

CSCE 689 - Special Topics in NLP for Science

Lecture 2: Scientific LLMs (Encoder-Only & Encoder-Decoder)

Yu Zhang

yuzhang@tamu.edu

January 16, 2025

Course Website: https://yuzhang-teaching.github.io/CSCE689-S25.html

Sign Up for Your Presentation

 https://docs.google.com/spreadsheets/d/1sw03STrp5oyxUyXwEsd 313K70L7W1Ebe_0VKzz0G2a8/edit?usp=sharing

Tips

- No need to cover every detail of the papers
- Focus on conveying general ideas and insights
- For the method part, do not go over each formula in detail, but explain the major insights
- For the experimental part, do not present every piece of experiment results, but explain how the empirical findings support the major claims
- Provide some take-away messages
 - Novelty, practical value, limitations, ...
- Start preparing your presentation early (e.g., 10+ days in advance)

Unable to present on your signed-up date?

- If there is a free slot, email me and I will move you to that slot.
- If you want to switch with somebody else's slot, contact the other party directly and let me know after you come to an agreement.
- The date and the papers to be presented are tied together. If you move to a new slot, you should present the corresponding new papers instead of the ones you originally signed up for.

Agenda

- Language Model Pre-training Basics
- Encoder-Only Architecture
 - BERT
 - SciBERT and BioBERT
 - ELECTRA
 - BioELECTRA
- Encoder-Decoder Architecture
 - BART and T5
 - SciFive

I will also introduce common scientific and biomedical NLP Tasks

Agenda

- Language Model Pre-training Basics
- Encoder-Only Architecture
 - BERT
 - SciBERT and BioBERT
 - ELECTRA
 - BioELECTRA
- Encoder-Decoder Architecture
 - BART and T5
 - SciFive

Information in Raw Texts

- Verb: the task is to all the structured chemical reactions from papers
- *Preposition*: a liquid handler equipped two microplates
- *Time*: the Transformer paper was published in
- Location: data from the University of MD Anderson Cancer Center
- *Math*: the sequence goes 1, 1, 2, 3, 5, 8, 13, 21,
- Chemistry: sugar is composed of carbon, hydrogen, and
- . . .
- How to harvest underlying patterns, structures, and semantic knowledge from raw texts?
 - Train the model to predict masked tokens given their contexts

Information in Raw Texts

- Verb: the task is to extract all the structured chemical reactions from papers
- *Preposition*: a liquid handler equipped with two microplates
- *Time*: the Transformer paper was published in 2017
- Location: data from the University of Texas MD Anderson Cancer Center
- *Math*: the sequence goes 1, 1, 2, 3, 5, 8, 13, 21, 34
- Chemistry: sugar is composed of carbon, hydrogen, and oxygen
- ...
- How to harvest underlying patterns, structures, and semantic knowledge from raw texts?
 - Train the model to predict masked tokens given their contexts

The Transformer Architecture: Encoder

The Transformer Architecture: Decoder

Encoder vs. Decoder

- Encoder:
 - Each token can attend to all other tokens to better learn its representation vector
 - Suitable for natural language understanding (NLU) tasks
- Decoder:
 - Each token can only attend to previous tokens to predict the next token
 - Suitable for natural language generation (NLG) tasks

NLU: Text classification Named entity recognition Relation extraction Sentiment analysis ... NLG: Text summarization Machine translation Dialogue system Question answering ...

Agenda

- Language Model Pre-training Basics
- Encoder-Only Architecture
 - BERT
 - SciBERT and BioBERT
 - ELECTRA
 - BioELECTRA
- Encoder-Decoder Architecture
 - BART and T5
 - SciFive

Encoder Pre-training: BERT

 Task 1 - Masked Language Modeling (MLM): With 15% words randomly masked, the model learns bidirectional contextual information to predict the masked words.

Encoder Pre-training: BERT

• Task 2 - Next Sentence Prediction (NSP): We feed two sentences together into the model. Predict if their order is correct. 50% of the time the two sentences are in the correct order.

Encoder Pre-training: BERT

SciBERT

- Architecture: the same as BERT-base (12-layer Transformer encoders, 110M model parameters)
- Pre-training data: 1.14M papers from Semantic Scholar

https://www.semanticscholar.org/

https://github.com/allenai/s2orc title, abstract, full text, ...

