Chapter 1

Sequence in Metric Space

1.1 Sequence of Real Numbers²

A sequence if real numbers in \mathbb{R} is simply a function $f: \mathbb{N} \to \mathbb{R}$ which us usually defined by $f(n) = x_n$ and arranged in a particular order such as $x_1, x_2, x_3, \ldots, x_n, \ldots$.

For example, the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ can be represented as $x_n = \frac{1}{n}$, for $n = 1, 2, 3, \ldots$

1.2 Convergent Sequence

A sequence x_n in \mathbb{R} is said to converge to a limit $x \in \mathbb{R}$ if for every $\epsilon > 0$ there is an integer N such that $|x_n - x| < \epsilon$, whenever $n \ge N$.

In this case we write $x_n \to x$ as $n \to \infty$ or $\lim_{n \to \infty} x_n = x$.

Note. $N := N(\epsilon)$, often smaller ϵ may require larger N.

1.3 Sequence of points or Vectors in Metric Spaces

A sequence of points in a metric space M := (M, d) is a function $f : \mathbb{N} \to M$, usually defined by $f(n) = x_k$ and arranged in a definite order such as $x_1, x_2, x_3, \ldots, x_n, \ldots$

1.4 Convergent Sequence in a Metric Space

A sequence x_k in a metric space (M, d) converges to $x \in M$ if for every given $\epsilon > 0$ there is a natural number N such that $n \geq N$ implies $d(x_k)$.

1.5 Convergent Sequence in Normed Space \mathbb{R}^n

A sequence v_k of vector converges to the vector $v \in \mathbb{R}^n$ if for every given $\varepsilon > 0$, there exists such that $d(v_k, v) = ||v_k - v|| < \varepsilon$ whenever $k \ge N$.

²Marsden. P.36

1.6 Convergent Sequence in Arbitrary Normed Space V

 $v_k \in V \to v, ||v_k - v|| \to 0 \text{ as } k \to \infty.$ If $v, v_k \in \mathbb{R}^n$, we write $v = (v^1, v^2, \dots, v^n), v_k = (v_k^1, v_k^2, \dots, v_k^n)$

Theorem 1.6.1. $v_k \to v$ in \mathbb{R}^n if and only if each sequence of coordinates converges to the corresponding coordinate of v as a sequence in \mathbb{R} . That is,

 $\lim_{k\to\infty} v_k = v$ in \mathbb{R}^n if and only if $\lim_{k\to\infty} v^i = v$ in \mathbb{R} for each $i=1,2,\ldots,n$

or,

$$\lim_{k \to \infty} \left(v_k^1, v_k^2, \dots, v_k^n \right) = \left(\lim_{k \to \infty} v_k^1, \lim_{k \to \infty} v_k^2, \dots, \lim_{k \to \infty} v_k^n \right)$$

Problem 1.6.1. Test the convergence of the sequences in \mathbb{R}^2

- 1. $v_k = (1/2, 1/k^2)$
- 2. $v_n = \left(\frac{(\sin n)^n}{n}, \frac{1}{n^2}\right)$

Solution.

- 1. Here the component sequences $\frac{1}{k}$ and $\frac{1}{k^2}$ each converge to 0. Hence, the vector $v_k \to 0$, $0 = (0,0) \in \mathbb{R}^2$.
- 2. Use sandwich theorem $(v_n \to (0,0))$ Here,

$$\left| \frac{(\sin n)^n}{n} \right| = \frac{\left| \sin n \right|^n}{n} \le \frac{1}{n} \Rightarrow -\frac{1}{n} \le \frac{(\sin n)^n}{n} \le \frac{1}{n}$$

Hence, by sandwich theorem,

$$\lim_{n \to \infty} -\frac{1}{n} = 0 = \lim_{n \to \infty} \frac{1}{n}$$

Therefore

$$\lim_{n \to \infty} \frac{(\sin n)^n}{n} = 0$$

Again

$$\lim_{n \to \infty} \frac{1}{n^2} = 0$$

Therefore, $v_n \to (0,0)$

Theorem 1.6.2. A set $A \subset M$ is closed \Leftrightarrow for every sequence $x_k \in A$ converges to a point $x \in A$.

Problem 1.6.2. Let $x_n \in \mathbb{R}^m$ be a convergent sequence with $||x_n|| \le 1$ for all n. Show that x also satisfies $||x|| \le 1$. If $||x_n|| < 1$, then must we have ||x|| < 1?

Solution. The unit ball $B = \{y \in \mathbb{R}^m \mid ||y|| \le 1\}$ is closed. Let $x_n \in B$, and $x_n \to x \Rightarrow x \in B$ as B is closed, by the above theorem. This is not true if \le is replaced by <; for example, on \mathbb{R} consider $x_n = 1 - \frac{1}{n}$.

