FINAL PROJECT REPORT

1. Introduction

- **a.** Project overviews
- **b.** Deliverables

2. Project Initialization and Planning Phase

- **a.** Define Problem Statement
- **b.** Project Proposal (Proposed Solution)
- c. Initial Project Planning

3. Data Collection and Preprocessing Phase

- **a.** Data Collection Plan and Raw Data Sources Identified
- **b.** Data Exploration and Preprocessing

4. Model Development Phase

- a. Feature Selection Report
- **b.** Model Selection Report

5. Model Optimization and Tuning Phase

- a. Performance Metrics Comparison Report
- **b.** Final Model Selection Justifications

6. Results

- a. Output Screenshot
- 7. Future Scope
- **8.** Appendix
- a. Source Code
- **b.** GitHub & Project Demo Link

INTRODUCTION

Project Overview: Traffic Telligence is an advanced traffic management system designed to estimate and predict traffic volumes using cutting-edge machine learning algorithms. By analyzing a combination of historical traffic data, weather conditions, special events, and other pertinent factors, Traffic Telligence delivers precise traffic forecasts. These insights are aimed at optimizing traffic management, facilitating urban planning, and enhancing commuter experiences. Key Features:

- **1. Historical Data Analysis:** Leverages past traffic data to identify patterns and trends.
- **2.** Weather Pattern Integration: Incorporates weather forecasts to adjust traffic predictions.
- **3. Event Impact Assessment:** Analyzes the impact of events (e.g., sports games, concerts) on traffic flow.
- **4. Real-time Updates:** Provides current traffic volume estimates for immediate traffic management decisions.
- **5.** Machine Learning Algorithms: Utilizes advanced algorithms for accurate and dynamic traffic predictions.

Scenarios:

- **1. Dynamic Traffic Management:** Enables realtime traffic control adjustments to reduce congestion.
- **2.** Urban Development Planning: Assists city planners in designing efficient infrastructure based on future traffic predictions.
- Offers commuters optimal route recommendations and realtime traffic updates.

Deliverables

1. Comprehensive Project Report:

- Detailed documentation of the project's objectives, methodology, and results.
- Analysis of historical traffic data, weather patterns, and event impacts.
- Insights into machine learning models used for traffic prediction.

2. Traffic Prediction Models:

- Trained machine learning models capable of predicting traffic volumes.
- Documentation of model selection, training process, and evaluation metrics.

Project Initialization and Planning Phase

Define Problem Statements (Customer Problem Statement Template):

Urban areas are experiencing increasing challenges in managing traffic flow due to growing populations, frequent events, and variable weather conditions. Traditional traffic management systems struggle to provide accurate and timely predictions, leading to congestion, delays, and inefficiencies. These issues impact urban planning, commuter experiences, and overall quality of life.

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
PS-1	A city traffic manager responsible for ensuring smooth traffic flow and minimizing congestion in urban areas.	Accurately predict and manage traffic volumes to enhance traffic manageme nt, urban planning, and commuter experiences	I face challenges due to unpredicta ble variables such as weather patterns, special events, and inconsisten t historical traffic data.	Current systems lack the advanced predictive capabilitie s needed to account for these variables effectively.	Frustrated and ill equipped to optimize traffic flow and improve urban mobility, leading to increased congestion and commuter dissatisfaction.

Objective	To develop TrafficTelligence, an advanced system that uses machine learning algorithms to estimate and predict traffic volume with high precision, enhancing traffic management, urban planning, and commuter experiences.
Scope	The project will include: • Analyzing historical traffic data.

Project Proposal (Proposed Solution)

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overview

Problem Statement

- Integrating weather patterns and event impacts.
- Providing real-time traffic monitoring and predictive modeling.

