

SEQUENCE LISTING

<110> Ruan, Yijun
Ng, Patrick
Wei, Chialin

<120> Method for Gene Identification Signature (GIS) Analysis

<130> 3240-105

<140> 11/664,234
<141> 2003-09-17

<160> 29

<170> PatentIn version 3.3

<210> 1
<211> 33
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<220>
<221> misc_feature
<222> (1)..(33)
<223> n is a,c,g, or t

<220>
<221> misc_feature
<222> (1)..(33)
<223> v is a,c,g

<400> 1
gagctccttc tggagttttt ttttttttt tvn

33

<210> 2
<211> 30
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<220>
<221> misc_feature
<222> (1)..(30)
<223> n is a,t,c or g

<400> 2

aattcgcggc cgcttggatc cgacnnnnn

30

<210> 3
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 3
gtcggatcca agcgccgcg

20

<210> 4
<211> 30
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<220>
<221> misc_feature
<222> (1)..(30)
<223> n is a,t,c or g

<400> 4
aattcgcggc cgcttggatc cgacgnnnn

30

<210> 5
<211> 19
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 5
tcgaccagg atccaactt

19

<210> 6
<211> 13
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<220>

```

<221> misc_feature
<222> (1)..(13)
<223> phosphorylation

<400> 6
gttggatcct ggg                                13

<210> 7
<211> 17
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 7
gtaaaaacgac ggccagt                            17

<210> 8
<211> 19
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 8
ggaaaacagct atgaccatg                           19

<210> 9
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 9
taatacgact cactataggg                          20

<210> 10
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 10
gatgtgctgc aaggcgatta ag                      22

```

```

<210> 11
<211> 23
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 11
agcggataac aatttcacac agg                                23

<210> 12
<211> 48
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide with homology to a bacteria cloning vector

<220>
<221> misc_feature
<222> (1)..(48)
<223> n is a,t,c or g

<400> 12
gatccgacnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnaagttg      48

<210> 13
<211> 48
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide with homology to a bacteria cloning vector

<220>
<221> misc_feature
<222> (1)..(48)
<223> n is a,t,c or g

<400> 13
gatccaacctt nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnngtcg      48

<210> 14
<211> 29
<212> DNA
<213> Artificial

<220>

```

```
<223> Oligonucleotide primer with homology to a bacteria cloning vector

<220>
<221> misc_feature
<222> (1)..(29)
<223> phosphorylation

<400> 14
cgcttcctg taccgaccct gccgcttac                                29

<210> 15
<211> 29
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide primer with homology to a bacteria cloning vector

<220>
<221> misc_feature
<222> (1)..(29)
<223> phosphorylation

<400> 15
aactatcgta ttgagaccaa cccggtaag                                29

<210> 16
<211> 24
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide adapter with homology to a bacteria cloning
      vector

<400> 16
aattctcgag cggccgcgat atcg                                24

<210> 17
<211> 24
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide adapter with homology to a bacteria cloning
      vector

<220>
<221> misc_feature
```

