

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/006429

International filing date: 25 March 2005 (25.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2004-255976
Filing date: 02 September 2004 (02.09.2004)

Date of receipt at the International Bureau: 28 April 2005 (28.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日
Date of Application: 2004年 9月 2日

出願番号
Application Number: 特願2004-255976

パリ条約による外国への出願
に用いる優先権の主張の基礎
となる出願の国コードと出願
番号
The country code and number
of your priority application,
to be used for filing abroad
under the Paris Convention, is

出願人
Applicant(s): 五十嵐 一衛
株式会社 フューエンス

2005年 4月13日

特許庁長官
Commissioner,
Japan Patent Office

小川

【書類名】 特許願
【整理番号】 P1023424
【提出日】 平成16年 9月 2日
【あて先】 特許庁長官 小川 洋 殿
【国際特許分類】 C12Q 1/26
【発明者】
 【住所又は居所】 千葉県千葉市中央区東千葉 3-3-2
 【氏名】 五十嵐 一衛
【発明者】
 【住所又は居所】 千葉県千葉市中央区矢作町 497-49
 【氏名】 上田 志朗
【発明者】
 【住所又は居所】 千葉県千葉市中央区東千葉 3-11-5
 【氏名】 佐伯 直勝
【発明者】
 【住所又は居所】 千葉県千葉市美浜区幸町 1-1-1-1805
 【氏名】 柏木 敬子
【発明者】
 【住所又は居所】 千葉県千葉市若葉区愛生町 57-5 ワンダーランド 207号
 【氏名】 富取 秀行
【特許出願人】
 【住所又は居所】 千葉県千葉市中央区東千葉 3-3-2
 【氏名又は名称】 五十嵐 一衛
【特許出願人】
 【識別番号】 302064588
 【氏名又は名称】 株式会社 フューエンス
【代理人】
 【識別番号】 100072051
 【弁理士】
 【氏名又は名称】 杉村 興作
【選任した代理人】
 【識別番号】 100100125
 【弁理士】
 【氏名又は名称】 高見 和明
【選任した代理人】
 【識別番号】 100101096
 【弁理士】
 【氏名又は名称】 徳永 博
【選任した代理人】
 【識別番号】 100107227
 【弁理士】
 【氏名又は名称】 藤谷 史朗
【選任した代理人】
 【識別番号】 100114292
 【弁理士】
 【氏名又は名称】 来間 清志

【選任した代理人】

【識別番号】 100119530

【弁理士】

【氏名又は名称】 富田 和幸

【電話番号】 03-3581-7282

【連絡先】 担当

【先の出願に基づく優先権主張】

【出願番号】 特願2004- 89063

【出願日】 平成16年 3月 25日

【手数料の表示】

【予納台帳番号】 074997

【納付金額】 16,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0216261

【書類名】特許請求の範囲

【請求項 1】

被験者から生体サンプルを採取し、該サンプル中におけるポリアミンの含有量又は該ポリアミンから生成されるアルデヒド体の含有量、若しくは該サンプル中におけるポリアミンオキシダーゼ活性又はポリアミンオキシダーゼの蛋白質量を測定し、得られた測定値を指標として脳卒中・無症候性脳梗塞を診断する方法。

【請求項 2】

前記ポリアミンがスペルミン、スペルミジンまたはブトレッシンである、請求項 1 記載の方法。

【請求項 3】

ポリアミンから生成される前記アルデヒド体がアクロレインである、請求項 1 記載の方法。

【請求項 4】

被験者から生体サンプルを採取し、該サンプル中におけるポリアミンの含有量又は該ポリアミンから生成されるアルデヒド体の含有量、若しくは該サンプル中におけるポリアミンオキシダーゼ活性又はポリアミンオキシダーゼの蛋白質量を測定し、得られた測定値を指標として脳卒中・無症候性脳梗塞の患者をスクリーニングする方法。

【請求項 5】

前記ポリアミンがスペルミン、スペルミジンまたはブトレッシンである、請求項 4 記載の方法。

【請求項 6】

ポリアミンから生成される前記アルデヒド体がアクロレインである、請求項 4 記載の方法。

【請求項 7】

被験者から採取した生体サンプルにおける前記ポリアミンオキシダーゼ活性又は前記ポリアミンオキシダーゼの蛋白質量の統計学的に有意な変化が、該被験者において撮影した頭部診断画像で脳卒中・無症候性脳梗塞の兆候ないしは発症に特徴的な像が認められる前に起こることを特徴とする、請求項 1 から請求項 3 のいずれか一つ請求項記載の方法。

