MILIB COMPLETELY ABSTRACTS AWAY THE TECHNICAL IMPLEMENTATION PETAILS OF ALS

APACHE SPARK

Spark comes with some additional packages that make it truly general - purpose

Spark Core

Storage System Cluster
manager

Recap

APACHE SPARK

Spark SQL

Spark Streaming

MLlib GraphX

Spark Core

Storage System

Cluster manager

Recap

APACHE SPARK

Spark Core

Spark Core

MLlib provides built-in Machine Learning functionality in Spark

APACHE SPARK

This basically solves 2 problems with previous computing frameworks

MLlib GraphX

Abstraction Cluster manager Performance

Recap

APACHE SPARK

Spark Spark Spark Abstractioning

MLlib GraphX

Machine Learning algorithms are pretty complicated

APACHE SPARK

Abstraction

Python and R have libraries which allow you to plug and play ML algorithms with minimal effort

MLlib GraphX

These libraries are not suited for distributed computing

Recap

APACHE SPARK

park Spark Abstractioming

MLlib GraphX

Hadoop MapReduce is great for distributed computing, but it requires you to implement the algorithms yourself as map and reduce tasks

APACHE SPARK

Abstractioning

MLlib GraphX

MLlib has Built-in modules for Classification, regression, clustering, recommendations etc algorithms

Recap

APACHE SPARK

Abstractioning

MLlib GraphX

Under the hood the library takes care of running these algorithms across a cluster

Recap

APACHE SPARK

Abstractioming

MLlib GraphX

This completely abstracts the programmer from Implementing the ML algorithm Intricacies of running it across a cluster

APACHE SPARK

This basically solves 2 problems with previous computing frameworks

MLlib GraphX

Abstraction Performance

APACHE SPARK

Machine Learning algorithms are iterative, which means you need to make multiple passes over the same data

Performance

MLlib GraphX

Hadoop MapReduce is heavy on disk writes which is not efficient for Machine Learning

Recap

APACHE SPARK

Performance

MLlib GraphX

Since Spark's RDDs are in-memory It can make multiple passes over the same data without doing disk writes

MLlib

Let's use ALS to find Artist Recommendations

using the Audioscrobbler Vataset

MLlib

Audioscrobbler is an online music recommendation service

It was acquired by Last.fm

Audioscrobbler Pataset The dataset has User ID Artist ID

MLlib

times user listened to the artist

MLlib

User ID Artist ID

times user listened to the artist

If you consider this as an implicit rating

MLlib

UserID

ArtistID

times user listened to the artist

This dataset can be seen as a USER-PROPUCT-RATING Matrix

MLlib

USER-PROPUCT-RATING MATRIX

ArtistIV

PROD 2 PROD 3 PROD 4 PROD D

UserIP

USER 1 USER 2 USER 3

USER 4

USER N

1 KON 1	I KUV Z	· I KUV	y I KUV	4	IKOVV
4	1	4	l	ı	•
ı	3	4	į	ī	•
5	3	2	į	•	5
2	ı	2	l	-	4
ı	į	į	4	l	-
ı	1	ı	ı	ι	-
4	3	4	-	_	5

times user listened to the

MLlib

USER-PRODUCT-RATING MATRIX

All you need to do is feed this matrix to ALS in MLlib!

MLlib

Let's now look at the code

Load the dataset with User-Artist ratings

val rawUserArtistData = sc.textFile(uadatapath)

```
'1000002 1 55',
'1000002 1000006 33',
'1000002 1000007 8',
1000002 1000009 144'
1000002 1000010 314'
'1000002 1000013 8',
'1000002 1000014 42',
1000002 1000017 69',
1000002 1000024 329'
```

The data in this file looks like this

```
1000002 1 55',
1000002 1000006 33',
'1000002 1000007 8',
1000002 1000009 144'
'1000002 1000010 314'
'1000002 1000013 8',
'1000002 1000014 42',
1000002 1000017 69'
1000002 1000024 329
```

User IP

```
1000002 1 55',
'1000002 1000006 33',
1000002 1000007 8',
1000002 1000009 144'
'1000002 1000010 314'
'1000002 1000013 8',
'1000002 1000014 42',
1000002 1000017 69'
1000002 1000024 329'
```

Artist IV

```
1000002 1 55'
1000002 1000006 33',
'1000002 1000007 8',
1000002 1000009 144'
1000002 1000010 314'
'1000002 1000013 8',
'1000002 1000014 42',
'1000002 1000017 69',
1000002 1000024 329'
```

times user listened to the artist IMPlicit rating

```
1000002 1 55'
1000002 1000006 33',
'1000002 1000007 8',
1000002 1000009 144'
'1000002 1000010 314'
'1000002 1000013 8',
'1000002 1000014 42',
'1000002 1000017 69',
1000002 1000024 329'
```

