Package 'lhmixr'

October 1, 2016

Title Fits Sex-Specific Life History Models With Missing Classifications

version 0.0.0.9000	
Author Coilin Minto, John Hinde	, Rui Coelho
Maintainer Coilin Minto <coili< th=""><th>n.minto@gmit.ie></th></coili<>	n.minto@gmit.ie>
Description lhmixr fits sex-specific history models for fish and of	or the control of the individuals have unknown sex.
Depends R (>= 3.2.0)	
License GPL (>= 3)	
URL https://github.com/min	toc/lhmixr
LazyData true	
Espinax	
Index	
Epusillus Etm	nopterus pusillus data

Growth data for deepwater smooth lantern shark *Etmopterus pusillus* from Coelho and Erzini (2007). Data are cross-sectional with one observation (row) per individual.

2 Espinax

Usage

Epusillus

Format

A data frame with five variables:

species Full species name

sex Sex of the animal: Female (F) or Male (M)

age Age in years

length Total length in centimetres

maturity Maturation status: immature or mature

Source

Coelho, R. & Erzini, K. (2007). Population parameters of the smooth lantern shark, *Etmopterus pusillus*, in southern portugal (NE Atlantic). *Fisheries Research*, 86, 42–57.

Espinax

Etmopterus spinax data

Description

Growth data for deepwater velvet belly lantern shark *Etmopterus spinax* from Coelho and Erzini (2008). Data are cross-sectional with one observation (row) per individual.

Usage

Espinax

Format

A data frame with five variables:

species Full species name

sex Sex of the animal: Female (F) or Male (M)

age Age in years

length Total length in centimetres

maturity Maturation status: immature or mature

Source

Coelho, R. and Erzini, K. (2008). Life history of a wide-ranging deepwater lantern shark in the north-east Atlantic, *Etmopterus spinax* (chondrichthyes: Etmopteridae), with implications for conservation. *Journal of Fish Biology*, 73, 1419–1443.

3 get_growth_post_prob

get_growth_post_prob Posterior probability of sex being female based on growth alone

Description

get_growth_post_prob returns the probability of the observation(s) arising from the female component given a set of parameters and an assumed distribution (normal currently). The component probability is given by Bayes' theorem. Used internally.

Usage

```
get_growth_post_prob(mixprop, muF, muM, sigmaF, sigmaM, data, distribution)
```

Arguments

mixprop	Numeric scalar of mixing proportion (overall sex ratio)
muF	Numeric vector with predicted female lengths
muM	Numeric vector with predicted male lengths
sigmaF	Numeric scalar for female residual standard deviation
sigmaM	Numeric scalar for male residual standard deviation
data	A data.frame with column "length". Note predicted means "muF" and "muM" must come from corresponding ages.
distribution	Character with options: "normal" or "lognormal".

Value

Numeric vector of the posterior probability of being female.

Examples

```
get_growth_post_prob(mixprop = 0.5, muF = 4, muM = 6, sigmaF = 1,
                             sigmaM = 1, data = data.frame(length = 4.5), distribution = "normal")
sim_vb_data
                          Simulate sex-specific von Bertalanffy data with missing classifications.
```

Description

sim_vb_data simulates sex-specific growth data according to the von Bertalanffy growth model and a logistic model governing maturity.

```
sim_vb_data(nfemale, nmale, mean_ageF, mean_ageM, growth_parF, growth_parM,
 mat_parF, mat_parM, distribution)
```

4 vb_bind_gr

Arguments

nfemale	Numeric scalar for number of female observations.
nmale	Numeric scalar for number of male observations.
mean_ageF	Numeric scalar for female mean age - used to generate ages from rnbinom(,mu = mean_ageF) $$
mean_ageM	Numeric scalar for male mean age - used to generate ages from rnbinom(, $mu = mean_ageM$)
growth_parF	Named ("linf", "k", "t0", "sigma") numeric vector with female growth parameters
growth_parM	Named ("linf", "k", "t0", "sigma") numeric vector with male growth parameters
mat_parF	Named ("A50", "MR") numeric vector with female maturation parameters A50 is the age at 50% maturity, MR is age range between 25% and 75% maturity.
mat_parM	Named ("A50", "MR") numeric vector with male maturation parameters.
distribution	Character with options: "normal" or "lognormal".

Value

data.frame with columns "age", "length", "true.sex", "obs.sex" (observed sex assuming immature animals unclassified), "maturiy" (binary: 1 if mature; 0 if immature).

Examples

Description

vb_bind_gr returns the parameter gradients of negative log-likelihood for the von Bertalanffy model. Equality constraints across sexes can be implemented for any combination of parameters using the binding argument.

Bertalanffy growth model (typically used internally).

```
vb_bind_gr(theta, binding, data, distribution)
```

vb_bind_nll 5

Arguments

theta	A parameter vector of the same length as the maximum of binding. Unconstrained parameters take the order: lnlinfF, lnlinfM, lnkF, lnkM, lnnt0F, lnnt0M, lnsigmaF, lnsigmaM.
binding	A $(4x2)$ parameter index matrix with rows named (in order): "lnlinf", "lnk", "lnnt0", "lnsigma" and the left column for the female parameter index and right column for mal parameter index. Used to impose arbitrary equality constraints across the sexes (see Examples).
data	A data.frame with columns: "age", "length" and "weights". "weights" are set to 1 or 0 for known females or males, respectively; proportions otherwise.
distribution	Character with options: "normal" or "lognormal".

Value

Vector of parameter gradients:

Examples

vb_bind_nll Negative log-likelihood for potentially constrained von Bertalanffy growth model (typically used internally).

Description

vb_bind_nll returns the negative log-likelihood for the von Bertalanffy model. Equality constraints across sexes can be implemented for any combination of parameters using the binding argument.

```
vb_bind_nll(theta, binding, data, distribution)
```

6 vb_growth_mix

Arguments

theta A parameter vector of the same length as the maximum of binding. Unconstrained parameters take the order: lnlinfF, lnlinfM, lnkF, lnkM, lnnt0F, lnnt0M, lnsigmaF, lnsigmaM.

binding A (4x2) parameter index matrix with rows named (in order): "lnlinf", "lnk", "lnnt0", "lnsigma" and the left column for the female parameter index and right column for mal parameter index. Used to impose arbitrary equality constraints across the sexes (see Examples).

data data.frame with columns: "age", "length" and "weights". "weights" are set to 1 or 0 for known females or males, respectively; proportions otherwise.

distribution Character with options: "normal" or "lognormal"

Value

Complete data negative log-likelihood:

Examples

vb_growth_mix

Fit finite mixture von Bertalanffy growth model.

Description

vb_growth_mix fits sex-specific growth models where some of the animals are of unknown sex. Optimization is via the Expectation-Maximisation algorithm. Equality constraints across sexes can be implemented for any combination of parameters using the binding argument. Assumes a normal distribution currently.

```
vb_growth_mix(start.list, data, binding, maxiter.em = 1000, abstol = 1e-08,
plot.fit = TRUE, verbose = TRUE, optim.method = "BFGS",
estimate.mixprop = TRUE, distribution)
```

vb_growth_mix 7

Arguments

start.list A list with a list called par containing starting values for: "mixprop", "growth.par"

(see Examples).

data A data.frame with columns: "age", "length" and "obs.sex". "obs.sex" must have

values "female", "male", "immature".

binding A (4x2) parameter index matrix with rows named (in order): "lnlinf", "lnk",

"lnnt0", "Insigma" and the left column for the female parameter index and right column for mal parameter index. Used to impose arbitrary equality constraints

across the sexes (see Examples).

maxiter.em Integer for maximum number of EM iterations (1e3 default).

abstol Tolerance for EM observed data log likelihood convergence (1e-8 default).

plot.fit Logical, if TRUE fit plotted per iteration. Red and blue circles are used for

known females and males, respectively. Immature / unsexed animals are plotted as triangle with the colour indicating the expected probability of being female

or male.

verbose Logical, if TRUE iteration and observed data log-likelihood printed.

optim.method Character, complete data optimisation method to use in optim.

estimate.mixprop

Logical, if TRUE the mixing proportion is estimated, otherwise fixed at the

starting value.

distribution Character with options: "normal" or "lognormal".

Value

List containing the components:

logLik.vec Observed data log-likelihood at each iteration.

logLik Observed data log-likelihood on the last EM iteration.

complete_data Data frame of the data (re-ordered) with component probabilities (tau).

coefficients Parameter estimates (on the real line) and associated standard errors on the real

line.

vcov Estimated variance covariance matrix of the parameters estimated on the real

line. Can be used to obtain parameter standard errors on the natural scale.

convergence Binary with a "0" denoting convergence of the EM algorithm.

Examples

Model fit with contrained Brodys growth coefficient

8 vb_lengths

vb_lengths

von Bertalanffy growth function.

Description

vb_lengths returns the predicted length-at-age for given named set of parameters for the von Bertalanffy growth function:

$$l = L_{\infty} (1 - e^{-k(a - t_0)})$$

Usage

```
vb_lengths(theta, age)
```

Arguments

theta A numeric vector with named values "linf", "k", "t0".

age A numeric vector of ages.

Value

Predicted length-at-age.

Examples

```
vb_lengths(theta = c("linf" = 30,"k" = 0.2,"t0" = -1), age = 0:10)
```

Index

```
*Topic datasets
    Epusillus, 1
    Espinax, 2

Epusillus, 1
Espinax, 2

get_growth_post_prob, 3

sim_vb_data, 3

vb_bind_gr, 4
vb_bind_nll, 5
vb_growth_mix, 6
vb_lengths, 8
```