

Visualizing Linear Models: An R Bag of Tricks Session 2: Multivariate Models

Michael Friendly SCS Short Course Oct-Nov 2021

https://friendly.github.io/VisMLM-course/

Today's topics

Brief review of the GLM & MLM

- Data ellipses
 - sufficient visual summaries
- HE plot framework
 - H & E matrices/ellipses
- Discriminant/canonical views
- Example: Penguins data

Checking assumptions

2

One-way MANOVA

p responses, 1 "factor" (IV), g groups

$$H_0$$
: $\underline{\boldsymbol{\mu}}_1 = \underline{\boldsymbol{\mu}}_2 = ... \underline{\boldsymbol{\mu}}_g$

H₁: at least one group centroid is different

- Assumptions:
 - Independent groups, independent observations
 - Responses are independent, multivariate normal w/in each group
 - Pop. within-group covariance matrices are equal across groups
 - H_0 : $\Sigma_1 = \Sigma_2 = ... = \Sigma_g$
 - (Σ estimated by S = E / df_e)
 - tested by e.g., Box's test, heplots::boxM
 - $^{\blacksquare}$ \rightarrow $y_{ij~(p\,\times\,1)}$ $^{\sim}$ N (μ_{j} , $\Sigma)$

One-way ANOVA vs. MANOVA

ANOVA

Do means differ?

(Assume equal withingroup variances)

Figure 8.1. The simple anova situation, when the differences among the populations are "real." source: Cooley & Lohnes ((1971)

MANOVA X2

How do centroids differ? How many dimensions?

(Assume equal withingroup variancecovariance matrices)

Figure 8.2. The simple manova situation, when the differences among the populations are "real."

Response dimensions

Means on Y₁ and Y₂ are nearly perfectly correlated

Means on Y₁ and Y₂ have a low correlation

Only 1 dimension required to understand the group effect

Two different aspects are reflected in group means

GLM: the design matrix (X)

- In the full GLM, the design matrix (X) may consist of:
 - A constant, 1, for the intercept (usually implicit)
 - Quantitative regressors: age, income, education
 - Transformed regressors: Vage, log(income)
 - Polynomial terms: age², age³, ...
 - Categorical predictors ("factors", class variables): treatment (control, drug A, drug B), sex
 - Interactions: treatment * sex, age * sex

Model formulae in R define y ~ X:

```
prestige ~ income + education
prestige ~ income * education
                                             # + interaction
prestige ~ income + education + women + type # 4 main effects
prestige ~ education + poly(women, 2) + log(income)*type
```

Univariate linear model

Model

$$\mathbf{y} = \mathbf{X}_{(n \times 1)} \mathbf{\beta} + \boldsymbol{\epsilon}_{(n \times 1)} \mathbf{x}_{(n \times 1)} \mathbf{x}_$$

$$\mathbf{X}_{(n \times q)} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_q)$$

matrix of predictors, factors, ...

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_q x_{iq} + \epsilon_i$$

Sums of squares

 $SS_{\text{Tot}} = \sum_{i,j} (y_{i,j} - \overline{y}_i)^2 + \sum_{i,j} (y_{i,j} - \hat{y}_i)^2$ $= SS_H + SS_F$

Hypothesis tests

$$F = \frac{SS_H / df_H}{SS_E / df_E} = \frac{MS_H}{MS_E}$$

How big is hypothesis variation relative to error variation?

mean square is a variance estimate

Least squares: SS_T and SS_F

In simple linear regression,

$$y_i = b_0 + b_1 \times x_i + e_i$$

the intercept b₀ & slope b₁ are values that minimize the SS_F (or MS_F)

$$SS_E = \sum e_i^2 = \sum (y_i - \hat{y}_i)^2$$

 SS_{T} is that value when $b_1=0$

b ₁	MS _E
.00	1.0
.89	0.2

Regression: Visualizing $SS_T = SS_H + SS_E$

= Regression variance (SS_H) + Residual variance (SS_F)

$$\Sigma_i (y_i - \overline{y})^2$$

$$\sum_{i} (\hat{y}_{i} - \overline{y})^{2}$$

$$\Sigma_i (y_i - \hat{y}_i)^2$$

F test: How much better is the fitted regression line ($\beta = \beta$) than the flat line ($\beta = 0$)?

