A comparative survey of symmetric and asymmetric key cryptography

Sourabh Chandra
Assistant Professor
Department of Computer Science
& Engineering,
Calcutta Institute of Technology
Kolkata, India
sourabh.chandra@gmail.com

B.Tech Student
Department of Computer Science
& Engineering,
Calcutta Institute of Technology
Kolkata, India
smtpaira@gmail.com

Smita Paira

Sk Safikul Alam
Assistant Professor
Department of Computer Science
& Engineering,
Calcutta Institute of Technology
Kolkata, India
mail2safikul@gmail.com

Dr.(Prof.) Goutam Sanyal
Professor
Department of Computer Science
& Engineering,
National Institute of Technology
Durgapur, India
nitgsanyal@gmail.com

Abstract- Network security is an important aspect of information sharing. Attempts have been made to remove various insecurities over internet. For this, many technological implementations and security policies have been developed. The amount of data, transferred, is not a factor. The basic factor is, how much security, the channel provides while transmitting data. Cryptography is one such technique, which allows secure data transmission without losing its confidentiality and integrity. Based on the key distribution, cryptography is further classified into two major types-Symmetric Key Cryptography and Asymmetric Key Cryptography. In this paper, we have surveyed the traditional algorithms, along with the proposed algorithms based on their pros and cons, related to Symmetric and Asymmetric Key Cryptography. We have also compared the importance of both these cryptographic techniques. The proposed algorithms proved to be highly efficient in their respective grounds but there are certain areas that remained open, related to these algorithms, and have not yet been thoroughly discussed. This paper also presents an appropriate future scope related to these open fields.

and cipher text. The original message is called the plain text and the encrypted version of the message is called the cipher text. The cipher is finally decrypted to get the original message. Cryptography is broadly classified into two main types. These are symmetric key encryption technique and asymmetric key encryption technique.

Keywords- Cryptography, Symmetric Key Cryptography, Asymmetric Key Cryptography, Public Key, Private Key, encryption, decryption, DPA,CPA, FPGA.

A. Symmetric Key Cryptography

I. INTRODUCTION

Symmetric key cryptography is also called secret-key or shared key cryptography. In this type of mechanism, the sender and receiver shares a common key for both encryption and decryption [42]. The method follows self-certification method i.e. the key is self-certified. The key needs to be shared through secret communication. If it is compromised then the encrypted message can be easily decrypted by the attacker. This type of cryptographic technique is required because it provides faster service without using many resources [43]. Various algorithms have been developed so far to describe symmetric key cryptography. These are AES, DES, 3DES, Blowfish.

Cryptography is the technique of writing secrets. This secures data and information from any internal or external attacks. Thus, it provides integrity, confidentiality, non-repudiation and authenticity to the secret data. The concept of cryptography is based on two main terms-plain text

Fig.1. Symmetric Key Cryptography

B. Asymmetric Key Cryptography

The asymmetric key cryptography is known as public key cryptography. In this technique, the sender uses a public key of the receiver for encryption and the receiver uses his private key to decrypt the message. The concept of self-certification is absent here instead digital signatures are used to certify the keys. This method is more convenient and provides better authentication as the privacy remains intact [43]. There are various algorithms to implement this encryption mechanism. These are RSA, Diffie-Hellman, ECC and Digital Signature Algorithm.

Fig.2. Asymmetric Key Cryptography

II. COMPARISON STUDY ON GENERAL SYMMETRIC KEY ALGORITHMS

The different algorithms for symmetric key cryptography are classified below.

Fig.3. Classification of Symmetric Key Algorithms

TABLE 1. COMPARISON TABLE FOR DIFFERENT SYMMETRIC KEY ALGORITHMS

3.6.4. 1	DEC	2DEC	AEG	DI CI
Method	DES	3DES	AES	Blowfish
Develop ed By	IBM and US gover nmen t in 1974	IBM in 1978	National Institute of Standards and Technolog y (NIST)	Bruce Schneier in 1993
Structure of algorith m	Fieste 1 Netw ork	Fiestel Networ k	Substitutio n and Permutatio n Network	Fiestel Network
Key Length	56 bits	Three 64-bit keys, with overall key length of 192 bits [47]	128-bit, 192-bit, 256-bit	Variable key length with maximu m key length of 448 bits
Block size	64	64	128	64
No. Of rounds	16	48	9	16
Vulnera bilities	brute force attack , man in the middl e attack	Some theoreti cal attacks	Side channel attacks	Not prone to attacks.
Efficienc y	Slow	Relativ ely slow in softwar e [44]	Efficient in both Software and Hardware	Highly efficient in Software

III. COMPARISON STUDY ON GENERAL ASYMMETRIC KEY ALGORITHMS

The different algorithms for asymmetric key cryptography are classified below.

Fig.4. Classification of Asymmetric Key Algorithms

TABLE 2. COMPARISON TABLE FOR DIFFERENT ASYMMETRIC KEY ALGORITHMS

Method	Rivest-Shamir-Adleman (RSA)
Features	General form is (d, e) where d
	represents the private key and e
	represents the public key. Both
	encryption and decryption uses the
	same function [44].
Advantages	It is difficult to produce the private
	key from the public key and
	modulus, thus it is highly secure.
	Computing the reverse of e is very
	difficult for the attackers [45].
Downsides	Complexity of generating the key
	[46]. The process is quite slow. It
	has not been proved that it is
	equivalent to the factorization
	method and factorising a large
	number is very difficult.
Security	Key length should be larger than
Solutions	1024 bits [45].
Method	Diffie-Hellman
Features	It is based on sharing the secret
	cryptographic key. This key is used
	for both encryption and decryption
	purposes. It relies on hardness of
	the discrete logarithms [53].
Advantages	As the symmetric key is of very
	short length (256 bits), the
	algorithm is quite fast [48].
Downsides	The longer the symmetric key is
	used the more attacks it will face
	[50]. More vulnerable to Man in the
	Middle attacks [49].

