CLAIMS

1. A vitamin D derivative represented by Formula (I):

wherein

R¹ represents a saturated aliphatic C₁₋₁₅hydrocarbon group optionally substituted with 1 to 3 hydroxy or protected hydroxy groups; and

 R^2 represents a saturated aliphatic C_{1-10} hydrocarbon group optionally substituted with one or more substituents, which may be the same or different and which are selected from the group consisting of a hydroxy group, a halogen atom, a cyano group, a lower alkoxy group, an amino group and an acylamino group, provided that when R^2 represents a saturated aliphatic C_1 hydrocarbon group, R^2 is substituted with at least one substituent.

2. The vitamin D derivative of claim 1 which is represented by Formula (II):

$$R^{1}$$
 R^{2}
 (II)

wherein

R¹ represents a saturated aliphatic C₁₋₁₅hydrocarbon group optionally substituted with 1 to 3 hydroxy or protected hydroxy groups; and

 R^2 represents a saturated aliphatic C_{1-10} hydrocarbon group optionally substituted with one or more substituents, which may be the same or different and which are selected from the group consisting of a hydroxy group, a halogen atom, a cyano group, a lower alkoxy group, an amino group and an acylamino group, provided that when R^2 represents a saturated aliphatic C_1 hydrocarbon group, R^2 is substituted with at least one substituent.

$$R^{1}$$
 R^{1}
 R^{2}
 R^{2}

wherein

R¹ represents a saturated aliphatic C₁₋₁₅hydrocarbon group optionally substituted with 1 to 3 hydroxy or protected hydroxy groups; and

 R^2 represents a saturated aliphatic C_{1-10} hydrocarbon group optionally substituted with one or more substituents, which may be the same or different and which are selected from the group consisting of a hydroxy group, a halogen atom, a cyano group, a lower alkoxy group, an amino group and an acylamino group, provided that when R^2 represents a saturated aliphatic C_1 hydrocarbon group, R^2 is substituted with at least one substituent.

4. The vitamin D derivative according to one of claims 1

Jub Brits

to 3, wherein R² is a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, a hydroxypentyl group, a hydroxyhexyl group, an ethyl group, a propyl group, a butyl group, a pentyl group or a hexyl group.

201

- to 4, wherein R¹ is a 4 hydroxy-4-methylpentyl group.
- 6. The vitamin D derivative according to claim 1 selected from the group consisting of
- (5Z,7E)-(1S,2S,3R,20R)-9,10-seco-5,7,10(19)-cholestatriene-2-hydroxymethyl-1,3,25-triol,
- (5Z,7E)-(1S,2S,3R,20R)-9\10-seco-5,7,10(19)-cholestatriene-2-(2'-hydroxyethyl)-1,3,25-triol,
- (5Z,7E)-(1S,2S,3R,20R)-9,10-seco-5,7,10(19)-cholestatriene-2-(3'-hydroxypropyl)-1,3,25-triol,
- (5Z,7E)-(1S,2S,3R,20R)-9,10\seco-5,7,10(19)-cholestatriene2-(4'-hydroxybutyl)-1,3,25-triol,
- (5Z,7E)-(1S,2S,3R,20R)-9,10-seco-5,7,10(19)-cholestatriene-2-(5'-hydroxypentyl)-1,3,25-triol,
- (5Z,7E)-(1S,2S,3R,20R)-9,10-seco-5,7,10(19)-cholestatriene-2-(6'-hydroxyhexyl)-1,3,25-triol
- (5Z,7E)-(1S,2S,3R,20R)-9,10-seco-5,7,10(19)-cholestatriene-2-ethyl-1,3,25-triol,
- (5Z,7E)-(1S,2S,3R,20R)-9,10-seco-5,7,10(19)-cholestatriene-2-propyl-1,3,25-triol,
- (5Z,7E)-(1S,2S,3R,20R)-9,10-seco-5,7,10(19)-cholestatriene-2-butyl-1,3,25-triol,
- (5Z,7E)-(1S,2S,3R,2OR)-9,10-seco-5,7,10(19)-cholestatriene-

2-pentyl-1,3,25-triol and (5Z,7E)-(1S,2S,3R,20R)-9,10-seco-5,7,10(19)-cholestatriene-2-hexyl-1,3,25-triol.

A pharmaceutical composition comprising a vitamin D derivative according to any one of claims 1 to 6 as an active ingredient.

8. The pharmaceutical composition according to claim 7, wherein the composition is a therapeutic agent for a disease associated with abnormal calcium metabolism, an antitumor agent or an immunomodulator.