

Report No.: EED32I00158501 Page 1 of 40

TEST REPORT

Product : Lightify Switch

Trade mark : Greeble

Model/Type reference : JZSW-LSA-PL50

Serial Number : N/A

Report Number : EED32I00158501 FCC ID : 2AJRH-LDV74099

Date of Issue : Sep. 21, 2016

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

OSRAM SYLVANIA 200 Ballardvale Street, Wilmington, MA 01887

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by 8

Report Seal

Date:

Tom - chen
Tom chen (Test Project)

Compiled by:

Kevin yang (Project Engineer)

Sheek Luo (Reviewer)

Approved by:

Sheek Luo (Lab supervisor)

Sep. 21, 2016

Check No.: 2402649079

2 Version

Version No.	Date	(6)	Description	9
00	Sep. 21, 2016		Original	
		/*S	(1)	/3
((7)	(42)	(6,5)	(6,7)

Report No.: EED32I00158501 Page 3 of 40

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample and the sample information are provided by the client. N/A: Not applicable for test device.

Report No.: EED32I00158501 Page 4 of 40

4 Content

1 COVER PAGE			1
2 VERSION		•••••	2
TEST SUMMARY	•••••	•••••	3
4 CONTENT	Z**	<i></i>	4
TEST REQUIREMENT			
5.1.1 For Conducted test setup	est setup		5
5.1.3 For Conducted Emissions 5.2 Test Environment	test setup		6 6
5.3 Test Condition 6 GENERAL INFORMATION			
6.2 GENERAL DESCRIPTION OF EUT.			7
6.4 DESCRIPTION OF SUPPORT UNITS	CTIVE TO THIS STANDARDS		7
6.8 ABNORMALITIES FROM STANDARD	CONDITIONS		9
	D BY THE CUSTOMER		
,	95% CONFIDENCE LEVELS, K=2)		
7 EQUIPMENT LIST		••••••	10
RADIO TECHNICAL REQUIREME			
	ndwidth		
	Output Power		
	Conducted Emissionsurious Emissions		
	ensity		
	ient		
	around fundamental frequency (Radia		
	Emissions		
PHOTOGRAPHS OF TEST SETUP		•••••	33
PHOTOGRAPHS OF EUT CONSTRU	JCTIONAL DETAILS		35

Report No.: EED32I00158501 Page 5 of 40

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		(9)
Temperature:	21°C	
Humidity:	54% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Тх	RF Channel				
		Low(L)	Middle(M)	High(H)		
O OBSK	2405MHz ~2480 MHz	Channel 11	Channel 18	Channel 26		
O-QPSK	2405WH2 ~2460 WH2	2405MHz	2440MHz	2480MHz		
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).					

6 General Information

6.1 Client Information

Applicant:	OSRAM SYLVANIA			
Address of Applicant:	200 Ballardvale Street, Wilmington, MA 01887			
Manufacturer:	JIUZHOU GREEBLE			
Address of Manufacturer:	Floor 1-4 of Building 1#, Jiuzhou Industrial Park, East of Songbai Road, Gongming Office, Guangming New District, Shenzhen China			
Factory:	JIUZHOU GREEBLE			
Address of Factory:	Floor 1-4 of Building 1#, Jiuzhou Industrial Park, East of Songbai Road, Gongming Office, Guangming New District, Shenzhen China			

6.2 General Description of EUT

Product Name:	Lightify Switch		
Model No.(EUT):	JZSW-LSA-PL50		
Trade mark:	Greeble	C°	('5)
Power Supply:	DC 3V, 35mA	(27)	
Sample Received Date:	Aug. 25, 2016		
Sample tested Date:	Aug. 25, 2016 to Sep. 01, 2016		

