Problem 1.

Write down the integral for the area of the shaded region for each of the figure below and use the GC to evaluate it, to 3 significant figures.

Solution

Part (a)

Area =
$$-\int_{-1}^{1} (x^3 + 2x^2 - x - 2) dx$$

= 2.67 (3 s.f.)

The area of the shaded region is 2.67 units².

Part (b)

Note that $y = x^2 \implies x = \sqrt{y}$.

Area =
$$\int_0^4 \sqrt{y} \, dy$$

= 5.33 (3 s.f.)

The area of the shaded region is 5.33 units^2 .

Part (c)

Note that $y = e^{2x} \implies x = \frac{1}{2} \ln y$. Also, when x = 0, we have y = 1. Further, when x = 2, we have $y = e^4$.

Area =
$$\int_0^{e^4} \frac{1}{2} \ln y \, dy$$

= 82.4 (3 s.f.)

The area of the shaded region is 82.4 units².

Part (d)

Note that when $x = \frac{\pi}{2}$, we have y = 2.

Area =
$$2 \int_0^2 \arcsin \frac{y}{2} dy$$

= 2.28 (3 s.f.)

The area of the shaded region is 2.28 units².

Part (e)

Area =
$$\int_{-2}^{2} ((8 - x^2) - x^2) dx$$

= 21.3 (3 s.f.)

The area of the shaded region is 21.3 units².

Part (f)

Area =
$$\int_0^1 ((4 - x^2) - 3x) dx$$

= 2.17 (3 s.f.)

The area of the shaded region is 2.17 units².

Part (g)

Area =
$$\int_{-1}^{1} ((9 - x^2) - e^x) dx$$

= 15.0 (3 s.f.)

The area of the shaded region is 15.0 units².

Part (h)

Area =
$$\int_0^1 (\sqrt{x} - x^2) dx$$

= 0.333 (3 s.f.)

The area of the shaded region is 0.333 units^2 .

Problem 2.

- (a) Write down the integral for the volume of the solid generated when the shaded region is rotated about the x-axis through 2π for questions 1(a), (e), (f) and (h) using the disc method and use the GC to evaluate it.
- (b) Write down the integral for the volume of the solid generated when the shaded region is rotated about the y-axis through 2π for questions 1(b), (d) and (f) using the disc method and use the GC to evaluate it.

Solution

Part (a)

Subpart (i)

Volume =
$$\pi \int_{-1}^{1} (x^3 + 2x^2 - x - 2)^2 dx$$

= 13.9 (3 s.f.)

The volume of the solid is 13.9 units^3 .

Subpart (ii)

Volume =
$$\pi \int_{-2}^{2} ((8 - x^2)^2 - x^2) dx$$

= 536 (3 s.f.)

The volume of the solid is 536 units^3 .

Subpart (iii)

Volume =
$$\pi \int_0^1 ((4 - x^2)^2 - (3x)^2) dx$$

= 33.1 (3 s.f.)

The volume of the solid is 33.1 units³.

Subpart (iv)

Volume =
$$\pi \int_0^1 ((\sqrt{x})^2 - (x^2)^2) dx$$

= 0.942 (3 s.f.)

The volume of the solid is 0.942 units^3 .

Part (b)

Subpart (i)

Volume =
$$\pi \int_0^4 (\sqrt{y})^2 dy$$

= 25.1 (3 s.f.)

The volume of the solid is 25.1 units³.

Subpart (ii)

Volume =
$$2\pi \int_0^2 \arcsin^2 \frac{y}{2} dy$$

= 5.87 (3 s.f.)

The volume of the solid is 5.87 units³.

Subpart (iii)

Volume =
$$\pi \int_{3}^{4} (4 - y) dy + \frac{1}{3} \pi \cdot 1^{2} \cdot 3$$

= 4.71 (3 s.f.)

The volume of the solid is 4.71 units³.

Problem 3.

- (a) Write down the integral for the volume of the solid generated when the shaded region is rotated about the x-axis through 2π for questions 1(e), (f) and (h) using the shell method and use the GC to evaluate it.
- (b) Write down the integral for the volume of the solid generated when the shaded region is rotated about the y-axis through 2π for questions 1(b), (d) and (f) using the shell method and use the GC to evaluate it.

Solution

Part (a)

Subpart (i)

Note that $y = x^2 \implies x = \sqrt{y}$ and $y = 8 - x^2 \implies x = \sqrt{8 - y}$ for x > 0.