<222> (1)..(24)
<223> phosphorylation

<400> 17
aattcgatat cgccggccgct cgag

24

<210> 18
<211> 3404
<212> DNA
<213> Artificial

<220>
<223> bacterial cloning vector

<400> 18
gggcgaattc tcgagcggcc gcggatccga cgagagcgcc tgcgtacggc tcgcccgggt 60
ggctggcgct acttcggagg agccccacgc ggcgcggctcg tttttataca ttcccgcg 120
gaggcaacgg aagggcgggg cgcctcgtga ttaggccgag gaggtcacag gctctgtgt 180
catgaagggtg aaaattaaat gttggaatgg tgtggccact tggctctggg tagccaatga 240
tgagaactgc ggcacatctgca ggatggcggtt taatggctgc tgtccagact gtaaggtgcc 300
tggtgatgac tgccccctcg tgtggggaca gtgctcccac tgcttccaca tgcactgcat 360
cctcaagtgg ctgaatgcgc agcaggtgca gcagcactgc cccatgtgtc gccaggagtg 420
gaagttcaaa gagtgaagcc cgtgccgtgc cacttccctc tcctgtgtc tgccaggctc 480
agccccttcc ctccctcccc tcccccaagat acagcacccc aagtccccctc cacacagcac 540
agtggtgccc agagatctcg gtctgtgccg gggacaagga tgctttctgt ttggctggga 600
caaggttgaa aggagcttg ctgactgttt tggccatcca tcacattgac actttattca 660
ataagtaaaa ctcattacag ttccaaagtgc gatcctgggt cgacctgcag gcatgcaagc 720
tttagtattc tatagtgtca cctaaatagc ttggcgtaat catggcata gctgtttcct 780
gtgtgaaatt gttatccgct cacaattcca cacaacatac gagccggaag cataaaagtgt 840
aaagcctggg gtgcctaattg agtgagctaa ctcacattaa ttgcgttgcg ctcactgccc 900
gctttccagt cgggaaacct gtcgtgccag ctgcattaaat gaatcggcca acgcgcgggg 960
agaggcgggtt tgcgtattgg gcgctttcc gcttcctcg tcactgactc gctgcgtcg 1020
gtcggttcggc tgcggcgagc ggtatcagct cactcaaagg cggttaatacg gttatccaca 1080
gaatcagggg ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa ggccaggaac 1140
cgtaaaaaagg ccgcgttgct ggcgttttc gataggctcc gccccctga cgagcatcac 1200

aaaaatcgac gctcaagtca gaggtggcga aaccgcacag gactataaag ataccaggcg	1260
tttccccctg gaagctccct cgtgcgctct cctgtaccga ccctgccgct taccggatac	1320
ctgtccgcct ttctcccttc gggaaagcgtg gcgctttctc atagctcacg ctgttaggtat	1380
ctcagttcgg tgttaggtcgt tcgctccaag ctgggctgtg tgcaacgaacc ccccgttcag	1440
cccgaccgct gcgccttatac cggttaactat cgtcttgaga ccaacccggt aagacacgac	1500
ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta tgtaggcgt	1560
gctacagagt tcttgaagtgt gtggcctaactacggctaca ctagaaggac agtatttggt	1620
atctgcgcctc tgctgaagcc agttacccctc ggaaaaagag ttggtagctc ttgatccggc	1680
aaacaaacca ccgctggtag cggtgggttt tttgtttgca agcagcagat tacgcgcaga	1740
aaaaaaaggat ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc tcagtggAAC	1800
aaaaactcac gttaaggat tttggcatg agattatcaa aaaggatctt cacctagatc	1860
ctttaaatt aaaaatgaag tttaaatca atctaaagta tatatgagta aacttggct	1920
gacagttacc aatgcttaat cagtgaggca cctatcttag cgatctgtct atttcgttca	1980
tccatagttg cctgactccc cgtcgtgttag ataactacga tacgggaggg cttaccatct	2040
ggccccagtg ctgcaatgat accgcgagac ccacgctcac cggctccaga tttatcagca	2100
ataaaccagc cagccggaag ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc	2160
atccagtcta ttaattgttg ccggaaagct agagtaagta gttogccagt taatagttg	2220
cgcaacgttg ttggcattgc tacaggcatc gtgggtcac gctcgtcgTT tggtatggct	2280
tcattcagct ccggttccca acgatcaagg cgagttacat gatccccat gttgtgcaaa	2340
aaagcggta gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta	2400
tcactcatgg ttatggcagc actgcataat tctcttactg tcatgccatc cgtaagatgc	2460
ttttctgtga ctggtagta ctcaaccaag tcattctgag aatagtgtat gcggcgaccg	2520
agttgctctt gcccggcgtc aatacggat aataccgcgc cacatagcag aactttaaaa	2580
gtgctcatca ttggaaaacg ttcttcgggg cgaaaactct caaggatctt accgctgttg	2640
agatccagtt cgatgttaacc cactcgtgca cccaaactgat cttcagcatc ttttactttc	2700
accagcgTT ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaaa gggataagg	2760
gcgacacgga aatgttgaat actcataactc ttcccttttc aatattattt aagcatttat	2820

