General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-CR-147606) RESULTS OF TEST MA22 IN THE NASA/Larc 31-INCH CFHT ON AN 0.040-SCALE MODEL (32-0) OF THE SPACE SHUTTLE CONFIGURATION 3 TO DETERMINE FCS JET FLOW FIELD INTERACTION. VOIUME 3 (Chrysler N76-27331 HC\$21.25

Unclas G3/18 41865

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER HOUSTON, TEXAS

DATA MANagement services

DMS-DR-2267
NASA CR-147,606
VOLUME 3 OF 4
RESULTS OF TEST MA22 IN THE NASA/Larc 31-INCH CFHT
ON AN 0.010-SCALE MODEL (32-0) OF THE
SPACE SHUTTLE CONFIGURATION 3 TO DETERMINE
RCS JET FLOW FIELD INTERACTION

by

D. B. Kanipe Engineering Analysis Division Johnson Space Center

Prepared under NASA Contract Number NAS9-13247

by

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number:

Larc CFHT 118

NASA Series Number: Model Number: MA22 32-0

Test Dates:

May 6, 1975 through June 3, 1975

Occupancy Hours:

168

FACILITY COORDINATOR:

Bernard Spencer, Jr. Mail Stop 411 Langley Research Center Langley Station Hampton, Va. 23665

Phone: (804) 827-3911

PROJECT ENGINEER:

Tom Blackstock Mail Stop 408 Langley Research Center Langley Station Hampton, Va. 23665

Phone: (804) 827-3984

AERODYNAMICS ANALYSIS ENGINEER:

D. B. Kanipe Mail Code EX32 Engineering Analysis Division Johnson Space Center Houston, Texas 77058

Phone: (713) 483-4701

DATA MANAGEMENT SERVICES:

Prepared by:

Liaison--J. W. Ball

Operations--G. W. Klug

Reviewed by:

D. E. Poucher

Approved:

L. Glynn Manager

Data Operations

Concurrence:

N. D. Kemp, Manager

Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

RESULTS OF TEST MA22 IN THE NASA/LaRC 31-INCH CFHT

ON AN 0.010-SCALE MODEL (32-0) OF THE

SPACE SHUTTLE CONFIGURATION 3 TO DETERMINE

RCS JET FLOW FIELD INTERACTION

bν

D. B. Kanipe Engineering Analysis Division Johnson Space Center

ABSTRACT

Test MA22 was conducted in the Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel from May 6, 1975 through June 3, 1975. The primary objectives of this test were the following: 1) to study the ability of the wind tunnel to repeat, on a run-to-run basis, data taken for identical configurations to determine if errors in repeatability could have a significant effect on jet interaction data, 2) to determine the effect of model heating on jet interaction, 3) to investigate the effects of elevon and body flap deflections on RCS jet interaction, 4) to determine if the effects from jets fired separately along different axes can be added to equal the effects of the jets fired simultaneously (super position effects), 5) to study multiple jet effects, and 6) to investigate area ratio effects, i.e., the effect on jet interaction measurements of using nozzles with different area ratios in the same location. The model used in the test was a .010-scale model of the Space Shuttle Orbiter Configu-

ABSTRACT (Concluded)

ration 3. The test was conducted at Mach 10.3 and a dynamic pressure of 150 psf. RCS chamber pressure was varied to simulate free flight dynamic pressures of 5, 7.5, 10, and 20 psf.

TABLE OF CONTENTS

				**.	en e		Page
ABSTRACT			4.				iii
INDEX OF M	DDEL FIGURES	5				• 1 - 1	2
INDEX OF D	ATA FIGURES						3
NOMENCLATU	RE	* <u>.</u>					12
REMARKS	· .						18
CONFIGURAT	IONS INVEST	GATED		• .	•		79
INSTRUMENT	ATION						20
TEST FACIL	ITY DESCRIP	rion			٠.		21
DATA REDUC	TION						22
REFERENCES							25
TABLES							
I.	TEST CONDI	rions					26
II.	DATA SET/R	UN NUMBER C	OLLATION :	SUMMARY	41.		27
III.	MODEL DIME	NSIONAL DAT	Α				47
IV.	SUMMARY OF	NOZZLE NOM	IENCLATURE		•		78
٧.	SIMULATION	PARAMETERS	;				80
VI.	THRUST COE	FFICIENT FA	CTORS				81
VII.	WING TEMPE	RATURES					82
FIGURES							
MODEL							84
DATA	VOLUME 7 (VOLUME 2 (VOLUME 3 (Figures 4- Figures 44- Figures 78-	43) 77) 95)				91
APPENDIX	ATEN SOUDCE	DATA (VOI	DME A				

INDEX OF MODEL FIGURES

igure		the state of the s	Page
1.	Axis	systems.	84
2.	Model	sketches.	
	a.	Orbiter Configuration.	85
	b.	RCS Plenum Nozzle Block Installation.	86
	. C.	RCS Nozzle Adapter.	87
	d.	Model Nozzle Block Configurations.	88
3.	Model	photographs.	
	a.	Orbiter Installation Side View.	89
	b.	Side View of Nozzle Assembly Installed in Tunnel.	90

£])

INDEX OF DATA FIGURES

FIGURE NUMBER	TITLE	SCHEDULE OF COEFFICIENTS PLOTTED	CONDITIONS VARYING	PAGES
VCLUME	<u>1</u>			
4	JET OFF AERO, ELEVON = 0, BDFLAP = 0, BETA = 0	А	CONFIG.	7-6
5	JET OFF AERO, ELEVON = 0, BDFLAP = 0, BETA = 0	Α	CONFIG.	7-12
6	JET OFF AERO, ELEVON = 0, BDFLAP = 0, BETA = 0	A	CONFIG.	13-18
7	JET OFF AERO, ELEVON = 0, BDFLAP = 0, BETA = 0	\mathbf{A}°	CONFIG.	19-24
8	JET OFF AERO, ELEVON = -30, BDFLAP = 0, BETA=0	Α .	CONFIG.	25-30
9	JET OFF AERO, ELEVON = 10, BDFLAP = -14.25, BETA = 0	A	CONFIG.	31-36
10	JET OFF AERO, ELEVON = 10, BDFLAP = 13.75, BETA = 0	Α	CONFIG.	37-42
11	JET OFF AERO, ELEVON = 10, BDFLAP = 0, BETA = 0	Α	CONFIG.	43-48
12	JET OFF AERO, ELEVON = 0, BDFLAP = -14.25, BETA = 0	A	CONFIG.	49-54
13	JET OFF AERO, ELEVON = 0, BDFLAP = 13.75, BETA = 0	A	CONFIG.	55-60
14	JET OFF AERO, ELEVON = -30, BDFLAP = -14.25, BETA = 0	Α	CONFIG.	61-66
15	JET OFF AERO, ELEVON = 0, BDFLAP = 0, BETA = 3	Α	CONFIG.	67-72
16	JET OFF AERO, ELEVON = 0, BDFLAP = 0, BETA = -3	A	CONFIG.	73-78

ω

FIGURE NUMBER	TIŢĹĔ	SCHEDULE OF COEFFICIENTS PLOTTED	CONDITIONS VARYING	PAGES
17	MEAN AND STANDARD DEVIATION FOR VARIATION WITH ALPHA	В		79-80
y 18	MEAN AND STANDARD DEVIATION FOR VARIATION WITH BETA	C	- 1	81-82
19	MEAN, MAXIMUM, AND MINIMUM FOR VARIATION WITH ALPHA	В	-	83-84
20	MEAN, MAXIMUM, AND MINIMUM FOR VARIATION WITH BETA	C		85-86
21	EFFECT OF MODEL TEMPERATURE ON JET-ON AERO CHARACTERISTICS	D	ALPHA	87-92
22	EFFECT OF MODEL TEMPERATURE ON JET-OFF AERO CHARACTERISTICS	D	ALPHA	93-98
23	EFFECT OF MODEL TEMPERATURE ON JET ON-JET OFF AERO CHARACTERISTICS	Ε	ALPHA	99-104
24	COMPARISON OF ON/OFF VS ON-OFF RUNS	F	<u>-</u>	105-110
25	EFFECT OF MULTIPLE JET RCS FIRINGS, N79, N49, N83	G	CONFIG., NO. JET, ALPHA	111-200
26	EFFECT OF MULTIPLE JET RCS FIRINGS, N51, N85	G	CONFIG., NO. JET, ALPHA	201-290
27	EFFECT OF MULTIPLE JET RCS FIRINGS, N78, N52, N82	G	CONFIG., NO. JET, ALPHA	291-380
28	AMPLIFICATION FACTORS FOR JETS N79N78	G	ALPHA	381-470

FIGURE NUMBER	TITLE	SCHEDULE OF COEFFICIENTS PLOTTED	CONDITIONS VARYING	PAGES
29	AMPLIFICATION FACTORS FOR JETS N50N85	G	ALPHA	471-500
30	AMPLIFICATION FACTORS FOR JETS N84	G	ALPHA	501-590
31	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N79	Н	T/QA-I	591-596
32	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N49	Н	T/QA-1	597-602
33	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N83	К	T/QA-1	603-608
34	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N51	н	T/QA-1	609-614
35	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N85	Н	T/QA-1	615-620
36	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N78	н	T/QA-1	621-626
37	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N52	. H	T/QA-1	627-632
38	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N82	H	T/QA-1	633-638
39	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JETS N79N78	Ħ	T/QA-1	639-644
40	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N50N85	н	T/QA-T	645-650

Ç

FIGURE NUMBER	TITLE	SCHEDULE OF COEFFICIENTS PLOTTED	CONDITIONS VARYING	PAGES
41	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N84	H	T/QA-1	651-656
42	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79, N49, N83	G	ALPHA, CONFIG., NO. JET, BDFLAP	657-686
43	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78	G	ALPHA, BDFLAP	687-716
VOLUME	<u>2</u>			
44	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85	G	ALPHA, BDFLAP	717-746
45	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79, N49, N83	G	ALPHA, BDFLAP, NO. JET, CONFIG.	747-776
46	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78	G	ALPHA, BDFLAP	777-806
47	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85	G	ALPHA, BDFLAP	807-836
48	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N79, N49, N83	G	ALPHA, CONFIG., NO. JET, ELEVON	837-866
49	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N51, N85	G	ALPHA, CONFIG., NO. JET, ELEVON	867-896
50	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N79N78	G	ALPHA, ELEVON	897-926

	THEE OF BATT PROMES	SCHEDULE OF		
FIGURE NUMBER	TITLE AND THE	COEFFICIENTS PLOTTED	CONDITIONS VARYING	PAGES
NUMBER		FLUITED	VAINTING	radio
51	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N50N85	G	ALPHA, ELEVON	927-956
. 52	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JET N84	G	ALPHA, ELEVON	957-986
53	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N79, N49, N83	G	ALPHA, CONFIG., NO. JET, ELEVON	987-1016
54	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N51, N85	G	ALPHA, CONFIG., NO. JET, ELEVON	1017-1046
55	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N79N78	G	ALPHA, ELEVON	1047-1076
56	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N50N85	G	ALPHA, ELEVON	1077-1106
57	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JET N84	G	ALPHA, ELEVON	1107-1136
58	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N79 JETS	I	ELEVON,T/QA-1	1137-1142
59	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N49 JETS		ELEVON,T/QA-1	1143-1148
60	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N83 JETS		ELEVON,T/QA-1	1149-1154
61	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N51 JETS		ELEVON,T/QA- 1	1155-1160

FIGURE		SCHEDULE OF COEFFICIENTS		
NUMBER	TITLE	PLOTTED	VARYING	PAGES
62	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N85 JETS	I	ELEVON, T/QA-1	1161-1166
63	DFLTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N79N78 JETS	I	ELEVON, T/QA-1	1167-1172
64	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N50N85 JETS	i	ELEVON, T/QA-1	1173-1178
65	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N84 JETS		ELEVON, T/QA-1	1179-1184
66	DELTA AMPLIFICATION FACTOR, BODYFLAP = 13.75, AND -14.25, N79 JET		BDFLAP, T/QA-1	1185-1190
67	DELTA AMPLIFICATION FACTOR, BODYFLAP = 13.75, AND -14.25, N49 JETS	ľ	BDFLAP, T/QA-1	1191-1196
68	DELTA AMPLIFICATION FACTOR, BODYFLAP = 13.75, AND -14.25, N83 JETS	Ī	BDFLAP, •T/QA-1	1197-1202
69	DELTA AMPLIFICATION FACTOR, BODYFLAP = 13.75, AND -14.25, N79N78 JETS	r r	BDFLAP, T/QA-1	1203-1208
70	DELTA AMPLIFICATION FACTOR, BODYFLAP = 13.75, AND -14.25, N50N85 JETS		BDFLAP, T/QA-1	1209-1214
71	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79	G	ELEVON, BDFLAP ALPHA	1215-1244
72	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N49	G	ELEVON, BDFLAP ALPHA	1245-1274

ω

	THOEK OF DATA FIGURES	SCHEDULE OF		
FIGURE NUMBER	TITLE	COEFFICIENTS PLOTTED	CONDITIONS VARYING	PAGES
73	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N83	G	ELEVON, BDFLAP ALPHA	1275-1304
74	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78	G	ELEVON, BDFLAP ALPHA	1305-1334
75	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79	G	ELEVON, BDFLAP ALPHA	1335-1364
76	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N49	G	ELEVON, BDFLAP ALPHA	1365-1394
77	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N83	G	ELEVON, BDLFAP ALPHA	1395-1424
VOLUME	<u>3</u>	-		
78	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78	G	ELEVON, BDFLAP ALPHA	1425-1454
79	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85	G	ELEVON, BDFLAP ALPHA	1455-1484
80	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85	G	ELEVON, BDFLAP ALPHA	1485-1514
81	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78	G	ELEVON, BDFLAP ALPHA	1515-1544
82	AMPLIFICATION FACTOR IN YAW, N79 JETS	· J	T/QA-1, ALPHA	1545-1574
83	AMPLIFICATION FACTOR IN YAW, N49 JETS	J	T/QA-1, ALPHA	1575-1604

