Integrals of Rational Functions

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x \tag{1}$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} \tag{2}$$

$$\int \frac{x}{a^2 + x^2} dx = \frac{1}{2} \ln|a^2 + x^2| \tag{3}$$

$$\int \frac{x^2}{a^2 + x^2} dx = x - a \tan^{-1} \frac{x}{a} \tag{4}$$

$$\int \frac{x^3}{a^2 + x^2} dx = \frac{1}{2}x^2 - \frac{1}{2}a^2 \ln|a^2 + x^2|$$
 (5)

$$\int \frac{1}{ax^2 + bx + c} dx = \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$$
 (6)

$$\int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln \frac{a+x}{b+x}, \ a \neq b$$
 (7)

$$\int \frac{x}{(x+a)^2} dx = \frac{a}{a+x} + \ln|a+x|$$
 (8)

$$\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln|ax^2 + bx + c| - \frac{b}{a\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$$
(9)

Integrals with Roots

$$\int \frac{x}{\sqrt{x+a}} dx = \frac{2}{3} (x \mp 2a) \sqrt{x \pm a} \tag{10}$$

$$\int \sqrt{\frac{x}{a-x}} dx = -\sqrt{x(a-x)} - a \tan^{-1} \frac{\sqrt{x(a-x)}}{x-a}$$
 (11)

$$\int \sqrt{\frac{x}{a+x}} dx = \sqrt{x(a+x)} - a \ln\left[\sqrt{x} + \sqrt{x+a}\right]$$
 (12)

$$\int x\sqrt{ax+b}dx = \frac{2}{15a^2}(-2b^2 + abx + 3a^2x^2)\sqrt{ax+b}$$
 (13)

$$\int \sqrt{x(ax+b)}dx = \frac{1}{4a^{3/2}} \left[(2ax+b)\sqrt{ax(ax+b)} -b^2 \ln \left| a\sqrt{x} + \sqrt{a(ax+b)} \right| \right]$$
(14)

$$\int \sqrt{x^3(ax+b)}dx = \left[\frac{b}{12a} - \frac{b^2}{8a^2x} + \frac{x}{3}\right]\sqrt{x^3(ax+b)}$$

$$+\frac{b^3}{a^2} \ln \left| a\sqrt{x} + \sqrt{a(ax+b)} \right| \tag{15}$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right| \tag{16}$$

$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$
 (17)

$$\int x\sqrt{x^2 \pm a^2} dx = \frac{1}{3} \left(x^2 \pm a^2\right)^{3/2} \tag{18}$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right| \tag{19}$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} \tag{20}$$

$$\int \frac{x}{\sqrt{x^2 \pm a^2}} dx = \sqrt{x^2 \pm a^2} \tag{21}$$

$$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} \tag{22}$$

$$\int \frac{x^2}{\sqrt{x^2 \pm a^2}} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \mp \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right| \qquad (23)$$

$$\int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right|$$
(24)

$$\int x\sqrt{ax^2 + bx + c} = \frac{1}{48a^{5/2}} \left(2\sqrt{a}\sqrt{ax^2 + bx + c} \right)$$

$$\times \left(-3b^2 + 2abx + 8a(c + ax^2) \right)$$

$$+3(b^3 - 4abc) \ln \left| b + 2ax + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|$$
(25)

$$\int \frac{1}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right|$$
 (26)

Integrals with Logarithms

$$\int \frac{x}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{a} \sqrt{ax^2 + bx + c} - \frac{b}{2a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right|$$
(27)

$$\int \frac{dx}{(a^2 + x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 + x^2}}$$
 (28)

$$\int \frac{\ln ax}{x} dx = \frac{1}{2} (\ln ax)^2 \tag{29}$$

$$\int \ln(ax+b)dx = \left(x+\frac{b}{a}\right)\ln(ax+b) - x, a \neq 0$$
 (30)

$$\int \ln(x^2 + a^2) \, dx = x \ln(x^2 + a^2) + 2a \tan^{-1} \frac{x}{a} - 2x \qquad (31)$$

$$\int \ln(x^2 - a^2) \, dx = x \ln(x^2 - a^2) + a \ln \frac{x+a}{x-a} - 2x \qquad (32)$$

$$\int \ln (ax^2 + bx + c) dx = \frac{1}{a} \sqrt{4ac - b^2} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$$
$$-2x + \left(\frac{b}{2a} + x\right) \ln (ax^2 + bx + c)$$
(33)

$$\int x \ln(ax+b)dx = \frac{bx}{2a} - \frac{1}{4}x^2 + \frac{1}{2}\left(x^2 - \frac{b^2}{a^2}\right) \ln(ax+b)$$
 (34)

$$\int x \ln \left(a^2 - b^2 x^2\right) dx = -\frac{1}{2} x^2 + \frac{1}{2} \left(x^2 - \frac{a^2}{b^2}\right) \ln \left(a^2 - b^2 x^2\right)$$
(35)

