

MC25 GNSS Protocol Specification

GSM/GPRS/GNSS Module Series

Rev. MC25_GNSS_Protocol_Specification_V1.0

Date: 2018-12-28

Status: Released

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://www.quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm

Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2018-12-28	Jenn XIANG	Initial

Contents

		ument	
ıa			
1		on	
	1.1. Diffe	erences between Two Application Modes	7
2	Standard I	NMEA Packet Protocol	9
	2.1RN	MC	9
	2.2VT	-G	10
	2.3GG	GA	11
	2.4GS	SA	12
	2.5GS	SV	14
	2.6GL	L	15
3	GNSS AT	Commands	17
		QGNSSC GNSS Module Power Control	
		QGNSSRD Read GNSS Navigation Information	
		QGNSSCMD Send Commands to GNSS Module	
		QGNSSTS Get Time Synchronization Status for GNSS Module	
4		cket Protocols	
		ket Type: DFTket Type: SIR	
	4.2. Paci	ket Type. SIR	∠ა
5		nal Packet Protocols	
		adecimal Packet Structure	
	5.1.1.	Data Type	
	5.1.2.	Data Frame Basic Structure	25
	5.1.3.	Head	
	5.1.4.	Identifier	
	5.1.5.	Data Length	
	5.1.6.	Data	25
	5.1.7.	Checksum	25
		neral Protocols (0x01)	
	5.2.1.	ACK (0x01)	26
	5.2.2.	NACK (0x02)	
	5.3. Con	strol Protocols (0x02)	
	5.3.1.	RESET (0x01)	
	5.3.2.	DEFAULT (0x02)	
	5.3.3.		
	5.4. Setti	ing Protocols (0x03)	
	5.4.1.	GNSS (0x11)	
	5.4.2.	QZSS (0x12)*	29

6 7		nfigurations	
_		GNSS (0x02)	
	-	•	
		y Protocols (0x05)	
		NMEA (0x51)	
	5.4.9.	PPS (0x41)	35
	5.4.8.	INTERVAL (0x35)	34
	5.4.7.	SV (0x33)	33
	5.4.6.	FIX (0x32)	32
	5.4.5.	DYNAMIC (0x31)	
		UART (0x21)	
	5.4.3.	SBAS (0x13)	30

Table Index

TABLE 1: DIFFERENCES BETWEEN ALL-IN-ONE SOLUTION AND STAND-ALONE SOLUTION	8
TABLE 2: OVERVIEW OF GNSS AT COMMANDS FOR MC25	17
TABLE 3: DATA TYPE	24
TABLE 4: DEFAULT CONFIGURATIONS	39
TABLE 5: RELATED DOCUMENT	40
TABLE 6: TERMS AND ABBREVIATIONS	40
TABLE 7: STRUCTURE OF NMEA MESSAGE	41
TABLE 8: TALKER ID DISPLAY IN DIFFERENT GNSS SYSTEM (FOR NMFA 0183 4 10 VERSION)	42

1 Introduction

MC25 is multi-purpose module which integrates a high performance GNSS engine and a quad-band GSM/GPRS engine. The GNSS engine is a single receiver integrating GPS, BeiDou and GLONASS systems. It supports multiple positioning and navigation systems including autonomous GPS, BeiDou, SBAS and QZSS*. With the embedded GNSS function, MC25 can help customers get accurate coordinates, high-precision time, etc., and thus is ideal for use in wearable devices, vehicle and personnel tracking, and more fields.

This document describes the software aspects of MC25 module. It supports NMEA 0183 standard commands, and also can be controlled and configured via NMEA packet.

"*" means under development.

1.1. Differences between Two Application Modes

The internal GSM and GNSS engines of MC25 can work as a whole unit (**All-in-one** solution) or work relatively independently (**Stand-alone** solution) according to customers' demands.

In **All-in-one** solution, MC25 works as a whole unit. The GNSS part can be regarded as a peripheral of the GSM part. This allows for convenient communication between GSM and GNSS parts, such as AT command sending for GNSS control.

In **Stand-alone** solution, GSM and GNSS parts work independently, and thus have to be controlled separately.

When working in **All-in-one** or **Stand-alone** solution, there are some differences for MC25 to acquire NMEA output data, or send GNSS command. The details are listed below.

Table 1: Differences between All-in-one Solution and Stand-alone Solution

Item	All-in-one	Stand-alone
NMEA Output Data Acquisition	Acquire via sending AT+QGNSSRD command	Acquire directly
ASCII Command Sending	Send via AT+QGNSSCMD command	Send directly
HEX Command Sending	Send via AT+QGNSSCMD command	Send directly

NOTE

AT commands are effective only when the module is in **All-in-one** solution.

2 Standard NMEA Packet Protocol

MC25 supports standard NMEA 0183 messages, and the following tables show the structure of these messages.

2.1. -- RMC

RMC-Recommended Minimum Position Data (including position, velocity and time).

