	39
4	22
5	5
6	
7	
8	8->35->26

2.

Under the assumption of simple uniform hashing, we will use linearity of expectation to compute this. Suppose that all the keys are totally ordered $\{k_1, \ldots, k_n\}$. Let Xi be the number of $1 > k_i$ so that $h(1) = h(k_i)$. Note, that this is the same thing as $\sum_{j>i} \Pr(h(k_j) = h(k_i)) = \sum_{j>i} \frac{1}{m} = \frac{(n-i)}{m}.$ Then,

by linearity of expectation, the number of collisions is the sum of the number of collisions for each possible smallest element in the collision.

The expected number of collisions is $\sum_{n=1 \atop m} \frac{n-i}{m} = \frac{n^2 - \frac{n(n+1)}{2}}{m} = \frac{n^2 - \frac{n(n+1)}{2}}{2m}$

3.(correct answer not unique)height=2:

Height = 3:

10

\ 17 \ 22

Height = 6:

a)

b)

c)

d)

