

MKS SERVO42E/57E_RS485 V1.0.1 USER MANUAL

	MKS SERVO42E/57E_RS485 Manual Release		
manual	discription	firmware	date
V1.0.0	First release	V1.0.0	Dec-2024
V1.0.1	 Fix some bug; Add IAP firmware upgrade function; 	V1.0.1	Feb-2025
	2. Add Will IIIIIWale apgrade fallotion,		

Part1. Product Overview

1.1 Introduction

MKS SERVO42E/57E_RS485 closed-loop stepper motor is a product independently developed by the Maker Base to meet market demand and in accordance with industrial standards. It has a pulse interface and an RS485 interface, a built-in efficient FOC vector algorithm, and a high-precision encoder. Through position feedback, it effectively prevents the motor from losing steps. It is suitable for small robotic arms, 3D printers, engraving machines, writers, automation products, and e-sports applications.

1.2 Features

- Support 6 working modes: pulse interface (pulse-pulse, pulse-direction mode), serial interface (open loop, Closed-loop mode);
- 2. High-performance FOC vector control algorithm, torque, speed, position three-loop control;
- 3. Support curve acceleration and deceleration, motor start and stop more smoothly;
- 4. Support relative position and absolute position control mode;
- 5. Built-in 256-step subdivision interpolation algorithm, motor operation is ultra-quiet and ultra-low vibration;
- 6. Maximum input pulse frequency 300KHz, maximum speed 3000RPM;
- 7. Motor angle information is updated in real time (motor enabled or disabled);
- 8. Support MODBUS-RTU communication protocol;
- 9. Built-in stall protection function;
- 10. Quickly restore factory configuration function;
- 11. High-speed performance is stable, running smoothly, no jitter, and emergency stop is possible;
- 12. Integrated aluminum alloy shell, effective heat dissipation, motor continuous high current operation is more stable;
- 13. Provide host computer (open source), STM32/Arduion usage routines
- 14. Support left and right limit functions.
- 15. Onboard industrial-grade high-precision magnetic encoder;
- 16. Onboard high-power MOSFET, 100V/25A;
- 17. Onboard RS-485 interface, 256 slave addresses, support broadcast address and group address;
- 18. Industrial-grade selection design, stable and reliable;
- 19. Working voltage 20V^{60V};

1.3 Parameters

	Parameters						
Motherboard model	MKS SERVO42E V1.0	MKS SERVO57E V1.0					
MCU	STM32F302RBT6Cortex-M4)	STM32F302RBT6Cortex-M4)					
MOSFET	ASS240	DD10Q1M					
Magnetic encoder	MT6	8816					
RS485 transceiver	SP48	35EEN					
Operating Voltage	20-60V						
Working current	0-3000mA	0-5200mA					
Closed loop	Torque loop 20KHz						
feedback	Speedloop 10KHz						
frequency	Position loop 10KHz						
Maximum speed	3000	ORPM+					
Segmentation support	2/4/8/16/32/64/128/5/10/	20/25/40/50/100/200/256					
interface Wiring	Common anode, common	cathode, differential,					
Type	double pulse, p	ulse + direction					
Input interface voltage	3. 31	7-24V					
Max Pulse frequency	300KHz						
RS485 Interface rate	9600/19200//115200/25600						
RS485 Interface address	1 broadcast address,	255 slave addresses					

1.4 Interface Description

① Description of the SERVO42D_RS485 interface

- 1. Input power 20V~60V
- 2. 5V is the output power (5V, 100mA)
- 3. ALM is an alarm signal (when an alarm occurs, the optocoupler is closed)
- 4. PEND is the arrival signal (after arrival, the optocoupler is closed)
- 5. IN is the input signal, IN is the return to zero switch or the left limit, and EN can be remapped to the right limit. For details about the remapping content, please see the setting limit instruction in Chapter 4 (when EN is remapped to the right limit, the pulse control mode fails).

② Description of the SERVO57D_RS485 interface

- 1. Input power 20V~60V
- 2. 5V is the output power (5V, 100mA)
- 3. ALM is an alarm signal (when an alarm occurs, the optocoupler is closed)
- 4. PEND is the arrival signal (after arrival, the optocoupler is closed)
- 5. COM is the common port of IN1 and IN2 (can be connected in common negative or positive)
- 6. IN1, IN2 are input signals, IN1 is the home limit or left limit, IN2 is the right limit

1.5 Port funktionsbeskrivelse

		Port funktionsbeskrivelse T	able
PIN	I/O	Function	Description
STP+ (CW+)		Pulse signal (or CW pulse) positive	(1)Optocoupler input, falling edge trigger. The pulse goes one step when the pulse goes from high to low.
STP- (CW-) DIR+		Pulse signal (or CW pulse) negative	(2)Positive voltage: 3.3 - 28V. (3) Negative voltage: High level 3.3 - 28V, Low level 0 -
(CCW+)		Direction signal (or CCW pulse) positive	0.5V.
DIR- (CCW-)	Input	Direction signal (or CCW pulse) negative	(4) Maximum input frequency 400kHz, pulse duration greater than 2.5us. (5) Single pulse (Pulse + Dir) or double pulse (CW +
			CCW) is set by the command.
EN+		Enable signal positive	(1) Optocoupler input, low level effective. When ineffective, the motor will be released while
EN-		Enable signal negative	clearingthe alarm signal. (2) Positive voltage: 3.3 - 28V. (3) Negative voltage: High level 3.3 - 28V, Low level 0 - 0.5V.
ALM+		Alarm signal positive	(1) When an alarm occurs, the optocoupler output is
ALM-		Alarm signal negative	on. (2) Maximum voltage +35V, maximum current 50mA.
PEND+	Output	In Position signal positive	(1) When the drive has finished a given pulse, the
PEND-		In Position signal negative	optocoupler output is on. (2) Maximum voltage +35V, maximum current 50mA.
Α-		Motor phase A-	Connected to motor phase line
A+		Motor phase A+	Note: If the phase sequence is not connected
B-	Output	Motor phase B-	accordingly, the motor will alarm.
B+	Output	Motor phase B+	decoratingly, the motor will did in.
VDC		Drive power supply positive	
GND	Input	Drive power supply negative	Operating Voltage +20 - 60V

1.6 Status LED

Status LED Table			
Green stays on Motor Running			
Green flash	Motor Stop		
1 Green + 1 Red	Over Current		
1 Green + 2 Red	Open-Phase		
1 Green + 3 Red	Supply Voltage High		
1 Green + 4 Red	Supply Voltage Low		
1 Green + 5 Red	Position Error		
1 Green + 6 Red	Encoder Error		

Tip: Please make sure the motor phase line is connected correctly, otherwise there will be a tracking error alarm after receiving the pulse (5 red and 1 green)

Part2. Motor wire

Notel: The motor internal resistance should be less than 10 ohms. Note2:A+ A- is connected to one phase of the motor, B+ B- is connected to the other phase of the motor.

① Connection method of SERVO42E RS485

② Connection method of SERV057E_RS485

Tip: Please make sure the motor phase line is connected correctly, otherwise there will be a tracking error alarm after receiving the pulse (5 red and 1 green)

2.1 Pulse interface wire

① Connection method of SERVO42E_RS485

Note: All input ports have built-in 10mA current limiting, and can directly input 3.3V-24V signals without the need for external current limiting resistors

2 Connection method of SERVO57E_RS485

Note: All input ports have built-in 10mA current limiting, and can directly input 3.3V-24V signals without the need for external current limiting resistors

2.2 RS485 wire

1. SERVO57E_RS485 Single-slave

NOTE: In order to reduce bus interference, the host-gnd and the motor-gnd must connected togeter, and RS485 signals are transmitted using shielded twisted pairs.

① Connect cables to the MKS SERVO42E RS485 single machine

2 Connect cables to the MKS SERVO57E RS485 single machine

2. Multiple-slave

① Connection method of SERVO42E_RS485

2 Connection method of SERVO57E_RS485

2.3 End stop wire

- ① SERVO42E_RS485
 - a) TP808 wire

b) PM-T45 wire

c) PM-T45-P wire

② SERV057E_RS485

a) TP808 wire

b) PM-T45 wire

c) PM-T45-P wire

Part3. Serial data format

Note: For MODBUS-RTU protocol commands, see Part 7.

Downlink package(PC → SERVO42E/57E)							
Head	Slave addr Function Data Check code						
FA	FA addr code CF				CRC		
	Uplink package (PC ← SERVO42E/57E)						
Head	Head Slave addr Function Data Check code						
FB	addr	code			CRC		

- 1. The Data is Big-endian.
- 2. Downlink package Head is "FA", uplink package Head is "FB".
- 3. The slave address(addr) range is $00^{\sim}255$. (default is 01). 00 is the broadcast address:
- 4. The function code (code) executes the corresponding command. for example, 0x80 executes the calibration command.
- 5. The Check code is CHECKSUM 8bit For example: command "FA 01 80 00 CRC" CRC = (0xFA + 0x01 + 0x80 + 0x00) & 0xFF = 0x17B & 0xFF = 0x7B
- 6. When the host computer sends a command, the timing between the bytes of a single command (FA... CRC) must be continuous, and there must not be more than one byte delay, otherwise multiple idle line will be detected and the motor may fail to receive the command.

Note: Slave does not answer if broadcast address is used.

Part4. Serial command description

Notel: Please set the serial slave address first. (default:01)

The default address for the following chapters is 01.

Note2: For MODBUS-RTU protocol commands, see Part 7.

4.1 Read parameter command

1. command1 : FA 01 30 CRC

read the encoder value(carry).

Uplink package (PC ← SERVO42E/57E)					
Head Slave addr Function Data					
FB	01	30	carry	value	CRC
ГБ	01	30	int32_t	uint16_t	CRC

carry: the carry vaule of the encoder.

value: the current vaule of the encoder. (range 0°0x3FFF)

When value is greater than 0x3FFF, carry +=1.

When Value is less than 0, carry -=1.

For example:

If the current carry value is 0x3FF0, After one turn CCW, the carry value (+0x4000) is 0x13FF0.

If the current carry|value is 0x3FF0, After one turn CW, the carry|value (-0x4000) is 0xFFFFFFFFFFF.

Note: The encoder value is updated regardless of whether the motor is enabled or not.

2. Command2: FA 01 31 CRC

read the encoder value (addition).

Uplink package (PC ← SERVO42E/57E)					
Head Slave addr Function value CRC					
FB	01	31	(int48_t)	CRC	

After one turn clockwise, the value += 0x4000;

After one turn CCW, the value -= 0x4000;

For example:

If the current value is 0x3FF0, After one turn CCW, the value (+0x4000) is 0x7FF0.

If the current value is 0x3FF0, After one turn CW, the value (-0x4000) is 0xFFFFFFFFF0.

3. Command3 : FA 01 32 CRC

Read the real-time speed of the motor. (RPM)

Uplink package (PC ← SERVO42E/57E)					
Head Slave addr Function value CRC					
FB	01	31	speed(int16_t)	CRC	

Note : if it run CCW, the speed > 0 (RPM)

if it run CW, the speed < 0 (RPM)

4. Command4: FA 01 33 CRC

Read the number of pulses received.

Uplink package (PC ← SERVO42E/57E)					
Head Slave addr Function Data CRC					
FB 01 33 pulses(int32_t) CRC					

5. Command5 : FA 01 34 CRC

read the IO Ports status.

Uplink package (PC ← SERVO42E/57E)					
Head Slave addr Function Data CRC					
FB	01	34	status(uint8_t)	CRC	

status							
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
reserved			ALM	PEND	IN_2	IN_1	

PEND 1: Already in place 0: Not in place

ALM 1: No alarm 0: Alarmed

Note: 42E does not have IN_2 port, bit1 corresponds to En port status.

6. Command6: FA 01 39 CRC

read the error of the motor shaft angle.

Uplink package (PC ← SERVO42E/57E)						
Head	Head Slave addr Function Data CRC					
FB	01	39	error(int32_t)	CRC		

The error is the difference between the angle you want to control minus the real-time angle of the motor, $0^{\circ}51200$ corresponds to $0^{\circ}360^{\circ}$.

for example, when the angle error is 1° , the return error is 51200/360=142.222, and so on.

7. Command7: FA 01 3A CRC

read the En pins status.

	Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC	
FB	01	3A	enable(uint8_t)	CRC	

enable =1 Enabled enable = 0 Disabled

8. Command8: FA 01 3D CRC

Release the motor shaft locked-rotor protection state.

	Uplink package (PC ← SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC		
FB	01	3D	status(uint8_t)	CRC		

status =1 release success.

status =0 release fail.

Note: The stall state can also be released through the "EN level invalid mode"

9. Command9: FA 01 3E CRC

Read the motor shaft protection state.

		1			
Uplink package (PC ← SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FB	01	3E	status(uint8_t)	CRC	

status =1 protected.

status =0 no protected.

