

Architecture de faire clignote une LED en utilisant le module Conter_unit et une machine à état.

La LED change son état lorsque le signal end_counter = 1

Led_output

Lorsque bouton0 est appuyé, la LED verte est allumée, sinon la LED rouge est allumée. La couleur de LED est choisi à l'aide d'un multiplexeur.

Résultat de simulation avec 100 période d'horloge pour conter_unit

Si le bouton0 n'est pas appuyé, la LED rouge (code_rouge = « 001») clignote.

Si le bouton0 est appuyé la LED verte (code_vert = « 010») clignote.

Si le bouton0 est pressé pendant plus d'un cycle d'horloge clk et plus court que 2 cycles de end_counter, la LED vert est allumée une fois et éteinte une fois.

Si le bouton0 est maintenu pendant plusieurs cycle de end_counter, la LED vert va clignoter plusieurs fois.

Maintenant, le bouton0 est maintenu mais la LED ne clignote qu'une seule fois en vert

Color_code reçoit le code couler vert ou bleu à l'aide d'un multiplexeur.

Pour changement de couleur de LED lorsque up_date=1, Il faut 1 multiplexeur et 1 registre.

Le signal up_date dure 1 cycle d'horloge: en utilisant 2 registres.

Architecture RTL de LEDdriver avec un bouton de sélection de la couleur de la LED (bouton 1) et un bouton de changement de la couleur de la LED (bouton 0).

Résultats de simulation de 100 cycles d'horloge clk

La LED est éteinte pendant un cycle du signal end_counter et allumée pendant le cycle suivant.

Lorsque bouton1 est pressé la LED est verte, elle est bleue sinon.

Le signal up_date dure un cycle d'horloge lorsque bouton0 vient d'etre appuyé, maintenir le bouton enfoncé ne doit pas maintenir le signal update à 1.

La LED change la colleur lorsque up_date=1

Schéma de synthèse

Schéma de synthèse pour LED_driver

Rapport de synthèse

Nombre de register:

Report	CCII OS	age.
+	-+	-+
1	Cell	Cou
+	-+	-+

Report Cell Usage:

+	-+	-++
1	Cell	Count
+	-+	-++
1	BUFG	1 1
12	CARRY4	7
13	LUT1	1
4	LUT2	33
15	LUT4	4
16	LUT5	3
17	LUT6	3
18	FDCE	361
19	IBUF	4
10	OBUF	3

28 registres pour module conuter unit

2 registres pour faire rentrer color_code, vert ou bleu

3 registres pour color_out

1 registres pour machine à états,

2 registres pour créer le pulse signal de up date

Total = 36 registres

Nombre de registre est correspondent a schéma RTL

IBUF: clk, resetn, bouton0, bouton1

OBUF: led_out (3 bits)

Rapport de timming

WNS (ns)	TNS (ns)	TNS Failing Endpoints	TNS Total Endpoints	WHS (ns)	THS (ns)	THS Failing Endpoints	THS Total Endpoints	WPWS (ns)	TPWS (ns)	TPWS Failing Endpoints	TPWS Total Endpoints
4.788	0.000	0	33	0.163	0.000	0	33	4.500	0.000	0	37

Le nombre de total négative slack (TNS) est 0, le nombre de total hold slack est 0, donc il n'y a pas problème de timming.

Point départ du chemin critique Q_reg (23) du module counter unit

Slack (MET) : 4.788ns (required time - arrival time) Source: LED driver/uut/Q reg[23]/C (rising edge-triggered cell FDCE clocked by sys clk pin {rise@0.000ns fall@5.000ns period=10.000ns}) LED driver/uut/Q reg[25]/D Destination: (rising edge-triggered cell FDCE clocked by sys clk pin {rise@0.000ns fall@5.000ns period=10.000ns}) Path Group: sys clk pin Path Type: Setup (Max at Slow Process Corner) 10.000ns (sys clk pin rise@10.000ns - sys clk pin rise@0.000ns) Requirement: Point d'arrivée du Data Path Delay: 5.217ns (logic 2.264ns (43.394%) route 2.953ns (56.606%)) chemin critique Logic Levels: 10 (CARRY4=7 LUT2=1 LUT6=2) Clock Path Skew: -0.021ns (DCD - SCD + CPR) Q reg (25) du module Destination Clock Delay (DCD): 4.907ns = (14.907 - 10.000) counter unit Source Clock Delay (SCD): 5.356ns Clock Pessimism Removal (CPR): 0.429ns Clock Uncertainty: 0.035ns $((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE$ Total System Jitter (TSJ): 0.07lns Total Input Jitter (TIJ): 0.000ns Discrete Jitter (DJ): 0.000ns Phase Error (PE): 0.000ns