

Variance Explained for Beginners

What is Variance?

Variance is a measure of how much the data points **differ from the average (mean)** value.

It shows how **spread out** the values are in a dataset.

Example Student Marks

Let's compare marks of two classes:

Class A (Low Variance)

Student	Marks
A1	69
A2	70
A3	71

- Mean = (69 + 70 + 71) / 3 = 70
- All marks are close to the mean
- Low Variance

Class B (High Variance)

Student	Marks
B1	50
B2	70
В3	90

- Mean = (50 + 70 + 90) / 3 = 70
- Marks are spread far from the mean
- High Variance

Variance Formula (Simplified)

 $\$ \text{Variance} = \frac{1}{N} \sum (x_i - \mu)^2 \$\$

- \$ x_i \$: each data value
- \$\mu \$: mean
- N: number of data points
- It's the average of the squared differences from the mean.

What is Standard Deviation?

Standard Deviation (SD) is the **square root of variance**.

It tells you how much the data varies from the mean in the original units (like marks, rupees, etc.).

\$\$ \text{Standard Deviation} = \sqrt{\text{Variance}} \$\$

Example: score={10,20,30,40,50}

Step 1: Calculate the Mean (μ)

 $\int \frac{150}{5} = \frac{$

So, the average score is **30**.

Step 2: Find Deviations from the Mean

Score (X)	Deviation (X – μ)	Squared Deviation ((X - μ)^2)
10	10 - 30 = -20	$(-20)^2 = 400$

$$20 20 - 30 = -10 (-10)^2 = 100$$

$$30 30 - 30 = 0 0^2 = 0$$

$$40 40 - 30 = 10 10^2 = 100$$

$$50 50 - 30 = 20 20^2 = 400$$

Step 3: Calculate Variance (σ²)

 $\text{Variance} = \frac{(X - \mu)^2}{N} = \frac{400 + 100 + 0 + 100 + 400}{5} = \frac{1000}{5} = 200$

* Variance tells us how **spread out** the data is (in squared units).

Step 4: Calculate Standard Deviation (σ)

 $\$ \text{Condended} = \sqrt{200} \approx 14.14$

- ★ This means, on average, each score is about 14.14 points away from the mean.
 - **Mean** is the average score: 30
- Variance shows the average of the squared differences from the mean: 200
- **Standard Deviation** is the square root of variance: ≈ 14.14
- A **low standard deviation** means scores are tightly clustered around the mean.
- A **high standard deviation** means the scores are more spread out.

Step-by-Step Quartile Calculation

Dataset:[12, 18, 25, 26, 30, 34, 40, 45, 50]

Number of elements, n = 9

\$\$ position = (n - 1) * q \$\$

Where:

- n is the number of elements
- q is the desired quantile (e.g., 0.25, 0.5, 0.75)

Step-by-Step Example

Q1 (25th percentile):

- \$ Position = $(9 1) * 0.25 = 2.0 \rightarrow index 2 $$
- Value at index 2 = **25.0**

Q2 (50th percentile / Median):

- \$ Position = $(9 1) * 0.50 = 4.0 \rightarrow index 4 $$
- Value at index 4 = **30.0**

Q3 (75th percentile):

• \$ Position = (9 - 1) * 0.75 = 6.0 → index 6 \$

• Value at index 6 = **40.0**

IQR (Interquartile Range)

\$ IQR = Q3 - Q1 = 40.0 - 25.0 = 15.0 \$

 $$Lower Bound = Q1 - 1.5 \times IQR = 25.0 - 1.5 \times 15.0 = 25.0 - 22.5 = **2.5** $$

\$ Upper Bound = Q3 + $1.5 \times IQR = 40.0 + 1.5 \times 15.0 = 40.0 + 22.5 = **62.5** $$

Metric	Value
Q1	25.0
Q2 (Median)	30.0
Q3	40.0
IQR	15.0
Lower Bound	2.5
Upper Bound	62.5

Any data point outside [2.5, 62.5] would be considered an outlier.

Z-Score and Probability Examples (Markdown)

We'll explore how to calculate:

- Z-scores
- Probabilities from Z-scores
- Number of values above or below a certain score in a dataset

Dataset Used:

Student	Score
Α	60
В	70
С	80
D	90
Е	100

- Mean $(\mu) = 80$
- Standard Deviation (σ) \approx 14.14

• Total Data Points = 5

Example 1: How many values are **below 80**?