cagggttatt gtctcatgag cggatacata tttgaatgta ttttagaaaaaa taaacaaaata	2880
gggttccgc gcacatttcc ccgaaaagtgc acacatgcag ctcccgaga cggtcacagc ttgtctgtaa	2940
atgacattaa cctataaaaaa taggcgtatc acgaggccct ttcgtctcgc gcgttcggt	3000
gatgacggtg aaaacctctg acacatgcag ctcccgaga cggtcacagc ttgtctgtaa	3060
gcggatgccg ggagcagaca agcccgtag ggcgcgtcag cgggtgttgg cgggtgtcgg	3120
ggctggctta actatgcggc atcagagcag attgtactga gagtgcacca tatgcggtgt	3180
gaaataccgc acagatgcgt aaggagaaaa taccgcacca ggcgccattc gccattcagg	3240
ctgcgcaact gttgggaagg gcgatcggtg cgggcctctt cgctattacg ccagctggcg	3300
aaagggggat gtgctgcaag gcgattaagt tggtaacgc cagggtttc ccagtcacga	3360
cgttgtaaaa cgacggccag tgaattgtaa tacgactcac tata	3404

<210> 19
<211> 10
<212> DNA
<213> Artificial

<220>
<223> mammalian p53 consensus sequence

<220>
<221> misc_feature
<223> r is a purine (A or G)

<220>
<221> misc_feature
<223> w is A or T

<220>
<221> misc_feature
<223> y is a pyrimidine (C or T)

<400> 19
rrrcwwgyYY 10

<210> 20
<211> 20
<212> DNA
<213> Artificial

<220>
<223> mammalian p53 consensus sequence

<400> 20

gaacatgtcc caacatgttg

20

<210> 21
<211> 20
<212> DNA
<213> Artificial

<220>
<223> mammalian p53 consensus sequence

<400> 21
agacaaggccc gggcaaggccc 20

<210> 22
<211> 2770
<212> DNA
<213> Artificial

<220>
<223> Bacterial Cloning Vector

<400> 22
gggcgaattc gatatcgccg cgcgaggag tatggatccg actcgagtcg gatcctggct 60
cctcgtcgac ctgcaggcat gcaagcttga gtattctata gtgtcaccta aatagcttgg 120
cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca attccacaca 180
acatacgagc cggaagcata aagtgtaaag cctgggtgc ctaatgagtg agctaactca 240
catthaattgc gttgcgctca ctgcccgtt tccagtcggg aaacctgtcg tgccagctgc 300
attaatgaat cggccaacgc gcggggagag gcgggttgcg tattggcgc tcttccgctt 360
cctcgctcac tgactcgctg cgctcggtcg ttccgctgcg gcgagcggta tcagctcact 420
caaaggcgtt aatacggtta tccacagaat cagggataa cgcaggaaag aacatgtgag 480
caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg ttttcgata 540
ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg tggcgaaacc 600
cgacaggact ataaaagatac caggcgttcc cccctggaag ctccctcgta cgctctcctg 660
taccgaccct gccgcttacc ggataacctgt ccgcctttct cccttcggga agcgtggcgc 720
tttctcatag ctcacgctgt aggtatctca gttcggtgtta ggtcggtcg tccaaagctgg 780
gctgtgtgca cgaacccccc gttcagcccc accgctgcgc cttatccggt aactatcgtc 840
ttgagaccaa cccggtaaga cacgacttat cgccactggc agcagccact ggtaacagga 900
ttagcagagc gaggtatgtta ggcggtgcta cagagttctt gaagtggtgg cctaactacg 960

