Design D and DA Control Valves

Design D and DA single-port, high-pressure valves (figure 1) are widely used in oil and gas production industries. These valves are especially useful for either throttling or on/off control of liquids or gases which are gritty, sticky, or which have a tendency to build up on internal valve parts. The Design DA valve is also useful in angle piping or other applications where a self-draining valve is desired.

Features

- Heavy-Duty Construction—Massive guiding (figure 2) positively aligns the valve plug in the seat ring for high pressure drop applications. The screwed-in seat ring completely encloses the seat ring gasket.
- Easy Maintenance—Screwed bonnet/body joint allows repair or maintenance with a minimum of tools.
- Severe Service Capability—Valve is available with VTC (ceramic) trim for service in very erosive applications. The valve plug is also available with a tungsten carbide tip and the seat ring can be fitted with a full-bore tungsten carbide insert for erosive service.
- Meets Variety of Specifications—Valve body and end connection constructions are available for API as well as ANSI standards.
- NACE Trim Standard—NACE trim and bolting materials are standard for all applications. These constructions comply with the recommendations of the National Association of Corrosion Engineers (NACE) MR0175.

Figure 1. Design D Valve with Type 657 Actuator

D and DA Valves

Contents

Features	1
NACE Standard MR0175 Compliance	2
Tables	
Valve Sizes, Port Diameters, and End Connections Rated Inlet Pressures and Temperatures Flow Down Pressure Drop Limits-	3
Ceramic Trim Only	3
(C _v at Maximum Valve Plug Travel)	
Installation	
Ordering Information	5
Dimensions	6
Coefficients	8
Specifications	12

NACE Standard MR0175 Compliance

Fisher's standard manufacturing processes and procedures assure that all materials used in control valves specified with sour service trim comply with the chemical and physical requirements of NACE standard MR0175.

This compliance yields a product of a very specific part control and material specification. Incoming raw materials are tightly controlled by specifications which cover chemical composition, forming, hardness, heat treatment, and finish. In addition, the

subsequent machining, welding, and heat treatment of the materials as they are processed into finished parts is strictly controlled. Due to this strict start-to-finish control, Fisher has a high degree of confidence that the parts and assemblies provided comply with NACE guidelines.

In most cases, it is unnecessary to request additional testing and documentation to assure compliance with the NACE standard. However, in those cases where documentation is required, the following can be provided: hardness test data; certificate of compliance to specification; heat treat documentation; or chemical and physical test data.

The requirements of the NACE standard are very specific and the application of the standard to control valve materials is quite complex. There are, however, some general guidelines that are always followed:

- All carbon steel valve bodies and bonnets are heat treated to a hardness of Rockwell C22 maximum.
- Martensitic and cast precipitation hardening stainless steel are not used.
 - Control valve packings are jam style only.
 - Valve stems are made from Nitronic 50.
- Primary trim materials are 316 stainless steel and CoCr-A (alloy 6).
- No machining operations that cause work-hardening of the materials are performed in the manufacturing process.
- Plating and coatings are used only over suitable base metals and are not intended for corrosion protection.
- Bolting in NACE Class III material is provided as standard. Bolting in NACE Class II material is available as an option for temperatures to 232°C (450°F).

Table 1. Valve Sizes, Port Diameters, and End Connections

			SCREWED	VALVE BODIE	ES	FLANGED VALVE BODIES					
VALVE	PORT DIAMETER			9000 psi	10,000 psi		ANSI		API		
SIZE, INCHES	(INCHES)	3600 psi	6000 psi	Only) Design DA) 600 and 1500		Class 900 and 1500	Class 2500	10,000 lb. Specs A, B, and C			
1	1/4, 3/8, 1/2, 3/4	X ⁽¹⁾	Х				X	X			
2	1/4, 3/8, 1/2 3/4, 1, 1-1/4	Х	Х	Х	Х	Х	Х	Х	Х		
1. 'X' indic	ates available construction.										

