0.1 The (he)art of gluing

The slice functor hides greater potential. Indeed, even if we don't have a morphism of \mathbb{Z} -posets (but just a \mathbb{Z} -equivariant map), then the slice functor can still be applied, obtaining a partially defined map.

Let J be a \mathbb{Z} -toset, i.e., a totally ordered set together with a monotone action of \mathbb{Z} , that we will denote by $(n,x) \mapsto x + n$. Recall that a J-slicing on a stable ∞ -category \mathscr{D} is a morphism of \mathbb{Z} -posests $\mathfrak{t} \colon \mathcal{O}(J) \to \operatorname{ts}(\mathscr{D})$, where $\mathcal{O}(J)$ is the \mathbb{Z} -poset of the slicings of J (i.e., the decompositions of J into a disjoint union of a lower set L and of an upper set U), and $\operatorname{ts}(\mathscr{D})$ is the \mathbb{Z} -poset of t-structures on \mathscr{D} .

Clearly, if $f: J \to J'$ is a morphism of \mathbb{Z} -tosets, then f^{-1} : {subsets of J'} \to {subsets of J} induces a \mathbb{Z} -equivariant morphism of \mathbb{Z} -posets $f^{-1}: \mathcal{O}(J') \to \mathcal{O}(J)$, and so composition with f^{-1} gives a morphism

$$f_* \colon J$$
-slicings on $\mathscr{D} \to J'$ -slicings on \mathscr{D}
$$\mathfrak{t} \mapsto \mathfrak{t} \circ f^{-1}.$$

The slices of $f_*\mathfrak{t}$ are clearly given by $\mathscr{D}_{f_*\mathfrak{t};\phi} = \mathscr{D}_{\mathfrak{t};f^{-1}(\{\phi\})}$. Notice that, as f is monotone, the subset $f^{-1}(\{\phi\})$ is an interval in J. It is immediate to see that f_* restricts to a map

 f_* : Bridgeland J-slicings on $\mathscr{D} \to \text{Bridgeland } J'$ -slicings on \mathscr{D}

Namely, if $\mathcal{H}^{\phi}_{f_*t}(X)=0$ for every $\phi\in J'$ then $\mathcal{H}^{f^{-1}(\{\phi\})}_{t}(X)=0$ for every ϕ in J'. As we are assuming the J-slicing \mathfrak{t} is a Bridgeland slicing, this implies that $\mathcal{H}^{\psi}_{\mathfrak{t}}(X)=0$ for every ψ in $f^{-1}(\{\phi\})$, for every ϕ . Therefore $\mathcal{H}^{\psi}_{\mathfrak{t}}(X)=0$ for every ψ in J and so, again by definition of Bridgeland slicing, X=0. Also, if $\mathcal{H}^{\phi}_{f_*\mathfrak{t}}(X)\neq 0$ then $\mathcal{H}^{f^{-1}(\{\phi\})}_{\mathfrak{t}}(X)\neq 0$ and so (again by the Bridgeland slicing condition) there exists at least an element ψ in $f^{-1}(\{\phi\})$ such that $\mathcal{H}^{\psi}_{\mathfrak{t}}(X)\neq 0$. As the J-slicing \mathfrak{t} is Bridgeland, the total of these ψ 's must be finite, so only for finitely many ϕ we can have such a ψ . In other words, the number of indices ϕ in J' such that $\mathcal{H}^{\phi}_{f_*\mathfrak{t}}(X)\neq 0$ is finite.

Notice that, if t is a Bridgeland slicing of \mathcal{D} , and $f: J \to J'$ is a morphism of \mathbb{Z} -tosets, then for any slicing (L, U) of J', the lower and the upper categories $\mathcal{D}_{f_*\mathfrak{t}(L)}$ and $\mathcal{D}_{f_*\mathfrak{t}(U)}$ can be equivalently defined as

$$\mathcal{D}_{f_*\mathfrak{t}(L)} = \langle \mathcal{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in L}$$

$$\mathcal{D}_{f_*\mathfrak{t}(U)} = \langle \mathcal{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in U}$$

where $\langle \mathscr{S} \rangle$ denotes the extension-closed subcategory of \mathscr{D} generated by the subcategory $\mathscr{S}.^1$

