ANILLOS DE SCHUR Y MÓDULOS π -GLOBALMENTE SIMPLES.

Pedro Domínguez Wade¹, Jesús Barreto Molina²

¹Universidad de Matanzas, ²Universidad Pedagógica de Villa Clara, Cuba.

RESUMEN

Sea F un campo de números algebraicos y R su correspondiente anillo de enteros algebraicos con ideales maximales I_1,\dots,I_n . Sea además, el ideal fraccional $I=I_1\cdots I_n$. Entonces $K_m=R/I$ es un anillo semisimple de característico m. En el trabajo se demuestra que el anillo $M_n(R)$, de las $n\times n$ -matrices sobre R, es un anillo de Schur si y solo si hay un RG-retículo π -globalmente simple, donde π es el conjunto de los divisores primos de m.

ABSTRACT

Let F be a field of algebraic numbers and let R be the ring of algebraic integers of F. Assume that I_1,\ldots,I_n is a list of maximal ideals of R and $I=I_1\cdots I_n$ a fractional ideal. Then $K_m=R/I$ is a semisimple ring of characteristic m. In this paper we show that the ring $M_n(R)$ of the $n\times n$ -matrices over R, it is a Schur ring if and only if there is an RG-lattice π -globally simple, where π is the set of the prime divisors of m.

1.INTRODUCCIÓN.

El concepto del anillo de Schur fue introducido por Issai Schur en 1933, en unartículo donde Schur probó que un grupo cíclico de orden compuesto es un B-grupo según Burnside. Es decir, fue probado que cada extensión primitiva, de un grupo cíclico finito Z_n de orden compuesto n, por el grupo simétrico S_n es un grupo permutación doble transitivo.

Sea R un anillo conmutativo. Entonces el anillo matricial $M_n(R)$, de las $n \times n$ -matrices sobre R, es llamado anillo de Schur si existe un grupo finito $G \le GL_n(R)$ tal que el R -módulo generado por G coincida con $M_n(R)$, es decir, $\langle G \rangle_{_R} = M_n(R)$. (Ver [3]).

Esta claro que el problema principal en este caso es determinar para que n el anillo matricial $M_n(R)$ es de Schur. Para precisar más el problema utilizaremos el concepto de álgebra de Azumaya.

Para un anillo local R un álgebra de Azumaya es una R-álgebra A, libre y de rango finito r como R-módulo, para la cual la acción natural de A sobre si mismo por multiplicación por la izquierda y la acción del anillo opuesto A^0 por multiplicación por la derecha definen un producto tensorial isomorfo a un álgebra de $r \times r$ - matrices sobre R.

Visto de esta manera, el problema en cuestión se reduce a determinar cuáles de las álgebras de Azumaya sobre R son obtenibles como la imagen epimorfa del grupo anillo RG para algún grupo finito G.

En [3], por primera vez, Zalesskii y Van Oystayen abordan este problema para el caso en que $\it R$ es un anillo de enteros algebraicos de un campo aritmético $\it F$ de números algebraicos, utilizando como herramienta fundamental las representaciones modulares de grupos finitos, ellos en particular utilizan

las llamadas representaciones globalmente irreducibles de grupos finitos. Destaquemos que una representación de un grupo finito sobre un campo de números algebraicos se dice globalmente irreducible si es irreducible por reducción para cualquier número primo p (Ver [3]).

Sea G un grupo finito con campo raíz F, donde F es un campo de números álgebraicos, denotemos por R al anillo de los enteros álgebraicos de F. Asumamos que ϕ_1,\ldots,ϕ_n son valuaciones discretas sobre F asociadas a los ideales maximales I_1,\ldots,I_n de R. Entonces el anillo semilocal $R_m = \left\{a \in F : \phi_i(a) \leq 1, i = 1,\ldots,n\right\}$, con ideales maximales $\hat{I}_1,\ldots,\hat{I}_n$ tales que $I_i \subseteq \hat{I}_i$, es llamado anillo de las valuaciones discretas ϕ_i .

El conjunto $\hat{I}=\hat{I}_1\cdots\hat{I}_n$ es un ideal fraccional de R_m , el cual contiene al entero positivo $m=p_1\cdots p_n$, siendo $p_1\cdots p_n$ la factorización primaria de m. Luego, $K_m=\frac{R_m}{\hat{I}}$ es un anillo semisimple de característica m con ideales maximales

$$\left(\Pi_{i}\right)$$
 y campos residuales $k_{i}=\frac{K_{m}}{\left(\Pi_{i}\right)}$ de característica p_{i} .

