Stat 120

Deepak Bastola

2023-01-08

Contents

\mathbf{A}	bout		5
1	Clas	ss Activity 1	7
	1.1	Your Turn 1	7
	1.2	Your Turn 2	8
	1.3	Quiz	9
2	Clas	ss Activity 2	11
	2.1	Your Turn 1	11
	2.2	Your Turn 2	11
	2.3	Your Turn 3	12
	2.4	Quiz	14
3	(PA	RT*) Basics R	17
4	Wh	at is R?	19
	4.1	What is RStudio?	19
	4.2	R Studio Server	19
	4.3	R Markdown Basics	20
	4.4	Installing R/RStudio (not needed if you are using the maize server) $$	20
	4.5	Install LaTeX (for knitting R Markdown documents to PDF):	20
	4.6	Updating R/RStudio (not needed if you are using the maize server)	21
	4.7	Instructions	21
	4.8	Few More Instructions	22

4	CONTENTS

\mathbf{R}	Markdown
5.1	Including Plots
5.2	Read in data files
5.3	Hide the code

About

This is a sample book written in Markdown to guide STAT 120 students interactively explore various class activities and projects in R.

6 CONTENTS

Class Activity 1

1.1 Your Turn 1

a. Run the following chunk. Comment on the output.

Click for answer

${\tt example_data}$

```
ID Greeting Male Age
1 1 Hello TRUE 21.39270
2 2 Hello FALSE 55.18330
3 3 Hello TRUE 54.35298
4 4 Hello FALSE 38.84701
5 5 Hello TRUE 46.65463
6 6 Goodbye FALSE 57.27510
7 7 Goodbye TRUE 59.32366
8 8 Goodbye FALSE 56.82235
9 9 Goodbye TRUE 29.72396
10 10 Goodbye FALSE 39.89474
```

Answer: We see a data frame with four columns, where the first column is an identifier for the cases. We have information on the greeting types, whether male or not, and age on these cases in the remaining columns.

b. What is the dimension of the dataset called 'example_data'?

Click for answer

```
dim(example_data)
[1] 10 4
nrow(example_data)
[1] 10
ncol(example_data)
[1] 4
```

Answer: There are 10 rows and 4 columns.

1.2 Your Turn 2

 a. Read the dataset EducationLiteracy from the Lock5 second edition book.

Click for answer

```
# read in the data
education_lock5 <- read.csv("https://www.lock5stat.com/datasets2e/EducationLiteracy.cs")</pre>
```

b. Print the header (i.e. first 6 cases by default) of the dataset in part a.

Click for answer

head(education_lock5)

	Country	EducationExpenditure	Literacy
1	Afghanistan	3.1	31.7
2	Albania	3.2	96.8
3	Algeria	4.3	NA
4	Andorra	3.2	NA
5	Angola	3.5	70.6
6	Antigua and Barbuda	2.6	99.0

1.3. QUIZ 9

c. What is the dimension of the dataset in a?

Click for answer

dim(education_lock5)

[1] 188 3

Answer: There are 188 rows and 3 columns.

d. What type of variables are Country, EducationExpenditure, and Literacy?

Click for answer

 $\label{lem:Answer: Country is a categorical variable. Education {\tt Expenditure} \ and {\tt Literacy} \ are both quantitative variables.$

e. If we would like to use education expenditure to predict the literacy rate of each countries, which variable is the explanatory variable and which one is the response?

Click for answer

Answer: The education expenditure is the explanatory variable, and the literacy rate is the response.

1.3 Quiz

- 1. Cases are a set of individual units where the measurements are taken.
 - A. TRUE
 - B. FALSE

Click for answer

TRUE

- 2. The characteristic that is recorded for each case is called a
 - A. ledger

- B. caseholder
- C. placeholder
- D. variable

Click for answer

variable

- 3. Variables can be either categorical or quantitative.
 - A. TRUE
 - B. FALSE

Click for answer

TRUE

Class Activity 2

2.1 Your Turn 1

This exercise is about finding the average word length in Lincoln's Gettysburg's address.