ANOVA: Visualizing $SS_T = SS_H + SS_E$

Total variance

Between group variance + Within group variance

F test: How much better is the groups model than the model ignoring groups?

.0

Which means differ?

- In ANOVA, when a factor is significant, followup to find which means differ
- Post-hoc tests:
 - all-pairwise comparisons
 - all treatments vs. control group
- Need to correct for multiple testing—control family-wise error rate
 - Bonferroni: $\alpha_i = \alpha_{FW} / k$ [too conservative]
 - Tukey pairwise: "honestly significant difference"
 - many others: Dunnett's test, Sidak, FDR, ...

Plotting multiple comparisons

HH::mmcplot() – the mean-mean multiple comparison plot shows multiple comparisons or contrasts for any linear model

library(HH

catalystm.lm <- lm(concent ~ catalyst, data=catalystm)
catalystm.mmc <-mmc(catalystm.lm, linfct = mcp(catalyst = "Tukey"))
mmcplot(catalystm.mmc)

Construction:

- plot means, \overline{y}_i , \overline{y}_i on grid
- rotate 45°
- horizontal axis shows:
- SE determined by MC method
- signif. comparisons highlighted

Contrasts: planned comparisons

- Better to test specific, planned comparisons, rather than allpairwise
- A contrast is a weighted sum, L, of the means, with weights, c, that sum to zero

$$L = c' \mu = \sum c_i \mu_i$$
 such that $\sum c_i = 0$

- In words: average of one subset of groups vs. another subset
- Any r-1 linearly independent contrasts \rightarrow same overall test
- A priori contrasts can be tested w/o adjusting α

The **X** matrix for a factor can be represented by a set of *r-1* contrasts, combined with the unit vector

Some special contrasts:

Helmert contrasts

Polynomial contrasts

Deviation contrasts

$$\boldsymbol{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix}$$

each treatment vs control or baseline [not orthogonal]

13

ordered treatments: each vs all the rest [always orthogonal]

lin quad cubic

quantitative treatment levels [orthogonal]

Using contrasts in R

- R has 4 basic functions for generating contrasts for a factor
 - Dummy coding, aka "reference level", "treatment" contrasts
 - Deviation coding, aka "sum-to-zero" constraints
 - Polynomial contrasts for an ordered/quantitative factor
 - Helmert contrasts for ordered factor comparisons
- Defaults are set separately for unordered and ordered factors
- Define your own by assigning a matrix to contrasts (myfactor) <- cmat
- These affect the tests of coefficients, but not overall tests

ordered

> options("contrasts")

"contr.treatment"

unordered

> contr.sum(4)

> contr.poly(4) .L .Q [1,] -0.6708 0.5 -0.2236 [2,] -0.2236 -0.5 0.6708 [3,] 0.2236 -0.5 -0.6708

> contr.helmert(4) -1

Nested dichotomies

- Orthogonal contrasts can always be generated as nested dichotomies
- They correspond to independent research questions
- Sums of squares decompose the overall effect

$$SS_A = SS_{c1} + SS_{c2} + ... + SS_{c(r-1)}$$

 c_2 = globe mangles vs other c₁ = mangles vs beets

 c_s = mono beets vs yellow

Treatment		c_1	c2	Сз	C4	\dot{c}_5	c ₆	C7
Brigadier mangels	μ_1	1	1	0	1	0	0	0
York globe mangels μ_2		1	-1	1	0	0	0	0
Orange globe mangels μ_3		1	-1	-1	0	0	0	0
Red intermediate mangels μ_4		1	1	0	-1	0	0	0
Mono rosa fodder beet μ		-1	0	0	0	1	1	1
Mono blanc fodder beet		-1	0	0	0	1	1	-1
Mono bomba fodder beet	μ7	-1	0	0	0	1	-2	0
Yellow daeno fodder beet	μ7	-1	0.	0	0	-3	0	0

