

SOLUCIÓN NUMÉRICA DE LAS ECUACIONES DE EULER DE LA DINÁMICA DE FLUIDOS MEDIANTE EL ESQUEMA DE ROE

RODRIGO RAFAEL CASTILLO CHONG

Asesorado por DR. ENRIQUE PAZOS ÁVALOS

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

SOLUCIÓN NUMÉRICA DE LAS ECUACIONES DE EULER DE LA DINÁMICA DE FLUIDOS MEDIANTE EL ESQUEMA DE ROE

TRABAJO DE GRADUACIÓN
PRESENTADO A LA JEFATURA DEL
DEPARTAMENTO DE FÍSICA
POR

RODRIGO RAFAEL CASTILLO CHONG ASESORADO POR DR. ENRIQUE PAZOS ÁVALOS

AL CONFERÍRSELE EL TÍTULO DE LICENCIADO EN FÍSICA APLICADA

GUATEMALA, DICIEMBRE DE 2023

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

CONSEJO DIRECTIVO INTERINO

Director M.Sc. Jorge Marcelo Ixquiac Cabrera

Representante Docente Arqta. Ana Verónica Carrera Vela

Representante Docente M.A. Pedro Peláez Reyes

Representante de Egresados Lic. Urías Amitaí Guzmán García

Representante de Estudiantes Elvis Enrique Ramírez Mérida

Representante de Estudiantes Oscar Eduardo García Orantes

Secretario Ing. Edgar Damián Ochóa Hernández

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

Director M.Sc. Jorge Marcelo Ixquiac Cabrera

Examinador M.Sc. Osmar Obdulio Hernández Aguilar

Examinador Dr. José Rodrigo Sacahui Reyes

Examinador Dr. Juan Adolfo Ponciano Castellanos

Secretario Ing. Edgar Damián Ochoa Hernández

	Fecha
datos	
cuerpo	
despedida	
firma	
nombre	

Este archivo pdf es una muestra

AGRADECIMIENTOS

DEDICATORIA

A mí mamá, mis primas, mis tías, mis amigos, mis amigas, "El Núcleo", "Las Amebas" y las personas con las que más hablo del trabajo.

"He know, \mathbf{flow} like interstellar wind..." - MF DOOM

ÍNDICE GENERAL

2.	MÉTODO DE VOLÚMENES FINITOS Y ESQUEMA DE ROE	19
3.	ECUACIONES DE EULER Y APLICACIÓN DEL ESQUEMA DE ROE	2]
4.	COMPARACIÓN CON PYCLAW	23
5 .	SIMULACIONES CON DISTINTOS COEFICIENTES DE DILA- TACIÓN ADIABÁTICA	25
C	ONCLUSIONES	27
$\mathbf{R}\mathbf{I}$	ECOMENDACIONES	29
ΒI	BLIOGRAFÍA	31

ÍNDICE DE FIGURAS

1.1.	Gráficas de la condición inicial $u(x,0) = \exp(-x^2)$ para la ecuación	
	de Burgers y de algunas características asociadas a esta condición	
	inicial. Fuente: elaboración propia	12
1.2.	Gráficas de las soluciones numéricas, en distintos instantes de tiempo,	
	de la ecuación de Burgers viscosa para distintos valores de coeficiente	
	de viscosidad cinemática (ε) , incluyendo el caso donde no hay visco-	
	sidad (en rojo). Fuente: elaboración propia	13
1.3.	Ejemplo gráfico de la solución de la ecuación de Burgers para el caso	
	$u_L > u_R$. Fuente: elaboración propia, basada en el esquema obtenido	
	de [4]	15
1.4.	Gráficas de las soluciones, en distintos instantes de tiempo, de la	
	ecuación de Burgers para el caso $u_L < u_R$ del problema de Riemann	
	Fuente: elaboración propia	16

ÍNDICE DE TABLAS

LISTA DE SÍMBOLOS

Símbolo	Significado
$\frac{\partial}{\partial x}$	derivada parcial respecto a x
F_x	derivada parcial de F respecto a x
\mathbf{U}	vector de magnitudes físicas
${f F}$	vector de flujos de magnitudes físicas
α	velocidad de advección
ε	coeficiente de viscosidad cinemática
u	velocidad del gas sobre el eje \boldsymbol{x}
ho	densidad del gas
p	presión del gas
e	densidad de energía interna del gas
T	temperatura del gas

OBJETIVOS

General

Resolver las ecuaciones de Euler de la dinámica de fluidos para un gas ideal, con el método de volúmenes finitos, utilizando el esquema de Roe.

Específicos

- 1. Describir el método de volúmenes finitos y la motivación de su uso.
- 2. Describir el funcionamiento del esquema de Roe y su implementación en el lenguaje C++.
- 3. Comparar las soluciones obtenidas a través del programa implementado en C++ con las soluciones producidas con la librería PyClaw del lenguaje Python.
- 4. Analizar la diferencia entre simulaciones considerando gases con distintos grados de libertad, aprovechando la solución numérica obtenida a través del programa escrito en C++.

INTRODUCCIÓN

El estudio de las ecuaciones diferenciales es de gran importancia en las ciencias físicas, ya que cada teoría física se sustenta en ecuaciones diferenciales que describen el comportamiento a través del tiempo de cualquier sistema que dicha teoría busque explicar. La motivación del estudio de las ecuaciones diferenciales es encontrar soluciones generales de las mismas, principalmente a través de métodos analíticos que buscan soluciones exactas de las ecuaciones diferenciales. Sin embargo, no todas las ecuaciones diferenciales poseen soluciones exactas, lo cual motiva el estudio y desarrollo de métodos numéricos para la resolución de las mismas.

