ATTSW Exam: Gradle come sostituto di Maven

Gabriele Puliti - 5300140 - gabriele.puliti@stud.unifi.it Marzo 2017

Indice

1	Intr	roduzione: Gradle	III
	1.1	Differenze tra Gradle e Maven	III
	1.2	Installazione	III
		1.2.1 installazione tramite SDKMAN!	
2	Tas	sks & Task Dependencies	1
	2.1	Configurazione del build.gradle	1
	2.2	Approfondimenti	3
		2.2.1 Abbreviazione dei nomi	3
		2.2.2 Escludere i task	3
		2.2.3 Selezionare la build da eseguire	3
		2.2.4 Forzare l'esecuzione di un task	4
		2.2.5 Continuare la build quando si verifica un errore	4
		2.2.6 Ottenere informazioni generali	4
		2.2.7 Build scan	6
	2.3	Tutorial	7
3	Pro	oject, Wrapper & Deamon	10
	3.1	Creazione di un nuovo progetto Gradle	10
	3.2	Wrapper	10
	3.3	Deamon	12
	3.4	Terzo tutorial: Dependency Management	13
		3.4.1 Dichiarazione delle dipendenze	13

1 Introduzione: Gradle

Gradle è un progetto open source che fornisce un tool di build automation, che può essere un ottimo sostituto di Maven. Offre un modello in grado di sostenere l'intero ciclo di vita dello sviluppo del software ed è stato progettato per supportare build automation attraverso più linguaggi e piattaforme. Nel nostro caso considereremo questo tool per lo sviluppo di software Java.

1.1 Differenze tra Gradle e Mayen

Ci sono molte differenze tra questi due tools: flessibilità, performance, gestione delle dipendenze e molto altro. La configurazione di Gradle in un progetto ha una convenzione molto più facile e comprensibile rispetto alla tediosa e a volte impossibile configurazione del pom.xml di Maven, anche se entrambi usano dei metodi di miglioramento della velocità di esecuzione delle build. Grandle usufruisce di:

- Incrementality: evitando il lavoro di monitoraggio dei task di I/O eseguendo solo il necessario e quando possibile processare solo i files che sono cambiati;
- Build Cache: utilizza un sistema di cache riusando gli outputs di altre build Gradle con gli stessi inputs;
- Deamon: sfrutta un long-lived process che mantiene tutte le informazioni in memoria.

Queste 3 caratteristiche rendono Gradle molto veloce, ad esempio una build Gradle con Maven verrebbe completata con un tempo 3 volte maggiore. Tutto questo è anche possibile grazie a un sistema di esecuzioni parallele di task e intra-task.

1.2 Installazione

L'istallazione di Gradle può essere fatta in più modi: tramite installazione manuale o utilizzando un package manager (tutte le informazioni possono essere trovate in **questo link**). Personalmente consiglio l'utilizzo del software development kit manager **SDKMAN!** che non solo permette l'installazione molto facilitata di Gradle, ma anche della JVM e di tanti altri tools.

1.2.1 installazione tramite SDKMAN!

L'installazione si basa su 2 semplici comandi:

```
$ curl -s "https://get.sdkman.io" | bash
```

\$ source "\$HOME/.sdkman/bin/sdkman-init.sh"

A questo punto se tutto è andato a buon fine SDKMAN! è stato installato correttamente, è possibile verificarlo digitando il comando su terminale:

\$ sdk version

l'output risultante dovrebbe essere qualcosa del tipo:

SDKMAN 5.5.15+284

Ora è possibile procedere con l'installazione di Gradle. Prima di tutto visualizziamo la lista delle versioni di Gradle:

\$ sdk list gradle

L'output corrispondente sarà:

