

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

"Суперкомпьютерное моделирование и технологии"

Решение трёхмерного гиперболического уравнения в прямоугольном параллелепипеде

ОТЧЕТ

о выполненном задании

студентка 620 группы

Руденко Ксения Рустамовна

Вариант 3

Оглавление

1.	Постановка задачи	3
2.	Численный метод решения задачи	4
3.	Программная реализация	5
4.	Исследование масштабируемости программы	6
5.	Выводы	12

1. Постановка задачи

Решается задача для трехмерного гиперболического уравнения в области прямоугольного параллелепипеда. Данное уравнение часто применяется в теории тепло- и массопереноса, гидро- и аэромеханике, электростатике. Таким образом, данная задача является актуальной в рамках современного суперкомпьютерного моделирования.

Постановка задачи:

В трёхмерной замкнутой области

$$\Omega = [0 \le x \le Lx] \times [0 \le y \le Ly] \times [0 \le z \le Lz]$$

для (0 < $t \le T$] требуется найти решение u(x, y, z, t) уравнения в частных производных

$$\frac{\partial^2 u}{\partial t^2} = a^2 \Delta u \quad (1)$$

с начальными условиями

$$u|_{t=0} = \phi(x, y, z)$$
 (2)

$$\frac{\partial u}{\partial t}\Big|_{t=0} = 0 \qquad (3)$$

при условии, что на границах области заданы либо однородные граничные условия первого рода:

$$u(0, y, z, t) = 0,$$
 $u(L_x, y, z, t) = 0,$ (4)

$$u(x, 0, z, t) = 0,$$
 $u(x, L_y, z, t) = 0,$ (5)

$$u(x, y, 0, t) = 0,$$
 $u(x, y, L_z, t) = 0,$ (6)

либо периодические граничные условия

$$u(0, y, z, t) = u(L_x, y, z, t),$$
 $u_x(0, y, z, t) = u_x(L_x, y, z, t),$ (7)

$$u(x, 0, z, t) = u(x, L_v, z, t),$$
 $u_v(x, 0, z, t) = u_v(x, L_v, z, t),$ (8)

$$u(x, y, 0, t) = u(x, y, L_z, t),$$
 $u_z(x, y, 0, t) = u_z(x, y, L_z, t),$ (9)

В варианте 3 граничные условия представлены в (10) – (12):

$$u(0, y, z, t) = 0,$$
 $u(L_x, y, z, t) = 0,$ (10)

$$u(x, y, 0, t) = 0,$$
 $u(x, y, L_2, t) = 0,$ (11)

$$u(x, 0, z, t) = u(x, L_y, z, t),$$
 $u_y(x, 0, z, t) = u_y(x, L_y, z, t),$ (12)

Аналитическое уравнение функции *u*:

$$u(x, y, z, t) = \sin\left(\frac{\pi}{L_x}x\right) \cdot \sin\left(\frac{2\pi}{L_y}y\right) \cdot \sin\left(\frac{3\pi}{L_z}z\right) \cdot \cos(a_t \cdot t),$$

$$a_t = \frac{\pi}{2} \sqrt{\frac{1}{L_x^2} + \frac{4}{L_y^2} + \frac{9}{L_z^2}},$$

$$a^2 = \frac{1}{4}$$

2. Численный метод решения задачи

Для численного решения задачи ведём на Ω сетку: $\omega_{h\tau} = \overline{\omega}_h \times \omega_h$, где

$$\begin{split} T &= T_0, \\ L_x &= L_{x_0} \text{ , } L_y = L_{y_0}, L_z = L_{z_0}, \\ \overline{\omega}_h &= \{(x_i = ih_x, y_j = jh_y, z_k = kh_z), \text{i, j, k} = 0,1, \dots, \text{N, } h_x \text{N} = L_x, h_y \text{N} = L_y, h_z \text{N} = L_z, \} \\ \omega_\tau &= \{t_n = n\tau, n = 0, \dots, K, \tau K = T\}. \end{split}$$

Через ω_h обозначим множество внутренних, а через γ_h – множество граничных узлов сетки $\overline{\omega}_h$.

