NUMERICAL AND ALGEBRAIC

Gain in decibels of P_2 relative to P_1

$$G = 10 \log_{10}(P_2/P_1).$$

To within two percent

$$(2\pi)^{1/2} \approx 2.5$$
; $\pi^2 \approx 10$; $e^3 \approx 20$; $2^{10} \approx 10^3$.

Euler-Mascheroni constant $\gamma = 0.57722$

Gamma Function $\Gamma(x+1) = x\Gamma(x)$:

$$\begin{array}{lll} \Gamma(1/6) = 5.5663 & \Gamma(3/5) = 1.4892 \\ \Gamma(1/5) = 4.5908 & \Gamma(2/3) = 1.3541 \\ \Gamma(1/4) = 3.6256 & \Gamma(3/4) = 1.2254 \\ \Gamma(1/3) = 2.6789 & \Gamma(4/5) = 1.1642 \\ \Gamma(2/5) = 2.2182 & \Gamma(5/6) = 1.1288 \\ \Gamma(1/2) = 1.7725 = \sqrt{\pi} & \Gamma(1) = 1.0 \end{array}$$

Binomial Theorem (good for |x| < 1 or $\alpha = \text{positive integer}$):

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^{k} \equiv 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots$$

Rothe-Hagen identity² (good for all complex x, y, z except when singular):

$$\sum_{k=0}^{n} \frac{x}{x+kz} {x+kz \choose k} \frac{y}{y+(n-k)z} {y+(n-k)z \choose n-k}$$
$$= \frac{x+y}{x+y+nz} {x+y+nz \choose n}.$$

Newberger's summation formula³ [good for μ nonintegral, Re $(\alpha + \beta) > -1$]:

$$\sum_{n=-\infty}^{\infty} \frac{(-1)^n J_{\alpha-\gamma n}(z) J_{\beta+\gamma n}(z)}{n+\mu} = \frac{\pi}{\sin \mu \pi} J_{\alpha+\gamma \mu}(z) J_{\beta-\gamma \mu}(z).$$

VECTOR IDENTITIES⁴

Notation: f, g, are scalars; A, B, etc., are vectors; T is a tensor; I is the unit dyad.

(1)
$$\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = \mathbf{A} \times \mathbf{B} \cdot \mathbf{C} = \mathbf{B} \cdot \mathbf{C} \times \mathbf{A} = \mathbf{B} \times \mathbf{C} \cdot \mathbf{A} = \mathbf{C} \cdot \mathbf{A} \times \mathbf{B} = \mathbf{C} \times \mathbf{A} \cdot \mathbf{B}$$

(2)
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{C} \times \mathbf{B}) \times \mathbf{A} = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$$

(3)
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) + \mathbf{B} \times (\mathbf{C} \times \mathbf{A}) + \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = 0$$

(4)
$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$$

(5)
$$(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \times \mathbf{B} \cdot \mathbf{D})\mathbf{C} - (\mathbf{A} \times \mathbf{B} \cdot \mathbf{C})\mathbf{D}$$

(6)
$$\nabla(fg) = \nabla(gf) = f\nabla g + g\nabla f$$

(7)
$$\nabla \cdot (f\mathbf{A}) = f\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$$

(8)
$$\nabla \times (f\mathbf{A}) = f\nabla \times \mathbf{A} + \nabla f \times \mathbf{A}$$

(9)
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot \nabla \times \mathbf{A} - \mathbf{A} \cdot \nabla \times \mathbf{B}$$

(10)
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B}$$

(11)
$$\mathbf{A} \times (\nabla \times \mathbf{B}) = (\nabla \mathbf{B}) \cdot \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}$$

(12)
$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$$

$$(13) \nabla^2 f = \nabla \cdot \nabla f$$

(14)
$$\nabla^2 \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla \times \nabla \times \mathbf{A}$$

$$(15) \nabla \times \nabla f = 0$$

(16)
$$\nabla \cdot \nabla \times \mathbf{A} = 0$$

If e_1 , e_2 , e_3 are orthonormal unit vectors, a second-order tensor $\mathcal T$ can be written in the dyadic form

(17)
$$T = \sum_{i,j} T_{ij} \mathbf{e}_i \mathbf{e}_j$$

In cartesian coordinates the divergence of a tensor is a vector with components

(18)
$$(\nabla \cdot T)_i = \sum_j (\partial T_{ji} / \partial x_j)$$

[This definition is required for consistency with Eq. (29)]. In general

(19)
$$\nabla \cdot (\mathbf{A}\mathbf{B}) = (\nabla \cdot \mathbf{A})\mathbf{B} + (\mathbf{A} \cdot \nabla)\mathbf{B}$$