Available Gradle Versions						
4.4.1	4.2-rc-2	3.0	2.10			
4.4-rc-6	4.2-rc-1	2.9	2.1			
4.4-rc-5	4.2	2.8	2.0			
4.4-rc-4	4.1	2.7	1.9			
4.4-rc-3	4.0.2	2.6	1.8			
4.4-rc-2	4.0.1	2.5	1.7			
4.4-rc-1	4.0	2.4	1.6			
4.4	3.5.1	2.3	1.5			
4.3.1	3.5	2.2.1	1.4			
4.3-rc-4	3.4.1	2.2	1.3			
4.3-rc-3	3.4	2.14.1	1.2			
4.3-rc-2	3.3	2.14	1.12			
4.3-rc-1	3.2.1	2.13	1.11			
4.3	3.2	2.12	1.10			

2.11

+ - local version

4.2.1

- * installed
- > currently in use

La versione che vogliamo installare è quella più recente che in questo caso è la 4.4.1, possiamo quindi eseguire il comando:

\$ sdk install gradle 4.4.1

appena il download e l'installazione sarà finita possiamo verificare il completamento tramite:

\$ gradle -v

che non solo stamperà su terminale la versione di Gradle, ma anche:

3.1

• Groovy (linguaggio di programmazione usato per scrivere i file di configurazione)

- Ant (software usato per le build delle Java applications)
- Java Virtual Machine
- sistema operativo in uso

se l'output ha queste informazioni allora Gradle è stato completamente installato. SDKMAN! si preoccupa anche di creare la variabile \$GRADLE_HOME che è possibile visualizzare con il comando

\$ echo \$GRADLE_HOME

Se ci sono errori di tipo Java, i problemi possono essere:

• Gradle non riesce a trovare la jdk, problema risolvibile installando java con sdkman con il comando

\$ sdk install java <versione>

• Java è aggiornato alla versione 9 o superiori (infatti attualmente Gradle 4.4.1 non è aggiornato per versioni superiori alla 8), basterà fare un downgrade ad una versione precedente (possibile farlo anche tramite SDKMAN!).

In entrambi i casi sarà necessario anche comunicare al sistema la versione da usare:

\$ sdk dafault java <versione_installata>

per essere sicuri che è stata installata la giusta versione di java possiamo controllare gli outputs dei seguenti comandi:

- \$ echo \$JAVA_HOME
- \$ java -version

il primo comando dovrà restituire in output il giusto percorso della JVM installata, il secondo serve a controllare la versione java attualmente in uso.

2 Tasks & Task Dependencies

2.1 Configurazione del build.gradle

Come in Maven ci sono i goals, in Gradle ci sono i tasks ognuno dei quali ha il suo scopo definito nella sua implementazione. L'implementazione dei tasks viene fatta in un file di configurazione solitamente nominato build.gradle, che non è altro che uno script in linguaggio Groovy. Creaiamo quindi una cartella in cui inserire la nostra configurazione di gradle e creiamo il file build.gradle in cui andremo a inserire:

```
description = 'Example of Task'
task dependenceZero {
        description = 'Build Dependence Zero'
        doFirst {
                println 'First Zero'
        }
        doLast {
                println 'Last Zero'
        }
}
task dependenceOne(dependsOn: [dependenceZero]) {
        description = 'Build Dependence One'
        doFirst {
                println 'First One'
        }
        doLast {
                println 'Last One'
        }
}
task dependenceTwo {
        description = 'Build Dependence Two'
        doFirst {
                println 'First Two'
        }
        doLast {
                println 'Last Two'
        }
}
task mainTask(dependsOn: [dependenceOne, dependenceTwo]) {
        description = 'Build Main Task'
        doFirst {
                println 'First MainTask'
        doLast {
                println 'Last MainTask'
        }
}
```

In questa build abbiamo definito 4 task: dependenceZero, dependeceOne, dependenceTwo e mainTask. Nella definizione del task può essere usata la parola DEPENDSON per indicare che il task definito dipende da uno o più task. Nel caso di dependenceOne abbiamo una sola dipendenza che è dependenceZero, nel caso invece di taskMain si hanno 2 dipendenze che sono dependenceOne e dependenceTwo. Possiamo notare che

si è data una descrizione sia dei tasks che della build, questo non serve nella pratica ma è buona norma dare sempre una spiegazione sia della build che dei nuovi task che si creano. All'interno dei tasks si nota che ci sono definite delle azioni: doFirst e doLast, quando sarà eseguita la build di un task verrà eseguita prima doFirst e infine doLast. Con la configurazione precedente abbiamo creato un albero delle dipendenze di questo tipo:

