

* * * * * * * * * * * * * * * * STN Columbus *

FILE 'HOME' ENTERED AT 19:03:42 ON 26 APR
1998

=> index bioscience

COST IN U.S. DOLLARS
SINCE FILE TOTAL

ENTRY SESSION
FULL ESTIMATED COST
0.15 0.15

INDEX 'AGRICOLA, AIDSLINE, ANABSTR, AQUASCI,
BIOBUSINESS, BIOSIS, BIOTECHABS,
BIOTECHDHS, CABA, CANCERLIT, CAPLUS,
CEABA, CEN, CIN, CJACS, CONFSCI,
CROPB, CROPU, DDFB, DDFU, DGENE,
DISSABS, DRUGB, DRUGLAUNCH, DRUGNL,
DRUGU, EMBAL, EMBASE, FSTA, GENBANK,
...' ENTERED AT 19:03:54 ON 26 APR 1998

49 FILES IN THE FILE LIST IN STNINDEX

Enter SET DETAIL ON to see search term
postings or to view
search error messages that display as 0* with
SET DETAIL OFF.

=> s igf? or (insulin?(3a) (growth factor?))

954 FILE AGRICOLA
90 FILE AIDSLINE
36 FILE ANABSTR
127 FILE AQUASCI
1014 FILE BIOBUSINESS
22432 FILE BIOSIS
517 FILE BIOTECHABS
517 FILE BIOTECHDHS
8 FILES SEARCHED...
2548 FILE CABA
6500 FILE CANCERLIT
10 FILES SEARCHED...
15486 FILE CAPLUS
163 FILE CEABA
15 FILE CEN
130 FILE CIN
253 FILE CJACS
845 FILE CONFSCI
5 FILE CROPU
139 FILE DDFB
1818 FILE DDFU
1289 FILE DGENE

21 FILES SEARCHED...

750 FILE DISSABS
139 FILE DRUGB
73 FILE DRUGNL
2281 FILE DRUGU
266 FILE EMBAL
14107 FILE EMBASE
50 FILE FSTA
13936 FILE GENBANK
6 FILE HEALSAFE

31 FILES SEARCHED...

813 FILE IFIPAT
1416 FILE JICST-EPLUS
19 FILE KOSMET
4394 FILE LIFESCI
16989 FILE MEDLINE

36 FILES SEARCHED...

23 FILE NIOSHTIC
84 FILE NTIS
28 FILE OCEAN

38 FILE PHAR
3 FILE PHIC
297 FILE PHIN
749 FILE PROMT
16541 FILE SCISEARCH
44 FILES SEARCHED...
2354 FILE TOXLINE
10021 FILE TOXLIT
3150 FILE USPATFULL
2223 FILE WPIDS
2223 FILE WPINDEX

47 FILES HAVE ONE OR MORE ANSWERS, 49
FILES SEARCHED IN STNINDEX

L1 QUE IGF? OR (INSULIN?(3A) (GROWTH
FACTOR?))

=> s l1 and stroke?

5 FILE BIOBUSINESS
24 FILE BIOSIS
2 FILE BIOTECHABS
2 FILE BIOTECHDHS
4 FILE CANCERLIT
10 FILES SEARCHED...
24 FILE CAPLUS
2 FILE CEABA
3 FILE CEN
1 FILE CIN
11 FILE CJACS
8 FILE DDFU
66 FILE DGENE
2 FILE DISSABS
6 FILE DRUGNL
17 FILE DRUGU
1 FILE EMBAL
19 FILE EMBASE
28 FILES SEARCHED...
3 FILE IFIPAT
2 FILE LIFESCI
22 FILE MEDLINE
38 FILES SEARCHED...
1 FILE PHAR
22 FILE PHIN
33 FILE PROMT
15 FILE SCISEARCH
5 FILE TOXLINE
12 FILE TOXLIT
116 FILE USPATFULL
9 FILE WPIDS
9 FILE WPINDEX

29 FILES HAVE ONE OR MORE ANSWERS, 49
FILES SEARCHED IN STNINDEX

L2 QUE L1 AND STROKE?

=> s l1 and (cns? or brain? or
(central?(3a)(neur? or nerv?)))

15 FILE AGRICOLA
1 FILE ANABSTR
11 FILE AQUASCI
14 FILE BIOBUSINESS
1006 FILE BIOSIS
6 FILES SEARCHED...
13 FILE BIOTECHABS
13 FILE BIOTECHDHS
67 FILE CABA
294 FILE CANCERLIT
10 FILES SEARCHED...
933 FILE CAPLUS
8 FILE CEABA

2 FILE CEN
 7 FILE CIN
 45 FILE CJACS
 11 FILE CONFSCI
 3 FILE DDFB
 28 FILE DDFU
 23 FILE DGENE
 70 FILE DISSABS
 22 FILES SEARCHED...
 3 FILE DRUGB
 41 FILE DRUGNL
 51 FILE DRUGU
 13 FILE EMBAL
 1022 FILE EMBASE
 28 FILES SEARCHED...
 1 FILE FSTA
 89 FILE GENBANK
 23 FILE IFIPAT
 80 FILE JICST-EPLUS
 33 FILES SEARCHED...
 294 FILE LIFESCI
 894 FILE MEDLINE
 36 FILES SEARCHED...
 3 FILE OCEAN
 2 FILE PHAR
 1 FILE PHIC
 41 FILE PHIN
 112 FILE PROMT
 893 FILE SCISEARCH
 44 FILES SEARCHED...
 114 FILE TOXLINE
 519 FILE TOXLIT
 46 FILES SEARCHED...
 552 FILE USPATFULL
 31 FILE WPIDS
 31 FILE WPINDEX
 41 FILES HAVE ONE OR MORE ANSWERS, 49
 FILES SEARCHED IN STNINDEX
 L3 QUE L1 AND (CNS? OR BRAIN? OR
 (CENTRAL?(3A)(NEUR? OR NERV?)))
 => s 13 and (stroke? or trauma?)
 2 FILE BIOBUSINESS
 19 FILE BIOSIS
 6 FILES SEARCHED...
 1 FILE BIOTECHABS
 1 FILE BIOTECHDS
 2 FILE CANCERLIT
 10 FILES SEARCHED...
 37 FILE CAPLUS
 2 FILE CEABA
 1 FILE CEN
 1 FILE CIN
 6 FILE CJACS
 1 FILE DGENE
 3 FILE DISSABS
 22 FILES SEARCHED...
 7 FILE DRUGNL
 1 FILE DRUGU
 2 FILE EMBAL
 20 FILE EMBASE
 28 FILES SEARCHED...
 6 FILE IFIPAT
 5 FILE LIFESCI
 35 FILES SEARCHED...
 16 FILE MEDLINE
 36 FILES SEARCHED...
 1 FILE PHAR
 13 FILE PHIN
 25 FILE PROMT
 21 FILE SCISEARCH
 44 FILES SEARCHED...
 2 FILE TOXLINE
 6 FILE TOXLIT
 46 FILES SEARCHED...
 150 FILE USPATFULL
 12 FILE WPIDS
 12 FILE WPINDEX
 28 FILES HAVE ONE OR MORE ANSWERS, 49
 FILES SEARCHED IN STNINDEX
 L4 QUE L3 AND (STROKE? OR TRAUMA?)
 => file uspatfull
 COST IN U.S. DOLLARS
 SINCE FILE TOTAL
 ENTRY SESSION
 FULL ESTIMATED COST
 37.80 37.95
 FILE 'USPATFULL' ENTERED AT 19:54:06 ON 26
 APR 1998
 CA INDEXING COPYRIGHT (C) 1998 AMERICAN
 CHEMICAL SOCIETY (ACS)
 FILE COVERS 1971 TO PATENT PUBLICATION DATE:
 21 Apr 1998 (19980421/PD)
 FILE LAST UPDATED: 22 Apr 1998 (19980422/ED)
 HIGHEST PATENT NUMBER: US5742935
 CA INDEXING IS CURRENT THROUGH 22 Apr 1998
 (19980422/UPCA)
 ISSUE CLASS FIELDS (/INCL) CURRENT THROUGH:
 21 Apr 1998 (19980421/PD)
 REVISED CLASS FIELDS (/NCL) LAST RELOADED:
 JAN 1998
 USPTO MANUAL OF CLASSIFICATIONS THESAURUS
 ISSUE DATE: Feb 1998
 => s 14
 2502 IGF?
 9480 INSULIN?
 133294 GROWTH
 409226 FACTOR?
 8291 GROWTH FACTOR?
 (GROWTH(W) FACTOR?)
 1301 INSULIN?(3A) (GROWTH FACTOR?)
 4487 CNS?
 21405 BRAIN?
 632703 CENTRAL?
 25591 NEUR?
 23797 NERV?
 10873 CENTRAL?(3A)(NEUR? OR NERV?)
 112338 STROKE?
 15512 TRAUMA?
 L5 150 L3 AND (STROKE? OR TRAUMA?)
 => d 140-150
 L5 ANSWER 140 OF 150 USPATFULL
 AN 92:84854 USPATFULL
 TI Method for potentiation of a
 therapeutic agent
 IN Garcia y Bellon, Donato P., Ponciano
 Arriaga #28 PB, Col. Centro,
 Cuauhtemoc, Mexico 06030
 Garcia, Jr., Donato P., 4558 Blvd.
 Agua Cliente Col. Aviacion,
 Tijuana, Mexico 22420
 Ayre, Steven G., 483 First St.,
 Antioch, IL, United States 60002
 PI US 5155096 921013
 AI US 90-615621 901119 (7)

RLI Continuation-in-part of Ser. No. US
87-77833, filed on 27 Jul
1987, now patented, Pat. No. US
4971951
DT Utility
LN.CNT 978
INCL INCLM: 514/003.000
INCLS: 514/004.000; 514/825.000;
514/885.000; 514/886.000;
514/893.000; 514/966.000;
514/967.000
NCL NCLM: 514/003.000
NCLS: 514/004.000; 514/825.000;
514/885.000; 514/886.000;
514/893.000; 514/966.000;
514/967.000
IC [5]
ICM: A61K037-26
EXF 514/3; 514/4; 424/825; 424/885;
424/886; 424/893; 424/966; 424/967
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 141 OF 150 USPATFULL
AN 92:84797 USPATFULL
TI Use of thrombospondin to promote wound
healing
IN Eyal, Jacob, Baltimore, MD, United
States
Tuszynski, George, Mays Landing, NJ,
United States
PA W. R. Grace & Co.-Conn., New York, NY,
United States (U.S.
corporation)
Medical College of Pennsylvania,
Philadelphia, PA, United States
(U.S. corporation)
PI US 5155038 921013
AI US 90-483500 900222 (7)
DT Utility
LN.CNT 353
INCL INCLM: 435/240.200
INCLS: 514/008.000; 435/070.210;
424/077.000
NCL NCLM: 514/008.000
NCLS: 424/077.000; 435/070.210
IC [5]
ICM: C12P021-02
ICS: C12N005-00; A01N025-24; A61K037-
10
EXF 514/8; 435/70.21; 435/240.2; 424/77
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 142 OF 150 USPATFULL
AN 92:82339 USPATFULL
TI System for diagnosis and treatment of
wounds
IN Eriksson, Elof, Boston, MA, United
States
PA Brigham and Women's Hospital, Boston,
MA, United States (U.S.
corporation)
PI US 5152757 921006
AI US 91-707248 910522 (7)
RLI Continuation of Ser. No. US 89-451957,
filed on 14 Dec 1989, now
abandoned
DT Utility
LN.CNT 1211
INCL INCLM: 604/305.000
NCL NCLM: 604/305.000
IC [5]
ICM: A61F013-00
EXF 604/304-308; 424/DIG.13; 623/15;
128/369; 128/370
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 143 OF 150 USPATFULL
AN 92:40820 USPATFULL
TI Amphiregulin: a bifunctional growth
modulating glycoprotein
IN Shoyab, Mohammed, Seattle, WA, United
States
McDonald, Vicki L., Kent, WA, United
States
Bradley, James G., Woodinville, WA,
United States
Plowman, Gregory D., Seattle, WA,
United States
PA Oncogen, Seattle, WA, United States
(U.S. corporation)
PI US 5115096 920519
AI US 89-297816 890117 (7)
RLI Continuation-in-part of Ser. No. US
88-181884, filed on 15 Apr
1988, now abandoned which is a
continuation-in-part of Ser. No. US
88-148327, filed on 25 Jan 1988, now
abandoned
DT Utility
LN.CNT 2689
INCL INCLM: 530/322.000
INCLS: 530/324.000
NCL NCLM: 530/322.000
NCLS: 530/324.000
IC [5]
ICM: C07K009-00
EXF 530/322
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 144 OF 150 USPATFULL
AN 92:35989 USPATFULL
TI Processes for producing collagen
matrixes and methods of using
same
IN Chu, George H., Sunnyvale, CA, United
States
Ogawa, Yasushi, Pacifica, CA, United
States
McPherson, John M., Framingham, MA,
United States
Ksander, George, Redwood City, CA,
United States
Pratt, Bruce, Union City, CA, United
States
Hendricks, Diana, Brea, CA, United
States
McMullin, Hugh, San Bruno, CA, United
States
PA Collagen Corporation, Palo Alto, CA,
United States (U.S.
corporation)
PI US 5110604 920505
AI US 90-630299 901219 (7)
RLI Division of Ser. No. US 88-213726,
filed on 30 Jun 1988, now
patented, Pat. No. US 5024841
DT Utility
LN.CNT 711
INCL INCLM: 424/484.000
INCLS: 424/422.000; 424/085.200;
424/085.400; 514/801.000;
530/356.000; 530/399.000;
604/890.100
NCL NCLM: 424/484.000
NCLS: 128/DIG.008; 424/085.200;
424/085.400; 424/422.000;
514/801.000; 530/356.000;
530/399.000; 604/890.100;
623/011.000
IC [5]

ICM: A61K009-14
ICS: A61K037-66; A61K037-12; A61K037-
24
EXF 424/422-426; 424/444; 424/484;
424/85.2; 424/85.4; 623/16;
514/801; 514/56; 530/356; 530/399;
604/890.1
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 145 OF 150 USPATFULL
AN 92:17110 USPATFULL
TI Treating disorders by application of
insulin-like
growth factor
IN Lewis, Michael E., Landenberg, PA,
United States
Kauer, James C., Kennett Square, PA,
United States
Smith, Kevin R., Downingtown, PA,
United States
Callison, Kathleen V., Merchantville,
NJ, United States
Baldino, Jr., Frank, Landenberg, PA,
United States
PA Cephalon, Inc., West Chester, PA,
United States (U.S. corporation)
PI US 5093317 920303
AI US 89-361595 890605 (7)
DT Utility
LN.CNT 858
INCL INCLM: 514/012.000
INCLS: 514/003.000; 514/004.000;
514/885.000; 514/903.000;
514/021.000; 424/556.000;
424/570.000
NCL NCLM: 514/012.000
NCLS: 424/556.000; 424/570.000;
514/003.000; 514/004.000;
514/021.000; 514/885.000;
514/903.000
IC [5]
ICM: A61K037-36
ICS: A61K037-26
EXF 424/98; 424/556; 424/570; 514/3;
514/4; 514/12; 514/21; 514/885;
514/903
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 146 OF 150 USPATFULL
AN 91:84437 USPATFULL
TI Method for preventing tissue damage
after an ischemic episode
IN Sheffield, Warren D., Lebanon, NJ,
United States
PA Ethicon, Inc., Somerville, NJ, United
States (U.S. corporation)
PI US 5057494 911015
AI US 88-227579 880803 (7)
DT Utility
LN.CNT 487
INCL INCLM: 514/012.000
INCLS: 514/021.000
NCL NCLM: 514/012.000
NCLS: 514/021.000
IC [5]
ICM: A61K037-02
ICS: A61K037-36
EXF 514/12; 514/21
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 147 OF 150 USPATFULL
AN 91:48454 USPATFULL
TI Collagen wound healing matrices and
process for their production

