<u>2110597 Section 21: Pattern Recognition</u> <u>การรู้จำแบบด้วยคอมฟิวเตอร์</u> <u>Tuesdays 13:00-16:00 Eng 100 Room 404</u>

Pattern Recognition

- What is pattern recognition
 - · Types of classification problems
- Generative models
 - · Maximum likelihood estimate
 - Maximum a posteriori estimate
 - Gaussian Mixture Models
 - Naive Bayes
- Dimensionality reduction and visualization
 - · Principle Component Analysis
 - Linear Discriminant Analysis
 - Random Projection
 - · t-SNE
- Discriminative models
 - Support Vector Machines
 - Neural Networks, DNN, CNN, LSTM
- Unsupervised methods
- Reinforcement learning (guest lecture)
- Other Applications and how to approach a classification task in the real world
- Tools: Jupyter Notebook, Tensorflow (Keras)

Date Mining

Statistics

Pattern

recognition

Artificial Intelligence

Course github

เนื้อหาวิชา

Pattern Recognitionเป็นส่วนหนึ่งของArtificial Intelligence ที่เน้นไปในการสร้างระบบรู้จำโดยอาศัยฐานข้อมูล วิชานี้จะสอนถึงการสร้างระบบรู้จำแบบต่างๆ รวมถึงทฤษฎีพื้นฐานของระบบรู้จำเหล่านั้น วิชาจะแบ่งเป็นสองส่วนหลัก ช่วง แรกจะเน้นGenerative Models เช่น ทฤษฎีMaximum Likelihood Estimation, Maximum a posteriori และ Expectation Maximization ในช่วงที่สองจะเน้นDiscriminative Modeling เช่น Support Vector Machines และ Deep Learning ผู้เรียนจะได้เรียนรู้ถึงทฤษฎีและทดลองลงมือปฏิบัติจริงในด้านต่างๆเช่น bioinformatics, natural language processing, computer vision เป็นดัน เพื่อเป็นการปูพื้นฐานให้ผู้เรียนได้นำไปใช้ในวิชาเฉพาะ ทางที่สนใจต่อๆไป ในวิชานี้จะสอนผ่านเครื่องมือที่ใช้กันทั่วไปในวงการ เช่น Jupyter Notebook, TensorFlow และ Keras โดยการประมวลผลส่วนใหญ่จะทำบนGoogle Cloud ทั้งนี้ ผู้เรียนควรจะมีความรู้เบื้องต้นเกี่ยวกับlinear algebraและprobability

<u>ตารางการเรียน</u>

		I
คาบเรียนที่	เนื้อหา	การบ้านและควิช
1 - 13/8	Introduction	
2 - 20/8	Regression & Jupyter Notebook demo	เริ่มHW1
3 - 27/8	Probability review	
4 - 3/9	MLE, MAP, and Naive Bayes	ส่งHW1, Quiz 1, เริ่มHW2
5 - 10/9	GMM and EM	
6 - 17/9	Dimensionality reduction and visualization	ส่งHW2, Quiz 2, เริ่มHW3
7 - 24/9	SVM	
8 - 1/10	Neural network basics & Gcloud and Keras demo	ส่งHW3, Quiz 3, เริ่มHW4
7/10-11/10	Midterm week	
9 - 15/10	CNN, Recurrent architectures	
10 - 22/10	Recent Advances in NN	สงHW4, Quiz 4, สง course project proposal
11 - 29/10	Reinforcement Learning	
11 - 5/11	Unsupervised methods	Course project progress
12 - 12/11	Probabilistic Graphical models and Causal Inference	
13 - 19/11	Tricks of the trade: machine learning in the real world (with guest lecture)	
14 - 26/11	Project presentation	ส่งcourse project

การส่งการบ้านสาย

สายไม่เกิน 6 ชม. -0.5 คะแนน

สายไม่เกิน 24 ชม. -2 คะแนน

ถ้าส่งสายเกิน 24 ชม.จะไม่ได้รับการตรวจ

เกณฑ์การวัดผล

Participation and Attendance 10%

Quizzes 20%

Homework 40%

Project 30%

การตัดเกรด

- > 85% A
- > 80% B+
- > 75% B
- > 70% C+
- > 65% C
- > 60% D+
- > 55% D
- < 55% F

หมายเหตุ เกณฑ์การให้คะแนนดังกล่าวเป็นเกณฑ์เบื้องต้น ผู้สอนสามารถลดcut-offได้ตามความเหมาะสม ทั้งนี้ จะไม่มี การเพิ่มcut-offไม่ว่าในกรณีใดๆทั้งสิ้น

หนังสือเรียน

ไม่มีหนังสือเรียนบังคับ แต่ผู้สนใจสามารถอ่านหนังสือด้านล่างประกอบบทเรียนได้

- 1. Richard O. Duda, Peter E. Hart, David G. Stork, *Pattern Classification*, John Wiley & Sons, 2012.
- 2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, *Deep Learning*, MIT Press, 2016.
- 3. Francois Chollet, *Deep Learning with Python*, Manning Publications Company, 2017.