Midterm Vorbereitung

1. (a) Sei $w=(10)^{2^{2^{n^2+1}}}\in\{0,1\}^*$ für alle $n\in\mathbb{N}$. Zeige, dass eine Konstante $d\in\mathbb{N}$ existiert, so dass für alle $n\in\mathbb{N}$ gilt, dass

$$K(w_n) \le \frac{1}{2} \log_2(\log_2(\log_2|w_n| - 1) - 1) + d$$

(b) Wir betrachten die Sprache

$$L_1 = \{101^i 0^j 1^k \mid i + k = j, \text{mit } i, j, k \in \mathbb{N}\}\$$

Sei w_n das kanonisch n-te Wort in L_1 . Zeige, dass es eine Konstante $c \in \mathbb{N}$ gibt, so dass für alle $n \in \mathbb{N}$ gilt:

$$K(w_n) \le 2 \cdot \log_2(|w_n|) + c$$

2. (a) Entwerfe einen endlichen Automaten (in Diagrammdarstellung) für die Sprache

$$L_2 = \{w \in \{0,1\}^* \mid |w_n| \text{ ist gerade und Nummer}(w) \equiv_3 0 \text{ und } w \text{ ist die kürzeste Binärdarstellung für Nummer}(w)\}$$

Begründe deinen Entwurf.

(b) Verwende die Potenzmengenkonstruktion, um den folgenden nichtdeterministischen endlichen Automaten in einen äquivalenten deterministischen Automaten umzuwandeln.

Nicht erreichbare Zustände können weggelassen werden.

(c) Zeige, dass die folgende Sprache nicht regulär ist. Verwende eine beliebige Methode, die in der Vorlesung vorgestellt wurde.

$$L_3 = \{0^{n(n+1)} \mid n \in \mathbb{N}\}\$$

3. (a) Zeige $L_{\rm H}^C \leq_{\rm R} L_{\rm diag}$

Zur Erinnerung:

Sei w_i das *i*-te Wort über $\{0,1\}$ und M_i die *i*-te Turing-Maschine in kanonischer Ordnung.

$$L_{\text{diag}} = \{w_i \in \{0, 1\}^* \mid M_i \text{akzeptiert } w_i \text{ nicht}\}$$

$$L_{\text{H}}^C = \{\text{Kod}(M) \# w \in \{0, 1, \#\}^* \mid M \text{ h\"{a}lt nicht auf } w\} \cup \{x \in \{0, 1, \#\}^* \mid x \text{ hat nicht die Form Kod}(M) \# w\}$$

(b) Zeige, dass $L_{\text{diag}} \leq_{\mathbf{R}} L_{\mathbf{H}}$ gilt