

FWAM Session B: Function Approximation and Differential Equations

Alex Barnett¹ and Keaton Burns²

Wednesday afternoon, 10/30/19

¹Center for Computational Mathematics, Flatiron Institute

²Center for Computational Astrophysics, Flatiron Institute, and Department of Mathematics, MIT

LECTURE 1

interpolation, integration, differentiation, spectral methods

Overall: graph of f(x) needs ∞ number of points to describe, so how handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)

Overall: graph of f(x) needs ∞ number of points to describe, so how handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)

• Interpolation: also key to numerical ODE/PDEs... task: given exact $f(x_j)$ at some x_j , model f(x) at other points x?

App: cheap but accurate "look-up table" for possibly expensive func.

Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior

Numerical integration:

App: computing expectation values, given a pdf or quantum wavefunc.

App: integral equation methods for PDEs (Jun Wang's talk)

Numerical differentiation:

App: build a matrix (linear system) to approximate an ODE/PDE (Lecture II)

App: get gradient ∇f , eg for optimization (cf adjoint methods)

Overall: graph of f(x) needs ∞ number of points to describe, so how handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)

• Interpolation: also key to numerical ODE/PDEs... task: given exact $f(x_j)$ at some x_j , model f(x) at other points x?

App: cheap but accurate "look-up table" for possibly expensive func.

Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior

Numerical integration:

App: computing expectation values, given a pdf or quantum wavefunc.

App: integral equation methods for PDEs (Jun Wang's talk)

Numerical differentiation:

App: build a matrix (linear system) to approximate an ODE/PDE (Lecture II)

App: get gradient ∇f , eg for optimization (cf adjoint methods)

Key concepts:

convergence rate, degree of smoothness of f, global vs local, spectral methods, adaptivity, rounding error & catastrophic cancellation

Overall: graph of f(x) needs ∞ number of points to describe, so how handle f to user-specified accuracy in computer w/ least cost? (bytes/flops)

• Interpolation: also key to numerical ODE/PDEs... task: given exact $f(x_i)$ at some x_i , model f(x) at other points x?

App: cheap but accurate "look-up table" for possibly expensive func.

Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior

Numerical integration:

App: computing expectation values, given a pdf or quantum wavefunc.

App: integral equation methods for PDEs (Jun Wang's talk)

Numerical differentiation:

App: build a matrix (linear system) to approximate an ODE/PDE (Lecture II)

App: get gradient ∇f , eg for optimization (cf adjoint methods)

Key concepts:

convergence rate, degree of smoothness of f, global vs local, spectral methods, adaptivity, rounding error & catastrophic cancellation

Plus: good 1D tools, pointers to codes, higher dim methods, opinions!

Say $y_i = f(x_i)$ known at nodes $\{x_i\}$ N-pt "grid"

note: exact data, not noisy

want interpolant $\tilde{f}(x)$, s.t. $\tilde{f}(x_i) = y_i$

Say $y_i = f(x_i)$ known at nodes $\{x_i\}$ N-pt "grid"

note: exact data, not noisy

want interpolant
$$\tilde{f}(x)$$
, s.t. $\tilde{f}(x_j) = y_j$

hopeless w/o assumptions on f, eg smoothness, otherwise...

• extra info helps, eg f periodic, or $f(x) = \text{smooth} \cdot |x|^{-1/2}$

Say
$$y_j = f(x_j)$$
 known at nodes $\{x_j\}$ N-pt "grid"

want interpolant
$$\tilde{f}(x)$$
, s.t. $\tilde{f}(x_j) = y_j$

hopeless w/o assumptions on f, eg smoothness, otherwise...

• extra info helps, eg f periodic, or $f(x) = \text{smooth} \cdot |x|^{-1/2}$

Simplest: use value at x_i nearest to x

"snap to grid"

Error $\max_{x} |\tilde{f}(x) - f(x)| = \mathcal{O}(h)$ as $h \to 0$

holds if f' bounded; ie f can be nonsmooth but not crazy

Recap notation " $\mathcal{O}(h)$ ": exists C, h_0 s.t. error $\leq Ch$ for all $0 < h < h_0$

Say
$$y_j = f(x_j)$$
 known at nodes $\{x_j\}$ N-pt "grid"

note: exact data. not noisv

want interpolant
$$\tilde{f}(x)$$
, s.t. $\tilde{f}(x_j) = y_j$

hopeless w/o assumptions on f, eg smoothness, otherwise...

