CS: 2240 / Hunduritten Homework #3

\$CLTION 1.4

#8. R(x) => x is a rabbit

H(x) => x hops.

Domain => all animal.

a) Yi(R(z) > HCx1)

L. J

Every Rubbit is hops.

All animals are tubbit and hops

C) TX(RU) > HUI)

There exists an animal such that,

If it is a rabbit, then it ADPS.

(RCXI) (Hiou)

d)]x (R(x) / H(x))

Some rabbits are hops

10. ((2)=) " X has a cost".

D(x)=) " X has a dorg"

F(x)=) " X has a ferret"

a dog, and a ferret.

= x (Ca) / Da) / Fa))

b) All Stulent in your dust have a cots, dolls, or a Ferret.

VX (Ca) V Da) V Fa)

() Some 3 tudent in your class has a Cot and a ferret, but not a dost.

== (Ca) AFa) A7Da)

d) No student in your closes has a cost, a dog, and a ferret

O Yx 7(Ca) A Da) A Fai)

e) For Rach of the three animaly cuts, doil 4, and ferrets,
there is a student in your class who has this animal as a Pet.

(3xCa) / (3xDa) / (3xFa)

18 . P(2) = \(-2, -1, 0, 1, 2 \)?
Write Own each of these proposition.

a) $\exists x P(x)$ former proximal proximal

P(-2) VP(-1) VP(0) VP(1) VP(2).

b) Yx P(x)

P(-2) 1 P(-1) 1 P(0) 1 P(1) 1 P(2)

C) = x7 pa)

"or "not 5-2,-1,0,1,2}

-7 P(-2) V7P(-1) V7P(0) V7P(1) V7P(2)

d) ya 7 P(x)

7P(-2) 17P(-1) 17P(0) 17P(1) 17P(2)

e) 772 P(X)

- (P(-2) V P(-1) V P(0) V P(1) VP(2))

f) it is P(x)

7 (PC-211/PC-1) A PO (A PCI) A PCI)

#34. Express "negation".
Using "quantiflers".

a) ix= drivery
P(1) => " 2 obey the speed limit"

. Some drivers do-not obey the speed limit

JA7 PCX) : D All drivers

: Negation =)

= \\ \(\tap{\alpha} \). (\(\tap{\alpha} \))

D x= Swedish movies

D x= Swedish movies

D Pa = "x is serious"

· logical expression: Yx Pa)

Negation: 7 Yz Pa) = (327 Pa)

There is a smedish movie that is not serious

C) No one can keep a secret.

x=> person
P(x)=) * x can keep secret ") Yx'7P(x)

Megation: 7Yz7Pay= = = 7(7P(x))

= []x P(x)]

: There is someone who can keep secret.

Everyone in this class has a good attitude.

Section 1.5

#8 Q(X,Y); Student I has been a contestent on auiz show Y. I all student at School / y all quit show on TV.

a) There is a student at your school

who has been a contestant on a TV quit

(Y,X)DYEXE ...

b) No student at your school has ever been a contestant on a TV quiz show.

(YIX) QYESET :

C) there is a student at your school who hus been a contestant on Jeopordy * (and) on wheel of Fortune

== (Q(x, Jeopardy) / Q(x, wheel + Fortune))

d) Every TV quiz show has had a Student from Your School as a Contestant.

(YIS) DEEYY:

e) At least two student from Your School have been antertants on Jew Pardy

 $(\lambda_1 + \lambda_2)$

#20. domain Consist "All interery"

a) The product of two Megative integer is Positive &, y

 $\forall x \forall y ((x(0)) \land (y(0)) \rightarrow (x \cdot y > 0))$

two int. negative int. Product Positive

b) The average of Two positive integer is positive.

 $\forall x \forall y ((x > 0) \land (y > 0) \rightarrow \frac{x + y}{2} > 0)$

two integer positive integer Average positive

() The difference of two hegative integer is not necessarily negative.

7 4x 4 y (ix(0) x (x0) - (x-y(0))

not two negative difference negative

d) The absolute value of the Sum of two integers does not exceed the sum of the absolute values of the 4e integers.

Y2 Y4 (1x+y1 ≤ 121+141)

tho interers, dissolute values

doesn't

absolute vulve two integers

or V2VY(|x+Y1 > b4+171)

Section 1.5

#32. Express negation.
all negation symbols immediately precede predicates.

a) FERYYYXT(X, Y,Z)

VZ BY BZ TT(I,Y,Z)

6) JEZY P(X, X) V YZ HYQ (L, Y)

YZYYTP(X) V ZZZY TQ(ZY)

() IX BY (Q(X,Y) HQ(Y,X))

Yz Yy (Q (X,Y) (-) -Q (Y,X))

(MX) Y FE SEYA (P

=>YXXYZ (¬T(X,Y,t) /¬Q(X,Y))

Question for Homework

\$ 400 tion 1.4 \$ 10-e,

\$ 400 tion 1.9 32-C

70-C, L