Lecture 17 Landfill operation and construction

References on landfill

- McBean, E.A., F.A. Rovers and G.J. Farquhar, 1995. Solid Waste Landfill Engineering and Design. Prentice Hall PTR, Englewood Cliffs, New Jersey.
- Qian, X., R. M. Koerner, and D. H. Gray, 2002. *Geotechnical Aspects of Landfill Design and Construction*. Prentice Hall, Upper Saddle River, New Jersey.
- Bagchi, A., 1994. Design, Construction, and Monitoring of Sanitary Landfill, Second Edition. John Wiley & Sons, New York.
- Daniel, D.E., and R.M. Koerner, 1995. Waste Containment Facilities, Guidance for Construction, Quality Assurance and Quality Control of Liner and Cover Systems. American Society of Civil Engineers, New York.

MSW landfill cell construction

MSW landfill operations

Waste cell is typically 3 to 5 meters high

Slope of working face controls area to volume of landfill and compaction of waste

Best compaction at 10:1 (horizontal: vertical)

Usual slope is 3:1 to reduce landfill surface area

MSW landfill operations

- "Working face" = area of active waste placement Approximately 60-cm (2-ft) thickness of waste placed on
 - slope
 - Compacted by 2 to 5 passes of steel-wheel compactor (Compacting is lighter at bottom, near liner, to avoid puncture)
 - Multiple lifts placed to complete a cell
 - Cell is covered by 15 cm (6 inches) of daily cover

Steel-wheeled compactor

See image at the Web site of MSW Management Magazine, Bolton, N., Compactonomics, January/February 2000.

http://www.forester.net/msw_0001_compactono mics.html.

Accessed May 11, 2004.

Waste density

Residential waste at curbside	150 kg/m ³
After compaction in garbage	300 kg/m ³
truck	(range: 180 to 415 kg/m ³)
In landfill after compaction	590 to 830 kg/m ³
Typical soil (for comparison)	1,800 kg/m ³
	(1.5 tons/yd ³)

MSW daily cover

Materials:

Usually soil

Sometimes:

shredded vegetation

chipped wood

compost

spray-on proprietary mixes

Cover-to-waste ratio is typically 1 to 4 for soil

→ Substantial volume of landfill goes to daily cover!

Spray-on daily cover

See images at the Web site of Source: Emerald Seed and Supply, WASTE-COVER™ Landfill Mulch,

http://www.emeraldseedandsupply.com/hydroseeding/mulch wastecover.html.

Accessed May 11, 2004.

Purposes of daily cover

Reduce moisture entering waste

Most moisture enters waste during filling

Control litter

Reduce odors

Limit access to rodents and birds

Reduce fire risk

Provide vehicle access to active face

Improve aesthetics

Liner systems

Alternative liner materials

- Soil liner
 Also called compacted clay liner (CCL)
- 2. Flexible membrane liner (FML)
 Also called geomembrane
- 3. Geosynthetic clay liner (GCL)
- 4. Composite liners

Liner systems

Single-liner systems:

Typical for municipal solid waste

Compacted low-K soil, geomembrane, or composite

Double-liner systems:

Typical for hazardous waste, often for MSW

Two liners with high-K drainage layer in between to intercept leachate

Design recognizes that liners leak!

Liner materials – soil

Advantages:

Clay can attenuate pollutants

Thickness provides redundancy, resistance to penetration

Long-lived, self-healing

Inexpensive if locally available

Soil attenuation capacity

Major Attenuation Mechanism(s) of Landfill Leachate Constituents

Leachate Constituent	Major Attenuation Mechanism	Mobility in Clayey Environment	
1. Aluminum	Precipitation	Low	
2. Ammonium	Exchange, biological uptake	Moderate	
3. Arsenic	Precipitation, adsorption □	Moderate □	
4. Barium	Adsorption, exchange, precipitation	ı Low	
5. Berillium	Precipitation, exchange	Low	
6. Boron	Adsorption, percipitation	High	
7. Cadmium	Precipitation, adsorption	Moderate	
8. Calcium	Precipitation, exchange	High	
9. Chemical oxygen demand	Biological uptake, filtration	Moderate	
10. Chloride	Dilution	High	
11. Chromium	Precipitation, exchange, adsorption	Low (Cr^{3+}) ; High (Cr^{6+})	
12. Copper	Adsorption, exchange, precipitation	1 Low	
13. Cyanide	Adsorption	High	
14. Fluoride	Exchange	High	
15. Iron	Precipitation, exchange adsorption	Moderate to high	
16. Lead	Adsorption, exchange precipitation	Low	
17. Magnesium	Exchange, precipitation	Moderate	
18. Manganese	Precipitation, exchange	High	
19. Mercury	Adsorption, precipitation	High	
20. Nickel	Adsorption, precipitation	Moderate	
21. Nitrate	Biological uptake, dilution	High	
22. PCBs	Biological uptake, adsorption	Moderate to high	
23. Potassium	Adsorption, exchange	Moderate	
24. Selenium	Adsorption, exchange	Moderate	
25. Silica	Precipitation	Moderate	
26. Sodium	Exchange	Low to high	
27. Sulfate	Exchange, dilution	High	
28. Zinc	Exchange, adsorption, precipitation	Low	
29. Virus	Unknown	Low	
30. Volatile organic compound	d Biological uptake, dilution	Moderate	
Adapted from: Bagchi, A. Design, Construction, and Monitoring of Sanitary Landfill. 2nd ed. New York: John Wiley & Sons, 1994.			

Liner materials – soil

Disadvantages:

Construction is difficult – requires heavy equipment

Thickness reduces volume for waste

Subject to freeze/thaw and desiccation cracking

Low tensile and shear strength – may shear or crack due to settlement

May be degraded by chemicals

Expensive if not available locally

Extensive field testing required

Liner materials – soil

Usual design standard: K ≤ 10⁻⁷ cm/sec

Origin of this standard is unclear

Probably* selected as an achievable K

Turns out to be very difficult to achieve K ≤ 10⁻⁷ cm/sec

^{*} Daniel, D.E., and R.M. Koerner, 1995. Waste Containment Facilities, Guidance for Construction, Quality Assurance and Quality Control of Liner and Cover Systems. American Society of Civil Engineers, New York.

Liner materials – geomembranes

Advantages:

Easily installed – needs only light equipment

Very low leakage rates if free of holes

Has high tensile and shear strength, flexibility – accommodates settlement

Thin – leaves volume for waste

Liner materials – geomembranes

Disadvantages

Photodegrades

Slopes on geomembranes may be unstable

High leakage if punctured or poorly seamed

Some chemicals may be incompatible, permeable

Thin – subject to puncturing

No sorptive capacity

Unknown lifetime

Less field quality testing required

Liner materials – geosynthetic clay

Manufactured composite of bentonite and geotextile

Advantages:

Easily installed

Self sealing – no seams required

Some sorptive capacity

Low leakage rates

Liner materials – geosynthetic clay

Disadvantages

Thin – easily punctured

Slopes on geosynthetic clay liners may be unstable

Limited experience

Composite liner ≠ double liner

Composite liner = two or more materials

Usually clay and geomembrane

Combines desirable properties of two materials

Advantages:

Low leakage rates

Low contaminant mass flux

Provides sorptive capacity

Acceptable loss of waste storage space

Acceptable ground-water protection

Disadvantages:

Difficult to construct

Expensive

	Geomembrane	Clay
Hydraulic properties	Decreases leakage	Delays travel time
Physical properties	Thin: can be torn or punctured	Thick: cannot be torn or punctured
	Retains continuity under stress or strain	May crack under stress or strain
Endurance properties	Subject to aging	Does not age
	Not self-healing	Self-healing
	Chemically resistant	May be affected by chemicals

Liner failure modes

Tension failure

Liner slippage

"Blowout" from water pressure

Liner uplift by water pressure

Liner uplift by wind

At pipes, access ways, other structural details

Tensile failure

Flexible membrane liners (FMLs) have finite tensile strength

Measured in laboratory by increasing stress on sample and measuring strain

Stress = force per unit area = σ

Strain = elongation under stress / original length = ε

$$\ell_o \uparrow \mid \qquad \uparrow \ell = \ell_o + \Delta \ell \qquad \qquad \epsilon = \frac{\Delta \ell}{\ell_o}$$

Units

Stress has units of pressure

```
Metric system: 1 \text{ Pa} = 1 \text{ N/m}^2
```

