FILTRATION DES ONDES ELECTROMAGNETIQUES

L'énergie électrique et magnétique émise par de nombreux appareils électroniques peut perturber les fonctions d'autres appareils électroniques. La majorité des problèmes d'interférences électromagnétiques (EMI) a pour origine la bande des radiofréquences (RF) comprise entre 30 kHz et 10 GHz. Quelques-unes des bandes les plus couramment utilisées dans les télécommunications sont reprises dans le tableau 1.

Le blindage contre les EMI et/ou les RF est généralement nécessaire pour les raisons suivantes:

- 1. Pour exclure les signaux électromagnétiques ou RF indésirables.
- 2. Pour bloquer les signaux EM ou RF indésirables qui risquent d'interférer avec d'autres appareils électroniques comme les ordinateurs et les appareils de communication sans fil.
- 3. Pour empêcher l'interception non autorisée de signaux micro-ondes et radio.

Tableau 1	
Description des bandes passantes	Plages de fréquences
Radio AM	540 KHz – 1630 KHz
Canaux TV 2 à 13 et radio FM (VHF)	30 MHz - 300 MHz
TV et Radio mobile/fixe (super bande)	216 MHz – 600 MHz
Téléphonie mobile, SCP et radio XM	806 MHz – 2,3 GHz
Ultra-haute fréquence	300 MHz – 6 GHz
Satellites fixes, mobiles, localisation/navigation radio	6 GHZ – 10 GHz

De nombreux films de protection solaires sont obtenus par application de divers métaux sur la surface du film. Ces métaux assurent la réflexion d'énergie solaire et de lumière visible souhaitée pour ces produits. Ils permettent également de réduire ou d'atténuer les fréquences radio ou de communication du spectre électromagnétique.

Efficacité du blindage (N):

L'efficacité du blindage désigne la capacité d'un matériau à atténuer des signaux EM et RF. Cette efficacité (N) est un ratio exprimant la proportion d'un champ électromagnétique incident sur le blindage qui est transmise à travers ce dernier.

FILTRATION DES ONDES ELECTROMAGNETIQUES

Efficacité du blindage (N) (suite)

Elle est exprimée par: N = 20 Log₁₀ (Ei / Et) (dB)

- Ou N représente l'efficacité du blindage en dB
- · Ou Ei représente le champ électromagnétique incident sur le film
- · Ou Et représente l'énergie électromagnétique transmise à travers le film

Tableau 2: Efficacité du blindage 30-600MHz (valeurs en dB)									
Gamme	Туре	30MHz	40MHz	60MHz	80MHz	100MHz	200MHz	400MHz	600MHz
SPECTRA	DIAMANT 72 INT	48	25	46	37	37	32	35	33
BARBARA	CHAMPAGNE 22 INT	31	40	36	32	23	42	37	32
BARBARA	CHAMPAGNE 49 INT	33	15	17	17	23	29	25	24
BARBARA	CHAMPAGNE 63 INT	14	7	8	10	14	15	20	20
BARBARA	CHAMPAGNE 69 INT	8	3	7	15	11	15	16	17
CUIVRA	COPPER 19 INT	29	7	15	8	14	10	34	36
CUIVRA	COPPER 35 INT	17	1	8	3	9	6	33	33
SILVA	SILVER 15 INT	24	16	27	23	12	28	26	25
SILVA	SILVER 28 INT	37	16	18	16	25	20	18	17
SILVA	SILVER 47 INT	30	13	20	9	12	20	16	14

Tableau 3: Efficacité du blindage de 0,8 à 10GHz (valeurs en dB)									
Gamme	Type	800MHz	1GHz	2GHz	4GHz	6GHz	8GHz	10GHz	
SPECTRA	DIAMANT 72 INT	34	36	48	29	36	31	29	
BARBARA	CHAMPAGNE 22 INT	20	33	37	27	28	29	30	
BARBARA	CHAMPAGNE 49 INT	25	27	39	21	23	22	14	
BARBARA	CHAMPAGNE 63 INT	20	22	32	20	19	14	17	
BARBARA	CHAMPAGNE 69 INT	17	19	32	17	14	13	11	
CUIVRA	COPPER 19 INT	35	38	40	31	34	36	28	
CUIVRA	COPPER 35 INT	33	34	38	30	30	31	26	
SILVA	SILVER 15 INT	28	28	39	21	22	23	16	
SILVA	SILVER 28 INT	18	19	34	15	16	18	13	
SILVA	SILVER 47 INT	16	16	32	13	13	12	7	

Les tableaux 2 et 3 présentent l'efficacité du blindage de quelques films de la gamme Glastint. Un rapide examen de la formule d'efficacité de blindage montre qu'à chaque tranche de 6dB d'atténuation correspond une réduction du signal de 50%. Par conséquent, toute valeur indiquée dans les tableaux ci-dessus et présentant un niveau d'atténuation de 25dB ou plus correspond à un blindage efficace pour cette fréquence. Le SPECTRA DIAMANT 72 INT est efficace à toutes les fréquences tandis qu'un SILVA SILVER 28 INT est inefficace à toutes les fréquences. Le métal du film n'a pas été relié au châssis pour ces tests.