Por tanto, si G es un grupo finito entonces se cumple: $K_mG = k_1G \oplus \cdots \oplus k_nG(1.0.1)$

De (1.0.1) se infiere que los K_mG - módulos simples son precisamente los k_iG -módulos simples. A la descomposición de K_mG como suma directa de campos, dada anteriormente,

le corresponde una expresión de la forma $1=f_1+\cdots+f_n$, para la identidad de K_m , donde los sumandos f_i son idempotentes primitivos y ortogonales dos a dos. Por ende, $k_iG=K_mGf_i$. Sea U un K_mG -módulo. Entonces tenemos:

$$U = Uf_1 \oplus \cdots \oplus Uf_n$$

donde los sumandos directos $U\!f_i$ son k_iG -módulos . El problema concreto que estudiaremos es el siguiente:

¿Cuáles son los puntos de contacto entre los anillos de Schur $M_n(R)$, donde R es un anillo de enteros algebraicos de un campo de números algebraicos F y las m-representaciones de los grupos finitos?

2.NOTACIONES Y DEFINICIONES.

A través del trabajo F denota a un campo de números algebraicos y R al correspondiente anillo de los enteros algebraicos de F. Aquí K_m denota un anillo semisimple de característica m con factorización primaria $p_1\cdots p_n$. Sus ideales maximales se denotan por $\left(\Pi_i\right)$ y a sus correspondientes campos residuales, de característica p_i , por $k_i = \frac{K_m}{\left(\Pi_i\right)}$. Denotemos por π al conjunto formado por todos los divisores primos de la característica m.

Sea G un grupo finito, entonces K_mG denota el anillo grupal de G. Sea A un anillo y G un grupo finito , entonces J(G) denota al radical del anillo grupal AG . El anillo de las $n \times n$ -matrices

sobre R se denota por $M_n(R)$. Sea φ una R -representación del grupo finito G. Entonces el R -módulo en $M_n(R)$ generado por $\varphi(G)$ es denotado por $\langle G \rangle_n$.

3.PRINCIPALES RESULTADOS.

Definición: Sea A un módulo finitamente generado sobre un anillo conmutativo Γ . Entonces A-módulo U se dice libre indescomponible si es libre como Γ -módulo y no puede ser expresado como una suma directa de dos A-módulos, libres como Γ -módulos.

Definición: Un K_mG -módulo S se dice π -cuasisimple si cada sumando Sf_i es un K_mG -módulo absolutamente simple.

Sea R un anillo principal, entonces un RG-módulo L es llamado RG-retículo si es finitamente generado y libre como un R-módulo.

Lema(1.1.1):

Sean G un grupo finito y φ una k -representación de G , siendo k un campo de característica p . Sea $\varphi(G)=\hat{G}$, entonces φ es absolutamente simple si y sólo si $\left\langle \hat{G} \right\rangle_{\scriptscriptstyle k} = M_{\scriptscriptstyle n}(k)$.

Demostración

Si φ es una representación absolutamente simple, entonces aplicando el clásico teorema de Burnside la implicación es inmediata. Recíprocamente, si \$

 $\langle \hat{G} \rangle_k = M_n(k)$ entonces el álgebra matricial correspondiente a φ en ${}^kG /_{J(G)}$ es precisamente $M_n(k)$ por tanto φ es absolutamente simple (Ver [2] proposition 9.2).

Teorema(1.1.2): Sean G un grupo finito y φ una K_m -representación de G. Sea $\varphi(G)=\hat{G}$, entonces $\left\langle \hat{G} \right\rangle_{_K} = M_{_R}(K_{_M})$ si y sólo si φ es π -cuasisimple.

Demostración

Tenemos:

$$\left\langle \hat{G} \right\rangle_{K_m} = \left\langle \hat{G} \right\rangle_{k_1} \oplus \cdots \oplus \left\langle \hat{G} \right\rangle_{k_{t_1}} = M_n(k_1) \oplus \cdots \oplus M_n(k_t)$$

Por tanto:

$$\left\langle \hat{G} \right\rangle_{k_{i1}} = M_n(k_i)$$
, para todo i .

Así, aplicando el lema anterior el resultado es inmediato. Recíprocamente si φ es π -cuasisimple, entonces $\left\langle \hat{G} \right\rangle_{k_{i1}} = M_{n} \big(k_{i} \big)$ para todo i, aplicando nuevamente el lema

$$\left\langle \hat{G} \right\rangle_{K_m} = \left\langle \hat{G} \right\rangle_{k_1} \oplus \cdots \oplus \left\langle \hat{G} \right\rangle_{k_{t_1}} = M_n(k_1) \oplus \cdots \oplus M_n(k_t) = M_n(k_m)$$

Así, concluimos la demostración del teorema.

