LFAC PARTEA 1 - MODELE DE EXERCITII

2021

Cuprins

1	Transformare din automat NEDETERMINIST in DETERMINIST	2
2	Forma normala	4
3	Forma normala Chomsky	6
4	Forma redusa	8
5	Reducerea unei expresii regulate + Arborele expresiei + Automatul cu $\epsilon\text{-tranzitii}$ + Tranformarea din $\epsilon\text{-tranzitii}$ in determinist + Automatul minimal	10
6	Pushdown	15
7	CYK	17

1 Transformare din automat NEDETERMINIST in DE-TERMINIST

DETERMINIST AUTO MAT NEDETERMINI ST (a,b) (a) (a) (b) PAS 1: De force 4 tabelo de transité (or ia ficcour store si se notigia la ficcour nimbrel en care ajunge the en stati) us se face asta cu toate muchinile de stati obhwele us se vicipe en staria inifiala C 118 20,18 0 月2,3~多 31} 30116 30,1,26 317 1047E stariet corre & stariet correct & stariet & st Ø 30,1,2 12,38] 2,3} 13/ 327 71,37 337 PAS 2: & iam starili of ox face automatul NOTE +: 20= 70 { ; 21= 717; 22= 727; 23=73} 2n = 1011 ; 25= 12,39; 26 = 31,38 2+ = 10,11,28 : 28 = 10

2 Forma normala

Y) FORMA NORMALA (GRAHATICA ECHIVALENTA) Saxbxe x -> axlalbx161 ex/c FORMA NORMALIT - GRAMATICA ECHIVA LENTA TIP 3 L= { a civa b affeira c } con = (alble) * - faibre (* cua = (alb/c)*/ { E { = {a,b,c}* , lugiue eura > 1. Analog alterra. L= } aubwc | u eja16,c|*, w eja16,c|* m dungelure lui es n' W > 4 {. 5- a A A > a A | 6 A | a A | a A | b A | a B | b B | c B | continua cuvanture B > 6 C pentru generat er ni c C > a C | b C | c C | a B | b D | c D

gurière ur quadougé c' Dac.

3 Forma normala Chomsky

```
TH CHOMSKY
     ADUCERE 1N
14)
         S->BAQA
         B-> bBc 1C
          C > dC 18
          A -> a A | 6 A | E
   PAS s: se elimina regulile de storgere
                  No = 3 x1 }
                  N1 = No U { civa }
                     eva » N ( san contrinații din No)
                  pour caud Ni=Nj,j<i
           No = } A, c}
           N, = No U } B = 3 A 1 B , C }
           N2 = N1 U Ø => N2 = N1
   PAS 3: 45 % storge rigula/rigidele N -> E
          adauga riguli artfel:
                  - se van ge rând actironitalis din Ni = Hi , Jel
                  - se climita din portre driepte a rigoliles
       5 > 12 A a A | A a A | Ba A | Ba A a | a A | A a | Ba la
        B>6Be | C|6e | 1 baca S>E ahuci or advange 
C>dc | d
        c > dc 1d
         es me se adanga reguli de storgou!
 PAS h: Se elimina regulle de redimensire Ne > No
                Noutorminal = ? rudemmerce ? No > } Not
           Ns = 15}
           NB= JBICT
           Nc = } c}
         us & adanga regulier de la - la
           NA = ]A}
           5 -> BAaA | AaA | BaA | BAa | aA | Aa | Ba | a
           B-sbBc/bc/dc/d
                            rigulale C-s civa
            es deld
           A man 16 Ala 16
 PAS 5: & aduce Du FNC (gramatice de tip 2):
           en riguli de forma A-15C san A-a
     S-> BS, |AS, | BS, | BS, | AS, | S, A | BS, | a
                   B, ->6
     S, -> AS,
                   Ba > BB3
     S, -> S, A
                   b<sub>3</sub> → c
     S3 - a
     Sh -> ASz
                   Bu -> d
      B-> B, B2 | B, B3 | B, C | d
      c -> c, c ld
      C1 -> d
      A-53A | B, Alalb
```