(20)
$$\nabla \cdot (fT) = \nabla f \cdot T + f \nabla \cdot T$$

Let $\mathbf{r} = \mathbf{i}x + \mathbf{j}y + \mathbf{k}z$ be the radius vector of magnitude r, from the origin to the point x, y, z. Then

(21)
$$\nabla \cdot \mathbf{r} = 3$$

(22)
$$\nabla \times \mathbf{r} = 0$$

(23)
$$\nabla r = \mathbf{r}/r$$

(24)
$$\nabla(1/r) = -\mathbf{r}/r^3$$

(25)
$$\nabla \cdot (\mathbf{r}/r^3) = 4\pi\delta(\mathbf{r})$$

(26)
$$\nabla \mathbf{r} = I$$

If V is a volume enclosed by a surface S and $d\mathbf{S} = \mathbf{n}dS$, where **n** is the unit normal outward from V,

(27)
$$\int_{V} dV \nabla f = \int_{S} d\mathbf{S} f$$

(28)
$$\int_{V} dV \nabla \cdot \mathbf{A} = \int_{S} d\mathbf{S} \cdot \mathbf{A}$$

(29)
$$\int_{V} dV \nabla \cdot \mathbf{T} = \int_{S} d\mathbf{S} \cdot \mathbf{T}$$

(30)
$$\int_{V} dV \nabla \times \mathbf{A} = \int_{S} d\mathbf{S} \times \mathbf{A}$$

(31)
$$\int_{V} dV (f \nabla^{2} g - g \nabla^{2} f) = \int_{S} d\mathbf{S} \cdot (f \nabla g - g \nabla f)$$

(32)
$$\int_{V} dV (\mathbf{A} \cdot \nabla \times \nabla \times \mathbf{B} - \mathbf{B} \cdot \nabla \times \nabla \times \mathbf{A})$$
$$= \int_{S} d\mathbf{S} \cdot (\mathbf{B} \times \nabla \times \mathbf{A} - \mathbf{A} \times \nabla \times \mathbf{B})$$

If S is an open surface bounded by the contour C, of which the line element is $d\mathbf{l}$,

(33)
$$\int_{S} d\mathbf{S} \times \nabla f = \oint_{C} d\mathbf{l} f$$

(34)
$$\int_{S} d\mathbf{S} \cdot \nabla \times \mathbf{A} = \oint_{C} d\mathbf{l} \cdot \mathbf{A}$$

(35)
$$\int_{S} (d\mathbf{S} \times \nabla) \times \mathbf{A} = \oint_{C} d\mathbf{l} \times \mathbf{A}$$

(36)
$$\int_{S} d\mathbf{S} \cdot (\nabla f \times \nabla g) = \oint_{C} f dg = -\oint_{C} g df$$

DIFFERENTIAL OPERATORS IN CURVILINEAR COORDINATES⁵

Cylindrical Coordinates

Divergence

$$\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

Gradient

$$(\nabla f)_r = \frac{\partial f}{\partial r}; \quad (\nabla f)_\phi = \frac{1}{r} \frac{\partial f}{\partial \phi}; \quad (\nabla f)_z = \frac{\partial f}{\partial z}$$

Curl

$$(\nabla \times \mathbf{A})_r = \frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z}$$

$$(\nabla \times \mathbf{A})_{\phi} = \frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}$$

$$(\nabla \times \mathbf{A})_z = \frac{1}{r} \frac{\partial}{\partial r} (rA_{\phi}) - \frac{1}{r} \frac{\partial A_r}{\partial \phi}$$

Laplacian

$$\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$$

Laplacian of a vector

$$(\nabla^2 \mathbf{A})_r = \nabla^2 A_r - \frac{2}{r^2} \frac{\partial A_\phi}{\partial \phi} - \frac{A_r}{r^2}$$

$$(\nabla^2 \mathbf{A})_{\phi} = \nabla^2 A_{\phi} + \frac{2}{r^2} \frac{\partial A_r}{\partial \phi} - \frac{A_{\phi}}{r^2}$$

$$(\nabla^2 \mathbf{A})_z = \nabla^2 A_z$$

Components of $(\mathbf{A} \cdot \nabla)\mathbf{B}$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_r = A_r \frac{\partial B_r}{\partial r} + \frac{A_\phi}{r} \frac{\partial B_r}{\partial \phi} + A_z \frac{\partial B_r}{\partial z} - \frac{A_\phi B_\phi}{r}$$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_{\phi} = A_r \frac{\partial B_{\phi}}{\partial r} + \frac{A_{\phi}}{r} \frac{\partial B_{\phi}}{\partial \phi} + A_z \frac{\partial B_{\phi}}{\partial z} + \frac{A_{\phi} B_r}{r}$$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_z = A_r \frac{\partial B_z}{\partial r} + \frac{A_\phi}{r} \frac{\partial B_z}{\partial \phi} + A_z \frac{\partial B_z}{\partial z}$$

