256 Kilobit (32K x 8) SuperFlash MTP SST27SF256, SST27VF256

Preliminary Specifications

FEATURES:

- 5.0-Volt Read Operation for 27SF256
- 2.7-Volt Read Operation for 27VF256
- · Superior Reliability
 - Endurance: Minimum 1000 Cycles
 - Greater than 100 years Data Retention
- Low Power Consumption:
 - Active Current: 20 mA (typical) for 5V and 10mA (typical) for 2.7V
 - Standby Current: 10 μA (typical) for both 27SF256 and 27VF256
- Fast Access Time:
 - 5.0-Volt Read 55 and 70
 - 2.7-Volt Read 120 and 150 ns

Fast Programming Operation

- 20 µs per byte (guaranteed)
- 0.8 second for the entire chip
- Features Electrical Erase:
 - Does Not Require UV Source
 - Chip Erase Time: 100 ms
- TTL I/O Compatibility
- JEDEC Standard Byte-wide EPROM Pinouts
- 12V Power Supply for Programming/Erase
- Packages Available
 - 32-Pin PLCC
 - 28 Pin Plastic DIP
 - 28 Pin TSOP

PRODUCT DESCRIPTION

The 27SF256/27VF256 are 32K x 8 CMOS, many-time programmable (MTP) low cost flash, manufactured with SST's proprietary, high performance SuperFlash technology. The split gate cell design and thick oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The 27SF256/27VF256 can be electrically erased and programmed at least 1000 times using an external programmer, e.g., to change the contents of devices in inventory. The 27SF256/27VF256 have to be erased prior to programming. The 27SF256/27VF256 conform to JEDEC standard pinouts for byte-wide memories.

Featuring high performance byte programming, the 27SF256/27VF256 provide a byte-program time of 20 µs. The entire memory can be programmed byte by byte in less than 0.8 seconds. Designed, manufactured, and tested for a wide spectrum of applications, the 27SF256/27VF256 are offered with an endurance of 1000 cycles. Data retention is rated at greater than 100 years.

The 27SF256/27VF256 are suited for applications that require infrequent rewrites and low power nonvolatile storage. The 27SF256/27VF256 will improve flexibility, efficiency, and performance while matching the low cost in nonvolatile applications that currently use UV-EPROMs, OTPs, and mask ROMs.

To meet surface mount and conventional through hole requirements, the 27SF256/27VF256 are offered in 32-pin PLCC, 28-pin PDIP and 28-pin TSOP packages. See Figures 1 and 2 for pinouts.

Device Operation

The 27SF256/27VF256 are low cost flash solutions that can be used to replace existing UV-EPROM, OTP, and mask ROM sockets. They are functionally (read and program) and pin compatible with industry standard EPROM products. In addition to EPROM functionality, the device also supports Electrical Erase operation. The 27SF256/27VF256 do not require a UV source to erase, and therefore the packages do not have a window.

Read

The Read operation of the 27SF256/27VF256 are controlled by CE# and OE#. Both CE# and OE# have to be low for the system to obtain data from the outputs. Once the address is stable, the address access time is equal to the delay from CE# to output (T_{CE}). Data is available at the output after a delay of T_{OE} from the falling edge of OE#, assuming that CE# pin has been low and the addresses have been stable for at least T_{CE} - T_{OE} . The V_{PP} pin must be V_{CC} or V_{SS} during read operation. When the CE# pin is high, the chip is deselected and a typical standby current of 10 μ A is consumed. OE# is the output control and is used to gate data from the output pins. The data bus is in high impedance state when either CE# or OE# is high.

Programming operation

The 27SF256/27VF256 are usually programmed by using an external programmer. The programming mode is activated by asserting 12V (\pm 5%) on Vpp pin, Vcc = 5V \pm 5%, V_{IL} on CE# pin, and V_{IH} on OE# pin. The device is programmed byte by byte with the desired data at the desired address using a single pulse (CE# pin low) of 20 μ s. Using the SuperFlash programming algorithm, the byte programming process continues byte by byte until the entire chip (32 Kbytes) has been programmed.

