Dozent: Denis Vogel Tutor: Marina Savarino

Aufgabe 18

- (a) $0 \in I_A$, da 0(A) = 0. Seien $f, g \in I_A$. Dann gilt (analog zu der Aufgabe vor ca. 3 Zetteln bei der man i für t einsetzen musste) (f+g)(A) = f(A) + g(A) = 0 + 0 = 0 und daher $(f+g) \in I_A$. Sei nun $g \in K[t]$. Dann ist $(g \cdot f)(A) = g(A) \cdot f(A) = g(A) \cdot 0 = 0$ und daher $(g \cdot f) \in I_A$. Daher ist I_A ein Ideal. Nun ist nach Cayley-Hamilton $\chi_A^{\text{char}}(A) = 0$, also $\chi_A^{\text{char}}(A) \in I_A$.
- (b) K[t] ist ein Hauptidealring. Nach Bemerkung 2.5. und der Anmerkung dazu gibt es also ein endeutig bestimmtes normiertes Polynom χ_A^{\min} mit $I_A = (\chi_A^{\min})$.
- (c) Wegen $\chi_A^{\text{char}} \in I_A = (\chi_A^{\text{min}})$ existiert ein $f \in K[t]$ mit $\chi_A^{\text{char}} = f \cdot \chi_A^{\text{min}}$. Daraus folgt sofort $\chi_A^{\text{min}}(\lambda) = 0 \implies (f \cdot \chi_A^{\text{min}})(\lambda) = 0 \implies \chi_A^{\text{char}}(\lambda) = 0$. Für die Rückrichtung zeigen wir zunächst, dass $f(SAS^{-1}) = Sf(A)S^{-1}$ für alle $f \in K[t]$ und $S \in GL_n(K)$ gilt.

Beweis. Es gilt

$$SCS^{-1} + SDS^{-1} = S(C+D)S^{-1}$$

für beliebige $C, D \in M_{n,n}(K)$ und

$$(SAS^{-1})^m = SAS^{-1} \cdot SAS^{-1} \cdot \dots \cdot SAS^{-1} = SA \cdot A \cdot \dots \cdot AS^{-1} = SA^m S^{-1}$$

für $m \in \mathbb{N}$. Daher ist

$$f(SAS^{-1}) = a_0 + a_1SAS^{-1} + \dots + a_n \left(SAS^{-1}\right)^n = Sa_0S^{-1} + Sa_1AS^{-1} + \dots + Sa_nA^nS^{-1} = Sf(A)S^{-1}$$
 für ein $f \in K[t]$.

Sei nun $\chi_A^{\text{char}}(\lambda) = 0$. Dann kann man χ_A^{char} schreiben als $(t-\lambda)f$. In LA1 wurde im Beweis von Satz 4.86 gezeigt, dass dann A äquivalent ist zu einer Matrix der Form $A' = \frac{\lambda}{0} | *$, also $A = SA'S^{-1}$ für ein $S \in GL_n(K)$. Für solche Matrizen gelten, wie man leicht nachrechnet, folgende Regeln:

$$\left(\begin{array}{c|c} \lambda & * \\ \hline 0 & * \end{array}\right) \cdot \left(\begin{array}{c|c} \mu & ** \\ \hline 0 & ** \end{array}\right) = \left(\begin{array}{c|c} \lambda \mu & *** \\ \hline 0 & *** \end{array}\right)$$

und

$$\left(\begin{array}{c|c} \lambda & * \\ \hline 0 & * \end{array}\right) + \left(\begin{array}{c|c} \mu & ** \\ \hline 0 & ** \end{array}\right) = \left(\begin{array}{c|c} \lambda + \mu & *** \\ \hline 0 & *** \end{array}\right).$$

Dies können wir analog zu unserer obigen Rechnung nun auf Polynome übertragen. Es gilt also

$$f\left(\begin{array}{c|c} \lambda & * \\ \hline 0 & * \end{array}\right) = \left(\begin{array}{c|c} f(\lambda) & ** \\ \hline 0 & ** \end{array}\right).$$

Insgesamt erhalten wir

$$f(A) = Sf\left(\begin{array}{c|c} \lambda & * \\ \hline 0 & * \end{array}\right) S^{-1} = S\left(\begin{array}{c|c} f(\lambda) & ** \\ \hline 0 & ** \end{array}\right) S^{-1}.$$

Für $f = \chi_A^{\min}$ gilt daher

$$\chi_A^{\min}(A) = 0 \implies S\left(\begin{array}{c|c} \chi_A^{\min}(\lambda) & ** \\ \hline 0 & ** \end{array}\right) S^{-1} = 0 \implies \chi_A^{\min}(\lambda) = 0.$$

