Malicious Software

Dr. Demetrios Glinos University of Central Florida

CIS3360 - Security in Computing

Readings

- "Computer Security: Principles and Practice", 3rd Edition, by William Stallings and Lawrie Brown
 - Chapter 6

Outline

- Types of Malicious Software (Malware)
- Advanced Persistent Threats
- Propagation Mechanisms
 - Infected Content
 - Vulnerability Exploit
 - Social Engineering
- Payloads
 - System Corruption
 - Attack Agent
 - Information Threat
 - Stealthing
- Countermeasures

Malware Defined

- Malicious sofware (malware) is:
 - a program
 - that is inserted into a system, usually covertly,
 - with the intent of
 - compromising the confidentiality, integrity, or availability of the victim's
 - data
 - applications
 - or operating system
 - or otherwise annoying or disrupting the victim.

Terminology

- There are many terms used for describing malware,
 - some overlap or are defined differently by different authors
- Some stable terms that you should know

virus –attached to executable content; infects other executables on same machine
 trojan – seemingly useful program that also has a hidden and malicious function
 worm – malware that can run independently and which can replicate itself on other hosts, typically on a network

spyware – malware that collects information and sends it to a remote host adware – advertising inserted into software, producing pop-ups or redirecting keylogger – malware that captures key strokes on compromised machines drive-by-download – malware that attacks a client when a Web site is viewed zombie (bot) – malware activated remotely to launch attacks on other machines logic bomb – malware that lies dormant until a specific condition is met backdoor (trapdoor) – mechanism that avoids normal security checks

Attack Kits and Attack Sources

Attack kit

- a set of tools for generating new malware automatically using a variety of supplied propagation and payload mechanisms
- allows even "novice" cybercriminals to develop and deploy malware
- for this reason, often also called crimeware

Attack sources

- originally
 - attackers were individuals, often motivated to demonstrate their technical competence to their peers
- today
 - politically motivated attackers
 - criminals and organized crime
 - organizations that sell their services to companies and nations
 - national government agencies

Advanced Persistent Threats

- Advanced Persistent Threat (APT)
 - When a specific target of attack is repeatedly attacked over a period of time with a wide variety of intrusion technologies and malware, we say there is an APT to that target
- Key features of APT:
 - specific target
 - advanced wide variety of intrusion technologies and malware
 - persistent determined application of the attacks over an extended period
 - threat organized, capable, and well-funded
- APTs are typically attributed to
 - state-sponsored organizations
 - some also to criminal enterprises

Propagation: Infected Content

Virus

- parasitic software fragment that attaches itself to existing executable content,
 such as
 - application, utility, system program, boot loader
 - also scripting code for active content in MS Word, Excel, or Adobe PDF
- when attached
 - executes every time the host program is run
 - can do anything that the host program is allowed to do
- viruses are specific to particular OS and hardware configurations
- viruses do 2 things
 - propagate spread to other programs and/or systems
 - payload action what the virus does, besides propagation
 - could be damaging, or benign but noticeable

How a Virus Works

- When the infected executable is run:
 - the virus code runs first
 - the virus attempts to spread,
 - the virus executes its payload, if its trigger conditions are met
 - and then control is passed to the original executable code

```
program V
1234567;
procedure attach-to-program;
begin
  repeat
     file := get-random-program;
  until first-program-line ≠ 1234567;
  prepend V to file;
end;
procedure execute-payload;
begin
  (* perform payload actions *)
end;
procedure trigger-condition;
begin
  (* return true if trigger condition is true *)
end;
begin (* main action block *)
  attach-to-program;
  if trigger-condition then execute-payload;
  goto main;
end:
```

source: Fig. 6.1(a)

