Monetary Policy Spillovers Transmission Through Networks

Göller Nicolas, Konecny Gabriel

WU Wien

June 26, 2025

Introduction

► Effects of US monetary policy shocks on stock returns using Input-Output networks (Ozdagli and Weber 2017; Di Giovanni and Hale 2022)

$$y_t = \alpha + \rho \mathsf{W} y_t + X_t \beta + \varepsilon_t$$

Does the choice of network matter?

 Pure trade weights for all variables outperformed in model fit or predictive accuracy by other linkages in GVAR setting (Eickmeier and Ng 2015; Feldkircher and Huber 2016; Martin and Crespo Cuaresma 2017)

Network Visuals

Figure 1: Intermediate Trade

Figure 2: Short-term debt

Outline

Which networks are important for the transmission of US monetary policy shocks?

- Evaluate spillovers of US monetary policy shocks to international stock returns using SAR model
- Estimate convex combinations of time-varying networks
- BMA for uncertainty wrt. number of networks

Dynamic setting with multiple variables Deal with endogeneity of networks

Introduction

Model uncertainty in linear regression model

(Fernández, Ley, and Steel 2001)

Model uncertainty wrt. X in SAR model

(LeSage and Parent 2007)

Uncertainty wrt. W

(LeSage and Fischer 2008; Piribauer and Crespo Cuaresma 2016)

Estimate convex combination $W_c = \sum_{\ell=1}^L \gamma_\ell W_\ell$

(Debarsy and LeSage 2018; Debarsy and LeSage 2022)

Introduction

Table 1: Comparison of Di Giovanni and Hale (2022), Debarsy and LeSage (2022) and this project.

	DGH22	DL22	Here
HETSAR	✓		
Panel	✓		\checkmark
Time-varying W			\checkmark
Estimate $W_c(\Gamma)$		\checkmark	\checkmark
BMA		\checkmark	\checkmark

Setup

$$y = \rho W_c(\Gamma) y + X\beta + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2 I_{NT})$$

$$W_c(\Gamma) = \sum_{\ell=1}^{L} \gamma_\ell W_\ell, \quad 0 \le \gamma_\ell \le 1, \quad \sum_{\ell=1}^{L} \gamma_\ell = 1, \quad \Gamma = (\gamma_1, \dots, \gamma_L)'$$

$$W_\ell = \begin{pmatrix} W_{\ell,1} & 0 & \dots & 0 \\ 0 & W_{\ell,2} & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & W_{\ell,T} \end{pmatrix}$$

- \triangleright $W_{\ell,t}$ connectivity matrix:
 - ▶ Main diagonal = 0
 - ▶ Row-sums = 1
 - NxN number of cross-sectional observations

Computationally efficient expression:

$$\tilde{y}\omega = X\beta + \varepsilon$$

$$\tilde{y} = (y, W_1y, W_2y, \dots, W_Ly)$$

$$\omega = (1, -\rho\Gamma')'$$

$$W_{\ell}y = egin{bmatrix} W_{\ell,1} & 0 & \cdots & 0 \ 0 & W_{\ell,2} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & W_{\ell,T} \end{bmatrix} egin{bmatrix} y_1 \ y_2 \ dots \ y_T \end{bmatrix} = egin{bmatrix} W_{\ell,1}y_1 \ W_{\ell,2}y_2 \ dots \ W_{\ell,T}y_T \end{bmatrix}$$

Likelihood

Standard Notation

Computationally Efficient

$$y = \rho W_c y + X\beta + \varepsilon$$
$$(I - \rho W_c)y = X\beta + \varepsilon$$
$$Ry = X\beta + \varepsilon$$
$$\varepsilon = Ry - X\beta$$

$$\tilde{\mathbf{y}}\omega = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
$$\boldsymbol{\varepsilon} = \tilde{\mathbf{y}}\omega - \mathbf{X}\boldsymbol{\beta}$$

$$f_Y(y) = \left| \frac{\partial \varepsilon}{\partial y} \right| f_{\varepsilon}(Ry - X\beta)$$

$$= |R| \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} (Ry - X\beta)^{\top} (Ry - X\beta)\right)$$

$$f(y \mid X, W; \rho, \Gamma, \sigma^2, \beta) = |R(\omega)| (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{e'e}{2\sigma^2}\right)$$