- (d) Es gibt per Definition ein $S \in GL_n(K)$ mit $B = SAS^{-1}$. Mit der (c) gilt also $f(B) = 0 \implies Sf(A)S^{-1} = 0 \implies A = 0$. Die Rückrichtung erfolgt völlig analog. Also ist $I_A = I_B$ und daher nach Aufgabe (b) $\chi_A^{\min} = \chi_B^{\min}$.
- (e) Die Matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ hat das charakteristische Polynom $\chi_A^{\text{char}} = (t-1)^2$. Es gilt f(1) = 0. Da aufgrund von (c) dann auch jedes mögliche Minimalpolynom g mit g(A) = 0 den Linearfaktor (t-1) enhalten muss, das Polynom f = (t-1) aber selbst schon in I_A enthalten ist, gilt $\chi_A^{\text{min}} = t-1$. Also ist $\chi_A^{\text{char}} = (t-1)^2 \neq (t-1) = \chi_A^{\text{min}}$.

Aufgabe 19

(a) Zunächst wissen wir, dass $\chi_{B_q}^{\mathrm{char}} = g$. Weiter ist $g \in I_A = (\chi_{B_g}^{\min})$ und daher $\chi_{B_g}^{\mathrm{char}} | g$, woraus sofort deg $\chi_{B_g}^{\mathrm{char}} \le \deg g = n$ folgt. Nun untersuchen wir eine bestimmte Sorte von Matrizen. Wir bezeichnen mit M_i eine $n \times n$ -Matrix der Form

$$M_i = \frac{0 | *}{E_i | *}.$$

Mit etwas Aufwand erkennt man durch Nachrechnen, dass für i < n gilt:

$$M_i \cdot M_{n-1} = \frac{0}{E_{i-1}} | * = M_{i-1}.$$

Wir bemerken außerdem, dass für $\forall j$ mit $0 \neq i \leq j < n$ gilt: $(M_i)_{1,n-j} = 0$. Nachdem wir diese Eigenschaften festgestellt haben, bemerken wir, dass $\chi_{B_g}^{\min}(B_g) = 0$. Durch scharfes Hinschauen (Zitat Prof. Schmidt) wird klar, dass B_g eine Matrix der Form M_{n-1} ist. Wir schreiben $\chi_{B_g}^{\min} = a_n t^n + \dots + a_1 t + a_0$. Nun betrachten wir B_g^j . Es gilt aufgrund der oben gezeigten Eigenschaften

$$B_g^j = \underbrace{M_i \cdot \dots \cdot M_i}_{i \text{ mal}} = M_{n-j}.$$

Also ist $\chi_{B_g}^{\min}(B_g) = a_n M_0 + a_{n-1} M_1 + \dots + a_1 M_{n-1} + a_0 M_n$. Sei nun $i_{\min} := \min\{0 \le i \le n | a_i \ne 0\}$. Es gilt dann $(M_{n-i_{\min}})_{1,i_{\min}+1} = 1$. Allerdings gilt für alle j mit $n > j > i_{\min}$: $(M_{n-j})_{1,i_{\min}+1} = 0$. Nehmen wir nun $a_n = 0$ an. Dann gilt

$$\left(\chi_{B_g}^{\min}\right)_{1,i_{\min}+1} = \left(\sum_{j=0}^{n} a_j M_{n-j}\right)_{1,i_{\min}+1} = \sum_{j=i_{\min}}^{n-1} a_j \left(M_{n-j}\right)_{1,i_{\min}+1} = a_i + \sum_{i_{\min}< j < n} a_j \left(M_{n-j}\right)_{1,i_{\min}+1} = a_i \neq 0$$

Das ist ein Widerspruch, also muss $a_n \neq 0$ gelten und deg $\chi_{B_g}^{\min} = n$. Wie oben gezeigt, gilt $\chi_{B_g}^{\min} | g$. Da beide Polynome normiert sind und denselben Grad haben, muss also $\chi_{B_g}^{\min} = g$ sein.

(b) Sei $M_{A_1,...,A_m}$ eine Blockmatrix der Form

$$\begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_m \end{pmatrix}$$

mit Untermatrizen A_1, \ldots, A_m . Dann ist

$$M_{A_1,...,A_m} + M_{B_1,...,B_m} = \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & A_m \end{pmatrix} + \begin{pmatrix} B_1 & & & \\ & B_2 & & \\ & & \ddots & \\ & & & B_m \end{pmatrix}$$

$$= \begin{pmatrix} A_1 + B_1 & & & \\ & A_2 + B_2 & & \\ & & \ddots & \\ & & & A_m + B_m \end{pmatrix}$$

$$= M_{A_1 + B_1,...,A_m + B_m}$$

und für Multiplikation

$$M_{A_{1},...,A_{m}} \cdot M_{B_{1},...,B_{m}} = \begin{pmatrix} A_{1} & & & \\ & A_{2} & & \\ & & \ddots & \\ & & A_{m} \end{pmatrix} \cdot \begin{pmatrix} B_{1} & & & \\ & B_{2} & & \\ & & \ddots & \\ & & & B_{m} \end{pmatrix}$$

$$= \begin{pmatrix} A_{1} \cdot B_{1} & & & \\ & A_{2} \cdot B_{2} & & \\ & & & \ddots & \\ & & & A_{m} \cdot B_{m} \end{pmatrix}$$

$$= M_{A_{1} \cdot B_{1},...,A_{m} \cdot B_{m}}.$$

Diese Eigenschaften können wir auf Polynome anwenden.