Possible alternatives:

```
1 \text{ kg-force/m}^2 = 9.8 \text{ Pa}
```

$$1 \, dyn/cm^2 = 0.1 \, Pa$$

English units: $1 \text{ psi} = 1 \text{ pound-force / in}^2$

```
1 psi = 6895 Pa
```

Also used:

```
1 psf = 1 pound-force / ft^2
```

Units continued

Density vs. unit weight

```
Density \rho = mass / unit volume
e.g. \rho_{WATER} = 1 g/cm<sup>3</sup> = 1 kg/L
```

```
Unit weight \gamma = weight / unit volume = \rho g e.g. \gamma_{WATER} = 9.8 N/L = 1 kg-force/L
```

Stress-strain tests of FMLs

U.S. EPA, 1989. Seminar Publication: Requirements for Hazardous Waste Landfill Design, Construction, and Closure. Report Number EPA/625/4-89/022. Center for Environmental Research Information, U.S. Environmental Protection Agency, Cincinnati, Ohio. August 1989.

FML tensile strength

Typical FML yield stress = 1000 to 5000 psi

Manufacturers provide tensile strength data for their products

Review of statics

Review of statics

Friction force

 F_{max} is maximum friction force = Nf where f is friction factor

$$\phi$$
 = friction angle $\tan \phi = \frac{F_{\text{max}}}{N}$

Forces on FML due to its own weight

W = weight of FML (per unit width)

F = force of friction (per unit width)

d = depth of landfill

 β = angle of landfill side slope

Weight of liner, W

 $W = g\rho_L t (d / \sin \beta)$

t = liner thickness

 ρ_L = density of liner = 0.92 to 1.4 g/cm³

Forces on FML due to its own weight

Friction force on liner

Normal force N = W cos β

 $F = N \tan \phi = W \cos \beta \tan \phi$

Tensile forces on FML

Tensile force on liner: $T = W \sin \beta - F$

Forces on FML due to its own weight

Tensile force on liner: $T = W \sin \beta - F = W \sin \beta - W \cos \beta \tan \phi$

Tensile stress on liner =
$$\frac{\text{tensile force}}{\text{x - section area}} = \sigma$$

For unit liner width, $\sigma = T/t$ $\sigma < \sigma_y$ to avoid liner failure!

Net force on liner at top of slope = $F_L = W \sin \beta - F = W \sin \beta - W \cos \beta \tan \phi$

Liner will slip down landfill slope if F < W sin β

Friction force on liner

Normal force N = W cos β

Liner slips unless:

F = N tan ϕ = W cos β tan ϕ > W sin β tan ϕ > W cos β / W sin β = tan β

Typical values of φ:

	Friction angle, ϕ	Horizontal:vertical
Soil to FML	17 to 27°	3.3:1 to 2:1
Soil to geotextile	23 to 30°	2.3:1 to 1.7:1
FML to geotextile	6 to 23°	9.5:1 to 2.4:1

Typical design is 3:1 = 19.5°

Factor of safety for liner slippage:

$$FS = \frac{\tan \phi}{\tan \beta} = 1.25 \text{ to } 1.5$$

A higher factor of safety is needed when outcome endangers public or environment!

Simple analysis does not necessarily suffice for design

Example: Kettleman Hills hazardous waste landfill in California had liner slip failure in 1988

Pre-filling analysis indicated liner would be stable

Subsequent multi-dimensional analysis showed instabilities

Anchorage to resist liner slippage

 F_B is the net force on the liner at the top of the slope = W sin β – W cos β tan ϕ

F_B is resisted by F_A, the anchorage force

Anchorage to resist liner slippage

Terminology:

Anchorage design

$$F_A = g\rho_S h b tan\phi + g\rho_L t L_A tan\phi$$

This equation ignores sidewall friction in anchor trench

Anchorage design

 $F_A = g\rho_S h b tan\phi + g\rho_L t L_A tan\phi + 2K_o g\rho_S h^2/2 tan\phi$ Including sidewall friction in anchor trench

Anchorage design

Anchorage force, F_A, resists pull by liner, F_L

Factor of safety = $FS_A = F_A/F_L$ should be 1.2 to 1.5

Anchorage with soil cover

 $F_A = g\rho_S (h + h') b tan\phi + (g\rho_L t + g\rho_S h') L_A tan\phi$ (Does not include anchor trench sidewall friction)

