Learning Modern 3D Graphics Programming

Next

Learning Modern 3D Graphics Programming

Jason L. McKesson

Copyright © 2012 Jason L. McKesson

Table of Contents

About this Book

Why Read This Book?

What You Need

Organization of This Book

Conventions used in This Book

Building the Tutorials

I. The Basics

Introduction

1. Hello, Triangle!

2. Playing with Colors

II. Positioning

- 3. OpenGL's Moving Triangle
- 4. Objects at Rest
- 5. Objects in Depth
- 6. Objects in Motion
- 7. World in Motion
- 8. Getting Oriented

III. Illumination

- 9. Lights On
- 10. Plane Lights
- 11. Shinies
- 12. Dynamic Range
- 13. Lies and Impostors

IV. Texturing

- 14. Textures are not Pictures
- 15. Many Images

16. Gamma and Textures

17. Spotlight on Textures

V. Framebuffer

VI. Advanced Lighting

A. Basic Optimization

Vertex Format

Textures

Object Optimizations

Finding the Bottleneck

Vertex Format

Synchronization

B. Further Study

Debugging

Topics of Interest

C. History of PC Graphics Hardware

Voodoo Magic

Dynamite Combiners

<u>Vertices and Registers</u>

Programming at Last

<u>Dependency</u>

Modern Unification

D. Getting Started with OpenGL

Manual Usage

List of Figures

- 1. Position Vectors
- 2. <u>Direction Vectors</u>
- 3. <u>Vector Addition</u>
- 4. Vector Addition Head-to-Tail
- 5. <u>Vector Negation</u>
- 6. Vector Subtraction
- 7. Vector Scaling
- 8. An Image
- 9. Normalized Device Coordinate Space
- 10. Scan Converted Triangle
- 11. Shared Edge Scan Conversion
- 1.1. Data Flow to Vertex Shader
- 1.2. Data Flow to Rasterizer
- 2.1. Fragment Position
- 2.2. Vertex Array Memory Map
- 2.3. Multiple Vertex Attributes
- 2.4. Interpolated Vertex Colors

- 4.1. Triangle Winding Order
- 4.2. Orthographic Prism
- 4.3. 2D to 1D Orthographic Projection
- 4.4. 2D to 1D Perspective Projection
- 4.5. <u>Viewing Frustum</u>
- 4.6. 2D to 1D Perspective Projection Diagram
- 4.7. Camera to NDC Transformation in 2D
- 4.8. <u>Perspective Prism</u>
- 4.9. Perspective Matrix
- 4.10. Bad Aspect Ratio
- 4.11. Widescreen Aspect Ratio Frustum
- 5.1. Overlapping Objects
- 5.2. Three Overlapping Triangles
- 5.3. Depth Buffering
- 5.4. Mild Overlap
- 5.5. Major Overlap
- 5.6. Triangle Clipping
- 5.7. Near Plane Clipping
- 5.8. Depth Clamping
- 5.9. <u>Depth Clamp With Overlap</u>
- 6.1. Two 2D Coordinate Systems
- 6.2. Coordinate System Translation in 2D
- 6.3. <u>Translation Project</u>
- 6.4. Coordinate System Scaling in 2D
- 6.5. Scale Project
- 6.6. Coordinate Rotation in 2D
- 6.7. Rotation Project
- 6.8. <u>Transform Order Diagram</u>
- 6.9. Hierarchy Project
- 7.1. Full Vertex Transformation Pipeline
- 7.2. World Space Scene
- 7.3. Spherical Coordinates
- 7.4. <u>Triangle Fan</u>
- 7.5. <u>Triangle Strip</u>
- 7.6. <u>Triangle Strips with Winding Order</u>
- 7.7. Uniform Buffer and Block Binding Points
- 8.1. Gimbal Lock Project
- 8.2. Parallel Gimbals
- 8.3. Quaternion YPR Project
- 8.4. Camera Relative Project
- 8.5. Interpolation Directions
- 9.1. Surface Light Absorption
- 9.2. Perpendicular Light
- 9.3. Light at an Angle
- 9.4. Diffuse Reflectance
- 9.5. Near and Far Lights
- 9.6. Basic Lighting
- 9.7. Circle Scaling
- 9.8. Circle Scaling with Normals

