Predicting House Price on Ames Dataset

Evaluating Linear and Bayesian Regression

Supervisor : Anirban Basu Prepared By:-Archit Vora (2015HT12480)

Data Description

- 80 features
 - 23 Nominal
 - Hair color : Black, Brown
 - Agriculture, Commercial, Ordinal
 - 23 Ordinal
 - Service satisfaction
 - Unsatisfied, neutral, satisfied
 - Bad, Good, Excellent
 - 14 Discrete
 - 20 Continuous

- Example Features
 - Nearby Area
 - No of bedrooms
 - Parking Facility
 - Kitchen Quality
 - Swimming Pool
 - No of Floors

Filling Up Missing Values

- Common
 - Encoding for Ordinal variables
 - Leveling for nominal variables
- Specific
 - Replace with most frequent value for discrete and nominal
 - When no of missing values are less
 - Mostly the case with our data
 - Sometimes null value implies feature is not available
 - Basement area null gets replaced with zero
 - Inferring from related variables
 - When garage year is null, we say house is without garage
 - Allows us to infer garage area, no of cars, garage condition
 - Linear Regression : Predict Lot Frontage from lot area (after sqrt)
- Improvements:
 - Creating Levels blindly: 288 features, 0.157122 rmse
 - After logically filling missing values: 263 features, 0.155965

Linear Regression

$$x^* = A^{-1}b = (UDV^T)^{-1}b,$$

$$(UDV^{T})^{-1} = V^{-T} D^{-1} U^{-1}$$

$$x^* = A^{-1}b = VD^{-1}U^Tb$$

LLS with SVD

- LLS with SVD
 - A = U.D.V
 - U and V are orthogonal hence is transpose
 - D is diagonal, so inverse each of them
- Accuracy Not possible as Rank is low
 - 0.14949 via PCR

Gradient Descent

- Importance of Normalizing
- Iterations (step size 0.05)
 - 100 rmse 1.93
 - 5k rmse 0.48566
 - 10k rmse 0.38121
 - 100k rmse 0.18964

Ridge

- Matrix Inverse
 - Unique inverse Exists
 - Accuracy 0.1395
- Matrix SVD
 - Accuracy 0.13927
- SAG
 - Accuracy 0.230815

- Tuning
 - Alpha = 15

Lasso

- Indicating not lo use Lasso
- Generally used when we have too many features say in the range of 1000
- Accuracy 0.19638
 - Non zero coefficients 13

- Tuning
 - Alpha = 1

Shrinkage Intuition

Ridge

$$J = \sum_{i=1}^{n} (y_i - y_i')^2 + \lambda \sum_{i=1}^{p} (b_i)^2$$

Lasso

$$J = \sum_{i=1}^{n} (y_i - y_i')^2 + \lambda \sum_{i=1}^{n} |b_i|$$

- Assumption
 - Two parameters
 - Without shrinkage entire plane is available

PCR

- SVD
- U reduced
- First 100 component
 - Var explained = 0.9797
 - rmse 0.14949

$$\begin{split} \hat{\mathbf{y}}_{\mathrm{OLS}} &= \mathbf{X} \beta_{\mathrm{OLS}} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y} = \mathbf{U} \mathbf{U}^{\top} \mathbf{y} \\ \hat{\mathbf{y}}_{\mathrm{ridge}} &= \mathbf{X} \beta_{\mathrm{ridge}} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\top} \mathbf{y} = \mathbf{U} \operatorname{diag} \left\{ \frac{s_i^2}{s_i^2 + \lambda} \right\} \mathbf{U}^{\top} \mathbf{y} \\ \hat{\mathbf{y}}_{\mathrm{PCR}} &= \mathbf{X}_{\mathrm{PCA}} \beta_{\mathrm{PCR}} = \mathbf{U} \operatorname{diag} \left\{ 1, \dots, 1, 0, \dots 0 \right\} \mathbf{U}^{\top} \mathbf{y}, \end{split}$$

Linear Regression - Summary

- Simple Least Square
 - LLS with SVD rmse 0.155965
 - Gradient descent step size 0.005 (Did not help), diverging
 - After Normalizing
 - Iter 1,00,000 rmse 0.18964
 - Iter 10, 000 rmse 0.38121
 - Iter 5000 rmse 0.48566
- PCR
 - 100 component
 - Rmse 0.14949
- Ridge
 - Matrix alpha 15, rmse 0.1395
 - Svd instead of finding inverse 0.13927
 - Sag 0.230815
- Lasso
 - Alpha 1, rmse 0.19638, non zero 13

Bayesian Regression

Bayes Theorem

- Role of prior
- Confidence Interval vs Credible
 Interval
- What is fixed?
 - Data
 - Parameter
- Denominator as complex multiple integration over parameters

Likelihood

Probability of collecting this data when our hypothesis is true

$$\frac{P(H|D)}{P(D)} = \frac{P(D|H) P(H)}{P(D)}$$

Prior The probability of the hypothesis being true

before collecting data

Posterior

The probability of our hypothesis being true given the data collected

Marginal

What is the probability of collecting this data under all possible hypotheses?

