משפטים חשובים על הנגזרת 4.2

x_0 אם f גזירה ב x_0 רציפה ב

הערה רציפות בנקודה לא גוררת גזירות בנקודה.

$$(x_0 = 0 \text{ 'צונה (} x) = |x| + f(x) = |x|$$
 ד"נ:

אריתמטיקה של נגזרות:

$$\left(f+g
ight)'\left(x_{0}
ight)=f'\left(x_{0}
ight)+g'\left(x_{0}
ight)$$
 היא הסכום היא $f+g$.1

$$\left(f\cdot g\right)'(x_0)=f'\left(x_0
ight)\cdot g\left(x_0
ight)+f\left(x_0
ight)\cdot g'\left(x_0
ight)$$
 היא המכפלה היא המכפלה $f\cdot g$.2

$$\left(\lambda f\right)'(x_0)=\lambda f'\left(x_0\right)$$
 ונגזרתה λf .3

$$\left(f-g
ight)'\left(x_{0}
ight)=f'\left(x_{0}
ight)-g'\left(x_{0}
ight)$$
 ונגזרת ההפרש $f-g$.4

$$-rac{g'(x_0)}{\left(g(x_0)
ight)^2}$$
 אם $g\left(x_0
ight)
eq 0$, ונגזרתה, $rac{1}{g}$

$$rac{f'(x_0)g(x_0)-f(x_0)g'(x_0)}{(g(x_0))^2}$$
 אם $g\left(x_0
ight)
eq 0$, $rac{f}{g}$.6

כלל השרשרת:

 $y_0=f\left(x_0
ight)$ יהיו g פונקציה גזירה בנק' g פונקציה גזירה בנק' $g\circ f$ ' $(x_0)=g'\left(f\left(x_0
ight)
ight)\cdot f'\left(x_0
ight)$ מזירה ב $g\circ f$ ומקיימת

הערה

הכלל תקף כאשר f גזירה חד צדדית וg גזירה, אך לא כאשר שתיהן גזירות חד צדדית

נגזרת של הפונקציה ההופכית

יהיו f:D o E, ההופכית של f:D o E, אם מתקיים: f:D o E

$$x_0 \in D$$
גזירה ב f .1

$$y_0 = f(x_0)$$
 רציפה בנקודה f^{-1} .2

$$f'(x_0) \neq 0$$
 .3

$$\left(f^{-1}
ight)'(y_0)=rac{1}{f'(x_0)}=rac{1}{f'(f^{-1}(x_0))}$$
 אזי f^{-1} גזירה בנקודה y_0 ומקיימת

מסקנה

 x_0 מכאן נובע שאם $f^{-1}:D o E$ איננה x_0 , שעבורו $x_0\in D$, שעבורו f:D o E איננה אזירה ב

טרנזיטיביות בגזירות לפונקציות זהות

 $. orall x \in U$ $f\left(x
ight)=g\left(x
ight)$ יהיו f,g יהיו בסביבה מלאה U של U של בסביבה מלאה $f'\left(x_0
ight)=g'\left(x_0
ight)$ של G גזירה בG גזירה גם היא ומתקיים ומתקיים בסריבה אוי בי