Московский физико-технический институт Физтех-школа прикладной математики и информатики

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

IV CEMECTP

Лектор: Жуковский Сергей Евгеньевич

Автор: Лизюра Дмитрий

 $\Pi poe\kappa m$ на Github

Содержание

1	Автономные системы			
	1.1	Основные понятия	2	
	1.2	Свойства автономных систем	2	
	1.3	Предельные множества траекторий	4	
2	Автономные системы на плоскости			
	2.1	Линейные автономные системы	4	
		2.1.1 $\lambda_1, \lambda_2 \in \mathbb{R} \setminus \{0\}, \lambda_1 \neq \lambda_2 \dots \dots$	4	
		$2.1.2 \lambda_1 = \lambda_2 = \lambda \in \mathbb{R} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5	
		2.1.3 $\lambda_{1,2} = \alpha \pm i\beta \in \mathbb{C}$	6	
	2.2	Нелинейные автономные системы	7	
3	Устойчивость по Ляпунову и асимптотическая устойчивость			
	3.1	Определение и примеры	8	
	3.2	Устойчивость линейных систем	9	
4	Усл	ювия устойчивости	10	
5	Первые интегралы			
	5.1	Первые интегралы нормальных ОДУ	13	
	5.2	Первые интегралы автономных систем	15	
	5.3	Множество всех первых интегралов	16	
	5.4	Множество первых интегралов автономных систем	17	
6	Оффтоп: ОДУ и случайные графы			
	6.1	Процесс минимальных степеней	19	
7	Оф	фтоп: производящие функции	21	
	7.1	Линейные рекуррентные соотношения	21	
	7.2	Числа Стирлинга второго рода	22	
8	Ли	нейные однородные уравнения в частных производных	22	
9	Вариационное исчисление			
	9.1	Простейшая задача вариационного исчисления	25	
	9.2	Задача о брахистохроне	27	
	9.3	Задача со свободным концом	28	
	9.4	Задача для функционалов, зависящих от нескольких функций	30	

	9.5 Функционалы, содержащие производные высших порядков	30
10	Пропущенная лекция	32
11	Приложения в социологии	32
	11.1 Предсказание популяции в вакууме	32
	11.2 Предсказание популяции хищников и жертв	33
12	Приложения в математическом анализе	33
	12.1 Теоремы о среднем для функций многих переменных	33
13	Приложения вариационного исчисления	34
14	Лемма о выпрямлении траекторий	34

1 Автономные системы

1.1 Основные понятия

Пусть $\Sigma \subset \mathbb{R}^n$ открыто, $f: \Sigma \to \mathbb{R}^n$ непрерывно дифференцируема. Рассмотрим систему

$$x' = f(x)$$
.

Определение. Такая система называется *автономной*, а Σ — её фазовым пространством.

Определение. Пусть $x: I \to \mathbb{R}^n$ — непродолжаемое решение системы (1). Множество $\{x(t): t \in I\} \subset \mathbb{R}^n$ называется фазовой траекторией. В частности, это является проекцией графика на \mathbb{R}^n .

Определение. Пусть нашлось $\widehat{x} \in \Sigma$, такое что $f(\widehat{x}) = 0$. Тогда $x(t) \equiv \widehat{x}$ является решением системы (1), а \widehat{x} называется *положением равновесия*, или особой точкой, или стационарной точкой.

1.2 Свойства автономных систем

- 1. Если $x:(a,b)\to\mathbb{R}^n$ является решением системы (1), то для любого $c\in\mathbb{R}$ функция $y:(a-c,b-c)\to\mathbb{R}^n, \ y(t)=x(t+c)$ тоже является решением.
- 2. Любые две траектории либо не пересекаются, либо совпадают.

Пусть $x(\cdot),y(\cdot)$ — два непродолжаемых решения (1). Предположим, что в каких-то двух точках $\tau\leqslant s$ выполнено $x(s)=y(\tau)$. Положим $z(t):=y(t+\tau-s)$, по первому свойству она является решением. Более того, $z(s)=y(\tau)=x(s)$. Так, мы нашли два решения x и z, совпадающие в точке s. По теореме о существовании и единственности $z(t)\equiv x(t)$, то есть $y(t+\tau-s)\equiv x(t)$, а значит, множества их значений — траектории — совпадают.

3. Пусть $x: \mathbb{R} \to \mathbb{R}^n$ — решение системы (1). Предположим, что нашлись $t_1 < t_2$, такие что $x(t_1) = x(t_2)$, причём x не является константой. Тогда $x(\cdot)$ — периодическая функция с положительным минимальным периодом, а её траектория является замкнутой кривой без самопересечений. Более строго, это значит, что если x(0) = x(T), то T — период.

Доказательство. Положим $y(t) = x(t+t_2-t_1)$ — является решением (1). Более того, $y(t_1) = x(t_2) = x(t_1)$, то есть по теореме о существовании и единственности $y(t) \equiv x(t)$. Положим $d = t_2 - t_1$, тогда тождество выше переписывается в виде $x(t+d) \equiv x(t)$. Докажем, что самопересечений нет. Пусть $P := \{p > 0 \mid x(t+p) \equiv x(t)\}$ — это множество по доказанному точно не пусто.

Пусть $\widehat{p} = \inf(P)$, докажем, что $\widehat{p} \in P$. Рассмотрим последовательность $\{p_j\} \subset P$, такую что $p_j \downarrow \widehat{p}$ при $j \to \infty$. Тогда для любых t и j выполняется $x(t+p_j) = x(t)$. Переходя к пределу, получаем $x(t+\widehat{p}) = x(t)$, то есть $\widehat{p} \in P \cup \{0\}$.

Докажем, что $\widehat{p} > 0$, от противного. Тогда найдётся $\{p_j\} \subset P$, стремящаяся к нулю. Это означает, что для любого j выполнено $x(p_j) = x(0)$. Записывая покоординатно, получаем, что $x_i(p_j) = x_i(0)$ для всех i, j. По теореме Ролля для любого i существует

последовательность $\{\Theta_{i,j}\}$, стремящаяся к нулю, такая что $x_i'(\Theta_{i,j})=0$. Вспоминаем, что мы решали уравнение x'=f(x), то есть $0=f_i(x(\Theta_{i,j}))$. Из соображений непрерывности f получаем, что $f_i(x(0))=0$ для всех i, то есть f(x(0))=0. Следовательно, $z(t)\equiv x(0)$ — решение системы (1) и по теореме о существовании и единственности $x(t)\equiv z(t)$, то есть x(t) — это всё-таки константа, противоречие.

Остаётся вопрос, почему нет самопересечений. Но это просто: в самом начале мы доказали, что если $x(t_1) = x(t_2)$, то $|t_2 - t_1|$ является периодом, из этого от противного можно доказать отсутствие самопересечений.

- 4. Траектория это либо точка, либо замкнутая кривая без самопересечений, либо незамкнутая кривая без самопересечений. Последнее означает, что если $t_1 \neq t_2$, то $x(t_1) \neq x(t_2)$. В качестве упражнения.
- 5. Обозначим через $\varphi(\cdot, \xi)$ непродолжаемое решение задачи Коши

$$\begin{cases} x' = f(x) \\ x(0) = \xi \end{cases}$$

Пусть Θ — область определения функции φ . Тогда Θ открыто, а φ непрерывно дифференцируема.

Следует из зависимости решения от параметра (последний параграф третьего семестра).

6. (Групповое свойство автономной системы) Справедливо тождество $\varphi(t, \varphi(s, \xi)) = \varphi(t+s, \xi)$, где (s, ξ) , $(t+s, \xi) \in \Theta$.

Рис. 1: Групповое свойство

Как это представлять: вот у нас есть какая-то траектория, стартующая из точки ξ . В точке s она находится в какой-то точке $\varphi(s,\xi)$, и из этой точки, как из стартовой, можно пустить ещё одну траекторию, которая в точке t примет значение $\varphi(t,\varphi(s,\xi))$. Но то же самое значение примет и исходная траектория в точке s+t.

И при чём тут группы: рассмотрим отображения $\varphi(t,\cdot): \mathbb{R}^n \to \mathbb{R}^n$ (здесь t — параметр). Зададим операцию $\varphi(t,\cdot)\circ\varphi(s,\cdot)=\varphi(t,\varphi(s,\cdot))$. И вот по групповому свойству множество таких отображений является абелевой группой с единицей $\varphi(0,\cdot)$.

Доказательство. По свойству 1 функция $t \mapsto \varphi(t+s,\xi)$ является решением системы (1). Также по определению $\varphi(t,\varphi(s,\xi))$ тоже является решением. При t=0: $\varphi(t+s,\xi)=\varphi(s,\xi)$ и $\varphi(t,\varphi(s,\xi))=\varphi(0,\varphi(s,\xi))=\varphi(s,\xi)$. По теореме о существовании и единственности для любого s выполняется $\varphi(t+s,\xi)\equiv \varphi(t,\varphi(s,\xi))$.

Замечание. Могут возникнуть проблемы с областями определения, но будем считать, что решения определены всюду, чтобы не заморачиваться.

1.3 Предельные множества траекторий

Пусть $x:(t_0,+\infty)\to\mathbb{R}^n$ — решение системы (1), T — его траектория.

Определение. $a \in \mathbb{R}^n$ называется ω -предельной точкой (траектории T), если существует последовательность $\{t_i\} \to +\infty$, такая что $x(t_i) \to a$ при $j \to +\infty$.

Обозначим через $\Omega(T)$ ω -предельное множество — множество всех ω -предельных точек траектории T.

Пример 1. Пусть $n=1,\ t_0=0$ и x'=x. Рассмотрим решение $x(t)=e^t,$ тогда $T=(1,+\infty).$ Тогда $\Omega(T)=\varnothing.$

Пример 2. То же самое, но x' = -x и $x = e^{-t}$. Тогда T = (0,1) и $\Omega(T) = \{0\}$.

Теорема. (б/д) Пусть T ограничена и найдётся $\varepsilon > 0$, такое что ε -окрестность траектории T вложена в Σ (то есть вложено с запасом). Тогда $\Omega(T)$ непусто, ограничено, замкнуто, связно и состоит из траекторий, то есть является дизъюнктным объединением каких-то траекторий.

Теорема. (Бендиксона, б/д) Предположим, что n=2, $\Omega(T)$ ограничено и непусто, и на нём $f(x) \neq 0$, то есть не содержит положения равновесия. Тогда $\Omega(T)$ — это замкнутая траектория.

2 Автономные системы на плоскости

2.1 Линейные автономные системы

Рассмотрим автономную систему x' = Ax или же

$$\begin{cases} x_1' = a_{11}x_1 + a_{12}x_2 \\ x_2' = a_{21}x_1 + a_{22}x_2 \end{cases}$$

Как минимум, у неё есть одно положение равновесия — x=0. Будем рассматривать случаи: пусть λ_1, λ_2 — собственные значения матрицы A.

2.1.1 $\lambda_1, \lambda_2 \in \mathbb{R} \setminus \{0\}, \ \lambda_1 \neq \lambda_2$

Пусть h_1 и h_2 — два собственных вектора. Тогда в их базисе система будет иметь вид

$$\begin{cases} y_1' = \lambda_1 y_1 \\ y_2' = \lambda_2 y_2 \end{cases}$$

и её решением будет

$$\begin{cases} y_1 = c_1 e^{\lambda_1 t} \\ y_2 = c_2 e^{\lambda_2 t} \end{cases}.$$

Напишем уравнение её траектории, то есть исключим параметр t:

$$e^{\lambda_1 t} = \frac{y_1}{c_1} \Rightarrow y_2 = c_2 (e^{\lambda_1 t})^{\frac{\lambda_2}{\lambda_1}} = c_2 \left(\frac{y_1}{c_1}\right)^{\frac{\lambda_2}{\lambda_1}},$$

при $c_1 \neq 0$, а при $c_1 = 0$ получится уравнение $y_1 = 0$.

Теперь рассмотрим график, тут тоже есть несколько случаев. (Если финальная версия случится, то в ней будут нормальные картинки, впрочем, все эти графики уже, наверное, много раз видели)

Первый случай: $\lambda_1 \cdot \lambda_2 > 0$. Если $\lambda_2 > \lambda_1 > 0$, то получится парабола вида $y = \pm x^2$, и, так как $\lambda_1, \lambda_2 > 0$, направление будет от центра координат.

Если $\lambda_1 > \lambda_2 > 0$, то получится парабола вида $x = \pm y^2$, направление — от центра.

Определение. Полученный портрет называется неустойчивым узлом.

Если $\lambda_2 < \lambda_1 < 0$. Аналогично получится парабола вида $y=\pm x^2$, но теперь направление — к центру. При $\lambda_1 < \lambda_2 < 0$ повернётся на 90 градусов.

Определение. Полученный портрет называется устойчивым узлом.

Во всех случаях положением равновесия является начало координат.

Второй случай: $\lambda_1 \cdot \lambda_2 < 0$. Тогда получится гипербола вида $y = \pm \frac{1}{x}$. Ориентация зависит от знаков, здесь проще подставить $t \to +\infty$, чтобы восстановить.

Определение. Полученный портрет называется *седлом*.

2.1.2 $\lambda_1 = \lambda_2 = \lambda \in \mathbb{R}$

Первый случай: A имеет два линейно независимых собственных вектора h_1 и h_2 . Тогда при аналогично первому случаю получаем, что кривая имеет вид

$$\begin{cases} y_2 = \frac{c_2}{c_1} y_1, & c_1 \neq 0 \\ y_1 = 0, & c_1 = 0. \end{cases}$$

График будет иметь вид y=cx, направление: к центру при $\lambda>0$ и от центра при $\lambda<0$.

