南开大学本科生2017- 2018学年第二学期《实变函数》期末考试试卷(A卷)

任课教师: 专业: 年级: 学号: 姓名: 成绩:

一、(15分)设 G 为 $\mathbb R$ 中的开集, A 是 $\mathbb R$ 中的零测集. 证明: $\overline{G}=\overline{G\setminus A}$.

二、(15分) 设 A 是 $\mathbb R$ 中的集合, A 的内点的全体称为是 A 的内部, 记为 A° . 证明 A° 是开集.

草稿 区

南开大学本科生2017- 2018学年第二学期《实变函数》期末考试试卷(A卷)

得 分

 \exists 、(20分) 设 $E \subset \mathbb{R}$. 如果存在两列可测集 $\{A_n\}_{n=1}^{\infty}$ 和 $\{B_n\}_{n=1}^{\infty}$ 使得 $A_n \subset E \subset B_n$ $(n=1,2,\cdots)$ 且有 $\lim_{n\to\infty} m(B_n \setminus A_n) = 0$. 证明 E 是可测的.

得 分

四、(20分) 设 $E \subset \mathbb{R}$ 是可测集. 如果 f_n, f $(n = 1, 2, \cdots)$ 是 E 上的几乎处处有限的可测函数. 对任意的 $\delta > 0$, 存在可测集 $E_\delta \subset E$, 使得 $m(E \setminus E_\delta) < \delta$ 且 $\{f_n\}_{n=1}^\infty$ 在 E_δ 上一致收敛于 f. 证明: $\{f_n\}_{n=1}^\infty$ 在 E 上几乎处处收敛于 f.

草稿区

南开大学本科生2017- 2018学年第二学期《实变函数》期末考试试卷(A卷)

得分

五、(10分) 设 $E \subset \mathbb{R}$ 是可测集且 $m(E) < \infty$. 如果 f_n, f, h $(n = 1, 2, \cdots)$ 是 E 上的几乎处处有限的可测函数且 $\{f_n\}_{n=1}^{\infty}$ 依测度收敛于 f. 证明: $\{f_nh\}_{n=1}^{\infty}$ 依测度收敛于 fh.

得 分

六、(10分) 设 E 是 $\mathbb R$ 上的可测集且 m(E)>0. 设 f 是 E 上的 Lebesgue 可积函数. 如果对于任意的有界可测函数 φ 都有 $\int_E f(x)\varphi(x)dm=0$. 证明: f 在 E 上的几乎处处等于 0.

草稿区

南开大学本科生2017-2018学年第二学期《实变函数》期末考试试卷(A卷)

得分

七、(10分) 设 $E \subset \mathbb{R}$ 是可测集, f 为 E 上的几乎处处有限的非负可积函数. 对于自然数 $n \in \mathbb{N}$, 令函数 $f_n(x)$ 为: 当 $|f(x)| \le n$ 时, 令 $f_n(x) = f(x)$; 当 |f(x)| > n 时, 令 $f_n(x) = 0$. 证明

$$\lim_{n \to \infty} \int_E f_n(x) dm = \int_E f(x) dm.$$

草稿区