

Cursada 2020

Redictado

Prof. Alejandra Schiavoni (ales@info.unlp.edu.ar)

Prof. Catalina Mostaccio (catty@lifia.info.unlp.edu.ar)

Prof. Claudia Queiruga (claudiaq@info.unlp.edu.ar)

Prof. Pablo Iuliano (piuliano@info.unlp.edu.ar)

Árboles Binarios

Agenda

- Definición
- Descripción y terminología
- Representaciones
- > Recorridos
- > Aplicación: Árboles de expresión

Árbol Binario: Definición

- ➤ Un árbol binario es una colección de nodos, tal que:
 - puede estar vacía
 - puede estar formada por un nodo distinguido R, llamado $\it{raíz}$ y dos sub-árboles \it{T}_1 y \it{T}_2 , donde la raíz de cada subárbol \it{T}_i está conectado a \it{R} por medio de una arista

- Cada nodo puede tener a lo sumo dos nodos hijos.
- Cuando un nodo no tiene ningún hijo se denomina *hoja*.
- Los nodos que tienen el mismo nodo padre se denominan *hermanos*.

- Conceptos a usar:
 - *Camino*: desde n_1 hasta n_k , es una secuencia de nodos n_1 , n_2, \ldots, n_k tal que n_i es el padre de n_{i+1} , para $1 \le i \le k$.
 - La longitud del camino es el número de aristas, es decir k-1.
 - Existe un camino de longitud cero desde cada nodo a sí mismo.
 - Existe un único camino desde la raíz a cada nodo.
 - *Profundidad*: de n_i es la longitud del único camino desde la raíz hasta n_i.
 - La raíz tiene profundidad cero.

- *Grado* de n_i es el número de hijos del nodo n_i.
- Altura de n_i es la longitud del camino más largo desde n_i hasta una hoja.
 - Las hojas tienen altura cero.
 - La altura de un árbol es la altura del nodo raíz.
- Ancestro/Descendiente: si existe un camino desde n_1 a n_2 , se dice que n_1 es ancestro de n_2 y n_2 es descendiente de n_1 .

• Árbol binario lleno: Dado un árbol binario T de altura h, diremos que T es *lleno* si cada nodo interno tiene grado 2 y todas las hojas están en el mismo nivel (h).

Es decir, recursivamente, T es lleno si :

- 1.- T es un nodo simple (árbol binario lleno de altura 0), o
- 2.- T es de altura h y sus sub-árboles son llenos de altura h-1.

• Cantidad de nodos en un árbol binario lleno:

Sea T un árbol binario lleno de altura h, la cantidad de nodos N es $(2^{h+1}-1)$

• Cantidad de nodos en un árbol binario lleno:

Sea T un árbol binario lleno de altura h, la cantidad de nodos N es $(2^{h+1}-1)$

• Cantidad de nodos en un árbol binario lleno:

Sea T un árbol binario lleno de altura h, la cantidad de nodos N es $(2^{h+1}-1)$

• Cantidad de nodos en un árbol binario lleno:

Sea T un árbol binario lleno de altura h, la cantidad de nodos N es $(2^{h+1}-1)$

Nivel $0 \rightarrow 2^0$ nodos

Nivel 1 \rightarrow 2¹ nodos

Nivel 2 \rightarrow 2² nodos

Nivel 3 \rightarrow 2³ nodos

• • • • • •

Nivel h → 2^h nodos

$$N = 2^0 + 2^1 + 2^2 + 2^3 + ... + 2^h$$

La suma de los términos de una serie geométrica de razón 2 es:

$$(2^{h+1}-1)$$

- Árbol binario completo: Dado un árbol binario T de altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol binario completo:

- Árbol binario completo: Dado un árbol binario T de altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol binario completo:

- Árbol binario completo: Dado un árbol binario T de altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol binario completo:

- Árbol binario completo: Dado un árbol binario T de altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol binario completo:

- Árbol binario completo: Dado un árbol binario T de altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol binario completo:

Sea T un árbol binario completo de altura h, la cantidad de nodos N varía entre (2^h) y $(2^{h+1}-1)$

• Si no, el árbol es lleno en la altura h-l y tiene por lo menos un nodo en el nivel h: $\mathbf{N} = (2^{h-1}+1)+1=(2^h-1+1)$

Representación Hijo Izquierdo - Hijo Derecho

- ✓ Cada nodo tiene:
 - Información propia del nodo
 - Referencia a su hijo izquierdo
 - Referencia a su hijo derecho

Representación Hijo Izquierdo - Hijo Derecho

Recorridos

Preorden

Se procesa primero la raíz y luego sus hijos, izquierdo y derecho.

