FRACTIONAL FACTORIAL DESIGNS FOR EXPERIMENTS WITH FACTORS AT TWO AND THREE LEVELS

W. S. Connor, et al

National Bureau of Standards Washington, D. C.

1 September 1961



This document has been approved for public release and sale.

4D-700 470 RIA-78-U698



## Fractional Factorial Designs for Experiments

With Factors at Two and Three Levels

U, 22,939

TECHNICAL LIBRARY



U.S. Department of Commerce

National Bureau of Standards

Applied Mathematics Series • 58

# Fractional Factorial Designs for Experiments With Factors at Two and Three Levels

W. S. Connor and Shirley Young



## National Bureau of Standards Applied Mathematics Series • 58

Issued September 1, 1961

#### Preface

The designs presented in this publication are for experiments with some factors at two levels and other factors at three levels. The designs are constructed so that the grand mean, all main effects, and all two-factor interaction effects can be estimated without aliasing among them. It is assumed that all higher-order interaction effects are negligible, and their absence makes it possible to estimate the error variance.

These designs were developed in the Statistical Engineering Laboratory of the National Bureau of Standards under a program sponsored by the Bureau of Ships, Department of the Navy. Revision of the introductory material and of the analysis for six designs was carried out at The Research Triangle Institute under the sponsorship of the Office of Ordnance Research. The work was performed under the direction of W. S. Connor. Professor R. C. Bose served as consultant and contributed to the development of related theory. Shirley Young performed most of the work of constructing the designs and working out the corresponding estimates. Carroll Dannemiller devised an electronic computer program which was used to check the normal equations. A program previously developed by R. C. Burton was used to generate treatment combinations from 3<sup>n</sup> factorials. Also, R. C. Burton participated in certain aspects of construction during the summer of 1958. Lola S. Deming supervised the preparation of the manuscript in final form.

**OCTOBER 1960.** 

A. V. ASTIN, Director.

### Contents

|                                                   | Page |
|---------------------------------------------------|------|
| Prcface                                           | 111  |
| List of designs                                   | V    |
| 1. Introduction                                   | 1    |
| 2. Construction of designs                        | 1    |
| 3. Estimation of effects                          | 3    |
| 4. Tests of significance and confidence intervals |      |
| 5. An example                                     |      |
| 6. Six special designs                            |      |
| 7. References                                     | 14   |
| 8. Designs                                        |      |

## List of designs

| Design                                                                                                                                                                                                               | Number of<br>effects esti-<br>mated                                         | Number of<br>treatment<br>combinations<br>employed in<br>the design                                                    | Fraction of<br>complete<br>factorial     | Page                                                                                                     | Design                                                                                                                                               | Number of<br>effects esti-<br>mated                                                        | Number of<br>treatment<br>combinations<br>employed in<br>the design                            | Fraction of<br>complete<br>factorial                                                    | Page                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 2431<br>2531<br>2631<br>2731<br>2731<br>2731<br>2731<br>2931<br>2432<br>2432<br>2432<br>2732<br>2732<br>2732<br>2733<br>2733<br>2733<br>2733<br>2733<br>2733<br>2733<br>2733<br>2733<br>2733<br>2733<br>2733<br>2733 | 36<br>45<br>55<br>66<br>277<br>35<br>44<br>54<br>65<br>77<br>34<br>43<br>53 | 36<br>48<br>48<br>96<br>96<br>128<br>36<br>72<br>72<br>96<br>144<br>144<br>144<br>54<br>72<br>108<br>144<br>288<br>432 | % % % % % % % % % % % % % % % % % % %    | 15<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>21<br>22<br>23<br>24<br>25<br>56<br>26<br>57<br>58<br>27 | 2135<br>2235<br>2336<br>2435<br>2536<br>2136<br>2236<br>2336<br>2437<br>2237<br>2237<br>2237<br>2237<br>2237<br>2237<br>2238<br>2138<br>2138<br>2238 | 62<br>74<br>87<br>101<br>116<br>86<br>100<br>115<br>131<br>114<br>130<br>147<br>146<br>164 | 162<br>162<br>216<br>324<br>432<br>243<br>486<br>486<br>486<br>486<br>243<br>486<br>243<br>486 | 1/2<br>1/6<br>1/6<br>1/12<br>1/6<br>1/12<br>1/2<br>1/2<br>1/18<br>1/18<br>1/18<br>1/162 | 34<br>35<br>62<br>36<br>64<br>37<br>38<br>40<br>42<br>44<br>46<br>48<br>50<br>52 |
| 2 <sup>1</sup> 3 <sup>4</sup> 2 <sup>3</sup> 3 <sup>4</sup> 2 <sup>4</sup> 3 <sup>4</sup> 2 <sup>6</sup> 3 <sup>4</sup> 2 <sup>6</sup> 3 <sup>4</sup>                                                                | 42<br>52<br>63<br>75<br>88<br>102                                           | 81<br>162<br>162<br>162<br>216<br>324                                                                                  | 1/2<br>1/2<br>1/4<br>1/8<br>1/12<br>1/16 | 28<br>29<br>30<br>31<br>60<br>32                                                                         |                                                                                                                                                      |                                                                                            |                                                                                                |                                                                                         |                                                                                  |

## Fractional Factorial Designs for Experiments With Factors at Two and Three Levels

W. S. Connor and Shirley Young

#### 1. Introduction

This catalog is the sequel to [1] and [2]. It contains fractional factorial designs for use in experiments which investigate m factors at two levels and n factors at three levels. The grand mean  $\mu$ , all main effects, and all two-factor interaction effects are estimated. All higher order interactions are assumed negligible and their absence allows estimation of the error variance. A design has been constructed for each of the 39 pairs (m,n) included from m+n=5 through m+n=10,  $(m,n\neq 0)$ . The design for (m,n) is designated DESIGN  $2^m3^n$ .

It is believed that the method of construction described in section 2 is new. Morrison [3] published several designs which can be constructed by the present method, and his paper was an inspiration to the authors in formulating their method. The objective in forming these fractions was to keep the number of required treatment combinations small while retaining as much orthogonality among the estimates as possible. The designs are neither unique nor exhaustive, and there may be attractive alternative ways of fractionating the 2<sup>m</sup>3<sup>n</sup> complete factorials.

Section 3 contains a description of the mathematical model, in which it is assumed that all interactions between three or more factors are nonexistent, and of how to estimate the parameters contained in the model. Section 4 contains a discussion of how to test hypotheses and construct confidence intervals. A worked example is presented in section 5.

Section 6 is devoted to six designs, viz, 233, 253, 253, 253, 253, 253, and 253, for which the interaction effects between factors at three levels are defined in a special way.

#### 2. Construction of Designs

The designs are constructed by associating fractions  $S_1, S_2, \ldots, S_t$  from the  $2^m$  complete factorial with fractions  $S_1, S_2, \ldots, S_t$  from the  $3^n$  complete factorial. The fractions  $S_t$  and  $S_t$  ( $i=1,2,\ldots,t$ ) are obtained by conventional methods which have been described, for example, in [4,5]. Fractions are selected so that low order interaction effects, including main effects, are aliased with each other as little as possible. The association is such that every treatment combination in  $S_t$  is adjoined to every treatment combination in  $S_t$ , thus forming treatment combinations from the  $2^m3^n$  complete factorial. The resulting fraction from the  $2^m3^n$  complete factorial may be denoted by

$$(2.1) S1S'1 S2S'2 ... SiS'i.$$

To illustrate, consider the  $2^33^2$  complete factorial, which contains 72 treatment combinations. The three factors with two levels will be denoted by  $A_1$ ,  $A_2$ , and  $A_3$ , and the two factors with three levels by  $B_1$  and  $B_2$ . One way of fractionating the  $2^3$  complete factorial into two distinct sets  $S_1$  and  $S_2$  is by finding the treatment combinations  $(x_1x_2x_3)$ ,  $(x_3=0,1; j=1,2,3)$  having x's which satisfy

$$(2.2) x_1 + x_2 + x_3 = 0 \text{ and } x_1 + x_2 + x_3 = 1 \pmod{2},$$

respectively. These sets are as follows:

<sup>&</sup>lt;sup>1</sup> Figures in brackets indicate the literature references on page 14.

Sets of Treatment Combinations from the 23

One way of fractionating the  $3^2$  complete factorial into three distinct sets  $S'_1$ ,  $S'_2$ , and  $S'_3$  is by finding the treatment combinations  $(z_1z_2)$ ,  $(z_k=0,1,2;\ k=1,2)$ , having z's which satisfy

(2.4) 
$$z_1+z_2=0, z_1+z_2=1, z_1+z_2=2 \pmod{3},$$

respectively. These sets are as follows:

Sets of Treatment Combinations from the 32

DESIGN 2<sup>3</sup>3<sup>2</sup> appearing on page 20 of this catalog is a fractional design from the 2<sup>3</sup>3<sup>2</sup> complete factorial consisting of the following treatment combinations:

Treatment Combinations in the Fraction from the 2<sup>3</sup>3<sup>2</sup>

|       | $A_1$ | $A_2$ | $A_3$ | $\mathbf{B}_{1}$ | $\mathbf{B_2}$ | Response | $A_1$ | $A_2$ | $A_3$ | $\mathbf{B}_1$ | $B_2$ | Response | $A_1$ | $A_2$ | $A_3$ | $\mathbf{B}_1$ | $\mathbf{B_2}$ | Response |
|-------|-------|-------|-------|------------------|----------------|----------|-------|-------|-------|----------------|-------|----------|-------|-------|-------|----------------|----------------|----------|
|       | 0     | 0     | 0     | 0                | 0              | (85.9)   | 0     | 0     | 1     | 0              | 1     | (88.9)   | 0     | 0     | 1     | 0              | 2              | (139.0)  |
|       | 0     | 1     | 1     | 0                | 0              | (99.3)   | 0     | 1     | 0     | 0              | 1     | (78.4)   | 0     | 1     | 0     | 0              | 2              | (153.8)  |
|       | 1     | 0     | 1     | 0                | 0              | (119.8)  | 1     | 0     | 0     | 0              | 1     | (42.0)   | 1     | 0     | 0     | 0              | 2              | (180.0)  |
|       | 1     | 1     | 0     | 0                | 0              | (115.5)  | 1     | 1     | 1     | 0              | 1     | (142.0)  | 1     | 1     | 1     | 0              | 2              | (172.4)  |
|       | 0     | 0     | 0     | 1                | 2              | (118.3)  | 0     | 0     | 1     | 1              | 0     | (94.9)   | 0     | 0     | 1     | 2              | 0              | (184.0)  |
| (2.6) | 0     | 1     | 1     | 1                | 2              | (115.4)  | 0     | 1     | 0     | 1              | 0     | (110.4)  | 0     | 1     | 0     | 2              | 0              | (93.0)   |
|       | 1     | 0     | 1     | 1                | 2              | (184.9)  | 1     | 0     | 0     | 1              | 0     | (92.8)   | 1     | 0     | 0     | 2              | 0              | (96.9)   |
|       | 1     | 1     | 0     | 1                | 2              | (161.7)  | 1     | 1     | 1     | 1              | 0     | (167.2)  | 1     | 1     | 1     | 2              | 0              | (172.7)  |
|       | 0     | 0     | 0     | 2                | 1              | (127.6)  | 0     | 0     | 1     | 2              | 2     | (153.9)  | 0     | 0     | 1     | 1              | 1              | (125.7)  |
|       | 0     | 1     | 1     | 2                | 1              | (166.8)  | 0     | 1     | 0     | 2              | 2     | (184.3)  | 0     | 1     | 0     | 1              | 1              | (102.7)  |
|       | 1     | 0     | 1     | 2                | 1              | (158.6)  | 1     | 0     | 0     | 2              | 2     | (114.3)  | 1     | 0     | 0     | 1              | 1              | (131.2)  |
|       | 1     | 1     | 0     | 2                | 1              | (138.6)  | 1     | 1     | 1     | 2              | 2     | (199.9)  | 1     | 1     | 1     | 1              | 1              | (223.7)  |

These treatment combinations may be denoted concisely by

$$(2.7) S_1S_1' S_2S_2' S_2S_3'.$$

The numbers in parentheses under the column headed "Response" are data that will be used subsequently for a numerical illustration.

This fractional factorial design involves 36 treatment combinations and is a one-half fraction of the complete factorial. In DESIGN 2<sup>3</sup>3<sup>2</sup>, the expression (2.7) is called the "Experimental Plan," and indicates how the sets S<sub>t</sub> and S'<sub>t</sub>, which are given under "Construction," are to be associated to form the treatment combinations (2.6).

This form is followed for all of the designs in the catalog, except that the actual formation of the treatment combinations as shown in the Experimental Plan is left to the reader.

#### 3. Estimation of Effects

The response to the treatment combination  $(x_1x_2 \ldots x_mz_1z_2 \ldots z_n)$  will be denoted by  $Y^*(x_1x_2 \ldots x_mz_1z_2 \ldots z_n)$ , which is a random variable with expected value  $\eta(x_1x_2 \ldots x_mz_1z_2 \ldots z_n)$  and variance  $\sigma^2$ . It is assumed that the expected value of the response is expressible as a linear function of certain parameters which are the grand average, main effects, and two-factor interaction effects. It also is assumed that there are no higher order interaction effects.

In the linear function corresponding to a treatment combination, the coefficient of the grand average  $\mu$  is 1, but the coefficients of the other parameters depend on the treatment combination. If the factor A is at level 0, then the coefficient of the main effect of A, also denoted by A, is -1; but if at level 1, then the coefficient is 1. The coefficient of the interaction parameter  $A_f A_f$  is the product of the coefficients of the component main effects  $A_f$  and  $A_f$  as is shown in the following table:

Coefficients of Pure A Effects

|       | T4     | 11-           | Coefficients |          |              |  |  |
|-------|--------|---------------|--------------|----------|--------------|--|--|
|       | ractor | Factor levels |              | effects  | Interaction  |  |  |
|       | $A_j$  | $A_{j'}$      | $\Lambda_j$  | $A_{j'}$ | $A_j A_{j'}$ |  |  |
| (3.1) | 0      | 0             | -1           | -1       | 1            |  |  |
|       | 1      | 0             | 1            | -1       | -1           |  |  |
|       | 0      | 1             | -1           | 1        | -1           |  |  |
|       | 1      | 1             | 1            | 1        | 1            |  |  |

For a B factor there are two parameters which correspond to the main effect, viz, the linear effect B and the quadratic effect  $B^2$ . The terms "linear" and "quadratic" apply literally only to equally spaced levels but are formally useful in other cases too. For the levels 0, 1, and 2, the coefficients of B are -1, 0, and 1, respectively, and the coefficients of  $B^2$  are 1, -2, and 1, respectively:

For two factors  $B_k B_{k'}$ , there are four interaction parameters, viz,  $B_k B_{k'}$ ,  $B_k B_{k'}$ ,  $B_k^2 B_{k'}$ , and  $B_k^2 B_{k'}^2$ . The coefficients of these parameters are the products of the coefficients of the component main effects, as follows:

as follows:

Coefficients of Pure B Effects

|       | TC - 4 | . 1 1 .  |       |          | Coefficients |            |              |              |               |              |  |  |  |
|-------|--------|----------|-------|----------|--------------|------------|--------------|--------------|---------------|--------------|--|--|--|
|       | racto  | r levels |       | Main     | effects      |            |              | Interactions |               |              |  |  |  |
|       | $B_k$  | $B_{k'}$ | $B_k$ | $B_{k'}$ | $B_k^2$      | $B_{k'}^2$ | $B_k B_{k'}$ | $B_k B_k^2$  | $B_k^2B_{k'}$ | $B_k^2B_k^2$ |  |  |  |
|       | 0      | 0        | -1    | -1       | 1            | 1          | 1            | -1           | -1            | 1            |  |  |  |
|       | 1      | 0        | 0     | -1       | -2           | 1          | 0            | 0            | 2             | -2           |  |  |  |
|       | 2      | 0        | 1     | -1       | 1            | 1          | -1           | 1            | -1            | 1            |  |  |  |
| (3.2) | 0      | 1        | -1    | 0        | 1            | -2         | 0            | 2            | 0             | -2           |  |  |  |
|       | 1      | 1        | 0     | 0        | -2           | -2         | 0            | 0            | 0             | 4            |  |  |  |
|       | 2      | 1        | 1     | 0        | 1            | -2         | 0            | -2           | 0             | -2           |  |  |  |
|       | 0      | 2        | -1    | 1        | 1            | 1          | -1           | -1           | 1             | 1            |  |  |  |
|       | 1      | 2        | 0     | 1        | -2           | 1          | 0            | 0            | -2            | -2           |  |  |  |
|       | 2      | 2        | 1     | 1        | 1            | 1          | 1            | 1            | 1             | 1            |  |  |  |

For six of the designs, viz, 2<sup>3</sup>3<sup>3</sup>, 2<sup>5</sup>3<sup>3</sup>, 2<sup>5</sup>3<sup>3</sup>, 2<sup>5</sup>3<sup>4</sup>, 2<sup>3</sup>3<sup>5</sup>, and 2<sup>5</sup>3<sup>5</sup>, the coefficients of the interaction effects will be defined in a different way. These definitions will be presented in section 6.

For two factors A and B, there are two interaction parameters, viz, AB and AB<sup>2</sup>. The coefficients of these parameters, too, are the products of the component main effects, thus:

Coefficients of Mixed A, B Effects

|               |   | 1         |           |                |        |          |
|---------------|---|-----------|-----------|----------------|--------|----------|
| Factor levels |   |           | C         | oefficient     | ts     |          |
|               |   | M         | ain effec | ts             | Intere | actions  |
| A             | В | A         | В         | B <sup>2</sup> | AB     | AB 2     |
| 0             | 0 | -1        | -1        | 1              | 1      | -1       |
| 1             | 0 | 1         | -1        | 1              | -1     | 1        |
| 0             | 1 | <u>-1</u> | 0         | -2 $-2$        | 0      | <b>2</b> |
| 1             | 1 | 1         | 0         | -2             | 0      | -2       |
| 0             | 2 | -1        | 1         | 1              | -1     | -1       |
| 1             | 2 | 1         | 1         | 1              | 1      | 1        |
|               |   |           |           |                |        |          |

(3.3)

These rules will be illustrated for DESIGN  $2^33^2$ , which is a one-half fraction of the  $2^33^2$  complete factorial. In (3.4) the expected responses,  $\eta(x_1x_2x_3z_1z_2)$ , for all 36 treatment combinations are expressed as linear functions of 27 parameters. The column vector  $\tau$  contains the following elements in the order given:

$$\mu$$
,  $A_1$ ,  $A_2$ ,  $A_3$ ,  $A_1A_2$ ,  $A_1A_3$ ,  $A_2A_3$ ,  $B_1$ ,  $B_1^2$ ,  $B_2$ ,  $B_2^2$ ,  $B_1B_2$ ,  $B_1B_2^2$ ,  $B_1^2B_2$ ,  $B_1^2B_2^2$ ,  $A_1B_1$ ,  $A_1B_1^2$ ,  $A_1B_2$ ,  $A_1B_2^2$ ,  $A_2B_1$ ,  $A_2B_1^2$ ,  $A_2B_2$ ,  $A_2B_2^2$ ,  $A_3B_1$ ,  $A_3B_1^2$ ,  $A_3B_2$ ,  $A_3B_2^2$ .

|   | $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$   | 1-1-1-1     1     1-1     1     1-1-1     1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1     1-1 |
|---|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                             | 1-1-1-1 1 1 1 0-2 1 1 0 0-2-2 0 2-1-1 0 2-1-1 0 2-1-1 1-1 1 1-1-1 1 0-2 1 1 0 0-2-2 0 2-1-1 0-2 1 1 0-2 1 1 1 1-1 1-1 1-1 0-2 1 1 0 0-2-2 0-2 1 1 0 2-1-1 0-2 1 1 1 1-1 1-1 1-1 0-2 1 1 0 0-2-2 0-2 1 1 0-2 1 1 0 2-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | $\begin{bmatrix} 0 & 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 & 1 \\ 1 & 1 & 0 & 2 & 1 \end{bmatrix}$   | 1-1-1-1 1 1 1 1 1 0-2 0-2 0-2-1-1 0 2-1-1 0 2-1-1 0 2 1-1 1 1-1-1 1 1 1 0-2 0-2 0-2-1-1 0 2 1 1 0-2 1 1 0-2 1 1-1 1-1 1-1 1 1 0-2 0-2 0-2 1 1 0-2-1-1 0 2 1 1 0-2 1 1-1 1-1 1-1 1 1 0-2 0-2 0-2 1 1 0-2-1-1 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | $\begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix}$   | 1-1-1 1 1-1-1-1 1 0-2 0 2 0-2 1-1 0 2 1-1 0 2-1 1 0-2 1-1 1-1-1 1-1-1 1 0-2 0 2 0-2 1-1 0 2-1 1 0-2 1-1 0 2 1 1-1-1-1-1 1-1 1 0-2 0 2 0-2-1 1 0-2 1-1 0 2 1-1 0 2 1 1 1 1 1 1 1-1 1 0-2 0 2 0-2-1 1 0-2-1 1 0-2-1 1 0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| η | $\begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix} =$ | 1-1-1 1 1-1-1 0-2-1 1 0 0 2-2 0 2 1-1 0 2 1-1 0-2-1 1 1-1 1-1-1 1 0-2-1 1 0 0 2-2 0 2 1-1 0-2-1 1 0 2 1-1 1 1-1-1-1 1 0-2-1 1 0 0 2-2 0 2 1-1 0-2-1 1 0 2 1-1 1 1 1 1 1 1 1 0-2-1 1 0 0 2-2 0-2-1 1 0 2 1-1 0 2 1-1 1 1 1 1 1 1 1 0-2-1 1 0 0 2-2 0-2-1 1 0-2-1 1 0-2-1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                             | 1-1-1 1 1-1-1 1 1 1 1 1 1 1 1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | $\begin{bmatrix} 0 & 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 & 2 \\ 1 & 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 0 & 2 \end{bmatrix}$   | 1-1-1 1 1-1-1-1 1 1 1-1-1 1 1 1-1-1-1 1 1 1 1 1-1-1-1 1 1 1 1 1-1-1-1 1 1 1 1 1-1-1-1 1 1 1 1 1-1-1-1 1 1 1 1 1-1-1-1 1 1 1 1 1-1-1-1 1 1 1 1 1-1-1-1 1 1 1 1 1 1 1-1-1-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | $\begin{bmatrix} 0 & 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 & 0 \\ 1 & 1 & 1 & 2 & 0 \end{bmatrix}$   | 1-1-1 1 1-1-1 1 1-1 1-1 1-1 1-1-1 1-1-1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1 1-1 1-1 1 1-1 1 1-1 1 1-1 1 1 1-1-1 1-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | $\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$   | 1-1-1 1 1-1-1 0-2 0-2 0 0 0 4 0 2 0 2 0 2 0 2 0-2 0-2 0-2 1-1 1-1-1 1 0-2 0-2 0 0 0 4 0 2 0 2 0 2 0-2 0-2 0 2 0 2 1 1-1-1-1 1 0-2 0-2 0 0 0 4 0-2 0-2 0 2 0 2 0 2 0 2 0 2 1 1 1 1 1 1 1 1 0-2 0-2 0 0 0 4 0-2 0-2 0 2 0-2 0-2 0-2 0-2 0-2 0-2 0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

(3.4)

The first equation is read as

$$\eta(00000) = \mu - A_1 - A_2 - A_3 + A_1 A_2 + A_1 A_3 + A_2 A_3$$

$$-B_1 + B_1^2 - B_2 + B_2^2 + B_1 B_2 - B_1 B_2^2 - B_1^2 B_2 + B_1^2 B_2^2$$

$$+ A_1 B_1 - A_1 B_1^2 + A_1 B_2 - A_1 B_2^2 + A_2 B_1 - A_2 B_1^2 + A_2 B_2 - A_2 B_2^2$$

$$+ A_3 B_1 - A_3 B_1^2 + A_3 B_2 - A_3 B_2^2$$
(3.5)

and the other equations are read similarly.

For the following discussion it is assumed that the responses  $Y^*(x_1 \ldots x_m z_1 \ldots z_n)$  have variance  $\sigma^2$  and are uncorrelated.

The normal equations are formed from the equations of expectation in the usual way. Let the column vector of expected responses be denoted by  $\eta$ , the matrix of coefficients by X, and the column vector of parameters by  $\tau$ . Then the equations of expectation may be written concisely as

$$\eta = X\tau$$

Letting y denote the column vector of observed responses, and  $\hat{}$  the column vector of estimates, the normal equations are

$$(3.7) Y(\tau) = X'y = X'X\hat{\tau} = C\hat{\tau},$$

for C=X'X. The equations may be solved for  $\hat{\tau}$  as follows:

$$\hat{\tau} = C^{-1}X'y$$

The designs in this catalogue have been constructed so that C is nonsingular and there are not many nonzero elements in  $C^{-1}$ . Indeed, for some of the designs  $C^{-1}$  is diagonal. Letting f denote the number of treatment combinations in the design, the elements in the principal diagonal can be calculated from (3.9), except when there is a nonzero element off the diagonal in the same row as the element under consideration. In that event special formulas are required. If all of the off-diagonal elements are zero, then the analysis is termed "Completely Orthogonal." The formulas for  $B_k B_{k'}$ ,  $B_k B_{k'}$ , and  $B_k^2 B_{k'}^2$ , do not apply to the six designs which are discussed in section 6.

