PROBABILITY & STATISTICS

Lecture 8 – More on Normal distribution

HOW TO COMPUTE PROBABILITIES?

Let's start with the standard normal distribution.

 $X \sim N(10, 2^2)$ $P(2 < X \le 6) =$

	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
Ì	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
ı	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
l	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
l	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
l	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
l	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
l	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
l	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
l	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
l	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
l	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
l	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
1	<u>J</u> 9.41	1969940	4959997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
·											

$$X \sim N(10, 2^{2})$$

$$P(2 < X \le 6) =$$

$$= P(2 - 10 < X - 10 \le 6 - 10) =$$

$$= P\left(\frac{2 - 10}{2} < \frac{X - 10}{2} \le \frac{6 - 10}{2}\right) =$$

$$= P\left(-4 < \frac{X - 10}{2} \le -2\right) =$$

2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.	$.2 \mid 0.5793$	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.	$.3 \mid 0.6179$	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.	$4 \mid 0.6554$	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.	$.5 \mid 0.6918$	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.	6 0.7257	7 0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.	.8 0.788	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.	$.9 \mid 0.8159$	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.	1 0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.	.2 0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.	$4 \mid 0.9192$	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.	$.5 \mid 0.9332$	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.	6 0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.	.8 0.964	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.	$.9 \mid 0.9713$	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.	.2 0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.	.3 0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.	$4 \mid 0.9918$	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.	$.5 \mid 0.9938$	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.	$6 \mid 0.9953$	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.	.8 0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.	$.9 \mid 0.9981$	1 - 0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.	.0 0.9987	7 0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.	.1 0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.	.2 0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
.3.			0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
- J ₃	14 0 1.999	;U <i>2</i> 039997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$$X \sim N(10, 2^{2})$$

$$P(2 < X \le 6) =$$

$$= P(2 - 10 < X - 10 \le 6 - 10) =$$

$$= P\left(\frac{2 - 10}{2} < \frac{X - 10}{2} \le \frac{6 - 10}{2}\right) =$$

$$= P\left(-4 < \frac{X - 10}{2} \le -2\right) =$$

$$= \Phi(2) - \Phi(-4) =$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
] ցրը	1 a rggg20	2039997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$$X \sim N(10,2^{2})$$

$$P(2 < X \le 6) =$$

$$= P(2 - 10 < X - 10 \le 6 - 10) =$$

$$= P\left(\frac{2 - 10}{2} < \frac{X - 10}{2} \le \frac{6 - 10}{2}\right) =$$

$$= P\left(-4 < \frac{X - 10}{2} \le -2\right) =$$

$$= \Phi(-2) - \Phi(-4) =$$

$$= 1 - \Phi(0.2) - 1 + \Phi(0.4) =$$

$$1 - 0.9772 - 1 + 1$$
Probability & Statistics

	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
s -	J <u>a</u> .pu		2039997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

WHAT % IS WITHIN 1σ , 2σ OR 3σ FROM THE MEAN?

$$X \sim N(\mu, \sigma)$$

$$P(\mu - \sigma < X \le \mu + \sigma) =$$

$$X \sim N(\mu, \sigma)$$

$$P(\mu - \sigma < X \le \mu + \sigma) =$$

$$= P(-\sigma < X - \mu \le \sigma) =$$

$$X \sim N(\mu, \sigma)$$

$$P(\mu - \sigma < X \le \mu + \sigma) =$$

$$= P(-\sigma < X - \mu \le \sigma) =$$

$$= P\left(-1 < \frac{X - \mu}{\sigma} \le 1\right) \cong$$

$$X \sim N(\mu, \sigma)$$

$$P(\mu - \sigma < X \le \mu + \sigma) =$$

$$= P(-\sigma < X - \mu \le \sigma) =$$

$$= P\left(-1 < \frac{X - \mu}{\sigma} \le 1\right) \cong$$

$$X \sim N(\mu, \sigma)$$

$$P(\mu - \sigma < X \le \mu + \sigma) =$$

$$= P(-\sigma < X - \mu \le \sigma) =$$

$$= P\left(-1 < \frac{X - \mu}{\sigma} \le 1\right) \cong$$

$$\cong 2\Phi(1) - 1 =$$

$$X \sim N(\mu, \sigma)$$

$$P(\mu - \sigma < X \le \mu + \sigma) =$$

$$= P(-\sigma < X - \mu \le \sigma) =$$

$$= P\left(-1 < \frac{X - \mu}{\sigma} \le 1\right) \cong$$

$$\approx 2 * 0.84134 - 1 \approx 0.6827$$

$$X \sim N(\mu, \sigma)$$

$$P(\mu - 2\sigma < X \le \mu + 2\sigma) =$$

$$= P(-2\sigma < X - \mu \le 2\sigma) =$$

$$= P\left(-2 < \frac{X - \mu}{\sigma} \le 2\right) \cong$$

$$\cong 2\Phi(2) - 1 \cong 0.9545$$

$$X \sim N(\mu, \sigma)$$

$$P(\mu - 3\sigma < X \le \mu + 3\sigma) =$$

$$= P(-3\sigma < X - \mu \le 3\sigma) =$$

$$= P\left(-3 < \frac{X - \mu}{\sigma} \le 3\right) \cong$$

$$\cong 2\Phi(3) - 1 \cong 0.9973$$

WHAT % IS WITHIN 1σ , 2σ OR 3σ FROM THE MEAN?

 Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

What is the probability of an individual scoring above 500 on the GMAT?

$$X \sim N(527, 112^2)$$

$$P(X > 500) = 1 - P(X \le 500) =$$

• Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

What is the probability of an individual scoring above 500 on the GMAT?

$$X \sim N(527, 112^2)$$

 $P(X > 500) = 1 - P(X \le 500) = 1 - P\left(\frac{X - 527}{112} \le \frac{500 - 527}{112}\right) = 1 - \Phi(-0.241) = 1 - 1 + \Phi(0.241) = 0.4948$

• Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

• Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

$$X \sim N(527, 112^2)$$

• Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

$$X \sim N(527, 112^2)$$

 x^* : $P(X > x^*) = 0.05$, $x^* = ?$

• Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

$$X \sim N(527, 112^2)$$

 x^* : $P(X > x^*) = 0.05$, $x^* = ?$

$$0.05 = P(X > x^*) =$$

• Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

$$X \sim N(527, 112^{2})$$

$$x^{*} \colon P(X > x^{*}) = 0.05, \quad x^{*} = ?$$

$$0.05 = P(X > x^{*}) = P\left(\frac{X - 527}{112} > \frac{x^{*} - 527}{112}\right)$$

$$= 1 - P\left(\frac{X - 527}{112} \le \frac{x^{*} - 527}{112}\right) \longleftrightarrow$$

• Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

$$X \sim N(527, 112^{2})$$

$$x^{*} \colon P(X > x^{*}) = 0.05, \quad x^{*} = ?$$

$$0.05 = P(X > x^{*}) = P\left(\frac{X - 527}{112} > \frac{x^{*} - 527}{112}\right)$$

$$= 1 - P\left(\frac{X - 527}{112} \le \frac{x^{*} - 527}{112}\right) \longleftrightarrow \Phi\left(\frac{x^{*} - 527}{112}\right) = 0.95 \longleftrightarrow$$

• Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

$$X \sim N(527, 112^{2})$$

$$x^{*} \colon P(X > x^{*}) = 0.05, \quad x^{*} = ?$$

$$0.05 = P(X > x^{*}) = P\left(\frac{X - 527}{112} > \frac{x^{*} - 527}{112}\right)$$

$$= 1 - P\left(\frac{X - 527}{112} \le \frac{x^{*} - 527}{112}\right) \longleftrightarrow \Phi\left(\frac{x^{*} - 527}{112}\right) = 0.95 \longleftrightarrow \frac{x^{*} - 527}{112} = \Phi^{-1}(0.95)$$

• Given 0 < q < 1, answer the question:

• Given 0 < q < 1, answer the question:

What is the value x such that $P(X \le x) = q$?

• Given 0 < q < 1, answer the question:

What is the value x such that $P(X \le x) = q$? x - q-quantile.

• $X \sim N(0,1)$. What is the value x such that $P(X \le x) = 0.95$?

• $X \sim N(0,1)$. What is the value x such that $P(X \le x) = 0.95$?

$$x: \Phi(x) = 0.95 \iff$$

• $X \sim N(0,1)$. What is the value x such that $P(X \le x) = 0.95$?

$$x: \Phi(x) = 0.95 \iff x = \Phi^{-1}(0.95)$$

• $X \sim N(0,1)$. What is the value x such that $P(X \le x) = 0.95$?

$$x: \Phi(x) = 0.95 \iff x = \Phi^{-1}(0.95)$$

How to compute this? There are tables!

$$x =$$

α	0.9	0.95	0.975	0.99	0.995	0.999
z_{α}	1.282	1.645	1.960	2.326	2.576	3.090

$$x = \Phi^{-1}(0.95) = 1.645$$

	0.9	1-1-1-1/2 (27-2-1-27-1)	The Address of the Control of the Co			
z_{α}	1.282	1.645	1.960	2.326	2.576	3.090

	565555555					0.999
z_{α}	1.282	1.645	1.960	2.326	2.576	3.090

$$P(X \le x) = 0.95$$

	0.9					
z_{lpha}	1.282	1.645	1.960	2.326	2.576	3.090

$$P(X \le x) = 0.95$$

$$P\left(\frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}\right) = 0.95$$

