Álgebra Booleada

Circuitos Digitais I Prof. Fernando Passold

Teoremas (iniciais)

Portas AND:

Portas OR:

Teoremas Multivariáveis

Únicas: presentes como material consulta em provas.

(15b)

 $\overline{x} + xy = \overline{x} + y$

Teoremas Multivariáveis

(11)
$$x + (y + z) = (x + y) + z = x + y + z$$

(12) $x(yz) = (xy)z = xyz$

(13a) $x(y + z) = xy + xz$
(13b) $(w + x)(y + z) = wy + xy + wz + xz$

(14) $x + xy = x$

Associativas
Distributivas

Teoremas: (1) $x \cdot 0 = 0$ (2) $x \cdot 1 = x$ (4) $x \cdot \overline{x} = 0$ (5) x + 0 = x(6) x + 1 = 1(8) $x + \overline{x} = 1$ (14) x + xy = x(15a) $x + \overline{x}y = x + y$ (15b) $\overline{x} + xy = \overline{x} + y$

$$(14) x + xy = x$$

$$(15a) x + \overline{xy} = x + y$$

$$(15b) \overline{x} + xy = \overline{x} + y$$

Ou: x + xy = x(1 + y) $= x \cdot 1$ = x

Exemplos de uso:

• Ex_1:
$$y = A \overline{B}D + A \overline{B}\overline{D}$$

Solução:

Notamos termos em comum na expressão (A):

Teorema (13): Distribuitivo): colocamos A em evidência:

$$y = A \, \overline{B} \left(D + \overline{D} \right)$$

Usando Teorema (8): $x + \overline{x} = 1$, obtemos:

$$y = A\overline{B} \cdot 1$$
$$y = A\overline{B}$$

Teoremas:

(1)
$$x \cdot 0 = 0$$

(2)
$$x \cdot 1 = x$$

$$(4) x \cdot \overline{x} = 0$$

(5)
$$x + 0 = x$$

(6)
$$x + 1 = 1$$

(8)
$$x + \overline{x} = 1$$

(14)
$$x + xy = x$$

(15a)
$$x + \bar{x}y = x + y$$

$$(15b) \, \overline{x} + xy = \overline{x} + y$$

Exemplos de uso:

•
$$Ex_2: z = (\overline{A} + B)(A + B)$$

• Solução: z = B

Teoremas:

(1)
$$x \cdot 0 = 0$$

(2)
$$x \cdot 1 = x$$

$$(4) x \cdot \overline{x} = 0$$

(5)
$$x + 0 = x$$

(6)
$$x + 1 = 1$$

(8)
$$x + \overline{x} = 1$$

(14)
$$x + xy = x$$

(15a)
$$x + \bar{x} y = x + y$$

$$(15b) \, \overline{x} + xy = \overline{x} + y$$

Exemplos de uso:

•
$$Ex_2: z = (\overline{A} + B)(A + B)$$

Solução:

Usando teorema 13: distributiva:

$$z = \overline{A} \cdot A + \overline{A} \cdot B + B \cdot A + B \cdot B$$

Usando teorema (4): $\overline{A} \cdot A = 0$ e teorema (3): $B \cdot B = B$:

$$z = 0 + \overline{A} \cdot B + B \cdot A + B = \overline{AB} + AB + B$$

Usando teoremas (2) e (6):

$$z = B(\overline{A} + A + 1)$$

Finalmente:

$$z = B$$

Teoremas:

(1)
$$x \cdot 0 = 0$$

(2)
$$x \cdot 1 = x$$

$$(4) x \cdot \overline{x} = 0$$

(5)
$$x + 0 = x$$

(6)
$$x + 1 = 1$$

(8)
$$x + \bar{x} = 1$$

(14)
$$x + xy = x$$

(15a)
$$x + \bar{x} y = x + y$$

$$(15b) \, \overline{x} + xy = \overline{x} + y$$

Problemas

Simplifique:

1)
$$y = A\overline{C} + AB\overline{C}$$

2)
$$y = \overline{A} \overline{B} C \overline{D} + \overline{A} \overline{B} \overline{C} \overline{D}$$

3)
$$y = \overline{A}D + ABD$$

Teoremas de Demorgan's

Associados com portas NOR e NAND!

