Microcontroladores

Arquitectura (AVR ATmega)

Arquitectura del Microcontrolador

- Diagrama de Bloques
- Terminales del Circuito Integrado (IC)
- Organización del CPU
- Organización de la Memoria
- Estructura de los puertos de E/S
- Registros Especiales
- Memoria Externa
- Dispositivos Periféricos Internos

Diagrama de Bloques

Terminales del Circuito Integrado (IC)

10

• Nodo S (basado en ATmega8)

• Nodo SD (basado en ATmega644p)

• Tjuino (basado en ATmega 1280p)

Arquitectura interna del Microcontrolador

Registros Internos del CPU

Registro de Estado (SREG)

Bit	7	6	5	4	3	2	1	0	_
0x3F (0x5F)	1	Т	Н	S	V	N	Z	С	SREG
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

Puntero de pila (SP)

Bit	15	14	13	12	11	10	9	8	
0x3E (0x5E)	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	SPH
0x3D (0x5D)	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	SPL
•	7	6	5	4	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	1	0	0	0	0	1	
	1	1	1	1	1	1	1	1	

Ciclo de Ejecución

M

Ciclo de Ejecución

Tiempo de Respuesta a interrupciones

- El tiempo de respuesta de ejecución a una interrupción para todas las interrupciones del AVR habilitadas es de 5 ciclos de reloj como mínimo.
- Después de los 5 ciclos de reloj ejecuta la instrucción de la dirección del vector de interrupciones para que se ejecute a rutina que maneja la correspondiente interrupción.
- Durante esos 5 ciclos de reloj, el contador del programa (PC) se introduce a la pila.
- El vector contiene normalmente un salto a la rutina de servicio interrupción (ISR), y este salto consume 3 ciclos de reloj.
- Si se produce una interrupción durante la ejecución de una instrucción de varios ciclos, la instrucción se completa antes de que se atienda la interrupción.

Tiempo de Respuesta a interrupciones

- Si se produce una interrupción cuando la MCU está en modo de suspensión (sleep), el tiempo de respuesta para ejecutar la interrupción se incrementa en 5 ciclos de reloj.
- Este aumento se suma a la puesta en marcha o tiempo de recuperación del MCU desde el modo de suspensión seleccionado.
- El retorno de una rutina de servicio de interrupción toma 5 ciclos de reloj. Durante estos 5 ciclos de reloj, el contador de programa (PC) (3 o 2 bytes) es recuperado de la pila, el apuntador de pila se incrementa en 2 o 3 bytes, y el bit I del registro de estado (SREG) es activado.

Nota: Este microcontrolador no salva el registro de estado cuando ocurre una interrupción por lo que es necesario hacerlo manualmente en el cado de programación en leguaje ensamblador o bien que el compilador lo realice.

Organización de la Memoria de Programa

Organización de la Memoria de Datos (SRAM)

Address (HEX)

32 Registers	0 - 1F
64 I/O Registers	20 - 5F
416 External I/O Registers	60 - 1FF
Internal SRAM	200
(8192 × 8)	21FF
External SRAM (0 - 64K × 8)	2200
	•

FFFF