SciBERT

- Model variants:
 - *Uncased* or *Cased*. *Uncased* performs slightly better
 - From BERT or From Scratch. From Scratch performs slightly better because the model can adopt a domain-specific vocabulary rather than stick with the BERT vocabulary

https://huggingface.co/allenai/scibert_scivocab_uncased

Scientific NLP Tasks for Evaluating SciBERT: NER

• Named Entity Recognition (NER): Given a sentence, find entities (i.e., token spans) of certain types (e.g., chemical, disease, gene).

... <u>human complement factor H deficiency</u> associated with <u>hemolytic uremic syndrome</u> ...

DISEASE

DISEASE

Input	human	complement	factor	Н	deficiency	associated	with
Output	B-DISEASE	I-DISEASE	I-DISEASE	I-DISEASE	I-DISEASE	0	Ο

- The BIO schema: B (beginning of an entity), I (in an entity), O (out of an entity)
 - Why do we need "B" rather than just have "I" and "O"?
- NER → predicting a label for each token in the sentence

Fine-tuning the BERT Architecture for NER

- Evaluation datasets used in SciBERT:
 - Biomedicine
 - BC5CDR (Chemical, Disease)
 - JNLPBA (Gene/Protein, DNA, Cell Type, Cell Line, RNA)
 - NCBI-disease (Disease)
 - Computer Science
 - SciERC (Task, Method, Metric, Material)

Scientific NLP Tasks for Evaluating SciBERT: Classification

- Topic Classification: Given a paper, predict its topic (e.g., natural language processing vs. computer vision).
- Citation Intent Classification: Given a citation sentence in a paper, predict the intent of this citation.

Class	Description	Example
BACKGROUND	P provides relevant information	This is often referred to as incorporating deterministic closure (Dörre,
	for this domain.	1993).
MOTIVATION	P illustrates need for data, goals, methods, etc.	As shown in Meurers (1994), this is a well-motivated convention []
Uses	Uses data, methods, etc., from ${\cal P}$.	The head words can be automatically extracted [] in the manner described by Magerman (1994).
EXTENSION	Extends P's data, methods, etc.	[] we improve a two-dimensional multimodal version of LDA (Andrews et al, 2009) []
COMPARISON	Expresses similarity/differences	Other approaches use less deep linguistic resources (e.g., POS-tags
OR CONTRAST	to P .	Stymne (2008)) []
FUTURE	P is a potential avenue for future work.	[] but we plan to do so in the near future using the algorithm of Little-stone and Warmuth (1992).

Scientific NLP Tasks for Evaluating SciBERT: Classification

- Topic Classification: Given a paper, predict its topic (e.g., natural language processing vs. computer vision).
- Citation Intent Classification: Given a citation sentence in a paper, predict the intent of this citation.
- Relation Classification (a.k.a., Relation Extraction, RE): Given a sentence containing two entities, predict the relation between these two entities.

In rats, Nitrofurantoin causes pulmonary toxicity.

CHEMICAL DISEASE

Predicted Relation: CHEMICAL induce DISEASE √ CHEMICAL treat DISEASE ×

Fine-tuning the BERT Architecture for Classification

- Evaluation datasets used in SciBERT
 - Microsoft Academic (Paper Classification: economics vs. business vs. sociology vs. ...)
 - ACL-ARC and SciCite (Citation Intent Classification)
 - ChemProt (Relation Classification: Protein-Chemical)
 - SciERC (Relation Classification: Task-Task, Method-Task, ...)
- Better ways than using [CLS] alone?
 - Average of all tokens
 - Concatenating entity representations

