

第1讲 VLSI测试技术导论

李晓维

中科院计算技术研究所

Email: lxw@ict.ac.cn

http://people.ucas.edu.cn/~lxw

Chapter 1

Introduction

What is this chapter about?

- Introduce fundamental concepts and various aspects of VLSI testing
- □ Focus on
 - Importance of testing in the design and manufacturing processes
 - Challenges in test generation and fault modeling
 - Levels of abstraction in VLSI testing
- □ Provide overview of VLSI test technology

Introduction to VLSI Testing

- □ Introduction
- □ Testing During VLSI Life Cycle
- □ Test Generation
- □ Fault Models
- Levels of Abstraction
- Overview of Test Technology
- Concluding Remarks

Introduction

- □ Integrated Circuits (ICs) have grown in size and complexity since the late 1950's
 - Small Scale Integration (SSI)
 - Medium Scale Integration (MSI)
 - Large Scale Integration (LSI)
 - Very Large Scale Integration (VLSI)
- Moore's Law: scale of ICs doubles every 18 months
 - Growing size and complexity poses many and new testing challenges

Importance of Testing

- Moore's Law results from decreasing feature size (dimensions)
 - from 10s of μm to 10s of nm for transistors and interconnecting wires
- Operating frequencies have increased from 100KHz to several GHz
- Decreasing feature size increases probability of defects during manufacturing process
 - A single faulty transistor or wire results in faulty IC
 - Testing required to guarantee fault-free products

Importance of Testing

- □ Rule of Ten: cost to detect faulty IC increases by an order of magnitude as we move from:
 - device → PCB → system → field operation
 - Testing performed at all of these levels
- Testing also used during
 - Manufacturing to improve yield
 - Failure mode analysis (FMA)
 - Field operation to ensure fault-free system operation
 - Initiate repairs when faults are detected

Testing During VLSI Life Cycle

□ Testing typically consists of

- Applying set of test stimuli to
- Inputs of circuit under test (CUT), and
- Analyzing output responses
 - If incorrect (fail), CUT assumed to be faulty
 - If correct (pass), CUT assumed to be fault-free

Testing During VLSI Development

- Design verification targets design errors
 - Corrections made prior to fabrication
- Remaining tests target manufacturing defects
 - A defect is a flaw or physical imperfection that can lead to a fault

Design Verification

- Different levels of abstraction during design
 - CAD tools used to synthesize (综合) design from RTL to physical level
- Simulation used at various level to test for
 - Design errors in behavioral or RTL
 - Design meeting system timing requirements after synthesis

Yield and Reject Rate

- □ We expect faulty chips due to manufacturing defects $yield = \frac{number\ of\ acceptable\ parts}{total\ number\ of\ parts\ fabricated}$
 - Called yield(良率)

 reject rate =
 number of faulty parts passing final test total number of parts passing final test
- □ 2 types of yield loss
 - Catastrophic due to random defects
 - Parametric due to process variations
- Undesirable results during testing
 - Faulty chip appears to be good (passes test)
 - Called reject rate (拒绝率), or defect level (缺陷级别)
 - -<500ppm, <100ppm, <3.4ppm (6 sigma, zero defects)</p>
 - Good chip appears to be faulty (fails test)

Electronic System Manufacturing

- □ A system consists of
 - PCBs that consist of
 - VLSI devices
- PCB fabrication similar to VLSI fabrication
 - Susceptible to defects
- Assembly steps also susceptible to defects
 - Testing performed at all stages of manufacturing

System-Level Operation

Faults occur of the failures of the failures occur occur of the failures occur occur of the failures occur o