Chip Erase Operation

The only way to change a data from a "0" to "1" is by electrical erase that changes every bit in the device to "1". Unlike traditional EPROMs, which use UV light to do the chip erase, the 27SF256/27VF256 use an electrical chip erase operation. This saves a significant amount of time (about 30 minutes for each erase operation, compared with UV erase). The entire chip can be erased in 100 ms (CE# pulse). In order to activate the erase mode, the 12V ($\pm 5\%$) is applied to V_{PP} and A₉ pins, Vcc = $5V\pm 5\%$, V_{IL} on CE# pin, and V_{IH} on OE# pin. All other address and data pins are "don't care". The falling edge of CE# will start the Chip Erase operation. Once the chip has been erased, all bytes must be verified for FF. Refer to figure 8 for the flow chart.

The 27SF256/27VF256 can also be reprogrammed in the system. This requires the availability of 12V for V_{PP} to program and an additional 12V for address A_9 to erase.

Product Identification Mode

The product identification mode identifies the device as the 27SF256 or 27VF256 and manufacturer as SST. This mode may be accessed by the hardware method. To activate this mode, the programming equipment must force V_H (12V±5%) on address A_9 with V_{PP} pin at 5V±10%. Two identifier bytes may then be sequenced from the device outputs by toggling address line A_0 . For details, see Table 3 for hardware operation.

TABLE 1: PRODUCT IDENTIFICATION TABLE

	Byte	Data
Manufacturer's Code	0000 H	BF H
27SF256 Device Code	0001 H	A3 H
27VF256 Device Code	0001 H	C3 H

321 PGM T1.0

FIGURE 1: PIN ASSIGNMENTS FOR 28-PIN TSOP PACKAGES

FIGURE 2: PIN ASSIGNMENTS FOR 28-PIN PLASTIC DIPS AND 32-LEAD PLCCS

TABLE 2: PIN DESCRIPTION

Symbol	Pin Name	Functions
A ₁₄ -A ₀	Address Inputs	To provide memory addresses
DQ ₇ -DQ ₀	Data Input/Output	To output data during read cycles and receive input data during program cycle, the outputs are in tri-state when OE# or CE# is high
CE#	Chip Enable	To activate the device when CE# is low
OE#	Output Enable	To gate the data output buffers during read operation and high voltage pin during chip erase and programming operation
Vcc	Power Supply	To provide 5-volt supply (±10%) for the 27SF256 and 3-volt supply (2.7-3.6 V) for the 27VF256
V _{PP}	Power Supply for Program or Erase	High voltage pin during chip erase and programming operation 12-volt (±5%)
Vss	Ground	
NC	No Connection	Unconnected pins

Preliminary Specifications

TABLE 3: OPERATION MODES SELECTION

Mode	CE#	OE#	V _{PP}	A 9	DQ	Address
Read	VIL	VIL	V _{CC} or V _{SS}	Ain	Dout	Ain
Output Disable	VIL	V _{IH}	V_{CC} or V_{SS}	Х	High Z	X
Program	VIL	V_{IH}	V_{PPH}	A _{IN}	D _{IN}	A _{IN}
Standby	V _{IH}	Х	V_{CC} or V_{SS}	Х	High Z	X
Chip Erase	VIL	V_{IH}	V_{PPH}	Vн	High Z	X
Program/Erase Inhibit	V _{IH}	X	V_{PPH}	Х	High Z	X
Product Identification	VIL	VIL	V _{CC} or V _{SS}	Vн	Manufacturer Code (BF) Device Code (A3 for 27SF256 & C3 for 27VF256)	$A_{14}-A_{1} = V_{IL}, A_{0} = V_{IL}$ $A_{14}-A_{1} = V_{IL}, A_{0} = V_{IH}$

Note: $X = V_1$

 $X = V_{IL}$ or V_{IH}

 $V_{PPH} = 12V \pm 5\%, V_{H} = 12V \pm 5\%$

321 PGM T3.0

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Temperature Under Bias	55°C to +125°C
Storage Temperature	65°C to +150°C
D. C. Voltage on Any Pin to Ground Potential	0.5V to V _{CC} +0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential	1.0V to V _{CC} +1.0V
Voltage on A ₉ and Vpp Pin to Ground Potential	0.5V to 14.0V
Package Power Dissipation Capability (T _A = 25°C)	1.0W
Through Hole Lead Soldering Temperature (10 Seconds)	300°C
Surface Mount Lead Soldering Temperature (3 Seconds)	240°C
Output Short Circuit Current ⁽¹⁾	100 mA

Note: (1) Outputs shorted for no more than one second. No more than one output shorted at a time.

