0) Files description

Target file

The group you want to find candidate regions

Excluding file

The sequences you want to exclude (or the rest of the diversity)

2) Test oligos

1) Find oligos

3) Rate accessibility

4) Get homologs

5) Selecting oligonucleotides

Selecting the best oligonucleotide:

- covering most of the targeted diversity
- with a high GC content
- with similar theoretical melting temperature
- with low hits to the excluding file allowing mismatches
- highly accessible

For example:

filterLog -l oligos_log.tsv **-s** "0.4" **-m** "0.001" **-M** "0.0001" **-c** "III"

selectLog -l oligos_log_filtered.tsv -n "4"

6) Concluding remarks

Complementary softwares:

- **ARB** (Ludwig et al., 2004)
- primer3 (Untergasser et al., 2012)
- **Decipher** (Wright et al., 2014)
- oli2go (Hendling et al., 2018)

Post-hoc test:

- OligoCalc
- **BLAST** (blast.ncbi.nlm.nih.gov/Blast.cgi)
- PR2-primers (app.pr2-primers.org/)

Remember that oligo design is a tedious work that requires a final empirical test for its completion.

Therefore, bioinformatic pipelines will only provide theoretical candidate oligos, that have to be tested in the laboratory