R4DS_Final

Efe Gülkan - Göksel Ediz Yiğit

2023-01-02

```
#setting path and wd
getwd()
## [1] "/Users/efegulkan/R_files/r4ds_final-main"
\#libraries
library(tidyverse)
library(readxl)
library(kableExtra)
library(scales)
#Importing data
dataset <- read_xlsx("xutum_data.xlsx")</pre>
dataset[,c(4:11)] <- sapply(dataset[,c(4:11)], as.numeric)</pre>
dataset$Dates <- as.character(dataset$Dates)</pre>
#Dividing by sectors and years
dataset %>%
    group_by(Dates)%>%
    group_split(Dates)%>%
    set_names((nm = unique(dataset$Dates))) -> yearly
dataset %>%
    group_by(Sector)%>%
    group_split(Sector)%>%
    set_names((nm = sort(unique(dataset$Sector)))) -> sectorly
\#\#General Summaries
yearly_summary <- dataset%>%
    group_by(Dates)%>%
    summarise(avg_emp = round(mean(`Number of Employees`, na.rm = T),2),
              sd_emp = round(sd(`Number of Employees`,na.rm=T),2),
              avg_exp_per = mean(`Personnel Expense Per Employee`, na.rm = T),
```

```
avg_profit = mean(`Profit Margin`, na.rm = T),
              avg_sales = mean(Sales, na.rm = T))%>%
    mutate(emp_index = avg_emp/first(avg_emp),
           exp_index = avg_exp_per/first(avg_exp_per),
           profit_index = avg_profit/first(avg_profit),
           sales_index = avg_sales/first(avg_sales))
sectorly summary <- dataset%>%
    group_by(Sector)%>%
    summarise(avg_emp = round(mean(`Number of Employees`, na.rm = T),2),
              sd_emp = round(sd(`Number of Employees`,na.rm=T),2),
              avg_exp_per = round(mean(`Personnel Expense Per Employee`, na.rm = T),2),
              avg_profit = round(mean(`Profit Margin`, na.rm = T),2),
              avg_sales = round(mean(Sales, na.rm = T),2))
all_summary <- dataset%>%
    group_by(Sector, Dates)%>%
    summarise(avg_emp = round(mean(`Number of Employees`, na.rm = T),2),
              avg_exp_per = mean(`Personnel Expense Per Employee`, na.rm = T),
              avg_profit = mean(`Profit Margin`, na.rm = T),
              avg_sales = mean(Sales, na.rm = T),
              avg_market_cap = mean(`Market Cap`, na.rm = T))
namean <- function(data){</pre>
    mean(data, na.rm = T)
}
difference <- dataset%>%
    filter(Dates %in% c("2015-12-31","2021-12-31"))%>%
    pivot_wider(id_cols = Sector,
                values_from = c("Number of Employees", "Sales", "Profit Margin"),
                names_from = Dates,
                values fn = namean)
difference <- difference %>%
    mutate(emp_change = 100*(`Number of Employees_2021-12-31`- `Number of Employees_2015-12-31`)/`Number
           sales_change = 100*(`Sales_2021-12-31`- `Sales_2015-12-31`)/`Sales_2015-12-31`,
           profit_change = 100*(`Profit Margin_2021-12-31`- `Profit Margin_2015-12-31`)/`Profit Margin_
unl <- function(data){
    length(unique(data))
sector_firms <- aggregate(dataset$Firm, by = list(dataset$Sector),FUN = unl)</pre>
dates_firms <- aggregate(dataset$Firm, by = list(dataset$Dates), FUN = unl)</pre>
no_firms <- dataset%>%
    group_by(Sector) %>%
    summarise(number = length(unique(Firm)))
ratio <- prop.table(no_firms$number)*100</pre>
ratio_table <- cbind(no_firms, ratio)</pre>
```

Group.1	X
2015-12-31	406
2016-12-31	408
2017-12-31	408
2018-12-31	404
2019-12-31	397
2020-12-31	393
2021-12-31	369