Example:

\$GNRMC,085152.00,A,3150.78499,N,11711.90193,E,0.176,,221018,,,A,V*1E<CR><LF>\$GPRMC,090853.00,A,3150.78462,N,11711.89851,E,0.071,,221018,,,A,V*01<CR><LF>\$GLRMC,095332.00,A,3150.76852,N,11711.91845,E,0.111,,221018,,,A,V*1E<CR><LF>\$BDRMC,095703.00,A,3150.77667,N,11711.93068,E,0.518,,221018,,,A,V*14<CR><LF>

Field	Description	
\$	Each NMEA message starts with '\$'	
RMC	Message ID	
UTC Time	Time in format 'hhmmss.ss'	
D. G. Mali I	'V'=Invalid	
Data Valid	'A'=Valid	
Latitude	Latitude in format 'ddmm.mmmmm' (degrees and minutes)	
N/C	'N'=North	
N/S	'S'=South	
Longitude	Longitude in format 'dddmm.mmmmm' (degrees and minutes)	
	'E'=East	
E/W	'W'=West	
Speed	Speed over ground in knots	
COG	Course over ground in degree	
Date	Date in format 'ddmmyy'	

Magnetic Variation	Magnetic variation in degree, not being output
E/W	Magnetic variation E/W indicator, not being output
	'N'=No fix
Positioning Mode	'A'=Autonomous GNSS fix
	'D'=Differential GNSS fix
Navigation State	"V"=Navigational status not valid
*	End character of data field
Checksum	Hexadecimal checksum
<cr><lf></lf></cr>	Each NMEA message ends with 'CR' and 'LF'

For more details about talker ID, please refer to *Table 8*.

2.2. --VTG

VTG-Track Made Good and Ground Speed.

Example: \$GNVTG,,T,,M,0.054,N,0.101,K,A*3C <cr><lf> \$GPVTG,,T,,M,0.071,N,0.132,K,A*25<cr><lf> \$GLVTG,,T,,M,0.111,N,0.206,K,A*3A<cr><lf> \$BDVTG,,T,,M,0.518,N,0.959,K,A*3B<cr><lf></lf></cr></lf></cr></lf></cr></lf></cr>		
Field	Description	
\$	Each NMEA message starts with '\$'	
VTG	Message ID	
COG (T)	Course over ground (true) in degree	
Т	Fixed field, true	
COG(M)	Course over ground (magnetic), not being output	
М	Fixed field, magnetic	
Speed	Speed over ground in knots	

N	Fixed field, knots
Speed	Speed over ground in km/h
K	Fixed field, km/h
	'N'=No fix
Positioning Mode	'A'=Autonomous GNSS fix
	'D'=Differential GNSS fix
*	End character of data field
Checksum	Hexadecimal checksum
<cr><lf></lf></cr>	Each NMEA message ends with 'CR' and 'LF'

For more details about talker ID, please refer to Table 8.

2.3. --GGA

GGA-Global Positioning System Fix Data, is the essential fix data which provides 3D location and accuracy data.

Example:

\$GNGGA,094324.00,3150.77559,N,11711.92539,E,1,07,2.10,52.9,M,-2.2,M,,*60<CR><LF>\$GPGGA,090853.00,3150.78462,N,11711.89851,E,1,05,1.86,115.3,M,-2.2,M,,*48<CR><LF>\$GLGGA,095332.00,3150.76852,N,11711.91845,E,1,04,5.85,65.7,M,-2.2,M,,*64<CR><LF>\$BDGGA,095703.00,3150.77667,N,11711.93068,E,1,04,3.31,57.8,M,-2.2,M,,*64<CR><LF>

Field	Description	
\$	Each NMEA message starts with '\$'	
GGA	Message ID	
UTC Time	Time in format 'hhmmss.ss'	
Latitude	Latitude in format 'ddmm.mmmmm' (degrees and minutes)	
N/C	'N'=North	
N/S	'S'=South	
Longitude	Longitude in format 'dddmm.mmmmm' (degrees and minutes)	

E/W	'E'=East
	'W'=West
	'0'=Invalid
Fix Status	'1'=GNSS fix
FIX Status	'2'=DGPS fix
	'6'=Estimated (dead reckoning) Mode
Number of SV	Number of satellites being used (0~26)
HDOP	Horizontal dilution of precision
Altitude	Altitude in meters according to WGS84 ellipsoid
М	Fixed field, meter
Geoid Separation	Height of Geoid (means sea level) above WGS84 ellipsoid, meter
M	Fixed field, meter
DGPS Age	Age of DGPS data in seconds, empty if DGPS is not used
DGPS Station ID	DGPS station ID, empty if DGPS is not used
*	End character of data field
Checksum	Hexadecimal checksum
<cr><lf></lf></cr>	Each NMEA message ends with 'CR' and 'LF'

For more details about talker ID, please refer to Table 8.

2.4. --GSA

GSA-GNSS DOP and Active Satellites, which provides details on the fix and includes the number of satellites being used in the current solution and the DOP.

Example:

\$GNGSA,A,3,12,15,24,25,,,,,,,2.68,1.45,2.25,1*0E<CR><LF>
\$GNGSA,A,3,70,80,69,71,,,,,3.03,2.10,2.18,2*0C<CR><LF>
\$GNGSA,A,3,06,01,04,,,,,3.03,2.10,2.18,4*0F<CR><LF>
\$GPGSA,A,3,24,20,10,32,21,,,,,3.92,1.86,3.45,1*1D<CR><LF>
\$GLGSA,A,3,70,80,69,71,,,,,,7.20,5.85,4.20,2*0D<CR><LF>

