Business Case: Aerofit

```
[2] import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
🥈 💽 df = pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/original/aerofit_treadmill.csv?1639992749"
  ₽
        Product Age Gender Education MaritalStatus Usage Fitness Income Miles
        KP281 18 Male
                             Single
        KP281 19 Male 15
                              Single 2
                                            3 31836
                       14 Partnered 4
        KP281 19 Female
                                            3 30699
                              Single
         KP281 19 Male
                                            3 32973
         KP281 20 Male 13 Partnered
                                     4 2 35247
        KP781 40 Male 21 Single
                                     6 5 83416 200
     175
        KP781 42 Male 18 Single
     176
                                            4 89641
                       16 Single 5
        KP781 45 Male
                                            5 90886
                              Partnered
                                            5 104581
        KP781 47 Male
                       18 Partnered 4
        KP781 48 Male
    180 rows x 9 columns
   shape of data
  [5] #shape of the data
        print("Rows in the data:",df.shape[0])
        print("Columns in the data:",df.shape[1])
        Rows in the data: 180
        Columns in the data: 9
   [ ] #data types of all the attributes
        df.dtypes
                        object
        Product
                          int64
        Age
        Age
Gender
Education
                        object
```

int64

int64

int64

int64

int64

MaritalStatus object

Usage Fitness

Income

dtype: object

Miles

```
# Statical Analysis
    df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 180 entries, 0 to 179
    Data columns (total 9 columns):
                   Non-Null Count Dtype
     # Column
     0 Product 180 non-null
1 Age 180 non-null
2 Gender 180 non-null
3 Education 180 non-null
                                            object
                                            int64
                                           object
                                            int64
     4 MaritalStatus 180 non-null
                                            object
                     180 non-null
180 non-null
                                            int64
     5 Usage
     6 Fitness
                                            int64
                       180 non-null
180 non-null
         Income
                                            int64
     8 Miles
                                            int64
    dtypes: int64(6), object(3)
    memory usage: 12.8+ KB
```

#statistical summary
df.describe()

₽

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

```
2.Non-Graphical Analysis: Value counts and unique attributes
```

```
[ ] #count and unique value for product
print("Count of the product:",df["Product"].value_counts()),df["Product"].unique()
     Count of the product: KP281 80
     KP481 60
     KP781
             40
     Name: Product, dtype: int64
     (None, array(['KP281', 'KP481', 'KP781'], dtype=object))
[ ] #count and unique value for gender
     print("Count of gender:",df["Gender"].value_counts()),df["Gender"].unique()
     Count of gender: Male
     Female 76
     Name: Gender, dtype: int64
(None, array(['Male', 'Female'], dtype=object))
[ ] #count of MaritalStatus
    print("count of MaritalStatus:",df["MaritalStatus"].value_counts()),df["MaritalStatus"].unique()
     count of MaritalStatus: Partnered
     Name: MaritalStatus, dtype: int64
     (None, array(['Single', 'Partnered'], dtype=object))
```

[] #Value Count df.value_counts(normalize=True) Product Age Gender Education

Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	
KP281	18	Male	14	Single	3	4	29562	112	0.005556
KP481	30	Female	13	Single	4	3	46617	106	0.005556
	31	Female	16	Partnered	2	3	51165	64	0.005556
			18	Single	2	1	65220	21	0.005556
		Male	16	Partnered	3	3	52302	95	0.005556
KP281	34	Female	16	Single	2	2	52302	66	0.005556
		Male	16	Single	4	5	51165	169	0.005556
	35	Female	16	Partnered	3	3	60261	94	0.005556
			18	Single	3	3	67083	85	0.005556
KP781	48	Male	18	Partnered	4	5	95508	180	0.005556
Length:	180,	dtype: f	loat64						

[] #unique attributes df.drop_duplicates().head()

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47

3. Visual Analysis - Univariate & Bivariate

<Axes: xlabel='Age', ylabel='Count'>

(a) For continuous variable(s): Distplot, countplot, histogram for univariate analysis

[] sns.histplot(df['Age'])

0

20

25

50 -40 -30 -20 -

30

35

Age

40

[] sns.countplot(x=df["Gender"])

[] #bivariate #Categorical vs Numerical sns.barplot(x = df['Product'], y = df['Income'])


```
[ ] #Numerical vs Numerical
    sns.scatterplot(x = df['Age'], y = df['Income'])
```

<Axes: xlabel='Age', ylabel='Income'>

[] #Categorical vs Categorical sns.countplot(x = df['Product'], hue = df['Gender'])

<Axes: xlabel='Product', ylabel='count'>

(b) For categorical variable(s): Boxplot

[] sns.boxplot(x= "Gender" ,y="Age",hue="Product",data=df)

<Axes: xlabel='Gender', ylabel='Age'>

(c)For correlation: Heatmaps, Pairplots

[] sns.heatmap(df.corr(), annot=True)

<ipython-input-59-6dc1c4c1753e>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will
sns.heatmap(df.corr(), annot=True)
<Axes: >


```
Q (4) Missing Value & Outlier Detection

{x}

[ ] df.isnull().values.any()

False

[ ] df.isnull().sum()

Product 0
Age 0
```

```
Age 0
Gender 0
Education 0
MaritalStatus 0
Usage 7
Fitness 0
Income 0
Miles 0
dtype: int64
```


MaritalStatus

(5) Business Insights based on Non-Graphical and Visual Analysis. Comments on the range of attributes

There are some attributes like - numerical and categorical present in the data.

Under numeric attributes like - Minimum and Maximum values, Range, Mean and Median, Standard deviation etc.

Under Categorical attributes like -- Outliers, Unique Values, Most common values, Correlation

Comments for each univariate and bivariate plot

univariate

histplot - shows the distribution of Age. It appears to be approximately normal with a peak around. There is no outliers.

countplot - shows the distribution of Gender.It appears to be approximately normal with a peak around. There is no outliers.

Bivariate

Barplot - shows distribution between Product vs Income.

Scatterplot - shows distribution between Age vs Income.

Countplot - shows distribution between Product vs Gender.

#Business Insights

- 1. Individuals in a committed relationship are more inclined to purchase machines.
- 2. The KP281 product category dominated sales in both genders, accounting for the majority of the purchases
- 3. There are Male outliers in KP781 product and Female outliers in KP281 product category.
- 4. The majority of sales for our premium product, KP781, were in the Male category.
- 5.The machines are more likely to be purchased by individuals aged between 20 and 35.