Table 2. Rated Inlet Pressures and Temperatures

VALVE SIZE,	TVDE	CLASS OR COLD WORKING	Р	RESSURE ⁽¹⁾	TEMPE	RATURE
INCHES	TYPE	PRESSURE LIMIT	bar	psi	°C	°F
		ANSI 900 and 1500	259	3750	38	100
		ANOI 300 and 1300	236	3425	232	450
4 0	0	ANSI 2500	431	6250	38	100
1 or 2	Screwed	ANSI 2500	394	5710	232	450
		9000	621	9000	38	100
		10,000	689	10,000	38	100
		ANSI 150	20.0	290	38	100
		ANSI 150	12.8	185	232	450
		ANSI 300	51.7	750	38	100
		ANSI 300	47.2	685	232	450
		ANSI 600	103.4	1500	38	100
		ANSI 000	94.5	1370	232	450
1 or 2	Flanged	ANSI 900 and 1500	259	3750	38	100
		ANOI 300 and 1300	236	3425	232	450
		ANSI 2500	431	6250	38	100
		ANSI 2500	394	5710	232	450
			689	Spec A 10,000	121	250
		API 10,000	689	Spec B 10,000	38	100
			689	Spec C 10,000	121	250
 LCC steel body per AS 	ME B16.34 except C5 st	teel for all API bodies.		·		·

Table 3. Flow Down Pressure Drop Limits - Ceramic Trim Only

VALVE SIZE,	SEAT RING DIAMETER, mm (INCHES)													
INCHES	6.4 (1/4)	9.5 (3/8)	12.7 (1/2)	19.1 (3/4)	25.4 (1)	31.8 (1-1/4)								
		Pressure Drop, bar												
1	414	414	414	193										
2	689	689	689	462	262	165								
			Pressure	Drop, psi										
1	6000	6000	6000	2800										
2	10,000	10,000	10,000	6700	3800	2400								

Table 4. Materials for Standard Trim Constructions

VALVE MATERIAL	BONNET MATERIAL	PLUG AND SEAT RING	VALVE STEM
LCC/HT	LF2 HT	S31600 (316 stainless steel)	Nitronic 50
WCC	LFZ III	hard faced with CoCr-A (Alloy 6)	NILIONIC 50

Table 5. Flow Coefficient (C_v at Maximum Valve Plug Travel)

VALVE SIZE,	PORT DIAMETER,	EQUAL PERCENTAGE DESIGN D	EQUAL PERCENTAGE DESIGN DA
INCHES	mm (INCHES)	Flow Up	Flow Down
	6.4 (1/4)	1.66	3.21
1	9.5 (3/8)	4.03	7.06
'	12.7 (1/2)	6.51	11.2
	19.1 (3/4)	12.3	16.8
	6.4 (1/4)	1.66	3.21
	9.5 (3/8)	4.03	7.06
2	12.7 (1/2)	6.82	12.1
2	19.1 (3/4)	14.1	21.2
	25.4 (1)	23.7	31.8
	31.8 (1-1/4)	34.5	44.9

Table 6. Port, Yoke Boss, Stem Diameters, and Rated Travel Specifications in mm (Inches)

VALVE	DODT		STANDARD			OPTIONAL	
SIZE, INCHES	PORT DIAMETER	Yoke Boss Diameter	Stem Diameter	Rated Travel	Yoke Boss Diameter	Stem Diameter	Rated Travel
1	6.4 (1/4) 9.5 (3/8)	54 (2-1/8)	9.5 (3/8)	19.1 (3/4)	71 (2-13/16)	12.7 (1/2)	19.1 (3/4)
'	12.7 (1/2) 19.1 (3/4)	34 (2-1/0)	9.3 (3/6)	13.1 (3/4)	90 (3-9/16)	19.1 (3/4)	19.1 (3/4)
2	6.4 (1/4) 9.5 (3/8) 12.7 (1/2) 19.1 (3/4) 25.4 (1) 31.8 (1-1/4)	71 (2-13/16)	12.7 (1/2)	19.1 (3/4)	90 (3-9/16)	19.1 (3/4)	19.1 (3/4)

Figure 2. Typical Constructions

D and DA Valves

Installation

Valve orientation of the Design D and DA does not affect operation, but to facilitate changing trim parts, the valve stem should be vertical with the actuator above the valve. Proper flow direction is indicated by the arrow on the valve.

Dimensions are shown in figures 3 and 4.

Ordering Information

Note: Fisher does not assume responsibility for the selection, use, or maintenance of any product. Responsibility for proper selection, use, and maintenance of any Fisher product remains solely with the purchaser and end-user.