\$BDGSA,A,3,01,04,06,09,,,,,,6.42,3.31,5.50,4*00 <cr><lf></lf></cr>		
Field	Description	
\$	Each NMEA message starts with '\$'	
GSA	Message ID	
Mode	Auto selection of 2D or 3D fix 'M'=Manual, forced to switch 2D/3D mode 'A'=Allowed to automatically switch 2D/3D mode	
Fix Status	'1'=No fix '2'=2D fix '3'=3D fix	
Satellite Used 1	Satellite used on channel 1	
Satellite Used 2	Satellite used on channel 2	
Satellite Used 3	Satellite used on channel 3	
Satellite Used 4	Satellite used on channel 4	
Satellite Used 5	Satellite used on channel 5	
Satellite Used 6	Satellite used on channel 6	
Satellite Used 7	Satellite used on channel 7	
Satellite Used 8	Satellite used on channel 8	
Satellite Used 9	Satellite used on channel 9	
Satellite Used 10	Satellite used on channel 10	
Satellite Used 11	Satellite used on channel 11	
Satellite Used 12	Satellite used on channel 12	
PDOP	Position dilution of precision	
HDOP	Horizontal dilution of precision	
VDOP	Vertical dilution of precision	
GNSS System ID	1 = GPS 2 = GLONASS 4 = BeiDou	
*	End character of data field	

Checksum	Hexadecimal checksum	
<cr><lf></lf></cr>	Each NMEA message ends with 'CR' and 'LF'	

For more details about talker ID, please refer to Table 8.

2.5. --GSV

GSV-GNSS Satellites in View. One GSV sentence can only provide data for at most 4 satellites, so several sentences might be required for full information. Since GSV includes satellites that are not used as part of the solution, GSV sentence contains more satellites than GGA does.

Example:

\$GPGSV,3,1,09,10,49,322,30,12,29,119,16,14,10,272,09,15,31,068,,0*66<CR><LF>
\$GPGSV,3,2,09,20,80,322,27,21,35,216,30,24,52,044,18,25,19,159,13,0*6A<CR><LF>
\$GPGSV,3,3,09,32,26,285,29,0*5D<CR><LF>
\$GLGSV,1,1,04,69,20,109,40,70,60,046,43,71,33,331,50,80,55,041,46,0*75<CR><LF>
\$BDGSV,1,1,03,01,44,142,40,04,31,120,41,06,65,022,43,0*47<CR><LF>

Field	Description	
\$	Each NMEA message starts with '\$'	
GSV	Message ID	
Number of Message	Number of messages, total number of GPGSV messages being output (1~4)	
Sequence Number	Sequence number of this entry (1~4)	
Satellites in View	Total satellites in view	
Satellite ID 1	Satellite ID	
Elevation 1	Elevation in degree (0~90)	
Azimuth 1	Azimuth in degree (0~359)	
SNR 1	Signal to noise ration in dB-Hz (0~99), empty if not tracking	
Satellite ID 2	Satellite ID	
Elevation 2	Elevation in degree (0~90)	

Azimuth 2	Azimuth in degree (0~359)	
SNR 2	Signal to noise ration in dB-Hz (0~99), empty if not tracking	
Satellite ID 3	Satellite ID	
Elevation 3	Elevation in degree (0~90)	
Azimuth 3	Azimuth in degree (0~359)	
SNR 3	Signal to noise ration in dB-Hz (0~99), empty if not tracking	
Satellite ID 4	Satellite ID	
Elevation 4	Elevation in degree (0~90)	
Azimuth 4	Azimuth in degree (0~359)	
SNR 4	Signal to noise ration in dB-Hz (0~99), empty if not tracking	
Signal ID	0 = All channel	
*	End character of data field	
Checksum	Hexadecimal checksum	
<cr><lf></lf></cr>	Each NMEA message ends with 'CR' and 'LF'	

For more details about talker ID, please refer to Table 8.

2.6. --GLL

GLL-Geographic Latitude and Longitude, which contains position information, time of position fix and status.

Example:

\$GNGLL,3150.77559,N,11711.92539,E,094324.00,A,A*72<CR><LF>
\$GPGLL,3150.78462,N,11711.89851,E,090853.00,A,A*6C<CR><LF>
\$GLGLL,3150.76847,N,11711.91841,E,095331.00,A,A*77<CR><LF>
\$BDGLL,3150.77668,N,11711.93041,E,095702.00,A,A*76<CR><LF>

Field Description

\$	Each NMEA message starts with '\$'		
GLL	Message ID		
Latitude	Latitude in format 'ddmm.mmmmm' (degrees and minutes)		
N/S	'N'=North 'S'=South		
Longitude	Longitude in format 'dddmm.mmmmm' (degrees and minutes)		
E/W	'E'=East 'W'=West		
UTC Time	Time in format 'hhmmss.ss'		
Data Valid	'V'=Invalid 'A'=Valid		
Positioning Mode	'N'=No fix 'A'=Autonomous GNSS fix 'D'=Differential GNSS fix		
*	End character of data field		
Checksum	Hexadecimal checksum		
<cr><lf></lf></cr>	Each NMEA message ends with 'CR' and 'LF'		

For more details about talker ID, please refer to *Table 8*.

3 GNSS AT Commands

The commands below are used to control or configure the internal GNSS engine of MC25. These commands are effective only in **All-in-one** solution.

Table 2: Overview of GNSS AT Commands for MC25

Command	Description	
AT+QGNSSC	GNSS module power control	
AT+QGNSSRD	Read GNSS navigation information	
AT+QGNSSCMD	Send commands to GNSS module	
AT+QGNSSTS	Get time synchronization status for GNSS module	

3.1. AT+QGNSSC GNSS Module Power Control

The command is used to control the power supply of GNSS module.