(16)
$$(\overline{x+y}) = \overline{x} \cdot \overline{y}$$

NOR

 $x \to \overline{y}$
 $\overline{x} \cdot \overline{y} = \overline{x+y}$
 $\overline{x} \cdot \overline{y} = \overline{x+y}$

(17)
$$(\overline{x \cdot y}) = \overline{x} + \overline{y}$$

NAND

 $x \to \overline{y}$
 $\overline{x} + \overline{y} = \overline{xy}$
 $\overline{x} + \overline{y} = \overline{xy}$

Exemplo

• Simplifique a expressão (ou o circuito):

$$z = \overline{(\overline{A} + C) \cdot (B + \overline{D})}$$

• Solução: $z = A \overline{C} + \overline{B}D$

Teoremas:

(1)
$$x \cdot 0 = 0$$

(2)
$$x \cdot 1 = x$$

$$(4) x \cdot \overline{x} = 0$$

(5)
$$x + 0 = x$$

(6)
$$x + 1 = 1$$

(8)
$$x + \overline{x} = 1$$

(14)
$$x + xy = x$$

(15a)
$$x + \overline{x} y = x + y$$

$$(15b) \, \overline{x} + xy = \overline{x} + y$$

$$(16) (\overline{x+y}) = \overline{x} \cdot \overline{y}$$

$$17) \left(\overline{x \cdot y} \right) = \overline{x} + \overline{y}$$

Exemplo

Teorema (17)

• Simplifique a expressão (ou o circuito):

$$z = \overline{(\overline{A} + C) \cdot (B + \overline{D})}$$

Solução:

$$z = \left(\overline{\overline{A}} + \overline{C}\right) + \left(\overline{B} + \overline{D}\right)$$

$$z = \left(\overline{\overline{A}} \cdot \overline{C}\right) + \left(\overline{B} \cdot \overline{\overline{D}}\right)$$
Teorema (16)
$$z = A \overline{C} + \overline{B} D$$

Teoremas:

(1)
$$x \cdot 0 = 0$$

(2)
$$x \cdot 1 = x$$

$$(4) x \cdot \overline{x} = 0$$

(5)
$$x + 0 = x$$

(6)
$$x + 1 = 1$$

(8)
$$x + \overline{x} = 1$$

(14)
$$x + xy = x$$

(15a)
$$x + \overline{x} y = x + y$$

$$(15b) \, \overline{x} + xy = \overline{x} + y$$

$$(16) \left(\overline{x + y} \right) = \overline{x} \cdot \overline{y}$$

$$(\overline{x} \cdot \overline{y}) = \overline{x} + \overline{y}$$

Exemplos

Example 1

$$z = \overline{A} + \overline{B} \cdot C$$

$$= \overline{A} \cdot (\overline{B} \cdot C)$$

$$= \overline{A} \cdot (\overline{B} + \overline{C})$$

$$= \overline{A} \cdot (B + \overline{C})$$

Example 2

$$\omega = \overline{(A + BC) \cdot (D + EF)}$$

$$= (\overline{A + BC}) + (\overline{D + EF})$$

$$= (\overline{A} \cdot \overline{BC}) + (\overline{D} \cdot \overline{EF})$$

$$= [\overline{A} \cdot (\overline{B} + \overline{C})] + [\overline{D} \cdot (\overline{E} + \overline{F})]$$

$$= \overline{AB} + \overline{AC} + \overline{DE} + \overline{DF}$$

Teoremas:

(1)
$$x \cdot 0 = 0$$

(2)
$$x \cdot 1 = x$$

$$(4) x \cdot \overline{x} = 0$$

(5)
$$x + 0 = x$$

(6)
$$x + 1 = 1$$

(8)
$$x + \overline{x} = 1$$

(14)
$$x + xy = x$$

(15a)
$$x + \bar{x} y = x + y$$

$$(15b) \, \overline{x} + xy = \overline{x} + y$$

$$(16) (\overline{x+y}) = \overline{x} \cdot \overline{y}$$

$$(17) (\overline{x \cdot y}) = \overline{x} + \overline{y}$$

12

Note:

$$\overline{x + y + z} = \overline{x} \cdot \overline{y} \cdot \overline{z}$$

$$\overline{x \cdot y \cdot z} = \overline{x} \cdot \overline{y} \cdot \overline{z}$$

Implicações do Teoremas de Demorgan's

Universalidade das portas NOR e NAND:

(16)
$$(\overline{x+y}) = \overline{x} \cdot \overline{y}$$

NOR

 $x \to \overline{y} = \overline{x+y}$
 $x \to \overline{y} = \overline{x+y}$
 $x \to \overline{y} = \overline{x+y}$

(17)
$$(\overline{x \cdot y}) = \overline{x} + \overline{y}$$

NAND

 $x \to \overline{y}$
 $\overline{x} + \overline{y} = \overline{xy}$
 $\overline{x} + \overline{y} = \overline{xy}$