IN Chu, George H., Sunnyvale, CA, United
States
Ogawa, Yasushi, Pacifica, CA, United
States
McPherson, John M., Hopkinton, MA,
United States
Ksander, George, Redwood City, CA,
United States
Pratt, Bruce, Union City, CA, United
States
Hendricks, Diana, Brea, CA, United
States
McMullin, Hugh, San Bruno, CA, United
States
PA Collagen Corporation, Palo Alto, CA,
United States (U.S.
corporation)
PI US 5024841 910618
AI US 88-213726 880630 (7)
DT Utility
LN.CNT 759
INCL INCLM: 424/422.000
INCLS: 424/484.000; 424/085.200;
424/085.400; 424/426.000;
530/356.000; 530/399.000;
514/056.000; 514/801.000;
604/890.100
NCL NCLM: 424/422.000
NCLS: 128/DIG.008; 424/085.200;
424/085.400; 424/426.000;
424/484.000; 514/056.000;
514/801.000; 530/356.000;
530/399.000; 604/890.100;
623/011.000
IC [5]
ICM: A61F013-00
ICS: A61K009-14; A61K037-12; A61K031-
725
EXF 424/422-426; 424/444; 424/484;
424/85.2; 424/85.4; 623/16;
514/801; 514/56; 530/356; 530/399;
604/890.1
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 148 OF 150 USPATFULL
AN 88:441 USPATFULL
TI Apparatus and method for adjusting
heart/pacer rate relative to
cardiac pCO₂ to obtain a required
cardiac output
IN Koning, Gerrit, Vries, Netherlands
Schroepel, Edward A., Miamar, FL,
United States
PA Teletronics N.V., Curacao,
Netherlands Antilles (non-U.S.
corporation)
PI US 4716887 880105
AI US 85-722575 850411 (6)
DT Utility
LN.CNT 946
INCL INCLM: 128/419.000PG
INCLS: 128/635.000
NCL NCLM: 607/024.000
NCLS: 600/353.000; 607/016.000;
607/022.000
IC [4]
ICM: A61N001-36
EXF 128/635; 128/2; 128/419PG

L5 ANSWER 149 OF 150 USPATFULL
AN 87:82990 USPATFULL
TI Novel phosphotyrosyl protein
phosphatase
IN Liang, Theming, Miami, FL, United
States

Slater, Eve E., Short Hills, NJ,
 United States
 PA Merck & Co., Inc., Rahway, NJ, United
 States (U.S. corporation)
 PI US 4710469 871201
 AI US 86-858622 860502 (6)
 DT Utility
 LN.CNT 638
 INCL INCLM: 435/194.000
 INCLS: 530/352.000
 NCL NCLM: 435/194.000
 NCLS: 530/352.000
 IC [4]
 ICM: C12N009-12
 EXF 435/194; 530/352
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 150 OF 150 USPATFULL
 AN 87:74975 USPATFULL
 TI DNA sequences encoding erythropoietin
 IN Lin, Fu-Kuen, Thousand Oaks, CA,
 United States
 PA Kiren-Amgen, Inc., Thousand Oaks, CA,
 United States (U.S.
 corporation)
 PI US 4703008 871027
 AI US 84-675298 841130 (6)
 RLI Continuation-in-part of Ser. No. US
 83-561024, filed on 13 Dec
 1983, now abandoned And a
 continuation-in-part of Ser. No. US
 84-582185, filed on 21 Feb 1984, now
 abandoned And a
 continuation-in-part of Ser. No. US
 84-655841, filed on 28 Sep
 1984
 DT Utility
 LN.CNT 2313
 INCL INCLM: 435/240.200
 INCLS: 435/172.300; 435/253.000;
 435/006.000; 435/317.000;
 435/320.000; 536/027.000;
 935/009.000; 935/010.000;
 935/013.000; 935/079.000;
 935/080.000
 NCL NCLM: 435/360.000
 NCLS: 435/006.000; 435/172.300;
 435/252.300; 435/252.330;
 435/320.100; 435/365.100;
 536/023.510; 536/023.720;
 536/024.100; 536/024.300;
 536/024.310; 536/025.320;
 930/090.000; 935/009.000;
 935/010.000; 935/013.000;
 935/079.000; 935/080.000
 IC [4]
 ICM: C12N005-00
 ICS: C12N015-00; C12N001-20; C12N001-
 00; C12Q001-68; C07H015-12
 EXF 435/68; 435/317; 435/172.3; 435/253;
 435/240; 935/6; 935/10;
 935/11; 935/27; 935/69; 935/73; 935/13
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

=> d 150 kwic

L5 ANSWER 150 OF 150 USPATFULL
 DETD . . . plates containing 50
 micrograms/ml Ampicillin. GeneScreen
 filters (New England Nuclear Catalog
 No. NEF-972) were pre-wet on
 a BHI-CAM plate (Bacto brain heart
 infusion 37 g/L,

Casamino acids 2 g/L and agar 15 g/L,
 containing 500 micrograms/ml
 Chloramphenicol) and were used to. . .
 .
 DETD . . . Included within the class of
 humans treatable with
 products of the invention are patients
 generally requiring blood
 transfusions and including **trauma**
 victims, surgical
 patients, renal disease patients
 including dialysis patients, and
 patients with a variety of blood
 composition affecting disorders,
 such. . .
 DETD . . . use in compositions of the
 invention include compounds
 independently noted for erythropoietic
 stimulatory effects, such
 as testosterone, progenitor cell
 stimulators, **insulin**
 -like **growth factor**, prostaglandins,
 serotonin, cyclic AMP, prolactin and
 triiodothyronine, as well as
 agents generally employed in treatment
 of aplastic anemia, such
 as. . .

=> s 13 and (stroke?)

2502 IGF?
 9480 INSULIN?
 133294 GROWTH
 409226 FACTOR?
 8291 GROWTH FACTOR?
 (GROWTH(W) FACTOR?)
 1301 INSULIN?(3A) (GROWTH FACTOR?)
 4487 CNS?
 21405 BRAIN?
 632703 CENTRAL?
 25591 NEUR?
 23797 NERV?
 10873 CENTRAL?(3A)(NEUR? OR NERV?)
 112338 STROKE?

L6 73 L3 AND (STROKE?)

=> d 60-73

L6 ANSWER 60 OF 73 USPATFULL
 AN 96:20903 USPATFULL
 TI Composition useful for in vivo
 delivery of biologics and methods
 employing same
 IN Grinstaff, Mark W., Pasadena, CA,
 United States
 Soon-Shiong, Patrick, Los Angeles, CA,
 United States
 Wong, Michael, Champaign, IL, United
 States
 Sandford, Paul A., Los Angeles, CA,
 United States
 Suslick, Kenneth S., Champaign, IL,
 United States
 Desai, Neil P., Los Angeles, CA,
 United States
 PA Vivorx Pharmaceuticals, Inc., Santa
 Monica, CA, United States
 (U.S. corporation)
 PI US 5498421 960312
 AI US 94-200235 940222 (8)
 RLI Continuation-in-part of Ser. No. US
 93-23698, filed on 22 Feb

1993, now patented, Pat. No. US 5439686 And a continuation-in-part of Ser. No. US 93-35150, filed on 26 Mar 1993, now patented, Pat. No. US 5362478

DT Utility
LN.CNT 3321
INCL INCLM: 424/450.000
INCLS: 424/451.000; 424/455.000;
424/009.300; 424/009.340;
424/009.370; 424/009.400;
424/009.500
NCL NCLM: 424/450.000
NCLS: 424/009.300; 424/009.340;
424/009.370; 424/009.400;
424/009.500; 424/451.000;
424/455.000
IC [6]
ICM: A61K037-22
ICS: A61K009-127
EXF 424/451; 424/45; 424/450
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 61 OF 73 USPATFULL
AN 96:9366 USPATFULL
TI Glucose-regulated promoter of yeast acetyl-CoA hydrolase
IN Smith, John A., Scotch Plains, NJ, United States
Lee, Fang-Jen S., North Bethesda, MD, United States
Lin, Lee-Wen, North Bethesda, MD, United States
PA The General Hospital Corporation, Boston, MA, United States (U.S. corporation)
PI US 5487990 960130
AI US 92-921796 920730 (7)
RLI Continuation-in-part of Ser. No. US 90-480452, filed on 15 Feb 1990, now abandoned which is a continuation-in-part of Ser. No. US 88-213943, filed on 1 Jul 1988, now abandoned And a continuation-in-part of Ser. No. US 89-297003, filed on 13 Jan 1989, now abandoned
DT Utility
LN.CNT 2244
INCL INCLM: 435/172.300
INCLS: 435/254.200; 435/254.210;
435/254.220; 435/254.230;
435/320.100; 536/024.100;
935/037.000; 935/069.000;
530/371.000
NCL NCLM: 435/172.300
NCLS: 435/254.200; 435/254.210;
435/254.220; 435/254.230;
435/320.100; 530/371.000;
536/024.100; 935/037.000;
935/069.000
IC [6]
ICM: C12N001-19
ICS: C12N015-81; C12N015-11
EXF 536/24.1; 530/371; 435/320.1;
435/254.2; 435/254.21; 435/254.22;
435/254.23; 435/172.3; 935/37; 935/69
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 62 OF 73 USPATFULL
AN 95:110557 USPATFULL
TI Fused Pyrrolocarbazoles
IN Hudkins, Robert L., Chester Springs, PA, United States

Knight, Jr., Ernest, Wilmington, DE, United States
PA Cephalon, Inc., West Chester, PA, United States (U.S. corporation)
PI US 5475110 951212
AI US 94-323755 941014 (8)
DT Utility
LN.CNT 2781
INCL INCLM: 546/256.000
INCLS: 546/271.000; 548/417.000
NCL NCLM: 546/256.000
NCLS: 536/017.400; 546/022.000;
546/276.700; 548/416.000;
548/417.000; 548/418.000;
548/469.000
IC [6]
ICM: C07D487-06
EXF 548/417; 546/256; 546/271
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 63 OF 73 USPATFULL
AN 95:64902 USPATFULL
TI Neuropeptide antagonists
IN Rozengurt, Enrique, London, England
Woll, Penella, London, England
PA Imperial Cancer Research Technology, Ltd., London, England (non-U.S. corporation)
PI US 5434132 950718
AI US 93-147896 931102 (8)
RLI Continuation of Ser. No. US 92-994443, filed on 23 Dec 1992 which is a continuation of Ser. No. US 90-573158, filed on 19 Oct 1990, now abandoned
PRAI GB 88-664 880321
DT Utility
LN.CNT 1192
INCL INCLM: 514/002.000
INCLS: 530/329.000; 530/314.000;
530/315.000
NCL NCLM: 514/002.000
NCLS: 530/314.000; 530/315.000;
530/329.000
IC [6]
ICM: A61K038-08
ICS: A61K038-11; A61K038-16; C07K011-00
EXF 424/198.1; 530/326; 530/327; 530/328;
530/329; 514/2; 514/314;
514/315
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 64 OF 73 USPATFULL
AN 95:64843 USPATFULL
TI Fibrinolytic and anti-thrombotic cleavable dimers
IN Dawson, Keith, Marlow, United Kingdom
Hunter, Michael G., Aylesbury, United Kingdom
Czaplewski, Lloyd G., Didcot, United Kingdom
PA British Bio-Technology Limited, Oxford, England (non-U.S. corporation)
PI US 5434073 950718
WO 9109125 910627
AI US 92-854596 920603 (7)
WO 90-GB1911 901207
920603 PCT 371 date
920603 PCT 102(e) date
PRAI GB 89-27722 891207
DT Utility
LN.CNT 2191
INCL INCLM: 435/216.000

INCLS: 530/350.000; 530/402.000;
 435/069.700; 424/094.640
 NCL NCLM: 435/216.000
 NCLS: 424/094.640; 435/069.700;
 530/350.000; 530/402.000
 IC [6]
 ICM: C12N009-70
 ICS: C07K013-00
 EXF 435/69.7; 435/216; 530/402; 530/350;
 424/94.64
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

 L6 ANSWER 65 OF 73 USPATFULL
 AN 94:80075 USPATFULL
 TI Tissue factor mutants useful for the treatment of myocardial infarction and coagulopathic disorders
 IN Roy, Soumitra, San Francisco, CA, United States
 Vehar, Gordon A., San Carlos, CA, United States
 PA Genentech, Inc., South San Francisco, CA, United States (U.S. corporation)
 PI US 5346991 940913
 AI US 91-714819 910613 (7)
 DT Utility
 LN.CNT 2407
 INCL INCLM: 530/350.000
 INCLS: 530/381.000; 530/829.000;
 435/172.300
 NCL NCLM: 530/350.000
 NCLS: 435/172.300; 530/381.000;
 530/829.000
 IC [5]
 ICM: C07K013-00
 ICS: C12N015-12; A61K037-02
 EXF 435/172.1; 435/172.3; 530/350;
 530/381; 530/829; 514/822
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

 L6 ANSWER 66 OF 73 USPATFULL
 AN 94:62555 USPATFULL
 TI Purified active somatostatin receptor
 IN Eppler, Cecil M., Langhorne, PA, United States
 Zysk, John R., Frenchtown, NJ, United States
 Corbett, Martin J., Mt. Holly, NJ, United States
 Shieh, Hong-Ming, Langhorne, PA, United States
 PA American Cyanamid Company, Wayne, NJ, United States (U.S. corporation)
 PI US 5331094 940719
 AI US 92-963246 921019 (7)
 RLI Continuation of Ser. No. US 91-677009, filed on 28 Mar 1991, now abandoned
 DT Utility
 LN.CNT 1080
 INCL INCLM: 530/395.000
 INCLS: 530/350.000
 NCL NCLM: 530/395.000
 NCLS: 530/350.000
 IC [5]
 ICM: C07K015-06
 ICS: C07K015-14
 EXF 530/350; 530/395
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

 L6 ANSWER 67 OF 73 USPATFULL
 AN 93:54857 USPATFULL

TI Receptors method for purification of G protein-linked
 IN Eppler, Cecil M., Langhorne, PA, United States
 Shieh, Hong-Ming, Langhorne, PA, United States
 Zysk, John R., Frenchtown, NJ, United States
 Corbett, Martin J., Pemberton, NJ, United States
 PA American Cyanamid Company, Wayne, NJ, United States (U.S. corporation)
 PI US 5225543 930706
 AI US 91-677003 910328 (7)
 DT Utility
 LN.CNT 1336
 INCL INCLM: 530/413.000
 INCLS: 530/395.000; 530/412.000;
 530/415.000
 NCL NCLM: 530/413.000
 NCLS: 530/395.000; 530/412.000;
 530/415.000
 IC [5]
 ICM: C07K003-20
 ICS: C07K003-12; C07K003-18; C07K003-28
 EXF 530/307; 530/311; 530/350; 530/367;
 530/387; 530/412; 530/413;
 530/415
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

 L6 ANSWER 68 OF 73 USPATFULL
 AN 93:6941 USPATFULL
 TI Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
 IN Friden, Phillip M., Bedford, MA, United States
 PA Alkermes, Inc., Cambridge, MA, United States (U.S. corporation)
 PI US 5182107 930126
 AI US 92-846830 920306 (7)
 RLI Continuation-in-part of Ser. No. US 89-404089, filed on 7 Sep 1989
 DT Utility
 LN.CNT 1327
 INCL INCLM: 424/085.910
 INCLS: 424/085.800; 424/094.100;
 530/387.300; 530/391.100;
 530/391.700; 530/391.900;
 530/399.000; 530/388.220;
 514/021.000
 NCL NCLM: 424/179.100
 NCLS: 424/094.100; 424/143.100;
 424/178.100; 514/021.000;
 530/387.300; 530/388.220;
 530/391.100; 530/391.700;
 530/391.900; 530/399.000
 IC [5]
 ICM: A61K039-44
 ICS: A61K037-36; C07K017-02; C07K015-28
 EXF 530/391.1; 530/391.7; 530/391.9;
 530/387.3; 530/399; 530/388.22;
 424/85.91; 424/85.8; 424/94.1; 514/21
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

 L6 ANSWER 69 OF 73 USPATFULL
 AN 92:84797 USPATFULL
 TI Use of thrombospondin to promote wound healing
 IN Eyal, Jacob, Baltimore, MD, United States

Tuszynski, George, Mays Landing, NJ,
 United States
 PA W. R. Grace & Co.-Conn., New York, NY,
 United States (U.S.
 corporation)
 Medical College of Pennsylvania,
 Philadelphia, PA, United States
 (U.S. corporation)
 PI US 5155038 921013
 AI US 90-483500 900222 (7)
 DT Utility
 LN.CNT 353
 INCL INCLM: 435/240.200
 INCLS: 514/008.000; 435/070.210;
 424/077.000
 NCL NCLM: 514/008.000
 NCLS: 424/077.000; 435/070.210
 IC [5]
 ICM: C12P021-02
 ICS: C12N005-00; A01N025-24; A61K037-
 10
 EXF 514/8; 435/70.21; 435/240.2; 424/77
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