• extra info helps, eg f periodic, or $f(x) = \text{smooth} \cdot |x|^{-1/2}$

Simplest: use value at x_i nearest to x

Error
$$\max_{x} |\tilde{f}(x) - f(x)| = \mathcal{O}(h)$$
 as $h \to 0$

holds if f' bounded; ie f can be nonsmooth but not crazy

Recap notation " $\mathcal{O}(h)$ ": exists C, h_0 s.t. error $\leq Ch$ for all $0 < h < h_0$

Piecewise linear:

$$\mathsf{max}\;\mathsf{error}=\mathcal{O}(\mathit{h}^{2})\;\mathsf{as}\;\mathit{h}\to 0$$

needs f'' bounded, ie smoother than before

Message: a higher order method is *only* higher order if f smooth enough

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points = $1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error = $\mathcal{O}(N^{-p})$, for order p = 1, 2

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points = $1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error = $\mathcal{O}(N^{-p})$, for order p = 1, 2

There's only one graph in numerical analysis: "relative error vs effort"

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points = $1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error = $\mathcal{O}(N^{-p})$, for order p = 1, 2

There's only one graph in numerical analysis: "relative error vs effort"

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points = $1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error = $\mathcal{O}(N^{-p})$, for order p = 1, 2

There's only one graph in numerical analysis: "relative error vs effort"

Note how spectral gets many digits for small ${\it N}$

crucial for eg 3D prob.

"spectral" = "superalgebraic", beats $\mathcal{O}(N^{-p})$ for any p

• how many digits to you want? for 1-digit (10% error), low order ok, easier to code

<rant> test your code w/ known exact soln to check error conv. <rant>
How big is prefactor C in error $\le Ch^p$? Has asymp. rate even kicked in yet? :)

For any target x, use only set of nearest p nodes:

Exists unique degree-(p-1) poly, $\sum_{k=0}^{p-1} c_k x^k$ which matches local data $(x_j, y_j)_{j=1}^p$

generalizes piecewise lin. idea

do not eval poly outside its central region!

For any target x, use only set of nearest p nodes:

Exists unique degree-(p-1) poly, $\sum_{k=0}^{p-1} c_k x^k$ which matches local data $(x_j, y_j)_{j=1}^p$ generalizes piecewise lin. idea do not eval poly outside its central region!

• error $\mathcal{O}(h^p)$, ie high order, but \tilde{f} not continuous $(\tilde{f} \notin C)$ has small jumps if must have cont, recommend splines, eg cubic p = 3: $\tilde{f} \in C^2$, meaning \tilde{f}'' is cont.

For any target x, use only set of nearest p nodes:

Exists unique degree-(p-1) poly, $\sum_{k=0}^{p-1} c_k x^k$ which matches local data $(x_j, y_j)_{j=1}^p$ generalizes piecewise lin. idea do **not** eval poly outside its central region!

• error $\mathcal{O}(h^p)$, ie high order, but \tilde{f} not continuous $(\tilde{f} \notin C)$ has small jumps if must have cont, recommend splines, eg cubic p = 3: $\tilde{f} \in C^2$, meaning \tilde{f}'' is cont.

How to find this degree-(p-1) poly?

1) crafty: solve square lin sys for coeffs
$$\sum_{k < p} x_j^k c_k = y_j$$
 $j = 1, ..., p$ ie, $V \mathbf{c} = \mathbf{y}$ $V = V$ and $V = V$ and $V = V$ works

For any target x, use only set of nearest p nodes:

Exists unique degree-(p-1) poly, $\sum_{k=0}^{p-1} c_k x^k$ which matches local data $(x_i, y_i)_{i=1}^p$ generalizes piecewise lin. idea do not eval poly outside its central region!

• error $\mathcal{O}(h^p)$, ie high order, but \tilde{f} not continuous $(\tilde{f} \notin C)$ has small jumps if must have cont, recommend splines, eg cubic p=3: $\tilde{f}\in C^2$, meaning \tilde{f}'' is cont.

How to find this degree-(p-1) poly?

1) crafty: solve square lin sys for coeffs $\sum_{k < p} x_i^k c_k = y_i$ ie. $V\mathbf{c} = \mathbf{y}$ V="Vandermonde" matrix, is ill-cond. but works

ie,
$$V\mathbf{c} = \mathbf{y}$$
 $V=$ "Vandermonde" matrix, is ill-cond. but works 2) traditional: barycentric formula $\tilde{f}(x) = \frac{\sum_{j=1}^p \frac{y_j}{x-x_j} w_j}{\sum_{j=1}^p \frac{1}{x-x_j} w_j}$ $w_j = \frac{1}{\prod_{i \neq j} (x_j - x_i)}$ [Tre13, Ch. 5]

Either way, $\tilde{f}(x) = \sum_{j=1}^{p} y_j \ell_j(x)$ where $\ell_j(x)$ is jth Lagrange basis func:

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single $\tilde{f}(x)$, so p=N? "global" p=N=32, smooth (analytic) $f(x)=\frac{1}{1+9x^2}$ on [-1,1]: (Runge 1901)

