AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing Of Claims:

- 1-11. (Canceled).
- 12. (Previously Presented) A method for a rollover stabilization of a vehicle in a critical driving situation, comprising:

measuring different driving-condition variables by a sensor system;

causing an actuator to intervene with a rollover-stabilization algorithm in a vehicle operation in a situation critical to rollover, in order to stabilize the vehicle; and

estimating information from a relationship between a steering variable and a roll variable, the information relating to a rollover tendency of the vehicle and being taken into account in a scope of the rollover stabilization.

13. (Previously Presented) The method as recited in Claim 12, further comprising: ascertaining one of an indicator variable and one of a characteristic property and a variable of the rollover stabilization as a function of the rollover tendency, wherein:

a stabilization action is one of enabled and deactivated in accordance with the indicator variable.

- 14. (Previously Presented) The method as recited in Claim 12, wherein the steering variable includes a steering angle.
- 15. (Previously Presented) The method as recited in Claim 12, wherein the roll variable includes a roll rate.
- 16. (Previously Presented) The method as recited in Claim 12, further comprising: changing, as a function of the rollover tendency, a control threshold of the rolloverstabilization algorithm.

- 17. (Previously Presented) The method as recited in Claim 12, further comprising: ascertaining, from the steering variable and the roll variable, a rollover indicator indicating the rollover tendency of the vehicle.
- 18. (Previously Presented) The method as recited in Claim 17, wherein the rollover indicator is determined by a fuzzy-information processing unit.
- 19. (Previously Presented) The method as recited in Claim 18, further comprising: weighting the rollover indicator by a weighting function indicating a quality of an estimation of the rollover indicator.
- 20. (Withdrawn) A vehicle-dynamics control system for a rollover stabilization of a vehicle in a critical driving situation, comprising:

a control unit for storing a rollover-stabilization algorithm; a sensor system for measuring current, actual values of the control system; an actuator for executing a stabilization action, wherein:

the sensor system ascertains a roll variable and a steering variable; and a device for estimating a rollover tendency of the vehicle from the steering variable and the roll variable, the rollover tendency being taken into account in a scope of the rollover stabilization.

- 21. (Withdrawn) The vehicle-dynamics control system as recited in Claim 20, wherein the control unit ascertains one of an indicator variable, with the aid of which a stabilization action is one of enabled and deactivated, a characteristic property, and a variable of the rollover-stabilization algorithm, as a function of the rollover tendency.
- 22. (Withdrawn) The vehicle-dynamics control system as recited in Claim 20, wherein the sensor system includes a roll-rate sensor for ascertaining the roll variable.
- 23. (Withdrawn) The method as recited in Claim 12, wherein the steering variable includes a steering speed.
- 24. (Withdrawn) The method as recited in Claim 12, wherein the roll variable includes one of contact patch forces of wheels, a compression travel, a vertical acceleration, and a roll angle.

25. (Withdrawn) The method as recited in Claim 12, further comprising: changing, as a function of the rollover tendency, one of a control deviation and a controlled variable of the rollover-stabilization algorithm.

26. (New) The method as recited in Claim 12, further comprising:

ascertaining one of an indicator variable and one of a characteristic property and a variable of the rollover stabilization as a function of the rollover tendency;

changing, as a function of the rollover tendency, a control threshold of the rolloverstabilization algorithm;

ascertaining, from the steering variable and the roll variable, a rollover indicator indicating the rollover tendency of the vehicle; and

weighting the rollover indicator by a weighting function indicating a quality of an estimation of the rollover indicator.

27. (New) The method as recited in Claim 12, wherein:

a stabilization action is one of enabled and deactivated in accordance with the indicator variable,

the steering variable includes a steering angle,

the roll variable includes a roll rate, and

the rollover indicator is determined by a fuzzy-information processing unit.

28. (New) The method as recited in Claim 12, further comprising:

ascertaining one of an indicator variable and one of a characteristic property and a variable of the rollover stabilization as a function of the rollover tendency;

changing, as a function of the rollover tendency, a control threshold of the rolloverstabilization algorithm;

ascertaining, from the steering variable and the roll variable, a rollover indicator indicating the rollover tendency of the vehicle; and

weighting the rollover indicator by a weighting function indicating a quality of an estimation of the rollover indicator;

wherein a stabilization action is one of enabled and deactivated in accordance with the indicator variable,

wherein the steering variable includes a steering angle,

> wherein the roll variable includes a roll rate, and wherein the rollover indicator is determined by a fuzzy-information processing unit.