Let's get a quick sense of this ratings column

```
rawUserArtistData map(x => x.split(" ")(2).toDouble).stats()
```

```
'1000002 1 55',
1000002 1000006
1000002 1000007
1000002 1000009
1000002 1000010
1000002 1000013
1000002 1000014
1000002 1000017
                 69'
```

Extract the ratings column

```
rawUserArtistData.map(x => x.split(" ")(2) toDouble).stats()
```

```
[u'1000002 1 55'
u'1000002 1000006
u'1000002 1000007
u'1000002 1000009
u'1000002 1000013
u'1000002 1000014
u'1000002 1000017
u'1000002 1000024
u'1000002 1000025
```

The column index is 2 i.e. the 3rd column

rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()

This will convert the rating to a number

```
rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()
```

(count: 24296858, mean: 15.295762, stdev: 153.915321, max: 439771.000000, min: 1.000000)

stats will give you some descriptive measures for the ratings column

```
rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()
```

(count: 24296858, mean: 15.295762, stdev: 153.915321, max: 439771.000000, min: 1.000000)

stats operation only works for numeric RDDs

```
rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()
```

count: 24296858, mean: 15.295762, stdev: 153.91532

The number ofratings

```
rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()
```

```
858, mean: 15.295762, stdev: 153.915321, max: 439771.00
```

Average of the ratings

Average number of times a user listens to an artist

```
rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()
```

858, mean: 15.295762, stdev: 153.915321, max: 439771.00

Standard deviation of the ratings

```
rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()
```

stdev: 153.915321, max: 439771.000000, min: 1.000000)

Max and min rating

```
rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()
```

As you can see this dataset is huge (24 million ratings

```
rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()
```

Some of these ratings might just be noise - artists that the user listened to very few times

```
rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()
```

We'll filter the ratings to include only very strong ratings

```
rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()
```

Also, ALS involves very expensive computations

rawUserArtistData.map(x => x.split(" ")(2).toDouble).stats()

(count: 24296858, mean: 15.295762, stdev: 153.915321, max: 439771.000000, min: 1.000000)

If you are running this algorithm on a local machine, filtering low ratings will help

- 1. Reduce the amount of processing
- 2. Reduce the amount of data held in-memory

val rawUserArtistData = sc.textFile(uadatapath)

rawUserArtistPata is an RPP of strings

val rawUserArtistData = sc.textFile(uadatapath)

Before feeding it to ALS, it should be converted into an RDD of Rating objects

```
import org.apache.spark.mllib.recommendation._
```

```
val uaData=rawUserArtistData.map(_.split(" ")).filter(_(2).toInt>
```

uaData is an RDD of Rating objects

```
val uaData=rawUserArtistData map(_.split(" ")).filter(_(2).toIr
```

Take the RPP of strings

```
val uaData=rawUserArtistData map(_.split(" ")).filter(_(2).toIr
```

Split the row into a array

```
erArtistData.map(_.split(" ")) filter(_(2).toInt>=20).map(x => Ra
```

Filter out any ratings which are below 20

```
toInt>=20).map(x => Rating(x(0).toInt,x(1).toInt,x(2).toInt)
```

Convert the array into a Rating object

```
val uaData=rawUserArtistData.map(_.split(" ")).filter(_(2).toInt>=20).map(x => Rating(x(0).toInt,x(
```

ALS will pass over this RDD many times

```
val uaData=rawUserArtistData.map(_.split(" ")).filter(_(2).toInt>=20).map(x => Rating(x(0).toInt,x(
```

```
uaData.persist()
```

Persisting will make the computation much faster

```
val uaData=rawUserArtistData.map(_.split(" ")).filter(_(2).toInt>=20).map(x => Rating(x(0).toInt,x(
```

uaData.persist()

Feed ualata to ALS

```
val model=ALS.trainImplicit uaData, 10, 5, 0.01, 1)
```

ALS has 2 methods: train and trainlenglicit

```
val model=ALS.trainImplicit(uaData, 10, 5, 0.01, 1)
```

Since our ratings are implicit ratings, we use the trainlmplicit method

```
val model=ALS.trainImplicit(uaData 10 5,0.01,1)
```

This is the number of hidden factors it should look for

val model=ALS.trainImplicit(uaData, 10, 5, 0.01, 1)

This is the max number of iterations ALS should go through

val model=ALS.trainImplicit(uaData, 10, 5, 0.01, 1)

These are lambda and alpha These parameters are used to control the quality of the ALS results

val model=ALS.trainImplicit(uaData, 10, 5, 0.01, 1)

Understanding how to choose these 4 parameters is a topic for another day:)

val model=ALS.trainImplicit(uaData, 10,5,0.01,1)

This set of values works pretty well for the Audioscrobbler dataset

val model=ALS.trainImplicit(uaData, 10,5,0.01,1)

In general, the choice of parameters is driven by the dataset and the domain

val model=ALS.trainImplicit(uaData, 10,5,0.01,1)

There are also separate techniques called hyper-parameter tuning techniques to find the right values

```
val model=ALS.trainImplicit(uaData,10,5,0.01,1)
```

```
var recommendations=model recommendProducts(user,5)
```

