In [1]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt,seaborn as sns

In [2]:

train_df = pd.read_csv(r"C:\Users\jyothi reddy\Downloads\Mobile_Price_Classification_train.csv")
train_df

Out[2]:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_core
0	842	0	2.2	0	1	0	7	0.6	188	
1	1021	1	0.5	1	0	1	53	0.7	136	
2	563	1	0.5	1	2	1	41	0.9	145	
3	615	1	2.5	0	0	0	10	0.8	131	1
4	1821	1	1.2	0	13	1	44	0.6	141	;
1995	794	1	0.5	1	0	1	2	0.8	106	1
1996	1965	1	2.6	1	0	0	39	0.2	187	
1997	1911	0	0.9	1	1	1	36	0.7	108	
1998	1512	0	0.9	0	4	1	46	0.1	145	
1999	510	1	2.0	1	5	1	45	0.9	168	1

2000 rows × 21 columns

In [3]:

test_df = pd.read_csv(r"C:\Users\jyothi reddy\Downloads\Mobile_Price_Classification_test.csv")
test_df

Out[3]:

	id	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	
0	1	1043	1	1.8	1	14	0	5	0.1	193	
1	2	841	1	0.5	1	4	1	61	0.8	191	
2	3	1807	1	2.8	0	1	0	27	0.9	186	
3	4	1546	0	0.5	1	18	1	25	0.5	96	
4	5	1434	0	1.4	0	11	1	49	0.5	108	
995	996	1700	1	1.9	0	0	1	54	0.5	170	
996	997	609	0	1.8	1	0	0	13	0.9	186	
997	998	1185	0	1.4	0	1	1	8	0.5	80	
998	999	1533	1	0.5	1	0	0	50	0.4	171	
999	1000	1270	1	0.5	0	4	1	35	0.1	140	

1000 rows × 21 columns

In [4]: ▶

```
train_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 21 columns):

	COTAMMIS (COCAT		
#	Column	Non-Null Count	Dtype
0	battery_power	2000 non-null	int64
1	blue	2000 non-null	int64
2	clock_speed	2000 non-null	float64
3	dual_sim	2000 non-null	int64
4	fc	2000 non-null	int64
5	four_g	2000 non-null	int64
6	int_memory	2000 non-null	int64
7	m_dep	2000 non-null	float64
8	mobile_wt	2000 non-null	int64
9	n_cores	2000 non-null	int64
10	рс	2000 non-null	int64
11	px_height	2000 non-null	int64
12	px_width	2000 non-null	int64
13	ram	2000 non-null	int64
14	sc_h	2000 non-null	int64
15	SC_W	2000 non-null	int64
16	talk_time	2000 non-null	int64
17	three_g	2000 non-null	int64
18	touch_screen	2000 non-null	int64
19	wifi	2000 non-null	int64
20	price_range	2000 non-null	int64
44	£1+(1/2)	: n+C1/10)	

dtypes: float64(2), int64(19)

memory usage: 328.3 KB

```
H
In [5]:
test_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 21 columns):
 #
     Column
                    Non-Null Count
                                     Dtype
- - -
 0
     id
                     1000 non-null
                                     int64
 1
     battery_power
                    1000 non-null
                                     int64
 2
                     1000 non-null
                                     int64
     blue
                     1000 non-null
 3
                                     float64
     clock_speed
 4
                     1000 non-null
                                     int64
     dual_sim
 5
                     1000 non-null
                                     int64
     fc
 6
                    1000 non-null
                                     int64
     four_g
 7
                    1000 non-null
                                     int64
     int_memory
 8
     m dep
                     1000 non-null
                                     float64
 9
     mobile wt
                     1000 non-null
                                     int64
 10
                    1000 non-null
                                     int64
     n_cores
 11
                    1000 non-null
                                     int64
     рс
                     1000 non-null
                                     int64
 12
     px_height
                     1000 non-null
 13
                                     int64
     px_width
                     1000 non-null
 14
     ram
                                     int64
 15
     sc_h
                     1000 non-null
                                     int64
 16 sc_w
                    1000 non-null
                                     int64
                    1000 non-null
 17
    talk_time
                                     int64
 18 three g
                     1000 non-null
                                     int64
                    1000 non-null
                                     int64
 19
    touch_screen
                    1000 non-null
 20 wifi
                                     int64
dtypes: float64(2), int64(19)
memory usage: 164.2 KB
                                                                                                  H
In [6]:
x=train_df.drop('wifi',axis=1)
y=train_df['wifi']
In [7]:
                                                                                                  H
x=test df.drop('wifi',axis=1)
y=test_df['wifi']
In [8]:
                                                                                                  H
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,train_size=0.7,random_state=42)
x_train.shape,x_test.shape
Out[8]:
((700, 20), (300, 20))
```

```
H
In [9]:
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[9]:
▼ RandomForestClassifier
RandomForestClassifier()
In [10]:
                                                                                                 H
rf = RandomForestClassifier()
In [11]:
params={'max_depth':[2,3,5,10,20],
 'min_samples_leaf':[5,10,20,50,100,200],
 'n_estimators':[10,25,30,50,100,200]}
In [14]:
from sklearn.model_selection import GridSearchCV
grid search=GridSearchCV(estimator=rf,param grid=params,cv=2,scoring='accuracy')
grid_search.fit(x_train,y_train)
Out[14]:
             GridSearchCV
 ▶ estimator: RandomForestClassifier
       ▶ RandomForestClassifier
In [13]:
                                                                                                 M
grid_search.best_score_
Out[13]:
0.5528571428571429
In [15]:
                                                                                                 M
rf_best=grid_search.best_estimator_
rf best
Out[15]:
                            RandomForestClassifier
RandomForestClassifier(max_depth=10, min_samples_leaf=50, n_estimators=25)
```

In [16]: ▶

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[5], feature_names = x.columns,class_names=['Yes',"No"],filled=True
```

