

Spoki: Unveiling a New Wave of Scanners through a Reactive Network Telescope

Raphael Hiesgen, Marcin Nawrocki, Alistair King, Alberto Dainotti, Thomas C. Schmidt, Matthias Wählisch

The Share of Irregular Packets is Increasing

UCSD Network Telescope: a /9 IPv4 prefix

- Irregular packets show one or more of:
 - High TTL (≥200)
 - No TCP options
 - Fixed IP ID (54321)

Ver.	IHL	TOS	Total Length		
Identification			Flags	Fragment Offset	
Т	ΓL	Protocol	Header Checksum		
Source Address					
Destination Address					
Options			Data		

Source Port	Destination Port		
Sequence	e Number (
Acknowledgement Number			
		[ea	
		de	
Options			

- Irregular packets show one or more of:
 - High TTL (≥200)
 - No TCP options
 - Fixed IP ID (54321)

Source Port	Destination Port		
Sequence	e Number		
Acknowledge	ment Number		
	2	[ea	
		de	
Options			

- Irregular packets show one or more of:
 - High TTL (≥200)
 - No TCP options
 - Fixed IP ID (54321)

- Irregular packets show one or more of:
 - High TTL (≥200)
 - No TCP options
 - Fixed IP ID (54321)

A Global Phenomenon

A Global Phenomenon

- Increases scan speeds by avoiding local state
 - Hand-crafted probes sent via raw sockets
 - Recognize replies via SYN cookies

- Popularized by ZMap around 2013
- Abused by Mirai in 2016

- Increases scan speeds by avoiding local state
 - Hand-crafted probes sent via raw sockets
 - Recognize replies via SYN cookies

- Popularized by ZMap around 2013
- Abused by Mirai in 2016

- Increases scan speeds by avoiding local state
 - Hand-crafted probes sent via raw sockets
 - Recognize replies via SYN cookies

- Popularized by ZMap around 2013
- Abused by Mirai in 2016

- Increases scan speeds by avoiding local state
 - Hand-crafted probes sent via raw sockets
 - Recognize replies via SYN cookies

- Popularized by ZMap around 2013
- Abused by Mirai in 2016

Two-phase Scanning

- First phase: Transport layer
 - Hand-crafted, stateless SYNs
 - Identify responsive hosts

- Second phase: Application layer
 - OS-level TCP handshake
 - Deliver payloads & reconnaissance

Two-phase Scanning

- First phase: Transport layer
 - Hand-crafted, stateless SYNs
 - Identify responsive hosts

- Second phase: Application layer
 - OS-level TCP handshake
 - Deliver payloads & reconnaissance

Spoki: Revealing Two-phase Scanners

- Spoki interacts with two-phase scanners in real time
 - Scalable system based on actors with the C++ Actor Framework (CAF)
 - Libtrace for packet ingestion, Scamper for probing
 - Collects payloads after accepting TCP connections
- Deployed in two /24 prefixes (US, EU)

• Published source code on GitHub (https://github.com/inetrg/spoki)

Scaling Up to 1 Million Probes Per Second

Parallel components allow Spoki to process large traffic volumes.

Share of Two-phase Sources

About 30% of sources send two-phase events each day.

Targeted Ports

Two ports are scanned exclusively in the EU.

Targeted Ports

Two ports are scanned exclusively in the EU.

Targeted Ports

Two ports are scanned exclusively in the EU.

TCP Payloads

- TCP payloads are not available in traditional telescopes
- We scan payloads for downloaders: shell code that downloads malware

Event Type	EU		U	S
ASCII	2,155,751	58.6%	1,984,444	80.4%
HEX	1,478,556	40.2%	339,217	13.8%
Downloader	42,303	1.2%	143,309	5.8%

- Sample names and types match known malware such as the Mozi P2P-botnet
- Spoki detected 15% of the samples earlier than VirusTotal (26% benign, 59% old)

The Maliciousness of Two-Phase Scanners

Malware distribution clearly points at malicious intent. Can we validate our findings?

