Percolation Phase Transitions on Dynamically Grown Graphs

Braden Hoagland Advised by Rick Durrett

April 15, 2022

Background

Dynamically grown graphs and percolation

Start with a graph with n vertices and 0 edges

Add edges randomly every 1/n units of time

We'll work in the limit as $n \to \infty$

Percolation

A giant component is a cluster that takes up a finite fraction of the graph

Percolation is when a giant component first emerges (call this time t_c)

Percolation

A giant component is a cluster that takes up a finite fraction of the graph

Percolation is when a giant component first emerges (call this time t_c)

This emergence has lots of different behaviors

Erdős Rényi

Erdős Rényi

Erdős Rényi

da Costa

da Costa

da Costa

Explosive Percolation

Explosive Percolation is a sudden, seemingly discontinuous emergence of the giant component

Basic Results

Continuous phase transition and scaling behavior

Continuous phase transition

Define Achlioptas rule

Achlioptas claimed to have found a discontinuous emergence of a giant component based on simulations **When?**

Continuous phase transition

Riordan and Warnke (2012)

 ℓ -vertex rule: choose ℓ vertices i.i.d., and you're only required to add an edge if all ℓ of them are in distinct clusters (generalizes Achlioptas processes)

All ℓ -vertex rules have a continuous phase transition

Continuous phase transition

Riordan and Warnke (2012)

 ℓ -vertex rule: choose ℓ vertices i.i.d., and you're only required to add an edge if all ℓ of them are in distinct clusters (generalizes Achlioptas processes)

All ℓ -vertex rules have a continuous phase transition

Proof by contradiction...

Scaling behavior

reference da Costa? who tf showed this?

The distribution of vertices belonging to a cluster of size s follows a power law

$$s^{1-\tau}f(s\delta^{1/\sigma})$$

where $\delta = t - t_c$ and f is a scaling function.

Scaling behavior

reference da Costa? who tf showed this?

The distribution of vertices belonging to a cluster of size s follows a power law

$$s^{1-\tau}f(s\delta^{1/\sigma})$$

where $\delta = t - t_c$ and f is a scaling function.

Noticing scaling behavior in rules with explosive percolation was motivation for proving their continuity

Our Results

Pick two finite groups of i.i.d. vertices

Follow a deterministic method to choose a representative vertex from each group (can be a different rule for each group)

Add an edge between the two representatives

Erdős Rényi: Both groups are size 1, so this is the same as sampling edges randomly

Correspondence with Erdős Rényi random graph

Erdős Rényi: Both groups are size 1, so this is the same as sampling edges randomly

Correspondence with Erdős Rényi random graph

da Costa: both groups are of size *m*, and pick the vertex with the smallest cluster size from each group