AD HOC NETWORKS Technologies and Protocols

AD HOC NETWORKS Technologies and Protocols

Edited by

PRASANT MOHAPATRA

University of California, Davis

SRIKANTH V. KRISHNAMURTHY

University of California, Riverside

eBook ISBN: 0-387-22690-7 Print ISBN: 0-387-22689-3

©2005 Springer Science + Business Media, Inc.

Print ©2005 Springer Science + Business Media, Inc. Boston

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com and the Springer Global Website Online at: http://www.springeronline.com

Contents

List of Fig	gures		xi
List of Ta	bles		xvii
Contribut	ing Auth	ors	xix
Preface			xxi
Acknowle	edgments	S	xxiii
1			
Ad Hoc N	Vetworks		1
Mario Ge	rla		
1.1.	1.1.1	action and Definitions Wireless Evolution	1 3
		Ad hoc Networks Characteristics	4 5
	1.1.3	Wireless Network Taxonomy	
1.2.		c Network Applications	6
		The Battlefield	7
	1.2.2	The Urban and Campus Grids: a case for opportunistic ad hoc networking	10
1.3.	Design	n Challenges	12
	1.3.1	Cross Layer Interaction	12
	1.3.2	Mobility and Scaling	13
1.4.	Evalua	ting Ad Hoc Network Protocols - the Case for a Testbed	15
1.5.	Overvi	ew of the Chapters in this Book	17
1.6.	Conclu	isions	21
Refere	ences		22
2			
_	Avoidar	nce Procotols	23
J. J. Gard	cia-Luna	-Aceves and Yu Wang	
2.1.		mance of collision avoidance protocols	25
	2.1.1	Approximate Analysis	26
	2.1.2		35
	2.1.3	Simulation Results	39
2.2.	Frame	work and Mechanisms for Fair Access in IEEE 802.11	44
	2.2.1		46
	2.2.2	. ••	48
	2.2.3		54
2.3.	Conclu	asion	58

References		60	
3			
	in Mobile Ad Hoc Networks	63	
_	K. Marina and Samir R. Das		
3.1.	Introduction	63	
3.2.	Flooding	65	
	3.2.1 Efficient Flooding Techniques	66	
3.3.	Proactive Routing	68	
	3.3.1 Distance Vector Protocols	69	
	3.3.2 Link State Protocols3.3.3 Performance of Proactive Protocols	70	
	3.3.3 Performance of Proactive Protocols	71	
3.4.	On-demand Routing	72	
	3.4.1 Protocols for On-Demand Routing	72	
	3.4.2 Optimizations for On-demand Routing	75	
	3.4.3 Performance of On-Demand Routing	77	
3.5.	Proactive Versus On-demand Debate	77	
	3.5.1 Hybrid Approaches	79	
3.6.	Location-based Routing	80	
	3.6.1 Location-based Routing Protocols	81	
	3.6.2 Location Service Protocols	84	
3.7.	Concluding Remarks	84	
Refe	rences	86	
4			
Multicas	sting in Ad Hoc Networks	91	
Prasant .	Mohapatra, Jian Li, and Chao Gui		
4.1.		91	
4.2.	Classifications of Protocols	94	
	4.2.1 Dealing with Group Dynamics	94	
	4.2.2 Dealing with Network Dynamics	95	
4.3.	Multicasting Protocols	96	
	4.3.1 Multicast operations of AODV (MAODV)	97	
	4.3.2 Reliance on More Nodes	99	
	4.3.3 Reliance on Backbone Structure4.3.4 Stateless Multicasting	103 105	
	4.3.5 Overlay Multicasting	105	
	4.3.6 Location Aided Multicasting	108	
	4.3.7 Gossip-Based Multicasting	108	
4.4.	Broadcasting	109	
4.5.	Protocol Comparisons 4.5.1 Network Size	112 112	
	4.5.1 Network Size 4.5.2 Network Mobility	112	
	4.5.3 Multicast Group Size	113	
4.6.	Overarching Issues	114	
4.0.	4.6.1 Energy Efficiency	114	
	4.6.2 Reliable Multicasting	114	
	4.6.3 QoS-AwareMulticasting	117	
	4.6.4 Secure Multicasting	117	