AT+QGNSSC GNSS Module Power Control		
Test Command	Response	
AT+QGNSSC=?	+QGNSSC: (list of supported <mode>s)</mode>	
	ок	
Read Command	Response	
AT+QGNSSC?	+QGNSSC: <mode></mode>	
	OK	
Write Command	Response	
AT+QGNSSC= <mode></mode>	ОК	
	If there is any error, response:	
	+CME ERROR: <err></err>	

Parameter

<mode></mode>	<u>0</u>	Power off GNSS module
	1	Power on GNSS module

NOTE

In **Stand-alone** solution, the power supply of GNSS is controlled by an external circuit rather than GPS_VCC_EN pin. In such case, **AT+QGNSSC** command cannot be used and thus can be ignored.

Example

AT+QGNSSC? //Query GNSS power status

+QGNSSC: 0 //GNSS powered off

OK

AT+QGNSSC=1 //Power on GNSS

OK

3.2. AT+QGNSSRD Read GNSS Navigation Information

The command is used to read the GNSS navigation information.

AT+QGNSSRD Read GNSS Navigation Information		
Test Command	Response	
AT+QGNSSRD=?	+QGNSSRD: (list of supported <item>s)</item>	
	ОК	
Read Command	Response	
AT+QGNSSRD?	+QGNSSRD: (information of all supported <item>s) OK</item>	
Write Command	Response	
AT+QGNSSRD= <item></item>	+QGNSSRD: (information of <item>)</item>	
	OK	
	If there is any error, response:	
	+CME ERROR: <err></err>	

Parameter

<item></item>	"NMEA/GGA": Get GGA sentence	
	"NMEA/GLL": Get GLL sentence	
	"NMEA/GSA": Get GSA sentence	
	"NMEA/GSV": Get GSV sentence	
	"NMEA/RMC": Get RMC sentence	
	"NMEA/VTG": Get VTG sentence	

NOTE

The command can only be executed 3 seconds after GNSS is powered on, otherwise **+CME ERROR**: **7103** will be returned.

Example

```
AT+QGNSSRD?
                                       //Inquire GNSS NMEA sentence.
+QGNSSRD: $GNRMC,034035.000,A,3150.8617,N,11711.9038,E,3.02,183.45,240516,,,A*75
$GNVTG,183.45,T,,M,3.02,N,5.59,K,A*20
$GNGGA,034035.000,3150.8617,N,11711.9038,E,1,4,1.50,40.9,M,0.0,M,,*44
$GPGSA,A,3,26,21,,,,,,1.75,1.50,0.91*0A
$GLGSA,A,3,82,70,,,,,,1.75,1.50,0.91*1C
$GPGSV,3,1,12,16,67,308,,26,58,021,16,23,40,307,,31,40,088,*7F
$GPGSV,3,2,12,08,17,199,,09,14,320,,21,10,086,14,14,10,153,*73
$GPGSV,3,3,12,22,09,226,,193,06,165,,32,03,154,,29,01,034,*45
$GLGSV,3,1,09,81,44,073,,79,40,041,,82,38,145,15,80,36,323,*66
$GLGSV,3,2,09,70,30,290,16,69,26,225,,78,12,078,,88,09,027,*64
$GLGSV,3,3,09,71,05,334,*5B
$GNGLL,3150.8617,N,11711.9038,E,034035.000,A,A*4C
OK
AT+QGNSSRD="NMEA/RMC"
                                       //Inquire RMC information.
+QGNSSRD: $GNRMC,034036.000,A,3150.8612,N,11711.9045,E,2.74,178.00,240516,,,A*7C
OK
AT+QGNSSRD="NMEA/GSA"
                                       //Inquire GSA information.
+QGNSSRD: $GPGSA,A,3,26,21,,,,,,,1.76,1.50,0.91*09
$GLGSA,A,3,82,70,,,,,,1.75,1.50,0.91*1C
OK
```


3.3. AT+QGNSSCMD Send Commands to GNSS Module

The command is used to send commands to GNSS module, which allows customers to optionally use some functions to meet application demands.

AT+QGNSSCMD Send Commands to GNSS Module		
Test Command	Response	
AT+QGNSSCMD=?	+QGNSSCMD: (0,1),"cmdString"	
	OK	
Write Command	Response	
AT+QGNSSCMD= <cmdtype< th=""><th>ОК</th></cmdtype<>	ОК	
>, <cmdstring></cmdstring>		
	If there is any error, response:	
	+CME ERROR: <err></err>	

Parameter

<cmdtype></cmdtype>	<u>0</u> 1	NMEA style command Hex style command	
<cmdstring></cmdstring>	Co	Command string	

NOTE

The command can only be executed 3 seconds after GNSS is powered on, otherwise it will not be able to reach GNSS.

3.4. AT+QGNSSTS Get Time Synchronization Status for GNSS Module

The command is used to get time synchronization status for GNSS module.

AT+QGNSSTS	Get Time Synchronization Status for GNSS Module	
Test Command AT+QGNSSTS=?	Respo	onse ISSTS: <status></status>
	OK	
Read Command	d Response	
AT+QGNSSTS?	+QGN	ISSTS: <status></status>
	OK	

Parameter

<status></status>	0	Time is not synchronized
	1	Time is synchronized successfully

NOTE

The time synchronization status queried by **AT+QGNSSTS?** will be updated in either of the following cases:

- The time is synchronized via NITZ.
- GNSS gets fixed in All-in-one solution.

Example

AT+QGNSSTS=? //Test command +QGNSSTS: (0,1)

OK

AT+QGNSSTS? //Read time synchronization status
+QGNSSTS: 1 //Time is synchronized successfully

OK

4 NMEA Packet Protocols

This chapter introduces the NMEA packet protocols, which are a set of extension messages of standard NMEA packet protocols. These messages are used to control and configure the internal GNSS engine of MC25. The following tables show the structure of NMEA packet.

