CS5300 Advanced Algorithms HW#5

Kishor Kumar Andekar 700744713 (CRN:12008)

1. Illustrate the operation of MAX-HEAP-INSERT (A, 11) on the heap A = < 15,13,9,5,12,8,7,4,0,6,2,1>

	1	2	3		5								
A	15	13	9	5	12	8	7	4	0	6	2	1	

A.heap-size = A.heap-size+1 = 12+1=13

HEAP-INCREASE-Key (A, 13, 11)

$$Key < A[i] \Rightarrow 11 < A[13]$$

 $\Rightarrow 11 < 11$ # False

$$A[i] = Key \Rightarrow A[13] = 11$$

13>1 and A[PARENT(i)] < A[i]

13>1 and A[6] < A[13]

13>1 and 8<11 # True

Exchange A[i] with A[PARENT(i)]

Exchange A[13] with A[6]

i = PARENT(i) PARENT(i) = | L PARENT (13) = 13 = 6 L = PARENT(13) = 6

6>1 and A[3] < A[6] 6>1 and 9<11 # True i= PARENT(6) = |= |= 3 Exchange A[6] with A[3]

3>1 and A[1] < A[3] 3>1 and 15 < 11 # False Do Nothing

2. Illustrate the Operation of HEAP-EXTRACT-MAX on the heap

Heap-Size = 12

max = A[1] = 15

 $A[I] = A[A \cdot heap-size] = A[I2]$

A. heap-size = A. heap-size-1 = 12-1=11

MAX-HEAPIFY (A,1) $2 \le 11$ and 13 > 1 1 = 1 1 = 1 1 = 1 $2 \le 11$ 1 = 1 $2 \le 11$ 1 = 1 $2 \le 11$ $2 \le 11$ $2 \le 11$ $3 \le 11$ $3 \le 11$ $3 \le 11$ $3 \le 11$ 4 = 1 4 = 1 $5 \le 1$ $5 \le 1$ $6 \le 1$ $1 \le$

MAX-HEAPIFY (A, 2)

4 ≤ 11 and 5 > 1 largest = 4 5 ≤ 11 and 12 > 5

Largest = 5

5 + 2

Exchange A[2] with A[5]

i l r largest

x 2 3 2

2 4 5 4

5 10 1 5

10 20 21 10

MAX-HEAPIFY (A,5)

10 ≤ 11 and 6>1

largest = 10

11 ≤ 11 and 2>6 # False

10 \$ 5

Exchange A[5] with A[10]

MAX-HEAPIFY (A,10)

 $20 \le 11$ and A[20] > A[10] # False $21 \le 11$ and A[21] > A[10] # False $10 \ne 10$ # False

Yeturn MAX

return 15

3. Illustrate the operation of PARTITION on the array $A = \langle 15, 1, 9, 5, 13, 6, 8, 4, 21, 2, 6, 12 \rangle$

$$P=1$$

 $Y=12$
 $X = A[Y] = A[12] = 12$
 $i = P-1 = 1-1 = 0$

$$j=1$$
, $A[j] \leq X \Rightarrow A[l] \leq 12$

3 2

4 3

5

7 6

8 7

9 8

10

11

$$j=2$$
, $A[t2] \le 12 \Rightarrow 1 \le 12$

Exchange A[1] with A[2]

$$j=3$$
, $A[3] \le 12 \Rightarrow 9 \le 12$
 $i=1+1=2$
Exchange $A[2]$ with $A[3]$

$$j=4$$
, $A[4] \le 12 \implies 5 \le 12$
 $i=2+1=3$
Exchange $A[3]$ with $A[4]$

j=5, A[5] ≤ 12 => 13 ≤ 12 # Do Nothing

$$j=6$$
, $A[6] \le 12 \implies 6 \le 12$
 $i=3+1=4$
Exchange $A[4]$ with $A[6]$

$$j=7$$
, $A[7] \le 12 \implies 8 \le 12$
 $i=4+1=5$
Exchange $A[5]$ With $A[7]$

j=8, $A[8] \le 12 \Rightarrow 4 \le 12$ i=5+1=6

Exchange A[6] With A[8]

j=9, A[9] ≤ 12 ⇒ 21 ≤ 12 # Do Nothing

 $J=10, A[10] \le 12 \implies 2 \le 12$ i=6+1=7

Exchange A[7] with A[10]

j=11, $A[11] \le 12 \Rightarrow 6 \le 12$ i=7+1=8Exchange A[8] With A[11]

