PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-069334

(43) Date of publication of application: 11.03.1997

(51)Int.Cl.

H01J 9/02 H01J 1/30

H01J 31/12

(21)Application number: 07-320927

(71)Applicant: CANON INC

(22) Date of filing:

11.12.1995

(72)Inventor: SAKANO YOSHIKAZU

MITSUMICHI KAZUHIRO SHIGEOKA KAZUYA

HASEGAWA MITSUTOSHI

KISHI ETSURO

MIYAMOTO MASAHIKO

(30)Priority

Priority number: 06313440

Priority date: 16.12.1994

Priority country: JP

06314420 07 4581 19.12.1994 17.01.1995 JP JP

07 4581

22.06.1995

JP

(54) ELECTRON EMITTING ELEMENT, ELECTRON SOURCE BOARD, ELECTRON SOURCE, DISPLAY PANEL, AND IMAGE FORMING DEVICE, AND THEIR MANUFACTURE

(57)Abstract:

PROBLEM TO BE SOLVED: To manufacture many electron emitting elements at low cost on a board by dropping solution containing metallic element to form a conductive film, between a pair of or a plurality of electrodes provided on the substrate, and providing the film with an electron emitter.

SOLUTION: Element electrodes 2 and 3 are made a distance L1 ($2\mu m$) apart on a substrate 1. Next, a conductive film 4 is made to contact with the element electrodes 2 and 3 by discharging the liquid drop 24 consisting of solution containing metallic element from a liquid drop giving device (ink jet ejector) 7. Next, by foaming processing, cracks are brought into existence in the conductive film, and an electron emitter 5 is made. By such constitution, the conductive film is arranged equally in accurate position, and electron emitting property becomes stable. And, this is used for an electron source board, a display panel, an image forming device, etc., excellent in performance.

LEGAL STATUS

[Date of request for examination]

12.03.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number] 3241251 [Date of registration] 19.10.2001

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-69334

(43)公開日 平成9年(1997)3月11日

(51) Int.Cl. ⁶	識別記号 庁内整理	号 FI			3	技術表示箇所
H01J 9/02		H01,J	9/02]	В	
1/30			1/30]	В	
				:	Z	
31/12		5	31/12		С	
		審査請求	未請求	請求項の数35	OL	(全 33 頁)
(21)出願番号	特願平7-320927	(71)出願人	0000010	07		
			キヤノン	ン株式会社		
(22)出願日	平成7年(1995)12月11日		東京都ス	大田区下丸子3	Г目30≹	計2号
		(72)発明者	坂野 勇	都和		
(31)優先権主張番号	特願平6-313440		東京都力	大田区下丸子3门	「目30≹	№2号 キヤ
(32)優先日	平 6 (1994)12月16日		ノン株式	式会社内		
(33)優先権主張国	日本 (JP)	(72)発明者	三道	印宏		
(31)優先権主張番号	特願平6-314420		東京都力	大田区下丸子3	「目30≹	番2号 キヤ
(32)優先日	平6 (1994)12月19日		ノン株式	式会社内		
(33)優先権主張国	日本 (JP)	(72)発明者	重岡 禾	10也		
(31)優先権主張番号	特顯平7-4581		東京都力	大田区下丸子37	「目30≹	番2号 キヤ
(32)優先日	平7 (1995) 1月17日		ノン株式	会社内		
(33)優先権主張国	日本 (JP)	(74)代理人	弁理士	若林 忠		
					J	最終頁に 続く

(54) 【発明の名称】 電子放出素子、電子源基板、電子源、表示パネルおよび画像形成装置ならびにそれらの製造方法

(57)【要約】

【課題】 低コストで基板上に多数の電子放出素子を形 成し得る電子放出素子の製造方法を提供し、その電子放 出素子を用いた良好な電子源基板、電子源、表示パネ ル、画像形成装置を提供する。

【解決手段】 基板上に設けられた一対の電極の間にそ れらの電極に接するようにしながら、金属元素を含有す る溶液を液滴として付与して導電性薄膜を形成し、その 薄膜に電子放出部を設けて電子放出素子とする。

【特許請求の範囲】

【請求項1】 基板上に一対の電極と、導電性薄膜と を、これらが接するように形成し、前記導電性薄膜を用 いて電子放出部を構成する電子放出素子の製造方法にお いて、前記基板上に金属元素を含有する溶液を液滴とし て付与し、前記導電性薄膜を形成することを特徴とする 電子放出素子の製造方法。

【請求項2】 前記導電性薄膜の形成を、前記一対の電 極の形成の後に行う請求項1に記載の電子放出素子の製 造方法。

【請求項3】 前記導電性薄膜の形成を、前記一対の電 極の形成の前に行う請求項1に記載の電子放出素子の製 造方法。

【請求項4】 前記液滴の付与をインクジェット方式で 行う請求項1に記載の方法。

【請求項5】 前記インクジェット方式が、熱エネルギ 一によって溶液内に気泡を形成させて該溶液を液滴とし て吐出させる方式である請求項4に記載の方法。

【請求項6】 一対の電極間に付与する液滴量を、前記 基板と前記電極対によって形成される凹部の容積以下と する請求項2に記載の方法。

【請求項7】 前記導電性薄膜を構成する材料を含有す る液を液滴の状態で前記基板上に1以上付与する工程 と、前記液滴の付与状態を検出し、付与状態に関して得 られた情報に基づいて、液滴の付与を再度行う工程を有 する請求項1に記載の電子放出素子の製造方法。

【請求項8】 前記薄膜を構成する材料を含有する液 を、該材料の分散液とする請求項7に記載の方法。

【請求項9】 前記薄膜を構成する材料を含有する液 を、該材料が溶解した溶液とする請求項7に記載の方 法。

【請求項10】 液滴の付与状態として検出する項目 が、液の有無、付与された液の量および液が付与された 位置のうちの少なくとも1つである請求項7に記載の方 法。

【請求項11】 液滴が付与されていない場合に、再度 同一条件の液滴付与を行う請求項7に記載の製造方法。

【請求項12】 液滴の付与が過剰である場合に、付与 された液滴の少なくとも一部を除去する請求項7に記載 の方法。

【請求項13】 液滴の付与が不完全である場合に、吐 出パラメータを調整して再度液滴付与を行う請求項7に 記載の方法。

【請求項14】 液滴の付与状態の検出による情報に基 づいて、別の吐出位置における吐出パラメータの調整を 行う請求項7に記載の方法。

【請求項15】 調整される吐出パラメータに液滴の吐 出回数および吐出位置のうちの少なくとも一方が含まれ る請求項13に記載の方法。

【請求項16】 液滴の付与状態の検出を、該液滴付与 50 置。

位置へ照射した光の反射光および通過光のうちのいずれ かの検知によって行う請求項7に記載の方法。

【請求項17】 液滴の付与状態の検出を、所定の液滴 付与位置と検出装置の位置合わせを行ってから行う請求 項7に記載の方法。

【請求項18】 前記液滴により形成されるドットと隣 接するドットとの中心間距離が前記ドットの直径以下と なるように前記液滴を複数個付与し、前記導電性薄膜を 形成する請求項1に記載の方法。

10 【請求項19】 前記導電性薄膜によって構成される電 子放出部の膜厚を、付与する液滴の量および数によって 制御する請求項18に記載の製造方法。

【請求項20】 前記液滴を前記基板上に付与する前 に、前記液滴の付与される基板表面が疎水性となるよう に前記基板の表面処理を行う請求項1に記載の方法。

【請求項21】 請求項1に記載の方法によって得られ る電子放出素子を前記基板上に複数個配して構成した電 子源基板。

【請求項22】 請求項21に記載の電子源基板上の複 20 数の電子放出素子を接続させて構成した電子源。

【請求項23】 請求項22に記載の電子源を有してな るリアプレートと、蛍光膜を有するフェースプレート と、を対向配置し、前記電子源より放出される電子を前 記蛍光膜に照射して、画像表示を行うようにしたことを 特徴とする表示パネル。

【請求項24】 請求項23に記載の表示パネルに駆動 回路を接続してなる画像形成装置。

【請求項25】 基板上に金属元素を含有する液滴を吐 出してこれを付与する液滴付与手段と、前記液滴の付与 30 状態を検出する検出手段と、該検出手段によって得られ る情報に基づいて前記液滴付与手段の吐出パラメータを 制御する制御手段とを有してなる電子放出素子の製造装 置。

【請求項26】 前記検出手段が、液滴の有無および液 滴の量を検出する液滴情報検出手段ならびに液滴が付与 された位置を検出する着弾位置検出手段のうちの少なく とも1つを有している請求項25に記載の製造装置。

【請求項27】 液滴情報検出手段と着弾位置検出手段 が、同一の検出光学系である請求項26に記載の製造装 40 置。

【請求項28】 液滴情報検出と着弾位置検出を同時に 行ない得る請求項26に記載の製造装置。

【請求項29】 液滴情報検出と着弾位置検出を連続的 に行ない得る請求項26に記載の製造装置。

【請求項30】 検出手段によって得られる情報に基づ いて位置合わせを行う位置合わせ手段を有する請求項2 5に記載の製造装置。

【請求項31】 付与された液滴の少なくとも一部を除 去する液滴除去手段を有する請求項25に記載の製造装

【請求項32】 液滴除去手段がガスを噴射して液滴を ギャップ内から飛散させる機能を有する除去専用ノズル を備えたものである請求項31に記載の製造装置。

【請求項33】 液滴付与手段がインクジェット方式の 装置である請求項25に記載の製造装置。

【請求項34】 インクジェット方式が、熱エネルギーによって溶液内に気泡を形成させて該溶液を液滴として 吐出させる方式である請求項33に記載の製造装置。

【請求項35】 インクジェット方式が、圧電素子によって溶液を液滴として吐出させる方式である請求項33 に記載の製造装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子放出素子とその素子を用いた電子源基板、電子源、表示パネルおよび 画像形成装置、ならびにそれらの製造方法に関する。

[0002]

【従来の技術】従来、電子放出素子として熱電子源と冷陰極電子源の2種類が知られている。冷陰極電子源には電界放出型(以下、FE型と称する)、金属/絶縁層/金属型(以下、MIM型と称する)や、表面伝導型電子放出素子等がある。

【0003】FE型の例としては、Dykeらの報告(W. P. Dyke and W. W. Dolan, "Field emission", Advance in Electron Physics, 8, 89(1956)) に記載のもの、S pindtの報告(C. A. Spindt, "Physical Properties of thin-film field emission cathodes with molybdenium cones", J. Appl. Phys., 47, 5248(1976)) に記載のもの等が知られている。

【0004】MIM型の例としては、Meadの報告(C. A. Mead, J. Appl. Phys., 32, 646(1961)) に記載のもの等が知られている。

【0005】表面伝導型電子放出素子の例としては、エリンソンの報告(M. I. Elinson, Radio Eng. Electron Phys., 10(1965))に記載のもの等がある。

【0006】表面伝導型電子放出素子は、基板上に形成された小面積の薄膜に、膜面に平行に電流を流すことにより、電子放出が生ずる現象を利用するものである。この表面伝導型電子放出素子としては、前記のエリンソンの報告に記載の $S \times O_2$ 薄膜を用いたもの、 $A \times O_2$ は、 $A \times O_3$ に $A \times O_3$

【0007】これらの表面伝導型電子放出素子の典型的な素子構成として前述のハートウェル(Hartwell)の素子の構成を図39に示す。同図において、1は基板である。4は導電性薄膜で、H型形状のパターンに、スパッ 50

タで形成された金属酸化物薄膜等からなり、後述の通電フォーミングと呼ばれる通電処理により電子放出部 5 が形成される。なお、図中の素子電極間隔 L は $0.5 \sim 1$ mm、W は 0.1 mmで設定されている。なお、電子放出部 5 の位置および形状については不明であるので、模式図として表した。

【0008】従来、これらの表面伝導型電子放出素子においては、電子放出を行なう前に導電性薄膜4を予め通電フォーミングと呼ばれる通電処理によって電子放出部5を形成するのが一般的であった。すなわち、通電フォーミングとは前記の導電性薄膜4の両端に直流電圧あるいは非常にゆっくりした昇電圧例えば1V/分程度を印加通電し、導電性薄膜を局所的に破壊、変形もしくは変質せしめ、電気的に高抵抗な状態にした電子放出部5を形成することである。なお、電子放出部5は導電性薄膜4の一部に亀裂が発生し、その亀裂付近から電子放出が行なわれる。前記通電フォーミング処理を行なった表面伝導型電子放出素子は、導電性薄膜4に電圧を印加し、素子に電流を流すことによって、上述の電子放出部5より電子を放出せしめるものである。

【0009】上述の表面伝導型電子放出素子は、構造が 単純で製造も容易であることから、大面積で多数の素子 を配列形成できる利点がある。そこで、その特徴を生か せるような色々な応用が研究されている。例としては、 荷電ビーム源、画像表示装置等の表示装置が挙げられ る。

【0010】本出願人は、表面伝導型電子放出素子に着目しており、特開平2-56822号公報において、新規な電子放出素子の製造方法を提案した。図38に当該30公報に開示された素子を示す。同図において、1は基板、2および3は素子電極、4は導電性薄膜、5は電子放出部である。この電子放出素子の製造方法は、例えば基板1に一般的な真空蒸着技術、フォトリソグラフィ技術により素子電極2および3を形成する。次いで、導電性薄膜4は、分散塗布法などによって導電性材料を基板上に塗布した後、パターニングにより形成する。その後、素子電極2および3に電圧を印加し通電処理を施すことによって、電子放出部5を形成する。

[0011]

)【発明が解決しようとする課題】しかしながら、上記従来例による製造方法では、半導体プロセスを主とする方法で製造するものであるために、現行の技術では大面積にわたって多数の電子放出素子を形成することは困難であり、しかも特殊で高価な製造装置を必要とする。さらに、パターニングに伴う複数の工程が必要とされることから、これらの工程の簡略化が望まれているところである。すなわち、現在のところ、基板上に大面積にわたって多数の電子放出素子を形成する場合、生産コストが高くなってしまうというのが実状である。

) 【0012】本発明は上述したような技術的課題に鑑み

てなされたものである。本発明の目的は、低コストで基 板上に多数の電子放出素子を形成し得る電子放出素子の 製造方法を提供することにある。

【0013】本発明の別の目的は、その電子放出素子を 用いた電子源基板、電子源、表示パネル、画像形成装置 を提供することにある。

【0014】本発明のさらに別の目的は、パターニング 工程を削減した電子放出素子の製造方法を提供すること

【0015】本発明のさらに別の目的は、基板上の所定 10 の位置に所望の量の導電性材料を付与することができ、 製造工程を低減した電子放出素子の製造方法を提供する ことにある。

【0016】本発明のさらに別の目的は、電子放出素子 を用いた電子源基板、電子源、表示パネルおよび画像形 成装置を提供することにある。

[0017]

【課題を解決するための手段】上述した目的を達成する 本発明は、以下の構成のものである。

【0018】すなわち本発明の電子放出素子の製造方法 20 の第1の態様は、基板上に一対の電極と、導電性薄膜と を、これらが接するように形成し、前記導電性薄膜を用 いて電子放出部を構成する電子放出素子の製造方法にお いて、前記基板上に金属元素を含有する溶液を液滴とし て付与し、前記導電性薄膜を形成することを特徴とする ものである。