 $^{^1}$ At some point it will be useful to recall Lemma 4.21 from ??: Let $\mathscr{S}_1,\mathscr{S}_2$ be two subcategories of \mathscr{D} with $\mathscr{S}_1\boxtimes\mathscr{S}_2$, i.e., such that $\mathscr{D}(X_2,X_1)$ is contractible for any $X_1\in\mathscr{S}_1$ and any $X_2\in\mathscr{S}_2$. Then $\mathscr{S}_1\boxtimes\langle\mathscr{S}_2\rangle$ and $\langle\mathscr{S}_1\rangle\boxtimes\mathscr{S}_2$, and so $\langle\mathscr{S}_1\rangle\boxtimes\langle\mathscr{S}_2\rangle$.

The right hand sides of the above two expressions can clearly be defined for every morphism f from J to J' (i.e., not necessarily monotone nor \mathbb{Z} -equivariant), and as soon as f is \mathbb{Z} -equivariant, the assignment

$$(L, U, \to (\langle \mathcal{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in L}, \langle \mathcal{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in U})$$

is an equivariant morphism from $\mathcal{O}(J)$ to pairs of subcategories of \mathscr{D} . Clearly, when f is not monotone there is no reason to expect that the pair $(\langle \mathscr{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in L}, \langle \mathscr{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in U})$ forms a t-structure on \mathscr{D} . Yet, it interesting to notice that the condition that f be monotone is only only sufficient in order to have this, and can indeed be relaxed.

Definition 0.1. Let J and J' be \mathbb{Z} -posets, and let $f: J \to J'$ a map of \mathbb{Z} -sets (i.e., a \mathbb{Z} -equivariant map, not necessarily nondecreasing). A Bridgeland J-slicing \mathfrak{t} of \mathscr{D} is f-compatible if $f(\phi) > f(\psi)$ with $\phi \leq \psi$ implies $\mathscr{D}_{\mathfrak{t};\psi} \boxtimes \mathscr{D}_{\mathfrak{t};\geq \phi-1}$.

Remark 0.2. Clearly, if f is monotone, then every J-slicing \mathfrak{t} is order restoring as the condition ' $f(\phi) > f(\psi)$ with $\phi \leq \psi$ ' is empty.

Lemma 0.3. Let $f: J \to J'$ be a \mathbb{Z} -equivariant morphism of \mathbb{Z} -sets (i.e., not necessarily a monotone map) and let \mathfrak{t} be a Bridgeland slicing of \mathscr{D} which is f-compatible. Then $(\langle \mathscr{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in L}, \langle \mathscr{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in U})$ is a t-structure on \mathscr{D} .

Proof. As f is \mathbb{Z} -equivariant and $U+1\subseteq U$, we have

$$\begin{split} \langle \mathscr{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in U} [1] &= \langle \mathscr{D}_{\mathfrak{t};\phi} [1] \rangle_{f(\phi) \in U} \\ &= \langle \mathscr{D}_{\mathfrak{t};\phi+1} \rangle_{f(\phi) \in U} \\ &= \langle \mathscr{D}_{\mathfrak{t};\phi+1} \rangle_{f(\phi+1) \in U+1} \\ &= \langle \mathscr{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in U+1} \\ &\subseteq \langle \mathscr{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in U} \\ &= \mathscr{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in U} \end{split}$$

and similarly for the lower subcategory $\langle \mathcal{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in L}$. To show that

$$\langle \mathscr{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in L} \boxtimes \langle \mathscr{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in U}$$

