

# ECG Risk Stratification Using Multiple Instance Learning

Divya Shanmugam, Davis Blalock, John Guttag {divyas, dblalock, guttag}@mit.edu

#### Goal

Identify patients at highest risk for cardiovascular death based on their ECG signal to efficiently avert adverse outcomes.

#### Challenges

- Large number of heartbeats share one global label
- Most beats are not indicative of outcome

How do we accurately classify signals, given no outcome annotations for heartbeats?

# Background

Tackle problem using multiple instance learning (MIL)

MIL: Classify collections of instances, given only collection-level labels



# Takeaway

We propose a general-purpose method for incorporating very long time series into risk models and produce a state-of-the-art ECG-based risk score for cardiovascular death.

## Results

 Outperforms state-of-the-art ECG-based risk metric across multiple time horizons.



Outperforms existing CVD risk metrics and MIL methods.





#### Robustness

(1) Instance choice

MIL-CNN is robust to instance choice across 1-4 adjacent beats



#### (2) Aggregation function

Choice of aggregation function has no significant effect on model performance



#### (3) Class imbalance

Model remains resilient to extreme class imbalance



#### Method

(1) Separation

How do we separate collections into instances?



#### (2) Classification

How do we map each instance to a collection label?

#### (3) Aggregation

How do we assign a collection label based on instance predictions?



### Conclusion

- Method to include time series in risk models
- Strong performance despite training on soft labels
- Validates application of MIL to risk stratification