Homework 1

MATH 301 August 28, 2020

Kevin Evans ID: 11571810

- 1. (a) This is a false statement, because all square matrices are not invertible.
 - (b) This is a false statement, as the det is zero.
 - (c) This is not a valid statement, since the qualifier of "happy" isn't well-defined. Also, "clap your hands" is not really a conclusion.
 - (d) This is not a valid statement, as "today" is ambiguous.
- 2. (a) P: The number 25 is even
 - Q: The number 25 is a power of 3

$$P \wedge Q$$

(b) P: 14 is a prime number

$$\neg P$$

(c) P: A number is even

Q: A number is odd

$$P \lor Q$$

(d) P: I am not here

Q: I am probably somewhere else

$$P \implies Q$$

- 3. If $(P \implies Q) = 1$ and $\neg Q = 1$, then Q = 0 and P = 0,
 - (a) P is false.
 - (b) $P \vee Q = (0 \vee 0)$ is false.
 - (c) $P \wedge Q = (0 \wedge 0)$ is also false.

					•	
4.	(a)	P	Q	$R \mid$	$Q \implies R$	$ \mid P \vee (Q \implies R) $
		1	1	1	1	1
		1	1	0	0	1
		1	0	1	1	1
		1	0	0	1	1
		0	1	1	1	1
		0	1	0	0	0
		0	0	1	1	1
		0	0	0	1	1
	(b)	P	Q	$\neg P$	$(P \land \neg P)$	$(P \land \neg P) \lor Q$

The statement reduces to Q.

(c)	P	Q	$\neg P$	$(P \vee \neg P) \mid (P \vee \neg P) \wedge Q$		
	1	1 0 1	0	1	1	
	1	0	0	1	0	
	0	1	1	1	1	
	0	0	1	1	0	

 $\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ \end{bmatrix}$ The statement reduces to Q again.