- 1. Let $A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix}$, $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$. Show that A is invertible, determine A^{-1} and solve the linear system AX = B.
- 2. Using the Kronecker-Capelli theorem, decide if the following linear systems are compatible and then solve the compatible ones:

(i)
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 = 5\\ 2x_1 + x_2 - 2x_3 + x_4 = 1\\ 2x_1 - 3x_2 + x_3 + 2x_4 = 3 \end{cases}$$
 (ii)
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 1\\ x_1 - 2x_2 + x_3 - x_4 = -1\\ x_1 - 2x_2 + x_3 + 5x_4 = 5 \end{cases}$$

(iii)
$$\begin{cases} x + y + z = 3 \\ x - y + z = 1 \\ 2x - y + 2z = 3 \\ x + z = 4 \end{cases}$$

- 3. Using the Rouché theorem, decide if the systems from 2. are compatible and then solve the compatible ones.
- 4. Decide when the following linear system is compatible determinate and in that case solve it by using Cramer's method:

$$\begin{cases} ay + bx = c \\ cx + az = b \\ bz + cy = a \end{cases} (a, b, c \in \mathbb{R}).$$

Solve the following linear systems by the Gauss and Gauss-Jordan methods:

5. (i)
$$\begin{cases} 2x + 2y + 3z = 3 \\ x - y = 1 \\ -x + 2y + z = 2 \end{cases}$$
 (ii)
$$\begin{cases} 2x + 5y + z = 7 \\ x + 2y - z = 3 \\ x + y - 4z = 2 \end{cases}$$
 (iii)
$$\begin{cases} x + y + z = 3 \\ x - y + z = 1 \\ 2x - y + 2z = 3 \\ x + z = 4 \end{cases}$$

6.
$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 = 1\\ x_1 + 2x_2 - x_3 + 4x_4 = 2\\ x_1 + 5x_2 - 4x_3 + 11x_4 = \lambda \end{cases} \quad (\lambda \in \mathbb{R})$$

7.
$$\begin{cases} ax + y + z = 1 \\ x + ay + z = a \\ x + y + az = a^2 \end{cases} (a \in \mathbb{R})$$

 ${\bf 8.}\,$ Determine the positive solutions of the following non-linear system:

$$\begin{cases} xyz = 1\\ x^3y^2z^2 = 27\\ \frac{z}{xy} = 81 \end{cases}$$

1

Compute by applying elementary operations the ranks of the matrices:

1.
$$\begin{pmatrix} 0 & 2 & 3 \\ 2 & 4 & 3 \\ 1 & 1 & 1 \\ 2 & 2 & 4 \end{pmatrix}$$
. 2.
$$\begin{pmatrix} 1 & -1 & 3 & 2 \\ -2 & 0 & 3 & -1 \\ -1 & 2 & 0 & -1 \end{pmatrix}$$
. 3.
$$\begin{pmatrix} \beta & 1 & 3 & 4 \\ 1 & \alpha & 3 & 3 \\ 2 & 3\alpha & 4 & 7 \end{pmatrix} (\alpha, \beta \in \mathbb{R})$$
.

Compute by applying elementary operations the inverses of the matrices:

4.
$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$
. 5. $\begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix}$.

6. Let K be a field, let $B = (e_1, e_2, e_3, e_4)$ be a basis and let $X = (v_1, v_2, v_3)$ be a list in the canonical K-vector space K^4 , where

$$v_1 = 3e_1 + 2e_2 - 5e_3 + 4e_4$$
,
 $v_2 = 3e_1 - e_2 + 3e_3 - 3e_4$,
 $v_3 = 3e_1 + 5e_2 - 13e_3 + 11e_4$.

Write the matrix of the list X in the basis B, determine an echelon form for it and deduce that X is linearly dependent.

For the following exercises, for a list X of vectors in a canonical vector space \mathbb{R}^n , use that $\dim < X >$ is equal to the rank of an echelon form C of the matrix consisting of the components of the vectors of X, and a basis of < X > is given by the non-zero rows of C.

