

Series 6000 CERN VME, -64x, -64xC, -64xP

User's Manual

#### **General Remarks**

The only purpose of this manual is a description of the product. It must not be interpreted as a declaration of conformity for this product including the product and software.

**W-Ie-Ne-R** revises this product and manual without notice. Differences of the description in manual and product are possible.

**W-Ie-Ne-R** excludes completely any liability for loss of profits, loss of business, loss of use or data, interrupt of business, or for indirect, special incidental, or consequential damages of any kind, even if **W-Ie-Ne-R** has been advises of the possibility of such damages arising from any defect or error in this manual or product.

Any use of the product which may influence health of human beings requires the express written permission of **W-Ie-Ne-R**.

Products mentioned in this manual are mentioned for identification purposes only. Product names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies.

No part of this product, including the product and the software may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form by any means with the express written permission of **W-Ie-Ne-R**.

#### **Mains Voltage and Connection**

The Power supplies are equipped with a "World"- mains input, which works properly form 94VAC up to 264VAC and within a frequency range of 47 to 63Hz.

Before connecting to the mains please double-check correspondence.

The mains input connection at the power supply side is done with a 3-pin Hirschmann connector (input current max. 16 A) or power terminals.

| Hirschmann<br>Pin No. | Signal | Description      | Color of the Wire |
|-----------------------|--------|------------------|-------------------|
| Pin 1                 | L      | Phase            | black or brown    |
| Pin 2                 | N      | Return, Neutral  | blue              |
| Pin 3                 |        | not connected    |                   |
| Earth                 | PE     | Protective Earth | green/yellow      |

#### **Safety**

After connecting the Power box to the mains, the mains input module is powered permanently. Filter and storage capacitors of the power factor correction module are charged with about 400VDC. The DC-On-Signal as well as a power switch at control board (if any installed) operates as a DC on/off switch only and not as a mains breaker. Therefore it becomes dangerous if the box cover is open. In this case a lot of components on high voltage potential get touchable!

Before starting any kind of work inside the power box remove the unit from mains and wait a couple of minutes with your activities! Discharge the primary DC Filter-capacitors by use of a well isolated 22 ohm 10W resistor.

We recommend in case of any male function to send the power box to Wiener or to one of our representative for service

#### **Grounding Stud**

Each VME- bin is outfitted with a grounding stud which has to be wired to mains earth or zero potential line **according to Cern's rule / law.** 

The stud is situated at the right side panel behind the fan space (rear view).

## **Declaration of Conformity**

Art. 10.2 of 89/336 and 89/392 / ECC

## W-Ie-Ne-R

#### Plein & Baus GmbH

declare under our own responsibility that the product

# VME / 6021Crate

Items: 0B0x.xxxx, 0F0x.xxxx, 0P0x.xxxx

to which this declaration relates, is in conformity with the following standards or normative documents:

1. EN 50 081 - 1

2. EN 61 000 3 - 2

3. EN 50 082 - 1

4. EN 60 950

#### Conditions:

This crate is not a final product. The use after installation and powered modules inside needs possibly additional screenings to be in conformity of the definition.

Admitted for powering by all mains.

Name and signature of authorized person Place and Date
Name und Unterschrift des Befugten Ort und Datum

Juergen Baus

Techn. Director Febr. 2000

| 1 | G   | lenera | l Information                                                 | 5    |
|---|-----|--------|---------------------------------------------------------------|------|
|   | 1.1 | 6021   | Crates                                                        | 5    |
|   | 1.2 | 6020   | Fan Trays                                                     | 5    |
|   | 1.  | .2.1   | LX Fan Trays                                                  | 5    |
|   | 1.  | .2.2   | EC Fan Trays                                                  | 6    |
|   | 1.3 | 6021   | Power Supplies                                                | 6    |
| 2 | O   | perati | ion, Function and Connections                                 | 6    |
|   | 2.1 | Fan    | Tray Operation and Control                                    | 6    |
|   | 2.  | .1.1   | Function of Fan Tray Switches                                 | 7    |
|   | 2.  | .1.2   | Additional temperature sensors                                | 8    |
|   | 2.  | .1.3   | Information by Fan Tray LED's                                 | 8    |
|   | 2.  | .1.4   | Hot Swapping of LX Fan Tray <sup>1</sup>                      | 8    |
|   | 2.  | .1.5   | Programming of Fan tray                                       | 9    |
|   | 2.2 | 6021   | - Bin Technical details                                       | 12   |
|   | 2.  | .2.1   | VME-Bus Terminology, Signal Identification                    | 12   |
|   | 2.  | .2.2   | VME ( ) Bus Current Ratings                                   | 13   |
|   | 2.  | .2.3   | Pin Assignments of J1 and J2 VME Bus                          | 15   |
|   | 2.  | .2.4   | Pin Assignment Jaux of VME 430-Bus (CERN)                     | 16   |
|   | 2.  | .2.5   | Pin Assignments of VME 64x-Bus                                | 18   |
|   | 2.  | .2.6   | Pin Assignment J0 of VME 64xC –Bus (CERN)                     | 21   |
|   | 2.  | .2.7   | Special Pin Assignment J0 of VME 64xP - Bus (VIPA)            | 22   |
|   | 2.3 | Pow    | er Supply UEP6021                                             | 23   |
|   | 2.  | .3.1   | Power Connector Board (Fork Contacts)                         | 23   |
|   | 2.  | .3.2   | Sense and Signal Connector-SUB D 37                           | 24   |
|   | 2.  | .3.3   | Fan tray and Control Connector SUB D9                         | 24   |
|   | 2.  | .3.4   | Control and Adjustment of 6021 Power Supply                   | 25   |
|   | 2.  | .3.5   | Connection of a Personal Computer to the Power Supply UEP6021 | 27   |
|   | 2.  | .3.6   | Output Voltage Adjustments                                    | .28  |
|   | 2.  | .3.7   | Monitoring Connector                                          | 28   |
|   | 2.  | .3.8   | CANbus Option, Transmission Speed Index                       | . 29 |
| A | PPE | NDIX   | A: Technical Details of 6021 Power Supplies                   | 30   |
| A | PPE | NDIX   | B: Typical Module Efficiency                                  | 31   |
| A | PPE | NDIX   | C: DUT Conditions, Power Supply                               | 33   |
| A | PPE | NDIX   | D: Technical Details of Fan Trays                             | 34   |
| A | PPE | NDIX   | E: VME 430 Backplane, Situation of Jaux Connector             | 35   |
| Α | PPE | NDIX   | F: VME 64xC Backplane. Situation of IO Connector.             | 36   |

#### 1 General Information

#### 1.1 6021 Crates

The VME -Crate 6021 consist of a power supply (UEP 6021), bin (UEV 6021) and a fan tray (UEL 6020). All these components are plugged and easily to exchange. Divider sets 6U/9U can be mounted into bins for 9U format modules. For powering of 6021 bins same UEP 6021 power supplies have to be used.

Available W-Ie-Ne-R VME backplanes: VME64 with J1/J2, VME430 with J1/Jaux/J2, VME64x, VME64xP, VME64xC with Jo special (Cern).

#### **1.2 6020** Fan Trays

The-fan trays are plugged into the bin from the front side. For efficient cooling, controlling and monitoring of the crate various fan trays are constructed according to the slot deepness, whereas both, front and bottom air supply, is possible. Fan rotation speed is shown by use of LX fan trays and can be regulated; every fan is single controlled. Furthermore temperature of the air entry and optionally the exhaust above selected slots.

The UEL 6020 fan tray and control unit occupies two units of a 6021 crate below the VME / -bus slots. To achieve an excellent airflow homogenization through the inserted VME modules, all fan trays for 400mm modules (and larger ones) are outfitted with a topped plenum chamber which acts as a pressure volume below the VME modules.

Among the different types high performance super blower with four or six blowers can be used, too.

