Logică și Structuri Discrete -LSD

Cursul 3

dr. ing. Cătălin Iapă

e-mail: catalin.iapa@cs.upt.ro

facebook: Catalin Iapa

cv: Catalin Iapa

Rezumat funcții

Prin *funcții* exprimăm calcule în programare.

Domeniile de definiție și valori corespund tipurilor din programare.

În limbajele funcționale, funcțiile pot fi manipulate ca orice *valori*. Funcțiile pot fi *argumente* și *rezultate* de funcții.

Funcțiile de mai multe argumente (sau de tuple) pot fi rescrise ca funcții de un singur argument care returnează funcții.

Ce știm până acum?/ Ce ar trebui să știm?

Știm *proprietățile funcțiilor* și cum să *ne folosim de ele:* funcții injective, surjective, bijective, inversabile;

Să construim funcții cu anumite proprietăți;

Să *numărăm* funcțiile definite pe mulțimi finite (cu proprietăți date);

Să *compunem* funcții simple pentru a rezolva probleme;

Să identificăm *tipul* unei funcții.

Recursivitate

Funcții recursive în PYTHON

Potrivirea de tipare

Tail recursion

Avantajele și dezavantajele recursivității

Fie mulțimea
$$A = \{3, 5, 7, 9, ...\}$$

O putem defini $A = \{x \mid x = 2k + 3, k \in \mathbb{N}\}$

Alternativ, observăm că:

- $-3 \in A$
- $-x \in A \Rightarrow x + 2 \in A$
- un element ajunge în A doar printr-unul din paşii de mai sus
- ⇒ putem defini *inductiv* mulţimea *A*

$$A = \{3, 5, 7, 9, 11, 13, \dots\}$$

$$3 \in A - elementul de bază: P(0): a_0 \in A$$

$$x \in A \Rightarrow x + 2 \in A - construcția de noi elemente:$$

 $P(k) \Rightarrow P(k+1) : a_k \in A \Rightarrow a_{k+1} \in A$

un element ajunge în A doar printr-unul din pașii de mai sus – *închiderea* (niciun alt element nu e în mulțime)

- ⇒ definiția *inductivă* a lui *A*
- ⇒ spunem că A e o *mulțime inductivă*

O definiție inductivă a unei mulțimi S constă din:

- bază: Enumerăm elementele de bază din S (minim unul).
- inducția: Dăm cel puțin o regulă de construcție de noi elemente din S, pornind de la elemente deja existente in S.
- *închiderea*: S conține doar elementele obținute prin pașii de bază și inducție (de obicei implicită).

Elementele de bază și regulile de construcție de noi elemente constituie *constructorii* mulțimii *S*.

Mulțimi definite inductiv - exemplu

Mulțimea numerelor naturale N e o mulțime inductivă:

- *bază*: 0 ∈ N
- inducția: $n \in \mathbb{N} \Rightarrow n+1 \in \mathbb{N}$

Constructorii lui N:

- baza 0
- operația de adunare cu 1

Mulțimi definite inductiv - exemplu

 $A = \{1, 3, 7, 15, 31, ...\}$ e o mulțime inductivă:

- bază: 1 ∈ A
- inducția: $x ∈ A \Rightarrow 2x + 1 ∈ A$

- Constructorii lui A:
 - baza 1
 - operat, ia de înmulțire cu 2 și adunare cu 1

Recursivitate

Funcții recursive în PYTHON

Potrivirea de tipare

Tail recursion

Avantajele și dezavantajele recursivității

Scopul jocului este acela de a muta întreaga stivă de pe o tijă pe alta, respectând următoarele reguli:

- Doar un singur disc poate fi mutat, la un moment dat.
- Fiecare mutare constă în luarea celui mai de sus disc de pe o tija și glisarea lui pe o altă tijă, chiar și deasupra altor discuri care sunt deja prezente pe acea tijă.
- Un disc mai mare nu poate fi poziționat deasupra unui disc mai mic.

Trebuie să găsim numărul minim de mutări a întregii stive de pe un disc pe altul în funcție de numărul de discuri inițial

p(n)

p(1) = 1

p(2) = 3

P(3) = 7

Putem găsii o regulă generală?

Pasul 1 – mutăm n-1 discuri

Pasul 2 – mutăm discul cel mai mare (1 disc)

Pasul 3 – mutăm n-1 discuri

$$p(n) = p(n-1) + 1 + p(n-1)$$

 $p(n) = 2 * p(n-1) + 1$

$$p(n) = 2^n - 1$$

(Putem demonstra prin inducție matematică)

La facultate avem o provocare cu numărul de cadre didactice. Avem nevoie de mai mulți *profesori* pentru că numărul de studenți tot crește.