【請求項 8】

被験者から採取した生体サンプルにおける前記ポリアミンオキシダーゼ活性又は前記ポリアミンオキシダーゼの蛋白質量の統計学的に有意な変化が、該被験者において撮影した頭部診断画像で脳卒中・無症候性脳梗塞の兆候ないしは発症に特徴的な像が認められる前に起こることを特徴とする、請求項 4 から請求項 6 のいずれか一つ請求項記載の方法。

【書類名】明細書

【発明の名称】ポリアミン、アクロレインの含有量又はポリアミンオキシダーゼ活性又はその蛋白質量を指標とした脳卒中・無症候性脳梗塞の診断方法

【技術分野】

【0001】

本発明は、ポリアミン、アクロレインの含有量又はポリアミンオキシダーゼ活性又はその蛋白質量を指標とした脳卒中・無症候性脳梗塞の診断方法に関する。更に本発明は、ポリアミン、アクロレインの含有量又はポリアミンオキシダーゼ活性又はその蛋白質量を指標として脳卒中・無症候性脳梗塞の患者をスクリーニングする方法に関する。

【背景技術】

【0002】

脳血管疾患は悪性新生物、心疾患に次ぐ死因であり、その年間死亡数は腎疾患の10倍近く、また罹患後の後遺症は麻痺・運動不能を伴うなど、日常生活に極めて多大な支障を来たす。脳血管疾患の大半を占める脳卒中は早期発見・早期治療が困難な疾患である。また自覚症状を伴わない無症候性脳梗塞は、画像診断により偶然に発見されるケースが大半であり、血液・尿検査等に利用される診断マーカーが存在しないのが現状である。その為、画像診断などの高価な機器を必要としない、簡易で、確度の高い診断方法の開発が望まれている。

【0003】

ところでポリアミンは生体内において普遍的に見出される生体アミンであり、スペルミン、スペルミジン、スペルミンなどに代表される。そしてそれらのポリアミンは細胞内に高濃度(mMオーダー)に存在し、生体内において核酸と相互作用することにより細胞増殖因子として作用する。一方、ポリアミンはその代謝過程で、細胞にとって毒性の高いアクロレイン($\text{CH}_2=\text{CH}-\text{CHO}$)を産生する。このアクロレインは細胞内ではアルデヒドデヒドロゲナーゼにより無毒化されるが、細胞外に漏出すると強い毒性を示す。

【0004】

なお、慢性腎不全患者の血漿中にはポリアミンが蓄積していることから、ポリアミンは尿毒素の原因物質の一つであろうとされている。そのうえ、このポリアミンを透析により十分に取り除くことは困難であるといわれている。そこでポリアミンから誘導される毒性の本体を明らかにすることは、尿毒症のより有効な治療薬の開発につながる。

【0005】

そのような観点から本発明者らは、ポリアミンよりアクロレインを生成する経路において作用しているポリアミンオキシダーゼを、アミノグアニジンを用いて阻害することを試みた。そしてその結果ポリアミンは毒性を示さなくなることが確認されている(特開2002-281999号公報)。組織破壊を伴う疾患においては、細胞内より遊離したポリアミンが血漿中のポリアミンオキシダーゼにより酸化的脱アミノ化を受けてアクロレインが大量に产生し、生成したアクロレインが毒性に関与している可能性が極めて高い。

【0006】

【特許文献1】特開2002-281999号公報

【発明の開示】

【発明が解決しようとする課題】

【0007】

上記で述べたように腎疾患における尿毒症に、ポリアミンの酸化分解により発生したアクロレインが関与していることは知られていた。しかしその他の疾患、例えば脳卒中などの脳血管疾患においてアクロレインが関与しているかどうかの知見は不足していた。なお、脳卒中とは脳血管の病的過程により急激に起こる局所精神・神経症状を表すものであり、その原因疾患として重要なものは脳梗塞や脳内出血などが挙げられる。よって本発明の課題は、脳卒中などの脳血管疾患において生体内のポリアミンあるいはアクロレインの含量が量的に変化するか否かを検討することである。脳卒中患者においてアクロレインの量に変化が見られるならば、アクロレインを指標にして脳卒中・無症候性脳梗塞を診断す

ることが可能となる。またポリアミンからアクロレインが生成する過程には血漿中のポリアミンオキシダーゼが関与しているので、脳卒中患者においてポリアミンオキシダーゼの活性及びその蛋白質量が変化しているか否かを検討することも本発明の課題である。

