

Tsai, Wan-Ling

蔡宛玲

25歳

國立陽明交通大學 應用數學系

數學建模與科學計算碩士班

About me

學歷

Sep 2022 - July 2024 國立陽明交通大學

GPA: 4.20/4.30 應用數學系 數學建模與科學計算碩士班

Sep 2018 – June 2022 GPA: 3.21/4.30

國立陽明交通大學

應用數學系

工作經驗

- > 聯發科技股份有限公司機器學習實習生
- > 應數系必修課 助教(微積分、線性代數、計算數學)
- > 國高中家庭教師、高中補習班數學教師、理科輔導老師

課外表現

會長、副會長 – TWSIAM NYCU

隊長 - 陽明交大應數系女子排球隊

副召 - 三系聯合迎新宿營

組員 - 系學會活動組、學術組

Honor

- 交通大學 應用數學系 期末專題海報展 專題研究優秀論文獎
- TWSIAM 2024 工業應用數學年會 海報論文 研究生組論文獎(第一名)、人氣獎
- TWSIAM 2022 工業應用數學年會 海報論文 大學生組皮托科技贊助獎(第一名)、人氣獎

Intern

Python, Git, Parallel, Linear Algebra, scikit-learn, etc.

Weak IC Prediction (PJ1)

目的: 預測Weak IC, 減少封裝成本

- Anomaly detection
- Model ensemble
- Single-perspective → Multi-perspectives

Modem Aging (PJ2)

目的(User Team): 預測出廠晶片在未來老化後所需的最小電壓目的(Project Team): 資料量少,尋找資料特性

- Anomaly detection 沿用PJ1開發的模型 (Model ensemble)
- · Data mining, extract insights
 - > 將資料根據隱含的anomaly pattern分成三個等級

Intern

Python, Parallel, Decision tree, etc.

AI-LLR (PJ3)

目的: 預測解碼係數(Scaling Factor),減少人工試錯

- Data mining, extract insights.
 - > 發現資料有特定的偏好、規律
- · Reveal the data bias.
- Model compression
 - 1. Quantization
 - 2. Pruning the decision tree
 - > Reducing 20% cycles

Traffic-Pattern Prediction (PJ4)

目的: 預測不同訊號應使用何種通道解碼, 節省電量

- Data preprocessing and data mining
- Online Model

Manifold Learning – Diffusion Maps & Roseland

Code: tsaiwanling/Manifold_Learning (github.com)

- Nonlinear dimensionality reduction tool
- Unsupervised learning

Manifold Learning - Diffusion Maps & Roseland

Code: tsaiwanling/Manifold_Learning (github.com)

- Nonlinear dimensionality reduction tool
- Unsupervised learning
- Disadvantage:
 - cannot work on large dataset
 - Solution: Roseland

The most important difference is the way of constructing affinity matrix \widehat{W} .

- DM: measure the diffuse between two points directly
- Roseland: measure the similarity between two points

$$\widehat{W} = P_{n \times m}^{(r)} P_{n \times m}^{(r)}$$

 $\widehat{W} = P_{n \times n}$

Diffusion Maps – Application

1. Model Evaluation

- In-depth analysis of Generative AI (碩士論文)
- 2. Interpretation of experimental results
 - LDA apply on MNIST dataset
- 3. Structure of Dataset
 - Categorical dataset (2D data)
 - Imbalanced data
 - Time series data

	Diffusion Maps	Roseland
Spent time	21.1s	9.9s

碩士論文: In-depth analysis of Generative Al

Project: tsaiwanling/DDPM: Denoising Diffusion Probabilistic Models (github.com)

Python, Pytorch, plotly, etc.

Reverse Process: Denoising

Acceleration

One-Step Forward [DDPM]

$$q(x_t|x_0) = \mathcal{N}\left(\sqrt{\overline{\alpha_t}}x_0, (1 - \overline{\alpha_t})I\right)$$

non-Markovian Reverse [DDIM]

$$p_{\theta}(x_{t-1}|x_t, x_0) = \mathcal{N}(Ax_t + b, \sigma_t^2 I)$$

$$A = \sqrt{\frac{1 - \overline{\alpha_{t-1}} - \sigma_t^2}{1 - \overline{\alpha_t}}}$$

$$b = \sqrt{\overline{\alpha_{t-1}}} x_0 - A\sqrt{\overline{\alpha_t}} x_0$$

$$x_0 \longrightarrow \cdots \longrightarrow x_{t-1}$$

$$x_{t-1} \xrightarrow{q(x_t | x_{t-1})} x_t \longrightarrow \cdots \longrightarrow x_T$$

Model Evaluation by data structure

碩士論文: In-depth analysis of Generative AI

Example – re-balanced train data

	Origin	Balanced	
0	30	15	
1	30	50	
2	30	30	
3	30	30	
4	30	30	
5	30	30	
6	30	30	
7	30	50	
8	30	20	
9	30	50	

Evaluation: FID score & Sinkhorn distance

 \square Origin space: image dimension 32×32

□ Diffusion space: reduction dimension 6×1

Sinkhorn Distance

Interpretation of experimental results

Project: Why is Linear Discriminant Analysis (LDA) inappropriate for the MNIST dataset?

Appendix : LDA

Accuracy: 87.3%

0	1	2	3	4
95.92%	96.56%	79.07%	87.43%	90.43%
5	6	7	8	9
82.4%	89.46%	84.05%	81.11%	85.33%

Confusion matrix :

Dataset – Categorical data

Dataset - Imbalanced data

Satimage-2

- 5803 samples, 36-dim
- Outliers: 1.2% (red points)
- Spent time
 - Diffusion maps: 50.6s
 - > Roseland: 0.7s

Shuttle

- 10000 samples, 9-dim
- Outliers: 7.12% (red points)
- Spent time
 - > Diffusion maps: 386s
 - > Roseland: 9.6s

Dataset – Time series data

- Data size = 113460
- Landmark size = 188
- Data features: 601

- Data size = 120725
- Landmark size = 194
- Data features: 177

- Data size = 121814
- Landmark size = 194
- Data features: 177

Appendix: Linear Discriminant Analysis

- 1. Minimize within-class scatter
- 2. Maximize between-class scatter

Here, we use the <u>scatter matrix(</u>散佈矩陣) to estimate the scatter of the data.