1.7 Cauchy Sequence

Let (M, d) be a metric space. A Cauchy sequence is a sequence $x_k \in M$ such that for all $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that in $n \geq N$ implies $d(x_m, x_n) < \varepsilon$.

1.8 Complete Metric Space

The metric space M is called *complete* if and only if every Cauchy sequence in M converges to a point in M.

In Normed space, such as \mathbb{R}^n , a sequence v_k is Cauchy sequence if for every $\varepsilon > 0$ there us an N such that $||v_k - v_j|| < \varepsilon$ whenever $j, k \ge N$.

Bounded Sequence 1.9

A sequence x_k in a normed space is bounded if there is a number M'>0 such that $||x_k||\leq M$ for every

In a metric space we require that there be a point x_c such that $d(x_k, x_c) \leq M'$ for every k.

Theorem 1.9.1. A convergent sequence in a normed or metric space is bounded.

Theorem 1.9.2.

- (i) Every convergent sequence in a metric space is a Cauchy sequence.
- (ii) A Cauchy sequence in a metric space is bounded.
- (iii) If a subsequence of a Cauchy sequence converges to x, then the sequence converges to x.

Theorem 1.9.3. A sequence $x_k \in \mathbb{R}^n$ converges to a point in \mathbb{R}^n if and only if it is a Cauchy sequence.

Problem 1.9.1 (2.8.8 - P.125, Marsden). Let (M, d) be a complete metric space and $B \subset M$ a closed subset. Show that B is complete as well.

Problem 1.9.2. Determine whether the series
$$\sum_{n=1}^{\infty} \left(\frac{(\sin n)^n}{n^2}, \frac{1}{n^2} \right)$$
 converges.

Solution. The first component series $\sum_{n=1}^{\infty} \frac{(\sin n)^n}{n^2}$ is absolutely convergent and hence convergent. For absolutely convergence, $\sum_{n=1}^{\infty} \left| \frac{(\sin n)^n}{n^2} \right| \leq \sum_{n=1}^{\infty} \frac{1}{n^2}$, by comparison theorem/test. Since $\sum \frac{1}{n^2}$ is convergent, so $\sum \left| \frac{(\sin n)^n}{n^2} \right|$ is convergent and hence $\sum_{n=1}^{\infty} \frac{(\sin n)^n}{n^2}$ is convergent. The second component series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, according to p-series test.

Therefore, $\sum_{n=1}^{\infty} \left(\frac{(\sin n)^n}{n^2}, \frac{1}{n^2} \right)$ is convergent series in \mathbb{R}^2 .

Series of Real Numbers and Vectors 1.10

Definition 1. Let V be a normed space. A series $\sum_{k=1}^{\infty} x_k$, where $x_k \in V$, is said to converge to $x \in V$ if the sequence of partial sums $s_k = \sum_{i=1}^k x_i$ converges to $x \in V$, and if so we write $\sum_{k=1}^\infty x_k = x$ or simply $\sum x_k = x$.

Theorem 1.10.1. $\sum x_k = x$ is equivalent to corresponding component series converging to components of x.

Cauchy Criterion for Series of Vectors 1.11

Let V be a complete normed space (such as \mathbb{R}^n). A series $\sum x_k$ in V converges if and only if for every $\varepsilon > 0$, there is an N such that $k \geq N$ implies

$$||x_k + x_{k+1} + \dots + x_{k+p}|| < \varepsilon$$
 for $p = 0, 1, 2, \dots$

1.12 Absolutely Convergent Series

A series $\sum x_k$ is said to be absolutely convergent if and only if the real series $\sum ||x_k||$ converges.

Conditionally Convergent Series 1.13

A series that is converged but not absolute convergent is said to be conditionally convergent.

Example.

- 1. If a series of non-negative real numbers is convergent, then it is obviously absolutely convergent.
- 2. The series $\sum \frac{(-1)^n}{n^3}$ is absolutely convergent because $\sum \left| \frac{(-1)^n}{n^3} \right| = \sum \frac{1}{n^3}$ is convergent.
- 3. The series $\sum \frac{(-1)^{n-1}}{n}$ is convergent (by Leibniz alternating test) but not absolutely convergent because the harmonic series $\sum \left|\frac{(-1)^{n-1}}{n}\right| = \sum \frac{1}{n}$ is divergent. So, $\sum \frac{(-1)^{n-1}}{n}$ is conditionally convergent.

Theorem 1.13.1. In a complete normed space, if $\sum x_k$ converges absolutely, then $\sum x_k$ converges.

1.13.1 P-series Test $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Geometric Series 1.14

The series $\sum_{n=0}^{\infty} r^n$ converges to $\frac{1}{1-r}$ if |r| < 1 and diverges if $|r| \ge 1$.