- 9.9. <u>Lighting and Scale</u>
- 9.10. Half Lit
- 9.11. Ambient Lighting
- 9.12. <u>Cube Position Topology</u>
- 9.13. <u>Cube Normal Topology</u>
- 9.14. Full Cube Topology
- 10.1. Vertex Point Lighting
- 10.2. Light Near Surface
- 10.3. <u>Triangle Interpolation</u>
- 10.4. <u>Triangle Edge Interpolation</u>
- 10.5. Two Triangle Quadrilateral
- 10.6. <u>Two Triangle Interpolation</u>
- 10.7. Fragment Point Lighting
- 10.8. Close Lit Cylinder
- 10.9. Adjacent Gradient
- 10.10. Gradient Intensity Plot
- 10.11. <u>High Light</u>
- 10.12. Fragment Attenuation
- 11.1. Perfect Specular Reflection
- 11.2. Smooth and Rough Microfacets
- 11.3. Phong Lighting
- 11.4. Phong with Dark Diffuse
- 11.5. Phong Clipping
- 11.6. Phong Distortion
- 11.7. Large View and Reflect Angle
- 11.8. Geometric Half-Angle Vector
- 11.9. Perfect Reflection Half-Angle Vector
- 11.10. Blinn Lighting
- 11.11. Blinn vs. Phong Lighting
- 11.12. <u>Light Edge</u>
- 11.13. Improved Light Edge
- 11.14. Gaussian Probability Distribution Curves
- 11.15. Gaussian with Sharp Highlight
- 12.1. Scene Lighting
- 12.2. Darkness, Day vs. Night
- 12.3. Light Clipping
- 12.4. HDR Lighting
- 12.5. Gamma Function Graph
- 12.6. Gamma Correction
- 12.7. Gamma Lighting
- 12.8. Gamma Shadow Details
- 13.1. Basic Impostor
- 13.2. Circle Point Computation
- 13.3. Bad Impostor
- 13.4. <u>Circle Projection</u>
- 13.5. <u>Bad vs. Good</u>
- 13.6. Bad Intersection
- 13.7. <u>Depth Correct Impostor</u>
- 14.1. Basic Texture

- 14.2. <u>Texture Binding and Context</u>
- 14.3. Sampler Binding and Context
- 14.4. Projection and Interpolation
- 14.5. Perspective Correct Interpolation
- 14.6. Material Texture
- 14.7. <u>A Torus</u>
- 14.8. Surface smudges
- 15.1. Basic Checkerboard Plane
- 15.2. <u>Jagged Texture Edge</u>
- 15.3. Nearest Sampling
- 15.4. Linear Filtering
- 15.5. Large Minification Sampling
- 15.6. Mipmapped Minification Sampling
- 15.7. Hallway with Mipmapping
- 15.8. Hallway with Special Texture
- 15.9. Linear Mipmap Linear Comparison
- 15.10. Main Diagonal
- 15.11. Long Fragment Area
- 15.12. Long Fragment with Sample Area
- 15.13. Parallelogram Sample Area
- 15.14. Anisotropic Filtering
- 15.15. Max Anisotropic Filtering
- 16.1. Gamma Ramp
- 16.2. Gamma Ramp with sRGB Images
- 16.3. Gamma Checkers
- 16.4. Gamma Correct with Gamma Mipmaps
- 16.5. Gamma Landscape
- 17.1. <u>Double Projection</u>
- 17.2. Top View Projection
- 17.3. Near View Projection
- 17.4. Projected Light
- 17.5. Back Projected Light
- 17.6. Colored Spotlight
- 17.7. Edge Clamped Light
- 17.8. Border Clamped Light
- 17.9. Cube Map Face Orientation
- 17.10. Cube Point Light

List of Tables

- 6.1. <u>Hierarchy Tutorial Key Commands</u>
- 7.1. World Space Controls
- 10.1. <u>Transform Legend</u>
- 12.1. Scene Lighting Values
- 13.1. Sphere Impostor Control Key Map