【課題を解決するための手段】

【0008】

本発明者等は、被験者の血漿中に含まれるアクロレイン含量、ポリアミン含量およびポリアミンオキシダーゼ活性を測定し、脳梗塞・脳内出血の患者群と、健常者群あるいは他の脳疾患の患者群との間に差があるか比較を行なった。その結果、脳梗塞・脳内出血の患者群においては、健常者群あるいは他の脳疾患の患者群と比較して、血漿アクロレイン含量とポリアミンオキシダーゼ活性が明らかに高いことが認められた。その後被験者において磁気共鳴画像診断法（MRI）で頭部断層画像を撮影する事により、血漿アクロレイン含量とポリアミンオキシダーゼ活性が高い被験者では梗塞がある事を確認し、本発明を完成させるに至った。

【0009】

すなわち本発明は、脳卒中・無症候性脳梗塞の発見・予知のための診断方法を提供するものである。本発明によれば血漿中のアクロレイン量、ポリアミンオキシダーゼ活性又はポリアミンオキシダーゼの蛋白質量、ポリアミン量を測定する事により、脳卒中・無症候性脳梗塞の予知、発見をすることができる。

【発明の効果】

【0010】

本発明は、血漿中のアクロレイン含有量、ポリアミン含有量、あるいはポリアミンオキシダーゼ活性又はポリアミンオキシダーゼの蛋白質量の測定を行なうことにより、脳卒中・無症候性脳梗塞の診断及び、脳卒中・無症候性脳梗塞患者のスクリーニングを行なう方法を提供するものである。本発明の知見は、ポリアミンオキシダーゼを介する酸化的脱アミノ化により生体内ポリアミンからアクロレインを生成する経路を阻害することにより、脳卒中・無症候性脳梗塞を予防したり、病状の進歩を阻止することができる可能性を示唆するものである。更に本発明の知見は、ポリアミンオキシダーゼを阻害する化合物を探索することにより、脳卒中・無症候性脳梗塞の治療薬を得ることができると可能性をも示唆するものであり、種々の応用が可能であると考えられる。

【発明を実施するための最良の形態】

【0011】

本発明において、ポリアミンの酸化分解により発生するアクロレインが脳梗塞・脳内出血の患者の血清中に多く存在する事を見出した。また脳梗塞・脳内出血の発見・予知に、血漿中のアクロレイン含量、ポリアミン含量およびポリアミンオキシダーゼ活性の上昇を用いることができる事を実証した。

【0012】

よって本発明は、被験者から生体サンプルを採取し、該サンプル中におけるポリアミンの含有量又は該ポリアミンから生成されるアルデヒド体の含有量、若しくは該サンプル中におけるポリアミンオキシダーゼ活性又はポリアミンオキシダーゼの蛋白質量を測定し、得られた測定値を指標として脳卒中・無症候性脳梗塞を診断する方法である。また本発明は、被験者から生体サンプルを採取し、該サンプル中におけるポリアミンの含有量又は該ポリアミンから生成されるアルデヒド体の含有量、若しくは該サンプル中におけるポリアミンオキシダーゼ活性又はポリアミンオキシダーゼの蛋白質量を測定し、得られた測定値を指標として脳卒中・無症候性脳梗塞の患者をスクリーニングする方法である。

【0013】

本発明においては被験者から、まず測定に使用する生体サンプルを採取する。本発明において使用される生体サンプルは、好ましくは下記の実施例において使用している血漿である。しかし他の生体サンプルも適宜使用することが可能であり、その様な他の生体サンプルとして、例えば尿、唾液、脳脊髄液や骨髄液などを挙げることが可能である。

【0014】

なお本願明細書においてポリアミンとは、第一級アミノ基を二つ以上もつ直鎖の脂肪族炭化水素を意味するものである。知られている生体ポリアミンには、ブトレッシン、カダベリン、スペルミジン、スペルミン、1,3ジアミノプロパン、カルジン、ホモスペルミジン、3-アミノプロビルカダベリン、ノルスペルミン、テルモスペルミン、カルドベンタミンなどがあるが、それらに限定されるものではない。なお本発明において好適なポリアミンはブトレッシン、スペルミジン、スペルミンである。

【0015】

上記のポリアミンは酸化、アセチル化、アミノ基転移、カルバモイル化による代謝を受けるが、ポリアミンオキシダーゼはポリアミンの酸化に関与する酵素である。なお本願明細書においてポリアミンオキシダーゼとは、ジアミンまたはポリアミンを良い基質として酸化し、過酸化水素を発生する酵素を意味するものである。ポリアミンは、ポリアミンオキシダーゼによる酸化的脱アミノ化を受け、その結果アクロレインなどのアルデヒド体が生成する。なお本発明において好適なアルデヒド体はアクロレインであるが、それに限定されるものではない。