While 3 fold fan-tray can operate either with air is taken from the front and then pushed upwards to the modules or from bottom side, which gives full cooling efficiency. Deeper fan trays needs bottom sucking, otherwise the airflow would be limited by the front intake gaps. For instance: The maximal air flow reached by a 3-fold W-Ie-Ne-R fan-tray (2U) with frontal inlet is not greater than 400 m<sup>3</sup>/h. With bottom intake and free entry the airflow can

The EC fan tray is the economic version and equipped with same blower than the LX version. Therefore both types give the same cooling performance and are pin compatible

#### 1.2.1 LX Fan Trays

rise up to  $540 \text{ m}^3/\text{h}$ .

All DC voltages (up to 8) at backplane level and the corresponding currents among other are shown by the LX monitoring. The threshold-limits (minimum / maximum voltages and currents) can be set manually or piloted by remote control and remain stored even after lack of voltage. In case of global trip off, the fault will be displayed by the diagnostic system.

VME-signals ACFAIL and SYSRESET are generated according to VME-Specs. SYSRESET can also be released manually.

Remote-control by network (CANbus, IEC-Bus or H.S.CAENET) is optionally possible, whereas IEC and H.S. CAENET need the intelligent version of fan trays (LX), the CANbus may operated with all kind of fan trays.

Furthermore, remote control and monitoring of several crates is possible through a PC's compatible program. Change of trip off limits (specially for currents) through menu is possible (Option). Piloting circuits are isolated from VME-potential.

#### 1.2.2 EC Fan Trays

The simplified fan tray, UEL 6020 EC, has no further facilities than DC on / off switch and Power LED which works also as Status indicator.

Optionally outfitted with CANbus connection. Full performance of CANbus is given only when the DC on / off switch is in ON position.

#### 1.3 6021 Power Supplies

The VME power supply of the 6000 series is a micro-processor controlled switching power supply designed in the high density W-Ie-Ne-R - cavity technology, which provides a very low noise output voltage.

The mains input includes a power factor correction module which works according to EN 60 555-2/IEEE 555-2 (PFC). An external fuse or circuit breaker has to be installed (16A for 3U boxes with 2.5kW and 32A for 6U boxes with 5kW). The turn-on inrush current is limited by a soft start-circuit to a maximum value of about 12A (24A) when the cold unit has been connected to the mains.

The AC- input module is permanently powered after connecting the unit to the AC- mains. POWER ON/OFF activates only the DC on/off function of the power inverter modules.

The EN 50 081-1 for generic emissions as well as the EN 50 082-1 or 2 for immunity standards, in particular EN 55 011 RFI rejection (incl. VDE 0871 class B) and EN 55 022 electromagnetic compatibility is accomplished. The insulation performs the EN 60 950, ISO 380, VDE 0805 (SELV)! Furthermore are considered UL 1950, UL 1012, UL 478, C 22.2.950, C 22.2.220/234.

Therefore the UEP 6021 power supplies can fulfil the CE rules comprehensively and will CE marked for use at all power nets.

Turning on the power supply all voltages reach the nominal values nearly simultaneously within  $50 \pm 2.5$  ms (start-end-time) whereby the voltage versus time curve shows a monotonic behavior. The switch-off-time which corresponds to a value of 10% of the nominal DC voltages is reached after  $5\pm 2.5$  ms.

The power packs are readily replaceable. The maximum output power is ca. 1000... 2800W for a 3U power box, while a 6U box may have the double utilization. The available DC output power is in correspondence with the 92... 265VAC input voltage. Also the installed modules urge the efficiency (3,3V module efficiency is some lower then those of a 48V module). In practice for 230VAC mains more than 2600W for a 64x power supply with all fife standardized outputs is provided.

Booster mode with 400VDC as input voltage is possible (special terminals are requested). This makes 4500 W DC output possible with a 3U power box

## **2** Operation, Function and Connections

#### 2.1 Fan Tray Operation and Control.

All monitoring and control operations are performed by a micro-processor based alarm and control circuit placed inside the UEP 6021 power supply monitored by UEL 6020**LX** (**EC** via CANbus only) fan trays. To protect both the power supply and the VME modules, a DC cut-off is started in the case of:

• **overheat**: in the power modules (each module is equipped with temperature sensors);

• **overload:** if maximal current is exceeded (trip-off due to programmed

lower values is not indicated as overload)

• **overvoltage:** if voltage >125% (default, crow bar function)

and if voltage >105% (default, can be changed via LX fan tray

or network)

• undervoltage: if voltage <97.5% % (default, can be changed via LX fan tray

or network)

• fan failure: if one or more fans fail

The reasons of a trip off will be displayed on the alphanumerical LX display.

Voltages, currents, cooling air temperatures (selectable  $^{\circ}F$  -  $^{\circ}C$ ), fan speed, power dissipation of inserted modules, operation time of power supply and fan tray and optional net parameters, can be shown on the alphanumeric display of the fan-tray. The ADC resolution is 10 bit. The accuracy of the voltage measurement is better than 0.5%. The total accuracy of the current measurement depends on the corresponding voltage, i.e. for  $\pm 5V$  it is better than 2A in the range between 5A - 50A and for -2V it is better than 1A in the range between 1A -20A. Above these current ranges the accuracy is <5% of the final value. In the case of  $\pm 12V$  and  $\pm 15V$  the accuracy is better than 0.2 in the whole current range.

#### 2.1.1 Function of Fan Tray Switches

| POWER ON /Off | main switch for ventilation and power supply                                                                                                                   |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODE SELECT   | selection switch to choose items and values for fan-tray and power supply monitoring and control                                                               |
| SYS RES       | protected located switch for VME SYSRESET circuit activation                                                                                                   |
| FAN SPEED     | push button for step wise in- or decrease of fan speed.                                                                                                        |
| FAN AUTO OFF  | one of two functions, selected by software (see 2.1.5):  1: Switch off after fan-failure (yes/no)  2: Activate the "hot swap" function of the fan <sup>1</sup> |
| ADDRESS       | Optional if remote network is installed                                                                                                                        |
| LOCAL         | Optional if remote network is installed (IEC Bus only)                                                                                                         |

The adjusting range of fan speed is from 1200 RPM up to >3000 RPM. Pre selected reference speed and displayed value are average RPM. The display shows the fan speed in flashing mode if the selected speed is not equal with the true speed. This happens when either the fans are still accelerated to the higher turns or the selected value is not reachable (if >3000 RPM and higher density modules inserted in the bin, etc.). After a certain time the FAN FAIL circuit will detect this status as fan fail! While the display shows average speed

of all fans only, the CANbus option (or other supported remote interfaces) will transmit the turns of each blower situated inside the fan tray.

#### 2.1.2 Additional temperature sensors

Optionally installed temperature sensor(s), measuring the exhaust air, allows to switch the fan to stop. That will be achieved by keeping pushed the FAN SPEED button to lower speed about 10 seconds.

Also the sensor(s) will

- accelerate the fan speed to the maximum if the first (FanUp) programmed temperature threshold exceeds (default: 45°C). During the out coming cooling air is above these thresholds, adjustment to lower fan turns is disabled, until the exhaust temperature is below the limits again.
- switch off the power supply if the second (PsOff) programmed temperature threshold exceeds (default: disabled).

The sensors are placed normally above selected slots at the bin. In combination with EC fan trays these sensors can substitute the function of the LX fan fail circuit, partially.

#### 2.1.3 Information by Fan Tray LED's

| AC POWER  | green large LED if <i>POWER</i> is on                                                             |
|-----------|---------------------------------------------------------------------------------------------------|
| STATUS    | green LED if all voltages are within the limit                                                    |
| FAN FAIL  | yellow LED if a fan failure is recognized                                                         |
| OVERHEAT  | yellow LED if an overheat in the power supply occurs                                              |
| SYS FAIL  | red LED if VME-bus system generates the SYSFAIL signal (system failure)                           |
| FAN SPEED | Red LED if fan speed below 100%                                                                   |
| AUTO OFF  | red LED indicates DC cut off disabled, remote warning only, hot swapping of fan tray possible now |
| LOCAL     | Optional if remote network is installed                                                           |

## 2.1.4 Hot Swapping of LX Fan Tray <sup>1</sup>

If the "hot swap" function of the fan is activated, the crate may be fully powered during withdrawal of the fan tray. The max. DC- on time has to be programmed (see 2.1.5).

