

Offenlegungsschaft _® DE 198 20 894 A 1

DEUTSCHES PATENT- UND MARKENAMT

198 20 894.4 Aktenzeichen: 9. 5.98 ② Anmeldetag: 11, 11, 99 (3) Offenlegungstag:

(51) Int. Cl.⁶: A 61 K 7/13 D 06 P 3/04 // D06P 3/14,3/30,

3/60,3/24

(1) Anmelder:

Wella AG, 64295 Darmstadt, DE

② Erfinder:

Czigler, Thomas, 64347 Griesheim, DE; Kripp, Thomas, 64407 Fränkisch-Crumbach, DE

56 Entgegenhaltungen:

197 17 281 A1 DE 197 17 224 A1 DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

Mittel und Verfahren zum Färben von Fasern

Gegenstand der Erfindung ist ein 2-Komponenten-Mittel zum Färben von Fasern bestehend aus einer Thiobarbitursäure und/oder deren Derivate enthaltenden 1. Komponente und einer eine Carbonylverbindung, welche ausgewählt ist aus gesättigten Dialdehyden, gesättigten Diketonen, gesättigten Ketoaldehyden, ungesättigten Dialdehyden, ungesättigten Diketonen, ungesättigten Ketoaldehyden, Monoaldehyden mit einer oder mehreren chromophoren Gruppen, Monoketonen mit einer oder mehreren chromophonen Gruppen oder Chinonen, enthaltenden 2. Komponente, sowie ein Verfahren zum Färben von Fasern, insbesondere menschlichen Haaren unter Verwendung dieses Mittels.

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zum Färben von Fasern, insbesondere Keratinfasern, unter Verwendung von Thiobarbitursäure und/oder deren Derivaten und speziellen Carbonylverbindungen sowie ein Mittel zur Durch-

Für das Färben von keratinhaltigen Fasern, zum Beispiel Haaren, Wolle oder Pelzen, kommen im allgemeinen entweführung dieses Färbeverfahrens. der direktziehende synthetische oder pflanzliche Farbstoffe oder Oxidationsfarbstoffe, die durch oxidative Kupplung von sogenannten Entwicklersubstanzen mit sogenannten Kupplersubstanzen entstehen, zur Anwendung. Obwohl eine Vielzahl von Farbstoffen bekannt sind, sind nur wenige Farbstoffe für die Verwendung in Färbemitteln für Keratinfasern geeignet, da diese eine Vielzahl von Bedingungen gleichzeitig erfüllen müssen, die in anderen Bereichen der Färbetechnik (Färbung von synthetischen Fasern oder Lebensmitteln) nur teilweise erfüllt sein müssen. So muß ein Farbstoff für Keratinfasern die Haare anfärben können, toxikologisch unbedenklich sein, eine Färbung unter milden Bedingungen (niedrige Temperaturen etc.) ermöglichen, eine möglichst geringe Hautanfärbung bewirken, gut wasserlöslich sein, weitestgehend lichtecht und waschecht sein, gleichmäßig auf die Faser aufziehen (besonders wichtig bei Farbstoffgemischen), gleichmäßig (ohne Änderung des Farbtons) ausgewaschen werden, eine möglichst hohe Deckkraft aufweisen, die Faser möglichst wenig schädigen und andere Haarbehandlungsmethoden (beispielsweise die Dauerwell-Behandlung) nicht

Aufgrund der Vielzahl der gestellten Anforderungen sind letztlich nur wenige Substanzen zum Färben von Haaren gestören. eignet und Kompromisse bei einzelnen Anforderungen unumgänglich.

Jedes dieser beiden Färbesysteme (direktziehende Farbstoffe, Öxidationsfarbstoffe) hat dabei spezifische Vorteile und Nachteile, die je nach der Anforderung des Verbrauchers unterschiedlich stark ins Gewicht fallen.

Mit direktziehenden Farbstoffen sind zwar in der Regel schonendere Haarfärbungen möglich, jedoch eignen sich direktziehende Farbstoffe aufgrund des deutlich geringeren Deckvermögens nur bedingt zum Überdecken grauer Haare, wobei bei einem Grauanteil von mehr als 30% mit nicht-oxidativen Direktziehern kein befriedigendes Färbeergebnis mehr erzielt werden kann.

Tabelle 1 gibt einen Überblick über die grundlegenden Stärken und Schwächen beider Systeme:

Tabelle 1 Vergleich diverser Eigenschaften von direktziehenden und oxidativen Farbstoffen

	direktziehende	Oxidations-
	Farbstoffe	farbstoffe
Nuancenvielfalt	sehr groß	sehr groß
Vorhersehbarkeit des Ergeb-	sehr gut	gut
nisses		
Lichtechtheit	sehr hoch	sehr hoch
Waschechtheit	schlecht	sehr hoch
Entfernbarkeit auf Wunsch	gut	schlecht
Haarschädigung (oxidativ)	gering	stark
Haarschädigung (alkalisch)	mäßig bis stark	mäßig bis stark
Geruch bei Anwendung	stark	stark
Deckkraft der Färbung	gut	sehr gut
Grauabdeckung	schlecht	sehr gut
pH-Abhängigkeit des Farbtons	abhängig vom	sehr gering
,	Einzelfall	
Hautanfärbung	mittel bis stark	mittel bis stark

