Projekt 12: Symulacja dynamiki gazu część 1.

Kacper Połuszejko, 412183

1 Wstęp

Wykonano symulację dynamiki gazu przy użyciu metody MC. W symulacji cząsteczki gazu mogą zderzać się ze sobą, z brzegiem układu oraz z brzegiem obiektu umieszczonego w środku. Na brzegu zewnętrznym możemy zadać warunki brzegowe:

- Dirichleta wówczas cząstka padająca na brzeg jest zastępowana cząsteczką o energii kinetycznej losowanej z rozkładu Maxwella dla temperatury brzegu,
- Neumanna wówczas ze względu na zerowanie gradientu temperatury cząstki są odbijane (kąt padania = kąt odbicia).

Symulację wykonamy przy pomocy procedur zawartych w klasie **DSMC 2D**.

Cały obszar obliczeniowy dzieli się na małe komórki o wymiarach $\Delta x \times \Delta y$ i rozważa się zderzenia jedynie w danej komórce o indeksie (i,j) oraz 8 jej okalających - cząstka będąca blisko brzegu swojej komórki w przedziale czasu $(t,t+\Delta t)$ może przejść do sąsiedniej, gdzie zderzy się inną cząstką. Taki zabieg znacząco podnosi wydajność algorytmu.

Elementy algorytmu metody DSMC

warunek początkowy

Ponieważ wyniki symulacji DSMC są rozwiązaniem równania transportowego, więc warunek początkowy będzie determinował zachowanie układu w początkowej fazie symulacji - w stanie nieustalonym. W stanie ustalonym oczekiwany równowagi termodynamicznej gazu czyli Maxwellowskiego rozkładu prędkości (pod warunkiem, że układ nie wymienia ciepła z otoczeniem - co oznacza narzucenie warunku Neumanna na każdej krawędzi brzegu zewnętrznego). Warunek początkowy w postaci rozkładu Maxwella w 2D - punktem wyjścia jest rozkład Boltzmanna (w dziedzinie energii)

$$f_E = \left(\frac{m}{2\pi k_B T}\right)^{d/2} e^{-\frac{E_{\text{kin}}}{k_B T}}, \quad d = 1, 2, 3 \text{ - liczba wymiarów}$$
 (1)

z warunkiem unormowania

$$\int_{0}^{\infty} f_E(E)dE = 1 \tag{2}$$

Ponieważ $E_{\rm kin}=m(V_x^2+V_y^2)/2$ więc

$$f_E(E) = \left(\frac{m}{2\pi k_B T}\right)^{1/2} e^{-\frac{mV_x^2}{2k_B T}} \cdot \left(\frac{m}{2\pi k_B T}\right)^{1/2} e^{-\frac{mV_y^2}{2k_B T}} = f_{E_x} \cdot f_{E_y}$$
(3)

i składowe prędkości w obu kierunkach możemy losować z rozkładu normalnego

$$V_x, V_y \sim \sigma_V \cdot \mathcal{N}(0, 1), \qquad \sigma_V = \sqrt{\frac{k_B T}{m}}$$
 (4)

Zazwyczaj interesuje nas maxwellowski rozkład prędkości cząstek tj. zależny tylko i wyłącznie od wartości prędkości, aby go uzyskać musimy dokonać transformacji zmiennych przechodząc do opisu we współrzędnych cylindrycznych

$$f_E(E)dE = f_1(V_x, V_y)dV_x dV_y = 2\pi f_2(V)V dV = \tilde{f}_V^{2D} dV$$
 (5)

co daje rozkład

$$\tilde{f}_V^{2D} = \frac{mV}{k_B T} e^{-\frac{mV^2}{2k_B T}}, \qquad V = \sqrt{V_x^2 + V_y^2}$$
 (6)

z warunkiem normalizacji

$$\int_{0}^{\infty} \tilde{f}_{V}^{2D} dV = 1 \tag{7}$$

W układzie izolowanym to byłby oczekiwany rozkład w stanie ustalonym.

• krok czasowy

Zakładamy, że w czasie Δt cząstka nie może przemieścić się o więcej niż wynosi szerokość/wysokość komórki definiującej jej lokalne otoczenie

$$\Delta t(t) \le \frac{\min\{\Delta x, \Delta y\}}{V_{\max}(t)}, \qquad V_{\max} = \max\{V_1, V_2, \dots, V_{n_{\text{tot}}}\}$$
(8)

Cząstki zderzając się ze sobą zmieniają prędkość, zatem $V_{\max}(t)$ i $\Delta t(t)$ należy wyznaczać w każdym kroku.

• zderzenia dwóch cząstek

W oryginalnej wersji DSMC, cząstki są rozpraszane w komórkach w sposób losowy co oznacza, że na podstawie ich średniej prędkości kwadratowej oraz przekrojów czynnych na rozpraszanie określa się ile par cząstek ma się rozproszyć, a następnie rozprasza się je w układzie środka masy w losowym kierunku (tak aby pęd środka masy był zachowany). W programie, który użyjemy zderzenia są wykrywane a rozpraszane są tylko te cząstki, których trajektorie rzeczywiście się przecinają, natomiast ich kierunki po zderzeniu są randomizowane w układzie środka masy. Takie podejście jest mniej wydajne, ale zwiększa dokładność i rozdzielczość przestrzenną symulacji.

2 Metodyka

Symulację wykonano korzystając z gotowej procedury **DSMC 2D**.

