We have the min and max temperatures in a city In India for each months of the year. We would like to find a function to describe this and show it graphically, the dataset given below.

Task:

- 1. fitting it to the periodic function
- 2. plot the fit Data
 Max = 39, 41, 43, 47, 49, 51, 45, 38, 37, 29, 27, 25 Min = 21, 23, 27, 28, 32, 35, 31, 28, 21, 19, 17, 18

```
In [1]:
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
        temp_max = np.array([39,41,43,47,49,51,45,38,37,29,27,25])
        temp_min = np.array([21,23,27,28,32,35,31,28,21,19,17,18])
        months = np.arange(12)
        # Fitting it to a periodic function
        from scipy import optimize
        def yearly_temps(times, avg, ampl, time_offset):
            return (avg
                    + ampl * np.cos((times + time_offset) * 2 * np.pi / times.max()))
        res max, cov_max = optimize.curve_fit(yearly_temps, months,
                                               temp_max, [20, 10, 0])
        res_min, cov_min = optimize.curve_fit(yearly_temps, months,
                                                   temp_min, [-40, 20, 0])
        # Plotting the fit
        days = np.linspace(0, 12, num=365)
        plt.figure()
        plt.plot(months, temp_max, 'ro')
        plt.plot(days, yearly_temps(days, *res_max), 'r-')
        plt.plot(months, temp min, 'bo')
        plt.plot(days, yearly_temps(days, *res_min), 'b-')
        plt.xlabel('Month')
        plt.ylabel('Temperature ($^\circ$C)')
        plt.show()
```


This assignment is for visualization using matplotlib:

data to use: url= https://raw.githubusercontent.com/Geoyi/Cleaning-Titanic-Data/master/titanic_original.csv (https://raw.githubusercontent.com/Geoyi/Cleaning-Titanic-Data/master/titanic_original.csv)

```
titanic = pd.read_csv(url)
Charts to plot:
```

- 1. Create a pie chart presenting the male/female proportion
- 2. Create a scatterplot with the Fare paid and the Age, differ the plot color by gender

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

url="https://raw.githubusercontent.com/Geoyi/Cleaning-Titanic-Data/master/titanic_original.csv"
titanic_df = pd.read_csv(url)
```

Create a pie chart presenting the male/female proportion

```
In [3]:
         titanic_df=titanic_df.dropna(subset=['sex'])
In [4]:
         titanic_df.groupby(['sex']).count()
Out[4]:
                       survived name age sibsp parch ticket fare cabin embarked boat body
            sex
                                                                                    319
                                                                                           8
         female
                   466
                            466
                                  466
                                      388
                                             466
                                                   466
                                                         466
                                                              466
                                                                     141
                                                                              464
           male
                   843
                            843
                                  843
                                      658
                                             843
                                                   843
                                                         843
                                                              842
                                                                     154
                                                                              843
                                                                                    167
                                                                                         113
        table = pd.pivot_table(data=titanic_df, values='ticket', index='sex', columns=
In [5]:
         'survived', aggfunc='count')
         print(table)
         survived 0.0 1.0
         sex
         female
                   127
                         339
         male
                   682 161
```

```
In [6]: # Create the lists with survival values for each gender
        pie_female = table.loc['female']
        pie_male = table.loc['male']
        # Create the figure with one row and two columns. Figsize will define the figu
        re size
        fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8,4))
        # Create the pie chart on the first position with the given configurations
        pie_1 = axes[0].pie(pie_female, labels=['Not survived','Survived'],
                             autopct='%1.1f%%', colors=['gold', 'lightskyblue'])
        # Define this plot title
        axes[0].set_title('Female')
        # Make both axes equal, so that the chart is round
        axes[0].axis('equal')
        # Same as above, for the second pie chart
        pie_2 = axes[1].pie(pie_male, labels=['Not survived','Survived'],
                             autopct='%1.1f%%', startangle=90, colors=['gold', 'lightsk
        yblue'])
        axes[1].set_title('Male')
        plt.axis('equal')
        # Adjust the space between the two charts
        plt.subplots_adjust(wspace=1)
        plt.show()
```



```
In [7]: from sklearn.preprocessing import LabelEncoder,OneHotEncoder
    labelEnc=LabelEncoder()
    cat_vars=['sex']
    for col in cat_vars:
        titanic_df[col]=labelEnc.fit_transform(titanic_df[col])
    titanic_df.head()
```

Out[7]:

	pclass	survived	name	sex	age	sibsp	parch	ticket	fare	cabin	embarked
0	1.0	1.0	Allen, Miss. Elisabeth Walton	0	29.0000	0.0	0.0	24160	211.3375	B5	S
1	1.0	1.0	Allison, Master. Hudson Trevor	1	0.9167	1.0	2.0	113781	151.5500	C22 C26	S
2	1.0	0.0	Allison, Miss. Helen Loraine	0	2.0000	1.0	2.0	113781	151.5500	C22 C26	S
3	1.0	0.0	Allison, Mr. Hudson Joshua Creighton	1	30.0000	1.0	2.0	113781	151.5500	C22 C26	S
4	1.0	0.0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	0	25.0000	1.0	2.0	113781	151.5500	C22 C26	S
4											+

```
In [8]: colors = np.where(titanic_df["sex"]==1,'r','b') # for male it is red, for fema
le it is blue

scatter_plot = plt.scatter(titanic_df['age'], titanic_df['fare'],c=colors,alph
a=0.5)
plt.xlabel('AGE')
plt.ylabel('FARE')
plt.show()
```



```
In [ ]:
```