Stochastik für Informatiker

Dr. rer. nat. Johannes Riesterer

Setting

Gegeben eine reelle, diskrete Zufallsvariable $X:\mathcal{X}\to\mathbb{R}$ mit endlichem Grundraum $\#\mathcal{X}\geq 2$ und Verteilung Q.

Setting

Angenommen, wir könnten Ja-Nein-Fragen stellen, um den Wert von \boldsymbol{X} zu bestimmen, nachdem das Zufallsexperiment ausgegangen ist.

Setting

Mit $L: \mathcal{X} \to \mathbb{N}$ bezeichnen wir die Anzahl an Fragen L(x), die benötigt werden, um bei einer gewählten Strategie den Wert von X = x zu erraten.

Mittlere Anzahl an Fragen

Wir suchen eine Strategie, so dass die mittlere Anzahl an Fragen (Erwartungswert) $EL(X) := \sum_{x \in \mathcal{X}} L(x)Q(x)$ möglichst klein ist.

Beispiel

 $\mathcal{X} = \{1, 2, 3, 4, 5, 6\}$ und Q die Gleichverteilung auf \mathcal{X} .

Strategie 1

$$X = 1$$
, $j : X = 1$, $n : X = 2$; $j : X = 2$, $n : X = 3$; $j : X = 3$, $n : X = 4$; $j : X = 4$, $n : X = 5$; $j : X = 5$, $n : X = 6$ Hier ist $L(x) = \min(x, 6)$ und $EL(X) = \frac{10}{3}$.

$$\begin{cases} J_{2} \times 2 & \text{if } J_{3} \times 1 \\ J_{3} \times 2 & \text{if } J_{3} \times 2 \\ J_{3} \times 2 & \text{if } J_{3} \times$$

Strategie 1

$$EL(X) = \frac{8}{3}$$
.

Wörter

Gegeben sei eine endliche Menge \mathcal{A} mit $\#A \geq 2$, genannt Alphabet. Ein Wort der Länge k ist gegeben durch ein Tupel $w = b_1b_2\cdots b_k$ mit Buchstaben $b_k \in \mathcal{A}$.

Wortmenge

Die Menge aller Wörter bezeichnen wir mit

$$\mathcal{W}(\mathcal{A}) := \{b_1 \cdots b_k \mid k \in \mathbb{N}, \ b_i \in \mathcal{A}\}$$

Mit I(w) := k für $w = b_1 \cdots b_k$ bezeichnen wir die Länge des Wortes.

Kode

Ein A-Kode für die Menge $\mathcal X$ mit Alphabet A ist eine injektive Abbildung (1-zu-1)

$$\kappa: \mathcal{X} \to \mathcal{W}(\mathcal{A})$$

die jedem Wort $x \in \mathcal{X}$ eindeutig ein Kodewort $\kappa(x)$ zuordnet.

Präfixfreier Kode

Ein Wort $v=a_1\cdots a_j$ heisst Präfix des Wortes $w=b_1\cdots b_k$, wenn $j\leq k$ und $v=b_1\cdots b_j$ ist. Das Wort w heisst Fortsetzung von v. Ein Kode

$$\kappa: \mathcal{X} \to \mathcal{W}(\mathcal{A})$$

heisst präfixfrei, wenn kein Codewort $\kappa(x)$ Präfix eines anderen Kodewortes $\kappa(y)$ ist.

Präfixfreier Kode

Für einen präfixfreien Kode gilt

$$\kappa(x_1\cdots x_m)=\kappa(x_1)\cdots\kappa(x_m)$$

Beispiel

Sei \mathcal{X} die Menge aller Telefonanschlüsse. Dann entsprechen Telefonnummern einem präfixfreien Kode über dem Alphabet $\mathcal{A}:=\{0,1,2,3,4,5,6,7,8,9\}$

Beispiel

$$A \rightarrow 0, B \rightarrow 100, C \rightarrow 101, D \rightarrow 11$$

Kodebaum

Die Knotenmenge besteht aus dem Wurzelknotem und Wörtern, die Präfix eines Kosewortes sind. Die Kantenmenge besteht aus Paaren von direkten Nachfolgern.