Sean F un campo de números algebraicos y R el anillo de los enteros algebraicos

de F . Sea V un RG-módulo finitamente generado, siendo G un grupo finito. Admitamos que π es un conjunto finito de números primos p_i .

Denotemos por $\phi_i, i=1,\ldots,|\pi|$, a las valuaciones discretas sobre F asociadas a los ideales maximales $I_i, i=1,\ldots,t$, con $p_i\in I_i, i=1,\ldots,t$, de R. Sea además, R_m el anillo de las valuaciones discretas ϕ_i con ideal primo \hat{I} tal que $K_m = \frac{R_m}{\hat{I}}$. Puesto que $R\subseteq R_m$ se infiere que $\widetilde{V}=R_m\otimes_R V$ es un R_mG -retículo. Luego $\overline{\widetilde{V}}=\widetilde{V}/\widehat{IV}$ es la reducción de \widetilde{V} módulo π . La reducción módulo π está bien definida según el teorema de Brauer-Nesbitt (Ver [2] theorem (9.18)).

Si φ es la representación de G asociada a \widetilde{V} entonces se dice que la representación $\overline{\varphi}$ de G, asociada a $\overline{\widetilde{V}}$, es la reducción de φ módulo π .

Definición Un RG-módulo V se dice π -globalmente simple si $\overline{\widetilde{V}}$ es π -cuasisimple.

Lema(1.1.3):

Sean F un campo de números algebraicos con anillo de enteros algebraicos R y φ una valuación discreta sobre F asociada al ideal maximal I de R. Sea además, R_{ϕ} el anillo valuación con ideal maximal I_{ϕ} y campo residual $k = \frac{R_{\phi}}{I_{\phi}}$ de característica p. Asumamos que G es un grupo finito y V un RG-módulo. Sean el $R_{\phi}G$ -módulo $\widetilde{V} = R_m \otimes_R V$ y $\overline{\widetilde{V}}$ la reducción de \widetilde{V} módulo p. Sean φ y $\overline{\varphi}$ las representaciones asociadas a \widetilde{V} y $\overline{\widetilde{V}}$ respectivamente. Admitamos que $\varphi(G) = G_{\varphi}$ y $\overline{\varphi}(G) = \overline{G}$. Entonces $\left\langle G_{\varphi} \right\rangle_{R_{\phi}} = M_n \left(R_{\phi} \right)$ si y sólo si $\left\langle \overline{G} \right\rangle_k = M_n (k)$.

Demostración.

Puesto que $k=rac{R_\phi}{I_\phi}$ de $\left\langle G_\varphi \right\rangle_{R_\phi}=M_n\left(R_\phi\right)$ se infiere que $\left\langle \overline{G} \right\rangle_k=M_n(k)$. Recíprocamente, puesto que $rank_k\left\langle \overline{G} \right\rangle_k \leq rank_{R_\phi}\left\langle G_\varphi \right\rangle_{R_\phi}$ el resultado es inmediato.

Lema (1.1.4)

Sea R_m el anillo de las valuaciones discretas ϕ_i con ideal primo \hat{I} y anillo residual $K_m = \frac{R_m}{\hat{I}}$ semisimple de característica m y sea el grupo finito G tal que todo divisor primo de su orden es divisor de m. Asumamos que U es un R_mG -módulo con representación asociada φ tal que $\varphi(G) = G_m$. Entonces $\left\langle G_m \right\rangle_{K_m} = M_n(K_m)$ si y sólo si $\overline{\hat{U}}$ es un K_mG -módulo π -cuasisimple, siendo π el conjunto de los divisores primos de m.

Demostración

Sea $\,\overline{\!arphi}\,$ la representación de $\,G\,$ asociada a $\,\overline{\!\widetilde{\!U}}\,$.

Asumamos que $\ \overline{\varphi}(G)=\overline{G}$. Entonces de $\left\langle G_{m}\right\rangle _{K_{m}}=M_{n}(R_{m})$ se obtiene $\left\langle \overline{G}\right\rangle _{K}\ =M_{n}(K_{m})$.

Sea $K_m=k_1\oplus\cdots\oplus k_{|\pi|}$ la descomposición de K_m como suma directa de campos k_i de característica p_i . Luego tenemos:

$$\left\langle \overline{G} \right\rangle_{k_i} = M_{n} (k_i)$$
,para todo i .

