Test de Hipótesis - Definiciones importantes

Test - Ingredientes

- H_0 : Hipótesis nula. $H_0: \theta \in \Theta_0$
- H_1 : Hipótesis Alternativa. $H_1: \theta \in \Theta_1$
- \mathcal{R} : Región que indica cómo deben ser las observaciones para rechazar H_0 en favor de H_1 .

Test de Hipótesis - Ejemplo: De Pollos y Arsénico

p-valor - con el vermouth - en la entrada

- p-valor se calcula una vez realizado el experimento.
- Depende de los valores (x_1, \ldots, x_n) observados.
- Indica cuán probable es observar valores extremos como el obtenido, en la dirección de H_1 , con (x_1, \ldots, x_n) cuando H_0 es verdadero.

p-valor chico da evidencia contra H_0 , en favor de H_1

• $X_i \sim \mathcal{N}(\mu, 9)$

$$H_0: \mu = 80$$
 $H_1: \mu > 80$

• Región de rechazo de H_0

$$\mathcal{R} = \left\{ \frac{\overline{X}_n - 80}{\sqrt{9/n}} \ge 1.64 \right\} = \left\{ \overline{X}_n \ge 80 + 1.64 \sqrt{9/n} \right\}$$

• Región de rechazo de H_0 (de nivel de significatividad α):

$$\mathcal{R} = \left\{ \frac{\overline{X}_n - 80}{\sqrt{9/n}} \ge 1.64 \right\} = \left\{ \overline{X}_n \ge 80 + 1.64 \sqrt{9/n} \right\}$$

• Función de potencia:

$$\begin{split} \pi(\mu) &= & \mathbb{P}_{\mu}(\mathcal{R}) = \mathbb{P}_{\mu}(\overline{X}_n \ \geq \ 80 + 1.64 \sqrt{9/n}) = \\ &= & \mathbb{P}_{\mu}\left(\frac{\overline{X}_n - \mu}{\sqrt{9/n}} \ \geq \ \frac{80 - \mu}{\sqrt{9/n}} + 1.64\right) = \\ &= & \mathbb{P}\left(Z \geq \frac{80 - \mu}{\sqrt{9/n}} + 1.64\right) = \\ &= & 1 - \mathsf{pnorm}\left(\frac{80 - \mu}{\sqrt{9/n}} + 1.64\right) = \\ &= & 1 - \mathsf{pnorm}\left(\frac{\sqrt{n}(80 - \mu)}{\sqrt{9}} + 1.64\right) \end{split}$$

- $X_i \sim \mathcal{N}(\mu, 9)$, $H_0: \mu = 80$, $H_1: \mu > 80$.
- Región de rechazo de H_0 (de nivel de significatividad α):

$$\mathcal{R} = \mathcal{R}_{n,\alpha} = \left\{ \frac{\overline{X}_n - 80}{\sqrt{9/n}} \ge z_{\alpha} \right\} = \left\{ \overline{X}_n \ge 80 + z_{\alpha} \sqrt{9/n} \right\}$$

Función de potencia:

$$\pi(\mu) = \pi_n(\mu) = 1 - \mathsf{pnorm}\left(\frac{\sqrt{n}(80 - \mu)}{\sqrt{9}} + z_{\alpha}\right)$$

- Propiedades:
 - 1. π es creciente: $\mu_a \leq \mu_b$, entonces $\pi(\mu_a) \leq \pi(\mu_b)$
 - 2. $\lim_{n\to\infty} \pi_n(\mu_1) = 1$, para todo $\mu_1 > 80$

Test

$$H_0: \theta \in \Theta_0 \qquad H_1 = \theta \in \Theta_1$$

Un test es una regla de decisión que, en función de H_0 y H_1 , determina cómo deben ser la muestra (o los datos) para que H_0 sea rechazada en favor de H_1 .

La región de rechazo $\mathcal R$ indica en qué casos rechazamos H_0 en favor de H_1 .

La región de rechazo $\mathcal R$ es el conjunto de valores que llevan a la decisión de rechazar $H_0.$

Test: Regla de decisión- posibles errores

 \mathcal{R} : Región de rechazo. Determina cómo deben ser los datos para rechazar H_0 en favor de H_1 .

	No Rechazamos H_0	Rechazamos H_0
H_0 es cierta	no hay error	error Tipo I
H_0 es falsa	error Tipo II	no hay error

- Error (es) tipo I: rechazar H_0 cuando es verdadera:
- Error (es) tipo II: NO rechazar H_0 cuando es falsa.

Test: Regla de decisión- posibles errores

 \mathcal{R} : Región de rechazo. Determina cómo deben ser los datos para rechazar H_0 en favor de H_1 .

	No Rechazamos H_0	Rechazamos H_0
H_0 es cierta	no hay error	error Tipo I
H_0 es falsa	error Tipo II	no hay error

• Error (es) tipo I: rechazar H_0 cuando es verdadera.

