Метрическая задача коммивояжёра - 1

Ткаченко Дмитрий 17 декабря 2017 г.

In Pursuit of the Traveling Salesman

Содержание

1	Введение	2
2	Поставленные задачи и вопросы	2
3	Теория и необходимые определения	2
4	Несуществование алгоритма, дающего константное приближение для стандартной задачи коммивояжёра	4
5	Алгоритм, дающий 2-приближение для метрической задачи	4
6	Алгоритм, дающий 1.5-приближение для метрической задачи	5
7	Реализация алгоритма, дающего 1.5-приближение для метрической задачи	6
8	Источники	7

1 Введение

Проблема коммивояжёра - одна из самых известных задач комбинаторной оптимизации, с которой ежедневно сталкиваются курьеры, почтальоны, путешественники. Их цель - найти наиболее выгодный маршрут, проходящий через заранее известные места, расстояния между которыми тоже известны. В данной работе рассмотрен метрический случай данной задачи и алгоритмы нахождения её приближенного решения.

2 Поставленные задачи и вопросы

- (a) Несуществование полиномиального алгоритма для стандартной задачи коммивояжера, дающего константное приближение, в предположении $\mathbf{P} \neq \mathbf{NP}$.
- (б) Построение алгоритма, дающего 2-приближение для метрической задачи коммивояжёра на основе остовного дерева.
- (в) Построение алгоритма, дающего 1.5-приближение для метрической задачи коммивояжёра на основе остовного дерева и паросочетания.
- (г) Реализация алгоритма, дающего 1.5-приближение для метрической задачи коммивояжёра.

3 Теория и необходимые определения

Для начала сформулируем **общую задачу коммивояжёра**: в данном взвешенном графе G=(V,E) с весами на рёбрах $w:V\times V\to \mathbb{R}_+$ найти гамильтонов цикл минимального веса.

Определения из теории графов:

Определение 1 Путем в графе G=(V,E) называется упорядоченный список $(v_1,e_1,v_2,\ldots,e_{k-1},v_k)$ (иногда ребра в записи опускают), где любые две соседствующие в списке вершины v_i и v_j соединены ребром, записанным между ними.

Определение 2 Циклом в графе G = (V, E) называется путь, в котором $v_1 = v_k$.

Определение 3 Цикл в графе G = (V, E) называется **простым**, если все вершины и ребра в нем встречаются не более, чем один раз.

Определение 4 Цикл в графе называется **гамильтоновым**, если он проходит через все вершины графа ровно по одному разу.

Определение 5 Граф G = (V, E) с функцией весов $w : V \times V \to \mathbb{R}_+$ называется метрическим, если $\forall x, y, z \in V$ выполнено (неравенство треугольника) $w(x, z) \leq w(x, y) + w(y, z)$.

Определение 6 Связный граф без простых циклов называется деревом.

Определение 7 Подграф H в графе G = (V, E) называется **остовным деревом**, если H - дерево u множество вершин H совпадает c множеством вершин G.

Определения из сложности вычислений:

Определение 8 Классом DTIME(T(n)) называется класс языков, которые распознаются за время O(T(n)).

Определение 9 Классом NTIME(T(n)) называется класс языков, которые распознаются на недетерминированной машине Тьюринга за время O(T(n)).

Определение 10 Классом P называется множество языков, которые распознаются за полиномиальное время, или, более формально, $P = \bigcup_{c=1}^{\infty} DTIME(n^c)$

Определение 11 Класс NP есть $NP = \bigcup_{c=1}^{\infty} NTIME(n^c)$.

Определение 12 Язык A называется **NP-полным**, если для $\forall B \in \mathbf{NP}$ существует полиномиально вычислимая функция $f_B : \{0,1\}^* \to \{0,1\}^*$ такая, что $\forall x \in \{0,1\}^* : x \in A \Leftrightarrow f_B(x) \in B$.

Определение 13 Метрической задачей коммивояжера называется язык пар $L = \{(G, k) |$ в метрическом графе G с заданными весами ребер существует гамильтонов цикл веса не более $k\}$.

Факт 1 Язык $HAMCYCLE = \{G |$ в графе G существует гамильтонов цикл $\}$ является NPполным.

Определения из теории алгоритмов:

Определение 14 Полиномиальный алгоритм дает c-приближение, если результат его работы отличается от верного не более, чем в c раз.

