Module 2

Disclaimer

This manual is developed for the training and education purpose only. Strictly for internal circulation. References of other companies or its brand names are made to familiarize the sales team with the other companies brands and for educational purpose only. Bayer Zydus Pharma Pvt Ltd shall not be responsible/ liable for miscommunication of any information if they are altered/ tampered in any manner. Any unauthorized reproduction or distribution without consent is illegal. Medical knowledge is constantly changing, so standard safety precautions must be followed.

Clinical Background on Heart Failure

Learning objectives

After completing this chapter you will be able to:

- Outline the main goals of the treatment of HFrEF
- Identify the important pathophysiological targets of HFrEF treatments
- Describe the classes of drugs currently available for treating HFrEF
- Understand the guidelines currently in place for clinical management of HFrEF
- Discuss the challenges and unmet needs in the treatment of HFrEF
- Describe emerging treatment strategies of interest in HFrEF

Sections

Current HFrEF Treatments

Guidelines for the Treatment of HFrEF

Treatment Challenges and Unmet Needs in HFrEF

Emerging Treatment Strategies for HFrEF

Goals of management in HFrEF

Therapeutic approaches differ for HFrEF and HFpEF¹

The goals of HFrEF therapy are:³

Improve clinical status

Improve functional capacity

Improve quality of life

Prevent hospitalisations

Reduce mortality

HFrEF

- Management has evolved from symptom control to disease-modifying therapy
 - The aim is to improve the ability of the heart to act as a pump, and inhibit unfavourable cardiac remodelling²

HFpEF

- Similar advances to the treatment of HFrEF have been elusive, and there are still no convincing therapeutic advances to alter its natural history⁴
 - The main focus is the identification and treatment of comorbid conditions such as hypertension¹

HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with preserved ejection fraction.

1. Zeitler EP, et al. *J Atr Fibrillation*. 2015;8:1250. 2. Shantsila E, et al. *Circulation*. 2014;130:387-389. 3. Ponikowski P, et al. *Eur Heart J*. 2016;37:2129-2200. 4. Mehra MR. Heart failure: management. In: Kasper DL, Fauci AS, Hauser SL, Longo DL, Jameson JL, Loscalzo J, eds. *Harrison's Principles of Internal Medicine*. Volume 2. 19th ed. New York, NY: McGraw Hill Education; 2015:1507-1516.

What's new in guidelines with regard to goal of HFrEF treatment?

The goals of treatment in patients with HF:

- reduce mortality
- prevent hospital admission
- · improve clinical status, functional capacity and quality of life

...preventing HF hospitalization and improving functional capacity are important benefits to be considered if mortality excess is ruled out.

Ponikowski P et al. 2016 ESC HF Guidelines Eur Heart J 2016 & Eur J Heart Fail 2016

There are three major goals of treatment for patients with HFrEF:

- (i) reduction in mortality
- (ii) prevention of recurrent hospitalizations due to worsening HF
- (iii) improvement in clinical status, functional capacity, and QOL.

Pharmacotherapy is the **cornerstone of treatment for HFrEF** and should be implemented before considering device therapy, and alongside non-pharmacological interventions.

Current pathophysiological targets in the treatment of HFrEF

PP-VER-ALL-0104-1 January 2021

Overview of Contributors to Heart Failure Pathology

cGMP, cyclic guanosine monophosphate; HF, heart failure; LV, left ventricle; NO, nitric oxide; RAAS, renin-angiotensin-aldosterone system; sGC, soluble guanylate cyclase; SNS, sympathetic nervous system.

Overview of Contributors to Heart Failure Pathology

Over time, reduced cardiac output leads to cardiac remodelling and progressive deterioration of the heart¹

Over time⁴
Cardiac remodelling

→ 8

e.g. hypertrophy (thickening of the cardiac muscle wall)

Suppressing the process of cardiac remodeling and maintaining cardiac function form the main concepts of RAAS, renin-angiotensin-aldosterone system; SNS, sympathetic nervous system. treatment for chronic HF²

1. Zardkoohi O, et al. Atrial fibrillation, heart failure, and the autonomic nervous system. In: Gronda E, Vanoli E, Costea A, eds. Heart Failure Management: The Neural Pathways. Cham, Switzerland: Springer International Publishing; 2016:25-41. 2. Kato M. The concept of heart failure: chronic diseases accompanied by an attack of acute exacerbation. In: Sato N, ed. Therapeutic Strategies for Heart Failure. Tokyo, Japan: Springer; 2018:1-15. 3. King M, Casey BR, Rodenberg RE. Heart failure. In: South-Paul JE, Matheny SC, Lewis EL, eds. Current Diagnosis & Treatment: Family Medicine. 4th ed. New York, NY: McGraw Hill; 2011:212-223. 4. Givens RC, Schulze PC. Molecular changes in heart failure. In: Eisen H, ed. Heart Failure: A Comprehensive Guide to Pathophysiology and Clinical Care. London: Springer-Verlag; 2017:1-26.

Currently available classes of agents for symptomatic HFrEF¹⁻⁴ target compensatory mechanisms activated in HFrEF

ACEI, ACE inhibitors; ARB, angiotensin receptor blockers; ARNI, angiotensin receptor neprilysin inhibitor; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; MRA, mineralocorticoid receptor agonist; RAAS, renin-angiotensin-aldosterone system; SNS, sympathetic nervous system.

1. Ponikowski P, et al. Eur J Heart J. 2016;37:2129-2200. 2. Benjamin EJ, et al. Circulation. 2018;137(12):e67-e492. 3. Dickstein K, et al. Eur J Heart Fail. 2008;10(10):933-989. 4. Maggioni AP, et al. Eur J Heart Fail. 2016;18(4):402-410.

Beta Blockers

Beta blockers are part of first-line treatment in HFrEF, as they reduce morbidity and mortality in patients by preventing ventricular remodelling and causing vasodilation¹

Mechanism of action

Contraindications and adverse effects

Pivotal clinical trials

Mechanism of action

Activation of the SNS is an early neurohormonal compensatory mechanism observed in patients with HF2

- The pharmacological action of beta blockers is to attenuate sympathetic nervous system (SNS) activity and decrease RAAS activity²
 - Beta-1 receptors predominate in the heart, and their activation leads to increased heart rate, myocardial contractility and velocity of contraction
 - Beta-2 receptors are present to a lesser degree in the heart (similar effects to beta-1 receptors), but are predominant in vascular smooth muscle (vasodilator activity) and bronchi (bronchodilator activity)

Beta blockers used for HF

Beta Blocker	Starting dose	Target dose	
Bisoprolol	1.25 mg OD	10 mg OD	
Carvedilol	3.125 mg BID	25 mg BID	
Metoprolol succinate	12.5- 25mg OD	200mg OD	
Nebivolol	1.25 mg OD	10mg OD	

- Beta-blockers should be initiated in clinically stable, euvolaemic, patients at a low dose and gradually uptitrated to the maximum tolerated dose.
- In patients admitted with AHF, betablockers should be cautiously initiated in hospital, once the patient is haemodynamically stabilized.

