BTS 2-SRI & 2-DSI 2017/2018

Chapitre II : Les séries numériques

I- But du chapitre:

- 1- Calcul de la somme d'une série numérique en utilisant la définition ;
- 2- Connaissance des opérations algébriques sur les séries numériques convergentes ;
- 3- Connaissance de la nature de la série de Riemann et de la série géométrique ;
- 4- Détermination de la nature d'une série numérique à termes positifs en appliquant les critères de convergence :
 - > Critère de comparaison,
 - > Critère de négligence,
 - > Critère d'équivalence,
 - comparaison d'une série et d'une intégrale généralisée d'une fonction positive et décroissante,
 - \triangleright règle $n^{\alpha}u_{n}$,
 - règle de D'Alembert
 - règle de Cauchy;
- 5- Etude de la convergence absolue d'une série numérique;
- 6- Utilisation du critère spécial des séries alternées.

II- <u>Définitions-notions essentielles</u>:

1-Séries numériques :

1-1- <u>Définition 1</u>

Soit $(Un)_{n\in\mathbb{N}}$ une suite numérique. On appelle série numérique de terme général Un, la suite dont les termes successifs sont : $S_0=U_0$, $S_1=U_0+U_1$, $S_2=U_0+U_1+U_2$,, $S_1=U_0+U_1+\dots+U_n=\sum_{k=0}^n U_k$. $(S_1)_{n\in\mathbb{N}}$ est dite la **suite des sommes partielles**.

1-2- Définition 2

Si la suite $(Sn)_{n\in\mathbb{N}}$ a une limite S, on dit que la série de terme général Un est convergente et a pour somme S, on écrit $\sum_{n=0}^{+\infty}U_n=\lim_{n\to+\infty}\sum_{k=0}^nU_k=\lim_{n\to+\infty}S_n=S$. Sinon, on dit que la série est divergente.

1-3- Exemples:

- On considère la suite (Un) $_{n\in\mathbb{N}}$ définie par : $U_n=3(\frac{1}{2})^n$ pour $n\in\mathbb{N}$. Etudier la série de terme générale Un.
- On considère la suite (Un) _{n∈N} définie par : $U_n = \frac{1}{n(n+1)}$ pour n≥1. Etudier la série de terme générale Un.
- On considère la suite (Un) $_{n∈N}$ définie par $U_n = \ln(1 + \frac{1}{n})$ pour $n \ge 1$. Etudier la série de terme générale Un.
- On considère la suite (Un) $_{n∈N}$ définie par $U_n = (-1)^n$ pour $n\ge 1$. Etudier la série de terme générale Un.

2- Condition nécessaire de convergence :

2-1- Introduction

Considérons une série de terme général Un, supposons que cette série est convergente et soit S sa somme. On a donc : $\lim_{n \to +\infty} S_n = S$ et $\lim_{n \to +\infty} S_{n-1} = S$ alors $\lim_{n \to +\infty} S_n - S_{n-1} = 0$.

Or
$$S_n - S_{n-1} = \sum_{k=0}^n U_k - \sum_{k=0}^{n-1} U_k = U_n$$
 donc $\lim_{n \to +\infty} U_n = 0$.

2-2- Théorème 1 :

Si la série de terme général Un converge alors son terme général tend vers 0 quand n tend vers $+\infty$, la réciproque est fausse.

2-3- <u>Exemple 1</u>:

Le terme générale $U_n = \ln(1 + \frac{1}{n})$ tend vers 0 quand n tend vers $+\infty$ or la série de terme général Un est divergente.

2-4- Théorème 2 (la contraposé):

Si le terme général d'une série numérique ne tend pas vers 0 quand n tend vers $+\infty$, alors cette série diverge.

2-5- <u>Exemples 2</u>:

Etudier les séries de terme général $U_n = \frac{n+1}{n+2}$ et $V_n = \frac{n^2}{n^2+1}$

3- Opérations sur les séries :

3-1- Théorème

- ✓ Si les séries de terme général Un et Vn sont **convergentes**, alors la série de terme général Un+Vn est **convergente** et on a : $\sum_{n=0}^{+\infty} (U_n + V_n) = \sum_{n=0}^{+\infty} U_n + \sum_{n=0}^{+\infty} V_n$
- ✓ Si la série de terme général Un est **convergente**, alors la série de terme général λ Un est **convergente** (avec λ un nombre réel) et on a : $\sum_{n=0}^{+\infty} \lambda U_n = \lambda \sum_{n=0}^{+\infty} U_n$
- ✓ Plus généralement, si les séries de terme général Un et Vn sont **convergentes** et si λ et μ sont deux nombres réels, alors la série de terme général λ Un+ μ Vn est **convergente** et on a : $\sum_{n=0}^{+\infty} (\lambda U_n + \mu V_n) = \lambda \sum_{n=0}^{+\infty} U_n + \mu \sum_{n=0}^{+\infty} V_n$
- ✓ Si la série de terme générale Un **converge** et la série de terme général Vn **diverge** alors la série de terme général λ Un+ μ Vn **diverge**
- Si les deux séries de termes généraux Un et Vn divergent alors on ne peut rien conclure à propos de la convergence de la série $\sum_{n=0}^{+\infty} (\lambda U_n + \mu V_n)$

3-2- Exemple

Soit
$$U_n = \frac{1}{n} - 1$$
 et $V_n = 1 - \frac{1}{n+1}$

- 1-Etudier la convergence des séries de termes généraux Un et Vn.
- 2-Etudier la série de terme général Un+Vn
- 3-Conclure.

III- La série géométrique et la série de Riemann

1-La série géométrique :

1-1- <u>Définition</u>

Soit q un nombre réel quelconque, on appelle série géométrique, la série de terme général q^n avec n \in N.

1-2- Théorème:

Une série géométrique de terme général q^n est convergente si et seulement si

$$|q| \prec 1$$
. Dans ce cas, on a $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$.

1-3- <u>Exemple</u>:

Etudier la nature de la série numérique de terme générale Un dans les cas suivants :

$$a-Un = (5/6)^n$$

$$b-Un = (-1/3)^n$$

$$c-Un=4^n$$

2- Les séries de Riemann :

2-1- Définition

On appel série de Riemann, toute série de terme général $U_n = \frac{1}{n^{\alpha}}$ avec $\alpha \in R$.

2-2- Théorème:

La série $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ est convergente si et seulement si $\alpha > 1$

2-3- <u>Exemple</u>:

-La série de terme générale Un= $1/\sqrt{n}$ est divergente car c'est une série de Riemann avec $\alpha = 1/2 \le 1$

-La série de terme générale Un= $1/n^{3/2}$ est convergente car c'est une série de Riemann avec $\alpha = 3/2 > 1$

IV-Les séries numériques à termes positifs

1- Théorème:

1-1- Enoncé

Une condition nécessaire et suffisante de la convergence d'une série à termes positifs est que la suite de sommes partielles Sn soit majorée. Autrement dit :

$$\sum_{n\geq 0} U_n convergente \Leftrightarrow \exists M \in R, \forall n \in N, \sum_{k=0}^n U_k \leq M \ .$$

1-2- <u>Exemple</u>:

Reprenons le $2^{\text{\'e}me}$ exemple du paragraphe II ,on a la somme partielle de la série de terme générale Un=1/n(n+1) est Sn=1-1/(n+1) qui est majorée par 1 donc la série de terme générale Un est convergente.

2- Critère de comparaison :

2-1- Enoncé

Soit $\sum_{n=0}^{+\infty} U_n$ et $\sum_{n=0}^{+\infty} V_n$ deux séries à termes positifs. Supposons qu'on a Un \leq Vn

- ightharpoonup Si $\sum_{n=0}^{+\infty} V_n$ converge alors $\sum_{n=0}^{+\infty} U_n$ converge.
- ightharpoonup Si $\sum_{n=0}^{+\infty} U_n$ diverge alors $\sum_{n=0}^{+\infty} V_n$ diverge.

2-2-Exemple

Etudier la convergence des série de termes généraux Un= $(\sin^n(\pi/8))/3^{n+2}$ et Vn=1/(ncos²n)

3- Critère de négligence :

3-1- Enoncé

Soit $\sum_{n=0}^{+\infty} U_n$ et $\sum_{n=0}^{+\infty} V_n$ deux séries à termes positifs. Supposons que $\lim_{n\to+\infty} \frac{U_n}{V_n} = 0$

- ightharpoonup Si $\sum_{n=0}^{+\infty} V_n$ converge alors $\sum_{n=0}^{+\infty} U_n$ converge.
- ightharpoonup Si $\sum_{n=0}^{+\infty} U_n$ diverge alors $\sum_{n=0}^{+\infty} V_n$ diverge.

3-2- Exemple :

Montrer que la série de terme générale Un=1/(n³ln(n)) est convergente.

4- Théorème d'équivalence :

4-1- Enoncé

Soit $\sum_{n=0}^{+\infty} U_n$ et $\sum_{n=0}^{+\infty} V_n$ deux séries à termes positifs. Supposons qu'on a $\lim_{n\to+\infty} \frac{U_n}{V_n} = 1$ alors

 $\sum_{n=0}^{+\infty} U_n$ et $\sum_{n=0}^{+\infty} V_n$ sont de même nature.

