

Bachelorarbeit

(oder Seminar Ausgewählter Themen)

Hier steht der Titel Ihrer Bachelorarbeit

Erika Mustermann Matrikel-Nr.: 12345

Erstprüfer: Prof. Dr. Manuela Mustermann

Zweitprüferln: Prof. Dr.-Ing. Max Mustermann

Abgabedatum: 21.12.2030

Abstract:

englisch. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. Zusammenfassung:

deutsch. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Inhaltsverzeichnis

T	Lint	unrung	Э
2	2.1 2.2		9 10 10
3	3.1	er, Tabellen und Listings Bilder	13 13 13 14 14 15
4		t Zusammenfassung	17 17 17
G۱	ossaı	r und Akronyme	19
Αb	kürz	ungen	21
Gl	ossaı	r	23
Lit	eratı	ır	24
An	hang 1	g Zusätzliche Informationen	27 27

1 Einführung

Das Tutorial enthält verschiedene Sektionen zur Beschreibung grundlegender Funktionen in MEX. Zuerst werden die ?? in Kapitel ?? beschrieben. Dort sind die ??, die ?? und das ?? beschrieben. Darauf folgend ist die Verwendung und Erstellung von Bilder, Tabellen und Listings in Kapitel 3 erklärt. Verwaltung und richtiges Zitieren in MEX ist im Kapitel ?? zu finden. Die Verwendung von einem Glossar und Akronym-Verzeichnis ist im Kapitel 4.2 enthalten. Wichtige Quellen dieser Arbeit sind [DVB+15],[Poh16].

Let Windows und Online installiert werden. Hierfür kann der Link in der Fußzeile aufgerufen werden.

Für die effiziente Bearbeitung Ihrer Arbeit empfehlen wir Texmaker². Dafür brauchen Sie eine unterliegende LaTeX Installation, z.B. die Tex-Live Installation³. Meist reicht die Standardinstallation. Wenn Sie die Tex-Dateien manuell kompilieren wollen, müssen Sie in einer Kommandozeile folgendes tun:

- i. Terminal öffnen und mit cd in den Hauptordner des Projekts navigieren
- ii. pdflatex tutorial.tex eingeben und mit Eingabetaste bestätigen.
- iii. makeglossaries tutorial erstellt die Akronyme und das Glossar.
- iv. Die Befehle bibtex tutorial und biber tutorial Befehl erstellen das Literaturverzeichnis.
- v. Erneut pdflatex tutorial.tex ausführen, um Akronyme, Glossar und das Literaturverzeichnis einzufügen.

¹Vielen Dank an Ihren Kommilitonen Oliver Schneider, der diese Vorlage erstellt hat!

²https://www.xm1math.net/texmaker/

³http://tug.org/texlive/

In MEXkann man ein Wort mit \textbf{wort} fett und mit \textit{wort} kursiv schreiben.

Ein Sprung in eine neue Zeile in einem Lagender wird nicht mit der Eingabetaste, sondern mit den Zeichen \\ erreicht.

Beispiel:

Nach diesem Satz wird eine neue Zeile begonnen.

Das ist die neue Zeile.

Eine neuer Absatz ist mit dem Befehl \par möglich.

Beispiel:

Nach diesem Satz wird ein neuer Absatz entstehen.

Dieser Satz steht in einem neuen Absatz.

Nach dem Befehl \newpage wird auf der Text auf der folgenden Seite fortgesetzt.

Beispiel:

Der nächste Satz wird auf einer neuen Seite stehen.

Dieser Satz steht auf einer neuen Seite.

2 VR Training in der Raumfahrt

Dieses Kapitel beschäftigt sich mit Frage, wie VR Technologien für das Taining der Astronauten in der Raumfahrt eingesetzt wird.

