- Some comments on AFT models
- Is an AFT model appropriate?
 - ** Suppose we have two groups in data (\Leftrightarrow one binary coviariate).
 - ** Recall that the p-th percentile under AFT models,

$$t_p \exp(\beta_1) = t_{0p}.$$

- ** We can use the Kaplan-Meier (Nelson-Aalen) method for each group and get nonparametric estimates \hat{t}_p and \hat{t}_{0p} .
- ** Check if a plot of \hat{t}_p versus \hat{t}_{0p} goes through the origin with slope approximately equal to the accelerated factor $\exp(\beta_1)$.

- \bigcirc Is a particular F_W more appropriate?
 - We can use the Kaplan-Meier (Nelson-Aalen) method for each group and get a nonparametric estimate of cumulative hazard \hat{H} .
 - ** Recall cumulative hazard functions.

Models	H(t)	
Exp	$(\gamma t) =$	(4) 1 1/10(+)
Weibull	$\gamma t^{\alpha} \rightarrow \log(\chi t^{\alpha})$	$= \log(8) + \alpha \log(t)$
Log-normal	$-\log(1-\Phi((\log(t)-\mu)/\sigma))$ =	= H

** Check which model is supported by $\hat{H}(t)$.

$$\frac{1-\overline{\Phi}(\frac{\log t-\mu}{\Phi})}{\frac{\log(t)-\mu}{\Phi}} = \frac{e^{-H}}{\Phi}(\frac{\log t}{\Phi})$$

$$\frac{\log(t)-\mu}{\Phi} = \frac{1-e^{-H}}{\Phi}(\frac{\log t}{\Phi})$$

$$\frac{\log(t)-\mu}{\Phi} = \frac{1-e^{-H}}{\Phi}(\frac{\log t}{\Phi})$$

- Diagnostics for AFT
 - ** Define

$$r_i = \frac{Y_i + \beta_0 + \beta' \mathbf{X}_i}{\sigma}$$

- bution as W $\{r_i, r_n\}$ a right remarked random sample from Fw
- ** Further, we can use the Cox-Snell residuals. Please read K-M for more

• Any drawback?

$$\log(T) = Y = -\beta_0 - \beta' \mathbf{X} + \sigma \mathbf{W}$$
 = Standard N Leg

- ** A direction extension of the classical linear model's construction for conventional data
- ** Restricted by the error distribution:
 - If a correct model is specified, gives more precise estimate of parameters
 - If the model is incorrectly specified, provides inconsistent estimates.
- Popular choices for a distribution of *W*: Standard extreme value distribution, standard logistic distribution, normal distribution. Then **which model** is better? Use model comparison criteria such as DIC and AIC.

47 / 50

- Deviance Information Criterion (DIC) Bayesian Data Analysis
 Chapter 6
 - ** [Definition] Deviance: $D(y,\theta) = -2\log p(y|\theta)$. $\rightarrow p(y|\theta)$ Small Note: It is a function of both, θ and y. $\rightarrow -2\log p(y|\theta)$
 - ** Consider two quantities,

$$D_{\widehat{\boldsymbol{\theta}}}(y) = D(y, \widehat{\boldsymbol{\theta}}), \text{ and } D_{\text{avg}}(y) = E(D(y, \boldsymbol{\theta}) \mid y) \approx \frac{1}{L} \sum_{\ell=1}^{L} D(y, \boldsymbol{\theta}^{(\ell)}),$$

$$= \widehat{D}_{\text{avg}}(y)$$

where $\widehat{\theta}$: a point estimate of θ , $\theta^{(\ell)}$: posterior simulations.

** DIC is defined as

DIC =
$$2\widehat{D}_{avg}(y) + D_{\widehat{\theta}}(y) = 2\widehat{D}_{avg}(y) - D(y, \widehat{\theta})$$

= $D(y, \widehat{\theta}) + 2(\widehat{D}_{avg}(y) - D(y, \widehat{\theta}))$
effective number of parameters

more complex model \Rightarrow large

 $48 / 50$

* [Example: Male Laryngeal Cancer Patients] We use the accelerated failure-time model using the main effects of age and stage for this data;

$$Y = \log(T) = -\beta_0 - \beta_1 X_1 - \beta_2 X_2 - \beta_3 X_3 - \beta_4 X_4 + \sigma W,$$

where X_k , k = 1, 2, 3 are the indicators of stage II, III and IV disease, respectively, and X_4 is the age of the patient.