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single $\tilde{f}(x)$, so p=N? "global" p=N=32, smooth (analytic) $f(x)=\frac{1}{1+9x^2}$ on [-1,1]: (Runge 1901)

warning: unif. grid, global interp. fails → only use locally in central region

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single $\tilde{f}(x)$, so p = N? "global" p = N = 32, smooth (analytic) $f(x) = \frac{1}{1+9x^2}$ on [-1, 1]: (Runge 1901)

- warning: unif. grid, global interp. fails
- But exists good choice of nodes...
- "Chebychev": means non-unif. grid density $\sim \frac{1}{\sqrt{1-x^2}}$
- our first spectral method max err = $\mathcal{O}(\rho^{-N})$ exponential conv! $\rho > 1$ "radius" of largest ellipse in which f analytic

Recap: poly approx. f(x) on [a, b] has good & bad node sets $\{x_j\}_{j=1}^N$ Question: Do you get to choose the set of nodes at which f known?

- data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc)
 use local poly (central region only!), or something stable (eg splines)
- almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

Recap: poly approx. f(x) on [a, b] has good & bad node sets $\{x_j\}_{j=1}^N$ Question: Do you get to choose the set of nodes at which f known?

- data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc)
 use local poly (central region only!), or something stable (eg splines)
- almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

Adaptivity idea global is inefficient if f smooth in most places, but not everywhere

Recap: poly approx. f(x) on [a, b] has good & bad node sets $\{x_j\}_{j=1}^N$

Question: Do you get to choose the set of nodes at which f known?

- data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc)
 use local poly (central region only!), or something stable (eg splines)
- almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

Adaptivity idea

global is inefficient if f smooth in most places, but not everywhere

Recap: poly approx. f(x) on [a, b] has good & bad node sets $\{x_i\}_{i=1}^N$

Question: Do you get to choose the set of nodes at which f known?

- data fitting applications: No (or noisy variants: kriging, Gaussian processes, etc) use local poly (central region only!), or something stable (eg splines) [GC12]
- almost all else, interp., quadrature, PDE solvers: Yes so pick good nodes!

automatically split (recursively) panels until max err $< \epsilon$

via test for local error

1D adaptive interpolator codes to try:

- github:dbstein/function_generator py+numba, fast (Stein '19)
- chebfun for MATLAB big-N Cheb. grids done via FFTs! (Trefethen et al.)

App.: replace nasty expensive f(x) by cheap one!

optimal "look-up table"

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: $f(x+2\pi) = f(x)$ for all x, $f(x) = \sum_{n \in \mathbb{Z}} \hat{f}_k e^{ikx}$ Fourier series

Just did f on intervals [a,b]. global interp. (& integr., etc.) of smooth periodic f differs! Periodic: $f(x+2\pi)=f(x)$ for all x, $f(x)=\sum_{n\in\mathbb{Z}}\hat{f}_ke^{ikx}$ Fourier series Instead of poly's, use truncated series $\tilde{f}(x)=\sum_{|k|< N/2}c_ke^{ikx}$ "trig. poly"

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: $f(x+2\pi)=f(x)$ for all x, $f(x)=\sum_{n\in\mathbb{Z}}\hat{f}_ke^{ikx}$ Fourier series Instead of poly's, use truncated series $\tilde{f}(x)=\sum_{|k|< N/2}c_ke^{ikx}$ "trig. poly"

What's best you can do? get N coeffs right $c_k = \hat{f}_k$ error \sim size of tail $\{\hat{f}_k\}_{|k| \geq N/2}$

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: $f(x+2\pi) = f(x)$ for all x, $f(x) = \sum_{n \in \mathbb{Z}} \hat{f}_k e^{ikx}$ Fourier series Instead of poly's, use truncated series $\tilde{f}(x) = \sum_{|k| < N/2} c_k e^{ikx}$ "trig. poly"

What's best you can do? That's best you can do? get N coeffs right $c_k = \hat{f}_k$ (cannot explain) error \sim size of tail $\{\hat{f}_k\}_{|k|>N/2}$

How read off c_k from samples of f on a grid?

uniform grid best (unlike for poly's!); non-uniform needs linear solve, slow $\mathcal{O}(N^3)$ effort

Uniform grid best (unlike for poly's!); non-uniform needs linear solve, slow
$$\mathcal{O}(N^3)$$
 effort Uniform grid $x_j = \frac{2\pi j}{N}$, set $c_k = \frac{1}{N} \sum_{j=1}^{N} e^{ikx_j} f(x_j)$ simply $\mathbf{c} = \mathit{FFT}[\mathbf{f}]$

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic:
$$f(x+2\pi)=f(x)$$
 for all x , $f(x)=\sum_{n\in\mathbb{Z}}\hat{f}_ke^{ikx}$ Fourier series Instead of poly's, use truncated series $\tilde{f}(x)=\sum_{|k|< N/2}c_ke^{ikx}$ "trig. poly"

What's best you can do?