En el área de estudio del análisis numérico aplicado a ecuaciones diferenciales, existe una gran variedad de métodos y esquemas que se aplican para obtener una solución numérica, esto se debe a la amplia variedad de ecuaciones diferenciales de la física que carecen de solución analítica. Por otro lado, las ecuaciones diferenciales parciales son considerablemente más complejas que las ecuaciones diferenciales ordinarias, por lo que existen métodos más apropiados para resolver ecuaciones diferenciales que involucran funciones de varias variables.

Las ecuaciones de conservación tienen un papel importante en múltiples áreas de la física, de tal manera que se han desarrollado métodos numéricos apropiados para resolver este tipo de ecuaciones diferenciales parciales, siendo el método de volúmenes finitos el más utilizado. Un conjunto en particular de ecuaciones de conservación son las ecuaciones de Euler, que rigen la dinámica de un fluido compresible y no viscoso a partir de su ecuación de estado. Existen pocas soluciones analíticas conocidas a las ecuaciones de Euler, por lo que resolver este conjunto de ecuaciones de conservación con un método numérico apropiado resulta ser un problema interesante.

1. ECUACIONES DE CONSERVACIÓN Y SISTEMAS HIPERBÓLICOS DE PRIMER ORDEN

En este capítulo se introducen los conceptos fundamentales de las ecuaciones de conservación y sistemas hiperbólicos de primer orden. Se introduce el problema de Riemann asociado a una ecuación de conservación.

1.1. Ecuaciones de conservación

En física, una ecuación de conservación es una ecuación diferencial parcial de la siguiente forma

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} = 0 \tag{1.1}$$

o utilizando una notación más compacta para las derivadas,

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U})_x = 0 \tag{1.2}$$

donde **U** es un vector n-dimensional de variables físicas que se conservan, por ejemplo, la densidad, la masa o el momentum de un medio [4]. En este texto, las variables de las que depende **U** dependen de x y t, una variable espacial y otra temporal respectivamente. Por tanto, **U** se define formalmente como $\mathbf{U} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^n$, mientras que la i-ésima variable conservada se denomina u_i , de tal manera que $\mathbf{U} = \mathbf{U}(u_1, u_2, \dots, u_n)$ [4].

La función \mathbf{F} corresponde al **flujo** de cada una de las variables involucradas en un punto (x,t) [4]. Al igual que \mathbf{U} , la función \mathbf{F} depende de las mismas variables físicas y por ende, también depende de (x,t). Sin embargo, el flujo de cada variable conservada puede tener una forma distinta, entonces es conveniente escribir a \mathbf{F} como un vector de n funciones independientes, $\mathbf{F} = (f_1, f_2, \dots, f_n)$ de tal manera que f_i es la función de flujo de la i-ésima variable conservada, u_i [4].

Una ecuación de conservación para un sistema definido en un intervalo espacial D = [a, b] necesita de condiciones iniciales para su resolución, el caso más simple a considerar es el de un problema de Cauchy [4]. En dicho caso, se debe especificar una función $\mathbf{U}_0(x)$

$$\mathbf{U}(x,0) = \mathbf{U}_0(x) \tag{1.3}$$

la cual sea válida para todo x tal que $x \in D$ y condiciones de frontera

$$\mathbf{U}(a,t) = \mathbf{U}_a \tag{1.4}$$

$$\mathbf{U}(b,t) = \mathbf{U}_b \tag{1.5}$$

con \mathbf{U}_a y \mathbf{U}_b fijos.

Otra forma de escribir una ecuación de conservación es utilizando la matriz jacobiana $\mathbf{A}(\mathbf{U})$ definida como

$$\mathbf{A}(\mathbf{U}) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \cdots & \frac{\partial f_1}{\partial u_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \cdots & \frac{\partial f_n}{\partial u_n} \end{bmatrix}$$
(1.6)

de tal manera que la ecuación (1.1) se convierte en

$$\mathbf{U}_t + \mathbf{A}(\mathbf{U})\mathbf{U}_x = 0 \tag{1.7}$$

. Esta forma de escribir una ecuación de conservación es relevante ya que permite definir un **sistema hiperbólico**. Un sistema hiperbólico es una ecuación de conservación de la forma (1.7) tal que los autovalores de la matriz $\mathbf{A}(\mathbf{U})$ para todo \mathbf{U} sean reales y que dicha matriz sea diagonalizable [4]. Esto implica que existen n vectores propios linealmente independientes de $\mathbf{A}(\mathbf{U})$ [4]. Una ecuación de conservación depende de una función $\mathbf{F}(\mathbf{U})$ que, por lo general, no es una función lineal de \mathbf{U} , lo que implica que las ecuaciones de conservación son regularmente no lineales [4]. Esto también se puede inferir por la dependencia en \mathbf{U} de la matriz \mathbf{A} en la ecuación (1.7).