Es geht im Speziellen um die Systeme Simplified Aid for EVA Rescue (SAFER) und ein Mass Handling System mit dem Spitzname Charlotte. Bei diesen wird im Training der Astronauten VR- Technologie angewannt. Außerdem wird VR Training auch für Extra Vehicular Activities (EVAs) eingesetzt.

2.1 Einsatz bei SAFER

Bei SAFER (Simplified Aid for EVA Rescue) handelt es sich um System, dass zur Selbstrettung verwendet wird. [MG10] Es ist während EVAs am Raumanzug befestigt und wird eingesetz, wenn ein Atronaut unabsichtlich von der ISS getrennt wird. [Mir13] SAFER besteht aus einem Triebwerksrucksack mit gasförmigem Stickstoff. [MG10] Es wird deshalb auch als "Jetpack"bezeichnet. [GSP20]. Der letzte Einsatz von SAFER liegt 30 Jahre zurück, trotzdem ist SAFER weiterhin für jeden EVA notwendig.[GSP20]

Die Simulation wird über ein VR Dead Mountet Display (HMD) dargestellt. [GSP20] Garcia et al. führen aus, dass beim erste VR Headset der Systems 2012 ein Laptop auf den Kopf des Astronauten geschnallt wurde. Dadurch konnte die VR Technologie auch auf der ISS das erste Mal zum trainieren benutzt werden. [GSP20] 2020 wurden dann laut Garcia et al. die Vive Pro HMDs eingesetzt. Dazu kommen noch Hand und Körpertracking sowie eine Handgestenerkennung. [GSP20]

Die SAFER Simulation beinhaltet die Physik-, Dynamik- und Sensordaten sowie Modelle für die Flugeigenschaften, Energie und Triebwerk. [GSP20] Simuliert werden kann eine Überprüfung des SAFER Systems, welche direkt vor einem EVA durchgeführt wird. Der Ausbilder kann auf das Interface der Simulation zugreifen und kann Fehlermeldungen hervorrufen. Die Astronauten trainieren so, wie sie bei Fehlern reagieren müssen. [GSP20] Garcia et al. beschreiben noch eine zweite Einsatzmöglichkeit. Diese ermöglicht es, das SAFER system in VR zu fliegen. [GSP20] Laut Moore et al. wird beim Training ein Austronaut in der virtuellen Welt von der ISS getrennt und dieser muss sich selbst durch den Einsatz von SAFER retten. [MG10] Im Trainingsszenario taumelt der Astronaut 30 Sekunden von

der ISS weg. Danach muss erfolgreich zurück zur ISS fliegen. Astronauten proben den Flug von SAFER viele Male mit unterschiedlichen Konfigurationen. Am Ende muss ein Prüfungsflug bestanden werden. Auch an Bord der ISS hat der Austronaut dann nochmals die Möglichkeit zu trainieren. [GSP20] Ein Astronaut muss diese Technik der Selbstrettung gut beherrschen, da ihm sonst der Treibstoff ausgehen kann. [MG10]

2.2 Einsatz bei Charlotte

Moore et al. beschreiben, dass die VR Trainingsstation für die akkurate Simulation des Umgangs mit schweren Bauteilen in der Schwerelosigkeit benutzt wird. [MG10] Charlotte besteht aus einem oder zwei Robotern. Dabei können zwei Astronauten gleichzeitig am selben Bauteil üben.[Mir13] Garcia et al. stellen in ihrer Arbeit die Trainingsstationen dar. Die Trainingsumgebung ist so aufgebaut, dass zwei Astronauten sich Rücken an Rücken sitzen. Sie befinden gleichzeitig sich in einer verbundenen virtuellen Umgebung, bedienen aber zwei physische Charlotte Roboter. Beide Astronauten tragen Vive Pro HMD, Handschuhe mit je einem Vive tracking Vorrichtung und einem Tracker für den Torso. Die HMDs werden mit Windows PCs betrieben, die mit einer Nvidia 1080Ti Grphikkarte ausgestattet sind. Außerdem läuft DOUG auf einem Linux Server Prozess. [GSP20] Mit Charlotte können Astronauten mit simulierten Bauteilen üben, die unterschiedlich schwer, groß und gewichtet sind. [Mir13] Charlotte wurde 1997 in das Training der Astronauten integriert und hat den Vorteil gegenüber früheren Traingsmethoden, das das Erscheinungsbild der Übungsmassen leicht verändert werden konnte. [GSP20]