【0019】本発明の電子放出素子の製造方法の第2の 態様は、基板上に1対以上の相対向する電極間に電子放 出部を構成する薄膜を配した電子放出素子の製造方法に おいて、薄膜の材料を含有する液を液滴の状態で該電極 30 間に1以上付与する工程と、該電極間への該液滴の付与 状態を検出し、付与状態に関して得られた情報に基づい て、該電極間に液滴の付与を行う工程を有することを特 徴とするものである。

【0020】本発明の電子放出素子の製造方法の第3の 態様は、基板上に形成された1対の素子電極間に、導電 性薄膜材料溶液の液滴を、隣接するドット同士の中心間 距離が1ドットの直径以下となるように複数個付与し、 該複数のドットによって形成された導電性薄膜に通電処 理を施して電子放出部を形成することを特徴とするもの 40 程を有することを特徴とする。 である。

【0021】本発明の電子放出素子の製造方法の第4の 態様は、導電性薄膜を形成する材料の溶液を1対の素子 電極間に液滴の状態で付与することによって導電性薄膜 を形成する工程を含み、前記溶液が親水性であって、そ の溶液を素子電極を有する基板上に付与する際に、基板 の表面上が疎水性になるように基板の表面処理を行うこ とを特徴とするものである。

【0022】本発明の電子放出素子の製造方法の第5の 態様は、電子放出素子の製造方法において、導電性薄膜 50 【0034】本発明の画像形成装置の製造方法は、基板

を形成する材料を含む溶液を液滴の状態で少なくとも1 滴付与することにより基板上にドット状の導電性薄膜を 形成した後、該導電性薄膜に接するように一対の素子電 極を形成することを特徴とするものである。

【0023】本発明は、本発明の電子放出素子の製造方 法により得られた電子放出素子を包含する。

【0024】本発明の電子源基板は、本発明の電子放出 素子が基板上に複数個配置されて成ることを特徴とする ものである。

【0025】本発明の電子源は、本発明の電子源基板上 の素子を接続して成ることを特徴とするものである。

【0026】本発明の表示パネルは、本発明の電子源を 有してなるリアプレートと、蛍光膜を有するフェースプ レートとを対向配置し、前記電子源より放出される電子 を前記蛍光膜に照射して、画像表示を行うようにしたこ とを特徴とするものである。

【0027】本発明の画像形成装置は、本発明の表示パ ネルに、少なくとも駆動回路が接続されてなることを特 徴とするものである。

【0028】本発明は、電子放出素子の製造装置を包含 する。

【0029】本発明の電子放出素子の製造装置は、基板 上の相対向する電極間に微粒子膜の材料となる金属元素 を含有する液滴を吐出して付与する液滴付与手段と、該 電極間への液滴の付与状態を検出する検出手段と、該検 出手段によって得られる情報に基づいて該液滴付与装置 の吐出パラメータを制御する制御手段とを有することを 特徴とするものである。

【0030】本発明は、下述する方法をも包含する。

【0031】本発明の電子源基板の製造方法は、基板上 に複数個の素子電極対を形成し、各電極対間に金属元素 を含有する溶液を1滴以上の液滴として付与して該電極 間に導電性薄膜を形成して、複数個の電子放出素子を形 成する工程を有することを特徴とする。

【0032】本発明の電子源の製造方法は、基板上に複 数個の素子電極対を形成し、各電極対間に金属元素を含 有する溶液を1滴以上の液滴として付与して該電極間に 導電性薄膜を形成して、複数個の電子放出素子を形成す る工程と、該基板上の素子間を配線によって接続する工

【0033】本発明の表示パネルの製造方法は、基板上 に複数個の素子電極対を形成し、各電極対間に金属元素 を含有する溶液を1滴以上の液滴として付与して該電極 間に導電性薄膜を形成して、複数個の電子放出素子を形 成する工程と、該基板上の素子間を配線によって接続す る工程と、該電子放出素子が形成された基板を有してな るリアプレートと蛍光膜を有するフェースプレートと を、両プレートが対向するように支持枠を介して接合さ せる工程を有してなることを特徴とする。

(5)

上に複数個の素子電極対を形成し、各電極対間に金属元素を含有する溶液を1滴以上の液滴として付与して該電極間に導電性薄膜を形成して、複数個の電子放出素子を形成する工程と、該基板上の素子間を配線によって接続する工程と、該電子放出素子が形成された基板を有してなるリアプレートと蛍光膜を有するフェースプレートとを、両プレートが対向するように支持枠を介して接合させる工程を行って表示パネルを形成し、該表示パネルに少なくとも駆動回路を接続することを特徴とする。

【0035】上述した本発明によれば、前述した解決すべき技術的課題が解決され、前述した目的が達成される。

【0036】本発明の電子放出素子の製造方法によれば、電子放出部を構成する導電性薄膜を金属元素を含有する溶液を液滴の形態で付与して形成することから、所定の位置に所望の量を付与することができ、電子放出素子の製造工程を大幅に低減することができる。

【0037】さらに、本発明の電子放出素子の製造方法の第2の態様によれば、液滴の情報を検出し液滴に基づいて吐出条件および吐出位置の補正、液滴の再付与を行20うことにより、欠陥の極めて少ない均一な薄膜を形成できる。これにより、素子特性均一性の飛躍的な向上が実現でき、大面積化に伴う歩留り低下の問題を解決できる。

【0038】さらにこのような電子放出素子を用いると、性能の優れた電子源基板、電子源、表示パネルおよび画像形成装置を得ることができる。

【0039】さらに、本発明の電子放出素子の製造方法の第3の態様によれば、電子放出部を構成する金属材料を、分散または溶解した含有溶液を液滴の形態で複数個付与する工程において、個々のドットの中心間の距離を1ドットの直径より短い距離で付与してマルチパターン(パッド)を形成することにより、電子放出部を構成する導電性膜を極めて高い精度で形成できる。

【0040】さらに、本発明の電子放出素子の製造方法の第4の態様によれば、付与する液滴の溶液を親水性とし、その溶液を素子電極を有する基板上に付与する際に、基板の表面上が疎水性になるように基板の表面処理を行うことによって、導電性薄膜が再現性よく形成でき、均質な表面伝導型電子放出素子を作製できるため、大面積にわたって多数の表面伝導型電子放出素子を作製した場合でも、均一な電子放出特性を得ることができる。

【0041】さらに本発明の電子放出素子の製造方法の第5の態様によれば、導電性薄膜を形成した後に素子電極を形成することで、本発明の電子放出素子の製造方法を適用し得る態様を拡大し得る。

【0042】また、上述した本発明の電子源、電子源基板、表示パネル、画像形成装置は、電子放出素子を構成する導電性薄膜が的確な位置に均一に配されることか

ら、優れた特性を安定して発揮できる。

[0043]

【発明の実施の形態】以下、図面を用いて本発明を詳細 に説明する。

【0044】図1は本発明の電子放出素子の製造方法の 1例を示す模式図、図2および図3は本発明の製造方法 によって作製される表面伝導型電子放出素子の1例を示 す図である。

【0045】図1、2および3において、1は基板、2 10 および3は素子電極、4は導電性薄膜、5は電子放出 部、7は液滴付与装置、24は液滴である。

【0046】本例においてはまず、基板1上に素子電極2および3をL1の距離を隔てて形成する(図1

(a))。次いで、金属元素を含有する溶液よりなる液滴24を液滴付与装置(インクジェット記録装置)7より吐出させ(図1(b))、導電性薄膜4を素子電極2、3に接するように形成する(図1(c))。次に、例えば後述するフォーミング処理により、導電性薄膜中に亀裂を生ぜしめ、電子放出部5を形成する。

【0047】このような液滴付与法を用いることにより、含有溶液の微小な液滴を所望の位置のみに選択的に形成することができるため、素子部を構成する材料を無駄にすることがない。また高価な装置を必要とする真空プロセス、多数の工程を含むフォトリソグラフィーによるパターニングが不要であり、生産コストを大幅に下げることができるのである。

【0048】液滴付与装置7の具体例を挙げるならば、 任意の液滴を形成できる装置であればどのような装置を 用いても構わないが、特に、十数ngから数十ng程度 の範囲で制御が可能でかつ10ng程度から数十ngの 微小量の液滴が容易に形成できるインクジェット方式の 装置がよい。

【0049】インクジェット方式の装置としては、圧電 素子等を用いたインクジェット噴射装置、熱エネルギー によって液体内に気泡を形成させてその液体を液滴とし て吐出させる方式(以下、バブルジェット方式と称す る)によるインクジェット噴射装置などが挙げられる。 【0050】導電性薄膜4は良好な電子放出特性を得る ために微粒子で構成された微粒子膜が特に好ましく、そ 40 の膜厚は、素子電極2および3へのステップカバレー ジ、素子電極2・3間の抵抗値および後述する通電フォ ーミング条件等によって適宜設定されるが、好ましくは 数Å~数千Åで、特に好ましくは10Å~500Åであ る。そのシート抵抗値は、 $10^3 \sim 10^7 \Omega / \square$ である。 【0051】導電性薄膜4を構成する材料は、Pd、P t, Ru, Ag, Au, Ti, In, Cu, Cr, F e、Zn、Sn、Ta、W、Pb等の金属、PdO、S nO₂、In₂O₃、PbO、Sb₂O₃等の酸化物、Hf B₂、ZrB₂、LaB₆、CeB₆、YB₄、GdB₄等の 50 硼化物、TiC、ZrC、HfC、TaC、SiC、W

C等の炭化物、TiN、ZrN、HfN等の窒化物、S i、Ge等の半導体、カーボン等が挙げられる。

【0052】なお、ここで述べる微粒子膜とは、複数の 微粒子が集合した膜であり、その微細構造として、微粒 子が個々に分散配置した状態のみならず、微粒子が互い に隣接あるいは重なり合った状態(島状も含む)の膜を 指しており、微粒子の粒径は、数Å~数千Å、好ましく は10Å~200Åである。

【0053】液滴24の基になる溶液は、上述した導電 属溶液等が挙げられるが、液滴を生じさせる粘度のもの であることが必要である。

【0054】また、素子電極間に付与する液の量は、下 記式で示されるように基板と1対の素子電極によって形 成される凹部の容積を超えないようにすることが好まし い。

[0055]

【数1】凹部の容積=素子電極の長さ×素子電極の幅 (W1) ×素子電極間隔(L1)

基板1としては石英ガラス、Na等の不純物含有量の少 ないガラス、青板ガラス、SiO2を表面に形成したガ ラス基板およびアルミナ等のセラミックス基板が用いら

【0056】素子電極2および3の材料としては、一般 的な導電性体が用いられ、例えば、Ni、Cr、Au、 Mo、W、Pt、Ti、Al、Cu、Pd等の金属また は合金、ならびにPd、Ag、Au、RuO2、Pdー Ag等の金属または金属酸化物とガラス等から構成され る印刷導体、Іп2О3-SпО2等の透明導電体および ポリシリコン等の半導体材料等から適宜選択される。

【0057】素子電極間隔Lは、好ましくは数百Å~数 百μmである。また、素子電極間に印加する電圧は低い 方が望ましく、再現よく作製することが要求されるた め、好ましい素子電極間隔は、数 μ m~数十 μ mであ

【0058】素子電極長さW'は、電極の抵抗値および 電子放出特性の観点から、数μm~~数百μmであり、 また素子電極2および3の膜厚dは、数百Å~数μmが 好ましい。

された高抵抗の亀裂であり、通電フォーミング等により 形成される。また、亀裂内には数Å~数百Åの粒径の導 電性微粒子を有することもある。この導電性微粒子は導 電性薄膜4を構成する物質の少なくとも一部の元素を含 んでいる。また、電子放出部5およびその近傍の導電性 薄膜4は、炭素および炭素化合物を有することもある。

【0060】また、電子放出部5は、導電性薄膜4なら びに素子電極2および3が形成されてなる素子の通電フ ォーミングと呼ばれる通電処理を行うことによって形成 される。通電フォーミングは、素子電極2・3間に不図 50 た、さらに高い真空度の雰囲気下で、80℃~150℃

示の電源より通電を行い、導電性薄膜4を局所的に破 壊、変形もしくは変質せしめ、構造を変化させた部位を 形成させるものである。この局所的に構造変化させた部 位を電子放出部5と呼ぶ。通電フォーミングの電圧波形 の例を図4に示す。

10

【0061】電圧波形は特にパルス形状が好ましく、パ ルス波高値が一定の電圧パルスを連続的に印加する場合 (図4(a))と、パルス波高値を増加させながら電圧 パルスを印加する場合(図4(b))とがある。まず、 性薄膜の構成材料を水や溶剤等に溶かしたものや有機金 10 パルス波高値が一定電圧とした場合(図4(a))につ いて説明する。

> 【0062】図4におけるT1およびT2は電圧波形のパ ルス幅とパルス間隔であり、T1を1μ秒~10ミリ 秒、T2を10μ秒~100ミリ秒とし、三角波の波高 値(通電フォーミング時のピーク電圧) は表面伝導型電 子放出素子の形態に応じて適宜選択し、適当な真空度、 例えば 1×10^{-5} Torr程度の真空雰囲気下で、数秒 から数十分印加する。なお、素子の電極間に印加する波 形は三角波に限定する必要はなく、矩形波など所望の波 20 形を用いてもよい。

【0063】図4(b)におけるT1およびT2は、図4 (a) の場合と同様であり、三角波の波高値(通電フォ ーミング時のピーク電圧)は、例えば0.1Vステップ 程度ずつ増加させ適当な真空雰囲気下で印加する。

【0064】なお、この場合の通電フォーミング処理 は、パルス間隔T2中に、導電性薄膜4を局所的に破壊 ・変形しない程度の電圧、例えば0.1 V程度の電圧 で、素子電流を測定し、抵抗値を求め、例えば1 M Q 以 上の抵抗を示した時に通電フォーミング終了とする。

【0065】次に通電フォーミングが終了した素子に活 性化工程と呼ぶ処理を施すことが望ましい。

【0066】活性化工程とは、例えば、 10^{-4} ~ 10^{-5} Torr程度の真空度で、通電フォーミング同様、パル ス波高値が一定の電圧パルスを繰返し印加する処理のこ とであり、真空中に存在する有機物質に起因する炭素お よび炭素化合物を導電薄膜上に堆積させ素子電流If、 放出電流 I eを著しく変化させる処理である。活性化工 程は素子電流Ifと放出電流Ieを測定しながら、例え ば、放出電流 I eが飽和した時点で終了する。また、印 【0059】電子放出部5は導電性薄膜4の一部に形成 40 加する電圧パルスは動作駆動電圧で行うことが好まし

> 【0067】なお、ここで炭素および炭素化合物とは、 グラファイト(単結晶および多結晶の両方を指す。)非 晶質カーボン(非晶質カーボンおよび多結晶グラファイ トの混合物を指す)であり、その膜厚は500 Å以下が 好ましく、より好ましくは300Å以下である。

> 【0068】こうして作製した電子放出素子は、通電フ ォーミング工程、活性化工程における真空度よりも高い 真空度の雰囲気下に置いて動作駆動させるのがよい。ま

の加熱後に動作駆動させることが望ましい。

【0069】なお、通電フォーミング工程、活性化処理 した真空度より高い真空度とは、例えば約 10^{-6} Tor r以上の真空度であり、より好ましくは超高真空系であ り、新たに炭素および炭素化合物が導電薄膜上にほとん ど堆積しない真空度である。こうすることによって、素 子電流If、放出電流Ieを安定化させることが可能とな る。