Compression Viruses

File compression is often used by viruses to avoid detection

```
program CV
1234567;
procedure attach-to-program;
begin
  repeat
      file := get-random-program;
  until first-program-line ≠ 1234567;
  compress file; (* t<sub>1</sub> *)
  prepend CV to file; (* t<sub>2</sub> *)
end;
begin (* main action block *)
  attach-to-program;
  uncompress rest of this file into tempfile; (* t<sub>3</sub> *)
  execute tempfile; (* t_4 *)
end;
```

source: Fig. 6.1(b)

source: Fig. 6.2

Virus Concealment Strategies

Virus signatures

- Like all code, virus code can be detected by the distinctive bit pattern of its particular machine code instructions, even if the infected file is compressed
- virus detection software constantly updates libraries of virus signatures
- Concealment techniques are often used to alter virus signatures
 - Encrypted virus
 - virus code includes a small encryption engine and encrypts most of its code; code is decrypted to run; each replication uses a different key
 - Polymorpic virus
 - during replication, uses different but functionally equivalent code, such as adding NOP instructions, using while instead of for-loops, etc.
 - Metamorphic virus
 - virus rewrites itself completely in place every time it is run; replications also mutated (same as for polymorphic)
 - Stealth virus
 - modifies OS using "rootkit" methods to avoid detection by anti-virus software (e.g., so executable does not appear in Task Manager)

Propagation: Vulnerability Exploit

Worm

- An independent program that actively seeks out other machines to infect
- Usually carries a payload

Key features

- runs on its own
- spread through
 - network connections
 - shared media: USB drives, CDs, DVD data disks
 - macro or script code in email attachments or instant messenger file transfers
- infection mechanism
 - exploitation of software vulnerabilities in client or server programs
 - e.g., servers, browsers, email systems, file transfer programs, etc.

How a Network Worm Spreads

Worm propagation

- the worm scans the network for other machines with the particular vulnerability that the worm is designed to exploit
- it then infects those machines
- those newly infected machines repeat the process
 - result is a "chain reaction" of infections
- Network scanning (fingerprinting) strategies
 - random -each compromised host probes random addresses using a different seed
 - hit-list attacker first compiles a long list of vulnerable machines, and then gives a different part of the list to each infected machine
 - topological use information on a victim machine to find others
 - local subnet if can infect behind a firewall, then search for other machines on the local subnet

Worm Propagation Model

- Worm propagation follows the classic epidemiological model
- slow start phase
 - exponential growth
- middle phase
 - roughly linear growth
- slow finish phase
 - few remaining hosts to infect

→ goal for countermeasures: catch worm in the slow start phase

Notable Computer Worms

- Morris worm (1988)
 - Infected early UNIX systems
 - Harmless, but reinfection rate had same effect as denial of service
- Melissa (1998)
 - email worm; first to combine virus-trojan-worm features in one package
- ILOVEYOU (2000)
 - Email worm disguised as a love letter named LOVE-LETTER-FOR-YOU.TXT.vbs
 - Sent itself to everyone in the user's address book
 - Also destructive: replaced documents and photos with copies of itself
- Blaster (2003) and Sasser (2004)
 - Exploited buffer overflow in several Windows versions
 - Sasser caused Delta Airlines to cancel some flights
- Conficker (2008)
 - Allowed attacker to launch DoS, install spyware, or send spam
 - Disabled safe mode & auto-update, and killed antimalware

Empirical Data for Code Red Worm

- Cumulative total of unique IP addresses infected by the first outbreak of Code-Red v2 on July 19-20, 2001
 - Exploited buffer overflow in Microsoft IIS web server
 - Malicious action: Launch denial-of-service attacks on selected sites
 - Infected over 350,000 hosts on the first day

Source:

David Moore, Colleen Shannon, and Jeffery Brown. Code-Red: a case study on the spread and victims of an Internet worm, CAIDA, 2002

Propagation: Using Client-Side Vulnerabilities

- An infected or malicious server can propagate by exploiting vulnerabilities in a client-side application when the client connects to the server
 - the malware does not actively propagate like a worm
 - instead, the malware waits for an ususpecting user to connect to the server

Drive-by download

- here, it is a browser vulnerability that is exploited
- when victim views a Web page controlled by the attacker, the server exploits the broswer bug to download and install malware on the victim's machine

Clickjacking

- also known as user-interface (UI) redress attack
- involves altering the apparent UI so that when the user intends to select (click)
 one component, the click event is processed by another component, which
 may redirect the user to a malicious page or take other action
- typically uses multiple transparent or opaque layers, placing a button over or under a legitimate button, etc.