Normal system operation

- Exponential failure law
 - Interval of normal system operation is a random number (exponentially distributed)
- □ Reliability
 - Probability that system will operate normally until time t $P(T_n > t) = e^{-\lambda t}$
 - Failure rate, λ , is sum of individual component failure rates, λ_i

$$\lambda = \sum_{i=0}^k \lambda_i$$

System-Level Operation

- Mean Time To Failures (MTTF)
- □ Repair time (R) also assumed to $MTTF = \int_{-\infty}^{\infty} e^{-\lambda t} dt = \frac{1}{\lambda}$ obey exponential distribution
 - μ is repair rate
- Mean Time To Repair (MTTR)
- □ Fraction of time that system is operating normally called system availability system availability = -
 - High reliability systems have system availabilities greater than 0.9999
 - Referred to as "four 9s"

$$MTTF = \int_{0}^{\infty} e^{-\lambda t} dt = \frac{1}{\lambda}$$

$$P(R > t) = e^{-\mu t}$$

$$MTTR = \frac{1}{\mu}$$

$$\frac{MTTF}{MTTF + MTTR}$$

System-Level Testing

- □ Testing required to ensure system availability
- □ Types of system-level testing
 - On-line testing concurrent with system operation
 - Off-line testing while system (or portion of) is taken out of service
 - Performed periodically during low-demand periods
 - Used for diagnosis (identification and location) of faulty replaceable components to improve repair time

Test Generation

- □ A test is a sequence of test patterns, called test vectors, applied to the CUT whose outputs are monitored and analyzed for the correct response
 - Exhaustive testing applying all possible test patterns to CUT
 - Functional testing testing every truth table entry for a combinational logic CUT
 - Neither of these are practical for large CUTs
- □ Fault coverage is a quantitative measure of quality of a set of test vectors

Test Generation

- **Pault coverage for a given set of test** $vectors fault coverage = \frac{number\ of\ detected\ faults}{total\ number\ of\ faults}$
- □ 100% fault coverage may be impossible due to undetectable faults

 $fault\ detection\ efficiency = \frac{number\ of\ detected\ faults}{total\ number\ of\ faults - number\ of\ undetectable\ faults}$

- \square Reject rate = 1 yield^(1 fault coverage)
 - A PCB with 40 chips, each with 90% fault coverage and 90% yield, has a reject rate of 41.9%
 - Or 419,000 defective parts per million (PPM)

Test Generation

- □ Goal: find efficient set of test vectors with maximum fault coverage
- □ Fault simulation used to determine fault coverage
 - Requires fault models to emulate behavior of defects
- □ A good fault model:
 - Is computationally efficient for simulation
 - Accurately reflects behavior of defects
- No single fault model works for all possible defects

Fault Models

- □ A given fault model has *k* types of faults
 - k = 2 for most fault models
- □ A given circuit has *n* possible fault sites
- Multiple fault model –circuit can have multiple faults (including single faults)
 - Number of multiple fault = $(k+1)^n$ -1
 - Each fault site can have 1-of-k fault types or be fault-free
 - The "-1" represents the fault-free circuit
 - Impractical for anything but very small circuits
- □ Single fault model circuit has only 1 fault
 - Number of single faults = $k \times n$
 - Good single fault coverage generally implies good multiple fault coverage

Fault Models

□ Equivalent faults

- One or more single faults that have identical behavior for all possible input patterns
- Only one fault from a set of equivalent faults needs to be simulated

□ Fault collapsing

- Removing equivalent faults
 - Except for one to be simulated
- Reduces total number of faults
 - Reduces fault simulation time
 - Reduces test pattern generation time

□ Any line can be

- Stuck-at-0 (SA0)
- Stuck-at-1 (SA1) # fault types: k=2

□ Example circuit:

- # fault sites: *n*=9
- # single faults =2×9=18

Truth table for fault-free behavior and behavior of all possible stuck-at faults

$x_1x_2x_3$	000	001	010	011	100	101	110	111
y	0	1	0	0	0	1	1	1
a SA0	0	1	0	0	0	1	0	0
a SA1	0	1	1	1	0	1	1	1
b SA0	0	1	0	1	0	1	0	1
b SA1	0	0	0	0	1	1	1	1
c SA0	0	0	0	0	0	0	1	1
c SA1	1	1	0	0	1	1	1	1
d SA0	0	1	0	0	0	1	0	0
d SA1	0	1	0	0	1	1	1	1
e SA0	0	1	0	1	0	1	1	1
e SA1	0	0	0	0	0	0	1	1
f SA0	0	0	0	0	0	0	1	1
f SA1	0	1	0	1	0	1	1	1
g SA0	0	1	0	0	0	1	0	0
g SA1	1	1	1	1	1	1	1	1
h SA0	0	0	0	0	0	0	1	1
h SA1	1	1	1	1	1	1	1	1
i SA0	0	0	0	0	0	0	0	0
i SA1	1	1	1	1	1	1	1	1

