模型设计说明文档

李施晨

1. 问题概述与本项目的概述

1.1 问题背景

随着投资产品种类的增多和投资者需求的多样化,为客户提供精准、个性化的基金推荐变得至关重要。有效的推荐系统不仅可以增强客户体验,还能提升资产管理公司的服务质量和市场竞争力。而在不同业务场景下,新用户的冷启动,大量且迅速的粗粒度推荐,和高定制化的精细推荐,都对我们的模型选型和数据处理提出了不同的要求.

1.2 项目目标

本项目旨在开发一个基金推荐系统,该系统能够根据客户的喜好数据、个人特征和基金的特征等信息,为客户推荐最适合他们的基金产品。通过利用先进的机器学习技术,比如基于内容的推荐、因子分解机(FM)模型和深度学习模型等,我们希望能够有效地捕捉用户特征和基金特征之间的复杂关系,从而提供准确的个性化基金推荐。

1.3 项目范围

项目的主要任务包括:

数据探查与预处理:分析并准备用于模型训练的数据集,包括数据探索、数据清洗、特征工程等。

模型开发与训练:选择适合的机器学习模型,本项目中根据不同的业务场景,选择合适的模型并对模型 进行训练。

模型评估与优化:利用离线指标评估模型的推荐效果,并根据评估结果进行必要的调整和优化,并设计可能的线上评估。

2. 数据探索与预处理

2.1 划分训练集和测试集

首先,在本项目的业务背景下,我们是对一个给定40个特征的客户推荐我们手上的基金,所以基金数据是背景知识,而不用计入训练/测试集的划分,而我们需要对客户数据进行划分.

为了满足模型的训练与评估,并且避免预测集数据对于模型训练的干扰,我们在最早的时候对数据集进行分割,使得训练集:测试集 = 4:1.

2.2 检查冗余特征, 并对日期型特征进行数值化处理

我们首先要理解数据本身的意义,删去多余的具有完全一致意义的特征,比如客户数据中的客户公司代码与客户公司名称——对应,所以可以删去其中一个. 而基金成立日期,如果简单地转化为one-hot型向量,则会丢失本身的时间意义,所以我们可以将其转化为成立至今的天数.

2.3 检查空缺值/重复值

对于基金数据和客户数据,我们都需要进行空缺值的检查与填充,这里我们首先要检查每一列特征中空缺值/重复值的占比,如果超过95%,那么要考虑删除这一特征,一方面这是删去了无法利用的信息,另一方面可以减少计算复杂度.

对于客户数据, 我们删去feature6, feature22, feature26, feature31, feature34, 对于基金数据, 我们删去 feature13.

2.4 检测并处理异常值

首先我们要对异常值进行检测,以客户和基金的前三个特征为例,我们可以使用柱状图和箱形图分析原始数据的分布情况. 基金特征的分布情况如下图所示,

客户特征的分布情况如下图所示,

可以看出原始数据,尤其是客户特征存在较多的异常值,所以我们考虑对异常值进行削顶处理, 得到更合理的分布

2.5 对数值型特征进行标准化处理

由于不同的数值型特征具有不同的尺度,如果不加处理,就会对模型计算造成较大的误差或是不必要的训练负担,所以我们考虑使用Z分数标准化处理它们,使得它们在保留本身信息的同时,归于0-1的共同尺度中.

2.6 对类别型特征做 One-Hot 编码

对于客户的客户公司名称、基金的基金公司名称等类别型特征,我们使用one-hot编码的形式把它们转换为 0/1数值向量,以便后续模型的使用.

2.7 构建目标值

对于客户数据的最后四位特征,第一/二/三/四选择基金,这是具有喜爱程度高低的特征,但没有时间上的先后顺序,所以我们使用评分的形式对它们进行转换,也就是分别转换成4/3/2/1分,同时对基金代码进行Multi-Hot编码,建立rating评分数据,每行都代表一个客户对各基金的评分,是前四位选择就填入对应分数,否则为0. 评分数据的前几行几列如下图所示.

客户编号	J0001	J0002	J0003	J0004	J0005	J0006
C9183	0	0	0	0	0	0
C11092	0	0	0	0	0	0
C6429	0	0	0	0	0	0
C0289	0	0	0	0	0	0
C2627	0	0	0	0	0	0

2.8 拼接数值型特征和幻化后的类别型特征

我们将基金数据和客户特征分别做前6步处理后,对数值型特征和幻化后的类别型特征进行拼接,获得了新的基金数据和客户数据. 其中客户数据抛去"第一/二/三/四选择基金"成为因变量X1,基金数据成为因变量X2,第7步所获得的评分数据矩阵则为应变量Y,我们所需要研究的模型F就是使得 F(X1, X2) = Y.

