This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,
Please do not report the images to the
Image Problem Mailbox.

PCT

世界知的所有権機関 国 原 事 務 局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C12N 9/12 A1 (11) 国際公開番号 WO98/08938 Translation つく Tapenese (43) 国際公開日 1998年3月5日(05.03.98) しない加まれ (21) 国際出版番号 PCT/JP97/02976 (81) 指定国 AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, いつの名(CSC3)を

(22) 国際出願日

1997年8月27日(27.08.97)

(30) 優先権データ 特願平8/226869

1996年8月28日(28.08.96)

(71) 出願人;および

(72) 発明者

吉田松年(YOSHIDA, Shonen)[JP/JP]

〒481 愛知県西春日井郡師勝町大宇高田寺361 Aichi, (JP)

(74) 代理人

介理士 社本一夫, 外(SHAMOTO, Ichio et al.)

〒100 東京都千代田区大手町二丁日2番1号

新大手町ビル206区 湯茂法律特許事務所 Tokyo, (JP)

(81) 指定国 AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, GH, HU, IL, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO特許 (GH, KE, LS, MW, SD, SZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

08/951, 733

(54)Title: PROTEINS HAVING TELOMERASE ACTIVITY

(54)発明の名称 テロメラーゼ活性を有するタンパク質

Fraction no. (fraction eige: 15 ml)

(57) Abstract

Proteins having a telomerase activity and being useful in screening telomerase inhibitors, developing diagnostic methods with the use of antibodies, etc. Conjugated proteins including proteins having a telomerase activity which have the following physicochemical properties: function and substrate specificity: catalyzing the elongation of the telomere DNA 3'-OH terminal of chromosomes of eukaryotes; molecular weight: ranging from about 40 to about 120 kD, in particular, about 110, 58 and/or 45kD in some cases, as determined by SDS-PAGE; inactivation: inactivated by treating with RNase; and characteristic: binding to mouse telomerase RNA.

(57) 要約

本発明の目的は、テロメラーゼ阻害剤のスクリーニング、抗体を用いる診断法 の開発などに有用な、テロメラーゼ活性を有するタンパク質を提供することであ る。

本発明により、下記の理化学的性質を有するテロメラーゼ活性を有するタンパク質を含む複合タンパク質:

作用および基質特異性: 真核生物の染色体のテロメアDNA3' 〇 H末端の伸長を触媒する;

分子量: SDS-PAGEで測定して、約40~約120kD、特には約110

kD、約58kDおよび/または約45kD;

不活性化:RNase処理により不活性化される;

性質:マウステロメラーゼRNAと結合する;

が提供される。

PCTに基づいて公開される国際出版のパンフレット第一頁に記載されたPCT加盟国を同定するために使用されるコード(参考情報)

Specification

Proteins Having Telomerase Activity

Technical Field

This invention is related to proteins having telomerase activity. In more detail, this invention is related to proteins having telomerase activity, which were purified from rat-derived tissue cultured cells.

Technical Background

Telomerase is known to catalyze elongation of the telomere end (terminal portion of linear chromosome) and many investigations have been conducted on this subject (Greider & Blackburn, Cell 51, 887-898, 1987; Morine, Cell 59, 521-529, 1989). In eukaryotes, telomerase is known as a type of reverse transcriptase which contains complementary template RNA to the telomere DNA sequence, 5' TTAGGG3', and elongates the single chain of telomere DNA based on the template RNA. At 3' end of linear DNA in eukaryotes, single chain of 5' (TTAGGG)_n3' is protruding and thus this structure functions as primer for the telomerase reaction.

While telomerase activity can not be detected in normal cells except some cells such as hemopoietic stem cells, its strong activity can be detected in most tumor cells. As such, telomerase is though to be involved with maintenance of infinite proliferation of tumor cells. Since telomerase is selectively detected in tumor cells as mentioned above, it is noteworthy as a target for antitumor agents.

Although enzyme proteins for telomerase have not been purified for a long period of time throughout all organisms, telomerase from tetrahymena has been recently purified and its cDNA has also been cloned (Collins et al, Cell 81, 677-786, 1995).

However, there has been no report of purified protein with telomerase activity from mammals such as rat and human.

Disclosure of Invention

One objective of this invention is to provide new proteins having telomerase activity, in particular proteins having telomerase activity derived from mammals.

Another objective of this invention is to establish a procedure to purify proteins having telomerase activity utilizing TRAP-SPA method, one of the methods to measure telomerase activity.

To achieve the above objectives, this inventor studied conditions in detail to purify proteins

having telomerase activity from rat hepatocytes as starting materials. As a result, this inventor successfully obtained a fraction containing relatively high telomerase activity by combining ammonium sulfate precipitation and purification treatments by certain column chromatographies and completed this invention.

That is, this invention provide conjugated proteins including proteins having telomerase activity with the following physicochemical properties:

function and substrate specificity: catalyzing elongation of telomere DNA 3'-OH terminal of chromosomes of eukaryotes;

molecular weight: ranging approximately 40-120 kD as determined by SDS-PAGE;

inactivation: inactivated by treating with RNase;

characteristic: binding to mouse telomerase RNA.

The molecular weights of above proteins having telomerase activity are approximately 110, 58 and/or 45kD by SDS-PAGE.

Furthermore, in another view, this invention provides proteins having telomerase activity as characterized by the following physicochemical properties:

function and substrate specificity: catalyzing elongation of telomere DNA 3' -OH terminal of chromosomes of eukaryotes;

molecular weight: approximately 110 kD, approximately 58 kD or approximately 45 kD as determined by SDS-PAGE;

inactivation: inactivated by treating with RNase;

characteristic: binding to mouse telomerase RNA.

The proteins having telomerase activity in this invention can be obtained by purifying them, preferably from rat hepatocytes.

In addition, the proteins having telomerase activity can be obtained preferably through ammonium sulfate precipitation of cell extract, a gel-filtration chromatography, a cation-exchange chromatography and a subsequent gel-filtration chromatography.

Inactivation by RNase treatment can be raised as one of characteristics of these proteins having telomerase activity in this invention.

This is because telomerase is riboprotein (complex between protein and RNA) requiring a RNA subunit to express its activity (functions as a template when elongating the telomere sequence). That is, when telomerase is treated by RNase, its RNA subunit is destroyed. Telomerase then loses the template for elongation of telomere sequence and is inactivated.

Concise Explanation of Figures

Figure 1 depicts ³H-incorporation of fractions obtained by gel-filtration chromatography using a Sephacryl S-300 column.

Figure 2 depicts ³H-incorporation of fractions obtained by cation-exchange chromatography using HyLoad SP column.

Figure 3 depicts ³H-incorporation of fractions obtained by gel-filtration chromatography using a Sephacryl S-400 column

The Best Form to Practice the Invention

We will list examples for preparation method of proteins having telomerase activity below. It is known that telomerase activity can be detected in reproductive organs and tumor cells in human. There is also a report that hepatocytes from rat show high telomerase activities at stationary and growth phases. Accordingly, proteins having telomerase activity in this invention can be prepared from materials (cultured cells and tissues) containing telomerase activity. For example, in an example described later, a preparation was carried out using rat AH7974 cells. Preparation methods for proteins having telomerase activity from materials containing telomerase activity in this invention are not limited to specific methods, but generally include proper combination of a salting out with inorganics (for example, ammonium sulfate, alkali metal sulfate salts, alkali metal halides), precipitation with organic solvents using hydrophilic organic solvents etc. (for example, alcohols such as ethanol or isopropyl alcohol, ketones such as acetone), adsorption and release methods using ion-exchange resins and a variety of column chromatographies, gel filtration, ultrafiltration and protein precipitating agents (for example, nucleic acids, tannin etc.).

Moreover, proteins having telomerase activity thus obtained can be further purified by isoelectric precipitation, dialysis, electric dialysis and electrophoresis.

For example, extract of rat hepatocytes is salted out with 40-60% ammonium sulfate. The precipitate is dissolved in buffer, filtered and fractionated by gel filtration (Sephacryl S-300 column). The active fraction is fractionated by cation-exchange chromatography (HyLoad SP column etc.). The active fraction is salted out with 60% ammonium sulfate. The precipitate is dissolved into buffer, filtered and further purified by gel filtration chromatography (Sephacryl S-400 column etc.). After collecting the active fraction, 8% SDS-PAGE analysis demonstrates three bands corresponding approximately to 110, 58 and 45 kD.

In addition, proteins having telomerase activity in this invention is characterized by its binding to mouse telomerase RNA. This binding can be measured by adding labeled mouse telomerase RNA to gel containing proteins having telomerase activity and performing autoradiography after a specified period of time as described in the following example.

There have been several reports regarding an assay method for telomerase activity, which is a key procedure for purification of telomerase. For example, with regards to telomerase activity detection for tetrahymena, there has been a report on telomerase detection dealing with

elongation of single primer. However, this has had problems with sensitivity, time required for detection, quantitativeness and amount of samples it can handle. To solve these problems, a method called TRAP (telomeric repeat amplification protocol), which is based on polymerase chain reaction, has been developed (Kim et al., Science 206, 2011-2015, 1994; Piatyszek et al., Meth Cell Sci 17, 1-15, 1995), and sensitivity and time required for detection have been improved.

However, the TRAP method still requires analysis of ³²P-labeled reaction products or fluorescence-labeled reaction products by polyacrylamide gel-electrophoresis or HPLC. This creates issues related to the sample size, handling of ³²P, time requirement for the procedures and delay required for quantitative determination of band visibility.

To solve the above problems, a method called TRAP-SPA, as a rapid and sensitive method to detect and quantitate telomerase activity, has been recently reported (Application Number 1996, 17830).

This invention provides new proteins having telomerase activity, does not limit telomerase assay methods, and any methods mentioned above can be used. In the following examples, the TRAP-SPA method, which is the most desirable as it is rapid and sensitive, is utilized.

Examples

Example 1: Preparation of CHAPS Extract

AH7974 cells (volume: 40-50 ml, equivalent to those obtained from six rats) were rinsed twice by suspending them in chilled phosphate buffer and centrifuging them. These cells were then rinsed with rinsing buffer (10 mM Hepes pH 7.5; 1.5 mM MgCl₂; 10 mM KCl; 1 mM DTT), centrifuged and suspended into 10 ml cell extract buffer (10 mM Tris-HCl pH 7.5; 1 mM MgCl₂; 1 mM EGTA; 1 mM PMSF; 5 mM 2-mercaptoethanol; 0.5% CHAPS; 10% glycerol). The suspension was kept on ice for 30 min and centrifuged at 15,000 rpm for 30 min to obtain the supernatant. This fraction had 30 mg protein/ml x 30 ml. This cell extract was used for the following purification.

Example 2: Ammonium Sulfate Precipitation

To the cell extract obtained at Example 1, 1 M Tris-HCl pH 8.3 was added at the ratio of 1/30, and 40-60% ammonium sulfate fraction was collected. This fraction was dissolved into 5-10 ml buffer D containing 20% glycerol (20 mM Tris-HCl pH 7.5; 1 mM EDTA; 1 mM sodium bisulfate; 0.01% NP-40; 10%? glycerol; 1 mM benzamidine) and filtered (0.45 μ m). The solution thus obtained had 42.78 mg protein/ml x 7 ml.

Example 3: Sephacryl S-300 Gel Filtration Column Chromatography

The ammonium sulfate fraction obtained in Example 2 was fractionated by a 45 mm x 50 cm Sephacryl S-300 (Pharmacia) column, which was equilibrated with buffer D (described in Example 2). The fractions obtained were analyzed by TRAP-SPA method as follows: to detect ³H incorporation which is specific to telomerase activity, the TRAP-SPA method was performed on both RNase (RNase +) treated and untreated (RNase -) samples from each fraction. The RNase treatment was carried out by adding 1 µl RNase (10 mg/ml) to a 20 µl sample and incubating it for 10 min at 30°C.

(TRAP-SPA method)

TS primer (sequence number 1) and CX primer (sequence number 2) were synthesized using a DNA synthesizer (ABI). Biotinyl-CX and -TS primers were synthesized by coupling biotinLCbiotin-ONTMphosphoramidite?(Clonetech) to 5' terminal of oligonucleotides. Primers were purified using CPC? column (ABI) (based on their instruction), lyophilized, treated with DEPC (diethylpyrocarbonate?) and suspended into water.

BiotinylCX primers (0.01-0.1 μg) (Biot-CX) were trapped in the presence of wax? in a Hot-Start tube (GIBCO-BRL).

The eluate fractions (20 μ l) (RNase treated or untreated) were incubated with 20 mM Tris-HCl pH 8.3, 1.5 mM MgCl₂, 63 mM KCl, 0.005% Tween 20, 1 mM EGTA, 50 μ M dATP and dCTP, 2 μ M dTTP, 50 μ M dGTP, 2 μ Ci [Me-³H]TTP (Amersham, 114 Ci/mmol), 0.1 μ g BSA/ml, 2 U Taq polymerase and 0.1 μ g or appropriate amount of TS primer in the final mixture volume of 50 μ l on wax barrier?at room temperature for 30 min.

To amplify the synthesized telomere oligonucleotides, the mixture was heated at 90°C for 90 sec, at 94°C for 30 sec, at 50°C for 30 sec and 72°C for 45 sec for one cycle. PCR was carried out for 31 cycles.

Reaction products (40 μ l) were transferred to 96 wellplate (Wallac), 50 μ l fluoromicrosphere (in 0.56 M EDTA, 1:4 solution) precoated with streptoavidin was added and incubated for 10 min at 37°C to let biotinylated ³H-labeled reaction product to bind to streptoavidin beads.

The plate was counted by MicroBeta Scintillation Counter (Wallac).

The relationship between each fraction and ³H-incorporation is depicted in Figure 1.

The fractions containing telomerase activity (elution volume was 315-375 ml: fraction numbers in Figure 1 were 21-25) were collected. This fraction showed 1.3 mg protein/ml x 75 ml.

Example 4: Cation Exchange Chromatography by HyLoad SP Column

The active gel filtration fraction (75 ml) obtained in Example 3 was applied to HiLoad? SP column (Pharmacia: 16 mm x 10 cm) which was equilibrated with buffer D and a KCl gradient (0.0-1.0 M) was instituted. Each fraction was analyzed by TRAP-SPA method as described in Example 3. Figure 2 depicts ³H-incorporation of each fraction.

The fraction with telomerase activity (27.5 ml, fraction numbers 43-47 in Figure 2), which was eluted with 0.1-0.3 M KCl, was collected.

Proteins in this fraction were precipitated with ammonium sulfate (60% saturation) and dissolved into 4 ml buffer D containing 20% glycerol. The protein concentration at this point was 1.0 mg/ml. This sample was filtered (0.45 μ).

Example 5: Gel Filtration Chromatography by Sephacryl S-400

The material purified by a HiLoad? column in Example 4 was further fractionated by applying it to a 15 mm x 75 cm Sephacryl S-400 column (Pharmacia), which was equilibrated with buffer D with 50 mM KCl. Each fraction was analyzed by the TRAP-SPA method as described in Example 3. Figure 3 depicts the relationship between each fraction and ³H-incorporation. The fraction containing telomerase activity (fraction number 22 in Figure 3: 3 ml) was collected. The protein concentration of this fraction was 0.289 mg/ml.

Example 6: Analysis by SDS-PAGE

The fraction containing telomerase activity in Example 5 (fraction number 22 in Figure 3) was analyzed by SDS-PAGE using 8-10% gel concentration.

As a result, multiple bands were detected between approximately 40 kD and approximately 120 kD, particularly detecting strong bands at approximately 110, 58 and 45 kD.

Example 7:Binding of Telomerase RNA to a Subunit of Proteins Having Telomerase Activity (1) Cloning of Mouse Telomerase RNA

Mouse telomerase RNA gene was amplified by RT-PCR method using mouse liver total RNA (Clonetech, catalog #64042-1) as a source, and subcloning was performed at SmaI site of pGEM-3Zf(-) vector (pGEM3Zf/mTR). The utilized 5' and 3' primers are as follows:

- 5' -GGG GTA TTT AAG GTC GAG GGC GGC-3'
- 5' -TTG TGA GAA CCG AGT TCC GGG TGC-3' (sequence numbers 3 and 4).
- (2) Preparation of Mouse Telomerase RNA
- ³²P-labeled telomerase RNA was prepared according to instruction using pGEM3Zf/mTR (as sense chain is synthesized by T7RNApolymerase, the vector in which telomerase RNA gene is inserted) which was cleaved by BamH1 as template and Riboprobe Combination System-Sp6/T7 (Promega) (synthsized telomerase RNA include GGG CGA AUU CGA GCU CGG UAG CCG and AGG GGA UC at the 5' and 3' terminals, respectively, which were derived from vector sequence.
- (3) Binding of Telomerase RNA to Bands Separated by SDS-PAGE Was Analyzed Based on the

Method of Collins et al. (Cell 81, 677-686).

The fraction with high telomerase activity (fraction number 22 in Figure 3) was fractionated by SDS-PAGE as described in Example 6. To achieve recoiling of proteins, SDS gel was rinsed with 50% methanol solution for 15 min and with 10% ethanol for 4 h with shaking. In addition, after the gel was equilibrated with 50 mM Tris-acetate pH 8.0, 10 mM MgCl₂, 10% glycerol, ³²P-labeled telomerase RNA was added with Yeast RNA (Sigma). After overnight incubation, the gel was rinsed, and autoradiography was carried out.

As a result, multiple bands were detected between approximately 40 kD and approximately 120 kD, particularly detecting strong bands at approximately 110, 58 and 45 kD.

Potential Industrial Field of Application

Proteins having telomerase activity in this invention are new proteins.

Proteins having telomerase activity in this invention are useful in screening telomerase inhibitors and developing diagnostic methods with the use of antibodies.

Sequence Table

Sequence Number: 1 Sequence Length: 18

Sequence Pattern: nucleic acid Number of Chains: single chain

Topology: linear

Type of Sequence: other nucleic acid (synthetic DNA)

Characteristics of Sequence:
Other information: TS primer

Sequence:

AATCCGTCGA GCAGAGTT

Sequence Number: 2 Sequence Length: 24

Sequence Pattern: nucleic acid Number of Chains: single chain

Topology: linear

Type of Sequence: other nucleic acid (synthetic DNA)

Characteristics of Sequence:
Other information: CX primer

Sequence:

CCCTTACCCT TACCCTTACC CTAA

Sequence Number: 3 Sequence Length: 24

Sequence Pattern: nucleic acid Number of Chains: single chain

Topology: linear

Type of Sequence: other nucleic acid (synthetic DNA)

Sequence:

GGGGTATTTA AGGTCGAGGG CGGC

Sequence Number: 4
Sequence Length: 24

Sequence Pattern: nucleic acid

Number of Chains: single chain

Topology: linear

Type of Sequence: other nucleic acid (synthetic DNA)

Sequence:

TTGTGAGAAC CGAGTTCCGG GTGC

Scope of Claims

1. Conjugated proteins which include proteins having telomerase activity with following physicochemical properties:

function and substrate specificity: catalyzing elongation of telomere DNA 3'-OH terminal of chromosomes of eukaryotes;

molecular weight: ranging approximately 40-120 kD as determined by SOS-PAGE;

inactivation: inactivated by treating with RNase;

characteristic: binding to mouse telomerase RNA.

- 2. Conjugated proteins within the first item of scope of claims with the characteristics that the molecular weights determined by SDS-PAGE of proteins having telomerase activity are approximately 110, 58 and 45 kD.
- 3. Proteins having telomerase activity with characteristics of the following properties: function and substrate specificity: catalyzing elongation of telomere DNA 3'-OH terminal of chromosomes of eukaryotes;

molecular weight: approximately 110, 58 and 45 kD determined by SDS-PAGE; inactivation: inactivated by treating with RNase; characteristic: binding to mouse telomerase RNA.

- 4. Proteins described in any of claims 1-3 with characteristics of being derived from rat hepatocytes.
- 5. Proteins described in any of the claims 1-4 with characteristics that these proteins can be purified from cell extract by ammonium sulfate precipitation, gel filtration chromatography, cation-exchange chromatography, and gel filtration chromatography.

PETIUP97/02976

WO 98/05936

PCT/JP97/025/74

WO PROFIS

Fig. 3

(51) 国際特許分類6 C12N 9/12 A1 (11) 国際公開番号 WO98/08938 スパットロント していれると しているよ

(21) 国際出願番号

PCT/JP97/02976

(22) 國際出願日

1997年8月27日(27.08.97)

(30) 優先権データ

特顯平8/226869

1996年8月28日(28.08.96)

(71) 出願人;および

(72) 発明者

吉田松年(YOSHIDA, Shonen)[JP/JP]

〒481 愛知県西春日井郡師勝町大字高田寺361 Aichi, (JP)

(74) 代理人

弁理士 社本一夫、外(SHAMOTO, Ichio ct al.) 〒100 東京都千代田区大手町二丁目2番1号

新大手町ビル206区 湯茂法律特許事務所 Tokyo, (JP)

(81) 指定国 AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, GH, HU, IL, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO特許 (GH, KE, LS, MW, SI), SZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開各類 国際調査報告書

(54) Title: PROTEINS HAVING TELOMERASE ACTIVITY

(54)発明の名称 テロメラーゼ活性を有するタンパク質

Fraction no. (fraction eige: 15 ml)

(57) Abstract

Proteins having a telomerase activity and being useful in screening telomerase inhibitors, developing diagnostic methods with the use of antibodies, etc. Conjugated proteins including proteins having a telomerase activity which have the following physicochemical properties: function and substrate specificity: catalyzing the elongation of the telomere DNA 3'-OH terminal of chromosomes of eukaryotes; molecular weight: ranging from about 40 to about 120 kD, in particular, about 110, 58 and/or 45kD in some cases, as determined by SDS-PAGE; inactivation: inactivated by treating with RNase; and characteristic: binding to mouse telomerase RNA.

(57) 妥约

本発明の目的は、テロメラーゼ阻容剤のスクリーニング、抗体を用いる診断法 の開発などに有用な、テロメラーゼ活性を有するタンパク質を提供することであ る。

本発明により、下記の理化学的性質を有するテロメラーゼ活性を有するタンパク質を含む複合タンパク質:

作用および基質特異性: 真核生物の染色体のテロメアDNA3' 〇 H末端の伸長を触媒する;

分子量: SDS-PAGEで測定して、約40~約120kD、特には約110kD、約58kDおよび/または約45kD:

不活性化: RNase処理により不活性化される;

性質:マウステロメラーゼRNAと結合する:

が提供される。

PCTに基づいて公回される回憶出口のパンフレットは一耳に包口されたPCT加図回を同定するために使用されるコード(①今行口)

明細音

テロメラーゼ活性を有するタンパク質

技術分野

本発明は、テロメラーゼ活性を有するタンパク質に関する。さらに詳細には、

 本発明は、ラット由来の培養細胞から箱製されたテロメラーゼ活性を有するタンパク質に関する。

背景技術

テロメラーゼは、テロメア末端(直鎖状染色体の末端部分)の伸長を触媒する 酵素であることが知られており、数多くの研究がなされている(Greider C. W. a nd Blackburn E. H., (1987) Cell, 51, 887-898; Morine G. B. (1989) Cell, 59, 521-529)。テロメラーゼは、真核細胞の場合、テロメアDNA配列の5'TT AGGG3'に相補的な鋳型RNAを含む酵菜で、鋳型RNAをもとにしてテロ メアDNAの一本鎖を延長する一種の逆転写酵菜として知られる酵素であり、真 核細胞の直鎖状DNAの3'末端は、5'(TTAGGG)n3'の一本鎖がと びだした状態になっており、これがテロメラーゼ反応のプライマーになる。

テロメラーゼの活性は、造血幹細胞など一部の細胞を除き、正常細胞では検出されない一方、癌組織の大部分で強いテロメラーゼ活性が検出できることから、 テロメラーゼは癌細胞の無限増殖の維持に関わっていると考えられる。

20 以上のようにテロメラーゼ活性は癌細胞に選択的に検出されることから、制癌 剤のターゲットとして大いに注目する価値がある。

テロメラーゼ酵素タンパク質については、全生物を通じて長い間精製されていなかったが、最近テトラヒメナのテロメラーゼで箱製され、そのcDNAもクローニングされた(K, Collins et al., Cell, Vol.81, p.677-686 (1995))。

25 しかし、ラットあるいはヒトなどのような哺乳動物から箱製単離されたテロメ ラーゼ活性を有するタンパク質については、現在の所未だ報告されていない。

発明の開示

本発明の目的の一つは、テロメラーゼ活性を有する新規なタンパク質、特には 哺乳動物由来のテロメラーゼ活性を有するタンパク質を提供することである。

本発明の別の目的は、テロメラーゼ活性の測定方法の一つであるTRAP-S PA法を使用して、テロメラーゼ活性を有するタンパク質を単離精製する方法を確立することである。

本発明者は、上記課題を解決するために、原材料としてのラット由来肝細胞からテロメラーゼ活性を有するタンパク質を精製するための精製条件を鋭意検討した。その結果、本発明者は、硫酸アンモニウム沈殿と特定のカラムクロマトグラフィー精製処理の組み合わせとを行うことにより、比較的高いテロメラーゼ活性を有する画分を得ることに成功し、本発明を完成した。

即ち、本発明は、下記の理化学的性質を有するテロメラーゼ活性を有するタンパク質を含む複合タンパク質:

作用および基質特異性: 真核生物の染色体のテロメアDNA3 OH末端の伸長を触媒する:

分子母: SDS-PAGEで測定して、約40~約120kD:

不活性化: RNase処理により不活性化される:

性質:マウステロメラーゼRNAと結合する;

を提供する。

10

15

20 上記のテロメラーゼ活性を有するタンパク質の分子量は、特には、SDS-P AGEで測定して、約110kD、約58kDおよび/または約45kDである。 さらに別の側面においては、本発明は、下記の理化学的性質を有することを特徴とする、テロメラーゼ活性を有するタンパク質:

作用および基質特異性: 真核生物の染色体のテロメアDNA3 〇H末端の伸長

25 を触媒する:

分子員: SDS-PAGEで測定して、約110kD、約58kDまたは約45kD;

不活性化: RNase処理により不活性化される;

性質:マウステロメラーゼRNAと結合する:

を提供する。

本発明によるテロメラーゼ活性を有するタンパク質は、好ましくは、ラット肝 細胞から精製することにより得ることができる。

また、本発明によるテロメラーゼ活性を有するタンパク質は、好ましくは、細胞抽出液を、硫酸アンモニウム沈殿、ゲル濾過クロマトグラフィー、陽イオン交換クロマトグラフィー、次いでゲル濾過クロマトグラフィーに付して箱製することにより得ることができる。

本発明のテロメラーゼ活性を有するタンパク質の性質の一つとして、RNase処理により不活性化されることが挙げられる。

10 これは、テロメラーゼはリポタンパク質(タンパク質とRNAの複合体)であり、その活性の発現にはRNAサブユニット(テロメア配列を伸長する際の鋳型としての役割を担う)が必須であることに起因する。すなわち、テロメラーゼは、RNaseで処理されるとそのRNAサブユニットが分解されることによりテロメア配列伸長の際の鋳型を失い、不活性化されるのである。

15

20

5

図面の簡単な説明

図1は、Sephacry1 S-300 カラムを用いたゲル協過クロマトグラフィーにより 分画された各画分における 3 H-取り込み包を示すグラフである。

図2は、HyLoad SP カラムを用いた陽イオン交換クロマトグラフィーにより分画された各画分における 3 H -取り込み量を示すグラフである。

図3は、Sephacryl S-400カラムを用いたゲル認過クロマトグラフィーにより 分画された各画分における 3 H -取り込み母を示すグラフである。

発明を実施するための最良の形態

25 以下に、本発明のテロメラーゼ活性を有するタンパク質の調望方法の例を記載 する。

テロメラーゼは、ヒト組織の場合、生殖巣および癌細胞で活性が見られることが知られており、また、生体ラット肝細胞において静止期および増殖期ともに高いテロメラーゼ活性が存在するとの報告もある。従って、本発明のテロメラーゼ

活性を有するタンパク質は、このようなテロメラーゼ活性を有する材料(培養細胞または組織など)から調製することが可能である。例えば、後に記蔵する実施例においては、本発明の一例を示すものとして、ラットのAH7974細胞から調製している。

5 上記のようなテロメラーゼ活性を有する材料から本発明のテロメラーゼ活性を有するタンパク質の調製方法は、特定の方法に限定されるわけではないが、一般的には、無機塩類(例えば、硫酸アンモニウム、硫酸アルカリ金属、ハロゲン化アルカリ金属など)による塩析法、親水性有機溶媒(例えば、エタノールまたはイソプロピルアルコールなどのアルコール類、アセトンなどのケトン類)などによる溶媒沈股法、イオン交換樹脂および各種カラムクロマトグラフィーによる吸脱

さらにこのようにして得たテロメラーゼ活性を有するタンパク質は、等電点沈

限法、選析法、電気透析法、電気泳動法などによりさらに稍裂することができる。
例えば、ラット肝細胞抽出液を、40~60%飽和硫酸アンモニウムで塩析し、
その沈殿を緩衝液に溶解し、フィルター濾過後、ゲル濾過クロマトグラフィー
(Sephacryl S-300カラムなど)により分画する。その活性画分を、陽イオン交換クロマトグラフィー(RyLoad SPカラムなど)により分画する。その活性画分を、60%飽和硫酸アンモニウムで塩析し、その沈殿を緩衝液に溶解し、フィルター濾過した後、ゲル濾過クロマトグラフィー(Sephacryl S-400カラムなど)でさらに分画する。活性画分を分取し、8%SDS-PAGEで分析すると、各々約110kD、約58kDおよび約45kDに対応する3本のバンドが示される。

15

20

25

さらに、本発明のテロメラーゼ活性を有するタンパク質は、マウステロメラーゼRNAと結合することを特徴の一つとしている。この結合は、以下の実施例に記録するように、標識したマウステロメラーゼRNAを、テロメラーゼ活性を有するタンパク質を含むゲルに加え、一定時間放置した後、オートラジオグラフィーを行うことにより測定することができる。

テロメラーゼの精製単離の上で鍵となる重要な操作であるテロメラーゼ活性の

測定方法としては、これまでにいくつか報告されている。例えば、テトラヒメナにおけるテロメラーゼ活性の検出に関するものとして、単一のプライマー伸長アッセイ系によりテロメラーゼを検出するものが報告されている。しかしながら、この方法は、感度、検出に要する時間、定貸性、そして大量のサンプル処理に問題があった。これらの問題を解決するために、TRAP (telomeric repeat amplification protocol) と呼ばれるポリメラーゼ連鎖反応に基づく測定方法が開発され(Kim N.W. et al., (1994) Science, 206, 2011-2015; Piatyszek M.A. et al., (1995) Meth. Cell Sci: 17, 1-15)、感度および検出時間の問題が改善された。