Volume =
$$2\left(2\pi \int_{0}^{4} \sqrt{y} \cdot y \, dy + 2\pi \int_{4}^{8} \sqrt{8 - y} \cdot y \, dy\right)$$

= 536 (3 s.f.)

The volume of the solid is 536 units³.

Subpart (ii)

Note that $y = 3x \implies x = \frac{1}{3}y$ and $y = 4 - x^2 \implies x = \sqrt{4 - y}$ for x > 0.

Volume =
$$2\pi \int_0^3 \frac{1}{3} y \cdot y \, dy + 2\pi \int_3^4 \sqrt{4 - y} \cdot y \, dy$$

= 33.1 (3 s.f.)

The volume of the solid is 33.1 units³.

Subpart (iii)

Note that $y = \sqrt{x} \implies x = y^2$ and $y = x^2 \implies x = \sqrt{y}$ for x > 0.

Volume =
$$2\pi \int_0^1 (\sqrt{y} - y^2) y \, dy$$

= 0.942 (3 s.f.)

The volume of the solid is 0.942 units^3 .

Part (b)

Subpart (i)

Volume =
$$2\pi \int_0^2 x \cdot x^2 dx$$

= 25.1 (3 s.f.)

The volume of the solid is 25.1 units^3 .

Subpart (ii)

Volume =
$$2 \cdot 2\pi \int_0^{\pi/2} x (2 - 2\sin x) dx$$

= 5.87 (3 s.f.)

The volume of the solid is 5.87 units³.

Subpart (iii)

Volume =
$$2\pi \int_0^1 x ((4 - x^2) - 3x) dx$$

= 4.71 (3 s.f.)

The volume of the solid is 4.71 units³.

Problem 4.

Calculate the area enclosed by the petals of the curve $r = \sin 2\theta$ where $r \ge 0$.

Solution

Note that
$$r \ge 0 \implies \sin 2\theta \ge 0 \implies r \in \left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right].$$

Area =
$$2 \cdot \frac{1}{2} \int_0^{\pi/2} \sin^2 2\theta \, d\theta$$

= $\frac{1}{2} \int_0^{\pi} \sin^2 u \, du$
= $\frac{1}{2} \int_0^{\pi} \frac{1 - \cos 2u}{2} \, du$
= $\frac{1}{4} \int_0^{\pi} (1 - \cos 2u) \, du$
= $\frac{1}{4} \left[u - \frac{\sin 2u}{2} \right]_0^{\pi}$
= $\frac{\pi}{4}$

The area enclosed is $\frac{\pi}{4}$ units².

$$u = 2\theta$$
$$du = 2 d\theta$$
$$\theta = 0 \implies u = 0$$
$$\theta = \frac{\pi}{2} \implies u = \pi$$

Problem 5.

The finite region A is bounded by the curve $y = x^2$ and a minor arc of the circle $x^2 + y^2 = 12$.

- (a) Find the numerical value of the area of A, correct to 2 decimal places.
- (b) Find the exact volume of the solid obtained when A is rotated about the x-axis through 2π radians.
- (c) Find the exact volume of the solid obtained when A is rotated about the y-axis through π radians.

Solution

Part (a)

Consider the intersections between $y = x^2$ and $x^2 + y^2 = 12$.

$$x^{2} + y^{2} = 12$$

$$\Rightarrow \qquad x^{2} + (x^{2})^{2} = 12$$

$$\Rightarrow \qquad x^{4} + x^{2} - 12 = 0$$

$$\Rightarrow \qquad (x^{2} - 3)(x^{2} + 4) = 0$$

$$\Rightarrow (x - \sqrt{3})(x + \sqrt{3})(x^{2} + 4) = 0$$

Hence, the two curves intersect at $x = -\sqrt{3}$ and $x = \sqrt{3}$. Note that $x^2 + 4 = 0$ has no solution since $x^2 + 4 > 0$. Also note that $x^2 + y^2 = 12 \implies y = \sqrt{12 - x^2}$ for y > 0.

Area =
$$2 \int_0^{\sqrt{3}} \left(\sqrt{12 - x^2} - x^2 \right) dx$$

= 8.02 (3 s.f.)

A has an area of 8.02 units^2 .

Part (b)

Note that $x^2 + y^2 = 12 \implies y^2 = 12 - x^2$.