4.7. Refere		119 119
Kelen	elices	119
		100
-	Layer Protocols in Ad Hoc Networks	123
	van Sundaresan, Seung-Jong Park, Raghupathy Sivakumar	101
5.1.	Introduction	124
5.2.	TCP and Ad-hoc Networks	125
	5.2.1 TCP Background	126
	5.2.2 Window-based Transmissions 5.2.3 Slow Start	127 129
	5.2.4 Loss-based Congestion Indication	129
	5.2.5 Linear Increase Multiplicative Decrease	131
		132
	5.2.6 Dependence on ACKs and Retransmission Timeouts	_
7 2	5.2.7 Absolute Impact of Losses	134
5.3.		135
5.4.	Modified TCP	137
5.5.	· · · · · · · · · · · · · · · · · · ·	140
5.6.	Ad-hoc Transport Protocol	146
5.7.	Summary	150
Refer	ences	151
nergy C	Conservation	153
	avets and Cigdem Sengul	
6.1.	Energy Consumption in Ad Hoc Networks	155
0.11	6.1.1 Point-to-Point Communication	155
	6.1.2 End-to-End Communication	157
	6.1.3 Idle Devices	157
	6.1.4 Energy Conservation Approaches	158
6.2.	Communication-Time Energy Conservation	158
	6.2.1 Power Control	158
	6.2.2 Topology Control	161
	6.2.3 Energy-Aware Routing	172
6.3.	Idle-time Energy Conservation	176
	6.3.1 Communication Device Suspension	176
	6.3.2 Power Management	186
6.4.	Conclusion	190
Refer	rences	190
se of Sr	mart Antennas in Ad Hoc Networks	197
	Krishnamurthy and Srikanth Krishnamurthy	
rashant	Introduction	197
rashant 7.1.	Smart Antenna Basics and Models	198
	Smart Amenia basics and woders	170
7.1.	7.2.1 Antennas in Brief	199
7.1.	7.2.1 Antennas in Brief7.2.2 Important Antenna Parameters	199 200
7.1.	7.2.1 Antennas in Brief	199

viii AD HOC NETWORKS

		7.3.2	Directional Transmissions and the IEEE 802.11 MAC proto-	203
		7.3.3	Directional Medium Access Control with Omni-Directional Receptions	203
		7.3.4	Adding directional receptions: Directional Virtual Carrier	
			Sensing	206
		7.3.5	The impact of increased directional range	208
		7.3.6	The Multi-hop RTS MAC Protocol (MMAC)	210
		7.3.7	Dealing with Deafness: The Circular RTS message	213
		7.3.8	Other Collision Avoidance MAC Protocols	214
		7.3.9	Scheduled Medium Access Control	215
	7.4.	Routing	g with Directional Antennas	217
		7.4.1	On Demand Routing Using Directional Antennas	217
		7.4.2	The Impact of Directional Range on Routing	218
		7.4.3	A Joint MAC/Routing Approach	221
		7.4.4	Remarks	222
	7.5.	Broadca	ast with Directional Antennas	222
		7.5.1	Performance Issues in Broadcasting	223
		7.5.2	Broadcast schemes with directional antennas	224
	7.6.	Summa	ıry	226
	Referen	nces		226
8				
_			hoc Networks	229
Pro	asun Sin			
	8.1.	Introdu		229
	8.2.		ion of QoS	232
	8.3.	Physica		232
		8.3.1	Auto Rate Fallback (ARF)	233
		8.3.2	Receiver-Based Auto Rate (RBAR)	233
		8.3.3	Opportunistic Auto Rate (OAR)	234
	8.4.		n Access Layer	234
		8.4.1	802.11 Distributed Coordination Function (DCF)	234
		8.4.2	802.11 Point Coordination Function (PCF)	236
		8.4.3	The QoS Extension: 802.11e	236
	0.5	8.4.4	QoS Support using DCF based Service Differentiation	238
	8.5.	QoS Ro		239
		8.5.1	Core Extraction based Distributed Ad-hoc Routing (CEDAR)	
	0.6	8.5.2	Ticket based routing	241
	8.6.		other Networking Layers	242
	8.7.		ayer Design Approaches	242
		8.7.1	INSIGNIA	243
		8.7.2	Cross-Layer Design for Data Accessibility	243
	8.8.	Conclu	sion	244
	Refere	nces		246
9				
-	ourity in	Mobile	Ad Hoc Networks	249
			e Ad-Hoc Networks Wenke Lee	ムサブ
101			wenke Lee shilities of Mobile Ad Hoc Networks	249