4.2 Set parameters command

1. Calibrate the encoder

Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FA	01	80	00	CRC	

Uplink package (PC ← SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FB	01	80	status(uint8_t)	CRC	

status = 0 Calibrating ···.

status =1 Calibrated success.

status =2 Calibrating fail.

Note: The calibration only determines the relationship between the motor direction and the encoder, that is, when the motor rotates clockwise, the encoder value increases or decreases. If the motor phase line is wired according to the factory default connection, no calibration is required.

2. Set the work mode

Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FA	01	82	mode (uint8_t)	CRC	

mode = XO Pulse+Pulse Open-loop mode (X=0 with encoder X=1 without encoder)

 $\label{eq:mode_solution} mode = \mbox{X1} \qquad \mbox{Pulse+Direction Open-loop mode (X=0 with encoder X=1 without encoder)}$

mode = 02 Pulse+Pulse Closed-loop mode

mode = 03 Pulse+Direction Closed-loop mode (default)

mode = X4 RS485 bus Open-loop mode (X=0 with encoder X=1 without encoder)

mode = 05 RS485 bus Closed-loop mode

Note 1: Pulse control mode, maximum input frequency 300KHz. Bus control mode, maximum speed 3000RPM.

Note 2: X=0 with encoder, the motor shaft need a magnet, the driver board is installed at the back, and the encoder value can be read.

X=1 without encoder, the motor shaft without magnet, the driver board can be installed arbitrarily, and the encoder value cannot be read.

Uplink package (PC ← SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FB	01	82	status(uint8_t)	CRC	

status =1 Set success.

status =0 Set fail.

3. Set the working current

Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FA	01	83	Current(uint16_t)	CRC	

SERVO42E: Maximum Current =3000mA (default 1600mA) SERVO57E: Maximum Current =5200mA (default 3200mA)

	Uplink package (PC ← SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC		
FB	01	83	status(uint8_t)	CRC		

status =1 Set success.

status =0 Set fail.

4. Set subdivision (Default 16 subdivisions)

Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FA	01	84	micstep(00~FF)	CRC	

The value range of micstep (decimal) is as follows:

0, 2, 4, 8, 16, 32, 64, 128,

5, 10, 20, 25, 40, 50, 100, 200

Note: 0 corresponds to 256 subdivisions

Uplink package (PC ← SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FB	01	84	status(uint8_t)	CRC	

status =1 Set success.

status =0 Set fail.

5. Set the active of the En pin

Downlink package (PC → SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FA	01	85	enable(00~02)	CRC

enable = 00 active low (L) (default)

enable = 01 active high (H)

enable = 02 active always (Hold)

Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FB	01	85	status(uint8_t)	CRC

status =1 Set success.

status =0 Set fail.

Notel: After successful setting, it will take 100ms to receive the pulse signal.

Note2:Only valid for pulse control mode.

6. Set the direction of motor rotation

Downlink package (PC → SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FA	01	86	dir(00~01)	CRC

 $\overline{dir} = 00$ CW (default)

dir = 01 CCW

Uplink package (PC ← SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FB	01	86	status(uint8_t)	CRC	

status =1 Set success.

status =0 Set fail.

Note: This instruction can also change the bus mode to control the running direction of the motor

7. Set pulse delay

	Downlink package (PC → SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC			
FA	01	87	delay	CRC			
delay	delay = 00 Oms delay = 01 4ms						
delay = 02 20ms (default value) delay = 03 40ms							
	Uplink package (PC ← SERVO42E/57E)						
Head Slave addr		Function	Data	CRC			
FB	01	87	delay	CRC			

status =1 Set success.

status =0 Set fail.

8. Set the motor shaft locked-rotor protection function

Downlink package (PC → SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FA	01	88	enable(00~01)	CRC

enable = 01 enabled protection(default value)

enable = 00 disabled protection

Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FB	01	88	status(uint8_t)	CRC

status =1 Set success.

status =0 Set fail.

Note: After the stall protection, the stall protection state can be released through the enable signal, serial port command, Command (3D) mode or EN level invalid mode.

9. Set the Stalling tolerant value

	Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC		
FA	01	89	value (0-0x7FFF)	CRC		

The default value is 0x64.

When the error exceeds the value, the stall protection is triggered and the motor loosens its shaft.

value = 0x64 corresponds to an angle of 180 degrees value = 0xC8 corresponds to an angle of 360 degrees and so on...

Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FB	01	89	status(uint8_t)	CRC

status =1 Set success.

status =0 Set fail.

10. Set the baud rate

	Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC		
FA	01	8A	baud(01~07)	CRC		
baud = 01 9600.						
baud = 02 19200.						
baud =	03 25	000.				
baud = 04 38400 (default value).						
hand =	05 57	600				

baud = 0557600. baud = 06115200. baud = 07256000.

Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FB	01	8A	status(uint8_t)	CRC

status =1 Set success.

status =0 Set fail.

11. Set the slave address

Downlink package (PC → SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FA	01	8B	addr(00~FF)	CRC

Notel: 00 is the broadcast address Note2: 01 is the default address

Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FB	01	8B	status(uint8_t)	CRC

status =1 Set success.

status =0 Set fail.

12. Set the slave respond and active

Downlink package (PC → SERVO42E/57E)							
Head	Slave addr	Function	Data	Data	CRC		
FA	01	8C	respon(00~01)	active(00-01)	CRC		

respon = 01 enabled respond (default)

respon = 00 disabled respond

active = 01 enabled active (default)

active = 00 disabled active

Note: If disable respond, It can query the running status of the motor by command "F1".

Uplink package (PC ← SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FB	01	8C	status(uint8_t)	CRC	

status =1 Set success.

status =0 Set fail.

The difference between respond and active

Take position control mode 1 as an example:

Host sends FA 01 FD 02 80 02 00 00 FA 00 76

- a. In no response mode (respon =0, active = xx)
 The slave does not return any information.
- b. In the mode of not actively initiating data (respon =1, active =0) Slave returns immediately Position control starts 01 or fails 00.
- c. In default mode (respon =1, active =1) Slave returns immediately Position control starts 01 or fails 00. Return 02 or 03 after the motor finishes running or touches the limit stop.

13. Set MODBUS-RTU communication protocol

Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FA	01	8E	enable(00~01)	CRC	

enable = 01

enabled Modbus-RTU

enable = 00(default value)

disabled Modbus-RTU

Uplink package (PC ← SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FB	01	8E	status(uint8_t)	CRC	

status =1 Set success.

status =0 Set fail.

14. Set whether to lock the axis when starting bus mode

Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FA	01	8F	enable(00~01)	CRC	

enable = 01 lock the axis(default value)

enable = 00 unlock axis

Uplink package (PC ← SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FB	01	8F	status(uint8_t)	CRC	

status =1 Set success.

status =0 Set fail.

15. Set the group address

Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FA	01	8D	addr(01~FF)	CRC	

Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FB	01	8D	status(uint8_t)	CRC

status =1 Set success.

status =0 Set fail.

For example, there are 6 motors with the settings address:

	Broadcast addr	Slave addr	Group addr
motor 1	0	1	0x50
motor 2	0	2	0x50
motor 3	0	3	0x50
motor 4	0	4	0x51
motor 5	0	5	0x51
motor 6	0	6	0x51

send FA 01 FD 01 2C 64 00 00 0C 80 15, motor 1 will rotate a turn send FA 00 FD 01 2C 64 00 00 0C 80 14, motor1-6 will rotate a turn send FA 50 FD 01 2C 64 00 00 0C 80 64, motor1-3 will rotate a turn send FA 51 FD 01 2C 64 00 00 0C 80 65, motor4-6 will rotate a turn Note: Slave does not answer if group address is used.

4.3 Write IO port command

Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FA	01	36	status(uint8_t)	CRC	

			,	status			
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
alm_mask pend_mask		ALM	PEND	0	0		

alm mask 0: Do not write to ALM IO port (default)

1: Write the ALM value to the ALM IO port

2: ALM IO port value remains unchanged

pend_mask 0: Do not write to the PEND IO port (defaults)

1: Write the PEND value to the PEND IO port

2: The PEND IO port value remains unchanged

ALM port write value (0/1) PEND PEND port write value (0/1)

	Uplink package (PC ← SERVO42E/57E)					
	Head	Slave addr	Function	Data	CRC	
Ī	FB	01	36	status(uint8_t)	CRC	

status =1 write success.

status =0 write fail.

Note1: ALM writes 1, the corresponding optocoupler is opened. Note2: PEND writes 1, the corresponding optocoupler is closed.

4.4 Set Home command

1. Set the parameter of home

Downlink package (PC → SERVO42E/57E)							
byte1	byte2	byte3	byte 4	byte 5	byte 6-7	byte 8	byte 9
Head	Slave addr	Function	level	dir	speed	enable	Check
FA	01	90	HmTrig	HmDir	HmSpeed	EndLimit	CRC

HmTrig the effective level of the end stop

0: Low (default value)

1: High

HmDir the direction of go home

0: CW(default value)

1: CCW

HmSpeed the speed of go home

 $0^{\sim}3000 \text{ (RPM)}$

default value = 60

EndLimit

0: disable endstop-limit(default value)

1: enable endstop-limit

Note: The speed description can be found in Chapter 6.1.

Uplink package (PC ← SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC		
FB	01	90	status(uint8_t)	CRC		

status =1 Set success.

status =0 Set fail.

Notel:When EndLimit = 1, in bus control mode, the left limit is triggered and the motor no longer runs to the left; the right limit is triggered and the motor no longer runs to the right;

Note2: When using the limit function for the first time or changing the limit parameters, it is necessary to execute a limit reset ("91" command).

Note3: The limit function is invalid in pulse control mode.

2. Go home

Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Data	CRC	
FA	01	91	NULL	CRC	

Note: When returning to zero with limit, if the limit switch is already in the closed state, the motor will rotate a certain distance in the opposite direction of homeDir (set by command 94) and then return to zero.

Uplink package (PC ← SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC		
FB	01	91	status(uint8_t)	CRC		

status =0 go home fail.

status =1 go home start.

status =2 go home sucess.

3. Set Currnet Axis to zero

It can set the current Axis to Zero. Just as "GoHome" without run the motor.

Downlink package (PC → SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC		
FA	01	92	NULL	CRC		

Uplink package (PC ← SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC		
FB	01	92	status(uint8_t)	CRC		

status =0 set fail.

status =1 set success.

4. Set the unlimited switch to return to zero current

Downlink package (PC → SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC		
FA	01	93	nullHmMa	CRC		

SERVO42E maximum return to zero current 3000mA (default 300mA) SERVO57E maximum return to zero current 5200mA (default 600mA)

Uplink package (PC ← SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC		
FB	01	93	status(uint8_t)	CRC		

Notel: When the infinite switch returns to zero, the motor runs at a fixed torque (nullHmMa) until it hits an obstacle and stops, then runs in the reverse direction for a distance (retValue) and stops. The stop point is the zero point.

Note2: The unlimited return to zero current value is only valid during unlimited return to zero operation. It should be set to a smaller current as much as possible to avoid damaging the motor.

5. Set the parameter of "noLimit" go home

Downlink package (PC → SERVO42E/57E)						
byte1	byte2	byte3	byte 4-7	byte 8	byte 9	byte 10
Head	Slave addr	Function	Reverse Angle	hm-Mode	Hm_Trig	Check
FA	01	94	retValue	mode	trig	CRC

mode 0: used Limit switch for go home(default value).

1: no Limit switch for go home.

trig 0: Disable the zero return trigger function (default value, return to zero through command 91.

1: Automatically return to zero after power on.

2: En signal triggers zero return (valid only in pulse control mode).

retValue: $0\sim0$ xFFFFFFF (Default = 0x2000, returns half a turn, 180 degrees) for example:

retValue = 0x4000 (it will return 360 degree)

retValue = 0x2000 (it will return 180 degree) (default)

Uplink package (PC ← SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC		
FB	01	94	status(uint8_t)	CRC		

status =0 set fail.

status =1 set success.

Notel: In pulse control mode, when hmTrig = 2, when the En signal line generates a 200ms width non-enable level, the motor is triggered to return to zero. (Pulse recognition range 150ms~250ms).

Note2: When En is low level to enable the motor, a 200ms high level signal is generated to trigger the motor to return to zero.

When En is high level to enable the motor, a 200ms low levelsignal is generated to trigger the motor to return to zero.

6. Set limit port remap

Map the En port to the right limit port, which is only suitable for bus control mode.

	Downlink package (PC → SERVO42E/57E)						
Ī	Head	Slave addr	Function	Data	CRC		
Ī	FA	01	9E	reMap	CRC		

reMap = 0 Right limit mapping is off (default value)

reMap = 1 Right limit mapping is on

Uplink package (PC ← SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC		
FB	01	9E	status(uint8_t)	CRC		

status =1 Set success.

status =0 Set fail.

Note: This instruction is invalid for 57E and pulse control mode.

4.5 Setting the pulse division output command

Map the PEND port as the pulse frequency division output port.