27SF256 OPERATING RANGE

Range	Ambient Temp	Vcc
Commercial	0°C to +70°C	5V±10%
Industrial	-40°C to +85°C	5V±10%

27VF256 OPERATING RANGE

Range	Ambient Temp	Vcc
Commercial	0°C to +70°C	2.7-3.6V
Industrial	-40°C to +85°C	2.7-3.6V

AC CONDITIONS OF TEST

Input Rise/Fall Time	10 ns
Output Load	1 TTL Gate and $C_L = 100 pF$
See Figures 6 and 7	

AC CONDITIONS OF **T**EST

Input Rise/Fall Time	10 ns
Output Load	1 TTL Gate and C _L = 100 pF
See Figures 6 and 7	

Preliminary Specifications

Table 4: 27SF256 Read Mode DC Operating Characteristics $V_{cc} = 5 V \pm 10\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$ (Commercial) or -40°C to +85°C (Industrial)

		Limits			
Symbol	Parameter	Min	Max	Units	Test Conditions
Icc	V _{CC} Read Current		30	mA	CE# = OE# = V_{IL} all I/Os open, Address input = V_{IL}/V_{IH} at f = $1/T_{RC}$ Min., V_{CC} = V_{CC} Max
I _{PPR}	V _{PP} Read Current		100	μA	CE# = OE# = V _{IL} , all I/Os open, Address input = V _{IL} /V _{IH} at f = 1/T _{RC} Min., V _{CC} = V _{CC} Max ,Vpp = V _{CC}
I _{SB1}	Standby V _{CC} Current (TTL input)		3	mA	$CE\# = OE\# = V_{IH}, V_{CC} = V_{CC} Max.$
I _{SB2}	Standby V _{CC} Current (CMOS input)		50	μΑ	CE#=OE#= V_{CC} -0.3V. $V_{CC} = V_{CC}$ Max.
ILI	Input Leakage Current		1	μΑ	$V_{IN} = GND$ to V_{CC} , $V_{CC} = V_{CC}$ Max.
ILO	Output Leakage Current		10	μΑ	$V_{OUT} = GND$ to V_{CC} , $V_{CC} = V_{CC}$ Max.
VIL	Input Low Voltage		0.8	V	V _{CC} = V _{CC} Max.
ViH	Input High Voltage	2.0	Vcc+0.5	V	Vcc = Vcc Max.
VoL	Output Low Voltage		0.4	V	$I_{OL} = 2.1 \text{ mA}, V_{CC} = V_{CC} \text{ Min}.$
Voн	Output High Voltage	2.4		V	I_{OH} = -400 μ A, V_{CC} = V_{CC} Min.
lH	Supervoltage Current for A ₉		100	μΑ	CE# = OE# = V _{IL} , A ₉ = V _H Max.

321 PGM T4.2

Table 5: 27VF256 Read Mode DC Operating Characteristics $V_{cc} = 2.7$ -3.6V, $T_A = 0$ °C to 70°C (Commercial) or -40°C to +85°C (Industrial)

		Limits			
Symbol	Parameter	Min	Max	Units	Test Conditions
Icc	Vcc Read Current		12	mA	CE#=OE#= V_{IL} all I/Os open, Address input = V_{IL}/V_{IH} at f=1/ T_{RC} Min., V_{CC} = V_{CC} Max
IPPR	V _{PP} Read Current		100	μA	CE# = OE# = V_{IL} , all I/Os open, Address Input = V_{IL}/V_{IH} at f = $1/T_{RC}$ Min, V_{CC} = V_{CC} Max, V_{DP} = V_{CC}
I _{SB1}	Standby V _{CC} Current (TTL input)		1	mA	CE#=OE#=V _{IH} , V _{CC} =V _{CC} Max.
I _{SB2}	Standby V _{CC} Current (CMOS input)		15	μΑ	CE#=OE#= V_{CC} -0.3V. $V_{CC} = V_{CC}$ Max.
ILI	Input Leakage Current		1	μΑ	V_{IN} =GND to V_{CC} , V_{CC} = V_{CC} Max.
I _{LO}	Output Leakage Current		10	μΑ	V_{OUT} =GND to V_{CC} , V_{CC} = V_{CC} Max.
V _{IL}	Input Low Voltage		8.0	V	$V_{CC} = V_{CC} Max.$
VIH	Input High Voltage	2.0	Vcc+0.5	V	Vcc = Vcc Max.
V _{OL}	Output Low Voltage		0.4	V	$I_{OL} = 100 \mu A$, $V_{CC} = V_{CC} Min$.
V _{OH}	Output High Voltage	2.4		V	I_{OH} = -100 μ A, V_{CC} = V_{CC} Min.
lн	Supervoltage Current for A ₉		100	μΑ	$CE\# = OE\# = V_{IL}$, $A_9 = V_H Max$.

