Bioinformatics

Ahmet Sacan

Microarrays

Golub '99

- Identification of cancer subtypes is important for proper treatment
 - Acute myeloid leukemia (AML) vs. acute lymphoblastic leukemia (ALL)
- Classification used to be based primarily on morphological appearance of the tumor.

Golub '99

- Collected RNA from 38 leukemia patients.
- Identified genes that were correlated with classification.
- Additionally refined the ALL into B-cell and T-cell derived tumors (using SOM).

Golub '99

- · Class discovery: identification of new cancer classes.
- Class prediction: assigning tumors to known classes.
- Gene discovery: identification of genes that differ from one tumor class to another

van de Vijver '02

Analyzed tumors from frozen-tissue bank (295 samples)

70-gene prognosis profile for primary breast

carcinomas

Expression analysis

- See also:
 - http://www.bio.davidson.edu/courses/genomics/chip/chip.html

Microarray

Microarray data normalization

- Normalization removes systematic experimental errors
- The measured expression:

$$X = \gamma e^{\eta} + \epsilon$$

- $-\gamma$: actual expression level
- $-\epsilon$: additive error with distribution $N(0,\sigma_{\epsilon})$
- $-e^{\eta}$: multiplicative error term that is proportional to the level of expression, with distribution $N(0, \sigma_n)$.

Problems with R/G

- Plot shows how distribution of ratios varies with the level of expression.
- The distribution of R/G is skewed upward for all expression values.
- Taking logarithms solves this problem. Data is now centered and more equally distributed around 0.
 - $-\log(X)=-\log(1/X)$
 - Increases and decreases in expression are treated equally.

Lowess normalization

- Suitable when expression ratios have a curvature dependent on the expression levels
- Lowess: LOcally WEighted Scatterplot Smoothing
- Applies regression analysis in small windows.

Clustering

Cluster to detect gene clusters and regulatory networks

Cluster to detect patient subgroups

Clustering Methods

- Hierarchical Clustering
- k-means clustering
- Self-organizing maps

Distance measures

- Euclidean
- Pearson correlation
- · Cosine angle (aka. Uncentered Pearson)
 - Pearson and cosine are invariant to scaling
 - Pearson is also invariant to translation, e.g.:
 - Pearson(X1,X2) == Pearson(X1, 2*X2+5)

Pitfalls in Distance measures

 Negative correlation may also be of interest (e.g., closely related on the signaling or regulatory networks).

 Workaround: use absolute value of correlation, e.g. (1-|Pearson|)

Hierarchical Clustering

Clustering of Melanoma Tumors Using Average Linkage

Clustering of Melanoma Tumors Using Single Linkage

Clustering of Melanoma Tumors Using Complete Linkage

Dendrograms using 3 different linkage methods, distance = 1-correlation

(Data from Bittner et al., Nature, 2000)

Converting hierarchical clustering to partitions

- Simple, ~fast
- Selection of a good k: trial & error
- Does not always converge
- Sensitive to initialization

k-means (k=5)

k-means (k=6)

k-means (k=7)

hierarchical clustering average linkage Euclidean distance cut at 7

hierarchical clustering average linkage 1-correlation distance cut at 7

Self Organizing Maps

- Dimension and data reduction
- Identifies
 spread/distribution

Dimensionality Reduction

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- (Classical) Multidimensional scaling (MDS)
- + ~30 others

Principal Component Analysis

- Measure 10,000 genes in 8 different patients
 - A matrix of 10,000x8 measurements
- Imagine each 10,000 gene is plotted in a multi-dimensional on a scatter plot consisting of 8 axes.
 - Results in a cloud of values in multi-dimensional space.
- PCA extracts directions where the cloud is most extended

Linear Discriminant Analysis

 LDA: Redefine "interesting" projections using class separability

Multidimensional Scaling (MDS)

- Assersohn, 2002
 - Samples from fine needles aspirates (FNA) and from tumors in breast cancer.
 - Color: patient, Large circle: tumor, Small circle: FNA

Classification

- Neural Network
- Support Vector Machines (SVM)
- Decision Trees
- + many others

Support Vector Machines

- r: distance from each sample to the separator
- Samples closest to the hyperplane are the support vectors
- ρ : the margin (distance) between support vectors

Non-linear SVM (Kernel trick)

 Map to a higher dimension so the classes become separable.

SVM application

- Mukherjee '03 applied SVM to Leukemia data from Golub '99.
 - -f(x) is the distance to separating plane

Other types of expression

- micro-RNA
 - small (~23) regulatory RNA molecules
 - quantitative RT-PCR
- Protein
 - Gel electrophoresis
 - Liquid chromatography
 - Mass spectrometry

2D gel electrophoresis

(A) first dimension electrophoresis separation

2D gels

- Spot-identification can be problematic
 - -(A) two spots detected as one.
 - (B) dust and smudge

2-color 2D gel

Example: Growth Factor treatment

- Cells stimulated with different growth factors
 - Epidermal growth factor (EGF)
 - Insulin growth factor (IGF)
 - Platelet derived growth factor (PDGF)
- Scatterplot and regression line helps compare 2 (or 3) samples
 - Outlier proteins = very different expression between samples.

Clustering

- · Two groups are identified
 - Red: similar to no stimulation
 - Blue: Longer duration of stimulation, or multiple growth factors

Re-clustering

- (A) Re-cluster samples using a subset of the spots
- (B) Cluster proteins from a sub-group of samples
- (C) Analyze the individual expression patterns.

Principal Component Analysis

Mass Spectrometry

 MS gives mass-charge ratio of each ion fragment, from which peptide mass can be calculated.

• Identifying protein(s) that could've produced these peptides is the computational challenge.

 Mutations and post-translational modifications need to be handled.

