CALab5_Report

PB19051183 吴承泽

实验报告文件树目录如下:

```
CAlab5
| CAlab5_report.pdf
⊢cpu
      cpu1.c
      cpu1.exe
     cpu2.c
     cpu2.exe
     cpu3_16x16.c
     cpu3_16x16.exe
     cpu3_32x32.c
     cpu3_32x32.exe
     cpu3_4x4.c
     cpu3_4x4.exe
     cpu3_64x64.c
     cpu3_64x64.exe
     cpu3_8x8.c
      cpu3_8x8.exe
      Makefile
∟gpu
       qpu1.cu
       gpu2.cu
```

CPU

1 对不同规模的输入(输入的范围由你自己确定,可以不考虑过大的矩阵规模,因为这可能导致性能测量很慢),考察三种实现的性能差异,并简要分析原因。

执行task1,task2,task3中编写的程序,所得到的运行时间如下所示:

	(2^8,2^8)	(2^9,2^9)	(2^10, 2^10)
task1	0.060000	0.513000	5.412000
task2	0.045000	0.365000	3.827000
task3 (BLOCKSIZE=8)	0.031000	0.224000	1.849000

任务一中使用的方法是直接对两个矩阵进行相乘,任务二中使用的方法为通过AVX对矩阵行与列的相乘相加,任务三使用的方法为对整个矩阵分为(2^n,2^n)的块,将矩阵分块相乘后相加,得到每个局部的解,最后通过循环得到整体的解。

性能对比 (task3 > task2 > task1) 原因如下:

• task1中对B数组每次寻找下一个数需跨越大小为N*sizeof(float)的内存距离,内存局部性较差,寻址中对Cache的利用率较低,从而性能较差。

- task2中使用了 avx 的SIMD指令来处理矩阵的相乘与相加,通过 acx 中的接口来提升数据执行的并行度,相较于task1有效的提升了并行程度。
- task3中进行了分块处理,内存局部性与task2相比更好,访存跨度降低,而且task3中使用了转置,将B矩阵中的列大跨度的寻址变为行整体的寻址,有效提升了Cache的利用率,提高了性能。

2 对CPU-任务3中的AVX分块矩阵乘法,探讨不同的分块参数对性能的影响,并简要分析原因。

执行task3中各种分块参数的程序,所得到的运行时间如下所示:

	(2^8,2^8)	(2^9,2^9)	(2^10, 2^10)
	(= =,= =,	(= -,= -,	(= 10, = 10,
BLOCKSIZE=4	0.039000	0.280000	2.226000
BLOCKSIZE=8	0.031000	0.224000	1.849000
BLOCKSIZE=16	0.059000	0.451000	3.696000
BLOCKSIZE=32	0.112000	0.953000	7.471000
BLOCKSIZE=64	0.262000	2.132000	17.592000

影响规律大致为:随着 BLOCKSIZE 的增长,性能先提升后下降,主要原因如下:

- 初始阶段 BLOCKSIZE 从4至8时性能提升,在此时分块参数较小,Cache中仅需通过较少次换块可以将换块后的数据包含在内,且后续查找时都可以在Cache中查找到。在块增长时,查找的次数减少,因此性能提升。
- 之后 BLOCKSIZE 从8至64时性能下降,因为当块的大小逐渐增大时,分块的大小以平方的倍数增长,内存的局部性逐渐变差,换块的频率同时也会逐渐增大,因此性能下降。

3 调研并了解CPU平台上其它矩阵乘法的优化手段,在报告中简要总结。

- 改变循环的嵌套展开顺序,使得合理的规划内存布局最大化利用Cache,尽可能的一行一行的进行 访问。
- 利用流水线的性质进行循环展开,通过硬件的调度算法减少Stall的时钟数量。
- 利用Stressen算法降低时间复杂度,提高CPU的计算效率。

GPU

1 对不同规模的输入(输入的范围由你自己确定,可以不考虑过大的矩阵规模,因为这可能导致性能测量很慢),考察两种实现的性能差异,并简要分析原因。

对于不同矩阵的输入大小来说,取(blocksize,gridsize)=(16,(1 << (N-4))):

实现方式\N	64	128	256	512	1024
gpu基础矩阵相乘	8.4480us	28.289us	211.68us	1.5883ms	12.365ms
gpu分块矩阵相乘	5.3120us	9.8570us	41.088us	287.56us	2.1596ms

输入矩阵的增大,所需的运行时间增大,是因为对于更大的N,所需要的资源分配和时间是更多的,会消耗更多点时间去计算。

同时可以看出,gpu基础矩阵相乘总是慢于gpu分块矩阵相乘,大致原因如下:

- 分块矩阵中对每个Block中使用 Shared Memory 存储关键的Block数据供其中的线程使用,Block中的Thread使用 Shared Memory 中的数据的Latency远小于 Global Memory 中的Latency,对于合适将多次使用的数据存入 Shared Memory 中,可以有效提升性能。
- 对于普通的矩阵相乘,分块矩阵拥有更好的 Memory Locality, 对于Thread中的 Local Memory 有着更好的局部性。(类似Cache)

2 对GPU-任务1中的基础矩阵乘法,探讨不同的 gridsize 和 blocksize 对性能的影响,并简要分析原因。

在不同的 gridsize 与不同的 blocksize 下的执行时间如下(MatrixSize = (2^10, 2^10))且 BlockSize与GridSize满足BlockSize * GridSize = (1 << N):

(blocksize,gridsize)	(4,256)	(8,128)	(16,64)	(32,32)	(64,16)
gpu time(ms)	7.2911	6.5553	12.412	24.598	25.666

当 blocksize 从4增至8时,性能变化不大;当 blocksize 从8增至64时,所需时间增长,性能下降。总体上blocksize增加性能下降,原因如下:

• 当 blocksize 增加时,对于相同规模的情况下,一个块中的线程数越大,对数据访问的要求越大,对于物理上同一个Block同时对 Global Memory 的访问带宽大小并不是无限的,在 Blocksize 增大时,对访问带宽的压力会增大,当运算的速度超过转交数据的速度后,此时线程 会产生空等,并发度下降。

3 对GPU-任务2中的分块矩阵乘法,探讨不同的 gridsize 、 blocksize 以及 BLOCK 对性能的影响,并简要分析原因。

在不同的 blocksize 与不同的 gridsize 下的执行时间如下(MatrixSize = (2^10, 2^10))且 BlockSize与GridSize满足BlockSize*GridSize=(1<< N):

(blocksize,gridsize)	(4,256)	(8,128)	(16,64)	(32,32)
gpu time(ms)	12.020	3.6312	2.1577	2.5959

在分块矩阵乘法中,BLOCK = blocksize,即分析 blocksize 即可,且 BlockSize * GridSize = (1 << N)可以使负载均衡,性能较好。

可以看出,当 blocksize 增加时,**性能总体呈先提升后下降**趋势,原因如下:

• Block中存储的 Shared Memory 在 BlockSize 较少的时候利用率不高,因为Block中的线程过少以致于 Share dMemory 所带来的优化有限。当 BlockSize 增大时, Shared memory 的利用率增大,此时性能提升;再之后 BlockSize 增大时, Shared Memory 所需存储的数据增加,超过了 Share Memory 的大小,或是 Shared Memory 的带宽不足以支撑较多Block中愈多的线程数,使得线程取数据所需的平均Latency增加,从而导致性能下降。