

Common Real Estate Problems

Leveraging ML to Better Inform Real Estate Agents

Leveraging ML to Better Inform Potential Homeowners

Potential Impact

Potential Impact

- Home-Price Fit
- Increased Utility
- Faster Closing Process

Potential Impact

- Increased Satisfaction
- Targeted Customer Outreach
- Faster Closing Process
- Efficient Use of Inventory

EFICIENCY

More Efficient Real Estate Market

Raw Dataset

- 5,484,743 Rows, 58 Tota
 Columns
- Kaggle data set, updated frequently
- 02/01/2012 05/31/2024
- Redfin
- 5,215,6152 null values
- https://www.senate.gov/senator s/Senators1789toPresent.htm
- Data Dictionary

Processed Dataset

1	median_sale_price	float64
2	median_list_price	float64
3	median_ppsf	float64
4	median_list_ppsf	float64
5	homes_sold	float64
6	inventory	float64
7	months_of_supply	float64
8	median_dom	float64
9	year	float64
10	month	float64
11	season	float64
12	sale_to_list_ratio	float64
13	price_growth	float64
14	buyer_utility	float64
15	pending_sales_ratio	float64
16	sales_success_rate	float64
17	inventory_turnover	float64
18	adjusted_months_supply	float64
19	political_stance_encoded	float64
20	supply_to_list_ratio	float64
21	<pre>property_type_All Residential</pre>	float64
22	<pre>property_type_Single Family Residential</pre>	float64
23	state_avg_sale_price	float64
24	metro_region_inventory_change	float64
25	inventory_to_pending_ratio	float64
26	rolling_median_sale_price	float64
27	rolling_median_list_price	float64
28	price_momentum	float64
29	supply_pressure	float64
30	demand_pressure	float64
31	price_elasticity	float64
32	us_region_East North Central	float64
33	us_region_Mid-Atlantic	float64
34	us_region_Pacific	float64
35	us_region_South Atlantic	float64
dtypes: float64(35), int64(1)		
memory usage: 1.2 GR		

Preprocessing

- Nulls
- Combining Features
- Duplicates
- Adjusted Prices
- Binning by Regions
- Outliers, Irrelevant Features
- Highly correlated features

Correlation Matrix of Variables


```
# Feature selection - selecting columns that are likely to affect homes sold
features = ['median_sale_price', 'median_list_price', 'inventory', 'months_of_supply',
            'price_growth', 'buyer_utility', 'pending_sales_ratio', 'sales_success_rate',
            'inventory_turnover', 'adjusted_months_supply', 'supply_to_list_ratio',
            'property_type_All Residential', 'state_avg_sale_price', 'price_momentum',
            'supply_pressure', 'demand_pressure', 'price_elasticity']
X = df[features] # Predictor variables
y = df['homes_sold'] # Target variable
# Split the data into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
                                                                                                                     回个少去早前
# Scale features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Initialize and train the linear regression model
lr model = LinearRegression()
lr_model.fit(X_train_scaled, y_train)
# Predict homes sold using the test set
y_pred_lr = lr_model.predict(X_test_scaled)
# Evaluate the model
mse lr = mean squared error(y test, y pred lr)
r2_lr = r2_score(y_test, y_pred_lr)
print(f'Linear Regression - MSE: {mse_lr}, R-squared: {r2_lr}')
Linear Regression - MSE: 100.73826222540995, R-squared: 0.755139756428168
```

```
y = df['median_sale_price'] # Target variable
# Split the data into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Scale features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Initialize the Linear Regression model
lr_model = LinearRegression()
# Fit the model to the training data
lr_model.fit(X_train, y_train)
# Predict buyer utility on the test data
y_pred = lr_model.predict(X_test)
# Calculate Mean Squared Error (MSE)
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
# Calculate R-squared (R2)
r2 = r2_score(y_test, y_pred)
print(f'R-squared: {r2}')
Mean Squared Error: 5983453454.910419
```

X = df.drop(columns=['median_sale_price', 'Unnamed: 0']) # Predictor variables

R-squared: 0.847707192781659

- Increase accuracy of models
- Random Forest?
- KNN clustering?