【0070】本発明で用いる電子放出素子は、単純な構 成で製法が容易な表面伝導型電子放出素子が好適であ る。

【0071】本発明によって製造することができる表面 伝導型電子放出素子としては、基本滴に平面型表面伝導 型電子放出素子である。

【0072】本発明の電子放出素子の製造方法の最も特 徴的なことは、金属元素を含有する溶液を基板上に液滴 として付与し、導電性薄膜を形成することである。この 要件を満足する態様には、種々のものがある。

【0073】 I. 本発明は、基板上に付与された液滴の づいて液滴の付与を再度行うものをも包含する。以下、 その態様について説明する。

【0074】図14、図16および図17は、本例で使 用可能な電子放出素子の製造装置の各種実施態様を示す 概略構成図であり、図15は本例の電子放出素子の製造 方法の1実施態様の工程を示すフローチャートである。

【0075】図14、図16および図17において、7 はインクジェット噴射装置(液滴付与装置)、8は発光 手段、9は受光手段、10はステージ、11はコントロ 段および受光手段においては、発生・受容する対象は光 に限定されるものではなく、信号として認識できるもの であればどのようなものを用いてもよく、例としては発 光ダイオード、赤外線レーザーなどがある。また、受光 手段は、発光手段に合わせて信号を受けることができる ものであればよい。さらに、これらの発光手段および受 光手段は、絶縁性基体を透過または反射する信号を発生 または受信する構成のものであればよい。

【0076】本例の電子放出素子の製造方法および製造 装置において検出される液滴の状態に関する項目は、1 対の素子電極間の凹部であるギャップ内に付与された液 滴量、その液滴の位置、液滴自体の有無などである。そ のような項目に関する取得情報に基づいて、吐出回数や 吐出位置、さらに圧電素子を用いたインクジェット噴射 装置では駆動条件も含めたインクジェット噴射装置の吐 出パラメータを、制御手段によって制御する。

【0077】さらに、上記の検出を行う手段としては、 インクジェット法によってノズルから吐出された液滴の 電極間ギャップにおける有無およびその量を検出する液 滴情報検出手段と液滴が着弾した位置を検出する着弾位 50 射型、図18(c)は出射系と検出系とが素子基板を挟

置検出手段とを備えることが好ましい。

12

【0078】その場合、着弾位置検出手段としては、吐 出前に電極パターンまたは専用に設けたアライメントマ ークを光学的に検出するか、吐出後液滴による透過率の 変調を光学的に検知することによって着弾後の液滴の位 置を検出するものである。なお液滴の位置検出は、ギャ ップ内およびギャップ近傍の領域で複数ポイントの透過 率を検出し、それらの相関を取ることによって行われ

【0079】さらに、本例の製造装置では、位置検出専 10 用の光学系を設ける必要がないように、前述の液滴情報 検出と着弾位置検出とは同一の光学検出系によって行わ れるようにすることが好ましい。さらに望ましくは、液 滴情報検出と位置検出とを同一の光学系によって連続的 または同時に行う。

【0080】図15に示したように、本例の製造方法で は、電極間隔を利用して発光手段と受光手段により電極 間を通過する光または反射する光を検出することで液的 付与位置を検出し、電極間に液滴を付与できる位置にイ 付与状態を検出し、付与状態に関して得られた情報に基 20 ンクジェット噴射装置のヘッドを移動させる(位置合わ せ工程)。次に、インクジェット噴射装置によって液滴 を電極間に付与し(液滴付与工程)、位置合わせ工程と 同様に電極間を通過または反射する信号によって、例え ば液滴が電極間に付与されているか否か(上述の液滴自 体の有無に関する情報)を検出する(液滴検出工程)。 そして、液滴検出工程で所望の位置の所望の領域に液滴 が付与されていれば次の電極間の位置合わせ工程へと進 み、液滴が付与されていなければ再度液滴を付与する。

【0081】また、インクジェット噴射装置とステージ ーラ、12は制御手段を示す。なお、ここで言う発光手 30 の移動・搬送においては、ステージのみ、もしくはイン クジェット噴射装置のみ、もしくはその両方など、どの ような組み合せで、X、Y、θの移動・搬送を行っても

> 【0082】また、液滴付与工程中、インクジェット噴 射装置またはステージは、移動、搬送または停止のどち らの状態であっても構わないが、移動、搬送の状態で液 滴を付与する場合、液滴の着弾位置がずれない程度の移 動・搬送が好ましい。

【0083】本例の製造装置における光学的な検出手段 40 には、様々なバリエーションがあり得る。図18にはそ のうち、検出光学系の焦点において光学系の光軸と吐出 ノズルの吐出方向軸とが交わるように双方の相対位置が 配置されるタイプを示す。このタイプでは、吐出ノズル 301、検出光学系302、素子基板(絶縁性基体)1 の相対位置を固定したままで溶液の吐出および付与され た液滴に関する情報の検出を交互に連続的に繰り返すこ とが可能である。図18(a)は出射系と検出系のコン パクトな一体化が可能な垂直反射型、図18(b)は出 射系と検出系とが吐出ノズルを挟んで配置される斜方反

んで配置される垂直透過型である。

【0084】また、図19および図20は、検出光学系 の光軸と吐出方向軸とが交点を持たないタイプであり、 図19が反射型、図20が透過型である。このタイプで 液滴の吐出、情報検出を繰り返す場合、図に示すように 変位制御機構403または503を矢印の方向に駆動し てそれぞれの軸がギャップ中央の位置に合うように交互 に移動する必要がある。

【0085】吐出条件の制御方法としては、液滴情報の 保持されるように駆動パルス高、パルス幅、パルスタイ ミング、パルス数等のパラメータのうちの少なくとも1 つを実時間で帰還制御する方法や、検出値の最適値から のずれの量に応じて予め決められたアルゴリズムに従っ てパラメータのうちの少なくとも1つを補正する方法等 がある。

【0086】また、これらの図においては、情報検出の 対象となる液滴が素子電極間のギャップに形成される場 合について示されているが、本発明の方法および装置に おいては、情報検出のためのダミー液滴を素子電極間以 20 形の膜(ドット)である。 外の箇所に予備吐出し、その検出結果に基づいて吐出条 件を適正なものに設定してから素子電極間への液滴吐出 を行うという形態であってもよい。

【0087】さらに本例の別の態様として、付与された 液滴の少なくとも一部を除去するための液滴除去手段を 設けて、液滴情報検出の結果、ギャップ内の液滴量が最 適値より多いと判断される場合に、液滴の一部を除去し て最適値に戻すかあるいは液滴を全量除去した後に再吐 出を行うこともできる。

【0088】そのような液滴除去手段としては、窒素な どのガスを噴射して液滴をギャップ内から飛散させる機 能を有する除去専用ノズルを備えたものなどがある。除 去専用ノズルは専用の位置制御機構を設ける必要がない ように、吐出ノズル近傍に配置するのが望ましい。例え ば吐出ノズルがマルチアレイ配列になっている場合に は、アレイ内に除去専用ノズルを周期的に設けるように してもよい。吐出による溶液の付与のみでなく除去もで きる手段を備えることによって、液的量のより厳密な制 御が実現される。

【0089】本例の製造装置においては、液滴が着弾す る位置に関する情報を光学的に検出する手段と、検出さ れる位置情報に基づいて吐出位置合わせ、位置微調整等 の位置制御を行う手段を備える。

【0090】位置検出手段は、吐出前に電極パターンま たは専用に設けたアライメントマークを光学的に検出す るか、叶出後液滴による透過率の変調を光学的に検知す ることによって着弾後の液滴の位置を検出する。その場 合、液滴の位置検出は、ギャップ内およびギャップ近傍 の領域で複数ポイントの透過率を検出し、それらの相関 をとることによって行われる。

14

【0091】本例においては、位置検出専用の光学系を 設ける必要がないように、前述の液滴に関する情報の検 出と液滴の着弾位置検出とが同一の光学検出系によって 行うことが好ましい。さらに好ましくは、情報検出と位 置検出とを同一の光学系によって連続的にまたは同時に 行うようにする。

【0092】 II. 次に、液滴のドット径と、付与する 位置に工夫を凝らした態様について説明する。

【0093】図32は本例の製造方法により作製される 検出信号差分成分を補正信号として、検出値が最適値に 10 表面伝導型電子放出素子のマルチパターン (パッド)を 示す図である。図32において、(a)は、隣接するド ット間の距離およびドット径を示す図であり、(b)は 上記のパッドの1例の図である。なお、ここで、隣接す るドットという表現は、例えば図32(a)において上 下・左右で隣り合うドットを表し、斜め方向に隣り合う ドット同士には適用されないものとする。

> 【0094】図32において、1は基板、2および3は 素子電極、4は導電性薄膜、5は電子放出部、28は液 滴を基板に付与した後形成される液状または固体状の円

【0095】まず予め、前述の材料によって形成される ドットの直径φを求める。すなわち、有機溶剤等で充分 洗浄し乾燥させた絶縁基板上に、液滴付与装置を用いて ドットを形成し、その直径 φを測定する。

【0096】次に、基板洗浄後、真空蒸着技術およびフ ォトリソグラフィ技術を用いて素子電極の形成された基 板に、図32(b)に示すような複数のドットを付与し てマルチパターン(パッド)を形成する。ここで、個々 のドットの中心間距離P₁およびP₂は、1ドットの直径 o以下とし、隣接するドットが重なるように付与する。 そうすることによって、液滴が基板上で広がって幅W2 がほぼ一定になったパッドが得られる。なおパッドの大 きさは、幅W2が素子電極幅W1以下で、パッドの長さT はギャップ間隔L1以上であることが好ましく、さらに は求める抵抗値、素子電極の幅、ギャップ幅およびアラ イメント精度によって決定される。

【0097】以上の方法で薄膜を付与した後、300~ 600℃の温度で加熱処理し、溶媒を蒸発させて導電性 薄膜を形成する。これに続くフォーミング等は、前述し 40 たものと同様に行う。

【0098】 III. 本発明は、液滴を付与する基板の 表面状態に工夫を凝らしたものをも包含する。本発明 は、液滴を付与する基板表面に疎水化処理を行うものを 包含する。

【0099】本例では、液滴を、素子電極を備えた基板 上に付与する際には、基板の表面状態が疎水性であるよ うに基板の表面処理を行う。具体的には、HMDS(へ キサメチルジシラザン)、PHAMS、GMS、MA P、PES等のシランカップリング剤による疎水化処理 50 を行う。

【0100】疎水化処理の方法は、例えば、スピナー等で上記のシランカップリング剤を塗布し、次いでオブーンで100 \mathbb{C} ~300 \mathbb{C} 、例えば200 \mathbb{C} に加熱し、数十分~数時間、例えば15分間ベークを行う。

【0101】上述の表面処理を行うことによって、液滴付与装置により基板上に液滴を付与した際、基板上での液滴の形状安定性が向上する。そのため、液滴が基板上で不規則な形状に広がることがなく、液滴の量と形状によって、導電性薄膜の形状を容易に制御することが可能となり、導電性薄膜の寸法・厚さの再現性や均一性が向は、れている。上する。その結果、大面積にわたって多数の電子放出素子を形成する場合でも、電子放出特性の均一性が良好な電子放出素子を得ることができる。

【0102】次に、本発明の画像形成装置について説明する。

【0103】画像形成装置に用いられる電子源基板は複数の表面伝導型電子放出素子を基板上に配列することにより形成される。

【0104】表面伝導型電子放出素子の配列の方式には、表面伝導型電子放出素子を並列に配置し、個々の素 20子の両端を配線で接続するはしご型配置(以下、はしご型配置電子源基板と称する)や、表面伝導型電子放出素子の一対の素子電極のそれぞれX方向配線、Y方向配線を接続した単純マトリクス配置(以下、マトリクス型配置電子源基板と称する)が挙げられる。なお、はしご型配置電子源基板を有する画像形成装置には、電子放出素子からの電子の飛翔を制御する電極である制御電極(グリッド電極)を必要とする。

【0105】以下、この原理に基づいて作製した電子源の構成について、図6を用いて説明する。図中、91は電子源基板、92はX方向配線、93はY方向配線、94は表面伝導型電子放出素子、95は結線である。なお、表面伝導型電子放出素子94は前述した平面型あるいは垂直型のどちらであってもよい。

【0106】同図において、電子源基板91に用いる基板は前述したガラス基板等であり、用途に応じて形状が適宜設定される。

【0107】m本のX方向配線92は、Dx1、Dx2、 ・・・Dxmからなり、Y方向配線93はDy1、Dy 2、・・・Dynのn本の配線よりなる。

【0108】また多数の表面伝導型電子放出素子にほぼ 均等な電圧が供給されるように、材料、膜厚、配線幅は 適宜設定される。これらm本のX方向配線92とn本の Y方向配線93間は不図示の層間絶縁層により電気的に 分離されてマトリクス配線を形成する(m、nはともに 正の整数)。

【0109】不図示の層間絶縁層は、X方向配線92を 形成した電子源基板91の全面あるいは一部の所望の領域に形成される。X方向配線92とY方向配線93はそれぞれ外部端子として引き出される。 16

【0110】さらに表面伝導型電子放出素子94の素子電極(不図示)がm本のX方向配線92とn本のY方向配線93と結線95によって電気的に接続されている。

【0111】また表面伝導型電子放出素子は基板あるいは不図示の層間絶縁層上のどちらに形成してもよい。

【0112】また詳しくは後述するが、前記X方向配線92にはX方向に配列する表面伝導型電子放出素子94の行を入力信号に応じて走査するための走査信号を印加するための不図示の走査信号発生手段と電気的に接続されている。

【0113】一方、Y方向配線93には、Y方向に配列する表面伝導型電子放出素子94の列の各列を入力信号に応じて変調するための変調信号を印加するための不図示の変調信号発生手段と電気的に接続されている。

【0114】さらに、表面伝導型電子放出素子の各素子 に印加される駆動電圧はその素子に印加される走査信号 と変調信号の差電圧として供給されるものである。

【0115】上記構成において、単純なマトリクス配線だけで個別の素子を選択して独立に駆動可能になる。

【0116】次に、以上のようにして作製した単純マトリクス配線の電子源を用いた画像形成装置について、図7、図8および図9を用いて説明する。図7は画像形成装置の基本構成を示す図であり、図8は蛍光膜、図9はNTSC方式のテレビ信号に応じて表示をするための駆動回路のブロック図であり、その駆動回路を含む画像形成装置を表す。

【0117】図7において、91は電子放出素子を基板上に作製した電子源基板、1081は電子源基板91を固定したリアプレート、1086はガラス基板1083 30 の内面に蛍光膜1084とメタルバック1085等が形成されたフェースプレート、1082は支持枠であり、これらの部材によって外囲器1088が構成される。

【0118】94は電子放出素子であり、92および93は表面伝導型電子放出素子の一対の素子電極と接続されたX方向配線およびY方向配線である。

【0119】外囲器1088は、上述のごとくフェース プレート1086、支持枠1082、リアプレート10 81で構成されているが、リアプレート1081は主に 電子源基板91の強度を補強する目的で設けられるた

40 め、電子源基板91自体で十分な強度を持つ場合は、別体のリアプレート1081は不要であり、電子源基板91に直接支持枠1082を接合し、フェースプレート1086、支持枠1082および電子源基板91にて外囲器1088を構成してもよい。

【0120】図8中、1092は蛍光体である。蛍光体 1092はモノクロームの場合は蛍光体のみからなる が、カラーの蛍光膜の場合は蛍光体の配列によりブラッ クストライプあるいはブラックマトリクスなどと呼ばれ る黒色導電材1091と蛍光体1092とで構成され

