NOI 模拟赛

【注意事项】

- 难度排序仅代表组题人所认为的题目难度的排序. 注意关于难度的个人差经常出现,所以顺序仅供参考.
- 理论上本场应该是仿照 NOI Pretest 赛制的 IOI 赛制,所有题皆有 Subtask 捆绑.

花卉港湾 (floral, 1s, 256M)

就在这五人所筑成的归宿深深扎根吧

即使季节流转变迁 时代的洪流奔流不息

都会一如既往地在此处放声歌唱

Floral Haven -- Roselia

SA 酱正在准备戴手套出门去种树造鸟家.

有一棵 n 个节点,n-1 条边的树. SA 酱想要根据在这棵树上造一个鸟家.

具体而言,任意两个节点 u,v,如果**原树上**两个节点的距离 $\geq K$ 那么就用一根绳子将这两个点连起来.

现在**仅仅考虑绳子**,可以得到一张 n 个点,且边数 $\leq \frac{n(n-1)}{2}$ 的新图.

现在有 Q 次询问,每次询问给定两个点 u,v,问在新图上两点是否连通. 若连通求出它们间的最短距 $\overline{\mathbf{a}}$.

输入格式

第一行三个正整数 n, Q, K.

后面 n-1 行每行两个正整数表示一条树边.

后面 Q 行每行两个正整数表示一组问询. 保证 $u \neq v$.

输出格式

每组问询输出一个数表示答案. 若不连通输出 -1, 否则输出最短距离.

样例

```
ex_floral1.in
7 4 4
1 2
1 3
3 4
4 5
4 6
6 7
1 3
1 7
1 2
1 5

ex_floral1.out
-1
1
2
3
```

样例解释

1 无法到达 3, 因为 3 在新图中是孤立点.

而 $1 \rightarrow 5$ 的一条最短路径是 $1 \rightarrow 7 \rightarrow 2 \rightarrow 5$.

剩余两个样例见下发文件.

数据范围

对于所有数据,满足 $2 \le K + 1 \le n \le 10^5$, $1 \le Q \le 10^5$.

Subtask	n	Q	特殊限制	分值
1	≤ 200	≤ 200		30
2	≤ 2000	≤ 2000		25
3	$\leq 10^5$	$\leq 10^5$	树的第 i 条边为 $(i,i+1)$	20
4	$\leq 10^5$	$\leq 10^5$		25

礎石花冠 (corolla, 2s, 512M)

今后的日子里 请让我与你并肩歌唱

在这约定的景色中 勾指起誓 陪伴彼此

Ever, Ever, After

礎の花冠 -- Roselia

SA 酱正在复习集合论与图论。

定义有向图 G=(V,E) 和 G'=(V,E') 等价,当且仅当对于任意 $i,j\in V$,在 G 上 i 可达 j 当且仅当在 G' 上 i 可达 j。换句话说,它们的传递闭包相同。

对于有向图 G, 定义 f(G) 为边数最少的图 G' 使得 G 与 G' 等价。

SA 酱有两个长度为 n 的序列 $a_{1,...,n}$ 和 $b_{1,...,n}$,保证这两个序列中不存在任何相等的数(即对于任意 i,j 满足 $a_i \neq b_j$,且对于任意 $i \neq j$ 满足 $a_i \neq a_j$, $b_i \neq b_j$)。

她用这两个序列造出了一个有 n 个节点 $\frac{(n-1)n}{2}$ 条边的的有向图,其中对于任意 i < j,若 $a_i < b_j$ 则存在 $i \to j$ 的有向边,否则存在 $j \to i$ 的有向边。

小 L 觉得这个图很没意思,于是决定删除 m 条边,删除的第 i 条边为 (u_i,v_i) 之间连的有向边(方向任意)。

现在请你求出这个图 G 的 f(G)。

输入格式

第一行两个整数 n, m。

后面一行 n 个正整数表示 a。

后面一行 n 个正整数表示 b。

后面 m 行每行两个正整数表示 (u_i, v_i) 。保证无重边。

输出格式

一行一个整数表示 f(G) 的边数。

后面 f(G) 行每行一条边表示答案。构造出任意一种符合边数最少的 f(G) 即可。

样例

```
corolla1.in
4 1
7 3 1 5
4 2 8 6
1 2
corolla1.out
4
2 1
1 3
3 4
4 1

corolla2.in
```

```
7 9
12 3 13 11 2 10 14
5 8 6 9 7 1 4
2 1
1 6
7 2
4 5
7 5
5 3
1 7
6 2
4 2
corolla2.out
7 6
6 4
6 5
4 3
2 3
2 5
5 1
3 1
```

数据范围

对于所有数据, $n \leq 10^5$, $m \leq 10^5$. $1 \leq a_i, b_i \leq 2n$. 保证 $|f(G)| \leq 4 \times 10^5$.

剩余两个样例见下发文件.

【本题开启子任务依赖】

Subtask	n	m	分值	Subtask 依赖
1	≤ 5		6	
2	≤ 500		10	1
3	≤ 2500	$m \leq 2500$	18	
4	$\leq 10^5$	m = 0	16	
5	$\leq 5 imes 10^4$	$m \leq 2500$	18	3
6	$\leq 5 imes 10^4$		14	2,5
7	$\leq 10^5$		18	4,6

磷磷开花 (bloom, 3s, 1024M)

Heart to Heart

遵循内心真实的声音

奏响足以让人觉醒的绚丽的歌曲吧

Ringing Bloom -- Roselia

SA 酱正在培养细胞.

她有 n 个培养皿,其中最开始只有第一个培养皿有细胞. 现在她希望进行一些操作使得所有培养皿都有细胞.

具体而言,她将进行总共 $\frac{n(n-1)}{2}$ 次操作。对于所有二元组(x,y), $1 \le x < y \le n$, 她会每次选择一个**之前从未选过**的二元组(i,j), 并进行复制操作。即,如果i,j两个培养皿中存在一个有细胞,那么操作过后两个培养皿就都会有细胞。

为了满足实验的要求,现在每个培养皿都有一个 a_i 表示在第 a_i 次操作结束后,第 i 个培养皿中一定要有细胞.

请你输出在所有 $(\frac{(n-1)n}{2})!$ 种操作方案中,有多少个满足上述要求的操作方案. 对 998244353 取模.

输入格式

第一行一个整数 n, 后面一行 n-1 个整数表示 a_2,\ldots,a_n .

输出格式

一行一个整数表示答案.

数据范围

对于所有数据满足 $2 \le n \le 13$, $1 \le a_i \le \frac{n(n-1)}{2}$.

样例

```
ex_bloom1.in
3
2 3

ex_bloom1.out
5

ex_bloom2.in
4
4 4 4

ex_bloom2.out
468

ex_bloom3.in
6
2 4 4 5 5

ex_bloom3.out
468500470
```

```
ex_bloom4.in
11
11 45 14 19 19 8 10 11 45 14

ex_bloom4.out
816939869
```

数据范围

对于所有数据范围,满足 $2 \leq n \leq 13$, $1 \leq a_i \leq \frac{n(n-1)}{2}$.

Subtask	n	特殊限制	分值
1	≤ 6		20
2	= 8	a_i 全部相等	15
3	= 9	a_i 全部相等	10
4	= 10	$a_i \leq n-1$	15
5	= 11		15
6	= 12		15
7	= 13		10

后记

- —— 你知道吗,其实 OI 在设定上是一个让大家能自心底感受到热情的东西。
- ——是吗,为什么要和我说这个?
- ——没什么,只是想让你知道而已。