Le builds di gradle vengono eseguite usando il comando da terminale \$ gradle taskName, per l'esempio è possibile quindi eseguire le builds:

- \$ gradle dependenceZero
- \$ gradle dependenceOne
- \$ gradle dependenceTwo
- \$ gradle mainTask

Ma è anche possibile eseguire più task contemporaneamente, per esempio:

- \$ gradle dependenceZero mainTask
- \$ gradle dependenceOne dependenceTwo
- \$ gradle dependenceOne dependenceTwo mainTask

Considerando che il mainTask è dipendente da dependenceOne e dependenceTwo, l'ultimo esempio non aggiunge niente di più alla build dato che verrebbero comunque eseguiti i 2 tasks. Se eseguiamo infatti

\$ gradle mainTask

e poi

\$ gradle dependenceOne dependenceTwo mainTask

otterremo il solito output, che è il seguende:

> Task :dependenceZero
First Zero
Last Zero

> Task :dependenceOne
First One

> Task :dependenceTwo

First Two Last Two

Last One

> Task :mainTask
First MainTask

Last MainTask

BUILD SUCCESSFUL in Os

4 actionable tasks: 4 executed

2.2 Approfondimenti

Andiamo ad approfondire le azioni che è possibile fare tramite il terminale.

2.2.1 Abbreviazione dei nomi

È possibile abbreviare il nome del task da eseguire stando però attenti ad identificarlo unicamente, per esempio se volessi eseguire il task **dependenceTwo** potrei farlo semplicemente con il comando:

```
$ gradle depTw
```

considerando i task creati precedentemente notiamo che il task è univocamente identificato.

2.2.2 Escludere i task

È possibile escludere un task di una build, aggiungendo come argomento il task da escludere preceduto da -x:

```
$ gradle <task_da_eseguire> -x <task_da_escludere>
```

questo viene usato al fine di eliminare un task inutile per lo scopo della build che abbiamo intenzione di eseguire. Riprendendo l'output di

\$ gradle mainTask

notiamo che vengono eseguiti tutti i tasks definiti nella build.gradle (a pagina 2), se volessimo escludere dependenceOne dalla build allora dovremo eseguire:

\$ gradle mainTask -x dependenceOne

Otteniamo in questo modo in output:

> Task :dependenceTwo
First Two
Last Two

> Task :mainTask
First MainTask
Last MainTask

BUILD SUCCESSFUL in Os

2 actionable tasks: 2 executed

Possiamo notare che non verrà eseguito nemmeno il task dependenceZero perchè è una dipendenza del task dependenceOne.

2.2.3 Selezionare la build da eseguire

Consideriamo che esista in una subdirectory chiamata subdir una build chiamata subbild.gradle, partendo dalla directory source è possibile eseguire questa build eseguendo il comando:

```
$ gradle -b subdir/subbuild.gradle <task_da_eseguire>
```

Questa particolare funzione serve soprattutto ai progetti multi-builds, in cui è necessario avere a disposizione più di una build di riferimento.

2.2.4 Forzare l'esecuzione di un task

A causa della Gradle cache è possibile che un task o più di uno non vengano eseguiti perchè marcati come UP-TO-DATE (anche se dalla versione Gradle 4.0 non viene più mostrato in output), in questo caso è possibile forzarne l'esecuzione con:

\$ gradle --rerun-tasks <tasks_da_eseguire>

2.2.5 Continuare la build quando si verifica un errore

Se durante una build un task fallisce, Gradle di default interromperà l'esecuzione e farà fallire anche la build. Questo permette alla build di completare velocemente, ma il fallimento anticipato della build potrebbe nascondere altri problemi che possono presentarsi in altri tasks. A volte è quindi necessario imporre ad una build di gradle di continuare nonostante il fallimento di uno o più tasks, questo è possibile usando l'opzione --continue:

\$ gradle <tasks_da_eseguire> --continue

In questo modo verranno eseguiti tutti i tasks e solo al completamento della build saranno resi noti gli errori.