50 る。ブラックストライプ (ブラックマトリクス) が設け

られる目的は、カラー表示の場合、必要となる三原色蛍 光体の各蛍光体1092間の塗り分け部を黒くすること で混色等を目立たなくすることと、蛍光膜1084にお ける外光反射によるコントラストの低下を抑制すること である。ブラックストライプの材料としては、通常良く 使用される黒鉛を主成分とする材料だけでなく、導電性 があり、光の透過および反射が少ない材料であれば使用 可能である。

【0121】ガラス基板1093に蛍光体を塗布する方 法としては、モノクロームであるかカラーであるかによ 10 らず、沈殿法や印刷法が用いられる。

【0122】また、蛍光膜1084(図7)の内面側に は通常メタルバック1085(図7)が設けられる。メ タルバックの目的は、蛍光体の発光のうち内面側への光 をフェースプレート1086側へ鏡面反射することによ り輝度を向上させること、電子ビーム加速電圧を印加す るための電極として作用すること、外囲器内で発生した 負イオンの衝突によるダメージからの蛍光体の保護等で ある。メタルバックは蛍光膜作製後、蛍光膜の内面側表 面の平滑化処理(通常フィルミングと呼ばれる)を行 い、その後AIを真空蒸着等で堆積することで作製でき る。

【0123】フェースプレート1086にはさらに、蛍 光膜1084の導電性を高めるため、蛍光膜1084の 外面側に透明電極(不図示)を設けてもよい。

【0124】前述の封着を行う際、カラーの場合は各色 蛍光体と電子放出素子とを対向させなくてはならず、十 分な位置合わせを行う必要がある。

【0125】外囲器1088は不図示の排気管を通じ1 た、外囲器1088の封止後の真空度を維持するために ゲッター処理を行う場合もある。これは、外囲器108 8の封止を行う直前あるいは封止後の所定の位置(不図 示) に配置されたゲッターを加熱し、蒸着膜を形成する 処理である。ゲッターは通常Ba等が主成分であり、そ の蒸着膜の吸着作用により、例えば 1×10^{-5} Torr $\sim 1 \times 10^{-7}$ Torrの真空度を維持するものである。 なお、表面伝導型電子放出素子の通電フォーミング以降 の工程は適宜設定される。

【0126】図5は、電子放出特性を評価するための測 40 いる。 定装置の概略構成図である。図5において、81は素子 に素子電圧Vfを印加するための電源、80は素子電極 2・3間の導電性薄膜 4 を流れる素子電流 I fを測定す るための電流計、84は素子の電子放出部より放出され る放出電流Ieを測定するためのアノード電極、83は アノード電極84に電圧を印加するための高圧電源、8 2は素子の電子放出部より放出される放出電流 I eを測 定するための電流計、85は真空装置、86は排気ポン プである。

【0127】次に、単純マトリクス配置型基板を有する 50 ルター)回路を用いれば構成できるものである。同期信

電子源を用いて構成した画像形成装置について、NTS C方式のテレビ信号に基づきテレビジョン表示を行うた めの駆動回路概略構成を図9のブロック図を用いて説明 する。1101は前記表示パネルであり、また1102 は走査回路、1103は制御回路、1104はシフトレ ジスタ、1105はラインメモリ、1106は同期信号 分離回路、1107は変調信号発生器、VxおよびVaは 直流電圧源である。

18

【0128】以下、各部の機能を説明する。

【0129】まず表示パネル1101は端子Dox1~D oxm、端子Doy 1~Doy n および高圧端子Hvを介して 外部の電気回路と接続している。このうち、端子Dox1 ~Doxmには、前記表示パネル内に設けられている電子 源、すなわちm行n列の行列状にマトリクス配線された 表面伝導型電子放出素子群を一行(n個の素子)ずつ順 次駆動していくための走査信号が印加される。

【0130】一方、端子Dy1~Dynには前記走査信号 により選択された一行の表面伝導型電子放出素子の各素 子の出力電子ビームを制御するための変調信号が印加さ 20 れる。また、高圧端子Hvには直流電圧源Vaより、例え ば10kVの直流電圧が供給されるが、これは表面伝導 型電子放出素子より出力される電子ビームに蛍光体を励 起するのに十分なエネルギーを付与するための加速電圧 である。

【0131】次に、走査回路1102について説明す る。同回路は内部にm個のスイッチング素子を備えるも ので(図中、S1~Smで示されている)、各スイッチン グ素子は直流電圧源Vxの出力電圧もしくはO(V)

(グランドレベル) のいずれか一方を選択し、表示パネ $0^{-7}\,\mathrm{Tor}$ Repope では、対止が行われる。ま 30 ル1101の端子Dx1ないしDxmと電気的に接続する ものである。S1~Smの各スイッチング素子は制御回路 1103が出力する制御信号Tscanに基づいて動作する ものであるが、実際には例えばFETのようなスイッチ ング素子を組み合せることにより構成することが可能で

> 【0132】なお、前記直流電圧源Vxは前記表面伝導 型電子放出素子の特性(電子放出閾値電圧)に基づき走 査されていない素子に印加される駆動電圧が電子放出閾 値以下となるような一定電圧を出力するよう設定されて

> 【0133】また、制御回路1103は外部より入力す る画像信号に基づいて適切な表示が行われるように各部 の動作を整合させる働きを持つものである。次に説明す る同期信号分離回路1106より送られる同期信号Tsy ncに基づいて各部に対してTscan、TsftおよびTmryの 各制御信号を発生する。

> 【0134】同期信号分離回路1106は外部から入力 されるNTSC方式のテレビ信号から同期信号成分と輝 度信号成分とを分離するための回路で周波数分離(フィ

号分離回路1106により分離された同期信号は、良く知られるように、垂直同期信号と水平同期信号より成るが、ここでは説明の便宜上、Tsync信号として図示した。一方、前記テレビ信号から分離された画像の輝度信号成分を便宜上DATA信号と表すが、同信号はシフトレジスタ1104に入力される。

【0135】シフトレジスタ1104は時系列的にシリアルに入力される前記DATA信号を画像の1ラインごとにシリアル/パラレル変換するためのもので、前記制御回路1103より送られる制御信号Tsftに基づいて動作する(すなわち、制御信号Tsftは、シフトレジスタ1104のシフトクロックであると言い換えてもよい)。

【0136】シリアル/パラレル変換された画像1ライン分(電子放出素子n素子分の駆動データに相当するもの)のデータは、 $Id1 \sim Idn$ のn個の並列信号として前記シフトレジスタ1104より出力される。

【0137】ラインメモリ1105は、画像1ライン分のデータを必要時間の間だけ記憶するための記憶装置であり、制御回路1103より送られる制御信号Tmryに従って適宜Id $1\sim I$ dnの内容を記憶する。記憶された内容はId $1\sim I$ dnとして出力され、変調信号発生器107に入力される。

【0138】変調信号発生器1107は、前記画像データId1~Idnの各々に応じて表面伝導型電子放出素子の各々を適切に駆動変調するための信号源で、その出力信号は端子Doy1~Doynを通じて表示パネル1101内の表面伝導型電子放出素子に印加される。

【0139】前述したように、本発明に関わる電子放出素子は、放出電流 I eに対して以下の基本特性を有している。すなわち、前述したように電子放出には明確な閾値電圧 V thがあり、 V th以上の電圧を印加された時のみ電子放出が生じる。

【0140】また、電子放出閾値以上の電圧に対しては素子への印加電圧の変化に応じて放出電流も変化していく。なお、電子放出素子の材料や構成、製造方法を変えることによって、電子放出閾値電圧Vthの値や印加電圧に対する放出電流の変化の度合が変わる場合もあるが、いずれにしても以下のようなことが言える。

【0141】すなわち、本素子パルス状電圧を印加する場合、例えば電子放出閾値以下の電圧を印加しても電子放出は生じないが、電子放出閾値以上の電圧を印加する場合には電子ビームが出力される。その際、第一にはパルスの波高値Vmを変化させることにより、出力電子ビームの強度を制御することが可能である。第二には、パルスの幅Pwを変化させることにより出力される電子ビームの電荷の総量を制御することが可能である。

【0142】従って、入力信号に応じて電子放出素子を バック1085、あるいは透明電極(不図示)に高変調する方式としては、電圧変調方式、パルス幅変調方 印加し、電子ビームを加速し、蛍光膜に衝突させ、 式等が挙げられ、電圧変調方式を実施するには変調信号 50 ・発光させることで画像を表示することができる。

発生器 1 1 0 7 としては一定の長さの電圧パルスを発生 するが入力されるデータに応じて適宜パルスの波高値を 変調するような電圧変調方式の回路を用いる。

20

【0143】またパルス幅変調方式を実施するには、変調信号発生器1107としては、一定波高値の電圧パルスを発生するが入力されるデータに応じて適宜電圧パルスの幅を変調するようなパルス幅変調方式の回路を用いるものである。

【0144】以上に説明した一連の動作により、本発明 10 の画像表示装置は表示パネル1101を用いてテレビジョンの表示を行える。なお、上記説明中特に記載してなかったが、シフトレジスタ1104やラインメモリ1105はデジタル信号式のものでもアナログ信号式のものでもいずれでも差し支えなく、要は画像信号のシリアル/パラレル変換や記録が所定の速度で行われればよい。【0145】デジタル信号式を用いる場合には、同期信号分離回路1106の出力信号DATAをデジタル信号化する必要があるが、これは1106の出力部にA/D変換器を備えれば可能である。また、これと関連してラインメモリ1105の出力信号がデジタル信号かアナログ信号かにより、変調信号発生器1107に用いられる回路が若干異なったものとなる。

【0146】まず、デジタル信号の場合について述べる。電圧変調方式においては変調信号発生器1107には、例えば良く知られるD/A変換回路を用い、必要に応じて増幅回路などを付け加えればよい。

【0147】また、パルス幅変調方式の場合、変調信号発生器1107は、例えば高速の発振器および発振器の出力する波数を計数する計数器(カウンタ)および計数器の出力値と前記メモリの出力値を比較する比較器(コンパレータ)を組み合せた回路を用いることにより構成できる。必要に応じて比較器の出力するパルス幅変調された変調信号を表面伝導型電子放出素子の駆動電圧にまで電圧増幅するための増幅器を付け加えてもよい。

【0148】次に、アナログ信号の場合について述べる。電圧変調方式においては、変調信号発生器1107には、例えば良く知られるオペアンプなどを用いた増幅回路を用いればよく、必要に応じてレベルシフト回路などを付け加えてもよい。またパルス幅変調方式の場合には、例えば良く知られた電圧制御型発振回路(VCO)を用いればよく、必要に応じて表面伝導型電子放出素子の駆動電圧にまで電圧増幅するための増幅器を付け加えてもよい。

【0149】以上のように完成した画像表示装置において、こうして各電子放出素子には、容器外端子Dox1~DoxmおよびDoy1~Doynを通じ、電圧を印加することにより、電子放出させ、高圧端子Hvを通じ、メタルバック1085、あるいは透明電極(不図示)に高圧を印加し、電子ビームを加速し、蛍光膜に衝突させ、励起。発光させることで画像を表示することができる

【0150】以上述べた構成は、表示等に用いられる好 適な画像形成装置を作製する上で必要な概略構成であ り、例えば各部材の材料等、詳細な部分は上述の内容に 限られるものではなく、画像形成装置の用途に適するよ う適宜選択する。また、入力信号例として、NTSC方 式を挙げたが、これに限定するものではなく、PAL、 SEСАМ方式などの諸方式でもよく、また、これより も多数の走査線から成るTV信号(例えばMUSE方式 をはじめとする高品位TV)方式でもよい。

【0151】次に、前述のはしご型配置電子源基板およ 10 びそれを用いた画像表示装置について図10および図1 1を用いて説明する。

【0152】図10において、1110は電子源基板、 1111は電子放出素子、1112のDx1~Dx10は 前記電子放出素子に接続する共通配線である。電子放出 素子1111は、基板1110上に、X方向に並列に複 数個配置される(これを素子行と呼ぶ)。この素子行を 複数個基板上に配置し、はしご型電子源基板となる。各 素子行の共通配線間に適宜駆動電圧を印加することで、 各素子行を独立に駆動することが可能になる。すなわ ち、電子ビームを放出させる素子行には、電子放出閾値 以上の電圧の電子ビームを、放出させない素子行には電 子放出閾値以下の電圧を印加すればよい。また、各素子 行間の共通配線Dx2~Dx9を、例えばDx2、Dx3を 同一配線とするようにしてもよい。

【0153】図11は、はしご型配置の電子源を備えた 画像形成装置の構造を示す図である。1120はグリッ ド電極、1121は電子が通過するための空孔、112 2はDox1、Dox2・・・Doxよりなる容器外端子、1 123はグリッド電極1120と接続されたG1、G2 30 技術により、Niからなる電極2および3を形成した ・・・Gnからなる容器外端子、1124は前述のよう に各素子行間の共通配線を同一配線とした電子源基板で ある。なお、図7、図10と同一の符号は同一の部材を 示す。前述の単純マトリクス配置の画像形成装置(図 7) との違いは、電子源基板1110とフェースプレー ト1086の間にグリッド電極1120を備えているこ とである。

【0154】基板1110とフェースプレート1086 の中間には、グリッド電極1120が設けられている。 放出された電子ビームを変調することができるもので、 はしご型配置の素子行と直交して設けられたストライプ 状の電極に電子ビームを通過させるため、各素子に対応 して1個ずつ円形の開口1121が設けられている。グ リッドの形状や設置位置は必ずしも図11のようなもの でなくともよく、開口としてメッシュ状に多数の通過口 を設けることもあり、また例えば表面伝導型電子放出素 子の周囲や近傍に設けてもよい。

【0155】容器外端子1122およびグリッド容器外 端子1123は、不図示の制御回路と電気的に接続され 50 【0164】(4)次に、電極2、3の間に電圧を印加

ている。

【0156】本画像形成装置では、素子行を1列ずつ順 次駆動(走査)していくのと同期してグリッド電極列に 画像1ライン分の変調信号を同時に印加することによ り、各電子ビームの蛍光体への照射を制御し、画像を1 ラインずつ表示することができる。

22

【0157】また、本発明によればテレビジョン放送の 表示装置のみならずテレビ会議システム、コンピュータ 等の表示装置に適した画像形成装置を提供することがで きる。さらには感光性ドラム等で構成された光プリンタ ーとしての画像形成装置として用いることもできる。

[0158]

【実施例】以下、実施例によって本発明をより詳細に説 明する。

【0159】(実施例1)以下に記載のフォトリソグラ フィーで、図12に示したような素子電極がマトリクス 状に形成された(X配線72とY配線73)基板を用 い、電子放出部形成領域1201に電子放出部を形成し て複数の表面伝導型電子放出素子が配列された電子源基 20 板を作製した。なお、X配線とY配線は、交差部におい て、不図示の絶縁部材により電気的に絶縁されている。 図1はその表面伝導型電子放出素子の製造手順を示す図 である。さらに図2は、本実施例によって作製した表面 伝導型電子放出素子の平面図および断面図である。

【0160】フォトリソグラフィーによる基板上への素 子電極形成を以下の手順で行った。

【0161】(1)絶縁性基板1として、石英基板を用 い、これを有機溶剤によって十分に洗浄した後、その基 板 1 上に一般的な真空成膜技術、フォトリソグラフィー (図1 (a))。この時、素子電極の間隔L1は2 μ m、電極の幅W1は600μm、その厚さは1000Å

