Elementi di teoria della Computazione (Prof.ssa Gargano) Anno Acc. 2013-2014 Prova Scritta - 23 giugno 2014

Nome e Cognome, email:

Matricola:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	7
							SI NO

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

Giustificare le risposte, risposte non giustificate non sono valutate

Discussione prova scritta: Gioved 26-6-14

1. Sia A un automa finito deterministico la cui funzione di transizione è riportata di seguito (la freccia indica lo stato iniziale e l'asterisco lo stato finale).

Determinare (applicando la metodologia studiata) l'espressione regolare E tale che L(A) = L(E).

	0	1
$\rightarrow q_0$	q_2	q_1
q_1	q_1	q_2
$* q_2$	q_3	q_2
q_3	q_3	q_3

2. Fornire la definizione di

- Definire le operazioni di intersezione e complemento di linguaggi.
- Dimostrare che i linguaggi regolari sono chiusi per le operazioni di intersezione e complemento.

3. Definire una macchina di Turing deterministica che decida il linguaggio $L = \{a^nb^na^n \mid n \geq 0, \}$. Giustificare la risposta descrivendo il modo di funzionamento della macchina.

- 4. (a) Dare la definizione di riduzione.
 - (b) Definire il linguaggio EQ_{TM} .
 - (c) Dimostrare che EQ_{TM} non è Turing riconoscibile e non è co-Turing riconoscibile. Occorre enunciare con precisione tutti i risultati intermedi utilizzati.

- 5. Fornire le definizioni delle classi P, NP, co-NP, e la classe dei problemi NP-completi.
 - -Fornire un diagramma che illustra le relazioni che si sa/suppone esistere tra queste classi; giustificando le relazioni indicate.

6. Un grafo G=(V,E) contiene una clique di dimensione k, se esistono $v_1,\ldots,v_k\in V$ tali che $(v_i,v_j)\in E$ per ogni $i,j=1,\ldots k$ con $i\neq j$.

CLIQUE: Dato un grafo G ed un intero k, il grafo G contiene una clique di dimensione k?

Mostrare che CLIQUE risulta NP-completo (Sugg.: Riduzione da INDEPENDENT-SET.)

- 7. a) Illustrare i concetti di riduzione polinomiale e di Self-reducibility.
 - b) Si definisca il problema di decisione SAT. Si consideri il corrispondente problema di ricerca RicSAT: Sia data un'espressione Booleana Φ . Se Φ é soddisfacibile, determinare l'assegnazione di veritá alle variabili che la rende vera; altrimenti segnalare che Φ non é soddisfacibile. Mostrare RicSAT \leq_p SAT.

FOGLI AGGIUNTIVI: I

FOGLI AGGIUNTIVI: II

FOGLI AGGIUNTIVI: III