13. Market - Making and Delta - Hedging Market-Maker

Sell put

Sell call

Sell call

buy but

B

M-M wakes profit by bid-ask spread.

Problem: Market-Maker is left with position determined by market demand

- Delta - headging

 $\theta = -.0173$

on 100 shares

$$\Delta = 50 \text{ dd}$$
 $\Delta = 40 - 6 \text{ dl}$
 $\Delta = 40 - 6 \text{ dl}$
 $\Delta = 3$
 $\Delta = 0.5824$
 $\Delta = 0.5824$

Delta - Hedging Day O.) Sold 40-strike

) Sold 40-strike Call @ \$2,7804 on 100 slaves,

4278.04

D =-,5824

-t buy 58.24 shares @ S=40 = -2329.6

278.04 - 2329.6 = -2051.56

het investment

Borrow 2051.56 With V= 8%

 $205(.56 \left(e^{.08 \left(\frac{1}{365} \right)} - 1 \right) = .45$

over night interest charge

Day 1) Marking - to - market

$$T = \frac{91}{365} \rightarrow \frac{90}{365}$$

$$-306.21 + 278.04 = [-28.17]$$
 loss on written Call

$$-(e^{-08(265)}-1)2051.51=[-.45]$$
 Interest

Day 1

Rebalancing the portfolio

New $\Delta = 0.6142$

61.42 - 58,24 = 3.18

Additional stock to heeded

\$40,50 × (3,18) = [\$128,79]

Additional state investment needed

Borrowing Capacity

2051.56 + .45 + 128.79 = 2180.80

61,42 (\$40,50)

Lorvow this anyway.

6.50 difference

Stock

Harking - to - Market

$$T = \frac{90}{365}$$
 $\frac{89}{365}$

TABLE 13.2

Daily profit calculation over 5 days for a market-maker who delta-hedges.

Stock (\$)	40.00	40.50	39.25	38.75	40.00	40.00
Call (\$)	278.04	306,21	232.82	205.46	271.04	269.27
Option delta	0.5824	0.6142	0.5311	0.4956	0.5806	0.5801
Investment (\$)	2,051.58	2,181.30	1,851.65	1,715.12	2,051.35	2,051.29
Interest (\$)		-0.45	-0.48	-0.41	-0.38	-0.45
Capital gain (\$)	•	0.95	-3.39	0.81	-3.62	1.77
Daily profit (\$)	,,	0.50	-3.87	0.40	-4.00	1.32

Self-financing porttolio

- portfolio that does not require additional Cash

Selt-financing port folio

Overlight protit = 0 if

Stock price move by ±0

It stock move around by to every day, delta-hedged portfolio will be self-financing,

delta-neutral portfolio: portfolio that is delta-headged

Delta - Gamma Approximation

A: change in C when S 9\$1

T: charge in A when SP\$I.

D = 5824

T= .0652

$$\frac{C(40,15)-c(40)}{1} = .75(.0784) = .4365$$

$$C(40.75) = C(40) + .4368 = [3.2172]$$

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f'(a)(x-a)^{2} + \cdots$$

$$C(news) = f(s) + \Delta(change in s)$$
 (1st order)

$$C(\text{hew } S) = f(S) + \Delta(\text{charge in } S) + \frac{1}{z} T(\text{charge in } S)^2$$

Delta - Gamma Approximation

$$C(40.75) \approx C(40) + (.5824)(.75) + \frac{1}{2}(.0652)(.75)^2$$

true value

FIGURE 13.3

Delta- and delta-gamma approximations of option price. The true option price is represented by the bold line, and approximations by dashed lines.

Vse 0 as well

$$= C(3) + \Delta \text{ (change in S)} + \frac{1}{2}T \text{ (change in S)}$$

$$+ O(1)$$

$$+ O(1)$$

$$+ O(3)$$

$$+ O(3)$$

TABLE 13.4

Predicted option price over a period of 1 day, assuming stock price move of \$0.75, using equation (13.6). Assumes that $\sigma = 0.3$, r = 0.08, T - t = 91 days, and $\delta = 0$, and the initial stock price is \$40.

S	tarting Price	$\epsilon \Delta$	$rac{1}{2}\epsilon^2\Gamma$		Day Later	Price 1 $(h = 1 \text{ day})$ Actual	
$S_{t+h} = 40.75	\$2.7804	0.4368	0.0183	-0.0173	\$3,2182	\$3.2176	
$S_{t+h} = 39.25	\$2.7804	0.4368	0.0183	-0.0173	\$2,3446	\$2.3452	