2.2.6 Ottenere informazioni generali

Per visualizzare una lista dei principali tasks eseguibili è possibile eseguire il task

\$ gradle tasks

l'output di questa build sarà:

```
> Task :tasks
```

```
_____
```

All tasks runnable from root project - Example of Task

```
Build Setup tasks
```

init - Initializes a new Gradle build.
wrapper - Generates Gradle wrapper files.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root project 'src'. components - Displays the components produced by root project 'src'. [incubating] dependencies - Displays all dependencies declared in root project 'src'. dependencyInsight - Displays the insight into a specific dependency in root project 'src'. dependentComponents - Displays the dependent components of components in root project 'src'. [incubating]

help - Displays a help message.

model - Displays the configuration model of root project 'src'. [incubating]
projects - Displays the sub-projects of root project 'src'.
properties - Displays the properties of root project 'src'.
tasks - Displays the tasks runnable from root project 'src'.

To see all tasks and more detail, run gradle tasks --all

To see more detail about a task, run gradle help --task <task>

```
BUILD SUCCESSFUL in Os
```

1 actionable task: 1 executed

come dice l'output, per visualizzare la lista di tutti i tasks eseguibili nel nostro project è necessario eseguire la build del task

```
$ gradle tasks --all
```

noteremo che in questo caso verranno visualizzati anche i tasks che abbiamo precedentemente creato (dependenceZero, dependenceOne, dependenceTwo, mainTask con le relative descrizioni):

```
> Task :tasks
```

```
-----
```

All tasks runnable from root project - Example of Task

```
Build Setup tasks
```

init - Initializes a new Gradle build.
wrapper - Generates Gradle wrapper files.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root project 'src'.
components - Displays the components produced by root project 'src'. [incubating]
dependencies - Displays all dependencies declared in root project 'src'.
dependencyInsight - Displays the insight into a specific dependency in root project 'src'.
dependentComponents - Displays the dependent components of components in root project 'src'.
[incubating]

help - Displays a help message.

model - Displays the configuration model of root project 'src'. [incubating] projects - Displays the sub-projects of root project 'src'. properties - Displays the properties of root project 'src'. tasks - Displays the tasks runnable from root project 'src'.

Other tasks

dependenceOne - Build Dependence One
dependenceTwo - Build Dependence Two
dependenceZero - Build Dependence Zero
mainTask - Build Main Task

BUILD SUCCESSFUL in Os

1 actionable task: 1 executed

Se invece vogliamo informazioni più specifiche riguardo un singolo task la build da fare è

\$ gradle help --task <nome_del_task>

per esempio eseguiamo:

\$ gradle help --task mainTask

otterremo una descrizione specifica del task mainTask:

2.2.7 Build scan

Una funzione molto interessante di Gradle è la possibilità di poter pubblicare la propria build, questo permette di avere un report completo e condivisibile. Per utilizzare questa funzionalità è necessario aggiungere alla build di un task l'opzione --scan:

```
$ gradle <task_da_eseguire> --scan
```

Al completamento della build del task verrà richiesto di accettare i termini di uso di questo servizio. Una volta accettati verrà fornito un link alla build pubblicata in cui sarà richiesta una mail di riferimento per confermare la pubblicazione della build. Prendendo come esempio eseguiamo il comando:

```
$ gradle mainTask --scan
```

l'output risultante sarà:

> Task :dependenceZero
First Zero
Last Zero

> Task :dependenceOne
First One
Last One

> Task :dependenceTwo
First Two
Last Two

> Task :mainTask
First MainTask
Last MainTask

BUILD SUCCESSFUL in 1s 4 actionable tasks: 4 executed

Publishing a build scan to scans.gradle.com requires accepting the Gradle Terms of Service defined at https://gradle.com/terms-of-service. Do you accept these terms? [yes, no] yes

Gradle Terms of Service accepted.