## Elements in the Main Diagonal of the Inverse Matrix (except as explained above)

$$\begin{array}{cccc} & \underline{\text{Parameter}} & \underline{\text{Element}} \\ & A, A_{j}A_{j'} & 1/f \\ & AB, B & 3/2f \\ & AB^{2}, B^{2} & 1/2f \\ & B_{k}B_{k'} & 9/4f \\ & B_{k}B_{k'}^{2}, B_{k}^{2}B_{k'} & 3/4f \\ & B_{k}^{2}B_{k'}^{2}, & 1/4f \end{array}$$

For DESIGN 2<sup>3</sup>3<sup>2</sup>, appearing on page 20 there are 36 treatment combinations, so that these elements, excluding the first, are 1/24, 1/72, 1/16, 1/48, and 1/144, respectively. To estimate the effects of A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>, A<sub>1</sub>A<sub>2</sub>, A<sub>1</sub>A<sub>3</sub>, and A<sub>2</sub>A<sub>3</sub> requires special formulas, which are given under the heading "Analy-

of 
$$A_1$$
,  $A_2$ ,  $A_3$ ,  $A_1A_2$ ,  $A_1A_3$ , and  $A_2A_3$  requires special formulas, which are given under the heading "Analysis." It is stated that "the matrix  $\frac{1}{96}\begin{bmatrix}3\\-1\end{bmatrix}$  is used to estimate  $\begin{bmatrix}A_3\\A_1A_2\end{bmatrix}$ ,  $\begin{bmatrix}A_2\\A_1A_3\end{bmatrix}$ ,  $\begin{bmatrix}A_2\\A_2A_3\end{bmatrix}$ ,"

by which is meant that the following matric equations are formed:

$$\begin{bmatrix}
\hat{A}_{1} \\
\widehat{A_{2}}\hat{A}_{3}
\end{bmatrix} = \frac{1}{96} \begin{bmatrix}
3 & -1 \\
-1 & 3
\end{bmatrix} \begin{bmatrix}
Y(A_{1}) \\
Y(A_{2}A_{3})
\end{bmatrix},$$

$$\begin{bmatrix}
\hat{A}_{2} \\
\widehat{A_{1}}\hat{A}_{3}
\end{bmatrix} = \frac{1}{96} \begin{bmatrix}
3 & -1 \\
-1 & 3
\end{bmatrix} \begin{bmatrix}
Y(A_{2}) \\
Y(A_{1}A_{3})
\end{bmatrix},$$

$$\begin{bmatrix}
\hat{A}_{3} \\
\widehat{A_{1}}\hat{A}_{2}
\end{bmatrix} = \frac{1}{96} \begin{bmatrix}
3 & -1 \\
-1 & 3
\end{bmatrix} \begin{bmatrix}
Y(A_{3}) \\
Y(A_{1}A_{2})
\end{bmatrix}.$$

The values of the estimates are as given in (3.11).

#### Estimates of the Parameters

$$\hat{\mu} = \frac{1}{36} Y(\mu) \qquad \qquad \hat{B}_1 = \frac{1}{24} Y(B_1)$$

$$\hat{A}_1 = \frac{1}{96} [3Y(A_1) - Y(A_2A_3)] \qquad \qquad \hat{B}_1^2 = \frac{1}{72} Y(B_1^2)$$

$$\hat{A}_2 = \frac{1}{96} [3Y(A_2) - Y(A_1A_3)] \qquad \qquad \hat{B}_2 = \frac{1}{24} Y(B_2)$$

$$\hat{A}_3 = \frac{1}{96} [3Y(A_3) - Y(A_1A_2)] \qquad \qquad \hat{B}_1^2 = \frac{1}{72} Y(B_2^2)$$

$$\hat{A}_1 \hat{A}_2 = \frac{1}{96} [-Y(A_3) + 3Y(A_1A_3)] \qquad \qquad \hat{B}_1 \hat{B}_2 = \frac{1}{16} Y(B_1B_2)$$

$$\hat{A}_1 \hat{A}_3 = \frac{1}{96} [-Y(A_2) + 3Y(A_1A_3)] \qquad \qquad \hat{B}_1^2 \hat{B}_2^2 = \frac{1}{48} Y(B_1B_2^2)$$

$$\hat{A}_2 \hat{A}_3 = \frac{1}{96} [-Y(A_1) + 3Y(A_2A_3)] \qquad \qquad \hat{B}_1^2 \hat{B}_2 = \frac{1}{48} Y(B_1^2B_2)$$

$$\hat{B}_1^2 \hat{B}_2^2 = \frac{1}{144} Y(B_1^2B_2^2)$$

$$\hat{B}_1^2 \hat{B}_2^2 = \frac{1}{144} Y(B_1^2B_2^2)$$

$$\hat{A}_1 \hat{B}_1 = \frac{1}{24} Y(A_1B_1) \qquad \hat{A}_2 \hat{B}_1 = \frac{1}{24} Y(A_2B_1) \qquad \hat{A}_3 \hat{B}_1 = \frac{1}{24} Y(A_3B_1)$$

$$\hat{A}_1 \hat{B}_2 = \frac{1}{72} Y(A_1B_1^2) \qquad \hat{A}_2 \hat{B}_2^2 = \frac{1}{72} Y(A_2B_1^2) \qquad \hat{A}_3 \hat{B}_2 = \frac{1}{24} Y(A_3B_2)$$

$$\hat{A}_1 \hat{B}_2^2 = \frac{1}{72} Y(A_1B_2^2) \qquad \hat{A}_2 \hat{B}_2^2 = \frac{1}{72} Y(A_2B_2^2) \qquad \hat{A}_3 \hat{B}_2^2 = \frac{1}{72} Y(A_3B_2^2)$$

#### 4. Tests of Significance and Confidence Intervals

In this section it is assumed that the responses  $Y^*(x_1 \ldots x_m z_1 \ldots z_n)$  are normally and independently distributed, with expected values  $\eta$   $(x_1 \ldots x_m z_1 \ldots z_n)$  and common variance  $\sigma^2$ . The estimates will, in general, tend to be normal even if the responses are not very normal. If all of the estimates for a design are least squares estimates, then the estimate s of  $\sigma$  is obtained according to the usual theory: the sum of squares for error,  $S_s$ , is the total sum of squares,  $S_t$ , minus the sum of squares for parameters,  $S_p$ . Then s is the square root of  $S_s/(f-q)$ , where f is the number of treatment combinations in the design and g is the number of parameters to be estimated. The expected value of  $s^2$  is  $\sigma^2$ . The quantity  $S_t$  is  $\Sigma y^2$ , where the summation runs over all observed responses; and the quantity  $S_p$  is  $\Sigma \hat{\rho} Y(\rho)$ , where the summation is over all parameters  $\rho$  in  $\sigma$ 

To test the null hypothesis  $H_0$  that the parameter  $\rho$  is zero,  $H_0$ :  $\rho=0$ , against the alternative hypothesis  $H_1$ :  $\rho\neq 0$ , Student's t with (f-q) degrees of freedom is used as follows:

$$(4.1) t = \hat{\rho}/\sqrt{\hat{\theta}(\hat{\rho})}, \text{ with } (f-q) df.$$

where  $\hat{v}(\hat{\rho})$  is the estimated variance of  $\hat{\rho}$ . For a least squares estimate  $\hat{\rho}$ , the variance  $V(\hat{\rho})$  is  $\sigma^2$  times the appropriate element in the main diagonal of the inverse matrix,  $C^{-1}$ . For some estimates, this can be calculated from (3.9), and for others, read from the matrices which are presented under "Analysis." For example, in DESIGN 2<sup>3</sup>3<sup>2</sup> the variances of  $A_1$ ,  $A_2$ ,  $A_3$ ,  $A_1A_2$ , and  $A_1A_3$  are 3/96  $\sigma^2$  where 3/96 is read from the matrices. The estimated variance  $\hat{v}(\hat{\rho})$  is obtained from  $V(\hat{\rho})$  by replacing  $\sigma^2$  by  $s^2$ . A two-sided confidence interval with confidence coefficient  $1-\alpha$  for  $\rho$  is defined by the following limits:

(4.2) 
$$\hat{\rho} \pm t_{1-\frac{1}{2}\alpha} \sqrt{\hat{v}(\hat{\rho})}, \text{ where } t_{1-\frac{1}{2}\alpha} \text{ has } (f-q) \ df.$$

If this interval includes zero, then the hypothesis  $H_0$  is accepted; otherwise  $H_0$  is rejected. It should be noted that all values in the interval are consistent with the data.

It may be desired to carry out a test for several estimates simultaneously. For example, it may be desired to test that all two-factor interactions for the A factors are zero; or that the linear and quadratic effects for some factor B are zero. This can be done by an F-test.

#### 5. An Example

Some data corresponding to DESIGN 2<sup>3</sup>3<sup>2</sup> are given in (2.6). They are taken from a publication by W. J. Youden [6]. Youden was concerned with comparing various methods of producing tomato plant seedlings prior to transplanting in the field. Comparison was made by planting in the field and then weighing the ripe produce. Thus, the observations were pounds of tomatoes.

Although Youden used five methods of production, we shall select only three: flats, fibre pots, and fibre pots soaked in one percent sodium nitrate solution. Other factors considered were different soil conditions, different sizes of pots, different varieties of tomato, and different locations on the field. The factors and their levels are recorded below:

Factors and Levels for a Tomato Experiment

| Factors                              | Levels                                                                                |           |
|--------------------------------------|---------------------------------------------------------------------------------------|-----------|
| Soil condition, A <sub>1</sub>       | ${ m Field\ soil} \ { m Plus\ fertilizer}$                                            | 0         |
| Size of pot, A <sub>2</sub>          | ${ m Three-inch} \ { m Four-inch}$                                                    | 0<br>1    |
| Variety of tomato, A <sub>8</sub>    | $ \begin{cases}                                   $                                   | 0<br>1    |
| Method of production, B <sub>1</sub> | $\begin{cases} \text{Flat} \\ \text{Fibre} \\ \text{Fibre} + \text{NO}_3 \end{cases}$ | 0 $1$ $2$ |
| Location on field, B <sub>2</sub>    | 0, 1                                                                                  | , 2       |

The object of the experiment was to evaluate the effects of these factors on the yield of tomatoes. The Y's are the inner products of the column vector y with the column vectors of X. They can be conveniently calculated by forming summary tables of the kind often used in analyzing complete factorials. For example,  $Y(A_1)$ ,  $Y(A_2)$ , and  $Y(A_1A_2)$  are obtained from the following table, which contains sums of nine responses:

A Summary Table
Size of Pot 
$$(A_2)$$

0: 1118. 2 1104. 1 2222. 3

Soil Condition

(A<sub>1</sub>) 1: 1120. 5 1493. 7 2597. 8

Total: 2238. 7 2597. 8

Diagonal totals: 2611. 9, 2224. 6

From the entries in this table we find

$$Y(A_1)=2614. 2-2222. 3=391. 9$$
  
 $Y(A_2)=2597. 8-2238. 7=359. 1$   
 $Y(A_1A_2)=2611. 9-2224. 6=387. 3$ 

The complete list of 27 distinct Y's is given below:

#### Values of the $Y(\rho)$ 's

| $Y(\mu) = 4836.5$                                          | $Y(B_1) = 373.6$                                              |
|------------------------------------------------------------|---------------------------------------------------------------|
| $Y(A_1) = 391.9$                                           | $Y(B_1^2) = -50.2$                                            |
| $Y(A_2) = 359.1$                                           | $Y(B_2) = 445.5$                                              |
| $Y(A_3) = 581.7$                                           | $Y(B_2^2) = 257.9$                                            |
| $Y(A_1A_2) = 387.3$                                        | $Y(B_1B_2) = -118.9$                                          |
| $Y(\Lambda_1\Lambda_3) = 354.7$                            | $Y(B_1B_2^2) = -347.3$                                        |
| $Y(A_2A_3) = 60.3$                                         | $Y(B_1^2B_2) = 100.5$                                         |
|                                                            |                                                               |
|                                                            | $Y(B_1^2B_2^2) = 620.9$                                       |
| $Y(\Lambda_1B_1) = -155.0$                                 | $Y(B_1^2B_2^2)=620.9$<br>$Y(A_2B_2)=13.3$                     |
| $Y(\Lambda_1B_1) = -155.0$<br>$Y(\Lambda_1B_1^2) = -490.4$ | -                                                             |
|                                                            | $Y(A_2B_2) = 13.3$                                            |
| $Y(\Lambda_1 B_1^2) = -490.4$                              | $Y(A_2B_2) = 13.3$<br>$Y(A_2B_2^2) = -175.5$                  |
| $Y(A_1B_1^2) = -490.4$<br>$Y(A_1B_2) = 51.1$               | $Y(A_2B_2)=13.3$<br>$Y(A_2B_2^2)=-175.5$<br>$Y(A_3B_1)=175.4$ |

From the Y's the estimates are calculated as indicated in (3.11). The estimates are given below bracketed by their 0.95 confidence interval limits.

#### Estimates and Confidence Limits

The analysis of variance is as follows:

| Source of Variation | <u>D.F.</u> | Sum of<br>Squares | Mean<br>Square | F    |
|---------------------|-------------|-------------------|----------------|------|
| Parameters          | 26          | 50404             | 1939           | 3.06 |
| Error               | 9           | 5708              | 634            |      |
| Total               | 35          | 56112             |                |      |

This value of F may be compared with the upper 0.95 point of the F(26, 9) distribution which is 2.89.

Until now nothing has been said of the fact that there are both qualitative and quantitative factors in this example. The analysis has been carried out, effects estimated, confidence intervals placed on the estimated effects, and an analysis of variance test performed, all ignoring the fact that we have both qualitative and quantitative factors. This has been done to illustrate the calculations.

The breakdown of the total sum of squares by sources of variation is given in the following analysis of variance table:

| Source                        | $\overline{\text{D.F.}}$ | S.S.     | M.S.       | F      |
|-------------------------------|--------------------------|----------|------------|--------|
| Pure A Effects                | 6                        | 20297    | 3383       | 5.33** |
| Mixed Effects                 |                          |          |            |        |
| $A_1B_1, A_1B_1^2$            | 2                        | 4341     | 2171       |        |
| $A_1B_2$ , $A_1B_2^2$         | 2                        | 138      | 69         |        |
| $A_2B_1, A_2B_1^2$            | 2                        | 32       | 16         |        |
| $A_2B_2, A_2B_2^2$            | 2                        | 435      | 218        |        |
| $A_3B_1$ , $A_3B_1^2$         | 2                        | 1282     | 641        |        |
| $A_3B_2$ , $A_3B_2^2$         | 2                        | 2551     | 1275       |        |
| Pure B Effects:               |                          |          |            |        |
| $B_1, B_1^2$                  | 2                        | 5851     | 2925       | 4.61*  |
| $\mathrm{B}_2,\mathrm{B}_2^2$ | 2                        | 9193     | 4597       | 7. 25* |
| $B_1B_2, B_1B_2$              |                          | 0004     | 1571       |        |
| $B_1^2B_2, B_1^2B_2^2$        | 4                        | 6284     | 1571       |        |
| Error                         | 9                        | 5708     | 634        |        |
| Total                         | 35                       | 56112    |            |        |
| *Significant at 0.0           | 05                       | **Signif | icant at 0 | .01    |

From these analyses, all main effects are significant, except for the size of the pot. No two-factor interaction effects are significant.

#### 6. Six Special Designs

Designs  $2^33^3$ ,  $2^53^3$ ,  $2^53^3$ ,  $2^53^4$ ,  $2^33^5$ , and  $2^53^5$ , have been treated differently from the other designs in this catalogue. The pure B effects have been defined differently from the definitions in section 3. They are denoted by L(B), Q(B), L(B<sub>k</sub>B<sub>k'</sub>), Q(B<sub>k</sub>B<sub>k'</sub>), L(B<sub>k</sub>B<sub>k'</sub><sup>2</sup>), and Q(B<sub>k</sub>B<sub>k'</sub><sup>2</sup>). In the linear function, which is the expected response to a treatment combination, the coefficients of the B effects depend on the levels of the B factors as follows:

(6.1)

Coefficients of Pure B Effects

|               |                   |              |          |             | Coef        | ficients        |                     |                   |                   |  |
|---------------|-------------------|--------------|----------|-------------|-------------|-----------------|---------------------|-------------------|-------------------|--|
| Factor levels |                   | Main effects |          |             |             |                 | Interaction effects |                   |                   |  |
| $B_k$         | $\mathbf{B}_{k'}$ | $L(B_k)$     | $Q(B_k)$ | $L(B_{k'})$ | $Q(B_{k'})$ | $L(B_k B_{k'})$ | $Q(B_k B_{k'})$     | $L(B_k B_{k'}^2)$ | $Q(B_k B_{k'}^2)$ |  |
| 0             | 0                 | -1           | 1        | -1          | 1           | -1              | 1                   | -1                | 1                 |  |
| 1             | 0                 | 0            | -2       | -1          | 1           | 0               | <b>-</b> 2          | 0                 | -2                |  |
| 2             | 0                 | 1            | 1        | -1          | 1           | 1               | 1                   | 1                 | 1                 |  |
| 0             | 1                 | -1           | 1        | 0           | -2          | 0               | -2                  | 1                 | 1                 |  |
| 1             | 1                 | 0            | -2       | 0           | -2          | 1               | 1                   | -1                | 1                 |  |
| 2             | 1                 | 1            | 1        | 0           | -2          | -1              | 1                   | 0                 | -2                |  |
| 0             | 2                 | -1           | 1        | 1           | 1           | 1               | 1                   | 0                 | -2                |  |
| 1             | 2                 | 0            | -2       | 1           | 1           | -1              | 1                   | 1                 | 1                 |  |
| 2             | 2                 | 1            | 1        | 1           | 1           | 0               | -2                  | -1                | 1                 |  |

The main effects are the same as before, i.e., L(B)=B and  $Q(B)=B^2$ . However, the interaction effects are different from the effects of section 3, but are related to them by the following matric equation:

(6.2) 
$$\begin{bmatrix} L(B_{k}B_{k'}) \\ Q(B_{k}B_{k'}) \\ L(B_{k}B_{k'}^{2}) \\ Q(B_{k}B_{k'}^{2}) \end{bmatrix} = \begin{bmatrix} -3 & 3 & 3 & 9 \\ -1 & -3 & -3 & 3 \\ -3 & 3 & -3 & -9 \\ 1 & 3 & -3 & 3 \end{bmatrix} \begin{bmatrix} B_{k}B_{k'} \\ B_{k}B_{k'} \\ B_{k}^{2}B_{k'} \\ B_{k}^{2}B_{k'} \end{bmatrix}.$$

The inverse equation is

(6.3) 
$$\begin{bmatrix} B_{k}B_{k'} \\ B_{k}B_{k'}^{2} \\ B_{k}^{2}B_{k'} \\ B_{k}^{2}B_{k'}^{2} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -3 & -3 & -3 & 3 \\ 1 & -3 & 1 & 3 \\ 1 & -3 & -1 & -3 \\ 1 & 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} L(B_{k}B_{k'}) \\ Q(B_{k}B_{k'}) \\ L(B_{k}B_{k'}^{2}) \\ Q(B_{k}B_{k'}^{2}) \end{bmatrix}$$

The reason for introducing these new interaction effects is that there is more orthogonality among them than among the effects of section 3. The normal equations are easier to solve. If it is desired to estimate  $B_k B_{k'}$ , . . . ,  $B_k^2 B_{k'}^2$ , this can be done by using (6.3).

The elements in the main diagonal of the inverse matrix can be calculated from (6.4), except when there is a nonzero element off the diagonal in the same row as the element under consideration. In that event, special formulas are required.

Elements in the Main Diagonal of the Inverse Matrix (except as explained above)

|       | $Parameter \ A,\ A_{j}A_{j'}$                                                                 | $Element \ 1/f$ |
|-------|-----------------------------------------------------------------------------------------------|-----------------|
| (6.4) | AB, L(B), L(B <sub>k</sub> B <sub>k'</sub> ), L(B <sub>k</sub> B <sup>2</sup> <sub>k'</sub> ) | 3/2f            |
|       | $\mathrm{AB^2,\ Q(B),\ Q(B_{k}B_{k'}),\ Q(B_{k}B_{k'}^2)}$                                    | 1/2f            |

As before, f denotes the number of treatment combinations in the design.

#### 7. References

- National Bureau of Standards, Fractional factorial experiment designs for factors at two levels, NBS Applied Mathematics Series 48 (U.S. Government Printing Office, Washington 25, D.C., 1957)
- [2] W. S. Connor and Marvin Zelen, Fractional factorial experiment designs for factors at three levels, NBS Applied Mathematics Series 54 (U.S. Government Printing Office, Washington 25, D.C., 1959)
- [3] Milton Morrison, Fractional replication for mixed series, Biometries 12, 1-19 (1956)
- [4] O. L. Davies (editor), The design and analysis of industrial experiments (Hafner Publ. Co., New York, N.Y., 1954)
- [5] O. Kempthorne, The design and analysis of experiments (John Wiley & Sons, Inc., New York, N.Y., 1952)
- [6] W. J. Youden and P. W. Zimmerman, Field trials with fibre pots, Contributions from Boyee Thompson Institute 8, 317-331 (1936).

#### 8. Designs

#### Design 2431

There are four factors at 2 levels and one factor at 3 levels. 21 effects are estimated from 36 treatment eombinations. This is a ¾ fraction.

#### Experimental Plan

$$S_1S'$$
  $S_2S'$   $S_3S'$ 

#### Analysis

The matrix 
$$\frac{1}{32}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} \mu \\ A_3A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_3B_1 \\ A_4B_1 \end{bmatrix}$   $\begin{bmatrix} A_3B_1^2 \\ A_4B_1^2 \end{bmatrix}$ , and the matrix  $\frac{1}{48}\begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$  is used to estimate  $\begin{bmatrix} A_3 \\ A_1A_2 \\ A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_1 \\ A_2A_3 \\ A_2A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_2 \\ A_1A_3 \\ A_1A_4 \end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 24

| Set               | $S_1$ | $S_2$ | $S_3$ |
|-------------------|-------|-------|-------|
| $x_1 + x_2 + x_3$ | =0    | 0     | 1     |
| $x_3 + x_4$       | =0    | 1     | 0     |

Treatment Combinations

| $S_1$ | $S_2$ | $S_3$ |
|-------|-------|-------|
| 0000  | 0001  | 0011  |
| 1100  | 0110  | 0100  |
| 0111  | 1010  | 1000  |
| 1011  | 1101  | 1111  |

There is only one set S' of treatment combinations from the 3<sup>1</sup>, viz, the full replicate.

#### Design 2531

There are five factors at 2 levels and one factor at 3 levels. 28 effects are estimated from 48 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

SS

#### Analysis

Completely orthogonal

#### Construction

Treatment Combinations

Sets of Treatment Combinations from the 25

$$\frac{\text{Set} \quad S}{x_1 + x_2 + x_3 + x_4 + x_5 = 0}$$

| 5     | 3     |
|-------|-------|
| 00000 | 01100 |
| 00011 | 10100 |
| 00101 | 11000 |
| 01001 | 01111 |
| 10001 | 10111 |
| 00110 | 11011 |
| 01010 | 11101 |
| 10010 | 11110 |
|       |       |

There is only one set S' of treatment combinations from the 31, viz, the full replicate.

There are six factors at 2 levels and one factor at 3 levels. 36 effects are estimated from 48 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_3S_2'$ 

#### Analysis

The matrix 
$$\frac{1}{128}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} A_1A_3 \\ A_2A_5 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_4 \\ A_2A_6 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_5 \\ A_2A_3 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_6 \\ A_2A_4 \end{bmatrix}$ ;

the matrix 
$$\frac{1}{128}\begin{bmatrix}3 & 1\\1 & 3\end{bmatrix}$$
 is used to estimate  $\begin{bmatrix}A_3A_4\\A_5A_6\end{bmatrix}$ ,  $\begin{bmatrix}A_3A_6\\A_4A_5\end{bmatrix}$ ;

the matrix 
$$\frac{1}{64}\begin{bmatrix}2&-1&-1\\-1&2&1\\-1&1&2\end{bmatrix}$$
 is used to estimate  $\begin{bmatrix}A_1\Lambda_2\\A_3\Lambda_5\\A_4\Lambda_6\end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 26

|        | Set               | $S_1$     | $S_2$ | $S_3$ |   |
|--------|-------------------|-----------|-------|-------|---|
| $x_1+$ | $x_2 + x_3 + x_3$ | $x_5 = 0$ | 0     | 1     | _ |
| $x_1+$ | $-x_2+x_4+x_4$    | $x_6 = 0$ | 1     | 0     |   |

#### Treatment combinations

| $S_1$  | $S_2$  | $S_3$  |
|--------|--------|--------|
| 000000 | 000100 | 100001 |
| 000101 | 000001 | 100100 |
| 110000 | 110001 | 010001 |
| 110101 | 110100 | 010100 |
| 011001 | 011000 | 001000 |
| 011100 | 011101 | 001101 |
| 001010 | 001011 | 000010 |
| 001111 | 001110 | 000111 |
| 100011 | 100010 | 111000 |
| 100110 | 100111 | 111101 |
| 101001 | 101000 | 110010 |
| 101100 | 101101 | 110111 |
| 111010 | 111011 | 101011 |
| 111111 | 111110 | 101110 |
| 010011 | 010010 | 011011 |
| 010110 | 010111 | 011110 |

Sets of Treatment Combinations from the 31

$$\frac{\text{Set } S_1' \quad S_2' \quad S_3'}{z_1 = 0} \quad 1 \quad 2$$

$$\begin{array}{ccc} \underline{S_1'} & \underline{S_2'} & \underline{S_3'} \\ 0 & 1 & 2 \end{array}$$

There are seven factors at 2 levels and one factor at 3 levels. 45 effects are estimated from 96 treatment combinations. This is a ½ fraction.

