LAPLACE TRANSFORM

Definition

$$L\{F(t)\} = \int_{0}^{\infty} e^{-st} F(t) dt = f(s)$$

Linearity Property

$$L[c_1F_1(t) + c_2F_2(t)] = c_1L[F_1(t)] + c_2L[F_2(t)]$$

Problems

01)Using the definition, find the Laplace Transform of the following functions

(a)
$$F(t) = \begin{cases} t & 0 < t < 4 \\ 5 & t > 4 \end{cases}$$
 (b) $F(t) = \begin{cases} \sin t & 0 < t < \pi \\ \cos t & t > \pi \end{cases}$ (D-08)

Homework

02) Using the definition, find the Laplace Transform of the following functions

(a)
$$F(t) = \begin{cases} (t-a)^3 & 0 < t < a \\ 0 & t > a \end{cases}$$
 (M-11) (b) $F(t) = \begin{cases} \cos t & 0 < t < 2\pi \\ 0 & t > 2\pi \end{cases}$

Standard Formulae

Function F(t)	Laplace Transform f(s)
1	$\frac{1}{s}$
Т	$\frac{s}{\frac{1}{s^2}}$
t ⁿ	$\frac{\Gamma(n+1)}{s^{n+1}} = \frac{n!}{s^{n+1}}$ if n is a positive integer
sin at	$\frac{a}{s^2 + a^2}$
cos at	$\frac{s}{s^2 + a^2}$
e ^{at}	$\frac{1}{s-a}$
sinh at	$\frac{a}{s^2-a^2}$
cosh at	$\frac{s}{s^2-a^2}$

03) Find the Laplace Transform of following functions

(a)
$$(t+1)^3$$

(b)
$$\cos^4 t$$

(a)
$$(t+1)^3$$
 (b) $\cos^4 t$ (c) $\sin 2t \sin 4t \sin 6t$

(d)
$$\frac{\sin\sqrt{t}}{\sqrt{t}}$$
 (D-09)

04) Show that

(a)
$$L[\sin \sqrt{t}] = \frac{\sqrt{\pi}}{2s^{3/2}} e^{-1/4s}$$
 (D-13,D-11) (b) $L\{\sin^3 t\} = \frac{3!}{(s^2+1)(s^2+9)}$

(b)
$$L\{\sin^3 t\} = \frac{3!}{(s^2+1)(s^2+9)}$$

$$(c)\alpha = \frac{\pi}{4} \text{ Using Laplace Transform if } \int_{0}^{\infty} e^{-2t} \sin(t+\alpha) \cos(t-\alpha) dt = \frac{3}{8} \text{ (D-14,D-10)}$$

Homework

05) Find the Laplace Transform of following functions

(a)
$$\left(\sqrt{t}-1\right)^4$$

(c)
$$\cosh^4 t$$

(d) $\cos^5 t$

06) Show that

(a)
$$L[\frac{\cos\sqrt{t}}{\sqrt{t}}] = \frac{\sqrt{\pi}}{\sqrt{s}}e^{-1/4s}$$
 (M-12, M-11)

(b)
$$L\{\sin^5 t\} = \frac{5!}{(s^2+1)(s^2+9)(s^2+25)}$$
 and hence find $L\{\sin^5 2t\}$

$$(c) L[J_0(t)] = \frac{1}{\sqrt{s^2 + 1}} if \ J_0(t) = \sum_{0}^{\infty} \frac{(-1)^r}{(r!)^2} \left(\frac{t}{2}\right)^{2r}$$
 (M-10)

First Shift Theorem

If
$$L{F(t)}= f(s)$$
 then $L{e^{at}F(t)} = f(s-a)$ (M-11)

Problems

07) Find the Laplace transform of the following functions

(a)
$$(1 + te^{-t})^3$$

(b)
$$(t^2 \sinh 2t)^2$$
 (M-08)

(c)
$$e^{-2t} \sin^2 4t$$

Homework

08) Find the Laplace transform of the following functions

(a)
$$\sin t \cos 2t \cosh t$$
 (**D-14**) (b) $\sinh \frac{1}{2} t \sin \frac{\sqrt{3}}{2} t$ (**M-10**) (c) $\left(\frac{\cos t + \sin t}{e^t}\right)^2$ (d) $te^{-t} \cosh 2t$ (**M-15**)