Avem o regulă care duce la creșterea numărului de profesori:

- În fiecare an, un profesor trebuie să aducă/ să formeze un nou profesor
- Excepție face doar primul an pentru fiecare profesor, an în care nu trebuie să aducă/ să formeze un profesor

Câți profesori o să aibă facultatea după 8 ani dacă aplicăm aceste reguli și, pentru a simplifica calculul, în anul 1 pornim de la 1 profesor?

Definim funcția:

f(n) = #numărul de profesori după anul n

```
Anul 1: 1 profesor
Anul 2: 1 profesor - doar profesorul de anul trecut
Anul 3: 2 profesori – cel de anul trecut + 1 nou
Anul 4: 3 profesori – cei 2 de anul trecut + 1 nou
Anul 5: 5 profesori – cei 3 de anul trecut + 2 noi
Anul 6: 8 profesori – cei 5 de anul trecut + 5 noi
Anul 7: 13 profesori – cei 8 de anul trecut + 5 noi
Anul 8: 21 profesori – cei 13 de anul trecut + 8 noi
```

f(n) = #numărul de profesori după anul n

•
$$f(n+1) = f(n)$$
 + $f(n-1)$
Profesorii de anul trecut profesori noi

Recunoașteți această recurență?
E modul de construire a renumitului
Șir al lui Fibonacci

Șirul lui Fibonacci e prima recurență despre care se știe că s-a studiat matematic, dintre toate recurențele studiate

A fost publicat pentru prima dată în tratatul "Liber abaci" de Leonardo Fibonacci din Pisa în anul 1202. Acest tratat cuprindea tot ce se știa despre matematică la acele vremuri și a influențat dezvoltarea matematicii în anii următori

A studiat cu ajutorul lui o problemă reală a acelor vremuri, creșterea populației de iepuri, pe care a exprimat-o astfel:

- în fiecare lună, o pereche de iepuri vor naște în medie alți 2 iepuri, cu excepția primei luni de viață

Problema numărului de profesori o reducem matematic la rezolvarea *ecuației*:

$$f(n+1) = f(n) + f(n-1), n \ge 2$$
 cu $f(0) = 0$ și $f(1) = 1$

Presupunem că șirul are forma

$$f(n+1) = \lambda^{n+1}$$
, unde λ parametru real

Ecuația devine:

$$\lambda^{n+1} = \lambda^n + \lambda^{n-1}$$
$$\lambda^{n+1} - \lambda^n - \lambda^{n-1} = 0$$

$$\begin{cases} \lambda^{n-1}(\lambda^2 - \lambda^1 - 1) = 0 \\ f(n) \neq 0, (\forall n \in N^*) \end{cases} \Rightarrow \lambda^2 - \lambda - 1 = 0$$

Ecuația de gradul 2:

$$\lambda^2 - \lambda^1 - 1 = 0$$
 are soluțiile:

$$\lambda_1 = \frac{1 + \sqrt{5}}{2}$$

$$\lambda_2 = \frac{1 - \sqrt{5}}{2}$$

Ecuația $\lambda^2 - \lambda^1 - 1 = 0$ poartă denumirea de *ecuația* caracteristică asociată, iar dacă aceasta are 2 soluții distince, atunci soluția generală a ecuației de la care am plecat este:

$$f(n+1) = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}$$

Mai știm că f(0)=0 și f(1)=1

$$\begin{cases}
f(0) = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^0 + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^0 = c_1 + c_0 = 0 \\
f(1) = c_1 \frac{1+\sqrt{5}}{2} + c_2 \frac{1-\sqrt{5}}{2} = 1
\end{cases}$$

Cu soluțiile:
$$c_1 = \frac{1}{\sqrt{5}}$$
 și $c_2 = -\frac{1}{\sqrt{5}}$

În final, am demonstrat mai sus că *termenul n* din șirul lui Fibonacci are forma:

$$f(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Nu e ceva ușor de calculat, europenilor le-a luat 6 secole să ajungă la această soluție

Adevărul e că Fibonacci nu a descoperit acest șir, el doar le-a spus europenilor despre el, fiind folosit în jurul anului 200 de către matematicienii indieni și având aplicații în gramatică și muzică

