Seminář o projektech IMS

Martin Hrubý

akademický rok 2023/24

Zápočet IMS

- Půlsemestrální test 10 bodů.
- Projekt 20 bodů.
 - Uznávání bodů z loňska.
- Celkem až 30 bodů.
- 10 bodů a více = zápočet,
 - 9, 8, 7, ... = bez zápočtu

Řešitelé projektu

- Dvojice, jednotlivec.
- Projekt odevzdává zástupce týmu (první ve dvojici).
- Pokud se tým rozpadne:
 - Mohou dokončit a odevzdat jednotlivci.
 - Ve zprávě viditelně zmínit.
 - Jednotlivci nemají úlevu v kvalitě výsledků.

Řešitelské koalice

- Sdílení dat. Spolupráce při zajišťování dat.
 - Předpokládá se rámec témat, kde každý tým v koalici řeší individuální problém.

Podmínky:

- Řešitelská koalice je dokumentována.
- Účastníci nepochybně řeší odlišná témata.
- nebo odlišným způsobem (pak srovnání).
- Při zneužití sankce.

Termín odevzdání

- Termín: 10. 12. 2023. Nebude se měnit.
- Průběžné odevzdávání.
- Pokud nebudou zápočty jasné v době 1. termínu zkoušky, lze jít na zkoušku bez zápočtu.

Nosné pilíře projektu IMS

- Veřejná diskuze o náročných tématech. Chaos.
 - Sebe-vzdělání. Vliv vzdělání na společnost.
 - Covid. Uhlíková stopa. Hraboši. Transport plynu. Kanál DOL.
 - Letos: Produktivita a inovace. Futurizmus:)
 - Význam socio-ekonomických modelů pro (moderní) společnost.

● Pilíře 1-3:

- Poznání: Co o problematice zjistíte studiem.
- Zjišťování založené na modelech: Co spočtete. Argumenty.
- Rozhodování založené na modelech: Co navrhujete.

Zacílení projektu IMS

- Úvahy založené na modelech a výpočtech.
- T1: Výzkum vedoucí k (novým) poznatkům.
 - Na reálných problémech.
 - Na hypotetických problémech (reálný fenomén na hypotetické situaci).
- T2: Ověřování T1 publikovaných závěrů ostatních.
 - Kontrolovat výsledky v článcích.
 - Oponovat názory/hypotézy/rozhodnutí/opatření.
 - Kritické zhodnocení koncepcí (COVID) v různých zemích.

Obecně k validitě

- Provedení verifikace modelu je technický problém.
- Provedení validace modelu je mnohdy argumentační problém.
 - Výsledky simulace lze/nelze konfrontovat s realitou.
 - Model byl sestaven zdůvodnitelným způsobem a vychází ze zdůvodnitelných hypotéz.
 - Absolutní pravda. Na argumentech postavená úvaha.
 - Přesvědčit čtenáře/uživatele = validovat model.

Publikované články/studie

- T2: ověření/revize článku, přizpůsobení na naše podmínky apod.
- Validita je publikovaná práce automaticky validní?
 - zamyšlení, ověření, srovnání s jinými zdroji
 - interpretace vlastními slovy "že to chápete správně".
 - ověření správnosti re-implementace.
 - dokumentování/objasnění rozdílů a nesrovnalostí.

Významnost/složitost tématu

- "Stačí, když..."
 - Simulační modelování = nějaký program určený k experimentování.
- Model je na místě, pokud nějaký postoj není triviálně dosažitelný/evidentní.
 - Metoda pivního tácku.
 - Složitost výpočtu. Objem výpočtu (dat).
- Triviální zjištění ("když ty králíky nekrmíme, tak pochcípají").

Obecné schéma postupu

- Co chci zjistit/ukázat/prokázat/vyvrátit.
 - Vstupní hypotéza. Platí/neplatí. Podpořit/vyvrátit.
 - Vstupní okolnosti. Jaké jsou důsledky.
 - Významnost/složitost. Je řešení triviální?
- Struktura (a obsah) modelu se staví podle počáteční Otázky.
 - Aspekt X nemá vliv na Otázku, pak do modelu nepatří.
 - má okrajový vliv na Otázku, pak zdůvodnit, že ho vynecháte.
 - má významný vliv na Otázku, pak v modelu musí být.

