姓名:
学号:
学院 (系):
级 班

教师:

大 连 理 工 大 学

课程名称: <u>工科数学分析基础</u>(二) 试卷: <u>A</u> 考试形式: <u>闭卷</u> 授课院(系): 数学科学学院 考试日期: 2019 年 6 月 21 日 试卷共 6 页

	_	<u></u>	111	四	五	六	七		总分
标准分	30	20	10	10	10	10	10		100
得 分									

装

得	
分	

一、填空题 (每题 6 分,共 30 分)

- 2 、 设 函 数 f(x) 是 周 期 为 2 的 周 期 函 数 , 在 (-1,1] 上 的 表 达 式 为 $f(x) = \begin{cases} 3, -1 < x \le 0 \\ x^3, 0 < x \le 1 \end{cases}$, 函数 f(x) 的 Fourier(傅里叶)级数是:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x + b_n \sin n\pi x, \quad x \in (-\infty, +\infty), \quad$$
其和函数是 $S(x)$,则
$$S\left(\frac{1}{2}\right) = \underline{\qquad}, \quad S(11) = \underline{\qquad}.$$

- 3、函数 $z = (x + e^y)^x$ 在点 (1,0)处的全微分 $dz|_{(1,0)} = ____ dx + ____ dy$ 。
- 4、设有数量场 $u = \ln(x^2 + y^2 + z^2)$,则梯度 $gradu\Big|_{(1,1,1)} =$ _______, 散度 $div(gradu)\Big|_{(1,1,1)} =$ _______。
- 5、函数 $f(x) = e^x$ 展为 x-1 的幂级数是______,收敛域是_____。

分

二、单项选择题 (每题 4 分,共 20 分)

1、微分方程 $y'' - y = \sin x$ 的一个特解形式为(

A, $xe^{x}(a\cos x + b\sin x)$; B, $a\cos x + b\sin x$;

C, $e^x(a\cos x + b\sin x)$; D, $ax\cos x + bx\sin x$.

2、设 $f(x,y) = 3x - x^3 + y^2 + 2y$,则下列说法正确的是(

A、f(-1,-1)是f(x,y)的极小值; B、f(-1,-1)是f(x,y)的极大值;

C、f(1,-1)是f(x,y)的极小值; D、f(1,-1)是f(x,y)的极大值。

3、均匀曲线 $L: y = \sqrt{1-x^2}$ 的质心坐标为 $(0, \overline{y})$,则 $\overline{y} = ($

A, $\frac{1}{\pi}$; B, $\frac{2}{\pi}$; C, $\frac{3}{\pi}$; D, $\frac{1}{2\pi}$

4、在以下级数中,发散的是(

A, $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n^2})$; B, $\sum_{n=1}^{\infty} (\frac{1}{n} - \ln(1+\frac{1}{n}))$; C, $\sum_{n=1}^{\infty} \frac{2n^2+2}{n^3+3n}$; D, $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n-\ln n}$

5、设曲面 $\sum z = \sqrt{1-x^2-y^2}$,则曲面积分 $\iint zdS = ($

A, $\frac{\pi}{4}$; B, $\frac{\pi}{3}$; C, $\frac{\pi}{2}$; D, π .

三、(10 分) 求微分方程组 $\begin{cases} y_1' = 2y_1 + 3y_2 \\ y_2' = 2y_1 - 3y_2 \end{cases}$ 的通解。

四、(10分)已知幂级数 $\sum_{n=1}^{\infty} \frac{1}{2n+1} x^{2n}$,求: 1、收敛域; 2、和函数。

五、(10 分) 计算曲线积分 $\int_L (x^2+2xy^2)dx+(2x^2y-y^3)dy$, 其中 L 为从点 A(0,1) 沿圆

 $x^2 + (y-2)^2 = 1$ 的四分之一弧到点 B(1,2)的一段曲线。

六、(10 分) 求曲面积分 $I = \iint_{\Sigma} x(y^2 + z) dy dz + y(x^2 + x) dz dx + yz dx dy$,

其中Σ: 曲面 $z = x^2 + y^2 (0 \le z \le 1)$, 取下侧。

七、(10 分) 设变换 $\begin{cases} u = x - 2y \\ v = x + 3y \end{cases}$ 可把方程 $6 \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 0$ 简化为以 $u \times v$ 为自变量

的方程,可化为什么样的形式?其中二阶偏导数连续。