WRITE BEILIND LOGGING

Authors: Joy Arulraj, Matthew Peron, Andrew Pavlo

(Computer Science @ CMU)

Presenter: Devesh Kumar Singh

OUTLINE

- Background
- Storage Devices
- Write Ahead Protocol
- Write Behind Protocol
- Evaluation

BACKGROUND

DATABASE TRANSACTION PROPERTIES

Durability of updates: Persist committed transactions

Failure Atomicity: Dispose aborted transactions

DBMS FAILURE SCENARIOS

Transaction failure:

Aborted by DBMS/

application

System failure:

Hardware failure, bugs in DBM/OS

Media failure: Data loss, storage corruption

DATA MANAGEMENT POLICY

- Steal
 - Grab buffer-pool frames from uncommitted transactions
 - Can lose dirty writes, but better performance
- No Force
 - Don't force transaction updates to disk before committing
 - Difficult to guarantee durability, but better performance

Force	Trivial	
No Force		Desired
ance		

Steal

No Steal

DATA LOGGING POLICIES

Changes added to a log on durable storage, then send to durable storage

- Redo log
 - Reapply updates of committed transactions
- Undo log:
 - Reverses updates by failed transactions

STORAGE DEVICES

HDD: OLD BUT NOT GOLD

- Magnetic storage platters based
- High data density/ Low storage price per capacity
- Random access slower than sequential access
- Slowest speeds due to mechanical design choices

SDD: FASTER BUT NOT BETTER

- NAND-based flash memory based
- Read/Write 100-1000x faster then HDD
- Storage cell durable for fixed # of writes
- 3-10x expensive then HDD

NVM: BEST OF BOTH WORLDS

- Low latency, byte sized reads/writes of DRAM
- Persistent writes, large storage capacity of HDD/SDDs
- Cache line granularity, High bandwidth, Low latency to CPU's

Synchronized file write throughput to a 64 GB file

DATA STRUCTURES

WAL Record

LSN	Log Rec Type	Transaction	Table ID	Insert	Delete	Before/After
		Commit		Location	Location	Images
		Timestamp				

Dirty Page Table

TxId

lastLSN status

Active Transaction Table

activeTxId latestLSN

RUNTIME OPERATIONS

COMMIT PROTOCOL

During Transaction

txId	lastLSN	status
1	-	Active

txId	lastLSN	status
1	28	Commit

RECOVERY PROTOCOL

In memory DBMS skips Undo phase

SAMPLE RECOVERY RUN

LSN	WRITE AHEAD LOG
1	BEGIN CHECKPOINT
2	END CHECKPOINT (EMPTY ATT)
3	TXN 1: INSERT TUPLE 100 (NEW: X)
4	TXN 2: UPDATE TUPLE 2 (NEW: Y')

22	TXN 20: DELETE TUPLE 20
23	TXN 1, 3,, 20: COMMIT
24	TXN 2: UPDATE TUPLE 100 (NEW: X')
25	TXN 21: UPDATE TUPLE 21 (NEW: Z')
84	TXN 80: DELETE TUPLE 80
85	TXN 2, 21,, 79: COMMIT
86	TXN 81: UPDATE TUPLE 100 (NEW: X")
	SYSTEM FAILURE

DATA STRUCTURES

WBL record

LSN	Log Record Type	Persisted commit	Dirty Commit
		Timestamp	Timestamp

Dirty Tuple table

TX id	Table id	Tuple location
-------	----------	----------------

RUNTIME OPERATION

Cp: Commit timestamp of latest committed transaction

Cd: Commit timestamp not assigned to any transaction before the next group commit finishes

Group Commit: Flushes a batch a log records in a single write to durable storage

COMMIT OPERATION

RECOVERY OPERATION

SAMPLE RUN

LSN	WRITE BEHIND LOG
1	BEGIN CHECKPOINT
2	END CHECKPOINT (EMPTY CTG)
3	{ (1, 100) }
4	{ 2, (21, 120) }
5	{ 80, (81, 180) }
	SYSTEM FAILURE

EVALUATION

PLATFORM

Intel PMEP Hardware Emulator 128 GB DRAM

128 GB Emulated NVM from DRAM

3 TB Seagate Barracuda HDD

400 GB Intel DC S3700 SSD

BENCHWARK

THROUGHPUT

RECOVERY TIME

THANK YOU