When ordering, specify:

Application

- 1. Type of application
 - a. Throttling or on-off
 - b. Reducing or relief
- 2. Controlled fluid (include chemical analysis of fluid, if possible)
- 3. Specific gravity of controlled fluid
- 4. Fluid temperature

- 5. Range of flowing inlet pressure
- 6. Pressure drops
 - a. Range of flowing pressure drops
 - b. Maximum at shutoff
- 7. Flow rates
 - a. Minimum controlled flow
 - b. Normal flow
 - c. Maximum flow
- 8. Maximum permissible noise level, if critical
- 9. Shutoff classification required
- 10. Line size and schedule

Valve

Refer to the specifications. Review the description for each specification. Indicate the desired choice whenever there is a selection (■) to be made. Always indicate the body design being ordered as identified in the available configuration specification.

Actuator and Accessories

Refer to separate bulletins covering actuators and accessories for ordering information.

Table 7. Design D Dimensions

				ANSI				D—All Ratings			
FLANGED VALVE	Class 1	150 Class 300					Class 600				
SIZE,	A-Raised		Α				Α			Stem Size	
INCHES	Face	G	Raised Face	Ring-Type Joint	G	Raised Face	Ring-Type Joint	G	9.5 (3/8)	12.7 (1/2)	19.1 (3/4)
							mm				
1	206	46	219	232	46	232	232	46	173	192	179
2	267	70	267		70	286	289	70		217	213
							nches				
1	8.12	1.81	8.62	9.12	1.81	9.12	9.12	1.81	6.81	7.56	7.06
2	10.50	2.75	10.50		2.75	11.25	11.38	2.75		8.56	8.38

Table 8. Design D Dimensions

		ANSI							i			D—All Ratings		
FLANGED	Class 900 and 1500			Class 2500			10,000 lb.							
VALVE SIZE,	Α				Α			Α				Stem Size		
INCHES	Raised Face	Ring-Type Joint	G	Raised Face	Ring-Type Joint	G	Spec A	Spec B	Spec C	G	9.5 (3/8)	12.7 (1/2)	19.1 (3/4)	
							mm							
1	254	254	46	308	308	54					173	192	179	
2	308	311	70	391	394	83	364	397	360	83		217	213	
						In	ches							
1	10.00	10.00	1.81	12.12	12.12	2.12					6.81 ⁽¹⁾	7.56 ⁽¹⁾	7.06 ⁽¹⁾	
2	12.12	12.25	2.75	15.38	15.50	3.25	14.34	15.62	14.19	3.25		8.56	8.38	
1. Not applica	able for 10,00	00 lb. API.		L	I.		ı					ı	1	

Table 9. Design D Dimensions

SCREWED	200	0!	6000 r	osi and		D—All Ratings				
VALVE SIZE,	360	0 psi		0 psi		Stem Size				
INCHES A		G	Α	G	9.5 (3/8)	12.7 (1/2)	19.1 (3/4)			
				mm						
1 ⁽¹⁾	168	46	197	54	172	192	178			
2	229	70	267	83		216	211			
			•	Inches						
1 ⁽¹⁾	6.62	1.81	7.75	2.12	6.75	7.50	7.00			
2	9.00	2.75	10.50	3.25		8.50	8.31			

Figure 3. Design D Dimensions (also see tables 7, 8, and 9)

AJ1318-E A1888-1/IL

Table 10. Design DA Dimensions

		-	4			D—All Ratings				
FLANGED VALVE		AN	ISI							
SIZE,	Cla	ss 300	Class 600			Stem Size				
INCHES	Raised Face	Ring-Type Joint	Raised Face	Ring-Type Joint	9.5 (3/8)	12.7 (1/2)	19.1 (3/4)			
					mm					
1	109	116	116	116	135	154	141			
2	155	164	165	167		164	159			
					Inches					
1	4.31	4.56	4.56	4.56	5.31	6.06	5.56			
2	6.12	6.44	6.50	6.56		6.44	6.25			

Table 11. Design DA Dimensions

				D—All Ratings						
FLANGED		AN	ISI			API				
VALVE SIZE,	Class 900 and 1500		Class 2500		10,000 lb.				Stem Size	
INCHES	Raised Face	Ring-Type Joint	Raised Face	Ring-Type Joint	Spec A	Spec B	Spec C	9.5 (3/8)	12.7 (1/2)	19.1 (3/4)
					mm					
1	127	127	154	154				135	154	141
2	178	179	195	197	182	198	180		164	159
					Inches					
1	5.00	5.00	6.06	6.06				5.31	6.06	5.56
2	7.00	7.06	7.69	7.75	7.17	7.81	7.09		6.44	6.25

