Вариант 1

- **1.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}[x]_{\leqslant 2}, \ f \mapsto f' + f(-1) \cdot x^2$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{l} пространства $\mathbb{R}[x]_{\leqslant 2}$, в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- 2. Пусть V пространство всех верхнетреугольных матриц размера 2×2 с коэффициентами из \mathbb{R} , $S=\begin{pmatrix}1&2\\-3&0\end{pmatrix}$, v=(1,-1). Рассмотрим на V линейные функции $\alpha_1,\alpha_2,\alpha_3$, где

$$\alpha_1(X) = \operatorname{tr}(X), \ \alpha_2(X) = \operatorname{tr}(XS), \ \alpha_3(X) = vXv^T$$
 для всех $X \in V$.

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2 - 2\alpha_1, \alpha_3)$ является двойственным базисом пространства V^* .

3. Пусть β — билинейная форма на пространстве \mathbb{R}^3 , заданная формулой

$$\beta(x,y) = 3x_1y_1 + (a+2)x_2y_2 + 3x_3y_3 - 4x_1y_2 - 2x_2y_1 - 2ax_2y_3 + 2x_3y_2$$

- 4. В четырёхмерном евклидовом пространстве даны векторы v_1, v_2, v_3 с матрицей Грама $\begin{pmatrix} 3 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$. Для каждого i=1,2,3 обозначим через w_i ортогональную составляющую вектора v_i относительно подпространства, порождаемого двумя другими векторами. Найдите объём параллелепипеда, натянутого на векторы w_1, w_2, w_3 .
- **5.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^3$, заданное формулой $\varphi(x) = [Ax, u]$, где $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}^T$, $u = (1, -1, 1)^T$ и квадратные скобки означают векторное произведение. Найдите расстояние от вектора $v = (3, 1, 4)^T$ до подпространства $\operatorname{Im} \varphi$.
- **6.** В пространстве \mathbb{R}^3 со стандартным скалярным произведением задан тетраэдр с вершинами A(1,3,2), B(4,3,-1), C(7,9,2), D(-2,-1,3). Пусть BH высота тетраэдра, опущенная на грань ACD, и AF биссектриса грани ABC. Найдите угол и расстояние между прямыми BH и AF.

1	2	3	4	5	6	\sum

Вариант 2

- **1.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}[x]_{\leqslant 2}, \ f \mapsto f' f(1) \cdot x$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{l} пространства $\mathbb{R}[x]_{\leqslant 2}$, в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- 2. Пусть V пространство всех нижнетреугольных матриц размера 2×2 с коэффициентами из \mathbb{R} , $S=\begin{pmatrix}1&2\\3&0\end{pmatrix}$, v=(-1,1). Рассмотрим на V линейные функции $\alpha_1,\alpha_2,\alpha_3,$ где

$$\alpha_1(X) = \operatorname{tr}(X), \ \alpha_2(X) = \operatorname{tr}(SX), \ \alpha_3(X) = vXv^T$$
 для всех $X \in V$.

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2 + 2\alpha_1, \alpha_3)$ является двойственным базисом пространства V^* .

3. Пусть β — билинейная форма на пространстве \mathbb{R}^3 , заданная формулой

$$\beta(x,y) = 2x_1y_1 + (a+4)x_2y_2 + 3x_3y_3 - 6x_1y_2 + 2x_2y_1 + 2ax_2y_3 + 4x_3y_2$$

- 4. В четырёхмерном евклидовом пространстве даны векторы v_1, v_2, v_3 с матрицей Грама $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 3 \end{pmatrix}$. Для каждого i=1,2,3 обозначим через w_i ортогональную составляющую вектора v_i относительно подпространства, порождаемого двумя другими векторами. Найдите объём параллелепипеда, натянутого на векторы w_1, w_2, w_3 .
- **5.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^3$, заданное формулой $\varphi(x) = [Ax, u]$, где $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}^T$, $u = (1, 1, -1)^T$ и квадратные скобки означают векторное произведение. Найдите расстояние от вектора $v = (4, 3, 1)^T$ до подпространства $\operatorname{Im} \varphi$.
- **6.** В пространстве \mathbb{R}^3 со стандартным скалярным произведением задан тетраэдр с вершинами $A(2,-3,1),\,B(2,3,7),\,C(-1,-3,4),\,D(1,0,8).$ Пусть BH высота тетраэдра, опущенная на грань ACD, и AF биссектриса грани ABC. Найдите угол и расстояние между прямыми BH и AF.

