network-analysis-code-andreou

October 12, 2023

```
[1]: #necessary imports
    import pandas as pd
    import editdistance
    import scipy
    import numpy as np
[2]: ## Reading the data and removing columns that are not important.
    df = pd.read_csv("AppNetSci_ELP_Data.csv", sep = ',', encoding = 'latin-1',__
      Gousecols = ['Word','I_Zscore','I_Mean_Accuracy','I_NMG_Zscore',
      [3]: #conversion and creation of word list to build dictionary set
    objNames = df.iloc[:,0]
    names = []
    for x in range(len(objNames)):
        names.append(str(objNames[x]))
    names[0:10]
[3]: ['zenith',
      'zephyr',
      'zeppelin',
      'zero',
      'zeroed',
      'zeros',
      'zest',
      'zigzag',
      'zigzagging',
      'zimbabwe']
[4]: def buildOrthogonalityNetwork(nameList):
         #initializing dictionary
        orthoNetwork = dict(zip(nameList, [None]*len(nameList)))
         #for each name
        for name in nameList:
            for compareName in nameList:
                 if editdistance.eval(name,compareName) == 1:
                     if orthoNetwork[name] == None:
```

```
orthoNetwork[name] = [compareName]
else:
    orthoNetwork[name] += [compareName]
return orthoNetwork
```

[5]: #AVOID RUNNNING: takes >30 minutes to process the (43,000)~2 entries with NP-hard edit distance

#Load pickle file in next section if you are interested in raw data

#pickle file represents dict of all words that have at least a single connection

network = buildOrthogonalityNetwork(names)

```
[6]: #verify edges and nodes are approximately what they should be
  totalEdges = 0
  totalHermits = 0
  for word in network.keys():
    if network[word] == None:
        totalHermits += 1
        continue
    totalEdges += len(network[word])
  print((len(network.keys()),totalEdges/2, totalHermits/len(network.keys())))
```

(40468, 41517.0, 0.40748245527330235)

```
[7]: #removing out the hermits
hermitlessDict = {}
for word in network.keys():
    if network[word] != None:
        hermitlessDict[word] = network[word]
len(hermitlessDict.keys())
```