Table 12. Design DA Dimensions

SCREWED VALVE	360	0 psi	6000 p: 9000		D—All Ratings					
SIZE,						Stem Size				
INCHES	Α	G	Α	G	9.5 (3/8)	12.7 (1/2)	19.1 (3/4)			
				mm			•			
1 ⁽¹⁾	76 89		89 102		133	152	140			
2	102	102 124		114 130		162	157			
	•	•		Inches						
1 ⁽¹⁾	3.00	3.50	3.50	4.00	5.25	6.00	5.50			
2	4.00	4.88	4.50 5.12			6.38	6.19			
. For 3600 psi and 60	00 psi only.	1	ı			ı	ı			

AJ1318-E A1887-1/IL

Figure 4. Design DA Dimensions (also see tables 10, 11, and 12)

Coefficients

Table 13. Design D, Micro-Form™ Valve Plugs

Valve Size,	Po Diam		Tota Trav		Flow Coeffi- cient			Va	alve Open	ing—Pe	cent of T	otal Trav	el			F _L ⁽¹⁾
Inches	Inches	mm	Inches	mm		10	20	30	40	50	60	70	80	90	100	. [, ,
					C _v	0.070	0.115	0.164	0.224	0.315	0.450	0.641	0.921	1.28	1.66	.87
		6.4	0/4		K _v	0.061	0.099	0.142	0.194	0.272	0.389	0.554	0.797	1.11	1.44	
	1/4		3/4	19	X _T	0.783	0.783	0.744	0.691	0.625	0.614	0.608	0.611	0.610	0.611	
					F _d	0.12	0.14	0.17	0.20	0.24	0.29	0.35	0.43	0.55	0.68	
					Cv	0.155	0.260	0.407	0.596	0.858	1.21	1.65	2.22	3.00	4.03	.84
	3/8	9.5	3/4	19	K _v	0.134	0.225	0.352	0.516	0.742	1.05	1.43	1.92	2.60	3.49	
					X _T	0.625	0.535	0.534	0.539	0.535	0.535	0.538	0.534	0.537	0.536	
1					Cv	0.273	0.436	0.631	0.911	1.30	1.84	2.57	3.65	5.08	6.51	.84
	1/2	107	3/4	19	K _v	0.236	0.377	0.546	0.788	1.13	1.59	2.22	3.16	4.39	5.63	
	1/2	12.7	3/4	19	X _T	0.673	0.644	0.641	0.590	0.592	0.587	0.586	0.557	0.523	0.549	
					F _d	0.11	0.13	0.16	0.19	0.23	0.27	0.33	0.40	0.48	0.56	
3/4			3/4		Cv	0.483	0.775	1.25	1.97	2.89	4.13	5.87	8.16	10.9	12.3	.92
	2/4	19.1		19	K _v	0.418	0.670	1.08	1.70	2.50	3.57	5.08	7.06	9.43	10.6	
	3/4				Χ _T	0.571	0.599	0.527	0.473	0.492	0.519	0.537	0.505	0.486	0.628	
					F_d	0.10	0.39	0.47	0.18	0.22	0.26	0.31	0.37	0.43	0.49	
1,					Cv	0.070	0.115	0.164	0.224	0.315	0.450	0.641	0.921	1.28	1.66	.87
	1/4	6.4	3/4	19	K _v	0.061	0.099	0.142	0.194	0.272	0.389	0.554	0.797	1.11	1.44	
	1/4	0.4	3/4		X _T	0.783	0.783	0.744	0.691	0.625	0.614	0.608	0.611	0.610	0.611	
					F _d	0.12	0.14	0.17	0.20	0.24	0.29	0.35	0.43	0.55	0.68	
					Cv	0.155	0.260	0.407	0.596	0.858	1.21	1.65	2.22	3.00	4.03	.84
	3/8	9.5	3/4	19	K _v	0.134	0.225	0.352	0.516	0.742	1.05	1.43	1.92	2.60	3.49	
	0/0		0/4	10	X _T	0.625	0.535	0.534	0.539	0.535	0.535	0.538	0.534	0.537	0.536	
					F_d	0.11	0.13	0.16	0.19	0.22	0.27	0.33	0.41	0.50	0.61	
		12.7	3/4		C _v	0.348	0.505	0.709	0.998	1.38	1.92	2.69	3.82	5.25	6.82	.81
	1/2			19	K _v	0.301	0.437	0.613	0.863	1.19	1.66	2.33	3.30	4.54	5.90	
	1,72			10	X _T	0.613	0.627	0.585	0.576	0.565	0.553	0.535	0.509	0.490	0.501	
2					F _d	0.11	0.13	0.16	0.19	0.23	0.27	0.33	0.40	0.48	0.56	
_					C _v	0.613	0.952	1.44	2.06	2.92	4.13	5.87	8.16	11.1	14.1	.81
	3/4	19.1	3/4	19	K _v	0.530	0.823	1.25	1.78	2.53	3.57	5.08	7.06	9.60	12.2	
	-, -				X _T	0.581	0.616	0.581	0.586	0.581	0.573	0.549	0.541	0.529	0.528	
					F _d	0.10	0.39	0.47	0.18	0.22	0.26	0.31	0.37	0.43	0.49	
					C _v	1.20	1.68	2.44	3.53	5.05	7.28	10.5	14.0	18.4	23.7	.82
	1	25.4	3/4	19	K _v	1.04	1.45	2.11	3.05	4.37	6.30	9.08	12.1	15.9	20.5	
				-	X _T	0.517	0.569	0.559	0.542	0.544	0.540	0.507	0.508	0.507	0.508	
			ļ		F _d	0.11	0.12	0.15	0.18	0.21	0.25	0.30	0.35	0.41	0.46	
					C _v	1.32	1.76	2.50	3.66	5.42	8.25	12.7	20.6	29.0	34.5	.85
	1-1/4	31.8	3/4	19	K _v	1.14	1.52	2.16	3.17	4.69	7.14	11.0	17.8	25.1	29.8	
	1-1/4	31.8	3/4	19	X _T	0.521	0.563	0.548	0.534	0.498	0.503	0.553	0.528	0.524	0.579	