Es besteht daher ein großer Bedarf für ein schonendes, vorzugsweise nicht-oxidatives, Verfahren zum wahlweise auch wieder entfernbaren Permanentfärben von Fasern, insbesondere menschlichen Haaren, das eine Färbung der Faser in ei-

ng dieses Verfahrens. d Farbnuancen ermöglicht, sowie ein Mittel zur Dur ner Vielzahl von Fa

Überraschenderweise wurde nunmehr gefunden, daß durch ein neues Verfahren zum schonenden, wahlweise auch wieder entternbaren Permanentfärben von Fasern, insbesondere menschlichen Haaren unter Verwendung eines speziellen 2-Komponenten-Mittels eine Färbung der Fasern in einer Vielzahl von Farben und Farbnuancen sowie intensive Färbungen mit hoher Lichtechtheit und Waschbeständigkeit, insbesondere gleichmäßige und intensive Schwarzfärbungen mit hoher Lichtechtheit und Waschbeständigkeit, ermöglicht werden.

Gegenstand der vorliegenden Erfindung ist daher ein 2-Komponenten-Mittel zum Färben von Fasern bestehend aus (a) einer Thiobarbitursäure und/oder deren Derivate enthaltenden 1. Komponente und (b) einer eine Carbonylverbindung, welche ausgewählt ist aus gesättigten Dialdehyden, gesättigten Diketonen, gesättigten Ketoaldehyden, ungesättigten Dialdehyden, ungesättigten Diketonen, ungesättigten Ketoaldehyden, Monoaldehyden mit einer oder mehreren chromophoren Gruppen, Monoketonen mit einer oder mehreren chromophoren Gruppen und Chinonen, enthaltenden 2. Komponente, sowie ein Verfahren zum Färben von Fasern unter Verwendung dieses Mittels.

Als Fasern kommen insbesondere keratinische Fasern, beispielsweise Wolle, Seide, Pelze oder Haare (insbesondere menschliche Haare), aber auch nicht-keratinische Fasern, wie zum Beispiel Baumwolle, Leinen, Hanftextilien, Brennesselfasern, Viskose, Acetylcellulose, Cellulosetriacetat oder Polyamidfasern, in Betracht.

In einer besonderen Ausführungsform dieser Erfindung lassen sich über die Abschwächung der Konzentrationen auch verschieden intensive Farbtöne oder Grautöne einstellen, die sich durch wiederholte Anwendung des Verfahrens (aufgrund der besonders haarschonenden Farbemethode ist dies ohne Einschränkungen möglich) zu einer schrittweisen Annäherung an die gewünschte Endfarbe addieren. Damit ist bei der Haarfärbung erstmals eine dezente, schrittweise Hinführung an eine Zielhaarfarbe, beispielsweise von weißem oder grauem Haar zu tiefschwarzem Haar, möglich

20

Die Thiobarbitursäure und/oder ihre Derivate, beispielsweise die Alkalisalze oder Erdalkalisalze der Thiobarbitursäure, werden in der 1. Komponente in einer Gesamtmenge von 0,01 bis 20 Gewichtsprozent, vorzugsweise 0,1 bis 5 Gewichtsprozent, insbesondere 0,1 bis 1 Gewichtsprozent, eingesetzt, während die Carbonylverbindungen in der 2. Komponente in einer Gesamtmenge von (1,001 bis 10 Gewichtsprozent, vorzugsweise 0,003 bis 3 Gewichtsprozent eingesetzt

Als Carbonylverbindungen kommen ungesättigte oder gesättigte Dialdehyde, beispielsweise Glutacondialdehyd oder Glutacondialdehyd-Monoenolat, Bernsteindialdehyd, Furnardialdehyd, Glutardialdehyd, Glyoxal, Malondialdehyd, Mucondialdehyd, o-Phthaldialdehyd oder l'herephthaldialdehyd; ungesättigte oder gesättigte Diketone, beispielsweise Diacetyl, Acetylaceton oder Isatin; ungesattigte oder gesättigte Ketoaldehyde, Monoaldehyde oder Monoketone mit einer oder mehreren chromophoren Gruppen, beispielsweise 2,3,4-Trihydroxybenzaldehyd, 3-Oxo-butyraldehyd, Acrolein, Acetaldehyd, Benzaldehyd und seine Derivate (zum Beispiel p-Dimethylaminobenzaldehyd), Dimethylaminophenylpentadienal, Ethylvanillin, Glycerinaldehyd, Isovanillin, Methylfurfural, o-Vanillin, Stilbenaldehyd, Vanillin, Zimtaldehyd und seine Derivate (zum Beispiel p-Dimethylamino-zimtaldehyd, p-Nitrozimtaldehyd oder o-Nitrozimtaldehyd), Benzophenon oder 2,3-Desoxyribose; und Chinone, beispielsweise p-Benzochinon, 2,3-Dimethoxy-5-methyl-1,4-benzochinon (Coenzym Q0) oder 5-Hydroxy-1,4-naphthochinon (Jugion) in Betracht.