[7]: 23978

```
[31]: #saving either hermitless dict
import pickle
# create a binary pickle file
f = open("hermitlessSimilarDict.pkl","wb")
# write the python object (dict) to pickle file
pickle.dump(hermitlessSimilarDict,f)
# close file
f.close()
```

```
[2]: #loading either pickle if needed
import pickle
#load pickle file
file = open('hermitlessDict.pkl', 'rb')
#get data back
hermitlessDict = pickle.load(file)
```

```
file.close()
 [3]: #using bfs with a known common word to generate LCC for the undirected graph
      LCCDict = {'top':hermitlessDict['top']}
      #intializer
      queue = hermitlessDict['top'].copy()
      #cycle through
      while len(queue) > 0:
          #remove first word in list
          potentialWord = queue.pop(0)
          #add to LCC
          LCCDict[potentialWord] = hermitlessDict[potentialWord]
          #find all words connected to this one
          potentialNewWords = hermitlessDict[potentialWord]
          #cycle through those words
          for potentialWord in potentialNewWords:
              #if we haven't added it in yet
              if potentialWord not in LCCDict.keys() and potentialWord not in queue:
                  #add to queue
                  queue.append(potentialWord)
      len(LCCDict.keys())
 [3]: 11363
 [4]: #finding degree of each node and average degree in LCC
      numEdges = 0
      for word in LCCDict.keys():
          numEdges += len(LCCDict[word])
      numEdges/len(LCCDict.keys())
 [4]: 5.7671389597817475
 [5]: #finding mean clustering coefficient
      import networkx as nx
      nxDict = nx.Graph(LCCDict)
 [6]: nx.transitivity(nxDict)
 [6]: 0.27377735607763865
 [7]: #takes a few minutes, avoid if possible
      nx.average_shortest_path_length(nxDict)
 [7]: 8.782726505453184
[22]: #back to data, grab data from original datasource file
      recog = df.iloc[:,0:5]
```

```
print(recog)
                           I_Zscore I_Mean_Accuracy I_NMG_Zscore \
                      Word
     0
                               -0.01
                                                  0.79
                    zenith
                                                                0.02
                                0.36
                                                  0.39
     1
                    zephyr
                                                                0.15
     2
                  zeppelin
                                0.51
                                                  0.61
                                                                0.29
     3
                      zero
                               -0.76
                                                  0.97
                                                               -0.53
     4
                    zeroed
                                0.48
                                                  0.76
                                                                0.00
                                                  0.29
                                                                2.31
     40463
            agglutination
                                1.14
     40464
                               -0.10
                                                  0.94
                                                               -0.17
               aggravated
                                                  0.77
                                                               -0.04
     40465
               aggravates
                                0.53
                                                  0.91
                                                                0.16
     40466
              aggravation
                                0.13
                                                  0.84
                                                                0.08
     40467
                 aggregate
                               -0.08
            I_NMG_Mean_Accuracy
     0
                            0.79
     1
                            0.69
     2
                            0.96
     3
                            1.00
     4
                            1.00
     40463
                            0.18
     40464
                            0.96
     40465
                            0.88
     40466
                            0.96
     40467
                            0.96
     [40468 rows x 5 columns]
[15]: #make large dataset with [word] x [recog. stats: first level features: orthou
       ⊶measures]
      masterOrthoData = np.zeros((len(LCCDict.keys())-1,11))
[18]: #get recog stats from dataset
      RTrow = 0
      row = 0
      masterWordList = []
      for word in recog['Word']:
          if word in LCCDict.keys():
              #get RT
              masterWordList.append(word)
              RT = recog['I_Zscore'][RTrow]
              Acc = recog['I_Mean_Accuracy'][RTrow]
              RT_Name = recog['I_NMG_Zscore'][RTrow]
              Acc_Name = recog['I_NMG_Mean_Accuracy'][RTrow]
              masterOrthoData[row][0] = RT
```

```
masterOrthoData[row][1] = Acc
             masterOrthoData[row][2] = RT_Name
             masterOrthoData[row][3] = Acc_Name
             row += 1
         RTrow += 1
     masterOrthoData
[18]: array([[-0.76, 0.97, -0.53, ..., 0. , 0. , 0. ],
            [-0.61, 1., -0.31, ..., 0., 0., 0.],
            [-0.39, 0.94, -0.39, ..., 0., 0.]
            ...,
            [-0.54, 1., -0.63, ..., 0., 0.],
            [0.13, 0.59, 0.13, ..., 0., 0.]
            [0.69, 0.25, 0.44, ..., 0., 0., 0.]
[26]: #download first level predictors
     ## Reading the data and removing columns that are not important.
     firstLevelArray = pd.read csv("FirstLevelPredictorStorage.csv", sep = ',',,,
      ⇔encoding = 'latin-1')
[27]: #flipping to match other datasets
     firstLevelArray = firstLevelArray.iloc[::-1]
[22]: #now add in the predictors like we did the RT stats
     row = 0
     #for each word in established order from before
     for word in masterWordList:
         #find row in data set
         nextRow = firstLevelArray.loc[firstLevelArray['Word'] == word]
         #capitalize if necessary and rerun
         if nextRow['Length'].values.size == 0:
             nextRow = firstLevelArray.loc[firstLevelArray['Word'] == word.
       ⇔capitalize()]
         #fill out master
         masterOrthoData[row] [4] = nextRow['Length'].values[0]
         masterOrthoData[row][7] = nextRow['Log_Freq_HAL'].values[0]
         if nextRow['NPhon'].values not in ['#']:
             masterOrthoData[row][5] = nextRow['NPhon'].values[0]
             masterOrthoData[row][6] = nextRow['NSyll'].values[0]
         else:
             masterOrthoData[row][5] = 0
             masterOrthoData[row][6] = 0
         row = row + 1
     masterOrthoData
[22]: array([[-0.76, 0.97, -0.53, ..., 0. , 0. , 0. ],
            [-0.61, 1., -0.31, ..., 0., 0., 0.],
```

```
[-0.54, 1., -0.63, ..., 0., 0., 0.],
            [ 0.13, 0.59, 0.13, ..., 0. , 0. , 0. ],
            [0.69, 0.25, 0.44, ..., 0., 0., 0.]]
[23]: #now to generate the ortho network stats
     row = 0
     for word in masterWordList:
         wordDegree = len(LCCDict[word])
         wordCloseCentrality = nx.closeness centrality(nxDict,u=word)
         wordClustering = nx.clustering(nxDict,nodes=word)
         masterOrthoData[row][8] = wordDegree
         masterOrthoData[row][9] = wordClustering
         masterOrthoData[row] [10] = wordCloseCentrality
         row = row + 1
[24]: import statsmodels.api as sm
[63]: print(masterOrthoData[0])
     print(masterOrthoData[0,4:8])
     [-0.76]
                 0.97
                            -0.53
                 9.965
                                        0.33333333 0.1228311 7
      2..
                             3.
     Γ4.
           4.
                 2.
                      9.965]
[65]: firstLevel = masterOrthoDataCopy[:,5:9].copy()
     secondLevel = masterOrthoDataCopy[:,5:12].copy()
     firstLevel = sm.tools.tools.add_constant(firstLevel, prepend=True)
     secondLevel = sm.tools.add_constant(secondLevel, prepend=True)
     for x in range(4):
         mod = sm.OLS(masterOrthoData[:,x],firstLevel)
         res = mod.fit()
         print(res.summary())
         mod = sm.OLS(masterOrthoData[:,x],secondLevel)
         res = mod.fit()
         print(res.summary())
                               OLS Regression Results
     _____
     Dep. Variable:
                                          R-squared:
                                                                         0.437
     Model:
                                    OLS
                                         Adj. R-squared:
                                                                         0.437
    Method:
                           Least Squares F-statistic:
                                                                         2202.
                       Wed, 12 Apr 2023 Prob (F-statistic):
     Date:
                                                                          0.00
     Time:
                                18:44:04 Log-Likelihood:
                                                                       -292.07
     No. Observations:
                                  11362 AIC:
                                                                         594.1
     Df Residuals:
                                   11357
                                          BIC:
                                                                         630.8
```

[-0.39, 0.94, -0.39, ..., 0., 0.]

