Homework 2

* Name: $\underline{\text{Xin Xu}}$ Student ID: $\underline{519021910726}$ Email: $\underline{\text{xuxin}} \underline{20010203} \underline{\text{@sjtu.edu.cn}}$

Problem 1. Let (X, \leq_1) , (Y, \leq_2) be (partially) ordered sets. We say that they are isomorphic if there exists a bijection $f: X \to Y$ such that for every $x, y \in X$, we have $x \leq_1 y$ if and only if $f(x) \leq_2 f(y)$.

- 1. Draw Hasse diagrams for all nonisomorphic 3-element posets.
- 2. Prove that any two *n*-element linearly ordered sets are isomorphic.
- 3. Prove that (\mathbb{N}, \leq) and (\mathbb{Q}, \leq) are not isomorphic. (where \mathbb{N} is the set of natural numbers, \mathbb{Q} is the set of rational numbers, \leq is the usual 'less or equal to' between numbers).

Solution. 1. the picture is below.

Figure 1: 3-element nonisomorphic posets

- 2. Proof. Supposing that A and B are two n-element linearly ordered sets, we define a bijection function f by recurrence such that the minimal element a_0 in $A \leftrightarrow$ the minimal element b_0 in B, and it's the same with sets $A' = A \setminus \{a_0\}$ and $B' = B \setminus \{b_0\}$ until reaching to the maximal element. Because of the definition of linearly ordered set, every time there is just a minimal element in each recurrency, so the recurrency is right.
 - Thus, we have the statement :for every $a_i, a_j \in A$, we have $a_i \leq_1 a_j$ if and noly if $f(a_i) = b_i, f(a_j) = b_j$, which satisfies $b_i \leq_2 b_j$.
- 3. Proof. Because (\mathbb{N}, \leq) and (\mathbb{Q}, \leq) don't have the same equivalence, there isn't any bijection function between (\mathbb{N}, \leq) and (\mathbb{Q}, \leq) . So, (\mathbb{N}, \leq) and (\mathbb{Q}, \leq) are not isomorphic.

Problem 2. Prove or disprove: If a partially ordered set (X, \leq) has a single minimal element, then it is a smallest element as well.

Proof. The statement is true. We will prove it by induction.

Basis. When the partially ordered set (X, \leq) only has one element, the only element is the minimal element as well as the smallest element.

Hypothesis. For any partially ordered set (X, \leq) with n elements $n \geq 1$, if (X, \leq) have a single minimal element, then it is a smallest element as well. Induction. For a partially ordered set (X, \leq) with n+1 elements, we first pick out an element x_0 , and consider the left n elements set $(x_1, x_2, ..., x_n)$. According to our hypothesis, the n-element set has a single minimal element which is also the smallest element. Without generity, we assume it x_1 . Then, we would put the element x_0 back.

case a. $x_0 \le x_1$. In this case, x_0 becomes the minimal element. Because x_1 is the minimal element and smallest element of n-element set, $x_1 \le x_2, x_3, ..., x_n$ and $x_0 \le x_1$. Thus $x_0 \le x_1, x_2, ..., x_n$, which means x_0 is the smallest element too.

case b. x_0 is in the second floor of the n-element, which means $x_1 \leq x_0$ directly. In this case, x_0 is the only minimal element. And for our hypothesis, $x_1 \leq x_2, x_3, ..., x_n$ and $x_1 \leq x_0$, so x_1 is the smallest element too.

case c. x_0 is in the higher floor of the n-element. In this case, x_1 is the minimal element. We assume that x_0 is in the k^{th} floor so there is a connection to $(k-1)^{th}$ floor, and $(k-1)^{th}$ floor has a connection to $(k-2)^{th}$ floor, and Finally this chain down to x_1 , which means $x_1 \leq x_0$. So $x_1 \leq x_0, x_2, x_3, ..., x_n, x_1$ is the smallest element too.

Problem 3. Let (X, \leq) and (X', \leq') be partially ordered sets. A mapping $f: X \to X'$ is called an embedding of (X, \leq) into (X', \leq') if the following conditions hold:

- f is an injective mapping;
- $f(x) \leq' f(y)$ if and only if $x \leq y$.

Now consider the following problem

- a) Describe an embedding of the set $\{1,2\}\times\mathbb{N}$ with the lexicographic ordering into the ordered set (\mathbb{Q},\leq) .
- b) Solve the analog of a) with the set $\mathbb{N} \times \mathbb{N}$ (ordered lexicographically) instead of $\{1, 2\} \times \mathbb{N}$.

- Solution. a) The set $\{1,2\} \times \mathbb{N}$ has the element (x,y) satisfying $x \in \{1,2\}$ and $y \in \mathbb{N}$. We define a function f with features below: Firstly, f maps the element (x,y) in to a decimal, and if x=1, then the single digit is 1, else the single digit is 2. Then, the number of 1 behind the decimal point is y. For example, (1,1) maps to 1.1, (1,2) maps to 1.11, (2,1) maps to 2.1, (2,3) maps to 2.111.
- b) We assume an element $(x, y) \in \mathbb{N} \times \mathbb{N}$. And the function f can maps (x, y) to a decimal x.111...111, the number of 1 behind decimal point is y.

Problem 4. Prove the following strengthening of the Erdös-Szekeres Lemma: Let κ, ℓ be natural numbers. Then every sequence of real numbers of length $\kappa \ell + 1$ contains an nondecreasing subsequence of length $\kappa + 1$ or a decreasing subsequence of length $\ell + 1$.

Proof. Let $\kappa\ell=n^2$. Assume the (n^2+1) -element sequence of real numbers is $(x_1,x_2,x_3,...,x_{n^2+1})$ and the set $I=\{1,2,...,n^2+1\}$. We define the relation \leq on I such that $i\leq j$ if and only if $(i\leq j)\wedge(x_i\leq x_j)$. And (I,\leq) is partially ordered set for the definition. According to the deduction of Mirsky's Theorem, for any partially ordered set $P=(S,\leq)$, we have $\alpha(P)\times\omega(P)\geqslant |S|$. So, we have two cases:

case a. $\omega(I,\leq)>n$: there is a nondecreasing subsequence that $x_{i1}\leq x_{i2}\leq x_{i3}\leq \ldots \leq x_{in}\leq \ldots \leq x_{im}$.

case b. $\alpha(I, \leq) > n$: For the index must can be compared, so, if $i_1 < i_2 < ... < i_m, m > n$, there is an increasing subsequence of $x_{i1} > x_{i2} > x_{i3} > ... > x_{im}$.

Above all, we should prove that $\kappa \leq n$ or $\ell \leq n$. If they both > n, then $\kappa \ell > n^2$, which is contrast to our premiss. So, $\kappa \leq n$ or $\ell \leq n$.

In a nutshell, this statement is proved.