Konzultace

- Seminář.
- Fórum předmětu.
- Osobní konzultace.
 - E-mail spíše na ano/ne otázky.

Konzultace, nevhodné FAQ

- Co znamená moje téma projektu?
- Co mám v projektu dělat?
- Jak mám projekt dělat?
- Jak mám projekt udělat, abych dostal plný počet bodů?
- Už je můj projekt ve stavu, abych za něj dostal plný počet bodů?

Inženýrský přístup

- Inženýři versus úředníci.
- Nejasné zadání.

Smysl simulačního projektu

- Co se řeší?
- Proč se to řeší?
- Jak se to řeší?
- Jaký je výsledek nebo závěr?
- K čemu je výsledek/závěr dobrý?
- Proč má odběratel věřit výsledku?

Forma odevzdání

- WIS, termín "Projekt-odevzdávání projektů".
- Archív .tar.gz, .zip (ověřit na merlinovi!!!).
 - XX_xjmeno1_xjmeno2, XX_xjmeno, XX=číslo okruhu.
- Zdrojové texty programu (bez diakritiky).
 Makefile.
- Dodatečná data (obrázky, grafy, tabulky, výsledky).
- Dokumentace výhradně PDF (ověřit čitelnost).

Funkčnost programu

- Povolené programovací jazyky: C/C++.
 - SIMLIB pro modelování SHO.
 - Téma CA (a další) nevyžaduje SIMLIB.
- Ověřit **funkčnost** na merlin/eva.
- make, make run.

Hodnocení, podání vysvětlení

- Hodnotitel má právo povolat v libovolném okamžiku (po odevzdání) tým k podání vysvětlení.
 - Vysvětlení musí být schopni podat oba členové týmu.

Pokud nejsou:

- Snížení bodového hodnocení (nedůvěryhodný projekt).
- Snížení bodového hodnocení jednoho z týmu. Zpochybnění jeho účasti na projektu.
- V extrémním případě 0 bodů pro jednoho nebo oba.

Kritické případy pro 0 bodů

- Model je nevalidní tak, že to pozná i laik.
- Model/program je nepřeložitelný, nedokončený nebo nefunkční. Obzvlášť pochybný je projekt prezentující výsledky z evidentně nefunkčního modelu.
- Nejsou dodrženy formální náležitosti projektu (jako např. formát souboru, programovací jazyk).
 - Některá část projektu zcela chybí nebo nedosahuje minimálních požadavků (není zpráva nebo je triviální, případne je zpráva, ale chybí model).

Simulační studie — "dokumentace"

- Simulační studie NENÍ dokumentace.
- Smyslem je poskytnout simulační studii podepřenou modelem.
 - Produktem je ta studie.
 - Studie byla sestavena z výsledků experimentů nad modelem.
 - Sdělení je vhodné formulovat strukturovaným způsobem.
 - Povinná struktura textu studie.

Obecná struktura sim. studie

- Úvod.
- Fakta.
- Koncepce. Způsob řešení.
- Testování/experimenty.
- Závěr.

1. Úvod

- Úvod musí vysvětlit, proč se celá práce dělá a proč má uživatel výsledků váš dokument číst.
 - Počáteční otázka.
 - Motivace a širší souvislosti. Kontext problému.
 - K čemu chcete dospět. K čemu jste dospěli. Jak jste výsledky ověřovali.
- Psaní úvodů je náročná práce. Úvody se čtou!!!
 - "první minuta" prezentace.

1.1 Zdroje faktů

- Kdo se na práci podílel jako autor, odborný konzultant, dodavatel odborných faktů,
 - význačné zdroje literatury / fakt, ...
 - je ideální, pokud jste vaši koncepci konzultovali s nějakou autoritou v oboru (v IMS projektu to je hodnoceno, ovšem není vyžadováno)
 - pokud nebudete mít odborného konzultanta, nevadí. Nelze ovšem tvrdit, že jste celé dílo vymysleli s nulovou interakcí s okolím a literaturou.
- Zdroj údajů

2. Fakta

 Podstatná fakta o systému musí být zdůvodněna a podepřena důvěryhodným zdrojem (vědecký článek, kniha, osobní měření a zjišťování). Alespoň jeden (lépe 2) zdroj.