2.2 Your Turn 2

2.2.1 Summary of article on It depends on how you ask!

Click for answer

Answer:

This study aimed to measure the effects of psychological biases on estimates of compliance with public health guidance regarding COVID-19. Results showed that compliance estimates were reduced when questions were framed negatively and anonymity was increased. Effect sizes were large, with compliance estimates diminishing by up to 17% points and 10% points, respectively. These findings suggest that standard tracking surveys pose questions in ways that lead to higher compliance estimates than alternative approaches.

2.3 Your Turn 3

2.3.1 Gettysburg random sample

Let's take a simple random sample (SRS) of Gettysburg words. The "population" is contained in the spreadsheet GettysburgPopulationCounts.csv. Carefully load this data into R:

pop <- read.csv("https://raw.githubusercontent.com/deepbas/statdatasets/main/Gettysberged)</pre>

```
position size
                  word
1
         1
               4
                  Four
2
         2
               5 score
3
         3
               3
                   and
         4
4
               5 seven
         5
5
               5 years
6
         6
                 ago,
```

The position variable enumerates the list of words in the population (address).

(a). Sample

Run the following command to obtain a SRS of 10 words from the 268 that are in the population:

```
samp <- sample(1:268, size=10)
samp</pre>
```

```
[1] 22 73 40 245 62 21 67 107 135 121
```

This tells you the position (row number) of your sampled words. What are your sampled positions? Why are your sampled positions different from other folks in class?

(b). Get words and lengths

We will *subset* the data set pop to obtain only the sampled rows listed in samp. We do this using **square bracket notation** 'dataset[row number, column number/name]. Run the following command to find your sampled words and sizes:

```
pop[samp,]
```

```
position size word 22 22 2 to
```

that	4	73	73
testing	7	40	40
have	4	245	245
of	2	62	62
dedicated	9	21	21
come	4	67	67
sense,	5	107	107
power	5	135	135
men,	3	121	121

c. Compute your sample mean

The word lengths in part (b) are the data for your sample. You can compute your sample mean using a calculator, or using R. Let's try R (you will find it faster!). First save the quantitative variable size in a new variable called mysize:

```
mysize <- pop[samp, "size"]
mysize</pre>
```

[1] 2 4 7 4 2 9 4 5 5 3

Then find the mean of these values:

```
mean(mysize)
```

[1] 4.5

How does this sample mean (from a truly random sample) compare to your sample mean from the non-random sample?

Click for answer

Answer: The true mean is 4.29. Your two means will likely vary. Since the many non-random samples generally overestimated the population mean length, it is possible (but not guaranteed) that *your* one non-random sample gave a mean length that is greater than the random sample's mean length.

2.3.2 Driving with a Pet on your Lap

Over 30,000 people participated in an online poll on cnn.com conducted in April 2012 asking: "Have you ever driven with a pet on your lap"? We see that 34% of the participants answered yes and 66% answered no.

a. Can you conclude that a random sample was used from the description given? Explain.

Click for answer

Answer: No you can't make this conclusion from the info given. In fact, an online poll at a website like cnn.com is almost always reporting results from a non-random sample. The people who respond are individuals who visit cnn.com, then see the online poll and decide to respond.

b. Explain why it is not appropriate to generalize these results to all drivers, or even to all drivers who visit cnn.com.

Click for answer

Answer: This is a volunteer sample, and volunteer samples are often biased and can't be generalized to *all drivers* (the population). It is likely that people who have driven with a pet on their lap are more likely to respond to the poll.

c. How might we select a sample of people that would give us results that we can generalize to a broader population?

Click for answer

Answer: A random sample of individuals from all U.S. drivers would need to be selected and given the poll question. (There are many ways to do this, the most common being a variation of random digit dialing where phone numbers are randomly selected from known area codes.)

d. Is the variable measured in this study quantitative or categorical?

Click for answer

Answer: Categorical (yes or no answer to the question).