- 10 しかしながら、このTRAP法は、ポリアクリルアミドゲル電気泳動やHPL Cなどによる³²P-標識反応産物や蛍光標識反応産物の分析を依然として必要と しているため、測定できるサンプル数に制限があり、³²Pの取り扱いの問題、操 作に長時間を要すること、検出されたバンドの強度の定量の必要による結果の遅 延などという問題を有していた。
- 15 上記のような問題を解決するために、より最近になって、迅速かつ高感度にテロメラーゼ活性を検出、定量するための方法として、TRAP-SPA法と呼ばれる方法が報告されている(特願平8-17830)。

本発明は、テロメラーゼ活性を有する新規なタンパク質を提供するものであり、その精製単離工程におけるテロメラーゼ活性の測定方法は特に限定されるわけではなく、上記した何れの方法でも用いることができる。なお、以下の実施例では、迅速かつ高感度にテロメラーゼ活性を測定できるという点で最も好ましい方法であるTRAP-SPA法を使用している。

以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。

20

25

<u>実施例</u>

実施例1:CHAPS抽出物の調製

ラット6匹分のAH7974細胞(容積:40~50mL)を氷冷したリン酸 緩筋液に懸潤、遠心し、細胞を2度洗った。続いて、細胞を氷冷した洗浄緩衝液

(10 mMのHepes (pH7.5): 1.5 mMのMgCl2: 10 mMの KCl: 1 mMのDTT) で洗った後、遠心し、さらに沈殿を10 mLのCHA PS細胞抽出緩衝液(10 mMのTris-HCl(pH7.5): 1 mMのM gCl2: 1 mMのEGTA; 0.1 mMのPMSF; 5 mMの2-メルカプトエタノール: 0.5%のCHAPS: 10%のグリセロール)に懸濁した。氷上に30分間放置した後、15.000rpmで30分間違心して上滑画分を得た。この画分はタンパク質温度30mg/ml×30mlを有していた。この細胞抽出液を以下の精製に用いた。

10 実施例2:硫酸アンモニウム沈殿

15

実施例1で得られた細胞抽出液に対して30分の1体積の1 MのT r i s - H C l (pH8.3) を加えた後、40~60%飽和硫酸アンモニウム画分を分取した。続いて、この画分を20%グリセロールを含む緩衝液D (20 mMのT r i s - H C l (pH7.5) : 1 mMのE D T A : 1 mMのN a - bisulfate) : 0.01%のN P - 40 : 10%のグリセロール:1 mMのベンズアミジン) 5 \sim 10 mLに溶解し、これをフィルター濾過(0.45 μ m)した。得られた溶液のタンパク質温度は42.78 m g / m 1 × 7 m 1 であった。

実施例3:Sephacryl S-300 カラムによるゲル濾過クロマトグラフィー

実施例2で得られた硫酸アンモニウム画分を上記した緩衝液Dで平衡化した4
 5mm×50cmのSephacryl S-300 (Pharmacia) カラムで分画した。得られた画分を以下の手順でTRAP-SPA法で解析した。TRAP-SPA法は、テロメラーゼ活性に特異的な³H取り込みを検出するために、各画分についてRNaseで処理したものと(RNase(+))と未処理のもの(RNase(-))の両方について実施した。なお、RNase処理は、各画分のサンプル20μlに対し、1μ1のRNase(10mg/ml)を加え、30℃で10分間イ

(TRAP-SPA法)

ンキュベートすることによって行った。

TSプライマー(配列番号1)及びCXプライマー(配列番号2)を、ABI

社のDNA合成機を用いて合成した。CX及びTSプライマーをビオチン化したものについては、オリゴヌクレオチドの5、末端にビオチンしCビオチン-ON ™ホスホルアミダイト (Clontech) をカップリングさせることにより合成した。ABI OPCカラムを用いてプライマーを箱製し(箱製は製造業者の使用説明 審に基づいて行った)、凍結乾燥し、DEPC (ジエチルピオロカーボネート)で処理した水中に再懸濁させた。

5

0. $0.1 \sim 0$. 1μ gのビオチン化CXプライマー (Biot-CX) をHot-Start チューブ (GIBCO-BRL) のワックス層下にトラップさせた。

次に、20μlの溶離液画分(RNase処理したもの又は未処理のもの)を、20mMのTris-HCl(pH8.3)、1.5mMのMgCl₂、63mMのKCl、0.005%のTween20、1mMのEGTA、各々50μMのdATP及びdCTP、2μMのdTTP、50μMのdGTP、2μCiの[Me-³H] TTP (Amersham, 114Ci/mmol)、0.1μg/μlのBSA、2UのTaqポリメラーゼ、並びに、0.1μg又は所定量のTSプライマーを含む50μlの最終反応混合物中のワックスパリア上で、室温で30分間インキュベートした。

次に、合成されたテロメアオリゴヌクレオチドを増幅するため、混合物を90 \mathbb{C} で90 秒加熱し、次いで $94\mathbb{C}$ で30 秒、 $50\mathbb{C}$ で30 秒及び $72\mathbb{C}$ で45 秒を1 サイクルとして、これを31 サイクルでポリメラーゼ連鎖反応を行った。

20 反応産物(40μl)を96ウエルプレート(Wallac)に移し、50μlのストレプトアビジン被覆の微小粒子フルオロマイクロスフィアー(0.56MのEDTA中、1:4の溶液)を加え、37℃で10分間インキュベートし、ビオチニル化した3H標識反応産物をストレプトアビジンビーズに結合させた。

プレートは、MicroBetaシンチレーションカウンター(Wallac)上でカウント 25 した。

各画分と3H-取り込み量との関係を図1に示す。

テロメラーゼ活性を含む画分(溶出体積は315~375 mL; 図1 中のフラクション番号21~25)を分取した。この画分のタンパク質濃度は1.3 mg/ml×75 mlであった。

実施例4: HyLoad SPカラムによる陽イオン交換クロマトグラフィー

実施例 3 で得たゲル認過活性画分 7.5 m 1 を緩衝液 D で平衡化した $HiLoad\ SP$ カラム(Pharmacia: 1.6 m $m \times 1.0$ c m)にかけ、 $0.0 \sim 1.0$ Mの KC1 でグラジエント溶出した。それぞれの画分を実施例 3 と同様にして TRAP-S $PA法により解析した。各画分と <math>^3H$ - 取り込み 3H 3 との関係を図 3 に示す。

テロメラーゼ活性が認められる約 $0.1\sim0.3$ MのKCI により溶出される 画分(図2中のフラクション番号 $43\sim47$)27.5 m Lを分取した。

この画分に含まれるタンパク質を硫酸アンモニウム沈殿(6.0%飽和)に付した。続いて、沈殿を $4\,\mathrm{mL}\,0.2.0\%$ グリセロールを含む緩衝液Dに溶解した。この時点でのタンパク質温度は $1.0\,\mathrm{mg/ml}$ であった。次いで、この試料をフィルター濾過($0.45\,\mu$)した。

実施例5:Sephacryl S-400 カラムによるゲル砲過クロマトグラフィー

実施例4で得たHiLoadカラム箱製標品を緩衝液D+50mMのKClで平衡化した15mm×75cmのSephacryl S-400 (Pharmacia) カラムでさらに分画した。それぞれの画分を実施例3と同様にしてTRAP-SPA法により解析した。各画分と3H-取り込み量との関係を図3に示す。

テロメラーゼ活性を含む画分(図3中のフラクション番号22)3mlを分取した。この画分のタンパク質濃度は、0.289mg/mlであった。

20

10

15

実施例6:SDS-PAGEによる分析

実施例5で得たテロメラーゼ活性を含む画分(図3中のフラクション番号22)を、8~10%のゲル設度を用いてSDS-PAGEにより分析した。

その結果、約40~約120kDの間に複数のバンドが検出され、特には、約 25 110kD、約58kDおよび約45kDのバンドが強く検出された。

実施例7:テロメラーゼ活性を有するタンパク質のサブユニットへのテロメラーゼRNAの結合

(1) マウステロメラーゼRNAのクローニング

House Liver Total RNA(CLONTECH、CATALOG #64042-1)をソースとし、RT-PCR法によりマウステロメラーゼRNA遺伝子を増幅し、pGE M-3Zf (-) ベクターのSmaIサイトにサブクローニングした(pGEM 3Zf/mTR)。用いた5、及び3、プライマーは、それぞれ、

- 5' GGG GTA TTT AAG GTC GAG GGC GGC -3'
- 5'- TTG TGA GAA CCG AGT TCC GGG TGC -3'である(配列番号3および4)。
- (2) マウステロメラーゼRNAの調整
- BamH1で切断したpGEM3Zf/mTR(T7RNAポリメラーゼによりセンス鎖が合成されるように、テロメラーゼRNA遺伝子が挿入されているベクター)を鋳型にし、32PラベルしたテロメラーゼRNAを、Riboprobe Combination System-SP6/T7(Promega)を用い、使用説明書に従い調製した(合成されたテロメラーゼRNAには、5、末端および3、末端にベクター配列に由来する塩基GGG CGA AUU CGA GCU CGG UAC CCGと、AGG GGA UCとがそれぞれ付加される)・
 - (3) SDS-PAGEで分離したバンドへのテロメラーゼRNAの結合を、Collinsらの方法(Cell. 81, 677-686)に基づいて解析した。

その結果、約40~約120kDの間に複数のバンドが検出され、特には、約110kD、約58kDおよび約45kDのバンドが強く検出された。

産業上の利用の可能性

本発明のテロメラーゼ活性を有するタンパク質は新規なタンパク質である。 本発明のテロメラーゼ活性を有するタンパク質は、テロメラーゼ阻害剤のスク リーニング、抗体を用いる診断法の開発などのために有用である。

配列表

配列番号:1

配列の長さ:18

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(合成DNA)

配列の特徴:

他の情報: TS Primer

配列:

AATCCGTCGA GCAGAGTT

配列番号: 2

配列の長さ:24

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(合成DNA)

配列の特徴

他の情報:CX Primer

配列:

CCCTTACCCT TACCCTTACC CTAA

配列番号:3

配列の長さ:24

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(合成DNA)

配列:

GGGGTATTTA AGGTCGAGGG CGGC

配列番号:4

配列の長さ:24

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(合成DNA)

配列:

TTGTGAGAAC CGAGTTCCGG GTGC

請求の範囲

1. 下記の理化学的性質を有するテロメラーゼ活性を有するタンパク質を含む 複合タンパク質:

作用および基質特異性: 真核生物の染色体のテロメアDNA3 〇 H 末端の伸長を触媒する:

分子量:SDS-PAGEで測定して、約40~約120kD;

不活性化: RNase処理により不活性化される;

性質:マウステロメラーゼRNAと結合する:

- 2. テロメラーゼ活性を有するタンパク質の分子量がSDS-PAGEで測定
- 10 して、約110kD、約58kDおよび/または約45kDであることを特徴と する、請求の範囲第1項記載の複合タンパク質。
 - 3. 下記の理化学的性質を有することを特徴とする、テロメラーゼ活性を有するタンパク質:

作用および基質特異性:真核生物の染色体のテロメアDNA3′〇H末端の伸長

15 を触媒する:

5

分子量: SDS-PAGEで測定して、約110kD、約58kDまたは約45kD:

不活性化: RNase処理により不活性化される:

性質:マウステロメラーゼRNAと結合する:

- 20 4. ラット肝細胞由来であることを特徴とする、請求項1から3の何れかに記載のタンパク質。
 - 5. 細胞抽出液を、硫酸アンモニウム沈殿、ゲル濾過クロマトグラフィー、陽 イオン交換クロマトグラフィー、次いでゲル濾過クロマトグラフィーに付して精 製することにより得ることができることを特徴とする、請求項1から4の何れか
- 25 に記載のタンパク質。

図 1

1/3

図 2

図 3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/02976

A. CLASSIFICATION OF SUBJECT MATTER	
Int. Cl ⁶ Cl2N9/12	
According to International Patent Classification (IPC) or to both national classification and IPC	
B. FIELDS SEARCHED	
Minimum documentation searched (classification system followed by classification symbols)	
Int. Cl ⁶ Cl2N9/12	
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched	
Electronic data base computed during the international nearch (name of data base and, where practicable, search terms used) Medline, Biosis Previews	
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category* Citation of document, with indication, where approp	riate, of the relevant passages Relevant to claim No.
Molecular Carcinogenesis, Vol. 16, (May 1996), Yoshimi N. et al. "Telomerase Activity of Normal Tissues and Neooplasms in Rat Colon Carcinogenesis Induced by Methylazoxymethanol Acetate and Its Difference From That of Human Colonic Tissues" p. 1-5	
Cell, Vol. 81, (1995), Collins K. et al. "Purification of Tetrahymena Telomerase and Cloning of Genes Encoding the Two Protein Components of the Enzyme" p. 677-686	
Further documents are listed in the continuation of Box C. See patent family annex.	
* Special categories of cited documents: "A" document deficing the general state of the art which is not considered to be of particular relevance to be of particular relevance to be of particular relevance. "E" earlier document which may three doubts on priority claim(a) or which is cited to entablish the publication does of another citation or other special record (an operation). "O" document referring to an oral discissure, use, exhibition or other means. "P" document published prior to the international filing date but later than the priority date claimed. "O" document published prior to the international filing date but later than the priority date claimed. "O" document published prior to the international filing date but later than the priority date claimed. "O" document published prior to the international search "O" document published prior to the international filing date but later than the priority date claimed. "O" document published prior to the international search "O" document member of the same patent family Date of mailing of the international search report October 7, 1997 (07. 10. 97)	
Name and mailing address of the ISA/ Japanese Patent Office Facsimile No. Authorized officer Telephone No.	

Form PCT/ISA/210 (second sheet) (July 1992)

- 日若しくは他の特別な理由を砬立するために引用する 文獻 (忍由を付す)
- 「〇」ロ厨による関示、使用、展示等に貸及する文献
- 「P」国頭出還日前で、かつ仮先桁の主張の基礎となる出環
- て出口と矛盾するものではなく、発明の原理又は理
- 「Y」 特に関辺のある文献であって、当該文献と他の1以 上の文献との、当類者にとって自明である組合せに よって迎歩性がないと与えられるもの
- 「&」周一パテントファミリー文欣

國際的在以告の発送日 07.10.97 国原四亞を完了した日 30.09.97 国原国査根関の名称及びあて先 特許庁容査官(桁限のある職員) 4 B 7823 日本国特许广(ISA/JP) 平 田 . 即 和 叧 邱便吞号100 京京都千代田区頃が関三丁目4番3号 窓話番号 03-3581-1101 内線 3448

模式PCT/ISA/210 (第2ページ) (1992年7月)

ゼ蛋白質の発現ベクターと共に形質転換体選択のマーカーを有するベクター、例 えばpSV2neo、pSV2gpt、pMTVdhfrなどを用いて二重形質 転換することが好ましい。

上記の高等動物テロメラーゼ蛋白質発現ベクター、またはそれに加えて形質転換体選択マーカーを有するベクターにより形質転換した動物細胞を選択するためには、該選択マーカーの発現による表現形質を利用することができる。さらに、高等動物テロメラーゼ蛋白質の発現量の上昇を目的として、高等動物テロメラーゼ蛋白質の発現が確認された細胞に対し、選択マーカーを変更して形質転換を繰り返してもよい。発現ベクターに使用されるプラスミドベクターの具体例としては、SV40初期プロモーター、ウサギのβーグロビン遺伝子に由来するスプライス配列DNA、ウサギのβーグロビン遺伝子からのポリアデニル化部位、SV40初期領域からのポリアデニル化部位、並びにpBR322由来の複製開始点およびアンピシリン耐性退伝子を含有するpKCR(Proc. Natl. Acad. Sci. USA、78、1528、(1981))などが挙げられる。

発現ベクターの動物細胞への移入はリン酸カルシウムやcationiclipidをDNAのキャリアとして用いるトランスフェクション法が一般的である。形質な換された動物細胞の培養は、常法により浮遊培養または付着培養で行うことができる。培地としては、MEM、RPMI1640などを用い、5~10%血溶存在下もしくは適当量のインシュリン、デキサメサゾン、トランスフェリンの存在下で培養を行うか、又は無血溶下で培養を行うことができる。高等動物テロメラーゼ蛋白質を発現している動物細胞中には高等動物テロメラーゼ蛋白質が大量に存在していると考えられるので、この形質な換体の培養物から得た蛋白抽出液を用いて高等動物テロメラーゼ蛋白質の分離精製を行うことが可能である。生産された高等動物テロメラーゼ蛋白質を含む培養上滑は各種クロマトグラフィー、例えば、ヘパリンセファロースもしくはブルーセファロース等を用いたクロマトグラフィーにより精製可能である。

また大腸菌、枯草菌等の微生物を宿主として用いるときには、発現ベクターは プロモーター、リボゾーム結合 (SD) 配列、高等動物テロメラーゼ蛋白質遺伝

子、転写終結配列、およびプロモーターを制御する迫伝子を含むことが好ましい。 プロモーターとしては、大腸菌、ファージ等由来のもの、例えばトリプトファン 合成酵素(trp)、ラクトースオペロン(lac)、 λファージPL、PR、 T5ファージの初期追伝子のプロモーターであるP25、P26プロモーター等 が挙げられる。また、これらは例えばpacプロモーター [Agric. Biol. Chem. 52、983-988、1988年] のように独自に改変、設計され た配列でも良い。

リボゾーム結合配列としては、大腸菌、ファージ等由来のものでもよいが、DNA 合成により作成した16SリボソームRNAの3¹ 末端領域に相補的な配列を4 塩基以上連続してもつコンセンサス配列を持ったものでもよい。転写終結配列は 必ずしも必要ではないが、ρ非依存性のもの、例えばリボプロティンターミネー ター、trpオペロンターミネーター等を有している方が好ましい。

発現に必要なこれらの因子の発現プラスミド上での配列順序は、例えば、5'上流から、プロモーター、SD配列、高等動物テロメラーゼ蛋白質遺伝子、転写終結因子の順であることが望ましい。また発現ベクター上のSD配列と高等動物テロメラーゼ蛋白質遺伝子とのユニットを複数個同方向に挿入することにより、ベクター上の転写単位のコピー数を増加させる方法(特開平1-95798号公報などに記載の方法)を用いることもできる。

発現した高等動物テロメラーゼ蛋白質又はその部分ポリペプチドを大腸菌などの形質転換体からの簡便に回収、精製するために種々のアフィニティーカラムを利用することができる。例えば、ヒスチジンが6個以上並んだアミノ酸配列、いわゆるヒスチジンタグを有する蛋白質がキレートカラムに結合する性質を利用して、プロモーターの下流に例えばヒスチジンが6個以上並んだアミノ酸配列をコードするDNAを配置し、さらにその下流に高等動物テロメラーゼ蛋白質違伝子を結合することにより、ヒスチジンタグを含む高等動物テロメラーゼ蛋白質又はその部分ポリペプチドを発現させることができ、発現した高等動物テロメラーゼ蛋白質又はその部分ポリペプチドを発現させることができ、発現した高等動物テロメラーゼ蛋白質又はその部分ポリペプチドをキレートカラムにより容易に精製することができる。

さらに、ヒスチジンタグと高等動物テロメラーゼ蛋白質を樹成するポリペプチド又はその部分ポリペプチドとの間に、例えばトロンビン、TEVプロテアーゼ、又は第X因子などのプロテアーゼにより特異的に切断されるポリペプチド配列を組み込み、キレートカラム精製後のポリペプチドを対応のプロテアーゼで処理することにより、天然型の高等動物テロメラーゼ蛋白質又はその部分ポリペプチドを回収することができる。プロテアーゼによる切断後はHPLC等により分離、精製することができる。

上記の他、発現ベクターとして使用できるものとして、pUAI2 (特開平1-95798号公報)や市販のpKK233-2 (Pharmacia社)等を挙げることができる。また、日本住血吸虫由来グルタチオン-S-トランスフェラーゼとの融合蛋白として発現させる発現ベクターとしてpGEXシリーズ (Pharmacia社)を利用することができ、ヒスチジン配列を利用した精製が可能なベクターとしてpProEX-I (Gibco BRL)を用いることができる。宿主の形質転換法は、常法に従い行うことができる。また、昆虫細胞としては、例えばInvitrogen社のバキュロウイルス発現キットであるマックスバック (MAXBACTE)、BACULOVIRUS EXPRESSION SYSTEM MANUAL VERSION 1.4)のマニュアルに従い、このキットを使用することができる。この時、発現量を上げるためにポリヘドリンのプロモーターから開始コドンまでの距離を変えることが好ましい。

形質転換体の培養は、当業者に利用可能な常法に従って行うことができる。培養温度としては、28℃~42℃が適当である。ラクトースオペロン(lac)のプロモーターを利用する場合は、菌体培養液の600nmの波長における吸光度がおよそ0.5になったところで、終温度が1mM程度になるようにIPTGを加えて発現誘導を行うことが必要である。

上記方法で単離・精製された高等動物テロメラーゼ蛋白質又はその部分ポリペ プチドを用いて、サル、ヒツジ、ウサギ、ラット、マウスなどの哺乳類動物を免 疫することができ、高等動物テロメラーゼ蛋白質を特異的に認識するポリクロー

ナルまたはモノクローナル抗体を作製することができる。その特異性の検討には、 高等動物テロメラーゼ蛋白質遺伝子を含む発現ベクターを導入した形質転換体の 培養液又は遺伝子産物の抽出液を用いることができる。

このような高等動物テロメラーゼ蛋白質又はその部分ポリペプチドに特異的なポリクローナルまたはモノクローナル抗体を固定化したアフィニティカラム用いて、テロメラーゼ活性を有する不死化細胞株または形質転換体の抽出液から、高等動物テロメラーゼ銀合体を設縮・精製することができる。また、テロメラーゼ活性を有する真核動物不死化細胞株に対して、高等動物テロメラーゼ蛋白質とグルタチオン・Sートランスフェラーゼ、ポリ・ヒスチジンなどのいわゆる「タグ配列」との融合蛋白質を発現するベクターを導入し、得られた形質転換体の抽出液をグルタチオン・セファロース(Pharmacia社)、ニッケル・NTA・アガロース(QIAGEN社)等の「タグ配列」に特異的に結合するリガンドを固定化したカラムに付して精製することにより、高等動物テロメラーゼ複合体を凝縮・箱製することができる。以上のような方法で得られた高等動物テロメラーゼ複合体は、高活性の高等動物テロメラーゼとして阻害剤の評価などに利用することができるほか、新規な构成成分の解析、及びそれらの単離・精製の材料として用いることが可能である。

また、いわゆる「ツー・ハイブリッド(Two-hybrid)法」に従い、 酵母を含む様々な形質転換体を用いて、高等動物テロメラーゼ蛋白質に物理的に 強固に結合する蛋白質をコードする違伝子を単離・同定することができる。この ような目的のためには、例えばClontech社の「Match Maker キット」などを用いることができる。

上記の高等動物テロメラーゼ蛋白質の特異抗体を用いることにより上記遺伝子の発現の程度を蛋白質レベルで観測することができ、核酸プローブやPCRプライマーを用いて遺伝子レベルでの発現状況を観測することができる。このような方法によれば、癌細胞の検出、並びにテロメラーゼ活性の変化に起因する疾患及びテロメラーゼ活性の変化を伴う疾患の診断が可能である。例えば、患者から分離・採取された試料を適宜の方法で抽出した後、特異抗体を用いたELISA法

もしくはウェスタン・プロット法、核酸プローブを用いたサザンまたはノザン・プロット法、またはオリゴヌクレオチド・プライマーを用いたPCR法により判定を行うことができる。従って、本発明のポリペプチドを特異的に認識することができる抗体又は本発明のヌクレオチド配列の一部又は全部に相補的に結合可能なヌクレオチド配列を含む核酸プローブは、癌細胞の検出試薬、又は癌診断用の医薬組成物の有効成分として有用である。

なお、後述の実施例で示したように、ラット由来のテロメラーゼ蛋白質には、SDSーポリアクリルアミド電気泳動法による分子量が約240kDaの不活性型ポリペプチドと、SDSーポリアクリルアミド電気泳動法による分子量が約230kDaの活性型ポリペプチドの存在が確認されている。また、約240kDaの不活性型ポリペプチドが最初に発現し、約230kDaの活性型ポリペプチドに変換される機构の存在が証明されている。従って、他の高等動物においても、同様な不活性型及び活性型のポリペプチドが存在しており、不活性型ポリペプチドから活性型ポリペプチドに変換される同様な機构が存在していることが当業者に自明である。これらの分子型(サブユニット)はいずれも本発明の範囲に包含される。

上記の活性型ポリペプチド及び不活性型ポリペプチドの存在比を測定することにより、テロメラーゼの活性化殻槹に作用する物質をスクリーニングすることができる。このスクリーニング方法は、典型的には、被験物質を投与した後の高等動物の組織や細胞、又は培養系において被験物質の存在下で培養を行った高等動物の組織や細胞に含まれる上記の活性型ポリペプチド及び不活性型ポリペプチドの存在比を測定し、被験物質の非存在下での存在比と比较する工程を含んでいる。分子量の測定は、一般的には、SDSーポリアクリルアミド電気泳動法で行えばよい。

例えば、被験物質と接触していない細胞や組織に含まれるテロメラーゼ蛋白質のサプユニットの分子性をSDSーポリアクリルアミド電気泳動で測定し、約240kDaのポリペプチドと約230kDaのポリペプチドとの存在比をあらかじめ調べておく。つぎに、被験物質を投与し、又は被験物質の存在下で培養を

行うことにより被験物質と接触させた細胞や組織に含まれるテロメラーゼ蛋白質のサブユニットの分子屋を同様に測定し、約240kDaのポリペプチドと約230kDaのポリペプチドの存在比を測定する。被験物質と接触した細胞や組織において約240kDaのポリペプチドの存在比が非接触時の場合に比べて実質的に増加していれば、被験物質はテロメラーゼの活性化機椒を阻害すると判定できる。一方、約230kDaの蛋白質の存在比が増加していれば、被験物質はテロメラーゼの活性化を促進すると判定できる。このようにしてテロメラーゼの活性化機构に作用することが確認された物質も本発明の範囲に包含されることを理解すべきである。

実施例

以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は以下 の実施例に限定されることはない。

実施例1:ラット・テロメラーゼ蛋白質遺伝子の取得

(1) テトラヒメナ・テロメラーゼ・サブユニットp80 辺伝子に相同な遺伝子の検索

Internetにて、National Center for Biotechnology Informationのhome pageにアクセスし、TBLASTNプログラムにて、テトラヒメナ・テロメラーゼ・サブユニットp80のアミノ酸配列に相同なアミノ酸配列をコードし得るDNA配列を検索した。その結果、Expression Sequence Tag (EST) DNA配列のデータバンクに登録された、ラットPC12細胞由来の機能不明なmRNA配列に相補的なDNA配列 (配列表の配列番号3)が、p80の一部のアミノ酸配列に弱い相同性 (High Score:94、Probability:1.7×10⁻³)を示すアミノ酸配列 (下記表1:ラットcDNA)をコードし得ることがわかった (表中、アミノ酸は1文字表記で示し、Xは終始コドンを表す)。

表 1

p 8 0 (N末端側) A V Y I R N E L ラットc D N A (N末端側) X A S L Y A R Q Q L

p 8 0 Y I RTTTNY I VAFCVVH

5 y h c D N A N L R D I A N I V L A V A A L L

P 8 0 KNTQ \underline{P} FIEK \underline{Y} FNKA \underline{V} L

5 % hc DNA PACRPHVRRYYSAIVH

P80 <u>LPNDLLEVCEFAQVLY</u>

5 y h c D N A L P S D W N Q V A E F Y Q V W Y

p80 I (C末蜡側)

ラットcDNA L (C末端側)

(2) ラット・テロメラーゼ蛋白質遺伝子の部分断片の取得

(1)で得られたp80のアミノ酸配列に極めて弱い相同性を示すラット由来のアミノ酸配列については、その上流に終止コドンが存在し、しかもその下流には閉始コドンとしてのメチオニンが存在しないことから、このアミノ酸配列をコードするmRNAが実際に存在するものかどうか不明である。また、p80に相同性を有する蛋白質を生合成できるかどうか自体も不明である。しかし、データバンクに登録されたDNA配列に相補的なDNA配列がこのアミノ酸配列をコードする可能性があり、実際転写された対応のmRNAはスプライシングを受けて、配列が変化している可能性がある。そこで、ラット由来細胞に実際にこのmRNAが存在するか否かを検討した。

まず、アデノウイルスで形質転換されたラット3Y1細胞由来219細胞から、

Chomczynskiの方法(Anal Biochem.、162、156 -159、1987)によってRNAを調製した。すなわち、219細胞10⁸ 個を、グアニジンイソチオシアネート溶液 [4Mグアニジンイソチオシアネート (和光純薬)、25mMクエン酸ナトリウム(和光純薬)、0.1M 2-メルカプトエタノール、0.5%ザルコシン酸ナトリウム(和光純薬)]中でホモジナイズし、0.1容量の2M酢酸ナトリウム(p H4.0)を加えて混和した。このホモジュネートに等容量の水飽和フェノール(和光純薬)及び0.2容量のクロロホルム(和光純薬)/イソアミルアルコール(和光純薬)混合液(49対1、体積比)を加えて10秒間放しく混和し、10、000×g、20分間の違心分離により上消の水層を回収した。回収した水層に等容量のイソプロパノール(和光純薬)を混和し、-20度で1時間冷却した後、15、000×g、20分間の遠心分離により離を行った。得られた沈澱物を再びグアニジンイソチオシアネート溶液に溶解し、等容量のイソプロパノールを加え、-20度で1時間冷却した後、15、000×g、20分間の遠心分離により総RNAを回収した。

RNAの精製は以下のように行った。すなわち、0.2mgの総RNAを1mMEDTA、20mMトリス塩酸(pH7.5)に溶解し、70℃、5分間の熱処理後、氷上で急冷した。この溶液に5MNaCl溶液を終過度が0.5Mになるように加えて、Oligo-dTセルロースカラム(type7,1cm×1cm、Pharmacia社)に展開し、1mMEDTAおよび0.5MNaClを含む20mMトリス塩酸総荷液(pH7.5)でカラムを洗浄後、減菌脱塩水にて結合分画を溶出して4μgのpoly(A)+RNAを得た。

上記のようにして得られたpoly(A) + RNA1マイクロgを鋳型にして c DNAを合成し、この c DNAに10pmoleのランダム・ヘキサマー・プライマーと200ユニットのMMLV逆転写酵素(『SUPER SCRIPT』、 GIBCO BRL)を加えて1st strandを合成し、次に、1.4ユニットのRNaseH、40ユニットの大腸菌DNAポリメラーゼ「及び15ユニットの大腸菌DNAライゲースを加えて2nd strandを合成した。反 応終了後、フェノール/クロロホルム抽出を行い、上滑の水層を回収した。回収

した水層と等容量の5M酢酸アンモニウム溶液を添加後、2倍容量のエタノール を混和した。次に、15、000×g、10分間の遠心分離を行い、エタノール 沈澱によるcDNAの回収を行った。