Volume =
$$2\pi \int_0^{\sqrt{3}} \left((12 - x^2) - (x^2)^2 \right) dx$$

= $2\pi \left[12x - \frac{1}{3}x^3 - \frac{1}{5}x^5 \right]_0^{\sqrt{3}}$
= $2\pi \cdot \frac{46\sqrt{3}}{5}$
= $\frac{92\sqrt{3}\pi}{5}$

The solid has a volume of $\frac{92\sqrt{3}\pi}{5}$ units³.

Part (c)

Note that when the curves intersect at $x = \sqrt{3}$, we have y = 3. Furthermore, when x = 0, we have $y = \sqrt{12}$. Also note that $x^2 + y^2 = 12 \implies x^2 = 12 - y^2$.

Volume =
$$\pi \int_0^3 y \, dy + \pi \int_3^{\sqrt{12}} (12 - y^2) \, dy$$

= $\pi \left(16\sqrt{3} - \frac{45}{2} \right)$

The solid has a volume of $\pi \left(16\sqrt{3} - \frac{45}{2} \right)$ units³.

Problem 6.

- (a) The graph of $y=2^x$, for $0 \le x \le 1$ is shown in the diagram. Rectangles, each of width $\frac{1}{n}$, are drawn under the curve. Given that $\sum_{k=0}^n x^k = \frac{1-x^{n+1}}{1-x}$, show that the total area A of all n rectangles is given by $\frac{1}{n}\left(\frac{1}{2^{\frac{1}{n}}-1}\right)$.
- (b) Find the limit of A in exact form as $n \to \infty$.

Let V be the volume of all n rectangles rotated about the x-axis.

- (c) Find V in terms of n.
- (d) State the limit of V in exact form as $n \to \infty$.

Solution

Part (a)

$$A = \sum_{k=0}^{n-1} \frac{2^{k/n}}{n}$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} (2^{1/n})^k$$

$$= \frac{1}{n} \cdot \frac{1 - (2^{1/n})^{n-1+1}}{1 - 2^{1/n}}$$

$$= \frac{1}{n} \cdot \frac{1 - 2}{1 - 2^{1/n}}$$

$$= \frac{1}{n} \cdot \frac{1}{2^{1/n} - 1}$$

Part (b)

$$\lim_{n \to \infty} A = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1}{2^{1/n} - 1}$$

$$= \lim_{n \to \infty} \frac{1/n}{2^{1/n} - 1}$$

$$= \lim_{m \to 0} \frac{m}{2^m - 1}$$

$$= \lim_{m \to 0} \frac{1}{\ln 2 \cdot 2^m}$$

$$= \frac{1}{\ln 2}$$

$$\lim_{n \to \infty} A = \frac{1}{\ln 2}$$

Part (c)

$$V = \pi \sum_{k=0}^{n-1} (2^{k/n})^2 \cdot \frac{1}{n}$$

$$= \frac{\pi}{n} \sum_{k=0}^{n-1} (2^{2/n})^k$$

$$= \frac{\pi}{n} \cdot \frac{1 - (2^{2/n})^{n-1+1}}{1 - 2^{2/n}}$$

$$= \frac{\pi}{n} \cdot \frac{1 - 4}{1 - 2^{2/n}}$$

$$= \frac{\pi}{n} \cdot \frac{3}{2^{2/n} - 1}$$

$$= \frac{\pi}{n} \cdot \frac{3}{4^{1/n} - 1}$$

$$= \frac{3\pi}{n \cdot (4^{1/n} - 1)}$$

$$V = \frac{3\pi}{n \cdot (4^{1/n} - 1)}$$

Part (d)

$$\lim_{n \to \infty} V = \lim_{n \to \infty} \frac{3\pi}{n (4^{1/n} - 1)}$$

$$= 3\pi \lim_{n \to \infty} \frac{1}{n (4^{1/n} - 1)}$$

$$= 3\pi \lim_{n \to \infty} \frac{1/n}{4^{1/n} - 1}$$

$$= 3\pi \lim_{m \to 0} \frac{m}{4^m - 1}$$

$$= 3\pi \lim_{m \to 0} \frac{1}{\ln 4 \cdot 4^m}$$

$$= 3\pi \cdot \frac{1}{\ln 4}$$

$$= \frac{3\pi}{2 \ln 2}$$

$$\lim_{n \to \infty} V = \frac{3\pi}{2 \ln 2}$$

Problem 7.

