TERMINOLOGY IN INFORMATION EXTRACTION AND TECHNOLOGY FORECASTING

Adam Meyers
New York University

Funding and Collaboration

- Collaborators at NYU
 - Zachary Glass
 - Ralph Grishman
 - Yifan He
 - Giancarlo Lee
 - Shasha Liao
 - Angus Grieve-Smith
- NYU is a subcontractor of BAE under FUSE
 - FUSE is IARPA's Foresight and Understanding from Scientific Exposition program

- What is Terminology?
- 2 Types of Terminology in the FUSE program
 - Term Tokens in Information Extraction
 - Term Types in Technology Forecasting
- NYU's Terminology Extraction System
 - The Termolator: ¶

- System and Evaluation
- Open Source Distribution
- Concluding Remarks

What is Terminology?

- Webster's II New Collegiate Dictionary Definition
 - The vocabulary of technical terms and usages appropriate to a particular field, subject, science, or art.
- Operational Definitions:
 - Keyword sequences for Information Retrieval (IR)
 - Need not be technical, e.g., wheat, barley, white mouse, in genetics
 - Items to define in Technical Glossaries.
 - Items to track for Technology Forecasting (TF)
 - Arguments of Information Extraction (IE) Relations
- Noun Terminology:
 - Technical word sequence headed by noun
 - Vast majority of all terminology
 - Non-noun terminology exists, but not included in this research

The Termolator: 2 Subsystems

- In-Line Term System: Finds instances of terms (tokens)
 - Finite State Machine based on dictionaries and POS tags
 - Finds terminology for Information Extraction
 - Identifies term tokens, instances of terms in sentences
 - 500 term tokens occur in a document—50 are instances of H5N1
 - We use for Relation Extraction in FUSE
 - Limited previous work in this area
- **Distributional Term System**: Finds term types
 - Counts instances of term types
 - 30 term types occur in a document—H5N1 occurred 500 times
 - Ranks term types by characteristic-ness to a particular topic
 - Top N term types are kept, the rest are discarded
 - Our FUSE team uses for Terminology Forecasting
 - Our System Uses In-Line Terms as Input
 - Previous Work: N-grams or Noun-Groups as Input
 - Previous Work used for creating lists of key search terms & glossaries

In-Line Term Tokens are used for IE

- Information Extraction (IE)
 - domain: patents, technical articles, Web of Science abstracts
- Relation arguments are often term tokens
- Entities:
 - Documents (article citations, patents, URLs, standards, selfreferences like "we" or "our")
 - People (Inventors, Researchers, etc.)
 - Organizations (Funding Agencies, Patent Holders, ...)
 - Term Tokens (topic words, inventions, discoveries, etc.)
- Relations: ABBREVIATE, ORIGINATE, EXEMPLIFY, BASED ON, CONTRAST, CORROBORATE, BETTER_THAN, PRACTICAL, STANDARD, ...

Sample Relations

- Originate
 - <u>Eagle's minimum essential media</u> and <u>DOPG</u> was obtained from Avanti Polar Lipids
 - Originate(Eagle, Eagle's minimum essential media)
 - Originate(Avanti Polar Lipids, Eagle's minimum essential media)
 - Originate(Avanti Polar Lipids, DOPG)
- Contrast
 - necrotrophic effector system that is an exciting contrast to the biotrophic effector models
 - Contrast(necrotrophic effector system, biotrophic effector models)
- Better_Than
 - Bayesian networks hold a considerable advantage over pairwise association tests
 - Better_than(Bayesian networks, pairwise association tests)

More Sample Relations

- Significant (sentiment-like, author = implied arg)
 - Anaerobic SBs are an emerging area of research and development
 - Significant(Anaerobic SBs)
- Practical (sentiment-like, author = implied arg)
 - The gene proteins used in this experiment
 - Practical(gene proteins)
- Alias
 - Silver behenate, also known as CH3-(CH2)20-COOAg
 - Alias(Silver behenate, CH3-(CH2)20-COOAg)

Defining In-Line Terms for IE Tasks

- Not all Noun Groups (NGs) can be IE arguments
 - NGs include table top, large number, first step, other diagram, ...
 - A narrower classification reduces errors for IE patterns
 - just as selection restrictions reduce attachment errors
- If We Run Distributional System with NGs and use only **High-Ranking Terms**
 - Too few NGs are considered
 - Many relation arguments will be missed
- IE arguments are a subset of NGs and a superset of high-ranking terms

Our Inline Term Extraction System

- Our POS tagset
 - Refines some PTB POS classes and collapses others
 - Uses dictionaries, word lists and morphological rules
 - Classes include Out-of-Vocabulary Nouns, Technical Adjectives, Person Names, ...
- A Finite-State-Machine (FSM)-based chunker identifies potential terms (PTs)
 - Uses B/I/E/O tag sequences in style of (Ramshaw and Marcus 1995) to represent states corresponding to each word W in sentence
 - State(W) depends on: POS(W), POS(W-1) and State(W-1)
 - PT = E v BI* v BI*E
- Filter makes final selection of inline terms
 - Similar well-formedness filter in Distributional System

FSM Identifies Potential Terms:

 A semiconductor device which includes: a semiconductor chip bonded to a surface of a solid device; and a stiffener surrounding the periphery of the semiconductor chip.

```
A<sub>DET/0</sub> semiconductor<sub>O-NOUN/B</sub> device<sub>NOUN/I</sub> which<sub>OTHER/O</sub> includes<sub>OTHER/O</sub> a<sub>DET/0</sub>
   semiconductor<sub>O-NOUN/B</sub> chip<sub>NOUN/I</sub> bonded<sub>VERB/O</sub> to<sub>PREP/O</sub> a<sub>DET/O</sub> surface<sub>NOUN/B</sub>
   of<sub>PREP/O</sub> a<sub>DET/O</sub> solid<sub>ADJ/O</sub> device<sub>NOUN/B</sub> ;<sub>OTHER/O</sub> and<sub>OTHER/O</sub> a<sub>DET/O</sub> stiffener<sub>NOUN/B</sub>
   surrounding<sub>VERB/O</sub> the<sub>DET/O</sub> periphery<sub>NOUN/B</sub> of<sub>PREP/O</sub> the<sub>DET/O</sub>
semiconductor<sub>O-OUN/B</sub> chip<sub>NOUN/I</sub> .OTHER/O
```

 Differs from standard noun group chunking because some premodifiers are excluded (determiners, some adjectives)

Filters Remove Unlikely Candidate Terms

- Accepts Terms from previous slide which each contain an O-NOUN (Out-of-vocabulary NOUN)
 - semiconductor/O-NOUN device
 - semiconductor/O-NOUN chip (2 instances)
- Also accepts Terms containing technical adjectives or nominalizations
 - thermal/TECH-ADJ stress
 - fabrication/NOM process
- Rejects Terms because they contain no O-NOUNs, technical adjectives, or other qualifying words
 - surface
 - device
 - stiffener
 - periphery
- Other Non-Terms (e.g., morphological properties, status as NE, etc.)
 - **T**
 - 212-345-8888
 - No.
 - New York

Supplementary patterns for identifying Terms

- Arguments of Abbreviation relations
 - Not organizations or places
 - Aligns words before parentheses with word in parentheses
 - already been chewed (ABC)
 - XML (Extensible Markup Language)
 - third variable loop (V3)
 - D. melanogaster gene Muscle LIM protein at 84B (abbreviated as Mlp84B)
 - Schwartz and Hearst (2003)
- Terms Matching Regexp Patterns
 - Gene Sequences: AACAAGGTGGCGCAGTT
 - Chemical Formulas: Ag2CrO4

Evaluation of Inline Term System

- 2 Annotators Manually Annotated Inline terms in 3 documents
- Adjudicated the Results
- Scored annotators against adjudicated annotation
- Scored system against adjudicated annotation
- Compared annotator vs system performance

Annotation

Setup

- 2 annotators annotated the same three documents
- Annotator 2 Adjudicated
- Annotator 1's score against Annotator 2 may be a good Upper Bound for evaluating the Automatic System (assumes the adjudication is biased in favor of Annotator 2).

