Thème: Surfaces minimales

Rappels

Les préliminaires ne sont utilisés que dans la partie I. Les parties II et III peuvent être traitées indépendamment de la partie I si l'on prend note des notations de Monge (I.4)) et de la redéfinition d'une application minimale (en gras, avant la partie II).

Préliminaires

On rappelle les résultats suivants, auxquels on fera référence par T1, T2, ou T3:

T1: Soient a < b des réels, X une partie compacte d'un espace vectoriel normé et f: $[a,b] \times X \to \mathbb{R}$ une application continue. L'application $G: [c,d] \to \mathbb{R}$ définie par :

$$G(y) = \int_{a}^{b} f(x, y) \mathrm{d}x$$

est continue.

T2: Soient a < b, c < d des réels, et $f: [a,b] \times [c,d] \to \mathbb{R}$ une application continue. On suppose 1 que f admet une dérivée partielle $\frac{\partial f}{\partial y}$ continue (en tant que fonction de deux variables bien entendu). L'application $G: X \to \mathbb{R}$ définie par :

$$G(y) = \int_{a}^{b} f(x, y) dx$$

est de classe C^1 sur [c,d] et

$$G'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) \, \mathrm{d}x$$

T3: Soient a < b, c < d des réels, et $f : [a,b] \times [c,d] \to \mathbb{R}$ une application continue. On a (ces expressions ont un sens d'après **T1**) :

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, \mathrm{d}y \right) \mathrm{d}x = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, \mathrm{d}x \right) \mathrm{d}y$$

Cette valeur commune sera notée

$$\iint_{[a,b]\times[c,d]} f(x,y) \,\mathrm{d}x\mathrm{d}y$$

^{1.} Noter que le domaine de définition de f n'est pas ouvert. Mais la notion de dérivée partielle en un point du bord est aisée à définir.

I. L'équation des surfaces minimales

Soient $\Delta = [a,b] \times [c,d]$ et $f: \Delta \to \mathbb{R}$ une application de classe 2 C^2 . On admet que l'aire du graphe de f « au-dessus de Δ » est donné par :

$$A(f) = \iint_{\Delta} \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \, \mathrm{d}x \, \mathrm{d}y$$

On suppose que f est minimale, c'est-à-dire que pour toute application $g:\Delta\to\mathbb{R}$ de classe C^2 qui coïncide avec f sur la frontière de Δ , on a :

$$A(f) \leqslant A(g)$$

On considère une application $h: \Delta \to \mathbb{R}$ de classe C^2 et nulle sur la frontière de Δ .

1. Montrer que pour tout $\varepsilon \in \mathbb{R}$,

$$A(f) \leqslant A(f + \varepsilon h)$$

2. On définit

$$\begin{array}{cccc} V & : & [a,b] \times [c,d] \times [-1,1] & \to & \mathbb{R} \\ & & (x,y,\varepsilon) & \mapsto & \sqrt{1 + \left(\frac{\partial f}{\partial x} + \varepsilon \frac{\partial h}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y} + \varepsilon \frac{\partial h}{\partial y}\right)^2}. \end{array}$$

et

$$H: [a,b] \times [-1,1] \rightarrow \mathbb{R}$$

$$(x,\varepsilon) \mapsto \int_{c}^{d} V(x,y,\varepsilon) \, \mathrm{d}y$$

Montrer que $\varepsilon \mapsto A(f + \varepsilon h)$ est de classe C^1 sur [-1,1], de dérivée

$$\varepsilon \mapsto \int_a^b \frac{\partial H}{\partial \varepsilon}(x, \varepsilon) \, \mathrm{d}x = \iint_{\Lambda} \frac{\partial V}{\partial \varepsilon}(x, y, \varepsilon) \, \mathrm{d}x \mathrm{d}y$$

3. Montrer que (chaque dérivée partielle est prise en (x, y)):

$$\iint_{\Delta} \frac{\frac{\partial f}{\partial x} \frac{\partial h}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial h}{\partial y}}{\sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}} \, dx dy = 0$$

4. On adopte les notations de Monge:

$$p = \frac{\partial f}{\partial x}(x, y), \quad q = \frac{\partial f}{\partial y}(x, y), \quad r = \frac{\partial^2 f}{\partial x^2}(x, y), \quad s = \frac{\partial^2 f}{\partial x \partial y}(x, y), \quad t = \frac{\partial^2 f}{\partial y^2}(x, y)$$

Déduire de ce qui précède :

$$\iint_{\Delta} h(x,y) \frac{(1+q^2)r - 2pqs + (1+p^2)t}{\sqrt{1+p^2+q^2}} \, dx dy = 0$$

^{2.} Même remarque.