4.1. Packet Type: DFT

This message is used to restore default settings.

Data Field:

\$CCDFT,Mode,*Checksum

Example:

\$CCDFT,0,*66<CR><LF>

Response:

None.

Field	Description
\$	Each NMEA message starts with '\$'
CCDFT	Restore default settings message
Mode	The mode of restore '0' = Restore all settings to default
*	End character of data field
Checksum	Hexadecimal checksum
<cr><lf></lf></cr>	Each NMEA message ends with 'CR' and 'LF'

4.2. Packet Type: SIR

This message is used to set work and start mode.

Data Field:

\$CCSIR,Type,Mode*Checksum

Example:

\$CCSIR,3,1*4A<CR><LF>

Response: None.

Field	Description				
\$	Each NMEA message starts with '\$'				
CCSIR	Set work and startup mode message				
	Work type				
	'1' = BeiDou				
	'2' = GPS				
Type	'3' = BeiDou+GPS				
	'4' = GLONASS				
	'5' = BeiDou+GLONASS				
	'6' = GPS+GLONASS				
	Start mode				
	'0' = Auto mode				
Mode	'1' = Cold start				
	'2' = Warm start				
	'3' = Hot start				
*	End character of data field				
Checksum	Hexadecimal checksum				
<cr><lf></lf></cr>	Each NMEA message ends with 'CR' and 'LF'				

5 Hexadecimal Packet Protocols

This chapter introduces the hexadecimal packet protocols, which are a set of extension messages of standard NMEA packet protocols. These messages are used to control and configure the internal GNSS engine of MC25. The following table shows the structure of hexadecimal packet, which is sent through AT commands.

5.1. Hexadecimal Packet Structure

5.1.1. Data Type

All multibyte data is saved and transferred in little endian mode. The data type is defined in following table.

Table 3: Data Type

Name	Туре	Byte	Code
I8S	signed char	1	
18U	unsigned char	1	
I16S	signed short	2	Complemental ands
I16U	unsigned short	2	Complemental code
I32S	signed int	4	
I32U	unsigned int	4	
F32	single precision float	4	IFFF 75.4
F64	double precision float	8	—— IEEE 754
B8	bit field	1	
B16	bit field	2	
B32	bit field	4	
СН	Char	1	

5.1.2. Data Frame Basic Structure

	—			
Head	Identifier	Data length	Data	Checksum
(2 Bytes)	(2 Bytes)	(2 Bytes)	(n Bytes)	(2 Bytes)

5.1.3. Head

The head includes 2-byte HEX values (0x23 and 0x3E), and the values are fixed.

5.1.4. Identifier

The identifier includes 2-byte HEX values (Type and Function codes). For details, please refer to *Chapter* 5.2, 5.3, 5.4 and 5.5.

5.1.5. Data Length

The data length is the number of data bytes.

5.1.6. Data

The data is specifically defined by identifier.

5.1.7. Checksum

The checksum is calculated by FletCher16. The check range includes identifier, data length and data. The reference code of FletCher16 is as follows:

5.2. General Protocols (0x01)

5.2.1. ACK (0x01)

SDBP-PUB-ACK									
Description	Type: Output This is the response if the command is valid and executed successfully.								
Ctureture	Head		Identifier		Data Length	Data	Checksum		
Structure	0x23	0x3E	0x01	0x01	2	See below	-		
				D	ata				
No.	Туре		Name	e		Description			
1	I8U	Туре сс	de of ide	ntifier	This is the type code (included in the identifulation of the command that has been sent.		•		
2	I8U	Functio	n code of	fidentifier	•	function code (•		

5.2.2. NACK (0x02)

SDBP-PUB-NACK										
Description		Type: Output This is the response if the command is invalid and executed failed.								
Cimania	Head		Identifier		Data Length	Data	Checksum			
Structure	0x23	0x3E	0x01	0x02	2	See below	-			
				D	ata					
No.	Туре		Name	9		Description				
1	I8U	Type co	ode of ide	ntifier		pe code (include and that has been	d in the identifier) sent.			
2	I8U	Functio	n code of	fidentifier		function code he command that	(included in the has been sent.			

5.3. Control Protocols (0x02)

5.3.1. RESET (0x01)

SDBP-CTL-RESET										
Description	This co	Type: Input This command is used to restart the module. Module will response SDBP-PUB-NACK if the command is invalid.								
Ctructure	Head		Identifier		Data Length	Data	Checksum			
Structure	0x23	0x3E	0x02	0x01	1	See below	-			
				D	ata					
No.	Ty	уре		ı	Name	Des	scription			
		I8U				0x01: Cold start				
1	18			The m	ode of start	0x02:	Warm start			
						0x03: Hot start				

5.3.2. DEFAULT (0x02)

SDBP-CTL-I	DEFAUL	Т						
Description	Module	mmand is will res	sponse \$	SDBP-PU	efault settings. B-ACK if the DBP-PUB-NAC	command is vali K .	id and executed	
•	Head		Identifier		Data Length	Data	Checksum	
Structure	0x23	0x3E	0x02	0x02	1	See below	-	
Data								
No.	Ту	ре		Nan	пе	Description		
1	В	38	The bit of the default settings			0xFF: Restore all settings to default		

5.3.3. STANDBY (0x04)

SDBP-CTL-STANDBY

Type: Input

Description a

The standby mode is a low power mode, and this command is used to enter into this mode. After entering into the mode, the chip will turn off the main power automatically and stop working, and will be woken up with a level change (rising or falling) of the specific pin (UART1_RX). Waking up the chip is equivalent to resetting it.