Contents	ix

9.2.	Potent	tial Attacks	251
9.3.	Attack	Prevention Techniques	253
	9.3.1	Key and Trust Management: Preventing External Attacks	253
	9.3.2	Secure Routing Protocols: Preventing Internal Attacks	254
	9.3.3	Limitations of Prevention Techniques	255
9.4.	Intrus	ion Detection Techniques	256
	9.4.1	Architecture Overview	256
	9.4.2	A Learning-Based Approach	259
	9.4.3	Case Study: Anomaly Detection for Ad-Hoc Routing Proto-	
		cols	261
9.5.	Concl	usion	264
Refe	rences		265
Index			269

List of Figures

1.1	Internet in the sky architecture designed as part of the ONR supported Minuteman project at UCLA.	8
1.2	An example opportunistic ad hoc network.	11
1.3	An example of LANMAR implementation.	14
2.1	Markov chain model for the channel around a node	28
2.2	Markov chain model for a node	31
2.3	Illustration of "hidden" area	32
2.4	$lpha$'s influence ($l_{rts} = l_{cts} = l_{ack} = 5 au$)	36
2.5	Throughput comparison ($l_{rts} = l_{cts} = l_{ack} = 5\tau$)	37
2.6	Network Model Illustration	39
2.7	Example of collisions with data packets in the IEEE 802.11 MAC Protocol	40
2.8	Performance comparison of IEEE 802.11 with analytical results	42
2.9	Performance comparison of IEEE 802.11 with adjusted analytical results	45
2.10	A simple network: node graph and flow contention graph	46
2.11	Network configurations with two competing flows	47
2.12	The adaptive backoff algorithm	51
2.13	The criteria to choose sender-initiated or receiver-initiated handshake	54
2.14	Special tag processing for two-way flows	55
3.1	Multipoint Relay concept. Two dotted circles around the source S represent its logical 1-hop and 2-hop neighborhood respectively.	68
3.2	Comparison of search regions using expanding ring search and query localization. Dotted circles in each figure indicate the search regions.	76
3.3	Restricted directional flooding in LAR and DREAM.	82

xii List of Figure

3.4	Illustration of greedy forwarding failure and perimeter routing in GPSR. In this figure, S is the source and D is the destination. By greedy forwarding, S sends the packet	
	to node X. But all neighbors of X are farther to D than	
	itself, so greedy forwarding fails at X. X then switches to	
	perimeter mode and routes the packet along the perimeter	
	until it reaches Y (closer to D than itself). From Y, greedy	
	forwarding is used again until the packet reaches D. For	
	simplicity, in this example we have assumed that actual	
	network graph is planar.	83
4.1	A mobile ad hoc network.	92
4.2	Multicast join operation of MAODV.	98
4.3	Traffic flow from h. (a) In a CAMP mesh. (b) In the	
	equivalent shared tree.	100
4.4	The forwarding group concept.	100
4.5	Format of JOIN Query packet.	101
4.6	Format of JOIN Reply packet.	102
4.7	MCEDAR join procedure.	104
4.8	Concept of virtual topology for overlay multicast.	107
4.9	An example of area-based method: source node A sends	
	a broadcast packet, and intermediate node B, based on its	
	calculation of additional coverage area (shadowed in the	
	figure), decides whether to rebroadcast the packet. Note	
	that the additional coverage area of node B is a function of transmission radius R and nodal distance d. When d	
	= R, the maximum additional coverage area is reached,	
	which is about $0.61\pi R^2$.	111
5.1	Number of route errors	126
5.2	Round-trip Time and Timeouts (1 Flow)	128
5.3	Slow-start and Loss-based Congestion Detection	130
5.4	Route Errors and Impact of Losses	133
5.5	Classification of Approaches	136
5.6	TCP-ELFN (1 Flow)	139
5.7	Atra (1 Flow)	145
5.8	ATP(1 Flow)	149
5.9	Key Elements in Approaches	150
6.1	Node j 's power level is less than node i 's and communi-	100
	cation is not possible.	160
6.2	Node j 's CTS does not silence node k , and so node k can	
	interfere with node j , since node k 's power level is higher.	160