FIGURE NUMBER	TITLE	SCHEDULE OF COEFFICIENTS PLOTTED	CONDITIONS VARYING	PAGES
84	AMPLIFICATION FACTOR IN YAW, N83 JETS	J	T/QA-1, ALPHA	1605-1634
85	AMPLIFICATION FACTOR IN YAW, N78 JETS	J	T/QA-1, ALPHA	1635-1664
86	AMPLIFICATION FACTOR IN YAW, N52 JETS	J	T/QA-1, ALPHA	1665-1694
87	AMPLIFICATION FACTOR IN YAW, N82 JETS	J	T/QA-1, ALPHA	1695-1724
88	AMPLIFICATION FACTOR IN YAW, N51 JETS	J	T/QA-1, ALPHA	1725-1754
89	AMPLIFICATION FACTOR IN YAW, N85 JETS	J	T/QA-1, ALPHA	1755-1784
90	AMPLIFICATION FACTOR IN YAW, N79N78 JETS	J	T/QA-1, ALPHA	1785-1814
91	AMPLIFICATION FACTOR IN YAW, N50N85 JETS	J	T/QA-1, ALPHA	1815-1844
92	AMPLIFICATION FACTOR IN YAW, N84 JETS	J	T/QA-1, ALPHA	1845-1874
93	AREA RATIO EFFECTS, L/H DOWN FIRING JETS	G	ALPHA, CONFIG.	1875-1958
94	AREA RATIO EFFECTS, R/H UP FIRING JETS	G	ALPHA, CONFIG.	1959-2048
95	AREA RATIO EFFECTS, L/H SIDE FIRING JETS	G	ALPHA, CONFIG.	2049-2138

SCHEDULE OF COEFFICIENTS PLOTTED:

- (A) CN, CLM, CAU, CBL, CYN, CY versus ALPHA
- (B) CLM, CN versus ALPHA
- (C) CBL, CYN versus BETA
- (D) CN, CLM, CAU, CBL, CYN, CY versus TEMP
- (E) DLTCN, DLTCLM, DLTCAU, DLTCBL, DLTCYN, DLTCY versus TEMP
- (F) DLTCN, DLTCLM, DLTCAU, DLTCBL, DLTCYN, DLTCY versus ALPHA
- (G) N(NF), N(PM), N(AF), N(RM), N(YM), N(SF) versus QA/T
- (H) N(PM), N(RM), N(YM), N(NF), N(AF), N(SF) versus ALPHA
- (I) DN(NF), DN(PM), DN(AF), DN(RM), DN(YM), DN(SF) versus ALPHA
- (J) N(PM), N(RM), N(YM), N(NF), N(AF), N(SF) versus BETA

NOMENCLATURE General

SYMBOL	SADSAC SYMBOL	DEFINITION
9		speed of sound; m/sec, ft/sec
c_p	CP	pressure coefficient; $(p_1 - p_{\infty})/q$
М	ма сн	Mech number; V/a
p		pressure; N/m ² , psf
q	Q(NSM) Q(PSF)	dynamic pressure; $1/2\rho V^2$, N/m^2 , psf
RN/L	rn/l	unit Reynolds number; per m, per ft
v		velocity; m/sec, ft/sec
æ	ALPHA	angle of attack, degrees
β	BETA	angle of sideslip, degrees
ψ	PSI	angle of yaw, degrees
$oldsymbol{\phi}$	PHI .	angle of roll, degrees
ρ		mass density; kg/m^3 , $slugs/ft^3$
	R	eference & C.G. Definitions
Аъ .		base area; m ² , ft ²
ъ	EREF	wing span or reference span; m, ft
c.g.		center of gravity
$\ell_{ ext{REF}}$	LREF	reference length or wing mean aerodynamic chord; m, ft
S	SREF	wing area or reference area; m^2 , ft^2
	MRP	moment reference point
	XMRP	moment reference point on X exis
	YMRP	moment reference point on Y axis
	ZMRP	moment reference point on Z axis
SUBSCRII b l s t w	PTS	base local static conditions total conditions free stream

NOMENCLATURE (Continued)

Body-Axis System

	SYMBOL	SADSAC SYMBOL	DEFINITION
	$\mathbf{C}^{\mathbf{N}}$	CN	normal-force coefficient; normal force qS
	$c_{\mathtt{A}}$	CAU	axial-force coefficient; $\frac{\text{axial force}}{\text{qS}}$ (uncorrected)
	c_{Υ}	CY	side-force coefficient; side force
	$^{\mathrm{c}}_{\mathrm{A}_{\mathrm{b}}}$	CAB	base-force coefficient; base force
			$-A_b(p_b - p_{\infty})/qS$
	$c_{A_{\vec{\mathbf{T}}}}$	CAF	forebody axial Force coefficient, c_{A} - c_{Ab}
	C _m	CLM	pitching-moment coefficient; pitching moment qSL_{REF}
	c_n	CYN	yawing-moment coefficient; yawing moment qSb
	c _£	CBL	rolling-moment coefficient; rolling moment
			Stability-Axic System
	$\mathbf{c}_{\mathtt{L}}$	CL	lift coefficient; lift qS
	$c_{\mathbf{D}}$	CD	drag coefficient; drag qS
	c_{D_b}	CDB	base-drag coefficient; base drag
	$\mathbf{c}_{\mathtt{D_{f}}}$	CDF	forebody drag coefficient; c_D - c_{D_b}
	$c^{\mathtt{X}}$	CY	side-force coefficient; side force qS
ORIGINAL PAGE IS	C _m	CLM	pitching-moment coefficient; pitching moment qSLREF
OF POOR QUALITY	C _n .	CLN	yawing-moment coefficient; yawing moment qSb
	c ℓ	CSL	rolling-moment coefficient; rolling moment qSb
	L/D	T/D	lift-to-drag ratio; C _L /C _D
	L/D _f	L/DF	lift to forebody drag ratio; $c_{\rm L}/c_{\rm Df}$

NOMENCLATURE (Continued)

Symbol .	Plot Symbol	<u>Definition</u>
ν _e		nozzle exit area, in ²
$\mathtt{c}_{\mathtt{lj}}$		RCS jet rolling moment coefficient, $(T_{\ell_{\ell}})/(qSb)$
С _{М ј}		RCS jet pitching moment coefficient, $(T_{\ell_m})/(qS\bar{c})$
c_{n_j}		RCS jet yawing moment coefficient, $(T_{\ell_{\eta}})/(qSb)$
${\sf c}_{\sf A_j}$		RCS jet axial force coefficient, (T)/(qS)
$\mathbf{c_{N_j}}$		RCS jet normal force coefficient, (T)/(qS)
c_{Y_j}		RCS jet side force coefficient, (T)/(qS)
е		nozzle expansion ratio
h		altitude, feet
ki		model nozzle thrust calibration factor, lbs/psia
L _Q		RCS nozzle rolling moment arm, in
£ _m		RCS nozzle pitching moment arm, in
^L n		RCS nozzle yawing moment arm, in
^l orb		Orbiter body length, in
LH		left hand side
™j		RCS jet mass flow rate, 1bm/sec
Mj		RCS jet exit Mach number
Ng	N(RM)	RCS roll jet amplification factor, $(\Delta C_{\ell})/(C_{\ell j})$

NOMENCLATURE (Continued)

Symbol	Plot <u>Symbol</u>	<u>Definition</u>
٧m	N(PM)	RCS pitch jet amplification factor, $(\Delta C_m)/(C_{m_j})$
Nn	N(YM)	RCS yaw jet amplification factor, $(\Delta C_n)/(C_{n_j})$
NA	N(AF)	RCS axial force jet amplification factor, $(\Delta C_{A_j})/(C_{A_j})$
ии	N(NF)	RCS normal force jet amplification factor, $(\Delta C_N)/(C_{N_j})$
Ny	N(SF)	RCS side force jet amplification factor, $(\Delta C_{Y})/(C_{Y_{\c j}})$
Рс	PCRCS	model RCS nozzle plenum chamber pressure, psia
Рj		RCS jet exit pressure, psia
RCS		reaction control system
RH		right hand side
RT		product of RCS nozzle gas constant and temperature, (ft-1b)/1b
T		RCS thrust, 1bs
т _с	TCRCS	RCS chamber temperature, °R
U		velocity, ft/sec
Uj		RCS jet velocity, ft/sec
x _o		Orbiter longitudinal station, in
Yo		Orbiter lateral station, in
Zo		Orbiter vertical station, in
ΔC _Q	DLTCBL	incremental rolling moment coefficient due to RCS jet interaction

NOMENCLATURE (Continued)

Symbol	Plot <u>Symbol</u>	<u>Definition</u>
ΔCm	DLTCLM	incremental pitching moment coefficient due to RCS jet interaction
ΔCn	DLTCYN	incremental yawing moment coefficient due to RCS jet interaction
ΔCN	DLTCN	incremental normal force coefficient due to RCS jet interaction
ΔCγ	DLTCY	incremental side force coefficient due to RCS jet interaction
ΔC _A _u	DLTCAU	incremental axial force coefficient due to RCS jet interaction (uncorrected for base pressure)
Υ		jet gas specific heat ratio
Σkį		sum of model nozzle thrust calibration factors for all nozzles installed on model during a given test run, lbs/psia
Θ		RCS nozzle angle, deg.
T/qA	T/QA	RCS thrust divided by freestream dynamic pressure times unit area
	T/QA-1	one jet RCS thrust divided by freestream dynamic pressure times unit area
ΔN _Q	DN(RM)	incremental RCS jet amplification factor - rolling moment
ΔN_{m}	DN(PM)	<pre>incremental RCS jet amplification factor - pitching moment</pre>
ΔN _n	DN(YM)	incremental RCS jet amplification factor - yawing moment
ΔN_N	DN(NF)	incremental RCS jet amplification factor - normal force

NOMENCLATURE (Concluded)

Symbol	Plot Symbol	Definition
ΔN_{Y}	DN(SF)	incremental RCS jet amplification factor - side force
ΔNA	DN(AF)	incremental RCS jet amplification factor - axial force
σ		one standard deviation from the mean
X.		computed mean
δBF	BDFLAP	Orbiter body flap surface deflection angle, positive deflection trailing edge down, degrees
δ _е	ELEVON	Orbiter elevon surface deflection angle, positive deflection trailing edge down, degrees
	NO. JET	number of RCS jets firing
	TEMP	wing temperature, degrees Fahrenheit

REMARKS

After being subjected to Mach 10 airflow at a dynamic pressure of 150 psf for a period of time, wind tunnel models tend to heat up to temperatures as high as 500°F. Therefore, in an effort to determine whether or not model heating could affect jet interaction measurements, the model was inserted into the tunnel and data was taken as the model heated up. At each data point the temperature of the model wing was recorded by hand. These temperatures can be found in Table VII. Both RCS jets-on and RCS jets-off data were taken as a function of wing temperature. Little effect was observed.

CONFIGURATIONS INVESTIGATED

Three kinds of model changes were required for this test: 1) body flap, 2) elevons, and 3) non-metric RCS nozzle blocks. Twenty two nozzle blocks were used in this test. Nozzles N43, N44, N47, N48, N49, N50, N51, N52, and N61 were used in tests OA85 and OA105. Nozzles N31, N32, N33, N34, N36, and N37 were used in test LA25. Nozzles N78, N79, N81, N82, N83, N84, and N85 were used in test OA82. Nozzle configurations are summarized in Table IV.

Two body flap configurations, in addition to the zero degree setting, were tested. The body flap deflections tested were 13.75° and -14.25°. Similarly, elevon deflections tested were 10° and -30°.

INSTRUMENTATION

The LaRC 0.75-inch six-component 2019A internal balance was used for this test program.

No model base or balance chamber pressures were measured during the test. The RCS supply pressure was set and monitored at the plenum chamber between the left hand and right hand RCS nozzle blocks.

TEST FACILITY DESCRIPTION

The Mach 10 nozzle of the Langley Continuous Flow Hypersonic Tunnel is designed to operate at stagnation pressures of 15 to 150 atmospheres at temperatures up to 1960° R. Air is preheated electrically by passing through a multi-tube heater. The nozzle has a 31-inch square test section which incorporates a moveable second minimum. Continuous operation is achieved by passing the air through a series of compressors. Additional information on this facility is given in NASA TM X-1130 entitled, "Characteristics of Major Active Wind Tunnels at the Langley Research Center", by William T. Schaefer, Jr.

DATA REDUCTION

Aerodynamic forces and moments were reduced to coefficient form using the following reference dimensions:

Reference Area:

$$S = 0.269 \text{ ft}^2 (38.736 \text{ in}^2), \text{ model scale}$$

= 2690.0 ft², full scale

Reference Lengths:

The moments were reduced about a moment reference center located at:

Orbiter station 10.767 at
$$Y_0$$
 = 0.00 and Z_0 = 3.75 model scale X_0 = 1076.7, Y_0 = 0.0, and Z_0 = 375.0 full scale

Standard LRC data reduction techniques were employed for reducing the data to coefficient form.