1.2. Derivación de una ecuación de conservación

El principio físico de una ecuación de conservación es más explícito cuando esta se deriva a través de cantidades expresadas en forma **integral**. Considerando

un ejemplo de la mecánica de fluidos, se define $M(x_1, x_2, t)$ como la cantidad de masa de un fluido que se encuentra contenido en un "tubo" unidimensional en un intervalo $[x_1, x_2]$ en un tiempo t. Si a dicho fluido se le asocia una densidad $\rho(x, t)$, entonces esta última se define de tal manera que su integral definida en un intervalo espacial sea igual a la masa contenida en ese mismo intervalo [4], i.e.,

$$M(x_1, x_2, t) = \int_{x_1}^{x_2} \rho(x, t) dx.$$
 (1.8)

Ahora, asumiendo que el tubo es cerrado e impenetrable, la cantidad de masa en una región arbitraria $[x_1, x_2]$ puede variar solamente a causa de que el fluido se desplace (fluya) a través de los puntos límites de la región, x_1 y x_2 [4]. Para cuantificar el flujo que sale o entra en una región se necesita la velocidad del fluido, v(x,t). Cabe destacar que debido a que el fluido se mueve en un espacio unidimensional, su velocidad se limita a dirigirse en el mismo sentido espacial, es decir, su velocidad tiene dirección sobre x. Entonces el flujo del fluido en un punto (x,t), F(x,t), se define como

$$F(x,t) = \rho(x,t)v(x,t) \tag{1.9}$$

[4]. Entonces, como previamente se comentó, se puede escribir la razón instantánea de cambio de masa en la región $[x_1, x_2]$ en términos del flujo entrante y saliente de la misma región

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[M(x_1, x_2, t) \right] = F(x_2, t) - F(x_1, t) \tag{1.10}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{x_1}^{x_2} \rho(x,t) \, \mathrm{d}x = \rho(x_2,t) v(x_2,t) - \rho(x_1,t) v(x_1,t)$$
(1.11)

Esta es la forma integral de una ecuación de conservación [4]. En particular, esta ecuación refleja el principio de conservación de la masa y a su vez es conocida como ecuación de continuidad. La ecuación (1.11) se puede integrar en el tiempo para conseguir expresarla independientemente de cualquier derivada, obteniendo

$$\int_{t_1}^{t_2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{x_1}^{x_2} \rho(x,t) \, \mathrm{d}x \, \mathrm{d}t = \int_{t_1}^{t_2} \left[\rho(x_2,t)v(x_2,t) - \rho(x_1,t)v(x_1,t) \right] \, \mathrm{d}t \tag{1.12}$$

$$\int_{x_1}^{x_2} [\rho(x, t_2) - \rho(x, t_1)] dx = \int_{t_1}^{t_2} [\rho(x_2, t)v(x_2, t) - \rho(x_1, t)v(x_1, t)] dt.$$
 (1.13)

Asumiendo que $t_1 < t_2$, esta igualdad ofrece una expresión para la diferencia de masa contenida en la región $[x_1, x_2]$ entre los instantes t_2 y t_1 [4].

Es posible obtener una forma diferencial partiendo de la forma integral de una

ecuación de conservación, pero es necesario asumir que las funciones $\rho(x,t)$ y v(x,t) son **diferenciables**. Esta última característica que se exige en las funciones entra en conflicto cuando se estudian soluciones¹ de las ecuaciones de conservación con discontinuidades. Por lo tanto, la forma integral de las ecuaciones es utilizada al estudiar problemas con dichas características. Para convertir la ecuación en forma integral a su forma diferencial, se tienen que usar las siguientes expresiones:

$$\rho(x, t_2) - \rho(x, t_1) = \int_{t_1}^{t_2} \frac{\partial}{\partial t} \rho(x, t) dt$$
 (1.14)

у

$$\rho(x_2, t)v(x_2, t) - \rho(x_1, t_1)v(x_1, t) = \int_{x_1}^{x_2} \frac{\partial}{\partial x} \rho(x, t)v(x, t) dx$$
 (1.15)

sustituyendo estas expresiones en (1.13) se obtiene

$$\int_{t_1}^{t_2} \int_{x_1}^{x_2} \left[\frac{\partial \rho(x,t)}{\partial t} + \frac{\partial \rho(x,t)v(x,t)}{\partial x} \right] dx dt = 0.$$
 (1.16)

Puesto que la ecuación (1.16) se cumple para cualquier punto (x, t) del dominio, el integrando de la misma debe ser idénticamente cero [4]. Entonces,

$$\rho_t + (\rho v)_x = 0 \tag{1.17}$$

es la forma diferencial de la ecuación de conservación de la masa, así como se definió una ecuación de conservación en (1.2), ya que la función de flujo se definió como $F = \rho v$. Puesto que la ecuación diferencial de conservación de la masa involucra dos cantidades físicas, esta se puede resolver ya sea si se conoce previamente la función v(x,t) o si esta última se puede escribir como una función de ρ , i.e., $v = v(\rho)$. En este último caso la ecuación de conservación de la masa es una ecuación diferencial parcial únicamente para ρ [4] y toma la siguiente forma

$$\rho_t + f(\rho)_x = 0. \tag{1.18}$$

Esta última es un ejemplo de **ecuación de conservación escalar** [4] ya que solamente interviene una incógnita, ρ [4]. En caso que la velocidad v(x,t) sea una

 $^{^1\}mathrm{Dichas}$ soluciones se conocen como **soluciones débiles**, tema que se abordará a detalle más adelante.

constante α , la ecuación de conservación de la masa se convierte en:

$$\rho_t + \alpha \rho_x = 0, \tag{1.19}$$

esta ecuación se conoce como **ecuación de advección lineal** o como ecuación de onda de primer orden [4][5].

1.3. Ecuación de advección lineal

La ecuación de advección (1.19) con la siguiente condición inicial:

$$\rho(x,0) = \rho_0(x), \qquad -\infty < x < \infty, \tag{1.20}$$

tiene como solución:

$$\rho(x,t) = \rho_0(x - \alpha t), \tag{1.21}$$

para t > 0, asumiendo que ρ_0 es una función diferenciable [4]. Esta solución se puede interpretar como la traslación de la función ρ_0 a lo largo del eje x con una velocidad α , en la misma dirección de la velocidad, es decir, a la derecha si $\alpha > 0$ y a la izquierda si $\alpha < 0$.