Exchange A[it1] with A[r]

Exchange A[8+1] With A[12]

Exchange A[9] With A[12]

Return it1 = 8+1=9

4. Prove that the solution for the recurrence T(n) = T(n-1) + O(n)is $T(n) = O(n^2)$

Given Recurrence Equation T(n) = T(n-1) + O(n)

So, To prove that the solution for above recurrence equation is $T(n) = \theta(n^2)$

We need to prove that the solution for below recurrence equation as,

1. T(n) = T(n-1) + O(n) is $T(n) = O(n^2)$

Proving the above Recurrence Equation

Inductive Hypothesis:

Assume T(K) ≤ C·K2 V K≤n

In particular, K=n-1

i.e., T(n-1) < C(n-1)2

Show $T(n) \leq c \cdot n^2$

 $T(n) = T(n-1) + C \cdot n$

< c(n-1)2+C·n

< cn2 2cn+c+c.n

< cn- c(n-1)

 $T(n) \leq cn^2$ if $-c(n-1) \leq 0$

Hence $T(n) = O(n^2) \forall n \ge 1$

2.
$$T(n) = T(n-1) + \Omega(n)$$
 is $T(n) = \Omega(n^2)$
Proving the above Reccurrence Equation

Inductive Hypothesis:

i.e.,
$$T(n-1) \ge C(n-1)^2$$

To prove,
$$T(n) \ge Cn^2$$

$$T(n) \geqslant T(n-1) + Cn$$

$$\geq T(n-1) + Cn$$

$$\geq C(n-1)^2 + Cn$$

$$\geq cn^2 - 2cn + c + c \cdot n$$

$$\geq cn^2 - c(n-1)$$

$$T(n) \geqslant cn^2 \text{ if } -c(n-1) \geqslant 0$$

Hence,
$$T(n) = \mathcal{L}(n^2) \forall n \ge 1$$

So, From above
$$T(n) = O(n^2)$$
 and $T(n) = \Omega(n^2)$

We can say that
$$T(n) = \Theta(n^2)$$

Hence, Proved

5. Illustrate the operation of COUNTING-SORT on the array A = (5,0,2,0,2,3,4,6>

K = Largest element of A Array = 6

	1	2	3	4	5	6	7	8
В								

$$0 \qquad C[0] = 0$$

$$4 \quad C[4] = 0$$

$$5 \quad C[5] = 0$$

$$C[A[8]] = C[A[8]]+1$$

$$C[6] = C[6]+1 \Rightarrow 0+1=1$$

$$i \qquad c[i] = c[i] + c[i-1]$$

1
$$C[1] = C[1] + C[1-1]$$

$$C[1] = C[1] + C[0]$$

 $C[1] = 0 + 2 = 2$

$$2 \qquad c[2] = c[2] + c[2-1]$$

$$C[2] = C[2] + C[1]$$

$$C[2] = 2 + 2 = 4$$

3
$$C[3] = C[3] + C[3-1]$$

$$C[3] = C[3] + C[2]$$

$$C[3] = 1+4=5$$

$$C[4] = C[4] + C[4-1]$$

$$C[4] = C[4] + C[3]$$

$$C[4] = 1+5=6$$

5
$$C[5] = C[5] + C[5-1]$$

 $C[5] = C[5] + C[4]$
 $C[5] = 1+6=7$
6 $C[6] = C[6] + C[6-1]$
 $C[6] = C[6] + C[5]$
 $C[6] = 1+7=8$

j 8 to 1

B[1] = 0

C[0]=1-1=0

$$B[c[A[1]]] = A[1] \qquad c[A[1]] = c[A[1]] - 1$$

$$B[c[5]] = 5 \qquad c[5] = c[5] - 1$$

$$B[1] = 5 \qquad c[5] = 7 - 1 = 6$$