How read off c_k from samples of f on a grid?

uniform grid best (unlike for poly's!); non-uniform needs linear solve, slow $\mathcal{O}(N^3)$ effort

Uniform grid
$$x_j = \frac{2\pi j}{N}$$
, set $c_k = \frac{1}{N} \sum_{j=1}^{N} e^{ikx_j} f(x_j)$ simply $\mathbf{c} = \mathit{FFT}[\mathbf{f}]$ easy to show $c_k = \cdots + \hat{f}_{k-N} + \hat{f}_k + \hat{f}_{k+N} + \hat{f}_{k+2N} + \cdots$

$$= \hat{f}_k \text{ desired } + \sum_{m \neq 0} \hat{f}_{k+mN} \text{ aliasing error, small if tail small}$$

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: $f(x+2\pi)=f(x)$ for all x, $f(x)=\sum_{n\in\mathbb{Z}}\hat{f}_ke^{ikx}$ Fourier series Instead of poly's, use truncated series $\tilde{f}(x) = \sum_{|k| < N/2} c_k e^{ikx}$ "trig. poly"

What's best you can do? get N coeffs right $c_k = \hat{f}_k$ error \sim size of tail $\{\hat{f}_k\}_{|k|>N/2}$

How read off c_k from samples of f on a grid?

uniform grid best (unlike for poly's!); non-uniform needs linear solve, slow
$$\mathcal{O}(N^3)$$
 effort Uniform grid $x_j = \frac{2\pi j}{N}$, set $c_k = \frac{1}{N} \sum_{j=1}^N e^{ikx_j} f(x_j)$ simply $\mathbf{c} = \mathit{FFT}[\mathbf{f}]$ easy to show $c_k = \cdots + \hat{f}_{k-N} + \hat{f}_k + \hat{f}_{k+N} + \hat{f}_{k+2N} + \ldots$ $= \hat{f}_k$ desired $+ \sum_{m \neq 0} \hat{f}_{k+mN}$ aliasing error, small if tail small

Summary: given N samples $f(x_i)$, interp. error = truncation + aliasing

a crude bound is
$$\max_{x \in [0,2\pi)} |\tilde{f}(x) - f(x)| \le 2 \sum_{|k| > N/2} |\hat{f}_k|$$

ie error controlled by sum of tail

As grow grid N, how accurate is it? just derived err \sim sum of $|\hat{f}_k|$ in tail $|k| \geq N/2$

Now
$$\hat{f}_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} f^{(p)}(x) \frac{e^{-ikx}}{(ik)^p} dx$$
 integr. by parts p times

So for a periodic
$$f \in C^p$$
, recall first p derivs of f bounded $\hat{f}_k = \mathcal{O}(k^{-p})$, tail sum $\mathcal{O}(N^{1-p})$ $(p-1)$ th order acc. (better: [Tre00])

As grow grid N, how accurate is it? just derived err \sim sum of $|\hat{f}_k|$ in tail $|k| \ge N/2$

Now
$$\hat{f}_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} f^{(p)}(x) \frac{e^{-ikx}}{(ik)^p} dx$$
 integr. by parts p times

So for a periodic $f \in C^p$, recall first p derivs of f bounded $\hat{f}_k = \mathcal{O}(k^{-p})$, tail sum $\mathcal{O}(N^{1-p})$ (p-1)th order acc. (better: [Tre00])

Example of: f smoother \leftrightarrow faster \hat{f}_k tail decay \leftrightarrow faster convergence

As grow grid N, how accurate is it? just derived err \sim sum of $|\hat{f}_k|$ in tail $|k| \ge N/2$

Now
$$\hat{f}_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} f^{(p)}(x) \frac{e^{-ikx}}{(ik)^p} dx$$
 integr. by parts p times

So for a periodic $f \in C^p$, recall first p derivs of f bounded $\hat{f}_k = \mathcal{O}(k^{-p})$, tail sum $\mathcal{O}(N^{1-p})$ (p-1)th order acc. (better: [Tre00])

Example of: f smoother \leftrightarrow faster \hat{f}_k tail decay \leftrightarrow faster convergence

Even smoother case: f analytic, so f(x) analytic in some complex strip $|\operatorname{Im} x| \leq \alpha$ then $\hat{f}_k = \mathcal{O}(e^{-\alpha|k|})$, exp. conv. $\mathcal{O}(e^{-\alpha N/2})$ (fun proof: shift the contour) as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

