```
In [1]: import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score, classification_report
```

## Out[2]:

|   | N  | Р  | K  | temperature | humidity  | ph       | rainfall   | label |
|---|----|----|----|-------------|-----------|----------|------------|-------|
| 0 | 90 | 42 | 43 | 20.879744   | 82.002744 | 6.502985 | 202.935536 | rice  |
| 1 | 85 | 58 | 41 | 21.770462   | 80.319644 | 7.038096 | 226.655537 | rice  |
| 2 | 60 | 55 | 44 | 23.004459   | 82.320763 | 7.840207 | 263.964248 | rice  |
| 3 | 74 | 35 | 40 | 26.491096   | 80.158363 | 6.980401 | 242.864034 | rice  |
| 4 | 78 | 42 | 42 | 20.130175   | 81.604873 | 7.628473 | 262.717340 | rice  |

## In [3]: crop\_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2200 entries, 0 to 2199
Data columns (total 8 columns):

| #                                                  | Column      | Non-Null Count | Dtype   |  |  |  |
|----------------------------------------------------|-------------|----------------|---------|--|--|--|
|                                                    |             |                |         |  |  |  |
| 0                                                  | N           | 2200 non-null  | int64   |  |  |  |
| 1                                                  | Р           | 2200 non-null  | int64   |  |  |  |
| 2                                                  | K           | 2200 non-null  | int64   |  |  |  |
| 3                                                  | temperature | 2200 non-null  | float64 |  |  |  |
| 4                                                  | humidity    | 2200 non-null  | float64 |  |  |  |
| 5                                                  | ph          | 2200 non-null  | float64 |  |  |  |
| 6                                                  | rainfall    | 2200 non-null  | float64 |  |  |  |
| 7                                                  | label       | 2200 non-null  | object  |  |  |  |
| <pre>dtypes: float64(4), int64(3), object(1)</pre> |             |                |         |  |  |  |

memory usage: 137.6+ KB

In [4]: crop\_data.describe()

# Out[4]:

|       | N           | Р           | K           | temperature | humidity    | ph          |       |
|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------|
| count | 2200.000000 | 2200.000000 | 2200.000000 | 2200.000000 | 2200.000000 | 2200.000000 | 2200. |
| mean  | 50.551818   | 53.362727   | 48.149091   | 25.616244   | 71.481779   | 6.469480    | 103.  |
| std   | 36.917334   | 32.985883   | 50.647931   | 5.063749    | 22.263812   | 0.773938    | 54.   |
| min   | 0.000000    | 5.000000    | 5.000000    | 8.825675    | 14.258040   | 3.504752    | 20.   |
| 25%   | 21.000000   | 28.000000   | 20.000000   | 22.769375   | 60.261953   | 5.971693    | 64.   |
| 50%   | 37.000000   | 51.000000   | 32.000000   | 25.598693   | 80.473146   | 6.425045    | 94.   |
| 75%   | 84.250000   | 68.000000   | 49.000000   | 28.561654   | 89.948771   | 6.923643    | 124.  |
| max   | 140.000000  | 145.000000  | 205.000000  | 43.675493   | 99.981876   | 9.935091    | 298.  |
| 4     |             |             |             |             |             |             |       |

In [5]: crop\_data.isnull().sum()

Out[5]: N 0
P 0
K 0
temperature 0
humidity 0
ph 0
rainfall 0
label 0
dtype: int64



Ń

P

ĸ

temperature humidity

rainfall

ph

In [7]: crop\_data.hist(bins=30, figsize=(20,15))
plt.show()





#### Out[9]:

```
P K temperature humidity
                                                rainfall label
0 90 42 43
               20.879744 82.002744 6.502985 202.935536
                                                         rice
  85 58 41
               21.770462 80.319644 7.038096 226.655537
                                                         rice
2 60 55 44
               23.004459 82.320763 7.840207 263.964248
                                                         rice
3 74 35 40
               26.491096 80.158363 6.980401 242.864034
                                                         rice
4 78 42 42
               20.130175 81.604873 7.628473 262.717340
                                                         rice
```

```
In [10]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
crop_data['label'] = le.fit_transform(crop_data['label'])
```

```
In [11]: features = ['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall'] #
    scaler = StandardScaler()
    crop_data[features] = scaler.fit_transform(crop_data[features]) # Scale features
```

```
In [12]: X = crop_data.drop('label', axis=1)
y = crop_data['label']
```

```
In [13]: X_train, X_test, y_train, y_test = train_test_split(X,y,test_size =0.2, rain)
```

```
In [14]:
         # Train Decision Tree Classifier
         dt_model = DecisionTreeClassifier()
         dt_model.fit(X_train,y_train)
         # Make predictions
         y_pred_dt = dt_model.predict(X_test)
         # Evaluate the model
         print('Decision Tree Accuracy:', accuracy_score(y_test,y_pred_dt))
         print('Classification Report:\n', classification_report(y_test,y_pred_dt))
         Decision Tree Accuracy: 0.9795454545454545
         Classification Report:
                         precision
                                      recall f1-score
                                                          support
                     0
                             1.00
                                        1.00
                                                  1.00
                                                               22
                     1
                             1.00
                                        1.00
                                                  1.00
                                                               17
                     2
                                                               18
                             0.86
                                        1.00
                                                  0.92
                     3
                             1.00
                                        1.00
                                                  1.00
                                                               25
                     4
                                                               19
                             1.00
                                        1.00
                                                  1.00
                     5
                             1.00
                                        1.00
                                                  1.00
                                                               23
                     6
                                        1.00
                                                               16
                             1.00
                                                  1.00
                     7
                             1.00
                                        1.00
                                                  1.00
                                                               16
                     8
                                                               25
                             0.89
                                        0.96
                                                  0.92
                     9
                             1.00
                                        1.00
                                                  1.00
                                                               14
                    10
                             1.00
                                        0.79
                                                  0.88
                                                               19
                    11
                             1.00
                                        1.00
                                                  1.00
                                                              18
                    12
                             1.00
                                        1.00
                                                  1.00
                                                               21
                    13
                             0.95
                                        1.00
                                                  0.97
                                                               19
                    14
                             0.96
                                        1.00
                                                  0.98
                                                               22
```

4 ^^

```
In [15]: rf_model = RandomForestClassifier()
    rf_model.fit(X_train,y_train)

y_pred_rf = rf_model.predict(X_test)

print('Random Forest Accuracy:', accuracy_score(y_test,y_pred_rf))
    print('Classification Report:\n', classification_report(y_test,y_pred_rf))
```

Random Forest Accuracy: 0.990909090909091 Classification Report:

|               | precision | recall | f1-score | support |
|---------------|-----------|--------|----------|---------|
| 0             | 1.00      | 1.00   | 1.00     | 22      |
| 1             | 1.00      | 1.00   | 1.00     | 17      |
| 2             | 1.00      | 1.00   | 1.00     | 18      |
| 3             | 1.00      | 1.00   | 1.00     | 25      |
| 4             | 1.00      | 1.00   | 1.00     | 19      |
| 5             | 1.00      | 1.00   | 1.00     | 23      |
| 6             | 1.00      | 1.00   | 1.00     | 16      |
| 7             | 1.00      | 1.00   | 1.00     | 16      |
| 8             | 0.92      | 0.96   | 0.94     | 25      |
| 9             | 1.00      | 1.00   | 1.00     | 14      |
| 10            | 1.00      | 0.95   | 0.97     | 19      |
| 11            | 1.00      | 1.00   | 1.00     | 18      |
| 12            | 1.00      | 1.00   | 1.00     | 21      |
| 13            | 0.95      | 1.00   | 0.97     | 19      |
| 14            | 1.00      | 1.00   | 1.00     | 22      |
| 15            | 1.00      | 1.00   | 1.00     | 20      |
| 16            | 1.00      | 1.00   | 1.00     | 27      |
| 17            | 1.00      | 1.00   | 1.00     | 14      |
| 18            | 1.00      | 1.00   | 1.00     | 19      |
| 19            | 1.00      | 1.00   | 1.00     | 19      |
| 20            | 0.96      | 0.92   | 0.94     | 24      |
| 21            | 1.00      | 1.00   | 1.00     | 23      |
| accuracy      |           |        | 0.99     | 440     |
| macro avg     | 0.99      | 0.99   | 0.99     | 440     |
| weighted avg  | 0.99      | 0.99   | 0.99     | 440     |
| weigniced avg | 0.33      | 0.53   | 0.33     | 440     |

```
In [16]:
         lr_model = LogisticRegression(max_iter=1000)
         lr_model.fit(X_train,y_train)
         y_pred_lr = lr_model.predict(X_test)
         print('Logistic Regression Accuracy:', accuracy_score(y_test,y_pred_lr))
         print('Classification Report:\n', classification_report(y_test,y_pred_lr))
                              1.00
                                        1.00
                                                   1.00
                     8
                              0.83
                                        0.96
                                                   0.89
                                                                25
                     9
                              1.00
                                        1.00
                                                   1.00
                                                                14
                    10
                              0.95
                                        0.95
                                                   0.95
                                                                19
                                                                18
                    11
                              1.00
                                        1.00
                                                   1.00
                    12
                                        1.00
                                                                21
                              1.00
                                                   1.00
                    13
                              0.95
                                        1.00
                                                   0.97
                                                                19
                    14
                              0.96
                                        1.00
                                                   0.98
                                                                22
                    15
                              1.00
                                        1.00
                                                   1.00
                                                                20
                    16
                              1.00
                                        1.00
                                                   1.00
                                                                27
                    17
                                                                14
                              1.00
                                        0.79
                                                   0.88
                    18
                              1.00
                                        0.95
                                                   0.97
                                                                19
                                                                19
                    19
                              1.00
                                        1.00
                                                   1.00
                    20
                              0.86
                                        0.79
                                                   0.83
                                                                24
                    21
                                                                23
                              1.00
                                        1.00
                                                   1.00
                                                   0.97
                                                               440
              accuracy
             macro avg
                              0.98
                                        0.97
                                                   0.97
                                                               440
         weighted avg
                              0.97
                                        0.97
                                                   0.97
                                                               440
```

## Out[17]:

|   | N        | Р         | K         | temperature | humidity | ph       | rainfall | label |
|---|----------|-----------|-----------|-------------|----------|----------|----------|-------|
| 0 | 1.068797 | -0.344551 | -0.101688 | -0.935587   | 0.472666 | 0.043302 | 1.810361 | rice  |
| 1 | 0.933329 | 0.140616  | -0.141185 | -0.759646   | 0.397051 | 0.734873 | 2.242058 | rice  |
| 2 | 0.255986 | 0.049647  | -0.081939 | -0.515898   | 0.486954 | 1.771510 | 2.921066 | rice  |
| 3 | 0.635298 | -0.556811 | -0.160933 | 0.172807    | 0.389805 | 0.660308 | 2.537048 | rice  |
| 4 | 0.743673 | -0.344551 | -0.121436 | -1.083647   | 0.454792 | 1.497868 | 2.898373 | rice  |

In [ ]: