Segundo Parcial de Geometría y Álgebra Lineal 2

Jueves 4 de julio de 2019.

	Nombre y apellido	Cédula de Identidad	
No. Parcial			

Ejercicios de multiple opción

(Respuesta correcta 7 puntos, incorrecta -2, sin responder 0)

Respuestas.						
1	2	3	4	5		

Ejercicio 1. Sea $A \in M_{n \times n}(\mathbb{C})$ una matriz compleja tal que $A^* + A = \mathbf{0}$ (donde $A^* = \overline{A^t}$). Se puede asegurar que:

- (A) A es unitaria.
- (B) A es triangular.
- (C) iA es Hermítica.
- (D) rango(iA) < n.

Solución: De la hipótesis se tiene que $A = -A^* = -\overline{A^t}$. Luego, $iA = -i\overline{A^t} = \overline{i} \ \overline{A^t} = \overline{iA^t} = \overline{iA^t} = \overline{iA^t}$. Por lo tanto, iA es Hermítica. La respuesta correcta es la opción (C) (o la opción (A) en la otra versión).

Ejercicio 2. Sea $T: \mathbb{C}^2 \to \mathbb{C}^2$ el operador lineal sobre \mathbb{C}^2 , con el producto interno usual, definido por

$$T(z, w) = (z + (1+i)w, (1-i)z + 2w),$$

para todo $(z, w) \in \mathbb{C}^2$. Considere las siguientes afirmaciones:

- (I) T es unitario.
- (II) T es autoadjunto.
- (III) Hay una base ortonormal de \mathbb{C}^2 formada por vectores propios de T.

Las afirmaciones verdaderas son:

- (A) (I) y (II).
- (B) (I) y (III).
- (C) (II) y (III).
- (D) Todas.

Solución: Considere la base canónica de \mathbb{C}^2 , la cual está dada por $\mathcal{C} = \{(1,0),(0,1)\}$. Tenemos que:

$$T(1,0) = (1,1-i),$$

 $T(0,1) = (1+i,2).$

Así,

$$_{\mathcal{C}}((T))_{\mathcal{C}} = \left(\begin{array}{cc} 1 & 1+i \\ 1-i & 2 \end{array}\right).$$

Por simplicidad, llamemos a la matriz anterior A (A = c(T))c. Tenemos que

$$\overline{A^t} = \overline{\left(\begin{array}{cc} 1 & 1-i \\ 1+i & 2 \end{array}\right)} = \left(\begin{array}{cc} 1 & 1+i \\ 1-i & 2 \end{array}\right) = A.$$

Entonces, A es Hermítica. Sabemos que un operador es autoadjunto si y sólo si la matriz asociada en una base ortonormal es Hermítica. Se sigue que T es autoadjunto. Luego, por el Teorema Espectral para operadores autoadjuntos, se tiene que existe una base ortonormal de \mathbb{C}^2 formada por vectores propios de T. Por lo tanto, las afirmaciones (II) y (III) son verdaderas. Notamos además que las columnas de A no forman una base ortonormal de \mathbb{C}^2 , por lo que A no es una matriz unitaria. Esto último implica que T no es un operador unitario (recuerde que un operador es unitario si, y sólo si, la matriz asociada en una base ortonormal es unitaria). La respuesta correcta es la opción (C) (o la opción (D) en la otra versión).

Ejercicio 3. Sea $A \in M_{n \times n}(\mathbb{R})$ una matriz ortogonal. Considere las siguientes afirmaciones:

- (I) A es diagonalizable.
- (II) $det(A) = \pm 1$.
- (III) A^t es ortogonal.

Las afirmaciones verdaderas son:

- (A) (II) y (III).
- (B) (III).
- (C) (I) y (III).
- (D) (I) y (II).

<u>Solución</u>: Primero, las matrices ortogonales no son necesariamente diagonalizables. Considere como contraejemplo la matriz de rotación sobre \mathbb{R}^2 alrededor del origen en un ángulo de $\pi/6$:

$$A = \begin{pmatrix} \cos(\pi/6) & \sin(\pi/6) \\ -\sin(\pi/6) & \cos(\pi/6) \end{pmatrix} = \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix}.$$

Esta matriz es ortogonal (sus columnas forman una base ortonormal de \mathbb{R}^2). Sin embargo, no es diagonalizable porque no tiene valores propios (las raíces de su polinomio característico son complejas).

Ahora volvamos a considerar $A \in M_{n \times n}(\mathbb{R})$ ortogonal, es decir, A es invertible y $A^{-1} = A^t$. Tenemos entonces $I_n = A \cdot A^t$, de donde $1 = \det(I) = \det(A \cdot A^t) = \det(A) \cdot \det(A^t) = \det(A) \cdot \det(A) = (\det(A))^2$. Entonces, $\det(A) = \pm 1$. Además, A^t es invertible ya que $(A^t)^{-1} = (A^{-1})^{-1} = A = (A^t)^t$, y por lo tanto A^t también es ortogonal. Tenemos así que las afirmaciones (II) y (III) son ciertas, mientras que (I) es falsa. La respuesta correcta es la opción (A) (o la opción (B) en la otra versión).

