Introduction to Statistical Machine Learning

Christfried Webers

Statistical Machine Learning Group NICTA and College of Engineering and Computer Science The Australian National University

> Canberra February – June 2013

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA

The Australian National University

Outlines Overview

Introduction
Linear Algebra
Probability
Linear Regression 1
Linear Regression 2

Linear Regression 2 Linear Classification 1 Linear Classification 2

Neural Networks 1 Neural Networks 2 Kernel Methods

Sparse Kernel Methods Graphical Models 1

Graphical Models 1
Graphical Models 2

Graphical Models 2 Graphical Models 3

Mixture Models and EM 1 Mixture Models and EM 2 Approximate Inference

Sampling Sampling

Principal Component Analysis

Sequential Data 1 Sequential Data 2

Combining Models

Selected Topics

Discussion and Summary

Part II

Introduction

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA

The Australian National University

Polynomial Curve Fitting

Probability Theory

Probability Densities

some artificial data created from the function

$$\sin(2\pi x)$$
 + random noise $x = 0, \dots, 1$

$$x = 0, \ldots, 1$$

Introduction to Statistical Machine Learning

Christfried Webers NICTA

The Australian National

Polynomial Curve Fitting

Polynomial Curve Fitting - Input Specification

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Polynomial Curve Fitting

Probability Theory

Probability Densities

expectations and

Polynomial Curve Fitting - Input Specification

$$N = 10$$

$$\mathbf{x} \equiv (x_1, \dots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, \dots, t_N)^T$$

$$x_i \in \mathbb{R} \quad i = 1, \dots, N$$

$$t_i \in \mathbb{R} \quad i = 1, \dots, N$$

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National University

Polynomial Curve Fitting

Probability Theor

Probability Densities

Expectations and

M: order of polynomial

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

= $\sum_{m=0}^{M} w_m x^m$

- nonlinear function of x
- linear function of the unknown model parameter w
- How can we find good parameters $\mathbf{w} = (w_1, \dots, w_M)^T$?

Learning is Improving Performance

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA

The Australian National University

Polynomial Curve Fitting

Probability Theo

Probability Densities

Expectations and

Learning is Improving Performance

 Performance measure: Error between target and prediction of the model for the training data

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2$$

• unique minimum of $E(\mathbf{w})$ for argument \mathbf{w}^*

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National University

Polynomial Curve Fitting

1 robubility 1 neor

Probability Densities

$$y(x, \mathbf{w}) = \sum_{m=0}^{M} w_m x^m$$
$$= w_0$$

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Polynomial Curve Fitting

Probability Theory

Probability Densities

$$y(x, \mathbf{w}) = \sum_{m=0}^{M} w_m x^m$$
$$= w_0 + w_1 x$$

Introduction to Statistical Machine Learning

© 2013
Christfried Webers
NICTA
The Australian National

Polynomial Curve Fitting

Probability Theory

Probability Densities

$$y(x, \mathbf{w}) = \sum_{m=0}^{M} w_m x^m \bigg|_{M=3}$$

= $w_0 + w_1 x + w_2 x^2 + w_3 x^3$

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

University

Polynomial Curve Fitting

Probability Theory

 $Probability\ Densities$

$$y(x, \mathbf{w}) = \sum_{m=0}^{M} w_m x^m \bigg|_{M=9}$$

= $w_0 + w_1 x + \dots + w_8 x^8 + w_9 x^9$

overfitting

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Polynomial Curve Fitting

Probability Theo

Probability Densities

Testing the Model

- Train the model and get w*
- Get 100 new data points
- Root-mean-square (RMS) error

$$E_{\mathsf{RMS}} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

Introduction to Statistical Machine Learning

©2013 Christfried Webers NICTA The Australian National

Polynomial Curve Fitting

Probability Theory

Probability Densities

robability Theor

Expectations a

ovariances

	M = 0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^*				125201.43

 $\mathit{Table}:$ Coefficients \mathbf{w}^{\star} for polynomials of various order.

Probability Densities

- N = 100
- heuristics: have no less than 5 to 10 times as many data points than parameters
- but number of parameters is not necessarily the most appropriate measure of model complexity!
- later: Bayesian approach

© 2013 Christfried Webers NICTA The Australian National University

Polynomial Curve Fitting

Probability Theory

Probability Densities

Expectations and Covariances

- \bullet How to constrain the growing of the coefficients w ?
- Add a regularisation term to the error function

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Squared norm of the parameter vector w

$$\|\mathbf{w}\|^2 \equiv \mathbf{w}^T \mathbf{w} = w_0^2 + w_1^2 + \dots + w_M^2$$

Probability Theory

Probability Densiti

Probability Theory

Probability Densities

Probability Densities

Expectations an

Introduction to Statistical Machine Learning

©2013 Christfried Webers NICTA

The Australian National University

Polynomial Curve Fitting

Probability Theory

Probability Densitie.