BioBERT

- Architecture: the same as BERT-base (12-layer Transformer encoders, 110M model parameters) and BERT-large (24-layer Transformer encoders, 340M model parameters)
- Pre-training data: PubMed abstracts (~30M papers, 4.5B words) + PMC full text (13.5B words)

https://pubmed.ncbi.nlm.nih.gov

https://ftp.ncbi.nlm.nih.gov/pubmed/baseline

Index of /pubmed/baseline

Name	Last modified	Size
Parent Directory		-
README.txt	2024-01-12 14:2	5 4.5K
<pre>pubmed24n0001.xml.gz</pre>	2023-12-14 18:0	8 19M
<pre>pubmed24n0001.xml.gz.md5</pre>	2023-12-14 18:0	8 60
<pre>pubmed24n0002.xml.gz</pre>	2023-12-14 18:0	8 17M
<pre>pubmed24n0002.xml.gz.md5</pre>	2023-12-14 18:0	8 60
<pre>pubmed24n0003.xml.gz</pre>	2023-12-14 18:0	8 16M
<pre>pubmed24n0003.xml.gz.md5</pre>	2023-12-14 18:0	8 60

BioBERT

- Model variants:
 - *Uncased* or *Cased*. *Cased* performs slightly better (different from SciBERT!)
 - PubMed or PMC or PubMed+PMC More data results in better performance
 - 200K Steps or 1M Steps in pre-training: Longer pre-training results in better performance

Scientific NLP Tasks for Evaluating BioBERT: NER and RE

Named Entity Recognition Datasets

Dataset	Entity type	Number of annotations
NCBI Disease (Doğan et al., 2014)	Disease	6881
2010 i2b2/VA (Uzuner et al., 2011)	Disease	19 665
BC5CDR (Li et al., 2016)	Disease	12 694
BC5CDR (Li et al., 2016)	Drug/Chem.	15 411
BC4CHEMD (Krallinger et al., 2015)	Drug/Chem.	79 842
BC2GM (Smith et al., 2008)	Gene/Protein	20 703
JNLPBA (Kim et al., 2004)	Gene/Protein	35 460
LINNAEUS (Gerner et al., 2010)	Species	4077
Species-800 (Pafilis et al., 2013)	Species	3708

Relation Extraction Datasets

Dataset	Entity type	Number of relations
GAD (Bravo et al., 2015)	Gene-disease	5330
EU-ADR (Van Mulligen et al., 2012)	Gene-disease	355
CHEMPROT (Krallinger et al., 2017)	Protein-chemical	10 031

Scientific NLP Tasks for Evaluating BioBERT: QA

• (Extractive) Question Answering: Given a context paragraph and a question, extract the answer (a span of tokens) from the context graph.

Context: Corynebacterium minutissimum is the bacteria that leads to cutaneous eruptions of erythrasma and is the most common cause of interdigital foot infections. It is found mostly in occluded intertriginous areas such as the axillae, ...

Question: Which bacteria causes erythrasma?

Answer: Corynebacterium minutissimum is the bacteria that leads to cutaneous ...

Fine-tuning the BERT Architecture for QA

Evaluation datasets used in BioBERT

Dataset	Number of train	Number of test
BioASQ 4b-factoid (Tsatsaronis et al., 2015)	327	161
BioASQ 5b-factoid (Tsatsaronis et al., 2015)	486	150
BioASQ 6b-factoid (Tsatsaronis et al., 2015)	618	161

Experimental Results of SciBERT

Field	Task	Dataset	SOTA	BER	BERT-Base		SCIBERT	
				Frozen	Finetune	Frozen	Finetune	
		BC5CDR (Li et al., 2016)	88.85 ⁷	85.08	86.72	88.73	90.01	
	NER	JNLPBA (Collier and Kim, 2004)	78.58	74.05	76.09	75.77	77.28	
Bio		NCBI-disease (Dogan et al., 2014)	89.36	84.06	86.88	86.39	88.57	
	PICO	EBM-NLP (Nye et al., 2018)	66.30	61.44	71.53	68.30	72.28	
	DED	GENIA (Kim et al., 2003) - LAS	91.92	90.22	90.33	90.36	90.43	
	DEP	GENIA (Kim et al., 2003) - UAS	92.84	91.84	91.89	92.00	91.99	
	REL	ChemProt (Kringelum et al., 2016)	76.68	68.21	79.14	75.03	83.64	
	NER	SciERC (Luan et al., 2018)	64.20	63.58	65.24	65.77	67.57	
CS	REL	SciERC (Luan et al., 2018)	n/a	72.74	78.71	75.25	79.97	
	CLS	ACL-ARC (Jurgens et al., 2018)	67.9	62.04	63.91	60.74	70.98	
N414:	CI C	Paper Field	n/a	63.64	65.37	64.38	65.71	
Multi	CLS	SciCite (Cohan et al., 2019)	84.0	84.31	84.85	85.42	85.49	
Average				73.58	77.16	76.01	79.27	

