1 Gradient Descent with Autograd

1.1 Implement gradient-based factorisation using PyTorch's AD Due to length of code, we kindly ask the reader to visit the following Github notebook and find 'gd_factorise_ad' method for full implementation.

1.2 Factorise and compute reconstruction error on real data With learning late = 0.01 and 2000 epochs, reconstruction loss = 0.0254. Performing truncated SVD on the same data gives reconstruction loss = 1.0201.

1.3 Compare against PCA

SVD is a numerical method of computing the PCA. The reconstruction error is If mean-centred datapoint is \boldsymbol{X} and its approximations are \boldsymbol{X} then reconstruction error is $||\boldsymbol{X} - \tilde{\boldsymbol{X}}||_F^2$. With Eckhart-Young Theorem, we know that an optimal choice of $\tilde{\boldsymbol{X}}$ is \boldsymbol{X}_k found via truncated SVD.

(a) From \boldsymbol{U} using truncated SVD

(b) From $\hat{\boldsymbol{U}}$ using factorisation

Figure 1: Projection of data onto principle directions.

2 A simple MLP

2.1 Implement the MLP

We kindly ask the reader to visit the following Github notebook and find 'mlp_train' method for full implementation.

2.2 Test the MLP

Figure 2: Left plot showing training loss. Right plot showing training accuracy in blue and validation accuracy in orange.