Высшая математика

Лисид Лаконский

October 2022

Содержание

1	Высшая математика - 03.10.2022			2	
	1.1	Преде	л функции	2	
	1.2		неопределенностей	2	
		1.2.1	Hеопределенность типа $\frac{0}{0}$	2	
		1.2.2	Heoпределенность вида \inf_{\inf}	2	
		1.2.3	Неопределенность вида $\frac{0}{0}, \frac{\inf}{\inf}$	2	
		1.2.4	Неопределенность вида 1 inf	3	
2	Высшая математика - 12.10.2022				
	2.1	Непре	рывность функции	4	
		2.1.1	Свойства непрерывных функций	4	
		2.1.2	Пример	4	
	2.2	Точки	гразрыва функции	4	
		2.2.1	Типы точек разрыва	5	
		2.2.2	Первый пример	5	
		2.2.3	Второй пример	5	
		2.2.4	Третий пример	5	
3	Выс	Высшая математика - 14.10.2022			
	3.1	Беско	нечно большие и бесконечно малые функции	6	
		3.1.1	Применение бесконечно малых к вычислению пределов	6	
		3.1.2	Таблица эквивалентных бесконечно малых	6	
		3.1.3	Некоторые соображения и примеры	7	
	3.2	Произ	вводные и дифференциалы функции	7	
		3.2.1	Свойства производных	7	
		3.2.2	Дифференцируемость функций	8	
		3.2.3	Геометрический смысл производной	8	
		3.2.4	Уравнение касательной и нормали к графику функции	8	
		3.2.5	Производная сложной функции	8	
		3.2.6	Обратная функция и ее произволная	9	

1 Высшая математика - 03.10.2022

1.1 Предел функции

- 1. Любую константу мы можем вынести за предел
- 2. Предел от суммы двух функций f(x) + g(x) дает в нам результате разложения сумму двух пределов
- 3. Предел от произведения двух функций разлагается на произведение двух пределов
- 4. Предел частного от двух функций $(g(x) \neq 0)$ равен частному двух пределов, если нет неопределенности

1.2 Виды неопределенностей

Неопределенности бывают следующие: $\frac{\inf}{\inf}$, $\frac{0}{0}$, $\frac{\inf}{-\inf}$, $\frac{0}{\inf}$, 1^{\inf} , 0^0 , \inf^0

1.2.1 Неопределенность типа $\frac{0}{0}$

1.2.2 Неопределенность вида $rac{\inf}{\inf}$

В числителе и знаменателе многочлены, пределы которых стремятся к inf. Если $a=\inf$, тогда предел будет $\lim_{x\to\inf}\frac{a_xx^m+\ldots+a_0}{b_nx^n+\ldots+b_0}$ равен нулю при m< n, $\frac{a^m}{b^n}$ при m=n, иначе inf

1.2.3 Неопределенность вида $\frac{0}{0}, \frac{\inf}{\inf}$

 $\lim_{x\to 0} \frac{\sin x}{x} = 1$, т.к. при $x\to 0$ обе эти функции являюстя бесконечно малыми, отношение эквивалентных велчиин дает 1

Если предел функции f(x) при $x \to a$ равен нулю, то функция f(x) называется бесконечно малой величиной в окресности точки a

Две бесконечно малые величины f(x), g(x) называются эквивалетнтными бесконечно-малыми величинами в окрестности точки a, если предел их отношения равен единице

Пример:

$$\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 7x - \cos 3x} = \lim_{x \to 0} \frac{1 - \cos 2x}{2 * \sin \frac{10x}{2} * \sin \frac{-5x}{2}} = \frac{\sin^2 x}{2 * \sin 5x * \sin 2x} = \frac{\sin^2 x}{2 * \sin 5x * \sin 2x} = \frac{1}{10}$$

1.2.4 Неопределенность вида 1^{\inf}

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

Пример:

$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\operatorname{tg} x}$$

2 Высшая математика - 12.10.2022

2.1 Непрерывность функции

Опр. 1. Функция y = f(x) называется непрерывной в точке x_0 , если f(x) определена в некоторой окрестности точки x_0 и существует предел этой функции при x, стремящемся к x_0 , равный $f(x_0)$.

2.1.1 Свойства непрерывных функций

Пусть f(x) и g(x) - непрерывные в точке x_0 функции, тогда:

- 1. Функция, полученная в результате сложения и вычитания двух непрерывных в данной точке функций также будет непрерывна в рассматриваемой точке x_0
- 2. Функция, которая стала результатом произведения двух непрерывных функций, тоже будет непрерывна в точке x_0
- 3. Функция $\frac{f(x)}{g(x)}$ будет непрерывна в точке x_0 , если $g(x) \neq 0$
- 4. Для того, чтобы g=f(x) была непрерывна в точке x_0 , необходимо и достаточно, чтобы $\lim_{\Delta x\to 0}\Delta y=0, \Delta y=f(x_0-\Delta x)-f(x_0)$
- 5. Основные элементарные функции: $a^x, x^a, \log_a x, \sin x, \cos x, \tan x, \cot x, \arctan x, \arcsin x, \dots$ непрерывны на всей области определения
- 6. Пусть y = f(x) непрерывна на [a;b], и на концах этого отрезка принимает значения разных знаков, тогда между точками a и b находится хотя бы одна т. x = c, при которой f(c) = 0, a < c < b

2.1.2 Пример

$$x^3+x^2+x-1=0, x_0=c, (a,b)=(rac{1}{2};1)$$
 $f(rac{1}{2})=-rac{1}{8}, f(1)=2,$ следовательно $\exists x_0=c, f(c)=0, rac{1}{2}< c<1$

2.2 Точки разрыва функции

Опр. 2. Точка $x_0 \in R$ называется точкой разрыва функции f(x), определенной в некоторой окрестности точки x_0 , кроме, может быть, самого x_0 , если равенство $\lim_{x\to x_0} f(x) \neq f(x_0)$

То есть, либо $x_0 \notin D_f$ и значение $f(x_0)$ не определено, либо $\lim_{x\to x_0} f(x)$ не существует, либо обе части равенства определены, но не равны между собой.

2.2.1 Типы точек разрыва

1. x_0 - точка разрыва 1-го рода, если существуют конечные односторонние

пределы $f(x_0-0)=\lim_{x\to x_0-0}f(x), f(x_0+0)=\lim_{x\to x_0+0}f(x)$ Если $\lim_{x\to x_0+0}f(x)=\lim_{x\to x_0-0}$, то x_0 - устранимая точка разрыва первого

2. x_0 - точка разрыва второго рода, если выполнено хотя бы одно из условий: $\lim_{x \to x_0} f(x) = \pm \inf$, $\lim_{x \to x_0 + 0} = \pm \inf$, $\lim_{x \to x_0 - 0} f(x) = \pm \inf$

2.2.2 Первый пример

 $f(x) = \frac{x}{\sin x}$, так как результат частного двух простых функций, то она непрерывна при $\sin x \neq 0$, то есть точками разрыва являются нули функции $\sin x$: $x = \pi k, k \in Z$

При x=0: $\lim_{x\to 0}\frac{x}{\sin x}=1,\ f(0)$ не существует, следовательно функция сама по себе в этой точке не непрерывна.

Рассмотрим два конечных односторонних предела, $\lim_{x\to 0+0} \frac{x}{\sin x} = 1$, $\lim_{x\to 0-0} \frac{x}{\sin x} = 1$ 1

Односторонние разрывы равны между собой, следовательно, x=0 устранимая точка разрыва первого рода.

При $x=\pi$: $\lim_{x\to\pi}\frac{x}{\sin x}=\frac{\pi}{0}=\inf$, $f(\pi)$ не существует

2.2.3Второй пример

$$\begin{cases} x^2 + 1, x \le 0 \\ x + 1, 0 < x \le 1 \\ 2x - 1, x > 1 \end{cases}$$
 (1)

Рассмотрим первый случай, x=0: $\lim_{x\to 0-0}(x^2+1)=1, \lim_{x\to 0+0}(x+1)=$ 1, y(0) = 1, таким образом точка x = 0 - точка непрерывности нашей функции, разрыва нет.

Рассмотрим второй случай, x = 1: $\lim_{x \to 1-0} (2x - 1) = 1$, $\lim_{x \to 1+0} (x + 1) = 2$, таким образом точка x=1 - неустранимая точка разрыва первого рода.

2.2.4Третий пример

Исследовать точки x = 3, x = 1 функции $y = 4^{\frac{1}{x-1}}$

- 1) $x=3, \lim_{x\to 3} 4^{\frac{1}{x-1}}=2=y(3),$ следовательно данная точка точка непрерывности данной функции
- 2) $x=1, \lim_{x\to 1} 4^{\frac{1}{x-1}}=\inf$, следовательно данная точка точка разрыва второго рода. $\lim_{x\to 1-0} 4^{\frac{1}{x-1}}=4^{-\inf}=\frac{1}{4^{\inf}}=0, \lim_{x\to 1+0} 4^{\frac{1}{x-1}}=+\inf$

$$\lim_{x \to 1-0} 4^{\frac{1}{x-1}} = 4^{-\inf} = \frac{1}{4^{\inf}} = 0, \lim_{x \to 1+0} 4^{\frac{1}{x-1}} = +\inf$$

3 Высшая математика - 14.10.2022

Бесконечно большие и бесконечно малые функции

Функция называется бесконечно малой при $x \to x_0$, если $\lim_{x \to x_0} f(x) = 0$.