Proposed Solution

Description	population gr conditions. T traffic predic	Urban areas face increasing traffic management challenges due to population growth, frequent events, and variable weather conditions. Traditional systems are inadequate for accurate, timely traffic predictions, leading to congestion, delays, and inefficiencies in urban planning and commuter experiences.				
Impact	ImprovEnhandBetter	 Solving this problem will lead to: Improved traffic flow and reduced congestion. Enhanced urban planning with accurate traffic forecasts. Better commuter experiences with real-time traffic updates and predictive insights. 				
Approach	weather pattern traffic volumes	ns, and events. Develo	analyze historical traffic data, op predictive models to forecast system.			
Key Features	event data. Rea		etions. Integration of weather and ring and updates. Predictive			
		Description	Specification/Allocation			
Framework	ZS	Python frameworks	Flask			
Libraries		Additional libraries	e.g., scikit-learn, pandas, numpy			
Developme Environme		IDE, version control	e.g., Jupyter Notebook, Git			

Software

Data

Given dataset from the portal.

Initial Project Planning Report

Sprint	Functional Requiremen t (Epic)	User Story Numbe r	User Story / Task	Priorit y	Team Members	Sprint Start Date	Sp r Da t (Pl a
Sprint 1	Data Collection and Preprocessin g	SL-1	Understandin g & loading data	Low	Rishab	2024/06/2	202
Sprint 1	Data Collection and Preprocessin g	SL-2	Data cleaning	High	Jerwin	2024/06/2	202
Sprint 1	Data Collection and Preprocessin g	SL-3	EDA	Mediu m	Kaushik S	2024/06/2	202
Sprint 4	Project Report	SL-4	Report	Mediu m	Jeya Madhava n	2024/07/1	202
Sprint 2	Model Development	SL-5	Training the model	Mediu m	Jerwin	2024/07/0	202
Sprint 2	Model Development	SL-6	Evaluating the model	Mediu m	Jeya Madhava n	2024/07/0	202
Sprint 2	Model tuning and testing	SL-7	Model tuning	High	Rishab	2024/07/0	202
Sprint 2	Model tuning and	SL-8	Model testing	Mediu m	Kaushik S	2024/07/0 6	202

	testing						
Sprint 3	Web integration and Deployment	SL-9	Building HTML templates	Low	Jerwin	2024/07/1	202
Sprint 3	Web integration and Deployment	SL-10	Local deployment	Mediu m	Rishab	2024/07/1	202

Data Collection and Preprocessing Phase

Data Collection

				•	D: 10004
	temp	rain	snow	traffic_volume	Dimension : 48204 rows × 8 columns
count	48151.000000	48202.000000	48192.000000	48204.000000	Descriptive statistics
mean	281.205351	0.334278	0.000222	3259.818355	Descriptive statistics
std	13.343675	44.790062	0.008169	1986.860670	
min	0.000000	0.000000	0.000000	0.000000	
25%	272.160000	0.000000	0.000000	1193.000000	
50%	282.460000	0.000000	0.000000	3380.000000	
75%	291.810000	0.000000	0.000000	4933.000000	
max	310.070000	9831.300000	0.510000	7280.000000	
	mean std min 25% 50% 75%	mean 281.205351 std 13.343675 min 0.000000 25% 272.160000 50% 282.460000 75% 291.810000	mean 281.205351 0.334278 std 13.343675 44.790062 min 0.000000 0.000000 25% 272.160000 0.000000 50% 282.460000 0.000000 75% 291.810000 0.000000	mean 281.205351 0.334278 0.000222 std 13.343675 44.790062 0.008169 min 0.000000 0.000000 0.000000 25% 272.160000 0.000000 0.000000 50% 282.460000 0.000000 0.000000 75% 291.810000 0.000000 0.000000	mean 281.205351 0.334278 0.000222 3259.818355 std 13.343675 44.790062 0.008169 1986.860670 min 0.000000 0.000000 0.000000 0.000000 25% 272.160000 0.000000 0.000000 1193.000000 50% 282.460000 0.000000 0.000000 3380.000000 75% 291.810000 0.000000 0.000000 4933.000000

Data Quality

Project Overview	TrafficTelligence is an advanced system that uses machine learning algorithms to estimate and predict traffic volume with precision. By analyzing historical traffic data, weather patterns, events, and other relevant factors, TrafficTelligence provides accurate forecasts and insights to enhance traffic management, urban planning, and commuter experiences.						
Data Collection Plan	Data was taken from the given guided workspace.	Data was taken from the given pre default dataset, given in the guided workspace.					
Raw Data Sources Identified	No raw dataset was chosen du	ring this proj	ect.				
Data Source	Data Quality Issue	Severity	Resolution Plan				
Given defaul dataset	It Missing values in 'temp', 'rain', 'snow', 'weather'	Moderate					
Given defaul dataset	It Categorical data in the dataset	Moderate	Encoding has to be done in the data				