Divergence of a tensor

$$(\nabla \cdot T)_r = \frac{1}{r} \frac{\partial}{\partial r} (r T_{rr}) + \frac{1}{r} \frac{\partial T_{\phi r}}{\partial \phi} + \frac{\partial T_{zr}}{\partial z} - \frac{T_{\phi \phi}}{r}$$

$$(\nabla \cdot T)_{\phi} = \frac{1}{r} \frac{\partial}{\partial r} (r T_{r\phi}) + \frac{1}{r} \frac{\partial T_{\phi\phi}}{\partial \phi} + \frac{\partial T_{z\phi}}{\partial z} + \frac{T_{\phi r}}{r}$$

$$(\nabla \cdot T)_z = \frac{1}{r} \frac{\partial}{\partial r} (rT_{rz}) + \frac{1}{r} \frac{\partial T_{\phi z}}{\partial \phi} + \frac{\partial T_{zz}}{\partial z}$$

Spherical Coordinates

Divergence

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

Gradient

$$(\nabla f)_r = \frac{\partial f}{\partial r}; \quad (\nabla f)_\theta = \frac{1}{r} \frac{\partial f}{\partial \theta}; \quad (\nabla f)_\phi = \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi}$$

Curl

$$(\nabla \times \mathbf{A})_r = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_{\phi}) - \frac{1}{r \sin \theta} \frac{\partial A_{\theta}}{\partial \phi}$$

$$(\nabla \times \mathbf{A})_{\theta} = \frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{1}{r} \frac{\partial}{\partial r} (r A_{\phi})$$

$$(\nabla \times \mathbf{A})_{\phi} = \frac{1}{r} \frac{\partial}{\partial r} (rA_{\theta}) - \frac{1}{r} \frac{\partial A_{r}}{\partial \theta}$$

Laplacian

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$

Laplacian of a vector

$$(\nabla^2 \mathbf{A})_r = \nabla^2 A_r - \frac{2A_r}{r^2} - \frac{2}{r^2} \frac{\partial A_\theta}{\partial \theta} - \frac{2 \cot \theta A_\theta}{r^2} - \frac{2}{r^2 \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

$$(\nabla^2 \mathbf{A})_{\theta} = \nabla^2 A_{\theta} + \frac{2}{r^2} \frac{\partial A_r}{\partial \theta} - \frac{A_{\theta}}{r^2 \sin^2 \theta} - \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_{\phi}}{\partial \phi}$$

$$(\nabla^2 \mathbf{A})_{\phi} = \nabla^2 A_{\phi} - \frac{A_{\phi}}{r^2 \sin^2 \theta} + \frac{2}{r^2 \sin \theta} \frac{\partial A_r}{\partial \phi} + \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_{\theta}}{\partial \phi}$$

Components of $(\mathbf{A} \cdot \nabla)\mathbf{B}$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_r = A_r \frac{\partial B_r}{\partial r} + \frac{A_\theta}{r} \frac{\partial B_r}{\partial \theta} + \frac{A_\phi}{r \sin \theta} \frac{\partial B_r}{\partial \phi} - \frac{A_\theta B_\theta + A_\phi B_\phi}{r}$$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_{\theta} = A_r \frac{\partial B_{\theta}}{\partial r} + \frac{A_{\theta}}{r} \frac{\partial B_{\theta}}{\partial \theta} + \frac{A_{\phi}}{r \sin \theta} \frac{\partial B_{\theta}}{\partial \phi} + \frac{A_{\theta} B_r}{r} - \frac{\cot \theta A_{\phi} B_{\phi}}{r}$$

$$(\mathbf{A} \cdot \nabla \mathbf{B})_{\phi} = A_r \frac{\partial B_{\phi}}{\partial r} + \frac{A_{\theta}}{r} \frac{\partial B_{\phi}}{\partial \theta} + \frac{A_{\phi}}{r \sin \theta} \frac{\partial B_{\phi}}{\partial \phi} + \frac{A_{\phi} B_r}{r} + \frac{\cot \theta A_{\phi} B_{\theta}}{r}$$