Contraindications and adverse effects

HFrEF, heart failure with reduced ejection fraction.

Contraindications ¹⁻³	Adverse effects ^{1,2}		
Severe bradycardia	Hypotension		
 Second- or third-degree heart block 	 First-degree heart block 		
Cardiogenic shock	Severe bradycardia		
Decompensated HFrEF	Oedema		
Sick sinus syndrome	Depression		
Bronchial asthma	Dizziness		
 Severe reversible airway disease 	Weakness		
ň	Fatigue		
	 Abdominal pain/diarrhoea 		

Pivotal clinical trials

Study	Drug	Main outcome		
CIBIS-II (1999) ⁴	Bisoprolol vs. placebo	Significant mortality benefit and fewer hospital admissions in symptomatic HFrEF patients taking bisoprolol vs. placebo		
MERIT-HF (1999) ⁶	Metoprolol vs. placebo	Improved survival in patients with symptomatic chronic HFrEF taking metoprolol vs. placebo		
COPERNICUS (2001) ⁰	Carvedilol vs. placebo	Lower annual mortality rate in the carvedilol group vs. placebo in patients with severe chronic HFrEF		
COMET (2003) ⁷	Carvedilol vs. metoprolol	Lower rates of all-cause mortality in the carvedilol group vs. metoprolol in patients with symptomatic chronic HFrEF		
SENIORS (2005) ⁸	Nebivolol vs. placebo	Lower event rate of the composite of all-cause mortality or CV hospitalisation in the nebivolol group vs. placebo in patients with chronic HF aged ≥70 years		

CV, cardiovascular; HF, heart failure; HFrEF, HF with reduced ejection fraction.

Key points- Beta blockers

ACEI, ACE inhibitors; ARB, angiotensin receptor blockers; ARNI, angiotensin receptor neprilysin inhibitor; HF, heart failure with reduced ejection fraction; MRA, mineralocorticoid receptor agonist; RAAS, renin-angiotensin-aldosterone system; SNS, sympathetic nervous system.

1. Ponikowski P, et al. Eur J Heart J. 2016;37:2129-2200. 2. Benjamin EJ, et al. Circulation. 2018;137(12):e67-e492. 3. Dickstein K, et al. Eur J Heart Fail. 2008;10(10):933-989. 4. Maggioni AP, et al. Eur J Heart Fail. 2016;18(4):402-410. 5. Yancy CW, et al. J Am Coll Cardiol. 2018;71(2):201-230.

Angiotensin-Converting Enzyme Inhibitors

 ACEi are part of first-line therapy in HF, improving circulation by causing relaxation of blood vessels and lowering of blood pressure¹⁻⁴

Examples of ACEi include:⁴

Captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril

Mechanism of action

Contraindications and adverse effects

Pivotal clinical trials

	Starting dose	Target dose	
ACE-I			
Captopril ^a	6.25 mg t.i.d.	50 mg t.i.d.	
Enalapril	2.5 mg b.i.d.	10-20 mg b.i.d.	
Lisinopril ^b	2.5 – 5 mg o.d.	20-35 mg o.d.	
Ramipril	2.5 mg b.i.d.	5 mg b.i.d.	
Trandolapril ^a	0.5 mg o.d.	4 mg o.d.	

Mechanism of action

- The ACE is an enzyme that converts angiotensin I to angiotensin II⁵
- ACEi interrupt the RAAS at an early stage by directly inhibiting the action of ACE and the generation of angiotensin II⁵
- By decreasing angiotensin II levels, ACEi promote vasodilation of both veins and arteries, decreasing both preload and afterload⁵⁻⁷

ACE, angiotensin-converting enzyme; ACEi, angiotensin-converting enzyme inhibitor; AT, angiotensin II; LV, left ventricular.

Current treatment targets

ACEI, angiotensin-converting enzyme; HF, heart failure; RAAS, renin-angiotensin-aldosterone system. 1. Ponikowski P, et al. *Eur Heart J.* 2016;37:2129-2200.

Contraindications and adverse effects

Contraindications8,9

- Impaired kidney function (eGFR <30 mL/min/1.73 m²; serum potassium >5.0 mEq/L; serum creatinine >2.5 mg/dL)
- · Bilateral renal artery stenosis
- · Significant aortic stenosis
- · Hypertropic and restrictive cardiomyopathy

Adverse effects9

- Hypotension
- · Worsening kidney function
- Hyperkalaemia
- Cough

Pivotal clinical trials

Study	Drug	Main outcome		
CONSENSUS (1987) ¹⁰	Enalapril vs. placebo	Significant mortality benefit in patients with severe congestive HF treated with enalapril vs. placebo		
SOLVD (1991) ¹¹	Enalapril vs. placebo	Enalapril reduced mortality and HF hospitalisations in patients with chronic HFrEF vs. placebo		

HF, heart failure; HFrEF, HF with reduced ejection fraction.

Figure 2 Trials comparing an angiotensin-converting enzyme (ACE) inhibitor to placebo in patients with systolic heart failure. Outcome is cumulative mortality.^{1,13}

Angiotensin Receptor Blockers

• ARBs are part of first-line therapy in HFa, improving circulation by causing relaxation of blood vessels and lowering of blood pressure^{1–4}

Mechanism of action

Contraindications and adverse effects

Pivotal clinical trials

^aAlternative to ACEi in case of contraindication.

Mechanism of action

- Angiotensin II binds to angiotensin II receptor type 1 (AT₁), which is responsible for much of the cardiac remodelling induced by angiotensin II⁴⁻⁷
- ARBs selectively block the binding of angiotensin II to the AT₁ receptor⁴
- ARBs produce haemodynamic, neurohormonal and clinical effects consistent with inhibition of the RAAS¹
- Although their mechanism of action is similar to that of ACE inhibitors, ARBs do not cause an inhibition of kininase, which reduces the incidence of cough in comparison with ACE inhibitors.

ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; AT, angiotensin II; LV, left ventricular.

Current treatment targets

ACEI, angiotensin-converting enzyme; HF, heart failure; RAAS, renin–angiotensin–aldosterone system. 1. Ponikowski P, et al. *Eur Heart J.* 2016;37:2129-2200.

ARB's-ESC 2021

- The place of ARBs in the management of HFrEF has changed over the last few years.
- They are now recommended for patients who cannot tolerate ACE-I or ARNI because of serious side effects.
- Candesartan in the CHARM-Alternative study reduced CV deaths and HF hospitalizations in patients who were not receiving an ACE-I due to previous intolerance.
- Valsartan, in addition to usual therapy, including ACE-I, reduced HF hospitalizations in the Val-HeFT trial.
- No ARB has reduced all-cause mortality in any trial.

Pivotal clinical trials

Study	Drug	Main outcome		
ELITE-II (2000) ⁹	Losartan vs. captopril	Similar rates of all-cause mortality, sudden death and resuscitated arrests between the treatment groups in HFrEF patients aged >60 years		
ValHeFT (2001) ³⁰	Valsartan vs. placebo	Similar overall mortality between the treatment groups but improved hospitalisation rates, NYHA class and EF for the valsartan group vs. placebo in patients with chronic HF		
CHARM-Alternative (2003) ¹¹	Candesartan vs. placebo	Reduced composite of CV death or HF hospitalisation in the candesartan group vs. placebo in patients with chronic HFrEF who were intolerant to ACEi		
CHARM-Added (2003) ¹²	Candesartan vs. placebo	The addition of candesartan to ACEi led to reduced composite of CV death or HF hospitalisation in the candesartan group vs. placebo in patients with chronic HFrEF		

ACEi, angiotensin-converting enzyme inhibitor; CV, cardiovascular; EF, ejection fraction; HF, heart failure; HFrEF, HF with reduced EF; NYHA, New York Heart Association.

Contraindications and adverse effects

Contraindications^{3,8}

- Bilateral renal artery stenosis
- · Severe aortic stenosis
- Elevated serum potassium (>5.0 mEq/L)
- Elevated serum creatinine (>2.5 mg/dL)
- Impaired kidney function (eGFR <30 mL/min/1.73 m²)
- NOTE: ARBs should not be used in patients taking both an ACEi and an MRA due to the risk of hyperkalaemia, hypotension and kidney dysfunction

Adverse effects⁸

- Hypotension
- · Worsening kidney function
- Hyperkalaemia
- Cough (<2% of treated patients)

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; eGFR, estimated glomerular filtration rate; MRA, mineralocorticoid receptor antagonist.

Mineralocorticoid Receptor Antagonists

- Mineralocorticoid receptor antagonists (MRAs) are used in HF therapy to further reduce blood pressure on top of ACEis/ARBs and beta blockers^{1,2}
- Two MRAs are currently available: **Spironolactone and eplerenone**³
- Careful patient selection and risk assessment with availability of close monitoring is essential in initiating the
 use of MRAs¹

Mechanism of action

Contraindications and adverse effects

Pivotal clinical trials

Mechanism of action

- Activation of the RAAS in HF leads to the secretion of the mineralocorticoid aldosterone from the adrenal glands^{4,5}
- Aldosterone binds to specific MRs in the distal tubule of the kidney, promoting sodium reabsorption in exchange for potassium excretion⁶
- MRAs, also known as **aldosterone antagonists**, block the action of aldosterone at the late distal tubule and collecting duct of the kidney^{6,7}
- This promotes sodium (and water) excretion into the collecting duct and urine, while conserving potassium in the blood^{6,7}

ACE, angiotensin-converting enzyme; AT, angiotensin II; LV, left ventricular; MRA, mineralocorticoid receptor antagonist.

MRA classes

- MRAs (spironolactone or eplerenone) are recommended, in addition to an ACE-I and a beta-blocker, in all patients with HFrEF to reduce mortality and the risk of HF hospitalization.
- They also improve symptoms.

Beta Blocker	Starting dose	Target dose	
Spironolactone	25 mg OD	50 mg OD	
Eplerenone	25 mg OD	50 mg OD	

Contraindications and adverse effects

Contraindications^{2,6}

- Elevated serum potassium (≥5.0 mEq/L)
- Elevated creatinine (>2.5 mg/dL)
- Administration of another potassium-sparing diuretic or potassium supplements
- NOTE: Clinically unsafe to use MRAs with two ACEi/ARBs due to the risk of hyperkalaemia

Adverse effects^{3,6}

- · Worsening kidney function
- Hyperkalaemia
- Gynaecomastia (only with spironolactone)

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; MRA, mineralocorticoid receptor antagonist.

RCT evaluating effects of MRA on mortality and HFH

Table 2
Summary of RCT evaluating effects of MRA on mortality and HF hospitalizations in patients with HF and reduced LVEF.

RCT: randomized controlled trial, LVEF: left ventricular ejection fraction, MI: myocardial infarction, NYHA: New York Heart Association, HF: heart failure, HR: hazard ratio, CI: confidence interval, CV: cardiovascular.

RCT	Drug	n	LVEF	NYHA class	Etiology of HF	Primary end-point (CV deaths and HF hospitalizations)	HR (95% CI) P value	Death for any cause, HR (95% CI), P value
RALES	Spironolactone	1663	≤35%	III to IV	Ischemic and non-ischemic	38,1% vs. 50.5%	0.68 (0.59-0.78) < 0.001	0.70 (0.60-0.82) P < 0.001
EPHESUS	Eplerenone	6642	≤40	II to IV, even class I if diabetes is present	Post-MI (2 weeks)	26.6% vs 30.0%	0.87 (0.79-0.95) 0.002	0.85 (0.75-0.96) P = 0.008
EMPHASIS	Eplerenone	2737	≤30%, ≤35% if QRS > 130 ms	T	Ischemic and non-ischemic	18.3% vs 25.9%	0.63 (0.54-0.74) < 0.001	0.76 (0.62-0.93) P = 0.008

Pivotal clinical trials

Study	Drug	Main outcome
RALES (1999) ⁹	Spironolactone vs. placebo	Patients with severe HFrEF in the spironolactone group experienced lower all-cause mortality rates vs. placebo
EPHESUS (2003) ¹⁰	Eplerenone vs. placebo	Eplerenone reduced morbidity and mortality in patients with HFrEF after MI vs. placebo
EMPHASIS-HF (2011) ¹¹	Eplerenone vs. placebo	Eplerenone reduced the risk of CV death and HF hospitalisation in patients with chronic HFrEF and mild symptoms vs. placebo

CV, cardiovascular; HF, heart failure; HFrEF, HF with reduced ejection fraction; MI, myocardial infarction.