it suffices to show that, if $f(\psi) \in L$ and $f(\phi) \in U$ then $\mathcal{D}_{t;\psi} \boxtimes \mathcal{D}_{t;\phi}$. As $L \cap U = \emptyset$ we cannot have $\psi = \phi$, so either $\psi < \phi$ or vice versa. In the first case, $\mathcal{D}_{t;\psi} \boxtimes \mathcal{D}_{t;\phi}$ by definition of Bridgeland *J*-slicing. In the second case, we have $\phi < \psi$ and $f(\phi) > f(\psi)$ as $f(\phi) \in U$ and $f(\psi) \in L$. Therefore, since \mathfrak{t} is f-compatible, $\mathcal{D}_{t;\psi} \boxtimes \mathcal{D}_{t;\geq \phi-1}$ and so in particular $\mathcal{D}_{t;\psi} \boxtimes \mathcal{D}_{t;\phi}$. Finally, we have to show that every object X in \mathcal{D} fits into a fiber sequence

with $X_L \in \langle \mathcal{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in L}$ and $X_U \in \langle \mathcal{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in U}$. As \mathfrak{t} is a Bridgeland slicing, we have a factorization of the initial morphism $\mathbf{0} \to X$ of the form

$$\mathbf{0} = X_0 \xrightarrow{\alpha_1} X_1 \cdots \xrightarrow{\alpha_{\bar{\imath}}} X_{\bar{\imath}} \xrightarrow{\alpha_{\bar{\imath}+1}} X_{\bar{\imath}+1} \to \cdots \xrightarrow{\alpha_n} X_n = X$$

with $\mathbf{0} \neq \operatorname{cofib}(\alpha_i) = \mathcal{H}^{\phi_i}_{\mathfrak{t}}(X) \in \mathcal{D}_{\phi_i}$ for all $i=1,\cdots,n$, with $\phi_i > \phi_{i+1}$. Let us now consider the sequence of symbols L and U obtained putting in the i-th place L if $f(\phi_i) \in L$ and U if $f(\phi_i) \in U$. If this sequence is of the form $(U,U,\ldots,U,L,L,\ldots,L)$, then there exists an index $\bar{\imath}$ such that $f(\phi_i) \in U$ for $i \leq \bar{\imath}$ and $f(\phi_i) \in L$ for $i > \bar{\imath}$ (with $\bar{\imath} = -1$ or n when all of the $f(\phi_i)$ are in L or in U, respectively). Then we can consider the pullout diagram

$$X_{\bar{i}} \longrightarrow 0$$

$$\downarrow f_L \downarrow \qquad \qquad \downarrow \downarrow$$

$$X \longrightarrow \operatorname{cofib}(f_L)$$

together with the factorizations

$$\mathbf{0} = X_0 \xrightarrow{\alpha_1} X_1 \cdots \xrightarrow{\alpha_{\bar{\imath}}} X_{\bar{\imath}}$$

and

$$X_{\bar{\imath}} \xrightarrow{\alpha_{\bar{\imath}+1}} X_{\bar{\imath}+1} \to \cdots \xrightarrow{\alpha_n} X_n = X.$$

The first factorization shows that $X_{\bar{\imath}} \in \langle \bigcup_{i=0}^{\bar{\imath}} \mathcal{D}_{\phi_i} \rangle \subseteq \langle \mathcal{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in U}$ while the second factorization shows that $\mathrm{cofib}(f_L) \in \langle \bigcup_{i=\bar{\imath}+1}^n \mathcal{D}_{\phi_i} \rangle \subseteq \langle \mathcal{D}_{\mathfrak{t};\phi} \rangle_{f(\phi) \in L}$. So we are done in this case. Therefore, we are reduced to showing that we can always avoid a (\ldots, L, U, \ldots) situation in our sequence of L's and U's. Assume we have such a situation. Then we have an index i_0 with $f(\phi_{i_0}) \in L$ and $f(\phi_{i_0+1}) \in U$. This in particular implies $f(\phi_{i_0+1}) > f(\phi_{i_0})$ with $\phi_{i_0+1} < \phi_{i_0}$. As \mathfrak{t} is f-compatible, this gives $\mathcal{D}_{\mathfrak{t};\phi_{i_0}} \boxtimes \mathcal{D}_{\mathfrak{t};\geq (\phi_{i_0+1})-1}$, i.e. $(\mathcal{D}_{\mathfrak{t};\phi_{i_0}}[1]) \boxtimes \mathcal{D}_{\mathfrak{t};\geq \phi_{i_0+1}}$. In particular, $\mathcal{D}(\mathcal{H}^{\phi_{i_0}+1}_{\mathfrak{t}}(X), \mathcal{H}^{\phi_{i_0}}_{\mathfrak{t}}(X)[1])$ is contractible. Now consider the pasting of pullout diagrams

As the arrow $\mathcal{H}^{\phi_{i_0+1}}_{\mathfrak{t}}(X) \to \mathcal{H}^{\phi_{i_0}}_{\mathfrak{t}}(X)[1]$ factors through 0, we have $Y = \mathcal{H}^{\phi_{i_0+1}}_{\mathfrak{t}}(X) \oplus$

 $\mathcal{H}_{\mathfrak{t}}^{\phi_{i_0}}(X)$ and the above diagram becomes

where ι_2 and π_1 are the canonical inclusion and projection. Let $\beta\colon X_{i_0+1}\to \mathcal{H}^{\phi_{i_0}}_{\mathfrak{t}}(X)$ be the composition

$$\beta \colon X_{i_0+1} \xrightarrow{\gamma} \mathcal{H}_{\mathfrak{t}}^{\phi_{i_0+1}}(X) \oplus \mathcal{H}_{\mathfrak{t}}^{\phi_{i_0}}(X) \xrightarrow{\pi_2} \mathcal{H}_{\mathfrak{t}}^{\phi_{i_0}}(X).$$

Then we have a homotopy commutative diagram

$$X_{i_0-1} \xrightarrow{\alpha_{i_0}} X_{i_0} \xrightarrow{\alpha_{i_0+1}} X_{i_0+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \beta$$

$$0 \longrightarrow \mathcal{H}_{\mathfrak{t}}^{\phi_{i_0}}(X) \xrightarrow{\mathrm{id}} \mathcal{H}_{\mathfrak{t}}^{\phi_{i_0}}(X)$$

(where only the left square is a pullout), and so the composition $\alpha_{i_0+1} \circ \alpha_{i_0}$ factors through the homotopy fiber of β . In other words, we have a homotopy commutative diagram

$$X_{i_0-1} \xrightarrow{\alpha_{i_0}} X_{i_0}$$

$$\tilde{\alpha}_{i_0} \downarrow \qquad \qquad \downarrow \alpha_{i_0+1}$$

$$\text{fib}(\beta) \xrightarrow{\tilde{\alpha}_{i_0+1}} X_{i_0+1}$$

Writing $\tilde{X}_{i_0} = \text{fib}(\beta)$, we get the pasting of pullout diagrams

$$X_{i_{0}-1} \xrightarrow{\tilde{\alpha}_{i_{0}}} \tilde{X}_{i_{0}} \xrightarrow{\tilde{\alpha}_{i_{0}+1}} X_{i_{0}+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

That is, by considering the factorization $X_{i_0-1} \xrightarrow{\tilde{\alpha}_{i_0}} \tilde{X}_{i_0} \xrightarrow{\tilde{\alpha}_{i_0+1}} X_{i_0+1}$ we have switched the cofibers with respect to the original factorization $X_{i_0-1} \xrightarrow{\alpha_{i_0}} X_{i_0+1}$

 $X_{i_0} \xrightarrow{\alpha_{i_0+1}} X_{i_0+1}$. Therefore, writing $\tilde{\phi}_{i_0} = \phi_{i_0+1}$ and $\tilde{\phi}_{i_0+1} = \phi_{i_0}$, we now have $f(\tilde{\phi}_{i_0} \in U \text{ and } f(\tilde{\phi}_{i_0+1} \in L. \text{ That is, we have removed the } (\dots, L, U, \dots) \text{ situation from the position } i_0$, replacing it with a (\dots, U, L, \dots) situation, while keeping all the labels L, U before this positions unchanged. Repeating the procedure the needed number of times, we eventually get rid of all the (\dots, L, U, \dots) situations.²

Proposition 0.4. Let $J \xrightarrow{f} J'$ be a a \mathbb{Z} -equivariant map (not necessarily increasing) between \mathbb{Z} -posets, \mathscr{P} a J-slicing on \mathscr{D} . Suppose that $\mathscr{P}_{\psi} \subseteq \mathscr{P}_{\phi}^{\perp}$ whenever one of the following conditions holds:

(a)
$$f(\phi) > f(\psi)$$

(b)
$$f(\phi) + 1 > f(\psi)$$
 and $\phi + 1 < \psi$

Then

$$(f_{\Omega}(\mathscr{P}))_{\phi} = \mathscr{P}_{f^{-1}(\phi)}$$

defines a J'-slicing on \mathcal{D} .

Proof. Part (1) of definition of slicing follows from \mathbb{Z} -equivariance of f, while part (2) follows from condition (a) above. Pick $0 \neq X \in \mathcal{D}$ and consider its Postnikov tower with respect to \mathcal{P} :

$$0 = Y_0 \xrightarrow{\beta_1} \cdots \xrightarrow{\beta_n} Y_n = X$$

with cone(β_i) = $H_{\mathscr{P}}^{\phi_i}(X)$. Going from left to right, if we encounter an i so that $f(\phi_{i+1}) > f(\phi_i)$ then by condition (b)

$$\operatorname{Hom}_{\mathscr{D}}(H_{\mathscr{P}}^{\phi_{i+1}}(X), H_{\mathscr{P}}^{\phi_{i}}(X)[1]) = 0$$

Using **Proposition ??** and the 3×3 **Lemma**, we can complete the identity of Y_i to get a diagram:

²This is somehow reminiscent of the 'bubble sort' algorithm.

We then replace β_i with $Y_{i-1} \longrightarrow A$ and β_{i+1} with $A \longrightarrow Y_{i+1}$. Iterating this process³, we get a factorization

$$0 = Z_0 \xrightarrow{\gamma_1} \cdots \xrightarrow{\gamma_n} Z_n = X$$

with cone(γ_i) = $H_{\mathscr{P}}^{\phi_{k_i}}(X)$ for some k_i and $f(\phi_i) \geq f(\phi_{i+1})$ for all i. To get a factorization with the strict latter inequality we use the same argument as in the proof of **Proposition** ??.

The above proof also shows that, in the same hypotheses and notation, $(f_{\Omega}(\mathscr{P}))_{\phi}$ consists of objects $X \in \mathscr{D}$ so that $H_{\mathscr{P}}^{\psi}(X) = 0$ for $f(\psi) \neq \phi$. Also, **Proposition** ?? holds when f is bijective.

Definition 0.5. Let \mathfrak{t} be a bounded t-structure on \mathscr{D} . An abelian \mathbb{Z} -slicing \mathscr{P} on $\mathfrak{D}_{\mathfrak{t}}$ is called:

- perverse filtration if $\mathscr{P}_{\psi}[n] \subseteq \mathscr{P}_{\phi}^{\perp}$ for $n < \phi \psi$
- grading filtration if it is a perverse filtration and $\mathscr{P}_{\psi}[n] \subseteq \mathscr{P}_{\phi}^{\perp}$ for $2 < n = \phi \psi$
- mixed filtration if $\mathscr{P}_{\psi}[n] \subseteq \mathscr{P}_{\phi}^{\perp}$ for $n > \psi \phi$

The following implications hold:

$$mixed \implies grading \implies perverse$$

Clearly, a torsion pair on \heartsuit_t (seen as an abelian \mathbb{Z} -slicing via the inclusion $[1] \subseteq \mathbb{Z}$) is always a grading filtration. Historically, grading filtrations first appeared in [?] under the name of 'radical filtrations', while mixed filtrations are covered in the last section of [?].

Definition 0.6. A map $\mathbb{Z} \xrightarrow{p} \mathbb{Z}$ is called **perversity** if it is a monotone contraction, i.e. if

$$0 \le p(\phi) - p(\psi) \le \phi - \psi$$

whenever $\phi \geq \psi$ in \mathbb{Z} .

We denote Ξ the set of perversities.