F_W	DIC
Extreme Value	232.7812
Logistic	224.5492
Normal	832.1809

- Normal for F_W looks the far worst.
- The logistic distribution performs the best, followed by the extreme value distribution.

- Nonparametric Bayesian Accelerated Failure-Time Model
- We have

$$\log(T) = Y = -\beta_0 - \beta' \mathbf{X} + \sigma W$$

- \Rightarrow We placed priors on unknown parameters, β_0 , β and σ .
- More elaborate priors? See ICS Chapter 10.2.
 - ** $W \sim G$ and $G \sim \mathsf{DP} \Rightarrow \mathsf{Done}$ in Kuo and Mallick (1997)
 - $**W \sim G$ and $G \sim$ Pólya Tree \Rightarrow Done in Walker and Mallick (1999)

AMS 276 Lecture 4: Proportional Hazards Regression

Fall 2016

- Regression Models for Survival Data
 - Often interested in studying the relationship between the failure time (T) and covariates (X: p × 1 associated with T).
 e.g. Predict the distribution of the failure time from a set of covaraites.
 - ** Adjust the survival function to account for covariates.
- Two Common Approaches:
 - ** Accelerated Failure-Time Model (cleared!)
 - Proportional Hazards Model (Multiplicative Hazards Model
 Cox-type model).

- Approach 2: Proportional Hazards Regression Model
- KM Chapters 8 & 9, ICS Chapter 1.4.1 & 1.4.3
- Recall that the survival time t has
 - $\star\star$ density function f(t)
 - $\star\star$ distribution function F(t)
 - ** hazard function $h(t) = \frac{f(t)}{S(t)} > 0$, where S(t) = 1 F(t).
- Proposed by Cox (1972), primarily to model the relationship between hazard function and covariates.

- Proportional Hazards Regression Models: The hazard function depends on both time (t) and a set of covariates (X).
- Express the conditional hazard rate for an individual with X as

$$h(t \mid \mathbf{X}) = h_0(t)c(\beta'\mathbf{X}). \quad \text{S(t)} = e^{-\int_0^t h(\omega) d\omega}$$

(called, Cox model, proportional hazard model)

** A baseline hazard rate $h_0(t) = h(t \mid \mathbf{X} = \mathbf{0})$: arbitrary

- ** A nonnegative function can be used for the link function $c(\cdot)$
- ** Multiplicative model: covariates are assumed to affect survival probability by multiplying the baseline hazard.

- Consider two individuals with X_1 and X_2 (all the covariates are fixed at time 0).
- The ratio of their hazard rates is

$$\frac{h(t \mid \mathbf{X}_1)}{h(t \mid \mathbf{X}_2)} = \frac{h_0(t)c(\beta'\mathbf{X}_1)}{h_0(t)c(\beta'\mathbf{X}_2)} = \boxed{\frac{c(\beta'\mathbf{X}_1)}{c(\beta'\mathbf{X}_2)}}.$$

- ** the **relative risk (hazard ratio)** of an individual with X_1 having the event as compared to an individual with X_2 .
- Constant over time (independent of time) provided that **X** does not change over time.
- The ratio of hazards for two individuals depends on the difference between their **X** at any time.

Express the conditional hazard rate for an individual with X as

$$h(t \mid \mathbf{X}) = h_0(t)c(\beta'\mathbf{X}).$$

- ** This is called a <u>semi</u>parametric proportional hazards regression model. *Why?*
 - \circlearrowright A known parametric form is assumed for $c(\cdot)$.
 - \bigcirc $h_0(t)$ is unspecified and it will be treated nonparametrically.

