Rodrigo Fernandes de Mello
Invited Professor at Télécom ParisTech
Associate Professor at Universidade de São Paulo, ICMC, Brazil
http://www.icmc.usp.br/~mello
mello@icmc.usp.br

Artificial Neural Networks

- Conceptually based on biological neurons
- Programs are written to mimic the behavior of biological neurons
- Synaptic connections forward signals from dendrites to the axon tips

- McCullouch and Pitts (1943) proposed a computational model based on biological neural networks
 - This model was named Threshold logic
- Hebb (1940s), psychologist, proposed the learning hypothesis based on the neural plasticity mechanism:
 - Neural plasticity
 - Ability the brain has to remodel itself based on life experiences
 - Definition of connections based on needs and environmental factors
 - It originated the Hebbian Learning (employed in Computer Science since 1948)

- Rosenblatt (1958) proposed the Perceptron model
 - A linear and binary classifier

- After the publication by Minsky and Papert (1969), this area got stuck, because they found out:
 - That problems such as the Exclusive-Or could not be solved using the Perceptron
 - Computers did not have enough capacity to process largescale artificial neural networks

- Investigations got back after the Backpropagation algorithm (Webos 1975)
 - It solved the Exclusive-Or problem

Artificial Neural Networks

- In 1980's, the distributed and parallel processing area emerges using the name conexionism
 - Due to its usage to implement Artificial Neural Networks
- "Rediscovery" of the Backpropagation algorithm through the paper entitled "Learning Internal Representations by Error Propagation" (1986)
 - This has motivated its adoption and usage

Artificial Neural Networks

- Applications:
 - Speech recognition
 - Image classification
 - Identification of health issues
 - AML, ALL, etc.
 - Software agents
 - Games
 - Autonomic robots

General Purpose Processing Element

- Artificial neurons:
 - Nodes, units or processing elements
 - They can receive several values as input, but only produces one single output
 - Each connection is associated to a weight w (connection strength)
 - Learning happens by adapting weights w

- Rosenblatt (1958) proposed the Perceptron model
 - A linear and binary classifier

- Perceptron learning algorithm does not converge when data is not linearly separable
- Algorithm parameters:
 - y = f(i) is the perceptron output for an input vector i
 - b is the bias
 - D = $\{(x_1, d_1), ..., (x_s, d_s)\}$ corresponds to the training set with s examples, in which:
 - X₁ is the input vector with n dimensions
 - d₁ is the expected output
 - x_{i,i} is the value for neuron i given an input vector j
 - w_i is the weight i to be multiplied by the i-th value of the input vector
 - \(\omega \) is the learning rate which is typically in range (0,1]
 - Greater learning rates make the perceptron oscillate around the solution

- Algorithm
 - Initialize weights w using random values
 - For every pair j in training set D
 - Compute the output

$$y_j(t) = f[\mathbf{w}(t) \cdot \mathbf{x}_j] = f[w_0(t) + w_1(t)x_{j,1} + w_2(t)x_{j,2} + \dots + w_n(t)x_{j,n}]$$

- Adapt weights $w_i(t+1) = w_i(t) + \alpha(d_i y_j(t))x_{j,i}$, for all nodes $0 \le i \le n$.
- Execute until the error is less than a given threshold or for a number of iterations

$$d_j - y_j(t) < \gamma$$

- Activation (or transference) function for the Perceptron
 - Step function
 - Try on gnuplot using:

$$- f(x)=(x>0.5) ? 1 : 0$$

- pl f(x)
- Implementation

Solve NAND using the Perceptron

INP	TU	OUTPUT
Α	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

- Implementation
 - NAND
 - Verify weights and plot them using Gnuplot
 - As we have two input dimensions, we must plot it using command "spl"
 - Plot the hyperplane using the final weights

```
gnuplot> set border 4095 front linetype -1 linewidth 1.000
gnuplot> set view map
gnuplot> set isosamples 100, 100
gnuplot> unset surface
gnuplot> set style data pm3d
gnuplot> set style function pm3d
anuplot> set ticslevel 0
gnuplot> set title "gray map"
gnuplot> set xlabel "x"
gnuplot> set xrange [ -15.0000 : 15.0000 ] noreverse nowriteback
gnuplot> set ylabel "y'
gnuplot> set yrange [ -15.0000 : 15.0000 ] noreverse nowriteback
gnuplot> set zrange [ -0.250000 : 1.00000 ] noreverse nowriteback
anuplot> set pm3d implicit at b
gnuplot> set palette positive nops allcF maxcolors 0 gamma 1.5 gray
gnuplot> set xr [0:1]
anuplot> set yr [0:1]
gnuplot> spl 1.0290568822825088+-0.15481468877189009*x+-0.46986458608516524*y
```

More about the Gradient descendent method

- What happens with the weight adaptation?
 - Consider the Error versus weight w₁

$$f(x) = x^2$$

- To find the minima we must:
 - Find the derivative in the direction of the weight

$$\frac{\partial f(x)}{\partial x}$$

- To reach the minima we must, for a given weight w₁, adapt the weight in small steps
 - If we use large steps, the perceptron "swings" around the minimum

$$x(t+1) = x(t) - \mu \frac{\partial f(x(t))}{\partial x}$$

 If we change to the plus sign, we go in the direction to the function maxima

Implementation

```
x old = 0
x_new = 6 # initial value to be applied in the function
eps = 0.01 # step
Precision = 0.00001
double derivative(double x) { return 2 * x; }
while (fabs(x new - x old) > precision) {
  x \text{ old} = x \text{ new}
  x new = x old - eps * derivative(x new)
  printf("Local minimum occurs at %f \n", x_new);
```

*Test with different values for the step

*Verify the sign change for eps

Formalize the adaptative equation

How do we get this adaptive equation?

$$w_i(t+1) = w_i(t) + \alpha(d_j - y_j(t))x_{j,i}$$
, for all nodes $0 \le i \le n$.