Определение. Полученный портрет называется дикритическим узлом. При $\lambda > 0$ называется неустойчивым, при $\lambda < 0$ — устойчивым.

Второй случай: h_1 — собственный вектор, h_2 — присоединённый к нему. Тогда в их базисе система будет иметь вид

$$\begin{cases} y_1' = \lambda y_1 + y_2 \\ y_2' = \lambda y_2. \end{cases}$$

Найдём решение:

$$\begin{cases} y_1 = c_1 e^{\lambda t} + c_2 t e^{\lambda t} \\ y_2 = c_1 e^{\lambda t}. \end{cases}$$

Выразим t:

$$e^{\lambda t} = \frac{y_2}{c_2} \Rightarrow t = \frac{1}{\lambda} \ln \left(\frac{y_2}{c_2} \right).$$

Подставим в первое уравнение:

$$y_1 = c_1 \frac{y_2}{c_2} + \frac{c_2}{\lambda} \ln\left(\frac{y_2}{c_2}\right) \frac{y_2}{c_2}.$$

График имеет неадекватный вид. При $\lambda > 0$ фазовые трактории направлены от центра и вдоль оси Oy_1 , при $\lambda < 0$ — к центру.

Определение. Сей портрет называется *вырожденным узлом*. Неустойчивый при $\lambda < 0$, устойчивый при $\lambda > 0$.

2.1.3 $\lambda_{1,2} = \alpha \pm i\beta \in \mathbb{C}$

Тогда собственные векторы имеют вид $h_{1,2}=a\pm ib$, где a и b — линейно независимые векторы. Как известно, фундаментальной системой решений здесь будет

$$\begin{cases} x_1 = e^{\alpha t} (a\cos(\beta t) - b\sin(\beta t)) \\ x_2 = e^{\alpha t} (a\sin(\beta t) + b\cos(\beta t)) \end{cases}$$

В базисе a, b она имеет вид

$$\begin{cases} y_1 = e^{\alpha t} \begin{pmatrix} \cos(\beta t) \\ -\sin(\beta t) \end{pmatrix} \\ y_2 = e^{\alpha t} \begin{pmatrix} \sin(\beta t) \\ \cos(\beta t) \end{pmatrix} \end{cases}$$

Собирая вместе и опуская вычисления, получаем, что решение имеет вид

$$y(t) = re^{\alpha t} \begin{pmatrix} \cos(\beta(t - \Theta)) \\ \sin(\beta(t - \Theta)) \end{pmatrix}$$

для всех r и Θ . Берётся из $c_1y_1+c_2y_2$, формул косинуса суммы, синуса суммы и безыдейной арифметики. Теперь смотрим на это уравнение и разбираем случаи.

При $\alpha=0$: получаем концетрические окружности с центром в начале координат. Для определения направления лучше снова просто посмотреть на сдвиг при увеличении t.

Определение. Данный портрет называется центром.

При $\alpha>0$: теперь расстояния до начала координат увеличивается с увеличением t, поэтому получается спираль, вращающаяся против часовой стрелки при $\beta>0$, и по часовой — при $\beta<0$. В окрестности нуля происходит бесконечное число витков (при $t\to-\infty$), поэтому там обычно график не рисуют. Направление в обоих случаях — от начала координат.

Определение. Полученный портрет называется неустойчивым фокусом.

При $\alpha < 0$ — всё то же самое, но теперь к центру координат: при $\beta < 0$ спираль идёт против часовой стрелки, если смотреть в направлении движения к центру координат, то есть зеркально тому, что было при $\alpha > 0$ и $\beta < 0$.

2.2Нелинейные автономные системы

Пусть нам даны открытые множества Ω и Θ в \mathbb{R}^2 и отображения $f \in C^2(\Omega, \mathbb{R}^2)$ и $q \in C^2(\Theta, \mathbb{R}^2)$. Рассмотрим системы

$$x' = f(x)$$

И

$$y' = g(y).$$

Определение. Автономные системы (1) и (2) качественно эквивалентны, если существует гомеоморфизм $\pi: \Omega \to \Theta$, такой что для любой траектории X системы системы (1) $\pi(X)$ — траектория системы (2). И наоборот: для любой траектории Y системы (2) $\pi^{-1}(Y)$ — траектория системы (1). Более того, π и π^{-1} сохраняют ориентацию траекторий, или же, более строго, если X — траектория (1), $x(\cdot)$ — соответствующее решение (1), $y(\cdot)$ решение (2), траектория которого совпадает с $\pi(X)$, и $t_1 < t_2$, то существуют $\tau_1 < \tau_2$, такие что $\pi(x(t_1)) = y(\tau_1)$ и $\pi(x(t_2)) = y(\tau_2)$.

Пусть x_* — положение равновесия системы (1) (то есть $f(x_*) = 0$). Тогда, раскладывая по Тейлору, получаем

$$f(x) \equiv f(x_*) + \frac{\partial f}{\partial x}(x_*)(x - x_*) + R(x - x_*),$$

где $R \in C^2$ и $R = o(x - x_*)$. Более того, $f(x_*) = 0$, так что про этот член можно забыть. $(\frac{\partial f}{\partial x} -$ это матрица Якоби) Рассмотрим систему

$$y' = \frac{\partial f}{\partial x}(x_*)y.$$

Утверждается, что при некоторых условиях она ведёт себя так же, как и система (1).

Теорема. Пусть $Re(\lambda) \neq 0$ для любого элемента λ матрицы $\frac{\partial f}{\partial x}(x_*)$ системы (1). Тогда в некоторой окрестности точки x_* система (1) качественно эквивалентна (3).

Замечание. У теоремы такие странные условия, потому что иначе она не работает. Примеры.

 $\Rightarrow x' = -x^3$ и $x' = x^3$. Матрица Якоби нулевая, и направления движений противоположные.

 \triangleright

$$\begin{cases} x_1' = -x_2 - x_1 |x|^2 \\ (x_2')^2 = x_1 - x_2 |x|^2 \end{cases}$$

и $x_* = (0,0)$. Здесь

$$\frac{\partial f}{\partial x}(x_*) = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}$$

Собственные значения — $\lambda = \pm i$, получаем концентрические окружности, то есть решение вида

$$\begin{cases} x_1(t) = r(t)\cos(\varphi(t)) \\ x_2(t) = r(t)\sin(\varphi(t)). \end{cases}$$

Подставляя его в исходное уравнение, получаем

$$\begin{cases} r'\cos(\varphi) - r\sin(\varphi)\varphi' = -r\sin(\varphi) - r^3\cos(\varphi) \\ r'\sin(\varphi) + r\cos(\varphi)\varphi' = r\cos(\varphi) - r^3\sin(\varphi) \end{cases}$$

Умножая первое уравнение на $\cos(\varphi)$, второе — на $\sin(\varphi)$ и складывая, получаем $r'=-r^3$. Умножая второе на $-\sin(\varphi)$, второе — на $\cos(\varphi)$ и складывая, получаем $\varphi'=1$. У этого уравнения решением будет спираль, а у линеаризованной системы — концентрические окружности, ибо собственными числами будут $\pm i$.

3 Устойчивость по Ляпунову и асимптотическая устойчивость

3.1 Определение и примеры

Определение. Пусть задано открытое $\Omega \subset \mathbb{R}^n$, отображение $f: \Omega \to \mathbb{R}^n$, $f \in C^1$, и точка $x^* \in \Omega$ — положение равновесия, то есть $f(x^*) = 0$. Рассмотрим систему

$$x' = f(x)$$
.

Пусть $\varphi(\cdot,\xi)$ — непродолжаемое решение задачи Коши $x'=f(x), x(0)=\xi$. Положение равновесия x^* называется устойчивым по Ляпунову, если:

- 1. Существует r > 0, такое что для любого $\xi \in \Omega \cap B_r(\xi)$ $\varphi(\cdot, \xi)$ определено на $[0, +\infty)$.
- 2. Для любого $\varepsilon > 0$ существует $\delta > 0$, такое что для всех $\xi \in \Omega \cap B_{\delta}(x^*)$ верно $|\varphi(t,\xi) x^*| < \varepsilon$ для всех $t \geqslant 0$. (Чем-то напоминает непрерывность)

Положение равновесия x^* называется асимптотически устойчивым, если:

- 1. x^* устойчиво по Ляпунову.
- 2. Существует d>0, такое что для всех $\xi\in\Omega\cap B_d(x^*)$ функция $\varphi(t,\xi)\to x^*$ при $t\to+\infty$.

Примеры.

- 1. Пусть n=2, f(x)=Ax и $x^*=0$. Возвращаясь к случаям из предыдущего параграфа, по Ляпунову устойчивы все устойчивые портреты u центр. Асимптотически устойчивы из них все, кроме центра.
- 2. $n=1, \Omega=\mathbb{R}$. Функция f(x)>0 при $x\in(x^*-\varepsilon,x^*), f(x^*)=0$ и f(x)<0 при $x\in(x^*,x^*+\varepsilon)$. Тогда можно проверить, что решение асимптотически устойчиво. Более того, если одно из строгих неравенств становится нестрогим, то теряется асимптотическая устойчивость, а если даже нет нестрогого, то и по Ляпунову.

3.2 Устойчивость линейных систем

Пусть дана матрица $A \in \mathbb{R}^{n \times n}$ и система

$$x' = Ax$$
.

Пусть X(t) — фундаментальная система решений системы (2), такая что X(0) = I (единичная). Она существует, так как можно рассмотреть n задач Коши x' = Ax и $x(0) = e_i$, где $e_i - i$ -ый базисный вектор \mathbb{R}^n . Обозначим через $\lambda_1, \ldots, \lambda_s$ собственные значения матрицы A, а через k_1, \ldots, k_s — размеры соответствующих жордановых клеток.

Теорема.

- ightharpoonup Если все $Re(\lambda_j) < 0$, то $x^* = 0$ асимптотически устойчивое положение равновесия.
- \triangleright Если все $Re(\lambda_j) \leqslant 0$, а для тех j, что $Re(\lambda_j) = 0$, выполнено $k_j = 1$, то $x^* = 0$ устойчиво по Липунову.
- ⊳ В остальных случаях не устойчиво.

Доказательство. Любое решение x(t) системы (2) представимо в виде

$$x(t) = \sum_{j=1}^{s} P_j(t)e^{\lambda_j t}, t \geqslant 0.$$

Здесь P_j — многочлен (с векторными значениями), такой что $\deg(P_j) \leqslant k_j - 1$. Первая часть:

$$e^{\lambda_j t} = e^{(Re(\lambda_j))t}(\cos(Im(\lambda_j)t) + i\sin(Im(\lambda_j)t)).$$

Это стремится к нулю быстрее любого многочлена, поэтому для любого решения $x(\cdot)$ выполнено $x(t)\to 0$ при $t\to +\infty$. Докажем устойчивость по Ляпунову. Так как столбцы X(t) являются решениями, $\|X(t)\|\to 0$ при $t\to +\infty$. В частности, $\|X(t)\|$ равномерно ограничена каким-то числом c. Заметим, что $\varphi(\cdot,\xi)$ при любом ξ определено на $[0,+\infty)$, ибо (2) является линейной системой с постоянными коэффициентами. Зафиксируем $\varepsilon>0$, положим $\delta=\frac{\varepsilon}{c}$. Имеем при $|\xi|<\delta$

$$|\varphi(t,\xi)| = |X(t)\xi| \le ||X(t)|| \cdot |\xi| < c \cdot \frac{\varepsilon}{c} = \varepsilon.$$

Следовательно, $|\varphi(t,\xi)| \to 0$ — асимптотическая устойчивость.

Вторая часть. Если $Re(\lambda_j)<0$, то по первой части $P_j(t)e^{\lambda_j t}$ ограничено на $[0,+\infty)$. Остаётся случай $Re(\lambda_j)=0$ и $k_j=1$. В этом случае $P_j(t)$ имеет степень 0, то есть константа. Таким образом,

$$P_j(t)e^{\lambda_j t} \equiv C \cdot (\cos(Im(\lambda_j)t) + i\sin(Im(\lambda_j)t)),$$

где C — константа. В этом случае решение вновь ограничено, поэтому существует c, такое что $||X(t)|| \le c$ для всех $t \in [0, +\infty)$. Аналогично первой части устойчиво по Ляпунову.

Третья часть. Пусть существует j, такой что $Re(\lambda_j)>0$. Обозначим $\lambda_j=\alpha+i\beta$. Пусть v=a+ib— соответствующий собственный вектор. Тогда

$$x(t) = e^{\alpha t} (\cos(\beta t)a - \sin(\beta t)b)$$

является вещественным решением системы (2). Домножим на $\gamma > 0$:

$$x_{\gamma}(t) = \gamma \cdot e^{\alpha t} (\cos(\beta t)a - \sin(\beta t)b).$$

Система линейна, поэтому это всё ещё решение, причём $x_{\gamma}(\cdot)$ не ограничено на $[0, +\infty)$. Более того, мы можем брать сколь угодно малое число γ , чтобы получать $|x_{\gamma}(0)| < \varepsilon$.

4 Условия устойчивости

Пусть $f: \mathbb{R}^n \to \mathbb{R}^n, x^* \in \mathbb{R}^n$ — положение равновесия, то есть $f(x^*) = 0$. Рассмотрим систему

$$x' = f(x),$$

для которой $\varphi(\cdot,\xi)$ является непродолжаемым решением задачи Коши

$$\begin{cases} x' = f(x) \\ x(0) = \xi. \end{cases}$$

Пусть $\Omega \subset \mathbb{R}^n$ открыто, $v: \Omega \to \mathbb{R} \in C^1$.

