Autodesk Maya modeling, animation, scripting and C++ programming 2017-18

lionel.reveret@inria.fr

Cours ENSIMAG, Ingénierie de l'Animation 3D

Goals

- Discover a professional tool for 3D production
 - Practical implementation of theoretical concept
 - Gain experience on a software that is a reference in the digital media industry
- Learn the role of programmers in 3D workflows
 - To cooperate with artists and engine programmers
 - Developing tools
 - Scripts (MEL / Python)a
 - Plug-ins as dynamic library (C++ API / Python API)

Organization & Evaluation

Introduction to Maya (6h)

Development project (9h)

- Evaluation (3h)
 - Project presentation

3D Programming

- Different software categories
 - Libraries
 - Low level: OpenGL, DirectX, CUDA, OpenCL
 - Higher level: Qt, OpenInventor, etc
 - Engines
 - Rendering, Animation, Physics, All-in-one (Unreal, CryEngine, etc)
 - Artist software
 - General purpose: 3ds Max, Maya, Blender
 - Rendering: Mental Ray, Arnold, Renderman
 - Animation: MotionBuilder, Cinema4D
 - Modeling: Rhinoceros, ZBrush, Mudbox

3D Programming in the Digital Media Industry

- Animation Studios
 - Maya and 3ds Max are the reference
 - Proprietary suites are used in the biggest studios (Disney, DreamWorks, Pixar)
 - ex: Disney's Tonic tool for hair modeling & simulation

3D Programming in the Digital Media Industry

- Game Studios
 - Most studios use Maya or 3ds Max for 3D assets
 - Proprietary tools as well as file formats (to protect assets) for run-time
 - Assets are used by the 3D engine of an end-user software

3D Programming in the Digital Media Industry

Extended workflow

Why Autodesk Maya?

- Interactive application for:
 - Modeling
 - Polygons, NURBS, Subdivision, Texture placement
 - Animation
 - keyframe, skeleton, physics
 - Rendering
 - Interactive (real-time visualization), off-line (ray-tracing)
- Open software architecture (script and C++), not open source
- Multi-platform (formats, script and code)
- Nice Documentation support

Project summary

- Development of a tool related to animation
 - Specific deformation technique: Green Coordinates
- 4 languages will be addressed
 - Maya Embedded Language (MEL) Script
 - Maya Python Script
 - Python using Maya API
 - C++ using Maya's C++ API
 - Integrating the algorithm into Maya's core mechanics

But first!

You will discover and manipulate this software a bit

(Artists have around 6 months of full-time training to use it properly, so don't expect to be experts at the end of this course after 18 hours only...)

Maya Interface

Maya's software architecture

C++ API

MEL (Maya Embedded Language) / Python module

- create/edit objects, query/set attributes
 - geometry, animation, computation nodes
- Algorithm
 - control flow, data structures, procedures
- GUI (Maya own programming widgets)
 - input handling

Maya API C++

- Programmable nodes
 - input: geometry[], float[], time, etc
 - output: geometry[], float[], color[], etc

Exemples: shaders, skinning

- Custom File I/O
- Custom tools (3D HCI widgets)
 - access to OpenGL context of interactive view
- Stand-alone application
 - use Maya API but no need for Maya Interface
 - open Maya binary files

Maya Learning tools

- Several links in Maya Help Menu
- Additional tutorials and content from Autodesk website

Maya and 3D on the web

- https://www.autodesk.com/education/free-software/all
 - FREE version for **student**
 - Go for education community account
- www.highend3d.com
 - great source of scripts and plug-ins (mostly free), for Maya and others
- www.turbosquid.com
 - A lot of models (some free ones)