	1	2	3	4	5	6	7	8
В	0	0	2	2	3	4	5	6

6. Illustrate the Operation of RADIX-SORT on the following list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX

i	COW	SEA	TAB	BAR
X	009	TEA	BAR	B16
2	SEA	MOB	EAR	Box
3	RUG	TAB	TAR	COM
	ROW	006	SEA	019
			TEA	009
	МоВ	RUG		EAR
	Box	016	019	Fox
	TAB ->	B16 ->	B19-	
	BAR	BAR	MOB	MoB
		EAR	009	NOW
	EAR			ROW
	TAR	TAR	C O W	RUG
	D19	COM	ROW	
	B16	ROW	NOW	SEA
		NoW	BOX	TAB
	TEA			TAR
	NoW	BOX	Fox	TEA
	Fox	FOX	RU S	

Illustrate the Operation of BUCKET-SORT on the array A = < 0.72,0.17,0.19,0.62,0.49,0.20,0.81,0.52,0.61,0.47,0.39,0.59, 0.68, 0.99, 0.16> n = A. length = 15 Insert A[i] -> B[[n * A[i]]] A[1] -> B[[15 * A[1]]] A[1] -> B[[15 * 0.72]] A[1] -> B[10] $A[2] \rightarrow B[L15 * A[2]]$ 2 A[2] -> B[L15 * 0.17]] $A[2] \rightarrow B[2]$ $A[3] \rightarrow B[[15 * A[3]]]$ 3 $A[3] \longrightarrow B[\lfloor 15 + 0.19 \rfloor]$ $A[3] \rightarrow B[2]$ A[4] -> B[L15 * A[4]]] 4 A[4] -> B[L15 * 0.62]] $A[4] \rightarrow B[9]$ $A[5] \rightarrow B[L15 * A[5]]$ 5 A[5] -> B[L15 + 0.49]]

 $A[5] \rightarrow B[7]$

6
$$A[6] \rightarrow B[LI5 * A[6]]]$$

$$A[6] \rightarrow B[LI5 * 0.20]]$$

$$A[6] \rightarrow B[3]$$
7
$$A[7] \rightarrow B[LI5 * A[7]]]$$

$$A[7] \rightarrow B[LI5 * 0.81]]$$

$$A[7] \rightarrow B[12]$$
8
$$A[8] \rightarrow B[LI5 * A[8]]]$$

$$A[8] \rightarrow B[LI5 * A[8]]]$$

$$A[9] \rightarrow B[LI5 * A[9]]]$$

$$A[9] \rightarrow B[LI5 * A[9]]]$$

$$A[9] \rightarrow B[LI5 * A[9]]]$$

$$A[9] \rightarrow B[9]$$

$$A[10] \rightarrow B[15 * A[10]]]$$

$$A[10] \rightarrow B[LI5 * A[10]]]$$

$$A[10] \rightarrow B[LI5 * A[10]]]$$

$$A[10] \rightarrow B[LI5 * A[10]]]$$

$$A[11] \rightarrow B[LI5 * A[11]]]$$

$$A[11] \rightarrow B[5]$$

12
$$A[12] \rightarrow B[L15 * A[12]]$$

$$A[12] \rightarrow B[L15 * 0.59]]$$

$$A[12] \rightarrow B[8]$$

$$A[13] \rightarrow B[L15 * A[13]]]$$

$$A[13] \rightarrow B[L15 * 0.68]]$$

$$A[13] \rightarrow B[10]$$

$$A[14] \rightarrow B[L15 * A[14]]]$$

$$A[14] \rightarrow B[L15 * 0.99]]$$

$$A[14] \rightarrow B[14]$$

$$A[14] \rightarrow B[14]$$

$$A[15] \rightarrow B[L15 * 0.16]]$$

$$A[15] \rightarrow B[L15 * 0.16]]$$

$$A[15] \rightarrow B[2]$$
16 STOP

