

Nome feature	Descrizione	Unità di misura
_cloud_cover	Nuvolosità	okta
_wind_speed	Velocità vento	1 m/s
_wind_gust	Velocità raffiche di vento	1 m/s
_humidity	Umidità	1 %
_pressure	Pressione	1000 hPa
_global_radiation	Irraggiamento	W/m ²
_precipitation	Precipitazioni	10 mm
_sunshine	Ore di luce	0.1 h
_temp_mean	Temperatura media	°C
_temp_min	Temperatura minima	°C
_temp_max	Temperatura massima	°C

Weather dataset

Filippo Bucciarelli
Dataset reference on Github

3654 registrazioni giornaliere

18 città, 17 con classificazione

165 parametri meteorologici registrati (massimo 11 per città)

Pre-Processing

- null
- NaN
- duplicates

Record rimossi

- df[df[f"{citta}_sunshine"] < 20]</pre>
- df[~((df[f"{citta}_temp_min"] < 0) & (df["MONTH"].isin([6, 7, 8])))]

Valori errati

- wind_speed
- wind_gust
- humidity
- pressure
- precipitation

Rimozione outliers sospetti

Distribuzione valori

- SVC
- Logistic Regression
- SVM poly
- SVM rbf

Modelli allenati

C: [0.1, 1, 10, 100] **degree**: [2, 3, 4]

gamma: [scale, auto, 1]

Valori iperparametri SVM

solver: [saga, liblinear]

C: [0.1, 1, 10, 100]

Valori iperparametri Logistic Regression **SVC**(C=**100**, kernel='**linear**')

Modello scelto

Testing set: 0.9639

Validation set: 0.9759 Training set: 0.958500

Classificazione

Media: 0.9829

Intervallo di confidenza:

[0.9804; 0.9854] **Mediana**: 0.9835

Dev. standard: 0.0052

IQR: 0.0102

Media: 0.9598

Intervallo di confidenza:

[0.9500; 0.9696] **Mediana**: 0.9632

Dev. standard: 0.0204

IQR: 0.0256

Classificazione

Media: 0.9273

Intervallo di confidenza:

[0.9164; 0.9382] **Mediana**: 0.9292

Dev. standard: 0.0227

IQR: 0.0368

Media: 0.9906

Intervallo di confidenza:

[0.9880; 0.9931] **Mediana**: 0.9916

Dev. standard: 0.0053

IQR: 0.0062

Media: 0.9785

Intervallo di confidenza:

[0.9760; 0.9809] **Mediana**: 0.9789

Dev. standard: 0.0050

IQR: 0.0060

Classificazione

Regressione lineare

Y = 1.11X + 6.99

Equazione retta di regressione

r²: 0.8450

MSE: 12.9536

Metriche di valutazione

Regressione lineare

Analisi di normalità dei residui

p-value: 4.2677e-19

Test di Shapiro-Wilk

media: 1.1142e-16

Media dei residui

$$\varepsilon_i = y_i - (\beta_1 x_i + \beta_0)$$