上記のようにして得られた c D N A について、Rileyらの方法 (Vectorette法、Nucleic Acid Res.、18、2887-2890)を用いて、(1)の工程で得られた c D N A 配列 (配列番号3)に対応する部分のさらに5・側上流に位置する未知の c D N A 配列を解析した。まず、60 n g の c D N A を T 4 ポリメラーゼで処理して末端を平滑化し、さらに10ユニットの制限酵業 P v u I I (東洋紡製、級面液は添付のものを使用)と37℃で2時間インニュベートした。切断した D N A を フェノール/クロロホルム処理及びエタノール沈霞にて精製した後、下記表 2 に示す V e c t o r e t t e u n i t (v c t A と v c t B を アニールさせたもの)3 p m o l e を D N A リガーゼを用いて連結した。

表 2

VC tA: 5' - AAGGAGAGGACGCTG

TCTGTCGAAGGTAAG

GAACGGACGAGAAA

GGGAGAG-3'

VCTB: 5' - CTCTCCCTTCTCGAA

TCGTAACCGTTCGTA

CGAGAATCGCTGTCC

TCTCCTT-3'

Vectorette unitを平滑末端に連結させたcDNAを鋳型として、下記表3に示すVectorette unitの片方鎖にハイブリダイズ

するvctGオリゴヌクレオチド・プライマーと、配列番号3に示すcDNA配列にハイブリダイズするRaPC5'オリゴヌクレオチド・プライマーとを用いたPCRを行い、RaPC5'オリゴヌクレオチド・プライマーの結合する部分から5'側上流の未知の部分を含むcDNAを増幅した。増幅反応は常法に従い、PCR用サーマルサイクラーを用いて93℃で1分間、65℃で1分間、及び72℃で2分間の保温サイクルを35回繰り返した。

表 3

vctG:5'-CGGTACCGAATCGTA
ACCGTTCGTACGAGA
ATCGCT-3'

RaPC5': 5'-CATACCTGGT
AGAACTCGGCTA-3'

PCR産物をフェノール/クロロホルム処理及びエタノール沈馥にて精製した後、一部をDNAリガーゼを用いてpT7BlueTベクター(Pharmacia社)に連結し、形質転換された組み換え大腸菌をアンピシリンで選択して、プラスミドDNAを調製した。挿入されたPCR産物のDNA配列をABI373Aシークエンサー(Applied Biosystems社)を用いたSanger法により決定した。その結果、配列表の配列番号4に記載された塩基配列がプラスミドRaPC53に挿入されたcDNAに見出された。

RaPC53の塩基配列を解析した結果、相補鎖DNAから予想された配列表の配列番号3に記哉の核酸番号1~170までの塩基配列が、実際のラット細胞では配列表の配列番号4の核酸番号1~244までの塩基配列に対応していることが認められた。配列表の配列番号3の核酸番号163~172までの塩基配列(5'-TCTCTCCTAG-3')がsplicing acceptor

siteのコンセンサス配列、5'-PyPyPyPyPyPyPyPyNCAG-3'に相当することから、この結果はアーティファクトによるものではなく、スプライシングによるRNAの娯楽が行われた結果と考えられた。従って、配列表の配列番号3に記憶の塩基番号170の〔T〕は実際には配列番号4の配列においては〔A〕となっており、終止コドンTAGがリジンAAGになっていた。しかも5'側上流に向けてオープン・リーディング・フレイムがさらに伸びていることが判明した。

(3) ラット・テロメラーゼ蛋白質全長 c D N A の取得

まず、SV40ウイルスで形質転換されたラット3V1由来SV-3V1-C66 細胞から、工程(1) の方法と同様な方法でpoly(A) RNAを得、STRATAGENE社のcDNA合成キットを用いてcDNAを調製した。 cDNAの調製はマニュアルに従って行ったが、<math>1st st $rand合成反応はプライマーとしてランダムへキサマー・オリゴヌクレオチドとオリゴdTプライマーの両方を最終過度各<math>2\mu$ M加えて行った。

次に、cDNAの末端にDNAリガーゼによってEcoRIアダプターを付加した後、反応産物をSephacryIS-500カラムに展開し、未反応のEcoRIアダプターとサイズの小さいcDNAを除いた。素通り画分のcDNAをエタノール沈砂で回収し、予め制限酵素EcoRIで消化され、さらに末端を脱リン酸化された λ ZAPファージDNAと上記のcDNAをDNAリガーゼで結合した。さらに、cDNAと結合した λ ZAPファージDNAをファージ粒子へパッケージングした。以上の作業はSTRATAGENE社のGIGAPACK

GOLDIIIキットを用い、添付のマニュアルに従って行った。得られたファージ粒子を常法に従い大腸菌C600hflA株に感染させて増幅を行い、ファージ粒子を回収した。一連の操作により、約500万のファージクローンを得た。

約100万のファージクローンを常法に従い大腸菌C600hflA株に感染させ、プレート上のNZY寒天培地上で培養した。ナイロン膜にファージ粒子を写し取ったもののレプリカを2枚作裂し、洗浄及びアルカリ処理した後、工程(2)で得られたRaPC53を³²P標識してプローブとして用い、このプローブにハイブリダイズするファージ・クローンをスクリーニングした。その結果、3つの陽性シグナルを見出したので、それらについてファージ粒子を回収し、同様な方法てクローン化した後、Stratagene社のマニュアルに従って挿入されたcDNA部分を含むプラスミド(RET1、RET2、RET3)をinvivo excision法にて回収した。

プラスミドRET1、RET2、RET3について制限酵素切断地図を作製したところ、各々1.3kbp、2.4kbp、6.5kbpのcDNAが挿入されており、図1に示すように各々のcDNAが重複する位置にあることがわかった。常法に従って欠失変異cDNAを作製し、RET1の全長とRET2及びRET3の一部分のDNA配列を解読した。それらDNA配列を制限酵素切断地図に従って組み合わせたところ、約4.6kbpにわたる大きなオープン・リーディング・フレイムが見出された。この中には、工程(2)で得られたテトラヒメナp80のアミノ酸配列と相同性を示すRaPC53のアミノ酸配列(HighScore:125、Probability:1.6×10⁻¹⁸)も含まれており、ホモロジーサーチによりテトラヒメナp80のアミノ酸配列とのさらに高い相同性が明らかになった(HighScore:234、Probability:1.1×10⁻⁴⁹)。

しかし、上記のオープン・リーディング・フレイムのC末端には終止コドンが 見出されないこと、またいくつかのテロメラーゼ活性陽性のラット細胞から抽出 したmRNAのノザン解析の結果から、得られたcDNAの由来する実際のmRNA

は10 k b 近い大きなものと考えられたことから、さらに 3 他部分の c DNA の取得を試みた。すなわち、RET3の3 端に近い、配列表の配列番号1 に示す DNA配列のうち核酸番号 $4083\sim5216$ にあたる部分のDNA断片を32 P 標識してプローブとして用い、さらに約100 万のファージクローンをスクリーニングした。その結果、新たに13 の陽性シグナルが見出された。そのうち 6 個のクローンについてファージ位子から挿入された c DNA部分を含むプラスミド(RET $\lambda01$ 、07、08、09、10、13) を in v i v o excision法にて回収した。

プラスミドRET λ01、RET λ09、RET λ13について制限酵素切断地図を作製したところ、各々5.0kbp、4.9kbp、4.9kbpのcDNAが挿入されており、図1に示すように各々のcDNAが重複する位置にあることが判明した。これらのうち、RET λ13を新たに「RET7」と命名し、常法に従って欠失変異cDNAを作製して、RET7の全長のDNA配列を解読した。その結果と、プラスミドRET1、RET2及びRET3から得られたDNA配列の情報とを組み合わせたところ、終止コドンを含めて7890bpにわたる大きなオープン・リーディング・フレイムが見出された(配列表の配列番号1)。(4)ラット・テロメラーゼ蛋白質cDNAの取得-上流配列の取得(5°-RACE法)

工程(3) で得られたcDNAには、最も5 端のATGよりもさらに5 側に同フレイムの終止コドンが見出せないため、さらに5 側のmRNAの配列について5'-Rapid Amplification of cDNA Ends (RACE) 法を用いて検討した。

5'-RACE法は、Clontech社の5'-RACEキットを用い、マニュアルに従い行った。工程(3) においてSV-3Y1-C66細胞から得られた poly(A) + RNA2μgと、配列表の配列番号1の核酸番号1493~1515の部分に相補的なDNA配列のオリゴヌクレオチドプライマーNcEX3'10pmoleとを混合し、加熱した後に急冷した。反応混合物に逆転写酵素(GIBCO BRL社のSuperScript)、基質ヌクレオチドと緩衝

液を加えて42で1 時間反応させた。EDTAを加えて反応を停止させた後、アルカリ処理で鋳型RNAを分解し、イソプロパノール沈澱を行って単鎖 cDNAを単離した。さらに、この cDNAの半量に、5'-RACE用アンカープライマー (5'-P(+)ANC)4 pmoleをRNAリガーゼを用いて連結させた。反応は、25%PEG存在下に37℃で3時間行った。

次に、NcEX3'で逆転写プライムされ、さらに3'端にアンカーDNA配列を付加された単鎖cDNAを籐型として、アンカーDNAに相補的なオリゴヌクレオチドプライマーRACE-PRMと、配列表の配列番号1の核酸番号1039~1056の部分に相補的なDNA配列のオリゴヌクレオチドプライマーRaPC5'とを用いて、PCRによるDNA増幅を行った。反応には20分の1量の単鎖cDNAと各々10pmoleのプライマーとを用い、GIBCOBRL社のTaqポリメラーゼを用いて添付のマニュアルに従ってPCRを行った。ただし、非特異的なDNA増幅を避けるために、反応はマニュアル・ホット・スタート法で開始した後、94℃で30秒、55℃で1分、72℃で2分のサイクルを35回繰返した。

PCR産物をpT7BlueTベクターに組み込み、増幅DNAの挿入されたものについてDNA配列を解読した結果、これらのうちの10クローンが殆ど同じDNA配列を有していた。これらのクローンのうち、代表的なクローンであるRACE3及びRACE5は図1に示すような位置に存在しており、配列表の配列番号1の核酸番号199~201のATGの5'側上流約200bpまでcDNAが逆転写及び伸長され得ることがわかった。配列表の配列番号1の塩基番号199~201のATGより5'側上流には、配列番号1のフレイムと合う終止コドンは見出されなかったが、増幅されたDNAの長さがほぼ均一であることから、実際のmRNAの5'端に対応するcDNAを得た可能性が高いと考えられた。

実施例2:ヒト・テロメラーゼ蛋白質迫伝子の取得

(1) ヒト・テロメラーゼ蛋白質 遺伝子の部分断片の取得 テトラヒメナ p 8 0 のアミノ酸配列と実施例 1 の工程(3) で得られたラット・テロ

メラーゼ蛋白質のアミノ酸配列との相同性を検討したところ、同一のアミノ酸配列がいくつか見出されたことから、そのような領域が穏を越えて広く保存されている可能性が考えられた。そこで、そのような領域のアミノ酸配列から、いわゆるdegenerativePCRプライマーを作製することにより、このプライマーを用いたPCR法によってテトラヒメナやラット以外の各動物種固有のテロメラーゼ蛋白質cDNA断片を取得できると期待された。

まず、センスプライマーとして、配列表の配列番号1のアミノ酸番号379~384に対応するHPET5(配列表の配列番号5)、アンチセンスプライマーとして、配列表の配列番号1のアミノ酸番号532~537に対応するHPET3(配列表の配列番号6)を用い、実施例1の工程(3)で得られたラットSV-3Y1-C66細胞由来cDNA及び同様な方法で取得されたヒト卵巣奇形腫由来PA-1細胞由来cDNAを鋳型としてPCRを常法にて行ったが、PA-1細胞由来cDNAからも目的のDNAは増幅されなかった。

次に、センスプライマーとして、配列表の配列番号1のアミノ酸番号376~385に対応するHPET5-2 (配列表の配列番号7)または配列表の配列番号1のアミノ酸番号380~388に対応するHPET5-3 (配列表の配列番号8)、アンチセンスプライマーとして配列表の配列番号1のアミノ酸番号532~540に対応するHPET3-2 (配列表の配列番号9)または配列表の配列番号1のアミノ酸番号534~542に対応するHPET3-3 (配列表の配列番号1のアミノ酸番号534~542に対応するHPET3-3 (配列表の配列番号10)を用い、SV-3Y1-C66細胞由来cDNA及びPA-1細胞由来cDNAの各々の鋳型について4通りのプライマーの組合せのPCRを常法にて行った。

PCR産物をアガロース・ゲル電気泳動した後、臭化エチジウムでDNAを染色したゲルをUVイルミネーターで観察したところ、HPET5-2またはHPET5-3とHPET3-2との組み合わせでSV-3Y1-C66細胞由来cDNAを鋳型としたPCRを行った場合に、予想された約500bpのDNA断片が増幅された。また、PA-1細胞由来cDNAを鋳型とした場合には、

HPET5-2とHPET3-2との組み合わせのプライマーを用いることによって同様に約500bpのDNA断片が増幅された。このDNA断片をpT7BlueプラスミドにサブクローニングしてDNA配列を解読したところ、対応するラットcDNA配列に塩基レベルで約77%の相同性を持ち、アミノ酸レベルでも76%の相同性を示すDNA配列(図2、配列表の配列番号2)が得られた。

そこで、得られたDNA配列の情報を基にして、ヒト・テロメラーゼ蛋白質 c DNA断片をPCR増幅できるオリゴヌクレオチド・プライマーを設計した。 センスプライマーとして、配列表の配列番号2の核酸番号92~114に対応する h T P C 5 (配列表の配列番号11)、アンチセンスプライマーとして、配列表の配列番号2の核酸番号433~455に対応する h T P C 3 (配列表の配列番号12)を用い、数種のヒト細胞mRNA由来cDNAを鋳型として常法にて P C R を行った。

まず、ヒト胎盤由来総RNA、ヒトB細胞白血病由来Raji細胞由来総RNA、ヒト扁平上皮癌由来A431細胞由来poly(A) + RNA、ヒト乳癌由来BT474細胞、SKBR3細胞、BSMZ細胞、及びMCF7細胞由来poly(A) + RNAをChomczynskiの方法(Anal. Biochem.、162、156-159、1987)及びPharmacia社のキットを用いて取得し、Pharmacia社のFirststrand synthesiskitを用いてcDNAを合成した。

これらcDNAのおよそ20分の1昼を鋳型として、hTPC5とhTPC3をプライマーとして用いたPCRを行った。DNAポリメラーゼとしては、Amplitaq Gold (Perkin-Elmer社)を用い、95℃で10分間の熱処理の後、95℃で30秒、65℃で30秒、及び72℃で30秒の保温サイクルを35回繰り返した。その結果、予想された約390bpのDNA断片がヒト癌細胞由来cNAを鋳型としたときに増幅されてきたが、鋳型(-)の陰性対照とヒト胎盤総RNA由来cDNAを鋳型とした場合には検出されなかった。

この結果、hTPC5とhTPC3をプライマーとして用いればヒト・テロメラーゼ蛋白質cDNA断片を増幅できることが判明したので、Clontech社製ヒト胸腺由来cDNAライブラリーのうち、10万個のファージを鋳型として用いて上記同様の方法でPCRを行ったところDNAの増幅は認められなかったが、100万個のファージを鋳型として用いたときに予想された大きさのDNAが増幅された。

そこで、上記 c D N A ライブラリーのベクターとして用いられている λ g t 1 0 の c D N A 挿入部位の 5'側及び 3'側に対応する 2 つのオリゴヌクレオチド・プライマー(各々、 5' λ g t 1 0 及び 3' λ g t 1 0)(C l o n t e c h 社 製)と h T P C 5 と h T P C 3 をプライマーとして用い、h T P C 5 の 5'側上流または h T P C 3 の 3'側下流の未知の部分の c D N A 断片の取得を試みた。 c D N A ライブラリーのうち 1 0 0 万個のファージを鋳型とし、 4 通りのプライマーの組合せ(h T P C 5 対 5' λ g t 1 0 または 3' λ g t 1 0 及び h T P C 3 対 5' λ g t 1 0 または 3' λ g t 1 0 または 3' λ g t 1 0 または 3' λ g t 1 0 または 6 5 ∞ の代わりに 5 5 ∞ にして行った。その結果、h T P C 5 の 5'側上流約 1.5 k b p に対応する部分の D N A 断片が増幅された。

(2) ヒト・テロメラーゼ蛋白質 近伝子全長cDNAの取得

まず、Raji細胞及びPA-1細胞それぞれ約1億個から、RNAzol溶液(Tel-Test社)を用いてChomczynskiの方法(Anal. Biochem.、162、156-159、1987)により総RNAを取得し、得られた総RNAをOligo-dTセルロースカラム(type7、1cmxlcm、Pharmacia社)に付してそれぞれ約100μgのpoly(A)[†]RNAを得た。

c DNAの合成には、poly (A) [†] RNA5μgを鋳型に用いた。反応には c DNA synthesis module (Amersham社)に添付された逆転写酵素、リボヌクリアーゼH、大腸菌DNAポリメラーゼを用い、添付の説明審に従って二本鎖c DNAを合成した。次に、c DNA synthesis module (Amersham社)に添付されたT4DNAポリメラーゼを

反応物を常法に従いSephacry 1S-200カラム($1cm \times 4cm$)に展開し、1mM EDTAと0.5mM NaClを含む10mMトリス塩酸 級街液(pH7.5)を用いて、末端にEcoRITYプターを付加したcDNAを溶出した。溶出したcDNAを不タノール沈霞で回収し、沈霞を乾燥後、 2μ 1の滅菌脱塩水に溶解した。あらかじめ制限酵素EcoRI(宝酒造)で消化後に末端を脱リン酸化した λ ZAPファージDNA(S tratagene社) 1μ gと、EcoRITYプターを付加した上記のcDNA(400ng)とを、16 CのT4DNAリガーゼ反応液(5μ 1)中で18時間インキュベートして結合させた。さらに、cDNAと結合した λ ZAPファージ DNAをGigapack II Gold(S tratagene社)を用いてファージ粒子へパッケージングした。

得られたファージ粒子を常法に従って大腸菌C600hflA株に感染及び増幅させてファージ粒子を回収した。一連の操作により、100ngのcDNAあたり約200万のファージクローンを得た。約100万のファージクローンを常法に従って大腸菌C600hflA株に感染させ、プレート上のN2Y寒天培地上で培養した。ナイロン膜にファージ粒子を写し取ってレプリカを2枚作製し、

洗浄及びアルカリ処理した後、実施例2の工程(1) で得られたヒト・テロメラーゼ 蛋白質 c DNA断片を 32 P 標識してプローブとして用い、このプローブにハイブリ ダイズするファージ・クローンをスクリーニングした。得られた陽性シグナルについて ファー ジ粒子 を回収 し、同様な方法でクローン化した後、Stratagene社のマニュアルに従い、挿入された c DNA部分を含むプラスミドをin vivo excision法にて回収した。

(3) 完全長ヒト・テロメラーゼ蛋白質 c D N A 3' 側下流配列の取得 (3' - R A C E 法)

上記工程(2) で得られたmRNAを鋳型にして、MarathonTM cDNA Amplification kit (Clontech社) を用いて、RACE 法によるcDNAの増幅を行った。以下の反応において、合成DNAプライマーは、MarathonTM cDNA Amplification kitに添付されたプライマー以外は、ABI394DNA合成機を用いて合成した。反応は、MarathonTM cDNA Amplification kitに添付された級銜液およびdNTPを用いて行った。

増幅反応は、ヒト・テロメラーゼ蛋白質 c D N A の配列の一部と相補的なプライマーおよび 3 末端に付加したアダプタープライマーと相補的なプライマー 〔5 ' - C C A T C C T A T A G G G C - 3 ' (2 7 ヌク

レオチド)〕、並びにTaQDNAポリメラーゼを用いて行った。反応液の全量を50μlとし、94℃で1分間のインキュベーションの後、94℃で30秒間、60℃で30秒間、及び68℃で5分間のインキュベーションを30サイクル行い、最後に72℃で7分間のインキュベーションを行って反応を終了した。反応液の10分の1量を5%PAGEにて解析した。また、上記反応液のうち5μlを50倍希釈し、その5μlを用いて2回目の増幅反応を行った。

次に、ゲル断片から増幅した c DNA断片を回収して精製し、T4DNAリガーゼを用いてプラスミドベクターp CRII (Invitrogen社)のクローニング部位に挿入して、得られた組み換えベクターで大腸菌JM109株を形質 転換した。X-Gal-IPTG-LB-Amp寒天培地上に出現した耐性菌で、かつX-Galにより発色していない3つの形質転換体について、常法に従いプラスミドDNAを調製し、解析を行った。さらに、調製したプラスミドDNAを用いて c DNAの塩基配列を決定した。その結果、3'非翻訳領域の塩基配列を有する c DNA断片を得た。

- (4) 完全長ヒト・テロメラーゼ蛋白質 c D N A 5 側上流配列の取得 (5 R A C E 法)
- 5'-RACE法の反応は、3'-RACE法に準じて行った。合成DNAプライマーは、MarathonTM cDNA Amplification kitに添付されたプライマー以外はABI394DNA合成機を用いて合成した。反

2回目の増幅反応は1回目の増幅反応に準じて行った。プライマーとしては、、ヒト・テロメラーゼ蛋白質 c D N A の配列の一部と相補的で1回目の増幅反応に用いたプライマーより内側に位置するプライマーおよび5'ーACTCACTATAGGGCTCGAGCGGC-3'(23ヌクレオチド)を用いて行った。反応は、94℃で1分間のインキュベーションの後、94℃で30秒間、60℃で30秒間、及び68℃で5分間のインキュベーションを30サイクル行い、最後に72℃で7分間のインキュベーションを行って反応を終了した。反応後、反応液の10分の1量を5%PAGEで解析した。ゲル断片から増幅したcDNAを回収して精製し、プラスミドベクターpCRIIのクローニング部位に挿入した後、得られた組み換えベクーを用いて大腸菌JM109株を形質転換した。X-Gal-IPTG-LB-Amp察天培地上に出現した耐性菌で、かつX-Galにより発色していない3つの形質転換体について、常法に従い、プラスミドDNAを調製した。調製したプラスミドDNAを用いて解析を行い、さらに、塩基配列の決定を行った。その結果、ヒト・テロメラーゼ蛋白質

の5′非翻訳領域の配列を有するcDNA断片を得た。

実施例3:ヒト・テロメラーゼ蛋白質遺伝子の取得

(1) ヒト・テロメラーゼ蛋白質遺伝子全長 c DNAの取得

ラット・テロメラーゼ蛋白質遺伝子を取得したのと同様、まず、PA-1細胞を用いてcDNAライブラリーを作成した。このライブラリーを、前述のhTPC5(配列表の配列番号11)と前述のhTPC3(配列表の配列番号12)をプライマーとして用いたPCR産物をプローブにしてスクリーニングを行い、ヒト・テロメラーゼ蛋白質遺伝子全長cDNAを取得した。

まず、PA-1細胞からpoly(A) * RNAを得た。即ち、細胞10⁸ 個を、グアニジンイソチオシアネート溶液中でホモジナイズし、0.1容量の2M酢酸ナトリウム(pH4.0)を加えて混和した。このホモジュネートに等容量の水飽和フェノール及び0.2容量のクロロホルム/イソアミルアルコール混合液を加えて激しく混和し、遠心分離により上滑の水層を回収した。回収した水層に等容量のイソプロパノールを混和し、-20度で1時間冷却した後、遠心分離を行った。得られた沈殿物を再びグアニジンイソチオシアネート溶液に溶解し、等容量のイソプロパノールを加え、-20度で1時間冷却した後、遠心分離により総RNAを回収した。

総RNAを1mM EDTA、20mMトリス塩酸(pH7.5)に溶解し、70℃、5分間の熱処理後、氷上で急冷した。この溶液にNaCl溶液を終温度が0.5Mになるように加えて、Oligo-dTセルロースカラム(type7、1cm×1cm、Pharmacia社)に展開し、1mM EDTAおよび0.5M NaClを含む20mMトリス塩酸級欲液(pH7.5)でカラムを洗浄後、滅菌脱塩水で結合分画を溶出してpoly(A) + RNAを得た。

このpoly(A) * RNAからStratagene社のcDNA合成キットを用いてcDNAを調製した。lst * strand合成はプライマーとしてランダムへキサマー・オリゴヌクレオチドとオリゴdtプライマーの両方を最終強度各 $2\mu M$ 加えて行った。T4DNAポリメラーゼを用いてcDNA末端の平滑

化を行った後、末端にEcoRIアダプターを付加した。反応産物をSephacryIS-500カラムに展開し、未反応のEcoRIアダプターとサイズの小さいcDNAを除いた。cDNAをエタノール沈殿で回収し、λ2APファージDNAに挿入した。

cDNAと結合した A Z A P ファージ DNA を、Stratagene社の GIGAPACK GOLDIIIキットを用いて、ファージ粒子へパッケージングした。一連の操作により、約1000万のファージクローンを得た。

約100万のファージクローンを常法に従い大腸菌C600hf1A株に感染させ、プレート上のNZY寒天培地上で培養した。ナイロン膜にファージ粒子を写し取ったレプリカを2枚作製し、洗浄及びアルカリ処理した。hTPC5とhTPC3をプライマーとして用いたPCR産物を³²P標識してプローブとして用い、このプローブにハイブリダイズするファージ・クローンをスクリーニングした。その結果、2つの陽性シグナルを見出したので、それらについてファージ粒子を回収し、同様な方法でクローン化した後、挿入されたcDNA部分を含むプラスミド(pHB01、pHB04)をin vivo excision法にて回収した。

プラスミドpHB01、pHB04について制限酵素切断地図を作製したところ、各々1.1kbp、7.4kbpのcDNAが挿入されており、図4に示すような、重複する位置関係にあることがわかった。常法に従って欠失変異cDNAを作製し、pHB01、pHB04のDNA配列を解読した。このDNA配列を制限酵素切断地図に従って組み合わせたところ、約8.1kbpにわたる領域をカバーし、この中にC末端側のストップ・コドンを含む長大なオープン・リーディング・フレイムが見出された。このオープン・リーディング・フレイムから予測されるアミノ酸配列がラット・テロメラーゼ蛋白質のC末端側のアミノ酸配列と70%以上の同一性という高い相同性を示したことから、この配列がヒト・テロメラーゼ蛋白質のものであると判断した。

(2) ヒト・テロメラーゼ蛋白質 c D N A の取得 – 上流配列の取得 (5° – R A C E 法)

工程(1)で得られたDNA配列は配列表の配列番号13に示すDNA配列のうち核酸番号756番目以降の配列であったが、ラット・テロメラーゼ蛋白質との一次構造の比较から、オープン・リーディング・フレイムがN末端側に向かって、さらに伸びていると考えられた。そこで、さらに5'側のmRNAの配列について5'-Rapid Amplification of cDNA Ends (RACE)法を用いて検討した。

5'-RACE法は、Clontech社の5'-RACEキットを用い、マニュアルに従い行った。工程(1) においてPA-1細胞から得られたpoly (A) + RNA2μgと、配列表の配列番号13の核酸番号1165~1187番目の部分に相補的なDNA配列のオリゴヌクレオチドプライマーTLPCM3 10pmolとを混合し、加熱した後に急冷した。反応混合物に逆転写酵素 (GIBCO BRL社のSuperScript II)、基質ヌクレオチド、及び緩衝液を加えて42℃で1時間反応させた。EDTAを加えて反応を停止させた後、アルカリ処理で鋳型RNAを分解し、イソプロパノール沈殿を行って単鎖cDNAを単離した。さらに、このcDNAの半段に、5'-RACE用アンカープライマー[5'-P(+)ANC]4pmolをRNAリガーゼを用いて連結させた。

次に、TLPCM3で逆転写プライムされ、さらに3'端にアンカーDNA配列を付加された単鎖cDNAを鋳型として、アンカーDNAに相補的なオリゴヌクレオチドプライマーRACE-PRM2と、配列表の配列番号13の核酸番号1024~1046の部分に相補的なDNA配列のオリゴヌクレオチドプライマーTLPNEとを用いて、PCRによるDNA増幅を行った。反応には20分の1量の単鎖cDNAと各々10pmolのプライマーとを用い、GIBCO BRL社のTaqポリメラーゼを用いて添付のマニュアルに従ってPCRを行った。ただし、非特異的なDNA増幅を避けるために、反応はマニュアル・ホット・スタート法で開始した後、94℃で30秒、60℃で1分、72℃で2分のサイクルを35回繰り返した。

PCR産物をpT7BlueTベクターに組み込み、増幅DNAの挿入された

ものについてDNA配列を解読した結果、これらのうちの3クローンが殆ど同じDNA配列を有していた。これらのクローンのうち、代表的なクローンであるRACE-L4は図4に示す位置に存在するものであった。配列表の配列番号13の核酸番号156~158に開始コドンが存在し、さらに上流の同じく核酸番号144~146に同一フレームの終始コドンが存在した。開始コドンの5'側上流157bpまで、増幅されたDNAの長さがほぼ均一であることから、実際のmRNAの5'端に対応するcDNAを得た可能性が高いと考えられた。

実施例4:組換えラット・テロメラーゼ蛋白質の取得及び特異抗体の作製

日本住血吸虫グルタチオンーSートランスフェラーゼとラット・テロメラーゼ 蛋白質 (配列表の配列番号1のアミノ酸番号217~345番目に相当する部分 ポリペプチド)との融合蛋白質 (GST-p80hom)を大腸菌を用いて発現させ、精製した遺伝子産物を抗原としてウサギを免疫した。次に、ラット・テロメラーゼ蛋白質の同じ部分を別の発現ベクターを用いてヒスチジン・ヘキサマーとの融合蛋白質 (6His-p80hom)として発現させ、精製した遺伝子産物を用いてアフィニティ・カラムを作製し、ウサギ抗血清からラット・テロメラーゼ蛋白質を認識するポリクローナル抗体 (配列表の配列番号1のアミノ酸番号217~345番目に相当する部分に特異的なポリクローナル抗体)を取得した。

まず、発現プラスミドベクターpGEX2T (Pharmacia社)を制限 酵素SmaIで切断した後、HindIII切断部位を有するオリゴヌクレオチド・リンカーを挿入し、発現ベクターpGEXH12を作製した。このベクターを制限酵素EcoRIで切断した後、T4ポリメラーゼ(東洋紡)を用いて末端を平滑化し、さらに制限酵素HindIIIで切断した。次に、ラット・テロメラーゼ蛋白質cDNA断片含むプラスミドRaPC53を制限酵素BamHIで切断し、T4ポリメラーゼ(東洋紡)を用いて末端を平滑化した。その後、制限酵業HindIIIにてさらに切断して、ポリアクリルアミド・ゲル電気泳助に付してラット・テロメラーゼ蛋白質cDNAの部分DNA断片(配列表の配列番号1の核酸番号648~1034に相当する約390bpのHindIII