Clearly, Ξ definies a \mathbb{Z} -poset which is not totally ordered. However, it is a distributive lattice: we have meets and joins given by:

$$(p \land q)(\phi) = \min\{p(\phi), q(\phi)\}\$$

$$(p \lor q)(\phi) = \max\{p(\phi), q(\phi)\}\$$

Indeed, if we place on $\mathbb{Z}\times\mathbb{Z}$ the product order, we have an isomorphism of $\mathbb{Z}\text{-posets}$

$$\Xi^{\mathrm{op}} = O(\mathbb{Z} \times \mathbb{Z}) \setminus \{\emptyset, \mathbb{Z} \times \mathbb{Z}\}$$

 $^{^3{\}rm This}$ is somehow reminiscent of the 'bubble sort' algorithm.

given by sending the zero perversity to $A = \{(\phi, \psi)\}_{\phi \geq 0}$ and the identity to $B = \{(\phi, \psi)\}_{\psi \geq 0}$ $(B + i \text{ and } A + i \text{ with } i \in \mathbb{Z} \text{ generate the latter as a complete lattice})$. Considering the canonical embedding $\mathbb{Z} \hookrightarrow \mathbb{Z} \subseteq O(\mathbb{Z} \times \mathbb{Z})$ we get a sublattice of Ξ depicted as

This induces the 't-tree' described in [?], as discussed below in a far-reaching generality. By the other hand, each square above contains moreover a copy of the Young lattice

with the root corresponding to the upper vertex of the square.

Proposition 0.7. Let \mathfrak{t} be a bounded t-structure on \mathscr{D} , \mathscr{P} an abelian \mathbb{Z} -slicing on \mathbb{S} , \mathscr{Q} the associated $\mathbb{Z} \ltimes \hat{\mathbb{Z}}$ -slicing on \mathscr{D} , p a perversity. We have:

1. if \mathscr{P} is a perverse filtration, then \mathscr{Q} satisfies the assumptions of **Proposition 0.4** with respect to the map $\mathbb{Z} \ltimes \hat{\mathbb{Z}} \xrightarrow{f_p} \mathbb{Z} \ltimes \hat{\mathbb{Z}}$ given by

$$f_p(n,\phi) = (n + p(\lfloor \phi/2 \rfloor), -p(\lfloor \phi/2 \rfloor))$$

2. if \mathscr{P} is a grading filtration, then \mathscr{Q} satisfies the assumptions of **Proposition 0.4** with respect to the map $\mathbb{Z} \ltimes \hat{\mathbb{Z}} \xrightarrow{g_p} \mathbb{Z} \ltimes \hat{\mathbb{Z}}$ given by

$$g_p(n,\phi) = (n+p(\phi), -p(\phi))$$

3. if \mathscr{P} is a mixed filtration, then the abelian \mathbb{Z} -slicing induced on the heart of the bounded t-structure associated to $(g_p)_{\Omega}(\mathscr{Q})$ is split

Proof. Let's prove (2). Suppose $g_p(n,\phi) > g_p(m,\psi)$. Then either $m-n < p(\phi) - p(\psi)$ or both $m-n = p(\phi) - p(\psi)$ and $p(\psi) < p(\psi)$. Since by definition of t-structure we can assume $m \ge n$, the second case is absurd while in the first case, since p is monotone, we have $\phi \ge \psi$ and thus by definition of perversity

$$m-n < p(\phi) - p(\psi) < \phi - \psi$$

and we get the desired Hom-vanishing by definition of grading filtration.

Suppose now $f_p(n, \phi) + 1 > f_p(m, \psi)$ and $(n + 1, \phi) < (m, \psi)$. The only non absurd case is $1 < m - n \le p(\phi) - p(\psi)$. But then again we have

$$2 \le m - n \le p(\phi) - p(\psi) \le \phi - \psi$$

and we can conclude as above.

To prove (1) consider the monotone map

$$\mathbb{Z} \stackrel{\lfloor */2 \rfloor}{\longrightarrow} \mathbb{Z}$$

Applying the slice functor to the latter and starting with a perverse filtration, we get a grading filtration by the properties of the floor function and the thesis follows from part (2).