Preliminary Specifications

Table 6: 27SF256/27VF256 Program/Erase DC Operating Characteristics $V_{cc} = 5 V \pm 10\%$, $V_{pp} = V_{PPH}$, $V_{pp} = V_{PPH}$, $V_{pp} = V_{pp}$

		Limits			
Symbol	Parameter	Min	Max	Units	Test Conditions
ICP	Vcc Erase or Program Current		30	mA	$CE\# = V_{IL}$, $Vpp = 12V\pm5\%$, $V_{CC} = V_{CC} Max$
I _{PP}	V _{PP} Erase or Program Current		1	mA	CE# = V_{IL} , $Vpp = 12V\pm5\%$, $V_{CC} = V_{CC}$ Max
ILI	Input Leakage Current		1	μA	$V_{IN} = GND$ to V_{CC} , $V_{CC} = V_{CC}$ Max
I _{LO}	Output Leakage Current		10	μA	$V_{OUT} = GND$ to V_{CC} , $V_{CC} = V_{CC}$ Max
V_{H}	Supervoltage for A ₉	11.4	12.6	V	$CE# = OE# = V_{IL}$
lΗ	Supervoltage Current for A ₉		100	μA	$CE\# = OE\# = V_{IL}, A_9 = V_H Max$
V_{PPH}	High Voltage for V _{PP} Pin	11.4	12.6	V	

321 PGM T6.1

TABLE 7: POWER-UP TIMINGS

Symbol	Parameter	Maximum	Units
T _{PU-READ}	Power-up to Read Operation	100	μs

321 PGM T7.0

TABLE 8: CAPACITANCE (TA = 25 °C, f=1 MHz, other pins open)

Parameter	Description	Test Condition	Maximum
C _{I/O} ⁽¹⁾	I/O Pin Capacitance	$V_{I/O} = 0V$	12 pF
CI _N ⁽¹⁾	Input Capacitance	$V_{IN} = 0V$	6 pF

321 PGM T8.0

Note: (1)This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

TABLE 9: RELIABILITY CHARACTERISTICS

Symbol	Parameter	Minimum Specification	Units	Test Method	
N _{END}	Endurance	1000	Cycles	MIL-STD-883, Method 1033	
T _{DR} ⁽¹⁾	Data Retention	100	Years	JEDEC Standard A103	
Vzap_hbm ⁽¹⁾	ESD Susceptibility Human Body Model	2000	Volts	JEDEC Standard A114	
V _{ZAP_MM} ⁽¹⁾	ESD Susceptibility Machine Model	300	Volts	JEDEC Standard A115	
I _{LTH} ⁽¹⁾	Latch Up	100	mA	JEDEC Standard 78	

321 PGM T9.1

Note: (1) This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

Preliminary Specifications

AC CHARACTERISTICS

Table 10: 27SF256 Read Cycle Timing Parameters

		27SF2	27SF256-55		27SF256-70	
Symbol	Parameter	Min	Max	Min	Max	Units
T _{RC}	Read Cycle Time	55		70		ns
T _{CE}	Chip Enable Access Time		55		70	ns
T _{AA}	Address Access Time		55		70	ns
T _{OE}	Output Enable Access Time		25		30	ns
T _{CLZ} ⁽¹⁾	CE# Low to Active Output	0		0		ns
T _{OLZ} ⁽¹⁾	OE# Low to Active Output	0		0		ns
T _{CHZ} ⁽¹⁾	CE# High to High-Z Output		20		25	ns
T _{OHZ} ⁽¹⁾	OE# High to High-Z Output		20		25	ns
T _{OH} ⁽¹⁾	Output Hold from Address Change	0		0		ns