Reduced coefficient data were used to determine RCS jet interaction amplication factors. Incremental coefficient data (ΔC_m , ΔC_{ϱ} , ΔC_n , ΔC_{ϱ} , and $\Delta C_{A_{ij}}$) were computed to provide effects of RCS jets. Amplification factors were computed for each plane of action:

$$N_{m} = \frac{\Delta C_{m}}{C_{m_{j}}} = \frac{\Delta C_{m}}{(T \ell_{m_{j}})} = \frac{qS\vec{c}}{P_{c}\ell_{m}\Sigma k_{j}} \Delta C_{m}$$

$$N_{\hat{\mathbf{g}}} = \frac{\Delta C_{\hat{\mathbf{g}}}}{C_{\hat{\mathbf{g}}}} = \frac{\Delta C_{\hat{\mathbf{g}}}}{(T_{\hat{\mathbf{g}}})} = \frac{qSb}{P_{\hat{\mathbf{g}}} \mathcal{L}_{\hat{\mathbf{g}}} \Sigma k_{\hat{\mathbf{j}}}} \Delta C_{\hat{\mathbf{g}}}$$

DATA REDUCTION (Continued)

$$N_{n} = \frac{\Delta C_{n}}{C_{nj}} = \frac{\Delta C_{n}}{(\frac{T\ell_{n}}{aSb})} = \frac{aSb}{P_{c}\ell_{n}\Sigma k_{i}} \Delta C_{n}$$

$$N_N = \frac{\Delta C_N}{C_{Nj}} = \frac{\Delta C_N}{(\frac{T}{CS})} = \frac{qS}{P_C \Sigma k_j} \Delta C_N$$

$$N_{\gamma} = \frac{\Delta C_{\gamma}}{C_{\gamma_{\hat{j}}}} = \frac{\Delta C_{\gamma}}{(\frac{T}{\sigma S})} = \frac{qS}{P_{c}\Sigma k_{\hat{1}}} \Delta C_{\gamma}$$

$$N_A = \frac{\Delta C_{A_U}}{C_{A_j}} = \frac{\Delta C_{A_U}}{(\frac{T}{GS})} = \frac{qS}{P_C \Sigma k_j} \Delta C_{A_U}$$

where

RCS pitch jet moment arm 4.523 in model scale

RCS roll jet moment arm

1.110 in model scale

RCS yaw jet moment arm

4.588 in model scale

sum of k_i 's for all nozzles firing in the same thrust plane, k; given in Table VI

$S,\bar{c},b = as given above$

The resulting factors (N's) represent amplification of Orbiter aerodynamic forces caused by RCS jet interaction with the Orbiter flow field. They are normalized by RCS jet thrusts to allow easy use in control analysis.

The incremental RCS jet amplification factors due to a control surface deflection of amount "a" were computed as follows:

DATA REDUCTION (Concluded)

$$\Delta N_{m} = N_{m_{\delta=a}} - N_{m_{\delta=0}}$$

$$\Delta N_{\ell} = N_{\ell_{\delta=a}} - N_{\ell_{\delta=0}}$$

$$\Delta N_{n} = N_{n_{\delta=a}} - N_{n_{\delta=0}}$$

These factors (ΔN 's) represent the incremental effect of control surface deflections on RCS jet interaction.

The incremental coefficient data do not include thrust forces since the model nozzles were non-metric. Increments and amplification factors were computed for each force and moment plane using data from each nozzle that was tested. This provides both direct (e.g. ΔC_m due to pitch jet) and cross-coupling (e.g. ΔC_m due to yaw jet) effects. Resulting data are presented in the data figures.

Ti-

REFERENCES

1. DMS-DR-2195 (NASA-CR-134,442) "Results of Test OA82 in the NASA/LRC 31-Inch CFHT on an O.010-Scale Model (32-0) of the Space Shuttle Configuration 3 to Determine RCS Jet Flow Field Interaction and to Investigate RT Real Gas Effects" by D. E. Thornton, January 1975.

ST # MA22			DATE: July, 1975
	TEST CON	IDITIONS	
	REYNOLDS NUMBER	DYNAMIC PRESSURE	STAGNATION TEMPERATUR
MACH NUMBER	(per unit length)	(pounds/sq.ft.)	(degrees Fahrenheit)
10.3	1.0 x 10 ⁶	150.0	1350
		,	
BALANCE UTILIZED:	LaRC 2019A		·····
	CAPACITY:	ACCURACY:	COEFFICIENT Tolerance:
NF	70 1bs	0.35 lbs	
SF	25 1bs	<u>0.125 lbs</u>	
AF	15 lbs	0.075 lbs	
PM	<u>70 in-1bs</u>	<u>0.35 in-l</u> bs	
RM	<u>15 in-1bs</u>	<u>0.075 in</u> -1bs	7
YM	<u>25 in-lbs</u>	<u>0.125 in-</u> 1bs	
COMMENTS:			
		-	

Ø1 = B19 C7 E23 F5 M6 R5 V7 W107

[&]quot;5" DATASETS CONTAIN GROSF), PCRCS, T/RA, L/D as dependent variables.

.

TEST: CF	FHT 118 (MA-22)			DAT	A SET/RU	N N	U٨	BE	۲ C(DLLATIO	N SUMM	ARY		DATE	: 7/1	1/75			
DATA SET	CONFIGURATION	1	нo.					~		RS/VALUE	S		***************************************	NO.	N	ACH N	IUMBEF	lS	
IDENTIFIER		a	β		TRAT	Se	إسةٍ	ZBĔ						RUNS	10.3		_		
RJA024	Ø1N43	Α	0	2	0.0	o ^c	_	0							24		_	-	
25					0.0			_		entaile of Calabrida Salabana					25				_
26					95.0								l	<u> </u>	26				
27					127.7										27				_]
28	Ø1N79N78				47.5										28				
29					95.0										29				
30	•				190.0	\downarrow									30				EST
31					.0.0	-30	9								31				F
32	•		\prod		47.5	Ī									32				
33			T		95.0	\neg									33		1		NOMBE
34			1		190.0	\downarrow	7								34			-	75
35			\parallel		0.0	+10	9								35			1	
36					47.5										36				7
37	·		П		95.0										37	· ************************************			7
38	V			Y	190.0		1								38			1	7
39	Ø1N78			_1	190.0	j			**						39			1	7
40	Ø1N85	\prod		2	190.0		Τ								40				
√ 41	4	Y	V	V		V	-[14.2	25										7
1 7	13 19		2		31		_	37		43	49		55		51		67	***************************************	75 7E
				111		<u></u>	با					سلسلس	سلب	احسد			<u> </u>		
α OR ,		o 10	0°;2	ر کر= کر 20	2° & 6√ = 0° & 35°.	15 15	ք _C	to :	35°;	AX= 50					IDVA	R · 1)	IDVA	R (2)	NDV ~

the softing of the stage of the testing

DATA SET CONFIGURATION		50	нo.	—	والمستون والمستون والمستون والمستون		PARAL	ETERS	NO.	M	ACH NUMBE	AS				
DENTIFIER	CONFIGURATION	α		Jets	T/QA-I				 			RUNS	10.3			\prod
RJA042	Ø1N85	А	o°	2	190.0	+10 ⁰	-14	.25					42			-
43	Ø1N78		\prod	1									43			
44	Ø1N79N78			2	\			,			1		44			7
45			П	T	0.0		+13	• 75					45			
46	-			V	190.0								46			
47	Ø1N78			1	\rightarrow								47			
48	Ø1N85			2	0.0								48			٦
49				T	190.0								49			7
50					0.0		-14	.25					50			7
51	<u> </u>	$\exists \top$		V	47.5								51			-
52	Ø1N78			1									52			
53	Ø1N79N78		\cdot	2	1	\forall							53			7
54	Ø1N78			1	0.0	-30°	0						54			-
55				工	190.0								55			
56	ø1 N85			2	1								56			
57	Ø1N32		\top	丁	0.0								57			٦
58	T				47.5								58			7
√ 59	V	\\ \	$ \nabla$	Y	95.0	$\overline{\vee}$	V						55			7
7	13 19	re <u>n facements</u>	2	25	31	1 * TAPE (1980)	37		43	49	55	 	6 1	67	Berlinder, transcript	75
	$\beta \qquad \frac{A, \ \alpha = -8^{\circ}}{D, \ \alpha = -10^{\circ}}$			-1		<u> </u>							 		1.1.1	

and the company of the company of the second of the company of the

(1.1) (1.3)

DATA SET CONFIGURATION			нD.		· · · · · · · · · · · · · · · · · · ·	NO.	MACH NUMBERS									
ENTIFIER	CONFIGURATION	α'	β	Jets	T/QA-I							NO. OF RUNS	10.3			
RJA060	Ø1N32	Α	00	2	190.0	00	o'						60			
61	Ø1N36				47.5								61			
62					95.0								62			
63					127.7								63			
64	Ø1N48				47.5								64			
65					95.0								65			
66		_			127.7								66			
67	Ø1N44				47.5								67			
68					95.0								68			
69	. ↓			V	127.7								69			-
70	Ø1N78			1	47.5			·					70			7
71				T	95.0								71			7
72	_ ↓				190.0								72			7
73	Ø1N85 .			2	47.5								73			
74				T	190.0								74		-	7
75	V				95.0								75			7
76	ØIN33				0.0								76			
¥ 77	<u> </u>	V.	V	√	47.5	¥	Y	·					77]
_ 7	13 19		2.	5	31		37	43		49	55	}	; 1	67	DOTTO: MAN	75
1111		1.1.1		<u> </u>		l	بيا					!		1 1 1	111	
a or /	. / .0	to 10	O:A	(≃	2° & & CO	EFFI	CIEN	ΓS 35° · Δ Χ	= 50				IDVAR	I) IDVA	R [2]	ND

DATA SET	00.000000000000000000000000000000000000	s	сно.			-	PAR	AMET	ERS/VALU	ES		NO.	M	ACH NUMBER	*S	1
DENTIFIER	CONFIGURATION	α	ed		T/QA-1	Se		E				RUNS	10.3			T
RJA078	Ø1N33	A	00	2:	95.0	00	0)					78			Ì
79	T				190.0		11						79		7	7
80	Ø1N37				47.5						٤		80			-
81			II		95.0								81			1
. 82	V		\prod		127.7		\prod						82			7
83	Ø1N61:				47.5		11						83			7
84					95.0		\prod	7-					84			7
85	—				127.7		\prod						85			-
86	Ø1N84	\Box			0.0		1						86		1	
87		17			47.5								87			-
88					95.0		1						88		1	
89		11	V		127.7								89		1	7
- 90		D	00		0.0								90		1	-
91			-3°										91		1	-1
92			+3°		V			 					92		1	1
93	·		o		47.5								93		1	-
94			-3 ^c										94			1
৵ 95	\bigvee	V	+3 ^c	¥	·	Y	V						95			1
7	13 19		2	5	31		37		43	49	55	······································	51	67	4.02.22.4	7 S
سلسل	g $A, $			لمالك				1_1_1	11:11		بيليب	ابي				_

and the second second

gi, a far signing i straffe.

DATA SET		5	CHD.	1		Maling Malak B	PARAME	TERS/VALUE	ES	esartuleite e rivete i estevi	NO.	МА	CH NUMBER	S	DEL LINGUE
DENTIFIER	CONFIGURATION	α		Jet	T/RA-1		SBE				RUNS	10.3			
RJA096	Ø1N84	D	00	2	95.0	00	0°					96		<u> </u>	
097			-3°									97			_
098			+3°		4					٤	, 3	98			
099			l o ^c	II	127.7							99			
100			-3°									100			
101	4		+3°									101			-
102	Ø1N85N50		0°		0.0							102			- 1
103			-3°									103			
104			+3°		. ↓							104			
105			00		47.5							105			-
106		\prod	-3°									106			7
107	•		+3°		√							107			
108			0°		95.0							108			
109			-3°									109			1
110			+ 3°		√				·			110			
111			00		127.7							111		1	1
112			-3°									112			1
∀ 113	4	\forall	+3°	4	V	¥	V					113			1
7	13 19			25	31		37	43	49	55		51	67	7	7.5
	$\beta \qquad A, \ \alpha = -8^{\circ}$ $0, \ \alpha = -10^{\circ}$	1-1	1		<u> پيال</u> ــــــــــــــــــــــــــــــــــــ	<u> </u>				سلب		.1.4.4.4			

(x)

(_1

	HT 118 (MA-22)	! 		/A /	4 3C1/RU			-	N SUMMAR	Υ		7/11/7			
DATA SET	CONFIGURATION	¥	HD.		·. (T'7- i			TERS/VALU	ES		NO. PUNS		H NUMBER	15	
		a	00	- 1	T/QA-I	26	SEE_				RUNS			_	
RJA114	Ø1N85N50	A	0	2	0.0	00	00					114		' 	 ,
115		_			47.5							115			
116		_ _	<u> </u>		95.0							116			
117	<u> </u>	_ •			127.7							117			
118	Ø1N85		\downarrow		47.5							118			
119			- 3									119			
120	·		-3°									120	 -		
121			00		95.0							121		-	_
122			30									122		+	_
123			- 3		-	-			 	_	}	123		- 	
124		-11-1	o	+1	190.0			 -	 			124		-	
125			3	+	1,50.0	-			 -			125		+-	
126		-}	-01	+		-			 					-	
127	Ø1N51	-	0	*								126		-	,a
	וכאוש	╼╂┼╼╏	30	4	47.5	-						127			
128				╌┼		-}{					 	128			
129			30	╂╼┞		-						129		ــــــ	_
130			00	<u> </u>	95.0					_	<u> </u> .	130			
¥ 131	<u> </u>	14 -	3 ⁰	4		V	<u> </u>					131	- H		اس
7	13 19		25		31		37	43	49	55		31	67		7
		1	ىلىد				<u> </u>	<u> </u>			ابب	1111	<u></u>	سنا	1
α OR	$\beta \qquad A. \ $	to 10	⁰ ;Δ	ፈ=	2° & ∞ =	LFFI(15	TENTS to 35	ο;ΔK= 5°	o			IDVAR	I) IDVA	R (2)	Þ