【0016】

血漿中のアクロレイン含量は、アクロレイン付加アミノ酸であるFDP-リジン（N-ホルミルビペリジノ・リジン）の含有量を測定する事により同定することができる。FDP-リジンの含有量は、例えばACR-LYSINEADDUCT ELISA SYSTEM（日本油脂株式会社）を使用し、添付のマニュアルに従って測定することができる。なおアクロレイン含量はFDP-リジン以外の誘導体の形で測定することも可能である。またアクロレイン含量を直接測定することも可能であり、かかる方法は例えはAlarcon らの報告（Alarcon R. A. (1968) Anal. Chem. 40, 1704-1708）に記載されている。しかしアクロレインは他の分子との反応性が高いために、遊離の形で血中に存在する量が少ないという問題がある。そこで、FDP-リジンの形で測定することが簡便であることも併せて考えると、本発明において、FDP-リジンの形でアクロレインを測定することは好適な態様である。

【0017】

具体的には、患者血清及び標準液を抗原固定化プレートに $50\mu l/well$ ずつ分注し、さらに一次反応抗体液を同量加える。室温で30分静置した後、液を取り除き、洗浄液で洗浄後、二次反応抗体液を $100\mu l/well$ 分注する。室温で一時間静置後、洗浄液で洗浄し、発色液を加え室温で15分静置することで発色させる。プレートリーダーにより、450nmの吸光度測定をすることにより、血漿中アクロレイン量は、患者血清 $1ml$ 当たりのFDP-リジン含有量 (nmol/ml plasma) として表示される。

【0018】

ポリアミンオキシダーゼの活性測定は、例えは下記の実施例において示す様に、10mM-Tris塩酸塩 (pH7.5)、0.2mMの基質（スペルミン、スペルミジン及びブトレッシン）及び0.03mlの患者血清の反応混合液 $0.15ml$ を37°Cにて48時間インキュベーションすることにより行なうことができる。0.02mlの反応混合液に最終濃度5%のトリクロロ酢酸 (TCA) を加え、遠心分離する。得られた上清の一部をポリアミンのアッセイに使用する。アミンオキシダーゼ活性は患者血清 $1ml$ 当たりのスペルミン分解により生成したスペルミジン量 (nmol/ml plasma/48h) で表示することができる。

【0019】

ポリアミンオキシダーゼの酵素活性測定方法は種々の報告において記載されており、そのような文献として、Sharminらの報告（Sharmin et al., (2001) Biochem. Biophys Res. Commun. 282, 228-235）、Sakataらの報告（Sakata et al., (2003) Biochem. Biophys Res. Commun. 305, 143-149）、Igarashiらの報告（Igarashi et al., (1986) J. Bacteriol. 166, 128-134）などを挙げることができる。かかる報告の記載を基にして当業者は適宜改変を行うことにより、ポリアミンオキシダーゼの酵素活性を測定することができる。

【0020】

またポリアミンオキシダーゼの蛋白質量は、例えはポリアミンオキシダーゼに対して特

異的な抗体を用いた酵素免疫測定法（ELISA）、ウエスタンブロッティング解析や免疫沈降法などによって測定することができる。かかる手法は本技術分野において公知の一般的な手法であり、当業者は適切な条件を適宜設定して上記の手法により酵素の蛋白質量を測定する事ができる。なおこれらの測定を行う際に使用されるポリアミンオキシダーゼに対する抗体は、モノクローナル抗体でもポリクローナル抗体でも良い。

【0021】

ポリアミンオキシダーゼに対するポリクローナル抗体は、例えば通常のペプチド抗体作製の手法を用いてウサギをポリアミンオキシダーゼのペプチド断片で免疫することにより、得ることができる。ペプチド抗体が作製された事は、ペプチドを投与されたウサギから採血をしてその抗体価を測定することにより、抗体が十分な力価に達しているか検定を行うことによって確認する事ができる。ペプチド抗体作製の手法は種々の実験書などにも記載されており、当業者に良く知られているので、それらに記載を基に種々の改変を行ってポリアミンオキシダーゼの抗体を得ることができる。