Функция называется бесконечно большой при $x \to x_0,$ если $\lim_{x \to x_0} f(x) = \inf.$

Теорема 1. $\alpha + \beta, \alpha - \beta$ - бесконечно малые, если α, β - бесконечно малые

Теорема 2. Произведение бесконечно малой на ограниченую функцию является бесконечно малой

Определение. Если $\alpha(x), \beta(x)$ бесконечно малы при $x \to x_0$, то

 $\exists\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=\mathrm{const}\neq 0\neq \pm\inf,$ то α и β - бесконечно малые одного порядка

Если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$, то α, β - эквивалентные бесконечно малые

Если $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 0$, то α - бесконечно малое более высокого порядка малости по сравнению с β .

Если, наоборот, $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = \inf$, то говорят, что β более высокого порядка малости, чем α .

Например, $\alpha = x^3 + 2x^2$, $\beta = 2x + 3x^2$, $\lim_{x \to 0} \frac{x^3 + 2x^2}{3x^2 + 2x} = \lim_{x \to 0} \frac{x^2(x+2)}{x(3x+2)} = \lim_{x \to 0} \frac{x+2}{3x+2}$

 $\exists\lim_{x o x_0} rac{eta(x)}{lpha^k(x)} = C
eq 0
eq \pm \inf$, то $eta, lpha^k$ - бесконечно малые одного порядка.

Например, $\alpha=sin^3x, \beta=x, \lim_{x\to 0}\frac{\sin^3x}{x^3}=\lim(\frac{\sin x}{x})^3=1\neq 0\neq \pm\inf, \sin^3x$ величина такого же порядка малости, как x^3 .

Применение бесконечно малых к вычислению пределов

Если при $x \to x_0$ $f(x) \sim f_1(x), g(x) \sim g_1(x)$, то $\exists \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} \Longrightarrow \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}$

$$\exists \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} \implies \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}$$

Например, $\lim_{x\to 0} \frac{\sin^3(4x)}{x^2+3x} = \dots$

Допустим, $\lim_{x\to 0} \frac{x^2+3x}{x} = \lim(x+3) = 3.$

Допустим, $\lim_{x\to 0} \frac{x^2+3x}{x^2} = \lim_{x\to 0} \frac{x(x+3)}{x} = \inf.$

Посчитали без толку, теперь продолжим, ... = $\lim_{x\to 0} \frac{(4x)^3}{x(x+3)} = \lim_{x\to 0} \frac{64x^2}{x+3} = 0$.

Таблица эквивалентных бесконечно малых

 $\sin x \sim x, \tan x \sim x, \arcsin x \sim x, \arctan x \sim x, \ln(x+1) \sim x, e^x - 1 \sim x, a^x - 1 \sim x \ln a, \sqrt[n]{1+x} - 1 \sim \frac{x}{n}, 1 - \cos x \sim \frac{x^2}{2}, \cos x \ 1 - \frac{x^2}{2}$

Это все подходит к умножению или делению, но никак не к сложению или вычитанию.

3.1.3 Некоторые соображения и примеры

При $x \to \inf f(x) = x^3 + 2x + 1$ больший вклад вносит x^3 , при $x \to 0$ $f(x) = x^3 + x^2$ больший вклад вносит x^2

Пример. $\lim_{x\to 0} \frac{\sqrt[3]{1+4x}-1}{\ln(1+2x)} = \lim_{x\to 0} \frac{\frac{4x}{3}}{2x} = \frac{2}{3}$ - применение таблицы эквивалентных бесконечно малых.

O(x) - бесконечно малая более высокая порядка малости.

