Probability and Measure - Tutorial 6

1. Let (Ω, \mathcal{A}) be a measurable space and let $f: (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be measurable. Show that f_a defined by

$$f_a(x) = \begin{cases} a, & \text{if } f(x) > a, \\ f(x), & \text{if } f(x) \le a, \end{cases}$$

is a measurable function.

- 2. Let (Ω, \mathcal{A}) be a measurable space and let $f:(\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be a function. Show that the following statements are equivalent:
 - (a) f is measurable;
 - (b) f^2 is measurable and $\{\omega \in \Omega : f(\omega) > 0\}$ is measurable.
- 3. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and let $f:(\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be measurable and assume that $\{\omega \in \Omega: f(\omega) > 0\}$ has positive measure. Show that for $\varepsilon > 0$ sufficiently small also $\{\omega \in \Omega: f(\omega) > \varepsilon\}$ has positive measure.
- 4. Let (Ω, \mathcal{A}) be a measurable space and let $f, g : (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be measurable functions. Show that the set

$$\{\omega \in \Omega : f(\omega) \neq g(\omega)\}\$$

is measurable.

- 5. Let (Ω, \mathcal{A}) be a measurable space and let $f_n : (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be a sequence of measurable functions. Show that the set of all $\omega \in \Omega$ where $f_n(\omega)$ converges as $n \to \infty$ is measurable.
- 6. Let $(\Omega, \mathcal{A}, \mu)$ be a complete measure space and let $f_n, g_n : (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \overline{\mathcal{B}})$ be sequences of measurable functions such that

$$f_n = g_n$$
 a.e.

If f_n and g_n converge almost everywhere to f and g, respectively, show that f = g almost everywhere.

- 7. Let $f: \mathbb{R}^d \to \mathbb{R}$ be continuous. Show that f is measurable.
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be monotone. Show that f is measurable.
- 9. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable. Show that f' is measurable.