$$f(M_{A_1,...,A_m}) = a_0 + a_1 \cdot \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & A_m \end{pmatrix} + \dots + a_n \cdot \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_m \end{pmatrix}^n$$

$$= \begin{pmatrix} a_0 + a_1 \cdot A_1 + \dots + a_n \cdot A_1^n & & & \\ & & a_0 + a_1 \cdot A_2 + \dots + a_n \cdot A_2^n & & \\ & & & \ddots & \\ & & & a_0 + a_1 \cdot A_m + \dots + a_n \cdot A_m^n \end{pmatrix}$$

$$= M_{f(A_1),...,f(A_m)}$$

Damit erhalten wir $f(M_{A_1,\dots,A_m})=0 \iff M_{f(A_1),\dots,f(A_m)}=0 \iff f(A_1)=f(A_2)=\dots=f(A_m)=0$. Sei B_{g_1,\dots,g_R} die Frobenius-Normalform von A. Dann gilt (nach Aufgabe 1d) $f(A)=0 \iff f(B_{g_1,\dots,g_R})=0 \iff f(B_{g_1})=\dots=f(B_{g_r})=0$. Nun gilt nach Cayley-Hamilton $g_i(B_{g_i})=0$ und wegen $g_1|g_2|\dots|g_r$ auch $g_r(B_{g_i})=0$. Nach Definition der Frobenius-Normalform ist g_r aber gerade c_n . Insgesamt gilt daher $c_n(A)=0 \iff c_n\in I_A$. Nun nehmen wir an, es gäbe ein normiertes Polynom $d\in I_A$ mit $c_n\not|d$. Dann gilt aber $d(B_{g_r})=d(B_{c_n})=0$ und also $d\in I_{B_{c_n}}=(c_n)$. Da $c_n\not|d$ ist dies ein Widerspruch und es folgt $I_A=(c_n)$ und daher $\chi_A^{\min}=c_n$.

Aufgabe 20

- (a) Es ist n = 8, $\chi_A^{\text{char}} = \prod_{n=1}^8 c_n(A) = c_6(A) \cdot c_7(A) \cdot c_8(A) = (t+1) \cdot t(t+1) \cdot t^2(t+1)^3 = t^3(t+1)^5$ und nach Aufgabe 19 (b) $\chi_A^{\min} = c_8(A)$.
- (b) Es ist $d_1(A) = \dots = d_5(A) = 1$, $d_6(A) = c_6(A) = t+1$, $d_7(A) = c_6(A) \cdot c_7(A) = (t+1) \cdot t(t+1) = t(t+1)^2$ und $d_8(A) = c_6(A) \cdot c_7(A) \cdot c_8(A) = t(t+1)^2 \cdot t^2(t+1)^3 = t^3(t+1)^5$. Somit gilt für die Frobenius-Normalform von A:

$$A \approx B_{c_6, c_7, c_8} = \begin{pmatrix} -1 & & & & & \\ & 0 & 0 & & & & 0 \\ & 1 & -1 & & & & \\ & & & 0 & 0 & 0 & 0 \\ & & & 1 & 0 & 0 & 0 & 0 \\ & & & 0 & 1 & 0 & 0 & -1 \\ & 0 & & 0 & 0 & 1 & 0 & -3 \\ & & & & 0 & 0 & 0 & 1 & -3 \end{pmatrix}$$

(c) Es sind $h_1 = t+1, h_2 = t, h_3 = t+1, h_4 = t^2, h_5 = (t+1)^3$. Somit gilt für die Weierstrass-Normalform von A:

Aufgabe 21

Wir betrachten die 2×2 -Matrix

$$A = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}.$$

Dann ist

$$P_A = \begin{pmatrix} t & -2 \\ -1 & t \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & t^2 - 2 \end{pmatrix}$$

Somit ist $c_1(A) = 1$ und $c_2(A) = t^2 - 2$. Über \mathbb{R} ist $t^2 - 2$ reduzibel, denn $t^2 - 2 = \underbrace{(t - \sqrt{2})}_{:=h_1} \underbrace{(t + \sqrt{2})}_{:=h_2}$. Somit gilt für die WNF:

$$A \approx B_{h_1, h_2} = \begin{pmatrix} \sqrt{2} & 0\\ 0 & -\sqrt{2} \end{pmatrix}$$

Über $\mathbb Q$ ist $c_2(A)=t^2-2$ irreduzibel. Also ist $h_1=t^2-2$ und es gilt für die WNF:

$$A \approx B_{h_1} = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$$