 L6 ANSWER 70 OF 73 USPATFULL
 AN 92:17110 USPATFULL
 TI Treating disorders by application of
 insulin-like
 growth factor
 IN Lewis, Michael E., Landenberg, PA,
 United States
 Kauer, James C., Kennett Square, PA,
 United States
 Smith, Kevin R., Downingtown, PA,
 United States
 Callison, Kathleen V., Merchantville,
 NJ, United States
 Baldino, Jr., Frank, Landenberg, PA,
 United States
 PA Cephalon, Inc., West Chester, PA,
 United States (U.S. corporation)
 PI US 5093317 920303
 AI US 89-361595 890605 (7)
 DT Utility
 LN.CNT 858
 INCL INCLM: 514/012.000
 INCLS: 514/003.000; 514/004.000;
 514/885.000; 514/903.000;
 514/021.000; 424/556.000;
 424/570.000
 NCL NCLM: 514/012.000
 NCLS: 424/556.000; 424/570.000;
 514/003.000; 514/004.000;
 514/021.000; 514/885.000;
 514/903.000
 IC [5]
 ICM: A61K037-36
 ICS: A61K037-26
 EXF 424/98; 424/556; 424/570; 514/3;
 514/4; 514/12; 514/21; 514/885;
 514/903
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 71 OF 73 USPATFULL
 AN 91:84437 USPATFULL
 TI Method for preventing tissue damage
 after an ischemic episode
 IN Sheffield, Warren D., Lebanon, NJ,
 United States
 PA Ethicon, Inc., Somerville, NJ, United
 States (U.S. corporation)
 PI US 5057494 911015
 AI US 88-227579 880803 (7)
 DT Utility

LN.CNT 487
 INCL INCLM: 514/012.000
 INCLS: 514/021.000
 NCL NCLM: 514/012.000
 NCLS: 514/021.000
 IC [5]
 ICM: A61K037-02
 ICS: A61K037-36
 EXF 514/12; 514/21
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

 L6 ANSWER 72 OF 73 USPATFULL
 AN 88:441 USPATFULL
 TI Apparatus and method for adjusting
 heart/pacer rate relative to
 cardiac pCO.sub.2 to obtain a required
 cardiac output
 IN Koning, Gerrit, Vries, Netherlands
 Schroeppel, Edward A., Miami, FL,
 United States
 PA Teletronics N.V., Curacao,
 Netherlands Antilles (non-U.S.
 corporation)
 PI US 4716887 880105
 AI US 85-722575 850411 (6)
 DT Utility
 LN.CNT 946
 INCL INCLM: 128/419.000PG
 INCLS: 128/635.000
 NCL NCLM: 607/024.000
 NCLS: 600/353.000; 607/016.000;
 607/022.000
 IC [4]
 ICM: A61N001-36
 EXF 128/635; 128/2; 128/419PG

 L6 ANSWER 73 OF 73 USPATFULL
 AN 87:82990 USPATFULL
 TI Novel phosphotyrosyl protein
 phosphatase
 IN Liang, Theming, Miami, FL, United
 States
 Slater, Eve E., Short Hills, NJ,
 United States
 PA Merck & Co., Inc., Rahway, NJ, United
 States (U.S. corporation)
 PI US 4710469 871201
 AI US 86-858622 860502 (6)
 DT Utility
 LN.CNT 638
 INCL INCLM: 435/194.000
 INCLS: 530/352.000
 NCL NCLM: 435/194.000
 NCLS: 530/352.000
 IC [4]
 ICM: C12N009-12
 EXF 435/194; 530/352
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

=> d 71 kwic

L6 ANSWER 71 OF 73 USPATFULL
 SUMM . . . macroscopic area of necrosis.
 Tissues that are likely to
 be affected by a reduction of blood
 supply and oxygen are
 central nervous system (CNS),
 myocardial, renal, spleen, intestinal
 and lung tissues.
 SUMM . . . an area of the heart muscle
 usually as a result of
 occlusion of a coronary artery; and
 cerebral ischemia or

stroke, which is a neurological affliction resulting from the sudden reduction in cerebral blood supply. The term "**stroke**" (sometimes called apoplexy) is a lay term which refers to the sudden diminution or loss of consciousness, sensation and voluntary motion caused by rupture or obstruction of an artery of the **brain**. **Stroke** is usually more specifically described by the nature of the underlying disturbance, e.g. thrombosis, hemorrhage or embolism.

SUMM Cerebral ischemia may be distinguished from hypoxia, which is the interference with the oxygen supply to the **brain** despite a relatively normal cerebral blood flow and normal perfusion pressure. Cerebral hypoxia occurs for a variety of reasons, including. . .

SUMM . . . event that is sufficiently severe and in an appropriate location to leave persistent disability but is short of a calamitous **stroke**, is defined as a partial nonprogressing **stroke** (PNS). The ultimate in severity of ischemia produces a more major degree of permanent neurologic disability, sometimes referred to as a completed **stroke**.

In those cases where the ischemia has been prolonged, neuronal cell death occurs. The **brain** softens and the margins between the gray and white matter become indistinct. Under the microscope the neurons (if still present). . .

SUMM Present therapies for treating or preventing ischemic events, such as cerebral **stroke**, include risk factor management, anti-spasmodic drugs, anti-thrombotic drugs and surgery. These therapies have disadvantages and are not always successful.

Therefore,. . . methods for the direct protection of neurons and/or glia cells (aka neuroglia cells, which are non-neuronal cellular elements of the **central** and **peripheral nervous systems**) following cerebral ischemia and the present invention provides such methods.

SUMM . . . FGF may be beneficial in the treatment of Alzheimer's disease as well as treatment of other neurodegenerative disorders of the **CNS** involving loss of non-cholinergic neurons such as **stroke**, epilepsy or ischemia. In spite of the known neurotrophic nature of FGF, prior to the present invention, no one has. . .

SUMM . . . therewith. The growth factor may be used alone or in combination with other growth factors, such as FGF, NGF, plateletderived growth factor, insulin-like growth factor or transforming growth factor (alpha or beta). The EGF may be administered to the patient separately or in combination with. . .

SUMM . . . generally in the range of 2-5 minutes. In one embodiment, the present methods may be used to treat neuronal or **CNS** tissue, such as is present in the **brain** and spinal cord of the **CNS**. It is envisioned that the present methods may also be useful for treating other types of tissues such as myocardial. . .

SUMM In those instances where **CNS** tissue is to be treated, direct injection into the **CNS** is preferred, such as by intracerebral or intraventricular injection or by injection into the cerebro- spinal fluid or spinal cord. For injection into the **CNS**, catheters, needles and syringes may be used. Infusion

of the EGF or FGF via a catheter into the **brain** is an alternative method of administration.

SUMM . . . merely for illustrative Purposes. For instance, the present methods may be used to minimize damage and increase survival time in **stroke** patients. They may be used as a preventative treatment of TIA patients to reduce subsequent serious **stroke** and increase patient and cell survival.

They may be used to reduce risk for spinal ischemia and in cases of. . . time available during surgery when aortic clamping is used. The present invention may be used to treat indications affecting the **brain**, such as **stroke**, cardiac arrest and post-resuscitation damage to the **brain** (e.g., from drowning or subarachnoidal hemorrhage). Indications affecting the heart that may be treated are, for example: post myocardial infarct. . .

DETD The present example is based on a surgical procedure that has been developed to study the effects of cerebral or **brain** ischemia in the unanesthetized gerbil. The methodology is based upon the surgical isolation and instrumentation of both common carotid arteries. . . occlusion are readily demonstrated by the occurrence of altered spontaneous locomotor activity at various times postischemia. Behavioral changes consequent to

stroke are useful and pertinent as a means of evaluation in this model of nonlethal transient ischemia. Emotional lability, depression, agitation and motor and cognitive deficits are common after **stroke**. The psychomotor depression noted immediately after transient ischemia in this gerbil model mimics the clinical situation in humans.

Spontaneous motor. . .

DETD . . . ligatures. Spontaneous motor activity was then periodically monitored over seven days followed by animal sacrifice and blinded histological evaluation of brain sections. EGF (0.1 and 1.0 mg/kg) and FGF (0.1, 1.0 and 10.0 mg/kg) were given intraperitoneally in saline at one. . .

=> d ab

L6 ANSWER 1 OF 73 USPATFULL
AB Disclosed are nucleic acids encoding novel neurotrophic factors, designated NNT-1. Also disclosed are amino acid sequences for NNT-1 polypeptides, methods for preparing NNT-1 polypeptides, and other related aspects.

=> d 50-59

L6 ANSWER 50 OF 73 USPATFULL
AN 97:1574 USPATFULL
TI Fused pyrrolocarbazoles
IN Hudkins, Robert L., Chester Springs, PA, United States
Knight, Jr., Ernest, Wilmington, DE, United States
PA Cephalon, Inc., West Chester, PA, United States (U.S. corporation)
PI US 5591855 970107
AI US 95-427160 950424 (8)
RLI Continuation-in-part of Ser. No. US 94-323755, filed on 14 Oct' 1994, now patented, Pat. No. US 5475110

DT Utility
LN.CNT 3293
INCL INCLM: 546/256.000
INCLS: 546/022.000; 546/276.700;
548/417.000; 548/110.000;
548/103.000
NCL NCLM: 546/256.000
NCLS: 546/276.700; 548/103.000;
548/110.000; 548/417.000
IC [6]
ICM: C07D487-06
EXF 548/417; 546/256; 546/271
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 51 OF 73 USPATFULL
AN 96:120775 USPATFULL
TI DNA encoding tissue factor mutants useful for the treatment of myocardial infarction and coagulopathic disorders

IN Roy, Soumitra, San Francisco, CA, United States
Vehar, Gordon A., San Carlos, CA, United States
PA Genentech, Inc., South San Francisco, CA, United States (U.S. corporation)
PI US 5589363 961231
AI US 94-246978 940520 (8)
RLI Division of Ser. No. US 91-714819, filed on 13 Jun 1991, now patented, Pat. No. US 5346991
DT Utility
LN.CNT 2528
INCL INCLM: 435/069.600
INCLS: 530/381.000; 536/023.500;
536/023.400; 435/172.300;
435/240.200; 435/252.300
NCL NCLM: 435/069.600
NCLS: 435/172.300; 435/252.300;
435/325.000; 435/348.000;
435/358.000; 435/369.000;
435/419.000; 530/381.000;
536/023.400; 536/023.500
IC [6]
ICM: C07K014-745
ICS: C12N001-13; C12N015-12; C12N015-63
EXF 435/69.6; 435/172.3; 435/252.3;
435/240.1; 435/320.1; 435/240.2;
530/350; 530/381; 536/23.5; 536/23.4
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 52 OF 73 USPATFULL
AN 96:111367 USPATFULL
TI Generation of neural precursor cell lines
IN Bernard, Ora, North Balwyn, Australia
Bartlett, Perry F., North Carlton, Australia
PA Amrad Corporation Limited, Australia (non-U.S. corporation)
PI US 5580777 961203
AI US 94-330114 941027 (8)
RLI Continuation of Ser. No. US 92-935357, filed on 27 Aug 1992, now abandoned which is a continuation of Ser. No. US 90-536423, filed on 28 Jun 1990, now abandoned
PRAI AU 87-5131 871029
DT Utility
LN.CNT 924
INCL INCLM: 435/240.200
INCLS: 435/172.300; 435/320.100
NCL NCLM: 435/172.300
NCLS: 435/320.100; 435/325.000;
435/354.000; 435/368.000;
435/373.000; 435/377.000
IC [6]
ICM: C12N015-00
ICS: C12N005-00
EXF 435/172.3; 435/320.1; 435/240.2

L6 ANSWER 53 OF 73 USPATFULL
AN 96:111313 USPATFULL
TI Methods of determining chemicals that modulate transcriptionally expression of genes associated with cardiovascular disease
IN Foulkes, J. Gordon, Huntington Station, NY, United States
Liechtfried, Franz E., Vienna, Austria
Pieler, Christian, Vienna, Austria
Stephenson, John R., Santa Cruz, CA, United States

Case, Casey C., Lynbrook, NY, United States
PA Oncogene Science, Inc., Uniondale, NY, United States (U.S. corporation)
PI US 5580722 961203
AI US 92-832905 920207 (7)
RLI Continuation-in-part of Ser. No. US 90-555196, filed on 18 Jul 1990, now abandoned which is a continuation-in-part of Ser. No. US 89-382712, filed on 18 Jul 1989, now abandoned
DT Utility
LN.CNT 4011
INCL INCLM: 435/006.000
INCLS: 435/091.100; 435/091.200;
935/077.000; 935/078.000
NCL NCLM: 435/006.000
NCLS: 435/091.100; 435/091.200;
935/077.000; 935/078.000
IC [6]
ICM: C12P019-34
ICS: C12Q001-68
EXF 435/6; 435/91; 435/91.1; 435/91.2;
935/77; 935/78
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 54 OF 73 USPATFULL
AN 96:101657 USPATFULL
TI Cardiac hypertrophy factor
IN Baker, Joffre, El Granada, CA, United States
Chien, Kenneth, La Jolla, CA, United States
King, Kathleen, Pacifica, CA, United States
Pennica, Diane, Burlingame, CA, United States
Wood, William, San Mateo, CA, United States
PA Genentech, Inc., South San Francisco, CA, United States (U.S. corporation)
Regents of the Univ. of California, Oakland, CA, United States (U.S. corporation)
PI US 5571893 961105
AI US 94-286304 940805 (8)
RLI Continuation of Ser. No. US 94-233609, filed on 25 Apr 1994, now patented, Pat. No. US 5534615
DT Utility
LN.CNT 4056
INCL INCLM: 530/350.000
INCLS: 530/399.000; 530/351.000;
930/140.000
NCL NCLM: 530/350.000
NCLS: 530/351.000; 530/399.000;
930/140.000
IC [6]
ICM: C07K014-52
ICS: A61K038-19
EXF 530/350; 530/399; 530/351; 514/12;
930/140
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 55 OF 73 USPATFULL
AN 96:101443 USPATFULL
TI Detection and amplification of canticotrophin-1(cardiac hypertrophy factor)
IN Baker, Joffre, El Granada, CA, United States

Chien, Kenneth, La Jolla, CA, United States
King, Kathleen, Pacifica, CA, United States
Pennica, Diane, Burlingame, CA, United States
Wood, William, San Mateo, CA, United States
PA Genentech, Inc., South San Francisco, CA, United States (U.S. corporation)
Regents of the Univ. of California, Oakland, CA, United States (U.S. corporation)
PI US 5571675 961105
AI US 95-444083 950517 (8)
RLI Division of Ser. No. US 94-286304, filed on 5 Aug 1994 which is a continuation-in-part of Ser. No. US 94-233609, filed on 25 Apr 1994
DT Utility
LN.CNT 4298
INCL INCLM: 435/006.000
INCLS: 435/091.200; 435/091.210;
536/024.300; 536/024.310;
536/024.320; 536/024.330
NCL NCLM: 435/006.000
NCLS: 435/091.200; 435/091.210;
536/024.300; 536/024.310;
536/024.320; 536/024.330
IC [6]
ICM: C12Q001-68
ICS: C12P019-34; C07H021-04
EXF 435/6; 435/91.2
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 56 OF 73 USPATFULL
AN 96:94687 USPATFULL
TI Thioacetinaco ozonide and enhanced biological activity of thioacetinaco ozonide in combination with interferon
IN McCullly, Kilmer S., 15 Wildwood St., Winchester, MA, United States 01890
PI US 5565558 961015
AI US 94-366638 941230 (8)
DT Utility
LN.CNT 778
INCL INCLM: 536/026.400
INCLS: 536/026.410; 549/003.000;
549/029.000; 549/060.000;
556/138.000
NCL NCLM: 536/026.400
NCLS: 536/026.410; 549/003.000;
549/029.000; 549/060.000;
556/138.000
IC [6]
ICM: C07H019-167
ICS: A61K031-365; C07D411-00; C07D333-20
EXF 530/351; 424/85.4; 424/85.5; 424/85.6;
424/85.7; 536/26.4;
536/26.41; 549/3; 549/29; 549/60;
556/138
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 57 OF 73 USPATFULL
AN 96:82674 USPATFULL
TI Methods for neuroprotection
IN Simpkins, James W., Gainesville, FL, United States
Singh, Meharvan, Gainesville, FL, United States