BamHI由来平滑末端のDNA断片)を単離した。以上により得られたHindIII—平滑末端のpGEXH12ベクターとラット・テロメラーゼ蛋白質cDNA由来DNA断片とをDNAライゲーション・キット(宝酒造)を用いて連結させ、得られた組み換えベクターを用いて大腸菌株JM109(東洋紡)を形質転換した。アンピシリン耐性のクローンについて各プラスミドの制限酵素切断地図を作成し、正しい組み換えプラスミドを保有しているpGEXp80hom/JM109を選択した。

pGEXp80hom/JM109を、アンピシリンを含む50mlのLB培地に接種し、37℃で一晩振とう培養した。翌日これを同じ培地で10倍希釈し、さらに37℃で1時間培養した後、IPTGを最終温度0.3mMになるように加え、SDS-PAGEで分子母約44kDaのGST-p80homを発現させた。GST-p80homを発現させた組み換え大腸菌はFrangoniの方法(Anal.Biochem.、210、179、1993)に従って、最終温度1.5%ザルコシル酸ナトリウムを含む緩衝液中で溶解し、最終温度2%トライトンX-100を加えた後、グルタチオン・セファロース・ビーズ(Pharmacia社)を加えて感濁した。4℃で40分懸濁しながら保温した後、ビーズを1%トライトンX-100を含むリン酸緩衝液(PBS)で洗浄してカラムに充填した。ビーズに結合したGST-p80homを25mM還元型グルタチオン及び0.1%トライトンX-100を含むHepes緩衝液で溶出した。

典型的には、100ml培穀分の組み換え体から0.7mgのGST-p80homが得られた。GST-p80homをトロンビン処理することにより、融合蛋白質は、SDS-PAGEにおける見かけの分子畳が約29kDaのGSTと約16kDaのラット・テロメラーゼ蛋白質断片(配列表の配列番号1に示すラット・テロメラーゼ蛋白質においてアミノ酸番号217~345に相当する部分)の2つに切断された。後者をPVDF膜に固定化処理してN末端のアミノ酸配列をエドマン法にて解析し、予想されたアミノ酸配列と同一であることを確認した。体重約2.6kgの日本在来種雄ウサギ2羽(R1及びR2)を常

法に従って1回につき 100μ gのGST-p80homとフロイント・アジュバントの混合物で免疫して抗血剤を得た。

上記抗血液からラット・テロメラーゼ蛋白質特異的な抗体を精製するためのア フィニティ・カラムを作製するため、GSTの代わりにヒスチジン・ヘキサマー をタグ配列として用いて同じ部分の抗原を発現させ、同様に精製した。まず、プ ラスミドRaPC53を制限酵素HindIII及びBamHIで切断し、ラッ ト・テロメラーゼ蛋白質cDNAの約390bpのHindIII-BamHI のDNA断片(配列表の配列番号1で核酸番号648~1034に相当する)を 単雄し、この断片をpBlueScript(裒洋紡)のHindlll-BamHI部位にサブクローニングした。制限酵素XhoI及びNotIを用い て、このプラスミドからラット・テロメラーゼ蛋白質 c D N A の核酸番号 6 4 8 ~1034(配列表の配列番号1)に相当するDNA断片を含むXhol-Not I DNA断片を単雄し、制限酵素 Sall及びNot I で切断した発現プ ラスミドベクターpProEX-1 (Gibco BRL社) とDNAライゲー ション・キット(宝酒造)を用いて迎結させた。得られた組み換えベクターを用 いて大腸菌株JM109(泉洋紡)を形質伝換した。アンピシリン耐性のクロー ンについて各プラスミドの制限酵素切断地図を作成し、正しい組み換えプラスミ ドを保有しているpProEXp80hom/JM109を選択した。

pProEXp80hom/JM109をアンピシリンを含む50mlのLB培地に接種し、37℃で一晩振とう培養した。翌日この培穀物を同じ培地で10倍希駅し、さらに37℃で1時間培養した後、IPTGを最終温度1mMになるように加えて、SDS-PAGEで分子量約18kDaの6His-p80homを発現させた。6His-p80homを発現させたは4分換え大腸菌を、Qiagen社のプロトコールに従って6Mグアニジン塩酸を含む結合緩衝液に溶解し、Ni-NTA-アガロース(Qiagen社)で展開した。ビーズを洗浄した後、結合した6His-p80homを6M尿素を含むpH4.3のTris/リン酸緩衝液で溶出した。精製された6His-p80homを含む面分を中和した後、PBSに対して透析して尿素を希釈し、不溶性物質を遠心分離で除い

た。上裔にアフィゲル10 (Biorad社) を隠濁させ、6His-p80homをクロスリンクしたアフィニティ・ビーズを作製した。典型的には、100ml分のpProEXp80hom/JM109の培養菌体から0.7mgの可溶性の6His-p80homが得られ、その95%以上がアフィゲル10にクロスリンクされた。

「Antibody」(Ed Harlowら編、Cold Spring Harbor Laboratory Press)に記載の方法に従って、GST -p80で免疫されたR1の7週間目の過免疫血清2mlから175 μ g(R1 -41d)、R2の7週間目の過免疫血清2mlから86 μ g(R2 -41d)の抗体を得た。これらの精製抗体がGSTに対しては反応せず、ラット・テロメラーゼ蛋白質(配列表の配列番号1に示すラット・テロメラーゼ蛋白質のうち、アミノ酸番号217~345に相当する部分)にのみ反応することを、ウェスタン・ブロット法で確認した。

実施例 5 : 免疫沈降法及びテロメラーゼ活性測定による、抗ラット・テロメラー ゼ蛋白質特異抗体の評価

実施例1から実施例3で得られたラットまたはヒト由来のテロメラーゼ蛋白質 c D N A が、実際にラットまたはヒト・テロメラーゼ蛋白質をコードしていることを以下のように証明した。すなわち、実施例4で得られた組み換えラット・テロメラーゼ蛋白質断片に対する特異抗体を用いて、ラットまたはヒト細胞抽出液中のテロメラーゼ活性が免疫沈降されるかどうかを検討した。

まず、R1の免疫前血沿からプロテインAセファロース(Pharmacia社)を用いて総「gGを精製し(PI-1)、この「gGとR1の過免疫血清から得られた精製「gG、R1-41d(免疫開始後7週後血清由来)及びR1-116d(免疫開始後16週後血消由来)の3粒類の「gGを予めプロテインAセファロースにコートした。ヒト卵巣奇形壓由来PA-1細胞及びラット肝癌由来AH66F細胞から、Counterらの方法(EMBO J.、11、1921、1992)に従ってS100抽出液を調製した。この抽出液に等容量

の1%CHAPS/ $1 \times Hypo$ 級銜液(Counterら、上掲論文)を加えた混合物 150μ 1に、 5μ gのIgGをコートした上記プロテインAセファロース・ビーズを加え、4 $\mathbb C$ で1. 5時間保温した。その後、0. 5%CHAPS/ $1 \times Hypo$ 級銜液で洗浄した各々のビーズをテロメラーゼ反応液に懸濁して、テロメラーゼ活性を測定した。

一方、EDC(Sigma社製)を用いてストレプトアビジン(GIBCOBRL社製)をポリカーボネート製96穴マイクロタイタープレート(タカラ)にクロスリンクさせ、プロッキング剤(ベーリンガーマンハイム山之内社製)を用いて37℃で2時間ブロッキングした。上記の各ウェルに、TBSで希釈したテロメラーゼ伸長反応産物25μ1を加えて、37℃で30分保温してプレート上のストレプトアビジンに結合させた。サンプル溶液を捨てた後、過剰量のビオチン溶液を加えて37℃で30分保温し、余剰のストレプトアビジンをブロッキングした。

びタック・スタート・アンチボディ(東洋紡社製)処理した1ユニットのタックポリメラーゼ(GIBCO BRL社製)を含むPCR反応液を加え、タカラ・PCRサーマルサイクラーを用いてPCR増幅を行った(93℃で30秒、69℃で30秒、72℃で1分の条件で34サイクル)。

50mM炭酸ナトリウム級価液(pH9.6)を用いて5mg/mlに調製し たストレプトアビジンを、白色ポリスチレン製96穴マイクロタイタープレート に100μ1/ウェルの割合で分注後、37℃で1時間保温してストレプトアビ ジンをコートした。ストレプトアビジン溶液を捨てた後、ブロッキング剤を150 µ 1/ウェルの割合で分注し、37℃で2時間ブロッキングした。このウェルに、 TBSで20倍に希釈したPCR産物を100μ1/ウェルずつ加え、37℃で 30分保温してプレートに結合させた。さらに、各ウェルを 150μ 1/ウェル の0.05%Tween20/TBSで5回洗浄した後、TBSで5000倍希 歌したアルカリホスファターゼ標識抗ジゴキシゲニン抗体 (ベーリンガーマンハ イム山之内)を加えて37℃で30分保温した。プレートを150μ1/ウェル の0. 05%Tween20/TBSで5回洗浄した後、0. 1Mジエタノール アミン級銜液(p H 9. 5)で100倍希釈したCSPD(Disodium 3 -(4-methoxyspiro(1, 2-dioxetane-3, 2-(5)-chloro) tricyclo $\langle 3.3.1.13,7 \rangle$ decan] -4 -yl) phenyl phosphate) (Tropix社製) を加え、室 温で30分間化学発光させてルミノメーター (ベルトールド・ジャパン) で発光母 を定員した。

この結果、ラット癌細胞抽出液またはヒト癌細胞抽出液のいずれを用いた実験においても、図3に示すようにIgGをコートしていないビーズ、免疫前血溶由来IgG(PI-1)をコートしたビーズにはテロメラーゼ活性が殆ど認められなかったが、実施例4で得られた組み換えラット・テロメラーゼ蛋白質断片に対する特異抗体の2ロットのいずれかをコートしたビーズには明らかに高いテロメラーゼ活性が認められた。

実施例 6: 35 S - メチオニン標識ラット癌細胞抽出液の免疫沈降による、抗ラット・テロメラーゼ蛋白質特異抗体の評価

500万個のラット肝癌由来AH66F細胞を、透析済みウシ胎児血剤(dFCS)10%を含むメチオニン欠乏ダルベッコ変法MEM(DMEM)で洗浄した後、35S-メチオニンを加えた同培地中で培養して35S標識し、実施例5で用いた0.5%CHAPS/1×Hypo級衟液中で抽出した。ウサギR1の免疫前血剤由来1gG、または組み換えラット・テロメラーゼ蛋白質断片による過免疫血剤由来1gGを予めコートしたプロテインAセファロース・ビーズを同細胞数に相当する抽出液に加えて4℃で2時間保温した。洗浄後、LaemmliのSDS変性級循液を加えて加熱・変性し、6%SDS-PAGEで展開した。ゲルを酢酸で固定した後、ENHANCE(NEN社製)処理し、乾燥後にフルオログラフィーに付した。その結果、過免疫血剤由来1gG処理したサンプルにのみ、約300kDaの明確なバンドが観察された。

実施例7:ヒト・テロメラーゼ蛋白質mRNAのヒト癌細胞及び正常組織における発現

Clontech社のMultiple Tissue Northern Blot及び、Human Cancer Cell Line Multiple Tissue Northern Blotを用いて、ヒト・テロメラーゼ蛋白質mRNAのヒト癌細胞及び正常組織における発現を検討した。プローブとしては実施例2の工程(1)で得られたヒト・テロメラーゼ蛋白質遺伝子cDNA断片(配列表の配列番号2)を³²P線識して用い、ハイブリダイゼーションは50%フォルムアミド存在下に42℃で一昼夜行った。各プロット膜を0.1%SDSを含む1×及び0.1×SSPE級衝液で洗浄した後に、オートラジオグラフィーに付した。

その結果、脾、胸腺、膵、精巣、卵巣、小腸、大腸、心臓、胎盤、肺、肝、骨格筋、及び腎などのヒト正常組織由来のpoly(A) + RNAには明確な10.7kbのバンドが検出された。また、ヒト癌由来細胞株由来のpoly(A) +

RNAのプロットでは、10.7kbのバンドに加えて、8.6kbの短い分子種が観察された。

実施例8:ラット・テロメラーゼ蛋白質の精製と分子種の同定

3×10⁹ 個のラット肝癌由来細胞株AH66F細胞からCounterらの 方法 (EMBO. J、11、1921、1995) に従ってS100抽出液を調 製した。これを、TMG級街液(10mM Tris-酢酸 pH8.0、1mM 塩化マグネシウム、1 mM ジチオスレイトール、10%グリセロール)で飽 和したヘパリンセファロースCL-6Bカラム(ファルマシア社)に供し、塩化 カリウムを用いた段階溶出を行った。各溶出画分中のテロメラーゼ活性を実施例 5で用いた方法で測定し、活性を含む画分を築めた。これを50mM 塩化カリ ウムを含むTMG緩衝液で飽和したハイドロキシアパタイトカラム(バイオラッ ド社)に供し、5mM KP級銜液 (0.25mM リン酸二水素一カリウム、 4. 75 mM リン酸一水素二カリウム、50 mM 塩化カリウム、1 mM 塩化マグネシウム、1 mM ジチオスレイトール、10%グリセロール)で洗浄 後、0.5M KP綴G液(25mM リン酸二水素―カリウム、475mM リン酸一水案二カリウム、50mM 塩化カリウム、1mM 塩化マグネシウム、 1 mM ジチオスレイトール、10%グリセロール)を用いた段階溶出を行った。 テロメラーゼ活性を有する画分を築め、50mM 塩化カリウムを含むTMG **級衛液(ジチオスレイトール不含)で飽和した陰イオン交換カラム(商品名リソー** スQ、ファルマシア社)に供し、塩化カリウムを用いた段階溶出を行った。次い で、テロメラーゼ活性を有する画分を築め、0.5M 塩化カリウムと1mM イミダゾールを含むTMG級좁液(ジチオスレイトール不含)で飽和した金属 $(Z n^{2+})$ キレートアフィニティカラム(商品名ハイトラップ キレーティング、 ファルマシア社)に供し、イミダゾールを用いた段階溶出を行った。テロメラー ゼ活性を有する溶出画分を15-40%グリセロール温度勾配遠心分離(ベック マン社SW28ローター、25000回転、2℃、24時間)に供した。その結 果、テロメラーゼ活性と相関のある蛋白質として44Sの沈降係数を示すものが

得られ、その分子量は約1500kDaと計算された。

さらに、グリセロール湿度勾配遠心分離で生じた各画分を6%SDS-PAGEで分離し、実施例4で取得した組換えラット・テロメラーゼ蛋白質に対する特異抗体でウェスタンブロットを行ったところ、テロメラーゼ活性を示す蛋白質画分には3つの抗体反応性のパンド(SDS-PAGE上の分子母は約240kDa、230kDa、55kDa)が観察された。このうち55kDaのパンドは熱処理実験により240kDaまたは230kDaの蛋白質の分解産物であることを確認した。この結果より、ラット・テロメラーゼ蛋白質には240kDaの蛋白質(以下「p240」と称することもある)を成分として榕成されたものと、230kDaの蛋白質(以下「p230」と称することもある)を成分として榕成されたもの二種類が存在すると推測された。

実施例9:ラットテロメラーゼ分子種の生成と活性化

p240とp230の生成過程を調べるため、細胞のパルス・チェイス実験を行った。10cmプラスチックディッシュに蒔いたラット肝癌由来細胞株AH66F細胞を250μCi/mlの[³⁵S]メチオニン(商品名Tran 35Sーlabel、ICN社)と10%牛胎児血滑(JRH バイオサイエンス社)を含む1mlのDMEM培地(メチオニン、システイン不含、ライフテックオリエンタル社)中で30分間パルスラベルし、次いで大過剰の非放射性メチオニンを培地中に添加した。非放射性メチオニン添加後0、1、3、6時間後に細胞を回収し、組換えラット・テロメラーゼ蛋白質に対する特異抗体を用い、実施例4と同様に免疫沈降を行った。

得られた免疫沈降物を6%SDS-PAGE、次いでオートラジオグラフィーに供した。その結果、パルスラベル直後(0時間)では免疫沈降されたのは主に p240であった。しかし、経時的(1、3、6時間)にp240は減少し、 p230が増加した。このことから、ラット・テロメラーゼ蛋白質は、はじめ p240を含む榕成の蛋白質として発現され、その後修飾を受けてp230を含む榕成の蛋白質になると考えられる。

ラット正常組織及びラット肝癌由来細胞株AH66F細胞中のp240/p230の存在比と、テロメラーゼ活性との相関を調べた。まず、ラット肝臓、腎臓、精巣及びAH66F細胞からCounterらの方法(EMBO.J、11、1921、1995)に従ってS100抽出液を調製し、これを実施例8と同様にヘパリンセファロースCL-6Bカラムにて部分精製した。各テロメラーゼ部分精製画分について組換えラット・テロメラーゼ蛋白質特異抗体を用いたウェスタンブロット法によるp230/p240存在比、および、テロメラーゼ活性の測定を行った。その結果、テロメラーゼ活性の強さの順は高いものよりAH66F細胞、精巣、肝臓であり、腎臓では検出されなかった。一方、p230の存在比は多い順にAH66F細胞、精巣、肝臓であった。腎臓ではほとんどp230は 観察されなかった。

この結果はp230の存在比とテロメラーゼ活性との強い相関を示しており、p230が活性型、p240は不活性型のラット・テロメラーゼ蛋白質を構成する分子種であると考えられる。以上より、ラットテロメラーゼは、はじめ不活性型のp240で構成された分子種として生成され、その後修飾を受けてp240がp230に変化し活性型分子種が生成することが確認された。

産業上の利用可能性

本発明により、細胞増殖に必須であり、かつ癌細胞の増殖への関与が示唆されている高等動物由来のテロメラーゼ蛋白質及びそれをコードする遺伝子が提供された。本発明のテロメラーゼ蛋白質及びそれをコードする遺伝子は、例えば、細胞増殖及び細胞の老化などの生体制御機織の解明に有用であり、癌の治療薬の開発に特に有用性が期待される。また、本発明のテロメラーゼ蛋白質を特異的に認識する抗体は癌細胞の検出のための試薬として有用であり、癌の早期発見を目的とした臨床検査薬としての有用性が期待される。さらに、本発明のテロメラーゼ蛋白質のサブユニットが活性型および不活性型ではSDSーポリアクリルアミド電気泳動法における分子量が異なるという性質を利用して、テロメラーゼ蛋白質に作用する薬物のスクリーニングを行うことが可能になる。

配列表

配列番号:1

配列の長さ:核酸=8215、アミノ酸=2629

配列の型:核酸及びアミノ酸

トポロジー:直鎖状二本鎖

配列の粒類:cDNA

起源:生物名 ラット

配列

AGCTCCGCCC CTCCCCTTGC CCAGCCTCGC CCCTTCGCCT CTCTAGGGTG TTGGTTTCCT 60

TTCAGTTCTC TTTCTTCAAC CTATCCACTG GCTGACCTAG GCCGGTTTCT GCTCCTTGTT 120

GCGGAGAACC AACGCGCCCC TCACTGTGCA CAGCTTTTCC AGTCCCGAGC GCAGGCACAT 180

AGAGATTGTG CTGCCGCT ATG GAG AAA CTC TGT GGT TAT GTG CCT GTC 228

Met Glu Lys Leu Cys Gly Tyr Val Pro Val

1 5 10

CAC CCA GAC ATC CTC TCC TTG AAG AAT CGG TGC CTG ACC ATG CTC TCT 276

His Pro Asp lle Leu Ser Leu Lys Asn Arg Cys Leu Thr Met Leu Ser

15 20 25

GAC ATC CAA CCC CTG GAG AAA ATA CAT GGA CAG AGA TCT GTC AAC CCA 324
Asp Ile Gln Pro Leu Glu Lys lle His Gly Gln Arg Ser Val Asn Pro

30 35 40

GAC ATC CTG TCC TTG GAG AAC CGG TGC CTG ACC TTG CTC CCT GAT CTC 372

Asp Ile Leu Ser Leu Glu Asn Arg Cys Leu Thr Leu Leu Pro Asp Leu

45 50 55

CAG CCC ATG GAG AAA ATA CAT GGA CAG AGA TCT GTC CAC CCA GAC ATC 420 Gln Pro Met Glu Lys Ile His Gly Gln Arg Ser Val His Pro Asp Ile

60 65 70

CTC TCC TCA GAG AAC CGG TGT CTG ACC TTG CTC CCT GAC CTC CAG TCC 468

Le	u Se	r Se	r Glu	ı Asr	Arg	Cys	: Leu	Thi	Lei	ı Leu	Pro	Ası	Leu	Gli) Ser	
7	5				80)				85	i				90	
CT	G GA	G AA	G CTA	A TGT	` GGA	CAT	ATG	TCT	r AGT	CAC	CCA	GAC	GTC	CTO	TCT	516
Lei	ı G1	u Ly:	s Lei	ı Cys	Gly	His	Het	Ser	Ser	His	Pro	Asp	Val	Lei	Ser	
				95	•				100)				105	i	
TTO	G GA	G AAC	CGA	TGT	CTT	GCT	ACC	CTC	CCG	ACT	GTA	AAG	AGA	ACT	GTT	564
Leu	ı Glı	ı Ası	n Arg	Cys	Leu	Ala	Thr	Leu	Pro	Thr	Val	Lys	Arg	Thr	Val	
110									115 120							
TCG	AG1	r GGC	ccc	TTG	CTC	CAG	TGT	CTT	CAC	AGA	TCT	CAT	ACG	GCA	CAA	612
Ser	Ser	Gly	Pro	Leu	Leu	Gln	Cys	Leu	His	Arg	Ser	His	Thr	Ala	Gln	
		125	;				130					135				
GCT	GAT	CTG	CGT	GAC	CCG	AAC	TTT	CGC	AAC	TGC	CTG	TTC	CCT	GAG	CCT	660
Ala	Asp	Leu	Arg	Asp	Pro	Asn	Phe	Arg	Asn	Cys	Leu	Phe	Pro	Glu	Pro	
	140					145					150					
CCT	ACC	ATA	GAG	GCT	CCA	TGT	TTC	TTG	AAG	GAA	CTA	GAC	CTT	CCA	ACT	708
Pro	Thr	lle	Glu	Ala	Pro	Cys	Phe	Leu	Lys	Glu	Leu	Asp	Leu	Pro	Thr	
155					160					165					170	
GGA	CCC	AGG	GCC	CTG	AAA	TCC	ATG	TCT	GCT	ACA	GCT	CGA	GTT	CAG	GAA	756
Gly	Pro	Arg	Ala	Leu	Lys	Ser	Met	Ser	Ala	Thr	Ala	Arg	Val	Gln	Glu	
				175					180					185		
GTA	GCT	TTG	GGT	CAG	CGG	TGC	GTC	TCA	GAA	GGA	AAG	GAA	TTG	CAG	GAA	804
Val	Ala	Leu	Gly	Gln	Arg	Cys	Val	Ser	Glu	Gly	Lys	Glu	Leu	Gln	Glu	
			190					195					200	•		
GAA	AAA	GAA	AGC	GCA	GAA	GTC	CCG	ATG	CCT	TTG	TAC	AGT	CTA	AGC	TTG	852
Glu	Lys	Glu	Ser	Ala	Glu	Val	Pro	Het	Pro	Leu	Tyr	Ser	Leu	Ser	Leu	
		201	•				210					215				
GGG	GGA	GAA	GAA	GAA	GAA	GTG	GTG	GGG	GCA	CCG	GTC	CTA	AAA	CTC	ACA	900
Gly	Gly	Glu	Glu	Glu	Glu	Val	Val	Gly	Ala	Pro	Val	Leu	Lys	Leu	Thr	

	220)				225	,				230	1				
TCT	GGA	GAC	TC1	GAC	TCT	CAC	ССТ	' GAA	ACC	ACT	GAC	CAG	ATC	CTG	CAG	948
Ser	Gly	Asp	Ser	Asp	Ser	His	Pro	Glu	Thr	Thr	Asp	Gln	lle	Leu	Gln	
235					240					245					250	
GAG	AAG	AAG	ATG	GCT	CTC	TTG	ACC	TTG	CTG	TGC	TCA	GCT	ATG	GCC	TCA	996
Glu	Lys	Lys	Йet	Ala	Leu	Leu	Thr	Leu	Leu	Cys	Ser	Ala	Het	Ala	Ser	
				255					260					265		
AGT	GTG	AAT	GTG	AAA	GAT	GCC	TCC	GAT	CCT	ACC	CGG	GCA	TCT	ATC	CAT	1044
Ser	Val	Asn	Val	Lys	Asp	Ala	Ser	Asp	Pro	Thr	Arg	Ala	Ser	Ile	His	
			270					275					280			
GAA	GTC	TGC	AGT	GCG	CTG	GCC	CCC	TTG	GAA	CCT	GAG	TTC	ATC	CTT	AAG	1092
Glu	Val	Cys	Ser	Ala	Leu	Ala	Pro	Leu	Glu	Pro	Glu	Phe	lle	Leu	Lys	
		285					290					295				
GCA	TCT	TTG	TAT	GCT	AGG	CAG	CAG	CTT	AAC	CTC	CGG	GAC	ATA	GCC	AAT	1140
Ala	Ser	Leu	Tyr	Ala	Arg	Gln	Gln	Leu	Asn	Leu	Arg	Asp	lle	Ala	Asn	
	300					305					310					
ATA	GTG	TTG	GCC	GTG	GCT	GCC	CTC	TTG	CCA	GCC	TGC	CGC	CCC	CAT	GTA	1188
lle	Val	Leu	Ala	Val	Ala	Ala	Leu	Leu	Pro	Ala	Cys	Arg	Pro	His	Val	
315					320					325					330	
CGA	CGG	TAT	TAC	TCT	GCC	ATT	GTT	CAC	CTG	CCT	TCA	GAC	TGG	ATC	CAG	1236
Arg	Arg	Tyr	Tyr	Ser	Ala	lle	Val	His	Leu	Pro	Ser	Asp	Trp	lle	Gln	
				335					340					345		
GTA	GCC	GAG	TTC	TAC	CAG	AGC	CTG	GCA	GAA	GGG	GAT	GAG	AAG	AAG	TTG	1284
Val	Ala	Glu	Phe	Tyr	G1n	Ser	Leu	Ala	Glu	Gly	Asp	Glu	Lys	Lys	Leu	
			350					355	•				360			
GTG	CCC	CTG	CCT	GCC	TGC	CTC	CGT	GCT	GCC	ATG	ACT	GAC	AAA	TTT	GCC	1332
Val	Pro	Leu	Pro	Ala	Cys	Leu	Arg	Ala	Ala	Met	Thr	Asp	Lys	Phe	Ala	
		365					370					375				

CA	G T	TT	GA'	T GA	G TA	C CA	G C1	CA GC	G AA	G TA	C AA	C CC	CA CG	G AA	AA CA	AC CG	1380
G1	n P	he	Ası	p Gl	u Ty	r G1	n Le	u Al	a Ly	s Ty	r Aş	n Pr	o Ar	g Ly	s Hi	is Arg	Į.
	3	80					38	15				39	10				
TC	C A	AG	AC/	A CG	T TC	c cg	C CA	G CC	A CC	C CG	c cc	T CA	A AG	G AC	A AA	A CCT	1428
Se	r L	ys	Thr	Ar	g Se	r Ar	g G1	n Pr	o Pr	o Ar	g Pr	o G1	n Ar	g Th	r Ly	's Pro	ı
39	5					40	0				40	5				410	
CC	A T	ΓŢ	TCA	GA	G AG	T GG	G AA	A TG	T TT	T CC.	A AA	G AG	C GT	T TG	G CC	с стт	1476
Pro	o Pi	ne	Ser	Gl	u Se	r Gl	y Ly	s Cy	s Phe	e Pro	o Ly	s Se	r Va	l Tr	p Pr	o Leu	
					41	5				421	0				42	5	
AAA	A AA	C	GAA	CAC	G AT	T TC	G TT(C GA/	GC/	GC1	TA'	r aa	r GC/	GT(G TC	A GAG	1524
Lys	s As	ח	Glu	Glr	110	e Ser	Phe	e Glu	ı Ala	a Ala	ı Tyı	r Ası	n Ala	\Va	l Se	r Glu	
				430)				435	j				44()		
AAG	AA	A.	AGG	CTA	CCA	AGG	TTC	ACT	CTG	AAG	AAC	TT(GTA	GAC	G CA	A CTG	1572
Lys	Ly	S	Arg	Leu	Pro	Arg	Phe	Thr	Leu	Lys	Lys	Lei	ı Val	Glu	Gli	n Leu	
		,	445					450	1				455	•			
CAT	AT	C (CAT	GÀG	CCI	GCG	CAG	CAT	GTC	CAG	GCC	СТС	CTG	GGC	TAC	CAGG	1620
His	110	e i	lis	Glu	Pro	Ala	Gln	His	Va1	Gln	Ala	Leu	Leu	Gly	Tyr	Arg	
	46	0					465					470)				
TAC	CC	١ ٦	CC	ACC	CTA	GAG	CTC	TTT	TCT	CGG	AGT	CAT	СТС	CCT	GGG	CCA	1668
Tyr	Pro	S (Ser	Thr	Leu	Glu	Leu	Phe	Ser	Årg	Ser	His	Leu	Pro	Gly	Pro	
475						480					485					490	
TGG	GAC	T	СТ	AGC	AGG	GCT	GGG	CAA	CGG	ATG	AAG	СТС	CAA	AGG	CCA	GAG	1716
Trp	Asp	S	er	Ser	Arg	Ala	Gly	Gln	Arg	Met	Lys	Leu	Gln	Arg	Pro	Glu	
					495					500					505		
ACC	TGG	G	AG (CGG	GAG	CTG	AGC	TTA	CGT	GGA	AAC	AGA	GCT	TCT	GTG	TGG	1764
								Leu									
				510					515					520			
GAG	GAA	C'	TC I	ATA	GAC	AAT	GGG	AAA	CTC	CCC	TTC	ATG	GCC	ATG	СТС	CGG	1812

