Programming Paradigms

Lab 4. More exercises in Racket

Outline

- Higher-order functions and lists recap
- Exercise: Eight queens puzzle

Eight Queens puzzle: preliminaries

Exercise 4.1.

Implement function **attacks?** that checks whether two queens attack each other. Represent a queen with a pair or a list of coordinates.

Exercise 4.2.

Implement function attacks-any? that checks whether a queen attacks any of the other queens (given as a list).

Exercise 4.3.

Implement function **no-attacks?** to check whether a given arrangement of queens has no two queens attacking each other.

Eight Queens puzzle: naive solution

Exercise 4.4.

Implement function **for-range** that applies a given function to every number in a given range and returns a list of results.

Exercise 4.5.

Implement function **naive-four-queens** that finds all solutions to Four Queens puzzle (on a 4x4 board) by iterating over all possible row positions for four queens located on different columns and checking the corresponding solution.

Exercise 4.6.

Suggest optimizations for the implementation in Exercise 4.5.

Eight Queens puzzle: finding all solutions

Exercise 4.7.

Implement function **add-queen-at** that takes a list of possible N queen arrangements on a 8x8 board and returns a list of possible N+1 queen arrangements, where the last queen is added at a given column.

Exercise 4.8.

Implement eight-queens that finds a solution for Eight Queens puzzle.

Exercise 4.9.

Generalize implementations from Exercises 4.7 and 4.8 and implement function **n-queens** to find all solutions to N Queens puzzle.

Eight Queens extra: generating solutions one by one

Exercise 4.10.

Use **generator** and **yield** (see <u>Racket Guide 4.15.3</u>) and implement **for-range-gen** that applies a function to every number in a given range and yields results one by one.

Exercise 4.11.

Use **for-range-gen** to implement **eight-queens-gen** that yields solutions to the Eight Queens problem one by one.