【0022】

試料に含まれるポリアミンの含有量は、高速液体クロマトグラフィー（HPLC）により測定することができる。例えばTOSOから市販されているポリアミンカラムを使用した場合には、ポリアミン類（ブトレッシン、スペルミジン、スペルミン）のHPLC上のリテンションタイム（保持時間）は各々7分、12分、25分である。ポリアミン量は患者血清 1 ml 当たりに含まれるブトレッシン、スペルミジン及びスペルミン量 (nmol/ml plasma) で表示することができる。なおその他の通常のアミノ酸カラムも、適宜使用することができる。

【0023】

下記の実施例においては、被験者の同意の下、磁気共鳴画像診断法（MRI）により、頭部断層画像を得て梗塞の有無を検討した。その結果下記の実施例に示すように、健常者群において高い値を示した被験者において、脳梗塞の所見が認められた。

【0024】

よって、脳卒中の患者において血漿中のアクロレイン含量、ポリアミン含量あるいはポリアミンオキシダーゼ活性は健常者と比較して高いという本発明の知見を利用して、上記の測定値を指標として、脳卒中・無症候性脳梗塞を診断することができる。また本発明において得られた知見を利用して、上記の測定値を指標として脳卒中・無症候性脳梗塞の患者をスクリーニングすることもできる。例えば健常者群の上記の指標となる測定値の平均値と分散を統計学的に解析し、上記測定値における正常値の上限を設定する。その値を基にして、より高い値を示す被験者は脳卒中・無症候性脳梗塞である可能性が高いと診断することも可能であろう。

【0025】

また本発明の知見は、血漿中のポリアミンオキシダーゼ活性を阻害することにより生体におけるアクロレインの生成を抑制することにより、脳卒中の予防や病状の進歩を阻止することができる可能性も示唆するものである。よって本発明は、脳卒中の治療に関する新たな途を開く可能性を提供するものである。

【0026】

更に、脳卒中の治療に有効である可能性がある候補化合物を実験動物に投与し、該化合物が該実験動物において血漿中のポリアミンオキシダーゼを阻害する活性を有するかを測定することにより、脳卒中の治療に有効である新たな薬剤を探索できると考えられる。よって本発明は、脳卒中の治療に有効な新たな薬剤を探索するための新たな途をも提供するものである。

【実施例】

【0027】

次に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。

【0028】

実施例：脳梗塞患者に於ける血漿アクロレイン含有量の比較検討

脳疾患患者における血漿アクロレイン含有量を検討した。健常人、脳梗塞・脳内出血群、その他脳疾患群の3群に分けて、採取した血液のアクロレイン含有量を比較した。

【0029】

血漿中アクロレイン量は、アクロレイン付加アミノ酸であるFDP-リジン（N-ホルミルビペリジノ・リジン）の含有量を測定する事で同定した。ACR-LYSINE ADDUCTELISA SYSTEM(日本油脂株式会社)を用い、添付のマニュアルに従って測定した。患者血清及び標準液を抗原固定化プレートに $50\mu l/well$ ずつ分注し、更に一次反応抗体液を同量加えた。室温で30分静置後、液を取り除き、洗浄液で洗浄し、発色液を加え室温で15分静置することで発色させた。プレートリーダーにより、450nmの吸光度測定をした。血漿中アクロレイン量は患者血清1ml当たりのFDP-リジン含有量(nmol/ml plasma)で表示した。

【0030】

図1に示されるように血漿アクロレイン量を反映するFDP-リジン量は、上記の3群の中で脳梗塞・脳内出血患者が最も高く、他の群に比べ有意に上昇が見られた。また慢性腎不全患者の血漿中アクロレイン量と比較しても、脳梗塞患者のFDP-リジン量は、腎不全患者と同等レベルまで上昇している事が判明した。

【0031】

実施例2：脳梗塞患者における血漿アミノキシダーゼ活性の比較検討

実施例1で用いた患者血漿中のポリアミノキシダーゼ活性を測定した。その結果を図2に示す。血漿中のポリアミノキシダーゼの活性は、10mM-Tris塩酸塩(pH7.5)、0.2mMの基質(スペルミン、スペルミジン及びブトレスシン)及び0.03mlの患者血清の反応混合液0.15mlを37°Cにて48時間インキュベーションすることにより測定した。0.02mlの反応混合液に最終濃度5%のトリクロロ酢酸(TCA)を加え、遠心分離した。得られた上清の一部をポリアミンのアッセイに使用した。アミノキシダーゼ活性は患者血清1ml当たりの、スペルミン分解により生成したスペルミジン量(nmol/ml plasma/48h)で表示した。

