

Medidas de Variação ou Dispersão

Estatística descritiva

- Recapitulando: As três principais características de um conjunto de dados são:
 - Um valor representativo do conjunto de dados: uma média (Medidas de Tendência Central)
 - Uma medida de dispersão ou variação.
 - A natureza ou forma da distribuição dos dados: sino, uniforme, assimétrica,... (Tabelas de frequência e histogramas)

Medidas de Variação

- Determina a característica de variação de um conjunto de dados
 - Amplitude
 - Desvio
 - Desvio médio ou desvio absoluto
 - Desvio padrão
 - Variância

Amplitude

- Diferença entre o maior e o menor valor
 - Subtraia o menor valor do maior
 - Amplitude = 1,88 1,60 = 0,28 m

Análise Estatística da Turma de Prob. e

X
1,72
1,60
1,74
1,88
1,82
1,75
1,82
1,75
1,73
1,75
1,80
1,75
1,73
1,84
1,76
1,78
1,75
1,69
31,66
1,759
0,28

Desvio e desvio Análise Estatísti Prob. e E

- Desvio
 - diferença entre cada valor e a média $x \overline{x}$
- Desvio médio ou absoluto
 - Média dos desvios em termos absolutos

$$\frac{\sum |x - \overline{x}|}{n}$$

Analise Estatistica da Turma de						
Prob. e Estatística						
Eventos	Х	X -X	$ x-\overline{x} $			
Aluno 1	1,72	-0,04	0,04			
Aluno 2	1,60	-0,16	0,16			
Aluno 3	1,74	-0,02	0,02			
Aluno 4	1,88	0,12	0,12			
Aluno 5	1,82	0,06	0,06			
Aluno 6	1,75	-0,01	0,01			
Aluno 7	1,82	0,06	0,06			
Aluno 8	1,75	-0,01	0,01			
Aluno 9	1,73	-0,03	0,03			
Aluno 10	1,75	-0,01	0,01			
Aluno 11	1,80	0,04	0,04			
Aluno 12	1,75	-0,01	0,01			
Aluno 13	1,73	-0,03	0,03			
Aluno 14	1,84	0,08	0,08			
Aluno 15	1,76	0,00	0,00			
Aluno 16	1,78	0,02	0,02			
Aluno 17	1,75	-0,01	0,01			
Aluno 18	1,69	-0,07	0,07			
	Média	Soma	Desvio			
	Wicula	desvios	médio			
	1,759	0,000	0,043			

- Desvio padrão: medida da variação dos valores em relação à média.
- Ex.: Calcular o desvio padrão do conjunto de dados ao lado.
 - Passo 1: Calcule a média;
 - Passo 2: Calcule o DESVIO de cada medida sobre a média

Desvio =
$$x - \overline{x}$$

Análise Estatística da Turma de						
Prob. e Estatística						
Eventos	X	$X-\overline{X}$				
Aluno 1	1,72	-0,04				
Aluno 2	1,60	-0,16				
Aluno 3	1,74	-0,02				
Aluno 4	1,88	0,12				
Aluno 5	1,82	0,06				
Aluno 6	1,75	-0,01				
Aluno 7	1,82	0,06				
Aluno 8	1,75	-0,01				
Aluno 9	1,73	-0,03				
Aluno 10	1,75	-0,01				
Aluno 11	1,80	0,04				
Aluno 12	1,75	-0,01				
Aluno 13	1,73	-0,03				
Atuno 14	1,84	0,08				
Aluno 15	1,76	0,00				
Aluno 16	1,78	0,02				
Aluno 17	1,75	-0,01				
Aluno 18	1,69	-0,07				
Soma	31,66	0,00				
Média	1,759					

- Calcule o desvio padrão do conjunto de dados ao lado.
 - Passo 3: Eleve ao quadrado cada uma das diferenças;
 - Passo 4: Some todos os quadrados obtidos

$$\sum (x - \overline{x})^2$$

Análise Estatística da Turma de Prob. e Estatística

Eventos	X	<u>-</u> X-X	$(x-\overline{x})^{2}$
Aluno 1	1,72	-0,04	0,0015
Aluno 2	1,60	-0,16	0,0252
Aluno 3	1,74	-0,02	0,0004
Aluno 4	1,88	0,12	0,0147
Aluno 5	1,82	0,06	0,0037
Aluno 6	1,75	-0,01	→ 0,0001
Aluno 7	1,82	0,06	0,0037
Aluno 8	1,75	-0,01	0,0001
Aluno 9	1,73	-0,03	0,0008
Aluno 10	1,75	-0,01	0,0001
Aluno 11	1,80	0,04	0,0017
Aluno 12	1,75	-0,01	0,0001
Aluno 13	1,73	-0,03	0,0008
Aluno 14	1,84	0,08	0,0066
Aluno 15	1,76	0,00	0,0000
Aluno 16	1,78	0,02	0,0004
Aluno 17	1,75	-0,01	0,0001
Aluno 18	1,69	-0,07	0,0047
Soma	31,66	0,00	0,065

