绍兴一中信心赛

题目名称	排列	Treap	K-Beautiful Tree
目录	perm	treap	tree
可执行文件名	perm	treap	tree
输入文件名	perm.in	treap.in	tree.in
输出文件名	perm.out	treap.out	tree.out
每个测试点时限	1s	1s	1s
内存限制	256M	256M	256M
测试点数目	20	20	20
每个测试点分值	5	5	5
是否有部分分	无	无	无
题目类型	传统型	传统型	传统型

提交源程序须加后缀

对于 Pascal 语言	perm.pas	treap.pas	tree.pas
对于 C 语言	perm.c	treap.c	tree.c
对于 C++ 语言	perm.cpp	treap.cpp	tree.cpp

编译开关

对于 Pascal 语言		
对于 C 语言		
对于 C++ 语言		

注意:最终测试时,所有编译命令均不打开任何优化开关 测评系统为Linux

排列

【题目描述】

有一个数列 a[1..n], 它是 1, 2, ..., n的一个排列

现在对这个数列进行一些变换:每一次可以选择一对 i, j, 满足 $1 \le i < j \le n$ 且 a[i] > a[j],然后将 a[i]和 a[j]交换。

如果一个排列 b[1..n] 可以由初始数列 a 经过若干次变换而得到,那么就称 b 是可到达的。 求有多少种不同的可到达排列。

由于答案可能很大, 你只需要输出答案模 1000000007 后的结果。

【输入格式】

第一行一个整数 n接下来一行是空格隔开的 n 个整数,a[1], a[2], ..., a[n],保证它是一个 n 排列。

【输出格式】

输出一行答案对模 1000000007 后的结果。

【样例输入】

4 2 4 1 3

【样例输出】

8

【样例解释】

可达的排列有 2413, 2314, 2143, 2134, 1423, 1243, 1324, 1234。

【数据规模】

20%, $n \le 10$;

40%, n≤15;

100%, 1≤n≤20

Treap

【题目描述】

假定我们有一棵**有根树**,其中每个点上有权。它被称为树堆当且仅当每个点的权值都大于等于它的所有孩子。

现在我们有一棵有根树,它的每个点上有权。我们可以不断对它进行如下的操作:选择一个**非根结点** v,删除 v,然后将 v 的所有孩子连到 v 的父亲上。

不断进行以上操作,此时可能一个子树会形成树堆。

对树上的每个结点 x, 求出以 x 为根的子树以这种方式形成的树堆中(x 不可删除), 结点最多的树堆的结点个数。

【输入格式】

第一行 n, 树上的点数。

第二行 n 个用空格分开的整数 $a0, \ldots, an-1$ 。ai 为点 i 的权值。

下面 n-1 行,每行两个整数 x, y。表示 x, y 间有一条边。

树的根为 0。保证输入形成一棵树。

【输出格式】

一行,n 个用空格分开的整数。第 i 个表示以题目中描述的方式生成的以 i – 1 为根的树堆中,结点最多的树堆中的结点个数。

【样例输入】

14

5 4 3 6 2 3 4 0 1 7 9 8 6 2

0 1

0 2

0 3

1 4

3 5

3 6

3 7

4 8

4 9

4 10

6 11

6 12

11 13

【样例输出】

9 3 1 5 2 1 2 1 1 1 1 2 1 1

【数据规模】

20%, $n \le 20$;

40%, n<5000:

60%, n≤50000;

100%, $1 \le n \le 100000$, $0 \le ai \le 1000000000$.

K-Beautiful Tree

【题目描述】

无根树是指 n 个点、n-1 条边的无向连通图。这 n 个点从 $1^{\sim}n$ 编号。每个点都有一个颜色,其中第 i 个点的颜色是 c[i]。定义一个无根树 T 是 k—美丽的,当且仅当 T 不存在多于 k 个点的连通子图满足子图内的所有点颜色相同(也就是说 T 的所有同色连通块都不超过 k 个点)。

现在你有 n, k 和 c[1], c[2], ..., c[n]。请你计算不同的 k-美丽的无根树数目,模 1000000007。 两棵树 T1 和 T2 被视作不同的,当且仅当存在 i, j, 使得 T1 包含连接点 i 和点 j 的边,而 T2 不包含。

【输入格式】

第一行 n 和 k。 接下来 n 行是 c[1], c[2], ..., c[n]。

【输出格式】

一行一个正整数输出答案模 1000000007。

【样例】

Sample Input 1	Sample Output 1
5 3	125
11315	
Sample Input 2	Sample Output 2
4 2	7
2111	/

【样例解释】

第一个样例中,不存在 k+1 个同色点,因此所有树都合法。

根据 Cavley 公式有 5³=125 个。

第二个样例中, 合法的树是

 $\{(2, 1), (1, 3), (3, 4)\}, \{(2, 1), (1, 4), (4, 3)\}, \{(3, 1), (1, 4), (4, 2)\}, \{(3, 1), (1, 2), (2, 4)\}, \{(4, 1), (1, 2), (2, 3)\}, \{(4, 1), (1, 3), (3, 2)\}, \{(1, 2), (1, 3), (1, 4)\}.$

【出题人的关怀】

Cayley 公式:过 n 个有标志顶点的树的数目等于 n^(n-2)。

【数据规模】

20%, n≤8

35%, n≤20

50%, n≤60

另 20%,k=1

100%, $1 \le k \le n \le 300, 1 \le c[i] \le n$