Priors and Joint Posterior

Size of parameter space:

$$\Omega := \Omega_{\rho} \times \Omega_{\Gamma} \times \Omega_{\beta} \times \Omega_{\sigma} = (-1, 1)x[0, 1]^{L}xR^{k}x(0, \infty)$$

Flat or uniform priors for ρ , Γ , β , $log(\sigma^2)$:

$$p(\rho) \sim U(-1,1), \quad p(\Gamma) \sim U(0,1), \quad p(\beta) \propto 1, \quad p(\sigma^2) \propto \frac{1}{\sigma^2}$$

Joint Posterior

$$p\left(
ho, \Gamma, \sigma^2, \beta \mid y, X, \mathcal{W}\right) \propto |R(\omega)| \left(\sigma^2\right)^{-\frac{(n+2)}{2}} \exp\left(-\frac{1}{2\sigma^2}e'e\right)$$

MCMC Summary

- ▶ Draw β conditional on ω and σ^2 $p(\beta \mid \sigma^2, \omega, \tilde{y}, X) \sim N$
- ▶ Draw σ^2 conditional on ω and β $p(\sigma^2 | β, ω, \tilde{y}, X) \sim IG$

Metropolis–Hastings to sample ω from $p(\omega \mid \tilde{y}, X, W)$:

- \triangleright Sample ρ conditional on Γ
- lacksquare Block-sample Γ conditional on ho

Joint Posterior for ω

 β and σ^2 can be integrated out analytically from the joint posterior:¹

$$p(\omega \mid \tilde{y}, X, \mathcal{W}) \propto |R(\omega)| |X'X|^{-1/2} (\omega' F \omega)^{-(n-k)/2}$$

$$\ln p(\omega \mid \tilde{y}, X, \mathcal{W}) \propto \ln |R(\omega)| - \frac{n-k}{2} \ln (\omega' F \omega)$$

- \triangleright Condition this expression on Γ to sample ρ and vice versa
- Numerically integrate this expression to arrive at the log marginal likelihood

 $^{{}^{1}}F = U'U, \quad U = M\tilde{y}, \quad M = I_{n} - X(X'X)^{-1}X'$

Sampling ρ

Initial value: $\rho = 0.7$

- 1. Draw $\rho^{p} = \rho^{c} + cN(0,1)$
 - ▶ If $\rho^p \in (-1,1)$, continue
 - Else set $\rho^c = \rho^p$ and repeat
- 2. Decide acceptance: If $\alpha \geq U \sim U(0,1)$ accept ρ^p and set $\rho^c = \rho^p$. Else stay at ρ^c

$$\alpha(\rho^{c}, \rho^{p}) = \min(1, \exp[\ln p(\rho^{p} \mid \Gamma) - \ln p(\rho^{c} \mid \Gamma)])$$

- 3. Tuned random walk:
 - ▶ If acceptance ratio $< 0.4 \implies c = c/1.1$
 - ▶ If acceptance ratio > 0.6 $\implies c = c * 1.1$

Block Sampling for Γ

Initial values: $\gamma_{\ell} = 1/L$, $\forall \ell$

- 1. Draw $\Gamma^p = (\gamma_1^p, \dots, \gamma_L^p)$
 - ▶ For $\ell \in \{1, ..., L-1\}$ draw $V \sim U(0,1)$. ²

$$\begin{array}{c|cccc} \textbf{Condition, Propose} & \textbf{\textit{N}} \leq 1000 & \textbf{\textit{N}} > 1000 \\ \hline \textbf{\textit{V}} \leq 1/3 & \gamma_{\ell}^{\textit{p}} \in & [0, \ \gamma_{\ell}^{\textit{c}}] & [\gamma_{\ell}^{\textit{c}} - d\sigma_{\gamma_{\ell}}, \gamma_{\ell}^{\textit{c}}] \\ \textbf{\textit{V}} > 2/3 & \gamma_{\ell}^{\textit{p}} \in & (\gamma_{\ell}^{\textit{c}}, \ 1] & (\gamma_{\ell}^{\textit{c}}, \ \gamma_{\ell}^{\textit{c}} + d\sigma_{\gamma_{\ell}}] \\ \textbf{\textit{else}} & \gamma_{\ell}^{\textit{p}} = & \gamma_{\ell}^{\textit{c}} & \gamma_{\ell}^{\textit{c}} \end{array}$$