Inorden

Se procesa el hijo izquierdo, luego la raíz y último el hijo derecho

Postorden

Se procesan primero los hijos, izquierdo y derecho, y luego la raíz

Por niveles

Se procesan los nodos teniendo en cuenta sus niveles, primero la raíz, luego los hijos, los hijos de éstos, etc.

Recorrido: Preorden

```
public void preorden() {
    imprimir (dato);
    si (tiene hijo_izquierdo)
         hijoIzquierdo.preorden();
    si (tiene hijo_derecho)
         hijoDerecho.preorden();
```

Recorrido: Por niveles

```
public void porNiveles() {
     encolar(raíz);
      mientras (cola no se vacíe) {
        desencolar(v);
        imprimir (dato de v);
        si (tiene hijo_izquierdo)
                 encolar(hijo_izquierdo);
        si (tiene hijo_derecho)
                 encolar(hijo_derecho);
```

Ejercicio 1

Ejercicio 1

a)

✓inorden: 10 9 11 7 8

✓ postorden: 10 11 9 8 7

✓ preorden: 7 9 10 11 8

Ejercitación Árbol binario: Recorridos

Ejercicio 1

a)

✓inorden: 10 9 11 7 8

✓ postorden: 10 11 9 8 7

✓ preorden: 7 9 10 11 8

b)

✓ inorden: 3 10 8 11 7 9 18

✓ postorden: 10 11 8 18 9 7 3

✓ preorden: 3 7 8 10 11 9 18

Ejercitación Árbol binario: Recorridos

Ejercicio 1

a)

✓ inorden: 10 9 11 7 8

✓ postorden: 10 11 9 8 7

✓ preorden: 7 9 10 11 8

 \boldsymbol{c}

✓ inorden: 13 10 15 8

✓ postorden: 13 15 10 8

✓ preorden: 8 10 13 15

b)

✓ inorden: 3 10 8 11 7 9 18

✓ postorden: 10 11 8 18 9 7 3

✓ preorden: 3 7 8 10 11 9 18

Ejercitación Árbol binario: Recorridos

Ejercicio 1

a)

✓ inorden: 10 9 11 7 8

✓ postorden: 10 11 9 8 7

✓ preorden: 7 9 10 11 8

(c)

✓ inorden: 13 10 15 8

✓ postorden: 13 15 10 8

✓ preorden: 8 10 13 15

b)

✓ inorden: 3 10 8 11 7 9 18

✓ postorden: 10 11 8 18 9 7 3

✓preorden: 3 7 8 10 11 9 18

Ejercicio 2

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos:

inorden: C B F E G A D I H y postorden: C F G E B I H D A

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden: C B F E G A D I H y postorden: C F G E B I H D A

Resolución:

inorden: CBFEGADIH y postorden: CFGEBIHDA

```
¿Por dónde empezamos?
```

¿Qué información podemos obtener de los recorridos dados?

¿De qué estamos seguros?

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden: CBFEGADIH y postorden: CFGEBIHDA

Resolución:

inorden: CBFEGADIH y postorden: CFGEBIHDA

Raíz

¿ Cómo seguimos?

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden: CBFEGADIH y postorden: CFGEBIHDA

Resolución:

inorden: CBFEGADIH y postorden: CFGEBIHDA

<u>Raíz</u>

¿Cómo armamos los subárboles? ¿Qué información podemos obtener de los recorridos dados?

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden: CBFEGADIH y postorden: CFGEBIHDA

Resolución:

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden : C B F E G A D I H y postorden : C F G E B I H D A

Resolución:

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden : C B F E G A D I H y postorden : C F G E B I H D A

Resolución:

Ejercicio 2.

Construya el árbol binario a partir del cual se obtuvieron los siguientes recorridos: inorden : C B F E G A D I H y postorden : C F G E B I H D A

Resolución:

inorden: CBFEGADIH y postorden: CFGEBIHDA

Es un árbol binario asociado a una expresión aritmética

- Nodos internos representan operadores
- Nodos externos (hojas) representan operandos

Ejemplo:

*

e
f

Aplicaciones:

- En compiladores para analizar, optimizar y traducir programas
- > Evaluar expresiones algebraicas o lógicas
 - No se necesita el uso de paréntesis
- > Traducir expresiones a notación sufija, prefija e infija

Recorriendo el árbol, obtenemos:

Inorden: (((a + b) * (c - d)) / (e + f))

Preorden: /*+ab-cd+ef

Postorden: ab+cd-*ef+/

Construcción de un árbol de expresión

A partir de una:

- 1) Expresión postfija
- 2) Expresión prefija
- 3) Expresión infija

Árboles binarios de expresión

Expresión algebraica:

$$a*(b*d+c) + (e+f*g)$$

Expresión infija

Expresión **prefija**
$$\longrightarrow$$
 +* a +* b d c + e * f g
Expresión **postfija** \longrightarrow a b d * c + * e f g * + +
Expresión **infija** \longrightarrow ((a *((b * d) + c)) + (e + (f * g)))