Downlink package (PC → SERVO42E/57E)						
byte1	byte2	byte3	byte 4	byte 5-8	byte 9	
Head	Slave addr	Function	Start level	division period	Check	
FA	01	9F	divLevel	divPeriod	CRC	

divLevel 0: Starting level low; 1: Starting level high (default 0)

divPeriod division period (default 0)

When divPeriod < 100, there is no frequency division output When divPeriod >= 100, the PEND port flips once for every divPeriod pulse cycle.

For example, if 16 subdivisions are set and divPeriod = 3200, the PEND port flips once for every motor rotation.

Note: To cancel this function, set divPeriod = 0.

Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FB	01	9F	status(uint8_t)	CRC

status =0 set fail.

status =1 set success.

4.6 Restore default parameters and reset instructions

1. Restore default parameters

	Downlink package (PC → SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC	
FA	01	3F	NULL	CRC	

Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FB	01	3F	status(uint8_t)	CRC

status =1 restore success.

status =0 restore fail.

Note: After restored the parameters, It will reboot.

2. Reset the motor

Downlink package (PC → SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FA	01	41	NULL	CRC

Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FB	01	41	status(uint8_t)	CRC

status =1 restart success.

status =0 restart fail.

Note: This command only resets the motor and does not modify the configuration parameters.

4.7 Read version information

Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	CRC		
FA	01	40	CRC		

byte1	byte 2	byte 3	byte 4		byte 5-7	byte 8	
hood	addr	cmd	b7	b5-b4	b3-b0	firmVer	CRC
head	auui	cmd	D/E	cal	hardVer	IIIIIVEI	CRC
FB	addr	40	series	cal	hardVer	firmVer[3]	CRC

series = 1 E series stepper motor

series = 0 D series stepper motor

cal = 1 When the motor rotates clockwise, the encoder value increases

cal = 2 When the motor rotates clockwise, the encoder value decreases

Firmware version: firmVer[0] = 1 firmVer[1] = 0 firmVer[2] = 0Corresponding version V1.0.0

The hardware versions correspond to the following

board	hardVer
S42E_RS485	1
S42E_CAN	2
S57E_RS485	3
S57E_CAN	4
S28E_RS485	5
S28E_CAN	6
S35E_RS485	7
S35E_CAN	8

4.8 Read/Write User ID

1. Write User ID

Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	User ID	CRC	
FA	01	42	ID(uint32_t)	CRC	

Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC
FB	01	42	status(uint8_t)	CRC

status =1 Write success.

status =0 Write fail.

2. Read User ID

Downlink package (PC → SERVO42E/57E)				
Head	Slave addr	Function	CRC	
FA	01	42	CRC	

	Downlink package (PC ← SERVO42E/57E)					
Head Slave addr Function User ID CRC						
FB	01	42	ID(uint32_t)	CRC		

4.9 Firmware upgrade by IAP

There are 2 upgrade modes:

IAP mode 1:

Ground the SWD port of the motor, then power on and enter mode 1. Factory parameters will be restored after the upgrade.

IAP mode 2:

Send control instructions and enter IAP mode 2. User parameters will be retained after the upgrade.

Note:

For IAP upgrade operation instructions, see "MKS SERVO42&57E IAP upgrade operation instructions.pdf"

For IAP upgrade operation video, see "MKS SERVO42&57E IAP upgrade operation video.mp4"

IAP mode 2 instructions are as follows

	Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	CMD	CRC		
FA	01	50	cmd	CRC		

cmd = 01 Enter boot mode

cmd = 02 Enter silent state

cmd = 03 Exit silent state

Control word cmd description:

When there is only one motor on the bus, directly send cmd = 01 command to enter boot mode;

When there are multiple motors on the bus, to avoid data interference, you can do the following:

- a. First broadcast cmd = 02 command (FA 00 50 02 CRC) to make all motors enter the silent state;
- b. Then send cmd = 01 command to the motor to be upgraded to enter the boot mode to upgrade the firmware;
- c. After the upgrade is completed, broadcast cmd = 03 command (FA 00 50 03 CRC) to make all motors exit the silent state.

Note: In the silent state, the motor does not respond to commands other than 50.

	Uplink package (PC ← SERVO42E/57E)					
Head Slave addr Function Data CRC				CRC		
FB	01	50	status(uint8_t)	CRC		

status =1 Write success.

status =0 Write fail.

Note: After successful setup, the motor automatically restarts and enters IAP mode 2, waiting to receive the upgrade file (*. bin).

4.10 Long Data Package

Long data packets, that is, a packet of data contains up to 5 commands, and the slave judges which command to execute based on the address.

Long data packets format:

Head		0xFC			1byte
	byte 1	byte 2		byte 10	
command 1	slaveAddr1	code			10 byte
command 2	slaveAddr 2	code			10 byte
command 3	slaveAddr 3	code			10 byte
command 4	slaveAddr 4	code			10 byte
command 5	slaveAddr 5	code			10 byte
checksum		CRC	•		1 byte

Note:

- 1. The length of the long data packet is 52 bytes in total.
- 2. The length of each command X is 10 bytes, when it is less than 10 bytes, add 0 to supplement.
- 3.Command X is the corresponding ordinary command, remove the frame header (FA) and checksum.
- 4.If the slave addresses of command X and command Y (X<Y) are the same, only command X is executed.
- 5. Slave does not answer.

For example, sending the following long data packet can control 5 motors to perform different actions (16 subdivisions)

```
FC

01 F6 00 32 0A 00 00 00 00 00

02 F6 80 64 20 00 00 00 00

03 FD 01 2C 02 00 04 E2 00 00

04 F4 02 58 64 00 19 00 00 00

05 F5 04 B0 C8 00 0C 80 00 00

11

[2023-04-30 22:40:55.899]# SEND HEX>
FC 01 F6 00 32 0A 00 00 00 00 02 F6 80 64 20 00 00 00 00 03 FD 01 2C 02

00 04 E2 00 00 04 F4 02 58 64 00 19 00 00 00 05 F5 04 B0 C8 00 0C 80 00 00 11
```

```
Motor 1 rotates forward continuously in speed mode (speed=0x32, acc=0x0A)
```

Motor 2 reverses continuously in speed mode (speed=0x64, acc=0x20)

Motor 3 rotates forward 100 times in position mode 1 (speed=0x12C, acc=0x02)

Motor 4 rotates forward 100 times in position mode 2 (speed=0x258, acc=0x64)

Motor 5 runs to coordinate 0xC8000 in position mode 3 (speed=0x4B0, acc=0xC8)

4.11 Read/Write all parameters commands

3. Write all configuration parameters

	Downlink package (PC → SERVO42E/57E)					
Head	Slave addr	Function	Byte4~Byte37	CRC		
FA	01	46	parameters	CRC		

Note: The parameters are shown in the table below.

	Uplink package (PC ← SERVO42E/57E)				
Head	Slave addr	Function	Data	CRC	
FB	01	46	status(uint8_t)	CRC	

status =1 write success.

status =0 write fail.

4. Read all configuration parameters

Downlink package (PC → SERVO42E/57E)				
Head	ad Slave addr Function CRC			
FA	01	47	42	

	Uplink package (PC ← SERVO42E/57E)					
Head	Slave addr	Function	parameters	CRC		
FB	01	47	Byte4~Byte37	CRC		

Notel: The parameters are shown in the table below.

Note2: If read failed, it return FB 01 47 FF 42

	Write commands (46)				
byte	Frame	Single cmd	default(HEX)		
1	FA				
2	01				
3	46				
4	Mode	82	3		
5	Holding current		Reserved (FF)		
6	Work current	83	0C / 06		
7	Work current	03	80 / 40		
8	Subdivision	84	10		
9	En	85	0		
10	Dir	86	0		
11	Pulse Delay	87	0		
12	Protect	88	0		
13	Baud rate	8A	4		
14	Slave address	8B	1		

Read	d commands (47)	
byte	Frame	
1	FB	
2	01	
3	47	
4	Mode	
5	Reserved (FF)	
6	Mark ourrent	
7	Work current	
8	Subdivision	
9	En	
10	Dir	
11	Pulse Delay	
12	Protect	
13	Baud rate	
14	Slave address	
	·	

15	Group address	8D	0
16	Doggand	8C	1
17	Respond	OC	1
18	MODBUS	8E	0
19	Limit remap	9E	
20	Axis lock	8F	1
21	Reserved		Reserved(FF)
22	HmTrig		0
23	HmDir		0
24	Llm2Cm a ad	90	0
25	- HmSpeed		3C
26	EndLimit		0
27	Reserved		Reserved(FF)
28			0
29		0.4	0
30	- retValue		20
31	-	94	0
32	Hm-mode		0
33	hmTrig		0
34	and the land An	0.2	02/01
35	nullHmMa	93	58/2C
36	tolerance value	89	00
37			64
38	CRC		

15	Group address
16	Doorond
17	Respond
18	MODBUS
19	Limit remap
20	Axis lock
21	Reserved(FF)
22	HmTrig
23	HmDir
24	Um\$nood
25	HmSpeed
26	EndLimit
27	Reserved(FF)
28	
29	retValue
30	Tetvalue
31	
32	Hm-mode
33	hmTrig
34	nullHmMa
35	Hullfillilvia
36	tolerance value
37	
38	CRC

Note: xx/xx corresponds to 57E/42E

5. Read all status parameters

Downlink package (PC → SERVO42E/57E)						
Head	CRC					
FA	01	43				

Uplink package (PC ← SERVO42E/57E)						
Head	Slave addr	Function	parameters CRC			
FB	01	48	Byte4~Byte30	CRC		

Notel: The parameters are shown in the table below.

Note2: If read failed, it return FB 01 48 FF 43

	Read status commands (48)						
Bytes	Frame	Single commad					
1	FB						
2	1						
3	48						
4	motor status	F1					
5	En status	3A					
6	Protect status	3E					
7	IO status	34					
8							
9							
10	encoder	31					
11	value	31					
12							
13							
14	anood	32					
15	speed	32					
16							
17	nu1aaa	33					
18	pulses	33					
19							
20							
21	orror	20					
22	error	39					
23		_					
24	CRC						

Part5. Run the motor by serial command

Notel: This command is only valid in bus mode.

Note2: For MODBUS-RTU protocol commands, see Part 7.

5.1 Description the parameters of speed and acceleration

1. speed

The speed parameter ranges from 0 to 3000. The larger the value, the faster the motor rotates.

Note: The speed value is calibrated based on 16/32/64 subdivisions, and the speeds of other subdivisions need to be calculated based on 16 subdivisions.

For example, setting speed=1200

At 8 subdivisions, the speed is 2400 (RPM)

At 16/32/64 subdivisions, the speed is 1200 (RPM)

At 128 subdivisions, the speed is 150 (RPM)

2. acceleration

The value of the acceleration (acc) ranges from 0 to 255. The larger the value, the faster the motor accelerates/decelerates.

If acc=0, the motor runs without acceleration or deceleration, and runs directly at the set speed.

(1) accelerates

Suppose at time t1, the current speed is
$$V_{t1}$$
 (V_{t1} < speed) at time t2, the current speed is V_{t2} t2 - t1 = (256-acc) * 50 (uS)

The relationship between the current speed $V_{\rm ti}\text{,}$ acc, and speed is as follows:

$$V_{t2} = V_{t1} + 1 \ (V_{t2} \le speed)$$

For example: acc = 236, speed = 3000

T(ms)	speed (RPM)		
0	0		
1	1		
2	2		
3	3		

T(ms)	speed (RPM)		
2998	2998		
2999	2999		
3000	3000		

2 decelerates

Suppose at time t1, the current speed is
$$V_{t1}$$
 (V_{t1} > speed) at time t2, the current speed is V_{t2} t2 - t1 = (256-acc) * 50 (uS)

The relationship between the current speed $V_{\rm ti}$, acc, and speed is as follows:

$$V_{t2} = V_{t1} - 1$$
 $(V_{t2} >= speed)$

5.2 Query/Enable the motor command

1. Query the motor status

Downlink package (PC → SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC		
FA	01	F1	_	CRC		

Uplink package (PC ← SERVO42E/57E)						
Head	Slave addr	Function	Data CRC			
FB	01	F1	status(uint8_t)	CRC		

status = 0 query fail.

status = 1motor stop

status = 2motor speed up

status = 3motor speed down

status = 4motor full speed

status = 5motor is homing

status = 6motor is Cal…

Note 1: This instruction is only valid in bus control mode.

Note 2: This instruction can only query the motor calibration operation in pulse control mode.

2. Enable the motor

Downlink package (PC → SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC		
FA	A 01		en (00~01)	CRC		

en = 00disable.

en = 01enable.

	Uplink package (PC ← SERVO42E/57E)						
Не	ead	Slave addr	Function	Data	CRC		
F	-В	01	F3	status(uint8_t)	CRC		

status = 1 set success.

status = 0 set fail.

5.3 Emergency stop the motor

Downlink package (PC → SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC		
FA	01	F7	_	CRC		

Uplink package (PC ← SERVO42E/57E)						
Head	Slave addr	Data	CRC			
FB	01	F7	status(uint8_t)	CRC		

status = 0stop fail.

status = 1stop success.

Note: If the motor rotating more than 1000RPM, it is not a good idea to stop the motor immediately!

5.4 About Multiple Motors Control

- 1. Broadcast address, all motors execute the same command.
- 2. Group address, group A motors execute command a, group B motors execute command b.
 - 3. Long data packets, motors can execute different commands.

5.5 Speed mode command

In speed mode, the motor can be run with a fixed acceleration and speed.

1. Run the motor in speed mode

Downlink package (PC → SERVO42E/57E)									
BYTE1	BYTE2	BYTE3	BYTE4 BYTE5 BYTE6 BYTE7						
Head	Slave addr	Function	dir	dir Rev speed			acc	CRC	
ΕΛ	addr	F6	b7	b6-b4	b3-b0	b7-b0	200	CDC	
FA addr		го	dir		speed		acc	CRC	

Byte 4: The highest bit indicates the direction, the lower 4 bits and byte 5 together indicate the speed

Byte 5: The lower 4 bits of byte 5 and byte 4 together indicate speed $\,$

The parameter description is as follows:

addr: slave address, the value range is 0-255

dir: the value range is 0/1 (CCW/CW)

speed: the speed, the value range is 0-3000

acc: the acceleration, the value range is 0--255

for example:

Send "FA 01 F6 01 40 02 34",

the motor rotates forward at acc=2, speed=320RPM

Send "FA 01 F6 81 40 02 B4",

the motor reverses at acc=2, speed=320RPM

	Uplink package (PC ← SERVO42E/57E)							
Head	Head Slave addr Function Data CRC							
FB	01	F6	status(uint8_t)	CRC				

status = 1 run success.

status = 0 run fail.

2. Stop the motor in speed mode

	Downlink package (PC → SERVO42E/57E)									
BYTE1	BYTE2	BYTE3	BYTE3 BYTE4 BYTE5 BYTE6 BYTE7							
Head	Slave addr	Function	dir	Rev	Rev speed acc CRC					
FA	addr	F6	b7	b6-b4	b3-b0	b7-b0	200	CRC		
FA	FA addr F6		0	0	0		acc	CKC		

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

① Deceleration and stop the motor slowly (acc \neq 0) for example:

Send FA 01 F6 00 00 02 F3

Stop the motor with deceleration acc=2

2 Immediate stop command (acc = 0)

for example:

Send FA 01 F6 00 00 00 F1

Stop the motor immediately

Note: If the motor rotating more than 1000RPM, it is not a good idea to stop the motor immediately!

	Uplink package (PC ← SERVO42E/57E)							
Head	Head Slave addr Function Data CRC							
FB	FB 01 F6 status(uint8_t) CRC							

status = 0 stop the motor fail.

status = 1 start to stop the motor.

status = 2 stop the motor success.

3. Save/Clean the parameter in speed mode

	Downlink package (PC → SERVO42E/57E)							
Head	Head Slave addr Function Data CRC							
FA	FA 01 FF state CRC							

state = C8 Save. state = CA Clean.

	Uplink package (PC ← SERVO42E/57E)							
Head	Head Slave addr Function Data CRC							
FB	FB 01 FF status(uint8_t) CRC							

status = 1 start.
status = 0 fail.
status = 2 success.

Note: The motor can rotates clockwise or counterclockwise at a constant speed when powered on.

5.6 Position model: relative motion by pulses

In the position control mode, the motor can be run to the specified position with the set acceleration and speed.

1. Run the motor in position model

	Downlink package (PC → SERVO42E/57E)										
BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7-10 BYTE11									BYTE11		
Head	Slave addr	Function	dir	dir Rev spe			acc	pulses	CRC		
FA	addr	ED	b7	b6-b4	b3-b0	b7-b0	200	pulsos	CRC		
FA	audi	FD	dir		sp	eed	acc	pulses	CRC		

Byte 4: The highest bit indicates the direction, the lower 4 bits and byte 5 together indicate the speed

Byte 5: The lower 4 bits of byte 5 and byte 4 together indicate speed

The parameter description is as follows:

addr: slave address, the value range is 0-255

dir: the value range is 0/1 (CCW/CW)

speed: the speed, the value range is 0-3000 (RPM) acc: the acceleration, the value range is 0-255

pulses: the motor run steps, the value range is 0 - 0xFFFFFFFF

for example:

Send FA 01 FD 01 40 02 00 00 FA 00 35,

the motor rotates 20 times in the forward direction with acc=2, speed=320RPM (16 subdivisions);

Send FA 01 FD 81 40 02 00 00 FA 00 b5,

the motor rotates 20 times in the reverse direction with acc=2, speed=320RPM (16 subdivisions);

	Uplink package (PC ← SERVO42E/57E)							
Head	Head Slave addr Function Data CRC							
FB	FB 01 FD status(uint8_t) CRC							

status = 0 run fail.

status = 1 run starting....

status = 2 run complete.

status = 3 end limit stoped.

Note: the "Uplink package" can be disable by Menu "UartRSP" or Command "8C".

2. Stop the motor in position model

	Downlink package (PC → SERVO42E/57E)										
BYTE1	BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7-10 BYTE11										
Head	Slave addr	Function	dir	dir Rev sp			acc	pulses	CRC		
FA	a dela ED	b7	b6-b4	b3-b0	b7-b0	200	0	CRC			
ГА	addr	FD	0	0		0	acc	U	CRC		

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

① Deceleration and stop the motor slowly (acc \neq 0) for example:

Send FA 01 FD 00 00 02 00 00 00 00 FA Stop the motor with deceleration acc=2

② Immediate stop command (acc = 0) for example: Send FA 01 FD 00 00 00 00 00 00 00 F8 Stop the motor immediately

Note: If the motor rotating more than 1000RPM, it is not a good idea to stop the motor immediately!

	Uplink package (PC ← SERVO42E/57E)							
Head Slave addr Function Data CRC								
FB	01	FD	status(uint8_t)	CRC				

status = 0 stop the motor fail.

status = 1 stop the motor starting....

status = 2 stop the motor complete.

5.7 Position mode2: absolute motion by pulses

In the position control mode2, the motor can be run to the specified pulses position with the set acceleration and speed.

1. Run the motor in position mode2

byte1	byte2	byte3	byte 4-5	byte 6	byte 7-10	byte 11
Head	Slave addr	Function	speed	acc	absolute axis	Check
FA	addr	FE	speed	acc	absPulses	CRC

The parameter description is as follows:

speed: the speed, the value range is 0-3000 (RPM) acc: the acceleration, the value range is 0-255

absPulses: the absolute pulses, int32_t

For example:

If the current axis is any value Send FA 01 FE 02 58 02 00 00 40 00 95 The motor will move to 0x4000 (speed = 600(RPM), acc =2) After move the pulses is 0x4000.

If the current axis is any value Send FA 01 FE 02 58 02 FF FF C0 00 13 The motor will move to -0x4000 (speed = 600 (RPM), acc =2) After move the pulses is -0x4000.

	Uplink package (PC ← SERVO42E/57E)							
Head	Head Slave addr Function Data CRC							
FB	FB 01 FE status(uint8_t) CRC							

status = 0 run fail.

status = 1 run starting....

status = 2 run complete.

status = 3 end limit stoped.

2. Stop the motor in position mode2

byte1	byte2	byte3	byte 4-5	byte 6	byte 7-10	byte 11
Head	Slave addr	Function	speed	acc	absPulses	Check
FA	addr	FE	0	acc	0	CRC

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

① Deceleration and stop the motor slowly (acc \neq 0) for example:

Send FA 01 FE 00 00 04 00 00 00 00 FD Stop the motor with deceleration acc=4

② Immediate stop command (acc = 0) for example: Send FA 01 FE 00 00 00 00 00 00 00 F9 Stop the motor immediately

Note: If the motor rotating more than 1000RPM, it is not a goog idea to stop the motor immediately!

	Uplink package (PC ← SERVO42E/57E)						
Head Slave addr Function Data CRC							
FB	01	FE	status(uint8_t)	CRC			

status = 0 stop fail.

status = 1 stop starting....

status = 2 stop complete.

status = 3 end limit stoped.

5.8 Position mode3: relative motion by axis

In the position control mode3, the motor can be run to the specified axis with the set acceleration and speed.

Notel: the axis is the encoder value (addition). It can be read by command "31".

1. Run the motor in position mode3

byte1	byte2	byte3	te3 byte 4-5 byte 6 byte 7-10		byte 11	
Head	Slave addr	Function	tion speed acc Relative axis		Check	
FA	addr	F4	speed	acc	relAxis	CRC

The parameter description is as follows:

speed: the speed, the value range is 0-3000(RPM) acc: the acceleration, the value range is 0-255

relAxis: the relative axis, int32_t

For example:

If the current axis is 0x8000. (read by code "31")

Send FA 01 F4 02 58 02 00 00 40 00 8B

The motor will relative move 0x4000 (speed = 600 (RPM), acc =2) After move the axis is 0xC000. (0x8000+0x4000=0xC000)

If the current axis is 0x8000. (read by code "31") Send FA 01 F4 02 58 02 FF FF C0 00 03

The motor will relative move -0x4000 (speed = 600 (RPM), acc =2) After move the axis is 0x4000. (0x8000-0x4000=0x4000)

	Uplink package (PC ← SERVO42E/57E)						
Head	Slave addr	Function	Data	CRC			
FB	01	F4	status(uint8_t)	CRC			

status = 0 run fail.

status = 1 run starting....

status = 2 run complete.

status = 3 end limit stoped.

Note: The instruction "8C" can be used to set whether to return to the running state.

2. Stop the motor in position mode3

byte1	byte2	byte3	byte 4-5	byte 4-5 byte 6 byte 7-10		byte 11
Head	Slave addr	Function	speed	acc	Relative axis	Check
FA	addr	F4	0	acc	0	CRC

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

① Deceleration and stop the motor slowly (acc \neq 0) for example:

Send FA 01 F4 00 00 04 00 00 00 00 F3 Stop the motor with deceleration acc=4

② Immediate stop command (acc = 0) for example: Send FA 01 F4 00 00 00 00 00 00 00 EF Stop the motor immediately

Note: If the motor rotating more than 1000RPM, it is not a good idea to stop the motor immediately!

	Uplink package (PC ← SERVO42E/57E)							
Head Slave addr Function Data CRC								
Ī	FB	01	F4	status(uint8_t)	CRC			

status = 0 stop fail.

status = 1 stop starting....

status = 2 stop complete.

status = 3 end limit stoped.

Note: the "Uplink package" can be disable by Command "8C".

5.9 Position mode4: absolute motion by axis

In the position control mode4, the motor can be run to the specified axis with the set acceleration and speed.

Notel: the axis is the encoder value (addition). It can be read by command "31".

Note2: Support real-time updates of speed and coordinates, that is, new commands can be issued to change speed and coordinates when the previous command is running

1. Run the motor in position mode4

byte1	byte2	byte3	byte 4-5	byte 6	byte 7-10	byte 11
Head	Slave addr	Function	speed	acc	absolute axis	Check
FA	addr	F5	speed	acc	absAxis	CRC

The parameter description is as follows:

speed: the speed, the value range is 0-3000 (RPM) acc: the acceleration, the value range is 0-255

relAxis: the absolute axis, int32 t

For example:

If the current axis is any value Send FA 01 F5 02 58 02 00 00 40 00 8C The motor will move to 0x4000 (speed = 600 (RPM), acc =2) After move the axis is 0x4000.

If the current axis is any value Send FA 01 F5 02 58 02 FF FF C0 00 0A The motor will move to -0x4000 (speed = 600 (RPM), acc =2) After move the axis is -0x4000.

	Uplink package (PC ← SERVO42E/57E)					
Head	nd Slave addr Function Data CRC					
FB	01	F5	status(uint8_t)	CRC		

status = 0 run fail.

status = 1 run starting....

status = 2 run complete.

status = 3 end limit stoped.

Note: The instruction "8C" can be used to set whether to return to the running state.

2. Stop the motor in position mode4

byte1	byte2	byte3	byte 4-5	byte 6	byte 7-10	byte 11
Head	Slave addr	Function	speed	acc	absolute axis	Check
FA	addr	F5	0	acc	0	CRC

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

① Deceleration and stop the motor slowly (acc \neq 0) for example:

Send FA 01 F5 00 00 04 00 00 00 00 F4 Stop the motor with deceleration acc=4

② Immediate stop command (acc = 0) for example: Send FA 01 F5 00 00 00 00 00 00 00 F0 Stop the motor immediately

Note: If the motor rotating more than 1000RPM, it is not a goog idea to stop the motor immediately!

	Uplink package (PC ← SERVO42E/57E)						
Head Slave addr Function Data CRC							
FB	01	F5	status(uint8_t)	CRC			

status = 0 stop fail.

status = 1 stop starting....

status = 2 stop complete.

status = 3 end limit stoped.

Note: The instruction "8C" can be used to set whether to return to the running state.

Part6. Serial example

6.1 Config the SERVO42E/57E

- 1. Set the working mode: 05 RS485 bus closed loop FOC mode
- 2. Setting the baud rate: 04 38400 (default value).
- 3. Set the slave address:01 (default value).

6.2 Config the Uart Assistant

- 1. Select the Channel; (such as COM5).
- 2. Select the Baudrate; (such as 38400, Must be equal to motor baudrate).
- 3. Recv Options: select "HEX".
- 4. Send Options: select "HEX".
- 5. Append checkcode: select "CHECKSUM-8".

6.3 Read the encoder value

send "FA 01 30 2B"
return "FB 01 30 FF FF FF FF 22 69 B3"

6.4 Run the motor in speed mode

Note: The control mode needs to be set to bus mode.

1. Send FA 01 F6 01 40 02 , the motor will rotate at "speed = 320RPM, acc=2";

Return FB 01 F6 01 F3, the motor run in speed mode successful;

- 2. Send FA 01 FF C8 to save the speed mode parameters; Return FB 01 FF 01 FC, save successful;
- 3. Send FA 01 F6 00 00 02 to stop the motor; Return FB 01 F6 01 F3, the motor stops successfully;

After power-on again, the motor will run according to the save speed mode parameters.

The example command of speed mode is shown in the following figure:

6.5 Run the motor in position model

Note: The control mode needs to be set to bus mode.

1. Send FA 01 FD 02 80 05 00 09 C4 00, the motor will rotate forward 200 circles (16 subdivisions) with "speed = 640RPM, acc = 5"; Return FB 01 FD 01 FA, the motor starts to run; Return FB 01 FD 02 FB, the motor is run completed;

2. Send FA 01 FD 82 80 08 00 30 D4 00, the motor to reverse 1000 circles with "speed = 640RPM, acc = 8" (16 subdivisions); Return FB 01 FD 01 FA, the motor starts to run; While the motor is running: Send FA 01 FD 00 00 08 00 00 00 00, the motor to stop with acc=8; Return FB 01 FD 01 FA, the motor starting to stop; Return FB 01 FD 02 FB, the motor has stopped;

The example command of position control mode is shown in the following figure:

Part7. MODBUS-RTU command description

Notel: It need to enable MODBUS-RTU by menu or serial command.

Note2: the addresses 1046H, 1147H, and 1248H to write or read all

parameters, refer to Section 7.3.

7.1 Read parameter command

1. Read the encoder value(carry)

	Request								
SlaveAddr	Function	Starting A	ddress	Quantity of Reg		CRC16			
SiaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo		
01H	04H	00H	30H	00H	03H	вон	04H		

	Response							
SlaveAddr	Function	Purtos	DATA	CRC16				
SlaveAddi	FULLCUOTI	Bytes	carry	value	Hi	Lo		
01H	04H	06H	int32_t	uint16_t				

carry: the carry vaule of the encoder.

value: the current vaule of the encoder. (range 0°0x3FFF)

When value is greater than 0x3FFF, carry +=1.

When Value is less than 0, carry -=1.

For example:

If the current carry value is 0x3FF0, After one turn CCW, the carry value (+0x4000) is 0x13FF0.

If the current carry value is 0x3FF0, After one turn CW, the carry value (-0x4000) is 0xFFFFFFFFFFF.

Note: The encoder value is updated regardless of whether the motor is enabled or not.

2. Read the encoder value (addition)

	Request									
SlaveAddr	Function	Starting Address		Quantity of Reg		CRC16				
SiaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo			
01H	04H	00H	31H	00H	03H	E1H	C4H			

Response								
SlaveAddr Function	D) #00	valuo	CRO	C16				
SlaveAddi	Function	Bytes value		Hi	Lo			
01H	04H	06H	(int48_t)					

After one turn clockwise, the value += 0x4000;

After one turn CCW, the value -= 0x4000;

For example:

If the current value is 0x3FF0, After one turn CCW, the value (+0x4000) is 0x7FF0.

If the current value is 0x3FFO, After one turn CW, the value(-0x4000) is 0xFFFFFFFFF60.

3. Read the real-time speed of the motor

Request								
SlaveAddr Function	Starting Address		Quantity of Reg		CRC16			
	runction	Hi	Lo	Hi	Lo	Hi	Lo	
01H	04H	00H	32H	00H	01H	E1H	C4H	

Response								
Slave Addr Eunstion	Bytes	boods	CRC16					
SiaveAddi	SlaveAddr Function		speed	Hi	Lo			
01H	04H	02H	(int16_t)					

Note: if it run CCW, the speed > 0 (RPM) if it run CW, the speed < 0 (RPM)

4. Read the number of pulses

Request								
SlaveAddr Function	Starting Address		Quantity of Reg		CRC16			
	runction	Hi	Lo	Hi	Lo	Hi	Lo	
01H	04H	00H	33H	00H	02H	81H	C4H	

Response								
SlaveAddr Function	Bytes	nulana	CRO	C16				
		pulses	Hi	Lo				
01H	04H	04H	(uint32_t)					

5. Read the IO Ports status

Request								
SlaveAddr Function	Eunction	Starting Address		Quantity of Reg		CRC16		
	runction	Hi	Lo	Hi	Lo	Hi	Lo	
01H	04H	00H	34H	00H	01H	70H	04H	

Response								
SlaveAddr Function	Eupotion	Di dan	Doggrad	0+0+110	CRO	C16		
SlaveAddi	r Function Bytes Reserved		status	Hi	Lo			
01H	04H	02H	00H	(uint8_t)				

	status								
Bit7	Bit7 ··· bit4 bit3 bit2 bit1 bit0								
reserved				ALM	PEND	IN_2	IN_1		

PEND 1: Already in place 0: Not in place

0: Alarmed ALM1: No alarm

Note: 42E does not have IN_2 port, bit1 corresponds to En port status.

6. Read the error of angle

Request								
SlaveAddr Function	Starting Address		Quantity of Reg		CRC16			
	runction	Hi	Lo	Hi	Lo	Hi	Lo	
01H	04H	00H	39H	00H	02H	A1H	C6H	

Response							
SlaveAddr Function	Bytes	orrore	CRC16				
		errors	Hi	Lo			
01H	04H	04H	(int32_t)				

The error is the difference between the angle you want to control minus the real-time angle of the motor, $0^{\sim}51200$ corresponds to $0^{\sim}360^{\circ}$.

for example, when the angle error is 1° , the return error is 51200/360= 142.222, and so on.

7. Read the En pins status

Request								
SlaveAddr Function	Starting Address		Quantity of Reg		CRC16			
	runction	Hi	Lo	Hi	Lo	Hi	Lo	
01H	04H	00H	3AH	00H	01H	11H	C7H	

Response								
SlaveAddr Function	Eupotion	Distance	Daggrad	anabla	CRO	C16		
SlaveAddi	reAddr Function Bytes Reserved		enable	Hi	Lo			
01H	04H	02H	00H	(uint8_t)				

enable =1 Enabled enable =0 Disabled

8. Read the motor shaft protection status

Request										
SlaveAddr Function	Eupotion	Starting Address		Quantity of Reg		CRC16				
	runction	Hi	Lo	Hi	Lo	Hi	Lo			
01H	04H	00H	3EH	00H	01H	50H	06H			

Response									
SlaveAddr Functi	Eupotion	atia.a Dutaa		ctatus	CR	C16			
SiaveAddi	runction byt	Bytes	Reserved	status	Hi	Lo			
01H	04H	02H	00H	(uint8_t)					

status =1 protected.

status =0 no protected.

9. Read version information

Request									
SlaveAddr Function	Function	Starting A	ddress	Quantity	of Reg	CRC16			
	TUTICUOTI	Hi	Lo	Hi	Lo	Hi	Lo		
01H	04H	H00	40H	00H	02H	70H	1FH		

Response								
SlaveAddr Function	Eunction	Dutos	Version Information	CRO	C16			
	runction by	Bytes	version imonnation	Hi	Lo			
01H	04H	04H	version(uint32_t)					

			The second secon				
	Byte0						
b7	b5-b4	b3-b0	fimware				
series	cal	hardVer	firmVer[3]				

series = 1 E series stepper motor

series = 0 D series stepper motor

cal = 1 When the motor rotates clockwise, the encoder value increases

cal = 2 When the motor rotates clockwise, the encoder value decreases

Firmware version: firmVer[0] = 1 firmVer[1] = 0 firmVer[2] = 0Corresponding version V1.0.0

The hardware versions correspond to the following

board	hardVer
S42E_RS485	1
S42E_CAN	2
S57E_RS485	3
S57E_CAN	4
S28E_RS485	5
S28E_CAN	6
S35E_RS485	7
S35E_CAN	8

10. Read the motor status

Request										
SlaveAddr Function	Starting Address		Quantity of Reg		CRC16					
	Function	Hi	Lo	Hi	Lo	Hi	Lo			
01H 04H 00H F1H 00H 01H 60H 39H										

Response									
SlaveAddr Funct	Eunstion	Function Duton	Dosonyod	ctatus	CRO	C16			
	runction	Bytes	Reserved	status	Hi	Lo			
01H	04H	02H	00H	(uint8_t)					

status = 0read fail.

status = 1motor stop

status = 2motor speed up

status = 3motor speed down

status = 4motor full speed

status = 5motor is homing

motor is Cal… status = 6

7.2 Write parameter command

Note: If write fails, the function code 06H response frame register data is 0xFFFF. The function code 10H response frame register quantity is 0.

1. Write the IO port

	Request											
Slave	Func	Add	Iress	Qua	antity	Durton	REG1		REG2		CRO	16
Addr	tion	Hi	Lo	Hi	Lo	Bytes	Hi	Lo	Hi	Lo	Hi	Lo
01H	10H	00H	36H	00H	02H	04H	alm_mask	ALM	pend_mask	PEND		_

alm_mask 0: Do not write to ALM IO port (ALM default alarm signal)

1: Write the ALM value to the ALM IO port

2: ALM IO port value remains unchanged

pend_mask 0: Do not write to the PEND IO port (PEND defaults to the in-place signal)

1: Write the PEND value to the PEND IO port

2: The PEND IO port value remains unchanged

ALM port write value (0/1)
PEND PEND port write value (0/1)

	Response										
Slave addr	Function	Starting /	Address	Quanti [.] Regist		CRC16					
		Hi	Lo	Hi	Lo	Hi	Lo				
01H	10H	00H	36H	00H	02H	A1H	C6H				

Notel: ALM writes 1, the corresponding optocoupler is opened. Note2: PEND writes 1, the corresponding optocoupler is closed.

2. Release the motor shaft locked-rotor protection status

	Request										
SlaveAddr Function	Register Address		Write Data		CRC16						
	runction	Hi	Lo	Hi	Lo	Hi	Lo				
01H	06H	00H	3DH	00H	01H	D9H	C6H				

Response										
SlaveAddr Function	Eupotion	Register A	Address	Write Data		CRC16				
	Function	Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	00H	3DH	00H	01H	D9H	C6H			

Note: The stall state can also be released through the "EN level invalid mode"

3. Restore the default parameter

Request										
Claye Addr Function	Register A	Register Address Write Data			CRC16					
SlaveAddr	Function	Hi	Lo	Hi	Lo	Hi	Lo			
01H 06H 00H 3FH 00H 01H 78H 06H										

Response									
SlaveAddr Function	Function	Register A	Address	Write	Data	CRO	C16		
SiaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo		
01H	06H	00H	3FH	00H	01H	78H	06H		

Note: After restored the parameters, It will reboot.

4. Restart the motor

Request										
SlaveAddr Function	Register A	Address	Write	Data	CRO	C16				
SiaveAddi	FULLCUOTI	Hi	Lo	Hi	Lo	Hi	Lo			
01H 06H 00H 41H 00H 01H 18H 1EH										

Response										
SlaveAddr Function	Function	Register A	Address	Write	Data	CRO	C16			
SiaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	01H 06H 00H 41H 00H 01H 18H 1EH								

5. Calibrate the motor

Request										
SlaveAddr Function		Register Address		Write Data		CRC16				
SlaveAddi Function	FULLCUOTI	Hi	Lo	Hi	Lo	Hi	Lo			
01H 06H 00H 80H 00H 01H 49H E2H										

Response										
SlaveAddr Function	Register A	Register Address Write			CRO	C16				
SiaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	00H	80H	00H	01H	49H	E2H			

Note: The calibration only determines the relationship between the motor direction and the encoder, that is, when the motor rotates clockwise, the encoder value increases or decreases. If the motor phase line is wired according to the factory default connection, no calibration is required.

