CPSC 331: DATA STRUCTURES, ALGORITHMS, AND THEIR ANALYSIS

GO UEZONO

March 13, 2024

CONTENTS

1	Introduction	1
2	Methods	2
	2.1 Test sub	2
	2.2 Math subsection	2
3	Results and Discussion	2
	3.1 Subsection	2
	3.2 Subsubsection	. 2

LIST OF FIGURES

LIST OF TABLES

ABSTRACT

Will be deleted.

1 INTRODUCTION

Test text

Test math notation: $\cos \pi = -1$ and $\alpha \omega$

2 METHODS

- 1. 1st item in list
- 2. 2nd item
- 3. 3rd

2.1 Test sub

DESCRIPTION

2ND DESCRIPTION

2.2 Math subsection

$$\cos^3\theta = \frac{1}{4}\cos\theta + \frac{3}{4}\cos 3\theta\tag{1}$$

Definition 1 (Gauss). To a mathematician, it is obvious that $\int_{-\inf}^{+\inf} e^{-x^2} dx = \sqrt{pi}$.

Theorem 1 (Red and Black Trees). Red trees are better than black trees.

Proof. We have that $\log(1)^2 = 2\log(1)$. We also have that $\log(-1)^2 = \log(1) = 0$. Then, $2\log(-1) = 0$, from which the proof.

3 RESULTS AND DISCUSSION

3.1 Subsection

Test subsec

3.2 Subsubsection

Test sub

word Definition

CONCEPT Explanation

IDEA Text

Test Test

- First
- Second
- Third