09) Evaluate
$$\int_{0}^{\infty} e^{-\sqrt{2}t} \sin t \sinh t \, dt$$

Second Shift Theorem

If $L{F(t)}= f(s)$ then

G(t) = 0 for 0 < t < a and F(t - a) for t > a then $L(G(t)) = e^{-as}f(s)$

Problem

10) Find L{G(t)} where G(t) = 0 for
$$0 < t < \frac{2\pi}{3}$$
 and $\cos(t - \frac{2\pi}{3})$ for $t > \frac{2\pi}{3}$

Homework

11) Find L{G(t)} where G(t) = 0 for
$$0 < t < \frac{2\pi}{3}$$
 and $\sin^2(t - \frac{2\pi}{3})$ for $t > \frac{2\pi}{3}$

Change of Scale Theorem

If L{F(t)}= f(s) then
$$L{F(at)} = \frac{1}{a}f(\frac{s}{a})$$

Problem

12) Find
$$L\{F(3t)\}$$
 and $L\{F(\frac{t}{2})\}$ if given $L\{F(t)\} = \frac{1-3s}{s^2-4s+2}$

Homework

13) Find
$$L\{e^{-t}F(2t)\}$$
 if given $L[tF(t)] = \frac{1}{s(s^2+1)}$

14) Find
$$L\{e^{-2t}f(2t)\}$$
 if given $L\{F(t)\} = \frac{s}{s^2 + s + 4}$

Multiplication By t Theorem

If L{F(t)}= f(s) then
$$L{t^nF(t)} = (-1)^n f^{(n)}(s)$$

Problems

15) Find the Laplace transform of the following functions & hence evaluate the integral given

(a)
$$t \sin^2 t$$
; $\int_0^\infty e^{-2t} t \sin^2 t dt = \frac{1}{8}$

(a)
$$t \sin^2 t$$
; $\int_0^\infty e^{-2t} t \sin^2 t dt = \frac{1}{8}$ (b) $t \sqrt{1 + \sin t}$; $\int_0^\infty e^{-t} t \sqrt{1 + \sin t} dt = \frac{28}{25}$

(c)
$$t^2 \sin 3t$$
; $\int_0^\infty e^{-2t} t^2 \sin 3t \, dt$ (M-13,M-12) (d) $t^3 \sin t$; $\int_0^\infty e^{-t} t^3 \sin t \, dt = 0$

Homework

16) Find the Laplace transform of the following functions

(a)
$$te^{-2t} \sin(at - b)$$

(b)
$$t \sin^{3} t$$

(c)
$$te^{3t} \sinh 4t$$

(c)
$$te^{3t} \sinh 4t$$
 (d) $t\sqrt{1-\sin t}$ (D-13)

(e)
$$te^{3t}\cos 2t$$
 ;and hence show that $\int_{0}^{\infty} e^{3t} t\cos 2t \, dt = \frac{5}{169}$ (f) $te^{-t}\cosh 2t$ (M-15)

(g)
$$tJ_0(4t)$$
 & hence show that
$$\int_0^\infty te^{-3t}J_0(4t)dt = \frac{3}{125} where L[J_0(t)] = \frac{1}{\sqrt{s^2 + 1}} (\mathbf{D} - \mathbf{09})$$

Division By t Theorem

If L{F(t)}= f(s) then
$$L\left\{\frac{F(t)}{t}\right\} = \int_{s}^{\infty} f(u) du$$
 provided $\lim_{t \to 0^{+}} \frac{F(t)}{t}$ exists

Problems

17) Find the Laplace transform of the following functions & hence evaluate the integral

(a)
$$\frac{\sin^2 t}{t}$$
; $\int_0^\infty e^{-t} \frac{\sin^2 t}{t} dt = \frac{1}{4} \log 5$ (D-14,D-13,D-11)

