UBC Mathematics 320(101)—Assignment 11 Due by PDF upload to Canvas at 23:00, Sunday 26 Nov 2023

References: Loewen, lecture notes on Point-Set Topology and CCC (2023-11-12 or newer—see Canvas); Rudin pp. 30b–40; Thomson-Bruckner-Bruckner, Sections 13.1–13.5, 13.8, 13.12

Presentation: To qualify for full credit, submissions must satisfy the detailed specifications provided on Canvas.

- **1.** In a metric space (Y, d), suppose $S \subseteq Y$ is dense, i.e., $\overline{S} = Y$. Suppose that every Cauchy sequence (x_n) for which each $x_n \in S$ converges in Y. Prove that Y is complete.
- **2.** (Nearest Points) Let (X, d) be a metric space, and let K be a nonempty subset of X. Define the function $d_K: X \to \mathbb{R}$ representing "distance from K" by

$$d_K(p) = \inf \{ d(p, x) : x \in K \}, \qquad p \in X.$$

- (a) Prove that $d_K(p) = d_{\overline{K}}(p)$ for all p in X.
- (b) Prove that $|d_K(p) d_K(q)| \le d(p,q)$ for any $p, q \in X$.
- (c) Suppose K is compact. Prove: $\forall p \in X, \ \exists \widehat{x} \in K : \ d_K(p) = d(p, \widehat{x}).$
- (d) Prove that in the special metric space \mathbb{R}^k , the result in part (c) remains valid for every closed set K. (This is interesting because some closed sets are not compact.)
- **3.** Equip \mathbb{R} with its usual topology. Recall that a set $A \subseteq \mathbb{R}$ is called **dense** iff $\overline{A} = \mathbb{R}$.
 - (a) Prove: A set $A \subseteq \mathbb{R}$ is dense if and only if for every nonempty open interval $(a, b), A \cap (a, b) \neq \emptyset$.
 - (b) A sequence of sets G_1, G_2, G_3, \ldots in \mathbb{R} is given. Each G_k is open and dense. Prove that $S = \bigcap_{k \in \mathbb{N}} G_k$ is dense.

[Suggestion: Use the characterization from part (a). Construct a suitable Cauchy sequence.]

- (c) Prove that the subset \mathbb{Q} of \mathbb{R} cannot be expressed as a countable intersection of open sets. [Hint: Such a representation is incompatible with the result in (b).]
- **4.** Prove: If $E \subseteq \mathbb{R}$ is uncountable, then $E' \cap E \neq \emptyset$.

Hint: Try the contrapositive.

5. Let (X, \mathcal{T}) be a HTS and suppose K_1 and K_2 are nonempty compact sets in X with $K_1 \cap K_2 = \emptyset$. Prove that there are open sets U_1 and U_2 in X such that

$$K_1 \subseteq U_1, \qquad K_2 \subseteq U_2, \qquad U_1 \cap U_2 = \emptyset.$$

6. Given an enumeration of \mathbb{Q} as (q_1, q_2, q_3, \ldots) , define $f: \mathbb{R} \to (0, 1)$ by

$$f(x) \stackrel{\text{def}}{=} \sum \left\{ \frac{1}{2^k} : q_k < x \right\}.$$

Prove that f is "lower semicontinuous", i.e., that the following set is open for every $p \in \mathbb{R}$:

$$f^{-1}((p,+\infty)) = \{x \in \mathbb{R} : f(x) > p\}.$$

Practice Problems—Not for Credit

These are not to be handed in. Solutions will be provided.

- 7. Let (x_n) be a sequence in \mathbb{R} and let $M \in \mathbb{R} \cup \{\pm \infty\}$. Prove that the following are equivalent:
 - (a) $M = \lim \sup_{n \to \infty} x_n$.
 - (b) One has both
- (i) $\forall R > M, \ \exists N \in \mathbb{N} : \forall n \geq N, \ x_n < R,$

(ii)
$$\forall r < M, \ \forall N \in \mathbb{N}, \ \exists n \ge N : x_n > r.$$

[Note that for any statement P(x) concerning x, the construction " $\forall x \in \emptyset$, P(x)" is always considered true. Some case-by-case analysis for different types of M may be required.]

8. Construct a compact subset K of \mathbb{R} for which the set K' is countable. (Use Rudin's terminology, in which a set must be infinite to qualify for the designation of "countable".)