WHAT IS CLAIMED IS:

1. A system for measuring electrostatic discharge (ESD) characteristics of a semiconductor device, comprising:

at least one pulse generator generating ESD-scale pulses;

a first point of the semiconductor device receiving a first ESD-scale pulse from the at least one pulse generator;

a second point of the semiconductor device receiving the first ESD-scale pulse from the at least one pulse generator;

at least a third point of the semiconductor device receiving a second ESD-scale pulse from the at least one pulse generator; and

a data collector to collect data on the ESD characteristics of the semiconductor device.

- 2. The system of claim 1, wherein the semiconductor device includes one of a metal-oxide-semiconductor (MOS) transistor, a silicon-controlled rectifier (SCR), a low voltage triggered SCR (LVTSCR), a field oxide device (FOD) and a bipolar junction transistor (BJT).
- 3. The system of claim 1, wherein the at least one pulse generator includes a transmission line pulse (TLP) generator to generate the ESD-scale pulses.
- 4. The system of claim 1, wherein the at least one pulse generator includes a transmission line pulse (TLP) generator to generate the first ESD-scale pulse.

- 5. The system of claim 1, wherein the at least one pulse generator includes a biasing source to generate the second ESD-scale pulse.
- 6. The system of claim 2, wherein the MOS transistor includes a source and a drain to receive the first ESD-scale pulse, and at least one of a gate and a substrate to receive the second ESD-scale pulse.
- 7. The system of claim 2, wherein one of the SCR and LVTSCR includes an anode and a cathode to receive the first ESD-scale pulses, and at least one of a substrate and a semiconductor well region to receive the second ESD-scale pulse.
- 8. The system of claim 2, wherein the LVTSCR includes a gate to receive the second ESD-scale pulse.
- 9. The system of claim 2, wherein one of the FOD and BJT includes an emitter and a collector to receive the first ESD-scale pulses, and a base to receive the second ESD-scale pulse.
- 10. The system of claim 1, further comprising a detector to detect a leakage current in the semiconductor device.

- 11. The system of claim 1, further comprising a switching device coupled to the at least one pulse generator and the detector to switch a connection between the at least one pulse generator and the detector.
- 12. A system for measuring electrostatic discharge (ESD) characteristics of a multi-terminal device, comprising:
 - a first pulse generator providing a first ESD-scale pulse;
 - a second pulse generator providing a second ESD-scale pulse;
- a first terminal of the multi-terminal device coupled to the first pulse generator to receive the first ESD-scale pulse;
- a second terminal of the multi-terminal device coupled to the first pulse generator to receive the first ESD-scale pulse;
- a third terminal of the multi-terminal device coupled to the second pulse generator to receive the second ESD-scale pulse; and
- a detector to detect a leakage current of the multi-terminal semiconductor device, wherein the ESD characteristics of the multi-terminal device are determined when the detector detects a leakage current in the multi-terminal device.
- 13. The system of claim 12, wherein the first and second pulse generators include a transmission line pulse (TLP) generator generating the first and second ESD-scale pulses.

- 14. The system of claim 12, wherein the first pulse generator includes a TLP generator generating the first ESD-scale pulse.
- 15. The system of claim 12, wherein the second pulse generator includes a biasing source generating the second ESD-scale pulse.
- 16. The system of claim 12, further comprising a switching device coupled to the first and second pulse generators and the detector to switch a connection to the multi-terminal device between the first and second pulse generators and the detector.
- 17. The system of claim 12, wherein the multi-terminal device includes one of a metal-oxide-semiconductor (MOS) transistor, a silicon-controlled rectifier (SCR), a low voltage triggered SCR (LVTSCR), a field oxide device (FOD) and a bipolar junction transistor (BJT).
- 18. A method of measuring electrostatic discharge (ESD) characteristics of a semiconductor device, comprising:

providing at least one pulse generator generating ESD-scale signals;

identifying a first point on the semiconductor device;

identifying a second point on the semiconductor device:

identifying a third point on the semiconductor device;

providing a first ESD-scale signal to the first and second points of the semiconductor device; and

providing a second ESD-scale signal to at least the third point on the semiconductor device.

- 19. The method of claim 18, further comprising the step of providing a transmission line pulse (TLP) generator to generate the first and second ESD-scale signals.
- 20. The method of claim 18, further comprising the step of providing a TLP generator to generate the first ESD-scale signal.
- 21. The method of claim 18, further comprising the step of providing a biasing source to generate the second ESD-scale signal.
- 22. The method of claim 18, further comprising the step of providing one of a metal-oxide-semiconductor (MOS) transistor, a silicon-controlled rectifier (SCR), a low voltage triggered SCR (LVTSCR), a field oxide device (FOD) and a bipolar junction transistor (BJT) to serve as the semiconductor device.
- 23. The method of claim 22, further comprising the step of providing the first ESD-scale signal to a source and a drain of the MOS transistor, and providing the second ESD-scale signal to at least one of a gate and a substrate of the MOS transistor.

- 24. The method of claim 22, further comprising the step of providing the first ESD-scale signal to an anode and a cathode of the SCR, and providing the second ESD-scale signal to at least one of a substrate and a semiconductor well region of the SCR.
- 25. The method of claim 22, further comprising the step of providing the first ESD-scale signal to an anode and a cathode of the LVTSCR, and providing the second ESD-scale signal to at least one of a substrate and a semiconductor well region of the LVTSCR.
- 26. The method of claim 22, further comprising the step of providing the first ESD-scale signal to an emitter and a collector of the FOD, and providing the second ESD-scale signal to a base of the FOD.
- 27. The method of claim 22, further comprising the step of providing the first ESD-scale signal to an emitter and a collector of the BJT, and providing the second ESD-scale signal to a base of the BJT.
- 28. The method of claim 18, further comprising the step of providing a data collector to collect data regarding the ESD characteristics of the semiconductor device.

- 29. The method of claim 18, further comprising the step of providing a detector to detect a leakage current in the semiconductor device.
- 30. The method of claim 18, further comprising the step of providing a switching device coupled to the at least one pulse generator and the detector to switch a connection to the semiconductor device between the at least one pulse generator and the detector.
- 31. A method of electrostatic discharge (ESD) testing, comprising: providing a multi-terminal device; generating at least one ESD-scale pulses;

providing a first ESD-scale pulse of the at least one ESD-scale pulses to a first and a second terminals of the multi-terminal device;

providing a second ESD-scale pulse of the at least one ESD-scale pulses to at least a third terminal of the multi-terminal device;

collecting ESD characteristics of the multi-terminal device under the first and second ESD-scale pulses; and

detecting if a leakage current flows in the multi-terminal semiconductor device.

32. The method of claim 31, further comprising the step of providing one of a metal-oxide-semiconductor (MOS) transistor, a silicon-controlled rectifier (SCR), a low voltage triggered SCR (LVTSCR), a field oxide device (FOD) and a bipolar junction transistor (BJT) to serve as the multi-terminal device.

- 33. The method of claim 31, further comprising the step of providing the second ESD-scale pulse to the at least one third terminal before providing the first ESD-scale pulse to the first and second terminals.
- 34. The method of claim 31, further comprising the step of detecting whether a leakage current flows in the multi-terminal device before providing the first and second ESD-scale pulses.
- 35. The method of claim 34, further comprising generating the first and second ESD-scale pulses by a transmission line pulse (TLP) generator.