Abduction

Fariba Sadri

Deduction versus Abduction

```
Deduction: Given
```

```
A and
```

 $A \rightarrow B$ you can infer

B.

Abduction: Given

B and

 $A \rightarrow B$ you can abduce

A as an explanation for B.

Examples

```
Observation: grass is wet
You know:
it rained \rightarrow grass is wet
Then there is a possible explanation: it rained
If you also know:
sprinkler was on \rightarrow grass is wet
```

Then there are two possible explanations:

 E_1 : it rained

E₂: sprinkler was on

Example cntd.

If we have additional information such as:

```
cloudless sky cloudless sky \wedge it rained \rightarrow false i.e. \neg (cloudless sky \wedge it rained)
```

Then only one explanation is possible:

E₂: sprinkler was on

We can conclude ¬ (it rained)

Informal Examples of Abductive Reasoning

- Medical diagnosis: given a set of symptoms, what is the diagnosis that would best explain most of them?
- Jury decision in a criminal case? Maybe. The Jury must consider whether the prosecution or the defence has the best explanation to cover all the points of evidence.

Applications of Abduction

Artificial Intelligence, in particular:

- Automatic planning
- Fault diagnosis
- Learning: Course "Logic-Based Learning" in the Spring term
- Default reasoning
- Belief revision

_

Deduction versus Abduction

Deductive reasoning:

We are given a Theory (Premises) and a Goal and we check if

Theory ⊢ Goal

- Conclusion is "guaranteed"
- If the premises are true, then the conclusion must also be true

Deduction versus Abduction cntd.

Abductive reasoning:

We are given a Theory and an Observation and we want to find an explanation (maybe the "best" explanation) for the Observation.

- Hypothetical (not guaranteed)
- The explantion is our best shot
- Defeasible (new information can discredit an explanation)
- Described by <u>Charles Sanders Peirce</u> as "guessing"

Abduction can be Formalised in Logic

Informally:

Given a Theory and an Observation an abductive Explanation of the Observation is such that:

Theory ∪ Explanation F Observation

and Explanation is made up of "Abducible" predicates. Typically, abducibles have no definitions in the Theory.

In addition Explanation may have to satisfy some other properties.

Example

Theory: $it rained \rightarrow grass is wet$

sprinkler was on \rightarrow grass is wet

Observation: grass is wet

Abducibles: it rained, sprinkler was on

Explanations (Abductive Explanations):

 E_1 : it rained

E₂: sprinkler was on

Theory $\cup E_1 \vdash Observation$

Theory $\cup E_2 \vdash \text{Observation}$

Another Example

```
Theory: a \wedge b \wedge e \rightarrow g a \wedge c \rightarrow h c \wedge d \rightarrow g c \rightarrow h a \wedge f \wedge h \rightarrow g e \rightarrow f
```

Observation: g

Abducibles: b, e

Explanations (Abductive Explanations):

 E_1 : $b \wedge e$

 E_2 : e

Theory $\cup E_1 \vdash \text{Observation}$

Theory $\cup E_2 \vdash \text{Observation}$

How To Find an Abducible Solution

In Prolog Notation:

Theory:
$$g := a \wedge b \wedge e$$
. a . c . $g := c \wedge d$. $h := c$. $g := a \wedge f \wedge h$. $f := e$.

Observation: g. Abducibles: b, e

$$g:-a \wedge b \wedge e.$$
 $g:-c \wedge d.$ $g:-a \wedge f \wedge h.$ $f:-e.$
 $a \wedge b \wedge e$ $c \wedge d$ $a \wedge f \wedge h$
 $b \wedge e$ d $f \wedge h$

one solution no good

 $e \wedge c$

one solution e

A Very Simple Example in Automatic Planning

Initial state Goal state

a b c

Goal: on(b,a) \wedge on(c,b)

Theory: $\forall X,Y (move(X,Y) \rightarrow on(X,Y))$

or in Prolog: on(X,Y) := move(X,Y).

Abducibles: all instances of move/2

Abductive solution: {move(b,a), move(c,b)}

C

h

a

Another Simple Example in Automatic Planning (using Prolog syntax)

```
prepare for trip:- have valid passport,
                     book transport.
have valid passport :- \+ passport expired.
have valid passport:- get passport renewed.
book transport :- book train.
book transport:-book plane.
passport expired.
```

```
Goal: prepare_for_trip.
Abducibles:
{ get_passport_renewed, book_train, book_plane }
```

Two abductive solutions:

```
E<sub>1</sub>= {get_passport_renewed, book_train}
E<sub>2</sub>= { get_passport_renewed, book_plane}
```

	Observation O	Abducibles	Explanation E
Planning	Goal	Actions (Temporal Constraints)	Plan, e.g. set of actions
Diagnosis	Symptoms	Diseases/ Faults	Disease/ Fault

An Example from Diagnosis

http://web.stanford.edu/class/cs227/Lectures/lec1 2.pdf

Theory has facts and rules about symptoms and diseases.