Luego, aplicando el lema (1.1.1) se obtiene el resultado deseado. Razonando en sentido inverso la prueba de la otra implicación es inmediata. ■

Lema (1.1.5)

Sean R el anillo de los enteros algebraicos del campo de números algebraicos F y G un grupo finito. Asumamos que π es el conjunto de los divisores primos del orden de |G| y que V es un RG-módulo con representación asociada φ al que $\varphi(G)=\hat{G}$. Sea R_m el anillo de las valuaciones discretas ϕ_i asociadas a los ideales maximales I_i de R con $p_i \in I_i$ y $p_i \in \pi(i=1,\ldots,|\pi|)$. Sea φ_m la representación asociada a \tilde{V} con $\varphi_m(G)=G_m$. Entonces $\left\langle \hat{G} \right\rangle_{_{\!P}} = M_n(R)$ si y sólo si $\left\langle G_m \right\rangle_{_{\!R_m}} = M_n(R_m)$.

Demostración.

Si $\left\langle G_m \right\rangle_{R_m} = M_n \left(R_m \right)$, entonces combinando los lemas (1.1.3) y (1.1.4) se obtiene $\left\langle G_\phi \right\rangle_{R_\phi} = M_n \left(R_\phi \right)$ para toda valuación discreta ϕ_i asociada al ideal maximal I_i de R, contenedor del número primo p_i , el cual es un elemento de π .

Así, para cualquier otro valuación discreta ϕ asociada a un ideal maximal I de R contenedor de un número primo p no divisor del orden del grupo se cumple que $\left\langle G_{\varphi}\right\rangle_{R_{\phi}}=M_{n}\left(R_{\phi}\right)$ (Ver [2] theorem (9.19)). Por tanto se cumple $\left\langle \hat{G}\right\rangle_{R}=M_{n}\left(R\right)$ (Ver [3] theorem (1.4)). La demostración de la otra implicación es trivial.

Teorema (1.1.6)

Sean R el anillo de los enteros algebraicos del campo de números algebraicos F y G un grupo finito. Admitamos que V es un RG-módulo y que φ es su correspondiente representación. Sea además, $\varphi(G)=\hat{G}$. Entonces $\left\langle \hat{G}\right\rangle_R=M_n(R)$ si y sólo si V es un π -globalmente simple.

Demostración

Si $\langle \hat{G} \rangle_R = M_n(R)$ entonces combinando los lemas (1.1.4) y (1.1.5) se obtiene la demostración de esta implicación.

Recíprocamente, si V es π -cuasisimple entonces se cumple $\langle G_m \rangle_{R_m} = M_n(R_m)$ acorde al lema (1.1.4) .Luego, aplicando el lema (1.1.5) se obtiene el resultado deseado.

Lema (1.1.7) Sea el grupo $G \leq GL_{\alpha}(R)$ tal que $\left\langle G \right\rangle_{R} = M$ $\left(R \right)$ con $\alpha > 1$. Entonces existe un grupo $H_{m} \leq GL_{n\alpha}(R)$ tal que $\left\langle H_{m} \right\rangle_{R} = M_{n\alpha}(R)$.

Demostración Ver [3] lemma (3.3) ■

Ejemplo

Sea el anillo K_6 de característica 6 tal que $K_6=k_1\oplus k_2$, siendo k_1 un campo de característica 2 de dos elementos y k_2 un campo de característica 3 de 9 elementos. Admitamos que G es una extensión, no semidirecta (Ver [4]), de un 2-grupo de orden 16 con centro de orden 4, por el grupo simétrico S_3 . En este caso hay un K_6G -módulo 6-cuasisimple S, de rango dos, tal que $S=U_1\oplus U_2$, donde U_1 es un $k_1\overline{G}$ -módulo simple, con $\overline{G}\cong S_3$, y U_2 es un $k_2\overline{G}$ -módulo simple, siendo $\overline{G}\cong G$. Por tanto, si R contiene una raíz primitiva cuarta de la unidad entonces $M_2(R)$ es un anillo de Schur, según el último teorema,. Además, para $n\in 2N$ el anillo matricial $M_n(R)$ es también de Schur, según el lema (1.1.7).

Precisando mas en el ejemplo, observe que según lo anterior, $M_n(Z[i])$ es un anillo de Schur para $n \in 2N$.

REFERENCIAS

- [1] Chambert L.A. Algèbre Commutative, www.poly tecnique.fr.
- [2] Webb P. Finite Group Representations for Pure Mathematician, www.math.umn.edu/~webb/. (2004) .
- [3] Zalesskii A.E. and Van Oystaeyen F. Finite Groups over Arithmetical Rings and Globally Irreducible Representations, J. Algebra 215 (1999), 418-436.