Let's prove (3). We have to show that

$$\mathscr{P}_{\psi}[1-p(\psi)] \subseteq \mathscr{P}_{\phi}[p(\phi)]^{\perp}$$

for $-p(\psi) > -p(\phi)$. We denote $n = p(\phi) - p(\psi) - 1$. Assuming again $n \ge 0$, we have $n \ge 0 > p(\psi) - p(\phi) \ge \psi - \phi$ and we can then conclude by definition of mixed filtration.

Thus, in the presence of a grading (or perverse) filtration on the heart of a bounded t-structure, associating to a perversity p the bounded t-structure coming from $(g_p)_{\Omega}(\mathcal{Q})$ defines a morphism of \mathbb{Z} -posets

$$\Xi^{\mathrm{op}} \longrightarrow \mathfrak{bts}(\mathscr{D})$$

we can restate this as:

Now, by sending an upper set of $I \in O(\mathbb{Z})$ to its characteristic function χ_I we get an embedding

$$O(\mathbb{Z})^{\mathrm{op}} \hookrightarrow \Xi$$

and the t-structure coming from $(g_{\chi_I})_{\Omega}(\mathcal{Q})$ is just the tilting of \mathfrak{t} with respect to the torsion pair coming from I.

The following proposition gives a characterization of the new heart obtained by the above construction. In the case of a mixed filtration, we get a splitting property which is often referred as 'decomposition theorem for perverse sheaves' in literature.

Proposition 0.8. Let \mathfrak{t} be a bounded t-structure on \mathscr{D} , \mathscr{P} a grading filtration on $\mathfrak{D}_{\mathfrak{t}}$, \mathscr{Q} the associated $\mathbb{Z} \ltimes \hat{\mathbb{Z}}$ -slicing on \mathscr{D} , p a perversity. Denote \mathfrak{q} the bounded t-structure associated to $(g_p)_{\Omega}(\mathscr{Q})$. Then $\mathfrak{D}_{\mathfrak{q}}$ consists of objects $X \in \mathscr{D}$ so that

$$H^k_{\mathfrak{t}}(X)\in \mathscr{P}_{p^{-1}(-k)}[k]$$

for each $k \in \mathbb{Z}$. Moreover, if \mathscr{P} is a mixed filtration then for each $X \in \mathcal{Q}_{\mathfrak{q}}$

$$X = \bigoplus_{n \in \mathbb{Z}} H^n_{\mathfrak{t}}(X)$$

Proof. This is very similar to **Proposition ??**: we have that $X \in \mathcal{O}_{\mathfrak{q}}$ if and only if

$$H^\phi_\mathscr{P}(H^k_\mathfrak{t}(X)[-k])[k] = H^{(k,\phi)}_\mathscr{Q}(X) = 0$$

for $p(\phi) \neq -k$.

For the second part of the claim, the abelian \mathbb{Z} -slicing induced on $\mathbb{Q}_{\mathfrak{q}}$ is split by **Proposition 0.7** and thus by **Proposition ??**

$$X = \bigoplus_{(k,\phi)} H_{\mathscr{Q}}^{(k,\phi)}(X) = \bigoplus_{n \in \mathbb{Z}} H_{\mathfrak{t}}^{n}(X)$$

where the last equality comes from the first part.

Example 0.9. Let

$$B = \bigoplus_{i \in \mathbb{N}} B_i$$

be an \mathbb{N} -graded ring with B_0 semisimple. Denote \mathscr{A} the category of \mathbb{Z} -graded B-modules with only finitely many nonzero graded pieces. For $\phi \in \mathbb{Z}$, denote \mathscr{P}_{ϕ} the full subcategory of \mathscr{A} of modules concentrated in degree ϕ . Clearly, \mathscr{P} defines an abelian \mathbb{Z} -slicing on \mathscr{A} . Following [?] we have

$$\operatorname{Ext}_{\mathscr{A}}^{n}(\mathscr{P}_{\phi},\mathscr{P}_{\psi})=0$$

for $n > \psi - \phi$. This means that \mathscr{P} is a mixed filtration and the bounded t-structure on $\mathscr{D}^b(\mathscr{A})$ associated to $(g_1)_{\Omega}(\mathscr{Q})$ (where 1 is the identity of \mathbb{Z}) is the 'diagonal' (or 'geometric') t-structure which appears in Koszul duality and other areas.