处理后的基金和客户数据, 前几行几列如下所示

基金代码	净值 feature1		feature2	feature3	feature4	
J0001	-0.7604817578221190	-1.2248949755519900	-1.1940177956134100	1.4121528388401200	0.3024164599200800	
J0002	-0.4724379367591800	-0.012127673025267000	-0.6741261574653360	1.101105958038330	-0.6280957244493970	
J0003	0.2241378084655830	1.2006396295014600	-1.0207205828973800	-1.5427925287768700	0.6125871880432390	
J0004	-0.6659501320073660	1.2006396295014600	1.2321431824109300	-1.3872690883759700	0.9227579161663980	
J0005	-0.5461704851351790	-1.2248949755519900	0.5389543315468360	-0.6096518863715040	0.6125871880432390	

客户编号	feature1	ture1 feature2		feature4	feature5	
C9183	-0.7020474919407670	-0.5180554237045360	-0.3246549354907490	-1.3534455054030000	1.547419974314510	
C11092	1.0185692868775500	0.49194862268404500	-0.8247734109412210	-1.3200215314982200	0.17346391994595300	
C6429	0.1582608974683930	-1.0952005930694400	1.4718618653215200	1.069792602693680	1.7188625397282900	
C0289	0.1582608974683930	1.213380084390180	0.7499643051830480	-1.3367335184506100	1.3702000706965400	
C2627	-0.7020474919407670	-1.2394868854106700	1.510131072913460	-1.1529016619743100	0.39011865167720600	
C8863	0.7317998237411670	0.49194862268404500	0.20880845614490000	-0.18360641873564000	-0.6280285024576310	

2.9 相关性分析

对于处理后的数据,我们还需要对它们的相关性进行检查,如下图所示,左侧为客户数据,右侧为基金数据, 所有非对角线元素均为蓝色,代表相关性系数较小,可以排除多重共线性的干扰.

3. 模型选型与分析

对于不同的业务场景以及计算资源, 我们需要选取不同的模型.

3.1 冷启动

对于刚刚注册的新用户,我们缺乏他们准确的特征信息,以及对基金的偏好选择信息,所以此时可以选择使用 content-based方法,为他们推荐与他们相似的用户偏好的信息. 相似系数结合由第二部分所获得的客户向量 之间的距离,并结合已知客户数据中的偏好评分计算. 基于用户相似度的推荐效果如下图所示,可见与实际的 top选择有所差别.

	Top_1	Top_2	Top_3	Top_4	Top_5	Top_6	Top_7	Top_8
C1936	J0144	J0122	J0022	J0018	J0118	J0155	J0076	J0063
C6495	J0145	J0029	J0009	J0185	J0054	J0111	J0070	J0183
C1721	J0151	J0009	J0136	J0097	J0110	J0135	J0167	J0172
C9121	J0075	J0039	J0022	J0154	J0169	J0064	J0193	J0016
C0361	J0168	J0126	J0144	J0131	J0107	J0065	J0027	J0071

3.2 粗粒度推荐

客户打开基金首页时,我们需要为客户推荐较大量的基金,这时可以采用比冷启动更准确的推荐模型,比如因子分解机,或者较轻量级的深度学习模型,一次性给客户快速推荐50款潜在基金.这一方面达到了一定精度,另一方面也可以节省计算资源,加快推荐速度

The architecture of FM.

因子分解机FM模型示意图

3.3 个性化定制推荐

对于客户打开特定类型基金等需要精细化推荐的场景, 我们可以调用更多的计算资源, 且由于精细化场景中基 金数量更少, 我们获得了更多的时间, 所以我们需要考虑使用更精准, 但更耗费计算资源、时间成本的模型, 比如深度学习模型,这中间较为轻量级的有DeepFM,而更大型、更准确的模型比如DIEN等,我们可以在拥有 更多客户购买/浏览基金历史信息的情况下使用.

DeepFM示意图

4. 模型评估

4.1 离线评估

除了从数学角度选取了基于连续值的 RMSE、MAE, 我们还选取了具有实际意义的基于离散值指标:

准确率(Accuracy):衡量模型正确推荐用户感兴趣的基金的比例。这样可以通过减少错误的推荐,确保用户看到的基金是他们可能真正感兴趣的,提高用户体验

召回率(Recall):衡量模型成功推荐用户感兴趣的基金的比例,考虑了模型漏掉的推荐。高召回率表示模型能够捕捉到更多用户的兴趣,确保不错过可能的好机会

4.2 线上评估

如果有机会将模型上线, 那么可以选取:

点击率(CTR): 衡量用户点击推荐内容的比例。CTR 衡量了客户对推荐内容的兴趣程度

转化率(Conversion Rate): 我们的目标是促使客户购买基金,所以转化率是一个关键指标,它衡量了成功推荐的比例

5 附录

具体数据和可执行代码请查看其他文件.