If programmed PsOff- limits of optional installed temperature sensors exceed during fan tray exchange the power supply will trip off to prevent any damage to inserted modules.

#### 2.1.5 Programming of Fan tray

Fan tray parameters (and in the same way many power supply parameters!!) may be changed via the alphanumeric control.

The general procedure is:

- Switch the POWER and the MODE switch up simultaneous for 5 seconds. The display shows "Config: Wait...." and "Config: Ready!". Then release both switches.
- If a sub-menu exists, you may now select the sub-menu item (MODE switch up/down). If no sub-menu exists, you may change the parameter value (MODE switch up/down)
- To change a parameter of a sub-menu, select it (POWER switch up). The selected parameter is flashing now.
- You may alter the parameter now (MODE switch up/down)
- After finishing the parameter programming, leave the submenu or configuration menu (POWER switch down).

Programmable parameters of a fan tray:

| Mode                              | associated parameter submenu            | Description                                                                                                                                                                              |  |  |
|-----------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fans                              | Watching x Fans                         | Display of the number of monitored fans                                                                                                                                                  |  |  |
| Fan Temp                          | Temp Display: °C Temp Display: °F       | Select the temperature unit: Celsius or Fahrenheit                                                                                                                                       |  |  |
|                                   | Function of the FAN AUTO OFF switch 1   | AUTO OFF DIS: The switch will disable the trip off of the power supply if the fans are not working correct. (DANGER: The VME modules may burn! Should be used only for service purpose.) |  |  |
|                                   |                                         | HOT SWAP <i>time</i> : The switch will activate the "hot swap" feature. The maximum time the user has got to change the fan tray is set here.                                            |  |  |
| Bin Temp $x$ ( $\leq$ 8 sensors), | PsOff                                   | If the temperature of sensor x is above this limit, the power supply will switch off.                                                                                                    |  |  |
| also with EC fans                 | lso with EC FanUn If the temperature of |                                                                                                                                                                                          |  |  |

June 02 9 \*00571.A0

<sup>1</sup> Implemented in systems produced after October 2000 only



LX 6020 fan-tray front panel with optional CAENET interface

#### Standard Measurement Ranges

| Available Modes and Display Examples (LX Fan trays only) |           |                         |                             |  |  |
|----------------------------------------------------------|-----------|-------------------------|-----------------------------|--|--|
| Mode                                                     | Monitored | Values                  | Description                 |  |  |
| +5V                                                      | 5.00 V    | 115A 230A (460)         | +5V channel                 |  |  |
| +12V                                                     | 12.0 V    | 11.5 / 46.0A (92)       | +12V channel                |  |  |
| +15V 2                                                   | 15.0 V    | 11.5 / 35.0A (70)       | +15V channel                |  |  |
| +3,3V                                                    | 3.30 V    | 115 230A (460)          | 3,3V channel                |  |  |
| +48V <sup>2</sup>                                        | 48,0 V    | 13,5 67A                |                             |  |  |
| -5V                                                      | 5.20 V    | 100A 400A               | -5.2V channel               |  |  |
| -12V                                                     | 12.0 V    | 6.0 / 10.0 / 40.0A (80) | -12V channel                |  |  |
| -15V <sup>2</sup>                                        | 15.0 V    | 6.0 / 10.0 / 30.0A (80) | -15V channel                |  |  |
| -2V                                                      | 2.00 V    | 100.0A 200A             | -2V channel                 |  |  |
| POWER                                                    | 135       | W                       | output power                |  |  |
| FANS                                                     | 3000      | RPM                     | fan rotation speed          |  |  |
| FAN TEMP                                                 | 25        | ° C or °F               | fan air inlet temp.         |  |  |
| FAN TIME                                                 | 82000,6   | h                       | Operating time Fan tray     |  |  |
| P.S. TIME                                                | 150000,0  | h                       | Operating time Power Supply |  |  |
| Options                                                  |           |                         |                             |  |  |
| BIN TEMP 1                                               | 35°C      | ° C or °F               | bin slot 1 (?) temp.        |  |  |
| BIN TEMP 2                                               |           | ° C or °F               | bin slot 2 (?) temp.        |  |  |
| up to                                                    |           |                         |                             |  |  |
| BIN TEMP 8                                               |           | ° C or °F               | bin slot 8 (?) temp.        |  |  |
| Networks *                                               |           |                         |                             |  |  |
| CAEN*                                                    | ADDR      | 99                      | CAENET address              |  |  |
| BAUD*                                                    | RATE      | 1 MBAUD                 | CANbus bit rate             |  |  |
| CANbus*                                                  | ADDR      | 127                     | CANbus address              |  |  |
| IEC*                                                     | ADDR      | 25                      | IECbus address              |  |  |

<sup>2</sup> Either 15V or 48V- output will be in use, depending on the application (VME 430, VME64x)

## 2.2 6021- Bin Technical details

# 2.2.1 VME-Bus Terminology, Signal Identification

| BR0*-BR3*   | <b>Bus request (0-3).</b> Open-collector driven signals generated by requesters. A low level on one of these lines indicates that some master need to use the DTB                                                                                                                                                                                                                                                                |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| D00-D31     | <b>Data bus.</b> Three-state driven bi-directional lines used to transfer data between masters an slaves, and status/ID information from interrupters to interrupt handlers.                                                                                                                                                                                                                                                     |  |
| DS0*, DS1*  | <b>Data strobe zero, one.</b> Three-state driven signals used in conjunction with LWORD* and A01 to indicate how many byte locations are being accessed (1, 2, 3, or 4). In addition, during a write cycle, the falling edge of the first data strobe indicates that valid data is available on the data bus. On a read cycle, the rising edge of the first data strobe indicates that data has been accepted from the data bus. |  |
| DTACK*      | <b>Data transfer acknowledge.</b> An open-collector driven signal generated by a SLAVE. The falling edge of this signal indicates that valid data is available on the data bus during a read cycle, or that data has been accepted from the data bus during a write cycle. The rising edge indicates when the slave has released the data bus at the end of a read cycle.                                                        |  |
| GND         | the dc voltage reference for the system                                                                                                                                                                                                                                                                                                                                                                                          |  |
| IACK*       | <b>interrupt acknowledge.</b> An open-collector or three-state driven signal used by an interrupt handler to acknowledge an interrupt request. It is routed, by way of a backplane signal trace, to the IACKIN* pin of slot 1, where it is monitored by the IACK daisy-chain driver.                                                                                                                                             |  |
| IACKIN*     | <b>interrupt acknowledge in.</b> A totem-pole driven signal. The IACKIN* and IACKOUT* signal indicates to the board receiving it that it is allowed to respond to the interrupt acknowledge cycle that is in progress.                                                                                                                                                                                                           |  |
| IACKOUT*    | <b>Interrupt acknowledge out.</b> A totem-pole driven signal. The IACKIN* and IACKOUT* signal is sent by a board to indicate to the next board in the daisy-chain that it is allowed to respond the interrupt acknowledge cycle that is in progress.                                                                                                                                                                             |  |
| IRQ1*-IRQ7* | Interrupt request (1-7). Open-collector driven signals, that are driven low by interrupters to request an interrupt. When several lines are monitored by a single handler the highest numbered line is given the highest priority.                                                                                                                                                                                               |  |
| LWORD*      | <b>Longword.</b> A three-state driven signal used in conjunction with DS0*, DS1*, and A01 to select which byte location(s) within the 4-byte group are accessed during the data transfer.                                                                                                                                                                                                                                        |  |
| RESERVED    | Reserved. A signal line reserved for future enhancements.                                                                                                                                                                                                                                                                                                                                                                        |  |
| SERCLK      | <b>Serial clock.</b> A totem-pole driven signal that is used to synchronize the data transmission on the VMSbus.                                                                                                                                                                                                                                                                                                                 |  |

