Comp1081: Algorithms and Data Structures resit exam

Denim Adewumi August 2024

Abstract

Here are all of the typed out solutions (in LaTeX) for the take home examination in Algorithms and Data Structures due 02/08/2024

Question 2: Hash Tables and Collision Handling

(a) Separate Chaining

Given:

• Keys: 6, 27, 13, 36, 25, 5, 17, 41, 23

• Hash Function: h(k) = (4k + 13)11

Hash Table:

Index	Chain
0	
1	
2	
3	36
4	$13 \rightarrow 41$
5	$6 \to 17 \to 23$
6	27
7	
8	5
9	
10	25

${\rm (b)} \ {\bf Linear} \ {\bf Probing}$

Hash Table:

Index	Key
0	
1	
2	
3	36
4	13
5	6
6	27
7	41
8	5
9	17
10	25
11	23

(c) Quadratic Probing

Hash Table:

Index	Key
0	
1	
2	
3	36
4	13
5	6
6	27
7	41
8	5
9	17
10	25
11	23

$(d) \ \mathbf{Double} \ \mathbf{Hashing}$

Given secondary hash function: h'(k) = 5 - (k5)

Hash Table:

Index	Key
0	23
1	36
2	13
3	
4	25
5	5
6	6
7	41
8	17
9	27
10	

Question 5: Asymptotic Notations

(a) $4x^2 - 2x$ is $O(x^2)$

True. The term $4x^2$ dominates -2x as $x \to \infty$.

(b) $2x\sqrt{x}$ is $o(2^x)$

True. Exponential growth 2^x outgrows polynomial growth $2x\sqrt{x}$ as $x\to\infty$.

(c) $x + x \log_2 x$ is $\Theta(x)$

False. $x \log_2 x$ dominates x, so $x + x \log_2 x$ is $\Theta(x \log_2 x)$.

(d) $100x^4$ is $\Omega(16\log_2 x)$

True. Polynomial growth x^4 outgrows logarithmic growth $16 \log_2 x$ as $x \to \infty$.

(e) $x + x^2 + 100x^3 + 10x^2 \log_2 x$ is $\omega(x^3)$

False. $100x^3$ and $10x^2 \log_2 x$ terms are bounded above by x^3 .

Question 6: Master Theorem Applications

(a) $T(n) = 3T(n/9) + \sqrt{n}$

Case 1: $f(n) = \sqrt{n} = O(n^{\log_9 3 - \epsilon})$ where $\epsilon = 1/2$

Answer: $T(n) = \Theta(n^{\log_9 3}) = \Theta(n^{1/2})$

(b) $T(n) = 4T(n/4) + 5n \log_2 n$

Case 2: $f(n) = \Theta(n \log_2 n)$

Answer: $T(n) = \Theta(n \log^2 n)$

(c) T(n) = 2T(n) + n

Not solvable by Master Theorem: a = 2, b = 1 leads to an invalid form for Master Theorem.

$$\begin{array}{l} \text{(d) } T(n) = 4T(n/2) + n^3 \\ \textbf{Case 3: } f(n) = \Omega(n^3) = \Omega(n^{\log_2 4 + \epsilon}) \end{array}$$

Answer: $T(n) = \Theta(n^3)$

(e)
$$T(n) = 4T(n/8) + 7n^{0.6}$$

Case 1: $f(n) = O(n^{\log_8 4 - \epsilon})$ Answer: $T(n) = \Theta(n^{\log_8 4}) = \Theta(n^{2/3})$

Question 7(b): Analysis of AverageQuickSort

(i) Worst-Case Time Complexity

In the worst case, the partition is extremely unbalanced each time (e.g., if all elements are the same), leading to $O(n^2)$.

(ii) Constructing Worst-Case Inputs

To construct the worst-case input, you can use a list where one element is much larger (or smaller) than the rest, repeatedly causing the partition to be extremely unbalanced. For instance, for decreasing order, use a list in ascending order.