CARLONNELLE CONTROLLE CONT

34

DATA SET	TONICIOUS ATION		СНО		7-7-			AMETE	RS/VA	LUES			NO. OF RUNS	ļ		NUMBER	S	
		٥	_1'	Jet									RUNS	10.3			_	_
RJA150	ØIN78	₽ T	(-		95.0	0	0							150	ļ			_
151		- -	-3°	-	<u> </u>	-	- -					_	<u> </u>	151		1		_
152		- - -			190.0		++		_	-				152			_	
153 154			-3° +3°			-	╢		_ _					153				_]
	√ ginco	+	#3 0°		<u> </u>		1-					_		154			 	1
155	Ø1N52	- - -	-3°	2	47.5				-					155				-
156 157			+3 +3											156		<u> </u>		
158		- -	0°				$\perp \perp$							157				
		╬			95.0									158				-
159		44-	-3°			_ _								159				
160		1	+3		↓	_ _								160				
161		11	0.0		190.0							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		161				7
162		$\bot\!\!\!\!\bot$	-3			_[_								162				7
163		14	+ 3 ^O		1									163				1
164		A	o°		47.5	\perp								164				٦
165					95.0									165				1
166	4			4	190.0									166				1
¥ 167	Ø1N82	1	少	3	47.5	4	4							157				1
7	13 19		2	5	31		-37		43		49	55	6	1		67		75
1111	$\beta \qquad A, \ $	بب		1-1-1-	<u> </u>	<u> </u>		تالت	بنبا	لبب	1111	ببلب	1.1.1	1 1 1	1 1		$\overline{}$	7

riinga ka ili da ili ili ili ili ili ili ili ili ili il	HT 118 (MA-22)		DATA SET/RUN NUMBER COLLATION SUMMARY SCHO. PARAMETERS/VALUES											7/1	. د ۲۰۲		مندسست
DATA SET	CONFIGURATION			- 12	1772			ETERS	/VALUE	s			NO. OF RUNS	. 1.O. 2.		UMBERS T	T
			<u>ι' β</u> 0 ^C	_} ->	5 ^T /QA-1 95.0		SBF 0°						VANA2				
RJA168	Ø1N82	A	10	-		0	D							168		 	
169				-	190.0							-		169			ļ
170			₩.	╟┼	0.0									170			
171				; -	190.0									171		-	
172		#	- 3	+	 									172			
173 174		-H	1-3	\dashv	0.0							}		<u>173</u> 174		}	
			-3°	4	1								7 4				
175 176			+30	$\{-\}$										175			
			00	-										176			
177			- 3°											177			
														178			
179 180			00	十	47.5									179 180			
181			-3°		4/.2	+								181			
182			+3°			+											
183			0°		·									182			
184			-3	 -	95.0	-								183			
	√	$-\!\!\downarrow\!\!\downarrow$	1-3 1-30	 										184			
V 185 J			12		<u> </u>	<u> </u>	<u> </u>	أحجت	أجحب	MENT PLANTS AND A				185	*****	La=,-,and	ACMACZ TOTAL

95.0

190.0

47.5

95.0

190.0

0.0

47.5

2

SCHD

αβ

DATA SET/RUN NUMBER COLLATION SUMMARY

PARAMETERS/VALUES

7 13 19 25 31 37 43 49 55 61 67 75 76

| $\alpha \circ \beta \beta \beta = \frac{A}{2} = -8^{\circ} \text{ to } 10^{\circ}; \Delta \zeta = 2^{\circ} \epsilon \zeta = 15^{\circ} \text{ to } 35^{\circ}; \Delta K = 5^{\circ}$ | SCHEDULES $0, \zeta = -10^{\circ}, 0, 10^{\circ}, 20^{\circ} \epsilon 35^{\circ}.$

DATE: 7/11/75

197

198

199

200

201

202

203

MACH NUMBERS

NO. MORENTA

37

TEST: CFHT 118 (MA-22)

CONFIGURATION

DATA SET

DENTIFIER

197

198

199

200

201

202

∜ 203

Ø1N49

OATA SET		SCH	D.	والمراجعة والمراجعة المراجعة	PA	RAMET	ERS/VALU	ES		NO.	MA	CH NUMBEI	RS	
ENTIFIER	CONFIGURATION		β Jet	ST/QA-1	Se S	BE.				NO. OF RUNS	10.3			
RJA204	Ø1N49	D	3 ⁰ 2.	47.5	00 0	,0					204			
205		+	() ()	↓							205			1
206			00	95.0							206			1
207			3 [©]								207			1
208		+:	30	1							208			-
209			20	190.0							209			
210			3 ⁰								210			1
211	. ↓	1.3	30 1								211			٦
212	Ø1N83) ^O 3	47.5							212			٦
213			O T								213			1
214		+3	0	\ \							214			1
215		С	, o	0.0					-		215			
216			0								216			1
217		+3	0								217			1
218		0									218			1
219		-3									219			
220		1 +3									220			
V 221	V	ν̈́o		95.0	VV						221			
7		9	25	31	37		43	49	55		51	67	7	5
<u> </u>	g A, $\angle = -8^{\circ}$ Es D, $\angle = -16^{\circ}$	to 10 ⁰	-۲۵۲; -	2° & ≪ =	FFICIE 15 t	NTS o 35	';ΔK= 5°)	<u> </u>		IDVAR	1) 16VA	(F (2) N	ئيہ 2 ئ

ယ္ပ

DATA SET	CONFIGURATION	SC	CHO				PARAMET	ERS/VALI	JES	The state of the s	NO.	ACH NUMBE	RS	*****
DENTIFIER	CONFIGURATION	a	ــــا	Jets	T/QA-1	Se	Spe			F	NO. OF UNS 10			
RJA240	Ø1N79N78	А	00	2	0.0	00	13.75				240			
241					47.5						241			
242					95.0					ξ	21+2			-
243	4			V	190.0						243			
244	Ø1N79			1	0.0						244			-
245				T	47.5						245			-
246	•				95.0						246			_
247	. ↓			\lor	190.0						247			_
248	Ø1N85N50			2	47.5						248		-	
249				丁	95.0						249			-
250	₩		1		127.7					 	250			1
251	Ø1N49 ·		1.		47.5						251		-	-
252			1		95.0						252		-	-
253	<u></u>		1	V	190.0						253		+	-
	Ø1N83	777	1	3	47.5	1				1	254		 	1
255			T	T	95.0	+					255		+	-
256			T		190.0		*				256		+	1
Y 257	1		\	V	0.0	1	-14.25				257		-	1
7	13 19			25	31		37	43	49	55	61	очин очинального горона. 67	7	. <u>.t</u> 75
بلب	$ \begin{array}{ccc} B & A, $	_1_1_	لـــــ				11111	ــــــــــــــــــــــــــــــــــــــ				<u>L.</u>		h

 $(\cdot \cdot)$

DATA SET	CONFIGURATION	SC	HD.				PARAME:	ERS/VAL	υES		NO.	M	АСН МИМВЕ	RS
DENTIFIER	CONTIGURATION	a.	β	Jet	TRAT	Se	SpE				RUNS	м 10.3		
RJA258	Ø1N83	_ A_	00	3	47.5	00	-14.2	5				258		<u>. </u>
259		_[0.0					_ _,		259		
260					95.0							260		
261	_ ↓			$ \underline{\downarrow} $	190.0							261		
262	Ø1N49			2	47.5							262		
263				I	95.0							263		
264					190.0			_				264		
265	Ø1N85N50				47.5							265		
266					95.0					<u> </u>		266		
267	\downarrow			V	127.7							267		
268	Ø1N79		\Box	1	47.5							268		
269				T	95.0							269		1
270				1	190.0							270		
271	Ø1N79N78			2	47.5							271		
272		-	11	丁	95.0							272		
273		111			190.0	1	~ 					273		
274			Π		0.0							274		
¥ 275		V	$\forall \uparrow$	\forall	0.0		 ↓-					/:		
 	13 19	<u> </u>	L 2.	<u>1</u> 5	31		37	43	49				67	
			. 1									L L L	<u> </u>	AR (2)

promise organization and the second constitution of the second of the second of the second of the second

DATA SET	CONFIGURATION		HD.	<u> </u>	7		_	METERS/	VALUES			NO.	10.3	CH NUMBE	irs	
			β	<u>Jets</u>	T/QA-1					**************************************		RUNS	10.3	-	,	_
RJA276	Ø1N79N78	I A	00	2	47.5	-30	<u>-1</u>	4.25					276		·	
277		- -	_		0.0		<u> </u>					_	277			
278		_ _			95.0								278			
279	<u> </u>			$ \downarrow $	190.0		ļ		·				279			_
280	Ø1N79			- 1	47.5								280			
281					95.0								281			
282				$\sqrt{}$	190.0								282			
283	ØN85N50			2	47.5								283			_
284		$\cdot $		7	95.0								284			_
285	V		T	V	127.7								285			_
286	Ø1N49			2	47.5						_		286		_	-
287			1	T	95.0	1						 	287	 		_
288			1	11	190.0			-	 }		-	1	288		-	-
289		-	11	\downarrow	0.0	11							289			-
290	Ø1N83	717	11	3	0.0						-	1				-
291		-} -	++	-	47.5	- 				 			290 291			-
292			++	+	95.0	-}}										-
293		-	 	$\frac{1}{\sqrt{1}}$	190.0	$\checkmark +$,					292			1
	Y		L		Hoganizacija,		-						293			_[
7	13 19		- 2	5	31		37	43		49	55		1	67	7	7.5
	A,		- <u>-</u> -		- CO	1 <u>-1-1</u>	TENT	<u></u>	<u></u>	1111		لــــــا	IDVAR	سيا ب	AR (2)	_

a grandel and the grandel of the analysis of the control of the first of the control of the control of the first of the fi

CIBRISTANIO SER INCEPE AN

DATA SET	FHT 118 (MA-22)		CHD.		A JE I/KU				ERS/VALU	N SUMMAF			: 7/11/7	H NUMBER		
DENTIFIER	CONFIGURATION	P			T/QA-1	Se			ERS/ VALU	1		RUNS	10.3	H NUMBER	7	_
RJA294	Ø1N83	A	0	3	0.0	-30	الم	00				1	294			
295			I		47.5			П	1				295			
296			\prod		95.0								295			
297	↓			V	190.0							1	297			1
298	Ø1N49			2	47.5								298			7
299				T	95.0								299		1	1
300	<u>↓</u> .			↓	190.0								300			
301	Ø1N79			1	47.5						· ·		301	•		٦
302				II	95.0								302			٦
303	V			. ↓	190.0								303			7
304	Ø 1N84			2	47.5								304			7
305					95.0								305			٦
306					127.7								306			٦
307	V			1	0.0								307			1
308	Ø1N85			2	0.0								308		1	٦
309					47.5								309			7
310	V		\perp	4	95.0								310			
¥311	Ø1N85N50	V	\mathbf{v}_{j}	2	47.5	\downarrow	V						311			7
7	13 - 19		,	25	31 .		37		43	49	55		61	67		75
LLLL			اــــــــــــــــــــــــــــــــــــــ	النا	بيلليب	1	با		سسلب		<u> </u>	ليني				
a 08	$\beta \qquad A, \ \alpha = -8^{\circ}$ $0, \ \alpha = -10^{\circ}$	to 1	o°;	Δd=	2° ε σ(=	EFFI 15	CIE	INTS o) :Δ⋉= 5°	o ·			IDVAR .	1) IDVA	R (2)	N

te discreption of the engineering of the contraction of the contractio

43

TEST: CF	FHT 118 (MA-22)		·	DATA	A SET/RU	N NU	МВЕ	R CO	LLATIC	N SUMM <i>A</i>	\RY	DATE	- 7/11/7	5		
DATA SET	CONFIGURATION	\$	нo.						RS/VALU	ES		NO. OF RUNS		NUMBER	5	
IDENTIFIER			β	Jets	TRAT		Se	E				RUNS	10.3			
RJA312	Ø1N85N50	Ą	o°	2	95.0	-30°	o o						312			
313				$ \downarrow $	127.7								313	1		
314	ØIN5I			4	47.5								314			1
315				IT	95.0								315		1	7
316					127.7								316		1	
317					0.0	7	\prod						317		1	1.
318					0.0	+10				 			318		1	- :
319					47.5								319		-	-
320					95.0					1			320	- 	 	
321		111		1	127.7	1			<u> </u>	1			321		-	
322	ØIN85	111	11	2	47.5	_							322		 -	ا ا
323			$\uparrow \uparrow$	7	95.0			 	-						 	-
324		111	╅┨	J	0,0					 			323 324		<u> </u>	-
325	Ø1N85N50		- -	2	0.0			 		 -						\dashv
326	1	╂╇╢	+1				-	 		 			325			-
327		-	+ 1		47.5			 		 			326		 	-
		-	+-{		95.0		_	 					327		ļ	-}
328	4	+++	$\downarrow \uparrow$	-↓-	127.7	-	-	 -					328		<u> </u>	-
329	Ø1N84			A 1	47.5	<u> </u>	<u></u>						329			1
7	13 19		2		31		37		43	49	55		5 t	67	·	75 7
<u> </u>		1-1-1-	للب			1 <u>1</u> (TEM	<u>L.L.</u> L.	ببيل		<u> </u>	لىب		سب		
α OR	$\begin{array}{ccc} \beta & A, & 0 & = -8^{\circ} \\ Es & D, & 0 & = -10^{\circ} \end{array}$	to 10)°;4	7ペ=	2° & 0 =	150	to	<u>'35</u> °;	4K= 5°	o			IOVAR (1	I IOVA	R (2)	4 D V
SCHEDUL	Es $D, \omega = -10^{\circ}$	0, 0,	100	, 20	° € 35°.									u		

and the contract of the contract of the contract the contract the fine of the contract of the