6.3 Product Specification subjective to this standard

Operation Frequency:	2405-2480MHz	(6,2)		(0,)	
EUT Function::	ZigBee				
Modulation Type:	O-QPSK				
Number of Channel:	16		(3)		(3)
Sample Type:	Portable production		(6,7)		(6,7)
Test Power Grade:	N/A				
Test Software of EUT:	N/A				
Antenna Type:	Integral	- C-		/*>	
Antenna Gain:	0dBi	(41)		(41)	
Test Voltage:	DC 3V				

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
11	2405MHz	15	2425MHz	19	2445MHz	23	2465MHz
12	2410MHz	16	2430MHz	20	2450MHz	24	2470MHz
13	2415MHz	17	2435MHz	21	2455MHz	25	2475MHz
14	2420MHz	18	2440MHz	22	2460MHz	26	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

Report No.: EED32l00158501 Page 8 of 40

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Report No. : EED32I00158501 Page 9 of 40

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE novem conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2 Dedicted Counicus assisticates test		4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Out I offer a section	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%
I	705	705

7 Equipment List

Equipinor					
		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	0	01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017

	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-12-2016	01-11-2017

8 Radio Technical Requirements Specification

Reference documents for testing:

ı			
	No.	Identity	Document Title
	1	FCC Part15C (2015)	Subpart C-Intentional Radiators
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10/KDB 558074	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10/KDB 558074	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/KDB 558074	KDB 558074 Power Spectral Density		Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	N/A	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Appendix A): 6dB Occupied Bandwidth

Test Result

	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
0	O-QPSK	LCH	1.601	2.4266	PASS	(3)
5	O-QPSK	MCH	1.614	2.4333	PASS	Peak
	O-QPSK	HCH	1.590	2.4064	PASS	detector

Test Graphs

Page 14 of 40

Report No. : EED32I00158501 Page 15 of 40

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Channel Conduct Peak Power[dBm]	
O-QPSK	LCH	2.081	PASS
O-QPSK	MCH	2.533	PASS
O-QPSK	HCH	2.215	PASS

Test Graphs

Page 16 of 40

Report No. : EED32I00158501 Page 17 of 40

Appendix C): Band-edge for RF Conducted Emissions

Result Table

0 7	Mode	Channel	Carrier Power[dBm]	Power[dBm] Max.Spurious Level [dBm]		Verdict
6	O-QPSK	LCH	-1.700	-58.187	-21.7	PASS
	O-QPSK	НСН	-1.158	-37.186	-21.16	PASS

Test Graphs

Report No.: EED32I00158501 Page 18 of 40

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
O-QPSK	LCH	-1.972	<limit< td=""><td>PASS</td></limit<>	PASS
O-QPSK	МСН	-0.934	<limit< td=""><td>PASS</td></limit<>	PASS
O-QPSK	HCH	-1.077	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Report No. : EED32I00158501 Page 19 of 40

Report No. : EED32I00158501 Page 20 of 40

Appendix E): Power Spectral Density

Result Table

	Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
0	O-QPSK	LCH	-14.087	8	PASS
5	O-QPSK	MCH	-13.469	8	PASS
	O-QPSK	НСН	-13.611	8	PASS

Test Graphs

Page 22 of 40

Report No. : EED32I00158501 Page 23 of 40

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Appendix G): Restricted bands around fundamental frequency (Radiated)