Bishop, Jean, Jacksonville, FL, United States
 PA University of Florida, Gainesville, FL, United States (U.S.
 corporation)
 PI US 5554601 960910
 AI US 94-318042 941004 (8)
 RLI Continuation-in-part of Ser. No. US 93-149175, filed on 5 Nov 1993, now abandoned
 DT Utility
 LN.CNT 1532
 INCL INCLM: 514/182.000
 INCLS: 514/181.000
 NCL NCLM: 514/182.000
 NCLS: 514/181.000
 IC [6]
 ICM: A61K031-56
 EXF 514/171; 514/170; 514/169; 514/179;
 514/181; 514/182
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 58 OF 73 USPATFULL
 AN 96:60798 USPATFULL
 TI Cardiac hypertrophy factor and uses therefor
 IN Baker, Joffre, El Granada, CA, United States
 Chien, Kenneth, La Jolla, CA, United States
 King, Kathleen, Pacifica, CA, United States
 Pennice, Diane, Burlingame, CA, United States
 Wood, William, San Mateo, CA, United States
 PA Genentech, Inc., South San Francisco, CA, United States (U.S.
 corporation)
 The Regents of the University of California, Oakland, CA, United States (U.S. corporation)
 PI US 5534615 960709
 AI US 94-233609 940425 (8)
 DT Utility
 LN.CNT 3897
 INCL INCLM: 530/350.000
 INCLS: 530/380.000; 424/569.000;
 424/570.000
 NCL NCLM: 530/350.000
 NCLS: 424/569.000; 424/570.000;
 530/380.000
 IC [6]
 ICM: C07K001-00
 ICS: A61K035-14; A61K035-30
 EXF 530/350; 530/380; 424/569; 424/570
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 59 OF 73 USPATFULL
 AN 96:53046 USPATFULL
 TI Transferrin receptor specific antibody-neuropharmaceutical agent conjugates
 IN Friden, Phillip M., Bedford, MA, United States
 PA Alkermes, Inc., Cambridge, MA, United States (U.S. corporation)
 PI US 5527527 960618
 AI US 93-4986 930115 (8)
 RLI Continuation-in-part of Ser. No. US 92-846830, filed on 6 Mar 1992, now patented, Pat. No. US 5182107 which is a continuation-in-part of Ser. No. US 89-404089, filed on 7 Sep

1989, now patented, Pat. No. US 5154924
 DT Utility
 LN.CNT 1464
 INCL INCLM: 424/178.100
 INCLS: 530/391.100; 530/391.700;
 530/399.000
 NCL NCLM: 424/178.100
 NCLS: 530/391.100; 530/391.700;
 530/399.000
 IC [6]
 ICM: A61K039-44
 ICS: C07K014-48; C07K016-46; C07K017-02
 EXF 530/391.1; 530/391.7; 530/399;
 530/394; 530/359; 530/303; 530/315;
 530/388; 530/389; 514/3; 514/8;
 514/12; 514/21; 514/7; 424/85.91;
 424/178.1
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

=> d 40-49

L6 ANSWER 40 OF 73 USPATFULL
 AN 97:51729 USPATFULL
 TI Methods for the preparation of nucleic acids for in vivo delivery
 IN Grinstaff, Mark W., Pasadena, CA, United States
 Soon-Shiong, Patrick, Los Angeles, CA, United States
 Wong, Michael, Champaign, IL, United States
 Sandford, Paul A., Los Angeles, CA, United States
 Suslick, Kenneth S., Champaign, IL, United States
 Desai, Neil P., Los Angeles, CA, United States
 PA Vivorx Pharmaceuticals, Inc., Santa Monica, CA, United States (U.S. corporation)
 PI US 5639473 970617
 AI US 95-483295 950607 (8)
 RLI Division of Ser. No. US 94-200235, filed on 22 Feb 1994, now patented, Pat. No. US 5498421 which is a continuation-in-part of Ser. No. US 93-23698, filed on 22 Feb 1993, now patented, Pat. No. US 5439686 And a continuation-in-part of Ser. No. US 93-35150, filed on 26 Mar 1993, now patented, Pat. No. US 5362478
 DT Utility
 LN.CNT 3232
 INCL INCLM: 424/450.000
 INCLS: 424/482.000; 424/488.000;
 424/486.000; 424/009.510
 NCL NCLM: 424/450.000
 NCLS: 424/009.510; 424/482.000;
 424/486.000; 424/488.000
 IC [6]
 ICM: A61K009-127
 EXF 424/450; 424/482; 424/488; 424/486;
 424/9.51
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 41 OF 73 USPATFULL
 AN 97:47123 USPATFULL
 TI Methods for the preparation of blood substitutes for in vivo delivery

IN Grinstaff, Mark W., Pasadena, CA,
United States
Soon-Shiong, Patrick, Los Angeles, CA,
United States
Wong, Michael, Champaign, IL, United
States
Sandford, Paul A., Los Angeles, CA,
United States
Suslick, Kenneth S., Champaign, IL,
United States
Desai, Neil P., Los Angeles, CA,
United States
PA Vivox Pharmaceuticals, Inc., Santa
Monica, CA, United States
(U.S. corporation)
PI US 5635207 970603
AI US 95-480621 950607 (8)
RLI Division of Ser. No. US 94-200235,
filed on 22 Feb 1994, now
patented, Pat. No. US 5498421 which is
a continuation-in-part of
Ser. No. US 93-23698, filed on 22 Feb
1993, now patented, Pat. No.
US 5439686 And a continuation-in-part
of Ser. No. US 93-35150,
filed on 26 Mar 1993, now patented,
Pat. No. US 5362478
DT Utility
LN.CNT 3309
INCL INCLM: 424/450.000
INCLS: 424/489.000; 424/001.170
NCL NCLM: 424/450.000
NCLS: 424/001.170; 424/489.000
IC [6]
ICM: A61K009-127
EXF 424/1.17; 424/450; 424/489
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 42 OF 73 USPATFULL
AN 97:42862 USPATFULL
TI Method for producing in vivo delivery
of therapeutic agents via
liposomes
IN Dzau, Victor J., 12101 Dawn La., Los
Altos Hills, CA, United
States 94022
Kaneda, Yasufumi, Molecular & Cellular
Institute, Osaka
University, 1-3, Yamada-oka, Suita-
City, Osaka 565, Japan
PI US 5631237 970520
AI US 94-241372 940510 (8)
RLI Continuation-in-part of Ser. No. US
92-995022, filed on 22 Dec
1992, now abandoned
DT Utility
LN.CNT 2435
INCL INCLM: 514/044.000
INCLS: 424/450.000; 424/417.000;
428/402.200; 264/004.100;
264/004.300; 264/004.600
NCL NCLM: 514/044.000
NCLS: 264/004.100; 264/004.300;
264/004.600; 424/417.000;
424/450.000; 428/402.200
IC [6]
ICM: A61K048-00
ICS: A61K009-127
EXF 514/44; 514/2; 424/93.1; 424/450;
424/283.1; 424/1.21; 424/1.25;
435/320.1; 435/69.1; 435/5; 435/193
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 43 OF 73 USPATFULL
AN 97:38416 USPATFULL

TI Hybridomas producing antibodies to
cardiac hypertrophy factor
IN Baker, Joffre, El Granada, CA, United
States
Chien, Kenneth, La Jolla, CA, United
States
King, Kathleen, Pacifica, CA, United
States
Pennica, Diane, Burlingame, CA, United
States
Wood, William, San Mateo, CA, United
States
PA Genentech, Inc., United States (U.S.
corporation)
The Regents of the University of
California, United States (U.S.
corporation)
PI US 5627073 970506
AI US 95-443129 950517 (8)
RLI Division of Ser. No. US 94-286304,
filed on 5 Aug 1994 which is a
continuation-in-part of Ser. No. US
94-233609, filed on 25 Apr
1994, now abandoned
DT Utility
LN.CNT 4258
INCL INCLM: 435/331.000
INCLS: 435/070.210; 435/172.100;
435/069.600; 435/252.330;
435/332.000; 435/336.000;
530/387.900; 530/388.230;
530/387.300; 530/391.300;
424/139.100; 424/145.100
NCL NCLM: 435/331.000
NCLS: 424/139.100; 424/145.100;
435/069.600; 435/070.210;
435/172.100; 435/252.330;
435/332.000; 435/336.000;
530/387.300; 530/387.900;
530/388.230; 530/391.300
IC [6]
ICM: C12N005-18
ICS: C12N005-22
EXF 424/139.1; 424/145.1; 424/152.1;
424/158.1; 424/172.1; 424/178.1;
424/136.1; 435/69.6; 435/70.21;
435/172.2; 435/172.1; 435/172.3;
435/240.27; 435/252.33; 530/387.3;
530/387.9; 530/388.15;
530/388.23; 530/388.24; 530/391.3;
530/389.2
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 44 OF 73 USPATFULL
AN 97:36158 USPATFULL
TI Method for administering neurologic
agents to the brain
IN Frey, II, William H., North Oaks, MN,
United States
PA Ramsey Foundation, St. Paul, MN,
United States (U.S. corporation)
PI US 5624898 970429
AI US 94-361877 941222 (8)
RLI Continuation of Ser. No. US 93-161337,
filed on 2 Dec 1993, now
abandoned which is a continuation of
Ser. No. US 92-879556, filed
on 4 May 1992, now abandoned which is
a continuation of Ser. No.
US 89-446308, filed on 5 Dec 1989, now
abandoned
DT Utility
LN.CNT 620
INCL INCLM: 514/012.000

INCLS: 530/300.000; 530/324.000;
530/402.000; 424/400.000
NCL NCLM: 514/012.000
NCLS: 424/400.000; 530/300.000;
530/324.000; 530/402.000
IC [6]
ICM: A61K038-00
ICS: A61K038-02; C07K005-00; C07K001-
00
EXF 514/12; 530/324; 530/402; 530/810;
530/300; 424/400; 424/450
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 45 OF 73 USPATFULL
AN 97:36067 USPATFULL
TI Antibodies to cardiac hypertrophy
factor and uses thereof
IN Baker, Joffre, El Granada, CA, United
States
Chien, Kenneth, La Jolla, CA, United
States
King, Kathleen, Pacifica, CA, United
States
Pennica, Diane, Burlingame, CA, United
States
Wood, William, San Mateo, CA, United
States
PA Genentech, Inc., South San Francisco,
CA, United States (U.S.
corporation)
The Regents of the University of
California, Oakland, CA, United
States (U.S. corporation)
PI US 5624806 970429
AI US 95-442745 950517 (8)
RLI Division of Ser. No. US 94-286304,
filed on 5 Aug 1994 which is a
continuation of Ser. No. US 94-233609,
filed on 25 Apr 1994, now
patented, Pat. No. US 5534615
DT Utility
LN.CNT 4254
INCL INCLM: 435/007.100
INCLS: 435/240.270; 530/387.900;
530/388.850; 530/387.300;
530/391.300
NCL NCLM: 435/007.100
NCLS: 435/331.000; 435/344.100;
530/387.300; 530/387.900;
530/388.850; 530/391.300
IC [6]
ICM: G01N033-53
ICS: C12N005-12; C07K016-22
EXF 530/387.1; 530/389.1; 530/389.2;
530/388.24; 530/387.24;
530/387.9; 530/388.85; 530/391.3;
530/888.1; 530/388.15;
530/387.3; 424/130.1; 424/145.1;
424/139.1; 424/7.24; 424/156.1;
424/141.1; 424/142.1; 424/133.1;
424/178.1; 424/136.1; 435/240.27;
435/70.21; 435/7.1
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 46 OF 73 USPATFULL
AN 97:20504 USPATFULL
TI Treatment of congestive heart failure
IN Clark, Ross G., Pacifica, CA, United
States
Jin, Hongkui, San Bruno, CA, United
States
Paoni, Nicholas F., Belmont, CA,
United States
Yang, Renhui, San Bruno, CA, United
States

PA Genentech, Inc., South San Francisco,
CA, United States (U.S.
corporation)
PI US 5610134 970311
AI US 94-333909 941103 (8)
RLI Continuation of Ser. No. US 94-284859,
filed on 2 Aug 1994 which
is a continuation of Ser. No. US 94-
227923, filed on 15 Apr 1994,
now abandoned
DT Utility
LN.CNT 1257
INCL INCLM: 514/002.000
INCLS: 514/423.000
NCL NCLM: 514/002.000
NCLS: 514/423.000
IC [6]
ICM: A61K038-00
ICS: A61K031-40
EXF 514/2; 514/423
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 47 OF 73 USPATFULL
AN 97:14767 USPATFULL
TI Recombinant human basic fibroblast
growth factor
IN Fiddes, John C., Palo Alto, CA, United
States
Abraham, Judith A., Sunnyvale, CA,
United States
PA Scios Inc., Mountain View, CA, United
States (U.S. corporation)
PI US 5604293 970218
AI US 94-221462 940401 (8)
RLI Continuation of Ser. No. US 92-860688,
filed on 30 Mar 1992, now
abandoned which is a continuation of
Ser. No. US 87-50706, filed
on 15 May 1987, now abandoned which is
a continuation-in-part of
Ser. No. US 86-869382, filed on 30 May
1986, now abandoned And
Ser. No. US 85-809163, filed on 16 Dec
1985, now patented, Pat.
No. US 5439818 And Ser. No. US 85-
775521, filed on 12 Sep 1985,
now abandoned
DT Utility
LN.CNT 1715
INCL INCLM: 530/399.000
INCLS: 930/010.000
NCL NCLM: 530/399.000
NCLS: 930/010.000
IC [6]
ICM: C07K014-50
EXF 530/399; 530/350; 514/12; 930/10
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 48 OF 73 USPATFULL
AN 97:5885 USPATFULL
TI Family of map2 protein kinases
IN Boulton, Teri G., Irving, TX, United
States
Cobb, Melanie H., Dallas, TX, United
States
Yancopoulos, George D., Elmhurst, NY,
United States
Nye, Steven, New York, NY, United
States
Panayotatos, Nikos, Orangeburg, NY,
United States
PA Board of Regents, Univ. of Texas,
Dallas, TX, United States (U.S.
corporation)

Regeneron Pharmaceuticals, Inc.,
Tarrytown, NY, United States
(U.S. corporation)
PI US 5595904 970121
AI US 94-176620 940103 (8)
RLI Division of Ser. No. US 91-701544,
filed on 16 May 1991, now
abandoned Continuation-in-part of Ser.
No. US 90-532004, filed on
1 Jun 1990, now abandoned
DT Utility
LN.CNT 2571
INCL INCLM: 435/240.200
INCLS: 435/243.000; 435/252.800;
435/254.200; 435/320.100;
536/023.500
NCL NCLM: 435/325.000
NCLS: 435/243.000; 435/252.800;
435/254.200; 435/320.100;
435/348.000; 435/353.000;
536/023.500
IC [6]
ICM: C12N005-00
EXF 800/2; 800/205; 800/DIG.1; 435/254.2;
435/172.3; 435/240.1;
435/240.2; 435/320.1; 435/243;
435/252.8; 536/23.1; 536/23.5;
536/24.31

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 49 OF 73 USPATFULL
AN 97:3856 USPATFULL
TI Fused pyrrolocarbazoles
IN Hudkins, Robert L., Chester Springs,
PA, United States
Knight, Jr., Ernest, Wilmington, DE,
United States
PA Cephalon, Inc., West Chester, PA,
United States (U.S. corporation)
PI US 5594009 970114
AI US 95-452335 950526 (8)
RLI Continuation-in-part of Ser. No. US
95-427160, filed on 24 Apr
1995 which is a continuation-in-part
of Ser. No. US 94-323755,
filed on 14 Oct 1994, now patented,
Pat. No. US 5475110
DT Utility
LN.CNT 3770
INCL INCLM: 514/338.000
INCLS: 514/131.000; 514/140.000
NCL NCLM: 514/338.000
NCLS: 514/339.000; 514/410.000
IC [6]
ICM: A61K031-40
EXF 514/410; 514/338; 514/339
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

=> d 44 kwic

L6 ANSWER 44 OF 73 USPATFULL
TI Method for administering neurologic
agents to the **brain**
AB Disclosed is a method for transporting
neurologic therapeutic
agents to the **brain** by means of the
olfactory neural
pathway and a pharmaceutical
composition useful in the treatment
of **brain** disorders.
SUMM The present invention is directed to a
method for delivering

neurologic agents to the **brain** by
means of the olfactory
neural pathway and a pharmaceutical
composition useful in the
treatment of **brain** disorders.
SUMM Alzheimer's disease is an age-
associated neurodegenerative
disorder of the **brain**. The disorder is
characterized
histopathologically by the formation
and accumulation of
neurofibrillary tangles and neuritic
plaques in the **brain**
. In particular, pathological changes
associated with the disease
extensively affect neurons in the
olfactory bulb and its connected
brain structures. Degeneration with loss
of neurons has
been observed in the hippocampal
formation, amygdaloid nuclei,
nucleus basalis of Meynert, locus
ceruleus, and the
brainstem raphe nuclei, all of which
project to the
olfactory bulb. These degenerative
changes result in the loss of
memory and. . .
SUMM At present, there is no treatment for
Alzheimer's disease which
effectively prevents or retards the
progressive neurodegeneration
of the **brain** and the loss of smell and
cognitive decline
associated with the illness.
Neurotrophic and neuritogenic
factors, such as nerve growth. . .
SUMM Neurotrophic and neuritogenic factors
are agents that affect the
survival and differentiation of
neurons in the peripheral and
central nervous systems. These growth
promoting
factors are signaling substances that
are synthesized in tissues
in response to neurons capable of
responding. . . receptors on
axon terminals, and can be
internalized and retrogradely
transported to the cell body of
neurons. See M. Seiler,
Brain Res. 300:33-39 (1984). Other
naturally-occurring
nerve growth promoting factors include
gangliosides,
phosphatidylserine (PS), **brain**-derived
neurotrophic
factor, fibroblast **growth factor**,
insulin, **insulin-like growth**
factors, ciliary neurotrophic factor and
glia-derived
nixin.
SUMM Testing the effectiveness of
potentially therapeutic agents
against **brain** disease in animal
toxicity studies and
human trials has been hindered,
however, by the inability of
existing procedures to readily deliver
adequate levels of the
agent to affected areas of the **brain**
over an extended
period of time.

