回帰分析

モデルの評価

村田 昇

講義概要

• 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・ 第3回: モデルによる予測と発展的なモデル

回帰分析の復習

線形回帰モデル

• 目的変数 を 説明変数 で説明する関係式を構成

- 説明変数: $x_1, ..., x_p$ (p 次元)

- 目的変数: y(1 次元)

• 回帰係数 $\beta_0,\beta_1,\ldots,\beta_p$ を用いた一次式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

・ 誤差項 を含む確率モデルで観測データを表現

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

簡潔な表現のための行列

• デザイン行列 (説明変数)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

簡潔な表現のためのベクトル

• ベクトル (目的変数・誤差・回帰係数)

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

問題の記述

• 確率モデル

$$y = X\beta + \epsilon$$
, $\epsilon \sim$ 確率分布

• 回帰式の推定: **残差平方和** の最小化

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解の表現

• 解の条件: **正規方程式**

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}y$$

• 解の一意性 : **Gram 行列 X**^T**X** が正則

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{v}$$

最小二乗推定量の性質

- **あてはめ値** $\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}$ は X の列ベクトルの線形結合
- 残差 $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} と直交

$$\hat{\epsilon}^{\mathsf{T}}\hat{\mathbf{v}} = 0$$

• 回帰式は説明変数と目的変数の 標本平均 を通過

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}, \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

寄与率

• 決定係数 (R-squared)

$$R^2 = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_i^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正

解析の事例

実データによる例

- 気象庁より取得した東京の気候データ (再掲)
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - データ https://noboru-murata.github.io/statistical-data-analysis2/data/data03.zip

東京の8月の気候の分析

• データの一部

表 1: 東京の8月の気候

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2022-08-01	30.6	0	24.53	0	SSE	2.8	1010.1	72	8.8
2022-08-02	31.6	0	24.78	0	SSE	2.5	1008.8	71	9.8
2022-08-03	31.5	0	21.24	0	SSE	2.3	1005.1	75	7.3
2022-08-04	24.6	18	3.46	0	NE	2.7	1006	89	10
2022-08-05	23.8	0	7.65	0	NE	2.9	1006.1	83	9.8
2022-08-06	25.2	0	17.06	0	SSE	2.4	1008.1	73	10
2022-08-07	27.6	0	14.45	0	SSE	2.2	1009.3	80	8.3
2022-08-08	29.8	0	22.52	0	S	4.5	1008.5	75	4.8
2022-08-09	30.9	0	25.5	0	S	5.5	1006.9	69	6.8
2022-08-10	30.5	0	25.99	0	S	5.3	1007.2	70	6
2022-08-11	29.5	0	22.9	0	S	5.4	1007.5	75	6
2022-08-12	28.3	2	15.36	0	S	5.8	1007.5	81	9.8
2022-08-13	25.5	47.5	4.53	0	S	4.8	1005.6	94	10
2022-08-14	28.2	0	16.28	0	SSE	2.6	1003	84	8.8
2022-08-15	29.4	0	18.65	0	S	2.5	1003.4	78	8.8
2022-08-16	31	0	20.5	0	SSW	4.8	1000.6	70	8.3
2022-08-17	27.3	5	8.87	0	NE	2.5	1005.8	77	10
2022-08-18	26.8	13	8.74	0	S	2.8	1001.7	81	6
2022-08-19	27.5	0	23.52	0	SSE	3.4	1001.7	62	3
2022-08-20	26.4	1.5	13.5	0	NW	1.8	1000.6	82	9.8
2022-08-21	26	1	8.96	0	NE	2.1	1002.3	87	10
2022-08-22	26.2	0	9.05	0	NNE	2.5	1005.5	82	10
2022-08-23	28.7	0	17.94	0	S	3.2	1003.2	83	8.3
2022-08-24	27.8	2	12.86	0	NE	2.9	1003.2	79	10
2022-08-25	25.7	0	9.83	0	SE	2	1004.1	77	10
2022-08-26	27	3.5	10.05	0	SSE	2.1	1002.5	89	10
2022-08-27	29	0	19.87	0	SSE	3.3	1002.7	80	5.5
2022-08-28	23.7	5	4.58	0	NE	3	1009.2	87	9.8
2022-08-29	23.3	0.5	15.45	0	NE	2.8	1016.1	69	8
2022-08-30	22.8	5	10.12	0	NNE	1.9	1012.5	88	10
2022-08-31	27.1	1	17.46	0	S	3.2	1007.6	85	8.8

- 気温を説明する5種類の線形回帰モデルを検討
 - モデル1: 気温 = F(気圧)
 - モデル2: 気温 = F(日射)
 - モデル 3: 気温 = F(気圧, 日射)
 - モデル4: 気温 = F(気圧, 日射, 湿度)
 - モデル 5: 気温 = F(気圧, 日射, 雲量)

図 1: 散布図

分析の視覚化

- 関連するデータの散布図
- モデル1の推定結果
- モデル2の推定結果
- モデル3の推定結果
- 観測値とあてはめ値の比較

モデルの比較

• 決定係数 (R², Adjusted R²)

あてはめ値の性質

あてはめ値

• さまざまな表現

図 2: モデル 1

図 3: モデル 2

図 4: モデル 3

図 5: モデルの比較

表 2: 寄与率によるモデルの比較

	目的変数									
	モデル 1	モデル 2	気温 モデル 3	モデル 4	モデル 5					
気圧	-0.178 (0.127)		-0.223 (0.068)	-0.214 (0.067)	-0.242 (0.068)					
日射		0.297 (0.041)	0.306 (0.036)	0.366 (0.056)	0.348 (0.045)					
湿度				0.071 (0.051)						
雲量					0.238 (0.161)					
Constant	206.535 (127.430)	22.969 (0.690)	247.477 (68.433)	231.843 (68.254)	263.717 (67.941)					
\mathbb{R}^2	0.064	0.641	0.741	0.758	0.760					
Adjusted R ²	0.031	0.628	0.722	0.731	0.733					

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}
(\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y} を代入)
= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}
(\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon} を代入)
= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}
= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$
(B)

- (A) あてはめ値は **観測値の重み付けの和** で表される
- (B) あてはめ値と観測値は 誤差項 の寄与のみ異なる

あてはめ値と誤差

• 残差と誤差の関係

$$\hat{\epsilon} = y - \hat{y}$$

$$= \epsilon - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\epsilon$$

$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})\epsilon \qquad (C)$$

- (C) 残差は **誤差の重み付けの和** で表される

ハット行列

定義

$$H = X(X^\mathsf{T} X)^{-1} X^\mathsf{T}$$

• ハット行列 H による表現

$$\hat{y} = Hy$$

$$\hat{\epsilon} = (I - H)\epsilon$$

- あてはめ値や残差は H を用いて簡潔に表現される

ハット行列の性質

- ・ 観測データ (デザイン行列) のみで計算される
- 観測データと説明変数の関係を表す
- 対角成分(テコ比; leverage) は観測データが自身の予測に及ぼす影響の度合を表す

$$\hat{y}_i = (H)_{ii} y_i + (それ以外のデータの寄与)$$

- (A)_{ii} は行列 A の (i, j) 成分

- テコ比が小さい:他のデータでも予測が可能

- テコ比が大きい:他のデータでは予測が困難

推定量の統計的性質

最小二乗推定量の性質

• 推定量と誤差の関係

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{y}$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(X\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

• 正規分布の重要な性質 (**再生性**)

正規分布に従う独立な確率変数の和は正規分布に従う

推定量の分布

• 誤差の仮定:独立,平均 0 分散 σ^2 の正規分布

• 推定量は以下の多変量正規分布に従う

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \mathbb{E}[\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}] = \boldsymbol{\beta}$$

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \mathbb{E}[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}}] = \sigma^{2}(X^{\mathsf{T}}X)^{-1}$$

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^{2}(X^{\mathsf{T}}X)^{-1})$$

• 通常 σ^2 は未知、必要な場合には不偏分散で代用

$$\hat{\sigma^2} = \frac{S}{n-p-1} = \frac{1}{n-p-1} \hat{\boldsymbol{\epsilon}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = \frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2$$

• これらの性質を利用してモデルの評価を行う

実習

R: 乱数を用いた人工データの生成

• 正規乱数を用いた線形単同帰モデル

```
set.seed(987) # 乱数のシード値を設定
x_obs <- tibble(x0 = 1, x1 = c(1,3,5,7)) # 説明変数の観測値
epsilon <- rnorm(nrow(x_obs), sd = 0.5) # 誤差項の生成
beta <- c(2, -3) # 回帰係数
toy_data <- x_obs |> # 目的変数の観測値を追加
mutate(y = as.vector(as.matrix(x_obs) %*% beta) + epsilon)
toy_lm <- lm(y ~ x1, data = toy_data) # 回帰係数の推定
coef(toy_lm) # 回帰係数の取得
summary(toy_lm) # 分析結果の概要の表示
```

