1

Control Systems

G V V Sharma*

CONTENTS

1	Polar Plot		
	1.1	Introduction	
	1.2	Example	
	1.3	Example	
	1.4	Example	
	1.5	Example	
	1.6	Example	
	1.7	Example	
2	Bode Plot		
	2.1	Gain and Phase Margin	
3	PID C 3.1	Controller Introduction	

Abstract—The objective of this manual is to introduce control system design at an elementary level.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/ketan/codes

1 Polar Plot

- 1.1 Introduction
- 1.2 Example
- 1.3 Example
- 1.4 Example
- 1.5 Example
- 1.6 Example
- 1.7 Example
- 2 Bode Plot
- 2.1 Gain and Phase Margin
- 2.1.1. Sketch the Bode magnitude and phase plots for

$$G(s) = \frac{(1+0.2s)(1+0.025s)}{s^3(1+0.005s)(1+0.001s)}$$
(2.1.1.1)

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Also compute the gain margin and phase margin.

Solution:

Fig. 2.1.1: Bode plot

From fig. 2.1.1,

$$\omega_{gc} = 16.55$$
, Gain Margin = $-61.7dB$ (2.1.1.2)
 $\omega_{pc} = 1$, Phase Margin = -77.52^{0} (2.1.1.3)

The program for plotting bode plot and finding phase margin and gain margin -

codes/ee18btech11039/bode plot.py

3 PID Controller

3.1 Introduction