Определение. Производной в силу системы (1) называется

$$\frac{dv}{dt}\Big|_{(1)}(x) := \langle v'(x), f(x) \rangle,$$

где $x \in \Omega$. Пусть $x(\cdot)$ — решение системы (1). Тогда

$$\frac{d}{dt}v(x(t)) \equiv \langle v'(x(t)), x'(t) \rangle \equiv \langle v'(x(t)), f(x(t)) \rangle \equiv \frac{dv}{dt} \Big|_{(1)} (x(t)).$$

Теорема. (Ляпунова об устойчивости) Пусть существует $\rho > 0$, и $v \in C^1(B_{\rho}(x^*), \mathbb{R})$, такие что $v(x^*) = 0$, v(x) > 0 при $x \neq x^*$ и для всех x выполнено $\frac{dv}{dt}\big|_{(1)}(x) \leqslant 0$. Тогда x^* устойчиво по Ляпунову.

Геометрическая интуиция: если взять достаточно маленький ε , то множество $\{x:v(x)=\varepsilon\}$ (линия уровня) образует замкнутую кривую вокруг x^* . А условие на производную говорит, что при попадании на границу решение будет двигаться внутрь, то есть не выйдет за кривую.

Доказательство. Зафиксируем $\varepsilon > 0$, будем считать, что $\varepsilon < \rho$. Положим $m := \min_{|x-x^*|=\varepsilon}(v(x))$. По условию m>0. В частности, найдётся $\delta > 0$, такое что для всех $x \in B_\delta(x^*)$ верно v(x) < m.

Зафиксируем $\xi \in B_{\delta}(x^*)$. Допустим, что $\varphi(\cdot, \xi)$ не определено на $[0, +\infty)$ или $\varphi(\cdot, \xi)$ не содержится в шаре $B_{\varepsilon}(x^*)$ — отрицание устойчивости по Ляпунову. Вспомним теорему о продолжении решения до границы компакта: если рассмотреть цилиндр $\{(t, x) : |x - x^*| \leq \varepsilon\}$, то в первом случае решение должно выйти из него в какой-то точке t_1 , то есть $|\varphi(t_1, \xi) - x^*| = \varepsilon$. Во втором случае допускается то же самое, поэтому существование такой точки мы и хотим опровергнуть.

По выбору m мы знаем, что $v(x(t_1)) \geqslant m$ и $v(x(0)) = v(\xi) < m$. Теперь вспомним, что

у нас было условие на производную:

$$\frac{d}{dt}v(x(t)) \equiv \frac{dv}{dt}\Big|_{(1)}(x(t)) \leqslant 0.$$

То есть v не возрастает, но при этом в ξ она меньше m, а в $t_1 > \xi$ — больше, противоречие.

Пример.

$$\begin{cases} x_1' = -x_2 \\ x_2' = x_1 \end{cases}, x^* = (0,0)^T.$$

Положим $v(x) = x_1^2 + x_2^2$. Тогда v(0) = 0 и v(x) > 0 при $x \neq 0$. Найдём производную:

$$\frac{dv}{dt}\Big|_{(1)}(x) = \langle (2x_1, 2x_2)^T, (-x_2, x_1)^T \rangle \equiv 0.$$

Следовательно, по теореме Ляпунова ноль устойчив. Но асимптотической устойчивости нет: портретом является центр.

Теорема. (Ляпунова об асимптотической устойчивости) Пусть существует $\rho > 0$, и $v \in C^1(B_\rho(x^*), \mathbb{R})$, такие что $v(x^*) = 0$, v(x) > 0 при $x \neq x^*$ и для всех $x \neq x^*$ выполнено $\frac{dv}{dt}|_{(1)}(x) < 0$. Тогда x^* асимптотически устойчиво. От предыдущей теоремы отличается только последним условием.

Доказательство. По предыдущей теореме x^* устойчиво по Ляпунову. Положим $\varepsilon = \frac{\rho}{2}$, δ возьмём из определения устойчивости. Вновь будем доказывать от противного: допустим, что существует $\xi \in B_{\delta}(x^*)$, r > 0 и возрастающая $t_j \to +\infty$, такая что $|\varphi(t_j, \xi) - x^*| \geqslant r$. Будем считать, что $r < \varepsilon$, также будем обозначать $x(t) = \varphi(t, \xi)$. По условию существует $\mu > 0$, такое что для всех x, таких что $r \leqslant |x - x^*| \leqslant \varepsilon$, выполнено $v(x) \geqslant \mu$. Из условия на производную мы знаем, что v(x(t)) строго убывает на $[0, +\infty)$.

Отсюда следует, что $v(x(t))\geqslant \mu$ для всех $t\in [0,+\infty)$. Обосновывается это тем, что для любого t найдётся $t_j>t$ из допущения, такая что $|\varphi(t_j,\xi)-x^*|\geqslant r$, а это значит, что $v(x(t_j))\geqslant \mu$. В силу убывания и $v(x(t))\geqslant v(x(t_j))\geqslant \mu$. По непрерывности v существует $\delta_1>0$, такое что $v(x)<\mu$ при $|x-x^*|<\delta_1$. Из доказанного $|x(t)-x^*|\geqslant \delta_1$. Ещё существует $\beta>0$, такое что $\frac{dv}{dt}|_{(1)}(x)\leqslant -\beta$ для всех x, таких что $\delta_1\leqslant |x-x^*|\leqslant \varepsilon$. Это следует из определения производной в силу системы: функция непрерывна. Теперь по формуле Ньютона-Лейбница

$$v(x(t)) - v(x(0)) \equiv \int_0^t \frac{d}{ds} v(x(s)) dx \equiv \int_0^t \frac{dv}{dt} \Big|_{(1)} (x(s)) ds \leqslant -\beta t$$

в силу неравенства выше.

Следовательно, перенося v(x(0)) в правую часть, при $t \to +\infty$ получаем $v(x(t)) \le v(x(0)) - \beta t$. Выражение справа стремится к $-\infty$, что противоречит тому, что $v(x) \ge 0$.

Пример. Пусть $n=1, f: \mathbb{R} \to \mathbb{R}, f(x^*)=0, f(x)>0$ при $x< x^*, f(x)<0$ при $x> x^*.$ Положим $v(x):=(x-x^*)^2.$ Найдём производную:

$$\frac{dv}{dx}\Big|_{(1)}(x) = 2(x - x^*)f(x).$$

После разбора случаев можно заметить, что это меньше нуля при $x \neq x^*$.

Определение. Функция v в обеих теоремах называется функцией Ляпунова.

Теорема. (Хассело-..., 6/д) Теоремы Ляпунова — это не только достаточное условие, но и необходимое.

Теперь остаётся важный вопрос: как найти функцию v? Обычно это сложная задача, но в одном частном случае это можно сделать:

Теорема. (Об устойчивости по первому приближению) Пусть $f(x) = A(x - x^*) + o(x - x^*)$. Пусть все $Re(\lambda) < 0$ для собственных значений λ матрицы A. Тогда x^* асимптотически устойчиво.

Доказательство. Положим $\psi(t,\xi)=e^{tA}\xi$ для $t\geqslant 0,\,\xi\in\mathbb{R}^n.$ Заметим, что это является решением задачи Коши

$$\begin{cases} y' = Ay \\ y(0) = \xi \end{cases},$$

то есть линеаризованной версии исходной системы. Тогда существуют $c, \alpha > 0$, такие что $|\varphi(t,\xi)| \leqslant c \cdot e^{-\alpha t} |\xi|$ — следует из $Re(\lambda) < 0$. Положим

$$v(x) = \int_0^{+\infty} |\psi(\tau, x)|^2 d\tau = \int_0^{+\infty} |e^{\tau A} \cdot x|^2 d\tau =$$

В силу неравенства выше эта функция определена для всех x. Заметим, что это является квадратичной формой, в которую подставлен x:

$$= \int_0^{+\infty} \left\langle e^{\tau A} x, e^{\tau A} x \right\rangle d\tau = \int_0^{+\infty} \left\langle (e^{\tau A})^T e^{\tau A} \cdot x, x \right\rangle d\tau =$$

Тепеь можно два раза вынести x из интеграла:

$$= \left\langle \int_0^{+\infty} (e^{\tau A})^T e^{\tau A} x \cdot d\tau, x \right\rangle = \left\langle \int_0^{+\infty} (e^{\tau A})^T e^{\tau A} d\tau \cdot x, x \right\rangle.$$

Положим $Q = \int_0^{+\infty} (e^{\tau A})^T e^{\tau A} d\tau$, тогда это всё равно $\langle Qx, x \rangle$. Более того, Q положительно определена, так как это интеграл квадрата.

Подставим ψ в функцию v:

$$v(\psi(t,\xi)) = \int_0^{+\infty} |e^{\tau A}e^{tA}\xi|^2 d\tau = \int_t^{+\infty} |e^{sA}\xi|^2 ds$$

— в конце сделали замену $s = t + \tau$.

Теперь найдём производную от этого:

$$\frac{d}{dt}v(\psi(t,\xi))|_{t=0} = -|e^{tA}\xi|^2|_{t=0} = -|\xi|^2.$$

И производную в силу системы (2) (линеаризованной):

$$\frac{dv}{dt}\Big|_{(2)} = \frac{d}{dt}v(\psi(t,\xi))|_{t=0} = -|\xi|^2.$$

Тогда

$$\frac{dv}{dt}\Big|_{(1)} = \langle v'(\xi), f(\xi) \rangle = \langle v'(\xi), A\xi + o(\xi) \rangle =$$

$$= \langle v'(\xi), A\xi \rangle + \langle v'(\xi), o(\xi) \rangle = \frac{dv}{dt}\Big|_{(2)} (\xi) + \langle 2Q\xi, o(\xi) \rangle =$$

$$= -|\xi|^2 + \langle 2Q\xi, o(\xi) \rangle.$$

Так как второе слагаемое — о-малое, в некоторой окрестности это всё не превосходит $-\frac{1}{2}|\xi|^2$. Следовательно, x* асимптотически устойчиво.

Замечание. (б/д) Если существует собственное число λ матрицы A, такое что $Re(\lambda) > 0$, то x^* не устойчиво по Ляпунову.

Замечание 2. Таким образом, мы охарактеризовали все системы, кроме тех, у которых все собственные значения мнимые, но они встечаются редко.

5 Первые интегралы

5.1 Первые интегралы нормальных ОДУ

Пусть нам даны $n \in \mathbb{N}$, открытое $\Omega \subset \mathbb{R}^{n+1}$ и отображение $f: \Omega \to \mathbb{R}^n, f \in C^1$. Рассмотрим систему

$$x' = f(t, x).$$

Определение. Первым интегралом в области $D \subset \Omega$ уравнения (1) называется функция $v: D \to \mathbb{R}$, такая что $v \in C^1$ и для любого решения $\varphi(\cdot)$ системы (1), для которого $\forall t \ (t, \varphi(t)) \in D, \ v(t, \varphi(t))$ является константой.

Замечание. Первый интеграл всегда существует, например, v = C.

Определение. Производная в силу системы для функции v в этом случае определяется, как

$$\frac{dv}{dt}\Big|_{(1)}(t,x) := \frac{\partial v}{\partial t}(t,x) + \left\langle \frac{\partial v}{\partial x}(t,x), f(t,x) \right\rangle.$$

Утверждение. Функция $v:D\to\mathbb{R},\,v\in C^1$ является первым интегралом системы (1) тогда и только тогда $\frac{dv}{dt}\big|_{(1)}(t,x)\equiv 0$ для всех $(t,x)\in D.$

Доказательство. \Rightarrow . Пусть для всех $(\tau,\xi)\in D$ существует решение $\varphi(\cdot)$ задачи Коши

$$\begin{cases} x' = f(t, x) \\ x(\tau) = \xi. \end{cases}$$

Так как $v(t,\varphi(t))$ — константа, $\frac{d}{dt}(v(t,\varphi(t)))\equiv 0$. Тогда

$$\frac{\partial v}{\partial t}(t,\varphi(t)) + \left\langle \frac{\partial v}{\partial x}(t,\varphi(t)), f(t,\varphi(t)) \right\rangle \equiv 0,$$

кажется, по производной композиции. Подставляя $t=\tau$ и $\xi=\varphi(t)$, получаем требуемое. \Leftarrow . Аналогично в обратную сторону.

Определение. Пусть v_1, \ldots, v_k — первые интегралы системы (1). Они называются независимыми в области D, если $\operatorname{rank}\left(\frac{\partial v_i}{\partial x_i}(t,x)\right) = k$.

Замечание. Зачем это всё нужно? Пусть n=2, и (t_0,x_0) — какая-то точка в \mathbb{R}^3 . Возьмём два первых интеграла, проходящих через неё, v_1,v_2 . Тогда $A=\{(t,x):v_1(t,x)=v_1(t_0,x_0)\}$ и $B=\{(t,x):v_2(t,x)=v_2(t_0,x_0)\}$ — это какие-то поверхности, и их пересечение является решением системы. Это утверждение является теоремой, которая не будет доказываться.

Теорема. Для любой точки $(t_0, x_0) \in \Omega$ существует окрестность $D \subset \Omega$, а в ней — независимые в D первые интегралы v_1, \ldots, v_n .