Df Model: 4
Covariance Type: nonrobust

========	:========	========	========	=========	:=======	========
	coef	std err	t	P> t	[0.025	0.975]
const	0.4653	0.016	29.537	0.000	0.434	0.496
x1	-0.0273	0.003	-9.129	0.000	-0.033	-0.021
x2	-0.0198	0.004	-5.424	0.000	-0.027	-0.013
x3	0.1178	0.005	22.038	0.000	0.107	0.128
x4	-0.0964	0.001	-86.848	0.000	-0.099	-0.094
Omnibus:		 1589	.327 Durb	======== in-Watson:		1.620
Prob(Omnib	ous):	0	.000 Jarqı	ue-Bera (JB):		3152.524
Skew:		0	.872 Prob	(JB):		0.00
Kurtosis:		4	.902 Cond	. No.		70.8
========		========	========			========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dan Vaniahla.			D			0.442
Dep. Variable: Model:		y OLS	-	nared:		0.443 0.443
Method:	I on at 9		_	R-squared: atistic:		1292.
Date:		quares		(F-statistic	٠,٠	0.00
Time:	Wed, 12 Ap	:44:04			<i>:</i>):	-225.09
No. Observations:	10	11362	AIC:	.ikelihood:		466.2
Df Residuals:			BIC:			524.9
Df Model:		1135 4 7	ыс:			524.9
	n on	•				
Covariance Type:	non	.robust				
с	oef std er	r	t	P> t	[0.025	0.975]
const 0.7	243 0.03	9 18	 .799	0.000	0.649	0.800
x1 -0.0	488 0.00	4 -12	.459	0.000	-0.056	-0.041
x2 -0.0	179 0.00	4 -4	.832	0.000	-0.025	-0.011
x3 0.1	0.00	6 18	.517	0.000	0.092	0.113
x4 -0.0	950 0.00	1 -84	.825	0.000	-0.097	-0.093
x5 -0.0	0.00	1 -7	.598	0.000	-0.006	-0.004
x6 0.0	179 0.00	9 1	.963	0.050	2.51e-05	0.036
x7 -0.9	302 0.19	0 -4	.895	0.000	-1.303	-0.558
Omnibus:	===================================	= == 19.117	 Durbi	n-Watson:		1.624
Prob(Omnibus):		0.000	Jarqu	ue-Bera (JB):		2958.057
Skew:		0.845	Prob((JB):		0.00
Kurtosis:		4.841	Cond.	No.		1.01e+03

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.01e+03. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

			======	======			
Don Vonichle				D 99			0.339
Dep. Variable:	i		у	-	uared:		
Model:			OLS	3	R-squared:		0.339
Method:		Least	Squares		atistic:		1458.
Date:		Wed, 12 A	pr 2023	Prob	(F-statistic)	:	0.00
Time:		1	8:44:04	Log-	Likelihood:		5393.2
No. Observation	ns:		11362	_			-1.078e+04
Df Residuals:			11357	BIC:			-1.074e+04
Df Model:			4				
Covariance Typ	e:	no	nrobust				
==========				======	=========		========
	coef	std e	rr	t	P> t	[0.025	0.975]
const	0.2727	0.0	10	 28.554	0.000	0.254	0.291
x1	0.0417	0.0	02	23.041	0.000	0.038	0.045
x2	0.0191	0.0	02	8.628	0.000	0.015	0.023
x3	-0.0539	0.0	03 -	16.626	0.000	-0.060	-0.048
x4	0.0493	0.0	01	73.249	0.000	0.048	0.051
			======	======	======================================		
Omnibus:		3	054.934		in-Watson:		1.622
Prob(Omnibus):			0.000	-	ue-Bera (JB):		7959.990
Skew:			-1.456	Prob	(JB):		0.00
Kurtosis:			5.886	Cond	. No.		70.8