O is the origin and A is the point on the curve $y = \tan x$ where $x = \frac{1}{3}\pi$.

- (a) Calculate the area of the region R enclosed by the arc OA, the x-axis and the line $x = \frac{1}{3}\pi$, giving your answer in an exact form.
- (b) The region S is enclosed by the arc OA, the y-axis and the line $y = \sqrt{3}$. Find the volume of the solid of revolution formed when S is rotated through 360° about the x-axis, giving your answer in an exact form.
- (c) Find $\int_0^{\sqrt{3}} \arctan y \, dy$ in exact form.

Solution

Part (a)

Area =
$$\int_0^{\pi/3} \tan x \, dx$$
$$= [\ln \sec x]_0^{\frac{\pi}{3}}$$
$$= \ln 2$$

R has an area of $\ln 2$ units².

Part (b)

Volume =
$$\pi \int_0^{\pi/3} \left(\left(\sqrt{3} \right)^2 - \tan^2 x \right) dx$$

= $\pi \int_0^{\pi/3} \left(3 - \sec^2 x + 1 \right) dx$
= $\pi \left[4x - \tan x \right]_0^{\frac{\pi}{3}}$
= $\frac{4\pi^2}{3} - \sqrt{3}\pi$

Tutorial B8 Applications of Integration I

The solid has a volume of
$$\left(\frac{4\pi^2}{3} - \sqrt{3}\pi\right)$$
 units³.

Part (c)

Observe that
$$\int_{0}^{\sqrt{3}} \arctan y \, dy = \operatorname{Area} S = \operatorname{Area}(R+S) - \operatorname{Area} R = \frac{\pi}{3} \cdot \sqrt{3} - \ln 2.$$

$$\int_{0}^{\sqrt{3}} \arctan y \, \mathrm{d}y = \frac{\pi}{\sqrt{3}} - \ln 2$$

Problem 8.

A portion of the curve $ay = x^2$, where a is a positive constant, is rotated about the vertical axis Oy to form the curved surface of an open bowl. The bowl has a horizontal circular base of radius r and a horizontal circular rim of radius 3r.

- (a) Prove that the depth of the bowl is $\frac{8r^2}{a}$.
- (b) Find the volume of the bowl in terms of r and a.
- (c) Given that the volume of the bowl is $\frac{\pi a^3}{10}$, find the depth of the bowl in terms of a only.

Solution

Note that $ay = x^2 \implies y = \frac{x^2}{a}$.

Part (a)

Depth of bowl =
$$\frac{(3r)^2}{a} - \frac{r^2}{a}$$

= $\frac{9r^2}{a} - \frac{r^2}{a}$
= $\frac{8r^2}{a}$

Part (b)

Volume =
$$\pi \int_{r^2/a}^{9r^2/a} ay \, dy$$

= $\pi \left[\frac{a}{2} y^2 \right]_{r^2/a}^{9r^2/a}$
= $\frac{a\pi}{2} \left[\left(\frac{9r^2}{a} \right)^2 - \left(\frac{r^2}{a} \right)^2 \right]$

$$= \frac{a\pi}{2} \cdot \frac{80r^4}{a^2}$$
$$= \frac{40\pi r^4}{a}$$

The volume of the bowl is $\frac{40\pi r^4}{a}$ units³.

Part (c)

$$\frac{40\pi r^4}{a} = \frac{\pi a^3}{10}$$

$$\implies 400r^4 = a^4$$

$$\implies 20r^2 = a^2$$

$$\implies r^2 = \frac{1}{20}a^2$$

$$\implies \text{Depth of bowl} = \frac{8 \cdot a^2/20}{a}$$

$$= \frac{2}{5}a$$

The depth of the bowl is $\frac{2}{5}a$ units.

Problem 9.

The diagram shows the region R bounded by part of the curve C with equation $y = 3 - x^2$, the y-axis and the line y = 2, lying in the first quadrant.

Write down the equation of the curve obtained when C is translated by 2 units in the negative y-direction.

Hence, or otherwise, show that the volume of the solid formed when R is rotated completely about the line y=2 is given by $\pi \int_0^1 \left(1-2x^2+x^4\right) \mathrm{d}x$ and evaluate this integral exactly.

Solution

$$C: y = 1 - x^2$$

Note that $3 - x^2 = 2 \implies x = \pm 1$, whence x = 1 since x > 0.