W symulacji przyjęto następujące parametry: $x_{\rm min}=0,\ y_{\rm min}=0,\ x_{\rm max}=1,\ y_{\rm max}=1,\ n_y=n_y=50,\ k_B=1,38\cdot 10^{-23},\ temp=300.$ Zastosowano warunki brzegowe Neumanna (odbijające) oraz odpowiednią dystrybucję początkową (init-dist), której parametry były modyfikowane w trakcie badań. Liczbę cząstek przyjęto jako $n_mix=1,\ n_1=10^5.$ Masa cząsteczki wynosiła $m_1=40\cdot 10^{-27}\,{\rm kg},\ a$ promień $r_1=10^{-6}\,{\rm m}.$ W obszarze symulacji nie uwzględniono żadnego obiektu wewnętrznego (nodes=0).

3 Wyniki

Zadanie 1

Dla ustawienia zmiennej init_dist=1, cząsteczki miały identyczne energie kinetyczne i prędkości początkowe. Wykonano symulację i narysowano rozkład końcowy prędkości (w stanie ustalonym), a także dwa rozkłady w stanie nieustalonym.

Symulacje przeprowadzono dla dwóch promieni cząsteczek: $r_1=10^{-5}~\mathrm{m}, \quad r_2=10^{-6}~\mathrm{m}.$

Rys. 1: Rozkłady prędkości dla 100 (po lewej) i 200 (po prawej) kroku czasowego. Rozmiar cząstek - $r = 10^{-5}$.

Rys. 2: Rozkład prędkości po zakończeniu symulacji. Rozmiar cząstek - $r=10^{-5}$.

Rys. 3: Rozkłady prędkości dla 500 (po lewej) i 1000 (po prawej) kroku czasowego. Rozmiar cząstek - $r = 10^{-6}$.

Rys. 4: Rozkład prędkości po zakończeniu symulacji. Rozmiar cząstek - $r=10^{-6}$.

Jak widać na wykresach, w obu przypadkach układ dąży do rozkładu Maxwella, przy czym większe cząsteczki osiągają stan równowagi szybciej. Rozkład końcowy pokrywa się dobrze z rozkładem teoretycznym, co potwierdza poprawność działania symulacji.

Zadanie 2

Symulację z zadania 1 powtórzono dla ustawienia init_dist=3, co oznacza, że wszystkie cząstki zostały początkowo umieszczone w jednej komórce (0,0).

W trakcie symulacji zaobserwowano rozpraszanie się cząstek i stopniowe dążenie do stanu równowagi. Na poniższych wykresach przedstawiono rozkład przestrzenny cząstek w kilku wybranych krokach czasowych:

Rys. 5: Rozkłady położeń cząstek dla kroków czasowych 1, 20 i 60. Rozmiar cząstek: $r = 10^{-6}$.

Rys. 6: Rozkłady położeń cząstek dla kroków czasowych 100, 200 i 20000. Rozmiar cząstek: $r=10^{-6}$.

Z wyników wynika, że mimo początkowego nagromadzenia cząstek w jednym miejscu, system dąży do równomiernego rozproszenia.

Zadanie 3

W tej symulacji ustawiono parametr $\mathtt{init_dist=2}$, co odpowiada rozkładowi Maxwella w całym obszarze. Przyjęto początkową temperaturę $T=300~\mathrm{K}$ w całym układzie. Na lewym brzegu ustawiono temperaturę $T=1000~\mathrm{K}$, natomiast na pozostałych krawędziach zastosowano warunek Neumanna.

Przeprowadzono symulację i sporządzono wykresy rozkładu temperatury oraz ciśnienia wzdłuż kierunku x w kilku wybranych chwilach czasu:

Rys. 7: Rozkład temperatury i ciśnienia wzdłuż kierunku x-owego dla kroków czasowych 10, 100 oraz 500.

Jak widać na rysunkach, temperatura po lewej stronie układu w początkowych krokach iteracji jest wyższa niż po prawej. Z czasem temperatura w całym układzie rośnie oraz stabilizuje się. W tym samym czasie rośnie również ciśnienie, co można wytłumaczyć, korzystając np. z równania Clapeyrona.

Rys. 8: Rozkład temperatury i ciśnienia wzdłuż kierunku x-owego dla kroków czasowych 1000, 5000 oraz 20000.

Oba rozkłady są rozkładami Maxwella 2D. Z powodu podwyższonej temperatury na końcu symulacji, rozkład wypłaszcza się i przesuwa w prawo.

Rys. 9: Rozkład prędkości w chwili początkowej oraz końcowej.

Zadanie 4

Powtórzono symulację z zadania 3, tym razem stosując warunki Dirichleta zarówno na lewym, jak i prawym brzegu. Na lewym brzegu nadal utrzymywano temperaturę $T=1000~{\rm K},$ natomiast na prawym brzegu wprowadzono stałą temperaturę $T=300~{\rm K}.$

Rys. 10: Rozkład temperatury i ciśnienia wzdłuż kierunku x-owego dla kroków czasowych 10, 100 oraz 500.

Rys. 11: Rozkład temperatury i ciśnienia wzdłuż kierunku x-owego dla kroków czasowych 1000, 5000 oraz 20000.

Podobnie jak w poprzednim zadaniu, w pierwszych krokach obserwujemy dość wysoki gradient temperatury spowodowany dużą różnicą między temperaturą początkową układu (300 K), a lewej ścianki (1000 K). Pod koniec symulacji gradient stabilizuje się już i jedynie delikatnie fluktuuje. Temperatura nie jest jednak jednorodna, ponieważ różnią się temperatury brzegów układu.

Rys. 12: Rozkład prędkości w chwili początkowej oraz końcowej.

Oba rozkłady są rozkładami Maxwella 2D. Z powodu podwyższonej temperatury na końcu symulacji, rozkład wypłaszcza się i przesuwa w prawo.