321 PGM T10.1

TABLE 11: 27VF256 READ CYCLE TIMING PARAMETERS

		27VF256-120		27VF256-150		
Symbol	Parameter	Min	Max	Min	Max	Units
T _{RC}	Read Cycle Time	120		150		ns
T _{CE}	Chip Enable Access Time		120		150	ns
T_AA	Address Access Time		120		150	ns
T_OE	Output Enable Access Time		50		60	ns
T _{CLZ} ⁽¹⁾	CE# Low to Active Output	0		0		ns
$T_{OLZ}^{(1)}$	OE# Low to Active Output	0		0		ns
$T_{CHZ}^{(1)}$	CE# High to High-Z Output		30		30	ns
$T_{OHZ}^{(1)}$	OE# High to High-Z Output		30		30	ns
T _{OH} ⁽¹⁾	Output Hold from Address Change	0		0		ns

321 PGM T11 (

Note: (1)This parameter is measured only for initial qualification and after the design or process change that could affect this parameter.

Preliminary Specifications

TABLE 12: PROGRAMMING/ERASE CYCLE TIMING PARAMETERS

Symbol	Parameter	Min	Max	Units
T _{PRT}	V _{PP} Pulse Rise Time	50		ns
T _{AS}	Address Setup Time	2		μs
T _{AH}	Address Hold Time	2		μs
T _{VPS}	V _{PP} Setup Time	2		μs
T _{VPH}	V _{PP} Hold Time	2		μs
T _{PW}	CE# Program Pulse Width	20	40	μs
T _{EW}	CE# Erase Pulse Width	100	500	ms
T _{DS}	Data Setup Time	2		μs
T _{DH}	Data Hold Time	2		μs
T _{VR}	V _{PP} and A ₉ Recovery Time	2		μs
T _{ART}	A ₉ Rise Time to 12V during Erase	50		ns
T _{APS}	A ₉ Setup Time during Erase	2		μs
T _{APH}	A ₉ Hold Time during Erase	2		μs

321 PGM T12.1

FIGURE 3: READ CYCLE TIMING DIAGRAM

321 MSW F03.0

321 MSW F04.0

321 MSW F05.0

FIGURE 5: PROGRAM TIMING DIAGRAM

FIGURE 6: AC INPUT/OUTPUT REFERENCE WAVEFORMS

FIGURE 7: TEST LOAD EXAMPLE

FIGURE 8: ERASE ALGORITHM

FIGURE 9: PROGRAMMING ALGORITHM

Preliminary Specifications

PRODUCT ORDERING INFORMATION

ı	Dr۵	lim	inary	Snac	ifications	
	rie	шш	imarv	Spec	ilications	

27SF256 Valid combinations SST27SF256- 55-3C-KG SST27SF256- 70-3C-KG	SST27SF256- 55-3C-NH SST27SF256- 70-3C-NH	SST27SF256- 55-3C-PG SST27SF256- 70-3C-PG
SST27SF256- 55-3I-KG SST27SF256- 70-3I-KG	SST27SF256- 55-3I-NH SST27SF256- 70-3I-NH	SST27SF256- 70-3C-U1
27VF256 Valid combinations SST27VF256- 120-3C-KG SST27VF256- 150-3C-KG	SST27VF256- 120-3C-NH SST27VF256- 150-3C-NH	SST27VF256- 120-3C-PG SST27VF256- 150-3C-PG
SST27VF256- 120-3I-KG SST27VF256- 150-3I-KG	SST27VF256- 120-3I-NH SST27VF256- 150-3I-NH	SST27VF256-150-3C-U1

Example: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

PACKAGING DIAGRAMS

28-LEAD THIN SMALL OUTLINE PACKAGE (TSOP)

SST PACKAGE CODE: KG

28-LEAD PLASTIC DUAL-IN-LINE PACKAGE (PDIP)
SST PACKAGE CODE: PG

Preliminary Specifications

32-LEAD PLASTIC LEAD CHIP CARRIER (PLCC)

SST PACKAGE CODE: NH