- ► Set $\gamma_L = 1 \sum_{\ell=1}^{L-1} \gamma_\ell$, if $\gamma_L < 0$ repeat.
- 2. Decide acceptance: If $\alpha \geq U \sim U(0,1)$ accept Γ^p and set $\Gamma^c = \Gamma^p$, else stay at Γ^c

$$\alpha(\Gamma^c, \Gamma^p) = \min(1, \exp[\ln p(\Gamma^p \mid \rho) - \ln p(\Gamma^c \mid \rho)])$$

- 3. Tuned random walk (N > 1000):
 - ▶ If acceptance ratio $< 0.1 \implies d = d/1.1$
 - If acceptance ratio $> 0.4 \implies d = d*1.1$

 $^{^2\}sigma_{\gamma_\ell}$ is computed using rolling window interval of 1000 draws of γ_ℓ

Calculating Average Effects • Model

Effects decomposition akin to LeSage and Pace (2009)

$$\begin{split} \frac{\partial y}{\partial X^r} &= S_r = (I_n - \rho W_c(\Gamma))^{-1} \beta_r \\ \bar{M}(r)_{\text{direct}} &= \frac{1}{NT} \operatorname{tr}(S_r) \\ \bar{M}(r)_{\text{total}} &= \frac{\beta_r}{1 - \rho} \\ \bar{M}(r)_{\text{indirect}} &= \bar{M}(r)_{\text{total}} - \bar{M}(r)_{\text{direct}} \end{split}$$

These capture how changes in a covariate affect outcomes locally and across the spatial network.

Marginal Likelihood and Model Averaging

- ▶ MH-MC integration of $p(\omega \mid \tilde{y}, X, \mathcal{W})$ to arrive at the marginal likelihood
- Uniform prior over the model space
 - Posterior model probability boils down to marginal likelihood
- Debarsy and LeSage (2022) write their BMA estimation for combinations of 2 or more networks
 - ▶ We additionally estimate single network models in Appendix
 - lacktriangle Low marginal likelihood \Longrightarrow posterior probability pprox 0
- ▶ With 5 candidates for connectivity matrices, there are 26 potential combinations of 2 or more matrices

Data: Stock Returns and Monetary Policy Shocks

Stock returns based on monthly closing prices of national stock market indices:

- ▶ 24 countries from 2001-2014
- ▶ US: SP500, Germany: DAX, ...

Identification of monetary policy shocks following Jarociński and Karadi (2020):

- ► MP shock = interest rate surprise
- Change in the three-month Federal Funds futures rate
- ▶ 30-minute window around FOMC announcements

Data: Transmission Networks

Quadratic network matrices of directed, bilateral links between countries.

- ▶ Short-term debt securities: with original maturity <1 year
- ▶ Long-term debt securities: with original maturity >1 year
- Equity holdings: Equity titles
- Trade in intermediates: input-output matrix at country-level
- Total trade: import and export flows

Network Similarity 2001-2014 (Link)

Network Similarity - Correlation 2014

Network Evolution 2001-2014 (Link)

Results BMA 2001-2014

Table 2: Top 5 Models by Posterior Probability

Rank	LogLik	PostProb	ρ	W1	W2	W3	W4	W5
1	-5330.3	0.91	0.87	0.29	-	-	-	0.71
2	-5333.7	0.03	0.87	0.24	0.05	-	-	0.71
3	-5333.9	0.02	0.86	0.28	-	-	0.13	0.59
4	-5334.1	0.02	0.87	0.26	-	0.03	-	0.71
5	-5334.6	0.01	0.85	-	0.14	-	-	0.86
ВМА	-5330.7	0.99	0.87	0.28	0.00	0.00	0.01	0.71