See: http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm

Multivariate linear model

Model

$$\mathbf{Y}_{(n \times p)} = \mathbf{X}_{(n \times q)} \mathbf{B}_{(q \times p)} + \mathcal{E}_{(n \times p)}$$

$$\mathbf{Y}_{(n \times p)} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_p)$$
matrix of *p* responses

Sums of squares & cross-products

$$\mathbf{SSP}_{T} = (\hat{\mathbf{Y}}'\hat{\mathbf{Y}} - n\overline{\mathbf{y}}\overline{\mathbf{y}}') + \mathcal{E}'\mathcal{E}$$
$$= \mathbf{SSP}_{H} + \mathbf{SSP}_{E} = \mathbf{H} + \mathbf{E}$$

- Hypothesis tests
 - Eigenvalues λ_i , i=1:p of H E⁻¹
 - Wilks' Λ, Pillai & Hotelling trace, Roy's test
 - how many dimensions (aspects of responses)?

How big is hypothesis variation relative to error variation?

Ah, but there are up to $s = min(p, df_b)$ dimensions of size

17

Visualizing $SSP_T = SSP_H + SSP_E$

Data ellipsoids

The data ellipsoid is a sufficient visual summary for multivariate location & scatter, just as $(\bar{\gamma}, S)$ are sufficient for (μ, Σ)

Data ellipsoids: definitions

- For a p-dimensional multivariate sample, $\mathbf{Y}_{N\times p}$, the sample mean vector, $\overline{\mathbf{y}}$, and sample covariance matrix, \mathbf{S} , are minimally sufficient statistics under classical (gaussian) assumptions.
- These can be represented visually by the p-dimensional data ellipsoid, \mathcal{E}_c of size ("radius") c centered at \bar{y} ,

$$\mathcal{E}_c(\overline{\boldsymbol{y}},\boldsymbol{S}) := \{\boldsymbol{y}: (\boldsymbol{y} - \overline{\boldsymbol{y}})^T \, \boldsymbol{S}^{-1} (\boldsymbol{y} - \overline{\boldsymbol{y}}) \leq c^2 \} \qquad \text{or,} \quad D_M^2 \, (\boldsymbol{y}) \leq c^2$$

- → an ellipsoid centered at the means whose size & shape reflects variances & covariances
- We consider this a minimally sufficient visual summary of multivariate location and scatter.

Data ellipsoids: properties

- Ellipsoid boundary: Mahalanobis $D_M^2(y_i) \sim \chi_n^2$
 - p=2: shadows generalize univariate confidence intervals
 - eccentricity: precision; visual estimate of correlation

The HE plot framework

- Hypothesis-Error (HE) plots
 - Visualize multivariate tests in the MLM
 - Linear hypotheses--- lower-dimensional ellipsoids
 - Extension: HE plot matrices
- Canonical displays
 - low-dimensional multivariate juicers
 - shows data in the space of maximal effects
- Covariance ellipsoids
 - visualize tests of homogeneity of covariance matrices
- For all: robust methods are available or good research projects!

22

HE plot framework: Trivial example

Two groups of middle-school students are taught algebra by instructors using different methods, and then tested on:

- BM: basic math problems (7 * 23 2 * 9 = ?)
- WP: word problems ("a train travels at 23 mph for 7 hours, but for 2 hours ...")

Do the groups differ on (BM, WP) by a multivariate test? If so, how ???

Follow along

The R script (mathscore-ex.R) for this example is linked on the course page. Download and open in R Studio to follow along.

Examples:
 O Math scores: Simple demo of MLMs mathscore simple.R
 O Math scores: HE plot examples mathscore-ex.R || mathscore-ex.html
 O Penguins data: Multivariate EDA vignette
 O Diabetes data: heplots and candisc examples vignette

The script was run with `knitr` (ctrl+shift+K) in R Studio to create the HTML output (mathscore-ex.html)

The **Code** button there allows you do download the R code and comments

(R notebooks are a simple way to turn R scripts into finished documents)

Why do multivariate tests?