(b)
$$\frac{\sin 2t + \sin 3t}{t}$$
; $\int_{0}^{\infty} e^{-t} (\frac{\sin 2t + \sin 3t}{te^{t}}) dt = \frac{3\pi}{4}$ (M-08)

(c)
$$\frac{e^{-at} - e^{-bt}}{t}$$
; $\int_{0}^{\infty} \left(\frac{e^{-3t} - e^{-6t}}{t} \right) dt = \log 2$

(d)
$$\frac{\cos at - \cos bt}{t}$$
 (D-09); $\int_{0}^{\infty} \left(\frac{\cos 6t - \cos 4t}{t}\right) dt = \log \frac{2}{3}$ (M-14,M-09)

(e)
$$\{e^{-t}F(2t)\}\$$
if given $L[tF(t)] = \frac{1}{s(s^2 + 1)}$

Homework

18) Find the Laplace transform of the following functions & hence evaluate the integral

(a)
$$\frac{\sin t}{t}$$
 and $\int_{-\infty}^{\infty} \int_{-\infty}^{t} \frac{e^{-t} \sin u}{t} du dt$ (D-12) (b) $\frac{e^{2t} \sin t}{t}$ (M-11) (c) $\frac{\sin t \sin 5t}{t}$ (M-09)

(b)
$$\frac{e^{2t} \sin t}{t}$$
 (M-11)

(c)
$$\frac{\sin t \sin 5t}{t}$$
 (M-09)

(d)
$$\frac{\sin t \sinh t}{t}$$
; $\int_{0}^{\infty} e^{-\sqrt{2}t} \frac{\sin t \sinh t}{t} dt = \frac{\pi}{8}$ (D-08) (e) $t \left(\frac{\sin t}{e^{t}}\right)^{2}$

(e)
$$t \left(\frac{\sin t}{e^t} \right)^2$$

(f)
$$\frac{e^{-t}\sin t}{t}$$

(g)
$$\frac{e^{-at} - \cos at}{t}$$
; $\int_{0}^{\infty} \left(\frac{e^{-t} - \cos t}{te^{4t}} \right) dt = \log \frac{\sqrt{17}}{5}$ (D-11)

Laplace Transform Of Integral

If L{F(t)}= f(s) then
$$L\{\int_{0}^{t} F(u)du\} = \frac{f(s)}{s}$$

19) Find Laplace Transform of the following functions

$$(a) \int_{0}^{t} e^{-u} \frac{\sin 4u}{u} du \, (\mathbf{M} - \mathbf{09})$$

$$(b) \int_{0}^{t} \frac{1 - e^{-u}}{u} du \, (\mathbf{M} - \mathbf{08})$$

$$(c) \int_{0}^{t} u \cos^{2} u \, du$$

$$(d) \cosh t \int_{0}^{t} e^{u} \cosh u \, du$$

Homework

20) Find Laplace Transform of the following functions

$$(a) \int_{0}^{t} \frac{1 - \cos u}{u} du \qquad (b) e^{-3t} \int_{0}^{t} u \sin 3u \, du \, (\mathbf{M-15,D-09}) \qquad (c) \int_{0}^{t} u e^{-2u} \sin 3u \, du \, (\mathbf{D-08})$$

$$(d) t \int_{0}^{t} e^{-4u} \cos u \, du \, and \, evaluate \int_{0}^{\infty} e^{-t} (t \int_{0}^{t} e^{-4u} \cos u \, du) \, dt \, (\mathbf{D-10}) \qquad (e) \int_{t}^{\infty} \frac{\cos u}{u} \, du \, (f) \int_{0}^{t} u^{2} \sin u \, du$$

Laplace Transform of Derivative

$$L\{F'(t)\} = sL\{F(t)\} - F(0)$$

$$L\{F''(t)\} = s^2L\{F(t)\} - sF(0) - F'(0)$$

Problems

21) (a) Find
$$L\left(\frac{\cos\sqrt{t}}{\sqrt{t}}\right)$$
 given $L[\sin\sqrt{t}] = \frac{\sqrt{\pi}}{2\mathrm{s}^{3/2}}\mathrm{e}^{-1/4\mathrm{s}}$ (b) Show that f $L\left\{2\sqrt{\frac{t}{\pi}}\right\} = \frac{1}{s^{3/2}}$ and deduce that $L\left\{\frac{1}{\sqrt{\pi t}}\right\} = \frac{1}{\sqrt{s}}$ (D-12)