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dep. Variable:	у	R-squared:	0.343
Model:	OLS	Adj. R-squared:	0.343
Method:	Least Squares	F-statistic:	848.2
Date:	Wed, 12 Apr 2023	Prob (F-statistic):	0.00
Time:	18:44:04	Log-Likelihood:	5428.6
No. Observations:	11362	AIC:	-1.084e+04
Df Residuals:	11354	BIC:	-1.078e+04
Df Model:	7		
Covariance Type:	nonrobust		
co	oef std err	t P> t	[0.025 0.975]

const	0.1944	0.023	8.298	0.000	0.148	0.240
x1	0.0488	0.002	20.532	0.000	0.044	0.054
x2	0.0190	0.002	8.451	0.000	0.015	0.023
хЗ	-0.0483	0.003	-14.345	0.000	-0.055	-0.042
x4	0.0485	0.001	71.295	0.000	0.047	0.050
x5	0.0028	0.000	6.816	0.000	0.002	0.004
x6	-0.0102	0.006	-1.843	0.065	-0.021	0.001
x7	0.1929	0.116	1.670	0.095	-0.034	0.419
Omnibus:		3007.	604 Durbii	 n-Watson:		1.624
Prob(Omnib	ous):	0.	000 Jarque	e-Bera (JB):		7749.110
Skew:		-1.	438 Prob(.	JB):		0.00
Kurtosis:		5.	845 Cond.	No.		1.01e+03
========	=========	========	========		========	========

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- $\bar{[2]}$ The condition number is large, 1.01e+03. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

=========				=====		==========	=======	
Dep. Variable	e:			У	R-sq	uared:		0.257
Model:				OLS	Adj.	R-squared:		0.257
Method:		Least	Squ	ares	F-st	atistic:		982.1
Date:		Wed, 12	Apr :	2023	Prob	(F-statistic):		0.00
Time:			18:4	4:04	Log-	Likelihood:		48.523
No. Observat:	ions:		1	1362	AIC:			-87.05
Df Residuals	:		1	1357	BIC:			-50.36
Df Model:				4				
Covariance Ty	ype:	r	onro	bust 				
		std				P> t	_	0.975]
const						0.000		-0.161
x1	0.0149	0.	003	5	.151	0.000	0.009	0.021
x2	0.0089	0.	004	2	.503	0.012	0.002	0.016
x3	0.0604	1 0.	005	11	.640	0.000	0.050	0.071
x4	-0.0509	0.	001	-47	. 226	0.000	-0.053	-0.049
Omnibus:			2065	===== .797	===== Durb	======== in-Watson:		1.213
Prob(Omnibus)):		0	.000	Jarq	ue-Bera (JB):		4471.120
Skew:			1	.063	Prob	(JB):		0.00
Kurtosis:			5	.220	Cond	. No.		70.8
========			:====	=====	=====	========	=======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

========		=======	========			=======
Dep. Varial Model: Method: Date: Time: No. Observa	W	Least Squa ed, 12 Apr 2 18:44	res F-sta 023 Prob	ared: R-squared: tistic: (F-statistic ikelihood:):	0.267 0.266 590.2 0.00 123.99 -232.0
Df Residua	ls:	11	354 BIC:			-173.3
Df Model:			7			
Covariance	Type:	nonrob	ust			
=======	coef	std err	t	P> t	[0.025	0.975]
const	-0.1726	0.037	-4.620	0.000	-0.246	-0.099
x1	0.0104	0.004	2.752	0.006	0.003	0.018
x2	0.0049	0.004	1.368	0.171	-0.002	0.012
x3	0.0550	0.005	10.245	0.000	0.045	0.066
x4	-0.0487	0.001	-44.876	0.000	-0.051	-0.047
x5	-0.0078	0.001	-11.954	0.000	-0.009	-0.007
x6	-0.0063	0.009	-0.715	0.474	-0.024	0.011
x7	0.5278	0.184	2.865	0.004	0.167	0.889
Omnibus:	========	1967.	======================================	======== n-Watson:	========	1.221

Notes

Skew:

Kurtosis:

Prob(Omnibus):

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.026 Prob(JB):

5.136

0.000 Jarque-Bera (JB):

Cond. No.

4154.299

1.01e+03

0.00

[2] The condition number is large, 1.01e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Dep. Variable:	у	R-squared:	0.154
Model:	OLS	Adj. R-squared:	0.154
Method:	Least Squares	F-statistic:	517.0
Date:	Wed, 12 Apr 2023	Prob (F-statistic):	0.00
Time:	18:44:04	Log-Likelihood:	13625.
No. Observations:	11362	AIC:	-2.724e+04
Df Residuals:	11357	BIC:	-2.720e+04
Df Model:	4		
Covariance Type:	nonrobust		
===========			==========

	coef	std err	t	P> t	[0.025	0.975]
const	0.8142	0.005	175.898	0.000	0.805	0.823
x1	0.0099	0.001	11.335	0.000	0.008	0.012
x2	0.0066	0.001	6.196	0.000	0.005	0.009
хЗ	-0.0246	0.002	-15.635	0.000	-0.028	-0.021
x4	0.0138	0.000	42.303	0.000	0.013	0.014
Omnibus:		7626	.096 Durl	oin-Watson:		1.670
Prob(Omnib	us):	0	.000 Jar	que-Bera (JB)):	111595.659
Skew:		-3	.080 Prol	o(JB):		0.00
Kurtosis:		17	.063 Cond	d. No.		70.8
=======						