Для аппроксимации исходного уравнения (1) однородными граничными условиями (4) – (6) и начальными условиями (2) – (3) воспользуемся следующей системой уравнений:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^{n} + u_{ijk}^{n-1}}{\tau^{2}} = a^{2} \Delta_{h} u^{n}, (x_{i}, y_{j}, z_{k}) \in \omega_{h}, n = 1, 2, ..., K-1,$$

Здесь Δ_h — семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h^2}.$$

Приведённая выше разностная схема является явной — значения u_{ijk}^{n+1} на

(n+1)-м шаге можно явным образом выразить через значения на предыдущих слоях.

Для начала счёта (те для нахождения u_{ijk}^2) должны быть заданы значения $u_{ijk}^0, u_{ijk}^1, (x_i, y_j, z_k) \in \omega_h$. Из условия (2) имеем

$$u_{ijk}^{0} = \varphi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in \omega_h.$$
 (10)

Простейшая замена начального условия (3) уравнением $(u_{ijk}^1 - u_{ijk}^0)/\tau = 0$ имеет лишь первый порядок аппроксимации по τ . Аппроксимацию второго порядка по τ и h дает разностное уравнение:

$$\frac{u_{ijk}^1 - u_{ijk}^0}{\tau} = \frac{\tau}{2} \Delta_h \varphi(x_{i,} y_j, z_k), \quad (x_{i,} y_j, z_k) \in \omega_h. \tag{11}$$

$$u_{ijk}^{1} = u_{ijk}^{0} + \frac{\tau^{2}}{2} \Delta_{h} \varphi(x_{i,} y_{j}, z_{k}), \tag{12}$$

Разностная аппроксимация для периодических граничных условий выглядит следующим образом:

$$u_{0jk}^{n+1} = u_{Njk}^{n+1}, \quad u_{1jk}^{n+1} = u_{N+1jk}^{n+1},$$

$$u_{i0k}^{n+1} = u_{iNk}^{n+1}, \quad u_{i1k}^{n+1} = u_{iN+1k}^{n+1},$$

$$u_{ij0}^{n+1} = u_{ijN}^{n+1}, \quad u_{ij1}^{n+1} = u_{ijN+1}^{n+1},$$

$$i, j, k = 0, 1, \dots, N.$$

Для вычисления $u^0, u^1 \in \gamma_h$ допускается использование аналитического решения.

3. Программная реализация

Алгоритм численного решения задачи выглядит следующим образом:

- 1. Вычислить граничные значения u^0 , u^1 используя граничные условия (для периодического условия значение аналитического решения).
- 2. Вычислить внутренние значения u^0 , u^1 .
- Далее *К* шагов:
 - а. Вычисляем значение u^{n+1} во внутренних узлах сетки.
 - b. Вычисляем граничные значения u^{n+1} используя граничные условия (для периодического условия пользуемся разностной аппроксимацией и считаем значение u^{n+1}_{ijN}), зная $u^{n+1}_{ijN+1} = u^{n+1}_{ij1}$.

Общая идея параллельных версий следующая. Сетка разбивается на блоки, затем каждый процесс считает значения в своем блоке и обменивается данными с соседями.

Для параллельных версий используется блочное 3d разбиение (2xN или 4xN), так как оно позволяет уменьшить число коммуникаций между процессорами. Разбиение осуществляется за счет создания декартовой топологии через MPI_Cart_create.

Оценка корректности осуществлялась за счет сравнения максимальной погрешности сетки, так как алгоритм не рандомизированный, то эта погрешность должна быть постоянной и равной значению на последовательной версии.

4. Исследование масштабируемости программы

Запуски проводились на Polus для $L_x = L_y = L_z = L$, T = 2, K = 10000 на 20 шагах по времени. Результаты исследования и графики решений представлены ниже.

Рисунок 1. График аналитической функции при L=1 на 20 шаге по времени на сетке 10^3 .

