

종합설계 발표 4회차

미세먼지 데이터 시각화 웹 서비스 개발

04조_김경민, 김은수, 심여민

01 주제 소개

02 기존 서비스 분석

03 연구 개발의 필요성

04 연구 개발의 목표 및 내용

06 기대 효과 및 확장 가능성

05 설문 인사이트

07 추진전략 및 방법

목표

미세먼지 데이터의 지도 및 대시보드 자료로 시각화된 웹 서비스 개발 및 산업/일상생활 영향 알림 제공

주요내용

- 1. 현재 및 과거 미세먼지 상태 정보의 지도, 표 등 대시보드 형태 웹 서비스 개발
- 2. 인체 모형으로 건강에 미치는 영향 시각화
- 3. 산업 및 일상 영향도 분석 및 관련 권고 사항 제공

01

"미세먼지 데이터 시각화 웹 서비스 개발"

주제 소개

02 기존 서비스 분석_삼성 날씨 앱

기존 서비스 분석

▼ 5. 벤치마킹 포인트 (좋은 점 가져오기)

포인트	설명	우리 서비스 반영 방법
기본정보 간결성	현재 위치 / 공기질 / 등급 간단하게 전달	첫 화면에 사용자 위치 기반 미세먼지 요약 제공
자동 위치 연동	GPS 기반 현재 위치 자동 탐지	우리도 초기 진입 시 자동 위치 기반 정보 제공
정리된 정보 배치	예보, 지표 등을 깔끔하게 나열	정보 과잉 피하고 시각적 질서 유지
색상 사용 (위험 도)	빨강~초록 단계로 직관적 등급 표현	시각화에도 위험도 색상 명확히 반영

요소	벤치마킹 방식	우리 적용 방향
애니메이션 활용	옷차림 캐릭터, 해/달 움직임 등	폐 애니메이션, 공기 흐림 배경, 마스코트 표정 변화 등으로 감성 강화
게이지 기반 시각화	생활지수(세차, 수면 등)	미세먼지 농도/행동 가이드를 게이지형 시각화 로 표현
정보 레이아웃	중요 정보 상단 배치 → 스크 롤형 세부정보	미세먼지 상황 요약을 상단에 시각적으로 배치 하고, 상세 정보를 아래로 구성
라이프스타일 콘텐 츠	제철음식 등 추천	대신 우리는 미세먼지 대응 음식/실내 활동/주 의점 등 건강 콘텐츠로 대체 가능

02

02 기존 서비스 분석_애플 앱 날씨

기존 서비스 분석

대기질 탭을 눌렀을 경우

1. 미세먼지와 대기질 개요

아이폰 날씨 앱은 **AQI(Air Quality Index, 대기질 지수)**를 기반으로 공기 오염도를 표시하며, 미세먼지 농도(PM2.5, PM10)도 함께 제공합니다.

항목	설명
AQI (대기질 지수)	여러 대기 오염 물질을 종합적으로 평가하여 0~500 사이의 값으로 표시
PM2.5 (초미세먼지)	2.5μm 이하의 작은 먼지, 호흡기 및 혈관에 직접 영향을 줌
PM10 (미세먼지)	10μm 이하의 먼지, 코와 기관지에 침투하여 건강에 악영향
03 (오존)	지표면에서 발생하는 오존 농도, 높은 경우 호흡기 문제 유발
NO ₂ (이산화질소)	자동차 배기가스 및 산업 활동으로 발생, 높은 농도에서 폐질환 위험 증기

케이션 분석

SO ₂ (아황산가스)	화석 연료 연소 시 발생, 높은 농도에서는 호흡기 및 피부에 자극	
CO (일산화탄소)	불완전 연소로 인해 발생하며, 높은 농도에서는 산소 부족 유발	

(02)

기존 서비스 분석_네이버

기존 서비스 분석

03 연구 개발의 필요성

연구 개발의 필요성

- 미세먼지는 인체 건강과 환경에 심각한 영향을 미치는 요소
- 미세먼지 농도가 높은 날에는 민감군에게 더욱 치명적
- 현재 제공되는 미세먼지 데이터는 사용자가 직관적으로 이해하고 대응하기 어려움.

