EE 2000 Logic Circuit Design Semester B 2023/24

Tutorial 8

1. 2-to-4 Line Decoder (using 1-to-2 Line Decoder)

a) Write the entity declaration for a 2-to-4 Line decoder module named LDecoder2_4 that has two input named A0 and A1, and four outputs named D0, D1, D2, D3.

b) Write the architecture declaration for the above 2-to-4 Line decoder named LDecoder2_4 with a component name "LDecoder1_2" using 2 1-to-2 Line decoders.

Inputs	Outputs
A_1 A_0	$D_0 D_1 D_2 D_3$
0 0 0 1 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1	0 0 0 1

2. 3-to-8 Decoder

- a) Write the entity and architecture declaration for a 3-to-8 decoder module named Decoder3 8 that has one 3-bit input named S and one 8-bit output named Q.
- b) Write the circuit named Q1 using VHDL with one 3-to-8 decoder and external gates.

$$F_1(x, y, z) = x'y'z' + xz$$

 $F_2(x, y, z) = xy'z' + x'z$

3. Encoder

Write the entity and architecture declaration for a decimal-to-gray code encoder module named DTG_encoder that has one 10-bit input named D_in and one 4-bit output named G out.

4. JK Flip-Flop

Write the complete VHDL code for a negative-edge triggered JK Flip-Flop with asynchronous CLR.