Step 1: Z-score for X = 80

 $Z = \frac{X - \mu}{sigma} = \frac{80 - 80}{14.14} = 0$

II Step 2: Z-table Probability

P(Z = < 0) = 0.5

fris means 50% of values are less than 80.

Step 3: Apply to Dataset

 $0.5 \times 5 = 2.5 \times 2^{-3}$

Manual Check:

Score	< 80?
60	<u>~</u>
70	
80	🗶 (equal)
90	×
100	×

✓ Matches: 2 values below 80.

Example 2: How many values are greater than 90?

Step 1: Z-score for X = 90

 $Z = \frac{90 - 80}{14.14} \approx 0.71$

Step 2: Z-table Probability

 $P(Z < 0.71) \approx 0.7611$

P(Z > 0.71) = 1 - 0.7611 = 0.2389

So 23.89% of values are greater than 90.

Step 3: Apply to Dataset

 $$$ 0.2389 \times 5 = 1.1945 \cdot 1~\text{value} $$$

Manual Check:

Score	> 90?
60	×
70	×
80	×
90	🗙 (equal)
100	<u>~</u>

Matches: 1 value greater than 90.

Summary Table

Query	Z-score	Probability	Approx. Count in Dataset
X < 80	0	0.5	2 or 3 values
X > 90	0.71	0.2389	~1 value

Probability Density Curve (PDF) for Continuous Data – Normal Distribution

What is a Probability Density Function (PDF)?

A **Probability Density Function (PDF)** describes the **likelihood** of a **continuous random variable** taking on a specific range of values.

For continuous data:

- The probability at a single point is zero
- Probability is calculated **over an interval**
- The area under the curve between two values gives the probability of falling in that range

The **total area under the curve = 1**, representing 100% probability.

Example: Heights of Students

Suppose we collected the **heights of 200 students**, and they follow a **normal distribution**.

- Mean height (μ) = 165 cm
- Standard deviation (σ) = 10 cm

We want to understand:

- The shape of the distribution
- What percentage of students are between 155 and 175 cm

Graph: Normal Distribution Curve

Normal Distribution Curve

The curve represents the **probability density** of students' heights.

The shaded area between 155 cm and 175 cm gives the **probability that a** randomly selected student falls in that range.

Graph Explanation

Solution Curve Properties

- **Peak (Center)**: At μ = 165 cm
- **Symmetry**: The curve is symmetrical around the mean
- **Spread**: Controlled by standard deviation ($\sigma = 10$ cm)

Interpretation

Using the normal distribution rule:

- ~68% of students fall within **1 standard deviation** (155 cm to 175 cm)
- ~95% fall within **2 standard deviations** (145 cm to 185 cm)

So, probability that height is between 155 and 175 cm \approx 68%

Formula for Normal Distribution PDF

 $f(x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x - \mu}{\cos(x - \mu)} \right)}$

Where:

• \$\mu \$: Mean

- \$\sigma \$: Standard deviation
- \$ x \$: Value of the random variable

Feature	Value
Variable	Height of students
Mean (μ)	165 cm
Std. Deviation (σ)	10 cm
Distribution Type	Normal
Probability (155–175)	≈ 68%

- PDF is used to understand how values are distributed in continuous data.
- The area under the curve between two points gives the actual probability.

Hypothesis Testing

© What Is Hypothesis Testing?

Hypothesis testing is a way for scientists or researchers to test ideas or claims using data.

Think of it like a trial: you make a claim (the hypothesis), collect evidence (data), and then decide if your claim makes sense based on the evidence.

Real-Life Example

Let's say your school canteen says:

"Students eat an average of 2 apples a day."

You and your friends think, "That can't be right. We don't eat that many apples!"

So you decide to **test their claim** by collecting data.

Steps in Hypothesis Testing

- 1. State the Hypotheses
 - **Null Hypothesis** (H₀): The canteen is correct. Students eat 2 apples a day.
 - Alternative Hypothesis (H₁): The canteen is wrong. Students eat less (or more) than 2 apples a day.

