4300337 - Lista de Exercícios VI

Louis Bergamo Radial 8992822

28 de junho de 2024

Exercício 4

Relembremos o resultado obtido para os coeficientes da conexão de Levi-Civita no caso de uma métrica diagonal

$$\Gamma^{\lambda}_{\ \lambda\lambda} = \frac{\partial_{\lambda}g_{\lambda\lambda}}{2g_{\lambda\lambda}}, \qquad \Gamma^{\lambda}_{\ \mu\lambda} = \frac{\partial_{\mu}g_{\lambda\lambda}}{2g_{\lambda\lambda}}, \qquad \Gamma^{\lambda}_{\ \mu\mu} = -\frac{\partial_{\lambda}g_{\mu\mu}}{2g_{\lambda\lambda}}, \qquad \Gamma^{\lambda}_{\ \mu\nu} = 0,$$

em que não utilizamos a convenção de soma de Einstein, portanto não há nenhuma soma nos termos acima. Recordemos também que, utilizando a convenção de soma, vale

$$\Gamma^{\mu}_{\ \mu\nu} = \frac{\partial_{\nu} \sqrt{-g}}{\sqrt{-g}},$$

onde *g* é o determinante da métrica.

Consideremos a métrica dada por $ds^2 = -dt^2 + a^2(t) dx^i dx_i$, com $-g = a^6(t)$. Utilizando as expressões para os coeficientes da conexão, vemos que os termos $\Gamma^0_{0\lambda} = \Gamma^\lambda_{\lambda\lambda} = \Gamma^i_{ij} = 0$, visto que estes termos envolvem derivadas em relação às coordenadas espaciais e que as componentes da métrica não têm dependência com essas variáveis. Resta apenas os coeficientes dados por

$$\Gamma^0_{ij} = a\dot{a}\delta_{ij}$$
 e $\Gamma^i_{j0} = \frac{\dot{a}}{a}\delta^i_j$,

onde $\dot{a} = \frac{da}{dt}$. Da expressão para o tensor de curvatura de Riemann em coordenadas locais,

$$R^{\sigma}_{\ \mu\rho\nu} = \partial_{\rho}\Gamma^{\sigma}_{\ \nu\mu} - \partial_{\nu}\Gamma^{\sigma}_{\ \rho\mu} + \Gamma^{\sigma}_{\ \rho\lambda}\Gamma^{\lambda}_{\ \nu\mu} - \Gamma^{\sigma}_{\ \nu\lambda}\Gamma^{\lambda}_{\ \rho\mu},$$

e das simetrias encontradas para os coeficientes da conexão, segue que o tensor de Ricci é

$$\begin{split} R_{\mu\nu} &= R^{\sigma}_{\mu\sigma\nu} = \partial_{\sigma}\Gamma^{\sigma}_{\nu\mu} - \partial_{\nu}\Gamma^{\sigma}_{\sigma\mu} + \Gamma^{\sigma}_{\sigma\lambda}\Gamma^{\lambda}_{\nu\mu} - \Gamma^{\sigma}_{\nu\lambda}\Gamma^{\lambda}_{\sigma\mu} \\ &= \partial_{t}\Gamma^{0}_{\nu\mu} - \delta^{0}_{\nu}\partial_{t}\left(\frac{\partial_{\mu}\sqrt{-g}}{\sqrt{-g}}\right) + \frac{\partial_{\lambda}\sqrt{-g}}{\sqrt{-g}}\Gamma^{\lambda}_{\nu\mu} - \Gamma^{0}_{\nu\lambda}\Gamma^{\lambda}_{0\mu} - \Gamma^{i}_{\nu\lambda}\Gamma^{\lambda}_{i\mu} \\ &= \delta^{m}_{\mu}\delta^{n}_{\nu}\delta_{mn}\frac{\mathrm{d}}{\mathrm{d}t}\left(a\dot{a}\right) - \delta^{0}_{\mu}\delta^{0}_{\nu}\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{3\dot{a}}{a}\right) + \frac{3\dot{a}}{a}\delta^{m}_{\mu}\delta^{n}_{\nu}\delta_{mn}a\dot{a} - \Gamma^{0}_{\nu j}\Gamma^{j}_{0\mu} - \Gamma^{i}_{\nu 0}\Gamma^{0}_{i\mu} - \Gamma^{i}_{\nu j}\Gamma^{j}_{i\mu} \\ &= \delta^{m}_{\mu}\delta^{n}_{\nu}\delta_{mn}\left(4\dot{a}^{2} + a\ddot{a}\right) - \delta^{0}_{\mu}\delta^{0}_{\nu}\left(\frac{3\ddot{a}}{a} - \frac{3\dot{a}^{2}}{a^{2}}\right) - \delta^{n}_{\nu}\delta^{m}_{\mu}\delta_{mn}\dot{a}^{2} - \delta^{n}_{\nu}\delta^{m}_{\mu}\delta_{mn}\dot{a}^{2} - \delta^{0}_{\nu}\delta^{0}_{\mu}\frac{3\dot{a}^{2}}{a^{2}} \\ &= \delta^{m}_{\mu}\delta^{n}_{\nu}\delta_{mn}\left(2\dot{a}^{2} + a\ddot{a}\right) - \delta^{0}_{\mu}\delta^{0}_{\nu}\left(\frac{3\ddot{a}}{a}\right), \end{split}$$

