Lecture 22: Solving directional dynamic games for all Markov perfect equilibria

Australian Summer School in Dynamic Structural Econometrics

Fedor Iskhakov, Australian National University John Rust, Georgetown University Bertel Schjerning, University of Copenhagen

> ANU, Canberra December 19, 2022

ROAD MAP

- 1. Collusion of Australian corrugated fibre packaging (CFP) producers
 - Collusion between Amcor and Visy
 - Bertrand pricing and investment game
 - Solution concept: Markov perfect equilibrium (MPE)
- 2. Experiment with the model
- 3. State recursion algorithm
 - ► Theory of directional dynamic games (DDGs)
- 4. Recursive lexicographical search (RLS) algorithm
- 5. Full solution for the leapfrogging game
- Structural estimation of directional dynamic games with Nested RLS method

Estimation of directional dynamic games: Full solution nested MLE estimation

Nested Recursive Lexicographic Search algorithm

Markov Perfect Equilibria

- MPE is a pair of strategy profile and value functions
- In compact notation

$$V = \Psi^{V}(V, P, \theta)$$
$$P = \Psi^{P}(V, P, \theta)$$

Set of all Markov Perfect Equilibria

$$SOL(\Psi, \theta) = \left\{ (P, V) \middle| \begin{array}{c} V = \Psi^{V}(V, P, \theta) \\ P = \Psi^{P}(V, P, \theta) \end{array} \right\}$$

- $\blacktriangleright \Psi^{V}: V, P \longrightarrow V$ Bellman operator
- \blacktriangleright $\Psi^{P}: V, P \longrightarrow P$ Choice probability formulas (logit)
- $ightharpoonup \Gamma: P \longrightarrow V$ Hotz-Miller inversion

Estimation methods for dynamic stochastic games

- ► Two step (CCP) estimators
 - Fast, potentially large finite sample biases
 - Hotz, Miller (1993); Altug, Miller (1998); Pakes, Ostrovsky, and Berry (2007); Pesendorfer, Schmidt-Dengler (2008)
 - 1. Estimate $CCP \rightarrow \hat{P}$
 - 2. Method of moments Minimal distance Pseudo likelihood

$$\begin{split} \min_{\boldsymbol{\theta}} \left[\hat{P} - \boldsymbol{\Psi}^{P}(\boldsymbol{\Gamma}(\boldsymbol{\theta}, \hat{P}), \hat{P}, \boldsymbol{\theta}) \right]' \boldsymbol{W} \left[\hat{P} - \boldsymbol{\Psi}^{P}(\boldsymbol{\Gamma}(\boldsymbol{\theta}, \hat{P}), \hat{P}, \boldsymbol{\theta}) \right] \\ \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{Z}, \boldsymbol{\Psi}^{P}(\boldsymbol{\Gamma}(\boldsymbol{\theta}, \hat{P}), \hat{P}, \boldsymbol{\theta})) \end{split}$$

- ► Nested pseudo-likelihood (NPL)
 - Recursive two step pseudo-likelihood
 - ▶ Bridges the gap between efficiency and tractability
 - Unstable under multiplicity
 - Aguirregabiria, Mira (2007); Pesendorfer, Schmidt-Dengler (2010); Kasahara and Shimotsu (2012); Aguirregabiria, Marcoux (2021)

Estimation methods for dynamic stochastic games

- Equilibrium inequalities (BBL)
 - Minimize the one-sided discrepancies
 - Computationally feasible in large models
 - Bajari, Benkard, Levin (2007)
- Math programming with equilibrium constraints (MPEC)
 - MLE as constrained optimization
 - Does not rely on the structure of the problem
 - ► Much bigger computational problem
 - 闻 Su (2013); Egesdal, Lai and Su (2015)

$$\max_{(\theta,P,V)} \mathcal{L}(\mathsf{Z},\mathsf{P}) \text{ subject to } \mathsf{V} = \Psi^\mathsf{V}(\mathsf{V},\mathsf{P},\theta), \mathsf{P} = \Psi^\mathsf{P}(\mathsf{V},\mathsf{P},\theta)$$

- All solution homotopy MLE
 - Borkovsky, Doraszelsky and Kryukov (2010)

Overview of NRLS

- ► Robust and *computationally feasible*^(?) MLE estimator for directional dynamic games (DDG)
- Rely of full solution algorithm that provably computes all MPE under certain regularity conditions
- Employ smart discrete programming method to maximize likelihood function over the finite set of equilibria
- ► Fully robust to multiplicity of MPE
- ► Relax single-equilibrium-in-data assumption
- ▶ Path to estimation of equilibrium selection rules