Glu	Glu	ı Lei	ı Ile	Asp	Asr	Gly	Lys	Leu	Pro) Phe	e Het	: Ala	Иet	Lei	Arg	
		525	5				530)				535	•			
AAC	CTG	TGT	AAC	CTG	CTG	CGG	ACT	GGG	ATC	AGT	GCC	CAC	CAC	CAT	C GAA	1860
Asn	Leu	Cys	Asn	Leu	Leu	Arg	Thr	Gly	lle	Ser	Ala	His	His	His	Glu	
	540					545					550					
CTC	GTT	CTC	CAG	AGA	CTC	CAG	CAT	GAG	AAA	TCT	GTG	ATT	CAC	AGT	CGG	1908
Leu	Val	Leu	Gln	Arg	Leu	Gln	His	Glu	Lys	Ser	Val	lle	His	Ser	Arg	
555					560					565					570	
CAG	TTT	CCA	TTC	AGA	TTC	CTT	AAT	GCT	CAC	GAC	TCT	СТС	GAT	AGA	CTC	1956
Gln	Phe	Pro	Phe	Arg	Phe	Leu	Asn	Ala	His	Asp	Ser	Leu	Asp	Arg	Leu	
				575					580					585		
GAG	GCT	CAG	CTC	AGA	AGT	AAA	GCA	TCG	CCC	TTC	CCT	TCC	AAT	ACA	ACA	2004
Glu	Ala	Gln	Leu	Arg	Ser	Lys	Ala	Ser	Pro	Phe	Pro	Ser	Asn	Thr	Thr	
			590					595					600			
TTG	ATG	AAG	CGG	ATA	ATG	ATT	AGA	AAC	TCA	AAA	AAA	ATC	AAG	AGA	CCT	2052
Leu	Met	Lys	Arg	lle	Неt	lle	Arg	Asn	Ser	Lys	Lys	Ile	Lys	Arg	Pro	
		605					610					615				
GCC	AAC	CCG	AGG	TAC	CTG	TGC	ACC	CTG	ACG	CAG	CGG	CAG	CTT	CGG	GCG	2100
Ala	Asn	Pro	Arg	Tyr	Leu	Cys	Thr	Leu	Thr	Gln	Arg	Gln	Leu	Arg	Ala	
	620					625					630					
GCA	ATG	GCT	ATC	CCG	GTG	ATG	TAT	GAG	CAT	CTC	AAG	CGG	GAG	AAA	CTG	2148
Ala	Het	Ala	lle	Pro	Val	йet	Tyr	Glu	His	Leu	Lys	Arg	G1u	Lys	Leu	
635					640					645					650	
AGG	CTG	CAC	AAG	GCC	AGA	CAG	TGG	ACC	TGT	GAC	CTT	GAG	TTG	CTG	GAG	2196
Arg	Leu	His	Lys	Ala .	Arg	Gln	Trp	Thr	Cys	Asp	Leu	Glu	Leu	Leu	Glu	
				655					660					665		
CGG	TAT	CGC	CAG	GCC	CTG	GAA .	ACG	GCC	CTG	AAC	ATC	TCT	GTA	AAG	CAC	2244
Arg	Tyr	Arg	Gln .	Ala	Leu	Glu '	Thr	Ala	Val	Asn	lle	Ser	Val	Lys	Kis	

670	675	680	
AAC CTA CCC CCG CTG CCA GG	C CGA ACC CTC T	TG GTC TAT CTC ACA GAT	2292
Asn Leu Pro Pro Leu Pro Gl	y Arg Thr Leu L	eu Val Tyr Leu Thr Asp	•
685	690	695	
GCA AAT GCC AAC AGA CTT TG	T CCC AAG AGT CA	AC TTG CAA GGG CCT CCC	2340
Ala Asn Ala Asn Arg Leu Cy	s Pro Lys Ser Hi	is Leu Gln Gly Pro Pro	
700 70	5	710	
CTG AAC TAT GTG CTG CTG TTG	G ATC GGG ATG AT	TG ATG GCT CGG GCG GAG	2388
Leu Asn Tyr Val Leu Leu Leu	lle Gly Met Me	et Met Ala Arg Ala Glu	
715 720	72	730	
CAG ACG ACA GTT TGG CTG TGT	GGG ACA GGA AC	T GTG AAG ACA CCA GTA	2436
Gln Thr Thr Val Trp Leu Cys	Gly Thr Gly Th	r Val Lys Thr Pro Val	
735	740	745	
CTT ACA GCC GAC GAA GGT ATC	CTG AAG ACT GCG	C ATC AAA CTT CAG GCT	2484
Leu Thr Ala Asp Glu Gly Ile	Leu Lys Thr Ala	a lle Lys Leu Gln Ala	
750	7 55	760	
CAA GTC CAG GAG TTA GAA GAA	AAT GAT GAG TGG	G CCC CTG GAA ACT TTT	2532
Gln Val Gln Glu Leu Glu Glu	Asn Asp Glu Trp	Pro Leu Glu Thr Phe	
765	770	775	
GAG AAG TAC CTG CTA TCT CTG	GCT GTG CGA AGG	ACC CCT ATT GAC AGG	2580
Glu Lys Tyr Leu Leu Ser Leu	Ala Val Arg Arg	Thr Pro Ile Asp Arg	
780 785		790	
GTC ATC CTG TTC GGC CAA AGG	ATG GAT ACG GAG	CTG CTG AAT GTA GCC	2628
Val lle Leu Phe Gly Gln Arg	Met Asp Thr Glu	Leu Leu Asn Val Ala	
795 800	805	810	
AAA CAG ATT ATC TGG CAG CAT	GTG AAT TCC AAG	TGC CTC TTC GTC AGT	2676
Lys Gln Ile Ile Trp Gln His	Val Asn Ser Lys	Cys Leu Phe Val Ser	
815	820	825	

GT	C CT	C CI	CA CG	G AA	A AT	G CAC	G TAC	ATO	G TC	A CC	A AA	T TT	G AA1	r cc	C AAT	272
Va 1	l Le	u Le	u Ar	g Ly	s He	t Glr	ı Tyr	Me	t Se	r Pro	sA c	ı Lei	ı Asr	Pr	o Asn	1
			83	0				839	5				840)		
GAT	GT	G AC	G CT	C TC	G GG(TGC	ACT	GAC	GGG	ATC	CTO	AAG	TTC	AT'	r gcg	2772
Asp	Va.	l Th	r Le	u Se	r Gly	Cys	Thr	Asp	G13	' Ile	e Leu	Lys	Phe	Ile	e Ala	
		84	5				850					855				
GAG	CAT	r GG	A GC	C TCT	r cgi	CTT	CTG	GAA	CAT	GTG	GGC	CAA	CTA	GAT	r aag	2820
Glu	His	G1;	y Ala	a Ser	r Arg	Leu	Leu	Glu	His	Val	Gly	G1n	Leu	Asp	Lys	
	860)				865					870					
ATA	TTC	AAC	G ATO	CCT	CCA	CCC	CCA	GGA	AAG	ACA	AAG	GTC	TCA	CCI	CTC	2868
lle	Phe	Lys	s 11e	Pro	Pro	Pro	Pro	Gly	Lys	Thr	Lys	Val	Ser	Pro	Leu	
875					880					885					890	
CGG	CCG	CTO	GAG	GAG	AAC	AAC	CCT	GGT	CCC	TTC	GTT	CCT	ATT	TCC	CAG	2916
Arg	Pro	Leu	Glu	Glu	Asn	Asn	Pro	Gly	Pro	Phe	Val	Pro	lle	Ser	Gln	
				895					900					905		
CAT	GGA	TGG	CGC	AAC	ATC	CGG	CTT	TTC	ATT	TCG	TCC	AÇT	TTC	CGA	GAC	2964
His	Gly	Trp	Arg	Asn	He	Arg	Leu	Phe	lle	Ser	Ser	Thr	Phe	Arg	Asp	
			910					915					920			
							CTG									3012
Met	His	Gly	Glu	Arg	Asp	Leu	Leu	llet	Arg	Ser	Val	Leu	Pro	Ala	Leu	
		925					930					935				
CAG	GCC	CGA	GCG	TTC	CCC	CAC	CGC	ATC	AGC	CTT	CAC	GCC	ATT	GAC	CTG	3060
Gln	Ala	Arg	Ala	Phe	Pro	His	Arg	lle	Ser	Leu	His	Ala	lle	Asp	Leu	
	940					945			_		950					
							GAG .									3108
Arg	Trp	Gly	Ile	Thr	Glu	Glu	Glu '	Thr	Arg	Arg	Asn	Arg	Gln	Leu	Glu	
955					960					965					970	
GTG '	TGC	CTT	GGG	GAG	GTG	GAG	AAC '	TCT	CAG	CTG	TTC	GTG	GGG	ATC	CTG	3156

Val Cys Leu Gly Glu Val Glu Asn Ser Gln Leu Phe Val Gly Ile Leu
975 980 985
GGC TCC CGC TAT GGC TAT ACT CCC CCC AGC TAT GAT CTG CCT GAC CAC 3204
Gly Ser Arg Tyr Gly Tyr Thr Pro Pro Ser Tyr Asp Leu Pro Asp His
990 995 1000
CCC CAC TTT CAC TGG ACC CAG CGA TAC CCT TCG GGG CGC TCT GTA ACA 3252
Pro His Phe His Trp Thr Gln Arg Tyr Pro Ser Gly Arg Ser Val Thr
1005 1010 1015
GAG ATG GAG GTG ATG CAG TTC CTC AAC CCT CCC CAA CCC TCC CAA
Glu Met Glu Val Met Gln Phe Leu Asn Arg Gly Gln Arg Ser Glu Pro
1020 1025 1030
TCT GAC CAA GCT CTC ATC TAC TTC CCA CAT CCT CCT TTC CTT
Ser Asp Gln Ala Leu Ile Tyr Phe Arg Asp Pro Gly Phe Leu Ser Ser
1035
GTG CCA GAT GTC TGG AAA CCT GAC TTT ATT TGG GAG TGL GAL GAG
Val Pro Asp Val Trp Lys Pro Asp Phe 11e Ser Glu Ser Glu Glu Ala
1055
1005
GCA CAT CGG GTC TCA GAA CTG AAG AGA TTC CTA CAG GAA CAG AAA GAG 3444
Ala His Arg Val Ser Glu Leu Lys Arg Phe Leu Gln Glu Gln Lys Glu 1070 1075
1080
GTT ACC TGC CGC AGG TAC TCC TGT GAA TGG GGA GGC GTA GCA GCC GGC 3492
Val Thr Cys Arg Arg Tyr Ser Cys Glu Trp Gly Gly Val Ala Ala Gly 1085 1090 1005
1000
CGG CCC TAT ACT GGG GGC CTG GAG GAG TTT GGA CAG TTG GTT CTC CAA 3540
Arg Pro Tyr Thr Gly Gly Leu Glu Glu Phe Gly Gln Leu Val Leu Gln
1100 1105 1110
GAT GTG TGG AGC GTG ATC CAG AAG CGT TAC CTG CAG CCT GGG GCC CAG 3588
Asp Val Trp Ser Val Ile Gln Lys Arg Tyr Leu Gln Pro Gly Ala Gln

W	O 98/0	7838													PCT/J	P97/0290 4
1115	5			1	120]	125				1	1130	
TTG	GAG	CAG	CCA	GGA	TCC	ATC	TCA	GAA	GAG	GAT	TTG	ATC	CAG	GCC	AGC	3636
Leu	Glu	Gln	Pro	Gly	Ser	lle	Ser	Glu	Glu	Asp	Leu	lle	Gln	Ala	Ser	
			1	135]	140					l 145		
TTT	CAG	CAG	CTG	AAG	AGC	CCA	CCG	AGT	CCC	GCA	CGG	CCA	CGC	CTT	CTT	3684
Phe	Gln	Gln	Leu	Lys	Ser	Pro	Pro	Ser	Pro	Ala	Arg	Pro	Arg	Leu	Leu	
		1	150				1	155]	1160			
CAG	GAT	ACC	GTG	CAA	CAG	CTG	ATG	CTG	CCC	CAC	GGG	AGG	CTG	AGC	CTA	3732
Gln	Asp	Thr	Val	Gln	Gln	Leu	Net	Leu	Pro	His	Gly	Arg	Leu	Ser	Leu	
	1	165				1	170				1	175				
GTG	ATT	GGG	CAG	GCA	GGA	CAG	GGA	AAG	ACT	GCC	TTC	CTG	GCA	TCC	CTT	3780
Val	lle	Gly	G1n	Ala	Gly	Gln	Gly	Lys	Thr	Ala	Phe	Leu	Ala	Ser	Leu	
	1180					1185				;	1190					
GTG	TCG	GCC	CTG	AAG	GTT	CCC	GAC	CAG	CCC	AAT	GTG	GCC	CCG	TTC	GTT	3828
Val	Ser	Ala	Leu	Lys	Val	Pro	Asp	Gln	Pro	Asn	Val	Ala	Pro	Phe	Val	
119	5			1	200					1205					1210	
TTC	TTC	CAC	TTT	TCA	GCA	GCC	CGC	CCT	GAC	CAG	TGT	CTT	GCT	TTC	AAC	3876
Phe	Phe	His	Phe	Ser	Ala	Ala	Arg	Pro	Asp	Gln	Cys	Leu	Ala	Phe	Asn	
				1215					1220					1225	•	
CTC	CTC	AGA	CGC	CTC	TGT	ACC	CAT	CTG	CAT	CAA	AAA	CTG	GGA	GAG	CCG	3924
Leu	Leu	Arg	Arg	Leu	Cys	Thr	His	Leu	His	Gln	Lys	Leu	Gly	Glu	Pro	
			1230					1235					1240			
AGC	GCT	CTC	CCC	AGC	ACT	TAC	AGA	GGC	CTG	GTG	TGG	GAA	CTG	CAG	CAG	3972
Ser	Ala	Leu	Pro	Ser	Thr	Tyr	Arg	Gly	Leu	Val	Trp	Glu	Leu	Gln	Gln	
		1245					1250					1255	ı			
AAG	CTG	CTC	CTC	AAA	TCT	GCC	CAG	TGG	CTG	CAA	CCA	GGC	CAG	ACT	TTG	4020
Lvs	Leu	Leu	Leu	Lys	Ser	Ala	Gln	Trp	Leu	Gln	Pro	Gly	Gln	Thr	Leu	

Val Leu 11e 11e Asp Gly Ala Asp Lys Leu Val Asp His Ash Gly Gln 1275 1280 1285 1290 CTG ATT TCA GAC TGG ATC CCC AAG TCT CTT CCG CGG CGA GTA CAC CTG 4116 Leu 11e Ser Asp Trp 11e Pro Lys Ser Leu Pro Arg Arg Val His Leu 1295 1300 1305 GTG CTG AGT GTG TCT AGT GAC CTG GGA GAG ACC CTT CAG CAA 4164 Val Leu Ser Val Ser Ser Asp Ser Gly Leu Gly Glu Thr Leu Gln Gln 1310 1315 1320 AGT CAG AGT GCT TAT GTG GTG GCC TTG GGG TCT TTG GTC CCG TCT TCA 4212 Ser Gln Ser Ala Tyr Val Val Ala Leu Gly Ser Leu Val Pro Ser Ser 1325 1330 1335 AGG GCT CAG CTT GTG AGA GAA GAG CTA GCA CTG TAT GGG AAA CGG CTG Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu 1340 1345 1350 GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG Glu Glu Ser Pro Phe Ash Ash Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 GGG TCA AGC CTG GGG TCA AGC CTG CTA CTG CTG CTG CTG CTG CTG CTG CTG GGG TCA AGC CTG CTA CTG CTG CTG CTG CTG CTG CTG CTG GCC ATT CAC CTG GCC ACT CTG Ala Thr Leu Pro Leu Leu Leu CTT CTT CAC CTT	GTC CTT ATT. A	TC GAC GGG GC	A GAT AAG T	TG GTG GAC CAT	AAT GGA CAG 4068
CTG ATT TCA GAC TGG ATC CCC AAG TCT CTT CCG CGG CGA GTA CAC CTG 4116 Leu Ile Ser Asp Trp Ile Pro Lys Ser Leu Pro Arg Arg Val His Leu 1295 1300 1305 GTG CTG AGT GTG TCT AGT GAC TCA GGC CTG GGA GAG ACC CTT CAG CAA 4164 Val Leu Ser Val Ser Ser Asp Ser Gly Leu Gly Glu Thr Leu Gln Gln 1310 1315 1320 AGT CAG AGT GCT TAT GTG GTG GCC TTG GGG TCT TTG GTC CCG TCT TCA 4212 Ser Gln Ser Ala Tyr Val Val Ala Leu Gly Ser Leu Val Pro Ser Ser 1325 1330 1335 AGG GCT CAG CTT GTG AGA GAA GAG CTA GCA CTG TAT GGG AAA CGG CTG 4260 Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu 1340 1345 1350 GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG 4308 Glu Glu Ser Pro Phe Asn Asn Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 1390 1395 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1405 1410 1415	Val Leu Ile I	le Asp Gly Ala	a Asp Lys Le	eu Val Asp His	
Leu 11e Ser Asp Trp 11e Pro Lys Ser Leu Pro Arg Arg Val His Leu	1275	1280		1285	1290
Leu 11e Ser Asp Trp 11e Pro Lys Ser Leu Pro Arg Arg Val His Leu	CTG ATT TCA G	AC TGG ATC CC	C AAG TCT CT	T CCG CGG CGA	
1295 1300 1305 GTG CTG AGT GTG TCT AGT GAC TCA GGC CTG GGA GAG ACC CTT CAG CAA 4164 Val Leu Ser Val Ser Ser Asp Ser Gly Leu Gly Glu Thr Leu Gln Gln 1310 1315 1320 AGT CAG AGT GCT TAT GTG GTG GCC TTG GGG TCT TTG GTC CCG TCT TCA 4212 Ser Gln Ser Ala Tyr Val Val Ala Leu Gly Ser Leu Val Pro Ser Ser 1325 1330 1335 AGG GCT CAG CTT GTG AGA GAA GAG CTA GCA CTG TAT GGG AAA CGG CTG 4260 Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu 1340 1345 1350 GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG GCA AAG CAG 4308 Glu Glu Ser Pro Phe Asn Asn Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His 11e Leu Ser Thr Leu Glu Gln 1405 1410 1415					
## CTG CTG AGT GTG TCT AGT GAC TCA GGC CTG GGA GAG ACC CTT CAG CAA 4164 Val Leu Ser Val Ser Ser Asp Ser Gly Leu Gly Glu Thr Leu Gln Gln 1310 1315 1320 AGT CAG AGT GCT TAT GTG GTG GCC TTG GGG TCT TTG GTC CCG TCT TCA 4212 Ser Gln Ser Ala Tyr Val Val Ala Leu Gly Ser Leu Val Pro Ser Ser 1325 1330 1335 AGG GCT CAG CTT GTG AGA GAA GAG CTA GCA CTG TAT GGG AAA CGG CTG 4260 Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu 1340 1345 1350 GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG 4308 Glu Glu Ser Pro Phe Asn Asn Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1405 1415 1415 Ala Thr Leu Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1405 1415					
Nal Leu Ser Val Ser Ser Asp Ser Gly Leu Gly Glu Thr Leu Gln Gln 1310 1315 1320 AGT CAG AGT GCT TAT GTG GTG GCC TTG GGG TCT TTG GTC CCG TCT TCA Ser Gln Ser Ala Tyr Val Val Ala Leu Gly Ser Leu Val Pro Ser Ser 1325 1330 1335 AGG GCT CAG CTT GTG AGA GAA GAG CTA GCA CTG TAT GGG AAA CGG CTG Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu 1340 1345 1350 GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG Glu Glu Ser Pro Phe Ash Ash Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAG GTG TCT GAG GAG CTT CGA ACC CTG CCC Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG	GTG CTG AGT G	IG TCT AGT GAC	TCA GGC CT	G GGA GAG ACC (
AGT CAG AGT GCT TAT GTG GTG GCC TTG GGG TCT TTG GTC CGG TCT TCA 4212 Ser Gln Ser Ala Tyr Val Val Ala Leu Gly Ser Leu Val Pro Ser Ser 1325 1330 1335 AGG GCT CAG CTT GTG AGA GAA GAG CTA GCA CTG TAT GGG AAA CGG CTG 4260 Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu 1340 1345 1350 GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG 4308 Glu Glu Ser Pro Phe Asn Asn Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1370 GGG TCA AGC CTG CCA CTG TAC CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CTG CAC ACC TTG GAC CAC TTG GAC CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1415					
AGT CAG AGT GCT TAT GTG GTG GCC TTG GGG TCT TTG GTC CCG TCT TCA 4212 Ser Gln Ser Ala Tyr Val Val Ala Leu Gly Ser Leu Val Pro Ser Ser 1325 1330 1335 AGG GCT CAG CTT GTG AGA GAA GAG CTA GCA CTG TAT GGG AAA CGG CTG 4260 Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu 1340 1345 1350 GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG 4308 Glu Glu Ser Pro Phe Asn Asn Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1415					
Ser Gln Ser Ala Tyr Val Val Ala Leu Gly Ser Leu Val Pro Ser Ser 1325 1330 1335 1335 1340 Ala GAA GAA GAA GAG CTA GCA CTG TAT GGG AAA CGG CTG 4260 Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu 1340 1345 1350 1350 Ala GAG CTA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG 4308 Glu Glu Ser Pro Phe Asn Asn Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 Ala GGG TCA AGC CTG CTG CTG ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CAC CTG CAC ACT GAC ACC CTG GAA 4452 Ala Thr Leu Pro Leu Leu Leu Glu His Ile Leu Ser Thr Leu Glu Gln 1405 1410 1415 Ala Cac CTG CAC CAC CAC CAC CAC CAC CAC CAC CAC CA	AGT CAG AGT GO	T TAT GTG GTG	GCC TTG GG		
1325 1330 1335 AGG GCT CAG CTT GTG AGA GAA GAG CTA GCA CTG TAT GGG AAA CGG CTG 4260 Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu 1340 1345 1350 GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG 4308 Glu Glu Ser Pro Phe Asn Asn Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His lle Leu Ser Thr Leu Glu Gln 1405 1410 1415					
AGG GCT CAG CTT GTG AGA GAA GAG CTA GCA CTG TAT GGG AAA CGG CTG 4260 Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu 1340 1345 1350 GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG 4308 Glu Glu Ser Pro Phe Asn Asn Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CTG CAC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1405 1410 1415					
Arg Ala Gln Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu 1340 1345 1350 GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG 4308 Glu Glu Ser Pro Phe Asn Asn Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1405 1410 1415	AGG GCT CAG CT	T GTG AGA GAA	GAG CTA GCA		AA CGG CTG 4980
1340 1345 1350 GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG 4308 Glu Glu Ser Pro Phe Asn Asn Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1405 1410 1415					
GAG GAG TCA CCT TTT AAC AAC CAG ATG CGG CTG CTG CTG GCA AAG CAG 4308 Glu Glu Ser Pro Phe Asn Asn Gln Met Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His 11e Leu Ser Thr Leu Glu Gln 1405 1410 1415					, •g 200
Glu Glu Ser Pro Phe Asn Asn Gln Het Arg Leu Leu Leu Ala Lys Gln 1355 1360 1365 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1405 1410 1415	GAG GAG TCA CC	T TTT AAC AAC	CAG ATG CGG		CA AAG CAG 4308
1355 1360 1365 1365 1370 GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1405 1410 1415					
GGG TCA AGC CTG CCA CTG TAC CTG CAC CTC GTC ACT GAC TAC CTG AGG 4356 Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1405 1410 1415			_		
Gly Ser Ser Leu Pro Leu Tyr Leu His Leu Val Thr Asp Tyr Leu Arg 1375 1380 1385 CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His 11e Leu Ser Thr Leu Glu Gln 1405 1410 1415	GGG TCA AGC CTG	CCA CTG TAC	CTG CAC CTC		
CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His 11e Leu Ser Thr Leu Glu Gln 1405 1410 1415					
CTT TTC ACA CTG TAC GAA CAG GTG TCT GAG AGA CTT CGA ACC CTG CCC 4404 Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Gln 1405 1410 1415					
Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro 1390 1395 1400 GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Cln His 11e Leu Ser Thr Leu Glu Gln 1405 1410 1415	CTT TTC ACA CTG	TAC GAA CAG	GTG TCT GAG	AGA CTT CGA AC	0.000.000
GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Cln His 11e Leu Ser Thr Leu Glu Gln 1405 1410 1415					
GCC ACT CTC CCA CTG CTG CTG CAG CAC ATC CTG AGC ACC TTG GAG CAA 4452 Ala Thr Leu Pro Leu Leu Gln His 11e Leu Ser Thr Leu Glu Gln 1405 1410 1415					
Ala Thr Leu Pro Leu Leu Gln His 11e Leu Ser Thr Leu Glu Gln 1405 1410 1415	GCC ACT CTC CCA	CTG CTG CTG	CAG CAC ATC		
1405 1410 1415					

	GAG CAT GGC CAT	AAC GTC CTT (CCT CAA GCT		GAG GTC 4500

Gl	u Hi	s G1	y Hi	s As	n Va	l Le	u Pro	Gl	n Ala	a Lei	ı Thi	r Ala	a Le	u Gl	u Val	
	142	0				142	5				1430)				
ACC	G CA	C AG	T GG	T CT	G ACT	r GT(G GAC	CAC	CTO	CAT	GC/	GTO	CTO	G AGO	C ACG	4548
Thr	r Hi	s Se	r G1	y Lei	ı Thi	· Val	l Asp	Gli	ı Leu	His	Ala	Va]	l Lei	ı Ser	Thr	
143	35				1440					1445					1450	
TGG	; TT(G AC	TTT	G CCC	AAG	GAG	ACT	AAG	AGC	TGG	GAA	GAG	GCA	GTG	GCT	4596
Trp	Lei	ı Th	r Lei	u Pro	Lys	Glu	Thr	Lys	Ser	Trp	Glu	Glu	Ala	Val	. Ala	
				1455					1460					1465	;	
GCC	AGT	CAC	C AG1	r gga	AAC	CTC	TAC	CCC	TTG	GCT	CCA	TTT	GCC	TAC	CTT	4644
Ala	Ser	His	s Ser	Gly	Asn	Leu	Tyr	Pro	Leu	Ala	Pro	Phe	Ala	Tyr	Leu	
			1470)				1475					1480			
GTC	CAG	AGI	CTA	CGC	AGT	ATT	CTA	GGC	GAG	GGC	CCC	GTG	GAG	CGC	ССТ	4692
Val	Gln	Ser	Leu	Arg	Ser	Leu	Leu	Gly	Glu	Gly	Pro	Val	Glu	Arg	Pro	
		1485					1490					1495				
							GAT									4740
Gly	Ala	Arg	Leu	Cys	Leu	Ser	Asp	Gly	Pro	Leu	Arg	Thr	Ala	Val	Lys	
	1500					505					510					
							GGG									4788
Arg	Arg	Tyr	Gly	Lys	Arg	Leu	G1 y	Leu	Glu	Lys	Thr	Ala	His	Val	Leu	
1515					520					525					530	
							ATG									4836
lle	Ala	Ala	His	Leu	Trp	Lys	Met	Cys	Asp	Pro .	Asp	Ala	Ser	Gly	Thr	
				1535	•				540					545	٠	
							GCT									4884
Phe	Arg			Pro	Pro	Glu	Ala	Leu	Lys	Asp 1	Leu	Pro	Tyr	His	Leu	
			1550					555					560			
CTC																4932
Leu (Gln	Ser	Gly	Asn	His	Gly	Leu :	Leu	Ala :	Lys F	Phe :	Leu	Thr	Asn	Leu	

1565	1570	1575	
CAT GTG GTG GCT GCA T	AT CTG GAA GTG GGT	CTA GTC CCG GAC CTC TT	G 4980
His Val Val Ala Ala T	yr Leu Glu Val Gly	Leu Val Pro Asp Leu Le	u
1580	1585	1590	
GAG GCT TAC GAG CTC T	AT GCT TCT TCA AAG	CCT GAA GTG AAC CAG AA	G 5028
Glu Ala Tyr Glu Leu T	yr Ala Ser Ser Lys	Pro Glu Val Asn Gln Ly	s
1595 166	00 1	1605	0
CTC CCG GAG GCA GAT G	TT GCT GTA TTC CAC	AAC TTC CTG AAA CAA CA	G 5076
Leu Pro Glu Ala Asp Va	al Ala Val Phe His	Asn Phe Leu Lys Gln Gli	ח
1615	1620	1625	
GCT TCA CTC CTT ACC CA	G TAT CCT TTG CTC	CTG CTC CAG CAG GCA GCT	Γ 512 4
Ala Ser Leu Leu Thr Gl	n Tyr Pro Leu Leu 1	Leu Leu Gln Gln Ala Ala	ì
1630	1635	1640	
AGC CAG CCT GAA GAG TC	A CCT GTT TGC TGC	CAG GCC CCC CTG CTC ACC	5172
Ser Gln Pro Glu Glu Se	r Pro Val Cys Cys (Gln Ala Pro Leu Leu Thr	
1645	1650	1655	
CAG CGG TGG CAC AAC CA	G TGC ATA CTG AAA 1	IGG ATT AAT AAA CCC CAG	5220
Gln Arg Trp His Asn Gl	Cys lle Leu Lys T	frp Ile Asn Lys Pro Gln	
1660	1665	1670	
ACC TTG AAG GGT CAG CAA	AGC TTG TCT CTG C	CA ATT TCC TCA TCC CCA	5268
Thr Leu Lys Gly Gln Gln	Ser Leu Ser Leu P	ro lle Ser Ser Ser Pro	
1675 1680	16	85 1690	
ACT GCT GTG GCC TTC TCT	CCT AAT GGG CAA A	GA GCA GCT GTG GGG ACT	5316
Thr Ala Val Ala Phe Ser	Pro Asn Gly Gln A	rg Ala Ala Val Gly Thr	
1695	1700	1705	
GCT GGT GGG ACA ATT TAC	CTG TTG AAC TTG AG	GA ACC TGG CAG GAG GAG	5364
Ala Gly Gly Thr Ile Tyr	Leu Leu Asn Leu An	rg Thr Trp Gln Glu Glu	
1710	1715	1720	

AAG GCT C	TG GTG AG	T GGC TO	T GAT	GGG AT	T TCC	TCT TT	C GCG	TTC CT(5412
Lys Ala L	eu Val Se	r Gly Cy	s Asp	Gly Il	e Ser	Ser Phe	e Ala l	Phe Leu	I
17	25		1730			173	5		
TCA GAC A	CT GCT CT	T TTC CI	T ACC	ACC TT	C GAT (GGG CTC	CTG (GAG CTT	5460
Ser Asp Th									
1740		174				750			
TGG GAC CT	G CAA CAT	r ggt tg	T TGG	GTG TTC	CAG A	ICC AAG	GCC C	CAC CAG	5508
Trp Asp Le									0000
1755		1760			1765	•		1770	
TAC CAA AT	C ACT GGC	TGC TGC	C CTG A	AGC CCA	GAC C	GC CGC	CTG C		5556
Tyr Gln Il									3330
	1775			1780		- G G	17		
ACC GTG TG	T TTG GGA	GGA TAC	GTA A			AC ACA			5604
Thr Val Cys									J004
	1790			95			1800	in Gly	
CAG CTG GCT	TTC CAG	TAC ACC			TCT C			TC &CC	5652
Gln Leu Ala									3032
1805			1810	, -	55. <u>5</u> .	1815	Cys II	re IMI	
TTC CAC CCA	GAG GGG			CC ACA	GGC AA		ጥ ርጥ ድር	C ATC	F 700
Phe His Pro									5700
1820		1825	TOI A.	10 1111			ser Gi	y He	
GTG ACC TTC	TTC CAG		GGA C1	TC 344	183		C. 4 . 0.T		
									5748
Val Thr Phe 1835		840	OTA FE			r Lys	Glu Le		
			ACC 07		845			1850	
GGC CCA GGA									5796
Gly Pro Gly		iai vig	inr Le		rne Se	r Ala !			
GTT CTC CCT	1855	CCC 4 T 4	017 00	1860		_	186		
GTT GTG GCT	CIA GGC	CUU ATA	GAT GG	G ACA	GTG GA	G CTG	TGG GC	C TGG	5844