【0162】(2)次に、有機パラジウム含有溶液(奥 野製薬(株)製、ccp-4230)を、液滴付与装置 7として圧電素子を用いたインクジェット噴射装置を用 いて、薄膜4の幅W2が300μmになるように、電極 2・3間に体積60μm³の液滴24を1つ(1ドッ ト)付与した(図1(b))。なお、本実施例における グリッド電極1120は、表面伝導型電子放出素子から 40 絶縁性基板1と電極2・3との凹部の容積は120μm ³である。

> 【0163】(3)次に、300℃で10分間の加熱処 理を行って、酸化パラジウム(PdO)微粒子からなる 微粒子膜を形成し、薄膜4とした(図1 (c))。な お、ここで述べる微粒子膜とは、前述のように、複数の 微粒子が集合した膜であり、その微細構造として、微粒 子が個々に分散配置した状態のみならず、微粒子が互い に隣接あるいは重なり合った状態(島状も含む)の膜を 指す。

し、薄膜4を通電処理(通電フォーミング処理)することにより、電子放出部5を形成した(図1(d))。 【0165】こうして作製された電子源基板を用いて、前述したようにフェースプレート1086、支持枠1082、リアプレート1081とで外囲器1088を形成し、封止を行って表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づきテレビジョン表示を行うための駆動回路を有する画像形成装置を作製し

【0166】その結果、上記の本実施例の製造方法により作製した電子放出素子ならびにそれを用いて作製した電子源基板、表示パネルおよび画像形成装置は、何ら問題のない良好な性能を示した。さらに、上記のように、本発明による表面伝導型電子放出素子の製造方法では、液滴を付与して薄膜4を形成することにより、薄膜4のパターン形成を省略することができた。また、1つ(1ドット)の液滴のみで形成できることから、溶液の無駄を省くことができた。

【0167】(実施例2)素子電極幅(W1)を600 μ m、素子電極間隔(L1)を 2μ m、素子電極の厚さを1000 Åに形成したはしご状に配線された素子電極を有する基板(図13)を用い、実施例1と同様な方法で表面伝導型電子放出素子を作製した。図13 中、1301 は基板、1302 は配線である。

【0168】得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外囲器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製30した。その結果、実施例1と同様な効果を得ることができた。

【0169】(実施例3)マトリクス状に配線された素子電極を前述したような方法で形成した基板(図12)を用い、前述のバブルジェット方式のインクジェット噴射装置を用い、実施例1と同様に表面伝導型電子放出素子を作製した。

【0170】得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外囲器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。その結果、実施例1と同様な効果を得ることができた。

【0171】(実施例4)はしご状に配線された素子電極を前述したような方法で形成した基板(図13)を用い、バブルジェット方式のインクジェット噴射装置を用い、実施例1と同様に表面伝導型電子放出素子を作製した。

24

【0172】得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外囲器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。その結果、実施例1と同様な効果を得ることができた。

【0173】(実施例5)薄膜4を形成する溶液に酢酸10 Pdの0.05wt%水溶液を用いる以外は、実施例1と同様にして表面伝導型電子放出素子を形成した。その結果、使用した溶液が異なるにもかかわらず、実施例1と同様の良好な素子を形成することができた。

【0174】得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外囲器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。その結果、実施例1と同様な効果を得ることができた。

【0175】(実施例6)液滴量を30μm³とし、液滴を2つ(2ドット)付与した以外は、実施例1と同様にして表面伝導型電子放出素子を作製した。その結果、実施例1と同様の良好な素子を形成することができたことから、所定の液量を付与すれば、所望の薄膜を形成することができることが明らかになった。

【0176】得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外囲器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。その結果、実施例1と同様な効果を得ることができた。

【0177】(実施例7)液滴量を200μm³とした 以外は、実施例1と同様に表面伝導型電子放出素子を作 製した。

【0178】その結果、図3に示したように、電極2・ 40 3間の幅より薄膜4の幅が広がったが、電子放出特性に は問題のない電子放出素子を得ることができた。

【0179】このようにして得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外囲器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。その結果、実施例1と同様な効果を得ることができた。

50 【0180】しかしながら、電子放出部5の長さが素子

電極の長さを上回った分だけ放出部形成にバラツキを生じたためか、画質としては実施例1~6のものの方が本 実施例のものより優れていた。

【0181】(実施例8)図14に示した装置を用いて電子放出素子を作製した。液滴付与の工程は図15のフローチャートに従った。これらの図を参照しながら説明する。

【0182】これらの図において、1は絶縁性基板、2 および3は電極、24は液滴、7はインクジェット噴射装置、8は発光手段、9は受光手段、10はステージ、11はコントローラを示す。

【0183】本例における製造工程は以下の通りである。

【0184】(1)電極形成工程

絶縁性基板 1 として青板ガラスを用い、有機溶剤により十分に洗浄した後、真空成膜技術、フォトリソグラフィー技術を用いて、N i からなる素子電極 2 、3 を形成した。この時、素子電極の間隔は 3 μ mとし、素子電極の幅は 5 0 0 μ m、その厚さは 1 0 0 0 0 0 とした。

【0185】(2)位置合わせ工程

インクジェット噴射装置7として、気泡により液体を吐出させるインクジェット噴射記録ヘッドを用い、受光手段9に光を電気信号として検出する光センサを併設した。素子電極2および3が設けられた絶縁性基板1をステージ10に固定し、絶縁性基板1の裏面より、発光手段8に発光ダイオードを用いて光を照射した。次いで、ステージ10をコントローラ11により搬送し、素子電極2・3間より通過して来る光を受光手段9により受光し、素子電極2・3間とインクジェットとの位置合わせを行った。

【0186】(3)液滴付与工程

薄膜(微粒子膜) 4の材料となる有機パラジウム(奥野製薬(株)製、ccp-4230)を含有する溶液を用い、インクジェット7によって素子電極2・3間に液滴24を付与した。

【0187】(4)液滴検出工程

位置合わせ工程と同様の方法で、液滴24が付与されて いるか否かを検出した。

【0188】本例では、所定の位置に液滴24が形成されていたが、液滴24が素子電極2・3間に付与されていない場合は、再度液滴付与工程を行い、液滴検出工程によって液滴24が付与されたことを検出・確認するまで繰返し行うことで、薄膜4の塗布形成時の欠陥を減少させることができる。

【0189】(5)加熱処理工程

液滴24が形成された絶縁性基板1に300℃で10分間の加熱処理を行って、酸化パラジウム(PdO)微粒子(平均粒径70Å)からなる微粒子膜を形成し、薄膜4とした。その薄膜の径は150μmで、素子電極2および3のほぼ中央部に形成した。また、膜厚は100

26 Å、シート抵抗値は $5 \times 10^4 \Omega / \Box$ であった。

【0190】なお、ここで述べる微粒子膜とは、前述のように、複数の微粒子が集合した膜であり、その微細構造として、微粒子が個々に分散配置した状態のみならず、微粒子が互いに隣接あるいは重なり合った状態(島状も含む)の膜を指し、その粒径とは、前記状態で粒子形状が認識可能な状態についての径を指す。

【0191】このようにして作製した表面伝導型電子放出素子を通電処理したところ、良好な素子特性を持った 10素子が得られた。

【0192】(実施例9)図16に、本例に用いた製造装置による液滴付与工程を示す。

【0193】本例においては、実施例8と同様にして電極を形成した。次に、併設されたインクジェット7と受光手段9を移動させる制御手段12を設け、ステージ10に固定され絶縁性基板1を移動・搬送せずにインクジェット7および受光手段9を移動・搬送する以外は、実施例8と同様にして位置合わせを行った。そして、それ以降の液滴付与工程、液滴検出工程、加熱処理工程は実20施例8と同様にして、表面伝導型電子放出素子を得た。本例における発光手段8には、受光手段9と同期して移動する機構(不図示)が設けられている。

【0194】このようにして作製した表面伝導型電子放出素子も、実施例8同様の良好な素子特性を示した。

【0195】(実施例10)図17に、本例に用いた製造装置による液滴付与工程を示す。

【0196】本例においては、実施例8と同様にして電極を形成した。次に、発光手段をインクジェット7と受光手段9とに併設し、発光手段8から照射された光の反30射光により素子電極2・3間を検出する以外は実施例8と同様にして位置合わせを行った。そして、それ以降の液滴付与工程、液滴検出工程、加熱処理工程は実施例8と同様にして、表面伝導型電子放出素子を得た。

【0197】このようにして作製した表面伝導型電子放出素子も、実施例8同様の良好な素子特性を示した。

【0198】(実施例11)本例では、図21に示す電子源基板を用いた電子線発生装置を作製した。

【0199】まず、実施例8と同様の製造方法で、複数の電子放出素子を絶縁性基板1の上に形成した。次い

40 で、絶縁性基板1の上方に電子通過孔14を有するグリッド(変調電極)13を素子電極2・3と直交する方向に配置し、電子線発生装置とした。

【0200】以上のように作製した電子源を動作させたところ、グリッド13の情報信号に応じて電子放出素子から放出された電子線のオンーオフ制御、電子線の電子量を連続的に変化させ得たばかりか、各々の電子放出素子から放出された電子線の電子量のバラツキの極めて小さい電子線発生装置を得ることができた。

【0201】(実施例12)実施例11と同様の方法で 50 複数の電子放出素子を作製した基板を用いて、図11に

出量が10 ngとなるように駆動条件を選択し、100 ngの液滴を10回の吐出によって形成することを標準 吐出条件に設定している。

28

示したグリッドを有する画像形成装置を形成した。その 結果、何ら問題のない良好な性能を示す画像形成装置が 得られた。

【0202】(実施例13)実施例11と同様の方法で 複数の電子放出素子を作製した基板を用いて、図7に示 した画像形成装置を形成した。その結果、何ら問題のな い良好な性能を示す画像形成装置が得られた。

【0203】(実施例14)次に、図22に示すよう に、本発明のインクジェット法による表面伝導型電子放 出素子を10×10マトリクス配線電極基板上に形成し 10 た。図22において、140は表面伝導型電子放出素 子、141および142は配線である。各ユニットセル の拡大図を図31(a)に示す。各ユニットセルは、直 交する配線電極241、242と各配線電極より引き出 される相対向する素子電極2・3によって構成されてい る。配線電極241、242は印刷法によって形成さ れ、交差部において不図示の絶縁部材により電気的に絶 縁されている。相対向する素子電極2・3は蒸着膜であ り、フォトリソグラフィー技術によってパターニングさ れる。素子電極間ギャップの幅は、約10μm、ギャッ プ長は500μm、膜厚は30nmである。本発明によ るインクジェット法によって電極間ギャップ中央に有機 パラジウム含有溶液 (Р d 濃度 0.5 w t %) インクを 複数回吐出し、液滴7を形成した後、乾燥、焼成(35 0℃、30分)を経てPdO微粒子によって構成される 膜厚20nm、径300μmの円形の導電性薄膜が形成 される。

【0204】図23は、インクジェット法による薄膜形 成における吐出制御システムの概略ブロック図である。 1は各ユニットセルにおける基板、2および3は相対向 する素子電極である。1501はインクジェット噴射装 置の吐出ノズル、1502は液滴の情報検出光学系であ る。1503は吐出ノズル、インクタンク、供給系によ って構成されるインクジェットカートリッジと検出光学 系を搭載する変位制御機構であり、マトリクス配線電極 基板上のユニットセル間の搬送を行う粗動機構と、ユニ ットセル内の水平位置微調整および基板と吐出ノズル間 距離の調整を行う微動機構によって構成される。本実施 例では、インクジェット噴射装置として圧電素子による 前述の垂直反射型のものを用いた。

【0205】以下、本例における液滴情報の検出および 検出情報に基づく吐出制御の方法について詳細に説明す る。

【0206】本例においては、液滴量の制御を吐出回数 によって行い、1回当たりの吐出量は一定量に固定され る場合について説明する。ピエゾ式インクジェット装置 では、インクを押し出すピエゾ素子に給電される電圧パ ルスのパルス高、パルス幅によって1回当たりの吐出量 が決定される。本例では、吐出ノズルの1回当たりの吐 50

【0207】変位制御機構を予め設定された座標情報に 一従って駆動し、吐出ノズル先端をユニット内の素子電極 ギャップ中心上5mmの位置にセットする。予め決めら れた駆動条件に従って吐出を開始すると同時に、検出光 学系によって素子電極間ギャップ中央における液滴情報 の検出が開始される。

【0208】図24に垂直反射型検出光学系の詳細図を 示す。半導体レーザー161より出射する直線偏光は、 ミラー162で反射されビームスプリッター163、1 /4λ板174、集光レンズ165を透過して液滴に垂 直に入射する。液滴を透過した光線は、基板表面におい て一部反射されて戻り光となり、再び液滴を透過して1 / 4 λ 1 6 4 に再入射する。戻り光は、1 / 4 λ 板 1 6 4を2回通過するために、入射光線に対して90°回転 した直線偏光となり、ビームスプリッター163におい て90°進路を曲げられてフォトダイオード等の光検出 20 器166に入射する。戻り光の強度は液滴内を2回透過 する過程で起こる吸収、散乱によって変調を受けるた め、反射光強度を検出することによって液滴の厚みを検 知できる。

【0209】フォトダイオード出力は、光学情報検出回 路1504において増幅され基準信号比回路1505に 送られる。基準信号比回路1505では基準値との差分 信号が形成される。基準値は焼成後の膜厚が20nmと なるような液滴の厚みに相当する反射光強度が予め実験 的に求められ、設定されている。反射光強度は液滴厚み 30 が大きくなるに連れて減少するため、(検出信号-基準 信号) で定義される差分出力は、液滴厚みが適正値に近 づくに連れて最適値でゼロとなり、最適値を超えるとマ イナス極性に転じる。基準信号比較回路1505から出 力された差分出力は吐出条件補正回路1506に送られ る。吐出条件補正回路1506では差分出力がプラス極 性の場合HIレベル信号が、マイナス極性の場合LOW レベル信号が出力され、吐出条件制御回路1507に送 られる。吐出条件制御回路1507では、吐出信号補正 回路1506からのレベル信号がHIの間、固定条件の ピエゾジェット方式の装置を用い、検出光学系としては 40 吐出を一定間隔で継続して行い、レベル信号LOWにな った時点で吐出を終了する。

> 【0210】液滴形成後、10×10マトリクス配線電 極基板を350℃、30分の条件で焼成したところ、液 滴はPdO微粒子よりなる薄膜となった。素子電極間の 抵抗を測定したところ、異常な吐出回数を示したセルに おいても3kΩ程度の正常な抵抗値を示した。次に、素 子電極間に順次電圧を印加し、薄膜を通電処理(フォー ミング処理) することにより、各セルの素子電極ギャッ プ中央部に電子放出部を形成した。

【0211】こうして形成された電子源基板を、前述し

た図5の電子放出特性評価装置に取付け、電子放出させ たところ、100個の全素子の電子放出特性は均一であ

【0212】さらに、素子数を増やした大面積基板(例 えば、図12)を用いて、10×10基板と同様に図2 3の吐出制御システム、ピエゾジェット式のインクジェ ット噴射装置、垂直反射型の検出光学系等により、各セ ルにわたって液滴を塗布した。これを350℃、30分 の条件で焼成し、PdOの微粒子薄膜を全セルに形成で 回数を示したセルにおいても、3 k Ω程度の正常な抵抗 値を示した。次に、素子電極間に順次電圧を印加し、薄 膜を通電処理 (フォーミング処理) することにより、各 セルの素子電極ギャップ中央部に電子放出部を形成し