As grow grid N, how accurate is it? just derived err \sim sum of $|\hat{f}_k|$ in tail $|k| \ge N/2$

Now
$$\hat{f}_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} f^{(p)}(x) \frac{e^{-ikx}}{(ik)^p} dx$$
 integr. by parts p times

So for a periodic $f \in C^p$, recall first p derivs of f bounded $\hat{f}_k = \mathcal{O}(k^{-p})$, tail sum $\mathcal{O}(N^{1-p})$ (p-1)th order acc. (better: [Tre00])

Example of: f smoother \leftrightarrow faster \hat{f}_k tail decay \leftrightarrow faster convergence

Even smoother case: f analytic, so f(x) analytic in some complex strip $|\operatorname{Im} x| \leq \alpha$ then $\hat{f}_k = \mathcal{O}(e^{-\alpha|k|})$, exp. conv. $\mathcal{O}(e^{-\alpha N/2})$ (fun proof: shift the contour) as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

Smoothest case: "band-limited" f with $\hat{f}_k = 0$, $|k| > k_{\text{max}}$, then interpolant exact once $N > 2k_{\text{max}}$

As grow grid N, how accurate is it? just derived err \sim sum of $|\hat{f}_k|$ in tail $|k| \ge N/2$ Now $\hat{f}_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} f^{(p)}(x) \frac{e^{-ikx}}{(ik)p} dx$ integr. by parts p times

So for a periodic
$$f \in C^p$$
, recall first p derivs of f bounded $\hat{f}_k = \mathcal{O}(k^{-p})$, tail sum $\mathcal{O}(N^{1-p})$ $(p-1)$ th order acc. (better: [Tre00])

Example of: f smoother \leftrightarrow faster \hat{f}_k tail decay \leftrightarrow faster convergence Even smoother case: f analytic, so f(x) analytic in some complex strip $|\operatorname{Im} x| \le \alpha$

then $\hat{f}_k = \mathcal{O}(e^{-\alpha|k|})$, exp. conv. $\mathcal{O}(e^{-\alpha N/2})$ (fun proof: shift the contour) as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

Smoothest case: "band-limited" f with $\hat{f}_k = 0$, $|k| > k_{\text{max}}$, then interpolant exact once $N > 2k_{\text{max}}$

That's theory. In real life you always measure your conv. order/rate! Take-home:

- f smooth, periodic, global interpolation w/ uniform grid: spectral acc.
- key to spectral methods. FFT $\cos t \mathcal{O}(N \log N)$ swaps from $f(x_j)$ grid to \hat{f}_k

Flavor of interpolation in higher dims d > 1

If you *can* choose the nodes: tensor product of 1D grids either global or adaptively refined boxes

Flavor of interpolation in higher dims d > 1

If you *can* choose the nodes: tensor product of 1D grids either global or adaptively refined boxes

If cannot choose the nodes: interp. $f(\mathbf{x})$ from scattered data $\{\mathbf{x}_i\}$ is hard

eg google terrain: $f(\mathbf{x})$ rough \rightarrow garbage

Or if know f smooth

locally fit multivariate polynomials

If also data noisy, many methods:

kriging (Gauss. proc.), NUFFT, RBFs

If also high dim $d \gg 1$:

neural networks, tensor networks

height f(x) interp from unstructured points in 2D, kernel method

pock-marks!

interp from Cartesian grid, more accurate

Numerical integration (back to d = 1)

Task: eval. $\int_a^b f(x)dx$ accurately w/ least number of func. evals, N

"quadrature": nodes $\{x_j\}$, weights $\{w_j\}$, s.t. $\int_a^b f(x)dx \approx \sum_{j=1}^N w_j f(x_j)$

ldea: get interpolant \widetilde{f} thru data $f(x_j) o integrate$ that exactly

"intepolatory quadrature"

Numerical integration (back to d=1)

Task: eval. $\int_a^b f(x)dx$ accurately w/ least number of func. evals, N

"quadrature": nodes
$$\{x_j\}$$
, weights $\{w_j\}$, s.t. $\int_a^b f(x)dx \approx \sum_{j=1}^N w_j f(x_j)$

Idea: get interpolant \tilde{f} thru data $f(x_i) \rightarrow integrate \ that \ exactly$

Examples:

"intepolatory quadrature"

- ullet local piecewise linear o composite trapezoid rule $w_i = h$ except h/2 at ends. low-order, err $\mathcal{O}(N^{-2})$, avoid!
- *N*-node global poly \rightarrow gives $\{w_i\}$ integrating degree N-1 exactly solve lin sys $V^T \mathbf{w} = \{ \int_a^b x^k dx \}_{k=0}^{N-1}$ (Newton-Cotes) err $\mathcal{O}(\rho^{-N})$
- better: "Gaussian" $\{x_i, w_i\}$ integrates deg. 2N-1 exactly! err $\mathcal{O}(\rho^{-2N})$ Adaptive quadrature (Gauss in each panel) excellent: codes quadgk, scipy, etc