Solutions Development of Station-to-Station protocol defeats Man in the Middle attacks. The development of digital signature is also a solution to the attacks. Method Elliptical Curve Cryptography (ECC) Features It computes the keys through elliptic curve equations [51]. Advantages It can yield security using a 164 bit key and is more advantageous than RSA and Diffie Hellman algorithms [51]. It consumes less power and provides better utilities to batteries. Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Digital Signature Algorithm (ECDSA) [53]. The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Verification software is necessary. Digital certificates should be bought from trusted authorities.	Security	Frequent key changing is essential.
method Elliptical Curve Cryptography (ECC) Features It computes the keys through elliptic curve equations [51]. Advantages It can yield security using a 164 bit key and is more advantageous than RSA and Diffie Hellman algorithms [51]. It consumes less power and provides better utilities to batteries. Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Digital Signature Algorithm (ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Verification software is necessary. Digital certificates should be bought		
attacks. The development of digital signature is also a solution to the attacks. Method Elliptical Curve Cryptography (ECC) Features It computes the keys through elliptic curve equations [51]. Advantages It can yield security using a 164 bit key and is more advantageous than RSA and Diffie Hellman algorithms [51]. It consumes less power and provides better utilities to batteries. Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Digital Signature Algorithm (ECDSA) [53]. The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Verification software is necessary. Digital certificates should be bought		
Signature is also a solution to the attacks.		
Method Elliptical Curve Cryptography (ECC) Features It computes the keys through elliptic curve equations [51]. Advantages It can yield security using a 164 bit key and is more advantageous than RSA and Diffie Hellman algorithms [51]. It consumes less power and provides better utilities to batteries. Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Verification software is necessary. Digital certificates should be bought		
Method Elliptical Curve Cryptography (ECC) Features It computes the keys through elliptic curve equations [51]. Advantages It can yield security using a 164 bit key and is more advantageous than RSA and Diffie Hellman algorithms [51]. It consumes less power and provides better utilities to batteries. Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Digital Signature Algorithm (ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Verification software is necessary. Digital certificates should be bought		
Features It computes the keys through elliptic curve equations [51]. Advantages It can yield security using a 164 bit key and is more advantageous than RSA and Diffie Hellman algorithms [51]. It consumes less power and provides better utilities to batteries. Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Verification software is necessary. Digital certificates should be bought		utuens.
Features It computes the keys through elliptic curve equations [51]. Advantages It can yield security using a 164 bit key and is more advantageous than RSA and Diffie Hellman algorithms [51]. It consumes less power and provides better utilities to batteries. Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Verification software is necessary. Digital certificates should be bought	Method	Elliptical Curve Cryptography
It can yield security using a 164 bit key and is more advantageous than RSA and Diffie Hellman algorithms [51]. It consumes less power and provides better utilities to batteries. Downsides		(ECC)
Advantages It can yield security using a 164 bit key and is more advantageous than RSA and Diffie Hellman algorithms [51]. It consumes less power and provides better utilities to batteries. Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53]. The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Downsides Downsides Downsides Verification software is necessary. Digital certificates should be bought	Features	
key and is more advantageous than RSA and Diffie Hellman algorithms [51]. It consumes less power and provides better utilities to batteries. Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Verification software is necessary. Digital certificates should be bought		
RSA and Diffie Hellman algorithms [51]. It consumes less power and provides better utilities to batteries. Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Security Solutions Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53]. The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non- repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought	Advantages	
[51]. It consumes less power and provides better utilities to batteries. Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Security Solutions Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53]. The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		
Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Digital Signature Algorithm (ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		
Downsides It increases the size of encrypted message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53]. The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		
message and is more complex and difficult to implement, compared to RSA [52]. Security Solutions Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		
difficult to implement, compared to RSA [52]. Security Solutions Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53]. The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought	Downsides	It increases the size of encrypted
difficult to implement, compared to RSA [52]. Security Solutions Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53]. The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		message and is more complex and
RSA [52]. Security Solutions Digital Signature Algorithm (ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		difficult to implement, compared to
Security Solutions Introduction of Elliptic Curve Digital Signature Algorithm (ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non- repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		RSA [52].
Solutions Digital Signature Algorithm (ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought	Security	
(ECDSA) [53].The Authenticated key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		
key agreement protocol, ECMQV protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		(ECDSA) [53]. The Authenticated
protects against Man-in-the-Middle attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		key agreement protocol ECMOV
attacks. Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		
Method Digital Signature Algorithm (DSA) Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		
Features It consists of a pair of large numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Security Solutions Verification software is necessary. Digital certificates should be bought	Method	
numbers, computed based on some algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Security Solutions Numbers, computed based on some algorithms are generated through private keys and are verified using public keys. It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55].		It consists of a pair of large
algorithms to authenticate data [54]. The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought	1 0000105	
The signatures are generated through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Security Solutions The signatures are generated through private keys and are provides non-repudiation and authenticity [55]. It secures the data against various attacks and is more advantageous than other asymmetric key algorithms. Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55].		
through private keys and are verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Security Solutions Verification software is necessary. Digital certificates should be bought		
Verified using public keys. Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Security Solutions Verification software is necessary. Digital certificates should be bought		
Advantages It is very fast and provides non-repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Security Solutions Verification software is necessary. Digital certificates should be bought		
repudiation and authenticity [55]. It secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought	Adventages	
secures the data against various attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought	Auvantages	
attacks like Man-in-the-Middle attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		
attacks and is more advantageous than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Verification software is necessary. Digital certificates should be bought		
than other asymmetric key algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Verification software is necessary. Solutions Digital certificates should be bought		
algorithms. Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		
Downsides Digital signatures have short life span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		
span. They are not compatible with each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought		
each other and thus complicate sharing [55]. Security Solutions Verification software is necessary. Digital certificates should be bought	Downsides	
sharing [55]. Security Solutions Security Solutions Solutions Sharing [55]. Verification software is necessary. Digital certificates should be bought		
Security Verification software is necessary. Solutions Digital certificates should be bought		
Solutions Digital certificates should be bought		C. 1
	Security	
from trusted authorities.	Solutions	

