Tutorial-6, MA 108 (ODE) Spring 2015, IIT Bombay

1. Find the Laplace transform of the following functions using the definition of Laplace transform.

(a)
$$f(t) = \begin{cases} 1, & 0 \le t < 4 \\ t, & t \ge 4 \end{cases}$$

(b)
$$f(t) = \begin{cases} t^2, & 0 \le t < 1 \\ 0, & t \ge 1 \end{cases}$$

2. Find the Laplace transform of the following functions using the Laplace transform of step functions.

(a)
$$f(t) = \begin{cases} te^t, & 0 \le t < 1 \\ e^t, & t \ge 1 \end{cases}$$

(b)
$$f(t) = \begin{cases} t, & 0 \le t < 1 \\ t^2, & 1 \le t < 2 \\ 0, & t \ge 2 \end{cases}$$

3. Find the inverse Laplace transform of the following functions.

(a)
$$H(s) = \frac{e^{-\pi s}(1-2s)}{s^2+4s+5}$$

(b)
$$H(s) = \frac{1}{s} - \frac{2}{s^3} + e^{-2s} \left(\frac{3}{s} - \frac{1}{s^2} \right) + e^{-3s} \left(\frac{4}{s} + \frac{3}{s^2} \right)$$

4. Solve the following IVPs using Laplace transform.

(a)
$$y'' - y = \begin{cases} e^{2t}, & 0 \le t < 2\\ 1, & t \ge 2 \end{cases}$$
 $y(0) = 3, y'(0) = -1.$

(b)
$$y'' - 5y' + 4y = \begin{cases} 1, & 0 \le t < 1 \\ -1, & 1 \le t < 2 \end{cases}$$
 $y(0) = 3, y'(0) = -5.$
0, $t \ge 2$

(c)
$$y'' + 9y = \begin{cases} \cos t, & 0 \le t < \frac{3\pi}{2} \\ & y(0) = 0, \ y'(0) = 0. \end{cases}$$

$$\sin t, \qquad t \ge \frac{3\pi}{2}$$

(d)
$$y'' + y = \begin{cases} t, & 0 \le t < \pi \\ -t, & t \ge \pi \end{cases}$$
 $y(0) = 0, y'(0) = 0.$

(e)
$$y'' - 3y' + 2y = \begin{cases} 0, & 0 \le t < 2 \\ 2t - 4, & t \ge 2 \end{cases}$$
 $y(0) = 0, y'(0) = 0.$

(f)
$$y'' + 2y' + y = \begin{cases} e^t, & 0 \le t < 1 \\ e^t - 1, & t \ge 1 \end{cases}$$
 $y(0) = 3, \quad y'(0) = -1$

(e)
$$y'' - 3y' + 2y = \begin{cases} 0, & 0 \le t < 2 \\ 2t - 4, & t \ge 2 \end{cases}$$
 $y(0) = 0, y'(0) = 0.$
(f) $y'' + 2y' + y = \begin{cases} e^t, & 0 \le t < 1 \\ e^t - 1, & t \ge 1 \end{cases}$ $y(0) = 3, y'(0) = -1.$
(g) $y'' + 2y' + 2y = \begin{cases} t^2, & 0 \le t < 1 \\ -t, & 1 \le t < 2 \\ -1, & t \ge 3\pi \end{cases}$

5. Solve the IVP and find a formula in terms of f for the solution that does not involve any step functions and represents y on each interval of continuity of f

(a)
$$y'' + y = f(t)$$
 $y(0) = 0$, $y'(0) = 0$;
 $f(t) = m + 1$, $m\pi \le t < (m + 1)\pi$, $m = 0, 1, \dots$

(b)
$$y'' + y = f(t)$$
 $y(0) = 0$, $y'(0) = 0$;
 $f(t) = (-1)^m$, $m\pi \le t < (m+1)\pi$, $m = 0, 1, \dots$

(c)
$$y'' - y = f(t)$$
 $y(0) = 0$, $y'(0) = 0$;
 $f(t) = m + 1$, $m\pi \le t < (m + 1)\pi$, $m = 0, 1, \dots$

Hint: You will need the formula for $1 + r + \ldots + r^m = \frac{1 - r^{m+1}}{r}$ $(r \neq 1)$.