Experimental Results of BioBERT (NER)

				BERT	BioBERT v1.0			BioBERT v1.1
Type	Datasets	Metrics	SOTA	(Wiki + Books)	(+ PubMed)	(+ PMC)	(+ PubMed + PMC)	(+ PubMed)
Disease	NCBI disease	P	88.30	84.12	86.76	86.16	89.04	88.22
		R	89.00	87.19	88.02	89.48	89.69	91.25
		F	88.60	85.63	87.38	87.79	89.36	89.71
	2010 i2b2/VA	P	87.44	84.04	85.37	85.55	87.50	86.93
		R	86.25	84.08	85.64	85.72	85.44	86.53
		F	86.84	84.06	85.51	85.64	86.46	86.73
	BC5CDR	P	89.61	81.97	85.80	84.67	85.86	86.47
		R	83.09	82.48	86.60	85.87	87.27	87.84
		F	86.23	82.41	86.20	85.27	86.56	87.15
Drug/chem.	BC5CDR	P	94.26	90.94	92.52	92.46	93.27	93.68
		R	92.38	91.38	92.76	92.63	93.61	93.26
		F	93.31	91.16	92.64	92.54	93.44	93.47
	BC4CHEMD	P	92.29	91.19	91.77	91.65	92.23	92.80
		R	90.01	88.92	90.77	90.30	90.61	91.92
		F	91.14	90.04	91.26	90.97	91.41	92.36
Gene/protein	BC2GM	P	81.81	81.17	81.72	82.86	85.16	84.32
		R	81.57	82.42	83.38	84.21	83.65	85.12
		F	81.69	81.79	82.54	83.53	84.40	84.72
	JNLPBA	P	74.43	69.57	71.11	71.17	72.68	72.24
		R	83.22	81.20	83.11	82.76	83.21	83.56
		F	78.58	74.94	76.65	76.53	77.59	77.49
Species	LINNAEUS	P	92.80	91.17	91.83	91.62	93.84	90.77
		R	94.29	84.30	84.72	85.48	86.11	85.83
		F	93.54	87.60	88.13	88.45	89.81	88.24
	Species-800	P	74.34	69.35	70.60	71.54	72.84	72.80
	-	R	75.96	74.05	75.75	74.71	77.97	75.36
		F	74.98	71.63	73.08	73.09	75.31	74.06

Experimental Results of BioBERT (RE and QA)

				BERT	BioBERT	v1.0		BioBERT v1.
Relation	Datasets	Metrics	SOTA	(Wiki + Books)	(+ PubMe	ed) (+ PMC	(+ PubMed + PMC)	(+ PubMed)
Gene-disease	GAD	P	79.21	74.28	76.43	75.20	75.95	77.32
		R	89.25	85.11	87.65	86.15	88.08	82.68
		F	83.93	79.29	81.61	80.24	81.52	79.83
	EU-ADR	P	76.43	75.45	78.04	81.05	80.92	77.86
		R	98.01	96.55	93.86	93.90	90.81	83.55
		F	85.34	84.62	84.44	86.51	84.83	79.74
Protein-chemical	CHEMPRO	T P	74.80	76.02	76.05	77.46	75.20	77.02
		R	56.00	71.60	74.33	72.94	75.09	75.90
		F	64.10	73.74	<u>75.18</u>	75.13	75.14	76.46
			BERT	BioBER	T v1.0			BioBERT v1.
Datasets	Metrics	SOTA	(Wiki + Book	s) (+ PubN	Med)	(+ PMC)	(+ PubMed + PMC)	(+ PubMed)
BioASQ 4b	S	20.01	27.33	25.4	7	26.09	28.57	27.95
	L	28.81	44.72	44.7	2	42.24	47.82	44.10
	M	23.52	33.77	33.2	8	32.42	35.17	34.72
BioASQ 5b	S	41.33	39.33	41.3	3	42.00	44.00	46.00
	L	56.67	52.67	55.3	3	54.67	<u>56.67</u>	60.00
	M	47.24	44.27	46.7	3	46.93	49.38	51.64
BioASQ 6b	S	24.22	33.54	43.4	8	41.61	40.37	42.86
	L	37.89	51.55	55.9	0	55.28	57.77	57.77
	M	27.84	40.88	48.1	1	47.02	47.48	48.43