IV. COMPARISON STUDY OF NEWLY PROPOSED SYMMETRIC KEY ALGORITHMS

TABLE 3. COMPARISON TABLE FOR THE NEWLY PROPOSED SYMMETRIC KEY ALGORITHMS

Method	Algorithm against DPA attacks for both chips and
	Logic Circuits [12][13]
Characteristics	The model equations are first
	compared to that of CPA and
	then applied to AES and DES

	1 1/1
4.1	algorithms.
Advantages	It increases the robustness
	against the DPA attacks.
Pitfalls	Increasing the bus width will
	increase the number of keys.
	Hence, detection of correct
	key becomes difficult.
Implementations	Crypto chips and static logic
	circuits.
Method	Instruction Set Extensions for
	Symmetric Key algorithms
	[14]
Characteristics	It includes the codesign of
	hardware and software
	paradigms to achieve physical
	security, flexibility, portability
	and better performance with
	hardware implementations.
Advantages	It reduces execution time,
	program code size and
	increases the throughput.
Pitfalls	Embedded systems without
	any modified processor
	increases overhead, data
	transfer latency and other
	complexities.
Implementations	Medical databases, e-mails, e-
1	commerce, e-banking, etc.
	, ,
Method	Parallel hardware architecture
	for AES-GCM algorithm[15]
Characteristics	It optimizes a number of logic
	gates and then compares the
	performance of S-Boxes with
	ASIC 65 nm CMOS
Ī	
Advantages	technology.
Advantages	technology. It provides both authenticity
Advantages	technology.
Advantages	technology. It provides both authenticity and confidentiality
Advantages	It provides both authenticity and confidentiality simultaneously for sensitive
	technology. It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the
	It provides both authenticity and confidentiality simultaneously for sensitive data.
	technology. It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If
	technology. It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of
	technology. It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its
	technology. It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of
Pitfalls	technology. It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency.
Pitfalls	technology. It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and
Pitfalls	technology. It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software
Pitfalls Implementations	technology. It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and
Pitfalls Implementations	technology. It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18]
Pitfalls Implementations Method	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization
Pitfalls Implementations Method	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization process for chosen and known
Pitfalls Implementations Method Characteristics	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization process for chosen and known plain text attacks.
Pitfalls Implementations Method	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization process for chosen and known plain text attacks. It provides an efficient
Pitfalls Implementations Method Characteristics	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization process for chosen and known plain text attacks. It provides an efficient alternative against breakability
Pitfalls Implementations Method Characteristics	It provides both authenticity and confidentiality simultaneously for sensitive data. If the area effort increases, the overhead delay increases. If the critical path delay increases, the sub pipelining of the system cannot increase its frequency. Various hardware and software Fast encryption algorithm for multimedia (FEA-M) [16][18] It uses resynchronization process for chosen and known plain text attacks. It provides an efficient

	the algebraic structures used.
Implementations	Has various multimedia
	applications
Method	Key transfer protocol for
	secret sharing applications
	[17]
Characteristics	It uses various threshold and
	secret sharing schemes for key
	exchange. It highlights both
	message authentication and
4.1	conditional access.
Advantages	It allows the generation of
	different keys for the different
	set of receivers. It employs
	minimum computational
	requirements and does not
	depend on any mathematical assumptions.
Pitfalls	The process consumes much
1 1010113	time.
Implementations	Satellite, internet, cable
Implementations	networks, etc.
Method	Rekeying architecture based
	on Tree Parity Machine [19]
Characteristics	It uses TDMA with a single
	TPM unit. It implements both
	FPGA and ASIC realization
	using VHDL.
Advantages	It is cost effective, consumes
	less time with a limited
71.0.11	bandwidth and overhead.
Pitfalls	Key lifetime is short. It
	reduces the storage area by
	increasing the cycles for generating the output bit.
Implementations	Embedded system
Implementations	environments.
Method	Instruction Level distributed
	Processor (COBRA) [20]
Characteristics	It provides flexibility through
	reconfiguration. It maps and
	implements the algorithms
	using COBRA assembly
	language. Data is gathered
	using cycle counts.
Advantages	It provides both high speed
	processing and security. It
	provides an efficient
	implementation of a variety of
	block ciphers and can achieve
D:40-11	a through of 622 Mbps.
Pitfalls	The block ciphers to be tested
	should be of varying
Implementations	efficiency and performance.
Implementations	Various network encryption implementations like ATM.
	implementations like ATM.
[

