模电实验报告 实验四 射极跟随器

模电实验报告

实验内容: 射极跟随器

院系: 电子与信息工程学院 学号: 22309080 审批:

专业:通信工程 实验人:梁倍铭 日期:2023年11月9日

一、实验目的

1. 掌握射极跟随器的特性及测量方法。

2. 进一步学习放大器各项参数测量方法。

二、原理简介

射极跟随器的原理图如图 4-1 所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出 电阻低,电压放大倍数接近于 1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、 输出信号同相等特点。

图 4-1 射极跟随器电路图

三、实验器材

1、实验箱 2、数字万用表 3、函数信号发生器 4、交流毫伏表 5、双踪示波器

四、实验步骤和内容

- 1. 按图 4-1 电路接线。
- 2. 直流工作点的调整。

将电源 VCC(+l2V) 和地 (GND) 接上,在 B 点加 f= l kHz 正弦波信号,输出端用示波器监视,反复调整 W1 及信号源输出幅度,使输出幅度在示波器屏幕上得到一个最大不失真波形,然后断开输入信号,用万用表测量晶体管各极对地的电位,即为该放大器静态工作点,将所测数据填入表 4.1。

	$V_e(V)$	$V_b(V)$	$V_c(V)$	$I_c = V_e/R_e$
仿真	6.02531	6.68479	6.08098	$3.01 \mathrm{mI}$
实验	3.067	3.627	8.943	$1.534 \mathrm{mI}$

表 4-1

3. 测量电压放大倍数 AV

接入负载 RL($1R22=1K\Omega$),在 B 点 f=1kHz 信号,调输入信号辐度 (此时偏置电位器 W1 不能再旋动),用示波器观察,在输出最大不失真情况下测 Ui、Uo 值,将所测数据填入 表 4.2 中。

		$V_i(V)$	$U_o(V)$	$A_v = U_o/U_i$
	仿真	2.4	2.28	0.95
Ì	实验	2.2	2.04	0.928

表 4-2

4. 测量输出电阻 R0

在 B 点加 f=lKHZ 正弦波信号,Ui=500mV 左右,接上负载 RL=1KΩ 时,用示波器观察输出波形,测空载输出电压 U0 (RL= ∞),有负载输出电压 UL (RL=1KΩ) 的值。将所测数据填入表 4-3 中。

$$R_0 = (\frac{U_o}{U_L} - 1)R_L$$

	$U_o(mV)$	$U_L(mV)$	$R_o = (U_o/U_L) - 1 \times R_L$
仿真	998	949	51.633
实验	482	440	95.45

表 4-3

5. 测量放大器输入电阻 Ri(采用换算法)

在输入端串入 5.1K 电阻,A 点加入 f=lKHZ 的正弦波信号,用示波器观察输出波形,并分别测 A,B 点对地电位 VA 、VB。将测量数据填入表 4-4。

$$R_i = \frac{V_B}{V_A - V_B} R$$

		$V_A(V)$	$U_B(V)$	$R_i = V_B / (V_A - V_B) \times R$
	仿真	0.7076	0.44769	8.78k
ĺ	实验	0.1764	0.1708	155.55k

表 4-4

6. 测射极跟随器的跟随特性并测量输出电压峰值 VOPP。

接入负载 $RL=1K\Omega$, 在 B 点加入 f=lkHz 的正弦信号,逐点增大输入信号幅度 Ui,用示波器监视输出端,在波形不失真时,测所对应的输出 UL 值,计算出 AV, 并用示波器测量输出电压的峰值 UOPP。与毫伏表读测的对应输出电压有效值比较。将所测数据填入表 4.5。

仿真	1	2	3	4
U_i	$100 \mathrm{mV}$	200mV	$500 \mathrm{mV}$	800mV
U_L	29.7mV	63.5 mV	166.93 mV	$270.6 \mathrm{mV}$
U_{opp}	84.5mV	179mV	467 mV	756mV
A_v	0.845	0.895	0.934	0.945

实验	1	2	3	4
U_i	100mV	$200 \mathrm{mV}$	$500 \mathrm{mV}$	800mV
U_L	$34.0 \mathrm{mV}$	67.9mV	$170.1 \mathrm{mV}$	272 mV
U_{opp}	94.8mV	184mV	$468 \mathrm{mV}$	$760.9 \mathrm{mV}$
A_v	0.948	0.920	0.930	0.950

表 4-5-1

表 4-5-2

五、实验总结

1. 射极跟随器的原理及特点

射极跟随器也就是共集电极放大电路,是一种广泛应用的电路。其主要作用是将交流电流放大,以提高整个放大电路的带负载能力。实际电路中,一般用作输出级或隔离级。

其特点为输入阻抗高,输出阻抗低,因而从信号源索取的电流小而且带负载能力强,所以常用于多级放大电路的输入级和输出级;也可用它连接两电路,减少电路间直接相连所带来的影响,起缓冲作用。

- 2. 实验数据的误差分析
 - (a) 关于静态工作点的设置, 仿真的结果为 6v 左右, 实际操作时发现 6v 左右也没有失真, 但是通过理论计算得知, 6v 已经达到饱和区, 所以应该调到 3v 左右。
 - (b) 关于输出电阻的测量,结果比仿真结果大,比理论结果大,可能的原因是对输入电压和输出电压的读数不准确造成
 - (c) 对输入电阻的测量, 串联 51k 来测输入电阻, 51k 电阻的电位差较小, 会造成测量结果的不准确。
 - (d) 对射极跟随器的测量,发现放大倍数偏小,原因主要是波形存在噪声,用示波器光标进行 测量时会不准确

总之,该次实验中测量还是有许多不同之处的,下次实验需要注意。

六、预习报告

预习报告见附录