Introduction to Cryptography, Fall 2021 Homework 3

Due: 1pm, 11/10/2021 (Wednesday)

Part 1: Written Problems

- 1. Suppose you have an identical and independent source of bits, where bit 0 is generated with probability 0.4 and bit 1 is generated with probability 0.6.
 - A. Design a conditioning algorithm to generate a bit string with independent bits, where 0 and 1 appear withprobability 0.5 each.
 - B. What is the expected number of input bits in order to generate an output bit?
 - A. Examine the bit stream as a sequence of non-overlapping pairs. Discard all 00 and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1.

 Because the probability of 10 and 01 are the same (0.4*0.6=0.24), so the output bit stream has the same
 - Because the probability of 10 and 01 are the same (0.4*0.6=0.24), so the output bit stream has the same probability of 1 and 0.
 - B. The sum of probability of 01 and 10 is 0.4*0.6*2=0.48, so the expected number of input bits to produce x output bits is x/(0.24)
- 2. Write a BBS-generator program with n=238589771 and seed=7477 to generate a string of 1,000,000 bits.
 - A. Compute the ratios of bits 0, 1. Are both of them around 50%? If not, why?
 - B. Compute the ratios of bit pattern '00', '01', '10', and '11'. Are all of them around 25%? If not, why?

<u>Note</u>: 00011 is counted as two '00', one '01 and one '11'. The ratios are 50%, 25%, 0% and 25%, respectively.

- A. Yes. The number of 0 is 499695 and the number of 1 is 500305. Both of them have ratios around 50%.
- B. Yes. The number of them are as follows 00: 124043 01: 125587 10: 126022 11: 124348 All of them have ratios around 25%.
- 3. Alice and Bob use the same RSA modulus n=143. Assume that Alice's key exponents e=7 and d=103 and Bob'spublic key exponent e=13. Assume that David encrypts a message as C=60 with Bob's public key for Bob.
 - A. Factor n, compute Bob's private key and decrypt C.
 - B. Show that Alice can decrypt C without factoring n=143.
 - A. n = 13*11, $\emptyset(n) = 12*10 = 120$, $13^{-1} \mod 120 = 37$ (Bob's private key) $C^{37} \mod 143 = 47$
 - B. Alice's $e^*d = 721 = k\emptyset(n) + 1 \implies ed 1 = 720 = k\emptyset(n)$ Bob's $e^{-1} \mod 720 = 277$, since $277 \equiv \text{Bob's d (mod } \emptyset(n))$, $C^{277} \mod 143 = 47$
- 4. Alice and Bob use the Diffie-Hellman key exchange technique with a common prime q = 131 and a primitive
 - $\alpha = 6$. If Alice chooses $X_A = 15$ and Bob chooses $X_B = 27$, what are Y_A , Y_B and the shared secret by the method?

$$Y_A = 6^{15} \mod 131 = 71$$
, $Y_B = 6^{27} \mod 131 = 104$
 $Key = 71^{27} \mod 131 = 104^{15} \mod 131 = 71$

- 5. Alice and Bob use the ElGamal scheme with a common prime q = 131 and a primitive root $\alpha = 6$. Let Bob's publickey be $Y_B = 3$.
 - A. What is the ciphertext of M=9 if Alice chooses the random integer k=4?
 - B. If Alice uses the same k to encrypt two messages M_1 and M_2 as (12, 65) and (12, 64), what is the relationbetween M_1 and M_2 ?
 - A. $C = (6^4 \mod 131, 9*3^4 \mod 131) = (117, 74)$
 - B. $3^k * M1 \mod 131 = 65 \implies 3^k * M1 = 131 * t_1 + 65$

$$3^k * M2 \mod 131 = 64 \implies 3^k * M2 = 131 * t_2 + 65$$

$$\Rightarrow$$
 3^k(M1-M2) = 131(t₁ - t₂) + 1

- \Rightarrow $(3^k)^{-1} \mod 131 = M1-M2$
- \Rightarrow M1-M2 is the modular inverse of symmetric key(3^k) under mod q(131)
- 6. Consider the elliptic curve $y^2 = x^3 + 3x + 1$ over \mathbb{Z}_7 . Assume that G = (3, 3) and Bob's private key is $n_B = 4$.
 - A. Compute all the points over the curve.
 - B. What is Bob's public key P_B ?
 - C. Alice wants to encrypt message $P_m = (2,1)$ to Bob and chooses the random value k = 3. What is theciphertext C_m ?
 - D. Decrypt the ciphertext ((5, 1), (2, 6)) using Bob's private key.

A.

X	$(x^3 + 3x + 1) \mod 7$	Square roots mod 7?	у
0	1 mod 7 =1	Yes	1,6
1	5 mod 7 =5	No	
2	15 mod 7 =1	Yes	1,6
3	37 mod 7 =2	Yes	3,4
4	$77 \mod 7 = 0$	Yes	0
5	141 mod 7 =1	Yes	1,6
6	235 mod 7 =4	Yes	2.5

$$(0,1), (0,6), (2,1), (2,6), (3,3), (3,4), (4,0), (5,1), (5,6), (6,2), (6,5)$$

B. 4G = 2(2G)

$$2G = \left(\left(\frac{3x^2 + 3}{2y} \right)^2 - 2x, \frac{3x^2 + 3}{2y} (x - x') - y \right) = (5, 1)$$

$$4G = 2(2G) = (6, 2) = P_B$$

C.
$$C_m = (kG, P_m + kP_B) = (3(3, 3), (2, 1) + 3(6, 2))$$

= $((0, 1), (2, 1) + O) = ((0, 1), (2, 1))$

D. Key =
$$4(5, 1) = (6, 5)$$

$$(2, 6) - (6, 5) = (0, 6)$$