Open and Reproducible Fisheries Science

Standardized workflows at ICES and FAO

Arni Magnusson¹, Colin Millar², Rishi Sharma³

- ¹ Pacific Community (SPC), Nouméa, New Caledonia
- ² International Council for the Exploration of the Sea (ICES), Copenhagen, Denmark
- ³ UN Food and Agriculture Organization (FAO), Rome, Italy

CAPAM Good Practices Workshop Rome, 24 Oct 2022

Overview

Why repeatability, institutional memory, reviewability, scientific method, interregional research, dissemination, collaboration, traceability, credibility

Open *scripts, data, software*

Reproducible standardized sequential R scripts, version control

Infrastructure 2021 UN Recommendation on Open Science, working group, GitHub. TAF. data management. ICES. FAO. GFCM. SPC

GITHUB, TAF, data management, ICES, FAO, GFCM, SPC

Recommendations relative paths, dependencies, 1st and 2nd class scripts, complete workflow, data preparation, partially open

Why open and reproducible

Peer reviewability and reproducibility are **core principles** underpinning the **scientific method**

- → Reproducibility distinguishes between arbitrary analyses and science
- ightarrow Some assessments are more reviewable than others

Easy to pick up a stock assessment from a previous year and run an **update** assessment

ightarrow Especially important when a new scientist is doing the assessment

Why open and reproducible (cont)

Easy to modify model settings and rerun the entire workflow

→ Allows more thorough analyses, exploration, improvements

Share data that others can use

- → Dissemination, machine and human readable
- → Interregional research, collaboration

Traceability

 \rightarrow Credibility, buy-in

Compare to 1990s: litdb, photocopy buying software typing numbers

Open

Scripts GitHub

Data Static HTML

 $\mathsf{Git}\mathsf{Hub}$

Data warehouse

Web services

Software GitHub

Releases

How Open?

Not provided online Sensitive data Requires login

Available by request

Part private, part open

Hard to find

Fully open

Easy to find and browse

Reproducible Analysis

Can be run on any computer

By different people
On different operating systems
In different software environments

Can be run later

Next week

Next year

5–10 years from now

Can be modified and rerun

With different data

With different model settings

How Reproducible?

A gradient from low \rightarrow high **quality of science**, in terms of reproducibility:

- 1. Here's the management advice trust me, I did the math
- 2. I used the model published in this paper and here are the data tables and results
- 3. I used these exact equations and preprocessed the data in this manner
- 4. Here are some scripts that give the general idea
- 5. Here are scripts that run on my computer, as a complete workflow without errors
- 6. Here are scripts that should run on your computer, along with all input files and software dependencies
- 7. I've cleaned up the directory to include only files required to run the core analysis, tested on another computer, with exact instructions on how to run
- 8. Adopted a standard reproducible format for the analysis

How to Make an Analysis Reproducible

R scripts Relative paths (data/catch.dat)

Can be run from command line: Rscript myscript.R Manageable size

General structure 1. Load packages

- 2. Read files
- 3. Do the work
- 4. Write files

Standardize further One script prepares data

Another script runs the core analysis

Third script gathers the results

Fourth script produces plots and formatted tables for report

- \Rightarrow Every script is self-contained, reading files from previous steps
- ⇒ Every analysis is structured the same, anyone can pick up and run

Transparent Assessment Framework (TAF)

Supports open and reproducible science

More than anything, an agreed way to work with R scripts

Launched in 2018

Developed by ICES, used around the world

taf.ices.dk

IRAQ ROOM

Transparent Assessment Framework (TAF)

TAF applications

Around 30 ICES stock assessments each year

ICES survey indices

ICES catch at age

ICES fisheries overviews

FAO SOFIA – under development

R packages TAF, icesTAF, SOFIA

Version control - software and data

Data provenance - who, what, where

SOFIA-TAF

Standardized structure to organize the SOFIA analyses

All the fisheries in the world

Converted from monolithic R Markdown to modular scripts

Tiers 1, 2, and 3

Ongoing development at github.com/sofia-taf

R package SOFIA, one place to make changes, affecting all the analyses

SOFIA-TAF

2020 Initial discussions

2021 Prototype analysis of Area 37DatabaseDesign report

2022 SOFIA package 1.0 SOFIA-TAF launch at FAO-CAPAM meeting Workshops in Areas 37, 31, 41

SOFIA-TAF

Open Science Infrastructures

Some examples from fisheries

```
2018 ICES ICES-TAF
2021 FAO GFCM STAR
2022 FAO SOFIA-TAF
2023 SPC Assessment Repos
```

General

Discussion

There are two types of scripts

1. Script that **runs**

relatively short, does one part of the workflow, as reflected by its filename ⇒ to use this script: run it

2. Script that is **essentially a notebook**

longer, does many parts of the workflow, not really intended to run completely from start to finish ⇒ to use this script: open and run selected blocks of code

It's useful to clearly distinguish between these types of scripts (1st and 2nd class) and consider what is most practical for a given project

Discussion

Data preparation is a large part of the stock assessment work

```
Indices survey, cpue

Catch in tonnes, age composition, size composition

Life history maturity, growth

Tags releases, recaptures

etc.
```

The benefits of **scripting the data preparation** as reproducible workflows can be at least as important and benefitial as scripting the model run

Recommendations

Project organization

- 1. Organize analyses in GitHub repos, preferably open (at least scripts)
- 2. Divide the work into separate scripts of manageable size, with descriptive names
- 3. Make each script run by itself: read files, do stuff, write files
- 4. Consider using a common structure to organize projects

Within each script

- 1. Write the script so it will run on any computer
- 2. Avoid using setwd() use alt-sws in RStudio
- 3. Use relative paths
- 4. Use few dependencies Chuck Norris style

Transparency in Fisheries Management

Transparent = open and reproducible as a result, reviewable and traceable

A growing question in all fisheries around the world:

 \Rightarrow Is the management of this stock based on open and reproducible science?

If not, which criteria are still missing?

Overview

Why repeatability, institutional memory, reviewability, scientific method,

interregional research, dissemination, collaboration, traceability, credibility

Open *scripts, data, software*

Reproducible standardized sequential R scripts, version control

Infrastructure 2021 UN Recommendation on Open Science, working group,

GitHub, TAF, data management, ICES, FAO, GFCM, SPC

Recommendations relative paths, dependencies, 1st and 2nd class scripts, complete workflow, data preparation, partially open