

Forecast Covid-19 Daily Cases

Ruiqi Tang

October 27, 2022

Outline

- 1 Background and Introduction
- 2 Methodology
- 3 Conclusion and Finding

Outline

- 1 Background and Introduction
- 2 Methodology
- 3 Conclusion and Finding

WHO

- The total number of confirmed cases exceeds
 600 million
- The total number of deaths cases exceeds 6 million

Many researchers illustrate that early intervention will efficiently reduce a large number of confirmed cases and deaths

Epidemiological Model

We have many mathematics models to determine the virus spreading, such as SI, SIR, SIRE.

R is one of key parameters in models, my model will mainly focus on it.

what is R

R is a potential measure of the transmission of infectious disease and represents the mean number of secondary infections generated by a typical infected individual in a population with all susceptible

Research Questions

- Estimate *R*, and choose a appropriate window to estimate *R*
- Forecast daily new cases

Outline

- 1 Background and Introduction
- 2 Methodology
- 3 Conclusion and Finding

Data Source

The data comes from Coronavirus Case in Australian
This website provides the new daily cases for each
state

Raw Data

Date	ı
2020-01-25	0
2020-01-26	0
2020-01-27	1
2020-01-28	0
2020-01-29	4
2020-01-30	0

I reprsents incidence number

Raw Data

Data Transformation

- using log transformation.
- Using data after 2021-07-01, because all positive number and they are very stable.

Time Decomposition

Decomposition

seasonally adjusted series

$$Y_{adj}$$
 = Trend + Remainder

Time decomposition

STL time series decomposition is used here

seasonally adjusted series

Windows

Window

- Small values of window lead to more rapid detection of changes in transmission but also more statistical noise.
- large values of window lead to more smoothing, and reductions in statistical noise. It will lose some detail

Estimate R

I use Bayesian-based method to estimate R by package EpiEstim

R

If R > 1, The number of infectious cases increases If R < 1, The number of infectious cases decline

Renewal equation

$$I_t \sim Pois\Big(R_t \sum_{s=0}^t I_{t-s} w_s\Big)$$

w is a serial interval distribution. serial interval is time from the infection of a primary case to infection of the cases the individual generates. Based on many studies, w follows gamma distribution.

Forecasting

Evaluation

Windows	MAE	RMSE
One	2841	4516
Two	3238	5012
Three	3845	5712
Four	4390	6199
Five	4956	6654

Model with one-week window is more suitable

Outline

- 1 Background and Introduction
- 2 Methodology
- 3 Conclusion and Finding

Conclusion and Finding

Conclusion

- The model performance is very good, except ending of July, because our model cannot react quickly for a large increase.
- One-week windows is better

Q & A

THANK YOU