W1 Long Debt Securities

W2 Short Debt Securities

W3 Equity

W4 Trade

W5 Wiot

Chain Diagnostics Best Model Full model

Table 3: MCMC Diagnostics (ndraws = 20000)

	Mode	Mean	MC Error	IACT	ESS	Geweke
α	0.2166	0.2173	0.0002	1.3722	14579	0.9995
β	-0.9534	-0.9595	0.0031	1.0179	19648	0.9863
ho	0.8665	0.8649	0.0005	5.7472	3481	0.9996
γ_1	0.2842	0.2860	0.0017	7.5656	2644	0.9952
γ_2	0.7158	0.7140	0.0017	7.5656	2644	0.9981

Results BMA 2001-2014

Table 4: Averaged Posterior Estimates

Variable	0.01	Median	0.99
α	0.16	0.22	0.27
X	-1.81	-0.96	-0.10
ho	0.80	0.86	0.93
γ_1	0.11	0.28	0.45
γ_2	0.00	0.00	0.01
γ_3	0.00	0.00	0.00
γ_{4}	0.00	0.00	0.02
γ_5	0.54	0.71	0.88

Table 5: Posterior Estimates for Effect Decomposition

Effect	0.01	Median	0.99
Direct	-2.31	-1.21	-0.13
Indirect	-14.99	-5.89	-0.66
Total	-17.13	-7.13	-0.80

Results Subsample 2001-2006

Table 6: Top 5 Models by Posterior Probability

Rank	LogLik	PostProb	ρ	W1	W2	W3	W4	W5
1	-2424.7	0.58	0.68	0.57	0.00	0.00	0.00	0.43
2	-2425.8	0.18	0.68	0.66	0.00	0.00	0.34	0.00
3	-2427.4	0.04	0.69	0.89	0.11	0.00	0.00	0.00
4	-2427.6	0.03	0.69	0.47	0.00	0.13	0.00	0.40
5	-2427.5	0.03	0.68	0.48	0.10	0.00	0.00	0.42
BMA	-2425.7	1.00	0.68	0.58	0.01	0.02	0.08	0.31

W1 Long Debt Securities W2 Short Debt Securities

W3 Equity

W4 Trade

W5 Wiot

Results Subsample 2001-2006

Table 7: Averaged Posterior Estimates

Variable	0.01	Median	0.99
α	0.31	0.38	0.44
X	-2.45	-1.54	-0.66
ho	0.60	0.68	0.76
γ_1	0.30	0.58	0.82
γ_2	0.00	0.01	0.03
γ_3	0.01	0.02	0.04
γ_{4}	0.02	0.08	0.16
γ 5	0.08	0.31	0.58

Table 8: Posterior Estimates for Effect Decomposition

Effect	0.01	Median	0.99
Direct	-2.61	-1.66	-0.72
Indirect	-5.93	-3.24	-1.41
Total	-8.36	-4.91	-2.15

Conclusion

- We analyze importance of individual networks for spillovers of US monetary policy to international stock returns
- We use panel SAR with convex combinations of time-varying networks
- Spillovers more pronounced through intermediate input trade and long-term debt linkages
- ► The effect sizes and the importance of individual networks change for a sub-sample before GFC

Next Steps

Issues:

- ► Include more variables
- ► Include lagged variables
- Endogeneity of networks

Next steps:

- Reconcile results with absolute sizes of links
- Dynamic setting with multiple variables
- Data on banking claims?

