LOG1410 – Analyse et Conception logicielle

Chapitre 2

Modélisation UML

UML: Un langage de modélisation

- Spécifier un modèle,
- Construire un modèle,
- Communiquer un modèle,
- Documenter un modèle.

Des modèles spécifiques à chaque discipline

© Indolences / CC-BY-SA 3.0

© UtzOnBike / CC-BY-SA 3.0

Construire un modèle

- Pour communiquer la structure et le comportement d'un système,
- Pour visualiser, analyser et contrôler l'architecture d'un système,
- Pour comprendre un système,
- Pour gérer le risque lié au développement d'un système.

Caractéristiques d'un modèle

- Fournit une simplification de la réalité,
- Facilite les manipulations formelles ou automatiques,
- Permet de subdiviser un problème en sousproblèmes plus faciles à comprendre,
- Élève le niveau d'abstraction.

Quelques types de modèles pour le logiciel

- Modèle procédural,
- Modèle entité-relation,
- Modèle orienté objet,
- Modèle logique,
- Modèle par contraintes.

Principes de modélisation

- Pour les problèmes complexes, plusieurs modèles presque indépendants sont généralement nécessaires,
- Le choix d'un modèle influence profondément la solution apportée à un problème,
- Chaque modèle d'un problème devrait correspondre à un niveau de détail distinct,
- Les bons modèles sont connectés à la réalité.

Caractéristiques d'un modèle orienté objet

Éléments majeurs:

- Abstraction
- Encapsulation
- Héritage
- Polymorphisme

Éléments mineurs:

- Typage fort
- Concurrence
- Persistance

Langage de modélisation vs processus

- UML est un langage de modélisation.
- UML n'est pas un processus, c'est un outil qui peut être utilisé dans le cadre d'un processus.
- La méthode présentée dans le livre de Larman s'appelle le « Rational Unified Process » (RUP).
- Ce processus a été développé par Booch, Rumbaugh et Jacobson.

Un modèle pour plusieurs intervenants

- Le modèle fournit de l'information à plusieurs personnes:
 - Utilisateurs,
 - Clients,
 - Ingénieurs systèmes,
 - Analystes,
 - Concepteurs,
 - Programmeurs,
 - Chefs de projets,
 - etc.
- Il doit donc être compréhensible.

Points de vue architecturaux

Point de vue LOGIQUE

Décomposition orientée objet

- Décomposition en objets et classes,
- Regroupement en paquetages,
- Connexion par héritage, associations, etc,
- Accent sur l'abstraction, l'encapsulation, l'uniformité,
- Réalisation des scénarios.

Point de vue PROCESSUS

Décomposition de l'exécution

- Décomposition en tâches et processus,
- Regroupement des groupes de processus,
- Communication,
- Information sur les caractéristiques suivantes:
 - Disponibilité,
 - Fiabilité,
 - Intégrité,
 - Performance,
 - Contrôle.

Point de vue IMPLANTATION

Décomposition statique des modules et sous-systèmes

- Décomposition en modules et niveaux,
- Regroupement de modules en paquetages,
- Organisation des sous-systèmes en niveaux pour:
 - Réduire le couplage et la visibilité,
 - Augmenter la robustesse.
- Information sur les caractéristiques suivantes:
 - Facilité de développement,
 - Potentiel de réutilisation,
 - Gestion de configuration.

Point de vue DÉPLOIEMENT

Relation Matériel-Logiciel

- Décomposition en noeuds d'exécution,
- Rôle d'un noeud,
- Interconnectivité, topologie,
- Information sur les caractéristiques suivantes:
 - Performance,
 - Disponibilité,
 - Installation,
 - Maintenance.

Point de vue SCÉNARIO

Comportement du système pour les utilisateurs

- Illustration des autres vues,
- Regroupe le comportement du système selon:
 - Priorité: critique, important, accessoire,
 - Risques à circonscrire,
 - Options disponibles,
 - Couverture de l'architecture,
 - Autres objectifs tactiques et contraintes.