

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A1

(11) International Publication Number:

WO 99/28301

C07D 239/26, 213/50, 403/04, 401/04,

401/06, 401/14, 405/06, 403/06, 403/14, A01N 43/54

(43) International Publication Date:

10 June 1999 (10.06.99)

(21) International Application Number:

PCT/US98/22088

(22) International Filing Date:

20 October 1998 (20.10.98)

(30) Priority Data:

60/067,418 60/068,432

LIS 3 December 1997 (03.12.97)

22 December 1997 (22.12.97) US

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KOETHER, Gerard, Michael [US/US]; 2304 Porter Road, Bear, DE 19701 (US). SELBY, Thomas, Paul [US/US]; 116 Hunter Court, Wilmington, DE 19808 (US). STEVENSON, Thomas, Martin [US/US]; 103 Iroquois Court, Newark, DE 19702
- (74) Agent: BIRCH, Linda, D.; E.I. Du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SUBSTITUTED PYRIMIDINE AND PYRIDINE HERBICIDES

(57) Abstract

Compounds of formula (I), and their N-oxides and agriculturally suitable salts, are disclosed which are useful for controlling undesired vegetation, wherein J is (J-1), (J-2), (J-3), (J-4), (J-5), (J-6) or (J-7); and J, W, X, Y, Z, A, R¹-R⁸ are as defined in the disclosure. Also disclosed are compositions containing the compounds of formula (I) and a method for controlling undesired vegetation which involves contacting the vegetation or its environment with an effective amount of a compound of formula (1).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BB	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
a	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

۶,

5

10

15

30

1

TITLE

SUBSTITUTED PYRIMIDINE AND PYRIDINE HERBICIDES BACKGROUND OF THE INVENTION

This invention relates to certain pyrimidines and pyridines, their *N*-oxides, agriculturally suitable salts, compositions thereof, and methods of their use for controlling undesirable vegetation.

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, corn (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

EP 723,960 discloses herbicidal substituted pyrimidines and pyridines of Formula i:

20 wherein, inter alia,

A is an optionally substituted anyl or 5- or 6-membered nitrogen containing heteroaromatic group;

X is oxygen or sulfur;

Z is nitrogen or CH;

25 R¹ and R² are independently hydrogen, halogen, alkyl, haloalkyl, nitro or cyano; n is 0, 1 or 2; and m is 0 to 5.

The pyrimidines and pyridines of the present invention are not disclosed in this reference.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I including all geometric and stereoisomers, N-oxides, and agriculturally suitable salts thereof, as well as agricultural

compositions containing them and a method of their use for controlling undesirable vegetation:

I

5 wherein

10

A is
$$\begin{array}{c|ccccc}
X & Y & & & & & & & & & \\
X & Y & & & & & & & & & & \\
Z & & & & & & & & & & & \\
R_9 & & & & & & & & & & & \\
A-1 & & & & & & & & & & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
X & Y & & & & & & & & & \\
R_9 & & & & & & & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
X & Y & & & & & & & & \\
R_9 & & & & & & & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
X & & & & & & & & & & \\
R_9 & & & & & & & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
A-1 & & & & & & & & & \\
\end{array}$$

W is N or CR11;

X, Y and Z are independently N or CR¹²;
 R¹ and R² are independently H, halogen, cyano, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy,
 C₂-C₄ alkoxyalkyl, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkoxyalkyl, C₂-C₄

 C_2 - C_4 alkoxyalkyl, C_1 - C_4 alkyl, C_1 - C_4 alkonyloxy, C_2 - C_4 alkoxyalkyl, C_2 - C_4 alkoxyalkyl, C

10

15

20

alkylthioalkyl, C_2 - C_4 alkylsulfonylalkyl, C_1 - C_4 alkylamino or C_2 - C_4 dialkylamino;

R³ is H, F, Cl, Br, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl or CO₂R¹⁴;

R⁴ is H, F, C₁-C₄ alkyl, OH or OR¹⁴;

 R^3 and R^4 can be taken together with the carbon to which they are attached to form C(=0) or $C(=NOR^{14})$;

R⁵ is halogen, cyano, SF₅, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or S(O)_nR¹³;

 R^6 and R^{10} are independently H, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_n R^{13}$;

 R^7 is halogen, cyano, SF_5 , C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_nR^{13}$;

 \mathbb{R}^8 is \mathbb{C}_1 - \mathbb{C}_4 alkyl or \mathbb{C}_1 - \mathbb{C}_4 haloalkyl;

R⁹ is H, halogen, cyano, SF₅, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy or S(O)_nR¹³;

 R^{11} is H, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_n R^{13}$;

 R^{12} is H, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_n R^{13}$;

each R¹³ is independently C₁-C₄ alkyl or C₁-C₄ haloalkyl;

each R¹⁴ is independently C₁-C₄ alkyl; and

each n is independently 0, 1 or 2.

In the above recitations, the term "alkyl", used either alone or in compound words such 25 as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. The term "1-2 alkyl" indicates that one or two of the available positions for that substituent may be alkyl which are independently selected. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl 30 isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy. 35 pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH3OCH2, CH3OCH2CH2, CH3CH2OCH2, CH₃CH₂CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. "Alkenyloxy" includes straight-chain or branched alkenyloxy moieties. Examples of "alkenyloxy" include H₂C=CHCH₂O,

WO 99/28301

35

(CH₃)₂C=CHCH₂O, (CH₃)CH=CHCH₂O, (CH₃)CH=C(CH₃)CH₂O and CH₂=CHCH₂CH₂O. "Alkynyloxy" includes straight-chain or branched alkynyloxy moieties. Examples of "alkynyloxy" include HC=CCH2O, CH3C=CCH2O and CH₃C=CCH₂CH₂O. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Alkylthioalkyl" denotes alkylthio substitution on alkyl. Examples of "alkylthioalkyl" include CH₃SCH₂, CH₃SCH₂CH₂, CH₃CH₂SCH₂, CH₃CH₂CH₂CH₂CH₂SCH₂ and CH₃CH₂SCH₂CH₂. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH₃S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), 10 (CH₃)₂CHS(O) and the different butylsulfinyl, pentylsulfinyl and hexylsulfinyl isomers. Examples of "alkylsulfonyl" include CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂, (CH₃)₂CHS(O)₂ and the different butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. "Alkylamino", "dialkylamino", "alkenylthio", "alkenylsulfinyl", "alkenylsulfonyl", "alkynylthio", "alkynylsulfinyl", "alkynylsulfonyl", and the like, are defined analogously to the above examples. One skilled in the art will appreciate that not all nitrogen containing 15 heterocycles can form N-oxides since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those nitrogen containing heterocycles which can form N-oxides. One skilled in the art will also recognize that tertiary amines can form N-oxides. Synthetic methods for the preparation of N-oxides of 20 heterocycles and tertiary amines are very well known by one skilled in the art including the oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as t-butyl hydroperoxide, sodium perborate, and dioxiranes such as dimethyldioxirane. These methods for the preparation of N-oxides have been extensively described and reviewed in the 25 literature, see for example: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149-161, A. R. Katritzky, Ed., Academic Press; M. Tisler and B. Stanovnik in Advances 30 in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds., Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. The term "1-2 halogen" indicates that one or two of the available positions for that substituent may be halogen which are independently selected. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of

10

15

20

25

30

35

"haloalkyl" include F₃C, ClCH₂, CF₃CH₂ and CF₃CCl₂. Examples of "haloalkoxy" include CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O and CF₃CH₂O.

The total number of carbon atoms in a substituent group is indicated by the "C_i-C_j" prefix where i and j are numbers from 1 to 4. For example, C₁-C₃ alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C₂ alkoxyalkyl designates CH₃OCH₂; C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃), CH₃OCH₂CH₂ or CH₃CH₂OCH₂; and C₄ alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH₃CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. Examples of "alkylcarbonyl" include C(O)CH₃, C(O)CH₂CH₂CH₃ and C(O)CH(CH₃)₂. Examples of "alkoxycarbonyl" include CH₃OC(=O), CH₃CH₂OC(=O), CH₃CH₂CH₂OC(=O), (CH₃)₂CHOC(=O) and the different butoxy- or pentoxycarbonyl isomers. In the above recitations, when a compound of Formula I is comprised of one or more heterocyclic rings, all substituents are attached to these rings through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

When a group contains a substituent which can be hydrogen, for example R⁹, then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

The compounds of this invention thus include compounds of Formula I, geometric and stereoisomers thereof, N-oxides thereof, and agriculturally suitable salts thereof. The compound of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids.

Preferred compounds of the invention for reasons of better activity and/or ease of synthesis are:

Preferred 1. Compounds of Formula I above, geometric or stereoisomers thereof,

N-oxides thereof and agriculturally-suitable salts thereof, wherein

R¹ and R² are independently H, C₁-C₄ alkyl or C₁-C₄ alkoxy;

 ${
m R}^5$ and ${
m R}^7$ are independently halogen, ${
m C}_1{
m -}{
m C}_4$ haloalkyl, ${
m C}_1{
m -}{
m C}_4$ haloalkoxy or $S(O)_n R^{13}$; R⁶ is H or F; R^8 is C_1 - C_4 alkyl; R⁹ is halogen, cyano, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkyl, C₁-C₄ 5 haloalkyl or $S(O)_n R^{13}$; R¹⁰ is H, halogen, cyano or C₁-C₄ haloalkyl; R¹¹ is H, halogen, cyano or C₁-C₄ haloalkyl; R¹² is H, halogen, cyano or C₁-C₄ haloalkyl; and 10 n is 0. Preferred 2. Compounds of Preferred 1 wherein W is N; R⁵ and R⁷ are independently C₁-C₄ haloalkyl or C₁-C₄ haloalkoxy; and R⁹ is halogen, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl or S(O)_nR¹³. Preferred 3. Compounds of Preferred 2 wherein 15 R^1 is C_1 - C_4 alkyl or C_1 - C_4 alkoxy; R² is H; R3 and R4 are independently H, F or methyl; R5 and R7 are independently C1-C2 haloalkyl or C1-C2 haloalkoxy; and 20 R^9 is C_1 - C_2 haloalkoxy, C_1 - C_2 haloalkyl or $S(O)_n R^{13}$. Preferred 4. Compounds of Preferred 3 wherein J is J-1, J-5 or J-7. Preferred 5. Compounds of Preferred 2 wherein R³ and R⁴ can be taken together with the carbon to which they are attached to 25 form C(=0). Preferred 6. Compounds of Preferred 5 wherein \mathbb{R}^1 is \mathbb{C}_1 - \mathbb{C}_4 alkyl or \mathbb{C}_1 - \mathbb{C}_4 alkoxy; R² is H; R^5 and R^7 are independently C_1 - C_2 haloalkyl or C_1 - C_2 haloalkoxy; and R^9 is C_1 - C_2 haloalkoxy, C_1 - C_2 haloalkyl or $S(O)_n R^{13}$. 30 Preferred 7. Compounds of Preferred 5 wherein J is J-1 or J-5. Most preferred is the compound of Formula I selected from the group consisting of: (a) 5-ethyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[3-(trifluoromethyl)-35 1*H*-pyrazol-1-yl]pyrimidine: (b) 5-ethyl-4-[[3-(trifluoromethyl)phenyl]methyl]-2-[3-(trifluoromethyl)-1Hpyrazol-1-yl]pyrimidine;

10

15

20

25

30

35

- (c) 5-methyl-2-[4-(trifluoromethyl)phenyl]-4-[[3-(trifluoromethyl)phenyl]methyl]pyrimidine;
- (d) 5-methyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[4-(trifluoromethyl)phenyl]pyrimidine;
- (e) 5-methyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine;
- (f) [5-methyl-2-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl][3-(trifluoromethyl)phenyl]methanone;
- (g) [5-methyl-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]-4-pyrimidinyl][3-(trifluoromethyl)phenyl]methanone; and
- (h) 5-methyl-4-[[3-(trifluoromethyl)phenyl]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine.

This invention also relates to herbicidal compositions comprising herbicidally effective amounts of the compounds of the invention and at least one of a surfactant, a solid diluent or a liquid diluent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

DETAILS OF THE INVENTION

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-12. The definitions of J, A, W, X, Y, Z, R¹, R², R³, R⁴, R⁹, R¹⁰, and R¹⁴ in the compounds of Formulae 1-16 below are as defined above in the Summary of the Invention. Compounds of Formulae Ia-Ic are various subsets of the compounds of Formula I, and all substituents for Formulae Ia-Ic are as defined above for Formula I.

Scheme 1 illustrates the preparation of compounds of Formula Ia (Formula I wherein A is A-1). Substituted heterocycles of Formula 1 (where L^1 is halogen) can be coupled with metalated aryls or heteroaryls of Formula 2 (where Met is $Sn(alkyl)_3$, $B(OH)_2$ or $Zn(L^1)_2$) in the presence of a palladium(0) catalyst such as tetrakis(triphenylphosphine)palladium(0) or in the presence of a palladium(II) catalyst such as dichlorobis(triphenylphosphine)-palladium(II) to provide compounds of Formula Ia. Palladium(II) catalysts are generally used with a suitable base such as aqueous sodium bicarbonate or sodium carbonate. Suitable solvents for this coupling include N,N-dimethylformamide, dimethoxyethane, acetonitrile or tetrahydrofuran. Reaction temperatures range from 20 °C to 130 °C.

15

20

8

Scheme 2 illustrates the preparation of compounds of Formula Ib (Formula I wherein A is A-2). Substituted heterocycles of Formula 1 are allowed to react with substituted azoles of Formula 3 in the presence of a suitable base such as an alkali carbonate, alkali hydroxide, or alkali hydride in a solvent such as N,N-dimethylformamide, acetonitrile or tetrahydrofuran at temperatures ranging from 0 °C to 130 °C to provide compounds of Formula Ib.

10 Scheme 2

Scheme 3 illustrates a method for preparing compounds of Formula Ic wherein J is an azole heterocycle of Formula J-7 and A is A-1 or A-2. Compounds of Formula 4 are allowed to react with an azole heterocycle of Formula 3 in a protic or aprotic solvent at temperatures ranging from 0 °C to 100 °C in the presence of a suitable base such an alkali carbonate, alkali hydroxide, or alkali hydride to provide compounds of Formula Ic. Particularly suitable are potassium carbonate as base and acetonitrile or N,N-dimethylformamide as solvent at a reaction temperature range of 20 °C to 80 °C.

Scheme 3 R1 W R2

Substituted pyrimidine intermediates of Formula 1 (wherein J is J-1 to J-6) can be prepared by the method shown in Scheme 4. By the synthetic protocol of Menta, E. and Oliva, A. J. Heterocyclic Chem. (1997), 34, p 27, a dihalopyrimidine of Formula 5 (where L¹ and L² are halogen) is coupled with a substituted alkyl zinc reagent of Formula 6 (where L³ is halogen) in the presence of a palladium(0) catalyst such as tetrakis(triphenylphosphine)palladium(0) or in the presence of a palladium(II) catalyst such as dichloro-bis(triphenylphosphine)palladium(II). Palladium(II) catalysts are generally used with a suitable base such as sodium bicarbonate or sodium carbonate. Suitable solvents for this coupling include N,N-dimethylformamide, dimethoxyethane, acetonitrile or tetrahydrofuran. Reaction temperatures range from 0 °C to 130 °C.

5

10

20

25

Metalated aryls and heteroaryls of Formula 2 can be obtained commercially or can be prepared by methods known in the art: Sandosham, J. and Undheim, K. *Tetrahedron* (1994), 50, pp 275-284; Undheim, K. and Benneche, T. *Acta Chemica Scandinavica* (1993), 47, pp 102-121; *Advances in Heterocyclic Chemistry*; Katritzky, A.R., Ed.; Academic Press: New York, 1995; volume 62, pp 305-418.

Azoles of Formula 3 can be obtained commercially or can be prepared by methods known in the art Elguero, J. et al., *Organic Preparations and Procedures Int.* (1995), 27, pp 33-74; *Comprehensive Heterocyclic Chemistry*; Potts, K., Ed.; Pergamon Press: New York,

1984; volume 5, chapters 4.04 - 4.13; *Heterocyclic Compounds*; Elderfield, R., Ed.; John Wiley: New York, 1957; volume 5, chapters 2 and 4; Baldwin, J. et al. *J. Med. Chem.*, (1975), 18, pp 895-900; Evans, J.J. et al. U.S. Patent 4,038,405.

Dihaloheterocycles of Formula 5 can be obtained commercially or can be readily prepared by known methods in the art; for example, see *Advances in Heterocyclic Chemistry*; Katritzky, A.R., Ed.; Academic Press: New York, 1993; volume 58, pp 301-305; *Heterocyclic Compounds*; Elderfield, R.C., Ed.; John Wiley: New York, 1957; volume 6, chapter 7, pp 265-270.

Zinc reagents of Formula 6 can be made by the method shown in Scheme 5. A substituted alkyl halide of Formula 7 (where L³ is halogen) is allowed to react with activated zinc (see Jubert, C. and Knochel, P. J. Org. Chem. (1992), 57, p 5425; Knochel, P. and Singer, R. D. Chem. Rev. (1993), 93, p 2117) in a suitable solvent such as N,N-dimethylformamide, dimethoxyethane, acetonitrile or tetrahydrofuran. Reaction temperatures range from 0 °C to 130 °C.

15

10

5

Scheme 5

7

20

As shown in Scheme 6, heterocyclic benzylic bromides of Formula 4 can be made by bromination of heterocycles of Formula 8 with bromine in an acidic solvent such as acetic acid at temperatures ranging from 20 °C to 100 °C (see, for example, Strekowski et al. *J. Org. Chem.* (1992), 56, p 5610).

Scheme 6

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{4}

15

20

25

Heterocycles of Formula 8 can be made from precursor heterocycles of Formula 9 as shown in Scheme 7. The addition of lithium or Grignard reagents of formula R³R⁴CHLi or R³R⁴CHMgL¹ to heterocycles of Formula 9 is carried out in ethereal solvents such as ether or tetrahydrofuran at temperatures ranging from -70 °C to 30 °C. The reaction mixture is worked up by the addition of water and an oxidizing agent. A particularly suitable oxidizing agent is dichlorodicyanoquinone (DDQ). See Strekowski et al. J. Org. Chem. (1992), 56, p 5610 for examples of this synthetic method.

10 9

Heterocycles of Formula 9 can be prepared according to methods taught by Strekowski et al. J. Org. Chem. (1992), 56, p 5610; Bredereck et. al., Chem. Ber. (1960), 93, p 1208; Burdeska et al. Helv. Chim. Acta (1981), 64, p 113; Undheim, K. and Benneche, T. Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New York, 1995, volume 62, pp 305-418; and Comprehensive Heterocyclic Chemistry; Boulton, A. J., and McKillop, A., Eds.; Pergamon Press: New York, 1984; volume 3, chapter 2.13. Lithium and Grignard reagents of formulae R³R⁴CHLi or R³R⁴CHMgL¹ are commercially available or can be prepared by methods well known in the art.

Compounds of Formula 1 (wherein R³ and R⁴ are taken together as C(=O)) can be prepared by the condensation of pyrimidines and pyridines of Formula 10 with aldehydes of Formula 11 in the presence of an imidazolium catalyst of Formula 12 as shown in Scheme 8. This reaction is carried out in the presence of a strong base such as an alkali hydride, preferably sodium hydride, in solvents such as dichloromethane, dioxane, tetrahydrofuran, benzene, toluene or other aprotic solvent. The reaction may be carried out at temperatures between 0 and 120 °C. A wide variety of azolium salts are known to catalyze this transformation; see, for example, Miyashita Heterocycles, (1996), 43, 509-512 and references cited therein. A preferred catalyst is 1,3-dimethylimidazolium iodide.

12

PCT/US98/22088

12

L² is halogen or alkylsulfonyl

10

Compounds of Formula I (wherein R³ and R⁴ are taken together as C(=NOR¹⁴)) can be formed directly from compounds of Formula I (wherein R³ and R⁴ are taken together as C(=O)) by the action of hydroxylamine or capped hydroxylamine salts of Formula 13 as shown in Scheme 9. Many hydroxylamines are commercially available as acid salts and are freed by the action of a base in the presence of the ketone of Formula I. Suitable bases include alkali carbonates, acetates, and hydroxides. These reactions are best carried out in protic solvents, such as lower alcohols, at temperatures between 0 and 120 °C. Especially preferred conditions use sodium carbonate or sodium acetate as base in ethanol at 70 to 80 °C.

Scheme 9

I + NH₂OR¹⁴-HX base I

(wherein R³ and R⁴
are taken together as C(=O))

X is halogen as C(=NOR¹⁴))

Compounds of Formula I (wherein R³ is OH and R⁴ is H) can be made by the reduction of ketones of Formula I (wherein R³ and R⁴ are taken together as C(=O)) as shown in Scheme 10. A wide variety of reduction conditions can be utilized, but for reasons of ease of use and selectivity, alkali borohydrides are preferred reductants. The reduction can be carried out at 0 to 100 °C in a variety of solvents which are inert to the action of borohydrides. Especially preferred conditions are the use of sodium borohydride in ethanol at 0 to 25 °C.

Scheme 10

I +
$$Z^+(BH_4)^-$$
 I (wherein R^3 and R^4 are taken together as $C(=O)$)

I (wherein R^3 is OH and R^4 is H)

5

10

15

20

10

15

20

25

30

As shown in Scheme 11, compounds of Formula 1 wherein J is J-7 can also be made via the bromination of compounds of Formula 14 with molecular bromine in an acidic solvent such as acetic acid at temperatures ranging from 20 to 100 °C in the same way as previously described in Scheme 6. The brominated products of Formula 15 can be displaced by heterocycles of Formula 3 in the presence of a base such as potassium carbonate as previously described for Scheme 2. Compounds of Formula 14 are known in the literature or are commercially available. See Benneche (*Acta Chemica Scandanavia*, 1997, 51, 302) for preparation of these compounds from compounds of Formula 5.

Scheme 11

$$R^2$$
 R^3
 R^4
 R^2
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^4
 R^3
 R^4
 R^4

Compounds of Formula 1 in which R³ is cyano can be made as shown in Scheme 12. The reaction of acetonitrile derivatives of formula 16 with compounds of Formula 5 in the presence of a base gives compounds of formula 1 with a cyano group. The reaction can be carried out in a variety of solvents such as dimethylformamide, tetrahydrofuran, or other solvents inert to strong bases. A wide variety of bases which can deprotonate substituted acetonitriles can be used. Sodium hydride and potassium t-butoxide are preferred due to their ease of use and availability. The reaction can be carried out at temperatures ranging from 0 to 100 °C. Compounds of formula 16 are well known in the literature and many are commercially available

16

(wherein W is N)

Scheme 12

Compounds of Formula I substituted with the group $S(O)_n R^{13}$ wherein n is 1 or 2 can be prepared from compounds of Formula I substituted with said $S(O)_n R^{13}$ group wherein n is 0 by treatment with an oxidizing reagent such as m-chloroperoxybenzoic acid or Oxone® (potassium peroxymonosulfate). This type of oxidation reaction is well known in the art; for

10

15

20

25

30

35

example, see March, J. Advanced Organic Chemistry; John Wiley: New York, 1992; 4th edition, pp 1201-1203.

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. 1H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dt = doublet

EXAMPLE 1

Step A: Preparation of 2-chloro-5-methyl-4-[[3-(trifluoromethyl)phenyl]methyl]pyrimidine

To a suspension of zinc dust (2.5 g, 38 mmol) stirred in 25 mL of tetrahydrofuran were added 2 drops of 1,2-dibromoethane and the mixture was heated to reflux. The suspension was then cooled and 2 drops of trimethylsilyl chloride were added followed by portionwise addition of 3-(trifluoromethyl)benzyl bromide (6.0 g, 25 mmol) with heating. When the reaction temperature reached 55 °C, a strong exotherm occurred and the reaction mixture was allowed to heat at reflux. The cooled reaction solution was decanted into a solution of 2,4-dichloro-5-methylpyrimidine (3.3 g, 20 mmol) and dichlorobis(triphenylphosphine)-palladium(II) (0.44 g, 0.63 mmol) stirring in 15 mL of tetrahydrofuran. Upon heating, the

15

20

25

30

reaction mixture exothermed strongly again at 55 °C and was then heated to reflux. The reaction mixture was allowed to cool and partitioned between diethyl ether and water. The organic layer was separated, washed with 1 N aqueous hydrochloric acid and brine, dried over magnesium chloride and concentrated under reduced pressure to give a crude oil. Purification by flash chromatography on silica gel (15 to 25% ethyl acetate in hexane) yielded 2.4 g of the title compound of Step A as an oil. ¹H NMR (CDCl₃): δ 8.35 (s, 1H), 7.60-7.35 (m, 4H), 4.15 (s, 2H), 2.25 (s, 3H).

Step B: Preparation of 5-methyl-2-[4-(trifluoromethyl)phenyl]-4-[[3-(trifluoromethyl)phenyl]methyl]pyrimidine

A stirred mixture of 4-(trifluoromethyl)benzene boronic acid (430 mg, 2.3 mmol), the title compound of Step A (500 mg, 1.7 mmol), dichlorobis(triphenylphosphine)palladium(II) (120 mg, 0.17 mmol) and sodium carbonate (550 mg, 5.2 mmol) in a mixture of 6 mL of water and 2 mL of tetrahydrofuran was heated at reflux for 1.5 h. The reaction mixture was then partitioned between diethyl ether and water. The organic layer was separated, washed with brine, dried over magnesium sulfate and concentrated under reduced pressure. Flash chromatography on silica gel (20 to 25% ethyl acetate in hexane) followed by trituration with 10% diethyl ether in hexane afforded 350 mg of the title compound of Step B, a compound of this invention, as a yellow-tinted solid melting at 112-113 °C. ¹H NMR (CDCl₃): δ 8.55 (m, 3H), 7.70 (d, 2H), 7.60 (s, 1H), 7.55-7.40 (m, 3H), 4.25 (s, 2H), 2.30 (s, 3H).

EXAMPLE 2

Step A: Preparation of 5-methyl-4-[[3-(trifluoromethyl)phenyl]methyl]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine

A stirred mixture of 3-(trifluoromethyl)pyrazole (390 mg, 2.9 mmol), the title compound of Step A in Example 1 (750 mg, 2.6 mmol), and powdered potassium carbonate (1.1 g, 7.9 mmol) in 10 mL of N,N-dimethylformamide was heated at 60 °C for 3 h followed by heating at 80 °C for 1 h. The reaction mixture was then partitioned between diethyl ether and water. The organic layer was separated, washed with brine, dried over magnesium sulfate and concentrated under reduced pressure. Column chromatography on silica gel (5% diethyl ether in 1-chlorobutane) afforded 210 mg of the title compound of Step A as an oil which solidified to a white solid melting at 90-92 °C. ¹H NMR (CDCl₃): 8 8.55 (t,2H), 7.55-7.50 (m, 2H), 7.45-7.40 (m, 2H), 6.72 (d, 1H), 4.26 (s, 2H), 2.32 (s, 3H).

EXAMPLE 3

Step A: Preparation of 5-methyl-2-(4-trifluoromethylphenyl)pyrimidine

A sample of 4-trifluoromethylbenzamidine hydrochloride dihydrate (Maybridge, 15.2 g, 58 mmol) was dissolved in 100 mL of methanol and 3-ethoxy-2-methylacrolein (Janssen, 7.8 g, 64 mmol) was added. Sodium methoxide (25% solution in methanol, 14.7 mL) was added and the mixture was heated at 50 °C for 3 h. The cooled reaction mixture was then added to 500 ml of ice water and stirred for 30 minutes. The white solid was filtered, air

10

15

20

25

30

dried, dissolved in 300 mL of dichloromethane and dried over magnesium sulfate. The solvent was removed under reduced pressure to yield, after trituration with hexanes, 12.5 g of the product as a white solid melting at 143-146 °C. ¹H NMR (CDCl₃): δ 2.37 (s, 3H), 7.73 (d, 2H), 8.53 (d, 2H), 8.66 (s, 2H).

Step B: Preparation of 4,5-dimethyl-2-(4-trifluoromethylphenyl)pyrimidine

The title compound of Step A (9.0 g, 38 mmol) was dissolved in 50 mL of tetrahydrofuran and treated with methyl lithium (1.4 M in ether, 34 mL, 47 mmol) at a temperature of -70 °C. The reaction mixture exothermed to -35 °C. The mixture was stirred at -30 °C for 1.5 h and then treated with 1 mL of water and dichlorodicyanoquinone (9.44 g, 42 mmol). The mixture was stirred at 25 °C for 30 minutes and then partitioned twice between 100 mL of water and 100 mL of dichloromethane. The combined organics were washed with brine and dried over magnesium sulfate. The residue after evaporation was subjected to silica gel chromatography using hexanes/ethyl acetate (95:5) as eluent to give 9.02 g of the title compound of Step B as a white solid melting at 128-131 °C. ¹H NMR (CDCl₃): δ 2.31 (s, 3H), 2.56 (s, 3H), 7.71 (d, 2H), 8.49 (d, 2H), 8.53 (s, 1H).

Step C: Preparation of 4-bromomethyl-5-methyl-2-(4-trifluoromethylphenyl)pyrimidine

The title compound of Step B (2.0 g, 8 mmol) was dissolved in 10 mL of acetic acid and treated with bromine (0.4 mL, 8 mmol). The mixture was heated at 80 °C until the orange color was discharged (1 h). The mixture was evaporated under reduced pressure, diluted with 50 mL of ether and washed twice with 50 mL of sodium bicarbonate and then 50 mL of brine. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure to yield 2.54 g of the title compound of Step C as a tan solid which was used immediately in the next step without further purification. ¹H NMR (CDCl₃): δ 2.44 (s, 3H), 4.54 (s, 2H), 7.74 (d, 2H), 8.56 (d, 2H), 8.62 (s, 1H).

Step D: Preparation of 5-methyl-2-(4-trifluoromethylphenyl)-4-[3-(trifluoromethyl)-1H-pyrazol-1-yl]methylpyrimidine

The title compound of Step C (0.7 g, 2 mmol), 3-trifluoromethylpyrazole (0.27 g, 2 mmol) and potassium carbonate (0.83 g, 6 mmol) were suspended in 10 mL of acetonitrile and heated to reflux for 1 h. The salts were filtered and the acetonitrile was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with hexanes/ethyl acetate (85:15) to afford 0.52 g of the title compound of Step D, a compound of this invention, as a white solid melting at 112-114 °C. ¹H NMR (CDCl₃): δ 2.39 (s, 3H), 5.53 (s, 2H), 6.62 (d, 1H), 7.6-7.8 (m, 3H), 8.44 (d, 2H), 8.6 (s, 1H).

PCT/US98/22088

WO 99/28301

5

10

15

20

25

30

35

17

EXAMPLE 4

Step A: Preparation of (2-chloro-5-methyl-4-pyrimidinyl)[3-(trifluoromethyl)phenyl]methanone

2,4-Dichloro-5-methylpyrimidine (3.6 g, 18.4 mmol) was dissolved in dichloromethane (50 mL) and treated sequentially with 3-trifluoromethylbenzaldehyde (3.3 g, 18.4 mmol), and 1,3-dimethylimidazolium iodide (1.37 g, 6.2 mmol). Sodium hydride (0.74 g, 18.4 mmol) was added and an exotherm was noted. After being heated at reflux for 3h, the reaction was quenched with water and the layers were separated. The dried (magnesium sulfate) organic layer was purified by chromatography on silica gel using hexanes/ethyl acetate 85:15 as eluent. The title compound of Step A (1.8 g) was isolated as a white solid melting at 113-116 °C. ¹H NMR (CDCl₃/200 MHz) 2.39 (s, 3H), 7.66 (m, 1H), 7.90 (d, 1H), 8.07 (s,1H), 8.69 (s, 1H).

Step B: Preparation of [5-methyl-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]-4-pyrimidinyl][3-(trifluoromethyl)phenyl]methanone

The title compound of Step A (0.6 g, 2 mmol), 3-trifluoromethylpyrazole (0.25 g), and potassium carbonate (0.8 g, 6 mmol) were suspended in acetonitrile (15 mL) and heated at reflux for 3 h. The cooled reaction mixture was filtered and the cake washed with acetonitrile. After evaporation of the solvent under reduced pressure, the residue was subjected to silica gel chromatography using hexanes/ethyl acetate (85:15) to give 0.12 g of the title compound of Step B, a compound of the invention, as a white solid. ¹H NMR (CDCl₃/200 MHz) 2.45 (s, 3H), 6.75 (d, 1H), 7.67 (d, 1H), 7.92 (d, 1H), 8.10 (s, 1H), 8.27 (s, 1H), 8.54 (d, 1H), 8.9 (s, 1H).

EXAMPLE 5

Step A: Preparation of [5-methyl-2-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl][3-(trifluoromethyl)phenyl]methanone

The title compound of Example 1, Step A (0.6 g, 2 mmol), 4-trifluoromethyl-benzeneboronic acid (1.1 g, 6 mmol), and bis(triphenylphosphine)palladium dichloride were dissolved in dimethoxyethane (15 mL) and aqueous sodium carbonate (2 M, 4 mmol). The resulting mixture was heated at 80 °C for 3 h. The mixture was diluted with dichloromethane (50 mL) and water (50 mL). The dichloromethane layer was dried over magnesium sulfate, concentrated under reduced pressure, and the residue was subjected to silica gel chromatography using hexanes/ethyl acetate (85:15). The title compound of Step A, a compound of the invention, was isolated as a white solid (0.56 g) melting at 159-161 °C. ¹H NMR (CDCl₃/200 MHz) 2.47 (s, 3H), 7.62-7.78 (m, 3H), 7.94 (d, 1H), 8.17 (d, 1H), 8.34 (s, 1H), 8.5 (d, 2H), 8.9 (s, 1H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 34 can be prepared.