Val Val Ala Leu Gly Arg Ile Asp Gly Thr Val Glu Leu Trp Ala Trp
1870 1875 1880
CAA GAG GGC ACA CGG CTG GCA GCC TTC CCT GCA CAG TGT GGC GGT GTC 5892
Gln Glu Gly Thr Arg Leu Ala Ala Phe Pro Ala Gln Cys Gly Gly Val
1885 1890 1895
TCC ACC GTT CTT TTC TTG CAT GCT GCA GCC CCC TTC CTC ACC CCT
Ser Thr Val Leu Phe Leu His Ala Gly Gly Arg Phe Leu Thr Ala Gly
1900 1905 1910
GAA GAT GGC AAG GCT CAG TTA TGG TCA CCA TTT CTT COO COO CTT
Glu Asp Gly Lys Ala Gln Leu Trp Ser Gly Phe Leu Gly Arg Pro Arg
1915 1920 1925
GGT TGC CTG GGC TCT CTT TAT CTT TCT CCT CCC CTG TCT CTT CTT CTT CCT CC
Gly Cys Leu Gly Ser Leu Tyr Leu Ser Pro Ala Leu Ser Val Ala Leu
1935
AAC CCA GAC GGT GAC CAG GTG GCT CTT CCC TAG CCA CCA CCA
Asn Pro Asp Gly Asp Gln Val Ala Val Gly Tyr Arg Gly Asp Gly Ile
1050
1980
AAA ATC TAC AGA ATT TCT TCA GGT CCC CAG GAG GCT CAA TGC CAA GAG 6132
Lys lle Tyr Arg lle Ser Ser Gly Pro Gln Glu Ala Gln Cys Gln Glu 1965
19.0
CTA AAT GTG GCG GTG TCT GCA CTG GTC TGG CTG AGT CCC AGC GTC TTG 6180
Leu Asn Val Ala Val Ser Ala Leu Val Trp Leu Ser Pro Ser Val Leu 1980 1985 1985
1990
GTG AGT GGT GCA GAA GAT GGC TCC CTG CAT GGC TGG ATG CTC AGG AGA 6228
Val Ser Gly Ala Glu Asp Gly Ser Leu His Gly Trp Met Leu Arg Arg
2005 2010
AAC TCC CTT CAG TCC CTG TGG CTG TCA TCC GTG TGC CAG AAG CCT GTG 6276
Asn Ser Leu Gln Ser Leu Trp Leu Ser Ser Val Cys Gln Lys Pro Val

			2	2015				2	020				2	2025		
CTG	GGG	CTG	GCT	GCC	TCC	CAG	GAG	TTC	TTG	GCT	TCT	GCC	TCA	GAG	GAC	6324
Leu	Gly	Leu	Ala	Ala	Ser	Gln	Glu	Phe	Leu	Ala	Ser	Ala	Ser	Glu	Asp	
		2	2030				2	035				2	2040			
TTC	ACG	GTG	CGA	CTG	TGG	CCA	AGA	CAG	CTG	CTG	ACA	CAG	CCA	CAT	GCA	6372
Phe	Thr	Val	Arg	Leu	Trp	Pro	Arg	Gln	Leu	Leu	Thr	Gln	Pro	His	Ala	
	2	2045				2	2050				2	2055				
GTA	GAA	GAG	TTG	CCC	TGT	GCG	GCT	GAA	CTC	CGG	GGA	CAC	GAG	GGG	CCG	6420
Val	Glu	Glu	Leu	Pro	Cys	Ala	Ala	Glu	Leu	Arg	Gly	His	Glu	Gly	Pro	
2	060				í	2065				2	2070					
GTG	TGC	TGC	TGT	AGC	TTC	AGC	CCG	GAT	GGA	CGC	ATC	TTG	GCC	ACA	GCG	6468
Val	Cys	Cys	Cys	Ser	Phe	Ser	Pro	Asp	Gly	Arg	He	Leu	Ala	Thr	Ala	
2075	j			2	2080				2	2085				2	2090	
GGC	AGG	GAT	CGG	AAT	CTC	CTC	TGC	TGG	GAC	GTC	AAG	GTA	GCC	CAA	GCC	6516
Gly	Arg	Asp	Arg	Asn	Leu	Leu	Cys	Trp	Asp	Val	Lys	Val	Ala	Gln	Ala	
			;	2095				;	2100					2105		
ССТ	CTC	CTG	ATT	CAC	ACG	TTC	TCG	TCC	TGT	CAT	CGA	GAC	TGG	ATC	ACT	6564
Pro	Leu	Leu	lle	His	Thr	Phe	Ser	Ser	Cys	His	Arg	Asp	Trp	lle	Thr	
		,	2110				:	2115					2120			
GGC	TGT	ACG	TGG	ACC	AAA	GAC	AAC	ATC	CTG	ATC	TCC	TGC	TCT	AGT	GAT	6612
Gly	Cys	Thr	Trp	Thr	Lys	Asp	Asn	lle	Leu	lle	Ser	Cys	Ser	Ser	Asp	
		2125					2130					2135				
GGC	TCT	GTG	GGA	CTC	TGG	AAC	CCA	GAG	GCA	GGA	CAG	CAA	CTT	. CCC	CAG	6660
Gly	Ser	Val	Gly	Leu	Trp	Asn	Pro	Glu	Ala	Gly	Gln	Gln	Leu	Gly	Gln	
	2140					2145					2150	;				
TTC	CCA	GGT	CAC	CAG	AGT	GCC	GTG	AGC	GCT	GTG	GTT	GCT	GTO	GAG	GAA	6708
Phe	Pro	Gly	His	Gln	Ser	Ala	Val	Ser	Ala	Val	Val	Ala	Va]	Glu	Glu	
215	5				2160)				2165	j				2170	

6756	CGT	GAC	TGG	GTG	AAA	TTG	ACC	GGG	GAT	CGG	AGT	GTG	TCT	GTA	ATT	CAC
	Arg	Asp	Trp	Val	Lys	Leu	Thr	Gly	Asp	Arg	Ser	Yal	Ser	Val	lle	His
		2185	;				2180	;				2175				
6804	AGC	ATT	CCC	GGA	TCC	CAT	GCC	CCT	ATC	AGC	ACC	CTG	GAG	GTG	GGT	CAG
	Ser	lle	Pro	Gly	Ser	His	Ala	Pro	lle	Ser	Thr	Leu	Glu	Val	Gly	Gln
	•)	220					2195	:				2190			
6852	TCA	GGA	CCT	CAG	GGA	GCT	CCA	CGT	CCC	GAA	CTG	GCT	GCT	GCG	TGT	CAG
	Ser	Gly	Pro	Gln	Gly	Ala	Pro	Arg	Pro	Glu	Leu	Ala	Ala	Ala	Cys	Gln
			5	221					2210	2				2205		
6900	TGG	CTG	AAG	ACA	GCC	GGG	GAT	CTG	GGA	GTT	ACT	GTG	GTG	ATG	CTT	GAG
	Trp	Leu	Lys	Thr	Ala	Gly	Asp	Leu	Gly	Val	Thr	Val	Val	Net	Leu	Glu
				0	2230					2225	4				2220	;
6948	GGT	AGT	CAC	GGA	CAG	CTG	ACC	CAT	ATA	CAA	TGC	GTG	TTG	CTG	CCC	CAT
	Gly	Ser	His	Gly	Gln	Leu	Thr	His	Ile	Gln	Cys	Val	Leu	Leu	Prò	His
	2250	2				2245	2				2240	2			5	223
6996	ACC	CTG	CTG	CTC	GGC	TCA	GCC	GAG	TCA	GCT	GCT	GCT	GCT	ACA	GTC	CCA
	Thr	Leu	Leu	Leu	Gly	Ser	Ala	Glu	Ser	Ala	Ala	Ala	Ala	Thr	Val	Pro
		265	2				2260	•				2255	:			
		.200					2200	4								
7044	GAT		GAA	AAG	CCT	ATC			СТС	CGA	GTA			AAT	GAC	TCA
7044		GCA					CAG	TGG		CGA Arg		TCT	AGC			
7044		GCA		Lys			CAG	TGG	Leu			TCT	AGC	Asn		
7044 7092	Asp	GCA Ala	Glu 2280	Lys 2	Pro	lle	CAG Gln	TGG Trp 2275	Leu 2	Arg	Val	TCT Ser	AGC Ser 2270	Asn	Asp	Ser
	Asp TGG	GCA Ala GCG	Glu 2280 GTG	Lys 2 GCT	Pro	lle ATC	CAG Gln GTC	TGG Trp 2275 GCG	Leu TCT	Arg	Val AGG	TCT Ser CCT	AGC Ser 2270 AAA	Asn TGC	Asp	Ser GAT
	Asp TGG	GCA Ala GCG	Glu 2280 GTG	Lys 2 GCT	Pro ACC Thr	lle ATC	CAG Gln GTC	TGG Trp 2275 GCG	Leu TCT	Arg AGT Ser	Val AGG	TCT Ser CCT	AGC Ser 2270 AAA	Asn TGC	Asp ACC Thr	Ser GAT
	Asp TGG Trp	GCA Ala GCG Ala	Glu 2280 GTG Val	Lys GCT Ala 2295	Pro ACC Thr	lle ATC Ile	CAG Gln GTC Val	TGG Trp 2275 GCG Ala	Leu TCT Ser 2290	Arg AGT Ser	Val AGG Arg	TCT Ser CCT Pro	AGC Ser 2270 AAA Lys	Asn TGC Cys 2285	ASP ACC Thr	Ser GAT Asp
7092	Asp TGG Trp	GCA Ala GCG Ala	Glu 2280 GTG Val	Lys GCT Ala 2295 GCT	Pro ACC Thr	Ile ATC Ile	CAG Gln GTC Val	TGG Trp 2275 GCG Ala	Leu TCT Ser 2290 GTG	Arg AGT Ser	Val AGG Arg CTG	TCT Ser CCT Pro	AGC Ser 2270 AAA Lys GGT	Asn TGC Cys 2285 GAT	ASP ACC Thr	Ser GAT Asp
7092	Asp TGG Trp	GCA Ala GCG Ala	Glu 2280 GTG Val	Lys GCT Ala 2295 GCT	Pro ACC Thr	ATC Ile AAT Asn	CAG Gln GTC Val	TGG Trp 2275 GCG Ala	Leu TCT Ser 2290 GTG	AGT Ser GTG	Val AGG Arg CTG Leu	TCT Ser CCT Pro	AGC Ser 2270 AAA Lys GGT	Asn TGC Cys 2285 GAT	ASP ACC Thr	Ser GAT Asp GCA
7092	Asp TGG Trp CTA Leu	GCA Ala GCG Ala GAA Glu	Glu 2280 GTG Val GGG Gly	Lys GCT Ala 2295 GCT Ala	ACC Thr GAA Glu	ATC Ile AAT Asn	CAG Gln GTC Val GGA Gly	TGG Trp 2275 GCG Ala TCT Ser	Leu TCT Ser 2290 GTG Val	Arg AGT Ser GTG Val	Val AGG Arg CTG Leu	TCT Ser CCT Pro TCT Ser	AGC Ser 2270 AAA Lys GGT Gly	Asn TGC Cys 2285 GAT Asp	ACC Thr CCA Pro	GAT Asp GCA

Th	r Le	u T	rp G	in Ly	's Al	a Gli	n Ala	a Vai	l Ala	a Th	r Ala	a Ar	g Al	a Pr	o Gly	
23	15				232	0				232	5				2330	
CG	C GT	C AC	GT GA	C C1	G AT	C TGO	TGC	TCC	GC/	A AA1	r GC/	A TTO	C TT	T GT	т стс	7236
Arg	g Va	l Se	er As	p Le	u II	e Trp	Cys	Ser	· Ala	a Ası	n Ala	Phe	e Phe	e Va	l Leu	
				233	5				2340)				234	5 ·	
AGT	GC	T AA	T GA	A AA	T GT	CAGT	GAG	TGG	CAA	GTO	GAA	CTO	AGO	AA/	GGT	7284
Ser	Ala	a As	n Gl	u As	n Va	l Ser	Glu	Trp	Gln	Val	Glu	Leu	Arg	, Lys	Gly	
			235	0				2355					2360)		
TCA	AC	TG	C AC	C AA	r tto	AGA	CTT	TAT	CTG	AAG	AGA	GTT	CTG	CAG	GAG	7332
						Arg										
		236					2370					2375				
GAC	TTG	GG	A GT	C TTO	ACA	GGT	ATG	GCC	CTG	GCG	CCT	GAC	GGC	CAG	TCT	7380
						Gly										
	2380					2385					2390					
CTC	ATT	TTO	ATC	A A A	GAG	GAT	GTA	GAA	TTG	CTA	CAG	ATG	AAG	CCC	GGG	7428
						Asp						•				
2395					2400					2405					2410	
TCT	ACT	CCA	TCT	TCG	ATC	TGC	AGG	AGG	TAT	GCA	GTG	CAT	TCT	ТСТ	ATA	7476
						Cys										
				2415					420					2425		
CTG	TGC	ACC	AGC	AAA	GAC	TAT	GGC	CTG	TTT	TAC	CTG	CAG	CAG	GGA	AAC	7524
						Tyr										
			2430					435					440	·		
TCT	GGA	ТСТ	CTT	TCT	ATC	TTG	GAG	CAG	GAG	GAG	TCA			TTT	GAA	7572
						Leu										.0.2
		445					450					455	•	-		
AAG	ACC	CTG	GAC	TTC	AAT	CTG	AAC '	TTA .	AAT	AAT			GGG	TCC	CCA	7620
						Leu /										. 700

GTA TCA ATC ACT CAG GCT GAA CCT GAG TCT GGG TCC TCG CTT TTG TGT 7668 Val Ser Ile Thr Gln Ala Glu Pro Glu Ser Gly Ser Ser Leu Leu Cys GCT ACC TCT GAT GGG ATG CTG TGG AAC TTA TCT GAG TGT ACC CCA GAA 7716 Ala Thr Ser Asp Gly Met Leu Trp Asn Leu Ser Glu Cys Thr Pro Glu GGA GAG TGG GTC GTA GAT AAC ATC TGG CAG AAA AAA TCA AGA AAC CCT 7764 Gly Glu Trp Val Val Asp Asn Ile Trp Gln Lys Lys Ser Arg Asn Pro AAA AGT CGA ACT CCG GGG ACA GAT TCG TCC CCA GGC TTA TTC TGC ATG 7812 Lys Ser Arg Thr Pro Gly Thr Asp Ser Ser Pro Gly Leu Phe Cys Met GAT AGC TGG GTA GAA CCC ACA CAT TTA AAG GCA CGG CAG TGT AAA AAG 7860 Asp Ser Trp Val Glu Pro Thr His Leu Lys Ala Arg Gln Cys Lys Lys ATT CAC TTG GGC TCT GTC ACG GCC CTC CAT GTG CTG CCC GGA TTG CTG 7908 lle His Leu Gly Ser Val Thr Ala Leu His Val Leu Pro Gly Leu Leu GTG ACT GCT TCA GAG GAC AGA GAT GTT AAG CTG TGG GAG AGA CCC AGT Val Thr Ala Ser Glu Asp Arg Asp Val Lys Leu Trp Glu Arg Pro Ser ATG CAG CTG CTC GGC TTG TTC CGA TGT GAA GGG CCG GTG AGC TGT CTG 8004 Met Gln Leu Leu Gly Leu Phe Arg Cys Glu Gly Pro Val Ser Cys Leu 2590 -GAA CCT TGG ATG GAG CCC AGC TCT CCC CTG CAG CTT GCT GTG GGA GAT 8052 Glu Pro Trp Het Glu Pro Ser Ser Pro Leu Gln Leu Ala Val Gly Asp

GCA CAA GGA AAC TTG TAT TTT CTA TCT TGG GAA TGAAGATGAA

8095

Ala Gln Gly Asn Leu Tyr Phe Leu Ser Trp Glu ***

2620

2625

2629

GAATCAGGAC AAAGATGGTG TCACCGGATG ATGGTCACCT GAAGACACCA GTGTCTATAT 8155
TCTTAATAAG GTTATAAAAT AAAGTGTTGG AAGATCTAAA AAAAAAAAA AAAAAAAAA 8215

配列番号:2

配列の長さ:核酸=487、アミノ酸=162

配列の型:核酸及びアミノ酸

トポロジー:直鎖状二本鎖

配列の種類: c D N A

起源:生物名 ヒト

配列

AAG TTC GCG CAG TTT GAC GAG TAC CAG CTG GCT AAG TAC AAC CCT CGG
Lys Phe Ala Gln Phe Asp Glu Tyr Gln Leu Ala Lys Tyr Asn Pro Arg

1 5 10 15

AAG CAC CGG GCC AAG AGA CAC CCC CGC CGG CCA CCC CGC TCT CCA GGG 96

Lys His Arg Ala Lys Arg His Pro Arg Arg Pro Pro Arg Ser Pro Gly

20 25 30

ATG GAG CCT CCA TTT TCT CAC AGA TGT TTT CCA AGG TAC ATA GGG TTT 144

Het Glu Pro Pro Phe Ser His Arg Cys Phe Pro Arg Tyr Ile Gly Phe

35 40 45

CTC AGA GAA GAG CAG AGA AAG TTT GAG AAG GCC GGT GAT ACA GTG TCA 192 Leu Arg Glu Glu Gln Arg Lys Phe Glu Lys Ala Gly Asp Thr Val Ser

50 55 60

GAG AAA AAG AAT CCT CCA AGG TTC ACC CTG AAG AAG CTG GTT CAG CGA 240
Glu Lys Lys Asn Pro Pro Arg Phe Thr Leu Lys Lys Leu Val Gln Arg
65 70 75 80

PCT/JP97/02904 CTG CAC ATC CAC AAG CCT GCC CAG CAC GTT CAA GCC CTG CTG GGT TAC 288 Leu His Ile His Lys Pro Ala Gln His Val Gln Ala Leu Leu Gly Tyr 85 90 95 AGA TAC CCC TCC AAC CTA CAG CTC TTT TCT CGA AGT CGC CTT CCT GGG 336 Arg Tyr Pro Ser Asn Leu Gln Leu Phe Ser Arg Ser Arg Leu Pro Gly 100 105 110 CCT TGG GAT TCT AGC AGA GCT GGG AAG AGG ATG AAG CTG TCT AGG CCA 384 Pro Trp Asp Ser Ser Arg Ala Gly Lys Arg Met Lys Leu Ser Arg Pro 115 120 125 GAG ACC TGG GAG CGG GAG CTG AGC CTA CGG GGG AAC AAA GCG TCG GTC 432 Glu Thr Trp Glu Arg Glu Leu Ser Leu Arg Gly Asn Lys Ala Ser Val 130 135 140 TGG GAG GAA CTC ATT GAA AAT GGG AAG CTT CCC TTC ATG GCC ATG CTC Trp Glu Glu Leu Ile Glu Asn Gly Lys Leu Pro Phe Net Ala Net Leu 145 150

155

160

487

配列番号:3

162

AGC ATC T

Ser Ile

配列の長さ:347

WO 98/07838

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

起源:生物名 ラット

配列

CGGATGTAGA TGGTCAGGAG ATTAAGTGAT GCTGCCTGCA CCTTATCTTT GCAGGTATTG GGTCATTCTC AGAAATTATT TTATCAGGCA GATTCAATAA GCAAGATAGT TTAGGGCGTG 120

AAGCTATGGG ATCAGTGACC AAGATGCCAA TCTCTTCTAC CCTCTCTCC TAG GCA TCT 178

*** Ala Ser

1

TTG TAT GCT AGG CAG CAG CTT AAC CTC CGG GAC ATA GCC AAT ATA GTG 226
Leu Tyr Ala Arg Gln Gln Leu Asn Leu Arg Asp Ile Ala Asn lle Val

5 10 15

TTG GCC GTG GCT GCC CTC TTG CCA GCC TGC CGC CCC CAT GTA CGA CGG 274

Leu Ala Val Ala Ala Leu Leu Pro Ala Cys Arg Pro His Val Arg Arg

20 25 30

TAT TAC TCT GCC ATT GTT CAC CTG CCT TCA GAC TGG AAC CAG GTA GCC 322

Tyr Tyr Ser Ala lle Val His Leu Pro Ser Asp Trp Asn Gln Val Ala

35 40 45 50

GAG TTC TAC CAG GTA TGG TAC TTA G

Glu Phe Tyr Gln Val Trp Tyr Leu

347

55

配列番号: 4

配列の長さ:408

配列の型:核酸

鎖の強:二本鎖

トポロジー:直鎖状

起源:生物名 ラット

直接の起源:プラスミドRaPC53

配列

AGC TTG GGG GGA GAA GAA GAA GAA GTG GTG GGG GCA CCG GTC CTA AAA 48 Ser Leu Gly Gly Glu Glu Glu Glu VAl Val Gly Ala Pro Val Leu Lys

1 5 10 15

CTC ACA TCT GGA GAC TCT GAC TCT CAC CCT GAA ACC ACT GAC CAG ATC 96

Leu	Thr	Ser	Gly	Asp	Ser	Asp	Ser	His	Pro	Glu	Thr	Thr	Asp	Gln	Ile	
			20)				25					30			
CTG	CAG	GAG	AAG	AAG	ATG	GCT	CTC	TTG	ACC	TTG	CTG	TGC	TCA	GCT	ATG	144
Leu	Gln	Glu	Lys	Lys	Met	Ala	Leu	Leu	Thr	Leu	Leu	Cys	Ser	Ala	Met	
		35					40					45				
GCC	TCA	AGT	GTG	AAT	GTG	AAA	GAT	GCĊ	TCC	GAT	CCT	ACC	CGG	GCA	TCT	192
Ala	Ser	Ser	Val	Asn	Val	Ile	Tyr	Ala	Ser	Asp	Pro	Thr	Arg	Ala	Ser	
	50					55					60					
ATC	CAŤ	GAA	GTC	TGC	AGT	GCG	CTG	GCC	CCC	TTG	GAA	CCT	GAG	TTC	ATC	240
lle	His	Glu	Val	Cys	Ser	Ala	Leu	Ala	Pro	Leu	Glu	Pro	Glu	Phe	Ile	
65			•		70					75					80	
CTT	AAG	GCA	TCT	TTG	TAT	GCT	AGG	CAG	CAG	CTT	AAC	CTC	CGG	GAC	ATA	288
Leu	Lys	Ala	Ser	Leu	Tyr	Ala	Arg	Gln	G1n	Leu	Asn	Leu	Arg	Asp	lle	
				85					90					95		
GCC	AAT	ATA	GTG	TTG	GAA	GTG	GCT	GCC	CTC	TTG	CCA	GCC	TGC	CGC	CCC	336
Ala	Asn	lle	Val	Lys	Ala	Val	Ala	Ala	Leu	Leu	Pro	Ala	Cys	Arg	Pro	
			100					105					110			
CAT	GTA	CGA	CGG	TAT	TAC	TCT	GCC	TTA	GTT	CAC	CTG	CCT	TCA	GAC	TG G	384
His	Val	Arg	Arg	Tyr	Tyr	Ser	Ala	Ile	Yal	His	Leu	Pro	Ser	Asp	Trp	
		115					120					125				
ATC	CAG	GTA	GCC	GAG	TTC	TAC	CAG									408
lle	Glu	Val	Ala	Glu	Phe	Tyr	Gln									
	130					135										

配列番号:5

配列の長さ:17

配列の型:核酸

鎖の数:一本鎖

WO 98/07838

PCT/JP97/02904

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

他の情報:R はA またはG 、Y はC またはT を示す。

配列

CARTTYGAYG ARTAYCA

17

配列番号:6

配列の長さ:17

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

他のۋ報:R はA またはG 、N はA 、G 、C またはT 、『 はA またはT を示す。

配列

ARCATNGCCA TRUANGG

17

配列番号:7

配列の長さ:23

配列の型:核酸

鎖の徴:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

他の情報:R はSA またはG、Y はC またはT、I はinosine を示す。

配列

AARTTYGCIC ARTTYGAYGA RTA

23

配列番号:8

配列の長さ:26

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

他の情報:R はA またはG、Y はC またはT、I はinosine を示す。

配列

TTYGAYGART AYCARYTIGC IAARTA

26

配列番号:9

配列の長さ:26

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

他の情報:R はA またはG、I はinosine、K はG またはT を示す。

配列

ARRTTICKIA RCATIGCCAT RAAIGG

26

配列番号:10

配列の長さ:26

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

他の情報: R はA またはG、I はinosine、K はG またはT を示す。

配列

TTRCAIARRT TICKIARCAT IGCCAT

26

WO 98/07838

PCT/JP97/02904

配列番号:11

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CAGGGATGGA GCCTCCATTT TCT

23

配列番号:12

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎮状

配列の種類:他の核酸 合成DNA

配列

TCAATGAGTT CCTCCCAGAC CGA

23

配列番号:13

配列の長さ:核酸=8839、アミノ酸=2625

配列の型:核酸及びアミノ酸

トポロジー:直鎖状二本鎖

配列の種類: cDNA

起源:生物名 ヒト

配列

AGATCCGCAT CCGGCGCCTC CCCCGGCTGC CACCCTTCCC ACCGGCAGAA TCCAGAGCGA 60
AGTTTCTGCT TCCTGCTGCG GGAATCGGAC GCCCCAGGTC AGGCACCCAG GGTTTCCAGC 120

WO 98/07838	PCT/JP97/02904
CCCAGTCTAA GGCATATACA AGCTGAGTTT CAGCC ATG GAA AAA CTC CAT	170
Met Glu Lys Leu His	
1 5	
GGG CAT GTG TCT GCC CAT CCA GAC ATC CTC TCC TTG GAG AAC CGG	TGC 218
Gly His Val Ser Ala His Pro Asp lle Leu Ser Leu Glu Asn Arg	Cys
10 15 20	
CTG GCT ATG CTC CCT GAC TTA CAG CCC TTG GAG AAA CTA CAT CAG	CAT 266
Leu Ala Met Leu Pro Asp Leu Gln Pro Leu Glu Lys Leu His Gln I	His
25 30 35	
GTA TCT ACC CAC TCA GAT ATC CTC TCC TTG AAG AAC CAG TGC CTA C	GCC 314
Val Ser Thr His Ser Asp Ile Leu Ser Leu Lys Asn Gln Cys Leu A	Na
40 45 50	
ACG CTT CCT GAC CTG AAG ACC ATG GAA AAA CCA CAT GGA TAT GTG T	TCT 362
Thr Leu Pro Asp Leu Lys Thr Het Glu Lys Pro His Gly Tyr Val S	Ser
55 60 65	
GCC CAC CCA GAC ATC CTC TCC TTG GAG AAC CAG TGC CTG GCC ACA C	TT 410
Ala His Pro Asp Ile Leu Ser Leu Glu Asn Gln Cys Leu Ala Thr L	eu
70 75 80	85
TCT GAC CTG AAG ACC ATG GAG AAA CCA CAT GGA CAT GTT TCT GCC CA	AC 458
. Ser Asp Leu Lys Thr Met Glu Lys Pro His Gly His Val Ser Ala H	is
90 95 100	
CCA GAC ATC CTC TCC TTG GAG AAC CGA TGC CTG GCC ACC CTC TCT AC	GT 506
Pro Asp Ile Leu Ser Leu Glu Asn Arg Cys Leu Ala Thr Leu Ser Se	er
105 110 115	
CTA AAG AGC ACT GTG TCT GCC AGC CCC TTG TTC CAG AGT CTA CAG AT	`A 554
Leu Lys Ser Thr Val Ser Ala Ser Pro Leu Phe Gln Ser Leu Gln Il	.e
120 125 130	
TCT CAC ATG ATG CAA GCT GAT TTG TAC CGT GTG AAC AAC AGC AAT TG	C 602

WO 98/07838

PCT/JP97/02904

Ser His Met Met Gln Ala Asp Leu Tyr Arg Val Asn Asn Ser Asn Cys

135

140

145

CTG CTC TCT GAG CCT CCA AGT TGG AGG GCT CAG CAT TTC TCT AAG GGA Leu Leu Ser Glu Pro Pro Ser Trp Arg Ala Gln His Phe Ser Lys Gly CTA GAC CTT TCA ACC TGC CCT ATA GCC CTG AAA TCC ATC TCT GCC ACA Leu Asp Leu Ser Thr Cys Pro Ile Ala Leu Lys Ser Ile Ser Ala Thr GAG ACA GCT CAG GAA GCA ACT TTG GGT CGT TGG TTT GAT TCA GAA GAG Glu Thr Ala Gln Glu Ala Thr Leu Gly Arg Trp Phe Asp Ser Glu Glu AAG AAA GGG GCA GAG ACC CAA ATG CCT TCT TAT AGT CTG AGC TTG GGA Lys Lys Gly Ala Glu Thr Gln Met Pro Ser Tyr Ser Leu Ser Leu Gly GAG GAG GAG GTG GAG GAT CTG GCC GTG AAG CTC ACC TCT GGA GAC Glu Glu Glu Val Glu Asp Leu Ala Val Lys Leu Thr Ser Gly Asp TCT GAA TCT CAT CCA GAG CCT ACT GAC CAT GTC CTT CAG GAA AAG AAG Ser Glu Ser His Pro Glu Pro Thr Asp His Val Leu Gln Glu Lys Lys ATG GCT CTA CTG AGC TTG CTG TGC TCT ACT CTG GTC TCA GAA GTA AAC Het Ala Leu Leu Ser Leu Leu Cys Ser Thr Leu Val Ser Glu Val Asn ATG AAC AAT ACA TCT GAC CCC ACC CTG GCT GCC ATT TTT GAA ATC TGT Met Asn Asn Thr Ser Asp Pro Thr Leu Ala Ala Ile Phe Glu Ile Cys CGT GAA CTT GCC CTC CTG GAG CCT GAG TTT ATC CTC AAG GCA TCT TTG Arg Glu Leu Ala Leu Leu Glu Pro Glu Phe lle Leu Lys Ala Ser Leu

