Отчет по лабораторной работе №4

Вычисление наибольшего общего делителя

Асеинова Елизавета Валерьевна

28 октября 2023

Содержание

1.	Цель работы	4
2.	Задание	5
3.	Теоретическое введение	6
4.	Выводы	12
5.	Список литературы	13

Список иллюстраций

3.1.	Алгоритм Евклида	7
	Бинарный алгоритм Евклида	
3.3.	Расширенный алгоритм Евклида	Ç
3.4.	Расширенный бинарный алгоритм Евклида 1	(
3.5.	Расширенный бинарный алгоритм Евклида 2	1

1. Цель работы

Целью данной работы является освоение алгоритмов вычисления наибольшего общего делителя.

2. Задание

- 1. Изучить методы вычисления наибольшего общего делителя.
- 2. Реализовать алгоритмы вычисления НОД.

3. Теоретическое введение

Пусть числа a и b целые и $b \neq 0$. Разделить a на b с остатком - значит представить a в виде a = qb + r, где $q, r \in Z$ и $0 \leqslant r \leqslant |b|$. Число q называется неполным частным, число r - неполным остатком от деления a на b.

Целое число $d \neq 0$ называется a_0 , a_0

- 1. Каждое из чисел $a_1, a_2, ..., a_k$ делится на d;
- 2. Если $d_1 \neq 0$ другой общий делитель чисел $a_1, a_2, ..., a_k$, то d делится на d_1 . [1] # Ход выполнения лабораторной работы

Работа выполняется на языке программирования Python с использованием среды Google Colab

1. Реализуем алгоритм Евклида:

```
[1] a = 24690
b = 12345

(2] def alg_e(a, b):
    while (a != 0) and (b != 0):
        if a >= b:
            a = a % b
        else:
            b = b % a
        return a or b

(3] alg_e(a, b)

12345
```

Рис. 3.1.: Алгоритм Евклида

2. Реализуем бинарный алгоритм Евклида:

```
def alg_e_bin(a, b):
            g = 1
            while (a % 2 == 0) and (b % 2 == 0):
                a /= 2
                b /= 2
                g *= 2
            u, v = a, b
            while (u != 0):
                if u % 2 == 0:
                    u /= 2
                if v % 2 == 0:
                    v /= 2
                if u >= v:
                    u -= v
                else:
                    v -= u
            d = g*v
            return d
   [5] alg_e_bin(a, b)
сек.
        12345
```

Рис. 3.2.: Бинарный алгоритм Евклида

3. Реализуем расширенный алгоритм Евклида:

```
V [6] def alg_e_ext(a, b):
    if a == 0:
        return(b, 0, 1)
    else:
        d, y, x = alg_e_ext(b % a, a)
        return (d, x-(b//a)*y, y)

V 0 [7] alg_e_ext(a, b)
    (12345, 0, 1)
```

Рис. 3.3.: Расширенный алгоритм Евклида

5. Реализуем расширенный бинарный алгоритм Евклида:

```
def alg_e_bin_ext(a, b):
    g = 1
    while (a % 2 == 0) and (b % 2 == 0):
        a /= 2
        b /= 2
        g *= 2
    u, v = a, b
    A, B, C, D = 1, 0, 0, 1
    while u != 0:
        if u % 2 == 0:
            u /= 2
            if (A % 2 == 0) and (B % 2 == 0):
                A /= 2
                B /= 2
            else:
                A = (A + b)/2
                B = (B - a)/2
        if v % 2 == 0:
            v /= 2
            if (C % 2 == 0) and (D % 2 == 0):
                C /= 2
                D /= 2
            else:
                C = (C + b)/2
                D = (D - a)/2
```

Рис. 3.4.: Расширенный бинарный алгоритм Евклида 1

Рис. 3.5.: Расширенный бинарный алгоритм Евклида 2

4. Выводы

В ходе работы мы изучили и реализовали алгоритмы вычисления наибольшего общего делителя.

5. Список литературы

1. Методические материалы курса