EST: CF	HT 118 (MA-22)		DAT	A SET/RU	טא א	MBER CO	DLLATIO	N SUMMARY	DA	TE: 7/11/	75		
DATA SET	CONFIGURATION	SCH	 	T-7" .		PARAMETE	ERS/VALU	ES	~ \ \ \ \ \ \	p. MAC NS 10.3	СН МИМВЕР	₹5	
DENTIFIER			⁸ Jet						RU	из 10.3			4
RJA330	Ø1N84	A	0 2	95.0	+10	° jo		<u> </u>		330			_
331		╼┨┼╂	<u> </u>		_ _	ļ				331			_
332	Ø1N79	╼╂╼┞╌		47.5	- -					332			_[
333			\prod	95.0	_ _					333			_
334				190.0						334			
335	Ø1N49		2	47.5						335			
336				95.0						336			1
337			1	190.0						337			
338	Ø1N83		3	47.5						338			1
339			T	95.0						339			-
340		111		190.0			1			340		1	1
341				0.0						341		1	1
342				0.0		13.75				342		-	1
343		╌╏╌╏╌	┞╏╌┞╼	47.5		10:70		 	 	343			1
344									 			 	-
345			- - -	0.0 95.0	-{-		_			344 345		-	-
346		-}-}-	1								_		┨
-		╂		190.0	1,					346			-
Y 347	Ø1N49	V	2	47.5	<u>۷</u>	V				347			L
7	13 19		25	31		37	43	49	55	61	67	7	75
a or <i>t</i>	$A, \alpha = -8^{\circ}$ $0, \alpha = -10^{\circ}$	to 10°	- - - - - - - -	20 CO	EFFIC	CIENTS	. A.W. = E	<u>111111</u>		IDVAR	11 10VA	1 1 1 N	4 N C

TEST: CF	HT 118 (MA-22)		indikani madi	DAT	a SET/RU	N NU	MBER COL	LATIO	N SUMMAF	RY	DATE:	7/11/75	,	
DATA SET	CONFIGURATION	-	HD.				PARAMETERS	/VALUE	s		NO. OF RUNS	MACH	NUMBERS	
	dinko	α Λ	β 0°	Uet: 2	T/QA-I		13.75	and the second			 	348		
RJA348 349	<u>Ø1N49</u>	旨	=	=	190.0		17:77	 				3/19		
349	Ø1N85N50				47.5			 				350		
351	J LIOSKYO				95.0							351		
352	V .	H		\downarrow	127.7		1					352		
353	Ø1N79			i	47.5							353		
354				T	95.0							354		
355	$\overline{}$			4	190.0							355		
356	ø1n79n78			2	47.5							356		
₹ 357		V	$\sqrt{}$	2.	95.0	4	4					357		
RJA007	Ø1 /1 49 Wing Temp	0°	00	T	95.0	00	0°					7		,
407		V	7-1		0.0	T						407		
800		-10°			95.0							8		
1408		\overline{V}			0.0							408		
009		20			95.0							9		
409					0.0							409		
010		35			95.0							10		
Ý 410	Ÿ	4	<u>v</u>]	√	0.0	Ý	$-\psi$					410		
1 7 A.L.P.H.A. 1C.	13 19 AU, , ICN, , , ICL	M	1/	5 18/1	31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1CY	43 CL 1	49 1 (CD	55 	0,A, , n	sach		75
α OR / SCHEDUL		0,	0°;4	۵ ، 2	2° & 5 ° ; 0° & 35° .	EFF1 15	to 35°; A	X = 5 ⁰				IDVAR 1)	I IDVAR (2) ND

^{+&}quot;5" DATA DETS CONTAIN BETA, Q(PSF), PCRCS, T/QA, L/D AS DEPENDENT VARIABLES.

TABLE III. - MODEL DIMENSIONAL DATA

MODEL COMPONENT : BODY - B19		
GENERAL DESCRIPTION :Fuselage, Con	figuration 3, per	Rockwell.
Lines VL70-000139B		
NOTE: Identical to B17 except forebo	ody.	
MODEL SCALE: 0.010		
DRAWING NUMBER:VL70-000139B		
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length , In.	. 1290.3	12.903
Max Width, In.	<u> 267.6</u>	2.676
Max Depth , In.	244.5	2.445
Fineness Ratio	4.82175	4.82175
Area Ft ₂		
Max. Cross—Sectional	386.67	0.0387
Planform		
Wetted		
Bose		

MODEL COMPONENT : BODY FLAP - E5		
GENERAL DESCRIPTION: Configuration	3 per Rockwell Li	nes VL70-000139
MODEL SCALE: 0.010		
DRAWING NUMBER: VL70-000139		
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length, In.	84.70	0.847
Max Width, In.	267.6	2,676
Max Depth		
Fineness Ratio		
Area - Ft ³		
Max. Cross-Sectional	· · · · · · · · · · · · · · · · · · ·	
Planform	142.5	0.0143
Wetted		
Base	38.0958	0.0038

MODEL COMPONENT : CANOPY - C7		
GENERAL DESCRIPTION:Configuration	3 per Rockwell	Lines <u>VL70-090</u> 1
MODEL SCALE: 0.010		
DRAWING NUMBER: VI70-000139	(12) 10년 11일 중 1년: 1일: 11 11 11 11 11 11 11 11 11 11 11	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length ($X_0 = 433 \text{ to } X_0 = 578$), In.	145.0	1.450
Max Width		
Max Depth		
Fineness Ratio		
Area Area Area Area Area Area Area Area Area Area		
Max. Cross—Sectional		
Planform		
Wetted		
Base		

MODEL COMPONENT: <u>ELEVON - E₂₃</u>		
GENERAL DESCRIPTION: Configuration 3 per W.	The second result	
	A MOCKMETT FILM	s brawing
VL70-000139B. Data for (1) of (2) sides.		
MODEL SCALE: 0.010		
DRAWING NUMBER: VL70-000139B		
DIMENSIONS:	<u>FULL-SCALE</u>	MÖDEL SCALE
Area - Ft ²	205.52	0.0206
Span (equivalent), In.	353.34	<u>3.533</u>
Inb'd equivalent chord, In.	114.78	1.148
Outb'd equivalent chord, In.	55.00	0.550
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.208	0.208
At Outb'd equiv. chord	0.400	_0_400
Sweep Back Angles, degrees		
Leading Edge	0.00	0.00
Tailing Edge	- 10.24	-10.24
Hingeline	0.00	_0.00
Area Moment (Normal to hinge line)—Ft ³ (Product of Area and c)	1548.07	_0.00155

(_)

MODEL COMPONENT: MPS NOZZL	ES - N ₃₉	·		*
GENERAL DESCRIPTION: Cor	nfiguration 3A N	IPS nozz	les.	
MODEL SCALE: 0.010	_			
DRAVING NUMBER:				
DIMENSIONS:			FULL SCALE	MODEL SCALE
MACH NO.	•			
Length - In. Gimbal Point to Exi Throat to Exit Plan				
Diameter - In. Exit Throat Inlet			94.000	0.940
Area - ft ² Exit Throat			48,193	0.00482
Gimbal Point (Station) Upper Nozzle	- In.			
Х Ү Z	NOT USED			
Lower Nozzles X Y Z		<u> 4-</u>	1468.2 53.0 342.7	14.682 + 0.530 - 3.427
Null Position - Deg. Upper Nozzle Pitch Yaw	NOT USED			
Lower Nozzle Pitch Yaw				

MODEL COMPONENT: NOZZLE - N31

GENERAL DESCRIPTION: RCS nozzle providing left-hand pitch-down control.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	.0990
Throat	.0921
Area - In. ²	
Exit	.007698
Throat	.006662
Area ratio	1.15
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N32

GENERAL DESCRIPTION: RCS nozzle providing right-hand pitch-up control.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	.0990
Throat	.0921
Area - In. ²	
Exit	.007698
Throat	.006662
Area ratio	1.15
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N33

GENERAL DESCRIPTION: RCS nozzle to provide left-hand yaw control.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	.0990
Throat	.0921
Area - In. ²	
Exit	.007698
Throat	.006662
Area ratio	1.15
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N34

GENERAL DESCRIPTION: RCS nozzle to provide left-hand pitch-down control.

MODEL SCALE: .010

DRAWING NO.:

DIMENSIONS:

 \mathbb{Q}

	MODEL SCALE
Flight dynamic pressure simulation - PSF	
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	.0878
Throat	.0520
Area - In. ²	
Exit	.006055
Throat	.002124
Area ratio	2.85
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N36

GENERAL DESCRIPTION: RCS nozzle to provide left-hand pitch-up control

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	.0878
Throat	.0520
Area - In. ²	
Exit	.006055
Throat	.002124
Area ratio	2.85
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N37

GENERAL DESCRIPTION: RCS nozzle to provide left-hand yaw control.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	.0878
Throat	.0520
Area - In. ²	
Exit	.006055
Throat	.002124
Area ratio	2.85
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N43

GENERAL DESCRIPTION: RCS nozzle to provide left-hand pitch-down control

to simulate entry.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	5
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	.129
Throat	.0465
Area - In. ²	
Exit	.013070
Throat	.001693
Area ratio	7.70
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N44

GENERAL DESCRIPTION: RCS nozzle to provide right-hand pitch-up control

to simulate entry.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	5
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	.129
Throat	.0465
Area - In. ²	
Exit	.013070
Throat	.001698
Area ratio	7.7
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N47

GENERAL DESCRIPTION: RCS nozzle to provide left-hand pitch-down control

to simulate entry.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	.117
Throat	.0465
Area - In. ²	
Exit	.010751
Throat	.001698
Area ratio	6.33
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N48

GENERAL DESCRIPTION: RCS nozzle to provide right-hand pitch-up control

to simulate entry.

MODEL SCALE: .010

DRAWING NO.:

DIMENSIONS:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	.117
Throat	.0465
Area - In. ²	
Exit	.010751
Throat	.001698
Area ratio	6.33
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N49

GENERAL DESCRIPTION: RCS Nozzle providing left-hand pitch-down control

to simulate return to launch site (RTLS)

MODEL SCALE: 0.010

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant Angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area Ratio	4.430
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N₅₀

GENERAL DESCRIPTION: RCS nozzle providing righthand pitch-down control

to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	0.141
Exit	0.151
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N51

GENERAL DESCRIPTION: RCS nozzle providing left-hand yaw control to

simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - Deg.	
Aft	o
Outboard	0
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzles	4

MODEL COMPONENT: NOZZLE - N52

CENERAL DESCRIPTION: RCS nozzle providing right-hand pitch-up control to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N61

GENERAL DESCRIPTION: RCS nozzle to provide left-hand yaw control to

simulate entry.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	5
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	.129
Throat	.0465
Area - In. ²	
Exit	.013070
Throat	.001698
Area ratio	7.70
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N78

GENERAL DESCRIPTION: RCS nozzle providing right-hand up-firing

control to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

(i)

DRAWING NO.: SS-A01160

DIMENSIONS:	MODEL SCALE:
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzles	1

MODEL COMPONENT: NOZZLE - N79

GENERAL DESCRIPTION: RCS nozzle providing left-hand pitch-down control

to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DRAWING NO.:

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015615
Throat	0.003525
Area ratio	4.430
No. of nozzles	1

MODEL COMPONENT: NOZZLE - Ngl

GENERAL DESCRIPTION: RCS nozzle providing left-hand pitch-up control

to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DRAWING NO.:

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - Deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N82

MODEL DESCRIPTION: RCS nozzle providing right-hand pith-up control

to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
.Aft	O
Outboard	o
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzles	3

MODEL COMPONENT: NOZZLE - N83

GENERAL DESCRIPTION: RCS nozzle providing left-hand pitch-down control

to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DRAWING NO .:

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of mozzles	3

MODEL COMPONENT: NOZZLE - N84

GENERAL DESCRIPTION: RCS nozzle providing right-hand pitch-up control to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DRAWING NO.:

DIMENSIONS:	MODEL SCALE.
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N85

GENERAL DESCRIPTION: RCS nozzle providing left-hand side-firing

to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzles	2

MODEL COMPONENT : OMS POD - M6	<u> </u>	
GENERAL DESCRIPTION : Basic configurat	ion 3A OMS po	ds with non-
metric RCS engine housing and nozzles. S	ame geometry	as M ₁
MODEL SCALE: 0.010		
DRAWING NUMBER: VL70-000139B		
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length .	346.0	3.460
Max Width	108.0	1.080
Max Depth	113.0	1.130
Fineness Ratio .		
Area		
Max. Cross—Sectional		
Planform		·
Wetted		
Base		
Station of aft end of RCS nozzle block	1560	15.60

MODEL COMPONENT: RUDDER - R5		·
GENERAL DESCRIPTION: Configuration 1400 o	rbiter rudder (i	dentical to
MODEL SCALE: 0.010		
DRAWING NUMBER: V170-000146B, -000095		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	100.15	0.0100
Span (equivalent), In.	201.00	2,010
Inb'd equivalent chord , In.	91.585	0.916
Outb'd equivalent chord, In.	50.833	0.508
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.4.0	0.400
Sweep Back Angles, degrees		
Leading Edge		
Tailing Edge	26.25	26.25
Hingeline (Product of Area & c)	34.83	34.83
Area Moment (Normal-to-hinge-line)Ft3	610.92	0.000610
Mean Aerodynamic Chord, In.	73.2	0.732

MODEL COMPONENT: VERTICAL - V7		
GENERAL DESCRIPTION: Centerline vertical tail.	<u>doublewedge</u>	airfoil
with rounded leading edge.		
NOTE: Same as V ₅ , but with manipulator housing r	emoved.	<u></u>
MODEL SCALE: 0.010		
DRAWING NUMBER: VL70-000139		
DIMENSIONS:	FULL SCALE	MODEL SCALE
TOTAL DATA		
Area (Theo) - Ft ² Planform Span (Theo) - In. Aspect Ratio Rate of Taper Taper Ratio Sweep-Beck Angles, Degrees. Leading Edge Trailing Edge O.25 Element Line Chords: Root (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .25 MAC	425.92 315.72 1.675 0.507 0.404 45.00 26.249 41.130 268.50 108.47 199.81 1463.50	0.0426 3.157 1.675 0.507 0.404 45.000 26.249 41.130 2.685 1.085 1.998 14.635
W.P. of .25 MAC B.L. of .25 MAC	635.522 0.00	6.355 0.00
Airfoil Section Leading Wedge Angle - Deg. Trailing Wedge Angle - Deg. Leading Edge Radius	10.00 14.920 2.0	10.00 14.920 0.020
Void Area	13.17	0.0013
Blanketed Area	0.00	0.00

OF POOR QUALITY

(1)

*REV. 11/9/74
TABLE III. - MODEL DIMENSIONAL DATA - Concluded.