Problem 1.14.1. Let $x_n = \left(\frac{1}{n^2}, \frac{1}{n}\right)$. Does $\sum x_n$ converge?

Solution. No, because the harmonic series $\sum \frac{1}{n}$ diverges even though the p=2 series $\sum \frac{1}{n^2}$ converges.

Problem 1.14.2. Let $||x_n|| \leq \frac{1}{2^n}$; prove that $\sum x_n$ converges and $||\sum_{n=0}^{\infty} x_n|| \leq 2$.

Solution.

$$\sum_{n=0}^{\infty} ||x_n|| \le \sum_{n=0}^{\infty} \frac{1}{2^n} = \frac{1}{1 - 1/2} = 2 \qquad \text{(Geometric series } \sum \frac{1}{2^n} \text{ is convergent)}$$

By comparison theorem with the convergent geometric series $\sum 1/2^n$, the series $\sum x_n$ is absolutely convergent and hence is convergent.

Again the partial sums satisfy

$$||s_n|| = \left|\left|\sum_{k=0}^n x_k\right|\right| \le \sum_{k=0}^n ||x_k|| \le \sum_{k=0}^n \frac{1}{2^n} = 2$$

Let $B = \{y \in \mathbb{R}^n \mid ||y|| \le 2\}$. Clearly B is closed. If $s_n \in B$ and $s_n \to s$, then $s \in B$ as B is closed. Hence, $||s|| \le 2$.

Problem 1.14.3. Test for convergence: $\sum_{n=1}^{\infty} \frac{n}{3^n}$

Solution. The ratio test is applicable: $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n+1}{3 \cdot 3^n} \cdot \frac{3^n}{n} = \frac{1}{3} \cdot \frac{n+1}{n} \to \frac{1}{3}$ and so the series converges.

Problem 1.14.4. Determine whether the series $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$ converges.

Solution. Observe that $\frac{n}{n^2+1} \ge \frac{n}{n^2+n^2} = \frac{1}{2^n}$, and so by comparison with divergent series $\frac{1}{2} \sum \frac{1}{n}$, we get divergence.

1.15 Sequence in Metric Space

Definition 2. Let (M,d) be a metric space, and $\langle x_n \rangle$ a sequence of points in M. We say that $\langle x_n \rangle$ converges to a point $x \in M$, written $\lim_{k \to \infty} x_k = x$ or $x_k \to x$ as $k \to \infty$.

Provided that for every open set U containing x, there us an integer N such that $x_k \in U$ whenever $k \geq N$.

This definition coincides with the usual $\varepsilon - \delta$ definition as the next theorem shows.

Proposition 1.15.1. A sequence $\langle x_k \rangle$ in M converges to $x \in M$ if and only if for every $\varepsilon > 0$ there is an N such that $k \geq N$ implies $d(x, x_k) < \varepsilon$.

Thus, a sequence $\langle v_k \rangle$ of points in \mathbb{R}^n converges to $v \in \mathbb{R}^n$ if for every $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that $d(v, v_k) = ||v_k - v|| < \varepsilon$ whenever $k \ge N$.

Definition 3. Let (M, d) be a metric space. A Cauchy sequence is a sequence $\langle x_k \rangle$ in M such that for all $\varepsilon > 0$, there is an N such that $k, l \geq N$ implies $d(x_k, x_l) < \varepsilon$. The space M is called *complete* if and only if every Cauchy sequence in M converges to a point in M.

In a normed space, such as \mathbb{R}^n , a sequence v_k is a Cauchy sequence if for every $\varepsilon > 0$ there is an N such that $||v_k - v_j|| < \varepsilon$ whenever $k, j \ge N$.

Definition 4. A sequence $\langle x_k \rangle$ in a normed space is bounded if there is a number M such that $||x_k|| \le M \forall k$. In a metric space, we require that there be a point x_0 such that $d(x_k, x_0) \le M$ for all k.

Theorem 1.15.2. (i) Every convergent sequence in a metric space is a Cauchy sequence.

(ii) A Cauchy sequence in a metric space is bounded.

x If a subsequence of a Cauchy sequence converges to x then the sequence converges to x.

Proof.
$$H.W.$$

Example. \mathbb{R} is a complete metric space. An example of an incomplete metric space is the set of rational numbers with d(x,y) = |x-y|.

Another example is $\mathbb{R} \mid \{0\}$ with the same metric.

Theorem 1.15.3 (Completeness of the metric space \mathbb{R}^n). A sequence $\langle x_k \rangle$ in \mathbb{R}^n converges to a point in \mathbb{R}^n if and only if it is a Cauchy sequence.

