Modern Fizika Labor

Fizika BSC

A mérés dátuma:	A mérés száma és címe:	Értékelés:
2009.03.23.	12 Infravörös spektroszkópia	
A beadás	A mérést végezte:	
dátuma:	Meszéna Balázs, Tüzes Dániel	

Bevezető

Az infravörös spektroszkópia segítségével elsősorban molekuláris kötésekre deríthetünk fényt, így a módszer alkalmas egy anyag kémiai összetételének vizsgálatára. A módszer mára széleskörűen alkalmazott és sokkal precízebb mérések kivitelezhetők vele, mint hajdanán. A laborban található nem éppen mai merőberendezés pontosságát jellemzi, hogy segítségével meg tudjuk különböztetni két, a klór különböző izotópjait tartalmazó *HCl* molekula rezgéseit azok frekvenciái alapján. Ugyan ezen spektroszkópia módszerrel meg lehet állapítani az molekulákban létrejövő kötések távolságát, erősségét is.

A módszer elve

A molekulákat felépítő atomok a molekulán belül egymáshoz képest rugalmas módon elmozdulhatnak, kötéseik mentén rezeghetnek, hosszabb molekulák hajladozhatnak, kötéseik körül elfordulhatnak. Ezek a mozgások kvantáltak, tehát határozott energiaadagokban történhet csak meg a változásuk. Ezek a kvantumenergiák a különböző infravörös sugárzás fotonjainak energiájával egyenlők. A periodikus mozgások frekvenciája és energiája elsősorban a részecskéket összekötő erőtől, és kémiai kötés típusától és a mozgásban résztvevő részecske tömegétől, vagyis az atomtömegtől függ. Ennek alapján az adott atomok között létrejövő kötéstípusokhoz néhány jellemző energia tartozik, melyeket infravörös technikával megmérhetünk.

Mérési elrendezés

A méréshez egy automata berendezés állt rendelkezésünkre. A berendezésben el kellett helyezni a vizsgálandó mintát, majd a mérési határokat és a mintavételezést beállítani. A gép a kapott eredményeket egy hozzá kalibrált papírlapon ábrázolta, a számításokat erről a lapról lehetett leolvasni.

Mérési feladatok – eredmények

1. Első mérési feladat merőberendezés ábrázolási léptékének a beállítása. Ennek során a berendezés mintatartóját üresen hagyva kalibráljuk úgy a műszert, hogy a fluktuációkból adódó kitérést tűrve az ábrázolt mennyiség még látható legyen. Tapasztalataink szerint így az alapvonalat elég volt a maximálisan ábrázolható érték 95%-ára állítani. A mérés során akaratlanul is rábukkantunk a széndioxid és vízgőz nyomára, ugyanis ezek fluktuációjából következő elnyelés-ingadozás az anyagokra jellemző helyen jelentkeztek. A kalibrálás további része volt a polisztirol vizsgálata. A mérőberendezéssel felvettük a minta spektrumát, majd az elnyelési maximumokat megkerestük. A mérési eredményeket az alábbi táblázatban tartalmazza. A mérési eredmények mellé (ha létezik) feltüntettük a polisztirol valódi spektrumának értékeit.

Mért értékek 1/cm	valódi értékek 1/cm	Mért értékek 1/cm	valódi értékek 1/cm
3110	3106	1605	1603
3090	3084	1500	1495
3070	3062	1460	-
3040	3028	1160	-
3010	3004	1070	-
2930	2925	1030	1028
2850	2851	910	906
1940	1946	760	-
1870	-	700	700
1800	1802	550	-

Majd az eredményeket grafikusan is ábrázoltuk:

A kapott egyenes pramatéereiből látható, hogy a mérési eredmények igen nagy összhangban állnak a valódi értékekkel, tehát a műszer előre kalibrálása közel tökéletes eredményt hozott. A konstassal való eltolás azonban a berendezés adatrögzítési eljárásából fakadóan azonban nem releváns adat, ez mérésről mérésre változhat és értéke függ a berendezést kezelő tapasztalatától, ügyességétől.

2. Ugyanezen minta egy részét részletesebben is megvizsgáltuk a [3200,2800]/cm intervallumot, mely mérési eredmények az előzőhöz hasonló táblázatban látható:

mért eredmények (1/cm)	valódi értékek (1/cm)		
3109	3106		
3089	3084		
3066	3062		
3032	3028		
3008	3004		
2930	2925		
2858	2851		

Látható, hogy a második esetben is nagy az egyezés a két érték között. Mivel az első pontban több mérési eredményünk volt, melyek nagyobb intevallumot fedtek le és jobban is illeszkedtek a valódi értékekre a kapott eredmények, ezért a laborvezető ajánlása szerint a korrekciós kalibrálási értéket az első mérés alapján alkalmazzuk.

3. Fullerén spektrumának felvétele során az alábbi értékeket kaptuk:

mért értékek	korrigált értékek	valódi értékek
(1/cm)	(1/cm)	(1/cm)
528	527	527
578	577	577
1182	1180	1182
1428	1425	1428

Látható, hogy a mérési eredmények nagyon közel esnek a valódi értékekhez, oly annyira, hogy a kalibrációs egyenes hibája nagyobb, mint a mérésé. A hibát az eredmények ábrázolásának és leolvasásábaj pontossága befolyásolja döntően.