Angiotensin Receptor and Neprilysin Inhibitor

- The ARNI sacubitril/valsartan was approved for the treatment of HFrEF in 2015¹
- Recommended in patients with chronic symptomatic HFrEF who tolerate ACEi/ARB, to reduce morbidity and mortality^{2,3}

Mechanism of action

Contraindications and adverse effects

Mechanism of action

- That the natriuretic peptide system is a compensatory mechanism in HF, which works antagonistically to the RAAS and has favourable effects on HF pathogenesis⁴
- Neprilysin is a neutral endopeptidase that inactivates several vasoactive peptides⁵
- Neprilysin inhibitors decrease the inactivation of vasoactive peptides, such as natriuretic peptides, promoting their downstream effects⁵
- Since angiotensin II is also a substrate for neprilysin, neprilysin inhibitors raise angiotensin levels, which explains the additional rationale for co-administration of ARB⁵

ACE, angiotensin-converting enzyme; ARNI, angiotensin receptor neprilysin inhibitor; AT, angiotensin II; cGMP, cyclic guanosine monophosphate; GTP, guanosine triphosphate; LV, left ventricular; pGC, particulate guanylate cyclase.

RESTRICTED

Sacubitril-valsartan (Entresto)

- Dosage form
 - -Combination tablet

- Available dosages
 - -24-26 mg (50 mg)
 - -49-51 mg (100 mg)
 - -97-103 mg (200 mg)

- Indicated regimen
 - One tablet by mouth twice daily

Initial dosing

- ACE/ARB naive patients
 - Initiate sacubitril-valsartan 24/26 mg BID. If tolerated, double dose in 2-4 weeks. Goal dose 97/103 mg.
- Patient on ACE-inhibitor (≤10 mg enalapril/day or equivalent)
 - Initiate sacubitril-valsartan 24/26 mg BID. If tolerated, double dose in 2-4 weeks. Goal dose 97/103 mg.

Clinical Trials

Trial Name	Date Published	Patient Population
PARADIGM-HF	9/11/2014	Heart Failure with Reduced Ejection (HFrEF)
PIONEER-HF	11/11/2018	Decompensated Heart Failure (HF)
PARAGON-HF	9/1/2019	Heart Failure with Preserved Ejection Fraction (HFpEF)

PARADIGM HF Trial design^{1,2}

ACEi, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor neprilysin inhibitor; BID, twice daily; BNP, B-type natriuretic peptide; CV, cardiovascular; eGFR, estimated glomerular filtration rate; HF, heart failure; HFH, HF hospitalisation; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal proBNP; NYHA, New York Heart Association; SBP, systolic blood pressure.

Concertina:Baseline characteristics^{2,3}

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CRT, cardiac resynchronisation therapy; HF, heart failure; ICD, implantable cardioverter-defibrillator; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonist; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association.

^aCalculated from 8399 patients.

Results

Outcome ²	Sacubitril/valsartan (n=4187)		Enalapril (n=4212)		HD (050) 573		
	Values	Events/ 100 PY	Values	Events/ 100 PY*	HR (95% CI)	P-value	ARR ⁴
Primary composite outcome, n (%)						-	
CV death or first HF hospitalisation	914 (21.8)	10.5	1117 (26.5)	13.2	0.80 (0.73-0.87)	<0.001	2.7
CV death	558 (13.3)	6.0	693 (16.5)	7.5	0.80 (0.71-0.89)	<0.001	1.5
First HF hospitalisation	537 (12.8)	6.2	658 (15.6)	7.7	0.79 (0.71-0.89)	<0.001	1.5
Secondary outcomes, n (%)							
Death from any cause	711 (17.0)	7.6	835 (19.8)	9.0	0.84 (0.76-0.93)	<0.001	1.4
Change in KCCQ clinical summary score at 8 months	-2.99±0.36		-4.63±0.36		1.64 (0.63-2.65)	0.001	
New-onset atrial fibrillation	84 (3.1)		83 (3.1)		0.97 (0.72-1.31)	0.83	
Decline in renal function*	94 (2.2)		108 (2.6)		0.86 (0.65-1.13)	0.28	

ARR, absolute risk reduction; CI, confidence interval; CV, cardiovascular; HF, heart failure; HR, hazard ratio; KCCQ, Kansas City Cardiomyopathy Questionnaire; PY, patient-years.

^aDefined as end-stage renal disease or a decrease of 50% or more in the eGFR from the value at randomisation or a decrease in the eGFR of >30 mLmin/1.73 m², to <60 mL/min/1.73 m².

PARADIGM HF

- Primary outcome of CV death or hospitalisation for HF occurred in 21.8% of the ARNI group vs. 26.5% of the enalapril group (median follow-up: 27 months)²
- Study stopped early due to benefit²
- Consistent benefit among all subgroups²
 - The risk of the primary outcome was higher in patients with more recent hospitalisation for HF, but there was no difference of differential treatment effect across the spectrum of time since hospitalisation³
- Higher rate of symptomatic hypotension with ARNI however, this did not lead to an increased rate of discontinuation of the therapy²

PARADIGM-HF: Fewer adverse events leading to permanent study drug discontinuation

Contraindications and adverse effects

Contraindications¹¹

- Hypersensitivity
- · Angioedema with previous ACEi or ARB use
- · Within 36 h of ACEi use
- Concomitant aliskiren use in patients with diabetes

Not recommended

- Severe hepatic impairment (Child-Pugh C)
- Pregnancy/breastfeeding

Cautions

- Renal artery stenosis
- · Volume depletion
- · Hyponatraemia

Adverse effects¹¹

- Angioedema
- · Impaired renal function
- Hyperkalaemia
- Dizziness
- Cough

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker.