Could do univariate ANOVAs (or t-tests) on each response variable (BM, WP)

```
> Anova(lm(WP ~ group, data=mathscore))
Anova Table (Type II tests)

Response: WP
Sum Sq Df F value Pr(>F)
group 4408 1 10.4 0.009 **
Residuals 4217 10
```

From this, might conclude that:

- Groups don't differ on Basic Math score *
- Groups are significantly different on Word problems ✓

Multivariate tests:

- Do not require correcting for multiple tests (e.g., Bonferroni)
- Combine evidence from multiple response variables ("pooling strength")
- Show how the multivariate responses are jointly related to the predictors
 - How many aspects (dimensions?)

25

Why do multivariate tests?

Overall test is highly significant:

- Combines the evidence for all predictors
 - Takes response correlations into account
- > mod <- lm(cbind(BM, WP) ~ group, data=mathscore)
- > Anova(mod)

```
Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)
group 1 0.86518 28.878 2 9 0.0001213 ***
```

Visual test of significance (Roy's test)

• The **H** ellipse projects outside the **E** ellipse iff the effect is significant.

HE plot provides an interpretation:

- Group 1 > Group 2 on Basic Math, but worse on Word Problems
- Group 2 > Group 1 on Word Problems, but worse on Basic Math
- BM & WP are + correlated w/in groups

HE plot framework: Visual overview

The data ellipsoid is a sufficient visual summary for multivariate location & scatter, just as (\bar{y}, \mathbf{S}) are sufficient for (μ, Σ)

$Data \rightarrow Data \ ellipses \rightarrow HE \ plot$

- Differences between group means are shown by the H ellipsoid—data ellipsoid
 of the fitted values (w/ 1 df, degenerates to a line)
 - Direction shows relation of groups to response variables
 - Size shows "how big is H relative to E"
- Variation within groups is reflected in the E ellipsoid-- data ellipsoid of the residuals
 - Direction: residual (partial) correlation between BM & WP
 - Size/shape: residual variance

29

The H ellipse

- The H ellipse is the data ellipse of the fitted values (group means, here)
 - The H matrix is the sum of squares and crossproducts of the fitted values, corrected for the grand mean

$$\mathbf{H} = \left(\hat{\mathbf{Y}}'\hat{\mathbf{Y}} - n\overline{\mathbf{y}}\overline{\mathbf{y}}'\right)$$

30

The E ellipse

- The **E** ellipse is the data ellipse of the residuals
 - What you get when you subtract the group means from all observations, shifting them to the grand means.
 - E matrix called the "within-group **pooled** covariance matrix"

$$\mathbf{E} = \left(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}\right)' \left(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}\right) = \mathcal{E}' \mathcal{E}$$

H & E in numbers

The **H** and **E** matrices are calculated in the car::Anova() function and saved as the SSP and SSPE components, used in the statistical tests.

Direct calculation: $\mathbf{H} = (\hat{\mathbf{Y}}'\hat{\mathbf{Y}} - n\overline{\mathbf{y}}\overline{\mathbf{y}}')$

> '	fit	
	BM	WP
1	178.33	83.333
2	178.33	83.333
3	178.33	83.333
4	178.33	83.333
5	178.33	83.333
6	178.33	83.333
7	157.50	121.667
8	157.50	121.667
9	157.50	121.667
10	157.50	121.667
11	157.50	121.667
12	157.50	121.667

H & E in numbers

```
> (E <- math.aov$SSPE)

BM WP

BM 3070.8 2808.3

WP 2808.3 4216.7
```

 $\text{Direct calculation:} \qquad \mathbf{E} = \left(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}\right) \! \cdot \! \left(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}\right) \! = \! \mathcal{E}' \mathcal{E}$

