Forecasting Models with LamaH dataset

AI/ML in the Era of Climate Change

Jonas Unruh 12331457 Leon Beccard 12133103

Content

- 1. Introduction
- 2. Data Analysis
- 3. Experiments and Results
- 4. Conclusions

Introduction - LamaH data

- Hydrological data
- Gathered on rivers
- Covers 170.000 km² in Central Europe
- Wide variety of values
- Wide variety of geographical locations

Introduction - Time Series Modeling

- Predict future events based on past
- Consideration:
 - Trend
 - Seasonality
- Different models
- Combination of models

Data Analysis - Findings

Data Analysis - Findings

Experiments and Results - Setup

- Models
 - Autoregressive Model
 - Regression Model
 - Random Forest Model
 - MLP Model
- Task
 - Predict next days precipitation

- Preprocessing Standard
 - Adding area attributes
 - Setup next day prediction
 - One Dataframe
 - Normalization
- Preprocessing AR
 - Datetime Index
 - One Dataframe of targets

Experiments and Results - Tests

- Train basic models
- Prediction only for the next day
- Evaluate with RMSE
- Feature Importance through permutation

Experiments and Results - RMSE

Experiments and Results - Feature Importance

Experiments and Results - Feature Importance

Conclusion

- Feature Importance hard to compare
- Modeling time series is different
- Hyperparameter tuning computationally intensive
- Improvements:
 - More complex models
 - o SARIMA, RNN
 - Make use of all features in time series model