# 우주전파재난 AI 경진대회 개발모델 개요서

#### □ 참가팀

| 팀명    | AJAI           |  |  |  |
|-------|----------------|--|--|--|
| 팀원 성명 | 남기현, 전준서(총 2명) |  |  |  |
| 소속    | 아주대학교 전자공학과    |  |  |  |

### □ 모델 개발 개요서

- 1. 데이터 셋 구성
- 1) 주어진 데이터 셋
- ACE, DSCOVR 위성 데이터의 태양풍 데이터
- 국내 지자기 관측소 3곳의 지구자기장 관측 데이터

"Kp는 미국 NOAA SWPC(Space Weather Prediction Center)에서 위도 44 – 60도 사이의 *8개 지자기 관측소*에서의 구한 K 지수를 통합하여 산출하고 있다."[1]

우주전파센터 홈페이지의 Kp지수 관련 내용에서 "8개 지자기 관측소" 를 가지고 Kp지수를 계산한다고 명시되어 있으므로 ACE, DSCOVR 위성 데이터의 태양풍 데이터는 사용하지 않고 국내 지자기 관측소 3곳의 지구자기장 관측 데이터만을 사용

- 2) 데이터 셋 전처리
- 2) 1. 데이터 보간

 $GGG\_df[['X','Y','Z']] = GGG\_df[['X','Y','Z']].interpolate(method='linear', \ limit=5)$ 

 $GGI\_df[['X','Y','Z']] = GGI\_df[['X','Y','Z']].interpolate(method='linear', \ limit=5)$ 

 $GGJ\_df[['X','Y','Z']] = GGJ\_df[['X','Y','Z']].interpolate(method='linear', \ limit=5)$ 

결측치가 있는 부분에 선형보간을 적용함.

(단, 연속적으로 매우 길게 결측치가 형성되어 있는 경우 선형 보간을 할 시 오차가 커지므로 threshold를 5로 지정함.)

## 2) - 2. 입력데이터 셋

총 데이터 개수 : 4207680개 (각 좌표축)



| ~11    |      |    |  |
|--------|------|----|--|
| 23376, | 180, | 3) |  |

| 지역 | 데이터 | 데이터형    |        | 데이터형            |  |
|----|-----|---------|--------|-----------------|--|
| 시탁 | 네이더 | 네이디엉    |        | 네이디엉            |  |
|    | Вх  | 4207680 |        |                 |  |
| 강릉 | Ву  | 4207680 |        | (23376, 180, 3) |  |
|    | Bz  | 4207680 |        |                 |  |
|    | Bx  | 4207680 | 변환     |                 |  |
| 이천 | Ву  | 4207680 | 긴원<br> | (23376, 180, 3) |  |
|    | Bz  | 4207680 |        |                 |  |
|    | Bx  | 4207680 |        |                 |  |
| 제주 | Ву  | 4207680 |        | (23376, 180, 3) |  |
|    | Bz  | 4207680 |        |                 |  |

# 2) - 3. 출력 데이터 셋

## 정답데이터



### 2) - 4. 결측치 처리

보간을 threshold=5로 진행하였으므로 여전히 결측치가 존재함. 따라서 22376개의 데이터 셋을 모두 검사하여 결측치가 존재하는 데이터는 모두 삭제함. (단, 삭제시 정답 데이터와 일대일 매핑하여 함께 삭제해야 함.)

```
def delete_nan(X, y):
    delete_idx = []
    for idx, X_ in enumerate(X):
        if np.isnan(X_).sum() != 0:
             delete_idx.append(idx)
    return np.delete(X,delete_idx, axis = 0), to_categorical(np.delete(y,delete_idx, axis = 0))
GI_X = np.concatenate([GGG_X, GGI_X], axis=2)
GJ_X = np.concatenate([GGG_X, GGJ_X], axis=2)
IJ_X = np.concatenate([GGI_X, GGJ_X], axis=2)
GIJ_X = np.concatenate([GGG_X, GGI_X, GGJ_X], axis=2)
# 조합 X
GGG_X, GGG_y = delete_nan(GGG_X, y)
GGI_X, GGI_y = delete_nan(GGI_X, y)
GGJ_X, GGJ_y = delete_nan(GGJ_X, y)
# 조합 O
GI_X, GI_y = delete_nan(GI_X, y)
GJ_X, GJ_y = delete_nan(GJ_X, y)
IJ_X, IJ_y = delete_nan(IJ_X, y)
GIJ_X, GIJ_y = delete_nan(GIJ_X, y)
```

입력 데이터 셋의 변화 : (22376, 180, 3) -> (22376-α, 180, 3)

### 2) - 5. 데이터 feature 추출

A.