Numerical integration (back to d = 1)

Task: eval. $\int_a^b f(x)dx$ accurately w/ least number of func. evals, N

"quadrature": nodes
$$\{x_j\}$$
, weights $\{w_j\}$, s.t. $\int_a^b f(x)dx \approx \sum_{j=1}^N w_j f(x_j)$

Idea: get interpolant $ilde{f}$ thru data $f(x_j) o integrate$ that exactly

Examples:

"intepolatory quadrature"

• local piecewise linear \rightarrow composite trapezoid rule $w_j = h$ except h/2 at ends. low-order, err $\mathcal{O}(N^{-2})$, avoid!

- N-node global poly \to gives $\{w_j\}$ integrating degree N-1 exactly err $\mathcal{O}(\rho^{-N})$ solve lin sys $V^T\mathbf{w} = \{\int_a^b x^k dx\}_{k=0}^{N-1}$ (Newton-Cotes)
- better: "Gaussian" $\{x_j,w_j\}$ integrates deg. 2N-1 exactly! err $\mathcal{O}(\rho^{-2N})$ Adaptive quadrature (Gauss in each panel) excellent: codes quadgk, scipy, etc
- periodic case: $x_j = \frac{2\pi j}{N}$, $w_j = \frac{2\pi}{N}$ excellent "periodic trap. rule" easy to check integrates e^{ikx} exactly for |k| < N, "Gaussian" f analytic in $|\operatorname{Im} x| < \alpha$ gives exp. conv. $\mathcal{O}(e^{-\alpha N})$, twice as good as interp!

Numerical integration (back to d=1)

Task: eval. $\int_a^b f(x)dx$ accurately w/ least number of func. evals, N

"quadrature": nodes
$$\{x_j\}$$
, weights $\{w_j\}$, s.t. $\int_a^b f(x)dx \approx \sum_{j=1}^N w_j f(x_j)$

get interpolant $ilde{f}$ thru data $f(x_i) o integrate$ that exactly

Examples:

"intepolatory quadrature"

• local piecewise linear \rightarrow composite trapezoid rule $w_i = h$ except h/2 at ends. low-order, err $\mathcal{O}(N^{-2})$, avoid!

- N-node global poly \rightarrow gives $\{w_i\}$ integrating degree N-1 exactly solve lin sys $V^T \mathbf{w} = \{ \int_a^b x^k dx \}_{k=0}^{N-1}$ (Newton-Cotes) err $\mathcal{O}(\rho^{-N})$
- better: "Gaussian" $\{x_i, w_i\}$ integrates deg. 2N-1 exactly! err $\mathcal{O}(\rho^{-2N})$ Adaptive quadrature (Gauss in each panel) excellent: codes quadgk, scipy, etc
- periodic case: $x_i = \frac{2\pi j}{N}$, $w_i = \frac{2\pi}{N}$ excellent "periodic trap. rule" easy to check integrates e^{ikx} exactly for |k| < N, "Gaussian" f analytic in $|\operatorname{Im} x| < \alpha$ gives exp. conv. $\mathcal{O}(e^{-\alpha N})$, twice as good as interp! demo: N=14; sum(exp(cos(2*pi*(1:N)/N)))/N - besseli(0,1) ans = 1.3e-15

Advanced integration

```
    custom quadr. for singularity eg f(x) = smooth · |x|-1/2
    or for arb. set of funcs. "generalized Gaussian quad." (CCM: Manas Rachh)
    high-order end-corrections to uniform trap. rule (Alpert '99)
```


Advanced integration

```
    custom quadr. for singularity eg f(x) = smooth · |x|-1/2 or for arb. set of funcs. "generalized Gaussian quad." (CCM: Manas Rachh)
    high-order end-corrections to uniform trap. rule (Alpert '99)
```

Higher dimensions d > 1

For d a few, tensor products of 1D n-node grids in each dim

```
other coord systems, eg sphere, can use tensor product in (\theta,\phi) adaptivity works: subdivide into boxes same pic as for interp.
```

Much higher $d \gg 1$

```
Now exponential cost N=n^d kills you :(
Are "sparse grids" scaling better rely on funcs aligning w/ axes
Monte Carlo methods: sum N values of f(\mathbf{x}_j) for \mathbf{x}_j random points
error = \mathcal{O}(N^{-1/2}) 1/2-order acc, indep of dim d
*** check
```


Task: given ability to eval. $f(\mathbf{x})$ anywhere, how get $\nabla f(\mathbf{x})$? assume smooth

Task: given ability to eval. $f(\mathbf{x})$ anywhere, how get $\nabla f(\mathbf{x})$? assume smooth

Finite differencing idea, 1D: $f'(x) = \frac{f(x+h)-f(x-h)}{2h} + \mathcal{O}(h^2)$ Taylor's thm "centered difference" formula

Want smallest error: suggests taking $h \rightarrow 0$?