Divergence of a tensor

$$(\nabla \cdot T)_r = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{rr}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{\theta r})$$

$$+\frac{1}{r\sin\theta}\frac{\partial T_{\phi r}}{\partial\phi}-\frac{T_{\theta\,\theta}+T_{\phi\phi}}{r}$$

$$(\nabla \cdot T)_{\theta} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{r\theta}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{\theta\theta})$$

$$+\frac{1}{r\sin\theta}\frac{\partial T_{\phi\theta}}{\partial \phi}+\frac{T_{\theta r}}{r}-\frac{\cot\theta T_{\phi\phi}}{r}$$

$$(\nabla \cdot T)_{\phi} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{r\phi}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{\theta\phi})$$

$$+\frac{1}{r\sin\theta}\frac{\partial T_{\phi\phi}}{\partial\phi}+\frac{T_{\phi r}}{r}+\frac{\cot\theta T_{\phi\theta}}{r}$$

DIMENSIONS AND UNITS

To get the value of a quantity in Gaussian units, multiply the value expressed in SI units by the conversion factor. Multiples of 3 in the conversion factors result from approximating the speed of light $c=2.9979\times 10^{10}~\rm cm/sec$ $\approx 3\times 10^{10}~\rm cm/sec$.

Physical	Sym-	Dir	nensions	SI	Conversion	Gaussian
Quantity	bol	SI	Gaussian	$U_{ m nits}$	Factor	Units
Capacitance	C	$\frac{t^2q^2}{ml^2}$	l	farad	9×10^{11}	cm
Charge	q	q	$\frac{m^{1/2}l^{3/2}}{t}$	coulomb	3×10^9	statcoulomb
Charge density	ho	$\frac{q}{l^3}$	$\frac{m^{1/2}}{l^{3/2}t}$	$\frac{\mathrm{coulomb}}{\mathrm{/m}^3}$	3×10^3	${ m stat}{ m coulomb} \ /{ m cm}^3$
Conductance		$\frac{tq^2}{ml^2}$	$\left \begin{array}{c} rac{l}{t} \end{array} \right $	siemens	9×10^{11}	m cm/sec
Conductivity	σ	$\frac{tq^2}{ml^3}$	$\frac{1}{t}$	siemens /m	9×10^9	$ m sec^{-1}$
Current	igg I,i	$\frac{q}{t}$	$\frac{m^{1/2}l^{3/2}}{t^2}$	ampere	3×10^9	statampere
Current density	${f J},{f j}$	$\frac{q}{l^2t}$	$\frac{m^{1/2}}{l^{1/2}t^2}$	$ m ampere \ /m^2$	3×10^5	$ hootnotesize{ statampere / cm^2 }$
Density	ρ	$\frac{m}{l^3}$	$\frac{m}{l^3}$	$ m kg/m^3$	10^{-3}	$\rm g/cm^3$
Displacement	D	$\frac{q}{l^2}$	$\frac{m^{1/2}}{l^{1/2}t}$	$\begin{array}{c} \text{coulomb} \\ /\text{m}^2 \end{array}$	$12\pi \times 10^5$	$\frac{\mathrm{stat}\mathrm{coulomb}}{\mathrm{/cm}^2}$
Electric field	E	$\frac{ml}{t^2q}$	$\frac{m^{1/2}}{l^{1/2}t}$	volt/m	$\frac{1}{3} \times 10^{-4}$	statvolt/cm
Electro- motance	$\mathcal{E}, \ \mathrm{Emf}$	$\frac{ml^2}{t^2q}$	$\frac{m^{1/2}l^{1/2}}{t}$	volt	$\frac{1}{3} \times 10^{-2}$	${ m statvolt}$
Energy	U,W	$\frac{ml^2}{t^2}$	$\frac{ml^2}{t^2}$	joule	10^7	erg
Energy density	w,ϵ	$\frac{m}{lt^2}$	$\frac{m}{lt^2}$	joule/m ³	10	$ m erg/cm^3$

