BÖLÜM 5. BAĞIMSIZ AKIM VE GERİLİM DENKLEMLERİ

5.1. Bağımsız akım denklemleri

Teorem 1: Herhangi n_d-1 düğüm için yazılan akım denklemleri bağımsız bir takım oluşturur.

Teorem 2: Temel kesitlemeler için yazılan akım denklemleri bağımsız bir takım oluşturur.

1 2 3 4 5 6

$$A_{b}.I_{e}(t) = \Theta$$

Yukarıdaki matrisel formun açılması ile ortaya çıkacak olan denklemlerin tüm satırlar toplamı sıfırdır. O halde bağımsız akım denklemleri sayısı $n_d - 1$ den daha büyük yani n_d olamaz.

Yukarıdaki matris gösteriminde, temel kesitlemeye giren elemanlar (1) veya (-1), girmeyenler (0) ile gösterilir. Aynı matrisi kapalı formda $C_b.I_e(t) = \Theta$ şeklinde de yazabiliriz.

$$\text{Yukarıdaki matrisi} \quad I_{t} = \begin{bmatrix} i_{3} \\ i_{4} \\ i_{5} \\ i_{6} \end{bmatrix}, \quad I_{l} = \begin{bmatrix} i_{1} \\ i_{2} \\ i_{7} \end{bmatrix}, \quad C_{t} = U = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{ve} \quad C_{l} = \begin{bmatrix} 0 & -1 & -1 \\ 0 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

olarak parçalamak suretiyle $\begin{bmatrix} C_t & C_l \end{bmatrix} \cdot \begin{bmatrix} I_t \\ I_l \end{bmatrix} = \begin{bmatrix} \Theta \end{bmatrix}$ veya $C_t . I_t + C_l . I_l = \Theta$ veya

 $U.I_t + C_l.I_l = \Theta$ ifadesini yazabiliriz. Buradan ise $I_t = -C_l.I_l$ yazılabilir. Burada I_l bağımsız kiriş akımları matrisi, I_t bağımlı dal akımları matrisi, C_l kiriş akımlarına ait katsayılar matrisi ve $C_t = U$ ise de dal akımlarına ait katsayılar (birim) matrisidir.

5.2. Bağımsız gerilim denklemleri

Teorem 1: Temel çevreler için yazılan gerilim denklemleri bağımsız bir takım oluşturur.

Teorem 2: Gözler için yazılan gerilim denklemleri bağımsız bir takım oluşturur. En basit çevreye göz denir.

Yukarıdaki matris gösteriminde, çevreye giren elemanlar (1) veya (-1), girmeyenler (0) ile gösterilir. Aynı matrisi kapalı formda $B_b.V_e(t) = \Theta$ şeklinde de yazabiliriz.

Yukarıdaki matrisi
$$V_t = \begin{bmatrix} v_1 \\ v_3 \\ v_4 \\ v_5 \end{bmatrix}, V_l = \begin{bmatrix} v_2 \\ v_6 \\ v_7 \end{bmatrix}, B_l = U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 ve $B_t = \begin{bmatrix} -1 & 1 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & 1 & -1 \end{bmatrix}$

olarak parçalamak suretiyle
$$\begin{bmatrix} B_t & B_t \end{bmatrix} \cdot \begin{bmatrix} V_t \\ V_t \end{bmatrix} = \begin{bmatrix} \Theta \end{bmatrix}$$
 veya $B_t \cdot V_t + B_t \cdot V_t = \Theta$ veya

 $B_t V_t + U V_l = \Theta$ ifadesini yazabiliriz. Buradan ise $V_l = -B_t V_t$ yazılabilir. Burada V_t bağımsız dal gerilimleri matrisi, V_l bağımlı kiriş gerilimleri matrisi, B_t dal gerilimlerine ait katsayılar matrisi ve $B_l = U$ ise kiriş gerilimlerine ait katsayılar (birim) matrisidir.

$$(B_t)_{(n_o-n_d+1)\times(n_d-1)}$$
: Dikdörtgen matris

$$(B_l)_{(n_e-n_d+1)\times(n_e-n_d+1)}$$
: Kare matris

$$(V_t)_{(n_t-1)\times 1}$$
: Sütun matris

$$(V_l)_{(n_*-n_d+1)\times 1}$$
: Sütun matris

Bağımsız gerilim denklemlerinin sayısı kiriş elemanlarının sayısından az olamaz.

$$\begin{split} I_t &= -C_l I_l \\ I_e &= \begin{bmatrix} I_t \\ I_l \end{bmatrix} = \begin{bmatrix} -C_l I_l \\ U I_l \end{bmatrix} = \begin{bmatrix} -C_l \\ U \end{bmatrix} \cdot I_l \end{split}$$

$$V_1 = -B_t \cdot V_t$$

$$V_e = \begin{bmatrix} V_t \\ V_l \end{bmatrix} = \begin{bmatrix} U.V_t \\ -B_t.V_t \end{bmatrix} = \begin{bmatrix} U \\ -B_t \end{bmatrix} \cdot V_t$$

