2024 年度 第 2 学年 物理 III 前期期末試験(担当:高橋幹弥) 実施日時: 2024 年 8 月 1 日(木) 9:00~10:00

注意事項:回答・問題・計算用紙の<u>全てに配名</u>すること。特別な指示がない限り、<u>単位や符号・有効数字を適切に答える</u>こと。電卓等、<u>筆記用具以外は使用不可</u>とする。気体定数 R, ボルツマン定数 k_B, アボガドロ数 N_A, 数学記号(円周率 π など)は断りなく用いてよい。

- 1 次の(1)~(3)に答えよ。
- (1) 質量 m, 平均速度vで運動する単原子の気体分子を考える。
 - (ア)この気体分子1個の運動エネルギーはいくらか。
 - (イ)物質量 n の気体分子を個数にする心いくらか。
 - (ウ)物質量 n の気体分子の全運動エネルギーはいくらか。
- (2) ピストン付きの容器に気体を入れる。このピストンを距離 L だけ押し込んで、気体を 圧縮した。ピストンに加わる力の大きさを F, ピストンの面積を S とする。この問題で は、気体がされる仕事を正の仕事と定める。
 - (ア)容器内部の気体の圧力を求めよ。
 - (イ)気体がピストンからされた仕事を求めよ。ただし気体の圧力は一定とする。
 - (ウ)気体がピストンにした仕事を求めよ。
- (3) ピストン付きの容器に気体(物質量n, 圧力P, 温度 T_1 , 体積 V_1)を入れる。この容器に熱容量C, 温度t(> T_1)の高温熱源を接触させる。十分時間が経過した後、気体の状態は圧力P, 体積 V_2 、熱源を含めた系全体の温度は T_2 となった。熱源と気体との間以外には熱量のやりとりはないものとする。単位物質量あたりの定圧比熱を C_P とする。
 - (ア)気体が高温熱源とやりとりした熱量 Qを求めよ。
 - (イ)気体の内部エネルギー変化 AUを、Coを用いて表せ。
 - (ウ)気体が外部にした仕事 Wを、V1、V2を用いて表せ。
 - (x) O, ΔU , W が満たすべき関係式を書け。
- 2 次の(1)~(3)に答えよ。
- (1) 気体に加えた熱量を Q、気体が外部からされた仕事を W、気体の内部エネルギー変化を ΔU としたとき、熱力学第 1 法則を書け。
- (2) (1)を変形することで、4 つの熱力学過程(等温変化、定種変化、定圧変化、断熱変化)における熱力学第 1 法則を、Q, W, ΔU を用いてそれぞれ書け。
- (3) T-V 図(温度-体積の図)上での4つの熱力学過程 (等温変化、定積変化、定圧変化、断熱変化)とし て、正しいものをそれぞれ右図のア〜エから選べ。

③ 図のような P-V 図上での熱サイクルを考える。ただし物質量nの単原子分子理想気体を仮定する。

- [A] 次の(1)~(6)に答えよ。ただし(2), (4), (5), (6)の答えはP₁, P₂, V₁, V₂のみで表せ。
- (1) 気体が過程①~④で外部にする仕事をそれぞれ $W_1 \sim W_4$ とする。 $W_1 \sim W_4$ のうち、その値が 0 でない過程を①~④の中から 2 つ選べ。
- (2) (1)で選んだ 2 つの仕事をそれぞれ求めよ。区別がつくように「 W_1 =...」のように答えること。
- (3) 気体が過程 \mathbb{T} ~④で吸収する熱量をそれぞれ Q_1 ~ Q_4 とする。 Q_1 ~ Q_4 のうち、その値が正となる(気体が熱量を吸収する)過程を \mathbb{T} ~④の中からを2つ選べ。
- (4) (3)で選んだ 2 つの過程で出入りする熱量をそれぞれ求めよ。区別がつくように $\lceil O_1 = ... \rceil$ のように答えること。
- (5) (3) で選ばなかった 2 つの過程で出入りする熱量をそれぞれ求めよ。区別がつくように $\lceil O_1 = ... \rceil$ のように答えること。
- (6) 熱サイクルの性能評価のため、成績係数なる指標 ω = (外部に放出した熱量) / (気体がされた仕事)を定義する。①~④の熱サイクルにおける成績係数 ω を求めよ。
- [B] 次の(7)~(9)に答えよ。
- (7) 仕事や熱量の出入りを伴う①~④の一連の過程を経た結果、気体の温度は元に戻る。 このことを利用して、①~④の熱サイクルにおいて $Q_1,Q_2,Q_3,Q_4,W_1,W_2,W_3,W_4$ が満たす関係式を書け。ただし、QやWが 0 の場合も残して回答すること。
- (8) 過程①+②で気体が外部にした仕事の総量を $W=W_1+W_2$ 、外部から吸収した熱量の総量を $Q=Q_1+Q_2$ 、および過程③+④で気体が外部からされた仕事の総量を $W'=-(W_3+W_4)$ 、外部に放出した熱量の総量を $Q'=-(Q_3+Q_4)$ として、(7)で得た関係式を書き直す。すると、過程①+②と過程③+④で一定となる量の存在が見出せる。この量を Qと W、または Q'と W'を用いて表せ。
- (9) (8)で見出した量は、ある物理量の変化を表す。その物理量とはなにか。