【0032】

脳梗塞・脳内出血群の血漿中のポリアミノキシダーゼ活性は、健常者群及びその他脳疾患群と比較して有意に上昇していた。この結果は、実施例1で比較検討した血漿中アクロレイン量と相関性を有していた。

【0033】

実施例3：磁気共鳴画像診断法(MRI)による頭部断面画像解析

被験者の許可・同意を得て、MRIにより頭部の断面画像解析を行い、脳梗塞の有無を調べた。健常者(図3A)、脳梗塞患者(図3B)、および病名の診断はついていないが血漿中のアクロレイン量とポリアミノキシダーゼ活性が極めて高い値を示した被験者(図3C)におけるMRI断層写真を示す。図3Cに示されるように、血漿中のアクロレイン量とポリアミノキシダーゼ活性が高かった患者では、両側前頭・側頭頂および基底核に多発性の梗塞が認められた。また脳の萎縮および動脈硬化も認められた。

【0034】

実施例4：急性期脳梗塞患者における頭部断面画像、血漿ポリアミノキシダーゼ活性およびアクロレイン含有量の変化についての比較検討

急性期脳梗塞患者1名について、発症当日(1日)、2日目および一週間後(7日)における頭部断面画像(MRI、CT)の変化と、それに伴う血漿ポリアミノキシダーゼ活性およびアクロレイン含有量の変化を調べた。頭部断面画像の写真を図4に示す。発症当日では、T2強調MRIおよびCTに明瞭な梗塞像は見られなかった。一方発症当日の血漿ポリアミノキシダーゼ活性とFDP-Lys量は、それぞれ6.6nmol SPD增加/ml血漿と18.4nmol/ml血漿であった。この結果から、血漿ポリアミノキシダーゼ活性は健常者群の2倍程度であり、有意に高値であることが確認された。発症2日目の頭部断面画像(MRI)と一週間後の頭部断面画像(CT)では、左側頭葉に明瞭な梗塞像が認められた。発症一週間後の血漿ポリアミノキシダーゼ活性とFDP-Lys量は、それぞれ7.2nmol SPD增加/ml血漿と23.0nmol/ml血漿であった。よって血漿ポリアミノキシダーゼ活性の上昇と共に、血漿アクロレイン含有量の有意な増加も認められた。以上に示されるように、急性期梗塞患者においては血

漿ポリアミンオキシダーゼ活性の上昇が、MRIもしくはCTにおける梗塞像の出現に先立つて起こることが確認された。

【産業上の利用可能性】

【0035】

血漿中のアクロレイン含有量、ポリアミン含有量、あるいはポリアミンオキシダーゼ活性又はポリアミンオキシダーゼ蛋白質量の測定を行なうことからなる本発明の方法は、脳卒中・無症候性脳梗塞の診断、及び、脳卒中・無症候性脳梗塞患者のスクリーニングに有用である。また本発明の知見を利用して、ポリアミンオキシダーゼを介する酸化的脱アミノ化により生体内ポリアミンからアクロレインを生成する経路を阻害することにより、脳卒中・無症候性脳梗塞を予防したり、病状の進捗を阻止することができる可能性がある。更に本発明の知見を利用して、ポリアミンオキシダーゼを阻害する化合物を探索することにより、脳卒中・無症候性脳梗塞の治療薬を得ることができる可能性がある。

【図面の簡単な説明】

【0036】

【図1】図1は、血漿中のFDP-リジン量を、脳梗塞・脳内出血群と、健常者群及びその他脳疾患群の間で比較したグラフである。

【図2】図2は、血漿中のポリアミンオキシダーゼ活性を、脳梗塞・脳内出血群と、健常者群及びその他脳疾患群の間で比較したグラフである。

【図3】図3は、MRIにより頭部の断面画像解析を行った結果を示す写真である。

【図4】図4は、頭部の断面画像解析の経時変化をMRIとCTにより検討した写真である。

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

発症後経過日数	1日		2日		7日	
	(梗塞-)	(梗塞+)	(梗塞+)	(梗塞+)	(梗塞+)	(梗塞+)
	MRI	CT	MRI	CT	MRI	CT

【書類名】要約書

【要約】

【課題】脳卒中・無症候性脳梗塞の診断及び、脳卒中・無症候性脳梗塞患者のスクリーニングを行なうための簡単な方法を提供することが、本発明の課題である。

【解決手段】本発明により、血漿中のアクロレイン含有量、ポリアミン含有量、あるいはポリアミンオキシダーゼ活性又はポリアミンオキシダーゼ蛋白質量の測定を行なうことからなる、脳卒中・無症候性脳梗塞の診断及び、脳卒中・無症候性脳梗塞患者のスクリーニングを行なう方法が提供された。本発明の知見は、ポリアミンオキシダーゼを阻害することにより脳卒中・無症候性脳梗塞を予防したり、病状の進歩を阻止することができる可能性や、ポリアミンオキシダーゼを阻害する化合物を探索することにより、脳卒中・無症候性脳梗塞の治療薬を得ることができる可能性を示唆するものである。