List of Examples

- 1.1. The display Function
- 1.2. Buffer Object Initialization

- 1.3. Vertex Shader
- 1.4. Reshaping Window
- 1.5. Fragment Shader
- 1.6. Program Initialization
- 1.7. Shader Creation
- 1.8. Program Creation
- 2.1. FragPosition's Fragment Shader
- 2.2. New Vertex Array Data
- 2.3. Buffer Object Initialization
- 2.4. Rendering the Scene
- 2.5. Vertex Arrays
- 2.6. <u>Draw Arrays Implementation</u>
- 2.7. Multi-input Vertex Shader
- 2.8. Fragment Shader with Input
- 3.1. Computation of Position Offsets
- 3.2. Adjusting the Vertex Data
- 3.3. <u>Updating and Drawing the Vertex Data</u>
- 3.4. Offsetting Vertex Shader
- 3.5. Draw with Calculated Offsets
- 3.6. Offset Computing Vertex Shader
- 3.7. Rendering with Time
- 3.8. Loop Duration Setting
- 3.9. Time-based Fragment Shader
- 3.10. More Shader Creation
- 4.1. <u>Face Culling Initialization</u>
- 4.2. ManualPerspective Vertex Shader
- 4.3. Program Initialization
- 4.4. MatrixPerspective Vertex Shader
- 4.5. Program Initialization of Perspective Matrix
- 4.6. Square-only Viewport
- 4.7. Reshape with Aspect Ratio
- 5.1. <u>Draw Arrays Implementation</u>
- 5.2. <u>Draw Elements Implementation</u>
- 5.3. VAO Initialization
- 5.4. VAO and Indexed Rendering Code
- 5.5. Vertex Attribute Data Abridged
- 5.6. Array Drawing of Two Objects with One VAO
- 5.7. MultiObject Element Buffer
- 5.8. <u>Base Vertex Single VAO</u>
- 5.9. Base Vertex Rendering
- 5.10. Depth Buffer Setup
- 5.11. Depth Buffer Clearing
- 5.12. Depth Clamping On/Off
- 6.1. Translation Shader Initialization
- 6.2. Frustum Scale Computation
- 6.3. Translation Matrix Generation
- 6.4. Rotation Transformation Building
- 6.5. <u>Hierarchy::Draw</u>
- 7.1. Window Resizing

- 7.2. Position-only Vertex Shader
- 7.3. Upload World to Camera Matrix
- 7.4. Spherical to Euclidean Transform
- 7.5. Draw the Ground
- 7.6. <u>DrawForest Function</u>
- 7.7. Call to DrawParthenon
- 7.8. <u>Draw Camera Target</u>
- 7.9. Cylinder Mesh File
- 7.10. UBO-based Vertex Shader
- 7.11. <u>Uniform Buffer Creation</u>
- 7.12. UBO-based Perspective Matrix
- 7.13. UBO-based Camera Matrix
- 7.14. Viewing Point with UBO
- 8.1. Gimbal Lock Display Code
- 8.2. Quaternion YPR Display
- 8.3. OffsetOrientation Function
- 8.4. <u>Camera Relative OffsetOrientation</u>
- 8.5. <u>Quaternion Linear Interpolation</u>
- 8.6. Spherical Linear Interpolation
- 9.1. <u>Display Camera Code</u>
- 9.2. Ground Plane Lighting
- 9.3. Cylinder Lighting
- 9.4. Lighting Vertex Shader
- 9.5. <u>Lighting with Proper Normal Transform</u>
- 9.6. Ambient Vertex Lighting
- 9.7. <u>Lighting Intensity Settings</u>
- 10.1. Per-Vertex Point Light Rendering
- 10.2. Per-Vertex Point Light Vertex Shader
- 10.3. Initial Per-Fragment Rendering
- 10.4. Ground Plane Per-Fragment Rendering
- 10.5. Model Space Per-Vertex Lighting Vertex Shader
- 10.6. Model Space Per-Fragment Lighting Vertex Shader
- 10.7. Per-Fragment Lighting Fragment Shader
- 10.8. Light Attenuation Fragment Shader Definitions
- 10.9. Window to Camera Space Function
- 10.10. Light Intensity Application Function
- 10.11. Main Light Attenuation
- 11.1. Phong Lighting Shader
- 11.2. Blinn-Phong Lighting Shader
- 11.3. Gaussian Lighting Shader
- 12.1. Material Uniform Block
- 12.2. Material UBO Construction
- 12.3. Daytime Lighting
- 12.4. Light Uniform Block
- 12.5. Many Lights Main Function
- 12.6. HDR LightBlock
- 12.7. Gamma LightBlock
- 12.8. Fragment Gamma Correction
- 13.1. Basic Impostor Vertex Shader