Homework

22) (a) If
$$L\{t\sin\omega t\} = \frac{2\omega}{(s^2 + \omega^2)^2}$$
 find $L\{\sin\omega t + \omega t\cos\omega t\}$ (b) Find $L\{\frac{d}{dt}(\frac{1-\cos t}{t})\}$ (M-12)

Convolution Theorem

If
$$L{F(t)}=f(s)$$
 and $L{G(t)}=g(s)$ then $L{\int_0^t F(u)G(t-u)du}=f(s)g(s)$

23) Verify Convolution theorem for the function $F(t) = t^2$, $G(t) = e^{2t}$

Homework

24) Verify Convolution theorem for the function $F(t) = \sin at$, $G(t) = \sin bt$

Periodic Function

If
$$F(t+T)=F(t)$$
 then $L\{F(t)\}=\frac{\int_{0}^{T} e^{-st} F(t) dt}{1-e^{-sT}}$

Problems

25) Find the Laplace transform of the following functions with period equal to length of the given interval

(a)
$$F(t) = k \frac{t}{T}$$
 $0 \le t \le T$

$$(b) F(t) = \left| \sin \omega t \right|$$

$$(c) F(t) = \begin{cases} E \\ -E \end{cases}$$

$$0 < t < a/2$$

 $a/2 < t < a$ (D-14)

Homework

26) Find the Laplace transform of the following functions with period equal to length of the

(a)
$$F(t) = \begin{cases} a \sin pt; & 0 < t < \pi/p \\ 0; & \pi/p < t < 2\pi/p \end{cases}$$
 and $f(t) = f\left(t + \frac{2\pi}{p}\right)$ (D-13)

(b) F(t)=3t; 0<t<2 and 6; 2<t<4 and F(t+4)=F(t) for t>0 **(D-12)**

$$(c) F(t) = \begin{cases} t & 0 < t < \pi \\ \pi - t & \pi < t < 2\pi \end{cases}$$

Heavyside's Unit Step Function

$$H(t-a) = \begin{cases} 0 \text{ for } t < a \\ 1 \text{ for } t > a \end{cases}$$

27) Prove the following results

(a)
$$L[F(t).H(t-a)] = e^{-as}L[F(t+a)]$$

(a)
$$L[F(t).H(t-a)] = e^{-as}L[F(t+a)]$$

(b) $L[H(t-a)] = \frac{e^{-as}}{s}$

28) Find the Laplace transform of the following functions

(a)
$$L[t^4H(t-1)]$$

(b)
$$L[(1+2t-3t^2+4t^3)H(t-2)]$$

29) Express the following function using Unit step functions and hence find its Laplace transform

$$F(t) = \begin{cases} t^2 & 0 < t < 2 \\ 4t & t > 2 \end{cases}$$

Homework

30) Prove the following results

(a)
$$L[F(t).H(t)] = L[F(t)] = f(s)$$

(b)
$$L[F(t-a).H(t-a)] = e^{-as}L[F(t)]$$

31) Find the Laplace transform of the following functions

(a)
$$L[t^2H(t-3)]$$

(b)
$$L[(1+3t-t^2+t^3)H(t-4)]$$

32) Express the following function using Unit step functions and evaluate the Laplace transform

$$F(t) = \begin{cases} \cos t & 0 < t < \pi \\ \cos 2t & \pi < t < 2\pi \end{cases}$$
 (D-10)
$$\cos 3t & t > 2\pi$$

Unit impulse (or Dirac delta) function

Dirac's delta function is denoted by $\delta(t-a)$ and is defined as

$$\delta(t-a) = \lim_{\epsilon \to 0} F_{\epsilon}(t-a) \text{ where } F_{\epsilon}(t-a) = \begin{cases} 0; \ t < a \\ \frac{1}{\epsilon}; \ a < t < a + \epsilon \\ 0; \ t > a + \epsilon \end{cases}$$