Dates	avg_emp	sd_emp	avg_exp_per	avg_profit	avg_sales	$\operatorname{emp_index}$	exp_index	profit_index :
2015-12-31	2716.92	8141.46	140470.7	-35.90926	2321.607	1.0000000	1.000000	1.0000000
2016-12-31	2686.43	8157.28	144148.6	-563.24627	2494.706	0.9887777	1.026183	15.6852647
2017-12-31	2623.63	7995.05	143427.6	1489.53624	3038.747	0.9656633	1.021050	-41.4805588
2018-12-31	2442.46	7803.98	166893.7	19.46442	3815.813	0.8989812	1.188103	-0.5420444
2019-12-31	2731.63	8504.67	179087.8	-87.74947	4796.409	1.0054142	1.274912	2.4436444
2020-12-31	2837.01	9127.57	216933.8	98.68740	4968.918	1.0442008	1.544335	-2.7482435
2021-12-31	3097.61	9837.13	268444.2	201.41748	8248.793	1.1401182	1.911034	-5.6090676

```
dates_firms %>%
  kbl() %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

```
yearly_summary%>%
  kbl()%>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

```
sectorly_summary%>%
  kbl()%>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

```
difference%>%
  kbl()%>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

```
summary(dataset[,4:11])%>%
  kbl()%>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

```
ratio_table%>%
  kbl()%>%
  kable_styling(bootstrap_options = c("striped", "hover"))
```

#Comparasion of personnel expenses and employment

```
ylim.emp <- c(1000, 4000)
ylim.expens <- c(100000,300000)
```

Sector	avg_emp	sd_em
ACCOMMODATION AND FOOD SERVICE ACTIVITIES	1677.33	3127.8
ADMINISTRATIVE AND SUPPORT SERVICE ACTIVITIES	1070.46	3016.7
AGRICULTURE, FORESTRY AND FISHING	97.00	52.6
ARTS, ENTERTAINMENT AND RECREATION	347.57	196.5
CONSTRUCTION	3857.28	6927.3
ELECTRICITY, GAS, STEAM AND AIR CONDITIONING SUPPLY	1273.78	2707.2
FINANCIAL AND INSURANCE ACTIVITIES	3381.09	9927.2
HUMAN HEALTH AND SOCIAL WORK ACTIVITIES	5654.12	5255.4
INFORMATION AND COMMUNICATION	3445.77	8700.4
MANUFACTURING	2236.90	8238.1
MINING AND QUARRYING	1341.76	964.0
PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES	218.16	307.2
REAL ESTATE ACTIVITIES	85.58	152.2
TRANSPORTATION AND STORAGE	8153.67	10698.1
WATER SUPPLY; SEWERAGE, WASTE MANAGEMENT AND REMEDIATION ACTIVITIES	243.50	134.8
WHOLESALE AND RETAIL TRADE; REPAIR OF MOTOR VEHICLES AND MOTORCYCLES	6971.22	14153.0

Sector	Number of Employ
MANUFACTURING	
TRANSPORTATION AND STORAGE	
CONSTRUCTION	
FINANCIAL AND INSURANCE ACTIVITIES	
WHOLESALE AND RETAIL TRADE; REPAIR OF MOTOR VEHICLES AND MOTORCYCLES	
INFORMATION AND COMMUNICATION	
ELECTRICITY, GAS, STEAM AND AIR CONDITIONING SUPPLY	
MINING AND QUARRYING	
PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES	
REAL ESTATE ACTIVITIES	
ACCOMMODATION AND FOOD SERVICE ACTIVITIES	
HUMAN HEALTH AND SOCIAL WORK ACTIVITIES	
ARTS, ENTERTAINMENT AND RECREATION	
WATER SUPPLY; SEWERAGE, WASTE MANAGEMENT AND REMEDIATION ACTIVITIES	
ADMINISTRATIVE AND SUPPORT SERVICE ACTIVITIES	
AGRICULTURE, FORESTRY AND FISHING	

Number of Employees	EBITDA	Profit Margin	Sales	Market Cap	Personnel Expense (
Min.: 1.0	Min.: -426.89	Min. :-181191.9	Min.: -10.8	Min.: 3.3	Min.: 0.000
1st Qu.: 66.5	1st Qu.: 7.48	1st Qu.: 0.5	1st Qu.: 71.9	1st Qu.: 124.9	1st Qu.: 4.228
Median: 319.0	Median: 43.81	Median: 6.4	Median : 321.9	Median: 456.4	Median : 22.405
Mean: 2735.7	Mean: 486.41	Mean: 159.0	Mean: 4278.5	Mean: 3011.6	Mean: 306.784
3rd Qu.: 1179.0	3rd Qu.: 195.03	3rd Qu.: 18.8	3rd Qu.: 1445.6	3rd Qu.: 1862.2	3rd Qu.: 107.062
Max. :105908.0	Max. :43946.57	Max. : 545549.8	Max. :346688.7	Max. :98560.0	Max. :17379.680
NA's :290	NA's :308	NA's :190	NA's :172	NA's :426	NA's :261

Sector	number	rat
ACCOMMODATION AND FOOD SERVICE ACTIVITIES	9	2.20588
ADMINISTRATIVE AND SUPPORT SERVICE ACTIVITIES	8	1.96078
AGRICULTURE, FORESTRY AND FISHING	2	0.49019
ARTS, ENTERTAINMENT AND RECREATION	5	1.22549
CONSTRUCTION	15	3.67647
ELECTRICITY, GAS, STEAM AND AIR CONDITIONING SUPPLY	14	3.43137
FINANCIAL AND INSURANCE ACTIVITIES	64	15.68627
HUMAN HEALTH AND SOCIAL WORK ACTIVITIES	3	0.73529
INFORMATION AND COMMUNICATION	20	4.90196
MANUFACTURING	186	45.58823
MINING AND QUARRYING	6	1.47058
PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES	4	0.98039
REAL ESTATE ACTIVITIES	32	7.84313
TRANSPORTATION AND STORAGE	10	2.45098
WATER SUPPLY; SEWERAGE, WASTE MANAGEMENT AND REMEDIATION ACTIVITIES	1	0.24509
WHOLESALE AND RETAIL TRADE; REPAIR OF MOTOR VEHICLES AND MOTORCYCLES	29	7.10784

