

INTELIGENCIA ARTIFICIAL APLICADA AL CONTROL

Tema 4: Control con Lógica Fuzzy

Dpto.: Arquitectura de Computadores y Automática Autor: Matilde Santos

2

CONTROL FUZZY

- Control organizado en reglas, cuyas acciones están diseñadas para parecerse a las acciones de un operador humano
 - Método directo de traducción del conocimiento cualitativo en algoritmos de ordenador

¿CUÁNDO PENSAR EN LÓGICA FUZZY PARA CONTROL?

- Procesos complejos y mal definidos
 - □ Difícil estimación de los parámetros del proceso
 - □ Difícil medición del valor de las variables a controlar
 - Medidas de sensores no fiables
 - □ Entornos variables, con ruido, etc
- Constantes de tiempo relativamente altas (0.1 s o más)
 - □ Ancho de banda bajo (10.0 Hz o menor)
- No existe modelo analítico y la identificación de un modelo experimental no es posible
- Experiencia del control por un operador humano disponible y se puede expresar con reglas lingüísticas y términos fuzzy

- Inteligencia para la toma de decisiones y la supervisión
- Experiencia del operador
- Controladores no lineales
- Tratamiento de la información imprecisa
- Tratamiento simple de sistemas complejos

VENTAJAS DEL CONTROL BORROSO

- No es necesario un modelo analítico del sistema
- Implementación simple (no conocimiento profundo de control)
- Mantenimiento fácil, coste no elevado
- Potencia de procesamiento con un número reducido de variables y reglas
- Acción de control suave y continua
- Robustos
- Integración con otras técnicas

6

Matilde Santos Peñas Facultad de Informática, UCM

INCONVENIENTES DEL CONTROL FUZZY

- Difícil estudiar su estabilidad
- Imprescindible un experto que suministre su conocimiento
 - □ Difícil de obtener
 - □ Difícil de representar sin empobrecerlo
 - □ Incoherencias
- Elevado número de parámetros (relacionados)
- No metodología general de diseño
- No procedimientos sistemáticos de sintonía

PASOS

- Conjunto de reglas de control lingüístico con variables borrosas como condiciones y acciones
- Conjunto de funciones de pertenencia para las variables de entrada y salida
- Aplicar la "AND" (típicamente min) y la "implicación difusa" (típicamente min) a cada regla, y obtener una función de pertenencia multi-variable para cada regla (relación difusa Ri)
- Combinar (agregar) las relaciones Ri usando las conectivas borrosas (OR, típicamente, max) para obtener una relación multivariable borrosa total

Matilde Santos Peñas

CONTROLADOR FUZZY-PD

Entradas:

- error e(t)
- cambio en el error ce(t)

Fuzzy u(t)**Control**

Salida:

• control u(t)

TEMPERATURE CONTROLLER

- The problem
 - · Change the speed of a heater fan, based off the room temperature and humidity.
- A temperature control system has four settings
 - · Cold, Cool, Warm, and Hot
- Humidity can be defined by:
 - · Low, Medium, and High
- Using this we can define the fuzzy set.

CONTROLADOR FUZZY-PD

- Variables lingüísticas: error, cambio en el error, control
 - □ Universo de discurso (dominio o rango)
- Conjuntos borrosos:
 - □ Etiquetas
 - P: positivo, Z: cero, N: negativo
 - ☐ Funciones de pertenencia (MF)
 - Triangulares, trapezoidales, gaussianas
- Estrategia de fuzzificación
- Inferencia
- Estrategia de defuzzificación

Matilde Santos Peñas Facultad de Informática, UCM FUZZIFICACIÓN VARIABLES

No. MF
$$u = 3$$

Lu = 10

$$e(t) = 3 \Rightarrow 0.6 \text{ Ep}, 0.4 \text{ En}$$

$$ce(t) = 6 \Rightarrow 0.8 \text{ CEp}, 0.2 \text{ CEn}$$

Mediante un fuzzy singleton (línea vertical) se asigna un valor dado por el grado de pertenencia a cada MF

REGLAS BORROSAS

■ R1: si e es P y ce es P entonces U es P

■ R2: si e es P y ce es N entonces U es Z

■ R3: si e es N y ce es P entonces U es Z

■ R4: si e es N y ce es N entonces U es N

	n		
<u>e(t)</u>	y	ce(t)	<u>U</u>
0.6Ep		0.8CEp	0.6Up
0.6Ep		0.2CEn	0.2Uz
0.4En		0.8CEp	0.4Uz
0.4En		0.2CEn	0.2Un

13

AGREGACIÓN

DEFUZIFICACIÓN

$$u_L(t) = \sum_{Nu} u_k p_k = \text{Up.Lu+Uz.0+Uz.0+Un(-Lu)}$$

0.6 x 10 + 0.2 x 0 + 0.4 x 0 + 0.2 x (-10) = 4

$$u_{COA}(t) = \frac{\sum_{k=0}^{\infty} u_k p_k}{\sum_{k=0}^{\infty} u_k} = \frac{4}{0.6 + 0.2 + 0.4 + 0.2} = 2.857$$

CONTROL DEL NIVEL DE UN DEPÓSITO

- Error (corrección)
 - □ e = nivel deseado nivel actual
- Cambio en el Error
 - □ de
- Acción de Control = *u*
 - □ *u* > 0 => abrir válvula entrada
 - □ *u* < 0 => abrir válvula salida

CONJUNTOS BORROSOS

Matilde Santos Peñas

Facultad de Informática, UCM

ΔE	NL	NS	zo	PS	PL
NL	NL	NL	NM	NS	ZO
NS	NL	NM	NS	zo	PS
ZO	NM	NS	ZO	PS	РМ
PS	NS	ZO	PS	РМ	PL
PL	ZO	PS	РМ	PL	PL

SUPERFICIE DE CONTROL

CONTROLADOR FUZZY SIMULINK

- SISTEMA DISCRETO
 - Aproximación de la derivada
 - de = e(t-1)-e(t)
 - de = e(t) e(t-1)

21