Publishing build scan... https://scans.gradle.com/s/qcc4vkuegibig

cliccando sul sito e seguendo le indicazioni, il risultato finale sarà:

2.3 Tutorial

Il tutorial di seguito è possibile anche trovarlo al link: GITHUB.COM/WABRI/ATTSW_EXAM/BLOB/MASTER/GRADLE.EXAMPLE/FIRST/.

- 1. Creare una cartella gradle.example/first
- 2. All'interno della nuova cartella creare il file build.gradle contenente:

```
description = 'Example of Task'
task dependenceZero {
        description = 'Build Dependence Zero'
        doFirst {
                println 'First Zero'
        }
        doLast {
                println 'Last Zero'
        }
}
task dependenceOne(dependsOn: [dependenceZero]) {
        description = 'Build Dependence One'
        doFirst {
                println 'First One'
        doLast {
                println 'Last One'
        }
}
```

```
task dependenceTwo {
        description = 'Build Dependence Two'
        doFirst {
                println 'First Two'
        doLast {
                println 'Last Two'
        }
}
task mainTask(dependsOn: [dependenceOne, dependenceTwo]) {
        description = 'Build Main Task'
        doFirst {
                println 'First MainTask'
        }
        doLast {
                println 'Last MainTask'
        }
}
```

3. Eseguire la build:

```
$ gradle mainTask
```

4. Eseguire la build multi-tasks:

```
$ gradle dependenceZero dependenceTwo
```

5. Eseguire la build usando una abbreviazione:

```
$ gradle maTa
```

6. Eseguire la build precedente escludendo il task dependenceOne:

```
$ gradle mainTask -x dependenceOne
```

7. Creare una build differente in una subdirectory rispetto alla posizione iniziale:

```
description = 'Sub directory'

task subMainTask {
         description = 'Sub Build Main Task'
         doFirst {
             println 'First MainTask'
         }
         doLast {
             println 'Last MainTask'
         }
}
```

8. Eseguire il task subMainTask della build appena creata partendo dalla directory root:

```
$ gradle -b subdir/build.gradle suMT
```

- 9. Forzare l'esecuzione di un task marcato come UP-TO-DATE:
 - \$ gradle --rerun-tasks dist
- 10. Ottenere la lista dei tasks di default:
 - \$ gradle tasks
- 11. Ottenere la lista di tutti i tasks:
 - \$ gradle tasks --all
- 12. Eseguire il comando:
 - \$ gradle help --task mainTask
- 13. Pubblicare la build del task mainTask:
 - \$ gradle mainTask --scan

3 Project, Wrapper & Deamon

Potete trovare un tutorial guidato a questo link:
GITHUB.COM/WABRI/ATTSW_EXAM/TREE/MASTER/GRADLE.EXAMPLE/SECOND

3.1 Creazione di un nuovo progetto Gradle

Creare un progetto Gradle è molto semplice sfruttando direttamente il task di default init. Creiamo una cartella in cui eseguiremo da terminale il comando:

\$ gradle init

Notiamo che nella directory sono stati creati 4 file e 1 cartella:

- build.gradle e settings.gradle: sono i file di configurazione
- gradlew, gradlew.bat e la directory gradle: sono i file corrispondenti al wrapper

Abbiamo già trattato il file di configurazione build.gradle (pagina 1). Il file settings.gradle è anch'esso uno script Groovy dove vengono indicati quali progetti parteciperanno alla build. Questo task crea un progetto di default, ma è possibile essere più specifici in quanto il task INIT con l'opzione --type può assumere come argomento una tipologia di progetto. Assumiamo che il progetto che vogliamo creare sia una applicazione java, il comando da eseguire sarà:

\$ gradle init --type java-application

Rispetto al comando precedente verrà creata una directory **src** in più che sarà specifica per il linguaggio java:

- main/java/App.java: che è un file preimpostato il cui contenutò sarà un semplice main che stamperà il consueto Hello World!
- test/java/AppTest.java: in cui viene testato il metodo contenuto nella classe App.java

Spieghiamo a questo punto i file del wrapper precedentemente indicati.