gctacactag aaggacagta tttggtatct gcgctctgct gaagccagtt accttcggaa	1020
aaagagttgg tagctcttga tccggcaaac aaaccaccgc tggttagcggg ggaaaaatgg	1080
tttgcagaacca gcagattacg cgccggggaaa aaggatctca agaagatcct ttgatcttt	1140
ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggatttg gtcatacgat	1200
tatcaaaaag gatcttcacc tagatccttt taaattaaaa atgaagttt aaatcaatct	1260
aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt gaggcaccta	1320
tctcagcgat ctgtcttattt cgttcatcca tagttgcctg actccccgtc gtgtagataa	1380
ctacgataacg ggagggctta ccatctggcc ccagtgcgtc aatgataccg cgagacccac	1440
gctcaccggc tccagattta tcagcaataa accagccagc cggaagggcc gagcgcagaa	1500
gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgcgg gaagctagag	1560
taagtagttc gccagttaat agtttgcgcgca acgttgcggg cattgctaca ggcatcggtt	1620
tgtcacgcgc gtcgttttgtt atggcttcat tcagctccgg ttcccaacga tcaaggcgag	1680
ttacatgatc ccccatgttg tgcaaaaaag cggttagctc ctgcgttgcctt ccgatcggtt	1740
tcagaagtaa gttggccgca gtgttatcac tcattgttat ggcagcactg cataattctc	1800
ttactgtcat gccatccgta agatgctttt ctgtgactgg tgagttactca accaagtcata	1860
tctgagaata gtgtatgcgg cgaccgagtt gctcttgcgg ggcgtcaata cgggataata	1920
ccgcgccaca tagcagaact ttaaaagtgc tcatttcattgg aaaacgttct tcggggcgaa	1980
aactctcaag gatcttaccg ctgttgcggg ccagttcgat gtaacccact cgtgcaccca	2040
actgatcttc agcatctttt actttcacca gcgtttctgg gtgagcaaaa acaggaaggc	2100
aaaatgccgc aaaaaaggaa ataaggcgaa cacggaaatg ttgaataactc atactcttcc	2160
ttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga tacatatttgc	2220
aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga aaagtgcac	2280
ctgacgtcta agaaaccatt attatcatga cattaacctt taaaaatagg cgtatcacga	2340
ggccctttcg tctcgcgctg ttccggatg acgggtaaaa cctctgacac atgcagctcc	2400
cggagacggt cacagcttgt ctgttaagcggt atgcccggag cagacaagcc cgtcaggcg	2460
cgtcagcggg tggtggcgaa tggtggcggt ggcttaacta tgcggcatca gagcagattg	2520
tactgagagt gcaccatatg cggtgtgaaa taccgcacag atgcgttaagg agaaaatacc	2580

gcatcaggcg ccattcgcca ttcaggctgc gcaactgtt ggaagggcga tcgggtgcggg	2640
cctcttcgct attacgccag ctggcgaaag gggatgtgc tgcaaggcga ttaagttggg	2700
taacgccagg gtttcccag tcacgacgtt gtaaaacgac ggccagtgaa ttgtataacg	2760
actcactata	2770
<210> 23	
<211> 54	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide with homology to bacterial cloning vector	
<400> 23	
gcggccgcga ggagtatgga tccgactcga gtcggatcct ggctcctcgt cgac	54
<210> 24	
<211> 26	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide with homology to bacterial cloning vector	
<400> 24	
gcggccgcga ggagtatgga tccgac	26
<210> 25	
<211> 24	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide with homology to bacterial cloning vector	
<400> 25	
gtcggatcct ggctcctcgt cgac	24
<210> 26	
<211> 10	
<212> DNA	
<213> mammalian	
<220>	
<221> polyA_site	
<222> (1)..(10)	

<400> 26		
aaaaaaaaaaa		10
<210> 27		
<211> 54		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide with homology to bacterial cloning vector		
<400> 27		
gcgcggcgct cctcataacct aggctgagct cagcctagga ccgaggagca gctg		54
<210> 28		
<211> 26		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide with homology to bacterial cloning vector		
<400> 28		
cgccggcgct cctcataacct aggctg		26
<210> 29		
<211> 24		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide with homology to bacterial cloning vector		
<400> 29		
cagcctagga ccgaggagca gctg		24