

Mohinder Dick
Senior Software Architect
UPMC Enterprises

@mobyware

UPMC Enterprises: Focus Areas

Translational Science:

Accelerate the application of discoveries to deliver new models of care, narrowing the gap between bench science and bedside practice.

Improving Outcomes:

Connect and coordinate the health system to empower clinicians to provide high-quality care in any setting.

Consumer:

Develop solutions that allow consumers to access medical services and information anytime, anywhere, and to engage in all steps in their health care journey.

Infrastructure and Efficiencies:

Deliver health care with fewer resources in a fiscally sound manner.

Portfolio Companies

Goal

To demonstrate that deep learning is not too complicated to be practically useful to a reasonably technical person with some machine learning knowledge.

Agenda

- Key concepts
- Deep Learning in 7 slides
- ► Transferring Learning From one machine to another
- ▶ Teaching Machines Help me help you (Demo)

Key Concepts

Term	Description
Machine Learning (ML)	Algorithms that improve when trained with data (not explicit programming)
Deep Learning (DL)	ML algorithms that learn representations of data using multiple layers
Model	Digital output of the ML training process
Deep Neural Networks (DNN)	Deep learning model consisting of multiple layers of "digital" neurons.
Supervised Learning	Algorithms that improves using labeled examples
Target Variable	Data point that you are trying to predict
Feature	Measurable property of used by ML algorithm to predict the target variable
Classification	Predicting a categorical target variable

DEEP LEARNING IN 8 SLIDES

Machine Learning

- ML algorithms process "unseen" data to give predictions
- A model is a statistical representation of the algorithms experiences/training

How do you get a model?

Supervised Models

- Supervised ML algorithms get their name because they learn with help
- You have to provide them experience in labeled examples
- The algorithm translates that data into a representation called a model
- The more data the better

Labels & Features

- During training features with labels are given to the algorithm to generate the model
- Both features and labels can be categorical or continuous
- The type of your target affects the flavor of algorithm you chose

Deep Learning

Deep Learning

Linear Classification

DEEP LEARNING IN 8 SLIDES

Facial

Media & Features

features called "Haars"

Linear Classifiers

Is this a face?

DEEP LEARNING IN 8 SLIDES

Deep Learning

Deep Learning

Each layer identifies progressively more complex features

Deep Learning

AlexNet ~8 layers, < 1 million neurons

Inception ~48 layers, < 10 million neurons

Human Brain ~100 Billion neurons, Trillions of connections

Key Concepts (Revisited)

Term	Description
Machine Learning	Algorithms that improve when trained with data (not explicit programming)
Deep Learning	ML algorithms that learn representations of data using multiple layers
Model	Digital output of the ML training process
Supervised Learning	Algorithms that improves using labeled examples
Deep Neural Networks (DNN)	Deep learning model consisting of multiple layers of "digital" neurons.
Target Variable	Data point that you are trying to predict
Feature	Measurable property of used by ML algorithm to predict the target variable
Classification	Predicting a categorical target variable

Transfer Learning

Criteria	Deep Learning	Traditional ML
Low Compute Power	Ν	Υ
Few observations needed	Ν	Υ
Automatic Features	Y	Ν
High Accuracy	Υ	Ν

Transfer Learning – Machine Learning

Transfer Learning – Deep Learning

Deep Learning 2

Transfer Learning – Complete Puzzle

- Python Programing
- ▶ TensorFlow Deep learning
- Scikit Learn for ML
- OpenCV Image processing

References

Resource	Location
Demo Source Code	http://bit.ly/2rVCkR2
Transfer Learning in eCommerce	http://bit.ly/2pHaA0T
Introduction to Machine Learning	http://bit.ly/2s6J8xt
Real-time Object Detection	http://bit.ly/2scVhS1
Inception V3 Model for Computer Vision	https://arxiv.org/abs/1512.00567
Coursera Data Science Courses	http://bit.ly/2sMy5af
Python Library Installation	http://docs.continuum.io/anaconda/install
OpenCV Documentation	http://docs.opencv.org/3.2.0/index.html
TensorFlow install instructions	https://www.tensorflow.org/install/
Computer Vision Docker Container	mobyware/inception_opencv