Homework 6

NO HANDWRITTEN SOLUTIONS WILL BE ACCEPTED

Problem 1: consider the following problem

$$Z_1(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2$$

$$\min_{Z_2(x) = 3x_1 + 2x_2 - \frac{x_3}{3} + 0.01(x_4 - x_5)^3}$$

$$x_1 + 2x_2 - x_3 - 0.5x_4 + x_5 = 2$$

$$s. t. 4x_1 - 2x_2 + 0.8x_3 + 0.6x_4 + 0.5x_5^2 = 0$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 \le 10$$

- a. Use the epsilon-constraint method to solve the following NLP problem in GAMS, upload your code
- b. Create a plot with the Pareto front.

Problem 2: Consider the same problem that we explored in the previous homework.

In which the total cost of a distillation column was calculated as follows:

$$cost_k = \alpha_k + \beta_k F_k + \gamma^{Hot} Q_k^{Hot} + \gamma^{Cold} Q_k^{Cold}$$

 α_k represents a fixed capital cost, β_k represents the variable investment cost, $\gamma^{Hot/cold}$ is the cost of hot/cold utilities, and $Q_k^{Hot/cold}$ is the total demand of hot and cold utilities (you can assume that they are equal). Considering an initial fed of 1000 Kmol/h, and a composition of the feed stream (mol fraction) of A=0.15, B=0.3, C=0.35 and D=0.2. And considering the following data:

		Investment cost		Heat duty
k	Separator	W.	β_k , variable	coefficients, Kk,
		(10^3/yr)	(103\$hr/kmol yr)	(106kJ/kgmol)
1	A/BCD	145	0.42	0.028
2	AB/CD	52	0.12	0.042
3	ABC/D	76	0.25	0.054
6	A/BC	125	0.78	0.024
7	AB/C	44	0.11	0.039
4	B/CD	38	0.14	0.040
5	BC/D	66	0.21	0.047
10	A/B	112	0.39	0.022
9	B/C	37	0.08	0.036
8	C/D	58	0.19	0.044
Cost	of utilities:			
Co	ooling water	$C_C = 1.3 (10^3 \$/10^6 \text{kJ})$	(yr)	
Steam		$C_{\mu} = 34 (10^3 \text{s}/10^6 \text{kJyr})$		

Steam $C_H = 34~(10^3 \$/10^6 \mathrm{kJyr})$ Unlike the previous case, assume that the parameters γ^{Hot} and γ^{Cold} are known with uncertainty. And the probability of occurrence in different scenarios is as follows

	Probability	γ^{Hot} (10 ³ \$10 ⁶ KJ-y)	γ^{Cold} (10 ³ \$10 ⁶ KJ-y)
Scenario 1	0.025	0.1	3
Scenario 2	0.05	0.1	10
Scenario 3	0.1	0.1	34
Scenario 4	0.15	1.3	3
Scenario 5	0.35	1.3	10
Scenario 6	0.15	1.3	34
Scenario 7	0.1	3	3
Scenario 8	0.05	3	10
Scenario 9	0.025	3	34

Formulate a stochastic optimization problem in GAMS and solve the problem.