Expectations and

Y vs. X	a	b	c	d	e	f	g	h	i	sum
2	0	0	0	1	4	5	8	6	2	26
1	3	6	8	8	5	3	1	0	0	34
sum	3	6	8	9	9	8	9	6	2	60

Introduction to Statistical Machine Learning

> © 2013 Christfried Webers NICTA

The Australian National University

Potynomiai Curve Fittin

Probability Theory

Probability Densities

Y vs. X	a	b	c	d	e	f	g	h	i	sum
2	0	0	0	1	4	5	8	6	2	26
1	3	6	8	8	5	3	1	0	0	34
sum	3	6	8	9	9	8	9	6	2	60

$$p(X = d, Y = 1) = 8/60$$

 $p(X = d) = p(X = d, Y = 2) + p(X = d, Y = 1)$
 $= 1/60 + 8/60$

$$p(X = d) = \sum_{Y} p(X = d, Y)$$
$$p(X) = \sum_{Y} p(X, Y)$$

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Potynomiai Curve Fitting

Probability Theory

Probability Densities

Sum Rule

Y vs. X	a	b	c	d	e	f	g	h	i	sum
2	0	0	0	1	4	5	8	6	2	26
1	3	6	8	8	5	3	1	0	0	34
sum	3	6	8	9	9	8	9	6	2	60

$$p(X) = \sum_{Y} p(X, Y)$$

p(X)

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Potynomiai Curve Fittin

Probability Theory

Probability Densities

Probability Densities

expectations and

Conditional Probability

$$p(X = d \mid Y = 1) = 8/34$$

Calculate
$$p(Y = 1)$$
:

$$p(Y = 1) = \sum_{X} p(X, Y = 1) = 34/60$$

$$p(X = d, Y = 1) = p(X = d \mid Y = 1)p(Y = 1)$$

$$p(X, Y) = p(X \mid Y) p(Y)$$

Product Rule

Y vs. X	a	b	c	d	e	f	g	h	i	sum
2	0	0	0	1	4	5	8	6	2	26
1	3	6	8	8	5	3	1	0	0	34
sum	3	6	8	9	9	8	9	6	2	60

$$p(X,Y) = p(X \mid Y) \, p(Y)$$

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

rotynomiai Curve Fitting

Probability Theory

Probability Densities

Sum Rule and Product Rule

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Polynomial Curve Fitting

Probability Theory

Probability Densitie

Expectations and

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(X \mid Y) p(Y)$$

Probability Densities

variances

• Why not using pairs of numbers (s,t) such that p(X,Y) = s/t (e.g. s=8, t=60)?

Probability Theory

1 robubility Densitie

- Why not using pairs of numbers (s,t) such that p(X,Y) = s/t (e.g. s = 8, t = 60)?
- Why not using pairs of numbers (a, c) instead of $\sin(a|pha) = a/c$?

NICTA The Australian National University

Polynomial Curve Fitting

Probability Theory

Probability Densities

Expectations and Covariances

Use product rule

$$p(X,Y) = p(X \mid Y) p(Y) = p(Y \mid X) p(X)$$

Bayes Theorem

$$p(Y \mid X) = \frac{p(X \mid Y)p(Y)}{p(X)}$$

and

$$p(X) = \sum_{Y} p(X,Y) \qquad \qquad \text{(sum rule)}$$

$$= \sum_{Y} p(X \mid Y) \, p(Y) \qquad \qquad \text{(product rule)}$$

Probability Densities

- Real valued variable $x \in \mathbb{R}$
- Probability of x to fall in the interval $(x, x + \delta x)$ is given by $p(x)\delta x$ for infinitesimal small δx .

 $p(x \in (a,b)) = \int_a^b p(x) \, \mathrm{d}x.$

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Polynomial Curve Fitting

1700dbiiiiy 11ico

Probability Densities

Nonnegative

$$p(x) \ge 0$$

Normalisation

Introduction to Statistical Machine Learning

Christfried Webers NICTA The Australian National

Probability Densities

Cumulative distribution function P(x)

$$P(x) = \int_{-\infty}^{x} p(z) \, \mathrm{d}z$$

or

$$\frac{d}{dx}P(x) = p(x)$$

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Polynomial Curve Fitting

Probability Theory

Probability Densities

Probability Theory

Probability Densities

Expectations and Covariances

- Vector $\mathbf{x} \equiv (x_1, \dots, x_D)^T = \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix}$
- Nonnegative

$$p(\mathbf{x}) \geq 0$$

Normalisation

$$\int_{-\infty}^{\infty} p(\mathbf{x}) \, d\mathbf{x} = 1.$$

This means

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} p(\mathbf{x}) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_D = 1.$$

Sum and Product Rule for Probability Densities

Introduction to Statistical Machine Learning

©2013 Christfried Webers NICTA The Australian National

Polynomial Curve Fitting

Probability Theory

Probability Densities

Expectations and

Sum Rule

$$p(x) = \int_{-\infty}^{\infty} p(x, y) \, \mathrm{d}y$$

Product Rule

$$p(x, y) = p(y \mid x) p(x)$$

Expectations and Covariances

 Weighted average of a function f(x) under the probability distribution p(x)

$$\mathbb{E}[f] = \sum_{x} p(x) f(x)$$
 discrete distribution $p(x)$

$$\mathbb{E}\left[f\right] = \sum_{x} p(x) f(x) \qquad \text{discrete distribution } p(x)$$

$$\mathbb{E}\left[f\right] = \int p(x) f(x) \; \mathrm{d}x \qquad \text{probability density } p(x)$$

Probability Densit

Expectations and Covariances

- Given a finite number N of points x_n drawn from the probability distribution p(x).
- Approximate the expectation by a finite sum:

$$\mathbb{E}\left[f\right] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

 \bullet How to draw points from a probability distribution p(x) ? Lecture coming about "Sampling"

1 robubility Theory

robability Densitie

Expectations and Covariances

• arbitrary function f(x, y)

$$\mathbb{E}_x \left[f(x,y) \right] = \sum_x p(x) f(x,y) \qquad \text{discrete distribution } p(x)$$

$$\mathbb{E}_x \left[f(x,y) \right] = \int p(x) f(x,y) \; \mathrm{d}x \qquad \text{probability density } p(x)$$

• Note that $\mathbb{E}_x [f(x,y)]$ is a function of y.

Probability Densitie

Expectations and Covariances

- TT [C |] \(\sum_{\color} \) (| \) ((
 - $\mathbb{E}_{x}\left[f\mid y\right] = \sum_{x} p(x\mid y) f(x) \qquad \text{discrete distribution } p(x)$
 - $\mathbb{E}_{x}[f \mid y] = \int p(x \mid y)f(x) \, \mathrm{d}x$

probability density p(x)

- Note that $\mathbb{E}_x[f \mid y]$ is a function of y.
- Other notation used in the literature : $\mathbb{E}_{x|y}[f]$.
- What is $\mathbb{E}\left[\mathbb{E}\left[f(x)\mid y\right]\right]$? Can we simplify it?
- This must mean $\mathbb{E}_y [\mathbb{E}_x [f(x) \mid y]]$. (Why?)

$$\mathbb{E}_{y} \left[\mathbb{E}_{x} \left[f(x) \mid y \right] \right] = \sum_{y} p(y) \, \mathbb{E}_{x} \left[f \mid y \right] = \sum_{y} p(y) \sum_{x} p(x|y) f(x)$$
$$= \sum_{x,y} f(x) \, p(x,y) = \sum_{x} f(x) \, p(x)$$
$$= \mathbb{E}_{x} \left[f(x) \right]$$

Trobability Theory

Expantations and

Expectations and Covariances

• arbitrary function f(x)

$$var[f] = \mathbb{E}\left[(f(x) - \mathbb{E}\left[f(x) \right])^2 \right] = \mathbb{E}\left[f(x)^2 \right] - \mathbb{E}\left[f(x) \right]^2$$

• Special case: f(x) = x

$$\operatorname{var}[x] = \mathbb{E}\left[(x - \mathbb{E}[x])^2\right] = \mathbb{E}\left[x^2\right] - \mathbb{E}[x]^2$$

Expectations and Covariances

• Two random variables $x \in \mathbb{R}$ and $y \in \mathbb{R}$

$$cov[x, y] = \mathbb{E}_{x,y} [(x - \mathbb{E}[x])(y - \mathbb{E}[y])]$$

= $\mathbb{E}_{x,y} [x y] - \mathbb{E}[x] \mathbb{E}[y]$

• With $\mathbb{E}[x] = a$ and $\mathbb{E}[y] = b$

$$cov[x, y] = \mathbb{E}_{x,y} [(x - a)(y - b)]$$

$$= \mathbb{E}_{x,y} [x y] - \mathbb{E}_{x,y} [x b] - \mathbb{E}_{x,y} [a y] + \mathbb{E}_{x,y} [a b]$$

$$= \mathbb{E}_{x,y} [x y] - b \underbrace{\mathbb{E}_{x,y} [x]}_{=\mathbb{E}_x [x]} - a \underbrace{\mathbb{E}_{x,y} [y]}_{=\mathbb{E}_y [y]} + a b \underbrace{\mathbb{E}_{x,y} [1]}_{=1}$$

$$= \mathbb{E}_{x,y} [x y] - a b - a b + a b = \mathbb{E}_{x,y} [x y] - a b$$

$$= \mathbb{E}_{x,y} [x y] - \mathbb{E} [x] \mathbb{E} [y]$$

 Expresses how strongly x and y vary together. If x and y are independent, their covariance vanishes.

Introduction to Statistical Machine Learning

© 2013 Christfried Webers NICTA The Australian National

Polynomial Curve Fitting

Dunkakilita Danai

Expectations and Covariances

ullet Two random variables $\mathbf{x} \in \mathbb{R}^D$ and $\mathbf{y} \in \mathbb{R}^D$

$$\begin{aligned} \text{cov}[x,y] &= \mathbb{E}_{x,y} \left[(x - \mathbb{E}\left[x\right]) (y^T - \mathbb{E}\left[y^T\right]) \right] \\ &= \mathbb{E}_{x,y} \left[x \, y^T \right] - \mathbb{E}\left[x\right] \mathbb{E}\left[y^T\right] \end{aligned}$$