2019 TEST

MATHEMATICS METHODS Year 12 Section One:

Teacher's name
Your name

Time and marks available for this section Reading time before commencing work: 2 minutes Working time for this section: 15 minutes

Working time for this section: 15 minutes
Marks available: 15 marks

Materials required/recommended for this section To be provided by the supervisor This Question/Answer Booklet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Formula Sheet

Calculator-free

Important note to candidates

No other items may be taken into the examination room. It is your responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

CALCULATOR-FREE

Instructions to candidates

 The rules of conduct of the CCGS assessments are detailed in the Reporting and Assessment Policy. Sitting this assessment implies that you agree to abide by these rules.

2

- 2. Write your answers in this Question/Answer Booklet.
- 3. Answer all questions.
- You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question.
- 5. Supplementary pages for the use of planning/continuing your answer to a question have been provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 6. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat an answer to any question, ensure that you cancel the answer you do not wish to have marked.
- 7. It is recommended that you do not use pencil, except in diagrams.

(z marks)

CALCULATOR-FREE

Cuestion 1

The curve $y=kx^2-7x+6$ has a gradient of 11 when x=3. Find the value of k.

3

Question 2 (3 marks)

Find the derivative of $\frac{\sin(2\theta)}{\cos(2\theta)}$ with respect to θ . You must show full working with use of the Quotient Rule. Simplify your snewer.

See next page

MATHEMATICS METHODS Year 12 Question 9 Calculator Acan 12 Sketch the possible graphs of f(x) and f''(x) on the axes provided below given the graph of the derivative function f'(x).

End of questions

4

CALCULATOR-FREE

Question 3

(6 marks)

Consider the function $f(x) = \frac{1}{\sqrt{x}}$.

(2 marks)

(a) Calculate the derivative of f(x).

(b) Using your answer to part (a) and the function f(x), calculate the approximate value of $\frac{1}{\sqrt{100.5}}$, leaving your answer as a fraction. (4 marks)

MATHEMATICS METHODS Year 12

4

CALCULATOR-ASSUMED

Question 6

(7 marks)

A tank is to be built with a volume of $200\pi~m^3$. It is to be built with metal at a cost of $p \text{ per } m^2$ of cylindrical surface and $2p \text{ per } m^2$ of hemispherical surface. The tank is to be built according to the diagram shown below:

(a) Show that the cost function $C = \frac{400\pi p}{r} + \frac{16\pi r^2 p}{3}$.

(3 marks)

$$V = 200\pi$$

$$\therefore 200\pi = \frac{44}{3}\pi r^{3} + \pi r^{2}h$$

$$\Rightarrow h = \frac{200\pi - \frac{4}{3}\pi r^{3}}{\pi r^{2}}$$

 $\frac{1}{SA} = 2\pi r h \left(\rho \right) + 4\pi r^{2} \left(2\rho \right)$ sub in h. (SA expression)

SA =
$$2\pi r \rho \left(\frac{200}{r^2} - \frac{4}{3}r\right) + 8\pi r^2 \rho$$

= $\frac{400\pi d\rho}{r^4} - \frac{8\pi r^2 \rho}{3} + \frac{24}{3}\pi r^2 \rho$ (Subs in hair) and simplifies

$$\frac{400\pi\rho}{r} + \frac{16\pi r^2 \rho}{3}$$
 As required

CALCULATOR-FREE

(4 marks)

Question 4

Sketch a function y = f(x) with all of the following features.

S

$$0 = (1-) \mathcal{I} = (1) \mathcal{I} \quad \bullet$$

$$0 = (Z)_{i} f = (0)_{i} f$$
 •

$$\bullet \quad f''(2) = 0$$

$$0 > x \text{ sof } 0 > (x), f \bullet$$

$$z > x > 0$$
 ' $z < x$ so $f > 0 < (x), f$ •

End of Questions

(6 marks) Question 3 CALCULATOR-FREE MATHEMATICS METHODS Year 12

(S marks)

Consider the function $f(x) = \frac{1}{x\sqrt{x}}$

(a) Calculate the derivative of f(x).

