

(11)Publication number:

09-176892

(43)Date of publication of application: 08.07.1997

(51)Int.CI.

C25D 11/04 C25D 11/06

(21)Application number: 07-349174

.....

(22)Date of filing:

. 07 343174

(71)Applicant: RICOH CO LTD

20.12.1995 (72)Inventor:

IKEDA KUNIO

(54) ANODIZATION METHOD AND DEVICE THEREFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a novel anodization method by which a film is formed with the physical properties such as hardness controlled stepwise or gradually from the aluminum base material side toward the surface layer (oxide film) or vice versa.

SOLUTION: A metallic base material is electrolyzed stepwise or continuously by using ≥2 kinds of electrolytes each consisting of sulfuric acid, oxalic acid, chromic acid, etc., and having a concn. different from one another, the base material is electrolyzed stepwise or continuously with the electrolytes having a different temp. from one another or the base material is electrolyzed stepwise or continuously with the electrolytes having the different concn. and temp. to impart a hardness difference stepwise or alternately from the base material toward the surface oxide layer or vice versa.

LEGAL STATUS

[Date of request for examination]

14.05.1999

[Date of sending the examiner's decision of rejection]

19.06.2001

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開發号

特開平9-176892

(43)公開日 平成9年(1997)7月8日

(51) Int.CL		織別起号	片内整理番号	PΙ			技術表示體所
C25D	11/04	302		C 2 5 D	11/04	302	
	11/06				11/06		

•		杂話查審	未請求 菌求項の数3 FD (全 7 四)		
(21)出廢番号	特顯平7-3/9174	(71) 出項人	000006747 株式会社リコー		
(22)出窗日	平成7年(1995)12月20日	(72) 宛明者	東京都大田区中屬込1丁目3番6号 池田 邦夫 東京都大田区中屬込1丁目3番6号 株式 会社リコー内		
		(74)代理人	弁理士 油浦 敏明 (外1名)		

(54) 【発明の名称】 陽極酸化法及び装置

(57)【要約】

【課題】 硬度などの膜物性をアルミニウム母特側から 表面層(酸化膜)側へ、あるいは、それとは逆に、段階 的に又は傾斜的に成膜・調剤できるようにした新規な陽 極酸化法を提供する。

【解決手段】 電解液が確酸、蓚酸、クロム酸などであ って途度差のある2種類以上で段階的あるいは連続的に 弯解するか、前記電解液に温度差をもたせその2種類以 上で段階的あるいは連続的に電解するか、又は、これら 液淀度と液温度の異なる電解液をおりまぜて段階的ある いは追続的に電解するかして、金属母村側から表面酸化 層側へ (表面酸化層側から金属母材側へを含む) 段階的 あるいは交互に硬度差を付与することを特徴とする陽極 酸化法。

1 電解槽 2 電解液

|| || 貯穀槽

12 12 配管

13 13 1127

14 14 液送ポンプ

(2)

特開平9-176892

【特許請求の範囲】

【語求項1】 電解液中で金属母材を陽極として電解す ることにより該金属母材の表面に酸化膜を形成する陽極 酸化法において、該金属母村側から該表面酸化膜側へ段 階的にもしくは交互に硬度差を設けるようにすることを 特徴とする隔極酸化法。

【請求項2】 該電解液が醸酸、蓚酸、クロム酸などで あって濃度差のある2種類以上で段階的あるいは連続的 に電解するか、該電解液の温度に温度差をもたせその2 種類以上で段階的あるいは迫続的に変えるようにして電 10 解するか、又はこれら濃度差と温度差を有する電界液を おりまぜて段階的あるいは連続的に電解する請求項!記 戴の陽極酸化法。

【請求項3】 液濃度及び液温度が異なる2種類以上の 電解液を収納した複数の電解液貯蔵と、少なくとも1つ の電解液槽とが、該電解液貯槽から該電解液槽に電解液 の輸送が行なわれるように、パイプで連絡されているこ とを特徴とする陽極酸化装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は陽極酸化法及び装置 に関する。