(d)
$$y'' + 2y' + 2y = f(t)$$
 $y(0) = 0$, $y'(0) = 0$;
 $f(t) = (m+1)(\sin t + 2\cos t)$, $2m\pi \le t < 2(m+1)\pi$, $m = 0, 1, \dots$

6. Let $0 = t_0 < t_1 < \ldots < t_n$. Suppose f_m is continuous on $[t_m, \infty)$ for $m = 1, \ldots n$. Let

$$f(t) = \begin{cases} f_m(t), & t_m \le t < t_{m+1} & m = 1, \dots, n-1 \\ f_n(t), & t \ge t_n \end{cases}$$

Show that the solution of

$$ay'' + by' + cy = f(t), \quad y(0) = k_0, \quad y'(0) = k_1.$$

as defined for peicewise continuous forcing functions is given by

$$f(t) = \begin{cases} z_0(t), & 0 \le t < t_1 \\ z_0 + \dots + z_m(t), & t_m \le t < t_{m+1} \\ z_0 + \dots + z_n(t) & t \ge t_n \end{cases}$$

where z_0 is a solution of

$$az'' + bz' + cz = f_0(t), \quad z(0) = k_0, \ z'(0) = k_1$$

and z_m is a solution of

$$az'' + bz' + cz = f_m(t) - f_{m-1}(t), \quad z(t_m) = 0, \ z'(t_m) = 0$$

for $m = 1, \ldots, n$.

7. Express the following inverse transform as an integral.

(a)
$$\frac{1}{s^2(s^2+4)}$$

(b)
$$\frac{s}{s^2(s^2+4)}$$

(c)
$$\frac{s}{(s+2)(s^2+9)}$$

(d)
$$\frac{1}{(s+1)^2(s^2+4s+5)}$$

(e)
$$\frac{1}{s^2(s-2)^3}$$

8. Find the Laplace transform

(a)
$$\int_0^t \sin a\tau \cos b(t-\tau) d\tau$$
.

(b)
$$\int_0^t \sinh a\tau \cosh b(t-\tau) d\tau$$
.

(c)
$$e^t \int_0^t \sin \omega \tau \cos \omega (t - \tau) d\tau$$
.

(d)
$$e^t \int_0^t e^{2\tau} \sinh(t-\tau) d\tau$$
.

(e)
$$\int_0^t (t-\tau)^4 \sin 2\tau \ d\tau$$
.

(f)
$$\int_0^t (t-\tau)^7 e^{-\tau} \sin 2\tau \ d\tau$$
.

9. Find a formula for the solutions of the IVP.

(a)
$$y'' + 3y' + y = f(t)$$
, $y(0) = 0$, $y'(0) = 0$.

(b)
$$y'' + 4y = f(t)$$
, $y(0) = 0$, $y'(0) = 0$.

(c)
$$y'' + 6y' + 9y = f(t)$$
, $y(0) = 0$, $y'(0) = -2$.

(d)
$$y'' + \omega^2 y = f(t)$$
, $y(0) = a$, $y'(0) = b$.

(e)
$$y'' - 5y' + 6y = f(t)$$
, $y(0) = 1$, $y'(0) = 3$.

10. Solve the integral equation

(a)
$$y(t) = t - \int_0^t (t - \tau) y(\tau) d\tau$$
.

(b)
$$y(t) = 1 + 2 \int_0^t \cos(t - \tau) y(\tau) d\tau$$
.

(c)
$$y(t) = t + \int_0^t y(\tau)e^{-(t-\tau)} d\tau$$
.

11. Use the convolution theorem to solve the integral

(a)
$$\int_0^t (t-\tau)^7 \tau^8 \ d\tau$$

(b)
$$\int_0^t (t-\tau)^6 \tau^7 \ d\tau$$

(c)
$$\int_0^t e^{-\tau} \sin(t-\tau) d\tau$$

- 12. Show that f * g = g * f.
- 13. Show that if $p(s) = as^2 + bs + c$ has distinct real zeros r_1 and r_2 then the solution of

$$ay'' + by' + cy = f(t), \quad y(0) = k_0, \quad y'(0) = k_1$$

is

$$y(t) = k_0 \frac{r_2 e^{r_1 t} - r_2 e^{r_2 t}}{r_2 - r_1} + k_1 \frac{e^{r_2 t} - e^{r_1 t}}{r_2 - r_1} + \frac{1}{a(r_2 - r_1)} \int_0^t (e^{r_2 \tau} - e^{r_1 \tau}) f(t - \tau) d\tau$$

14. For the above problem find a formula for the solution if the roots of p(s) are repeated and is given by r, and when the roots are complex $\lambda \pm i\omega$.