Module will enter into standby mode if the command is valid and executed successfully, otherwise response **SDBP-PUB-NACK**.

Structure	Head		Identifier		Data Length	Data	Checksum
	0x23	0x3E	0x02	0x04	1	See below	-

	Data							
No.	Туре	Name	Description					
1	I8U	Enable control	0x01: Enter into standby mode					
1	100	Enable Control	Other values: Reserved and no response					

5.4. Setting Protocols (0x03)

5.4.1. GNSS (0x11)

SDBP-CFG-GNSS

Type: Input/Output

This command is used to configure GNSS mode.

Module will response **SDBP-PUB-NACK** if the command is invalid.

Description

and RF does not need to be reconfigured.

Module will be restarted and not respond if RF needs to be reconfigured.

When GPS system is selected, the SBAS system is automatically turned on; when SBAS is not required, the SBAS control command needs to be sent to turn off the

Module will response SDBP-PUB-ACK if the command is valid, executed successfully,

system.

Structure	Head		Iden	tifier	Data Length	Data	Checksum
Structure	0x23	0x3E	0x03	0x11	2	See below	-

		Data	
No.	Туре	Name	Description

			1: BeiDou
			2: GPS
4	1011	ONICO do	3: BeiDou+GPS (SBAS is turned on)
1	I8U	GNSS mode	4: GLONASS
			5: BeiDou+GLONASS
			6: GPS+GLONASS
			1: Save to backup area
2	I8U	Auto-save	Other values: not saved, and restore
			default values after power-on

5.4.2. QZSS (0x12)*

SDBP-CFG-QZSS

Type: Input

This command is used to turn on/off QZSS.

Description

Module will response **SDBP-PUB-ACK** if the command is valid and executed successfully, otherwise response **SDBP-PUB-NACK**.

QZSS system must be used simultaneously with the GPS system. If GPS is turned off, QZSS is automatically turned off; after GPS is turned on, QZSS is turned on or off using control commands as needed.

Structure	Не	ad	Iden	tifier	Data Length	Data	Checksum
Structure	0x23	0x3E	0x03	0x12	2	See below	_

	Data								
No.	Туре	Name	Description						
1	I8U	QZSS switch	<u>0</u> : Turn off QZSS 1: Turn on QZSS						
2	I8U	Auto-save	Save to backup area Other values: not saved, and restore default values after power-on						

"*" means under development.

5.4.3. SBAS (0x13)

SDBP-CFG-SBAS

Type: Input

This command is used to turn on/off SBAS.

Description

Module will response **SDBP-PUB-ACK** if the command is valid and executed successfully, otherwise response **SDBP-PUB-NACK**.

QZSS* system must be used simultaneously with the GPS system. If GPS is turned off, QZSS* is automatically turned off; after GPS is turned on, SBAS is automatically turned on, and will be turned off using control commands as needed.

Structuro	Не	ead	lden	tifier	Data Length	Data	Checksum
Structure	0x23	0x3E	0x03	0x13	2	See below	_

	Data								
No.	Туре	Name	Description						
1	I8U	SBAS switch	0: Turn off SBAS 1: Turn on SBAS						
2	I8U	Auto-save	Save to backup area. Other values: not saved, and restore default values after power-on						

NOTE

5.4.4. UART (0x21)

SDBP-CFG-UART

Type: Input

This command is used to configure UART.

Module will response **SDBP-PUB-ACK** if the command is valid and executed successfully, otherwise response **SDBP-PUB-NACK**.

Description

Default settings (UART1):

Baudrate: 9600bpsData bit: 8bitsStop bit: 1bitParity bit: None

[&]quot;*" means under development.

Structure	Не	ead	lden	tifier	Data Length	Data	Checksum
Structure	0x23	0x3E	0x03	0x21	6	See below	-

		Data	
No.	Туре	Name	Description
1	I8U	UART port	<u>1</u> : UART1 2: UART2*
2	I8U	Baud rate	1: 4800 2: 9600 3: 19200 4: 38400 5: 57600 6: 115200 7: 230400
3	I8U	None	Reserved
4	I8U	None	Reserved
5	I8U	None	Reserved
6	I8U	Auto-save	Save to backup area Other values: not saved, and restore default values after power-on

NOTES

- 1. This system does not support the modification of data bits, stop bits, and parity bits.
- 2. "*" means under development.

5.4.5. DYNAMIC (0x31)

SDBP-CFG-DYNAMIC

Type: Input

This command is used to configure motion mode.

Module will response **SDBP-PUB-ACK** if the command is valid and executed successfully, otherwise response **SDBP-PUB-NACK**.

Description

When the mode changes, the module automatically restarts.

- 1. Adaptive mode: maximum speed 340m/s, maximum altitude 15000m, maximum acceleration 2g.
- 2. Static mode: maximum speed 5m/s, maximum altitude 15000m.
- 3. Walking mode: maximum speed 10m/s, maximum altitude 15000m.

- 4. Automotive mode: maximum speed 150m/s, maximum altitude 15000m.
- 5. Ship mode: maximum speed 50m/s, maximum altitude 1000m.