(Sutrative) W == - 1/2 x 2/- = (x) +

(b) Using your answer to (a) and the function f(x), calculate the approximate value of

 $\frac{1}{\sqrt{100.5}}$, leaving your answer as a fraction. (4 marks)

$$\frac{\chi p}{hp} = \frac{\chi p}{h} + \frac{\chi p}{h} = \frac{\chi$$

Hence
$$\frac{1}{\sqrt{100.5}} = \frac{1}{\sqrt{100.5}} = \frac{1}{\sqrt{100.5}}$$

CAL	LCI	II.A	TO	R-	FR	EE

Additional working space

Question number: _____

MATHEMATICS METHODS Year 12

7

CALCULATOR-ASSUMED

Question 8

(5 marks)

Two variables x and y are such that $x^4y = 8$. A third variable z is defined by z = x + y.

(a) Find the values of x and y that give z a stationary value.

(3 marks)

(b) Use the second derivative test to show that this value of z is a minimum. (2 marks)

$$\frac{d^{2}z}{dx^{2}} = \frac{160}{x^{6}}$$

$$\frac{d^{2}z}{dx^{2}}$$

$$\frac{d^{2}z}{dx^{2}}$$

$$= \frac{160}{2^{6}} > 0$$

$$\frac{d^{2}z}{dx^{2}} > 0$$

$$\frac{d^{2}z}{dx^{2}} > 0$$

Additional working space CALCULATOR-FREE

Question number:

(2 marks)

MATHEMATICS METHODS Year 12

CALCULATOR-ASSUMED

Question 7

(2 marks)

(a) Find $f'(\pi)$, if $f(x) = \frac{3x^{n+1}}{\cos(x)}$, leaving your answer as an exact value.

which the curve has a negative gradient. also touches, but does not cross, the x-axis at the point (1,0). Find the values of x for (b) A curve with equation $y = ax^3 + bx^2 + cx + d$ has zero gradient at the point $\left(\frac{1}{3}, \frac{4}{72}\right)$ and

$$\begin{cases}
1 - 2x - 2 \\
4 - 2y
\end{cases} = 1, b = -2, c = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2 \\
4 - 2y
\end{cases} = 1, b = -2, c = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2 \\
4 - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2y
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1, d = 0$$

$$\begin{cases}
5 - 2x - 2x
\end{cases} = 1,$$

See next page

2019 TEST 1

MATHEMATICS METHODS Year 12

Section Two: Calculator-assumed

Your name			
Teacher's n	amo		

Time and marks available for this section

Reading time before commencing work: 3 minutes Working time for this section: 30 minutes Marks available: 30 marks

Materials required/recommended for this section

To be provided by the supervisor

This Question/Answer Booklet Formula Sheet (retained from Section One)

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener,

correction fluid/tape, eraser, ruler, highlighters

Special items: drawing instruments, templates, and up to three calculators approved for use in the WACE examinations

Important note to candidates

No other items may be taken into the examination room. It is your responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor before reading any further.

MATHEMATICS METHODS Year 12

5

CALCULATOR-ASSUMED

Question 6 continued

(b) Find the radius for the minimum cost of the tank, verifying that it is a minimum.

$$\frac{dc}{dr} = \frac{32 \operatorname{pr}^{3} \operatorname{nr} - 1200 \operatorname{\pi p}}{3r^{2}} / \left(\frac{3 \operatorname{marks}}{4r} \right)$$

$$\frac{dc}{dr} = 0 \implies r = \sqrt[3]{\frac{7c}{2}}$$

$$r = \frac{3.347 \operatorname{m}}{4r^{2}} / \left(\frac{2^{\operatorname{nod}}}{4r^{2}} \right)$$

$$\frac{dc}{dr} = 0 \implies r = \sqrt[3]{\frac{7c}{2}}$$

$$r = \frac{3.347 \operatorname{m}}{4r^{2}} / \left(\frac{2^{\operatorname{nod}}}{4r^{2}} \right)$$

$$\frac{dc}{dr} = 0 \implies r = \sqrt[3]{\frac{7c}{2}}$$

$$\frac{3.347}{4r^{2}} / \left(\frac{2^{\operatorname{nod}}}{4r^{2}} \right)$$

$$\frac{2^{\operatorname{nod}}}{4r^{2}} / \left(\frac{2^{\operatorname{nod}}}{4r^{2}} \right)$$

$$\frac{2^{\operatorname{nod}}}{4r^{2}} / \left(\frac{2^{\operatorname{nod}}}{4r^{2}} \right)$$

(c) Find the cost when p = 10.

(1 mark)

Instructions to candidates

- The rules of conduct of the CCGS assessments are detailed in the Reporting and Assessment Policy. Sitting this assessment implies that you agree to abide by these rules
- 2. Write your answers in this Question/Answer Booklet.
- Answer all questions.

.6

.6

- 4. You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question.
- Supplementary pages for the use of planning/continuing your answer to a question have been provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat an answer to any question, ensure that you cancel the answer you do not wish to have marked.
- It is recommended that you do not use pencil, except in diagrams.

gee uext page

MATHEMATICS METHODS Year 12 3 CALCULATOR-ASSUMED

Question 5 (8 marks)

A particle moves in such a way that its displacement x metres from the origin is given by $x=t^3-6t^2+9t-1$, where t is the time in seconds.

Determine:

(a) where the particle is initially.

HI 4 W / = 0=7/x

(b) an expression for the velocity of the particle in terms of t.

(c) when the particle is at rest.

(d) an expression for the acceleration of the particle and the acceleration when

t = 2 seconds. (2 marks)

$$\int \frac{1}{25} |WO| = \int \frac{1}{25727} |DO| = 25727 |DO| = 257$$

(2 marks)

(e) the distance travelled in the first 3 seconds.

See next page

the distance travelled in the first 3 seconds.

(2 marks)

MATHEMATICS METHODS Year 12

CALCULATOR-ASSUMED

Instructions to candidates

 The rules of conduct of the CCGS assessments are detailed in the Reporting and Assessment Policy. Sitting this assessment implies that you agree to abide by these rules.

2

- Write your answers in this Question/Answer Booklet.
- 3. Answer all questions.
- You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question.
- 5. Supplementary pages for the use of planning/continuing your answer to a question have been provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 6. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat an answer to any question, ensure that you cancel the answer you do not wish to have marked.
- 7. It is recommended that you do not use pencil, except in diagrams.

CALCULATOR-ASSUMED

MATHEMATICS METHODS Year 12

Question 6

A tank is to be built with a volume of $200\pi\,m^3$. It is to be built with metal at a cost of \$p\$ per m^2 of cylindrical surface and \$2p per m^2 of hemispherical surface. The tank is to be built according to the diagram shown below:

(3 marks)

(a) Show that the cost function
$$C = \frac{400\pi p}{r} + \frac{16\pi r^2 p}{3}$$
.

See next page

2019 VIT TEST 1

MATHEMATICS METHODS Year 12

Section Two: Calculator-assumed

30 marks	Marks available:
30 minutes	Working time for this section:
3 minutes	Reading time before commencing work:
section	Time and marks available for this
	Teacher's na
- SNOIL070S -	Your name

Materials required/recommended for this section To be provided by the supervisor

This Question/Answer Booklet Formula Sheet (retained from Section One)

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: drawing instruments, templates, and up to three calculators approved for use in the WACE examinations

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

R/I A	THEM	TICS	METH	nnc	Vear	12

5

CALCULATOR-ASSUMED

Question 6 continued

(b) Find the radius for the minimum cost of the tank, verifying that it is a minimum. (3 marks)

Find the cost when p = 10.