33

Discriminant analysis

- MANOVA and linear discriminant analysis (LDA) are intimately related and differ mainly in perspective:
 - MANOVA: Do means of groups on 2+ responses differ?
 - LDA: Find weighted sums of responses that best discriminate groups
- In both cases,
 - Group differences are represented by the H matrix; residuals: E matrix
 - Test statistics based on eigenvalues of HE⁻¹
 - Discriminant weights are eigenvectors of HE⁻¹

34

Discriminant analysis

- For 2 groups,
 - the discriminant axis is the line joining the two group centroids,
 - discriminant scores are the projections of observations on this line.
- MASS:lda() does this analysis

The canonical dimension is Can1 = 0.075 WP - 0.083 BM, a contrast between the two tests

Canonical space

- The HE plot view shows the data in data space
- Easier to see effects by projecting scores to canonical space the best-discriminating axes.
- For a 1 df effect, there is only one canonical dimension
 - Arrows show the relative size & direction of discriminant weights

library(candisc)
mod.can <- candisc(math.mod)
plot(mod.can)</pre>

Penguin data

Data on 3 species of penguins, measured on 3 Antarctic islands

How does penguin "size" differ by species, island, ... ?

> >	<pre>> library(palmerpengiuns) > peng <- penguins %>% rename() %>% # clean up names, etc. > peng[sample(1:333, 5),] # A tibble: 5 x 8</pre>							
	species	island	bill_length	bill_depth	flipper_length	body_mass	sex	year
	<fct></fct>	<fct></fct>	<db1></db1>	<db1></db1>	<int></int>	<int></int>	<fct></fct>	<int></int>
1	Chinstrap	Dream	58	17.8	181	3700	f	2007
2	Adelie	Torgersen	39.6	17.2	196	3550	f	2008
3	Gentoo	Biscoe	46.2	14.1	217	4375	f	2009
4	Chinstrap	Dream	49	19.5	210	3950	m	2008
5	Gentoo	Biscoe	50.4	15.7	222	5750	m	2009

37

39

Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview

- Can show multiple variables, but hard for >1 factor.
- What is the pattern here?

Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview

Need to reshape data from wide to long format

```
peng long <- peng |>
                                                   # convert wide to long format
tidyr::gather(Measure, Size, bill length:body mass)
ggplot(peng_long, aes(x=species, y=Size, fill=species)) +
geom boxplot() +
facet_wrap(. ~ Measure, scales="free_y", nrow=1)
```


Scatterplot matrix with GGally

EDA should also include a scatterplot matrix Here, plot the numeric variables, grouped by species

library(GGally) ggpairs(peng, aes(color=species, alpha=0.5),columns=3:6)

Diagonals show univariate distributions

Lower Δ : scatterplots Upper Δ : correlations

But wait: I want to see the regression lines! No worries: define a custom function for scatterplot in the lower triangle

```
ggpanel <- function(data, mapping, ...){
  p <- ggplot(data = data, mapping = mapping) +
    geom_point() +
    geom_smooth(method=lm, formula = y^x, ...)
  p}
ggpairs(peng, aes(color=species, alpha=0.5), columns=3:6, lower = list(continuous = ggpanel))</pre>
```

All plots look reasonably linear ✓

But: there's something weird in the correlations Can you spot it?

PCA & Biplots

- For multivariate data, often want to view the data in a low-D space that shows the most total variance
- PCA: finds weighted sums of variables which are:
 - Uncorrelated
 - Account for maximum variance
 - How many dimensions are necessary?
- A biplot is a 2D (or 3D) plot of the largest PCA dimensions
 - Vectors in this plot show the original data variables
 - Points in this plot show the observations
 - Data ellipses here show within group relations

Simpson's Paradox

Simpson's paradox: within-group *r* s are reversed when the data are pooled This happens here because the group means are negatively correlated

PCA animation

PCA:

- PC1 is the direction along which points have max. variance
- Equivalently, the perp. deviations from the line have min. residual SS

PCA by springs

- Imagine each pt connected to a possible PC1 line by springs
- Force ~ deviation²

Forces balance, naturally seek the min. residual SS position.

Voila, QED!