Structure	Head		Identifier		Data Length	Data	Checksum
Structure	0x23	0x3E	0x03	0x31	2	See below	-

		Data	
No	Туре	Name	Description
			1: Adaptive
			2: Static
1	I8U	Motion mode	3: Walking
			4: Automotive
			5: Ship
			1: Save to backup area
2	I8U	Auto-save	Other values: not saved, and restore
			default values after power-on

NOTES

- 1. Adaptive mode covers static, walking, and automotive modes. If ship mode is used, it must be configured independently.
- 2. Set the correct mode according to the corresponding usage, which can effectively improve positioning precision.

5.4.6. FIX (0x32)

SDBP-CFG-FIX

Type: Input

Description

This command is used to configure fix mode.

Module will response **SDBP-PUB-ACK** if the command is valid and executed successfully, otherwise response **SDBP-PUB-NACK**.

Structure	Head		Identifier		Data Length	Data	Checksum
Structure	0x23	0x3E	0x03	0x32	11	See below	-

			Data		
No.	Туре	Name	Scale	Unit	Description
1	I8U	Fix mode	-	-	1: 2D mode 2: 3D mode 3: 2D/3D automatic switching

					mode
2	I8U	First fix mode	-	-	Only for 2D/3D automatic switching mode 0: 2D mode 1: 3D mode
3	132S	Reference altitude	10 ⁻²	m	Only for 2D mode Default: 0m
4	I32U	Reference altitude precision	10-4	m	Variance, only for 2D mode Default: 0.0m
5	I8U	Auto-save	-	-	Save to backup area Other values: not saved, and restore default values after power-on

5.4.7. SV (0x33)

		\sim		
\circ		\sim $-$	\sim	C \ /
SD	-		60	. T V

Type: Input

Description

This command is used to configure the satellite selected for positioning.

The module will response **SDBP-PUB-ACK** if the command is valid and executed successfully, otherwise response **SDBP-PUB-NACK**.

Structure	Не	ead	lden	tifier	Data Length	Data	Checksum
Structure	0x23	0x3E	0x03	0x33	4	See below	_

		Data			
No.	Туре	Name	Unit	Description	
1	I8U	The maximum quantity of satellites participating in the positioning solution	-	-	4 ≤ Satellite quantity ≤ 20 Default: 20
2	I8U	Minimum satellite elevation angle participating in positioning solution	-	Degree	0 ≤ Elevation angle ≤ 90 Default: 5
3	I8U	Minimum signal strength (C/N0) participating in positioning solution	-	dB/Hz	0 ≤ Signal strength ≤ 54 Default: 5
4	I8U	Auto-save	-	-	1: Save to backup area. Other values: not saved, restore default vales after power-on

5.4.8. INTERVAL (0x35)

SDBP-CFG-INTERVAL

Type: Input

This command is used to configure positioning interval.

The module will response **SDBP-PUB-ACK** if the command is valid and executed successfully, otherwise response **SDBP-PUB-NACK**.

The continuous positioning and navigation process is shown in the figure below.

Description

When the solution time T_N required for the solution moment N is greater than positioning time interval T, system automatically cancels the solution process from positioning moment T_{N+1} to the positioning moment T_{N+2} until the process is completed, and then the solution of positioning moment T_{N+2+1} is started. Therefore, when the positioning time interval T is short (the positioning frequency is high) and the solution time is long (the amount of calculation is large, and the number of elements participating in the solution is too large), the navigation output interval does not match the set positioning interval. If the navigation output interval is required to match the positioning interval, the appropriate positioning interval T or solution time needs to be adjusted (use SDBP-CFG-GNSS command to reduce the satellite system used, and use SDBP-CFG-SV command to reduce the number of satellites used for positioning solution).

Structure	Не	ead	lden	tifier	Data Length	Data	Checksum
Structure	0x23	0x3E	0x03	0x35	3	See below	-

	Data Data						
No.	Туре	Name	Ratio	Unit	Description		
1	I16U	Positioning interval	-	ms	100 ≤ Interval ≤ 60000; An integer multiple of 100; Default: 1000		
2	I8U	Auto-save	-		Save to backup area. Other values: not saved, restore default vales after power-on		

5.4.9. PPS (0x41)

SDBP-CFG-PPS

Type: Input

This command is used to configure PPS.

Description

Module will response **SDBP-PUB-ACK** if the command is valid and executed successfully, otherwise response **SDBP-PUB-NACK**.

Default settings (PPS0):

PPS0: Switch = 1; Output Mode = 1; Pulse Polarity = 0; Period = 1000; Pulse Width =

100; Offset = 0.

Structure	He	ead	Iden	tifier	Data Length	Data	Checksum
Structure	0x23	0x3E	0x03	0x41	18	See below	-

		Data	a		
No.	Туре	Name	Ratio	Unit	Description
1	I8U	Serial number	-	-	<u>0</u> : PPS0
2	I8U	Switch	-	-	0: Turn off PPS 1: Turn on PPS
3	I8U	Output mode	-	-	0: Output after power-on 1: Output after fix
4	I8U	Pulse polarity	-	-	0: Negative 1: Positive
5	I8U	GNSS time standard 1)	-	-	0: UTC 1: BeiDou 2: GPS 3: GLONASS
6	I32U	Period	-	ms	≥ 10ms
7	I32U	Pulse width	-	ms	
8	132S	Offset	-	ns	
9	I8U	Auto-save	-	-	1: Save to backup area. Other values: not saved, and restore default values after power-on

¹⁾ The firmware version of MC25 does not support the adjustment of GNSS time standard, which is fixed to UTC.

5.4.10. NMEA (0x51)

SDBP-CFG-NMEA

Type: Input

Description

This command is used to configure NMEA active output statement.

