ImageNet Classification with Deep Convolutional Neural Networks (NIPS 2012)

AlexNet

Introduction

- Object recognition의 성능을 올리려면
 - 더 큰 데이터셋
 - 더 강력한 모델
 - Overfitting을 막기 위한 방법 사용
- 현재는 작고 간단한 데이터셋에서만 좋은 결과 (ex: MNIST)
- 더 크고 label 종류가 많은 데이터셋(ImageNet)을 학습하기 위해선 CNN
 - 크고 조절가능한 learning capacity
 - Prior knowledge
 - FFNN보다 쉬운 학습

Introduction

- CNN은 상대적으로 학습이 쉽지만, 여전히 high-resolution image에 적용하기는 힘들다
 - GPU
 - ImageNet이라는 큰 데이터셋 등장 => overfit 없이 학습 가능
- 여러가지 기술들 조합해서 큰 CNN 모델을 성공적으로 학습시킴
 - ILSVRC-2012 대회에서 압도적인 우승
 - 이전까지 딱히 성과가 없던 컴비전 딥러닝 분야에 큰 이슈
 - GPU가 더 발전하면 네트워크 사이즈를 더 늘릴 수도 있을 것

Dataset - ImageNet

- 1500만 개의 high-resolution colored images
- 22000개의 카테고리 (label)
- Resolution이 이미지마다 달라서 256 x 256으로 고정해서 사용

Architecture

- 5 CNN layers
- 3 Fully Connected layers

+) CNN 용어 다시보기

- Kernel == filter
- Feature map
- pooling layer

Architecture – ReLU Nonlinearity

- 활성화함수를 뭘 쓸까
 - Tanh
 - Sigmoid
 - ReLU = max(0,x)
- ReLU
 - Non-saturating
 - 더 빠른 학습

• 빠른 학습은 큰 데이터셋으로 큰 모델을 학습시킬 때 성능에 큰 영향을 줌

Architecture – Multiple GPUs

- GPU 메모리가 부족해서 두 개를 쓰기로함
- Kernel(뉴런)을 반씩 GPU에 넣음
- 몇 개의 레이어에서만 서로 간섭함
 - Computation 용량 조절

Architecture – Local Normalization

- ReLU 덕분에 saturation 걱정은 없음
- 하지만 여전히 local Normalization은 Generalization을 도움

$$b_{x,y}^i = a_{x,y}^i/(k + \alpha \sum_{j=max(0,i-n/2)}^{j=min(N-1,i+n/2)} a_{x,y}^{j-2})^{\beta}$$

where

 $b_{x,y}^i$ — regularized output for kernel i at position x,y $a_{x,y}^i$ — source ouput of kernel i applied at position x,y N — total number of kernels n — size of the normalization neigbourhood $\alpha, \beta, k, (n)$ — hyperparameters

Architecture – Overlapping pooling

- Overlapping max pooling
- Error rate 감소
- 살짝의 overfit 방지

Non-overlapping pooling

Overlapping pooling

Architecture

- 5 CNN -> 3 FFNN -> 1000-way softmax
- Object 함수: multinomial logistic regression
- 2, 4, 5번째 conv layer는 GPU 따로
- 1, 2번째 conv layer는 Response-normalization
- 1, 2, 5번째 conv layer는 (Overlapping) Max pooling

• 모든 layer에는 활성화함수로 ReLU를 사용

Reducing Overfitting

- 6000만 개의 파라미터
- 1000개 클라스의 ILSVRC 데이터로는 overfitting
- 두 가지 방법으로 해결
 - Data Augmentation
 - Image translation, horizontal reflections
 - RGB 조정 PCA를 통해
 - Dropout

Original

Rotation

Scaling

Brightness

Details of Learning

• 최적화 방법: stochastic gradient descent

• Batch size: 128

$$v_{i+1} := 0.9 \cdot v_i - 0.0005 \cdot \epsilon \cdot w_i - \epsilon \cdot \left\langle \frac{\partial L}{\partial w} \Big|_{w_i} \right\rangle_{D_i}$$

• Momentum: 0.9

$$w_{i+1} := w_i + v_{i+1}$$

- Weight decay: 0.0005
- Weight은 정규분포로 초기화 (평균 0, 표준편차 0.01)
- Bias는 몇 개 레이어는 1, 나머지는 0으로 초기화
- Learning rate: 0.01 (validation error가 줄지 않으면 조금씩 바꿈)
- 90 epochs
- 120만 이미지
- 5, 6일 소요

Results

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	_
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

Qualitative Evaluations

Qualitative Evaluations

Discuss

- 크고 깊은 CNN을 지도학습으로 학습시키는 것만으로도 최고 기록
- 아키텍처에서 어떠한 Conv 레이어를 없애더라도 성능이 크게 안좋아짐
- 컴퓨팅 파워가 좋아지면 pre-training을 사용해도 좋을 듯

질문