```
secaxexps <- diff(ylim.emp)/diff(ylim.expens)</pre>
secax_exps <- ylim.emp[1] - secaxexps*ylim.expens[1]</pre>
ylim.prof <- c(-600,1800)
secaxprof <- diff(ylim.emp)/diff(ylim.prof)</pre>
secax_prof <- ylim.emp[1] - secaxprof*ylim.prof[1]</pre>
exp_vs_emp <- ggplot(yearly_summary, aes(x = Dates, group = 1))+</pre>
    geom_line(aes(y = avg_emp)) +
    geom_line(aes(y = secax_exps+avg_exp_per*secaxexps), color = "red")+
    geom_point(aes(y = avg_emp),color = "navy")+
    geom_point(aes(y = secax_exps+avg_exp_per*secaxexps), color = "navy")+
    scale_y_continuous("Average Employee", sec.axis = sec_axis(~ (. - secax_exps)/secaxexps, name = "Av
    theme(axis.line.y.right = element_line(color = "red"),
        axis.ticks.y.right = element_line(color = "red"),
        axis.text.y.right = element_text(color = "red"))+
    labs(x = "Years")
profit_emp <- ggplot(yearly_summary, aes(x = Dates, group = 1))+</pre>
    geom_line(aes(y = avg_emp)) +
    geom\_line(aes(y = secax\_prof+avg\_profit*secaxprof), color = "red") +
    geom_point(aes(y = avg_emp), color = "navy")+
    geom_point(aes(y = secax_prof+avg_profit*secaxprof), color = "navy")+
    scale_y_continuous("Average Employee", sec.axis = sec_axis(~ (. - secax_prof)/secaxprof, name = "Av
    theme(axis.line.y.right = element_line(color = "red"),
        axis.ticks.y.right = element_line(color = "red"),
        axis.text.y.right = element_text(color = "red"))+
    labs(x = "Years",y="Average Profit Margin",title = "Change in Average Profit Margins of BIST TUM Fi
emp_box <- ggplot(dataset, aes(x = Sector))+</pre>
    geom_boxplot(aes(y = `Number of Employees`, color = Dates), show.legend = T, outlier.alpha = 0.2)+
    lims(y = c(0,30000)) +
```