• Fakta:

- Kterékoliv číslo, fakt, stav, vztah.
- Za každým takovým údajem musí následovat odkaz na zdroj (1 důvěryhodný nebo několik jiných).
- Hypotézy/předpoklady (podklady).
- SHO: proces příchodů požadavků/doby obsluhy, struktura systému, ...

Hypotézy

- Hypotézy:
 - odvození z podobných faktů doložit,
 - vstupní předpoklady definovat.
- Odlišit fakta a hypotézy.

3. Koncepce modelu/simulátoru

- Konceptuální model je abstrakce reality a redukce reality na soubor relevantních faktů pro sestavení simulačního modelu.
- Pokud některé partie reality zanedbáváte nebo zjednodušujete, musí to být zdůvodněno a v ideálním případě musí být prokázáno, že to neovlivní validitu modelu.
- Výsledek kapitoly: konceptuální (abstraktní) model s vyznačením relevantních faktů.
- Základní koncept modelu.

Formy koncepce

- Matematické vzorce.
- Schémata. Vývojové diagramy.
- Algoritmy formou pseudo-kódu.
- Petriho síť čitelně rukou + foto.
 - Dává smysl pouze pro dokumentaci paralelních procesů.
- CA diskretizace časová a prostorová, stavy buňky, přechodová funkce.

Fakta versus Koncepce

- Fakta: soupis znalostí o daném problému.
- Koncepce:
 - převzetí faktů do modelu,
 - zdůvodněné provedené zjednodušení faktů,
 - abstraktní popis modelu/programu.
- Těžiště modelářské práce. Vytváříme abstraktní model.
- Návod: koncepci vaší práce MUSÍ pochopit libovolný technik (a často i manažer...).

Zjišťování faktů

- Náročná práce, mnohdy téměř partyzánská.
- Literatura. Publikované zprávy. Internet.
- Osobní (nedestruktivní) zjišťování v terénu.
- Je to součást modelářské práce.
 - Pokud odmítáte systém poznat, nemůžete ho modelovat.
 - Mnohdy lze fakt X odhadnout z podobného aspektu jiného systému.

Experimenty

- Simulační studie začíná formulováním problému:
 - co chci zjistit, KONCEPCE experimentování,
 - (proč je k tomu potřeba simulační model.)
- Studie končí vyslovením závěru:
 - co jsem tedy zjistil,
 - co bych ještě mohl zjistit,
 - (proč by to nešlo bez modelu.)
- Bez experimentů práce nedává smysl!

Experimenty: úvod

- Experimentování musí mít předem zvolený a zdůvodněný řád, či postup.
- Okolnosti experimentování:
 - datová sada, konfigurace měřící aparatury, ...
 - závislost Y na X (graf).
- Test versus Experiment.
 - "měření" != experiment !!!
- Experimenty se i ladí model kalibrační experimenty.
 - ... na základě tohoto experimentu jsme korigovali parametr x..
 - u praktických simulačních studií se nepublikuje.

Struktura kapitoly Experimenty

- Postup experimentování a okolnosti studie
- Dokumentace jednotlivých experimentů
- Poznámka: experimentování je činnost vyžadující preciznost.
 - modelování a SIMULACE

Dokumentace experimentu

Protokolární forma:

- vstupy a okolnosti,
- výstupy a pozorování,
- interpretace výsledků.

• Interpretace výsledků:

- Rozbor výsledků: co v nich má čtenář vidět.
- Grafy mají pojmenované a kalibrované osy.
- Návrh dalšího experimentu.

Závěr práce

- Jednoznačná odpověď na prvotní Otázku studie.
 - Studií provedenou na našem modelu bylo jednoznačně prokázáno/vyvráceno, že ...
 - V rámci experimentů bylo zjištěno, že průměrné zatížení ...
 je ...
 - Z experimentů vyplývá jednoznačné doporučení, aby provozovatel ... rozšířil výrobu o ...
 - Ze statisticky zpracovaného měření v terénu plyne, že proces příchodů ... se řídí normálním rozložením se středem a
 - Na přiložených demo-příkladech jsme ověřili funkčnost ...

