

## planetmath.org

Math for the people, by the people.

## time invariant

Canonical name TimeInvariant

Date of creation 2013-03-22 15:02:14 Last modified on 2013-03-22 15:02:14 Owner Mathprof (13753) Last modified by Mathprof (13753)

Numerical id 5

Author Mathprof (13753)

Entry type Definition Classification msc 00A05

Related topic AutonomousSystem

Defines time-invariant
Defines shift-invariant

A dynamical system is **time-invariant** if its generating formula is dependent on state only, and independent of time. A synonym for time-invariant is autonomous. The complement of time-invariant is time-varying (or nonautonomous).

For example, the continuous-time system  $\dot{x} = f(x,t)$  is time-invariant if and only if  $f(x,t_1) \equiv f(x,t_2)$  for all valid states x and times  $t_1$  and  $t_2$ . Thus  $\dot{x} = \sin x$  is time-invariant, while  $\dot{x} = \frac{\sin x}{1+t}$  is time-varying.

 $\dot{x} = \sin x$  is time-invariant, while  $\dot{x} = \frac{\sin x}{1+t}$  is time-varying. Likewise, the discrete-time system x[n] = f[x, n] is time-invariant (also called shift-invariant) if and only if  $f[x, n_1] \equiv f[x, n_2]$  for all valid states x and time indices  $n_1$  and  $n_2$ . Thus x[n] = 2x[n-1] is time-invariant, while x[n] = 2nx[n-1] is time-varying.