33)Prove the following result

$$(a)\int_{0}^{\infty} F(t)\delta(t-a)dt = F(a)$$

(b) $L[F(t)\delta[F-a)] = e^{-as}F(a)$

34)Find the following

(a)
$$L[\sin 2t\delta(t-\pi/4) - t^2\delta(t-4)]$$

(b)
$$L[\cos t \log t \delta(t-\pi)]$$

Homework

35)Prove the following result

(a)
$$L[\delta(t-a)] = e^{-as}$$

$$(b)L[\delta(t)] = 1$$

34)Find
$$L[tU(t-4)-t^3\delta(t-2)]$$

INVERSE LAPLACE TRANSFORM

If
$$L{F(t)}=f(s)$$
 then $L^{-1}{f(s)}=F(t)$

Linearity Property

$$L^{-1}\{af(s) + bg(s)\} = aL^{-1}\{f(s)\} + bL^{-1}\{g(s)\}$$

Standard Inverse Laplace Transforms

f(s)	$L^{-1}\{f(s)\}=F(t)$
1	1
S	
$ \frac{\frac{1}{s}}{\frac{1}{s^2}} $ $ \frac{1}{s^{n+1}} $	t
$\frac{1}{s^{n+1}}$	$\frac{t^n}{\Gamma(n+1)}$ $= \frac{t^n}{n!}$ if n is a positive integer
1	
$\frac{1}{s^2 + a^2}$	$\frac{\sin at}{a}$
S	cos at
$\overline{s^2 + a^2}$	
1	e ^{at}
s-a	
	sinh at
$\overline{s^2-a^2}$	a
S	cosh at
$\overline{s^2 - a^2}$	

Problems

36) Find (a)
$$L^{-1}\left\{\frac{6}{3-2s} - \frac{3+4s}{9s^2+16} + \frac{8-6s}{16s^2-9}\right\}$$
 (b) $L^{-1}\left\{\frac{3s-2}{s^{\frac{5}{2}}} - \frac{3+4s}{9s^2+16} + \frac{8-6s}{16s^2-9}\right\}$ (c) $\frac{s^2+5}{\left(s^2+4s+13\right)^2}$ (M-14)

Homework

37)Find(a)
$$L^{-1}\left(\frac{3s-8}{s^2+4}+\frac{4s-24}{s^2-16}\right)$$
 (**D-12**) (b) $L^{-1}\left(\frac{3s-2}{s^{5/2}}-\frac{7}{3s+2}\right)$ (**D-12**) (d) $\frac{s}{(s-2)^6}$ (**D-14**)

Standard Theorems on Inverse Laplace Transform

f(s)	$L^{-1}\{f(s)\}=F(t)$
f(s-a)	e ^{at} F(t)

$e^{-as}f(s)$	$F(t-a) \mathbf{H}(t-a)$
f ⁽ⁿ⁾ (s)	$(-1)^n t^n F(t)$
$\frac{f(s)}{s}$	$\int_{0}^{t} F(u) du$
sf(s)	F'(t) if $F(0)=0$
f(s)g(s)	$\int_{0}^{t} F(u)G(t-u)du$

38) Find the Inverse Laplace Transform of the following functions

(a)
$$\frac{1}{s\sqrt{s+4}}$$

(b)
$$\frac{2s^2 - 3s + 4}{(s+3)^4}$$

(b)
$$\frac{2s^2 - 3s + 4}{(s+3)^4}$$
 (c) $\frac{1}{s} \cos \frac{1}{s}$ (D-12)

(a)
$$\frac{e^{4-3s}}{(s+4)^{5/2}}$$
 (M-09,M-08)

(b)
$$\frac{e^{-3s}}{s^2-2s+5}$$
 (M-10,M-07

39) Find the Inverse Laplace transform of the following functions (a)
$$\frac{e^{4-3s}}{(s+4)^{5/2}}$$
 (M-09,M-08) (b) $\frac{e^{-3s}}{s^2-2s+5}$ (M-10,M-07) (c) $\frac{se^{-2s}}{s^2-6s+25}$ (M-13)