6. Set the work mode

Request									
SlaveAddr Function	Register A	Address	Write Data		CRC16				
SiaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo		
01H	06H	H00	82H	00H	mode				

Response									
SlaveAddr Function	Function	Register A	Address	Write Data		CRC16			
SiaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo		
01H	06H	00H	82H	00H	mode				

mode = XO Pulse+Pulse Open-loop mode (X=0 with encoder X=1 without encoder)

mode = X1 Pulse+Direction Open-loop mode (X=0 with encoder X=1 without

encoder)

mode = 02 Pulse+Pulse Closed-loop mode

mode = 03 Pulse+Direction Closed-loop mode (default)

mode = X4 RS485 bus Open-loop mode (X=0 with encoder X=1 without encoder)

mode = 05 RS485 bus Closed-loop mode

Note 1: Pulse control mode, maximum input frequency 300KHz. Bus control mode, maximum speed 3000RPM.

Note 2: X=0 with encoder, the motor shaft need a magnet, the driver board is installed at the back, and the encoder value can be read.

X=1 without encoder, the motor shaft without magnet, the driver board can be installed arbitrarily, and the encoder value cannot be read.

7. Set the work current

Request										
SlaveAddr	Eupotion	Register Address		Write Data		CRC16				
SlaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo			
01H 06H 00H 83H Current										

	Response										
Clave Addr. Function	Eunstion	Register Address		Write Data		CRC16					
SlaveAddr Function		Hi	Lo	Hi	Lo	Hi	Lo				
01H 06H 00H 83H Current											

SERVO42E: Maximum Current =3000mA (default 1600mA) SERVO57E: Maximum Current =5200mA (default 3200mA)

8. Set subdivision

	Request											
SlaveAddr	Function	Register Address		Write Data		CRC16						
SiaveAddi	FULLCUOTI	Hi	Lo	Hi	Lo	Hi	Lo					
01H	01H 06H 00H 84H micstep											
			Resp	onse								
SlaveAddr	Function	Register A	Address	Write	Data	CRO	C16					
						Lo						
01H	01H 06H 00H 84H micstep											

The value range of micstep (decimal) is as follows:

0, 2, 4, 8, 16, 32, 64, 128,

5, 10, 20, 25, 40, 50, 100, 200

Note: 0 corresponds to 256 subdivisions. (default value is 16)

9. Set the active of the En pin

Request										
SlaveAddr Function	Function	Register A	Address	Write Data		CRC16				
SiaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	00H	85H	00H	enable					

Response										
Claye Addr. Function	Register Address		Write Data		CRC16					
SiaveAddi	SlaveAddr Function		Lo	Hi	Lo	Hi	Lo			
01H 06H 00H 85H 00H enable										

enable = 00 active low (L) (default value)

enable = 01 active high (H)

enable = 02 active always (Hold)

Notel: After successful setting, it will take 100ms to receive the pulse signal.

Note2:Only valid for pulse control mode.

10. Set the direction of motor rotation

	Request										
SlaveAddr Function	Eunstion	Register Address		Write Data		CRC16					
SiaveAddi	FULLCUOTI	Hi	Lo	Hi	Lo	Hi	Lo				
01H 06H 00H 86H 00H dir											

Response										
SlaveAddr Function	Eunction	Register A	Address	Write Data		CRC16				
SiaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo			
01H 06H 00H 86H 00H dir										

dir = 00 CW(default value)

dir = 01 CCW

Note: This instruction can also change the bus mode to control the running direction of the motor

11. Set pulse delay

Request										
SlaveAddr Function	Eunction	Register Address		Write Data		CRC16				
SlaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo			
01H	01H 06H 00H 87H 00H time									

Response											
SlaveAddr Function	Eunstion	Register A	Address	Write Data		CRC16					
	FULLCUOTI	Hi	Lo	Hi	Lo	Hi	Lo				
01H 06H 00H 87H 00H time											

time = 000mstime = 014mstime = 0220ms (default value) time = 0340 ms

12. Set the motor shaft locked-rotor protection

	Request											
SlaveAddr Function	Eunstion	Register Address		Write Data		CRC16						
	FULLCUOTI	Hi	Lo	Hi	Lo	Hi	Lo					
01H 06H 00H 88H 00H enable												

Response										
SlaveAddr Function	Eunstion	Register Address		Write Data		CRC16				
	FULLCUOTI	Hi	Lo	Hi	Lo	Hi	Lo			
01H 06H 00H 88H 00H enable										

enable = 01 enabled protection (default value)

enable = 00 disabled protection

Note: After the stall protection, the stall protection state can be released through the enable signal, serial port command, Command (3D) mode or EN level invalid mode.

13. Set the stall tolerance value

Request										
SlaveAddr	Eupotion	Register Address		Write Data		CRC16				
SlaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo			
01H 06H 00H 89H value										

Response										
SlaveAddr	Eunstion	Register A	Address	Write Data		CRC16				
SlaveAddi	runction	Hi	Lo	Hi Lo		Hi	Lo			
01H	06H	00H	89H	val	ue					

The default value is 0x64.

When the error exceeds the value, the stall protection is triggered and the motor loosens its shaft.

value = 0x64 corresponds to an angle of 180 degrees value = 0x68 corresponds to an angle of 360 degrees and so on...

14. Set the baud rate

Request										
SlaveAddr Function	Register Address		Write Data		CRC16					
SlaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	00H	8AH	00H	baud					

Response											
Claye Addr. Function	Register A	Address	Write Data		CRC16						
SlaveAddr Function		Hi	Lo	Hi	Lo	Hi	Lo				
01H 06H 00H 8AH 00H baud											

baud = 01 9600.

baud = 02 19200.

baud = 03 25000.

baud = 04 38400.

baud = 05 57600.

baud = 06 115200.

baud = 07 256000.

15. Set the slave address

Request										
SlaveAddr Function	Register A	Address	Write Data		CRC16					
SlaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo			
01H 06H 00H 8BH 00H addr										

Response											
SlaveAddr	Eunstion	Register Address Write Data				CRC16					
SlaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo				
01H	06H	00H	8BH	00H	addr						

Notel: The address range is 00°0xFF, 00 is the broadcast address, 01 is the default address.

16. Set MODBUS-RTU communication protocol

Request										
SlaveAddr F	Eupotion	Register Address Write Da		Data	CRC16					
SlaveAddr Function		Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	00H	8EH	00H	enable					

Response										
SlaveAddr Function	Function	Register A	Address	Write	Data	CRC16				
SiaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	00H	8EH	00H	enable					

enable = 01 enabled MODBUS-RTU communication protocol.

enable = 00disabled MODBUS-RTU communication protocol.

17. Set whether to lock the axis when starting bus mode

	Request											
SlaveAddr Function	Eupotion	Register A	Address	Write	Data	CRC16						
SlaveAddi	Function	tion Hi Lo	Lo	Hi	Lo	Hi	Lo					
01H	06H	00H	8FH	00H	enable		·					

Response										
SlaveAddr Functio	Eupotion	Register Address		Write	Data	C16				
SlaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	00H	8FH	00H	enable					

enable = 01 locked the axis(default value).

enable = 00unlocked the axis.

18. Set Currnet Axis to zero

Request											
SlaveAddr Funct	Eunstion	Register Add		Write	Data	CRC16					
SlaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo				
01H	06H	00H	92H	00H	01H	E9H	E7H				

Response										
SlaveAddr Fun	Eunstion	Register Address		Write Data		CRC16				
SlaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	00H	92H	00H	01H	E9H	E7H			

It can set the current Axis to Zero. Just as "GoHome" without run the motor.

19. Set serial mode motor enable

Request										
SlaveAddr Function	Eupotion	Register Address		Write	Data	CRC16				
SlaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo			
01H 06H 00H F3H 00H enable										

Response										
SlaveAddr Function	Eunstion	Register A	Address	Write	Data	CRC16				
SlaveAddi	FULLCUOTI	Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	00H	F3H	00H	enable					

enable = 01 enabled the motor.

enable = 00 disabled the motor.

20. Set the parameter of home

	Request														
Slave addr	Func		rting dress		ntity of gisters	Bytes	Trig	Home dir	Ho spe	me eed	enable	CR	C16		
auui	tion	Hi	Lo	Hi	Lo		level	ievei	level	dii	Hi	Lo		Hi	Lo
01H	10H	00H	90H	00H	03H	05H	hmTrig	hmDir	HmS	peed	EndLimit				

hmTrig the effective level of the end stop

0: Low(default value)

1: High

hmDir the direction of go home

0: CW(default value)

1: CCW

hmSpeed the speed of go home

 $0^{\sim}3000 \text{ (RPM)}$

EndLimit

0: disable endstop-limit(default value)

1: enable endstop-limit

Note: The speed description can be found in Chapter 6.1.

	Response											
Slave addr	Function	Starting /	Address	Quanti Regist	-	CRC16						
		Ξ	Lo	Ξ	Lo	Hi	Lo					
01H	10H	00H	90H	00H	03H	80H	25H					

See "28_F16(90)Set the parameter of home.mbp" for example.

Notel:When EndLimit = 1, in bus control mode, the left limit is triggered and the motor no longer runs to the left; the right limit is triggered and the motor no longer runs to the right;

Note 2: When using the limit function for the first time or changing the limit parameters, it is necessary to execute a limit reset ("91" command).

Note 3: The limit function is invalid in pulse control mode.

21. Set the parameter of "noLimit" go home

Slave	Func tion		ting dress	-	ntity of pisters	Bytes	Reverse Angle	Zero return	Zero return	CR	C16
auui	LIOII	Hi	Lo	Hi	Lo		Angle	mode	trigger	Hi	Lo
01H	10H	00H	94H	00H	03H	06H	retValu e(uint32 _t)	HmMode (uint8_t)	hmTrig (uint8_t)		

mode 0: used Limit switch for go home(default value).

1: no Limit switch for go home.

trig 0: Disable the zero return trigger function (default value, return to zero through command 91.

1: Automatically return to zero after power on.

2: En signal triggers zero return (valid only in pulse control mode).

retValue: $0\sim0$ xFFFFFFF (Default = 0x2000, returns half a turn, 180 degrees) for example:

retValue = 0x4000 (it will return 360 degree)

retValue = 0x2000 (it will return 180 degree) (default)

Response										
SlaveAddr	Function	Register Address		Write Data		CRC16				
		Hi	Lo	Hi	Lo	Hi	Lo			
01H	10H	00H	94H	00H	03	C1H	E4H			

Notel: In pulse control mode, when hmTrig = 2, when the En signal line generates a 200ms width non-enable level, the motor is triggered to return to zero. (Pulse recognition range 150ms~250ms).

Note2: When En is low level to enable the motor, a 200ms high level signal is generated to trigger the motor to return to zero.

When En is high level to enable the motor, a 200ms low levelsignal is generated to trigger the motor to return to zero.

22. Setting the pulse division output command

Slave Func addr tion	Starting Address		Quantity of Registers		Bytes	Start	division period	CRC16		
	tiON	Hi	Lo	Hi	Lo		level		Hi	Lo
01H	10H	00H	9FH	00H	03H	06H	divLevel	divPeriod		
010 100	IOU	10U 00U 9I	917	1 000	USFI	ООП	(uint8_t)	(uint32_t)		

divLevel 0: Starting level low; 1: Starting level high (default 0) divPeriod division period (default 0)

When divPeriod < 100, there is no frequency division output When divPeriod >= 100, the PEND port flips once for every divPeriod pulse cycle.

For example, if 16 subdivisions are set and divPeriod = 3200, the PEND port flips once for every motor rotation.

Note: To cancel this function, set divPeriod = 0.

Response										
SlaveAddr	Function	Register A	Address	Write Data		CRC16				
		Hi	Lo	Hi	Lo	Hi	Lo			
01H	10H	00H	9FH	00H	03	ВОН	26H			

7.3 Firmware upgrade by IAP

There are 2 upgrade modes:

IAP mode 1:

Ground the SWD port of the motor, then power on and enter mode 1. Factory parameters will be restored after the upgrade.

IAP mode 2:

Send control instructions and enter IAP mode 2. User parameters will be retained after the upgrade.

Note:

For IAP upgrade operation instructions, see "MKS SERVO42&57E IAP upgrade operation instructions.pdf"

For IAP upgrade operation video, see "MKS SERVO42&57E IAP upgrade operation video.mp4"

IAP mode 2 instructions are as follows

	Request										
SlaveAddr Function	Eunstion	Register Address		Write Data		CRC16					
SiaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo				
01H	06H	00H	50H	00H	cmd	48H	1BH				

cmd = 01 Enter boot mode

cmd = 02 Enter silent state

cmd = 03 Exit silent state

Control word cmd description:

When there is only one motor on the bus, directly set cmd = 01 to enter boot mode;

When there are multiple motors on the bus, to avoid data interference, you can do the following:

- a. First send cmd = 02 command to other motors that are not upgraded to enter silent state;
- b. Then send cmd = 01 command to the motor to be upgraded to enter boot mode and upgrade the firmware;
- c. After the upgrade is completed, send cmd = 03 command to other motors to exit silent state.

