به نام خدا

تمرین درس سیگنالها و سیستمها – سری چهارم

استاد درس: دکتر راستی

فصل چهارم: تبدیل فوریه سیگنالهای پیوسته در زمان

۱. با استفاده از رابطه ی صریح تبدیل فوریه و یا خواص تبدیل فوریه, تبدیل فوریه سیگنالهای زیر را به دست آورید.

a.
$$x(t) = e^{-3|t|} \sin(2t)$$

a.
$$x(t) = e^{-5|t|} \sin(2t)$$

b. $x(t) = \begin{cases} 1 - t^2 & 0 < t < 1 \\ 0 & 0 . W. \end{cases}$
c. $x(t) = \frac{\sin 3t . \cos t}{\pi t}$
d. $x(t) = te^{-2|t-1|}$

c.
$$x(t) = \frac{\sin 3t \cdot \cos t}{-1}$$

d.
$$x(t) = te^{-2|t-1|}$$

۲. عکس تبدیل فوریه های زیر را به دست آورید.

a.
$$X(\omega) = \omega e^{-|\omega|}$$

b.
$$X(\omega) = \begin{cases} e^{-\omega} , & \omega > 0 \\ -e^{\omega} , & \omega < 0 \end{cases}$$

c.
$$X(\omega) = \frac{2\alpha - j\omega}{2\alpha + j\omega}$$

b.
$$X(\omega) = \begin{cases} e^{-\omega} , & \omega > 0 \\ -e^{\omega} , & \omega < 0 \end{cases}$$

c. $X(\omega) = \frac{2a - j\omega}{2a + j\omega}$
d. $X(\omega) = \frac{d}{d\omega} \{ \frac{\sin 2\omega - j\cos 2\omega}{1 + \frac{j\omega}{3}} \}$

$$x(t) = rac{sin\pi t}{\pi t}$$
 در سیستم زیر به ازای ورودی ۳.

را محاسبه نمایید. خروجی c(t) را محاسبه نمایید. را بدست آورده و رسم نمایید.

و پاسخ فرکانسی
$$H_1(\omega)$$
 به صورت زیر است. به صورت زیر است. $h_2(t)=rac{sin5\pi t}{\pi t}$ و پاسخ فرکانسی $p(t)=cos4\pi t$

$$H_1(\omega) = \begin{cases} 1, & |\omega| \ge 2\pi \\ 0, & |\omega| < 2\pi \end{cases}$$

۴. با استفاده از خاصیت مشتق گیری در تبدیل فوریه, تبدیل فوریه سیگنال زیر را بیابید.

- ۵. با داشتن اطلاعات زیر درباره سیگنال x(t) , x(t) را بیابید.
 - $X(j\omega)$ الف) دارای تبدیل فوریه
 - ب) $\chi(t)$ حقیقی است.
 - $x(t) = 0 : t \le 0$
 - $\frac{1}{2\pi} \int_{-\infty}^{+\infty} Real\{X(j\omega)\} e^{j\omega t} \ d\omega = |t|e^{-|t|} \ (\omega)$
- ب ورودی $H(j\omega)=1$ $\frac{-3\pi}{2}\leq\omega\leq\frac{3\pi}{2}$ با LTI وارد یک سیستم $x(t)=\sum_{k=-\infty}^{+\infty}\delta(t-2k)$ میشود. خروجی را محاسبه کنید. (راهنمایی: میتوانید از متناوب بودن سیگنال ورودی استفاده کنید.)

- الف) یک معادله دیفرانسیل که رابطه ورودی خروجی این سیستم را مشخص میکند بنویسید.
 - ب) یاسخ ضربه (h(t)) را برای این سیستم محاسبه کنید.
 - ج) خروجی $y(t) = e^{-4t}u(t) te^{-4t}u(t)$ بباسد.
 - د) خروجی $\chi_1(t)=e^{2t}$ باید. ازای ورودی $\chi_1(t)=e^{2t}$ باید.
 - ۸. یک سیستم LTI (با سکون ابتدایی) با معادله دیفرانسیل زیر توصیف شده است:

$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 9y(t) = \frac{d^2x(t)}{dt^2} + 3\frac{dx(t)}{dt} + 2x(t)$$

- الف) برای این سیستم, یاسخ ضربه (h(t)) را به دست آورید.
- ب) وارون این سیستم هم سکون ابتدایی دارد و با یک معادله دیفرانسیل توصیف میشود. این معادله دیفرانسیل را بیابید. پاسخ ضربه این سیستم وارون (g(t)) , بیابید.