(1 mark)

See next page

CALCULATOR-FREE

MATHEMATICS METHODS Year 12

Question 4

(4 marks)

Sketch a function y = f(x) with all of the following features.

5

- f(1) = f(-1) = 0
- f'(0) = f'(2) = 0
- f''(2) = 0
- f'(x) < 0 for x < 0
- f'(x) > 0 for x > 2, 0 < x < 2

End of Questions

CALCULATOR-ASSUMED

MATHEMATICS METHODS Year 12

Question 7

(5 marks)

(a) Find $f'(\pi)$, if $f(x) = \frac{3x^2+1}{\cos(x)}$, eaving your answer as an exact value. (2 marks)

9

(b) A curve with equation $y = ax^3 + bx^2 + cx + d$ has zero gradient at the point $(\frac{1}{3}, \frac{4}{27})$ and also fouches, but does not cross, the *x*-axis at the point (1,0). Find the values of *x* for which the curve has a negative gradient.

(3 marks)

zee next page

MATHEMATICS METHODS Year 12

3

CALCULATOR-FREE

(S marks)

Question 1 The curve $y = kx^2 - 7x + 6$ has a gradient of 11 when x = 3. Find the value of k.

$$|| = \frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}{\partial x}$$

(3 marks)

Question 2

Find the derivative of $\frac{\sin(2\theta)}{\cos(2\theta)}$ with respect to θ . You must show full working with use of the Quotient Rule. Simplify your answer.

9

MA	THEMATICS METHODS Year 12	7	CALCULATOR-ASSUMED			
Que	estion 8		(5 marks)			
Two variables x and y are such that $x^4y=8$. A third variable z is defined by $z=x+y$.						
(a)	Calculate the values of x and y at t	he point v	where z is a stationary point.			

(a) Calculate the values of x and y at the point where z is a stationary point.
 (3 marks)

(b) Use the second derivative test to show that this value of \boldsymbol{z} is a minimum.

(2 marks)

See next page

MATHEMATICS METHODS Year 12

CALCULATOR-FREE

Instructions to candidates

- The rules of conduct of the CCGS assessments are detailed in the Reporting and Assessment Policy. Sitting this assessment implies that you agree to abide by these rules.
- Write your answers in this Question/Answer Booklet.
- 3. Answer all questions.
- You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question.
- 5. Supplementary pages for the use of planning/continuing your answer to a question have been provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 6. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat an answer to any question, ensure that you cancel the answer you do not wish to have marked.
- 7. It is recommended that you do not use pencil, except in diagrams.

 $(x)_{\mu}$ 8- $(x)_{i}f$ (x) fof the derivative function f'(x). Sketch the possible graphs of f(x) and f''(x) on the axes provided below given the graph (3, 2 marks) Question 9 MATHEMATICS METHODS Year 12 CALCULATOR-ASSUMED

End of questions

0

2019

UNIT TEST 1

MATHEMATICS METHODS Year 12

Calculator-free Section One:

Your name SNOITUJOS

Teacher's name_

15 marks Marks available: 15 minutes Working time for this section: Reading time before commencing work: 2 minutes Time and marks available for this section

Formula Sheet This Question/Answer Booklet To be provided by the supervisor Materials required/recommended for this section

To be provided by the candidate

correction fluid/tape, eraser, ruler, highlighters Standard items: pens (blue/black preferred), pencils (including coloured), sharpener,

Special items: nil

Important note to candidates

to the supervisor before reading any further. nature in the examination room. If you have any unauthorised material with you, hand it ensure that you do not have any unauthorised notes or other items of a non-personal No other items may be taken into the examination room. It is your responsibility to

MATHEMATICS METHODS Year 12	9	CALCULATOR-ASSUMED	MATHEMATICS METHODS Year 12	10	CALCULATOR-ASSUMED
Additional working space			Additional working space		
Question number:			Question number:		

See next page