1.3.1. Curvas características

Se puede demostrar que la solución (1.21) es constante respecto al tiempo a lo largo de cada curva definida por $x-\alpha t=x_0$, para cualquier x_0 tal que $x_0 \in [-\infty, \infty]$. Dichas curvas de la forma x=x(t) son conocidas como **curvas características** de la ecuación diferencial en cuestión [4]. Las curvas características definen dominios en donde la ecuación diferencial parcial se puede escribir como una ecuación diferencial ordinaria. Dichas curvas se definen a partir de ecuaciones diferenciales ordinarias. En el caso de la ecuación de advección lineal (1.21), las características satisfacen la siguiente ecuación diferencial:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha, \qquad x(0) = x_0, \tag{1.22}$$

cuya solución es: $x - \alpha t = x_0$ [4]. Para demostrar que la ecuación de advección lineal se convierte en una ecuación diferencial ordinaria a lo largo de dichas curvas, se

deriva la función incógnita ρ respecto al tiempo,

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\partial\rho}{\partial t} + \frac{\partial\rho}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} \tag{1.23}$$

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\partial\rho}{\partial t} + \alpha \frac{\partial\rho}{\partial x} \tag{1.24}$$

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = 0,\tag{1.25}$$

este último paso toma efecto dado que a lo largo de las curvas características, $\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha$ [4]. Se puede notar que en este último procedimiento se recuperó la ecuación diferencial en cuestión (1.21), expresada como una ecuación diferencial ordinaria y concluyó al igualar la derivada temporal a cero, consiguiendo demostrar que ρ es constante a lo largo de las características [4].

1.4. Dominio de dependencia de una ecuación de conservación

En la sección anterior se introdujo el concepto de curvas características de una ecuación de conservación y en el caso de la ecuación de advección, es posible obtener la solución general utilizando la expresión para sus características, esto es $x(t) = x_0 + \alpha t$. Por lo tanto, se puede afirmar que el valor de $\rho(x, t)$ para un instante (x', t') depende de la condición inicial ρ_0 únicamente en un solo punto x'_0 ya que ρ es constante a lo largo de la curva característica $x' = x'_0 + \alpha t$ [4]. Entonces, sin importar de qué manera se cambien los valores que toma $\rho_0(x)$, mientras no se cambie su valor en x'_0 , el valor $\rho(x', t')$ permanecerá sin cambiar [4].

En el caso general, para cualquier sistema hiperbólico, el valor de la solución \mathbf{U} en un punto (x',t') depende únicamente de los valores que toma la función inicial \mathbf{U}_0 en un dominio D(x',t') que corresponde a un intervalo **cerrado** [4]. Este último se denomina **dominio de dependencia** [4]. El tamaño de este intervalo usualmente crece a medida que avance el tiempo, sin embargo, el tamaño está acotado de la siguiente forma $D(x',t')=\{x:|x-x'|\leq a_{\max}t\}$ [4]. En resumen, las ecuaciones hiperbólicas poseen una velocidad finita de propagación; lo que significa que la información de la solución puede viajar a lo largo del espacio a una velocidad a_{\max} como máximo [4].

1.5. Discontinuidades en soluciones

Al derivar la forma diferencial de una ecuación de conservación (1.16) se enfatizó que era necesario exigir la diferenciabilidad de las cantidades conservadas. Sin embargo, si se toman en cuenta los atributos de la solución, proporcionados por las curvas características, de la ecuación de advección, resulta que el valor de la variable involucrada $\rho(x,t)$ depende únicamente del valor de la condición inicial en un punto x_0 tal que $x=x_0+\alpha t$ [4]. Por esta última razón se puede concluir que, al menos para la ecuación de advección, es posible definir una solución sin exigirle que sea una función suave [4]. La definición de una solución con singularidades surge gracias a que la forma integral de una ecuación de conservación sí se satisface con funciones no diferenciables, a diferencia de la forma diferencial [4]. También es importante hacer énfasis en que la forma integral de una ecuación de conservación tiene un significado físico más fundamental.

Si la condición inicial de una ecuación de conservación escalar $u_0(x)$ tiene una singularidad (discontinuidad en sí misma o en alguna derivada), en un punto x_0 , entonces la solución de la ecuación, u(x,t), también poseerá una singularidad del mismo orden en todos los puntos definidos por la característica que parte de x_0 [4]. Para los sistemas hiperbólicos en general, las singularidades se propagan a lo largo de las curvas características [4].

A continuación se describen dos formas de definir las soluciones con singularidades:

1.5.1. Viscosidad disipada

Como se vio anteriormente algunas soluciones de las ecuaciones de conservación pueden poseer singularidades si la condición inicial de la ecuación tiene una singularidad. Para los sistemas hiperbólicos no lineales, las discontinuidades pueden formarse a lo largo de la evolución temporal de la solución [4]. A las singularidades que se desarrollan en las soluciones se les llama **ondas de choque** o **shocks** en inglés [2]. Para definir cómo estas funciones siguen siendo soluciones, en el sentido estricto de la palabra, se redefine la ecuación que deben satisfacer agregándole un coeficiente de viscosidad ε que va acompañado del laplaciano de la variable involucrada [4]. En el caso de la ecuación de advección para u, se define la siguiente ecuación modificada

$$u_t + \alpha u_x = \varepsilon u_{xx},\tag{1.26}$$

donde $u_{xx} \equiv \frac{\partial^2 u}{\partial x^2}$ [4]. A esta ecuación se le conoce como **ecuación de advección** - **difusión**, ya que el término viscoso también se denomina como término difusivo y está involucrado en la ecuación de difusión, también conocida como ecuación de calor [5].

