Big Numbers
· Avagadros number is big
$N_{A} = 6.02 \times 10^{23}$
·
But compare (log means natural log)
log NA ~ 50 (54.7 to be more exact)
What about the number of rearrangements of the molecules in this room
The Trope Could be the court of
NA !
This is exponentially large. We will show
in a sec that
M! = Me-M Stirling Approx
Thus
log N! = Nlog N - N & Stirling Approx
So 54,7
log NA! = NA log NA - NA = 53.7 N = 3×1025

So even the logN! is a very large number. Lets call this exponentially large Proof log N! = log (1) + log (2) + log (3) + ... log N This sum of logs can be replaced by an integral if N is large (see figure) log N! = | dx log x ~ × 1-g × - × logNI = NlogN-N NI = NNe-N You can find a better approximation, if you work harder (see book), which gives N! = N e-M /2TT N But we will not generally need the ZTTN.

Deriving the Stirling approximation:

Replace the sum with integral

Accuracy of Stirling

Points: log(n!)

Dashed: $n \log n - n$

• Solid: $\log(n^n e^{-n} \sqrt{2\pi n})$

We will used the dashed

Combinatories
· Consider the 10 atoms shown below. Four of them have been "activated"
There are many ways to activate four some of which are shown below
N=10 sites
r=4 N-r=6
The total number ways of selecting
Cy = .101 "10 choose 4"
or selecting r out of N is
NCr = N!
r! (N-r)! a binomial coefficient
That's because there are N! rearrangements, But, rearrangements wich shuffle the green data do not lead to a new selection. There are T.

of these. Similarly there (N-r)! rearrangements

the pink dots. So the total

of possible selections is
$\frac{L_{j}(M-L)_{j}}{N}$

Probability Distributions
First imagine that a variable x takes
a set of discrete outcomes X. e.g. a
a set of discrete outcomes X. e.g. a loaded dice with probability P. i=1 N with N=6 for loaded dice
N=6 for loaded dice
Then IP = 1
$\langle x \rangle = \sum_{i} x_{i} \mathcal{P}_{i}$ also \overline{x}
(3) 5.200 -
$\langle x^2 \rangle = \sum_i x_i^2 P_i$ also x^2
The deviation from the mean is
$\delta x = x - \langle x \rangle$
$\circ X = X - \langle X \rangle$
The mean deviation is
√
<8x> = <x -="" <x=""> - <x> = 0</x></x>
—.
The mean squared deviation or variance
$\sigma_{x}^{2} = \langle 8x^{2} \rangle = \langle (x - \langle x \rangle)^{2} \rangle$
Const Const?
Std. deviation = < x 2 - 2x < x> + <x>2</x>
squared
= <x²> - 2<x>(x> + <x>²</x></x></x²>
$\sigma_{3}^{\times} = \langle x_{2} \rangle - \langle x_{3} \rangle$

Continuous Variables: The book (and other books) call it P(x) for the probability density. dP = P(x) dx, probability to find x between x and x+dx probabity dP = P(x) probability per x dP = probability to be in this Ganssian Distribution Example: The Gaussian Distribution / Bell Curve P(x) = Ne-x2/202 Find N, (x), (8x2) OK

 $I = \int AP = \int P(x) dx$ $I = \int Ne^{-x^2/2\sigma^2} dx$ Integral you should know

Independent variables

Consider random variable X, and random variable y, the probability that X is between x+dx and y is between y+dy is

19 = P(x,y) dx dy

If x and y are independent then the P(x,4) factorizes

dP = Px(x) dx Py (y) dy

Then

<xy> = \int dxdy P(x,y) xy

= \int dx dy Px(x) Py(y) xy

= Jdx Px(x) x Jdy Py(4) dy y

= < x>< y>

Sums of independent variables

· Consider

Y = x + x 2 + x

where each x is drawn independently
from the distribution P(x)
i.e $P(x_1, x_n) = P(x_1)P(x_2) P(x_n) dx_1 dx_n$
Then
$\langle Y \rangle = \langle X, + \dots + X_n \rangle$ Clear n times the average of $\langle X \rangle$
$\langle Y \rangle = \langle x_1 \rangle + \langle x_2 \rangle + \dots \langle x_n \rangle = n \langle x \rangle$
What about the Variance of <y>?</y>
· SY = Y - <y></y>
$= (\times, -\langle \times, \rangle) + (\times_2 -\langle \times, \rangle) + \dots \times_n - \langle \times_n \rangle$
$SY = SX_1 + SX_2 + \dots + SX_n$
$(8Y^2) = \langle (8X_1 + 8X_2 + \dots - 8X_p)^2 \rangle$
= $\langle 8x_1^2 \rangle + \langle 8x_2^2 \rangle + \langle 8x_n^2 \rangle + terms ike$
< S×, 8×,)
But the cross terms all vanish since
(Sx, 8x2) = (8x,) (8x2) = 0
independent
independence

There is more that can be said. I will not prove it, but if n is large the probability of Y is gaussian, regardless of P(x)!

This is the Central Limit Theorem

$$P(Y) = \frac{(Y - \overline{Y})^2}{2\sigma_Y^2}$$
with $\sigma_Y^2 = n \sigma_X^2$ $Y = n \langle x \rangle$