[0002]

【従来の技術】陽極酸化法及び装置は、広範な分野にお いて用いられており、特に各種金型、軸受、歯車、複合 シリンダーなどの耐摩耗性を重視する分野では表面改質 法が顕質陽極酸化法によりなされている。例えば膜簡易 的な試作型や少量の成形ロットの場合、設計変更への対 応令金型加工資用の低減を目的にアルミニウム金型が用 いられる試みがある。しかし、アルミニウム母村は硬度 30 も低くガラス微維や無機フィラー入りの制脂ではアルミ ニウム表面が摩託し、期待した程のショット数が得られ ないという不具合があり、めっき、陽極酸化、イオンブ レーティングなどの表面改質が試みられている。

【0003】その袋つかをあけると、特開昭56-11 5236号では合成樹脂用インジェクション金型の製造 にA1合金(75S、17S、16S)の硬質アルマイ ト法が採用され、ここでは電解液に11~15%の日。 SO、(波温0~10°C) が用いられ、電流密度2A/ dmi、電解時間60~80分、裕電圧13Vの条件 で、ビッカース硬度(HV)400以上が得られるとし ている。また、特闘平1-108015号ではプラスチ ック射出成形用金型の製造にA!合金の硬質アルマイト 法が採用され、とこでは電解液に18%の日、SO、(液 温10℃)が用いられ、電流密度1A/dm゚、浴電圧 20 7の条件で、ビッカース硬度250以上が得られる としている。

【0004】しかし、従来の陽極酸化法では使用する電 解液の温度、濃度を一定にして処理を行なっており、そ の結果、低温処理における硬質膜(硬質アノード酸化皮 50

膜)を得る操作では母材アルミニウムとの急激な物性変 化(例えば、体積膨張率など)により皮膜、ワレを生じ ることが多く、また、疑返し冷熱を繰返すような応用例 あるいは衝撃を伴う部品の応用ではワレ、膜剥れを生じ ることが多く見受けられた。

2

[0005]

【発明が解決しようとする課題】本発明の目的は、 硬度 などの膜物性をアルミニウム母材側から表面層(酸化 順)側へ、あるいは、それとは逆に、段階的に又は傾斜 的に成膜・制御できるようにした新規な陽極酸化法、及 びその方法の実施に有用な装置を提供することにある。 本発明の他の目的は軟質酸化膜は勿論のこと、耐衡整性 と耐摩耗性とにすぐれた硬質酸化膜が容易な手段で得ら れるようにした陽極酸化法及びその方法の実施に有用な 装置を提供することにある。

[0006]

【課題を解決するための手段】 本発明によれば、電解液 中で金属母材を陽極として電解することにより該金属母 材の表面に酸化膿を形成する陽極酸化処理法において、 該金属材側から該表面酸化漿側へ段階的にもしくは交互 に硬度差を設けることを特徴とする陽極酸化法が提供さ れる。また本発明によれば、電解液が磁酸、蓚酸、クロ ム酸などであって濃度差のある2種類以上で段階的ある いは連続的に電解するか、前記電解波に温度差をもたせ その2種類以上で段階的あるいは連続的に電解するか、 又は、これら液波度と液温度の異なる電解液をおりまぜ て段階的あるいは連続的に電解するかして、金属母材側 から表面酸化層側へ(表面酸化層側から金属母衬側を含 む) 段階的にあるいは交互に硬度差を付与することを特 徴とする陽極酸化法が提供される。

【0007】更に、本発明によれば、液濃度及び液温度 が異なる2種類以上の電解液を収納した複数の電解液庁 蔵と、少なくとも1つの電解液槽とが、該電解液貯槽か ち該電解液槽に電解液の輸送が行なわれるように、パイ プで連絡されていることを特徴とする陽極酸化装置が提 供される。

【0008】以下に本発明をさらに詳細に説明する。図 4は、従来法の陽極酸化処理における装置機成ならびに 結領を示しており、1は電解槽、2は電解液、3は陰極 板、4は陽極(母材)、5は鶯源、6は鶯漉計、7は鶯 圧計、8は冷却機、9は損拌器、10は結根である。な お、 とれらの行号は図 1 に示される本発明の装置にもそ のまま当てはまるものである。

