'Moneyballing' AFL Fantasy

Predicting Breakout Fantasy Seasons in AFL Players with PyTorch MLPs

Fantasy football in 60 seconds

- Buy team of players using set amount of in-game salary
- "Fantasy points" based on real-world stats
- The team with the most total points wins
- Player price is set by a formula based on recent performance
- Win by maximising points per dollar

Applying ML - Why "Breakout" Player-Seasons?

- Data volume: ~800 players -> 22 player team
- Mis-priced players: Player pricing is a lagging indicator, formula based on previous season performance
- "Breakout" = Top 15% Ave. points per dollar
- Why classification not regression?

Data Pipeline: 9 Yrs + 10k player seasons

Web Scraping	Raw CSVs	Feature Build (.feather)	Train / Val Split
 No APIs available afltables.com (requests + BeautifulSoup) dreamteamtalk.com (selenium) 	 File per season - fantasy stats File per player, each row a season of game stats 	 Aggregate both datasets Name inconsistencies Repeated players Aggregate into features (next slide) Feather format - efficiency through columnar layout 	 Split by season to avoid look-ahead bias Set aside most recent full season (2024)

Features

Time Frame

Split into one year or three year averages to best highlight long-term trends

- last_year_avg_Or
- 3yr_avg_

Statistic

23 statistics from in-game

Average per game over the time period

- _KI (kicks)
- _GO (goals) etc.

Metadata

- Number of games
- Average fantasy points
- Fantasy price
- Flag missing seasons
- Label: Breakout = 0 or 1

Model Architecture and Training

4-Layer MLP: 256 → **128** → **64** → **32** → **1**

Input

~50 input features

FC 256

BN ReLU Dropout 0.3

FC 128

BN ReLU Dropout 0.3

FC 64

BN ReLU Dropout 0.3

FC 32

BN ReLU Dropout 0.3

Logit 1

Training Setup

- Loss: BCEWithLogitsLoss
- Optimiser: Adam, LR0.001
- Batch = 64
- Epochs <= 1000, Early-stop 25

Regularisation

- Dropout 0.3 for hidden layers
- BatchNorm

Performance: Does the Model Pick Winners?

- ROC-AUC = 0.67 beats
 random baseline
- Top 10 picks are strong
 (+22% on ave. market value)
- However model usefulness deteriorates with more picks
- Helpful assistant tool, but cannot be delegated full team selection responsibility

Performance on Top 10 Selections

Performance on Top 22 Selections

Challenges & Next Steps

Issue	Possible Improvement	
Older Player Bias / Lack wider player context	Career-context features Unsupervised classification of player types	
Season-level granularity	Momentum feature Game-by-game RNN	
Single validation fold	Expand number of years in dataset K-fold CV	
Threshold value untested	Experiment labelling top 5%, 10%, 20% player seasons breakouts	

Summary

- Fantasy context = Breakout framing provides practical value
- 50+ feature MLP lifts ROI + 22% on market ave.
- Useful, but not sufficient
- Ready for future hyperparameter and feature tuning, dataset expansion

Thank you! - Questions?