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	tions: s:	1	2023 4:04 1362 1354 7	Adj. F-st Prob	======================================):	0.160 0.159 308.2 0.00 13663. -2.731e+04 -2.725e+04
=======	coef	std err	=====	===== t	P> t	[0.025	0.975]
const x1 x2 x3 x4 x5 x6	0.8416 0.0085 0.0080 -0.0249 0.0134 0.0016 0.0041 -0.2718	0.001 0.002	7 7 -15 40 8 1	.385 .281 .501	0.000 0.000 0.000 0.000 0.000 0.000 0.127 0.000	0.819 0.006 0.006 -0.028 0.013 0.001 -0.001	0.864 0.011 0.010 -0.022 0.014 0.002 0.009 -0.162
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	0 -3	.412 .000 .047 .866	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		1.672 108606.862 0.00 1.01e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

[2] The condition number is large, 1.01e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
[4]: #building gloveDict
glove_dictionary = {}
with open('glove.6B.200d.txt',encoding="utf8") as file:
    for each_message in file:
        words_in_message, coeff_cients = each_message.split(maxsplit=1)
        coeff_cients = np.array(coeff_cients.split(),dtype = float)
        glove_dictionary[words_in_message] = coeff_cients
```

```
[5]: #assigning all relevant words to their vectorized form in a dict
word_to_glove_dict = {}
for word in names:
    if word in glove_dictionary.keys():
        word_to_glove_dict[word] = glove_dictionary[word]
```

4.3372667036245085 0.40365882632454264

```
[12]: #removing out the hermits
     hermitlessSimilarDict = {}
     for word in similarity_network.keys():
         if similarity_network[word] != []:
             hermitlessSimilarDict[word] = similarity_network[word]
     len(hermitlessSimilarDict.keys())
[12]: 22590
[15]: #using bfs with a known common word to generate LCC for the undirected graph
     LCCSimilarDict = {'top':hermitlessSimilarDict['top']}
     #intializer
     queue = hermitlessSimilarDict['top'].copy()
     #cycle through
     while len(queue) > 0:
         #remove first word in list
         potentialWord = queue.pop(0)
         #add to LCC
         LCCSimilarDict[potentialWord] = hermitlessSimilarDict[potentialWord]
         #find all words connected to this one
         potentialNewWords = hermitlessSimilarDict[potentialWord]
         #cycle through those words
         for potentialWord in potentialNewWords:
             #if we haven't added it in yet
             ⊶queue:
                 #add to queue
                 queue.append(potentialWord)
     len(LCCSimilarDict.keys())
[15]: 17626
[16]: #finding degree of each node and average degree in LCC
     numEdges = 0
     for word in LCCSimilarDict.keys():
         numEdges += len(LCCSimilarDict[word])
     numEdges/len(LCCSimilarDict.keys())
[16]: 8.921820038579371
[17]: #finding mean clustering coefficient
     import networkx as nx
     nxSimilarDict = nx.Graph(LCCSimilarDict)
[18]: nx.transitivity(nxSimilarDict)
```

13

[18]: 0.43026549484798804

```
[20]: #takes a few minutes, avoid if possible
     nx.average_shortest_path_length(nxSimilarDict)
[20]: 8.24569964583268
[24]: #now that we have functioning network we try to build the testing matrix again
     masterSimilarData = np.zeros((len(LCCSimilarDict.keys()),11))
     RTrow = 0
     row = 0
     masterWordList = []
     for word in recog['Word']:
         if word in LCCSimilarDict.keys():
             #qet RT
             masterWordList.append(word)
             RT = recog['I_Zscore'][RTrow]
             Acc = recog['I_Mean_Accuracy'][RTrow]
             RT_Name = recog['I_NMG_Zscore'] [RTrow]
             Acc_Name = recog['I_NMG_Mean_Accuracy'][RTrow]
             masterSimilarData[row][0] = RT
             masterSimilarData[row][1] = Acc
             masterSimilarData[row][2] = RT Name
             masterSimilarData[row][3] = Acc Name
             row += 1
         RTrow += 1
     masterSimilarData
[24]: array([[-0.39, 0.94, -0.39, ..., 0. , 0. , 0. ],
            [ 0.38, 0.91, 0.27, ..., 0. , 0. , 0. ],
            [-0.45, 0.91, -0.21, ..., 0., 0.],
            [0., 0.86, 0.1, ..., 0., 0., 0.],
            [-0.1, 0.94, -0.17, ..., 0., 0., 0.],
            [0.53, 0.77, -0.04, ..., 0., 0., 0.]
[28]: #first level predictors again
     row = 0
      #for each word in established order from before
     for word in masterWordList:
         #find row in data set
         nextRow = firstLevelArray.loc[firstLevelArray['Word'] == word]
         #capitalize if necessary and rerun
         if nextRow['Length'].values.size == 0:
             nextRow = firstLevelArray.loc[firstLevelArray['Word'] == word.
       →capitalize()]
         #fill out master
         masterSimilarData[row][4] = nextRow['Length'].values[0]
         masterSimilarData[row][7] = nextRow['Log_Freq_HAL'].values[0]
```