Module will response ${f SDBP-PUB-ACK}$ if the command is valid and executed

successfully otherwise response SDBP-PUB-NACK.

Structure	Не	ad	Iden	tifier	Data Length	Data	Checksum
Structure	0x23	0x3E	0x03	0x51	4	See below	-

	Data Data							
No.	Туре	Name	Description					
			0x01: ZDA					
			0x02: DTM					
			0x03: RMC					
			0x04: GGA					
			0x05: GSA					
			0x06: GSV					
1	I8U	Sentence ID	0x07: VTG					
			0x08: GNS					
			0x09: GLL					
			0x0A: GRS					
			0x0B: GST					
			0x0C: GBS					
			0x0D: TXT					
2	I8U	Output port	1: UART1					
	100	Output port	2: UART2*					
			0: Turn off the output.					
			1~N: Integer multiple of the positioning					
3	I8U	Output frequency	frequency.					
			Example: 2 means positioning twice and					
			output once.					
			1: Save to backup area					
4	I8U	Auto-save	Other values: not saved, and restore					
			default values after power-on.					

"*" means under development.

5.5. Query Protocols (0x05)

5.5.1. GNSS (0x02)

SDBP-QUE-GNSS

Type: Input

Description

This command is used to query GNSS configuration information.

Module will response the queried result if the command is valid and executed

successfully, otherwise response SDBP-PUB-NACK.

Structure	Не	ad	Iden	tifier	Data Length	Data	Checksum
Structure	0x23	0x3E	0x05	0x02	0	-	-

SDBP-QUE-GNSS

Description

Type: Output

This is the GNSS configuration information queried.

 Head
 Identifier
 Data Length
 Data
 Checksum

 Structure
 0x23 0x3E 0x05 0x02 3 See below

	Data							
No.	Туре	Name	Description					
1	В8	BeiDou state	BIT[0]: 0: Turn off BeiDou; 1: Turn on BeiDou BIT[1~7]: Reserved					
2	B8	GPS state	BIT[0]: 0: Turn off GPS; 1: Turn on GPS BIT[1]: 0: Turn off SBAS; 1: Turn on SBAS BIT[2]: 0: Turn off QZSS*; 1: Turn on QZSS* BIT[3~7]: Reserved					
3	B8	GLONASS state	BIT[0]: 0: Turn off GLONASS; 1: Turn on GLONASS BIT[1~7]: Reserved					

"*" means under development.

6 Default Configurations

Table 4: Default Configurations

Item	Default
NMEA Port Baud Rate	9600bps
Datum	WGS84
Rate of Position Fixing	1Hz
DGPS Mode	SBAS
SBAS	Enabled
NMEA Output Messages	RMC, GGA, GSA, GSV, VTG and GLL

7 Appendix A References

Table 5: Related Document

SN	Document Name	Remark
[1]	Quectel_MC25_Hardware_Design	MC25 Hardware Design

Table 6: Terms and Abbreviations

Abbreviation	Description			
AGPS	Assisted Global Positioning System			
CS	Commercial Sample			
DGPS	Differential Global Positioning System			
GGA	NMEA: Global Positioning System Fix Data			
GLL	NMEA: Geographic Latitude and Longitude			
GLONASS	GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System			
GNSS	Global Navigation Satellite System			
BeiDou	Chinese Satellite Navigation System			
GPS	Global Positioning System			
GSA	NMEA: GNSS DOP and Active Satellites			
GSV	NMEA: GNSS Satellites in View			
HDOP	Horizontal Dilution of Precision			
MP	Mass Production			
NMEA	National Marine Electronics Association			
NITZ	Network Identity and Time Zone			

PDOP	Position Dilution of Precision
QZSS	Quasi-Zenith Satellite System
RMC	NMEA: Recommended Minimum Position Data
SBAS	Satellite-Based Augmentation System
UTC	Universal Time Coordinated
VDOP	Vertical Dilution of Precision
VTG	NMEA: Track Made Good and Ground Speed
WAAS	Wide Area Augmentation System

Table 7: Structure of NMEA Message

Filed	Length (Bytes)	Description
\$	1	Each NMEA message starts with '\$'
Talker ID	1~2	Talker IDs can be 'GP', 'GN', 'BD' and 'GL' when the message ID is RMC, VTG, GLL, GGA and GSA; Talker IDs can be 'GP', 'GL' and 'BD' when the message ID is GSV.
NMEA Message ID	3	NMEA message ID.
Data Field	Variable, and depends on the NMEA message type	Data fields, delimited by comma ','.
*	1	End character of data field.
Checksum	2	A hexadecimal number calculated by exclusive OR of all characters between '\$' and '*'.
<cr><lf></lf></cr>	2	Each NMEA message ends with 'CR' and 'LF'.

NOTE

The default output messages of MC25 are as following six sentences: RMC, VTG, GGA, GSA, GSV and GLL.

Table 8: Talker ID Display in Different GNSS System (for NMEA 0183 4.10 Version)

Talker ID	GPS Only	BeiDou Only	GLONASS Only	GPS+ GLONASS	GPS+ BeiDou	GLONASS+ BeiDou
GGA	GP	BD	GL	GN	GN	GN
RMC	GP	BD	GL	GN	GN	GN
GLL	GP	BD	GL	GN	GN	GN
VTG	GP	BD	GL	GN	GN	GN
GSA	GP	BD	GL	GN	GN	GN
GSV	GP	BD	GL	GP+GL	GP+BD	GL+BD