25.09.2024 **Colloqium / Hands - On**

TK8117 – Week 05 - Topic 04:

Shapley values for assessing feature importance

Aafan Ahmad Toor Andreas Gudahl Tufte Azimil Gani Alam Niclas Flehmig

Overview

Motivation

Objective & Calculation of Shapley Values

Pros & Cons

Background Knowledge to Coding Example

Motivation for Shapley values

How does it look for ML?

Objective & Calculation

What are Shapley values?

Basic idea from coalitional game theory

Group of players (features) compete together in a **game** (ML model)

After the game, we want to **distribute the price** (prediction) in a **fair** manner

Objective!

Shapley value tells us the average contribution of a player (feature) to a payout (prediction)

Calculating those mysterious values

To calculate Shapley values we can use SHAP (which connects LIME and Shapley values)

Features are **not independent** so, we create **subsets of features**

Aggregate each feature's contribution over all possible subsets to get a global explanation

Make the predictions of our model **explainable** and **interpretable**

PExamples

Examples of SHAP

Examples of SHAP

SHAP value

Examples of SHAP

Why do I want explainability??

Be careful...

NOT the difference in prediction when we would remove feature!

Return simple value per feature, **no prediction model**

Cannot be used to make statements about changes in prediction for changes in input

Pros & Cons

Pros & Cons

Solid theoritical foundation (i.e. Game theory)

Fairly distributed among feature values

Global model interpretations

Can be applied on different models (e.g. Tree-based, linear, DNN)

Can be misinterpreted

Computationally expensive (e.g. complex models)

No exact solution for non-linear models

Application

Need for explainable AI (e.g. EU regulations, supervisor asks me what is going on)

Enhance the **trust** in my model

Levarage the interpretability of my model and potentially improve it

Increase **safety** of my model

Background Knowledge

Activity	Metabolic Rate (Met
Resting	
Sleeping	0.8
Seating, quiet	1.0
Standing, relaxed	1.2
Sport and Activities	
Archery	4.3
Badminton	5.5
Basketball	8.0
Bicycling	7.5
Boxing	12.8
Calisthenics	3.5
Dancing	7.8
Fencing	6.0
Fishing	3.5

Thermal Sensation

Dataset

- Thermal Comfort Data
- Predict Thermal Sensation

	Air Temp.	radiant temp.	air velocity	Relative.Humid	Metabolic.Rate	cloth.thick.rate	thermal sensation	thermal sensation – (pearson)	0.37	0.32	-0.1	0.12	0.72	0.39
count	630697.000000	630697.000000	630697.000000	630697.000000	630697.000000	630697.000000	630697.000000	thermal sensation –	d	- du	Ē.	<u> </u>	Rate -	ate -
mean	21.506338	21.700489	0.099925	38.757755	1.429113	0.741664	-0.257738		Air Temp	diant ten	air velocity	Relative.Humid	Metabolic.Ra	doth.thick.ra
std	2.290107	2.606948	0.070668	18.493891	0.341060	0.185883	0.818509							
min	18.000000	18.000000	0.000000	15.000000	1.000000	0.500000	-3.000000			ĕ				
25%	20.000000	19.000000	0.050000	25.000000	1.100000	0.570000	-0.780000							
50%	22.000000	22.000000	0.100000	40.000000	1.400000	0.670000	-0.150000		- 0		0		0	
75%	24.000000	24.000000	0.150000	50.000000	1.800000	0.960000	0.360000							
max	25.000000	26.000000	0.200000	70.000000	2.000000	1.000000	1.610000							
									Air Temp. –	diant temp. –	air velocity –	tive.Humid –	abolic.Rate –	n.thick.rate –

https://raw.githubusercontent.com/rayunacute/MVDA/refs/heads/main/PMV%20PPD/PMV%20example%20data.csv

References

- https://github.com/shap/shap?tab=readme-ov-file
- https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20 explainable%20Al%20with%20Shapley%20values.html
- https://link.springer.com/chapter/10.1007/978-3-031-24628-9_41
- https://christophm.github.io/interpretable-ml-book/shap.html
- https://www.youtube.com/watch?v=9halOplEIGM
- https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b6776
 7-Abstract.html