| SERDAT*     | <b>Serial data.</b> An open collector driven signal that is used for VMSbus data transmission.                                                                                                                      |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SYSCLK      | <b>System clock.</b> A totem-pole driven signal that provides a constant 16 MHz clock signal that is independent of any other bus timing.                                                                           |  |  |
| SYSFAIL*    | <b>System reset.</b> An open-collector driven signal that indicates when a failure has occurred in the system. This signal can be generated by any board in the system.                                             |  |  |
| SYSRESET*   | <b>System reset.</b> An open-collector driven signal, which when low, causes the system to be reset.                                                                                                                |  |  |
| WRITE*      | <b>Write.</b> A three-state driven signal generated by the master to indicate whether the data transfer cycle is a read or write. A high level indicates a read operation; a low level indicates a write operation. |  |  |
| + 5 V STDBY | + <b>5V</b> dc standby. This line supplies 5 V dc to devices requiring battery backup.                                                                                                                              |  |  |
| + 5 V       | + 5 V dc power. Used by system logic circuits.                                                                                                                                                                      |  |  |
| + 12 V      | + 12 V dc power. Used by system logic circuits.                                                                                                                                                                     |  |  |
| - 12 V      | - 12 V dc power. Used by system logic circuits.                                                                                                                                                                     |  |  |

## 2.2.2 VME () Bus Current Ratings

| Power distribution      | VME      | VME      | VME      | VME 430    | VME 64x  |
|-------------------------|----------|----------|----------|------------|----------|
| each slot (20°C / 70°C) | J1       | J2       | J1-J2    | J1-Jaux-J2 | J1       |
| 3,3V                    |          |          |          |            | 17/12A   |
| 5V                      | 9,5/7,5A | 9,5/7,5A | 19/15A   | 19/15A     | 8,5/6A   |
| +/-12V                  | 3,2/2,5A |          | 3,2/2,5A | 3,2/2,5A   | 1,7/1,2A |
| +/-15V                  |          |          |          | 3,2/2,5A   |          |
| -5,2V                   |          |          |          | 19/15A     |          |
| -2V                     |          |          |          | 9,5/7,5A   |          |
| Vw, Vx, Vy, Vz          |          |          |          |            |          |
| V1, V2                  |          |          |          |            | 1,7/1,2A |
| Layers                  | 8        | 4        | 8        | 8          | 10       |
| Type of ADC             | mech     |          | mech     | mech       | active   |
| Termination on board    | passive  | passive  | passive  | passive    | active   |
| J2 with 160pin          |          | optional | optional | optional   |          |
| Power Connections       | Studs    | Studs    | Studs    | Studs      | Bugs     |

## Bus current ratings

| Power distribution      | VME 64x    | VME64xP                 | VME 64x C  |
|-------------------------|------------|-------------------------|------------|
| each slot (20°C / 70°C) | J1-Jo-J2   | J1-Jo-J2<br>Slot 2- 213 | J1-J2-J3   |
| 3,3V                    | 17/12A     | 17/12A                  | 17/12A     |
| 5V                      | 15,3/10,8A | 27/19A                  | 15,3/10,8A |
| +/-12V                  | 1,7/1,2A   | 1,7/1,2A                | 1,7/1,2A   |
| Aux 1                   |            |                         | 28/28A4    |
| Aux 2                   |            |                         | 28/28A4    |
| Aux 3                   |            |                         | 28/28A4    |
| +/-24V                  |            |                         |            |
| Vw, Vx, Vy, Vz          | 4/3A       | 4/3A                    |            |
| V1, V2                  | 1,7/1,2A   | 1,7/1,2A                |            |
| Layers                  | 10         | 18                      | 10         |
| Type of ADC             | active     | active                  | active     |
| Termination on board    | active     | active                  | active     |
| Power Connections       | Bugs       | Bugs                    | Bugs       |

<sup>3</sup> On slot 1 of the 64xP backplane the Jo is not feeding additional 5V pins. Therefore the current capability for +5V is only 15,3/10,8A.

<sup>4</sup> **64xC Backplane**: 32,5A if all 5 pins in parallel carry same 6,5A current

## 2.2.3 Pin Assignments of J1 and J2 VME Bus

| J1         |         |           | J2        |              |          |              |
|------------|---------|-----------|-----------|--------------|----------|--------------|
| Pin<br>No. | Row A   | Row B     | Row C     | Row A        | Row B    | Row C        |
| 01         | D00     | BBSY*     | D08       | User defined | +5 V     | User defined |
| 02         | D01     | BCLR      | D09       | User defined | GND      | User defined |
| 03         | D02     | ACFAIL*   | D10       | User defined | Reserved | User defined |
| 04         | D03     | BG0IN*    | D11       | User defined | A24      | User defined |
| 05         | D04     | BG0OUT*   | D12       | User defined | A25      | User defined |
| 06         | D05     | BG1IN*    | D13       | User defined | A26      | User defined |
| 07         | D06     | BG1OUT*   | D14       | User defined | A27      | User defined |
| 08         | D07     | BG2IN*    | D15       | User defined | A28      | User defined |
| 09         | GND     | BG2OUT*   | GND       | User defined | A29      | User defined |
| 10         | SYSCLK  | BG1IN*    | SYSFAIL*  | User defined | A30      | User defined |
| 11         | GND     | BG3OUT*   | BERR*     | User defined | A31      | User defined |
| 12         | DS1*    | BR0*      | SYSRESET* | User defined | GND      | User defined |
| 13         | DS0*    | BR1*      | LWORD*    | User defined | +5 V     | User defined |
| 14         | WRITE*  | BR2*      | AM5       | User defined | D16      | User defined |
| 15         | GND     | BR3*      | A23       | User defined | D17      | User defined |
| 16         | DTACK*  | AM0       | A22       | User defined | D18      | User defined |
| 17         | GND     | AM1       | A21       | User defined | D19      | User defined |
| 18         | AS*     | AM2       | A20       | User defined | D20      | User defined |
| 19         | GND     | AM3       | A19       | User defined | D21      | User defined |
| 20         | IACK*   | GND       | A18       | User defined | D22      | User defined |
| 21         | IACKIN* | SERCLK    | A17       | User defined | D23      | User defined |
| 22         | IAOUT*  | SERDAT    | A16       | User defined | GND      | User defined |
| 23         | AM4     | GND       | A15       | User defined | D24      | User defined |
| 24         | A07     | IRQ7*     | A14       | User defined | D25      | User defined |
| 25         | A06     | IRQ6*     | A13       | User defined | D26      | User defined |
| 26         | A05     | IRQ5*     | A12       | User defined | D27      | User defined |
| 27         | A04     | IRQ4*     | A11       | User defined | D28      | User defined |
| 28         | A03     | IRQ3*     | A10       | User defined | D29      | User defined |
| 29         | A02     | IRQ2*     | A09       | User defined | D30      | User defined |
| 30         | A01     | IRQ1*     | A08       | User defined | D31      | User defined |
| 31         | -12 V   | +5V STDBY | + 12 V    | User defined | GND      | User defined |
| 32         | +5 V    | + 5 V     | + 5 V     | User defined | + 5 V    | User defined |

#### 2.2.4 Pin Assignment Jaux of VME 430-Bus (CERN)

| Pin Number | Row A   | Row B   | Row C  |
|------------|---------|---------|--------|
| 01         | SN1     | GND     | SN2    |
| 02         | SN3     | GND     | SN4    |
| 03         | SN5     | GND     | GND    |
| 04         | CK*     | GND     | СК     |
| 05         | SG*     | GND     | SG     |
| 06         | CL*     | GND     | CL     |
| 07         | -2 V    | -2 V    | -2 V   |
| 08         | - 15 V  | CE      | + 15 V |
| 09         | - 5,2 V | -5,2 V  | - 5,2V |
| 10         | - 5,2 V | - 5,2 V | - 5,2V |

#### 2.2.4.1 Terminology and Signal Identification of Jaux

SN1... SN5, Binary coded slot No. lines, Geographical address

| Slot Number | SN1 | SN2 | SN3 | SN4 | SN5 |
|-------------|-----|-----|-----|-----|-----|
| 01          | NC  | GND | GND | GND | GND |
| 02          | GND | NC  | GND | GND | GND |
| 03          | NC  | NC  | GND | GND | GND |
| 04          | GND | GND | NC  | GND | GND |
| 05          | NC* | GND | NC  | GND | GND |
| 06          | GND | NC  | NC  | GND | GND |
|             |     |     |     |     |     |
| 19          | NC  | NC  | GND | GND | NC  |
| 20          | GND | GND | NC  | GND | NC  |
| 21          | NC  | GND | NC  | GND | NC  |

NC = No Connection (represents H- level, generated by 5k6 resistor on VME modul for TTL, e.g.)