Method Compression and Encryption scheme based on arithmetic coding and coupled chaotic systems [21][24] Characteristics It depends on zero-order arithmetic coding using bit streams generated by CCS PRBG. Algorithms are tested using text files. Advantages It is highly secure and is not vulnerable to attacks against arithmetic coding and plain texts. Pitfalls The zeroth order suffers about 6% over other techniques.	
coding and coupled chaotic systems [21][24] Characteristics It depends on zero-order arithmetic coding using bit streams generated by CCS PRBG. Algorithms are tested using text files. Advantages It is highly secure and is not vulnerable to attacks against arithmetic coding and plain texts. Pitfalls The zeroth order suffers about	
systems [21][24] Characteristics It depends on zero-order arithmetic coding using bit streams generated by CCS PRBG. Algorithms are tested using text files. Advantages It is highly secure and is not vulnerable to attacks against arithmetic coding and plain texts. Pitfalls The zeroth order suffers about	
Characteristics It depends on zero-order arithmetic coding using bit streams generated by CCS PRBG. Algorithms are tested using text files. Advantages It is highly secure and is not vulnerable to attacks against arithmetic coding and plain texts. Pitfalls The zeroth order suffers about	
arithmetic coding using bit streams generated by CCS PRBG. Algorithms are tested using text files. Advantages It is highly secure and is not vulnerable to attacks against arithmetic coding and plain texts. Pitfalls The zeroth order suffers about	
streams generated by CCS PRBG. Algorithms are tested using text files. Advantages It is highly secure and is not vulnerable to attacks against arithmetic coding and plain texts. Pitfalls The zeroth order suffers about	
PRBG. Algorithms are tested using text files. Advantages It is highly secure and is not vulnerable to attacks against arithmetic coding and plain texts. Pitfalls The zeroth order suffers about	
using text files. Advantages It is highly secure and is not vulnerable to attacks against arithmetic coding and plain texts. Pitfalls The zeroth order suffers about	
vulnerable to attacks against arithmetic coding and plain texts. Pitfalls The zeroth order suffers about	
arithmetic coding and plain texts. Pitfalls The zeroth order suffers about	
texts. Pitfalls The zeroth order suffers abou	
Pitfalls The zeroth order suffers abou	
6% Over other techniques	t
Implementations Various ad hoc networks.	
Method Operation Centred approach of	ıf
fault detection [22]	,1
Characteristics It enumerates the arithmetic	
and logical operations and	
then analyses the efficiency	
and hardware complexity	
using 11 symmetric ciphers.	
Advantages It can perform the analysis	
even if the error propagation i	
non-linear. Detection coverag	e
is 100% Pitfalls Analysis of multiple bit error	
is complicated.	
Implementations Ad Hoc networks, etc.	
Method Sharing Session Key	
component algorithm [25]	
Characteristics Messages are protected	
through radio links and are	
clear for network operator.	
The algorithm operates so lon	
the communication is disputed	1
to endanger public safely. Advantages It improves symmetric key	
encryption technique by	
providing non-repudiation and	d
end-to-end security to each	
individual in communication.	
Pitfalls Key Escrow Trust	
Organization cannot recover	
the session key. It has finite	
computing capacity and less	
power. Implementations Digital Mobile	
communications, E-commerce	e
Communications, E commerci	_
Method Symmetric key encryption	
algorithm based on 2-d	
geometry [26]	
Characteristics It includes both the properties	
of circle and circle centred	
angles. It provides high	

	confidentiality with less
Admentages	computational complexity.
Advantages	In every steps of encryption, it produces fixed size messages.
Pitfalls	Floating point operations limit
1 itialis	the size of block to encode.
	Hardware implementation is
	tricky.
Implementations	E-commerce, banking, stock
1	trading, etc.
Method	Method of Digital Signature
	based on combined symmetric
	key algorithm [27]
Characteristics	It depends on both symmetric
	and hardware technology. It
	uses timestamps as a factor of
	such symmetric key algorithms.
Advantages	The key is time variant and
Auvaniages	maintenance free. It deciphers
	faster and has a simple key
	management compared to
	asymmetric digital signature
	algorithms.
Pitfalls	The process is slight lengthy.
Implementations	Various transactions like e-
	commerce, etc
26.1.1	
Method	Hill-Shift-XOR encryption
	technique for image encryption[28]
Characteristics	Encryption is performed using
Characteristics	block wise XOR operations. It
	can operate in color, gray scale
	and binary images.
Advantages	It is reliable where
	cryptanalysis is quite difficult.
	It is robust.
Pitfalls	The technique is relatively
Touris de d'	slow.
Implementations	Digital data protection, copy
	protection, etc.
Method	DJSA Symmetric key
1/1011104	algorithm [29]
Characteristics	Unlike the MSA method [30]
	it uses a key matrix of size
	65536 and each cell stores 2
	character patterns.
Advantages	It provides high protection
	against Brute force attack and
	can encrypt a file of less than
Pitfalls	or equal to 2 MB.
ritians	If the file size is very big, the
Implementations	process becomes slow. If the file size is very big, the
implementations	process becomes slow.
	process occomes slow.
Í.	İ

Method	NJJSAA Symmetric key algorithm [31]
Characteristics	The process performs key exchange and XOR operations for both encryption and decryption.
Advantages	It is better than other general cryptographic algorithms. It can encrypt both large and small files.
Pitfalls	The process is slight lengthy.
Implementations	Government sectors, banks, database encryption, etc.
Method	DJMNA Symmetric key algorithm [32]
Characteristics	It combines both MGVC and DJSA methods. The order of these algorithms depends on the random matrices developed during the process.
Advantages	The encrypted message is very hard to decrypt using any Brute Force attack.
Pitfalls	The process is complex and lengthy.
Implementations	Password encryption, mobile network, ATM network, etc.
Method	Symmetric key based RFID authentication protocol [33]
Characteristics	It implements three protocols that use same block cipher by implementing same RF based hardware.
Advantages	This protocol improves the RFID system by providing security against various attacks at low computational cost.
Pitfalls	The process is lengthy.
Implementations	Communication networks, business houses, etc.
Method	Wireless Secret key generation algorithm in multiuser networks [34]
Characteristics	It works in multiuser networks and checks how such diversity affects secret key randomness.
Advantages	It increases the randomness performance and reduces the execution time.
Pitfalls	Update of secret key is necessary for proper security.
Implementations	Various wireless communication networks.
1	

