Thesis

Fang Ni

October 5, 2018

Contents

1	Introduction		5
	1.1	Pairing interaction in nuclei	5
		1.1.1 A subsection	6
2	Pairing model		7
	2.1	Exact solution	7
	2.2	TDHFB dynamics	7
3	Rec	quantization of TDHFB in integrable system	9
	3.1	Canonical quantization	9
	3.2	Fourier decomposition	9
	3.3	Stationary phase to the path integral	9
	3.4	Result	9
4	Rec	quantization of TDHFB in non-integrable system	11
	4.1	Derivation of the collective subspace in adiabatic self-consistent collective	
		coordinate method	11
	4.2	Application of SPA in non-integrable system	11
	4.3	Result	11
5	Dis	cussion	13
6	Cor	nclusion	15

Introduction

1.1 Pairing interaction in nuclei

Pairing correlation plays an important role near the Fermi energy. Pairing correlation is the two-body interaction which couples two identical nucleons into $J^{\pi}=0^+$ state. There are many evidences of pairing correlation detected from experiment. The most clear evidence is shown in Fig. 1.1. All of the ground states of even-even Sn isotopes are $J^{\pi}=0^+$ states It indicates that the ground states consist of the $J^{\pi}=0^+$ pairs is more stable than other configurations. In addition, the ground states between even-even nuclei and neighborhood odd nuclei has large gaps of binding energy. In odd nuclei, the unpaired last neutron is the last single-particle level. The odd-even mass difference To break the $J^{\pi}=0^+$ pair, we need large energy which is about $2\Delta\approx 24A^{-1/2}$ MeV.

1.1.1 A subsection

More text.

Figure 1.1: Low-lying excited states in Sn isotopes []. The absolute values of binding energy are adjusted at 0 MeV in the ground state of $^{116}{\rm Sn}$.

Pairing model

To examine the pairing dynamics influencing the structure of nuclei, we can only concentrate the nucleons near the Fermi energy. The Hamiltonian of pairing model is

$$H = \sum_{l} \epsilon_{l} n_{l} - g \sum_{l,l'} S_{l}^{+} S_{l'}^{-}, \qquad (2.1)$$

where

$$n_l = \sum_{m} a_{lm}^{\dagger} a_{lm} \tag{2.2}$$

$$n_{l} = \sum_{m} a_{lm}^{\dagger} a_{lm}$$

$$S_{l}^{+} = \sum_{m>0} a_{lm}^{\dagger} a_{l\overline{m}}^{\dagger}, \quad S_{l}^{-} = S_{l}^{+\dagger}$$

$$(2.2)$$

- **Exact solution** 2.1
- 2.2 TDHFB dynamics

Requantization of TDHFB in integrable system

- 3.1 Canonical quantization
- 3.2 Fourier decomposition
- 3.3 Stationary phase to the path integral
- 3.4 Result

Requantization of TDHFB in non-integrable system

- 4.1 Derivation of the collective subspace in adiabatic self-consistent collective coordinate method
- 4.2 Application of SPA in non-integrable system
- 4.3 Result

Discussion

Conclusion