isto é

$$R_{00} = -\frac{3\ddot{a}}{a}$$
, e $R_{ii} = a\ddot{a} + 2\dot{a}^2$,

e todas as outras componentes nulas. Assim, o escalar de Ricci é dado por

$$R = g^{\mu\nu} R_{\mu\nu} = \frac{3\ddot{a}}{a} + 3\frac{a\ddot{a} + 2\dot{a}^2}{a^2}$$
$$= 6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2}\right),$$

logo o tensor de Einstein, $G_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}$, tem suas componentes não nulas dadas por

$$G_{00} = 3\frac{\dot{a}^2}{a^2}$$
 e $G_{ii} = -2a\ddot{a} - \dot{a}^2$.

Consideremos as equações de Einstein no vácuo com uma constante cosmológica positiva A,

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 0 \implies 3\frac{\dot{a}^2}{a^2} - \Lambda = 0 \quad e \quad -2a\ddot{a} - \dot{a}^2 + \Lambda a^2 = 0.$$

Utilizando a primeira equação para eliminar o termo \dot{a}^2 na segunda equação, obtemos

$$-2a\left(\ddot{a} - \frac{\Lambda}{3}a\right) = 0.$$

Como $a \neq 0$ para que a métrica não seja singular, devemos ter que

$$a(t) = A \exp(Ht) + B \exp(-Ht),$$

onde $H = \sqrt{\frac{\Lambda}{3}}$ e $A, B \in \mathbb{R}$ são constantes não todas nulas. No caso particular de B = 0, a métrica seria, portanto,

$$ds^2 = -dt^2 + A^2 e^{2Ht} dx^i dx_i,$$

representando um Universo em expansão.

Neste caso, definimos o tempo conforme $\eta = -\frac{\exp(-Ht)}{H}$, que satisfaz $\dot{\eta} = -H\eta$, isto é,

$$dt = -\frac{d\eta}{H\eta} \implies dt^2 = \frac{d\eta^2}{H^2\eta^2}.$$

Deste modo, como exp $(2Ht) = (H\eta)^{-2}$, temos

$$\mathrm{d}s^2 = \frac{-\,\mathrm{d}\eta^2 + \,\mathrm{d}x^i\,\mathrm{d}x_i}{H^2\eta^2},$$

se tomarmos A = 1.

Interpretando $-\frac{\Lambda}{\kappa}g_{\mu\nu}$ como o tensor de energia e momento $T_{\mu\nu}$ das equações de Einstein sem constante cosmológica, temos de

$$T^{\mu}_{\ \nu} = (\rho + p)U^{\mu}U_{\nu} + p\delta^{\mu}_{\ \nu},$$

com $U^0 = H\eta$ e $U^i = 0$, que

$$\left(p + \frac{\Lambda}{\kappa}\right) \delta^{\mu}_{\ \nu} = -(\rho + p) U^{\mu} U_{\nu}$$
$$= (\rho + p) \delta^{\mu}_{0} \delta^{0}_{\nu}.$$

Recordando que $\Lambda = 3H^2$, obtemos

$$\rho = \frac{3H^2}{\kappa} \quad e \quad p = -\frac{3H^2}{\kappa},$$

isto é, uma constante cosmológica positiva pode ser interpretada como um fluido com pressão negativa.