R:数值実験 (Monte-Carlo 法)

• 実験のためのコードは以下のようになる

```
mc_num <- 5000 # 実験回数を指定
mc_trial <- function() { # 1 回の試行を行うプログラム
    ## 乱数生成と推定の処理
    return(返り値)}
mc_data <-
    replicate(mc_num, mc_trial()) |> # Monte-Carlo 実験
    t() |> as_tibble() # 転置 (関数 t()) してデータフレームに変換
#'適切な統計・視覚化処理 (下記は例)
mc_data |>
    summarise(across(everything(), var)) # 各列の分散の計算
ggpairs(mc_data) # 散布図行列の描画
tibble(x = mc_data[[k]]) |> # k 列目のベクトルで新しいデータフレームを作成
    ggplot(aes(x = x)) + geom_histogram() # k 列目のデータのヒストグラム
```

練習問題

- 最小二乗推定量の性質を数値実験 (Monte-Carlo 法) により確認しなさい
 - 以下のモデルに従う人工データを生成する

説明変数の観測データ:

{1, 20, 13, 9, 5, 15, 19, 8, 3, 4}

確率モデル:

$$y = -1 + 2 \times x + \epsilon, \quad \epsilon \sim \mathcal{N}(0, 2)$$

- 観測データから回帰係数を推定する
- 実験を複数回繰り返し推定値 $(\hat{\beta}_0, \hat{\beta}_1)$ の分布を調べる

誤差の評価

寄与率 (再掲)

- 決定係数 (R-squared)
 - 回帰式で説明できるばらつきの比率

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- 自由度調整済み決定係数 (adjusted R-squared)
 - 決定係数を不偏分散で補正

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

各係数の推定量の分布

- 推定された回帰係数の精度を評価
 - 誤差 ϵ の分布は平均 0 分散 σ^2 の正規分布
 - $-\hat{\boldsymbol{\beta}}$ の分布: p+1 変量正規分布

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 (X^\mathsf{T} X)^{-1})$$

 $-\hat{\beta}_i$ の分布: 1 変量正規分布

$$\hat{\beta}_i \sim \mathcal{N}(\beta_i, \sigma^2((X^\mathsf{T}X)^{-1})_{i,i}) = \mathcal{N}(\beta_i, \sigma^2\zeta_i^2)$$

* (A)_{ii} は行列 A の (j, j) (対角) 成分

標準誤差

- 標準誤差 (standard error)
 - β_i の標準偏差の推定量

s.e.
$$(\hat{\beta}_j) = \hat{\sigma}\zeta_j = \sqrt{\frac{1}{n-p-1}\sum_{i=1}^n \hat{\epsilon}_i^2} \cdot \sqrt{((X^{\mathsf{T}}X)^{-1})_{jj}}$$

- 未知母数 σ^2 は不偏分散 $\hat{\sigma}^2$ で推定
- β_i の精度の評価指標

実習

練習問題

- 数値実験により標準誤差の性質を確認しなさい
 - 人工データを用いて標準誤差と真の誤差を比較する

#'標準誤差は以下のようにして取り出せる

toy_lm <- lm(formula, toy_data)

summary(toy_lm)\$coefficients #係数に関する情報はリストの要素として保管されている

summary(toy_lm)\$coefficients[,2] # 列番号での指定

summary(toy_lm)\$coef[,"Std. Error"] # 列名での指定. coef と省略してもよい

- 広告費と売上データを用いて係数の精度を議論する
- 東京の気候データを用いて係数の精度を議論する

係数の評価

t 統計量

• 回帰係数の分布 に関する定理

t 統計量 (t-statistic)

$$t = \frac{\hat{\beta}_j - \beta_j}{\text{s.e.}(\hat{\beta}_j)} = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}\zeta_j}$$