	1
Method	Symmetric key encryption
	algorithm based on linear
	geometry[36]
Characteristics	Both substitution and
	transposition techniques are
	applied to secure a secret
	image over any unreliable
	communication. It generates a
	random matrix and shuffles
	the ciphered bytes among N
	bytes of secret files.
Advantages	Robust and potential to the
	security needs of digital
	images. Correlation value for
	both secret and encrypted
	image is one.
Pitfalls	
Implementations	Medical, commercial and
mpiementations	· ·
	military systems.
Method	Symmetric key encryption
	algorithm based on cyclic
	elliptic curve and chaotic
	system [37]
Characteristics	It provides authentication
Characteristics	using neural networks. It
	_
	performs the encryption for
	256-bit plain image to 256-bit
	cipher image using eight 32-
	bit registers. Based on
	piecewise non-linear chaotic
	map, the method generates
	pseudorandom bit sequences
	for round keys.
Advantages	Large key space, faster, good
	encryption effect and sensitive
	to small changes.
Pitfalls	Ÿ .
1 1110115	If the change in media data is
	quite smaller than the
	adjustable parameter ranging,
	then the algorithm fails.
Implementations	Various business
	requirements.
Method	Secure protocol using the
1/10/11/04	property of Quantum Wave
	Function [38]
Characteristics	
Characteristics	At a given time, the state of a
	particle is managed by
	position and momentum. The
	physical significance of a
	particular wave function
	depends on a linear vector
	space.
Advantages	It prevents attack on user's
114 141144505	password using quantum
Ì	computing efficiency. It

	prevents compromising passwords and can replace the bounded key length classical encryption algorithms.
Pitfalls	
Implementations	Various hardware implementations.

V. COMPARISON STUDY OF NEWLY PROPOSED ASYMMETRIC KEY ALGORITHMS

TABLE 4. COMPARISON TABLE FOR THE NEWLY PROPOSED ASYMMETRIC KEY ALGORITHMS

Method	Prime Number Generation[1]
Characteristics	Prime numbers are generated
	randomly from a large series
	using the divisibility tests.
Advantages	Scrambled messages using
	two prime factors become
	difficult to break. So, data
	remains highly secured.
Pitfalls	The bit length of the prime
	numbers should be pre
	determined. Generating big
	prime numbers is quite
	difficult.
Implementations	Money transfer, business
	transactions, diplomatic
	communications, books,
	audio, video, etc.
Method	Image security through
	asymmetric watermarking
	algorithm [2][3][4][5]
Characteristics	Embedding and detection are
	done separately using private
	and public key respectively. It
	is based on linear algebra.
Advantages	This algorithm is highly
	efficient as it provides a
	double layer security level for
	protecting digital data. It is
	simple and saves the
	computational cost.
Pitfalls	If a particular integer is big
	then the watermark is not
	detected to the original
-	encrypted images.
Implementations	Copy protection frameworks
	[12]
Method	Cryptanalysis using
	COPACOBANA[6]
Characteristics	It consists of 120 field
	programmable gate arrays. It
	can solve various
	computations without any
	mathematical breakthrough.

A 1	T. 1 . 1 . 1 . C D.C .
Advantages	It helps in faster RSA
	factorization and can secure
	ECC. It provides a cost
Di4Calla	effective service.
Pitfalls	To make the overall machine design cost effective, many
	small FPGA modules are
	designed. This requires extra
	space.
Implementations	Useful tool for parallel
Implementations	computational problems [13]
	Comparational proofering [15]
Method	Generation of a multimode
	multiplier [7]
Characteristics	The multimode multiplier
	consists of four phases and
	uses a series of right shifting
	and additions.
Advantages	The multimode multiplier
	consists of four phases and
	uses a series of right shifting
D: 0.11	and additions.
Pitfalls	The multimode multiplier
	wastes power if operated in
	AES mode. The power
I1	consumption is high.
Implementations	It can be applied to various polynomial fields and helps in
	matrix-vector multiplications.
	matrix-vector multiplications.
Method	Master-key-encryption-based
Method	Master-key-encryption-based multiple group key
Method	multiple group key
Method	
Method Characteristics	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to
	multiple group key management scheme (MKE- MGKM) [8]
	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to
Characteristics	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network.
	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple
Characteristics	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory
Characteristics Advantages	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys.
Characteristics	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is
Characteristics Advantages Pitfalls	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead.
Characteristics Advantages	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV
Characteristics Advantages Pitfalls	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead.
Characteristics Advantages Pitfalls Implementations	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks.
Characteristics Advantages Pitfalls	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key
Characteristics Advantages Pitfalls Implementations Method	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9]
Characteristics Advantages Pitfalls Implementations	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic
Characteristics Advantages Pitfalls Implementations Method	multiple group key management scheme (MKE- MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9]
Characteristics Advantages Pitfalls Implementations Method	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an
Characteristics Advantages Pitfalls Implementations Method Characteristics	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial.
Characteristics Advantages Pitfalls Implementations Method	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an
Characteristics Advantages Pitfalls Implementations Method Characteristics	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital
Characteristics Advantages Pitfalls Implementations Method Characteristics	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the
Characteristics Advantages Pitfalls Implementations Method Characteristics	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the construction of pirate keys,
Characteristics Advantages Pitfalls Implementations Method Characteristics Advantages	multiple group key management scheme (MKE-MGKM) [8] The MKE-MGKM is used to tackle various multicast groups existing in a single network. The MKE-MGKM is simple and requires less memory storage for the keys. Communication overhead is greater than storage overhead. Various broadcasting like TV and wireless mobile networks. Asymmetric Public Key Traitor Tracing Schemes [9] It uses a multiplicative cyclic group of very big prime order and then it evaluates an oblivious polynomial. It traces the traitor, in digital content, responsible for the construction of pirate keys, ensuring non-repudiation.

