Table of Contents

Housekeeping		. 1
Set up		
Trapazoid - Calculate Volume	Part 1	. 2
Simpson 1/3 - Calculate Volume	Set up	2
Part 2 Set up Creating vectors 4 Week 4 Days 5 Days 6 Library 6 Library 7 Library 8 L	Trapazoid - Calculate Volume	. 2
Set up	Simpson 1/3 - Calculate Volume	3
Creating vectors	Part 2	. 3
Week 4 Days 4 1 Day 4 1 Day 4 Half Day 4 Half Day 4 plot results 5 labels for plot 5 *****Section number 2*** 4 Days 4 Half Day 4 Half Day 5 Half Day 6 Half Day 6 Half Day 7 Half Day 7 Half Day 7 Half Day 8	Set up	3
4 Days	Creating vectors	. 4
Day		
Half Day	4 Days	4
plot results		
labels for plot	·	
**************************************	•	
<pre>%%%%%%%%%%%% % CODE CHALLENGE 5 - Template Script % The purpose of this challenge is to predict whether or not the Boulder % Reservior will have to close due to a major leak. % To complete the challenge, execute the following steps: Part 1: % 1) Read in the data file % 2) Set values to any constants % 3) Perform a trapazoid integration on the data w/r.t. x % 4) Perform a simpson's 1/3 integration on the data w/r.t. x % 5) Display which volume measurement is more accurate and why % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>	labels for plot	. 5
<pre>%%%%%%%%%%%% % CODE CHALLENGE 5 - Template Script % The purpose of this challenge is to predict whether or not the Boulder % Reservior will have to close due to a major leak. % To complete the challenge, execute the following steps: Part 1: % 1) Read in the data file % 2) Set values to any constants % 3) Perform a trapazoid integration on the data w/r.t. x % 4) Perform a simpson's 1/3 integration on the data w/r.t. x % 5) Display which volume measurement is more accurate and why % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>		
<pre>% CODE CHALLENGE 5 - Template Script % % The purpose of this challenge is to predict whether or not the Boulder % Reservior will have to close due to a major leak. % % To complete the challenge, execute the following steps: % Part 1: % 1) Read in the data file % 2) Set values to any constants % 3) Perform a trapazoid integration on the data w/r.t. x % 4) Perform a simpson's 1/3 integration on the data w/r.t. x % 5) Display which volume measurement is more accurate and why % % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ****Section number 2***</pre>		68
% The purpose of this challenge is to predict whether or not the Boulder % Reservior will have to close due to a major leak. % To complete the challenge, execute the following steps: % Part 1: % 1) Read in the data file % 2) Set values to any constants % 3) Perform a trapazoid integration on the data w/r.t. x % 4) Perform a simpson's 1/3 integration on the data w/r.t. x % 5) Display which volume measurement is more accurate and why % % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ****Section number 2***		
Boulder Reservior will have to close due to a major leak. To complete the challenge, execute the following steps: Part 1: 1) Read in the data file 2) Set values to any constants 3) Perform a trapazoid integration on the data w/r.t. x 4) Perform a simpson's 1/3 integration on the data w/r.t. x 5) Display which volume measurement is more accurate and why Part 2: 1) Define which delta t will be used in the Euler integration 2) Set values to any constants and initial conditions 3) Propagate h with t using Euler integration 4) Repeat steps 1-4 with different delta t values 5) Display which delta t gives a more accurate result and why. NOTE: DO NOT change any variable names already present in the code. NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m * ***Section number 2***	%	
Boulder Reservior will have to close due to a major leak. To complete the challenge, execute the following steps: Part 1: 1) Read in the data file 2) Set values to any constants 3) Perform a trapazoid integration on the data w/r.t. x 4) Perform a simpson's 1/3 integration on the data w/r.t. x 5) Display which volume measurement is more accurate and why Part 2: 1) Define which delta t will be used in the Euler integration 2) Set values to any constants and initial conditions 3) Propagate h with t using Euler integration 4) Repeat steps 1-4 with different delta t values 5) Display which delta t gives a more accurate result and why. NOTE: DO NOT change any variable names already present in the code. NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m * ***Section number 2***	% The purpose of this challenge is to predict whether or not the	
