Analysis of electric power and energy systems

Lecture 8: Transient and dynamic stability

Louis Wehenkel L.Wehenkel@uliege.be

What will we learn today?

- Swing dynamics, loss of synchronism, and transient (in)stability
- Dynamic stability and interarea oscillations
- Cascading phenomena

This lecture expands on Chapter 11 from Ned Mohan's book.

First-swing transient (in)stability problem

One-Machine-Infinite-Bus system (OMIB)

FIGURE 11.1 Simple one-generator system connected to an infinite bus.

See Figure (a):

- On the left, a synchronous generator driven by a turbine providing mechanical power P_m , and connected via a up-step transformer to the grid to deliver its electrical power P_e (it is called the machine).
- On the right of Fig (a), a very large system operating at synchronous frequency (it is called the infinite bus) and imposing the voltage $V_B \angle 0$.
- ullet A double-circuit line (twice X_L in parallel) connecting the two parts.

Electric model of the OMIB system

FIGURE 11.1 Simple one-generator system connected to an infinite bus.

See Figure (b):

- The machine is electrically represented as an ideal voltage source ($E' \angle \delta$) behind a transient reactance X'_d .
- Active power losses in the step-up transformer are neglected, and the transformer is simply modeled as a series reactance X_t .
- ullet The two parallel circuits of the line are assumed of equal reactance X_L and their resistances and capacitances are neglected.
- ullet The losses of the electro-mechanical conversion $P_m o P_e$ are neglected.

The typical scenario of transient stability studies

- Initially the machine is operating in steady state corresponding to an angle δ_0 defined by the "Pre-fault" electric power characteristic.
- At t_0 , a short-circuit appears on one of the two circuits of the line, resulting in a sudden decrease of the electric. power P_e delivered by the machine, according to the "During-fault" curve. The machine accelerates, because now $P_e < P_m$, hence its rotating speed ω_m and its angle δ start to increase.
- At $t_1>t_0$, the short-circuit is cleared by breakers opening the circuit at its two ends, resulting in an increase of the electric power P_e , according to the "Post-fault" curve. This typically leads to a deceleration, but the speed ω_m is above the synhronous speed, the angle continues to increase.

Remarks and simplifying assumptions

• The (active) electrical power delivered by the machine is given by

$$P_e = rac{E'V_B}{X_T}\sin\delta$$

where X_T and V_B denote the reactance and voltage seen by $E' \angle \delta$.

- The machine is rotating at the mechanical speed ω_m (rad/s), and in the initial steady state this corresponds to the synchronous speed.
- A power flow solution assuming a PV or a PQ node at the generator HV bus, provides \bar{V}_1 from which we can compute E' and δ in steady state.
- P_m in steady state is set to the active power initially produced by the machine.
- Typically, a line-fault in EHV systems is cleared in less than 100ms, a study period of 1-2 seconds is often sufficient to check stability/instability.
- We assume here that P_m and E^\prime can be considered as constant during the study period, but governor and excitation systems tend to improve stability.

Derivation of the swing equations

Accelerating and decelerating torques acting on the mechanical speed

$$J_m rac{d^2 \delta_m}{dt^2} = T_m - T_e$$

where J_m is the moment of inertia.

• In terms of powers we have

$$\omega_m J_m rac{d^2 \delta_m}{dt^2} = P_m - P_e$$

• Converting to electrical angles δ and electrical speeds ω , and observing that in practice $\omega \approx \omega_s$, we obtain

$$Mrac{d^2\delta}{dt^2}=P_m-P_e$$

(where $M=2H/\omega_s$, see reference book for derivations).

ullet NB: typically $H \in [1-10]$ seconds in machine MVA-base.

Typical swing-curves computed by time-domain simulation

The equal area criterion (forward swing)

Kinetic energy gained in the 'During-fault' acceleration period

$$A=\int_{\delta_0}^{\delta_c}(P_m-P_e)d\delta$$

The kinetic energy lost in the 'Post-fault' deceleration period

$$B=\int_{\delta_c}^{\delta_m}(P_e-P_m)d\delta$$

• Condition A=B, correponds to $\omega_m=\omega_s$ while $P_e(\delta_m)>P_m$: a maximum angle is reached, and subsequently the system swings-back.

The equal area criterion (back swing)

Kinetic energy lost in the back-swing deceleration period

$$C=\int_{\delta_m}^{\delta_1}(P_m-P_e)d\delta$$

• The kinetic energy gained in the back-swing acceleration period

$$D=\int_{\delta_1}^{\delta_2}(P_e-P_m)d\delta$$

• There always exists a δ_2 such that C=D. After that, the angle increases again until δ_m , and decreases again until δ_2 etc. (There is no damping...)

The notion of critical clearing time

- Increasing the time t_c to clear the fault increases the clearing angle δ_c and hence area A. Therefore δ_m will also increase to have area B increase as well so as to compensate the new value of A.
- Once δ_{\max} is reached, it is not possible to compensate for a further increase in δ_c . This corresponds to the critical fault-clearing angle.
- The time needed in the during-fault configuration to reach this critical clearing angle is called the Critical Clearing Time (CCT).
- One shows that with our simple model, if $t_1-t_0 < CCT$ the system is stable, and otherwise unstable.
- In practice there are several sources of damping helping further out.

Illustration of CCT values (example of slide 7)

Discussion

- Multi-machine systems and load models
 - Machines that are located closer to the fault will accelerate more during the fault
 - Static loads as impedances, dynamic loads as induction motors, HVDC special models
- Effect of voltage and mechanical power controls and damping
 - Typically favorable, because they want voltage and speed to be close to nominal
- Effect of fault-type, location, and clearing scheme
 - The faster fault clearing, the better; fast line reclosing can be useful
 - o Three-phase short-circuits worse than single phase, the closer to the generator the worse
- Effect of increasing the distance towards the rest of the system generators
 - The longer the distance of a power plant from the rest of the system, the more problematic from the viewpoint of transient instability.
 - Series compensation and/or shunt SVCs may help a lot
- Emergency control and other stability enhancements
 - Generator tripping
 - Fast mechanical power reduction, or electric braking

Inter-area instabilities and undamped oscillations

Read section 11.4 from reference book

Figures on the next slide are taken from: CIGRE 2000, Paper No 38-113, Analysis and Damping of Inter-Area Oscillations in the UCTE/CENTREL Power System, H. Breulmann, et al

CIGRE 2000, Paper No 38-113

Fig. 2 Inter-Area Oscillation after Power Plant Outage in Spain, 900MW

Fig. 4 Simulation of Power Plant Outage in Spain, 900 MW

Fig. 3 Inter-Area Oscillation after Load Outage in Spain, 487 MW

Illustration of cascading phenomena

Example

At t=0s: Loss of a corridor of 400kV lines

- ⇒ Overload, then tripping of three connexions :
 - towards Zone 7 (225 kV): 150 s
 - towards Zone 8 (225 kV): 150 s
 - towards Zone 11 (225 kV): 150 s
- ⇒ Loss of generators (total of 2500MVA lost):
 - Two thermal plants on undervoltage protection: 155 s
 - Three hydro plants on overspeed protection: 155 s
- ⇒ Overload, then tripping of the connexion towards Zone 10 (225 kV) : 160 s
- ⇒ Load shedding in zones 7, 8 and 11

Example (visual)

Likely impact of the energy transition

A think tank

- Less synchronous generators in operation at the transmission level
- Duck curve
- Higher variability of flows and flow-directions at the transmission level
- Tech opportunities

References

• Mohan, Ned. Electric power systems: a first course. John Wiley & Sons, 2012.

The end.