Zusammenhang mit Fragestrategie

Jede Fragestrategie liefert einen präfixfreien Kode mit Alphabet $\mathcal{A} := \{j,n\}.$

Zusammenhang mit Fragestrategie

Maß für Informationsgehalt der Quelle X ist nun also das Minimum von $El(\kappa(X))$ über alle präfixfreien Kodes κ für X.

Zusammenhang mit Fragestrategie

Wir beschäftigen uns nun mit der Frage ob man diese Größe abschätzen kann.

Kraftsche Ungleichung a)

Sei κ ein präfixfreier \mathcal{A} -Kode für \mathcal{X} mit $\#\mathcal{X}=d$. Dann ist

$$\sum_{x \in \mathcal{X}} d^{-l(\kappa(x))} \le 1$$

Kraftsche Ungleichung b)

Für $x \in \mathcal{X}$ sei $L: \mathcal{X} \to \mathbb{N}$ eine Abbildung, so dass $\sum_{x \in \mathcal{X}} d^{-L(x)} \leq 1$ gilt. Dann gibt es einen präfixfreien \mathcal{A} -Kode für \mathcal{X} mit

$$I(\kappa(x))=L(x).$$

Beweis a)

Nehmen wir an, wir wählen zufällig ein Kodewort aus. In jedem Knoten gibt es maximal d Kanten. Damit ist $P(\kappa(x)) \ge d^{-l(\kappa(x))}$ und somit

$$1 = \sum_{x \in \mathcal{X}} P(\kappa(x)) \ge \sum_{x \in \mathcal{X}} d^{-l(\kappa(x))}.$$

Beweis b)

Für $k \in \mathbb{N}$ sei $\mathcal{X}_k := \{x \in \mathcal{X} \mid L(x) = k\}$ und $n_k := \#\mathcal{X}$. Damit ist

$$\sum_{x\in\mathcal{X}}d^{-L(x)}=\sum_{k\in\mathbb{N}}n_kd^{-k}\leq 1\ (*).$$

Wir wählen nun induktiv Kodewörter für alle $x_k \in \mathcal{X}_k$.

Induktions Anfang

Nach (*) ist $n_1d^{-1} \le 1$. Daher können wir jedem $x \in \mathcal{X}_1$ einen einzelnen Buchstabe $\kappa(x) \in \mathcal{A}$ zuordnen.

Induktions Schritt

Haben für alle $x \in \mathcal{X}_1 \cup \cdots \cup \mathcal{X}_m$ ein Wort $\kappa(x)$ gewählt, so dass kein Wort präfix eines anderen ist. Jedes bereits gewählte Kodewort $\kappa(x)$ hat $d^{m+1-l(\kappa(x))}$ Fortsetzungen zu einem Wort in \mathcal{X}_k . Diese stehen nicht zur Verfügung, da man sonst keine präfixfreie Kodierung erhält. Es bleiben also noch

$$d^{m+1} - \sum_{x \in \mathcal{X}_1 \cup \dots \cup \mathcal{X}_m} d^{m+1-L(x)} = d^{m+1} - \sum_{k=1}^m n_k d^{m+1-k}$$

Wörter übrig, die für die präfixfreie Kodierung verwendet werden können.

Induktions Schritt

Mit (*) folgt

$$d^{m+1} - \sum_{k=1}^{n} n_k d^{m+1-k} = d^{m+1} (1 - \sum_{k=1}^{m} n_k d^{-k})$$

 $\geq d^{m+1} (n_{m+1} d^{-(m+1)}) = n_{m+1}$

Es gibt also noch genügend Wörter, um alle Punkte x_{m+1} präfixfrei zu kodieren.

Entropie

Die Entropie $H_d(X)$ der Ordnung d der Zufallsvariable X ist definiert als das Minimum von $\sum_{x \in \mathcal{X}} L(x)Q(x)$ über alle Abbildungen $L: \mathcal{X} \to \mathbb{N}$ mit $\sum_{x \in \mathcal{X}} d^{-L(x)} \leq 1$.