2. Collect Data

Ask 30 students how many apples they eat per day and find the average.

3. Analyze the Data

Use math (like calculating the mean and standard deviation) to check if the new average is **significantly different** from 2.

4. Make a Decision

- If your results show a big enough difference, you can reject the null hypothesis.
- If not, you fail to reject it meaning the canteen's claim might still be true.

Important Terms

- Hypothesis: A guess or claim you test.
- Null Hypothesis (H₀): The claim you're testing (usually that nothing has changed).
- Alternative Hypothesis (H₁): The opposite of the null (something has changed).
- **Significance level (\alpha):** A cutoff (like 5%) to decide if the result is rare or not.

Type I and Type II Errors

When we make a decision in hypothesis testing, there's always a chance we could be wrong.

These wrong decisions are called **Type I and Type II errors**.

Continuing Our Apple Example

The school canteen claims:

"Students eat 2 apples per day."

You test this claim using hypothesis testing.

- **Null Hypothesis (H₀):** Students eat 2 apples per day.
- Alternative Hypothesis (H₁): Students do **not** eat 2 apples per day.

X Type I Error (False Positive)

You reject H₀ even though it's actually true.

Example: You say the canteen is wrong (students *don't* eat 2 apples), but in reality, they **do** eat 2 apples per day.

- It's like punishing an innocent person.
- The chance of making this error is called **alpha** (α), usually 5%.

X Type II Error (False Negative)

You fail to reject H₀ even though it's actually false.

Example: You say the canteen is correct (students eat 2 apples), but in reality, they **don't** — maybe they eat only 1 apple per day.

- It's like letting a guilty person go free.
- The chance of this error is called beta (β).

Quick Summary

Decision	Reality (H ₀ True)	Reality (H ₀ False)
Reject H₀	X Type I Error	✓ Correct Decision
Fail to Reject H ₀	Correct Decision	X Type II Error

What Is a Correct Decision?

In hypothesis testing, a **correct decision** happens when your conclusion **matches the actual truth** about the claim.

Example: Apple-Eating at School

The school canteen says:

"Students eat 2 apples per day."

You test this claim using data from your classmates.

Two Types of Correct Decisions

1. Fail to Reject H₀ — and H₀ is True

• You say:

"The canteen's claim seems correct — students eat 2 apples."

- And in reality, this is **true**.
- You accepted a true claim → Correct Decision!

2. Reject H_0 — and H_0 is False

- You say:
 "The canteen's claim is wrong students do NOT eat 2 apples."
- And in reality, they actually **don't** (maybe only 1 apple per day).
- You rejected a false claim → Correct Decision!

Summary Table

Your Decision	Reality	Outcome
Reject H₀	H₀ is False	Correct Decision
Fail to Reject H ₀	H₀ is True	✓ Correct Decision

A correct decision is like giving the **right answer** in a multiple-choice question after checking the facts!

25-july-2025 Hypothesis Testing

Hypothesis Testing

Hypothesis testing is a method used to **make decisions using data**. It helps us decide whether a claim about a **population** is likely to be true.

Hypothesis Testing Process – With Simple Examples

Step-by-Step Process

- 1. Set up Null and Alternate Hypotheses
 - H₀ (Null Hypothesis): The statement we test (no change/no effect)
 - **H**₁ (Alternative Hypothesis): What we want to prove (there is a change/effect)
- 2. Decide the Significance Level (α)
 - Common choices: 0.05 (5%) or 0.01 (1%)
- 3. Select the Right Test
 - Use **Z-test** if population standard deviation is known
 - Use **T-test** if population standard deviation is unknown and sample size < 30
- 4. Calculate the Test Statistic (Z or T score)

• Formula for Z-score:

 $S = \frac{X} - \frac{X} - \frac{x}{sgma} / \frac{n}}$

• Formula for T-score:

 $T = \frac{X} - \frac{x$

5. Find the p-value

6. Compare p-value and α

- If $p < \alpha$, reject the null hypothesis
- If $p > \alpha$, accept the null hypothesis

1. Population

A **population** is the **entire group** you want to study.

Example: All students in your school.

Since it's hard to ask everyone, we collect data from a **sample** and use that to make conclusions about the **population**.