Implicações do Teoremas de Demorgan's

• Universalidade das portas NAND: (16) $(\overline{x+y}) = \overline{x} \cdot \overline{y}$

Implicações do Teoremas de Demorgan's

• Universalidade das portas NOR: (17) $(\overline{x \cdot y}) = \overline{x} + \overline{y}$

 Comprove usando álgebra de Boole que o circuito abaixo pode ser realizado usando-se apenas 01 (um) CI 74LS00 (4 x NAND(2)):

Circuitos Digitais I Prof. Fernando Passold

• Comprove usando álgebra de Boole que o circuito abaixo pode ser realizado usando-se apenas 01 (um) CI 74LS00 (4 x NAND(2)):

 Comprove usando álgebra de Boole que o circuito abaixo pode ser realizado usando-se apenas 01 (um) CI 74LS02 (4 x NOR(2)):

Circuitos Digitais I Prof. Fernando Passold

 Comprove usando álgebra de Boole que o circuito abaixo pode ser realizado usando-se apenas 01 (um) CI 74LS02 (4 x NOR(2)):

Símbolos Alternativos

"Ativo ALTO" x "Ativo BAIXO"

Note: MESMA Porta

21

 \equiv NAND

NAND

Saída vai a nível lógico BAIXO apenas quando TODAS as entradas estiverem em nível lógico ALTO.

AB	AND	NAND
0 0	0	1
0 1	0	1
10	0	1
11	1	0

"Ativo ALTO" x "Ativo BAIXO"

Note: MESMA Porta

22

Saída vai a nível lógico ALTO apenas quando QUALQUER entradas estiver em nível lógico ALTO.

AB	OR
0 0	0
0 1	1
10	1
1 1	1

Deduza as expressões (e/ou tabela verdade para F1 e F2):

Solução:

$$F1 = A + B\overline{D} + \overline{B}C + \overline{B}D$$

$$F2 = \overline{A}B + D$$

Deduza as expressões (e/ou tabela verdade para F1 e F2):

Solução:

$$P1 = \overline{B}C$$

 $P2 = \overline{A}B$
 $P3 = A + P1 = A + \overline{B}C$
 $P4 = P2 \oplus D = P2\overline{D} + \overline{P2}D$
 $P4 = \overline{A}B\overline{D} + (\overline{A}B)D$
 $P4 = \overline{A}B\overline{D} + (\overline{A} + \overline{B})D$
 $P4 = \overline{A}B\overline{D} + AD + \overline{B}D$
 $P4 = \overline{A}B\overline{D} + AD + \overline{B}D$
 $F1 = P3 + P4$
 $F1 = A + \overline{B}C + \overline{A}B\overline{D} + AD + \overline{B}D$
 $F1 = A(1 + D) + \overline{B}C + \overline{A}B\overline{D} + \overline{B}D$
 $F1 = A + \overline{A}B\overline{D} + \overline{B}C + \overline{B}D$
 $F1 = A + B\overline{D} + \overline{B}C + \overline{B}D$
 $F2 = P2 + D = \overline{A}B + D$

• Levante a tabela verdade de F:

Ref	ABC	P1	P2	F
0	000			
1	001			
2	010			
3	0 1 1			
4	100			
5	101			
6	110			
7	111			

• Levante a tabela verdade de F:

Solução:

Ref	ABC	P1	P2	F
0	000	0	1	0
1	0 0 1	0	0	0
2	010	1	0	0
3	0 1 1	1	1	1
4	100	1	1	0
5	101	1	0	0
6	110	0	0	0
7	111	0	1	0

• Levante a tabela verdade de F:

Solução:

Ref	ABC	P1	P2	F
0	000	0	1	0
1	0 0(1	0	0	0
2	010	1	0	0
3	01:1	1	1	1
4	100	1	1	0
5	101	1	0	0
6	110	0	0	0
7	111	0	1	0

27

P1: porta XOR: Detector de Desigualdade (A,B)

P2: porta NXOR: Igualdades (B,C)

Escreva a equação para x e levante a tabela verdade do circuito abaixo

• Escreva a equação para x e levante a tabela verdade do circuito abaixo

Circuitos Digitais I Prof. Fernando Passold

Identifique sob que condições a lâmpada de advertência mostrada no circuito abaixo é ativada?

- Note que este circuito faz parte do sistema de monitoramento do motor de um avião, usando sensores que operam da seguinte forma:
 - Sensor R = 0 apenas quando Velocidade < 4800 RPM
 - Sensor P = 0 apenas quando Pressão < 220 psi
 - Sensor T = 0 apenas quando Temperatura $< 200^{o}F$