SGLT2 Inhibitors

- Sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2is) have been used for patients with type 2 diabetes (T2D) for improvement of glycaemic control since 2012, and have been tested in CV outcome trials, as per the guidance of the US Food and Drug Administration (US FDA)^{1,2}
- Results of these trials suggested potential for this class in patients with HF and T2D, and possibly those with, or at risk of HF without T2D³
- The European Society of Cardiology (ESC) Heart Failure Association (HFA) 2019 Clinical Practice Update included a statement that 'canagliflozin, dapagliflozin, empagliflozin should be considered in T2D patients with/at risk of CVD to prevent or delay onset of HF hospitalisation'⁴
 - SGLT2 inhibitors should be prioritised over metformin⁵
- Dapagliflozin was approved in the US for the treatment of HFrEF in May 20209

- SGLT2is, including empagliflozin, dapagliflozin and sotagliflozin,^a are under investigation in phase III trials for their potential to reduce the risk of HF hospitalisations or CV death in patients with HFrEF with or without T2D
 - DAPA-HF, the first study of an SGLT2i in HF, was positive⁶
 - EMPEROR-Reduced and SOLOIST-WHF were also positive^{7,8}

Mechanism of action

Pivotal CV outcome trials

Contraindications and adverse effects

Mechanism of action

- SGLT2 is expressed almost exclusively in the early segment of the kidney's proximal tubule, and accounts for up to 90% of the reabsorbed glucose from the glomerular filtrate back into circulation¹⁰
 - SGLT1 is responsible for reabsorption of the residual glucose (10– 20%)^{10,11}

SGLT2 inhibitors:

- Inhibit the physiological reabsorption of glucose and sodium in the kidneys, resulting in their excretion in the urine¹¹
 - This leads to reduction of blood glucose, blood pressure, inflammation, oxidative stress, arterial stiffness, and SNS activity¹¹
- Mediate natriuresis, which reduces both systolic and diastolic pressures¹¹
- Mediate natriuresis and glycosuria, which reduce plasma volume and lower cardiac preload^{11,12}
 - This may decrease central aortic pressure and reduce afterload, indirectly leading to improved LV function¹¹

SGLT2 drives the sodium-coupled glucose entry across the membrane. Sodium levels are maintained by a basolateral sodium/potassium-ATPase, an energy-dependent pump that pumps potassium into the cell and sodium out of the cell. Glucose leaves the cell down into the blood through facilitative glucose transporters (GLUT2). SGLT2is work to stop this process.¹¹

SGLT2, sodium-glucose co-transporter 2; SGLT2i, SGLT2 inhibitor.

Pivotal CV outcome trials

	EMPA-REG OUTCOME ¹³	DECLARE-TIMI 58 ¹⁴
Drug	Empagliflozin (vs. placebo)	Dapagliflozin (vs. placebo)
Patients, n	7020	17,160
Patient population	T2D with high risk of CV events	T2D with, or at risk of, atherosclerotic CVD
Primary endpoint	Patients who received empagliflozin had a lower rate of the primary composite CV outcome of death from CV causes, non-fatal myocardial infarction, or non-fatal stroke, vs. placebo	Compared with placebo, dapagliflozin did not result in a higher or lower ate of the primary safety and efficacy outcome of MACE, but did result in a lower rate of the primary efficacy outcome of a composite of CV death or HF hospitalisation, across multiple subgroups.
Further results	Patients who received empagliflozin had a lower rate of death from any cause and of HF hospitalisation, vs. placebo	 Additional analysis showed that dapagliflozin reduces HF hospitalisation in a broad spectrum of patients with T2D and high CV risk regardless of EF, with the greatest absolute risk reduction in patients at highest risk, and reduces CV death and all-cause mortality in patients specifically with HFrEF¹⁵

^aCV death, myocardial infarction or ischaemic stroke.

CV, cardiovascular; CVD, CV disease; EF, ejection fraction; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; MACE, major adverse cardiovascular events; T2D, type 2 diabetes.

Pivotal Heart Failure Trial on SGLT2 Inhibitors: DAPA-HF

- DAPA-HF: International, multicentre, phase III randomised clinical trial evaluating dapagliflozin on morbidity and mortality in patients with chronic HFrEF¹
- The risk of a worsening HF event or death from CV causes was lower in the dapagliflozin group than in the placebo group, regardless of the presence or absence of diabetes²

Concertina 1: Trial design^{1–3}

Concertina 2: Baseline characteristics^{2,4}

Concertina 3: Results²

DAPA HF Trial design¹⁻³

AF, atrial fibrillation; CV, cardiovascular; eGFR, estimated glomerular filtration rate; HF, heart failure; HFH, heart failure hospitalisation; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; OD, once daily; SBP, systolic blood pressure; T2D, type 2 diabetes.

DAPA HF Baseline characteristics^{2,4}

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor neprilysin inhibitor; CRT, cardiac resynchronisation therapy; HF, heart failure; ICD, implantable cardioverter-defibrillator; IQR, interquartile range; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonist; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association.

Concertina: Results²

^aA composite outcome of a reduction of ≥50% in the eGFR sustained for ≥28 days, ESRD, or death from renal causes. ESRD was defined as an eGFR of <15 mL/min/1.73 m² that was sustained for ≥8 days, long-term dialysis treatment (sustained for ≥28 days), or kidney transplantation.

- Safety: Discontinuations due to adverse events were comparable in both arms (<5%)
 - Change in systolic blood pressure from baseline was significantly higher for dapagliflozin vs. placebo: -1.92±14.92 vs. -0.38±15.27 mmHg
 (HR: -1.27; 95% CI -2.09 to -0.45; P=0.002)
- Looking more closely at KCCQ response, more patients in the dapagliflozin group than in the placebo group had an increase of at least 5 points (the minimal clinically important difference) in the total score (58.3 vs. 50.9%; OR: 1.15; 95% CI 1.08 to 1.23) and fewer had significant deterioration (25.3 vs. 32.9%; OR: 0.84; 95% CI 0.78 to 0.90) (both P<0.001)

ARR, absolute rate reduction; CI, confidence interval; CV, cardiovascular; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; HF, heart failure; HR, hazard ratio; KCCQ, Kansas City Cardiomyopathy Questionnaire; OR, odds ratio; PY, patient-years.