Si se denota a $u^{\varepsilon}(x,t)$ como la solución de la ecuación (1.26) con condición inicial $u_0(x)$, entonces $u^{\varepsilon} \in C^{\infty}(\mathbb{R} \times [0,\infty))$ donde $C^{\infty}(\mathbb{R} \times [0,\infty))$ es el conjunto de funciones infinitamente diferenciables (suaves) definidas en el mismo espacio en donde se resuelve la ecuación [4]. Esto se cumple incluso si $u_0(x)$ no es una función suave, ya que la ecuación (1.26) es de tipo parabólica [4]. Para encontrar la solución a la ecuación original (1.19) se debe hacer el límite $\varepsilon \to 0$ en la solución de la ecuación de advección - difusión (1.26); a esta forma de definir una solución con discontinuidades se le denomina solución con viscosidad disipada [4].

1.5.2. Solución débil

La otra forma de definir una solución con singularidades es definiendo una solución débil de la ecuación de conservación, haciendo uso de la forma integral de esta última [4]. Es evidente que la forma diferencial de la ecuación de conservación no se satisface con una función con singularidades ya que sus derivadas no están bien definidas en todo el dominio de la función. La idea del procedimiento de la definición de una solución débil es reescribir la ecuación en forma integral, trasladando las derivadas hacia una función prueba, que sí es una función diferenciable y así relajar las condiciones de suavidad para la función incógnita [4].

Sea $\phi(x,t)$ una función continuamente diferenciable con **soporte compacto**, i.e., $\phi(x,t) \in C_0^1(\mathbb{R} \times [0,\infty))$. La tenencia de soporte compacto de la función significa que $\phi(x,t)$ es exactamente igual a cero fuera de algún conjunto cerrado, por lo que el soporte de la función yace en un subconjunto compacto del espacio $(x,t) = \mathbb{R} \times [0,\infty)$ [2][4].

Para definir la solución débil de la ecuación de conservación escalar $u_t + f(u)_x = 0$, esta se multiplica por la función ϕ descrita anteriormente:

$$u_t + f(u)_x = 0 (1.27)$$

$$\phi u_t + \phi f(u)_x = 0. \tag{1.28}$$

Ahora, se integra sobre todo el espacio y el tiempo,

$$\int_0^\infty \int_{-\infty}^\infty (\phi u_t + \phi f(u)_x) \, \mathrm{d}x \, \mathrm{d}t = 0, \tag{1.29}$$

luego, integrando por partes cada término de la integral, se obtiene

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} \phi u_t \, dt \, dx = \int_{-\infty}^{\infty} \int_{0}^{\infty} \left((\phi u)_t - \phi_t u \right) dt \, dx \tag{1.30}$$

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} \phi u_t \, \mathrm{d}t \, \mathrm{d}x = \int_{-\infty}^{\infty} (\phi u) \Big|_{0}^{\infty} \, \mathrm{d}x - \int_{-\infty}^{\infty} \int_{0}^{\infty} \phi_t u \, \mathrm{d}t \, \mathrm{d}x \,. \tag{1.31}$$

Dado que ϕ tiene soporte compacto, es posible asegurarse que $\lim_{t\to\infty} \phi(x,t) = 0$. Por tanto,

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} \phi u_t \, \mathrm{d}t \, \mathrm{d}x = -\int_{-\infty}^{\infty} \phi(x,0) u(x,0) \, \mathrm{d}x - \int_{-\infty}^{\infty} \int_{0}^{\infty} \phi_t u \, \mathrm{d}t \, \mathrm{d}x. \tag{1.32}$$

Trabajando el segundo término, se tiene

$$\int_0^\infty \int_{-\infty}^\infty \phi f(u)_x \, \mathrm{d}x \, \mathrm{d}t = \int_0^\infty \int_{-\infty}^\infty \left((\phi f(u))_x - \phi_x f(u) \right) \, \mathrm{d}x \, \mathrm{d}t \tag{1.33}$$

$$\int_0^\infty \int_{-\infty}^\infty \phi f(u)_x \, \mathrm{d}x \, \mathrm{d}t = \int_0^\infty \phi f(u) \Big|_{-\infty}^\infty \, \mathrm{d}t - \int_0^\infty \int_{-\infty}^\infty \phi_x f(u) \, \mathrm{d}x \, \mathrm{d}t, \qquad (1.34)$$

de igual manera que con la valuación de la integral del término anterior, el soporte compacto de ϕ permite justificar que $\lim_{x\to -\infty}\phi=0=\lim_{x\to \infty}\phi$. Entonces,

$$\int_0^\infty \int_{-\infty}^\infty \phi f(u)_x \, \mathrm{d}x \, \mathrm{d}t = -\int_0^\infty \int_{-\infty}^\infty \phi_x f(u) \, \mathrm{d}x \, \mathrm{d}t.$$
 (1.35)

Por tanto, la integral de la ecuación de conservación multiplicada por la función prueba queda como

$$\int_0^\infty \int_{-\infty}^\infty (\phi u_t + \phi f(u)_x) \, \mathrm{d}x \, \mathrm{d}t = \int_{-\infty}^\infty \phi(x, 0) u(x, 0) \, \mathrm{d}x$$
$$- \int_0^\infty \int_{-\infty}^\infty (\phi_t u + \phi_x f(u)) \, \mathrm{d}x \, \mathrm{d}t = 0.$$
 (1.36)

Por tanto, se obtiene la igualdad

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} (\phi_t u + \phi_x f(u)) \, dx \, dt = -\int_{-\infty}^{\infty} \phi(x, 0) u(x, 0) \, dx, \qquad (1.37)$$

que tal y como se dijo previamente, las derivadas parciales ahora están siendo aplicadas a ϕ y la integral de la nueva ecuación diferencial se iguala a una integral que depende únicamente de las condiciones iniciales del problema a resolver para u. Entonces se dice que u es una **solución débil** de la ecuación (1.27) si y solo si se cumple la igualdad (1.37) para todo ϕ tal que $\phi(x,t) \in C_0^1(\mathbb{R} \times [0,\infty))$ [4].

