Az informatika számítástudományi alapjai

9. feladatsor

3. Adjunk meg az alábbi nyelveket elfogadó veremautomatát

- b. $\{a^n x \mid n \ge 0, x \in \{a, b\}^* \text{ and } |x| \le n\}.$
- c. $\{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } j = i \text{ or } j = k\}.$

5. Adjunk (nem feltétlen determinisztikus) veremautomatákat az alábbi nyelvekre ($n_a(x)$ és $n_b(x)$ az x szóban lévő a ill. b betűk száma):

a. $\{x \in \{a, b\}^* \mid n_a(x) < n_b(x)\}$ b. $\{x \in \{a, b\}^* \mid n_a(x) \neq n_b(x)\}$ c. $\{x \in \{a, b\}^* \mid n_a(x) = 2n_b(x)\}$

Példant: 5 -> [5] (55/2

Move Number	State	Input	Stack Symbol	Move
1	q_0	Λ	Z_0	(q_1, SZ_0)
2	q_1	Λ	S	$(q_1, [S]), (q_1, SS), (q_1, \Lambda)$
3	q_1]	[(q_1, Λ)
4	q_1]]	(q_1, Λ)
5	q_1	Λ	Z_0	(q_2, Z_0)
(all other combinations)				none

Kezdőállapot: qo

Elfogadó állapot: q2

Kezdeti veremtartalom: Z₀

- 4. Adjunk meg a G 2-es típusú grammatikához egy olyan veremautomatát, amely a G grammatika által generált nyelvet ismeri fel, majd mutassuk meg, hogy az 10011 szót felismeri az automata!
- a. $G=(\{S,A,B\},\{0,1\},S,H),$ ahol H szabályai: $S \rightarrow SA, S \rightarrow AB,$ $A \rightarrow BS, B \rightarrow SA,$
 - $A \to 1$, $S \to 1$, $B \to 0$.
- ismeri fel, és mutassuk meg, hogy a *bbcbba* szót is elfogadja! $G=(\{S,A,B,C,D\},\{a,b,c\},S,H)$, ahol H szabályai: $S \rightarrow AB, A \rightarrow CA, A \rightarrow SS, B \rightarrow CD$,
 - $A \rightarrow b$, $D \rightarrow a$, $C \rightarrow c$, $C \rightarrow b$.

Reduction Stack (reversed) Unread Input Derivation Step Z_0 a + a * a $Z_0 \underline{a}$ S->S+T/T T->T*a/a +a*a $Z_0 T$ $\Rightarrow a + a * a$ +a*a $Z_0 S$ $\Rightarrow T + a * a$ +a*a $Z_0 S +$ a * a $Z_0 S + \underline{a}$ *a $\Rightarrow S + a * a$ *aa $\Rightarrow S + T * a$ $\Rightarrow S+T$ S (accept)

5.30. For a certain CFG G, the moves shown below are those by which the nondeterministic bottom-up PDA NB(G) accepts the input string aabbab. Each occurrence of \vdash^* indicates a sequence of moves constituting a reduction. Draw the derivation tree for aabbab that corresponds to this sequence of moves.

$$(q_0, aabbab, Z_0) \vdash (q_0, abbab, aZ_0) \vdash (q_0, bbab, aaZ_0)$$

 $\vdash (q_0, bab, baaZ_0) \vdash^* (q_0, bab, SaZ_0)$
 $\vdash (q_0, ab, bSaZ_0) \vdash^* (q_0, ab, SZ_0) \vdash (q_0, b, aSZ_0)$
 $\vdash (q_0, \Lambda, baSZ_0) \vdash^* (q_0, \Lambda, SSZ_0) \vdash^* (q_0, \Lambda, SZ_0)$
 $\vdash (q_1, \Lambda, Z_0) \vdash (q_2, \Lambda, Z_0)$

- **5.31.** Let G be the CFG with productions $S \to S + T \mid T$ $T \to [S] \mid a$. Both parts of the question refer to the moves made by the nondeterministic bottom-up PDA NB(G) in the process of accepting the input string [a + [a]].
 - a. If the configuration at some point is $(q_0, +[a]], S[Z_0)$, what is the configuration one move later?
 - b. If the configuration at some point is $(q_0, +[a]], T[Z_0)$, what is the configuration one move later?

3.

Környezetfüggetlenek-e az alábbi nyelvek? Miért?

- a. $L = \{a^n b^m a^m b^n \mid m, n \ge 0\}$ b. $L = \{xayb \mid x, y \in \{a, b\}^* \text{ and } |x| = |y|\}$ c. $L = \{xayb \mid x \in \{a, b\}^*\}$
- c. $L = \{xcx \mid x \in \{a, b\}^*\}$
- d. $L = \{xyx \mid x, y \in \{a, b\}^* \text{ and } |x| \ge 1\}$

5.29. Consider the CFG G with productions

$$S \rightarrow aB \mid bA \mid \Lambda$$
 $A \rightarrow aS \mid bAA$ $B \rightarrow bS \mid aBB$

generating AEqB, the nondeterministic bottom-up PDA NB(G), and the input string aababb. After the first few moves, the configuration of the PDA is $(q_0, abb, baaZ_0)$. There are two possible remaining sequences of moves that cause the string to be accepted. Write both of them.