Probabilidad (ERROR TIPO I) = $\mathbb{P}_{\theta}(\mathcal{R})$, con θ satisfaciendo H_0

• Error (es) tipo II: NO rechazar H_0 cuando es falsa.

Probabilidad (ERROR TIPO II) =
$$\mathbb{P}_{\theta}(\mathcal{R}^c) = 1 - \mathbb{P}_{\theta}(\mathcal{R})$$
,

con θ satisfaciendo H_1

$\pi(\theta)$: Función de Potencia (del Test)

 $\pi(\theta)$ es la probabilidad de rechazar H_0 cuando el valor verdadero del parámetro es θ .

$$\pi(\theta) = \mathbb{P}_{\theta}(\mathcal{R})$$

- si θ satisface H_0 , $\mathbb{P}_{\theta}(\mathcal{R}) = \pi(\theta)$ es la probabilidad de un error tipo I.
- si θ satisface H_1 , $\mathbb{P}_{\theta}(\mathcal{R}^c) = 1 \pi(\theta)$ es la probabilidad de un error tipo II.

$\pi(\theta)$: Función de Potencia (del Test) y Errores

• Función de potencia: probabilidad de rechazar H_0 cuando el valor verdadero del parámetro es θ :

$$\pi(\theta) = \mathbb{P}_{\theta}(\mathcal{R})$$

• si θ satisface H_0 , $\mathbb{P}_{\theta}(\mathcal{R}) = \pi(\theta)$ es la probabilidad de un error tipo I.

Queremos $\pi(\theta)$ chico cuando θ satisface H_0 .

• si θ satisface H_1 , $\mathbb{P}_{\theta}(\mathcal{R}^c) = 1 - \pi(\theta)$ es la probabilidad de un error tipo II.

Queremos $\pi(\theta)$ GRANDE cuando θ satisface H_1 . Potencia grande en las alternativas

Nivel de significatividad del Test cuando $H_0: \theta = \theta_0$

Dados $H_0: \theta = \theta_0$, $H_1: \theta \in \Theta_1$ y \mathcal{R} , decimos que el test es de nivel α si

$$\mathbb{P}_{\theta_0}(\mathcal{R}) \le \alpha$$

$$\mathbb{P}_{\theta_0}(\mathcal{R}) = \pi(\theta_0) \le \alpha$$

Controlamos la probabilidad de Error Tipo I: está acotada por α (en nuestros ejemplos, conseguimos que sea igual a α)

Nivel de significatividad del Test - caso general

Dados $H_0: \theta \in \Theta_0$, $H_1: \theta \in \Theta_1$ y \mathcal{R} , decimos que el test es de nivel α si

$$\mathbb{P}_{\theta}(\mathcal{R}) \leq \alpha \quad \forall \ \theta \ \text{satisfaciendo} \ H_0$$

Casos de probabilidad de Error tipo I: $\mathbb{P}_{\theta}(\mathcal{R}) = \pi(\theta) \leq \alpha$, $\forall \ \theta \in \Theta_0$

Peor probabilidad de Error tipo I: $\sup_{\theta \in \Theta_0} \pi(\theta) \leq \alpha$

Controlamos la probabilidad de **todo posible** Error Tipo I: está acotada por α ,

- $X_i \sim \mathcal{N}(\mu, 9)$, $H_0: \mu = 80$, $H_1: \mu > 80$.
- Región de rechazo de H_0 (de nivel de significatividad α):

$$\mathcal{R} = \mathcal{R}_{n,\alpha} = \left\{ \frac{\overline{X}_n - 80}{\sqrt{9/n}} \ge z_{\alpha} \right\} = \left\{ \overline{X}_n \ge 80 + z_{\alpha} \sqrt{9/n} \right\}$$

Estadístico del test

$$Z = Z(X_1, \dots, X_n) := \frac{\overline{X}_n - 80}{\sqrt{\frac{9}{n}}} \quad \sim \quad \mathcal{N}(0, 1)$$
bajo H_0

• Región de rechazo de H_0 (de nivel de significatividad α):

$$\mathcal{R} = \{ Z \ge z_{\alpha} \}$$

• Región de rechazo de H_0 (de nivel de significatividad α):

$$\mathcal{R} = \mathcal{R}_{n,\alpha} = \left\{ \frac{\overline{X}_n - 80}{\sqrt{9/n}} \ge z_{\alpha} \right\} = \left\{ \overline{X}_n \ge 80 + z_{\alpha} \sqrt{9/n} \right\}$$

• Función de potencia:

$$\pi(\mu) = \pi_n(\mu) = 1 - \operatorname{pnorm}\left(\frac{\sqrt{n}(80 - \mu)}{\sqrt{9}} + z_\alpha\right)$$

- Propiedades:
 - 1. π es creciente: $\mu_a \leq \mu_b$, entonces $\pi(\mu_a) \leq \pi(\mu_b)$

$$\sup_{\mu \leq 80} \pi(\mu) \leq \pi(80) = \alpha \quad \rightarrow \quad \mathsf{Nivel} \ \alpha \ \mathsf{para} \ H_0 : \mu \leq 80$$

