Microelectronics Devices, Sensors and MEMS

Academic year 2023-2024

Project #3: MOSFET

Guidelines:

The files used in the laboratory classes, available on the course website, can be used as a starting point for the projects and modified according to the project requests.

Figure 1. MOSFET structure

Create a MOSFET with the structure shown in Figure 1, using the following parameters:

W_{DEV}, device width: 1.5μm

 $t_{\text{EPI}},$ epitaxial layer thickness, $2\mu m$ $t_{\text{SUB}},$ substrate thickness: $1~\mu m$

L, gate length: 0.5µm

 L_{DIMP} , drain implantation length: $0.5 \mu m$ L_{SIMP} , source implantation length: $0.5 \mu m$

 L_D , drain electrode length: $0.2\mu m$

Ls, source electrode length: 0.2µm

Drain and source doping:

Vertical and lateral profiles: gaussian $X_{j},$ drain and source junction depth: $0.3\mu m$

Peak donor concentration: 10¹⁸cm⁻³

Epitaxial layer doping: 2x10¹⁷ cm⁻³

Substrate doping: 10¹⁹ cm⁻³

Gate thickness: 10nm Gate <u>material</u>: n+ poly-Si

After generating a suitable mesh, perform the following simulations:

- 1. Equilibrium state
- 2. MOSFET transfer characteristic with VDS = 3.3V. Compare the obtained threshold voltage and current gain Kn with the theoretical ones.
- 3. MOSFET output characteristics with VG = 1,2 and 3V.
- 4. Biasing the MOSFET with VD = VS = VB = 0, perform an AC simulation at 1MHz, sweeping the gate voltage between -3V and 3V to extract the gate capacitance. Plot the extracted gate capacitance as a function of voltage.
- 5. Add a shallow boron gaussian doping profile under the gate to adjust the threshold to 0.8V. Consider for the profile a peak concentration C_P at the interface between silicon and oxide and a doping concentration of $2x10^{17}$ cm⁻³ at $0.1~\mu m$ depth. Repeat the previous simulations with the modified structure.

Write a short report including the following items:

- Final device mesh
- Potential profile in equilibrium
- Simulated transfer and output characteristics
- Simulated Capacitance-Voltage curves