Comparison between Dual-Core processors and Quad-Core Processors Dual-Core Processors

Characteristics:

- Number of Cores: 2
- Threads: Typically 2 or 4 (with Hyper-Threading)
- Power Consumption: Generally lower than quad-core processors, making them more energy-efficient.
- Heat Generation: Produces less heat, requiring simpler cooling solutions.

Performance:

- Multitasking: Can handle basic multitasking well, suitable for running multiple light applications simultaneously.
- Applications: Ideal for everyday tasks like web browsing, office applications, media playback, and light gaming.
- Cost: Typically less expensive, making them a good choice for budget-conscious buyers.

Use Cases:

- General Computing: Perfect for users who perform basic computing tasks.
- Energy Efficiency: Suitable for devices where battery life and energy consumption are important factors.

Quad-Core Processors

Characteristics:

- Number of Cores: 4
- Threads: Typically 4 or 8 (with Hyper-Threading)
- Power Consumption: Higher than dual-core processors but still efficient, especially with modern architectures.
- Heat Generation: Generates more heat, necessitating better cooling solutions.

Performance:

- Multitasking: Handles more intensive multitasking efficiently, capable of running several demanding applications simultaneously.
- Applications: Ideal for more complex tasks like gaming, video editing, software development, and running virtual machines.
- Cost: Generally more expensive than dual-core processors but offers better performance for more demanding tasks.

Use Cases:

- Advanced Computing: Suitable for users who need more computing power for intensive applications.
- Mid-Range to High-End Systems: Common in mid-range to high-end laptops, desktops, and some high-performance tablets.
- Performance Demands: Ideal for gamers, content creators, and professionals who run resource-intensive applications.

Conclusion

Choose Dual-Core If:

- You have basic computing needs like web browsing, office work, and media consumption.
- You are budget-conscious and want a cost-effective solution.
- You prioritize battery life and energy efficiency.

Choose Quad-Core If:

- You require better performance for multitasking and running intensive applications.
- You are into gaming, content creation, or professional work that demands more processing power.
- You are willing to invest more for better overall performance and efficiency.

<u>Comparison between Intel Core i5 and Intel Core i7 processors</u>

Intel Core i5 Processors

Characteristics:

- Cores and Threads: Typically 4-6 cores and 8-12 threads (in newer generations, some may have more cores).
- Clock Speed: Moderate base clock speeds with Turbo Boost technology to increase performance during intensive tasks.
- Cache: Moderate-sized cache, usually around 6-12 MB.
- Integrated Graphics: Good integrated graphics performance suitable for casual gaming and multimedia.

Performance:

- Multitasking: Capable of handling multiple applications simultaneously but may struggle with extremely intensive multitasking compared to i7.
- Applications: Suitable for everyday tasks, moderate gaming, office applications, and some content creation like photo editing and casual video editing.
- Power Consumption: Balanced power consumption, making them efficient for laptops and desktops.

Use Cases:

- General Computing: Ideal for most users who need reliable performance for a variety of tasks.
- Mid-Range Systems: Common in mid-range laptops and desktops, offering a good balance of performance and cost.
- Cost: More affordable than i7 processors, providing good value for money.

Intel Core i7 Processors

Characteristics:

• Cores and Threads: Typically 4-8 cores and 8-16 threads.

- Clock Speed: Higher base and boost clock speeds compared to i5, with better Turbo Boost capabilities.
- Cache: Larger cache, usually around 8-16 MB, allowing for faster access to frequently used data.
- Integrated Graphics: Superior integrated graphics performance compared to i5, suitable for more demanding graphics tasks.

Performance:

- Multitasking: Excellent at handling intensive multitasking and running multiple demanding applications simultaneously.
- Applications: Ideal for heavy-duty tasks such as gaming, professional video editing, 3D rendering, and software development.
- Power Consumption: Generally higher power consumption due to increased performance, requiring better cooling solutions.

Use Cases:

- Advanced Computing: Suitable for power users who need robust performance for demanding applications.
- High-End Systems: Common in high-end laptops and desktops, catering to gamers, content creators, and professionals.
- Cost: More expensive than i5 processors, reflecting the higher performance and capabilities.

