1	CLA	CLAIM LISTING		
2	1.	(Prev	iously Presented) A molten metal reactor including:	
3		(a)	a treatment chamber having a treatment chamber inlet;	
4		(b)	a molten reactant metal flow inducing arrangement for inducing a flow of molten	
5			reactant metal into the treatment chamber through the treatment chamber inlet;	
6		(c)	a feed chamber having a feed chamber outlet located adjacent to the treatment	
7			chamber inlet;	
8		(d)	an output chamber connected to an outlet of the treatment chamber to receive	
9			molten reactant metal and reaction products from the treatment chamber;	
10		(e)	a supply chamber connected to the output chamber and to the feed chamber; and	
11		(f)	a feed chute having a feed material inlet into the feed chamber through which a	
12			feed material to be treated in the molten reactant metal enters the feed chamber,	
13			the feed chute also having a portion extending into the feed chamber so that the	
14			feed material inlet into the feed chamber is positioned within the area defined by	
15			the feed chamber and spaced apart from the boundaries of the feed chamber.	
16				
17	2.	(Orig	inal) The molten metal reactor of Claim 1 wherein the feed chamber outlet and the	
18		treatn	nent chamber inlet comprise a common opening.	
19				

1	3.	(Original) The molten metal reactor of Claim 2 further including a vortex inducing
2		arrangement for inducing a swirling flow in the feed chamber outlet.
3		
4	4.	(Original) The molten metal reactor of Claim 2 wherein the feed chamber comprises a
5		bowl shaped chamber and the feed chamber outlet is located in substantially the center of
6		the bowl shape at a bottom of the feed chamber.
7		
8	5.	(Original) The molten metal reactor of Claim 2 further including an impeller mounted in
9		the feed chamber and adapted to be rotated about a substantially vertical axis.
10		
11	6.	(Original) The molten metal reactor of Claim 2 including an off-center molten reactant
12		metal inlet to the feed chamber through which molten reactant metal is introduced into
13		the feed chamber to induce a swirling flow in the feed chamber.
14		
15	7.	(Original) The molten metal reactor of Claim 1 wherein at least a portion of the treatment
16		chamber is in a heat transfer relationship with the supply chamber.
17		
18	8.	(Original) The molten metal reactor of Claim 1 further including a gravity trap within the
19		treatment chamber.
20		

1	9-16	Cancel	ed
2			
3	17.	(Previo	usly Presented) The molten metal reactor of Claim 1 wherein the feed material
4		inlet int	to the feed chamber is positioned directly above the feed chamber outlet.
5			
6	18.	(Previo	usly Presented) The molten metal reactor of Claim 1 wherein the feed chute is
7		connect	ted to a sealing conduit that extends to a position below a liquid reactant metal
8		level in	the feed chamber.
9			
10	19.	(Previo	ously Presented) A molten metal reactor including:
1		(a)	a treatment chamber having a treatment chamber inlet;
12		(b)	a feed chamber having a feed chamber outlet located adjacent to the treatment
13			chamber inlet;
14		(c)	an output chamber connected to an outlet of the treatment chamber to receive
15			molten reactant metal and reaction products from the treatment chamber;
16		(d)	a molten reactant metal source connected to direct molten reactant metal into the
17			feed chamber; and
18		(e)	a feed chute having a feed material inlet into the feed chamber through which a
19			feed material to be treated with the molten reactant metal enters the feed chamber,
20			the feed chute also having (i) a portion extending into the feed chamber so that the

1		feed material inlet into the feed chamber is positioned within the area defined by
2		the feed chamber and is spaced apart from the boundaries of the feed chamber,
3		and (ii) a feed material release structure for selectively releasing the feed material
4		through the feed chute toward the feed chamber.
5		
6	20.	(Previously Presented) The molten metal reactor of Claim 19 wherein the molten reactant
7		metal source includes a supply chamber connected between the output chamber and the
8		feed chamber.
9		
0	21.	(Previously Presented) The molten metal reactor of Claim 20 further including at least
1		one molten metal pump for inducing a flow of molten metal from the supply chamber to
2		the feed chamber.
3		
4	22.	(Previously Presented) The molten metal reactor of Claim 19 wherein the feed material
5		inlet into the feed chamber is positioned directly above the feed chamber outlet.
6		
7	23.	(Previously Presented) The molten metal reactor of Claim 22 wherein the feed chute
.8		extends substantially vertically.
9		

	1	24.	(Previously Presented) The molten metal reactor of Claim 19 wherein the feed chute is
	2		connected to a sealing conduit that extends to a position below a liquid reactant metal
	3		level in the feed chamber.
	4		
	5	25.	(Previously Presented) The molten metal reactor of Claim 19 wherein a portion of the
	6		feed chute extends transversely through the feed chamber in a direction from one lateral
	7		side of the feed chamber toward an opposite lateral side of the feed chamber.
	8		
	9	26-28.	Canceled
1	0		
1	1		