Assignment 39

Alex Clemmer

Student number: u0458675

1

One key insight here is that simply recursively finding all expressions that evaluate to b will actually leave some solutions out over arbitrary problem-space, because other expressions, $(e.g., a \cdot a)$ also evaluate to b.

So the real task at hand is to find a substructure to build the recurrence relation on. If we notice that multiplication in general is really a problem of tree associations, then this becomes easier. Say $M_x(i,j)$ yields a list of possible products of i and j. Then $M_x(i,i) = s[i]$, and $M_x(i,i+1)$ is always deterministically one particular character from the given set of possibilities (in this case, $\{a,b,c\}$). And every subsequent problem is an expression of this. So e.g., $M_x(i,i+3)$ would be some combination of the above.