3.2 Производные и дифференциалы функции

Тут есть рисунок, который мне тяжело воспроизвести. Поэтому его тут нет. Но на нем показаны Δx (приращение аргумента), Δf (приращение функции), касательная к функции.

$$\mathrm{d}f=f'(x)\,\mathrm{d}x$$
 - дифференциал функции, $\Delta f=\mathrm{d}f+O(\Delta x)$

Производной функции называется $\lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$. Производная равна пределу приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Пример. Пусть у нас $y=x^3+2x-1$. Попробуем вычислить производную. $y(x+\Delta x)=(x+\Delta x)^3+2(x+\Delta x)-1=x^3+3x^2*\Delta x+3x(\Delta x)^2+(\Delta x)^3+2x+2\Delta x-1$ $y'(x)=\lim_{\Delta x\to 0}\frac{x^3+3x^2*\Delta x+3x(\Delta x)^2+(\Delta x)^3+2x+2\Delta x-1-x^2-3x+1}{\Delta x}=\lim_{\Delta x\to 0}(3x^2+3x(\Delta x)+(\Delta x)^2+2)=3x^2+2$ Поздравляю, вы написали такую простыню. Вы великолепны.

Другой пример. Попробуем доказать, что производная $y'(\sin x) = \cos x$ $y(x + \Delta x) = \sin(x + \Delta x)$ $y'(x) = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \text{вспоминайте формулы} = \dots = \lim_{\Delta x \to 0} \frac{2 \sin \frac{x + \Delta x - x}{\Delta x}}{\Delta x} = \lim_{x \to 0} \frac{2 \sin \frac{\Delta x}{\Delta x} \cos(x + \frac{\Delta x}{\Delta})}{\Delta x} = \lim_{x \to 0} \frac{2 \cos x}{2} = \cos x$

3.2.1 Свойства производных

1.
$$(u \pm v)' = u' \pm v'$$

2.
$$(u*v)' = u'v + vu'$$
, $(u*v*w)' = u'vw + u*v'w + u*v*w'$

3.
$$(cu)' = cu'$$

4.
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

3.2.2 Дифференцируемость функций

Если функция y=f(x) имеет производную в точке x_0 , то есть $\exists\lim_{x\to x_0} \frac{\Delta f(x)}{\Delta x}=\lim_{x\to x_0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$, то функция дифференцируема в точке x_0 .

Теорема. Если функций y=f(x) дифференцируема в точке x_0 , то она в этой точке непрерывна.

Замечание. Обратное высказывание может быть и неверным.

Пример функции непрерывной в какой-то точке, но не дифференцируемой в ней.

3.2.3 Геометрический смысл производной

Производная - это тангенс угла наклона касательной... $\lg \alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$

3.2.4 Уравнение касательной и нормали к графику функции

Пусть у нас есть y = kx + b, дана какая-то точка $M_0(x_0; y_0)$

Уравнение касательной. $y - y_0 = y'(x_0)(x - x_0)$

Уравнение нормали. $y-y_0=-\frac{1}{y'(x_0)}(x-x_0)$

3.2.5 Производная сложной функции

Пусть функция u=u(x) имеет в некоторой точке производную $u_x'(x)$, а функция y=y(u) имеет при соответствующем значении u производную y_u' . Тогда сложная функция y(x)=y(u(x)) имеет производную $y_x'=y_u'*u_x'$

Пример 0. Например, у нас есть y(x) = y(g(f(x))), то $y_x' = y_g' * g_f' * f_x'$

Пример 1.
$$y = 2x^2 + 3x, y' = 4x + 3$$

Пример 2.
$$y = \cos(2x^2 + 3x), y' = \sin(2x^2 + 3x) * (4x + 3)$$

Пример 3.
$$y = \sqrt{\cos(2x^2 + 3x)}, y' = \frac{1}{2\sqrt{\cos 2x^2 + 3x}} * (-\sin(2x^2 + 3x)) * (4x + 3)$$

Пример 4.
$$y=\operatorname{tg}\sqrt{\cos(2x^2+3x)}, y'=\frac{1}{\cos^2(\sqrt{\cos(2x^2+3x)}}*\frac{1}{2\sqrt{\cos(2x^2+3x)}}*(-\sin(2x^2+3x))*(4x+3)$$

3.2.6 Обратная функция и ее производная

Пусть у нас есть функция $y=f(x),\, x=a, x=b,\,$ а $y(a)=c,y(b)=d,\,$ где [a;b] - область определения, [c;d] - область изменения функции.

Теорема. Если для y=f(x) существует обратная функция $x=\phi(y),$ у которой $\phi'(y)\neq 0$ в некоторой точке $y_0,$ то $f'(x)=\frac{1}{\phi'(y)}$

Пример 1.
$$y = \arcsin x$$
, функция обратная к ней $x = \sin y, x' = \cos y$. Таким образом, $(\arcsin x)' = \frac{1}{\cos x} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-\sin^2(\arcsin x)}} = \frac{1}{\sqrt{1-x^2}}$