		280					285					290				
TAT	GCC	AGG	CAG	CAG	CTG	AAC	GTC	CGG	AAT	GTG	GCC	AAT	AAA	ATC	TTG	1082
Tyr	Ala	Arg	Gln	Gln	Leu	Asn	Val	Arg	Asn	Val	Ala	Asn	Lys	lle	Leu	
	295					300					305					
GCC	ATT	GCT	GCT	TTC	TTG	CCG	GCG	TGT	CGC	CCC	CAC	CTG	CGA	CGA	TAT	1130
Ala	lle	Ala	Ala	Phe	Leu	Pro	Ala	Cys	Arg	Pro	His	Leu	Arg	Arg	Tyr	
310					315					320					325	
TTC	TGT	GCC	ATT	GTC	CAG	CTG	CCT	TCT	GAC	TGG	ATC	CAG	GTG	GCT	GAG	1178
Phe	Cys	Ala	Ile	Val	Gln	Leu	Pro	Ser	Asp	Trp	lle	Gln	Val	Ala	Glu	
				330					335					340		
CTT	TAC	CAG	AGC	CTG	GCT	GAG	GGA	GAT	AAG	AAT	AAG	CTG	GTG	CCC	CTG	1226
Leu	Tyr	Gln	Ser	Leu	Ala	Glu	Gly	Asp	Lys	Asn	Lys	Leu	Val	Pro	Leu	
			345					350					355			
CCC	GCC	TGT	СТС	CGT	ACT	GCC	ATG	ACG	GAC	AAA	TTT	GCC	CAG	TTT	GAC	1274
Pro	Ala	Cys	Leu	Arg	Thr	Ala	Met	Thr	Asp	Lys	Phe	Ala	Gln	Phe	Asp	
		360					365					370				
GAG	TAC	CAG	CTG	GCT	AAG	TAC	AAC	CCT	CGG	AAG	CAC	CGG	GCC	AAG	AGA	1322
Glu	Tyr	Gln	Leu	Ala	Lys	Tyr	Asn	Pro	Arg	Lys	His	Arg	Ala	Lys	Arg	
	375					380					385					
CAC	CCC	CGC	CGG	CCA	CCC	CGC	TCT	CCA	GGG	ATG	GAG	CCT	CCA	TTT	TCT	1370
His	Pro	Arg	Arg	Pro	Pro	Arg	Ser	Pro	Gly	let	Glu	Pro	Pro	Phe	Ser	
390					395					400					405	-
CAC	AGA	TGT	TTT	CCA	AGG	TAC	ATA	GGG	TTT	СТС	AGA	GAA	GAG	CAG	AGA	1418
His	Arg	Cys	Phe	Pro	Arg	Tyr	lle	Gly	Phe	Leu	Arg	Glu	Glu	Gln	Arg	
			-	410					415					420		
AAG	TTT	GAG	AAG	GCC	GGT	GAT	ACA	GTG	TCA	GAG	AAA	AAG	AAT	CCT	CCA	1466
Lys	Phe	Glu	Lys	Ala	Gly	Asp	Thr	Val	Ser	Glu	Lys	Lys	Asn	Pro	Pro	
			425					430					435			

AGG	TTC	ACC	CTG	AAG	AAG	CTG	GTT	CAG	CGA	CTG	CAC	ATC	CAC	AAG	CCT	1514
Arg	Phe	Thr	Leu	Lys	Lys	Leu	Val	Gln	Arg	Leu	His	lle	His	Lys	Pro	
		440					445					450				
GCC	CAG	CAC	GTT	CAA	GCC	CTG	CTG	GGT	TAC	AGA	TAC	CCC	TCC	AAC	CTA	1562
Ala	Gln	His	Val	Gln	Ala	Leu	Leu	Gly	Tyr	Arg	Tyr	Pro	Ser	Asn	Leu	
	455					460					465					
CAG	CTC	TTT	TCT	CGA	AGT	CGC	CTT	CCT	GGG	CCT	TGG	GAT	TCT	AGC	AGA -	1610
Gln	Leu	Phe	Ser	Arg	Ser	Arg	Leu	Pro	Gly	Pro	Trp	Asp	Ser	Ser	Arg	
470					475					480					485	
GCT	GGG	AAG	AGG	ATG	AAG	CTG	TCT	AGG	CCA	GAG	ACC	TGG	GAG	CGG	GAG	1658
Ala	Gly	Lys	Arg	Met	Lys	Leu	Ser	Arg	Pro	Glu	Thr	Trp	Glu	Arg	Glu	
				490					495					500		
CTG	AGC	CTA	CGG	GGG	AAC	AAA	GCG	TCG	GTC	TGG	GAG	GAA	CTC	ATT	GAA	1706
Leu	Ser	Leu	Arg	Gly	Asn	Lys	Ala	Ser	Val	Trp	Glu	Glu	Leu	lle	Glu	
			505					510					515			
AAT	GGG	AAG	CTT	CCC	TTC	ATG	GCC	ATG	CTT	CGG	AAC	CTG	TGC	AAC	CTG .	1754
Asn	Gly	Lys	Leu	Pro	Phe	Met	Ala	Неt	Leu	Arg	Asn	Leu	Cys	Asn	Leu	
		520					525					530				
CTG	CGG	GTT	-GGA	ATC	AGT	TCC	CGC	CAC	CAT	GAG	CTC	ATT	CTC	CAG	AĢA	1802
Leu	Arg	Val	Gly	lle	Ser	Ser	Arg	His	His	Glu	Leu	lle	Leu	Gln	Arg	
	535					540					545					
СТС	CAG	CAT	GCG	AAG	TCG	GTG	ATC	CAC	AGT	CGG	CAG	TTT	CCA	TTC	AGA	1850
Leu	Gln	His	Ala	Lys	Ser	Val	lle	His	Ser	Arg	Gln	Phe	Pro	Phe	Arg	
550					555					560					565	
TTT	CTT	AAC	GCC	CAT	GAT	GCC	ATT	GAT	GCC	СТС	GAG	GCT	CAA	СТС	AGA	1898
Phe	Leu	Asn	Ala	His	Asp	Ala	lle	Asp	Ala	Leu	Glu	Ala	Gln	Leu	Arg	
									car					500		
				570					575					580		

Asn	Gln	Ala	Leu	Pro	Phe	Pro	Ser	Asn	lle	Thr	Leu	Met	Arg	Arg	lle	
			585					590					595			
CTA	ACT	AGA	AAT	GAA	AAG	AAC	CGT	CCC	AGG	CGG	AGG	TTT	CTT	TGC	CAC	1994
Leu	Thr	Arg	Asn	Glu	Lys	Asn	Arg	Pro	Arg	Arg	Arg	Phe	Leu	Cys	His	
		600					605					610				
CTA	AGC	CGT	CAG	CAG	CTT	CGG	ATG	GCA	ATG	AGG	ATA	CCT	GTG	TTG	TAT	2042
Leu	Ser	Arg	Gln	Gln	Leu	Arg	Met	Ala	Het	Arg	lle	Pro	Val	Leu	Tyr	
	615					620					625					
GAG	CAG	CTC	AAG	AGG	GAG	AAG	CTG	AGA	GTA	CAC	AAG	GCC	AGA	CAG	TGĢ	2090
Glu	Gln	Leu	Lys	Arg	Glu	Lys	Leu	Arg	Val	His	Lys	Ala	Arg	Gln	Trp	
630					635					640					645	
AAA	TAT	GAT	GGT	GAG	ATG	CTG	AAC	AGG	TAC	CGA	CAG	GCC	CTA	GAG	ACA .	2138
Lys	Tyr	Asp	Gly	Glu	Иet	Leu	Asn	Arg	Tyr	Årg	G1n	Ala	Leu	Glu	Thr	
				650					655					660		
GCT	GTG	AAC	CTC	TCT	GTG	AAG	CAC	AGC	CTG	CCC	CTG	CTG	CCA	GGC	CGC	2186
Ala	Val	Asn	Leu	Ser	Val	Lys	His	Ser	Leu	Pro	Leu	Leu	Pro	Gly	Arg	
			665					670					675			
ACT	GTC	TTG	GTC	TAT	CTG	ACA	GAT	GCT	AAT	GCA	GAC	AGG	CTC	TGT	CCA	2234
Thr	Val	Leu	Val	Tyr	Leu	Thr	Asp	Ala	Asn	Ala	Asp	Arg	Leu	Cys	Pro	
		680					685					690				
AAG	AGC	AAC	CCA	CAA	GGG	CCC	CCG	CTG	AAC	TAT	GCA	CTG	CTG	TTG	ATT	2282
Lys	Ser	Asn	Pro	Gln	Gly	Pro	Pro	Leu	Asn	Tyr	Ala	Leu	Leu	Leu	lle	
	695					700		•			705					
GGG	ATG	ATG	ATC	ACG	AGG	GCG	GAG	CAG	GTG	GAC	GTC	GTG	CTG	TGT	GGA	2330
Gly	Иet	Met	lle	Thr	Arg	Ala	Glu	Gln	Val	Asp	Val	Val	Leu	Cys	Gly	
710					715					720					725	
GGT	GAC	ACT	CTG	AAG	ACT	GCA	GTG	CTT	AAG	GCA	GAA	GAA	GGC	ATC	CTG	2378
Gly	Asp	Thr	Leu	Lys	Thr	Ala	Val	Leu	Lys	Ala	Glu	Glu	Gly	lle	Leu	

				730					735					740		
AAG	ACT	GCC	ATC	AAG	CTC	CAG	GCT	CAA	GTC	CAG	GAG	TTT	GAT	GAA	AAT	2426
Lys	Thr	Ala	lle	Lys	Leu	Gln	Ala	Gln	Val	Gln	Glu	Phe	Asp	Glu	Asn	
			745					750					755			
GAT	GGA	TGG	TCC	CTG	AAT	ACT	TTT	GGG	AAA	TAC	CTG	CTG	TCT	CTG	GCT	2474
Asp	Gly	Trp	Ser	Leu	Asn	Thr	Phe	Gly	Lys	Tyr	Leu	Leu	Ser	Leu	Ala	
		760					765					770				
GGC	CAA	AGG	GTT	CCT	GTG	GAC	AGG	GTC	ATC	CTC	CTT	GGC	CAA	AGC	ATG	2522
Gly	Gln	Arg	Val	Pro	Val	Asp	Arg	Val	lle	Leu	Leu	Gly	Gln	Ser	Met	
	775					780					785					
GAT	GAT	GGA	ATG	ATA	AAT	GTG	GCC	AAA	CAG	CTT	TAC	TGG	CAG	CGT	GTG	2570
Asp	Asp	Gly	Иet	lle	Asn	Val	Ala	Lys	Gln	Leu	Tyr	Trp	Gln	Arg	Val	
790					795					800					805	
AAT	TCC	AAG	TGC	CTC	TTT	GTT	GGT	ATC	CTC	CTA	AGA	AGG	GTA	CAA	TAC	2618
Asn	Ser	Lys	Cys	Leu	Phe	Val	Gly	lle	Leu	Leu	Arg	Arg	Val	Gln	Tyr	
				810					815					820		
CTG	TCA	ACA	GAT	TTG	AAT	CCC	AAT	GAT	GTG	ACA	CTC	TCA	GGC	TGT	ACT	2666
Leu	Ser	Thr	Asp	Leu	Asn	Pro	Asn	Asp	Val	Thr	Leu	Ser	Gly	Cys	Thr	
			825					830					835			
GAT	GCG	ATA	CTG	AAG	TTC	ATT	GCA	GAG	CAT	GGG	GCC	TCC	CAT	CTT	CTG	2714
Asp	Ala	Ile	Leu	Lys	Phe	lle	Ala	Glu	His	Gly	Ala	Ser	His	Leu	Leu	
		840					845					850				
GAA	CAT	GTG	GGC	CAA	ATG	GAC	AAA	ATA	TTC	AAG	ATT	CCA	CCA	CCC	CCA	2762
Glu	His	Val	Gly	Gln	Met	Asp	Lys	lle	Phe	Lys	Ile	Pro	Pro	Pro	Pro	
	855					860					865					
GGA	AAG	ACA	GGG	GTC	CAG	TCT	CTC	CGG	CCA	CTG	GAA	GAG	GAC	ACT	CCA	2810
Gly	Lys	Thr	Gly	Val	Gln	Ser	Leu	Arg	Pro	Leu	Glu	Glu	Asp	Thr	Pro	
870					875					880					885	

WO 98/07838

PCT/JP97/02904

AGC CCC TTG GCT CCT GTT TCC CAG CAA GGA TGG GGC AGC ATC CGG CTT 2858

Ser Pro Leu Ala Pro Val Ser Gln Gln Gly Trp Gly Ser Ile Arg Leu
890 895 900

TTC ATT TCA TCC ACT TTC CGA GAC ATG CAC CGG GGA GCG GAC CTG CTG 2906

Phe Ile Ser Ser Thr Phe Arg Asp Met His Arg Gly Ala Asp Leu Leu

905 910 915

CTG AGG TCT GTG CTG CCA GCA CTG CAG GCC CGA GCG GCC CCT CAC CGT 2954

Leu Arg Ser Val Leu Pro Ala Leu Gln Ala Arg Ala Ala Pro His Arg
920 925 930

ATC AGC CTT CAC CGA ATC GAC CTC CGC TGG GGC GTC ACT GAG GAG GAG 3002

11e Ser Leu His Arg 11e Asp Leu Arg Trp Gly Val Thr Glu Glu Glu
935

940

945

ACC CGT AGG AAC AGA CAA CTG GAA GTG TGC CTT GGG GAG GTG GAG AAC 3050

Thr Arg Arg Asn Arg Gln Leu Glu Val Cys Leu Gly Glu Val Glu Asn

950 960 965

GCA CAG CTG TTT GTG GGG ATT CTG GGC TCC CGT TAT GGA AAC ATT CCC 3098

Ala Gln Leu Phe Val Gly Ile Leu Gly Ser Arg Tyr Gly Asn Ile Pro
970 975 980

CCC AGC TAC AAC CTT CCT GAC CAT CCA CAC TTC CAC TGG GCC CAG CAG 3146

Pro Ser Tyr Asn Leu Pro Asp His Pro His Phe His Trp Ala Gln Gln

985 990 995

TAC CCT TCA GGG CGC TCT GTG ACA GAG ATG GAG GTG ATG CAG TTC CTG 3194

Tyr Pro Ser Gly Arg Ser Val Thr Glu Met Glu Val Met Gln Phe Leu

1000 1005 1010

AAC CGG AAC CAA CGT CTG CAG CCC TCT GCC CAA GCT CTC ATC TAC TTC 3242

Asn Arg Asn Gln Arg Leu Gln Pro Ser Ala Gln Ala Leu Ile Tyr Phe

1015 1020 1025

CGG GAT TCC ACC TTC CTC ACC TCT ACC TCT

CGG GAT TCC AGC TTC CTC AGC TCT GTG CCA GAT GCC TGG AAA TCT GAC 3290

Arg Asp Ser Ser Phe Leu Ser Ser Val Pro As	sp Ala Trp Lys Ser Asp
1030 1035 104	
TTT GTT TCT GAG TCT GAA GAG GCC GCA TGT CG	CC ATC TCA CAA 000
Phe Val Ser Glu Ser Glu Glu Ala Ala Cys Ar	
1050 1055	1060
AGC TAC CTA AGC AGA CAG AAA GGG ATA ACC TG	C CCC 4C4 T10 CCC ===
Ser Tyr Leu Ser Arg Gln Lys Gly Ile Thr Cy	
1065 1070	
GAG TGG GGG GGT GTG GCA GCT GGC CGG CCC TAT	1075
Glu Trp Gly Gly Val Ala Ala Gly Arg Pro Typ	
1000	1090
GAG TTT GGG CAG TTG GTT CTG CAG GAT GTA TGG	
Glu Phe Gly Gln Leu Val Leu Gln Asp Val Trp	Asn Met Ile Gln Lys
	1105
CTC TAC CTG CAG CCT GGG GCC CTG CTG GAG CAG	
Leu Tyr Leu Gln Pro Gly Ala Leu Leu Glu Gln	Pro Val Ser Ile Pro
1110 1115 1120	1150
GAC GAT GAC TTG GTC CAG GCC ACC TTC CAG CAG	CTG CAG AAG CCA CCG 3578
Asp Asp Asp Leu Val Gln Ala Thr Phe Gln Gln	Leu Gln Lys Pro Pro
1130 1135	1140
AGT CCT GCC CGG CCA CGC CTT CTT CAG GAC ACA	GTG CAA CGG CTG ATG 3626
Ser Pro Ala Arg Pro Arg Leu Leu Gln Asp Thr	
1145 1150	1155
CTG CCC CAC GGA AGG CTG AGC CTG GTG ACG GGG	
Leu Pro His Gly Arg Leu Ser Leu Val Thr Gly	
1160 1165	1170
AAG ACA GCC TTC CTG GCA TCT CTT GTG TCA GCC	
Lys Thr Ala Phe Leu Ala Ser Leu Val Ser Ala I	

	1175					1180					1185					
GGG	GCC	AAG	GTG	GCA	CCA	TTA	GTC	TTC	TTC	CAC	TTT	TCT	GGG	GCT	CGT	3770
Gly	Ala	Lys	Val	Ala	Pro	Leu	Val	Phe	Phe	His	Phe	Ser	Gly	Ala	Arg	
119	0				1195					1200					1205	
CCT	GAC	CAG	GGT	CTT	GCC	CTC	ACT	CTG	CTC	AGA	CGC	CTC	TGT	ACC	TAT	3818
Pro	Asp	G1n	Gly	Leu	Ala	Leu	Thr	Leu	Leu	Arg	Arg	Leu	Cys	Thr	Tyr	
				1210					1215					1220		
CTG	CGT	GGC	CAA	CTA	AAA	GAG	TCA	GGT	GCC	CTC	CCC	AGC	ACC	TAC	CGA	3866
Leu	Arg	Gly	Gln	Leu	Lys	Glu	Ser	Gly	Ala	Leu	Pro	Ser	Thr	Tyr	Arg	
			1225					1230					1235			
AGC	CTG	GTG	TGG	GAG	CTG	CAG	CAG	AGG	CTG	CTG	CCC	AAG	TCT	GCT	GAG	3914
Ser	Leu	Val	Trp	Glu	Leu	Gln	Gln	Arg	Leu	Leu	Pro	Lys	Ser	Ala	Glu	
		1240				•	1245					1250				
TCC	CTG	CAT	CCT	GGC	CAG	ACC	CAG	GTC	CTG	ATC	ATC	GAT	GGG	GCT	GAT	3962
Ser	Leu	His	Pro	Gly	Gln	Thr	Gln	Val	Leu	lle	lle	Asp	Gly	Ala	Asp	
	1255					1260				!	1265					
AGG	TTA	GTG	GAC	CAG	AAT	GGG	CAG	CTG	ATT	TCA	GAC	TGG	ATC	CCA	AAG	4010
Arg	Leu	Val	Asp	Gln	Asn	Gly	Gln	Leu	lle	Ser	Asp	Trp	lle	Pro	Lys	
1270)]	1275]	280				. 1	285	
AAG	CTT	CCC	CGG	TGT	GTA	CAC	CTG	GTG	CTG	AGT	GTG	TCT	AGT	GAT	GCA	4058
Lys	Leu	Pro	Arg	Cys	Val	His	Leu	Val	Leu	Ser	Val	Ser	Ser	Asp	Ala	
			. 1	290				1	295				• 1	1300		
GGC	CTA	GGG	GAG	ACC	CTT	GAG	CAG	AGC	CAG	GGT	GCC	CAC	GTG	CTG	GCC	4106
Gly	Leu	Gly	Glu	Thr	Leu	Glu	Gln	Ser	Gln	Gly	Ala	His	Val	Leu	Ala	
		1	305				1	1310				1	315			
TTG	GGG	CCT	CTG	GAG	GCC	TCT	GCT	CGG	GCC	CGG	CTG	GTG	AGA	GAG	GAG	4154
Leu	Gly	Pro	Leu	Glu	Ala	Ser	Ala	Arg	Ala	Arg	Leu	Val	Arg	Glu	Glu	
	1	320				1	325				1	330				

CTG GCC CTG TAC GGG AAG CGG CTG GAG GAG TCA CCA TTT AAC AAC CAG	4202
Leu Ala Leu Tyr Gly Lys Arg Leu Glu Glu Ser Pro Phe Asn Asn Gln	
1335 1340 1345	
ATG CGA CTG CTG CTG GTG AAG CGG GAA TCA GGC CGG CCG CTC TAC CTG	4250
Met Arg Leu Leu Val Lys Arg Glu Ser Gly Arg Pro Leu Tyr Leu	
1350 1355 1360 1365	
CGC TTG GTC ACC GAT CAC CTG AGG CTC TTC ACG CTG TAT GAG CAG GTG	4000
Arg Leu Val Thr Asp His Leu Arg Leu Phe Thr Leu Tyr Glu Gln Val	4298
1370 1375 1380	
TCT GAG AGA CTC CGG ACC CTG CCT GCC ACT GTC CCC CTG CTG CAG CAC	4940
Ser Glu Arg Leu Arg Thr Leu Pro Ala Thr Val Pro Leu Leu Gln His	4346
1385 1390 1395	
ATC CTG AGC ACA CTG GAG AAG GAG CAC GGG CCT GAT GTC CTT CCC CAG	4394
Ile Leu Ser Thr Leu Glu Lys Glu His Gly Pro Asp Val Leu Pro Gln	4034
1400 1405 1410	
GCC TTG ACT GCC CTA GAA GTC ACA CGG AGT GGT TTG ACT GTG GAC CAG	4440
Ala Leu Thr Ala Leu Glu Val Thr Arg Ser Gly Leu Thr Val Asp Gln	4442
1415 1420 1425	
CTG CAC GGA GTG CTG AGT GTG TGG CGG ACA CTA CCG AAG GGG ACT AAG	4400
Leu His Gly Val Leu Ser Val Trp Arg Thr Leu Pro Lys Gly Thr Lys	4490
1430 1435 1440 1445	
ACC TGG GAA GAA GCA GTG GCT GCT GGT AAC AGT GGA GAC CCC TAC CCC	4520
Thr Trp Glu Glu Ala Val Ala Ala Gly Asn Ser Gly Asp Pro Tyr Pro	4538
1450 1455 1460	
ATG GGC CCG TTT GCC TAC CTC GTC CAG AGT CTG CGC AGT TTG CTA GGG	4500
Met Gly Pro Phe Ala Tyr Leu Val Gln Ser Leu Arg Ser Leu Leu Gly	4586
1465 1470 1475	
GAG GGC CCT CTG GAG CGC CCT GGT GCC CGG CTG TGC CTC CCT GAT GGG	4634
210 010 001 WI UUU	4004

Glu Gly Pro Leu Glu Arg Pro Gly Ala Arg Leu Cys Leu Pro Asp Gly	
1480 1485 1490	
CCC CTG AGA ACA GCA GCT AAA CGT TGC TAT GGG AAG AGG CCA GGG CTA	4682
Pro Leu Arg Thr Ala Ala Lys Arg Cys Tyr Gly Lys Arg Pro Gly Leu	
1495 1500 1505	
GAG GAC ACG GCA CAC ATC CTC ATT GCA GCT CAG CTC TGG AAG ACA TGT	4730
Glu Asp Thr Ala His Ile Leu Ile Ala Ala Gln Leu Trp Lys Thr Cys	2.00
1510 1515 1520 1525	
GAC GCT GAT GCC TCA GGC ACC TTC CGA AGT TGC CCT CCT GAG GCT CTG	4778
Asp Ala Asp Ala Ser Gly Thr Phe Arg Ser Cys Pro Pro Glu Ala Leu	4170
1530 1535 1540	
GGA GAC CTG CCT TAC CAC CTG CTC CAG ACC CCC AAC CCT CCA CTT CTT	4826
Gly Asp Leu Pro Tyr His Leu Leu Gln Ser Gly Asn Arg Gly Leu Leu	1020
1545 1550 1555	
TCG AAG TTC CTT ACC AAC CTC CAT GTG CTC CCT CCA GAG TTG GAL	4874
Ser Lys Phe Leu Thr Asn Leu His Val Val Ala Ala His Leu Glu Leu	1017
1560 1565 1570	
GGT CTG GTC TCT CGG CTC TTG GAG CCC CAT CCC CTG TAT CCT	1922
Gly Leu Val Ser Arg Leu Leu Glu Ala His Ala Leu Tyr Ala Ser Ser	:322
1575 1580 1585	
GTC CCC AAA GAG GAA CAA AAG CTC CCC GAG CCT CAC CTT CCL CTC	970
Val Pro Lys Glu Glu Gln Lys Leu Pro Glu Ala Asp Val Ala Val Phe	310
1590 1595 1600 1605	
CGC ACC TTC CTG AGG CAG CAG CCT TCA ATC CTG AGG GAG TAG	Λ10
Arg Thr Phe Leu Arg Gln Gln Ala Ser Ile Leu Ser Gln Tyr Pro Arg	018
1610 1615 1620	
CTC CTG CCC CAG CAG GCA GCC AAC CAC CCC CTC CAG TOL COT	166
Leu Leu Pro Gln Gln Ala Ala Asn Gln Pro Leu Asp Ser Pro Leu Cys)66

1	625	1630	1	1635						
CAC CAA GCC	TCG CTG CTC	TCC CGG AGA	TGG CAC CTC	CAA CAC ACA C	TA 5114					
His Gln Ala	Ser Leu Leu	Ser Arg Arg	Trp His Leu	Gln His Thr L	eu					
1640		1645		1650						
CGA TGG CTT	AAT AAA CCC	CGG ACC ATG	AAA AAT CAG	CAA AGC TCC A	GC 5162					
Arg Trp Leu	Asn Lys Pro	Arg Thr Met	Lys Asn Gln	Gln Ser Ser S	er					
1655	1	1660	1665							
CTG TCT CTG	GCA GTT TCC	TCA TCC CCT	ACT GCT GTG	GCC TTC TCC A	CC 5210					
Leu Ser Leu	Ala Val Ser	Ser Ser Pro	Thr Ala Val	Ala Phe Ser T	'hr					
1670	1675		1680	16	85					
AAT GGG CAA	AGA GCA GCT	GTG GGC ACT	GCC AAT GGG	ACA GTT TAC C	TG 5258					
Asn Gly Gln	Arg Ala Ala	Val Gly Thr	Ala Asn Gly	Thr Val Tyr L	æu					
	1690		1695	1700						
TTG GAC CTG	AGA ACT TGG	CAG GAG GAG	AAG TCT GTG	GTG AGT GGC T	CGT 5306					
Leu Asp Leu	Arg Thr Trp	Gln Glu Glu	Lys Ser Val	Val Ser Gly C	ys					
1	705	1710)	1715						
GAT GGA ATC	TCT GCT TGT	TTG TTC CTC	TCC GAT GAC	ACA CTC TTT C	CTT 5354					
Asp Gly 11e	Ser Ala Cys	Leu Phe Leu	Ser Asp Asp	Thr Leu Phe L	.eu					
1720		1725		1730 -						
ACT GCC TTC	GAC GGG CTC	CTG GAG CTG	TGG GAC CTG	CAG CAT GGT T	GT 5402					
Thr Ala Phe	Asp Gly Leu	Leu Glu Leu	Trp Asp Leu	Gln His Gly C	ys					
1735		1740	1745							
CGG GTG CTG	CAG ACT AAG	GCT CAC CAC	TAC CAA ATC	ACT GGC TGC T	rgc 5450					
Arg Val Leu	Gln Thr Lys	Ala His Gl	n Tyr Glm lle	Thr Gly Cys (Cys					
1750	1755		1760	17	765					
CTG AGC CCA	GAC TGC CGG	CTG CTA GC	C ACC GTG TGC	TTG GGA GGA 1	TGC 5498					
Leu Ser Pro	Asp Cys Arg	Leu Leu Ala	a Thr Val Cys	Leu Gly Gly (Cys					
	1770		1775	1780						

CTA	. AAG	CTG	TGG	GAC	ACA	GTC	CGT	GGG	CAG	CTG	GCC	TTC	CAG	CAC	ACC	5546
Leu	Lys	Leu	Trp	Asp	Thr	Val	Arg	Gly	Gln	Leu	Ala	Phe	Gln	His	Thr	
1785					1790											
TAC	CCC	AAG	TCC	CTG	AAC	TGT	GTT	GCC	TTC	CAC	CCA	GAG	GGG	CAG	GTA	5594
Tyr	Pro	Lys	Ser	Leu	Asn	Cys	Val	Ala	Phe	His	Pro	Glu	Gly	Gln	Val	
		1800					1805					1810				
ATA	GCC	ACA	GGC	AGC	TGG	GCT	GGC	AGC	ATC	AGC	TTC	TTC	CAG	GTG	GAT	5642
lle	Ala	Thr	Gly	Ser	Trp	Ala	Gly	Ser	lle	Ser	Phe	Phe	Gln	Val	Asp	
	1815					1820					1825					
GGG	CTC	AAA	GTC	ACC	AAG	GGA	CCT	GGG	GGC	CCC	GGA	GCC	TCT	ATC	CGT	5690
Gly	Leu	Lys	Yal	Thr	Lys	Gly	Pro	Gly	Gly	Pro	Gly	Ala	Ser	lle	Arg	
183	0				1835					1840					1845	
ACC	TTG	GCC	TTC	AAT	GTG	CCT	GGG	GGG	GTT	GTG	GCT	GTG	GGC	CGG	CTG	5738
Thr	Leu	Ala	Phe	Asn	Val	Pro	Gly	Gly	Val	Val	Ala	Val	Gly	Arg	Leu	
				1850]	1855		1860					
GAC	AGT	ATG	GTG	GAG	CTG	TGG	GCC	TGG	CGA	GAA	GGG	GCA	CGG	CTG	GCT	5786
Asp	Ser	Net	Val	Glu	Leu	Trp	Ala	Trp	Arg	Glu	Gly	Ala	Arg	Leu	Ala	
			1865					1870					1875			
GCC	TTC	CCT	GCC	CAC	CAT	GGC	TTT	GTT	GCT	GCT	GCG	CTT	TTC	CTG	CAT	5834
Ala		Pro	Ala	His	His			Val	Ala	Ala	Ala	Leu	Phe	Leu	His	
		1880					1885					1890				
		TGC													•	5882
		Cys	Gln	Leu			Ala	Gly	Glu	_	-	Lys	Val	Gln	Val	
	1895					1900					905					
		GGG														5930
		Gly	Ser			Arg	Pro	Arg	Gly	His	Leu	Gly	Ser	Leu	Ser	•
1910					915					920					925	
CTC	TCT	CCT	GCC	CTC	TCT	GTG	GCA	CTC	AGC	CCA	GAT	GGT	GAT	CGG	GTG	5978

