SAYISAL ÇÖZÜMLEME

SAYISAL ÇÖZÜMLEME

4. Hafta

DENKLEM ÇÖZÜMLERİ

İÇİNDEKİLER

Denklem Çözümleri

Doğrusal Olmayan Denklem Çözümleri

- ☐ Grafik Yöntemleri
- **□** Kapalı Yöntemler
 - İkiye Bölme (Bisection) Yöntemi
 - Adım Küçülterek Köke Yaklaşma Yöntemi
 - Yer Değiştirme Yöntemi
- ☐ Açık Yöntemler
 - Basit Sabit Noktalı İterasyon
 - Newton-Raphson Yöntemi
 - Kiriş (Secant) Yöntemi

Denklem Çözümleri

- Denklemler fizik kanunlarına ve fiziksel parametrelere dayanır.
- Problemlerin çözümünde ve sistemlere ait bağımlı değişkenlerin tahmin edilmesinde kullanılırlar.
- Denklemler mühendislikte tasarımda kullanılır.
- Sayısal analizdeki matematiksel modelleme aşaması denklemler ve denklem çözümlerinden oluşur.

Sayısal Analizde Denklem Köklerini Bulmada İzlenecek Yol

- Denklem köklerini aramaya belirli bir başlangıç değeri ya da değer aralığından başlanır.
 - □ Kökü aramaya doğru bir noktadan başlamak çözüme ulaşmayı hızlandıracaktır.
- Ponksiyonun girişine değerler vererek, fonksiyonun çıkışı gözlemlenir.
 - □ Fonksiyonun çıkışının gözlemlemenin kolay yolu, fonksiyonun grafiğini çizdirmektir.
 - ☐ Grafik, köke yakın aralığı hızlı ve kolay tespit etmeyi sağlar.
 - ☐ Kökü aramaya uygun yerden başlamayı sağlar.

Grafik Yöntemleri

- Sayısal analiz ile denklem köklerini hızlı ve kolay bulmayı sağlayan bir yöntemdir.
- Karmaşık denklem/problemlerin yaklaşık (kabaca) çözümlenmesini sağlar.
- □ Grafiksel yöntemlerin dezavantajları

- Hassas çözüm elde edilemez
- 2 Bilgisayar kullanmadan grafik çizmek uzun zaman alır
- S Çoğunlukla 3 ya da daha düşük bilinmeyenli denklem çözümü için uygundur.

Grafik Yöntemleri

Örnek: $f(x) = xe^{-x} + x^3 + 1$ fonksiyonunun kökünü, grafik yöntemi ile yaklaşık olarak bulunuz?

\boldsymbol{x}	f(x)				
-2.0	-21.7781121978				
-1.5	-9.0975336055				
-1.0	-2.71828182845				
-0.5	0.05063936464				
0.0	1.00000000000				
0.5	1.42826532985				
1.0	2.36787944117				
1.5	4.70969524022				
2.0	9.27067056647				

Grafik Yöntemleri

Örnek: $f(x) = x^3 + 2x + 1$ fonksiyonunun kökünü, MATLAB programında çizdireceğiniz grafik üzerinden kabaca bulunuz?

Denklem Çözümünde Kapalı Yöntemler

- Fonksiyonlar kök civarında işaret değiştirdikleri için, *kökü sağından ve* solundan kıskaca alarak bu aralığı gittikçe daraltıp köke ulaşmak mümkündür. Bunun için iki tane başlangıç değeri belirlemek gerekir.
- Kök, bu iki değerin arasındaki kapalı bölgede olduğu için bu yöntemlere kapalı yöntemler adı verilir.

Denklem Çözümünde Kapalı Yöntemler

Doğru kökü hızlı ve sağlıklı olarak bulmak için, arada başka bir kök olmaması gerekir, bundan dolayı aralık mümkün olduğunca dar seçilmelidir.