Volume =
$$\pi \int_0^1 (1 - x^2)^2 dx$$

= $\pi \int_0^1 (1 - 2x^2 + x^4) dx$
= $\pi \left[x - \frac{2}{3}x^3 + \frac{1}{5}x^5 \right]_0^1$
= $\frac{8}{15}\pi$

The volume of the solid is $\frac{8}{15}\pi$ units³.

Problem 10.

The diagram below shows a region R bounded by the curve $(y+5)^2 = x-3$ and the line y=x-10. Find the volume of solid formed when R is rotated four right angles about

- (a) the y-axis, and
- (b) the x-axis.

Solution

Part (a)

Consider the intersections between $(y+5)^2 = x-3$ and y=x-10.

$$(y+5)^2 = x-3$$

$$\implies (x-5)^2 = x-3$$

$$\implies x^2 - 10x + 25 = x-3$$

$$\implies x^2 - 11x + 28 = 0$$

$$\implies (x-4)(x-7) = 0$$

Hence, x = 4 and x = 7, whence y = -6 and y = -3. Thus, the two curves intersect at (4, -6) and (7, -3).

Note that $(y+5)^2 = x-3 \implies x = 3 + (y+5)^2$ and $y = x-10 \implies x = y+10$.

Volume =
$$\pi \int_{-6}^{-3} ((y+10)^2 - (3+(y+5)^2)^2) dy$$

= 130 (3 s.f.)

The volume of the solid is 130 units³.

Part (b)

Note that

$$(y+5)^2 = x-3 \implies \begin{cases} y = -5 + \sqrt{x-3}, & y \ge 5 \\ y = -5 - \sqrt{x-3}, & y < 5 \end{cases}$$

Volume =
$$\pi \int_{3}^{4} \left(\left(-5 - \sqrt{x - 3} \right)^{2} - \left(-5 + \sqrt{x + 3} \right)^{2} \right) dx$$

+ $\pi \int_{4}^{7} \left((x - 10)^{2} - \left(-5 + \sqrt{x - 3} \right)^{2} \right) dx$
= 127 (3 s.f.)

The volume of the solid is 127 units³.

Problem 11.

The curve C is defined by the following pair of parametric equations.

$$x = t - \frac{1}{t^2}, y = 2 - t^2, \qquad t > 0$$

Find the area of the finite region R enclosed by the curve C and the axes as well as the volume of solid obtained when R is rotated about the x-axis through 4 right-angles.

Solution

Note that when $x = 0 \implies t - \frac{1}{t^2} = 0 \implies t = 1$. Also note that when $y = 0 \implies 2 - t^2 \implies t = \sqrt{2}$, whence $x = \sqrt{2} - \frac{1}{2}$.

Area =
$$\int_{0}^{\sqrt{2} - \frac{1}{2}} y \, dx$$
=
$$\int_{1}^{\sqrt{2}} (2 - t^{2}) \frac{dx}{dt} \, dt$$
=
$$\int_{1}^{\sqrt{2}} (2 - t^{2}) \left(1 + \frac{2}{t^{3}} \right) dt$$
= 0.526 (3 s.f.)

The area of R is 0.526 units².

Volume =
$$\pi \int_0^{\sqrt{2} - \frac{1}{2}} y^2 dx$$

= $\pi \int_1^{\sqrt{2}} (2 - t^2) \frac{dx}{dt} dt$
= $\pi \int_1^{\sqrt{2}} (2 - t^2) \left(1 + \frac{2}{t^3}\right) dt$
= 1.19 (3 s.f.)

The volume of R is 1.19 units³.

Problem 12.

Find the area enclosed by the ellipse $x = a \cos t$, $y = b \sin t$, where a and b are positive constants. Find also the volume of solid obtained when the region enclosed by the ellipse is rotated through π radians about the x-axis.

Solution

By symmetry, we only need to consider the area of the ellipse in the first quadrant. Note that $x = 0 \implies t = \pi/2$ and $x = a \implies t = 0$.

Area =
$$4 \int_0^a y \, dx$$

= $4 \int_{\pi/2}^0 y \cdot \frac{dx}{dt} \, dt$
= $4 \int_{\pi/2}^0 (b \sin t)(-a \sin t) \, dt$
= $4ab \int_0^{\pi/2} \sin^2 t \, dt$
= $4ab \int_0^{\pi/2} \frac{1 - \cos 2t}{2} \, dt$
= $4ab \cdot \frac{1}{2} \left[t - \frac{\sin 2t}{2} \right]_0^{\pi/2}$
= πab

The area of the ellipse is πab units².

