Osnove mehatronike Zadaci za vježbu

Zadatak 1.

Nakon isključenja motora, osovina koja se okretala brzinom $n_0 = 1500$ o/min počinje usporavati i zaustavlja se nakon $t_z = 2$ s. Koliko iznosi ukupna inercija sustava ako je moment tereta prilikom zaustavljanja bio konstantan iznosa $M_t = 100 \ Nm$.

Rješenje: $I = 4/\pi \text{ kgm}^2$

Zadatak 2.

Trofazni asinkroni motor nazivnog momenta $M_n = 148$ Nm i momenta inercije $I_m = 0,1$ kg m² pokreće se konstantnim momentom 1,3 M_n . Koliki smije biti moment inercije radnog mehanizma reduciran na osovinu motora ako se motor mora zaletiti do brzine 1480 o/min u vremenu od 2 s? Moment tereta iznosi 0 Nm.

Rješenje: $I'_{rm} = 1,38 \text{ kg m}^2$ $I'_{rm} = 2,38 \text{ kg m}^2$

Zadatak 3.

Moment motora tijekom zaleta je konstantan i iznosi 100 Nm. Moment inercije motora i radnog mehanizma reduciranog na stranu motora iznosi I = 2 Nm. Koliko iznosi vrijeme zaleta do nazivne brzine vrtnje $n_n = 1480$ o/min ako moment tereta iznosi:

a) $M_t = 0$

b) $M_t = 30 \text{ Nm}$

Rješenje: a) $t_z = 3,10 \text{ s}$ b) $t_z = 4,43 \text{ s}$

Zadatak 4.

Motor ubrzava konstantnom kutnom akceleracijom $\alpha = 10 \text{ rad/s}^2$ od brzine $n_0 = 0 \text{ o/min}$ do nazivne brzine $n_n = 1480 \text{ o/min}$. Koliko traje vrijeme zaleta motora? Koliko okretaja napravi motor tijekom zaleta?

Rješenje: t = 15,5 s N = 191,1

Zadatak 5.

Na osovini motora nalazi se bubanj promjera r = 0,2 m. Na bubanj je namotana špaga na koju je obješen teret. Koliko traje spuštanja tereta početne brzine $v_0 = 0$ m/s s visine 10 m ako je akceleracija tereta konstantna i iznosi a = 0,1 m/s? Koliko okretaja napravi bubanj tijekom spuštanja tereta?

Rješenje: t = 14,14 s N = 7,96

Zadatak 6.

Četiri homogena štapa spojena su u kvadrat. Masa svakog štapa iznosi 0,5 kg, a duljina 0,5 m. Potrebno je izračunati moment tromosti kvadrata prema osi prolazi vrhom kvadrata i okomita je na ravninu kvadrata. Koliki je moment ako os rotacije prolazi središtem stranice kvadrata i okomita je na ravninu kvadrata?

Rješenje: $I_1 = 0.417 \text{ kg m}^2$ $I_2 = 0.292 \text{ kg m}^2$

Zadatak 7.

Središta diskova mase $m_d = 1$ kg i polumjera $r_d = 0,2$ m međusobno su spojena štapovima mase $m_{\breve{s}} = 0,12$ kg i duljine $l_{\breve{s}} = 1$ m. Koliki je moment inercije sustava prema osi koja prolazi točkom A i okomita je ravninu istostraničnog trokuta koju čine štapovi. Kolika je kinetička energija sustava ako sustav rotira kutnom brzinom $\omega = 10$ rad/s?

Rješenje: $I = 1,39 \text{ kg m}_2$ $E_k = 69.5 \text{ J}$ $I = 1,12 \text{ kg m}_2$ $E_k = 56 \text{ J}$

Zadatak 8.

Uteg mase $m = 10 \ kg$ iz stanja mirovanja počinje klizati niz kosinu koja s horizontalomb zatvara kut $\alpha = 30^{\circ}$. Faktor trenja između kosine i utega iznosi $\mu_k = 0,4$. Na dnu kosine, nakon što je klizao D, brzina utega iznosi $v_k = 12 \ m/s$. Koliko iznosi D? Ako se uzme uteg dvostruko veće mase koliko će iznositi vrijeme potrebno za zaustavljanje?

Rješenje: D = 47,786m $t_m = t_{2m}$