	Quarta avaliação de Lógica Matemática Professor Jânio Kléo
	Aluno: Luis Fizipe de Ling Sales Nota: 6,5
	01. Mostre que as fórmulas $(\forall x)(\exists y)(P(x, y))$ e $(\exists y)(\forall x)(P(x, y))$ não são equivalentes.
1,5	
	02. Considere as relações binárias P e Q sobre o domínio U = {1, 2, 3, 4, 5}, cujos conjuntos-
	verdade são
2,0	$V(P) = \{(1, 3), (3, 3), (3, 4), (3, 5), (4, 2), (4, 5), (5, 5)\}$
-10	$V(Q) = \{(1, 3), (1, 5), (2, 4), (3, 1), (3, 5), (4, 4), (5, 2)\}.$
	Determine $V(P \circ Q^{-1})$.
	03. A relação P é dita ser <i>vazia</i> quando é verdadeira a fórmula $(\forall x)$ $(\forall y)$ $(\neg P(x, y))$. Pede-se:
	(a) Mostre que se uma relação é vazia, então ela é simétrica e transitiva.
5	(b) Forneça um exemplo de uma relação não vazia P tal que P o P seja vazia.
	(b) Forneça um exemplo de uma relação não vazia que seja simétrica e transitiva, mas não
	reflexiva.
	04. Considere a fórmula $\Psi = (\forall x) (\exists y) (Q(F(x, y), F(y, x)) e o predicado P(a, b, c) dado por "c é$
,5	igual a $F(a, b)$ ". Escreva uma fórmula equivalente a Ψ que não contém funções em sua formação.

05. Dada $\Lambda = (\exists x)(P(x) \to (\forall y)(Q(x, y) \land \neg P(y)))$, escreva uma fórmula equivalente a Λ e que

contém a menor quantidade possível de símbolos distintos em sua formação.

23/02/2017

Instituto Federal de Educação, Ciência e Tecnologia do Ceará

Engenharia de Computação

2,0

1,5

1,5

I) Principamente suponhamos que o Domínio DO Predicade P SEJA U= {ay, az}, Temos QUE PAKA UMA FÓRMULA TAL QUE (YX)(P(X,Y)), TENA SUA INTEMPRETAÇÃO como SENDO: [(P(as,y), P(az)y)]. De Maneira senechante, PARA UMA TAL QUE (FX)(P(X,Y)), SUA INTEPPLETAÇÃO SETÁ [Plas 14) V(Plaz 14)].
TENDO ISTO EM MENTE, (YX)(FY)(P(X,Y)) PODE SET EXPRESSA POT: (\(\forall (P(x, a1) \name P(x, a2)) \(\int \) (P(a1, a2) \(\name P(a2, a2) \) $P(a_2, a_2)$ INTERPRETANDO P(a1, as) como un cerso W, P(as, az) como un CENTO U, Plazias) como un cento Z e Plazias) como un CENTO K, A FÓMMULA ANTERIOR PODE SER EXTRESSA POP: 1(WVZ)~(UVK) DA MESMA MANEIHA, A FÓRMULA (Zy)(XX)(P(X,Y)) PODE SER EXPRESSA POR (Jy)(P(a,y) 1 P(a,y) = (=) [P(a2, a1) ~ P(a1, a2)] v (P(a2, a1) ~ P(a2, a2)) Se Guindo A Mesma interpretação ANTERIOR PARA O PREDICADO P, [[WV]]V[ZVK]] De STA FORMA CENCLUIMOS QUE (HX)(=y)/P(X,y)) e (=y)(HX)(P(X,y)) NÃO SÃO EQUIVALENTES. 2) DADAS AS INFORMAÇÕES CONTIDAS NO ENUNCIADO, PODEMES TRAÇAR DIAGNAMAS PARA OS PREDICADOS P e Q: P &Q & ADICIONALMENTE, PAVA Q-J

O) CONTINUAGÃO C) PARA a mesmo caso apresentado no item b, e LEVANZOSE PARA UN Predicado R cuso domínio é $U_1 = \{J, 2\}$ e cuso conjunto Verdade é $V(R) = \{(J, 2), (2, 1), (3, 3)\}$ emos o seguinte DIAGHAMA: Observanos que Trata-se de una relação Simétrica Pois [R(1,2) \wedge R(2,1)]=1, Transitiva Pois [R(1,2) \wedge R(2,1) \rightleftharpoons R(1,1)]=1, Poyém \nearrow NÃO é simétrica, Pois [R(2,2)]=0. 4) Considerance F(x,y) como un certo Z e F(y,x) como un cerso K, podemos escrever: (4x)(3y) (P(x,y,z) ~ P(y,x,K) ~ Q(z,K)) (=) 4 Falton quantificador para Z e K. 5) CONSIDERANDO P(X), Q(X,Y) e 7P(1) como sento respectivamente os Previcados de Aridade O, equivalentes aos mesmos, reste Y, Z, K, PODEMOS reescrever A. FÓRMUZA A COMO: Y -> (ZAK), DISPENSANDO D USO DE QUANTIFICADOPES, VISTO NÃO POSSUIT VANIÁVEIS. ESTA FÓYMUZA É A FÓYMUZA N, TAZ QUE YES 1.