SUMM Some experimental therapeutic agents used in the treatment of Alzheimer's disease, such as GM-1 ganglioside, can be administered to the **brain** through the bloodstream because of their ability to traverse the blood-**brain** barrier. However, it is not clear that effective levels of the ganglioside reach the affected areas of the **brain**. SUMM Other potentially therapeutic agents, such as nerve growth factor (NGF), are unable to cross the blood-**brain** barrier and must be administered to the **brain** by other means. One such method of delivery is by an intracerebroventricular pump. Use of such a pump, however, necessitates . . . complications. Furthermore, administration of medication by pump does not facilitate selective delivery of medication solely to those areas of the **brain** affected by disease. Consequently, healthy areas of the **brain** may be adversely affected by the neurologic agent while some diseased areas may not receive a high enough level for. . . . SUMM An effective method of therapeutic intervention is needed to prevent and effectively treat **brain** diseases such as Alzheimer's disease, Parkinson's disease, nerve damage from cerebrovascular disorders such as **stroke**, and ordinary aging. Testing the potential of various neurologic agents is an important aspect of developing treatments for neurodegenerative diseases. Since existing methods of testing possible therapeutic agents and treating **brain** disorders are of limited benefit, a goal of the present invention is to develop a procedure to effectively deliver neurologic agents to the **brain**. A particular goal of the invention is to develop a method of delivering neurologic substances to the **brain** to augment the level of activity against **brain** diseases by naturally-occurring substances. A further goal is to develop a means of selective delivery of a neurologic agent only to areas of the **brain** which are damaged by a **brain** disorder. Still another objective is to develop a composition that can cause absorption of the neurologic agent into olfactory neurons and along the olfactory neural pathway to damaged neurons in the **brain**. Another goal is to provide prophylactic treatment of neurodegenerative diseases and to treat and/or prevent associated loss of smell.

SUMM . . . other goals are met by the present invention which is directed to a method to convey therapeutic substances to the **brain** for the treatment of neurologic or psychiatric disorders and a pharmaceutical composition capable of delivering a neurologic agent to the **brain** for use in such a method of treatment. More specifically, the method of medical treatment involves intranasal administration of a neurologic agent which may be absorbed into the olfactory system of the **brain** for the treatment of **brain** disorders such as Alzheimer's disease, Parkinson's disease, affective disorders such as depression and mania, nerve damage from cerebrovascular disorders such as **stroke**, and the like. SUMM . . . neurologic substance is administered to the nasal cavity of a patient affected with Alzheimer's disease or other disease afflicting the **brain**. The neurologic factor may be applied alone or in combination with other substances. Particular formulations may include the neurologic substance. . . of the neurologic agent through the nasal mucosa and/or along the olfactory neural pathway to damaged nerve cells of the **brain**. SUMM . . . the invention may employ transneuronal anterograde and retrograde transport of the neurologic agent entering through the olfactory system of the **brain**. Once the agent is dispensed into the nasal cavity, the agent may transport through the nasal mucosa by means of the peripheral olfactory neurons into the olfactory bulb and interconnected areas of the **brain** such as the hippocampal formation, amygdaloid nuclei, nucleus basalis of Meynert, locus ceruleus, and the **brainstem** raphe nuclei. The agent alone may facilitate this movement into the **brain**. Alternatively, the carrier and/or other transfer-promoting factors may assist in the transport of the neurologic agent into and along the. . . . SUMM . . . of nerve growth promoting factors to peripheral nerve cells of the olfactory system, a purported entryway for causative agents of **brain** diseases, helps protect against disease in these nerve cells and regenerate injured nerve cells thereby forestalling the subsequent spread of disease to susceptible areas of the **brain**.

SUMM . . . to naturally occurring nerve growth promoting substances.

Among the preferred neurologic agents are gangliosides, phosphatylserine (PS), nerve growth factor (NGF), **brain**-derived neurotrophic factor, fibroblast growth factor, insulin, insulin-like growth factors, ciliary neurotrophic factor, glia-derived nexin, and cholinergic enhancing factors such as phosphoethanolamine and thyroid hormone T.3. GM-1 ganglioside and nerve. . . . DETD . . . neurologic agent to the nasal cavity of a human or other mammal for the testing of potential therapeutic agents against **brain** disease and for the treatment of **brain** disorders such as Alzheimer's disease, Parkinson's disease, affective disorders such as depression and mania, nerve damage from cerebrovascular disorders such as **stroke**, or ordinary aging. In particular, the method delivers a neurologic agent to diseased areas of the **brain** by means of the olfactory neural pathway. The method may employ a pharmaceutical composition capable of transporting the neurologic agent to diseased neurons of the **brain**. DETD The method of the invention may achieve delivery of neurologic substances to afflicted areas of the **brain** through transneuronal retrograde and anterograde transport mechanisms.

Delivery of neurologic agents to the **brain** by that transport system may be achieved in several ways. One technique comprises delivering the neurologic agent alone to the . . . nasal cavity. In this instance, the chemical characteristics of the agent itself facilitate its transport to diseased neurons in the **brain**. Alternatively, the agent may be combined with other substances that assist in transporting the agent to sites of damaged neurons. . . . substances are capable of delivering the agent to peripheral sensory neurons and/or along neural pathways to dysfunctional areas of the **brain**. It is further preferred that the peripheral nerve cells of the olfactory neural pathway be utilized in order to deliver the neurologic agent to damaged neurons in those regions of the **brain** that are connected to the olfactory bulb.

DETD . . . be applied in non-toxic levels in order to provide an effective level of activity within the neural system against the

brain disease. It is further preferred that the neurologic agent promote nerve cell growth and survival or augment the activity of. . . other adjuvants to form a pharmaceutical composition. Among the preferred neurologic agents are gangliosides, nerve growth factor (NGF), phosphatidylserine (PS), **brain**-derived neurotrophic factor, fibroblast growth factor, insulin, insulin-like growth factors, ciliary neurotrophic factor, glia-derived nexin, and cholinergic enhancing factors such as phosphoethanolamine and thyroid hormone T.3. Among those agents that. . . DETD . . . olfactory neurons rather than the capillaries within the respiratory epithelium. The invention prefers the transport of neurologic agents to the **brain** by means of the nervous system instead of the circulatory system so that potentially therapeutic agents that are unable to cross the blood-**brain** barrier from the bloodstream into the **brain** may be delivered to damaged neurons in the **brain**. DETD . . . the absorption of the agent into the peripheral olfactory receptor cells. These peripheral neurons provide a direct connection between the **brain** and the outside environment due to their role in odor detection. DETD The invention also provides a means for the prevention of **brain** disorders particularly in cases where the causative factor enters the **brain** through olfactory neurons. It is preferred that prophylactic treatments be employed where evidence indicates neuronal degeneration in the olfactory neurons as in the case of Alzheimer's disease and other related **brain** disorders. Prophylactic treatment of **brain** disease may involve the direct or indirect application of neurologic therapeutic agents to the olfactory epithelium. Such agents may be. . . DETD . . . the absorption of the agent into the olfactory neurons. Potential neurologic agents include gangliosides, nerve growth factor (NGF), phosphatidylserine (PS), **brain**-derived neurotrophic factor, fibroblast growth factor, insulin, insulin-like growth factors, ciliary neurotrophic factor, glia-derived nexin, and cholinergic enhancing factors such as phosphoethanolamine and thyroid hormone T.3. GM-1 ganglioside and nerve growth factor

(NGF) are among those agents that are particularly preferred for prophylactic treatment of **brain** disorders.

DETD . . . further directed to a pharmaceutical composition comprising an amount of a neurologic agent which is effective in treating or preventing **brain** disorders in a mammal, when administered thereto, in combination with a pharmaceutically-acceptable vehicle such as a liquid or powdered carrier. . . .

DETD . . . such as synthesizing neurotransmitter substances. Among the neurologic agents that are preferred are nerve growth factor (NGF), gangliosides, phosphatidylserine (PS), **brain**-derived neurotrophic factor, fibroblast growth factor, insulin, insulin-like growth factors, ciliary neurotrophic factor, glia-derived nexin, and cholinergic enhancing factors such as phosphoethanolamine and thyroid hormone T.3.

DETD . . . pharmaceutical composition are lipophilic substances that may enhance absorption of the agent across the nasal membrane and delivery to the **brain** by means of the olfactory neural pathway. The neurologic agent may be mixed with a lipophilic adjuvant alone or in. . . .

DETD The present invention for a method of administering neurologic agents useful in the treatment of **brain** disorders such as Alzheimer's disease presents several advantages over currently available methods.

DETD . . . the present invention prefers the olfactory neural pathway rather than the bloodstream to deliver agents useful for the treatment of **brain** disorders such as Alzheimer's disease directly to the **brain**. Use of the olfactory system to transport a neurologic agent to the **brain** obviates the blood-**brain** barrier so that medications like nerve growth factor (NGF), a protein that cannot normally cross that barrier, can be delivered directly to the **brain**. Although the agent that is administered may be absorbed into the bloodstream as well as the olfactory neural pathway, the. . . . in fluids present in the bloodstream. As such, the invention provides an improved method of testing potential therapeutic agents against **brain** disease and of treating neurodegenerative disorders.

DETD . . . of the intranasal administration of the medication. The

olfactory system provides a direct connection between the outside environment and the **brain** thus providing quick and ready delivery of neurologic agents for treatment of neurologic disorders. Moreover, the means of applying a. . . . DETD The application of a neurologic therapeutic agent to the nasal epithelium also helps prevent the spread of certain **brain** disorders by directly treating peripheral olfactory neurons that are injured by neurotoxins and other insults. Prophylactic treatment of these outlying nerve cells helps preclude the entrance of disease-causing agents into the **brain**. This method of treatment is particularly beneficial in cases of Alzheimer's disease where an environmental factor is suspected of being. . . .

DETD Another advantage of the invention is that it provides delivery of neurologic agents solely to those areas of the **brain** affected by disease while avoiding unwanted treatment of **brain** regions which are free of the disease. The method of the invention employs a neurologic agent or other substance that has an affinity for neuron receptor sites in order to facilitate delivery of the agent directly to the **brain** through the olfactory epithelium.

CLM What is claimed is:

1. A method for delivering a neurologic therapeutic agent to the **brain** of a mammal, comprising: applying an effective amount of the neurologic therapeutic agent directly to the olfactory epithelium of the. . . . an effective amount of lipophilic micelles, or a combination thereof; the neurologic agent being unable to be delivered to the **brain** from the circulatory system of the mammal by crossing the blood-**brain** barrier of the mammal; wherein the neurologic agent is absorbed through the olfactory epithelium of the nasal mucosa into olfactory neurons and an effective amount of the agent is transported into the **brain** of the mammal by means of the olfactory neural pathway to provide a protective effect on **brain** cells against **stroke**.
4. The method according to claim 1 wherein the agent is transported to the hippocampal formation, amygdaloid nuclei, nucleus basalis of Meynert, locus ceruleus, **brainstem** raphe nuclei, or any combination thereof.

5. The method according to claim 1 wherein the agent is transported to damaged neurons in the brain.

8. A method for delivering a neurologic therapeutic agent to the brain of a mammal, comprising: applying an effective amount of the neurologic therapeutic agent directly to the olfactory epithelium of the . . . an effective amount of lipophilic micelles, or a combination thereof; the neurologic agent being unable to be delivered to the brain from the circulatory system of the mammal by crossing the blood-brain barrier of the mammal; wherein the neurologic agent is absorbed through the olfactory epithelium of the nasal mucosa into olfactory neurons and an effective amount of the agent is transported into the brain of the mammal by means of the olfactory neural pathway to inhibit degeneration of nerve cells in the brain.

9. The method according to claim 8, wherein the brain cells are basal forebrain cholinergic neurons.

=> d 30-39

L6 ANSWER 30 OF 73 USPATFULL
AN 97:73601 USPATFULL
TI Compositions for inhibiting restenosis
IN Weisz, Paul B., State College, PA,
United States
PA The Trustees of the University of
Pennsylvania, Philadelphia, PA,
United States (U.S. corporation)
PI US 5658894 970819
AI US 94-345011 941123 (8)
RLI Continuation of Ser. No. US 92-900592,
filed on 18 Jun 1992, now abandoned And a continuation-in-part
of Ser. No. US 91-790320, filed on 12 Nov 1991, now abandoned which is a
continuation-in-part of Ser. No. US
91-691168, filed on 24 Apr 1991, now abandoned which is a continuation of Ser. No. US
89-397559, filed on 23 Aug 1989, now abandoned , said Ser. No. US
-900592 which is a continuation-in-part of Ser. No. US 90-480407,
filed on 15 Feb 1990, now patented, Pat. No. US 5183809, issued on
2 Feb 1993
DT Utility
LN.CNT 1449
INCL INCLM: 514/058.000
INCLS: 514/021.000; 514/023.000;
514/054.000; 514/060.000;

536/103.000; 530/810.000;
530/812.000; 530/813.000
NCL NCLM: 514/058.000
NCLS: 514/021.000; 514/023.000;
514/054.000; 514/060.000;
530/810.000; 530/812.000;
530/813.000; 536/103.000
IC [6]
ICM: A61K031-735
ICS: C08B037-16
EXF 514/21; 514/23; 514/54; 514/58;
514/60; 536/103; 530/810; 530/812;
530/813
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 31 OF 73 USPATFULL
AN 97:68499 USPATFULL
TI Methods and compositions for stimulating neurite growth
IN Armistead, David M., Maynard, MA,
United States
PA Vertex Pharmaceuticals Incorporated,
Cambridge, MA, United States
(U.S. corporation)
PI US 5654332 970805
AI US 95-486004 950608 (8)
DT Utility
LN.CNT 1225
INCL INCLM: 514/533.000
INCLS: 514/534.000; 514/330.000;
514/423.000; 514/428.000;
514/438.000; 514/538.000;
514/547.000; 514/549.000;
514/551.000; 514/465.000;
514/466.000
NCL NCLM: 514/533.000
NCLS: 514/330.000; 514/423.000;
514/428.000; 514/438.000;
514/465.000; 514/466.000;
514/534.000; 514/538.000;
514/547.000; 514/549.000;
514/551.000
IC [6]
ICM: A61K031-235
ICS: A61K031-24; A61K031-40; A61K031-
38; A61K031-44; A61K031-225;
A61K031-22; A61K031-36
EXF 514/533; 514/534; 514/330; 514/423;
514/428; 514/438; 514/538;
514/547; 514/549; 514/551; 514/465;
514/466
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 32 OF 73 USPATFULL
AN 97:68346 USPATFULL
TI Secreted proteins and polynucleotides encoding them
IN Jacobs, Kenneth, Newton, MA, United
States
McCoy, John M., Reading, MA, United
States
LaVallie, Edward R., Tewksbury, MA,
United States
Racie, Lisa A., Acton, MA, United
States
Merberg, David, Acton, MA, United
States
Treacy, Maurice, Chestnut Hill, MA,
United States
Spaulding, Vikki, Billerica, MA,
United States
PA Genetics Institute, Inc., Cambridge,
MA, United States (U.S.
corporation)
PI US 5654173 970805