```
if nextRow['NPhon'].values not in ['#']:
             masterSimilarData[row][5] = nextRow['NPhon'].values[0]
             masterSimilarData[row][6] = nextRow['NSyll'].values[0]
             masterSimilarData[row][5] = 0
             masterSimilarData[row][6] = 0
         row = row + 1
     masterSimilarData
[28]: array([[-0.39, 0.94, -0.39, ..., 0. , 0. , 0. ],
            [ 0.38, 0.91, 0.27, ..., 0. , 0. , 0. ],
            [-0.45, 0.91, -0.21, ..., 0., 0.]
            [0., 0.86, 0.1, ..., 0., 0., 0.
            [-0.1, 0.94, -0.17, ..., 0., 0., 0.]
            [0.53, 0.77, -0.04, ..., 0., 0., 0.]
[29]: #finding semantic network stats
     #now to generate the ortho network stats
     row = 0
     for word in masterWordList[0:20]:
         if word not in similarity_network.keys():
             print(word)
             row = row + 1
             continue
         wordDegree = len(similarity_network[word])
         wordCloseCentrality = nx.closeness_centrality(nxSimilarDict,u=word)
         wordClustering = nx.clustering(nxSimilarDict,nodes=word)
         masterSimilarData[row][8] = wordDegree
         masterSimilarData[row][9] = wordClustering
         masterSimilarData[row][10] = wordCloseCentrality
         row = row + 1
     masterSimilarData
[29]: array([[-0.39]
                       , 0.94 , -0.39
              0.5
                       , 0.10663077],
                       , 0.91
            Γ 0.38
                               , 0.27
                                                , ..., 7.
              0.52380952, 0.1333631],
            [-0.45]
                          0.91 , -0.21
                                                , ..., 7.
              0.47619048, 0.1079031],
                       , 0.86
            [ 0.
                                    , 0.1
                      , 0.
              0.
                                   ],
                      , 0.94
                                   , -0.17
            Γ-0.1
                      , 0.
             0.
                                   ],
                     , 0.77
            [ 0.53
                                   , -0.04
              0.
                       , 0.
                                   ]])
```

```
[32]: masterSimilarData[0]
                   , 0.94
[32]: array([-0.39
                            , -0.39
                                                   , 4.
                                      , 1.
                            , 5.663
           4.
                                       , 4.
                  , 1.
                                                  , 0.5
           0.10663077])
[35]: import statsmodels.api as sm
    firstLevel = masterSimilarData[:,4:8].copy()
    secondLevel = masterSimilarData[:,4:12].copy()
    firstLevel = sm.tools.tools.add_constant(firstLevel, prepend=True)
    secondLevel = sm.tools.add_constant(secondLevel, prepend=True)
    for x in range(4):
        mod = sm.OLS(masterSimilarData[:,x],firstLevel)
        res = mod.fit()
        print(res.summary())
        mod = sm.OLS(masterSimilarData[:,x],secondLevel)
        res = mod.fit()
        print(res.summary())
                          OLS Regression Results
    Dep. Variable:
                                    R-squared:
                                                               0.594
    Model:
                               OLS Adj. R-squared:
                                                               0.594
    Method:
                      Least Squares F-statistic:
                                                              6454.
    Date:
                    Fri, 14 Apr 2023 Prob (F-statistic):
                                                               0.00
    Time:
                           16:37:33 Log-Likelihood:
                                                            -909.85
                              17626 AIC:
                                                               1830.
    No. Observations:
    Df Residuals:
                              17621 BIC:
                                                               1869.
    Df Model:
    Covariance Type:
                         nonrobust
    ______
                                                    [0.025
                                           P>|t|
    ______
                          0.012
                                           0.000
    const
                0.1012
                                  8.402
                                                     0.078
                                                               0.125
                        0.002 8.245 0.000
0.002 5.031 0.000
    x1
                0.0169
                                                    0.013
                                                              0.021
               0.0119
                                                   0.007
                                                              0.016
    x2
                         0.004
                                30.386
                                          0.000
                                                    0.101
    xЗ
               0.1081
                                                              0.115
                         0.001 -98.759 0.000
    x4
               -0.1003
                                                    -0.102
                                                              -0.098
             ______
    Omnibus:
                           2388.155 Durbin-Watson:
                                                               1.516
    Prob(Omnibus):
                              0.000 Jarque-Bera (JB):
                                                            4524.655
    Skew:
                              0.866 Prob(JB):
                                                               0.00
                              4.777
                                    Cond. No.
                                                                83.2
    Kurtosis:
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