- Common choice: $c(\beta'X) = \exp(\beta'X) > 0$
- ☼ Assume to involve X through a log-linear model.

$$c(\beta'\mathbf{X}) = \exp(\beta'\mathbf{X}) = \exp\left(\sum_{k=1}^{p} \beta_k X_k\right).$$

$$\Rightarrow h(t \mid \mathbf{X}) = h_0(t) \exp(\beta'\mathbf{X}) = h_0(t) \exp\left(\sum_{k=1}^{p} \beta_k X_k\right)$$

$$\Rightarrow \log\left(\frac{h(t \mid \mathbf{X})}{h_0(t)}\right) = \beta'\mathbf{X} = \sum_{k=1}^{p} \beta_k X_k$$

i.e., Similar to the usual linear models for formulation for the effects of covariates .

- How does X affect the hazard function under the proportional hazards regression model?
- \circlearrowright Interpretation of $oldsymbol{eta}$
- e.g. Let X_1 be the treatment $(X_1 = 1 \text{ for female}, X_1 = 0 \text{ for male})$.

$$\frac{h(t \mid X_1 = 1)}{h(t \mid X_1 = 0)} = \exp(\beta_1)$$

- \Rightarrow The risk of having the event for males relative to the risk for males is $\exp(\beta_1)$.
- \Leftrightarrow exp(β_1) is the ratio of hazards (assumed constant for all t)
- $\Leftrightarrow \beta_1$ is the difference in log-hazard at any time for a female subject.
- \Leftrightarrow If $\beta_1 > 0$, $h(t \mid X_1 = 1) \uparrow$ and $S(t \mid X_1 = 1) \downarrow$.

- What is the goal in general?
- Inference for β !!!
- $\star\star$ β characterizes the effect of X.
- Treat the baseline hazard, $h_0(t)$ as a nuisance parameter function. Don't even estimate $h_0(t)$.
- Then we can do tests, H_0 : $\beta_1 = \beta_{10}$ and variable selection (model selection) based on the test or some other criteria (AIC...)
- (Yep!) Sometimes we are interested in estimating the survival function for a patient with a certain set of conditions and characteristics. \Rightarrow We need to model $h_0(t)$ as well (will discuss later).

We have

$$h(t \mid \mathbf{X}) = h_0(t) \exp(\beta' \mathbf{X}).$$

- $h_0(t)$ is left completely unspecified (nuisance parameter).
- \Rightarrow Can't use standard maximum likelihood methods to estimate β .
- Cox proposed the idea of a **partial likelihood** to remove $h_0(t)$ from the proposed estimating equation.
- The proportional hazards regression model is also called the Cox model (Cox, 1972, JRSS-B).

- Likelihood: conditional, marginal and partial likelihood.
- Consider a general case. Suppose
- ** $\mathbf{X} = (\mathbf{V}, \mathbf{W})$: data (observations)
- $\star\star$ $\theta = (\beta, \phi)$: parameters
- $\star\star$ β : parameters of interest, ϕ : nuisance parameter
- $\star\star$ density of **X**: $f(\mathbf{X} \mid \boldsymbol{\theta})$
- Goal: inference on β (part of the parameter)
- We modify the likelihood function to extract the evidence in data concerning a parameter of interest β (construct a likelihood-like function using the density of just part of the data, pseudo-likelihood)
- i.e., conditional likelihood, marginal likelihood, partial likelihood....

* Profile titched likelihood

$$f(\beta, \phi)$$

For a fixed β , find $\hat{\beta}_{\beta} = \underset{\beta}{\operatorname{argmax}} f(\beta, \phi)$
 $f(\beta, \phi)$
 $f(\beta, \phi)$
 $f(\beta, \phi)$