□ Valid test vectors

- Faulty circuit differs from good circuit
- Necessary vectors:
 011 detects f SA1, e SA0
 100 detects d SA1
 - Detect total of 10 faults
 - 001 and 110 detectremaining 8 faults

Truth table for fault-free behavior and behavior of all possible stuck-at faults

$x_1x_2x_3$	000	001	010	011	100	101	110	111
y	0	1	0	0	0	1	1	1
a SA0	0	1	0	0	0	1	0	0
a SA1	0	1	1	1	0	1	1	1
b SA0	0	1	0	1	0	1	0	1
b SA1	0	0	0	0	1	1	1	1
c SA0	0	0	0	0	0	0	1	1
c SA1	1	1	0	0	1	1	1	1
d SA0	0	1	0	0	0	1	0	0
d SA1	0	1	0	0	1	1	1	1
e SA0	0	1	0	1	0	1	1	1
e SA1	0	0	0	0	0	0	1	1
f SA0	0	0	0	0	0	0	1	1
f SA1	0	1	0	1	0	1	1	1
g SA0	0	1	0	0	0	1	0	0
g SA1	1	1	1	1	1	1	1	1
h SA0	0	0	0	0	0	0	1	1
h SA1	1	1	1	1	1	1	1	1
i SA0	0	0	0	0	0	0	0	0
i SA1	1	1	1	1	1	1	1	1

- □ 4 sets of equivalent faults
- \square # collapsed faults = $2 \times (P_O + F_O) + G_I N_I$
 - P_O= # primary outputs
 - F_O= # fanout stems
 - G_I= # gate inputs
 - N_I= # inverters

Truth table for fault-free behavior and behavior of all possible stuck-at faults

$x_1x_2x_3$	000	001	010	011	100	101	110	111
y	0	1	0	0	0	1	1	1
a SA0	0	1	0	0	0	1	0	0
a SA1	0	1	1	1	0	1	1	1
b SA0	0	1	0	1	0	1	0	1
b SA1	0	0	0	0	1	1	1	1
c SA0	0	0	0	0	0	0	1	1
c SA1	1	1	0	0	1	1	1	1
d SA0	0	1	0	0	0	1	0	0
d SA1	0	1	0	0	1	1	1	1
e SA0	0	1	0	1	0	1	1	1
e SA1	0	0	0	0	0	0	1	1
f SA0	0	0	0	0	0	0	1	1
f SA1	0	1	0	1	0	1	1	1
g SA0	0	1	0	0	0	1	0	0
g SA1	1	1	1	1	1	1	1	1
h SA0	0	0	0	0	0	0	1	1
h SA1	1	1	1	1	1	1	1	1
i SA0	0	0	0	0	0	0	0	0
i SA1	1	1	1	1	1	1	1	1

- \square # collapsed faults = $2 \times (P_O + F_O) + G_I N_I$
 - P_O= number of primary outputs
 - F_O= number of fanout stems
 - G_I= total number of gate inputs for all gates including inverters
 - N_I= total number of inverters
- □ For example circuit, # collapsed faults = 10
 - P_O = 1, F_O = 1, G_I = 7, and N_I = 1
- □ Fault collapsing typically reduces number of stuck-at faults by 50% 60%

Transistor Faults

- □ Any transistor can be
 - Stuck-short
 - Also known as stuck-on
 - Stuck-open
 - Also known as stuck-off# fault types: k=2
- □ Example circuit
 - # fault sites: *n*=4
 - # single faults =2×4=8

Truth table for fault-free circuit and all possible transistor faults

AB	00	01	10	11			
Z	1	0	0	0			
N ₁ stuck-open	1	0	last Z	0			
N ₁ stuck-short	I_{DDQ}	0	0	0			
N ₂ stuck-open	1	last Z	0	0			
N ₂ stuck-short	I_{DDQ}	0	0	0			
P ₁ stuck-open		0	0	0			
P ₁ stuck-short	1	0	I_{DDQ}	0			
P ₂ stuck-open	last Z	0	0	0			
P ₂ stuck-short	1	I_{DDQ}	0	0			