AI US 96-702080 960823 (8)
DT Utility
LN.CNT 1685
INCL INCLM: 435/069.100
INCLS: 435/252.300; 435/326.000;
536/023.500
NCL NCLM: 435/069.100
NCLS: 435/252.300; 435/326.000;
536/023.500
IC [6]
ICM: C12P021-02
ICS: C12N001-21; C12N005-10; C07H021-
04
EXF 435/69.1; 435/326; 435/252.3; 536/23.5
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 33 OF 73 USPATFULL
AN 97:66223 USPATFULL
TI OP-3-induced morphogenesis
IN Oppermann, Hermann, Medway, MA, United
States
Ozkaynak, Engin, Milford, MA, United
States
Kuberampath, Thangavel, Medway, MA,
United States
Rueger, David C., Hopkinton, MA,
United States
Pang, Roy H. L., Etna, NH, United
States
Cohen, Charles M., Medway, MA, United
States
PA Creative BioMolecules, Inc.,
Hopkinton, MA, United States (U.S.
corporation)
PI US 5652337 970729
AI US 95-479666 950607 (8)
RLI Division of Ser. No. US 92-971091,
filed on 3 Nov 1992, now
abandoned which is a continuation-in-
part of Ser. No. US
92-922813, filed on 31 Jul 1992, now
abandoned which is a
continuation-in-part of Ser. No. US
91-752764, filed on 31 Aug
1991, now abandoned which is a
continuation-in-part of Ser. No. US
91-667274, filed on 11 Mar 1991, now
abandoned, said Ser. No. US
92-971091, filed on 3 Nov 1992, now
abandoned which is a
continuation-in-part of Ser. No. US
92-923780, filed on 31 Jul
1992, now abandoned which is a
continuation-in-part of Ser. No. US
91-752764, filed on 30 Aug 1991, now
abandoned And a
continuation-in-part of Ser. No. US
91-752857, filed on 30 Aug
1991, now abandoned, each Ser. No. US
- which is a
continuation-in-part of Ser. No. US
91-667274, filed on 11 Mar
1991, now abandoned, said Ser. No. US
92-971091, filed on 3 Nov
1992, now abandoned which is a
continuation-in-part of Ser. No. US
92-938336, filed on 28 Aug 1992, now
abandoned And a
continuation-in-part of Ser. No. US
92-938337, filed on 28 Aug
1992, now abandoned, each Ser. No. US
- which is a
continuation-in-part of Ser. No. US
91-753059, filed on 30 Aug

1991, now abandoned which is a
continuation-in-part of Ser. No. US
91-667274, filed on 11 Mar 1991, now
abandoned, said Ser. No. US
92-971091, filed on 3 Nov 1992, now
abandoned which is a
continuation-in-part of Ser. No. US
92-938021, filed on 28 Aug
1992, now abandoned which is a
continuation-in-part of Ser. No. US
91-752861, filed on 30 Aug 1991, now
abandoned which is a
continuation-in-part of Ser. No. US
91-667274, filed on 11 Mar
1991, now abandoned, said Ser. No. US
92-971091, filed on 3 Nov
1992, now abandoned which is a
continuation-in-part of Ser. No. US
92-945285, filed on 15 Sep 1992, now
abandoned And a
continuation-in-part of Ser. No. US
92-945286, filed on 15 Sep
1992, now abandoned, each Ser. No. US
- which is a
continuation-in-part of Ser. No. US
91-752764, filed on 30 Aug
1991, now abandoned, said Ser. No. US
92-971091, filed on 3 Nov
1992, now abandoned which is a
continuation-in-part of Ser. No. US
92-946235, filed on 16 Sep 1992, now
abandoned And a
continuation-in-part of Ser. No. US
92-946238, filed on 16 Sep
1992, now abandoned, each Ser. No. US
- which is a
continuation-in-part of Ser. No. US
91-752764, filed on 30 Aug
1991, now abandoned
DT Utility
LN.CNT 2887
INCL INCLM: 530/350.000
INCLS: 530/399.000
NCL NCLM: 530/350.000
NCLS: 530/399.000
IC [6]
ICM: C07K019-51
EXF 530/350; 530/399
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 34 OF 73 USPATFULL
AN 97:66103 USPATFULL
TI Treating disorders by application of
insulin-like
growth factors and analogs
IN Lewis, Michael E., West Chester, PA,
United States
Kauer, James C., Kennett Square, PA,
United States
Smith, Kevin R., Parkesburg, PA,
United States
Callison, Kathleen V., Merchantville,
NJ, United States
Baldino, Frank, Landenberg, PA, United
States
Neff, Nicola, Wallingford, PA, United
States
Iqbal, Mohamed, Malvern, PA, United
States
PA Cephalon, Inc., West Chester, PA,
United States (U.S. corporation)
PI US 5652214 970729
AI US 92-958903 921007 (7)

RLI Continuation-in-part of Ser. No. US 92-869913, filed on 15 Apr 1992, now abandoned which is a continuation-in-part of Ser. No. US 90-534139, filed on 5 Jun 1990, now abandoned which is a continuation-in-part of Ser. No. US 89-361595, filed on 5 Jun 1989, now patented, Pat. No. US 5093317 DT Utility LN.CNT 2358 INCL INCLM: 514/012.000 INCLS: 514/021.000 NCL NCLM: 514/012.000 NCLS: 514/021.000 IC [6] ICM: A61K038-30 EXF 514/12; 514/9; 514/11; 514/2; 514/3; 514/21; 530/317; 530/324; 530/303
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 35 OF 73 USPATFULL
AN 97:66010 USPATFULL
TI Nucleic acid encoding a novel morphogenic protein, OP-3
IN Ozkaynak, Engin, Milford, MA, United States
Oppermann, Hermann, Medway, MA, United States
PA Creative BioMolecules, Inc., Hopkinton, MA, United States (U.S. corporation)
PI US 5652118 970729
AI US 95-480528 950607 (8)
RLI Continuation of Ser. No. US 92-971091, filed on 3 Nov 1992, now abandoned which is a continuation-in-part of Ser. No. US 92-922813, filed on 31 Jul 1992, now abandoned which is a continuation-in-part of Ser. No. US 91-752764, filed on 31 Aug 1991, now abandoned which is a continuation-in-part of Ser. No. US 91-667274, filed on 11 Mar 1991, now abandoned, said Ser. No. US 92-971091, filed on 3 Nov 1992, now abandoned which is a continuation-in-part of Ser. No. US 92-923780, filed on 31 Jul 1992, now abandoned which is a continuation-in-part of Ser. No. US 91-752857, filed on 30 Aug 1991, now abandoned, each Ser. No. US - which is a continuation-in-part of Ser. No. US 91-667274, filed on 11 Mar 1991, now abandoned, said Ser. No. US 92-971091, filed on 3 Nov 1992, now abandoned which is a continuation-in-part of Ser. No. US 92-938336, filed on 28 Aug 1992, now abandoned And a continuation-in-part of Ser. No. US 92-938337, filed on 28 Aug 1992, now abandoned, each Ser. No. US - which is a continuation-in-part of Ser. No. US 91-753059, filed on 30 Aug

1991, now abandoned which is a continuation-in-part of Ser. No. US 91-667274, filed on 11 Mar 1991, now abandoned, said Ser. No. US 92-971091, filed on 3 Nov 1992, now abandoned which is a continuation-in-part of Ser. No. US 92-938021, filed on 28 Aug 1992, now abandoned which is a continuation-in-part of Ser. No. US 91-752861, filed on 30 Aug 1991, now abandoned which is a continuation-in-part of Ser. No. US 91-667274, filed on 11 Mar 1991, now abandoned, said Ser. No. US 92-971091, filed on 3 Nov 1992, now abandoned which is a continuation-in-part of Ser. No. US 92-945285, filed on 15 Sep 1992, now abandoned And a continuation-in-part of Ser. No. US 92-945286, filed on 15 Sep 1992, now abandoned, each Ser. No. US - which is a continuation-in-part of Ser. No. US 91-752764, filed on 30 Aug 1991, now abandoned, said Ser. No. US 92-971091, filed on 3 Nov 1992, now abandoned which is a continuation-in-part of Ser. No. US 92-946235, filed on 16 Sep 1992, now abandoned And a continuation-in-part of Ser. No. US 92-946238, filed on 16 Sep 1992, now abandoned, each Ser. No. US - which is a continuation-in-part of Ser. No. US 91-252764, filed on 30 Aug 1991, now abandoned DT Utility LN.CNT 3004 INCL INCLM: 435/069.100 INCLS: 435/252.300; 435/252.330; 435/070.100; 435/070.300; 435/071.100; 435/071.200; 435/320.100; 435/172.300; 435/325.000; 435/348.000; 435/358.000; 435/360.000; 435/365.100; 435/366.000; 536/023.500 NCL NCLM: 435/069.100 NCLS: 435/070.100; 435/070.300; 435/071.100; 435/071.200; 435/172.300; 435/252.300; 435/252.330; 435/320.100; 435/325.000; 435/348.000; 435/358.000; 435/360.000; 435/365.100; 435/366.000; 536/023.500 IC [6] ICM: C12N005-10 ICS: C12N015-12; C12N015-63; C07H021-04 EXF 435/69.1; 435/240.2; 435/320.1; 435/252.3; 435/252.33; 435/70.1; 435/70.3; 435/71.1; 435/71.2; 435/172.3; 536/23.1; 536/23.5
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L6 ANSWER 36 OF 73 USPATFULL
AN 97:63766 USPATFULL
TI Methods for in vivo delivery of nutriceuticals and compositions useful therefor

IN Grinstaff, Mark W., Pasadena, CA,
 United States
 Soon-Shiong, Patrick, Los Angeles, CA,
 United States
 Wong, Michael, Champagne, IL, United
 States
 Sandford, Paul A., Los Angeles, CA,
 United States
 Suslick, Kenneth S., Champagne, IL,
 United States
 Desai, Neil P., Los Angeles, CA,
 United States
 PA Vivox Pharmaceuticals, Inc., Santa
 Monica, CA, United States
 (U.S. corporation)
 PI US 5650156 970722
 AI US 95-482272 950607 (8)
 RLI Continuation-in-part of Ser. No. US
 94-200235, filed on 22 Feb
 1994, now patented, Pat. No. US
 5498421 which is a
 continuation-in-part of Ser. No. US
 93-23698, filed on 22 Feb
 1993, now patented, Pat. No. US
 5439686 And Ser. No. US 93-35150,
 filed on 26 Mar 1993, now patented,
 Pat. No. US 5362478
 DT Utility
 LN.CNT 3310
 INCL INCLM: 424/400.000
 INCLS: 424/450.000; 424/451.000;
 424/056.000; 424/009.400;
 424/009.500; 424/009.300
 NCL NCLM: 424/400.000
 NCLS: 424/009.300; 424/009.400;
 424/009.500; 424/056.000;
 424/450.000; 424/451.000
 IC [6]
 ICM: A61K009-00
 EXF 424/400; 424/450; 424/451; 424/9
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

 L6 ANSWER 37 OF 73 USPATFULL
 AN 97:61667 USPATFULL
 TI Methods of treatment using ciliary
 neurotrophic factor
 IN Davis, Samuel, New York, NY, United
 States
 Squinto, Stephen P., Irvington, NY,
 United States
 Furth, Mark E., Pelham, NY, United
 States
 Yancopoulos, George D., Briarcliff
 Manor, NY, United States
 PA Regeneron Pharmaceuticals, Inc.,
 Tarrytown, NY, United States
 (U.S. corporation)
 PI US 5648334 970715
 AI US 95-449329 950524 (8)
 RLI Division of Ser. No. US 93-1904, filed
 on 7 Jan 1993, now
 abandoned which is a continuation of
 Ser. No. US 91-700677, filed
 on 15 May 1991, now abandoned which is
 a continuation-in-part of
 Ser. No. US 91-676647, filed on 28 Mar
 1991, now patented, Pat.
 No. US 5426177 which is a
 continuation-in-part of Ser. No. US
 90-532285, filed on 1 Jun 1990, now
 abandoned
 DT Utility
 LN.CNT 2326
 INCL INCLM: 514/012.000

INCLS: 514/002.000; 530/350.000;
 530/399.000
 NCL NCLM: 514/012.000
 NCLS: 514/002.000; 530/350.000;
 530/399.000
 IC [6]
 ICM: A61K038-17
 ICS: C07K014-475
 EXF 514/2; 514/12
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

 L6 ANSWER 38 OF 73 USPATFULL
 AN 97:54233 USPATFULL
 TI Substituted amino alcohol compounds
 IN Klein, J. Peter, Vashon, WA, United
 States
 Underiner, Gail E., Brier, WA, United
 States
 Kumar, Anil M., Seattle, WA, United
 States
 PA Cell Therapeutics, Inc., Seattle, WA,
 United States (U.S.
 corporation)
 PI US 5641783 970624
 AI US 94-303842 940908 (8)
 RLI Continuation-in-part of Ser. No. US
 93-152650, filed on 12 Nov
 1993 And Ser. No. US 93-164081, filed
 on 8 Dec 1993, now patented,
 Pat. No. US 5470878
 DT Utility
 LN.CNT 3206
 INCL INCLM: 514/263.000
 INCLS: 514/183.000; 514/222.500;
 514/223.500; 514/224.200;
 514/226.800; 514/227.500;
 514/228.800; 514/229.200;
 514/230.500; 514/230.800;
 514/237.800; 514/241.000;
 514/242.000; 514/243.000;
 514/246.000; 514/247.000;
 514/248.000; 514/249.000;
 514/255.000; 514/256.000;
 514/258.000; 514/259.000;
 514/261.000; 514/262.000;
 514/263.000; 514/270.000;
 514/274.000; 514/297.000;
 514/300.000; 514/301.000;
 514/302.000; 514/303.000;
 514/306.000; 514/307.000;
 514/311.000; 514/312.000;
 514/315.000; 514/345.000;
 514/351.000; 514/357.000;
 514/359.000; 514/360.000;
 514/361.000; 514/362.000;
 514/363.000; 514/364.000;
 514/365.000; 514/367.000;
 514/369.000; 514/372.000;
 514/373.000; 514/374.000;
 514/375.000; 514/376.000;
 514/378.000; 514/379.000;
 514/380.000; 514/381.000;
 514/383.000; 514/389.000;
 514/394.000; 514/395.000;
 514/398.000; 514/399.000;
 514/401.000; 514/404.000;
 514/406.000; 514/413.000;
 514/415.000; 514/416.000;
 514/418.000; 514/423.000;
 514/424.000; 514/425.000;
 514/427.000; 514/428.000;
 544/001.000; 544/002.000;
 544/003.000; 544/008.000;
 544/053.000; 544/063.000;
 544/065.000; 544/066.000;

544/091.000; 544/162.000;
544/219.000; 544/220.000;
544/239.000; 544/254.000;
544/262.000; 544/272.000;
544/280.000; 544/283.000;
544/311.000; 544/335.000;
544/353.000; 544/385.000;
546/113.000; 546/114.000;
546/118.000; 546/119.000;
546/139.000; 546/150.000;
546/164.000; 546/176.000;
546/243.000; 546/246.000;
546/334.000; 548/100.000;
548/127.000; 548/128.000;
548/146.000; 548/153.000;
548/207.000; 548/214.000;
548/221.000; 548/225.000;
548/235.000; 548/237.000;
548/243.000; 548/247.000;
548/267.800; 548/303.700;
548/309.700; 548/319.100;
548/348.100; 548/349.100;
548/375.100; 548/379.400;
548/470.000; 548/482.000;
548/491.000; 548/503.000;
548/546.000; 548/550.000;
NCL NCLM: 514/263.000
NCLS: 514/183.000; 514/222.500;
514/223.500; 514/224.200;
514/228.800; 514/229.200;
514/237.800; 514/241.000;
514/246.000; 514/247.000;
514/255.000; 514/256.000;
514/261.000; 514/262.000;
514/297.000; 514/300.000;
514/303.000; 514/306.000;
514/312.000; 514/315.000;
514/357.000; 514/359.000;