The Maliciousness of Two-Phase Scanners

Malware distribution clearly points at malicious intent. Can we validate our findings?

Approach 1: Semi-Manual Analysis

• Reveals malicious payloads such as:

Port	Attack
1433	TDS, SQL, SIMATIC
7545	TR-069, routers
5555	ADB crypto miner
9530, 4567	Embedded devices
5432	Realtek UPnP

The Maliciousness of Two-Phase Scanners

Malware distribution clearly points at malicious intent. Can we validate our findings?

Approach 1: Semi-Manual Analysis

• Reveals malicious payloads such as:

Port	Attack
1433	TDS, SQL, SIMATIC
7545	TR-069, routers
5555	ADB crypto miner
9530, 4567	Embedded devices
5432	Realtek UPnP

Approach 2: Query GreyNoise

- Classifies IPs into: *malicious, benign,* and *unknown*
- Two-phase events have a higher share of malicious sources:

Geographical Scanning Locality

- Scanners focus on different ports in Europe and the USA
- Different vendors and deployments attracts different attacks

	EU		US	
Payload Prefix	Share	Ports	Share	Ports
TDS7 Pre-login	74.52%	1433	1.16%	1443
TLS Client Hello	4.55%	443, 8443	37.80%	443, 8443
ADB Connect	4.97%	5555	37.01%	5555
SMB Negotiate	11.04%	445	_	_
PSQL/UPnP	0.35%	5432	3.10%	5432, 5000
TSAP	0.45%	102	1.42%	102
MongoDB	0.27%	27017	1.21%	27017
Unknown	0.16%	28967	1.15%	28967

TDS: Tabular Data Stream used by Microsoft SQL

Targets non-ASCII payloads

ADB: Android Debug Bridge

Topological Scanning Locality

- Six of the top-ten source prefixes in the EU share a /16 with our /24 vantage point
 - This scanning behavior is associated with botnets
 - A similar locality cannot be observed in the US
- Scanners 198.51.0.0/16 Telescope 198.51.111.0/24
- Crosscheck (sampled) traffic at a European IXP
 - Local, irregular SYNs in 370 prefixes (150 packets per host)
 - Very focused: 96% target 23, 7547, 8291 (multiple sources identified as MiktoTik routers)
- No correlation of /16 local, irregular SYNs at an Asian ISP

- Spoki makes two-phase scanners visible
- Irregular SYNs dominate SYNs on the Internet: ~75%
- Two-phase scans
 - ... act as a catalyst
 - ... are used for malicious activities
 - ... follow locality patterns
 - ... have detectable signatures

- Spoki makes two-phase scanners visible
- Irregular SYNs dominate SYNs on the Internet: ~75%
- Two-phase scans
 - ... act as a catalyst
 - ... are used for malicious activities
 - ... follow locality patterns
 - ... have detectable signatures

→ Short update cycles needed

- Spoki makes two-phase scanners visible
- Irregular SYNs dominate SYNs on the Internet: ~75%
- Two-phase scans
 - ... act as a catalyst
 - ... are used for malicious activities
 - ... follow locality patterns
 - ... have detectable signatures

- → Short update cycles needed
- → Deliver a variety of malware

- Spoki makes two-phase scanners visible
- Irregular SYNs dominate SYNs on the Internet: ~75%
- Two-phase scans
 - ... act as a catalyst
 - ... are used for malicious activities
 - ... follow locality patterns
 - ... have detectable signatures

- → Short update cycles needed
- → Deliver a variety of malware
- Ensure your data fits your deployment

- Spoki makes two-phase scanners visible
- Irregular SYNs dominate SYNs on the Internet: ~75%
- Two-phase scans
 - ... act as a catalyst
 - ... are used for malicious activities
 - ... follow locality patterns
 - ... have detectable signatures

- → Short update cycles needed
- → Deliver a variety of malware
- Ensure your data fits your deployment
- Can be tracked and their packets filtered

Thank you for your attention!

Find the paper, code, and artifacts at: https://spoki.secnow.net

Contact: raphael.hiesgen@haw-hamburg.de