Lecture 13 - Linear Functions, Matrices, and the Derivative Matrix

October 26, 2022

Goals: Distinguish linear functions from more general functions, multiply matrices by vectors, compute the derivative matrix, and compute a local approximation from a derivative matrix.

We will now dive deeper into specific kinds of functions and their properties. We start with:

Definition: A scalar-valued function $f: \mathbb{R}^n \to \mathbb{R}$ is called

• affine if it has the form $f(x_1, ..., x_n) = a_1x_1 + \cdots + a_nx_n + b$ for scalars $a_1, ..., a_n, b$ (in particular, $b = f(\mathbf{0})$).
• linear if it has the form $f(x_1, ..., x_n) = a_1x_1 + \cdots + a_nx_n$ for scalars $a_1, ..., a_n$, i.e. it is affine with b = 0.

affine with b = 0.

A vector-valued function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$, that is, $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$, is called

• affine if each of its component functions $f_i : \mathbb{R}^n \to \mathbb{R}$ is affine.

• linear if each of its component functions $f_i: \mathbb{R}^n \to \mathbb{R}$ is linear.

Example 1: Are the following functions affine, linear, or neither?

(a)
$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x - y \\ \pi x + 6y \\ 3y \end{bmatrix}$$
 (b) $f(x) = 2x + 1$ (c) $f(x) = \begin{bmatrix} x + 1 \\ 3x - 2 \\ x^2 + x \end{bmatrix}$

(b) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(c) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(d) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(e) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(f) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(g) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(g) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(g) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(g) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(e) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(f) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(g) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(e) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(f) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(g) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(e) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(f) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(f) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(e) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(f) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(f) $f: \mathbb{R}^2 \to \mathbb{R}^3$

(h) $f: \mathbb{R}^3 \to \mathbb{R}^3$

(h) $f:$

©2022 Stanford University Department of Mathematics

Note that a general linear function $f: \mathbb{R}^3 \to \mathbb{R}^3$ looks like

$$f\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} ax + by + cz \\ dx + ey + gz \\ hx + iy + jz \end{bmatrix},$$

which have a lot of constants to keep track of $(9 = 3 \cdot 3 \text{ in fact})$, and there could be a lot more for a general $f: \mathbb{R}^n \to \mathbb{R}^m$ (mn to be exact). We introduce a shorthand notation.

Definition: An $m \times n$ matrix is a rectangular array A of numbers presented like

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

- The collection of entries $\begin{bmatrix} a_{i,1} & a_{i,2} & \cdots & a_{i,n} \end{bmatrix}$ along the *i*th horizontal row (with i=1 along the top side) is called the *i*th row, and the collection of entries $\begin{bmatrix} a_{1,j} \\ a_{2,j} \\ \vdots \\ a_{m,j} \end{bmatrix}$ along the *j*th vertical layer (with j=1 along the left side) is called the *j*th column.
- The entry in row i and column j, $a_{i,j}$, is called the ij-entry or (i,j)-entry.

We have a notion of multiplication between a matrix and a vector:

<u>Definition:</u> If A is an $m \times n$ matrix and $\mathbf{x} \in \mathbb{R}^n$, the **matrix-vector product** $A\mathbf{x} \in \mathbb{R}^m$ is defined by

In other words, if $\mathbf{r}_1, \dots, \mathbf{r}_m$ represent the rows of A (which are *n*-vectors), then

$$A\mathbf{x} = \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{x} \\ \mathbf{r}_2 \cdot \mathbf{x} \\ \vdots \\ \mathbf{r}_m \cdot \mathbf{x} \end{bmatrix}.$$

Note: You need to pay attention to all of the dimensions going on; this product is only defined for an $m \times n$ matrix multiplied by an n-vector. It produces an m-vector.

$$(m \times n) (n \times 1) = (m \times 1)$$

$$(m \times n) (n \times 1) = (m \times 1)$$

$$(m \times n) (n \times 1) = (m \times 1)$$

Example 2: Compute the following matrix-vector products.

(a)
$$\begin{bmatrix} 2 & -1 & 3 \\ 4 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2(1) + (-1)(2) + (3)(3) \\ 4(1) + (1)(2) + (3)(2) \end{bmatrix} : \begin{bmatrix} 4 \\ 6 \\ 1 \end{bmatrix}$$

(b) $\begin{bmatrix} -4 & 8 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} (-4)(1) + (-1)(2) + (1)(3) \\ (1)(1) + (2(0)) \end{bmatrix} : \begin{bmatrix} -4 \\ 1 \end{bmatrix}$

(b) $\begin{bmatrix} -4 & 8 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} (-4)(1) + (2(0)) \\ (1)(1) + (2(0)) \end{bmatrix} : \begin{bmatrix} -4 \\ 1 \end{bmatrix}$

Anale: multiplying by $\vec{C}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ gives us the $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ gives us the $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Proposition 13.3.8: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is linear precisely when $f(\mathbf{x}) = A\mathbf{x}$ for an $m \times n$ matrix A.