Propagation: Social Engineering

Social engineering

- involves tricking users into assisting in the compromise of their systems or personal information
- examples
 - user clicks link in some SPAM email
 - user innocently permits installation and execution of some Trojan horse program or scripting code
- a classic social engineering attack (from the Grimms' fairy tale):
 - Little Red Riding Hood's grandmother letting the Big Bad Wolf into the house

Spam

- Spam
 - unsolicited bulk e-mail
 - estimated to be 90% of all email traffic
 - most spam is just advertising
 - some contains attachments that contain Trojan horse programs or scripting code that, if run, installs malware on the user's machine
 - spam is often used for a phishing attack
 - that directs the user to a fake Web site that mimics a legitimate site
 - e.g., spoofing the user's online banking site
 - or tricks the user into entering personal information into a bogus Web page form so the attacker can steal the user's identity
 - recent decline in e-mail spam
 - along with rapid rise in malware attacks through social media networks

Trojan Horses

- Trojan Horse (or simply Trojan)
 - a useful, or apparently useful, program or utility that contains hidden code that, when invoked, performs some unwanted or harmful action
 - used to perform a malicious action that the attacker could not do directly
 - typically, some user action is required
 - e.g, downloading seemingly useful app from a mobile phone app store
 - but some Trojans bypass this requirement by exploiting some software vulnerability to enable automatic installation and execution
 - however, unlike a worm, such a Trojan does not replicate
 - Mocmex Trojan (2008)
 - Distributed via Chinese-made digital photo frames
 - Malware installed when photo frame connected to a Windows computer to load photos; collected and transmitted passwords to attacker
 - smartphones have been targets of Trojans since 2004
 - usually distributed on official and unofficial app stores

Popularity of Trojans

- Trojans currently have the largest infection potential
 - Often exploit browser vulnerabilities
 - Typically *used to download other malware* in multi-stage attacks.

Symantec Internet **Security Threat** Report, April 2009

Percentage of top 50 by potential infections

Payload: System Corruption

- System corruption payload
 - an attack that targets the integrity of a systems hardware, software, or user data
- Chernobyl virus (1998)
 - when trigger date reached, deleted data on Win 95/98 by overwriting the first megabyte of the hard drive with zeroes
- Klez mass-email worm (2001)
 - mailed itself to address book contacts on Win 95/98/XP systems
 - used logic bomb: on trigger dates (13th of the month) deleted contents of files
- WannaCry cryptoworm (May 2017)
 - worldwide attack targeting Win XP/7/8/10 and Windows Server 2008,12,16
 - contained ransomware:
 - encrypted user files and demanded a ransom payment in Bitcoin to obtain decryption key

Logic Bombs

Logic bomb

- a malicious action that is triggered by the evaluation of a logical expression
- Example: a payroll system that crashes if two periods go by without a paycheck for the developer
- Often a key component of data-corupting malware
- Can be combined with a backdoor (a hidden feature that allows access or action)
 - Example: backdoor that allows attacker to disable bomb when ransom paid

2008 Fannie Mae logic bomb:

- Programmed to erase all data 3 months after programmer discharged
- Discovered before target date, so bomb did not explode

Y2K Problem distinguished:

- Original intent: save memory at a time when memory was not cheap or plentiful
- No malicious intent, so not a logic bomb

The Omega Engineering Logic Bomb

Bomb caused much damage

- Triggered on July 31, 1996
- Files on the company's manufacturing server were destroyed
- Caused \$10 million in damages
- Caused layoffs of 80 employees

Programmed by system administrator Tim Lloyd

- The only backup tapes were in Lloyd's possession and had been erased
- Convicted of computer espionage
 - sentenced to 41 months in prison
 - ordered to pay \$2 million in restitution

Payload: Attack Agent

- Zombie, bot (robot), or drone
 - malware that secretly takes over another Internet-attached computer and uses it to launch or manage attacks that are difficult to trace to the bot's creator
 - controlled by a remote control facility
- Bots are typically
 - planted on hundreds of thousands of unsuspecting victim machines
 - the collection is known as a botnet
 - capable of coordinated action under the control of the remote control facility,
 often referred to as the bot herder
- Botnets are used for
 - Distributed denial of service (DDoS) attacks
 - spamming
 - spreading malware
 - installing adware
 - etc.