Доказательство. Для любого $(t_0,\xi)\in D$ существует единственное непродолжаемое решение $\varphi(\cdot,\xi)$ задачи Коши

$$\begin{cases} x' = f(t, x) \\ x(t_0) = \xi \end{cases}$$

Решим уравнение $x - \varphi(t, \xi) = 0$ относительно ξ в окрестности (t_0, x_0) , где $x_0 = x(t_0)$. Тогда $\varphi(t_0, \xi) \equiv \xi$ — по определению φ . Теперь

$$\frac{\partial}{\partial \xi} (x - \varphi(t, \xi)) \Big|_{\substack{t=t_0 \\ x=x_0}} = -E.$$

Следовательно, применима теорема о неявной функции: существует окрестность $D_1 \subset \Omega$ точки (t_0, x_0) и отображение $V = (v_1, \dots, v_n) : D_1 \to \mathbb{R}^n$, такое что:

- $\triangleright V \in C^1$.
- \triangleright Для всех $(t,x) \in D_1$ выполнено $x \varphi(t,V(t,x)) \equiv 0$.
- $\triangleright V(t_0, x_0) = x_0.$
- \triangleright Так как количество уравнений совпадает с количеством неизвестных, существует окрестность Δ точки x_0 , такая что если $u \in \Delta$ и $x \varphi(t, u) = 0$, то u = V(t, x).

Продифференцируем по x второе свойство:

$$E \equiv \frac{\partial \varphi}{\partial \varepsilon}(t, V(t, x)) \cdot \frac{\partial V}{\partial x}(t, x).$$

Подставим (t_0, x_0) : заметим, что $V(t_0, x_0) = x_0$, откуда это будет равно

$$E = \frac{\partial \varphi}{\partial \xi}(t_0, x_0) \cdot \frac{\partial V}{\partial x}(t_0, x_0).$$

Первый множитель равен E, поэтому

$$E = \frac{\partial V}{\partial x}(t_0, x_0).$$

Откуда ранг этой матрицы равен n, а значит, существует окрестность $D\subset D_1$, такая что в ней rank $\left(\frac{\partial V}{\partial x}(t,x)\right)=n$.

Пусть $x(\cdot)$ — решение задачи Коши $x' = f(t,x), x(t_0) = \xi$. По второму свойству $x(t) - \varphi(t,V(t,x(t))) \equiv 0$, значит, $x(t) - \varphi(t,\xi) \equiv 0$. По четвёртому свойству решение единственно и должно совпадать, поэтому $V(t,x(t)) \equiv \xi$, и $v_i(t,x(t)) \equiv \xi_i$ — константы.

5.2 Первые интегралы автономных систем

Пусть нам даны $n \in \mathbb{N}$, открытое $\Omega \subset \mathbb{R}^n$ и отображение $f : \Omega \to \mathbb{R}^n$, $f \in C^1$. Рассмотрим систему

$$x' = f(t, x).$$

Теорема. Для любого $x_0 \in \Omega$, такого что $f(x_0) \neq 0$ существует окрестность $D \subset \Omega$ точки x_0 и (n-1) независимых первых интегралов $v_i : D \to \mathbb{R}$. От предыдущего случая отличается тем, что v_i не зависит от t.

Доказательство. Так как $f(x_0) \neq 0$, у него существует ненулевая координата. Без ограничения общности это n-ая: $f_n(x_0) \neq 0$. Из непрерывности f_n получаем, что $f_n(x) \neq 0$ в некоторой окрестности x_0 . Рассмотрим неавтономную систему

$$\frac{dx_i}{dx_n} = \frac{f_i(x)}{f_n(x)}.$$

Здесь (n-1) уравнение, откуда по теореме из предыдущего пункта существует окрестность D точки x_0 и независимые первые интегралы системы (3) $v_1, \ldots, v_{n-1}: D \to \mathbb{R}$.

Пусть $\varphi(\cdot) = (\varphi_1(\cdot), \dots, \varphi_n(\cdot))$ — какое-то решение системы (2), такое что для всех t $\varphi(t) \in D$, то есть $\varphi'_n(t) = f_n(\varphi(t)) \neq 0$ Итак, мы получили строго монотонную функцию $\varphi_n(t)$ на интервале — по первому семестру матанализа существует обратная к ней функция $t(\varphi_n)$. Обозначим $x_i(x_n) = \varphi_i(t(x_n))$. Тогда

$$\frac{dx_i}{dx_n}(x_n) \equiv \frac{d\varphi_i}{dt}(t(x_n)) \cdot \frac{dt}{dx_n}(x_n) \equiv f_i(\varphi(t(x_n))) \cdot \frac{1}{\varphi_n(t(x_n))} \equiv \frac{f_i(\varphi(t(x_n)))}{f_n(\varphi(t(x_n)))} \equiv \frac{f_i(x)}{f_n(x)}.$$

По теореме для автономных систем существуют первые интегралы v_i для системы (3). Тогда

$$v_i(\varphi_1(t(x_n)), \dots, \varphi_{n-1}(t(x_n)), x_n) \equiv const.$$

Обозначая $\tau = t(x_n)$, получаем

$$v_i(\varphi_1(\tau),\ldots,\varphi_n(\tau)) \equiv const.$$

Значит, v_i являются первыми интегралами системы (2). Проверим их независимость. Мы знаем, что они независимы в системе (3), тогда векторы

$$\left(\frac{\partial v_i}{\partial x_1}(x), \dots, \frac{\partial v_i}{\partial x_{n-1}}(x)\right)$$

линейно независимы. Нам нужны n-мерные векторы, поэтому добавим к ним ещё одну координату:

$$\left(\frac{\partial v_i}{\partial x_1}(x), \dots, \frac{\partial v_i}{\partial x_{n-1}}(x), \frac{\partial v_i}{\partial x_n}(x)\right).$$

При добавлении новой координаты линейная независимость не ломается, поэтому они

подходят в систему (2). Таким образом, ранг матрицы

$$\left(\frac{\partial v_i}{\partial x_j}\right)_{\substack{i=\overline{1,n-1}\\j=1,n}}$$

равен n-1, то есть v_1, \ldots, v_{n-1} — искомые первые интегралы.

Замечание. Зачем: возьмём n=2 и первый интеграл v_1 . Тогда кривая $v_1(x)=v_1(x_0)$ является фазовой траекторией. Аналогично в трёхмерном случае, но тогда будет пересечение поверхностей.

Пример. Рассмотрим систему

$$\begin{cases} x_1' = -x_2 \\ x_2' = x_1 \end{cases}$$

и её положение равновесия $x_0 = (0,0)$. Так как $f(x_0) = (0,0)$, предположение теоремы нарушается. Проверим, что следствие теоремы тоже нарушится: от противного, пусть существует первый интеграл $v(x_1,x_2)$ в окрестности x_0 . Мы ещё требуем невырожденность, поэтому

$$\left(\frac{\partial v}{\partial x_1}(0,0), \frac{\partial v}{\partial x_2}(0,0)\right) \neq (0,0).$$

Без ограничения общности $\frac{\partial v}{\partial x_1}(0,0) > 0$, тогда это верно и в некоторой окрестности нуля. По определению первого интеграла производная в силу системы должна быть тождественным нулём:

$$-x_2 \frac{\partial v}{\partial x_1}(x_1, x_2) + x_1 \frac{\partial v}{\partial x_2}(x_1, x_2) \equiv 0.$$

Возьмём $x_1 = 0$ и $x_2 = \frac{1}{N}$, где N — какое-то достаточно большое число. Тогда из доказанного выше $\frac{\partial v}{\partial x_1}(x_1, x_2) > 0$. Вернёмся к тождеству выше:

$$-x_2 \frac{\partial v}{\partial x_1}(x_1, x_2) \equiv 0.$$

Но мы взяли x_1 , x_2 так, что оба множителя не равны нулю — противоречие.

5.3 Множество всех первых интегралов

Утверждение. Если у нас есть n первых интегралов $v_1(t,x),\ldots,v_n(t,x)$, то любая функция вида $F(v_1(t,x),\ldots,v_n(t,x))$ является первым интегралом для $F\in C^1$.

Доказательство. Действительно, пусть $x(\cdot)$ — это решение системы (1), тогда

$$F(v_1(x_1(t)), \dots, v_k(x_n(t))) \equiv F(const_1, \dots, const_n) \equiv const.$$

Возникает логичный вопрос: все ли первые интегралы представимы в таком виде, если v_1, \ldots, v_n независимы? Ответ положительный.

Теорема. Пусть D — окрестность точки $(t_0, x_0), v_1, \ldots, v_n : D \to \mathbb{R}$ — независимые первые интегралы системы (1). Обозначим $v := (v_1, \ldots, v_n) : D \to \mathbb{R}^n$ и $c_0 = v(t_0, x_0)$. Тогда

- \triangleright Если $x(\cdot)$ решение задачи Коши $x' = f(t,x), x(t_0) = x_0$, то $x(\cdot)$ является решением алгебраической системы $v(t_0,x) = c_0$.
- \triangleright Если $\varphi(\cdot, c)$ это решение алгебраической системы v(t, x) = c и c достаточно близко к c_0 , то $\varphi(\cdot, c)$ это решение системы (1).

В каком-то смысле дифференциальная система и алгебраическая система на первых интегралах эквивалентны.

Доказательство. Первая часть: для любого t

$$v(t, x(t)) \equiv (v_i(t, x(t)))_{i=\overline{1,n}} \equiv const = v(t_0, x(t_0)) = c_0,$$

что и требовалось.

Вторая часть: пусть v_1, \dots, v_n — независимые первые интегралы, тогда ранг матрицы

$$\left(\frac{\partial v_i}{\partial x_j}(t_0, x_0)\right)_{i,j=\overline{1,n}}$$

равен n. Пусть $x(\cdot)$ — решение системы (1). По первому пункту x является решением системы $v(t,x)=v(t_0,x_0)$. Тогда по теореме о неявной функции $\varphi(\cdot,c)$, как второе решение этой системы, совпадает с x(t). Следовательно, $\varphi(t,v(t_0,x(t_0)))$ — решение системы (1). (Что здесь происходит...)

Утверждение. Пусть D — окрестность $(t_0, x_0), v_1, \ldots, v_n : D \to \mathbb{R}$ — независимые первые интегралы системы (1), v и c_0 из теоремы. Тогда существует окрестность $D' \subset D$ точки (t_0, x_0) , такая что любой первый интеграл $\omega : D' \to \mathbb{R}$ системы (1) представим в виде $\omega(t, x) = F(v(t, x))$.

Доказательство. Пусть $\varphi(t,c)$ — решение системы v(t,x)=c, тогда $\varphi(\cdot,c)$ по теореме является решением системы (1). Пусть $\varphi(t,v(t,\xi))$ — решение системы $v(t,x)=v(t,\xi)$. Тогда по теореме о неявной функции существует окрестность $D'\subset D$, такая что $x=\xi$ — единственное решение для всех x, достаточно близких к x_0 , такое что для всех $(t,\xi)\in D'$ выполняется $\varphi(t,v(t,\xi))\equiv \xi$.

Положим $F(c) := \omega(t_0, \varphi(t_0, c))$. По определению первого интеграла $\omega(t, \varphi(t, c))$ — константа по t. Подставим t_0 : $\omega(t_0, \varphi(t_0, c)) = F(c)$. Теперь подставим $c = v(t, \xi)$: $\omega(t, \xi) \equiv F(v(t, \xi))$ — ровно искомое тождество.

Смысл доказательств — переход от дифференциальных уравнений к алгебраическим и последующее применение теоремы о неявной функции.

5.4 Множество первых интегралов автономных систем

Будем доказывать те же теоремы для автономных систем. Преамбула такая же, как и в пункте 2.

Лемма. Пусть $f_n(x_0) \neq 0$, где $x_0 \in \Omega$, функции $v_1, \ldots, v_{n-1} : \Omega \to \mathbb{R}$ — независимые первые интегралы системы (2). Тогда v_1, \ldots, v_{n-1} — независимые первые интегралы системы $\frac{dx_i}{dx_n} = \frac{f_i(x)}{f_n(x)}$. Это аналог теоремы из пункта 2, но теперь в роли времени выступает x_n .

Доказательство. Из определения первого интеграла для любого j выполняется

$$\sum_{i=1}^{n} \frac{\partial v_j}{\partial x_i}(x) f_i(x) \equiv 0.$$

Тогда можно разделить на $f_n(x)$:

$$\sum_{i=1}^{n-1} \frac{\partial v_j}{\partial x_i}(x) \frac{f_i(x)}{f_n(x)} + \frac{\partial v_j}{\partial x_n}(x) \equiv 0.$$

По признаку для неавтономных систем получаем, что v_j являются первыми интегралами системы $\frac{dx_i}{dx_n}$. Докажем их независимость. Рассмотрим матрицу

$$\left(\frac{\partial v_j}{\partial x_i}(x)\right)_{\substack{i=\overline{1,n}\\j=\overline{1,n-1}}}.$$

Её ранг равен n-1 для всех x, причём её последняя строка, из доказанного, выражается через первые n-1. Следовательно, ранг матрицы

$$\left(\frac{\partial v_j}{\partial x_i}(x)\right)_{\substack{i=\overline{1,n-1}\\j=\overline{1,n-1}}}$$

равен n-1, что доказывает независимость первых интегралов.

Теорема. (О множестве первых интегралов) Пусть $v_1, \ldots, v_{n-1} : D \to \mathbb{R}$ — независимые первые интегралы автономной системы (2), $x_0 \in D$, $f(x_0) \neq 0$. Тогда существует окрестность $D' \subset D$ точки x_0 , такая что для любого первого интеграла системы (2) $\omega : D' \to \mathbb{R}$ существует функция $F \in C^1$, такая что $\omega(x) \equiv F(v_1(x), \ldots, v_{n-1}(x))$.

Доказательство. Без ограничения общности $f_n(x_0) \neq 0$, причём, уменьшая, при необходимости, D, это верно на всём D. По лемме v_1, \ldots, v_{n-1} является первыми интегралами системы $\frac{dx_i}{dx_n}$, откуда из утверждения для неавтономных систем существует окрестность D' точки x_0 , такая что выполняется всё, что нужно.