Markov Chain Monte Carlo

- Markov Chain
 - Next state depends only on current steps
 - Application
 - Hidden Markov models in speech recognition
 - Allows to draw independent samples

- Monte Carlo
 - Equation is simple mathematical equation
 - Application
 - Uncertainty in market is random, predict sales
 - Solving complex Integration

MCMC Steps – Metropolis Hasting

- 1. muProposal = norm(muCurrent, StdDev).rvs()
- likelihoodCurrent = norm(muCurrent, 1).pdf(data).prod()
- 3. likelihoodProposal = norm(muProposal, 1).pdf(data).prod()
- 4. priorCurrent = norm(muPriorMu, muPriorSd).pdf(muCurrent)
- 5. priorProposal = norm(muPriorMu, muPriorSd).pdf(muProposal)
- 6. probCurrent = likelihoodCurrent * priorCurrent
- 7. probProposal = likelihoodProposal * priorProposal
- 8. probAccept = probProposal / probCurrent
- 9. accept = np.random.rand() < probAccept
- 10. if (accept == True) then muCurrent = muProposal

Pymc3 style

1. Model

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n + \epsilon$$

2. Describe

```
from pymc3 import Model, Normal, HalfNormal

regression_model = Model()
with regression_model:
    # priors for unknown model parameters
    alpha = Normal('alpha', mu=2, sd=10)
    beta = Normal('beta', mu=0, sd=15, shape=X.shape[1])
    sigma = HalfNormal('sigma', sd=10)

# expected value of outcome
    ll = [beta[q]*X[:,q] for q in range(0, X.shape[1])]
    mu = alpha + sum(ll)

# likelihood (sampling distribution) of observations
    y_obs = Normal('y_obs', mu=mu, sd=sigma, observed=y)
```

3. Simulate

```
from pymc3 import Metropolis, sample, find_MAP
from scipy import optimize

with regression_model:
    #map_estimate = find_MAP()
    step = Metropolis()
    db = backends.Text('trace')
    print ("Sampling now")
    trace = sample(20000, step, trace=db)
```

4. You get the trace

Trace

Ridge

$$\begin{split} p(B|D) &= \frac{p(D|B)p(B)}{p(D)} \\ &\propto p(D|B) \times p(B) \\ &= \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y_i - B^T x_i)^2}{2\sigma^2}} \times \prod_{i=1}^p \frac{1}{\tau\sqrt{2\pi}} e^{-\frac{(B)^2}{2\tau^2}} \end{split}$$

• Accuracy = 0.14976

$$B = \underset{B}{\operatorname{arg\,max}} e^{-\frac{1}{2\sigma^2} \sum_{1}^{n} (y_i - \hat{y}_i)^2 - \frac{1}{2\tau^2} \sum_{1}^{p} \theta^2}$$

$$= \underset{B}{\operatorname{arg\,max}} - \frac{1}{2\sigma^2} \sum_{1}^{n} (y_i - \hat{y}_i)^2 - \frac{1}{2\tau^2} \sum_{1}^{p} \theta^2$$

$$= \underset{B}{\operatorname{arg\,max}} - 1(\sum_{1}^{n} (y_i - \hat{y}_i)^2 + \frac{\sigma^2}{\tau^2} \sum_{1}^{p} \theta^2)$$

$$= \underset{B}{\operatorname{arg\,min}} \sum_{1}^{n} (y_i - \hat{y}_i)^2 + \frac{\sigma^2}{\tau^2} \sum_{1}^{p} \theta^2$$

Lasso

- Change Prior of parameter to strictly closer to zero distribution
- Laplace Distribution
- Accuracy: 0.11773

$$f(x \mid \alpha, \beta) = \frac{1}{2b} \exp\left\{-\frac{|x - \mu|}{b}\right\}$$


```
class MyLogLogit(pm.Continuous):
    def __init__(self, a, b, *args, **kwargs):
        super(MyLogLogit, self).__init__(*args, **kwargs)
        self.a = tt.as_tensor_variable(a)
        self.b = tt.as_tensor_variable(b)
        self.median = tt.as_tensor_variable(a)

def logp(self, x):
        a, b = self.a, self.b
        one = tt.log(b/a)
        two = (b - 1)*tt.log(x/a)
        three = 1. + (x/a)**b
        four = -2.*tt.log(three)
        ans = one + two + four
        return ans
```

$$p(x|a,b) = \frac{(b/a)(x/a)^{b-1}}{(1+(x/a)^b)^2}$$

$$log p = log(b/a) + (b-1)log(x/a) - 2log(1 + (x/a)^b)$$

Custom Likelihood

- We can extend base class and supply our own likelihood function
- We used Log Logistic Distribution

Thank you!

- BITS Wilp
 - Two years of amazing learning
- Adobe for work life balance
- My mentor Anirban Basu
 - Mathematics will carry along, subjective knowledge will not
- Teachers, professors and seniors
 - I think I am luck enough
- Parents and sisters
 - I think I am blessed

Questions and Suggestions!