Garcia et al. beschreiben , dass die auf der Interfaceplatte, Sensoren die vom Astronaut gewirkten Kräfte und Drehungen registriert. Die Interfaceplatte ist die Schnittstelle zwischen Astronaut und simuliertem Bauteil, also die Griffe, die der Astronaut in der Hand hält. Die DOUG Grafik wird dann auf dem HDM des Astronauten und dem Bildschirm des Ausbilders entsprechend geupdated. [GSP20] Charlotte kann einfach verändert werden und kann dann andere pyhsikalische Bauteile simulieren. Dabei müssen keine echten Gegenstände modelliert werden. [GSP20] Die Astronauten können solange mit Charlotte trainieren, bis sie sich mit dem Umgang von großen Massen in der Schwerelosigkeit wohl fühlen. [GSP20]

2.3 Einsatz bei EVAs

Das Virtual Reality Labroratory ist eine der Trainingsstätten für das EVA Training am NASA Johnson Space Center(JSC). [MG10] Das VR LAb ist der einzige Ort, an

dem Astronauten überall auf der ISS trainieren können, da es wegen der Größe der ISS keine echten Modelle gibt. Die Mehrheit der durchgeführten VR Trainings beschäftigen sich mit EVAs. Das VR Training wird hier zusätzlich zu anderen Methoden eingesetzt. [OL12] Osterlund et al. beschreiben weitere Vorteile des VR Trainings. Durch die relative Position des Astronauten zur ISS und den zur Mission gehörenden Teilen können die Position des Piloten und des Roboterarmes korrigiert werden. Dabei findet das Training in einer sicheren Umgebung statt. [OL12]

Moore et al. beschreiben, dass dort komplizierte EVAs am besten visualisiert und analysiert werden können. Außerdem kann das VR Training für Robotermanöver nur dort akkurat durchgeführt werden. Die Austronauten studieren dort auch ihre Kommunikation und die Zeitliche Abfolge genau ein. [MG10] Miralles schreibt in ihrer Arbeit, dass Astronauten für verschiedene Arbeitsplätze auf der ISS üben können und sich damit vertraut machen können, welche Wege sie für EVAs nehmen sollten. [Mir13] Die eingesetzte Software heißt Dynamic Onboard Ubiquitious Graphics (DOUG). Sie kann auch an Bord der ISS genutzt werden, um bevorstehende EVAs zu trainieren. Dies macht die Astronauten selbstbewusster neue Techniken und Schritte anzuwenden. [OL12] Dies ist notwendig, da viele EVAs Reperatur Aufgaben geworden sind, die nicht vorher auf der Erde trainiert wurden. [Mir13] Osterlund et al. beschreiben DOUG als eine 3D Animation der ISS in der neuesten Konfiguration.

Sie wird nicht nur für das Training, sondern auch in der Planung und beim Nachvollziehen der Arbeitsschritte eingesetzt. Es handelt sich dabei um einen Prototypen, der eine billige Lösung darstellt. [OL12] Das liegt daran, dass das System schnell angepasst weren kann und so eine Vielzahl von Szenarien evaluiert werden können. DOUG kann für hochrealistische Trainingsszenarien eingesetzt werden. [Mir13] Astronauten können sich mit dem Arbeitplatz für das Space Station Remote Manipulator System (SSRMS) vertraut machen. Damit können Bauteile und Astronauten außerhalb der ISS bewegt werden. [GSP20] Miralles bescheibt, dass im VR Lab zusätzlich realistische Lichtverhältnisse simuliert werden. Außerdem können Szenarien mit dem Einsatz des Roboterarmmes und zwei weiteren Astronauten trainiert werden. [Mir13]

