MATHEMATICS DEPARTMENT

Year 12 MATHEMATICS SPECIALIST

DATE: 4 th December 2015	Name	

Reading Time: 3 minutes

TOTAL:

SECTION ONE: CALCULATOR FREE

EQUIPMENT: Pens, pencils, pencil sharpener, highlighter, eraser, ruler, SCSA

formula sheet.

27 marks

WORKING TIME: 25 minutes (maximum)

SECTION TWO: CALCULATOR ASSUMED

TOTAL: 25 marks

EQUIPMENT: Pens, pencils, pencil sharpener, highlighter, eraser, ruler, drawing

instruments, templates, up to 3 Calculators,

1 A4 page of notes (one side only), SCSA formula sheet.

WORKING TIME: 20 minutes (minimum)

SECTION 1 Question	Marks available	Marks awarded	SECTION 2 Question	Marks available	Marks awarded
1	6		5	7	
2	6		6	4	
3	10		7	7	
4	5		8	7	
Total	27			25	

This section has **Four (4)** questions. Answer **all** questions. Write your answers in the spaces provided

Question 1 [6 marks]

Simplify each of the following expressions, writing your answer in exact polar form.

$$(\sqrt{3} - i)^2 (\sqrt{3} - i)$$

(a)

[2]

$$3cis\left(\frac{\pi}{4}\right) \times \left[2cis\left(\frac{-\pi}{3}\right)\right]^{-1}$$

(b)

[2]

$$\frac{1}{\sqrt{2cis\left(\frac{\pi}{2}\right)}}$$

(c)

Question 2 [6 marks]

(a) (i) Find the quotient and the remainder for
$$\frac{z^3 - 2z^2 + 4z - 1}{z^2 - z + 1}$$
, hence rewrite $z^3 - 2z^2 + 4z - 1$ in the form $H(z) \times (z^2 - z + 1) + R(z)$ [3]

(ii) Hence, solve
$$z^3 - 2z^2 + 4z - 1 = 2z$$
 [3]

Question 3 [10 marks]

Given the graph of y = f(x) is given as follows;

Sketch the graph of;

(a) (i)
$$y = f\left(\left|\frac{x}{2}\right|\right)$$
 [3]

(b) Given that $g(x) = \sqrt{3x-1}$ and $h(x) = \frac{x+2}{x+1}$, find the domain and range of the composite function goh(x) [4]

[3]

Question 4 [5 marks]

(a) On an Argand diagram sketch the loci of points and that satisfy the following condition;

$$|z - 2i| \le |z - 3 + i|$$

(b) Give the equation of the locus in Cartesian form.

Section Two: Calculator-assumed

[25 marks]

This section has **four (4)** questions. Answer **all** questions. Write your answers in the spaces provided

Question 5 [7 marks]

(a) Use the diagram above to solve for x in the following.

(i)
$$-|x+3|+10=7$$
 [1]

(ii)
$$-|x+3|+10 \ge |2x-8|$$
 [2]

(b) Solve the following algebraically
$$4 + |3 + 2x| > |x - 5|$$
 [4]

Question 6 [4 marks]

Given the position of z and w on the Argand diagram below. Label the points A, B, C and D using the following options.

Question 7 [7 marks]

(a) Represent on the Argand diagram provided below, the loci of points, that satisfy the following conditions;

$$|z+2-i| \le 4$$
, $\frac{-5\pi}{6} \le \arg(z) < \frac{\pi}{3}$ and $4\operatorname{Im}(z) + 3\operatorname{Re}(z) + 8 \ge 0$

[4]

(b) Given that $|z + 2 - i| \le 4$, state the minimum and maximum value of |z|.

Question 8 [7 marks]

(a) Using your CAS calculator (or otherwise) find all the solutions to exact polar form, where $z=r(\cos\theta+i\sin\theta)$, $-\pi<\theta\leq\pi$ and $r\geq0$. [4]

(b) Draw the solutions from (a) on the complex plane below. Show all major features. [3]