- Passo 5: Divida o total por (n-1), onde n é o número de dados coletados (amostra);
- Passo 6: Extraia a raiz quadrada do resultado anterior

$$\sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

Desvio Padrão

Análise Estatística da Turma de Prob. e					
Estatística					
Eventos	X	X-X	$(x-\overline{x})^2$		
Aluno 1	1,72	-0,04	0,0015		
Aluno 2	1,60	-0,16	0,0252		
Aluno 3	1,74	-0,02	0,0004		
Aluno 4	1,88	0,12	0,0147		
Aluno 5	1,82	0,06	0,0037		
Aluno 6	1,75	-0,01	0,0001		
Aluno 7	1,82	0,06	0,0037		
Aluno 8	1,75	-0,01	0,0001		
Aluno 9	1,73	-0,03	0,0008		
Aluno 10	1,75	-0,01	0,0001		
Aluno 11	1,80	0,04	0,0017		
Aluno 12	1,75	-0,01	0,0001		
Aluno 13	1,73	-0,03	0,0008		
Aluno 14	1,84	0,08	0,0066		
Aluno 15	1,76	0,00	0,0000		
Aluno 16	1,78	0,02	0,0004		
Aluno 17	1,75	-0,01	0,0001		
Aluno 18	1,69	-0,07	0,0047		
Soma	31,66	0,00	0,065		
Mé dia	1,759				
$\sqrt{\sum (\lambda)}$	$(z-\overline{x})^2$	0,062			

De uma amostra

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

De uma população

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{N}}$$

Observação:

A unidade do desvio padrão é a mesma unidade dos valores originais, ou conjunto de dados.

Fórmula abreviada para o desvio padrão

$$s = \sqrt{\frac{n(\sum x^{2}) - (\sum x)^{2}}{n(n-1)}}$$

Vantagens e desvantagens:

- Mais conveniente para uso com números extensos e com grandes conjuntos de valores
- Maior facilidade de uso com calculadoras e computadores (apenas três registros: n, Σx e Σx^2)
- Elimina erros de arredondamento
- Não evidencia o conceito de desvio médio da fórmula tradicional

Variância

- Desvio padrão ao quadrado
 - s² → variância amostral
 - $-\sigma^2 \rightarrow$ variância populacional

$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

$$\sigma^2 = \frac{\sum (x - \overline{x})^2}{N}$$

Observação:

A unidade da variância é a mesma unidade do conjunto de dados, elevada ao quadrado.

Considerações finais

Arredondamento:

- Tomar uma casa decimal a mais em relação às que constam dos dados originais.
- Arredondar apenas o resultado final e não os resultados intermediários.
- Se necessitarmos arredondar os resultados intermediários, acrescente duas casas decimal a mais em relação às que constam dos dados originais

Para que serve o desvio padrão?

- Indica a dispersão dos dados; quanto mais dispersos, maior o desvio padrão
- Regra prática
 - Desvio padrão ≅ amplitude/4 *(só usar em casos muito extremos)
 - Portanto:
 - valor mínimo ≅ média 2.(s)
 - Valor máximo ≅ média + 2.(s)
- Teorema de Tchebichev
 - A proporção de qualquer conjunto de dados a menos de K desviospadrão a contar da média é sempre ao menos 1-1/k², onde k é um número positivo maior do que 1. Para k=2 e k=3, temos:
 - Ao menos $\frac{3}{4}$ (75%) de todos os valores estão no intervalo de \pm 2 desviospadrão em torno da média
 - Ao menos 8/9 (89%) de todos os valores estão no intervalo de \pm 3 desviospadrão em torno da média

Medidas de dispersão

 O Coeficiente de Variação indica a magnitude relativa do desvio-padrão quando comparado com a média do conjunto de valores

$$CV = \frac{S}{\overline{\chi}}$$
 (amostra) $CV = \frac{\sigma}{\mu}$ (população)

 O Coeficiente de Variação é útil para compararmos a variabilidade (dispersão) de dois conjuntos de dados de ordem de grandezas diferentes

Medidas de dispersão

Seja o seguinte conjunto de preços de geladeiras em 7 lojas distintas

750,00 800,00 790,00 810,00 820,00 760,00 780,00

 $\bar{x} = 787,14$ s = 25,63

 Seja o seguinte conjunto de preços de liquidificadores nas mesmas lojas acima

50,00 45,00 55,00 43,00 52,00 45,00 54,00

 $\bar{x} = 49,14$ s = 4,81

Qual dos produtos têm uma maior variabilidade de preços?