#### CK, SG and CL signals, Clean Earth

**CK**, Clock signal, bussed differential line terminated on both sides of the backplane (2 resistors to ground and 1 resistor in between the two lines according to the impedance.

CK positive logic CK\* negative logic SG, Start / Stop Gate, bussed differential line terminated like CK lines.

SG positive logic SG\* negative logic

CL, Clear, bussed differential line terminated like CK lines.

CL positive logic CL\* negative logic

CE, Clean Earth , unbussed line without termination.

## 2.2.5 Pin Assignments of VME 64x-Bus

## J1 (extended)

| Pin No. | Row Z  | Row A   | Row B     | Row C     | Row D   |
|---------|--------|---------|-----------|-----------|---------|
| 01      | MPR    | D00     | BBSY*     | D08       | VPC (1) |
| 02      | GND    | D01     | BCLR*     | D09       | GND (1) |
| 03      | MCLK   | D02     | ACFAIL*   | D10       | +V1     |
| 04      | GND    | D03     | BG0IN*    | D11       | +V2     |
| 05      | MSD    | D04     | BG0OUT*   | D12       | RsvU    |
| 06      | GND    | D05     | BG1IN*    | D13       | -V1     |
| 07      | MMD    | D06     | BG10UT    | D14       | -V2     |
| 08      | GND    | D07     | BG2IN*    | D15       | RsvU    |
| 09      | MCTC   | GND     | BG2OUT*   | GND       | GAP*    |
| 10      | GND    | SYSCLK  | BG1IN*    | SYSFAIL*  | GAO*    |
| 11      | RESP*  | GND     | BG3OUT*   | BERR*     | GA1*    |
| 12      | GND    | DS1*    | BR0*      | SYSRESET* | +3.3V   |
| 13      | RsvBus | DS0*    | BR1*      | LWORD     | GA2*    |
| 14      | GND    | WRITE*  | BR2*      | AM5       | +3.3V   |
| 15      | RsvBus | GND     | BR3*      | A23       | GA3*    |
| 16      | GND    | DTACK*  | AM0       | A22       | +3.3V   |
| 17      | RsvBus | GND     | AM1       | A21       | GA4*    |
| 18      | GND    | AS*     | AM2       | A20       | +3.3V   |
| 19      | RsvBus | GND     | AM3       | A19       | RsvBus  |
| 20      | GND    | IACK*   | GND       | A18       | +3.3V   |
| 21      | RsvBus | IACKIN* | SERCLK    | A17       | RsvBus  |
| 22      | GND    | IAOUT*  | SERDAT    | A16       | 3.3V    |
| 23      | RsvBus | AM4     | GND       | A15       | RsvBus  |
| 24      | GND    | A07     | IRQ7*     | A14       | +3.3V   |
| 25      | RsvBus | A06     | IRQ6*     | A13       | RsvBus  |
| 26      | GND    | A05     | IRQ5*     | A12       | +3.3V   |
| 27      | RsvBus | A04     | IRQ4*     | A11       | LI/I*   |
| 28      | GND    | A03     | IRQ3*     | A10       | +3.3V   |
| 29      | RsvBus | A02     | IRQ2*     | A09       | LI/O*   |
| 30      | GND    | A01     | IRQ1*     | A08       | +3.3V   |
| 31      | RsvBus | -12 V   | +5V STDBY | +12 V     | GND (1) |
| 32      | GND    | +5 V    | +5V       | + 5 V     | VPC (1) |

## J2 (extended)

| Pin No. | Row Z        | Row A        | Row B    | Row C        | Row D           |
|---------|--------------|--------------|----------|--------------|-----------------|
| 01      | User defined | User defined | +5 VAC   | User defined | User defined(1) |
| 02      | GND          | User defined | GND      | User defined | User defined(1) |
| 03      | User defined | User defined | RESERVED | User defined | User defined    |
| 04      | GND          | User defined | A24      | User defined | User defined    |
| 05      | User defined | User defined | A25      | User defined | User defined    |
| 06      | GND          | User defined | A26      | User defined | User defined    |
| 07      | User defined | User defined | A27      | User defined | User defined    |
| 08      | GND          | User defined | A28      | User defined | User defined    |
| 09      | User defined | User defined | A29      | User defined | User defined    |
| 10      | GND          | User defined | A30      | User defined | User defined    |
| 11      | User defined | User defined | A31      | User defined | User defined    |
| 12      | GND          | User defined | GND      | User defined | User defined    |
| 13      | User defined | User defined | +5 V     | User defined | User defined    |
| 14      | GND          | User defined | D16      | User defined | User defined    |
| 15      | User defined | User defined | D17      | User defined | User defined    |
| 16      | GND          | User defined | D18      | User defined | User defined    |
| 17      | User defined | User defined | D19      | User defined | User defined    |
| 18      | GND          | User defined | D20      | User defined | User defined    |
| 19      | User defined | User defined | D21      | User defined | User defined    |
| 20      | GND          | User defined | D22      | User defined | User defined    |
| 21      | User defined | User defined | D23      | User defined | User defined    |
| 22      | GND          | User defined | GND      | User defined | User defined    |
| 23      | User defined | User defined | D24      | User defined | User defined    |
| 24      | GND          | User defined | D25      | User defined | User defined    |
| 25      | User defined | User defined | D26      | User defined | User defined    |
| 26      | GND          | User defined | D27      | User defined | User defined    |
| 27      | User defined | User defined | D28      | User defined | User defined    |
| 28      | GND          | User defined | D29      | User defined | User defined    |
| 29      | User defined | User defined | D30      | User defined | User defined    |
| 30      | GND          | User defined | D31      | User defined | User defined    |
| 31      | User defined | User defined | GND      | User defined | GND (1)         |
| 32      | GND          | User defined | +5 V     | User defined | VPC (1)         |

## 2.2.5.1 Pin Assignment Jo of VME 64x-Bus

## J0 (extended)

|     |       |                 | ,               | , , , , , , , , , , , , , , , , , , , |                 |                 |       |
|-----|-------|-----------------|-----------------|---------------------------------------|-----------------|-----------------|-------|
| Pos | Row f | Row e           | Row d           | Row c                                 | Row b           | Row a           | Row z |
| 1   | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 2   | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 3   | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 4   | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 5   | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 6   | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 7   | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 8   | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 9   | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 10  | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 11  | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 12  | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 13  | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 14  | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 15  | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 16  | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 17  | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 18  | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |
| 19  | GND   | User<br>defined | User<br>defined | User<br>defined                       | User<br>defined | User<br>defined | GND   |

#### 2.2.6 Pin Assignment J0 of VME 64xC –Bus (CERN)

The VME64xC Bus is consists of a monolithic VME64x J1/J2 bus with a special J0 high power distribution bus. The J0 connector is built out of three 10-pin connectors MP2-HP10-51P1-TR (Robinson Nugent) for each slot (Reference Numbers: J0.1A, J0.1B and J0.1C for slot 1, and so on).