Conclusion

Choose Intel Core i5 If:

- You need reliable performance for everyday tasks, moderate gaming, and light content creation.
- You are budget-conscious and want good value for your money.
- You prefer a balance between performance and power efficiency.

Choose Intel Core i7 If:

- You require top-tier performance for intensive multitasking, high-end gaming, and professional-grade content creation.
- You are willing to invest more for superior performance and capabilities.
- You need a processor that can handle demanding applications and workloads efficiently.

Binary To Decimal Conversion

128	64	32	16	8	4	2	1	Answers	Scratch Area
1	0	0	1	0	0	1	0	146	128 64 16 32
0	1	1	1	0	1	1	1	119	$\frac{2}{146}$ $\frac{16}{4}$
1	1	1	1	1	1	1	1	255	2
1	1	0	0	0	1	0	1	197	1/9
1	1	1	1	0	1	1	0	246	
0	0	0	1	0	0	1	1	19	
1	0	0	0	0	0	0	1	129	-
0	0	1	1	0	0	0	1	49	-
0	1	1	1	1	0	0	0	120	
1	1	1	1	0	0	0	0	240	-
0	0	1	1	1	0	1	1	59	-
								7	-
0	0	0	0	0	1	1	1		

Address Class Identification

Address	Class
10.250.1.1	A
150.10.15.0	_ <i>B</i>
192.14.2.0	C
148.17.9.1	В
193.42.1.1	C
126.8.156.0	A
220.200.23.1	C
230.230.45.58	D
177.100.18.4	В
119.18.45.0	A
249.240.80.78	Е

Decimal To Binary Conversion Use all 8 bits for each problem

128	64	32	16	8	4	2		1 =	255	Scratch Area
/	/	/	0	/	/	/		0	238	238 34 -128 -32
0	0	/	0	0	0	_/		0	34	
0	1	1	1	1	0	1	l	1	123	46 0
0	0	1	1	0	0		1	0	50	-32 -32
1	1	1	1	1	1		1	1	255	-8 -4 -2 -2 0
1	1	0	0	1	0		0	0	200	-7 2
0	0	0	0	1	0		1	0	10	0
1	0	0	0	1	0		1	0	138	
0	0	0	0	0		0	0	1	1	
0	0	0	0	1		1	0	1	13	
1	1	1	1	1		0	1	0	250	
0	1	1		0	1	0	1	1	107	
1	1	1		0	0	0	0	0	224	
0	1	1		1	0	0	1	0	114	
1	1	0	(0	0	0	0	0	192	

Default Subnet Masks

Write the correct default subnet mask for each of the following addresses:

177.100.18.4	255 , 255 , 0 , 0		
119.18.45.0	255.0.0.0		
191.249.234.191	255.255.255.0		
223.23.223.109	255.255.255.0		
10.10.250.1	255.0.0.0		
126.123.23.1	255.0.0.0		
223.69.230.250	255.255.0.0		
192.12.35.105	255.255.255.0		
77.251.200.51	255.255.255.0		
189.210.50.1	255.255.255.0		
88.45.65.35	255.255.255.0		
128.212.250.254	255.255.255.0		

Network Addresses

Using the IP address and subnet mask shown write out the network address:

188.10.18.2	188 . 10 . 0 . 0
255.255.0.0	
10.10.48.80	10.10.48.0
255.255.255.0	
192.149.24.191	192.149.24.0
255.255.255.0	
150.203.23.19	150.203.0.0
255.255.0.0	
10.10.10.10	10.0.0.0
10.10.10.10 255.0.0.0	
	186.13.23.0
186.13.23.110 255.255.255.0	
255.255.255.0	223.69.0.0
223.69.230.250	
255.255.0.0	200.120.135.0
200.120.135.15	200.120.133.0
255.255.255.0	