Nested Recursive Lexicographical Search (NRLS)

- ▶ Data from M independent markets from T periods $Z = \{\bar{a}^{mt}, \bar{x}^{mt}\}_{m \in \mathcal{M}, t \in \mathcal{T}}$ Usually assume only one equilibrium is played in the data.
- ▶ Denote θ ($P^{\ell}(\theta), V^{\ell}(\theta)$) ∈ $SOL(\Psi, \theta)$ the ℓ -the equilibrium
- 1. Outer loop Maximization of the likelihood function w.r.t. to structural parameters θ $\theta^{ML} = \arg\max_{\alpha} \mathcal{L}(Z,\theta)$
- 2. Inner loop

Maximization of the likelihood function w.r.t. equilibrium selection

$$\mathcal{L}(Z,\theta) = \max_{(\mathsf{P}^{\ell}(\theta),\mathsf{V}^{\ell}(\theta) \in SOL(\Psi,\theta)} \frac{1}{M} \sum_{i=1}^{N} \sum_{m=1}^{M} \sum_{t=1}^{I} \log P_{i}^{\ell}(\bar{a}_{i}^{mt} | \bar{\mathsf{x}}^{mt}; \theta)$$

Max of a function on a discrete set organized into RLS tree

Branch and bound (BnB) method

Land and Doig, 1960 Econometrica

- ▶ Old method for solving discrete programming problems
- 1. Form a tree of subdivisions of the set of admissible plans
- 2. Specify a bounding function representing the best attainable objective on a given subset (branch)
- 3. Dismiss the subsets of the plans where the bound is below the current best attained value of the objective

Theory of BnB: branching

$$\max f(x)$$
 s.t. $x \in \Omega$

$$f(x)$$
 objective function Ω set of feasible x
$$\mathcal{P}_{j}(\Omega) \text{ partition of } \Omega \text{ into } k_{j} \text{ subsets, } \mathcal{P}_{1}(\Omega) = \Omega$$

$$\mathcal{P}_{j}(\Omega) = \{\Omega_{j1}, \dots, \Omega_{jk_{j}}: \ \Omega_{ji} \cap \Omega_{ji'} = \varnothing, i \neq i', \ \cup_{i=1}^{k_{j}} \Omega_{ji} = \Omega\}$$

$$\{\mathcal{P}_{j}(\Omega)\}_{j=1,\dots,J} \text{ a sequence of } J \text{ gradually refined partitions}$$

$$k_{1} \leq \dots \leq k_{j} \leq \dots \leq k_{J}$$

$$\forall j = 1,\dots,J, \forall i = 1,\dots,k_{i}: \ \forall j' < j \ \exists i'_{i'} \text{ such that } \Omega_{ij} \subset \Omega_{i'j'}$$

Theory of BnB: branching

$$\max f(x)$$
 s.t. $x \in \Omega$

Theory of BnB: bounding

$$\max f(x)$$
 s.t. $x \in \Omega$

$$g(\Omega_{ij})$$
 bounding function: from subsets of Ω to real line $g(\Omega_{ij}) = f(x)$ for singletons, i.e. when $\Omega_{ij} = \{x\}$

Monotonicity of bounding function $\forall j \ \forall \Omega_{i_1 1} \supset \Omega_{i_2 2} \supset \cdots \supset \Omega_{i_j j}$ $g(\Omega_{i_1 1}) \geq g(\Omega_{i_2 2}) \geq \cdots \geq g(\Omega_{i_j j})$

Inequalities are reversed for the minimization problem

BnB with NRLS

- **▶ Branching**: RLS tree
- Bounding: The bound function is partial likelihood calculated on the subset of states that

$$\mathcal{L}^{\mathsf{Part}}(Z, \theta, \mathcal{S}) = \frac{1}{M} \sum_{i=1}^{N} \sum_{m=1}^{M} \sum_{t=1}^{T} \log P_{i}^{\ell}(\bar{a}_{i}^{mt} | \bar{\mathbf{x}}^{mt}; \theta)$$
s.t. $(\bar{\mathbf{x}}^{mt}, \bar{a}_{i}^{mt}) \in \mathcal{S}$

- ► Monotonically declines as more data is added
- ► Equals to the full log-likelihood at the leafs of RLS tree

 $\fbox{14} \cdot \fbox{13} \cdot \fbox{12} \cdot \fbox{11} \cdot \fbox{10} \text{ Partial loglikelihood} = -3.2$