4. A HCI spektrumának vizsgálata volt utolsó feladatunk. A mért eredményt kézhez kaptuk, abból leolvastuk az elnyelési maximumok helyeit. Minden elnyelési maximum párosával fordult elő, melynek magyarázata a HCI molekula klórjában keresendő, ugyanis a klórnak a természetben mind a 35-ös, mind 37-es izotópja előfordul, 3:1 arányban. A kapott grafikus eredményekből az alábbi elnyelési maximumokat határoztuk meg a J_0 forgási kvantumszám függvényében (ami azt jelenti, milyen értékről történt az átugrás eggyel kisebb vagy nagyobb kvantumszámra). A P-ágban (ahol alacsonyabb állapotba ugrik a molekula) $J_0 = -x$, az R-ágban $J_0 + 1 = x$. Ekkor $v = v_0 + (B_1 + B_0)x - (B_0 - B_1)x^2$, ahol B_v az egyes rezgési kvantumszám által meghatározott érték elsőrendben: $B_v = B_e - \alpha \left(v + \frac{1}{2}\right)$. B_e kifejezhető a molekula tulajdonságaival. A mért értékek a 35-ös és 37-es klór esetén:

³⁵ CI		³⁷ CI			
J_0	X	$\tilde{v}(1/cm)$	J_0	X	$\tilde{v}(1/cm)$
1	-1	2866	1	-1	2864
2	-2	2844	2	-2	2842
3	-3	2822	3	-3	2820
4	-4	2800	4	-4	2798
5	-5	2777	5	-5	2775
6	-6	2753	6	-6	2751
7	-7	2728	7	-7	2726
8	-8	2703	8	-8	2701
9	-9	2678	9	-9	2676
10	-10	2652	10	-10	2650
0	1	2907	0	1	2905
1	2	2926	1	2	2924
2	3	2946	2	3	2944
3	4	2964	3	4	2962
4	5	2982	4	5	2980
5	6	2999	5	6	2997
6	7	3015	6	7	3013
7	8	3031	7	8	3029
8	9	3046	8	9	3044
9	10	3060	9	10	3058
10	11	3074	10	11	3071

Mint láttuk, a kívánt együtthatókat úgy kapjuk meg, hogy az adatokra egy parabolát illesztünk. Ennek eredményéből a 35-ös esetben:

$$B_1 + B_0 = (20,46 \pm 0,02)cm^{-1}$$

$$B_0 - B_1 = (0,309 \pm 0,003)cm^{-1}$$

$$B_0 = (10,39 \pm 0,01)cm^{-1}$$

$$B_1 = (10,08 \pm 0,01)cm^{-1}$$

$$\alpha = B_0 - B_1 = (0,31 \pm 0,02)cm^{-1}$$

$$B_e = \frac{3B_0 - B_1}{2} = (10,54 \pm 0,02)cm^{-1}$$

A 35-ös HCl molekula redukált tömegét

az alábbi formulából kapjuk: $\mu = \frac{m_{\scriptscriptstyle H} m_{\scriptscriptstyle 35}}{m_{\scriptscriptstyle H} + m_{\scriptscriptstyle 35}} = (0,97966 \pm 0,00002) AMU = (1,6268 \pm 0,0003) \cdot 10^{-27} \, kg^*$. A

molekula kötéshossza $r=\frac{\hbar}{\sqrt{2\mu\hbar cB_e}}=(1,277\pm0,001)\cdot 10^{-10}\,m$.

Ugyanígy a 37-es klór esetén:

$$B_1 + B_0 = (20, 45 \pm 0, 02)cm^{-1}$$

$$B_0 - B_1 = (0.311 \pm 0.003) cm^{-1}$$

$$B_0 = (10,38 \pm 0,01) cm^{-1}$$

$$B_1 = (10,07 \pm 0,01) cm^{-1}$$

$$\alpha = B_0 - B_1 = (0.31 \pm 0.02) cm^{-1}$$

$$B_e = \frac{3B_0 - B_1}{2} = (10,54 \pm 0,02)cm^{-1}$$

A redukált tömeg pedig:.

$$\mu = \frac{m_H m_{37}}{m_H + m_{37}} = (0.98115 \pm 0.00002) AMU =$$

 $= (1,6292 \pm 0,0003) \cdot 10^{-27} \, kg$. Ezekből az

elözőhöz hasonló módon a 37-es Klórt tartalmazó HCI kötéshossza $r=\frac{\hbar}{\sqrt{2\mu hcB_e}}=(1,276\pm0,001)\cdot 10^{-10}\,m$.

Kiszámolhatjuk a két izotópra a kötéseinek erőállandóját is. $k=4\pi^2\nu_0^2\mu$, ahol ν_0 -t az illesztett parabolák konstans tagja adja.

A 35-ös izotópnál
$$v_0 = (2886, 8 \pm 0, 2) cm^{-1}$$
 , így $k = 4\pi^2 v_0^2 \mu = (5, 352 \pm 0, 2) \cdot 10^{-15} \frac{N}{m}$.

Ugyanez a 37-esnél $v_0=(2884,9\pm0,2)cm^{-1}$, tehát $k=4\pi^2v_0^2\mu=(5,353\pm0,2)\cdot 10^{-15}\frac{N}{m}$.

A hidrogén, illetve klór tömege a http://www.nndc.bnl.gov/amdc/web/masseval.html honlapról kerültek felhasználásra.