Segmenting the Travelers: A Classification-Based Study on Tour Purchase Behavior

MIS-5560 - Introduction to Data Science

Tara Lehr, Akku Jacob Shaji, Jigyasa Soni, Vyshali Poola

Presented to Dr. Hongyu Gao

Introduction

- What ? Direct marketing scenario for a tour package company
 - Analyzing customer demographic and interaction data to improve marketing efficiency.
- Why? To identify which customers are most likely to purchase a tour package.
- How? By applying data science techniques:
- Classification Trees (CART)
- Logistic Regression
- Neural Networks
- Clustering (K-Means, Hierarchical)

Aim - uncover patterns in customer behavior, segment the customer base, and provide insights to guide future marketing decisions.

Project Overview

Purpose:

This project aims to classify and segment potential tour package customers using data-driven models. The insights generated will help marketing teams personalize offers and allocate resources more effectively.

Dataset:

5000 customer records containing demographics, engagement history, income, and product interaction details.

Variables Include:

Age, Monthly Income, Gender, Marital Status, Designation, Number of Trips, Duration of Pitch, Product Pitched, Type of Contact, etc.

Target Variable:

ProdTaken - a binary indicator showing whether the customer purchased a tour package (1) or not (0).

Business Goal:

Identify the profiles of customers most likely to purchase a tour package and build predictive models to improve conversion rates for future marketing campaigns.

Exploratory Data Insights

Customer Designation Distribution

Class imbalance in designations justifies

- Dummy encoding
- Stepwise feature selection.

Customer Occupation Distribution

Simplifying the variable improved

- Model stability
- Interpretability.

Product Pitched Distribution

Highlights the need for models that can handle skewed product exposure in predicting conversions.

Exploratory Data Insights

Age by Tour Purchase

Age-based segmentation can help tailor marketing messages for different age brackets.

Monthly Income by Tour Purchase

This helps justify income as a predictor in CART and Logistic Regression

Data Preprocessing

Initial Data Survey

- Reviewed dataset with 4,888 records and 20 variables.
- Generated bar charts & box plots to understand variable distributions

Missing Value Treatment

Identified missing data in key numerical fields:

- Age (226), MonthlyIncome (233), DurationOfPitch (45)
- Replaced missing values using **median imputation** to maintain distribution robustness.

Variable Transformation

- Converted categorical variables like Designation, Gender, MaritalStatus, Occupation, TypeOfContact, and ProductPitched into binary dummy variables.
- Resulted in **28 input features** ready for modeling.

Dataset Partitioning

Split into 60:40 ratio:

- Training: 2,199 records
- Validation: 734 records

Models

- CART (Classification and Regression Tree)
- Logistic Regression
- Neural Networks
- Cluster Analysis

Classification and Regression Tree (CART)

Model Implementation

Two CART models were built using different splitting criteria:

- Model 1: Gini with all variables
- Model 2: Entropy with all variables

Final pruned trees:

- **Gini:** Reduced from **367** to **36 leaves**
- Entropy: Reduced from 337 to 43 leaves

Model Information	
Split Criterion Used	Gini
Pruning Method	Cost-Complexity
Subtree Evaluation Criterion	Cost-Complexity
Number of Branches	2
Maximum Tree Depth Requested	30
Maximum Tree Depth Achieved	20
Tree Depth	11
Number of Leaves Before Pruning	367
Number of Leaves After Pruning	36
Model Event Level	0

Number of Observations Read 2933 Number of Observations Used 2933

Model Information	
Split Criterion Used	Entropy
Pruning Method	Cost-Complexity
Subtree Evaluation Criterion	Cost-Complexity
Number of Branches	2
Maximum Tree Depth Requested	30
Maximum Tree Depth Achieved	22
Tree Depth	10
Number of Leaves Before Pruning	337
Number of Leaves After Pruning	43
Model Event Level	0

Number of Observations Read	2933
Number of Observations Used	2933

The HPSPLIT Procedure **Confusion Matrices** Predicted Error Actual 0 Rate Model Based 96 0.0404 305 0.4514 **Cross Validation** 133 0.0560 297 | 259 | 0.5342