Data Exploration and Preprocessing

Data Preprocessing Code Screenshots

			holid	ay	temp	rain	snow		weathe	r date	Time	traffic_volum
		0	Na	N	288.28	0.0	0.0		Cloud	s 02-10-2012	09:00:00	554
Loading Data		1	Na	N.	289.36	0.0	0.0		Cloud	s 02-10-2012	10:00:00	451
Loading Data		2	Na	N	289.58	0.0	0.0		Cloud	s 02-10-2012	11:00:00	476
		3	Na	N	290.13	0.0	0.0		Cloud	s 02-10-2012	12:00:00	502
		4	Na	N	291.14	0.0	0.0		Cloud	s 02-10-2012	13:00:00	491
Handling Missing Data	data[data[data[data['tem 'rai 'sno 'wea	o']=dat n']=dat v']=dat ther'].	a['t a['r a['s fill	emp'].f emp'].f now'].f na('Clo na('NaN	illna(d illna(d illna(d uds',in	ata['te ata['ra ata['sn place=1	mp'].me in'].me ow'].me 'rue)	an())	าก		
Data Transformation	data["hol	liday'] 'day",	'Mart 'Memori = data['h "month", ","minut	in Lut al Day oliday' "year" es","s	ther King I '', 'Indepe].apply(lamb ']] = data	or Day', ' endence Da bda x: '1' ["date"]. = data["	Columbus y', 'Stat if x in hol str.split Time"].s	Day', 'Vet e Fair'] iday_list e t("-", exp tr.split('	'New Year terans Day' lse '0') pand=True) ':", expand			
	# Assu # Assu	ming ming nte a	your d the we LabelE	ata nather	is in a large column	DataFra is name	me calle	ed 'data	*			
Feature Engineering	le = L # Fit le.fit # Tran	the (dat	LabelEn a['weat	her'		umn to i	numeric	al label	he categ s	ories)		
	le = L # Fit le.fit # Tran data['	the (dat sfor weat	LabelEn a['weat n the '	her']) her' col transfor	umn to m (data[numerico 'we <mark>athe</mark>	al Label	S			
Engineering	le = L # Fit le.fit # Tran data['	the (dat	LabelEn a['weat n the '	her') her' col transfor weather tr	umn to m (data[numerico 'weather	al Label				
Engineering Save	le = L # Fit le.fit # Tran data['	the (dat	LabelEn a['weat n the ' ner'] =	her'	her' cold transfor weather tr	umn to m (data[affic_volume	numerico 'weather day mon	al label	s urs minutes	seconds		
Engineering	le = L # Fit le.fit # Tran data['	the (dat	LabelEn weat weat the ' temp rain	her'	her' coll transfor weather tr	umn to m (data[affic_volume 2859 4603	day mon	at tabet ']) th year ho	urs minutes	seconds 00		

Model Development Phase

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model		Description					
Linear Regressor	r and the second of the second						
Decision Tree Regressor	that predicts the value of a target variable by learning decision rules from features, recursively splitting the data				71%		
Random Forest Regressor	r	A Random Forest Regressor is an ensemble learning method that uses multiple decision trees to improve the accuracy and robustness of predictions by averaging the outputs of individual trees.			84%		
SVR	Support Vector Regression (SVR) is a machine learning model that uses the principles of support vector machines		of support vector machines of finding the best-fit	0%			
Feature	De	escription	Selected (Yes/No)	Reasoning			
holiday	Tells whether a liday particular day is a holiday or not		No	Converted it to numerical of using lambda apply function form of 0's and 1's			

MODEL SELECTION

temp	Describes about the temperature	No	Already in numerical data
rain	Whether it is raining or not	No	Already in numerical data
snow	Whether it is snowing or not	No	Already in numerical data
weather	Tells about the weather condition	Yes	To give different weather conditions a particular number using label encoding for easy processing
date	Particular date	No	Already in numeric data
time	Particular time	No	Already in numeric data
traffic volume	About traffic volume	No	Already in numeric data

