Arkusz I 2020 - Klucz rozwiązań

Zadanie 1.1 (0-1)

Poprawna odpowiedź: F,F,P,F

Wymagania ogólne	Wymagania szczegółowe	
III. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, z zastosowaniem podejścia algorytmicznego.	Zdający analizuje i rozwiązuje sytuacje problemowe z różnych dziedzin (5.1.), Zdający stosuje podejście algorytmiczne do rozwiązywania problemu (5.2.).	

Zadanie 1.2 (0-1)

Poprawna odpowiedź:

Polecenie	Definicja	
1.	A	
2.	В	
3.	D	
4.	С	

Wymagania ogólne	Wymagania szczegółowe	
I. Bezpieczne posługiwanie się komputerem i jego oprogramowaniem, wykorzystanie sieci komputerowej; komunikowanie się za pomocą komputera i technologii informacyjno-komunikacyjnych.	Zdający przedstawia sposoby reprezentowania różnych form informacji w komputerze: liczb, znaków, obrazów, animacji, dźwięków (1.1.).	

Zadanie 1.3. (0–1)

Poprawna odpowiedź: P, P, F, P

Wymagania ogólne	Wymagania szczegółowe
II. Wyszukiwanie, gromadzenie i przetwarzanie informacji z różnych źródeł; opracowywanie za pomocą komputera: rysunków, tekstów, danych liczbowych, motywów, animacji, prezentacji multimedialnych	Zdający opisuje podstawowe modele barw i ich zastosowanie (4.1.).

Zadanie 1.4. (0–1)

Poprawna odpowiedź: F, P, F, F

Wymagania ogólne	Wymagania szczegółowe
I. Bezpieczne posługiwanie się komputerem i jego oprogramowaniem, wykorzystanie sieci komputerowej; komunikowanie się za pomocą komputera i technologii informacyjno-komunikacyjnych.	Zdający przedstawia sposoby reprezentowania różnych form informacji w komputerze: liczb, znaków, obrazów, animacji, dźwięków (1.1.).
III. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, z zastosowaniem podejścia algorytmicznego.	Zdający analizuje i rozwiązuje sytuacje problemowe z różnych dziedzin (5.1.), Zdający stosuje podejście algorytmiczne do rozwiązywania problemu (5.2.).

Zadanie 1.5. (0–1)

Poprawna odpowiedź: P, P, F, P.

Wymagania ogólne	Wymagania szczegółowe	
III. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, z zastosowaniem podejścia algorytmicznego.	Zdający analizuje i rozwiązuje sytuacje problemowe z różnych dziedzin (5.1.), Zdający stosuje podejście algorytmiczne do rozwiązywania problemu (5.2.).	

Zadanie 2. (0–5)

Wymagania ogólne	Wymagania szczegółowe
III. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, z zastosowaniem podejścia algorytmicznego.	Zdający analizuje i rozwiązuje sytuacje problemowe z różnych dziedzin (5.1.), Zdający stosuje podejście algorytmiczne do rozwiązywania problemu (5.2.).

Zadanie 2.1 (0-2)

Dane	Para liczb względnie pierwszych TAK / NIE	Liczba operacji mod
a = 3, b = 5	TAK	4
a = 12, b = 8	NIE	2
a = 121, b = 13	TAK	3
$a = F_n, b = F_{n+1}, \text{ gdzie } F_n$	TAK	n
oznacza n-tą liczbę		
Fibonacciego		

1 p. za poprawne wypełnienie wierszy 2 i 3,

1 p. za poprawne wypełnienie wiersza 4.

Zadanie 2.2. (0–3)

Lista kroków:

Krok 1. $L \leftarrow 0$

Krok 2. Dla i = 1, 2, ..., n - 1 wykonuj Krok 2.1

Krok 2.1. Dla j = i + 1, i + 2, ..., n wykonuj Krok 2.1.1

Krok 2.1.1. Jeżeli NWD $(a_i, a_j) = 1$, to $L \leftarrow L + 1$

Krok 3. Wypisz *L* i zakończ algorytm

3 p. przyznajemy za w całości poprawne rozwiązanie

2 p. za rozwiązanie z niepotrzebnym zliczaniem par (a_i, a_i)

1 p. za rozwiązanie ze zliczaniem wszystkich możliwych par (bez rozróżnienia par (a_i, a_i) , (a_i, a_i) .

Zadanie 3 (0-5)

Wymagania ogólne	Wymagania szczegółowe
III. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie podejścia algorytmicznego.	5. Rozwiązywanie problemów i podejmowanie decyzji z wykorzystaniem komputera, stosowanie podejścia algorytmicznego. Zdający: 1) analizuje, modeluje i rozwiązuje sytuacje problemowe z różnych dziedzin; 2) stosuje algorytmiczne podejście do rozwiązywania problemu; 4) dobiera efektywne algorytm do rozwiązania sytuacji problemowej i zapisuje go w wybranej notacji;

Schemat oceniania

Nr pytania	Oczekiwana odpowiedź		Maksymalna punktacja	
3.1	Za podanie pełnej poprawnej odpowiedzi – 2 punkty, przy czym po 1 punkcie za poprawne odpowiedzi dla każdego ciągu Odpowiedzi: Pierwszy ciąg: $5-3=2$ $-3+2-5=-6$ Drugi ciąg: $6+1+2+9=18$ $9+3+4=16$ $2+6+1+2=11$	2	5	
3.2	Za podanie poprawnego algorytmu o złożoności co najwyżej O(n + m) – 3 pkt. Za podanie poprawnego algorytmu o gorszej złożoności (np. O(n*m)) – 2 pkt.	3		

Przykładowe rozwiązanie o złożoności O(n + m)

```
#include <iostream>
using namespace std;
int main() {
   int n,a,b; cin>>n;
   int k[n+1];
   int p[n+1];
```

```
p[0]=0;
for (int i=1;i<=n; ++i) {
    cin>>k[i];
    p[i]=p[i-1]+k[i];
}
int m; cin>>m;
for (int i=0; i<m; ++i) {
    cin>>a; cin>>b;
    cout<<p[b]-p[a-1]<<endl;
}
return 0;
}</pre>
```

Przykładowe rozwiązanie o złożoności O(n *m)

```
#include <iostream>
using namespace std;
int main(){
    int n,a,b; cin>>n;
    int k[n+1];
    int p[n+1];
    p[0]=0;
    for (int i=1; i<=n; ++i) {
        cin>>k[i];
        p[i]=p[i-1]+k[i];
    int m; cin>>m;
    for (int i=0; i < m; ++i) {
             cin>>a; cin>>b;
             cout << p[b]-p[a-1] << endl;
    return 0;
}
```