- 13.2. <u>Basic Impostor Fragment Shader</u>
- 13.3. Ray Traced Impostor Square
- 13.4. <u>Depth Correct Fragment Shader</u>
- 13.5. Impostor Geometry Creation
- 13.6. Vertex Shader for Points
- 13.7. Geometry Shader Definitions
- 13.8. Geometry Shader Vertex Computation
- 13.9. Fragment Shader Changes
- 14.1. BuildGaussianData function
- 14.2. <u>CreateGaussianTexture function</u>
- 14.3. Shader Texture Access
- 14.4. Sampler Object Creation
- 14.5. BuildGaussianData in 2D
- 14.6. CreateGaussianTexture in 2D
- 14.7. <u>CreateShininessTexture function</u>
- 14.8. Shininess Texture Access
- 14.9. Gaussian Texture with Specular
- 15.1. DDS Texture Loading with Mipmaps
- 15.2. Special Texture Data
- 16.1. sRGB Image Format
- 16.2. Window to Clip Matrix Computation
- 16.3. Vertex Format
- 16.4. Gamma Landscape defaults Function
- 16.5. Enable sRGB Conversion
- 17.1. Scene Graph Shader Definition
- 17.2. Scene Graph Node Definition
- 17.3. <u>Double Projection LoadAndSetupScene</u>
- 17.4. Left Projection Matrix
- 17.5. Right Projection Matrix
- 17.6. View Camera to Projected Texture Transform
- 17.7. Border Clamp Sampler Objects
- 17.8. Cube Texture Loading
- 17.9. View Camera to Light Cube Texture

List of Equations

- 1. Vector Addition with Numbers
- 2. Vector Negation
- 3. Vector Multiplication
- 4. Vector-Scalar Multiplication
- 5. Vector-Scalar Addition
- 6. Vector Algebra
- 7. <u>Vector Length</u>
- 8. Vector Normalization
- 4.1. Perspective Computation
- 4.2. <u>Depth Computation</u>
- 4.3. Camera to Clip Equations
- 4.4. Camera to Clip Expanded Equations
- 4.5. Camera to Clip Matrix Transformation
- 4.6. Vector Matrix Multiplication

- 5.1. Perspective Computation
- 6.1. Coordinate System
- 6.2. Identity Matrix
- 6.3. <u>Translation Matrix</u>
- 6.4. <u>Scaling Transformation Matrix</u>
- 6.5. Vectorized Matrix Multiplication
- 6.6. Axial Rotation Matrices
- 6.7. Angle/Axis Rotation Matrix
- 6.8. Order of Transformation
- 8.1. Angle/Axis to Quaternion
- 8.2. Quaternion Multiplication
- 8.3. Quaternion to Matrix
- 9.1. <u>Diffuse Lighting Equation</u>
- 9.2. Dot Product
- 9.3. Dot Product from Vector Math
- 9.4. Matrix Transpose
- 10.1. Physical Light Attenuation
- 10.2. <u>Light Attenuation Inverse</u>
- 10.3. Camera to Window Transforms
- 10.4. Window to Camera Transforms
- 11.1. Phong Specular Term
- 11.2. Vector Reflection
- 11.3. Half-Angle Vector
- 11.4. Blinn Specular Term
- 11.5. Gaussian Distribution Function
- 11.6. Gaussian Specular Term
- 12.1. <u>Display Gamma Function</u>
- 12.2. Gamma Correction Function
- 13.1. Ray Equation
- 13.2. Sphere Equation
- 14.1. Gaussian as Function of One Variable

Next

About this Book