

Real—Time Car Crash Hotspot Prediction and Analysis in B.C

Gloria Mo, Swaifa Haque, Rojin Lohrasbinejad

Live BC Hotspot Map

MOTIVATION

- More than 200,000 vehicle crashes occur annually in British Columbia
- Drivers and policymakers often lack real-time insights into crash risks
- Our project predicts and identifies crash hotspots by combining historical crash data with real-time traffic and weather information
- **Goal:** Enable proactive, data-driven interventions to prevent collisions *before* they happen

TOOLS & TECHNOLOGIES

Tableau Dashboard

- Kafka Streams live traffic and weather data from APIs
- Apache Spark (Structured Streaming) Real-time data processing and enrichment
- Docker Containerized deployment for reproducibility
- Spark MLlib Builds scalable ML pipelines
- **S3** Stores ML models and processed data
- Redis Fast, in-memory database to store and access live predictions
- Tableau Interactive dashboard with historical crash trends

METHODOLOGY

1. Data Collection & Ingestion

- Historical Data: ICBC car crash data & Police-reported data
- Real-time Data: Kafka producers stream weather (OpenWeather API)
 & traffic data (TomTom API)

2. Batch Model Training (Offline Model Training)

- Combined historical crash data with 7 days of hourly-batched realtime data
- Trained on Random Forest Classifier

3. Real-Time Processing (Online Inference)

- Real-time data processed using Spark Structured Streaming
- Merged streams by time and location in 10-minute windows

4. Live Prediction & Storage

- Inputs: Real-time and historical crash features
- Output: Hotspot Risk Level Low, Moderate, High
- Redis: Stores live predictions with location and metadata
- S3: Archives batch outputs and trained model

INNOVATION

- Real-time data ingestion and processing with Kafka + Spark
- **Low-latency** risk prediction with instant access via **Redis**
- Modular ML pipeline supports both batch training and real-time inference
- Data-driven recommendation system offering actionable safety interventions

Heatmap of risk zones in Downtown, Vancouver

Latitude	Longitude	Municipality	Hotspot Risk Level	Intervention
48.411	-123.357	Victoria	Low	More Patrols
49.238	-122.868	Coquitlam	Moderate	Install Warning Signs
49.878	-119.432	Kelowna	High	Improve Road Surface

Example ML Outputs with Risk Level & Suggested Interventions

IMPACT

- Public Safety: Real-time crash risk warnings for drivers and emergency responders
- City Planning: Data-driven insights for infrastructure and urban design
- **Policy-making**: Identifying high-risk zones for proactive regulation
- Social Benefit: Enables smarter mobility, reduced collisions, and informed civic decisionmaking
- Cost Efficiency: Helps allocate city resources effectively through targeted interventions
- **Scalability**: Easily adaptable to other regions and real-time data feeds

RESULTS

- Trained a Random Forest Classifier for multi-class risk prediction
- Achieved 86% accuracy with cross-validation and hyperparameter tuning
- Fully dockerized, modular pipeline with clear documentation for retraining and reproducibility
- Recommendation system suggesting interventions at high-risk zones
- Interactive Tableau dashboard to explore historical crash trends
- Live web-based heatmap visualizing real-time hotspot predictions

WHAT'S NEXT?

- Develop real-time alert dashboards for major incidents and events
- Integrate **external data sources**: road closures, construction, and traffic incidents
- Expand geospatial risk analysis across evolving urban areas and nationwide

MASTER'S IN PROFESSIONAL COMPUTER SCIENCE