Sowohl die 1. Komponente als auch die 2. Komponente des erfindungsgemäße Mittels zur Färbung von Fasern kann beispielsweise in Form einer Lösung, insbesondere als wäßrig-alkoholische Lösung, einer Creme, eines Geles oder einer Emulsion vorliegen. Als Lösungsmittel können neben Wasser beispielsweise niedere aliphatische einwertige oder mehrwertige Alkohole, deren Ester und Ether, oder aber Gemische dieser Lösungsmittel untereinander oder mit Wasser genannt werden. Der maximale Siedepunkt der vorgenannten geeigneten Lösungsmittel beträgt etwa 400°C, wobei ein Siedepunkt von 20°C bis 250°C bevorzugt ist.

Ebenfalls ist es möglich, eine oder beide Komponenten des erfindungsgemäßen Mittels mit Hilfe eines Zerstäubers beziehungsweise anderer geeigneter Pumpvorrichtungen oder Sprühvorrichtungen oder im Gemisch mit üblichen unter Druck verflüssigten Treibmitteln als Aerosolspray oder als Aerosolschaum aus einem Druckbehälter zu entnehmen.

Der pH-Wert der beiden Komponenten des erfindungsgemäßen Färbemittels sowie der Mischung dieser beiden Komponenten kann in Abhängigkeit von der zu färbenden Faser über den gesamten pH-Bereich von 0 bis 14 variieren. Vorzugsweise beträgt der pH-Wert etwa 2 bis 10, wobei ein saurer pH-Wert von 2 bis 7 besonders bevorzugt ist. Die Einstellung eines alkalischen pH-Wertes erfolgt vorzugsweise mit Ammoniak, es ist jedoch auch möglich, anstelle von Ammoniak organische Amine, wie zum Beispiel Monoethanolamin oder Triethanolamin zu verwenden. Für die Einstellung eines sauren pH-Wertes kann hingegen eine organische oder anorganische Säure, wie zum Beispiel Salzsäure, Schwefelsäure, Phosphorsäure, Zitronensäure. Weinsäure, Glycolsäure oder Milchsäure, verwendet werden.

Selbstverständlich kann sowohl die 1. Komponente als auch die 2. Komponente des erfindungsgemäßen Mittels zur Färbung von Fasern gegebenenfalls weitere für Färbemittel für Keratinfasern übliche Zusätze, wie zum Beispiel Pflegestoffe, Netzmittel, Verdicker, Weichmacher, Konservierungsstoffe und Parfümöle sowie auch weitere, nachstehend auf-

Weiterhin können sowohl in der 1 Komponente als auch der 2. Komponente des erfindungsgemäßen Mittels zur Färgeführte Zusätze enthalten. bung von Fasern Netzmittel oder Emulgatoren aus den Klassen der anionischen, amphoteren, nichtionogenen oder zwitterionischen oberflächenaktiven Substanzen wie Fettalkoholsulfate, Alkansulfonate, Alkylbenzolsulfonate, Alkylcarnitine, Acylcarnitine, Alkylbetaine, α -Olefinsulfonate, oxethylierte Fettalkohole, oxethylierte Nonylphenole, Fettsäurealkanolamine, oxethylierte Fettsäureester, Fettalkoholpolyglycolethersulfate, Alkylpolyglucoside, Verdickungsmittel wie höhere Fettalkohole, Stärke, Alginate, Bentonite, Cellulosederivate, Vaseline, Paraffinöl und Fettsäuren, wasserlösliche polymere Verdickungsmittel wie natürliche Gummiarten, Guargummi, Xanthangummi, Johannisbrotkernmehl, Pektin, Dextran, Agar-Agar, Amylose, Amylopektin, Dextrine, Tone oder vollsynthetische Hydrokolloide wie Polyvinylalkohol, außerdem Pflegestoffe wie Lanolinderivate, Cholesterin, Pantothensäure, wasserlösliche Polymere, Proteinderivate, Provitamine, Vitamine, Pflanzenextrakte, Zucker und Betain, Hilfsstoffe wie Feuchthaltemittel, Elektrolyte, Antioxidantien, Fettamide, Sequestrierungsmittel, filmbildende Agentien und Konservierungsmittel, enthalten sein.

Sowohl die 1. Komponente als auch die 2. Komponente des erfindungsgemäßen Mittels zur Färbung von Fasern kann weiterhin natürliche oder synthetische Polymere beziehungsweise modifizierte Polymere natürlichen Ursprungs enthal-

ten sein, wodurch gleie die mit der Färbung eine Festigung der Keratinfaser erk, wird. Von den für diesen Zweck in der Kosmetik bekannten synthetischen Polymeren seien beispielsweise Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylakohol oder Polyacrylverbindungen wie Polyacrylsäure oder Polymethacrylsäure. Polyacrylnitril, Polyvinylacetate sowie Copolymerisate aus derartigen Verbindungen, wie zum Beispiel Polyvinylpyrrolidon-Vinylacetat, erwähnt; während als natürliche Polymere oder modifizierte natürliche Polymere beispielsweise Chitosan (deacetyliertes Chitin) oder Chitosanderivate, eingesetzt werden können.

