Introduction to CMOS VLSI Design

Lecture 20: Package, Power, and I/O

Outline

- Packaging
- Power Distribution
- Synchronization

Packages

- Package functions
 - Electrical connection of signals and power from chip to board
 - Little delay or distortion
 - Mechanical connection of chip to board
 - Removes heat produced on chip
 - Protects chip from mechanical damage
 - Compatible with thermal expansion
 - Inexpensive to manufacture and test

TSOP: Thin Small Outline Package PLCC: Plastic Leaded Chip Carrier

BGA Ball Grid array

DIP: Dual In-line Package

PGA Pin Grid Array OFP : Quad Flat Pack

Package Types

☐ Through-hole vs. surface mount

Multichip Modules

- ☐ Pentium Pro MCM (Multi Chip Module)
 - Fast connection of CPU to cache
 - Expensive, requires known good dice

Chip-to-Package Bonding

- Traditionally, chip is surrounded by pad frame
 - Metal pads on 100 200 μm pitch
 - Gold bond wires attach pads to package
 - Lead frame distributes signals in package
 - Metal heat spreader helps with cooling

Advanced Packages

- Bond wires contribute parasitic inductance
- ☐ Fancy packages have many signal, power layers
 - Like tiny printed circuit boards
- ☐ Flip-chip places connections across surface of die rather than around periphery
 - Top level metal pads covered with solder balls
 - Chip flips upside down
 - Carefully aligned to package (done blind!)
 - Heated to melt balls
 - Also called C4 (Controlled Collapse Chip Connection)

Package Parasitics

- ☐ Use many V_{DD}, GND in parallel
 - Inductance, I_{DD}

20: Package, Power, and I/O

CMOS VLSI Design

Slide 8

Heat Dissipation

- ☐ 60 W light bulb has surface area of 120 cm²
- Itanium 2 die dissipates 130 W over 4 cm²
 - Chips have enormous power densities
 - Cooling is a serious challenge
- □ Package spreads heat to larger surface area
 - Heat sinks may increase surface area further
 - Fans increase airflow rate over surface area
 - Liquid cooling used in extreme cases (\$\$\$)

Thermal Resistance

- - ΔT : temperature rise on chip
 - $-\theta_{ia}$: thermal resistance of chip junction to ambient
 - P: power dissipation on chip
- ☐ Thermal resistances combine like resistors
 - Series and parallel
- - Series combination

Example

- ☐ Your chip has a heat sink with a thermal resistance to the package of 4.0° C/W.
- □ The resistance from chip to package is 1° C/W.
- ☐ The system box ambient temperature may reach 55° C.
- ☐ The chip temperature must not exceed 100° C.
- What is the maximum chip power dissipation?

Example

- ☐ Your chip has a heat sink with a thermal resistance to the package of 4.0° C/W.
- ☐ The resistance from chip to package is 1° C/W.
- ☐ The system box ambient temperature may reach 55° C.
- ☐ The chip temperature must not exceed 100° C.
- What is the maximum chip power dissipation?
- \Box (100-55 C) / (4 + 1 C/W) = 9 W

Power Distribution

- □ Power Distribution Network function (through power lines)
 - Carry current from pads to transistors on chip
 - Maintain stable voltage with low noise
 - Provide average and peak power demands
 - Provide current return paths for signals
 - Avoid electromigration & self-heating wearout
 - Consume little chip area and wire
 - Easy to lay out

Power Requirements

- \Box Want $V_{droop} < +/- 10\%$ of V_{DD}
- Sources of V_{droop}
 - IR drops
 - L di/dt noise
- ☐ I_{DD} changes on many time scales

Power System Model

- Power comes from regulator on system board
 - Board and package add parasitic R and L
 - Bypass capacitors help stabilize supply voltage
 - But capacitors also have parasitic R and L
- ☐ Simulate system for time and frequency responses

Bypass Capacitors

- Need low supply impedance at all frequencies
- Ideal capacitors have impedance decreasing with ω
- Real capacitors have parasitic R and L
 - Leads to resonant frequency of capacitor

Frequency Response

- Use multiple capacitors in parallel
 - Large capacitor near regulator has low impedance at low frequencies
 - But also has a low self-resonant frequency
 - Small capacitors near chip and on chip have low impedance at high frequencies
- ☐ Choose caps to get low impedance at all frequencies

20: Package, Power, and I/O

CMOS VLSI Design

Slide 17

Input / Output

- □ Input/Output System functions
 - Communicate between chip and external world
 - Drive large capacitance off chip
 - Operate at compatible voltage levels
 - Provide adequate bandwidth
 - Limit slew rates to control di/dt noise
 - Protect chip against electrostatic discharge
 - Use small number of pins (low cost)

I/O Pad Design

- Pad types
 - $-V_{DD}/GND$
 - Output
 - Input
 - Bidirectional
 - Analog

Output Pads

- \square Drive large off-chip loads (2 50 pF)
 - With suitable rise/fall times
 - Requires chain of successively larger buffers
- ☐ Guard rings to protect against latchup
 - Noise below GND injects charge into substrate
 - Large nMOS output transistor
 - p+ inner guard ring
 - n+ outer guard ring
 - In n-well

Input Pads

- □ Level conversion
 - Higher or lower off-chip V
 - May need thick oxide gates

- Noise filtering
 - Schmitt trigger
 - Hysteresis changes V_{IH}, V_{IL}

☐ Protection against electrostatic discharge

ESD Protection

- ☐ Static electricity builds up on your body
 - Shock delivered to a chip can fry thin gates
 - Must dissipate this energy in protection circuits before it reaches the gates
- ☐ ESD protection circuits
 - Current limiting resistor
 - Diode clamps
- ESD testing
 - Human body model
 - Views human as charged capacitor

Bidirectional Pads

- Combine input and output pad
- Need tristate driver on output
 - Use enable signal to set direction
 - Optimized tristate avoids huge series transistors

Analog Pads

- Pass analog voltages directly in or out of chip
 - No buffering
 - Protection circuits must not distort voltages

MOSIS I/O Pad

- 1.6 μm two-metal process
 - Protection resistors
 - Protection diodes
 - Guard rings
 - Field oxide clamps

20: Package, Power, and I/O

CMOS VLSI Design

Slide 25