Other forces to be considered

Weight of soil on liner = $g\rho_S$ h' d cos β

Weight of vehicle

= T sin β for vehicle of weight T

Force of equipment braking ≈ 0.3 T

Seepage (weight of water on liner)

Force of anchorage at base if any

Wind forces on liner

Requires analysis of potential maximum wind, uplift associated with that wind

Design needs to determine spacing of sand bags to weigh down empty liner

Structural details as source of failure

- Standpipes are installed to provide access to leachate collection system
- Consolidating waste exerts downward pull on standpipe
- Frictional pull can punch standpipe through liner if forces get too great
- Remedy is to cover standpipe with liner or other low-friction material to reduce pull of waste, and to strengthen below standpipe

FML to reduce friction on standpipe

U.S. EPA, 1989. Seminar Publication: Requirements for Hazardous Waste Landfill Design, Construction, and Closure. Report Number EPA/625/4-89/022. Center for Environmental Research Information, U.S. Environmental Protection Agency, Cincinnati, Ohio. August 1989.

Standpipe structural elements

U.S. EPA, 1989. Seminar Publication: Requirements for Hazardous Waste Landfill Design, Construction, and Closure. Report Number EPA/625/4-89/022. Center for Environmental Research Information, U.S. Environmental Protection Agency, Cincinnati, Ohio. August 1989.

Pipes to leachate collection

Leachate pipe detail

If leachate pipe is firmly fixed to liner, then if the pipe gets hit by a vehicle or similar, liner can tear Need instead to construct flexible penetrations, to avoid damage

Source: U.S. EPA, 1989. Seminar Publication: Requirements for Hazardous Waste Landfill Design, Construction, and Closure. Report Number EPA/625/4-89/022. Center for Environmental Research Information, U.S. Environmental Protection Agency, Cincinnati, Ohio. August 1989.

Leachate pipe detail

Source: U.S. EPA, 1989. Seminar Publication: Requirements for Hazardous Waste Landfill Design, Construction, and Closure. Report Number EPA/625/4-89/022. Center for Environmental Research Information, U.S. Environmental Protection Agency, Cincinnati, Ohio. August 1989.

Organic chemical transport through composite liner

Partition coefficients for HDPE

Chemical	K _g
Methylene chloride	1.7 - 2.9
Toluene	63 – 150
TCE	44 – 82
<i>m</i> -Xylene	190 - 310

Source: Park, J. K., and M. Nibras, 1993. Mass flux of organic chemicals through polyethylene geomembranes. *Water Environment Research*. Vol. 65, No. 3, Pg. 227-237. May/June 1993.

$$K_{g} = \frac{\frac{M_{SORBED}}{M_{FML}} \rho_{FML}}{C_{w}} \times 10^{6}$$

 K_g = FML partition coefficient (-) M_{SORBED} = mass sorbed to FML (g) M_{FML} = mass of FML (g) ρ_{FML} = density of FML (g/cm³) C_W = conc. in water (mg/L)

Toluene sorption by liners

Toluene transport through liners

Liner blowout

Empty landfill, with liner, below the water table:

Critical hydraulic head for liner base

h_b = critical head (relative to landfill base elevation) [L]

$$h_b = \frac{4}{3} \frac{K_b C_u}{\rho_w} \left(\frac{d}{L_b}\right)^2 + \frac{\rho_s}{\rho_w} d$$

Critical hydraulic head for liner base

```
h<sub>b</sub> = critical head (relative to landfill base elevation) [L]
K_b = empirical constant \approx 0.25
\gamma_{\rm w} = unit weight of water [M/L<sup>3</sup>] = g\rho_{\rm W}
\gamma_s = unit weight of soil [M/L<sup>3</sup>] = g\rho_s
C_{II} = unit shear strength of clay [M/L<sup>2</sup>]
   \approx 7500-10,000 kg-force/m<sup>2</sup>
   \approx 1500-2000 psf
d = liner thickness [L]
L<sub>b</sub> = length of base of landfill [L]
```

Sidewall blowout

h_b = critical head (relative to landfill base elevation) [L]

$$h_b = \sqrt{\frac{2C_u}{\gamma_w} + \frac{\gamma_s}{\gamma_w} d_b} d\sin^2\theta$$

Adapted from: Bagchi, A. *Design, Construction, and Monitoring of Sanitary Landfill.* 2nd ed. New York: John Wiley & Sons, 1994.

Ground-water drains to prevent blowout