BnB and numerical performance of NRLS estimator

Numerical performance and refinements

- Numerical performance of NRLS estimator depends crucially on how the data is able to distinguish between different equilibria
- ▶ Bounding criterion is deterministic → may use statistical criterion to decide whether to extend a given branch or not
- ► Have to assess potential likelihood contribution of the branches that are not fully extended → Vuong closeness test (LR-type test to assess how different two equilibria are given already computed partial likelihood)
- ⇒ Poly-algorithm with statistical decision rule

Monte Carlo simulations

Α

В

Single equilibrium in the model Single equilibrium in the data

Multiple equilibria in the model Single equilibrium in the data

(

Multiple equilibria in the model Multiple equilibria in the data

- 1. Two-step CCP estimator
- 2. Nested pseudo-likelihood
- vs. NRLS estimator

3. MPEC

Implementation details

- ► Two-step estimator and NPL
 - Matlab unconstraint optimizer (numerical derivatives)
 - CCPs from frequency estimators
 - For NPL max 30 iterations
- ▶ MPEC
 - ► Matlab constraint optimizer (interior-point algorithm)
 - MPEC-VP: Constraints on both values and choice probabilities (as in Egesdal, Lai and Su, 2015)
 - MPEC-P: Constraints in terms of choice probabilities + Hotz-Miller inversion
 - Starting values from two-step estimator
- **E**stimated parameters $\theta = (k_1, k_2)$
- ► Sample size: 1000 markets in 5 time periods
- Initial state drawn uniformly over the state space

Monte Carlo A, run 1: no multiplicity

Maximum number of equilibria in the model: 1

Number of equilibria in the data: 1

	PML2step	NPL	MPEC-VP	MPEC-P	NRLS	
k1=3.5	3.51893	3.51022	3.50380	3.50380	3.50380	
Bias	0.01893	0.01022	0.00380	0.00380	0.00380	
MCSD	0.12087	0.12635	0.11573	0.11573	0.11573	
k2=0.5	0.50860	0.50658	0.50452	0.50452	0.50452	
Bias	0.00860	0.00658	0.00452	0.00452	0.00452	
MCSD	0.06460	0.06247	0.05939	0.05939	0.05939	
log-likelihood	-1958.176	-1953.406	-1953.327	-1953.327	-1953.327	
$ \Psi^{\mathbf{P}}(P) - P $	0.25285	0.00001	0.00000	0.00000	0.00000	
$ \Psi^{\mathbf{V}}(v)-v $	0.50038	0.00001	0.00000	0.00000	0.00000	
Converged,%	100	100	100	100	100	
K-L divergence	0.131139	0.005020	0.006770	0.006770	0.006770	

- ▶ All MLE estimators identical to the last digit
- ► NPL estimator is approaching MLE

Monte Carlo A, run 2: no multiplicity at true parameter

Maximum number of equilibria in the model: 3 Number of equilibria at true parameter value: 1

Number of equilibria in the data: 1

	PML2step	NPL	MPEC-VP	MPEC-P	NRLS	
k1=3.5	3.50467	3.51307	3.49485	3.49318	3.49318	
Bias	0.00467	0.01307	-0.00515	-0.00682	-0.00682	
MCSD	0.11252	0.00000	0.10193	0.10177	0.10177	
k2=0.5	0.50035	0.47394	0.50265	0.50157	0.50157	
Bias	0.00035	-0.02606	0.00265	0.00157	0.00157	
MCSD	0.05009	0.00000	0.04154	0.04205	0.04205	
log-likelihood	-4106.771	-3940.158	-4091.873	-4093.040	-4093.04	
$ \Psi^{\mathbf{P}}(P) - P $	0.41453	0.00001	0.00000	0.00000	0.00000	
$ \Psi^{\mathbf{V}}(v)-v $	1.90182	0.00005	0.00000	0.00000	0.00000	
Converged,%	100	1	98	100	100	
K-L divergence	0.188551	0.004546	0.002921	0.002921	0.002920	

▶ NPL estimator fails to converge

▶ MPEC is not affected by "nearby" equilibria with good starting values (PML2step)

Monte Carlo B, run 1: moderate multiplicity Number of equilibria in the model (at true parameter): 3 Number of equilibria in the data: 1

	PML2step	NPL	MPEC-VP	MPEC-P	NRLS	
k1=3.5	3.50081	-	3.72713	3.94941	3.49624	
Bias	0.00081	-	0.22713	0.44941	-0.00376	
MCSD	0.12050	-	0.85934	1.16633	0.09537	
k2=0.5	0.49478	-	0.56166	0.62361	0.49381	
Bias	-0.00522	-	0.06166	0.12361	-0.00619	
MCSD	0.04317	-	0.25552	0.32488	0.03510	
log-likelihood	-4070.035	-	-4080.989	-4121.102	-4049.647	
$ \Psi^{\mathbf{P}}(P) - P $	0.50375	-	0.00000	0.00000	0.00000	
$ \Psi^{\mathbf{V}}(v)-v $	2.83611	-	0.00000	0.00000	0.00000	
Converged,%	100	0	100	100	100	
K-L divergence	0.304411	-	0.018636	2.302525	0.006314	