α	0.9	0.95	0.975	0.99	0.995	0.999
z_{lpha}	1.282	1.645	1.960	2.326	2.576	3.090

$$P(X \le x) = 0.95$$

$$P\left(\frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}\right) = 0.95$$
$$\frac{x-\mu}{\sigma} = \Phi^{-1}(0.95)$$

α	0.9	0.95	0.975	0.99	0.995	0.999
z_{lpha}	1.282	1.645	1.960	2.326	2.576	3.090

$$P(X \le x) = 0.95$$

$$P\left(\frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}\right) = 0.95$$
$$\frac{x-\mu}{\sigma} = \Phi^{-1}(0.95)$$

$$x = \sigma \Phi^{-1}(0.95) + \mu$$

α	0.9	0.95	0.975	0.99	0.995	0.999
z_{α}	1.282	1.645	1.960	2.326	2.576	3.090

$$P(X \le x) = 0.95$$

α	0.9	0.95	0.975	0.99	0.995	0.999
z_{lpha}	1.282	1.645	1.960	2.326	2.576	3.090

$$P(X \le x) = 0.95$$

$$P\left(\frac{X-10}{6} \le \frac{x-10}{6}\right) = 0.95$$

		0.95				
z_{α}	1.282	1.645	1.960	2.326	2.576	3.090

$$P(X \le x) = 0.95$$

$$P\left(\frac{X-10}{6} \le \frac{x-10}{6}\right) = 0.95$$

$$\frac{x-10}{6} = \Phi^{-1}(0.95)$$

		0.95				
z_{α}	1.282	1.645	1.960	2.326	2.576	3.090

$$P(X \le x) = 0.95$$

$$P\left(\frac{X-10}{6} \le \frac{x-10}{6}\right) = 0.95$$

$$\frac{x-10}{6} = \Phi^{-1}(0.95)$$

$$x = 6\Phi^{-1}(0.95) + 10 = 19.84$$

10000	14.55000.000	0.95	1/12/2019/2019 2017/2019			
z_{α}	1.282	1.645	1.960	2.326	2.576	3.090

GMAT

• Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

How high must an individual score in order to be in the top 5%?

$$X \sim N(527, 112^{2})$$

$$x^{*} \colon P(X > x^{*}) = 0.05, \quad x^{*} = ?$$

$$0.05 = P(X > x^{*}) = P\left(\frac{X - 527}{112} > \frac{x^{*} - 527}{112}\right)$$

$$= 1 - P\left(\frac{X - 527}{112} \le \frac{x^{*} - 527}{112}\right) \leftrightarrow \Phi\left(\frac{x^{*} - 527}{112}\right) = 0.95 \leftrightarrow \frac{x^{*} - 527}{112} =$$

GMAT

• Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

How high must an individual score in order to be in the top 5%?

$$X \sim N(527, 112^{2})$$

$$x^{*}: \quad P(X > x^{*}) = 0.05, \qquad x^{*} = ?$$

$$0.05 = P(X > x^{*}) = P\left(\frac{X - 527}{112} > \frac{x^{*} - 527}{112}\right)$$

$$= 1 - P\left(\frac{X - 527}{112} \le \frac{x^{*} - 527}{112}\right) \leftrightarrow \Phi\left(\frac{x^{*} - 527}{112}\right) = 0.95 \leftrightarrow \frac{x^{*} - 527}{112} = \mathbf{1.645}$$

GMAT

• Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.

How high must an individual score in order to be in the top 5%?

$$x \sim N(527, 112^{2})$$

$$x^{*} \colon P(X > x^{*}) = 0.05, \quad x^{*} = ?$$

$$0.05 = P(X > x^{*}) = P\left(\frac{X - 527}{112} > \frac{x^{*} - 527}{112}\right)$$

$$= 1 - P\left(\frac{X - 527}{112} \le \frac{x^{*} - 527}{112}\right) \leftrightarrow \Phi\left(\frac{x^{*} - 527}{112}\right) = 0.95 \leftrightarrow \frac{x^{*} - 527}{112} = 1.645$$

$$x^{*} = 112 \cdot 1.645 + 527 = 711.24$$

$$x = -$$

Quantile (p)	$\Phi^{-1}(p, 0, 1)$
0.995	2.58
0.99	2.33
0.975	1.96
0.95	1.64
0.9	1.28

$$x = -\Phi^{-1}(0.95) = -1.64$$

Quantile (p)	$\Phi^{-1}(p, 0, 1)$
0.995	2.58
0.99	2.33
0.975	1.96
0.95	1.64
0.9	1.28

PRACTICAL EXERCISE

Google Classroom -> Day 8 -> Probabilities from the normal distribution

 A linear combination of independent random variables having a normal distribution also has a normal distribution:

$$X_1, X_2, \dots, X_n$$
 - independent
$$X_i \sim N\left(\mu_i, \sigma_i^2\right)$$