3.2 Wrapper

Molto spesso prima di poter usufruire di uno strumento di sviluppo è necessaria una installazione. Gradle mette a disposizione uno script che permette di usare tutte le sue funzionalità evitando di installare Gradle su tutte le macchine di sviluppo, questo strumento viene chiamato Gradle Wrapper. Se in un progetto è stato settato il Wrapper è possibile eseguire le builds sostituendo il comando gradle con il comando ./gradlew (se si lavora con sistema operativo windows il comando è ./gradlew.bat). Se più persone lavorano a un progetto può capitare che ci siano differenze tra le versioni di uno strumento, nel caso del wrapper non è possibile sbagliare perchè la sua versione è insita durante la sua creazione o durante il suo upgrade (o downgrade). Quindi è sempre consigliato l'uso del wrapper e lasciare tutte le sue informazioni anche nella repository del VCS usato. Per creare il wrapper in un progetto è necessario eseguire il comando:

\$ gradle wrapper

Il comando creerà 4 files:

- gradlew: script shell per eseguire il wrapper in sistemi Unix
- gradlew.bat: file batch per eseguire il wrapper in sistemi Windows
- gradle/wrapper/gradle-wrapper.properties: file di configurazione delle proprietà del Wrapper
- gradle/wrapper/gradle-wrapper.jar: contiene il codice per scaricare le distribuzioni Gradle

Questi sono i file di cui ha bisogno il wrapper per poter essere usato. Ovviamente Quando il wrapper viene creato la sua versione sarà quella di Gradle attualmente installato sulla macchina, è possibile specificare in vari modi quale versione usare:

- eseguire il solito comando con l'aggiunta dell'argomento --gradle-version con il numero della versione:
 - \$ gradle wrapper --gradle-version <numero_versione>

oppure se già inserito il wrapper:

\$./gradlew wrapper --gradle-version <numero_versione>

per esempio se volessimo passare dalla versione attuale alla versione 2.0 basterà eseguire il comando:

\$./gradlew wrapper --gradle-version 2.0

dopo aver eseguito il download della versione, l'output corrispondente sarà:

Gradle 2.0

Build time: 2014-07-01 07:45:34 UTC

Build number: none

Revision: b6ead6fa452dfdadec484059191eb641d817226c

Groovy: 2.3.3

Ant: Apache Ant(TM) version 1.9.3 compiled on December 23 2013

JVM: 1.8.0_161 (Oracle Corporation 25.161-b12)

OS: Linux 4.13.0-37-generic amd64

(il task wrapper non esisteva fino alla versione 3.0, eseguire quindi questo task con versioni precedenti risulterebbe in un fallimento della build).

2. modificare direttamente il file gradle-wrapper.properties in cui ci sarà:

```
distributionUrl=https\://services.gradle.org/distributions/gradle-4.4.1-bin.zip
```

che è il tipo di distribuzione usata attualmente dal wrapper. Per passare alla versione 2.0 possiamo modificare questa riga con:

```
distributionUrl=https\://services.gradle.org/distributions/gradle-2.0-bin.zip
```

eseguendo poi un qualsiasi comando la versione sarà aggiornata.

