14. Теорема за междинните стойности

Частен случай

Теорема 1 (Болцано)

Нека $f:[a,b] o \mathbb{R}$ е непрекъсната и f(a)f(b) < 0. Тогава

 $\exists c \in [a,b]: f(c) = 0.$

Д-во: Да предположим, че f(a) > 0 и f(b) < 0.

Случаят f(a) < 0 и f(b) > 0 се свежда към първия, като разгледаме -f вместо f.

Разглеждаме множеството $M := \{x \in [a,b] : f(x) > 0\}.$

To е непразно $(a \in M)$ и ограничено отгоре $(x \le b \quad \forall x \in M)$.

От Пр. за непрекъснатост следва, че то има точна горна граница.

Да я означим с c, т.е. $c := \sup M$.

Ще докажем, че f(c) = 0.

Имаме $c \in [a, b]$, защото

 $a\in M$ и c е горна граница на $M\implies a\leq c$ и b е горна граница на M и c е точната горна граница на $M\implies c\leq b$.

Ако допуснем, че f(c) > 0, от непрекъснатостта на f(x) в т. c следва, че $\exists \delta > 0$: f(x) > 0 за $x \in (c - \delta, c + \delta)$. Но така излиза, че в M има числа, които са > c, и следователно c не е горна граница на M — противоречие.

Аналогично, ако допуснем, че f(c) < 0, от непрекъснатостта на f(x) в т. c следва, че $\exists \delta > 0: f(x) < 0$ за $x \in (c - \delta, c + \delta)$.

Също така от дефиницията на ${m c}$ непосредствено следва, че $f(x) \leq 0$ при $x > {m c}$.

Така излиза, че в M няма числа, които са $> c - \delta$, т.е.

 $x \leq c - \delta \quad \forall x \in M.$

Следователно \emph{M} има горна граница $<\emph{c}$ — противоречие.

Така остава, че единствено е възможно f(c) = 0.

Теорема за междинните стойности

Теорема 2 (т-ма за междинните стойности)

Непрекъсната функция, дефинирана в интервал, приема за стойност всяко число между кои и да е две свои стойности, тоест, ако $f:D\to\mathbb{R}$ е непрекъсната, $D\subseteq\mathbb{R}$ е интервал и y_0 е между $f(x_1)$ и $f(x_2)$, където $x_1,x_2\in D$, то $\exists\, x_0\in D: f(x_0)=y_0$.

Д-во: Ще сведем твърдението на теоремата към нейния частен случай, доказан в Т-ма 1.

Нека за определеност $x_1 < x_2$.

Разглеждаме функцията $g(x):=f(x)-y_0$ при $x\in [x_1,x_2].$

Щом D е интервал и $x_1, x_2 \in D$, то $[x_1, x_2] \subseteq D \implies f(x)$ е дефинирана и непрекъсната в $[x_1, x_2]$.

Следователно g(x) е непрекъсната в $[x_1, x_2]$.

Щом y_0 е между $f(x_1)$ и $f(x_2)$, то $g(x_1)g(x_2) < 0$.

Прилагаме Т-ма 1 към $g:[x_1,x_2] \to \mathbb{R}$. Следователно

$$\exists \, x_0 \in [x_1, x_2] : g(x_0) = 0, \text{ t.e. } f(x_0) - y_0 = 0, \text{ t.e. } f(x_0) = y_0.$$

Важно следствие

Следствие

Областта от стойности на непрекъсната функция, дефинирана върху интервал, е интервал.

Д-во: Нека $f:D\to\mathbb{R}$ е непрекъсната и $D\subseteq\mathbb{R}$ е интервал. Ще докажем, че f(D) е интервал.

Случаят, в който ${\it D}$ се състои от една точка, е тривиален. Нека ${\it D}$ има ненулева дължина.

Ако f(D) е ограничено отдолу, полагаме $a := \inf f(D)$ (Пр. за непр.), иначе полагаме $a := -\infty$.

Ако f(D) е ограничено отгоре, полагаме $b := \sup f(D)$ (Пр. за непр.), иначе полагаме $b := +\infty$.

Щом D има ненулева дължина, то $a \neq b$; по-точно a < b.

Ще покажем, че f(D) е интервал с краища a и b.

От дефиницията на \boldsymbol{a} и \boldsymbol{b} следва, че в f(D) няма числа, които са $<\boldsymbol{a}$ или $>\boldsymbol{b}$.

Остава да се убедим, че каквото и y_0 да вземем, което се намира строго между \boldsymbol{a} и \boldsymbol{b} , то

$$\exists x_0 \in D : f(x_0) = y_0. \tag{1}$$

Щом y_0 е строго между a и b, то $\exists y_1, y_2 \in f(D)$: $y_1 < y_0 < y_2$.

Сега Т-ма 2 влече (1).