Question 1

Use row operations on the matrix $A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 1 & -2 & 6 & 3 \\ 2 & 4 & -6 & -2 \end{pmatrix}$ to obtain an upper triangular

matrix, then use Theorem 59 to find $\det A$. (You will get no credit for using a row/column expansion.)

We have

$$\det A = \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 1 & -2 & 6 & 3 \\ 2 & 4 & -6 & -2 \end{pmatrix}$$

$$= \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & -2 & 4 & 2 \\ 0 & 4 & -10 & -4 \end{pmatrix}$$

$$= \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & -12 & -6 \end{pmatrix}$$

$$= -6 \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$

$$= 6 \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$

$$= 6 \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 5 & 3 \end{pmatrix}$$

$$= 6 \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$= 6(1)(2)(2) \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$= 12$$

Question 2

Let
$$T = T_A : \mathbb{Q}^5 \to \mathbb{Q}^5$$
 where $A = \begin{pmatrix} 1 & 0 & 1 & -2 & 0 \\ 3 & 0 & 1 & 0 & -2 \\ 2 & 0 & 0 & 2 & -2 \\ 2 & 0 & 0 & 1 & -2 \\ 2 & 0 & 1 & -2 & -1 \end{pmatrix}$.

(a) Find C_T and the eigenvalues of T.

We have

$$C_{T}(\lambda) = \det(\lambda I - T)$$

$$= \det\begin{pmatrix} \lambda - 1 & 0 & -1 & 2 & 0 \\ -3 & \lambda & -1 & 0 & 2 \\ -2 & 0 & \lambda & -2 & 2 \\ -2 & 0 & 0 & \lambda - 1 & 2 \\ -2 & 0 & -1 & 2 & \lambda + 1 \end{pmatrix}$$

$$= -\lambda \det\begin{pmatrix} \lambda - 1 & -1 & 2 & 0 \\ -2 & \lambda & -2 & 2 \\ -2 & 0 & \lambda - 1 & 2 \\ -2 & -1 & 2 & \lambda + 1 \end{pmatrix}$$

$$= -\lambda \det\begin{pmatrix} \lambda + 1 & 0 & 0 & -\lambda - 1 \\ -2 & \lambda & -2 & 2 \\ -2 & 0 & \lambda - 1 & 2 \\ -2 & -1 & 2 & \lambda + 1 \end{pmatrix}$$

$$= -\lambda \left((\lambda + 1) \det\begin{pmatrix} \lambda & -2 & 2 \\ 0 & \lambda - 1 & 2 \\ -1 & 2 & \lambda + 1 \end{pmatrix} + (\lambda + 1) \det\begin{pmatrix} -2 & \lambda & -2 \\ -2 & 0 & \lambda - 1 \\ -2 & -1 & 2 \end{pmatrix} \right)$$

$$= \lambda(\lambda + 1) \left(-(\lambda - 1)(\lambda(\lambda + 1) + 2) + 2(2\lambda - 2) + -2(2\lambda - 2) + (\lambda - 1)(2 + 2\lambda) \right)$$

$$= \lambda(\lambda + 1)(\lambda - 1)(\lambda - \lambda^{2})$$

$$= -\lambda^{2}(\lambda - 1)^{2}(\lambda + 1)$$

The eigenvalues are the roo

- (b) For each eigenvalue, find a basis for the corresponding eigenspace.
- (c) Determine if T is diagonalizable, and if so, find a basis β so that $[T]_{\beta}$ is diagonal.

Question 3

- 1. Read the proof of Theorem 58 from the additional file in the Week 10 Readings on the course page.
- 2. Prove Part 1 of Theorem 59 using a strategy similar to the proof of Theorem 58. (You cannot use other parts of Theorem 59 in this proof.)

Question 4

Assume that Parts 1 and 2 of Theorem 59 have been proved. You cannot use Parts 4 through 7 of Theorem 59 in the following problem.

- 1. Prove Part 3 using induction on n. (Check n=1,2 by hand, then in the inductive step assume $n+1\geq 3$.)
- 2. Prove Part 4 using row-swapping matrices and properties of determinants.

Question 5

Prove that if $U \in M_{n \times n}(F)$ is upper triangular, then $\det U = \prod_{i=1}^n U_{ii}$.

Question 6

Let V be a vector space over F, and $T: V \to V$ a linear map. If $W \subseteq V$ is a T-invariant subspace, then the restriction map $T_W: W \to W$ is defined as follows.

- 1. Prove that $A = [T_W]_{\beta_W}$ using the relationship $[T]_{\beta} = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$.
- 2. Prove that $\det M = (\det A)(\det C)$.

Question 7

Deduce from Question 6 that if W is a T-invariant subspace, then C_{T_W} divides C_T .

Question 8

Let V be a finite-dimensional vector space over a field F, and $W_1, W_2 \subseteq V$ such that $V = W_1 \oplus W_2$. Define the projection maps $P_i : V \to V$ by $P(x) = x_i$ where $x = x_1 + x_2$

with $x_1 \in W_1$ and $x_2 \in W_2$.

- 1. Prove that P_i is linear.
- 2. Prove that $P_i^2 = P_i$.
- 3. Prove that each W_i is P_i -invariant.
- 4. Determine if P_i is diagonalizable and justify your answer.

Question 9.

Define the direct sum for more than two subspaces. Let $W_1, \ldots, W_k \subseteq V$ be subspaces such that $V = W_1 \oplus \cdots \oplus W_k$.

- 1. Prove that every basis β for V gives a direct sum decomposition $V = W_1 \oplus \cdots \oplus W_n$ where dim $W_i = 1$.
- 2. Prove the converse: If $V = W_1 \oplus \cdots \oplus W_n$ with dim $W_i = 1$, then choosing non-zero $w_i \in W_i$ forms a basis for V.
- 3. Let $T: V \to V$ be linear. Show that $[T]_{\beta}$ is block diagonal.

Question 10.

Let $W_1, \ldots, W_k \subseteq V$ with bases β_1, \ldots, β_k . Prove that $V = W_1 \oplus \cdots \oplus W_k$ if and only if $\beta = \beta_1 \cup \cdots \cup \beta_k$ is a basis for V.

Question 11.

Determine whether the following statements are true or false. Justify your answers.

- 1. If $V = W_1 \oplus W_2$ and T_{W_1}, T_{W_2} are diagonalizable, then T is diagonalizable.
- 2. If $W_i \cap W_j = \{0\}$ for $i \neq j$ and $V = W_1 + W_2 + W_3$, then $V = W_1 \oplus W_2 \oplus W_3$.
- 3. If dim V = 7, dim N(T) = 3, and rank(T I) = 4, then T is diagonalizable.