3. infine è possibile specificarlo direttamente modificando il file build.gradle aggiungendo un task chiamato wrapper che estenderà la classe Wrapper:

```
task wrapper(type: Wrapper) {
    gradleVersion = '2.0'
}
```

in questo modo viene effettivamente fatto un override del task wrapper. A questo punto per aggiornare alla versione indicata basterà eseguire il comando:

\$./gradlew wrapper

In ogni caso possiamo visualizzare la versione usata dal wrapper con il comando:

```
$ ./gradlew --version
```

Il wrapper è altamente configurabile sia come proprietà sia come versionamento. Per esempio riprendendo il punto 3 della lista precedente, se non si vuole specificare tutte le volte il tipo di distribuzione voluta è possibile inserire un altro campo all'interno del task wrapper distributionType a cui assegneremo Wrapper.DistributionType.ALL:

```
task wrapper(type: Wrapper) {
    gradleVersion = '4.6'
    distributionType = Wrapper.DistributionType.ALL
}
```

In questo modo verrà scaricata tutta la distribuzione e non solo i file binari.

3.3 Deamon

3.4 Terzo tutorial: Dependency Management

Una delle parti più importanti di uno strumento di questo tipo è la gestione delle dipendenze che si divide in 2 parti: incoming files e outgoing files. Infatti Gradle ha bisogno di conoscere di cosa il nostro progetto ha bisogno per poter essere compilato ed eseguito, queste vengono chiamate dipendenze (dipendencies) che in questo caso sono gli incoming files. Gli outgoing files sono invece tutto ciò che il tuo progetto produce chiamati anche pubblicazioni (pubblications). Il Dependency Manager di Gradle permette di scaricare le dipendenze del progetto da diversi remote repository specificando direttamente il nome e la versione della dipendenza voluta.

3.4.1 Dichiarazione delle dipendenze

Prima di tutto è necessario indicare in che linguaggio il nostro progetto viene rilasciato (consideriamo d'ora in poi solo il caso di Java), per farlo aggiungiamo in testa al file build.gradle:

```
apply plugin: 'java'
```

A questo punto per poter usufruire di una dipendenza è necessario specificare da dove Gradle deve andare a prenderla, dobbiamo quindi indicare il repository remoto di riferimento. Se per esempio vogliamo che il nostro repository di riferimento sia Maven allora dobbiamo aggiungere al build.gradle:

```
repositories {
    mavenCentral()
}
```

In questo modo tutte le dipendenze che andremo a indicare successivamente saranno riferimenti alle pubblicazioni su MavenCentral. La dichiarazione delle dipendenze deve essere inserita nel tag dependencies nel build.gradle file, per esempio vogliamo avere junit 4.12 come dipendenza al nostro progetto Gradle allora dobbiamo aggiungere:

```
dependencies {
    testCompile group: 'junit', name: 'junit', version: '4.12'
}
```

osserviamo che nella dichiarazione ci sono 4 diversi indicatori:

- testCompile indica a che tipo di build deve fare riferimento, in questo caso questa dipendenza sarà importata durante la compilazione dei test;
- group, name, version corrispondono rispettivamente al groupId, artifactId e al version definiti su Maven.

esiste un modo molto più diretto per indicare una dipendenza, considerando sempre la dipendenza junit possiamo scrivere:

```
dependencies {
    testCompile 'junit:junit:4.12'
}
```

ha lo stesso significato precedente ma ha una forma più compatta, forma che adotta anche la documentazione Maven.

junit : junit : 4.12

Click on a link above to browse the repository.

Project Information						
GroupId:	junit					
ArtifactId:	junit					
Version:	4.12					
Dependency Information						
Apache Maven						
<pre><dependency> <groupid>junit</groupid> <artifactid>junit</artifactid> <version>4.12</version> </dependency></pre>						
Gradle/Grails						
compile 'iunit'iunit'4 12'						

Possiamo notare ora la differenza sostanziale della configurazione delle dipendenze tra il pom.xml di Maven e la build.gradle di Gradle. A questo punto possiamo scaricare le dipendenze, per farlo eseguiamo il comando gradle (usando il wrapper):

\$./gradlew dependencies

L'output restituirà la lista di tutti i task con le relative dipendenze (se ce ne sono), nel caso la dipendenza richiesta non si trova nel progetto provvederà a scaricarla.