A visual proof

PCA

```
peng.pca <- prcomp (~ bill length + bill depth + flipper length + body mass,
          data=peng,
          na.action=na.omit,
          scale. = TRUE)
screeplot(peng.pca, type = "line", lwd=3, cex=3,
                   main="Variances of PCA Components")
```

```
> summary(peng.pca)
Importance of components:
                        PC1 PC2
                      1.657 0.882 0.6072 0.328
Proportion of Variance 0.686 0.195 0.0922 0.027
Cumulative Proportion 0.686 0.881 0.9730 1.000
```

2D: 88.1 % 3D: 97.3 %

See: https://rpubs.com/friendly/penguin-biplots for details

Variances of PCA Components

Penguins: MANOVA

Assume the goal is to determine whether/how the penguins differ in "size" by species

- A MLM tests all 4 size variables together: ~ species
- Could also use other factors: ~ species + sex + island

```
> peng.mod0 <-lm(cbind(bill_length, bill_depth, flipper_length, body_mass) ~ species,
               data=peng)
> Anova(peng.mod0)
Type II MANOVA Tests: Pillai test statistic
       Df test stat approx F num Df den Df Pr(>F)
species 2 1.64 371
                                8 656 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Yet, we are left to understand the nature of this effect wrt. the size variables.

See: https://rpubs.com/friendly/penguin-manova for details

Biplot

library(ggbiplot) ggbiplot(peng.pca, obs.scale = 1, var.scale = 1, groups = peng\$species, ellipse = TRUE, circle = TRUE) + scale_color_discrete(name = 'Penguin Species')

PC1, PC2 ~ 88.1% of variance

- · PC1: largely flipper length & body mass: "penguin size"
- PC2 (& PC1): relates to "bill shape"

Easy to characterize the species in terms of these variables

See: https://rpubs.com/friendly/penguin-biplots

Penguins: view data ellipses

Data ellipses in 2D provide a good start for pairwise relations

bill depth & length

· group means negatively correlated

bill_length

• within group correlation > 0

body mass & flipper length

- group means positively correlated
- within group correlation > 0

HE plot details

- E ellipse reflects within-group error (co)variation
 - Size: **E** / df_e set to cover 68%, an analog of $\overline{y} \pm 1$ std
 - Shift to grand mean for direct comparison with H
- H ellipse reflects (co)variation of group means
 - effect size scaling, uses H/df_e to put this on the same scale as the E ellipse.
 Analog of effect size in univariate designs.
 - significance ("evidence") scaling: uses H/λ_a df_a.
 - The **H** ellipse protrudes outside the **E** ellipse somewhere, *iff* an effect is significant (Roy's largest root test) at $p < \alpha$

49

Penguins: HE plots

Orientation of the **H** ellipse reflects negative correlation of the species means: species with larger bill depth have smaller bill length (bill "shape"?)

E ellipse: within species, larger bill length → larger bill depth

heplot(peng.mod0, size="effect")

heplot(peng.mod0, size="evidence")

Contrasts

Contrasts

- In linear models, any effect of df_h > 1 can be partitioned into df_h separate 1 df tests of contrasts
 - If orthogonal, $\mathbf{H} = \mathbf{H}_1 + \mathbf{H}_2 + \dots \mathbf{H}_{dfh}$ -- accounts for total effect
 - Tested as a linear hypothesis, e.g., $x_1 (x_2 + x_3)/2 = 0$
 - Each H_i has rank=1, so appears as a line in HE plots
- Assume we want to compare the species as two contrasts:
 - Do Adelie differ from Chinstrap?
 - Do Gentoo penguins differ from the other two?

Result is very clear:

- Adelie & Chinstrap differ only in bill length
- Gentoo differ from other two longer, but less deep bills (bill shape)

Both of these are large effects!

Together, they are the entire species effect!

Other models

peng.mod2 <-lm(cbind(bill_length, bill_depth, flipper_length, body_mass) ~ species + sex, data=peng) Anova(peng.mod2)