Kepler l-a folosit în secolul 16 pentru a studia cum sunt dispuse *frunzele unei flori pe tulpină*, care e numărul de frunze de la fiecare nivel

Matematicianul *Abraham de Moivre* a fost cel care a descoperit *formula lui Binet*, în secolul 17, formula de pe slide-ul precedent

Formula lui Binet face legătura între termenii șirului lui Fibonacci și puterea n a *numărului de aur* (golden ratio sau secțiunea de aur, raportul de aur, proporția de aur), primul număr irațional descoperit și definit în istorie

$$\varphi = \frac{1+\sqrt{5}}{2} = 1,618033...$$

Euclid l-a definit prima oară folosind raportul:

$$\frac{a+b}{a} = \frac{a}{b} = \varphi$$

Recurență liniară

Definiție: O recurență este liniară dacă are forma

$$f(n) = a_1 f(n-1) + a_2 f(n-2) + ... a_d f(n-d)$$

= $\sum_{i=1}^{d} a_i f(n-i)$, cu numere fixe a_i și d

d se numește ordinul recurenței

Ce ordin are recurența șirul lui Fibonacci?

Mulțimi definite inductiv Recursivitate

Funcții recursive în PYTHON

Potrivirea de tipare

Tail recursion

Avantajele și dezavantajele recursivității

Recursivitate în informatică

O noțiune e *recursivă* dacă e *folosită în propria sa definiție*.

Recursivitatea e fundamentală în informatică:

- dacă o problemă are soluție, se poate rezolva recursiv
- reducând problema la un caz mai simplu al aceleiași probleme

Înțelegând recursivitatea, putem rezolva orice problemă fezabilă

Recursivitate: exemple

Recursivitatea reduce o problemă la un caz mai simplu al aceleiași probleme

un
$$sir$$
 e $\begin{cases} un singur element \\ un element urmat de un $sir \end{cases}$ $\rightarrow drum \\ un $drum$ e $\begin{cases} un pas \\ un drum urmat de un pas \rightarrow \rightarrow \rightarrow \end{cases}$$$

Siruri recurente

Progresia aritmetică:

$$\begin{cases} x_0 = b & \text{(adică: } x_n = b \text{ pentru } n = 0) \\ x_n = x_{n-1} + r & \text{pentru } n > 0 \end{cases}$$
 Exemplu: 1, 4, 7, 10, 13, . . . (b = 1, r = 3)

Progresia geometrică:

$$\begin{cases} x_0 = b & \text{(adică: } x_n = b \text{ pentru } n = 0) \\ x_n = x_{n-1} * \text{ r} & \text{pentru } n > 0 \end{cases}$$

Exemplu: 3, 6, 12, 24, 48, . . . (b = 3, r = 2)

Definițiile de mai sus nu calculeaă x_n direct ci din aproape în *aproape*, în funcție de x_{n-1}

Elementele unei definiții recursive

1. Cazul de bază este cel mai simplu caz pentru definiția dată, definit direct (termenul inițial dintrun șir recurent: x_0)

Cazul de bază nu trebuie să lipsească

- 2. Relaţia de recurenţă propriu-zisă defineşte noţiunea, folosind un caz mai simplu al aceleiaşi noţiuni
- 3. Demonstrația de *oprire a recursivității* după un număr finit de pași

Funcții recursive

O funcție e *recursivă* dacă apare în propria sa definiție.

O funcție f e definită recursiv dacă există cel puțin o valoare f(x) definită în termenii altei valori f(y), unde $x \neq y$.

Funcții recursive peste mulțimi inductive

Multe funcții recursive au ca domeniu *mulțimi inductive*

Dacă S este o mulțime inductivă, putem folosi constructorii săi pentru a defini o funcție recursivă f cu domeniul S:

- baza: pentru fiecare element de bază x € S specificăm o valoare f (x)
- Inducția: dăm una sau mai multe reguli care pentru orice x
 € S, x definit inductiv, definesc f (x) în termenii unor alte
 valori ale lui f, definite anterior

Funcții recursive în PYTHON

Forma generică a unei funcții recursive:

Funcții recursive în PYTHON

```
Exemplu:

def frec ():

x=7

frec ()

frec()
```

- La fiecare apel, se alocă *spațiu de memorie nou*, distinct pentru x
- În exemplu de mai sus e greșit faptul că *nu apare* condiția de oprire din execuție