Eğer bağımsız kesitlemeler için $C_b = C$ ve yine bağımsız çevreler için $B_b = B$ diyecek olursak, yukarıdaki ifadeler aşağıdaki gibi gösterilebilir.

$$C = \begin{bmatrix} C_t & C_t \end{bmatrix} \implies C = \begin{bmatrix} U & C_t \end{bmatrix}$$

$$B = \begin{bmatrix} B_t & B_t \end{bmatrix} \implies B = \begin{bmatrix} B_t & U \end{bmatrix}$$

Bu durumda diklik(ortogonallik) koşulu aşağıdaki gibi tarif edilebilir.

$$C.B^T = \Theta$$

$$\begin{bmatrix} U & C_t \end{bmatrix} \cdot \begin{bmatrix} B_t^T \\ U \end{bmatrix} = \Theta$$

$$U.B_t^T + C_I.U = \Theta$$

Yukarıda verilen eşitliklerde $C_l = -B_t^T$ veya $B_t = -C_l^T$ yazılabilir.

$$I_e = \begin{bmatrix} B_t^T \\ U \end{bmatrix} \cdot I_l = \begin{bmatrix} B_t & U \end{bmatrix}^T I_l = B^T I_l$$

$$V_e = \begin{bmatrix} U \\ C_l^T \end{bmatrix} \cdot V_t = \begin{bmatrix} U & C_l \end{bmatrix}^T \cdot V_t = C^T \cdot V_t$$

5.3. Devreler teorisinin aksiyomları

5.3.1. Akım denklemleri

 $AI_e=\Theta$, A matrisi herhangi n_d-1 düğüm için yazılan düğüm matrisidir $CI_e=\Theta$, C matrisi herhangi bağımsız kesitleme için yazılan kesitleme matrisidir

5.3.2. Gerilim denklemleri

a.) $BV_e = \Theta$, B matrisi bağımsız çevreler için yazılan çevre matrisidir.

5.3.3. Tellegen teorisi

$$\sum_{k=1}^{n_e} p_k(t) = \sum_{k=1}^{n_e} v_k(t) i_k(t) = V_e^T I_e = (C^T V_t)^T B^T I_l = \underbrace{V_t^T}_{\text{Dal gerilimleri}} CB^T . I_l = 0$$

Yani devredeki elemanlarda harcanan gücün toplamının $\sum_{k=1}^{n_e} p_k(t) = 0$ olduğu görülür. Bunun yanı sıra $P_k(t) = \frac{dW_k(t)}{dt}$ tanım bağıntısından dolayı, bu devredeki elemanlara ilişkin enerjilerin toplamı da aşağıdaki gibi hesaplanır.

$$\sum_{k=1}^{n_e} \frac{d}{dt} W_k(t) = \frac{d}{dt} \left[\sum_{k=1}^{n_e} W_k(t) \right] = 0 \quad \Rightarrow \quad \sum_{k=1}^{n_e} W_k(t) = K \text{ (sabit)}$$

5.3.4. Devre denklemleri

- 1. Tanım eşitlikleri: n_e
- 2. Bağımsız akım denklemleri: $n_d 1$
- 3. Bağımsız gerilim denklemleri: $n_e n_d + 1$

Toplam denklem sayısı: 2.n_e

5.3.5. Devre denklemlerine giren elektriksel işaretler

- 1. Tüm eleman gerilimleri: n_e
- 2. Tüm eleman akımları: n_e

Toplam bilinmeyen sayısı: $2.n_e$

5.4. Devre Çözüm Yöntemleri

5.4.1. Dolaysız yöntemler

Eşdeğer n kapılı devreler: Aşağıdaki birinci N_1 n kapılısına ilişkin akım ve gerilim bağıntıları, ikinci N_2 n kapılısına ilişkin akım ve gerilim denklemlerini sağlıyorlarsa N_1 ve N_2 devreleri eşdeğerdirler.

Birinci N_1 n kapılı devresi:

$$v = v_R + v_k$$

$$v = R.i + v_k$$

$$i = \frac{v - v_k}{R} = \frac{1}{R} \cdot v - \frac{1}{R} \cdot v_k$$

İkinci N_2 n kapılı devresi:

Yukarıdaki N_1 ve N_2 n kapılı devreleri eşdeğerdirler. Eşdeğerlilik yalnız ve yalnız kapılara ilişkin gerilim ve akımlar için tanımlanır.

5.4.2. Dolaylı yöntemler

a.) Çevre denklemleri: $n_e - n_d + 1$

b.) Düğüm denklemleri: $n_d - 1$

c.) Durum denklemleri: $n_C + n_L$