```
Type II MANOVA Tests: Pillai test statistic Df test stat approx F num Df den Df Pr(>F) Species 2 1.65480 391.89 8 654 < 2.2e-16 *** sex 1 0.64004 144.91 4 326 < 2.2e-16 ***
```

heplot(peng.mod2, fill=TRUE, fill.alpha=0.2, hypotheses=hyp)

Effect of sex: male penguins have larger bills

Adding sex reduces **E** variances

→Effect of species now more pronounced

Each 1 df effect plots as a line

Other HE plots

- 2D: can plot any pair of responses in data space
- pairs.mlm(): all pairwise 2D views
- heplot3d(): plots in 3D, can rotate, spin, zoom, ...

heplot(peng.mod0, variables=3:4, fill=TRUE, fill.alpha=0.2, size="effect")

Interpretation:

- major axis of the H ellipse measures "penguin size"
- · Gentoo are the Big Birds in this story!

HE Pairs plots

The pairs() method for mlm objects gives all pairwise HE plots in a scatterplot matrix format.

Something new here:

- avg. bill depth is negatively correlated with "size" variables – larger penguin species have smaller bill depths (curvature?)
- correlation of avg. bill depth with body mass nearly -1

heplot3d()

3D HE plots can show other features

heplot3d(peng.mod0, size="effect")

The H ellipsoid here is flat (2D), because the species effect has 2 df

In this 3D view, the 3 species form a triangle, suggesting some further interpretation, not seen in 2D views

Canonical view

- 4 response variables, but only s=min(q, dfh)=2 dimensions.
 - Here, both dimensions are significant
 - Can1 accounts for 86.5% of between-species variance
 - Can 2 accounts for the rest: 13.5%

```
> library(candisc)
> (peng.can <- candisc(peng.mod0))</pre>
Canonical Discriminant Analysis for species:
  CanRsq Eigenvalue Difference Percent Cumulative
             15.03
                         12.7
  0.700
              2.34
                         12.7
                                13.5
Test of HO: The canonical correlations in the
current row and all that follow are zero
  LR test stat approx F numDF denDF Pr(> F)
       0.0187 516 8 654 <2e-16
       0.2997
                          3 328 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

Canonical view

The plot() method for candisc objects shows points for observations and vector for variables

plot(peng.can, ellipse = TRUE ...) #plot CAN scores with ellipses

Can1: largely body mass & flipper length, that separate Gentoo from (Adelie, Chinstrap)

Can2: bill length distinguishes Chinstrap from others.

Canonical HE plot

heplot(peng.can, size="effect", fill=c(TRUE, FALSE))

Here is the entire effect of species shown in one HE plot

In CAN space, residuals are uncorrelated: **E** = circle

Size of **H** shows the total effect of species

Variable vectors show how the groups are discriminated.

Checking assumptions

- Assumptions in the MLM extend those in univariate models
 - Linearity: Each y_i is linearly related to all xs
 - Constant variance matrices of residuals

$$\mathbf{S}_i = \mathbf{S}_2 = \dots = \mathbf{S}_g$$
 $\epsilon_i \sim \text{MVN}(\mathbf{0}, \mathbf{\Sigma})$

- Residuals are multivariate normal
- In addition, need to check
 - No multivariate outliers
 - No multicollinearity among predictors

57

Checking assumptions

- Linearity: plot each y_i against each x_i
 - quantitative x_i: plot(y_i ~ x_i) + loess smooth
 - factor: boxplots
- Constant variance
 - visual: plot data ellipses for each group
 - heplots:: covEllipses(data, group=, ...)
 - univariate-- levene test: heplots::leveneTests()
 - multivariate Box M test: $H_0 : \Sigma_1 = \Sigma_2 = ... = \Sigma_g$
 - res <- heplots::boxM(); plot(res)</pre>
- Multivariate outliers
 - Mahalanobis $D^2(\mathbf{y}_i) \sim \chi^2_p$: outlier if prob $(\chi^2_p) < .01$
 - Chisquare QQ plot : plot D² (y_i) vs. χ²_p quantiles: cqplot()

Constant variance: Visual

heplots::covEllipses() plots the data ellipses for each group, for 2+ variables Are the sizes and shapes & orientations \cong the same in all panels?