Die erwähnten Bestandteile werden in den für solche Zwecke üblichen Mengen verwendet, zum Beispiel die Netzmittel und Emulgatoren in Konzentrationen von etwa 0,5 bis 30 Gewichtsprozent, die Verdicker in einer Menge von etwa 0,1 bis 25 Gewichtsprozent und die Pflegestoffe in einer Menge von etwa 0,1 bis 5 Gewichtsprozent. Die vorgenannten Polymere können in der für solche Mittel üblichen Menge, insbesondere in einer Menge von etwa 1 bis 5 Gewichtsprozent,

verwendet werden.

Das erfindungsgemäße Mittel zur Farbung von Fasern kann zur Erzielung von besonderen Farbtönen zusätzlich färbende pflanzliche Bestandteile, wie zum Beispiel Hennablätter, Indigo, Kamillenblüten, Curcuma-Wurzeln, Faulbaumbende pflanzliche Bestandteile, wie zum Beispiel Hennablätter, Indigo, Kamillenblüten, Curcuma-Wurzeln, Faulbaumbende pflanzliche Bestandteile, wie zum Beispiel Hennablätter, Indigo, Kamillenblüten, Curcuma-Wurzeln, Faulbaumbende, Olivenblätter, kanadische Blutwurzel, Gelbwurzel, Gelbholz, Rotholz, Rotsandelholz, Blauholz, Krappwurzel, Farbwarzer Holunder oder Schwarze Apfelbeere, und/oder übliche, physiologisch unbedenkliche, direktziehende Farbstoffe aus der Gruppe der Nitrofarbstoffe, Azofarbstoffe, Chinonfarbstoffe und Triphenylmethanfarbstoffe, alleine oder in Kombination miteinander, enthalten.

Das erfindungsgemäße Mittel ermöglicht gleichmäßige, auswaschstabile Färbungen von Fasern, insbesondere Keratinfasern, wie zum Beispiel menschlichen Haaren, welche auch nach 20 Wäschen mit einem Shampoo keinerlei erkennbaren Unterschied zur ursprünglichen Färbung zeigen, wobei durch Variation der Carbonylkomponente praktisch jeder beliebige Farbton erzielbar ist. Weiterhin tritt bei Haarfärbungen, wenn überhaupt, nur eine geringe Anfärbung der Kopfbant auf

Analog der oxidativen Färbung erfolgt die Bildung des Farbstoffes erst in der Faser selbst (jedoch ohne Oxidation), was offenbar ein intensives Durchdringen der Faser und somit eine hohe Färbeleistung und eine große Waschechtheit zur

Folge hat.

Wahrscheinlich beruht die Färbung durch die erfindungsgemäße Kombination von Thiobarbitursäure und Carbonyl-Wahrscheinlich beruht die Färbung durch die erfindungsgemäße Kombination von Thiobarbitursäure und Carbonyl-verbindungen auf der Bildung eines Kondensationsproduktes mit beidseitig durchkonjugiertem System von u-Elektronen. Je nach verwendeter Carbonylverbindung können mit dem erfindungsgemäßen Mittel ein Vielzahl verschiedener modischer oder natürlicher Farbtöne erhalten werden; beispielsweise schwarze (p-Benzochinon, Glutacondialdehyd oder Glutacondialdehyd-Monoenolat), rote (beispielsweise Malondialdehyd, Acetaldehyd, Dimethylamino-phenylpentadienal, p-Dimethylamino-benzaldehyd), orange (beispielsweise Diacetyl, Acetylaceton, Isatin, 2,3,4-Trihydroxybentadienal, Ethylvanillin, Glycerinaldehyd, Stilbenaldehyd, p-Nitrozimtaldehyd, Vanillin, 2,3-Desoxyribose), gelbe (beispielsweise Bernsteindialdehyd, Glutardialdehyd, o-Phthaldialdehyd, Therephthaldialdehyd, 3-Oxo-butyraldehyd, Benzophenon), blaue (beispielsweise p-Dimethylaminozimtaldehyd), violette (beispielsweise Mucondialdehyd) oder braune (beispielsweise Acrolein, Glyoxal, Fumardialdehyd, 2,3-Dimethoxy-5-methyl-1,4-benzochinon, 5-Hydroxy-1,4-naphthochinon) Farbtöne.

Beispiele für die durch verschiedene Kombinationen von Thiobarbitursäure und Carbonylverbindungen (wobei bezogen auf die Gesamtzahl der Carbonylgruppen in der jeweiligen Carbonylverbindung ein 1,5:1 molares Verhältnis von Thiobarbitursäure zu Carbonylverbindung eingesetzt wurde) erhaltenen Färbungen sind in den nachfolgenden Tabellen 2 bis 6 (unterteilt nach verwendeter Carbonylverbindung) zusammengefaßt.

bis 0 (uniertein nach verweinderer Carbony) verbindung/ Zusammengensch Hierbei steht in der Spalte für das Extinktionsmaximum (" λ_{max} "), soweit dieses bestimmt wurde, das Zeichen " ~ " für eine erhöhte Grundabsorption ohne charakteristisches Extinktionsmaximum.