A Current of up to 26A/slot could be supplied with each of the six UAUX lines.

| Connector | Pin |    |    |    |    | Signal                     |
|-----------|-----|----|----|----|----|----------------------------|
| J0.A      | A1  | B1 | C1 | D1 | E1 | UAUX1 (3.3V) <sup>5</sup>  |
|           | A2  | B2 | C2 | D2 | E2 | UAUX1 Return               |
| J0.B      | A1  | B1 | C1 | D1 | E1 | UAUX2 (2.5V ) <sup>5</sup> |
|           | A2  | B2 | C2 | D2 | E2 | UAUX2 Return               |
| J0.C      | A1  | B1 | C1 | D1 | E1 | UAUX3 (1.8V) <sup>5</sup>  |
|           | A2  | B2 | C2 | D2 | E2 | UAUX3 Return               |

<sup>&</sup>lt;sup>5</sup> or as requested

## 2.2.7 Special Pin Assignment J0 of VME 64xP - Bus (VIPA)

Some user defined pins of the 64x- Jo connector have been specified in the 64xP (VIPA) document to get available additional voltages and signals on the backplane. The slot 1 pin out is identical to those of the Jo of the 64x pin assignment. Slot 2 to 21 are outfitted with the following pin out:

**Jo Slot 2-21** 

| Pin<br>No. | Row<br>z | Row a   | Row b    | Row c    | Row d    | Row e    | Row f |
|------------|----------|---------|----------|----------|----------|----------|-------|
| 01         | COM      | +5V     | +5V      | +5V      | +5V      | +5V      | COM   |
| 02         | COM      | RET_WX  | Reserved | +5V      | TBUS1+   | TBUS1-   | COM   |
| 03         | COM      | RET_WX  | Reserved | Reserved | TBUS2+   | TBUS2-   | COM   |
| 04         | COM      | Vw      | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 05         | COM      | Vw      | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 06         | COM      | RET_WX  | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 07         | COM      | AREF_WX | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 08         | COM      | RET_WX  | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 09         | COM      | Vx      | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 10         | COM      | Vx      | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 11         | COM      | Vy      | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 12         | COM      | Vy      | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 13         | COM      | RET_YZ  | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 14         | COM      | AREF_YZ | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 15         | COM      | RET_YZ  | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 16         | COM      | Vz      | Reserved | USER I/O | USER I/O | USER I/O | COM   |
| 17         | COM      | Vz      | Reserved | Reserved | TBUS3+   | TBUS3-   | COM   |
| 18         | COM      | RET_YZ  | Reserved | Reserved | TBUS4+   | TBUS4-   | COM   |
| 19         | COM      | RET_YZ  | Reserved | Reserved | TBUS_OC1 | TBUS_OC2 | COM   |

#### 2.3 Power Supply UEP6021

#### 2.3.1 Power Connector Board (Fork Contacts)



Power box rear view!

#### 2.3.1.1 Voltages and Pin outs

| Connector Pair | Correspond. Voltage | Description                          |
|----------------|---------------------|--------------------------------------|
| 1              | $\mathrm{U}_3$      | <b>+3.3V</b> (2 7V) < 345A peak      |
| 2              |                     | reserved (extension of +3V or +5V)   |
| 3              | $\mathbf{U_0}$      | <b>+5.0V</b> (2 7V) < 345A peak      |
| 4              |                     | extension of UAUX1 (total 690A)      |
| 5              | $\mathbf{U}_{7}$    | <b>UAux 1</b> (2 7V) < 345A peak     |
| 6              |                     | extension of UAUX2 (total 690A peak) |
| 7              | $\mathrm{U}_4$      | <b>UAux 2</b> (2 7V) < 345A          |
| 8              |                     | extension of UAUX3 (total 690A peak) |
| 9              | $\mathrm{U}_6$      | <b>UAux 3</b> (2 7V) < 345A peak     |
| 10             | $\mathrm{U}_5$      | <b>-12V</b> (7 24V) < 345A peak      |
| 11             | $U_1$               | <b>+12V</b> (7 24V) < 345A peak      |
| 12             | $\mathrm{U}_2$      | <b>48V</b> (30 60V) < 345A peak      |

Maximal 8 different floating outputs can be controlled in a single power box  $(U_0...\ U_7)$ 

## 2.3.2 Sense and Signal Connector-SUB D 37

|    |                     | 10 | TEMP DETEMPN                    |
|----|---------------------|----|---------------------------------|
|    |                     | 19 | TEMP RETURN                     |
| 37 | TEMP 0              | 18 | TEMP 1                          |
| 36 | TEMP 2              | 17 | TEMP 3                          |
| 35 | TEMP 4              | 16 | TEMP 5                          |
| 34 | TEMP 6              | 15 | TEMP 7                          |
| 33 | BIN EEPROM: IIC SDA | 14 | BIN EEPROM: IIC SCL             |
| 32 | BIN EEPROM:+5V      | 13 | VME LOGIC: SYSRESET             |
| 31 | BIN EEPROM: GND     | 12 | VME LOGIC: ACFAIL               |
| 30 | VME LOGIC GND       | 11 | VME LOGIC: SYSFAIL              |
| 29 | U0 SENSE -          | 10 | U0 SENSE + ( <b>VME: +5V</b> )  |
| 28 | (reserved)          | 9  | (reserved)                      |
| 27 | (reserved)          | 8  | (reserved)                      |
| 26 | U4 SENSE +          | 7  | U4 SENSE – (Aux 2)              |
| 25 | U7 SENSE +          | 6  | U7 SENSE – (Aux 1)              |
| 24 | U2 SENSE -          | 5  | U2 SENSE + ( <b>VME: 48V</b> )  |
| 23 | U6 SENSE +          | 4  | U6 SENSE – (Aux 3)              |
| 22 | U1 SENSE -          | 3  | U1 SENSE + ( <b>VME: +12V</b> ) |
| 21 | U5 SENSE +          | 2  | U5 SENSE – (VME: -12V)          |
| 20 | U3 SENSE -          | 1  | U3 SENSE + (VME: +3.3V)         |

## 2.3.3 Fan tray and Control Connector SUB D9

|   |                     | 5 | CAN_H               |
|---|---------------------|---|---------------------|
| 9 | CAN_L               | 4 | CAN GND             |
| 8 | RXD                 | 3 | TXD                 |
| 7 | +15V (for fan only) | 2 | +15V (for fan only) |
| 6 | -15V (for fan only) | 1 | -15V (for fan only) |

The CANbus Logic is an option. Data exchange between fan tray and power supply has been done by use of serial connection via RXD and TXD.

#### 2.3.4 Control and Adjustment of 6021 Power Supply

#### 2.3.4.1 Control of the Power Supply 6021 via CAN-Bus (optional)

The CAN Bus Signals are provided on the 9 Pin DSUB:

CAN\_H: Pin 5
CAN\_L: Pin 9
CAN\_GND: Pin 4

The software protocol is described in a separate document (Part No \*00183)

CANbus is an independent port. It may used to operate the power supply separately or in combination with the fan tray inside the bin

# 2.3.4.2 Control of the Power Supply 6021 without PC or Control panel (display)

There is a on/off input and a status output function which are used in combination with an EC- fan tray :

Remote On: 9 Pin DSUB: Close a "make" contact or switch between Pin 8 (Serial Data In, RXD) and Pin 2 or 7.

Status Output: 9 Pin DSUB: Connect a LED between Pin 3 (Serial Data Out, TXD) and Pin 1 or 6.

#### 2.3.4.3 Control of the Power Supply 6021 via Fan tray

Many power supply parameters may be changed via the alphanumeric control of the connected fan tray.

