Advanced Mathematics for Scientific Challenges

Autumn 2022

Exercises 1.4

- 1. (Optional) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function such that -f is also a convex function. Prove that there exist $a \in \mathbb{R}^n$ and $c \in \mathbb{R}$ such that $f(x) = a^T x + c$.
- 2. Use the Kuhn-Tucker conditions to solve the following problems

(a)

$$\begin{cases}
\text{Minimize } f(x) = x_1 x_2 \\
\text{subject to} \\
x_1 + x_2 \ge 2 \\
x_2 \ge x_1
\end{cases}$$

(b)

$$\begin{cases}
\text{Minimize } f(x) = (x_1 - 1)^2 + x_2 - 2 \\
\text{subject to} \\
x_2 - x_1 = 1 \\
x_1 + x_2 \le 2
\end{cases}$$

(c)

Minimize
$$f(x) = x_1^2 + 2x_2^2 + 3x_3^2$$

subject to
 $x_1 - x_2 - 2x_3 \le 12$
 $x_1 + 2x_2 - 3x_3 \le 8$

3. (Optional) Consider the problem

$$\begin{cases} \text{Minimize } f(x) \\ \text{subject to} \\ g(x) \le 0, \\ x \in S, \end{cases}$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ are two convex functions and $S \subseteq \mathbb{R}^n$ is a convex set. If x^* is an optimal solution of this problem such that $g(x^*) < 0$, show that x^* is also an optimal solution of the problem

$$\begin{cases} \text{Minimize } f(x) \\ \text{subject to} \\ x \in S. \end{cases}$$

Deadline: November 15, 23:59.