Table 14. Design D, Micro-Flute™ Valve Plugs

Micro	o-Flu	te - F	low	Up											ial Perc		
Valve Size,	Port Diameter		Total Travel		Flow Coeffi-	Valve Opening—Percent of Total Travel											
Inches	Inches	mm	Inches	mm	cient	10	20	30	40	50	60	70	80	90	100	F _L ⁽¹⁾	
	1/4 1 Flute	6.4 1 Flute	3/4	19	C _v	0.0385	0.0455	0.0560	0.0719	0.0942	0.124	0.162	0.212	0.278	0.354	.87	
					K _v	0.033	0.039	0.048	0.062	0.081	0.107	0.140	0.183	0.240	0.306		
All Sizes					X _T	0.778	0.734	0.690	0.653	0.642	0.635	0.637	0.634	0.632	0.656		
1 and 2		6.4 3 Flutes			C _v	0.0562	0.0725	0.101	0.146	0.216	0.312	0.433	0.588	0.802	1.07	.90	
	1/4 3 Flutes		3/4	19	K _v	0.049	0.063	0.087	0.126	0.187	0.270	0.375	0.509	0.694	0.926		
					Χ _T	0.692	0.648	0.639	0.625	0.600	0.586	0.597	0.613	0.620	0.624		
1. At 100%	% travel.	U						U	U	U U	u	U		U			

