Rotaional Dynamics

Moment of inertia (I)

The sum of product of mass and square of distance of all particles from axis of rotation is called moment of inertia which determine the inertia of rotating body. It's unit is kgm^2

 \therefore Moment of inertia (I) = Σ mr²

Radius of gyration (k)

The distance of a point from axis of rotation at which whole mass of system is assumed to be concentrated will produce same moment of inertia as distribution of mass produce about same axis

 \therefore Moment of inertia (I) = MK²

KE of rotating body

The KE of a body of moment of inertia I rotating about any axis with angular velocity w is

$$\mathsf{KE}_{rot} = \frac{1}{2} \, \mathsf{I} \omega^2$$

Equations in rotational dynamics

i.
$$\omega=\omega_0+\alpha t$$
 i. $\theta=\omega_0 t+1/2\alpha t^2$ iii. $\omega=\omega_0^2+2\alpha\theta$ iv. $KE_{\mathrm{rot}}=1/\omega^2$ v. Torque $(au)=I\alpha$ vi. Angular momentum (L) $=mvr=I\omega$ vii. Work $(W)= au$. θ viii. Power $(P)= au$. ω

Torque (τ)

The moment of force acting on a body about point of turning is called torque

$$\therefore$$
 Torque (au) = \overrightarrow{r} $imes$ \overrightarrow{F} = rF $\sin heta$

Angular momentum $(\stackrel{
ightarrow}{L})$

Moment of momentum of body is called angular momentum.

$$\therefore$$
 Angular momentum ($\stackrel{
ightarrow}{L}$) = $\stackrel{
ightarrow}{r}$ $imes$ $\stackrel{
ightarrow}{mv}$

= mvr = $I\omega$

Now Rate of change in angular momentum is called torque

$$\therefore \text{ Torque } (\tau) = \frac{dL}{dt}$$

 $=I\alpha$

Acceleration of rolling body along the inclined plane.

The acceleration of a rolling body along the inclined plane of inclination? with horizontal is

$$\mathrm{a}=rac{g\sin heta}{1+k^2/r^2}$$

where heta is angle of slope

Theorem's on moment of inertia

1. i. Parallel axis theorem

The moment of inertia of a body about any axis parallel to axis through centre of mass is equal to the sum of moment of inertia about axis through centre of mass and product of mass and square of distance between two axis.

ie. I =
$$I_{cm}$$
 + Mh^2

h = distance between two axis

2. ii. Perpendicular axis theorem

Moment of inertia of lamina about axis perpendicular to lamina is equal to the sum of moment of inertia about two perpendicular axis on lamina from same point

$$\therefore I_z = I_x + I_y$$

Principle of conservation of angular momentum.

If no external torque acts on the system of rotating body then total angular momentum remain conserved

i.e.
$$I_1\omega_2=I_2\omega_2$$

Moment of inertia of some bodies

C NI	D - 1	L•	h. r
S.N	Body	axis	Moment
			of Inertia
1.	Uniform	i. axis through centre	1 .2
	bar	& perpendicular	$\left \frac{1}{12}ml^2\right $
		ii. axis perpendicular	
		to rod at end	$\left \frac{1}{3}ml^2\right $
			3
2.	Rectangular	Through CG &	$(1^2 \pm b^2)$
	lamina	perpendicular	$\left(\frac{l^2+b^2}{12}\right)m$
			12
3.	Ring	i. Through centre &	MR^2
		perpendicular	MR^2
		ii. About diameter	2
4.	Disc	i. Through centre &	MR^2
		perpendicular to	2
		plane	MR^2
		ii. About diameter	$\left \frac{m\kappa}{4} \right $
5.	Solid	About diameter	
٦.	1	About diameter	$\frac{MR^2}{2}$
	cylinder		2
6.	Sphere		2_{MD^2}
	(solid)		$\frac{2}{5}MR^2$
7.	hollow		
	sphere		$\left \frac{2}{3} MR^2 \right $
	Princic		3

2022 © **engineeringdote**, a product of Studydote Pvt. Ltd - Online study portal