Homework

40) Find the Inverse Laplace transform of the following functions

(a)
$$\frac{e^{4-3s}}{(s+4)^{5/2}}$$

(b)
$$\frac{se^{-4\pi s}}{s^2 + 4}$$
 (M-10)

(c)
$$\frac{(s+1)e^{-\pi s}}{s^2 + s + 1}$$

(a)
$$\frac{e^{4-3s}}{(s+4)^{5/2}}$$
 (b) $\frac{se^{-4\pi s}}{s^2+4}$ (M-10) (c) $\frac{(s+1)e^{-\pi s}}{s^2+s+1}$ (D-13,D-08) (d) $\frac{(s+1)e^{-2s}}{s^2+2s+2}$

Problems

41) Find the Inverse Laplace Transform of the following functions using partial fraction method

(a)
$$\frac{s+2}{s^2+4s+7}$$
 (M-12) (b) $\left\{\frac{-3s^2+20s-24}{(s-1)(s-2)^2}\right\}$

(b)
$$\left\{ \frac{-3s^2 + 20s - 24}{(s-1)(s-2)^2} \right\}$$

(c)
$$\frac{1}{s^3 + 1}$$

(d)
$$\frac{s^3 + 2s}{(s+1)^2(s^2+1)}$$

(d)
$$\frac{s^3 + 2s}{(s+1)^2(s^2+1)}$$
 (e) $\frac{s^2 + 2s + 3}{(s^2 + 2s + 2)(s^2 + 2s + 5)}$ (D-09,D-08) (f) $\frac{2s}{s^4 + 4}$ (M-15)

(f)
$$\frac{2s}{s^4+4}$$
 (M-15)

Homework

42) Find the Inverse Laplace Transform of the following functions using partial fraction method

(a)
$$\frac{11s^2 - 2s + 5}{2s^3 - 3s^2 - 3s + 2}$$
 (D-13)

(b)
$$\frac{s+2}{s^2(s+3)}$$

(c)
$$\frac{3s+1}{(s+1)(s^2+1)}$$
 (M-11)

(d)
$$\frac{1}{(s+1)^2(s^2+4)}$$

(e)
$$\frac{5s^2-15s-1}{(s+1)(s-2)^2}$$
 (D-11, M-10)

(f)
$$\frac{2s^2-1}{(s^2+1)(s^2+4)}$$

(g)
$$\frac{s}{(s^2+1)(s^2+4)(s^2+9)}$$

$$(h)\frac{s}{s^4+s^2+1}$$

(i)
$$\frac{6s+3}{s^4+5s^2+4}$$

(J)
$$\frac{1}{s^2(s+a)^2}$$
 (D-13)

43) Find the Inverse Laplace Transform of the following functions using convolution

(a)
$$\frac{1}{(s^2+4)(s^2+9)}$$

(b)
$$\left\{ \frac{s}{s^4 + 13s^2 + 36} \right\}$$

(a)
$$\frac{1}{(s^2+4)(s^2+9)}$$
 (b) $\left\{\frac{s}{s^4+13s^2+36}\right\}$ (c) $\frac{1}{(s^2+4s+13)^2}$ (**D-13**) (**d**) $\frac{1}{s\sqrt{s+4}}$ (**D-10**)

(a) (d)
$$\frac{1}{s\sqrt{s+4}}$$
 (**D-10**)

(d)
$$\frac{1}{(s^2 + a^2)^2}$$

(e)
$$\frac{s}{(s^2 + a^2)^2}$$

(d)
$$\frac{1}{(s^2 + a^2)^2}$$
 (e) $\frac{s}{(s^2 + a^2)^2}$ (f) $\frac{s^2}{(s^2 + a^2)^2}$ (D-09) (g) $\frac{1}{s^2(s+1)^2}$ (**D-14**)

(g)
$$\frac{1}{s^2(s+1)^2}$$
 (**D-14**)

Homework

44) Find the Inverse Laplace Transform of the following using convolution theorem