18 <u>Table 1</u>

$$R^{5}$$
 R^{3}
 R^{4}
 X
 Z
 R^{9}

R ³ is H; X, Y and Z are CH											
R^1	<u>R4</u>	$\underline{\mathbf{R^5}}$	<u>R</u> 9	<u>R</u> 1	<u>R</u> ⁴	<u>R</u> 5	<u>R</u> 9				
H	H	CF ₃	CF ₃	н	H	OCF ₃	CF ₃				
H	H	CF ₃	OCF ₃	н	H	OCF ₃	OCF ₃				
H	Н	CF ₃	SCF ₃	н	H	OCF ₃	SCF ₃				
H	H	CF ₃	OCHF ₂	н	H	OCF ₃	OCHF ₂				
H	H	CF ₃	SCHF ₂	н	H	OCF ₃	SCHF ₂				
H	H	CF ₃	C_2F_5	н	H	OCF ₃	C_2F_5				
H	H	CF ₃	Cl	н	H	OCF ₃	Cl				
H	H	CF ₃	SCH ₂ CH ₃	н	H	OCF ₃	SCH ₂ CH ₃				
H	H	OCHF ₂	CF ₃	н	H	SCF ₃	CF ₃				
H	Н	OCHF ₂	OCF ₃	н	H	SCF ₃	OCF ₃				
H	H	OCHF ₂	SCF ₃	н	Н	SCF ₃	SCF ₃				
H	H	OCHF ₂	OCHF ₂	Н	Н	SCF ₃	OCHF ₂				
H	H	OCHF ₂	SCHF ₂	H	Н	SCF ₃	SCHF ₂				
H	н	OCHF ₂	C ₂ F ₅	н	H	SCF ₃	C_2F_5				
H	H	OCHF ₂	CI	н	H	SCF ₃	Cl				
H	H	OCHF ₂	SCH ₂ CH ₃	H	H	SCF ₃	SCH ₂ CH ₃				
H	H	SCHF ₂	CF ₃	Н	H	Cl	CF ₃				
H	H	schf ₂	OCF ₃	Н	H	Cl	OCF ₃				
H	H	SCHF ₂	SCF ₃	Н	H	Cl	SCF ₃				
H	H	SCHF ₂	OCHF ₂	н	H	Cl	OCHF ₂				
Н	H	SCHF ₂	SCHF ₂	н	H	Cl	SCHF ₂				
H	H	SCHF ₂	C ₂ F ₅	H	H	Cl	C_2F_5				
H	H	SCHF ₂	CI	H	H	Cl	Cl				
Н	H	SCHF ₂	SCH ₂ CH ₃	H	H	Cl	SCH ₂ CH ₃				
H	CH ₃	CF ₃	CF ₃	H	CH ₃	OCF ₃	CF ₃				
H	CH ₃	CF ₃	OCF ₃	H	CH ₃	OCF ₃	OCF ₃				
H	CH ₃	CF ₃	SCF ₃	H	CH ₃	OCF ₃	SCF ₃				
Н	CH ₃	CF ₃	OCHF ₂	Н	сн3	OCF ₃	OCHF ₂				
Н	CH ₃	CF ₃	SCHF ₂	н	CH ₃	OCF ₃	SCHF ₂				
H	CH ₃	CF ₃	C ₂ F ₅	Н	CH ₃	OCF ₃	C ₂ F ₅				

				0			
Н	CH ₃	CF ₃	Cl	н	CH ₃	OCF ₃	CI
H	CH ₃	CF ₃	SCH ₂ CH ₃	н	CH ₃	OCF ₃	SCH ₂ CH ₃
H	CH ₃	OCHF ₂	CF ₃	H	CH ₃	SCF ₃	CF ₃
H	CH ₃	OCHF ₂	OCF ₃	Н	CH ₃	SCF ₃	OCF ₃
H	CH ₃	OCHF ₂	SCF ₃	н	CH ₃	SCF ₃	SCF ₃
H	CH ₃	OCHF ₂	OCHF ₂	н	CH ₃	SCF ₃	OCHF ₂
Н	CH ₃	OCHF ₂	SCHF ₂	н	CH ₃	SCF ₃	SCHF ₂
H	CH ₃	OCHF ₂	C_2F_5	н	CH ₃	SCF ₃	C_2F_5
H	CH ₃	OCHF ₂	C1	н	CH ₃	SCF ₃	Cl
H	CH ₃	OCHF ₂	SCH ₂ CH ₃	.н	CH ₃	SCF ₃	SCH ₂ CH ₃
H	CH ₃	SCHF ₂	CF ₃	н	CH ₃	CI	CF ₃
H	CH ₃	SCHF ₂	OCF ₃	Н	CH ₃	Cl	OCF ₃
H	CH ₃	SCHF ₂	SCF ₃	н	CH ₃	CI	SCF ₃
H	CH ₃	SCHF ₂	OCHF ₂	н	CH ₃	Cl	OCHF ₂
H	CH ₃	SCHF ₂	SCHF ₂	н	CH ₃	CI	SCHF ₂
H	CH ₃	SCHF ₂	C_2F_5	·H	CH ₃	Cl	C_2F_5
H	CH ₃	SCHF ₂	Cl	н	CH ₃	Cl	Cl
H	CH ₃	SCHF ₂	SCH ₂ CH ₃	н	CH ₃	Cl	SCH ₂ CH ₃
H	F	CF ₃	CF ₃	н	F	OCF ₃	CF ₃
H	F	CF ₃	OCF ₃	н	F	OCF ₃	OCF ₃
H	F	CF ₃	SCF ₃	н	F	OCF ₃	SCF ₃
H	F	CF ₃	OCHF ₂	Н	F	OCF ₃	OCHF ₂
Н	F	CF ₃	SCHF ₂	Н	F	OCF ₃	SCHF ₂
·H	F	CF ₃	C ₂ F ₅	н	F	OCF ₃	C_2F_5
H	F	CF ₃	Cl	H	F	OCF ₃	Cl
H	F	CF ₃	SCH ₂ CH ₃	H	F	OCF ₃	SCH ₂ CH ₃
H	F	OCHF ₂	CF ₃	H	F	SCF ₃	CF ₃
H	F	OCHF ₂	OCF ₃	H	F	SCF ₃	OCF ₃
H	F	OCHF ₂	SCF ₃	H	F	SCF ₃	SCF ₃
H	F	OCHF ₂	OCHF ₂	H	F	SCF ₃	OCHF ₂
Н	F	OCHF ₂	SCHF ₂	H	F	SCF ₃	SCHF ₂
H	F	OCHF ₂	C ₂ F ₅	H	F	SCF ₃	C_2F_5
H	F	OCHF ₂	CI	H	F	SCF ₃	Cl
H	F	OCHF ₂	SCH ₂ CH ₃	H	F	SCF ₃	SCH ₂ CH ₃
H	F	SCHF ₂	CF ₃	H	F	Cl	CF ₃
H	F	SCHF ₂	OCF ₃	Н	F	Cl	OCF ₃
H	F	SCHF ₂	SCF ₃	Н	F	Cl	SCF ₃
H	F	SCHF ₂	OCHF ₂	H	F	Cl	OCHF ₂

•							
н	F	SCHF ₂	SCHF ₂	Н	F	Cl	SCHF ₂
Н	F	SCHF ₂	C ₂ F ₅	н	F	Cl	C_2F_5
н	F	SCHF ₂	Cl	н	F	Cl	Cl
н	F	SCHF ₂	SCH ₂ CH ₃	н	F	Cl	SCH ₂ CH ₃
н	Cl	CF ₃	CF ₃	н	Cl	OCF ₃	CF ₃
H	CI	CF ₃	OCF ₃	H	Cl	OCF ₃	OCF ₃
н	Cl	CF ₃	SCF ₃	Н	Cl	OCF ₃	SCF ₃
H	Cl	CF ₃	OCHF ₂	Н	Cl	OCF ₃	OCHF ₂
Н	Cl	CF ₃	SCHF ₂	H	Cl	OCF ₃	SCHF ₂
H	Cl	CF ₃	C ₂ F ₅	Н	Cl	OCF ₃	C_2F_5
H	Cl	CF ₃	Cl	Н	Cl	OCF ₃	Cl
H	Cl	CF ₃	SCH ₂ CH ₃	H	Cl	OCF ₃	SCH ₂ CH ₃
Н	Cl	OCHF ₂	CF ₃	н	Cl	SCF ₃	CF ₃
Н	Cl	OCHF ₂	OCF ₃	н	Cl	SCF ₃	OCF ₃
H	Cl	OCHF ₂	SCF ₃	Н	Cl	SCF ₃	SCF ₃
H	Cl	OCHF ₂	OCHF ₂	н	Cl	SCF ₃	OCHF ₂
Н	Cl	OCHF ₂	SCHF ₂	н	Cl	SCF ₃	SCHF ₂
H	Cl	OCHF ₂	C ₂ F ₅	Н	Cl	SCF ₃	C_2F_5
H	Cl	OCHF ₂	Cl	Н	Cl	SCF ₃	Cl
H	CI	OCHF ₂	SCH ₂ CH ₃	H	Cl	SCF ₃	SCH ₂ CH ₃
Н	Cl	SCHF ₂	CF ₃	Н	Cl	Cl	CF ₃
H	Cl	SCHF ₂	OCF ₃	Н	Cl	Cl	OCF ₃
H	Cl	SCHF ₂	SCF ₃	Н	Cl	Cl	SCF ₃
H	Cl	SCHF ₂	OCHF ₂	H	.Cl	Cl	OCHF ₂
H	Cl	SCHF ₂	SCHF ₂	H	Cl	Cl	SCHF ₂
H	Cl	SCHF ₂	C ₂ F ₅	н	Cl	Cl	C_2F_5
H	Cl	SCHF ₂	Cl	н	Ci	Cl	CI
H	Cl	SCHF ₂	SCH ₂ CH ₃	Н	Cl	Cl	SCH ₂ CH ₃
СН3	H	CF ₃	CF ₃	CH ₃	H	OCF ₃	CF ₃
СН3	H	CF ₃	OCF ₃	СН3	Н	OCF ₃	OCF ₃
СН3	H	CF ₃	SCF ₃	CH ₃	H	OCF ₃	SCF ₃
CH ₃	H	CF ₃	OCHF ₂	CH ₃	H	OCF ₃	OCHF ₂
CH ₃	H	CF ₃	SCHF ₂	CH ₃	H	OCF ₃	SCHF ₂
CH ₃	H	CF ₃	C ₂ F ₅	CH ₃	H	OCF ₃	C_2F_5
СН3	H	CF ₃	Cl	CH ₃	H	OCF ₃	Cl
CH ₃	H	CF ₃	SCH ₂ CH ₃	CH ₃	H	OCF ₃	SCH ₂ CH ₃
CH ₃	н	OCHF ₂	CF ₃	CH ₃	H	SCF ₃	CF ₃
CH ₃	H	OCHF ₂	OCF ₃	CH ₃	H	SCF ₃	OCF ₃

CH ₃	H	OCHF ₂	SCF ₃	CH ₃	Н	SCF ₃	SCF ₃
CH ₃	H	OCHF ₂	OCHF ₂	СН3	H	SCF ₃	OCHF ₂
CH ₃	н	OCHF ₂	SCHF ₂	СН3	H	SCF ₃	SCHF ₂
CH ₃	H	OCHF ₂	C ₂ F ₅	CH ₃	H	SCF ₃	C_2F_5
CH ₃	H	OCHF ₂	Cl	CH ₃	H	SCF ₃	Cl
CH ₃	H	OCHF ₂	SCH ₂ CH ₃	CH ₃	H	SCF ₃	SCH ₂ CH ₃
CH ₃	н	SCHF ₂	CF ₃	CH ₃	H	Cl	CF ₃
CH ₃	H	SCHF ₂	OCF ₃	CH ₃	H	Cl	OCF ₃
CH ₃	H	SCHF ₂	SCF ₃	CH ₃	H	CI	SCF ₃
CH ₃	H	SCHF ₂	OCHF ₂	CH ₃	H	Cl	OCHF ₂
CH ₃	н	SCHF ₂	SCHF ₂	CH ₃	H	Cl	SCHF ₂
CH ₃	H	SCHF ₂	C ₂ F ₅	СН3	. Н	Cl	C_2F_5
CH ₃	H	SCHF ₂	Cl	CH ₃	H	Cl	Cl
CH ₃	H	SCHF ₂	SCH ₂ CH ₃	CH ₃	H	Cl	SCH ₂ CH ₃
CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	CH ₃	OCF ₃	CF ₃
CH ₃	CH ₃	CF ₃	OCF ₃	CH ₃	CH ₃	OCF ₃	OCF ₃
CH ₃	CH ₃	CF ₃	SCF ₃	СН3	CH ₃	OCF ₃	SCF ₃
CH ₃	CH ₃	CF ₃	OCHF ₂	CH ₃	CH ₃	OCF ₃	OCHF ₂
CH ₃	CH ₃	CF ₃	SCHF ₂	CH ₃	CH ₃	OCF ₃	SCHF ₂
CH ₃	CH ₃	CF ₃	C ₂ F ₅	CH ₃	CH ₃	OCF ₃	C_2F_5
CH ₃	CH ₃	CF ₃	Cl	СН3	CH ₃	OCF ₃	Cl
CH ₃	CH ₃	CF ₃	sch ₂ ch ₃	CH ₃	CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₃	CH ₃	OCHF ₂	CF ₃	СН3	CH ₃	SCF ₃	CF ₃
СН3	CH ₃	OCHF ₂	OCF ₃	CH ₃	CH ₃	SCF ₃	OCF ₃
CH ₃	CH ₃	OCHF ₂	SCF ₃	CH ₃	CH ₃	SCF ₃	SCF ₃
CH ₃	CH ₃	OCHF ₂	OCHF ₂	CH ₃	CH ₃	SCF ₃	OCHF ₂
CH ₃	CH ₃	OCHF ₂	SCHF ₂	CH ₃	CH ₃	SCF ₃	SCHF ₂
CH ₃	CH ₃	OCHF ₂	C ₂ F ₅	CH ₃	CH ₃	SCF ₃	C_2F_5
CH ₃	CH ₃	OCHF ₂	Cl	СН3	CH ₃	SCF ₃	Cl
CH ₃	CH ₃	OCHF ₂	SCH ₂ CH ₃	CH ₃	CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₃	CH ₃	SCHF ₂	CF ₃	CH ₃	CH ₃	Cl	CF ₃
CH ₃	CH ₃	SCHF ₂	OCF ₃	CH ₃	CH ₃	Cl	OCF ₃
CH ₃	CH ₃	SCHF ₂	SCF ₃	CH ₃	CH ₃	CI	SCF ₃
CH ₃	CH ₃	schf ₂	OCHF ₂	CH ₃	CH ₃	Cl	OCHF ₂
CH ₃	CH ₃	SCHF ₂	SCHF ₂	CH ₃	CH ₃	CI	SCHF ₂
CH ₃	CH ₃	SCHF ₂	C_2F_5	СН3	CH ₃	CI	C_2F_5
CH ₃	CH ₃	SCHF ₂	Cl	CH ₃	CH ₃	Cl	Cl
CH ₃	CH ₃	SCHF ₂	SCH ₂ CH ₃	СН3	CH ₃	Cl	SCH ₂ CH ₃

CH ₃	F	CF ₃	CF ₃	СН3	F	OCF ₃	CF ₃
CH ₃	F	CF ₃	OCF ₃	CH ₃	F	OCF ₃	OCF ₃
CH ₃	F	CF ₃	SCF ₃	CH ₃	F	OCF ₃	SCF ₃
CH ₃	F	CF ₃	OCHF ₂	CH ₃	F	OCF ₃	OCHF ₂
CH ₃	F	CF ₃	SCHF ₂	CH ₃	F	OCF ₃	SCHF ₂
CH ₃	F	CF ₃	C_2F_5	CH ₃	F	OCF ₃	C_2F_5
сн3	F	CF ₃	Cl	СН3	F	OCF ₃	CI
CH ₃	F	CF ₃	SCH ₂ CH ₃	СН3	F	OCF ₃	SCH ₂ CH ₃
CH ₃	F	OCHF ₂	CF ₃	СН3	F	SCF ₃	CF ₃
CH ₃	F	OCHF ₂	OCF ₃	CH ₃	F	SCF ₃	OCF ₃
СН3	F	OCHF ₂	SCF ₃	СН3	F	SCF ₃	SCF ₃
CH ₃	F	OCHF ₂	OCHF ₂	CH ₃	F	SCF ₃	OCHF ₂
CH ₃	F	OCHF ₂	SCHF ₂	СН3	F	SCF ₃	SCHF ₂
CH ₃	F	OCHF ₂	C ₂ F ₅	СН3	F	SCF ₃	C_2F_5
CH ₃	F	OCHF ₂	Cl	СН3	F	SCF ₃	Cl
CH ₃	F	OCHF ₂	SCH ₂ CH ₃	CH ₃	F	SCF ₃	SCH ₂ CH ₃
CH ₃	F	SCHF ₂	CF ₃	CH ₃	F	CI	CF ₃
CH ₃	F	SCHF ₂	OCF ₃	СН3	F	Cl	OCF ₃
CH ₃	F	SCHF ₂	SCF ₃	CH ₃	F	Cl	SCF ₃
CH ₃	F	SCHF ₂	OCHF ₂	CH ₃	F	· CI	OCHF ₂
CH ₃	F	SCHF ₂	SCHF ₂	СН3	F	CI	SCHF ₂
CH ₃	F	SCHF ₂	C ₂ F ₅	СН3	F	CI	C_2F_5
CH ₃	F	SCHF ₂	Ci	СН3	F	Cl	Cl
CH ₃	F	SCHF ₂	SCH ₂ CH ₃	СН3	F	Cì	SCH ₂ CH ₃
CH ₃	Cl	CF ₃	CF ₃	CH ₃	Cl	OCF ₃	CF ₃
CH ₃	Cl	CF ₃	OCF ₃	CH ₃	Cl	OCF ₃	OCF ₃
CH ₃	Cl	CF ₃	SCF ₃	CH ₃	CI	OCF ₃	SCF ₃
CH ₃	Cl	CF ₃	OCHF ₂	СН3	Cl	OCF ₃	OCHF ₂
CH ₃	Cl	CF ₃	SCHF ₂	СН3	Cl	OCF ₃	SCHF ₂
CH ₃	Cl	CF ₃	C ₂ F ₅	CH ₃	Cl	OCF ₃	C_2F_5
CH ₃	Cl	CF ₃	Ci	CH ₃	Cl	OCF ₃	Ci
CH ₃	Cl	CF ₃	SCH ₂ CH ₃	CH ₃	Cl	OCF ₃	SCH ₂ CH ₃
CH ₃	Cl	OCHF ₂	CF ₃	CH ₃	Cl	SCF ₃	CF ₃
CH ₃	Cl	OCHF ₂	OCF ₃	CH ₃	CI	SCF ₃	OCF ₃
CH ₃	Cl	OCHF ₂	SCF ₃	CH ₃	Cl	SCF ₃	SCF ₃
CH ₃	Cl	OCHF ₂	OCHF ₂	CH ₃	Cl	SCF ₃	OCHF ₂
CH ₃	Cl	OCHF ₂	SCHF ₂	CH ₃	Cl	SCF ₃	SCHF ₂
CH ₃	Cl	OCHF ₂	C ₂ F ₅	CH ₃	CI	SCF ₃	C ₂ F ₅

СН3	Cl	OCHF ₂	Cl	СН3	Cl	SCF ₃	CI
CH ₃	Cl	OCHF ₂	SCH ₂ CH ₃	СН3	Cl	SCF ₃	SCH ₂ CH ₃
CH ₃	CI	SCHF ₂	CF ₃	СН3	Cl	Cl	CF ₃
CH ₃	Cl	SCHF ₂	OCF ₃	СН3	Cl	Cl	OCF ₃
CH ₃	Cl	SCHF ₂	SCF ₃	CH ₃	Cl	Cl	SCF ₃
CH ₃	CI	SCHF ₂	OCHF ₂	СН3	Cl	Cl	OCHF ₂
CH ₃	Cl	SCHF ₂	SCHF ₂	СН3	CI	Cl	SCHF ₂
СН3	Cl	SCHF ₂	C_2F_5	СН3	Cl	Cl	C_2F_5
СН3	Cl	SCHF ₂	Cl	CH ₃	Cl	Cl	CI
СН3	Cl	SCHF ₂	SCH ₂ CH ₃	CH ₃	Cì	Cl	SCH ₂ CH ₃
OCH ₃	H	CF ₃	CF ₃	осн3	H	OCF ₃	CF ₃
OCH ₃	Н	CF ₃	OCF ₃	осн3	H	OCF ₃	OCF ₃
OCH ₃	H	CF ₃	SCF ₃	OCH ₃	H	OCF ₃	SCF ₃
OCH ₃	H	CF ₃	OCHF ₂	OCH ₃	H	OCF ₃	OCHF ₂
OCH ₃	H	CF ₃	SCHF ₂	OCH ₃	H	OCF ₃	SCHF ₂
OCH ₃	H	CF ₃	C ₂ F ₅	осн3	Н	OCF ₃	C_2F_5
OCH ₃	H	CF ₃	Cl	OCH ₃	H	OCF ₃	Ci
OCH ₃	H	CF ₃	SCH ₂ CH ₃	OCH ₃	H	OCF ₃	SCH ₂ CH ₃
OCH ₃	H	OCHF ₂	CF ₃	OCH ₃	Н	SCF ₃	CF ₃
OCH ₃	H	OCHF ₂	OCF ₃	OCH ₃	H	SCF ₃	OCF ₃
OCH ₃	H	OCHF ₂	SCF ₃	OCH ₃	. • H	SCF ₃	SCF ₃
OCH ₃	H	OCHF ₂	OCHF ₂	OCH ₃	H	SCF ₃	OCHF ₂
OCH ₃	H	OCHF ₂	SCHF ₂	OCH ₃	H	SCF ₃	SCHF ₂
OCH ₃	H	OCHF ₂	C ₂ F ₅	OCH ₃	Н	SCF ₃	C_2F_5
OCH ₃	H	OCHF ₂	Cl	OCH ₃	H	SCF ₃	Cl
OCH ₃	H	OCHF ₂	SCH ₂ CH ₃	OCH ₃	H	SCF ₃	SCH ₂ CH ₃
OCH ₃	H	SCHF ₂	CF ₃	OCH ₃	H	Cl	CF ₃
OCH ₃	H	SCHF ₂	OCF ₃	OCH ₃	H	Cl	OCF ₃
OCH ₃	H	SCHF ₂	SCF ₃	OCH ₃	H	Cl	SCF ₃
OCH ₃	Н	SCHF ₂	OCHF ₂	OCH ₃	Н	Cl	OCHF ₂
OCH ₃	H	SCHF ₂	SCHF ₂	OCH ₃	H	CI	SCHF ₂
OCH ₃	H	SCHF ₂	C ₂ F ₅	OCH ₃	Н	Cl	C ₂ F ₅
OCH ₃	H	SCHF ₂	C1	OCH ₃	Н	Cl	Cl
OCH ₃	H	SCHF ₂	SCH ₂ CH ₃	OCH ₃	H	Cl	SCH ₂ CH ₃
OCH ₃	CH ₃	CF ₃	CF ₃	OCH ₃	CH ₃	OCF ₃	CF ₃
OCH ₃	CH ₃	CF ₃	OCF ₃	OCH ₃	CH ₃	OCF ₃	OCF ₃
OCH ₃	CH ₃	CF ₃	SCF ₃	OCH ₃	CH ₃	OCF ₃	SCF ₃
OCH ₃	CH ₃	CF ₃	OCHF ₂	OCH ₃	CH ₃	OCF ₃	OCHF ₂

OCH ₃	CH ₃	CF ₃	SCHF ₂	осн3	CH ₃	OCF ₃	SCHF ₂
осн3	CH ₃	CF ₃	C ₂ F ₅	осн3	CH ₃	OCF ₃	C_2F_5
OCH ₃	CH ₃	CF ₃	Cl	осн3	CH ₃	OCF ₃	Cl
OCH ₃	CH ₃	CF ₃	SCH ₂ CH ₃	осн3	CH ₃	OCF ₃	SCH ₂ CH ₃
OCH ₃	CH ₃	OCHF ₂	CF ₃	OCH ₃	CH ₃	SCF ₃	CF ₃
осн3	CH ₃	OCHF ₂	OCF ₃	осн ₃	CH ₃	SCF ₃	OCF ₃
OCH ₃	CH ₃	OCHF ₂	SCF ₃	осн3.	CH ₃	SCF ₃	SCF ₃
OCH ₃	CH ₃	OCHF ₂	OCHF ₂	осн ₃	CH ₃	SCF ₃	OCHF ₂
OCH ₃	CH ₃	OCHF ₂	SCHF ₂	осн ₃	CH ₃	SCF ₃	SCHF ₂
осн ₃	CH ₃	OCHF ₂	C_2F_5	OCH ₃	CH ₃	SCF ₃	C_2F_5
OCH ₃	CH ₃	OCHF ₂	Cl	OCH ₃	CH ₃	SCF ₃	Cl
OCH ₃	CH ₃	OCHF ₂	SCH ₂ CH ₃	осн ₃	CH ₃	SCF ₃	SCH ₂ CH ₃
OCH ₃	CH ₃	SCHF ₂	CF ₃	осн3	CH ₃	Cl	CF ₃
OCH ₃	CH ₃	SCHF ₂	OCF ₃	OCH ₃	CH ₃	Cl	OCF ₃
OCH ₃	CH ₃	SCHF ₂	SCF ₃	OCH ₃	CH ₃	Cl	SCF ₃
OCH ₃	CH ₃	SCHF ₂	OCHF ₂	OCH ₃	CH ₃	Cl	OCHF ₂
OCH ₃	CH ₃	SCHF ₂	SCHF ₂	OCH ₃	CH ₃	Cl	SCHF ₂
OCH ₃	CH ₃	SCHF ₂	C ₂ F ₅	OCH ₃	CH ₃	Cl	C_2F_5
OCH ₃	CH ₃	SCHF ₂	Cl	OCH ₃	CH ₃	Cl	Cl
OCH ₃	CH ₃	SCHF ₂	SCH ₂ CH ₃	OCH ₃	CH ₃	Cl	SCH ₂ CH ₃
OCH ₃	F	CF ₃	CF ₃	OCH ₃	F	OCF ₃	CF ₃
OCH ₃	F	CF ₃	OCF ₃	OCH ₃	F	OCF ₃	OCF ₃
OCH ₃	F	CF ₃	SCF ₃	OCH ₃	F	OCF ₃	SCF ₃
OCH ₃	F	CF ₃	OCHF ₂	OCH ₃	F	OCF ₃	OCHF ₂
OCH ₃	F	CF ₃	SCHF ₂	OCH ₃	F	OCF ₃	SCHF ₂
OCH ₃	F	CF ₃	C ₂ F ₅	OCH ₃	F	OCF ₃	C_2F_5
OCH ₃	F	CF ₃	Cl	OCH ₃	F	OCF ₃	Cl
OCH ₃	F	CF ₃	SCH ₂ CH ₃	OCH ₃	F	OCF ₃	scH₂cH₃
OCH ₃	F	OCHF ₂	CF ₃	OCH ₃	F	SCF ₃	CF ₃
OCH ₃	F	OCHF ₂	OCF ₃	OCH ₃	F	SCF ₃	OCF ₃
OCH ₃	F	OCHF ₂	SCF ₃	OCH ₃	F	SCF ₃	SCF ₃
OCH ₃	F	OCHF ₂	OCHF ₂	OCH ₃	F	SCF ₃	OCHF ₂
OCH ₃	F	OCHF ₂	SCHF ₂	OCH ₃	F	SCF ₃	SCHF ₂
OCH ₃	F	OCHF ₂	C ₂ F ₅	OCH ₃	F	SCF ₃	C_2F_5
OCH ₃	F	OCHF ₂	Cl	OCH ₃	F	SCF ₃	Cl
OCH ₃	F	OCHF ₂	sch ₂ ch ₃	OCH ₃	F	SCF ₃	sch ₂ ch ₃
OCH ₃	F	SCHF ₂	CF ₃	OCH ₃	F	Cl	CF ₃
OCH ₃	F	SCHF ₂	OCF ₃	OCH ₃	F	CI	OCF ₃

OCH ₃	F	schf ₂	SCF ₃	OCH ₃	F	Cl	SCF ₃
OCH ₃	F	schf ₂	OCHF ₂	OCH ₃	F	Cl	OCHF ₂
OCH ₃	F	SCHF ₂	SCHF ₂	OCH ₃	F	Cl	SCHF ₂
OCH ₃	F	SCHF ₂	C ₂ F ₅	осн ₃	F	Cl ·	C_2F_5
OCH ₃	F	SCHF ₂	CI	OCH ₃	F	Cl	Cl
OCH ₃	F	SCHF ₂	SCH ₂ CH ₃	осн3	F	CI	SCH ₂ CH ₃
OCH ₃	Cl	CF ₃	CF ₃	OCH ₃	Cl	OCF ₃	CF ₃
OCH ₃	Cl	CF ₃	OCF ₃	OCH ₃	CI	OCF ₃	OCF ₃
OCH ₃	Cl	CF ₃	SCF ₃	осн3	Cl	OCF ₃	SCF ₃
OCH ₃	Cl	CF ₃	OCHF ₂	осн3	Cl	OCF ₃	OCHF ₂
OCH ₃	Cl	CF ₃	SCHF ₂	OCH ₃	Cl	OCF ₃	SCHF ₂
OCH ₃	Cl	CF ₃	C_2F_5	OCH ₃	CI	OCF ₃	C_2F_5
OCH ₃	Cl	CF ₃	Cl	OCH ₃	Cl	OCF ₃	Cl
OCH ₃	Cl	CF ₃	SCH ₂ CH ₃	OCH ₃	Cl	OCF ₃	SCH ₂ CH ₃
OCH ₃	Cl	OCHF ₂	CF ₃	осн3	Cl	SCF ₃	CF ₃
OCH ₃	Cl	OCHF ₂	OCF ₃	осн3	Cl	SCF ₃	OCF ₃
OCH ₃	CI	OCHF ₂	SCF ₃	осн3	Cl	SCF ₃	SCF ₃
OCH ₃	Cl	OCHF ₂	OCHF ₂	осн3	Cl	SCF ₃	OCHF ₂
OCH ₃	CI	OCHF ₂	SCHF ₂	осн3	CI	SCF ₃	SCHF ₂
OCH ₃	Cl	OCHF ₂	C_2F_5	осн3	Cl	SCF ₃	C_2F_5
осн3	CI	OCHF ₂	Cl	осн3	Cl	SCF ₃	Cl
OCH ₃	CI	OCHF ₂	SCH ₂ CH ₃	. OCH ₃	Cl	SCF ₃	SCH ₂ CH ₃
OCH ₃	Cl	SCHF ₂	CF ₃	осн3	Cl	Cl	CF ₃
OCH ₃	Cl	SCHF ₂	OCF ₃	OCH ₃	Cl	Cl	OCF ₃
OCH ₃	CI	SCHF ₂	SCF ₃	осн ₃	Cl	Cl	SCF ₃
OCH ₃	Cl	SCHF ₂	OCHF ₂	осн3	Cl	Cl	OCHF ₂
OCH ₃	Cl	SCHF ₂	SCHF ₂	OCH ₃	Cl	CI	SCHF ₂
OCH ₃	Cl	SCHF ₂	C_2F_5	OCH ₃	Cl	Cl	C_2F_5
OCH ₃	CI	SCHF ₂	Cl	OCH ₃	Cl	CI	Cl
OCH ₃	Cl	SCHF ₂	SCH ₂ CH ₃	осн ₃	Cl	Cl	SCH ₂ CH ₃
СH ₂ CH ₃	H	CF ₃	CF ₃	CH ₂ CH ₃	H	OCF ₃	CF ₃
CH ₂ CH ₃	H	CF ₃	OCF ₃	CH ₂ CH ₃	H	OCF ₃	OCF ₃
сн ₂ сн ₃	Н	CF ₃	SCF ₃	CH ₂ CH ₃	H	OCF ₃	SCF ₃
CH ₂ CH ₃	H	CF ₃	OCHF ₂	CH ₂ CH ₃	H	OCF ₃	OCHF ₂
СH ₂ CH ₃	H	CF ₃	SCHF ₂	CH ₂ CH ₃	H	OCF ₃	SCHF ₂
CH ₂ CH ₃	H	CF ₃	C ₂ F ₅	CH ₂ CH ₃	H	OCF ₃	C_2F_5
CH ₂ CH ₃	H	CF ₃	Cl	CH ₂ CH ₃	H	OCF ₃	CI
CH ₂ CH ₃	H	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	H	OCF ₃	sch ₂ ch ₃

