ECS 122A Lecture 5 Integer multiplication Setting: Given 2 n-bit integers x, y, compute Z=Xy. Standard alg: O(n²) time.
W/ long multiplication 1101 XOIOI (0) () () 0 0 0 0 + 0000 0110001

Can we do better ((ike Strassen's)?

First step, D+C view:

x = x₁, u + 2^{l+1} x nigh where = x % 2^{l+1}

y = y₁, u + 2^{l+1} y₁, y₂ (bottom bits)

Xhigh
= x div 2^{l+1}

Polynomial multiplication Setting: Given two degree-n polynomials P(x) = Po + pix + · - · + pnx4 q(x) = qo tq1x+ ... tqnxh Compute the product (p.g.)(x). Same alg! Let Plow (x) = terms of p up to degree [2] Phigh (K) = (K) - P(~(K))/X(=)+1 (i.e. terms with degree > $\lfloor \frac{n}{z} \rfloor$)

Compute p.4 = Plow glow

+ x L= s+1 (plow ghigh

+ Blow Phigh)

+ x21 2 J+2 phigh quigh

Exactly Same Structure as before

0 (n⁽⁹²³) alg!

Can we do even better? YES.
Can improve (basically) to O(n log n)
Convolution
Setting: Given 2 length-n sog
a = [ao a, az an-1]
b = [bo b, bz bn-1]
Compute the convolution axb (of length nfl) (axb) = Z a; bi-j reverse then swipe
bu-1 Ao Au-1
Naive algorithm: O(n²)
n terms: each term o(n) work
Improve to O(n log n) time with
Fast Fourier Transform

Discrete Fourier Transform Given a length-n seq (vector) 5, the Discrete Fourier transform of s where I W is an not not of unity (that isn't 1) i.e. wn = 1 (say en) nis is a library call you can find nost languages. Mhy

Essentially same as Fourier Transform

Convolution in normal domain Naive computation of DFT: O(n2) time (matrix vector product) Fast Fourier Transform: O(n log n) Time but numerally unstable Useful how? Polynamial multiplication is a convolution (p.g/x) = \(\frac{1}{2}\times^{\dagger}\frac{2}{ So we can multiply palynomials in O(n (og n) time MATLAB implements onv ()

Fast Fourier transform How to compute In O(n log n) time? By defn, $\left(\frac{1}{1}\right)_{k} = \frac{n-1}{2} \text{ Vi } e^{i\frac{2\pi k j}{n}}$ $= \frac{1}{2} \frac{1}{1} \sqrt{2} e^{-i \frac{2\pi}{n} k(2j)}$ $\frac{1}{1}$ $\frac{1}$ -i2=k(2j) FFT(2) $-i2\pi k \int_{1}^{1/2-1} \sqrt{2j+1} e^{-i2\pi k(2j)}$

 $T(n) \in 2T(\frac{1}{2}) + O(n)$

77 T(n) & O(n/og n).