Defining Inline Term for Annotator

- Single or multi-word nominal expression specific to technical discipline
- It can be conventionalized by defining or abbreviating it early in the document and by reusing the term
- Determining if a term is specific to technical discipline
 - Would a naïve adult (like Homer Simpson) know the term?
 - Is it found in the Juvenile subcorpus of the Corpus of Contemporary American English (http://corpus.byu.edu/coca/)?

Corpora and Systems Tested

Corpora

- A Speech Recognition Patent (SRC)
- A Sun Screen Patent (SUP)
- A Journal Article about a Virus Vaccine (VVA)

Systems Tested

- Base 1: assume all noun groups minus determiners are terms
 - use MEMM chunker with Genia (Kim et al 2003) features
- Base 2: baseline 1 system, but filtered by only keeping those Noun Groups that end with an O-NOUN
- System without Filter: The chunking system as described, but without the filter
- Final System

Matching Criteria

- Strict Match The test term and answer key term are the same
- Sloppy Match The test term and answer key term overlap in extent.

Inter Annotator Agreement

				Strict			Sloppy			
	Doc	Terms	Matches	Pre	Rec	F	Matches	Pre	Rec	F
Annot 1	SRP	1131	798	70.8%	70.6%	70.7%	1041	92.5%	92.0%	92.2%
	SUP	2166	1809	87.5%	83.5%	85.5%	1992	96.3%	92.0%	94.1%
	VVA	919	713	90.9%	77.6%	83.7%	762	97.2%	82.9%	89.5%
Annot 2	SRP	1131	960	98.4%	84.9%	91.1%	968	99.2%	85.6%	91.9%
	SUP	2166	1999	95.5%	92.3%	93.8%	2062	98.5%	95.2%	96.8%
	VVA	919	838	97.4%	91.2%	94.2%	855	99.4%	93.0%	96.1%

Annotator 1 scores may be upper bounds for system results

Baseline Systems

				Strict			Sloppy			
	Doc	Terms	Matches	Pre	Rec	F	Matches	Pre	Rec	F
Base 1	SRP	1131	602	24.3%	53.2%	33.4%	968	44.2%	96.8%	60.7%
	SUP	2166	1367	36.5%	63.1%	46.2%	1897	50.6%	87.6%	64.2%
	VVA	919	576	28.5%	62.7%	39.2%	887	44.0%	96.5%	60.4%
Base 2	SRP	1131	66	24.9%	5.8%	9.5%	151	57.0%	13.4%	21.6%
	SUP	2166	771	52.3%	35.6%	42.4%	1007	68.4%	46.5%	55.3%
	VVA	919	270	45.8%	29.4%	35.8%	392	66.5%	42.6%	51.9%

- Base 1 (all noun groups): results in high recall/low precision
- Base 2 (must end in O-NOUN): too severe a filter.

System Results

				Strict			Sloppy			
	Doc	Terms	Matches	Pre	Rec	F	Matches	Pre	Rec	F
No Filter	SRP	1131	932	39.0%	82.4%	53.0%	1121	46.9%	99.1%	63.7%
	SUP	2166	1475	39.7%	68.1%	50.2%	1962	52.8%	90.6%	66.7%
	VVA	919	629	27.8%	68.4%	39.5%	900	39.8%	97.9%	56.6%
Final System	SRP	1131	669	69.0%	59.2%	63.7%	802	82.8%	70.9%	76.4%
	SUP	2166	1193	64.7%	55.1%	59.5%	1526	82.8%	70.5%	76.1%
	VVA	919	581	62.1%	63.2%	62.7%	722	77.2%	78.6%	77.9%

Final System gets the highest F-score

Term Types Used in Technology Forecasting

- Technology Forecasting (TF) includes tracking the distribution of instances of the same term
 - A term type is a set of instances of the same term
- A Topic can be represented by a set of term types that "characterize" that topic.
 - Term types with more instances in topic X than in general
- Changes in a topic over time can be indicated by
 - Changes in the set of term types characterizing the topic
 - Changes in the frequency of those term types
- Changes in frequencies of term types in a topic over time
 - Can indicate changes in the "prominence" of these terms
- Approximately the same terms used for: search keys and glossaries (in previous work)
- FUSE paper about TF: Babko-Malaya, et. al. (2015)