5. On suppose qu'il existe $(x_0, y_0) \in \overset{\circ}{\Delta}$ tel que

$$((1+q^2)r - 2pqs + (1+p^2)t)(x_0, y_0) > 0$$

- (a) On note $\varphi : \mathbb{R} \to \mathbb{R}$ l'application définie par $\varphi(x) = e^{-1/x}$ si x > 0 et $\varphi(x) = 0$ si $x \le 0$. Montrer que φ est de classe C^2 .
- (b) Montrer qu'on peut choisir h telle que $h(x_0, y_0) > 0$ et, en tout point (x, y):

$$h(x,y)\frac{(1+q^2)r-2pqs+(1+p^2)t}{\sqrt{1+p^2+q^2}}\geqslant 0.$$

(c) En déduire que f vérifie :

(E)
$$(1+q^2)r - 2pqs + (1+p^2)t = 0$$

Cette équation est appelée équation des surfaces minimales. On montre réciproquement que $si\ f$ satisfait cette équation, alors f est minimale.

6. Le fait que *f* soit minimale se traduit donc par une condition locale, alors que la définition était globale. Pouvait-on l'anticiper (on attend ici une argumentation heuristique, pas une démonstration)?

On appellera désormais minimale une application continue f définie sur une partie Ω de \mathbb{R}^2 dont la restriction à $\overset{\circ}{\Omega}$ est de classe C^2 et satisfait l'équation des surfaces minimales (E).

II. Caténoïde

On s'intéresse ici aux surfaces minimales invariantes par rotation autour de l'axe Oz. Soient $a>0,\ \Omega=\{(x,y)\in\mathbb{R}^2;x^2+y^2\geqslant a^2\}$, et $f:\Omega\to\mathbb{R}$ continue, de classe C^2 sur $\overset{\circ}{\Omega}$. On définit, pour $r\in[a,+\infty[$ et $\theta\in\mathbb{R}$:

$$q(r, \theta) = f(r\cos(\theta), r\sin(\theta))$$

1. Exprimer $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ en fonction de $\frac{\partial g}{\partial r}$ et $\frac{\partial g}{\partial \theta}$.

On suppose dans la suite de cette partie que g est indépendante de θ . On écrira donc g(r) et g'(r) en lieu et place de $g(r,\theta)$ et $\frac{\partial g}{\partial r}(r,\theta)$.

- 2. Exprimer les dérivées partielles secondes de f en fonction de r, g et ses dérivées.
- 3. En déduire que f est minimale si et seulement si q vérifie :

$$\forall r > a, \ rg''(r) + g'(r)(1 + g'(r)^2) = 0$$

- 4. On pose $v(r) = g'(r)^2$. Quelle équation différentielle satisfait v?
- 5. On admet que les solutions sur $]a,+\infty[$ de cette équations sont de la forme $v(r)=\frac{b^2}{r^2-b^2},$ où $b\in[0,a].$ Quelles sont les fonctions minimales sur Ω telles que g soit indépendante de θ ?

III. Surface de Scherk

On cherche les solutions de l'équation des surfaces minimales de la forme f(x,y)=g(x)+h(y), où f et g sont deux applications de classe C^2 (définies chacune sur un intervalle).

- 1. Écrire l'équation des surfaces minimales pour une telle application.
- 2. Donner une solution non constante définie sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\times\left]-\frac{\pi}{2},\frac{\pi}{2}\right[.$

Question subsidiaire pour les artistes : Représenter une caténoïde et une surface de Scherk.