Розбърипи - Курс по практическо приложение на едноплаткови компютри

Възрастова група и необходими умения:

Обучението е разработено за ученици от 7^{-ми} клас или по-големи изучаващи информатика като част от учебната програма или допълнителна подготовка под формата на Свободно Избираема Подготовка (СИП) или Задължително Избираема Подготовка (ЗИП).

Обучението може да се провежда в групи до 12 ученика.

Във всеки обучителен курс ще участват по 2™ обучаващи от Пейсейф.

Цели на обучението:

- Надграждане на придобитите знания за програмиране с умения за практическо приложение при едноплаткови компютри.
- Развиване на знания и умения за работа с хардуерни елементи. Приемане на вход на хардуерен пин, обработка и подаване изход.
- Развиване на творческо мислене чрез обогатяване на вече подадена задача с нови възможности и приложения.

Протичане на занятията:

Продължителност: 2 учебни часа

1-ви час

- Въведение и запознаване
- Предаване на материалите на учениците
- Обясняване на идеята
- Свързване на хардуера
 - о Свързване на Монитор (трябва да е със HDMI интерфейс), мишка (трябва да е USB) и клавиатура (трябва да е USB)
 - о Свързване на останалите елементи: Огъната жица, Пръстен, Начало и Край

2^{-pu} час

- Имплементация на програмата
- Тестване
- Помощ на взеки от учениците да завърши заданието
- Подаване на допълнителни задачи на по-бързите: Анулиране на мисия, Резултати, Добавяне на звук (при монитор съчетан с тонколони).
- Снимки на най-добрия проект и неговите автори
- Пожелание събиране на E-mail-и за по нататъщана връзка

Обучаващи

Старши Софтуерен Инженер

Илия Илиев

Траян Момков Софтуерен Инженер

Ричард Ковачев Софтуерен Инженер

Йордан Неделчев Архитект Софтуерни Решения

Антон Фучеджиев Софтуерен Инженер

Свилена Коцева Софтуерен Инженер

Необходими материали (за всеки ученик)

Предоставени от Пейсейф в полза на учениците:

- Стартов комплект Розбъри Пи **КІТ-РІЗ-STARTER** включващ:
 - o Xapgyepнa nлamka Raspberry Pi 3 Model B, 16 GB MicroSD
 - о Зарядно устройство с преходник за контакти тип шоко
 - о Кутия
 - Флаш памет mun Micro Secure Digital c предварително заредена инсталация за операционна система (NOOBS)

Уредени само за обучението от Пейсейф или Училището

- Монитор със вход HDMI – за предпочитане със вградени тонколони

Предоставени от Пейсейф или уредени само за обучението от Пейсейф или Училището:

- Клавиатура с Bxog/Изход USB

Предоставени от Пейсейф в полза на учениците:

- Два пирона
- Парче изолирбанд
- Парче фибран с размери $\approx 40 \text{см} \times 10 \text{см}$ или дървено блокче с размери $\approx 40 \text{см} \times 5 \text{см} \times 5 \text{см}$ или стиропор с размери $\approx 40 \text{см} \times 5 \text{см} \times 5 \text{см}$
- Парче медна тел с дължина ≈ 1м
- Кабелни конектори тип джъмпер женско женско
- Кабелни koнekmopu mun ggжъмпер мъжко мъжко

Обучителна Програма

Ще разработим играта – «Стабилни ръце» публикувана в списание «МагПи» от 30^{-ти} Август 2012г. [https://issuu.com/themagpi/docs/issue 5 final]

Играта «Стабилни ръце» е отдавна известна. Състои се в това да прекарате метален пръстен по продължението на огъната жица без да го докоснете до жицата. Можете да направите играте по-лесна или по-сложна като правите повече или по-малко сгъвки по жицата или като използвате по-голям или по-малък пръстен.

Конструкция

- 1. Огънете парче от жицата във формата на пръстен (D) с дръжка и изолирайте с изолирбанд частта от дръжката която трябва да се хваща с ръка.
- **2.** Вземете друпо парче от медната жица, което ще играе ролята на огъната жица и го промушете през пръстена.
- 3. Вмъкнте двата края на огънатта жица (С) в двата края на

фибрана/стиропора или в дървеното блокче във предварително пробити дупки за целта. Двата края трябва да са достатъчно отдалечени.

- 4. Забучете две допълнителни парченца жица или пирони близо до двата края на огънатата жица, които да служат за маркери за начало и край (A и B)
- 5. Свържете към всеки от краищата на огънатата жица, маркера за начало, маркера за край и пръстенът, по една (изолирана) жичка (тип джъмпер) и ги прикрепете със изолирбанд

След това свържете другите краища на жичките към съответните пинове на розбърипи платката както е показано на фигурата.

Как работи

Общо взето имаме три сигнални жички и заземяване. Допълнителен резистор не се изисква, защото се използва вграденият в розбъри пи.

Програма

Програмата ще напишем сравнително лесно на езика Питон.

Първо трябва да инициализираме трите пина за входни данни.

В програмата ще използваме GPIO номерата на портовете, а не физическите портове.

Играта има три фази

- 1) Чакаме gokamo пръстенът (D) се gokoche go началната точка A.
- 2) Чакаме gokamo пръстенът D бъде махнат от началната точка A.
- 3) Измерваме времето от момента от който пръстенът D не е вече в начална точка до момента в който се допре до крайната точка. Докато сме в тази фаза преброяваме, колко пъти пръстенът D се е докоснал до огънатата жица С.

След това повтаряме по горното за нова игра – и така до безкрай. За да спрете програмата натиснете Ctrl – C.

Това е базовата програма, която след това можем да надграждаме.

Възможно надграждане е добавянето на звук когато пръстенът се докосне до огънатата жица (необходим е HDMI монитор с вградени тонколонки) .

Мопжем също да запазим имена на играчи и постигнати резултати.

Можем да анулираме мисия, когато пръстенът D бъде обратно докоснат до началото А.

И така нататък.

```
# python3
# Steady hands game
import RPi.GPIO as GPIO
import time
# use BCM GPIO numbering - use anything else and you are an idiot!
GPIO.setmode(GPIO.BCM)
# set up GPIO input pins
    (pull up down be PUD OFF, PUD UP or PUD DOWN, default PUD OFF)
GPIO.setup(4, GPIO.IN, pull up down=GPIO.PUD UP)
# GPIO 0 & 1 have hardware pull ups fitted in the Pi so don't enable them
GPIO.setup(0, GPIO.IN, pull up down=GPIO.PUD OFF)
GPIO.setup(1, GPIO.IN, pull up down=GPIO.PUD OFF)
print("Hi from Python :- Steady Hands game")
delay = range(0, 5000)
dum = 0
start rest = 4
end rest = 0
wire = 1
while True:
#wait until the wand is at the start
 Print("Move the loop ot the start rest")
 while GPIO.input(start rest != 0:
       time.sleep(0.8)
 print("Your off")
  # time the run to the other rest
 penalty = 0
 run time = time.clock()
 while GPIO.input(end rest) != 0:
  if GPIO.input(wire) == 0:
     penalty = penalty + 1
     print("Penalties total ", penalty, " points")
     time.sleep(0.07)
score = time.clock() - run time + (penalty*0.07)
print("The run time was ", score, " seconds with ", penalty, " penalty points")
#finished a run so start again
```