List of Figures xiii

6.3	COMPOW computes a common power level of 100mW	
	for the network, which shows that a common power level is not appropriate for non-homogeneous networks. With	
	CLUSTERPOW, the network has three clusters corre-	
	sponding to 1mW, 10mW and 100mW. The 100 mW	
	cluster is the whole network. A $10\text{mW}-100\text{mW}-10\text{mW}-1$ mW route is used for node i to reach node j .	163
6.4	Enclosure of node i . Node i computes the relay regions	103
0.1	of nodes j , k , and l . Relay Regions 1, 2 and 3 (cor-	
	responding to nodes j , k , and l respectively) specify the	
	enclosure of node i . Node i maintains links only to nodes	
	j, k and l . Nodes m and n are not contained in node i 's	
. .	enclosure, and therefore, are not its neighbors.	166
6.5	Neighbor discovery in the cone-based algorithm, $\alpha = \frac{\pi}{2}$.	
	Node i adjusts its power level to P_{max} to reach all neighbors in all cones. Although, cone III (due to node j being	
	outside the $P_{threshold}$ range), node i does not unneces-	
	sarily adjust P_{max} to $P_{threshold}$.	168
6.6	An example of unidirectional links using LMST. There	
	are 6 nodes, $V = \{i, j, k, l, m, n\}$. The visible Neigh-	
	borhood of node i is $NV_i = \{j, n\}$ and the neighbors of	
	node i are nodes j and n . The visible Neighborhood of	
	node j is $NV_j = \{i, k, l, m, n\}$ and only node k is its neighbor. Therefore, $i \rightarrow j$ but $j \nrightarrow i$.	170
6.7	Example topologies created by the LMST algorithm	170
6.8	IEEE 802.11 Power-save Mode	178
6.9	Mis-matched Beacon Intervals. Node 2 can never hear	170
0.7	the ATIM from node 1.	180
6.10	Alternating odd and even cycles ensure that all nodes can	
	hear each other's notification messages.	181
6.11	Using two notification windows guarantees overlap.	181
6.12	Nodes remain awake once every T intervals $(T = 4)$.	
	However, communication is delayed up to T times the	
	length of the beacon interval	183
6.13	Nodes remain awake once $2n-1$ every n^2 intervals.	
	Nodes each choose one row and one column (i.e., node i chooses row r_i and column c_i and node j chooses row	
	r_j and column c_j).	183
6.14	Node i chooses row 0 and column 1 and node j chooses	
	row 2 and column 2. Both stay awake during intervals 2	
	and $9(n=4)$	183

xiv List of Figure

6.15	This figure shows an example slot allocation that guarantees at least one overlapping slot between any two nodes.	184
6.16	Nodes with offset slots are guaranteed to hear each other's beacon messages at least once per cycle	184
6.17	Example Connected Dominating Set. The black nodes form the CDS. Nodes 1-5 are all only one hop away from a node in the CDS.	188
6.18	GAF's virtual grid. One node in each grid location remains awake to create a connected dominating set.	189
7.1	Footprint of (a) An Omni-directional Antenna and (b) A Directional Antenna	200
7.2	The Cone and Sphere Radiation Pattern	202
7.3	The effect of omni-directional / directional transmissions of control messages with the 802.11 MAC Protocol	204
7.4	A Scenario to Understand the Schemes Proposed in D-MAC	206
7.5	A Scenario to Understand the Problems with DMAC	209
7.6	The MMAC Protocol	211
7.7	The Circular RTS message	214
7.8	The Multi-Beam Antenna Array	215
7.9	Impact of omni-directional route requests	219
7.10	The Selective Forwarding Optimization	221
7.11	Route Coupling	222
8.1	Wireless LAN	231
8.2	Ad-hoc Network	231
8.3	IEEE 802.11 DCF	235
8.4	Packet formats for basic 802.11	236
8.5	Point Coordination Function (PCF)	237
8.6	Example of a 802.11 super-frame. It relies on TXOPs (Transmission opportunities). Polled TXOP may be located in Contention Period or Contention-Free Period.	237
8.7	Multiple backoff of streams with different priorities	238
8.8	Service Differentiation using different DIFS values	239
8.9	CEDAR: Core nodes in a network	241
8.10	INSIGNIA QoS Framework	243
8.11	Cross-Layer Design for Data Accessibility	244