【選択図】図1

出願人履歴

302064588

20040325

住所変更

東京都渋谷区広尾1-11-2 A I O S 広尾ビル703号

株式会社 フューエンス

501127833

20010329

新規登録

千葉県千葉市中央区東千葉3-3-2

五十嵐 一衛

501127833

20050324

住所変更

千葉県市川市市川南3-12 C-1102

五十嵐 一衛

10/580, 834

特許協力条約

PCT

特許性に関する国際予備報告（特許協力条約第二章）

REC'D 17 FEB 2006
WIPO
PCT

(法第 12 条、法施行規則第 56 条)

{PCT36 条及び PCT 規則 70}

出願人又は代理人 の登録記号 05814W0	今後の手続きについては、様式 PCT/IPEA/416 を参照すること。	
国際出願番号 PCT/JP2005/006429	国際出願日 (日.月.年) 25.03.2005	優先日 (日.月.年) 25.03.2004
国際特許分類 (IPC) Int.Cl. G01N33/50(2006.01), C12Q1/26(2006.01)		
出願人 (氏名又は名称) 株式会社 フューエンス		

1. この報告書は、PCT35 条に基づきこの国際予備審査機関で作成された国際予備審査報告である。
法施行規則第 57 条 (PCT36 条) の規定に従い送付する。

2. この国際予備審査報告は、この表紙を含めて全部で 4 ページからなる。

3. この報告には次の附属物件も添付されている。

a. 附屬書類は全部で _____ ページである。

補正されて、この報告の基礎とされた及び／又はこの国際予備審査機関が認めた訂正を含む明細書、請求の範囲及び／又は図面の用紙 (PCT 規則 70.16 及び実施細則第 607 号参照)

第 I 欄 4. 及び補充欄に示したように、出願時における国際出願の開示の範囲を超えた補正を含むものとこの国際予備審査機関が認定した差替え用紙

b. 電子媒体は全部で _____ (電子媒体の種類、数を示す)。
配列表に関する補充欄に示すように、電子形式による配列表又は配列表に関連するテーブルを含む。
(実施細則第 802 号参照)

4. この国際予備審査報告は、次の内容を含む。

第 I 欄 国際予備審査報告の基礎
 第 II 欄 優先権
 第 III 欄 新規性、進歩性又は産業上の利用可能性についての国際予備審査報告の不作成
 第 IV 欄 発明の單一性の欠如
 第 V 欄 PCT35 条(2)に規定する新規性、進歩性又は産業上の利用可能性についての見解、それを裏付けるための文献及び説明
 第 VI 欄 ある種の引用文献
 第 VII 欄 国際出願の不備
 第 VIII 欄 国際出願に対する意見

国際予備審査の請求書を受理した日 12.01.2006	国際予備審査報告を作成した日 01.02.2006
名称及びあて先 日本国特許庁 (IPEA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目 4 番 3 号	特許庁審査官 (権限のある職員) 加々美 一恵
	2 J 9408
	電話番号 03-3581-1101 内線 3252

様式 PCT/IPEA/409 (表紙) (2005 年 4 月)

第I欄 報告の基礎

1. 言語に關し、この予備審査報告は以下のものを基礎とした。

出願時の言語による国際出願

出願時の言語から次の目的のための言語である _____ 語に翻訳された、この国際出願の翻訳文

国際調査 (PCT規則12.3(a)及び23.1(b))

国際公開 (PCT規則12.4(a))

国際予備審査 (PCT規則55.2(a)又は55.3(a))

2. この報告は下記の出願書類を基礎とした。(法第6条(PCT14条)の規定に基づく命令に応答するために提出された差替え用紙は、この報告において「出願時」とし、この報告に添付していない。)

