Project Air Quality

Domain Name: Environment Air quality

Abstract:

Contains the responses of a gas multisensor device deployed on the field in an Italian city. Hourly responses averages are recorded along with gas concentrations references from a certified analyzer.

Dataset: Air quality of an Italian city

(https://archive.ics.uci.edu/ml/datasets/Air+quality)

The dataset contains 9358 instances of hourly averaged responses from an array of 5 metal oxide chemical sensors embedded in an Air Quality Chemical Multisensor Device. The device was located on the field in a significantly polluted area, at road level, within an Italian city. Data were recorded from March 2004 to February 2005 (one year) representing the longest freely available recordings of on field deployed air quality chemical sensor devices responses. Ground Truth hourly averaged concentrations for CO, Non Metanic Hydrocarbons, Benzene, Total Nitrogen Oxides (NOx) and Nitrogen Dioxide (NO2) and were provided by a colocated reference certified analyzer.

Evidences of cross-sensitivities as well as both concept and sensor drifts are present as described in De Vito et al., Sens. And Act. B, Vol. 129,2,2008 (citation required) eventually affecting sensors concentration estimation capabilities. Missing values are tagged with -200 value.

Attributes of the dataset are:

SI No	Attribute	Description
0	Date	Date (DD/MM/YYYY)
1	Time	Time (HH.MM.SS)
2	CO(GT)	True hourly averaged concentration CO in mg/m^3 (reference analyzer)
3	PT08.S1(CO)	PT08.S1 (tin oxide) hourly averaged sensor response (nominally CO targeted)
4	NMHC(GT)	True hourly averaged overall Non Metanic HydroCarbons

		concentration in microg/m^3 (reference analyzer)
5	С6Н6(GT)	True hourly averaged Benzene concentration in microg/m^3 (reference analyzer)
6	PT08.S2(NMHC)	PT08.S2 (titania) hourly averaged sensor response (nominally NMHC targeted)
7	NOx(GT)	True hourly averaged NOx concentration in ppb (reference analyzer)
8	PT08.S3(NOx)	PT08.S3 (tungsten oxide) hourly averaged sensor response (nominally NOx targeted)
9	NO2(GT)	True hourly averaged NO2 concentration in microg/m^3 (reference analyzer)
10	PT08.S4(NO2)	PT08.S4 (tungsten oxide) hourly averaged sensor response (nominally NO2 targeted)
11	PT08.S5(O3)	PT08.S5 (indium oxide) hourly averaged sensor response (nominally O3 targeted)
12	Т	 Temperature in °C
13	RH	Relative Humidity (%)
14	АН	AH Absolute Humidity

Problem:

Humans are very sensitive to humidity, as the skin relies on the air to get rid of moisture. The process of sweating is your body's attempt to keep cool and maintain its current temperature. If the air is at 100-

percent relative humidity, sweat will not evaporate into the air. As a result, we feel much hotter than the actual temperature when the relative humidity is high. If the relative humidity is low, we can feel much cooler than the actual temperature because our sweat evaporates easily, cooling us off. For example, if the air temperature e is 75 degrees Fahrenheit (24 degrees Celsius) and the relative humidity is zero percent, the air temperature feels like 69 degrees Fahrenheit (21 C) to our bodies. If the air temperature is 75 degrees Fahrenheit (24 C) and the relative humidity is 100 percent, we feel like it's 80 degrees (27 C) out.

Objective:

So we will **predict the Relative Humidity** of a given point of time based on the all other attributes affecting the change in RH.

