Introduction to Machine
Learning: CS 436/580L
Inductive (Supervised)
Learning: Hypothesis Spaces

Instructor: Arti Ramesh Binghamton University

Administrivia

- Homework 0 is available on myCourses
 - Worth 4/40 points
 - Due Sep 6th, Wednesday, 11:59 pm
 - Late penalty is 10% after the deadline

Probability Review Recap

- Mutual Exclusion
- Independence
- Conditional Independence
- Expectation
- Variance

Probability Review

The weather on a particular day can be sunny, cloudy, or rainy. It can be sunny with probability = 0.3, cloudy with probability = 0.4, and rainy with probability = 0.3. A concert is planned to be held in the city. If the weather is sunny, the concert will be held 100%. If the weather is cloudy or rainy, it will be held with probability 0.8 and 0.5, respectively.

What is the probability that the concert will be held?

Probability Review

Let X denote the sum of two fair dice. What is the expectation of X?

Recap

- Different definitions of machine learning and all are correct!!!
- Slight variations according to type of learning
- Types of Learning
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
 - Semi-Supervised Learning

Types of Learning

Supervised Learning

- problem: the learner is required to learn a function which maps a vector into one of several classes by looking at several input-output examples of the function.
- standard formulation of the supervised learning task: classification

Types of Learning

Unsupervised Learning

- models a set of inputs: labeled examples are not available
- standard formulation of the unsupervised learning task: clustering

Semi-supervised Learning

 combines both labeled and unlabeled examples to generate an appropriate function or classifier

Types of Learning

Reinforcement Learning

- the algorithm learns a policy of how to act given an observation of the world
- Every action has some impact in the environment, the environment provides feedback that guides the learning algorithm

Which type of learning is best?

- Determining the best move to make in a game
- Distinguish between dogs, cats, and horse pictures
- Elevator scheduling
- Agent in field trying to diffuse a bomb
- Speech analysis of telephone conversation (400 hours annotation time for each hour of speech)

ML in a Nutshell

- Tens of thousands of machine learning algorithms
- Hundreds new every year
- Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization

Representation

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- Etc.

Optimization

- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming

Supervised Learning

- Given: Training examples (x, f(x)), for some unknown function
- Find: an approximation to f

Example Applications

- Credit risk assessments
 - x: properties of customer and proposed purchase
 - f(x): to approve/reject purchase
- Disease diagnosis
 - x: properties of patient (symptoms, lab tests)
 - f(x): disease diagnosis, recommended therapy
- Face recognition
 - x: bitmap picture of person's face
 - f(x): Person's name

Appropriate Applications for Supervised Learning

- Situations where there is no human expert
 - x: bond graph for a new molecule
 - -f(x): predicted binding strength to AIDS protease molecule
- Situations where humans can perform the task but cant describe how to do it
 - x: bitmap picture of handwritten character
 - f(x): ASCII code of character
- Situations where desired f(x) is changing rapidly
 - x: description of stock prices and trades for last 10 days
 - f(x): recommended stock transactions
- Situations where each user needs a customized f
 - x: incoming email message
 - f(x): importance score for presenting to user

Example: A dataset for supervised learning

Sepal Length	Sepal Width	Petal Length	Petal Width	Class
5.1	3.5	1.4	0.2	Iris-Sentosa
6.1	3.0	4.6	1.4	Iris-Versicolor
7.2	3.6	6.1	2.5	Iris-Virginica

- Columns are called input variables, features, or attributes
- The type of flower {Iris-Sentosa, Iris-Versicolor, Iris-Virginica} are called target variables, output variables, or labels
- A row in the table is called a training example
- The whole table is called (training, validation, test or evaluation) data set
- The problem of predicting the label is called classification

Supervised Learning: Formal Definition

A learning problem!

Х	0	Χ
0	X	0
0	X	X

X	0	Χ
X	X	0
Χ	0	0

$$f(x)=1$$

$$f(x)=0$$

$$f(x)=?$$

A Learning Problem!