Volume =
$$2\pi \int_0^a y^2 dx$$

= $2\pi \int_{\pi/2}^0 y^2 \cdot \frac{dx}{dt} dt$
= $2\pi \int_{\pi/2}^0 (b \sin t)^2 (-a \sin t) dt$
= $2\pi ab^2 \int_0^{\pi/2} \sin^3 t dt$
= $2\pi ab^2 \int_0^{\pi/2} \frac{3 \sin t - \sin 3t}{4} dt$
= $2\pi ab^2 \cdot \frac{1}{4} \left[-3 \cos t + \frac{1}{3} \cos 3t \right]_0^{\pi/2}$
= $\frac{4\pi}{3} ab^2$

The volume of the ellipse is $\frac{4\pi}{3}ab^2$ units³.

Problem 13.

Find the polar equation of the curve C with equation $x^5 + y^5 = 5bx^2y^2$, where b is a positive constant. Sketch the part of the curve C where $0 \le \theta \le \frac{\pi}{2}$. Show, using polar coordinates, that the area A of the region enclosed by this part of the curve is given by

$$A = \frac{25b^2}{2} \int_0^{\frac{\pi}{2}} \frac{\sin^4 \theta \cos^4 \theta}{(\cos^5 \theta + \sin^5 \theta)^2} d\theta$$

By differentiating $\frac{1}{1+\tan^5\theta}$ with respect to θ , or otherwise, find the exact value of A in terms of b.

Solution

$$x^{5} + y^{5} = 5bx^{2}y^{2}$$

$$\implies (r\cos\theta)^{5} + (r\sin\theta)^{5} = 5b(r\cos\theta)^{2}(r\sin\theta)^{2}$$

$$\implies r^{5}(\cos^{5}\theta + \sin^{5}\theta) = 5br^{4}\cos^{2}\theta\sin^{2}\theta$$

$$\implies r(\cos^{5}\theta + \sin^{5}\theta) = 5b\cos^{2}\theta\sin^{2}\theta$$

$$\implies r = \frac{5b\cos^{2}\theta\sin^{2}\theta}{\cos^{5}\theta + \sin^{5}\theta}$$

$$r = \frac{5b\cos^2\theta\sin^2\theta}{\cos^5\theta + \sin^5\theta}$$

$$\theta = \frac{\pi}{2}$$

$$\theta = 0$$

$$A = \frac{1}{2} \int_0^{\pi/2} \left(\frac{5b \cos^2 \theta \sin^2 \theta}{\cos^5 \theta + \sin^5 \theta} \right)^2 d\theta$$
$$= \frac{1}{2} \int_0^{\pi/2} \frac{25b^2 \cos^4 \theta \sin^4 \theta}{\left(\cos^5 \theta + \sin^5 \theta\right)^2} d\theta$$
$$= \frac{25b^2}{2} \int_0^{\pi/2} \frac{\cos^4 \theta \sin^4 \theta}{\left(\cos^5 \theta + \sin^5 \theta\right)^2} d\theta$$

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \frac{1}{1 + \tan^5 \theta} = -\frac{1}{\left(1 + \tan^5 \theta\right)^2} \cdot 5 \tan^4 \theta \cdot \sec^2 \theta$$

$$= -5 \cdot \frac{1}{\left(1 + \frac{\sin^5 \theta}{\cos^5 \theta}\right)^2} \cdot \frac{\sin^4 \theta}{\cos^4 \theta} \cdot \frac{1}{\cos^2 \theta}$$

$$= -5 \cdot \frac{\left(\cos^5 \theta\right)^2 \left(1 + \frac{\sin^5 \theta}{\cos^5 \theta}\right)^2}{\left(\cos^5 \theta\right)^2 \left(1 + \frac{\sin^5 \theta}{\cos^5 \theta}\right)^2} \cdot \frac{\sin^4 \theta}{\cos^6 \theta}$$

$$= -5 \cdot \frac{\cos^{10} \theta}{\cos^5 \theta + \sin^5 \theta} \cdot \frac{\sin^4 \theta}{\cos^6 \theta}$$

$$= -\frac{5 \cos^4 \theta \sin^4 \theta}{\cos^5 \theta + \sin^5 \theta}$$

$$\Rightarrow A = \frac{-5b^2}{2} \int_0^{\pi/2} -\frac{5 \cos^4 \theta \sin^4 \theta}{\left(\cos^5 \theta + \sin^5 \theta\right)^2} d\theta$$

$$= -\frac{5b^2}{2} \left[\frac{1}{1 + \tan^5 \theta}\right]_0^{\pi/2}$$

$$= -\frac{5b^2}{2}$$

$$A = \frac{5b^2}{2}$$

$$A = \frac{5b^2}{2}$$

Problem 14.