Take-Away Messages from SciBERT and BioBERT

- Various scientific NLP tasks can be solved by fine-tuning a pre-trained scientific language model.
- Pre-trained language models, although task-agnostic during pre-training, achieve competitive (and often the best) performance in comparison with previous task-specific architectures.
- Domain-specific BERT outperforms general BERT in domain-specific tasks.
- More pre-training data (within the domain) often helps.
- Longer pre-training steps often helps.

BERT in Other Scientific Fields

- Mathematics: MathBERT [1]
- Physics: PhysBERT [2]
- Chemistry: ChemBERT [3]
- Materials Science: MatSciBERT [4]
- Medicine: ClinicalBERT [5]
- Geoscience: ClimateBERT [6]

- [1] MathBERT: A Pre-trained Language Model for General NLP Tasks in Mathematics Education. arXiv 2021
- [2] PhysBERT: A Text Embedding Model for Physics Scientific Literature. arXiv 2024
- [3] Automated Chemical Reaction Extraction from Scientific Literature. Journal of Chemical Information and Modeling 2022
- [4] MatSciBERT: A Materials Domain Language Model for Text Mining and Information Extraction. npj Computational Materials 2022
- [5] Publicly Available Clinical BERT Embeddings. NAACL 2019 Workshop
- [6] ClimateBERT: A Pretrained Language Model for Climate-Related Text. arXiv 2021

Improving BERT: RoBERTa

- BERT has two pre-training tasks: masked language modeling (MLM) and next sentence prediction (NSP).
- Next sentence prediction is not helpful!
- Pretrain on longer sequences
- Pretrain the model for longer, with bigger batches over more data
- Dynamically change the masking patterns applied to the training data in each epoch

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE					
Our reimplementation (with NSP loss):									
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2					
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0					
Our reimplementation (without NSP loss):									
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8					
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6					

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4

Improving BERT: ELECTRA

- Use a small MLM as an auxiliary generator (discarded after pretraining)
- Pretrain the main model as a discriminator
- The small auxiliary MLM and the main discriminator are jointly trained.
- The main model's pretraining task becomes more and more challenging in pretraining.

ELECTRAMed

- Architecture: the discriminator is the same as BERT-base (12-layer Transformer encoders, 110M model parameters); the generator is ½ the size of the discriminator in terms of hidden dimensions
- Pre-training data: PubMed abstracts

Evaluating ELECTRAMed (NER and RE)

• NER: NCBI-disease, BC5CDR, and JNLPBA

Dataset	SciBERT	BioBERT	ELECTRAMed
NCBI-disease	89.36	89.71	87.54
BC5CDR	88.85	-	90.03
JNLPBA	78.58	-	73.65

RE: ChemProt and DDI-2013

Dataset	SciBERT	BioBERT	ELECTRAMed
ChemProt	83.64	76.46	72.94
DDI-2013	-	-	79.13

Evaluating ELECTRAMed (QA)

• QA: Instead of trying previous benchmark datasets, the authors of ELECTRAMed attended that year's BioASQ challenge (7b).