References I

- Debarsy, Nicolas and James P. LeSage (2018). "Flexible dependence modeling using convex combinations of different types of connectivity structures". In: *Regional Science and Urban Economics* 69, pp. 48–68. ISSN: 0166-0462.
- (2022). "Bayesian Model Averaging for Spatial Autoregressive Models Based on Convex Combinations of Different Types of Connectivity Matrices". In: *Journal of Business & Economic Statistics* 40.2, pp. 547–558. ISSN: 0735-0015.
- Di Giovanni, Julian and Galina Hale (2022). "Stock Market Spillovers via the Global Production Network: Transmission of U.S. Monetary Policy". In: *The Journal of Finance* 77.6, pp. 3373–3421. ISSN: 0022-1082.
- Eickmeier, Sandra and Tim Ng (2015). "How do US credit supply shocks propagate internationally? A GVAR approach". In: European Economic Review 74, pp. 128–145. ISSN: 00142921.

References II

- Feldkircher, Martin and Florian Huber (2016). "The international transmission of US shocks—Evidence from Bayesian global vector autoregressions". In: *European Economic Review* 81, pp. 167–188. ISSN: 00142921.
- Fernández, Carmen, Eduardo Ley, and Mark F.J. Steel (2001). "Benchmark priors for Bayesian model averaging". In: *Journal of Econometrics* 100.2, pp. 381–427. ISSN: 03044076.
- Jarociński, Marek and Peter Karadi (2020). "Deconstructing Monetary Policy Surprises— The Role of Information Shocks". In: *American Economic Journal: Macroeconomics* 12.2, pp. 1–43. ISSN: 1945-7707.
- LeSage, James P. and Manfred M. Fischer (2008). "Spatial Growth Regressions: Model Specification, Estimation and Interpretation". In: *Spatial Economic Analysis* 3.3, pp. 275–304. ISSN: 1742-1772.

References III

- LeSage, James P. and Robert Kelley Pace (2009). *Introduction to Spatial Econometrics*. Chapman and Hall/CRC. ISBN: 9780429138089.
- LeSage, James P. and Olivier Parent (2007). "Bayesian Model Averaging for Spatial Econometric Models". In: *Geographical Analysis* 39.3, pp. 241–267. ISSN: 0016-7363.
- Martin, Florian and Jesús Crespo Cuaresma (2017). "Weighting schemes in global VAR modelling: a forecasting exercise". In: Letters in Spatial and Resource Sciences 10.1, pp. 45–56. ISSN: 1864-4031.
- Ozdagli, Ali and Michael Weber (2017). Monetary Policy through Production Networks: Evidence from the Stock Market. Cambridge, MA.
- Piribauer, Philipp and Jesús Crespo Cuaresma (2016). "Bayesian Variable Selection in Spatial Autoregressive Models". In: Spatial Economic Analysis 11.4, pp. 457–479. ISSN: 1742-1772. (Visited on 02/05/2025).

Posteriors for β and σ^2

$$\begin{split} \rho\left(\beta\mid\sigma^{2},\omega,\tilde{y},X\right) &\sim N\left(\tilde{\beta},\tilde{\Sigma}_{\beta}\right) \\ \tilde{\beta} &= \left(X'X\right)^{-1}\left(X'\tilde{y}\omega\right) \\ \tilde{\Sigma}_{\beta} &= \sigma^{2}\left(X'X\right)^{-1} \\ \rho\left(\sigma^{2}\mid\beta,\omega,\tilde{y},X\right) &\propto \left(\sigma^{2}\right)^{-\left(\frac{n}{2}\right)} \exp\left(-\frac{e'e}{2\sigma^{2}}\right) \\ &\sim IG(\tilde{a},\tilde{b}) \\ \tilde{a} &= n/2 \\ \tilde{b} &= \left(e'e\right)/2 \\ e &= \tilde{y}\omega - X\beta \end{split}$$

MH-MC Integration and Marginal Likelihood

Marginal likelihood by Metropolis-Hastings guided MC Integration:

$$\log p(data) = \log \int p(data \mid \omega) p(\omega) d\omega$$

$$\approx \log \left(\frac{1}{S} \sum_{s=1}^{S} p(data \mid \omega^{(s)}) p(\omega^{(s)}) \right)$$

In the code:

$$\frac{1}{S} \sum_{s=1}^{S} \log p(\omega^{(s)} \mid \mathsf{data}) + \log C$$

MH-MC Integration and Marginal Likelihood

DL22: Monte Carlo integration estimate of $p(\omega \mid \tilde{y}, X, \mathcal{W})$ is its mean. Add constants of integration to produce log marginal likelihood.

$$\frac{1}{S} \sum_{s=1}^{S} \log p(\omega^{(s)} \mid \mathsf{data}) + \log C$$

Normalized nonlog joint posterior:

$$\exp[\log p(\omega) - \max(\log p(\omega))]$$

MATLAB Code

In the code:

$$\frac{1}{S} \sum_{s=1}^{S} \log p(\omega^{(s)} \mid \mathsf{data}) + \log C$$

```
% calculate log-marginal likelihood (using Mh-MC integration)
logp = results.drawpost;
rho_gamma = results.rho_gamma;
[adj,mind] = max(logp);
results.rho_mode = rho_gamma(mind,1);
results.beta_mode = betapost(mind,:);
results.sig_mode = sigpost(mind,1);
results.gamma_mode = rho_gamma(mind,2:end);
isum = exp(logp -adj);
lndetx_sar = log(det(xpx));
% constant terms
dof = (n - m)/2; % we must include the # of weight matrices
D = (1 - 1/rmin); \% from uniform prior on rho
logC_sar = -log(D) + gammaln(dof)
           - dof*log(2*pi) -0.5*lndetx_sar;
results.logmarginal = mean(logp) + logC_sar;
results.logC_sar = logC_sar; % return constants
results.logm_profile = [rho_gamma betapost sigpost isum];
```

Log-Determinants Based on Trace Approximations

Approximation based on 4-th order Taylor series expansion:

$$\begin{aligned} \ln |I_n - \rho W_c(\Gamma)| &= -\sum_{i=1}^{\infty} \rho^i \operatorname{tr} \left(W_c^i(\Gamma) \right) / i \\ &\simeq -\sum_{i=2}^q \rho^j \operatorname{tr} \left(W_c^j(\Gamma) \right) / j \end{aligned}$$

Log-Determinants Based on Trace Approximations

Traces can be separated and precomputed. Example for j=2

$$\operatorname{tr}\left(W_{c}^{2}(\Gamma)\right) = \sum_{i=1}^{L} \sum_{j=1}^{L} \gamma_{i} \gamma_{j} \operatorname{tr}\left(W_{i} W_{j}\right)$$

$$= \Gamma' Q \Gamma$$

$$= (\Gamma \otimes \Gamma)' \operatorname{vec}(Q),$$

$$Q = \begin{pmatrix} \operatorname{tr}\left(W_{1}^{2}\right) & \operatorname{tr}\left(W_{1} W_{2}\right) & \dots & \operatorname{tr}\left(W_{1} W_{L}\right) \\ \operatorname{tr}\left(W_{2} W_{1}\right) & \operatorname{tr}\left(W_{2}^{2}\right) & \dots & \operatorname{tr}\left(W_{2} W_{L}\right) \\ \vdots & & \ddots & \\ \operatorname{tr}\left(W_{L} W_{1}\right) & \operatorname{tr}\left(W_{L} W_{2}\right) & \dots & \operatorname{tr}\left(W_{L}^{2}\right) \end{pmatrix}$$

Preliminary Analysis of Individual Networks

Table 9: Marginal log-likelihood and simplified effects of Individual Networks (2001–2014)

	LogLik	Total	Direct	Indirect (%)
W1 Long Debt Securities	-5382.0	-7.1	-1.4	80
W2 Short Debt Securities	-5454.4	-6.0	-1.6	73
W3 Equity	-5453.2	-6.5	-1.5	77
W4 Trade	-5365.5	-4.6	-1.3	72
W5 Wiot	-5358.1	-4.6	-1.2	73

Preliminary Analysis of Individual Networks

Table 10: Marginal log-likelihood and effects of individual networks (2001–2006)

	LogLik	Total	Direct	Indirect (%)
W1 Long Debt Securities	-2430.8	-5.1	-1.8	65
W2 Short Debt Securities	-2451.5	-4.4	-1.9	57
W3 Equity	-2440.9	-4.4	-1.5	66
W4 Trade	-2435.8	-4.1	-1.7	59
W5 Wiot	-2432.9	-4.2	-1.7	59