2.4 Quiz

- 1. A group of researchers investigated the effect of media usage (whether or not subjects watch television or use the Internet) in the bedroom on "Tiredness" during the day (measured on a 50 point scale). The explanatory and response variables are
 - A. Explanatory is media usage in the bedroom and response is "tiredness"

2.4. QUIZ 15

B. Explanatory is "tiredness" and response is media usage in the bedroom Click for answer

The correct answer is A.

- 2. An October 2016 Gallup poll estimates that 60% of US adults support legalizing the use of marijuana. Their results were based on a "random sample of 1,017 adults, aged 18 and older, living in all 50 U.S. states and the District of Columbia". The population for this study is
 - A. all adults (18 and older) living in the U.S. (including D.C)
- B. the 1,017 adults (18 and older) living in the U.S. (including D.C) who were sampled
- C. the 1,017 adults (18 and older) living in the U.S. (including D.C) who were sampled and support legalizing marijuana
- D. all adults (18 and older) living in the U.S. (including D.C) who support legalizing marijuana

Click for answer

The correct answer is A.

- 3. An October 2016 Gallup poll estimates that 60% of US adults support legalizing the use of marijuana. Their results were based on a "random sample of 1,017 adults, aged 18 and older, living in all 50 U.S. states and the District of Columbia". Which statement below regarding bias is true?
- A. The results are biased because Gallup only contacted a small fraction of people in the population.
- B. The results may be biased because people may not have answered a survey question about marijuana truthfully

Click for answer

The correct answer is B.

(PART*) Basics R

What is R?

R is a free and open source statistical programming language that facilitates statistical computation. There are a myriad of application that can be done in R, thanks to a huge online support community and dedicated packages. However, R has no graphical user interface and it has to be run by typing commands into a text interface.

4.1 What is RStudio?

RStudio provides graphical interface to R! You can think of RStudio as a graphical front-end to R that that provides extra functionality. The use of the R programming language with the RStudio interface is an essential component of this course.

4.2 R Studio Server

The quickest way to get started is to go to https://maize.mathcs.carleton.edu, which opens an R Studio window in your web browser. Once logged in, I recommend that you do the following:

- Step 1: Create a folder for this course where you can save all of your work. In the Files window, click on New Folder.
- Step 2: Click on Tools -> Global Options -> R Markdown. Then uncheck the box that says "Show output inline..."

(It is also possible to download RStudio on your own laptop. Instructions may be found at the end of this document.)

4.3 R Markdown Basics

An R Markdown file (.Rmd file) combines R commands and written analyses, which are 'knit' together into an HTML, PDF, or Microsoft Word document.

An R Markdown file contains three essential elements:

- Header: The header (top) of the file contains information like the document title, author, date and your preferred output format (pdf_document, word_document, or html_document).
- Written analysis: You write up your analysis after the header and embed R code where needed. The online help below shows ways to add formatting details like bold words, lists, section labels, etc to your final pdf/word/html document. For example, adding ** before and after a word will bold that word in your compiled document.
- R chunks: R chunks contain the R commands that you want evaluated.
 You embed these chunks within your written analysis and they are evaluated when you compile the document.

4.4 Installing R/RStudio (not needed if you are using the maize server)

- Download the latest version of R:
 - Windows: http://cran.r-project.org/bin/windows/base/
 - Mac: http://cran.r-project.org/bin/macosx/
- Download the free Rstudio desktop version (Windows or Mac): https://www.rstudio.com/products/rstudio/download/

Use the default download and install options for each.

4.5 Install LaTeX (for knitting R Markdown documents to PDF):

If you want to compile R Markdown to .pdf files, you also need a LaTeX distribution (Note: this is not necessary if you choose to compile as a Word document.) Click instructions for Windows or instructions for Mac, depending on your operating system to complete the installation.

4.6 Updating R/RStudio (not needed if you are using the maize server)

If you have used a local version of R/RStudio before and it is still installed on your machine, then you should make sure that you have the most recent versions of each program.

- To check your version of R, run the command getRversion() and compare your version to the newest version posted on https://cran.r-project.org/. If you need an update, then install the newer version using the installation directions above.
- In RStudio, check for updates with the menu option Help > Check for updates. Follow directions if an update is needed.