The polar equation of a curve is given by $r = e^{\theta}$ where $0 \le \theta \le \pi/2$. Cartesian axes are taken at the pole O. Express x and y in terms of θ and hence find the Cartesian equation of the tangent at $(e^{\pi/2}, \pi/2)$. The region R is bounded by the polar curve, tangent and the x-axis. Find the exact area of the region R.

Solution

$$x = e^{\theta} \cos \theta, \ y = e^{\theta} \sin \theta$$

$$\frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$$

$$= \frac{dy}{d\theta} / \frac{dx}{d\theta}$$

$$= \frac{e^{\theta} \cos \theta + e^{\theta} \sin \theta}{e^{\theta} (-\sin \theta) + e^{\theta} \cos \theta}$$

$$= \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta}$$

$$\implies \frac{dy}{dx} \Big|_{\theta = \pi/2} = \frac{\cos(\pi/2) + \sin(\pi/2)}{\cos(\pi/2) - \sin(\pi/2)}$$

$$= -1$$

When $\theta = \frac{\pi}{2}$, we have x = 0 and $y = e^{\pi/2}$. Hence, the tangent is given by

$$y - e^{\pi/2} = -(x - 0)$$

$$\implies y = -x + e^{\pi/2}$$

$$y = -x + e^{\pi/2}$$

Area
$$R = \frac{1}{2} \cdot e^{\pi/2} \cdot e^{\pi/2} - \frac{1}{2} \int_0^{\pi/2} (e^{\theta})^2 d\theta$$

$$= \frac{e^{\pi}}{2} - \frac{1}{2} \int_0^{\pi/2} e^{2\theta} d\theta$$

$$= \frac{e^{\pi}}{2} - \frac{1}{2} \left[\frac{e^{2\theta}}{2} \right]_0^{\pi/2}$$

$$= \frac{e^{\pi}}{2} - \frac{1}{4} (e^{\pi} - 1)$$

$$= \frac{1}{4} (e^{\pi} + 1)$$

The area of
$$R$$
 is $\frac{1}{4}(e^{\pi}+1)$ units².

Problem 15.

The diagram shows the velocity-time graph of a particle moving in a straight line. The equation of the curve shown is v = t(t - 10) where t seconds is the time and v ms⁻¹ is the velocity. The particle starts at a point A on the line when t = 0.

Calculate

- (a) the distance travelled by the particle before coming to instantaneous rest, and
- (b) the time at which the particle returns to A.

Solution

Part (a)

For instantaneous rest, v = 0. Hence, t(t - 10) = 0, whence t = 10. Note that we reject t = 0 since t > 0.

Distance travelled =
$$-\int_0^{10} v \, dt$$

= $-\int_0^{10} t(t-10) \, dt$
= $-\int_0^{10} (t^2 - 10t) \, dt$
= $-\left[\frac{t^3}{3} - \frac{10t^2}{2}\right]_0^{10}$
= $\frac{500}{3}$

The particle travelled $\frac{500}{3}$ m before coming to instantaneous rest.

Part (b)

When the particle returns to A, s = 0. Let the time at which the particle returns to A be t_0 .

$$\int_0^{t_0} v \, \mathrm{d}t = 0$$

$$\Longrightarrow \int_0^{t_0} t(t - 10) \, \mathrm{d}t = 0$$

$$\Longrightarrow \left[\frac{t_0^3}{3} - \frac{10t_0^2}{2} \right]_0^{t_0} = 0$$

$$\Longrightarrow \frac{1}{3} t_0^3 - 5t_0^2 = 0$$

$$\Longrightarrow \frac{1}{3} t_0^2 (t_0 - 15) = 0$$

Thus, $t_0 = 15$. Note that we reject $t_0 = 0$ since $t_0 > 0$.

It takes the particle 15 seconds to return to A.