CC.	2210	O-:-	Д,
C2:	2210	Quiz	# /

8 points.

To get credit you must show your work on all exercises.

1) Find is a solution to the congruence 3×10^{-2} mod 10^{-2} mod

2) Use the **Chinese remainder** theorem to solve the following system of congruencies:

 $x \equiv 0 \pmod{5}$

 $x \equiv 1 \pmod{3}$

ANSWERS

1) Find is a solution to the congruence 3×10^{-2} m 10^{-2} m 10^{-2}

Inverse of 3 mod 7 is 5

Therefore $x \equiv 25 \pmod{7}$

 $x \equiv 4 \pmod{7}$

olution: all integers x congruent with 4 (mod 7)

2) Use the Chinese remainder theorem to solve the following system of congruencies:

 $x \equiv 0 \pmod{5}$

 $x \equiv 1 \pmod{3}$

We are asked to solve $x \equiv 0 \pmod{5}$ and $x \equiv 1 \pmod{3}$. We know from the Chinese remainder theorem that there is a unique answer modulo 15.

meren that there is a unique answer modulo 13.

$$X \equiv 0 \pmod{3}$$

$$X \equiv 1 \pmod{3}$$

$$X \equiv 1 \pmod{3}$$

$$M_1 = m_5 = 3$$

$$M_2 = m_3 = 5$$

$$M_2 = m_3 = 5$$

$$M_2(?) \equiv 1 \pmod{5}$$

$$M_2(?) \equiv 1 \pmod{5}$$

$$3 \cdot (2) \equiv 1 \pmod{5}$$

$$5 \cdot (2) \equiv 1 \pmod{3}$$

$$X \equiv 0 \cdot 3 \cdot 2 + 1 \cdot 5 \cdot 2 \text{ yis}$$

$$a_1 \quad M_2 \quad 3 + a_2 \quad M_2 \quad 3 \cdot 2$$

$$X \equiv 10 \pmod{5}$$
all integers congruent with 10 (mod 15)