				•			
сн ₂ сн ₃	н	OCHF ₂	CF ₃	СН ₂ СН ₃	H	SCF ₃	CF ₃
CH ₂ CH ₃	H	OCHF ₂	OCF ₃	СH ₂ СH ₃	н	SCF ₃	OCF ₃
CH ₂ CH ₃	Н	OCHF ₂	SCF ₃	CH ₂ CH ₃	н	SCF ₃	SCF ₃
CH ₂ CH ₃	н	OCHF ₂	OCHF ₂	СН2СН3	Н	SCF ₃	OCHF ₂
CH ₂ CH ₃	H	OCHF ₂	SCHF ₂	CH ₂ CH ₃	н	SCF ₃	SCHF ₂
сн ₂ сн ₃	н	OCHF ₂	C ₂ F ₅	СН ₂ СН ₃	н	SCF ₃	C_2F_5
CH ₂ CH ₃	H	OCHF ₂	Cl	СН2СН3	H	SCF ₃	Cl
CH ₂ CH ₃	H	OCHF ₂	SCH ₂ CH ₃	СН2СН3	н	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	H	SCHF ₂	CF ₃	CH ₂ CH ₃	H	Cl	CF ₃
CH ₂ CH ₃	H	SCHF ₂	OCF ₃	СН ₂ СН ₃	H	Cl	OCF ₃
CH ₂ CH ₃	Н	SCHF ₂	SCF ₃	CH ₂ CH ₃	H	Cì	SCF ₃
СH ₂ CH ₃	H	SCHF ₂	OCHF ₂	CH ₂ CH ₃	н	Cl	OCHF ₂
СH ₂ CH ₃	H	SCHF ₂	SCHF ₂	CH ₂ CH ₃	H	Cl	SCHF ₂
СH ₂ CH ₃	H	SCHF ₂	C_2F_5	CH ₂ CH ₃	H	Cl	C ₂ F ₅
CH ₂ CH ₃	Н	SCHF ₂	CI	СН ₂ СН ₃	H	CI	Cl
CH ₂ CH ₃	H	SCHF ₂	SCH ₂ CH ₃	СН ₂ СН ₃	Н	Cl	SCH ₂ CH ₃
CH_2CH_3	CH ₃	CF ₃	CF ₃	CH ₂ CH ₃	CH ₃	OCF ₃	CF ₃
CH_2CH_3	CH ₃	CF ₃	OCF ₃	CH ₂ CH ₃	CH ₃	OCF ₃	OCF ₃
CH ₂ CH ₃	CH ₃	CF ₃	SCF ₃	CH ₂ CH ₃	CH ₃	OCF ₃	SCF ₃
CH ₂ CH ₃	CH ₃	CF ₃	OCHF ₂	CH ₂ CH ₃	CH ₃	OCF ₃	OCHF ₂
CH ₂ CH ₃	CH ₃	CF ₃	SCHF ₂	СН ₂ СН ₃	CH ₃	OCF ₃	SCHF ₂
CH ₂ CH ₃	CH ₃	CF ₃	C_2F_5	CH ₂ CH ₃	CH ₃	OCF ₃	C_2F_5
CH ₂ CH ₃	CH ₃	CF ₃	Cl	CH ₂ CH ₃	CH ₃	OCF ₃	Cl
CH ₂ CH ₃	CH ₃	CF ₃	SCH ₂ CH ₃	СН2СН3	CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	CF ₃	CH ₂ CH ₃	CH ₃	SCF ₃	CF ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	OCF ₃	CH ₂ CH ₃	CH ₃	SCF ₃	OCF ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	SCF ₃	CH ₂ CH ₃	CH ₃	SCF ₃	SCF ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	OCHF ₂	CH ₂ CH ₃	CH ₃	SCF ₃	OCHF ₂
CH ₂ CH ₃	CH ₃	OCHF ₂	SCHF ₂	CH ₂ CH ₃	CH ₃	SCF ₃	SCHF ₂
CH ₂ CH ₃	CH ₃	OCHF ₂	C_2F_5	CH ₂ CH ₃	CH ₃	SCF ₃	C_2F_5
CH ₂ CH ₃	CH ₃	OCHF ₂	CI	CH ₂ CH ₃	CH ₃	SCF ₃	CI
CH ₂ CH ₃	CH ₃	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	CH ₃	SCF ₃	sch ₂ ch ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	CF ₃	CH ₂ CH ₃	CH ₃	Cl	CF ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	OCF ₃	CH ₂ CH ₃	CH ₃	Cl	OCF ₃
СH ₂ CH ₃	CH ₃	SCHF ₂	SCF ₃	CH ₂ CH ₃	CH ₃	Cl	SCF ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	OCHF ₂	CH ₂ CH ₃	CH ₃	·CI	OCHF ₂
CH ₂ CH ₃	CH ₃	SCHF ₂	SCHF ₂	CH ₂ CH ₃	CH ₃	Cl	SCHF ₂
CH ₂ CH ₃	CH ₃	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	CH ₃	CI	C_2F_5

CH ₂ CH ₃	CH ₃	SCHF ₂	Cl	СН2СН3	CH ₃	Cl	Cl
CH ₂ CH ₃	CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	CH ₃	Cl	SCH ₂ CH ₃
СH ₂ CH ₃	F	CF ₃	CF ₃	СН ₂ СН ₃	F	OCF ₃	CF ₃
CH ₂ CH ₃	F	CF ₃	OCF ₃	СН ₂ СН ₃	F	OCF ₃	OCF ₃
CH ₂ CH ₃	F	CF ₃	SCF ₃	CH ₂ CH ₃	F	OCF ₃	SCF ₃
CH ₂ CH ₃	F	CF ₃	OCHF ₂	CH ₂ CH ₃	F	OCF ₃	OCHF ₂
CH ₂ CH ₃	F	CF ₃	SCHF ₂	CH ₂ CH ₃	F	OCF ₃	SCHF ₂
CH ₂ CH ₃	F	CF ₃	C_2F_5	СН ₂ СН ₃	F	OCF ₃	C_2F_5
CH ₂ CH ₃	F	CF ₃	Cl	CH ₂ CH ₃	F	OCF ₃	Cl
CH ₂ CH ₃	F	CF ₃	SCH ₂ CH ₃	СН ₂ СН ₃	F	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	F	OCHF ₂	CF ₃	CH ₂ CH ₃	F	SCF ₃	CF ₃
CH ₂ CH ₃	F	OCHF ₂	OCF ₃	CH ₂ CH ₃	F	SCF ₃	OCF ₃
CH ₂ CH ₃	F	OCHF ₂	SCF ₃	CH ₂ CH ₃	F	SCF ₃	SCF ₃
CH ₂ CH ₃	F	OCHF ₂	OCHF ₂	CH ₂ CH ₃	F	SCF ₃	OCHF ₂
CH ₂ CH ₃	F	OCHF ₂	SCHF ₂	CH ₂ CH ₃	F	SCF ₃	SCHF ₂
CH ₂ CH ₃	F	OCHF ₂	C_2F_5	CH ₂ CH ₃	F	SCF ₃	C_2F_5
CH ₂ CH ₃	F	OCHF ₂	Cl	CH ₂ CH ₃	F	SCF ₃	Cl
CH ₂ CH ₃	F	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	F	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	F	SCHF ₂	CF ₃	СH ₂ CH ₃	F	Cl	CF ₃
CH ₂ CH ₃	F	SCHF ₂	OCF ₃	CH ₂ CH ₃	F	CI	OCF ₃
CH ₂ CH ₃	F	SCHF ₂	SCF ₃	CH ₂ CH ₃	· F	Cl	SCF ₃
сн2сн3	. F	SCHF ₂	OCHF ₂	CH ₂ CH ₃	F	Cl	OCHF ₂
CH ₂ CH ₃	F	SCHF ₂	SCHF ₂	CH ₂ CH ₃	F ·	Cl	SCHF ₂
CH ₂ CH ₃	F	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	F	Cl	C ₂ F ₅
CH ₂ CH ₃	F	SCHF ₂	Cl	CH ₂ CH ₃	F	C1	Cl
СH ₂ CH ₃	F	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	F	Cl	SCH ₂ CH ₃
CH ₂ CH ₃	Cl	CF ₃	CF ₃	CH ₂ CH ₃	CI	OCF ₃	CF ₃
CH ₂ CH ₃	CI	CF ₃	OCF ₃	CH ₂ CH ₃	Cl	OCF ₃	OCF ₃
CH ₂ CH ₃	CI	CF ₃	SCF ₃	CH ₂ CH ₃	Cl	OCF ₃	SCF ₃
CH ₂ CH ₃	Cl	CF ₃	OCHF ₂	CH ₂ CH ₃	CI	OCF ₃	OCHF ₂
CH ₂ CH ₃	Cl	CF ₃	SCHF ₂	CH ₂ CH ₃	Cl	OCF ₃	SCHF ₂
CH ₂ CH ₃	Cl	CF ₃	C ₂ F ₅	CH ₂ CH ₃	CI	OCF ₃	C_2F_5
CH ₂ CH ₃	Cl	CF ₃	Cl	CH ₂ CH ₃	Cl	OCF ₃	Cl
CH ₂ CH ₃	Cl	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	Cl	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	Cl	OCHF ₂	CF ₃	CH ₂ CH ₃	Cl	SCF ₃	CF ₃
CH ₂ CH ₃	CI	OCHF ₂	OCF ₃	CH ₂ CH ₃	CI	SCF ₃	OCF ₃
CH ₂ CH ₃	Cl	OCHF ₂	SCF ₃	CH ₂ CH ₃	CI	SCF ₃	SCF ₃
CH ₂ CH ₃	Cl	OCHF ₂	OCHF ₂	CH ₂ CH ₃	CI	SCF ₃	OCHF ₂

•							
CH ₂ CH ₃	CI	OCHF ₂	SCHF ₂	СН ₂ СН ₃	Cl	SCF ₃	schf ₂
CH ₂ CH ₃	Cl	OCHF ₂	C_2F_5	СН ₂ СН ₃	Cl	SCF ₃	C_2F_5
CH ₂ CH ₃	Cl	OCHF ₂	Cl	СН ₂ СН ₃	Cl	SCF ₃	Cl
CH ₂ CH ₃	Cl	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	CI	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	Cl	SCHF ₂	CF ₃	CH ₂ CH ₃	CI	CI	CF ₃
CH ₂ CH ₃	Cl	SCHF ₂	OCF ₃	CH ₂ CH ₃	Cl	Cl	OCF ₃
CH ₂ CH ₃	CI	SCHF ₂	SCF ₃	CH ₂ CH ₃	CI	Cl	SCF ₃
CH ₂ CH ₃	Cl	SCHF ₂	OCHF ₂	СH ₂ CH ₃	Cl	Cl	OCHF ₂
CH ₂ CH ₃	Cl	SCHF ₂	SCHF ₂	CH ₂ CH ₃	Cl	Cl	SCHF ₂
CH ₂ CH ₃	CI	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	Cl	Cl	C_2F_5
CH ₂ CH ₃	CI	SCHF ₂	CI	CH ₂ CH ₃	Cl	Cl	Cl
CH ₂ CH ₃	Cl	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	Cl	Cl	SCH ₂ CH ₃
R ³ is F							
$\frac{R^1}{R^1}$	<u>R</u> 4	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	$\underline{\mathbf{R^4}}$	<u>R5</u>	<u>R</u> 9
H	F	CF ₃	CF ₃	н	F	OCF ₃	CF ₃
н	F	CF ₃	OCF ₃	н	F	OCF ₃	OCF ₃
н	F	CF ₃	SCF ₃	н	F	OCF ₃	SCF ₃
H	F	CF ₃	OCHF ₂	н	F	OCF ₃	OCHF ₂
H	F	CF ₃	SCHF ₂	н	F	OCF ₃	SCHF ₂
H	F	CF ₃	C_2F_5	Н	F	OCF ₃	C_2F_5
Н	F	CF ₃	Cl	Н	F	OCF ₃	Cl
H	F	CF ₃	SCH ₂ CH ₃	Н	F	OCF ₃	SCH ₂ CH ₃
H ·	F	OCHF ₂	CF ₃	н	F	· SCF ₃	CF ₃
H	F	OCHF ₂	OCF ₃	н	F	SCF ₃	OCF ₃
H	F	OCHF ₂	SCF ₃	Н	F	SCF ₃	SCF ₃
H	F	OCHF ₂	OCHF ₂	н	F	SCF ₃	OCHF ₂
H	F	OCHF ₂	SCHF ₂	Н	F	SCF ₃	SCHF ₂
H	F	OCHF ₂	C_2F_5	H	F	SCF ₃	C_2F_5
H	F	OCHF ₂	Cl	Н	F	SCF ₃	Cl
H	F	OCHF ₂	SCH ₂ CH ₃	H	F	SCF ₃	SCH ₂ CH ₃
н	F	schf ₂	CF ₃	H	F	Cl	CF ₃
H	F	SCHF ₂	OCF ₃	Н	F	CI	OCF ₃
H	F	schf ₂	SCF ₃	Н	F	CI	SCF ₃
H	F	SCHF ₂	OCHF ₂	н	F	CI	OCHF ₂
H	F	SCHF ₂	SCHF ₂	Н	F	Cl	SCHF ₂
H	F	SCHF ₂	C ₂ F ₅	Н	F	CI	C ₂ F ₅
H	F	schf ₂	Cl	н	F	CI	CI

H	F	SCHF ₂	SCH ₂ CH ₃	н	F	CI	SCH ₂ CH ₃
CH ₃	F	CF ₃	CF ₃	CH ₃	F	OCF ₃	CF ₃
CH ₃	F	CF ₃	OCF ₃	CH ₃	F	OCF ₃	OCF ₃
CH ₃	F	CF ₃	SCF ₃	CH ₃	F	OCF ₃	SCF ₃
CH ₃	F	CF ₃	OCHF ₂	CH ₃	F	OCF ₃	OCHF ₂
CH ₃	F	CF ₃	SCHF ₂	СН3	F	OCF ₃	SCHF ₂
CH ₃	F	CF ₃	C_2F_5	CH ₃	F	OCF ₃	C_2F_5
CH ₃	F	CF ₃	Cl	CH ₃	F	OCF ₃	Cl
CH ₃	F	CF ₃	SCH ₂ CH ₃	CH ₃	F	OCF ₃	SCH ₂ CH ₃
CH ₃	F	OCHF ₂	CF ₃	CH ₃	F	SCF ₃	CF ₃
CH ₃	F	OCHF ₂	OCF ₃	CH ₃	F	SCF ₃	OCF ₃
CH ₃	F	OCHF ₂	SCF ₃	CH ₃	F	SCF ₃	SCF ₃
CH ₃	F·	OCHF ₂	OCHF ₂	CH ₃	F	SCF ₃	OCHF ₂
CH ₃	F	OCHF ₂	SCHF ₂	CH ₃	F	SCF ₃	SCHF ₂
CH ₃	F	OCHF ₂	C ₂ F ₅	CH ₃	F	SCF ₃	C_2F_5
CH ₃	F	OCHF ₂	CI	CH ₃	F	SCF ₃	Cl
CH ₃	F	OCHF ₂	sch ₂ ch ₃	CH ₃	F	SCF ₃	SCH ₂ CH ₃
CH ₃	F	SCHF ₂	CF ₃	CH ₃	F	Cl	CF ₃
CH ₃	F	SCHF ₂	OCF ₃	CH ₃	F	Cl	OCF ₃
CH ₃	F	SCHF ₂	SCF ₃	CH ₃	F	Cl	SCF ₃
CH ₃	F	SCHF ₂	OCHF ₂	СН3 .	F	Cl	OCHF ₂
CH ₃	F	SCHF ₂	SCHF ₂	CH ₃	F	Cl	SCHF ₂
CH ₃	F	SCHF ₂	C ₂ F ₅	CH ₃	F	Cl	C_2F_5
CH ₃	F	SCHF ₂	Cl	CH ₃	F	Cl	Cl
CH ₃	F	SCHF ₂	SCH ₂ CH ₃	CH ₃	F	Cl	SCH ₂ CH ₃
OCH ₃	F	CF ₃	CF ₃	осн3	F	OCF ₃	CF ₃
OCH ₃	F	CF ₃	OCF ₃	OCH ₃	F	OCF ₃	OCF ₃
OCH ₃	F	CF ₃	SCF ₃	OCH ₃	F	OCF ₃	SCF ₃
OCH ₃	F	CF ₃	OCHF ₂	OCH ₃	F	OCF ₃	OCHF ₂
OCH ₃	F	CF ₃	SCHF ₂	OCH ₃	F	OCF ₃	SCHF ₂
OCH ₃	F	CF ₃	C_2F_5	OCH ₃	F	OCF ₃	C_2F_5
OCH ₃	F	CF ₃	Cl	OCH ₃	F	OCF ₃	· Cl
OCH ₃	F	CF ₃	SCH ₂ CH ₃	OCH ₃	F	OCF ₃	SCH ₂ CH ₃
OCH ₃	F	OCHF ₂	CF ₃	OCH ₃	F	SCF ₃	CF ₃
OCH ₃	F	OCHF ₂	OCF ₃	OCH ₃	F	SCF ₃	OCF ₃
OCH ₃	F	OCHF ₂	SCF ₃	осн3	F	SCF ₃	SCF ₃
OCH ₃	F	OCHF ₂	OCHF ₂	OCH ₃	F	SCF ₃	
OCH ₃	F	OCHF ₂	SCHF ₂	OCH ₃	F	SCF ₃	SCHF ₂

OCH ₃	F	OCHF ₂	C ₂ F ₅	осн3	F	SCF ₃	C_2F_5
OCH ₃	F	OCHF ₂	Cl	осн3	F	SCF ₃	Cl
OCH ₃	F	OCHF ₂	SCH ₂ CH ₃	осн3	F	SCF ₃	SCH ₂ CH ₃
OCH ₃	F	SCHF ₂	CF ₃	OCH ₃	F	Cl	CF ₃
OCH ₃	F	SCHF ₂	OCF ₃	OCH ₃	F	Cl	OCF ₃
OCH ₃	F	SCHF ₂	SCF ₃	осн3	F	Cl	SCF ₃
OCH ₃	F	SCHF ₂	OCHF ₂	осн3	F	CI	OCHF ₂
OCH ₃	F	SCHF ₂	SCHF ₂	осн3	F	Cl	SCHF ₂
осн ₃	F	SCHF ₂	C_2F_5	осн3	F	C1	C_2F_5
OCH ₃	F	SCHF ₂	Cl	OCH ₃	F	CI	Cl
OCH ₃	F	SCHF ₂	SCH ₂ CH ₃	осн3	F	Cl	SCH ₂ CH ₃
CH ₂ CH ₃	F	CF ₃	CF ₃	СН ₂ СН ₃	F	OCF ₃	CF ₃
CH ₂ CH ₃	F	CF ₃	OCF ₃	CH ₂ CH ₃	F	OCF ₃	OCF ₃
CH ₂ CH ₃	F	CF ₃	SCF ₃	СН ₂ СН ₃	F	OCF ₃	SCF ₃
CH ₂ CH ₃	F	CF ₃	OCHF ₂	CH ₂ CH ₃	F	OCF ₃	OCHF ₂
CH ₂ CH ₃	F	CF ₃	SCHF ₂	CH ₂ CH ₃	F	OCF ₃	SCHF ₂
CH ₂ CH ₃	F	CF ₃	C_2F_5	СН ₂ СН ₃	F	OCF ₃	C_2F_5
CH ₂ CH ₃	F	CF ₃	CI	CH ₂ CH ₃	F	OCF ₃	Cl
CH ₂ CH ₃	F	CF ₃	SCH ₂ CH ₃	СН ₂ СН ₃	F	OCF3	SCH ₂ CH ₃
CH ₂ CH ₃	F	OCHF ₂	CF ₃	СН ₂ СН ₃	F	SCF ₃	CF ₃
CH ₂ CH ₃	F	OCHF ₂	OCF ₃	CH ₂ CH ₃	F	SCF ₃	OCF ₃
CH ₂ CH ₃	F	$OCHF_2$	SCF ₃	CH ₂ CH ₃	F	SCF ₃	SCF ₃
CH ₂ CH ₃	F	OCHF ₂	OCHF ₂	CH ₂ CH ₃	F	SCF ₃	OCHF ₂
CH ₂ CH ₃	F	OCHF ₂	SCHF ₂	СН2СН3	F	SCF ₃	SCHF ₂
CH ₂ CH ₃	F	OCHF ₂	C ₂ F ₅	сн ₂ сн ₃	F	SCF ₃	C_2F_5
CH ₂ CH ₃	F	OCHF ₂	Cl	CH ₂ CH ₃	F	SCF ₃	Cl
CH ₂ CH ₃	F	OCHF ₂	SCH ₂ CH ₃	СН ₂ СН ₃	F	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	F	SCHF ₂	CF ₃	CH ₂ CH ₃	F	Cl	CF ₃
CH ₂ CH ₃	F	SCHF ₂	OCF ₃	CH ₂ CH ₃	F	Cl	OCF ₃
CH ₂ CH ₃	F	SCHF ₂	SCF ₃	CH ₂ CH ₃	F	CI	SCF ₃
CH ₂ CH ₃	F	SCHF ₂	OCHF ₂	CH ₂ CH ₃	F	Cl	OCHF ₂
CH ₂ CH ₃	F	SCHF ₂	SCHF ₂	CH ₂ CH ₃	F	Cl	SCHF ₂
CH ₂ CH ₃	F	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	F	Cl	C_2F_5
CH ₂ CH ₃	F	SCHF ₂	CI	CH ₂ CH ₃	F	Cl	CI
CH ₂ CH ₃	F	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	F	Cl	SCH ₂ CH ₃

75 Y								
	R U N I							
			Α.	$Z \sim R^9$				
X is N; Y	and Z are	<u>CH</u>						
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
X and Y a	are CH; Z i	s N						
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
X and Y a	are N; Z is	СН						
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	$\underline{\mathbb{R}^1}$	<u>R5</u>	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
X is CH;	Y and Z ar	e N						
<u>R¹</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
Y is CH;	Y is CH; X and Z are N							
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
СН ₂ СН ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
СH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			

. .

5

10

10

X, Y and	Z are N				
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

Table 3

				`Z' \R ⁹	
X, Y and	Z are CH				
$\underline{\mathbf{R}^1}$	<u>R⁵</u>	<u>R</u> 9	Ri	<u>R⁵</u>	<u>R</u> 9
СH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Z	are CH; Y	is N			
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X and Y	are CH; Z i	s N			
$\underline{\mathbf{R^1}}$	<u>R5</u>	<u>R</u> 9	<u>R</u> 1	<u>R⁵</u>	<u>R⁹</u>
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	are N; Z is	СН			
<u>R1</u>	R ⁵		<u>R</u> 1	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
сн ₂ сн ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH2CH2	OCF2	OCF ₂	CH2	OCF ₂	OCF ₂

10

X is CH; Y and Z are N								
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R⁹</u>			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
Y is CH;	X and Z ar	e N						
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
X, Y and	Z are N							
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
Table 4								
$N \longrightarrow R^1 \longrightarrow N$								
\mathbb{R}^5								
			^_	$Z \sim R^9$				
X, Y and	Z are CH							
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃			
X and Z a	re CH; Y is	<u>N</u>						
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃								
	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			

10

X and Y are CH; Z is N								
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
X and Y	are N; Z is	СН						
R ¹	R ⁵	R ⁹	R1	R ⁵	R ⁹			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃			
СН2СН3	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃			
X is CH;	Y and Z ar	e N						
R ¹	R ⁵	R ⁹	\mathbb{R}^{1}	R ⁵	R ⁹			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
Y is CH;	X and Z ar	e N						
<u>R1</u>	<u>R⁵</u>		<u>R</u> 1	<u>R</u> 5	R ⁹			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃			
X, Y and	X, Y and Z are N							
<u>R1</u>	R ⁵	R ⁹	<u>R</u> 1	R ⁵	R ⁹			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
сн ₂ сн ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃			

WO 99/28301 PCT/US98/22088

5

CH₂CH₃

CH2CH3

OCF₃

OCF₃

CF₃

OCF₃

CH₃

CH₃

OCF₃

OCF₃

CF₃

OCF₃

Y is CH;	X and Z ar	re N			
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
СH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X, Y and	Z are N				
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

X, Y and Z are CH \mathbb{R}^1 CH₂CH₃ CF₃ X and Z are CH; Y is N R⁹ CF₃ <u>R</u>1 \mathbb{R}^1 CH₂CH₃ CF₃ CH₃ X and Y are CH; Z is N \mathbb{R}^1 \mathbb{R}^9 R^1 <u>R</u>9 CH₂CH₃ CH₂CH₃ CF₃ CH₃ 10 X and Y are N; Z is CH \mathbb{R}^1 R9 R^1 <u>R</u>9 СН2СН3 CH₂CH₃ CF₃ CH₃ X is CH; Y and Z are N \mathbb{R}^{1} <u>R1</u> <u>R</u>9 CH₂CH₃ CH₃ CF₃

***************************************	••							
				37				
$\frac{Y \text{ is CH; } X}{R^1}$	and Z are	<u>R1</u>	ъ9	<u>R</u> 1	D 9	j	ום	ъ9
CH ₂ CH ₃	CF ₃	CH ₃	R ⁹ CF ₃	CH ₂ CH ₃	$\frac{\mathbb{R}^9}{\text{OCF}_3}$		R1 CH3	$\frac{\mathbb{R}^9}{\text{OCF}_3}$
$\frac{X, Y \text{ and } Z}{R^1}$	are N	Rl	R9	l R1	12 9		рl	<u>R⁹</u>
CH ₂ CH ₃	R ⁹ CF ₃	R1 CH3	<u>R⁹</u> CF ₃	CH ₂ CH ₂	$\frac{\mathbb{R}^9}{\text{OCF}_3}$		R1 CH3	OCF ₃
		l		Table 7		ı		
		R ⁷	Yl Rl	, N				
		z¹″ N		N	Y			
		CI	Н3	X,	Z R9			
	-	X, Y and Z						
		R^1	<u>R</u> 7	<u>R</u> 9	$\frac{\mathbf{Y}^{1}}{\mathbf{Y}^{1}}$	$\underline{Z^1}$		
	CH	I ₂ CH ₃	CF ₃	CF ₃	CH	N		
	CH	H ₂ CH ₃	CF ₃	CF ₃	N	CH		
•	CH	I ₂ CH ₃	CF ₃	CF ₃	N	N		
	CH	I ₂ CH ₃	CF ₃	OCF ₃	CH	N		
	CH	I ₂ CH ₃	CF ₃	OCF ₃	N	CH		
	CH	I ₂ CH ₃	CF ₃	OCF ₃	. N	N		

CF₃

CF₃

CF₃

OCF₃

OCF₃

OCF₃

CF₃

CF₃

CF₃

OCF₃

OCF₃

OCF₃

CF₃

CF₃

CF₃

OCF₃

OCF₃

OCF₃

N

CH

N

N

CH

N

N

CH

N

N

CH

N N

CH

N

N

CH

N

CH

N

N

OCF₃

OCF₃

OCF₃

OCF₃

OCF₃

OCF₃

CF₃

CF₃

CF₃

CF₃

CF₃

CF₃

OCF₃

OCF₃

OCF₃

OCF₃

OCF₃

OCF₃

CH₂CH₃

CH₂CH₃

CH₂CH₃

CH₂CH₃

 CH_2CH_3 CH_2CH_3

CH₃

X is N;	Y and Z ar	e CH		
\mathbb{R}^1	<u>R</u> 7	<u>R</u> 9	<u>Y1</u>	Z^1
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	СН
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	СН	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	СН
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	СН
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	СН
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	СН
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	СН
CH ₃	OCF ₃	OCF ₃	N	N
X and Y	are CH; Z	is N		
$\underline{\mathbf{R^1}}$	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{Y}^1}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	СН	N.
CH ₂ CH ₃	OCF ₃	OCF ₃	N·	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N

CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
СН3	OCF ₃	OCF ₃	СН	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N

Table 8

$$Z^{l} = Y^{l} \qquad N \qquad N \qquad Y \qquad X \qquad Z \qquad R^{9}$$

X, Y and Z	are CH				
<u>R1</u>	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{X}^1}$	$\underline{\mathbf{Y}^{\mathbf{l}}}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	N
CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₂	CF ₂	CF ₂	CH	N	CH

CH ₃	CF ₃	CF ₃	N	СН	СН
CH ₃	CF ₃	CF ₃	CH	N	N
CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₃	CF ₃	OCF ₃	CH	N .	CH
CH ₃	CF ₃	OCF ₃	N	СН	CH
CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₃	OCF ₃	OCF ₃	СН	CH	N
CH ₃	OCF ₃	OCF ₃	СН	N	CH
CH ₃	OCF ₃	OCF ₃	N	СН	СН
CH ₃	OCF ₃	OCF ₃	CH	N	N
X is N; Y	and Z are C	CH CH			
<u>R¹</u>	<u>R</u> 7	<u>R</u> 9	X^1	$\underline{\mathbf{Y}^{1}}$	Z^1
СH ₂ CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	CH	СН
СH ₂ CH ₃	CF ₃	CF ₃	СН	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	СН	СН	N
CH ₂ CH ₃	CF ₃	OCF ₃	СН	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	СН	CH
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	N
CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₃	CF ₃	CF ₃	СН	N	N
CH ₃	CF ₃	OCF ₃	СН	СН	N

CH ₃	CF ₃	OCF ₃	CH	N	СН
CH ₃	CF ₃	OCF ₃	N	СН	СН
CH ₃	CF ₃	OCF ₃	CH	N.	N
CH ₃	OCF ₃	CF ₃	СН	CH	N
CH ₃	OCF ₃	CF ₃	CH	N	СН
CH ₃	OCF ₃	CF ₃	N	СН	CH
CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₃	OCF ₃	OCF ₃	CH	СН	N
CH ₃	OCF ₃	OCF ₃	CH	N	СН
CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₃	OCF ₃	OCF ₃	СН	N	N
			CII	••	.,
	re CH; Z is		_		
$\underline{\mathbf{R}^{1}}$	$\frac{\mathbb{R}^7}{}$	<u>R</u> 9	$\underline{\mathbf{X}^1}$	$\frac{\mathbf{Y}^{1}}{\mathbf{Y}^{1}}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	N
СН3	CF ₃	CF ₃	CH	СН	N
СН3	CF ₃	CF ₃	CH	N	CH
CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₃	CF ₃	CF ₃	CH	N	N
CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₃	OCF ₃	CF ₃	CH	CH	N

CH ₃	OCF ₃	CF ₃	СН	N	СН
СН3	OCF ₃	CF ₃	N	CH	СН
CH ₃	OCF ₃	CF ₃	СН	N	N
CH ₃	OCF ₃	OCF ₃	СН	СН	N
CH ₃	OCF ₃	OCF ₃	СН	N	СН
CH ₃	OCF ₃	OCF ₃	N	СН	СН
CH ₃	OCF ₃	OCF ₃	CH	N	N

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{3}$$

				^{2}Z	
X, Y and	d Z are CH				
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
сн ₂ сн ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X is N;	and Z are	СН			
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	R ⁹
СH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Z	are CH; Y i	s N			
CH ₂ CH ₃	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R⁹</u>
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
H	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y	are CH; Z is	s N			
$\underline{\mathbf{R^1}}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

X and Y are N; Z is CH								
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃			
CH_2CH_3	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
X is CH;	Y and Z ar	re N						
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH_2CH_3	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
Y is CH;	X and Z ar	e N						
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	R^5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			
X, Y and	Z are N							
$\underline{\mathbf{R^1}}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9			
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃			
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃			
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃			
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃			

$$\begin{array}{c|c}
 & \underline{\text{Table 10}} \\
 & R^{1} \\
 & N \\
 & N \\
 & N \\
 & X \approx_{Z}
\end{array}$$

	X is N; Y	and Z are	CH			
	R1	R ⁵	R ⁹	<u>R1</u>	R ⁵	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
	СH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	X and Z a	re CH; Y i	s N			
	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
5	X and Y a	are CH; Z i	s N			
	R1	R ⁵	R9	<u>R1</u>	<u>R⁵</u>	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
	X and Y a	are N; Z is	СН			
	$\underline{\mathbb{R}^1}$	<u>R5</u>	<u>R</u> 9	R^1	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
	X is CH;	Y and Z ar	e N			
	<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
10	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
10	V is CH.	X and Z ar	e N			
	RI	R ⁵	R ⁹	RI	<u>R</u> 5	R ⁹
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
		CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃		_	CH ₃		_
	CH ₂ CH ₃	OCF ₃	CF ₃	J. 13	OCF ₃	CF ₃

		4:	5		
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X, Y and	Z are N				
R^1	R ⁵	R ⁹	R1	<u>R⁵</u>	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
	•	Tab	le 11		
	\sim	R^{I}	^		
	N,		N		
	R5		` _N _'\	- Y.	
	•		'N' 'N'	R^9	
			Α.	Z	
	Z are CH	70	l1	75	70.0
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is N; Y	and Z are		Ji.		
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	are CH; Y i		lui -	_ *	~ 0
$\underline{\mathbf{R^1}}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	\mathbb{R}^9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y	are CH; Z i	s N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9

CF₃

CF₃

CF₃

OCF₃

CH₃

CH₃

CF₃

OCF₃

5

10

CH₂CH₃

CH₂CH₃

CF₃

CF₃

10

CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y	are N; Z i	s CH			
<u>R</u> 1	<u>R</u> 5	R ⁹	R ¹	R ⁵	R ⁹
СH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X is CH;	Y and Z a	re N			_
<u>R</u> 1	<u>R</u> 5	R ⁹	R ¹	R ⁵	R ⁹
СH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z ar	e N			
<u>R1</u> -	<u>R</u> 5		R1	R ⁵	R ⁹
СH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X, Y and	Z are N				
<u>R</u> 1	R ⁵	R ⁹	\mathbb{R}^1	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
		-	-	,	3

Table 12

X, Y and Z are CH $\underline{R^1}$ <u>R</u>5 $\underline{R^1}$ <u>R</u>9 CF₃ CH₂CH₃ CF₃ СН3 CF₃ CH₂CH₃ CF₃ OCF₃ CH₃ CF₃ OCF₃

			'		
сн ₂ сн ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is N; Y	and Z are	CH			
<u>R¹</u>	<u>R⁵</u>	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Z a	re CH; Y i	s N			
\mathbb{R}^1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R5</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	are CH; Z i	s N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	R^5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
сн ₂ сн ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	are N; Z is	СН			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	R9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
СН ₂ СН ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z ar	e N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	$\underline{\mathbf{R^9}}$
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃

PCT/US98/22088

5

$$F = \begin{cases} R^1 & N \\ N & N \\ X \approx Z \end{cases} R^9$$

WO 99/28301 PCT/US98/22088

49

Table 14

$$Z^{1}$$
 Y^{1}
 R^{1}
 N
 N
 N
 $X \approx Z$
 R^{9}

X is N; Y and Z are CH

	1 W.G. 25 W	<u> </u>		
<u>R1</u>	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{Y}^{1}}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	СН
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	СН
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	СН
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	СН	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	СН
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	СН	N
CH ₃	CF ₃	OCF ₃	N	СН
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	СН	N
CH ₃	OCF ₃	CF ₃	N	СН
CH ₃	OCF ₃	CF ₃	N	N

