```
"Turbo"
"HW2 P5"
"Zhaoyi Jiang(.1364)"
```

"Given"

u=225[m/s] c2=400[m/s] alpha_2=68[degree] beta_3=-58[degree]

"Mean R"

r=225/(18000*2*pi/60)

"The angle of the relative velocity entering the rotor"

cz2=c2*cos(alpha_2) cu2=c2*sin(alpha_2) wu2=cu2-u wz2=cz2 beta_2=arctan(wu2/wz2)

"The magnitude of the relative velocity entering the rotor"

wz2=wz3 w3=wz3/**cos**(beta_3)

"The magnitude of the axial velocity leaving the rotor"

cz2=cz

"Work delivered"

cz2=cz3 wu3=w3*sin(beta_3) cu3=wu3+u alpha_3=arctan(cu3/cz3) c3=(cz3^2+cu3^2)^0.5 W=u*(c2*sin(alpha 2)-c3*sin(alpha 3))*convert(m,km)

SOLUTION

Unit Settings: SI C bar kJ mass deg

$\alpha^3 = -5.64$ [degree]
c2 = 400 [m/s]
cu3 = -14.8 [m/s]
cz3 = 149.8 [m/s]
W = 86.78 [kj/kg]
wu3 = -239.8 [m/s]

 $\beta_2 = 44.23 \text{ [degree]}$ c3 = 150.6 [m/s] cz = 149.8 [m/s] r = 0.1194 [m] w3 = 282.8 [m/s] wz2 = 149.8 [m/s]

No unit problems were detected.