OLS Regression Results

========	======	========		=====	========		=======
Dep. Variabl	e:		У	R-sq	uared:		0.594
Model:			OLS	Adj.	R-squared:		0.594
Method:		Least Sqı	ares	F-st	atistic:		3688.
Date:		Fri, 14 Apr	2023	Prob	(F-statistic	:):	0.00
Time:		16:3	37:33	Log-	Likelihood:		-908.69
No. Observat	ions:	1	17626	AIC:			1833.
Df Residuals	:	1	17618	BIC:			1896.
Df Model:			7				
Covariance T	ype:	nonro	bust				
=======	coef	std err		===== t	P> t	[0.025	0.975]
const	0.1008	0.012	8	 .365	0.000	0.077	0.124
x1	0.0169	0.002	8	. 249	0.000	0.013	0.021
x2	0.0119	0.002	5	.037	0.000	0.007	0.017
x3	0.1081	0.004	30	.380	0.000	0.101	0.115
x4	-0.1003	0.001	-98	.718	0.000	-0.102	-0.098
x5	-0.0096	0.011	-0	.895	0.371	-0.031	0.011
x6	0.2154	0.191	1	.129	0.259	-0.159	0.589
х7	0.2837	0.881	0	.322	0.747	-1.444	2.011
Omnibus:		2390	.240	 Durb	in-Watson:		1.516
Prob(Omnibus):	(0.000	Jarq	ue-Bera (JB):		4530.614
Skew:		(.867	Prob	(JB):		0.00
Kurtosis:		4	1.778	Cond	. No.		6.09e+03
========	=======	========		====	========		=======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.09e+03. This might indicate that there are strong multicollinearity or other numerical problems.

	===========		
Dep. Variable:	у	R-squared:	0.268
Model:	OLS	Adj. R-squared:	0.268
Method:	Least Squares	F-statistic:	1616.
Date:	Fri, 14 Apr 2023	Prob (F-statistic	0.00
Time:	16:37:33	Log-Likelihood:	12515.
No. Observations:	17626	AIC:	-2.502e+04
Df Residuals:	17621	BIC:	-2.498e+04
Df Model:	4		
Covariance Type:	nonrobust		
coe	f std err	t P> t	[0.025 0.975]

const	0.5371	0.006	95.464	0.000	0.526	0.548
x1	0.0205	0.001	21.473	0.000	0.019	0.022
x2	0.0015	0.001	1.330	0.184	-0.001	0.004
x3	-0.0304	0.002	-18.280	0.000	-0.034	-0.027
x4	0.0371	0.000	78.285	0.000	0.036	0.038
=======	========	=======		========	=======	========
Omnibus:		7876	.571 Durb	in-Watson:		1.617
Prob(Omnib	us):	0	.000 Jarq	ue-Bera (JB)	:	44342.852
Skew:		-2	.111 Prob	(JB):		0.00
Kurtosis:		9	.523 Cond	. No.		83.2
========	========	========		========	=======	========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results								
Dep. Variable Model: Method: Date: Time: No. Observat: Df Residuals Df Model: Covariance Ty	ions: :	Fri, 14	OLS Squares Apr 2023 16:37:33 17626	3 3 3 3	Adj. F-st Prob	======================================	:	0.269 0.268 924.1 0.00 12517. -2.502e+04 -2.496e+04
	coef	std	====== err 	-===	===== t 	P> t	[0.025	0.975]
const x1 x2 x3 x4 x5 x6	0.5371 0.0205 0.0015 -0.0304 0.0371 0.0046 -0.1285 0.1690	0.0 0.0 0.0 0.0 0.0	006 001 001 002 - 000 005 089 411	21 1 -18 78 0	. 483 . 324	0.000 0.000 0.185 0.000 0.000 0.357 0.149 0.681	0.526 0.019 -0.001 -0.034 0.036 -0.005 -0.303 -0.637	0.022 0.004
Omnibus: Prob(Omnibus) Skew: Kurtosis:):		7878.783 0.000 -2.112 9.526) 2 3	Jarq Prob	======================================		1.616 44377.509 0.00 6.09e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 6.09e+03. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

========		========					=======
Dep. Variab	le:		У	R-sq	0.469		
Model:			OLS	Adj.	R-squared:		0.469
Method:		Least Squ	ares	F-st	atistic:		3887.
Date:	F	ri, 14 Apr	2023	Prob	(F-statistic)):	0.00
Time:		16:3	7:33	Log-	Likelihood:		-2994.2
No. Observat	tions:	17626					5998.
Df Residuals	5:	1	7621	BIC:			6037.
Df Model:			4				
Covariance 5	Гуре:	nonro	bust				
========			=====				=======
	coef	std err		t	P> t	[0.025	0.975]
const	-0.0685	0.014	 -5	5.054	0.000	-0.095	-0.042
x1	0.0037	0.002	1	.590	0.112	-0.001	0.008
x2	0.0370	0.003	13	3.941	0.000	0.032	0.042
х3	0.0832	0.004	20	.778	0.000	0.075	0.091
x4	-0.0773	0.001	-67	.575	0.000	-0.080	-0.075
========		========	=====	=====	========		=======
Omnibus:		2637	.143		in-Watson:		1.262
Prob(Omnibus): 0.000		.000	Jarq	ue-Bera (JB):		5177.385	

Notes:

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.930 Prob(JB):

Cond. No.