Transistor Faults

- Stuck-short faults cause conducting path from V_{DD} to V_{SS}
 - Can be detect by monitoring steady-state power supply current I_{DDO}
- Stuck-open faults cause output node to store last voltage level
 - Requires sequence of 2 vectors for detection
 - -00→10 detects N₁ stuck-open

Truth table for fault-free circuit and all possible transistor faults

and an possible transistor laures								
AB	00	01	10	11				
Z	1	0	0	0				
N ₁ stuck-open	1	0	last Z	0				
N ₁ stuck-short	I_{DDQ}	0	0	0				
N ₂ stuck-open	1	last Z	0	0				
N ₂ stuck-short	I_{DDQ}	0	0	0				
P ₁ stuck-open		0	0	0				
P ₁ stuck-short	1	0	I_{DDQ}	0				
P ₂ stuck-open	last Z	0	0	0				
P ₂ stuck-short	1	I_{DDQ}	0	0				

Transistor Faults

- \square # collapsed faults = $2 \times T T_S + G_S T_P + G_P$
 - T = number of transistors
 - T_S= number of series transistors
 - G_S= number of groups of series transistors
 - T_P= number of parallel transistors
 - G_P= number of groups of parallel transistors
- □ For example circuit, # collapsed faults = 6
 - T=4, $T_S=2$, $G_S=1$, $T_P=2$, & $G_P=1$
- □ Fault collapsing typically reduces number of transistor faults by 25% to 35%

Shorts and Opens

■ Wires can be

- Open
 - Opens in wires interconnecting transistors to form gates behave like transistor stuck-open faults
 - Opens in wires interconnecting gates to form circuit behave like stuck-at faults
 - Opens are detected by vectors detecting transistor and stuck-at faults
- Short to an adjacent wire
 - Also known as a bridging fault

Bridging Faults

- □ Three different models
 - Wired-AND/OR
 - Dominant
 - Dominant-AND/OR
- □ Detectable by I_{DDQ} testing

$\mathbf{A_S} \; \mathbf{B_S}$	0	0	0	1	1	0	1	1
$A_D B_D$	0	0	0	1	1	0	1	1
Wired-AND	0	0	0	0	0	0	1	1
Wired-OR	0	0	1	1	1	1	1	1
A dominates B	0	0	0	0	1	1	1	1
B dominates A	0	0	1	1	0	0	1	1
A dominant-AND B	0	0	0	0	1	0	1	1
B dominant-AND A	0	0	0	1	0	0	1	1
A dominant-OR B	0	0	0	1	1	1	1	1
B dominant-OR A	0	0	1	1	1	0	1	1

Delay Faults and Crosstalk

- Path-delay fault model considers cumulative propagation delay through CUT
 - 2 test vectors create transition along path
 - Faulty circuit has excessive delay
- Delays and glitches can be caused by crosstalk between interconnect
 - due to inductance and capacitive coupling

Pattern Sensitivity and Coupling Faults

- □ Common in high density RAMs
- □ Pattern sensitivity fault
 - Contents of memory cell is affected by contents of neighboring cells
- □ Coupling fault
 - Transition in contents of one memory cell causes change in contents of another cell

Pattern Sensitivity and Coupling Faults

- Common in memory cells of high density RAMs
- Pattern sensitivity fault
 - Contents of cell affected by contents of neighboring cells
- Coupling fault
 - Transition in one cell causes change in another cell
- □ Detected with specific memory test algorithms
 - Background Data Sequence (BDS) used for wordoriented memories

Notation:

w0 = write 0 (or all 0's) r1 = read 1 (or all 1's) ↑= address up ↓= address down ♣ = address either way

Test Algorithm	March Test Sequence
March LR	(w0); $(r0, w1)$; $(r1, w0, r0, r0, w1)$;
w/o BDS	\uparrow (r1, w0); \uparrow (r0, w1, r1, r1, w0); \uparrow (r0)
March LR with BDS	(w00); ↓(r00, w11); ↑(r11, w00, r00, r00, w11); ↑(r11, w00); ↑(r00, w11, r11, r11, w00); ↑(r00, w01, w10, r10); ↑(r10, w01, r01); ↑(r01)