Table 15. Design DA, Equal Percentage Valve Plug, Flow Down

Flow	Dow	/n												Eq	ual Perc Charac		
Valve Size,	Po Diam			Total Travel		Valve Opening—Percent of Total Travel											
Inches	Inches	mm	Inches	mm	cient	10	20	30	40	50	60	70	80	90	100	F _L ⁽¹⁾	
		6.4			Cv	0.096	0.173	0.294	0.481	0.727	0.995	1.35	1.99	2.73	3.21	0.45	
	1/4		3/4	19	K _v	0.0830	0.150	0.254	0.416	0.629	0.861	1.17	1.72	2.36	2.78		
					X _T	0.578	0.379	0.271	0.201	0.154	0.144	0.148	0.129	0.127	0.153		
					Cv	0.189	0.343	0.624	1.05	1.45	1.84	2.47	3.81	5.58	7.06	0.45	
	3/8	9.5	3/4	19	K _v	0.164	0.297	0.540	0.908	1.25	1.59	2.14	3.30	4.83	6.11		
1					X _T	0.516	0.355	0.220	0.151	0.152	0.180	0.194	0.163	0.163	0.163		
1					Cv	0.487	0.952	1.40	2.07	2.90	3.55	4.54	6.16	8.79	11.2	0.50	
	1/2	12.7	3/4	19	K _v	0.421	0.823	1.21	1.79	2.51	3.07	3.93	5.33	7.60	9.69		
					X _T	0.226	0.137	0.124	0.111	0.111	0.144	0.174	0.185	0.180	0.186		
3		19.1	3/4		Cv	0.840	1.58	2.25	2.86	3.82	5.51	8.69	11.8	14.4	16.8	0.67	
	3/4			19	K _v	0.727	1.37	1.95	2.47	3.30	4.77	7.52	10.2	12.5	14.5		
					X _T	0.194	0.142	0.168	0.238	0.288	0.292	0.242	0.259	0.318	0.372		
					Cv	0.096	0.177	0.353	0.546	0.742	0.995	1.35	1.99	2.73	3.21	0.50	
	1/4	6.4	3/4	19	K _v	0.083	0.153	0.305	0.472	0.642	0.861	1.17	1.72	2.36	2.78		
					X _T	0.578	0.362	0.188	0.156	0.148	0.144	0.148	0.138	0.139	0.164		
				19	Cv	0.256	0.445	0.734	1.09	1.45	1.84	2.47	3.81	5.58	7.06	0.45	
	3/8	9.5	3/4		K _v	0.221	0.385	0.635	0.943	1.25	1.59	2.14	3.30	4.83	6.11		
					X _T	0.394	0.237	0.164	0.140	0.152	0.180	0.194	0.163	0.163	0.163		
					Cv	0.641	1.03	1.55	2.20	2.90	3.55	4.63	7.13	9.86	12.1	0.45	
	1/2	12.7	3/4	19	K _v	0.555	0.891	1.34	1.90	2.51	3.07	4.01	6.17	8.53	10.5		
•					X _T	0.265	0.195	0.162	0.143	0.146	0.168	0.179	0.165	0.165	0.164		
2					Cv	1.06	1.70	2.25	2.86	3.82	5.51	8.69	13.1	17.4	21.2	0.55	
	3/4	19.1	3/4	19	K _v	0.917	1.47	1.95	2.47	3.30	4.77	7.52	11.3	15.1	18.3		
					Χ _T	0.209	0.195	0.235	0.295	0.325	0.306	0.245	0.210	0.222	0.235		
					Cv	2.04	2.93	3.59	4.32	5.98	8.71	13.0	19.9	26.7	31.8	0.55	
	1	25.4	3/4	19	K _v	1.76	2.53	3.11	3.74	5.17	7.53	11.2	17.2	23.1	27.5		
					X _T	0.171	0.176	0.242	0.342	0.343	0.313	0.274	0.227	0.225	0.255		
					Cv	1.72	2.31	3.31	4.71	6.78	10.5	17.6	26.0	35.2	44.9	0.59	
	1-1/4	31.8	3/4	19	K _v	1.49	2.00	2.86	4.07	5.86	9.08	15.2	22.5	30.4	38.8		
			0,4		X _T	0.312	0.311	0.311	0.311	0.310	0.310	0.312	0.311	0.311	0.310		
1. At 100	% travel.			•						•	•		•				