Our Distributional Term System

- Find In-line Terms for Foreground Corpus (or sample)
- Find In-line Terms for Background Corpus (or sample)
- Count instances of the same term
 - Allow for some variation
 - Implemented: (stemming) singular/plural, -ing endings, other
 - Partially Implemented:
 - Abbreviation/full-form
 - Noun mod alternations: Recognition of Speech → Speech Recognition
- Use Statistical Metrics to find terms that are:
 - More characteristic of Foreground than Background
- Rank terms by Metrics
- Rerank terms using additional metrics
 - Relevance Metric, based on a Yahoo Websearch
 - Well-formedness Metric: based on manual rules
- Take Top N terms

Distributional Term Extractor

Final ReRanked Output: transfer electrode; semiconductor face; micropattern, through-connection, wavelength conversion chip, ...

Metrics for Distributional Ranking

- A linear combination of 3 Measures comparing term distribution in Foreground (For) vs Background (Bac)
- Term Frequency Inverse Document Frequency (TFIDF)

•
$$TFIDF(t) = \frac{freqFor(t)}{freqBac(t)} * log(\frac{numBacDocs}{numBacDocContains(t)})$$

- Document Relevance Document Consensus (DRDC)
 - (Navigli and Velardi, 2004)
 - DRDC $(t) = \frac{freqFor(t)}{freqRac(t)} * \sum_{d \in RDG} \frac{freq(t,d)}{freqFor(t)} * \log \left(\frac{freqFor(t)}{freq(t,d)}\right)$
 - Doc Relevance favors representative terms (like TFIDF)
 - Doc Consensus favors terms found in many documents
- Kullback-Leibler Divergence (KLD)
 - (Cover and Thomas, 1991; Hisamitsu et al., 1999).
 - $KLD(t) = \log(freqFor(t)) \log(freqBac(t)) * freqFor(t)$
 - Compares probability a term occurs in Foreground vs Background Corpus

Filters on Distributional Output

- 2 Filters that can be applied to our system or output of other term generation systems
 - In FUSE, they were applied to MITRE and BBN output
- Both scores are between 0 and 1, they are combined by multiplication
- Well-Formedness Filter
 - Many of the constraints are built into our chunker
 - Most terms have a score of 1
 - However, component of distributional System adds some common substrings of terms to output, some of which are ill-formed
- Relevance Filter
 - We use a Yahoo search result and heuristics to score terms more highly if they are used in articles or patents

Well-FormedNess Filter

- A term is well-formed if it is:
 - An abbreviation
 - A set of words that is abbreviated somewhere in the corpus
 - A single out of vocabulary word
 - Matches a regular expression that finds chemical names, DNA sequences or paths (urls, bio paths, etc.) – although URLs can be documents, rather than terms.
- A term is also well formed if it obeys noun group rules (a sequence of adjectives and nouns ending in a noun) AND it contains at least one out-of-vocabulary word, nominalization or technical adjective
- The degree of ill-formedness is not so important as scores below 1 rarely apply to accepted terms.
- This filter is more important when applied to term lists not created by The Termolator (Mitre and BBN term lists in FUSE)

Relevance Filter

- Run on each term below some cutoff (typically 30K)
 - Time consuming (about .75 seconds per term)
- A Yahoo search (Bing) for exact match of term
 - We use the free version, but would pay .18 cents per search using Yahoo's API (https://developer.yahoo.com/boss/search/)
- Relevance = H²T
 - H = Score representing number of hits
 - $\min(\log_{10}(numberHits),10)$ 10
 - Minimized for nonhits (keyed by "including/showing results for")
 - T = Percent of top 10 hits that are either patents or articles
 - As determined by key word search on url, title and summary
 - patent, article, proceedings, journal, dissertation, abstract, ...