Число	Число точек	Время	Ускорение S	Погрешность
OpenMP	сетки N^3	решения Т		δ
нитей				
2	128^{3}	0,48	1,9	7*10 ⁻⁸
4	128^{3}	0,25	3,72	7*10 ⁻⁸
8	128^{3}	0,19	4,89	7*10 ⁻⁸
16	128^{3}	0,18	5,1	7*10 ⁻⁸
4	256^{3}	2	3,8	2*10 ⁻⁸
8	256^{3}	1	7,5	2*10 ⁻⁸
16	256^{3}	0,84	8,9	2*10 ⁻⁸
32	256^{3}	0,62	12	2*10 ⁻⁸

Таблица 1. Результаты исследования OpenMP программы при L=1

Рисунок 2. График ускорения ОреnMP программы при L=1.

Число	Число точек	Время	Ускорение S	Погрешность
OpenMP	сетки N^3	решения Т	_	δ
нитей				
2	128 ³	0,47	2	7*10 ⁻⁹
4	128 ³	0,23	4,1	7*10 ⁻⁹
8	128^{3}	0,18	5,2	7*10 ⁻⁹
16	128 ³	0,17	5,5	7*10 ⁻⁹
4	256^{3}	1,9	3,6	2*10 ⁻⁹
8	256^{3}	1,1	6,2	2*10 ⁻⁹
16	256 ³	0,89	7,8	2*10-9
32	256 ³	0,64	11	2*10 ⁻⁹

Таблица 1. Результаты исследования OpenMP программы при $L=\pi$

Рисунок 5. График ускорения ОреnMP программы при $L=\pi$.

Число МРІ	Число	Число точек	Время	Ускорение S	Погрешность
процессов N _p	OpenMP	сетки N^3	решения Т		δ
	нитей в				
	процессе				
2	1	128^{3}	1,9	1	7*10 ⁻⁹
2	2	128^{3}	0,63	3,01	7*10 ⁻⁹
2	4	128^{3}	0,45	4,2	7*10 ⁻⁹
2	8	128^{3}	0,26	7,3	7*10 ⁻⁹
4	1	256^{3}	2,32	3,23	7*10 ⁻⁸
4	2	256^{3}	1,26	6	7*10 ⁻⁸
4	4	256^{3}	0,7	10,7	7*10 ⁻⁸
4	8	256^{3}	0,69	10,9	7*10 ⁻⁸

Таблица 3. Результаты исследования MPI/OpenMP программы при L=1.

Рисунок 6. График ускорения MPI/OpenMP программы при L=1.

Число МРІ	Число	Число точек	Время	Ускорение S	Погрешность
процессов N _p	OpenMP	сетки N^3	решения Т		δ
	нитей в				
	процессе				
2	1	128^{3}	0,82	2,3	9*10 ⁻⁹
2	2	128^{3}	0,48	4	9*10 ⁻⁹
2	4	128^{3}	0,38	4,9	9*10 ⁻⁹
2	8	128^{3}	0,2	9,4	9*10 ⁻⁹
4	1	256^{3}	2,37	2,9	2*10 ⁻⁹
4	2	256^{3}	1,35	5,1	2*10 ⁻⁹
4	4	256^{3}	0,67	10,3	2*10 ⁻⁹
4	8	256^{3}	0,6	11,5	2*10 ⁻⁹

Таблица 3. Результаты исследования MPI/OpenMP программы при $L=\pi$.

Рисунок 7. График ускорения MPI/OpenMP программы при $L=\pi$.

5. Выводы

В ходе исследования были полученные результаты:

- 1) Все 2 варианта программы решают задачу примерно за одинаковое время. Различия в программах в количестве используемых ресурсов.
- 2) ОрепМР довольно просто и быстро позволяет ускорить программу.
- 3) MPI/OpenMP показывает отличные результаты, однако быстро упирается в пропускную способность кеша и начинает часто ловить cachemiss, от чего эффективность ускорения падает.