03 연구개발 현황과 문제점

연구 개발의 필요성

국내

- 대한민국 환경부 및 기상청에서는 미세먼지 데이터를 제공하는 다양한 공공 API를 운영
- 일부 지자체에서는 미세먼지 측정소를 확대하고 지역별 미세먼지 저감 대책을 시행
- 기존 데이터 제공 방식은 주로 숫자와 단순 색상 구분(사용자에게 친화적인 인터페이스 방식 부족)

해외

- 미국의 AirNow와 유럽의 CMAS는 위성 및 지상 측정 데이터를 통합하여 미세먼지 농도 모니터링
- 중국의 IQAir와 AirVisual은 전세계 미세먼지 정보 제공, AI 기반 예측 기능 포함
- 해외 서비스는 지역별 맞춤형 정보 제공 미흡, 한국의 미세먼지 상황과 정책 반영에 한계

현장에서의 문제 상황

- 현재 미세먼지 지도는 색상 구분 단순하여 세부 지역별 정보 확인하기 어려움
- 건강 영향에 대한 직관적인 설명이 부족(개인에게 미치는 영향 이해하기 어려움)

관련 제도 및 서비스 조사

- 대한민국 정부는 미세먼지 경보 시스템 운영 중(미세먼지 공공 데이터 개방)
- 대처 방법을 구체적으로 안내하는 시스템 미흡

04 연구개발 내용 및 범위

개발의 목표 및 내용

데이터 시각화 중심

- 지도 색상 그라데이션
- 다양한 그래프(게이지, 도넛 차트 등)

지역별 상세 정보 제공

특정 지역(구 단위)의 미세먼지 농도 분석

실시간 데이터 반영

한국의 최신 미세먼지 정보 제공

생활 연계 정보 제공

미세먼지 농도에 따른 대처 방안

목표(TO-BE)

- 직관적인 데이터 제공
- 사용자 맞춤형 서비스 제공
- 가독성 향상

아이디어 요약

- 직관적인 데이터 제공
- 사용자 맞춤형 서비스 제공
- 가독성 향상

(04 기능 정리 개발의 목표 및 내용

사용자 중심에서 어떤 가치를 제공하고 싶은가?

- 색상 구분 더욱 세분화
- 게이지 차트 및 도넛 차트 활용
- 오존 농도 함께 제공
- 폐 모양의 애니메이션 활용(미세먼지가 우리 몸에 미치는 과정 시각화)
- 사용자의 상황에 따라 세분화된 미세먼지 대응 방법 제시

05

05 기이해당사자(일반 사용자) 인터뷰/설문 정보

설문 인사이트

- 기간 및 인원: 3/11 ~ 3/14, 총 158명
- 목표: 미세먼지 데이터, 기존 서비스에 대한 기존 사용자들의 인식 및 불편함 조사
- 조사 도구: 구글 폼

주요 질문 및 응답 요약

- A. 평소 미세먼지 정보 확인 빈도: 가끔 확인함(45.6%), 거의 확인하지 않음(24.7%)
- B. 주로 미세먼지 정보를 확인하는 방법: 스마트폰 기본 앱(55.1%), 네이버(43%)
- C. 미세먼지 정보 확인 이유: 환기 여부(30.4%), 일정 조정(29.1%)
- D. **현재 미세먼지 서비스의 불편함:** 직관적이지 않은 표현(37.3%), 지역별 세부 정보 부족(20.9%)
- E. 미세먼지 수치에 대한 이해도: 숫자의 정확한 의미 모름(39.2%), 대략적인 의미를 알고 있음(29.7%)

선문인사이트

주요 인사이트	세부 사항
미세먼지 정보는 행동 판단의 참고자료	사용 빈도 낮지만, '환기 여부', '일정 조정' 등 행동 결정에 직접적 영향
기본앱 의존도 매우 높음	전용 앱에 대한 유입 낮음
미세먼지 확인 목적은 명확히 존재	사용자는 명확한 상황 판단 목적을 가지고 정보 탐색