- NPL estimator fails to converge
- ▶ MPEC fails to identify the equilibrium that generated the data (converges to a different MPE) as seen from MCSD and K-L divergence

Monte Carlo B, run 2: higher multiplicity

Number of equilibria in the model (at true parameter): 81 Number of equilibria in the data: 1

	PML2step	NPL	MPEC-VP	MPEC-P	NRLS	
k1=3.5	3.51468	-	3.48740	3.49007	3.47786	
Bias	0.01468	-	-0.01260	-0.00993	-0.02214	
MCSD	0.04844	-	0.02802	0.02929	0.02731	
k2=0.5	0.53780	-	0.49197	0.48944	0.49252	
Bias	0.03780	-	-0.00803	-0.01056	-0.00748	
MCSD	0.03894	-	0.00850	0.01033	0.00404	
log-likelihood	-4038.78471	-	-4007.45663	-4010.18139	-3996.45223	
$ \Psi^{\mathbf{P}}(P) - P $	0.68907	-	0.00000	0.00000	0.00000	
$ \Psi^{\mathbf{V}}(v)-v $	5.44052	-	0.00000	0.00000	0.00000	
Converged,%	100	0	100	100	100	
K-L divergence	0.453917	-	0.278263	0.356678	0.000750	

- ▶ NPL estimator fails to converge
- ▶ MPEC fails to identify the DGP equilibrium (converges to a different MPE)
- With good starting values, does not suffer more with higher multiplicity

NRLS Monte Carlo setup (C)

- ightharpoonup n = 3 points on the grid of the grid of costs
- ▶ 14 points in state space of the model
- ▶ 109 MPE in total
- ▶ 1000 random samples from 3 different equilibria (3 markets)
- ▶ 100 observations per market/equilibrium
- ▶ Uniform distribution over state space ↔ "ideal" data
- Estimating one parameter in cost function

Distribution of estimated k_1 parameter

MC results and numerical performance of NRLS

1. Average bias and RMSE of the estimates of the cost of investment parameter (true value is 10.0)

Bias =
$$0.0737$$

RMSE = 0.8712

2. Average fraction of MPE computed by BnB relative to RLS

$$0.321$$
 (std=0.11635)

3. Average fraction of stages solved by BnB relative to RLS

4. All 3 MPE correctly identified by BnB in

Identification of multiple equilibria in the data (C)

- ▶ 100 random samples
- 3 market clusters with different equilibria
- ▶ 1000 observations per market cluster/equilibrium in 3 time periods
- ▶ Among all runs, 93% of equilibria were pin-pointed exactly
- Among the misidentified equilibria, all had deviation in one point of the state space

Conclusions: Bertrand investments model

- Many types of endogenous coordination is possible in equilibrium
 - Leapfrogging (alternating investments)
 - Preemption (investment by cost leader)
 - Duplicative (simultaneous investments)
- ▶ Full rent dissipation and monopoly outcomes are supported as MPE.
- ▶ Numerous MPE equilibria and "Folk theorem"-like result
- ► The equilibria are generally inefficient due to over-investment
 - Duplicative or excessively frequent investments

Conclusions: Solution of dynamic games

- ► When equilibrium is not unique the computation algorithm inadvertently acts as an equilibrium selection mechanism
- When directionality in the state space is present, state recursion algorithm is preferred to time iterations
- ▶ Plethora of Markov perfect equilibria poses new challenges:
 - How firms manage to coordinate on a particular equilibrium?
 - Increased difficulties for empirical applications.
 - Daunting perspectives for identification of equilibrium selection rule from the data.
- ► Estimation of dynamic games with multiple equilibria Nested Recursive Lexicographical Search (NRLS)

Contributions and further developments

- NRLS is MLE estimator for dynamic games of a particular type, directional dynamic games (DDGs)
 - Fully robust to multiplicity of equilibria
 - ► Able to identify multiple equilibria in the data
- ► Further work on and tests of numerical performance
 - Refinements of the implementation of NRLS (optimization of BnB algorithm)
 - Statistical bounding criterion
- More detailed comparison of existing estimators using leapfrogging game
 - Refine the implementation of MPEC
 - Include recent estimators into the battery (Aguirregabiria and Marcoux, 2019, Bugni and Bunting, 2020)