T 1	content distribution.
Implementations	Various entertainment devices
	like TV.
Method	Egiganhaum angruption
Characteristics	Feigenbaum encryption method of messages [10]
	It uses two pairs of
Characteristics	asymmetric private keys. It
	makes use of a logistic
	difference equation.
Advantages	It, specially the double F-
Auvantages	sequence coding, makes a
	better use of the encryption
	technique in the messages and
	can confuse the attacker who
	employs nearly the correct
	keys.
Pitfalls	The requirements are time
	consuming which cannot be
	satisfied by an efficient
	computer program.
Implementations	Various online communication
	mediums.
2.5.1.1	
Method	Asymmetric DNA algorithm
CI	[11]
Characteristics	It encrypts the plain text using
	the existing biological
	information from the DNA
	public databases. It is implemented in BioJava and
	Matlab
Advantages	It does not require several
7 id vantages	iterations for derivation of
	keys and the keys can be
	retrieved. It is more reliable
	and powerful than OTP DNA
	algorithm.
Pitfalls	The process is lengthy and
	kills the execution time.
Implementations	Researches in DNA
_	computations.
Method	Key assessment scheme for
	secure broadcasting [23]
Characteristics	The scheme employs ECC
	cryptographic algorithm. The
	number of encryption keys
	depends on the access control
A 1	policies.
Advantages	It is highly efficient. Storage
	of decryption keys in tamper
Ditfolla	resistance device is easier.
Pitfalls	Security solutions especially
	in case of smart cards are not
Implementations	cleared.
	TV systems, electronic subscription, etc.
	subscription, etc.

Method	Method for increasing security in RSA [35]
Characteristics	It eliminates the distribution of n large numbers whose factors become difficult to design using RSA algorithm.
Advantages	It protects the messages from the mathematical factorization attacks which the general RSA algorithm suffers from.
Pitfalls	It increases the time complexity.
Implementations	Various hardware and software
Method	Model based on Pretty Good Privacy (PGP) to secure E- Commerce through Asymmetric Key encryption technique [39]
Characteristics	It implements the RSA algorithm for encryption or decryption purposes. It is based on PGP and dual signature method.
Advantages	It provides security issues at various levels like transaction level, reply attacks, mutual authentication, Network and transport level, etc.
Pitfalls	
Implementations	Biometric system, Internet banking, ATM machine, Key exchange and Digital signature, etc.
Mathad	
Method	Technique based on Elliptical Curve Cryptography (ECC) through the implementation of hidden generator point in WSNs [40]
Characteristics	Curve Cryptography (ECC) through the implementation of hidden generator point in
	Curve Cryptography (ECC) through the implementation of hidden generator point in WSNs [40] Digits are extended beyond two bits for representing k, where k is any integer in prime field as the ECC is represented as T=k*G where G are the points on elliptic curve. The 192-bit values are stored in a 24*8 array. It provides better security against the physical node capture and man in the middle
Characteristics	Curve Cryptography (ECC) through the implementation of hidden generator point in WSNs [40] Digits are extended beyond two bits for representing k, where k is any integer in prime field as the ECC is represented as T=k*G where G are the points on elliptic curve. The 192-bit values are stored in a 24*8 array. It provides better security against the physical node

	1
Method	Hardware/software codesign
	of ECC for Resource
	constrained applications [41]
Characteristics	It helps in binary field
	multiplication in software. It
	also offers instruction set
	extensions and presented a
	coprocessor for binary
	multiplication.
Advantages	It is highly efficient in terms
	of performance and area.
Pitfalls	Nothing has been mentioned
	about power consumption.
Implementations	Brand protections, etc.

VI. FUTURE SCOPE

For efficient data transmission, cryptography is an ultimate solution. Many algorithms have developed so far, based on both Symmetric and Asymmetric key Cryptography. The algorithms are effective in ensuring data privacy, integrity, authenticity and non-repudiation. However, there are certain areas that still remain open. Ouantum cryptography is considered to be an excellent replacement for Diffie-Hellman algorithm as the data transferred through it highly secured. But it cannot provide protection against the classical bucket brigade attacks. Methods could be developed to overcome this problem. Scrambled messages using two prime factors provide high security to data. Methods could be generated to remove the difficulty of generating large prime numbers.

VII. CONCLUSION

Both Symmetric and Asymmetric Key algorithms are highly efficient in securing the transferred data over any communication medium. In this paper, we have highlighted the basic as well proposed algorithms related cryptographic techniques. In Symmetric Key Cryptography, a single key is for both encryption and decryption purposes. The sharing of this key becomes sometimes insecure. On the other hand, Asymmetric Key Cryptography uses two separate keys to prevent any unethical access to the data. The public key remains public and the private key is not shared. This technique ensures better security than the former. Moreover, the use of Digital Signatures in case of Asymmetric Cryptography provides high data confidentiality and non-repudiation. Yet, Symmetric Cryptography has many well known applications because of its simplicity.

REFERENCES

- [1] Arun Kejariwal, "Cryptic primes", *IEEE Potentials*, pp. 43-45, Feb./Mar. 2004, IEEE
- [2] Minoru Kuribayashi and Hatsukazu Tanaka, "Fingerprinting Protocol for Images Based on Additive Homomorphic Property", *IEEE Transactions on Image Processing*, vol. 14, no. 12, pp. 2129-2139, Dec. 2005, IEEE
- [3] Subramania Sudharsanan, "Shared Key Encryption of JPEG Color Images", *IEEE Transactions on Consumer Electronics*, vol. 51, no. 4, pp. 1204-1211, Nov. 2005, IEEE
- [4] G. Boato, N. Conci, and V. Conotter, F.G.B. De Natale, and C. Fontanari, "Multimedia asymmetric watermarking and encryption", Electronics Letters, vol. 44 no. 9, April 2008, IEEE
- [5] Boato, G., De Natale, F.G.B., and Fontanari, C.: 'An improved asymmetric watermarking scheme suitable for copy protection', *IEEE Trans. Signal Process.*, 54 (7), pp. 2833–2834, 2006, IEEE
- [6] Tim Gu"neysu, Timo Kasper, Martin Novotn_y, Christof Paar, and Andy Rupp, "Cryptanalysis with COPACOBANA", *IEEE Transactions on Computers*, vol. 57, no. 11, pp. 1498-1513, Nov. 2008, IEEE
- [7] Chen-Hsing Wang, Chieh-Lin Chuang, and Cheng-Wen Wu, "An Efficient Multimode Multiplier Supporting AES and Fundamental Operations of Public-Key Cryptosystems", *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 18, no. 4, pp. 553-563, April 2010, IEEE
- [8] Min-Ho Park, Young-Hoon Park, Han-You Jeong, and Seung-Woo Seo, "Key Management for Multiple Multicast Groups in Wireless Networks", *IEEE Transactions on Mobile Computing*, vol. 12, no. 9, pp. 1712-1723, Sept. 2013, IEEE
- [9] Aggelos Kiayias and Moti Yung, "Breaking and Repairing Asymmetric Public-Key Traitor Tracing", pp.1-16, IEEE
- [10] Robert M. Bevensee, "Feigenbaum encryption of messages", *IEEE Potentials*, pp. 39-41, Feb. /Mar. 2001, IEEE
- [11] Radu Terec, Mircea-Florin Vaida, Lenuta Alboaie, and Ligia Chiorean, "DNA Security using Symmetric and Asymmetric Cryptography", *The Society of Digital Information and Wireless Communications*, vol-1, no-1, pp. 34-51, 2011, IEEE

- [12] Massimo Alioto, Massimo Poli, and Santina Rocchi, "Differential Power Analysis Attacks to Precharged Buses: A General Analysis for Symmetric-Key Cryptographic Algorithms", *IEEE Transactions on Dependable and Secure Computing*, vol. 7, no. 3, pp. 226-239, July-Sept. 2010, IEEE
- [13] Massimo Alioto, Massimo Poli, and Santina Rocchi, "A General Power Model of Differential Power Analysis Attacks to Static Logic Circuits", *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 18, no. 5, pp. 711-724, May 2010, IEEE
- [14] Sean O'Melia and Adam J. Elbirt, "Enhancing the Performance of Symmetric-Key Cryptography via Instruction Set Extensions", *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 18, no. 11, pp. 1505-1518, Nov. 2010, IEEE
- [15] Mehran Mozaffari-Kermani and Arash Reyhani-Masoleh, "Efficient and High-Performance Parallel Hardware Architectures for the AES-GCM", *IEEE Transactions on Computers*, vol. 61, no. 8, pp. 1165-1178, Aug. 2012, IEEE
- [16] Miodrag J. Mihaljevic', Ryuji Kohno, "Cryptanalysis of Fast Encryption Algorithm for Multimedia FEA-M", *IEEE Communications Letters*, vol. 6, no. 9, pp. 382-384, Sept. 2002, IEEE
- [17] Ahmet M. Eskicioglu and Edward J. Delp, "A KEY TRANSPORT PROTOCOL BASED ON SECRET SHARING APPLICATIONS TO INFORMATION SECURITY", *IEEE Transactions* on Consumer Electronics, vol. 48, no. 4, pp. 816-824, Nov. 2002, IEEE
- [18] Miodrag J. Mihaljevic, "On Vulnerabilities and Improvements of Fast Encryption Algorithm for Multimedia FEA-M", *IEEE Transactions on Consumer Electronics*, vol. 49, no. 4, pp. 1199-1207, Nov. 2003, IEEE
- [19] Markus Volkmer and Sebastian Wallner, "Tree Parity Machine Rekeying Architectures", *IEEE Transactions on Computers*, vol. 54, no. 4, pp.421-427, April 2005, IEEE
- [20] Adam J. Elbirt and Christof Paar, "An Instruction-Level Distributed Processor for Symmetric-Key Cryptography", *IEEE Transactions on Parallel and Distributed Systems*, vol. 16, no. 5, pp. 468-480, May 2005, IEEE
- [21] Ranjan Bose and Saumitr Pathak, "A Novel Compression and Encryption Scheme Using Variable Model Arithmetic Coding and Coupled