https://www.bioasq.org

A challenge on large-scale biomedical semantic indexing and question answering

Batch	Competitor	SACC	LACC	MRR
1	(1) ELECTRAMed	44.62	51.28	47.95
	(2) KU-DMIS-1	41.03	53.85	46.37
	(3) BJUTNLPGroup	30.77	41.03	34.83
	(4) auth-qa-1	25.64	30.77	27.78
2	(1) KU-DMIS-5	52.00	64.00	56.67
	(2) ELECTRAMed	46.40	62.40	53.16
	(3) QA1	36.00	48.00	40.33
	(4) transfer-learning	24.00	44.00	32.67
3	(1) QA1 (2) UNCC_QA_1 (3) google-gold-input (7) ELECTRAMed	44.83 44.83 41.38 37.93	58.62 58.62 65.52 58.62	51.15 51.15 50.23 46.62
4	(1) ELECTRAMed	61.18	82.35	69.55
	(2) KU-DMIS-1	58.82	82.35	69.12
	(3) FACTOIDS	52.94	73.53	61.03
	(4) UNCC_QA3	52.94	73.53	61.03
5	(1) KU-DMIS-5	28.57	51.43	36.38
	(2) BJUTNLPGroup	28.57	40.00	33.81
	(3) UNCC_QA_1	28.57	42.86	33.05
	(6) ELECTRAMed	24.57	44.00	31.42

Take-Away Messages from ELECTRAMed

- The success of new pre-training techniques may not be generalized well to certain scientific domains.
- Most studies on encoder-based scientific LLMs still adopt the BERT architecture and its MLM pre-training objective.

https://github.com/yuzhimanhua/Awesome-Scientific-Language-Models

Agenda

- Language Model Pre-training Basics
- Encoder-Only Architecture
 - BERT
 - SciBERT and BioBERT
 - ELECTRA
 - BioELECTRA
- Encoder-Decoder Architecture
 - BART and T5
 - SciFive

Encoder-Decoder Architecture

Encoder

- What are the advantages of Encoder-Decoder architectures?
 - Can perform both NLU and NLG tasks
 - If you input "Translate Bank of America into Spanish" into an LLM, ...
 - What is the context of Bank if you use a Decoder-Only architecture?
 - What if you use an Encoder-Decoder?

BART

- Pre-training: Apply a series of noising schemes (e.g., masks, deletions, permutations, etc.) to input sequences and train the model to recover the original sequences
- Fine-tuning:
 - For NLU tasks: Feed the same input into the encoder and decoder, and use the final decoder token for classification
 - For NLG tasks: The encoder takes the input sequence, and the decoder generates outputs autoregressively

T5

- T5: Text-to-Text Transfer Transformer
- Pre-training: Mask out spans of texts; generate the original spans

T5

- T5: Text-to-Text Transfer Transformer
- Pre-training: Mask out spans of texts; generate the original spans
- Fine-tuning: Convert every task into a sequence-to-sequence generation problem

SciFive

- Architecture:
 - T5-base: 12-layer Transformer encoders, 12-layer Transformer decoders, 220M parameters
 - T5-large: 24-layer Transformer encoders, 24-layer Transformer decoders,
 770M parameters
- Pre-training data: PubMed abstracts + PMC full text

IL - 2 gene expression and NF - kappa B activation through CD28 requires reactive oxygen production by 5 - lipoxygenase