1	2	3	4	5	6	\sum

Вариант 3

- **1.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}[x]_{\leqslant 2}, \ f \mapsto f' f(1) \cdot x^2$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{l} пространства $\mathbb{R}[x]_{\leqslant 2}$, в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- 2. Пусть V пространство всех верхнетреугольных матриц размера 2×2 с коэффициентами из \mathbb{R} , $S=\begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix}$, v=(1,-1). Рассмотрим на V линейные функции $\alpha_1,\alpha_2,\alpha_3,$ где

$$\alpha_1(X) = \operatorname{tr}(X), \ \alpha_2(X) = \operatorname{tr}(XS), \ \alpha_3(X) = vXv^T$$
 для всех $X \in V$.

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2, \alpha_3 + 2\alpha_1)$ является двойственным базисом пространства V^* .

3. Пусть β — билинейная форма на пространстве \mathbb{R}^3 , заданная формулой

$$\beta(x,y) = 3x_1y_1 + (a+4)x_2y_2 + 5x_3y_3 - 4x_1y_2 - 2x_2y_1 - 2ax_2y_3 - 2x_3y_2$$

- 4. В четырёхмерном евклидовом пространстве даны векторы v_1, v_2, v_3 с матрицей Грама $\begin{pmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix}$. Для каждого i=1,2,3 обозначим через w_i ортогональную составляющую вектора v_i относительно подпространства, порождаемого двумя другими векторами. Найдите объём параллелепипеда, натянутого на векторы w_1, w_2, w_3 .
- **5.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^3$, заданное формулой $\varphi(x) = [Ax, u]$, где $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}^T$, $u = (1, -1, 1)^T$ и квадратные скобки означают векторное произведение. Найдите расстояние от вектора $v = (3, -2, 4)^T$ до подпространства $\operatorname{Im} \varphi$.
- **6.** В пространстве \mathbb{R}^3 со стандартным скалярным произведением задан тетраэдр с вершинами $A(2,1,2),\,B(-1,4,2),\,C(2,7,8),\,D(3,-2,-2).$ Пусть BH высота тетраэдра, опущенная на грань ACD, и AF биссектриса грани ABC. Найдите угол и расстояние между прямыми BH и AF.

1	2	3	4	5	6	\sum

Вариант 4

- **1.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}[x]_{\leqslant 2}, \ f \mapsto f' + f(-1) \cdot x$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{l} пространства $\mathbb{R}[x]_{\leqslant 2}$, в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- 2. Пусть V пространство всех нижнетреугольных матриц размера 2×2 с коэффициентами из \mathbb{R} , $S = \begin{pmatrix} 0 & -2 \\ 3 & 1 \end{pmatrix}$, v = (-1,1). Рассмотрим на V линейные функции $\alpha_1,\alpha_2,\alpha_3$, где

$$\alpha_1(X) = \operatorname{tr}(X), \ \alpha_2(X) = \operatorname{tr}(SX), \ \alpha_3(X) = vXv^T$$
 для всех $X \in V$.

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2, \alpha_3 - 2\alpha_1)$ является двойственным базисом пространства V^* .

3. Пусть β — билинейная форма на пространстве \mathbb{R}^3 , заданная формулой

$$\beta(x,y) = 2x_1y_1 + (a+7)x_2y_2 + 4x_3y_3 - 6x_1y_2 - 2x_2y_1 + 2ax_2y_3 - 2x_3y_2$$

- 4. В четырёхмерном евклидовом пространстве даны векторы v_1, v_2, v_3 с матрицей Грама $\begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$. Для каждого i=1,2,3 обозначим через w_i ортогональную составляющую вектора v_i относительно подпространства, порождаемого двумя другими векторами. Найдите объём параллелепипеда, натянутого на векторы w_1, w_2, w_3 .
- **5.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^3$, заданное формулой $\varphi(x) = [Ax, u]$, где $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{pmatrix}^T$, $u = (1, 1, -1)^T$ и квадратные скобки означают векторное произведение. Найдите расстояние от вектора $v = (4, 2, -3)^T$ до подпространства $\operatorname{Im} \varphi$.
- **6.** В пространстве \mathbb{R}^3 со стандартным скалярным произведением задан тетраэдр с вершинами $A(-1,2,2),\,B(5,8,2),\,C(-1,5,-1),\,D(2,9,1).$ Пусть BH высота тетраэдра, опущенная на грань ACD, и AF биссектриса грани ABC. Найдите угол и расстояние между прямыми BH и AF.

1	2	3	4	5	6	\sum