#### Experimental Plan

 $S_1S_1'$   $S_2S_2'$   $S_3S_3'$ 

#### Analysis

The matrix  $\frac{1}{256}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$  is used to estimate  $\begin{bmatrix} A_1A_2 \\ A_3A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_3 \\ A_2A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_4 \\ A_2A_3 \end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 27

| Set                                                   | $S_1$     | $S_2$ | $S_3$ |
|-------------------------------------------------------|-----------|-------|-------|
| $x_1 + x_2 + x_3 + x_4$                               | $x_4 = 0$ | 0     | 1     |
| $x_3+x_4+x_5+x_6+x_6+x_6+x_6+x_6+x_6+x_6+x_6+x_6+x_6$ | $x_7 = 0$ | 1     | 0     |

#### Treatment Combinations

| $S_1$   | $S_2$   | S <sub>8</sub> |
|---------|---------|----------------|
| 0000000 | 0000001 | 1000000        |
| 1100000 | 1100001 | 0100000        |
| 0011000 | 0011001 | 1011000        |
| 1111000 | 1111001 | 0111000        |
| 1001100 | 1001101 | 0001100        |
| 0101100 | 0101101 | 1101100        |
| 1010100 | 1010101 | 0010100        |
| 0110100 | 0110101 | 1110100        |
| 1001010 | 1001011 | 0001010        |
| 0101010 | 0101011 | 1101010        |
| 1010010 | 1010011 | 0010010        |
| 0110010 | 0110011 | 1110010        |
| 0000110 | 0000111 | 1000110        |
| 1100110 | 1100111 | 0100110        |
| 0011110 | 0011111 | 1011110        |
| 1111110 | 1111111 | 0111110        |
| 1001001 | 1001000 | 0001001        |
| 0101001 | 0101000 | 1101001        |
| 1010001 | 1010000 | 0010001        |
| 0110001 | 0110000 | 1110001        |
| 0000101 | 0000100 | 1000101        |
| 1100101 | 1100100 | 0100101        |
| 0011101 | 0011100 | 1011101        |
| 1111101 | 1111100 | 0111101        |
| 0000011 | 0000010 | 1000011        |
| 1100011 | 1100010 | 0100011        |
| 0011011 | 0011010 | 1011011        |
| 1111011 | 1111010 | 0111011        |
| 1001111 | 1001110 | 0001111        |
| 0101111 | 0101110 | 1101111        |
| 1010111 | 1010110 | 0010111        |
| 0110111 | 0110110 | 1110111        |

Sets of Treatment Combinations from the 31

$$\frac{S_1'}{0} \quad \frac{S_2'}{1} \quad \frac{S}{2}$$

There are eight factors at 2 levels and one factor at 3 levels. 55 effects are estimated from 96 treatment combinations. This is a % fraction.

#### **Experimental Plan**

$$S_1S_1'$$
  $S_2S_2'$   $S_3S_3'$ 

#### Analysis

The matrix 
$$\frac{1}{128}\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} A_1A_3 \\ A_2A_4 \\ A_6A_7 \end{bmatrix}$ ;

the matrix 
$$\frac{1}{256}\begin{bmatrix}3&1\\1&3\end{bmatrix}$$
 is used to estimate  $\begin{bmatrix}A_2A_6\\A_4A_7\end{bmatrix}$ ,  $\begin{bmatrix}A_2A_7\\A_4A_6\end{bmatrix}$ ;

the matrix 
$$\frac{1}{256}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} A_1A_2 \\ A_3A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_4 \\ A_2A_3 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_6 \\ A_3A_7 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_7 \\ A_3A_6 \end{bmatrix}$ 

#### Construction

Sets of Treatment Combinations from the 28

| Set                           | $S_1$       | $S_2$ | $S_3$ | _ |
|-------------------------------|-------------|-------|-------|---|
| $x_1 + x_2 + x_5 + x_7 + x_8$ | <b>s</b> =0 | 0     | 0     |   |
| $x_1 + x_3 + x_6 + x$         | $_{7}=0$    | 0     | 1     |   |
| $x_1 + x_2 + x_3 + x_4$       | $_{4}=0$    | 1     | 0     |   |

Treatment Combinations

| $S_1$            | $S_2$    | S <sub>3</sub> |
|------------------|----------|----------------|
| 00000000         | 10000010 | 00000011       |
| 00001001         | 10001011 | 00001010       |
| 00000111         | 10000101 | 00000100       |
| 00001110         | 10001100 | 00001101       |
| 00110011         | 01000001 | 00110000       |
| 00111010         | 01001000 | 00111001       |
| 00110100         | 01000110 | 00110111       |
| 00111101         | 01001111 | 00111110       |
| 01010001         | 00100011 | 01010010       |
| 01011000         | 00101010 | 01011011       |
| 01010110         | 00100100 | 01010101       |
| 01011111         | 00101101 | 01011100       |
| 10010010         | 00010000 | 10010001       |
| 10011011         | 00011001 | 10011000       |
| 10010101         | 00010111 | 10010110       |
| 10011100         | 00011110 | 10011111       |
| 01100010         | 11100000 | 01100001       |
| 01101011         | 11101001 | 01101000       |
| 01100101         | 11100111 | 01100110       |
| 01101100         | 11101110 | 01101111       |
| 10100001         | 11010011 | 10100010       |
| 10101000         | 11011010 | 10101011       |
| 10100110         | 11010100 | 10100101       |
| 10101111         | 11011101 | 10101100       |
| 11000011         | 10110001 | 11000000       |
| 11001010         | 10111000 | 11001001       |
| 11000100         | 10110110 | 11000111       |
| 11001101         | 10111111 | 11001110       |
| 11110000         | 01110010 | 11110011       |
| 11111001         | 01111011 | 11111010       |
| 11110111         | 01110101 | 11110100       |
| <b>1</b> 1111110 | 01111100 | 11111101       |
|                  |          |                |

Sets of Treatment Combinations from the 31

$$\frac{S_1'}{0} \quad \frac{S_1'}{1} \quad \frac{S_2}{2}$$

There are nine factors at 2 levels and one factor at 3 levels. 66 effects are estimated from 128 treatment combinations. This is a  $\frac{1}{12}$  fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_3S_3'$   $S_4S_2'$ 

#### Analysis

The matrix 
$$\frac{1}{64}\begin{bmatrix}2&1\\1&1\end{bmatrix}$$
 is used to estimate  $\begin{bmatrix}A_1B_1\\A_4A_6\end{bmatrix}$ ,  $\begin{bmatrix}A_4B_1\\A_1A_6\end{bmatrix}$ ,  $\begin{bmatrix}A_6B_1\\A_1A_4\end{bmatrix}$  and the matrix  $\frac{1}{576}\begin{bmatrix}5&1\\1&2\end{bmatrix}$  is used to estimate  $\begin{bmatrix}\mu\\B_1^2\end{bmatrix}$ ,  $\begin{bmatrix}A_1\\A_1B_1^2\end{bmatrix}$ ,  $\begin{bmatrix}A_2\\A_2B_1^2\end{bmatrix}$ ,  $\begin{bmatrix}A_3\\A_3B_1^2\end{bmatrix}$ ,  $\begin{bmatrix}A_4\\A_4B_1^2\end{bmatrix}$ ,  $\begin{bmatrix}A_5\\A_6B_1^2\end{bmatrix}$ ,  $\begin{bmatrix}A_6\\A_6B_1^2\end{bmatrix}$ ,  $\begin{bmatrix}A_6\\A_7B_1^2\end{bmatrix}$ ,  $\begin{bmatrix}A_8\\A_8B_1^2\end{bmatrix}$ ,  $\begin{bmatrix}A_9\\A_9B_1^2\end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 29

#### Treatment Combinations

| Set                                       | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $S_1$     | $S_2$     | $S_8$     | S4_      |
|-------------------------------------------|-------|-------|-------|-------|-----------|-----------|-----------|----------|
| $x_1 + x_2 + x_3 + x_4 + x_4$             | . — 1 | 0     | 0     | 1     | 000100000 | 101000100 | 010000011 | 10110000 |
| 21 1 2 1 23 1 24 1 2                      | 9-1   | U     | U     | 1     | 001011000 | 100111100 | 011111011 | 10001100 |
| $x_1 + x_2 + x_5 + x_6 + x_6$             | 0     | 1     | 0     | 1     | 110111000 | 011011100 | 100011011 | 01111100 |
| 21   22   25   26   2                     | 8-0   | _     | O     | -     | 100010100 | 001110000 | 110110111 | 00101010 |
| $x_2 + x_3 + x_5 + x_5$                   | -=0   | 0     | 1     | 1     | 011110100 | 110010000 | 001010111 | 11011010 |
| 2   23   25   2                           | , 0   | Ü     | -     | •     | 010001100 | 111101000 | 000101111 | 11100110 |
| $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_6$ | -=1   | 1     | 1     | 1     | 101101100 | 000001000 | 111001111 | 00010110 |
| 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1   | , -   | -     | -     | -     | 100000010 | 001100110 | 110100001 | 0010000  |
|                                           |       |       |       |       | 011100010 | 110000110 | 001000001 | 1101000  |
|                                           |       |       |       |       | 010011010 | 111111110 | 000111001 | 1110110  |
|                                           |       |       |       |       | 101111010 | 000011110 | 111011001 | 0001110  |
|                                           |       |       |       |       | 111010110 | 010110010 | 101110101 | 0100101  |
| *                                         |       |       |       |       | 000110110 | 101010010 | 010010101 | 1011101  |
|                                           |       |       |       |       | 001001110 | 100101010 | 011101101 | 1000011  |
|                                           |       |       |       |       | 110101110 | 011001010 | 100001101 | 0111011  |
|                                           |       |       |       |       | 101010001 | 000110101 | 111110010 | 0000100  |
|                                           |       |       |       |       | 010110001 | 111010101 | 000010010 | 1111100  |
|                                           |       |       |       |       | 011001001 | 110101101 | 001101010 | 1100010  |
|                                           |       |       |       |       | 100101001 | 001001101 | 110001010 | 0011010  |
|                                           |       |       |       |       | 110000101 | 011100001 | 100100110 | 0110001  |
|                                           |       |       |       |       | 001100101 | 100000001 | 011000110 | 100100   |
|                                           |       |       |       |       | 000011101 | 101111001 | 010111110 | 1010111  |
|                                           |       |       |       |       | 111111101 | 010011001 | 101011110 | 0101111  |
|                                           |       |       |       |       | 110010011 | 011110111 | 100110000 | 0110100  |
|                                           |       |       |       |       | 001110011 | 100010111 | 011010000 | 1001100  |
|                                           |       |       |       |       | 000001011 | 101101111 | 010101000 | 1010010  |
|                                           |       |       |       |       | 111101011 | 010001111 | 101001000 | 0101010  |
|                                           |       |       |       |       | 101000111 | 000100011 | 111100100 | 0000001  |
|                                           |       |       |       |       | 010100111 | 111000011 | 000000100 | 1111001  |
|                                           |       |       |       |       | 011011111 | 110111011 | 001111100 | 1100111  |
|                                           |       |       |       |       | 100111111 | 001011011 | 110011100 | 0011111  |

Sets of Treatment Combinations from the 31

| Set | $S_1'$    | $S_2'$ | S <sub>3</sub> ' |  |
|-----|-----------|--------|------------------|--|
|     | $z_1 = 0$ | 1      | 2                |  |

Treatment Combinations

101100011

010000000

010100100

$$\frac{S_1'}{0}$$
  $\frac{S_2'}{1}$   $\frac{S_3'}{2}$ 

111000000

There are three factors at 2 levels and two factors at 3 levels. 27 effects are estimated from 36 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_2S_3'$ 

#### Analysis

The matrix  $\frac{1}{96}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$  is used to estimate  $\begin{bmatrix} A_3 \\ A_1A_2 \end{bmatrix}$ ,  $\begin{bmatrix} A_2 \\ A_1A_3 \end{bmatrix}$ ,  $\begin{bmatrix} A_1 \\ A_2A_3 \end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 23

$$\frac{\text{Set} \quad S_1 \quad S_2}{x_1 + x_2 + x_3 = 0 \quad 1}$$

Treatment Combinations

Sets of Treatment Combinations from the 32

Treatment Combinations

#### Design 2432

There are four factors at 2 levels and two factors at 3 levels. 35 effects are estimated from 72 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_2S$ 

#### Analysis

The matrix  $\frac{1}{192}\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$  is used to estimate  $\begin{bmatrix} A_1A_2 \\ A_3A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_3 \\ A_2A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_4 \\ A_2A_3 \end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 24

$$\frac{\text{Set} \quad S_1 \quad S_2}{x_1 + x_2 + x_3 + x_4 = 0 \quad 1}$$

Treatment Combinations

| $S_1$  | $S_2$ |
|--------|-------|
| 0000   | 1000  |
| . 1111 | 0100  |
| 1100   | 0010  |
| 1010   | 0001  |
| 1001   | 1110  |
| 0110   | 1101  |
| 0101   | 1011  |
| 0011   | 0111  |

Sets of Treatment Combinations from the 32

There are five factors at 2 levels and two factors at 3 levels. 44 effects are estimated from 72 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_3S_3'$ 

#### Analysis

The matrix 
$$\frac{1}{96}\begin{bmatrix}2&1&1\\1&2&1\\1&1&2\end{bmatrix}$$
 is used to estimate  $\begin{bmatrix}A_3\\A_1A_2\\A_4A_5\end{bmatrix}$  and

the matrix  $\frac{1}{192}\begin{bmatrix}3 & 1\\1 & 3\end{bmatrix}$  is used to estimate  $\begin{bmatrix}A_1\\A_2A_3\end{bmatrix}$ ,  $\begin{bmatrix}A_2\\A_1A_3\end{bmatrix}$ ,  $\begin{bmatrix}A_4\\A_3A_5\end{bmatrix}$ ,  $\begin{bmatrix}A_5\\A_3A_4\end{bmatrix}$ ,  $\begin{bmatrix}A_1A_4\\A_2A_5\end{bmatrix}$ ,  $\begin{bmatrix}A_1A_4\\A_2A_4\end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 25

| Set               | $S_1$ | $S_2$ | $S_3$ |
|-------------------|-------|-------|-------|
| $x_1 + x_2 + x_3$ | =0    | 0     | 1     |
| $x_3 + x_4 + x_5$ | =0    | 1     | 0     |

#### Treatment Combinations

| $S_1$ | $S_2$ | $S_3$ |
|-------|-------|-------|
| 00000 | 00001 | 10000 |
| 00011 | 00010 | 10011 |
| 11000 | 11001 | 01000 |
| 11011 | 11010 | 01011 |
| 10101 | 10100 | 00101 |
| 10110 | 10111 | 00110 |
| 01101 | 01100 | 11101 |
| 01110 | 01111 | 11110 |

#### Sets of Treatment Combinations from the 32

| Set           | $S_1^\prime$ | $S_2'$ | $S_3'$ |
|---------------|--------------|--------|--------|
| $z_1 + z_2 =$ | 0            | 1      | 2      |

| $S_1'$ | $S_2'$ | $S_3'$ |
|--------|--------|--------|
|        |        | _      |
| 00     | 10     | 20     |
| 21     | 01     | 02     |
| 12     | 22     | 11     |

There are six factors at 2 levels and two factors at 3 levels. 54 effects are estimated from 96 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

$$S_1S_1'$$
  $S_2S_2'$   $S_3S_3'$   $S_4S_3'$ 

#### Analysis

$$\text{The matrix } \frac{1}{240} \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} \text{is used to estimate } \begin{bmatrix} A_1B_1 \\ A_1B_2 \end{bmatrix}, \ \begin{bmatrix} A_2B_1 \\ A_2B_2 \end{bmatrix}, \ \begin{bmatrix} A_3B_1 \\ A_3B_2 \end{bmatrix}, \ \begin{bmatrix} A_4B_1 \\ A_4B_2 \end{bmatrix}, \ \begin{bmatrix} A_5B_1 \\ A_5B_2 \end{bmatrix}, \ \begin{bmatrix} A_6B_1 \\ A_6B_2 \end{bmatrix}, \ \begin{bmatrix} A_8B_1 \\ A_9B_2 \end{bmatrix},$$

the matrix 
$$\frac{1}{720}\begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} A_1B_1^2 \\ A_1B_2^2 \end{bmatrix}$ ,  $\begin{bmatrix} A_2B_1^2 \\ A_2B_2^2 \end{bmatrix}$ ,  $\begin{bmatrix} A_3B_1^2 \\ A_3B_2^2 \end{bmatrix}$ ,  $\begin{bmatrix} A_4B_1^2 \\ A_4B_2^2 \end{bmatrix}$ ,  $\begin{bmatrix} A_5B_1^2 \\ A_6B_2^2 \end{bmatrix}$ ,  $\begin{bmatrix} A_6B_1^2 \\ A_6B_2^2 \end{bmatrix}$ ,  $\begin{bmatrix} A_6B_1^2 \\ A_6B_2^2 \end{bmatrix}$ ,  $\begin{bmatrix} A_1B_1^2 \\ A_2B_2^2 \end{bmatrix}$ ,  $\begin{bmatrix} A_1B_1^2$ 

the matrix 
$$\frac{1}{192}\begin{bmatrix} 4 & 2 & 2 \\ 2 & 3 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} A_1 \\ A_2A_5 \\ A_4A_6 \end{bmatrix}$ ,  $\begin{bmatrix} A_4 \\ A_3A_5 \\ A_1A_6 \end{bmatrix}$ ,  $\begin{bmatrix} A_5 \\ A_3A_4 \\ A_1A_2 \end{bmatrix}$ ;

the matrix 
$$\frac{1}{192}\begin{bmatrix} 4 & 2 & -2 \\ 2 & 3 & -1 \\ -2 & -1 & 3 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} A_2 \\ A_1A_5 \\ A_3A_6 \end{bmatrix}$ ,  $\begin{bmatrix} A_3 \\ A_4A_5 \\ A_2A_6 \end{bmatrix}$ ,  $\begin{bmatrix} A_6 \\ A_1A_4 \\ A_2A_3 \end{bmatrix}$ ;

the matrix 
$$\frac{1}{58,752}\begin{bmatrix} 680 & 204 & -68 & 0 & 0 \\ 204 & 1377 & 51 & 102 & 102 \\ -68 & 51 & 153 & 34 & 34 \\ 0 & 102 & 34 & 340 & -68 \\ 0 & 102 & 34 & -68 & 340 \end{bmatrix}$$
 is used to estimate 
$$\begin{bmatrix} \mu \\ B_1B_2 \\ B_2^2 \\ B_1^2 \\ B_2^2 \end{bmatrix}$$

$$\text{and the matrix } \frac{1}{1,152} \begin{bmatrix} 20 & 4 & -2 & 2 \\ 4 & 20 & 2 & -2 \\ -2 & 2 & 11 & 1 \\ 2 & -2 & 1 & 11 \end{bmatrix} \text{ is used to estimate } \begin{bmatrix} B_1 \\ B_2 \\ B_1 B_2^2 \\ B_1^2 B_2 \end{bmatrix}$$

#### Construction

Sets of Treatment Combinations from the 26

| Set                     | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------------------------|-------|-------|-------|-------|
| $x_1 + x_2 + x_3 + x$   | =0    | 0     | 1     | 1     |
| $x_3 + x_4 + x$         | =0    | 0     | 1     | 0     |
| $x_2 + x_4 + x_5 + x_6$ | 6=0   | 1     | 0     | 1     |

| $\mathbf{S}_1$ | $S_2$  | $S_3$  | $S_4$  |
|----------------|--------|--------|--------|
| 000000         | 001100 | 000101 | 100001 |
| 111100         | 110000 | 111001 | 011101 |
| 011010         | 010110 | 011111 | 111011 |
| 100110         | 101010 | 100011 | 000111 |
| 001101         | 000001 | 001000 | 101100 |
| 110001         | 111101 | 110100 | 010000 |
| 010111         | 011011 | 010010 | 110110 |
| 101011         | 100111 | 101110 | 001010 |
|                |        |        |        |

Sets of Treatment Combinations from the 32

Treatment Combinations

#### Design 2732

There are seven factors at 2 levels and two factors at 3 levels. 65 effects are estimated from 144 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

$$S_1S_1'$$
  $S_2S_2'$   $S_3S_3'$ 

#### Analysis

The matrix 
$$\frac{1}{192}\begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} A_7 \\ A_4A_6 \\ A_3A_5 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_2 \\ A_5A_6 \\ A_3A_4 \end{bmatrix}$ ;

the matrix 
$$\frac{1}{384}\begin{bmatrix}3 & 1\\1 & 3\end{bmatrix}$$
 is used to estimate  $\begin{bmatrix}A_4\\A_6A_7\end{bmatrix}$ ,  $\begin{bmatrix}A_5\\A_4A_7\end{bmatrix}$ ,  $\begin{bmatrix}A_1A_5\\A_2A_6\end{bmatrix}$ ,  $\begin{bmatrix}A_1A_6\\A_2A_5\end{bmatrix}$ ;

the matrix 
$$\frac{1}{384}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} A_3 \\ A_5A_7 \end{bmatrix}$ ,  $\begin{bmatrix} A_5 \\ A_3A_7 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_3 \\ A_2A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_1A_4 \\ A_2A_3 \end{bmatrix}$ ,  $\begin{bmatrix} A_3A_6 \\ A_4A_5 \end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 27

| Set                       | $S_1$     | $S_2$ | $S_3$ |  |
|---------------------------|-----------|-------|-------|--|
| $x_1 + x_2 + x_3 +$       | $x_4 = 0$ | 1     | 0     |  |
| $x_3 + x_4 + x_5 +$       | $x_6 = 0$ | 0     | 1     |  |
| $x_1 + x_2 + x_3 + x_6 +$ | $x_7 = 0$ | 0     | 0     |  |

Treatment Combinations

| $S_1$   | $S_2$   | $S_3$   |
|---------|---------|---------|
| 0000000 | 1000001 | 0000100 |
| 1100000 | 0100001 | 1100100 |
| 0110100 | 1110101 | 0110000 |
| 1010100 | 0010101 | 1010000 |
| 0101010 | 1101011 | 0101110 |
| 1001010 | 0001011 | 1001110 |
| 0011110 | 1011111 | 0011010 |
| 1111110 | 0111111 | 1111010 |
| 0011001 | 1011000 | 0011101 |
| 1111001 | 0111000 | 1111101 |
| 0101101 | 1101100 | 0101001 |
| 1001101 | 0001100 | 1001001 |
| 0110011 | 1110010 | 0110111 |
| 1010011 | 0010010 | 1010111 |
| 0000111 | 1000110 | 0000011 |
| 1100111 | 0100110 | 1100011 |

Sets of treatment Combinations from the 32

|   | Set S <sub>1</sub> | $S_2'$ | S' <sub>3</sub> | <u></u> |
|---|--------------------|--------|-----------------|---------|
| 2 | $z_1 + z_2 = 0$    | 1      | 2               |         |
|   |                    |        |                 |         |

| $\underline{S'_1}$ | $\frac{S_2'}{}$ | $S_3'$ |
|--------------------|-----------------|--------|
| 00                 | 10              | 20     |
| 12                 | 01              | 02     |
| 21                 | 22              | 11     |
|                    |                 |        |

There are eight factors at 2 levels and two factors at 3 levels. 77 effects are estimated from 144 treatment combinations. This is a 1/16 fraction.

#### **Experimental Plan**

$$\begin{bmatrix} A_1 A_5 \\ A_2 A_6 \\ A_4 A_7 \\ A_3 A_8 \end{bmatrix}, \begin{bmatrix} A_1 A_6 \\ A_2 A_5 \\ A_3 A_7 \\ A_4 A_8 \end{bmatrix}, \begin{bmatrix} A_1 A_7 \\ A_4 A_5 \\ A_3 A_6 \\ A_2 A_8 \end{bmatrix}, \begin{bmatrix} A_2 A_7 \\ A_4 A_6 \\ A_3 A_5 \\ A_1 A_8 \end{bmatrix}.$$

#### Construction

#### Sets of Treatment Combinations from the 28

| Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $S_1$     | $S_2$ | $S_3$ | $S_4$ | $S_5$ | $S_6$ | S <sub>7</sub> | $S_8$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------|-------|-------|-------|----------------|-------|
| $x_1 + x_2 + x_3 + x_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $x_4 = 1$ | 1     | 1     | 1     | 0     | 0     | 0              | 0     |
| $x_1 + x_2 + x_5 + x_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $x_6 = 1$ | 1     | 0     | 0     | 1     | 1     | 0              | 0     |
| $x_2 + x_3 + x_5 $ | $x_7 = 0$ | 1     | 1     | 0     | 1     | 0     | 1              | 0     |
| $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x_8 = 1$ | 1     | 1     | 1     | 1     | 1     | 1              | 1     |

| $S_1$    | $S_{i}$  | $S_3$    | $S_4$    | $S_5$    | $S_6$    | $S_7$    | $S_8$    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 01110000 | 01000000 | 00100000 | 00010000 | 00001000 | 00111000 | 00000010 | 00000001 |
| 01001100 | 10110000 | 11010000 | 11100000 | 11111000 | 11001000 | 11110010 | 11110001 |
| 10000000 | 10001100 | 11101100 | 11011100 | 11000100 | 11110100 | 11001110 | 11001101 |
| 10111100 | 01111100 | 00011100 | 00101100 | 00110100 | 00000100 | 00111110 | 00111101 |
| 11101010 | 00101010 | 01001010 | 01111010 | 01100010 | 01010010 | 01101000 | 01101011 |
| 00011010 | 11011010 | 10111010 | 10001010 | 10010010 | 10100010 | 10011000 | 10011011 |
| 00100110 | 11100110 | 10000110 | 10110110 | 10101110 | 10011110 | 10100100 | 10100111 |
| 11010110 | 00010110 | 01110110 | 01000110 | 01011110 | 01101110 | 01010100 | 01010111 |
| 00101001 | 11101001 | 10001001 | 10111001 | 10100001 | 10010001 | 10101011 | 10101000 |
| 11011001 | 00011001 | 01111001 | 01001001 | 01010001 | 01100001 | 01011011 | 01011000 |
| 11100101 | 00100101 | 01000101 | 01110101 | 01101101 | 01011101 | 01100111 | 01100100 |
| 01000011 | 10000011 | 11100011 | 10000101 | 10011101 | 10101101 | 10010111 | 10010100 |
| 10110011 | 01110011 | 00010011 | 11010011 | 11001011 | 11111011 | 11000001 | 11000010 |
| 10001111 | 01001111 | 00101111 | 00100011 | 00111011 | 00001011 | 00110001 | 00110010 |
| 01111111 | 10111111 | 11011111 | 11101111 | 00000111 | 00110111 | 00001101 | 00001110 |
| 00010101 | 11010101 | 10110101 | 00011111 | 11110111 | 11000111 | 11111101 | 11111110 |
|          |          |          |          |          |          |          |          |

#### Sets of Treatment Combinations from the 32

| Set         | $S_1'$ | $S_2'$ | $S_3'$ | $S_4'$ | $S_{\delta}'$ | $S_6'$ | $S_7'$ | $S_8'$ | $S_9'$ |
|-------------|--------|--------|--------|--------|---------------|--------|--------|--------|--------|
| $z_1 + z_2$ | =0     | 0      | 0      | 1      | 1             | 1      | 2      | 2      | 2      |

#### Treatment Combinations

#### Design 2233

There are two factors at 2 levels and three factors at 3 levels. 34 effects are estimated from 54 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_2S$ 

#### Analysis

The matrix  $\frac{1}{48}\begin{bmatrix} 3 & 1\\ 1 & 3 \end{bmatrix}$  is used to estimate

$$3\begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad 3\begin{bmatrix} \mu \\ A_1A_2 \end{bmatrix}, \quad 2\begin{bmatrix} A_1B_1 \\ A_2B_1 \end{bmatrix}, \quad 2\begin{bmatrix} A_1B_2 \\ A_2B_2 \end{bmatrix}, \quad 2\begin{bmatrix} A_1B_3 \\ A_2B_3 \end{bmatrix}, \quad 6\begin{bmatrix} A_1B_1^2 \\ A_2B_1^2 \end{bmatrix}, \quad 6\begin{bmatrix} A_1B_2^2 \\ A_2B_2^2 \end{bmatrix}, \quad 6\begin{bmatrix} A_1B_3^2 \\ A_2B_3^2 \end{bmatrix}.$$

#### Construction

Sets of Treatment Combinations from the 2<sup>2</sup>

Treatment Combinations

Sets of Treatment Combinations from the 3<sup>8</sup>

| Set               | $S_1'$ | $S_2'$ | $S_3^7$ |
|-------------------|--------|--------|---------|
| $z_1 + z_2 + z_3$ | =0     | 1      | 2       |

| $\mathbf{S}_{\mathbf{i}}$ | Si  | Si  |
|---------------------------|-----|-----|
|                           |     | _   |
| 000                       | 001 | 020 |
| 222                       | 010 | 002 |
| 120                       | 022 | 011 |
| 102                       | 100 | 110 |
| 012                       | 121 | 101 |
| 210                       | 112 | 122 |
| 201                       | 220 | 200 |
| 021                       | 202 | 212 |
| 111                       | 211 | 221 |
|                           |     |     |

There are four factors at 2 levels and three factors at 3 levels. 53 effects are estimated from 108 treatment combinations. This is a ¼ fraction.

