LinearRegression

May 16, 2025

0.1 Importing Necessary Libraries

```
[6]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
from sklearn.linear_model import LinearRegression
```

0.2 Creating Custom Dataset

```
[8]: np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
[8]: array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
[]: X = \text{np.array}([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).\text{reshape}(-1, 1)
     y = np.array([2.3, 4.5, 6.1, 8.9, 11.0, 12.9, 15.2, 18.5, 20.0, 21.9])
     print("X: \n", X)
    print("Y: \n", y)
    X:
     [[ 1]
     [ 2]
     [ 3]
     [ 4]
     [5]
     [ 6]
     [7]
     [8]
     [ 9]
     [10]]
    Υ:
     [ 2.3 4.5 6.1 8.9 11. 12.9 15.2 18.5 20. 21.9]
```

0.3 Visualizing the created Data Points

```
[14]: plt.scatter(X,y)
```

[14]: <matplotlib.collections.PathCollection at 0x7acd28975690>

0.4 Using Machine Learning Approach (Scikit Learn Library) for Linear Regression

```
[12]: # Defining the Model
model = LinearRegression()
# Fitting the Model
model.fit(X, y)
```

[12]: LinearRegression()

```
[13]: # Generating Model Predictions
y_pred = model.predict(X)
y_pred
```

[13]: array([2.10181818, 4.33030303, 6.55878788, 8.78727273, 11.01575758, 13.24424242, 15.47272727, 17.70121212, 19.92969697, 22.15818182])

0.4.1 Visualize the Linear Regression Line

```
[14]: plt.scatter(X,y)
plt.plot(X,y_pred)
```

[14]: [<matplotlib.lines.Line2D at 0x7fedf50c9b10>]


```
[16]: model.intercept_, model.coef_
```

[16]: (np.float64(-0.1266666666666693), array([2.22848485]))

0.5 Using Statsmodels Library for Regression (This is preferred in this course)

```
[18]: import statsmodels.api as sm
X_const = sm.add_constant(X)
model = sm.OLS(y, X_const).fit()
print(model.summary())
```

OLS Regression Results

Dep. Variable:	у	R-squared:	0.997	
Model:	OLS	Adj. R-squared:	0.997	
Method:	Least Squares	F-statistic:	2745.	

Date:	Wed, 14 May 2025	Prob (F-statistic):	1.95e-11
Time:	08:00:03	Log-Likelihood:	-3.5633
No. Observations:	10	AIC:	11.13
Df Residuals:	8	BIC:	11.73

Df Model: 1
Covariance Type: nonrobust

========		========	========	=========	=========	========
	coef	std err	t	P> t	[0.025	0.975]
const	-0.1267 2.2285	0.264 0.043	-0.480 52.392	0.644 0.000	-0.735 2.130	0.482
x1	2.2200 ========	0.043	52.392	0.000 =======	2.130	2.321
Omnibus:		3	3.667 Dur	bin-Watson:		2.210
Prob(Omnibu	ıs):	C).160 Jar	que-Bera (JE):	1.246
Skew:		C	0.846 Pro	b(JB):		0.536
Kurtosis:		3	3.353 Con	d. No.		13.7
=========		========	========	========	========	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

/home/fm-pc-lt-276/micromamba/envs/otg-fraud/lib/python3.11/site-packages/scipy/stats/_axis_nan_policy.py:430: UserWarning: `kurtosistest`p-value may be inaccurate with fewer than 20 observations; only n=10 observations were given.

return hypotest_fun_in(*args, **kwds)

0.5.1 Generating predictions and Visualizing

```
[7]: y_pred = model.predict(X)
plt.scatter(X,y)
plt.plot(X,y_pred)
```

[7]: [<matplotlib.lines.Line2D at 0x7dbc09526790>]