The model RDD returned by ALS has a recommendProducts method

```
val model=ALS.trainImplicit(uaData, 10, 5, 0.01, 1)
```

var recommendations=model.recommendProducts user,5)

Give this method a user id, and the number of recommendations you want

```
val model=ALS.trainImplicit(uaData, 10, 5, 0.01, 1)
```

var recommendations=model.recommendProducts(user,5)

This is the beauty of Spark's MLlib

```
val model=ALS.trainImplicit(uaData, 10, 5, 0.01, 1)
```

var recommendations=model.recommendProducts(user,5)

We have implemented the ALS recommendations algorithm in 2 lines of code!

var recommendations=model.recommendProducts(user,5)

recommendations

Array Rating(1000002,1270,1.185725442054678), Rating(1000002,1000188,1.16772495057541834), Rating(1000002,1428,1.15/6052/90420486), Rating(1000002,82,1.13

recommendations is an RPP of Rating objects

var recommendations=model.recommendProducts(user,5)

recommendations

Array Rating(1000002,1270,1.185725442054678), Rating(1000002,1000188,1.16772495057541834), Rating(1000002,1428,1.15/6052/90420486), Rating(1000002,82,1.13

These are the recommended Artist Ids

Let's quickly see how good the recommendations are We'll get recommendations for this user

user = 100002

Let's quickly see how good the recommendations are

user=100002

In order to assess the quality of recommendations, we'll first see what kind of music this user likes

user=100002

```
val userArtists=rawUserArtistData.map(_.split(" ")).filter{case Array(userI
```

We'll find out which artists this user already likes

```
user=100002
```

```
val userArtists=rawUserArtistData.map(_.split(" ")).filter{case Array(userI
```

The raw user artist data

user=100002

```
val userArtists=rawUserArtistData.map(_.split(" ")) filter{case Array
```

Split the row into a list

user=100002

```
.filter{case Array(userId,_,rating) => (userId.toInt == user) && (rating.toInt>50)}.mag
```

Filter rows corresponding to this user

user=100002

```
.filter{case Array(userId,_,rating) => (userId.toInt == user) & (rating.toInt>50)}.mag
```

The user should have listened to these artists at least 50 times

user = 1000002

```
user) && (rating.toInt>50)}.map(_(1)).collect()
```

Extract the artist id

It's the second element of the row array

user=100002

```
user) && (rating.toInt>50)}.map(_(1)).collect()
```

Collect these artists into a list

val artistLookup=sc.textFile(artistsPath).map(_.sp

Audioscrobbler also provides a file to lookup the artist name for an artist id

```
.textFile(artistsPath).map(_.split("\t")).filter(_.length==2)
```

Split the row into an array

```
h).map(_.split("\t")).filter(_.length==2).map(x => (x(0),x(1))
```

Make sure the array has 2 elements

```
)).filter(_.length==2).map(x => (x(0),x(1))
```

Set up each record as a tuple of (Artist ID, Artist Name)

```
val artistLookup=sc.textFile(artistsPath).map(_.split("\t")).filter(_.length==2).map(x => (x(0),x(1)))
```

artistLookup.persist()

Persist the RDD as we will be looking it up many times

```
for (artist <- userArtists){
    println( artistLookup.lookup(artist)(0))}</pre>
```

Use the lookup action to print the names of the artists this user already likes

```
for (artist <- userArtists){
    println( artistLookup.lookup(artist)(0))}</pre>
```

lookup will return an object of type WrappedArray with 1 element

```
for (artist <- userArtists){
    println( artistLookup.lookup(artist)(0))}</pre>
```

Extract the Artist name from that array

```
for (artist <- userArtists){
    println( artistLookup.lookup(artist)(0))}</pre>
```

```
Aerosmith
Judas Priest
Metallica
Foo Fighters
Counting Crows
Creed
Audioslave
Muse
(hed) Planet Earth
Dire Straits
Free
Fun Lovin' Criminals
Guns N' Roses
Satriani, Joe
Joe Satriani
Bruce Springsteen
```

Looks like this user is a Rock music fan!

```
for (rating <- recommendations){
    println( artistLookup.lookup(rating.product.toString)(0))}

Queen</pre>
```

Dire Straits U2 Eric Clapton Pink Floyd

Let's print the recommended Artist names

```
for (rating <- recommendations) {</pre>
    println( artistLookup.lookup(rating.product.toString)(0))}
  Queen
  Dire Straits
  U2
  Eric Clapton
  Pink Floyd
```

Pretty good recommendations for a Rock music fan!

Latent Factor analysis and ALS are pretty magical

Queen
Dire Straits
U2
Eric Clapton
Pink Floyd

We just need to have a good dataset with User-Product Ratings

We just need to have a good dataset with User-Product Ratings

Queen
Dire Straits
U2
Eric Clapton
Pink Floyd

The algorithm takes care of finding out the hidden factors that influence user's preferences