6 Оффтоп: ОДУ и случайные графы

Ответ на вопрос, зачем нам дифференциальные уравнения, если у нас нет физики. На экзамене не будет.

Везде неявно фиксируется индекс n. Пусть (Ω, \mathcal{F}, P) — вероятностное пространство, $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}$, где $\mathcal{F}_0 = \{\varnothing, \Omega\}$, а $\mathcal{F}_t = \sigma(A_1^t, \ldots, A_{m(t)}^t)$, и $\Omega = \bigsqcup_{l=1}^{m(t)} A_l^t$ для всех t. Неформально мы берём множество Ω и постепенно разбиваем его на более мелкие куски. Пусть $a = a(n) \in \mathbb{N}$, $(Y_1(t), \ldots, Y_a(t))$ — случайные \mathcal{F}_t -измеримые величины. Предположим, что существует c_0 , такое что для всех $i \mid Y_i(t) \mid \leqslant c_0 n$.

Теорема 1. Пусть $D \subset \mathbb{R}^{a+1}$ — открытое, связное и ограниченное множество, такое

что $(0, Y_1(0)/n, \dots, Y_a(0)/n) \in D$. Положим

$$T_D = \min \left\{ t \in \mathbb{N} \cup \{+\infty\} : \left(\frac{t}{n}, \frac{Y_1(t)}{n}, \dots, \frac{Y_a(t)}{n}\right) \notin D \right\}$$

— случайная величина. Пусть даны функции $f_i: \mathbb{R}^{a+1} \to \mathbb{R}, f_i \in C^1, 1 \leqslant i \leqslant a$. Зафиксируем $\beta>0$ (не зависит от n), $\lambda=\lambda(n)=\mathcal{O}(1)$. Предположим, что для любого t и $\omega\in\{t< T_D\}$ величина $\max|Y_i(t+1)-Y_i(t)|\leqslant\beta$, а также для любого $t,\ i=\overline{1,a}$ и $A_l^t\subset\{t< T_D\}$ верно

$$\left| E(Y_i(t+1) - Y_i(t) \mid A_i^t) - f_i\left(\frac{t}{n}, \frac{Y_1(t)}{n}, \dots, \frac{Y_a(t)}{n}\right) \right| \leqslant \lambda.$$

Тогда:

⊳ Задача Коши

$$\begin{cases} z_i' = f_i(x, z_1, \dots, z_a) \\ z_i(0) = \frac{1}{n} Y_i(0) \end{cases}$$

имеет единственное решение, продолжаемое до ∂D . Далее зафиксируем это решение z_i .

 \triangleright Существует число C>0, такое что для любых i и $t\leqslant\sigma\cdot n$

$$Y_i(t) = n \cdot z_i\left(\frac{t}{n}\right) + \mathcal{O}(\lambda n)$$

с вероятностью $1-\mathcal{O}\left(\frac{e^{-\frac{n\lambda^3}{\beta^3}}}{\lambda}\right)$, где σ — такое число, что $\rho_{\infty}((x,z(z)),\partial D)\geqslant C\lambda$ для любого $x\in[0,\sigma].$

6.1 Процесс минимальных степеней

Рассмотрим последовательность графов $G_0, G_1, \ldots, G_{C_n^2}$, где каждый следующий граф получен следующим образом: берём равновероятно вершину наименьшей степени, равновероятно выбираем другую вершину, в которую нет ребра, и проводим ребро $(G_0 - \text{пустой граф})$. Обозначим $\Delta(G)$ — наименьшая степень вершины в G и $Y_i(t)$ — количество вершин степени i в графе G_t . Положим $f_i(x, z_0, z_1, \ldots, z_{n-1}) = -I\{i=0\} + I\{I=1\} + z_{i-1} - z_i$. Рассмотрим задачу Коши

$$\begin{cases} z_i = -I\{i = 0\} + I\{i = 1\} + z_{i-1} - z_i \\ z_0(0) = \frac{1}{n}Y_0(0) = 1 \\ z_i(0) = \frac{1}{n}Y_i(0) = 0 \end{cases}$$

(здесь $z_{-1} \equiv 0$) Решая это уравнение по индукции, получаем решение

$$\begin{cases} z_0(x) = 2e^{-x} - 1 \\ z_i(x) = 2\frac{x^i}{i!e^x} \end{cases}.$$

Теорема 2.

$$Y_i(t) = nz_i\left(\frac{t}{n}\right) + \mathcal{O}(n^{3/4})$$

с вероятностью $1-n^{3/4}\cdot e^{-\frac{n^{1/4}}{8}}$ для любого n достаточно большого, i< n и $t\leqslant n\ln(2)-n^{4/5}$. Доказательство. Будем подгонять под теорему 1. Пусть Ω — последовательности таких графов, которые мы строим. Положим

$$\mathcal{F}_1 = \sigma\{\{\omega : G_0 = \widehat{G}_0\} \mid \widehat{G}_0\}.$$

Теперь

$$\mathcal{F}_2 = \sigma\{\{\omega : G_0 = \widehat{G}_0, G_1 = \widehat{G}_1\} \mid \widehat{G}_0, \widehat{G}_1\}.$$

И так далее. Положим для всех t множество $S_t = \{\Delta(G_t) = 0\} \subset \Omega$ и случайную величину $X_i(t)$ — индикатор того, что степень вершины, в которую проведено новое ребро, равно i. Тогда для ωS_t верно, что $X_0(t)\omega = 1$ тогда и только тогда, когда новое ребро проведено между вершинами степени 0, а $X_i(t)\omega = 1$ тогда и только тогда, когда мы провели ребро в вершину степени i. Заметим, что для $\omega \in S_t$

$$Y_0(t+1) = Y_0(t) - 1 - X_0(t).$$

Аналогично можно написать для всех:

$$Y_1(t+1) = Y_1(t) + 1 + X_0(t) - X_1(t),$$

$$Y_{i+1}(t) = Y_i(t) + X_{i-1}(t) - X_i(t).$$

Найдём математическое ожидание:

$$E(Y_0(t+1) - Y_0(t) \mid \{G_t = \widehat{G}_t\}) = -1 - \frac{Y_0(t) - 1}{n-1}.$$

Справа случайная величина, потому что слева — тоже, математическое ожидание зависит от $\omega = (\dots, \widehat{G}_t, \dots)$. Аналогично

$$E(Y_1(t+1) - Y_1(t) \mid \{G_t = \widehat{G}_t\}) = 1 + \frac{Y_0(t) - 1}{n-1} - \frac{Y_1(t)}{n-1}$$

И

$$E(Y_i(t+1) - Y_i(t) \mid \{G_t = \widehat{G}_t\}) = \frac{Y_{i-1}(t) - 1}{n-1} - \frac{Y_i(t)}{n-1}.$$

Положим

$$D - \left\{ (x, z) \in \mathbb{R}^{n+1} : -1 < x < \frac{n}{2}, z_0 > 0, -1 < z_i < 2 \right\}.$$

Здесь важно, что все $z_i \in (-1,2)$, но $z_0 \in (0,2)$. Теперь возьмём $a=n, c_0=1$ и проверим, что предположение теоремы выполняется. Для вектора $\left(\frac{t}{n}, \frac{Y_0(t)}{n}, \ldots, \frac{Y_{n-1}(t)}{n}\right)$ выполняется, что $0 \leqslant \frac{Y_i(t)}{n} \leqslant 1$ и $\frac{t}{n} \geqslant 0$. Тогда событие $t < T_D$ — это "существует вершина степени ноль в графах G_0, \ldots, G_t ", то есть S_t . Нужно ограничение на разность $|Y_i(t+1) - Y_i(t)|$. Его получить нетрудно, ибо при проведении ребра количество вершин степени i изменилось

не более, чем на 2 — положим $\beta := 2$. Оценим разность

$$\left| E(Y_i(t+1) - Y_i(t) \mid \{G_t = \widehat{G}_t\}) - f_i\left(\frac{t}{n}, \frac{Y_0(t)}{n}, \dots, \frac{Y_{n-1}(t)}{n}\right) \right| =$$

$$= \left| \frac{Y_{i-1}(t) - Y_i(t)}{n-1} - \frac{Y_{i-1}(t) - Y_i(t)}{n} \right| = \frac{|Y_{i-1}(t) - Y_i(t)|}{n(n-1)} \leqslant$$

$$\leqslant \frac{|Y_{i-1}(t)| + |Y_i(t)|}{n(n-1)} \leqslant \frac{1}{n-1} \leqslant n^{-1/4} =: \lambda.$$

Все условия выполнены, поэтому по второму следствию теоремы получаем, что найдётся c>0, такое что и так далее. Заметим, что $z_i(x)\in[0,1]$ при $x\geqslant 0$, а $z_0(x)\in(0,1]$ при $x\in[0,\ln(2))$ и $z_0(\ln(2))=0$. Засчёт гениального подгона условий во множестве D, мы получаем, что $\mathrm{dist}_{\infty}((x,z(x)),\partial F)=z_0(x)$, так как по остальным координатам есть большой запас. В то же время $z_0(\ln(2)-n^{-1/5})\approx n^{-1/5}>>cn^{-1/4}=c\lambda$. Теперь берём $\sigma=\ln(2)-n^{-1/5}$ и получаем что-то интересное.

7 Оффтоп: производящие функции

7.1 Линейные рекуррентные соотношения

Рассмотрим рекуррентное соотношение

$$a_0u_{n+k} + a_1u_{n+k-1} + \dots + a_nu_k = 0.$$

Её решением является какая-то последовательность $\{u_k\}_{k=0}^{\infty}$. Также будем считать, что нам известны первые n-1 членов $\widehat{u}_0,\ldots,\widehat{u}_{n-1}$ — очень похоже на задачу Коши. Рассмотрим экспоненциальную производящую функцию

$$x(t) = \sum_{j=0}^{\infty} \frac{u_j t^j}{j!}.$$

Её производная —

$$x'(t) = \sum_{j=0}^{\infty} \frac{u_{j+1}t^j}{j!}.$$

В общем случае

$$x^{(n)}(t) = \sum_{j=0}^{\infty} \frac{u_{j+n}t^j}{j!}.$$

Рассмотрим линейную комбинацию $a_0x^{(n)} + \cdots + a_{n-1}x' + a_nx$. Она равна

$$\sum_{j=0}^{\infty} \frac{t^j}{j!} (a_0 u_{j+n} + \dots + a_{n-1} u_{j+1} + a_n u_j).$$

П

Теорема. Пусть $x(\cdot)$ — это решение задачи Коши

$$\begin{cases} a_0 x^{(n)} + \dots + a_{n-1} x' + a_n x = 0 \\ x(0) = \widehat{u}_0, \dots, x^{(n-1)}(0) = \widehat{u}_{n-1} \end{cases}.$$

Тогда $\{u_k\}$ является решением (1), они берутся из разложения x(t) в ряд.

7.2 Числа Стирлинга второго рода

Определение. Пусть $n \geqslant k$. *Числом Стирлинга второго рода* S(n,k) называется количество неупорядоченных разбиений n-элементного множества на k неупорядоченных подмножеств.

В частности, S(n,0)=0 при n>0, S(0,0)=1 и $S(n,k)=S(n-1,k-1)+k\cdot S(n-1,k).$ Более того,

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k+1} C_k^j \cdot j^n.$$

Рассмотрим экспоненциальный степенной ряд

$$x_k(t) = \sum_{n=k}^{\infty} S(n,k) \frac{t^n}{n!}.$$

Используя рекурренту, получаем

$$x_k(t) = \sum_{n=k}^{\infty} (S(n-1, k-1) + k \cdot S(n-1, k)) \cdot \frac{t^n}{n!}.$$

Формально продифференцируем:

$$x'_k(t) = \sum_{n=k}^{\infty} S(n-1, k-1) \cdot \frac{t^{n-1}}{(n-1)!} + k \cdot \sum_{n=k}^{\infty} S(n-1, k) \cdot \frac{t^{n-1}}{(n-1)!}.$$

Во второй сумме получилась неприятность в виде того, что нам нужно S(n-1,n), а мы такое не определяли, поэтому доопределим нулём. Методом пристального взгляда заключаем, что $x_k'(t) = x_{k-1}(t) + k \cdot x_k(t)$. Остаётся найти $x_0(t) = \sum_{n=0}^{\infty} S(n,0) \cdot \frac{t^n}{n!} = 1$, и мы научились находить x_k решением задачи Коши с добавлением условия $x_k(0) = 0$. Можно проверить, что $x_k(t) = \frac{1}{k!}(e^t - 1)^k$.

8 Линейные однородные уравнения в частных производных

Пусть $\Omega \subset \mathbb{R}^n$ — область, $a:\Omega \to \mathbb{R}^n$ — вектор-функция, $a\in C^1$. Рассмотрим уравнение

$$a_1(x) \cdot \frac{\partial u}{\partial x_1}(x) + \dots + a_n(x) \cdot \frac{\partial u}{\partial x_n}(x) = 0.$$

Его решением является функция $u:D\to\mathbb{R}$, где $D\subset\Omega$ — область и $u\in C^1$, при подстановке которой получается тождественный ноль. В сокращённой записи

$$\left\langle a(x), \frac{\partial u}{\partial x}(x) \right\rangle = 0.$$

Определение. Такое уравнение называется линейным однородным уравнением в частных производных первого порядка.

Определение. Система

$$x' = a(x)$$

называется характеристической системой уравнения.

Найдём связь между решениями уравнения (1) и его характеристической системы (2). Пусть $\overline{x} \in \Omega$ — какая-то точка, причём $a(\overline{x}) \neq 0$.