4.896

0.00

83.2

========			=======			========	
Dep. Variab	le:		y R-so	quared:		0.469	
Model:			OLS Adj	Adj. R-squared:			
Method:		Least Squ	ares F-s	tatistic:	2221.		
Date:		Fri, 14 Apr	2023 Prol	(F-statist	ic):	0.00	
Time:		16:3	7:33 Log-	-Likelihood:		-2993.2	
No. Observat	tions:	1	7626 AIC	:		6002.	
Df Residuals	s:	1	7618 BIC	:		6065.	
Df Model:			7				
Covariance 7	Гуре:	nonro	bust				
	coef	std err	t	P> t	[0.025	0.975]	
const	-0.0686	0.014	-5.053	0.000	 -0.095	-0.042	
x1	0.0037		1.586	0.113	-0.001	0.042	
x2	0.0370	0.003	13.943	0.000	0.032	0.042	

x3	0.0832	0.004	20.771	0.000	0.075	0.091
x4	-0.0773	0.001	-67.553	0.000	-0.079	-0.075
x5	0.0029	0.012	0.242	0.808	-0.021	0.027
x6	0.2868	0.215	1.336	0.182	-0.134	0.708
x7	-1.0208	0.992	-1.029	0.303	-2.965	0.923
=======						========
Omnibus:		2637	.965 Durb	oin-Watson:		1.262
Prob(Omnik	ous):	C	0.000 Jaro	que-Bera (JE	3):	5180.339
Skew:		C).930 Prob	o(JB):		0.00
Kurtosis:		4	.896 Cond	1. No.		6.09e+03
========		-=======	:=======		:========	========

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.09e+03. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

old regression results								
Dep. Variab	Le:			У	R-sqı	uared:		0.167
Model:			OI	•	_	R-squared:		0.167
Method:		Least	Square	es	•	atistic:		883.7
Date:		Fri, 14	-			(F-statistic):		0.00
Time:			16:37:3			Likelihood:		20483.
No. Observat	tions:		1762	26	AIC:			-4.096e+04
Df Residuals	3:		1762	21	BIC:			-4.092e+04
Df Model:				4				
Covariance 7	Гуре:	n	onrobus	st				
		======	======					
	coef	std	err		t	P> t	[0.025	0.975]
const	0.8460	0.	004	236	.311	0.000	0.839	0.853
x1	0.0085	0.	001	13	.987	0.000	0.007	0.010
x2	-0.0011	0.	001	-1	.526	0.127	-0.002	0.000
x 3	-0.0228	0.	001	-21	.584	0.000	-0.025	-0.021
x4	0.0149	0.	000	49	. 237	0.000	0.014	0.015
Omnibus:		:======: 1:	====== 2223.63	= == = 38	Durb:	======== in-Watson:	======	1.671
Prob(Omnibus	s):		0.00	00	Jarqı	ue-Bera (JB):		209201.041
Skew:	•		-3.16		Prob			0.00
Kurtosis:			18.64	13	Cond			83.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variable:	V	R-squared:	0.167
•	J	•	
Model:	OLS	Adj. R-squared:	0.167
Method:	Least Squares	F-statistic:	505.1
Date:	Fri, 14 Apr 2023	Prob (F-statistic):	0.00
Time:	16:37:33	Log-Likelihood:	20483.
No. Observations:	17626	AIC:	-4.095e+04
Df Residuals:	17618	BIC:	-4.089e+04
Df Model:	7		

Df Model: 7
Covariance Type: nonrobust

========		========	=======	========	=======	========
	coef	std err	t	P> t	[0.025	0.975]
const	0.8459	0.004	236.150	0.000	0.839	0.853
x1	0.0085	0.001	13.998	0.000	0.007	0.010
x2	-0.0011	0.001	-1.523	0.128	-0.002	0.000
x3	-0.0228	0.001	-21.588	0.000	-0.025	-0.021
x4	0.0149	0.000	49.243	0.000	0.014	0.015
x5	-0.0011	0.003	-0.350	0.727	-0.007	0.005
x6	0.0212	0.057	0.374	0.709	-0.090	0.132
x7	0.1423	0.262	0.544	0.587	-0.371	0.655
========		=======	=======	========	========	========
Omnibus:		12222	.734 Durb	in-Watson:		1.671
Prob(Omnibu	ıs):	0	.000 Jarq	ue-Bera (JB)	:	209159.277
Skew:		-3	.168 Prob	(JB):		0.00
Kurtosis:		18	.641 Cond	. No.		6.09e+03
========		========				========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.09e+03. This might indicate that there are strong multicollinearity or other numerical problems.