## Rutherford scattering 1

Find the scattering cross section for Coulomb potential V(r).

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$$

Start with the Born approximation.

$$\frac{d\sigma}{d\Omega} = \left(\frac{m}{2\pi\hbar^2}\right)^2 |Q|^2, \quad Q = \int \exp\left(\frac{i\mathbf{p}\cdot\mathbf{r}}{\hbar}\right) V(\mathbf{r}) d\mathbf{r}^3$$

Convert Q to polar coordinates.

$$Q = \int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} \exp\left(\frac{ipr\cos\theta}{\hbar}\right) V(r,\theta,\phi) r^2 \sin\theta \, dr \, d\theta \, d\phi$$

Substitute the Coulomb potential for  $V(r, \theta, \phi)$  and note  $r^2$  becomes r.

$$Q = -\frac{Ze^2}{4\pi\varepsilon_0} \int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} \exp\left(\frac{ipr\cos\theta}{\hbar}\right) r\sin\theta \, dr \, d\theta \, d\phi$$

Integrate over  $\phi$  (multiplies Q by  $2\pi$ ).

$$Q = -\frac{Ze^2}{2\varepsilon_0} \int_0^{\pi} \int_0^{\infty} \exp\left(\frac{ipr\cos\theta}{\hbar}\right) r\sin\theta \, dr \, d\theta$$

Transform the integral over  $\theta$  to an integral over y where  $y = \cos \theta$  and  $dy = -\sin \theta \, d\theta$ . The minus sign in dy is canceled by interchanging integration limits  $\cos 0 = 1$  and  $\cos \pi = -1$ .

$$Q = -\frac{Ze^2}{2\varepsilon_0} \int_{-1}^{1} \int_{0}^{\infty} \exp\left(\frac{ipry}{\hbar}\right) r \, dr \, dy$$

Solve the integral over y (note r in the integrand cancels).

$$Q = -\frac{Ze^2}{2\varepsilon_0} \int_0^\infty \frac{\hbar}{ip} \left[ \exp\left(\frac{ipr}{\hbar}\right) - \exp\left(-\frac{ipr}{\hbar}\right) \right] dr$$

Solve the integral over r.

$$Q = -\frac{Ze^2}{2\varepsilon_0} \frac{\hbar}{ip} \left[ \frac{\hbar}{ip} \exp\left(\frac{ipr}{\hbar}\right) + \frac{\hbar}{ip} \exp\left(-\frac{ipr}{\hbar}\right) \right]_0^{\infty}$$

The first exponential is a problem so go back and multiply the integrand by  $\exp(-\epsilon r)$ .

$$Q = -\frac{Ze^2}{2\varepsilon_0} \int_0^\infty \frac{\hbar}{ip} \left[ \exp\left(\frac{ipr}{\hbar} - \epsilon r\right) - \exp\left(-\frac{ipr}{\hbar} - \epsilon r\right) \right] dr$$

Solve the integral.

$$Q = -\frac{Ze^2}{2\varepsilon_0} \frac{\hbar}{ip} \left[ \frac{1}{ip/\hbar - \epsilon} \exp\left(\frac{ipr}{\hbar} - \epsilon r\right) + \frac{1}{ip/\hbar + \epsilon} \exp\left(-\frac{ipr}{\hbar} - \epsilon r\right) \right]_0^{\infty}$$

Evaluate the limits.

$$Q = -\frac{Ze^2}{2\varepsilon_0} \frac{\hbar}{ip} \left( -\frac{1}{ip/\hbar - \epsilon} - \frac{1}{ip/\hbar + \epsilon} \right) = -\frac{Ze^2}{2\varepsilon_0} \frac{2}{(p/\hbar)^2 + \epsilon^2}$$
 (1)

Set  $\epsilon = 0$  to obtain

$$Q = -\frac{Ze^2\hbar^2}{\varepsilon_0 p^2}$$

Calculate the cross section.

$$\frac{d\sigma}{d\Omega} = \left(\frac{m}{2\pi\hbar^2}\right)^2 |Q|^2 = \frac{m^2 Z^2 e^4}{4\pi^2 \varepsilon_0^2 p^4} \tag{2}$$

Substitute  $16\pi^2\varepsilon_0^2\alpha^2\hbar^2c^2$  for  $e^4$ .

$$\frac{d\sigma}{d\Omega} = \frac{4m^2Z^2\alpha^2\hbar^2c^2}{p^4}$$

Symbol p is momentum transfer  $|\mathbf{p}_i| - |\mathbf{p}_f|$  such that

$$p^2 = 4mE(1 - \cos\theta)$$

Hence

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 \hbar^2 c^2}{4E^2 (1 - \cos \theta)^2} \tag{3}$$

Noting that

$$4\sin^4\frac{\theta}{2} = (1-\cos\theta)^2$$

we have the alternative form of (3)

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 \hbar^2 c^2}{16E^2 \sin^4(\theta/2)}$$

## Experimental data

The following data is from Geiger and Marsden's 1913 paper where y is the number of scattering events.

$$\begin{array}{cccc} \theta & y \\ 150 & 22.2 \\ 135 & 27.4 \\ 120 & 33.0 \\ 105 & 47.3 \\ 75 & 136 \\ 60 & 320 \\ 45 & 989 \\ 37.5 & 1760 \\ 30 & 5260 \\ 22.5 & 20300 \\ 15 & 105400 \\ \end{array}$$

Let x be the momentum transfer part of  $d\sigma$ .

$$x_i = \frac{1}{(1 - \cos \theta_i)^2}$$

The scattering probability for angle  $\theta_i$  is  $x_i$  normalized by  $\sum x = 1132.19$ .

$$\Pr(\theta_i) = \frac{x_i}{1132.19}$$

Predicted values  $\hat{y}_i$  are  $\Pr(\theta_i)$  times total scattering events  $\sum y = 134295$ .

$$\hat{y}_i = \Pr(\theta_i) \times 134295 = \frac{118.616}{(1 - \cos \theta_i)^2}$$

The following table shows the predicted values  $\hat{y}$ .

The coefficient of determination  $\mathbb{R}^2$  measures how well predicted values fit the data.

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}} = 0.999$$

The result indicates that  $d\sigma$  explains 99.9% of the variance in the data.