Medidas de dispersão

- Uma vez que, em geral, uma geladeira custa bem mais que um liquidificador, a tendência é que o desvio-padrão da geladeira seja também maior!
- O coeficiente de variação é uma medida adimensional que normaliza o desvio padrão em relação à média

$$CV_{geladeira} = \frac{25,63}{787,14} = 3,3\%$$
 $CV_{liquidific\ ador} = \frac{4,81}{49,14} = 9,8\%$

 Com o CV podemos concluir que os preços da geladeira têm uma menor variabilidade que os do liquidificador

Medida de Dispersão: Intervalo interquartil (amplitude interquartílica)

- Uma medida de dispersão alternativa que pode ser empregada é o chamado intervalo interquartil ou amplitude interquartílica
- É a diferença entre o terceiro e o primeiro quartis
- Só aproveita 50% dos dados
 - Pouco influenciada pelos valores extremos

$$D_i = Q_3 - Q_1 = P_{0,75} - P_{0,25}$$

Medidas de posição e dispersão

Para o conjunto de valores abaixo:

$$Q1 = 10$$
 $Q2 = Md = 16.5$ $Q3 = 28$ $Q4 = 44$

05; 07; 08; 10; 12; 15; 18; 20; 28; 35; 40; 44

Se alterarmos significativamente o último valor:

05; 07; 08; 10; 12; 15; 18; 20; 28; 35; 40; 200 Dj = 28 - 10 = 18!!!

Teorema de Tchebichev

 A fração (porcentagem) de QUALQUER conjunto de dados, a menos de K desvios a contar da média, é SEMPRE ao menos:

1 -
$$1/K^2$$
 onde K>1

Para k = 2 e k = 3 isto significa, por exemplo:

$$[\bar{x}-2s,\bar{x}+2s] \rightarrow 75\%$$
 dos dados

Ou seja, ao menos ¾ de todos os valores estão neste intervalo

$$[\bar{x} - 3s, \bar{x} + 3s] \rightarrow 89\% \text{ dos dados}$$

Teorema de Tchebichev

- Barbeadores elétricos sem fio da marca XYZ têm *vida média* de 8,0 anos, com desvio padrão de 3,0 anos.
- Faça uma estimativa:
 - da vida mais breve =>
 - da vida mais longa =>
- Tchebichev também é útil para identificar valores "estranhos" em um conjunto de dados: aqueles que ficam de fora do intervalo!

Identificando "outliers"

- "<u>Outliers</u>" são valores "estranhos" que se localizam muito distantes da média
- Por isso, as estatísticas descritivas são, usualmente, muito influenciadas ("contaminadas") por eles
- Podem se originar em erros de coleta OU em desvios de processo
- Esses outliers devem ser muito bem analisados antes de um possível descarte!

Identificando "outliers"

- Tchebichev pode nos ajudar na identificação de *outliers*
- Valores fora do intervalo de +/- 2s devem ser analisados para um possível descarte

$$[\bar{x}-2s,\bar{x}+2s] \rightarrow$$
 for a deste intervalo, é estranho

Escore Padronizado

$$z = \frac{x - \overline{x}}{s}$$

$$z = \frac{x - \mu}{\sigma}$$

 Número de desvios-padrão pelo qual um valor dista da média (para mais ou para menos)

Exercício

 As alturas da população de homens adultos têm média µ=1,752m, desvio padrão σ=0,071m e distribuição gráfica em forma de sino (normal). O jogador de basquete Michael Jordan, que mede 1,98m, pode ser considerado excepcionalmente alto? Determine o escore padrão z para ele.

Resolução

Calcula-se o escore z conforme segue:

$$z = \frac{x - \mu}{\sigma} = \frac{1,98 - 1,752}{0,071} \approx 3,211$$

 Este resultado indica que a altura de Michael Jordan está a 3,21 desvios-padrão acima da média da população. Considerando incomuns valores acima ou abaixo de 2 desvios da média, conclui-se que Michael Jordan é de fato excepcionalmente alto comparando com a população geral.