```
# Quantum Fourier Transform:
QFT | qureg
# Quantum arithmetic:
\# Note: quint is a quantum register representing an integer
# Add integer a:
AddConstant(a) | quint
# Add a modulo N:
AddConstantModN(a, N) | quint
# Multiply by a modulo N:
MultiplyByConstantModN(a, N) | quint
# Apply exp(-i*t*hamiltonian)
{\it \# Hamiltonians \ can \ be \ specified \ using \ \textit{QubitOperators:}}
hamiltonian = QubitOperator("X0 X1") + QubitOperator("Y0 Y1")
TimeEvolution(hamiltonian, t) | qureg
# Turns state |0> into state sum_j beta_j |j>:
StatePreparation(beta) | qureg
```

Listing 1: Some of ProjectQ's n-qubit gates.

ProjectQ syntax	Name	Definition	Symbol
X qubit	Pauli X	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\overline{}$
Y qubit	Pauli Y	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	-Y-
Z qubit	Pauli Z	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	- Z
S qubit	S gate	$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$	-S
Sdagger qubit	inverse of S	${f S}^{\dagger}$	$-S^{\dagger}$
T qubit	T gate	$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$	-T
Tdagger qubit	inverse of T	T^{\dagger}	T^{\dagger}
H qubit	Hadamard	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	-H
Ph(theta) qubit	(global) Phase gate	$\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{i\theta} \end{pmatrix}$	$ Ph_{\theta}$
R(theta) qubit	Phase-shift gate	$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$	$ \left[\mathrm{R}_{ heta} \right]$ $-$
Rx(theta) qubit	Rotation around x	$e^{-i\theta X/2} = \begin{pmatrix} \cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2}) \\ -i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix}$	$\left\{ \operatorname{Rx}_{\theta}\right\}$
Ry(theta) qubit		$e^{-i\theta Y/2} = \begin{pmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix}$	$\left\{ \mathrm{Ry}_{\theta}\right\}$
Rz(theta) qubit	Rotation around z	$e^{-i\theta Z/2} = \begin{pmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{pmatrix}$	$-Rz_{\theta}$
Measure qubit	Measurement in com	aputational basis $ 0\rangle$, $ 1\rangle$	-

Table 1: Some of the standard single qubit gates available in Project Q. $\,$

Table 2: Some of the standard two and three qubit gates available in ProjectQ.

Meta-instructions

```
eng = projectq.MainEngine()
...
with Loop(eng, 10):
    U | qubits

get_inverse(T) | qubit # Equivalent to Tdagger | qubit

eng = projectq.MainEngine()
...
with Dagger(eng):
    # Anything executed in this context will be inverted
    T | qubit
    S | qubit

C(X, 2) | (ctrl_qureg, qubit) # ctrl_qureg contains two qubits
```

```
with Control(eng, ctrl_qureg):
    # Anything executed in this context will be controlled
    # on all qubits in ctrl_qureg being in state 1
    T | qubit
    S | qubit
```

```
eng = projectq.MainEngine()
...
with Compute(eng):
    U | qureg
V | qureg
Uncompute(eng)
```

```
eng = projectq.MainEngine()
...
with Compute(eng):
    U | qureg
V | qureg
with CustomUncompute(eng):
    Udagger | qureg
```