Entropie

Die Entropie der Zufallsvariable X ist definiert durch

$$H(X) := -\sum_{x \in \mathcal{X}} Q(x) \log(Q(x))$$

Entropie-Ungleichung

Es gilt

$$\frac{H(X)}{\log(d)} \le H_d(X) \le \frac{H(X)}{\log(d)} + 1.$$

Beweis

Die untere Abschätzung erhalten wir, indem wir anstatt der Menge Abbildungen $L: \mathcal{X} \to \mathbb{N}$ die Menge D aller Abbildungen $L: \mathcal{X} \to [0, \infty)$ betrachten. Für eine solche Abbildung definieren wir $f(L) := \sum_{x \in \mathcal{X}} Q(x) L(x)$ und $g(L) := \sum_{x \in \mathcal{X}} d^{-L(x)}$. Gesucht wir nun also das Minimum

$$\min_{L \in D: g(L) \le 1} f(L)$$

Lagrange Multiplikatoren

Seien f und $\varphi=(\varphi_1,\cdots,\varphi_k)$ stetig differenzierbar auf einer offenen Menge $U\subset\mathbb{R}^n$ und $M:=\{x\in U|\varphi(x)=0\}$. Die Matrix $d\varphi(x)$ habe in jedem Punkt $x\in M$ den Rank k. Ist $x_0\in M$ ein Extremum von f auf M, dann gibt es Zahlen $\lambda_1,\cdots,\lambda_n\in\mathbb{R}$ mit

$$f'(x_0) = \sum_{i=1}^k \lambda_i \varphi_i'(x_0) .$$

Beweis

Sei x_0 ein Extremum von f in M und γ eine Kurve mit $\gamma(0)=x_0$ und $\gamma'(0)=v$. Die Funktion $F(t):=f(\gamma(t))$ hat in t=0 ein Extremum und damit F'(0)=0 und mit der Kettenregel $<\nabla f(x_0), v>=0$. Die Funktionen $\varphi_i'(x_0)$ erfüllen ebenfalls $<\varphi_i'(x_0), v>=0$ und da der Rang von $d\varphi(x)=k$ ist, bilden $\varphi_1,\cdots,\varphi_k$ eine Basis des Vektorraums der Vektoren, die senkrecht auf M stehen.

Beweis Entropie-Ungleichung weiter

Wollen Minimum finden

$$\min_{L \in D} \sum_{x \in \mathcal{X}} Q(x)L(x) + \lambda d^{-L(x)}$$

für ein $\lambda > 0$. Summandenweise ist

$$\frac{d}{dr}Q(x)r + \lambda d^{-r} = Q(x) - \lambda \log(d)e^{-\log(d)r}$$

Somit ist $L_0(x):=\frac{\frac{-\log Q(x)}{\lambda \log(d)}}{\log(d)}$ eine Nullstelle und damit ein Minimum. Mit $\lambda=\frac{1}{\log(d)}$ ist $L_0(x)=-\log_d Q(x)$ und damit $g(L_0)=1$. Somit ist

$$H_d(X) \ge f(L_0) = -\sum_{X \in \mathcal{X}} \log_d(Q(X)) = \frac{H(X)}{\log(d)}$$

Definieren wir $L(x) = \lceil L_0(x) \rceil$. Dann ist

$$\sum_{\mathsf{x} \in \mathcal{X}} \mathsf{d}^{-\mathsf{L}(\mathsf{x})} \leq \sum_{\mathsf{x} \in \mathcal{X}} \mathsf{d}^{-\mathsf{L}_0(\mathsf{x})} \leq = 1$$

und mit $0 \le L - L_0 < 1$

$$H_d(X) \leq \sum_{x \in \mathcal{X}} Q(x) L(x) < \sum_{x \in \mathcal{X}} Q(x) (L_0(x) + 1) = \frac{H(Q)}{\log(d)} + 1$$

Konstruktion fast optimaler Kodes

Berechne für $x \in \mathcal{X}$ die Funktion $L(x) := \lceil -\log_d(Q(x)) \rceil$. Damit erhält man einen präfixfreien \mathcal{A} -Kode κ mit $I(\kappa(x)) = L(x)$. Wie eben gezeigt gilt dann $EI(\kappa(X)) < H_d(Q) + 1$.