List of Figures		XV
-----------------	--	----

9.1	An IDS architecture for mobile ad-hoc network: IDS	
	agents run on monitoring nodes throughout the network.	
	Each MANET node can be the monitoring node for itself.	
	Alternatively, a cluster of neighboring nodes can share	
	one monitoring node.	257
9.2	A conceptual model of an IDS agent	258

List of Tables

2.1	IEEE 802.11 protocol configuration parameters	41
2.2	Equivalent configuration parameters for analytical model	41
2.3	Percentage of ACK timeout in BEB scheme	43
2.4	Notations used in the hybrid scheme	53
2.5	An example of two-way flow processing	55
2.6	IEEE 802.11 and TAFA specific configuration parameters	56
2.7	Throughput comparison for the IEEE 802.11, the hybrid	
	scheme and TAFA - two CBR flows (throughput mea-	
	sured in kbps)	57
2.8	Throughput comparison for the IEEE 802.11, the hybrid	
	scheme and TAFA - two FTP flows (throughput mea-	
	sured in kbps)	58
4.1	Classification	97
6.1	Transmit, receive and sleep mode energy costs for se-	
	lected wireless cards.	155
6.2	Transmit power levels for selected wireless cards with	
	power control capabilities.	156
6.3	Transmission rates for selected wireless card types.	156
9.1	Feature Set I: Topology and route related features	263
9.2	Feature Set II: Traffic related features: dimensions and	
	allowable values	263
9.3	Detection rates of the C4.5 models, with false alarm rate = 1%	264
9.4	Features in the necessary conditions of the attacks	264

Contributing Authors

Samir R. Das is an Associate Professor in the Department of Computer Science at the Stony Brook University, New York. His email address is samir@cs.sunysb.edu.

J. J. Garcia-Luna-Aceves is the Baskin Professor of Computer Engineering at the University of California, Santa Cruz, CA. His email address is ji@cse.ucsc.edu.

Mario Gerla is a Professor in the Computer Science Department at the University of California, Los Angeles, CA. His email address is gerla@cs.ucla.edu.

Chao Gui is a doctoral candidate in the Department of Computer Science at the University of California, Davis, CA. His email address is guic@cs.ucdavis.edu.

Robin Kravets is an Assistant Professor in the Department of Computer Science at the University of Illinois in Urbana-Champaign. Her email address is rhk@cs.uiuc.edu.

Prashant Krishnamurthy is an Assistant Professor in the Telecommunications Program at the University of Pittsburgh, PA. His email address is prashant@mail.sis.pitt.edu.

Srikanth Krishnamurthy is an Assistant Professor in the Department of Computer Science and Engineering at the University of California, Riverside, CA. His email address is krish@cs.ucr.edu.

Wenke Lee is an Assistant Professor in the College of Computing at the Georgia Institute of Technology, GA. His email address is wenke@cc.gatech.edu.

xx List of Tables

Jian Li is a doctoral candidate in the Department of Computer Science at the University of California, Davis, CA. His email address is lijian@cs.ucdavis.edu.

Mahesh K. Marina is a doctoral candidate in the Department of Computer Science at the Stony Brook University, New York. His email address is mahesh@cs.sunysb.edu.

Prasant Mohapatra is a Professor in the Department of Computer Science, University of California, Davis, CA. His email address is prasant@cs.ucdavis.edu.

Seung-Jong Park is a doctoral candidate in the School of Electrical and Computer Engineering at the Georgia Institute of Technology, GA. His email address is sjpark@ece.gatech.edu.