<pre>% To complete the challenge, execute the following steps: % Part 1: % 1) Read in the data file % 2) Set values to any constants % 3) Perform a trapazoid integration on the data w/r.t. x % 4) Perform a simpson's 1/3 integration on the data w/r.t. x % 5) Display which volume measurement is more accurate and why % % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>		
<pre>% To complete the challenge, execute the following steps: % Part 1: % 1) Read in the data file % 2) Set values to any constants % 3) Perform a trapazoid integration on the data w/r.t. x % 4) Perform a simpson's 1/3 integration on the data w/r.t. x % 5) Display which volume measurement is more accurate and why % % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>	% Reservior will have to close due to a major leak.	
<pre>% Part 1: % 1) Read in the data file % 2) Set values to any constants % 3) Perform a trapazoid integration on the data w/r.t. x % 4) Perform a simpson's 1/3 integration on the data w/r.t. x % 5) Display which volume measurement is more accurate and why % % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>	-	
<pre>% Part 1: % 1) Read in the data file % 2) Set values to any constants % 3) Perform a trapazoid integration on the data w/r.t. x % 4) Perform a simpson's 1/3 integration on the data w/r.t. x % 5) Display which volume measurement is more accurate and why % % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>	% To complete the challenge, execute the following steps:	
<pre>% 2) Set values to any constants % 3) Perform a trapazoid integration on the data w/r.t. x % 4) Perform a simpson's 1/3 integration on the data w/r.t. x % 5) Display which volume measurement is more accurate and why % % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>		
<pre>% 3) Perform a trapazoid integration on the data w/r.t. x % 4) Perform a simpson's 1/3 integration on the data w/r.t. x % 5) Display which volume measurement is more accurate and why % % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>	% 1) Read in the data file	
<pre>% 4) Perform a simpson's 1/3 integration on the data w/r.t. x % 5) Display which volume measurement is more accurate and why % % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>	% 2) Set values to any constants	
<pre>% 5) Display which volume measurement is more accurate and why % % Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>	% 3) Perform a trapazoid integration on the data w/r.t. x	
<pre>% Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % NOTE: DO NOT change any variable names already present in the code. % Upload your team's script to Gradescope to complete the challenge. % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>	% 4) Perform a simpson's 1/3 integration on the data w/r.t. x	
<pre>% Part 2: % 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % NOTE: DO NOT change any variable names already present in the code. % Upload your team's script to Gradescope to complete the challenge. % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>	% 5) Display which volume measurement is more accurate and why	
<pre>% 1) Define which delta t will be used in the Euler integration % 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>	%	
<pre>% 2) Set values to any constants and initial conditions % 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>	1 41 6 1	
<pre>% 3) Propagate h with t using Euler integration % 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>	_	
<pre>% 4) Repeat steps 1-4 with different delta t values % 5) Display which delta t gives a more accurate result and why. % % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>		
<pre>% 5) Display which delta t gives a more accurate result and why. % % % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>		
<pre>% % NOTE: DO NOT change any variable names already present in the code. % Upload your team's script to Gradescope to complete the challenge. % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>		
<pre>% % NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>		
<pre>% NOTE: DO NOT change any variable names already present in the code. % % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>		
<pre>% % Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>		
<pre>% Upload your team's script to Gradescope to complete the challenge. % % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>		•
<pre>% % NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group breakout #}.m % ***Section number 2***</pre>		
<pre>% NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group} breakout #}.m % ***Section number 2***</pre>		
<pre>breakout #}.m % ***Section number 2***</pre>		
% ***Section number 2***		
	% """Section number 2""" % EX File Name: Challenge5 Sec1 Group15.m	