FEATURE SELECTION

Model Optimization and Tuning Phase

Initial Model Training Code:

```
#splitting into independent and dependent variables
y=data['traffic volume']
x=data.drop(columns=['traffic volume'],axis=1)
print(x.head())
#splitting the data into train data and test data
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=42)
lin_reg = linear_model. LinearRegression()
Dtree = tree. DecisionTreeRegressor()
Rand = ensemble. RandomForestRegressor()
svr = svm. SVR()
#XGB = xgboost . XGBRegressor ()
from sklearn import linear model
from sklearn import tree
from sklearn import ensemble
from sklearn import svm
 lin reg.fit(x train,y train)
Dtree.fit(x train,y train)
Rand.fit(x_train,y_train)
 svr.fit(x_train,y_train)
#XGB.fit(x train, y train)
p1 = lin reg.predict(x train)
 p2 = Dtree.predict(x train)
 p3 = Rand.predict(x train)
 p4 = svr.predict(x train)
#p5 = XGB.predict(x train)
```

```
p1 = lin_reg.predict(x_test)
p2 = Dtree.predict(x_test)
p3 = Rand.predict(x_test)
p4 = svr.predict(x_test)
print(metrics. r2_score(p1,y_test))
print(metrics. r2_score(p2,y_test))
print(metrics. r2_score(p3,y_test))
print(metrics.r2_score(p4,y_test))
#print(metrics.r2_score(p5,y_test))
-5.491461561547912
0.7130190373733469
0.8117988884163669
```

Model Validation and Evaluation Report:

-15966000.275938746

Model	Regression Report	R2_score
Linear Regression	p1 = lin_reg.predict(x_test) regression_report(y_test,p1) {'Mean Absolute Error (MAE)': 1637.9870039113694, 'Mean Squared Error (MSE)': 3402975.5125765526, 'Root Mean Squared Error (RMSE)': 1844.7155641389684, 'R-squared (R²)': 0.1392528540190069, 'Explained Variance Score': 0.13930894538755123}	13%

Decision Tree Regressor	p2 = Dtree.predict(x_test) regression_report(y_test,p2) {'Mean Absolute Error (MAE)': 556.0734363655223, 'Mean Squared Error (MSE)': 1118141.6407011722, 'Root Mean Squared Error (RMSE)': 1057.4221676800482, 'R-squared (R ²)': 0.7171777397518407, 'Explained Variance Score': 0.7173099360906563}	71%
Random Forest Regressor	p3 = Rand.predict(x_test) regression_report(y_test,p3) {'Mean Absolute Error (MAE)': 494.5744746395602, 'Mean Squared Error (MSE)': 612380.9824446529, 'Root Mean Squared Error (RMSE)': 782.5477509038365, 'R-squared (R ²)': 0.8451046206638214, 'Explained Variance Score': 0.8452203153920186}	84%
SVR	p4 = svr.predict(x_test) regression_report(y_test,p4) {'Mean Absolute Error (MAE)': 1745.497301318169, 'Mean Squared Error (MSE)': 3962326.1639990797, 'Root Mean Squared Error (RMSE)': 1990.559259102597, 'R-squared (R ²)': -0.002229056454693401, 'Explained Variance Score': 0.00012691427202182748}	0%

Final Model Selection Justifications

After extensive evaluation of various machine learning algorithms, we have selected the Random Forest Regressor as the final model for TrafficTelligence's traffic volume estimation system. This decision is based on several critical factors, primarily focusing on

performance metrics, interpretability, and robustness. Below are the detailed justifications for our choice:

- **1. High R² Score:** The Random Forest Regressor consistently demonstrated a high R² score across multiple validation datasets, indicating a strong ability to explain the variance in traffic volume data. This high R² score signifies that the model provides accurate predictions, which is crucial for real-time traffic management and planning applications.
- **2. Performance Consistency:** During our evaluation, the Random

Forest Regressor outperformed other models such as Linear Regression, Decision Trees, and Support Vector Machines. It maintained high accuracy and low error rates across various scenarios, including different times of day, weather conditions, and special events. This consistency ensures reliable performance in diverse traffic situations.