45

55

60

Gesättigte und ungesättigte Dialdehyde + Thiobarbitursäure

Carbonylverbindung	Farbe	λ_{max}	Anmerkung	
Bernsteindialdehyd	Rot	505 nm	-	
Fumardialdehyd	Mittelbraun	~	Hohe Grund-	10
in amaraididesi,			absorption	
Glutardialdehyd	Gelb	~	Hohe Grund-	15
Glataraland			absorption	
Glyoxal	Dunkelbraun	520 nm	-	20
Malondialdehyd	Dunkelrot	535 nm	-	20
Mucondialdehyd	Blauviolett	-	-	
o-Phthaldialdehyd	Gelb	<< 400 nm	-	25
Terephthaldialdehyd	Gelb	<< 400 nm	-	
Glutacondialdehyd-	Tiefschwarz	~ (531 nm,	-	3
(Monoenolat)		629 nm)		

Tabelle 3 Diketone und Ketolactame + Thiobarbitursäure

Carbonylverbindung	Farbe	λ_{max}	Anmerkung
Diacetyl	Gelborange	-	1,2-Diketon
Acetylaceton	Gelborange	-	1,3-Diketon
Isatin	Orange	382 nm	α-Ketolactam

Tabelle 4

Monoaldehyde mit Chromophor + Thiobarbitursäure

5	Carbonylverbindung	Farbe	λ_{max}	Anmerkung
	2,3,4-Trihydroxy-	Orangerot	-	-
10	benzaldehyd			
	3-Oxo-butyraldehyd	Gelb	425 nm	-
	Acrolein	Braun	~	Hohe Grundab-
15		,		sorption
	Acetaldehyd	Rot	505 nm	-
20	Benzaldehyd	Gelb	<< 400 nm	-
	Dimethylamino-phenyl-	Rosa-Rot	-	-
25	pentadienal			
	Ethylvanillin	Orange	431 nm	-
	Glycerinaldehyd	Orange	463 nm	-
30	Isovanillin	Gelb	<< 400 nm	-
	Methylfurfural	Gelb	-	-
35	o-Nitrozimtaldehyd	Gelb	360 nm	-
	o-Vanillin	Gelb	-	-
40	p-Dimethylaminobenz-	Rot	489 nm	-
	aldehyd			
	p-Dimethylaminozimt-	Blau	567 nm	-
45	aldehyd			
	p-Nitrozimtaldehyd	Orange	388 nm	-
50	Stilbenaldehyd	Orange	424 nm	-
	Vanillin	Orange	430 nm	-
55	Zimtaldehyd	Gelb	420 nm	-

60

10

15

20

25

30

35

60

Monoketone mit Chromophor + Thiobarbitursäure

Carbonylverbindung	Farbe	λ_{max}
Benzophenon	Gelb	452 nm
2,3-Desoxyribose	Orange	468 nm

Tabelle 6

Chinone + Thiobarbitursäure

Carbonylverbindung	Farbe	λ_{max}	Anmerkung
2,3-Dimethoxy-5-methyl-	Mittelbraun	408 nm	Coenzym Q0
1,4-benzochinon			
5-Hydroxy-1,4-	Dunkelbraun	~	Juglon
naphthochinon			
p-Benzochinon	Braunschwarz	-	-

Während bei zweiwertigen Carbonylverbindungen (Dialdehyden, Diketonen, Ketoaldehyden) erwartungsgemäß die Verschiebung des Absorptionsmaximums in den längerwelligen Bereich dadurch erzeugt werden kann, daß die Anzahl durchkonjugierter Doppelbindungen erhöht wird, kann bei Verwendung von monovalenten Carbonylverbindungen die zweite Thiobarbitursäure-Gruppe auch durch ein entsprechendes chromophores System ersetzt werden.

Das erfindungsgemäße 2-Komponenten-Mittel kann auf verschiedene Weise zum Färben von Fasern, insbesondere menschlichen Haaren, verwendet werden.

So können die beiden Komponenten (Komponente 1 und Komponente 2) unmittelbar vor der Anwendung miteinander vermischt werden und die erhaltene Zubereitung umgehend auf die zu färbende Faser aufgetragen werden. Nach einer Einwirkungszeit von 5 bis 60 Minuten bei etwa 20 bis 80°C, vorzugsweise 30 bis 50°C, wird die Faser mit Wasser gespült und gegebenenfalls mit einem Shampoo gewaschen und anschließend getrocknet.

Ebenfalls ist es möglich, die beiden Komponenten nacheinander auf die Faser aufzutragen, wobei das Auftragen der beiden Komponenten vorzugsweise mit einem Zeitabstabstand von 5 bis 15 Minuten (vorzugsweise bei Raumtemperatur) erfolgt. Hierbei kann die 1. Komponente sowohl vor als auch nach der 2. Komponente aufgetragen werden. Ebenfalls ist es möglich, zwischen den einzelnen Behandlungsschritten die Faser mit Wasser auszuspülen oder mit einem Shampoo zu waschen. Nach einer Einwirkungszeit von 5 bis 60 Minuten bei etwa 20 bis 80°C, vorzugsweise 30 bis 50°C, wird die Faser mit Wasser gespült und gegebenenfalls mit einem Shampoo gewaschen und anschließend getrocknet.

Bei beiden Verfahren kann die Anwendungstemperatur auch im Verlauf der Färbebehandlung verändert werden, beispielsweise indem die Temperatur im Verlauf der Färbebehandlung von Raumptemperatur (20°C) auf etwa 30 bis 80°C, vorzugsweise auf 30 bis 50°C; erhöht wird.