2. Hypotheses: H₀ and H₁

In every hypothesis test, we start with two ideas:

Null Hypothesis (H₀)

This is the **default assumption** — nothing has changed or no effect exists.

Example: H₀ — Students eat **2 apples per day**.

Alternative Hypothesis (H₁)

This is what you're **trying to prove** — that something **has changed**.

Example: H_1 — Students do **not** eat 2 apples per day.

3. Significance Level (α)

This is the **threshold** for deciding whether a result is rare or not. It's usually set to **0.05** (or 5%).

It means you're okay with a 5% chance of being wrong if you reject Ho.

4. p-value

The **p-value** is the probability of getting your results (or more extreme) **if** H_0 **is actually true**.

- If the **p-value is small** (usually < 0.05), the result is rare.
- So, we **reject H**₀ meaning we support H₁.

5. Decision Rule

- If **p-value** $\leq \alpha \rightarrow \text{Reject H}_0$ (support H_1)
- If p-value > α \rightarrow Fail to reject H_0

Apple Example Summary

- Population: All students in school
- H₀: Students eat 2 apples per day
- H₁: Students do NOT eat 2 apples per day
- α (significance level): 0.05
- p-value: Calculated from sample data
- **Decision**: Compare p-value with α to decide if H₀ should be rejected

Hypothesis Testing — Step-by-Step Example with Real Data

Let's test a claim about how many apples students eat daily using real numbers.

The Scenario

The school canteen says:

"Students eat an average of 2 apples per day."

You want to test if this claim is correct using a sample of students.

Step 1: Collect Sample Data

You ask 10 students how many apples they eat per day.

Here's what they say:

[1, 2, 2, 3, 1, 2, 1, 2, 3, 1]

Step 2: Calculate the Sample Mean

Mean = (1 + 2 + 2 + 3 + 1 + 2 + 1 + 2 + 3 + 1) / 10 = 1.8 apples

Step 3: Set Up the Hypotheses

- H_0 (Null Hypothesis): $\mu = 2$ (students eat 2 apples per day)
- **H**₁ (Alternative Hypothesis): $\mu \neq 2$ (students do not eat 2 apples per day)

Step 4: Choose Significance Level

Let's choose $\alpha = 0.05$ (5%)

This means we are okay with a 5% risk of being wrong when rejecting H_0 .

Step 5: Calculate the p-value (Using t-test)

Let's assume:

- Sample mean $(\bar{x}) = 1.8$
- Population mean under H₀ (μ) = 2
- Sample standard deviation (s) ≈ 0.79
- Sample size (n) = 10

t-score formula:

 $t = (\bar{x} - \mu) / (s / \sqrt{n})$

 $t = (1.8 - 2) / (0.79 / \sqrt{10}) \approx -0.8$

Using a t-distribution table or calculator:

- Degrees of freedom (df) = 9
- Two-tailed test
- The **p-value** ≈ **0.44**

Step 6: Make a Decision

- p-value = **0.44**
- $\alpha = 0.05$

Since 0.44 > 0.05, we fail to reject H_0 .

Final Conclusion

> We do not have enough evidence to say students eat a different number of apples than 2 per day.

The school canteen's claim seems reasonable based on this data.

Summary Table

Element	Value
Sample Mean (x̄)	1.8
Assumed Mean (μ)	2
Sample Std Dev (s)	~0.79
Sample Size (n)	10
t-score	-0.8
p-value	0.44
Significance Level α	0.05
Decision	X Fail to Reject H₀
Conclusion	Not enough evidence to reject the canteen's claim

Example:

o One-Tailed Test (Right Tail Example)

Scenario:

A pencil manufacturer claims the average pencil length is 15 cm.

You think it is more than 15 cm.

Step-by-Step:

- H_0 : $\mu = 15$
- H_1 : $\mu > 15$ (Right-tailed)

Let's say:

- Sample mean $(\vec{x}) = 15.5$ cm
- Sample standard deviation (s) = 0.4
- n = 25
- $\alpha = 0.05$

Use **T-test** because population SD is unknown and n < 30:

 $T = \frac{15.5 - 15}{0.4 / \sqrt{25}} = \frac{0.5}{0.08} = 6.25$

Look up t critical for df = 24 at α = 0.05 \rightarrow around **1.711**

Since **6.25** > **1.711**, reject $H_0 \rightarrow$ the pencil is longer than 15 cm

Conclusion: Evidence shows the pencil is longer.

o Two-Tailed Test Example

Scenario:

You want to check if pencil length is **not equal to** 15 cm.