544/067.000; 544/090.000;
544/215.000; 544/216.000;
544/224.000; 544/235.000;
544/255.000; 544/257.000;
544/277.000; 544/278.000;
544/286.000; 544/301.000;
544/336.000; 544/350.000;
544/385.000; 544/401.000;
544/401.000; 544/413.000;
544/413.000; 544/423.000;
544/423.000; 544/428.000;
544/428.000; 544/435.000;
544/435.000; 544/446.000;
544/446.000; 544/456.000;
544/456.000; 544/467.000;
544/467.000; 544/474.000;
544/474.000; 544/482.000;
544/482.000; 544/491.000;
544/491.000; 544/503.000;
544/503.000; 544/514.000;
544/514.000; 544/523.000;
544/523.000; 544/532.000;
544/532.000; 544/543.000;
544/543.000; 544/550.000;
544/550.000; 544/565.000;
544/565.000; 544/570.000;
544/570.000; 544/575.000;
544/575.000; 544/580.000;
544/580.000; 544/585.000;
544/585.000; 544/590.000;
544/590.000; 544/595.000;
544/595.000; 544/600.000;
544/600.000; 544/605.000;
544/605.000; 544/610.000;
544/610.000; 544/615.000;
544/615.000; 544/620.000;
544/620.000; 544/625.000;
544/625.000; 544/630.000;
544/630.000; 544/635.000;
544/635.000; 544/640.000;
544/640.000; 544/645.000;
544/645.000; 544/650.000;
544/650.000; 544/655.000;
544/655.000; 544/660.000;
544/660.000; 544/665.000;
544/665.000; 544/670.000;
544/670.000; 544/675.000;
544/675.000; 544/680.000;
544/680.000; 544/685.000;
544/685.000; 544/690.000;
544/690.000; 544/695.000;
544/695.000; 544/700.000;
544/700.000; 544/705.000;
544/705.000; 544/710.000;
544/710.000; 544/715.000;
544/715.000; 544/720.000;
544/720.000; 544/725.000;
544/725.000; 544/730.000;
544/730.000; 544/735.000;
544/735.000; 544/740.000;
544/740.000; 544/745.000;
544/745.000; 544/750.000;
544/750.000; 544/755.000;
544/755.000; 544/760.000;
544/760.000; 544/765.000;
544/765.000; 544/770.000;
544/770.000; 544/775.000;
544/775.000; 544/780.000;
544/780.000; 544/785.000;
544/785.000; 544/790.000;
544/790.000; 544/795.000;
544/795.000; 544/800.000;
544/800.000; 544/805.000;
544/805.000; 544/810.000;
544/810.000; 544/815.000;
544/815.000; 544/820.000;
544/820.000; 544/825.000;
544/825.000; 544/830.000;
544/830.000; 544/835.000;
544/835.000; 544/840.000;
544/840.000; 544/845.000;
544/845.000; 544/850.000;
544/850.000; 544/855.000;
544/855.000; 544/860.000;
544/860.000; 544/865.000;
544/865.000; 544/870.000;
544/870.000; 544/875.000;
544/875.000; 544/880.000;
544/880.000; 544/885.000;
544/885.000; 544/890.000;
544/890.000; 544/895.000;
544/895.000; 544/900.000;
544/900.000; 544/905.000;
544/905.000; 544/910.000;
544/910.000; 544/915.000;
544/915.000; 544/920.000;
544/920.000; 544/925.000;
544/925.000; 544/930.000;
544/930.000; 544/935.000;
544/935.000; 544/940.000;
544/940.000; 544/945.000;
544/945.000; 544/950.000;
544/950.000; 544/955.000;
544/955.000; 544/960.000;
544/960.000; 544/965.000;
544/965.000; 544/970.000;
544/970.000; 544/975.000;
544/975.000; 544/980.000;
544/980.000; 544/985.000;
544/985.000; 544/990.000;
544/990.000; 544/995.000;
544/995.000; 544/1000.000;

IC [6]
 ICM: A61K031-415
 ICS: A61K031-42; A61K031-425; A61K031-
 52
 EXF 544/272; 514/263
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

 L6 ANSWER 39 OF 73 USPATFULL
 AN 97:54200 USPATFULL
 TI Methods for treating photoreceptors
 using glial cell line-derived
 neurotrophic factor (GDNF) protein
 product
 IN Louis, Jean-Claude, Thousand Oaks, CA,
 United States
 PA Amgen Inc., Thousand Oaks, CA, United
 States (U.S. corporation)
 PI US 5641750 970624
 AI US 95-564833 951129 (8)
 DT Utility
 LN.CNT 2005
 INCL INCLM: 514/012.000
 INCLS: 435/069.100; 435/069.400
 NCL NCLM: 514/012.000
 NCLS: 435/069.100; 435/069.400
 IC [6]
 ICM: A61F002-00
 ICS: A61K047-00; A61K031-685
 EXF 514/12; 435/69.1; 435/69.4
 CAS INDEXING IS AVAILABLE FOR THIS PATENT.

=> file caplus medline

COST IN U.S. DOLLARS
 SINCE FILE TOTAL

ENTRY SESSION
 FULL ESTIMATED COST
 83.65 121.60

FILE 'CAPLUS' ENTERED AT 20:21:20 ON 26 APR
 1998
 USE IS SUBJECT TO THE TERMS OF YOUR STN
 CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 1998 AMERICAN CHEMICAL SOCIETY
 (ACS)

FILE 'MEDLINE' ENTERED AT 20:21:20 ON 26 APR
 1998

=> s 14

L7 53 L4

=> e ishii d/au

E1 7 ISHII CHIZU/AU
 E2 1 ISHII CLIFF/AU
 E3 87 --> ISHII D/AU
 E4 57 ISHII D N/AU
 E5 227 ISHII DAIDO/AU
 E6 1 ISHII DEISUKE/AU
 E7 1 ISHII DOBLAS N/AU
 E8 2 ISHII DOUGLAS/AU
 E9 39 ISHII DOUGLAS N/AU
 E10 134 ISHII E/AU
 E11 3 ISHII E K/AU
 E12 7 ISHII E L/AU

=> s (e3-4 or e7-9) and igf?

L8 43 ((ISHII D/AU OR "ISHII D
 N"/AU) OR ("ISHII DOUBLAS N"/AU

OR "ISHII DOUGLAS"/AU OR
 "ISHII DOUGLAS N"/AU)) AND IGF?

=> d 1-43

L8 ANSWER 1 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1997:674681 CAPLUS
 DN 127:342187
 TI Insulin-like growth factor (IGF) gene
 expression is
 reduced in neural tissues and liver from
 rats with
 non-insulin-dependent diabetes mellitus,
 and IGF treatment
 ameliorates diabetic neuropathy
 AU Zhuang, Hui-Xin; Wuarin, Laura; Fei,
 Zhi-Jian; Ishii, Douglas
 N.
 CS Department of Physiology and Department
 of Biochemistry and
 Molecular Biology, Colorado State
 University, Fort Collins, CO, USA
 SO J. Pharmacol. Exp. Ther. (1997), 283(1),
 366-374
 CODEN: JPETAB; ISSN: 0022-3565
 PB Williams & Wilkins
 DT Journal
 LA English

L8 ANSWER 2 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1997:511653 CAPLUS
 DN 127:104818
 TI Method for effecting changes in the
 central nervous system by
 administration of IGF-I or IGF-II
 IN Ishii, Douglas N.
 PA Colorado State University Research
 Foundation, USA
 SO PCT Int. Appl., 33 pp.
 CODEN: PIXXD2
 PI WO 9721449 A1 970619
 DS W: CA, CN, JP, PL
 RW: AT, BE, CH, DE, DK, ES, FI, FR, GB,
 GR, IE, IT, LU, MC, NL, PT,
 SE
 AI WO 96-US19663 961211
 PRAI US 95-571802 951213
 DT Patent
 LA English

L8 ANSWER 3 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1997:371022 CAPLUS
 DN 127:60676
 TI Roles of insulin-like growth factors in
 peripheral nerve
 regeneration and motor neuron survival
 AU Ishii, D. N.; Pu, S. F.; Glazner, G. W.;
 Zhuang, H.-X.;
 Marsh, D. J.
 CS Department Physiology, Department
 Biochemistre Molecular Biology,
 Colorado State University, Fort Collins,
 CO, 80523, USA
 SO Chem. Factors Neural Growth, Degener.
 Repair (1996), 399-421.
 Editor(s): Bell, Christopher. Publisher:
 Elsevier, Amsterdam, Neth.
 CODEN: 64MUAK
 DT Conference; General Review
 LA English

- L8 ANSWER 4 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1996:511170 CAPLUS
 DN 125:186579
 TI Insulin-like growth factors reverse or arrest diabetic neuropathy:
 Effects on hyperalgesia and impaired nerve regeneration in rats
 AU Zhuang, Hui-Xin; Snyder, Cynthia K.; Pu, Su-Fen; **Ishii, Douglas N.**
 CS Department Physiology, Colorado State University, Fort Collins, CO, 80523, USA
 SO Exp. Neurol. (1996), 140(2), 198-205
 CODEN: EXNEAC; ISSN: 0014-4886
 DT Journal
 LA English
- L8 ANSWER 5 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1996:454059 CAPLUS
 DN 125:139592
 TI Brain insulin-like growth factor-II mRNA content is reduced in insulin-dependent and non-insulin-dependent diabetes mellitus
 AU Wuarin, Laura; Namdev, Ritu; Burns, J. Gregory; Fei, Zhi-Jian; **Ishii, Douglas N.**
 CS Departments of Physiology and Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
 SO J. Neurochem. (1996), 67(2), 742-751
 CODEN: JONRA9; ISSN: 0022-3042
 DT Journal
 LA English
- L8 ANSWER 6 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1995:934824 CAPLUS
 DN 124:1406
 TI Differential spatio-temporal expression of the insulin-like growth factor genes in regenerating sciatic nerve
 AU Pu, Su-Fen; Zhuang, Hui-Xin; **Ishii, Douglas N.**
 CS Department of Physiology and Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
 SO Mol. Brain Res. (1995), 34(1), 18-28
 CODEN: MBREE4; ISSN: 0169-328X
 DT Journal
 LA English
- L8 ANSWER 7 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1995:386789 CAPLUS
 DN 122:184587
 TI Early reduction in insulin-like growth factor gene expression in diabetic nerve
 AU Wuarin, Laura; Guertin, Diane M.; **Ishii, Douglas N.**
 CS Department of Physiology, Colorado State University, Fort Collins, CO, 80523, USA
 SO Exp. Neurol. (1994), 130(1), 106-14
 CODEN: EXNEAC; ISSN: 0014-4886
- DT Journal
 LA English
- L8 ANSWER 8 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1995:323050 CAPLUS
 DN 122:97171
 TI Insulin-like growth factors protect against diabetic neuropathy:
 effects on sensory nerve regeneration in rats
 AU **Ishii, D. N.**; Lupien, S. B.
 CS Departments Physiol. Biochem. Mol. Biol., Colorado State Univ., Fort Collins, CO, USA
 SO J. Neurosci. Res. (1995), 40(1), 138-44
 CODEN: JNREDK; ISSN: 0360-4012
 DT Journal
 LA English
- L8 ANSWER 9 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1995:235660 CAPLUS
 DN 122:7052
 TI Reduced insulin-like growth factor-I mRNA content in liver, adrenal glands and spinal cord of diabetic rats
 AU **Ishii, D.N.**; Guertin, D.M.; Whalen, L.R.
 CS Department of Physiology, Colorado State University, Fort Collins, CO, 80523, USA
 SO Diabetologia (1994), 37(11), 1073-81
 CODEN: DBTGAAJ; ISSN: 0012-186X
 DT Journal
 LA English
- L8 ANSWER 10 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1994:622051 CAPLUS
 DN 121:222051
 TI Role of insulin-like growth factors in peripheral nerve regeneration
 AU **Ishii, D. N.**; Glazner, G. W.; Pu, S.-F.
 CS Department of Physiology, Colorado State University, Fort Collins, CO, 80523, USA
 SO Pharmacol. Ther. (1994), 62(1-2), 125-44
 CODEN: PHTHDT; ISSN: 0163-7258
 DT Journal; General Review
 LA English
- L8 ANSWER 11 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1994:596717 CAPLUS
 DN 121:196717
 TI Elevated insulin-like growth factor (**IGF**) gene expression in sciatic nerves during **IGF**-supported nerve regeneration
 AU Glazner, Gordon W.; Morrison, Andrew E.; **Ishii, Douglas N.**
 CS Department of Physiology and, Fort Collins, CO, 80523, USA
 SO Mol. Brain Res. (1994), 25(3-4), 265-72
 CODEN: MBREE4; ISSN: 0169-328X
 DT Journal
 LA English
- L8 ANSWER 12 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1993:662607 CAPLUS
 DN 119:262607
 TI Regulation of peripheral nerve regeneration by insulin-like growth

factors
 AU Ishii, Douglas N.; Glazner, Gordon W.;
 Whalen, L. Raymond
 CS Dep. Physiol., Colorado State Univ., Fort
 Collins, CO, 80523, USA
 SO Ann. N. Y. Acad. Sci. (1993), 692(Role
 of Insulin-like Growth
 Factors in the Nervous System), 172-82
 CODEN: ANYAA9; ISSN: 0077-8923
 DT Journal; General Review
 LA English

L8 ANSWER 13 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1993:487255 CAPLUS
 DN 119:87255
 TI Insulin-like growth factor II increases
 the rate of sciatic nerve
 regeneration in rats
 AU Glazner, G. W.; Lupien, S.; Miller, J.
 A.; Ishii, D. N.
 CS Dep. Physiol., Colorado State Univ.,
 Fort Collins, CO, 80523, USA
 SO Neuroscience (Oxford) (1993), 54(3),
 791-7
 CODEN: NRSCDN; ISSN: 0306-4522
 DT Journal
 LA English

L8 ANSWER 14 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1993:183474 CAPLUS
 DN 118:183474
 TI Neurobiology of insulin and insulin-like
 growth factors
 AU Ishii, Douglas N.
 CS Dep. Physiol., Colorado State Univ.,
 Fort Collins, CO, 80523, USA
 SO Neurotrophic Factors (1993), 415-42.
 Editor(s): Loughlin, Sandra
 E.; Fallon, James H. Publisher:
 Academic, San Diego, Calif.
 CODEN: 58VKAI
 DT Conference; General Review
 LA English

L8 ANSWER 15 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1993:74365 CAPLUS
 DN 118:74365
 TI Insulin-like growth factor II stimulates
 motor nerve regeneration
 AU Near, Stephanie L.; Whalen, L. Raymond;
 Miller, James A.;
 Ishii, Douglas N.
 CS Dep. Anat. Neurobiol., Colorado State
 Univ., Fort Collins, CO,
 80523, USA
 SO Proc. Natl. Acad. Sci. U. S. A. (1992),
 89(24), 11716-20
 CODEN: PNASA6; ISSN: 0027-8424
 DT Journal
 LA English

L8 ANSWER 16 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1992:421120 CAPLUS
 DN 117:21120
 TI Effects of insulin and insulin-like
 growth factors on neurofilament
 mRNA and tubulin mRNA content in human
 neuroblastoma SH-SY5Y cells
 AU Wang, C.; Li, Y.; Wible, B.; Angelides,
 K. J.; Ishii, D. N.

CS Dep. Physiol., Colorado State Univ.,
 Fort Collins, CO, 80523, USA
 SO Mol. Brain Res. (1992), 13(4), 289-300
 CODEN: MBREE4; ISSN: 0169-328X
 DT Journal
 LA English

L8 ANSWER 17 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1992:99392 CAPLUS
 DN 116:99392
 TI Second messengers mediating gene
 expression essential to neurite
 formation directed by insulin and
 insulin-like growth factors
 AU Ishii, Douglas N.; Wang, Chiang; Li, Yi
 CS Physiol. Dep., Colorado State Univ.,
 Fort Collins, CO, 80523, USA
 SO Adv. Exp. Med. Biol. (1991), 293(Mol.
 Biol. Physiol. Insulin
 Insulin-Like Growth Factors), 361-78
 CODEN: AEMBAP; ISSN: 0065-2598
 DT Journal; General Review
 LA English

L8 ANSWER 18 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1990:16837 CAPLUS
 DN 112:16837
 TI Stabilization of tubulin mRNAs by
 insulin and insulin-like growth
 factor I during neurite formation
 AU Fernyhough, P.; Mill, J. F.; Roberts, J.
 L.; Ishii, D. N.
 CS Dep. Physiol., Colorado State Univ.,
 Fort Collins, CO, 80523, USA
 SO Mol. Brain Res. (1989), 6(2-3), 109-20
 CODEN: MBREE4; ISSN: 0169-328X
 DT Journal
 LA English

L8 ANSWER 19 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1989:206568 CAPLUS
 DN 110:206568
 TI Relationship of insulin-like growth
 factor II gene expression in
 muscle to synaptogenesis
 AU Ishii, Douglas N.
 CS Dep. Physiol., Colorado State Univ.,
 Fort Collins, CO, 80523, USA
 SO Proc. Natl. Acad. Sci. U. S. A. (1989),
 86(8), 2898-702
 CODEN: PNASA6; ISSN: 0027-8424
 DT Journal
 LA English

L8 ANSWER 20 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1988:448522 CAPLUS
 DN 109:48522
 TI Insulin and related growth factors:
 effects on the nervous system
 and mechanism for neurite growth and
 regeneration
 AU Recio-Pinto, E.; Ishii, D. N.
 CS Med. Cent., Cornell Univ., New York, NY,
 10021, USA
 SO Neurochem. Int. (1988), 12(4), 397-414
 CODEN: NEUIDS; ISSN: 0197-0186
 DT Journal; General Review
 LA English

