Section 1: General System Description & Critical Data

Robot System Name: S/Ue

S/Ue is a modified TurtleBot 3 Burger designed to navigate through a maze, identify & unlock a door through an HTTP call, and then locate a bucket on the other side of the door. S/Ue will then release 5 pingpong balls into the bucket, and proceed to re-enter the maze to develop a map using SLAM.

Hardware Specifications

	Details	Specifications	Notes
TurtleBot	Model	TurtleBot 3 Burger	
	Dimensions (mm) Length x Width x Height	138 x 178 x 192	
	Weight (g)	9	
	Max. Velocity	0.22 m/s	
	Line Sensors	Uses TCRT5000 IR sensor	Uses M393 comparator
Payload	Dimensions(mm) Length x Width x Height	103 x 87.5 x 173	
	Weight (g)	501g	
	Servo Motor	MG995	
System	Center of Gravity (mm)	Origin: Below the bottom plate's back right support pillar Centre of gravity: (-57,159,70)	
	Battery Capacity LiPo Battery	11.1V, 1,800mAh	
	Battery Life	2h 30m	
	Communication Interface	GPIO, I2C	

Hardware Block Diagram

Robot System Name: S/Ue

Assembly Instructions

The TurtleBot 3 itself was assembled using the ROBOTIS official manual, with the following modifications:

- 2x additional **waffle plate** layers
- Line sensors added to second layer for line follower subsystem
- An additional 90mm height was added between the 4th and 5th waffle plates, using 12x 30mm spacers. 4 x 10mm height added between 3rd and 4th waffle plate

TurtleBot 3				
Item	Qty	Image		
30mm spacer	12			
Waffle plate	2	3x30mm		

Payload			
Item	Qty	Image	
Payload support	1		
Payload support base	1	Servo connector Sloped Box	
Payload sloped box	1	Payload Support Hinge	
Payload Ramp	1	Ramp	
Horn	1		
Servo	1		
Servo arm	1	Horn	
Hinge	1	Servo motor — Horn Connector	
Horn Connector	1		

Line Sensors			
Item	Qty	Image	
Metal sheet	1		
Line Sensors	4		
M3 Screw and Nut	4 each	rnetal Sheet In e sensor	

Technical Guide

Methodology

S/Ue starts the mission by **line following through the maze**, up to the 'lift lobby section', where it will stop and **send an HTTP request to a web-server**, which will open one of two doors. Next, S/Ue will **line follow through the correct door and towards the bucket**. S/Ue will then **activate its payload**, and release the ping pong balls from the ramp. Finally, S/Ue will **line follow back towards the lift lobby**, then **proceed with frontier-based exploration to explore and map** the remaining unexplored sections of the maze.

Flow of Events

EG2310 Group 5 End User Documentation

Robot System Name: S/Ue

Pre-Mission Setup(Map)

1. Lay tape marking a direct shortest path through wide areas from the start line to the lift lobby.

2. Lay tape routes from the lobby through both doors towards each respective bucket in the form of a T-junction

3. Lay a stretch of tape as a 'finish line' perpendicular to each path exactly 10cm from the bucket.

Mission Start

Prerequisite:

- S/Ue is positioned at start point
- Tape route is set up correctly
- Required software installed & setup

In the CLI (Ubuntu Bash terminal) input the following commands (both team's defined aliases & full commands have been given):

Window 1: sshrp => rosbu

Window 2: toolbox

Window 3: rvm

Window 4: line

Window 5: exp

EG2310 Group 5 End User Documentation

Acceptable Defect Log

Defect	Classification			
Defect	Minor	Major	Critical	
Small gap at connection between base of payload and U-shaped support	X			
The payload horn has slight translational motion which affects the rigidity of the ramp as well, making it less stable and fixed	X			

Robot System Name: S/Ue

Factory Acceptance Test

Component	Success Criteria	Testing Method	
Raspberry Pi 4	Able to turn on when connected to OpenCR	Switch on OpenCR, RPi's red light should be on while green light flashes	
	Remote laptop able to ssh into it	CLI enters the RPI's system when command sshrp entered	
OpenCR	Able to be powered on by the LiPo battery	Green light lights up when connected to battery, and boot up tune played	
LDS-02	Able to consistently read data	Environment mapped to RViz after runnin toolbox and rvm	
Wheels & Ball-Caster	Able to move S/Ue in all directions	Manually control S/Ue's velocity by running rteleop	
TCRT5000	S/Ue able to follow along predesigned route and turn/stop when required	Test line following capabilities by running lineFollower.py	
Servo Motor	Able to open and close	Test payload capabilities by running payload.py	
Overall Structure	Able to move, make turns, without toppling over and while maintaining at 3 points of contact to the ground	Manually control S/Ue's velocity and observe stability during motion by running rteleop	
	All fasteners secured	Verify fastener tightness/installation and compare the count to the assembly document	

Maintenance and Part Replacement Log

			_	_		
S/N	Defect Date	Qty	Component	Description	Rectification	Close Date
1	8/2/23	1	Raspberry Pi 4	RPi burnt	Replace with new RPi	9/2/23
2	14/2/23	1	Micro SD Card	SD card unable to be read	Replace with new SD card	14/2/23
3	4/4/23	1		Section glued together with epoxy and unable to open	Cut through epoxy to allow components to freely move	4/4/23