CH ₃	OCF ₃	OCF ₃	CH	N						
CH ₃	OCF ₃	OCF ₃	N	CH						
CH ₃	OCF ₃	OCF ₃	N	N						
				•						
X and Z are CH; Y is N										
$\underline{\mathbf{R^1}}$	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{Y}^{1}}$	Z^1						
CH ₂ CH ₃	CF ₃	CF ₃	CH	N						
CH ₂ CH ₃	CF ₃	CF ₃	N	CH						
CH ₂ CH ₃	CF ₃	CF ₃	N	N						
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N						
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH						
CH ₂ CH ₃	CF ₃	OCF ₃	N	N						
CH_2CH_3	OCF ₃	CF ₃	CH	N						
CH ₂ CH ₃	OCF ₃	CF ₃	N	СН						
CH ₂ CH ₃	OCF ₃	CF ₃	N	N						
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N						
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH						
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N						
CH ₃	CF ₃	CF ₃	CH	N						
CH ₃	CF ₃	CF ₃	N	CH						
CH ₃	CF ₃	CF ₃	N	N						
CH ₃	CF ₃	OCF ₃	CH	N						
CH ₃	CF ₃	OCF ₃	N	CH						
CH ₃	CF ₃	OCF ₃	N	N						
CH ₃	OCF ₃	CF ₃	CH	N						
CH ₃	OCF ₃	CF ₃	N	CH						
CH ₃	OCF ₃	CF ₃	N	N						
CH ₃	OCF ₃	OCF ₃	CH	N						
CH ₃	OCF ₃	OCF ₃	N	CH						
CH ₃	OCF ₃	OCF ₃	N	N						
X and Y	are CH; Z	is N								
R^1	R ⁷	 R ⁹	$\mathbf{Y}^{\mathbf{l}}$	$\underline{Z^1}$						
CH ₂ CH ₃	CF ₃	CF ₃	CH	N						
CH ₂ CH ₃	CF ₃	CF ₃	N	СН						
CH ₂ CH ₃	CF ₃	CF ₃	N	N						
CH ₂ CH ₃	CF ₃	OCF ₃	СН	N						
CH ₂ CH ₃	CF ₃	OCF ₃	N	СН						
CH ₂ CH ₃	CF ₃	OCF ₃	N	. On						
CH ₂ CH ₃	OCF ₃	CF ₃	СН	N						
21.70113	0013	C1.3	CH	14						

CH ₂ CH ₃	OCF ₃	CF ₃	N	СН
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	СН
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N
X is CH	; Y and Z a	ıre N		
R ¹	R ⁷	<u>R</u> 9	$\underline{\mathbf{Y}^{1}}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	СН
CH ₃	CF ₃	OCF ₃	N	N

CH ₃	OCF ₃	CF ₃	СН	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N

$$Z^{l} \xrightarrow{X^{l}} N \xrightarrow{R^{l}} N \xrightarrow{N} Y \xrightarrow{X \leq x} R^{g}$$

X is N; Y	and Z are C	<u>:H</u>			
<u>R1</u>	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{X}^{1}}$	$\underline{\mathbf{Y}^{1}}$	$\underline{\mathbf{Z}^1}$
CH ₂ CH ₃	CF ₃	CF ₃	СН	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	N
СH ₂ CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	N
CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₃	CF ₃	CF ₃	CH	N	N
CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₃	CF ₃	OCF ₃	N	CH	CH

CH ₃	CF ₃	OCF ₃	СН	N	N
CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₃	OCF ₃	OCF ₃	СН	N	N
X and Z ar	e CH; Y is	N			
<u>R</u> 1	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{X}^{1}}$	$\underline{\mathbf{Y}^1}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	СН	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	N
CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₃	CF ₃	CF ₃	CH	N	N
CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₃	OCF ₃	CF ₃	СН	CH	N
CH ₃	OCF ₃	CF ₃	CH	N	CH

CH ₃	OCF ₃	CF ₃	N	СН	CH
CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₃	OCF ₃	OCF ₃	CH	N .	CH
CH ₃	OCF ₃	OCF ₃	N	СН	CH
CH ₃	OCF ₃	OCF ₃	CH	N	N
X and Y ar	e CH; Z is	N			
$\underline{\mathbf{R}^1}$	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{X}^{1}}$	$\underline{\mathbf{Y}^{1}}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	СН
CH ₂ CH ₃	CF ₃	CF ₃	N	CH	СН
CH ₂ CH ₃	CF ₃	CF ₃	CH	N	N
СH ₂ CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	СН	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N	N
CH ₃	CF ₃	CF ₃	CH	CH	N
CH ₃	CF ₃	CF ₃	CH	N	CH
CH ₃	CF ₃	CF ₃	N	CH	CH
CH ₃	CF ₃	CF ₃	CH	N	N
CH ₃	CF ₃	OCF ₃	CH	CH	N
CH ₃	CF ₃	OCF ₃	CH	N	CH
CH ₃	CF ₃	OCF ₃	N	CH	CH
CH ₃	CF ₃	OCF ₃	СН	N	N
CH ₃	OCF ₃	CF ₃	CH.	CH	N
CH ₃	OCF ₃	CF ₃	СН	N	CH
CH ₃	OCF ₃	CF ₃	N	CH	CH
CH ₃	OCF ₃	CF ₃	СН	N	N
CH ₃	OCF ₃	OCF ₃	CH	CH	N

Table 16

$$R^5$$
 R^3
 R^4
 X
 X
 X
 R^9

R ³ is H; X, Y and Z are CH								
<u>R1</u>	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 9	<u>R</u> 1	<u>R</u> ⁴	<u>R</u> 5	<u>R</u> 9	
CH ₂ CH ₃	H	CF ₃	CF ₃	CH ₂ CH ₃	H	OCF ₃	CF ₃	
CH ₂ CH ₃	н	CF ₃	OCF ₃	CH ₂ CH ₃	H	OCF ₃	OCF ₃	
CH ₂ CH ₃	H	CF ₃	SCF ₃	CH ₂ CH ₃	H	OCF ₃	SCF ₃	
CH ₂ CH ₃	H	CF ₃	OCHF ₂	CH ₂ CH ₃	H	OCF ₃	OCHF ₂	
CH ₂ CH ₃	н	CF ₃	SCHF ₂	СН ₂ СН ₃	H	OCF ₃	SCHF ₂	
CH ₂ CH ₃	H	CF ₃	C ₂ F ₅	CH ₂ CH ₃	H	OCF ₃	C_2F_5	
CH ₂ CH ₃	H	CF ₃	Cl	CH ₂ CH ₃	H	OCF ₃	Cl	
CH ₂ CH ₃	н	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	H	OCF ₃	SCH ₂ CH ₃	
CH ₂ CH ₃	н	OCHF ₂	CF ₃	CH ₂ CH ₃	H	SCF ₃	CF ₃	
CH ₂ CH ₃	н	OCHF ₂	OCF ₃	CH ₂ CH ₃	. н	SCF ₃	OCF ₃	
CH ₂ CH ₃	H	OCHF ₂	SCF ₃	CH ₂ CH ₃	H	SCF ₃	SCF ₃	
CH ₂ CH ₃	H,	OCHF ₂	OCHF ₂	CH ₂ CH ₃	Н	SCF ₃	OCHF ₂	
CH ₂ CH ₃	Н	OCHF ₂	SCHF ₂	CH ₂ CH ₃	H	SCF ₃	SCHF ₂	
CH ₂ CH ₃	H	ochf ₂	C_2F_5	CH ₂ CH ₃	H	SCF ₃	C_2F_5	
CH ₂ CH ₃	H	OCHF ₂	Cl	CH ₂ CH ₃	H	SCF ₃	Cl	
CH ₂ CH ₃	H	OCHF ₂	SCH ₂ CH ₃	СH ₂ CH ₃	Н	SCF ₃	SCH ₂ CH ₃	
CH ₂ CH ₃	H	SCHF ₂	CF ₃	CH ₂ CH ₃	H	Cl	CF ₃	
CH ₂ CH ₃	H	SCHF ₂	OCF ₃	CH ₂ CH ₃	H	Cl	OCF ₃	
CH ₂ CH ₃	H	SCHF ₂	SCF ₃	CH ₂ CH ₃	H	Cl	SCF ₃	
CH ₂ CH ₃	H	SCHF ₂	OCHF ₂	CH ₂ CH ₃	H	Cl	OCHF ₂	
CH ₂ CH ₃	H	SCHF ₂	SCHF ₂	CH ₂ CH ₃	H	Cl	SCHF ₂	
CH ₂ CH ₃	H	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	H	Cl	C_2F_5	
CH ₂ CH ₃	H	SCHF ₂	CI	CH ₂ CH ₃	H	Cl	Cl	
CH ₂ CH ₃	H	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	H	Cl	SCH ₂ CH ₃	
CH ₂ CH ₃	CH ₃	CF ₃	CF ₃	CH ₂ CH ₃	CH ₃	OCF ₃	CF ₃	
CH ₂ CH ₃	CH ₃	CF ₃	OCF ₃	CH ₂ CH ₃	CH ₃	OCF ₃	OCF ₃	

CH ₂ CH ₃	CH ₃	CF ₃	SCF ₃	CH ₂ CH ₃	CH ₃	OCF ₃	SCF ₃
CH ₂ CH ₃	CH ₃	CF ₃	OCHF ₂	CH ₂ CH ₃	CH ₃	OCF ₃	OCHF ₂
CH ₂ CH ₃	CH ₃	CF ₃	SCHF ₂	CH ₂ CH ₃	CH ₃	OCF ₃	SCHF ₂
CH ₂ CH ₃	CH ₃	CF ₃	C_2F_5	сн ₂ сн ₃	CH ₃	OCF ₃	C_2F_5
CH ₂ CH ₃	CH ₃	CF ₃	Cl	CH ₂ CH ₃	CH ₃	OCF ₃	Cl
CH ₂ CH ₃	CH ₃	CF ₃	SCH ₂ CH ₃	СН2СН3	CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	CF ₃	сн ₂ сн ₃	CH ₃	SCF ₃	CF ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	OCF ₃	СН2СН3	CH ₃	SCF ₃	OCF ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	SCF ₃	СН ₂ СН ₃	CH ₃	SCF ₃	SCF ₃
CH ₂ CH ₃	CH ₃	OCHF ₂	OCHF ₂	CH ₂ CH ₃	CH ₃	SCF ₃	OCHF ₂
CH ₂ CH ₃	CH ₃	OCHF ₂	SCHF ₂	СН ₂ СН ₃	CH ₃	SCF ₃	SCHF ₂
CH ₂ CH ₃	CH ₃	OCHF ₂	C_2F_5	СН ₂ СН ₃	CH ₃	SCF ₃	C_2F_5
CH ₂ CH ₃	CH ₃	OCHF ₂	Cl	СН ₂ СН ₃	CH ₃	SCF ₃	CI
CH ₂ CH ₃	CH ₃	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	CF ₃	CH ₂ CH ₃	CH ₃	Cl	CF ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	OCF ₃	СН ₂ СН ₃	CH ₃	Cl	OCF ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	SCF ₃	СН ₂ СН ₃	CH ₃	Cl	SCF ₃
CH ₂ CH ₃	CH ₃	SCHF ₂	OCHF ₂	CH ₂ CH ₃	CH ₃	Cl	OCHF ₂
CH ₂ CH ₃	CH ₃	SCHF ₂	SCHF ₂	CH ₂ CH ₃	CH ₃	CI	SCHF ₂
CH ₂ CH ₃	CH ₃	SCHF ₂	C ₂ F ₅	СH ₂ CH ₃	CH ₃	Cl	C_2F_5
CH ₂ CH ₃	CH ₃	SCHF ₂	Ci	CH ₂ CH ₃	CH ₃	Cl	Cl
CH ₂ CH ₃	CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	CH ₃	Cl	SCH ₂ CH ₃
CH ₂ CH ₃	F	CF ₃	CF ₃	CH ₂ CH ₃	F	OCF ₃	CF ₃
CH ₂ CH ₃	F	CF ₃	OCF ₃	CH ₂ CH ₃	F	OCF ₃	OCF ₃
CH ₂ CH ₃	F	CF ₃	SCF ₃	CH ₂ CH ₃	F	OCF ₃	SCF ₃
CH ₂ CH ₃	F	CF ₃	OCHF ₂	CH ₂ CH ₃	F	OCF ₃	OCHF ₂
CH ₂ CH ₃	F	CF ₃	SCHF ₂	CH ₂ CH ₃	F	OCF ₃	SCHF ₂
CH ₂ CH ₃	F	CF ₃	C ₂ F ₅	CH ₂ CH ₃	F	OCF ₃	C_2F_5
CH ₂ CH ₃	\mathbf{F}_{i}	CF ₃	Cl	СH ₂ CH ₃	F	OCF ₃	Cl
CH ₂ CH ₃	F	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	F	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	F	OCHF ₂	CF ₃	CH ₂ CH ₃	F	SCF ₃	CF ₃
CH ₂ CH ₃	F	OCHF ₂	OCF ₃	CH ₂ CH ₃	F	SCF ₃	OCF ₃
CH ₂ CH ₃	F	OCHF ₂	SCF ₃	СH ₂ CH ₃	F	SCF ₃	SCF ₃
CH ₂ CH ₃	F	OCHF ₂	OCHF ₂	CH ₂ CH ₃	F	SCF ₃	OCHF ₂
CH ₂ CH ₃	F	OCHF ₂	SCHF ₂	СН ₂ СН ₃	F	SCF ₃	SCHF ₂
CH ₂ CH ₃	F	OCHF ₂	C ₂ F ₅	CH ₂ CH ₃	F	SCF ₃	C_2F_5
CH ₂ CH ₃	F	OCHF ₂	Cl	CH ₂ CH ₃	F	SCF ₃	Cl
CH ₂ CH ₃	F	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	F	SCF ₃	SCH ₂ CH ₃

CH ₂ CH ₃	F	SCHF ₂	CF ₃	CH ₂ CH ₃	F	Cl	CF ₃
CH ₂ CH ₃	F	SCHF ₂	OCF ₃	CH ₂ CH ₃	F	Cl	OCF ₃
CH ₂ CH ₃	F	SCHF ₂	SCF ₃	CH ₂ CH ₃	. F	Cl	SCF ₃
CH ₂ CH ₃	F	schf ₂	OCHF ₂	CH ₂ CH ₃	F	CI ·	OCHF ₂
CH ₂ CH ₃	F	schf ₂	SCHF ₂	CH ₂ CH ₃	F	Cl	SCHF ₂
CH ₂ CH ₃	F	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	F	Cl	C_2F_5
CH ₂ CH ₃	F	SCHF ₂	Cl	CH ₂ CH ₃	F	Cl	Cl
CH ₂ CH ₃	F	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	F	Cl	SCH ₂ CH ₃
CH ₂ CH ₃	Cl	CF ₃	CF ₃	CH ₂ CH ₃	Cl	OCF ₃	CF ₃
CH ₂ CH ₃	Cl	CF ₃	OCF ₃	CH ₂ CH ₃	Cl	OCF ₃	OCF ₃
CH ₂ CH ₃	Cl	CF ₃	SCF ₃	CH ₂ CH ₃	Cl	OCF ₃	SCF ₃
CH ₂ CH ₃	Cl	CF ₃	OCHF ₂	CH ₂ CH ₃	Cl	OCF ₃	OCHF ₂
CH ₂ CH ₃	Cl	CF ₃	SCHF ₂	CH ₂ CH ₃	CI	OCF ₃	SCHF ₂
CH ₂ CH ₃	Cl	CF ₃	C ₂ F ₅	CH ₂ CH ₃	Cl	OCF ₃	C_2F_5
CH ₂ CH ₃	Cl	CF ₃	Cl	CH ₂ CH ₃	Cl	OCF ₃	Cl
CH ₂ CH ₃	Cl	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	Cl	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	Cl	OCHF ₂	CF ₃	CH ₂ CH ₃	CI	SCF ₃	CF ₃
CH ₂ CH ₃	Cl	OCHF ₂	OCF ₃	CH ₂ CH ₃	Cl	SCF ₃	OCF ₃
CH ₂ CH ₃	Cl	OCHF ₂	SCF ₃	CH ₂ CH ₃	Cl	SCF ₃	SCF ₃
CH ₂ CH ₃	CI	OCHF ₂	OCHF ₂	CH ₂ CH ₃	CI	SCF ₃	OCHF ₂
CH ₂ CH ₃	Cl	OCHF ₂	SCHF ₂	CH ₂ CH ₃	Cl	SCF ₃	SCHF ₂
CH ₂ CH ₃	. Cl	OCHF ₂	C ₂ F ₅	CH ₂ CH ₃	Cl	SCF ₃	C_2F_5
CH ₂ CH ₃	CI	OCHF ₂	Cl	CH ₂ CH ₃	Cl	SCF ₃	Cl
CH ₂ CH ₃	Cl	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	Cl	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	Cl	SCHF ₂	CF ₃	CH ₂ CH ₃	Cl	Cl	CF ₃
CH ₂ CH ₃	Cl	SCHF ₂	OCF ₃	CH ₂ CH ₃	CI	Cl	OCF ₃
CH ₂ CH ₃	Cl	SCHF ₂	SCF ₃	CH ₂ CH ₃	Cl	Cl	SCF ₃
CH ₂ CH ₃	Cl	SCHF ₂	OCHF ₂	CH ₂ CH ₃	Cl	Cl	OCHF ₂
CH ₂ CH ₃	Cl	SCHF ₂	SCHF ₂	CH ₂ CH ₃	CI	Cl	SCHF ₂
CH ₂ CH ₃	C1	SCHF ₂	C_2F_5	CH ₂ CH ₃	Cl	Cl	C_2F_5
CH ₂ CH ₃	Cl	SCHF ₂	Cl	CH ₂ CH ₃	Cl	Cl	Cl
CH ₂ CH ₃	Cl	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	Cl	Cl	SCH ₂ CH ₃
CH ₃	H	CF ₃	CF ₃	СН3	H	OCF ₃	
CH ₃	H	CF ₃	OCF ₃	CH ₃	H	OCF ₃	
CH ₃	H	CF ₃	SCF ₃	СН3	H	OCF ₃	_
CH ₃	H	CF ₃	OCHF ₂	CH ₃	Н	OCF ₃	_
CH ₃	H	CF ₃	SCHF ₂	СН3	Н	OCF ₃	
CH ₃	H	CF ₃	C_2F_5	CH ₃	H	OCF ₃	C_2F_5

				2			
CH ₃	H	CF ₃	CI	CH ₃	H	OCF ₃	Cl
CH ₃	H	CF ₃	SCH ₂ CH ₃	CH ₃	H	OCF ₃	SCH ₂ CH ₃
CH ₃	H	OCHF ₂	CF ₃	CH ₃	H	SCF ₃	CF ₃
CH ₃	H	OCHF ₂	OCF ₃	СН3	Н	SCF ₃	OCF ₃
CH ₃	Н	OCHF ₂	SCF ₃	CH ₃	н	SCF ₃	SCF ₃
CH ₃	H	OCHF ₂	OCHF ₂	СН3	H	SCF ₃	OCHF ₂
CH ₃	н	OCHF ₂	SCHF ₂	СН3	Н	SCF ₃	SCHF ₂
CH ₃	H	OCHF ₂	C_2F_5	СН3	н	SCF ₃	C_2F_5
CH ₃	H	OCHF ₂	Cl	СН3	H	SCF ₃	Cl
CH ₃	Н	OCHF ₂	SCH ₂ CH ₃	СН3	н	SCF ₃	SCH ₂ CH ₃
CH ₃	H	SCHF ₂	CF ₃	СН3	H	Cl	CF ₃
CH ₃	H	SCHF ₂	OCF ₃	CH ₃	H	CI	OCF ₃
CH ₃	H	SCHF ₂	SCF ₃	СН3	H	Cl	SCF ₃
CH ₃	H	SCHF ₂	OCHF ₂	CH ₃	H	Cl	OCHF ₂
CH ₃	H	SCHF ₂	SCHF ₂	CH ₃	H	Cl	SCHF ₂
CH ₃	H	SCHF ₂	C_2F_5	CH ₃	H	Cl	C_2F_5
CH ₃	H	SCHF ₂	Cl	CH ₃	H	C1	Cl
CH ₃	H	SCHF ₂	SCH ₂ CH ₃	CH ₃	H	CI	SCH ₂ CH ₃
CH ₃	CH ₃	CF ₃	CF ₃	CH ₃	CH ₃	OCF ₃	CF ₃
CH ₃	CH ₃	CF ₃	OCF ₃	CH ₃	CH ₃	OCF ₃	OCF ₃
CH ₃	CH ₃	CF ₃	SCF ₃	CH ₃	CH ₃	OCF ₃	SCF ₃
CH ₃	CH ₃	CF ₃	OCHF ₂	CH ₃	CH ₃	OCF ₃	OCHF ₂
CH ₃	CH ₃	CF ₃	SCHF ₂	CH ₃	CH ₃	OCF ₃	SCHF ₂
CH ₃	CH ₃	CF ₃	C ₂ F ₅	CH ₃	CH ₃	OCF ₃	C ₂ F ₅
CH ₃	CH ₃	CF ₃	Cl	CH ₃	CH ₃	OCF ₃	CI
CH ₃	CH ₃	CF ₃	SCH ₂ CH ₃	CH ₃	CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₃	CH ₃	OCHF ₂	CF ₃	CH ₃	CH ₃	SCF ₃	CF ₃
CH ₃	CH ₃	OCHF ₂	OCF ₃	CH ₃	CH ₃	SCF ₃	OCF ₃
CH ₃	CH ₃	OCHF ₂	SCF ₃	CH ₃	CH ₃	SCF ₃	SCF ₃
CH ₃	CH ₃	OCHF ₂	OCHF ₂	CH ₃	CH ₃	SCF ₃	OCHF ₂
CH ₃	CH ₃	OCHF ₂	SCHF ₂	CH ₃	CH ₃	SCF ₃	SCHF ₂
CH ₃	CH ₃	OCHF ₂	C ₂ F ₅	CH ₃	CH ₃	SCF ₃	C_2F_5
CH ₃	CH ₃	OCHF ₂	Cl	CH ₃	CH ₃	SCF ₃	Cl
CH ₃	CH ₃	OCHF ₂	SCH ₂ CH ₃	CH ₃	CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₃	CH ₃	schf ₂	CF ₃	CH ₃	CH ₃	CI	CF ₃
CH ₃	CH ₃	SCHF ₂	OCF ₃	CH ₃	CH ₃	Cl	OCF ₃
CH ₃	CH ₃	SCHF ₂	SCF ₃	CH ₃	CH ₃	Cl	SCF ₃
CH ₃	CH ₃	SCHF ₂	OCHF ₂	CH ₃	CH ₃	Cl	OCHF ₂

CH ₃	CH ₃	SCHF ₂	SCHF ₂	CH ₃	CH ₃	Ci	SCHF ₂
CH ₃	CH ₃	SCHF ₂	C ₂ F ₅	CH ₃	CH ₃	Cl	C_2F_5
CH ₃	CH ₃	SCHF ₂	Cl	CH ₃	CH ₃	Cl	Cl
CH ₃	CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₃	CH ₃	Cl ·	SCH ₂ CH ₃
CH ₃	F	CF ₃	CF ₃	CH ₃	F	OCF ₃	CF ₃
CH ₃	F	CF ₃	OCF ₃	CH ₃	F	OCF ₃	OCF ₃
CH ₃	F	CF ₃	SCF ₃	CH ₃	F	OCF ₃	SCF ₃
CH ₃	F	CF ₃	OCHF ₂	CH ₃	F	OCF ₃	OCHF ₂
CH ₃	F	CF ₃	SCHF ₂	CH ₃	F	OCF ₃	SCHF ₂
CH ₃	F	CF ₃	C ₂ F ₅	CH ₃	F	OCF ₃	C_2F_5
CH ₃	F	CF ₃	Cl	CH ₃	F	OCF ₃	Cl
CH ₃	F	CF ₃	SCH ₂ CH ₃	CH ₃	F	OCF ₃	SCH ₂ CH ₃
CH ₃	F	OCHF ₂	CF ₃	CH ₃	F	SCF ₃	CF ₃
CH ₃	F	OCHF ₂	OCF ₃	CH ₃	F	SCF ₃	OCF ₃
CH ₃	F	OCHF ₂	SCF ₃	CH ₃	F	SCF ₃	SCF ₃
CH ₃	F	OCHF ₂	OCHF ₂	CH ₃	F	SCF ₃	OCHF ₂
CH ₃	F	OCHF ₂	SCHF ₂	CH ₃	F	SCF ₃	SCHF ₂
CH ₃	F	OCHF ₂	C ₂ F ₅	CH ₃	F	SCF ₃	C_2F_5
CH ₃	F	OCHF ₂	Cl	CH ₃	F	SCF ₃	·CI
CH ₃	F	OCHF ₂	SCH ₂ CH ₃	CH ₃	F	SCF ₃	SCH ₂ CH ₃
CH ₃	F	SCHF ₂	CF ₃	CH ₃	F	Cl	CF ₃
CH ₃	F	SCHF ₂	OCF ₃	CH ₃	F	Cl	OCF ₃
CH ₃	F	SCHF ₂	SCF ₃	CH ₃	F	Cl	SCF ₃
CH ₃	F	SCHF ₂	OCHF ₂	CH ₃	F	Cl	OCHF ₂
CH ₃	F	SCHF ₂	SCHF ₂	CH ₃	F	Cl	SCHF ₂
CH ₃	F	SCHF ₂	C_2F_5	CH ₃	F	CI	C_2F_5
CH ₃	F	SCHF ₂	Cl	CH ₃	F	Cl	Cl
CH ₃	F	SCHF ₂	SCH ₂ CH ₃	СН3	F	Cl	SCH ₂ CH ₃
CH ₃	CI	CF ₃	CF ₃	CH ₃	Cl	OCF ₃	CF ₃
CH ₃	Cl	CF ₃	OCF ₃	CH ₃	Cl	OCF ₃	OCF ₃
CH ₃	Cl	CF ₃	SCF ₃	CH ₃	Cl	OCF ₃	
CH ₃	CI	CF ₃	OCHF ₂	СН3	Cl	OCF ₃	OCHF ₂
CH ₃	Cl	CF ₃	SCHF ₂	СН3	Cl	OCF ₃	SCHF ₂
CH ₃	Cl	CF ₃	C_2F_5	СН3	Cl	OCF ₃	C_2F_5
CH ₃	Cl	CF ₃	Cl	СН3	Cl	OCF ₃	Cl
CH ₃	Cl	CF ₃	SCH ₂ CH ₃	СН3	Cl	OCF ₃	
CH ₃	Cl	OCHF ₂	CF ₃	CH ₃	Cl	SCF ₃	
CH ₃	Cl	OCHF ₂	OCF ₃	CH ₃	Cl	SCF ₃	OCF ₃

CH ₃	Cl	OCHF ₂	SCF ₃	СН3	Cl	SCF ₃	SCF ₃
CH ₃	Cl	OCHF ₂	OCHF ₂	CH ₃	Cl	SCF ₃	OCHF ₂
CH ₃	Cl	OCHF ₂	SCHF ₂	CH ₃	Cl	SCF ₃	SCHF ₂
CH ₃	Cl	OCHF ₂	C ₂ F ₅	СН3	Cl	SCF ₃	C_2F_5
CH ₃	Cl	OCHF ₂	Cl	CH ₃	Cl	SCF ₃	Cl
CH ₃	Ċì	OCHF ₂	SCH ₂ CH ₃	CH ₃	Cl	SCF ₃	SCH ₂ CH ₃
CH ₃	Cl	SCHF ₂	CF ₃	CH ₃	Cl	Cl	CF ₃
CH ₃	CI	SCHF ₂	OCF ₃	CH ₃	Cl	C1	OCF ₃
CH ₃	Cl	SCHF ₂	SCF ₃	CH ₃	Cl	Ci	SCF ₃
CH ₃	Cl	SCHF ₂	OCHF ₂	CH ₃	Cl	Cl	OCHF ₂
CH ₃	Cl	SCHF ₂	SCHF ₂	CH ₃	Cl	Cl	SCHF ₂
CH ₃	Cl	SCHF ₂	C ₂ F ₅	CH ₃	Cl	CI	C_2F_5
CH ₃	Cl	SCHF ₂	Cl	CH ₃	Cl	Cl	Cl
CH ₃	Cl	SCHF ₂	SCH ₂ CH ₃	CH ₃	Ci	Cl	SCH ₂ CH ₃

X is N; Y	and Z are	CH			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Z a	re CH; Y i	s N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
СH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	re CH; Z i	<u>s N</u>		•	
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃

CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
	are N; Z is			_	
$\underline{\mathbf{R^1}}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	Y and Z ar				_
\mathbb{R}^1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	X and Z are				
\mathbb{R}^1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and					
$\frac{\mathbb{R}^1}{}$	<u>R⁵</u>	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

Table 18

X, Y and	Z are CH				
<u>R¹</u>	<u>R⁵</u>	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
Н	CF ₃	CF ₃	н	OCF ₃	CF ₃
H	CF ₃	OCF ₃	н	OCF ₃	. OCF ₃
Н	CF ₃	SCF ₃	н	OCF ₃	SCF ₃
H	CF ₃	OCHF ₂	н	OCF ₃	OCHF ₂
H	CF ₃	SCHF ₂	н	OCF ₃	SCHF ₂
H	CF ₃	C_2F_5	н	OCF ₃	C_2F_5
H	CF ₃	Cl	н	OCF ₃	Cl
H	CF ₃	SCH ₂ CH ₃	н	OCF ₃	SCH ₂ CH ₃
H	OCHF ₂	CF ₃	Н	SCF ₃	CF ₃
H	OCHF ₂	OCF ₃	Н	SCF ₃	OCF ₃
H	OCHF ₂	SCF ₃	н	SCF ₃	SCF ₃
Н.	OCHF ₂	OCHF ₂	н	SCF ₃	OCHF ₂
H	OCHF ₂	SCHF ₂	H	SCF ₃	SCHF ₂
H	OCHF ₂	C ₂ F ₅	Н	SCF ₃	C_2F_5
H	OCHF ₂	Cl	н	SCF ₃	Cl
H	OCHF ₂	SCH ₂ CH ₃	Н	SCF ₃	SCH ₂ CH ₃
H	SCHF ₂	CF ₃	н	CI	CF ₃
H	SCHF ₂	OCF ₃	Н	Cl	OCF ₃
H	SCHF ₂	SCF ₃	н	Cl	SCF ₃
H	SCHF ₂	OCHF ₂	Н	CI	OCHF ₂
H	SCHF ₂	SCHF ₂	Н	CI	SCHF ₂
H	SCHF ₂	C ₂ F ₅	Н	Cl	C_2F_5
H	SCHF ₂	Cl	Н	Cl	Cl
H	SCHF ₂	SCH ₂ CH ₃	Н	Cl	SCH ₂ CH ₃
CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₃	CF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
CH ₃	CF ₃	SCF ₃	CH ₃	OCF ₃	SCF ₃
CH ₃	CF ₃	OCHF ₂	CH ₃	OCF ₃	OCHF ₂
CH ₃	CF ₃	SCHF ₂	CH ₃	OCF ₃	SCHF ₂
CH ₃	CF ₃	C ₂ F ₅	CH ₃	OCF ₃	C_2F_5
CH ₃	CF ₃	Cl	CH ₃	OCF ₃	Cl
CH ₃	CF ₃	SCH ₂ CH ₃	CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₃	OCHF ₂	CF ₃	CH ₃	SCF ₃	CF ₃
CH ₃	OCHF ₂	OCF ₃	CH ₃	SCF ₃	OCF ₃
CH ₃	OCHF ₂	SCF ₃	CH ₃	SCF ₃	SCF ₃
CH ₃	OCHF ₂	OCHF ₂	CH ₃	SCF ₃	OCHF ₂

			X		
CH ₃	OCHF ₂	SCHF ₂	СН3	SCF ₃	SCHF ₂
CH ₃	OCHF ₂	C_2F_5	CH ₃	SCF ₃	C_2F_5
CH ₃	OCHF ₂	Cl	СН3	SCF ₃	Cl
CH ₃	OCHF ₂	SCH ₂ CH ₃	CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₃	SCHF ₂	CF ₃	CH ₃	Cl	CF ₃
CH ₃	SCHF ₂	OCF ₃	CH ₃	Cl	OCF ₃
CH ₃	SCHF ₂	SCF ₃	CH ₃	Cl	SCF ₃
CH ₃	SCHF ₂	OCHF ₂	CH ₃	CI	OCHF ₂
CH ₃	SCHF ₂	SCHF ₂	СН3	Cl	SCHF ₂
CH ₃	SCHF ₂	C ₂ F ₅	CH ₃	Cl	C_2F_5
CH ₃	SCHF ₂	Cl	CH ₃	Cl	Cl
CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₃	Cl	SCH ₂ CH ₃
OCH ₃	CF ₃	CF ₃	осн ₃	OCF ₃	CF ₃
OCH ₃	CF ₃	ocr ₃	осн3	OCF ₃	OCF ₃
OCH ₃	CF ₃	SCF ₃	OCH ₃	OCF ₃	SCF ₃
OCH ₃	CF ₃	OCHF ₂	OCH ₃	OCF ₃	OCHF ₂
OCH ₃	CF ₃	SCHF ₂	осн3	OCF ₃	SCHF ₂
OCH ₃	CF ₃	C_2F_5	OCH ₃	OCF ₃	C_2F_5
OCH ₃	CF ₃	Cl	OCH ₃	OCF ₃	Cl
OCH ₃	CF ₃	SCH ₂ CH ₃	OCH ₃	OCF ₃	SCH ₂ CH ₃
OCH ₃	OCHF ₂	CF ₃	осн3	SCF ₃	CF ₃
OCH ₃	OCHF ₂	OCF ₃	OCH ₃	SCF ₃	OCF ₃
OCH ₃	OCHF ₂	SCF ₃	OCH ₃	SCF ₃	SCF ₃
OCH ₃	OCHF ₂	OCHF ₂	OCH ₃	SCF ₃	OCHF ₂
OCH ₃	OCHF ₂	SCHF ₂	OCH ₃	SCF ₃	SCHF ₂
OCH ₃	OCHF ₂	C ₂ F ₅	OCH ₃	SCF ₃	C_2F_5
OCH ₃	OCHF ₂	Cl	OCH ₃	SCF ₃	Cl
OCH ₃	OCHF ₂	SCH ₂ CH ₃	OCH ₃	SCF ₃	SCH ₂ CH ₃
OCH ₃	SCHF ₂	CF ₃	OCH ₃	Cl	CF ₃
OCH ₃	SCHF ₂	OCF ₃	OCH ₃	Cl	OCF ₃
OCH ₃	SCHF ₂	SCF ₃	OCH ₃	CI	SCF ₃
OCH ₃	SCHF ₂	OCHF ₂	OCH ₃	Cl	OCHF ₂
OCH ₃	SCHF ₂	SCHF ₂	OCH ₃	Cl	SCHF ₂
OCH ₃	SCHF ₂	C ₂ F ₅	OCH ₃	Cl	C_2F_5
OCH ₃	SCHF ₂	Cl	OCH ₃	Cl	Cl
OCH ₃	schf ₂	SCH ₂ CH ₃	OCH ₃	Cl	SCH ₂ CH ₃
CH ₂ CH ₃	CF ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₂ CH ₃	OCF ₃	OCF ₃