EMPEROR-Reduced study design

Design: Randomised, double-blind, placebo-controlled, phase III study

Objective: Investigate the safety and efficacy of empagliflozin versus placebo on top of SOC in patients with HFrEF

Eligibility criteria

- Age ≥18 years*
- Diagnosed HF (NYHA class II–IV)
- LVEF ≤40%
- Elevated NT-proBNP#
- Receipt of SOC for HF and stable for ≥1 week before visit 1
- Written consent provided

EMPEROR-Reduced: Empagliflozin reduced time to composite of CV death or HFH, but not CV death alone

Key details of the DAPA-HF and EMPEROR-Reduced studies

		DAPA-HF (N=4744) ^{1–3} Dapagliflozin	EMPEROR-Reduced (N=3730) ⁴ Empagliflozin
Inclusion/	NT-proBNP cut-off (pg/ml)	≥600 or ≥400 if HFH within 12 months or ≥900 if AF	EF ≤30%: ≥600, or ≥1200 if AF EF 31–35%: ≥1000, or ≥2000 if AF EF 36–40%: ≥2500, or ≥5000 if AF EF ≤40% and HFH within 12 months: ≥600, or ≥1200 if AF
Recent HF decompensation decompensated H	No current ADHF or hospitalisation due to decompensated HF <4 weeks prior to enrolment	Chronic HF ≥3 months No current ADHF requiring IV diuretics, vasodilators, inotropic agents or mechanical support within 1 week of screening and during the screening period prior to randomisation	
	Median NT-proBNP, pg/ml	1437	1907
	NYHA class III or IV	32%	25%
Baseline characteristics	Prior HFH	16% within 6 months	31% within 12 months
	Mean eGFR, ml/min/1.73 m ²	66	62
	eGFR <60 ml/min/1.73 m ²	41%	48%
Primary endpoint	event rate (control arm)	15.6 events/100 PY	21.0 events/100 PY

EMPEROR-Reduced included a higher-risk patient population than DAPA-HF

Note: The total population values have not been reported for EMPEROR-Reduced, so the average of the mean or median values from the individual study arms was calculated in some cases. Each study was conducted independently, and no head-to-head studies have been completed that allow for direct comparison of the efficacy and/or safety of one drug vs another AF, atrial fibrillation; ADHF, acute decompensated heart failure; EF, ejection fraction; eGFR, estimated glomerular filtration rate; HF, heart failure; HFH, heart failure hospitalisation; HFrEF, heart failure with reduced ejection fraction; IV, intravenous; NT-proBNP, N-terminal pro-B-type natriuretic peptide; PY, patient-years

^{1.} McMurray JJV et al. N Engl J Med. 2019;381:1995–2008; 2. McMurray JJV et al. Eur J Heart Fail. 2019;21:1402–1411; 3. McMurray JJV et al. Eur J Heart Fail. 2019;21:665–675;

DAPA-HF and EMPEROR-Reduced meta analysis: Is there a benefit for CV death?

Is the lack of CV death benefit in EMPEROR-Reduced due to the higher risk patient population compared with that of DAPA-HF?

All agrees we establish	HR (95% CI)	No. of events/no	o. of patients (%)	HR	05% CI
All-cause mortality	пк (95% CI)	SGLT2i	Placebo	пк	95% CI
EMPEROR-Reduced	├	249/1863 (13.4)	266/1867 (14.2)	0.92	(0.77-1.10)
DAPA-HF	⊢♦ →	276/2373 (11.6)	329/2371 (13.9)	0.83	(0.71-0.97)
Total				0.87	(0.77-0.98)
Test for overall treatment effect <i>p</i> =0.018					
Test for heterogeneity of effect p=0.39					
CV death					
EMPEROR-Reduced	├	187/1863 (10.0)	202/1867 (10.8)	0.92	(0.75–1.12)
DAPA-HF	├	227/2373 (9.6)	273/2371 (11.5)	0.82	(0.69-0.98)
Total				0.86	(0.76-0.98)
Test for overall treatment effect p=0.027					
Test for heterogeneity of effect p=0.40					
0	0.25 0.5 0.75 1.0 1. SGLT2i	1 25 acebo			

SOLOIST-WHF study design

Design: Randomised, double-blind, placebo-controlled, phase III trial

Objective: Investigate the efficacy and safety of sotagliflozin versus placebo in patients with T2D who were recently treated for worsening HF (HFrEF or HFpEF) when initiated soon after the episode of decompensated HF

Eligibility criteria

- Age 18–85 years
- HFH or urgent visit for worsening HF and received treatment with IV diuretic therapy
- T2D diagnosis prior to or during the index admission
- Prior diagnosis of HF ≥3 months
- Receiving treatment with a loop diuretic for HF for ≥30 days prior to index event
- On beta-blockers and RAAS inhibitors if LVEF <40%. unless contraindicated
- $eGFR \ge 30 \text{ ml/min}/1.73 \text{ m}^2$
- Written consent provided

Median follow-up: 9.0 months

Primary endpoint: Total number of deaths from CV causes and hospitalisations and urgent visits for HF (first and subsequent events)

SOLOIST-WHF: Sotagliflozin reduced the total CV deaths or hospitalisations/urgent visits for HF

Primary endpoint

Total number of CV deaths and hospitalisations and urgent visits for HF (first and subsequent events)

First occurrence of either CV death or HFH

Contraindications and adverse effects

Contraindications¹⁶

- · Prior serious hypersensitivity reaction to given SGLT2i
- Severe renal impairment (eGFR <30 mL/min/1.73 m²) being treated for glycaemic control without established CVD or multiple CV risk factors
- Dialysis

Cautions

- Volume depletion
- Ketoacidosis in diabetes
- · Urinary tract infections
- Hypoglycaemia
- · Fournier's gangrene
- · Genital mycotic infections

Adverse effects16

- Female genital mycotic infections
- · Nasopharyngitis
- · Urinary tract infections

Note: Contraindications, cautions and adverse effects for dapagliflozin.

CV, cardiovascular; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; SGLT2i, sodium-glucose co-transporter 2 inhibitor.

Putting data into context

	PARADIGM-HF¹ sacubitril/ valsartan	sacubitril/ DAPA-HF2 EMPEROR-Reduced ³		SOLOIST-WHF ⁶ sotagliflozin
Number of patients at randomisation	8442	4744	3730	1222
Diabetes mellitus at baseline,* %	34.6	41.8#	49.8	100
LVEF	≤35%	≤40%	≤40%	HFrEF and HFpEF‡
Recent HF decompensation	Not required	Not required	Chronic HF ≥3 months	HFH or worsening HF and received treatment with IV diuretic therapy
Primary endpoint	First HFH or CV death	Worsening HF (unplanned hospitalisation/urgent visit resulting in IV therapy for HF) or CV death	First HFH or CV death	Total number of CV deaths and hospitalisations and urgent visits for HF§

