Theory Exercise 9

Tarek Auel, Markus Schanz

Task 1: 'Snapshot'-Algorithm of Chandy and Lamport

a)

Illustration 1.1 is correct, as P_1 forwards the marker message to P_2 after recording its state and before sending any other message.

Example for figure 1.1:

 P_1 receives the marker message and saves its local state immediately. It forwards the marker message to process P_2 , followed by a regular message. P_2 receives the marker message first and creates a local snapshot. It then receives the regular message which is not part of the local snapshot, as it is received by P_1 after the receiving the marker message. For both processes the message is not part of the snapshot, so the snapshot itself is consistent.

Example for figure 1.II:

 P_1 receives the marker message and saves its local state immediately. It then sends a regular message to P_2 , followed by the marker message. The regular message is not part of the local snapshot, as it happens after the receiving of the marker message. Now P_2 receives the regular message first, followed by the marker message. It creates a local snapshot, consisting of all previous events, including the receiving of the regular message from P_1 . After the algorithm finishes, the global snapshot that is created out of the local snapshots is inconsistent because there exists an receiving event for a message without a corresponding sending event.

b)

Variant 1:

States:

S_P ₁ : <>	C(P ₂ , P ₁): <rec_m1, rec_m2=""></rec_m1,>	C(P ₃ , P ₁): <>
S_P ₂ : <send_m<sub>1, send_m₂></send_m<sub>	C(P ₁ , P ₂): <>	C(P ₃ , P ₂): <rec_m<sub>3, rec_m₄></rec_m<sub>
S_P ₃ : <send_m<sub>3, send_m₄></send_m<sub>	C(P ₁ , P ₃): <>	C(P ₂ , P ₃): <>

Variant 2:

States:

S_P ₁ : <>	C(P ₂ , P ₁): <rec_m<sub>1, rec_m₂></rec_m<sub>	C(P ₃ , P ₁): <>
S_P ₂ : <send_m<sub>1, send_m₂, rec_m₃></send_m<sub>	C(P ₁ , P ₂): <>	C(P ₃ , P ₂): <rec_m<sub>4></rec_m<sub>
S_P ₃ : <send_m<sub>3, send_m₄></send_m<sub>	C(P ₁ , P ₃): <>	C(P ₂ , P ₃): <>

Task 2: Snapshot vs. Actual Program Flow

Sys' = s_{m1} , s_{m2} , r_{m1} , r_{m2} pre-snap: s_{m1} post-snap: s_{m2} , r_{m1} , r_{m2}

b)