- **7.** In the real vector space \mathbb{R}^3 consider the list $X = (v_1, v_2, v_3, v_4)$, where $v_1 = (1, 0, 4)$, $v_2 = (2, 1, 0)$, $v_3 = (1, 5, -36)$ and $v_4 = (2, 10, -72)$. Determine dim < X > and a basis of < X >.
- **8.** In the real vector space \mathbb{R}^4 consider the list $X = (v_1, v_2, v_3)$, where $v_1 = (1, 0, 4, 3)$, $v_2 = (0, 2, 3, 1)$ and $v_3 = (0, 4, 6, 2)$. Determine dim < X > and a basis of < X >.
- **9.** Determine the dimension of the subspaces S, T, S+T and $S \cap T$ of the real vector space \mathbb{R}^3 and a basis for the first three of them, where

$$S = <(1,0,4), (2,1,0), (1,1,-4)>,$$

$$T = <(-3,-2,4), (5,2,4), (-2,0,-8)>.$$

10. Determine the dimension of the subspaces S, T, S+T and $S \cap T$ of the real vector space \mathbb{R}^4 and a basis for the first three of them, where

$$S = <(1, 2, -1, -2), (3, 1, 1, 1), (-1, 0, 1, -1) >,$$

$$T = <(2, 5, -6, -5), (-1, 2, -7, -3) >.$$

1. Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by

$$f(x, y, z) = (x + y, y - z, 2x + y + z).$$

Determine the matrix $[f]_E$, where $E = (e_1, e_2, e_3)$ is the canonical basis for \mathbb{R}^3 .

2. Let $f \in Hom_{\mathbb{R}}(\mathbb{R}^3, \mathbb{R}^2)$ be defined by

$$f(x, y, z) = (y, -x)$$

and consider the bases $B = (v_1, v_2, v_3) = ((1, 1, 0), (0, 1, 1), (1, 0, 1))$ of \mathbb{R}^3 , $B' = (v'_1, v'_2) = ((1, 1), (1, -2))$ of \mathbb{R}^2 and let $E' = (e'_1, e'_2)$ be the canonical basis of \mathbb{R}^2 . Determine the matrices $[f]_{BE'}$ and $[f]_{BB'}$.

3. Let $f \in Hom_{\mathbb{R}}(\mathbb{R}^3, \mathbb{R}^4)$ be defined by

$$f(e_1) = (1, 2, 3, 4), f(e_2) = (4, 3, 2, 1), f(e_3) = (-2, 1, 4, 1)$$

on the elements of the canonical basis of \mathbb{R}^3 . Determine:

- (i) f(v) for every $v \in \mathbb{R}^3$.
- (ii) the matrix of f in the canonical bases.
- (iii) a basis and the diemnsion of Ker f and Im f.
- **4.** Let $f \in End_{\mathbb{R}}(\mathbb{R}^4)$ with the following matrix in the canonical basis E of \mathbb{R}^4 :

$$[f]_E = \begin{pmatrix} 1 & 1 & -3 & 2 \\ -1 & 1 & 1 & 4 \\ 2 & 1 & -5 & 1 \\ 1 & 2 & -4 & 5 \end{pmatrix}.$$

- (i) Show that $v = (1, 4, 1, -1) \in Ker f$ and $v' = (2, -2, 4, 2) \in Im f$.
- (ii) Determine a basis and the dimension of Ker f and Im f.
- (iii) Define f.
- **5.** Consider the real vector space $\mathbb{R}_2[X] = \{f \in \mathbb{R}[X] \mid degree(f) \leq 2\}$ and its bases $E = (1, X, X^2)$ and $B = (1, X 1, X^2 + 1)$. Consider $\varphi \in End_{\mathbb{R}}(\mathbb{R}_2[X])$ defined by

$$\varphi(a_0 + a_1X + a_2X^2) = (a_0 + a_1) + (a_1 + a_2)X + (a_0 + a_2)X^2.$$

Determine the matrices $[\varphi]_E$ and $[\varphi]_B$.