Dhygiaal	Physical Sym-		SI	Conversion	Caussian	
Quantity	bol	SI	Gaussian	Units	Factor	Gaussian Units
Force	F	$\frac{ml}{t^2}$	$\frac{ml}{t^2}$	newton	10^{5}	dyne
Frequency	f, u	$\frac{1}{t}$	$\left \frac{1}{t} \right $	hertz	1	m hertz
Impedance	Z	$\frac{ml^2}{tq^2}$	$ \begin{vmatrix} \frac{t}{l} \\ \frac{t^2}{l} \end{vmatrix} $	ohm	$\frac{1}{9} \times 10^{-11}$	m sec/cm
Inductance	L	$\frac{ml^2}{q^2}$	$\left \frac{t^2}{l} \right $	henry	$\frac{1}{9} \times 10^{-11}$	$ m sec^2/cm$
Length	l	l	l	meter (m)	10^{2}	$rac{ ext{centimeter}}{ ext{(cm)}}$
Magnetic intensity	н	$\frac{q}{lt}$	$\frac{m^{1/2}}{l^{1/2}t}$	$egin{ampere} ext{ampere-} \ ext{turn/m} \ \end{array}$	$4\pi \times 10^{-3}$	oersted
Magnetic flux	Φ	$\frac{ml^2}{tq}$	$\frac{m^{1/2}l^{3/2}}{t}$	weber	10 ⁸	$_{ m maxwell}$
Magnetic induction	В	$rac{m}{tq}$	$\frac{m^{1/2}}{l^{1/2}t}$	tesla	10^4	gauss
Magnetic moment	m,μ	$\frac{l^2q}{t}$	$\frac{m^{1/2}l^{5/2}}{t}$	$ampere-m^2$	10^3	$ m cm^3$
Magnetization	M	$\frac{q}{lt}$	$\frac{m^{1/2}}{l^{1/2}t}$	${ m ampere-} \ { m turn/m}$	10^{-3}	oersted
Magneto- motance	$\mathcal{M}, \ \mathrm{Mmf}$	$\frac{q}{t}$	$\frac{m^{1/2}l^{1/2}}{t^2}$	ampere– turn	$\frac{4\pi}{10}$	gilbert
Mass	m, M	m	m	$egin{array}{c} { m kilogram} \\ { m (kg)} \end{array}$	10^3	gram (g)
Momentum	\mathbf{p},\mathbf{P}	$\frac{ml}{t}$	$\left rac{ml}{t} ight $	kg-m/s	10^5	m g-cm/sec
Momentum density		$\frac{m}{l^2t}$	$\frac{m}{l^2t}$	$ m kg/m^2-s$	10^{-1}	g/cm^2 -sec
Permeability	μ	$\frac{ml}{q^2}$	1	henry/m	$\frac{1}{4\pi} \times 10^7$	_

D1 ' 1	C	Dir	nensions	CI	. ·	G :
Physical Quantity	Sym- bol	SI	Gaussian	$rac{ ext{SI}}{ ext{Units}}$	Conversion Factor	Gaussian Units
Permittivity	ϵ	ml^3	1	farad/m	$36\pi \times 10^9$	_
Polarization	P	$\frac{q}{l^2}$	$\frac{m^{1/2}}{l^{1/2}t}$	$coulomb/m^2$	3×10^5	${ m statcoulomb} \ /{ m cm}^2$
Potential	V,ϕ	$\frac{ml^2}{t^2q}$	$\frac{m^{1/2}l^{1/2}}{t}$	volt	$\frac{1}{3} \times 10^{-2}$	statvolt
Power	P	$\frac{ml^2}{t^3}$	$\frac{ml^2}{t^3}$	watt	10^7	erg/sec
Power density		$\frac{m}{lt^3}$	$rac{m}{lt^3}$	$ m watt/m^3$	10	$ m erg/cm^3-sec$
Pressure	p, P	$\frac{m}{lt^2}$	$\frac{m}{lt^2}$	pascal	10	$dyne/cm^2$
Reluctance	\mathcal{R}	$\frac{q^2}{ml^2}$	$\frac{1}{l}$	ampere—turn /weber	$4\pi \times 10^{-9}$	cm^{-1}
Resistance	R	$\frac{ml^2}{tq^2}$	$rac{t}{l}$	ohm	$\frac{1}{9} \times 10^{-11}$	m sec/cm
Resistivity	$igg \eta, ho$	$\frac{ml^3}{tq^2}$	t	ohm-m	$\frac{1}{9} \times 10^{-9}$	sec
Thermal con- ductivity	κ, k	$\frac{ml}{t^3}$	$\frac{ml}{t^3}$	$rac{ m watt/m-}{ m deg~(K)}$	10^{5}	erg/cm-sec- deg (K)
Time	t	t	t	second (s)	1	second (sec)
Vector potential	A	$rac{ml}{tq}$	$\frac{m^{1/2}l^{1/2}}{t}$	weber/m	10^{6}	gauss-cm
Velocity	v	$\frac{l}{t}$	$\frac{l}{t}$	m/s	10^{2}	cm/sec
Viscosity	$igg \eta,\mu$	$rac{m}{lt}$	$rac{m}{lt}$	m kg/m-s	10	poise
Vorticity	ζ	$\frac{1}{t}$	$\frac{1}{t}$	s^{-1}	1	$ m sec^{-1}$
Work	W	$\frac{ml^2}{t^2}$	$\frac{ml^2}{t^2}$	joule	10 ⁷	erg