#### **Experimental Plan**

$$S_1S_1'$$
  $S_2S_2'$   $S_3S_3'$ 

#### Analysis

The matrix 
$$\frac{1}{48}\begin{bmatrix}3 & 1\\1 & 3\end{bmatrix}$$
 is used to estimate  $\begin{bmatrix}6 \\ A_3A_4\end{bmatrix}$ ,  $\begin{bmatrix}4 \\ A_4B_1\end{bmatrix}$ ,  $\begin{bmatrix}4 \\ A_4B_2\end{bmatrix}$ ,

$$4\begin{bmatrix} A_{3}B_{3} \\ A_{4}B_{3} \end{bmatrix}, \quad 12\begin{bmatrix} A_{3}B_{1}^{2} \\ A_{4}B_{1}^{2} \end{bmatrix}, \quad 12\begin{bmatrix} A_{3}B_{2}^{2} \\ A_{4}B_{2}^{2} \end{bmatrix}, \quad 12\begin{bmatrix} A_{3}B_{3}^{2} \\ A_{4}B_{3}^{2} \end{bmatrix},$$

and the matrix 
$$\frac{1}{144}\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} A_1 \\ A_2A_3 \\ A_2A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_2 \\ A_1A_3 \\ A_1A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_3 \\ A_4 \\ A_1A_2 \end{bmatrix}$ .

#### Construction

#### Sets of Treatment Combinations from the 24

| _ | Set               | $S_1$       | $S_2$ | $S_3$ |
|---|-------------------|-------------|-------|-------|
|   | $x_1 + x_2 + x_3$ | =0          | 0     | 1     |
|   | $x_1 + x_2 + x_3$ | <b>4</b> =0 | 1     | 0     |

#### Sets of Treatment Combinations from the 33

| Set             | $S_1'$          | $S_2'$ | $S_3'$ |  |
|-----------------|-----------------|--------|--------|--|
| $z_1 + z_2 + z$ | <sub>3</sub> =0 | 1      | 2      |  |

#### Treatment Combinations

| $S_1$ | $S_2$ | $S_3$ |
|-------|-------|-------|
| 0000  | 0001  | 1110  |
| 1100  | 1101  | 1001  |
| 0111  | 0110  | 0101  |
| 1011  | 1010  | 0010  |

| $S_1'$ | $S_2'$ | $S_3'$ |
|--------|--------|--------|
| 000    | 001    | 020    |
| 222    | 010    | 002    |
| 120    | 022    | 011    |
| 102    | 100    | 110    |
| 012    | 121    | 101    |
| 210    | 112    | 122    |
| 201    | 220    | 200    |
| 021    | 202    | 212    |
| 111    | 211    | 221    |

There are seven factors at 2 levels and three factors at 3 levels. 89 effects are estimated from 432 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_3S_3'$ 

#### Analysis

The matrix 
$$\frac{1}{576}$$
  $\begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$  is used to estimate  $\begin{bmatrix} A_1A_2 \\ A_5A_6 \\ A_3A_4 \end{bmatrix}$ ,  $\begin{bmatrix} A_7 \\ A_1A_4 \\ A_2A_3 \end{bmatrix}$ ;

the matrix 
$$\frac{1}{1152}\begin{bmatrix}3 & 1\\1 & 3\end{bmatrix}$$
 is used to estimate  $\begin{bmatrix}A_1A_5\\A_2A_6\end{bmatrix}$ ,  $\begin{bmatrix}A_1A_6\\A_2A_5\end{bmatrix}$ ,  $\begin{bmatrix}A_1\\A_4A_7\end{bmatrix}$ ,  $\begin{bmatrix}A_4\\A_1A_7\end{bmatrix}$ ;

the matrix 
$$\frac{1}{1152}\begin{bmatrix}3 & -1\\-1 & 3\end{bmatrix}$$
 is used to estimate  $\begin{bmatrix}A_3\\A_2A_7\end{bmatrix}$ ,  $\begin{bmatrix}A_1A_3\\A_2A_4\end{bmatrix}$ ,  $\begin{bmatrix}A_3A_5\\A_4A_6\end{bmatrix}$ ,  $\begin{bmatrix}A_3A_6\\A_4A_5\end{bmatrix}$ ,  $\begin{bmatrix}A_2\\A_3A_7\end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 27

| Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $S_1$     | $S_2$ | $S_3$ |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------|--|
| $x_1 + x_2 + x_3 + x_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $a_4 = 0$ | 1     | 0     |  |
| $x_3 + x_4 + x_5 + x_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $r_6 = 0$ | 0     | 1     |  |
| $x_1 + x_3 + x_5 + x_6 $ | $r_7 = 0$ | 0     | 0     |  |

#### Treatment Combinations

| $S_1$   | $S_2$   | $S_3$   |
|---------|---------|---------|
| 0000000 | 0100000 | 0011100 |
| 1111000 | 1011000 | 1100100 |
| 0110100 | 0010100 | 0101000 |
| 1001100 | 1101100 | 1010000 |
| 0110010 | 0010010 | 0101110 |
| 1001010 | 1101010 | 1010110 |
| 0000110 | 0100110 | 0011010 |
| 1111110 | 1011110 | 1100010 |
| 1100001 | 1000001 | 1111101 |
| 0011001 | 0111001 | 0000101 |
| 1010101 | 1110101 | 1001001 |
| 0101101 | 0001101 | 0110001 |
| 1010011 | 1110011 | 1001111 |
| 0101011 | 0001011 | 0110111 |
| 1100111 | 1000111 | 1111011 |
| 0011111 | 0111111 | 0000011 |
|         |         |         |

Sets of Treatment Combinations from the 3<sup>3</sup>

| Set               | $S_1'$    | $S_2'$ | $S_3'$ |  |
|-------------------|-----------|--------|--------|--|
| $z_1 + z_2 + z_3$ | $z_3 = 0$ | 1      | 2      |  |

| $S_1'$ | $S_2'$ | $S_3'$ |
|--------|--------|--------|
| 000    | 001    | 020    |
| 222    | 010    | 002    |
| 120    | 022    | 011    |
| 102    | 100    | 110    |
| 012    | 121    | 101    |
| 210    | 112    | 122    |
| 201    | 220    | 200    |
| 021    | 202    | 212    |
| 111    | 211    | 221    |

There is one factor at 2 levels and there are four factors at 3 levels. 42 effects are estimated from 81 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_2S_3'$ 

#### Analysis

The matrix  $\frac{1}{72}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$  is used to estimate  $3\begin{bmatrix} \mu \\ A_1 \end{bmatrix}$ ,  $2\begin{bmatrix} B_1 \\ A_1B_1 \end{bmatrix}$ ,  $2\begin{bmatrix} B_2 \\ A_1B_2 \end{bmatrix}$ ,  $2\begin{bmatrix} B_3 \\ A_1B_3 \end{bmatrix}$ ,

$$2\begin{bmatrix}B_4\\A_1B_4\end{bmatrix}, \ 6\begin{bmatrix}B_1^2\\A_1B_1^2\end{bmatrix}, \ 6\begin{bmatrix}B_2^2\\A_1B_2^2\end{bmatrix}, \ 6\begin{bmatrix}B_3^2\\A_1B_3^2\end{bmatrix}, \ 6\begin{bmatrix}B_4^2\\A_1B_4^2\end{bmatrix}.$$

#### Construction

Sets of Treatment Combinations from the 21

$$\frac{\text{Set } S_1 \qquad S_2}{x_1 = 0 \qquad 1}$$

#### Treatment Combinations

$$\frac{S_1}{0}$$
  $\frac{S_2}{1}$ 

Sets of Treatment Combinations from the 34

| Set                       | $S_1'$ | $S_2'$ | $S_3'$ |  |
|---------------------------|--------|--------|--------|--|
| $z_1 + z_2 + z_3 + z_4 =$ | 0      | 1      | 2      |  |

| $S_1'$ | $S_2'$ | $S_3'$ |
|--------|--------|--------|
| 0000   | 1000   | 2000   |
| 1110   | 2110   | 0110   |
| 2220   | 0220   | 1220   |
| 2001   | 0001   | 1001   |
| 0111   | 1111   | 2111   |
| 1221   | 2221   | 0221   |
| 1002   | 2002   | 0002   |
| 2112   | 0112   | 1112   |
| 0222   | 1222   | 2222   |
| 0120   | 1120   | 2120   |
| 1200   | 2200   | 0200   |
| 2010   | 0010   | 1010   |
| 2121   | 0121   | 1121   |
| 0201   | 1201   | 2201   |
| 1011   | 2011   | 0011   |
| 1122   | 2122   | 0122   |
| 2202   | 0202   | 1202   |
| 0012   | 1012   | 2012   |
| 0210   | 1210   | 2210   |
| 1020   | 2020   | 0020   |
| 2100   | 0100   | 1100   |
| 2211   | 0211   | 1211   |
| 0021   | 1021   | 2021   |
| 1101   | 2101   | 0101   |
| 1212   | 2212   | 0212   |
| 2022   | 0022   | 1022   |
| 0102   | 1102   | 2102   |

There are two factors at 2 levels and four factors at 3 levels. 52 effects are estimated from 162 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_1S_3'$ 

Analysis

The matrix 
$$\frac{1}{3}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate  $96\begin{bmatrix} A_1B_1 \\ A_2B_1 \end{bmatrix}$ ,  $96\begin{bmatrix} A_1B_2 \\ A_2B_2 \end{bmatrix}$ ,  $96\begin{bmatrix} A_1B_3 \\ A_2B_3 \end{bmatrix}$ ,  $96\begin{bmatrix} A_1B_4 \\ A_2B_4 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_1^2 \\ A_2B_2^2 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_2^2 \\ A_2B_3^2 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_3^2 \\ A_2B_3^2 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_4^2 \\ A_2B_4^2 \end{bmatrix}$ ,  $144\begin{bmatrix} \mu \\ A_1A_2 \end{bmatrix}$ ,  $144\begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 22

| Set         | $S_1$ | $S_2$ |   |
|-------------|-------|-------|---|
| $x_1 + x_2$ | =0    | 1     | • |

Sets of Treatment Combinations from the 34

$$\frac{\text{Set} \quad S_1' \quad S_2' \quad S_3'}{z_1 + z_2 + z_3 + z_4 = 0} \quad 1 \quad 2$$

#### Treatment Combinations

| S    | 1    | S    | 2    | S    |      |
|------|------|------|------|------|------|
| 0000 | 1011 | 1000 | 2011 | 2000 | 0011 |
| 1110 | 1122 | 2110 | 2122 | 0110 | 0122 |
| 2220 | 2202 | 0220 | 0202 | 1220 | 1202 |
| 2001 | 0012 | 0001 | 1012 | 1001 | 2012 |
| 0111 | 0210 | 1111 | 1210 | 2111 | 2210 |
| 1221 | 1020 | 2221 | 2020 | 0221 | 0020 |
| 1002 | 2100 | 2002 | 0100 | 0002 | 1100 |
| 2112 | 2211 | 0112 | 0211 | 1112 | 1211 |
| 0222 | 0021 | 1222 | 1021 | 2222 | 2021 |
| 0120 | 1101 | 1120 | 2101 | 2120 | 0101 |
| 1200 | 1212 | 2200 | 2212 | 0200 | 0212 |
| 2010 | 2022 | 0010 | 0022 | 1010 | 1022 |
| 2121 | 0102 | 0121 | 1102 | 1121 | 2102 |
| 0201 |      | 1201 |      | 2201 |      |
|      |      |      |      |      |      |

There are three factors at 2 levels and four factors at 3 levels. 63 effects are estimated from 162 treatment combinations. This is a ¼ fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_3S_3'$   $S_4S_4'$   $S_1S_5'$   $S_2S_6'$   $S_3S_7'$   $S_4S_8'$   $S_1S_9'$ 

#### Analysis

and the matrix 
$$\frac{1}{88}\begin{bmatrix} 10 & -1 & -1 \\ -1 & 10 & -1 \\ -1 & -1 & 10 \end{bmatrix}$$
 is used to estimate  $18\begin{bmatrix} A_1 \\ A_2 \\ A_3 \end{bmatrix}$ ,  $12\begin{bmatrix} A_1B_1 \\ A_2B_1 \\ A_3B_1 \end{bmatrix}$ ,  $12\begin{bmatrix} A_1B_2 \\ A_2B_2 \\ A_3B_2 \end{bmatrix}$ ,

$$12\begin{bmatrix} A_1B_3 \\ A_2B_3 \\ A_3B_3 \end{bmatrix}, \quad 12\begin{bmatrix} A_1B_4 \\ A_2B_4 \\ A_3B_4 \end{bmatrix}, \quad 36\begin{bmatrix} A_1B_1^2 \\ A_2B_1^2 \\ A_3B_1^2 \end{bmatrix}, \quad 36\begin{bmatrix} A_1B_2^2 \\ A_2B_2^2 \\ A_3B_2^2 \end{bmatrix}, \quad 36\begin{bmatrix} A_1B_3^2 \\ A_2B_3^2 \\ A_3B_3^2 \end{bmatrix}, \quad 36\begin{bmatrix} A_1B_4^2 \\ A_2B_4^2 \\ A_3B_4^2 \end{bmatrix}.$$

#### Construction

Sets of Treatment Combinations from the 2<sup>3</sup>

| Set           | $S_1$ | $S_2$ | $S_3$ | $S_4$ |  |
|---------------|-------|-------|-------|-------|--|
| $x_1 + x_2$   | =0    | 0     | 1     | 1     |  |
| $x_1 + x_3 =$ | =0    | 1     | 0     | 1     |  |

#### Treatment Combinations

| $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------|-------|-------|-------|
| 000   | 001   | 010   | 100   |
| 111   | 110   | 101   | 011   |

#### Sets of Treatment Combinations from the 34

| Set                  | $S_1'$ | $S_2'$ | $S_3'$ | $S_4'$ | $S_5'$ | $S_6'$ | $S_7'$ | $S_8'$ | $S_9'$ |
|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $z_1 + z_2 + z_3 =$  | =0     | 0      | 0      | 1      | 1      | 1      | 2      | 2      | 2      |
| $z_2 + 2z_3 + z_4 =$ | =0     | 1      | 2      | 0      | 1      | 2      | 0      | 1      | 2      |

| $S_i'$ | $S_2'$ | $S_3'$ | S <sub>4</sub> | S <sub>5</sub> | $S_6'$ | $S_7'$ | S's  | S <sub>9</sub> |
|--------|--------|--------|----------------|----------------|--------|--------|------|----------------|
| 0000   | 0001   | 0002   | 1000           | 1001           | 1002   | 2000   | 2001 | 2002           |
| 1110   | 1111   | 1112   | 2110           | 2111           | 2112   | 0110   | 0111 | 0112           |
| 2220   | 2221   | 2222   | 0220           | 0221           | 0222   | 1220   | 1221 | 1222           |
| 1201   | 1202   | 1200   | 2201           | 2202           | 2200   | 0201   | 0202 | 0200           |
| 2011   | 2012   | 2010   | 0011           | 0012           | 0010   | 1011   | 1012 | 1010           |
| 0121   | 0122   | 0120   | 1121           | 1122           | 1120   | 2121   | 2122 | 2120           |
| 2102   | 2100   | 2101   | 0102           | 0100           | 0101   | 1102   | 1100 | 1101           |
| 0212   | 0210   | 0211   | 1212           | 1210           | 1211   | 2212   | 2210 | 2211           |
| 1022   | 1020   | 1021   | 2022           | 2020           | 2021   | 0022   | 0020 | 0021           |

There are four factors at 2 levels and four factors at 3 levels. 75 effects are estimated from 162 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

$$S_1S_1'$$
  $S_2S_2'$   $S_3S_3'$   $S_4S_4'$   $S_5S_5'$   $S_6S_6'$   $S_7S_7'$   $S_8S_8'$   $S_1S_9'$ 

#### Analysis

$$\text{The matrix} \frac{1}{2160} \begin{bmatrix} 14 & 1 & -1 & 1 & 1 & -1 & 1 \\ 1 & 14 & 1 & -1 & -1 & 1 & -1 \\ -1 & 1 & 14 & 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 14 & -1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 14 & 1 & -1 \\ -1 & 1 & -1 & 1 & 14 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 & 14 \end{bmatrix} \text{ is used to estimate } \begin{bmatrix} \mu \\ A_1 A_2 \\ A_1 A_3 \\ A_1 A_4 \\ A_2 A_3 \\ A_2 A_4 \\ A_3 A_4 \end{bmatrix}$$

$$12\begin{bmatrix} A_1B_3 \\ A_2B_3 \\ A_3B_3 \\ A_4B_3 \end{bmatrix}, \quad 12\begin{bmatrix} A_1B_4 \\ A_2B_4 \\ A_3B_4 \\ A_4B_4 \end{bmatrix}, \quad 36\begin{bmatrix} A_1B_1^2 \\ A_2B_1^2 \\ A_3B_1^2 \\ A_4B_1^2 \end{bmatrix}, \quad 36\begin{bmatrix} A_1B_2^2 \\ A_2B_2^2 \\ A_3B_2^2 \\ A_4B_2^2 \end{bmatrix}, \quad 36\begin{bmatrix} A_1B_3^2 \\ A_2B_3^2 \\ A_3B_3^2 \\ A_4B_3^2 \end{bmatrix}, \quad 36\begin{bmatrix} A_1B_4^2 \\ A_2B_4^2 \\ A_3B_4^2 \\ A_4B_4^2 \end{bmatrix}.$$

#### Construction

Sets of Treatment Combinations from the 24

| Set S <sub>1</sub> | $S_2$ | $S_3$ | $S_4$ | $S_5$ | $S_6$ | $S_7$ | $S_8$ |  |
|--------------------|-------|-------|-------|-------|-------|-------|-------|--|
| $x_1 + x_2 = 1$    | 1     | 1     | 1     | 0     | 0     | 0     | 0     |  |
| $x_3 + x_4 = 1$    | 1     | 0     | 0     | 1     | ()    | 1     | 0     |  |
| $x_2 + x_3 = 1$    | 0     | 1     | 0     | 0     | 1     | 1     | 0     |  |

#### Treatment Combinations

| $S_1$ | $S_2$ | $S_3$ | $S_4$ | $S_5$ | $S_6$ | $S_7$ | $S_8$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 1010  | 1001  | 0100  | 1000  | 0001  | 1100  | 0010  | 0000  |
| 0101  | 0110  | 1011  | 0111  | 1110  | 0011  | 1101  | 1111  |

## Sets of Treatment Combinations from the 34

| Set $S'_1$             | $S_2'$ | $S_3'$ | $S_4'$ | $S_5'$ | $S_6'$ | $S_7'$ | $S_8'$ | $S_9'$ |
|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| $z_1 + z_2 + z_3 = 0$  | 0      | 0      | 1      | 1      | 1      | 2      | 2      | 2      |
| $z_2 + 2z_3 + z_4 = 0$ | 1      | 2      | 0      | 1      | 2      | 0      | 1      | 2      |

| $S_1'$ | $S_2'$ | $S_3'$ | $S_4'$ | S <sub>5</sub> | $S_6'$ | $S_7'$ | $S_8'$ | $S_{\theta}'$ |
|--------|--------|--------|--------|----------------|--------|--------|--------|---------------|
| 0000   | 0001   | 0002   | 1000   | 1001           | 1002   | 2000   | 2001   | 2002          |
| 1110   | 1111   | 1112   | 2110   | 2111           | 2112   | 0110   | 0111   | 0112          |
| 2220   | 2221   | 2222   | 0220   | 0221           | 0222   | 1220   | 1221   | 1222          |
| 1201   | 1202   | 1200   | 2201   | 2202           | 2200   | 0201   | 0202   | 0200          |
| 2011   | 2012   | 2010   | 0011   | 0012           | 0010   | 1011   | 1012   | 1010          |
| 0121   | 0122   | 0120   | 1121   | 1122           | 1120   | 2121   | 2122   | 2120          |
| 2102   | 2100   | 2101   | 0102   | 0100           | 0101   | 1102   | 1100   | 1101          |
| 0212   | 0210   | 0211   | 1212   | 1210           | 1211   | 2212   | 2210   | 2211          |
| 1022   | 1020   | 1021   | 2022   | 2020           | 2021   | 0022   | 0020   | 0021          |

There are six factors at 2 levels and four factors at 3 levels. 102 effects are estimated from 324 treatment combinations. This is a  $\frac{1}{10}$ 6 fraction.

$$S_{1}S_{1}' \quad S_{2}S_{2}' \quad S_{3}S_{3}' \quad S_{4}S_{4}' \quad S_{5}S_{5}' \quad S_{5}S_{5}' \quad S_{7}S_{7}' \quad S_{8}S_{5}' \quad$$

Construction

Sets of Treatment Combinations from the 26

| Set                                 | $S_1$           | $S_2$ | $S_3$ | $S_4$ | $S_5$ | $S_5$ | $S_7$ | $S_8$ |
|-------------------------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|
| $x_1 + x_2 + x_3$                   | $c_3 = 1$       | 1     | 1     | 1     | 0     | 0     | 0     | 0     |
| $x_3 + x_4 + x_4 + x_5$             | $c_5 = 1$       | 1     | 0     | 0     | 1     | 1     | 0     | 0     |
| $x_1 + x_3 + x_5 + x_5$             | <sub>6</sub> =0 | 1     | 0     | 1     | 0     | 1     | 0     | 1     |
| $x_1 + x_2 + x_3 + x_4 + x_5 + x_6$ | $c_6 = 1$       | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

# Treatment Combinations

| $S_1$        | $S_2$  | $S_3$  | S <sub>4</sub> |
|--------------|--------|--------|----------------|
| 111000       | 001000 | 010000 | 100000         |
| 010011       | 100011 | 111011 | 001011         |
| 100101       | 010101 | 001101 | 111101         |
| 001110       | 111110 | 100110 | 010110         |
| $S_{\delta}$ | $S_6$  | $S_7$  | $S_8$          |
| 000100       | 000010 | 000111 | 000001         |
| 101111       | 101001 | 101100 | 101010         |
| 011001       | 011111 | 011010 | 011100         |
|              |        |        |                |

# Sets of Treatment Combinations from the 34

| Set                | $S_1'$ | $S_2'$ | $S_3'$ | $S_4'$ | S' <sub>5</sub> | S <sub>6</sub> | S <sub>7</sub> | S' <sub>8</sub> | S <sub>9</sub> |
|--------------------|--------|--------|--------|--------|-----------------|----------------|----------------|-----------------|----------------|
| $z_1 + z_2 + z_3$  | =0     | 0      | 0      | 1      | 1               | 1              | 2              | 2               | 2              |
| $z_2 + 2z_3 + z_4$ | 0 = 1  | 1      | 2      | 0      | 1               | 2              | 0              | 1               | 2              |

| $S_1'$       | $S_2'$ | $S_3'$ | _S' <sub>4</sub> | S' <sub>5</sub> | S <sub>6</sub> | _S'  | $S_8'$ | S <sub>0</sub> |
|--------------|--------|--------|------------------|-----------------|----------------|------|--------|----------------|
| 0000         | 0001   | 0002   | 1000             | 1001            | 1002           | 2000 | 2001   | 2002           |
| 1110         | 1111   | 1112   | 2110             | 2111            | 2112           | 0110 | 0111   | 0112           |
| <b>222</b> 0 | 2221   | 2222   | 0220             | 0221            | 0222           | 1220 | 1221   | 1222           |
| 1201         | 1202   | 1200   | 2201             | 2202            | <b>22</b> 00   | 0201 | 0202   | 0200           |
| 2011         | 2012   | 2010   | 0011             | 0012            | 0010           | 1011 | 1012   | 1010           |
| 0121         | 0122   | 0120   | 1121             | 1122            | 1120           | 2121 | 2122   | 2120           |
| 2102         | 2100   | 2101   | 0102             | 0100            | 0101           | 1102 | 1100   | 1101           |
| 0212         | 0210   | 0211   | 1212             | 1210            | 1211           | 2212 | 2210   | 2211           |
| 1022         | 1020   | 1021   | 2022             | 2020            | 2021           | 0022 | 0020   | 0021           |

There is one factor at 2 levels and there are five factors at 3 levels. 62 effects are estimated from 162 treatment combinations. This is a ½ fraction.