<u>4-2- Exemple :</u>

Montrer que les séries $\sum_{n=1}^{+\infty} \ln(1 + \frac{1}{n^{3/2}})$ et $\sum_{n=1}^{+\infty} \sin(\frac{\pi^2}{n^2})$ sont convergentes.

5- Comparaison d'une série et d'une intégrale généralisée d'une fonction positive et décroissante :

5-1- Enoncé

Soit f une fonction positive et décroissante sur [a,+ \infty [et Un=f(n).On a alors

 $\int_{-\infty}^{+\infty} f(x)dx \text{ et } \sum_{n=0}^{+\infty} U_n \text{ sont de même nature.}$

5-2-Exemple

Montrer que la série $\sum_{n=1}^{+\infty} \frac{1}{1+n^2}$ est convergente

6- Règle
$$n^{\alpha}U_{n}$$
:

6-1- Enoncé

Soit $\sum_{n=0}^{+\infty} U_n$ une série à termes positifs et α un nombre réel.

- ightharpoonup S'il existe $\alpha > 1$ et $\lim_{n \to +\infty} n^{\alpha} U_n = 0$ alors la série $\sum_{n=0}^{+\infty} U_n$ converge.
- ightharpoonup S'il existe $\alpha \le 1$ et $\lim_{n \to +\infty} n^{\alpha} U_n = \pm \infty$ alors la série $\sum_{n=0}^{+\infty} U_n$ diverge.

6-2- Exemple

Quelle est la nature de la série de terme générale Un=ln(n)/n⁴

7- Règle de d'Alembert :

7-1- Enoncé:

Soit $\sum_{n=0}^{+\infty} U_n$ une série à termes positifs, supposons que $\lim_{n\to +\infty} \frac{U_{n+1}}{U_n} = l$

- ightharpoonup Si l < 1 alors $\sum_{n=0}^{+\infty} U_n$ est convergente
- ightharpoonup Si l > 1 alors $\sum_{n=0}^{+\infty} U_n$ est divergente
- \triangleright Si l=1 je ne peux rien conclure

7-2- Exemple

Etudier la convergence de la série de terme générale Un=1/n!

8- Règle de Cauchy

8-1- Enoncé:

Soit $\sum_{n=0}^{+\infty} U_n$ une série à termes positifs, supposons que $\lim_{n\to+\infty} \sqrt[n]{U_n} = l$

- Si l < 1 alors $\sum_{n=0}^{+\infty} U_n$ est convergente
- ightharpoonup Si l > 1 alors $\sum_{n=0}^{+\infty} U_n$ est divergente
- \triangleright Si l=1 je ne peux rien conclure

8-2-Exemple

Etudier la nature de la série $\sum_{n=1}^{+\infty} (2^{\frac{1}{n}} + 3^{\frac{1}{n}})^{-n}$

V- <u>La convergence absolue</u>:

1- Définition:

On dit que $\sum_{n=0}^{+\infty} U_n$ est absolument convergente si et seulement si la série $\sum_{n=0}^{+\infty} |U_n|$ est convergente.

2- Proposition

Toute série numérique absolument convergente est convergente, la réciproque est fausse.

3- Les séries alternées :

3-1- Définition:

Soit $\sum_{n=0}^{+\infty} U_n$ une série réelle .On dit que $\sum_{n=0}^{+\infty} U_n$ est alternée si et seulement si elle s'écrit

sous la forme $\sum_{n=0}^{+\infty} (-1)^n V_n$ où $Vn \ge 0$.

BTS 2-SRI & 2-DSI 2017/2018

3-2-Critère spécial des séries alternées :

Soit $\sum_{n=0}^{+\infty} U_n$ une série alternée tel que $(|\mathrm{Un}|)_n$ est une suite décroissante vers 0, alors $\sum_{n=0}^{+\infty} U_n$ est

convergente et sa somme de signe
$$U_0$$
, de plus : $\forall M \in \mathbb{N}$, $\left| \sum_{n=M+1}^{+\infty} U_n \right| \leq \left| U_{M+1} \right|$

3-3- Exemple:

Etudier la convergence de la série
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$$

Résumé du chapitre

 $\sum_{n\geq 0} U_n \text{ une série numérique de terme générale Un, c'est la suite Sn tel que Sn} = \sum_{k=0}^n U_k \text{ , } \sum_{n\geq 0} U_n = \lim_{n\to +\infty} \sum_{k=0}^n U_k = \underbrace{\phantom{\sum_{n\geq 0}^n} U_n = \lim_{n\to +\infty} \sum_{k=0}^n U_k}_{\pm\infty \text{ alors la série est divergente}}$

Etude de la convergence d'une série numérique