Analog Fault Models

- Catastrophic faults
 - Shorts and opens
- □ Parametric faults
 - Parametric variations in passive and active components cause components to be out of tolerance range

Levels of Abstraction

- □ High levels have few implementation details needed for effective test generation
 - Fault models based on gate & physical levels
- □ Example: two circuits for same specification
 - Ckt B test vectors do not detect 4 faults in Ckt A

Overview of VLSI Test Technology

- □ Automatic Test Equipment (ATE) consists of
 - Computer for central control and flexible test & measurement for different products
 - Pin electronics & fixtures to apply test patterns to pins & sample responses
 - Test program controls timing of test patterns & compares response to known good responses

Overview of VLSI Test Technology

□ Automatic Test Pattern Generation (ATPG)

 Algorithms generating sequence of test vectors for a given circuit based on specific fault models

□ Fault simulation

- Emulates fault models in CUT and applies test vectors to determine fault coverage
- Simulation time (significant due to large number of faults to emulate) can be reduced by
 - Parallel, deductive, and concurrent fault simulation

ADVANTEST Model T6682 ATE

Testing Principle

Functional vs. Structural ATPG

Carry Circuit

Functional vs. Structural (Cont'd)

- Functional ATPG generate complete set of tests for circuit input-output combinations
 - 129 inputs, 65 outputs:
 - $2^{129} = 680,564,733,841,876,926,926,749,$ 214,863,536,422,912 patterns
 - Using 1 GHz ATE, would take 2.15 x 10²² years
- > Structural test:
 - No redundant adder hardware, 64 bit slices
 - Each with 27 faults (using fault equivalence)
 - At most 64 x 27 = 1728 faults (tests)
 - Takes 0.000001728 s on 1 GHz ATE
- ➤ Designer gives small set of functional tests augment with structural tests to boost coverage to 98+ %

Overview of VLSI Test Technology

- □ Design for Testability (DFT)
 - Generally incorporated in design
 - Goal: improve controllability and/or observability of internal nodes of a chip or PCB
- □ Three basic approaches
 - Ad-hoc techniques
 - Scan design
 - Boundary Scan
 - Built-In Self-Test (BIST)

Design of Testability

□ Ad-hoc DFT techniques

- Add internal test points (usually multiplexers) for
 - Controllability
 - Observability
- Added on a case-by-case basis
 - Primarily targets "hard to test" portions of chip

controllability test point

observability test point

Design for Testability

□ Scan design

- Transforms flip-flops of chip into a shift register
- Scan mode facilitates
 - Shifting in test vectors
 - Shifting out responses

□ Good CAD tool support

- Transforming flip-flops to shift register
- ATPG

Design for Testability

- □ Boundary Scan scan design applied to
 I/O buffers of chip
 - Used for testing interconnect on PCB
 - Provides access to internal DFT capabilities
 - IEEE standard 4-wire Test Access Port (TAP)

Design for Testability

□ Built-In Self-Test (BIST)

- Incorporates test pattern generator (TPG) and output response analyzer (ORA) internal to design
 - Chip can test itself
- Can be used at all levels of testing
 - Device → PCB → system → field operation

Concluding Remarks

- Many new testing challenges presented by
 - Increasing size and complexity of VLSI devices
 - Decreasing feature size
- □ This chapter presented introduction to VLSI testing
- Remaining chapters present more details as well as solutions to these challenges

Exercises

1.1 (Stuck-At Fault Models) Consider the combinational logic circuit in Figure 1.16. How many possible single stuck-at faults does this circuit have? How many possible multiple stuck-at faults does this circuit have? How many collapsed single stuckat faults does this circuit have?

■ 1.3 (Automatic Test-Pattern Generation) Generate a minimum set of test vectors to completely test an n-input NAND gate under the single stuck-at fault model. How many test vectors are needed?

中国科学院大学: VLSI测试与可测试性设计

下次课预告

时间: 2021年09月15日 (周三6:10pm)

地点: 教1-109

内容: 可测试性设计(I)

教材: VLSI TEST PRINCIPLES AND ARCHITECTURES

Chapter 2 Design for Testability