Die Thiobarbitursäure oder deren Derivat kann in der 1. Komponente – bezogen auf die Summe der Carbonylkomponenten – prinzipiell sowohl äquimolar als auch in einem molaren Überschuß oder Unterschuß vorliegen; zweckmäßigerweise sollte sie jedoch in einem molaren Überschuß, vorzugsweise mindestens dem 1,3fachen, insbesondere mindestens dem 1,5fachen molaren Überschuß gegenüber der Summe aller Carbonylgruppen der in der 2. Komponente enthaltenen Carbonylverbindungen eingesetzt werden, wobei ein 1,5- bis 300facher Überschuß an Thiobarbitursäure – bezogen auf die Summe aller Carbonylgruppen der in der 2. Komponente enthaltenen Carbonylverbindungen – besonders bevorzugt ist

Das erfindungsgemäße 2-Komponenten-Färbemittel eignet sich insbesondere zur Färbung von Haaren. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung des vorstehend beschriebenen 2-Komponenten-Mittels zum Färben von Haaren, insbesondere menschlichen Haaren.

Obwohl das mit dem erfindungsgemäßen 2-Komponenten-Mittel gefärbte Haar eine gegenüber Licht- und Lufteinwirkung äußerst stabile Färbung besitzt, kann es bei einem saueren oder alkalischen pH-Wert mit einem geeigneten Reduktionsmittel, wie zum Beispiel Sulfiten, Pyrosulfiten oder Hydrogensulfiten, beispielsweise Alkalisulfiten, Alkalihydrogensulfiten oder Alkalipyrosulfiten (wie zum Beispiel Natriumsulfit, Natriumpyrosulfit, Kaliumpyrosulfit), Ammoniumsulfit oder Ammoniumhydrogensulfit, oder einem geeigneten Oxidationsmittel, wie zum Beispiel Wasserstoftperoxid und/oder handelsüblichen, Persulfate enthaltenden Blondierpulvern, vollständig entfärbt werden. Die Blondierpulver weisen in der Regel einen Gehalt von 5 bis 50 Gewichtsprozent, vorzugsweise 15 bis 30 Gewichtsprozent, an Ammoniumpersulfat oder Alkalipersulfaten oder einer Mischung aus Ammoniumpersulfat und Alkalipersulfaten auf. Die Entfär-

anten Entfärbemittel (insbesonm alkalischen Milieu reduktiv unter Verwendung der v dere mit Ammoniumsulfit oder Ammoniumhydrogensulfit), wobei die Verwendung der vorgenannten Reduktionsmittel in Kombination mit anderen Reduktionsmitteln, wie zum Beispiel Reduktonen und/oder Thiolen, besonders bevorzugt

Die Einwirkungszeit des Entfärbemittels beträgt hierbei in Abhängigkeit vom pH-Wert des Entfärbemittels je nach zu entfärbender Färbung und Temperatur (etwa 20 bis 50 Grad Celsius) 5 bis 45 Minuten, insbesondere 5 bis 30 Minuten, wobei durch Wärmezufuhr der Entfarbeprozeß beschleunigt werden kann. Nach Beendigung der Einwirkungszeit des Entfärbemittels wird das Haar mit Wasser gespült, gegebenenfalls mit einem Shampoo gewaschen und/oder einer Spülung, vorzugsweise einer neutralen oder schwach sauren Spülung, behandelt und sodann getrocknet, wobei sowohl das Shampoo als auch die Spülung ein Reduktion, wie zum Beispiel Ascorbinsäure, enthalten kann.

Da die Färbung reduktiv entfärbt werden kann, muß eine Dauerwellbehandlung immer vor der Färbebehandlung

Das erfindungsgemäße 2-Komponenten-Mittel zum Färben von Fasern, insbesondere menschlichen Haaren, sowie das durchgeführt werden. erfindungsgemäße Färbeverfahren weisen eine Vielzahl von Vorteilen gegenüber herkömmlichen Oxidationsfärbemitteln auf. Ein Vergleich der beiden Färbesysteme ist in der nachfolgenden Tabelle 7 zusammengefaßt.

Tabelle 7

Vergleich der Eigenschaften von Oxidationsfärbemitteln mit dem erfindungsgemäßen 2-Komponenten-Färbemittel

i	Oxidations- färbemittel	erfindungsgemäßes 2-Komponenten-
	Tarpennite	Färbemittels
Nuancenvielfalt	sehr groß	sehr groß
Vorhersehbarkeit des	gut	sehr gut
Färbeergebnisses		
Lichtechtheit	sehr hoch	hoch
Waschechtheit	sehr hoch	sehr hoch
Entfernbarkeit auf Wunsch	schlecht	sehr gut
Haarschädigung (oxidativ)	stark	sehr gering
Haarschädigung (alkalisch)	mäßig bis stark	sehr gering
Geruch bei Anwendung	stark	sehr gering
Deckkraft der Färbung	sehr gut	sehr gut
Grauabdeckung	sehr gut	sehr gut
pH-Abhängigkeit des	sehr gering	sehr gering
Farbtons		
Hautanfärbung	mittel bis stark	sehr gering

60

65

Die nachfolgenden Beispiele sollen den Gegenstand näher erläutern, ohne ihn auf diese Beispiele zu beschränken.