## **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$ 

#### Analysis

## Completely Orthogonal

#### Construction

Sets of Treatment Combinations from the 21

 $\begin{array}{ccc} \text{Set } S_1 & S_2 \\ \hline \\ \iota_1 = 0 & 1 \end{array}$ 

Treatment Combinations

 $\frac{\mathbf{S}_1}{\mathbf{0}} \qquad \frac{\mathbf{S}_2}{\mathbf{1}}$ 

Sets of Treatment Combinations from the 35

Set 
$$S'_1$$
  $S'_2$ 

$$z_1 + z_2 + z_3 + z_4 + z_5 = 0 1$$

|       | $S_1'$ |       |       | $S_2'$ |       |
|-------|--------|-------|-------|--------|-------|
| 00000 | 00111  | 00222 | 10000 | 10111  | 10222 |
| 11100 | 11211  | 11022 | 21100 | 21211  | 21022 |
| 22200 | 22011  | 22122 | 02200 | 02011  | 02122 |
| 20010 | 20121  | 20202 | 00010 | 00121  | 00202 |
| 01110 | 01221  | 01002 | 11110 | 11221  | 11002 |
| 12210 | 12021  | 12102 | 22210 | 22021  | 22102 |
| 10020 | 10101  | 10212 | 20020 | 20101  | 20212 |
| 21120 | 21201  | 21012 | 01120 | 01201  | 01012 |
| 02220 | 02001  | 02112 | 12220 | 12001  | 12112 |
| 01200 | 01011  | 01122 | 11200 | 11011  | 11122 |
| 12000 | 12111  | 12222 | 22000 | 22111  | 22222 |
| 20100 | 20211  | 20022 | 00100 | 00211  | 00022 |
| 21210 | 21021  | 21102 | 01210 | 01021  | 01102 |
| 02010 | 02121  | 02202 | 12010 | 12121  | 12202 |
| 10110 | 10221  | 10002 | 20110 | 20221  | 20002 |
| 11220 | 11001  | 11112 | 21220 | 21001  | 21112 |
| 22020 | 22101  | 22212 | 02020 | 02101  | 02212 |
| 00120 | 00201  | 00012 | 10120 | 10201  | 10012 |
| 02100 | 02211  | 02022 | 12100 | 12211  | 12022 |
| 10200 | 10011  | 10122 | 20200 | 20011  | 20122 |
| 21000 | 21111  | 21222 | 01000 | 01111  | 01222 |
| 22110 | 22221  | 22002 | 02110 | 02221  | 02002 |
| 00210 | 00021  | 00102 | 10210 | 10021  | 10102 |
| 11010 | 11121  | 11202 | 21010 | 21121  | 21202 |
| 12120 | 12201  | 12012 | 22120 | 22201  | 22012 |
| 20220 | 20001  | 20112 | 00220 | 00001  | 00112 |
| 01020 | 01101  | 01212 | 11020 | 11101  | 11212 |
|       |        |       |       |        |       |

There are two factors at 2 levels and five factors at 3 levels. 74 effects are estimated from 162 treatment combinations. This is a  $\frac{1}{6}$  fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_2S_3'$ 

#### Analysis

The matrix 
$$\frac{1}{3}\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
 is used to estimate  $144\begin{bmatrix} \mu \\ \Lambda_1\Lambda_2 \end{bmatrix}$ ,  $144\begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ ,  $96\begin{bmatrix} A_1B_1 \\ A_2B_1 \end{bmatrix}$ ,  $96\begin{bmatrix} A_1B_2 \\ A_2B_2 \end{bmatrix}$ ,  $96\begin{bmatrix} A_1B_3 \\ A_2B_3 \end{bmatrix}$ ,  $96\begin{bmatrix} A_1B_4 \\ A_2B_4 \end{bmatrix}$ ,  $96\begin{bmatrix} A_1B_5 \\ A_2B_5 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_1^2 \\ A_2B_2^2 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_2^2 \\ A_2B_2^2 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_3^2 \\ A_2B_3^2 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_4^2 \\ A_2B_4^2 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_5^2 \\ A_2B_5^2 \end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 22

$$\frac{\text{Set } S_1 \quad S_2}{x_1 + x_2 = 0 \quad 1}$$

Sets of Treatment Combinations from the 35

Set 
$$S'_1$$
  $S'_2$   $S'_3$ 

$$z_1+z_2+z_3+z_4+z_5=0 0 0$$

$$z_1+z_2+2z_3=0 1 2$$

## Treatment Combinations

$$\frac{S_1}{00} \quad \frac{S_2}{10} \\
11 \quad 01$$

| S     | 1     | S     | 2     | S'a   |       |  |
|-------|-------|-------|-------|-------|-------|--|
| 00000 | 22101 | 02100 | 21201 | 01200 | 20001 |  |
| 21000 | 20211 | 20100 | 22011 | 22200 | 21111 |  |
| 12000 | 11211 | 11100 | 10011 | 10200 | 12111 |  |
| 10110 | 02211 | 12210 | 01011 | 11010 | 00111 |  |
| 01110 | 00012 | 00210 | 02112 | 02010 | 01212 |  |
| 22110 | 21012 | 21210 | 20112 | 20010 | 22212 |  |
| 20220 | 12012 | 22020 | 11112 | 21120 | 10212 |  |
| 11220 | 10122 | 10020 | 12222 | 12120 | 11022 |  |
| 02220 | 01122 | 01020 | 00222 | 00120 | 02022 |  |
| 00021 | 22122 | 02121 | 21222 | 01221 | 20022 |  |
| 21021 | 20202 | 20121 | 22002 | 22221 | 21102 |  |
| 12021 | 11202 | 11121 | 10002 | 10221 | 12102 |  |
| 10101 | 02202 | 12201 | 01002 | 11001 | 00102 |  |
| 01101 |       | 00201 |       | 02001 |       |  |
|       |       |       |       |       |       |  |

There are four factors at 2 levels and five factors at 3 levels. 101 effects are estimated from 324 treatment combinations. This is a  $\frac{1}{12}$  fraction.

## **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_3S_3'$ 

## Analysis

| The matrix $\frac{1}{432}$ | $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ | $\begin{matrix} 1 \\ 2 \\ 1 \end{matrix}$ | $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ | is used to estim | ate | $egin{bmatrix} A_3 \ A_4 \ A_1 A_2 \end{bmatrix}$ | $\begin{bmatrix} A_1 \\ A_2 A_3 \\ A_2 A_4 \end{bmatrix},$ | $\begin{bmatrix} A_2 \\ A_1 A_3 \\ A_1 A_4 \end{bmatrix}, \ 8$ | and |
|----------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------------|------------------|-----|---------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|-----|
| 1 Г3                       | 17                                          |                                           |                                             | Г"               | ٦   | ГАЛ                                               | R.T                                                        | ГавЛ                                                           | ΓΛ  |

the matrix  $\frac{1}{3}\begin{bmatrix}3 & 1\\1 & 3\end{bmatrix}$  is used to estimate  $288\begin{bmatrix}\mu\\A_3A_4\end{bmatrix}$ ,  $192\begin{bmatrix}A_3B_1\\A_4B_1\end{bmatrix}$ ,  $192\begin{bmatrix}A_3B_2\\A_4B_2\end{bmatrix}$ ,  $192\begin{bmatrix}A_3B_3\\A_4B_3\end{bmatrix}$ ,

 $192\begin{bmatrix} A_3B_4 \\ A_4B_4 \end{bmatrix}, \quad 192\begin{bmatrix} A_3B_5 \\ A_4B_5 \end{bmatrix}, \quad 576\begin{bmatrix} A_3B_1^2 \\ A_4B_1^2 \end{bmatrix}, \quad 576\begin{bmatrix} A_3B_2^2 \\ A_4B_2^2 \end{bmatrix}, \quad 576\begin{bmatrix} A_3B_3^2 \\ A_4B_3^2 \end{bmatrix}, \quad 576\begin{bmatrix} A_3B_4^2 \\ A_4B_5^2 \end{bmatrix}, \quad 576\begin{bmatrix} A_3B_4^2 \\ A_4B_5^2 \end{bmatrix}$ 

#### Construction

Sets of Treatment Combinations from the 24

| Set               | $S_1$ | $S_2$ | $S_3$ |  |
|-------------------|-------|-------|-------|--|
| $x_1 + x_2 + x_3$ | =0    | 1     | 0     |  |
| $x_1 + x_2 + x_4$ | 0 =   | 0     | 1     |  |

Sets of Treatment Combinations from the 35

|             | Set             | $S'_{i}$  | $S_2'$ | $S_3'$ |
|-------------|-----------------|-----------|--------|--------|
| $z_1 + z_2$ | $+z_3+z_4+$     | $z_{5}=0$ | 0      | 0      |
|             | $z_1 + z_2 + 2$ | $z_3 = 0$ | 1      | 2      |

Treatment Combinations

| $S_1$ | $S_2$ | $S_3$ |
|-------|-------|-------|
| 0000  | 0010  | 0001  |
| 1100  | 1110  | 1101  |
| 1011  | 1001  | 1010  |
| 0111  | 0101  | 0110  |

| $S_i'$ | $S_2'$ | S' <sub>3</sub> |
|--------|--------|-----------------|
| 00000  | 02100  | 01200           |
| 21000  | 20100  | 22200           |
| 12000  | 11100  | 10200           |
| 10110  | 12210  | 11010           |
| 01110  | 00210  | 02010           |
| 22110  | 21210  | 20010           |
| 20220  | 22020  | 21120           |
| 11220  | 10020  | 12120           |
| 02220  | 01020  | 00120           |
| 00021  | 02121  | 01221           |
| 21021  | 20121  | 22221           |
| 12021  | 11121  | 10221           |
| 10101  | 12201  | 11001           |
| 01101  | 00201  | 02001           |
| 22101  | 12012  | 20001           |
| 20211  | 20211  | 21111           |
| 11211  | 10011  | 12111           |
| 02211  | 01011  | 00111           |
| 00012  | 02112  | 01212           |
| 21012  | 20112  | 22212           |
| 12012  | 11112  | 10212           |
| 10122  | 12222  | 11022           |
| 01122  | 00222  | 02022           |
| 22122  | 21222  | 20022           |
| 20202  | 22002  | 21102           |
| 11202  | 10002  | 12102           |
| 02202  | 01002  | 00102           |
|        |        |                 |

There is one factor at 2 levels and there are six factors at 3 levels. 86 effects are estimated from 243 treatment combinations. This is a ½ fraction.

## **Experimental Plan**

$$S_1S_1'$$
  $S_2S_2'$   $S_2S_3$ 

#### Analysis

The matrix 
$$\frac{1}{3}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate 216  $\begin{bmatrix} \mu \\ A_1 \end{bmatrix}$ , 144  $\begin{bmatrix} B_1 \\ A_1 B_1 \end{bmatrix}$ , 144  $\begin{bmatrix} B_2 \\ A_1 B_2 \end{bmatrix}$ , 144  $\begin{bmatrix} B_3 \\ A_1 B_3 \end{bmatrix}$ , 144  $\begin{bmatrix} B_4 \\ A_1 B_4 \end{bmatrix}$ , 144  $\begin{bmatrix} B_5 \\ A_1 B_5 \end{bmatrix}$ , 144  $\begin{bmatrix} B_6 \\ A_1 B_6 \end{bmatrix}$ , 432  $\begin{bmatrix} B_1^2 \\ A_1 B_2^2 \end{bmatrix}$ , 432  $\begin{bmatrix} B_2^2 \\ A_1 B_2^2 \end{bmatrix}$ , 432  $\begin{bmatrix} B_3^2 \\ A_1 B_8^2 \end{bmatrix}$ , 432  $\begin{bmatrix} B_6^2 \\ A_1 B_6^2 \end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 21

Treatment Combinations

$$\frac{\text{Set } S_1 \qquad S_2}{x_1 = 0 \qquad 1}$$

$$\frac{S_1}{0}$$
  $\frac{S_2}{1}$ 

Sets of Treatment Combinations from the 36

$$\frac{\text{Set}}{z_1 + z_3 + z_4 + z_5 + 2z_6 = 0} = \frac{S_1'}{z_1 + z_3 + z_4 + z_5 + 2z_6 = 0} = \frac{S_2'}{z_2 + 2z_3 + z_5 + 2z_6 = 0} = \frac{S_1'}{z_2 + 2z_3 + z_5 + 2z_6 = 0} = \frac{S_1'}{z_2 + 2z_3 + z_5 + 2z_6 = 0} = \frac{S_2'}{z_3 + z_5 + 2z_6 = 0} = \frac{S_1'}{z_3 + z_5 + 2z_6 = 0} = \frac{S_2'}{z_3 + z_5 + 2z_6 = 0} = \frac{S_1'}{z_3 + z_5 + 2z_6 = 0} = \frac{S_2'}{z_3 + z_5 + 2z_6 = 0} = \frac{S_1'}{z_3 + z_5 + 2z_6 = 0} = \frac{S_2'}{z_3 + z_5 + 2z_6 = 0} = \frac{S_1'}{z_3 + z_5 + 2z_6 = 0} = \frac{S_2'}{z_3 + z_5 + 2z_6 = 0} = \frac{S_1'}{z_3 + z_5 + 2z_6 = 0} = \frac{S_2'}{z_5 + 2z_5 + 2z_5$$

|        | S <sub>1</sub> |        |        | S <sub>2</sub> ' |        |                | $S_3'$ |        |
|--------|----------------|--------|--------|------------------|--------|----------------|--------|--------|
| 000000 | 000011         | 000022 | 010000 | 010011           | 010022 | 020000         | 020011 | 020022 |
| 110020 | 110001         | 110012 | 120020 | 120001           | 120012 | 100020         | 100001 | 100012 |
| 220010 | 220021         | 220002 | 200010 | 200021           | 200002 | 210010         | 210021 | 210002 |
| 101010 | 101021         | 101002 | 111010 | 111021           | 111002 | 121010         | 121021 | 121002 |
| 211000 | 211011         | 211022 | 221000 | 221011           | 221022 | 201000         | 201011 | 201022 |
| 021020 | 021001         | 021012 | 001020 | 001001           | 001012 | 011020         | 011001 | 011012 |
| 202020 | 202001         | 202012 | 212020 | 212001           | 212012 | 222020         | 222001 | 222012 |
| 012010 | 012021         | 012002 | 022010 | 022021           | 022002 | 002010         | 002021 | 002002 |
| 122000 | 122011         | 122022 | 102000 | 102011           | 102022 | 112000         | 112011 | 112022 |
| 200100 | 200111         | 200122 | 210100 | 210111           | 210122 | 220100         | 220111 | 220122 |
| 010120 | 010101         | 010112 | 020120 | 020101           | 020112 | 000120         | 000101 | 000112 |
| 120110 | 120121         | 120102 | 100110 | 100121           | 100102 | 110110         | 110121 | 110102 |
| 001110 | 001121         | 001102 | 011110 | 011121           | 011102 | 021110         | 021121 | 021102 |
| 111100 | 111111         | 111122 | 121100 | 121111           | 121122 | 101100         | 101111 | 101122 |
| 221120 | 221101         | 221112 | 201120 | 201101           | 201112 | 211120         | 211101 | 211112 |
| 102120 | 102101         | 102112 | 112120 | 112101           | 112112 | 122120         | 122101 | 122112 |
| 212110 | 212121         | 212102 | 222110 | 222121           | 222102 | 202110         | 202121 | 202102 |
| 022100 | 022111         | 022122 | 002100 | 002111           | 002122 | 012100         | 012111 | 012122 |
| 100200 | 100211         | 100222 | 110200 | 110211           | 110222 | 120200         | 120211 | 120222 |
| 210220 | 210201         | 210212 | 220220 | 220201           | 220212 | 200220         | 200201 | 200212 |
| 020210 | 020221         | 020202 | 000210 | 000221           | 000202 | 010210         | 010221 | 010202 |
| 201210 | 201221         | 201202 | 211210 | 211221           | 211202 | <b>22121</b> 0 | 221221 | 221202 |
| 011200 | 011211         | 011222 | 021200 | 021211           | 021222 | 001200         | 001211 | 001222 |
| 121220 | 121201         | 121212 | 101220 | 101201           | 101212 | 111220         | 111201 | 111212 |
| 002220 | 002201         | 002212 | 012220 | 012201           | 012212 | 022220         | 022201 | 022212 |
| 112210 | 112221         | 112202 | 122210 | 122221           | 122202 | 102210         | 102221 | 102202 |
| 222200 | 222211         | 222222 | 202200 | 202211           | 202222 | 212200         | 212211 | 212222 |

There are two factors at 2 levels and six factors at 3 levels. 100 effects are estimated from 486 treatment combinations. This is a ½ fraction.

## **Experimental Plan**

$$S_1S_1'$$
  $S_2S_2'$   $S_1S_3'$ 

#### Analysis

The matrix 
$$\frac{1}{3}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate  $432\begin{bmatrix} \mu \\ A_1A_2 \end{bmatrix}$ ,  $432\begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_1 \\ A_2B_1 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_2 \\ A_2B_2 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_3 \\ A_2B_3 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_4 \\ A_2B_4 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_5 \\ A_2B_5 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_6 \\ A_2B_6 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_1^2 \\ A_2B_1^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_2^2 \\ A_2B_2^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_3^2 \\ A_2B_3^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_4^2 \\ A_2B_5^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_6^2 \\ A_2B_6^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_6^2 \\ A_2B_6^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_2^2 \\ A_2B_6^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_2 \\ A_2B_6 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_2 \\ A_2B_4 \end{bmatrix}$ ,  $864\begin{bmatrix} A_$ 

#### Construction

Sets of Treatment Combinations from the 22

$$\frac{\text{Set } S_1}{x_1 + x_2 = 0} \quad \frac{S_2}{1}$$

$$\frac{S_1}{00} \quad \frac{S_2}{01}$$
11 10

Sets of Treatment Combinations from the  $3^6$ 

| Set                       | $S_{i}'$  | $S_2'$ | $S_3'$ |   |
|---------------------------|-----------|--------|--------|---|
| $z_1 + z_3 + z_4 + z_5 +$ | $-2z_6 =$ | 0      | 0      | 0 |
| $z_2 + 2z_3 + z_5 +$      | $2z_{6}$  | 0      | 1      | 2 |

|        |        | $S_1'$ |        |        |        |        | $S_2'$ |        |        |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 000000 | 022100 | 202001 | 011211 | 120102 | 010000 | 002100 | 212001 | 021211 | 100102 |
| 110020 | 100200 | 012021 | 121201 | 001102 | 120020 | 110200 | 022021 | 101201 | 011102 |
| 220010 | 210220 | 122011 | 002201 | 111122 | 200010 | 220220 | 102011 | 012201 | 121122 |
| 101010 | 020210 | 200111 | 112221 | 221112 | 111010 | 000210 | 210111 | 122221 | 201112 |
| 211000 | 201210 | 010101 | 222211 | 102112 | 221000 | 211210 | 020101 | 202211 | 112112 |
| 021020 | 011200 | 120121 | 000022 | 212102 | 001020 | 021200 | 100121 | 010022 | 222102 |
| 202020 | 121220 | 001121 | 110012 | 022122 | 212020 | 101220 | 011121 | 120012 | 002122 |
| 012010 | 002220 | 111111 | 220002 | 100222 | 022010 | 012220 | 121111 | 200002 | 110222 |
| 122000 | 112210 | 221101 | 101002 | 210212 | 102000 | 122210 | 201101 | 111002 | 220212 |
| 200100 | 222200 | 102101 | 211022 | 020202 | 210100 | 202200 | 112101 | 221022 | 000202 |
| 010120 | 000011 | 212121 | 021012 | 201202 | 020120 | 010011 | 222121 | 001012 | 211202 |
| 120110 | 110001 | 022111 | 202012 | 011222 | 100110 | 120001 | 002111 | 212012 | 021222 |
| 001110 | 220021 | 100211 | 012002 | 121212 | 011110 | 200021 | 110211 | 022002 | 101212 |
| 111100 | 101021 | 210201 | 122022 | 002212 | 121100 | 111021 | 220201 | 102022 | 012212 |
| 221120 | 211011 | 020221 | 200122 | 112202 | 201120 | 221011 | 000221 | 210122 | 122202 |
| 102120 | 021001 | 201221 | 010112 | 222222 | 112120 | 001001 | 211221 | 020112 | 202222 |
| 212110 |        |        |        |        | 222110 |        |        |        |        |
|        |        |        |        |        |        |        |        |        |        |

| - 2    |        | $S_3'$ |        |        |
|--------|--------|--------|--------|--------|
| 020000 | 012100 | 222001 | 001211 | 110102 |
| 100020 | 120200 | 002021 | 111201 | 021102 |
| 210010 | 200220 | 112011 | 022201 | 101122 |
| 121010 | 010210 | 220111 | 102221 | 211112 |
| 201000 | 221210 | 000101 | 212211 | 122112 |
| 011020 | 001200 | 110121 | 020022 | 202102 |
| 222020 | 111220 | 021121 | 100012 | 012122 |
| 002010 | 022220 | 101111 | 210002 | 120222 |
| 112000 | 102210 | 211101 | 121002 | 200212 |
| 220100 | 212200 | 122101 | 201022 | 010202 |
| 000120 | 020011 | 202121 | 011012 | 221202 |
| 110110 | 100001 | 012111 | 222012 | 011222 |
| 021110 | 210021 | 120211 | 002002 | 111212 |
| 101100 | 121021 | 200201 | 112022 | 022212 |
| 211120 | 201011 | 010221 | 220122 | 102202 |
| 122120 | 011001 | 221221 | 000112 | 212222 |
| 202110 |        |        |        |        |

There are three factors at 2 levels and six factors at 3 levels. 115 effects are estimated from 486 treatment combinations. This is a 1/12 fraction.

#### **Experimental Plan**

#### Construction

Sets of Treatment Combinations from the 2<sup>3</sup>

| Set         | $S_{i}$ | $S_2$ | $S_3$ | $S_4$ |
|-------------|---------|-------|-------|-------|
| $x_1 + x_2$ | =0      | 0     | 1     | 1     |
| $x_1 + x_3$ | =0      | 1     | 0     | 1     |

Treatment Combinations

| $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------|-------|-------|-------|
| 000   | 001   | 010   | 100   |
| 111   | 110   | 101   | 011   |

Sets of Treatment Combinations from the 36

| Set                            | $S_1'$ | $S_2'$ | $S_3'$ | $S_4'$ | S <sub>5</sub> | $S_6'$ | $S_7'$ | $S'_8$ | $S_{\mathfrak{g}}'$ |
|--------------------------------|--------|--------|--------|--------|----------------|--------|--------|--------|---------------------|
| $z_1 + z_3 + z_4 + z_5 + 2z_6$ | =0     | 0      | 0      | 0      | 0              | 0      | 0      | 0      | 0                   |
| $z_2 + 2z_3 + z_5 + 2z_6$      | =0     | 0      | 0      | 1      | 1              | 1      | 2      | 2      | 2                   |
| $z_1 + z_2 + z_3 + z_5$        | =0     | 1      | 2      | 0      | 1              | 2      | 0      | 1      | 2                   |

| $S_1'$    | $S_2'$ | $S_3'$ | $S_4'$ | $S_5'$ | a.     | at.    | CI.             | CI!            |
|-----------|--------|--------|--------|--------|--------|--------|-----------------|----------------|
| <u>S1</u> | 102    | - N3   | - 104  |        | S'_    | $S_7'$ | S' <sub>8</sub> | S <sub>0</sub> |
| 000000    | 211000 | 122000 | 200010 | 111010 | 022010 | 100020 | 011020          | 222020         |
| 010120    | 221120 | 102120 | 210100 | 121100 | 002100 | 110110 | 021110          | 202110         |
| 020210    | 201210 | 112210 | 220220 | 101220 | 012220 | 120200 | 001200          | 212200         |
| 101010    | 012010 | 220010 | 001020 | 212020 | 120020 | 201000 | 112000          | 020000         |
| 111100    | 022100 | 200100 | 011110 | 222110 | 100110 | 211120 | 122120          | 000120         |
| 121220    | 002220 | 210220 | 021200 | 202200 | 110200 | 221210 | 102210          | 010210         |
| 202020    | 110020 | 021020 | 102000 | 010000 | 221000 | 002010 | 210010          | 121010         |
| 212110    | 120110 | 001110 | 112120 | 020120 | 201120 | 012100 | 220100          | 101100         |
| 222200    | 100200 | 011200 | 122210 | 000210 | 211210 | 022220 | 200220          | 111220         |
| 200111    | 111111 | 022111 | 100121 | 011121 | 222121 | 000101 | 211101          | 122101         |
| 210201    | 121201 | 002201 | 110211 | 021211 | 202211 | 010221 | 221221          | 102221         |
| 220021    | 101021 | 012021 | 120001 | 001001 | 212001 | 020011 | 201011          | 112011         |
| 001121    | 212121 | 120121 | 201101 | 112101 | 020101 | 101111 | 012111          | 220111         |
| 011211    | 222211 | 100211 | 211221 | 122221 | 000221 | 111201 | 022201          | 200201         |
| 021001    | 202001 | 110001 | 221011 | 102011 | 010011 | 121021 | 002021          | 210021         |
| 102101    | 010101 | 221101 | 002111 | 210111 | 121111 | 202121 | 110121          | 021121         |
| 112221    | 020221 | 201221 | 012201 | 220201 | 101201 | 212211 | 120211          | 001211         |
| 122011    | 000011 | 211011 | 022021 | 200021 | 111021 | 222001 | 100001          | 011001         |
| 100222    | 011222 | 222222 | 000202 | 211202 | 122202 | 200212 | 111212          | 022212         |
| 110012    | 021012 | 202012 | 010022 | 221022 | 102022 | 210002 | 121002          | 002002         |
| 120102    | 001102 | 212102 | 020112 | 201112 | 112112 | 220122 | 101122          | 012122         |
| 201202    | 112202 | 020202 | 101212 | 012212 | 220212 | 001222 | 212222          | 120222         |
| 211022    | 122022 | 000022 | 111002 | 022002 | 200002 | 011012 | 222012          | 100012         |
| 221112    | 102112 | 010112 | 121122 | 002122 | 210122 | 021102 | 202102          | 110102         |
| 002212    | 210212 | 121212 | 202222 | 110222 | 021222 | 102202 | 010202          | 221202         |
| 012002    | 220002 | 101002 | 212012 | 120012 | 001012 | 112022 | 020022          | 201022         |
| 022122    | 200122 | 111122 | 222102 | 100102 | 011102 | 122112 | 000112          | 211112         |
|           |        |        |        |        |        |        |                 |                |

There are four factors at 2 levels and six factors at 3 levels. 131 effects are estimated from 486 treatment combinations. This is a 1/24 fraction.