Let's see how that goes...

Task: given ability to eval. $f(\mathbf{x})$ anywhere, how get $\nabla f(\mathbf{x})$? assume smooth

Finite differencing idea, 1D: $f'(x) = \frac{f(x+h)-f(x-h)}{2h} + \mathcal{O}(h^2)$ Taylor's thm

"centered difference" formula

Want smallest error: suggests taking $h \rightarrow 0$?

Let's see how that goes...

• shrinking $\mathcal{O}(h^2)$ error gets swamped by a new growing error...what?

Task: given ability to eval. $f(\mathbf{x})$ anywhere, how get $\nabla f(\mathbf{x})$? assume smooth

Finite differencing idea, 1D: $f'(x) = \frac{f(x+h)-f(x-h)}{2h} + \mathcal{O}(h^2)$ Taylor's thm

"centered difference" formula

Want smallest error: suggests taking $h \rightarrow 0$?

Let's see how that goes...

- shrinking $\mathcal{O}(h^2)$ error gets swamped by a new growing error...what?
- ullet CPU arithmetic done only to relative "rounding error" $\epsilon_{\sf mach} \sim 10^{-16}$
- subtracting v. close f(x+h) and f(x-h): "catastrophic cancellation"
- balance two error types: $h_{ ext{best}} \sim \epsilon_{ ext{mach}}^{1/3} \sim 10^{-5}$

Essential reading: floating point, backward stability [GC12, Ch. 5-6] [TBI97, Ch. 12-15]

High-order (better!) differentiation, d = 1

As w/ integration: get interpolant \rightarrow differentiate it exactly [Tre00, Ch. 6]

Get $N \times N$ matrix D acting on func. values $\{f(x_j)\}$ to give $\{f'(x_j)\}$. Has simple formula

High-order (better!) differentiation, d = 1

As w/ integration: get interpolant \rightarrow differentiate it exactly [Tre00, Ch. 6] Get $N \times N$ matrix D acting on func. values $\{f(x_i)\}$ to give $\{f'(x_i)\}$. Has simple formula

Examples:

N Chebychev nodes in [-1,1]

shown: $\max \text{ error in } f'$

ullet for N large, the dense D is never formed, merely applied via FFT

spectral solvers for ODE/PDEs. codes: chebfun, PseudoPack, dedalus... Lecture II

Summary: we scratched the surface

Can integrate & differentiate smooth funcs given only point values $f(x_j)$ Both follow from building a good (fast-converging) interpolant For f smooth in 1D, can & should easily get many (10+) digits accuracy

Concepts:

```
convergence order/rate how much effort will you have to spend to get more digits?

smoothness smooth ⇔ fast convergence; nonsmooth needs custom methods

global (one interpolation formula/basis for the whole domain)

vs local (distinct formulae for x in different regions)

spectral method global, converge v. fast, even non-per. can exploit FFT

adaptivity auto split boxes to put nodes only where they need to be rounding error & catastrophic cancellation how not shoot self in the foot tensor products for 2D, 3D for higher dims: randomized/NN/TN (Th/Fr sessions)
```

See recommended books at end, and come discuss stuff!

LECTURE II: numerical differential equations

GOALS (maybe not needed)

Reminder of types and applications of diff. eq.

- ODEs: eg pendulum $u''(t) + \sin(u(t)) = 0$ task: solve u(t) efficiently & acc. needs initial conditions to kick it off eg u(0) = 1, u'(0) = 0 eg kinetics of system of well-mixed chemicals, $\mathbf{u}(t)$ is vector
- time-independent PDEs, usually "elliptic" Mike will explain eg Poisson eqn $\Delta u = g$, $u(\mathbf{x}) = \text{chemical concentration or electric potential}$ \mathbf{x} means (x,y,\dots) , Δu means Laplacian $\partial^2 u/\partial x^2 + \partial^2 u/\partial y^2 + \dots = \text{curvature of } u$ $g(\mathbf{x}) = \text{volume source of chemical or charge}$ needs boundary conditions (BCs) on u, or decay at infinity eg viscous fluid flow: \mathbf{u} is velocity field, Stokes eqns eg what is ground state of quantum system? solving t-indep. Schrödinger $\Delta u = Eu$
- time-dependent (evolution) PDEs $u(\mathbf{x},t)$ varies in space and time eg heat/diffusion equation $\partial u/\partial t + \Delta u = g$ $g(\mathbf{x},t) = \text{source}$ needs initial and BCs BCs may vary in time...

