МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Машинное обучение»

Тема: Предобработка данных

Студент гр. 6307	 Трофимов Н.И
Преподаватель	Жангиров Т.Р

Санкт-Петербург 2020

Цель работы.

Ознакомиться с методами предобработки данных из библиотеки Scikit Learn.

Ход работы

Загрузка данных

Датасет загружен в датафрейм pandas, удалены колонки: ['anaemia','diabetes','high_blood_pressure','sex','smoking','time','DEATH_EV ENT'])

Построены гистограммы признаков, приведенные на рис. 1.

Рисунок 1. Гистограммы исходных данных

На основании гистограмм были определены диапазоны значений для каждого признака, а также найдена медиана. Данные приведены в таблице 1.

Признак	Диапазон	Мода
Age	40-95	60
creatinine_phosphokinase	23-7861	582
ejection_fraction	14-80	35
platelets	25100-850000	263358.03

serum_creatinine	0.5-9.4	1
serum_sodium	113-148	136

Стандартизация данных

Данные были стандартизованы с помощью StandardScaler на полном датасете и его срезе из 150 строк. На рис.2 изображены гистограммы стандартизированного датасета.

Рисунок 2. Стандартизированные данные

Также были рассчитаны мат ожидание и СКО до и после стандартизации. Результаты приведены ниже.

	age creati	nine_phosphokinase	ejection_fraction	platelets
mean	60.833893	581.839465	38.083612	263358.029264
std	11.894809	970.287881	11.834841	97804.236869
	serum_creatinine	serum_sodium		
mean	1.39388	136.625418		
std	1.03451	4.412477		

Рисунок 3. Мат ожидание и СКО начальных данных

Мат ожидание и СКО при стандартизации на 150 данных:

```
Мат ожидание = [-0.16970362 -0.02127675 0.01050249 -0.03522879 -0.1086408 0.0379076]

СКО = [0.95382379 0.81417905 0.90610822 1.01506113 0.88542887 0.9703736]
```

Мат ожидание и СКО для стандартизации на полном датасете:

```
Мат ожидание = [ 5.70335306e-16 0.00000000e+00 -3.26754603e-17 7.72329061e-17 1.42583827e-16 -8.67384945e-16] 
СКО = [1. 1. 1. 1. 1.]
```

Формула, по которой стандартизировались признаки: Z = (Xi - M)/Std, где M - мат ожидание, std — CKO.

Сравнение значений из формул с полями mean и var объекта scaler:

Признак	Var_	Mean_
age	141	60.8
creatinine_phosphokinase	938309.8	581.8
ejection_fraction	139.5	38.1
platelets	953367655	263358
serum_creatinine	1	1.4
serum_sodium	136.4	136.6

Приведение к диапазону

Чтобы привести данные к диапазону [0, 1], использовался MinMaxScale, гистограммы изображены на рис. 3.

Рисунок 4. Гистограммы в новом диапазоне

Минимальные и максимальные значения для каждого признака представлены

ниже.

```
Min value for each column - [4.00e+01 2.30e+01 1.40e+01 2.51e+04 5.00e-01 1.13e+02]
Max value for each column - [9.500e+01 7.861e+03 8.000e+01 8.500e+05 9.400e+00 1.480e+02]
```

Данные, преобразованные с помощью MaxAbsScaler и RobustScaler представлены на рисунках 5 и 6.

Функция, приводящая все данные к диапазону [-5, 10]:

```
def set_range(data):
    scaler = preprocessing.MinMaxScaler(feature_range=[-5, 10]).fit(data)
    return scaler.transform(data)
```

Нелинейные преобразования

С помощью QuantileTransformer данные были приведены к равномерному распределению. Построенные гистограммы изображены на рисунке 7.

Рисунок 7 Равномерное распределение

Параметр n_quantilies определяет количество вычисляемых квантилей. Оно не может быть больше, чем число наблюдений.

Рисунок 8 Нормальное распределение через QuantileTransformer

Также данные были приведены к нормальному распределению через PowerTrnsformer.

Рисунок 9 PowerTransformer

Дискретизация признаков

Дискретизированные данные с заданным количеством диапазонов через KBinsDiscretizer представлены на рисунке 10.

Рисунок 10 Дискретизированные данные

```
Значения полученных диапазонов хранятся в bin_edges_: [array([40., 55., 65., 95.]), array([ 23., 116.5, 250., 582., 7861.]), array([14., 35., 40., 80.]), array([ 25100., 153000., 196000., 221000., 237000., 262000., 265000., 285200., 319800., 374600., 850000.]), array([0.5, 1.1, 9.4]), array([113., 134., 137., 140., 148.])],
```

Выводы

В ходе работы были получены навыки по предобработке данных методами библиотеки Scikit Learn, позволяющих выполнить стандартизацию, привидение к диапазонам, нелинейные преобразования и дискретизацию данных.