- Consider an input vector x
- Consider a training set $\{\mathbf{x}_0, \mathbf{x}_1, ..., \mathbf{x}_L\}$
- Consider that each x must produce an output value d
 - Thus we get $\{\mathbf{d}_0, \mathbf{d}_1, ..., \mathbf{d}_L\}$
- Consider that each x produced, in fact, an output y
- The problem consists in finding a weight vector w* that satisfies this relation of inputs and expected outputs
 - Or that produces the small error as possible, i.e., to better represent this relation

 Consider the difference between the expected output and the produced output for an input vector x as follows:

$$\epsilon_k = d_k - y_k$$

 Thus the average squared error for all input vectors in the training set is given by:

$$<\epsilon^2>=rac{1}{L}\sum_{k=1}^{L}\epsilon_k^2$$
 * Why squared?

Disconsidering the step function, we have:

$$y = \mathbf{w}^t \mathbf{x}$$

• Thus we can assume the average error for a vector \mathbf{x}_{k} is:

$$<\epsilon_k^2>=<(d_k-\mathbf{w}^t\mathbf{x_k})^2>$$

- Iterative solution:
 - We estimate the ideal value of:

$$<\epsilon_k^2>=<(d_k-\mathbf{w}^t\mathbf{x_k})^2>$$

Using the instantaneous value (based on the input vector):

$$\epsilon_i^2(t) = (d_i - \mathbf{w}^t(t)\mathbf{x}_i)^2$$

Having ε_i as the error for an input vector x_i and the expected output d_i

 In that situation, we derive the squared error function in the direction of weights, so we can adapt them:

$$\nabla \epsilon_i^2(t) \approx \nabla < \epsilon_i^2 >$$

$$\nabla \epsilon_i^2(t) = -2\epsilon_i(t)\mathbf{x}_i$$

Steps:

$$\begin{aligned}
\epsilon_i^2(t) &= (d_i - \mathbf{w}^t(t)\mathbf{x}_i)^2 & \text{Logo:} \\
\frac{d}{d\mathbf{w}} \epsilon_i^2(t) &= 2 \cdot (d_i - \mathbf{w}^t(t)\mathbf{x}_i) \cdot -\mathbf{x}_i \\
\text{Ou seja:} \\
\frac{d}{d\mathbf{w}} f(g(x)) &= f'(g(x))g'(x) & \frac{d}{d\mathbf{w}} \epsilon_i^2(t) &= -2 \cdot \epsilon_i(t) \cdot \mathbf{x}_i
\end{aligned}$$

As previously seen, the descent gradient is given by:

$$x(t+1) = x(t) - \mu \frac{\partial f(x(t))}{\partial x}$$

In our scenario, we model as:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \mu \nabla \varepsilon(\mathbf{w}(t))$$

Sendo: $\nabla \varepsilon(\mathbf{w}(t)) = \nabla \epsilon_i^2(t)$ logo: $\mathbf{w}(t+1) = \mathbf{w}(t) + 2\mu \epsilon_i \mathbf{x}_i$

• In which μ is the learning rate typically in range (0,1]

- Observations:
 - Training set must be representative to adapt weights
 - Set must contain diversity
 - It must contain examples that represent all possibilities for the classification problem
 - Otherwise tests will not produce the expected results

The same amount of examples, however the first is less representative than the second

- Implementation
 - XOR
 - Verify the source code of the Perceptron for the XOR problem

XOR Truth Table

Input		Outnut
Α	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

- Minsky and Papert (1969) wrote the book entitled "Perceptrons: An Introduction to Computational Geometry", MIT
 - They demonstrated that a perceptron linearly separates classes
 - However, several problems (e.g., XOR) are not linearly separable
 - The way they wrote this book seems to question this area
 - As, in that period, the perceptron was significative for the area, then, several researchers believed artificial neural networks, and even AI, were not useful to tackle real-world problems

- How to separate classes?
 - Which weights we should use? Which bias?

XOR Truth Table

Input		Output		
A	В	Output		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Observe the following equation is linear

$$net_i = w_1 x_1 + w_2 x_2$$

The result of this equation is applied in the activation function

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Thus, it can only linearly separate classes
- In linearly separable problems:
 - This equation builds a hyperplane
 - Hyperplanes are (n-1)-dimensional objects used to separate ndimensional hyperspaces in two regions

- We could use two hyperplanes
 - Disjoint regions can be put together to represent the same class

Input		Output		
A	В	Output		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

- This fact does not avoid some problems discussed by Minsky and Papert
 - They still questioned the scalability of artificial neural networks
 - As we approach a large-scale problem, there are undesirable effects:
 - Training is slower
 - Many neurons make learning slower or difficult convergence
 - More hyperplanes favour overfitting
 - Some researchers state that one can combine small scale networks to address such issue

Summary

• Did you understand something?

Should we get back to some point?