【0213】こうして形成された電子源基板を用いて、 図7を用いて前述したようにフェースプレート108 6、支持枠1082、リアプレート1081とで外囲器 1088を形成し、封止を行なって、表示パネル、さら きテレビジョン表示を行なうための駆動回路を有する画 像形成装置を作成した。そうしたところ、異常な吐出回 数を示したセルを含め全ての素子が電子放出し、特性は 均一であった。これにより、輝度バラツキのない良好な T V画像を形成することができた。

【0214】以上述べてきたように、吐出ノズルの異 常、基板濡れ性の異常、着弾位置異常などの原因によっ て異常な吐出回数を示したセルにおいても素子電極ギャ ップ内では均一な組成、モホロジー、膜厚を有する薄膜 が形成されていることが確認され、本発明による吐出制 御法の有効性が示された。

【0215】(実施例15)実施例14では、制御対象 となる吐出パラメーターが吐出回数の場合について述べ たが、本実施例ではその他の吐出パラメーターとして吐 出駆動パルス高またはパルス幅を制御対象とする場合に ついて示す。前述のようにピエゾ式インクジェット装置 では、インクを押し出すピエゾ素子に給電される電圧パ ルスのパルス高、パルス幅によって1回当たりの吐出量 が決定されるため、液滴情報に基づいてパルス高、パル ス幅のうちの少なくとも一つを制御することによって液 40 た。これを350℃、30分の条件で焼成し、PdOの 適量を補正することが可能である。

本実施例では吐出回 数を2回に固定し、吐出ノズルの1回あたりの標準吐出 量が50ngとなるような駆動条件で吐出を2回行な い、100 ngの液滴を形成することを標準吐出条件に 設定している。

【0216】以下、本例における液滴情報の検出及び検 出情報に基づく吐出制御の方法について述べる。制御方 法以外の実施形態は実施例14と同様である。検出光学 系としては実施例14と同様な垂直反射型を用いる。変 位制御機構を予め設定された座標情報に従って駆動し、

吐出ノズルの先端をユニット内の素子電極間ギャップ中 心上5mmの位置にセットする。予め決められた50n g液滴相当の駆動条件に従って1回目の吐出を行なった

後、検出光学系によって素子電極間ギャップ中央におけ

30

る液滴情報の検出が行なわれる。

【0217】1回目の吐出による液滴情報のフォトダイ オード出力は光学情報検出回路において増幅され基準信 号比較回路に送られる。基準信号比較回路で基準値との 差分信号が形成される。基準値は2回の吐出による液滴 きた。素子電極間の抵抗を測定したところ、異常な吐出 10 の焼成後の膜厚が20nmになる条件における1回目吐 出後の液滴の厚みに相当する反射光強度が予め実験的に 求められ設定されている。反射光強度は液滴厚みが大き くなるにつれて減少するため、(検出信号-基準信号) で定義される差分出力は液滴厚みの適正値からのズレ量 と1対1の相関を持っている。基準信号比較回路から出 力された差分出力は吐出条件補正回路に送られる。吐出 条件補正回路には差分出力とズレ量との相関関係に基づ く補正信号データが予め実験的に求められ記憶されてお り、このデータに従って差分出力に相当する補正信号が には図9に示すようなNTSC方式のテレビ信号に基づ 20 出力され、吐出条件制御回路に送られる。吐出条件制御 回路では吐出信号補正回路からの補正信号に基づいて駆 動条件のパルス高またはパルス幅の補正を行ない2回目 の吐出を行なう。

> 【0218】液滴形成後10×10マトリクス配線電極 基板を350℃、20分の条件で焼成したところ液滴は PdO微粒子よりなる薄膜となった。素子電極間の抵抗 を測定したところ1回目の吐出で異常を示したセルにお いても3kΩ程度の正常な抵抗値を示した。次に素子電 極間に順次電圧を印加し、薄膜を通電処理(フォーミン 30 グ処理) することにより各セルの素子電極ギャップ中央 部に電子放出部が形成された。

【0219】こうして形成された電子源基板を、前述し た図5の電子放出特性評価装置に取付け、電子放出させ たところ、100個の全素子の電子放出特性は均一であ

【0220】さらに、素子数を増やした大面積基板(例 えば、図12)を用いて、10×10基板と同様に図4 0の吐出制御方法で、ピエゾジェット式のインクジェッ ト噴射装置等により、各セルにわたって液滴を塗布し

微粒子薄膜を全セルに形成できた。素子電極間の抵抗を 測定したところ、1回目の吐出で異常を示したセルにお いても、3kΩ程度の正常な抵抗値を示した。次に、素 子電極間に順次電圧を印加し、薄膜を通電処理(フォー ミング処理) することにより、各セルの素子電極ギャッ プ中央部に電子放出部を形成した。

【0221】こうして形成された電子源基板を用いて、 図7を用いて前述したようにフェースプレート108 6、支持枠1082、リアプレート1081とで外囲器 50 1088を形成し、封止を行ない表示パネル、さらには 図9に示すようなNTSC方式のテレビ信号に基づきテ レビジョン表示を行なうための駆動回路を有する画像形 成装置を作成した。そうしたところ、異常な吐出回数を 示したセルを含め全ての素子が電子放出し、特性は均一 であった。これにより、輝度バラツキのない良好なTV 画像を形成することができた。

【0222】以上述べたように、吐出ノズルの異常、基 板濡れ性の異常、着弾位置異常などの原因によって1回 目の吐出で異常を示したセルにおいても素子電極ギャツ プ内では均一な組成、モホロジー、膜厚を有する薄膜が 10 形成されていることが確認された。

【0223】(実施例16)実施例14および15では 液滴情報の検出手段として光学的検出系を用いたが、本 実施例では電気的検出系を用いる場合について述べる。 検出方法以外の実施形態は実施例7と同様である。

【0224】図25によって本発明のインクジェット法 による薄膜形成法について更に詳しく説明する。図中、 1は各ユニットセルにおける基板、2および3は相対向 する素子電極である。1801はインクジェット噴射装 置の吐出ノズル、1808は液滴の電気物性測定系であ 20 る。1803は吐出ノズル、インクタンク、供給系によ って構成されるインクジェットカートリッジを搭載する 変位制御機構であり、マトリックス配線電極基板上のユ ニットセル間の搬送を行なう粗動機構と、ユニットセル 内の水平位置微調整および基板と吐出ノズル間距離の調 整を行なう微動機構によって構成される。本実施例で は、インクジェット噴射装置としてバプルジェット方式 の装置を用いる。

【0225】以下本発明による液滴情報の検出および検 出情報に基づく吐出制御の方法について述べる。本実施 30 点で吐出を終了する。 例においては、実施例14と同様、液滴量の制御を吐出 回数によって行ない、1回あたりの吐出量は一定量に固 定される場合について説明する。本実施例では、100 ngの液滴を10回の吐出によって形成することを標準 吐出条件に設定している。

【0226】変位制御機構1803を予め設定された座 標情報に従って駆動し、吐出ノズル先端をユニット内の 素子電極2・3間ギャップ中心上5mmの位置にセット する。予め決められた駆動条件に従って吐出を開始する ギャップ内の液滴情報の検出が開始される。

【0227】電気物性測定系1808では素子電極2・ 3間に一定の検出電圧を印加し、その応答電流を測定す ることによって液滴の電気的な物性を検知する。検出さ れる電気物性としては液滴の抵抗、液滴の容量等があ り、これらの物性値と液滴量との相関に基づいて素子電 極間ギャップ内の液適量を推測することができる。検出 電圧はDC電圧でもよいが、溶液内のガス発生等の化学 反応を抑制するためには、。100Hz~100kHz の比較的高い周波数、10mV~500mV程度の比較 50 ップ内では均一な組成、モホロジー、膜厚を有する薄膜

的微小な振幅のAC電圧が好適である。AC電圧を位相 検波し印加電圧と同位相の電流成分と90°位相の遅れ た電流成分を検出することによって、液滴の抵抗および 電気容量を同時に検知することができる。本実施例では 液滴抵抗のみを検知する場合について示す。インクは溶 液抵抗の測定が可能であればとくに限定されないが、本 実施例ではイオン導電性に優れる水溶液系の有機パラジ ウム含有水溶液(Pd濃度0.5wt%)を用いる。

32

【0228】電気物性測定系1808の応答電流出力は 電気情報検出回路1809において電流電圧変換、増 幅、ロックインアンプによる位相検波、演算というプロ セスを経て抵抗値が出力され、基準信号比較回路181 0に送られる。基準信号比較回路1810では基準値と の差分信号が形成される。基準値は焼成後の膜厚が20 n mになるような液滴の厚みに相当する抵抗値が予め実 験的に求められ設定されている。有機パラジウム含有水 溶液 (Pd濃度0.5wt%) による液滴の基準値は7 Ο k Ωである。抵抗値はギャップ内の液滴量が多くなる につれて減少するため、(検出信号―基準信号)で定義 される差分出力は液滴厚みが適正値に近づくにつれて減 少し最適値で0となり、最適値を超えるとマイナス極性 に転じる。基準信号比較回路1810から出力された差 分出力は吐出条件補正回路1811に送られる。吐出条 件補正回路1811では差分出力がプラス極性の場合H I レベル信号が、マイナス極性の場合に LOWレベル信 号が出力され、吐出条件制御回路1807に送られる。 吐出条件制御回路1807では吐出信号補正回路181 1からのレベル信号がHIの間、固定条件の吐出を一定 間隔で継続して行ない、レベル信号がLOWになった時

【0229】こうして形成された電子源基板を、前述し た図5の電子放出特性評価装置に取付け、電子放出させ たところ、100個の全素子の電子放出特性は均一であ った。

【0230】さらに、素子数を増やした大面積基板(例 えば、図12)を用いて、10×10基板と同様に図2 3の吐出制御システム、ピエゾジェット式のインクジェ ット噴射装置、垂直反射型の検出光学系等により、各セ ルにわたって液滴を塗布した。これを350℃、30分 と同時に、電気物性測定系1808によって素子電極間 40 の条件で焼成し、PdOの微粒子薄膜を全セルに形成で きた。素子電極間の抵抗を測定したところ、異常な吐出 回数を示したセルにおいても、3 k Ω程度の正常な抵抗 値を示した。次に、素子電極間に順次電圧を印加し、薄 膜を通電処理(フォーミング処理)することにより、各 セルの素子電極ギャップ中央部に電子放出部を形成し

> 【0231】以上述べてきたように、吐出ノズルの異 常、基板濡れ性の異常、着弾位置異常などの原因によっ て異常な吐出回数を示したセルにおいても素子電極ギャ

が形成されていることが確認され、本発明による吐出制 御法の有効性が示された。

【0232】(実施例17)図26は電気的検出と光学 的検出の2系統液滴情報検出系による吐出条件制御のブ ロック図である。詳しい説明は省略するが、2系統情報 の相関に基づいて誤差補完するようなアルゴリズムによ って、より精度の高いハイプリッド情報による吐出制御 が可能となる。

【0233】(実施例18)本実施例では除去ノズルを 備える液滴量補正システムについて説明する。除去ノズ 10 2013において補正吐出が行なわれる。 ルを備える液滴量補正は以下の2つの方式に大別され る。液滴情報検出の結果ギャップ内の液滴量が最適値よ りも多いと判断される場合に、液滴の一部を除去して最 適値に戻す方式および液滴を全て除去した後に再吐出を 行なう方式である。除去方式としては液滴を吸引するか または窒素等ガスを噴射し液滴をギャップ内から飛散さ せる方式とがある。本実施例では吸引式除去ノズルを備 え、液滴を全て除去する方式について説明する。

【0234】以下図27によって、本発明による液滴情 報の検出および検出情報に基づく吐出制御の方法につい 20 て述べる。除去ノズル以外の実施形態は実施例14と同 様である。除去専用ノズル2012は専用の位置制御機 構を設ける必要のないように吐出ノズル、検出光学系と 同一の位置制御機構2003に搭載されている。本実施 例では吐出ノズル2001の1回あたりの標準吐出量が 100 ngとなるような駆動条件で吐出を行ない、10 0 n g の液滴を 1 回の吐出で形成することを標準吐出条 件に設定している。

【0235】変位制御機構2103を予め設定された座 標情報に従って駆動し、吐出ノズル2001の先端をユ 30 部に電子放出部が形成された。 ニット内の素子電極2・3間ギャップ中心上5mmの位 置にセットする。予め決められた駆動条件に従って吐出 を行なった後、検出光学系2002によって素子電極間 ギャップ中央における液滴情報の検出が行なわれる。

【0236】フォトダイオード出力は光学情報検出回路 2004において増幅され、基準信号比較回路2005 に送られる。基準信号比較回路2005では基準値との 差分信号が形成される。基準値は液滴の焼成後の膜厚が 20 nmになる液滴の厚みに相当する反射光強度が予め 実験的に求められ設定されている。反射光強度は液滴厚 みが大きくなるにつれて減少するため、(検出信号一基 準信号)で定義される差分出力は液滴厚みの適正値から のズレ量と1対1の相関を持っており、液滴厚みが適正 値に近づくにつれて減少し最適値で0となり、最適値を 超えるとマイナス極性に転じる。基準信号比較回路20 05から出力された差分出力は吐出条件補正回路200 6に送られる。吐出条件補正回路2006では差分出力 がプラス極性の場合LOWレベル信号が、マイナス極性 の場合にHIレベル信号が出力され除去ノズル制御回路 2013に送られる。同時に吐出条件補正回路2006

34

では、差分出力とズレ量との相関関係に基づく補正信号 データに従い差分出力に相当する補正信号が出力され、 吐出条件制御回路2007に送られる。HIレベル信号 の場合には除去ノズル制御回路2013は作動せず、吐 出条件制御回路2007において補正信号に基づいて駆 助条件のパルス高またはパルス幅が決められ補正吐出が 行なわれる。LOWレベル信号の場合には、まず除去ノ ズル制御回路2013が作動し除去ノズル2012によ って液滴が全て吸引除去された後に、吐出条件制御回路

【0237】以上のようにして10×10マトリクス配 線電極基板上の100ユニットセルについて液滴形成を 行なったところ、殆どのセルで1回の吐出後に液滴厚み は適正値を示したが、数%のセルでは適正値を越える液 滴厚みを示した。図28(a)は吐出異常により1回の 吐出量が異常に多くなり液滴厚みが適正値を越えた場合 であり、除去ノズルによって液滴を全て吸引した後、補 正された条件で再吐出が行われた結果適正な厚みの液滴 が得られた例である。図28(b)は基板の濡れ性が異 常に低いセルで、吐出量は適正であったが液滴厚が異常 に大きくなった場合であり、図28(a)と同様の手続 きによりギャップ中央での液滴厚みは正常値を示した。

【0238】液滴形成後10×10マトリクス配線電極 基板を350℃、30分の条件で焼成したところ液滴は PdO微粒子よりなる薄膜となった。素子電極間の抵抗 を測定したところ1回目の吐出で異常を示したセルにお いても3kΩ程度の正常な抵抗値を示した。次に素子電 極間に順次電圧を印加し、薄膜を通電処理(フォーミン グ処理)することにより各セルの素子電極ギャップ中央

【0239】こうして形成された電子源基板を、前述し た図5の電子放出特性評価装置に取付け、電子放出させ たところ、100個の全素子の電子放出特性は均一であ った。