Ejercicio 4. La forma cuadrática $Q: \mathbb{R}^3 \to \mathbb{R}$ dada por

$$Q(x, y, z) = x^2 - z^2 + 2xy + 2axz + 2yz$$

con $a \in \mathbb{R}$ es:

- (A) Semidefinida positiva.
- (B) Semidefinida negativa.
- (C) Depende del valor de a.
- (D) Indefinida.

Solución: La matriz que representa a la forma cuadrática Q es la matriz simétrica $A = \begin{pmatrix} 1 & 1 & a \\ 1 & 0 & 1 \\ a & 1 & -1 \end{pmatrix}$.

Calculemos su polinomio característico para poder clasificar a Q:

$$\chi_A(\lambda) = \det \begin{pmatrix} 1 - \lambda & 1 & a \\ 1 & -\lambda & 1 \\ a & 1 & -1 - \lambda \end{pmatrix} = -\lambda^3 + (a^2 + 3)\lambda + 2a.$$

Notamos que hay al menos un cambio de signo de $-\lambda^3$ a $(a^2+3)\lambda$, ya que a^2+3 siempre es positivo. La existencia o no de otro cambio de signo depende del signo del término independiente 2a (o equivalentemente, del signo de a). Así:

- Si a < 0, se tienen dos cambios de signo, y por la Regla de Descartes, hay dos raíces positivas. Como $\lambda = 0$ no es una raíz en este caso, se tiene que la raíz faltante tiene que ser negativa.
- Si a = 0, entonces $\chi_A(\lambda) = -\lambda^3 + 3\lambda = -\lambda(\lambda^2 3)$. En este caso, se tienen las raíces $\lambda_1 = \sqrt{3}$, $\lambda_2 = 0$ y $\lambda_3 = -\sqrt{3}$.
- Si a>0, se tiene solamente un cambio de signo, por lo que existe sólo una raíz positiva por la Regla de Descartes. Como $\lambda=0$ no es una raíz en este caso, se tiene que las dos raíces restantes (contando multiplicidades) son negativas.

En cualquier caso, se tiene que $\chi_A(\lambda)$ tiene al menos una raíz positiva y otra negativa. Entonces, por el Teorema de Clasificación de Formas Cuadráticas, tenemos que Q es indefinida para cualquier valor de $a \in \mathbb{R}$. La respuesta correcta es la opción (D) (o la opción (C) en la otra versión).

Ejercicio 5. Para un número complejo fijo $b \in \mathbb{C}$ se define el funcional lineal $f: \mathbb{C}^3 \to \mathbb{C}$ dado por

$$f(z, w, u) = z + bw - 3u,$$

para todo $(z, w, u) \in \mathbb{C}^3$. Se considera \mathbb{C}^3 con el producto interno usual. El valor de b para el cual el vector (1, -i, -3) es el representante de Riesz de f es:

- (A) -i.
- (B) i.
- (C) 1.
- (D) -1.

Solución: Sabemos por definición que si (1, -i, -3) es el representante de Riesz del funcional lineal f, entonces se cumple la igualdad $f(z, w, u) = \langle (z, w, u), (1, -i, -3) \rangle$ para todo $(z, w, u) \in \mathbb{C}^3$. Por un lado, tenemos

$$f(z, w, u) = z + bw - 3u.$$

Por otro lado,

$$\langle (z, w, u), (1, -i, -3) \rangle = z \cdot \overline{1} + w \cdot \overline{-i} + u \cdot \overline{-3} = z + iw - 3u.$$

Entonces, z + bw - 3u = z + iw - 3u. Se tiene así que bw = iw para todo $w \in \mathbb{C}$. Por lo tanto, b = i. La respuesta correcta es la opción (B) (o la opción (C) en la otra versión).

Ejercicio 6. Sean V y W espacios vectoriales con producto interno y de dimensión finita, y sea $T:V\to W$ una isometría lineal. Se consideran las siguientes afirmaciones:

- (I) Si T es invertible, entonces T^{-1} es una isometría lineal.
- (II) $\dim(V) > \dim(W)$.
- (III) La restricción $T|_S \colon S \to W$ es una isometría lineal para todo subespacio no nulo $S \subseteq V$.

Las afirmaciones verdaderas son:

- (A) Todas.
- (B) (II) y (III).
- (C) (III).
- (D) (I) y (III).