Housekeeping

don't "clear variables", it makes things easier to grade

Part 1

Set up

```
data = readtable('depth_data.csv'); % read in .csv
x = table2array(data(:,1)); % [ft]
d = table2array(data(:,2)); % [ft]
L = 4836; % length of reservior [ft]
%
%plot(x,d,'o');

Vol_Trap_Check = trapz(x,d);
ResevoirVolumeCheck = Vol_Trap_Check * L;
```

Trapazoid - Calculate Volume

```
%area of one is (1/2)(*(y(i) +y(i+1))*DeltaX
%area of the whole is (DeltaX/2)(y(1) + y(n+1)) + DeltaX(sum(2-n)of
    y(i))
DeltaX = zeros(30,1);

N = length(d)-1;

for i =1:N
    DeltaX(i) = x(i+1)-x(i);

end
DeltaX = sum(DeltaX/length(DeltaX));

SETrap = DeltaX/2*(d(1)+d(end));
Area_Trap = SETrap;
```

```
for i = 2:(N+1)
Area_Trap = Area_Trap +(DeltaX * d(i)); %[ft^2]
end
ResevoirVolTrap = Area_Trap * L; %[ft^3]
%
```

Simpson 1/3 - Calculate Volume

```
% area whole is (DeltaX/3)*(y(1)+y(n+1) + 2*sum(i=1-((n/2)-1))
(y(2*i-1)) + 4*sum(i=1-(n/2))y(2i)).
SESimp = (d(1)+d(end));
Area_Simp = SESimp;
for i=2:((N/2))
    vol = 2*(d(2*i-1));
    Area_Simp = Area_Simp + vol;
end
for i=1:(N/2)
    vol2 = 4*(d(2*i));
    Area_Simp = Area_Simp + vol2;
end
Area_Simp = (DeltaX/3)*(Area_Simp); % [ft^2]
ResevoirVolSimp = Area Simp * L;
%Simpsons estimate will be more accurate, it is more fit to the actual
%data, and will therefore include more true area under the data curve,
%giving us a more accurate estimate.
```

Part 2

Set up

```
%Delta T is 7days, 4 days, 1 day, and 0.5 of a day. Which estimate is
the
%most accurate?

del_t = [7,4,1,0.5]; % various delta t values to test [days]
%
h0 = 20; % [ft] initial depth

alpha = 1.5*10^6; %[ft^2/day] relating volume out per day to depth
[ft^2/day]

dV_in = 2*10^7; %[ft^3/day] volume in rate per day
```

Creating vectors

```
t7 =[1 7:del_t(1):28]; % allocate time vector [days]
t4 =[1 4:del_t(2):28];
t1 = [1:del_t(3):28];
tHalf = [1:del_t(4):28];

h7 = zeros(length(t7),1); % allocate depth vector [ft]
h4 = zeros(length(t4),1);
h1 = zeros(length(t1),1);
hHalf = zeros(55,1);

h7(1) = h0; % set initial value in h vector [ft]
h4(1) = h0;
h1(1) = h0;
hHalf(1) = h0;
%DONT CHANGE
```

Week

```
for i = 1:(length(t7)-1) % Euler method
    dhdt = get_dhdt(h7(i),L,alpha,dV_in); % get dh/dt at this depth
    h7(i+1) = h7(i)+dhdt*del_t(1); %compute next depth value
end
```

4 Days

```
for i = 1:(length(t4)-1) % Euler method
    dhdt = get_dhdt(h4(i),L,alpha,dV_in); % get dh/dt at this depth
    h4(i+1) = h4(i)+dhdt*del_t(2); %compute next depth value
end
```

1 Day

```
for i = 1:(length(t1)-1) % Euler method
    dhdt = get_dhdt(h1(i),L,alpha,dV_in); % get dh/dt at this depth
    h1(i+1) = h1(i)+dhdt*del_t(3); %compute next depth value
end
```

Half Day

```
for i = 1:(length(tHalf)-1) % Euler method
    dhdt = get_dhdt(hHalf(i),L,alpha,dV_in); % get dh/dt at this depth
    hHalf(i+1) = hHalf(i)+dhdt*del_t(4); %compute next depth value
end
%
```

plot results

```
figure(1) % create figure
plot(t7,h7)
hold on
plot(t4,h4)
plot(t1,h1)
plot(tHalf,hHalf)
hold off
```


labels for plot

```
title('Euler Estimates at Different Intervals')
xlabel('Time')
ylabel('Depth')
legend('7 Days', '4 Days', '1 Day', 'Half a
   Day', 'Location', 'southwest');

% We can clearly see that the most accurate model is the one that
   takes the
% most step, which is the half day interval estimate. This would make
   clear
% sense, as more steps give us more analysis of the over all trend,
% creating a much clearer picture.
```

양

```
% Function is put here just to show that we did it.
% function [dhdt] = get_dhdt(h,L,alpha,dV_in)
%
% dV_out = alpha*h; % calculate dV_out
% dVdt = dV_in-dV_out; % calculate net dV/dt
% [~,dVdh] = get_Volume(h,L); % get current dV/dh
% dhdt = dVdt/dVdh; % convert dV/dt to dh/dt
% end
```


Published with MATLAB® R2019a