Funcții recursive în PYTHON

Exemplu: Să se afișeze pe ecran în ordine descrescătoare toate numerele naturale mai mici ca n.

```
def numara(n):
  print(n)
  if (n > 0):
    numara(n - 1)
numara(3)
OUTPUT:
```

Exemplu: Funcția factorial

$$n! = n \times (n-1) \times (n-2) \times (n-3) \cdots \times 3 \times 2 \times 1$$

Putem să o rescriem recursiv:

$$n! = n \times (n-1)!$$

Detaliem *modul în care se calculează recursiv* funcția factorial:

```
n! = n \times (n-1)!

n! = n \times (n-1) \times (n-2)!

n! = n \times (n-1) \times (n-2) \times (n-3)!

n! = n \times (n-1) \times (n-2) \times (n-3) \cdots \times 3!

n! = n \times (n-1) \times (n-2) \times (n-3) \cdots \times 3 \times 2!

n! = n \times (n-1) \times (n-2) \times (n-3) \cdots \times 3 \times 2 \times 1!
```

Matematic, *forma recursivă* a funcției factorial este:

$$n! = \begin{cases} 1, \ dacă \ n = 1 \\ n * (n-1)!, dacă \ n > 1 \end{cases}$$

În PYTHON putem scrie funcția factorial astfel:

```
def factorial (x):
       if(x == 1):
                return 1
        else:
                return x * factorial (x-1)
print(factorial(4))
OUTPUT:
24
```

factorial_recursive(5)

Global Execution Context

5!

Growing Call Stack

Pașii pe care îi face programul pentru a calcula:

• Cum funționează funcția recursivă factorial: factorial (4) va avea la execuție următorii pași:

```
factorial(4) = factorial(3) * 4 - \text{funcția rămâne în execuție} factorial(3) = factorial(2) * 3 - \text{funcția rămâne în execuție} factorial(2) = factorial(1) * 2 - \text{funcția rămâne în execuție} factorial(1) = 1 factorial(2) = factorial(1) * 2 = 1 * 2 = 2 factorial(3) = factorial(2) * 3 = 2 * 3 = 6 factorial(4) = factorial(3) * 4 = 6 * 4 = 24
```

O problemă nerezolvată: "problema 3 · n + 1"

Conjectura lui Collatz (1937),

Fie un număr pozitiv n:

- dacă e par, îl împărțim la 2: n/2
- dacă e impar, îl înmulțim cu 3 și adunăm 1: $3 \cdot n + 1$ Se ajunge la 1 pornind de la orice număr pozitiv ? (problemă nerezolvată în matematică...)

$$f(n) = \begin{cases} n/2, & dacă n e par \\ 3 \cdot n + 1, dacă n e impar \end{cases}$$

Exemple:

$$3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

 $11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$

O problemă nerezolvată: "problema 3 · n + 1"

Câți pași sunt necesari până ajungem la #1?

- Definim funcția p : N* → N care numără pașii până la oprire:
 - pentru $3\rightarrow 10\rightarrow 5\rightarrow 16\rightarrow 8\rightarrow 4\rightarrow 2\rightarrow 1$ avem 7 paşi
- Nu avem o formulă cu care să definim p(n) direct.
- Dar dacă șirul $n, f(n), f(f(n)), \dots$ ajunge la 1, atunci numărul de pași parcurși **de la** n e **cu unul mai mare** decât continuând **de la** f(n)

•
$$p(n) = \begin{cases} 0, & dacă \ n = 1 \\ 1 + f(n), alt fel \ (n > 1) \end{cases}$$

 Funcția p e folosită în propria definiție, deci a fost definită recursiv.

O problemă nerezolvată: "problema 3 · n + 1"

```
def urmatorul(n):
  if(n\%2 == 0):
    return n/2
  else:
    return 3 * n + 1
def pasi(n):
  if (n == 1):
    return 0
  else:
    return 1 + pasi(urmatorul(n))
```

Şirul lui Fibonacci în PYTHON

```
def fibonacci(n):
  if(n==0):
    return 0
  elif(n==1):
    return 1
  else:
    return fibonacci(n-1) + fibonacci(n-2)
print(fibonacci(7))
OUTPUT: 21
```


Mulțimi definite inductiv

Recursivitate

Funcții recursive în PYTHON

Potrivirea de tipare

Tail recursion

Avantajele și dezavantajele recursivității

Putem scrie funcția și în acest mod, folosind potrivirea de tipare:

```
def fibonacci(n):
    match n:
    case 0:
        return 0
    case 1:
        return 1
    case _:
        return fibonacci(n-1) + fibonacci(n-2)
```

Ultima condiție putem să o scriem în aceste forme, sunt echivalente:

Modul de în care se execută *match case*:

Se verifică, pe rând, *de la primul* case la ultimul, dacă valoarea se potrivește.