D and DA Valves

Table 16. Design DA, Equal Percentage Valve Plug, Flow Up

Flow	/ Up													Eq	ual Perc Charac		
Valve Size,	Po Diam		Total Travel		Flow Coeffi-	Valve Opening—Percent of Total Travel											
Inches	Inches	mm	Inches	mm	cient	10	20	30	40	50	60	70	80	90	100	F _L ⁽¹⁾	
					C _v	0.070	0.115	0.164	0.224	0.315	0.450	0.641	0.921	1.28	1.66	0.87	
	1/4	6.4	3/4	19	K _v	0.060	0.100	0.142	0.194	0.273	0.389	0.555	0.797	1.11	1.44		
					X _T	0.783	0.783	0.744	0.695	0.625	0.614	0.609	0.611	0.610	0.611		
					Cv	0.155	0.260	0.407	0.596	0.858	1.21	1.65	2.22	3.00	4.03	0.84	
	3/8	9.5	3/4	19	K _v	0.134	0.225	0.352	0.516	0.742	1.05	1.43	1.92	2.60	3.49		
4					X _T	0.625	0.535	0.534	0.539	0.535	0.535	0.538	0.534	0.537	0.536		
1					Cv	0.273	0.436	0.631	0.911	1.30	1.84	2.57	3.65	5.08	6.51	0.84	
	1/2	12.7	3/4	19	K _v	0.236	0.377	0.546	0.788	1.12	1.59	2.22	3.16	4.39	5.63		
					X _T	0.673	0.644	0.641	0.590	0.592	0.587	0.586	0.557	0.524	0.549		
			3/4	19	Cv	0.483	0.775	1.25	1.97	2.89	4.13	5.87	8.16	10.9	12.3	0.92	
	3/4	19.1			K _v	0.418	0.670	1.08	1.70	2.50	3.57	5.08	7.06	9.43	10.6		
					X _T	0.571	0.599	0.527	0.473	0.492	0.519	0.537	0.505	0.486	0.628		
					Cv	0.070	0.115	0.164	0.224	0.315	0.450	0.641	0.921	1.28	1.66	0.87	
	1/4	6.4	3/4	19	K _v	0.061	0.100	0.142	0.194	0.273	0.389	0.555	0.797	1.11	1.44		
					X _T	0.783	0.783	0.744	0.695	0.625	0.614	0.609	0.611	0.610	0.611		
		9.5		19	Cv	0.155	0.260	0.407	0.596	0.858	1.21	1.65	2.22	3.00	4.03	0.84	
	3/8		3/4		K _v	0.134	0.225	0.352	0.516	0.742	1.05	1.43	1.92	2.60	3.49		
					X _T	0.625	0.535	0.534	0.539	0.535	0.535	0.538	0.534	0.537	0.536		
					Cv	0.348	0.505	0.709	0.989	1.38	1.92	2.69	3.82	5.25	6.82	0.81	
	1/2	12.7	3/4	19	K _v	0.301	0.437	0.613	0.856	1.19	1.66	2.33	3.30	4.54	5.90		
2					X _T	0.613	0.627	0.585	0.587	0.565	0.553	0.535	0.509	0.490	0.501		
2					Cv	0.613	0.952	1.44	2.06	2.92	4.13	5.87	8.16	11.1	14.1	0.81	
	3/4	19.1	3/4	19	K _v	0.530	0.824	1.25	1.78	2.53	3.57	5.08	7.06	9.60	12.2		
					X _T	0.582	0.616	0.581	0.586	0.581	0.573	0.549	0.541	0.529	0.528		
					Cv	1.20	1.68	2.44	3.53	5.05	7.28	10.5	14.0	18.4	23.7	0.81	
	1	25.4	3/4	19	K _v	1.04	1.45	2.11	3.05	4.37	6.30	9.08	12.1	15.9	20.5		
					X _T	0.516	0.569	0.556	0.542	0.544	0.540	0.507	0.508	0.507	0.508		
					Cv	1.32	1.76	2.50	3.66	5.42	8.25	12.7	20.6	29.0	34.5	0.87	
	1-1/4	31.8	3/4	19	K _v	1.14	1.52	2.16	3.17	4.69	7.14	11.0	17.8	25.1	29.8		
					X _T	0.520	0.563	0.548	0.534	0.498	0.503	0.554	0.528	0.524	0.578		
1. At 100	% travel.																