INTERNATIONAL SYSTEM (SI) NOMENCLATURE 6

Physical Quantity	Name of Unit	Symbol for Unit	Physical Quantity	Name of Unit	Symbol for Unit
*length	meter	m	electric	volt	V
*mass	kilogram	${ m kg}$	potential	_	
*time	second	${f s}$	$egin{array}{c} ext{electric} \ ext{resistance} \end{array}$	ohm	Ω
*current	ampere	A	electric	siemens	S
*temperature	kelvin	K	conductance		
*amount of	mole	mol	electric capacitance	farad	F
substance			magnetic flux	weber	Wb
*luminous intensity	candela	cd	magnetic	henry	Н
†plane angle	radian	$_{ m rad}$	inductance	-	
†solid angle	steradian	sr	magnetic intensity	$ ext{tesla}$	${f T}$
frequency	hertz	$_{ m Hz}$	luminous flux	lumen	$_{ m lm}$
energy	joule	J	illuminance	lux	lx
force	newton	N	activity (of a radioactive	becquerel	Bq
pressure	pascal	Pa	source)		
power	watt	W	absorbed dose	gray	Gy
electric charge	coulomb	С	(of ionizing radiation)		

METRIC PREFIXES

Multiple	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-1}	deci	d	10	deca	da
10^{-2}	centi	c	10^{2}	$_{ m hecto}$	h
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	${ m mega}$	M
10^{-9}	nano	n	10^{9}	$_{ m giga}$	G
10^{-12}	pico	p	10^{12}	$ ext{tera}$	${ m T}$
10^{-15}	${ m femto}$	f	10^{15}	$_{ m peta}$	Р
10^{-18}	atto	a	10^{18}	exa	E

^{*}SI base unit †Supplementary unit

PHYSICAL CONSTANTS $(SI)^7$

Physical Quantity	Symbol	Value	Units
Boltzmann constant	k	1.3807×10^{-23}	$ m JK^{-1}$
Elementary charge	e	1.6022×10^{-19}	\mathbf{C}
Electron mass	m_e	9.1094×10^{-31}	kg
Proton mass	$\mid m_p \mid$	1.6726×10^{-27}	kg
Gravitational constant	G	6.6726×10^{-11}	${ m m}^3 { m s}^{-2} { m kg}^{-1}$
Planck constant	h	6.6261×10^{-34}	Jѕ
	$\hbar = h/2\pi$	1.0546×10^{-34}	J s
Speed of light in vacuum	c	2.9979×10^{8}	${ m ms}^{-1}$
Permittivity of free space	ϵ_0	8.8542×10^{-12}	$\mathrm{F}\mathrm{m}^{-1}$
Permeability of free space	μ_0	$4\pi \times 10^{-7}$	$\mathrm{H}\mathrm{m}^{-1}$
Proton/electron mass ratio	m_p/m_e	1.8362×10^3	
Electron charge/mass ratio	e/m_e	1.7588×10^{11}	$ m C~kg^{-1}$
Rydberg constant	$R_{\infty} = \frac{me^4}{8\epsilon_0^2 ch^3}$	1.0974×10^7	m^{-1}
Bohr radius	$a_0 = \epsilon_0 h^2 / \pi m e^2$	5.2918×10^{-11}	m
Atomic cross section	πa_0^2	8.7974×10^{-21}	m^2
Classical electron radius	$r_e = e^2/4\pi\epsilon_0 mc^2$	2.8179×10^{-15}	m
Thomson cross section	$(8\pi/3)r_e^{-2}$	6.6525×10^{-29}	m^2
Compton wavelength of	$h/m_e c$	2.4263×10^{-12}	m
electron	$\hbar/m_e c$	3.8616×10^{-13}	m
Fine-structure constant	$\begin{vmatrix} \alpha = e^2/2\epsilon_0 hc \\ \alpha^{-1} \end{vmatrix}$	$7.2974 \times 10^{-3} $ 137.04	
First radiation constant	$c_1 = 2\pi h c^2$	3.7418×10^{-16}	$\mathrm{W}\mathrm{m}^2$
Second radiation constant	$c_2 = hc/k$	1.4388×10^{-2}	m K
Stefan-Boltzmann constant	σ	5.6705×10^{-8}	${ m W}{ m m}^{-2}{ m K}^{-4}$

