1.4 操作系统大观园

操作系统已经存在了半个多世纪。在这段时期内,出现了各种类型的操作系统,并不是所有这些操作系统都很知名。本节中,我们将简要地介绍其中的9个。在本书的后面,我们还将回顾这些系统。

1.4.1 大型机操作系统

在操作系统的高端是用于大型机的操作系统,这些房间般大小的计算机仍然可以在一些大型公司的数据中心中见到。这些计算机与个人计算机的主要差别是其I/O处理能力。一台拥有1000个磁盘和上百万吉字节数据的大型机是很正常的,如果有这样的特性的一台个人计算机会使朋友们很羡慕。大型机也在高端的Web服务器、大型电子商务服务站点和事务—事务交易服务器上有某种程度的复活。

用于大型机的操作系统主要用于面向多个作业的同时处理,多数这样的作业需要巨大的I/O能力。系统主要提供三类服务:批处理、事务处理和分时处理。批处理系统处理不需要交互式用户干质的周期性作业。保险公司的索赔处理或连锁商店的销售报告通常就是以批处理方式完成的。事务处理系统负责大量小的请求,例如,银行的支票处理或航班预订。每个业务量都很小,但是系统必须每秒处理成百上千个业务。分时系统允许多个远程用户同时在计算机上运行作业,诸如在大型数据库上的查询。这些功能是密切相关的,大型机操作系统通常完成所有这些功能。大型机操作系统的一个例子是OS/390(OS/360的后继版本)。但是,大型机操作系统正在逐渐被诸如Linux这类UNIX的变体所替代。

1.4.2 服务器操作系统

下一个层次是服务器操作系统。它们在服务器上运行,服务器可以是大型的个人计算机、工作站,其至是大型机。它们通过网络同时为若干个用户服务,并且允许用户共享硬件和软件资源。服务器可提供打印服务、文件服务或Web服务。Internet 服务商们运行着许多台服务器机器,以支持他们的用户,使Web站点保存Web页面并处理进来的请求。典型的服务器操作系统有Solaris、FreeBSD、Linux 和Windows Server 200x。

1.4.3 多处理器操作系统

一种获得大量联合计算能力的操作系统,其越来越常用的方式是将多个CPU连接成单个的系统。依据连接和共享方式的不同,这些系统称为并行计算机、多计算机或多处理器。它们需要专门的操作系统,不过通常采用的操作系统是配有通信、连接和一致性等专门功能的服务器操作系统的变体。

个人计算机中近来出现了多核芯片,所以常规的台式机和笔记本电脑操作系统也开始与小规模的多处理器打交道,而核的数量正在与时俱进。幸运的是,由于先前多年的研究,已经具备不少关于多处理器操作系统的知识,将这些知识运用到多核处理器系统中应该不存在困难。难点在于要有能够运用所有这些计算能力的应用。许多主流操作系统,包括Windows和Linux,都可以运行在多核处理器上。

1.4.4 个人计算机操作系统

接着一类是个人计算机操作系统。现代个人计算机操作系统都支持多道程序处理,在启动时,通常有十多个程序开始运行。它们的功能是为单个用户提供良好的支持。这类系统广泛用于字处理、电子表格、游戏和Internet访问。常见的例子是Linux、FreeBSD、Windows Vista和Macintosh操作系统。个人计算机操作系统是如此地广为人知,所以不需要再做介绍了。事实上,许多人甚至不知道还有其他的操作系统存在。

1.4.5 掌上计算机操作系统

随着系统越来越小型化,我们看到了掌上计算机。掌上计算机或者个人数字助理(Personal Digital Assistant, PDA)是一种可以装进衬衫口袋的小型计算机,它们可以实现少量的功能,诸如电子地址簿和记事本之类。而且,除了键盘和屏幕之外,许多移动电话与PDA几乎没有差别。在实际效果上,PDA和移动电话已经在逐渐融合,其差别主要在于大小、重量以及用户界面等方面。这些设备几乎都是基于带有保护模式的32位CPU,并且运行最尖端的操作系统。

运行在这些掌上设备上的操作系统正在变得越来越复杂,它们有能力处理移动电话、数码照相以及其他功能。多数设备还能运行第三方的应用。事实上,其中有些设备开始采用十年前的个人操作系统。