(Radiated)		(6)	(6)	/	\	C) /	
Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-pea	k
	-	AL 4011	Peak	1MHz	3MHz	Peak	-07
	(65)	Above 1GHz	Peak	1MHz	10Hz	Average	(2)
Test Procedure:	b. c. d. e. f.	at a 3 meter semi-aned determine the position. The EUT was set 3 me was mounted on the to The antenna height is determine the maximum polarizations of the antenna was turned was turned from 0 degrate test-receiver systems Bandwidth with Maximum Place a marker at the effrequency to show combands. Save the spectral	re as below: In the top of a rechoic camber. The top of the highest raters away from p of a variable-haried from one m value of the fienna are set to hission, the EUT to heights from rees to 360 degm was set to Peum Hold Mode. and of the restrictional and the restriction of the	otating table the table was adiation. The interfer to food the control of the con	e 0.8 meter as rotated 3 ence-recei nna tower. our meters n. Both hor neasurement aged to its way 4 meters a the maxing Function a	rs above the 360 degrees ving antenn above the grizontal and ent. worst case a and the rota num reading and Specified the transmit is in the resti	grour to a, whi round vertica and the table
	Al g. h. i.	for lowest and highest bove 1GHz test procedured Different between above to fully Anechoic Cham 18GHz the distance is . Test the EUT in the lowest test of the radiation measure Transmitting mode, and Repeat above procedure.	re as below: re is the test site aber change form meter and tab bwest channel, ments are perfo d found the X ax	n table 0.8 le is 1.5 me the Highest rmed in X, kis position	meter to 1 ter). t channel Y, Z axis p ing which i	.5 meter(Ab positioning for t is worse ca	oove or ase.
_imit:		Frequency	Limit (dBµV	/m @3m)	Rei	mark	
		30MHz-88MHz	40.0	0	Quasi-pe	eak Value	
		88MHz-216MHz	43.5	5	Quasi-pe	eak Value	
	-0-	216MHz-960MHz	46.0	0	Quasi-pe	eak Value	
	6	960MHz-1GHz	54.0) (4	Quasi-pe	eak Value	
	100	AL 1011	54.0) (Averag	je Value	
		Above 1GHz	74.0)		Value	
		40%				- 10.00	

Report No.: EED32I00158501 Page 25 of 40

Test plot as follows:

Worse case mode: O-QPSK

Frequency: 2390.0MHz Test channel: Lowest Polarization: Horizontal Remark: Peak

Worse case mode: O-QPSK

Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: Peak

Report No.: EED32I00158501 Page 26 of 40

Worse case mode: O-QPSI		(
Frequency: 2483.5MHz		Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode: O-QPSK

Frequency: 2483.5MHz Test channel: Highest Polarization: Horizontal Remark: Average

Report No.: EED32I00158501 Page 27 of 40

Worse case mode:	O-QPSk	(
Frequency: 2483.5MHz		Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	O-QPSk	(
Frequency: 2483.5MHz		Test channel: Highest	Polarization: Vertical	Remark: Average

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix H): Radiated Spurious Emissions

	A SECTION OF THE PROPERTY OF T					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(6,2)	Above 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

j. Repeat above p	noocaares antil all hequen	icics incasarca wa	o complete	•	10.4 /
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-		30
	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	54.261	14.52	1.41	5.41	21.34	40.00	-18.66	Horizontal	
2	103.442	12.91	1.57	5.11	19.59	43.50	-23.91	Horizontal	
3	195.137	11.44	2.16	6.60	20.20	43.50	-23.30	Horizontal	
4	377.259	15.64	2.76	4.88	23.28	46.00	-22.72	Horizontal	
5	682.348	20.32	3.78	6.06	30.16	46.00	-15.84	Horizontal	
6 pp	916.069	22.40	4.33	6.13	32.86	46.00	-13.14	Horizontal	

Report No.: EED32I00158501 Page 30 of 40

Transmitter Emission above 1GHz

Worse case	Worse case mode: O-QPSK		Test channel:		Lowest	Remark:	Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1201.149	30.23	2.52	34.96	46.57	44.36	74	-29.64	Pass	Horizontal
1759.638	31.33	3.05	34.47	45.54	45.45	74	-28.55	Pass	Horizontal
3096.325	33.51	5.60	34.51	43.48	48.08	74	-25.92	Pass	Horizontal
4810.000	34.70	5.11	34.35	47.22	52.68	74	-21.32	Pass	Horizontal
7215.000	36.42	6.67	34.90	39.13	47.32	74	-26.68	Pass	Horizontal
9620.000	37.90	7.72	35.07	37.31	47.86	74	-26.14	Pass	Horizontal
1204.210	30.24	2.52	34.96	47.68	45.48	74	-28.52	Pass	Vertical
1823.477	31.43	3.10	34.42	44.88	44.99	74	-29.01	Pass	Vertical
3570.714	33.12	5.51	34.56	42.33	46.40	74	-27.60	Pass	Vertical
4810.000	34.70	5.11	34.35	46.59	52.05	74	-21.95	Pass	Vertical
7215.000	36.42	6.67	34.90	40.18	48.37	74	-25.63	Pass	Vertical
9620.000	37.90	7.72	35.07	39.77	50.32	74	-23.68	Pass	Vertical

Worse case mode:		O-QPSI	O-QPSK		Test channel:		Remark:	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1263.883	30.38	2.59	34.90	46.20	44.27	74	-29.73	Pass	Horizontal
1777.646	31.36	3.07	34.45	44.41	44.39	74	-29.61	Pass	Horizontal
3498.735	33.17	5.52	34.55	43.53	47.67	74	-26.33	Pass	Horizontal
4880.000	34.85	5.08	34.33	44.51	50.11	74	-23.89	Pass	Horizontal
7320.000	36.43	6.77	34.90	40.39	48.69	74	-25.31	Pass	Horizontal
9760.000	38.05	7.60	35.05	38.37	48.97	74	-25.03	Pass	Horizontal
1276.818	30.41	2.60	34.88	47.24	45.37	74	-28.63	Pass	Vertical
1711.050	31.25	3.01	34.50	48.73	48.49	74	-25.51	Pass	Vertical
3208.660	33.41	5.58	34.52	45.42	49.89	74	-24.11	Pass	Vertical
4880.000	34.85	5.08	34.33	46.20	51.80	74	-22.20	Pass	Vertical
7320.000	36.43	6.77	34.90	38.24	46.54	74	-27.46	Pass	Vertical
9760.000	38.05	7.60	35.05	37.83	48.43	74	-25.57	Pass	Vertical

	The same of the sa		100	1	201	10			
Worse case	mode:	e: O-QPSK		Test channel:		Highest	Highest Remark:		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1257.465	30.36	2.58	34.90	46.80	44.84	74	-29.16	Pass	Horizontal
1923.606	31.59	3.18	34.35	43.79	44.21	74	-29.79	Pass	Horizontal
3795.660	32.95	5.47	34.58	43.79	47.63	74	-26.37	Pass	Horizontal
4960.000	35.02	5.05	34.31	46.21	51.97	74	-22.03	Pass	Horizontal
7440.000	36.45	6.88	34.90	39.90	48.33	74	-25.67	Pass	Horizontal
9920.000	38.22	7.47	35.02	37.88	48.55	74	-25.45	Pass	Horizontal
1254.268	30.35	2.58	34.91	47.67	45.69	74	-28.31	Pass	Vertical
1715.411	31.26	3.02	34.50	46.42	46.20	74	-27.80	Pass	Vertical
3258.042	33.37	5.57	34.53	44.94	49.35	74	-24.65	Pass	Vertical
4960.000	35.02	5.05	34.31	44.37	50.13	74	-23.87	Pass	Vertical
7440.000	36.45	6.88	34.90	39.84	48.27	74	-25.73	Pass	Vertical
9920.000	38.22	7.47	35.02	38.16	48.83	74	-25.17	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

Report No.: EED32I00158501 Page 33 of 40

PHOTOGRAPHS OF TEST SETUP

Test model No.: JZSW-LSA-PL50

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30-1000MHz)

Page 35 of 40 Report No.: EED32I00158501

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: JZSW-LSA-PL50

View of Product-1

Report No.: EED32I00158501 Page 36 of 40

View of Product-3

View of Product-4

Report No.: EED32I00158501 Page 37 of 40

View of Product-5

View of Product-6

Page 38 of 40 Report No.: EED32I00158501

View of Product-7

View of Product-8

Report No. : EED32I00158501 Page 39 of 40

View of Product-9

View of Product-10

View of Product-11

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