Cigdem Sengul is a graduate student in the Department of Computer Science at the University of Illinois in Urbana-Champaign. Her email address is sengul@uiuc.edu.

Prasun Sinha is an Assistant Professor in the Department of Computer and Information Science at Ohio State University, OH. His email address is prasun@cis.ohio-state.edu.

Raghupathy Sivakumar is an Assistant Professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology, GA. His email address is siva@ece.gatech.edu.

Karthikeyan Sundaresan is a doctoral candidate in the School of Electrical and Computer Engineering at the Georgia Institute of Technology, GA. His email address is sk@ece.gatech.edu.

Yu Wang is a doctoral candidate in the Department of Computer Engineering at the University of California, Santa Cruz, CA. His email address is ywang@cse.ucsc.edu.

Yongguang Zhang is a Senior Research Scientist at the HRL Laboratories, CA. His email address is ygz@hrl.com.

Preface

Wireless mobile networks and devices are becoming increasingly popular as they provide users access to information and communication anytime and anywhere. Conventional wireless mobile communications are usually supported by a wired fixed infrastructure. A mobile device would use a single-hop wireless radio communication to access a base-station that connects it to the wired infrastructure. In contrast, ad hoc networks does not use any fixed infrastructure. The nodes in a mobile ad hoc network intercommunicate via single-hop and multi-hop paths in a peer-to-peer fashion. Intermediate nodes between a pair of communicating nodes act as routers. Thus the nodes operate both as hosts as well as routers. The nodes in the ad hoc network could be potentially mobile, and so the creation of routing paths is affected by the addition and deletion of nodes. The topology of the network may change randomly, rapidly, and unexpectedly.

Ad hoc networks are useful in many application environments and do not need any infrastructure support. Collaborative computing and communications in smaller areas (building organizations, conferences, etc.) can be set up using ad hoc networking technologies. Communications in battlefields and disaster recovery areas are other examples of application environments. Similarly communications using a network of sensors or using floats over water are other applications. The increasing use of collaborative applications and wireless devices may further add to the need for and the usage of ad hoc networks.

During the last few years, numerous papers and reports have been published on various issues on mobile ad hoc networks. Several tutorials and survey reports have been also published on specific aspects of the mobile ad hoc networks. In fact, conferences and symposiums that are dedicated to ad hoc networking have emerged. However, a "one-stop" resource for overviewing or summarizing the knowledge and progress on ad hoc networking technologies is currently unavailable. Our co-edited book is primarily motivated by these lines of thought.

We have put together a set of interesting chapters that deal with various interesting focal aspects in ad hoc networks. The first chapter is a forerunner for things to come. It primarily motivates the need for ad hoc networks and

discusses the evolution of these networks and projects future directions and challenges. The second chapter primarily looks at contention based medium access control in ad hoc networks. Most of the research in ad hoc networks assume the use of either the IEEE MAC protocol or variants thereof and this chapter enuniciates by means of both discussion and analyses the nuances of such MAC protocols. The third chapter provides an in-depth discussion of routing in ad hoc networks. Next, we provide a discussion of multicasting in ad hoc networks, the issues that arise and the technologies that have emerged. We follow with a discussion of transport layer issues and the protocol designs thus far in the fifth chapter. Since ad hoc networks consist of wireless battery operated devices managing energy / power consumption is of paramount importance. The sixth chapter deals exclusively with issues related to power management. Lately, in order to increase the achievable capacity in ad hoc networks there has been a lot of interest in the use of directional antennas and we deliberate various protocols that have emerged for use with such antennas in Chapter seven. Various issues related to the provision of quality of service and mechanisms for dealing with these issues are presented in the eighth chapter. Finally, we have a chapter on security, a vital component that will determine the successful deployment and emergence of ad hoc networks.

PRASANT MOHAPATRA AND SRIKANTH KRISHNAMURTHY

Acknowledgments

We wish to express our heartfelt thanks to all of the authors for helping us with this effort and for participating in this effort. We also wish to thank Chao Gui for helping us with compiling and formating of the chapters. Our thanks to Alex Greene from Kluwer for his patience while we were in the process of completing the book and for his support throughout. Thanks are also due to our families for their support and patience during the entire process.