【0009】一般に、陽極酸化法においては、図4にみ **られるように、電解液中でアルミニウム部品を陽極とし** て電気分解すると、アルミニウム部品の表面に酸化膜が 形成される。例えば、電解液として10~20容量%程 度の磁酸水溶液を用い、約20°Cの温度でアルミニウム 材料を陽極酸化すると豪面に耐食性や耐摩耗性に優れた 電解液の種類や濃度、処理液温度などの操作により、ビ

2005/02/03

ッカース硬度で300~450程度の硬質膜を容易に得 ることができ、耐食/耐摩託性膜として工業的に多用さ れている。一般に、膜硬度は、電液密度、液濃度、液温 度に影響され、硫酸浴において硬質膜を得るには、比較

的薄い液濃度で低温で電解することが層知である。だ が、このような従来法には前述のような欠点がある。 【0010】そこで、確酸電解液を用いた例によって本 発明の陽極酸化法の説明を進めることにする。既途のよ うに、硫酸浴による硬質陽極酸化法では、硫酸濃度と処 膜厚としたとき)。図2に示したように、まず、遺度差 及び温度差のある2種類の電解浴を用意する。図2aは 硫酸10容量%溶液、液温5℃とする。図2りは鞣酸1 5容量%溶液、液温20℃である。温度はそれぞれ±1 ℃に保持できるようにした。これらを図1に示した装置 構成のように結算する。アルミニウム部品を陽便とし (図示されていない)、図2 a で一定時間隔極酸化した 後、直ちに図2bの電解液に移し引き続き隔極酸化する 〈図2 c 〉。所望の順厚まで一定時間電解後、通電を止 め電解液中よりアルミニウム部品を取り出す。このよう にして得られた陽極酸化膜の断面を観察すると、アルミ ニウム母材の上に図2aの電解液で陽極酸化した軟質 層。さらに、その表面に先の図2 bの電解液で陽極酸化 した硬質層が連続して形成されていることがわかる(図 3. 及び図5として添付した顕微鏡写真)。

【0011】さらに、このものを図2aの電解液で陽極 酸化処理すると図6として添付した顕微鏡写真に示した ように、アルミニウム母村側から硬質層(順)、軟質層 (膜)、硬質層(膜)の三層からなる膜構造の陽極酸化 膜が得られた。図2において、先に図2り液、その後、 図2 a 液で陽極酸化すると、軟らかい陽極酸化膜の下に 硬質層の陽極酸化膜、アルミニウム母村と断面的に連続 して連続した膜を付与することができる。陽極酸化条件 としては、電解液濃度は5~25容量%、電流密度は 0.5~10A/dm³、浴弯圧15~30Vである。 【0012】とのようにして得られた陽極酸化膜とアル ミニウム母材の断面観察を行なった結果、二層構造ある いは三層構造の陽極酸化膜が形成されている(図5、図 6)。図5において断面硬度を測定した結果、硬質層は ビッカース硬度でHV(0.025)350に対し、軟 40 層の位置が逆転しているのが認められた。 質層は月V(0.025)200であった。本発明の陽 極酸化膜の耐衝駆性については、ビッカース圧子を当接 させた時のクラックの発生の有無を代用特性として評価 した。従来法及び本発明の硬質陽極酸化膜表面の垂直方 向に300g f 荷盒のビッカース圧子を静かに当接させ た時のクラック発生について調査した。従来法では圧跡 部を起点としてクラックが広がっている(図8として添 付した顕微鏡写真)のに対し、本発明により得られる陽 極酸化膜ではクラックが発生しておらず、耐管駆性に優 れることがわかった(図?として添付した顕微鏡写