Approximately true, w/ some diffces

- Gentoo looks a bit smaller
- Adelie: correlations ~ differ?

This might be good enough

covEllipses(peng[,3:6],
 group = peng\$species,
 variables=1:4, # all pairs
 fill=TRUE, fill.alpha=0.1,
 pooled=FALSE)

62

Constant variance: Visual

This is easier to judge if all groups are centered at the grand mean in each panel

covEllipses(peng[,3:6],
 group = peng\$species,
 variables=1:4,
 center=TRUE,
 fill=TRUE, fill.alpha=0.1,
 pooled=FALSE)

Constant variance: statistical tests

Levene tests for each response variable separately:

Box's M test: all responses together – equal variances & correlations!

```
> heplots::boxM(peng[,3:6], group = peng$species)

Box's M-test for Homogeneity of Covariance Matrices

data: peng[, 3:6]
Chi-Sq (approx.) = 75, df = 20, p-value = 3e-08
```

NB: Box's M test is highly sensitive to small diff^{ces}; use $\alpha = 0.001$

Multivariate normality: $z^2 \rightarrow D^2$

For MVN & outliers, Mahalanobis D² generalizes z scores

- 1 variable: $z_i = (x_i \overline{x})/s \sim N(0,1)$ or, $z_i^2 \sim \chi^2_{(1)}$
- 2 variables, uncorrelated: squared distance from mean is

$$D_i^2 = z_{i1}^2 + z_{i2}^2 \sim \chi^2_{(2)}$$

p variables: D_i^2 = Mahalanobis squared distance of x_i from centroid

$$D_i^2 = (x_i - \bar{x})^{\mathsf{T}} S^{-1} (x_i - \bar{x}) \sim \chi_{(p)}^2$$

Chi-squared QQ plot

- QQ plot of ordered distances, $D^2_{(i)}$ vs $\chi^2_{(p)}$ quantiles should plot as a 45° line through origin if MVN
- Multivariate outliers: outside the envelope
- Here: both cases check out as OK: no outliers, MVN ✓

Penguins: MVN & outliers

Penguins: MVN & outliers

heplots::cqplot(peng.mlm, id.n = 3, conf=0.999)

Get D² values with rstatix::mahalanobis_distance Find z-scores Select outliers (is.outlier==TRUE)

rowname bill_length bill_depth flipper_length body_mass mahal.dist is.outlier 283 2.561 0.3225 -1.425 -0.6297 27.76 TRUE

MVN: Numerical tests

- Shapiro-Wilk test
 - Originally for univariate normality: stats::shapiro.test()
 - Multivariate version: rstatix::mshapiro_test()

```
peng |>
  select(bill_length : body_mass) |>
  rstatix::mshapiro_test()
```

```
# A tibble: 1 x 2
statistic p.value
<dbl> <dbl>
1 0.978 0.0000484
```

Mardia test: multivariate skewness & kurtosis

```
res <- MVN::mvn(data = peng[,c(3:6)],
mvnTest="mardia")
res$multivariateNormality
```

		Test	Statistic	p value	Result
1	Mardia	Skewness	127.42	< 0.001	NO
2	Mardia	Kurtosis	-2.51	0.0118	NO
3		MVN	<na></na>	<na></na>	NO

70

• But: these are overly-sensitive; MLM is relatively robust

Summary

- MLM just like univariate LM, but for multiple responses
 - Simultaneous tests no need for p-value adjustment
 - Take correlations among responses into account
 - Indicates # of dimensions of responses
- Data ellipses
 - Summarize bivariate data to show means, variances, correlation
 - MANOVA: shows how groups differ in these
- HE framework
 - Visualize multivariate tests in the MLM
 - Canonical displays show these results in the 2D (or 3D) space that accounts for largest between-group variance.
- Checking assumptions: visual tests are often sufficient
 - homogeneity of variances: heplots::covEllipses()
 - outliers & MVN: heplot::cqplot()