Fit Statistics for Selected Tree									
	N Leaves	ASE	Mis- class	Sensitivity	Specificity	Entropy	Gini	RSS	AUC
Model Based	36	0.0986	0.1183	0.9596	0.5486	0.4889	0.1971	578.2	0.8206
Cross Validation	55	0.1199	0.1465	0.9440	0.4658				

Gini Model Insights:

- Consistent AUC across training and validation
- Strong sensitivity → better at identifying positive cases
- Acceptable overfitting risk

Conclusion:

Entropy model performs slightly better across most metrics, but at the cost of a more complex tree.

Entropy Model Insights:

- Slightly better AUC and sensitivity
- Higher validation misclassification suggests mild overfitting
- Slightly less balanced compared to Gini

Logistic Regression Model -Full

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSo
Intercept	1	4.7899	227.8	0.0004	0.9832
Age	1	-0.0207	0.00707	8.5463	0.0035
DurationOfPitch	1	0.0354	0.00628	31.8456	<.0001
NumberOfFollowups	1	0.2781	0.0599	21.5583	<.0001
PreferredPropertySta	1	0.4324	0.0646	44.7760	<.0001
NumberOfTrips	1	0.0812	0.0290	7.8452	0.0051
Passport	1	1.5549	0.1104	198.3701	< 0001
OwnCar	1	0.0450	0.1110	0.1644	0.6852
NumberOfChildrenVisi	1	-0.1360	0.0685	3.9455	0.0470
MonthlyIncome	1	4.044E-6	0.000018	0.0489	0.8251
Pitch Satisfaction Sco	1	0.0943	0.0402	5.5010	0.0190
Designation_AVP	1	-1.2369	0.3496	12.5133	0.0004
Designation_Executiv	1	0.6021	0.2035	8.7565	0.0031
Designation_Manager	1	-0.4316	0.1871	5.3222	0.0211
Designation_SeniorMa	0	0			
Designation_VP	1	-0.5373	0.3873	1.9244	0.1654
Gender_Female	1	0.2129	0.3336	0.4073	0.5233
Gender_Male	1	0.5220	0.3259	2.5648	0.1093
Marital Status_Divorc	1	-0.7372	0.1935	14.5110	0.000
Marital Status_Marrie	1	-0.7698	0.1664	21,4111	<.0001
Marital Status_Single	1	0.4102	0.1827	5.0435	0.0247
Marital Status_Unmarr	0	0		(3)	
Occupation_Large_Bus	1	-9.5265	227.8	0.0017	0.9666
Occupation_Salaried	1	-9.9310	227.8	0.0019	0.9652
Occupation_Small_Bus	1	-9.8392	227.8	0.0019	0.9658
TypeofContact_Compan	1	0.2333	0.8431	0.0766	0.7820
TypeofContact_Self_E	1	-0.1242	0.8397	0.0219	0.8824
ProductPitched_Basic	0	0		134	
ProductPitched_Delux	0	0			
ProductPitched_King	0	0			
ProductPitched_Stand	0	0			
ProductPitched Super	0	0			

Confusion Matrix - Full Model

The FREQ Procedure

Frequency

	predicted_full			
ProdTaken	0	1	Total	
0	1542	49	1591	
1	263	101	364	
Total	1805	150	1955	