Integrals with Exponentials

$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$
 (36)

$$\int xe^{-ax^2} \, \mathrm{d}x = -\frac{1}{2a}e^{-ax^2} \tag{37}$$

Integrals with Trigonometric Functions

$$\int \sin^3 ax dx = -\frac{3\cos ax}{4a} + \frac{\cos 3ax}{12a}$$
 (38)

$$\int \cos^2 ax dx = \frac{x}{2} + \frac{\sin 2ax}{4a} \tag{39}$$

$$\int \cos^3 ax dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a}$$
 (40)

$$\int \cos ax \sin bx dx = \frac{\cos[(a-b)x]}{2(a-b)} - \frac{\cos[(a+b)x]}{2(a+b)}, a \neq b$$
 (41)

$$\int \sin^2 ax \cos bx dx = -\frac{\sin[(2a-b)x]}{4(2a-b)} + \frac{\sin bx}{2b} - \frac{\sin[(2a+b)x]}{4(2a+b)}$$
(42)

$$\int \sin^2 x \cos x dx = -\frac{1}{2} \sin^3 x \tag{43}$$

$$\int \cos^2 ax \sin bx dx = \frac{\cos[(2a - b)x]}{4(2a - b)} - \frac{\cos bx}{2b} - \frac{\cos[(2a + b)x]}{4(2a + b)}$$
(44)

$$\int \cos^2 ax \sin ax dx = -\frac{1}{3a} \cos^3 ax \tag{45}$$

$$\int \sin^2 ax \cos^2 bx dx = \frac{x}{4} - \frac{\sin 2ax}{8a} - \frac{\sin[2(a-b)x]}{16(a-b)} + \frac{\sin 2bx}{8b} - \frac{\sin[2(a+b)x]}{16(a+b)}$$
(46)

$$\int \sin^2 ax \cos^2 ax dx = \frac{x}{8} - \frac{\sin 4ax}{32a} \tag{47}$$

$$\int \tan ax dx = -\frac{1}{a} \ln \cos ax \tag{48}$$

$$\int \tan^2 ax dx = -x + \frac{1}{a} \tan ax \tag{49}$$

$$\int \tan^3 ax dx = \frac{1}{a} \ln \cos ax + \frac{1}{2a} \sec^2 ax \tag{50}$$

$$\int \sec x dx = \ln|\sec x + \tan x| = 2\tanh^{-1}\left(\tan\frac{x}{2}\right) \tag{51}$$

$$\int \sec^2 ax dx = -\frac{1}{a} \tan ax \tag{52}$$

$$\int \sec^3 x \, \mathrm{d}x = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln|\sec x + \tan x| \tag{53}$$

$$\int \sec x \tan x dx = \sec x \tag{54}$$

$$\int \sec^2 x \tan x dx = \frac{1}{2} \sec^2 x \tag{55}$$

$$\int \sec^n x \tan x dx = \frac{1}{n} \sec^n x, n \neq 0$$
 (56)

$$\int \csc x dx = \ln\left|\tan\frac{x}{2}\right| = \ln\left|\csc x - \cot x\right| + C \tag{5}$$

$$\int \csc^2 ax dx = -\frac{1}{a} \cot ax \tag{58}$$

$$\int \csc^3 x dx = -\frac{1}{2} \cot x \csc x + \frac{1}{2} \ln|\csc x - \cot x| \qquad (59)$$

$$\int \csc^n x \cot x dx = -\frac{1}{n} \csc^n x, n \neq 0$$
 (60)

$$\int \sec x \csc x dx = \ln|\tan x| \tag{61}$$

Products of Trigonometric Functions and Monomials

$$\int x \cos x dx = \cos x + x \sin x \tag{62}$$

$$\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax \tag{63}$$

$$\int x^2 \cos x dx = 2x \cos x + (x^2 - 2) \sin x \tag{64}$$

$$\int x^2 \cos ax dx = \frac{2x \cos ax}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax$$
 (65)

$$\int x \sin x dx = -x \cos x + \sin x \tag{66}$$

$$\int x \sin ax dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2} \tag{67}$$

$$\int x^2 \sin x dx = (2 - x^2) \cos x + 2x \sin x \tag{68}$$

$$\int x^2 \sin ax dx = \frac{2 - a^2 x^2}{a^3} \cos ax + \frac{2x \sin ax}{a^2}$$
 (69)

Products of Trigonometric Functions and Exponentials

$$\int e^x \sin x dx = \frac{1}{2} e^x (\sin x - \cos x) \tag{70}$$

$$\int e^{bx} \sin ax dx = \frac{1}{a^2 + b^2} e^{bx} (b \sin ax - a \cos ax)$$
 (71)

$$\int e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x) \tag{72}$$

$$\int e^{bx} \cos ax dx = \frac{1}{a^2 + b^2} e^{bx} (a \sin ax + b \cos ax)$$
 (73)

$$\int xe^x \sin x dx = \frac{1}{2}e^x(\cos x - x\cos x + x\sin x) \tag{74}$$

$$\int xe^x \cos x dx = \frac{1}{2}e^x (x\cos x - \sin x + x\sin x) \tag{75}$$