Es posible demostrar que la igualdad (1.37) es equivalente a la forma integral de la ecuación diferencial en cuestión (ecuación 1.13), mediante la elección de una función de prueba que esta cumpla con la siguiente propiedad:

$$\phi(x,t) = \begin{cases} 1 & \text{para } (x,t) \in [x_1, x_2] \times [t_1, t_2] \\ 0 & \text{para } (x,t) \notin [x_1 - \epsilon, x_2 + \epsilon] \times [t_1 - \epsilon, t_2 + \epsilon]. \end{cases}$$
(1.38)

Además ϕ es una función suave en la banda intermedia con ancho ϵ [4]. Entonces al calcular la integral (1.37) se puede notar que esta se reduce a la integral sobre la banda ϵ , a raíz de la propiedad expuesta anteriormente. Al calcular esta integral y haciendo el límite $\epsilon \to 0$, las derivadas ϕ_x y ϕ_t tienden a deltas de Dirac ², recuperando así los valores de u y f(u) en las fronteras del dominio $[x_1, x_2] \times [t_1, t_2]$ en integrales que equivalen a los términos de la ecuación de conservación en forma integral (1.13)[4]. Cabe destacar que este es un esbozo solamente de la demostración, ya que esta requiere más rigor matemático. Sin embargo, lo imprescindible es destacar la equivalencia entre ambas expresiones.

La solución de viscosidad disipada también califica como una solución débil y físicamente es la solución correcta [4]. Existen muchas soluciones débiles, incluyendo algunas que no tienen un significado físico consistente, para ello es necesario exigir otras condiciones sobre las soluciones débiles de tal manera que se obtenga la solución correcta [4]. Estas condiciones son conocidas como condiciones de entropía por su papel en la dinámica de fluidos.

1.6. Ecuación de Burgers

Se pueden destacar las propiedades más importantes de las ecuaciones de conservación no lineales de la mecánica de fluidos a través de un ejemplo escalar conocido como **ecuación de Burgers.** Esta ecuación tiene la siguiente forma:

²La delta de Dirac $\delta(x)$ es una función generalizada que cumple con la siguiente propiedad $\int_{-\infty}^{\infty} \delta(x-a) f(x) dx = f(a)$ [1].

$$u_t + uu_x = 0, (1.39)$$

la cual es formalmente conocida como Ecuación de Burgers sin viscosidad [4], pero en este texto se le referirá solamente como Ecuación de Burgers. Esta ecuación es un modelo muy simple de la velocidad u de un gas [2]. La ecuación originalmente estudiada por Jan Burgers [4] contiene un término de viscosidad cinemática:

$$u_t + uu_x = \varepsilon u_{xx},\tag{1.40}$$

donde ε es el coeficiente de viscosidad cinemática. A esta última ecuación se le referirá como Ecuación de Burgers viscosa.

De la ecuación (1.39) podemos notar un ligero parecido a la ecuación de advección (1.19), con la diferencia que la velocidad de advección α se reemplaza por la variable que sufre la advección, i.e., u [4], lo que brinda la naturaleza no lineal de este modelo. La ecuación de Burgers se puede escribir en forma conservativa:

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0. {(1.41)}$$

A partir de esta forma, se puede concluir que la función de flujo es $f(u) = \frac{1}{2}u^2$.

1.6.1. Curvas características

Las curvas características de la ecuación de Burgers se pueden definir a través de la siguiente ecuación diferencial [4]

$$x'(t) = u(x(t), t),$$
 (1.42)

dado que se puede recuperar la ecuación diferencial parcial derivando respecto al tiempo la velocidad:

$$\frac{\mathrm{d}}{\mathrm{d}t}u(x(t),t) = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t}$$
(1.43)

$$\frac{\mathrm{d}}{\mathrm{d}t}u(x(t),t) = \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} = 0. \tag{1.44}$$

Por lo tanto, u es constante en el tiempo sobre cualquier característica. Se puede resolver la ecuación (1.42) utilizando este último hecho:

$$x(t) = u(\xi, 0)t + \xi \tag{1.45}$$

- (a) Gráfica de $u(x,0) = \exp(-x^2)$.
- (b) Características de la ecuación de Burgers.

Figura 1.1. Gráficas de la condición inicial $u(x,0) = \exp(-x^2)$ para la ecuación de Burgers y de algunas características asociadas a esta condición inicial. **Fuente:** elaboración propia.

y al resolver para ξ , es posible resolver la ecuación diferencial [4]

$$u(x,t) = u(\xi,0). (1.46)$$

Es importante destacar que la expresión (1.46) para u(x,t) no es válida para todo t, dado que las características definidas por la ecuación (1.45) pueden intersectarse en algún momento. Esto se da si para algún x, se tiene que $u'_0(x) < 0$ [4].