Trace Plot Full Model Pack

Chain Diagnostics Full Model Back

Table 11: MCMC Diagnostics (ndraws = 20000)

	Mode	Mean	MC error	Tau	ESS	Geweke
α	0.2146	0.2194	0.0001	1.4656	13643	0.9962
β	-0.9505	-0.9568	0.0019	1.0327	19368	0.9828
ρ	0.8649	0.8684	0.0004	6.5876	3036	0.9986
γ_1	0.2476	0.2135	0.0025	14.5898	1371	0.9804
γ_2	0.0071	0.0495	0.0015	15.5361	1287	0.8318
γ_3	0.0024	0.0310	0.0006	18.3683	1089	0.9731
γ_{4}	0.0130	0.1268	0.0036	16.2311	1233	0.9108
γ_5	0.7299	0.5792	0.0038	14.4792	1381	0.9871

Results Full Model PBack

Table 12: Posterior Estimates

	0.01	0.05	Median	0.95	0.99
α	0.1566	0.1718	0.2195	0.2677	0.2828
β	-1.9042	-1.6881	-0.9571	-0.2342	-0.0140
ho	0.8013	0.8167	0.8686	0.9184	0.9365
γ_1	0.0138	0.0513	0.2165	0.3659	0.4111
γ_2	0.0006	0.0016	0.0413	0.1428	0.1815
γ_3	0.0002	0.0010	0.0222	0.1083	0.1437
γ_{4}	0.0011	0.0036	0.0946	0.4136	0.5609
γ_5	0.1608	0.2887	0.5942	0.7880	0.8388

Table 13: Posterior Estimates for Effect Decomposition

Effect	0.01	0.05	Median	0.95	0.99
Direct	-2.4862	-2.1555	-1.2152	-0.2994	-0.0178
Indirect	-16.5870	-12.8793	-6.0382	-1.5054	-0.0955
Total	-18.7172	-14.8541	-7.2596	-1.8194	-0.1133

Results Best Model Full model

Table 14: Posterior Estimates

	0.01	0.05	Median	0.95	0.99
α	0.1553	0.1705	0.2172	0.2648	0.2790
β	-1.9155	-1.6953	-0.9572	-0.2307	-0.0100
ho	0.7963	0.8144	0.8658	0.9127	0.9289
γ_1	0.0797	0.1343	0.2853	0.4385	0.4859
γ_2	0.5141	0.5615	0.7147	0.8657	0.9203

Table 15: Posterior Estimates for Effect Decomposition

Effect	0.01	0.05	Median	0.95	0.99
Direct	-2.4566	-2.1559	-1.2136	-0.2937	-0.0125
Indirect	-15.4240	-12.3373	-5.8572	-1.4261	-0.0583
Total	-17.6290	-14.3625	-7.0904	-1.7293	-0.0707

Trace Plot Best Model Full model

Theoretical Model of Di Giovanni and Hale 2022

Di Giovanni and Hale (2022) setup: N countries, J sectors

$$R_{mi}$$
 = C_{mi} + $\sum_{j=1}^{J} \sum_{n=1}^{N} \omega_{mi,nj} R_{nj}$
Sales of goods Final goods produced by expenditure on country-sector good mi across input expenditure

 $\omega_{mi,nj}$ IO coefficient for country-sector nj purchases of the intermediate good from country-sector mi (as share of total purchases)

Theoretical Model of Di Giovanni and Hale 2022

R sales, C final goods expenditures, Ω IO matrix

$$R = C + \Omega R,$$

$$R = (I - \Omega)^{-1} C,$$

$$\hat{R} = (I - \Omega)^{-1} \phi_R \circ \hat{C},$$

$$\hat{q} = (I - \Omega)^{-1} \beta \hat{M},$$

Assumptions:

 $\hat{R} = \hat{\pi} = \hat{q}$, Domestic firms owned by domestic HH.

Deviations in expenditures on final consumption \hat{C} are proportional to the monetary policy shocks \hat{M} .