(a)
$$\frac{1}{(s^2+1)(s^2+4)}$$
 (**M-08**)

(b)
$$\frac{s^2}{(s^2+a^2)(s^2+b^2)}$$
 (M-12, M-10, D-09)

(c)
$$\frac{s^2}{(s^2 - a^2)^2}$$
 (M-14)

(d)
$$\frac{1}{(s+4)^2(s-3)}$$
 (**D-14**)

(e)
$$\frac{1}{(s+3)(s^2+2s+2)}$$
 (**D-11**)

(f)
$$\frac{s^2 + s}{(s^2 + 1)(s^2 + 2s + 2)}$$
 (**M-13**)

(g)
$$\frac{(s+3)^2}{(s^2+6s+5)^2}$$

$$(h) \frac{1}{s(s+a)^2}$$

(i)
$$\frac{s}{(s^2-a^2)^2}$$
 (M-15)

Problems

45) Find the Inverse Laplace Transform of

(a)
$$\tan^{-1}(s+1)$$

(b)
$$\cot^{-1} \frac{2}{s^2}$$
 (D-10)

(c)
$$\frac{1}{s} \log \left(\frac{s+3}{s+2} \right)$$
 (**D-09**) $(d) \log \left(\frac{s^2 + a^2}{\sqrt{s+b}} \right)$ **M - 12, M - 09, D - 08, M - 08**)

Homework

46) Find the Inverse Laplace Transform of

(a)
$$\cot^{-1} as$$
 (D-09)

(b)
$$2 \tanh^{-1} s$$
 (D-14) (c) $\log(1 + \frac{a^2}{s^2})$

(c)
$$\log(1 + \frac{a^2}{s^2})$$

(d)
$$\frac{1}{s} \log \sqrt{\left(\frac{s^2 + a^2}{s^2 + b^2}\right)}$$
 (M-11) (e) $\frac{1}{s} \log \left(\frac{s^2 + a^2}{(s+b)^2}\right)$

(e)
$$\frac{1}{s} \log \left(\frac{s^2 + a^2}{\left(s + b \right)^2} \right)$$

Application of Laplace transform

$$L{F'(t)} = sL{F(t)} - F(0)$$
 and

$$L{F'(t)} = sL{F(t)} - F(0)$$
 and
 $L{F''(t)} = s^2L{F(t)} - sF(0) - F'(0)$

Problems

47) Solve the following intial value differential equations:

(a)
$$y''+2y'+5y = e^{-t} \sin t$$
; $y(0)=0,y'(0)=1$ (D-14)

(b)
$$y'+2y+\int_{0}^{t}ydt=\sin t$$
; $y(0)=1$ (D-11,D-10)

(c)
$$y''+9y = \cos 2t$$
; $y(0)=1$, $y(\pi/2) = -1$

(d)
$$(D^2 - 3D + 2)y = 4e^{2t}$$
; $y(0) = -3, y'(0) = 5$ (M-14,M-09)

(e)
$$y''-y'-2y = 20\sin 2t$$
 $y(0) = 1, y'(0) = 2$ (M-12)

(f)
$$y''+2y'-3y=0$$
 $y(0)=0,y'(0)=4$ (M-11)

(g)
$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = t$$
, $y(0) = 0$, $y'(0) = 1$ (D-13)

Homework

48) Solve the following equations

(a)
$$y''-2y'+y=e^t$$
; $y(0)=2,y'(0)=0-1$ (M-08)

(b)
$$y + \int_{0}^{t} y dt = 1 - e^{-t}$$
 (M-15)

(c)
$$y''+9y=18t$$
, $y(0)=1$, $y(\pi/2)=0$ (M-13)

(d)
$$y''+3y'+2y = t\delta(t-1)$$
; $y(0)=$

(e)
$$y''+y'=t^2+2t$$
; $y(0)=4,y'(0)=-2$ (D-08)

(f)
$$3y'+2y=e^{3t}$$
; y(0)=1 (M-10, D-09)

(g)
$$\frac{d^2y}{dt^2} + y = t$$
, $y(0) = 1$, $y'(0) = 0$ (D-13)