Note: In silent state, the motor does not respond to commands other than 50H.

	Response										
Clayo Addr	veAddr Function	Register Address		Write Data		CRC16					
SlaveAddi Function		Hi	Lo	Hi	Lo	Hi	Lo				
01H	06H	00H	50H	00H	01H	48H	1BH				

Note: After successful setup, the motor automatically restarts and enters IAP mode 2, waiting to receive the upgrade file (*.bin).

7.4 Read/Write all parameters commands

1. Write all configuration parameters

	Request										
Slave	Func		ting Iress	-	tity of sters	Bytes	reg1		reg19	CRO	C16
addi	addr tion Hi	Hi	Lo	Hi	Lo		1			Hi	Lo
01H	10H	10H	46H	00H	11H	20H					

Note: The definitions of reg 1…reg17 are shown in the following table. < Configuration parameters table>

The default register parameters are as follows:

03 FF 0C 80 10 00 00 02 01 04 01 00 01 01 01 00 01 FF 00 00 00 3C 00

FF 00 00 20 00 00 00 02 58 00 64

Response								
Slave addr	Function	Starting Address		Quantity of Registers		CRC16		
Slave addr		Hi	Lo	Hi	Lo	Hi	Lo	
01H	10H	10H	46H	00H	11H	E5H	10H	

2. Read all configuration parameters

Request									
Clave addr	ave addr Function	Starting Address		Quantity of Registers		CRC16			
Slave addi		Hi	Lo	Hi	Lo	Hi	Lo		
01H	04H	11H	47H	00H	11H	85H	2FH		

Response									
Slave addr	Function	Bytes	rog1		rog16	CRC16			
Slave addi	FULLCUOIT	bytes	reg1		reg16	Hi	Lo		
01H	04H	20H							

Note: The definitions of reg 1…reg17 are shown in the following table. < Configuration parameters table>

Configuration parameters table

	Write parameters (1046H)									
byte		Frame	default(HEX)	Single cmd						
1		Slave addr	01							
2		Function	10							
3		Starting	00							
4		Address	46							
5			00							

Read parameters(1147H)								
byte	返回数据格:							
1	Slave addr	01						
2	Function	04						

		Quantity of		
6		Registers	10	
7		Bytes	20	
8		Mode	02	82
9	REG1	Hold current	Reserve(FF)	
10			0C / 06	
11	REG 2	Work current	80 / 40	83
12		Subdivision	10	84
13	REG 3	En	0	85
14	550 /	Dir	0	86
15	REG 4	Pulse Delay	2	87
16	5505	Protect	0	88
17	REG 5	Baud rate	4	8A
18	DE0.0	Slave address	1	8B
19	REG 6	Group address	0	8D
20	DE0.7		1	0.0
21	REG 7	Respond	1	8C
22	5500	MODBUS	0	8E
23	REG 8	Limit remap	0	9E
24	5500	Bus lock shaft	1	8F
25	REG 9	Reserve(FF)	Reserve(FF)	
26	DEC 10	HmTrig	0	
27	REG 10	HmDir	0	
28	DEC 11	LlmCn a a d	0	00
29	REG 11	HmSpeed	3C	90
30	DEC 12	EndLimit	0	
31	REG 12	Reserve(FF)	Reserve(FF)	
32	DEC 12		0	
33	REG 13	rot\/alua	0	
34	REG 14	retValue	20	94
35	NLU 14		0	34
36	REG 15	Hm-mode	0	
37	VEQ 13	Hm-Trig	0	
38	REG 16	Hm_ma	02/01	93
39	NLG 10	TIIII_IIId	58 / 90	უა
40	REG 17	tolerance value	00	
41	NLU 1/	tolerative value	64	89
42	CRC16			

3 Bytes 20 4 REG 1 Mode 5 REG 1 Hold current 6 REG 2 Work current 7 8 REG 2 Work current 8 REG 3 Subdivision 9 Dir Pulse Delay 10 REG 4 Protect 11 Protect Baud rate 12 REG 5 Baud rate 14 REG 6 Group address 15 Group address 16 REG 7 Respond 17 REG 8 Limit remap 20 REG 8 Limit remap 21 REG 9 Bus lock shaft Reserve(FF) HmDir 24 REG 10 HmSpeed 25 EndLimit Reserve Reserve 28 REG 12 EndLimit 30 REG 14 Hm-mode 31 Hm-Trig 34 REG 15 Hm-mode <					
S REG 1 Hold current 6 REG 2 Work current 7 8 REG 3 Subdivision 9 En Dir 10 REG 4 Dir 11 Pulse Delay 12 Protect 13 Baud rate 14 REG 5 Baud rate 15 Group address 16 REG 7 Respond 17 REG 8 Limit remap 20 REG 8 Bus lock shaft Reserve(FF) HmTrig 22 REG 10 HmTrig 23 HmSpeed 25 EndLimit 26 REG 12 EndLimit 27 Reserve 28 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-Trig 34 REG 16 Hm-Trig 34 REG 17 tolerance value	3	Bytes	20		
5 Hold current 6 REG 2 Work current 7 8 REG 2 Work current 8 REG 3 En 10 REG 4 Dir 11 Pulse Delay 12 Protect 13 Baud rate 14 REG 5 Group address 15 Group address 16 REG 7 Respond 17 REG 8 Limit remap 20 REG 9 Bus lock shaft Reserve(FF) HmTrig 21 REG 10 HmTrig 22 REG 11 HmSpeed 25 REG 11 HmSpeed 26 REG 12 EndLimit 27 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-mode 4 Hm-Trig Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	4	DEC 1	Mode		
7 REG 2 Work current 8 REG 3 Subdivision 9 B En 10 REG 4 Dir 11 Pulse Delay 12 Protect 13 Baud rate 14 REG 5 Baud rate 15 REG 6 Group address 16 REG 7 Respond 17 REG 8 Limit remap 20 REG 8 Bus lock shaft Reserve(FF) HmTrig HmDir 24 REG 10 HmSpeed 25 REG 11 HmSpeed 26 REG 12 EndLimit 27 REG 13 Reserve 28 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-ma 34 REG 16 Hm_ma 36 REG 17 tolerance value	5	KEG I	Hold current		
7 8 REG 3 Subdivision 9 En Dir 10 REG 4 Dir 11 Protect Baud rate 13 Baud rate Slave address 14 REG 6 Slave address 15 Group address Group address 16 REG 7 Respond 17 MODBUS Limit remap 20 REG 8 Bus lock shaft Reserve(FF) HmTrig HmDir 24 REG 10 HmSpeed 25 REG 11 HmSpeed 26 REG 12 EndLimit 27 REG 13 Reserve 28 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-ma 35 REG 16 Hm_ma 36 REG 17 tolerance value	6	DEC 3	Mork ourront		
9 REG 3 En 10 REG 4 Dir 11 Protect Baud rate 13 REG 5 Baud rate 14 REG 6 Slave address 15 Group address 16 REG 7 Respond 17 MODBUS 19 Limit remap 20 REG 9 Bus lock shaft Reserve(FF) HmTrig 22 REG 10 HmSpeed 24 REG 11 HmSpeed 25 EndLimit Reserve 28 REG 12 EndLimit 27 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-mode 4 Hm-Trig Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	7	KEG Z	Work current		
9 En 10 REG 4 Dir 11 Pulse Delay 12 REG 5 Protect 13 Baud rate 14 REG 6 Slave address 15 Group address 16 REG 7 Respond 17 18 MODBUS 19 Limit remap Bus lock shaft Reserve(FF) HmTrig HmDir 24 REG 10 HmSpeed 25 REG 11 HmSpeed 26 REG 12 EndLimit 27 Reserve Reserve 28 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-mode 4 Hm-Trig Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	8	DEC 3	Subdivision		
11 REG 4 Pulse Delay 12 REG 5 Protect 13 REG 5 Baud rate 14 REG 6 Slave address 15 Group address 16 REG 7 Respond 17 REG 8 MODBUS 19 Bus lock shaft Reserve(FF) 20 REG 9 Bus lock shaft Reserve(FF) HmTrig HmDir 24 REG 10 HmSpeed 25 REG 11 HmSpeed 26 REG 12 EndLimit 27 Reserve Reserve 28 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-mode 4 Hm-Trig Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	9	KLG 5	En		
11 Pulse Delay 12 REG 5 Protect 13 REG 5 Baud rate 14 REG 6 Slave address 15 Group address 16 REG 7 Respond 17 REG 7 Respond 18 REG 8 Limit remap 20 REG 9 Bus lock shaft Reserve(FF) HmTrig HmDir HmSpeed 24 REG 11 HmSpeed 25 EndLimit Reserve 28 REG 12 EndLimit 29 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-mode 4 Hm-Trig Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	10	DEC 1	Dir		
13 REG 5 Baud rate 14 REG 6 Slave address 15 REG 7 Respond 16 REG 7 Respond 17 REG 8 MODBUS 19 Bus lock shaft 20 REG 9 Bus lock shaft Reserve(FF) HmTrig 23 HmDir 24 REG 10 HmSpeed 25 REG 11 HmSpeed 26 REG 12 EndLimit 27 Reserve Reserve 28 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-mode 33 REG 16 Hm_ma 35 REG 17 tolerance value	11	KLG 4	Pulse Delay		
13 Baud rate 14 REG 6 Slave address 15 Group address 16 REG 7 Respond 17 REG 7 Respond 18 REG 8 MODBUS 19 Limit remap 20 REG 9 Bus lock shaft Reserve(FF) HmTrig 10 HmDir 24 REG 10 HmSpeed 25 EndLimit Reserve 28 REG 12 EndLimit 29 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-mode 4 Hm-Trig Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	12	PEG 5	Protect		
15 REG 6 Group address 16 REG 7 Respond 17 REG 7 Respond 18 REG 8 MODBUS 19 Limit remap 20 REG 9 Bus lock shaft Reserve(FF) HmTrig 23 HmDir 24 REG 10 HmSpeed 25 EndLimit Reserve 28 REG 12 EndLimit 29 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-mode 4 Hm-Trig Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	13	KLO J	Baud rate		
15 Group address 16 REG 7 Respond 17 REG 7 Respond 18 REG 8 MODBUS 19 Limit remap 20 REG 9 Bus lock shaft Reserve(FF) HmTrig 22 HmDir 24 REG 10 HmSpeed 25 EndLimit Reserve 28 REG 12 EndLimit 29 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-mode 33 REG 16 Hm_ma 35 REG 17 tolerance value	14	pec 6	Slave address		
REG 7 Respond 18 REG 8 MODBUS 19 Limit remap 20 REG 9 Bus lock shaft 21 REG 10 HmTrig 23 HmDir HmDir 24 REG 11 HmSpeed 25 EndLimit Reserve 28 REG 12 EndLimit 29 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	15	KLG U	Group address		
17 18 REG 8 MODBUS 19 Limit remap 20 REG 9 Bus lock shaft 21 REG 9 HmTrig 22 REG 10 HmDir 24 REG 11 HmSpeed 25 REG 12 EndLimit 27 REG 13 retValue 30 REG 14 retValue 31 REG 15 Hm-mode 33 Hm-Trig Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	16	pec 7	Pernand		
REG 8 Limit remap 20 REG 9 Bus lock shaft 21 REG 9 HmTrig 22 REG 10 HmDir 24 REG 11 HmSpeed 25 EndLimit Reserve 28 REG 12 EndLimit 29 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	17	KLO 7	Кезропа		
19 Limit remap 20 REG 9 Bus lock shaft 21 REG 9 HmTrig 22 REG 10 HmTrig 24 REG 11 HmSpeed 25 EndLimit Reserve 28 REG 12 EndLimit 29 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	18	REG 8	MODBUS		
21 REG 9 Reserve(FF) 22 REG 10 HmTrig 23 HmDir 24 REG 11 HmSpeed 25 EndLimit 27 REG 12 EndLimit 28 REG 13 retValue 30 REG 14 Hm-mode 31 Hm-Trig Hm-Trig 34 REG 16 Hm_ma 36 REG 17 tolerance value	19	KLO 0	Limit remap		
21 Reserve(FF) 22 REG 10 HmTrig 24 REG 11 HmSpeed 25 REG 11 EndLimit 27 REG 12 Reserve 28 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-Trig 34 REG 16 Hm_ma 36 REG 17 tolerance value	20	DEC 0	Bus lock shaft		
23 REG 10 HmDir 24 REG 11 HmSpeed 25 REG 11 HmSpeed 26 REG 12 EndLimit Reserve Reserve Reserve 30 REG 13 retValue 31 REG 14 Hm-mode 32 REG 15 Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	21	KLG 9	Reserve(FF)		
23 HmDir 24 REG 11 HmSpeed 25 REG 12 EndLimit Reserve 28 REG 13 retValue 30 REG 14 Hm-mode Hm-Trig 32 REG 15 Hm-Trig 34 REG 16 Hm_ma 36 REG 17 tolerance value	22	prc 10	HmTrig		
25 REG 11 HmSpeed 26 REG 12 EndLimit 27 REG 12 Reserve 28 REG 13 retValue 30 REG 14 Hm-mode 31 REG 15 Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	23	KLO 10	HmDir		
25	24	REG 11	HmSneed		
27 REG 12 Reserve 28 REG 13 retValue 30 REG 14 retValue 31 REG 14 Hm-mode 32 Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	25	KLO 11	Тітіореец		
27 Reserve 28 REG 13 29 retValue 30 REG 14 31 Hm-mode 32 Hm-Trig 34 REG 16 35 Hm_ma 36 REG 17 37 tolerance value	26	REG 12	EndLimit		
29 REG 13 30 REG 14 31 REG 14 32 Hm-mode 33 Hm-Trig 34 Hm_ma 35 Hm_ma 36 REG 17 tolerance value	27	NLO 12	Reserve		
30 REG 14 31 REG 14 32 REG 15 33 Hm-mode Hm-Trig Hm-Trig 34 Hm_ma 35 REG 16 36 REG 17 tolerance value	28	REG 13			
30 REG 14 31 REG 14 32 REG 15 33 Hm-mode Hm-Trig Hm-Trig 35 Hm_ma 36 REG 17 tolerance value	29	NLO 13	retValue		
31 Hm-mode 32 Hm-mode 33 Hm-Trig 34 Hm_ma 35 Hm_ma 36 REG 17 37 tolerance value	30	DEC 1/1	retvalue		
33 REG 15 34 Hm-Trig 35 Hm_ma 36 REG 17 37 tolerance value	31	KLO 14			
33 Hm-Trig 34 REG 16 Hm_ma 35 REG 17 tolerance value	32	REG 15	Hm-mode		
35 REG 16 Hm_ma 36 REG 17 tolerance value	33	KLO 13	Hm-Trig		
35 36 37 REG 17 tolerance value	34	pec 16	Hm ma		
REG 17 tolerance value	35	KLG 10	пш_ша		
37	36	REG 17	tolerance value		
38 CRC16	37	NLO 11	tolerance value		
	38	CRC16			