Physical Quantity	Symbol	Value	Units
Wavelength associated with 1 eV	$\lambda_0 = hc/e$	1.2398×10^{-6}	m
Frequency associated with 1 eV	$ u_0 = e/h $	2.4180×10^{14}	Hz
Wave number associated with 1 eV	$k_0 = e/hc$	8.0655×10^5	m^{-1}
Energy associated with 1 eV	$h u_0$	1.6022×10^{-19}	J
Energy associated with 1 m^{-1}	hc	1.9864×10^{-25}	J
Energy associated with 1 Rydberg	$me^3/8{\epsilon_0}^2h^2$	13.606	eV
Energy associated with 1 Kelvin	k/e	8.6174×10^{-5}	eV
Temperature associated with 1 eV	e/k	1.1604×10^4	K
Avogadro number	N_A	6.0221×10^{23}	mol^{-1}
Faraday constant	$F=N_A e$	9.6485×10^4	${ m Cmol^{-1}}$
Gas constant	$R = N_A k$	8.3145	$ m JK^{-1}mol^{-1}$
Loschmidt's number (no. density at STP)	n_0	2.6868×10^{25}	m^{-3}
Atomic mass unit	m_u	1.6605×10^{-27}	kg
Standard temperature	T_0	273.15	K
Atmospheric pressure	$p_0 = n_0 k T_0$	1.0133×10^5	Pa
Pressure of 1 mm Hg (1 torr)		1.3332×10^2	Pa
Molar volume at STP	$V_0 = RT_0/p_0$	2.2414×10^{-2}	m^3
Molar weight of air	$M_{ m air}$	2.8971×10^{-2}	kg
calorie (cal)		4.1868	J
Gravitational acceleration	g	9.8067	ms^{-2}

PHYSICAL CONSTANTS $(cgs)^7$

Physical Quantity	Symbol	Value	Units
Boltzmann constant	k	1.3807×10^{-16}	$\mathrm{erg}/\mathrm{deg}\left(\mathrm{K} ight)$
Elementary charge	e	4.8032×10^{-10}	statcoulomb
			(statcoul)
Electron mass	m_e	9.1094×10^{-28}	g
Proton mass	m_p	1.6726×10^{-24}	g
Gravitational constant	G	6.6726×10^{-8}	$dyne-cm^2/g^2$
Planck constant	h	6.6261×10^{-27}	erg-sec
	$\hbar = h/2\pi$	1.0546×10^{-27}	erg-sec
Speed of light in vacuum	c	2.9979×10^{10}	$\mathrm{cm/sec}$
Proton/electron mass ratio	$\left m_p/m_e ight $	1.8362×10^3	
Electron charge/mass ratio	e/m_e	5.2728×10^{17}	$\rm stat coul/g$
Rydberg constant	$R_{\infty} = \frac{2\pi^2 m e^4}{ch^3}$	1.0974×10^5	cm^{-1}
Bohr radius	$a_0 = \hbar^2/me^2$	5.2918×10^{-9}	cm
Atomic cross section	πa_0^2	8.7974×10^{-17}	cm^2
Classical electron radius	$r_e = e^2/mc^2$	2.8179×10^{-13}	cm
Thomson cross section	$(8\pi/3)r_e^{-2}$	6.6525×10^{-25}	cm^2
Compton wavelength of	$h/m_e c$	2.4263×10^{-10}	cm
electron	$\hbar/m_e c$	3.8616×10^{-11}	cm
Fine-structure constant	$\alpha = e^2/\hbar c$	7.2974×10^{-3}	
	α^{-1}	137.04	
First radiation constant	$c_1 = 2\pi hc^2$	3.7418×10^{-5}	$erg-cm^2/sec$
Second radiation constant	$c_2 = hc/k$	1.4388	cm-deg (K)
Stefan-Boltzmann constant	σ	5.6705×10^{-5}	$ m erg/cm^2$ - $ m sec-deg^4$
Wavelength associated with 1 eV	λ_0	1.2398×10^{-4}	cm

Physical Quantity	Symbol	Value	Units
Frequency associated with 1 eV	$ u_0$	2.4180×10^{14}	Hz
Wave number associated with 1 eV	k_0	8.0655×10^3	cm^{-1}
Energy associated with 1 eV		1.6022×10^{-12}	erg
Energy associated with 1 cm^{-1}		1.9864×10^{-16}	erg
Energy associated with 1 Rydberg		13.606	${ m eV}$
Energy associated with 1 deg Kelvin		8.6174×10^{-5}	${ m eV}$
Temperature associated with 1 eV		1.1604×10^4	deg (K)
Avogadro number	N_A	6.0221×10^{23}	mol^{-1}
Faraday constant	$F = N_A e$	2.8925×10^{14}	${ m statcoul/mol}$
Gas constant	$R = N_A k$	8.3145×10^7	${ m erg/deg}$ -mol
Loschmidt's number (no. density at STP)	n_0	2.6868×10^{19}	cm^{-3}
Atomic mass unit	m_u	1.6605×10^{-24}	g
Standard temperature	T_0	273.15	$\deg\left(\mathrm{K}\right)$
Atmospheric pressure	$p_0 = n_0 k T_0$	1.0133×10^6	$dyne/cm^2$
Pressure of 1 mm Hg (1 torr)		1.3332×10^3	$ m dyne/cm^2$
Molar volume at STP	$V_0 = RT_0/p_0$	2.2414×10^4	cm^3
Molar weight of air	$M_{ m air}$	28.971	g
calorie (cal)		4.1868×10^{7}	erg
Gravitational acceleration	g	980.67	$ m cm/sec^2$