1.6.2. Ondas de choque

Como se puede observar en la figura (1.1b), las características asociadas a una condición inicial con forma gaussiana se intersectan. Entonces, si las características se intersectan, la expresión (1.46) no está bien definida, sino que u(x,t) puede tomar varios valores a la vez, cada uno correspondiente a una característica diferente. En el caso de la ecuación de Burgers, cuando las características se intersectan, la solución se convierte en una "función" con tres valores distintos [4]. Esta solución puede tener sentido en algunos contextos, como en el caso del problema de agua superficial [4]. Sin embargo, en la mayoría de casos esta solución no tiene significado físico ya que la variable u(x,t) representa una velocidad y esta debe devolver un solo valor [4].

La solución con el comportamiento físico correcto cuando las características se intersectan corresponde a una discontinuidad que se propaga con una velocidad determinada [4]. Este efecto se puede demostrar a través del formalismo de la viscosidad disipada. Al obtener la solución de la ecuación de Burgers viscosa (1.40), el

parámetro εu_{xx} evita que la solución presente una discontinuidad, dado que cuando la onda comienza a presentar el choque, la segunda derivada de u crece más rápido que su primera derivada [4]. Así, al efectuar el límite de $\varepsilon \to 0$ se puede obtener una discontinuidad absoluta que corresponde a la solución de la ecuación de Burgers sin viscosidad. La tendencia de adquirir una discontinuidad de las soluciones con menos viscosidad se puede evidenciar en la figura (1.2).

Figura 1.2. Gráficas de las soluciones numéricas, en distintos instantes de tiempo, de la ecuación de Burgers viscosa para distintos valores de coeficiente de viscosidad cinemática (ε) , incluyendo el caso donde no hay viscosidad (en rojo). Fuente: elaboración propia.

1.7. Problema de Riemann

Como se ha mostrado, las soluciones a las ecuaciones de conservación admiten soluciones débiles que pueden presentar discontinuidades tanto en la condición inicial como en la evolución temporal de las mismas. Por esta razón, es natural estudiar sistemas hiperbólicos con condiciones iniciales discontinuas, este problema es conocido como **problema de Riemann**. En el caso escalar, el problema de Riemann para una ecuación de conservación de la forma $u_t + f(u)_x = 0$ corresponde a la siguiente condición inicial

$$u(x,0) = \begin{cases} u_L & \text{si } x < 0 \\ u_R & \text{si } x \ge 0, \end{cases}$$
 (1.47)

en donde la solución es determinada por la relación entre u_L y u_R [4].

1.7.1. Solución al problema de Riemann para la ecuación de Burgers

Para encontrar la solución al problema de Riemann de la ecuación de Burgers es necesario considerar dos casos.

1.7.1.1. Caso $u_L > u_R$:

La función

$$u(x,t) = \begin{cases} u_L, & x < st \\ u_R, & x > st, \end{cases}$$
 (1.48)

conocida como **onda de choque**, representa una discontinuidad trasladándose a través del eje x con una velocidad s. Esta última es una solución débil de la ecuación de Burgers, para la condición inicial (1.47), si se cumple la condición general de **Rankine - Hugoniot** [2], que se define como:

$$f(u_L) - f(u_R) = s(u_L - u_R),$$
 (1.49)

donde $f(u) = \frac{1}{2}u^2$ [4]. A continuación se demuestra la expresión general de la condición Rankine - Hugoniot.

Prueba: Sea u una solución débil de la ecuación diferencial $u_t + f(u)_x = 0$, de la forma (1.48). Sea $\mathcal{M} \gg st$. Aplicando la expresión (1.11) a u:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{-M}^{M} u(x,t) \,\mathrm{d}x = f(u_L) - f(u_R). \tag{1.50}$$

Integrando u a partir de su definición (1.48), se tiene

$$\int_{-\mathcal{M}}^{\mathcal{M}} u(x,t) \, \mathrm{d}x = (\mathcal{M} + st)u_L + (\mathcal{M} - st)u_R. \tag{1.51}$$

Entonces, sustituyendo en (1.50),

$$\frac{\mathrm{d}}{\mathrm{d}t}\left[(\mathcal{M}+st)u_L + (\mathcal{M}-st)u_R\right] = f(u_L) - f(u_R) \tag{1.52}$$

$$s(u_L - u_R) = f(u_L) - f(u_R), (1.53)$$

se obtiene la condición de salto de Rankine - Hugoniot [4].

Por lo tanto, para el caso $u_L > u_R$, la solución de la ecuación de Burgers es una discontinuidad que se propaga con una velocidad constante $s = \frac{u_L + u_R}{2}$ [2].

Figura 1.3. Ejemplo gráfico de la solución de la ecuación de Burgers para el caso $u_L > u_R$. **Fuente:** elaboración propia, basada en el esquema obtenido de [4].

1.7.1.2. Caso $u_L < u_R$:

Hay múltiples soluciones débiles para este caso, por ejemplo, la solución (1.48) [2] [4]. Sin embargo, esta no es la solución que corresponde a la solución con visco-

sidad disipiada [2]. La solución

$$u(x,t) = \begin{cases} u_L, & x < u_L t \\ x/t, & u_L t \le x \le u_R t \\ u_R, & x > u_R t, \end{cases}$$
 (1.54)

es la solución correspondiente a la viscosidad disipada y es conocida como **onda de rarefacción** [4]. Resulta ser poco práctico tener que recurrir frecuentemente a la solución de viscosidad disipada para encontrar la solución a cualquier caso del problema de Riemann, por lo que en su lugar se suelen imponer condiciones conocidas como **condiciones de entropía** que son equivalentes a exigir que la solución sea consistente con el formalismo de viscosidad disipada [4].