- **6.** In the real vector space \mathbb{R}^2 consider the bases $B=(v_1,v_2)=((1,2),(1,3))$ and $B'=(v_1',v_2')=((1,0),(2,1))$ and let $f,g\in End_{\mathbb{R}}(\mathbb{R}^2)$ having the matrices $[f]_B=\begin{pmatrix} 1 & 2\\ -1 & -1 \end{pmatrix}$ and $[g]_{B'}=\begin{pmatrix} -7 & -13\\ 5 & 7 \end{pmatrix}$. Determine the matrices $[2f]_B$, $[f+g]_B$ and $[f\circ g]_{B'}$.
 - 7. Consider the endomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$, defined by

$$f(x, y) = (x \cos \alpha - y \sin \alpha, x \sin \alpha + y \cos \alpha) \quad (\alpha \in \mathbb{R}).$$

Write its matrix in the canonical basis of \mathbb{R}^2 and show that f is an automorphism.

8. Let V be a vector space of dimension 2 over the field $K = \mathbb{Z}_2$. Determine |V|, $|End_K(V)|$ and $|Aut_K(V)|$.

[Hint: use the isomorphism between $End_K(V)$ and $M_n(K)$, where $dim_K(V) = n$.]

- **1.** In the real vector space \mathbb{R}^3 consider the bases $B=(v_1,v_2,v_3)=((1,0,1),(0,1,1),(1,1,1))$ and $B'=(v'_1,v'_2,v'_3)=((1,1,0),(-1,0,0),(0,0,1))$. Determine the matrices of change of basis $T_{BB'}$ and $T_{B'B}$, and compute the coordinates of the vector u=(2,0,-1) in both bases.
- **2.** In the real vector space \mathbb{R}^2 consider the bases $B = (v_1, v_2) = ((1, 2), (1, 3))$ and $B' = (v'_1, v'_2) = ((1, 0), (2, 1))$ and let $f, g \in End_{\mathbb{R}}(\mathbb{R}^2)$ having the matrices $[f]_B = \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}$ and $[g]_{B'} = \begin{pmatrix} -7 & -13 \\ 5 & 7 \end{pmatrix}$. Determine the matrices $[2f]_B$, $[f+g]_B$ and $[f \circ g]_{B'}$. (Use the matrices of change of basis.)
- **3.** In the real vector space $\mathbb{R}_2[X] = \{f \in \mathbb{R}[X] \mid degree(f) \leq 2\}$ consider the bases $E = (1, X, X^2), B = (1, X a, (X a)^2) (a \in \mathbb{R})$ and $B' = (1, X b, (X b)^2) (b \in \mathbb{R})$. Determine the matrices of change of bases T_{EB} , T_{BE} and $T_{BB'}$.
 - **4.** Let $f \in End_{\mathbb{R}}(\mathbb{R}^2)$ be defined by f(x,y) = (3x + 3y, 2x + 4y).
 - (i) Determine the eigenvalues and the eigenvectors of f.
 - (ii) Write a basis B of \mathbb{R}^2 consisting of eigenvectors of f and $[f]_B$.

Compute the eigenvalues and the eigenvectors of the (endomorphisms having) matrices:

5.
$$\begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ -4 & -8 & -2 \end{pmatrix}$$
. 6. $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$.

7.
$$\begin{pmatrix} x & 0 & y \\ 0 & x & 0 \\ y & 0 & x \end{pmatrix}$$
 $(x, y \in \mathbb{R}^*)$. 8. $\begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$ $(x \in \mathbb{R})$.