【0013】 これまでの説明は図2aの電解液(5℃、 10容置%のH₂SO₂). 図2りの電解液(20℃、1 5容量%のH,SO。)を用いて行なった例(液温、濃度 ともに異にした例》であるが、例えば液温を一定にして 温度を変えた2種類以上の電解液を用いることや、濃度 を一定にして液温を変えた2種類以上の電解液を用いる ことも当然行なわれる。

【0014】本発明の隔極酸化を行なう装置としては、 理温度及び電流密度が膜の硬さを左右する(但し、同一 19 予め2以上の異なった電解液(槽)を並べておき順次連 続して電解を行なう装置が用意される。図示されていな いが、陽極酸化部品(製品/ワーク)や陽極酸化治具な どの移動やハンドリングは、手動もしくは自動キャリヤ 一装置等による場合もあり、陽極酸化する対象部品の生 度個数などで遊ばれる。図1は1つの電解槽1と2つの 電解液貯蔵槽11、11′からなり、配管12.1 21. バルブ13、131. 液送ポンプ14、141を 接続して、バルブ13、13 と液送ポンプ14、1 4. の操作で自動的に電解液の出し入れできるようにし た陽極酸化装置の概念図である。

[0015]

【実施例】次に実施例をあげて本発明をさらに具体的に 説明する。

【0016】(A液)液温20℃、濃度10容量%のH ,50.

(B液)液温20℃、濃度15容置%のH,SO.

(C液) 液温5℃、濃度10容置%のH,SO,

(D液)液温15℃、濃度15容置%のH,SO.

【0017】実施例1

30 アルミニウム金型 (キャビティ部)をA液により電流窓 度1A/dmi、浴電圧20Vで20分電解処理した 後、B液を用い電流密度及び浴電圧は同じにして20分 電解処理した。その結果、アルミニウム金型表面にビッ カース硬度目V(0.025)が200の軟質層、30 0の硬質層が形成された。

【0018】実施例2

A波、B液での電解処理の順序を逆にした以外は実施例 1とまったく同様にして二層からなる陽極酸化膜を形成 させた。その結果、実施例1とは異なり、軟質層、硬質

【0019】実能例3

アルミニウム金型(キャビティ部)をC液により電流密 度1A/dmi、浴電圧20Vで20分電解処理した 後、B液を用い電流密度及び浴電圧は同じにして20分 電解処理した。その結果、アルミニウム金型表面にビッ カース硬度HV(0.025)が200の軟質層、35 ()の硬質磨が形成された。

【0020】実施例4

B波、C液での電解処理の順序を逆にした以外は実施例 50 3とまったく同様にして二層からある陽極酸化膜を形成 (4).

させた。その結果、実施例3とは異なり、軟質層、硬質 屋の位置が逆転しているのが認められた。

【0021】実総例5

アルミニウム金型(キャビティ部)をC液により電流密 度1A/dm゚、浴電圧20Vで20分電解処理を行な った後、この電解液 (C液) の温度を(). 5 ℃/分の割 台で上昇させながら更に電解処理を30分行なった。こ の電解液の昇温は電解液を電解槽から貯蔵槽さらに電解 **檜へ循環させるようにするとともに貯蔵槽にヒータをと** りつけることにより行なった。その結果、アルミニウム 10 成で2種以上の遺度、温度の電解浴を用意し、順次、陽 金型側から表面側にかけて徐々に硬度の増した酸化膜が 形成された。

【0022】実施例6

アルミニウム金型(キャイティ部)をC液により電流密 度1A/dmi、浴電圧20Vで15分電解処理した 後、D液を用い電流密度及び浴電圧は同じにして15分 電解処理し、更に、B液を用いこれも電流密度及び浴電 圧は同じにして15分電解処理した。その結果、アルミ ニウム金型側から表面側にかけて、ビッカース硬度目V (0.025)が200の軟質層、250の軟質層、3 20 50の硬質層が形成された。

【0023】比較例1

A波のみで実施例1と同じ条件で電解処理を30分行な った。その結果、ビスカース硬度HV(0.025)が 250程度の単一の硬さの陽極酸化膜となった。

【0024】比較例2

B波のみで実施例1と同じ条件で電解処理を30分行な った。その結果、ビスカース硬度HV(0.025)が 200程度の単一の硬さの陽極酸化膜となった。

[0025]