4 Forma redusa

```
RELUSA
      FORMA
                            SIMBOL PNUTIL = PNACCESIBIL SOW
15
        S- BACLA
                                                NE PRODUCTIV
                             STABOL REPRODUCTIV = rysulta un curabit
        A -> aA 16A
                                                     fual din acul
         B > bBc lacb
                                                     Edubol
         c -> dclab
                               c-> dclab, c simbol productiv
         D= asdlab
       FORMA REDUST = 0 (200) SIMBOLURI INUTILE
    PAS 1: & climina Entrologie reproductive
                    No = Ø
                    Nº = Nº - 1 U terminali Timo cura, unde cura =
                                         compinate di (terminali) g
         No = Q
                                         (utruinali din N;-1)
         NI = NO U } CID}
         N2= N, U3 B, C = | B, C, A)
         Nz= N2 U } B(C) = 3B, C(D) = N2 (-> or opreste)
             ~ N; = N; i > j > => 81 epresti
    PAS2: N - N; = Interminatio impreductivi}
         (S, A, B, C, D) - ? B, C, D) = } S, A) -> S, A mproductini
           -s a eliluina silubolurite improductive
               B-> 6Bc laCb
                                { gramatica productiva.
               C > dC | ab
                D- 0 0 5 6 d | b
    PAS 3: 48 c elimina simbolivité inaccesibile
                   V0= 358
                   Vo= Vo-, U (ne) tirminali ceva a.i.
                         netruinali din VI-1 -> allara }
           10=157 Vo=1B7
            4=300036, B, C, a, ${
                      V2= V, U } b, B, c, a, 4} = V,
            us se calculata N'=V; NN m T'=V; NT
   N'= 2B{ m' T'={a,b,c}}
PAS 4: ~ & elèvina N-N' => G!(N',T',S,P!).
                  P': B-> 6Bc
```

5 Reducerea unei expresii regulate + Arborele expresiei + Automatul cu ϵ -tranzitii + Tranformarea din ϵ -tranzitii in determinist + Automatul minimal

we expusive regulate on reduce varieties $L(\alpha^*) = \frac{7}{3}\alpha^n$, $n \ge 0$ ordinea: $\frac{1}{4}$, $\frac{1}{$

	51	al	b	<u>e</u>	5'	a	Ь
	0	0	Ø	Ø	² ℓ€(6)	el(1)	(e, ε)
4	1	0	3	Ø	er(1)	CR(1)	Ce (3,9)
W. Si	3	0	0	5	CR(3,9)	(R(1,13)	OE (3,9)
E-troup by	4	0	Q	0,2	CR (1113)	ll (1,13) fou table d	1 0
à		0	Ø	4,7	PAS 5 W&	four tabelle de	
matri	5		Ų		us &	pozwate de la uihiala / de star	el (houzitia
The same of the sa	7	0	Ø	4,7	ms fr	col culipia:	1
i he	7	18	Q	8	Ce	(J(CE (story), sin	lost / F
Howark	8	8	9	0	Nels	t: cp(6)	
3	9	Ø	0	14	9.	$\int_{1}^{2} e\mathcal{C}(6)$	
ಶೈ			Ø	ø	9	= ((3,9)	1
* tahela	12	13	Ø	12,15	9	13 = el (1113)	
	13	Ø		12,15	4 0	260 b 360 a	Q.a
	14	Ø	P	(4)15	(20)		>91
	15	5 6	Ø	1	* A Notes	udul ditaminist "	
	4	J (c	2(6),	α) = $(R$			6 12.15}
$ \frac{1}{2} \left(\frac{CC(6 1b)}{C(1 1a)} = \frac{CC(13 31)}{C(1)} = \frac{CC(1)}{C(1)} \right) = \frac{CC(1)}{C(1)} = \frac{CC(1)}{C(1)$							1101101
							netatile
$ \mathcal{L}(\mathcal{C}(3,9), a) = \mathcal{C}(31,13) $ $ \mathcal{L}(\mathcal{C}(3,9), b) = \mathcal{C}(33,9) $ $ \mathcal{L}(23,9) = \mathcal{C}(33,9) $ determined						until -	
						Omermone	`
				16) = (e)			