Construction

Sets of Treatment Combinations from the 24

| Set         | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $S_{\delta}$ | $S_6$ | $S_7$ | $S_8$ |
|-------------|-------|-------|-------|-------|--------------|-------|-------|-------|
| $x_1 + x_2$ | =0    | 0     | 1     | 1     | 0            | 0     | 1     | 1     |
| $x_1 + x_3$ | =0    | 1     | 0     | 1     | 0            | 1     | 0     | 1     |
| $x_1+x_2$   | =1    | 1     | 1     | 1     | 0            | 0     | 0     | 0     |

## Treatment Combinations

| $S_1$ | $S_2$ | $S_3$ | $S_4$ | $S_5$ | $S_6$ | $S_7$ | $S_8$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 0001  | 0011  | 0101  | 1000  | 0000  | 0010  | 0100  | 1001  |
| 1110  | 1100  | 1010  | 0111  | 1111  | 1101  | 1011  | 0110  |

# Sets of Treatment Combinations from the 36

|                   | Set                  | $S_1'$          | $S_2'$ | $S_3'$ | $S_4'$ | $S_5'$ | $S_6'$ | $S_7'$ | S' <sub>8</sub> | $S_9'$ |
|-------------------|----------------------|-----------------|--------|--------|--------|--------|--------|--------|-----------------|--------|
| $z_1 + z_3 + z_3$ | 4+z <sub>5</sub> +2z | 6=0             | 0      | 0      | 0      | 0      | 0      | 0      | 0               | 0      |
| $z_2 + 2z$        | $_{3}+z_{5}+2z$      | 0=6             | 0      | 0      | 1      | 1      | 1      | 2      | 2               | 2      |
| $z_1+$            | $z_2 + z_3 + z$      | <sub>5</sub> =0 | 1      | 2      | 0      | 1      | 2      | 0      | 1               | 2      |

| S'     | S <sub>2</sub> | S'_    | S'     | $S_{\delta}'$ | S' <sub>6</sub> | S'7    | S'     | S'     |
|--------|----------------|--------|--------|---------------|-----------------|--------|--------|--------|
| 000000 | 211000         | 122000 | 200010 | 111010        | 022010          | 100020 | 011020 | 222020 |
| 010120 | 221120         | 102120 | 210100 | 121100        | 002100          | 110110 | 021110 | 202110 |
| 020210 | 201210         | 112210 | 220220 | 101220        | 012220          | 120200 | 001200 | 212200 |
| 101010 | 012010         | 220010 | 001020 | 212020        | 120020          | 201000 | 112000 | 020000 |
| 111100 | 022100         | 200100 | 011110 | 222110        | 100110          | 211120 | 122120 | 000120 |
| 121220 | 002220         | 210220 | 021200 | 202200        | 110200          | 221210 | 102210 | 010210 |
| 202020 | 110020         | 021020 | 102000 | 010000        | 221000          | 002010 | 210010 | 121010 |
| 212110 | 120110         | 001110 | 112120 | 020120        | 201120          | 012100 | 220100 | 101100 |
| 222200 | 100200         | 011200 | 122210 | 000210        | 211210          | 022220 | 200220 | 111220 |
| 200111 | 111111         | 022111 | 100121 | 011121        | 222121          | 000101 | 211101 | 122101 |
| 210201 | 121201         | 002201 | 110211 | 021211        | 202211          | 010221 | 221221 | 102221 |
| 220021 | 101021         | 012021 | 120001 | 001001        | 212001          | 020011 | 201011 | 112011 |
| 001121 | 212121         | 120121 | 201101 | 112101        | 020101          | 101111 | 012111 | 220111 |
| 011211 | 222211         | 100211 | 211221 | 122221        | 000221          | 111201 | 022201 | 200201 |
| 021001 | 202001         | 110001 | 221011 | 102011        | 010011          | 121021 | 002021 | 210021 |
| 102101 | 010101         | 221101 | 002111 | 210111        | 121111          | 202121 | 110121 | 021121 |
| 112221 | 020221         | 201221 | 012201 | 220201        | 101201          | 212211 | 120211 | 001211 |
| 122011 | 000011         | 211011 | 022021 | 200021        | 111021          | 222001 | 100001 | 011001 |
| 100222 | 011222         | 222222 | 000202 | 211202        | 122202          | 200212 | 111212 | 022212 |
| 110012 | 021012         | 202012 | 010022 | 221022        | 102022          | 210002 | 121002 | 002002 |
| 120102 | 001102         | 212102 | 020112 | 201112        | 112112          | 220122 | 101122 | 012122 |
| 201202 | 112202         | 020202 | 101212 | 012212        | 220212          | 001222 | 212222 | 120222 |
| 211022 | 122022         | 000022 | 111002 | 022002        | 220002          | 011012 | 222012 | 100012 |
| 221112 | 102112         | 010112 | 121122 | 002122        | 210122          | 021102 | 202102 | 110102 |
| 002212 | 210212         | 121212 | 202222 | 110222        | 021222          | 102202 | 010202 | 221202 |
| 012002 | 220002         | 101002 | 212012 | 120012        | 001012          | 112022 | 020022 | 201022 |
| 022122 | 200122         | 111122 | 222102 | 100102        | 011102          | 122112 | 000112 | 211112 |

There is one factor at 2 levels and there are seven factors at 3 levels. 114 effects are estimated from 243 treatment combinations. This is a 1/18 fraction.

## **Experimental Plan**

$$S_1S_1'$$
  $S_2S_2'$   $S_2S_3'$ 

## Analysis

The matrix 
$$\frac{1}{3}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate  $216\begin{bmatrix} \mu \\ A_1 \end{bmatrix}$ ,  $144\begin{bmatrix} B_1 \\ A_1B_1 \end{bmatrix}$ ,  $144\begin{bmatrix} B_2 \\ A_1B_2 \end{bmatrix}$ ,  $144\begin{bmatrix} B_3 \\ A_1B_3 \end{bmatrix}$ ,  $144\begin{bmatrix} B_4 \\ A_1B_4 \end{bmatrix}$ ,  $144\begin{bmatrix} B_5 \\ A_1B_5 \end{bmatrix}$ ,  $144\begin{bmatrix} B_6 \\ A_1B_6 \end{bmatrix}$ ,  $144\begin{bmatrix} B_7 \\ A_1B_7 \end{bmatrix}$ ,  $432\begin{bmatrix} B_1^2 \\ A_1B_1^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_2^2 \\ A_1B_2^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_3^2 \\ A_1B_3^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_4^2 \\ A_1B_5^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_5^2 \\ A_1B_5^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_6^2 \\ A_1B_5^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_6^2 \\ A_1B_5^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_7^2 \\ A_1B_7^2 \end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 21

$$\frac{\text{Set } S_1 \quad S_2}{x_1 = 0 \quad 1}$$

$$\frac{S_1}{0}$$
  $\frac{S_2}{1}$ 

Sets of Treatment Combinations from the  $3^7$ 

| Set                             | $S_1'$ | $S_2'$ | S <sub>8</sub> ' |  |
|---------------------------------|--------|--------|------------------|--|
| $z_1 + z_3 + z_4 + z_5 + 2z_6$  | =0     | 0      | 0                |  |
| $z_2 + 2z_3 + z_5 + 2z_6 + z_7$ | =1     | 1      | 1                |  |
| $z_1 + z_2 + z_3 + z_5 + 2z_7$  | =0     | 1      | 2                |  |

|         |         | $S_1'$  |         |
|---------|---------|---------|---------|
| 2000100 | 2120120 | 1111111 | 0102102 |
| 010200  | 0201120 | 2121211 | 1112202 |
| 020000  | 1211220 | 0202211 | 2122002 |
| 101000  | 2221020 | 1212011 | 2100212 |
| 111100  | 0002020 | 2222111 | 0110012 |
| 121200  | 1012120 | 2200021 | 1120112 |
| 2202200 | 2022220 | 0210121 | 2201112 |
| 212000  | 1100201 | 1220221 | 0211212 |
| 222100  | 2110001 | 2001221 | 1221012 |
| 200010  | 0120101 | 0011021 | 2002012 |
| 210110  | 1201101 | 1021121 | 0012112 |
| 220210  | 2211201 | 2102121 | 1022212 |
| 001210  | 0221001 | 0112221 | 1000122 |
| 011010  | 1002001 | 1122021 | 2010222 |
| 021110  | 2012101 | 0200002 | 0020022 |
| 102110  | 0022201 | 1210102 | 1101022 |
| 112210  | 0000111 | 2220202 | 2111122 |
| 122010  | 1010211 | 0001202 | 0121222 |
| 100220  | 2020011 | 1011002 | 1202222 |
| 110020  | 0101011 | 2021102 | 2212022 |
|         |         |         | 0222122 |

|         |         | 3       |         |
|---------|---------|---------|---------|
| 2000020 | 2120010 | 1111001 | 0102022 |
| 0010120 | 0201010 | 2121101 | 1112122 |
| 1020220 | 1211110 | 0202101 | 2122222 |
| 2101220 | 2221210 | 1212201 | 2100102 |
| 0111020 | 0002210 | 2222001 | 0110202 |
| 1121120 | 1012010 | 2200211 | 1120002 |
| 2202120 | 2022110 | 0210011 | 2201002 |
| 0212220 | 1100121 | 1220111 | 0211102 |
| 1222020 | 2110221 | 2001111 | 1221202 |
| 1200200 | 0120021 | 0011211 | 2002202 |
| 2210000 | 1201021 | 1021011 | 0012002 |
| 0220100 | 2211121 | 2102011 | 1022102 |
| 1001100 | 0221221 | 0112111 | 1000012 |
| 2011200 | 1002221 | 1122211 | 2010112 |
| 0021000 | 2012021 | 0200222 | 0020212 |
| 1102000 | 0022121 | 1210022 | 1101212 |
| 2112100 | 0000001 | 2220122 | 2111012 |
| 0122200 | 1010101 | 0001122 | 0121112 |
| 0100110 | 2020201 | 1011222 | 1202112 |
| 1110210 | 0101201 | 2021022 | 2212212 |
|         |         |         | 0222012 |

There are two factors at 2 levels and seven factors at 3 levels. 130 effects are estimated from 486 treatment combinations. This is a 1/18 fraction.

## **Experimental Plan**

$$S_1S_1' \qquad S_2S_2' \qquad S_1S_3'$$

## Analysis

The matrix 
$$\frac{1}{3}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate  $432\begin{bmatrix} \mu \\ A_1A_2 \end{bmatrix}$ ,  $432\begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_1 \\ A_2B_1 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_2 \\ A_2B_2 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_3 \\ A_2B_3 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_4 \\ A_2B_4 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_5 \\ A_2B_5 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_6 \\ A_2B_6 \end{bmatrix}$ ,  $288\begin{bmatrix} A_1B_7 \\ A_2B_7 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_1^2 \\ A_2B_1^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_2^2 \\ A_2B_2^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_2^2 \\ A_2B_3^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_2^2 \\ A_2B_3^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_2^2 \\ A_2B_5^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_2^2 \\ A_2B_2^2 \end{bmatrix}$ ,  $864\begin{bmatrix} A_1B_2 \\ A_2B_2 \end{bmatrix}$ ,  $864$ 

#### Construction

Sets of Treatment Combinations from the 22

# Treatment Combinations

| $S_1$ | $S_2$ |
|-------|-------|
| 00    | 01    |
| 11    | 10    |

Sets of Treatment Combinations from the 37

| Set                            | $S_1'$            | $S_2'$ | $S_3'$ |  |
|--------------------------------|-------------------|--------|--------|--|
| $z_1 + z_3 + z_4 + z_5 + 2z_5$ | $z_6 = 0$         | 0      | 0      |  |
| $z_2+2z_3+z_5+2z_6+z_6$        | e <sub>7</sub> =1 | 1      | 1      |  |
| $z_1 + z_2 + z_3 + z_5 + 2z_5$ | $e_7 = 0$         | 1      | 2      |  |

|         |         | $S_1$   |         |         |         |         | $S_2'$  |         |         |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2000100 | 2112210 | 0221001 | 2001221 | 0110012 | 2000210 | 2112020 | 0221111 | 2001001 | 0110122 |
| 0010200 | 0122010 | 1002001 | 0011021 | 1120112 | 0010010 | 0122120 | 1002111 | 0011101 | 1120222 |
| 1020000 | 0100220 | 2012101 | 1021121 | 2201112 | 1020110 | 0100000 | 2012211 | 1021201 | 2201222 |
| 2101000 | 1110020 | 0022201 | 2102121 | 0211212 | 2101110 | 1110100 | 0022011 | 2102201 | 0211022 |
| 0111100 | 2120120 | 0000111 | 0112221 | 1221012 | 0111210 | 2120200 | 0000221 | 0112001 | 1221122 |
| 1121200 | 0201120 | 1010211 | 1122021 | 2002012 | 1121010 | 0201200 | 1010021 | 1122101 | 2002122 |
| 2202200 | 1211220 | 2020011 | 0200002 | 0012112 | 2202010 | 1211000 | 2020121 | 0200112 | 0012222 |
| 0212000 | 2221020 | 0101011 | 1210102 | 1022212 | 0212110 | 2221100 | 0101121 | 1210212 | 1022022 |
| 1222100 | 0002020 | 1111111 | 2220202 | 1000122 | 1222210 | 0002100 | 1111221 | 2220012 | 1000202 |
| 1200010 | 1012120 | 2121211 | 0001202 | 2010222 | 1200120 | 1012200 | 2121021 | 0001012 | 2010002 |
| 2210110 | 2022220 | 0202211 | 1011002 | 0020022 | 2210220 | 2022000 | 0202021 | 1011112 | 0020102 |
| 0220210 | 1100201 | 1212011 | 2021102 | 1101022 | 0220020 | 1100011 | 1212121 | 2021212 | 1101102 |
| 1001210 | 2110001 | 2222111 | 0102102 | 2111122 | 1001020 | 2110111 | 2222221 | 0102212 | 2111202 |
| 2011010 | 0120101 | 2200021 | 1112202 | 0121222 | 2011120 | 0120211 | 2200101 | 1112012 | 0121002 |
| 0021110 | 1201101 | 0210121 | 2122002 | 1202222 | 0021220 | 1201211 | 0210201 | 2122112 | 1202002 |
| 1102110 | 2211201 | 1220221 | 2100212 | 2212022 | 1102220 | 2211011 | 1220001 | 2100022 | 2212102 |
|         |         |         |         | 0222122 |         |         |         |         | 0222202 |

|         |         | $S_{3}'$ |         |         |
|---------|---------|----------|---------|---------|
| 2000020 | 2112100 | 0221221  | 2001111 | 0110202 |
| 0010120 | 0122200 | 1002221  | 0011211 | 1120002 |
| 1020220 | 0100110 | 2012021  | 1021011 | 2201002 |
| 2101220 | 1110210 | 0022121  | 2102011 | 0211102 |
| 0111020 | 2120010 | 0000001  | 0112111 | 1221202 |
| 1121120 | 0201010 | 1010101  | 1122211 | 2002202 |
| 2202120 | 1211110 | 2020201  | 0200222 | 0012002 |
| 0212220 | 2221210 | 0101201  | 1210022 | 1022102 |
| 1222020 | 0002210 | 1111001  | 2220122 | 1000012 |
| 1200200 | 1012010 | 2121101  | 0001122 | 2010112 |
| 2210000 | 2022110 | 0202101  | 1011222 | 0020212 |
| 0220100 | 1100121 | 1212201  | 2021022 | 1101212 |
| 1001100 | 2110221 | 2222001  | 0102022 | 2111012 |
| 2011200 | 0120021 | 2200211  | 1112122 | 0121112 |
| 0021000 | 1201021 | 0210011  | 2122222 | 1202112 |
| 1102000 | 2211121 | 1220111  | 2100102 | 2212212 |
|         |         |          |         | 0222012 |

There are three factors at 2 levels and seven factors at 3 levels. 147 effects are estimated from 486 treatment combinations. This is a 1/16 fraction.

$$S_1S_1' - S_2S_2' - S_3S_3' - S_4S_4' - S_1S_5' - S_2S_6' - S_3S_7' - S_4S_8' - S_4S_9'$$

#### Analysis

and the matrix 
$$\frac{1}{88}\begin{bmatrix} 10 & 1 & 1\\ 1 & 10 & -1\\ 1 & -1 & 10 \end{bmatrix}$$
 is used to estimate 54  $\begin{bmatrix} A_1\\ A_2\\ A_3 \end{bmatrix}$ , 36  $\begin{bmatrix} A_1B_1\\ A_2B_1\\ A_3B_1 \end{bmatrix}$ , 36  $\begin{bmatrix} A_1B_2\\ A_2B_2\\ A_3B_2 \end{bmatrix}$ , 36  $\begin{bmatrix} A_1B_3\\ A_2B_3\\ A_3B_3 \end{bmatrix}$ ,

$$36\begin{bmatrix}A_1B_4\\A_2B_4\\A_3B_4\end{bmatrix}, \quad 36\begin{bmatrix}A_1B_5\\A_2B_5\\A_3B_5\end{bmatrix}, \quad 36\begin{bmatrix}A_1B_6\\A_2B_6\\A_3B_6\end{bmatrix}, \quad 36\begin{bmatrix}A_1B_7\\A_2B_7\\A_3B_7\end{bmatrix}, \quad 108\begin{bmatrix}A_1B_1^2\\A_2B_1^2\\A_3B_1^2\end{bmatrix}, \quad 108\begin{bmatrix}A_1B_2^2\\A_2B_2^2\\A_3B_2^2\end{bmatrix}, \quad 108\begin{bmatrix}A_1B_3^2\\A_2B_3^2\\A_3B_3^2\end{bmatrix}, \quad 108\begin{bmatrix}A_1B_3^2\\A_3B_3^2\\A_3B_3^2\end{bmatrix}, \quad 108\begin{bmatrix}A_1$$

$$108 \begin{bmatrix} A_1 B_4^2 \\ A_5 B_4^2 \\ A_3 B_4^2 \end{bmatrix}, \quad 108 \begin{bmatrix} A_1 B_5^2 \\ A_2 B_5^2 \\ A_3 B_5^2 \end{bmatrix}, \quad 108 \begin{bmatrix} A_1 B_6^2 \\ A_2 B_6^2 \\ A_3 B_6^2 \end{bmatrix}, \quad 108 \begin{bmatrix} A_1 B_7^2 \\ A_2 B_7^2 \\ A_3 B_7^2 \end{bmatrix}.$$

## Construction

Sets of Treatment Combinations from the 2<sup>3</sup>

| Set       | $S_1$           | $S_2$ | $S_3$ | $S_4$ |  |
|-----------|-----------------|-------|-------|-------|--|
| $x_1+x$   | <sub>2</sub> =0 | 0     | 1     | 1     |  |
| $x_1 + x$ | 0 = 0           | 1     | 0     | 1     |  |

Treatment Combinations

| $S_1$ | $S_2$ | $S_3$ | S <sub>4</sub> |
|-------|-------|-------|----------------|
| 000   | 001   | 010   | 100            |
| 111   | 110   | 101   | 011            |

Sets of Treatment Combinations from the 37

| Set                                            | Sí | S' <sub>2</sub> | S' <sub>3</sub> | S <sub>4</sub> | S <sub>5</sub> | S' <sub>6</sub> | S <sub>7</sub> | S'8 | S <sub>9</sub> |
|------------------------------------------------|----|-----------------|-----------------|----------------|----------------|-----------------|----------------|-----|----------------|
| $z_1 + z_3 + z_4 + z_5 + 2z_6$                 | =0 | 0               | 0               | 0              | 0              | 0               | 0              | 0   | 0              |
| $z_2+2z_3+z_5+2z_6+z_5$                        | =1 | 1               | 1               | 1              | 1              | 1               | 1              | 1   | 1              |
| $z_1 + z_2 + z_3 + z_5 + 2z_7$                 | =0 | 0               | 0               | 1              | 1              | 1               | 2              | 2   | 2              |
| $z_1 + 2z_2 + z_3 + 2z_4 + 2z_5 + 2z_6 + 2z_7$ | =0 | 1               | 2               | 0              | 1              | 2               | 0              | 1   | 2              |

| $S_1'$  | $S_2'$  | S' <sub>3</sub> | S <sub>4</sub> | S' <sub>5</sub> | S' <sub>8</sub> | S <sub>7</sub> | S' <sub>8</sub> | S' <sub>9</sub> |
|---------|---------|-----------------|----------------|-----------------|-----------------|----------------|-----------------|-----------------|
| 0000111 | 1010211 | 2020011         | 0120211        | 1100011         | 2110111         | 0210011        | 1220111         | 2200211         |
| 1111111 | 2121211 | 0101011         | 1201211        | 2211011         | 0221111         | 1021011        | 2001111         | 0011211         |
| 2222111 | 0202211 | 1212011         | 2012211        | 0022011         | 1002111         | 2102011        | 0112111         | 1122211         |
| 0011021 | 1021121 | 2001221         | 0101121        | 1111221         | 2121021         | 0221221        | 1201021         | 2211121         |
| 1122021 | 2102121 | 0112221         | 1212121        | 2222221         | 0202021         | 1002221        | 2012021         | 0022121         |
| 2200021 | 0210121 | 1220221         | 2020121        | 0000221         | 1010021         | 2110221        | 0120021         | 1100121         |
| 0022201 | 1002001 | 2012101         | 0112001        | 1122101         | 2102201         | 0202101        | 1212201         | 2222001         |
| 1100201 | 2110001 | 0120101         | 1220001        | 2200101         | 0210201         | 1010101        | 2020201         | 0000001         |
| 2211201 | 0221001 | 1201101         | 2001001        | 0011101         | 1021201         | 2121101        | 0101201         | 1111001         |
| 2002012 | 0012112 | 1022212         | 2122112        | 0102212         | 1112012         | 2212212        | 0222012         | 1202112         |
| 0110012 | 1120112 | 2100212         | 0200112        | 1210212         | 2220012         | 0020212        | 1000012         | 2010112         |
| 1221012 | 2201112 | 0211212         | 1011112        | 2021212         | 0001012         | 1101212        | 2111012         | 0121112         |
| 2010222 | 0020022 | 1000122         | 2100022        | 0110122         | 1120222         | 2220122        | 0200222         | 1210022         |
| 0121222 | 1101022 | 2111122         | 0211022        | 1221122         | 2201222         | 0001122        | 1011222         | 2021022         |
| 1202222 | 2212022 | 0222122         | 1022022        | 2002122         | 0012222         | 1112122        | 2122222         | 0102022         |
| 2021102 | 0001202 | 1011002         | 2111202        | 0121002         | 1101102         | 2201002        | 0211102         | 1221202         |
| 0102102 | 1112202 | 2122002         | 0222202        | 1202002         | 2212102         | 0012002        | 1022102         | 2002202         |
| 1210102 | 2220202 | 0200002         | 1000202        | 2010002         | 0020102         | 1120002        | 2100102         | 0110202         |
| 1001210 | 2011010 | 0021110         | 1121010        | 2101110         | 0111210         | 1211110        | 2221210         | 0201010         |
| 2112210 | 0122010 | 1102110         | 2202010        | 0212110         | 1222210         | 2022110        | 0002210         | 1012010         |
| 0220210 | 1200010 | 2210110         | 0010010        | 1020110         | 2000210         | 0100110        | 1110210         | 2120010         |
| 1012120 | 2022220 | 0002020         | 1102220        | 2112020         | 0122120         | 1222020        | 2202120         | 0212220         |
| 2120120 | 0100220 | 1110020         | 2210220        | 0220020         | 1200120         | 2000020        | 0010120         | 1020220         |
| 0201120 | 1211220 | 2221020         | 0021220        | 1001020         | 2011120         | 0111020        | 1121120         | 2101220         |
| 1020000 | 2000100 | 0010200         | 1110100        | 2120200         | 0100000         | 1200200        | 2210000         | 0220100         |
| 2101000 | 0111100 | 1121200         | 2221100        | 0201200         | 1211000         | 2011200        | 0021000         | 1001100         |
| 0212000 | 1222100 | 2202200         | 0002100        | 1012200         | 2022000         | 0122200        | 1102000         | 2112100         |

There is one factor at 2 levels and there are eight factors at 3 levels. 146 effects are estimated from 243 treatment combinations. This is a 1/4 fraction.

