AMPLIFIER

Patent number:

JP4293306

Publication date:

1992-10-16

Inventor:

NAKAMURA ICHIRO

Applicant:

MITSUBISHI ELECTRIC CORP

Classification:

- international:

H03F3/34

- european:

Application number:

JP19910058778 19910322

Priority number(s):

Report a data error here

Abstract of JP4293306

PURPOSE:To improve the high frequency characteristic by connecting a current source to a noninverting output terminal of an amplifier via a constant voltage circuit. CONSTITUTION: A signal inputted to an information 2 of a DC amplifier 1 is amplified by the DC amplifier 1, a noninverting signal is outputted to an output terminal 14 through a low impedance converter 5 and a constant voltage circuit 7 and an inverting signal is outputted to an output terminal 13 through a low impedance converter 6 and a resistor 8. A DC amplifier 12 connecting to a control terminal 11 of a current source 10 and the output terminals 13, 14 is operated in a way that a current of the current source 10 is increased when a voltage at the output terminal 13 rises thereby decreasing the voltage of the output terminal 13 and the reverse operation to above is implemented when the voltage at the output terminal 13 decreases. That is, the amplifier circuit is operated by making an offset voltage at the output terminal 13 equal to that at the output terminal 14. Moreover, the effect of an AC signal onto the operation of the DC amplifier 12 is prevented.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-293306

(43)公開日 平成4年(1992)10月16日

(51) Int.Cl.5

識別配号

庁内整理番号

FΙ

技術表示箇所

H 0 3 F 3/34

B 7328-5J

審査請求 未請求 請求項の数2(全 4 頁)

(21)出願番号

特願平3-58778

(22)出願日

平成3年(1991)3月22日

(71)出願人 000006013

三菱電機株式会社

東京都千代田区丸の内二丁目2番3号

(72) 発明者 中村 一郎

鎌倉市上町屋325番地 三菱電機株式会社

鎌倉製作所内

(74)代理人 弁理士 高田 守 (外1名)

(54) 【発明の名称】 増幅器

(57)【要約】

(修正有)

【目的】 オフセット電圧補債回路を有する増幅器において、高周波特性の良い増幅器を得る。

【構成】 正相及び逆相出力を有する直流結合形増幅器 1の一方の出力端に低インピーダンス変換器5、定電圧 回路7、電流源9を、他方の出力端に低インピーダンス 変換器6、抵抗8、制御端子付電流源10を直列接線 し、定電圧回路と電流源の接続点及び抵抗と制御端子付 電流源の接続点の直流電位を等しくするよう制御端子付 電流源を制御する手段からなる。

- 1: 直流結合形準備器
- 5:低インピーアンス交換器
- 6: 化インピーダンス交換器
- 7: 定電丘回路
- 8: 抵抗
- 9: 電流源
- 10: 副御入力端子付電流源
- 12:直流增幅器

【特許請求の範囲】

【請求項1】 正相出力及び逆相出力を有する直流結合 形増幅器と、直流結合増幅器の一方の出力端に直列接続 された低インピーダンス変換回路、定電圧回路及び電流 源と、上記増幅器の他方の出力端に直列接続された低イ ンピーダンス変換回路、抵抗及び制御端子を有する電流 源と、上記定電圧回路と電流源の接続点及び抵抗と制御 端子付電流源の接続点の直流電位が等しくなる様に制御 端子付電流源の電流を制御する手段とを備えた増幅器。

【請求項2】 正相出力及び逆相出力を有する直流結合 10 形増幅器と、直流結合形増幅器の一方の出力端に直列接 統された低インピーダンス変換回路、定電圧回路及び電 流源と、他方の出力端に直列接続された低インピーダン ス変換回路、抵抗及び制御端子を有する電流源と、定電 圧回路と電流源の接続点及び抵抗と制御端子付電流源の 接続点に接続された低域フィルタと、上記2つの接続点 の直流電位が等しくなる様に低域フィルタを介して制御 端子付電流源の電流を制御する手段とを備えた増幅器。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、増幅器のオフセット 電圧補償回路の改良に関するものである。

[0002]

【従来の技術】図3は当出願人による既出願(特願平2 -73102) に示された従来の増幅既の構成を示す図 である。図において、1は直流結合形増幅器、2は直流 結合形増幅器1の入力端子、3は直流結合形増幅器1の 正相出力端子、4は直流結合形増幅器1の逆相出力端 子、5、6はコレクタ接地トランジスタで構成された低 インピーダンス変換器、8、19は抵抗、9は電流源、 10は制御端子11を有する電流電流源、12は直流増 幅器、13、14は出力端子、19は抵抗である。

【0003】次に動作について説明する。直流結合形増 幅器1の入力端子2に入力された信号は、直流結合形増 幅器 1 で増幅され、正相信号は低インピーダンス変換器 5、抵抗19を通って出力端子14へ、逆相信号は低イ ンピーダンス変換器6、抵抗8を通って出力端子13へ 出力される。出力端子13、14と電流源10の制御端) 子11に接続された直流増幅器12は、出力端子13の 電圧が上がれば電流源10の電流を増やし、出力端子1 40 しいとき 3の電圧が下がる様に、出力端子13の電圧が下がれば 逆の動作をする。 つまり、出力端子13と14のオフセ ット電圧が等しくなる様に動作する。