The general procedure is:

- Switch the POWER and the MODE switch up simultaneous for 5 seconds. The display shows "Config: Wait...." and "Config: Ready!". Then release both switches.
- If a sub-menu exists, you may now select the sub-menu item (MODE switch up/down). If no sub-menu exists, you may change the parameter value (MODE switch up/down)
- To change a parameter of a sub-menu, select it (POWER switch up). The selected parameter is flashing now.
- You may alter the parameter now (MODE switch up/down)
- After finishing the parameter programming, leave the submenu or configuration menu (POWER switch down).

 Table 1 List of manual Programming Features

| Mode             | associated parameter submenu          | Description                                                                                                  |  |  |  |  |  |
|------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Any Voltage      | Ilim                                  | Output Current limit                                                                                         |  |  |  |  |  |
| (e.g. +5V or U0) | Uadj                                  | Output voltage fine adjustment. The same function as the switches in the power supply                        |  |  |  |  |  |
|                  | Unom                                  | Output voltage coarse adjustment.                                                                            |  |  |  |  |  |
|                  | Imax                                  | Monitoring: Maximum current for good status.                                                                 |  |  |  |  |  |
|                  | Umin                                  | Monitoring: Minimum voltage for good status.                                                                 |  |  |  |  |  |
|                  | Umax:                                 | Monitoring: Maximum voltage for good status.                                                                 |  |  |  |  |  |
| Power            | Auto Power On                         | Automatic switch on of the power supply after                                                                |  |  |  |  |  |
|                  | No Auto Power On                      | come back of the mains                                                                                       |  |  |  |  |  |
|                  | Switch Off Normal<br>Switch Off Delay | Delayed switch off: You have to push the POWER switch down for 5 seconds until the power supply switches off |  |  |  |  |  |

#### 2.3.5 Connection of a Personal Computer to the Power Supply UEP6021

This connection is intended to service functions only. Because of the direct connection between the PC and the power supply, the ripple and noise of the outputs will increase!

The needed staff is an PC running Windows, the control program UEP6 and a simple adapter ("Dongle"). The power supply is connected to the COM port of the PC. For more details, view the document \*00461.A0.



#### 2.3.6 Output Voltage Adjustments

All output voltages can be adjusted manually via the two rotary switches situated on the power supply top.



| Mode Selection | Function                                 |
|----------------|------------------------------------------|
| 0-7            | Adjust Voltage of U0-U7                  |
| A              | CAN Address (low, Bit 0-3)               |
| В              | CAN Address (high, Bit 4-6)              |
| C              | CAN General Call Address (low, Bit 0-3)  |
| D              | CAN General Call Address (high, Bit 4-6) |
| E              | CAN Transmission Speed Index             |

#### **2.3.7 Monitoring Connector**

A 15 pin Sub D- monitoring connector is situated at the rear side of the power supply. The Status and Fan fail outputs are given by potential free read contacts. Maximum ratings of these contacts are 24VDC and 0,5A.

#### Pin out:

| Name             | Pin No. | Function                                             |
|------------------|---------|------------------------------------------------------|
| Status Contact   | 1-2     | closed contact: All voltages within limits           |
| Power Inhibit    | 3       | Low signal: DC off                                   |
| Fan fail Contact | 5-6     | closed contact: All fans work correct                |
| Manual Sys Reset | 7       | Low signal generates SYSRESET                        |
| Disable          | 13      | Low signal disables tripp off mode (trouble shooting |
| 0V Signal Level  | 4       |                                                      |
| CANbus Gnd       | 9       | Optional, if CANbus interface is installed           |
| CANbus low       | 10      | · · ·                                                |
| CANbus high      | 11      |                                                      |

## 2.3.8 CANbus Option, Transmission Speed Index

| Index | Max. Distance | Bit Rate   | Туре                |
|-------|---------------|------------|---------------------|
| 0     | 10 m          | 1.6 Mbit/s | high- speed         |
| 1     | 40 m          | 1.0 Mbit/s |                     |
| 2     | 130 m         | 500 kbit/s | (needs termination) |
| 3     | 270 m         | 250 kbit/s |                     |
| 4     | 530 m         | 125 kbit/s |                     |
| 5     | 620 m         | 100 kbit/s | low-speed           |
| 6     | 1.300m        | 50 kbit/s  |                     |
| 7     | 3.300 m       | 20 kbit/s  |                     |
| 8     | 6.700 m       | 10 kbit/s  |                     |
| 9     | 10.000 m      | 5 kbit/s   |                     |

For software protocol see separate manual No. \*00183

#### **APPENDIX A: Technical Details of 6021 Power Supplies**

Mains input, 92...265VAC, 16A (32A)

Sinusoidal: CE EN 60555, IEC 555 pow. fact. 0,98 (230VAC),

Inrush current: 10 A (20 A), cold unit

**Isolation** Inp.- outp. **CE** EN 60950, ISO 380, VDE 0805, UL 1950, C22.2.950

**DC Output** power with different mains inputs (16A), calculated with typical efficiency of

115VAC / 1.325W 230VAC / 2.650W

(modules selected for 64x application, 5V-3,3V-+/-12V-48V, typical efficiency 72%)

| Availa               | ble modules | min. to max. rai          | nge max. output, peak                     | nominal output                          |
|----------------------|-------------|---------------------------|-------------------------------------------|-----------------------------------------|
| Type<br>Type<br>Type | MEH         | 2 7,0V<br>7 16V<br>30 60V | 115A / 630W<br>46A / 630W<br>13.5A / 650W | 100A / 550W<br>40A / 550W<br>12A / 580W |
| <b>J</b> 1           | MDL (+/-)   | 7 24V                     | 11.5A / 2x276W                            | 10A / 2x240W                            |

 Recovery time
 +/-25% load:
 within +-1%
 within +-0,1%

 Modules
 550W
 < 0,2ms</td>
 < 0,5ms</td>

 Modules
 650W
 < 0,5ms</td>
 < 1,0ms</td>

 MDL
 0,0ms
 < 1,0ms</td>

Sense compensation range: full difference between min. and max. output voltage

Noise and ripple: <10mVpp, (0-20MHz) <3mVrms (0-2MHz)

measured at backplane side

 Noise and ripple:
 0...20 MHz
 0...30 MHz

 MEH
 < 10 mVpp</td>
 < 2 mVrms</td>

 MDL
 < 15 mVpp</td>
 < 2 mVrms</td>

measured at Power Supply terminals

EMI

RFI-rejection, emission: **CE** EN 50081-1 VDE 0871B

EMC immunity: **CE** EN 50082-1 or 2

Operation temperature: 0....50°C without derating, Storage:-30°C ... +85°C

Temp.-coefficient: < 0.2% / 10K

Stability (conditions const.): 10mV or 0,1% / 24 hours, 25mV or 0,3% / 6 month

Current limits: adjustable to any lower level

Voltage rise characteristics: monotonic 50ms, processor controlled.

