Instructions:

- Due 05/04 at 11:59pm on Gradescope.
- Write the names of anyone you work with on the top of your assignment. If you worked alone, write that you worked alone.
- · Show your work.
- Include all code you use as copyable monospaced text in the PDF (i.e. not as a screenshot).
- Do not put the solutions to multiple problems on the same page.
- Tag your responses on gradescope. Each page should have a single problem tag.
 Improperly tagged responses will not receive credit.

Problem 1. Let f(x) = |x| and define $p_k(x)$ as the degree k polynomial interpolate to f(x) at the k+1 Chebyshev nodes.

- (a) For k = 10 make one plot with x vs f(x) and x vs $p_k(x)$ and one plot over x vs $|f(x) p_k(x)|$ with the vertical axis on a log-scale.
- (b) Repeat this for k = 40

Problem 2. (a) Prove that on a log-log plot, $x \vee x^k$ is a line. What is the slope?

- (b) What will the plot of x vs $5x^2+3x+1$ look like on a log-log plot when x is large?
- (c) Prove that on a log-y plot, $x \text{ vs } \rho^x$ is a line. What is the slope?

Problem 3. (a) Let $f(x) = \exp(-x)$ and define $p_k(x)$ as the degree k polynomial interpolate to f(x) at the k+1 Chebyshev nodes.

Make a plot of k vs

$$\max_{x \in [-1,1]} |f(x) - p_k(x)|$$

for $k = 0, 1, 2, \dots 20$. Put the y-axis on a log scale and label the axes/plot/etc.

To approximate

$$\max_{x \in [-1,1]} |f(x) - p_k(x)|$$

you can instead take the maximum over 1000 equally spaced points in [-1, 1] and use this instead.

- (b) Repeat this for $f(x) = 1/(1+16x^2)$ and k = 0, 1, ..., 100.
- (c) Repeat this for $f(x) = |\sin(5x)|^3 = (\sin(5x)^2)^{3/2}$ and k = 0, 1, ..., 100, but put both axes on log-scales.

Add a line n vs n^{ν} , where ν is the largest value so that the $(\nu - 1)$ -st derivative of f(x) is continuous.

Problem 4. Let $f(x) = 1/(1+16x^2)$.

For any non-negative integer k, set $n=k^2+1$ and let x_1,\ldots,x_n be n equally spaced points from -1 to 1 and let $q_k(x)$ be the degree k polynomial minimizing

$$\min_{\deg(q)=k} \sum_{i=1}^{n} (f(x_i) - q(x_i))^2.$$

On a log-y plot, plot the error

$$\max_{x \in [-1,1]} |f(x) - q_k(x)|$$

for $k=0,1,\ldots,100$. Add to this plot the error of the Chebyshev interpolant that you computed in 3(b).