Week of 9/25 Deliverables

Red Lemurs

Deliverables: Finishing up preparation (Ryan)

- Proposal slides deck
- Statement of work
- Re-visit PANDA pipeline with new data

Progress

- Proposal slides
 - DoD: <u>link to slides .pdf on github</u>
- Statement of Work
 - DoD: <u>link to .md table style</u>
- Revisit PANDA
 - DoD: <u>jupyter nbviewer link</u>

Proposal Slides. 🗸

DoD: <u>link to slides .pdf on github</u>

Multi-Modal Brain Visualizations

Red Lemur

Statement of Work.

DoD: <u>link to .md table style</u> <u>link to full propodal .pdf</u>

Sprint 1: Top 10s	11/1	 Graphing library to produce top 10 plots for each modality Notebook to produce all 10 for a single subject choose a plotting library and design a uniform aesthetic for all plots
Sprint 2: Deployment of Top 10s	12/15	 Docker pipeline to generate all plots MVP webservice cloud based deployment Run and save views for whole HBNB dataset
Sprint 3: Cross-modal visualizations	2/15	 Visualizations derived from >1 modality Test dependence/independence of signals from different modalities Basic demonstrations of 'looking at' biomarkers cited in current research
Sprint 4: Wrap up webservice & analysis	4/1	 Add Sprint 3 work into webservice deployment, make 'production ready' get as many datasets as possible to work with tool Look for evidence for psych / biomarker theories from literature & collaborators

Revisit PANDA pipeline on HBNB 🗸

DoD: jupyter nbviewer link

Problem: a new kind of 'bad' electrode which adversely affects intermediate preprocessing methods

Revisit PANDA pipeline on HBNB 🗸

DoD: jupyter nbviewer link

Solution: apply bad electrode detection before any global denoising steps

Deliverables: Basic Exploratory Plots and Bokeh vs Plot.ly (Nitin + Vidur)

- Sparklines plot for EEG data
- Spectrograms plot for EEG data
- Bokeh vs Plotly

Progress

- Sparklines plot for EEG data.
 - DoD: https://nbviewer.jupyter.org/github/NeuroDataDesign/lemur-f17s18/blob/ma ster/docs/notebooks/nkumar14/Sparklines%20Exploration.ipynb
- Spectrogram plots for EEG data .
 - DoD:
 https://nbviewer.jupyter.org/github/NeuroDataDesign/eeg-panda-s17f18/blob/master/docs/notebooks/vidurkailash/Spectrogram%20Exploration.ipynb
- Bokeh vs Plotly.
 - DoD: Plots are done in each of above notebooks

Sparkline Plots for EEG Data. 🗸

- Voltage on Electrodes vs Time
- View Notebook

Spectrogram Plots for EEG Data. ✔

Plotly:

Frequency Spectrum, Channel 0

Spectrogram Plots for EEG Data Cont. ✓

Bokeh:

Bokeh vs Plotly 🗸

Bokeh

- Some more interactive objects can be created (eg textboxes)
 - Albeit less straightforward to interact with
- 3D visualizations not native to framework

Plotly

- Less interactive objects, easier to connect objects to main plots
- 3D visualizations ARE native and better looking/easier to work with
- Significantly heavier loading times compared to Bokeh
 - Especially subplots... crashed comp 4 times

Compromise; Bokeh for lighter plots, Plot.ly for 3D + heavier statistic plots

Deliverables: Exploratory Plots using MEDA package in R (Ronak, Yuka)

- Complete all plots shown here using EEG data.
- Implement two of the plots in Python.

Progress

- MEDA Plots in R.
 - DoD: <u>PDF</u> and <u>RMarkdown</u>.
- Heatmap of Correlation Matrix in Python.
 - DoD: <u>Jupyter</u>.
- Cumulative Variance Curve in Python (without elbow).
 - DoD: <u>Jupyter</u>.

Exploratory Plots in R. 🗸

DoD: Shown below - correlation matrix and cumulative variance

Plot Implementations in Python. 🗸

DoD: Jupyter

Goals for Next Week

- Process a small number of samples from BioBank and Kara ONE using EEG PANDA, report on quality.
- Finalize project decision.
- Draft project proposal
- Read more papers related to finalized project decision.