X1	X2	Х3	X4	X5	Х6	Х7	X8	Х9	f(x)
X	0	Χ	0	X	0	0	X	X	1
X	0	Χ	Χ	X	0	Χ	0	0	1
X	Χ	Χ	0	Χ	X	0	0	0	1
0	Χ	0	X	0	X	0	X	X	0
0	0	Χ	X	Χ	0	0	X	X	0
0	Χ	Χ	X	0	0	0	Х	X	0
0	X	Χ	0	Χ	0	Χ	Χ	0	?

- x: a 9-dimensional vector
- f(x): a function or a program that takes the vector as input and outputs either a
 0 or a 1
- Task: given the training examples, find a good approximation to f so that in future if you see an unseen vector "x" you will be able to figure out the value of f(x)

Example of a learning problem

A Learning Problem

A simpler example for analysis!

Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

Classification problem

Given data or examples, find the function f?

How to find a good approximation to f?

• Complete Ignorance. There are $2^{16} = 65536$ possible boolean functions over four input features. We can't figure out which one is correct until we've seen every possible input-output pair. After 7 examples, we still have 2^9 possibilities.

You are assuming that the unknown function f could be any one of the 2716 functions!

x_1	x_2	x_3	x_4	y
0	0	0	0	?
0	0	0	1	?
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	?
1	0	0	1	1
1	0	1	0	?
1	0	1	1	?
1	1	0	0	0
1	1	0	1	0?
1	1	1	0	?
1	1	1	1	?

It turns out that out of the 2*1*16 possible functions, 2*1*9 classify all points in the training data correctly!

- 10,000 features
- Features are binary
- Output is binary

Number of boolean functions?

• **Simple Rules.** There are only 16 simple conjunctive rules.

You are assuming that the unknown function f could be any one of the 16 conjunctive rules!

Unfortunately, none of them work

Rule	Counter example	_					
$\Rightarrow y$	1	Example	x_1	x_2	x_3	x_4	y
$x_1 \Rightarrow y$	3	1	0	0	1	0	0
$x_2 \Rightarrow y$	2						Ĭ.
$x_3 \Rightarrow y$	1	2	0	1	0	0	0
$x_4 \Rightarrow y$	7	3	0	0	1	1	1
$x_1 \wedge x_2 \Rightarrow y$	3	4	1	0	0	1	1
$x_1 \wedge x_3 \Rightarrow y$	3	5	0	1	1	0	0
$x_1 \wedge x_4 \Rightarrow y$	3	6	1	1	0	0	0
$x_2 \wedge x_3 \Rightarrow y$	3					0	ľ
$x_2 \wedge x_4 \Rightarrow y$	3	7	0	1	0	1	0
$x_3 \wedge x_4 \Rightarrow y$	4						
$x_1 \wedge x_2 \wedge x_3 \Rightarrow y$	3						
$x_1 \wedge x_2 \wedge x_4 \Rightarrow y$	3						
$x_1 \wedge x_3 \wedge x_4 \Rightarrow y$	3						
$x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3						

No simple rule explains the data. The same is true for simple clauses.

 $x_1 \wedge x_2 \wedge x_3 \wedge x_4 \Rightarrow y$

• m-of-n rules. There are 32 possible rules (includes simple conjunctions and clauses).

Countererample

At least *m* of the *n* variables must be true

You are assuming that the unknown function f could be any one of the 32 m-of-n rules!

Only one of them, the one marked by "***" works!

	Counterexample				
variables	1-of	2-of	3-of	4-of	
$\{x_1\}$	3	_	_	P11	
$\{x_2\}$	2	_	_	3 	
$\{x_3\}$	1	_	=		
$\{x_4\}$	7	=	_	b 8	
$\{x_1,x_2\}$	3	3	_	-	
$\{x_1,x_3\}$	4	3	_	5 	
$\{x_1,x_4\}$	6	3	_	_	
$\{x_2,x_3\}$	2	3	_	3 3	
$\{x_2,x_4\}$	2	3	-	.—.	
$\{x_3,x_4\}$	4	4	_	0	
$\{x_1,x_2,x_3\}$	1	3	3	i—2	
$\{x_1,x_2,x_4\}$	2	3	3	_	
$\{x_1,x_3,x_4\}$	1	***	3	-	
$\{x_2,x_3,x_4\}$	1	5	3		
$\{x_1,x_2,x_3,x_4\}$	1	5	3	3	

Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

Two Views of Learning

- Learning is the removal of uncertainty
- Learning requires guessing a good, small hypothesis case
- We could be wrong!
 - Our prior knowledge might be wrong!
 - Our guess for hypothesis class could be wrong!
 - The smaller the hypothesis class, more likely we are wrong!

Example: $x_4 \wedge Oneof\{x_1, x_3\} \Rightarrow y$ is also consistent with the training data.

Example: $x_4 \wedge \neg x_2 \Rightarrow y$ is also consistent with the training data.

If either of these is the unknown function, then we will make errors when we are given new x values.

Strategies for Machine Learning

- Strategy 1: Develop languages for expressing prior knowledge: rule grammars and stochastic models
- Strategy 2: Develop flexible hypothesis spaces: Nested collections of hypotheses – decision trees, rules, neural networks, ...
- In either case:
 - Develop algorithms for finding a hypothesis that fits the data!

Terminology

- Training Example: An example of form (x, f(x))
- Target function (target concept): The true function f
- Hypothesis: A proposed function h believed to be similar to f
- Concept: A boolean function. Examples for which f(x) = 1 are called positive examples or positive instances of the concept. Examples for which f(x) = 0 are called negative examples or negative instances of the concept.
- Classifier: A discrete-valued function. The possible values of \mathbf{f} are called class labels $f \in \{1,2,...K\}$
- Hypothesis Space: The space of learning algorithms that can be output by a learning algorithm

Key Issues in Machine Learning

- What are good hypothesis spaces?
 - Which spaces are useful in practical applications and why?
- What algorithms can work in these spaces?
 - Are there general design principles for machine learning algorithms?
- How can we optimize accuracy on future data points?
 - This is sometimes called the problem of overfitting
- How can we have confidence in the results?
 - How much training data is required to find accurate hypothesis
- Are some learning problems computationally intractable? (the computational question!)
- How can we formulate application problems as machine learning problems?

(the engineering question!)

Steps in Supervised Learning

- 1. Determine the representation for "x,f(x)" and determine what "x" to use (Feature Engineering)
- Gather a training set (not all data is kosher)(Data Cleaning)
- 3. Select a suitable evaluation method
- 4. Find a suitable learning algorithm among a plethora of available choices
 - Issues discussed on the previous slide

Feature Engineering is the Key

- Most effort in ML projects is constructing features
- Black art: Intuition, creativity required
 - Understand properties of the task at hand
 - How the features interact with or limit the algorithm you are using.
- ML is an iterative process
 - Try different types of features, experiment with each and then decide which feature set/algorithm combination to use

A sample machine learning Algorithm

- 2-way classification problem
 - +ve and –ve classes
- Representation: Lines (Ax+By=C)
 - Specifically
 - if Ax+By+C >0 then classify "+ve"
 - Else classify as "-ve"
- Evaluation: Number of mis-classified examples
- Optimization: An algorithm that searches for the three parameters: A, B and C.

Toy Example

Blue circles: Good credit (low risk)
Red circles: Bad credit (high risk)

Problem: Fit a line that separates the two such that the error is minimized.

How do machine learners solve this problem?

- Try different lines until you find one that separates the data into two
- A more plausible alternative
 - Begin with a random line
 - Repeat until no errors
 - For each point
 - If the current line says +ve and point is –ve then decrease
 A, B and C
 - If the current line says —ve and the point is +ve then increase A, B, and C

Toy Example: More data

Blue circles: Good credit (low risk)

Red circles: Bad credit

(high risk)

Problem: Fit a line that separates the two such that the error is minimized.

Learning = Representation + Evaluation + Optimization

Combinations of just three elements

Representation	Evaluation	Optimization
Instances	Accuracy	Greedy search
Hyperplanes	Precision/Recall	Branch & bound
Decision trees	Squared error	Gradient descent
Sets of rules	Likelihood	Quasi-Newton
Neural networks	Posterior prob.	Linear progr.
Graphical models	Margin	Quadratic progr.
Etc.	Etc.	Etc.