Теорема. 1) Любой первый интеграл системы (2) является решением системы (1).

2) Пусть $v_1, \ldots, v_{n-1}: \Omega \to \mathbb{R}$ — независимые первые интегралы системы (2). Тогда существует окрестность D точки \overline{x} , такая что для любого решения $u: D \to \mathbb{R}$ уравнения (1) существует гладкая функция F, такая что $u(x) \equiv F(v_1(x), \ldots, v_{n-1}(x))$.

Доказательство. 1) Пусть $u(\cdot)$ — первый интеграл (2). Из доказанного $\langle a(x), \frac{\partial u}{\partial x}(x) \rangle \equiv 0$, что мы и хотели.

2) По теореме о о первом интеграле существует окрестность D, такая что любой первый интеграл в ней представим в виде $F(v_1(x),\ldots,v_{n-1}(x))$. Рассмотрим произвольное решение $u:D\to\mathbb{R}$ уравнения (1). Раз решение, то $\langle a(x),\frac{\partial u}{\partial x}(x)\rangle\equiv 0$, а значит, $u(\cdot)$ — первый интеграл системы (2), то есть имеет искомое представление в окрестности D.

Пусть заданы гладкие функции $g,\varphi:\Omega\to\mathbb{R}$, причём $\frac{\partial g}{\partial x}(x)\neq 0$ на Ω , и $g(\overline{x})=0$. Тогда существует непустое множество $\gamma:=\{x:g(x)=0\}$, более того, это (n-1)–мерная поверхность. Рассмотрим задачу Коши

$$\begin{cases} \left\langle a(x), \frac{\partial u}{\partial x}(x) \right\rangle \equiv 0 \\ u(x) = \varphi(x) \text{ при } x \in \gamma \end{cases}.$$

Как и у любой уважающей себя задачи Коши, для неё есть теорема о существовании и единственности решения, но это чуть позже.

Определение. \overline{x} называется $x a p a \kappa m e p u c m u ч e c к o й m o ч к o й задачи (3), если <math>\left\langle a(\overline{x}), \frac{\partial u}{\partial x}(\overline{x}) \right\rangle = 0$.

Теорема. Пусть точка \overline{x} не является характеристической. Тогда существует окрестность D точки \overline{x} и функция $u:D\to\mathbb{R}$, такая что u является единственным решением (3) в этой окрестности.

Доказательство. Мы знаем, что $a(\overline{x}) \neq 0$. Поэтому можно применить теорему о первых интегралах: существует область \widetilde{D} точки \overline{x} , в которой есть независимые первые интегралы $v_1, \ldots, v_{n-1} : \widetilde{D} \to \mathbb{R}$ системы (2). Рассмотрим систему

$$\begin{cases} v_1(x) = u_1 \\ \vdots \\ v_{n-1}(x) = u_{n-1} \\ g(x) = \Theta \end{cases}$$

(здесь все значения в правых частях — это параметры) Хотим применить теорему об обратной функции, проверим, что условия выполнены. Для этого рассмотрим матрицу Якоби:

$$A = \begin{pmatrix} \frac{\partial v_1}{\partial x}(\overline{x}) \\ \vdots \\ \frac{\partial v_{n-1}}{\partial x}(\overline{x}) \\ \frac{\partial g}{\partial x}(\overline{x}) \end{pmatrix}$$

Докажем от противного, что она невырождена: пусть

$$\frac{\partial g}{\partial x}(\overline{x}) = \sum_{j=1}^{n-1} \frac{\partial v_j}{\partial x}(\overline{x}).$$

Это рассматривать достаточно, так как первые n-1 строк точно линейно независимы. Тогда

$$\left\langle a(\overline{x}), \frac{\partial g}{\partial x}(\overline{x}) \right\rangle = \sum_{j=1}^{n-1} \lambda_j \left\langle a(\overline{x}), \frac{\partial v_j}{\partial x}(\overline{x}) \right\rangle = 0,$$

так как это первые интегралы. Противоречие с тем, что \overline{x} не является характеристической точкой.

Теперь по теореме об обратной функции найдётся окрестность Γ точки $(v_1(\overline{x}), \dots, v_{n-1}(\overline{x}), 0)$ (в конце ноль, так как $q(\overline{x}) = 0$) и $\chi : \Gamma \to \mathbb{R}^n$, $\xi \in C^1$, такие что

$$\begin{cases} v_1(\chi(u_1, \dots, u_{n-1}, \Theta)) = u_1 \\ \vdots \\ v_{n-1}(\chi(u_1, \dots, u_{n-1}, \Theta)) = u_{n-1} \\ g(\chi(u_1, \dots, u_{n-1}, \Theta)) = \Theta \end{cases}$$

И

$$\chi(v_1(x),\ldots,v_{n-1}(x),g(x))\equiv x.$$

Тогда $\chi(u_1,\ldots,u_{n-1},\Theta)$ является единственным решением построенной системы, причём $\chi(v_1(\overline{x}),\ldots,v_{n-1}(\overline{x}),0)=\overline{x}.$

Теперь восстановим единственное решение задачи Коши. Положим $u(x) := \varphi(\chi(v_1(x), \dots, v_{n-1}(x), 0))$ Возьмём достаточно малую окрестность D точки \overline{x} , такую что для всех $x \in D$ выполнено $(v_1(x), \dots, v_{n-1}(x), 0) \in \Gamma$.

Почему это решение уравнения в частных производных? Потому что взяли гладкую функцию от первых интегралов. Почему это решение задачи Коши? При $x \in \gamma$ выполнено g(x) = 0, то есть $u(x) = \varphi(\chi(v_1(x), \dots, v_{n-1}(x), g(x))) = \varphi(x)$, так как обратная функция.

Единственность остаётся в качестве упражнения.

9 Вариационное исчисление

9.1 Простейшая задача вариационного исчисления

Рассмотрим пространство функций $C^1[a,b]$, как нормированное пространство, и его подмножество M. Зададим на нём метрику $\rho(x_1,x_2) = \max_{t \in [a,b]} |x_1(t) - x_2(t)|$ и $\rho_1(x_1,x_2) = \rho(x_1,x_2) + \rho(x_1',x_2')$. Пусть у нас есть функционал $I: M \to \mathbb{R}$.

Определение. Точка $\widehat{x} \in M$ называется *слабым локальным минимумом* функционала I, если $\exists \varepsilon > 0 : \forall x \in M \ (\rho_1(x,\widehat{x}) < \varepsilon \Rightarrow I(\widehat{x}) \leqslant I(x))$ Аналогично для максимума.

Определение. Точка $\widehat{x} \in M$ называется *сильным локальным минимумом*, если вместо ρ_1 используется ρ .

Утверждение. Если \widehat{x} — сильный локальный минимум, то он также является слабым. Очевидно.

Рассмотрим дважды гладко дифференцируемую (в C^2) функцию $F: \mathbb{R}^3 \to \mathbb{R}$ и числа $A, B \in \mathbb{R}$. Положим

$$M = \{x \in C^1[a, b] : x(a) = A, x(b) = B\}$$

И

$$I(x) := \int_a^b F(t, x(t), x'(t)) dt, x \in M.$$

Определение. Простейшей задачей вариационного исчисления называется задача нахождения слабых локальных экстремумов функционала I.

Положим

$$\mathring{C}^1[a,b] := \{ x \in C^1[a,b] : x(a) = x(b) = 0 \}.$$

Тогда множество M замкнуто относительно прибавления функций из $\mathring{C}^1[a,b]$. Положим для $\widehat{x} \in M$, $\widehat{x} \in C^2$, $\eta \in \mathring{C}^1[a,b]$ функцию

$$\varphi(\mu) := I(\widehat{x} + \mu \eta) = \int_a^b F(t, \widehat{x}(t) + \mu \eta(t), \widehat{x}'(t) + \mu \eta'(t)) dt.$$

Продифференцируем её:

$$\varphi'(\mu)|_{\mu=0} = \int_a^b \left(\frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t))\eta(t) + \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t))\eta'(t) \right) dt =$$

Проинтегрируем по частям:

$$= \int_{a}^{b} \frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t)) \eta(t) dt + \frac{\partial F}{\partial x'}(\dots) \eta(t) \Big|_{a}^{b} - \int_{a}^{b} \frac{d}{dt} \frac{\partial F}{\partial x'}(\dots) \eta(t) dt =$$

Второе слагаемое рано нулю, так как $\eta(a) = \eta(b) = 0$

$$= \int_a^b \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x}(\dots) \right) \eta(t) dt.$$

Таким образом, если \widehat{x} является слабым локальным минимумом, то 0 — стационарная точка функции φ .

Определение. $\delta I[\widehat{x},\eta] := \varphi'(0)$ — первая вариация функционала I на \widehat{x} .

Утверждение. Если $\widehat{x} \in M$ — слабый локальный экстремум, то для любого $\eta \in \mathring{C}^1[a,b]$ точка 0 является локальным экстремумом функции φ .

Доказательство. Будем считать, что мы работаем с точкой минимума. По определе-

нию существует $\varepsilon > 0$, такое что для любого $x \in M$, удовлетворяющему $\rho_1(x, \hat{x}) < \varepsilon$ верно $I(x) \geqslant I(\hat{x})$.

Тогда для любого $\eta \in \mathring{C}^1[a,b]$, не равного тождественному нулю, положим $\delta = \frac{\varepsilon}{\rho_1(\eta,0)}$. Возьмём произвольный $\mu \in (-\delta,\delta)$. Имеем

$$\rho_1(\widehat{x} + \mu \eta, \widehat{x}) = \max_{t \in [a,b]} |\mu \eta(t)| + \max_{t \in [a,b]} |\mu \eta'(t)| =$$

$$= |\mu| \left(\max_{t \in [a,b]} |\eta(t)| + \max_{t \in [a,b]} |\eta'(t)| \right) = |\mu| \cdot \rho_1(\eta,0) < \varepsilon.$$

Таким образом, мы попали в ε -окрестность функции \widehat{x} , то есть $\varphi(\mu) = I(\widehat{x} + \mu \eta) \geqslant I(\widehat{x}) = \varphi(0)$.

Утверждение. (Лемма Лагранжа) Пусть $v \in C[a,b]$, такая что $\forall \eta \in \mathring{C}^1[a,b]$ выполнено

$$\int_{a}^{b} v(t)\eta(t)dt = 0.$$

Тогда $v(t) \equiv 0$.

Доказательство. От противного: допустим, что существует $\tilde{\tau} \in [a,b]$, такая что $v(\tilde{\tau}) > 0$. Тогда существует $\tau \in (a,b)$, такая что $v(\tau) > 0$ из непрерывности. Отсюда существует $\varepsilon > 0$, такая что $(\tau - \varepsilon, \tau + \varepsilon) \subset [a,b]$ и $v(t) > \frac{v(\tau)}{2}$ для $t \in (\tau - \varepsilon, \tau + \varepsilon)$.

Теперь построим гладкую функцию, принимающую положительные значения на $T:=(\tau-\varepsilon,\tau+\varepsilon)$ и ноль вне этого интервала. В частности,

$$\eta(t) := \begin{cases} (t - (\tau - \varepsilon))^2 (t - (\tau + \varepsilon))^2, & t \in T \\ 0, & \text{иначе} \end{cases}.$$

Отсюда по условию

$$0 = \int_a^b v(t)\eta(t)dt = \int_T v(t)\eta(t)dt.$$

Противоречие, так как мы взяли интеграл по непустому интервалу произведения двух положительных функций.

Теорема. Пусть $F \in C^2$, $\hat{x} \in M$, $\hat{x} \in C^2$ — слабый локальный экстремум. Тогда \hat{x} является решением уравнения Эйлера

$$\frac{\partial F}{\partial x}(t, x, x') - \frac{d}{dt}\frac{\partial F}{\partial x'}(t, x, x') = 0.$$

Доказательство. Поскольку \widehat{x} является слабым локальным экстремумом, по утверждению для любой $\eta \in \mathring{C}^1[a,b]$ точка 0 является локальным экстремумом функции φ , то есть $\varphi'(0)=0$. Выражение для $\varphi'(0)$ мы уже писали выше — теперь заметим, что по лемме Лагранжа

$$\frac{\partial F}{\partial x}(t,\widehat{x},\widehat{x}'(t)) - \frac{d}{dt}\frac{\partial F}{\partial x'}(t,\widehat{x},\widehat{x}'(t)) \equiv 0.$$

Следовательно, \hat{x} является решением уравнения Эйлера.

ФПМИ МФТИ, весна 2024

Замечание. Повсюду мы говорили, что $\widehat{x} \in C^2$. Но теоретически экстремумом может являться и функция из C^1 . Пусть $F, \widehat{x} \in C^1$. Если \widehat{x} — слабый локальный экстремум, то функция

 $t \mapsto \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t))$

непрерывно дифференцируема, и \hat{x} является решением уравнения Эйлера. Иными словами, прошлая теорема верна и в этом случае, но доказывать мы это не будем.

Определение. Решение уравнения Эйлера называется *экстремальным*. Тогда прошлую теорему можно переформулировать, как "слабый локальный экстремум является экстремальным".

9.2 Задача о брахистохроне

Людям с острой непереносимостью физики рекомендуется пропустить. Остальным: для понимания достаточно школьных знаний.

Пусть у нас есть две материальные точки A и B, причём A выше B. Мы хотим провести между ними кривую, такую что материальная точка, двигаясь по ней исключительно под силой тяжести, достигнет точку B за минимальное время. Эта кривая называется $\mathit{брахистрохоной}$.

