Break-Ground:

Same or different?

Two young mathematicians examine one (or two!) functions.

Check out this dialogue between two calculus students (based on a true story):

Devyn: Riley, I have a pressing question.

Riley: Tell me. Tell me everything.

Devyn: Think about the function

$$f(x) = \frac{x^2 - 3x + 2}{x - 2}.$$

Riley: OK.

Devyn: Is this function equal to g(x) = x - 1?

Riley: Well if I plot them with my calculator, they look the same.

Devyn: I know!

Riley: And I suppose if I write

$$f(x) = \frac{x^2 - 3x + 2}{x - 2}$$
$$= \frac{(x - 1)(x - 2)}{x - 2}$$
$$= x - 1$$
$$= g(x).$$

Devyn: Sure! But what about when x = 2? In this case

$$g(2) = 1$$
 but $f(2)$ is undefined!

Riley: Right, f(2) is undefined because we cannot divide by zero. Hmm. Now I see the problem. Yikes!

Problem 1 In the context above, are f and g the same function?

Learning outcomes: Distinguish two functions by considering their domains. Recognize different representations of the same function.

Mult	iple Choice:
(a)	yes
(b)	no√
	lem 2 Suppose f and g are functions but the domain of f is different from omain of g . Could it be that f and g are actually the same function?
Mult	iple Choice:
(a)	yes
(b)	no√
T 1	
tion. relatio	A function is not a rule for transforming the input to the output, but rather th
tion. relatio (the r	A function is not a rule for transforming the input to the output, but rather thouship between a specified collection of inputs (the domain) and possible output
tion. relatio (the r	A function is not a rule for transforming the input to the output, but rather the onship between a specified collection of inputs (the domain) and possible output ange).
tion. relatio (the r	A function is not a rule for transforming the input to the output, but rather the onship between a specified collection of inputs (the domain) and possible output ange). The matter of the domain and possible output ange. The matter of the same function be represented by different formulas?
tion. relatio (the r	A function is not a rule for transforming the input to the output, but rather the onship between a specified collection of inputs (the domain) and possible output ange). Lem 3 Can the same function be represented by different formulas? Liple Choice: yes yes
tion. relatio (the r Prob Mult (a) (b)	A function is not a rule for transforming the input to the output, but rather the onship between a specified collection of inputs (the domain) and possible output ange). Lem 3 Can the same function be represented by different formulas? Liple Choice: yes yes
relation. relation (the r Problem (a) (b) Problem (b)	A function is not a rule for transforming the input to the output, but rather the onship between a specified collection of inputs (the domain) and possible output ange). Lem 3 Can the same function be represented by different formulas? Liple Choice: yes no
relation. relation (the relation) Prob Mult (a) (b) Prob Mult	A function is not a rule for transforming the input to the output, but rather the onship between a specified collection of inputs (the domain) and possible output ange). lem 3 Can the same function be represented by different formulas? iple Choice: $yes \checkmark$ no lem 4 Are $f(x) = x $ and $g(x) = \sqrt{x^2}$ the same function?

Problem 5 Let $f(x) = \sin^2(x)$ and $g(u) = \sin^2(u)$. The domain of each of these functions is all real numbers. Which of the following statements are true?

Multiple Choice:

- (a) There is not enough information to determine if f = g.
- (b) The functions are equal. \checkmark
- (c) If $x \neq u$, then $f \neq g$.
- (d) We have $f \neq g$ since f uses the variable x and g uses the variable u.