Implementing QVMP using QROM

Elton Pinto

April 12, 2022

Motivation

- Grover search: popular quantum search algorithm
- Depends on a black-box oracle to perform the search
- Offers quadratic speedup over classical linear search with a runtime of $O(\sqrt{N})$

Figure 1: Grover operator circuit

Motivation (contd)

- Core of Grover search straightforward to implement
- Main challenge: encoding the oracle as a quantum circuit
- QVMP
 - Quantum Verification of Matrix Products
 - Offers quadratic speed-up over classical VMP
 - Used in HPC applications
 - Algorithm uses Grover search as a sub-routine

Goal

Implement QVMP to better understand these challenges, determine feasibility of use, and investigate enhancements into oracle encoding

Main contributions

- Working implementation of QVMP in Qiskit
- Circuit metrics (gate count, circuit depth)
- Transpilation and simulation times

QVMP

- Quantum Verification of Matrix Products
- Given $n \times n$ matrices A, B and C, check if AB = C
- Two quantum algorithms:
 - Grover search based: $O(n^{\frac{7}{4}})$
 - Quantum random walk based: $O(n^{\frac{5}{3}})$

QVMP Algorithm

Algorithm 1 Quantum VMP using Grover Search

Input: $n \times n$ matrices A, B, C

Output: 1 if AB = C and 0 otherwise

Procedure:

- 1. Partition B and C into sub-matrices of size $n \times \sqrt{n}$
- 2. Perform amplitude amplification for $n^{\frac{1}{4}}$ iterations using this subroutine:
 - 2.1 Pick a random vector x of size \sqrt{n}
 - 2.2 Classically compute $y = B_i x$ and $z = C_i x$
 - 2.3 Using Grover search with \sqrt{n} iterations, find a row of index j such that $(Ay \neq z)_j$
- 3. XOR the sub-results

QVMP Implementation

```
# QVMP oracle described using a classical function

def find_row_mismatch(A, y, z):
    z_prime = A * y
    for j, value in enumerate(z_prime):
        if value != z[j]:
        return j
    return -1
```

- The above snippet is encoded as a quantum circuit and constitutes the oracle
- QROM is used to efficiently encode the matrix
- Out-of-place inner product performs the row-vector multiplication

QROM - Quantum Read-only Memory

- Encodes an $n \times m$ binary matrix using only $n + \log_2(n)$ qubits
- Outputs the value of the jth row indexed using address qubits
- Can use superposition to extract multiple rows

Figure 2: QROM encoding of a 4×4 matrix A

QVMP oracle

Figure 3: QVMP oracle for a 4×4 matrix A performing one iteration

Evaluation

- Aer simulator provided by Qiskit
- Rudimentary noise model
- Testbench specs
 - AMD EPYC 7502 32-Core Processor, 1498.333 MHz
 - 128 CPUs
 - x86_64 architecture
- Simulation methods
 - Statevector: Dense statevector simulation, limited by size
 - Matrix product state (MPS): Tensor-network statevector simulator, doesn't model entire quantum state

Evaluation - Demonstrating correct functionality

• Input: 16×16 matrix A and two vectors y and z with $(Ay \neq z)_j$ for $j \in \{0, 5, 4\}$

Figure 4: Probability of measuring the row-index j after running the QVMP oracle

Evaluation - Circuit metrics

Dimension	Row mismatches	ccx	cx	X	h	z	Circuit Depth	Qubit count	Gate count
(4,4)	1	30	1	11	2	1	44	11	49
(16,8)	2	32	10108	69	284	2	16993	21	21494
(32,4)	2	24	42060	204	461	3	69510	14	85299
(64,8)	3	48	300324	401	1602	3	497172	23	604329

(a) MPS

Dimension	Row mismatches	ccx	cx	X	h	z	Circuit Depth	Qubit count	Gate count
(4,4)	1	30	1	11	2	1	44	11	49
(16,8)	2	32	0	76	4	2	385	21	130
(32,4)	2	24	0	208	5	3	684	14	270
(64,8)	3	48	0	405	6	3	2040	23	498

(b) Statevector

Table 1: Circuit metrics for MPS and statevector simulation methods on select dimensions

Evaluation - Transpilation vs Simulation times

Figure 5: Circuit depth vs Transpilation/Simulation time

Future work

Automated synthesis of oracles

Extend existing work on reversible compilers to support higher-level programming constructs like lists, records, multi-dimensional arrays

Better encoding of matrices

Investigate more efficient encodings of matrices and related operations

Transpilation time bottlenecks

Investigate bottle-necks in transpilation

End of talk

 ${\bf Questions?}$