- H_0 : $\mu = 15$
- H_1 : $\mu \neq 15$ (Two-tailed)

Same data as above:

- Sample mean = 15.5
- s = 0.4
- n = 25
- $\alpha = 0.05$ (split into 0.025 in both tails)

Critical value for two-tail at df = 24 is approx ± 2.064

\$ T = 6.25 \$

Since **6.25** > **2.064**, reject H_0

Conclusion: Pencil length is significantly different from 15 cm.

Z-Test Example (When population SD is known)

- Population SD (σ) = 0.3
- Sample mean = 15.2
- Population mean = 15
- n = 100

 $Z = \frac{15.2 - 15}{0.3 / \sqrt{100}} = \frac{0.2}{0.03} = 6.67$

Critical z value at $\alpha = 0.05$ (two-tailed) is ± 1.96

Since **6.67** > **1.96**, reject H_0

Easy Analogy for Students:

• **Z-test**: You know the population well (like candle lengths in a factory)

• **T-test**: You have only small samples (like measuring pencils from one box)

Summary Table

Test Type	Use When	Population SD	Sample Size	Example
Z-Test	Population SD known	Known	Any	Known candle size
T-Test	Population SD unknown	Unknown	< 30	Pencil lengths
One-tail	Directional hypothesis	-	-	Pencil > 15 cm
Two-tail	Non-directional (≠) hypothesis	-	-	Pencil ≠ 15 cm

Perfect! Let's walk through one simple example each for:

- 1. Independent Two-Sample t-Test
- 2. Dependent (Paired) t-Test

1. Independent t-test Example (Unpaired Groups)

Scenario:

You want to compare marks of boys and girls in a math test.

- Group 1 (Boys): [55, 60, 65, 70, 75]
- Group 2 (Girls): [65, 70, 72, 68, 74]

Step-by-Step:

- **1** Hypotheses:
 - **H₀:** $\mu_1 = \mu_2$ (No difference in scores)
 - **H₁:** $\mu_1 \neq \mu_2$ (There is a difference)
- Calculate sample means:
- Mean (Boys) = 65
- Mean (Girls) = 69.8
- Use independent t-test formula or calculator:
 - Test statistic t ≈ -2.02

- Degrees of freedom ≈ 8
- Critical t-value ($\alpha = 0.05$, two-tailed) $\approx \pm 2.306$
- Decision:
- |t| = 2.02 < 2.306 → **X** Fail to reject H₀
- **✓ Conclusion:** No significant difference between boys' and girls' scores.

2. Dependent t-test Example (Paired Groups)

Scenario:

You want to test if a **coaching class improved scores**. You take scores of **same students** before and after the class.

Before: [50, 55, 52, 60, 58]After: [55, 60, 58, 65, 64]

Step-by-Step:

- 1 Hypotheses:
 - $\mathbf{H_0}$: $\mu_d = 0$ (No improvement)
 - H_1 : $\mu_d > 0$ (Improved after class)

Find differences:

Student	After	Before	Difference (d)
1	55	50	5
2	60	55	5
3	58	52	6
4	65	60	5
5	64	58	6

- Mean of d = 5.4
- SD of d ≈ 0.55
- n = 5

3 t-statistic:

 $t = \frac{0.55}{sqrt{5}} \approx 21.97$

- Critical t (α = 0.05, df = 4, one-tailed) \approx 2.132
- Decision:

- 21.97 > 2.132 → **Reject H**₀
- ✓ Conclusion: The class significantly improved scores.

Summary:

Independent Differe	nt (boys vs girls)	Math test comparison	Independent t-test
Dependent Same s	students (before vs after)	Coaching class	Paired t-test

Would you like this in markdown or PDF with formulas shown visually?

II One-Way ANOVA Example (Manual Calculation)

© Objective:

Test if there is a significant difference in average scores among **three different classes** of students.