Figura 1.4. Gráficas de las soluciones, en distintos instantes de tiempo, de la ecuación de Burgers para el caso $u_L < u_R$ del problema de Riemann **Fuente**: elaboración propia.

1.8. Condiciones de entropía

Se ha mencionado que la solución con viscosidad disipada es la solución débil correcta que debe considerarse al resolver una ecuación de conservación, sin embargo, resulta ser complicado encontrar la solución para una ecuación de conservación con viscosidad. Por lo tanto, se suelen imponer un conjunto de condiciones que sean equivalentes a aplicar el formalismo de viscosidad disipada [4]. Estas se denominan condiciones de entropía, dado que cumplen un papel similar al de la entropía misma en problemas de la dinámica de los gases [4].

Existen varias versiones de la condición de entropía para una ecuación de conservación. Se mostraran las dos más relevantes con respecto a los métodos numéricos a tratar en este texto.

1.8.1. Condición de entropía, primera versión

La primera versión de la condición de entropía establece que una discontinuidad que se propaga a velocidad s debe cumplir con la siguiente desigualdad

$$f'(u_L) < s < f'(u_R) (1.55)$$

para que se satisfaga la misma condición [4]. Para interpretar esta condición se debe resaltar que la derivada f'(u) corresponde a la velocidad característica de la onda en un punto (x,t) [4].

2. MÉTODO DE VOLÚMENES FINITOS Y ESQUEMA DE ROE

Se describe la estructura del método de volúmenes finitos, principalmente para resolver ecuaciones de conservación y se enfatiza su importancia al aplicarse a problemas de esta naturaleza. Se introducen los conceptos de discretización, ecuación de diferencias, esquema numérico, celda. Se comenta sobre las condiciones de estabilidad de una solución numérica.

Se exponen algunos esquemas numéricos generales aproximados. Se introduce el esquema de Roe y su relación con el problema de Riemann. Nuevamente, se utiliza como ejemplo la ecuación de Burgers para proporcionar una idea simple de la aplicación de estos esquemas.

3. ECUACIONES DE EULER Y APLICACIÓN DEL ESQUEMA DE ROE

Se explican y derivan las ecuaciones de Euler utilizando las variables generales (presión, densidad y velocidad) y variables conservadas. Se explican las ligaduras adicionales involucradas para que las ecuaciones de Euler sean aplicadas a un gas ideal poliatómico.

Se aplican los conceptos previamente descritos para una ecuación de conservación de una variable al sistema de ecuaciones de Euler. El problema de Riemann se adapta al problema de onda de choque en un tubo descrito por las ecuaciones de Euler.

Se describe el esquema de Roe implementado específicamente en la solución de las ecuaciones de Euler para un gas ideal poliatómico. Se explica la implementación del método numérico en C++. Se muestran los resultados obtenidos para un problema de condiciones iniciales en específico.

4. COMPARACIÓN CON PYCLAW

Se da una breve explicación del funcionamiento y diseño de la simulación del problema de condiciones iniciales del capítulo anterior con la librería PyClaw y se comparan los resultados obtenidos.

5. SIMULACIONES CON DISTINTOS COEFICIENTES DE DILATACIÓN ADIABÁTICA

Se comparan los resultados obtenidos en simulaciones del mismo problema de condición inicial pero con distinto coeficiente de dilatación adiabática γ , esto con el fin de obtener una intuición física, a través de la simulación, de cómo varía el comportamiento de un gas cuando el número de grados de libertad interno del mismo cambia.

CONCLUSIONES

- 1. Conclusión 1.
- 2. Conclusión 2.
- 3. Conclusión 3.

RECOMENDACIONES

- 1. Recomendación 1.
- 2. Recomendación 2.
- 3. Recomendación 3.

BIBLIOGRAFÍA

- [1] BOAS, M.L.: Mathematical Methods in the Physical Sciences. Wiley student edition. Wiley, 2006. ISBN 9788126508105. https://books.google.com.gt/books?id=1xV0CgAAQBAJ
- [2] CAMERON, MARIA: «Notes on Burger's Equation», 2016. https://www.math.umd.edu/~mariakc/burgers.pdf
- [3] CLAWPACK DEVELOPMENT TEAM: «Clawpack software», 2020. doi: https://doi.org/10.5281/zenodo.4025432. Version 5.7.1. http://www.clawpack.org
- [4] LEVEQUE, RANDALL J.: Nonlinear Conservation Laws and Finite Volume Methods. pp. 1–159. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-31632-9, 1998. doi: 10.1007/3-540-31632-9_1. https://doi.org/10.1007/3-540-31632-9_1
- [5] PLETCHER, R.H.; TANNEHILL, J.C. y Anderson, D.: Computational Fluid Mechanics and Heat Transfer, Second Edition. Series in Computational and Physical Processes in Mechanics and Thermal Sciences. Taylor & Francis, 1997. ISBN 9781560320463.
 - https://books.google.com.gt/books?id=ZJPbtHeilCgC
- [6] ROE, P.L: «Approximate Riemann solvers, parameter vectors, and difference schemes». Journal of Computational Physics, 1981, 43(2), pp. 357-372. ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(81)90128-5. https://www.sciencedirect.com/science/article/pii/0021999181901285
- [7] —: «Characteristic-Based Schemes for the Euler Equations». Annual Review of Fluid Mechanics, 2003, 18, pp. 337–365. doi: 10.1146/annurev.fl.18.010186. 002005.