4 Несуществование алгоритма, дающего константное приближение для стандартной задачи коммивояжёра

Этот раздел будет представлен лишь теоремой из заглавия:

Теорема 1 (В предположении $P \neq NP$) Для стандартной задачи коммивояжера не существует алгоритма, дающего константное приближение и работающего за полиномиальное время.

Доказательство:

 \triangleright Предположим, что такой алгоритм существует (назовем его A) и дает c-приближение. Построим с помощью него полиномиальный алгоритм, который определяет принадлежность графа G к языку HAMCYCLE.

Рассмотрим произвольный граф G=(V,E). Достроим его до полного взвешенного графа Q. Ребрам, которые входили в G, сопоставим вес 1, а всем остальным дадим вес |V|c+1. Применим A к новому графу Q. Результат - гамильтонов цикл H веса w(H).

Пусть $w(H) \leq |V|c$. В таком случае кратчайший гамильтонов цикл имеет вес $w_{opt} \leq w(H)$, а значит в нем нет новых ребер (так как вес каждого из них превосходит w(H)), тогда H присутствовал и в графе G.

Пусть w(H) > |V|c, тогда наименьший гамильтонов цикл имеет вес $w_{opt} \ge \frac{w(H)}{c} > |V|$, значит он содержит хотя бы одно новое ребро, но тогда в исходном графе гамильтонова цикла не было (его вес равен |V|).

Таким образом, предъявлен способ решения \mathbf{NP} -полной задачи с помощью полиномиального алгоритма, а значит $\mathbf{P} = \mathbf{NP}$, что противоречит предположению $\mathbf{P} \neq \mathbf{NP}$.

5 Алгоритм, дающий 2-приближение для метрической задачи

Для метрической (в отличие от стандартной) задачи коммивояжёра существуют алгоритмы, дающие константное приближение. Для начала рассмотрим алгоритм, дающий 2-приближение, а затем обратимся к алгоритму Кристофидеса ^[2] и реализуем его.

Теорема 2 Пусть дан произвольный полный взвешенный метрический граф G = (V, E) и цикл C, проходящий по всем его вершинам (возможно, не раз). Тогда граф G содержит гамильтонов цикл веса $w_{Ham} \leq w(C)$.

Доказательство:

ightharpoonup Пусть $C = \{v_0, \dots, v_k\}$. Оставим в C вершины лишь в позициях их первого вхождения. Тогда получим какой-то гамильтонов цикл H в графе G. Оценим w(H). При выкидывании вершин между l-ой и r-ой получили замену рёбер $(v_l, v_{l+1}), (v_{l+1}, v_{l+2}), \dots, (v_{r-1}, v_r)$ на ребро (v_l, v_r) . По неравенству треугольника имеем: $w(v_l, v_r) \le w(v_l, v_{l+1}) + w(v_{l+1}, v_r) \le \dots \le w(v_l, v_{l+1}) + w(v_{l+1}, v_{l+2}) + \dots + w(v_{r-1}, v_r)$. Отсюда следует, что $w(H) \le w(C)$.

Обратимся теперь к самому алгоритму:

1. В данном графе G = (V, E) найдем остовное дерево минимального веса T (это делается за полином с помощью алгоритма Краскала или алгоритма Прима).

2. Зафиксируем произвольную вершину T, обозначим ее v_0 . Подвесим за нее наше дерево и запустим из нее обход в глубину: рекурсивно обходим поддеревься, после чего возвращаемся в предка. Обход работает до тех пор, пока все вершины не будут посещены и обход не вернется в v_0 .

Получим цикл K, в котором встречаются все вершины нашего графа, причем w(K)=2w(T), так как каждое ребро мы посещаем в момент входа в вершину и момент выхода из нее. Таким образом по теореме 2 получаем, что в нашем графе есть гамильтонов цикл H такой, что $w(H) \leq w(K) \leq 2w(T)$. Построить сам цикл H мы можем по доказательству теоремы 2.

Какое приближение у нашего алгоритма? Пусть \hat{H} - гамильтонов цикл минимального веса. $w(\hat{H}) \geq w(T)$, так как если убрать любое ребро из \hat{H} , то получим какое-то остовное дерево G, а T - остовное дерево минимального веса. Тогда $w(\hat{H}) \geq w(T) = \frac{w(H)}{2}$. Таким образом, $w(H) \leq 2w(\hat{H})$, значит наш алгоритм дает 2-приближение метрической задачи коммивояжёра.

6 Алгоритм, дающий 1.5-приближение для метрической задачи

Рассмотрим алгоритм Кристофидеса^[2]:

- 1. Находим минимальное остовное дерево T.
- 2. Выделяем в дереве T подмножество вершин N(T) нечетной степени. В полном графе G среди вершин N(T) ищем совершенное паросочетание M минимального веса. (делается за полиномиальное время с помощью blossom-алгоритма)
- 3. Построим Эйлеров граф G_E на вершинах V(G) и ребрах $E(T) \cup E(M)$. Он Эйлеров, так как у каждой вершины нечетной степени мы добавили по ребру \Rightarrow степени всех вершин четны \Rightarrow граф эйлеров.
- 4. Строим Эйлеров цикл K в графе из предыдущего пункта. (ему естественным образом соответствует цикл U, проходящий по всем вершинам)
- 5. Строим Гамильтонов циклH из цикла U как описывает это теорема 2.

Теорема 3 Описанный выше алгоритм Кристофидеса даёт 1.5-приближение для метрической задачи коммивояжёра.

Доказательство:

ightharpoonup Заметим, что справедлива оценка $w(H) \leq w(U) \leq w(T) + w(M)$. Рассмотрим гамильтонов цикл L на вершинах из M. Аналогично теореме 2 $w(L) \leq w(\hat{H})$ (где \hat{H} - гамильтонов цикл в G минимального веса), причем L - объединение двух непересекающихся паросочетаний в графе, индуцированном на вершины M. Вес каждого из них не менее, чем вес минимального паросочетания M, значит $2w(M) \leq w(\hat{H}) \Rightarrow w(M) \leq \frac{w(\hat{H})}{2}$. Аналогично доказательству приближения прошлого алгоритма, $w(T) \leq w(\hat{H})$, значит $w(H) \leq w(T) + w(M) \leq w(\hat{H}) + \frac{w(\hat{H})}{2} = 1.5w(\hat{H})$. Значит, алгоритм Кристофидеса даёт 1.5-приближение.

7 Реализация алгоритма, дающего 1.5-приближение для метрической задачи

Реализация:

Имплементируем алгоритм на C++. Проект лежит в репозитории github. Алгоритм декомпозирован на три задачи:

- 1. Минимальное остовное дерево с помощью алгоритма Краскала [3] за время $\mathbb{O}(\text{NlogN})$.
- 2. Совершенное паросочетание минимального веса в полном взвешенном неориентированном графе. Сам алгоритм описан в статье^[4] В. Колмогорова от 2009 года, реализация ^[5] взята с сайта Institute of Science and Technology, Austria. (время $\mathbb{O}(N^2 log N)$)
- 3. Эйлеров цикл в неориентированном мультиграфе $^{[6]}$ за время $\mathbb{O}(N^2)$.

Итоговая асимптотика алгоритма - $\mathbb{O}(N^2 log N)$.

Тестирование:

В ходе тестирования было сгенерировано 20 тестов с графами различного размера по общему принципу: в случайном порядке соединяются (ребрами веса 1) в гамильтонов цикл вершины. Затем, всем остальным ребрам присваивается случайный вес 1 или 2 (для сохранения неравенства треугольника). Данные по тестам приведены в таблице:

Номер	Число вершин	Точное решение	Решение алгоритма	Ошибка
1	10	10	11	10%
2	120	120	151	26%
3	230	230	294	28%
4	340	340	425	25%
5	450	450	550	22%
6	560	560	693	24%
7	670	670	832	24%
8	780	780	984	26%
9	890	890	1123	26%
10	1000	1000	1248	25%

Как видно из таблицы, на всех тестах алгоритм уложился в отведенные ему 50% ошибки, а средняя ошибка составила примерно 24%.

8 Источники

- 1. William J. Cook: In Pursuit of the Traveling Salesman, 2014.
- 2. N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, Report 388, Graduate School of Industrial Administration, Carnegie Mellon University, 1976.
- 3. Kruskal's algorithm.
- 4. Vladimir Kolmogorov, Blossom V: a new implementation of a minimum cost perfect matching algorithm, 2009.
- 5. Blossom 5-v 2.05
- 6. Е-тахх algo, Нахождение Эйлерова пути/цикла.