3. Read all status parameters

Request									
Slave addr Function	Starting Address		Quantity of Registers		CRC16				
Slave addi	Function	Hi	Lo	Hi	Lo	Hi	Lo		
01H	04H	12H	48H	00H	0EH	F5H	63H		

Response									
Clava addr	re addr Function bytes reg1	by #oo	,,,,,,,1		rog11	CRC16	C16		
Slave addi			reg14	Hi	Lo				
01H	04H	14H							

Note: The definitions of reg 1 ··· reg10 are shown in the following table. < Status parameters table>

Status parameters table

	Status parame	ters(1248H)			
Byte		Response(HEX)	Single commad		
1	Slave addr	01			
2	Function	04			
3	bytes	14			
4	REG 1	motor status	F1		
5	KLG 1	En status	3A		
6	REG 2	Protect status	3E		
7	REG Z	IO status	34		
8	REG 3				
9	NLO J				
10	REG 4	encoder value	31		
11	KLG 4	encoder value	31		
12	REG 5				
13	NEO 3				
14	REG 6	speed	32		
15	NEO 0	speed	52		
16	REG 7				
17	INLO 1	pulses	33		
18	REG 8	puises	55		
19	NLO 0				
20	REG 9				
21	NLO 3	error	39		
22	REG 10	CHOI	33		
23	NLO 10				
24	CRC16				
25	CICTO				

7.5 Motor running command

Note: The acceleration and speed description can be found in Chapter 6.1.

7.4.1 Emergency stop the motor

Request										
SlaveAddr	Eunction	Register A	Address	Write	Data	CRC16				
SiaveAddi	aveAddr Function		Lo	Hi	Lo	Hi	Lo			
01H	06H	00H	F7H	00H	01H	F9H	F8H			

Response										
Clay o Addr	Eunstion	Register A	Address	Write	Data	CRC16				
SiaveAddi	SlaveAddr Function		Lo	Hi	Lo	Hi	Lo			
01H	06H	H00	F7H	00H	01H	F9H	F8H			

Note: If the motor rotating more than 1000RPM, it is not a good idea to stop the motor immediately!

7.4.2 Go home

	Request										
SlaveAddr	Function	Register A	Address	Write	Data	CRC16					
SiaveAddi	FULLCUOTI	Hi	Lo	Hi	Lo	Hi	Lo				
01H	06H	H00	91H	00H	01H	19H	E7H				

	Response										
SlaveAddr	Function	Register A	Address	Write	Data	CRC16					
SiaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo				
01H	06H	00H	91H	00H	01H	19H	E7H				

Note: When returning to zero with limit, if the limit switch is already in the closed state, the motor will rotate a certain distance in the opposite direction of homeDir (set by command 94) and then return to zero.

7.4.3 Speed mode command

Note: This command is only valid in bus mode.

In speed mode, the motor can be run with a fixed acceleration and speed.

1. Run the motor in speed mode

	Request											
Slave Addr	Func		ting Iress		tity of sters	Bytes	direc	accelera	spe	eed	CRO	C16
Addi	tion	Hi	Lo	Hi	Lo		tion	tion	Η̈́	Lo	Hi	Lo
01H	10H	00H	F6H	00H	02H	04H	dir	acc	spe	eed		

dir: the value range is 0/1 (CCW/CW)

acc: the acceleration, the value range is 0-255 speed: the speed, the value range is 0-3000

	Response										
SlaveAddr	Function	Starting Address			f Registers	CRC16					
SlaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo				
01H	10H	00H	F6H	00H	02H	A1H	FAH				

2. Stop the motor in speed mode

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

	Request											
Slave Func Addr tion	Star Add	ting ress	Quantity of Registers		Bytes	direc	accele ration	speed		CRC16		
Addi	LIOIT	Hi	Lo	Hi	Lo		tion	Tation	Hi	Lo	Hi	Lo
01H	10H	00H	F6H	00H	02H	04H	00H	acc	0	0H		

	Response									
SlaveAddr	Function	Starting A	Address	Quantity o	f Registers	CRC16				
SiaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo			
01H	10H	00H	F6H	00H	02H	A1H	FAH			

3. Save/Clean the parameter in speed mode $\,$

	Request									
Clay o Addr	Eunction	Register A	Address	Write	Data	CRC16				
SlaveAddr Function		Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	H00	FFH	00H	flag					

flag = C8H save the parameter flag = CAH clean the parameter

	Response									
SlaveAddr	Function	Register A	Address	Write	Data	CRC16				
SiaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo			
01H	06H	00H	FFH	00H	flag					

Note: The motor can rotates clockwise or counterclockwise at a constant speed when powered on.

7.4.4 Position model: relative motion by pulses

Note: This command is only valid in bus mode.

1. Run the motor in position model

						Reque	st					
SlaveA	Func		ting Iress	-	tity of sters	Bytes	direc	accele	speed	pulses	CRC	:16
ddr	tion	Hi	Lo	Hi	Lo		tion	ration			Hi	Lo
01H	10H	00H	FDH	00H	04H	08H	dir	acc	speed	pulses		

dir (uint8_t) the value range is 0/1 (CCW/CW) acc (uint8_t) the acceleration, the value range is 0 - 255 speed (uint16_t) the speed, the value range is 0 - 3000 (RPM) pulses (uint32_t) the steps, the value range is 0 - 0xFFFFFFFF

	Response											
SlaveAddr	Function	Starting A	Address	Quantity o	f Registers	CR	C16					
SiaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo					
01H 10H 00H FDH 00H 04H 50H 3AH												

2. Stop the motor in position model

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

	Request											
SlaveA Func ddr tion	Starting Quantity of Address Registers		•	Bytes	direc tion	accele	speed	pulses	CRC	16		
uui	tion	Hi Lo	Hi	Lo		LION	ration			Hi	Lo	
01H	10H	00H	FDH	00H	04H	08H	00H	acc	00H	00H		

Response											
SlaveAddr	Function	Starting A	Address	Quantity o	f Registers	CRC16					
SiaveAddi	FULLCUOTI	Hi	Lo	Hi	Lo	Hi	Lo				
01H	10H	00H	FDH	00H	04H	50H	3AH				

7.4.5 Position mode2: absolute motion by pulses

Note: This command is only valid in bus mode.

In the position control mode2, the motor can be run to the specified pulses position with the set acceleration and speed.

1. Run the motor in position mode2

						Reque	st				
	Func tion		ting Iress	-	tity of sters	Bytes	acceleration	speed	absolute axis	CRC16	
dui	tion	Hi	`	Hi	Lo					Hi	Lo
01H	10H	00H	FEH	00H	04H	08H	acc	speed	absPulses		

acc (uint16_t) the acceleration, the value range is 0 - 255 speed (uint16_t) the speed, the value range is 0 - 3000 (RPM) absPulses(int32_t) the Pulses, int32_t

Response											
SlaveAddr	Function	Starting A	Address	Quantity o	f Registers	CRC16					
SlaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo				
01H 10H 00H FEH 00H 04H											

2. Stop the motor in position mode2

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

						Reque	st				Request										
SlaveA Fund	Func	Starting Address			Quantity of Registers		acceleration	speed	absolute	CRC	16										
dar	LION	Hi	Lo	Hi	Lo				axis	Hi	Lo										
01H	10H	00H	FEH	00H	04H	H80	acc	00H	00H												

Response											
SlaveAddr	Function	Starting A	Address	Quantity o	f Registers	CRC16					
SiaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo				
01H 10H 00H FEH 00H 04H											

7.4.6 Position mode3: relative motion by axis

Notel: This command is only valid in bus mode.

Note2: the axis is the encoder value (addition). It can be read by command "31".

In the position control mode3, the motor can be run to the specified axis with the set acceleration and speed.

1. Run the motor in position mode3

	Func tion Starting Address		Ü	-	tity of sters	Bytes	acceleration	speed	Relative	CRC16	
uui		Lo	Hi	Lo				axıs	Hi	Lo	
01H	10H	00H	F4H	00H	04H	H80	acc	speed	relAxis		

acc (uint16_t) the acceleration, the value range is 0-255 speed (uint16_t) the speed, the value range is 0-3000 (RPM) relAxis(int32 t) the steps, int32 t

Response											
SlaveAddr	Eupotion	Starting A	Address	Quantity o	f Registers	CRC16					
SiaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo				
01H	10H	00H	F4H	00H	04H	80H	38H				

2. Stop the motor in position mode3

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

Request											
	Func	Star Add	ting Iress	-	tity of sters	Bytes	acceleration	speed	Relative	CRC16	
uui	tion	Hi	Lo	Hi	Lo				axıs	Hi	Lo
01H	10H	00H	F4H	00H	04H	H80	acc	00H	00H		

	Response											
	SlaveAddr	Function	Starting A	Address	Quantity o	f Registers	CRC16					
	SiaveAddi	runction	Hi	Lo	Hi	Lo	Hi	Lo				
01H 10H 00H F4H 00H 04H 80H 38H												

7.4.7 Position mode4: absolute motion by axis

Note: This command is only valid in bus mode.

1. Run the motor in position mode4

Request											
1 . 1 .	Func		ting ress	-	tity of sters	Bytes	acceleration	speed	absolute	CRC	16
dar	LIOH	tion Hi Lo	Hi Lo					axıs	Hi	Lo	
01H	10H	00H	F5H	00H	04H	08H	асс	speed	absAxis		

acc (uint16_t) the acceleration, the value range is 0-255 speed (uint16_t) the speed, the value range is 0-3000 (RPM) absAxis(int32_t) the steps, int32_t

Response							
SlaveAddr	Function	Starting Address		Quantity of Registers		CRC16	
		Hi	Lo	Hi	Lo	Hi	Lo
01H	10H	00H	F5H	00H	04H	D1H	F8H

2. Stop the motor in position mode4

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

	Request										
SlaveA ddr	Func		ting Iress	-	tity of sters	Bytes	acceleration	speed	absolute	CRC16	
uui	tion	Hi	Lo	Hi	Lo				axıs	Hi	Lo
01H	10H	00H	F5H	00H	04H	08H	acc	00H	00H		

Response							
SlaveAddr	Function	Starting Address		Quantity of Registers		CRC16	
SiaveAddi	Function	Hi	Lo	Hi	Lo	Hi	Lo
01H	10H	00H	F5H	00H	04H	D1H	F8H

Part8. FAQ

8.1 NOTE

- 1. Power input voltage is 20V-60V.
- 2. Don't hot plug motor cable and data cable.
- 3. The phase lines A+, A -/B+, B should be connected correspondingly. (A -, A+/B+, B is incorrect)

8.2 FAQ

No	Question	Solution
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		

Part9. Schematic

Part10. contact us

https://makerbase.aliexpress.com/

https://www.youtube.com/channel/UC2i5I1tcOXRJ2ZJiRxwpCUQ

https://github.com/makerbase-motor