Scanned with CamScanner

1	Minimo	ajora o	ulouatului ?	oblimet		
51	a	Ь	j -> 21	1 22	23	
7 20	21	97		T Re	4	20 <u>- i</u>
21	2,	2,	111/1	/ Ø	1	2,
24	23	22		1.11/11	λ	8,
25	23	22	1///		11.2.2.1	1///
di	hay	phie en 1	nla notalii le scuk (optional			2/3///
Ser	P 1 5	(20,a), S	5(2,16)) = sep	p (2,121)) } iu	aparabile
PI	0 (0 '				PAS &: or four tobule
Jew .	u 208 Sup (S	= (2019)1	5 (22,10)) = 8	sep (2112	3) = 1	en of many
Poul	ton a.	. 0 .				este stare fuelo
	Sup (8	5 (2,19),	5(2219))=	DAC	23) = 1	calculação separabel
Γ:	20]=[:	9,7 = 120	121 <u>NOT</u> 1	PAS	siparobil ((or (i, muhol),
Es	ga] = 3:	22 =01	2		J-1	i must 1)
Ţ	237=1	[23] 401	3		= Synat	robot (sund 1, sunda)
		a	Ь	a.	store 1	= stare L =1 four nimic
	A	Q 6	1 a 3		NO	rushe O your
				w)	-> 81H	\$ staru 2 => ia valourua di
71	IC 10:	& foce	sationed us			The second of the second
1	(Staril	s core o	u O in tak k impuma	rel	D-0	a colculat puthu doca nu or
	New .	- fi luci	k impunia		11107	a chore in much
	7	càt d			a	a runn arupra
				n	ile 21 work o	Sau 2 = stary filiala
V					0.	

PAG: 4

=) = Δ .

6 Pushdown

PUSHDOWN L= } (ab) " c"+2 , ">0 } a(20)/+20 generaçã (ab) c n+1 b(20)/+20 generaçã (ab) c n+1 $\frac{\varepsilon(20)/420}{20} = \frac{\alpha(20)/420}{\beta(20)/420} = \frac{\alpha(20)/420}{\beta(20)/420}$ AUTOMATUL PUSH DOWN POATE SA NU AIBE STARE FINALA (SE TERHINA CAND AJUNGE STÎVA GOALA). 24) PUSHDOWN DETERMINIST L=] a b m c k, n = 1, w = 1, k = w+n } Q(20) /+ C +ab c - c $\frac{1}{\sqrt{2}} \frac{2(c)/+c}{2(c)/-c} = \frac{2(c)/-c}{2(20)/-(23)}$ PUSH DOWN DETERHINIST: un pluca en acuer transitie de mon mult où din acuan stare 2. sunt primise E-transitii data For E-Househe, atuai din staria din care accorta plicca, nu muni pot plica alte transitie en collecte simbolivie dui lituboj

7 CYK

CYK: apartin w lui & LLG)? S > xy | xz ni w=abac n=4. x -> xy lzy la WEL(G)? y - yal bla 2-> a/c PASI: Se aduce en FNC daça un este dija gramatica est ûn FNC. (our reguli de forma A-BCla) PAS 2: CYK

us se face tabelle nil

P	of en	j= 1	j=2	j=3	j=4
1	= 1	V11=Va=} X18127	112 = Jab=1x157	V13 = Vaba= 35, x}	Viy = Vabac
-		1. 2.6	11. 14. 52.12		= \ S, x \
1	1=2	1/4 = 1P = JAb	V22 = Vba = 745	Vas=Vbac	11/1/1/11/11/11/11/11
1				-347	
	1=3	Us = Va = { x, y, 2}	132 = Vac= 25: 45.		Manne
1		.1			
	1=4	41= Vc= 7 27			111111111111111111111111111111111111111
			111111111111111111111111111111111111111	1/	

PAS 3: Se completegra tabeled en Vij=com de lungue j' care aucipe de pre prestia i PAS 4: Vour = { terminalis care due les aux curalet } Vij = (VikoVi+k,j-k)

ex: $\frac{1}{2} \times \frac{1}{2} \times$

V12= V110 V21= }x14, 2 {0}4 = 351x { V22 = V210 V31 = } x160 }x14 = } 4} V32= V310 VHI = } x1412 032 = 35145

V15= U110 U22 U U120 U31 = 3 S1x { U } S1x { = 3 S1x} V23 = V21 0 V32 U V22 0 V41 = ØU } y = y

VIH = VII O V23 U V120 V32 U V130 VHI = 35,x7038,x70756= 35,x)

PAS 5: 45 80 wrifter Van

~ dace simbolul de start este inclus in VIn =>

=1 cuvaintul ur este acceptat

Pentru ca VIII = (S, x), dici S C VIII = 1 W EL (G).