- dacă *nu se potrivește* se merge la următorul case
- dacă *se potrivește* se execută instrucțiunea de la case-ul respectiv, iar restul case-urilor nu se mai verifică

Exemplu: Să se afișeze dacă *un punct e pe axe*:

```
def puncte (x, y):
  match (x, y):
    case (0, 0):
      print("Punctul e în origine")
    case (0, ):
      print("Punctul e pe axa Ox")
    case ( , 0):
      print("Punctul e pe axa Oy")
    case ( , ):
       print("Punctul nu e pe nici o axa")
puncte(0,3) # Punctul e pe axa Ox
```


Mulțimi definite inductiv Recursivitate

Funcții recursive în PYTHON

Potrivirea de tipare

Tail recursion

Avantajele și dezavantajele recursivității

Limitare în PYTHON

Unul dintre dezavantajele recursivității este că fiecare apel de funcție care rămâne în execuție folosește *spațiu de memorie pe stivă*

PYTHON *limitează* implicit numărul de apeluri ale aceleiași expresii la 1000 (10**3) de ori Eroarea care apare la apelarea de mai mult de 1000 de ori a aceleiași expresii generează eroarea: *maximum* recursion depth exceeded error

În probleme în care avem nevoie de iterații mai mari de 1000 putem modifica această limită folosind funcția setrecursionlimit() din modulul sys

Limitare în PYTHON

Pentru a *crește limita* de la maxim 1.000 de apeluri la maxim 100.000 de apeluri:

import sys
sys.setrecursionlimit(10**5)

Tail recursion

```
Factorial, tail recursion:
                                    Factorial, recursivitate
                                    clasică:
                                    def factorial (x):
def fact(n, a=1):
                                     if(x == 1):
  if (n <= 1):
                                           return 1
       return a
                                      else:
                                       return x * factorial (x-1)
 else:
      return fact(n - 1, n * a)
```

print(factorial(4))

Tail recursion

• Cum funționează funcția recursivă factorial: factorial (4) va avea la execuție următorii pași:

```
factorial(4, 1) = factorial(3, 4 * 1)
factorial(3, 4) = factorial(2, 3 * 4)
factorial(2, 12) = factorial(1, 12 * 2)
factorial(1, 24) = 24
factorial(2, 12) = 24
factorial(3, 4) = 24
factorial(4, 1) = 24
```

Exemplu de folosire if - else

PYTHON permite și o scriere mai compactă a instrucțiunii if-else astfel:

```
def factorial (x):
     return 1 if (x ==1) else x * factorial (x-1)

print(factorial(4))
------
OUTPUT:
24
```


Mulțimi definite inductiv

Recursivitate

Funcții recursive în PYTHON

Potrivirea de tipare

Tail recursion

Avantajele și dezavantajele recursivității

Avantajele recursivității în programare

- Codul e mai scurt și ușor de urmărit, elegant, curat
- Problemele complexe pot fi împărțite în subprobleme mai simple și astfel mai ușor de rezolvat
- Generarea de șiruri se face mai simplu recursiv

Dezvantajele recursivității în programare

- E mai greu de urmărit pas cu pas logica din spatele unui cod scris recursiv
- Apelurile recursive repetate folosesc multă memorie
- Erorile care apar la funcţiile recursive sunt mai greu de corectat

De știut

Să recunoaștem și să definim noțiuni recursive

Să recunoaștem dacă o definiție recursivă e corectă

are caz de bază? se oprește recursivitatea?

Să rezolvăm probleme scriind funcții recursive

 cazul de bază + pasul de reducere la o problemă mai simplă

Vă mulțumesc!

Bibliografie

- Exemplele cu Turnurile din Hanoi şi problema numărului de profesori au fost inspirate din cursul *Mathematics for Computer Science* de la Massachusetts Institute of Technology (de pe https://ocw.mit.edu/)
- Conţinutul cursului se bazează preponderent pe materialele de anii trecuţi de la cursul de LSD, predat de conf. dr. ing.Marius Minea şi ş.l. dr. ing. Casandra Holotescu (http://staff.cs.upt.ro/~marius/curs/lsd/index.html)