Table 17. Design DA, Micro-Flute Valve Plug, Flow Down and Flow Up

Micro	o-Flu	te -	Flow	v Dc	wn									Equ	ual Perc Charac		
Valve Size,	Port Diameter		Total Travel		Flow Coeffi-	Valve Opening—Percent of Total Travel											
Inches	Inches	mm	Inches	mm	cient	10	20	30	40	50	60	70	80	90	100	F _L ⁽¹⁾	
		6.4			Cv	0.0313	0.0377	0.0470	0.0624	0.0874	0.124	0.175	0.243	0.330	0.407	0.79	
	1/4 1 Flute	1	3/4	19	K _v	0.0271	0.0326	0.0407	0.0540	0.0756	0.107	0.151	0.210	0.286	0.352		
4 10	1 i lute	Flute			X _T	0.990	0.975	0.867	0.765	0.659	0.569	0.494	0.450	0.450	0.550		
1 and 2	1/4 3 Flutes	6.4 3 Flutes	3/4		Cv	0.0612	0.0900	0.136	0.210	0.310	0.430	0.573	0.784	1.12	1.42	0.68	
				19	K _v	0.0529	0.0779	0.118	0.182	0.268	0.372	0.496	0.678	0.969	1.23		
					X _T	0.669	0.520	0.388	0.313	0.295	0.306	0.326	0.326	0.313	0.378		
Micro	o-Flu	te -	Flow	v Up)									Eq	ual Perc Charac		
	4.14	6.4			Cv	0.0385	0.0455	0.0560	0.0719	0.0942	0.124	0.162	0.212	0.278	0.354	0.87	
	1/4 1 Flute	1	3/4	19	K _v	0.0333	0.0394	0.0484	0.0622	0.0815	0.107	0.140	0.183	0.241	0.306		
4 4 0	111000	Flute			X _T	0.778	0.734	0.690	0.653	0.642	0.635	0.637	0.634	0.632	0.656		
1 and 2		6.4 3	3/4	19	Cv	0.0562	0.0725	0.101	0.146	0.216	0.312	0.433	0.588	0.802	1.07	0.90	
	1/4 3 Flutes				K _v	0.049	0.0627	0.0874	0.126	0.187	0.270	0.375	0.509	0.694	0.926		
3 Flutes		Flutes			X _T	0.692	0.648	0.639	0.625	0.600	0.586	0.597	0.613	0.620	0.624		
1. At 100	% travel.	i iules			X _T	0.692	0.648	0.639	0.625	0.600	0.586	0.597	0.613	0.620	0.624		

Specifications

Available Configurations

Design D: Globe valve with screwed-on bonnet, unbalanced post-guided valve plug, screwed-in seat ring, metal seat construction, and push-down-to-close valve plug action

Design DA: Same as Design D except in angle configuration (figure 2)

Valve Sizes and End Connections(1)

See table 1

Maximum Inlet Pressures and Temperatures(1)(2)

See table 2

Maximum Allowable Pressure Drops(2)

Flow up: Capable of full rated pressure drops **Flow down:** See table 3 for pressure drop limits for ceramic trim

Shutoff Classification per ANSI/FCI 70-2 and IEC 60534-4

Standard: Class IV leakage

Optional: Class V

Material Temperature Capabilities

-46 to 232°C (-50 to 450°F)

Construction Materials

Body, Bonnet, and Trim: See table 4. Packing:

Packing.

Standard: ■ Single or ■ double PTFE V-ring

packing for pressure service

Optional: Double PTFE/Composition Standard Gaskets: S31600 (316 SST)

Flow Characteristic

Equal percentage

Flow Direction (see figure 2)

Design D: Flow up (through seat ring and past

valve plug)

Design DA: ■ Flow up (through seat ring and past valve plug) or ■ flow down (past valve plug and through seat ring)

Flow Coefficients and Noise Level Prediction

See table 5 and the section titled Coefficients in this bulletin or Fisher Catalog 12

Port, Yoke Boss, Stem Diameters, and Rated Travels

See table 6

Approximate Weights

1-Inch: 34 kg (75 pounds) **2-Inch:** 45 kg (100 pounds)

Options

■ Lubricator/isolating valve ■ VTC (ceramic)
Trim with equal percentage characteristic (not available with Micro-Flute trim) ■ Tungsten
Carbide trim (not available with Micro-Flute trim)

Micro-Flute, Micro-Form, and Fisher are marks owned by Fisher Controls International, Inc., a business of Emerson Process Management. The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their respective owners.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

Fisher does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Fisher product remains solely with the purchaser and end-user.

Emerson Process Management

Fisher

Marshalltown, Iowa 50158 USA Cernay 68700 France Sao Paulo 05424 Brazil Singapore 128461

www.Fisher.com

DIN (or other) ratings and end connections can usually be supplied; consult your Fisher sales office.
 The pressure/temperature limits in this bulletin and in any applicable standard limitations should not be exceeded.