Co v závěru NEMÁ být

- Poznámky osobního charakteru (např. práce na projektu mě bavila/nebavila, ...).
 - Technická zpráva není osobní příběh autora. Kolik úsilí jste projektu věnovali...
- Do závěru se velmi nehodí psát "autozhodnocení" kvality práce, to je výhradně na recenzentovi/hodnotiteli/zákazníkovi.
 - (např. v projektu jsem zcela splnil zadání a domnívám se, že můj model je bezchybný a výsledky taktéž).
- Předat podklady pro zhodnocení práce (zdůvodnění validity a výsledky) a zhodnocení nechat na odběrateli výsledků.

Obecné poznámky

- Znát svůj text studie jsou oponovány / prezentovány.
- Korektní technické vyjadřování
 - Žádný slang/žargón, slova v uvozovkách, neformální obraty.
 - Vždy prezentujete především sami sebe. Uvěří vám, uvěří vašim výsledkům.
 - Žádné vtipné poznámky.
 - Fakta, analýzy, rozhodnutí, výsledky a jejich interpretace.
 - Rozsah technické zprávy: Stránky se nepočítají.
 Minimalizujte rozsah s ohledem na kvalitní podání.

Hodnocení

- Odevzdání po termínu je nepřípustné.
 - Zásadní vada v modelu 0 bodů.
 - Chybí (nebo je pouze triviální) nějaká část projektu 0 bodů.
 - Bonusy za výrazné překročení rozsahu zadání.

• Důraz:

Dosažení třech pilířů projektu IMS.

Rozbor okruhů

... spíše dodatky a komentáře

1. SHO výroba, strojírenství

- Pohled: celý podnik nebo jedna část.
- Výrobní technologie linka, materiál, obsluha.
- Experimenty:
 - poruchy a vliv na výrobu,
 - kapacitní omezení,
 - ekonomika výroby.
 - Inovace.

2. SHO výroba, potravinářství

- Definice: zpracování surovin.
- Pohled: celý podnik nebo jedna část.
- Výrobní technologie linka, materiál, obsluha.
- Experimenty:
 - poruchy a vliv na výrobu,
 - kapacitní omezení,
 - ekonomika výroby.

3. SHO výroba, zemědělství

- Definice: výroba potravinářských surovin.
- Farma, zemědělský podnik. Lesnictví.
- Srovnání:
 - Různé přístupy: eko, bio, tradiční.
 - Technologie. Intenzivní zemědělství.

4. SHO, služby: sport & atd

- Sportovní centrum masové produkce.
 - Musí být významný proces příchodů transakcí.
- Důraz na model procesu příchodů:
 - Založit na datech z reality.
- Kapacitní omezení. Propustnost.
 - Doba strávená v systému. Fronty.
 - Tržby. Jak se zlepší, pokud ...

5. SHO, logistika: zboží a mat.

- Transport. Rozvoz. Expedice. Sklady.
 - Lodní doprava LNG.
- Struktura a provoz.
 - Ekonomické aspekty.
 - Návrh zlepšení.
 - Technologie: paliva, zařízení.

6. SHO, logistika: osobní

- Osobní a hromadná přeprava osob/zvířat.
 - případně objektů, se kterými je nutno speciálně nakládat.
- Technologie přepravy (včetně futuristických).

7. CA v ekologii

- Rozsáhlé území, tj NE mikro-území.
 - Kvalita půdy, vegetace, ovzduší, hluku.
 - NE: lesní požáry, vločky, sypání písku…
- Odborné články.
 - Nastudovat. Re-implementovat model.

8. CA, doprava

- NE: evakuace osob.
- Dopravní modely jako CA.

9. Spojitý model: fyzika, biologie

- Odborný článek. Re-implementace.
 - Smysluplný problém.
- SIMLIB.
 - Alespoň 3 diferenciální rovnice.
- Experimenty:
 - dynamika systému v různých podmínkách.

10. Kombinovaný model

- Řízení technologických procesů.
- Stavové události:
 - něco vypnout/zapnout/regulovat.

Konec