4.7 Instructions

If using Rstudio on your computer, using the File>Open File menu to find and open this .Rmd file.

If using Maize Rstudio from your browser:

- In the Files tab, select Upload and Choose File to find the .Rmd that
 you downloaded. Click OK to upload to your course folder/location in
 the maize server account.
- Click on the .Rmd file in the appropriate folder to open the file.

Extra notes:

- You can run a line of code by placing your cursor in the line of code and clicking Run Selected Line(s)
- You can run an entire chunk by clicking the green triangle on the right side of the code chunk.
- After each small edit or code addition, **Knit** your Markdown. If you wait until the end to Knit, it will be harder to find errors in your work.
- Format output type: You can use any of pdf_document, html_document type, or word_document type.
- Maize users: You may also need to allow for "pop-up" in your web browser when knitting documents.

4.8 Few More Instructions

The default setting in Rstudio when you are running chunks is that the "output" (numbers, graphs) are shown **inline** within the Markdown Rmd. If you prefer to have your plots appear on the right of the console and not below the chunk, then change the settings as follows:

- 1. Select Tools > Global Options.
- 2. Click the R Markdown section and uncheck (if needed) the option Show output inline for all R Markdown documents.
- 3. Click OK.

Now try running R chunks in the .Rmd file to see the difference. You can recheck this box if you prefer the default setting.

R Markdown

This is a R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

You can use asterisk mark to provide emphasis, such as *italics* or **bold**.

You can create lists with a dash:

```
- Item 1
- Item 2
- Item 3
+ Subitem 1
* Item 4
```

- Item 1
- Item 2
- Item 3
 - Subitem 1
- Item 4

You can embed Latex equations in-line, $\frac{1}{n}\sum_{i=1}^n x_i$ or in a new line as

$$\operatorname{Var}(X) = \frac{1}{n-1} \sum_{i-1}^n (x_i - \bar{x})^2$$

Embed an R code chunk:

Use

```
Use back ticks to create a block of code to produce:

Use back ticks to create a block of code
```

You can also evaluate and display the results of R code. Each tasks can be accomplished in a suitably labeled chunk like the following:

```
summary(cars)
    speed
                    dist
Min. : 4.0
               Min. : 2.00
 1st Qu.:12.0
               1st Qu.: 26.00
Median :15.0
               Median : 36.00
Mean :15.4
               Mean : 42.98
3rd Qu.:19.0
               3rd Qu.: 56.00
Max.
       :25.0
               Max.
                     :120.00
fit <- lm(dist ~ speed, data = cars)</pre>
fit
Call:
lm(formula = dist ~ speed, data = cars)
Coefficients:
(Intercept)
                  speed
    -17.579
                  3.932
```

5.1 Including Plots

You can also embed plots. See Figure 5.1 for example:

```
par(mar = c(0, 1, 0, 1))
pie(
   c(280, 60, 20),
   c('Sky', 'Sunny side of pyramid', 'Shady side of pyramid'),
```

```
col = c('#0292D8', '#F7EA39', '#C4B632'),
init.angle = -50, border = NA
)
```


Figure 5.1: A fancy pie chart.

(Credit: Yihui Xie)

5.2 Read in data files

```
simple_data <- read.csv("https://deepbas.io/data/simple-1.dat", )
summary(simple_data)</pre>
```

initialsstate age Length:3 Length:3 Min. :45.0 1st Qu.:47.5 Class : character Class :character Mode :character Mode :character Median:50.0 Mean :52.0 3rd Qu.:55.5 Max. :61.0

time Length:3

Class :character
Mode :character

knitr::kable(simple_data)

initials	state	age	time
vib	MA	61	6:01
adc	TX	45	5:45
kme	CT	50	4:19

5.3 Hide the code

If we enter the ${\tt echo}$ = FALSE option in the R chunk (see the .Rmd file). This prevents the R code from being printed to your document; you just see the results.

initials	state	age	$_{ m time}$
vib	MA	61	6:01
adc	TX	45	5:45
kme	CT	50	4:19