Запишем закон сохранения энергии:

$$mg \cdot y(x) = \frac{mv^2(x)}{2}.$$

Тогда

$$v(x) = \sqrt{2q \cdot y(x)}.$$

Запишем скорость, как производную от пройденного пути s:

$$v(x) = \frac{ds}{dt} = \frac{ds}{dx} \cdot \frac{dx}{dt} = \frac{d}{dx} \int_0^x \sqrt{1 + (y'(\xi))^2} d\xi \cdot \frac{dx}{dt} = \sqrt{1 + (y'(x))^2} \cdot \frac{dx}{dt}.$$

Выразим dt:

$$dt = \frac{\sqrt{1 + (y'(x))^2}}{\sqrt{2g \cdot y(x)}} dx,$$

то есть

$$t = \int_0^b \sqrt{\frac{1 + (y'(x))^2}{2g \cdot y(x)}} \cdot dx.$$

Итак, итак, простейшая вариационная задача. Выкинем лишние константы:

$$t(y) = \int_0^b \sqrt{\frac{1 + (y')^2}{y}} dx \to \min.$$

Здесь y(0) = 0, y(b) = B. Уравнением Эйлера будем

$$\sqrt{1 + (y')^2} \left(-\frac{1}{2} \cdot \frac{1}{(\sqrt{y})^3} \right) - \frac{d}{dx} \cdot \frac{2y'}{\sqrt{y} \cdot 2 \cdot \sqrt{1 + (y')^2}} = 0.$$

Заметим, что это то же самое, что

$$\frac{d}{dx}\left(\sqrt{\frac{1+(y')^2}{y}} - \frac{(y')^2}{\sqrt{y(1+(y')^2)}}\right) = 0.$$

То есть $y(y+(y')^2)=c_1$ — константа. Сделаем замену: $y'(x(\tau))={\rm ctg}(\tau)$. Тогда

$$y(x(\tau)) = c_1 \sin^2(\tau) = \frac{1}{2}c_1(1 - \cos(2\tau)).$$

Теперь

$$dx = \frac{dy}{y'} = \frac{2c_1 \sin(\tau) \cos(\tau)}{\operatorname{ctg}(\tau)} d\tau = c_1(1 - \cos(2\tau)) d\tau.$$

Значит,

$$x(\tau) = c_2 + \frac{c_1}{2}(2\tau - \sin(2\tau)).$$

Теперь остаётся проверить, какие из них являются экстремумами, делается напрямую.

9.3 Задача со свободным концом

Пусть $F:\mathbb{R}^3 \to \mathbb{R} \in C^2$, числа $a,b,A \in \mathbb{R}$ фиксированы. Рассмотрим функционал

$$I(x) = \int_{a}^{b} F(t, x(t), x'(t))dt$$

при условии x(a) = A.

Mы хотим найти экстремумы $I:M\to\mathbb{R}$, где $M=\{x\in C^1[a,b]:x(a)=A\}.$

Теорема. Пусть $\widehat{x} \in M$, $\widehat{x} \in C^2$ — решение (1), то есть слабый локальный экстремум I. Тогда \widehat{x} является решением уравнения Эйлера

$$\frac{\partial F}{\partial x}(t, x, x') - \frac{d}{dt} \frac{\partial F}{\partial x'}(t, x, x') = 0,$$

а также

$$\frac{\partial F}{\partial x'}(b, \widehat{x}(b), \widehat{x}'(b)) = 0.$$

Доказательство. Зафиксируем допустимое приращение $\eta \in C^1[a,b],\ \eta(a)=0.$ Положим

$$\Phi(\alpha) := I(\widehat{x} + \alpha \eta) = \int_{a}^{b} F(t, \widehat{x}(t) + \alpha \eta(t), \widehat{x}'(t) + \alpha \eta'(t)) dt.$$

Найдём производную в нуле:

$$\Phi'(0) = \int_a^b \left(\frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t)) \eta(t) + \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t)) \eta'(t) \right) dt =$$

Проинтегрируем по частям

$$= \int_{a}^{b} \frac{\partial F}{\partial x}(\dots)\eta(t)dt + \frac{\partial F}{\partial x'}(t,\widehat{x}(t),\widehat{x}'(t))\eta(t)\Big|_{t=a}^{t=b} - \int_{a}^{b} \frac{d}{dt} \frac{\partial F}{\partial x'}(\dots)\eta(t)dt =$$

$$= \int_{a}^{b} \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x'}(\dots)\right)\eta(t)dt + \frac{\partial F}{\partial x'}(b,\widehat{x}(b),\widehat{x}'(b))\eta(b),$$

так как $\eta(a) = 0$.

Как доказывалось в простейшей задаче вариационного исчисления, 0 является локальным экстремумом функции Φ , то есть $\Phi'(0)=0$. Таким образом, выражение выше равно нулю.

Подставим в выражение выше функцию η с $\eta(b) = 0$, тогда останется только

$$\int_a^b \left(\frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t)) - \frac{d}{dt} \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t)) \right) \eta(t) dt = 0.$$

По лемме Лагранжа получаем уравнение Эйлера. Теперь остаётся только

$$\frac{\partial F}{\partial x'}(b, \widehat{x}(b), \widehat{x}'(b))\eta(b) = 0$$

для всех функций η , то есть

$$\frac{\partial F}{\partial x'}(b, \widehat{x}(b), \widehat{x}'(b)) \equiv 0.$$

Замечание. Опять же если $F, \hat{x} \in C^1$, то функция

$$\frac{\partial F}{\partial x'}(t,\widehat{x}(t),\widehat{x}'(t))$$

непрерывно дифференцируема по t, \hat{x} является решением уравнения Эйлера и выполняется (2).

Замечание 2. Можно рассматривать и задачу с другим свободным концом, тогда (2) будет иметь вид

$$\frac{\partial F}{\partial x'}(a, \widehat{x}(a), \widehat{x}'(a)) = 0.$$

А если оба конца свободны, то условие выше и условие (2) выполняются одновременно.

ФПМИ МФТИ, весна 2024

9.4 Задача для функционалов, зависящих от нескольких функций

Пусть у нас есть функция $F: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \in C^2$, заданы числа $a, b \in \mathbb{R}$ и $A, B \in \mathbb{R}^n$, где $A = (A_i)_{i=\overline{1,n}}$ и $B = (B_i)_{i=\overline{1,n}}$.

Рассмотрим задачу нахождения экстремумов функционала

$$I(x) = \int_a^b F(t, x(t), x'(t))dt,$$

где $I: M \to \mathbb{R}$ для $M = \{x \in C^1([a,b],\mathbb{R}^n) \mid x(a) = A, x(b) = B\}$. Мы будем искать слабый локальный минимум/максимум по метрике

$$\rho_1(x, u) = \max_{a \le t \le b} |x(t) - u(t)| + \max_{a \le t \le b} |x'(t) - u'(t)|.$$

Теорема. Пусть $\widehat{x} \in M$, $\widehat{x} \in C^2$ — решение (3), то есть слабый локальный экстремум I. Тогда \widehat{x} является решением уравнения Эйлера

$$\frac{\partial F}{\partial x_i}(t, x, x') - \frac{d}{dt} \frac{\partial F}{\partial x_i'}(t, x, x') = 0$$

для всех $i = \overline{1, n}$.

Доказательство. Можно сделать те же самые рассуждения с леммой Лагранжа, как и в двух предыдущих случаях, но можно доказать проще с использованием уже полученных результатов.

Положим

$$M_1 := \{x_1 \in C^1[a, b] : x_a(a) = A_1, x_1(b) = B_1\}.$$

И

$$I_1(x_1) = \int_a^b F(t, x_1(t), \widehat{x}_2(t), \dots, \widehat{x}_n(t), x'_1(t), \widehat{x}'_2(t), \dots, \widehat{x}'_n(t)) dt.$$

Так как \hat{x} является решением (3), \hat{x}_1 является решением задачи нахождения экстремума $I_1(x_1)$, так как нужно внимательно посмотреть на то, что получается при подстановке.

Следовательно, по теореме для простейшей задачи вариационного исчисления

$$\frac{\partial F}{\partial x_1}(t, \widehat{x}_1(t), \dots, \widehat{x}_n(t), \widehat{x}'_1(t), \dots, \widehat{x}'_n(t)) -$$

$$-\frac{d}{dt}\frac{\partial F}{\partial x_1'}(t,\widehat{x}_1(t),\ldots,\widehat{x}_n(t),\widehat{x}_1'(t),\ldots,\widehat{x}_n'(t)) \equiv 0.$$

Теперь аналогично доказываем для x_2, \ldots, x_n .

9.5 Функционалы, содержащие производные высших порядков

Пусть у нас есть $F: \mathbb{R}^{n+2} \to \mathbb{R}$, $F \in C^{n+1}$, а также числа $a, b, A_i, B_i \in \mathbb{R}$ для $i = \overline{0, n-1}$. Рассмотрим функционал

$$I(x) = \int_{a}^{b} F(t, x(t), x'(t), \dots, x^{(n)}(t)) dt.$$

при условиях $x^{(i)}(a) = A_i$ и $x^{(i)}(b) = B_i$ для всех i. Как обычно, положим

$$M = \{x \in C^n[a,b] : x^{(i)}(a) = A_i, x^{(i)}(b) = B_i$$
 для всех $i\}$.

Положим метрику

$$\rho_n(x, u) = \sum_{i=0}^{n} \rho(x^{(i)}, u^{(i)}).$$

Опять же хотим найти слабый локальный минимум.

Введём множество допустимых вариаций:

$$\mathring{C}^n[a,b] = \{ \eta \in C^n[a,b] : \eta^{(i)}(a) = \eta^{(i)}(b) = 0 \text{ для всех } i \}.$$

Возьмём произвольную допустимую вариацию $\eta \in \mathring{C}^n[a,b], \ \widehat{x} \in C^{2n}$ и положим

$$\Phi(\alpha) = I(\widehat{+}\alpha\eta) = \int_a^b F(t,\widehat{x}(t) + \alpha\eta(t), \dots, \widehat{x}^{(n)}(t) + \alpha\eta^{(n)}(t))dt.$$

Дифференцируем по параметру в нуле:

$$\Phi'(0) = \int_a^b \sum_{i=0}^n \frac{\partial F}{\partial x^{(i)}}(t, \widehat{x}(t), \dots, \widehat{x}^{(n)}(t)) \eta^{(i)}(t) dt =$$

Интегрируем, как обычно, по частям и сразу, как и раньше, сокращаем нули

$$= \int_{a}^{b} \frac{\partial F}{\partial x}(\dots)\eta(t)dt - \int_{a}^{b} \sum_{i=1}^{n} \frac{d}{dt} \frac{\partial F}{\partial x^{(i)}}(\dots)\eta^{(i-1)}(t)dt =$$

Отправим первое слагаемое суммы в первое слагаемое всего выражения, а остаток проинтегрируем по частям

$$= \int_{a}^{b} \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x^{(1)}}(\dots) \right) \eta(t) dt + \sum_{i=2}^{n} \frac{d^{2}}{dt^{2}} \frac{\partial F}{\partial x^{(i)}}(\dots) \eta^{i-2}(t) dt =$$

Делаем то же самое:

$$= \int_{a}^{b} \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x^{(1)}}(\dots) + \frac{d^{2}}{dt^{2}} \frac{\partial F}{\partial x^{(2)}}(\dots) \right) \eta(t) dt + \dots =$$

По методу неполной индукции получаем, что это всё равняется

$$\int_{a}^{b} \left(\sum_{i=0}^{n} (-1)^{i} \frac{d^{i}}{dt^{i}} \frac{\partial F}{\partial x^{(i)}} (\dots) \right) \eta(t) dt.$$

Замечание. Если посмотреть на n-ое слагаемое полученной суммы, то можно увидеть,

почему условия на непрерывную дифференцируемость функций именно такие. **Лемма.** (Лагранжа) Пусть $f \in C[a,b]$ и $\int_a^b f(t)\eta(t)dt = 0$ для всех $\eta \in \mathring{C}^n[a,b]$. Тогда

Доказательство. Всё так же, как и в одномерном случае. Точная формула для функ-

ции:

$$\eta(t) = \begin{cases} (t - (\tau + \varepsilon))^{2n} (t - (\tau - (\tau - \varepsilon))^{2n}, & t \in (\tau - \varepsilon, \tau + \varepsilon) \\ 0, & \text{иначе.} \end{cases}$$

Как альтернатива, можно использовать функцию пенёк из 3 семестра.

Теорема. Пусть $F \in C^{n+1}$, $\hat{x} \in M$ — слабый локальный экстремум, причём $\hat{x} \in C^{2n}$. Тогда \hat{x} является решением уравнения Эйлера, которое в этом случае имеет вид

$$\frac{\partial F}{\partial x}(t, x, x', \dots, x^{(n)}) - \frac{d}{dt} \frac{\partial F}{\partial x'}(t, x, x', \dots, x^{(n)}) + \frac{d^2}{dt^2} \frac{\partial F}{\partial x''}(\dots) + \dots +$$
$$+ (-1)^n \frac{d^n}{dt^n} \frac{\partial F}{\partial x^{(n)}}(\dots) = 0.$$

Доказательство. Ничего не меняется. Если \widehat{x} — слабый локальный экстремум, то 0 — локальный экстремум функции Φ , то есть $\Phi'(0)$, откуда по равенству, полученному выше, и лемме Лагранжа получаем искомое.

Замечание. И то же самое замечание: достаточно C^n для всех функций.

10 Пропущенная лекция

Если я не ошибаюсь, в экзамене её не будет.

11 Приложения в социологии

11.1 Предсказание популяции в вакууме

Пусть x(t) — численность популяции в момент времени t, k — некоторое постоянное число, noddep живающая \ddot{e} живость cpedu, то есть максимальное число людей, существование которых может поддержать среда, r — скорость размножения.