- **9.** Let $A \in M_2(\mathbb{R})$ and let λ_1, λ_2 be the eigenvalues of A in \mathbb{C} . Prove that:
- (i) $\lambda_1 + \lambda_2 = Tr(A)$ and $\lambda_1 \cdot \lambda_2 = det(A)$, where Tr(A) denotes the trace of A, that is, the sum of the elements of the principal diagonal. Generalization.
 - (ii) A has all the eigenvalues in $\mathbb{R} \iff (Tr(A))^2 4 \cdot det(A) \ge 0$.
 - (iii) Show that A is a root of its characteristic polynomial.
 - **10.** Let $A \in M_2(\mathbb{R})$ be such that $det(A + iI_2) = 0$. Show that $det(A + 2I_2) = 5$.

- 1. (i) Which of the following received words contain detectable errors when using the (3,2)-parity check code: 110, 010, 001, 111, 101, 000?
- (ii) Decode the following words using the (3,1)-repeating code to correct errors: 111, 011, 101, 010, 000, 001. Which of them contain detectable errors?
- **2.** Are $1+X^3+X^4+X^6+X^7$ and $X+X^2+X^3+X^6$ code words in the polynomial (8,4)-code generated by $p=1+X^2+X^3+X^4\in\mathbb{Z}_2[X]$?
 - **3.** Write down all the words in the (6,3)-code generated by $p = 1 + X^2 + X^3 \in \mathbb{Z}_2[X]$.
 - **4.** A code is defined by the generator matrix $G = \left(\frac{P}{I_3}\right) \in M_{5,3}(\mathbb{Z}_2)$, where:

$$P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Write down the parity check matrix and all the code words.

5. Determine the minimum Hamming distance between the code words of the code with generator matrix $G = \left(\frac{P}{I_4}\right) \in M_{9,4}(\mathbb{Z}_2)$, where:

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

Discuss the error-detecting and error-correcting capabilities of this code, and write down the parity check matrix.

6. Encode the following messages using the generator matrix of the (9,4)-code of Exercise **5.**: 1101, 0111, 0000, 1000.

Determine the generator matrix and the parity check matrix for:

- **7.** The (4,1)-code generated by $p = 1 + X + X^2 + X^3 \in \mathbb{Z}_2[X]$.
- **8.** The (7,3)-code generated by $p = 1 + X^2 + X^3 + X^4 \in \mathbb{Z}_2[X]$.

- 1. Consider a (63, 56)-code.
- (i) What is the number of digits in the message before coding?
- (ii) What is the number of check digits?
- (iii) What is the information rate?
- (iv) How many different syndromes are there?
- 2. Using the parity check matrix

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

and the syndromes and coset leaders

Syndrome	000	001	010	011
Coset leader	000000	001000	010000	000010

	Syndrome	100	101	110	111
ĺ	Coset leader	100000	000110	000100	000001

decode the following words: 101110, 011000, 001011, 111111, 110011.

- **3.** A (7,4)-code is defined by the equations $u_1 = u_4 + u_5 + u_7$, $u_2 = u_4 + u_6 + u_7$, $u_3 = u_4 + u_5 + u_6$, where u_4 , u_5 , u_6 , u_7 are the message digits and u_1 , u_2 , u_3 are the check digits. Write its generator matrix and parity check matrix. Decode the received words 0000111 and 0001111.
- **4.** Find the syndromes of all the received words in the (3,2)-parity check code and in the (3,1)-repeating code.
- **5.** Construct a table of coset leaders and syndromes for the (7,4)-code with parity check matrix

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}.$$

6. Determine the parity check matrix and all syndromes and coset leaders of the (5,3)-code with generator matrix $G = \left(\frac{P}{I_3}\right) \in M_{5,3}(\mathbb{Z}_2)$, where:

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

- 7. Construct a table of coset leaders and syndromes for the (3,1)-code generated by $p = 1 + X + X^2 \in \mathbb{Z}_2[X]$.
- **8.** Construct a table of coset leaders and syndromes for the (7,3)-code generated by $p = 1 + X^2 + X^3 + X^4 \in \mathbb{Z}_2[X]$.

1