2. kök (aradığımız)

- Denklem çözümünde kapalı yöntemlerin bir türü olan *Bisection*, ikiye bölme ya da yarılama olarak ta adlandırılmaktadır.
- Bisection, sürekli bir fonksiyonun bir sıfırının (kökünün) bulunması için kullanılan sistematik bir tarama tekniğidir.
- Tekrarlama (tarama) yöntemlerinin en basit ve en anlaşılırıdır.
- Kökün bulunduğu aralığı yarılayarak (ikiye bölerek) daraltma prensibine dayanır.
 - ☐ Bu yöntem, içerisinde bir sıfır bulunan bir aralığın öncelikle tespitine dayanır.
 - □ Aralık sonunda fonksiyon zıt işarete sahiptir.
 - □ Sonra aralık iki eşit alt aralığa bölünür ve hangi aralığın bir sıfır değeri içerdiğine bakılır.
 - ☐ Sıfır içeren alt aralıklarda hesaplamalara devam edilir.
- Dezavantajı, yavaş yakınsaması ve bazen tam olarak çalışmaması.

- Bir f(x) fonksiyonu, [x_a, x_ü] aralığında bir sıfır noktasına (köke) sahip olduğunu varsayalım.
 - İlk olarak, f(x) fonksiyonunun belirtilen aralıkta kökü olup olmadığı [$f(x_a)^*$ $f(x_{\ddot{u}}) < 0$] kontrol edilir. Şart sağlıyorsa kök vardır. Çünkü fonksiyonlar zıt işaretlidir.
 - [f(x_a) * f(x_ü) > 0] ise <u>kök yoktur</u>.
 - [f(x_a) * f(x_ü) = 0] ise kök x_a ya da x_ü
 - 2 İlk iterasyonda, belirtilen fonksiyon aralığının orta noktası tespit edilir.

$$x_o = \frac{x_a + x_{ii}}{2}$$

- **6** Sıfır noktası [x_a, x_o] ya da [$x_o, x_{\ddot{u}}$] aralığından birisinde olmalıdır
 - $f(x_a)^* f(x_o) < 0$ ise kök [x_a, x_o] aralığında
 - $f(x_0)^* f(x_0) < 0$ ise kök $[x_0, x_0]$ aralığında
 - $f(x_o)^* f(x_{\ddot{u}}) = 0$ ise kök x_o 'dur
- 4 Bir sonraki iterasyonda kök yeni aralıkta aranır ve 2. adımdan itibaren işlemler tekrarlanır.
 - Tekrarlama işlemi $\left| \frac{x_a x_{ii}}{2} \right| < \varepsilon_s$ şartı sağlanana kadar devam eder.

$$x_o = \frac{x_a + x_{ii}}{2}$$

• $f(x_a).f(x_o) < 0$ x_a ile x_o farklı bölgelerde

Güncellenecek sınır

 $x_{\ddot{u}}(yeni)=x_{o}$

• $f(x_a).f(x_o) > 0$ x_a ile x_o aynı bölgelerde

Kök, x_a, x_oarasında

Kök, x_o , $x_{\ddot{u}}$ arasında

Serhat Yılmaz'ın Sunusundan Alınmıştır.

• Örnek: $f(x) = x.e^{-x} + x^3 + 1$ fonksiyonunun kökünü $\delta_s = 2^* \cdot 10^{-6}$ duyarlılıkla bulalım,

Not: Grafik yönteminde, [-1,0] aralığı için kabaca sonuç x=-0.51

n	Xa	Χü	X _o	$f(x_a).f(x_o)$	$ \epsilon = \left \frac{x_a - x_{ii}}{2} \right $
1	-1.000000	0.000000	-0.500000	-	0.500000
2	-1.000000	-0.500000	-0.750000	+	0.250000
3	-0.750000	-0.500000	-0.625000	+	0.125000
4	-0.625000	-0.500000	-0.562500	+	0.062500
5	-0.562500	-0.500000	-0.531250	+	0.031250
6	-0.531250	-0.500000	-0.515625	+	0.015625
7	-0.515625	-0.500000	-0.507813	-	0.007813
•	•	•	•	•	•
•	•	•	•	•	•
19	-0.515449	-0.515442	-0.515446	+	0.000004
20	-0.515446	-0.515442	-0.515444	-	0.000002

Adım Küçülterek Köke Yaklaşma Yöntemi

- Ardışıl yaklaşım yöntemi olarak ta bilinir.
- Bir başlangıç değerinden başlanarak, adım adım (h, sabit mesafeler) köke yaklaşılır.
 - ☐ Önce büyük adımlar ile başlanır.
- \Box [f(x)* f(x+h) > 0] şartı sağlandığı sürece
 - □ Bir adım daha ilerlenir.
 - □ Adım büyüklüğünde (h) değişiklik yapılmaz.
- \Box [f(x)* f(x+h) < 0] ise kök geçilmiştir.
 - ☐ En son kalınan başlangıç değerinden, adım küçülterek tekrar ilerlemeye devam edilir.
- ☐ Hata sınırlaması sağlanana kadar köke yaklaşmaya devam edilir.
 - \Box h < ε_s

Adım Küçülterek Köke Yaklaşma Yöntemi

Serhat Yılmaz'ın Sunusundan Alınmıştır.

