MA557 Problem Set 3

Carlos Salinas

September 28, 2015

PROBLEM 3.1

Find an example of a finitely generated ring extension $R \subset S$ where S is a Noetherian ring, but R is not.

Proof.

PROBLEM 3.2

Consider the homomorphism of rings

$$R \xrightarrow{\varphi} T.$$

The fiber product of R and S over T is the subring $R \times_T S = \{ (r, s) \mid \varphi(t) = \psi(s) \}$ of $R \times S$. Assume φ and ψ are surjective. Show that if R and S are Noetherian rings then so is $R \times_T S$.

Proof.

Problem 3.3

Let M be an R-module. Show that M is a flat R-module if and only if $M_{\mathfrak{m}}$ is a flat $R_{\mathfrak{m}}$ -module for every maximal ideal \mathfrak{m} of R.

Proof.

Problem 3.4

Let M be an $R\text{-}\mathrm{module}$ and $\mathfrak a$ an $R\text{-}\mathrm{ideal}.$

(a) Show that if $M_{\mathfrak{m}}=0$ for every maximal ideal \mathfrak{m} containing \mathfrak{a} , then M=IM.

(b) Show that the converse holds in case M is finite.

Proof.

PROBLEM 3.5

Prove that every power of a maximal ideal is primary.

Proof.

Problem 3.6

- (a) Show that the radical of a primary ideal is prime.
- (b) Find an example of a power of a prime ideal that is not primary.
 (c) Let p be a prime ideal of a ring R and n ∈ N. The R-ideal p⁽ⁿ⁾ = R ∩ pⁿR_p s called the nth symbolic power of p. Show that p⁽ⁿ⁾ is primary.

Proof.