DS3: Électricité

Durée 2h, calculatrices interdites. Le DS est probablement trop long pour que vous puissiez tout faire, c'est normal, faites-en le maximum.

Exercice 1: Convertisseur Boost

On se propose d'étudier le circuit suivant qui représente un convertisseur de type boost dont le but est de convertir une tension continue $u_{\rm in}$ en une autre tension continue $u_{\rm out}>u_{\rm in}$.

L'interrupteur K est commandé électroniquement, il s'ouvre et se ferme de manière cyclique, il est ouvert pendant un temps noté $t_{\rm on}$ et est fermé pendant un temps noté $t_{\rm off}$. La période $t_{\rm on}+t_{\rm off}$ du cycle complet est notée T.

Le rapport $r=\frac{t_{\rm on}}{T}$ est appelé le rapport cyclique du signal de commande de l'interrupteur.

On considère que le circuit fonctionne en régime permanent, c'est à dire que la tension de sortie u_{out} est **constante** au cours du temps, l'intensité i évolue de façon périodique.

La diode D ne laisse passer le courant que dans un sens (de la gauche vers la droite sur le schéma)

1. Lors de la phase où K est fermé, la diode D est bloquante, elle se comporte comme un interrupteur ouvert. Exprimer le taux de variation $\frac{\mathrm{d}\,i}{\mathrm{d}\,t}$ en fonction de u_{in} et L.

2. En déduire l'expression de i(t), on notera i_{min} l'intensité au moment où l'interrupteur se ferme. Montrer qu'au moment où l'interrupteur s'ouvre l'intensité vaut :

$$i_{ ext{max}} = i_{ ext{min}} + rac{u_{ ext{in}}t_{ ext{on}}}{L}$$

- 3. Lorsque l'interrupteur K est ouvert, la diode est passante et se comporte comme un fil. Déterminer $\frac{\mathrm{d}\,i}{\mathrm{d}\,t}$ lors de cette phase en fonction de $u_{in},\,u_{out}$ et L.
- 4. En déduire l'expression de i(t) lors de cette phase, c'est à dire pour $t \in [t_{on}, t_{on} + t_{off}]$.
- 5. Justifier que $i(t_{on} + t_{off}) = i(0) = i_{min}$. Tracer l'évolution temporelle de i(t).
- 6. En déduire l'expression de $u_{\rm out}$ en fonction de $u_{\rm in}$ et r. On vérifiera que l'on a bien $u_{\rm out}>u_{\rm in}$
- 7. Montrer que lors de la phase où l'interrupteur est fermé on peut écrire :

$$i(t) = i_{\min} + \frac{\Delta i}{t_{\text{on}}} t$$

et pendant la phase où l'interrupteur est ouvert :

$$i(t) = i_{\min} + \frac{\Delta i(T-t)}{t_{\text{off}}}$$

avec $\Delta i = i_{\text{max}} - i_{\text{min}}$

8. Montrer que l'énergie fournie par le générateur pendant la phase où l'interrupteur est fermé est :

$$E_{\rm on} = u_{\rm in} i_{\rm min} t_{\rm on} + \frac{1}{2} u_{\rm in} t_{\rm on} \Delta i \tag{1}$$

et que l'énergie fournie par le générateur pendant la phase où l'interrupteur est ouvert est :

$$E_{\text{off}} = u_{\text{in}} i_{\text{min}} t_{\text{off}} + \frac{1}{2} u_{\text{in}} t_{\text{off}} \Delta i \tag{2}$$

Exprimer l'énergie totale fournie par le générateur sur un cycle complet.

9. Déterminer de même l'énergie $E_{\rm out}$ consommée par le circuit alimenté par le convertisseur pendant un cycle complet, en déduire la valeur du rendement de ce convertisseur. Commenter.

Exercice 2 : DIAGRAMME DE BODE

On souhaite étudier un filtre dont la fonction de transfert est :

$$\underline{\mathbf{H}}(\omega) = \frac{1}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

1. De quel type de filtre s'agit-il?

- 2. Donner l'expression du gain en décibel $G_{dB}(\omega)$ de ce filtre.
- 3. Donner une approximation de $G_{dB}(\omega)$ lorsque $\omega \to 0$ et $\omega \to \infty$.
- 4. Tracer le diagramme de Bode de ce filtre en faisant apparaître les droites asymptotiques en $\omega \to 0$ et $\omega \to \infty$ pour Q=1.
- 5. Faire apparaître sur le graphique la bande passante à -3 dB, notée $\Delta\omega$.
- 6. On rappelle que lorsque $G_{dB}=-3$ dB, $G=\frac{1}{\sqrt{2}}$. Montrer que $\Delta\omega=\frac{\omega_0}{Q}$.

Exercice 3 : CIRCUIT RLC SÉRIE

On s'intéresse au circuit ci-dessous dans lequel le générateur de tension délivre une tension variable dans le temps e(t).

I - Réponse à un échelon de tension

Dans cette partie on considère que la tension e(t) est telle que :

- -e(t) = 0 pour t < 0;
- -e(t) = E pour t > 0.
- 1. Déterminer les valeurs de $i(0^-)$, $u_L(0^-)$ et $u_C(0^-)$ juste avant l'instant t=0. Justifier précisément la réponse.
- 2. Déterminer les valeurs de $i(0^+)$, $u_L(0^+)$ et $u_C(0^+)$ juste après l'instant t=0. Justifier précisément la réponse.
- 3. Déterminer l'équation différentielle satisfaite par la tension $u_L(t)$ pour t > 0.
- 4. Exprimer la pulsation propre ω_0 et le facteur de qualité Q du circuit en fonction de R, L et C.
- 5. On donne ci-dessous l'évolution de la tension $u_L(t)$ pour t>0. Déterminer à partir de ce graphique une estimation des valeurs numériques de E, ω_0 et Q.

6. Quelles valeurs de R, L et C peut-on utiliser pour réaliser ce circuit?

II - Régime sinusoïdal forcé

On étudie maintenant ce circuit en régime sinusoïdal forcé, la tension e(t) est une tension alternative sinusoïdale :

$$e(t) = E\cos(\omega t)$$

- 7. Donner l'expression de la tension complexe $\underline{e}(t)$ associée à la tension réelle e(t).
- 8. Monter que la tension complexe $\underline{\mathbf{u}}_L$ est donnée par :

$$\underline{\mathbf{u}}_{L} = \underline{\mathbf{e}} \frac{jQ\frac{\omega}{\omega_{0}}}{1 + jQ\left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)}$$

avec
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 et $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$.

- 9. Déterminer l'amplitude $U(\omega)$ d'oscillation de la tension $u_L(t)$ aux bornes de la bobine en fonction de E,Q,ω et ω_0 . Que vaut $U(\omega_0)$?
- 10. Comparer cette valeur à l'amplitude E de variation de la tension d'alimentation, comment s'appelle ce phénomène?
- 11. Quelle est la valeur du déphasage φ entre la tension d'alimentation e(t) et la tension aux bornes de la bobine lorsque $\omega=\omega_0$?