- Likelihood: $\mathcal{L}(\theta) = f(\mathbf{X} \mid \theta) = f(\mathbf{W} \mid \mathbf{V}, \theta) f(\mathbf{V} \mid \theta)$. $f(\mathbf{X} \mid \mathbf{V} \mid \theta)$ does not involve ϕ
 - $\star\star$ $f(\mathbf{W} \mid \mathbf{V}, \boldsymbol{\theta})$ does not involve ϕ
 - \Rightarrow Use $f(\mathbf{W} \mid \mathbf{V}, \boldsymbol{\beta})$ (conditional likelihood): Case 1
 - ** $f(\mathbf{V} \mid \boldsymbol{\theta})$ does not involve ϕ $f(\mathbf{x}|\boldsymbol{\theta}) = (\mathbf{x} \mid \boldsymbol{y}, \boldsymbol{\beta}, \boldsymbol{\phi}) (\mathbf{x} \mid \boldsymbol{\beta})$
 - \Rightarrow Use $f(V | \beta)$ (marginal likelihood): Case 2
- Side note: Possible loss of useful information about β .
 - ** Case 1: Ignore $f(V \mid \theta)$ and use $f(W \mid V, \theta)$.
 - ⇒ ignoring their variability by conditioning
 - ** Case 2: Ignore $f(\mathbf{W} \mid \mathbf{V}, \boldsymbol{\theta})$ and use $f(\mathbf{V} \mid \boldsymbol{\theta})$.
 - ⇒ ignoring some of the data by marginalization
 - * Read " Integrated Likelihand Methods for Eliminating Nuisance Parameters" 12 / 54 by Berger et al.

$$\pi(\beta, \phi \mid X) \propto f(X \mid \beta, \phi) \pi(\phi \mid \beta) \pi(\beta)$$

$$\Rightarrow \pi(\beta | X) = \int \pi(\beta, \phi | X) d\phi$$

- Represent $\mathbf{X} = (V_1, W_1, V_2, W_2, \dots, V_K, W_K).$
- Write the likelihood,

$$f(\mathbf{X} \mid \boldsymbol{\theta}) = f(V_{1}, W_{1}, V_{2}, W_{2}, \dots, V_{K}, W_{K} \mid \boldsymbol{\theta})$$

$$= f(V_{1} \mid \boldsymbol{\theta}) \cdot f(W_{1} \mid V_{1}, \boldsymbol{\theta}) \cdot f(V_{2} \mid V_{1}, W_{1}, \boldsymbol{\theta}) \cdot f(W_{2} \mid V_{1}, W_{1}, V_{2}, \boldsymbol{\theta}) \dots$$

$$= \left\{ \prod_{i=1}^{K} f(W_{i} \mid Q_{i}, \boldsymbol{\theta}) \right\} \left\{ \prod_{i=1}^{K} f(V_{i} \mid P_{i}, \boldsymbol{\theta}) \right\}.$$

**
$$P_1 = \phi$$
, $P_i = (V_1, W_1, \dots, V_{i-1}, W_{i-1})$

**
$$Q_1 = V_1, Q_i = (V_1, W_1, \dots, W_{i-1}, V_i)$$

- ** If $\prod_{i=1}^{K} f(W_i \mid Q_i, \theta)$ is free of ϕ , then use $\prod_{i=1}^{K} f(W_i \mid Q_i, \beta)$ (partial likelihood).
- side note: Marginal and conditional likelihoods are special cases of the more general partial likelihood (Cox, 1975).

- Partial likelihoods for distinct-event time data
- We will express the data in V and W to find the partial likelihood.
- Set-up
 - ** Data: $(y_i, \nu_i, \mathbf{X}_i)$, i = 1, ..., n (n individuals)
 - ** Absolutely continuous failure time distribution
 - ** Assume noninformative censoring
- $\star\star$ d distinct event times (d observed failures) and n-d right censored survival times.
- ** $t_0(=0) < t_1 < t_2 < \ldots < t_d < t_{d+1}(=\infty)$: the distinct ordered event times (no ties between the event times)
- Let (j) be the label for individual failing at t_j . Note that $y_{(j)} = t_j$.

- Set-up (contd)
 - ****** Covariates for d failures, $\mathbf{X}_{(j)}$, $j=1,\ldots,d$
 - ** Censorship times in $[t_j, t_{j+1})$: $(t_{j1}, \ldots, t_{jm_j})$ with corresponding covariates $\mathbf{X}_{j1}, \ldots, \mathbf{X}_{jm_j}$.
- Now we divide the data into sets

$$(V_1, W_1, V_2, W_2, \dots, V_{d+1}, W_{d+1}),$$

where +

- ** $V_j = \{t_{j-1,1}, \ldots, t_{j-1,m_{j-1}}, t_j\}$: tells us who has died or was censored in $(t_{j-1}, t_j]$.
- ** $W_j = \{(j)\}$; tells us who died at time t_j in the sample.

• Example:

