P425/2 APPLIED MATHEMATICS PAPER 2 NOV. 2022 3HRS

KISINGA VOCATIONAL SECONDARY SCHOOL

Uganda Advanced Certificate of Education

END OF TERM 3 EXAMINATIONS 2022

APPLIED MATHEMATICS
PAPER 2
3hours

Instructions to Candidates

- Answer **ALL** the eight questions in Section A and any **FIVE** from Section B.
- All necessary working must be shown clearly
- Mathematical tables with a list of formulae and squared papers are provided
- In numerical work, take g to be 9.8ms⁻²
- Include the allocation table on your answer sheet

SECTION A (40 MARKS)

Attempt all questions in this section

- 1. Events A and B are such that $P(A/B) = \frac{2}{3}$ and $P(A/B') = \frac{4}{7}$. Find the
 - i. P(A)

3 marks

ii. P(B/A')

2 marks

- 2. A force of (3i 2j + 8k) N acts on a body of mass 4kg initially at the origin. If the velocity is $(2ti + 3j)ms^{-1}$, find the work done after 4 seconds 5 marks
- 3. The temperature (°c) of a liquid measured at interval of 2 minutes were recorded as 55 and 52. If the initial temperature is 60, use linear interpolation or extrapolation to find
 - i. Temperature after 5 minutes
 - ii. Time taken if the temperature is 53.5°c

5 marks

- 4. The probability that a certain function starts early is $\frac{4}{7}$. If the function starts early, the probability that it takes a longer time is $\frac{3}{5}$. If the function stats late, the probability that it takes a shorter time is $\frac{1}{3}$. Find the probability that the function
 - i. Takes a shorter time

03 marks

ii. Starts early if it takes a shorter time

02 marks

5. The table below shows the expenditure of a certain family for months of September and October in 2020.

Items	Expenditures (Weight	
	September	October	
Food	300,000	325,000	5
Accommodation	260,000	565,500	3
Electricity	150,000	160,000	1
Miscellaneous	620,000	725,000	2

Calculate the cost of living index for the month of October base on September 2020

6. A discrete random variable X has the following probability distribution

$$P(1) = \beta, P(2) = 2\beta, P(3) = 3\beta, P(4) = 4\beta \text{ and } P(5) = 5\beta.$$

Find the

- i. The value of β
- ii. Probability distribution of Y = 3X 7
- iii. E(Y).
- 7. The following scores were obtained during the sports day completion f different students houses in a certain school.

42.2, 44.6, 47.5, 42.6, 51.4, 53.7, 56.8, 42.2, 59.2 and 61.7 Find the

- i. Mean score
- ii. Variance

05 marks

8. Using graphical method, estimate the first approximation to the real root of the equation $x^3 - 3x + 4 = 0$

SECTION B. (60 MARKS)

Attempt any five questions from this section

- 9. a. The numbers X and Y were estimated with maximum errors of ΔX and ΔY respectively. Show that the maximum possible relative error in the estimation of X^2Y is given by $2\left|\frac{\Delta X}{X}\right| + \left|\frac{\Delta Y}{Y}\right|$ 05 marks b. Given that the numbers A = 7.4, B = 5.42, and C = 9.80 are rounded off with
 - b. Given that the numbers A = 7.4, B = 5.42, and C = 9.80 are rounded off with percentage errors 2, 3, and 1 respectively. Calculate the relative error, made in evaluating $\frac{B}{A-C}$, correct to two decimal places.
- 10. The table below shows the marks obtained by 8 candidates in physics and mathematics.

Candidate	A	В	С	D	Е	F	G	Н
Mathematics(X)	52	65	41	65	81	31	65	55
Physics (Y)	50	60	35	65	66	35	69	48

- a. Calculate the rank correlation coefficient for the data and comment on the significance of mathematics on physics at 1 % level 05 marks
- b. i. plot a scatter diagram for the scores in mathematics and physics
- iii. draw a line of best fit hence find the marks scored in physics by a student who scored 75 marks in mathematics 07 marks
- 11. a. Derive the equation of the path of a particle projected from 0 at an angle α to the horizontal with initial speed u ms⁻¹ 06 marks
 - c. A particle projected from point A with speed $30\,\mathrm{ms^{\text{-}1}}$ at an angle of elevation θ hits the ground again at B at the same level as A. If before landing the particle just clears the top of a tree which is at horizontal distance 72m from A, the top of the tree being 9m above the level AB. Calculate the possible angles of projection (use $g=10\,ms^{-1}$) 06 marks
- 12. The particles P and Q move with constant velocities of $(4i + j 2k)ms^{-1}$ and $(6i + 3k)ms^{-1}$ respectively. Initially P is at the point with position vector

(-i + 20j + 21k)m and Q is at the point with position vector (i + 3k)m. Find the

- i. Time for which the distance between P and Q is least
- ii. Distance of P from the origin at the time when the distance between P and Q is least
- iii. Least distance between P and Q

12marks

13. A continuous random variable X has the following p.d.f

$$f(x) = \begin{cases} \lambda x(3-x), & 0 \le x \le 2\\ \lambda (4-x); & 2 \le x \le 4\\ 0; & otherwise \end{cases}$$

Find the

- i. Value of λ
- ii. The mean of X
- iii. The cumulative distribution function F(X) and sketch it
- iv. $P(1 \le X \le 3)$ 12 marks
- 14. A car is moving on a straight horizontal road. At a time t=0, the car is at point **P** and moving with a speed of 20ms^{-1} . The car maintains this speed for 25s and the moves with a constant declaration of 0.4 ms^{-2} until its speed reduces to 8ms^{-1} .the car then maintains this speed for 60 s and the moves with a constant acceleration until its speed is 20ms^{-1} at point **Q**.
 - a. Sketch a velocity time graph for the motion of the car from P to Q
 - b. Find the time for which the car is decelerating
 - c. Given that the distance from P to Q is 1960m, find the time taken for the car to move from P to Q $\,$
- 15. The table below shows the distribution of marks in an examination of a certain class in a certain school

Marks	10 -	20 -	30 -	40 -	50 -	60 -	70 -	80 -90
Frequency	18	34	58	42	24	10	8	

- a. Calculate the mean and standard deviation
- b. Construct an ogive and use it to estimate the
 - i. Number that failed if the pass mark is 40
 - ii. Minimum mark of a distinction if 10% got a distinction 12 marks
- 16. The discrete random variable X can take only values 0, 1, 2, 3, 4, 5. The probability distribution is given by the following where *a* and *b* are constants.

$$P(X = 0) = P(X = 1) = P(X = 2) = a$$

 $P(X = 3) = P(X = 4) = P(X = 5) = b$
 $P(X \ge 2) = 3P(X < 2)$

- a. Determine the values of *a* and *b*
- b. Show that the expectation of X is $^{23}/_{8}$ and find the variance of X 12 marks END