4 図のように、質量 m, 平均速度 \bar{v} で運動する単原子分子理想気体 N 個を、一辺の長さが L の自由に動く正方形のピストンで容器に閉じ込める。いま、気体分子運動論により、気体の圧力は $P=Nm\bar{v}^2/3L^3$ で与えられるものとする。次の(1)~(4)に答えよ。

- (1) 気体分子運動論に基づいて気体の圧力 $P=Nm\bar{v}^2/3L^3$ を導く過程を、以下のアーキの中から5つ選び、正しく並び替えよ。
 - ア: 気体分子1個の衝突前後での運動エネルギーの変化を求める。
 - イ:気体分子を N個、運動を 3 方向に拡張し、N個の分子が壁に与える力を求める。
 - ウ:気体分子1個の衝突前後での運動量の変化を求める。
 - エ:気体分子1個が壁に与える仕事を求める。
 - オ:N個の気体分子が壁に与える圧力を求める。
 - カ:気体分子1個が壁に与える(時間的な)平均の力を求める。
 - キ:気体分子1個が壁に与える力積を求める。
- (2) 気体が断熱膨張し、速度 u でピストンが x 方向に時間 Δt だけ動いた。このとき、容器 の体積の変化 ΔV を求めよ。
- (3) 体積が ΔV だけ変化したときの気体の温度変化 ΔT を、m, \bar{v} , u, Δt , L, k_B で表せ。ただし、圧力 P は断熱膨張の前後で一定とする。
- (4) この断熱膨張によって、気体の温度はどうなるか。(3)の結果に基づいて、以下のアーエの中から正しい記述を1つ選べ。
 - T:(3)で $\Delta T<0$ となったので、気体の温度は上がる。
 - A:(3)で $\Delta T>0$ となったので、気体の温度は上がる。
 - ウ:(3)で ΔT <0となったので、気体の温度は下がる。
 - x:(3)で $\Delta T>0$ となったので、気体の温度は下がる。

5 次の文章を読んで、(1)~(7)に適切な式を入れよ。ただし、(6)は物質量,温度,比熱比 γ と各種物理定数のみで回答し、(7)は枠内の 5 つの記号の中から適切なものを選べ。

まず、物質量nの気体に対して、左図のようなカルノーサイクルを考える。状態 A, B, C, D における(圧力, 体積, 温度)を、それぞれ(P_A , V_A , T_A), (P_B , V_B , T_A), (P_C , V_C , T_C), (P_D , V_D , T_C)とする。気体が吸収する熱を Q, 気体が外部にする仕事を W とし、各過程の Q, W は下付きの数字 1, 2, 3, 4 をつけて表すことにすると、それぞれの過程における熱力学第 1 法則は以下のように書ける:

- ① (等温膨張): O1 = W1 = nRTA log (VB / VA),
- ② (断熱膨張): T_AV_B^{y-1} = T_CV_C^{y-1} (y は比熱比),
- ③ (等温収縮): $Q_3 = W_3 = nRT_C \log (V_D / V_C)$,
- ④ (断熱収縮): T_AV_Aγ-1 = T_CV_Dγ-1 (γ は比熱比).

気体の状態が変化する間の全吸熱量と温度を用いて S=Q/T という量を導入すると、過程①,③における S は、 $S_1=$ ① $, S_3=$ ② また、過程②と④の結果を用いると、 $V_B/V_A=$ ③ $, S_1=$ ③ $, S_2=$ ④ $, S_3=$ ④ $, S_3=$ ④ $, S_3=$ ④ $, S_3=$ ⑤ $, S_4=$ ○ $, S_4=$

次に、右図のように状態 B だけを状態 B'にわずかに変更した熱サイクルを考える。状態 B'における(圧力, 体積, 温度)を $(P_{\rm B}', V_{\rm C}, T_{\rm A})$ とする。A から B'を過程①', B'から C を過程②'とすると、熱力学第 1 法則は以下のように書ける(③, ④は同じ):

- ①'(等温膨張): Q_1 '= W_1 '= $nRT_A \log (V_C / V_A)$,
- ②'(定積変化): O2'= 3/2 nR (Tc-TA).

過程①', ②'の結果をそれぞれ用いて、 S_1 '= (5) , S_2 ' = 3/2 nR \log (T_C/T_A) . 以上の結果から、 $S=S_1$ ' + S_2 ' + S_3 = (6) さらに、右図の熱サイクルの熱効率 η 'は、カルノーの定理より、カルノーサイクルの熱効率 $\eta_c=1$ - T_C/T_A よりも小さくなる。つまり、 T_A と T_C を固定した場合、カルノーサイクルから少しだけずれた熱サイクルでは、熱効率が低下するとともに S の値も変化することがわかる。

以上より、(4)と(6)の結果を用いると、ここで考えた2つの熱サイクルについて、Sに関する不等式: S $(7)=,<,>,\ge$ 0 が成立することがわかる。この不等式をクラウジウスの不等式といい、S=Q/Tをエントロピーという。

	(1)	. T	- 10 - 10	*	
3	(2)1つ目:	(2)2つ目:			
	(3)				

2 4	F	科番 名前	
	(4	4) 1 つ目:	(4) 2 つ目:
	(;	5) 1つ目:	(5) 2 つ目:
3		6)	
_	(7)	
	((8)	(9)
	1	$(1) \longrightarrow \longrightarrow$	→ ·
4		(2)	(4)
	-	(1)	(2)
		(3)	(4)
5		(5)	(6)
		(7)	