NOTE: Same as Wag. except cuff. airfoil and incidence angle.	MODEL COMPONENT: WING-WING		
NOTE: Same as W_107 except cuff. airfoil and incidence angle.	GENERAL DESCRIPTION: Configuration 3 per Rockwell	Lines VL70-0001	39B
### DIMENSIONS: DIMENSIONS: FULL-SCALE MODEL SCALE	•	— <u>— </u>	•
DIMENSIONS: FULL-SCALE MODEL SCALE	207		
DIMENSIONS: FULL-SCALE MODEL SCALE			
TOTAL DATA Area (neo.) Ft2 RIGINAL PAGE IS	TEST YO.	DWG. NOVL	70-000139B
Area (.neo.) Ft RIGINAL PAGE IS Planform OF POOR QUALITY 2690.00 26.900 Span (Theo In. 336.68 9.367 Aspect Ratio 2.265 2.265 Rate of Taper 1.177 1.177 Taper Ratio 0.200 0.200 Dihedral Angle, degrees 3.500 3.500 Incidence Angle, degrees 0.500 0.500 Aerodynamic Twist, degrees 1.3.000 Sweep Back Angles, degrees 1.3.000 Sweep Back Angles, degrees 1.3.000 Sweep Back Angles, degrees 1.3.000 Leading Edge 1.3.000 1.3.000 Chords: Root (Theo) B.P.O.O. 589.24 6.892 Tib, (Theo) B.P. 137.85 1.379 MAC 689.24 6.892 Tib, (Theo) B.P. 137.85 1.379 MAC 1136.89 11.369 (Yo)* B.L. of .25 MAC 1136.89 11.369 (Yo)* B.L. of .25 MAC 290.857 2.909 (Yo)* B.L. of .25 MAC 290.857 2.909 Aspect Ratio 1.389 1.821 EXPOSED DATA Area (Theo) Ft 2 Span, (Theo) In. BP108 562.40 5.624 Tip 1.00 b 1.379 MAC 7.20.68 7.207 Aspect Ratio 2.058 2.058 Tip 1.00 b 1.379 MAC 7.20.68 7.207 Aspect Ratio 2.35 MAC 1.379 MAC 7.20.68 7.207 Aspect Ratio 2.058 2.058 Tip 1.00 b 1.379 MAC 2.39.303 3.930 Fus. Sta. of .25 MAC 1.185.31 11.853 *W.P. of .25 MAC 2.20.653 2.937 B.L. of .25 MAC 2.20.653 2.937 Airfoil Section (Rockwell Mod NASA) XXXX-64	DIMENSIONS:	FULL-SCALE	MODEL SCALE
Planform OF POOR QUALITY 2690.00 26.900			
Span (Theo In. 936.68 9.367 Aspect Ratio 2.265 2.265 Rate of Taper 1.177 1.177 Taper Ratio 0.200 0.200 Dihedral Angle, degrees 3.500 3.500 Incidence Angle, degrees 0.500 0.500 Aerodynamic Twist, degrees +3.000 1.000 Sweep Back Angles, degrees +3.000 1.000 Leading Edge 45.000 45.000 Trailing Edge -10.24 -10.24 0.25 Element Line 35.209 35.209 Chords: Root (Theo) B.P. 137.85 1.379 MAC Root (Theo) B.P. 137.85 1.379 MAC 474.81 4.748 Fus. Sta. of .25 MAC 1136.89 11.369 (Z _o)* W.P. of .25 MAC 1290.857 2.909 (Y _o)* B.L. of .25 MAC 182.13 1.821 EXPOSED DATA	Planform OF POOR QUALITY	2690.00	26.900
Rate of Taper Taper Ratio D. 200 Dihedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Leading Edge Leading Edge Trailing Edge D. 250 Leading Edge Leading Edge Trailing Edge Chords: Root (Theo) B.P. MAC Fus. Sta. of .25 MAC Cyo'* W.P. of .25 MAC Area (Theo) Ft Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b Aspect Rat. of .25 MAC Pus. Sta. of .25 MAC Chords Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b Aspect Rat. of .25 MAC Pus. Sta. of .25 MAC Chords Root BP108 Tip 1.00 b Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b Aspect Ratio Fus. Sta. of .25 MAC Pus. Sta. of .25 MAC Chords Root BP108 Tip 1.00 b Aspect Ratio Chords Root B	Span (Ineo In.	936.68	
Taper Ratio Cihedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Aerodynamic Twist, degrees Leading Edge Trailing Edge O.25 Element Line Chords: Root (Theo) B.P.O.O. Fus. Sta. of .25 MAC Area (Theo) Ft Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b ASP.O.O. ASP.O.O			
Cihedral Angle, degrees 3.500 3.500 Incidence Angle, degrees 0.500 0.500 Aerodynamic Twist, degrees +3.000 +3.000 Sweep Back Angles, degrees 45.000 45.000 Leading Edge 45.000 45.000 Trailing Edge -10.24 -10.24 0.25 Element Line 35.209 35.209 Chords: Root (Theo) B.P.O.O. 689.24 6.892 Tib, (Theo) B.P. 137.85 1.379 MAC 474.81 4.74.81 4.74.81 Fus. Sta. of .25 MAC 182.13 1.821 EXPOSED DATA 290.857 2.909 (Yo)* B.L. of .25 MAC 182.13 1.821 EXPOSED DATA 1752.29 17.523 Span, (Theo) Ft 1752.29 17.523 Span, (Theo) Ft 2.058 2.058 Root BP108 7.20.68 7.20.7 Root BP108 5.62.40 5.624 Tip 1.00 b 137.85 1.379 MAC 393.03 3.930 Fus. Sta. of .25 MAC 293.653 2.937			
Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge 0.25 Element Line Chords: Root (Theo) B.P.O.O. Fus. Sta. of .25 MAC EXPOSED DATA Area (Theo) In. BP108 Root BP108 Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC Chords Span, (Theo) In. BP108 Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC Chords Root Span (Span		3.500	3.500
Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line 35.209 Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC EXPOSED DATA Area (Theo) Ft Span, (Theo) In. BP108 Root BP108 Root BP108 Tip 1.00 5 MAC Root BP108 Tip 1.00 5 MAC Root BP108 Fus. Sta. of .25 MAC Root BP108 Root BP108 Fus. Sta. of .25 MAC Root BP108 Root BP108 Fus. Sta. of .25 MAC Root BP108 Root BP108 Root BP108 Fus. Sta. of .25 MAC Root BP108 R	Incidence Angle, degrees		
Leading Edge Trailing Edge 0.25 Element Line 35.209 Chords: Root (Theo) B.P.O.O. Tib. (Theo) B.P. MAC Fus. Sta. of .25 MAC (To.)** B.L. of .25 MAC EXPOSED DATA Area (Theo) Ft Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b Tip 1.00 b Tus. Sta. of .25 MAC Fus. Sta. of .25 MAC Area Sta. of .25 MAC Root BP108 Tip 1.00 b Tus. Sta. of .25 MAC Fus. Sta. of .25 MAC Area (Theo) In. BP108 Root BP108 Tip 1.00 b Tip 1.00 b Tus. Sta. of .25 MAC Airfoi) Section (Rockwell Mod NASA) XXXX-64			+_3.000
O.25 Element Line Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC (You have a fine a fi	Leading Edge		
Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC (7)* W.P. of .25 MAC (7)* B.L. of .25 MAC Area (Theo) Ft Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC Area (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC B.L. of .25 MAC Area (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC B.L. of .25 MAC B.L. of .25 MAC Airfoi) Section (Rockwell Mod NASA) XXXX-64			
Root (Theo) B.P.O.O. Tib, (Theo) B.P. Tib, (Theo) B.P. MAC Fus. Sta. of .25 MAC (Z _o)* W.P. of .25 MAC EXPOSED DATA Area (Theo) Ft Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC Fus. Sta. of .25 MAC Area (Theo) B.P. MAC Fus. Sta. of .25 MAC Fus. Sta. of .25 MAC Area (Theo) In. BP108 Aspect Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC Fus. Sta. of .25 MAC Airfoi) Section (Rockwell Mod NASA) XXXX-64			15.209
MAC Fus. Sta. of .25 MAC [Z _o)* W.P. of .25 MAC [Y _o)* B.L. of .25 MAC [X _o)* B.L. of .25	Root (Theo) B.P.O.O.		
Fus. Sta. of .25 MAC (Z _o)* W.P. of .25 MAC (Y _o)* B.L. of .25 MAC EXPOSED DATA Area (Theo) Ft Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC Fus. Sta. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXX-64			
(Z _o)* W.P. of .25 MAC 290.857 2.909 (Y _o)* B.L. of .25 MAC 182.13 1.821 EXPOSED DATA 1752.29 17.523 Area (Theo) Ft 1752.29 17.523 Span, (Theo) In. BP108 7.20.68 7.207 Aspect Ratio 2.058 2.058 2.058 Taper Ratio 0.245 0.245 0.245 Chords 5.624 5.624 1.379 MAC 393.03 3.930 1.379 MAC 393.03 3.930 11.853 *W.P. of .25 MAC 1185.31 11.853 2.937 B.L. of .25 MAC 293.653 2.937 2.518 Airfoil Section (Rockwell Mod NASA) XXXX-64 251.76 2.518	, , , , <u>, , , , , , , , , , , , , , , </u>		
EXPOSED DATA Area (Theo) Ft Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b Tip 1.00 b Fus. Sta. of .25 MAC Fus. Sta. of .25 MAC Airfoil Section (Rockwell Mod NASA) EXPOSED DATA 1.821 1.821 1.821 1.821 1.522 1.7523 1.7523 1.7523 7.207 1.7207 1	(Z _a)* W.P. of .25 MAC		
Area (Theo) Ft	(Y _o)* B.L. of .25 MAC	182.13	1.621
Span, (Theo) In. BP108 720.68 7.201 Aspect Ratio 2.058 2.058 Taper Ratio 0.245 0.245 Chords Root BP108 562.40 5.624 Tip 1.00 b 137.85 1.379 MAC 393.03 3.930 Fus. Sta. of .25 MAC 1185.31 11.853 *W.P. of .25 MAC 293.653 2.937 B.L. of .25 MAC 251.76 2.518 Airfoil Section (Rockwell Mod NASA)	EXPOSED DATA2		17 502
Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b Tip 1.00 b Taper Ratio MAC Fus. Sta. of .25 MAC **W.P. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXX-64 2.058 2.058 2.058 2.058 2.058 2.058 2.058 2.058 1.379 1.379 1.379 1.853 1.853 2.937 2.518	Area (ineo) Ft Span (Theo) In RP108		
Taper Ratio Chords Root BP108 Tip 1.00 b Tip 1.00 b MAC Fus. Sta. of .25 MAC **W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXX-64 O.245 0.245 0.245 0.245 0.245 0.245 1.379 1.379 1.379 1.853 2.937 2.518	Aspect Ratio		
Root BP108 Tip 1.00 b Tip 1.00 b MAC Fus. Sta. of .25 MAC *W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXX-64 S62.40 5.624 1.379 1.379 1.379 1.853 2.930 1.853 2.937 2.518	Taper Ratio		
Tip 1.00 b MAC Fus. Sta. of .25 MAC *W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXX-64	*****	2/2 12	r 60h
MAC 393.03 3.930 Fus. Sta. of .25 MAC 1185.31 11.853 *W.P. of .25 MAC 293.653 2.937 B.L. of .25 MAC 251.76 2.518 Airfoil Section (Rockwell Mod NASA) XXXX-64			
Fus. Sta. of .25 MAC 11.85.31 11.85.31 2.93.7 * W.P. of .25 MAC 293.65.3 2.93.7 B.L. of .25 MAC 251.76 2.518 Airfoil Section (Rockwell Mod NASA) XXXX-64	· 2		
*W.P. of .25 MAC 293.653 2.937 B.L. of .25 MAC 251.76 2.518 Airfoil Section (Rockwell Mod NASA) XXXX-64			
Airfoil Section (Rockwell Mod NASA) XXXX-64			2.937
XXXX-64		<u> 251 - 76</u>	2.518
2		0.100	0.100
Tip b = $0.120 0.120$		0.120	0.120
2	<u> 7</u>		
Data for (1) of (2) Sides Leading Edge Cuff a	Leading Edge Cuff A		
Leading Edge Guff 2 Planform Area Ft ² 118.333 1:183			
Leading Edge Intersects Fus M. L. 0 Sta 500.00 5.000 10.834			5.000 10.834

Nozzle	Throat Dia.	Exit Dia.	Lip Angle	Type	No. of Jets	Cant
N31	0.0921	0.0990	5°	LH down firing	2	20°OUTBD,12°AFT
N32	0.0921	0.0990	5°	RH up firing	2	None
N33	0.0921	0.0990	5°	LH side firing	2	None
N34	0.0520	0.0878	9°	LH down firing	2	20°OUTBD,12°AFT
N36	0.0520	0.0878	9°	RH up firing	2	None
N37	0.0520	0.0878	9°	LH side firing	2	None
N43	0.0465	0.129	31°45 '	LH down firing	2	20° 0UTBD,12°AFT
N44	0.0465	0.129	31°45'	RH up firing	2	None
N47	0.0465	0.117	34°30'	LH down firing	2	20°OUTBD,12°AFT
N48	0.0465	0.117	34°30'	RH up firing	2	None
N49	0.0670	0.1413	34°15'	LH down firing	2	20°0UTBD,12°AFT
N50	0.0670	0.1413	34°15′	RH down firing	2	20°0UTBD,12°AFT
N51	0.0670	0.1413	34°15'	LH side firing	4	None
N52	0.0670	0.1413	34° 15′	RH up firing	2	None
N61	0.0465	0.129	31°45'	LH side firing	2	None
N78	0.0670	0.1413	34°15'	RH up firing	1	None