Network & Host Identification

Circle the network portion of these addresses:	Circle the host portion of these addresses:
177.100.18.4	10.15.123.50
119.18.45.0	171.2 199.31
209.240.80.78	198.125.87.177
199.155.77.56	223.250.200.222
117.89.56.45	17.45.222.45
215.45.45.0	126.201.54.231
192.200.15.0	191.41.35.112
<u>95</u> .0.21.90	155.25.169.227
33.0.0.0	192.15.155.2
158.98.80.0	123.102.45.254
217.21.56.0	148.17.9.155
10.250.1.1	100.25.1.1

Host Addresses

Using the IP address and subnet mask shown write out the host address:

188.10.18.2	0.0.18.2		
255.255.0.0			
10.10.48.80	0.0.0.80		
255.255.255.0			
222.49.49.11	0.0.49.11		
255.255.255.0	0.0.230.19		
128.23.230.19	0.0.250.15		
255.255.0.0			
	0.10.10.10		
10.10.10.10		-	
255.0.0.0	0.0.0.11		
200.113.123.11			
255.255.255.0	0.0.23.20		
223.169.23.20			
255.255.0.0			

DAY 5 [20JUNE]

OSI MODEL

- The OSI model is a conceptual framework that divides network communications into seven layers.
- OSI stands for Open Systems Interconnection.
- Created by the International Standards Organization.
- Was created as a framework and reference model to explain how different networking technologies work together and interact.

Physical Layer (Layer 1)

- Responsible for transmitting raw bits over a physical medium (e.g., cable, wireless)
- Defines the physical means of data transmission (e.g., voltage levels, frequency)
- Provides bit synchronization and bit rate control

Data Link Layer (Layer 2)

- Responsible for error-free transfer of data frames between two devices
- Provides framing, error detection and correction, and flow control
- Uses MAC (Media Access Control) addresses to identify devices

Network Layer (Layer 3)

- Responsible for routing data between devices on different networks
- Provides logical addressing (IP addresses) and routing

Segments and reassembles data into packets

Transport Layer (Layer 4)

- Responsible for ensuring reliable data transfer between devices
- Provides segmentation and reassembly, flow control, and error detection and correction
- Uses port numbers to identify applications

Session Layer (Layer 5)

- Establishes, maintains, and terminates connections between applications
- Manages dialogues between applications
- Provides session establishment, maintenance, and termination

Presentation Layer (Layer 6)

- Converts data into a format that can be understood by the receiving device
- Provides data compression, encryption, and formatting

Application Layer (Layer 7)

- Provides services to end-user applications (e.g., email, file transfer)
- Supports functions such as email, file transfer, and virtual terminals

Layer	Description	Use case	Central Device/Protocols
Application (7)	Provides services to end-user	Resource sharing, Remote file access , Remote printer access, email, file transfer	User Application SMTP
Presentation (6)	Provides data compression, encryption, and formatting.	Character code translation , Data conversion , Data encryption.	JPEG/EBCDIC/TIFF/GIF
Session (5)	Provides session establishment, maintenance, and termination.	Session establishment , session support, logging,	Logical Ports RPC/UDP
Transport (4)	Responsible for ensuring reliable data transfer between devices.	Message segmentation, message traffic control.	TCP/UDP
Network (3)	Responsible for routing data between devices on different networks	Routing , Subnet traffic control , logica-physical address mapping , subnet usage accounting.	Routers IP/IPX/ICMP
Data Link (2)	Responsible for error-free transfer of data frames between two devices.	Establish and terminate the logical link between nodes , media access control .	Switch Bridge Wap PPP/SLIP
Physical (1)	Responsible for transmitting raw bits over a physical medium.	Data Encoding , Physical medium attachment , physical medium transmission bits and volts.	ниь

Major DIFFRENCE BETWEEN OSI MODEL AND TCP/IP:

- Number of Layers: OSI has 7 layers, while TCP/IP has 4 layers.
- Purpose: OSI is a conceptual
- model, while TCP/IP is a practical implementation.
- Implementation: OSI is not implemented in real-world networks, while TCP/IP is used in most networks.
- Layer Merging: TCP/IP combines the Physical and Data Link Layers into a single Network Access Layer.
- The OSI model is low in usage while TCP/IP is most widely used.
- The OSI model is less reliable than the TCP/IP Model.