Regressor is highly scalable, capable of handling large datasets efficiently. Given the extensive historical traffic data and additional variables (such as weather patterns and event schedules), the model's ability to process large volumes of data swiftly is essential for real-time applications.

T (100 Y	7 1	E2000000000000000000000000000000000000	T	
Irat	tic '	Vo	ume	Estim	ation

Please enter the following details

Temperature: Temperature	
Rain: Rain	
Snow: Snow	
Weather: Clear v	
Year: Year	
Month: Month	
Day: Day	
Hours: Hours	
Minutes: Minute:	
Seconds: Second	
Predict	

Results

FUTURE SCOPE

1. Integration of Real-time Data Sources: Expanding the system to integrate real-time data sources such as live traffic feeds, GPS data from connected vehicles, and IoT sensors installed at key traffic points can significantly

enhance the accuracy and responsiveness of TrafficTelligence. This real-time data fusion will enable more dynamic and adaptive traffic management solutions.

- 2. Expansion to Multimodal Traffic Analysis: Future iterations of Traffic Telligence can include analysis and predictions for various modes of transportation, such as public transit, cycling, and pedestrian traffic. Incorporating multimodal traffic data will provide a holistic view of urban mobility, assisting in more comprehensive urban planning and improved multimodal transportation strategies.
- **3.** Enhanced Predictive Analytics with Deep Learning: Exploring advanced deep learning techniques, such as recurrent neural networks (RNNs) or long short-term memory (LSTM) networks, could further improve the system's predictive capabilities. These models are particularly well-suited for time series data and can capture complex temporal dependencies in traffic patterns.
- Traffic Telligence can be integrated with broader smart city initiatives, collaborating with systems for energy management, environmental monitoring, and public safety. Such integration will contribute to creating more efficient, sustainable, and resilient urban environments.
- **5.** Predictive Maintenance for Traffic Infrastructure: Utilizing the traffic data to predict wear and tear on roads and traffic infrastructure can be a valuable addition. Predictive maintenance models can forecast when and where maintenance is needed, reducing disruptions and extending the lifespan of critical infrastructure.
- **6.** User Personalization and Behavioral Insights: Developing personalized traffic predictions and recommendations based on individual commuter behavior and preferences can enhance user experience. Additionally, analyzing commuter behavior data can

provide insights into travel habits and preferences, aiding in the design of more user-centric transportation solutions.

7. Scenario Planning and Simulation:

Incorporating simulation capabilities to model the impact of various scenarios, such as construction projects, policy changes, or emergency events, will help stakeholders make informed decisions. Scenario planning tools can provide valuable foresight and contingency strategies for effective traffic management.

APPENDIX

The project source code and various other requirements have been uploaded in our github. Demo link of our project is pasted at Project Delivarables.