は自由度 n-p-1 の t 分布に従う

- 証明には以下の性質を用いる
 - * $\hat{\sigma}^2$ と $\hat{\boldsymbol{\beta}}$ は独立となる
 - * $(\hat{\beta}_i \beta_i)/(\sigma \zeta_i)$ は標準正規分布に従う
 - * $(n-p-1)\hat{\sigma}^2/\sigma^2 = S(\hat{\boldsymbol{\beta}})/\sigma^2$ は自由度 n-p-1 の χ^2 分布に従う

t 統計量による検定

- 回帰係数 β_i が回帰式に寄与するか否かを検定
 - 帰無仮説 H_0 : $\beta_i = 0$ (t 統計量が計算できる)
 - 対立仮説 H_1 : $β_i ≠ 0$
- p値:確率変数の絶対値が |t| を超える確率
 - f(x) は自由度 n-p-1 の t 分布の確率密度関数

$$(p \ \text{値}) = 2 \int_{|t|}^{\infty} f(x) dx \quad (両側検定)$$

帰無仮説 H_0 が正しければ p 値は小さくならない

実習

練習問題

- 数値実験により t 統計量の性質を確認しなさい
 - 人工データを用いて t 統計量の分布を確認する

#' t 統計量とその p 値は以下のようにして取り出せる
toy_lm <- lm(formula, toy_data)
summary(toy_lm)\$coef[,c("t value","Pr(>|t|)")] # 列名での指定
summary(toy_lm)\$coef[,3:4] # 列番号での指定

- 広告費と売上データを用いて係数の有意性を議論する
- 東京の気候データを用いて係数の有意性を議論する

モデルの評価

F 統計量

・ ばらつきの比 に関する定理

 $\beta_1 = \cdots = \beta_p = 0$ ならば F 統計量 (F-statistic)

$$F = \frac{\frac{1}{p}S_r}{\frac{1}{1-p-1}S} = \frac{n-p-1}{p} \frac{R^2}{1-R^2}$$

は自由度 p, n-p-1 の F 分布に従う

- 証明には以下の性質を用いる
 - $*S_r$ とSは独立となる
 - * S_r/σ^2 は自由度 p の χ^2 分布に従う
 - * S/σ^2 は自由度 n-p-1 の χ^2 分布に従う

F統計量を用いた検定

- 説明変数のうち1つでも役に立つか否かを検定
 - 帰無仮説 $H_0: \beta_1 = \cdots = \beta_p = 0 (S_r \text{ が } \chi^2 \text{ 分布になる})$
 - 対立仮説 H_1 : ∃j $β_i ≠ 0$
- p値:確率変数の値がFを超える確率
 - f(x) は自由度 p, n-p-1 の F 分布の確率密度関数

$$(p \ \mbox{\'e}) = \int_F^\infty f(x) dx \quad (片側検定)$$

帰無仮説 H_0 が正しければ p 値は小さくならない

実習

練習問題

- 数値実験により F 統計量の性質を確認しなさい
 - 人工データを用いて F 統計量の分布を確認しなさい

```
#' F統計量とその自由度は以下のようにして取り出せる
toy_lm <- lm(formula, toy_data)
summary(toy_lm)$fstat
summary(toy_lm)$fstatistic # 省略しない場合
```

- 広告費と売上データのモデルの有効性を議論しなさい
- 東京の気候データのモデルの有効性を議論しなさい

補足

R:診断プロット

- 回帰モデルのあてはまりを視覚的に評価
 - Residuals vs Fitted: あてはめ値 (予測値) と残差の関係
 - Normal Q-Q: 残差の正規性の確認
 - Scale-Location: あてはめ値と正規化した残差の関係
 - Residuals vs Leverage: 正規化した残差とテコ比の関係

などが用意されている

```
#' 関数 stats::lm() による推定結果の診断プロット
tw_lm6 <- lm(temp ~ press + solar + rain, data = tw_subset)
#' 関数 ggfortify::autoplot() を利用する
#' 必要であれば 'install.packages("ggfortify")' を実行
library(ggfortify)
autoplot(tw_lm6)
#' 診断プロットは 1 から 6 まで用意されており 1,2,3,5 がまとめて表示される
#' 個別に表示する場合は 'autoplot(tw_lm6, which = 1)' のように指定する
#' 詳細は '?ggfortify::autoplot.lm' を参照
```

次回の予定

- 第1回:回帰モデルの考え方と推定
- 第2回: モデルの評価
- 第3回:モデルによる予測と発展的なモデル