2. $\lim_{n\to\infty}\pi_n(\mu_1)=1$, para todo $\mu_1>80$

$$1-\pi_n(\mu_1) \le \beta \equiv n \ge \left\{\sqrt{9} \left(\operatorname{qnorm}(\beta) - z_{\alpha}\right) / (80 - \mu_1)\right\}^2$$

En síntesis, cuando $H_0: \theta = \theta_0$

• Dado n, y α , se puede construir un test mediante una región de rechazo $\mathcal{R} = \mathcal{R}_{n,\alpha}$ de nivel α :

$$\mathbb{P}_{\theta_0}(\mathcal{R}_{n,\alpha}) = \alpha$$

- Para armar la región de rechazo se usa un estadístico $T(X_1,\ldots,X_n)$ cuya distribución es CONOCIDA bajo H_0 .
- La potencia del test está definida por

$$\pi(\theta) = \pi_{n,\alpha}(\theta) = \mathbb{P}_{\theta}(\mathcal{R}_{n,\alpha})$$

• Dado un valor θ_1 en H_1 y β , se puede encontrar n para que el error tipo II en θ_1 sea menor o igual a β .

$$\beta \ge \mathbb{P}_{\theta_1}(\mathcal{R}_n^c) = 1 - \pi_n(\theta_1) \equiv \pi_n(\theta_1) \ge 1 - \beta$$

Una muestra normal, varianza conocida

Sean $X_1,\dots,X_n\sim N\left(\mu,\sigma_0^2\right)$ i.i.d., con σ_0^2 conocida. Se quiere testear

$$H_0: \mu=\mu_0$$
 versus alguna de las alternativas siguientes
$$H_1: \mu>\mu_0 \qquad H_1: \mu<\mu_0 \qquad H_1: \mu\neq\mu_0$$

Estadístico del test

$$Z = Z(X_1, \dots, X_n) := rac{\overline{X}_n - \mu_0}{\sqrt{rac{\sigma_0^2}{n}}} \quad \sim \quad \mathcal{N}\left(0, 1
ight)$$
bajo H_0

Región de rechazo de nivel α

Estadístico del test $Z:=rac{\overline{X}_n-\mu_0}{\sqrt{rac{\sigma_0^2}{n}}}\sim \mathcal{N}(0,1)$, cuando $\mu=\mu_0$.

1. $H_0: \mu = \mu_0$ vs. $H_1: \mu > \mu_0$

$$\mathcal{R}_{\alpha} = \left\{ \frac{\overline{X}_n - \mu_0}{\sqrt{\frac{\sigma_0^2}{n}}} \ge z_{\alpha} \right\} = \left\{ Z \ge z_{\alpha} \right\}$$

2. $H_0: \mu = \mu_0$ vs. $H_1: \mu < \mu_0$

$$\mathcal{R}_{\alpha} = \left\{ \frac{\overline{X}_n - \mu_0}{\sqrt{\frac{\sigma_0^2}{n}}} < -z_{\alpha} \right\} = \left\{ Z \le -z_{\alpha} \right\}$$

3. $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$

$$\mathcal{R}_{\alpha} = \left\{ \left| \frac{\overline{X}_n - \mu_0}{\sqrt{\frac{\sigma_0^2}{n}}} \right| > z_{\alpha/2} \right\} = \{ |Z| \ge z_{\alpha/2} \}$$

p-valor - Una muestra normal, varianza conocida

Estadístico del test
$$Z:=rac{\overline{X}_n-\mu_0}{\sqrt{rac{\sigma_0^2}{n}}}$$

Estadístico OBSERVADO:

$$z_{\text{obs}} = \frac{\overline{X}_{n,\text{obs}} - \mu_0}{\sqrt{\frac{\sigma_0^2}{n}}} = \frac{\overline{x}_n - \mu_0}{\sqrt{\frac{\sigma_0^2}{n}}}$$

1. $H_0: \mu = \mu_0$ vs. $H_1: \mu > \mu_0$

$$p\text{-valor} = \mathbb{P}(Z \geq z_{\text{obs}})$$

2. $H_0: \mu = \mu_0$ vs. $H_1: \mu < \mu_0$

p-valor =
$$\mathbb{P}(Z \leq z_{obs})$$

3. $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$

$$\text{p-valor} \quad = \quad 2\mathbb{P}(Z \geq |z_{\mbox{\scriptsize obs}}|)$$

p- valores: Primer plato

- p-valor se calcula una vez realizado el experimento.
- Depende de los valores (x_1, \ldots, x_n) observados.
- Indica cuan probable es observar valores extremos como el obtenido con (x_1, \ldots, x_n) cuando H_0 es verdadero.

p-valor chico da evidencia contra H_0 , en favor de H_1

• Con los datos rechazo H_0 a nivel α si y solo si p-valor $\leq \alpha$.