ÖDEV

- \Box f(x) = e^x.x² 5x fonksiyonunu [-1, 1] aralığında ε_s = 0.01 hata sınırlamasına göre 20 iterasyonda bisection ve adım küçülterek köke yaklaşma metodunu kullanarak çözünüz?
 - Adım küçülterek yaklaşma metodunda
 - Başlangıç h= 0.1, küçültme oranı h=h/10;

- En eski kök bulma yöntemlerinden birisidir.
- Eğrinin bir doğruyla yer değiştirmesi sonucunda, kökün konumunun yanlış belirlenmesi nedeniyle, latince "yanlış nokta" anlamında olan Regula Falsi olarak adlandırılır.
- Regula Falsi yönteminde köke yakınsama yavaş olmasına rağmen, mutlaka yakınsama vardır.
 - ☐ Bisection'dan hızlı, kiriş yönteminden yavaş
- f(x) fonksiyonunun [a, b] aralığında kökü hesaplanmak istensin
 - ☐ [a, f(a)] ve [b, f(b)] noktaları arasına bir kiriş (doğru) çizilir.
 - □ Doğrunun x eksenini kestiği noktanın (a₁) alt ve üst kısmında iki benzer üçgen oluşur.
 - ☐ İki üçgenin benzerliğinden x eksenini kestiği nokta (a₁) hesaplanır.
 - istenilen hassasiyet (hata sınırı) sağlanmadıysa yukarıdaki işlemler $[a_1, f(a_1)]$ ve [b, f(b)] noktaları için tekrar ettirilir.

$$\frac{f(x_{ii})}{f(x_{ii}) - (f(x_a))} = \frac{x_{ii} - x_r}{x_{ii} - x_a}$$

 $x_{r} = x_{ii} - \frac{f(x_{ii})(x_{a} - x_{ii})}{f(x_{a}) - f(x_{ii})}$

Serhat Yılmaz'ın Sunusundan Alınmıştır.

$$x_r = x_{ii} - \frac{f(x_{ii})(x_a - x_{ii})}{f(x_a) - f(x_{ii})}$$
• $f(x_a) \cdot f(x_r) < 0$ x_a ile x_r farklı bölgelerde
• $f(x_a) \cdot f(x_r) > 0$ x_a ile x_r aynı bölgelerde

Güncellenecek sınır

 $-x_{ii}(yeni)=x_{r}$

Kök, x_a, x_r arasında

Kök, x_r , $x_{\ddot{u}}$ arasında

Serhat Yılmaz'ın Sunusundan Alınmıştır.

Örnek : $f(x)=x^3+4x^2-10$ denkleminin [1,2] aralığındaki kökünü yer değiştirme yöntemini kullanarak 2 iterasyon için çözünüz.

1. İTERASYON:

2. İTERASYON:

ÖDEV-1

□ $f(x)=x^3+4x^2-10$ fonksiyonunu [1, 2] aralığında δ_s = 10⁻⁵ hata sınırlamasına göre bisection metodunu kullanarak çözünüz?

KAYNAKLAR

- Serhat YILMAZ, "Bilgisayar İle Sayısal Çözümleme", Kocaeli Üniv. Yayınları
- Cüneyt BAYILMIŞ, Sayısal Analiz Ders Notları, Sakarya Üniversitesi.
- Mehmet YILDIRIM, Sayısal Analiz Ders Notları, Sakarya Üniversitesi
- İlyas ÇANKAYA, Devrim AKGÜN, "MATLAB ile Meslek Matematiği" Seçkin Yayıncılık
- Irfan Karagöz, "Sayısal Analiz ve Mühendislik Uygulamaları" Vipaş Yayıncılık