A consequence of this proposition is that an affine function $f : \mathbb{R}^n \to \mathbb{R}^m$ can be written as $f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, where A is an $m \times n$ matrix, \mathbf{x} and n-vector, and \mathbf{b} an m-vector.

Example 3: Write the following linear/affine functions in the form Ax + b.

(a)
$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x - y \\ \pi x + 6y \\ 3y \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ \pi & b \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x - y \\ \pi x + by \end{bmatrix}$$

1: Acor

 $f\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2x + z + 4 \\ x + y + z \\ -x - 2y \end{bmatrix} = \begin{bmatrix} 2x + z + 4 \\ x + y + z \\ -x - 2y \end{bmatrix} + \begin{bmatrix} x \\ b \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} x \\ 0 \\ 1 \\ 3 \end{bmatrix}$

a ffire

 $f\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2x + z + 4 \\ x + y + z \\ -x - 2y \end{bmatrix} + \begin{bmatrix} x \\ 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} x \\ 1 & 1 \\ 1 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} x \\ 0 \\ 1 \\ 3 \end{bmatrix}$

If $\mathbf{c}_1, \dots \mathbf{c}_n$ are the columns of A, i.e. $A = [\mathbf{c}_1 \ \mathbf{c}_2 \ \cdots \ \mathbf{c}_n]$ then

$$A\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{c}_1 + x_2 \mathbf{c}_2 + \dots + x_n \mathbf{c}_n \in \mathbb{R}^m.$$

In other words, the matrix-vector product is just a linear combination of the columns of A, where the coefficients are the entries of the vector \mathbf{x} .

Theorem 13.4.5: For a linear function $f(\mathbf{x}) = A\mathbf{x}$, the matrix A has its respective columns $f(\mathbf{e}_1), \dots, f(\mathbf{e}_n)$, where \mathbf{e}_i is the *i*th standard basis vector in \mathbb{R}^n . This gives us a way to reconstruct the matrix A given we know f. → f(x)= Ax = [4(c') ··· f(c')]x

Example 4: Recall the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ which rotated vectors 90° clockwise.

$$\begin{array}{c|c}
t & \begin{pmatrix} \zeta^{s} \\ \zeta^{s} \end{pmatrix} : t & \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\
t & \begin{pmatrix} \delta^{s} \\ 0 \end{pmatrix} : t & \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \\
\end{array}$$

Using these 13.4.5,
$$f(x) = f(x) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

$$f\left(\frac{2}{3}\right) = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{3}{3} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{3} \\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} \frac{3}{3} \\ \frac{1}{3} \end{bmatrix}$$
Thusen 13.4.1

Definition: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a vector-valued function $f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$ with scalar-valued components $f_i: \mathbb{R}^n \to \mathbb{R}$. The derivative matrix of f at a point f.

$$(Df)(\mathbf{a}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \frac{\partial f_1}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{a}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{a}) & \frac{\partial f_2}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{a}) & \frac{\partial f_m}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{a}) \end{bmatrix}.$$

We also refer to $Df(\mathbf{a})$ as the **Jacobian matrix** of f at the point **a**. In general, the *i*th row of $Df(\mathbf{a})$ is $\nabla f_i(\mathbf{a})$ written horizontally.

If f is not a linear, can we approximate it via $f(\mathbf{x}) \approx f(\mathbf{a}) + L(\mathbf{x} - \mathbf{a})$, where L is linear? If so, what is the "best" one? Here is the answer:

<u>Theorem 13.5.8</u>: The best linear approximation to $f: \mathbb{R}^n \to \mathbb{R}^m$ at the point **a** is given by the derivative matrix $Df(\mathbf{a})$. We have

for *n*-vectors
$$\mathbf{x}$$
 near \mathbf{a} . Equivalently,
$$f(\mathbf{a} + \mathbf{h}) \approx f(\mathbf{a}) + Df(\mathbf{a})\mathbf{h}$$

for n-vectors \mathbf{h} near $\mathbf{0}$.

Example 5: Work out the linear approximations $f(\mathbf{a})$ and $f(\mathbf{a} + \mathbf{h})$, where $\mathbf{a} = (1, 1, 1)$, for the function f below. Then, estimate f(.9, 1.1, 1.2).

the function
$$f$$
 below. Then, estimate $f(.9, 1.1, 1.2)$.

$$f(x, y, z) = \begin{bmatrix} x^2 + yz \\ xyz \\ xyz \\ \sqrt{xz} \end{bmatrix} \xrightarrow{\mathcal{F}_{2}} \begin{array}{c} \mathcal{F}_{2} \\ \mathcal{F}_{3} \\ \mathcal{F}_{4} \\ \mathcal{F}_{4} \\ \mathcal{F}_{5} \\ \mathcal{F}_{7} \\ \mathcal{F}_{7}$$

$$\rho\left(\frac{1}{a} + \frac{1}{h}\right) \stackrel{?}{\sim} \rho\left(\frac{1}{a}\right) + \rho\left(\frac{1}{a}\right) \stackrel{?}{\sim} \rho\left$$