ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

ВШ программной инженерии

Курсовая работа.

по дисциплине "Технологии компьютерного моделирования"

Выполнила студентка гр. 5130202/00201

Козлова Е. А.

Руководитель Сениченков Ю. Б.

Санкт-Петербург 2024 г.

Оглавление

Постановка задачи	.3
Реализация в AnyDinamics.	. 4
Результаты моделирования	. 5

ЗАЛАНИЕ 9

Материальная точечная масса m=1 кг находится в поле тяготения тонкого кольца массы $M=10^{20}$ кг и радиуса R=1 км. В начальный момент времени материальная точечная масса помещается в точку Q_1 , расположенную на оси кольца на расстоянии $x_0 < R$ от плоскости кольца и начинает совершать колебательные движения (рис. 3.15).

Рис. 3.15. Система "точечная масса — кольцо"

Если $x_0 < 0.1R$, то колебания x описываются следующим уравнением:

$$m \cdot \ddot{x} = -\frac{G \cdot M \cdot m}{R^3} \cdot x . \tag{3.26}$$

Если $x_0 \ge 0.1R$ или в результате колебаний выполняется условие $x \ge 0.1R$, то колебания описываются следующим уравнением:

$$m \cdot \ddot{x} = -\frac{G \cdot M \cdot m}{\left(R^2 + x^2\right)^{3/2}} \cdot x, \qquad (3.27)$$

где G — гравитационная постоянная.

Пусть $x_0 = 1$ м.

Каждые 15 секунд радиус кольца поочередно мгновенно расширяется и сжимается в 10 раз. Если точка отклоняется от кольца на расстояние, превышающее в 10 раз его первоначальный радиус, система разрушается.

Построить модель данной системы, а также модель системы, состоящей из двух систем "материальная точка — кольцо", несвязанных друг с другом. Вторая система "материальная точка — кольцо" идентична первой, за исключением того, что в ней радиус кольца изменяется в 5 раз каждые 20 секунд.

Реализация в AnyDinamics.

Класс, сменяющий радиус в соответствии с параметрами (требуемый промежуток времени и увеличение/уменьшение в нужное количество раз)

Класс, реализующий уравнение, управляющее колебаниями, и завершающий движение, после выхода за изначальный радиус в 10 раз

Система уравнений:

Результаты моделирования

Кольца в сжатом состоянии (R = 1000, R = 1000)

Кольца в разжатом состоянии (R = 10000, R = 5000)

Остановка при выходе за радиус, десятикратно превышающий первоначальный

