LIMB DARKENING.

Linb darluning is a general problem radiative transfer. The equation of radiative transfer is:

 $-\frac{1}{k_{\lambda}\rho}\frac{dI_{\lambda}}{ds}=I_{\lambda}-S_{\lambda}.$

The gives the intensity In (per unit wavelength) of light traveling through a distance 5 within some medium.

 $T_{\lambda} = \frac{\partial I}{\partial \lambda} = \frac{E_{\lambda}}{\partial \lambda} \frac{\partial \lambda}{\partial \lambda}$ $d\lambda d+ dA \cos dx$

o Sa = DS -> "source function! It describes

how photons originally traveling with

the beam of light are removed

and replaced by photons from the surrounding gas.

= jx -> ratio of the emission welficiet

kx to absorption welficient

· kx > opacity.

We typically see no cleeper into an atmosphere

from $T_{\lambda} = 1$.

General Sources of Opacity
· Bound - bound transitions
o Bound-free absorption
L'photoionization.
o free - free
La absorption by a free e-
· Electron Scattering
The Source function
In thermodynamic equilibrium, the intensity
of radiation is blackbody
$I_{\lambda} = B_{\lambda}$
If we have equilibrium, $dI_{\lambda} = 0$.
$\frac{1}{2}$
radiative transfer eq. is $S_{x} = I_{x}$
$= \mathbb{B}_{2}$
٥٦ .
However, a Ster is not in equilibrium.
But, give that photons (for Z >> 1) diffuse
apwards via a randon halle.
=> photons are effectively contined to a
limited volume, a region at nearly constant
lemperature.
=> In LTE, Local The modynamic
Sx = Bx. Equilibrium. (LTE)
Gullion (216)

Plane - Parallel Atmosphere

Assume the atmosphere of the sun ;

thin compared to the size of the star.

Treat it as a place parallel slab:

Define the "vertical optical depth":

True (2) = for kn p d2

Radiative dransfer eq. $-1 \frac{dI_x}{dI_x} = I_x - S_x$ $\frac{k_x \rho}{i} \frac{dS}{dS}$ $\frac{dI_x}{dS} = I_x - S_x$ $\frac{dI_x}{dS} = I_x - S_x$ $\frac{dI_x}{dS} = I_x - S_x$ $\frac{dI_x}{dS} = I_x - S_x$

Grey Atmosphere

Assume te doesn't depend on wome length.

Integrate our all wantlengths to get:

```
Integrate from some point of inside the
 atmosphere, where T = T_0 and I = I_0,
  to the Surface, when T=O and I=I
     I - I_{o} e^{-\tau} = - \int_{\tau_{o}}^{\sigma} S e^{-\tau} d\tau
 Now, back to vertical optical depth:
          T → Ty seio
and take the initial position of light ray,
 to be at Tr = \infty.

T = \int_{0}^{\infty} S e^{-tr sec \theta} seco dT
 Now use S = < I>
                     = 30 Te ( Tr + 2)
and integrate:
           I = a + b \cos \theta, \quad a = C Te^{4}
                                          2π
b= 3<u>0</u> Te
 One last thing: it's customary to normalize
this w.r.t. the fotal intensity:
       I_{++} = \int I dx = \int_{-\infty}^{\infty} \left( \int I \int_{-\infty}^{\infty} \left( \int A + b \cos \theta \right) \right) \int d\theta d\theta d\theta
\frac{1}{I_{tot}} = \frac{1}{2} + \frac{3}{4} \cos \theta.
```