<u>Solución</u>: La afirmación (I) es cierta. Veamos que $T^{-1}=T^*$. En efecto, sean $v\in V$ y $w\in W$. Escribimos $w=T(T^{-1}(w))$. Tenemos:

$$\left\langle T(v),w\right\rangle _{W}=\left\langle T(v),T(T^{-1}(w))\right\rangle _{W}=\left\langle v,T^{-1}(w)\right\rangle _{V}.$$

La última igualdad se debe a que T preserva el producto interno. Por la unicidad de la adjunta de T, se tiene que $T^{-1} = T^*$. Ahora veamos que $T^{-1} : W \to V$ preserva el producto interno (y por lo tanto, será una isometría). Sean $w_1, w_2 \in W$. Tenemos:

$$\left\langle T^{-1}(w_1), T^{-1}(w_2) \right\rangle_V = \left\langle T^{-1}(w_1), T^*(w_2) \right\rangle_V = \left\langle T(T^{-1}(w_1)), w_2 \right\rangle_W = \left\langle w_1, w_2 \right\rangle_W.$$

La afirmación (II) es falsa. Si $T\colon V\to W$ es una isometría lineal entre espacios vectoriales de dimensión finita, entonces por un resultado visto en el teórico sabemos que T es inyectiva, lo cual implica que $\dim(V) \leq \dim(W)$. Por lo tanto, la desigualdad $\dim(V) > \dim(W)$ representa una contradicción con esto último.

Finalmente, la afirmación (III) es claramente cierta. Basta con verificar que $\langle T|_S(s_1), T|_S(s_2)\rangle_W = \langle s_1, s_2\rangle_V$ para todo $s_1, s_2 \in S$, usando el hecho de que T es una isometría lineal.

Ejercicio de desarrollo

(Justifique detalladamente todas sus respuestas)

1. Defina valores singulares de una matriz real.

- (2 puntos)
- 2. Enuncie el Teorema de Descomposición en Valores Singulares para matrices reales. (6 puntos)
- 3. Halle la descomposición en valores singulares de la matriz $M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}$. (10 puntos)

Solución:

- 1. Ver teórico.
- 2. Ver teórico.
- 3. Hallemos primero los valores singulares de M (tenga en cuenta que se obtendrán 2 valores singulares positivos, ya que M tiene rango 2). Primero, debemos hallar los valores propios de $M^t \cdot M$:

$$M^t \cdot M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}.$$
$$\chi_{M^t \cdot M}(\lambda) = \det \begin{pmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{pmatrix} = (\lambda - 3)(\lambda - 1).$$

Tenemos que $\lambda_1 = 3$ y $\lambda_2 = 1$ son los valores propios de $M^t \cdot M$. Entonces, los valores singulares de M están dados por $\sigma_1 = \sqrt{3}$ y $\sigma_2 = 1$.

Sabemos por el Teorema de Descomposición en Valores Singulares para matrices que existen matrices ortogonales $U \in M_{3\times 3}(\mathbb{R})$, $V \in M_{2\times 2}(\mathbb{R})$, y una matriz $S \in M_{3\times 2}(\mathbb{R})$ de rango 2 tales que $M = U \cdot S \cdot V^t$, donde

$$S = \left(\begin{array}{cc} \sqrt{3} & 0\\ 0 & 1\\ 0 & 0 \end{array}\right).$$

Hallemos la matriz V. Para esto, se necesita obtener una base ortonormal de \mathbb{R}^2 formada por vectores propios de $M^t \cdot M$. Entonces, calculemos los subespacios propios asociados a 3 y a 1:

• $M^t \cdot M - 3I = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}$. Al reducir esta matriz por filas se obtiene la matriz $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$. De aquí se deduce que el subespacio propio S_3 viene dado por

$$S_3 = \left[\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right) \right].$$

(Hemos elegido un generador de norma 1).

• $M^t \cdot M - I = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$. Al reducir esta matriz por filas se obtiene la matriz $\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$. De aquí se deduce que el subespacio propio S_1 viene dado por

$$S_3 = \left[\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \right].$$

Entonces, $\mathcal{A} = \{v_1, v_2\} = \left\{ \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \right\}$ es una base ortonormal de \mathbb{R}^2 formada por vectores propios de $M^t \cdot M$. Colocar estos vectores como columnas genera la matriz V buscada:

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Ahora, hallemos la matriz U, construyendo una base ortonormal $\mathcal{B} = \{w_1, w_2, w_3\}$ de \mathbb{R}^3 dada por

$$w_{1} = \frac{1}{\sigma_{1}} M \cdot v_{1} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix},$$

$$w_{2} = \frac{1}{\sigma_{2}} M \cdot v_{2} = \frac{1}{1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}.$$

El vector faltante w_3 debe ser un vector normal que genere al complemento ortogonal del plano $[w_1, w_2]$. Entonces, podemos tomar $w_3 = w_1 \times w_2$. Recuerde que el producto vectorial $w_1 \times w_2$ tiene norma 1 si w_1 y w_2 tienen norma uno y si son ortogonales entre sí, ya que $||w_1 \times w_2|| = ||w_1|| \cdot ||w_2|| \cdot |\operatorname{sen}(\theta)|$ donde θ es el ángulo entre w_1 y w_2 . Luego:

$$w_1 \times w_2 = \det \left(\begin{array}{ccc} i & j & k \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{array} \right) = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right).$$

Así, tenemos

$$\mathcal{B} = \left\{ \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \right\},$$

y al colocar estos vectores como columnas de una matriz (en el orden en el que aparecen listados) obtenemos la matriz U:

$$U = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

Por lo tanto, la descomposición en valores singulares de M está dada por:

$$M = U \cdot S \cdot V^t = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{pmatrix} \cdot \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$