PCT/JP97/02904

WO 98/07838

Leu	Ser	Pro	Ala	Leu	Ser	Val	Ala	Leu	Ser	Pro	Asp	Gly	Asp	Arg	Val	
]	930		1935							1	940		
GCT	GTT	GGA	TAT	CGA	GCG	GAT	GGC	TTA	AGG	ATC	TAC	AAA	ATC	TCT	TCA	6026
Ala	Val	Gly	Tyr	Arg	Ala	Asp	Gly	lle	Arg	lle	Tyr	Lys	lle	Ser	Ser	
		1	945				1	1950				1	955			
GGT	TCC	CAG	GGG	GCT	CAG	GGT	CAG	GCA	CTG	GAT	GTG	GCA	GTG	TCG	GCC	6074
Gly	Ser	Gln	Gly	Ala	Gln	Gly	Gln	Ala	Leu	Asp	Val	Ala	Val	Ser	Ala	
]	1960				1	1965				1	1970				
CTG	GCC	TGG	ATA	AGC	CCC	AAG	GTA	TTG	GTG	AGT	GGT	GCA	GAA	GAT	GGG	6122
Leu	Ala	Trp	lle	Ser	Pro	Lys	Val	Leu	Val	Ser	Gly	Ala	Glu	Asp	Gly	
1	1975				1	1980				1	1985					
TCC	TTG	CAG	GGC	TGG	GCA	CTC	AAG	GAA	TGC	TCC	CTT	CAG	TCC	CTC	TGG	6170
Ser	Leu	Gln	Gly	Trp	Ala	Leu	Lys	Glu	Cys	Ser	Leu	Gln	Ser	Leu	Trp	
1990)			1	1995				2	2000				2	2005	
CTC	CTG	TCC	AGA	TTC	CAG	AAG	CCT	GTG	CTA	GGA	CTG	GCC	ACT	TCC	CAG	6218
Leu	Leu	Ser	Arg	Phe	Gln	Lys	Pro	Val	Leu	Gly	Leu	Ala	Thr	Ser	Gln	•
			:	2010		2015					2020					
GAG	CTC	TTG	GCT	TCT	GCC	TCA	GAG	GAT	TTC	ACA	GTG	CAG	CTG	TGG	CCA	6266
Glu	Leu	Leu	Ala	Ser	Ala	Ser	Glu	Asp	Phe	Thr	Val	Gln	Leu	Trp	Pro	
		2	2025				;	2030				9	2035			
AGG	CAG	CTG	CTG	ACG	CGG	CCA	CAC	AAG	GCA	GAA	GAC	TTT	CCC	TGT	GGC	6314
Arg	Gln	Leu	Leu	Thr	Arg	Pro	His	Lys	Ala	Glu	Asp	Phe	Pro	Cys	Gly	
	:	2040					2045				;	2050				
ACT	GAG	CTG	CGG	GGA	CAT	GAG	GGC	CCT	GTG	AGC	TGC	TGT	AGT	TTC	AGC	6362
Thr	Glu	Leu	Arg	Gly	His	Glu	Gly	Pro	Val	Ser	Cys	Cys	Ser	Phe	Ser	
;	2055				,	2060				;	2065					
ACT	GAT	GGA	GGC	AGC	CTG	GCC	ACC	GGG	GGC	CGG	GAT	CGG	AGT	CTC	CTC	6410
Thr	Asp	Gly	Gly	Ser	Leu	Ala	Thr	Gly	Gly	Arg	Asp	Arg	Ser	Leu	Leu	

₩O 98/07838 PCT/JP97/029:04

			PCT/JP9	17/0291
2070	2075	2080	2085	
TGC TGG	GAC GTG AGG ACA CCC A	AA ACC CCT GTT TTG	ATC CAC TCC TTC	6458
Cys Trp	Asp Val Arg Thr Pro Ly	s Thr Pro Val Leu	lle His Ser Phe	, 100
	2090	2095	2100	
CCT GCC 1	IGT CAC CGT GAC TGG GT	C ACT GGC TGT GCC	IGG ACC AAA GAT 6	506
Pro Ala C	Cys His Arg Asp Trp Va	1 Thr Gly Cys Ala 1	rp Thr Lys Asp	
	2105	2110	2115	
AAC CTA C	TG ATA TCC TGC TCC AG	T GAT GGC TCT GTG G	GG CTC TGG GAC 6	554
Asn Leu L	eu lle Ser Cys Ser Ser	Asp Gly Ser Val G	ly Leu Trp Asp	,04
213	20 2125	213	30	
CCA GAG TO	CA GGA CAG CGG CTT GGT	CAG TTC CTG GGT CA	AT CAG AGT GCT GG	02
Pro Glu Se	er Gly Gln Arg Leu Gly	Gln Phe Leu Gly Hi	is Gln Ser Ala	UZ
2135	2140	2145		
GTG AGC GC	T GTG GCA GCT GTG GAG	GAG CAC GTG GTG TC	T GTG AGC CGG 669	50
Val Ser Ala	a Val Ala Ala Val Glu	Glu His Val Val Se	r Val Ser Arg	70
2150	2155	2160	2165	
GAT GGG ACC	TTG AAA GTG TGG GAC	CAT CAA GGC GTG GAG	G CTG ACC AGC REG	10
Asp Gly Thr	Leu Lys Val Trp Asp	His Gln Gly Val Glu	Leu Thr Ser	· O
	2170	2175	2180	
ATC CCT GCT	CAC TCA GGA CCC ATT	AGC CAC TGT GCA GCT	GCC ATG GAG 6740	c
lle Pro Ala	His Ser Gly Pro Ile S	Ser His Cys Ala Ala	Ala Met Glu	U
	2185 21	190	2195	
CCC CGT GCA	GCT GGA CAG CCT GGG T	CA GAG CTT CTG GTG	GTA ACC ATC 6704	ı
Pro Arg Ala	Ala Gly Gln Pro Gly S	er Glu Leu Leu Val	Val Thr Ile	1
2200	2205	2210		
GGG CTA GAT	GGG GCC ACA CGG TTA T	GG CAT CCA CTC TTG	GTG TGC CAA 6940	
Gly Leu Asp	Gly Ala Thr Arg Leu T	rp His Pro Leu Leu	Val Cvs Cin	
2215	2220	2225	0,0 0111	

WO 98/07838 PCT/JP97/02904 ACC CAC ACC CTC CTG GGA CAC AGC GGC CCA GTC CGT GCT GCT GTT Thr His Thr Leu Leu Gly His Ser Gly Pro Val Arg Ala Ala Ala Val TCA GAA ACC TCA GCC CTC ATG CTG ACC GCC TCT GAG ATG TCT GTA CGG Ser Glu Thr Ser Ala Leu Met Leu Thr Ala Ser Glu Met Ser Val Arg CTC TGG CAG GTT CCT AAG GAA GCA GAT GAC ACA TGT ATA CCA AGG AGT Leu Trp Gln Val Pro Lys Glu Ala Asp Asp Thr Cys Ile Pro Arg Ser TCT GCA GCC GTC ACT GCT GTG GCT TGG GCA CCA GAT GGC TCC ATG GCA Ser Ala Ala Val Thr Ala Val Ala Trp Ala Pro Asp Gly Ser Met Ala GTA TCT GGA AAT CAA GCT GGG GAA CTA ATC TTG TGG CAG GAA GCT AAG Val Ser Gly Asn Gln Ala Gly Glu Leu Ile Leu Trp Gln Glu Ala Lys GCT GTG GCC ACA GCA CAG GCT CCA GGC CAC ATA GGT GCT CTG ATC TGG Ala Val Ala Thr Ala Gln Ala Pro Gly His Ile Gly Ala Leu Ile Trp TCC TCG GCA CAC ACC TTT TTT GTC CTC AGT GCT GAT GAG AAA ATC AGC Ser Ser Ala His Thr Phe Phe Val Leu Ser Ala Asp Glu Lys Ile Ser GAG TGG CAA GTG AAA CTG CGA GAG GGT TCG GCA CCC GGA AAT TTG AGT Glu Trp Gln Val Lys Leu Arg Lys Gly Ser Ala Pro Gly Asn Leu Ser CTT CAC CTG AAC CGA ATT CTA CAG GAG GAC TTA GGG GTG CTG ACA AGT Leu His Leu Asn Arg Ile Leu Gln Glu Asp Leu Gly Val Leu Thr Ser

CTG GAT TGG GCT CCT GAT GGT CAC TTT CTC ATC TTG GCC AAA GCA GAT

WO 98/07838 PCT/JP97/02904

Leu	Asp	Trp	Ala	Pro	Asp	Gly	His	Phe	Leu	lle	Leu	Ala	Lys	Ala	Asp	
	2375					2380					2385					
TTG	AAG	TTA	CTT	TGC	ATG	AAG	CCA	GGG	GAT	GCT	CCA	TCT	GAA	ATC	TGG	7370
Leu	Lys	Leu	Leu	Cys	∦et	Lys	Pro	Gly	Asp	Ala	Pro	Ser	Glu	lle	Trp	
239	0			9	2395					2400				4	2405	
AGC	AGC	TAT	ACA	GAA	AAT	CCT	ATG	ATA	TTG	TCC	ACC	CAC	AAG	GAA	TAT	7418
Ser	Ser	Tyr	Thr	Glu	Asn	Pro	Met	lle	Leu	Ser	Thr	His	Lys	Glu	Tyr	
			:	2410				3	2415				:	2420		
GGC	ATA	TTT	GTC	CTG	CAG	CCC	AAG	GAT	CCT	GGA	GTT	CTT	TCT	TTC	TTG	7466
Gly	lle	Phe	Val	Leu	Gln	Pro	Lys	Asp	Pro	Gly	Val	Leu	Ser	Phe	Leu	
		;	2425					2430				;	2435			
AGG	CAA	AAG	GAA	TCA	GGA	AAG	TTT	GAA	GAG	AGG	CTG	AAC	TTT	GAT	ATA	7514
Arg	Gln	Lys	Glu	Ser	Gly	Lys	Phe	Glu	Glu	Arg	Leu	Asn	Phe	Asp	lle	
	:	2440				9	2445				4	2450				
AAC	TTA	GAG	AAT	CCT	AGT	AGG	ACC	CTA	ATA	TCG	ATA	ACT	CAA	GCC	AAA	7562
Asn	Leu	Glu	Asn	Pro	Ser	Arg	Thr	Leu	lle	Ser	lle	Thr	Gln	Ala	Lys	
2	2455				2	2460				2	2465					
CCT	GAA	TCT	GAG	TCC	TCA	TTT	TTG	TGT	GCC	AGC	TCT	GAT	GGG	ATG	CTA	7610
Pro	Glu	Ser	Glu	Ser	Ser	Phe	Leu	Cys	Ala	Ser	Ser	Asp	Gly	Met	Leu	
2470)			2	2475				4	2480				6	2485	
TGG	AAC	CTG	GCC	AAA	TGC	AGC	CCA	GAA	GGA	GAA	TGG	ACC	ACA	GGT	AAC	7658
Trp	Asn	Leu	Ala	Lys	Cys	Ser	Pro	Glu	Gly	Glu	Trp	Thr	Thr	Gly	Asn	
			2	2490				2	2495				2	2500		
ATG	TGG	CAG	AAA	AAA	GCA	AAC	ACT	CCA	GAA	ACC	CAA	ACT	CCA	GGG	ACA	7706
Неt	Trp	Gln	Lys	Lys	Ala	Asn	Thr	Pro	Glu	Thr	Gln	Thr	Pro	Gly	Thr	
		2	2505				2	2510				6	2515			
GAC	CCA	TCT	ACC	TGC	AGG	GAA	TCT	GAT	GCC	AGC	ATG	GAT	AGT	GAT	GCC	7754
Asp	Pro	Ser	Thr	Cys	Arg	Glu	Ser	Asp	Ala	Ser	Неt	Asp	Ser	Asp	Ala	

WO 98/07838 PCT/JP97/02904 2520 2525 2530 AGC ATG GAT AGT GAG CCA ACA CCA CAT CTA AAG ACA CGG CAG CGT AGA 7802 Ser Het Asp Ser Glu Pro Thr Pro His Leu Lys Thr Arg Gln Arg Arg 2535 2540 2545 AAG ATT CAC TCG GGC TCT GTC ACA GCC CTC CAT GTG CTA CCT GAG TTG 7850 Lys Ile His Ser Gly Ser Val Thr Ala Leu His Val Leu Pro Glu Leu 2550 2555 2560 2565 CTG GTG ACA GCT TCG AAG GAC AGA GAT GTT AAG CTA TGG GAG AGA CCC 7898 Leu Val Thr Ala Ser Lys Asp Arg Asp Val Lys Leu Trp Glu Arg Pro 2570 2575 2580 AGT ATG CAG CTG CTG GGC CTG TTC CGA TGC GAA GGG TCA GTG AGC TGC 7946 Ser Met Gln Leu Leu Gly Leu Phe Arg Cys Glu Gly Ser Val Ser Cys 2585 2590 2595 CTG GAA CCT TGG CTG GGC GCT AAC TCC ACC CTG CAG CTT GCC GTG GGA 7994 Leu Glu Pro Trp Leu Gly Ala Asn Ser Thr Leu Gln Leu Ala Val Gly 2600 2605 2610 GAC GTG CAG GGC AAT GTG TAC TTT CTG AAT TGG GAA TGAAGATGTG 8040 Asp Val Gln Gly Asn Val Tyr Phe Leu Asn Trp Glu *** 2615 2620 2625 CCACTCGGGA ATAATGATAC CCCTTGTGCT AGAGATGCAA AGCCTGAAGA CACTGGTAGC 8100 TTTTAATAAT TATAAAATTA ATAATTTCTT GATAATTATA AAAATGAAGT GTCAAAAAAT 8160 CTCAAGTGTA GGCCTGCCTG TGTTCTCATG TGGATTTAGA ACAGGAGGAT ATTCTATGTG 8220 TATGTATATG TACATTCTAA TGTGTGTCTC TTCTTATTCA ACATTAATCC TTACTAGAAC 8280 CACAAGAAAG TGAATGAAAT CTTTAGTAGG TACTCTTTTG AAACTAGGTT TTAGAATTCT 8340 TGCATCACTC GCGGGCCCTA GGACCCTAGG ATGCCATTCT TGCCAGGAGG AGGAATGAGA 8400 GTGATGTTGG CCAACATTCA ATTTGAACAG AGCATGGAAG ACCTTTCAGT TCATCGGGAA 8460 AGAATGAGGG AGGGAGAATA AGTCAGTCAT GCATCAGGGC ATTTAGAAAG AGCTATGTTT 8520

CTGTCACAGA GACAGCCCTT TTCTCAGAAC TACCCAGAGG AGGCCGGGCA TGGTGGCTCA 8580

WO 98/07838 PCT/JP97/02904

CGC	TTGTAAT	CCCAGCACTT	TGGGAGGCCG	AGGTGGGCAG	ATCACGAGGT	CAGGAGATCA	8640
AGA	CCATCCT	GGCTAACATA	GTGAAACCCT	GTCTCTACTA	AAAAATACAA	AAAGTTGGCC	8700
AGG	TGTGGCG	GCGGGCACCT	GTAGTCCCAG	CTACTTGGGA	GGCTGAGGCA	GGAGAATGGC	8760
GTG.	AACCCAG	GAGGCGGAGC	TTGCGGTGAG	CCGAGACACC	ACTGCACTCC	AGCCTGGGCA	8820
ACA	GAGCGAG	ACTCTGTCT					8839

育 求 の 節 囲

- 1. 配列表の配列番号1に記述のアミノ酸配列で特定されるポリペプチド。
- 2. ラット由来テロメラーゼ蛋白質である額求の箆囲第1項に記述のポリペプチド。
- 3. 配列表の配列番号1に記述のアミノ酸配列に1又は2以上のアミノ酸残基による置換、挿入、及び/又は欠失が存在しており、実質的にヒトを含む高等動物テロメラーゼ蛋白質として機能することを特徴とするポリペプチド。
- 4. ヒトの生体内でテロメラーゼ蛋白質として機能することができる請求の範囲 第3項に記載のポリペプチド。
- 5. 配列表の配列番号2に記載のアミノ酸配列で特定されるポリペプチド。
- 6. ヒト由来テロメラーゼ蛋白質の部分ポリペプチドである請求の範囲第5項に 記越のポリペプチド。
- 7. 配列表の配列番号2に記域のアミノ酸配列に1又は2以上のアミノ酸残基による置換、挿入、及び/又は欠失が存在しており、実質的にヒトを含む高等動物テロメラーゼ蛋白質の部分ポリペプチドとして機能することを特徴とするポリペプチド。
- 8.配列表の配列番号13に記域のアミノ酸配列で特定されるポリペプチド。
- 9. ヒト由来テロメラーゼ蛋白質である請求の範囲第8項に記録のポリペプチド。
- 10. 配列表の配列番号13に記録のアミノ酸配列に1又は2以上のアミノ酸残基による置換、挿入、及び/又は欠失が存在しており、実質的にヒトを含む高等動物テロメラーゼ蛋白質として機能することを特徴とするポリペプチド。
- 11. ヒトの生体内でテロメラーゼ蛋白質として機能することができる請求の範囲第10項に記録のポリペプチド。
- 12. 請求の笕囲第1項ないし!1項のいずれか1項に記載のポリペプチドをコードするヌクレオチド配列。
- 13. DNA配列又はRNA配列である請求の範囲第12項に記戯のヌクレオチド配列。

WO 98/07838 PCT/JF97/02904

15. 設求の節囲第14項に記述の組み換えベクターが導入された形質転換体。

- 19. 請求の笕囲第17項に記載の抗体又は請求の笕囲第18項に記戯の核酸プロープを含む癌細胞検出用試薬。

- 22. SDS-ポリアクリルアミド電気泳動法による分子量が、不活性型では約240kDaであり、活性型では約230kDaであることを特徴とする請求の ©囲第3項に記徴のポリペプチド。
- 23. SDS-ポリアクリルアミド電気泳動法による分子量が約230kDaであることを特徴とする活性型の請求の範囲第3項に記載のポリペプチド。
- 24. 高等動物テロメラーゼ蛋白質の酵菜活性発現に作用する物質のスクリーニング 方法であって、被験物質と接触させた細胞又は組織に含まれるテロメラーゼ蛋白 質またはそのサブユニットの分子母を測定する工程を含むスクリーニング方法。
- 25. 被験物質との接触工程を被験物質の存在下における培養工程又は動物への被験物質の投与工程により行う請求の範囲第24項に記載のスクリーニング方法。
- 26. 分子母の測定をSDS-ポリアクリルアミド電気泳動法で行う請求の範囲第24項又は25項に記憶のスクリーニング方法。
- 27. 約240kDaの不活性型及び約230kDaの活性型のポリペプチドの存在

WO 98/07838 PCT/JF97/02904

比を測定する工程を含む請求の範囲第26項に記載のスクリーニング方法。

28. 被験物質の非存在下における 2 4 0 k D a のポリペプチドの存在比と比較して、 該ポリペプチドの存在比が被験物質の存在下において実質的に増加している場合 には、該被験物質が高等助物テロメラーゼ蛋白質の酵素活性の発現を阻害する物 質であると判定する工程を含む育求の節囲第26項又は27項に記載のスクリーニング 方法。

29. 被殴物質の非存在下における230kDaのポリペプチドの存在比と比較して、該ポリペプチドの存在比が被殴物質の存在下において実質的に増加している場合には、該被殴物質が高等助物テロメラーゼ蛋白質の酵素活性の発現を活性化する物質であると判定する工程を含む請求の範囲第26項又は27項に記述のスクリーニング方法。

WO 98/07838 PCT/JP97/02904

贫	第2区						
R H	1	AAGITIC SCG	20 AGTITGA AGTTTGA AGT	30 GTACCAGCTA GTACCAGCT	40 SCGAAGTACA SCFAAGTACA	50 ACCCACGGAA ACCCTCGGAA	50 50
R H	51 51	60 A PACCEAT FC GPACCEGG FC	70 NAGAC (CGTT NAGAGNCACC	HEREGECA HCC	ACCCCGCCCC	BASA MERCAA	100 100
R H	101 101	110 AACCTCCATI AGECTCCATI	120 FTCAG SCAG FTCTC CAG	GGGAA EVICTO	FTCCAAA FAG	EGRIT RECCC	150 150
R H	151 151	160	170 NAUNGAITTC EGENGAGAAA	180 TWC MAGCA TWT MGAAG	190 SCITA BATIS SCIEGISATA	200 JAGTGTCAGA JAGTGTCAGA	200 200
R H	201 201	210 DAACANA AGG CAAAAAGAAT	220 TA CCAAGGT CT CCAAGGT	230 FCACTETGAA TCACEETGAA	240 GAAGII TGGTA GAAG TGGT II	250 GAGCAACTGC CAGC <mark>C</mark> ACTGC	250 250
R H	251 251	260 ATATCCATGA ACATCCACA A	270 GCCTGCGCAG GCCTGCGCAG	280 PATOIC PAGE PACETT PAAS	290 CCTGCTGGG CCCTGCTGGG	300 CTACAGTAC TTACAGATAC	300 300
R H	301 301	310 ICATICOACEO ICCAACO	320 PAGAGCTCTI PAGAGCTCTI	330 FTCTCGAG1 FTCTCGAG1	340 PAT WIC SCITE CC WIT SCITE	350 3600A 1600A 3600 T 16664	350 350
R H	351 351	360 CTCTAGGAGA TECTAGGAGA	370 SONGGE PAC SONGGE PAGE	380 TGATGAAGCT TGATGAAGCT	CCAAACGCCA	CAGACCTGGG	400 400
R H	401 401	410 AGCGGGAGCT AGCGGGAGGT	420 JAGOTTACGT JAGOTTACGS	430 CAAACAGAG II GAACAA	440 Tricrese 4 Green cre	450 GGAGGAACTC GGAGGAACTC	450 450
R H	451 451	460 NEABACIVIIG NITEAAAVIG	470 SGMASTICES SSMASTICES	480 CTTCATGGCC CTTCATGGCC	490 ATGCTC: GA ATGCTCA C.E.	500 APCT	500 500
p80 R H	1 1 1	10 KFSEFNEYOL KFAQEDEYOL	20 GAYCTESORK AKYNPRKIIFS AKYNPEKIIFA	STATE OF THE STATE	40 NKQKWDQTKK	KRKENTITET	50 50 50
p.80 R H	51 51 51	60 QAIKESEDKS	70 KRETGDIMNV QTTAP	80 EDAIKALKPA ORTK PFFSES POME PPFSH-	UMERTARDON	100 Amkkemeap k Koegis sea Kreegreeek	100 100 100
р80 R Н	101 101	110 IPESTLESEY MYNAVSEKIR	120 LIPKO I FEC LPRETIKKIN PPRETIKKIN	130 HISEPKERVY EOHHUHEPAK	140 KILGKKYPKT HVOALLGYRY	150 EEEYKAAFGD ESTMEMBERS	150 150 150
 p80 R K	151 151	160 SASA FNPEL HILPGENDSSI	170 AGKRHETEIS AGREMKIORI AGKRMKISRP	180 KINENE ISAK ETWERELSIJE	190 NTAEVEONI NRASVAISEI	200 HSSNOJEPYNA LONGKI PEMA	200 200 200
 P80 R H	201 201	210 4LF	220	230	240	250	250 250 250 250

第3図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/02904

						
	SSIFICATION OF SUBJECT MATTER					
I	Int. Cl ⁶ Cl2N9/12, Cl2N15/54, Cl2Q1/48					
According t	o International Patent Classification (IPC) or to be	oth national classification and IPC				
	DS SEARCHED					
	ocumentation searched (classification system followed					
Int.	C16 C12N9/12, C12N15/54,	C12Q1/48				
Documentati	on searched other than minimum documentation to the	e extent that such documents are included in the	ne fields searched			
	ta base consulted during the international search (nam		terms used)			
Medli	ne, Biosis Previews, GenBa	ank				
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.			
j	Cell, Vol. 81, (1995), Col "Purification of Tetrahyme	na Telomerase and	1 - 30			
	Cloning of Genes Encoding Components of the Enzyme"	the Two Protein p. 677-686				
].	Database GenBank Rel. 100, Biotechnology Information, et al. 'Comparative expres	H33937, Lee, N.H.	1 - 30			
. [analysis of differential g profiles in PC-12 cells be growth factor treatment' 0	ene expression fore and after nerve				
	Proc. Natl. Acad. Sci. USA Prowse K.R. et al. "Develo specific regulation of mou telomere length" p. 4818-4	pmental and tissue-	1 - 30			
	Cell, Vol. 59, (1989), Mor Telomere Terminal Transfer Ribonucleoprotein That Syn Repeats" p. 521-529	ase Enzyme Ts a	1 - 30			
X Further	documents are listed in the continuation of Box C.	See patent family annex.				
A" document	legories of cited documents: defining the general state of the art which is not considered recular relevance	later document published after the later date and not in conflict with the application the principle or theory underlying the interest of the principle of the	Ltion but cited to understand			
E" earlier doc	ament but published on or after the international filling date which may throw doubts on priority claim(s) or which is sublish the publication date of another citation or other	"X" document of particular relevance; the considered novel or cannot be considered.	cisimed invention cannot be			
O" document	son (as specified) referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventive of	claimed invention cannot be			
P document;	published prior to the international filing date but later than	COMDIDED WILD OBE OF BOTE OTHER SUICH &	ocuments, such combination			
ate of the act	ual completion of the international search					
	aber 30, 1997 (30. 09. 97)	Date of mailing of the international search October 7, 1997 (0)	- 1			
ame and mail	ing address of the ISA/					
	se Patent Office	Authorized officer	}			
u apane raimile No.	oo racent Office	Talanhara Ma	į			
	210 (second sheet) (July 1992)	Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/02904

		PCT/S	JP97/02904
C (Continu	ntion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category®	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
P,X	Molecular Biology of the Cell, 7 (Supp (1996), Nakayama J. et al. "Cloning of candidate cDNA encoding a preteinaceou component of mammalian telomerase" p.	a .s	1 - 30
P,X	Science, Vol. 276, (1997) Linger J. et "Reverse Transcriptase Motifs in the C Subunit of Telomerase" p. 561-566	al. atalytic	1 - 30
P,X	Cell, Vol. 88, (1977), Nakayama J. et "TLP1:A gene encoding a protein compon mammalian telomerase is a novel member repeats family" p. 875-884	ent of	1 - 30
		·	
	·		
		i	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

A 977 CB			017 02304
1	の以する分环の分類(国際特许分類(IPC)		
Int.	C1° C12N9/12. C12N15/5	54, C12Q1/48	
B. 幻在	を行った分牙		
<u>町査を行った</u>	上Q小限資料(因廢物許分類(IPC))		
Int.	Cl° C12N9/12. C12N15/5	4. 6. 6. 6. 6. 6.	
	012N3/12, C12N13/5	4, C12Q1/48	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	 外の資料で <u>紅査を行った分</u> 牙に含まれるもの		
1	ンドンローで叫出を行った分野に含まれるもの		
例の発生では	用した粒子データベース(データベースの名)	称、馭査に使用した用語)	
Medi	line, Biosis Previews,	GenBank	
	,	Genban k	
C. 四辺す	ると堅められる文献		
引用文献の			205-
カテゴリー☆ A	引用文政名 及び一部の信所が関連する	るときは、その関連する貸所の設示	関迎する
- -	Cell, 5810, (1995), Collins K et al Puri and Cloning of Genes Encoding the Two P -686	Figure of T	1-30
A	Database GenBank Rel. 100, National Cente	r for Biotechnology Information, H3393	1-30
	gene expression profiles in PC-12 cells		
A			
^	Proc. Natl. Acad. Sci. USA . 13925. (1995) Protissue-specific regulation of research	owse K.R. et al Developmental and	1-30
	tissue-specific regulation of mouse teld 22		
A	Cell, 第59章, (1989), Morin G. B. The Human Is a Ribonucleoprotein That Symthesians	Telomere Terminal Transferase Enzyme	1-30
	Is a Ribonucleoprotein That Synthesizes	TTAGGG Repeats Jp. 521-529	- 50
x C和の設力	In a death rather than the same of the sam		
KI CHINGSE	にも文献が列章されている。	□ パテントファミリーに関する別点	氏を心照。
3 引用文欣の	カテゴリー	の日の役に公安された文章	
'A」特に関型	のある文以ではなく、一段的技術水却を示す	「T」国際出口日又は優先日位に公立さ	れた文章でカッナ
「E」先行文IX	ではあるが、国際出層日以後に公安されたも	て中国と矛盾するものではなく	発明の原型又は辺
• •		即の型がのために引用するもの	
日若しく	銀に吸貸を提起する文献又は他の文献の発行 は他の分別な理由を配立するために引用する	いい、現在人は心歩性がないと立う	ムわスもの
(조) 건(조	፱ ጵ/፻ፕ)	- 「1」役に関迎のある文献であって、当	防文はと他の1m
O) ロ劇によ	る関示、使用、展示等に自及する文献	上の文献との、当段者にとって自 よって迎歩性がないと与えられる	明である組合せに
1 1 KR KM TOTAL	日前で、かつ包先和の主張の基町となる出層	「&」同一パテントファミリー文以	
原の査を完了		国際国産収告の発送日	
	30.09.97		7
原の荘和四の名	B称及びあて先	07.10.9	
日本国籍	部庁(ISA/JP)	神許庁蒋査官 (桁限のある[2]) 和	4B 7823
以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 り	见舒导100 F代田区図が関三丁目4舒3号	平田和男	
		以話替号 03-3581-1101 p	980 3449

国際出願番号 PCT/JP97/02904

明文学と 3 用文学名 及び一部の御所が関連するときは、その関連する箇所の表示	C (続き).	関連すると認められる文献	-
P,X Molecular Biolofy of the Cell.7(SUPPL.), (1996), Nakayama J. et al「Cloning of a candidate cDNA encoding a preteinaceous component of mammalian telomerasejp. 286A P,X Science,第276卷, (1997)Linger J. et al「Reverse Transcriptase Motifs in the Catalytic Subunit of Telomerasejp. 561-566 P,X Cell,第88卷, (1997), Nakayama J. et al「TLP1:A gene encoding a protein component 1-30	引用文献の	21日ナ幹を、及び一部の毎所が関連ナスレネル、この関連ナス体をベルニニ	関連する
candidate cDNA encoding a preteinaceous component of mammalian telomerasejp. 286A P,X Science, 第276巻, (1997)Linger J. et al「Reverse Transcriptase Motifs in the Catalytic Subunit of Telomerasejp. 561-566 P,X Cell, 第88巻, (1997), Nakayama J. et al「TLP1: A gene encoding a protein component 1-30		97所文献名 及び mpv 面が 過速するときは、その過速する面がの表示 Wolerular Riolofy of the Cell.7(SIPPL) (1996) Nakayama Let al(Cloning of a	1-30
P,X Science, 第276卷, (1997)Linger J. et al「Reverse Transcriptase Motifs in the Catalytic Subunit of Telomerase Jp. 561-566 P,X Cell, 第88卷, (1997), Nakayama J. et al「TLP1: A gene encoding a protein component 1-30	***	candidate cDNA encoding a preteinaceous component of mammalian telemerasein.	1 30
Catalytic Subunit of Telomerasejp. 561-566 P.X Cell, 第88巻, (1997), Nakayama J. et al TLP1: A gene encoding a protein component 1-30		286A	
P.X Cell, 第88巻, (1997), Nakayama J. et al TLP1: A gene encoding a protein component 1-30	P, X	Science, 第276巻, (1997)Linger J. et al「Reverse Transcriptase Motifs in the	1-30
P.X Cell. 第88章、(1997), Nakayama J. et al'ILPI:A gene encoding a protein component of manamalian telemeruse is a novel newber of 切 repeats familyjp, 875-884		Catalytic Subunit of Telomerasejp. 561-566	
of mammalian telemerase is a novel nember of WD repeats family,p.875-884	P.X	Cell, 第88巻, (1997), Nakayama J. et al TLP1: A gene encoding a protein component	1-30
		of mammalian telumerase is a novel member of WD repeats family1p. 875-884	
	İ		
	; 1		
	Ì		
	ļ		
	ļ		
	j		i
]
			l
			1
			1

様式PCT/ISA/210 (第2ページの続き) (1992年7月)