

www.uneatlantico.es

MATEMÁTICAS

Aplicación de las Integrales I

Prof. Dr. Jorge Crespo Álvarez

Objetivo

Aplicar Integrales a la Resolución de Problemas Reales

- Cálculo de Áreas
- Cálculo de Volúmenes
- Valor Promedio

Cálculo de Áreas

Considere la región S que se ubica entre dos curvas y = f(x) y y = g(x) y entre las rectas verticales x = a y x = b, donde f y g son funciones continuas y $f(x) \ge g(x)$ para toda x en [a, b].

El área A de la región acotada por las curvas y = f(x), y = g(x) y las rectas x = a, x = b, donde f y g son continuas y $f(x) \ge g(x)$ para toda x en [a, b], es

$$A = \int_a^b [f(x) - g(x)] dx$$

Cálculo de Áreas

Ejemplo:

Calcule el área de la región encerrada por las parábolas:

$$y = x^2$$
; $y = 2x - x^2$

Cálculo de Áreas

Ejemplo:

Calcule el área de la región encerrada por las curvas:

$$y = \operatorname{sen} x$$
; $y = \cos x$; $0 \le x \le \frac{\pi}{2}$

Definición de volumen Sea S un sólido que está entre x = a y x = b. Si el área de la sección transversal de S en el plano P_x , que pasa a través de x y es perpendicular al eje x, es A(x), donde A es una función continua, entonces el **volumen** de S es

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \Delta x = \int_a^b A(x) dx$$

Ejemplo:

Demuestre que el volumen de una esfera de radio r es $V = \frac{4}{3}\pi r^3$.

Ejemplo:

La región encerrada por las curvas y = x y $y = x^2$ gira alrededor de la recta y = 2. Determine el volumen resultante.

Ejemplo:

En la figura se muestra un sólido con una base circular de radio 1. las secciones transversales paralelas pero perpendiculares a la base son triángulos equiláteros. Determine el volumen del sólido.

Valor Promedio

Teorema del valor medio para integrales Si f es continua sobre [a, b], entonces existe un número c en [a, b] tal que

$$f(c) = f_{\text{prom}} = \frac{1}{b-a} \int_a^b f(x) \, dx$$
$$\int_a^b f(x) \, dx = f(c)(b-a)$$

es decir,

Valor Promedio

Ejemplo:

Determine el valor promedio de la función $f(x) = 1 + x^2$ sobre el intervalo [-1, 2].

www.uneatlantico.es