Das Training für EVAs findet normalerweise Monate vor dem Flug zur ISS statt. Spezifische Aufgaben werden auf der Erde geplant und dann eine Gruppe von Astronauten speziell darauf trainiert. [GSP20]

3 Bilder, Tabellen und Listings

3.1 Bilder

3.1.1 Einfaches Bild volle Textbreite

Abbildung 3.1: Beispielbild

In der Abbildung 3.1 ist ein Beispielbild zu sehen. Bilder werden mit \begin{figure} eingeleitet. Mit \includegraphics[width=1.0\textwidth]{Pfad/zum/Bild} wird das Bild hinzugefügt, wobei das Bild durch die Zahl skaliert werden kann. Das Pfad/zum/Bild ist mit dem relationalen Pfad zum Bild vom Projektordner aus zu ersetzen.

Abbildung 3.2: Beispielbild A

Abbildung 3.3: Beispielbild B

Abbildung 3.4: Beispielbild C

Abbildung 3.5: Beispielbild D

Abbildung 3.6: Kollektion

3.1.2 Mehrere Bilder nebeneinander

In der Kollektion von Bildern in Abbildung 3.6 ist die zusammenhängende Darstellung von Bildern gezeigt. Die Bilder sind in den Anhang verlinkt. Wenn auf ein Bild geklickt wird, kann dieses in voller Größe im Anhang betrachtet werden. Die Verlinkung ist in attachments\bigpicture.tex zu sehen.

3.2 Tabellen

In Tabelle 3.1 ist ein Beispiel für eine Tabelle zu sehen. Die Anzahl der Spalten wird nach $\begin{tabular}$ definiert. Hier wird gleichzeitig auch die Textausrichtung mit c(=center), l(=left) oder r(=right) gesetzt werden. Die einzelnen Zellen der Tabelle werden mit & voneinander getrennt und mit \\ beendet. Mehrere Spalten können mit \multicolumn{x}{y}{Text} verbunden werden, wobei x die Anzahl der zusammengeführten Spalten und y die Textausrichtung (l, c oder r) ist.

	BIOS	UEFI		
Standardisiert	Nein	Ja		
Aktualisierbar	Nein	Ja		
Programmiersprache	Assembler schwer lesbar	C einfacher lesbar		
Prozessormodus Modulumsetzung Parallele Ausführung Geschwindigkeit	16 Bit Option-ROM Nein Langsamer	32-64 Bit Treiber Ja Schneller		
Verwendete Formatierung der Festplatten				
	MBR max 4 Partitionen max 2.1TB/HDD	GPT unlimitiert Partitionen max 9.44ZB/HDD		

Tabelle 3.1: Vergleich von BIOS und UEFI

3.3 Listings

```
def main():
    print("Hello World\n");
main()
```

Listing 3.1: HelloWorld Programm in Python

Listings enthalten Quellcode von Programmen. Das Beispiel in Listing 3.1 veranschaulicht das HelloWorld Programm in Python. Bei \begin{1stlisting} sind in den eckigen Klammern folgende Eigenschaften definiert.

caption beinhaltet die Beschreibung des Listing

captionpos positioniert die Beschreibung unter das Listing.

label wird verwendet, um das Listing mit ~\ref{lst:...} im Text referenzieren zu können.

language ist die Programmiersprache, die für das Markup verwendet wird.