Уравнение Ферхюльста или логистическое уравнение — это

$$x' = rx\left(1 - \frac{x}{k}\right),\,$$

и оно позволяет довольно точно описывать динамику численности населения. Его решением является

$$x(t) = \frac{k \cdot x_0 \cdot e^{rt}}{k + x_0(e^{rt} - 1)},$$

где $x_0 = x(0)$ — начальная численность популяции. У него есть два положения равновесия — 0 и k.

 \Box

11.2 Предсказание популяции хищников и жертв

Пусть x(t) — популяция жертв, y(t) — популяция хищников, α — коэффициент размножения, β — количество жертв, которое съедает хищник. Тогда их можно описать системой

$$\begin{cases} x' = (\alpha - \beta y)x \\ y' = (-a + bx)y \end{cases},$$

где a и b — константы.

12 Приложения в математическом анализе

12.1 Теоремы о среднем для функций многих переменных

Пусть $x_0 \in \mathbb{R}^n$, R > 0, $f : \mathbb{R}^n \to \mathbb{R}$ — дифференцируемая функция, $B = B(x_0, R)$ — шар, S — его граница. Тогда если $f|_S = const$, то найдётся $\xi \in int(B)$, такая что $f'(\xi) = 0$ — аналог теоремы Ролля.

Теорема. (Аналог теоремы Лагранжа) Найдётся $\xi \in B$, такая что

$$|f'(\xi)| \le \frac{\sup_S(f) - \inf_S(f)}{2B}.$$

В частности, отсюда следует аналог теоремы Ролля выше.

Доказательство. Умаляя общность, будем считать, что $f \in C^2$. Предположим противное, пусть $\gamma = \frac{\sup_S(f) - \inf_S(f)}{2R}$, тогда для всех $\gamma \in B$ выполнено $|f'(\xi)| > \gamma$. Тогда, в силу компактности шара, производную можно отделить от γ : найдётся $\varepsilon > 0$, такое что для всех $\gamma \in B$ верно $|f'(\xi)| \geqslant \gamma + \varepsilon$.

Рассмотрим задачу Коши

$$\begin{cases} x' = \frac{f'(x)}{|f'(x)|^2} \\ x(0) = x_0 \end{cases}.$$

Так как $f \in C^2$, $\frac{f'(x)}{|f'(x)|^2} \in C^1$, так что можно применить теорему о существовании и единственности решения задачи Коши: существует интервал I, числа a < 0 и b > 0 и решение $x : I \to \mathbb{R}^n$, такие что:

▶ х является решением задачи Коши.

 $\triangleright (a,b) \subset I$.

 $\triangleright x(a), x(b) \in S$ и $x(t) \in \text{int}(B)$ для всех $t \in (a, b)$.

Посчитаем производную от f(x(t)):

$$\frac{d}{dt}f(x(t)) \equiv \langle f'(x(t)), x'(t) \rangle \equiv \left\langle f'(x(t)), \frac{f'(x(t))}{|f'(x(t))|^2} \right\rangle \equiv 1.$$

Отсюда мы знаем, что f(x(t)) имеет вид t + const, откуда f(x(b)) - f(x(0)) = b и f(x(0)) - f(x(a)) = -a. Также мы знаем, что

$$R = |x(b) - x(0)| = \left| \int_0^b x'(t)dt \right| \leqslant \int_0^b \left| \frac{f'(x(t))}{|f'(x(t))|^2} \right| dt = \int_0^b \frac{dt}{|f'(x(t))|} \leqslant$$

Теперь по предположению, сделанному в начале, мы знаем, что $|f'(x(t))| \ge \gamma + \varepsilon$, то есть

$$\leqslant \int_0^b \frac{1}{\gamma + \varepsilon} dt = \frac{b}{\gamma + \varepsilon}.$$

Следовательно, $b \geqslant R(\gamma + \varepsilon)$ и аналогично $-a \geqslant R(\gamma + \varepsilon)$. Тогда и f(x(b)) - f(x(0)), $f(x(0)) - f(x(a)) \geqslant R(\gamma + \varepsilon)$. Сложим сии два неравенства: $f(x(b)) - f(x(a)) \geqslant 2R(\gamma + \varepsilon)$. Теперь поймём, почему это противоречие, раскрыв γ :

$$f(x(b)) - f(x(a)) \ge 2R\varepsilon + \sup_{S} (f) - \inf_{S} (f).$$

Но разность слева не превосходит $\sup_S(f) - \inf_S(f)$, просто из определения супремума и инфимума, — противоречие.

Теорема. Пусть $x_0 = 0, f \in C^1$. Тогда существует $\xi \in B$, такая что

$$|f'(\xi)| \leqslant \frac{\sup_B |f(x) - f(-x)|}{2R}.$$

Её интерес заключается в том, что если функция f чётная или близка к чётной, то оценка получается очень сильная.

13 Приложения вариационного исчисления

Пусть у нас на прямой стоит тележка. Изначально она стоит в x(0)=0, и её скорость -x'(0)=0. Мы хотим подвинуть её в точку a>0 за минимальное время T так, чтобы она не пролетела её, то есть x'(T)=0 и x(T)=a. Всё, что мы можем, — это применять к ней силу u(t), причём она ограничена: $|u(t)|\leqslant \gamma$, то есть x''=u(t). Интуитивно понятно, что надо до середины толкать изо всех сил вперёд, а потом — назад.

Формализуем задачу: у нас есть множество функций

$$\{u(\cdot) \mid u : [0,T] \to \mathbb{R}, |u(t)| \le U, T > 0\},\$$

уравнение x''=u, а также начальные условия $x(T)=a,\,x(0)=x'(T)=x'(0)=0.$ Решать задачу не стали :(.

14 Лемма о выпрямлении траекторий

Описание данной темы будет похоже на описание в учебнике Романко, но здесь будет более формально.

Определение. Пусть $\mathcal{F},\mathcal{G}\subset\mathbb{R}^n$, отображение $f:\mathcal{F}\to\mathbb{R}^n,\ f\in C^1$. Рассмотрим уравнение

$$x' = f(x)$$
.

 Γ ладкая замена переменных — это отображение $\gamma: \mathcal{G} \to \mathcal{F}$, такое что оно взаимно однозначно, $\gamma, \gamma^{-1} \in C^1$ и для всех $y \in \mathcal{G}$ выполнено $\det(\gamma'(y)) \neq 0$. (Условие на определитель можно убрать, ибо оно следует из остальных, но для наглядности оставим)

Зафиксируем гладкую замену переменных γ .

Определение. Система (1) на ${\cal F}$ принимает вид

$$y' = g(y)$$

на \mathcal{G} , если для любого решения $y(\cdot)$ автономной системы (2) функция $x(\cdot) = \gamma(y(\cdot))$ является решением автономной системы (1).

Утверждение. Если система (1) на \mathcal{F} принимает вид (2) на \mathcal{G} , то:

- 1. Для любого решения $x(\cdot)$ автономной системы (1) функция $y(\cdot) = \gamma^{-1}(x(\cdot))$ является решением автономной системы (2).
- 2. Отображение g из системы (2) определяется однозначно.
- 3. $g(y) \equiv (\gamma'(y))^{-1} f(\gamma(y))$ для $y \in G$.

Доказательство. 1) Пусть $x:I\to\mathbb{R}^n$ — решение системы (1), $\tau\in I$ — какое-то число. Обозначим $\widehat{x}:=x(\tau),\ y(t):=\gamma^{-1}(x(t)).$ Будем доказывать, что это и есть решение, для этого рассмотрим задачу Коши

$$\begin{cases} y' = g(y) \\ y(\tau) = \gamma^{-1}(\widehat{x}) \end{cases}.$$

У неё есть единственное решение $y_g(\cdot)$, тогда по определению $\gamma(y_g(\cdot))$ является решением системы (1). В частности, это решение задачи Коши

$$\begin{cases} x' = g(x) \\ x(\tau) = \widehat{x} \end{cases}.$$

Более того, ещё одним решением этой задачи является зафиксированный в самом начале $x:I\to\mathbb{R}^n$. По теореме о единственности $x(t)\equiv\gamma(y_g(t))$. Также мы взяли $y(\cdot)$ так, что $x(t)\equiv\gamma(y(t))$, откуда $y_g(t)\equiv y(t)$.

2) Пусть система (1) на \mathcal{F} принимает вид

$$y' = h(y)$$

на \mathcal{G} . Докажем, что $h\equiv g$. Для любого $\widehat{y}\in\mathcal{G}$ верно, что y_g — решение задачи Коши

$$\begin{cases} y' = g(t) \\ y(0) = \widehat{y} \end{cases}$$

и y_h — решение задачи Коши

$$\begin{cases} y' = h(t) \\ y(0) = \widehat{y} \end{cases}.$$

Тогда $\gamma(y_g(\cdot))$ и $\gamma(y_h(\cdot))$ — два решения системы (1). Кроме того, $\gamma(y_g(0)) = \gamma(\widehat{y}) = \gamma(y_h(0))$, откуда получается, что оба этих решения являются решениями задачи Коши

$$\begin{cases} x' = f(x) \\ x(0) = \gamma(\widehat{y}) \end{cases}.$$

Следовательно, они совпадают в окрестности нуля, а значит, $y_g \equiv y_h$ в окрестности нуля, $y_g'(0) = y_h'(0)$, и $g(y_g(0)) = h(y_h(0))$ из условий задач Коши, то есть $g(\widehat{y}) = h(\widehat{y})$. Это выполнено для любого $\widehat{y} \in \mathcal{G}$, откуда g = h.

3) Пусть $y(\cdot)$ — решение системы (2), $\gamma(y(\cdot))$ — решение (1). Заметим, что

$$\frac{d}{dt}\gamma(y(t)) \equiv f(\gamma(y(t))).$$

Тогда

$$\gamma'(y(t))y'(t) \equiv f(\gamma(y(t))),$$

то есть

$$y'(t) \equiv (\gamma'(y(t)))^{-1} f(\gamma(y(t))).$$

Следовательно, $y(\cdot)$ является решением системы

$$y' = (\gamma'(y))^{-1} f(\gamma(y)),$$

откуда по пункту 2 g(y) может быть равно только правой части.

Пусть $\Omega \subset \mathbb{R}^n$ — открытое множество, $f: \Gamma \to \mathbb{R}^n$, $f \in C^1$, а также $x^* = (x_1^*, \dots, x_n^*) \in \Omega$. Лемма. Если $f(x^*) \neq 0$ (то есть не является положением равновесия), то найдётся окрестность $\mathcal F$ точки x^* , окрестность $\mathcal G$ точки $(x_1^*, \dots, x_{n-1}^*, 0) =: y^*$ и гладкая замена переменных $\gamma: \mathcal G \to \mathcal F$, такая что (1) на $\mathcal F$ принимает вид

$$\begin{cases} y_1' = 0 \\ \vdots \\ y_{n-1}' = 0 \\ y_n' = 1 \end{cases}$$

на \mathcal{G} .

Смысл утверждения: любой траектории x(t) мы можем сопоставить "прямую" траекторию, у которой меняется только последняя координата.

Доказательство. Так как $f(x^*) \neq 0$, будем считать без ограничения общности, что $f_n(x^*) \neq 0$. Пусть $\varphi(t,\xi)$ — решение задачи Коши

$$\begin{cases} x' = f(x) \\ x(0) = \xi \end{cases},$$

которое определено в какой-то окрестности точки $(0, x^*)$. Положим

$$\gamma(y) := \varphi(y_n, y_1, \dots, y_{n-1}, x_n^*),$$

где y берётся из окрестности точки y^* . Найдём матрицу Якоби $\gamma'(y^*)$ по столбцам:

$$\varphi'_{y_1}(y^*) = \frac{\partial}{\partial y_1} \varphi(0, y_1, x_2^*, \dots, x_{n-1}^*, x_n^*)|_{y_1 = x_1^*} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Аналогично в столбцах $2, \ldots, n-1$ будет единица в соответствующей строке. А для y_n немного по-другому:

$$\varphi'_{y_n}(y^*) = \frac{\partial}{\partial y_n} \varphi(Y_n, x^*)|_{y_n = 0} = \frac{d}{dt} \varphi(t, x^*)|_{t = 0} = f(\varphi(0, x^*)) = f(x^*).$$

Таким образом,

$$\varphi'(y^*) = \begin{pmatrix} 1 & 0 & \dots & 0 & f_1(x^*) \\ 0 & 1 & \dots & 0 & f_2(x^*) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & f_{n-1}(x^*) \\ 0 & 0 & \dots & 0 & f_n(x^*) \end{pmatrix}.$$

Определитель равен $f_n(x^*) \neq 0$, то есть применима теорема об обратной функции: найдётся \mathcal{F} — окрестность x^* , \mathcal{G} — окрестность y^* и гладкая замена переменных $\gamma : \mathcal{G} \to \mathcal{F}$. Проверим, что на \mathcal{G} система будет иметь искомый вид. Возьмём решение системы (4):

$$y(t) \equiv \begin{pmatrix} c_1 \\ \vdots \\ c_{n-1} \\ t + c_n \end{pmatrix}.$$

Подставим в γ :

$$\gamma(y(t)) \equiv \varphi(t + c_n, c_1, \dots, c_{n-1}, x_n^*)$$

— действительно решение системы (1).

Замечание. Эту лемму можно использовать для доказательства фактов про первые интегралы, ибо у системы (4) есть n-1 независимый первый интеграл — проекции на y_1, \ldots, y_{n-1} .

ФПМИ МФТИ, весна 2024