[0004]

【発明が解決しようとする課題】従来の増幅器は以上の ように構成されているので、抵抗8、19と、出力端子 13、14の浮遊容量で低域フィルタが構成され、出力 端子13、14の高周波特性が低化するという問題点が あった。

めになされたもので、髙周波特性の良い増幅器を得るこ とを目的としている。

[0006]

【課題を解決するための手段】この発明による増幅器 は、増幅器の正相出力端に定電圧回路を介して電流源を 接続したものである。

[0007]

【作用】この発明における増幅器は、定電圧回路を介し て電流源を接続しているため、高周波特性の良い増幅器 が得られる。

[0008]

【実施例】実施例1.

図1は、この発明の一実施例の構成を示す図であり、1 は直流結合形増幅器、2は直流結合形増幅器1の入力端 子、3、4はそれぞれ直流結合形増幅器1の正相出力端 子及び逆相出力端子、5、6はコレクタ接地トランジス タで構成された低インピーダンス変換器、7、8は抵 抗、9は電流源、10は制御入力端子11を有する電流 源、12は直流増幅器、13、14は出力端子である。

【0009】上記の様に構成された増幅器において、直 流増幅器1の入力端子2に入力された信号は直流増幅器 1で増幅され、正相信号は低インピーダンス変換器5、 定電圧回路 7 を通って出力端子14へ、逆相信号は低イ ンピーダンス変換器6、抵抗8を通って出力端子13へ 出力される。

【0010】ここで、直流結合形増幅器1の正相出力端 子及び逆相出力端子4の電圧をV₃、V₄とし

 $V_3 = V_{acs} + V_{ac}$

 $V_4 = V_{\mathfrak{d} \mathfrak{c} 4} - V_{\mathfrak{d} \mathfrak{c}}$

と仮定する。ただし、Voca 、Voca は直流成分、Vac は交流成分である。

【0011】定電圧回路7の電圧をV,、抵抗8の抵抗 値をR: 、電流源10の電流値をI:o、低インピーダン ス変換器5、6の電圧降下をV15、V16とすると出力端 子13、14の電圧V₁₁、V₁₄は、

 $V_{13} = V_{004} - V_{40} - V_{36} - I_{10} R_8$

 $V_{14} = V_{003} + V_{A0} - V_{05} - V_{0}$

と表わされる。

【0012】出力端子13、14のオフセット電圧が等

 $V_{DC4} - V_{B6} - I_{10} R_{8} = V_{DC3} - V_{B5} - V_{R}$

つまり

[0013]

【数1】

$$I_{10} = \frac{V_{DC4} - V_{DC3} - V_{B6} + V_{B5} + V_{R}}{R_{A}}$$

【0014】となる。

【0015】出力端子13、14と電流源10の制御端 【0005】この発明は上記のような課題を解消するた 50 子11に接続された直流増幅器12は、出力端子13の

電圧が上がれば電流源10の電流を増やし、出力端子1 3の電圧が下がる様に、出力端子13の電圧が下がれば 逆の動作をする。 つまり、出力端子13と14のオフセ ット電圧が等しくなる様に、言い換えると、電流源10 の電流値が数6で示される値になる様動作する。

【0016】実施例2. 図2は、直流増幅器12の入力 に低域フィルタ15を設けた増幅器の実施例の構成を示 す図である。図2の実施例では、低域フィルタ15は抵 抗16、17とコンデンサ18で構成されている。直流 増幅器12の入力に低域フィルタ15を設けることによ 10 り、直流増幅器12の動作に交流信号が影響を与えるこ とを防止できる。

【0017】実施例3. 上記実施例では、いずれも、直 流増幅器1として一入力の場合を示したが、差動入力の 場合でも上記実施例と同様の効果を有する。

[0018]

【発明の効果】以上のようにこの発明によれば、増幅器 の正相出力端に定電圧回路を介して電流源を接続した が、定電圧回路のインビーダンスが低いため、出力端子 の浮遊容量とで構成される低域フィルタのしゃ断周波数 が高くなり、髙周波特性の改善効果がある。

【図面の簡単な説明】

【図1】この発明の実施例1を示す構成図である。

【図2】この発明の実施例2を示す構成図である。

【図3】従来の増幅器を示す構成図である。

【符号の説明】

- 1 直流結合形増幅器
- 低インピーダンス変換器
 - 低インピーダンス変換器
 - 定電圧回路
- . 8 抵抗
- 電流源
- 10 制御入力端子付電流源
- 12 直流增幅器
- 15 低域フィルタ

[図1]

- 1: 直流、粘合形增馏器
- 5: 低化ピーダンス交換器
- 6: 低インピーダンス変換器
- 7. 定電丘回路
- 8: 抵抗
- 9: 電流派
- 10: 制御入口端子付電流派
- 12:直流增幅器

[図2]

- 1:直流 結合形增性器
- 化インピータンス交換器
- 6:16.1シピータンス変接點
- 定電圧回路

- 10: 割御入力婦子付電流源 12: 直流 増幅器
- 15: 低域フィルタ

[図3]