<M> expression and NF - kappa <M> CD28 requires reactive <M> by 5 - lipoxygenase

IL - 2 gene **<M>** B activation through **<M>** oxygen production **<M>**

Evaluating SciFive

ing	•		Metrics	SOTA	Bert (base)	T5	BlueBERT	BioBert	SciFive (PMC +PubMed)	SciFive (PubMed)	SciFive (PMC)	T5	BlueBERT	BioBert	SciFive (PMC +PubMed)	SciFive (PubMed)	SciFive (PMC)
e_			P		84.12	87.18	-	88.22	88.28	86.28	88.65	87.48	-	87.70	88.10	88.52	87.64
	Disease	NCBI disease	R		87.19	89.93	-	91.25	89.30	89.71	90.14	90.14	-	89.90	90.14	89.82	89.30
			F	88.60	85.63	88.54	-	89.71	88.79	87.96	89.39	88.78	-	88.79	89.11	89.17	88.46
		BC5CDR Disease	P		81.97	85.95	-	86.47	86.67	86.53	86.48	84.28	-	-	86.73	86.30	87.01
			R		82.48	87.73	-	87.84	88.01	88.37	87.99	87.38	-	-	88.46	87.67	88.24
			F	86.23	82.41	86.83	86.6	87.15	87.33	87.44	87.23	86.31	83.8	-	87.59	86.98	87.62
			P		90.94	93.30	-	93.68	93.89	94.01	94.09	93.44	-	93.18	94.13	93.98	93.86
		BC5CDR Chemical	R		91.38	93.92	-	93.26	94.80	94.69	94.28	95.02	-	92.09	95.39	95.36	<u>95.37</u>
	Drug/chem		F	93.31		93.61		93.47	94.34	94.35	94.18	94.22		92.63	94.76	94.66	94.61
NED	Drug/chem		P		91.19	90.57	-	92.80	92.50	92.71	92.01	91.19	-	93.00	92.89	92.19	91.98
NER		BC4CHEMD	R		88.92	88.90	-	91.92	91.53	91.35	91.87	88.76	-	92.35	91.17	91.73	91.15
			F	91.14	90.04	89.73	-	92.36	92.01	92.02	92.07	89.96	-	92.67	92.03	91.96	91.56
		BC2GM JNLPBA	P		81.17	82.43	-	84.32	84.44	84.97	83.66	82.63	-	84.78	84.20	83.81	83.95
			R		82.42	82.17	-	85.12	83.89	82.89	83.04	82.10	-	85.25	83.48	83.39	83.20
	Gene/protein		F	81.69	81.79	82.29	-	84.72	84.16	83.92	84.29	82.36	-	85.01	83.84	83.60	83.57
			P		69.57	69.35	-	72.24	70.36	70.91	70.65	71.04	-	-	71.08	71.36	77.68
			R		81.20	80.61	-	83.56	80.96	80.96	81.99	81.31	-	-	81.62	81.46	77.42
			F	78.58	74.94	74.56	-	77.49	75.29	75.60	75.89	75.83	-	-	75.99	76.08	77.55
			P		69.35	72.18	-	72.80	73.47	73.84	72.68	72.69	-	-	72.55	73.08	74.09
	SPECIES	Species-800	R		74.05	76.59	-	75.36	79.33	79.45	79.83	76.84	-	-	77.33	78.08	78.71
			F	74.98	71.63	74.32	-	74.06	76.29	76.55	76.08	74.66	-	-	74.86	75.50	76.33
RE			P	74.80	76.02	81		77.02	82.59	84.24	82.35	84.04	-	-	81.99	81.31	83.58
	ChemProt		R	56.00	71.60	89.01		75.90	91.21	93.96	92.31	86.81	-	-	95.06	95.60	95.06
			F	64.10	73.74	84.82	72.5	76.46	86.68	88.83	87.04	85.41	74.4	-	88.04	87.88	88.95
			P	-		82.68	-	-	81.96	83.15	82.75	83.87	-	-	84.22	83.88	83.00
	DDI		R	-		81.41	-	-	83.04	83.15	82.33	82.84	-	-	82.84	83.45	84.27
			F	72.9	-	82.04	79.4	-	82.50	83.15	82.54	83.35	79.9	-	83.52	83.67	83.63
DoC			P			85.55		-	86.27	86.18	86.08	86.02		-	86.11	86.35	86.36
	HoC		R			85.42	-	-	86.29	86.17	86.20	85.95	-	-	86.21	86.31	86.39
			F*	81.5	-	85.22	85.3	-	85.99	85.89	85.83	85.68	87.3	-	85.87	86.03	86.08
NLI	MedNLI		Acc	73.5	-	83.90	84.0		84.88	85.30	84.25	83.8	83.8		86.57	86.36	86.08

The Natural Language Inference (NLI) Task

• Given two sentences (a premise and a hypothesis), predict whether the premise entails the hypothesis.

Premise	Hypothesis	Label		
The patient presents with a high fever, persistent cough, and shortness of breath.	The patient may have a respiratory infection.	Entailment		
The patient presents with a high fever, persistent cough, and shortness of breath.	The patient does not have symptoms.	Contradiction		
The patient presents with a high fever, persistent cough, and shortness of breath.	The patient is recovering from surgery.	Neutral		

- Intuitively, next sentence prediction should help NLI.
 - For two adjacent sentences, the first often entails the second.

Fine-tuning SciFive

- Convert every task into a sequence-to-sequence generation problem
- Taking NER as an example:

- What if you have a new NER task (e.g., cell type NER) without any training data?
 - Next lecture!

Thank You!

Course Website: https://yuzhang-teaching.github.io/CSCE689-S25.html