	PARAD	IGM-HF ¹	DAP	A-HF ¹	EMPEROR	R-Reduced ¹	SOLOIS	T-WHF ³
	Control	Sacubitril/ valsartan	Control	Dapa- gliflozin	Control	Empa- gliflozin	Control	Sota- gliflozin
Primary endpoint	13.2	10.5	15.6	11.6	21.0	15.8	76.3	51.0
ARR	2	2.7	4	.0	5	.2	25	5.3
CV death	7.5	6.0	7.9	6.5	8.1	7.6	12.5	10.6
ARR	13	1.5	1	.4	0	.6	1	.9
First HF hospitalisation	7.74	6.24	9.8	6.9	15.5	10.7	NR	NR
ARR	11	1.6	2	.9	4	.8	N	IR

Guidelines update

Key updates from ESC 2021 guidelines in the management of chronic HF¹

New concepts

A change of the term 'heart failure with mid-range ejection fraction' to 'heart failure with mildly reduced ejection fraction' (HFmrEF)

A new **simplified treatment algorithm** for HFrEF, now including ARNi as first-line with ACEi and excluding ARBs from first-line therapies

The addition of a treatment algorithm for HFrEF according to **phenotypes**

Updated treatments for most non-cardiovascular comorbidities including diabetes, hyperkalemia, iron deficiency and cancer

New recommendations

Recommendation	Class
HFrEF	
Dapagliflozin or empagliflozin are recommended for patients with HFrEF to reduce the risk of HF hospitalization and death	l
Vericiguat may be considered in patients in NYHA class II–IV who have had worsening HF despite treatment with an ACEi (or ARNi), a beta-blocker and an MRA to reduce the risk of CV mortality or HF hospitalization	Ilb

Changes in the classification of HF from the 'Universal definition and classification of HF' consensus statement^{1,2}

New onset/ de novo HF

- Newly diagnosed HF
- No former history of HF

Worsening HF

- Worsening symptom/signs/ functional capacity, and/or requiring escalation of therapies such as IV or other advanced therapies
- and/or hospitalization

Improving HF

 Improving symptoms/signs and/or functional capacity

Persistent HF

 Persistent HF with ongoing symptoms/signs and/or limited functional capacity

HF in remission

 Resolution of symptoms and signs of HF, with resolution of previous structural/ functional heart disease after a phase of symptomatic HF

"Worsening HF" in VICTORIA3

- Recent HF decompensation
 - HF hospitalization within 6 months
 - Outpatient IV diuretic use within 3 months

HF, heart failure; IV, intravenous.

Vericiguat is specifically recommended for worsening HF in ESC 2021 guidelines¹

Recommendations	Class	Level
Soluble guanylate cyclase receptor stimulator		
Vericiguat may be considered in patients in NYHA class II–IV who have had worsening HF despite treatment with an ACEi (or ARNi), a beta blocker and an MRA to reduce the risk of CV mortality or HFH	IIb	В

Inclusion in the guidelines before EU approval is in contrast with other unlicensed therapies (e.g. omecamtiv mecarbil) Worsening HF is referred to in the guidelines for the first time, and vericiguat is specifically recommended for this patient group

Guidelines do not require the use of all foundational therapies prior to vericiguat initiation

Disease-modifying therapies in HFrEF

Evidence-based doses of diseasemodifying drugs, including vericiguat, in key randomized trials in patients with HFrEF¹

^{**} Spironolactone has an optional starting dose of 12.5 mg in patients where renal status or hyperkalemia warrant caution. ACEi, angiotensin-converting enzyme inhibitor; ARNi, angiotensin receptor–neprilysin inhibitor; bid, twice daily; CR, controlled release; CV, cardiovascular; HFrEF, heart failure with reduced ejection fraction; MRA, mineralocorticoid receptor antagonist; od, once daily; SGLT2, sodium–glucose cotransporter 2; tid, three times daily; XL, extended release. **Reference: 1.** McDonagh TA *et al. Eur Heart J* 2021; doi:10.1093/eurhearti/ehab368.

	Starting dose	Target dose
ACEi		
Captopril*	6.25 mg tid	50 mg tid
Enalapril	2.5 mg bid	10–20 mg bid
Lisinopril#	2.5–5 mg od	20–35 mg od
Ramipril	2.5 mg bid	5 mg bid
Trandolapril*	0.5 mg od	4 mg od
ARNi		
Sacubitril/valsartan	49/51 mg bid [‡]	97/103 mg bid
Beta-blockers		
Bisoprolol	1.25 mg od	10 mg od
Carvedilol	3.125 mg bid	25 mg bid [¶]
Metoprolol succinate (CR/XL)	12.5–25 mg od	200 mg od
Nebivolol [§]	1.25 mg od	10 mg od
MRA		
Eplerenone	25 mg od	50 mg od
Spironolactone	25 mg od**	50 mg od
SGLT2 inhibitor		
Dapagliflozin	10 mg od	10 mg od
Empagliflozin	10 mg od	10 mg od
Other agents		
Candesartan	4 mg od	32 mg od
Losartan	50 mg od	150 mg od
Valsartan	40 mg bid	160 mg bid
Ivabradine	5 mg bid	7.5 mg bid
Vericiguat	2.5 mg od	10 mg od
Digoxin	62.5 µg od	250 µg od
Hydralazine/isosorbide dinitrate	37.5 mg tid/	75 mg tid/
	20 mg tid	40 mg tid

^{*} Indicates an ACEi where the dosing target is derived from post-myocardial infarction trials.

[#] Indicates drugs where a higher dose has been shown to reduce morbidity/mortality compared with a lower dose of the same drug, but there is no substantive randomized, placebo-controlled trial and the optimum dose is uncertain.

[‡] Sacubitril/valsartan may have an optional lower starting dose of 24/26 mg bid for those with a history of symptomatic hypotension.

[§] Indicates a treatment not shown to reduce CV or all-cause mortality in patients with heart failure (or shown to be non-inferior to a treatment that does).

[¶]A maximum dose of 50 mg bid can be administered to patients weighing over 85 kg.

New therapeutic algorithm for HFrEF

New therapeutic algorithm for HFrEF

Therapeutic algorithm of Class I Therapy Indications for a patient with HFrEF

Strategic phenotypic overview of the management of HFrEF

Management of HFrEF

2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure European Heart Journal (2021) doi:10.1093/eurheartj/ehab368

Canadian Guidelines for Treating Patients with Symptomatic Chronic HFrEF¹

The CCS/CHFS 2021 recommend vericiguat be considered in addition to optimal HF therapies for HFrEF patients with worsening symptoms and HFH in the past 6 months, to reduce the risk of subsequent HFH

^{*}ARNi or ACEi/ARB then substitute ARNi; #Vericiguat is not yet approved for use in Canada; ‡Health Canada has approved ivabradine for patients with HFrEF and HR ≥77 bpm in sinus rhythm; §The recommendation varied from strong to weak depending on the clinical situation.