## **Experimental Plan**

$$S_1S_1'$$
  $S_2S_2'$   $S_2S_3'$ 

The matrix 
$$\frac{1}{3}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate 216  $\begin{bmatrix} \mu \\ \Lambda_1 \end{bmatrix}$ , 144  $\begin{bmatrix} B_1 \\ \Lambda_1 B_1 \end{bmatrix}$ , 144  $\begin{bmatrix} B_2 \\ \Lambda_1 B_2 \end{bmatrix}$ ,

$$144 \begin{bmatrix} B_{3} \\ A_{1}B_{3} \end{bmatrix}, \quad 144 \begin{bmatrix} B_{4} \\ A_{1}B_{4} \end{bmatrix}, \quad 144 \begin{bmatrix} B_{5} \\ A_{1}B_{5} \end{bmatrix}, \quad 144 \begin{bmatrix} B_{6} \\ A_{1}B_{6} \end{bmatrix}, \quad 144 \begin{bmatrix} B_{7} \\ A_{1}B_{7} \end{bmatrix}, \quad 144 \begin{bmatrix} B_{8} \\ A_{1}B_{8} \end{bmatrix}, \quad 432 \begin{bmatrix} B_{1}^{2} \\ A_{1}B_{1}^{2} \end{bmatrix}, \quad 144 \begin{bmatrix} B_{1} \\ A_{2}B_{3} \end{bmatrix}, \quad 144 \begin{bmatrix} B_{1} \\ A_{3}B_{4} \end{bmatrix}, \quad 144 \begin{bmatrix} B_{1} \\ A_{3}B_{4} \end{bmatrix}, \quad 144 \begin{bmatrix} B_{2} \\ A_{3}B_{4} \end{bmatrix}, \quad 144 \begin{bmatrix} B_{3} \\ A_{3}B_{4} \end{bmatrix}$$

$$432\begin{bmatrix} B_{2}^{2} \\ A_{1}B_{2}^{2} \end{bmatrix}, \quad 432\begin{bmatrix} B_{3}^{2} \\ A_{1}B_{3}^{2} \end{bmatrix}, \quad 432\begin{bmatrix} B_{4}^{2} \\ A_{1}B_{4}^{2} \end{bmatrix}, \quad 432\begin{bmatrix} B_{5}^{2} \\ A_{1}B_{5}^{2} \end{bmatrix}, \quad 432\begin{bmatrix} B_{6}^{2} \\ A_{1}B_{6}^{2} \end{bmatrix}, \quad 432\begin{bmatrix} B_{7}^{2} \\ A_{1}B_{7}^{2} \end{bmatrix}, \quad 432\begin{bmatrix} B_{8}^{2} \\ A_{1}B_{8}^{2} \end{bmatrix}.$$

#### Construction

Sets of Treatment Combinations from the 21

$$\begin{array}{ccc}
\operatorname{Set} & \operatorname{S}_1 & \operatorname{S}_2 \\
x_1 = 0 & 1
\end{array}$$

$$\frac{\mathbf{S_1}}{0} = \frac{\mathbf{S_2}}{1}$$

Sets of Treatment Combinations from the 38

| Set                                   | $S_i'$            | S <sub>2</sub> ' | S' <sub>3</sub> |
|---------------------------------------|-------------------|------------------|-----------------|
| $z_2 + z_3 + z_4 + z_5 + z_6 + z_6$   | $z_7 = 0$         | 0                | 0               |
| $z_1 + z_3 + z_4 + 2z_6 + 2z_6 + z_6$ | $z_8 = 0$         | 0                | 0               |
| $z_1 + 2z_3 + 2z_6 + z_6 + z_6$       | $z_7 = 0$         | 0                | 0               |
| $z_2+2z_3+2z_6+z_6$                   | z <sub>7</sub> =0 | 1                | 2               |

|          | 8        | $S_1'$   |          |          | S         | 2        |       |
|----------|----------|----------|----------|----------|-----------|----------|-------|
| 00000000 | 21021020 | 11102111 | 01210202 | 00000121 | 21021111  | 11102202 | 01210 |
| 11110000 | 02010120 | 22212111 | 12020202 | 11110121 | 02010211  | 22212202 | 12020 |
| 22220000 | 10120120 | 00201211 | 20100202 | 22220121 | 10120211  | 00201002 | 20100 |
| 00212100 | 21200120 | 11011211 | 02021012 | 00212221 | 21200211  | 11011002 | 0202  |
| 11022100 | 02222220 | 22121211 | 10101012 | 11022221 | 02222011  | 22121002 | 1010  |
| 22102100 | 10002220 | 01012021 | 21211012 | 22102221 | 10002011  | 01012112 | 2121  |
| 00121200 | 21112220 | 12122021 | 02200112 | 00121021 | 21112011  | 12122112 | 0220  |
| 11201200 | 02211001 | 20202021 | 10010112 | 11201021 | 02211122  | 20202112 | 1001  |
| 22011200 | 10021001 | 01221121 | 21120112 | 22011021 | 10021122  | 01221212 | 2112  |
| 01202010 | 21101001 | 12001121 | 02112212 | 01202101 | 21101122  | 12001212 | 0211  |
| 12012010 | 02120101 | 20111121 | 10222212 | 12012101 | 02120222  | 20111212 | 1022  |
| 20122010 | 10200101 | 01100221 | 21002212 | 20122101 | 10200222  | 01100012 | 2100  |
| 01111110 | 21010101 | 12210221 | 00220022 | 01111201 | 21010222  | 12210012 | 0022  |
| 12221110 | 02002201 | 20020221 | 11000022 | 12221201 | 02002022  | 20020012 | 1100  |
| 20001110 | 10112201 | 01122002 | 22110022 | 20001201 | 10112022  | 01122120 | 2211  |
| 01020210 | 21222201 | 12202002 | 00102122 | 01020001 | 21222022  | 12202120 | 0010  |
| 12100210 | 00110011 | 20012002 | 11212122 | 12100001 | 00110102  | 20012120 | 1121  |
| 20210210 | 11220011 | 01001102 | 22022122 | 20210001 | 11220102  | 01001220 | 2202  |
| 02101020 | 22000011 | 12111102 | 00011222 | 02101111 | 22000102. | 12111220 | 0001  |
| 10211020 | 00022111 | 20221102 | 11121222 | 10211111 | 00022202  | 20221220 | 1112  |
|          |          |          | 22201222 |          |           |          | 2220  |

|          |          | 83       |          |
|----------|----------|----------|----------|
| 00000212 | 21021202 | 11102020 | 01210111 |
| 11110212 | 02010002 | 22212020 | 12020111 |
| 22220212 | 10120002 | 00201120 | 20100111 |
| 00212012 | 21200002 | 11011120 | 02021221 |
| 11022012 | 02222102 | 22121120 | 10101221 |
| 22102012 | 10002102 | 01012200 | 21211221 |
| 00121112 | 21112102 | 12122200 | 02200021 |
| 11201112 | 02211210 | 20202200 | 10010021 |
| 22011112 | 10021210 | 01221000 | 21120021 |
| 01202222 | 21101210 | 12001000 | 02112121 |
| 12012222 | 02120010 | 20111000 | 10222121 |
| 20122222 | 10200010 | 01100100 | 21002121 |
| 01111022 | 21010010 | 12210100 | 00220201 |
| 12221022 | 02002110 | 20020100 | 11000201 |
| 20001022 | 10112110 | 01122211 | 22110201 |
| 01020122 | 21222110 | 12202211 | 00102001 |
| 12100122 | 00110220 | 20012211 | 11212001 |
| 20210122 | 11220220 | 01001011 | 22022001 |
| 02101202 | 22000220 | 12111011 | 00011101 |
| 10211202 | 00022020 | 20221011 | 11121101 |
|          |          |          | 22201101 |

There are two factors at 2 levels and eight factors at 3 levels. 164 effects are estimated from 486 treatment combinations. This is a 1/4 fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_1S_3'$ 

#### Analysis

The matrix 
$$\frac{1}{3}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate 432  $\begin{bmatrix} \mu \\ A_1A_2 \end{bmatrix}$ , 432  $\begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ , 288  $\begin{bmatrix} A_1B_1 \\ A_2B_1 \end{bmatrix}$ , 288  $\begin{bmatrix} A_1B_2 \\ A_2B_2 \end{bmatrix}$ , 288  $\begin{bmatrix} A_1B_3 \\ A_2B_3 \end{bmatrix}$ , 288  $\begin{bmatrix} A_1B_4 \\ A_2B_4 \end{bmatrix}$ , 288  $\begin{bmatrix} A_1B_5 \\ A_2B_5 \end{bmatrix}$ , 288  $\begin{bmatrix} A_1B_6 \\ A_2B_6 \end{bmatrix}$ , 288  $\begin{bmatrix} A_1B_7 \\ A_2B_7 \end{bmatrix}$ , 288  $\begin{bmatrix} A_1B_7 \\ A_2B_7 \end{bmatrix}$ , 288  $\begin{bmatrix} A_1B_8 \\ A_2B_8 \end{bmatrix}$ , 864  $\begin{bmatrix} A_1B_1^2 \\ A_2B_2^2 \end{bmatrix}$ , 864  $\begin{bmatrix} A_1B_2^2 \\ A_2B_2^2 \end{bmatrix}$ , 864  $\begin{bmatrix} A_1B_3^2 \\ A_2B_3^2 \end{bmatrix}$ , 864  $\begin{bmatrix} A_1B_4^2 \\ A_2B_5^2 \end{bmatrix}$ , 864  $\begin{bmatrix} A_1B_6^2 \\ A_2B_5^2 \end{bmatrix}$ , 864  $\begin{bmatrix} A_1B_6^2 \\ A_2B_6^2 \end{bmatrix}$ , 864  $\begin{bmatrix} A_1B_7^2 \\ A_2B_7^2 \end{bmatrix}$ , 864  $\begin{bmatrix} A_1B_8^2 \\ A_2B_8^2 \end{bmatrix}$ , 864  $\begin{bmatrix} A_1B_8 \\ A_2B_8 \end{bmatrix}$ , 864  $\begin{bmatrix} A_1B_8 \\$ 

#### Construction

Sets of Treatment Combinations from the 22

$$\begin{array}{c|cccc}
Set & S_1 & S_2 \\
\hline
x_1 + x_2 = 0 & 1
\end{array}$$

$$\begin{array}{ccc}
 S_1 & S_2 \\
 \hline
 00 & 01 \\
 11 & 10
 \end{array}$$

# Sets of Treatment Combinations from the 38

| Set S' <sub>1</sub>                       | $S_2'$ | S' <sub>3</sub> |  |
|-------------------------------------------|--------|-----------------|--|
| $z_2+z_3+z_4+z_5+z_6+z_7=0$               | 0      | 0               |  |
| $z_1 + z_3 + z_4 + 2z_5 + 2z_6 + z_8 = 0$ | 0      | 0               |  |
| $z_1 + 2z_3 + 2z_5 + z_6 + z_7 = 0$       | 0      | 0               |  |
| $z_2+2z_3+2z_6+z_7=0$                     | 1      | 2               |  |

|          | 5        | S <sub>i</sub> |          |                  | 8        | 22       |          |
|----------|----------|----------------|----------|------------------|----------|----------|----------|
| 00000000 | 21021020 | 11102111       | 01210202 | 00000121         | 21021111 | 11102202 | 01210020 |
| 11110000 | 02010120 | 22212111       | 12020202 | 11110121         | 02010211 | 22212202 | 12020020 |
| 22220000 | 10120120 | 00201211       | 20100202 | 22220121         | 10120211 | 00201002 | 20100020 |
| 00212100 | 21200120 | 11011211       | 02021012 | 00212221         | 21200211 | 11011002 | 02021100 |
| 11022100 | 02222220 | 22121211       | 10101012 | 11022221         | 02222011 | 22121002 | 10101100 |
| 22102100 | 10002220 | 01012021       | 21211012 | 22102221         | 10002011 | 01012112 | 21211100 |
| 00121200 | 21112220 | 12122021       | 02200112 | 00121021         | 21112011 | 12122112 | 02200200 |
| 11201200 | 02211001 | 20202021       | 10010112 | 11201021         | 02211122 | 20202112 | 10010200 |
| 22011200 | 10021001 | 01221121       | 21120112 | 22011021         | 10021122 | 01221212 | 21120200 |
| 01202010 | 21101001 | 12001121       | 02112212 | 01202101         | 21101122 | 12001212 | 02112000 |
| 12012010 | 02120101 | 20111121       | 10222212 | 12012101         | 02120222 | 20111212 | 10222000 |
| 20122010 | 10200101 | 01100221       | 21002212 | 20122101         | 10200222 | 01100012 | 21002000 |
| 01111110 | 21010101 | 12210221       | 00220022 | 01111201         | 21010222 | 12210012 | 00220110 |
| 12221110 | 02002201 | 20020221       | 11000022 | 12221201         | 02002022 | 20020012 | 11000110 |
| 20001110 | 10112201 | 01122002       | 22110022 | 20001201         | 10112022 | 01122120 | 22110110 |
| 01020210 | 21222201 | 12202002       | 00102122 | 01020001         | 21222022 | 12202120 | 00102210 |
| 12100210 | 00110011 | 20012002       | 11212122 | 12100001         | 00110102 | 20012120 | 11212210 |
| 20210210 | 11220011 | 01001102       | 22022122 | 20210001         | 11220102 | 01001220 | 22022210 |
| 02101020 | 22000011 | 12111102       | 00011222 | 02101111         | 22000102 | 12111220 | 00011010 |
| 10211020 | 00022111 | 20221102       | 11121222 | 10211111         | 00022202 | 20221220 | 11121010 |
|          |          |                | 22201222 |                  |          |          | 22201010 |
|          |          |                |          | S <sub>3</sub> ′ |          |          |          |
|          |          | 00000212       | 21021202 | 11102020         | 01210111 |          |          |
|          |          | 11110016       |          | 00010000         | 10000111 |          |          |

|          |          | 3        |          |
|----------|----------|----------|----------|
| 00000212 | 21021202 | 11102020 | 01210111 |
| 11110212 | 02010002 | 22212020 | 12020111 |
| 22220212 | 10120002 | 00201120 | 20100111 |
| 00212012 | 21200002 | 11011120 | 02021221 |
| 11022012 | 02222102 | 22121120 | 10101221 |
| 22102012 | 10002102 | 01012200 | 21211221 |
| 00121112 | 21112102 | 12122200 | 02200021 |
| 11201112 | 02211210 | 20202200 | 10010021 |
| 22011112 | 10021210 | 01221000 | 21120021 |
| 01202222 | 21101210 | 12001000 | 02112121 |
| 12012222 | 02120010 | 20111000 | 10222121 |
| 20122222 | 10200010 | 01100100 | 21002121 |
| 01111022 | 21010010 | 12210100 | 00220201 |
| 12221022 | 02002110 | 20020100 | 11000201 |
| 20001022 | 10112110 | 01122211 | 22110201 |
| 01020122 | 21222110 | 12202211 | 00102001 |
| 12100122 | 00110220 | 20012211 | 11212001 |
| 20210122 | 11220220 | 01001011 | 22022001 |
| 02101202 | 22000220 | 12111011 | 00011101 |
| 10211202 | 00022020 | 20221011 | 11121101 |
|          |          |          | 22201101 |
|          |          |          |          |

There is one factor at 2 levels and there are nine factors at 3 levels. 182 effects are estimated from 243 treatment combinations. This is a 1/162 fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_2S_3'$ 

## Analysis

The matrix 
$$\frac{1}{3}\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
 is used to estimate  $216\begin{bmatrix} \mu \\ A_1 \end{bmatrix}$ ,  $144\begin{bmatrix} B_1 \\ A_1 B_1 \end{bmatrix}$ ,  $144\begin{bmatrix} B_2 \\ A_1 B_2 \end{bmatrix}$ ,  $144\begin{bmatrix} B_3 \\ A_1 B_3 \end{bmatrix}$ ,  $144\begin{bmatrix} B_4 \\ A_1 B_4 \end{bmatrix}$ ,  $144\begin{bmatrix} B_5 \\ A_1 B_5 \end{bmatrix}$ ,  $144\begin{bmatrix} B_6 \\ A_1 B_6 \end{bmatrix}$ ,  $144\begin{bmatrix} B_7 \\ A_1 B_7 \end{bmatrix}$ ,  $144\begin{bmatrix} B_8 \\ A_1 B_8 \end{bmatrix}$ ,  $144\begin{bmatrix} B_9 \\ A_1 B_9 \end{bmatrix}$ ,  $432\begin{bmatrix} B_1^2 \\ A_1 B_1^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_2^2 \\ A_1 B_2^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_3^2 \\ A_1 B_3^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_4^2 \\ A_1 B_4^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_5^2 \\ A_1 B_5^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_6^2 \\ A_1 B_6^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_7^2 \\ A_1 B_7^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_8^2 \\ A_1 B_8^2 \end{bmatrix}$ ,  $432\begin{bmatrix} B_9^2 \\ A_1 B_9^2 \end{bmatrix}$ .

#### Construction

Sets of Treatment Combinations from the 21

$$\frac{\text{Set } S_1 \quad S_2}{x_1 = 0 \quad 1}$$

$$\frac{S_1}{0}$$
  $\frac{S_2}{1}$ 

Sets of Treatment Combinations from the 39

| Set                                   | $S_1'$    | $S_2'$ | S <sub>3</sub> ' |
|---------------------------------------|-----------|--------|------------------|
| $z_2 + z_3 + z_4 + z_5 + z_6 + z_6$   | $z_7 = 0$ | 0      | 0                |
| $z_1 + z_3 + z_4 + 2z_5 + 2z_6 + z_6$ | $z_8 = 0$ | 0      | 0                |
| $z_1 + z_2 + 2z_4 + 2z_5 + z_6 + z_6$ | $c_9 = 0$ | 0      | 0                |
| $z_1 + z_2 + 2z_3 + z_5 + 2z_6$       | $c_6 = 0$ | 0      | 0                |
| $z_1 + 2z_2 + 2z_3 + z_4 + z_4$       | $z_6 = 0$ | 1      | 2                |

|           | S         | 51        |           |           | 8         | $S_2'$    |           |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 000000000 | 202211020 | 101211111 | 000211202 | 001210210 | 200121200 | 102121021 | 001121112 |
| 121210000 | 001202120 | 222121111 | 121121202 | 122120210 | 002112000 | 220001021 | 122001112 |
| 212120000 | 122112120 | 021112211 | 212001202 | 210000210 | 120022000 | 022022121 | 210211112 |
| 011111100 | 210022120 | 112022211 | 021201012 | 012021010 | 211202000 | 110202121 | 022111222 |
| 102021100 | 012010220 | 200202211 | 112111012 | 100201010 | 010220100 | 201112121 | 110021222 |
| 220201100 | 100220220 | 012102021 | 200021012 | 221111010 | 101100100 | 010012201 | 201201222 |
| 022222200 | 221100220 | 100012021 | 002012112 | 020102110 | 222010100 | 101222201 | 000222022 |
| 110102200 | 022011001 | 221222021 | 120222112 | 111012110 | 020221211 | 222102201 | 121102022 |
| 201012200 | 110221001 | 020210121 | 211102112 | 202222110 | 111101211 | 021120001 | 212012022 |
| 010212010 | 201101001 | 111120121 | 010120212 | 011122220 | 202011211 | 112000001 | 011000122 |
| 101122010 | 000122101 | 202000121 | 101000212 | 102002220 | 001002011 | 200210001 | 102210122 |
| 222002010 | 121002101 | 001021221 | 222210212 | 220212220 | 122212011 | 002201101 | 220120122 |
| 021020110 | 212212101 | 122201221 | 001110022 | 022200020 | 210122011 | 120111101 | 002020202 |
| 112200110 | 011200201 | 210111221 | 122020022 | 110110020 | 012110111 | 211021101 | 120200202 |
| 200110110 | 102110201 | 011022002 | 210200022 | 201020020 | 100020111 | 012202212 | 211110202 |
| 002101210 | 220020201 | 102202002 | 012221122 | 000011120 | 221200111 | 100112212 | 010101002 |
| 120011210 | 002220011 | 220112002 | 100101122 | 121221120 | 000100221 | 221022212 | 101011002 |
| 211221210 | 120100011 | 022100102 | 221011122 | 212101120 | 121010221 | 020010012 | 222221002 |
| 020121020 | 211010011 | 110010102 | 020002222 | 021001200 | 212220221 | 111220012 | 021212102 |
| 111001020 | 010001111 | 201220102 | 111212222 | 112211200 | 011211021 | 202100012 | 112122102 |
|           |           |           | 202122222 |           |           |           | 200002102 |

|           |           | $S_3'$    |           |
|-----------|-----------|-----------|-----------|
| 002120120 | 201001110 | 100001201 | 002001022 |
| 120000120 | 000022210 | 221211201 | 120211022 |
| 211210120 | 121202210 | 020202001 | 211121022 |
| 010201220 | 212112210 | 111112001 | 020021102 |
| 101111220 | 011100010 | 202022001 | 111201102 |
| 222021220 | 102010010 | 011222111 | 202111102 |
| 021012020 | 220220010 | 102102111 | 001102202 |
| 112222020 | 021101121 | 220012111 | 122012202 |
| 200102020 | 112011121 | 022000211 | 210222202 |
| 012002100 | 200221121 | 110210211 | 012210002 |
| 100212100 | 002212221 | 201120211 | 100120002 |
| 221122100 | 120122221 | 000111011 | 221000002 |
| 020110200 | 211002221 | 121021011 | 000200112 |
| 111020200 | 010020021 | 212201011 | 121110112 |
| 202200200 | 101200021 | 010112122 | 212020112 |
| 001221000 | 222110021 | 101022122 | 011011212 |
| 122101000 | 001010101 | 222202122 | 102221212 |
| 210011000 | 122220101 | 021220222 | 220101212 |
| 022211110 | 210100101 | 112100222 | 022122012 |
| 110121110 | 012121201 | 200010222 | 110002012 |
|           |           |           | 201212012 |

There are three factors at 2 levels and three factors at 3 levels. 43 effects are estimated from 72 treatment combinations. This is a ½ fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_3S_3'$   $S_4S_2'$ 

#### Analysis

The matrix  $\frac{1}{180}\begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$  is used to estimate  $\begin{bmatrix} L(B_1) \\ L(B_2B_3) \end{bmatrix}$ ,  $\begin{bmatrix} L(B_2) \\ L(B_1B_3) \end{bmatrix}$ ,  $\begin{bmatrix} L(B_3) \\ L(B_1B_2) \end{bmatrix}$ ,

 $\text{ and the matrix } \frac{1}{540} \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix} \text{is used to estimate } \begin{bmatrix} Q(B_1) \\ Q(B_2B_3) \end{bmatrix} \text{,} \quad \begin{bmatrix} Q(B_2) \\ Q(B_1B_3) \end{bmatrix} \text{,} \quad \begin{bmatrix} Q(B_3) \\ Q(B_1B_2) \end{bmatrix} \text{,} \quad \begin{bmatrix} Q(B_1) \\ Q(B_1B_2)$ 

 $\text{and the matrix } \frac{1}{1296} \begin{bmatrix} 30 & 0 & -3 & -3 & 3 & -3 \\ 0 & 10 & -3 & 1 & 3 & 1 \\ -3 & -3 & 30 & 0 & 6 & 0 \\ -3 & 1 & 0 & 10 & 0 & -2 \\ 3 & 3 & 6 & 0 & 30 & 0 \\ -3 & 1 & 0 & -2 & 0 & 10 \end{bmatrix} \text{ is used to estimate } \begin{bmatrix} L(B_1B_2^2) \\ Q(B_1B_2^2) \\ L(B_1B_2^2) \\ L(B_1B_2^2) \\ L(B_1B_2^2) \\ L(B_2B_2^2) \\ Q(B_2B_2^2) \end{bmatrix}.$ 

#### Construction

Sets of Treatment Combinations from the 23

| Set         | $S_1$ | $S_2$ | $S_3$ | $S_4$ |  |
|-------------|-------|-------|-------|-------|--|
| $x_1 + x_2$ | =0    | 0     | 1     | 1     |  |
| $x_1 + x_3$ | =0    | 1     | 0     | 1     |  |

Sets of Treatment Combinations from the 33

| <br>Set         | Sí | $S_2'$ | $S_3'$ |  |
|-----------------|----|--------|--------|--|
| $z_1 + z_2 + z$ | =0 | 1      | 2      |  |

Treatment Combinations

| $S_2$ | $S_3$ | $S_4$   |  |  |
|-------|-------|---------|--|--|
|       |       |         |  |  |
| 001   | 010   | 100     |  |  |
| 110   | 101   | 011     |  |  |
|       | 001   | 001 010 |  |  |

| $S_1'$ | S'  | $S_{s}'$ |
|--------|-----|----------|
|        |     |          |
| 000    | 001 | 020      |
| 222    | 010 | 002      |
| 120    | 022 | 011      |
| 102    | 100 | 110      |
| 012    | 121 | 101      |
| 210    | 112 | 122      |
| 201    | 220 | 200      |
| 021    | 202 | 212      |
| 111    | 211 | 221      |
|        |     |          |

There are five factors at 2 levels and three factors at 3 levels. 64 effects are estimated from 144 treatment combinations. This is a % fraction.