Beispiele

Beispiel 1

Einstufige Haarfärbung

100 ml einer bei Raumtemperatur gesättigten Thiobarbitursäurelösung (ca. 0,72prozentig = 50 mmol) werden mit einer Lösung der für die gewünschte Färbung erforderlichen Menge an Malondialdehyd (in Form des Diacetals; je nach gewünschter Farbintensität zwischen 0.01% (blaßrot) und 1% (dunkelrot) – jeweils bezogen auf die Gesamtmenge der

estellt) vermischt. Wasser (mittels Zitronensäure auf einen pH-Wert von

Die so erhaltene Mischung wird sofort auf das Haar aufgetragen. Nach einer Einwirkzeit von 10 bis 15 Minuten bei wäßrigen Lösung) in Raumtemperatur wird das Haar 5 Minuten lang mit einem Fön oder einer Trockenhaube auf 40 bis 50°C erwärmt und anschließend mit Wasser ausgespült und zweimal mit einem Shampoo nachgewaschen.

Die erzielte Farbe variiert je nach der eingesetzten Menge der Carbonylkomponente von blaßrot bis dunkelrot. Auch nach 20 Haarwaschen mit einem Shampoo ist kein Verblassen des Farbtones festzustellen.

Beispiel 2

Zweistufige Haarfärbung

10

100 ml einer bei Raumtemperatur gesättigten Thiobarbitursäurelösung (ca. 0,72prozentig = 50 mmol) werden auf das Haar aufgetragen und 10 bis 15 Minuten bei Raumtemperatur einwirken gelassen. Sodann wird eine Lösung mit einem Gesamtgehalt von 10 mmol Malondialdehyd in 100 ml 1% iger Zitronensäurelösung auf das Haar aufgetragen. Nach einer Einwirkungszeit von weiteren 10 Minuten bei Raumtemperatur werden die Haare 5 bis 10 Minuten lang mit einem Fön oder einer Trockenhaube auf 40 bis 50°C erwärmt und anschließend mit Wasser ausgespült und zweimal mit einem Shampoo nachgewaschen.

20

Das so behandelte Haar besitzt eine rote Färbung. Auch nach 20 Haarwäschen mit einem Shampoo ist kein Verblassen des Farbtones festzustellen.

Beispiel 3

Zweistufige Haarfarbung

Eine Lösung von 0,45 g (25 mmol) Ethylvanillin in 100 ml 1% iger Zitronensäure wird auf das Haar aufgetragen und 10 bis 15 Minuten bei Raumtemperatur einwirken gelassen. Anschließend wird (unter Einbeziehen der umliegenden Kopfhautpartien) mit lauwarmem Wasser abgespült. Sodann werden 100 ml einer gesättigten Lösung von Thiobarbitursäure (ca. 0,72prozentig = 50 mmol) auf das Haar aufgetragen. Nach einer Einwirkzeit von weiteren 10 Minuten bei Raumtemperatur werden die Haare für 5 bis 10 Minuten lang mit einem Fön oder einer Trockenhaube auf 40 bis 50°C erwärmt und anschließend mit Wasser ausgespült und zweimal mit einem Shampoo nachgewaschen.

Das so behandelte Haar besitzt eine orangefarbene Färbung. Auch nach 20 Haarwaschen mit einem Shampoo ist kein Verblassen des Farbtones festzustellen.

Beispiel 4

35

Zweistufige Haarfärbung (Schwarz)

100 ml einer bei Raumtemperatur gesättigten Thiobarbitursäurelösung (ca. 0,72prozentig = 50 mmol) werden auf das Haar aufgetragen und 10 bis 15 Minuten bei Raumtemperatur einwirken gelassen. Sodann wird eine Lösung mit einem Gehalt von (a) 0,036 g (0,1 mmol) Glutacondialdehyd-Monoenolat-Tetrabutylammoniumsalz oder (b) 0,2 g (1 ,85 mmol) p-Benzochinon in 100 ml 1% iger Zitronensäure auf das Haar aufgetragen. Nach einer Einwirkzeit von weiteren 10 Minuten bei Raumtemperatur werden die Haare für 5 bis 10 Minuten lang mit einem Fön oder einer Trockenhaube auf 40 bis 50°C erwärmt und anschließend mit Wasser ausgespült und zweimal mit einem Shampoo nachgewaschen.

Das Haar weist eine tiefschwarze (a) beziehungsweise braun-schwarze (b) Färbung auf, welche völlig abriebtest ist. Auch nach 20 Haarwäschen mit Shampoo ist kein Verblassen des Farbtones festzustellen.

45

Beispiel 5

Zweistufige, schrittweise Haarfärbung (Schwarz)

65

100 ml einer bei Raumtemperatur gesättigten Thiobarbitursäurelösung (ca. 0,72prozentig = 50 mmol) werden auf das Haar aufgetragen und 10 bis 15 Minuten bei Raumtemperatur einwirken gelassen. Sodann wird eine Lösung mit einem Gehalt von (a) 0,0036 g (0,01 mmol) Glutacondialdehyd-Monoenolat-Tetrabutylammoniumsalz oder (b) 0,02 (0,185 mmol) p-Benzochinon in 100 ml 1%iger Zitronensäure auf das Haar aufgetragen.