### 위키피디아의 Kp 지수에 계산에 관한 설명

"The maximum positive and negative deviations during the 3 hour period are added together to determine the total maximum fluctuation."[2]

#### 구글 번역

총 최대 변동을 결정하기 위해 3시간 동안의 최대 양수 및 음수 편차를 합산합니다.

"변동" 이라는 단어에 초점을 맞춰 변동은 곧 변화율을 의미 180개의 시계열 데이터를 미분하기로 결정.

현재의 시점과 n분 뒤의 시점을 뺌

(미분에 정의에 의하면 간격인 h를 나눠줘야 하지만 모두 동일한 간격으로 설정되어 있으므로 나누지 않아도 무방함.) => gap 변수

## [Example] Gap=2인 경우 데이터 처리

원본 데이터

|         | 1 | 2 | 3 | 4 | ••• | 177 | 178 | 179 | 180 |
|---------|---|---|---|---|-----|-----|-----|-----|-----|
| [M] 데이터 |   |   |   |   |     |     |     |     |     |
|         | 1 | 2 | 3 | 4 | ••• | 177 | 178 | G   | ар  |

INI GIOLEI

В.

180분의 데이터를 모두 사용하는 것과 시점이 많이 흐른 데이터를 없애는 것에 대해 어떤 것이 더 효율적인지 확인. => distance 변수

## A, B를 고려

 $G_diff_X = GGG_X[:,0:180\text{-gap-distance,:}] - GGG_X[:,gap:180\text{-distance,:}]$   $I_diff_X = GGI_X[:,0:180\text{-gap-distance,:}] - GGI_X[:,gap:180\text{-distance,:}]$ 

 $J_diff_X = GGJ_X[:,0:180-gap-distance,:] - GGJ_X[:,gap:180-distance,:]$ 

 $Gl\_diff\_X = Gl\_X[:,0:180\text{-}gap\text{-}distance,:] - Gl\_X[:,gap:180\text{-}distance,:]$ 

 $GJ_diff_X = GJ_X[:,0:180-gap-distance,:] - GJ_X[:,gap:180-distance,:]$ 

 $IJ_diff_X = IJ_X[:,0:180-gap-distance,:] - IJ_X[:,gap:180-distance,:]$ 

 $GIJ_diff_X = GIJ_X[:,0:180-gap-distance,:] - GIJ_X[:,gap:180-distance,:]$ 

C. 평균, 최대, 최소, 표준편차 추출 distance와 gap을 고려하여 전처리한 이후 180개의 시계열 데이터에 대해 평균, 최대, 최소, 표준편차를 추출

```
def get_feature(X):
    feature = []

for sample in X:
    tmp = sample[;;].max(axis=0).tolist() + sample[;;].min(axis=0).tolist() + sample[;;].mean(axis=0).tolist() +
sample[;;].std(axis=0).tolist()
    feature.append(tmp)

return np.array(feature)

G_diff_feature_X = get_feature(G_diff_X)
I_diff_feature_X = get_feature(I_diff_X)
J_diff_feature_X = get_feature(J_diff_X)

Gl_diff_feature_X = get_feature(Gl_diff_X)

IJ_diff_feature_X = get_feature(J_diff_X)

Gl_diff_feature_X = get_feature(J_diff_X)

Gl_diff_feature_X = get_feature(J_diff_X)
```

### 2. 적용 알고리즘

## 2.1 적용 머신러닝 기법(Random Forest)



케라스에서 제공하는 Random Forest를 사용하였으며 파라미터는 default값을 사용함

### 2.2 입력 조합 설정

- ① 강릉(Bx, By, Bz)
- ② 이천(Bx, By, Bz)
- ③ 제주(Bx, By, Bz)
- ④ 강릉(Bx, By, Bz) + 이천(Bx, By, Bz)
- ⑤ 강릉(Bx, By, Bz) + 제주(Bx, By, Bz)
- ⑥ 이천(Bx, By, Bz) + 제주(Bx, By, Bz)
- ⑦ 강릉(Bx, By, Bz) + 이천(Bx, By, Bz) + 제주(Bx, By, Bz)

총 7개의 조합이 나올 수 있으며 해당 조합에 대해 모두 테스트

## 3. 모델 구성

## 케라스에서 제공하는 Random Forest 적용

```
def test_rf(X, y):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

rf = RandomForestClassifier(random_state=0)
    rf.fit(X_train, y_train.argmax(axis=1))

pred = rf.predict(X_test)

return rf, accuracy_score(y_test.argmax(axis=1), pred)

rf = []
    acc = []
    for idx, name in enumerate(total_data.keys()):
        rf_ acc_ = test_rf(total_data[name][0], total_data[name][1])
        rfappend(rf_)
        acc.append(acc_)
        print("({}) 至曾 {} Accuracy : {} %".format(idx, name, round(acc_ 4))
```

