Chapitre 5

Séries et familles sommables

- 1. Séries dans un espace vectoriel normé
- 2. Compléments sur les séries à termes positifs.

Les démos à connaître (en rouge les plus conséquentes)

1.2

Propriété 1 : convergence du terme général

Propriété 2 : convergence de la série des restes

Propriété 3 : lien entre série et suite

1.5.b

Proposition : On se place dans l'espace vectoriel normé $E = \mathcal{M}_n(\mathbb{K})$.

Soit $M \in \mathcal{M}_n(\mathbb{K})$: la série exponentielle $\sum \frac{M^n}{n!}$ converge absolument

2.1.c

② Proposition:

Soit $\sum v_n$ une série convergente de réels positifs et $\sum u_n$ une série complexe.

$$lacktriangledown$$
 Si $u_n = O(v_n)$, alors $\sum_{i=n+1}^{+\infty} u_i = O(\sum_{i=n+1}^{+\infty} v_i)$.

3 Proposition:

Soient $\sum u_{_{\!n}}$ et $\sum v_{_{\!n}}$ deux séries <u>de réels positifs</u> telles que $\,u_{_{\!n}} \sim v_{_{\!n}}.$ Alors :.

2.2.

 $\label{eq:constraint} Th\'{e}or\`{e}me: \mathbf{R\'{e}gle}\ \mathbf{de}\ \mathbf{D'alembert}$

Soit $\sum u_n$ une série de réels strictement positifs.

On suppose que $\ell = \lim \frac{u_{n+1}}{u_n}$ existe dans $\mathbb{R} \cup \{+\infty\}$.

- * Si $\ell < 1$, alors $\sum u_n$ converge.
- * Si $\ell > 1$, alors $\sum u_n$ diverge.

(démonstration du lemme y comprise)

2.3.a

Théorème 1 : Soit $f:\mathbb{R}_{{}_{^{+}}}\to\mathbb{R}_{{}_{^{+}}}$ une fonction continue et décroissante.

La série $\sum f(n)$ converge si et seulement si la suite $\left(\int_0^n f(t)dt\right)_{n\in\mathbb{N}}$ converge

<u>2.4.b</u>

Théorème: Critère spécial des séries alternées

Soit la série alternée $\sum u_{\scriptscriptstyle n}$ où $\,u_{\scriptscriptstyle n}=(-1)^{\scriptscriptstyle n}v_{\scriptscriptstyle n}.$

Si la suite $(v_{\scriptscriptstyle n})_{\scriptscriptstyle n\in\mathbb{N}}$ est <u>décroissante</u> et <u>tend vers 0,</u> alors :

- \blacksquare la série alternée $\sum u_n$ converge. Soit S sa somme :
- $\blacksquare \quad \forall n \in \mathbb{N} \ : \ S \in [S_n \ , S_{n+1}]$
- $\bullet \quad \forall n \in \mathbb{N} \ : \ \text{le reste} \ R_{\scriptscriptstyle n} \ \text{est du signe de} \ u_{\scriptscriptstyle n+1} \ \text{et} \ \big| R_{\scriptscriptstyle n} \big| \leqslant \big| u_{\scriptscriptstyle n+1} \big|.$