Homework set #7

- 1. (a) Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$. Find c > 0, possibly depending on n, that minimizes $MSE(cS_n^2)$.
 - (b) What implications does this have for sample variance?
- 2. Let X_1, \ldots, X_n be i.i.d. Exponential(λ), i.e., $f(x|\lambda) = \lambda e^{-\lambda x} I_{(0,\infty)}(x)$. Find the UMVUE for estimating $e^{-10\lambda}$.
- 3. Let us assume that X_1, X_2, \ldots, X_{2n} be i.i.d. from some distribution with parameter θ and $S(X_1, \ldots, X_{2n})$ is minimal sufficient complete statistics. Further assume that $T(X_1, \ldots, X_n)$ is an unbiased estimator of $q(\theta)$. Is there a UMVUE of $q(\theta)^2$? Justify!
- 4. Let X_1, \ldots, X_n be an i.i.d. sample from geometric (p) distribution. (i.e. $f(x,p) = p(1-p)^{x-1}I_{\{1,2...\}}$, where $p \in (0,1)$.)
 - (a) Argue exponential family and deduce complete sufficient statistics.
 - (b) Is there UMVUE of $\tau(p) = E_p X_1$? If so, find it.
 - (c) Find the UMVUE of $1/p^2$.
 - (d) Is there UMVUE of p? If so, find it.
- 5. Let X_1, \ldots, X_n be an i.i.d. sample from Pareto distribution. (i.e. $f(x;\theta) = \frac{\theta}{(1+x)^{\theta+1}} I_{(0,\infty)}(x)$).
 - (a) Argue exponential family and find complete sufficient statistics.
 - (b) Is there UMVUE of θ ? If so, find it.
 - (c) Is there UMVUE of $\tau(\theta) = 2^{-\theta}$? If so, find it.
- 6. Let X, \ldots, X_n be i.i.d. $N(\theta, \theta^2), \theta > 0$. For this model both \bar{X}_n and $Y_n = \frac{\sqrt{n-1}\Gamma((n-1)/2)}{\sqrt{2}\Gamma(n/2)}S_n$ are unbiased estimators of θ .
 - (a) Prove that any $a\bar{X}_n + (1-a)Y_n$ is an unbiased estimator of θ .
 - (b) Find the value of a that produces the estimator with minimum variance?

- (c) Show that (\bar{X}_n, Y_n) is minimal sufficient but NOT complete sufficient.
- 7. Let X_1, \ldots, X_n be an i.i.d. sample from Uniform (θ_1, θ_2) distribution. $(n > 10 \text{ and } \theta_1 < \theta_2)$
 - (a) Find the MM of (θ_1, θ_2) .
 - (b) Consider the estimators as two one-dimensional estimators. Are the estimators found in part a) unbiased?
 - (c) Find the MLE of (θ_1, θ_2) .
 - (d) Consider the estimators as two one-dimensional estimators. Are the estimators found in part c) unbiased? What are their MSE's?
- 8. Let X_1, \ldots, X_n be an i.i.d. sample from Beta(a, b) distribution.
 - (a) Find MM of (a, b) using the first and second raw moments.
 - (b) Find MLE of (a, b). (Hint: If you are not able to get a formula. Explain what would you do.)
 - (c) You observe: 0.88, 0.66, 0.74, 0.65, 0.39, 0.87, 0.93, 0.11, 0.97, 0.99. Find the MLE and MM of (a, b).
- 9. Assume that Y_1, \ldots, Y_m are i.i.d. Uniform $(0, \theta_1]$ and Z_1, \ldots, Z_n are i.i.d. Uniform $[\theta_1, \theta_2]$. (The Y's and Z's are mutually independent).
 - (a) Using \bar{Y} and \bar{Z} find MME of θ_1 , θ_2 . Find also the MSE's of the estimators.
 - (b) Find MLE of θ_1 , θ_2 . Find also the MSE's of the estimators.
 - (c) Does MLE seem to be better then MME in this case?
- 10. Let X_1, \ldots, X_n be an i.i.d. sample from $N(0, \sigma^2)$. Find MLE of σ^2 .
- 11. Let X_1, \ldots, X_n be an i.i.d. sample from Pareto distribution. (i.e. $f(x;\theta) = \frac{\theta}{(1+x)^{\theta+1}} I_{(0,\infty)}(x)$). Find MLE of θ .
- 12. Let X_1, \ldots, X_n be an i.i.d. sample from a distribution with density. $f(x; a, b) = \frac{1}{b} e^{-\left(\frac{x-a}{b}\right)} I_{(a,\infty)}(x)$.

- (a) Find MLE of (a, b).
- (b) Find the conditional distribution of $X_1-a, X_2-X_1, \ldots, X_n-X_1$ given $X_2>X_1, \cdots, X_n>X_1.$
- (c) Consider the MLEs as two one-dimensional estimators. Find their MSE. (Hint: Carefully consider what the result of part (b) mean for your calculations.)