```
scale_x_discrete(labels = abbreviate)+
    theme(axis.text.x = element_text(size= 8,angle = 45,hjust = 1, vjust = 1))
exp_emp_index <- ggplot(yearly_summary, aes(x = Dates, group = 1))+</pre>
    geom_line(aes(y = emp_index, color = "Employee Index"))+
    geom_line(aes(y=exp_index, color = "Average Personnel Expense Index"))+
   geom_point(aes(y = emp_index))+
   geom_point(aes(y = exp_index))+
   theme(legend.position = "bottom")+
    scale_color_manual(name = "Index",
                       values = c("red","black"),
                       labels = c("Average Personnel Expense Index", "Employee Index"))+
   labs(x = "Years",
         y = "Index",
         title = "Index comparasion of Employee Number and Average Personnel Expense", caption = "Source
sales_change <- ggplot(yearly_summary, aes(x = Dates, group = 1))+
    geom_line(aes(y = avg_sales))+
    geom_point(aes(y = avg_sales))+
   labs(x = "Years",y="Average Sales (thousand)",title = "Change in Average Sales of BIST TUM Firms",c
```

profit_emp

Index comparasion of Employee Number and Average Personnel Expense

Source: Bloomberg

sales_change

Change in Average Sales of BIST TUM Firms

Source: Bloomberg

#Comparasion of Yearly Average Number of Employee by Sector

```
sectors1 <- c("ACCOMMODATION AND FOOD SERVICE ACTIVITIES", "ADMINISTRATIVE AND SUPPORT SERVICE ACTIVITIE
sectors2 <- c("INFORMATION AND COMMUNICATION", "MANUFACTURING", "MINING AND QUARRYING", "PROFESSIONAL, SCI
sec_emp1 <- ggplot(all_summary%>%
           filter(avg_market_cap<=1698.35))+</pre>
    geom_point(aes(x= Dates,
                   y = avg_emp,
                   color = Sector), show.legend = T)+
    geom_line(aes(x= Dates,
                   y = avg_emp,
                   color = Sector, group = Sector),show.legend = T)+
   theme(axis.text.x = element_text(angle = 15),
   legend.text = element_text(size = 8,vjust = 1, hjust = 0.5),
   legend.position = "right",
   legend.key.width = unit(0.1, "cm"),
   legend.key.size = unit(0.1, "cm"),
   legend.spacing = unit(0.01, "cm"))+
        scale_colour_viridis_d(option = "turbo",
                               end = 1,
                               labels = scales::label_wrap(25),
                               guide = guide_legend(nrow = 16))+
   lims(y=c(-1000,13000))+
    ylab("Average Number of Employee")+
```

```
labs(title = "Change of yearly average Number of Employees",
         subtitle = "Average Market Cap of Sector lower than the median 1.6 billion liras")
sec_emp2 <- ggplot(all_summary%>%
           filter(1698.35<avg_market_cap))+
    geom_point(aes(x= Dates,
                   y = avg_{emp}
                   color = Sector), show.legend = T)+
    geom_line(aes(x= Dates,
                   y = avg_{emp}
                   color = Sector, group = Sector), show.legend = T)+
   theme(axis.text.x = element_text(angle = 15),
   legend.text = element text(size = 8, vjust = 1, hjust = 0.5),
   legend.position = "right",
   legend.key.width = unit(0.1, "cm"),
   legend.key.size = unit(0.1, "cm"),
    legend.spacing = unit(0.01, "cm"))+
        scale_colour_viridis_d(option = "turbo",
                               end = 1,
                               labels = scales::label_wrap(25),
                               guide = guide_legend(nrow = 16))+
   lims(y=c(-1000,13000))+
   ylab("Average Number of Employee")+
   labs(title = "Change of yearly average Number of Employees",
         subtitle = "Average Market Cap of Sector higher than the median 1.6 billion liras")
sales_avg_s1 <- ggplot(all_summary %>%
            filter(Sector %in% sectors1))+
    geom_point(aes(x= Dates,
                   y = log(avg_sales),
                   color = Sector), show.legend = T)+
    geom_line(aes(x= Dates,
                   y = log(avg_sales),
                   color = Sector, group = Sector), show.legend = T)+
     theme(axis.text.x = element_text(angle = 15))+
        scale_colour_viridis_d(option = "turbo",
                               end = 1,
                               labels = scales::label_wrap(25),
                               guide = guide_legend(nrow = 8))+
     labs(x = "Years",y = "Log of Average Sales",title = "Change of Average Sales by Sectors over Years
sales_avg_s2 <- ggplot(all_summary %>%
            filter(Sector %in% sectors2))+
    geom_point(aes(x= Dates,
                   y = log(avg_sales),
                   color = Sector),show.legend = T)+
    geom_line(aes(x= Dates,
                   y = log(avg_sales),
                   color = Sector, group = Sector), show.legend = T)+
     theme(axis.text.x = element_text(angle = 15))+
        scale_colour_viridis_d(option = "turbo",
                               end = 1,
                               labels = scales::label_wrap(25),
```