- Chaotic System", *IEEE Transactions on Circuits and Systems—I: Regular Papers*, vol. 53, no. 4, pp. 848-857, April 2006, IEEE
- [22] Luca Breveglieri, Israel Koren, and Paolo Maistri, "An Operation-Centered Approach to Fault Detection in Symmetric Cryptography Ciphers", *IEEE Transactions on Computers*, vol. 56, no. 5, pp. 635-649, May 2007, IEEE
- [23] Elisa Bertino, Ning Shang, and Samuel S. Wagstaff Jr., "An Efficient Time-Bound Hierarchical Key Management Scheme for Secure Broadcasting", *IEEE Transactions on Dependable and Secure Computing*, vol. 5, no. 2, pp. 65-70, April-June 2008, IEEE
- [24] Chung-Ming Ou," Design of Block Ciphers by Simple Chaotic Functions", *IEEE Computational Intelligence Magazine*, pp.54-59, May 2008, IEEE
- [25] Hsiao-Kuang Wu, Shu-ching Yang, and Yung-Tai Lin, "The Sharing Session Key Component (SSKC) Algorithm for End-to-End Secure Wireless Communication", pp. 242-250, IEEE
- [26] Mohammad Jabed Morshed Chowdhury and Tapas Pal, "A New Symmetric Key Encryption Algorithm based on 2-d Geometry", 2009 International Conference on Electronic Computer Technology, pp. 541-544, IEEE
- [27] Wu Suyan, Li Wenbo, and Hu Xiangyi, "Study of Digital Signature with Encryption Based on Combined Symmetric Key", IEEE
- [28] Bibhudendra Acharya, Sambit Kumar Shukla, Saroj Kumar Panigrahy, Sarat Kumar Patra, and Ganapati Panda, "H-S-X Cryptosystem and Its Application to Image Encryption", 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, pp.720-724, IEEE
- [29] Dripto Chatterjee, Joyshree Nath, Suvadeep Dasgupta, and Asoke Nath, "A new Symmetric key Cryptography Algorithm using extended MSA method: DJSA symmetric key algorithm", 2011 International Conference on Communication Systems and Network Technologies, pp. 89-94, IEEE
- [30] A.Nath, S.Ghosh, and M.A.Mallik, "Symmetric key cryptography using random key generator", *Proceedings of International conference on SAM-2010 held at Las Vegas(USA)* 12-15 July, 2010, vol-2,pp. 239- 244
- [31] Neeraj Khanna, Joyshree Nath, Joel James, Amlan Chakrabarti, Sayantan Chakraborty, and

- Asoke Nath, "New Symmetric key Cryptographic algorithm using combined bit manipulation and MSA encryption algorithm: NJJSAA symmetric key algorithm", 2011 International Conference on Communication Systems and Network Technologies, pp. 125-130, IEEE
- [32] Debanjan Das, Megholova Mukherjee, Neha Choudhary, Asoke Nath, and Joyshree Nath, "An Integrated Symmetric key Cryptography Algorithm using Generalised modified Vernam Cipher method and DJSA method: DJMNA symmetric key algorithm", 2011 World Congress on Information and Communication Technologies, pp. 1199-1204, IEEE
- [33] Guangyu Zhu and Gul N. Khan, "SYMMETRIC KEY BASED RFID AUTHENTICATION PROTOCOL WITH A SECURE KEY-UPDATING SCHEME", 2013 26th IEEE Canadian Conference of Electrical And Computer Engineering (CCECE), IEEE
- [34] Seon Yeob Baek and Jongwook Park, "A Study on Wireless Secret Key Randomness in Multiuser Networks", *ICTC 2013*, pp. 1048-1052, IEEE
- [35] Rohit Minni, Kaushal Sultania, Saurabh Mishra, and Prof Durai Raj Vincent, "An Algorithm to Enhance Security in RSA", 4th ICCCNT 2013, pp. 1-4, IEEE
- [36] Prabir Kr. Naskar, Ayan Chaudhuri, and Atal Chaudhuri, "A Secure Symmetric Image Encryption Based on Linear Geometry", 2014 Applications and Innovations in Mobile Computing (AIMoC), pp. 67-74, IEEE
- [37] Ankita Baheti, Lokesh Singh, and Asif Ullah Khan, "Proposed Method for Multimedia Data Security Using Cyclic Elliptic Curve, Chaotic System and Authentication using Neural Network", 2014 Fourth International Conference on Communication Systems and Network Technologies", pp. 664-668,IEEE
- [38] Wafa Elmannai, Khaled Elleithy, Varun Pande, and Elham Geddeda, "Quantum Security using Property of a Quantum Wave Function", IEEE
- [39] Ankur Chaudhary, Khaleel Ahmad, and M.A. Rizvi, "E-commerce Security Through Asymmetric Key Algorithm", 2014 Fourth International

- Conference on Communication Systems and Network Technologies, pp.776-781, IEEE
- [40] Ravi Kishore Kodali, "ECC with Hidden Generator Point in WSNs", 2014 IEEE Region 10 Symposium, pp. 131-136, IEEE
- [41] Andrea Höller, Norbert Druml, Christian Kreiner, Christian Steger, and Tomaz Felicijan, "Hardware/Software Co-Design of Elliptic-Curve Cryptography for Resource-Constrained Applications", *DAC '14 June 01 05 2014*, IEEE
- [42]www.webopedia.com/TERM/S/symmetric_key cryptography.html
- [43]voices.yahoo.com/comparing-symmetric-asymmetric-key-encryption-6329400.html
- [44]www.cs.usfca.edu/~brooks/S04classes/cs480/le ctures/algs.pdf
- [45]www.encryptionanddecryption.com/algorithms/asymmetric algorithms.html
- [46]scialert.net/fulltext/?doi=itj.2013.1818.1824
- [47] www.vocal.com/cryptography/tdes/
- [48]home.cyber.ee/ahtbu/CDS2011/SandraNetsajev aSlides.doc
- [49]searchsecurity.techtarget.com/definition/Diffie-Hellman-key-exchange
- [50]learningnetwork.cisco.com/servlet/.../WP_Pal mgren_DH.pdf
- [51]searchsecurity.techtarget.com/definition/elliptic al-curve-cryptography
- [52]www.ehow.com/info_12226350_advantages-disadvantages-elliptic-curve-cryptography-wireless-security.html
- [53]vanilla47.com/PDFs/Cryptography/Miscellene a/Eliptic%20Curve%20Cryptography/A_tutorial_of _elliptic_curve_cryptography.pdf
- [54]searchsecurity.techtarget.com/definition/Digital -Signature-Standard
- [55] lerablog.org/technology/datasecurity/advantages-and-disadvantages-of-digitalsignatures/