CSC373

Review

Complete your course evaluations...

Check your e-mail for a link to your evaluations, or log-in to www.portal.utoronto.ca and click the Course Evals tab!

Topics

- Divide and conquer
- Greedy algorithms
- Dynamic programming
- Network flow
- Linear programming
- Complexity

Greedy Algorithms

- Greedy algorithm outline
 - We want to find the optimal solution maximizing some objective f over a large space of feasible solutions
 - Solution x is composed of several parts (e.g. a set)
 - \triangleright Instead of directly computing x...
 - Consider one element at a time in some greedy ordering
 - Make a decision about that element before moving on to future elements (and without knowing what will happen for the future elements)

Greedy Algorithms

- Proof of optimality outline
 - > Strategy 1:
 - \circ G_i = greedy solution after i steps
 - \circ Show that $\forall i$, there is some optimal solution OPT_i s.t. $G_i \subseteq OPT_i$
 - "Greedy solution is promising"
 - By induction
 - Then the final solution returned by greedy must be optimal
 - > Strategy 2:
 - Same as strategy 1, but more direct
 - Consider OPT that matches greedy solution for as many steps as possible
 - If it doesn't match in all steps, find another OPT which matches for one more step (contradiction)

Dynamic Programming

- Key steps in designing a DP algorithm
 - "Generalize" the problem first
 - \circ E.g. instead of computing max score between strings $X=x_1,\ldots,x_m$ and $Y=y_1,\ldots,y_n$, we compute $E[i,j]=\max$ score between i-prefix of X and j-prefix of Y for all (i,j)
 - The right generalization is often obtained by looking at the structure of the "subproblem" which must be solved optimally to get an optimal solution to the overall problem
 - Remember the difference between DP and divide-and-conquer
 - Sometimes you can save quite a bit of space by only storing solutions to those subproblems that you need in the future

Dynamic Programming

- Dynamic programming applies well to problems that have optimal substructure property
 - Optimal solution to a problem contains (or can be computed easily given) optimal solution to subproblems.
- Recall: divide-and-conquer also uses this property
 - You can think of divide-and-conquer as a special case of dynamic programming, where the two (or more) subproblems you need to solve don't "overlap"
 - > So there's no need for memoization
 - In dynamic programming, one of the subproblems may in turn require solution to the other subproblem...

Dynamic Programming

- Top-Down may be preferred...
 - > ...when not all sub-solutions need to be computed on some inputs
 - ...because one does not need to think of the "right order" in which to compute sub-solutions
- Bottom-Up may be preferred...
 - > ...when all sub-solutions will anyway need to be computed
 - ...because it is sometimes faster as it prevents recursive call overheads and unnecessary random memory accesses

Network Flow

Input

- \rightarrow A directed graph G = (V, E)
- \triangleright Edge capacities $c: E \to \mathbb{R}_{\geq 0}$
- Source node s, target node t

Output

> Maximum "flow" from s to t

Ford-Fulkerson Algorithm

```
MaxFlow(G):
// initialize:
Set f(e) = 0 for all e in G
// while there is an s-t path in G_f:
While P = \text{FindPath}(s, t, \text{Residual}(G, f)) != \text{None}:
  f = Augment(f, P)
  UpdateResidual(G, f)
FndWhile
Return f
```

Max Flow - Min Cut

- Theorem: In any graph, the value of the maximum flow is equal to the capacity of the minimum cut.
- Ford-Fulkerson can be used to find the min cut
 - \triangleright Find the max flow f^*
 - ightarrow Let $A^*=$ set of all nodes reachable from s in residual graph G_{f^*}
 - Easy to compute using BFS
 - \triangleright Then $(A^*, V \setminus A^*)$ is min cut

LP, Standard Formulation

- Input: $c, a_1, a_2, ..., a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$
 - > There are n variables and m constraints
- Goal:

LP, Standard Matrix Form

- Input: $c, a_1, a_2, \dots, a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$
 - > There are n variables and m constraints
- Goal:

Convert to Standard Form

- What if the LP is not in standard form?
 - > Constraints that use >

$$a^T x \ge b \iff -a^T x \le -b$$

Constraints that use equality

$$\circ a^T x = b \iff a^T x \le b, a^T x \ge b$$

- > Objective function is a minimization
 - \circ Minimize $c^T x \Leftrightarrow \text{Maximize } -c^T x$
- > Variable is unconstrained
 - o x with no constraint \Leftrightarrow Replace x by two variables x' and x'', replace every occurrence of x with x' x'', and add constraints $x' \ge 0$, $x'' \ge 0$

Duality

Primal LP Dual LP
$$\max \mathbf{c}^T \mathbf{x} \qquad \min \mathbf{y}^T \mathbf{b}$$

$$\mathbf{A} \mathbf{x} \leq \mathbf{b} \qquad \mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$$

$$\mathbf{x} \geq 0 \qquad \qquad \mathbf{y} \geq 0$$

- Weak duality theorem:
 - > For any primal feasible x and dual feasible y, $c^Tx \leq y^Tb$
- Strong duality theorem:
 - > For any primal optimal x^* and dual optimal y^* , $c^Tx^*=(y^*)^Tb$

P

- P (polynomial time)
 - > The class of all decision problems computable by a TM in polynomial time

NP

- NP (nondeterministic polynomial time)
 - > The class of all decision problems for which a YES answer can be verified by a TM in polynomial time given polynomial length "advice" or "witness".
 - \succ There is a polynomial-time verifier TM V and another polynomial p such that
 - \circ For all YES inputs x, there exists y with |y| = p(|x|) on which V(x,y) returns YES
 - \circ For all NO inputs x, V(x,y) returns NO for every y
 - > Informally: "Whenever the answer is YES, there's a short proof of it."

co-NP

- co-NP
 - > Same as NP, except whenever the answer is NO, we want there to be a short proof of it

Reductions

- Problem A is p-reducible to problem B if an "oracle" (subroutine) for B can be used to efficiently solve A
 - \succ You can solve A by making polynomially many calls to the oracle and doing additional polynomial computation

NP-completeness

NP-completeness

- A problem B is NP-complete if it is in NP and every problem A in NP is p-reducible to B
- > Hardest problems in NP
- If one of them can be solved efficiently, every problem in NP can be solved efficiently, implying P=NP

Observation:

- If A is in NP, and some NP-complete problem B is p-reducible to A, then A is NP-complete too
 - "If I could solve A, then I could solve B, then I could solve any problem in NP"

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 1: Show that B is in NP
 - Some polynomial-size advice should be sufficient to verify a YES instance in polynomial time
 - No advice should work for a NO instance
 - > Usually, the solution of the "search version" of the problem works
 - But sometimes, the advice can be non-trivial
 - For example, to check LP optimality, one possible advice is the values of both primal and dual variables, as we saw in the last lecture

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 2: Find a known NP-complete problem A and reduce it to B (i.e. show $A \leq_p B$)
 - This means taking an arbitrary instance of A, and solving it in polynomial time using an oracle for B
 - Caution 1: Remember the direction. You are "reducing known NPcomplete problem to your current problem".
 - Caution 2: The size of the B-instance you construct should be polynomial in the size of the original A-instance
 - This would show that if B can be solved in polynomial time, then A can be as well
 - > Some reductions are trivial, some are notoriously tricky...