Evaluation of Distributional Term System

- Foreground Corpus: 2500 patents about optical systems
 - US Patent codes: 250, 349, 356, 359, 362, 385, 398 and 399
- Background Corpus: 2500 randomly selected patents
- Years: 1997-2007
- Ran the Distributional System and Ordered the Terms
 - Confidence₁ = Percentile X Well-Formedness
 - Uses the Percentile Ranking based on the distributional score, but filters out ill-formed terms
- Took the top 30K out of 219K terms and reranked using:
 - Relevance only; and
 - Confidence₂ = Percentile X Well-Formedness X Relevance
 - Uses Relevance on 30K terms due to time constraints

Evaluation Distribution System Slide 2

- Took Top 5000 terms ranked each of 3 ways and Scored for Precision
 - Confidence₁ Precision = 71%
 - Relevance Precision = 82%
 - Confidence₂ Precision = 86%
- For each ranked set, we took samples of 100 terms:
 - 20 from first 20%, 20 from second 20%, ... 20 from 5th 20%.
- We manually evaluated the samples:
 - Terms were deemed correct if the term was deemed a valid keyword, was not missing any crucial modifier or contained any spurious word.

Example Evaluations

Rank	Term	D	W	R	Total	Correct
41	stimulable phosphor	.866	1	.174	.151	Yes
104	ion beam profile	.889	1	.117	.126	Yes
346	x-ray receiver	.906	1	.099	.089	Yes
533	wavelength-variable	.838	1	.091	.076	Yes
556	irradiation time t	.460	1	.163	.075	No
1275	quadrupole lens	.460	1	.113	.052	Yes
1502	evolution	.439	1	.109	.048	No
1581	proximity correction	.451	1	.103	.046	Yes
1613	dfb laser	.943	1	.049	.046	Yes
1685	asymmetric stress	.493	1	.067	.033	Yes
3834	panoramagram	.483	1	.056	.027	Yes
4203	crystal adjacent	.316	1	.080	.025	No
4244	single-mode optical fiber	.875	1	.029	.025	Yes
4467	total reflection plane	.988	1	.024	.024	Yes
4879	photosensitive epoxy resin	.286	1	.079	.022	Yes

Sample Incorrect Terms

- irradiation time t
 - A variable, not a term (without t, it would be a term)
- evolution
 - This word has entered the common vocabulary
- crystal adjacent
 - This word sequence includes two words at a constituent boundary
 - a noun phrase followed by a modifying adjective phrase, e.g.,
 - [[a liquid crystal] [adjacent to the lower alignment layer]]

Informal Observations about Recall

- Recall or coverage is difficult to measure without an exhaustive amount of human annotation
- The distributional system gets roughly the same precision for Noun Group input as Inline Term Group Input for the top N terms, where N is a small number
- Using Inline Terms as input, we generate many more terms with high scores and thus seem to improve Recall by a large amount (at least a factor of 2)
 - But this is hard to measure
- Rationale: Garbage In → Garbage Out
 - High F-scores for inline terms (vs NGs or N-grams)
 - Higher Quality terms are being ranked and so the high-ranked items are more likely to be correct

The Termolator for Chinese

- Work by Yifan He
- Distributional System is the Same as English
- Uses Noun Group Chunker for input terms
- Accessor-Variety Filter (Feng et al., 2004)
 - Score Based on the Number of distinct words that appear before and after a particular term type
 - Low Scores indicate unlikely Chinese words
- 1100 terms extracted from 2000 speech recognition patents
 - 78% precision on top 50 terms
 - 85% precision on top 20 terms

- Examples for Access Variety based filtering
 - 尔科夫模型(Markov model, with the first Chinese character 马 missing) is probably a boundary error
 - [Pic on left] 尔科夫模型 has the same character 马 on its left boundary thus its Left AV=1
 - [Pic on left] A correct term 声学 (acoustics) will have Left AV>=3

Open Source Distribution

Open Source release of The Termolator

- Coming Soon:
 - NYU's Website and Github
- Made to run on UTF-8 (including ASCII) and ISO-8859-1
- Tested on Public Domain Texts
 - Google Patents
 - Project Gutenberg
 - Open American National Corpus

Examples from Public Domain Texts

- Gutenberg: Chapters in a Book about knitting vs Other Docs
 - · open-work insertion, fine mesh, transverse stitching, empty scallop
- Open American National Corpus (OANC) Biology documents versus random documents
 - myosin-ii, hsn3, intron, migration defect, sparc-null mice
- Google Patents: Surgery patents (US Patent Class 606) vs Random Patents:
 - fluid manifold, dissector arm, pedicle punch, balloon catheter

Our Papers on Terminology & NLP of Technical Literature

- A. Meyers, Y. He, Z. Glass and O. Babko-Malaya (2015). The Termolator: Terminology Recognition based on Chunking, Statistical and Search-based Scores. Workshop on Mining Scientific Papers: Computational Linguistics and Bibliometrics.
- A. Meyers, , Z. Glass, A. Grieve-Smith, Y. He, S. Liao and R. Grishman (2014). Jargon-Term Extraction by Chunking. In Proceedings of COLING Workshop on Synchronic and Diachronic Approaches to Analyzing Technical Language.
- A. Meyers, G. Lee, A. Grieve-Smith, Y. He and H. Taber (2014). Annotating Relations in Scientific Articles. In Proceedings of LREC 2014.
- Y. He and A. Meyers (2014). Corpus and Method for Identifying Citations in Non-Academic Text. In Proceedings of LREC 2014.
- A. Meyers (2013). Contrasting and Corroborating Citations in Journal Articles. In Proceedings of **RANLP-2013.**
- X. Li, Y. He, A. Meyers and R. Grishman (2013). Towards Fine-grained Citation Function Classification. In Proceedings of RANLP-2013.
- P. Thomas, O. Babko-Malaya, D. Hunter, A. Meyers and M. Verhagen (2013). Identifying Emerging Research Fields with Practical Applications via Analysis of Scientific and Technical Documents. In Proceedings of ISSI 2013.
- O. Babko-Malaya, A. Meyers, J. Pustejovsky and M. Verhagen (2013). Modeling Debate within a Scientific Community. In Proceedings of SOCIETY 2013.
- O. Babko-Malaya, P. Thomas, D. Hunter, A. Meyers, J. Pustejovsky, M. Verhagen, and G. Amis (2013). Characterizing Communities of Practice in Emerging Science and Technology Fields. In Proceedings of SOCIETY 2013.

Previous Work on Terminology Extraction

- Terms are most typically Noun Groups or Obey Other Linguistic Rules
 - K. Frantzi, S. Ananiadou, and H. Mima. 2000. Automatic recognition of multi-word terms:. the Cvalue/NC-value method. International Journal on Digital Libraries, 3(2):115–130.
 - Justeson, J. S. and Katz, S. M. (1995). Technical terminology: some linguistic properties and an algorithm for identification in text. Natural Language Engineering, 1(1):9–27.
- Comparing foreground & background documents to rank terms (many others)
 - Damerau, F. J. (1993). Generating and evaluating domain-oriented multiword terms from texts. Information Processing and Management, 29:433-447.
 - Drouin, P. (2003). Term Extraction Using Non-technical Corpora as a Point of Leverage. Terminology, 9: 99— 115.
 - Navigli, R. and Velardi, P. (2004). Learning Domain Ontologies from Document Warehouses and Dedicated Web Sites. Computational Linguistics, 30.
 - Velardi, P., Missikoff, M., and Basili, R. (2001). Identification of relevant terms to support the construction of domain ontologies. Workshop on Human Language Technology and Knowledge Management.
- Finding Terminology via Relational Patterns
 - Y. Jin, M. Kan, J. Ng, and X. He. 2013. Mining scientific terms and their definitions: A study of the acl anthology. In EMNLP-2013.