Data Table:

Class A	Class B	Class C
40	42	55
45	41	60
50	44	65

- $\mathbf{k} = \mathbf{3}$ groups
- **n** = **3** observations per group
- N = 9 total observations

Step 1: Calculate Group Means

- Mean A = (40 + 45 + 50) / 3 = 45
- Mean B = $(42 + 41 + 44) / 3 \approx 42.33$
- Mean C = (55 + 60 + 65) / 3 = 60
- **Grand Mean (GM)** = Total sum / 9 = 442 / 9 ≈ 49.11

Between Groups (SSB)

 $SSB = n \cdot (5 - 49.11)^2 + (42.33 - 49.11)^2 + (60 - 49.11)^2 = 544.56$

Within Groups (SSW)

 $SSW = \sum (X_{ij} - bar{X}_{group})^2 = 50 (A) + 4.66 (B) + 50 (C) = 104.66$

◆ Total Sum of Squares (SST)

\$\$ SST = SSB + SSW = 544.56 + 104.66 = 649.22 \$\$

Step 3: Degrees of Freedom

Source	Formula	Value
Between Groups	(k - 1)	2
Within Groups	(N - k)	6
Total	(N - 1)	8

Step 4: Mean Squares

- \$\$ MSB = \frac{SSB}{df_{between}} = \frac{544.56}{2} = 272.28 \$\$
- \$\$ MSW = \frac{SSW}{df_{within}} = \frac{104.66}{6} ≈ 17.44 \$\$

Step 5: F-Ratio

 $F = \frac{MSB}{MSW} = \frac{272.28}{17.44} \approx 15.61$ \$

Final ANOVA Table

Source	SS	df	MS	F
Between Groups	544.56	2	272.28	15.61
Within Groups	104.66	6	17.44	
Total	649.22	8		

Compare the F-value (15.61) with the F-critical value from the F-table at $\alpha = 0.05$.

- $(F_{\text{critical}}) \approx 5.14$ for (df1 = 2, df2 = 6)
- Since 15.61 > 5.14, we reject the null hypothesis.
- At least one group has a significantly different average score.

Example 2 Chi-Square Test (χ² Test)

What is a Chi-Square Test?

The **Chi-Square** (χ^2) **Test** is a statistical method used to:

- Compare **observed** values with **expected** values.
- Check if there is a **significant association** between two categorical variables.

There are two main types:

- Chi-Square Goodness-of-Fit Test Tests how well observed data fits an expected distribution.
- 2. **Chi-Square Test of Independence** Tests if two variables are related in a contingency table.

Example: Chi-Square Test of Independence

© Situation:

We want to know whether **gender** and **preference for a subject** are related.

Data (Observed):

	Science	Arts	Total
Boys	30	10	40
Girls	10	30	40
Total	40	40	80

Step 1: Find Expected Values

Use the formula:

 $E_{ij} = \frac{\text{Column Total}}{\text{Column Total}}$

Example:

Expected value for Boys-Science:

 $$E = \frac{40 \pm 40}{80} = 20 $$

	Science (E)	Arts (E)
Boys	20	20
Girls	20	20

Step 2: Apply Chi-Square Formula

Formula:

 $\$ \chi^2 = \sum \frac{(O - E)^2}{E} \$\$

Calculations:

- For Boys–Science: $(\frac{30 20}^2}{20} = 5)$
- For Boys-Arts: $(\frac{10 20}^2}{20} = 5)$
- For Girls-Science: (\frac{(10 20)^2}{20} = 5)
- For Girls-Arts: $(\frac{30 20}^2}{20} = 5)$

Total $\chi^2 = 5 + 5 + 5 + 5 = 20$

Step 3: Degrees of Freedom

\$\$ df = (r - 1)(c - 1) = (2 - 1)(2 - 1) = 1 \$\$

Step 4: Compare with χ^2 Table

- At $\alpha = 0.05$ and df = 1, critical value ≈ 3.84
- Our $\chi^2 = 20$, which is **greater** than 3.84
- **Conclusion**: Reject H₀

There is a significant relationship between gender and subject preference.

Step	Result
Observed Values	Given in table
Expected Values	Calculated using row × col / total

Step	Result
χ² Value	20
Degrees of Freedom	1
Decision	Reject H ₀ (significant relationship)