```
guide = guide_legend(nrow = 8))+
     labs(x = "Years",y = "Log of Average Sales",title = "Change of Average Sales by Sectors over Years
prof_date_s1 <- ggplot(all_summary %>%
           filter(!Sector %in% "ELECTRICITY, GAS, STEAM AND AIR CONDITIONING SUPPLY" & Sector %in% sect
    geom_point(aes(x= Dates,
                   y = (avg_profit),
                   color = Sector), show.legend = T)+
    geom_line(aes(x= Dates,
                   y = (avg_profit),
                   color = Sector, group = Sector), show.legend = T)+
    theme(axis.text.x = element_text(angle = 15),
    legend.text = element_text(size = 8,vjust = 0.5, hjust = 0))+
        scale_colour_viridis_d(option = "turbo",
                               labels = scales::label_wrap(12),
                               guide = guide_legend(nrow = 8))+
    labs(title = "Change of Average Profit Margins by Sectors over Years", subtitle = "Alphabetical Firs
   lims(y = c(-100, 200))
prof_date_s2 <- ggplot(all_summary %>%
           filter( Sector %in% sectors2))+
    geom_point(aes(x= Dates,
                   y = (avg_profit),
                   color = Sector), show.legend = T)+
    geom line(aes(x= Dates,
                   y = (avg_profit),
                   color = Sector, group = Sector), show.legend = T)+
    theme(axis.text.x = element_text(angle = 15),
   legend.text = element_text(size = 8, vjust = 0.5, hjust = 0))+
        scale_colour_viridis_d(option = "turbo",
                               labels = scales::label_wrap(20),
                               guide = guide_legend(nrow = 8))+
   lims(y=c(-50,200))+
    labs(title = "Change of Average Profit Margins by Sectors over Years", subtitle = "Alphabetical Latt
sec_expense_out <- ggplot(all_summary %>%
           filter(Sector %in% c("FINANCIAL AND INSURANCE ACTIVITIES", "ARTS, ENTERTAINMENT AND RECREATIO
    geom_point(aes(x= Dates,
                   y = avg_exp_per,
                   color = Sector),show.legend = T)+
    geom_line(aes(x= Dates,
                   y = avg_exp_per,
                   color = Sector, group = Sector), show.legend = T)+
    theme(axis.text.x = element_text(angle = 15))+
    scale_colour_viridis_d(option = "turbo",
                               labels = scales::label_wrap(5),
                               guide = guide_legend(nrow = 2))+
   labs(x = "Years", y="Average Personnel Expense", title = "Average Personnel Expense by Sectors over Y
sec_expense_s1 <- ggplot(all_summary %>%
           filter(!Sector %in% c("FINANCIAL AND INSURANCE ACTIVITIES", "ARTS, ENTERTAINMENT AND RECREATI
    geom_point(aes(x= Dates,
                   y = avg_exp_per,
```