Out[16]:

```
[Text(0.39285714285714285, 0.9, 'clock_speed <= 1.15\ngini = 0.499\nsamples = 446</pre>
\nvalue = [337, 363]\nclass = No'),
  Text(0.14285714285714285, 0.7, 'sc w <= 3.5\ngini = 0.485\nsamples = 174\nvalue =
[121, 171]\nclass = No'),
  Text(0.07142857142857142, 0.5, 'gini = 0.406\nsamples = 59\nvalue = [28, 71]\ncla
ss = No'),
  Text(0.21428571428571427, 0.5, 'sc_h <= 13.5\ngini = 0.499\nsamples = 115\nvalue
= [93, 100]\nclass = No'),
  Text(0.14285714285714285, 0.3, 'gini = 0.499\nsamples = 56\nvalue = [53, 49]\ncla
ss = Yes'),
  Text(0.2857142857, 0.3, 'gini = 0.493\nsamples = 59\nvalue = [40, 51]\nclas
s = No'),
  Text(0.6428571428571429, 0.7, 'fc <= 2.5 \ngini = 0.498 \nsamples = 272 \nvalue = [2]
16, 192]\nclass = Yes'),
  Text(0.5, 0.5, 'pc <= 4.5 / ngini = 0.492 / nsamples = 107 / nvalue = [74, 95] / nclass = 107 
No'),
  Text(0.42857142857, 0.3, 'gini = 0.499\nsamples = 54\nvalue = [47, 44]\ncla
ss = Yes'),
  Text(0.5714285714, 0.3, 'gini = 0.453\nsamples = 53\nvalue = [27, 51]\nclas
s = No'),
  Text(0.7857142857142857, 0.5, 'ram <= 1645.0\ngini = 0.482\nsamples = 165\nvalue
= [142, 97]\nclass = Yes'),
  Text(0.7142857142857143, 0.3, 'gini = 0.496 \nsamples = 60 \nvalue = [40, 48] \nclass
s = No'),
  Text(0.8571428571428571, 0.3, 'id <= 578.0\ngini = 0.438\nsamples = 105\nvalue =
[102, 49] \setminus s = Yes'),
  Text(0.7857142857142857, 0.1, 'gini = 0.364 \nsamples = 52 \nvalue = [54, 17] \nclass
s = Yes'),
  Text(0.9285714285, 0.1, 'gini = 0.48\nsamples = 53\nvalue = [48, 32]\nclass
= Yes')]
```


In [17]: ▶

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[7], feature_names = x.columns,class_names=['Yes',"No"],filled=True
```

Out[17]:

```
[Text(0.625, 0.9, 'sc_w <= 10.5\ngini = 0.5\nsamples = 439\nvalue = [350, 350]\ncl
ass = Yes'),
  Text(0.5, 0.7, 'sc_h \le 10.5 \neq 0.499 \le 380 \le [311, 291] 
ass = Yes'),
  Text(0.25, 0.5, 'sc w \leq 2.5\ngini = 0.491\nsamples = 164\nvalue = [111, 146]\ncl
ass = No'),
  Text(0.125, 0.3, 'gini = 0.5\nsamples = 81\nvalue = [69, 71]\nclass = No'),
  Text(0.375, 0.3, 'gini = 0.46\nsamples = 83\nvalue = [42, 75]\nclass = No'),
  Text(0.75, 0.5, 'int_memory <= 39.5\ngini = 0.487\nsamples = 216\nvalue = [200, 1
45]\nclass = Yes'),
  Text(0.625, 0.3, 'fc <= 3.5\ngini = 0.464\nsamples = 124\nvalue = [127, 73]\nclas
s = Yes'),
  Text(0.5, 0.1, 'gini = 0.486\nsamples = 63\nvalue = [60, 43]\nclass = Yes'),
  Text(0.75, 0.1, 'gini = 0.427\nsamples = 61\nvalue = [67, 30]\nclass = Yes'),
  Text(0.875, 0.3, 'gini = 0.5\nsamples = 92\nvalue = [73, 72\\nclass = Yes'),
  Text(0.75, 0.7, 'gini = 0.479\nsamples = 59\nvalue = [39, 59]\nclass = No')]
```


In [18]:

```
rf_best.feature_importances_
```

Out[18]:

```
array([0.04726883, 0.11638729, 0.01252884, 0.09638047, 0.0091454, 0.07220407, 0.02046292, 0.06236104, 0.0576862, 0.09768758, 0. , 0.03919055, 0.03440459, 0.13943153, 0.07695983, 0.02756412, 0.05546919, 0.02813257, 0. , 0.00673496])
```

In [19]: ▶

```
imp_df=pd.DataFrame({'Varname':x_train.columns,'Imp':rf_best.feature_importances_})
imp_df.sort_values(by='Imp',ascending=False)
```

Out[19]:

	Varname	lmp
13	px_width	0.139432
1	battery_power	0.116387
9	mobile_wt	0.097688
3	clock_speed	0.096380
14	ram	0.076960
5	fc	0.072204
7	int_memory	0.062361
8	m_dep	0.057686
16	sc_w	0.055469
0	id	0.047269
11	рс	0.039191
12	px_height	0.034405
17	talk_time	0.028133
15	sc_h	0.027564
6	four_g	0.020463
2	blue	0.012529
4	dual_sim	0.009145
19	touch_screen	0.006735
18	three_g	0.000000
10	n_cores	0.000000

In []: