Homework 2

ALECK ZHAO

February 15, 2018

Section 1.6

- (a) $|z 1 + i| \le 3$
- (b) $|\arg z| < \pi/4$
- (c) 0 < |z 2| < 3
- (d) $-1 < \text{Im } z \le 1$
- (e) $|z| \ge 2$
- (f) $(\text{Re } z)^2 > 1$
- 2. Sketch each of the given sets.

Answer. Plots attached on last page. All generated by me in MATLAB.

- 3. Which of the given sets are open?
 - **Answer.** (b), (c), (f) are open.
- 4. Which of the given sets are domains?
 - **Answer.** (b), (c) are domains.
- 6. Describe the boundary of each of the given sets.

Answer. (a) Solid boundary circle of radius 3 centered at z = 1 - i.

- (b) Two dotted rays from the origin, $\theta = \pi/4$ and $\theta = -\pi/4$.
- (c) Dotted boundary circle of radius 3 centered at z=2, and a hole at z=2.
- (d) Solid boundary line at Im z = 1 and dotted boundary line at Im z = -1.
- (e) Solid boundary circle of radius 2 centered at the origin.
- (f) Two dotted boundary lines at Re z = 1 and Re z = -1.

extra. Which of the sets are closed?

Answer. (a), (e) are closed.

Section 2.1

- 3. Describe the range of each of the following functions.
 - (a) f(z) = z + 5 for Re z > 0

Solution. The range is $\{z : \text{Re } z > 5\}$, all complex numbers with real part greater than 5. \square

(b) $g(z) = z^2$ for z in the first quadrant, Re $z \ge 0$, Im $z \ge 0$.

Solution. Here, $z = re^{\theta i}$ with $0 \le \theta \le \pi/2$. Then $g(z) = z^2 = r^2 e^{2\theta i}$ where $0 \le 2\theta \le \pi/2$. Thus the range is the all of the first two quadrants.

(c) $h(z) = \frac{1}{z}$ for $0 < |z| \le 1$

Solution. The range is $\{z:|z|\geq 1\}$, all complex numbers at least 1 away from the origin. \square

(d) $p(z) = -2z^3$ for z in the quarter-disk $|z| < 1, 0 < \arg z < \pi/2$.

Solution. Here, $z = re^{i\theta}$ with $0 < \theta < \pi/2$ and r < 1. Then $p(z) = -2z^3 = -2r^3e^{3\theta i}$, where $0 < 3\theta < 3\pi/2$, and $\left|-2r^3e^{3\theta i}\right| < 2$. Thus the range is the 3/4-disk of radius 2 centered at the origin, with $0 < \varphi < 3\pi/2$.

5. (e) For the complex exponential function $f(z) = e^z$ defined in Sec 1.4, describe the image of the infinite strip $0 \le \text{Im } z \le \pi/4$.

Solution. For z in this strip, we have z = a + bi where $0 \le b \le \pi/4$. Then $e^z = e^{a+bi} = e^a e^{bi}$, where e^{bi} lies between the rays $\theta = 0$ and $\theta = \pi/4$ in the complex plane. Then e^a can be any positive number, so the image is all complex numbers with $0 \le \theta \le \pi/4$ excluding 0.

6. The Joukowski mapping is defined by

$$w = J(z) = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

Show that

(a) J(z) = J(1/z)

Proof. We have

$$J\left(\frac{1}{z}\right) = \frac{1}{2}\left(\frac{1}{z} + \frac{1}{1/z}\right) = \frac{1}{2}\left(\frac{1}{z} + z\right) = J(z)$$

(b) J maps the unit circle |z|=1 onto the real interval [-1,1].

Proof. We have

$$J(z) = \frac{1}{2} \left(z + \frac{1}{z} \right) = \frac{1}{2} \left(z + \frac{\overline{z}}{|z|^2} \right) = \frac{1}{2} \left(z + \overline{z} \right) = \operatorname{Re} z$$

for z on the unit circle, which is the range [-1, 1].

(c) J maps the circle |z| = r $(r > 0, r \neq 1)$ onto the ellipse

$$\frac{u^2}{\left[\frac{1}{2}\left(r + \frac{1}{r}\right)\right]^2} + \frac{v^2}{\left[\frac{1}{2}\left(r - \frac{1}{r}\right)\right]^2} = 1$$

which has foci at ± 1 .