CH ₂ CH ₃	CF ₃	SCF ₃	СН ₂ СН ₃	OCF ₃	SCF ₃
CH ₂ CH ₃	CF ₃	OCHF ₂	СН ₂ СН ₃	OCF ₃	OCHF ₂
CH ₂ CH ₃	CF ₃	SCHF ₂	СН ₂ СН ₃	OCF ₃	SCHF ₂
CH ₂ CH ₃	CF ₃	C_2F_5	CH ₂ CH ₃	OCF ₃	C_2F_5
CH ₂ CH ₃	CF ₃	Cl	CH ₂ CH ₃	OCF ₃	C1
CH ₂ CH ₃	CF ₃	SCH ₂ CH ₃	CH ₂ CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	OCHF ₂	CF ₃	CH ₂ CH ₃	SCF ₃	CF ₃
CH ₂ CH ₃	OCHF ₂	OCF ₃	СН2СН3	SCF ₃	OCF ₃
CH ₂ CH ₃	OCHF ₂	SCF ₃	СН2СН3	SCF ₃	SCF ₃
CH ₂ CH ₃	OCHF ₂	OCHF ₂	CH ₂ CH ₃	SCF ₃	OCHF ₂
CH ₂ CH ₃	OCHF ₂	SCHF ₂	СH ₂ CH ₃	SCF ₃	SCHF ₂
CH ₂ CH ₃	OCHF ₂	C ₂ F ₅	CH ₂ CH ₃	SCF ₃	C_2F_5
CH ₂ CH ₃	OCHF ₂	Cl	CH ₂ CH ₃	SCF ₃	Cl
CH ₂ CH ₃	OCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	SCHF ₂	CF ₃	CH ₂ CH ₃	Cl	CF ₃
CH ₂ CH ₃	SCHF ₂	OCF ₃	CH ₂ CH ₃	Cl	OCF ₃
CH ₂ CH ₃	SCHF ₂	SCF ₃	CH ₂ CH ₃	Cl	SCF ₃
CH ₂ CH ₃	SCHF ₂	OCHF ₂	CH ₂ CH ₃	Cl	OCHF ₂
CH ₂ CH ₃	SCHF ₂	SCHF ₂	СH ₂ CH ₃	Cl	SCHF ₂
CH ₂ CH ₃	SCHF ₂	C ₂ F ₅	CH ₂ CH ₃	Cl	C_2F_5
CH ₂ CH ₃	SCHF ₂	Cl	Сн ₂ Сн ₃	Cl	Cl
CH ₂ CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	Cl	SCH ₂ CH ₃

X is N; Y	and Z are	CH		·	
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
СH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X and Y	are CH; Z i	s N			
$\underline{R^1}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9

СH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y	are N; Z is	CH			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R⁵</u>	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
СH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	R ⁵	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z are	e N			
$\underline{\mathbf{R}^1}$	<u>R5</u>	<u>R</u> 9	<u>R</u> 1	R5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and	Z are N				
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R⁵</u>	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF3	CH ₃	OCF ₂	OCF ₂

$$\begin{array}{c|c}
 & Table 20 \\
 & R^{1} \\
 & N \\
 & N \\
 & X \\
 & Z \\
 & R^{5}
\end{array}$$

<u>X, Y </u>	and Z are CH		i		
$\underline{\mathbf{R^1}}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
сн ₂ сн	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X and	Z are CH; Y	is N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH	3 OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and	Y are CH; Z	is N	1		
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH	3 - CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH	3 OCF ₃	CF ₃	CH ₃ ·	OCF ₃	CF ₃
CH ₂ CH	3 OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and	Y are N; Z is	CH			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH	3 CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH	3 OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	H; Y and Z a	re N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH	CF ₃	CF ₃	СН3	CF ₃	CF _{3.}
CH ₂ CH	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
Y is C	H; X and Z a	re N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH	3 CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃

CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X, Y and	Z are N				
R ¹	R ⁵	R ⁹	R1	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
		Table 2		_	
	•	Rl	-		
	N N	`` `\	N		
	75			Y	
	R ⁵	Ĭ	N J		
		0	X.	$Z \sim R^9$	
X, Y and	Z are CH				
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Z a	ге СН; Ү і	s N			
R ¹	R ⁵	R ⁹	\mathbb{R}^{1}	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	re CH; Z i	s N			
<u>R1</u>	<u>R</u> 5	<u>R</u> ⁹	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	·CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	re N; Z is	СН			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
сн ₂ сн ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃

сн ₂ сн ₃	OCF ₃	OCF ₃ CH ₃ OCF ₃			OCF ₃	
X is CH;	Y and Z ar	e N				
$\underline{\mathbf{R}^1}$	$\underline{\mathbf{R^5}}$	<u>R</u> 9				
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃	
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃	
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃	
СH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃	
Y is CH;	X and Z ar	e N				
<u>R1</u>	<u>R</u> 5	R ⁹ R ¹ R ⁵		<u>R</u> 9		
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃	
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃	
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃	
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃	
X, Y and	Z are N					
$\underline{\mathbf{R}^1}$	<u>R</u> 5	R^9 R^1 R^5		<u>R</u> 5	<u>R</u> 9	
CH ₂ CH ₃	CF ₃	CF ₃			CF ₃	
CH ₂ CH ₃	CF ₃	OCF ₃			OCF ₃	
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃	
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃	
Table 22						

X, Y and Z are CH							
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9		
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃		
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃		
CH ₂ CH ₃	OCF ₃	CF ₃ CH ₃ OCF ₃		OCF ₃	CF ₃		
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃		
X and Z are CH; Y is N							
$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R⁵</u>	<u>R</u> 9		
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃		
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃		
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃		

			_		
CH ₂ CH ₃	OCF ₃	OCF ₃ CH ₃ OCF ₃		OCF ₃	
X and Y a	are CH; Z i	s N			
<u>R1</u>	<u>R</u> 5	<u>R⁹ R¹ R⁵</u>		<u>R</u> 9	
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X and Y a	are N; Z is	<u>CH</u>			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	$\underline{\mathbf{R^5}}$	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	- · · · · · · · · · · · · · · · · · · ·		CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃			OCF ₃
X is CH;	Y and Z ar	e N			
R1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃ OCF ₃		OCF ₃
Y is CH;	X and Z ar	e N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and	Z are N				
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
СH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

. 5

$$\begin{array}{c|c}
 & \underline{\text{Table 23}} \\
 & R^1 \\
 & N \\
 & X \\
 & Z \\
 & R^9
\end{array}$$

	X, Y and Z	are CH			•		1	
	<u>R1</u>	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9	<u>R¹</u>	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃
5	X and Z are	CH· Y is	N					
3	R ¹	R ⁹	<u>R1</u>	<u>R</u> 9	<u>R1</u>	<u>R⁹</u>	<u>R</u> 1	<u>R⁹</u>
	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃
	23	5 (, 3	,			, ,	
	X and Y are				1		ı .	
	$\frac{\mathbb{R}^1}{}$	<u>R</u> 9	$\frac{\mathbb{R}^1}{}$	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9	$\frac{\mathbb{R}^1}{}$	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	СН3	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃
	X and Y are	e N; Z is C	H					
	<u>R</u> 1	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	<u>R1</u>	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	CH ₂ CH ₃			OCF ₃
10			· <u>-</u>					
X is CH; Y and Z are N								
	<u>R1</u>	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9	<u>R1</u>	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	CH ₂ CH ₃	OCF ₃	СН3	OCF ₃
	Y is CH; X	and Z are	N					
	R ¹	<u>R⁹</u>	<u>R¹</u>	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CH ₃	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF ₃
	2	3	3	J	1 - 2 3	,	, ,	3
15	X, Y and Z		1		1		1	
	<u>R</u> 1	<u>R</u> 9	<u>R</u> 1	<u>R</u> 9	<u>R1</u>	<u>R</u> 9	<u>R</u> 1	$\frac{\mathbb{R}^9}{}$
	CH2CH2	CF ₂	CH ₂	CF ₃	CH ₂ CH ₃	OCF ₃	CH ₃	OCF3

$$Z^{1} \xrightarrow{\begin{array}{c} Table 24 \\ R^{1} \\ CH_{3} \end{array}} \xrightarrow{R^{1}} X \xrightarrow{X} Z^{R^{9}}$$

X, Y and	Z are CH			
<u>R¹</u>	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{Y}^1}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N .	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N

X is N; Y and Z are CH

<u>R1</u>	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{Y}^1}$	$\underline{Z^1}$
СН ₂ СН ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH2CH2	CF ₃	CF ₃	N	N

СH ₂ СH ₃	CF ₃	OCF ₃	СН	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	. CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	СН	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N .	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	· CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N
				•
	are CH; Z		w z 1	71
$\underline{\mathbf{R}^1}$	<u>R</u> 7	<u>R</u> 9	<u>Y</u> 1	$\frac{Z^1}{Z^2}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	И	CH

CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N

$$\begin{array}{c|c}
 & \underline{\text{Table 25}} \\
 & R^1 \\
 & N \\
 & N$$

X, Y and	Z are CH				
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

X is N; Y and Z are CH

<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF3	CH ₃	OCF ₃	OCF ₃

X and Z a	ere CH; Y i	s N			
сн ₂ сн ₃	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
сн ₂ сн ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
H	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

X and Y	are CH; Z	is N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	R ⁵	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X and Y	are N; Z is	СН			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R⁵</u>	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
Y is CH;	X and Z ar	e N			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
СH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X, Y and	Z are N				
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
СH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

		R ⁵ N	Table 2	25 26 N	$\stackrel{Y}{\underset{Z}{\triangleright}}$ \mathbb{R}^9	
		Z are CH		i		
	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
	X is N; Y	and Z are	СН			•
	<u>R¹</u>	<u>R</u> 5	R ⁹	<u>R1</u>	R ⁵	R ⁹
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
_	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
5						
		re CH; Y i		i	_ c	- 0
	<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	X and Y a	re CH; Z i	s N			
	<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
0	X and Y a	re N; Z is	<u>CH</u>			
	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
	CH_2CH_3	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃

10

X is CH; Y and Z are N

	<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
•	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	Y is CH;	X and Z are	e N			
	R ¹	<u>R</u> 5	R ⁹	\mathbb{R}^1	R ⁵	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	X, Y and	Z are N				
	R ¹	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
	CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
	CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
			Table 2	<u>7</u>		
		Й	ightharpoonup $ ightharpoonup$ $ igh$	^N		
		R ⁵		N N	- Y.	
		K	0	Y X	\mathbb{R}^9	
	X, Y and	Z are CH			Z	
	\mathbb{R}^1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
		<u> </u>	<u>K</u> ,	14		
	CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
						
	CH ₂ CH ₃	CF ₃	CF ₃ OCF ₃	СН3	CF ₃	CF ₃
	CH ₂ CH ₃ CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
	CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	CF ₃ CF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃	CH ₃ CH ₃	CF ₃ CF ₃ OCF ₃	CF ₃ OCF ₃
	CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	CF ₃ CF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃	CH ₃ CH ₃	CF ₃ CF ₃ OCF ₃	CF ₃ OCF ₃
	CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y	CF ₃ CF ₃ OCF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃	СН ₃ СН ₃ СН ₃ СН ₃	CF ₃ CF ₃ OCF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃
	CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y	CF ₃ CF ₃ OCF ₃ OCF ₃ and Z are	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	CF ₃ CF ₃ OCF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃
	CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y R ¹ CH ₂ CH ₃	CF ₃ CF ₃ OCF ₃ OCF ₃ and Z are CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ CH R ⁹ CF ₃	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃
	CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y R ¹ CH ₂ CH ₃	CF ₃ CF ₃ OCF ₃ OCF ₃ and Z are CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ CH R ⁹ CF ₃	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃	CE OC CE

X and Z a	re CH; Y i	s N			
R ¹	R ⁵		\mathbb{R}^1	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
V and V s	are CH; Z i	e N			
R ¹	R ⁵	R9	\mathbb{R}^1	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
_ ,		- ,	-	-	_
	are N; Z is				- 0
$\underline{R^1}$	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N		·	
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH:	X and Z ar	e N			
R1	R ⁵	R ⁹	\mathbb{R}^1	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and		50 1	5.1	73.5	-20
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	$\frac{\mathbb{R}^1}{\mathbb{R}^n}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃		OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z ar	e N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X, Y and	Z are N				
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
СH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
	-	Table 2	<u>9</u>	•	

$$\begin{array}{c|c}
 & \underline{\text{Table 29}} \\
 & R^{1} \\
 & N \\
 & N \\
 & X \approx_{Z} \\
 & R^{9}
\end{array}$$

	X and Y are R ¹ CH ₂ CH ₃	ECH; Z is R CF ₃	$\frac{N}{R^1}$ CH ₃	R ⁹ CF ₃	R ¹ CH ₂ CH ₃	R ⁹ OCF ₃	R1 CH3	R ⁹ OCF ₃
5	X and Y are R1 CH ₂ CH ₃	N; Z is C R ⁹ CF ₃	<u>R</u> 1 CH ₃	R ⁹ CF ₃	R1 CH2CH3	R ⁹ OCF ₃	R1 CH3	R ⁹ OCF ₃
3	X is CH; Y R1 CH ₂ CH ₃	and Z are R ⁹ CF ₃	N R ¹ CH ₃	R ⁹ CF ₃	R1 CH2CH3	R ⁹ OCF ₃	R1 CH3	R ⁹ OCF ₃
	Y is CH; X R ¹ CH ₂ CH ₃	and Z are $\frac{R^9}{CF_3}$	N R1 CH3	R ⁹ CF ₃	R1 CH2CH3	R ⁹ OCF ₃	<u>R</u> 1 СН ₃	R ⁹ OCF ₃
10	X, Y and Z R ¹ CH ₂ CH ₃	are N R ⁹ CF ₃	R1 CH3	R ⁹ CF ₃	R1 CH2CH3	R ⁹ OCF ₃	R1 CH3	R ⁹ OCF ₃

$$\begin{array}{c|c}
R^7 & \underline{\text{Table 30}} \\
Z^1 & \underline{\text{N}} & \underline{\text{R}}^1 & \underline{\text{N}} & \underline{\text{N$$

			_	
X is N;	Y and Z are	e CH		
<u>R1</u>	<u>R</u> 7	<u>R</u> 9	<u>Y1</u>	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	CH
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	CH
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N

CH_2CH_3	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	СН
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	СН
СН3	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	СН	N
CH ₃	CF ₃	OCF ₃	N	СН
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	СН
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	СН	N
CH ₃	OCF ₃	OCF ₃	N	СН
CH ₃	OCF ₃	OCF ₃	N	N
X and Z	are CH; Y	is N		
<u>R1</u>	<u>R</u> 7	<u>R</u> 9	$\underline{\mathbf{Y}^{1}}$	$\underline{Z^1}$
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
СH ₂ CH ₃	CF ₃	CF ₃	N	СН
СH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N
CH ₂ CH ₃	CF ₃	OCF ₃	N	СН
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
CH ₂ CH ₃	OCF ₃	CF ₃	CH	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
СH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH

CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	· N
X and Y	are CH; Z	Z is N		
<u>R1</u>	<u>R</u> 7	R ⁹	\mathbf{Y}^{1}	Z^1
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
CH ₂ CH ₃	CF ₃	CF ₃	N	СН
CH ₂ CH ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	СН	N
сн ₂ сн ₃	CF ₃	OCF ₃	N	СН
CH ₂ CH ₃	CF ₃	OCF ₃	N	N
СH ₂ CH ₃	OCF ₃	CF ₃	СН	N
CH ₂ CH ₃	OCF ₃	CF ₃	N	CH
СH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	CH	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	СН
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	СН	N
CH ₃	CF ₃	CF ₃	N	CH
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	CH	N
CH ₃	CF ₃	OCF ₃	N	CH
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	CH	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N
X is CH;	Y and Z a	re N		
<u>R1</u>	R ⁷	<u>R</u> 9	\mathbf{Y}^{1}	Z^1
CH ₂ CH ₃	CF ₃	CF ₃	CH	N
СН2СН3	CF ₃	CF ₃	N	СН
СН ₂ СН ₃	CF ₃	CF ₃	N	N
CH ₂ CH ₃	CF ₃	OCF ₃	CH	N

сн ₂ сн ₃	CF ₃	OCF ₃	N	СН
СH ₂ CH ₃	CF ₃	OCF ₃	N	N
СH ₂ CH ₃	OCF ₃	CF ₃	СН	N
СH ₂ CH ₃	OCF ₃	CF ₃	N	СН
CH ₂ CH ₃	OCF ₃	CF ₃	N	N
CH ₂ CH ₃	OCF ₃	OCF ₃	СН	N
CH ₂ CH ₃	OCF ₃	OCF ₃	N	CH
CH ₂ CH ₃	OCF ₃	OCF ₃	N	N
CH ₃	CF ₃	CF ₃	CH	N
CH ₃	CF ₃	CF ₃	N	СН
CH ₃	CF ₃	CF ₃	N	N
CH ₃	CF ₃	OCF ₃	СН	N
CH ₃	CF ₃	OCF ₃	N	СН
CH ₃	CF ₃	OCF ₃	N	N
CH ₃	OCF ₃	CF ₃	СН	N
CH ₃	OCF ₃	CF ₃	N	CH
CH ₃	OCF ₃	CF ₃	N	N
CH ₃	OCF ₃	OCF ₃	CH	N
CH ₃	OCF ₃	OCF ₃	N	CH
CH ₃	OCF ₃	OCF ₃	N	N

$$\begin{array}{c|c}
 & \underline{\text{Table 31}} \\
 & R^{1} \\
 & N \\
 & X \\
 & Z \\
 & R^{9}
\end{array}$$

X, Y and Z are CH $\underline{\mathbf{R^1}}$ <u>R</u>5 \mathbb{R}^9 \mathbb{R}^1 R⁵ <u>R</u>9 CH₂CH₃ CH₂CH₃ CF₃ CF₃ OCF₃ CF₃ CH₂CH₃ CH₂CH₃ CF₃ OCF₃ OCF₃ OCF₃ CH₂CH₃ SCF₃ CF₃ CH₂CH₃ OCF₃ SCF₃ CH₂CH₃ OCF₃ CF₃ OCHF₂ CH₂CH₃ OCHF₂ CH₂CH₃ SCHF₂ CH₂CH₃ CF₃ OCF₃ SCHF₂ CH₂CH₃ C_2F_5 CH₂CH₃ CF₃ OCF₃ C_2F_5 CH₂CH₃ CH₂CH₃ CF₃ Cl OCF₃ Cl CF₃ CH₂CH₃ SCH₂CH₃ CH₂CH₃ OCF₃ SCH₂CH₃ CH₂CH₃ OCHF₂ CF₃ CH₂CH₃ SCF₃ CF₃

CH ₂ CH ₃	OCHF ₂	OCF ₃	СН2СН3	SCF ₃	OCF ₃
CH ₂ CH ₃	OCHF ₂	SCF ₃	CH ₂ CH ₃	SCF ₃	SCF ₃
CH ₂ CH ₃	OCHF ₂	OCHF ₂	СН2СН3	SCF ₃	ochf ₂
сн ₂ сн ₃	OCHF ₂	SCHF ₂	CH ₂ CH ₃	SCF ₃	SCHF ₂
CH ₂ CH ₃	OCHF ₂	C ₂ F ₅	СН2СН3	SCF ₃	C_2F_5
CH ₂ CH ₃	OCHF ₂	CI	CH ₂ CH ₃	SCF ₃	Cl
CH ₂ CH ₃	OCHF ₂	SCH ₂ CH ₃	СH ₂ СH ₃	SCF ₃	SCH ₂ CH ₃
CH ₂ CH ₃	SCHF ₂	CF ₃	СН2СН3	Cl	CF ₃
CH ₂ CH ₃	SCHF ₂	OCF ₃	СН2СН3	Cl	OCF ₃
CH ₂ CH ₃	SCHF ₂	SCF ₃	СН ₂ СН ₃	Cl	SCF ₃
CH ₂ CH ₃	SCHF ₂	OCHF ₂	СH ₂ СH ₃	Cl	OCHF ₂
CH ₂ CH ₃	SCHF ₂	SCHF ₂	CH ₂ CH ₃	Cl	schf ₂
CH ₂ CH ₃	SCHF ₂	C ₂ F ₅	СН ₂ СН ₃	Cl	C_2F_5
CH ₂ CH ₃	SCHF ₂	⟨Cl	CH ₂ CH ₃	Cl	Cl
CH ₂ CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₂ CH ₃	Cl	SCH ₂ CH ₃
CH ₃	CF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₃	CF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
CH ₃	CF ₃	SCF ₃	CH ₃	OCF ₃	SCF ₃
CH ₃	CF ₃	OCHF ₂	CH ₃	OCF ₃	OCHF ₂
CH ₃	CF ₃	SCHF ₂	CH ₃	OCF ₃	SCHF ₂
CH ₃	CF ₃	C ₂ F ₅	CH ₃	OCF ₃	C_2F_5
CH ₃	CF ₃	Cl	CH ₃	OCF ₃	Cl
CH ₃	CF ₃	SCH ₂ CH ₃	CH ₃	OCF ₃	SCH ₂ CH ₃
CH ₃	OCHF ₂	CF ₃	СН3	SCF ₃	CF ₃
CH ₃	OCHF ₂	OCF ₃	CH ₃	SCF ₃	OCF ₃
CH ₃	OCHF ₂	SCF ₃	CH ₃	SCF ₃	SCF ₃
CH ₃	OCHF ₂	OCHF ₂	CH ₃	SCF ₃	OCHF ₂
CH ₃	OCHF ₂	SCHF ₂	CH ₃	SCF ₃	SCHF ₂
CH ₃	OCHF ₂	C_2F_5	СН3	SCF ₃	C_2F_5
CH ₃	OCHF ₂	Cl	CH ₃	SCF ₃	Cl
CH ₃	OCHF ₂	SCH ₂ CH ₃	CH ₃	SCF ₃	
CH ₃	SCHF ₂	CF ₃	CH ₃	CI	CF ₃
CH ₃	SCHF ₂	OCF ₃	СН3	CI	OCF ₃
CH ₃	SCHF ₂	SCF ₃	CH ₃	CI	SCF ₃
CH ₃	SCHF ₂	OCHF ₂	CH ₃	Cl	OCHF ₂
CH ₃	SCHF ₂	SCHF ₂	CH ₃	Cl	SCHF ₂
CH ₃	SCHF ₂	C_2F_5	CH ₃	Cl	C_2F_5
CH ₃	SCHF ₂	Cl	CH ₃	CI	Cl
CH ₃	SCHF ₂	SCH ₂ CH ₃	CH ₃	CI	SCH ₂ CH ₃

		Table 3	<u>2</u>		
		N R¹			
			. !	. Y.	
	R5> V	\mathcal{T}	N Y		
		Ö	X.	$Z \nearrow R^9$	
X is N; Y	and Z are	СН		_	
R ¹	R ⁵		<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Z a	ıre CH; Y i	s N			
\mathbb{R}^1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	$\underline{\mathbf{R^5}}$	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	ere CH; Z i				
$\underline{R^1}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	$\underline{\mathbf{R^5}}$	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y a	re N; Z is				
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	$\underline{\mathbf{R}^9}$
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N			
R^1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃

5

Y is CH;	X and Z ar	e N			
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X, Y and	Z are N				
R ¹	R ⁵	R ⁹	R ¹	R ⁵	R ⁹
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
2 3	J				
		Table 33	3_		
	\wedge	R ¹	∕ ,		
	[]		и 	••	
_	R ⁵		N/	Y	
		1)	11		
		N.	X.	人。	
		N_OH	x_	z R9	
	Z are CH		X_		70
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
R1 CH ₂ CH ₃	R ⁵ CF ₃	R ⁹ CF ₃	CH ₃	<u>R</u> ⁵ CF ₃	CF ₃
R ¹ CH ₂ CH ₃ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃	R ⁹ CF ₃ OCF ₃	CH ₃	R ⁵ CF ₃ CF ₃	CF ₃
R ¹ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃	R ⁹ CF ₃ OCF ₃	CH ₃ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃	CF ₃ OCF ₃
R ¹ CH ₂ CH ₃ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃	R ⁹ CF ₃ OCF ₃	CH ₃	R ⁵ CF ₃ CF ₃	CF ₃
R ¹ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	E9 CF3 OCF3 CF3 OCF3	CH ₃ CH ₃ CH ₃ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃
R ¹ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃	E ⁹ CF ₃ OCF ₃ CF ₃ OCF ₃	CH ₃ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	CF ₃ OCF ₃
R ¹ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	E9 CF3 OCF3 CF3 OCF3	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃
R1 CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y	$\frac{\mathbb{R}^5}{\mathbb{C}F_3}$ $\mathbb{C}F_3$ $\mathbb{C}F_3$ $\mathbb{C}F_3$ $\mathbb{C}F_3$ $\mathbb{C}F_3$ \mathbb{R}^5	E ⁹ CF ₃ OCF ₃ CF ₃ OCF ₃	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃
R1 CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y R1 CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ And Z are CEF ₃	E9 CF3 OCF3 CF3 OCF3 CH R9 CF3 OCF3 CF3	CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ CF ₃ CF ₃
R1 CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y R1 CH ₂ CH ₃ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ OCF ₃ and Z are of CF ₃ CF ₃	E9 CF3 OCF3 CF3 OCF3 CH E9 CF3	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃
R1 CH ₂ CH ₃ X is N; Y R1 CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ and Z are 0 R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃	E9 CF3 OCF3 CF3 OCF3 CH R9 CF3 OCF3 CF3	CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ CF ₃ CF ₃
R1 CH ₂ CH ₃ X is N; Y R1 CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ and Z are of CF ₃ CF ₃ CF ₃	E9 CF3 OCF3 CF3 OCF3 CH E9 CF3 OCF3 CF3	CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ CF ₃ CF ₃
R1 CH2CH3 CH2CH3 CH2CH3 CH2CH3 X is N; Y R1 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ And Z are CF ₃ CF ₃ CF ₃ OCF ₃ OCF ₃ Are CH; Z is R ⁵	E9 CF3 OCF3 CF3 OCF3 CH R9 CF3 OCF3 CF3	CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃ OCF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃ OCF ₃ OCF ₃
R1 CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ X is N; Y R1 CH ₂ CH ₃	R5 CF3 CF3 OCF3 OCF3 And Z are of CF3 CF3 CF3 OCF3 OCF3 OCF3	E9 CF3 OCF3 CF3 OCF3 CH E9 CF3 OCF3 CF3 OCF3	CH ₃	R ⁵ CF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ CF ₃ CF ₃ CF ₃ CF ₃ CF ₃	CF ₃ OCF ₃ CF ₃ OCF ₃ OCF ₃ CF ₃ OCF ₃ CF ₃ CF ₃ CF ₃

CH₃

OCF₃

OCF₃

OCF₃

CH₂CH₃ OCF₃

X and Y	are N; Z is	CH			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N			
$\underline{R^1}$	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
Y is CH;	X and Z ar	e N			
$\underline{\mathbf{R}^1}$	<u>R⁵</u>	<u>R</u> 9	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X, Y and	Z are N				
R^1	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
СH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃

X, Y and	Z are CH		2		
<u>R</u> 1	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
СH ₂ CH ₃	CF ₃	CF ₃	СН3	CF ₃	CF ₃
СH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
СН ₂ СН ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃

X is N; Y	and Z are	CH			
RI	<u>R</u> 5	<u>R</u> 9	<u>R1</u>	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y	are CH; Z i	<u>s N</u>			
<u>R1</u>	$\underline{\mathbf{R^5}}$	<u>R</u> 9	<u>R1</u>	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X and Y	are N; Z is	<u>CH</u>			
<u>R1</u>	<u>R</u> 5	<u>R</u> 9	$\underline{\mathbf{R}^1}$	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃ -	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	CH ₃	OCF ₃	OCF ₃
X is CH;	Y and Z ar	e N			
\mathbb{R}^{1}	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	<u>R</u> 5	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	CH ₃	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	CH ₃	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
Y is CH;	X and Z ar	e N			
R ¹	<u>R</u> 5	<u>R</u> 9	<u>R</u> 1	R ⁵	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃
CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃
X, Y and	Z are N				
RI	R ⁵	<u>R</u> 9	$\mathbf{R}^{\mathbf{l}}$	<u>R⁵</u>	<u>R</u> 9
CH ₂ CH ₃	CF ₃	CF ₃	CH ₃	CF ₃	CF ₃

PCT/US98/22088

-	_
v	61

CH ₂ CH ₃	CF ₃	OCF ₃	СН3	CF ₃	OCF ₃
CH ₂ CH ₃	OCF ₃	CF ₃	СН3	OCF ₃	CF ₃
CH ₂ CH ₃	OCF ₃	OCF ₃	СН3	OCF ₃	OCF ₃

Formulation/Utility

5

10

15

20

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

We	ioht	Percent

	•	Wording a property	
- -	Active Ingredient	Diluent	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	5–90	0–94	1–15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5–50	40–95	0–15
Dusts Granules and Pellets	1–25 0.01–99	70 -9 9 5-99.99	0–5 0–15
High Strength Compositions	90–99	0–10	0–2

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New

10

15

20

25

30

35

Jersey, as well as Sisely and Wood, *Encyclopedia of Surface Active Agents*, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, *N*,*N*-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, talc, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, *N*,*N*-dimethylformamide, dimethyl sulfoxide, *N*-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A.

WO 99/28301 PCT/US98/22088

91

	91	
	Example A	
	High Strength Concentrate	
	Compound 1	98.5%
	silica aerogel	0.5%
5	synthetic amorphous fine silica	1.0%.
	Example B	
	Wettable Powder	
	Compound 1	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
10	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
	montmorillonite (calcined)	23.0%.
	Example C	
	Granule	
15	Compound 1	10.0%
	attapulgite granules (low volatile matter,	
	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%.
	Example D	
	Extruded Pellet	
20	Compound 1	25.0%
	anhydrous sodium sulfate	10.0%
	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%.
25	Test results indicate that the compounds of the prese	ent invention are highly activ
	preemergent and postemergent herbicides or plant growth	regulants. Many of them ha
	utility for broad-spectrum pre- and/or postemergence week	d control in areas where con
	control of all vegetation is desired such as around firel stor	rage tanks, industrial storage

Test results indicate that the compounds of the present invention are highly active preemergent and postemergent herbicides or plant growth regulants. Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Some of the compounds are useful for the control of selected grass and broadleaf weeds with tolerance to important agronomic crops which include but are not limited to alfalfa, barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, rice, oats, peanuts, vegetables, tomato, potato, perennial plantation crops including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea and forests such as eucalyptus and conifers (e.g., loblolly pine), and turf species (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass). Those skilled in the art will appreciate that not all

30

compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is 0.001 to 20 kg/ha with a preferred range of 0.004 to 1.0 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

Compounds of this invention can be used alone or in combination with other commercial herbicides, insecticides or fungicides. Compounds of this invention can also be 10 used in combination with commercial herbicide safeners such as benoxacor, dichlormid and furilazole to increase safety to certain crops. A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, ametryn, amidosulfuron, amitrole, ammonium sulfamate, anilofos, asulam, atrazine, 15 azafenidin, azimsulfuron, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, bifenox, bispyribac and its sodium salt, bromacil, bromoxynil, bromoxynil octanoate, butachlor, butralin, butroxydim (ICIA0500), butylate, caloxydim (BAS 620H), carfentrazone-ethyl, chlomethoxyfen, chloramben, chlorbromuron, chloridazon, chlorimuron-ethyl, chlornitrofen, chlorotoluron, chlorpropham, chlorsulfuron, 20 chlorthal-dimethyl, cinmethylin, cinosulfuron, clethodim, clomazone, clopyralid, clopyralid-olamine, cyanazine, cycloate, cyclosulfamuron, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, 25 dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl, 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid (AC 263,222), difenzoquat metilsulfate, diflufenican, dimepiperate, dimethenamid, dimethylarsinic acid and its sodium salt, dinitramine, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, 30 ethametsulfuron-methyl, ethofumesate, ethoxysulfuron, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, fluazifop-butyl, fluazifop-P-butyl, fluchloralin, flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, flupyrsulfuron-methyl and its sodium salt, fluridone, flurochloridone, fluroxypyr, 35 fluthiacet-methyl, fomesafen, fosamine-ammonium, glufosinate, glufosinate-ammonium, glyphosate, glyphosate-isopropylammonium, glyphosate-sesquisodium, glyphosate-trimesium, halosulfuron-methyl, haloxyfop-etotyl, haloxyfop-methyl,

10

15

20

25

30

hexazinone, imazamethabenz-methyl, imazamox, imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isouron, isoxaben, isoxaflutole, lactofen, lenacil, linuron, maleic hydrazide, MCPA and its dimethylammonium, potassium and sodium salts, MCPA-isoctyl, mecoprop, mecoprop-P, mefenacet, mefluidide, metam-sodium, methabenzthiazuron, methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyl [[[1-[5-[2-chloro-4-(trifluoromethyl)phenoxy]-2nitrophenyl]-2-methoxyethylidene]amino]oxy]acetate (AKH-7088), methyl 5-[[[[(4,6dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-(2-pyridinyl)-1H-pyrazole-4carboxylate (NC-330), metobenzuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron, napropamide, naptalam, neburon, nicosulfuron, norflurazon, oryzalin, oxadiazon, oxasulfuron, oxyfluorfen, paraquat dichloride, pebulate, pendimethalin, pentoxazone (KPP-314), perfluidone, phenmedipham, picloram, picloram-potassium, pretilachlor, primisulfuron-methyl, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propyzamide, prosulfuron, pyrazolynate, pyrazosulfuron-ethyl, pyridate, pyriminobac-methyl, pyrithiobac, pyrithiobac-sodium, quinclorac, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, sethoxydim, siduron, simazine, sulcotrione (ICIA0051), sulfentrazone, sulfometuron-methyl, TCA, TCA-sodium, tebuthiuron, terbacil, terbuthylazine, terbutryn, thenylchlor, thiafluamide (BAY 11390), thifensulfuron-methyl, thiobencarb, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane, trifluralin, triflusulfuron-methyl, and vernolate.