Overvoltage crow bar protection: trip off adjusted to 125% of nominal voltage each output

DC Off (trip off): within 5ms if >+5 /-2,5% ( $\geq$  5V output) deviation from

nominal values, adjustable,

after overload, overheat, overvoltage, undervoltage (bad

status) and fan fail

if temperatures exceed 110°C heat sink, 70°C ambient

Trip off points adjustable, processor controlled. Output capacitors will be discharged by the crow bars

Efficiency: 68% ... 80%, depends on used modules

M T B F: 40°C ambient >65 000 h 25°C ambient >100 000 h

## **APPENDIX B: Typical Module Efficiency**

| Module             | l <sub>out</sub> | $U_{\text{out}}$ | lout | Uin  | lin   | Pout        | Pin    | Efficiency |
|--------------------|------------------|------------------|------|------|-------|-------------|--------|------------|
| type               | %                | in V             | in A | in V | in A  | in W        | in W   | in %       |
| MEH                |                  |                  |      |      |       |             |        |            |
| 1409266.A6         |                  |                  |      |      |       |             |        |            |
| MEH 2V             | 50%              | 2,01             | 50   | 384  | 0,397 | 100,5       | 152,45 | 65,92      |
|                    | 80%              | 2,01             | 80   | 384  | 0,653 | 160,8       | 250,75 | 64,13      |
|                    | 100%             | 2,01             | 100  | 384  | 0,847 | 201         | 325,25 | 61,80      |
|                    | 115%             | 2,01             | 115  | 384  | 1,009 | 231,15      | 387,46 | 59,66      |
| MEH3,3V            | 50%              | 3,31             | 50   | 384  | 0,57  | 165,5       | 218,88 | 75,61      |
|                    | 80%              | 3,31             | 80   | 384  | 0,936 | 264,8       | 359,42 | 73,67      |
|                    | 100%             | 3,31             | 100  | 384  | 1,203 | 331         | 461,95 | 71,65      |
|                    | 115%             | 3,31             | 115  | 384  | 1,418 | 380,65      | 544,51 | 69,91      |
| MEH 5V             | 50%              | 5,01             | 50   | 384  | 0,807 | 250,5       | 309,89 | 80,84      |
|                    | 80%              | 5,01             | 80   | 384  | 1,314 | 400,8       | 504,58 | 79,43      |
|                    | 100%             | 5,01             | 100  | 384  | 1,666 | 501         | 639,74 | 78,31      |
|                    | 115%             | 5,01             | 115  | 384  | 1,954 | 576,15      | 750,34 | 76,79      |
| MEH 6V             | 50%              | 6,01             | 41   | 384  | 0,766 | 246,41      | 294,14 | 83,77      |
|                    | 80%              | 6,01             | 66   | 384  | 1,243 | 396,66      | 477,31 | 83,10      |
|                    | 100%             | 6,01             | 83   | 384  | 1,583 | 498,83      | 607,87 | 82,06      |
|                    | 115%             | 6,01             | 96   | 384  | 1,856 | 576,96      | 712,70 | 80,95      |
|                    |                  |                  |      |      |       |             |        |            |
| MEH 10V<br>1443547 |                  |                  |      |      |       |             |        |            |
|                    |                  | 5,04             | 80   | 395  | 1,36  | 403,2       | 537,20 | 75,06      |
|                    |                  | 7,5              | 80   | 395  | 1,88  | 600         | 742,60 | 80,80      |
|                    |                  | 10               | 60   | 395  | 1,77  | 600         | 699,15 | 85,82      |
|                    |                  |                  |      |      |       |             |        |            |
| MEH<br>1412437.A5  |                  |                  |      |      |       |             |        |            |
| MEH 12V            | 50%              | 12,01            | 20   | 384  | 0,764 | 240,2       | 293,38 | 81,87      |
|                    | 80%              | 12,01            | 32   | 384  | 1,233 | 384,32      | 473,47 | 81,17      |
|                    | 100%             | 12,01            | 40   | 384  | 1,561 | 480,4       | 599,42 | 80,14      |
|                    | 115%             | 12,01            | 46   | 384  | 1,823 | 552,46      | 700,03 | 78,92      |
| MEH15V             | 50%              | 15,01            | 16   | 384  | 0,743 | 240,16      | 285,31 | 84,17      |
|                    | 80%              | 15,01            | 25,6 | 384  | 1,188 | 384,25<br>6 | 456,19 | 84,23      |
|                    | 100%             | 15,01            | 32   | 384  | 1,495 | 480,32      | 574,08 | 83,67      |

| Module     | I <sub>out</sub> | $U_out$        | lout | Uin  | lin   | Pout   | Pin    | Efficiency |
|------------|------------------|----------------|------|------|-------|--------|--------|------------|
|            |                  |                |      |      |       |        |        |            |
| type       | %                | in V           | in A | in V | in A  | in W   | in W   | in %       |
| MEH15V     | 115%             | 15,01          | 37   | 384  | 1,743 | 555,37 | 669,31 | 82,98      |
|            |                  |                |      |      |       |        |        |            |
| MEH        |                  |                |      |      |       |        |        |            |
| 1436890.A1 |                  |                |      |      |       |        |        |            |
| MEH48V     | 50%              | 48,02          | 6    | 384  | 0,867 | 288,12 | 332,93 | 86,54      |
|            | 80%              | 48,02          | 9,6  | 384  | 1,343 | 460,99 | 515,71 | 89,39      |
|            |                  |                |      |      |       | 2      |        |            |
|            | 100%             | 48,02          | 12   | 384  | 1,677 | 576,24 | 643,97 | 89,48      |
|            | 115%             | 48,02          | 13,5 | 384  | 1,89  | 648,27 | 725,76 | 89,32      |
|            |                  |                |      |      |       |        |        |            |
| MDL        |                  |                |      |      |       |        |        |            |
| 1409769.A5 |                  |                |      |      |       |        |        |            |
| MDL12V     | 50%              | 24,02          | 5    | 384  | 0,383 | 120,1  | 147,07 | 81,66      |
|            | 80%              | 24,02          | 8    | 384  | 0,6   | 192,16 | 230,40 | 83,40      |
|            | 100%             | 24,02          | 10   | 384  | 0,745 | 240,2  | 286,08 | 83,96      |
|            | 115%             | 24,02          | 11,5 | 384  | 0,859 | 276,23 | 329,86 | 83,74      |
| MDL15V     | 50%              | 30,02          | 5    | 384  | 0,466 | 150,1  | 178,94 | 83,88      |
|            | 80%              | 30,02          | 8    | 384  | 0,733 | 240,16 | 281,47 | 85,32      |
|            | 100%             | 30,02          | 10   | 384  | 0,918 | 300,2  | 352,51 | 85,16      |
|            | 115%             | 30,02          | 11,5 | 384  | 1,056 | 345,23 | 405,50 | 85,14      |
|            |                  | , <del>-</del> | , -  |      | .,    | ,      | ,-•    | ,          |

**APPENDIX C: DUT Conditions, Power Supply** 

in preparation

## **APPENDIX D: Technical Details of Fan Trays**

| Fan Tray Type | Facilities  | No. of Blowers | Depth  | Max. Air Flow          |
|---------------|-------------|----------------|--------|------------------------|
| 6020LX/6      | Intelligent | 6 x DC         | 400 mm | >1000m <sup>3</sup> /h |
| 6020 EC/6     | Simplified  | 6 x DC         | 400 mm | >1000m <sup>3</sup> /h |
| 6020LX/4s     | Intelligent | 4 x DC-Super   | 400 mm | >1500m <sup>3</sup> /h |
| 6020 EC/4s    | Simplified  | 4 x DC-Super   | 400 mm | >1500m <sup>3</sup> /h |
| 6020 LX/6s    | Intelligent | 6 x DC-Super   | 600 mm | >2200m <sup>3</sup> /h |
| 6020 EC/6s    | Simplified  | 6 x DC-Super   | 600 mm | >2200m <sup>3</sup> /h |
| 6020 LX/9     | Intelligent | 9 x DC         | 600 mm | >1600m <sup>3</sup> /h |
| 6020 EC/9     | Simplified  | 9 x DC         | 600 mm | >1600m <sup>3</sup> /h |
| 6020 LX/9     | Intelligent | 9 x DC         | 690 mm | >1600m <sup>3</sup> /h |
| 6020 EC/9     | Simplified  | 9 x DC         | 690 mm | >1600m <sup>3</sup> /h |

all fan trays for bottom air inlet only. Equipped with topped plenum chamber, 25mm high.

Static pressure: DC blower 10 mm H<sub>2</sub>O column

DC Super blower 15 mm H<sub>2</sub>O column

Operating Temperature: 0... 70°C

MTBF: >65 000 h at 40°C ambient, > 85 000 h at 25°C ambient

APPENDIX E: VME 430 Backplane, Situation of Jaux Connector



Backplane Dimensions Front view VMEbus Bin Type V 431

CERN - ECP V 431 -1992 . 12 . 03 E.Buchschacher

#### APPENDIX F: VME 64xC Backplane, Situation of J0 Connector