Traffic Vo

Please enter the following details

Holiday: No V
Temperature: Temperature
Rain: Rain
Snow: Snow
Weather: Clear
Year: Year
Month: Month
Day: Day
Hours: Hours
Minutes: Minutes
Seconds: Second
Predict
Estimated Traffic Volume is: 4459.99
p4 = svr.predict(x_test)
regression_report(y_test,p4)
{'Mean Absolute Error (MAE)': 1745.497301318169,
'Mean Squared Error (MSE)': 3962326.1639990797,
'Root Mean Squared Error (RMSE)': 1990.559259102597,
'R-squared (R ²)': -0.002229056454693401,
'Explained Variance Score': 0.00012691427202182748}

```
p3 = Rand.predict(x_test)
regression_report(y_test,p3)

{'Mean Absolute Error (MAE)': 494.5744746395602,
'Mean Squared Error (MSE)': 612380.9824446529,
'Root Mean Squared Error (RMSE)': 782.5477509038365,
'R-squared (R<sup>2</sup>)': 0.8451046206638214,
'Explained Variance Score': 0.8452203153920186}
```

```
p2 = Dtree.predict(x_test)
regression_report(y_test,p2)
```

```
{'Mean Absolute Error (MAE)': 556.0734363655223,
  'Mean Squared Error (MSE)': 1118141.6407011722,
  'Root Mean Squared Error (RMSE)': 1057.4221676800482,
  'R-squared (R<sup>2</sup>)': 0.7171777397518407,
  'Explained Variance Score': 0.7173099360906563}
```

```
p1 = lin_reg.predict(x_test)
regression_report(y_test,p1)
```

```
{'Mean Absolute Error (MAE)': 1637.9870039113694,
  'Mean Squared Error (MSE)': 3402975.5125765526,
  'Root Mean Squared Error (RMSE)': 1844.7155641389684,
  'R-squared (R<sup>2</sup>)': 0.1392528540190069,
  'Explained Variance Score': 0.13930894538755123}
```

```
p2 = Dtree.predict(x test)
p3 = Rand.predict(x test)
p4 = svr.predict(x test)
print(metrics. r2 score(p1,y test))
print(metrics. r2 score(p2,y test))
print(metrics. r2_score(p3,y_test))
print(metrics.r2_score(p4,y_test))
#print(metrics. r2 score(p5,y test))
-5.491461561547912
0.7130190373733469
0.8117988884163669
-15966000.275938746
lin reg.fit(x train,y train)
Dtree.fit(x train,y train)
Rand.fit(x train,y train)
svr.fit(x train,y train)
#XGB.fit(x train, y train)
p1 = lin reg.predict(x train)
p2 = Dtree.predict(x train)
p3 = Rand.predict(x train)
p4 = svr.predict(x train)
\#p5 = XGB.predict(x train)
```

p1 = lin reg.predict(x test)

```
from sklearn import linear_model
from sklearn import tree
from sklearn import ensemble
from sklearn import svm
```

```
#splitting into independant and dependant variables
y=data['traffic_volume']
x=data.drop(columns=['traffic_volume'],axis=1)
print(x.head())

#splitting the data into train data and test data
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,randlin_reg = linear_model. LinearRegression()
Dtree = tree. DecisionTreeRegressor()
Rand = ensemble. RandomForestRegressor()
svr = svm. SVR( )
#XGB = xgboost . XGBRegressor ()
```

	holiday	temp	rain	snow	weather	traffic_volume	day	month	year	hours	minutes	seconds
39346	0	277,44	0.0	0.0	0	2859	29	11	2017	20	00	00
23628	0	296.46	0.0	0.0	1	4603	25	05	2016	18	00	00
6563	0	294.84	0.0	0.0	1	5635	31	05	2013	13	00	00
44041	0	279.69	0.0	0.0	0	622	13	05	2018	02	00	00
43918	0	290.46	0.0	0.0	6	3274	08	05	2018	19	00	00

```
from sklearn.preprocessing import LabelEncoder

# Assuming your data is in a DataFrame called 'data'
# Assuming the weather column is named 'weather'

# Create a LabelEncoder object
le = LabelEncoder()

# Fit the LabelEncoder to the weather data (learn the categories)
le.fit(data['weather'])

# Transform the 'weather' column to numerical Labels
data['weather'] = le.transform(data['weather'])
```

	holiday	temp	rain	snow	weather	traffic_volume	day	month	year	hours	minutes	seconds
39346	0	277,44	0.0	0.0	0	2859	29	11	2017	20	00	00
23628	0	296.46	0.0	0.0	1	4603	25	05	2016	18	00	00
6563	0	294.84	0.0	0.0	1	5635	31	05	2013	13	00	00
44041	0	279.69	0.0	0.0	0	622	13	05	2018	02	00	00
43918	0	290.46	0.0	0.0	6	3274	08	05	2018	19	00	00

	holiday	temp	rain	snow	weather	date	Time	traffic_volume
0	NaN	288.28	0.0	0.0	Clouds	02-10-2012	09:00:00	5545
1	NaN	289.36	0.0	0.0	Clouds	02-10-2012	10:00:00	4516
2	NaN	289.58	0.0	0.0	Clouds	02-10-2012	11:00:00	4767
3	NaN	290.13	0.0	0.0	Clouds	02-10-2012	12:00:00	5026
4	NaN	291.14	0.0	0.0	Clouds	02-10-2012	13:00:00	4918