#### **Experimental Plan**

 $S_1S_1'$   $S_2S_2'$   $S_3S_3'$   $S_4S_4'$ 

#### Analysis

The matrix 
$$\frac{1}{360}\begin{bmatrix}4&&1\\1&&4\end{bmatrix}$$
 is used to estimate  $\begin{bmatrix}L(B_1)\\L(B_2B_3)\end{bmatrix}$ ,  $\begin{bmatrix}L(B_2)\\L(B_1B_3)\end{bmatrix}$ ,  $\begin{bmatrix}L(B_3)\\L(B_1B_2)\end{bmatrix}$ ,

$$\text{and the matrix } \frac{1}{1080} \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix} \text{is used to estimate } \begin{bmatrix} Q(B_1) \\ Q(B_2B_3) \end{bmatrix}, \quad \begin{bmatrix} Q(B_2) \\ Q(B_1B_3) \end{bmatrix}, \quad \begin{bmatrix} Q(B_3) \\ Q(B_1B_2) \end{bmatrix},$$

$$\text{and the matrix} \ \frac{1}{2592} \begin{bmatrix} 30 & 0 & -3 & -3 & 3 & -3 \\ 0 & 10 & -3 & 1 & 3 & 1 \\ -3 & -3 & 30 & 0 & 6 & 0 \\ -3 & 1 & 0 & 10 & 0 & -2 \\ 3 & 3 & 6 & 0 & 30 & 0 \\ -3 & 1 & 0 & -2 & 0 & 10 \end{bmatrix} \text{is used to estimate} \begin{bmatrix} L(B_1B_2^2) \\ Q(B_1B_2^2) \\ L(B_1B_3^2) \\ Q(B_1B_3^2) \\ L(B_2B_3^2) \\ Q(B_2B_3^2) \end{bmatrix}.$$

#### Construction

Sets of Treatment Combinations from the 25

| Set                             | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|---------------------------------|-------|-------|-------|-------|
| $x_1 + x_2 + x_3 + x_4 + x_5 =$ | =1    | 1     | 1     | 1     |
| $x_1 + x_2 + x_3 =$             | =1    | 0     | 1     | 0     |
| $x_3 + x_4 =$                   | =1    | 1     | 0     | 0     |

Sets of Treatment Combinations from the 38

| Set               | $S_i'$ | $S_2'$ | $S_3'$ |
|-------------------|--------|--------|--------|
| $z_1 + z_2 + z_3$ | =0     | 1      | 2      |

Treatment Combinations

| $\mathbb{S}_1$ | $S_2$ | $S_3$ | $S_4$ |
|----------------|-------|-------|-------|
| 00100          | 00010 | 10000 | 00001 |
| 11100          | 11010 | 01000 | 11001 |
| 01011          | 01101 | 11111 | 01110 |
| 10011          | 10101 | 00111 | 10110 |
|                |       |       |       |

| $S_1'$ | S'2         | S' <sub>3</sub> |
|--------|-------------|-----------------|
| 000    | 001         | 020             |
| 222    | 010         | 002             |
| 120    | 022         | 011             |
| 102    | 100         | 110             |
| 012    | 121         | 101             |
| 210    | 112         | 122             |
| 201    | <b>22</b> 0 | 200             |
| 021    | 202         | 212             |
| 111    | 211         | 221             |
|        |             |                 |

There are six factors at 2 levels and three factors at 3 levels. 76 effects are estimated from 288 treatment combinations. This is a 1/6 fraction.

#### **Experimental Plan**

$$S_1S_1'$$
  $S_2S_2'$   $S_3S_3'$   $S_4S_2'$ 

$$\text{and the matrix } \frac{1}{2160}\begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix} \text{ is used to estimate } \begin{bmatrix} Q(B_1) \\ Q(B_2B_3) \end{bmatrix} \text{, } \begin{bmatrix} Q(B_2) \\ Q(B_1B_3) \end{bmatrix} \text{, } \begin{bmatrix} Q(B_3) \\ Q(B_2B_3) \end{bmatrix} \text{,}$$

#### Construction

Sets of Treatment Combinations from the 26

| Set                     | $S_1$           | $S_2$ | $S_3$ | $S_4$ |
|-------------------------|-----------------|-------|-------|-------|
| $x_2 + x_4 + x$         | <sub>5</sub> =1 | 1     | 0     | 0     |
| $x_1 + x_4 + x_4$       | <sub>5</sub> =0 | 1     | 0     | 1     |
| $x_3 + x_4 + x_5 + x_5$ | <sub>6</sub> =0 | 1     | 1     | 0     |

Sets of Treatment Combinations from the 33

| _ | Set         | $S_1'$ | $S_2'$ | $S_3'$ |
|---|-------------|--------|--------|--------|
| z | $1+z_2+z_3$ | =0     | 1      | 2      |

# Treatment Combinations

| $S_1$  | $S_2$  | $S_3$  | $S_4$  |
|--------|--------|--------|--------|
| 010000 | 000010 | 000001 | 100000 |
| 100101 | 110111 | 110100 | 010101 |
| 011001 | 001011 | 001000 | 101001 |
| 101100 | 111110 | 111101 | 011100 |
| 010110 | 000100 | 000111 | 100110 |
| 100011 | 110001 | 110010 | 010011 |
| 011111 | 001101 | 001110 | 101111 |
| 101010 | 111000 | 111011 | 011010 |

| Si  | S'2 | $S_3'$ |
|-----|-----|--------|
| 000 | 001 | 020    |
| 222 | 010 | 002    |
| 120 | 022 | 011    |
| 102 | 100 | 110    |
| 012 | 121 | 101    |
| 210 | 112 | 122    |
| 201 | 220 | 200    |
| 021 | 202 | 212    |
| 111 | 211 | 221    |
|     |     |        |

There are five factors at 2 levels and four factors at 3 levels. 88 effects are estimated from 216 treatment combinations. This is a  $\frac{1}{12}$  fraction.

## Analysis

and the matrix 
$$\frac{1}{3}\begin{bmatrix} 3 & 1\\ 1 & 3 \end{bmatrix}$$
 is used to estimate  $192\begin{bmatrix} \mu\\ A_4A_5 \end{bmatrix}$ ,  $192\begin{bmatrix} A_4\\ A_5 \end{bmatrix}$ ,  $128\begin{bmatrix} A_4B_1\\ A_5B_1 \end{bmatrix}$ ,

$$128\begin{bmatrix} A_4B_2 \\ A_5B_2 \end{bmatrix}, \quad 128\begin{bmatrix} A_4B_3 \\ A_5B_3 \end{bmatrix}, \quad 128\begin{bmatrix} A_4B_4 \\ A_5B_4 \end{bmatrix}, \quad 384\begin{bmatrix} A_4B_1^2 \\ A_5B_1^2 \end{bmatrix}, \quad 384\begin{bmatrix} A_4B_2^2 \\ A_5B_2^2 \end{bmatrix}, \quad 384\begin{bmatrix} A_4B_3^2 \\ A_5B_3^2 \end{bmatrix}, \quad 384\begin{bmatrix} A_4B_4^2 \\ A_5B_4^2 \end{bmatrix},$$

$$\text{and the matrix} \ \frac{1}{3240} \begin{bmatrix} 24 & 0 & -3 & 3 \\ 0 & 8 & 3 & 1 \\ -3 & 3 & 24 & 0 \\ 3 & 1 & 0 & 8 \end{bmatrix} \ \text{is used to estimate} \ \begin{bmatrix} L(B_1) \\ Q(B_1) \\ L(B_2B_3) \\ Q(B_2B_3) \end{bmatrix}, \ \begin{bmatrix} L(B_2) \\ Q(B_2) \\ L(B_1B_3) \\ Q(B_1B_8) \end{bmatrix},$$

$$\begin{bmatrix} L(B_3) \\ Q(B_3) \\ L(B_1B_2) \\ Q(B_1B_2) \end{bmatrix}$$

and the matrix 
$$\frac{1}{3888}\begin{bmatrix} 30 & 0 & -6 & 0 & -3 & 3\\ 0 & 10 & 0 & -2 & 3 & 1\\ -6 & 0 & 30 & 0 & -3 & 3\\ 0 & -2 & 0 & 10 & 3 & 1\\ -3 & 3 & -3 & 3 & 30 & 0\\ 3 & 1 & 3 & 1 & 0 & 10 \end{bmatrix}$$
 is used to estimate 
$$\begin{bmatrix} L(B_2B_3^2)\\ Q(B_2B_3^2)\\ L(B_1B_2^2)\\ Q(B_1B_3^2)\\ L(B_1B_3^2)\\ Q(B_1B_3^2) \end{bmatrix}$$

Construction

# Sets of Treatment Combinations from the 25

| Set S                       | $S_2$ | $S_3$ | S <sub>4</sub> | $S_5$ | $S_6$ | $S_7$ | $S_8$ | $S_9$ | $S_{10}$ | $S_{11}$ | S <sub>12</sub> |
|-----------------------------|-------|-------|----------------|-------|-------|-------|-------|-------|----------|----------|-----------------|
| $x_1 + x_2 = 0$             | 0     | 0     | 0              | 1     | 1     | 1     | 1     | 0     | 0        | 1        | 1               |
| $x_1 + x_3 = 0$             | 1     | 0     | 1              | 0     | 1     | 0     | 1     | 0     | 1        | 0        | 1               |
| $x_1 + x_2 + x_3 + x_4 = 0$ | 0     | 0     | 0              | 0     | 0     | 0     | 0     | 1     | 1        | 1        | 1               |
| $x_1 + x_2 + x_3 + x_5 = 0$ | 0     | 1     | 1              | 0     | 0     | 1     | 1     | 0     | 0        | 0        | 0               |

## Treatment Combinations

| $S_1$                | $S_2$                | $S_3$          | $S_4$                  | $S_5$                  | $S_6$                  |
|----------------------|----------------------|----------------|------------------------|------------------------|------------------------|
|                      |                      |                |                        | 10100                  | 10011                  |
| 00000                | 00111                | 00001          | 11001                  | 10100                  | 10011                  |
| 11111                | 11000                | 11110          | 00110                  | 01011                  | 01100                  |
|                      |                      |                |                        |                        |                        |
| $S_7$                | $S_8$                | $S_{\theta}$   | $S_{10}$               | $S_{11}$               | S <sub>12</sub>        |
| S <sub>7</sub>       | S <sub>8</sub>       | S <sub>9</sub> | S <sub>10</sub>        | S <sub>11</sub>        | S <sub>12</sub>        |
| S <sub>7</sub> 10101 | S <sub>8</sub> 10010 | S <sub>9</sub> | $\frac{S_{10}}{00101}$ | $\frac{S_{11}}{10110}$ | $\frac{S_{12}}{10001}$ |

# Sets of Treatment Combinations from the 34

| Set            | $S_1'$     | $S_2'$ | $S_3'$ | S' <sub>4</sub> | $S_{\delta}'$ | S' <sub>6</sub> | S <sub>7</sub> | S' <sub>8</sub> | S <sub>0</sub> ' |
|----------------|------------|--------|--------|-----------------|---------------|-----------------|----------------|-----------------|------------------|
| $z_1 + z_2 +$  | $-z_3 = 0$ | 0      | 0      | 1               | 1             | 1               | 2              | 2               | 2                |
| $z_2 + 2z_3 +$ | $-z_4 = 0$ | 1      | 2      | 0               | 1             | 2               | 0              | 1               | 2                |

| $S_1'$ | $S_2'$ | $S_8'$ | $S_4'$ | $S_{\delta}'$ | $S_6'$ | S'7         | $S_8'$ | S'o  |
|--------|--------|--------|--------|---------------|--------|-------------|--------|------|
|        |        |        |        |               |        | <del></del> |        |      |
| 0000   | 0001   | 0002   | 1000   | 1001          | 1002   | 2000        | 2001   | 2002 |
| 1110   | 1111   | 1112   | 2110   | 2111          | 2112   | 0110        | 0111   | 0112 |
| 2220   | 2221   | 2222   | 0220   | 0221          | 0222   | 1220        | 1221   | 1222 |
| 1201   | 1202   | 1200   | 2201   | 2202          | 2200   | 0201        | 0202   | 0200 |
| 2011   | 2012   | 2010   | 0011   | 0012          | 0010   | 1011        | 1012   | 1010 |
| 0121   | 0122   | 0120   | 1121   | 1122          | 1120   | 2121        | 2122   | 2120 |
| 2102   | 2100   | 2101   | 0102   | 0100          | 0101   | 1102        | 1100   | 1101 |
| 0212   | 0210   | 0211   | 1212   | 1210          | 1211   | 2212        | 2210   | 2211 |
| 1022   | 1020   | 1021   | 2022   | 2020          | 2021   | 0022        | 0020   | 0021 |

There are three factors at 2 levels and five factors at 3 levels. 87 effects are estimated from 216 treatment combinations. This is a % fraction.

#### **Experimental Plan**

$$S_1S_1'$$
  $S_2S_2'$   $S_3S_3'$   $S_4S_4'$ 

#### Analysis

The matrix 
$$\frac{1}{540}\begin{bmatrix} 4 & 1\\ 1 & 4 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} L(B_1B_4^2)\\ L(B_2B_6^2) \end{bmatrix}$ ,  $\begin{bmatrix} L(B_1B_5^2)\\ L(B_2B_4^2) \end{bmatrix}$ ,

and the matrix 
$$\frac{1}{1620}\begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} Q(B_1B_4^2) \\ Q(B_2B_5^2) \end{bmatrix}$ ,  $\begin{bmatrix} Q(B_1B_6^2) \\ Q(B_2B_4^2) \end{bmatrix}$ ,

$$\text{and the matrix } \frac{1}{3240} \left[ \begin{array}{cccc} 24 & 0 & -3 & 3 \\ 0 & 8 & 3 & 1 \\ -3 & 3 & 24 & 0 \\ 3 & 1 & 0 & 8 \end{array} \right] \text{is used to estimate} \left[ \begin{array}{c} L(B_1) \\ Q(B_1) \\ L(B_2B_3^2) \\ Q(B_2B_3^2) \end{array} \right], \quad \left[ \begin{array}{c} L(B_2) \\ Q(B_2) \\ L(B_1B_3^2) \\ Q(B_1B_3^2) \end{array} \right],$$

$$\text{and the matrix } \frac{1}{3240} \begin{bmatrix} 24 & 0 & 3 & 3 \\ 0 & 8 & -3 & 1 \\ 3 & -3 & 24 & 0 \\ 3 & 1 & 8 & 0 \end{bmatrix} \text{is used to estimate} \begin{bmatrix} L(B_4) \\ Q(B_4) \\ L(B_3B_5^2) \\ Q(B_3B_6^2) \end{bmatrix}, \ \begin{bmatrix} L(B_5) \\ Q(B_5) \\ L(B_3B_4^2) \\ Q(B_3B_4^2) \end{bmatrix}$$

and the matrix 
$$\frac{1}{3888}\begin{bmatrix} 30 & 0 & -6 & 0 & -3 & 3 \\ 0 & 10 & 0 & -2 & 3 & 1 \\ -6 & 0 & 30 & 0 & -3 & 3 \\ 0 & -2 & 0 & 10 & 3 & 1 \\ -3 & 3 & -3 & 3 & 30 & 0 \\ 3 & 1 & 3 & 1 & 0 & 10 \end{bmatrix}$$
 is used to estimate 
$$\begin{bmatrix} L(B_1B_2^2) \\ Q(B_1B_2^2) \\ L(B_2B_3) \\ Q(B_2B_3) \\ L(B_1B_3) \\ Q(B_1B_3) \end{bmatrix}$$

and the matrix 
$$\frac{1}{3888}\begin{bmatrix} 30 & 0 & 6 & 0 & -3 & -3 \\ 0 & 10 & 0 & -2 & -3 & 1 \\ 6 & 0 & 30 & 0 & 3 & 3 \\ 0 & -2 & 0 & 10 & -3 & 1 \\ -3 & -3 & 3 & -3 & 30 & 0 \\ -3 & 1 & 3 & 1 & 0 & 10 \end{bmatrix}$$
 is used to estimate 
$$\begin{bmatrix} L(B_3B_4) \\ Q(B_3B_4) \\ L(B_4B_5^2) \\ Q(B_4B_5^2) \\ L(B_3B_5) \\ Q(B_3B_5) \end{bmatrix}$$

$$\text{and the matrix } \frac{1}{3888} \begin{bmatrix} 30 & 0 & -6 & 0 & 3 & -3 \\ 0 & 10 & 0 & -2 & 3 & 1 \\ -6 & 0 & 30 & 0 & 3 & -3 \\ 0 & -2 & 0 & 10 & 3 & 1 \\ 3 & 3 & 3 & 3 & 30 & 0 \\ -3 & 1 & -3 & 1 & 0 & 10 \end{bmatrix} \text{ is used to estimate } \begin{bmatrix} L(B_3) \\ Q(B_3) \\ L(B_1B_2) \\ Q(B_1B_2) \\ L(B_4B_6) \\ Q(B_4B_5) \end{bmatrix}.$$

#### Construction

Sets of Treatment Combinations from the 2<sup>3</sup>

| Set         | $S_{i}$ | $S_2$ | $S_3$ | $S_4$ |
|-------------|---------|-------|-------|-------|
| $x_1 + x_2$ | =0      | 0     | 1     | 1     |
| $x_1 + x_3$ | =0      | 1     | 0     | 1     |

Sets of Treatment Combinations from the 35

| Set                           | $S_{i}^{\prime}$ | $S_2'$ | $S_3'$ | $S_4'$ |
|-------------------------------|------------------|--------|--------|--------|
| $z_1 + z_2 + z_3 + z_4 + z_5$ | =0               | 0      | 0      | 1      |
| $z_1 + z_2 + 2z_3$            | =0               | 1      | 2      | 0      |

Treatment Combinations

| $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------|-------|-------|-------|
| 000   | 001   | 010   | 100   |
| 111   | 110   | 101   | 011   |

| $S_1'$ | $S_2'$ | $S_3'$ | _S'_  |
|--------|--------|--------|-------|
| 00000  | 02100  | 01200  | 00001 |
| 21000  | 20100  | 22200  | 21001 |
| 12000  | 11100  | 10200  | 12001 |
| 10110  | 12210  | 11010  | 10111 |
| 01110  | 00210  | 02010  | 01111 |
| 22110  | 21210  | 20010  | 22111 |
| 20220  | 22020  | 21120  | 20221 |
| 11220  | 10020  | 12120  | 11221 |
| 02220  | 01020  | 00120  | 02221 |
| 00021  | 02121  | 01221  | 00022 |
| 21021  | 20121  | 22221  | 21022 |
| 12021  | 11121  | 10221  | 12022 |
| 10101  | 12201  | 11001  | 10102 |
| 01101  | 00201  | 02001  | 01102 |
| 22101  | 21201  | 20001  | 22102 |
| 20211  | 22011  | 21111  | 20212 |
| 11211  | 10011  | 12111  | 11212 |
| 02211  | 01011  | 00111  | 02212 |
| 00012  | 02112  | 01212  | 00010 |
| 21012  | 20112  | 22212  | 21010 |
| 12012  | 11112  | 10212  | 12010 |
| 10122  | 12222  | 11022  | 10120 |
| 01122  | 00222  | 02022  | 01120 |
| 22122  | 21222  | 20022  | 22120 |
| 20202  | 22002  | 21102  | 20200 |
| 11202  | 10002  | 12102  | 11200 |
| 02202  | 01002  | 00102  | 02200 |
|        |        |        |       |

There are five factors at 2 levels and five factors at 3 levels. 116 effects are estimated from 432 treatment combinations. This is a  $\frac{1}{18}$  fraction.

#### **Experimental Plan**

$$S_1S_1'$$
  $S_2'S_2'$   $S_3S_3'$   $S_4S_4'$ 

#### Analysis

The matrix 
$$\frac{1}{1080}\begin{bmatrix} 4 & 1\\ 1 & 4 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} L(B_1B_4^2)\\ L(B_2B_6^2) \end{bmatrix}$ ,  $\begin{bmatrix} L(B_1B_6^2)\\ L(B_2B_4^2) \end{bmatrix}$ ,

and the matrix 
$$\frac{1}{3240}\begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}$$
 is used to estimate  $\begin{bmatrix} Q(B_1B_4^2) \\ Q(B_2B_5^2) \end{bmatrix}$ ,  $\begin{bmatrix} Q(B_1B_5^2) \\ Q(B_2B_4^2) \end{bmatrix}$ ,

$$\text{and the matrix} \, \frac{1}{6480} \begin{bmatrix} 24 & 0 & -3 & 3 \\ 0 & 8 & 3 & 1 \\ -3 & 3 & 24 & 0 \\ 3 & 1 & 0 & 8 \end{bmatrix} \text{ is used to estimate } \begin{bmatrix} L(B_1) \\ Q(B_1) \\ L(B_2B_3^2) \\ Q(B_2B_2^2) \end{bmatrix}, \, \begin{bmatrix} L(B_2) \\ Q(B_2) \\ L(B_1B_3^2) \\ Q(B_1B_2^2) \end{bmatrix},$$

$$\text{and the matrix} \, \frac{1}{6480} \begin{bmatrix} 24 & 0 & 3 & 3 \\ 0 & 8 & -3 & 1 \\ 3 & -3 & 24 & 0 \\ 3 & 1 & 0 & 8 \end{bmatrix} \text{ is used to estimate } \begin{bmatrix} L(B_4) \\ Q(B_4) \\ L(B_3B_5^2) \\ Q(B_3B_5^2) \end{bmatrix}, \quad \begin{bmatrix} L(B_5) \\ Q(B_5) \\ L(B_3B_4^2) \\ Q(B_3B_4^2) \end{bmatrix},$$

and the matrix 
$$\frac{1}{7776}\begin{bmatrix} 30 & 0 & -6 & 0 & -3 & 3\\ 0 & 10 & 0 & -2 & 3 & 1\\ -6 & 0 & 30 & 0 & -3 & 3\\ 0 & -2 & 0 & 10 & 3 & 1\\ -3 & 3 & -3 & 3 & 30 & 0\\ 3 & 1 & 3 & 1 & 0 & 10 \end{bmatrix}$$
 is used to estimate 
$$\begin{bmatrix} L(B_1B_2^2)\\ Q(B_1B_2^2)\\ L(B_2B_3)\\ Q(B_2B_3)\\ L(B_1B_3)\\ Q(B_1B_3) \end{bmatrix},$$

and the matrix 
$$\frac{1}{7776}\begin{bmatrix} 30 & 0 & 6 & 0 & -3 & -3 \\ 0 & 10 & 0 & -2 & -3 & 1 \\ 6 & 0 & 30 & 0 & 3 & 3 \\ 0 & -2 & 0 & 10 & -3 & 1 \\ -3 & -3 & 3 & -3 & 30 & 0 \\ -3 & 1 & 3 & 1 & 0 & 10 \end{bmatrix}$$
 is used to estimate 
$$\begin{bmatrix} L(B_3B_4) \\ Q(B_3B_4) \\ L(B_4B_5^2) \\ Q(B_4B_5^2) \\ L(B_3B_5) \\ Q(B_3B_6) \end{bmatrix}$$

$$\text{and the matrix } \frac{1}{7776} \begin{bmatrix} 30 & 0 & -6 & 0 & 3 & -3 \\ 0 & 10 & 0 & -2 & 3 & 1 \\ -6 & 0 & 30 & 0 & 3 & -3 \\ 0 & -2 & 0 & 10 & 3 & 1 \\ 3 & 3 & 3 & 3 & 30 & 0 \\ -3 & 1 & -3 & 1 & 0 & 10 \end{bmatrix} \text{ is used to estimate } \begin{bmatrix} L(B_3) \\ Q(B_3) \\ L(B_1B_2) \\ Q(B_1B_2) \\ L(B_4B_5) \\ Q(B_4B_5) \end{bmatrix}.$$

#### Construction

Sets of Treatment Combinations from the 2<sup>5</sup>

| Set                           | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------------------------------|-------|-------|-------|-------|
| $x_1 + x_2 + x_3 + x_4 + x_5$ | =1    | 1     | 1     | 1     |
| $x_1 + x_2 + x_3$             | =1    | 0     | 1     | 0     |
| $x_3 + x_4$                   | =1    | 1     | 0     | 0     |

Sets of Treatment Combinations from the 35

| Set                           | $S_1'$    | $S_2'$ | $S_3'$ | $S_4'$ |
|-------------------------------|-----------|--------|--------|--------|
| $z_1 + z_2 + z_3 + z_4 + z_4$ | $t_{5}=0$ | 0      | 0      | 1      |
| $z_1 + z_2 + 2z$              | $r_3 = 0$ | 1      | 2      | 0      |

Treatment Combinations

| $S_1$ | $S_2$ | $S_3$ | S <sub>4</sub> |
|-------|-------|-------|----------------|
| 00100 | 00010 | 10000 | 00001          |
| 11100 | 11010 | 01000 | 11001          |
| 01011 | 01101 | 11111 | 01110          |
| 10011 | 10101 | 00111 | 10110          |
|       |       |       |                |

|                  | - CILLONIO C | OLLI OLLI W.    | CALL           |
|------------------|--------------|-----------------|----------------|
| S <sub>1</sub> ' | $S_2'$       | S' <sub>3</sub> | S <sub>4</sub> |
| 00000            | 02100        | 01200           | 00001          |
| 21000            | 20100        | 22200           | 21001          |
| 12000            | 11100        | 10200           | 12001          |
| 10110            | 12210        | 11010           | 10111          |
| 01110            | 00210        | 02010           | 01111          |
| 22110            | 21210        | 20010           | 22111          |
| 20220            | 22020        | 21120           | 20221          |
| 11220            | 10020        | 12120           | 11221          |
| 02220            | 01020        | 00120           | 02221          |
| 00021            | 02121        | 01221           | 00022          |
| 21021            | 20121        | 22221           | 21022          |
| 12021            | 11121        | 10221           | 12022          |
| 10101            | 12201        | 11001           | 10102          |
| 01101            | 00201        | 02001           | 01102          |
| 22101            | 21201        | 20001           | 22102          |
| 20211            | 22011        | 21111           | 20212          |
| 11211            | 10011        | 12111           | 11212          |
| 02211            | 01011        | 00111           | 02212          |
| 00012            | 02112        | 01212           | 00010          |
| 21012            | 20112        | 22212           | 21010          |
| 12012            | 11112        | 10212           | 12010          |
| 10122            | 12222        | 11022           | 10120          |
| 01122            | 00222        | 02022           | 01120          |
| 22122            | 21222        | 20022           | 22120          |
| 20202            | 22002        | 21102           | 20200          |
| 11202            | 10002        | 12102           | 11200          |
| 02202            | 01002        | 00102           | 02200          |
|                  |              |                 |                |