Accuracy: 84.04%

• Sensitivity: 27.74%

• Specificity: 96.92%

• AUC: 79.71%

Logistic Regression Model: Stepwise

		Summary	of Ste	epwise Sele	ection			
	Effect		Effect		Number	Score	Wald	
Step	Entered	Removed	DF	In	Chi-Square	Chi-Square	Pr > ChiSq	
1	Passport		1	1	208.0823		<.0001	
2	Designation_Executiv		1	2	131.5513		<.0001	
3	MaritalStatus_Single		1	3	55.7425		<.0001	
4	PreferredPropertySta		1	4	46.3544		<.0001	
5	MaritalStatus_Unmarr		1	5	37.7229		<.0001	
6	DurationOfPitch		1	6	33.3284		<.0001	
7	NumberOfFollowups		1	7	25.5782		<.0001	
8	Designation_AVP		1	8	11.4109		0.0007	
9	TypeofContact_Compan		1	9	9.4677		0.0021	
10	Gender_Male		1	10	9.0303		0.0027	
11	Pitch Satisfaction Sco		1	11	7.0175		0.0081	
12	Age		1	12	6.6280		0.0100	
13	NumberOfTrips		1	13	6.8977		0.0086	
14	ProductPitched_Stand		1	14	7.5723		0.0059	
15	Occupation_Large_Bus		1	15	4.0989		0.0429	
16	NumberOfChildrenVisi		1	16	4.0226		0.0449	

- Started with all available predictors
- Used entry and stay criteria at p < 0.05
- 16 predictors retained

Top predictors by contribution:

- Passport (Chi-Sq: 208.08)
- Designation_Executive (Chi-Sq: 131.55)
- MaritalStatus_Single (Chi-Sq: 55.74)
- PreferredPropertyStar (Chi-Sq: 46.35)

Logistic Regression Model: Stepwise Cont.

Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-6.1324	0.4755	166.3535	<.0001
Age	1	-0.0208	0.00672	9.6030	0.0019
DurationOfPitch	1	0.0357	0.00625	32.5894	<.0001
NumberOfFollowups	1	0.2842	0.0583	23.7697	<.0001
PreferredPropertySta	1	0.4363	0.0644	45.8709	<.0001
NumberOfTrips	1	0.0804	0.0287	7.8189	0.0052
Passport	1	1.5530	0.1100	199.1697	<.0001
NumberOfChildrenVisi	1	-0.1329	0.0663	4.0149	0.0451
Pitch Satisfaction Sco	1	0.0952	0.0400	5.6700	0.0173
Designation_AVP	1	-0.7594	0.3181	5.6983	0.0170
Designation_Executiv	1	1.0314	0.1293	63.6798	<.0001
Gender_Male	1	0.3271	0.1107	8.7257	0.0031
Marital Status_Single	1	1.1667	0.1297	80.9266	<.0001
Marital Status_Unmarr	1	0.7225	0.1485	23.6824	<.0001
Occupation_Large_Bus	1	0.3604	0.1760	4.1931	0.0406
TypeofContact_Compan	1	0.3490	0.1158	9.0770	0.0026
ProductPitched Stand	1	0.4447	0.1714	6.7322	0.0095

Confusion Matrix - Stepwise Model

The FREQ Procedure

Frequency

	predic	ted_step	wise
ProdTaken	0	1	Total
0	1544	47	1591
1	262	102	364
Total	1806	149	1955

• Accuracy: 84.19%

• Sensitivity: 28.02%

• Specificity: 97.05%

• AUC: 79.96%

• Best model for comparisons

Neural Network

Even though Model A had a slightly better AUC, Model B has higher sensitivity and a much stronger odds ratio. That means it's better at actually finding people who will buy, which is what matters most in a marketing campaign. So from a business standpoint, Model B is the better choice for targeting customers more effectively.

Neural Network Model A - 1 layers (with 5 neurons)

Baseline neural network model, Model A. We used one hidden layer with 5 neurons. This structure is simple but powerful enough to capture non-linear patterns in the data.

Number of Observations Read	2933
Number of Observations Used	2933
Number Used for Training	2199
Number Used for Validation	734

Model Information						
Data Source	WORK.TOUR_TRAIN_STD					
Architecture	MLP					
Number of Input Variables	28					
Number of Hidden Layers	1					
Number of Hidden Neurons	5					
Number of Target Variables	1					
Number of Weights	151					
Optimization Technique	Limited Memory BFGS					

Architecture & Setup:

- 1 hidden layer with 5 neurons
- Optimization: Limited-Memory BFGS
- 50 training iterations
- 28 input variables (dummy-coded)

The FREQ Procedure

Frequency

	Prediction		on
ProdTaken	0	1	Total
0	1519	72	1591
1	285	79	364
Total	1804	151	1955

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	1881.341	1642.465	
sc	1886.919	1653.621	
-2 Log L	1879.341	1638.465	

Performance Metrics (Validation Set):

- Misclassification Rate: 19.48%
- Sensitivity: 21.7%
- Specificity: 95.5%
- AUC: 0.7573
- Odds Ratio: 64.40

		ROC	Associatio	n Statistics			
	Mann-Whitney						
ROC Model A	Area	Standard Error	95% Confiden	Wald ce Limits	Somers' D	Gamma	Tau
NN Prediction	0.7573	0.0139	0.7301	0.7845	0.5147	0.5147	0.156

Insights:

- Best AUC among all models → good at separating classes
- Moderate sensitivity → detects some purchasers but misses many
- Lower odds ratio → less distinction between buyer and non-buyer scores

Neural Network Model B - 2 layers (8 neurons - 5,3)

Model B increased the complexity—we added another hidden layer and more neurons. This allows the model to learn more detailed patterns in customer behavior.

Model Info	ormation
Data Source	WORK.TOUR_TRAIN_STE
Architecture	MLP
Number of Input Variables	28
Number of Hidden Layers	2
Number of Hidden Neurons	8
Number of Target Variables	1
Number of Weights	167
Optimization Technique	Limited Memory BFGS

Number of Observations Read	2933
Number of Observations Used	2933
Number Used for Training	2199
Number Used for Validation	734

Architecture & Setup:

- 2 hidden layers with 8 neurons each
- Same optimization and input variables as Model A
- Increased model complexity for improved learning

Confusion Matrix - Neural Network (Tourism)

Frequency	Table of ProdTaken by Prediction			
		Pi	rediction	on
	ProdTaken	0	1	Tota
	0	1528	63	1591
	1	276	88	364
	Total	1804	151	1955

Model Fit Statistics		
Criterion	Intercept Only	Intercept and Covariates
AIC	1881.341	1665.367
SC	1886.919	1676.523
-2 Log L	1879.341	1661.367

Performance Metrics (Validation Set):

- Misclassification Rate: 20.30%
- Sensitivity: 24.2%
- Specificity: 96.0%
- AUC: 0.7336
- Odds Ratio: 106.75

Insights:

- Higher sensitivity → better at identifying customers likely to buy
- Strong specificity → avoids false positives
- Highest odds ratio → stronger prediction confiden
- Slightly lower AUC but better real-world targeting potential

Unsupervised Learning: Clustering Models

Hierarchical Clustering

Initially explored but produced inconclusive results

K-means Clustering

Selected for scalability and flexibility

Optimal Cluster Determination

Used elbow method to identify k=6 as optimal

To determine the optimal number of clusters, the FASTCLUS procedure was run iteratively from k=1 to 10, generating metrics such as pseudo F-statistics, observed R-squared, and Cubic Clustering Criterion. A clear inflection occurred at k=6, suggesting this solution offered the best trade-off between performance and interpretability.

Clustering: Hierarchical vs K-means

Clustering: Hierarchical vs K-means

Clustering Model Specifications

Variable Standardization

Eleven standardized numeric variables used, including Age, MonthlyIncome, NumberOfTrips, and PitchSatisfactionScore

Configuration

MAXITER=100 and CONVERGE=0.02 to ensure model stability

Separation

Centroid distances exceeded 1.98 across all clusters

Cluster Balance

Most groups had well-balanced sizes (1000+ records)

The k=6 model achieved the highest pseudo-F-statistic (227.01), a more stable CCC (-36.182), and a higher average cluster separation (\approx 7.21). These results, combined with large, interpretable cluster sizes, made the six-cluster model superior for customer segmentation.

Results and Discussion

Conclusion

- CART with Entropy performed best overall
- K-means clustering added rich customer segmentation
- Logistic regression was stable but not sensitive enough
- Neural networks had mixed performance, useful for deep patterns

Business Outcome: The models collectively enable data-driven decision making by improving conversion rates, enhancing campaign efficiency, and supporting personalized, cost-effective marketing strategies.

Summary and Key Takeaways

Thank you!