선문 인사이트

주요 인사이트	세부 사항
기존 서비스 표현 방식 직관성 부족	수치,문자 중심 정보 -> "보기 어렵다"는 피드백 다수(37.3%)
수치 해석에 대한 이해도 낮음	응답자 다수가 숫자의 의미 잘 모름 체감형 정보에 대한 니즈 존재
세부 지역 정보 부족에 대한 불만 존재	"내 주변 공기"에 대한 정보가 부족하다는 응답(20.9%) 존재

(06 기대 효과 기대 효과

사용자 관점	- 직관적인 시각화를 통해 사용자가 쉽게 확인 가능 - 공기질 상태 한눈에 파악 가능 - 개인 맞춤형 대처방법 제공으로 건강 보호
사회적 관점	- 공공 의료 비용 절감 효과 기대 - 미세먼지에 대한 시민 인식 높여 환경 문제에 대한 경각심 제고 - 교육 및 공공 서비스와 연계하여 환경 보호 캠페인 등에 활용
기술적 관점	- 실시간 데이터 연동을 통한 신뢰성 높은 공기질 정보 제공 - 인터랙티브한 시각화 기술을 활용하여 데이터 활용도 증가 - IoT 센서 및 모바일 기기와 연동하여 맞춤형 환경 모니터링 서비스 확장 가능

06 향후 확장 가능성

확장 가능성

- 개인 맞춤형 서비스 추가
- 사용자의 위치, 건강 상태 등을 고려한 맞춤형 개인화 미세먼지 경고 알림 서비스 개발
- AI 기반 미세먼지 예측 시스템 개발
- 머신러닝 모델을 활용하여 미세먼지 농도 예측 및 사전 경고 제공
- 국내외 서비스 확장
- 한국뿐 아니라 다른 국가에서도 활용할 수 있도록 다국어 지원 및 글로벌 데이터 연동 가능

07 개발 추진 일정

개발 추진전략 및 방법

기간	내용	역할 분담
4/2 ~ 4/9	- 서비스 디자인 및 UI/UX 기획 (figma 활용)	- 김경민, 심여민
4/2 ~ 4/8	- API 학습 및 주요 활용 방안 조사	- 김은수
4/9 ~ 4/16	- 미세먼지 데이터 분석 및 전처리	LIZIOI
	- 백엔드와 프론트엔드 연동 기획	다같이
	- 프론트엔드 기본 구조 설계 및 초기 개발	- 김은수
4/17 ~ 4/30	- 세부 기능 정의 및 역할 분배	- 다같이
	- 각 기능에 필요한 기술 조사 완료	- 각자 맡은 부분 개별로

07 개발 추진 일정

개발 추진전략 및 방법

기간	내용	
5/1 ~ 5/14	개별 기능 구현 - 미세먼지 지도 시각화(심여민) -인체 모형 애니메이션(김은수) - 세분화된 행동 요령 시각화(김경민)	
5/14 ~ 5/19	- 발생한 문제 해결 및 충돌 조정	
5/20 ~ 5/23	- 사용자 테스트 진행 (UI/UX 점검 및 개선) - 피드백 반영 및 최종 수정	
5/24 ~ 5/31	- 창의 축전 준비	

07 개발 추진 방법

개발 추진전략 및 방법

- 정성적 목표
- 창의축전 출품 및 발표
- KCC 학회 논문 제출

- 정량적 목표
- 사용자 피드백 3회 이상 받고 기능 개선
- 시각화 구현 3가지

- 협업 방식
- 전체적인 업무 다같이 협력
- 주간 미팅: 매주 진행 상황 공유하고 이슈 해결 위한 논의 진행
- Github 활용: 코드 및 자료 관리를 위해 깃허브를 사용하여 협업
- Notion 활용: 각자의 진행 상황 정리하고 프로젝트 내용 체계적으로 관리