【0240】さらに、素子数を増やした大面積基板(例 えば、図12)を用いて、10×10基板と同様に図2 7の除去ノズルを備えた吐出制御システム、ピエゾジェ ット式のインクジェット噴射装置等により、各セルにわ たって液滴を塗布した。これを350℃、30分の条件 で焼成し、Р d O の微粒子薄膜を全セルに形成できた。 素子電極間の抵抗を測定したところ、異常な吐出回数を 示したセルにおいても、3kΩ程度の正常な抵抗値を示 した。次に、素子電極間に順次電圧を印加し、薄膜を通 電処理(フォーミング処理)することにより、各セルの 素子電極ギャップ中央部に電子放出部を形成した。

【0241】こうして形成された電子源基板を用いて、 図7を用いて前述したようにフェースプレート108 6、支持枠1082、リアプレート1081とで外囲器 1088を形成し、封止を行ない表示パネル、さらには 図9に示すようなNTSC方式のテレビ信号に基づきテ

レビジョン表示を行なうための駆動回路を有する画像形 成装置を作成した。そうしたところ、異常な吐出回数を 示したセルを含め全ての素子が電子放出し、特性は均一 であった。これにより、輝度バラツキのない良好なTV 画像を形成することができた。

【0242】以上述べたように、吐出ノズルの異常、基 板濡れ性の異常、着弾位置異常などの原因によって1回 目の吐出で異常を示したセルにおいても素子電極ギャッ プ内では均一な組成、モホロジー、膜厚を有する薄膜が 形成されていることが確認された。

【0243】(実施例19)本実施例では、液滴情報の 検出情報に基づく吐出条件制御に加えて、液滴の着弾位 置情報を光学的に検出する手段と、検出される位置情報 に基づいて吐出位置合わせ、位置微調整等の位置制御を 行う手段とを備えるシステムについて説明する。

【0244】図29は本発明による液滴情報の検出およ び検出情報に基づく位置制御および吐出制御システムの プロック図である。光学検出系以外の実施形態は実施例 14と同様である。吐出制御に関しては他の実施例で詳 しく述べているため本実施例では特に位置制御について 20 のみ説明する。

【0245】本実施例で用いられる検出光学系2202 は実施例14と同様な垂直反射型だが、液滴情報検出用 ビームの他に位置検出用サブビームを備えたマルチビー ム方式であり、コンパクトディスクのトラッキング用検 出光学系と共通の方式である。半導体レーザーより出射 するビームは回折格子によって一列の3ビームに分けら れ異なる3つの位置で反射、変調された後、分割センサ ーにおいて各々の反射光強度の相関が検出されることに よって位置情報を得ることができる特徴がある。

【0246】位置の検出および制御は、吐出前に電極パ ターンまたは専用に設けたアライメントマークに対して 行なわれてもよいし、吐出後の液滴に対して行なわれて もよい。液滴の着弾位置検出法に関しては、吐出後の3 ビーム間の反射光強度を比較してもよいし、吐出前後で の強度変化を比較してもよい。位置検出と吐出のタイミ ングについては、まず予備吐出を行ない吐出位置の補正 をした後に本吐出を行うようにしてもよいし、吐出の度 に位置検出、補正を行ってもよい。

【0247】図30は液滴に対する位置制御、吐出制御 の様子を示している。1回目の吐出後素子電極2、3間 ギャップに直交する方向に配置された3ビーム列の反射 光強度が分割センサーによって検出・比較され、液滴着 弾位置の素子電極ギャップ中央からのズレ量が検出され る。ズレ量を補正信号として変位制御機構2203(図 29) による位置の補正が行われ、2回目以降の吐出が 適正位置に行われギャップ中央に適正な厚みの液滴が形 成された。

【0248】 (実施例20) 以上述べてきた実施例14

子放出部薄膜を形成する素子構成であるが、何らこの素 子形成に限定されるものではなく様々なバリエーション が考えられる。図31に他の素子構成の例をいくつか示 す。図31(a)は実施例14~19の実施例における ・素子構成、(b)は吐出位置を変化させ素子電極ギャッ プ内にインクジェット法による液滴列を構成する場合、

36

(c) は電子放出部薄膜のみでなく素子電極の一部もイ ンクジェット法による液滴配列によって構成する場合を 示す。いずれの場合も各液滴に対して実施例14~19 10 と同様の吐出制御、位置制御を行うことが可能である。

【0249】また実施例14~19の実施例においては 配線電極としてマトリクス配線型構成について述べた が、本発明は何らこれに限定されるものでなく、例えば はしご配線型等、様々な配線構成に適用可能なことは前 述の通りである。

【0250】(実施例21)マトリクス状に配線され、 素子電極を前述したように形成した基板を用い、表面伝 導型電子放出素子を作製した。その手順を以下に説明す

- 【0251】図33(a)は本実施例によって作製した 表面伝導型電子放出素子の平面図である。図32および 図33を参照して説明する。
 - (1) 絶縁基板として石英基板を用い、これを有機溶剤 等により充分に洗浄後、120℃で乾燥させた。
- (2) 前述の洗浄工程を施した基板上に、有機パラジウ ム含有溶液(奥野製薬(株)ccp-4230)を、液 滴付与装置として圧電素子を用いたインクジェット噴射 装置を用いて、液滴付与を行い、液滴の直径を求めたと ころ(図32(a))、1ドットあたりの直径 ϕ は50 30 μmであった。
 - (3) その基板 1 上に一般的な真空成膜技術およびフォ トリソグラフィ技術を用いてNiからなる素子電極2お よび3を形成した、そのとき素子電極のギャップ間隔 L 1は200 um、電極の幅W1は600 um、その厚さd は1000Åとした。
 - (4) 次に前述の有機パラジウム含有溶液 (奥野製薬
- (株) ccp-4230)を、液滴付与装置として圧電 素子を用いたインクジェット噴射装置を用い、ドット径 が50 µmになるように調整して、素子電極2および3 40 の間に図33(a)のように液滴付与を行った。200 μ mのギャップに対し、前記の(2)で説明した直径
 - (ϕ) 50 μ mのドットを、隣り合うドット同士の中心 間距離 P1をφ/2 すなわち 2 5 μ m とすることで 1 つ のドットがその左右のドットと25μmずつ重なるよう にしながら、11個付与した。液滴付与後、重なり合っ た部分は広がって、長さ方向のエッジは直線状になっ た。つまり、幅W2=50 μ m、長さT=300 μ mの 1列のドット列(パッド)を形成した。
- (5)次に300℃で10分間の加熱処理を行って、酸 ~19では吐出位置は固定され、1つの液滴によって電 50 化パラジウム (PdO) 微粒子からなる微粒子膜を形成

し、薄膜4とした。

(6)次に電極2・3間に電圧を印加し、薄膜4を通電処理(フォーミング処理)することにより、電子放出部5を形成した。

【0252】以上のような方法で作成した電子源基板では、1つのパッドの中で、ドットを重ねて付与することにより、パッドの幅W2が一定となり、長さ方向のずれによる幅W2のばらつきはなかった。さらに、塗布むらが小さく、膜厚分布が狭かったことから、抵抗のばらつきも小さかった。

【0253】また、PdOからなる微粒子膜のパッドが、素子電極のギャップに対して垂直方向および水平方向のいずれにおいても数十 μ mの余裕があるため、アライメントが容易になり、位置ずれによる欠陥が減少した

【0254】なお、液滴付与の順序は、端から順に付与する場合に限らず、1ドットおきに付与してから、その1つおきに形成されたドット間に次の液滴を付与していく等の方法も可能であって、特に順序に制限があるわけではない。

【0255】さらに1ドット当たりの液滴数を2としたところ、膜厚が約2倍となり、抵抗が約半分となった。すなわち、1ドット当たりの液滴数を変えることにより、所望の導電性薄膜抵抗を得ることができることがわかった。

【0256】また1ドット当たりの液滴量を2倍にしたところ、前述の液滴数を2にした場合と同様の結果が得られ、1ドット当たりの液滴量を変えることにより、所望の導電性薄膜抵抗を得ることができることがわかった

【0257】以上のように、本発明の方法によって、複数個素子を形成した場合の素子間のばらつきを小さくすることができて、製造歩留まりが向上した。また薄膜4のパターニングが省略できることから、コストを抑えることができた。

【0258】こうして作製されたマトリクス配線の電子源基板を用いて、前述のフェースプレート、支持枠、リアプレートとで外囲器を形成し、封止を行い、表示パネル(図7)とさらにはテレビジョン表示を行うための駆動回路を有する画像形成装置(図9)を作製したところ、輝度むらや欠陥が少なかった。

【0259】(実施例22)素子電極幅W1を 600μ m、素子電極ギャップ間隔L1を 200μ m、素子電極の厚さ dを1000 Å で形成された素子電極がはしご型に配線された基板を用い、実施例21 と同様の方法で表面伝導型電子放出素子を作製した。得られた電子源基板を用いて、実施例21と同様な方法でフェースプレート、支持枠、リアプレートとで外囲器を形成し、封止を行い画像形成装置を作製した。その結果、実施例21 と同様な効果が得られた。

38

【0260】(実施例23)実施例21と同様に、ギャップ間隔L1を200 μ m、電極の幅W1を600 μ m、その厚さdを1000 $^{\rm A}$ の素子電極を形成した基板に、同様のインクジェット噴射装置を用いて有機パラジウム含有溶液を付与した。但し、パッドの形状を図33(b)のように付与した。200 μ mギャップに対し、実施例21の(2)に説明したようなより直径(ϕ)5

 0μ mのドットを、隣接ドットの中心間距離P1および P2をいずれも 25μ m (ϕ /2) として左右・上下の 10 ドット同士が 25μ mずつ重なるように1列11個づつ、2列付与した。つまり幅 $W2=75 \mu$ m、長さ $T=300 \mu$ mの長方形状のパッドを形成した。パッドの形状以外は実施例21と同様に電子放出素子を作製したところ、実施例21と同様な素子間のばらつきの小さい良好な素子が得られた。また、上下方向のドット裂列を2列にすることにより、抵抗が半分になった。すなわち、ドット列数を変えることにより、所望の抵抗を得ることができる。このことから、パッドの幅W2は、素子電極幅W1以下で、求める抵抗値、素子電極の幅およびギャップ幅、アライメント精度により決定することができる。

【0261】(実施例24)素子電極のギャップ間隔を20μmとした以外は、実施例21と同様の基板に図3(c)のようなパッド形状に液滴付与を行ったところ、実施例21と同様な素子間のばらつきの小さい良好な素子が得られた。さらに素子電極のギャップ間隔が短いため、実施例21、22および23の場合よりギャップに垂直な方向のアライメントが容易であった。また図33(d)のようなパッドでも、同様な効果が得られた。

○ 【0262】(実施例25)実施例21~24で用いた 圧電素子を用いるインクジェット噴射装置に替えて、バ ブルジェット方式の液滴付与装置を用いたところ、それ ら実施例21~24の場合と同様の良好な素子および画 像形成装置が得られた。

【0263】(実施例26)フォトリソグラフィーによりマトリクス状に配線された素子電極を備えた基板を用い、表面伝導型電子放出素子を形成し、電子源基板を作製した。図2には、本実施例で作製した表面伝導型電子放出素子の平面図(a)および断面図(b)を示す。以40下、表面伝導型電子放出素子について、図2を参照しながら製造工程1~4に従って説明する。

【0264】製造工程1:絶縁性の基板(1)として石英基板を用い、これを有機溶剤により十分に洗浄した。この基板上に真空成膜技術およびフォトリソグラフィー技術により、Niからなる素子電極(2,3)を形成した。このとき、素子電極の間隔(L)を2 μ m、素子電極の幅(W1)を400 μ m、素子電極の厚さを1000Åとした。

【0265】製造工程2:素子電極(2,3)が形成さ 50 れた基板を純水によって超音波洗浄し、その後、温純水

40

による引き上げ乾燥を行った。次いで、HMDSを用い て疎水化処理を行い(スピナーでHMDSを塗布し、オ ーブンで200℃、15分間ベークを行い)、基板表面 を疎水性とした。この疎水化された基板上の素子電極 (2, 3) の間をねらって、圧電素子を備えたインクジ ェット噴射装置を用い、液滴付与装置から酢酸パラジウ ムの0.05wt%水溶液を1滴(1ドット)付与し た。このとき、基板上での液滴の形状は、着弾後でも広 がることもなく、安定性・再現性ともに良好であった。 【0266】製造工程3:液滴の付与後、300℃で1 O分間加熱処理をして、酸化パラジウム(PdO)の微 粒子からなる微粒子膜(導電性薄膜4)を形成した。な お、ここで説明する微粒子膜とは、複数の微粒子が集合 した膜であり、その微粒子膜の構造は、微粒子が個々に 分散配置した状態のみならず、微粒子が互いに隣接ある いは重なり合った状態(島状も含む。)の膜を指す。こ のときの薄膜の幅(W2)は、基板上での液滴の形状か ら1対1で決まるため、前述の液滴の形状の安定性・再 現性が良好であったため、薄膜の幅(W2)も一定の値 でそろっていた。本発明の製造方法によって、導電性薄 20 する画像形成装置を作製した。 膜4のパターン形成の工程を省略できる。

【0267】製造工程4:素子電極(2,3)の間に電 圧を印加し、導電性薄膜4を通電処理(フォーミング処 理) することにより電子放出部5を形成した。

【0268】以上のようにして作製した表面伝導型電子 放出素子を備えたマトリクス配線による電子源基板を用 いて、前述の図7のフェースプレート1086と支持枠 1082とリアプレート1081とで外囲器1088を 形成し、封止を行って表示パネルを作製し、さらにNT SC方式のテレビ信号に基づいてテレビジョン表示を行 30 うための図9に示すような駆動回路を有する画像形成装 置を作製した。

【0269】本発明の画像形成装置から得られた画像 は、大画面の全領域にわたって均一で良好であった。 【0270】(実施例27)素子電極(2,3)の幅 (W1) を600μm、素子電極の間隔(L) を2μ m、素子電極の厚さを1000オングストロームとして 形成し、はしご状に配線した素子電極を備えた基板(図 13)を用い、実施例21と同様な方法で表面伝導型電 電子源基板を用いて、前述の図11のフェースプレート 1086とグリッド電極1120、支持枠1082、リ アプレート1124とで外囲器を形成し、封止を行って 表示パネルを作製し、さらにNTSC方式のテレビ信号 に基づいてテレビジョン表示を行うための図9に示すよ うな駆動回路を有する画像形成装置を作製した。

【0271】そうしたところ、実施例26と同様な効果 が得られた。

【0272】(実施例28)フォトリソグラフィーによ

13)を用い、バブルジェット方式のインクジェット装 置を使用し、実施例26と同様にして表面伝導型電子放 出素子を形成し、電子源基板を作製した。得られた電子 源基板を用いて、実施例26と同様な方法でフェースプ ・レート1086と支持枠1082とリアプレート108 1とで外囲器1088を形成し、封止を行って表示パネ ルを作製し、さらにNTSC方式のテレビ信号に基づい てテレビジョン表示を行うための図9に示すような駆動 回路を有する画像形成装置を作製した。

【0273】そうしたところ、実施例26と同様な効果 が得られた。

【0274】(実施例29)フォトリソグラフィーによ りはしご状に配線された素子電極を備えた基板(図1 3)を用い、バブルジェット方式のインクジェット装置 を使用し、実施例26と同様にして表面伝導型電子放出 素子を形成し、電子源基板を作製した。得られた電子源 基板を用いて、前述したようにして表示パネルを作製 し、さらにNTSC方式のテレビ信号に基づいてテレビ ジョン表示を行うための図9に示すような駆動回路を有

【0275】そうしたところ、実施例26と同様な効果 が得られた。

【0276】(実施例30)フォトリソグラフィーによ りマトリクス状に配線された素子電極を備えた基板(図 12)を用い、表面伝導型電子放出素子を形成し、電子 源基板を作製した。図34には、本実施例で作製した表 面伝導型電子放出素子の平面図を示す。以下に、表面伝 導型電子放出素子について、製造工程1~4に従って説 明する。

【0277】製造工程1:絶縁性の基板(1)として石 英基板を用い、これを有機溶剤により十分に洗浄した。 この基板上に真空成膜技術およびフォトリソグラフィー 技術により、Niからなる素子電極(2,3)を形成し た。このとき、素子電極の間隔(L)を2 µm、素子電 極の幅(W1)を600μm、素子電極の厚さを100 0オングストロームとした。

【0278】製造工程2:素子電極(2,3)が形成さ れた基板を純水によって超音波洗浄し、その後、温純水 による引き上げ乾燥を行った。次いで、HMDSを用い 子放出素子を作製し、電子源基板を形成した。得られた 40 て疎水化処理を行い(スピナーでHMDSを塗布し、オ **ーブンで200℃、15分間ベークを行い)、基板表面** を疎水性とした。この疎水化された基板上の素子電極 (2, 3)の間をねらって、圧電素子を備えたインクジ ェット噴射装置を用い、液滴付与装置から酢酸パラジウ ムの0.05wt%水溶液を2滴(2ドット)並べて付 与した。このとき、基板上での液滴の形状は、着弾後で も広がることもなく、安定性・再現性ともに良好であっ

【0279】製造工程3:液滴の付与後、300℃で1 りマトリクス状に配線された素子電極を備えた基板(図 50 O分間加熱処理をして、酸化パラジウム(PdO)の微

粒子からなる微粒子膜(導電性薄膜4)を形成した。な お、ここで説明する微粒子膜とは、複数の微粒子が集合 した膜であり、その微粒子膜の構造は、微粒子が個々に 分散配置した状態のみならず、微粒子が互いに隣接ある いは重なり合った状態(島状も含む。)の膜を指す。こ のときの薄膜の幅(W2)は、基板上での液滴の形状か ら1対1で決まるため、前述の液滴の形状の安定性・再 現性が良好であったため、薄膜の幅(W2)も一定の値 でそろっていた。本発明の製造方法によって、導電性薄 膜4のパターン形成の工程を省略できる。

【0280】製造工程4:素子電極(2,3)の間に電 圧を印加し、導電性薄膜(4)を通電処理(フォーミン グ処理)することにより電子放出部(5)を形成した。 【0281】以上のようにして作製した表面伝導型電子 放出素子を備えた電子源基板を用いて、前述の図7のよ うにフェースプレート1086と支持枠1082とリア プレート1081とで外囲器1088を形成し、封止を 行って表示パネルを作製し、さらにNTSC方式のテレ ビ信号に基づいてテレビジョン表示を行うための図9に 示すような駆動回路を有する画像形成装置を作製した。 【0282】そうしたところ、実施例26と同様な効果 が得られた。

【0283】(実施例31)フォトリソグラフィーによ りマトリクス状に配線された素子電極を備えた基板(図 12)を用い、素子電極間に付与する液滴数を1つの導 電性薄膜の形成に対して2つとした以外は、実施例26 と同様にして表面伝導型電子放出素子を形成し、電子源 基板を作製した。液滴の付与工程において、液滴付与装 置および液滴付与時の諸条件は実施例26と同様とし、 さらに液滴の1滴(1ドット)あたりの溶液量も実施例 26の場合と同一とした。このとき形成された導電性薄 膜の厚さは、実施例26の場合の2倍であった。このよ うに付与する液滴の溶液量や液滴数によって形成する導 電性薄膜の膜厚が制御できる。

【0284】以上のようにして作製した表面伝導型電子 放出素子を備えた電子源基板を用いて、実施例26と同 様な方法でパネルおよび画像形成装置を作製した。

【0285】そうしたところ、実施例26と同様な効果 が得られた。

全ての電子放出素子の製造手順は、基板上に素子電極

(あるいは素子電極および配線電極の両者)を作製した 後に液滴を付与し、それを焼成して導電性薄膜を形成す るという順序であったが、まず最初に液滴を付与・焼成 し導電性薄膜を形成した後に、素子電極(あるいは素子 電極および配線電極の両者)を形成しても一向に構わな い。この素子電極の形成に先だって、液滴を付与・焼成 により導電性薄膜を形成する手法においては、液滴の素 子電極への吸い込みを防止することができるため、制御 性良く導電性薄膜を形成することができる。この製造手 50 ート1124とで外囲器を形成し、封止を行って表示パ

42

順による実施例を以下に説明する。

【0287】図35は、単素子の製造方法を示す図であ

【0288】この絶縁性の基板としての石英基板1を用 い、これを有機溶剤により十分に洗浄した。この基板上 ほぼ中央に圧電素子によるインクジェット噴射装置7よ り酢酸パラジウムの0.05wt%水溶液24を1滴付 与した(図35(a1)、(a2))(この場合、1滴で あるが、所望の膜が得られるよう複数滴でもよい)。

【0289】液滴付与後、300℃で10分間加熱焼成 10 して、酸化パラジウム (PdO) 微粒子のドット状導電 性薄膜 4 を形成した(図35(b1)、(b2))。

【0290】上記のようにドット状の導電性薄膜が形成 された基板に真空成膜およびフォトリソグラフィー技術 により、Niからなる素子電極2、3を形成した(図3 5 (c1)、(c2))。このとき、素子電極間隔 L1を 10 μm、素子電極の幅W1を400 μm、素子電極の 膜厚を1000Åとし、また、素子電極間隔の中心とド ット状の導電性薄膜の中心とはほぼ一致するようにし 20 た。

【0291】素子電極2、3の間に電圧を印加し、導電 性薄膜4を通電処理(フォーミング処理)することによ り、電子放出部5を形成した(図35(c1)、(c 2))。

【0292】以上の方法は、単素子の作製法であるが、 同様にして表面伝導型電子放出素子を複数個備えたマト リクス配線による電子源基板を作製することもできる。 作製した電子源基板を図36に示す。ここで、マトリク ス状配線の素子電極は、真空成膜・フォトリソグラフィ 30 一法で作製したもので、X配線とY配線とは交差部にお いて不図示の絶縁部材により電気的に絶縁されている。 さらに前述の図7のようにフェースプレート1086と 支持枠1082とリアプレート1081とで外囲器10 88を形成し、封止を行って表示パネルを作製した。さ らに、NTSC方式のテレビ信号に基づいてテレビジョ ン表示を行うための図9に示すような駆動回路を有する 画像形成装置を作製した。なお、電子源基板としては、 図37に示したものをも使用することができる。

【0293】本例の画像形成装置の画像もこれまでの場 【0286】(実施例32)以上、これまで述べてきた 40 合と同様、大画面の全領域にわたって均一で良好であっ

> 【0294】(実施例33)ドット状導電性薄膜を実施 例32と全く同様の方法で複数個形成後、素子電極2、 3の幅W1を600μm、素子電極間隔を10μm、素 子電極の厚さを1000Åとしたはしご状配線付きの複 数個の素子電極がドット状導電性薄膜上に来るよう真空 成膜・フォトリソグラフィー法により、図37のような 電子源基板を形成した。さらに、前述の図11のように フェースプレート1086と支持枠1082とリアプレ

ネルを作製した。さらに、NTSC方式のテレビ信号に基づいてテレビジョン表示を行うための図9に示すような駆動回路を有する画像形成装置を作製した。

【0295】本例の画像形成装置も、実施例32と同様に優れた画像を安定して表示できた。

【0296】(実施例34)上記実施例32および33では、インクジェット噴射装置に圧電素子を用いるタイプを用いたが、熱により気泡を発生させるバブルジェット式のインクジェット装置を用いることもできる。その方法によって、マトリクス配線による電子源基板を用いた画像形成装置、ならびに、はしご型配線を用いた画像形成装置を作製したところ、実施例32、33と同様のものを作製できた。

[0297]

【発明の効果】以上説明した通り、本発明の電子放出素子の製造方法によれば、電子放出部を構成する導電性薄膜を金属元素を含有する溶液を液滴の形態で付与して形成することから、所定の位置に所望の量を付与することができ、電子放出素子の製造工程を大幅に低減することができる。

【0298】さらに、本発明の電子放出素子の製造方法によれば、液滴の情報を検出し液滴に基づいて吐出条件および吐出位置の補正、液滴の再付与を行うことにより、欠陥の極めて少ない均一な薄膜を形成できる。これにより、素子特性均一性の飛躍的な向上が実現でき、大面積化に伴う歩留り低下の問題を解決できる。

【0299】さらにこのような電子放出素子を用いると、性能の優れた電子源基板、電子源、表示パネルおよび画像形成装置を得ることができる。

【0301】さらに、本発明の電子放出素子の製造方法によれば、付与する液滴の溶液を親水性とし、その溶液を素子電極を有する基板上に付与する際に、基板の表面上が疎水性になるように基板の表面処理を行うことによって、導電性薄膜が再現性よく形成でき、均質な表面伝導型電子放出素子を作製できるため、大面積にわたって多数の表面伝導型電子放出素子を作製した場合でも、均一な電子放出特性を得ることができる。

【0302】さらに本発明の電子放出素子の製造方法によれば、導電性薄膜を形成した後に素子電極を形成することで、本発明の電子放出素子の製造方法を適用し得る態様を拡大し得る。

【0303】また、上述した本発明の電子源、電子源基 学系/吐出ノズルの動作を示す概略図であり、 板、表示パネル、画像形成装置は、電子放出素子を構成 50 液滴情報検出時、(b)は吐出時の図である。

44

する導電性薄膜が的確な位置に均一に配されることから、優れた特性を安定して発揮できる。

【図面の簡単な説明】

【図1】本発明の電子放出素子の製造手順の1例を示す 工程図である。

【図2】本発明の電子放出素子の1例を示す模式図である。

【図3】本発明の電子放出素子の別の1例の模式的平面 図である。

) 【図4】本発明の電子放出素子製造時の通電フォーミングにおける電圧波形を示すグラフであり、(a)はパルス波高値が一定の場合、(b)はパルス波高値が増加する場合である。

【図5】電子放出特性を測定するための測定評価装置の 概略構成図である。

【図6】本発明の単純マトリクス配置の電子源の1例を 示す模式的部分平面図である。

【図7】本発明の画像形成装置の1例の概略構成図である。

20 【図8】 蛍光膜の構成を示す模式的部分図であり、

(a) はブラックストライプの設けられたもの、(b) はブラックマトリクスの設けられたものの図である。

【図9】本発明の画像形成装置の1例における駆動回路であって、NTSC方式のテレビ信号に応じて表示を行うための駆動回路のブロック図である。

【図10】はしご配置の電子源の模式図である。

【図11】本発明の画像表示装置の1例を示す、一部を 破断した概観斜視図である。

【図12】素子電極がマトリクス状に形成された基板の 30 模式図である。

【図13】はしご状に配線された素子電極を有する基板 の模式図である。

【図14】本発明の製造方法における液滴付与工程の1 例を示す概略図である。

【図15】本発明の製造方法の1例についての流れを示すフローチャートである。

【図16】本発明の製造方法における液滴付与工程の他の1例を示す概略図である。

【図17】本発明の製造方法における液滴付与工程の別40 の1例を示す概略図である。

【図18】本発明の製造装置における検出光学系/吐出 ノズルの構成を示す概略図であり、(a)は垂直反射 型、(b)は斜方反射型および(c)は垂直透過型のも のである。

【図19】本発明の製造装置における垂直反射型検出光 学系/吐出ノズルの動作を示す概略図であり、(a)は 液滴情報検出時、(b)は吐出時を示す図である。

【図20】本発明の製造装置における垂直透過型検出光 学系/吐出ノズルの動作を示す概略図であり、(a)は 液液情報検出時 (b)は吐出時の図である

	(27)		14 (4) 1 3
45			46
【図21】本発明の製造方法により作製された素子を用		8	発光手段
いて形成した電子線発生装置の1例の概略を示す斜視図		9	受光手段
である。		1 0	ステージ
【図22】10×10単純マトリクス配線基板上にイン	•	1 1	コントローラ
クジェット法によって電子放出素子が形成された本発明		1 2	制御手段
の電子源基板の1例を示す模式図である。		2 4	液滴
【図23】本発明の製造装置における吐出制御系の1例		7 2	X配線
についてのブロック図である。		7 3	Y配線
【図24】本発明の製造装置における垂直反射型光学検		8 0	電流計
出系の1例についての構成図である。	10	8 1	電源
【図25】本発明の製造装置における吐出制御系の1例		8 2	電流計
についてのブロック図である。		8 3	高圧電源
【図26】本発明の製造装置における吐出制御系の1例		8 4	アノード電極
についてのブロック図である。		8 5	真空装置
【図27】本発明の製造装置における吐出制御系の1例		8 6	排気ポンプ
についてのブロック図である。		9 1	電子源基板
【図28】本発明の製造装置における除去ノズルによる		9 2	X方向配線
異常セル補正の概略図である。		9 3	Y方向配線
【図29】本発明の製造装置における吐出制御系の1例		9 4	表面伝導型電子放出素子
についてのブロック図である。	20	9 5	結線
【図30】変位補正複合型吐出制御系による異常セル補		1081	リアプレート
正の概略図である。		1082	支持枠
【図31】本発明の表面伝導型電子放出素子のインクジ		1083	ガラス基板
ェット法による素子構成のバリエーションを示す模式図		1084	蛍光膜
である。		1085	メタルバック
【図32】本発明の製造方法におけるドットおよびパッ		1086	フェースプレート
ド形成の基本パターンを示す模式的図であり、(a)は		1087	高圧端子
隣り合うドット間の距離を示す図、(b)は素子電極間		1088	外囲器
に形成されるパッドの図である。		1091	黒色導電材
【図33】本発明の製造方法におけるパッド形成のパタ	30	1092	蛍光体
ーンの例を示す模式図である。		1093	ガラス基板
【図34】本発明の方法によって製造された表面伝導型		1 1 0 1	表示パネル
電子放出素子の1例を示した平面図である。		1 1 0 2	走査回路
【図35】本発明の表面伝導型電子放出素子の製造方法		1103	制御回路
の1例を示す工程図である。		1 1 0 4	シフトレジスタ
【図36】本発明のマトリクス型配線の電子源基板の1		1 1 0 5	ラインメモリ
例を示す模式図である。		1106	同期信号分離回路
【図37】本発明のはしご型配線の電子源基板の1例を		1 1 0 7	変調信号発生器
示す模式図である。		1 1 1 0	電子源基板
【図38】従来の表面伝導型電子放出素子の1例の模式	40	1 1 1 1	電子放出素子
図である。		1112	共通配線
【図39】従来の表面伝導型電子放出素子の1例の模式		1120	グリッド電極
図である。		1 1 2 1	空孔
【符号の説明】		1122	容器外端子
1 基板		1123	容器外端子
2、3 素子電極		1124	電子源基板
4 導電性薄膜		1201	電子放出部形成領域
5 電子放出部		1 3 0 1	基板
7 液滴付与装置(インクジェット噴射装置)		1302	配線

<u>1110 1</u>111

1112

2 24 3

【図30】

フロントページの続き

(31)優先権主張番号 特願平7-156321

(32)優先日

平7(1995)6月22日

(33)優先権主張国 日本(JP)

(72)発明者 長谷川 光利

東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内

(72)発明者 貴志 悦朗

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 宮本 雅彦

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内