Proof. Let $z = r(\cos \theta + i \sin \theta)$. Then

$$J(z) = \frac{1}{2} \left[r(\cos \theta + i \sin \theta) + \frac{1}{r(\cos \theta + i \sin \theta)} \right]$$
$$= \frac{1}{2} \left[r(\cos \theta + i \sin \theta) + \frac{1}{r}(\cos \theta - i \sin \theta) \right]$$
$$= \frac{1}{2} \left(r + \frac{1}{r} \right) \cos \theta + i \cdot \frac{1}{2} \left(r - \frac{1}{r} \right) \sin \theta$$

If we treat this as a parametric equation in \mathbb{R}^2 where $u = \frac{1}{2} \left(r + \frac{1}{r} \right) \cos \theta$ and $v = \frac{1}{2} \left(r - \frac{1}{r} \right) \sin \theta$, this traces out the ellipse

$$1 = \cos^2 \theta + \sin^2 \theta = \left(\frac{u}{\frac{1}{2}\left(r + \frac{1}{r}\right)}\right)^2 + \left(\frac{v}{\frac{1}{2}\left(r - \frac{1}{r}\right)}\right)^2$$

as desired. The foci c satisfy

$$c^2 = \left[\frac{1}{2}\left(r + \frac{1}{r}\right)\right]^2 - \left[\frac{1}{2}\left(r - \frac{1}{r}\right)\right]^2 = \frac{1}{4}\left[\left(r^2 + \frac{1}{r^2} + 2\right) - \left(r^2 + \frac{1}{r^2} - 2\right)\right] = 1$$

$$\implies c = \pm 1$$

Section 2.2

2. Sketch the first five terms of the sequence $(2i)^n$, $n = 1, 2, 3, \cdots$ and then describe the divergence of this sequence.

Solution. This graph was generated in MATLAB. The divergence goes to infinity.

Figure 2: First 5 points of $(2i)^n$

7. Decide whether each of the following sequences converges, and if so, find its limit.

(a)
$$z_n = \frac{i}{n}$$

Solution. This sequence converges to 0.

(b) $z_n = i(-1)^n$

Solution. This sequence does not converge because it oscillates between i and -i.

(c) $z_n = \arg\left(-1 + \frac{i}{n}\right)$

Solution. We have

$$z_n = \arg\left(-1 + \frac{i}{n}\right) = \tan^{-1}\left(\frac{1}{n}\right) \to 0$$

Since the complex number is in the second quadrant, $z_n \to \pi$.

(d) $z_n = \frac{n(2+i)}{n+i}$

Solution. We have

$$z_n = \frac{n(2+i)}{n+i} = \frac{(2n+ni)(n-i)}{n^2+1} = \frac{(2n^2+n)+(n^2-2n)i}{n^2+1}$$
$$= \frac{2n^2+n}{n^2+1} + \frac{n^2-2n}{n^2+1}i \to 2+i$$

so the sequence converges to 2+i.

(e)
$$z_n = (\frac{1-i}{4})^n$$

Solution. We have

$$z_n = \left(\frac{1}{4}\right)^n (1-i)^n = \left(\frac{\sqrt{2}}{4}\right)^n \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)^n$$
$$= \left(\frac{\sqrt{2}}{4}\right)^n e^{-n\pi i/4} \to 0$$

so this sequence converges to 0.

(f) $z_n = \exp\left(\frac{2n\pi i}{5}\right)$

Solution. This sequence does not converge because it oscillates between 10 distinct values. \Box

21. (d) Find the limit

$$\lim_{z \to -\pi i} \exp\left(\frac{z^2 + \pi^2}{z + \pi i}\right)$$

Solution. We have

$$\lim_{z \to -\pi i} \exp\left(\frac{z^2 + \pi^2}{z + \pi i}\right) = \lim_{z \to -\pi i} \exp\left(\frac{(z + \pi i)(z - \pi i)}{z + \pi i}\right)$$
$$= \lim_{z \to -\pi i} e^{z - \pi i} = e^{-2\pi i} = 1$$

(e) Plot of $|z| \geq 2$

(f) Plot of $(\operatorname{Re} z)^2 > 1$