Payload: Information Theft

- Credential theft: Keyloggers, and Spyware
 - at-risk credentials: usernames/passwords for banking, gaming, and related sites
 - **keyloggers** record keystrokes, from which analysis can reveal credentials
 - spyware monitor additional activity, such as history and content of browser activity
- Identity theft: Phishing
 - exploits social engineering to leverage user's trust by masquerading as communications from a trusted source
 - typically, spam email that directs user to a fake Web site controlled by attacker
 - fake Web site mimics a legitimate Web site
 - unsuspecting user enters login credentials on fake Web site
 - spear-fishing
 - variant in which a targeted user is researched and phishing email designed to contain some personal information, to convince user to trust it
- Reconnaissance: the above are just special cases; all kinds of info can be harvested

Payload: Stealthing

Stealthing

 refers to methods used by malware to hide its presence on the infected system and to provide covert access to that system

Backdoor (trapdoor):

- a secret entry point into a program that bypasses normal security checks
- distinguish from maintenance hook
 - legitimate backdoor inserted by a developer to support debug and testing
- Trigger could be:
 - Special command sequence
 - Special username and/or password
 - Deliberate insertion of vulnerability (e.g., failure to check for buffer overflow)
- Easter Eggs distinguished
 - Harmless undocumented features unlocked by secret password or keystrokes

Rootkits

- A **rootkit** is malware that *modifies OS components to hide its existence*
 - Example: modifying the Windows Process Monitor utility not to show the rootkit in the process list
- User-mode rootkits (relatively easier to detect)
 - These alter system utilities or libraries on disk
 - May insert code into another user-mode process's address space
 - can be detected by the OS kernel
- Kernel-mode rootkits (generally more difficult)
 - These affect kernel functions
 - May use function hooking (i.e., modifying kernel functions)
 - e.g., to conceal its presence
 - May modify data structures used by kernel components
 - e.g., permissions files, system registry

Copy Protection Rootkit

- This rootkit was distributed with SONY BMG music CDs in 2005
- Installed when music CD was placed in computer drive
 - Only affected Windows systems
 - Took advantage of Windows "AutoPlay" feature
 - Modified system files to hide its presence
 - Prevented unauthorized copying of music files
- Malicious attackers soon learned to name their files so that they would also be hidden by this rootkit
- SONY relented after public outcry.

Countermeasures

- Anti-virus software
 - originally developed to counter virus infections
 - now address all types of malware, but name remains for historical reasons
- Countermeasure mechanisms seek to mitigate malware by
 - prevention
 - detection
 - identification
 - removal
- Countermeasures can be implemented as
 - host-based scanners e.g., the PCs that can be infected
 - perimiter scanners organization firewalls, IDS,
 - e.g., email and Web service proxies

Host-Based Scanners

- First generation: simple scanners
 - requires a malware signature to identify
 - limited to detection of known malware
 - can also check for changes in file sizes
- Second generation: heuristic scanners
 - uses heuristic rules to search for probable malware instances
 - e.g., rule to detect beginning of encryption loop of a polymorphic virus
 - also uses integrity checking
- Third generation: activity traps
 - memory-resident programs that identify malware by its activity, not structure
 - e.g., actions that attempt to modify system files
- Fourth generation: combined approaches
 - use a variety of techniques, including
 - generic decryption: execute in a sandbox to detect encrypted malware
 - behavior blocker: monitor program execution at the instruction level

Perimiter Scanning Approaches

- An organization's perimeter includes
 - firewall server
 - IDS server
- Anti-virus software is typically included in services running on perimeter servers
 - e-mail services
 - Web proxy services
- May also be included in the traffic analysis component of the IDS
- May include intrusion prevention measures, blocking the flow of any suspicious traffic
- Approach is limited to scanning for malware

Ingress monitor

located at the border between the enterprise network and the Internet

one technique is to look for incoming traffic to unused local IP addresses

Egress monitor

located at the egress of LANs within the enterprise, also Internet border

monitors outgoing traffic for signs of scanning or other suspicious behavior

Types of monitoring software