Algoritmo:

```
tomo un carácter de la expresión

mientras ( existe carácter ) hacer

si es un operando → creo un nodo y lo apilo.
si es un operador (lo tomo como la raíz de los dos últimos nodos creados)
→ - creo un nodo R,
- desapilo y lo agrego como hijo derecho de R
- desapilo y lo agrego como hijo izquierdo de R
- apilo R.

tomo otro carácter

fin
```

Expresión postfija: a b d * c + * e f g * + + Algoritmo: tomo un carácter de la expresión mientras (existe carácter) hacer si es un operando > creo un nodo y lo apilo. si es un operador (lo tomo como la raíz de los dos últimos nodos creados → - creo un nodo R. - desapilo y lo agrego como hijo derecho de R - desapilo y lo agrego como hijo izquierdo de R - apilo R. tomo otro carácter fin a b d * c + * e f g * + +

Expresión postfija: a b d * c + * e f g * + +

Algoritmo:

tomo un carácter de la expresión
mientras (existe carácter) hacer
si es un operando → creo un nodo y lo apilo.
si es un operador (lo tomo como la raíz de los dos últimos nodos creados)
→ - creo un nodo R,
- desapilo y lo agrego como hijo derecho de R
- desapilo y lo agrego como hijo izquierdo de R
- apilo R.

tomo otro carácter

fin

Expresión postfija: a b d * c + * e f g * + +

Algoritmo:

tomo un carácter de la expresión
mientras (existe carácter) hacer
si es un operando → creo un nodo y lo apilo.
si es un operador (lo tomo como la raíz de los dos últimos nodos creados)
→ - creo un nodo R,
- desapilo y lo agrego como hijo derecho de R
- desapilo y lo agrego como hijo izquierdo de R
- apilo R.

tomo otro carácter fin

$$A/A = C + * e f g * + +$$

P₃
P₂
P₄
P₁

 \mathbf{P}_{2}

P₂

P₂

 \mathbf{P}_{2}

 $\mathbf{R_1}$

Expresión postfija: a b d * c + * e f g * + + Algoritmo: tomo un carácter de la expresión mientras (existe carácter) hacer si es un **operando** -> creo un nodo y lo apilo. si es un operador (lo tomo como la raíz de los dos últimos nodos creados → - creo un nodo R. - desapilo y lo agrego como hijo derecho de R - desapilo y lo agrego como hijo izquierdo de R - apilo R. tomo otro carácter /////c+* e f g *+ +

P₂

 $\mathbf{R_1}$

P₂

P₂


```
Algoritmo:

ArbolExpresión (A: ArbolBin, exp: string)

si exp nulo → nada.
si es un operador → - creo un nodo raíz R
- ArbolExpresión (subArblzq de R, exp
(sin 1° carácter))
- ArbolExpresión (subArbDer de R, exp
(sin 1° carácter))
si es un operando → creo un nodo (hoja)
```


- -Convertir una expresión infija en árbol de expresión: se debe convertir la expresión infija en postfija (i) y a partir de ésta, construir el árbol de expresión (ii).
 - (i) Estrategia del Algoritmo para convertir exp. infija en postfija :
 - a) si es un operando → se coloca en la salida.
 b) si es un operador → se maneja una pila según la prioridad del operador en relación al tope de la pila

operador con > prioridad que el tope -> se apila operador con <= prioridad que el tope -> se desapila elemento colocándolo en la salida.

Se vuelve a comparar el operador con el tope de la pila

c) si es un "(", ")" → "(" se apila ")" se desapila todo hasta el "(", incluído éste

d) cuando se llega al final de la expresión, se desapilan todos los elementos llevándolos a la salida, hasta que la pila quede vacía.

Operadores ordenados de mayor a menor según su prioridad:

```
*, / (multiplicación y división)
+, - (suma y resta)
```

Los " (" siempre se apilan como si tuvieran la mayor prioridad y se desapilan <u>sólo</u> cuando aparece un ")".

Ejercitación

Árbol binario de expresión

Ejercicio 1.

- ✓ Dada la siguiente expresión postfija : IJK + +AB*C-*, dibuje su correspondiente árbol binario de expresión
- \checkmark Convierta la expresión ((a + b) + c * (d + e) + f) * (g + h) en expresión prefija

Ejercicio 2.

- ✓ Dada la siguiente expresión prefija : *+I+JK-C*AB , dibuje su correspondiente árbol binario de expresión
- \checkmark Convierta la expresión ((a + b) + c * (d + e) + f) * (g + h) en expresión postfija