FORMULA CONVERSION⁸

Here $\alpha=10^2\,\mathrm{cm}\,\mathrm{m}^{-1}$, $\beta=10^7\,\mathrm{erg}\,\mathrm{J}^{-1}$, $\epsilon_0=8.8542\times 10^{-12}\,\mathrm{F}\,\mathrm{m}^{-1}$, $\mu_0=4\pi\times 10^{-7}\,\mathrm{H}\,\mathrm{m}^{-1}$, $c=(\epsilon_0\mu_0)^{-1/2}=2.9979\times 10^8\,\mathrm{m}\,\mathrm{s}^{-1}$, and $\hbar=1.0546\times 10^{-34}\,\mathrm{J}\,\mathrm{s}$. To derive a dimensionally correct SI formula from one expressed in Gaussian units, substitute for each quantity according to $\bar{Q}=\bar{k}Q$, where \bar{k} is the coefficient in the second column of the table corresponding to Q (overbars denote variables expressed in Gaussian units). Thus, the formula $\bar{a}_0=\bar{h}^2/\bar{m}\bar{e}^2$ for the Bohr radius becomes $\alpha a_0=(\hbar\beta)^2/[(m\beta/\alpha^2)(e^2\alpha\beta/4\pi\epsilon_0)]$, or $a_0=\epsilon_0h^2/\pi me^2$. To go from SI to natural units in which $\hbar=c=1$ (distinguished by a circumflex), use $Q=\hat{k}^{-1}\hat{Q}$, where \hat{k} is the coefficient corresponding to Q in the third column. Thus $\hat{a}_0=4\pi\epsilon_0\hbar^2/[(\hat{m}\hbar/c)(\hat{e}^2\epsilon_0\hbar c)]=4\pi/\hat{m}\hat{e}^2$. (In transforming from SI units, do not substitute for ϵ_0 , μ_0 , or c.)

Physical Quantity	Gaussian Units to SI	Natural Units to SI
Capacitance	$\alpha/4\pi\epsilon_0$	ϵ_0^{-1}
Charge	$(\alpha \beta/4\pi \epsilon_0)^{1/2}$	$(\epsilon_0 \hbar c)^{-1/2}$
Charge density	$(\beta/4\pi\alpha^5\epsilon_0)^{1/2}$	$(\epsilon_0 \hbar c)^{-1/2}$
Current	$(\alpha\beta/4\pi\epsilon_0)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Current density	$(\beta/4\pi\alpha^3\epsilon_0)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Electric field	$(4\pi\beta\epsilon_0/\alpha^3)^{1/2}$	$(\epsilon_0/\hbar c)^{1/2}$
Electric potential	$(4\pi\beta\epsilon_0/\alpha)^{1/2}$	$(\epsilon_0/\hbar c)^{1/2}$
Electric conductivity	$(4\pi\epsilon_0)^{-1}$	ϵ_0^{-1}
Energy	$\stackrel{\cdot}{eta}$	$(\hbar c)^{-1}$
Energy density	β/α^3	$(\hbar c)^{-1}$
Force	β/α	$(\hbar c)^{-1}$
Frequency	1	c^{-1}
Inductance	$4\pi\epsilon_0/lpha$	$\mu_0{}^{-1}$
Length	α	1
Magnetic induction	$(4\pi\beta/\alpha^3\mu_0)^{1/2}$	$(\mu_0 \hbar c)^{-1/2}$
Magnetic intensity	$(4\pi\mu_0\beta/\alpha^3)^{1/2}$	$(\mu_0/\hbar c)^{1/2}$
Mass	β/α^2	c/\hbar
Momentum	eta/lpha	\hbar^{-1}
Power	eta	$(\hbar c^2)^{-1}$
Pressure	β/α^3	$(\hbar c)^{-1}$
Resistance	$4\pi\epsilon_0/lpha$	$(\epsilon_0/\mu_0)^{1/2}$
Time	1	c
Velocity	α	c^{-1}