Example 0.10. Let M be an n-dimensional smooth complex projective variety and consider the n-torsion pair \mathscr{P} on $\operatorname{Coh}(M)$ from **Example ??**. Using Serre duality and the Grothendieck vanishing theorem, one sees that \mathscr{P} , seen as an abelian \mathbb{Z} -slicing via the inclusion $[n] \subseteq \mathbb{Z}$, is a perverse filtration. The bounded t-structure associated to $(f_p)_{\Omega}(\mathscr{Q})$ is the one of perverse coherent sheaves as constructed in [?]. Following again the proof of **Proposition ??**, we can use the Harder-Narasimhan filtrations from Gieseker stability to obtain an abelian J_n -slicing on the heart of perverse coherent sheaves as done in [?].

Now we somehow review the gluing construction for t-structures in [?], but generalize it to any slicing. Our language is quite different though, and we formulate the problem very similarly to [?]. We start with two \mathbb{Z} -posets J, J'.

Definition 0.11. Let \mathscr{P} be a $J \ltimes J'$ -slicing on \mathscr{D} . We call \mathscr{P} **gluable** if it satisfies the assumptions of **Proposition 0.4** with respect to the map $J \ltimes J' \stackrel{e}{\longrightarrow} J' \ltimes J$ that exchanges coordinates. In this case we denote

$$\overline{\mathscr{P}} = e_{\Omega}(\mathscr{P})$$

By a simple computation, the gluability condition reads: $\mathscr{P}_{(\phi,\psi)} \subseteq \mathscr{P}_{(\phi',\psi')}^{\perp}$ if $\psi' > \psi$ or both $\psi' + 1 > \psi$ and $\phi' + 1 < \phi$. For example, the first condition is automatic when \mathbb{Z} acts trivially on J (in this case, it follows from the second one). In particular, if \mathbb{Z} acts trivially on J, \mathscr{P} is a J-slicing on \mathscr{D} and \mathfrak{t}_{ϕ} is a bounded t-structure on \mathscr{P}_{ϕ} for each $\phi \in J$, then using **Proposition ??** we get a $J \ltimes \mathbb{Z}$ -slicing \mathscr{Q} which is gluable if and only if

$$\heartsuit_{\mathfrak{t}_{\psi}}[n] \subseteq \heartsuit_{\mathfrak{t}_{\phi}}^{\perp}$$

whenever both $n \leq 0$ and $\phi < \psi$.

Remark 0.12. We have a commutative diagram of \mathbb{Z} -posets

where the horizontal isomorphism is the one from **Remark** ??. Indeed, a $\mathbb{Z} \ltimes \mathbb{Z}$ -slicing on \mathscr{D} is gluable if and only if it induces a grading filtration on the heart of the associated t-structure when seen as a $\mathbb{Z} \ltimes \hat{\mathbb{Z}}$ -slicing.

An easy combinatorial calculation finally yelds the following two remarks:

- if \mathscr{P} is a gluable $\hat{\mathbb{Z}} \ltimes \mathbb{Z}$ -slicing on \mathscr{D} , then $\overline{\mathscr{P}}$ induces a grading filtration on the associated heart, allowing us again to construct new bounded t-structures depending on a perversity.
- if \mathscr{P} is a mixed filtration on the heart of a bounded t-structure and \mathscr{Q} is the associated $\mathbb{Z} \ltimes \hat{\mathbb{Z}}$ -slicing on \mathscr{D} , then \mathscr{Q} is gluable. In this case, looking at $\overline{\mathscr{Q}}$, we get a baric structure on \mathscr{D} which is usually called **weight decomposition** in literature.

In other words, the chain of implications for a $\mathbb{Z} \ltimes \hat{\mathbb{Z}}$ -slicing refines to

$$\operatorname{mixed} \implies \operatorname{gluable} \implies \operatorname{grading} \implies \operatorname{perverse}$$