TABLE IV. - Concluded

Nezzle	Throat Dia.	Exit Dia.	Lip Angle	Туре	No. of Jets	Cant
N79	0.0670	0.1413	34°15'	LH down firing	1	20°OUTBD,12°AFT
N81	0.0670	0.1413	34°15'	LH up firing	2	None
N82	0.0670	0.1413	34°15'	RH up firing	3	None
N83	0.0670	0.1413	34°15'	LH down firing	3	20°OUTBD,12°AFT
N84	0.0670	0.1413	34°15'	Combination-RH up firing & side firing	2 up 2 side	None
N85	0.0670	0.1413	34°15'	LH side firing	2	None

TABLE V. - SIMULATION PARAMETERS

 q_{∞} = 20 PSF RTLS abort separation simulation

Α.	Free Stream Conditi	<u>i ons</u>	Free Flight	Wind Tunnel
	Dynamic Pressure Mach number *Reynolds No. Altitude	q M RN/L h	20 psf 7 1.23x10 ⁶ 200,000ft	150 psf 10.3 1x10 ⁶
В.	RCS Jet Characteris	stics	<u>Prototype</u>	<u>Model</u>
	Chamber Pressure Chamber Temp. Specific Heat Ratio Expansion Ratio Nozzle Angle Exit Area Exit Mach No. Exit Pressure Mass Flow Rate Momentum Thrust	PC TC PC PG Ae Mj Mj Mj Mj JU J	150 psia 5450 °R 1.232 20 9° 72.382 in ² 3.93 0.643 psi 3.287 1bm/sec 903.46 1bF	140 psi 520 °R 1.4 4.792 34°15' 0.01567 in ² 3.13 3.136 psi 0.01067 1bm/sec 0.675 lbs. .712 lbs.
с.	Jet to Free Stream Parameters (Sref =	1 ft ²)	Full Scale Free Flight	<u>Simulation</u>
	Thrust Ratio	T q Sref	47.5	47.5 (Matched)
	Mass Flow Ratio	m _j ρ U Sref	26.4	50.6
	Momentum Ratio	M _j U _j q Sref	45.17	45 (Matched)
	Pressure Ratio		224	224 (Matched)
	Plume Shape		Boundary up to Impact station	(Roughly Matched)

^{*} Reynolds Number based on Orbiter length ℓ_{orb} = 107.5 ft.

TABLE VI. - THRUST COEFFICIENT FACTORS

		L _ T/D
Jet	Gas	k _i = T/P _c 1bs/psia
N31	Air	0.00692
N32	Air	0.00738
N33	Air	0.00792
N34	Air	0.00266
N36	Air	0.00261
N37	Air	0.00300
N43	Air	0.00250
N44	Air	0.00245
N47	Air	0.00237
N48	Air	0.00237
N49	Air	0.00920
N50	Air	0.00824
N51	Air	0.01620
N52	Air	0.00920
N61	Air	0.00221
N78	Air	0.00450
N79	Air	0.00460
N81	Air	0.00900
N82	Air	0.01356
N83	Air	0.01356
N84	Air	0.00886
N85	Air	0.00904

TABLE VII. - WING TEMPERATURES *

	<u>Data Point</u>	$\alpha = 0$	$\alpha = -10$	$\alpha = 20$	$\alpha = 35$	<u>Jet</u>
	1	221	295	181	189	ON
	2	290	326	208	219	OFF
4 5 6	3	308	344	235	246	ON
	4	327	362	264	273	OFF
	5	342	375	289	291	ON
	6	356	388	313	314	OFF
	7	368	398	329	333	ON
	8	378	408	343	353	OFF
	9	386	417	359	369	ON
	10	396	425	374	386	0FF
	11	404	434	387	406	ON
ן ו ו	12	412	443	397	417	OFF
	13	418	450	405	429	ON
	14	425	459	414	442	OFF
	15	432	465	423	451	ON
	16	438	472	431	463	OFF

É

TABLE VII. - Concluded.

Data Point	$\alpha = 0$	$\alpha = -10$	$\alpha = 20$	$\alpha = 35$	<u>Jet</u>
17	444	480	439	471	ON
18	450	488	446	479	OFF
19	454	495	451	489	ON
20	460	501	457	497	OFF
21	464		462	504	ON
22	469		467		0FF
23	473				ON
24	478				0FF

Ç3

^{*} degrees Fahrenheit

Figure 1. - Axis systems.

84

ě.

a. Orbiter Configuration

Figure 2. - Model sketches.

b. RCS Plenum Nozzle Block Installation

Figure 2. - Continued.

Si i

c. RCS Nozzle Adapter
Figure 2.- Continued.

d. Model Nozzle Block Configurations
Figure 2. - Concluded.

a. Orbiter Installation Side ViewFigure 3. - Model photographs.

b. Side View Of Nozzle Assembly Installed In Tunnel Figure 3. - Concluded.

DATA FIGURES

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(A)ALPHA = -8.00

FAGE 1425

DATA SET SYMBOL

(SJA020) (SJA035)

CONFIGURATION DESCRIPTION

ELEVON

NO.JET

BDFLAP

BETA

.000

REFERENCE INFORMATION

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 (B)ALPHA = .00 PAGE 1426

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(C)ALPHA = 10.00 PAGE 1427

The second se

Selection to have the selection of the s

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALPHA = 20.00 PAGE 1428

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1429

The state of the s

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(A)ALPHA = -8.00

PAGE 1430

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B)ALPHA = .00 PAGE 1431

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 (C)ALPHA = 10.00PAGE 1432

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALPHA = 20.00

PAGE 1433

The section of the second

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1434

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(A)ALPHA = -8.00

PAGE 1435

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B)ALPHA = .00 PAGE 1436

Market and the second

paralies s

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(C)ALPHA = 10.00 PAGE 1437

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALPHA = 20.00 PAGE 1438

k ... • ₹

Charles Santa La Brancher M.

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1439

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(A)ALPHA = -8.00

PAGE 1440

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B)ALPHA = .00 PAGE 1441

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(C)ALPHA = 10.00

PAGE 1442

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALPHA = 20.00

PAGE 1443

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1444

建型的设备中间推图10 - 20 Herry Tell (1972)

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

[A]ALPHA = -8.00

PAGE 1445

The second of the second secon

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B)ALPHA = .00

PAGE 1446

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(C)ALPHA = 10.00 PAGE 1447

reaction of lifetime 114 for the area is to lifetime to the control of the contro

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALPHA = 20.00 PAGE 1448

4 gent

Carlot Control Committee Control

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1449

and the second of the second o

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(A)ALPHA = -8.00

PAGE 1450

og til ottaller av kritte godern for til degligt til det egental medlere, a bakker græderte di<mark>tte fill kritin</mark>græde

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B)ALPHA = .00

PAGE 1451

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

[C]ALPHA = 10.00

PAGE 1452

¥ritio €

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALPHA = 20.00 PAGE 1453

FIGURE 78. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1454

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

- (A)ALPHA = -8.00

PAGE 1455

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B)ALPHA = .00

PAGE 1456

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85 (C)ALPHA = 10.00

PAGE 1457

2、大学大学,大学工作,并不是一个人的人,就是一个人的人,但是一个人们的特别的理解的证

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85 (D)ALPHA = 20.00PAGE 1458

But the state of the

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00

PAGE 1459

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(A)ALPHA = -8.00

PAGE 1460

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B) ALPHA = .00

PAGE 1461

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(C)ALPHA = 10.00

PAGE 1462

Bugget.

Company of the compan

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(D)ALPHA = 20.00

PAGE 1463

And the second of the second s

¥ 10 . #

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00

PAGE 1464

(- 3) (- 12)

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(A)ALPHA = -8.00

PAGE 1465

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B)ALPHA = .00

PAGE 1466

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(C)ALPHA = 10.00

PAGE 1467

FIGURE 79. EFFECT OF ELEVUN/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(D)ALPHA = 20.00

PAGE 1468

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00

PAGE 1469

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(A)ALPHA = -8.00

PAGE 1470

and the second of the second o

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B)ALPHA = .00

PAGE 1471

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(C)ALPHA = 10.00

PAGE 1472

1.000

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(D)ALPHA = 20.00 PAGE 1473

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00

PAGE 1474

The state of the s

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(A)ALPHA = -8.00

PAGE 1475

The state of the s

the contract of the contract o

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B)ALPHA = .00

PAGE 1476

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(C)ALPHA = 10.00

PAGE 1477

a e umpre u disci este

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(D)ALPHA = 20.00 PAGE 1478

* *

at À berry⊄

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00

PAGE 1479

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(A)ALPHA = -8.00

PAGE 1480

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B)ALPHA = .00

PAGE 1481

A Company of the Comp

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(C)ALPHA = 10.00

PAGE 1482

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(D)ALPHA = 20.00

PAGE 1483

t destro

FIGURE 79. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00

PAGE 1484

ুৱা । **ইন**্ধ

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(A)ALPHA = -8.00

PAGÉ 1485

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B)ALPHA = .00

PAGE 1486

4 % : .

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(C)ALPHA = 10.00

PAGE 1487

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(D)ALPHA = 20.00 PAGE 1488

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00

PAGE 1489

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(A)ALPHA = -8.00

PAGE 1490

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B)ALPHA = .00 PAGE 1491

Experience of the second

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(C)ALPHA = 10.00

PAGE 1492

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(D)ALPHA = 20.00 PAGE 1493

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00 PAGE 1494

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(A)ALPHA = -8.00

PAGE 1495

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B)ALPHA = .00

PAGE 1496

The property of the second second second

gradient de de la Propieta

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(C)ALPHA = 10.00

PAGE 1497

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(D)ALPHA = 20.00 PAGE 1498

A South

CANADA SANTAN SA

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00

PAGE 1499

and the second section Species

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(A)ALPHA = -8.00

PAGE 1500

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B)ALPHA = .00 PAGE 1501

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(C)ALPHA = 10.00

PAGE 1502

Para land

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(D)ALPHA = 20.00 PAGE 1503

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00

PAGE 1504

The second opens of a set of the second of t

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(A)ALPHA = -8.00

PAGE 1505

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B)ALPHA = .00

PAGE 1506

.

and the second second second

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(C)ALPHA = 10.00

PAGE 1507

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR; JETS N50N85

(C)ALPHA = 20.00 PAGE 1508

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00

PAGE 1509

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(A)ALPHA = -8.00

PAGE 1510

1.00

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(B)ALPHA = .00

PAGE 1511

Ş...

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(C)ALPHA = 10.00

PAGE 1512

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85 (D)ALPHA = 20.00PAGE 1513

Mary Company

FIGURE 80. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85

(E)ALPHA = 35.00

PAGE 1514

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

PAGE 1515

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B)ALPHA = .00 PAGE 1516

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

[C]4_P4A - 10.00 PAGE 1517

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALPHA = 20.00

PAGE 1518

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1519

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(A)ALPHA = -8.00

PAGE 1520

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B)ALPHA = .00 PAGE 1521

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(C)ALPHA = 10.00

PAGE 1522

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALPHA = 20.00 PAGE 1523

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1524

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(A)ALPHA = -8.00

PAGE 1525

Charles and the control of the contr

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B)ALPHA = .00

PAGE 1526

Company and the company of the compa

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(C)ALPHA = 10.00

PAGE 1527

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALPHA = 20.00 PAGE 1528

The state of the second se

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1529

Wasping and the common

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(A)ALPHA = -8.00

PAGE 1530

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B)ALPHA = .00

PAGE 1531

The second secon

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(C) ALPHA = 10.00 PAGE 1532

The state of the s

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALFHA = 20.00

PAGE 1533

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1534

From the contraction of the state of the sta

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

[A]ALPHA = -8.00

PAGE 1535

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B)ALPHA = .00 PAGE 1536

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(C)ALPHA = 10.00

PAGE 1537

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALPHA = 20.00

PAGE 1538

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1539

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(A)ALPHA = -8.00

PAGE 1540

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B)ALPHA = .00

PAGE 1541

er mentekking en 1956.

And Section Strawscome - 112

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(C)ALPHA = 10.00

PAGE 1542

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(D)ALPHA = 20.00

PAGE 1543

the same where the same suprement

Care Contraction

FIGURE 81. EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(E)ALPHA = 35.00

PAGE 1544

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACILE IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

water Provider

The state of the s

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

· 通過過過數數

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

The second of th

The same and the same and the

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

and the same of the same of the same

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

The second secon

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

PAGE 1565

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

SIDESLIP ANGLE, BETA, DEGREES FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

-3

FIGURE 82. AMPLIFICATION FACTOR IN YAW. N79 JETS

Secretaria de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición dela composición de la composición dela composición

La de la companya della companya della companya de la companya della companya del

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

FIGURE 82. AMPLIFICATION FACTOR IN YAW, N79 JETS

The second secon

FIGURE 83. AMPLIFICATION FACTOR IN YAW, N49 JETS

FIGURE 83. AMPLIFICATION FACTOR IN YAW, N49 JETS

4 2

100

PAGE 1583

FIGURE 83. AMPLIFICATION FACTOR IN YAW, N49 JETS

FIGURE 83. AMPLIFICATION FACTOR IN YAW, N49 JETS

FIGURE 83. AMPLIFICATION FACTOR IN YAW, N49 JETS

* :

FIGURE 83. AMPLIFICATION FACTOR IN YAW, N49 JETS

FIGURE 83. AMPLIFICATION FACTOR IN YAW, N49 JETS

Sugar I

FIGURE 83. AMPLIFICATION FACTOR IN YAW, N49 JETS

Tree out

FIGURE 83. AMPLIFICATION FACTOR IN YAW, N49 JETS

FIGURE 83. AMPLIFICATION FACTOR IN YAW. N49 JETS

FIGURE 83. AMPLIFICATION FACTOR IN YAW, N49 JETS

PAGE 1601

FIGURE 83. AMPLIFICATION FACTOR IN YAW. N49 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

The same of the sa

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

The second state of the se

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS.

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

1

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

PAGE 1623

FIGURE 84. AMPLIFICATION FACTOR IN YAW. N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 34. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

F)

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAV. N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW. N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 84. AMPLIFICATION FACTOR IN YAW, N83 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW. N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW. N78 JETS

PAGE

1641

6

FIGURE 95. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

ميد بيدن

FIGURE 85. AMPLIFICATION FACTOR IN YAW. N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW. N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW. N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW. N78 JETS

SIDESLIP ANGLE, BETA, DEGREES

FIGURE 85. AMPLIFICATION FACTOR IN YAW. N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

PAGE 1655

1 +

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW. N78 JETS

PAGE 1658.

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW. N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 85. AMPLIFICATION FACTOR IN YAW, N78 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW. N52 JETS

1+1

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW. N52 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

(-)

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

PAGE 1681

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

1=1

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW. N52 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW, N52 JETS

FIGURE 86. AMPLIFICATION FACTOR IN YAW. N52 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW. N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

1...

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, NS2 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW. N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 87. AMPLIFICATION FACTOR IN YAW, N82 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

PAGE 1726.

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

(→)

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

() ()

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

PAGE 1741

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

PAGE 1745

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

FIGURE 88. AMPLIFICATION FACTOR IN YAW, N51 JETS

(

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW. N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

180

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

1 2

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

4

(-)

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

(=)

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

 $(\overline{\bullet})$

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW. N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 89. AMPLIFICATION FACTOR IN YAW, N85 JETS

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

SIDESLIP ANGLE. BETA. DEGREES

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

PAGE 1791

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

(CJA232)

(⋆)

SYMBOL	T/QA-1	PARAMETRIC VALUES				REFERENCE INFORMATION		
000	47.500 95.000 190.000	MACH BOFLAP NO.JET	10.330 .000 2.000	ALPHA T/QA ELEVON	20,000 95,000 ,000	SREF LREF BREF XMRP YMRP ZMRP SCALE	2690.0000 474.8000 936.6800 1076.7000 .0000 375.0000	SO.FT. INCHES INCHES IN. XO IN. YO IN. ZO
	engin	C					CONTRACTOR OF THE STATE OF THE	

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

1 🍝)

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

6 1

0

SIDESLIP ANGLE. BETA. DEGREES

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

- 3

JET

RCS

-.20<u>£...</u>

3

2

FIGURE 90. AMPLIFICATION FACTOR IN YAW. N79N78 JETS

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

-3

-.20£...

-2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES

FIGURE 90. AMPLIFICATION FACTOR IN . W. N79N78 JETS

-3

-4

3

FIGURE 90. AMPLIFICATION FACTUR IN YAW. N79N78 JETS

-1

SIDESLIP ANGLE, BETA, DEGREES

-3

-.50[£]

-.55<u>£.....</u>

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

£ ...

FIGURE 90. AMPLIFICATION FACTOR IN YAW. N79N78 JETS

-2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES

FIGURE 90. AMPLIFICATION FACTOR IN YAW. N79N78 JETS

- 3

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

RCS

3

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

FIGURE 90. AMPLIFICATION FACTOR IN YAW. N79N78 JETS

FIGURE 90. AMPLIFICATION FACTOR IN YAW. N79N78 JETS

10.5

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

- 2

-3

-.35

ż

()

FIGURE 90. AMPLIFICATION FACTOR IN YAW, N79N78 JETS

SIDE

AMPLIFICATION FACTOR

JET

RCS

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

-2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

-3

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

PAGE 1821

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

-.10<u>E...</u>

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

4.0

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

-2

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N5ON85 JETS

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

-4

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

PAGE 1833

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

•)

FIGURE 91. AMPLIFICATION FACTOR IN YAW. N50N85 JETS

SIDESLIP ANGLE, BETA, DEGREES

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

-3

-.31[

-.32

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

SIDESLIP ANGLE, BETA, DEGREES

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

-2

-3

-.30E...

-4

3

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

0 SIDESLIP ANGLE, BETA, DEGREES

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

-2

-3

-.05

-.10E

-.15‡

-.20[

-.25₽

-.30<u>F.</u>.

-4

JET

100

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

SIDE .10 AMPLIFICATION FACTOR .05 -.05 -.10 -.15 JET -.20 RCS

-2 -1 0 1 SIDESLIP ANGLE. BETA. DEGREES

FIGURE 91. AMPLIFICATION FACTOR IN YAW, N50N85 JETS

-3

-.25

-.30£....

-4

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

ŧ.

(1)

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

₽..

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

-. 0

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

10 mg

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

PAGE 1871

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

1 = 1

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 92. AMPLIFICATION FACTOR IN YAW, N84 JETS

FIGURE 93. AREA RATIO EFFECTS. L/H DOWN FIRING JETS

00.8- = APPLA = -8.00

PAGE 1875

1)

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(B)ALPHA = -6.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

CODALPHA = -4.00

PAGE 1877

 (\cdot)

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(D)ALPHA = -2.00

()

Č

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(E)ALPHA = .00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(F)ALPHA = 2.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (H)ALPHA =6.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

1 +)

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (J)ALPHA = 10.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (L)ALPHA = 20.00

, + ,

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

÷ • •

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(B)ALPHA = -6.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(C)ALPHA = -4.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (D)ALPHA = -2.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

CO. = AH91A(3)

PAGE 1893

 $\mathcal{L} = \mathcal{X}$

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (F)ALPHA = 2.00 PAGE 1894

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (G)ALPHA = 4.00

ELEVON

NO.JET

BOFLAP

BETA

REFERENCE INFORMATION

DATA SET SHIBOL

CONFIDURATION DESCRIPTION

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(H)ALPHA = 6.00

PAGE 1896

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(J)ALPHA = 10.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (KJALPHA = 15.00)

ELEVON

MO.JET

BOFLAP

BETA

REFERENCE INCLUMATION

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

DATA SET SHABOL

CONFIGURATION DESCRIPTION

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (MCALPHA = 25.00)

1000

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

f' = Y

Z...

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(B)ALPHA = -6.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (COALPHA = -4.30)

1 1

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(D)ALPHA = -2.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(G)ALPHA = 4.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(H)ALPHA = 6.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(J) ALPHA = 10.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (K)ALPHA = 15.00

 $\xi^{(i)}_{i,j}$

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (M)ALPHA = 25.00

 $\mathcal{L} \to Y$

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (N)ALPHA = 30.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(A)ALPHA = -8.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (B)ALPHA = -6.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

 $(C)A_{\perp}PHA = -4.00$

7 = 1 1 = -

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(D)ALPHA = -2.00 :

7

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS. L/H DOWN FIRING JETS

(F)ALPHA = 2.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(G)ALPHA = 4.00

(--)

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(H)ALPHA = 6.00

FIGURE 93. AREA RATIO EFFECTS. ! 'H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(J)ALPHA = 10.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (K)ALPHA = 15.00

 $(\)$

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(N)ALPHA = 30.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(A)ALPHA = -8.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(B)ALPHA = -6.00

PAGE 1932

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (D)ALPHA = -2.00

()

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(E)ALPHA - .00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS. L/H DOWN FIRING JETS (G)ALPHA = 4.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(H) ALPHA = 6.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(J)ALPHA = 10.00

f .

الث

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (K) ALPHA = 15.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (L)ALPHA = 20.00

FIGURE 93. AREA RATIO EFFECTS. L/H DOWN FIRING JETS (M)ALPHA = 25.00

()

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (N)ALPHA = 30.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(B)ALPHA = -6.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

63

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(D) ALPHA = -2.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(E)ALPHA = .00

 $f_{ij} = \frac{\mathbf{A}}{\mathbf{S}}$

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(F)ALPHA = 2.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (G)ALPHA = 4.00

(- · ·

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (H)ALPHA = 6.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS
(I)ALPHA = 8.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

(J)ALPHA = 10.00

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

()

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (M)ALPHA = 25.00

+ +)

FIGURE 93. AREA RATIO EFFECTS, L/H DOWN FIRING JETS (N)ALPHA =30.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS CADALPHA = -8.00

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS
(B)ALPHA = -6.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (G)ALPHA = 4.00

(*)

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(H)ALPHA = 6.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

7 a

 $\stackrel{C}{\leftarrow} \mathfrak{J}$

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS (J)ALPHA = 10.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

1.

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS

 $\mathcal{E} = \Delta$

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(N)ALPHA = 30.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

 $f = \sum_{i=1}^{n} f_i$

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

(A)ALPHA = -8.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

6.)

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(E)ALPHA = .00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

 $f_{\rm so}^{\rm c} = \lambda$

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (G)ALPHA = 4.00

r 🍝 į

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(H)ALPHA = 6.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

 $\int_{\mathbb{R}^n} -\Delta$

\$ 1 1

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (K)ALPHA = 15.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (M)ALPHA = 25.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

(N)ALPHA = 30.00

FIGURE 94. AREA RATIO EFFECTS, RATIO FIRING JETS
(C)ALPHA = 35.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(A)ALPHA = -8.00

* 1 L

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

1 ×

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(D)ALPHA = -2.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

(3 3

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

1994

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (G)ALPHA = 4.00

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS
(H)ALPHA = 6.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

1 4 .

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

(J)ALPHA = 10.00 PAGE 1998

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (K) ALPHA = 15.00

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

(B)ALPHA = -6.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (C)ALPHA = -4.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(D)ALPHA = -2.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(E)ALPHA = .00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

(F)ALPHA = 2.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(G)ALPHA = 4.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(H)ALPHA = 6.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

An olding.

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(J)ALPHA = 10.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

PAGE 2014 .

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

(M)ALPHA = 25.00 PAGE 2016

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (N)ALPHA = 30.00

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS
(0)ALPHA = 35.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(A)ALPHA = -8.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (C)ALPHA = -4.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (D)ALPHA = -2.00

PAGE 2022 .

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS
(E)ALPHA = .00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (F)ALPHA = 2.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(G)ALPHA = 4.00

A CONTRACTOR OF CONTRACTOR OF

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (H)ALPHA =6.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(I)ALPHA = 8.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (J)ALPHA = 10.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (K)ALPHA = 15.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (M)ALPHA = 25.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (N)ALPHA = 30.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(0) ALPHA = 35.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(A)ALPHA = -8.00

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (C)ALPHA = -4.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(D)ALPHA = -2.00

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS
(E)ALPHA = .00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(F)ALPHA = 2.00

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS
CGDALPHA = 4.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS
(H)ALPHA = 6.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS (K)ALPHA = 15.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

CLIALPHA = 20.00

FIGURE 94. AREA RATIO EFFECTS. R/H UP FIRING JETS
(M)ALPHA = 25.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

(N)ALPHA = 30.00

FIGURE 94. AREA RATIO EFFECTS, R/H UP FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS CBCALPHA = -6.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (C)ALPHA = -4.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

The second secon

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(F)ALPHA = 2.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (H)ALPHA = 6.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

The second secon

Committee of the second of the second of the second

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (K)ALPHA = 15.00

The state of the s

Constant of the Constant of th

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (M)ALPHA = 25.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (N)ALPHA = 30.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS CCIALPHA = 35.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (A)ALPHA = -8.00

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS (B)ALPHA = -6.00

And the substitute of the second seco

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (C)ALPHA = -4.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS
(E)ALPHA = .00

.....

New }

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS
(F)ALPHA = 2.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(G)ALPHA = 4.00

PAGE 2070

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS (H)ALPHA = 6.00

The state of the s

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (1)ALPHA =8.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(J)ALPHA = 10.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS
(K)ALPHA = 15.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (N)ALPHA = 30.00

Marie Committee Committee

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(0) ALPHA = 35.00

PAGE 2078

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS
(B)ALPHA = -6.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

2084

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(F)ALPHA = 2.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(G)ALPHA = 4.00

國際的公司 (1000) (1000) (1000)

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS
CHOALPHA = 6.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(J)ALPHA = 10.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(K)ALPHA = 15.00

Miles Company of the Comment

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (M)ALPHA = 25.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS
(N)ALPHA = 30.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(C)ALPHA = 35.00

Approximately and the second s

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS
(B)ALPHA = -6.00

The second second second

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (C)ALPHA = -4.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(D)ALPHA = -2.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

ELEVON

NO.JET

SOFLAP

BETA

REFERENCE INFORMATION

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(G)ALPHA = 4.00

DATA SET SYMBOL CONFIGURATION DESCRIPTION

The state of the state of

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(H)ALPHA = 6.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (J)ALPHA = 10.00

The second secon

1

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS (K)ALPHA = 15.00

and the second

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

[L]ALPHA = 20.00

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS (M)ALPHA = 25.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(N)ALPHA = 30.00

The second secon

PAGE 2107

The second secon

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS (O)ALPHA = 35.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS
(B)ALPHA = -6.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS
(G)ALPHA = 4.00

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS (H)ALPHA = 6.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS (J)ALPHA = 10.00

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS (K)ALPHA = 15.00

The state of the s

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (L)ALPHA = 20.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(M)ALPHA = 25.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(N)ALPHA = 30.00

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS (0) ALPHA = 35.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS
(A)ALPHA = -8.00

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS
(B)ALPHA = -6.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

(E)ALPHA = .00

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (G)ALPHA = 4.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (H)ALPHA = 6.00

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS

(1)ALPHA = 8.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (K)ALPHA = 15.00

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (L)ALPHA = 20.00

FIGURE 95. AREA RATIO EFFECTS. L/H SIDE FIRING JETS (M)ALPHA = 25.00

PAGE 2136

t t

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS (N)ALPHA = 30.00

namen in de la companya de la compa

FIGURE 95. AREA RATIO EFFECTS, L/H SIDE FIRING JETS

PAGE 2138

(C)ALPHA = 35.00