Nach einer Einwirkzeit von weiteren 10 Minuten bei Raumtemperatur werden die Haare für 5 bis 10 Minuten lang mit einem Fön oder einer Trockenhaube auf 40 bis 50°C erwärmt und anschließend mit Wasser ausgespült und zweimal mit

einem Shampoo nachgewaschen. Die Haare erscheinen nach der ersten Färbebehandlung hellgrau (a) beziehungsweise graubraun (b) und die Farbe ist völlig abriebfest. Bei mehrfacher Wiederholung der vorbeschriebenen Färbebehandlung vertieft sich der Grauton zusehends, so daß auf diese Weise, über einen angemessenen Zeitraum hinweg angewandt, eine dezente schrittweise Annäherung der momentanen Haarfarbe an die Zielfarbe (bis hin zum Pechschwarz) erreicht werden kann.

Alle in der vorliegenden Anmeldung genannten Prozentzahlen stellen, soweit nicht anders angegeben, Gewichtsprozent dar.

Patentansprüche

1. 2-Komponenten-Mittel zum Färben von Fasern bestehend aus (a) einer Thiobarbitursäure und/oder deren Derivate enthaltenden 1. Komponente und (b) einer eine Carbonylverbindung, welche ausgewählt ist aus gesättigten

ldehyden, ungesättigten Diketoen Diketonen, gesättigten Ketoaldehyden, ungesättigt nen, ungesättigten Ketoaldehyden, Monoaldehyden mit einer oder mehreren enromophoren Gruppen, Monoketonen mit einer oder mehreren chroniophoren Gruppen und Chinonen, enthaltenden 2. Komponente.

- 2. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß die Thiobarbitursäure und/oder deren Derivate in der 1. Komponente in einer Menge von 0,01 bis 20,0 Gewichtsprozent enthalten sind.
- 3. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß die Carbonylverbindung ausgewählt ist aus Glutacondialdehyd oder Glutacondialdehyd-Monoenolat-Tetrabutylammoniumsalz, Bernsteindialdehyd, Fumardialdehyd, Glutardialdehyd, Glyoxal, Malondialdehyd, Mucondialdehyd, o-Phthaldialdehyd, Therephthaldialdehyd, Diacetyl, Acetylaceton, Isatin, 2,3,4-Trihydroxy-benzaldehyd, 3-Oxo-butyraldehyd, Acrolein, Acetaldehyd, Benzaldehyd oder dessen Derivate, Dimethylamino-phenyl-pentadienal Ethylvanillin, Glycerinaldehyd, Isovanillin, Methylfurfural, o-Vanillin, Stilbenaldehyd, Vanillin, Zimtaldehyd oder dessen Derivate, Benzophenon, 2,3-Desoxyribose, p-Benzochinon, 2,3-Dimethoxy-5-methyl-1,4-benzochinon und 5-Hydroxy-1,4-naphthochinon.
- 4. Mittel nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß die Carbonylverbindung in der 2. Komponente in einer Menge von 0,001 bis 10,0 Gewichtsprozent enthalten ist.
- 5. Mittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnete daß die 1. Komponente und die 2. Kompo-15 nente jeweils einen pH-Wert von 2 bis 10 aufweist.

10

20

25

30

35

40

45

50

55

60

65

- 6. Mittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß es ein Mittel zum Färben von Haaren ist. 7. Verfahren zum Färben von Fasern unter Verwendung eines 2-Komponenten-Mittels bei dem die 1. Komponente und die 2. Komponente unmittelbar vor der Anwendung miteinander vermischt werden, sodann die erhaltene Zubereitung auf die Faser aufgetragen wird und nach einer Einwirkungszeit von 5 bis 60 Minuten bei 20 bis 80°C die Faser mit Wasser gespült und gegebenenfalls mit einem Shampoo gewaschen wird, dadurch gekennzeichnete daß ein
- Mittel nach einem der Ansprüche 1 bis 6 verwendet wird. 8. Verfahren zum Färben von Fasern unter Verwendung eines 2- Komponenten-Mittels, bei dem die 1. Komponente vor oder nach der 2. Komponente auf die Faser aufgetragen wird und nach einer Einwirkungszeit von 5 bis 60 Minuten bei 20 bis 80°C die Faser mit Wasser gespült und gegebenenfalls mit einem Shampoo gewaschen wird, dadurch gekennzeichnet, daß ein Mittel nach einem der Ansprüche 1 bis 6 verwendet wird.
- 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das Austragen der beiden Komponenten in einem Zeit-
- abstand von 5 bis 15 Minuten erfolgt. 10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß zwischen den einzelnen Behandlungsschritten die Faser mit Wasser ausgespült oder mit einem Shampoo gewaschen wird.
- 11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß im Verlaufe der Behandlung die Temperatur von 20°C auf 30 bis 80°C gesteigert wird.
- 12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß die Thiobarbitursäure oder deren Derivate in der 1. Komponente in einem mindestens 1,3fachen, insbesondere einem mindestens 1,5fachen, molaren Überschuß gegenüber der Summe aller Carbonylgruppen der in der 2. Komponente enthaltenen Carbonylverbindungen eingesetzt wird.