Figure 1

Figure 2

Figure 3

Figure 4

Fermentation Process of Original Strain

Fermentation Process of Transformant

Figure 5

	MetSerIlePheSerLysTyrGluGlyLeu	AlaSerAlaLeuSerAlaValThrAlaAsp	20
	GlyGlyArgAsnProPheAsnValValIle	GluLysProIleSerSerThrValGlyLeu	. 40
	IleGluGlyArgGluThrLeuLeuPheGly	ThrAsnAsnTyrLeuGlyLeuSerGlnSer	60
	ProAlaAlaIleGluAlaAlaValGluAla	AlaArgAlaTyrGlyValGlyThrThrGly	80
	${\tt SerArgIleAlaAsnGlyThrGlnGlyLeu}$	HisArgGlnLeuGluGluArgLeuCysThr	100
	${\tt PhePheArgArgArgHisCysMetValPhe}$	SerThrGlyTyrGlnAlaAsnLeuGlyThr	120
	Ile Ser Ala Leu Ala Gly Lys Asp Asp Tyr	LeuLeuLeuAspAlaAspSerHisAlaSer	140
	${\tt IleTyrAspGlySerArgLeuGlyHisAla}$	GlnValIleArgPheArgHisAsnAspAla	160
	${\tt AspAspLeuHisLysArgLeuArgArgLeu}$	AspGlyThrProGlyAlaLysLeuValVal	180
	ValGluGlyIleTyrSerMetMetGlyAsp	ValValProMetAlaGluPheAlaAlaVal	200
	$Lys {\tt ArgGluThrGlyAlaTrpLeuLeuAla}$	${\tt AspGluAlaHisSerValGlyValMetGly}$	220
	${\tt GluHisGlyArgGlyValAlaGluSerAsp}$	GlyValGluAspAspValAspPheValVal	240
	${\tt GlyThrPheSerLysSerLeuGlyThrVal}$	GlyGlyTyrCysValSerAsnHisAlaGly	260
	LeuAspLeuIleArgLeuCysSerArgPro	TyrMetPheThrAlaSerLeuProProGlu	280
	ValIleAlaAlaThrMetAlaAlaLeuThr	GluLeuGluAsnArgProGluLeuArgVal	300
•	ArgLeuMetAspAsnAlaArgArgLeuHis	AspGlyLeuGlnAlaAlaGlyLeuArgThr	320
	GlyProGlnAlaSerProValValSerVal	IleLeuAspAspValAlaValAlaValAla	340
	PheTrpAsnArgLeuLeuAspLeuGlyVal	TyrValAsnLeuSerLeuProProAlaThr	360
	ProAspGlnHisProLeuLeuArgThrSer	ValMetAlaThrHisThrProGluGlnIle	380
	AspArgAlaValGluIlePheAlaValVal	AlaGlyGluMetGlyIleAsnArgAlaAla	400

Figure 6

MetThrSerLeuPheSerLysPheGluGly	ThrAlaGlyAlaLeuGlySerValValAla	20
ValGlyGlyArgAsnProPheAlaValVal	IleGluLysProValSerSerThrValGly	40
Ile Ile Glu Gly Arg Glu Thr Leu Leu Phe	GlyThrAsnAsnTyrLeuGlyLeuSerGln	60
SerLysAsnAlaIleGlnAlaAlaGlnGln	AlaAlaAlaCysGlyValGlyThrThr	80
GlySerArgIleAlaAsnGlyThrGlnSer	LeuHisArgGlnLeuGluLysAspIleAla	100
${\tt AlaPhePheGlyArgArgAspAlaMetVal}$	PheSerThrGlyTyrGlnAlaAsnLeuGly	120
IleIleSerThrLeuAlaGlyLysAspAsp	HisLeuPheLeuAspAlaAspSerHisAla	140
SerIleTyrAspGlySerArgLeuSerAla	AlaGluValIleArgPheArgHisAsnAsp	160
ProAspAsnLeuTyrLysArgLeuLysArg	MetAspGlyThrProGlyAlaLysLeuIle	180
ValValGluGlyIleTyrSerMetThrGly	AsnValAlaProlleAlaGluPheValAla	200
ValLysLysGluThrGlyAlaTyrLeuLeu	ValAspGluAlaHisSerPheGlyValLeu	220
GlyGlnAsnGlyArgGlyAlaAlaGluAla	AspGlyValGluAlaAspValAspPheVal	240
ValGlyThrPheSerLysSerLeuGlyThr	ValGlyGlyTyrCysValSerAspHisPro	260
${\tt GluLeuGluPheValArgLeuAsnCysArg}$	ProTyrMetPheThrAlaSerLeuProPro	Ż80
GluValIleAlaAlaThrThrAlaAlaLeu	LysAspMetGlnAlaHisProGluLeuArg	300
LysGlnLeuMetAlaAsnAlaGlnGlnLeu	HisAlaGlyPheValAspIleGlyLeuAsn	320
AlaSerLysHisAlaThrProVallleAla	ValThrLeuGluThrAlaGluGluAlaIle	340
ProMetTrpAsnArgLeuLeuGluLeuGly	ValTyrValAsnLeuSerLeuProProAla	360
ThrProAspSerArgProLeuLeuArgCys	SerValMetAlaThrHisThrProGluGln	380
IleAlaGlnAlaIleAlaIlePheArgGln	AlaAlaAlaGluValGlyValThrIleThr	400
ProSerAlaAla		

Figure 7

5'-CTGGCTGCCTGTATCGTCTCTCAAGCAG-3'

Figure 8

5 '-ACGGCTGCAGCTGGTCTTGCCGTATCT-3'

Figure 9

5'-GGCAAACCTCGGCATTATTTCCACGCTGGC-3'

Figure 10

5.'-GCGAATCTGGTGTAGCCGGAGGAAGGCTG-3'

Figure 11

5'-GCCAGCGTGGAAATAATGCCGAGGTTTGCC-3'

Figure 12

5 '-CAGCCTTCCTCCGGCTACACCAGATTCGC-3'