Disease \land Other_conditions \rightarrow Symptoms

Goal: Hypothesise about diseases that best explain the symptoms.

Typically we won't have information such as

Symptoms \land Other_conditions \rightarrow Disease

So reasoning is not deductive.

```
tennis_elbow \rightarrow sore_elbow
arthritis \land untreated \rightarrow sore_joints
sore_joints \rightarrow sore_elbow
sore_joints \rightarrow sore_hips
arthritis \land untreated \rightarrow problem_with_balance
```

Symptom:

sore_elbow

Explanations:

tennis_elbow arthritis, untreated

Besides accounting for all of the known symptoms, a hypothesis may also predict other symptoms which have not yet been observed.

These predictions provide a way to test the validity of a hypothesis by making the observation and seeing if the result is consistent with the prediction.

A formal characterisation of abductive logic programs: Preliminaries

Definition: Logic Programs

Logic programs are sets of clauses of the form:

$$H \leftarrow A_1 \wedge ... \wedge A_n$$

In Prolog

$$H := A_1, ..., A_n$$
.

H and all the A_i are atomic formulas. (In general the A_i can also be negative literals, but we will ignore this here.)

A formal characterisation of abduction abductive logic programs: Preliminaries ctd.

Definition: Integrity Constraints

Integrity Constraints are sentences of the form:

$$A_1, ..., A_n \rightarrow false.$$

or equivalently

$$\neg (A_1, ..., A_n).$$

where the A_i are atoms.

A formal characterisation of abductive logic programs

is a **logic program** is a set of *undefined* ground atoms H (the abducibles) is a (implicitly existentially quantified) conjunction of atoms (the goal/observations) is a set of integrity constraints (the abductive answer) is such that E $T \cup E \mid O$ $E \subset H$ $\mathsf{T} \cup \mathsf{E}$ satisfies I $T \cup E \cup I$ consistent

Example

```
T: it rained \rightarrow grass is wet
sprinkler was on \rightarrow grass is wet
cloudless sky
```

H: it rained, sprinkler was on

O: grass is wet

I: cloudless sky \wedge it rained \rightarrow false i.e. \neg (cloudless sky \wedge it rained)

E: sprinkler was on

Extending with negation (as failure)

Abductive logic programming works for *normal logic programs*, i.e. logic programs and integrity constraints that can have negative as well as positive conditions.

$$H \leftarrow A_1 \wedge ... \wedge A_n \wedge \text{not } B_1 \wedge ... \wedge \text{not } B_n.$$

 $H :- A_1 \wedge ... \wedge A_n \wedge \backslash + B_1 \wedge ... \wedge \backslash + B_n.$

- H and all the A_i and B_i are atomic formulas.
- The negation in the negative literals not B_i is referred to as "negation as failure"
- A negative condition not B_i is shown to hold by showing that the positive condition B_i fails to hold.

Integrity Constraints with Negation

$$B_1, ..., B_n \rightarrow false.$$

or equivalently

$$\neg (B_1, ..., B_n).$$

where the B_i are literals.

Abductive logic programs

- T: a *normal* logic program
- H: a set of *undefined* ground atoms (abducible atoms)
- O: a (implicitly existentially quantified) conjunction of **literals** (atoms or NAF of atoms)
- **I:** is a set of integrity constraints
- **E:** (the abductive answer) is such that

$$T \cup E \mid_{NAF} O$$

$$\mathsf{E} \subset \mathsf{H}$$

 $T \cup E$ satisfies I

Example

```
T:
      g(T) := a1(T), +p(T), a2(T).
      g(T) := a1(T), a3(T).
      g(T) := a4(T).
      p(10).
      q(T) := a5(T).
      a4(T), \uparrow q(T) -> false.
      a3(T), \+ a6(T) -> false.
Abducibles: a1, a2, a3, a4, a5, a6
```

Goal: g(10).

Abductive Answers:

E1: a1(10), a3(10), a6(10).

E2: a4(10), a5(10).

Another Example

```
have(X) := buy(X).
              have(X):-borrow(X).
              have(money).
       buy, borrow, register (actions)
A:
              buy(X), \uparrow have(money) \rightarrow false
IC:
              buy(tv), \uparrow register(tv) \rightarrow false
              buy(money) \rightarrow false
Goal: have(tv)
Δ1:
              buy(tv), register(tv)
                                                 (Plan 1)
              borrow(tv)
                                                 (Plan 2)
Δ2:
```

```
have(X) := buy(X).
              have(X) := borrow(X).
       buy, borrow, register (actions)
A:
              buy(X), \uparrow have(money) \rightarrow false
IC:
              buy(tv), \uparrow register(tv) \rightarrow false
              buy(money) \rightarrow false
Goal: have(tv)
              borrow(money), buy(tv), register(tv) (Plan 1)
Δ1:
                                                  (Plan 2)
              borrow(tv)
Δ2:
```