DOMANDA 1

Sia

 $ec F(x,y)=(2ye^{xy}+2xe^{x^2-y^2},2xe^{xy}-2ye^{x^2-y^2})$ Determinare l'integrale di ec F lungo la curva il cui sostegno è indicato in figura.

Select one:

- a. non voglio rispondere
- 6 b.
- ⊚ c. altro
- \odot d. $e^5 e^{-1}$
- \odot e. $-1 + e^{25} e^{-1}$
- f. $-1 \frac{1}{e} + e^5 + e^{24}$

Your answer is correct.

QUI LA RISPOSTA era $-1/2+e^{25}-e^{-1}$; il voto sarà modificato a mano

The correct answer is: altro

DOMANDA 2

Calcolare il volume del solido limitato delimitato da $\{(x,y,z):\,y=x^2\}$ e dai piani

$$x = 0, y = 0, z = 0, y = 1, x + z = 1.$$

Select one:

- a. Altro
- b. 5/12
- O c. 0
- \bigcirc d. $\frac{2}{3}$
- \odot e. $3\sqrt{5}$
- \bigcirc f. $-5\sqrt{3}$
- og. Non voglio rispondere

Risposta corretta.

The correct answer is: $\frac{5}{12}$

DOMANDA 3

Sia Σ la superficie cartesiana $z=x^2+y^2$, con $x^2+y^2-4y\leq 0, x\leq 0$. Calcolare $\int_{\Sigma}\frac{x}{2\sqrt{4z+1}}\ d\sigma.$

Select one:

- $-\frac{8}{3}$
- $\bigcirc \frac{\pi}{2}$
- 0 0
- Altro
- Non voglio rispondere
- $\frac{1}{12}$
- $\frac{\pi}{4}$

Risposta corretta.

The correct answer is: $-\frac{8}{3}\,$

DOMANDA DI TEORIA - ANALISI

TEORIA

Si supponga che una collina abbia la forma del grafico della funzione

$$z = 1000 - 0.1x^2 - 0.02y^2$$

Ci troviamo nel punto (60, 100, 440).

Partendo lungo quale vettore si sale inizialmente di più?

Select one:

- a. non voglio rispondere
- $\bigcirc \text{ b. } \left(\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}}\right)$
- c, altro
- $\bigcirc \ \, \mathrm{d.} \quad \left(\frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}}\right)$
- $\ \, \text{e.} \ \, \left(-\frac{3}{\sqrt{10}},-\frac{1}{\sqrt{10}}\right) \checkmark$
- $\bigcirc \text{ f. } \left(-\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}} \right)$
- $\bigcirc \ \mathsf{g}. \ \left(\frac{3}{\sqrt{10}},\frac{1}{\sqrt{10}}\right)$

The correct answer is: $\left(-\frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}}\right)$

Probabilità

DOMANDA 1

Si dispone di due monete apparentemente identiche. La **moneta 1** è equilibrata e dà testa con probabilità del 50%. La **moneta 2** dà testa con probabilità del 67%.

Si sceglie a caso una delle due monete e si effettuano **16 lanci** consecutivi con la stessa moneta: vengono esattamente **10 Teste**.

Qual è la probabilità che sia stata usata la moneta 2? Esprimere il risultato in decimali troncando a 4 decimali (es. 0.4768)

I lanci sono indipendenti, una volta che la moneta è stata scelta.

- 0.9925
- 0.5234
- 0.6700
- Altro
- 0.0075
- ⊚ 0.6067✓
- 0.1052
- 0.3300
- Non voglio rispondere

S ADNAMOD

Sia (X,Y) variabile congiunta di densità congiunta continua

$$f(x,y) = \begin{cases} c(x+2y) & \text{se } x,y \in [0,1], \\ 0 & \text{altrimenti} \end{cases}$$

dove $c \in \mathbb{R}$

Dopo aver determinato $c_{\rm r}$ calcolare la funzione di distribuzione

$$F_X(1/2) = P(X \le 1/2) \text{ di } X \text{ in } 1/2.$$

Select one:

- \bigcirc a. $\frac{11}{13}$
- \bigcirc b. $\frac{1}{3}$
- \circ c. $\frac{3}{8}$
- \bigcirc d. $\frac{1}{4}$
- e. altro
- f. 5/12 ✓
- g. non voglio rispondere

Your answer is correct.

The correct answer is:
$$\frac{5}{12}$$

E ADNAMOD

Siano X_1,\dots,X_{64} delle variabili i.i.d. ciascuna con valore atteso μ e varianza $\sigma^2=16.$

Quanto deve valere al massimo μ affinché $P(X_1+\cdots+X_{64}<760)$ sia maggiore di 0.8

LO SPAZIO PER LA RISPOSTA SI TROVA SOTTO LA TABELLA: scrollare lo schermo con FRECCIA GIU

Standard Normal Distribution

Answer:

11.45

The correct answer is: 11,45

DOMANDA DI TEORIA - PROBABILITA

Sia (X,Y) variabile conglunta continua con densità conglunta continua $f_{X,Y}$ e densità marginali continue f_{X} , f_{Y} . Quale delle seguenti affermazione è vera? Ci possono essere più risposte esatte: selezionare tutte quelle corrette.

Select one or more:

- a. Nessuna delle altre risposte
- b. Per ogni (a,b) si ha $f_{X,Y}(a,b)=f_X(a)f_Y(b)$ se e solo se X,Y sono indipendenti
- c. Dalla densità congiunta si possono ricavare le densità marginali
- d. Dalle densità marginali si può ricavare la densità congiunta
- e. Per ogni (a,b) si ha $f_{X,Y}(a,b)=f_X(a)f_Y(b)$

Your answer is partially correct.

You have correctly selected 1. The correct answers are: Dalla densità conglunta si possono ricavare le densità marginali, Per ogni (a,b) si ha $f_{X,Y}(a,b)=f_X(a)f_Y(b)$ se e solo se X,Y sono indipendenti