Folgende Programmiersprachen sind im language-Feld der Listings möglich. ABAP2,4, ACSL, Ada4, Algol4, Ant, Assembler2,4, Awk4, bash, Basic2,4, C#5, C++4, C4, Caml4, Clean, Cobol4, Comal, csh, Delphi, Eiffel, Elan, erlang, Euphoria, Fortran4, GCL, Go (golang), Gnuplot, Haskell, HTML, IDL4, inform, Java4, JVMIS, ksh, Lisp4, Logo, Lua2, make4, Mathematica1,4, Matlab, Mercury, MetaPost, Miranda, Mizar, ML, Modelica3, Modula-2, MuPAD, NASTRAN, Oberon-2, Objective C5, OCL4, Octave, Oz, Pascal4, Perl, PHP, PL/I, Plasm, POV, Prolog, Promela, Python, R, Reduce, Rexx, RSL, Ruby, S4, SAS, Scilab, sh, SHELXL, Simula4, SQL, tcl4, TeX4, VBScript, Verilog, VHDL4, VRML4, XML, XSLT1.

¹Website mit unterstützten Programmiersprachen für Listings

4 Fazit

4.1 Zusammenfassung

Hier kommt die Zusammenfassung Ihrer Arbeit. Was haben Sie gemacht, welche Ergebnisse haben Sie erzielt.

4.2 Weitere Arbeiten

Welche neue Ideen haben sich ergeben? Was müsste weiter untersucht werden? Welche weiteren Bachelor- oder Masterarbeiten sind in dem Themenfeld nun interessant geworden?

Glossar und Akronyme

Die Beschreibung des Begriffs Akronym wird im Glossar erklärt. Hierfür wird in der Datei appendix/glossary.tex der entsprechende Eintrag hinzugefügt. Mit dem \gls{glossar-referenz} Befehl kann man die Begriffe im Text auf direkt in das Glossar verlinken.

Akronyme selbst wie beispielsweise Rechenzentrum (RZ), werden beim ersten mal ausgeschrieben. Wird RZ ein zweites Mal verwendet, ist nur die Abkürzung im Text zu sehen. Akronyme werden in der Datei attachments/acronyms.tex definiert und können zur Definition des Akronyms in das Glossar weiter verlinkt werden.

Abkürzungen

RZ Rechenzentrum

Glossar

Akronym Ein Akronym ist "aus den Anfangsbuchstaben oder -silben mehrerer Wörter oder der Bestandteile eines Kompositums gebildetes Kurzwort (z. B. EDV aus elektronische Datenverarbeitung, Kripo aus Kriminalpolizei)"

Rechenzentrum Ein Rechenzentrum ist "mit großen Rechenanlagen u. a. ausgerüstete zentrale Einrichtung zur Ausführung umfangreicher Berechnungen im Rahmen der Datenverarbeitung".

Literaturverzeichnis

- [DVB⁺15] DiegoTEST Dermeval, Jéssyka Vilela, Ig Ibert Bittencourt, Jaelson Castro, Seiji Isotani, Patrick Brito, and Alan Silva. Applications of Ontologies in Requirements Engineering: A Systematic Review of the Literature. *Requirements Engineering*, 21(4):405–437, November 2015.
- [GSP20] Angelica D Garcia, Jonathan Schlueter, and Eddie Paddock. Training astronauts using hardware-in-the-loop simulations and virtual reality. page 0167, 2020.
- [MG10] Sandra K Moore and Matthew A Gast. 21st century extravehicular activities: Synergizing past and present training methods for future spacewalking success. *Acta Astronautica*, 67(7-8):739–752, 2010.
- [Mir13] Evelyn Miralles. An onboard iss virtual reality trainer. 2013.
- [OL12] Jeffrey Osterlund and Brad Lawrence. Virtual reality: Avatars in human spaceflight training. *Acta Astronautica*, 71:139–150, 2012.
- [Poh16] Klaus Pohl. Requirements engineering fundamentals: a study guide for the certified professional for requirements engineering examfoundation level-IREB compliant. Rocky Nook, Inc., 2016.

Anhang

1 Zusätzliche Informationen

Im Anhang platzieren Sie weitere Informationen aus dem Kontext Ihrer Arbeit. Wichtige Ergebnisse, die Sie erzielt haben, gehören allerdings nicht hierher.