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n \Rightarrow$$

• A linear combination of independent random variables having a normal distribution also has a normal distribution:

$$X_1, X_2, \dots, X_n$$
 - independent
$$X_i \sim N(\mu_i, \sigma_i^2)$$

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n \Rightarrow$$

$$Y \sim N(\mu_Y, \sigma_Y^2)$$

• A linear combination of independent random variables having a normal distribution also has a normal distribution:

$$X_1, X_2, \dots, X_n$$
 - independent
$$X_i \sim N\left(\mu_i, \sigma_i^2\right)$$

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n \Rightarrow$$

$$Y \sim N\left(\mu_Y, \sigma_Y^2\right)$$
 , $\sigma_Y^2 =$

Probability & Statistics - January 2023

• A linear combination of independent random variables having a normal distribution also has a normal distribution:

$$X_1, X_2, \dots, X_n$$
 - independent
$$X_i \sim N\left(\mu_i, \sigma_i^2\right)$$

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n \Rightarrow$$

$$Y \sim N\left(\mu_Y, \sigma_Y^2\right)$$

$$\mu_Y = a_1 \mu_1 + a_2 \mu_2 + \dots + a_n \mu_n, \qquad \sigma_Y^2 =$$

 A linear combination of independent random variables having a normal distribution also has a normal distribution:

$$X_1, X_2, \dots, X_n$$
 - independent
$$X_i \sim N(\mu_i, \sigma_i^2)$$

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n \Rightarrow$$

$$Y \sim N(\mu_Y, \sigma_Y^2)$$

$$\mu_Y = a_1 \mu_1 + a_2 \mu_2 + \dots + a_n \mu_n, \qquad \sigma_Y^2 = a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + \dots + a_n^2 \sigma_n^2$$

Why normal distribution is so important

In the video:

• Instead of measuring every single rabbit, weigh samples of size N and compute sample means.

In the video:

- Instead of measuring every single rabbit, weigh samples of size N and compute sample means.
- Central limit theorem (informally): the larger the N, the more "normal" the distribution of the sample averages is.

Samples $X_1, X_2, ..., X_n$:

- i.i.d.
- a finite mean μ and finite variance σ^2

Samples $X_1, X_2, ..., X_n$:

- i.i.d.
- a finite mean μ and finite variance σ^2

Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Samples $X_1, X_2, ..., X_n$:

- i.i.d.
- a finite mean μ and finite variance σ^2

Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Then

$$\bar{X}_n \approx N \left(\right)$$

Samples $X_1, X_2, ..., X_n$:

- i.i.d.
- a finite mean μ and finite variance σ^2

Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Then

$$\bar{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$

- $X \sim Po(5)$ number of errors per computer program
 - E(X) = Var(X) = 5
- $X_1, X_2, ..., X_{125}$ number of errors in the programs.

$$P(\overline{X}_n \leq 5.5) =$$

- $X \sim Po(5)$ number of errors per computer program
 - E(X) = Var(X) = 5
- $X_1, X_2, ..., X_{125}$ number of errors in the programs.

$$P(\bar{X}_n \le 5.5) =$$

$$= P\left(\frac{\sqrt{125}(\bar{X}_n - 5)}{\sqrt{5}} \le \right) \approx$$

- $X \sim Po(5)$ number of errors per computer program
 - E(X) = Var(X) = 5
- $X_1, X_2, ..., X_{125}$ number of errors in the programs.

$$P(\bar{X}_n \le 5.5) =$$

$$= P\left(\frac{\sqrt{125}(\bar{X}_n - 5)}{\sqrt{5}} \le \frac{\sqrt{125}(5.5 - 5)}{\sqrt{5}}\right) \approx$$

- $X \sim Po(5)$ number of errors per computer program
 - E(X) = Var(X) = 5
- $X_1, X_2, ..., X_{125}$ number of errors in the programs.

$$P(\bar{X}_n \le 5.5) =$$

$$= P\left(\frac{\sqrt{125}(\bar{X}_n - 5)}{\sqrt{5}} \le \frac{\sqrt{125}(5.5 - 5)}{\sqrt{5}}\right) \approx$$

$$\approx P(Z \le 2.5) =$$

- $X \sim Po(5)$ number of errors per computer program
 - E(X) = Var(X) = 5
- $X_1, X_2, ..., X_{125}$ number of errors in the programs.

$$P(\bar{X}_n \le 5.5) =$$

$$= P\left(\frac{\sqrt{125}(\bar{X}_n - 5)}{\sqrt{5}} \le \frac{\sqrt{125}(5.5 - 5)}{\sqrt{5}}\right) \approx$$

$$\approx P(Z \le 2.5) = 0.9938$$

CLT IN ACTION

Google Classroom -> Lecture 7 -> Mean of means