L8 ANSWER 21 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1988:198730 CAPLUS
 DN 108:198730
 TI Insulin and insulinlike growth factor receptors regulating neurite formation in cultured human neuroblastoma cells
 AU Recio-Pinto, E.; Ishii, Douglas N.
 CS Med. Coll., Cornell Univ., New York, NY, USA
 SO J. Neurosci. Res. (1988), 19(3), 312-20
 CODEN: JNREDK; ISSN: 0360-4012
 DT Journal
 LA English

L8 ANSWER 22 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1987:150522 CAPLUS
 DN 106:150522
 TI Rat insulin-like growth factor II gene. A single gene with two promoters expressing a multitranscript family
 AU Soares, Marcelo Bento; Turken, Arthur; Ishii, Douglas;
 Mills, Leslie; Episkopou, Vasso; Cotter, Sean; Zeitlin, Scott;
 Efstratiadis, Argiris
 CS Dep. Genet. Dev., Columbia Univ., New York, NY, 10032, USA
 SO J. Mol. Biol. (1986), 192(4), 737-52
 CODEN: JMBAK; ISSN: 0022-2836
 DT Journal
 LA English

L8 ANSWER 23 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1986:455253 CAPLUS
 DN 105:55253
 TI Effects of insulin, insulin-like growth factor-II, and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons
 AU Recio-Pinto, Esperanza; Rechler, Matthew M.; Ishii, Douglas N.
 CS Lab. Biochem. Pharmacol., Natl. Inst. Arthritis, Metabol., Dig. Dis., Bethesda, MD, 20205, USA
 SO J. Neurosci. (1986), 6(5), 1211-9
 CODEN: JNRSDS; ISSN: 0270-6474
 DT Journal
 LA English

L8 ANSWER 24 OF 43 CAPLUS COPYRIGHT 1998
 ACS
 AN 1984:433669 CAPLUS
 DN 101:33669
 TI Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells
 AU Recio-Pinto, Esperanza; Ishii, Douglas N.
 CS Coll. Phys. Surg., Columbia Univ., New York, NY, 10032, USA
 SO Brain Res. (1984), 302(2), 323-34
 CODEN: BRREAP; ISSN: 0006-8993
 DT Journal
 LA English

L8 ANSWER 25 OF 43 MEDLINE

AN 97476094 MEDLINE
 DN 97476094
 TI Insulin-like growth factor (IGF) gene expression is reduced in neural tissues and liver from rats with non-insulin-dependent diabetes mellitus, and IGF treatment ameliorates diabetic neuropathy.
 AU Zhuang H X; Wuarin L; Fei Z J; Ishii D N
 CS Department of Physiology, Colorado State University, Fort Collins 80523, USA.
 NC R01-DK539222 (NIDDK)
 SO JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, (1997 Oct) 283 (1) 366-74.
 Journal code: JP3. ISSN: 0022-3565.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199801
 EW 19980104

L8 ANSWER 26 OF 43 MEDLINE
 AN 96363028 MEDLINE
 DN 96363028
 TI Differential spatio-temporal expression of the insulin-like growth factor genes in regenerating sciatic nerve.
 AU Pu S F; Zhuang H X; Ishii D N
 CS Department of Physiology, Colorado State University, Fort Collins 80523, USA.
 NC P01 NS28323 (NINDS)
 SO BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH, (1995 Dec 1) 34 (1) 18-28.
 Journal code: MBR. ISSN: 0169-328X.
 CY Netherlands
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199703
 EW 19970303

L8 ANSWER 27 OF 43 MEDLINE
 AN 96340157 MEDLINE
 DN 96340157
 TI Brain insulin-like growth factor-II mRNA content is reduced in insulin-dependent and non-insulin-dependent diabetes mellitus.
 AU Wuarin L; Namdev R; Burns J G; Fei Z J; Ishii D N
 CS Department of Physiology, Colorado State University, Fort Collins 805231, USA.
 NC R01 NS24327 (NINDS)
 SO JOURNAL OF NEUROCHEMISTRY, (1996 Aug) 67 (2) 742-51.
 Journal code: JAV. ISSN: 0022-3042.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199611

L8 ANSWER 28 OF 43 MEDLINE
 AN 96309674 MEDLINE
 DN 96309674
 TI Insulin-like growth factors reverse or arrest diabetic neuropathy:

effects on hyperalgesia and impaired nerve regeneration in rats.
 AU Zhuang H X; Snyder C K; Pu S F; Ishii D N
 CS Department of Physiology, Colorado State University, Fort Collins 80523, USA.
 NC RO1 NS 24327 (NINDS)
 SO EXPERIMENTAL NEUROLOGY, (1996 Aug) 140 (2) 198-205.
 Journal code: EQF. ISSN: 0014-4886.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199610
 L8 ANSWER 29 OF 43 MEDLINE
 AN 96074488 MEDLINE
 DN 96074488
 TI Insulinlike growth factor gene expression in rat muscle during reinnervation.
 AU Glazner G W; Ishii D N
 CS Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523, USA..
 NC PO1 NS28323 (NINDS)
 SO MUSCLE AND NERVE, (1995 Dec) 18 (12) 1433-42.
 Journal code: NN9. ISSN: 0148-639X.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199602
 L8 ANSWER 30 OF 43 MEDLINE
 AN 95230709 MEDLINE
 DN 95230709
 TI Insulin-like growth factors protect against diabetic neuropathy: effects on sensory nerve regeneration in rats.
 AU Ishii D N; Lupien S B
 CS Department of Physiology, Colorado State University, Fort Collins 80523..
 NC RO1 NS23427 (NINDS)
 SO JOURNAL OF NEUROSCIENCE RESEARCH, (1995 Jan 1) 40 (1) 138-44.
 Journal code: KAC. ISSN: 0360-4012.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199507
 L8 ANSWER 31 OF 43 MEDLINE
 AN 95227210 MEDLINE
 DN 95227210
 TI Implication of insulin-like growth factors in the pathogenesis of diabetic neuropathy.
 AU Ishii D N
 CS Department of Physiology, Colorado State University, Fort Collins 80523, USA..
 NC RO1NS24327 (NINDS)
 SO BRAIN RESEARCH. BRAIN RESEARCH REVIEWS, (1995 Jan) 20 (1) 47-67.
 Ref: 239
 Journal code: BRS. ISSN: 0165-0173.
 CY Netherlands
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199507
 L8 ANSWER 32 OF 43 MEDLINE
 AN 95172323 MEDLINE
 DN 95172323
 TI Reduced insulin-like growth factor-I mRNA content in liver, adrenal glands and spinal cord of diabetic rats.
 AU Ishii D N; Guertin D M; Whalen L R
 CS Department of Physiology, Colorado State University, Fort Collins 80523..
 NC RO1 NS24327 (NINDS)
 SO DIABETOLOGIA, (1994 Nov) 37 (11) 1073-81.
 Journal code: E93. ISSN: 0012-186X.
 CY GERMANY: Germany, Federal Republic of
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199506
 L8 ANSWER 33 OF 43 MEDLINE
 AN 95121409 MEDLINE
 DN 95121409
 TI Early reduction in insulin-like growth factor gene expression in diabetic nerve.
 AU Wuarin L; Guertin D M; Ishii D N
 CS Department of Physiology, Colorado State University, Fort Collins 80523..
 NC RO1 NS24327 (NINDS)
 SO EXPERIMENTAL NEUROLOGY, (1994 Nov) 130 (1) 106-14.
 Journal code: EQF. ISSN: 0014-4886.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199504
 L8 ANSWER 34 OF 43 MEDLINE
 AN 95107044 MEDLINE
 DN 95107044
 TI Elevated insulin-like growth factor (IGF) gene expression in sciatic nerves during IGF-supported nerve regeneration.
 AU Glazner G W; Morrison A E; Ishii D N
 CS Department of Physiology, Colorado State University, Fort Collins 80523.
 NC PO1 NS28323 (NINDS)
 SO BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH, (1994 Sep) 25 (3-4) 265-72.
 Journal code: MBR. ISSN: 0169-328X.
 CY Netherlands
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199504
 L8 ANSWER 35 OF 43 MEDLINE
 AN 95083707 MEDLINE
 DN 95083707
 TI Role of insulin-like growth factors in peripheral nerve

regeneration.
 AU Ishii D N; Glazner G W; Pu S F
 CS Department of Physiology, Colorado State University, Fort Collins 80523..
 NC 1P01 NS28323 (NINDS)
 SO PHARMACOLOGY AND THERAPEUTICS, (1994 Apr-May) 62 (1-2) 125-44. Ref: 135
 Journal code: P44. ISSN: 0163-7258.
 CY ENGLAND: United Kingdom
 DT Journal; Article; (JOURNAL ARTICLE) General Review; (REVIEW, TUTORIAL)
 LA English
 FS Priority Journals
 EM 199503

L8 ANSWER 36 OF 43 MEDLINE
 AN 93101597 MEDLINE
 DN 93101597
 TI Insulin-like growth factor II stimulates motor nerve regeneration.
 AU Near S L; Whalen L R; Miller J A; Ishii D N
 CS Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523..
 NC RO1 NS24787 (NINDS)
 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, (1992 Dec 15) 89 (24) 11716-20.
 Journal code: PV3. ISSN: 0027-8424.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals; Cancer Journals
 EM 199303

L8 ANSWER 37 OF 43 MEDLINE
 AN 92326572 MEDLINE
 DN 92326572
 TI Effects of insulin and insulin-like growth factors on neurofilament mRNA and tubulin mRNA content in human neuroblastoma SH-SY5Y cells.
 AU Wang C; Li Y; Wible B; Angelides K J; Ishii D N
 CS Department of Physiology, Colorado State University, Fort Collins 80523..
 NC P01 NS28323 (NINDS)
 RO1 NS24787 (NINDS)
 NS26733 (NINDS)
 SO BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH, (1992 May) 13 (4) 289-300. Journal code: MBR. ISSN: 0169-328X.
 CY Netherlands
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199210

L8 ANSWER 38 OF 43 MEDLINE
 AN 90135914 MEDLINE
 DN 90135914
 TI Stabilization of tubulin mRNAs by insulin and insulin-like growth factor I during neurite formation.
 AU Fernyough P; Mill J F; Roberts J L; Ishii D N
 CS Department of Physiology, Colorado State University, Fort Collins

80523.
 NC RO1 NS 24327 (NINDS)
 SO BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH, (1989 Nov) 6 (2-3) 109-20. Journal code: MBR. ISSN: 0169-328X.
 CY Netherlands
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 199005

L8 ANSWER 39 OF 43 MEDLINE
 AN 89202433 MEDLINE
 DN 89202433
 TI Relationship of insulin-like growth factor II gene expression in muscle to synaptogenesis.
 AU Ishii D N
 CS Department of Physiology, Colorado State University, Fort Collins 80523..
 NC RO1 NS24787 (NINDS)
 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, (1989 Apr) 86 (8) 2898-902. Journal code: PV3. ISSN: 0027-8424.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals; Cancer Journals
 EM 198907

L8 ANSWER 40 OF 43 MEDLINE
 AN 88245201 MEDLINE
 DN 88245201
 TI Insulin and insulinlike growth factor receptors regulating neurite formation in cultured human neuroblastoma cells.
 AU Recio-Pinto E; Ishii D N
 CS Department of Anesthesiology, Medical College, Cornell University, New York, New York.
 NC RO1 NS24787 (NINDS)
 SO JOURNAL OF NEUROSCIENCE RESEARCH, (1988 Mar) 19 (3) 312-20. Journal code: KAC. ISSN: 0360-4012.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 198809

L8 ANSWER 41 OF 43 MEDLINE
 AN 87226166 MEDLINE
 DN 87226166
 TI Rat insulin-like growth factor II gene. A single gene with two promoters expressing a multitranscript family.
 AU Soares M B; Turken A; Ishii D; Mills L; Episkopou V; Cotter S; Zeitlin S; Efstratiadis A
 SO JOURNAL OF MOLECULAR BIOLOGY, (1986 Dec 20) 192 (4) 737-52. Journal code: JMB. ISSN: 0022-2836.
 CY ENGLAND: United Kingdom
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals; Cancer Journals
 EM 198709

L8 ANSWER 42 OF 43 MEDLINE
 AN 86226464 MEDLINE

DN 86226464
 TI Effects of insulin, insulin-like growth factor-II, and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons.
 AU Recio-Pinto E; Rechler M M; Ishii D N
 NC R01 AM32841 (NIADDK)
 SO JOURNAL OF NEUROSCIENCE, (1986 May) 6 (5) 1211-9.
 Journal code: JDF. ISSN: 0270-6474.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 198609

 L8 ANSWER 43 OF 43 MEDLINE
 AN 84233406 MEDLINE
 DN 84233406
 TI Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells.
 AU Recio-Pinto E; Ishii D N
 NC R01 NS 14218 (NINDS)
 R01 AM32841 (NIADDK)
 1K04 NS 00375 (NINDS)
 +
 SO BRAIN RESEARCH, (1984 Jun 8) 302 (2) 323-34.
 Journal code: B5L. ISSN: 0006-8993.
 CY Netherlands
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Priority Journals
 EM 198410

 => file uspatfull

 COST IN U.S. DOLLARS
 SINCE FILE TOTAL

 ENTRY SESSION
 FULL ESTIMATED COST
 49.22 170.82

 FILE 'USPATFULL' ENTERED AT 20:34:45 ON 26 APR 1998
 CA INDEXING COPYRIGHT (C) 1998 AMERICAN CHEMICAL SOCIETY (ACS)

 FILE COVERS 1971 TO PATENT PUBLICATION DATE:
 21 Apr 1998 (19980421/PD)
 FILE LAST UPDATED: 22 Apr 1998 (19980422/ED)
 HIGHEST PATENT NUMBER: US5742935
 CA INDEXING IS CURRENT THROUGH 22 Apr 1998 (19980422/UPCA)
 ISSUE CLASS FIELDS (/INCL) CURRENT THROUGH:
 21 Apr 1998 (19980421/PD)
 REVISED CLASS FIELDS (/NCL) LAST RELOADED:
 JAN 1998
 USPTO MANUAL OF CLASSIFICATIONS THESAURUS
 ISSUE DATE: Feb 1998

>>> Complete CA file indexing for chemical patents (or equivalents) <<<
 >>> is included in file records. A thesaurus is available for the <<<
 >>> USPTO Manual of Classifications in the /NCL, /INCL, and /RPCL <<<
 >>> fields. This thesaurus includes catchword terms from the <<<
 >>> USPTO/MOC subject headings and subheadings. Thesauri are also <<<
 >>> available for the WIPO International Patent Classification <<<
 >>> (IPC) Manuals, editions 1-6, in the /IC1, /IC2, /IC3, /IC4, <<<
 >>> /IC5, and /IC (/IC6) fields, respectively. The thesauri in <<<
 >>> the /IC5 and /IC fields include the corresponding catchword <<<
 >>> terms from the IPC subject headings and subheadings. <<<

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> e ishii, d/in

| | | |
|-----|-------|----------------------|
| E1 | 2 | ISHII YUKO/IN |
| E2 | 4 | ISHII YUWA/IN |
| E3 | 0 --> | ISHII, D/IN |
| E4 | 1 | ISHIIDE HIDENORI/IN |
| E5 | 7 | ISHIZUMI SEIICHI/IN |
| E6 | 1 | ISHIJIMA AKIRA/IN |
| E7 | 2 | ISHIJIMA CHIEKO/IN |
| E8 | 8 | ISHIJIMA HIROSHI/IN |
| E9 | 1 | ISHIJIMA HIROYASU/IN |
| E10 | 2 | ISHIJIMA HISASHI/IN |
| E11 | 1 | ISHIJIMA ICHIRO/IN |
| E12 | 1 | ISHIJIMA KEIZO/IN |

=> e ishii d/au

| | | |
|-----|-------|---------------------------|
| E1 | 2 | ISHII CHIHO/AU |
| E2 | 1 | ISHII CHISEKI/AU |
| E3 | 0 --> | ISHII D/AU |
| E4 | 2 | ISHII DAIDO/AU |
| E5 | 2 | ISHII DAIROKU/AU |
| E6 | 12 | ISHII DAISUKE/AU |
| E7 | 1 | ISHII DECEASED HISAO/AU |
| E8 | 1 | ISHII DECEASED RYOICHI/AU |
| E9 | 13 | ISHII EIICHI/AU |
| E10 | 3 | ISHII EIJI/AU |
| E11 | 1 | ISHII ETUMI/AU |
| E12 | 13 | ISHII FUMIAKI/AU |

>>> Page images are available for patents from 1/1/95. Current <<<
 >>> week patent text is typically loaded by Thursday morning and <<<
 >>> page images are available for display by the end of the day. <<<
 >>> Image data for the /FA field are available the following week. <<<