ACEi, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blocker; ARNi, angiotensin receptor—neprilysin inhibitor; bpm, beats per minute; CCS, Canadian Cardiovascular Society; CHFS, Canadian Heart Failure Society; GDMT, guideline-directed medical therapy; HFH, heart failure hospitalisation; HFrEF, heart failure with reduced ejection fraction; HR, heart rate; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonist; SGLT2i, sodium—glucose cotransporter 2 inhibitor.

^{1.} McDonald M et al. Can J Cardiol. 2021:37:531-546.

ACC Expert Consensus for the Treatment of Patients with Symptomatic Chronic HFrEF¹

No specific recommendations are made in the ACC expert consensus for patients who experience a worsening HF event

Guanylyl cyclase stimulation is mentioned as a pathway shown to improve outcomes for patients with HFrEF

Vericiguat efficacy in HFrEF is mentioned, but it is not yet specifically recommended

^{*}ARNi is preferred; #ensure eGFR ≥30 ml/min/1.73 m² for dapagliflozin and eGFR ≥20 ml/min/1.73 m² for empagliflozin before initiation.

ACC, American College of Cardiology; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNi, angiotensin receptor—neprilysin inhibitor; bpm, beats per minute; eGFR, estimated glomerular filtration rate; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; HR, heart rate; MRA, mineralocorticoid receptor antagonist; NYHA, New York Heart Association; SGLT2i, sodium—glucose cotransporter 2 inhibitor.

^{1.} Maddox TM et al. J Am Coll Cardiol. 2021:77:772-810.

Four therapies are now recommended as foundational treatments for all patients with HFrEF

ESC 2021: Key changes²

First-line recommendations for HFrEF are now ACEi/ARNi, beta blocker, MRA and SGLT2i

The **SGLT2i** class is now one of the foundational therapies for HFrEF based on evidence from DAPA-HF,³ EMPEROR-Reduced,⁴ and SOLOIST-WHF⁵

ARNi can now be used first-line in ACEi-naïve patients

ARBs are **no longer** a first-line option, and are recommended only as a replacement for an ACEi

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNi, angiotensin receptor—neprilysin inhibitor; bpm, beats per minute; CRT, cardiac resynchronization therapy; ESC, European Society of Cardiology; HFrEF, heart failure with reduced ejection fraction; HR, heart rate; MRA, mineralocorticoid receptor antagonist; NYHA, New York Heart Association; SGLT2i, sodium—glucose cotransporter 2 inhibitor.

References: 1. Ponikowski P *et al. Eur J Heart Fail* 2016;18:891–975; **2.** Metra M. ESC-HF. 29 June–1 July 2021, oral presentation; **3.** McMurray J *et al. N Engl J Med* 2019;381:1995–2008; **4.** Packer M *et al. N Engl J Med* 2020;383:1413–1424; **5.** Bhatt DL *et al. N Engl J Med* 2021;384:117–128.

ESC 2021 recommendations for the treatment of patients with HFrEF¹

^{*}ARNi recommended as a replacement for ACEi; an ARB is recommended in patients unable to tolerate an ACEi or ARNi (class I, level B). #Where appropriate.

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNi, angiotensin receptor—neprilysin inhibitor; BB, beta-blocker; CRT-D, cardiac resynchronization therapy with defibrillator; CRT-P, cardiac resynchronization therapy with pacemaker; ESC, European Society of Cardiology; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; ICD, implantable cardioverter defibrillator; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonist; NYHA, New York Heart Association; QRS, Q, R and S waves; SR, sinus rhythm.

Reference: 1. McDonagh TA et al. Eur Heart J 2021; doi:10.1093/eurheartj/ehab368.

ESC 2021 guidelines: Drugs recommended in all patients with HFrEF¹

Recommendations	Class	Level
ACEi is recommended for patients with HFrEF to reduce the risk of HF hospitalization and death	I	А
Beta-blocker is recommended for patients with stable HFrEF to reduce the risk of HF hospitalization and death	I	Α
MRA is recommended for patients with HFrEF to reduce the risk of HF hospitalization and death	1	Α
Dapagliflozin or empagliflozin is recommended for patients with HFrEF to reduce the risk of HF hospitalization and death	ı	Α
Sacubitril/valsartan is recommended as a replacement for ACEi in patients with HFrEF to reduce the risk of HF hospitalization and death	ı	В

ACEi, angiotensin-converting enzyme inhibitor; ESC, European Society of Cardiology; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; MRA, mineralocorticoid receptor antagonist.

Reference: 1. McDonagh TA et al. Eur Heart J 2021; doi:10.1093/eurheartj/ehab368.

New recommendation for pre-discharge and early post-discharge follow-up of patients hospitalized for acute HF¹

Recommendations	Class	Level
It is recommended that patients hospitalized for HF be carefully evaluated to exclude persistent signs of congestion before discharge and to optimize oral treatment	I	С
It is recommended that evidence based oral medical treatment be administered before discharge	l	С
An early follow-up visit is recommended at 1–2 weeks after discharge to assess signs of congestion, drugs' tolerance and start and/or uptitrate evidence-based therapy	1	С
Ferric carboxymaltose should be considered for iron deficiency, defined as serum ferritin <100 ng/ml or serum ferritin 100–299 ng/ml with TSAT <20%, to improve symptoms and reduce hospitalizations	lla	В

Reference: 1. McDonagh TA et al. Eur Heart J 2021; doi:10.1093/eurheartj/ehab368.

Summary

Key changes in the ESC 2021 guidelines

- Foundational therapies for HFrEF are now ACEi/ARNi, beta blocker, MRA and SGLT2i
- Vericiguat is recognized in the guidelines as a disease-modifying therapy
- Vericiguat received a class IIb, level of evidence B recommendation for patients in NYHA class II–IV who have had worsening HF despite treatment with an ACEi (or ARNi), a beta blocker and an MRA to reduce the risk of CV mortality or HFH
- Importantly, the ESC guidelines are the first to mention worsening HF, reflecting a new understanding that this
 represents a distinct patient population with high unmet need

Phenotyping approach for patients with HFrEF

- A phenotyped approach for HFrEF management is recommended, suggesting that patient profiling will be increasingly important
 - The favourable safety and tolerability profile of vericiguat makes it suitable for use even in hard-to-treat patients
- A new recommendation was included to start evidence-based oral therapy before or shortly after discharge
 - Vericiguat could be an option in these settings