## 4. 모델 정확도(accuracy)

데이터 셋을 train 셋과 test 셋으로 나누어 train 셋으로 학습한 뒤 test 셋에 대한 Accuracy 측정

gap = 0 부터 48까지 증가시키며 7가지 입력 데이터 조합에 대해 test set Accuracy 측정

| Ga   | p=1     | Gap  | o=2     | Gap  | o=3     | Gap  | )=4     | Gap  | o=5     |
|------|---------|------|---------|------|---------|------|---------|------|---------|
| ACC1 | 0.67167 | ACC1 | 0.69031 | ACC1 | 0.70168 | ACC1 | 0.71669 | ACC1 | 0.73169 |
| ACC2 | 0.66424 | ACC2 | 0.70068 | ACC2 | 0.71526 | ACC2 | 0.72692 | ACC2 | 0.74344 |
| ACC3 | 0.68938 | ACC3 | 0.71778 | ACC3 | 0.72564 | ACC3 | 0.73744 | ACC3 | 0.73875 |
| ACC4 | 0.66477 | ACC4 | 0.69684 | ACC4 | 0.69891 | ACC4 | 0.72944 | ACC4 | 0.73616 |
| ACC5 | 0.69531 | ACC5 | 0.71575 | ACC5 | 0.72782 | ACC5 | 0.74454 | ACC5 | 0.75151 |
| ACC6 | 0.68983 | ACC6 | 0.7067  | ACC6 | 0.71662 | ACC6 | 0.72705 | ACC6 | 0.74491 |
| ACC7 | 0.69873 | ACC7 | 0.73044 | ACC7 | 0.73414 | ACC7 | 0.74683 | ACC7 | 0.75581 |

| Gap  | =39     | Gap  | =40     | Gap  | =41     | Gap  | =42     | Gap  | =43     |
|------|---------|------|---------|------|---------|------|---------|------|---------|
| ACC1 | 0.84129 | ACC1 | 0.83629 | ACC1 | 0.8372  | ACC1 | 0.83947 | ACC1 | 0.83174 |
| ACC2 | 0.8518  | ACC2 | 0.85569 | ACC2 | 0.84742 | ACC2 | 0.85326 | ACC2 | 0.84548 |
| ACC3 | 0.82001 | ACC3 | 0.82481 | ACC3 | 0.81826 | ACC3 | 0.8187  | ACC3 | 0.82132 |
| ACC4 | 0.8412  | ACC4 | 0.84273 | ACC4 | 0.83808 | ACC4 | 0.84325 | ACC4 | 0.84428 |
| ACC5 | 0.83883 | ACC5 | 0.83744 | ACC5 | 0.83883 | ACC5 | 0.84255 | ACC5 | 0.83976 |
| ACC6 | 0.84367 | ACC6 | 0.84119 | ACC6 | 0.8402  | ACC6 | 0.84913 | ACC6 | 0.84913 |
| ACC7 | 0.85677 | ACC7 | 0.86364 | ACC7 | 0.86416 | ACC7 | 0.86892 | ACC7 | 0.86205 |

gap이 42이고 ⑦번 데이터 조합일 때 ACC가 가장 높음.

distance = 0 부터 4까지 증가시키며 test set Accuracy 측정

| distar | distance=0 |      | nce=2   | distance=4 |         |  |
|--------|------------|------|---------|------------|---------|--|
| ACC1   | 0.83947    | ACC1 | 0.83129 | ACC1       | 0.82901 |  |
| ACC2   | 0.85326    | ACC2 | 0.84402 | ACC2       | 0.84014 |  |
| ACC3   | 0.8187     | ACC3 | 0.81346 | ACC3       | 0.80952 |  |
| ACC4   | 0.84325    | ACC4 | 0.83549 | ACC4       | 0.83394 |  |
| ACC5   | 0.84255    | ACC5 | 0.84069 | ACC5       | 0.83744 |  |
| ACC6   | 0.84913    | ACC6 | 0.84764 | ACC6       | 0.84169 |  |
| ACC7   | 0.86892    | ACC7 | 0.85579 | ACC7       | 0.84672 |  |

distance가 올라갈 수록 정확도가 낮아짐. 즉, **180분 데이터 모두 사용**하는 것이 ACC가 가장 높음.

# 최종모델(Gap=42, distance=0, 데이터조합 ⑦번)

| 구분    | 정확도(Accuracy) | 적용                 |
|-------|---------------|--------------------|
| train | 100.000%      | model=RandomForest |
| test  | 86.892%       | metrics=Accuracy   |

# 5. 참고 문헌

- [1] https://spaceweather.rra.go.kr/obsenv3.do
- [2] https://en.wikipedia.org/wiki/K-index