```
color = Sector),show.legend = T)+
    geom_line(aes(x= Dates,
                   y = avg_exp_per,
                   color = Sector, group = Sector), show.legend = T)+
     theme(axis.text.x = element_text(angle = 15),
           legend.text = element_text(size = 8, vjust = 0.5, hjust = 0),
   legend.position = "right",
   legend.key.width = unit(0.3, "cm"),
    legend.key.size = unit(0.8, "cm"),
   legend.spacing = unit(2, "cm"))+
        scale_colour_viridis_d(option = "turbo",
                               labels = scales::label_wrap(12),
                               guide = guide_legend(nrow = 8))+
   labs(x = "Years", y="Average Personnel Expense", title = "Average Personnel Expense by Sectors over Y
sec_expense_s2 <- ggplot(all_summary %>%
           filter(!Sector %in% c("FINANCIAL AND INSURANCE ACTIVITIES", "ARTS, ENTERTAINMENT AND RECREATI
    geom_point(aes(x= Dates,
                   y = avg_exp_per,
                   color = Sector), show.legend = T)+
    geom_line(aes(x= Dates,
                   y = avg_exp_per,
                   color = Sector, group = Sector), show.legend = T)+
   theme(axis.text.x = element_text(angle = 15),
   legend.text = element_text(size = 8, vjust = 0.5, hjust = 0),
   legend.position = "right",
   legend.key.width = unit(0.3, "cm"),
   legend.key.size = unit(0.8, "cm"),
   legend.spacing = unit(2, "cm"))+
        scale_colour_viridis_d(option = "turbo",
                               labels = scales::label_wrap(15),
                               guide = guide_legend(nrow = 8))+
   labs(x = "Years", y="Average Personnel Expense", title = "Average Personnel Expense by Sectors over Y
sec_emp1
```

Change of yearly average Number of Employees

Average Market Cap of Sector lower than the median 1.6 billion liras

 sec_emp2

Change of yearly average Number of Employees

Average Market Cap of Sector higher than the median 1.6 billion liras

sales_avg_s1

Change of Average Sales by Sectors over Years

sales_avg_s2

Change of Average Sales by Sectors over Years

Alphabetical Latter 8 Sectors

Source: Bloomberg

prof_date_s1

Change of Average Profit Margins by Sectors over Years

Alphabetical First 8 Sectors & Outlier Electricity, Gas, Steam and AC Supply Excluded Sector

Source: Bloomberg

prof_date_s2

Change of Average Profit Margins by Sectors over Years Alphabetical Latter 8 Sectors

Source: Bloomberg

sec_expense_out

Average Personnel Expense by Sectors over Years Outlier Sectors

Source: Bloomberg

sec_expense_s1

Average Personnel Expense by Sectors over Years

Source: Bloomberg

 ${\tt sec_expense_s2}$

Source: Bloomberg

#Function for scatter plots of sales and profit

```
profit_emp_point <- function(date,emp_int){</pre>
    ggplot(dataset%>%
        filter(Dates %in% date),
        aes(x = `Number of Employees`,
            y = `Profit Margin`))+
        geom_point(aes(color = Sector))+
    theme(
    legend.text = element_text(size = 6,vjust = 0.5, hjust = 0.5, margin = margin(r = 11)),
    legend.position = "right",
    legend.key.width = unit(0.1, "cm"),
    legend.key.size = unit(0.1, "cm"),
    legend.spacing = unit(0.01, "cm"))+
        scale_colour_viridis_d(option = "turbo",
                                end = 1,
                                labels = scales::label wrap(20),
                                guide = guide_legend(nrow = 16))+
        lims(x = emp_int,
             y = c(-50,200))+
        labs(title = "Profit - No. of Employee",
             subtitle = date)
}
sales_emp_point <- function(date,emp_int){</pre>
    ggplot(dataset%>%
```

```
filter(Dates %in% date),
    aes(x = `Number of Employees`,
       y = log(Sales)))+
   geom_point(aes(color = Sector))+
theme(
legend.text = element_text(size = 6, vjust = 0.5, hjust = 0.5, margin = margin(r = 11)),
legend.position = "right",
legend.key.width = unit(0.1, "cm"),
legend.key.size = unit(0.1, "cm"),
legend.spacing = unit(0.01, "cm"))+
    scale_colour_viridis_d(option = "turbo",
                           end = 1,
                           labels = scales::label_wrap(20),
                           guide = guide_legend(nrow = 16))+
   lims(x = emp_int) +
   labs(title = "Sales - No. of Employee",
         subtitle = date)+
   ylab("log of Sales (thousand)")
```

##Yearly profit plots

'geom_smooth()' using method = 'loess' and formula = 'y \sim x'

Profit – No. of Employee

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Profit – No. of Employee 2020–12–31

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Profit – No. of Employee 2020–12–31

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Sales – No. of Employee