【発明の効果】請求項上の発明によれば、アルミニウム 母村側から酸化漿表面層、あるいはその逆で段階的、傾 斜的に硬度差もしくは他の物性を変化させるように隔極 酸化暖が形成できるので、軟質膜では耐筒翠性を、硬質 膜では耐摩耗性の一種の襞で彼台的特性が得られる。加 えて、表面から母材側へと段階的に硬度差を設けるよう にすることで皮膜クラックの発生が少なくなる。また、 母村から酸化膜表面層に向けて、あるいは、その道に段 階的に硬度差を設けるように複合的に膜を構成させれ は、硬質層は耐摩耗層、軟質層は倍撃吸収層として働く 40 ようになり膜のワレ、剥れなどの不具合が高信頼性の隔 極酸化膜が得られる。特に、ガラスフィラー入りの射出

成形用アルミニウム金型のように耐磨耗性と耐衡駆性が 求められるような場合、本発明の陽極酸化法によれば金 型耐摩耗性は表面の硬質層が機能し、金型として衝撃吸 収は中間層の軟質層が働くので総合的に耐久性のあるア ルミニウム全型を得ることができる。諸求項2の発明に よれば、成膜パラメータである液濃度、液温度を段階 的、傾斜的に副御するのみで前記の複合的、傾斜的物性 の陽極酸化膜を得ることができる。語求項3の発明によ れば、特殊な装置、電解液を用いることなく従来浴の枠 極酸化処理を重ねて行なうだけで前記複合的陽極酸化膜 を得ることができる。

特開平9-176892

【図面の留草な説明】

- 【図1】本発明の装置の概略を説明するための図。
- 【図2】本発明方法を実施例に即して説明するための
- 【図3】本発明により得られる陽極酸化膜の一例の概略
- 【図4】従来の陽極酸化処理接置の構成図。
- 【図5】本発明により得られた陽極酸化膜の一例の顕微
 - 【図6】本発明により得られた陽極酸化膜の一例の顕微 鏡写真。
 - 【図7】従来法で形成される陽極酸化膜の一例の顕微鏡
 - 【図8】従来法で形成される陽極酸化漿の一例の顕微鏡 写真。

【符号の説明】

- 電解槽
- 2 電解液 30
 - 3 陰極板
 - 陽極(部品)
 - 雷煩
 - 6 電液計
 - 7 電圧計
 - 8 冷却機
 - 9 撹拌機 10 結線
 - 11. 11 貯蔵槽
 - 12.12 配管
 - 13. 13 バルブ
 - 14.14 波送ポンプ

2005/02/03

(5)

特關平9−176892

2 電影法

- 2 電解器
- 12 12 =#
- 15 15 P.B.
- |4 |4 液送ポンプ

[図3]

[図4]

- 3 監視振
- 7 气压制
- 4 楊極(部品)
- 8 冷却機 9 選择機
- 5 電波計
- 10 結構

(6)

特闘平9-176892

[図5]

局通代用尔赛

[図6]

協國代用写真

特闘平9-176892

[図?]

西班民用等義

[図8]

国际代用写真

Best Available Copy

特闘平9-176892

【公報程別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第4区分 【発行日】平成13年2月20日(2001.2.20) 【公開香号】特開平9-176892 【公開日】平成9年7月8日(1997.7.8) 【年通号数】公開特許公報9-1769 【出願香号】特願平7-349174 【国際特許分類第7版】 Q5D 11/04 11/06 (FI) Q50 11/04 302 11/06 【手統領正書】 【提出日】平成11年5月14日(1999.5.1 【手統領正 1 】 【補正対象書類名】図面 【補正対象項目名】図4 【補正方法】変更 【補正内容】 [図4]

ア 電圧器

8 净知摄

9 微拌漿 9 知線

4 環境(銀品)

5 環境 6 環境計

-箱1-