BCs: simple (eg periodic cube) vs complicated (u = 0 on a nasty surface) [Mike will in next talk overview the three flavors of PDE]

IVPs to BVPs

Motivate focus on BVPs by mentioning:

- Most people familiar with method of lines
- Equivalent "propagator" approach: discretize time, then solve BVP
- Most timesteppers are FD methods (some examples)

Finite difference methods

Basic viewpoint:

- Construct Taylor-series approximation to value at neighboring points
- For N points, expand to (N-1) derivatives (error $\mathcal{O}(h^N)$)
- Eliminate system to get approximation to d-th derivative (d < N) (error $\mathcal{O}(h^{N-d})$)

Alternate viewpoint:

• Differentiate the unique interpolating polynomial of deg N-1 Illustrate with centered forward 1st-order scheme, centered 2nd-order scheme (get extra degree for free).

Timestepping with finite difference methods

Consider temporal ODE u'(t) = f(u(t))

Explicit methods: simple, just require evaluating $f(u_n)$.

• E.g. Forward Euler: use 1st-order forward difference rule

$$u'(t) = -\lambda u(t) \quad \lambda > 0 \tag{1}$$

$$\frac{u_{n+1} - u_n}{k} = -\lambda u_n \tag{2}$$

$$u_{n+1} = (1 - k\lambda)u_n \tag{3}$$

$$\lceil k\lambda < 2 \rceil$$
 (4)

Implicit methods: stable, but require solving $f(u^{n+1}) = ...$

Backward Euler: use 1st-order backward difference rule

Stability, but potentially at high cost

$$u'(t) = -\lambda u(t) \quad \lambda > 0$$

$$u_{n+1} - u_n = -\lambda u_{n+1}$$

Advanced finite difference techniques

- Selecting stencils term by term (e.g. upwinding)
- Adaptive stencil selection (e.g. WENO)

Resources: ...

Codes: ...

Finite element methods

Partition domain into elements, represent unknown within each element using basis functions (usually polynomials)

Convert equations to weak form

- Give example
- Weak form advantages: lowers order, works if lower derivs are integrable (good for discontinuities, hyperbolic), can use tent functions Replace weak form with Galerkin/weighted-residual form to get algebraic system

Traditional FEM methods use tent functions, produce continuous solutions. Fluxes at cell boundaries can be computed from internal representation, but can be discontinuous (non conservative).

Finite volume methods

Case of FEM taking functions to be piecewise constant inside elements Resulting system is exactly conservative (good for hyperbolic), but requires Riemann solve

- Order increased by using neihgbors to reconstruct higher order internal representations or fluxes (slope/flux reconstruction)
- Reconstruction is nonlinear to control oscillations around discontinuities (TVD, ENO/WENO).
 Very common in CFD, CCA

Advanced finite element methods

- Discontinuous Galerkin: allow discontinuities, need Riemann solvers again
- Spectral elements: move towards large p for better internal representations

Resources: ...

Codes: ...

Spectral methods

Limit of very few elements with very large p: exponential accuracy for smooth problems

Traditional techniques: Fourier spectral methods.

- Fast due to FFT: optimal complexity with exponential accuracy
- Limited to simple geometries / equations with symmetries Polynomial spectral methods
- More flexible in terms of equations
- Still limited to simple geometries: cubes, spheres, cylinders, etc.
- Still a weak method, but don't integrate by parts. Apply Galerkin directly.

Modern research: sparse methods for arbitrary equations.

Resources: ...

Codes: ...

Boundary integral methods

Use knowledge of PDEs in constructing numerical solutions:

A Green's func G (fundamental soln) needed eg $\Delta G = \delta$

For linear PDEs dominated by boundary rather than bulk terms, compute solution by forming integral equation of the fundamental solution/Green's function. Reduced dimensionality. Improved conditioning. Low-rank interactions and fast methods. Reconstruct solution in the bulk.

Examples: Stokes flow, Helmholtz, Maxwell, typically with homogeneous media

heavily uses high-order integration methods

see Jun Wang's talk later today!

Summary

Recommended accessible reading

- [GC12] A Greenbaum and T P Chartier, *Numerical methods*, Princeton University Press, 2012.
- [TBI97] L. N. Trefethen and D. Bau III, *Numerical linear algebra*, SIAM, 1997.
- [Tre00] Lloyd N. Trefethen, Spectral methods in MATLAB, Software, Environments, and Tools, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
- [Tre13] L. N. Trefethen, Approximation theory and approximation practice, SIAM, 2013, http://www.maths.ox.ac.uk/chebfun/ATAP.

This document: https://github.com/ahbarnett/fwam-numpde See code directory for MATLAB code used to generate figures