出願時の国際出願書類

明細書

第 _____ ページ、出願時に提出されたもの

第 _____ ページ*、_____ 付けで国際予備審査機関が受理したもの

第 _____ ページ*、_____ 付けで国際予備審査機関が受理したもの

請求の範囲

第 _____ 項、出願時に提出されたもの

第 _____ 項*、PCT19条の規定に基づき補正されたもの

第 _____ 項*、_____ 付けで国際予備審査機関が受理したもの

第 _____ 項*、_____ 付けで国際予備審査機関が受理したもの

図面

第 _____ ページ/図、出願時に提出されたもの

第 _____ ページ/図*、_____ 付けで国際予備審査機関が受理したもの

第 _____ ページ/図*、_____ 付けで国際予備審査機関が受理したもの

配列表又は関連するテーブル

配列表に関する補充欄を参照すること。

3. 振正により、下記の書類が削除された。

明細書 第 _____ ページ

請求の範囲 第 _____ 項

図面 第 _____ ページ/図

配列表 (具体的に記載すること)

配列表に関連するテーブル (具体的に記載すること) _____

4. この報告は、補充欄に示したように、この報告に添付されかつ以下に示した振正が出願時における開示の範囲を超えてされたものと認められるので、その振正がされなかったものとして作成した。(PCT規則70.2(c))

明細書 第 _____ ページ

請求の範囲 第 _____ 項

図面 第 _____ ページ/図

配列表 (具体的に記載すること)

配列表に関連するテーブル (具体的に記載すること) _____

* 4. に該当する場合、その用紙に "superseded" と記入されることがある。

第V欄 新規性、進歩性又は産業上の利用可能性についての法第12条(PCT35条(2))に定める見解、それを裏付ける文献及び説明

1. 見解

新規性 (N)	請求の範囲 1-8	有
	請求の範囲 _____	無
進歩性 (I S)	請求の範囲 _____	有
	請求の範囲 1-8	無
産業上の利用可能性 (I A)	請求の範囲 1-8	有
	請求の範囲 _____	無

2. 文献及び説明 (PCT規則70.7)

文献1 : JP 2002-520360 A (ザ ピコワー インスティテュート フォー メディカル リサーチ) 2002.07.09, 【0002】 - 【0003】、【0013】 - 【0014】、【0032】 - 【0040】、実施例等参照 & US 6391899 A

文献2 : JP 2002-281999 A (五十嵐一衛) 2002.10.02, 試験2

文献3 : JP 2002-181820 A (株式会社いかがく) 2002.06.26, 特許請求の範囲、【0002】

請求の範囲1、2、4、5について

文献1には、スペルミン、スペルミジンなどのポリアミンと、ポリアミンオキシダーゼが、脳卒中／脳虚血と相關していることが記載されている。

よって、ポリアミンやポリアミンオキシダーゼの測定値から脳卒中などの診断を行うことや患者のスクリーニングを行うことは、当業者が容易になし得たものである。

よって、請求の範囲1、2、4、5は進歩性がない。

請求の範囲3、6について

文献2には、ポリアミンからアミンオキシダーゼにより3-アミノプロパナル、そして3-アミノプロパナルからすぐにアクロレインが形成されることが記載されている。

ここで、文献1には、ポリアミンからポリアミンオキシダーゼにより3-アミノプロパナルが生成することが記載されていることから、ポリアミン、ポリアミノキシダーゼが存在する際にアクロレインも存在するものと認められる。

このため、アクロレインを指標として脳卒中／脳虚血を検出することは、当業者が容易になし得たものである。

よって、請求の範囲3、6は進歩性がない。

さらに、文献3には、抗アクロレイン抗体で動脈硬化が検出できること、動脈硬化が脳梗塞等の主因となることが記載されている。

このため、アクロレインで脳梗塞を検出することは、当業者が容易になし得たものである。

よって、請求の範囲3、6は進歩性がない。

請求の範囲7、8について

さらに、文献1には、虚血後数時間でポリアミンオキシダーゼ活性が上昇することについて記載されている。これは、頭部診断画像で特徴的な像が認められる前であると認められる。

よって、請求の範囲7、8は進歩性がない。

第VII欄 国際出願に対する意見

請求の範囲、明細書及び図面の明瞭性又は請求の範囲の明細書による十分な裏付けについての意見を次に示す。

- (1) 本願発明はポリアミン量やアルデヒド体量を指標として、脳卒中等を検出するものであるが、明細書には、FDP-Lysとの相関が記載されているのみであって、十分な裏付けがあるとは認められない。(また、FDP-Lysを測定することでアクロレイン量の代替とできることについても、十分な裏付けがない。)
- (2) 本願請求の範囲7、8は、ポリアミンオキシダーゼの活性や量が、頭部診断画像での検出より前に起こることに関するものであるが、明細書では1例を開示しているにすぎず、十分な裏付けがあるとは認められない。