Content:

- 1) Load data
- 2) Basic statistics
- 3) Data Cleaning
- 4) Co-relation between variables
- 5) Influence of features on output-RH
- 6) Baseline Linear Regression
- 6a) Conclusion of Baseline Linear Regression
- 7) Feature Engineering and testing model
- 7a) Conclusion of Feature Engineering and testing
- 8) Decision Tree Regression
- 9) Random Forest Regression
- 10) Support Vector Machine
- 11) Conclusion

In [1]:

#Import packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from matplotlib.pylab import rcParams
import seaborn as sns

```
rcParams['figure.figsize']=10,8
```

1) Load data

<u>In [3]:</u>

linkcode

```
#define header
```

col=['DATE','TIME','CO_GT','PT08_S1_CO','NMHC_GT','C6H6_GT','PT08_S2_NMHC']

'NOX_GT', 'PT08_S3_NOX', 'NO2_GT', 'PT08_S4_N02', 'PT08_S5_03', 'T', 'RH', 'AH']

#define number of columns from csv
use=list(np.arange(len(col)))

#read the data from csv

df_air=pd.read_csv(local_path+'AirQualityUCI.csv', header=None, skiprows=1, n
ames=col, na_filter=True,

na_values=-200,usecols=use)

df_air.head()

Out[3]:

	DAT E	TIM E	CO _G T	PT08_ S1_CO	NMH C_GT	C6H 6_G T	PT08_S2 _NMHC	NO X_G T	PT08_S 3_NOX	NO 2_G T	PT08_S 4_NO2	PT08_ S5_O3	Т	R H	A H
0	3/10 /200 4	18: 00: 00	2.6	1360.0	150. 0	11.9	1046.0	166 .0	1056.0	113 .0	1692.0	1268.0	1 3 6	4 8 . 9	0. 75 78
1	3/10 /200 4	19: 00: 00	2.0	1292.0	112. 0	9.4	955.0	103 .0	1174.0	92. 0	1559.0	972.0	1 3	4 7 7	0. 72 55
2	3/10 /200 4	20: 00: 00	2.2	1402.0	88.0	9.0	939.0	131 .0	1140.0	114 .0	1555.0	1074.0	1 1 9	5 4 . 0	0. 75 02
3	3/10 /200 4	21: 00: 00	2.2	1376.0	80.0	9.2	948.0	172 .0	1092.0	122 .0	1584.0	1203.0	1 1	6 0	0. 78 67
4	3/10 /200 4	22: 00: 00	1.6	1272.0	51.0	6.5	836.0	131 .0	1205.0	116 .0	1490.0	1110.0	1	5 9	0. 78 88

						2	6	
						_		l

<u>In [4]:</u>

#See the end records of dataframe df_air.tail()

<u>Out[4]:</u>

	D A T E	TI M E	CO _G T	PT08_S 1_CO	NMH C_GT	C6H 6_G T	PT08_S2 _NMHC	NO X_G T	PT08_S 3_NOX	NO 2_G T	PT08_S 4_NO2	PT08_ S5_O3	Т	R H	A H
9 4 6 6	N a N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N a N	N a N	N a N
9 4 6 7	N a N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N a N	N a N	N a N
9 4 6 8	N a N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N a N	N a N	N a N
9 4 6 9	N a N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N a N	N a N	N a N
9 4 7 0	N a N	N a N	Na N	NaN	NaN	NaN	NaN	NaN	NaN						

df_air.dtypes

<u>Out[5]:</u>

DATE	object
TIME	object
CO_GT	float64
PT08_S1_C0	float64
NMHC_GT	float64
C6H6_GT	float64
PT08_S2_NMHC	float64
NOX_GT	float64
PT08_S3_NOX	float64
NO2_GT	float64
PT08_S4_N02	float64

 PT08_S5_03
 float64

 T
 float64

 RH
 float64

 AH
 float64

dtype: object

<u>In [6]:</u>

#drop end rows with NaN values
df_air.dropna(how='all',inplace=True)
#drop RH NAN rows
df_air.dropna(thresh=10,axis=0,inplace=True)

<u>In [7]:</u>

df_air.shape

Out[7]:

(8991, 15) 2) Basic statistics

<u>In [8]:</u>

df_air.describe()

Out[8]:

												<u>U</u>	<u>ut[8]:</u>
	CO_G T	PT08_ S1_C O	NMH C_GT	C6H6 _GT	PT08_S 2_NMH C	NOX_ GT	PT08_ S3_NO X	NO2_ GT	PT08_ S4_NO 2	PT08 _S5_ O3	Т	RH	АН
c o u n t	7344. 0000 00	8991. 00000 0	887.0 0000 0	8991. 0000 00	8991.00 0000	7396. 0000 00	8991.0 00000	7393. 0000 00	8991.0 00000	8991. 0000 00	8991. 0000 00	8991. 0000 00	8991. 0000 00
m e a n	2.129 711	1099. 83316 6	218.6 0766 6	10.08 3105	939.153 376	242.1 8929 2	835.49 3605	112.1 4513 7	1456.2 64598	1022. 9061 28	18.31 7829	49.23 4201	1.025 530
s t d	1.436 472	217.0 80037	206.6 1513 0	7.449 820	266.831 429	206.3 1200 7	256.81 7320	47.62 9141	346.20 6794	398.4 8428 8	8.832 116	17.31 6892	0.403 813
m i n	0.100 000	647.0 00000	7.000 000	0.100 000	383.000 000	2.000 000	322.00 0000	2.000 000	551.00 0000	221.0 0000 0	- 1.900 000	9.200 000	0.184 700
2 5 %	1.100 000	937.0 00000	66.00 0000	4.400 000	734.500 000	97.00 0000	658.00 0000	77.00 0000	1227.0 00000	731.5 0000 0	11.80 0000	35.80 0000	0.736 800

5 0 %	1.800 000	1063. 00000 0	145.0 0000 0	8.200 000	909.000 000	178.0 0000 0	806.00 0000	109.0 0000 0	1463.0 00000	963.0 0000 0	17.80 0000	49.60 0000	0.995 400
7 5 %	2.800 000	1231. 00000 0	297.0 0000 0	14.00 0000	1116.00 0000	321.0 0000 0	969.50 0000	140.0 0000 0	1674.0 00000	1273. 5000 00	24.40 0000	62.50 0000	1.313 700
m a x	11.90 0000	2040. 00000 0	1189. 0000 00	63.70 0000	2214.00 0000	1479. 0000 00	2683.0 00000	33					

3) Data Cleaning

<u>In [9]:</u>

#Split hour from time into new column

df_air['HOUR']=df_air['TIME'].apply(lambda x: int(x.split(':')[0]))

df_air.HOUR.head()

Out[9]:

Name: HOUR, dtype: int64
How many missing values now?

<u>In [10]:</u>

print('Count of missing values:\n',df_air.shape[0]-df_air.count())

Count of missing values:

DATE	0
TIME	0
CO_GT	1647
PT08_S1_C0	0
NMHC_GT	8104
C6H6_GT	0
PT08_S2_NMHC	0
NOX_GT	1595
PT08_S3_N0X	0
NO2_GT	1598
PT08_S4_N02	0
PT08_S5_03	0
T	0
RH	0
AH	0

```
HOUR____
dtype: int64
Fill missing value strategy
-CO_GT, NOX_GT, NO2_GT will be filled by monthly average of that particular hour
-NHHC GT will be dropped as it has 90% missing data
                                                                         <u>In [11]:</u>
df_air['DATE']=pd.to_datetime(df_air.DATE, format='%m/%d/%Y') #Format
date column
                                                                         <u>In [12]:</u>
# set the index as date
df_air.set_index('DATE',inplace=True)
                                                                         <u>In [13]:</u>
df_air['MONTH']=df_air.index.month #Create month column (Run once)
df_air.reset_index(inplace=True)
#df_air.head()
Drop column NMHC GT; it has 90% missing data
                                                                         In [14]:
df_air.drop('NMHC_GT',axis=1,inplace=True) #drop col
Fill NaN values with monthly average of particular hour
                                                                         <u>In [15]:</u>
df_air['CO_GT']=df_air['CO_GT'].fillna(df_air.groupby(['MONTH', 'HOUR'])['C
O_GT'].transform('mean'))
df_air['NOX_GT']=df_air['NOX_GT'].fillna(df_air.groupby(['MONTH','HOUR'])[
'NOX_GT'].transform('mean'))
df_air['NO2_GT']=df_air['NO2_GT'].fillna(df_air.groupby(['MONTH','HOUR'])[
'NO2_GT'].transform('mean'))
                                                                         In [16]:
print('Left out missing value:',df_air.shape[0]-df_air.count() )
<u>Left out missing value: DATE</u>
TIME 0
```