In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for preventing the development of resistant weeds.

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Tables A-D for compound descriptions. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

INDEX TABLE A

Cmpd	ī	<u>R</u> 1	<u>R³</u>	<u>R</u> 4	<u>A</u>	<u>mp (°C)</u>
1 (Ex. 1)	CF ₃	CH ₃	Н	Н	CF ₃	112-113
2 (Ex. 2)	CF ₃	CH ₃	Н	н	N CF3	90-92 *
3	CF ₃	Н	Н	н	N CF3	oil*
4	CF ₃	CH ₃	Н	Н	F	82-91
5	CF ₃	CH ₃	н	н	CF3	98-100
6	CF ₃	СН3	Н	н	a	112-114
7	CF ₃	CH ₃	Н	Н		84-89
8	CF ₃	CH ₃	н	Н		solid*
9 (Ex. 3)	CF ₃	СН3	н	H	CF ₃	112-114

10	CF ₃	СН3	н .	Н	CF ₃	134-142
11	N CF_3	СН3	Н	н	CF3	121-128
12	-MM	СН3	н	н	CF3	157-160
13	N CF3	СН3	Н	Н	CF3	121-123
14	CF2CF3	СН3	Н	н	CF3	114-116
15	OCF3	СН3	н .	н	CF3	71-76
16	CF ₃	СН3	н	Н	OCF3	58-66
17	CF3	СН3	CN	Н	CF3	156-157
18	CF3	СН3	соосн3	Н	CF3	127-129
19	CF3	СН3	CH ₃	н	CF3	102-104

WO 99/28301

47
$$OCF_3$$
 CH_2CH_3 H H N CF_3 $oil*$

INDEX TABLE B

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ²
2	δ 8.55 (t, 2H), 7.55-7.50 (m, 2H), 7.45-7.40 (m, 2H), 6.72 (d, 1H), 4.26 (s, 2H), 2.32 (s, 3H).

^{*}See Index Table B for ¹H NMR data.

3	δ 8.70 (d, 1H), 8.65 (d, 1H), 7.60-7.55 (m, 2H), 7.50-7.45 (m, 2H), 7.05
	(d, 1H), 6.75 (d, 1H), 4.28 (s, 2H).
8	δ 8.62 (s, 1H), 8.27 (m, 2H), 7.7 (s, 1H), 7.47 (m, 3H), 7.4 (s, 1H), 5.28 (s,

8 δ 8.62 (s, 1H), 8.27 (m, 2H), 7.7 (s, 1H), 7.47 (m, 3H), 7.4 (s, 1H), 5.28 (s, 2H), 2.36 (s, 3H).

47 δ 8.59 (m, 2H), 7.40-7.10 (m, 4H), 6.71 (d, 1H), 4.24 (s, 2H), 2.70 (q, 2H), 1.20 (t, 3H).

48 δ 8.56 (s, 2H), 7.34 (t, 1H), 7.15 (m, 3H), 6.72 (m, 1H), 4.24 (s, 2H), 2.65 (t, 2H), 1.57 (m, 2H), 0.98 (t, 3H).

49 δ 8.65 (s, 1H), 8.47 (s, 1H), 8.17 (s, 1H), 7.40-7.15 (m, 4H), 4.20 (s, 2H), 2.70 (q, 2H), 1.25 (t, 3H).

δ 9.20 (s, 1H), 8.60 (s, 1H), 7.41 (t, 1H), 7.15 (m, 3H), 4.25 (s, 2H), 2.80 (q, 2H), 1.24 (t, 3H.).

58 δ 8.57 (s, 1H), 8.54 (m, 1H), 7.53 (m, 2H), 7.43 (m, 2H), 6.71 (d, 1H), 4.28 (s, 2H), 2.65 (t, 2H), 1.61 (m, 2H), 0.98 (t, 3H).

INDEX TABLE C

Cmpd	ī.	<u>R</u> 1	A	mp(°C)
59 (Ex. 4)	CF ₃	CH ₃	CF ₃	113-116
60	CF3	OCH ₃	CF ₃	183-185
61	CF ₃	СН3	CF_3	80-82
62	OCF ₃	СН3	CF ₂ CF ₃	85-87

INDEX TABLE D

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ²
63	δ 8.77 (s, 1H), 8.57 (s, 1H), 8.17 (s, 1H), 7.77-7.85 (m, 2H), 7.50-7.60 (m,
	2H), 2.42 (s, 3H).
67	δ (s, 1H), 8.93 (s, 1H), 8.25 (s, 1H), 8.07 (d, 1H), 7.97 (d, 1H), 7.68 (m,
	1H), <u>2</u> .48 (s, 3H).
70	δ 9.13 (d, 1H), 8.60 (m, 2H), 8.42 (d, 1H), 7.91 (m, 2H), 7.72 (t, 1H), 6.70
	(d, 1H).
71	δ 8.81 (s, 1H), 8.58 (s, 1H), 8.18 (s, 1H), 7.81 (s, 1H), 7.77 (m, 1H), 7.57
	(m, 2H), 2.77 (q, 2H), 1.28 (t, 3H).

^a ¹H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet, (dd)-doublet of doublets, (dt)-doublet of triplets, (br s)-broad singlet.

BIOLOGICAL EXAMPLES OF THE INVENTION

TEST A

5

10

15

20

Seeds of barnyardgrass (*Echinochloa crus-galli*), crabgrass (*Digitaria spp.*), morningglory (*Ipomoea spp.*), and velvetleaf (*Abutilon theophrasti*) were planted into a sandy loam soil and treated preemergence by soil drench with test chemicals formulated in a non-phytotoxic solvent mixture which includes a surfactant. At the same time, these crop and weed species were also treated postemergence sprayed to runoff, with test chemicals formulated in the same manner.

Plants ranged in height from two to eighteen cm and were in the one to two leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately eleven days, after which all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table A, are based on a 0 to 10 scale where 0 is no effect and 10 is complete control. A dash (-) response means no test results.

^{*}See Index Table D for ¹H NMR data.

WO 99/28301

65 73 74

.0 9 10 5 9 5

4 8 5

5 9 8

TABLE A				COM	1PO 1	UND												
Rate 2000 g/ha PRE SOIL DRENCH	1	6	8	12	13	59	65	73	74									
Barnyardgrass	10	8	7	7	9	10	5	9	1									
Crabgrass	10	9	10	9	10	10	8	10	7									
Morningglory	8	5	8	3	3	9	4	9	1									
Velvetleaf	9	8	3	5	9	10	4	9	4									
TABLE A		CC	MPC	OUND)	TA	BLE	A						COI	1PO	סמכ		
Rate 1000 g/ha PRE SOIL DRENCH			ε	3						g/ha RUNO		6	8	12	13	59	65	
Barnyardgrass			4	ŀ		Ba	rny	ard	qra	88	9	8	3	5	6	9	4	
Crabgrass			9)		Cr	abg	ras	8		9	9	_	_	_	_	5	
Morningglory			9)		Mo	mi:	ngg:	lor	y.	9	6	7	2	2	-	10	
Velvetleaf			2	:				tle			9	9	2	6	8	_	5	
TABLE A		c	OME	OUN	D													

TABLE A COMPOUNI
Rate 500 g/ha 8
SPRAYED TO RUNOFF
Barnyardgrass 3
Crabgrass 8
Morningglory 3
Velvetleaf 1

5 TEST B

10

15

20

Seeds of bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), broadleaf signalgrass (Brachiaria decumbens), cocklebur (Xanthium strumarium), corn (Zea mays), crabgrass (Digitaria sanguinalis), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), pigweed (Amaranthus retroflexus), rape (Brassica napus), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, these crop and weed species were also treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Plant species in the flood test consisted of rice (Oryza sativa), smallflower flatsedge (Cyperus difformis), duck salad (Heteranthera limosa) and barnyardgrass (Echinochloa crus-galli) grown to the 2-leaf stage for testing. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table B, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

	74		~	0	9	Н	ß	Н	c	0	Н	7	•	ო	æ	0	0	٣	7	7	~	-		75		6	. α	0	6	0	10	6
	73		œ	4	σ	σ	œ	m	6	m	Q	10	٠	10	10	m	٣	9	σ	10	9	9		74		0	0	· c	· c	0	· -	0
	89		2	7	10	S	7	7	ω	ന	m	10	•	7	10	m	7	7	10	ω	4	ო		73		10	10	10	•	c	10	10
	29		6	9	10	10	δ	_	10	œ	6	10	•	0	10	4	0	ω	O	ω	9	œ		89		10	9	7	· œ	-	10	10
	99		വ	Þ	œ	9	ß	٣	10	7	4	10	Н	7	10	N	Q	7	10	æ	m	က		29								10
	65		~	0	7	0	~	Н	Н	0	Н	10	•	~	7	0	0	7	œ	7	7	-		99								4
	64		œ	S	0	6	6	ഹ	6	6	'n	∞	7	Ą	10	m	6	9	10	6	ហ	7		9							0	
	63		S	m	œ	9	œ	~	9	9	က	10	1	œ	6	-	6	~	6	æ	7	~		64		10	0	6	7	4	12	9
	62										ო													63		g	œ	σ	٦	~	9	∞
	61										δ													62		6	9	2	0	~	10	4
	29		m	œ	δ	9	æ	7	ტ	7	6	10	0	7	6	9	6	6	0	8	m	9		61							10	
	54										4													59 (10	
	53										~													54							ω	_
	52		σ	œ	01	6	δ	7	δ	σ	δ	0.1	7	07	10	7	6	0	2	6	œ	6		53		9	œ	~	-	0	œ	9
	32						100				•								•					52		2	2	2	01	æ	10	9
	16			4	ស	ന	9	-	2	~	ო	Н	Н	S	6	4	٣	4	6	7	Н	-		16							ω	
B	14		7	9	01	ന	7	က	4	ო	က	ω	0	7	σ	Ŋ	0	ស	δ	4	ო	က	Ð			Ŋ	7	က		٣	8	σ
50	13				•						Ŋ												DO.	13		6	9	σ	7	~	10	2
COMPOUND	12										4												COMPOUND	12							10	
_	11							٠			6													11							10	
	10										S													10							6	
	თ		δ	ω	10	0	σ	വ	10	9	6	10	m	10	10	œ	6	δ	0	σ	9	œ		σ.							10	
	7										Н													7							~	
	9		•	က	æ	7	7	m	9	9	9	œ	ന	œ	δ	٣	7	9	თ	œ	က	က		9		δ	ß	ゼ	0	0	10	10
	വ		ഹ	m	σ	2	œ	7	œ	~	9	4	0	10	δ	က	2	9	10	6	4	Ŋ		S							თ	
	4										œ													4							10	•
	က										വ													ന							ß	
	7		•	9	6	6	σ	7	0	N	2	σ	7	01	თ	9	σ	œ	0	თ	S	7		~							2	
	-		0		10	6	2	-	σ.		0	10	7	σ.	10		•	σ	10	o	വ	0		-		0	σ.	10	2	7	10	10
	æ		m		•		•					••							•					æ		m		•	•			•
TABLE B	Rate 500 g/ha	Postemergence	B. signalgrass	Barnyardgrass	Bedstraw	Blackgrass	Cocklebur	Ħ	Crabgrass	Ducksalad	Giant foxtail	Morningglory	Nutsedge	Q	Redroot pigweed	ē,	S. Flatsedge	Soybean	Sugarb ets	Velvetleaf	āt	Wild oats	TABLE B	Rate 500 g/ha	Preemergence	B. signalgrass	Bedstraw	Blackgrass	Cocklebur	Ħ	Crabgrass	Giant foxtail
TAB	Rat	Pos	щ	Bar	Bed	Bla	ပ္ပ	Corn	Cra	Dac	Gia	Mor	Nat	Rape	Red	Rice	δ.	Soy	Sug	Vel	Wheat	Wil	TAB	Rat	Pre	œ.	Bed	Bla	ပ္ပ	Corn	Cra	Gia

Morningglory	10	10	10	œ	6	7												10					σ				0	10	
Nutsedge	н	0	Ŋ	0	-	0	0	0	0		0	0	0	1	0	0	0		0	0	7	0	0	0			0	0	
Rape	10	10	7	0	10	7																	œ				0	4	
Redroot pigweed 10	10	10	10	10	10	9																	10				0	10	
Soybean	5	ស	7	٣	m	0																	-				0	Н	
Sugarbeets	10	10	10	10	10	10																	10				0	10	
Velvetleaf	10	10	9	7	σ	m												10					ω				0	10	
Wheat	σ	ന	0	Ŋ	ന	0																	m				0	S	
Wild oats	10	10	თ	σ	ω	က				ω.													S		∞	10	0	0	
TABLE B										O		MPOUND	۵																
Rate 250 g/ha	Т	7	٣	4	Ŋ	9	7	6	10	11 1	12 1	3 14	Н	5 16	6 17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Postemergence																													
B. signalgrass	∞	•	'n	~	4	•		σ																			5	~	
Barnyardgrass	•	υ.	9	œ	က	7		7																			4	4	
Bedstraw	თ	σ	ω	σ	σ	7		10																			6	9	
Blackgrass	9	7	က	9	2	7		ထ																			വ	Н	
Cocklebur	σ	œ	S	7	œ	~		10					٠.														œ	æ	
Corn	4	9	ო	ო	~	m		വ																			m	7	
Crabgrass	9	σ	ന	0	4	æ		2																			6	7	
Ducksalad	•	~	က	7	Н	0		7																			4	2	
Giant foxtail	თ	σ	က	7	4	ស		0																			4	7	
Morningglory	10	σ	7	œ	ო	œ		10																			10	0	
Nutsedge	ч	•	0	0	0	7		m																			•	7	
Rape	9	σ	9	10	10	œ		20																			6	10	
Redroot pigweed	10	σ	δ	10	δ	δ		10																			10	σ	
Rice	•	ß	4	9	?	7		7																			m	N	
S. Flatsedge	1	œ	0	7	വ	7		σ																			æ	ω	
Soybean	σ	œ	7	ω	S	9	ന	10	œ	œ	S	ស	5	4	8	9	4	9	9	œ	00	9	7	Ŋ	7	7	7	9	
Sugarbeets	10	თ	0	თ	10	œ		10					٠.														10	10	
Velvetleaf	0	თ	m	ω	7	œ		20																			4	œ	
Wheat	ო	m	N	~	m	7		4																			4	~	
Wild oats	7	9	~	m	4	ო		9																			~	c	

TABLE B										J	COMPOUND	Ď	₽															
Rate 250 g/ha Postemergence	31	32	33	34	35	36	37	38	39 4	40 4	41 4	42 4	c	44 4	5 4	6 4	7 4	9	50 5	1 52	2 53	54	59	9	61	62	63	64
B. signalgrass	ည	~	~	Н	-	П	0	Н																	7	~	4	٧
Barnyardgrass	ည	m	ო		~	0	0	0																	· m	ורי	. ~	4
Bedstraw	9	10	σ	7	œ	7		•																	0	m	'n	7
Blackgrass	4	വ	~	-	~	N	0	0																	9	~	, m	~
Cocklebur	7	σ	9	ω	7	ო	ო	œ							-										ω	7	•	7
Corn		Н	7	П	-	Н	Н	П																	m	N	~	4
Crabgrass		~	-	7	0	-	н	Н																	7	S	4	a
Ducksalad	9	7	~	0	П	7	0	0																	m	0	~	9
Giant foxtail	ო	7	Н	~	-	Н	н	0	1	~	δ	6	0	6	0	7 7		2	2 10	6	1	4	œ	~	S	~	m	4
Morningglory	4	10	ស	7	-	~	Н	Н																	•	9	10	œ
Nutsedge	•	Н	0	0	0	0	0	0																	0	•	0	0
Rape	σ	œ	7	m	δ	ß	4	9																	- ∞	~	· œ	4
Redroot pigweed	Q	0	7	9	ហ	ω	7	വ																	6	6	6	10
Rice	m	7	m	1	-	0	0	0																	' '	0	· -	~
S. Flatsedge	œ	9	œ	ო	7	9	0	4																	- α	7	- ∞	. ∞
Soybean		9	4	7	~	7	0	н																	ហ	-	~	· LC
Sugarbeets	10	10	10	σ	10	0	Ŋ	<u>ი</u>																	10	6	6	10
Velvetleaf		0	9	н	Н	ч	н	~																	00	~ ~	, α	, œ
Wheat	4	7	7	Н	-	7	0	Н																	m	~	~	(
Wild oats		က	က	7	7	~	0	~																	· C	-	2	Ŋ
TABLE B						COM	Pour	Ð																				
Rate 250 g/ha	65	99	29	89	20	71	71 72 73		74 7	75 7	16.7	7 7	œ															
Postemergence																												
B. signalgrass	Н		7	m	-	•	9	σ	_	٣	0	ч	-															
Barnyardgrass	0		S	4	0	٣	9	9	0	٣	0	0	0															
Bedstraw	7		10	თ	Н	•	4	Q	~	6	0	4	0															
Blackgrass	0		σ	4	0	•	5	σ	0	æ	0	7	-															
Cocklebur	-1		œ	7	7	•	4	δ	2	7	4	٣	0															
Corn	Н	7	9	7	7	•	2	ო	-	က	Н	-	7															
Crabgrass	-		10	ω	н	•	œ	δ	т		н	7	0															

Ducksalad	0	S	9	7	0	7	m	~	0	~	0	0													
Giant foxtail	Н	~	თ	0	0		7	σ	_	₩.	-	0													
Morningglory	œ	σ	12	10	7		4	σ	7 1	0	4	7													
Nutsedge	0	-	7	0	0			7	0	0		0													
Rape	7	7	œ	•	Н		7	0	ᆸ																
Redroot pigweed	9	10	10	10	က		9	10			2	4													
Rice	0		7	m	0	7	~																		
S. Flatsedge	0	œ	σ	7	0	4	4	9			_	_													
Soybean	~	9	œ	7	ო		S		7																
Sugarbeets	œ	10	σ	10	~	•	6	σ		0	ω.	o 													
Velvetleaf	~	9	ω	7	Н	•	2	_		6	-	°													
Wheat	~	7	ស	0	0	•	4	Ŋ		ო	0	0													
Wild oats	Н	~	œ	~	0	•	4	6	႕	m		0													
TABLE B										ບ	COMPOUND		_												
Rate 250 g/ha	ч	~	m	4	2	9	7	9	10 1	11 1	12 13	14	15	16	17	18	13	20	21	22	23 2	24 2	25 26	6 27	-
Preemergence																						•			
B. signalgrass	g	٠	N	•	δ	თ	0	2	~	8	8	0	<u>ه</u>				0	4	∞			9	9	<i>~</i>	~
Bedstraw	ω	10	2	œ	7	0	0	01			4		∞				0	Н	œ			_	7		
Blackgrass	10	10	4		7	0	0	2			۰ ف	0					0	4	S					0	_
Cocklebur	ന	Н	0		Н	0	0				2						0	•	0					_	
Corn	7	н	0	Н	0	0	0	ო	0	0	0		~	0		0	0	0		7	7	0	0	0	$\overline{}$
Crabgrass	10	10	~		6	∞	 				8 10						0	7	10						
Giant foxtail	2	10	0		10	δ											0								~
Morningglory	10	10	4		œ	~	0	10									0	0	9					_	~1
Nutsedge	•	0	0		0	0		0	0								0	0		•			0		\sim
Rape	10	10	7		10	4		2	4								0	0		10	7	4 1		_	~
Redroot pigweed	10	10	10		œ	9		01	7								0	~		10			0		~
Soybean	m	7	0	Н	7	0	0	7	_		3			0	0		0	0	0			0	\vdash	0	$\overline{}$
Sugarbeets	10	10	10	10	10	δ		01						7	0		0	7	10	10		6	6	_	~
V lvetleaf	10	œ	2	7	0	~		δ	ထ		4 10	7		-	1	0	0	0	10	œ	10	~	~	0	_
Wheat	∞	m	0	-	7	0	0	2	0	_	0	0	_	0	m		0	0	7	4	9	0	7	_	_
Wild oats	9	6	7	œ	9	7	0	0	7	ぜ	ታ	0	<u>۔</u>	7	Φ,	Ŋ	0	က	ω	σ	6	4	Ŋ	0	~

TABLE B										ပ္ပ	COMPOUNT	GND	_															
Rate 250 g/ha	31 3	~	33	34 3	35 3	9	37 38	8 39	9 40	0 41	42	43	44	45	46	47	49	20	51	52	53	54	59	9	61	62.	63	64
Preemergence																												
B. signalgrass	σ	7	н											0	δ		2	٦	σ	10	7		თ		œ			07
Bedstraw		0	7						•					0	10		∞	9	0	6	7		9		9			8
Blackgrass	ო	4	0											0	10		9	10	10	10	Н		7		Ŋ			9
Cocklebur	•	0	0											0	•		N	0	10	7	0		•		~			
Corn	ч	0	0											0	m		~	0	œ	7	0		ч		-			4
Crabgrass	10	m	0											0	10		σ	6	10	10	9		10		œ			10
Giant foxtail	10	2	-											0	10		9	Φ	10	10	9		10		10			S
Morningglory	7	ო	0											0	10		7	4	10	10	~		10		10			10
Nutsedge	0	0	•											0	0		٠	•	•	•	0		0		0			
Rape	1 1	0	7											0	10		10	10	10	10	7		7		δ			8
Redroot pigweed	3 1	10	~	8	S	œ	0	0		2 10	10	10	10	0	10	10	10	σ	10	10	7	7	10	10	6	10	10	0.1
Soybean	0	_	0											0	7		Н	ч	6	œ	0		~		~			-
Sugarbeets	3	0	4											0	10		Q	10	10	10	თ		10		10			10
Velvetleaf	0	0	-											0	10		ω	σ	10	10	7		6		10			9
Wheat	0	0												0	2		4	7	ហ	ო	0		က		4			~
Wild oats	7	4	н											0	Q		7	œ	œ	9	Н		6		7			Ŋ
£				(ſ				-																	
TABLE B				_	Š	COMPOUND	_																					
Rate 250 g/ha	9 59	9	29	68 7	707	72 7	73 74	4 75	5 76	77 9	78																	
Preemergence																												
B. signalgrass	Н				0							_																
Bedstraw	0				0							_																
Blackgrass	0				0							_																
Cocklebur	0				0							_																
Corn	0				0							_																
Crabgrass	0				0							_																
Giant foxtail	0				0							_																
Morningglory	0				0							_																
Nutsedge	0											_																
Rape	0	4	10	4	0	0	9	0	4	0	0	_																
Redroot pigweed	0				0							_																

•	η.	4	ഗ	7	က	ა	9	ო	œ	0	4	6	Н	œ	m	10	7	ო	4														
r	.	~	ო	ന	7	ᠬ	0	~	7	•	7	6	0	7	~	σ	œ	7	7														
c	7	m	Н	2	~	က	0	~	Ŧ	0	~	σ	0	9	Н	σ	0	~	Н														
r	7	œ	4	7	സ	ന	ч	4	თ	0	7	6	0	7	S	10	7	က	က														
•	٠,	m	Н	ო	~	က	7	~	4	0	m	7	0	ស	~	œ	~	က	~														
•	4	7	ო	7	~	9	4	9		0	7	œ	ന	7	7	σ	7	7	н														
r	n .	4	Н	ო	~	7	0	က	ო	0	œ	Ŋ	8	ω	m	7	7	~	7														
c	7	∞	-	S	 i	~	~	-	ო	0	ω	9	Н	œ	S	10	9	Н	-														
Ų	, م	01	σ	œ	ഗ	ထ	σ	œ	10	ന	9	10	Ŋ	თ	σ	10	ω	7	œ														
														σ																			
•	# !	10	Ŋ	4	7	~	ß	7	က	7	10	œ	ന	œ	7	œ	7	ന	က														
U	n	•	9	7	ო	9	4	Ŋ	9	•	ი	δ	4	4	7	0	8	2	9														
r	า	•	Ŋ	œ	ო	9	ന	4	9	•	10	δ	ß	7	œ	σ	7	Ŋ	ω														
r	n (6	Ŋ	6	~	9	~	4	10	٠	0	0	~	ß	œ	10	δ	m	4														
c	> (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0														
•	d (9	ß	δ	ო	7	7	7		~	10	10	9	δ	9	10	œ	m	4		78		0	0	0	0	0	0	0	0	0	0	0
•	3 1 (10	9	7	4	œ	σ	9	σ	~	10	10	9	0	Q	10	σ	7	S		77		0	0	Н	0	က		~	0	Н	4	٠
•	d (D	7	δ	ო	7	œ	7	თ	0	10	0	9	6	σ	10	σ	ო	9		92		0	0	0	0	ന		0	0	0	0	•
														7							75		~	~	0	9	7	٣	4	Н	~	10	0
c	4	4	7	7	Н	Н	Ŋ	0	4	•	9	m	Н	4	7	10	7	 i	0		74		-	0	Н	0	2	-	0	0	0	Н	0
c	> (m	Н	7	Н	0	0	-	Н	0	-	~	0	~	Н	σ	Н	-	⊣		73		0	വ	σ	7	σ	ო	σ	П	œ	0	0
c	וכ		0	7	-	0	0	Ч	Н	0	m	4	0	ന	Н	σ	Н	-	Н	B	72		4	က	•	വ	7	സ	9	~	9	4	•
<	> .	-	0	7	Н	0	0	0	Н	0	m	Н	0	0	0	ß	0	0	0	COMPOUND	71		7	~	•	m	4	က	٣	0	7	9	٠
c	וכ		0	7	Н	~	0	Н	7	0	ა	4	0	'n	Н	œ	7	Н	٦	OM	70		0	0	Н	0	~	ч	Н	0	0	.⊣	0
c	7 1	9	Н	7	Н	7	0	Н	-	0	9	က	Н	7	7	10	Н	0	Н	Ü	69		സ	~	6	m	œ	7	4	Н	n	10	٠
c	> (~	Н	7	Н	Н	0	Н	Н	0	m	m	Н	7	~	œ	-	Н	7		9		n	m	9	က	•	Н	ω	-	~	∞	0
c	V	D)	-1	9	Н	0	~	0	S	0	7	~	⊣	7	~	10	4	-	~		67		7	m	თ	ω	7	വ	0	4	9	7	~
r	י ר	٥	7	ω	Н	~	m	Н	œ	0	œ	δ	-	S	S	10	ω	~	ო		99		ന	ന	ო	m	4	7	7	m	7	4	Н
c	n 1	9	~	9	7	ω	~	m	ო	0	œ	σ	7	7	4	10	7	ო	ო		65		Н	0	സ	0	Н	Н,	-	0	-	Н	0
-	barnyarugrass	Bedstraw	Blackgrass	Cocklebur	Corn	Crabgrass	Ducksalad	Giant foxtail	Morningglory	Nutsedge	Rape	Redroot pigweed	Rice	S. Flatsedge	Soybean	Sugarbeets	Velvetleaf	Wheat	Wild oats	TABLE B	Rate 125 g/ha	Postemergence	B. signalgrass	Barnyardgrass	Bedstraw	Blackgrass	Cocklebur	Corn	Crabgrass	Ducksalad	Giant foxtail	Morningglory	Nutsedge

15 16 17 18 19 20 21 22 23 24 25 26 2 15 16 17 18 19 20 21 22 23 24 25 26 2 10 0 6 0 0 2 3 9 9 2 5 0 10 0 6 0 0 1 7 8 1 1 0 0 10 0 0 0 0 0 1 0 0 0 0 10 3 10 0 0 0 0 1 10 8 4 3 0 10 0 0 0 0 0 0 1 10 8 4 3 0 10 0 0 0 0 0 0 0 1 0 0 0 10 0 0 0 0	10 2 8 9 9 2 9 2 9 2 9 4 0 2 3 3 0 0	10 10 2 8 9 9 2 9 1 2 0 2 0 1 1 2 0 2 0 5 0 1 7 4 0 2 3 3 0 0	10 2 8 9 9 2 9 2 9 2 0 2 0 2 0 5 0 1 4 0 2 3 3 0 0	2 8 9 9 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	~ p ~ 0														
UND 1	5 7 5 4 2 4 2 9 2 3	5 4 2 9 5 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 5	2 6 5	, w	o m		0												
15 16 17 18 19 20 21 22 23 24 25 26 27 10 0 1 3 9 9 3 2 0 1 1 10 0 6 0 0 2 3 9 9 2 5 0 2 1 10 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0	10 9 10 10 1 8 9 10 2 10 5 8 7 8 1 6 3 9 1 9	10 10 1 8 9 10 2 10 7 8 1 6 3 9 1 9	10 1 8 9 10 2 10 8 1 6 3 9 1 9	1 8 9 10 2 10 1 6 3 9 1 9	9 10 2 10 3 9 1 9	10 2 10 9 1 9	2 10	9		2												
15 16 17 18 19 20 21 22 23 24 25 26 27 2 19 2 7 1 0 1 3 9 9 3 2 0 1 10 0 6 0 0 2 3 9 9 2 5 0 2 1 0 0 0 0 0 0 1 1 0 0 0 10 0 8 0 0 1 1 0 0 0 10 0 0 0 0 0 0 1 1 0 0 0 10 0 0 0	2 4 2 4 0 4 3 4 1 2	2 4 0 4 3 4 1 2	4 0 4 3 4 1 2	0 4 3 4 1 2	3 4 1 2	4 1 2	1 2	7		0												
15 16 17 18 19 20 21 22 23 24 25 26 27 2 9 2 7 1 0 1 3 9 9 3 2 0 1 10 0 6 0 0 2 3 9 9 2 5 0 2 1 0 0 6 0 0 2 3 9 9 2 5 0 2 1 0 0 0 0 0 0 1 1 0 0 0 0 10 3 10 0 0 0 0 1 1 0 0 0 0 10 3 10 0 0 0 0 1 6 10 10 3 0 0 2 10 3 10 0 0 0 0 1 6 10 10 6 4 1 5 10 0 0 0 0 0 0 1 10 8 4 3 0 2 10 0 0 0 0 0 0 1 0 0 0 0 0 10 0 0 0 0	2 7 2 3 0 2 2 7 1 3	2 3 0 2 2 7 1 3	3 0 2 2 7 1 3	0 2 2 7 1 3	2 7 1 3	7 1 3	1 3	m														
14 15 16 17 18 19 20 21 22 23 24 25 26 27 2 3	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ		ON D											
0 9 2 7 1 0 1 3 9 9 3 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 3 4 5 6 7 9 10 11 12 13	4 5 6 7 9 10 11 12 1	5 6 7 9 10 11 12 1	6 7 9 10 11 12 1	9 10 11 12 1	10 11 12 1	11 12 1	12 1	Н		-	~	16	17				~	25	5 6	27	28
0 8 0 3 2 0 0 1 7 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				•	•	,	ć	ď							•						*	L
0 8 0 3 2 0 0 1 7 8 1 1 0 0 0 0 10 0 0 0 1 0 0 0 0 0 0 0	- 2 - 8 4 0 9 1 3 8	- 8 4 0 9 1 3 8	8 4 0 9 1 3 8	4 0 9 1 3 8	9 1 3	1 3	∞ ~	œ		n					-						-	Ω
0 10 0 6 0 0 2 3 9 9 2 5 0 2 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	10 0 3 4 0 0 7 7 8 4	3 4 0 0 7 7 8 4	4 0 0 7 7 8 4	0 0 7 7 8 4	7 7 8 4	7 8 4	8	4							7						0	4
1 0 0 - - 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0	97393009234	9 3 0 0 9 2 3 4	3009234	0 0 9 2 3 4	9 2 3 4	2 3 4	3	4		S 11					0						~	ហ
0 1 0 0 0 0 0 1 0	1 0 0 0 0 0 2 · · ·	0 0 0 0 2	0 0 0 2	0 0 2	2	•	•	•							•						•	0
1 10 0 8 0 0 1 6 10 10 3 0 0 2 4 10 3 10 0 0 0 1 10 8 4 1 5 0 0 0 0 0 1 10 8 4 3 0 2 1 9 0 0 0 0 1 0 <	1 0 0 0 0 0 1 0 0 0	0 0 0 0 1 0 0 0	0 0 0 1 0 0 0	0 0 1 0 0	1 0 0 0	0	0	0							0						0	0
4 10 3 10 0 0 8 10 10 6 4 1 5 0 7 0 1 4 0 0 1 10 8 4 3 0 2 0 2 1 9 0 2 0 0 0 0 3 7 3 2 7 3 2 7 0 2 2 10 0 9 3 0 0 8 10 9 8 3 0 6 5 10 1 8 6 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 7 0 1 0 0 0 8 8 8 3 1 0 0 0 0 4 0 1 0 0 0 0 2 3 0 1 0 0 0 9 1 5 3 0 2 5 8 8 1 3 0 1	10 1 6 9 2 0 10 7 7 4	6 9 2 0 10 7 7 4	9 2 0 10 7 7 4	2 0 10 7 7 4	10 7 7 4	7 7 4	7 4	4		C					0						7	7
0 7 0 1 4 0 0 1 10 8 4 3 0 2 0 0 0 0 0 0 - 0 1 0 0 0 0 0 1 9 0 2 0 0 0 3 7 3 2 7 0 2 2 10 0 9 3 0 0 8 10 9 8 3 0 6 0 1 0 0 0 0 0 0 1 1 0 0 0 0 5 10 1 8 6 0 0 8 9 8 3 8 0 1 0 7 0 1 0 0 0 8 8 9 8 3 0 0 0 4 0 1 0 0 0 0 2 3 0 1 0 0 0 9 1 5 3 0 2 5 8 8 1 3 0 1	10 8 10 9 6 0 10 7 9 7	10 9 6 0 10 7 9 7	9 6 0 10 7 9 7	6 0 10 7 9 7	10 7 9 7	7 9 7	9 7	7		J					0						ស	ტ
0 0 0 0 0 0 0 - 0 1 0 0 0 0 0 0 0 0 0 0	9 3 7 4 1 0 10 3 8 6	7 4 1 0 10 3 8 6	4 1 0 10 3 8 6	1 0 10 3 8 6	10 3 8 6	3 8 6	9	9		J					4						7	7
1 9 0 2 0 0 0 3 7 3 2 7 0 2 2 10 0 9 3 0 0 8 10 9 8 3 0 6 5 10 1 8 6 0 0 0 1 1 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0	0 0	0	0		0					0						0	0
2 10 0 9 3 0 0 8 10 9 8 3 0 6 0 1 0 0 0 0 0 1 1 0 0 0 0 0 5 10 1 8 6 0 0 8 9 8 3 8 0 1 0 4 0 1 0 0 0 0 2 3 0 1 0 0 0 9 1 5 3 0 2 5 8 1 3 0 1	10 1 4 10 2 0 9 4 9 5	4 10 2 0 9 4 9 5	10 2 0 9 4 9 5	209495	9 4 9 5	4 9 5	9	S		G					0						7	~
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	10 9 8 8 3 0 10 6 9 9	8 8 3 0 10 6 9 9	8 3 0 10 6 9 9	3 0 10 6 9 9	10 6 9 9	6 6 9	თ თ	თ		S					ო						9	9
5 10 1 8 6 0 0 8 9 8 3 8 0 1 0 7 0 1 0 0 0 8 8 3 1 0 0 0 0 4 0 1 0 0 0 0 2 3 0 1 0 0 0 9 1 5 3 0 2 5 8 8 1 3 0 1	1 0 0 1 0 0 1 0 1 2	0 1 0 0 1 0 1 2	1 0 0 1 0 1 2	0 0 1 0 1 2	1 0 1 2	0 1 2	1	N							0						0	0
0 7 0 1 0 0 0 8 8 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 8 8 10 3 0 10 - 10 8	8 10 3 0 10 - 10 8	10 3 0 10 - 10 8	3 0 10 - 10 8	10 - 10 8	- 10 8	10 8	œ		_					9						-	7
0 4 0 1 0 0 0 0 0 2 3 0 1 0 0 0 9 1 5 3 0 2 5 8 8 1 3 0 1	6 1 6 7 2 0 8 7 6 4	6 7 2 0 8 7 6 4	7 2 0 8 7 6 4	2 0 8 7 6 4	8 7 6 4	7 6 4	6 4	4							0						0	Н
0 9 1 5 3 0 2 5 8 8 1 3 0 1	2 0 0 2 0 0 2 0 1 0	0 2 0 0 2 0 1 0	2 0 0 2 0 1 0	0 0 2 0 1 0	2 0 1 0	0 1 0	1 0	0		_					0						0	0
	9 4 7 5 0 0 8 1 4 2	7 5 0 0 8 1 4 2	5 0 0 8 1 4 2	0 0 8 1 4 2	8 1 4 2	1 4 2	4	~		u,					က						Н	ო

TABLE B										ပ္ပ	COMPOUND	QND																
Rate 125 g/ha	31 3	32	33 3	34 3	Ŋ	36 3	37 3	8 39	9 40	41	42	43	44	45	46	47	49	20	51	52 5	53 5	54 5	59 6	60 61	1 62	2 63	64	
Preemergence																												
B. signalgrass	σ	9	႕		0	0								0	σ	9	-	н		6	H							_
Bedstraw		œ	Н		0	0								0	6	œ	7	1		œ	က							
Blackgrass	7	7	0		0	0								.0	œ	8	4	ហ		œ	0							
Cocklebur	0	0	0		0	0								0	•	~	0	0		•	0							
Corn	0	0	0		0	0								0	н.	N	٦	0		٣	0							
Crabgrass	4	-	0		Н	0								0	σ	10	7	9		10	4							_
Giant foxtail	വ	~	Н		0	0								0	σ	10	ထ	7		Q	ស							••
Morningglory	7	~	0		0	0								0	10	9	m	ო		10	7							_
Nutsedge	0	0	0		0	0								0	0	•	٠	•		,	0		•					
Rape	0	10	0		0	0								0	σ	0	œ	10		10	เรา							
Redroot pigweed	7	10	0	0	0	0	0	0	0	1 10	10	10	თ	0	10	σ	∞	σ	10	10	7	2	10	o,	0	6	0	_
Soybean	0	0	0		0	0								0	m	0	ч	-		7	0							
Sugarbeets	0	10	н		0	0								0	10	7	9	9		10	œ				• •			_
Velvetleaf	0	S	0		0	0								0	10	10	œ	7		10	7							
Wheat	0	0	0		0	0								0	m	ო	4	7		7	0							_
Wild oats	ч	m	0		0	0								0	ω	0	9	4		Ŋ	0							
TABLE B					ၓ	COMPOUND	JUND	_																				
Rate 125 g/ha	65	99	67 (89	69	70 7	71 7	72 7	73 74	4 75	5 76	5 77	78															
Preemergence																												
B. signalgrass	0	თ	σ		δ	0																						
Bedstraw	0	7	6	Ŋ	0	0	7		œ	9 0			0															
Blackgrass	0	m	7		4	0																						
Cocklebur	0	0			~	0																						
Corn	0	~	4		0	0																						
Crabgrass	0	σ	0		σ	0																						
Giant foxtail	0	ч	0		œ	0																						
Morningglory	0	m	10		œ	0																						
Nutsedge	0	•	•		0	0																						
Rape	0	0	σ		ω	0																						
Redroot pigweed	0	6	10	• •	10	0																						

						32	1	-	(9	, ,	4 α	•		10		, ,	. 0	α	'	•	0	4	σ	4	٠ ٦	-
						31	1	٣	~	. 4	0	ع 1	· ~	7	٠.	1 0	. (*)	0	α	, α	·	4	4	10	,	-	7
						30	!	Н	M		C	· LC	, _—	-	ľ	·	~	0	4	7	-	4	~	10	LC.	-	74
						29		m	N	~	~	ی ا	~ ~	4	-	ı ۳	&	0	00	∞	-	-	(1)	6	m	~ ~	7
						28		7	m	~	4	7	~ ~	m	~	ı m	m	0	6	. α	~	ហ	4	0	. m	ന	4
						27		ო	٦	ω	7		~ ~	m	0	m	Ŋ	~	∞	7	0	2	ហ	σ	Ŋ	m	٣
						26		-	0	-	0	~ ~	-	-	0	-	m	0	m	9	0	0	ന	m	-	0	0
						25		7	٣	σ	m	6	~	7	m	ന	10	-	10	10	က	m	4	10	œ	~	က
						24							~														
						23		4	4	6	9	ი	~	7	7	~	9	0	10	6	٣	4	œ	10	σ	ო	2
						22		Ŋ	4	,	5	ω	m	9	ო	9	10	0	10	10	ო	ო	9	10	8	4	2
						21		က	ო	2	m	7	က	٣	ന	٦	ω	~	6	œ	m	9	9	9	7	4	4
						20		7	0	4	7	マ	ന	7	0	~	m	0	ო	ß	0	0	4	က	4	~	7
						19		Н	0	~	Н	7	_	-	0	0	m	0	7	7	0	0	~	7	Н	0	0
						18		~	7	7	7	9	~	Н	Н	-	m	0	4	9	Н	9	ო	7	S	Н	ო
0	0	0	0	0		17		4	4	œ	ო	4	~	4	m	~	7	0	7	9	4	7	ო	6	7	ო	m
0	0	0	0	0	Ę	16		-	7	ന	Ч	4	۲	7	0	Н	•	0	н	Ŋ	~	-	က	ထ	ч	0	0
0	0	0	0	0	COMPOUND	15		4	9	9	9	0	'n	9	9	7	œ	0	Q	9	9	7	0	6	Ŋ	4	9
0	10	∞	Ŧ	7	ີ່ວິ	14		~	4	4	Н	7	~	7	~	-	7	0	S	œ	4	ထ	4	7	സ	0	0
0	0	0	0	0		13		ß	7	7	ო	9	ო	က	0	7	7	0	9	6	0	7	4	6	4	7	က
-	0	4	4	თ		12		4	7	7	7	•	7	7	0	7	6	0	7	σ	-	4	ന	7	7	က	ന
ന	10	4	0	7		11		က	•	ω	7	7	က	7	٠	7	7	Н	თ	9	•	•	S	σ	ω	~	N
0	ന	9	സ	က		10		7	-	œ	Н	9	~	7	Н	7	ហ	0	ω	0	0	9	ဖ	œ	9	7	7
0	0	0	0	0		σ		Ŋ	ß	10	ന	σ	က	σ	4	4	10	0	თ	10	Ŋ	8	œ	10	10	m	m
			Н			9		•	0	S	0	2	က	വ	0	•	സ	7	Φ	2	Н	m	9	7	7	Н	0
-	10	7	Н	9		2		m	7	ဖ	က	S	7	7	0	7	m	0	ω	σ	-	m	ന	ה	9	7	m
			က			ず		-1	4	9	m	Ŋ	7	4	0	7	œ	0	σ	Φ	~	S	9	0	Ŋ	⊣ .	0
0	10	4	-	4		7		•	m	σ	ന	œ	7	œ	0	7	Φ	0	0	7	m	സ	9	σ	ω	7	m
0	0	0	0	0		Н		m	٠	σ	7	7	4	4	•	ന	Ť	•	0	0	•	•	ω	10	7	7	4
Soybean	Sugarbeets	Velvetleaf	Wheat	Wild oats	TABLE B	Rate 62 g/ha	Postemergence	B. signalgrass	Barnyardgrass	Bedstraw	Blackgrass	Cocklebur	Corn	Crabgrass	Ducksalad	Giant foxtail	Morningglory	Nutsedge	Rap	Redroot pigweed	Rice	S. Flatsedge	Soybean	Sugarbeets	Velvetleaf	Wheat	Wild oats

TABLE B										S	COMPOUND	R																	
Rate 62 g/ha	33 3	34	35 3	36 3	37 3	8	4	0 41	1 42	43	44	45	46	47 ,	49 5	50 5	1 52	53	54	59	9	61	62	63	64	65	99		
Postemergence																													
B. signalgrass	1	н	-	н	0					4	ო	0		7	7						~	m	0	4	4	7	~		
Barnyardgrass	-	0	0	0	0							0		~	Ŋ						~	7	٦	Н	7	0	(M		
Bedstraw	0	0	9	9	⊣							0		Q	σ						8	∞	m	N	m	0	~		
Blackgrass	0	0	Н		0							0		Ŋ	S						1 −1	m	Н	~	4	0	~		
Cocklebur	m	~	7		-							0		7	~						m	m	~	Н	9	-	m		
Corn	-		-		-							0		m	ุ๊						~	7	Н	0	٦.	-	, ,-		
Crabgrass	0	0	7		0							0		7	2						~	ന	~	m	4	-	~		
Ducksalad	0	0	0		0							0		ო	잭						-	0	0	0	4	0	· ~		
Giant foxtail	0	0	-	0	0	0	0	0	9 7	ω	8	0	က	4	7	_	8 7	-	2	9	~	7	-	~	-		~		
Morningglory	~	-	-									0		9	~						.7	ស	, m	~	7		2		
Nutsedge	0	0	0		0							0									0	0	0	0	0	0	0		
Rape	9	7	9		-						•	0		10	0						m	9	N	m	m	•	· m		
Redroot pigweed	Н	-	ო		_							0		6	6						S	œ	ω	æ	∞	~	œ		
Rice	~	-	0		0							0		٣	ო						0	0	0	0	Н	0	0		
S. Flatsedge	ო	~	႕		0							0		7	4						4	ო	m	4	ω	0	v		
Soybean	г		7		0							0		ω	9						7	4	-	0	~	-	Ŋ		
Sugarbeets	10	&	6		н							0		σ	σ						ω	יסי	0	10	1 0		ے ۱		
Velvetleaf	⊣	러	-		0						œ	0		7	œ						~	7	0	3	0		4		
Wheat	0	0	0		0						က	0		S	4						~	~	-	0	,	٠.	٠,		
Wild oats	н	0	7		0						ず	0		9	Ŋ		8				~	m	· ~	ı m	, w		1 (1		
TABLE B				ບ	OMP.	COMPOUND	۵						TABLE		д					Č	à W	COMPOINT	_						
Rate 62 g/ha	9 /9	89	69 7	707	71 7	72 73	3 74	1 75	9/ 9	77	78		Rate	a	62	q/ha		67 6	9	6	0 71	1 72	73	3 74	75	76	77	78	
Postemergence													Pre	eme	Preemergence	ice								•	•		-	2	
B. signalgrass	വ	~									0		Ω.	Sig	Signalgras	C)	00	œ		œ	_					_	_	<	
Barnyardgrass	ო	~			~						0		Bed	Bedstraw	. X)									٠ د	، د	-	
Bedstraw	σ	S									0		Bla	ckg	Blackgrass			٣										· c	
Blackgrass	Ŋ	~		0							0		S	Cocklebur	bur												· c	· c	
Cocklebur	7	ო		Н							0		Corn	ď				4									· c	· c	
Corn	4		7	-	7	2	2 1	7	1	Н	0		Cra	Crabgrass	288			9	m	9		. %					, c	· c	
Crabgrass	7	ń		0							0		Gia	ant	foxtail	ail		7				. R	10		. ~	0	0	0	
)		,	,	

Ducksalad	3	0										_	MO	rnir	Morningglory	ory		ω	က	œ	0	7	7	ო	0				0
Giant foxtail	Ŋ	Н										C	N	Nutsedge	ge			•	0	0	0			0	0				0
Morningglory	1	8										6	Rape	рe				7	7	7	0	7	な	7	0				0
Nutsedge	0	0										C	Re	Redroot		pigweed	seq	თ	œ	8	0	9	7	6	0				0
Rape	ဖ	9										6	S.	Soybean	ın			Н	0	0	0	0	0	0	0				0
Redroot pigweed	σ	σ										c	S	gark	Sugarbeets	ι Ω		ტ	თ	თ	0	7	œ	6	0				0
Rice	Н	0										C	Ve	lvet	Velvetleaf	44		œ	N	•	0		ო	7	0				0
S. Flatsedge	ഗ	Ŋ	7	0	0	٣	ო	0	0	0		0	Æ	Wheat				ო	-	Н	0	Н	0	0	0	0	0	0	0
Soybean	7	ო										e	W.	1d	oats			ო	4	4	0	0	, , ,	7	0				0
Sugarbeets	6	10										0																	
Velvetleaf	œ	9										0																	
Wheat	ო	0										0																	
Wild oats	S	7										0																	
TABLE B										ၓ	OMP	OUNDO	_																
Rate 62 g/ha	7	~	7	2	9	9 1	10 1	11 1	12 1	3	4 1	14 15 16	5 17	18	19	20 2	21 2	22 23	3 24	4 25	5 26	5 27	7 28	3 29	30	31	32		
Preemergence																													
B. signalgrass	σ	•	•	ო											0	0	7												
Bedstraw	œ	10	•	~											0	0	0												
Blackgrass	ထ	ო	9	7											0	Н	٦												
Cocklebur	~	0	0	0											0	0	0												
Corn	7	0	0	0											0	0	0												
Crabgrass	10	δ	m	7											0	0	ო												
Giant foxtail	10	10	9	7											0	0	₂												
Morningglory	10	7	H	0											0	0	н												
Nutsedge	0	0	0	0											0	0	0												
Rape	10	10	~	വ											0	0	0												
Redroot pigweed	10	10	ო	œ	0	თ	ო	თ	7	7	0	9	4	0	0	0	7	6	σ	0		0	2 5	0	2	7	α		
Soybean	ત	0	0	٦											0	0	0												
Sugarbeets	10	10	н	œ											0	0	7												
Velvetleaf	9	9	•	7											0	0	4												
Wheat	Н	-	0	н											0	0	0												
Wild oats	8	9	7	ന											0	-	7												

TABLE B										Ŭ	COMI	COMPOUND	Р															
Rate 62 g/ha	33	34	35	36	37	38	39	40	41	42 4	43 4	44 4	45 4	46 47	7 49	9 50	51	52	53	54	59	9	61	62	63	64 (65 (99
Preemergence																												
B. signalgrass	0	0	0	0	0	0	0	0			S										7	7	S	7	4	œ	0	6
Bedstraw	0	0	0	0	0	0	0				œ										ო	0	m	0	7	· m	0	
Blackgrass	0	0	0	0	0	0	0	0			8										7	٦	⊣	-	~	· LO	0	ורי
Cocklebur	0	0	0	0	0	0	0	0	0	٠,	ન	7	0	10	1 0	0	3	1	0	•	0	0	0	0	-	-	0	. 0
Corn	0	0	0	0	0	0	0	0			Н										0	0	Н	0	0	٣	0	0
Crabgrass	0	0	0	0	0	0	0	0			ထ										∞	0	က	~	٣	6	0	و ،
Giant foxtail	0	0	0	0	0	0	0	0			7										σ	~	∞		~		0	
Morningglory	0	0	0	0	0	0	0	0			σ										9	Н	•	-	7	4	0	~ ~
Nutsedge	0	0	0	0	0	0	0	0			0										0	0	0	0	0	0	0	0
Rape	0	0	0	0	0	0	0	0			œ										2	0	4	0	က	m	0	0
Redroot pigweed	0	0	0	0	0	0	0	0			2										ω	9	∞	œ	∞	σ	0	7
Soybean	0	0	0	0	0	0	0	0			Н										Н	0	0	0	0	0	0	0
Sugarbeets	0	0	0	0	0	0	0	7			2										10	9	10	œ	10	g	0	6
Velvetleaf	0	0	0	0	0	0	0	0			2										7	-	0	Н	7	4	0	
Wheat	0	0	0	0	0	0	0	0			7										Н	0	щ	0	8	0	0	0
Wild oats	0	0	0	0	0	0	0	0			9										7	0	4	-	m	ო	0	~ ~

TEST C

5

10

15

20

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to plants that were grown for various periods of time before treatment (postemergence application) using a sandy loam soil mixture.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include arrowleaf sida (Sida rhombifolia), barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), common ragweed (Ambrosia elatior), corn (Zea mays), cotton (Gossypium hirsutum), eastern black nightshade (Solanum ptycanthum), fall panicum (Panicum dichotomiflorum), field bindweed (Convolvulus arvensis), giant foxtail (Setaria faberii), hairy beggarticks (Bidens pilosa), ivyleaf morningglory (Ipomoea hederacea), johnsongrass (Sorghum halepense), ladysthumb smartweed (Polygonum persicaria), lambsquarters (Chenopodium album), large crabgrass (Digitaria sanguinalis), purple nutsedge (Cyperus rotundus), redroot pigweed (Amaranthus retroflexus), soybean (Glycine max), surinam grass (Brachiaria decumbens), velvetleaf (Abutilon theophrasti) and wild poinsettia (Euphorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 14 to 21 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table C, were based upon a 0 to 100 scale where 0 was no effect and 100 was complete control. A dash response (-) means no test result.

TABLE C	COMPOUND	TABLE C	COMPOUND
Rate 140 g/ha	9	Rate 70 g/ha	9
POSTEMERGENCE		POSTEMERGENCE	
Arrowleaf sida	90	Arrowleaf sida	90
Barnyardgrass	25	Barnyardgrass	25
Cocklebur	80	Cocklebur	80
Common ragweed	10	Common ragweed	30
Corn	15	Corn	15
Cotton	90	Cotton	80
E. blacknightsh	100	E. blacknightsh	1 -
Fall panicum	30	Fall panicum	20
Field bindweed	80	Field bindweed	70
Giant foxtail	30	Giant foxtail	15
H. beggarticks	80	H. beggarticks	70
I. morningglory	100	I. morningglory	60
Johnsongrass	50	Johnsongrass	
Ladysthumb	30	Ladysthumb	30
Lambsquarters	100	Lambsquarters	80
Large crabgrass	50	Large crabgrass	40
Purple nutsedge	5	Purple nutsedge	: 5
Redroot pigweed	· -	Redroot pigweed	70

Contract	50					Car	. .			-		
Soybean	20						bean inam			50		
Surinam grass Velvetleaf	90						vetl		188	70		
Wild poinsettia	100					MII	d po	TIIBE	LLIA	. 90	,	
TABLE C				C	OMPO	UND						
Rate 140 g/ha	1	2	3	9	15	21	23	42	43	46	52	66
PREEMERGENCE												
Arrowleaf sida	100	100	0	95	85	90	100	100	100	100	100	100
Barnyardgrass	100	30	0	50	85	5	10	100	50	50	40	5
Cocklebur	0	10	0	0	5	0	5	60	-	5	20	0
Common ragweed	100	50	0	75	75	20	90	85	50	80	100	30
Corn	10	30	0	10	10	0	5	5	55	5	50	0
Cotton	100	15	0	50	10	20	75	60	10	40	70	0
E. blacknightsh	95	90	0	95	95	85	100	95	100	100	100	30
Fall panicum		100	0	100	100	90		100			-	100
Field bindweed	50	100	0	90	100	40	100	100	100	100	100	90
Giant foxtail	100	100	0	100	100		100			100	100	0
H. beggarticks	100	100	0	85	-	40	100	90	100	100	30	0
I. morningglory	20	5	0	50	65	0	40	100	100	50	100	10
Johnsongrass	100	60	0	95	100	5	80	85	30	50	80	10
Ladysthumb	95	-	-	90	90	5	80	95	-	50	-	70
Lambsquarters	100	100	0	100	60	90	100			100		100
Large crabgrass		100	0	100		100	100	100	100	100	100	100
Purple nutsedge	0	0	0	0	0	0	0	0	0	-	10	0
Redroot pigweed		100	0	100		100		100	100	100	100	100
Soybean	0	40	0	25	10	5	10	35	55	20	70	0
Surinam grass	95	35	0	90	80	10	60	70	10	25	70	20
Velvetleaf	100	50	0	100	70	50	50		100		100	0
Wild poinsettia	50	45	0	50	20	5	10	85	60	20	100	0
TABLE C				C	OMPOU	JND						
Rate 70 g/ha	. 1	2	3	9	15	21	23	42	43	46	52	66
PREEMERGENCE												
Arrowleaf sida	95	20	· 0	95	85	85	100	95	100	90	100	5
Barnyardgrass	75	5	0	50	35	0	5	10	30	10	40	5
Cocklebur	0	-	0	0	0	0	-	-	-	10	0	0
Common ragweed	100	0	0	95	20	0	30	85	40	20	60	0
Corn	10	0	0	5	5	0	0	5	30	0	45	0
Cotton	60	5	0	35	10	5	75	60	0	5	0	0
E. blacknightsh	90	5	0	100	95	80	100	95	100	100	80	10
Fall panicum	90	5	0	90	80	0	100	85	100	100	100	80
Field bindweed	50	30	0	100	100	40	100	100	100	70	100	80
Giant foxtail	100	5	0	100	100	100	100	80	100	100	85	0
H. beggarticks	100	40	0	85	-	0	50	-	5	100	0	0
I. morningglory	15	5	0	50	20	0	-	70	100	50	100	10
Johnsongrass	95	5	0	85	85	0	20	70	30	45	50	5
Ladysthumb	90	30	-	85	20	-	80	85	-	10	-	-
Lambsquarters	100	-	0	100	20		100			100		0
Large crabgrass	100	5	0	100	100	100	100	100	100	100	100	100
Purple nutsedge	0	0	0	0	0	0	0	0	0	-	5	0
Redroot pigweed	100	5	0	100	85	80	100	100	100	100	100	100
Soybean	0	0	0,	20	10	0	5	5	5	0	55	0
Surinam grass	90	10	0	80	50	5	45	55	5	5	40	5
Velvetleaf	75	5	0	95	20	50	-	80	100	80	100	0

119

Wild poinsettia	10	5	0	50	0	5	5	30	50	15	40	0
TABLE C Rate 35 g/ha		COM	POU 9	ND								
POSTEMERGENCE Arrowleaf sida			^									
		8										
Barnyardgrass Cocklebur		6										
Common ragweed			-									
Corn		1										
Cotton		7										
E. blacknightsh		10	-									
Fall panicum	'	-	5									
Field bindweed		6										
Giant foxtail		1										
H. beggarticks		6										
I. morningglory		5										
Johnsongrass		10										
Ladysthumb		20										
Lambaquartera		7										
Large crabgrass		2										
Purple nutsedge			5									
Redroot pigweed		6										
Soybean		4 (
Surinam grass		-	5									
Velvetleaf		10										
Wild poinsettia		90										
waar paaraaa												
TABLE C				C	OMPO	JND						
Rate 35 g/ha	1	2	3	9	15	21	23	42	43	46	52	66
PREEMERGENCE												
Arrowleaf sida	85	10	0	90	80	70	80	95	100	100	100	5
Barnyardgrass	20	0	0	10	10	· 0	0	5	10	5	30	0
Cocklebur	.0	0	0	0	0	0	-	0	0	0	-	0
Common ragweed	80	0	0	80	10	0	10	20	0	10	40	0
Corn	5	0	0	0	0	0	0	5	0	0	0	0
Cotton	30	0	0	10	5	0	5	30	0	0	0	0
E. blacknightsh	90	5	0	95	70	40	95	90	100	80	40	0
Fall panicum	90	0	0	85	40	10	55	50	100	60	100	80
Field bindweed	65	0	0	50	65	-	20	95	100	10	100	40
Giant foxtail	100	0	0	90	70	85	85	70	100	100	70	0
H. beggarticks	20	40	0	85	-	0	50	0	0	0	0	0
I. morningglory	15	0	0	20	15	0	5	30	20	45	5	5
Johnsongrass	50	5	0	65	35	0	5	70	10	5	40	0
Ladysthumb	25	-	-	35	0	0	5	90	-	25	-	0
Lambaquartera	100	0	0	95	0	0	60	85	100	60	100	0
Large crabgrass	100	0	0	95	100	80	100	80	100	80	100	80
Purple nutsedge	0	0	0	0	0	0	0	0	0	-	0	0
Redroot pigweed	100	5	0	100	60	-	100	100	100	70	100	100
Soybean	0	0	0	20	0	0	5	0	0	0	0	0
Surinam grass	50	0	0	35	20	0	5	50	0	0	5	5
Velvetleaf	20	0	0	75	5	0	50	40	100	50	70	0
Wild poinsettia	0	0	0	10	0	0	5	25	10	0	-	0

TEST D

5

10

15

20

25

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to plants that were in the 1- to 4-leaf stage (postemergence application). A mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include alfalfa (Medicago sativa), annual bluegrass (Poa annua), blackgrass (Alopecurus myosuroides), black nightshade (Solanum nigra), chickweed (Stellaria media), common poppy (Papaver rhoeas), deadnettle (Lamium amplexicaule), downy brome (Bromus tectorum), field violet (Viola arvensis), galium 2 (Galium aparine), green foxtail (Setaria viridis), Italian ryegrass (Lolium multiflorum), jointed goatgrass (Aegilops cylindrica), kochia (Kochia scoparia), lambsquarters (Chenopodium album), lentil (Lens culinaris), littleseed canarygrass (Phalaris minor), pea (Pisum sativum), potato (Solanum tuberosum), rape (Brassica napus), redroot pigweed (Amaranthus retroflexus), Russian thistle (Salsola kali), scentless chamomile (Matricaria inodora), sorghum (Sorghum vulgare), spring barley (Hordeum vulgare), sugar beet (Beta vulgaris), sunflower (Helianthus annuus), ivyleaf speedwell (Veronica hederaefolia), spring wheat (Triticum aestivum), winter wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat (Avena fatua), windgrass (Apera spica-venti) and winter barley (Hordeum vulgare).

Treated plants and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table D, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

TABLE D	C	OMPOUND	TABLE D		COMP	רואוזר
Rate 250 g/ha PREEMERGENCE	1	22	Rate 125 g/ha POSTEMERGENCE	1	22	52
Alfalfa	-	-	Annual bluegras	-	70	50
Annual bluegras	85	50	Barley (winter)	10	10	10
Barley (winter)	40	10	Blackgrass	30	20	10
Blackgrass	70	40	Blk nightshade	50	100	65
Blk nightshade	100	50	Chickweed	70	100	80
Chickweed	90	30	Common poppy	100	100	100
Common poppy	100	70	Deadnettle	70	90	98
Deadnettle	90	10	Downy brome	10	20	20
Downy brome	100	10	Field violet	80	100	-
Field violet	85	-	Galium	70	90	60
Galium	100	30	Green foxtail	20	35	30
Green foxtail	100	100	I. Ryegrass	10	10	10

I. Ryegrass	100	75		Jointed goatgra 10 15	10
Jointed goatgra	50	10		Kochia 70 70	70
Kochia	85	60		Lambsquarters 50 60	80
Lambsquarters	70	70		LS canarygrass 20 60	20
Lentil	-	-		Rape 85 90	85
LS canarygrass	70	50		Redroot pigweed 50 70	70
Pea	-	-		Russian thistle 50 80	_
Potato	-	-		Scentless chamo 60 80	70
Rape	100	50		Spring Barley 10 20	10
Redroot pigweed	70	70		Spring Wheat 20 20 :	10
Russian thistle	100	-		Sugar beet 100 100 10	00
Scentless chamo	85	70		Sunflower 20 20 '	70
Sorghum	-	-		Wheat (winter) 10 10 :	10
Spring Barley	40	2		Wild buckwheat 20 20	80
Spring Wheat	_	5		Wild mustard 100 100 1	00
Sugar beet	100	80		Wild oat 30 65	10
Sunflower	30	30		Windgrass 30 - !	50
Ivyleaf speedwe	100	-			
Wheat (spring)	30	-			
Wheat (winter)	40	5			
Wild buckwheat	85	30			
Wild mustard	98	30			
Wild oat	90	30			
Windgrass	100	30			
_					
TABLE D	(COMPO	CINUC	TABLE D COMPOU	
Rate 125 g/ha	1	22	52	Rate 62 g/ha 1 22 5	52
PREEMERGENCE				POSTEMERGENCE	
Alfalfa	-	-	-	Annual bluegras 50 30	20
Annual bluegras	100	100	100		10
Barley (winter)	30	20	60		10
Blackgrass	60	60	90	240 003000000000000000000000000000000000	65
Blk nightshade	100	60	90		70
Chickweed	85	70	85		00
Common poppy	100	70	-		00
Deadnettle	85	70	90	20	20
Downy brome	60	100	50	Field violet 100 100	-
Field violet	85	-	-		65
Galium	100	100	-		10
Green foxtail	100		100		10
I. Ryegrass	100	65	70		10
Jointed goatgra	70	20	40		70
Kochia	100	65	100		80
Lambsquarters	70	70	100		10
Lentil	-	-	-		98
LS canarygrass	85	60	90	-	60
Pea	-	-	-	Russian thistle 60 80	-
Potato	-	-	-	· ·	60
Rape	100	100	100	-2	10
Redroot pigweed	75	100	100	-2	10
Russian thistle	-	-	85		00
Scentless chamo	75	70	-		50
Sorghum	-	-	-	• • • • • • • • • • • • • • • • • • • •	10
Spring Barley	20	10	80	Wild buckwheat 0 20	70
Spring Wheat	20	10	70	Wild mustard 100 100	98

	85	100	100			Wild oat	20	20	10
Sugar beet		10	0			Windgrass	20	30	20
Sunflower	50	-	-			WINGGLASS		50	20
Ivyleaf speedwe	50	_	_						
Wheat (spring)			60						
Wheat (winter)	20	10	100			•			
Wild buckwheat	85 100		100						
Wild mustard		30	100						
Wild oat	60		100						
Windgrass	100	70	100						
TABLE D		CON	1POUI	ΔI/		TABLE D	CON	MPOUN	ID
Rate 62 g/ha	1	22	46	51	52	Rate 31 g/ha	1	52	
PREEMERGENCE	_					POSTEMERGENCE			
Alfalfa	_	_	_	_	_	Annual bluegras	50	20	
Annual bluegras	60	20	90	100	100	Barley (winter)	10	10	
Barley (winter)	20	0	2	90	50	Blackgrass	10	10	
Blackgrass	50	30	60	80	80	Blk nightshade	_	60	
Blk nightshade	90	10	50	95	40	Chickweed	_	50	
Chickweed	85	40	70	90	80	Common poppy	100	100	
Common poppy	100		100	-	-	Deadnettle		100	
Deadnettle	65	0	90	80	70	Downy brome	10	20	
Downy brome	50	0	70	80	40	Field violet	100		
Field violet	70		100	65	-	Galium	60	50	
Galium	100	20		100	_	Green foxtail	10	10	
Green foxtail	100			100	80	I. Ryegrass	10	10	
I. Ryegrass	40	0	60	90	70	Jointed goatgra	10	10	
Jointed goatgra	20	ō	60	90	40	Kochia	60	70	
Kochia	100	10	60	80	80	Lambsquarters	60	80	
Lambsquarters	70	60	70	70	90	LS canarygrass	10	10	
Lentil	-	-	-		-	Rape	100	65	
LS canarygrass	60	20	90	90	60	Redroot pigweed	70	60	
Pea Pea	-		_	_	-	Russian thistle	_		
Potato	_	_	-	_	_	Scentless chamo	60	50	
Rape	75			100	60	Spring Barley	10	10	
Redroot pigweed	70	60	70	70	90	Spring Wheat	10	10	
Russian thistle		-	30	70	85	Sugar beet		100	
Scentless chamo	70	60	70	70	-	Sunflower	10	20	
Sorghum	-	-	-	-	_	Wheat (winter)	10	10	
Spring Barley	20	0	5	80	60	Wild buckwheat	0	50	
Spring Wheat	0	o	10	70	70	Wild mustard	100	70	
Sugar beet	100	30	100			Wild oat	20	10	
Sunflower	35	20	30	40	0	Windgrass	20	10	
Ivyleaf speedwe			100		-				
Wheat (spring)	100	_	-	100					
Wheat (winter)	10	0	2	55	60				
Wild buckwheat	80	0	40	90	60				
Wild Buckwheat Wild mustard	100	30	100		90				
	100	0	70	95	50				
Wild oat	100		100						
Windgrass	TOO	20	100	TOO	TOO				

Rate 31 g/ha 1 46 51 52 Rate 16 g/ha 1 52 Rate 16 g/ha 16 Rate 16 g/ha 1 52 Rate 16 g/ha 16 Rate 16 g/ha 16 Rate 16 g/ha 1 52 Rate 16 g/ha 16 Rate 16 g/ha 1 52 Rate 16 g/ha 16 Rale 16 Rate 16 g/ha 16 Rale 16 Rate 16 g/ha 16 Raple 20 Rate 16 g/ha 16 Rate 16 g/ha Rate 16 g/ha Rate 16 g/ha Rate 16 g/ha Rate 16 g/			aos	anorm	775	TABLE D COMPOUND
PREEMERGENCE Alfalfa Annual bluegras 75 60 85 50 Barley (winter) 5 10 Barley (winter) 10 50 50 50 Blackgrass 10 10 Blackgrass 30 10 60 50 Blk nightshade 60 55 Blk nightshade 55 50 100 10 Chickweed 80 30 Chickweed 55 70 80 30 Common poppy 50 60 Common poppy 80 100 100 - Deadnettle 85 45 Deadnettle 60 90 80 50 Downy brome 2 10 Downy brome 30 70 80 30 Field violet 20 - Field violet 20 85 65 - Galium 0 40 Galium 20 60 100 - Green foxtail 5 10 Green foxtail 60 80 100 50 I. Ryegrass 5 5 I. Ryegrass 10 60 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Jointed goatgra 5 10 Lambsquarters 10 65 70 90 Ls canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea	TABLE D	_				
Alfalfa		т	45	21	52	2, 2, 2,
Annual bluegras 75 60 85 50 Barley (winter) 10 50 50 50 Blackgrass 30 10 60 50 Blk nightshade 55 50 100 10 Chickweed 55 70 80 30 Common poppy 80 100 100 - Deadnettle 85 45 Deadnettle 60 90 80 50 Downy brome 30 70 80 30 Green foxtail 60 80 100 50 I. Ryegrass 5 5 I. Ryegrass 10 60 60 30 Jointed goatgra 10 50 60 30 Kochia 40 60 85 50 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 75 70 70 90 Redroot pigweed 75 70 70 90 Spring Barley 10 30 60 60 Sunflower 10 10 40 Windgrass 5 10 Windgrass 5 50 Barley (winter) 5 10 Blackgrass 10 10 Chickweed 80 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 Chickweed 80 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 Chickweed 80 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 Chickweed 80 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 An 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 An 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 An 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 An 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 An 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 An 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 An 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 An 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 An 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 An 30 Common poppy 50 60 Blk nightshade 60 55 Blackgrass 10 10 An 30 Common poppy 50 60 Blackgrass 10 10 An 30 Common poppy 50 Blackgrass 10 10 An 30 Common poppy 50 60 Blackgrass 10 10 An 30 Common poppy 50 Blackgrass 10 Common poppy 50 Blackgrass 10 An 30 Field violet 20 Balackgrass 10 Common poppy 50 Balac		_	_	_	_	
## Annual Pulsylass						1mm:car ====================================
Balackgrass 30 10 60 50 Blk nightshade 60 55 Blk nightshade 55 50 100 10 Chickweed 80 30 Common poppy 50 60 Common poppy 80 100 100 - Deadnettle 85 45 Downy brome 2 10 Downy brome 30 70 80 30 Field violet 20 - Field violet 20 85 65 - Galium 0 40 Galium 20 60 100 - Green foxtail 5 10 Green foxtail 60 80 100 50 I. Ryegrass 5 5 I. Ryegrass 10 60 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Kochia 0 70 Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 ELS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Spring Barley 10 30 70 50 Spring Barley 5 10 Spring Barley 10 30 70 50 Spring Barley 5 10 Spring Barley 10 30 70 50 Spring Barley 5 10 Spring Barley 10 30 70 50 Spring Barley 5 10 Spring Barley 10 30 70 50 Spring Barley 5 10 Spring Barley 10 30 70 50 Spring Wheat 5 10 Spring Barley 10 30 70 50 Spring Wheat 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -						
Blk nightshade 55 50 100 10 Chickweed 80 30 Chickweed 55 70 80 30 Common poppy 50 60 Common poppy 80 100 100 - Deadnettle 85 45 Deadnettle 60 90 80 50 Downy brome 2 10 Downy brome 30 70 80 30 Field violet 20 - Field violet 20 85 65 - Galium 0 40 Galium 20 60 100 - Green foxtail 5 10 Green foxtail 60 80 100 50 I. Ryegrass 5 5 I. Ryegrass 10 60 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Kochia 0 70 Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Redroot pigweed 75 70 70 90 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -						22001.3202
Chickweed 55 70 80 30 Common poppy 50 60 Common poppy 80 100 100 - Deadnettle 85 45 Deadnettle 60 90 80 50 Downy brome 2 10 Downy brome 30 70 80 30 Field violet 20 - Field violet 20 85 65 - Galium 0 40 Galium 20 60 100 - Green foxtail 5 10 Green foxtail 60 80 100 50 I. Ryegrass 5 5 I. Ryegrass 10 60 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Kochia 0 70 Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 Ls canarygrass 10 10 Ls canarygrass 10 10 Ls canarygrass 10 10 Ls canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 60 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -						22.0 11291101101
Common poppy 80 100 100 - Deadnettle 85 45 Deadnettle 60 90 80 50 Downy brome 2 10 Downy brome 30 70 80 30 Field violet 20 - Field violet 20 85 65 - Galium 0 40 Galium 20 60 100 - Green foxtail 5 10 Green foxtail 60 80 100 50 I. Ryegrass 5 5 I. Ryegrass 10 60 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Kochia 0 70 Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -						011201111000
Deadnettle 60 90 80 50 Downy brome 2 10 Downy brome 30 70 80 30 Field violet 20 - Field violet 20 85 65 - Galium 0 40 Galium 20 60 100 - Green foxtail 5 10 Green foxtail 60 80 100 50 I. Ryegrass 5 5 I. Ryegrass 10 60 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Kochia 0 70 Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Ivyleaf speedwe 50 100 100 -						P-PP1
Downy brome 30 70 80 30 Field violet 20 - Field violet 20 85 65 - Galium 0 40 Galium 20 60 100 - Green foxtail 60 80 100 50 I. Ryegrass 5 5 I. Ryegrass 10 60 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Kochia 0 70 Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Ivyleaf speedwe 50 100 100 -						
Field violet 20 85 65 - Galium 0 40 Galium 20 60 100 - Green foxtail 5 10 Green foxtail 60 80 100 50 I. Ryegrass 5 5 I. Ryegrass 10 60 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Kochia 0 70 Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Ivyleaf speedwe 50 100 100 -						201117 2201110
Galium 20 60 100 - Green foxtail 5 10 Green foxtail 60 80 100 50 I. Ryegrass 5 5 I. Ryegrass 10 60 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Kochia 0 70 Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -						
Green foxtail 60 80 100 50 I. Ryegrass 5 5 I. Ryegrass 10 60 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Kochia 0 70 Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -						04224
I. Ryegrass 10 60 60 30 Jointed goatgra 5 10 Jointed goatgra 10 50 60 30 Kochia 0 70 Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -	• · · · · · · · · · · · · · · · · · · ·					
Jointed goatgra 10 50 60 30 Kochia 0 70 Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Tvyleaf speedwe 50 100 100 -	Green foxtail					, -5
Kochia 40 60 85 50 Lambsquarters 0 70 Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil - - - Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea - - - - Russian thistle 40 - Potato - - - - Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum - - - -	I. Ryegrass	10				0023300 3020322 0 21
Lambsquarters 10 65 70 90 LS canarygrass 10 10 Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -	Jointed goatgra	10				
Lentil Rape 65 65 LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -	Kochia	40				20
LS canarygrass 20 70 80 30 Redroot pigweed 0 45 Pea Russian thistle 40 - Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -	Lambsquarters	10	65	70	90	
Pea	Lentil	-	-	-	-	Mapo
Potato Scentless chamo 30 30 Rape 30 50 100 50 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Tvyleaf speedwe 50 100 100 - - Windgrass 5 10	LS canarygrass	20	70	80	30	Medicor Piguesia
Rape 30 50 100 50 Spring Barley 5 10 Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -	Pea	_	-	-	-	
Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -	Potato	_	-	-	-	20011012012
Redroot pigweed 75 70 70 90 Spring Wheat 5 10 Russian thistle 10 30 60 30 Sugar beet 45 100 Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum - - - - Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -	Rape	30	50	100	50	opizing ballor
Scentless chamo 30 65 65 - Sunflower 5 40 Sorghum Wheat (winter) 5 10 Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -	Redroot pigweed	75	70	70	90	ppress = -
Scentless tham 30 03 05 05 Wheat (winter) 5 10 Sorghum Wheat (winter) 5 10 10 10 10 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -	Russian thistle	10	30	60	30	buguz zeee
Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -	Scentless chamo	30	65	65	-	
Spring Barley 10 30 70 50 Wild buckwheat 0 60 Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 - - - - -	Sorghum	-	-	_	-	
Spring Wheat 0 30 60 60 Wild mustard 85 60 Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 - -	•	10	30	70	50	Wild buckwheat 0 60
Sugar beet 30 70 100 100 Wild oat 5 10 Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -		0	30	60	60	Wild mustard 85 60
Sunflower 10 10 40 0 Windgrass 5 10 Ivyleaf speedwe 50 100 100 -		30	70	100	100	Wild oat 5 10
Ivyleaf speedwe 50 100 100 -		10	10	40	0	Windgrass 5 10
	•	50	100	100	-	
wheat (spring) io	Wheat (spring)	10	_	-	-	
Wheat (winter) 10 40 30 50		10	40	30	50	
Wild buckwheat 40 40 90 40		40	40	90	40	
Wild mustard 60 90 100 90			90	100	90	
Wild oat 20 50 80 40					40	
Windgrass 60 40 100 80			40	100	80	

TEST E

10

Seeds, tubers, or plant parts of alexandergrass (Brachiaria plantaginea), annual bluegrass (Poa annua), arrowleaf sida (Sida rhombifolia), barnyardgrass (Echinochloa crusgalli), bermudagrass (Cynodon dactylon), citrus (Citrus sinensis), common chickweed (Stellaria media), common purslane (Portulaca oleracea), common ragweed (Ambrosia elatior), common groundsel (Senecio vulgaris), dallisgrass (Paspalum dilatatum), goosegrass (Eleusine indica), green foxtail (Setaria viridis), guineagrass (Panicum maximum), itchgrass (Rottboellia exaltata), johnson grass (Sorghum halepense), kochia (Kochia scoparia), large crabgrass (Digitaria sanguinalis), leafy spurge (Euphorbia esula), pitted morningglory (Ipomoea lacunosa), purple nutsedge (Cyperus rotundus), quackgrass (Agropyron repens),

Russian thistle (Salsola kali), sandbur (Cenchrus echinatus), sourgrass (Trichachne insularis), Spanishneedles (Bidens bipinnata), sugarcane (Saccharum officinarum), surinam grass (Brachiaria decumbens) and tall mallow (Malva sylvestris) were planted into greenhouse pots of flats containing greenhouse planting medium. Plant species were grown grown in separate pots or individual compartments. Preemergence applications were made within one day of planting the seed or plant part. Postemergence applications were applied when the plants were in the two to four leaf stage (three to twenty cm).

Test chemicals were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied preemergence to the soil surface, postemergence to the plants or as a post directed spray to plants and soil at the base of the target species. Untreated control plants and treated plants were placed in the greenhouse and visually evaluated for injury 13 to 21 days after herbicide application. Plant response ratings, summarized in Table E, are based on a 0 to 100 scale where 0 is no injury and 100 is complete control. A dash (-) response means no test result.

15

10

TABLE E	COMPOUND	TABLE E	COMPOUND
Rate 500 g/ha	2	Rate 500 g/ha	2
PREEMERGENCE		POSTEMERGENCE	
A. bluegrass	-	Alexandergrass	95
Alexandergrass	100	Bermudagrass	75
Arrowleaf sida	-	Com. purslane	70
B. signalgrass	-	Com. ragweed	75
Barnyardgrass	-	Com. groundsel	75
Bermudagrass	100	Dallisgrass	95
Com. purslane	100	Goosegrass	95 ·
Com. ragweed	100	Guineagrass	90
Com. chickweed	-	Itchgrass	95
Com. groundsel	100	Johnsongrass	95
Dallisgrass	100	Large crabgrass	90
Goosegrass	100	P. morninglory	90
Green foxtail	-	Purple nutsedge	. 0
Guineagrass	-	Sandbur	80
Itchgrass	100	Sourgrass	80
Johnsongrass	100	Spanishneedles	70
Kochia	-	Sugarcane	25
Large crabgrass	100	Surinam grass	80
Leafy spurge	-	Tall Mallow	100
P. morninglory	100		
Purple nutsedge	0		
Quackgrass	-		
Russian Thistle	•		
Sandbur	100		
Sourgrass	100		
Spanishneedles	100		
Sugarcane	- .		
Surinam grass	100		
Tall Mallow	100		

TABLE E			CO	MPOU	ND CIN				
Rate 250 g/ha	1	2	9	15	23	44	52		
POSTEMERGENCE									
Alexandergrass	90	80	10	20	80	10	75		
Bermudagrass	30	50	10	20	10	0	35		
Com. purslane	40	70	80	80	50	70	75		
Com. ragweed	70	75	10	10	40	20	80		
Com. groundsel	75	40	30	20	40	10	100		
	90	90	20	50	40	10	75		
Dallisgrass					75	20	75		
Goosegrass	70	90	10	30					
Guineagrass	70	50	35	40	75	85	85		
Itchgrass	85	90	30	85	80	10	40		
Johnsongrass	90	80	85	100	65	10	20		
Large crabgrass	85	80	10	40	40	10	80		
P. morninglory	80	90	50	5	40	40	80		
Purple nutsedge	0	0	0	0	0	0	50		
Sandbur	10	50	0	0	20	0	60		
Sourgrass	30	40	30	25	30	20	50		
Spanishneedles	10	_	15	10	10	10	60		
Sugarcane	-	25	_	_	_	_	_		
Surinam grass	30	70	10	40	_	_	75		
Tall Mallow	90	100	90	98	90	90	75		
Tail Mallow	50	100		70	,,,	-	,,		
TABLE E		CO	MPOU	ND CIV					
Rate 125 g/ha	2	9	15	44	52				
POSTEMERGENCE									
Alexandergrass	30	10	10	10	10				
Bermudagrass	35	10	20	0	35				
Com. purslane	65	80	75	70	50				
-	75	10	5	10	50				
Com. ragweed	20	25	0	10	100				
Com. groundsel	70		5						
Dallisgrass		10		10	5				
Goosegrass		5	20	10	5				
Guineagrass	50	35	20	85	80				
Itchgrass	75	30	80	5	35				
Johnsongrass	60	85	98	5	35				
Large crabgrass	75	5	10	10	5				
P. morninglory	80	40	5	30	80				
Purple nutsedge	0	0	0	0	40				
Sandbur	10	0	0	0	5				
Sourgrass	20	10	20	10	10				
Spanishneedles	40	10	5	10	65				
Sugarcane	20		_		-				
Surinam grass	50	10	35	_	75				
Tall Mallow	100	90	85	85	90				
Idil Mallow	100	90	03	65	30				
TABLE E			(COMP	DUND				
Rate 250 g/ha	1	2	9	15	23	42	44	46	67
PREEMERGENCE	· -		-						
A. bluegrass	_	100	_	100	_	_	_	_	_
Alexandergrass			100		98	90	50	60	95
Arrowleaf sida		100		100	-	-	_	-	
B. signalgrass		100	_	98	_	_	_	_	_
b. signargrass	_	100	_	20	_	_	_	_	_

Barnyardgrass	-	100	-	75	-	-	-	-	-	
Bermudagrass	100	100	100	98	98	98	100	100	100	
Com. purslane	100	100	100	100	100	100	100	100	100	
Com. ragweed	100	100	100	100	100	90	100	100	100	
Com. chickweed	-	100	-	100	-	-	-	-	-	
Com. groundsel	100	100	100	100	100	100	100	100	100	
Dallisgrass	100	100	100	100	100	100	100	100	100	
Goosegrass	100	100	100	100	100	100	100	100	100	
Green foxtail	-	100	-	100	-	-	-	-	-	
Guineagrass	100	100	100	100	100	100	100	98	100	
Itchgrass	95	95	100	80	70	70	40	40	80	
Johnsongrass	100	100	90	100	90	95	75	0	80	
Kochia	-	-	-	100	-	-	-	-	-	
Large crabgrass	100	100	100	100	100	100	60	100	100	
Leafy spurge	-	100	-	98	-	-	-	-	-	
P. morninglory	100	100	100	90	80	75	50	65	90	
Purple nutsedge	50	0	0	0	0	30	0	0	10	
Quackgrass	-	100	-	95	-	-	-	-	_	
Russian Thistle	-	-	-	95	-	-	-	-	-	
Sandbur	100	100	20	100	98	70	80	30	75	
Sourgrass	100	100	100	100	100	100	100	100	100	
Spanishneedles	100	100	60	100	100	90	98	90	50	
Sugarcane	-	-	-	10	-	-	-	-	-	
Surinam grass	100	100	100	100	-	100	-	55	100	
Tall Mallow	100	100	100	98	90	100	98	100	98	
-										
			,	COMPO	רואוזר					
TABLE E	1	2	9	15	23	42	44	46	52	67
Rate 125 g/ha PREEMERGENCE		4	,	1,5	2.3	72		40	22	0.
A. bluegrass	100	100	-	100	_	_	_	_	_	_
Alexandergrass	90	100	65	100	85	90	40	60	75	70
Arrowleaf sida	100	100	-	100	-		-	-	-	-
B. signalgrass	100	100	_	95	_	_	_	_	-	_
Barnyardgrass	80	100	_	40	_	_	_	_	_	_
Bermudagrass	100	100	100	98	98	98	98	100	100	90
Com. purslane	100	100	100	100	100	100	100	100	100	100
	100	100	98	98	100	90	98	98	100	100
Com. ragweed Com. chickweed	100	100	_	98	-	-	-	-		
	100	100	100	100	100	100	100	100	100	95
Com. groundsel Dallisgrass	100	100	100	100	90	100	90	100	90	80
_	100	100	100	98	98	100	98	98	100	100
Goosegrass		100	100	100	-	100	-	-	100	100
Green foxtail		100	90	100	00	100	100	100	100	100
Guineagrass			100	60	70	80	30	40	80	65
Itchgrass	50	75 85		90	80	90	60	0	75	50
Johnsongrass	90	- 05	85	95	-	90	80	_	75	50
Kochia	100					100	70	100	100	98
Large crabgrass		100	100	100		100	70	100	100	96
Leafy spurge	100		-	-	-		-	-	7.00	-
P. morninglory		100	75	75	50	65	50	65	100	90
Purple nutsedge	0	0	0	0	0	30	0	0	50	5
Quackgrass	100	100	-	95	-	-	-	-	-	-
Russian Thistle	-	-	-	95	-	_	_	-		-
Sandbur	95	90	10	50	80	70	70	10	50	65
Sourgrass	100	100	100	100	100	100	100	100	100	100

Spanishneedles	90	100	30		100	100	70	90	35	50
Sugarcane Surinam grass	- 98	100	20	10 100	-	100	-	40	80	- 75
Tall Mallow	100	100	100	100	85	98	9.8	100	100	90
Tall Mailow	100	100	100	100	03	70	,,,	100	100	,
TABLE E	COMP	CINIC			TABI	LE B		(COMP	DUND
Rate 64 g/ha	2				Rate	a :	32 g		2	
POSTEMERGENCE	_				POS	CEME	RGEN	CE		
Alexandergrass	30						ergra		20	
Bermudagrass	20					-	grasi		10	
Com. purslane	65					_	rsla		65	
Com. ragweed	-					-	wee		50	
Com. groundsel	20					_	ound	sel	0	
Dallisgrass	40				Dal:	lisg	cass		10	
Goosegrass	75				Goos	segra	288		60	
Guineagrass	-				Guir	ıeagı	cass		5	
Itchgrass	40					ıgras			40	
Johnsongrass	60				Johr	song	grass	3	10	
Large crabgrass	35				Larg	ge ci	rabgi	rass	35	
P. morninglory	80				P. n	norn	inglo	ory	80	
Purple nutsedge	0				Purp	ole r	utse	edge	0	
Sandbur	10				Sand	lbur			0	
Sourgrass	20				Sour	gras	38		10	
Spanishneedles	60				Spar	ıishı	need]	Les	60	
Sugarcane	20				Suga	arcar	1e		20	
Surinam grass	50				Suri	lnam	gras	38	35	
Tall Mallow	95				Tall	Ma]	llow		98	
mani e e		COX	MPOUI	TD.						
TABLE E	-	2	12001 9	15	23	42	44	46	52	67
Rate 64 g/ha PREEMERGENCE	1	2	•			42	22	40	32	0,
A. bluegrass	100	100	-	100	. -	-	-	~	-	-
Alexandergrass	75	90	65	80	0	40	40	0	75	40
Arrowleaf sida	98	100	-	50	-	-	-	-	-	-
B. signalgrass	90	100	-	60	-	-	-	-	-	-
Barnyardgrass	70	95	-	0	-	-	-	-	-	-
Bermudagrass		100	98	98	98	95	80	98	90	90
Com. purslane		100		100	100	100	100	100	100	100
Com. ragweed	100	100	100	100	70	75	85	98	80	95
Com. chickweed	95	100	-	85	-	-	-	-	-	-
Com. groundsel	100	100	100	98	100	100	100	100	98	50
Dallisgrass	100	100		100	85	95	80	98	80	70
Goosegrass	100	100	100	98	98	100	98	90	100	90
Green foxtail	100	100	-	100	-	-	-	-	-	-
Guineagrass	100	50	85	100	98	95	80	85	80	100
Itchgrass	20	75	85	30	60	65	0	0	70	40
Johnsongrass	40	98	75	90	80	90	0	0	50	35
Kochia	100	-	-	75	-	-	-	-	-	-
Large crabgrass	100	100	100	100	98	90	60	98	100	95
Leafy spurge	95	98	-	65	-	-	-	-	-	-
P. morninglory	80	100	60	40	0	30	30	65	100	75
Purple nutsedge	0	0	0	0	0	30	0	0	30	5
	-			-	_		•	_		
Quackgrass	80	90	-	65	-	-	-	-	-	-
Russian Thistle						-	-			-

Sandbur	65	65	0	20	. 80	40	60	10	10	60
Sourgrass	100	100	100	100	98	100	100	100	100	100
Spanishneedles	80	100	20	30	70	20	60	85	20	0
Sugarcane	-	0	-	0	-	-	-	-	-	-
Surinam grass	. 35	90	10	20	-	50	-	0	70	75
Tall Mallow	100	100	100	100	85	98	80	100	98	90
TABLE E		.COI	MPOUI	ND.						
Rate 32 g/ha	1	2	9	15	23	42	44	46	52	67
PREEMERGENCE	_	_	_							
A. bluegrass	90	80	_	100	_	_	_	_	_	_
Alexandergrass	10	50	30	75	0	20	0	0	20	25
Arrowleaf sida	98	98	_	65	_	_	_	-	_	_
B. signalgrass	20	65	_	35	-	_	_	_	_	_
Barnyardgrass	5	20	-	0	-	_	_	_	-	_
Bermudagrass	100	98	70	98	90	90	30	70	70	70
Com. purslane	98	100	100	100	100	100	80	100	100	80
Com. ragweed	90	100	10	100	50	50	40	0	35	90
Com. chickweed	30	100	_	65	-	-	_	-	-	-
Com. groundsel	98	100	98	100	100	90	98	100	35	0
Dallisgrass	98	90	85	95	80	70	65	65	35	40
Goosegrass	100	95	90	98	98	98	98	85	20	80
Green foxtail	100	90	-	100	-	-	-	-	-	-
Guineagrass	90	·50	20	90	80	95	20	60	60	80
Itchgrass	20	70	100	10	30	35	0	0	35	40
Johnsongrass	5	65	55	60	70	10	30	0	-	35
Kochia	95	-	-	60	-	-	-	-	-	-
Large crabgrass	100	98	70	98	98	50	0	90	98	90
Leafy spurge	75	60	-	35	-	-	-	-	-	-
P. morninglory	70	100	45	5	0	-	20	65	50	60
Purple nutsedge	0	0	0	0	0	20	0	0	5	0
Quackgrass	65	20	-	65	-	-	-	•		-
Russian Thistle	-	-	-	70	-	-	-	-	-	-
Sandbur	20	20	0	10	85	0	0	0	. 0	60
Sourgrass	100	100	85	100	98	100	80	98	95	98
Spanishneedles	40	80	0	50	60	20	20	65	20	0
Sugarcane	-	-	-	0	-	-	-	-	-	-
Surinam grass	65	50	0	20	-	40	-	0	30	35
Tall Mallow	100	98	100	98	80	98	80	100	60	80

CLAIMS

What is claimed is:

1. A compound selected from Formula I, geometric or stereoisomers thereof,

5 N-oxides thereof and agriculturally suitable salts thereof,

15 A is

W is N or CR11;

X, Y and Z are independently N or CR^{12} ;

15

30

35

R¹ and R² are independently H, halogen, cyano, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₂-C₄ alkoxyalkyl, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkoxyalkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₄ alkynyloxy, S(O)_nR¹³, C₂-C₄ alkylthioalkyl, C₂-C₄ alkylsulfonylalkyl, C₁-C₄ alkylamino or C₂-C₄ dialkylamino;

R³ is H, F, Cl, Br, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl or CO₂R¹⁴;

R⁴ is H, F, C₁-C₄ alkyl, OH or OR¹⁴;

R³ and R⁴ can be taken together with the carbon to which they are attached to form C(=O) or C(=NOR¹⁴);

10 R⁵ is halogen, cyano, SF₅, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or S(O)_nR¹³;

 R^6 and R^{10} are independently H, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or $S(O)_n R^{13}$;

R⁷ is halogen, cyano, SF₅, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or S(O)_nR¹³;

 \mathbb{R}^8 is \mathbb{C}_1 - \mathbb{C}_4 alkyl or \mathbb{C}_1 - \mathbb{C}_4 haloalkyl;

 R^9 is H, halogen, cyano, SF_5 , C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy or $S(O)_nR^{13}$;

20 R¹¹ is H, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or S(O)_nR¹³;

R¹² is H, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or S(O)_nR¹³;

each R¹³ is independently C₁-C₄ alkyl or C₁-C₄ haloalkyl;

each R¹⁴ is independently C₁-C₄ alkyl; and each n is independently 0, 1 or 2.

2. A compound of Claim 1 wherein

R1 and R2 are independently H, C1-C4 alkyl or C1-C4 alkoxy;

 R^5 and R^7 are independently halogen, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or $S(O)_n R^{13}$;

R⁶ is H or F;

R⁸ is C₁-C₄ alkyl;

 R^9 is halogen, cyano, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or $S(O)_n R^{13}$;

R¹⁰ is H, halogen, cyano or C₁-C₄ haloalkyl;

R¹¹ is H, halogen, cyano or C₁-C₄ haloalkyl;

 R^{12} is H, halogen, cyano or C_1 - C_4 haloalkyl; and n is 0.

PCT/US98/22088

3. A compound of Claim 2 wherein W is N: R⁵ and R⁷ are independently C₁-C₄ haloalkyl or C₁-C₄ haloalkoxy; and R⁹ is halogen, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl or S(O)_nR¹³. A compounds of Claim 3 wherein 5 4. R^1 is C_1 - C_4 alkyl or C_1 - C_4 alkoxy; R² is H; R3 and R4 are independently H, F or methyl; R⁵ and R⁷ are independently C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy; and R^9 is C_1 - C_2 haloalkoxy, C_1 - C_2 haloalkyl or $S(O)_n R^{13}$. 10 A compound of Claim 4 wherein 5. J is J-1, J-5 or J-7. A compound of Claim 3 wherein 6. R³ and R⁴ can be taken together with the carbon to which they are attached to form C(=0). 15 A compound of Claim 6 wherein 7. R^1 is C_1 - C_4 alkyl or C_1 - C_4 alkoxy; R² is H: R⁵ and R⁷ are independently C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy; and R^9 is C_1 - C_2 haloalkoxy, C_1 - C_2 haloalkyl or $S(O)_n R^{13}$. 20 8. A compound of Claim 7 wherein J is J-1 or J-5. 9. The compound of Claim 1 selected from the group consisting of: (a) 5-ethyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[3-(trifluoromethyl)-1H-pyrazol-1-yl]pyrimidine; 25 (b) 5-ethyl-4-[[3-(trifluoromethyl)phenyl]methyl]-2-[3-(trifluoromethyl)-1Hpyrazol-1-yl]pyrimidine; (c) 5-methyl-2-[4-(trifluoromethyl)phenyl]-4-[[3-(trifluoromethyl)phenyl]methyl]pyrimidine; 30 (d) 5-methyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[4-(trifluoromethyl)phenyl]pyrimidine; (e) 5-methyl-4-[[3-(trifluoromethoxy)phenyl]methyl]-2-[3-(trifluoromethyl)-1H-pyrazol-1-yl]pyrimidine; (f) [5-methyl-2-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl][3-35 (trifluoromethyl)phenyl]methanone; (g) [5-methyl-2-[3-(trifluoromethyl)-1H-pyrazol-1-yl]-4-pyrimidinyl][3-

(trifluoromethyl)phenyl]methanone; and

WO 99/28301 PCT/US98/22088

- (h) 5-methyl-4-[[3-(trifluoromethyl)phenyl]-2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]pyrimidine.
- 10. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
- 5 11. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.

INTERNATIONAL SEARCH REPORT

Ini tional Application No PCT/US 98/22088

		<u> </u>		
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07D239/26 C07D213/50 C C07D401/14 C07D405/06 C	C07D403/04 C07D403/06		
According to	o International Patent Classification (IPC) or to both nat	tional classification an	id IPC	
	SEARCHED			
IPC 6	cumentation searched (classification system followed CO7D A01N	by classification symi	oots)	
Documentat	ion searched other than minimum documentation to the	extent that such doc	cuments are included in t	the lields searched
Electronic de	ala base consulted during the international search (nar	me of data base and,	where practical, search	tërms used)
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropri	iate, of the relevant pa	assages	Relevant to claim No.
X	CHEMICAL ABSTRACTS, vol. 1 1993 Columbus, Ohio, US: abstract no. 264649p, page 331; XP002091616 see abstract & JP 05 213878 A (NIPPON S 24 August 1993			1,2,10,
x	EP 0 459 662 A (I.C.I.) 4 see the whole document	December 19	191	1,10,11
Furth	er documents are listed in the continuation of box C.	Х	Patent family members	are listed in annex.
"A" documer conside "E" earlier de filing de "L" documer which is citation "O" documer other m"P" documer later the Date of the a	nd which may throw doubts on priority claim(s) or seried to establish the publication date of another or other special reason (as specified) not retenting to an oral disclosure, use. exhibition or reason in the priority date the international filling date but an the priority date claimed crual completion of the international search	or cities "X" doc ca inv "Y" doc ca do me in '3" doc	priority date and not in or eved to understand the pra- vention sument of particular relevi- umot be considered noval- volve an inventive step will sument of particular relevi- umot be considered to invocument is combined with ents, such combination be the art. sument member of the sai- tte of mailing of the interm	
29	January 1999		15/02/1999	
Name and m	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk, Tel. (-31-70) 340-2040, Tx. 31 651 epo nl, Fax: (-31-70) 340-3016	Aut	Francois, J	

INTERNATIONAL SEARCH REPORT

information on patent family members

int ional Application No PCT/US 98/22088

Patent document cited in search repo		Publication date	1	Patent family member(s)	Publication date		
EP 459662	Α	04-12-1991	AT	141600 T	15-09-1996		
			AU	7707091 A	05-12-1991		
			CA	2043332 A	01-12-1991		
			CN	1058019 A	22-01-1992		
			CS	9101548 A	15-01-1992		
			DE	69121472 D	26-09-1996		
			DE	69121472 T	09-01-1997		
			DK	459662 T	10-02-1997		
		,	FI	912601 A	01-12-1991		
			JP	5117264 A	14-05-1993		
			PT	97788 A			
			ÜS	5185339 A			