Proof. If x_k converges to x, then for $\varepsilon > 0$, choose N so that $k \ge N$ implies $||x_k - x|| < \varepsilon/2$. Then, for $k, l \ge N$, $||x_k - x_l|| = ||(x_k - x) + (x - x_l)|| \le ||x_k - x|| + ||x - x_l|| < \varepsilon/2 + \varepsilon/2 = \varepsilon$, by the triangle inequality. Thus, $\langle x_k \rangle$ is a Cauchy sequence.

Conversely, suppose $\langle x_k \rangle$ is a Cauchy sequence. Since $|x_k^i - x_l^i| \leq ||x_k - x_l||$, the components are also Cauchy sequence on the real line. By the completeness of \mathbb{R} , x_k^i converges to, say, x^i .

Therefore,
$$\langle x_k \rangle$$
 converges to $x = (x^1, x^2, \dots, x^n)$.

1.16 Contraction Mapping

A function $\varphi:(M,d)\to (M,d)$ is called a contraction mapping if there exists a number k(0< k<1) such that

$$d(\varphi(x), \varphi(y)) \le kd(x, y)$$
 for all $x, y \in M$

A point x_k is said to be a fixed point of φ if $\varphi(x_k) = x_k$.

1.17 Contraction Mapping Principle (Banach Fixed Point Theorem)

Let φ be a contraction mapping on a complete metric space M. Then there is a unique fixed point for φ . In fact, if x_0 is any point in M, and we define $x_1 = \varphi(x_0), x_2 = \varphi(x_2), \ldots, x_{n+1} = \varphi(x_n), \ldots$, then $\lim_{n\to\infty} x_n = x_*$.

Intuitively, φ is shrinking distances, and so as φ iterates, points bunch up.

Figure 1.1: A contraction shrinks distances between points

Proof. First we show the existence of a fixed point, then its uniqueness. Let $x_0 \in M$ and x_1, x_2, x_3, \ldots be as in the theorem. If $x_1 = x_0$, $\varphi(x_0) = x_0$ and so x_0 is fixed. If not, then $d(x_1, x_0)$ is not 0, and we start by showing that the points $\{x_n\}$ form a Cauchy sequence in M. To show this, we write

$$d(x_2, x_1) = d(\varphi(x_1), \varphi(x_0)) \le k d(x_1, x_0)$$

$$d(x_3, x_2) = d(\varphi(x_2), \varphi(x_1)) \le k d(x_2, x_1) \le k^2 d(x_1, x_0);$$

inductively, $d(x_{n+1}, x_n) \le k^n d(x_1, x_0)$. Also,

$$d(x_{n+p}, x_n) \le d(x_{n+p}, x_{n+p-1}) + d(x_{n+p-1}, x_{n+p-2}) + \dots + d(x_{n+1}, x_n)$$

by the triangle inequality, and so

$$d(x_{n+p}, x_n) \le (k^{n+p-1} + k^{n+p-2} + \dots + k^n) D(x_1, x_0)$$

But the geometric series $\sum_{i=0}^{\infty} k^i$ converges, since $0 \le k < 1$, and so it satisfies the Cauchy criterion for the series: given $\varepsilon > 0$, there is an N such that $k^{n+p-1} + \cdots + k^n < \frac{\varepsilon}{d(x_1,x_0)}$ if $n \ge N$ and p is arbitrary. Hence, $d(x_{n+p},x_n) < \varepsilon$ if $n \ge N$ with p arbitrary, and so $\{x_n\}$ is a Cauchy sequence.

By completeness of M, $\lim_{n\to\infty} x_n$ exists in M. Call this limit x_* ; i.e., $x_* = \lim_{n\to\infty} x_n$. We now show that φ is (uniformly) continuous. Given $\varepsilon > 0$, let $\delta = {\epsilon \choose k}$. Then $d(x,y) < \delta \Rightarrow d(\varphi(x), \varphi(y)) \le k d(x,y) < k \delta = \varepsilon$.

Consider, $x_{n+1} = \varphi(x_n)$; $x_{n+1} \to x_*$, and by the continuity of φ , $\varphi(x_n) \to \varphi(x_*)$. Thus, $x_* = \varphi(x_*)$, so x_* is fixed.

Finally, we prove the uniqueness of the fixed point x_* . Let y_* be another point, i.e., $\varphi(y_*) = y_*$. Then

$$d(x_*, y_*) = d(\varphi(x_*), \varphi(y_*)) \le k d(x_*, y_*)$$
 i.e., $(1 - k)d(x_*, y_*) \le 0$

By k < 1, and so (1-k) > 0, implying $d(x_*, y_*) = 0$, i.e., $x_* = y_*$, and thus the fixed point is unique. \Box