

GEOMETRÍA Capítulo 18

PRISMA Y CILINDRO

MOTIVATING | STRATEGY

Muchos objetos que conocemos tienen forma de prismas y cilindros, de allí la importancia de conocer sus propiedades que presentan así como las fórmulas para calcular las áreas de las superficies lateral y total como la del volumen, con lo cual podremos encontrar luego sus aplicaciones prácticas

PRISMA

Un prisma es un poliedro en el cual, dos de sus caras son regiones poligonales congruentes y paralelas denominadas bases, y el resto de caras son regiones paralelográmicas denominadas caras laterales.

HELICO | THEORY

Prisma recto.- Es el prisma cuyas del prisma aristas laterales son perpendiculares a las bases y sus caras laterales son regiones rectangulares.

1. Área de la superficie lateral.

2. Área de la superficie total.

PRISMA REGULAR:

Es un prisma recto cuyas bases son regiones poligonales regulares.

PRISMA CUADRANGULAR REGULAR

PRISMA HEXAGONAL ABCDEF: hexágono

PARALELEPÍPEDO RECTANGULAR, ORTOEDRO O RECTOEDRO.

$$d^2 = a^2 + b^2 + c^2$$

A = 2(ab + bc + ac)

A: Área de la superficie Total.

V: Volumen del sólido.

HEXAEDRO REGULAR

$$\mathbf{A} = 6a^2$$

CILINDRO CIRCULAR RECTO O DE REVOLUCIÓN

Se genera al girar una región rectangular una vuelta alrededor de un eje que contiene a un lado. Las bases son círculos y la altura mide igual que la

h: longitud de su altura

R: longitud del radio de la base

1. Área de la superficie lateral.

$$A_{SL} = 2\pi.r.h$$

2. Área de la superficie total.

$$\mathbf{A}_{\mathsf{ST}} = 2\pi.\mathbf{r}(\mathbf{r} + \mathbf{h})$$

$$V = \pi r^2 \cdot h$$

1. Calcule el área de la superficie lateral de un prisma triangular regular, si su arista lateral mide 4 u y su arista básica mide 2 u.

Piden: A_{SL}

$$A_{SL} = (2p_{base})h \qquad (h = 4)$$

Del gráfico:

$$2p_{base} = 2 + 2 + 2$$

$$2p_{\text{base}} = 6$$

Por teorema:

$$A_{SL} = (6)(4)$$

$$A_{SL} = 24 \,\mathrm{u^2}$$

2. El volumen del prisma triangular regular es $90\sqrt{3}~u^3$, y su altura mide 10 u. Halle la longitud de su arista básica.

- Piden: x
- Por teorema.

$$V = A_{\text{(base)}} \cdot h$$
 $A_{\text{(base)}} = \frac{x^2 \sqrt{3}}{4}$
 $90\sqrt{3} = \left(\frac{x^2 \sqrt{3}}{4}\right) \cdot 10$
 $36 = x^2$

$$6 u = x$$

3. Calcule el volumen del prisma recto mostrado.

Piden: V

$$V = A_{(base)} \cdot h \qquad (h = 6)$$

- ABC: Notable de 37° y AB = 3 53°
- Por

teorema
$$\begin{pmatrix} 3.4 \\ V = \begin{pmatrix} \frac{3.4}{2} \end{pmatrix}$$
. 6

$$V = (6).6$$

$$V = 36 \,\mathrm{u}^3$$

4. El área de la base de un cilindro circular recto es $9\pi \text{ u}^2$ y la longitud de la altura es igual a la longitud del diámetro de la base. Calcule el área de la superficie lateral del cilindro.

- Piden: A_{SL} ASL = 2π .r.h
- Recordand
 O. $S = \pi r^2$

- Por dato: $S = 9\pi u^2$ $\pi r^2 = 9\pi r \implies r = 3$
- Reemplazando al teorema. $A_{SL} = 2\pi(3)(6)$

 $A_{SL} = 36\pi \,\mathrm{u}^2$

5. Halle la longitud del radio de un cilindro circular recto si su volumen es $96\pi\,u^3$ y el área de su superficie lateral es $48\pi\,u^2$.

- Piden: r
- Por dato: $V = 96\pi u^3$ $\pi r^2 \cdot h = 96\pi$ $r^2 \cdot h = 96 \dots (1)$ $A_{SL} = 48\pi u^2$ $2\pi r \cdot h = 48\pi$ $r \cdot h = 24 \dots (2)$
- Reemplazando 2 en

6. El área de la superficie lateral de un cilindro circular recto es 20π m², y el área de la superficie total es 28π m². Halle la longitud del radio.

- Piden: r
- Por dato: $A_{SL} = 20\pi \text{ m}^2$

$$A_{ST} = 28\pi \text{ m}^2$$
 $A_{ST} = 2\pi \cdot r(r + h)$
 $A_{SL} + 2(\pi r^2) = 28\pi$
 $20\pi + 2(\pi r^2) = 28\pi$
 $2(\pi r^2) = 8\pi$
 $r^2 = 4$

7. Determine la cantidad de agua que se puede almacenar en un cilindro circular recto si tiene 4 m de diámetro y 6 m de altura.

Piden: V

$$V = \pi . r^2 . h$$
 $(h = 6)$

Por dato:

$$2r = 4$$
$$r = 2$$

Reemplazando al teorema.
 V = π.(2)²(6)

$$V = 24\pi \text{ m}^2$$

8. El diseño de una nueva cajita para fósforos. Calcule la longitud máxima que puede tener un fósforo para que pueda caber en dicha caja.

Piden: d

 $d^2 = a^2 + b^2 + c^2$

Del gráfico.

$$d^2 = 8^2 + 4^2 + 1^2$$

$$d^2 = 64 + 16 + 1$$

$$d^2 = 81$$