Concluding Remarks

- Statistical Comparison of terms in foreground/background is an established method of term extraction.
 - Previous methods use Noun Groups or N-grams as input
- Terminology tokens are often arguments of IE relations
 - Statistical methods cannot find most of these terms
 - Noun Groups produce noisy input for IE
 - Technical NGs, Noun Group-like phrases that include likely technical words (OOV) words, technical adjectives, nominalizations, etc.), provide better input for IE
- Using Technical NGs as input to Statistical Term Extraction Results in More High Precision Terms
 - Better input yields more meaningful comparisons (Garbage In, Garbage Out)
- A web-search-based relevance filter improves results
 - Non-Terms are unlikely to be mentioned in technical documents accessed on WWW
- Results:
 - Top In-line Term System: 77.9% sloppy F measure (vs. human ~92% F-measure)
 - Top Distributional Terms System: 86% precision

Extra Slides

 Slides Useful for Providing Extra Examples or Answers to Questions

Customized Parts of Speech 1

- Types of nouns (POS tagger marks NN or NNS)
 - O-NOUN: word is not in our lexicon (Comlex Syntax, lists of person names, lists of specialize vocabulary, e.g., chemical names)
 - PER-NOUN: word begins with a capital letter and is in our dictionary of first and last names
 - PLUR-NOUN: NNS nouns not marked O-NOUN or PER-NOUN
 - NOUN: Other NN nouns
- Types of adjectives (POS tagger marks JJ, JJR, JJS)
 - STAT-ADJ: first word in top ranked term in statistical system
 - TECH-ADJ:
 - adjective ends in -ic, -ous, -ary, and others
 - not in list of exceptions (basic, analagous, voluntary, ...)
 - NAT-ADJ
 - adjectival form of country/state/city/continent: European, Indian, Peruvian
 - CAP-ADJ adjective beginning with a capital letter

Customized Parts of Speech 2

- Verbs:
 - VBG = ING-VERB
 - VBN/VBD = ED-VERB
 - Other verbs are marked OTHER
- POS: possessive marker
- PREP: POS tagger marks TO or IN
- ROM-NUM: I, II, III, IV, ...
- Det -- Determiner
- OTHER all other parts of speech from tagger

Finite State Machine 1

- States
 - S = Start of word sequence
 - B-T = Beginning of Term
 - E-T = End of Term
 - I-T = Inside of Term
 - \bullet O = Other
- Transitions to new State is conditioned on:
 - Previous POS
 - Current POS
 - Previous State
- A Possible Term (PT) is:
 - a single E-T
 - B-T + zero or more I-T + zero or one E-T

Finite State Machine 2

Previous POS	Current POS	Previous State	New State
	DET, PREP, POSS, OTHER		0
O-NOUN, C-NOUN, PLUR-NOUN	ROM-NUM	B-T, I-T	E-T
	PLUR-NOUN	B-T, I-T	I-T
	ADJ, CAP-ADJ	I-T	I-T
	NOUN, PER-NOUN, O-NOUN	B-T, I-T	I-T
O-NOUN	CAP-ADJ, TECH-ADJ, STAT-ADJ, NAT-ADJ	B-T, I-T	I-T
	CAP-ADJ, TECH-ADJ, NAT-ADJ, ING-VERB, ED-VERB, STAT-ADJ, NOUN, O-NOUN, PER-NOUN	E-T, O, S	В-Т
TECH-ADJ, NAT-ADJ ADJ, CAP-ADJ	TECH-ADJ, NAT-ADJ ADJ, CAP-ADJ	B-T, I-T	I-T
Else			0

Term Filter

- Contains at least one noun.
- Is More than 1 character long
- Contains at least one word of all alphabetic characters.
- Does not end in abbrev from list: e.g., cf., etc., ...
- No word violating morphological filter, ruling out various ID numbers, patent numbers, etc.
- Does not end in common ending of patent section headings
- Meets at least one of the following Conditions
 - Is a highly ranked topic term
 - Contains a highly ranked topic term
 - Contains at least one O-Noun
 - Is at least 4 words long and contains 3 words that are nominalizations (from NOMLEX) or TECH-ADJ
 - Is a nominalization and is at least 11 characters long
 - Is more than one word long, ends in a common noun and contains a nominalization
- Additional Filters to recognize NEs among PTs