

Machine Learning

Logistic Regression

Classification

Classification

Email: Spam / Not Spam?

Online Transactions: Fraudulent (Yes / No)?

Tumor: Malignant / Benign?

$$y \in \{0, 1\}$$

0: "Negative Class" (e.g., benign tumor)

1: "Positive Class" (e.g., malignant tumor)

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Classification:
$$y = 0$$
 or 1

$$h_{\theta}(x)$$
 can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$ (a classification algorithm)

Machine Learning

Logistic Regression

Hypothesis Representation

Logistic Regression Model

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function \(\) Logistic function

Mean the same

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

Tell patient that 70% chance of tumor being malignant

$$h_{ heta}(x) = P(y=1|x; heta)$$
 "probability that y = 1, given x, parameterized by $heta$ "
$$P(y=0|x; heta) + P(y=1|x; heta) = 1$$

$$P(y=0|x; heta) = 1 - P(y=1|x; heta)$$

Machine Learning

Logistic Regression

Decision boundary

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y=1$$
" if $h_{\theta}(x)\geq 0.5$ $g(z)\geq 0.5$ When $z\geq 0$ So $h_{\theta}(x)=g(\theta^Tx)\geq 0.5$ When $\theta^Tx\geq 0$ predict " $y=0$ " if $h_{\theta}(x)<0.5$ $g(z)\leq 0.5$ When $z<0$

So $h_{\theta}(x) = g(\theta^T x) < 0.5$ When $\theta^T x < 0$

Decision Boundary

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

Non-linear decision boundaries

Machine Learning

Logistic Regression

Cost function

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$

m examples
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$
 $x_0 = 1, y \in \{0, 1\}$

$$x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

Cost function

Linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

$$\operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

If y=0 and theta->0, then cost->0.

If y=0 and theta->1, then cost->infinity.

This is the motivation of using a cost function in the form.

Machine Learning

Logistic Regression

Simplified cost function and gradient descent

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\operatorname{Note:} \ y = 0 \ \text{or} \ 1 \ \operatorname{always}$$

$$\operatorname{Cost}(h_{\theta}(x), y) = -y\log(h_{\theta}(x)) - (1 - y)\log(1 - h_{\theta}(x))$$

$$\operatorname{if} \ y = 0 \ \operatorname{Cost}(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

$$\operatorname{if} \ y = 0 \ \operatorname{Cost}(h_{\theta}(x), y) = -\log(1 - h_{\theta}(x))$$

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$p(y=1|x;\theta)$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(simultaneously update all $heta_j$)

Gradient Descent

$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log (1-h_\theta(x^{(i)}))]$$
 Want $\min_\theta J(\theta)$: Repeat $\{$
$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 $\}$ (simultaneously update all θ_j)

Algorithm looks identical to linear regression!

Optimization algorithm

Cost function $J(\theta)$. Want $\min_{\theta} J(\theta)$.

Given θ , we have code that can compute

- $J(\theta)$

 $-\frac{\partial}{\partial \theta_{i}}J(\theta)$ (for $j=0,1,\ldots,n$)

Gradient descent:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Optimization algorithm

Given θ , we have code that can compute

-
$$J(\theta)$$

$$-\frac{\partial}{\partial \theta_j} J(\theta)$$
 (for $j=0,1,\ldots,n$)

Optimization algorithms:

- Gradient descent
- Conjugate gradient
- BFGS
- L-BFGS
- Coordinate descent

Advantages:

- No need to manually pick α
- Often faster than gradient descent.

Disadvantages:

More complex

Machine Learning

Logistic Regression

Multi-class classification: One-vs-all

Multiclass classification

Weather: Sunny, Cloudy, Rain, Snow

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.

On a new input x, to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$