Low-Noise Propeller Design with the Vortex Lattice Method Preliminary Results

Daniel Ingraham NASA Glenn Research Center daniel.j.ingraham@nasa.gov

NASA Acoustics Technical Working Group April 12th & 13th, 2022

This work is supported by the Transformational Tools and Technologies project, part of the Transformative Aeronautics Concepts Program.

Motivation: noise will be a limiting factor for UAM/AAM concepts

Previous Work: BEMT+Compact F1A+Optimization=Quiet Propeller

Combined

- a propeller aerodynamic code, implementation of blade element momentum theory (BEMT)
- a propeller acoustic code, implementation of the compact form of Farrasat's 1A acoustic analogy
- gradient-based optimization

to design an optimally efficient propeller subject to thrust and acoustic constraints.

Current Goal: s/BEMT/VLM/g

- Blade Element Momentum Theory is great
 - ► fast
 - robust
 - accurate for "simple" cases (isolated propeller, on axis flow)

but **limited in applicability** (multiple rotors, installation effects, off-axis flow, etc.)

CFD too slow for highly multi-disciplinary optimizations

Goal

Replace the BEMT aerodynamic model used in previous work with the vortex lattice method (VLM)

How?

- Aerodynamics: VortexLattice.jl, unsteady vortex lattice method (VLM) from
 T. McDonnell and A. Ning (BYU)
- ► Acoustics: AcousticAnalogies.jl, compact form of Farassat's formulation 1A (incl. compact monopole approximation from L. Lopes)
- Optimizer: SNOPT, via SNOW.jl, nonlinear gradient-based optimizer

5

VLM from VortexLattice.jl, Taylor McDonnell and Andrew Ning, BYU

- unsteady
- ► free wake
- viscous loading model
- Prandtl-Glauert compressibility correction
- compatible with automatic differentiation (AD) libraries
- great docs
- great examples
- open source

Results will be compared to a baseline design from Zawodny, Lopes, NASA LaRC

- 24 inch diameter
- ▶ 3 blades
- Constant 1.5 inch chord
- Helical twist distribution
- ► NACA 0012 airfoil sections throughout
- ► Tested in NASA LaRC's low speed acoustic wind tunnel (LSAWT).
- Aerodynamic and acoustic data available.

Comparison to LaRC LSAWT aero data looks pretty good

Comparison to LaRC LSAWT acoustic data looks pretty good

Need to make sure VLM outputs are smooth

What about $\frac{\partial CT}{\partial pitch}$? Uh oh...

Lots of "twisting" at the downstream portion of the wake

Finite core model tames the Biot-Savart law

Tip #1: Finite core model helps VLM derivatives

Effect of the finite core length on the wake trajectory is obvious

Increasing the finite core length doesn't spoil the predictions

Tip #2: Chord concavity constraint $\frac{d^2c}{dr^2} < 0$ helps

Propeller-Wing Configuration

- Wing geometry:
 - ► Four propeller radii long, wing chord is 1 propeller radius
 - ightharpoonup pprox 1/2 propeller radii offset from propeller rotation axis
 - lacktriangle Wing leading edge pprox 1/4 propeller radii from propeller trailing edge
 - Wing at 4° angle of attack, propeller still aligned with freestrem
- Not capturing any noise associated with the unsteady loading on the wing, nor any reflections of the propeller's noise off the wing

Goal

Disturb propeller inflow velocity, increasing noise and giving the optimizer something different to deal with

Wing is pretty close to the blade

Blade passes by wing leading edge at about 1/2 span

Blade wake influences wing wake and vice versa

Noticeable change in loading distribution

Results

Problem setup

- Objective
 - **▶** maximize efficiency at cruise (Mach = 0.11 freestream)
- Design variables
 - chord distribution via 6 spline control points
 - pitch (aka collective) angle
 - RPM
- Constraints
 - thrust equal to baseline design's value
 - **OASPL** at $\theta = 140^{\circ}$ angle (sweeping)
 - chord curvature constraint $\frac{d^2c}{dr^2} < 0$

Difficult to get optimality criteria for the propeller+wing case

Not much difference between chord distributions

Conclusions & Next Steps

- Conclusions
 - ▶ Got some propeller+wing optimizations to converge, with acoustic constraints!
 - ▶ Tip #1: increased finite core length helps unsteady VLM derivatives
 - ▶ Tip #2: chord concavity constraint $\frac{d^2c}{dr^2}$ < 0 helps optimizations
- Next steps
 - ▶ What's going wrong with the propeller+wing case optimality? Numerical issues with the derivatives? Interpolation problems?
 - Structural model

Thanks!

Thank you to:

- ► Taylor McDonnell, Andrew Ning from BYU.
- ▶ NASA Glenn RVLT Acoustics Branch team, esp. Chris Miller.
- ▶ Nik Zawodny, Len Lopes from NASA Langley.
- Justin Gray and the Aviary Group at NASA Glenn.
- NASA Transformational Tools & Technologies Project

Isolated Propeller Results

Less RPM + more collective = quiet propeller

Need more chord to maintain thrust constraint

Wing clearly influences thrust and torque time histories

Wing causes slight change in OASPL, azimuthal asymmetry

Wing's effect seen in higher BPF harmonics

Wing increases loading noise, not thickness noise