CO_GT	30
PT08_S1_C0	0
C6H6_GT	0
PT08_S2_NMHC	0
NOX_GT	261
PT08_S3_NOX	0
NO2_GT	261
PT08_S4_N02	
PT08_S5_03	0
T	0
RH	0
AH	0
HOUR	0
MONTH	0
dtype: int64	

Fill left out NaaN values with hourly average value

```
In [17]:
df_air['CO_GT']=df_air['CO_GT'].fillna(df_air.groupby(['HOUR'])['CO_GT'].t
ransform('mean'))
df_air['NOX_GT']=df_air['NOX_GT'].fillna(df_air.groupby(['HOUR'])['NOX_GT'].transform('mean'))
df_air['NO2_GT']=df_air['NO2_GT'].fillna(df_air.groupby(['HOUR'])['NO2_GT'].transform('mean'))
```

4) Understand co-relation between variables

<u>In [18]:</u>

```
#Use heatmap to see corelation between variables
sns.heatmap(df_air.corr(),annot=True,cmap='viridis')
plt.title('Heatmap of co-relation between variables',fontsize=16)
plt.show()
```


5) Try to understand degree of linearity between RH output and other input features

<u>In [19]:</u>

1000 1250 1500 PT08_S2_NMHC

6) Linear Regression

<u>In [20]:</u>

from sklearn.preprocessing import StandardScaler	#import
normalisation package	
<pre>from sklearn.model_selection import train_test_split</pre>	#import train
<u>test split</u>	
from sklearn.linear_model import LinearRegression	#import linear

<u>regression package</u>

from sklearn.metrics import mean_squared_error,mean_absolute_error
#import mean squared error and mean absolute error

Define Feature (X) and Target (y)

<u>In [21]:</u>

 $X=df_air[col_].drop('RH',1)$ #X-input features $y=df_air['RH']$ #y-input features

Normalize Feature variable

In [22]:

ss=StandardScaler() #initiatilise

<u>In [23]:</u>

X_std=ss.fit_transform(X) #apply stardardisation

Train test split

<u>In [24]:</u>

#split the data into train and test with test size and 30% and train size as 70%

X_train, X_test, y_train, y_test=train_test_split(X_std,y,test_size=0.3,
random_state=42)

<u>In [25]:</u>

print('Training data size:',X_train.shape)
print('Test data size:',X_test.shape)

Training data size: (6293, 13)
Test data size: (2698, 13)

Train the model

<u>In [26]:</u>

<u>lr=LinearRegression()</u>

lr_model=lr.fit(X_train,y_train) #fit the linear model on train
data

<u>In [27]:</u>

```
print('Intercept:',lr_model.intercept_)
print('----')
print('Slope:')
list(zip(X.columns.tolist(), lr_model.coef_))
<u>Intercept: 49.217630461</u>
----<u>----</u>
Slope:
                                                                      Out[27]:
[('CO_GT', -1.7367447259994688),
('PT08_S1_C0', 3.4037741865264262),
('C6H6_GT', -5.697492496373167),
('PT08_S2_NMHC', -1.1962342483257395),
<u>('NOX_GT', 3.5036899671340738)</u>,
('PT08_S3_NOX', -0.70018468936766876),
('N02_GT', -1.1080890551814175),
<u>('PT08_S4_N02', 6.8771350831151477)</u>,
('PT08_S5_03', -1.2881546341603678),
('T', -20.184910618985896),
('AH', 12.063387650671071),
('HOUR', -0.61784140965068213),
('MONTH', 1.3399283374747475)]
Prediction
                                                                      In [28]:
y_pred=lr_model.predict(X_test) #predict using the
<u>model</u>
rmse=np.sqrt(mean_squared_error(y_test,y_pred)) #calculate rmse
print('Baseline RMSE of model:',rmse)
Baseline RMSE of model: 6.01289437122
6a) Conclusion of baseline linear regression model:
This means that we can predict RH using all the features together with RMSE as 6.01. Let us call it as baseline
model.
7) Feature engineering and testing model:
Try with multiple feature combination and see if RMSE is improving
```

Build RMSE function

<u>In [29]:</u>

```
# write function to measure RMSE
def train_test_RMSE(feature):
<u>X=df_air[feature]</u>
  y=df_air['RH']
X_std_one=ss.fit_transform(X)
X_trainR, X_testR, y_trainR, y_testR=train_test_split(X_std_one, y, test_size=0)
.3, random_state=42)
lr_model_one=lr.fit(X_trainR,y_trainR)
y_predR=lr_model_one.predict(X_testR)
 return np.sqrt(mean_squared_error(y_testR,y_predR))
                                                             In [30]:
col_.remove('RH') #remove output
                                                             <u>In [31]:</u>
print('List of features:',col_) #print list of features
List of features: ['CO_GT', 'PT08_S1_CO', 'C6H6_GT', 'PT08_S2_NMHC',
'NOX_GT', 'PT08_S3_NOX', 'NO2_GT', 'PT08_S4_NO2', 'PT08_S5_03', 'T', 'AH',
'HOUR', 'MONTH']
                                                             <u>In [32]:</u>
print('RMSE with Features as',col_[0:2],train_test_RMSE(col_[0:2]))
print('----')
print('RMSE with Features as',col_[0:6],train_test_RMSE(col_[0:6]))
print('----')
print('RMSE with Features as',col_[0:9],train_test_RMSE(col_[0:9]))
print('----')
print('RMSE with Features as',col_[1:5],train_test_RMSE(col_[2:9]))
print('----')
print('RMSE with Features as'.col_[0:11].train_test_RMSE(col_[0:11]))
print('----')
print('RMSE with Features as',col_[1:12],train_test_RMSE(col_[1:12]))
print('----')
print('RMSE with Features as',col_[0:13],train_test_RMSE(col_[0:13]))
RMSE with Features as ['CO_GT', 'PT08_S1_CO'] 17.1072232499
-----
RMSE with Features as ['CO_GT', 'PT08_S1_CO', 'C6H6_GT', 'PT08_S2_NMHC',
'NOX_GT', 'PT08_S3_NOX'] 14.7879244799
```

RMSE with Features as ['CO_GT', 'PT08_S1_CO', 'C6H6_GT', 'PT08_S2_NMHC', 'NOX_GT', 'PT08_S3_NOX', 'NO2_GT', 'PT08_S4_NO2', 'PT08_S5_03']

12.875243451

RMSE with Features as ['PT08_S1_C0', 'C6H6_GT', 'PT08_S2_NMHC', 'NOX_GT'] 13.3641023495

RMSE with Features as ['CO_GT', 'PT08_S1_CO', 'C6H6_GT', 'PT08_S2_NMHC', 'NOX_GT', 'PT08_S3_NOX', 'NO2_GT', 'PT08_S4_NO2', 'PT08_S5_03', 'T', 'AH'] 6.09653798867

RMSE with Features as ['PT08_S1_C0', 'C6H6_GT', 'PT08_S2_NMHC', 'NOX_GT', 'PT08_S3_NOX', 'NO2_GT', 'PT08_S4_NO2', 'PT08_S5_03', 'T', 'AH', 'HOUR'] 6.07110993628

RMSE with Features as ['CO_GT', 'PT08_S1_CO', 'C6H6_GT', 'PT08_S2_NMHC', 'NOX_GT', 'PT08_S3_NOX', 'NO2_GT', 'PT08_S4_NO2', 'PT08_S5_03', 'T', 'AH', 'HOUR', 'MONTH'] 6.01289437122

7a) Conclusion of Feature Engineering and testing:

After this experiment it looks that baseline model is performing best

8) Decision Tree Regression

Let us try to apply Decision tree regression technique and see if any improvement happens

In [33]:

<u>from sklearn.tree import DecisionTreeRegressor #Decision tree</u>
<u>regression model</u>

<u>from sklearn.cross_validation import cross_val_score #import cross_validation score package</u>

from sklearn.model_selection import GridSearchCV #import grid
search cv

dt_one_req=DecisionTreeRegressor()

/opt/conda/lib/python3.6/site-packages/sklearn/cross_validation.py:41:

DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

dt_model=dt_one_req.fit(X_train,y_train) #fit the model y_pred_dtone=dt_model.predict(X_test) #predict RMSE of RH prediction In [35]: #calculate RMSE print('RMSE of Decision Tree Regression:',np.sqrt(mean_squared_error(y_pred_dtone,y_test))) RMSE of Decision Tree Regression: 1.35369384553 Conclusion:(Decision Tree Regression) When decision tree regression has been applied we observe significant improvement of RMSE value to 1.36 9) Random Forest Regression Let us apply Random Forest regression and measure RMSE In [36]: from sklearn.ensemble import RandomForestRegressor #import random forest regressor rf_reg=RandomForestRegressor() Fit the RF model and predict <u>In [37]:</u> rf_model=rf_reg.fit(X_train,y_train) #fit model y_pred_rf=rf_model.predict(X_test) #predict RMSE of RH prediction <u>In [38]:</u> #Calculate RMSE print('RMSE of predicted RH in RF

model:',np.sqrt(mean_squared_error(y_test,y_pred_rf)))

RMSE of predicted RH in RF model: 0.871016145245

linkcode

```
Lets try to improve on baseline RF model
```

#define rf parameters

<u>rf_params={'n_estimators':[10,20],'max_depth':[8,10],'max_leaf_nodes':[70,90]}</u>

#define rf grid search

rf_grid=GridSearchCV(rf_reg,rf_params,cv=10)

<u>In [40]:</u>

rf_model_two=rf_grid.fit(X_train,y_train) #fit the model wtih all grid
parameters

/opt/conda/lib/python3.6/site-

packages/sklearn/model_selection/_search.py:718: DeprecationWarning: The default of the `iid` parameter will change from True to False in version 0.22 and will be removed in 0.24. This will change numeric results when test-set sizes are unequal.

<u>DeprecationWarning)</u>

<u>In [41]:</u>

linkcode

y_pred_rf_two=rf_model_two.predict(X_test) #predict

<u>In [42]:</u>

#Calculate RMSE

print('RMSE using RF grid search
method',np.sqrt(mean_squared_error(y_test,y_pred_rf_two)))

RMSE using RF grid search method 1.99486892421

Conclusion: Random Forest

Applying Random Forest regression the predicted **RMSE** has improved to **0.86**, the default RF algorithm is giving better RMSE value than grid search applied different parameters.

10) Support Vector Machine

<u>In [43]:</u>

from sklearn.svm import SVR #import support vector regressor sv_reg=SVR()

In [44]:

sv_model=sv_req.fit(X_train,y_train) #train the model

/opt/conda/lib/python3.6/site-packages/sklearn/svm/base.py:194:
FutureWarning: The default value of gamma will change from 'auto' to
'scale' in version 0.22 to account better for unscaled features. Set gamma
explicitly to 'auto' or 'scale' to avoid this warning.

"avoid this warning.", FutureWarning)

<u>In [45]:</u>

y_pred_sv=sv_model.predict(X_test) #predict

<u>In [46]:</u>

#Calculate RMSE of SVR

print('RMSE of SVR model:',np.sqrt(mean_squared_error(y_test,y_pred_sv)))

RMSE of SVR model: 3.89916669053

linkcode

Conclusion:

For designing the model for predicting RH, I have applied Linear Regression, Decision Tree, Random Forest, Support Vector Machine. When tested on test data below are RMSE obtained from different algorithms: