BIMM143class10

The PDB Database

First let's see what is in the PDB database- the main repository of protein structures Downloaded composition stats from:

https://tinyurl.com/statspdb

```
##remmeber you gotta put the downloaded file
##in the same location as the R
stats<-read.csv("PDBStats.csv", row.names=1)
stats</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	158,844	11,759	12,296	197	73	32
Protein/Oligosaccharide	9,260	2,054	34	8	1	0
Protein/NA	8,307	3,667	284	7	0	0
Nucleic acid (only)	2,730	113	1,467	13	3	1
Other	164	9	32	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	183,201					
Protein/Oligosaccharide	11,357					
Protein/NA	12,265					
Nucleic acid (only)	4,327					
Other	205					
Oligosaccharide (only)	22					

##There is a problem here due to the commas n # ##This causes R to treat them as characters

```
x<-stats$X.ray
  ##gsub to replace
  ##first is the comma then none to replace
  \#\#and of course x
  gsub(",", "", x)
[1] "158844" "9260"
                       "8307"
                                "2730"
                                         "164"
                                                   "11"
  ##as.numeric to change to numeric #
  as.numeric(gsub(",", "", x))
[1] 158844
             9260
                    8307
                            2730
                                    164
                                            11
  rm.comma<-function(x){</pre>
    as.numeric(gsub(",", "", x))
  rm.comma(stats$EM)
[1] 11759 2054 3667
                         113
                                       0
  ##I can use 'apply()' to fix the whole table
  ##2 for apply to column, second
  ##rm.comma for function as argument third
  \#\#stats for the x or array matrix first
  pdbstats<-apply(stats, 2, rm.comma)</pre>
  rownames(pdbstats)<-rownames(stats)</pre>
  head(pdbstats)
                                   EM
                                        NMR Multiple.methods Neutron Other
                          X.ray
Protein (only)
                         158844 11759 12296
                                                          197
                                                                   73
                           9260 2054
Protein/Oligosaccharide
                                         34
                                                            8
                                                                    1
                                                                           0
                           8307 3667
                                                            7
                                                                    0
                                                                           0
Protein/NA
                                        284
Nucleic acid (only)
                           2730
                                 113 1467
                                                           13
                                                                    3
                                                                           1
                            164
                                    9
                                                            0
                                                                    0
                                                                           0
Other
                                         32
```

6

0

11

Total

Oligosaccharide (only)

0

1

```
Protein (only) 183201
Protein/Oligosaccharide 11357
Protein/NA 12265
Nucleic acid (only) 4327
Other 205
Oligosaccharide (only) 22
```

```
##now we want to find the total
## so we do sum
totals<-apply(pdbstats, 2, sum)
##since totals alone just give you numbers
##you need to make it into percentage
##use round to do so
##totals/totals alone would be wrong
##totals/totals["Total] shows
##you are interacting with the total number
##of occurance so they give you the right
##% value. 2 is the decimal place
round(totals/totals["Total"]*100, 2)</pre>
```

X.ray	EM	NMR	Multiple.methods
84.83	8.33	6.68	0.11
Neutron	Other	Total	
0.04	0.02	100.00	

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

84.83 and 8.33 respectively

Q2: What proportion of structures in the PDB are protein?

```
round(pdbstats[,"Total"]/sum(pdbstats[,"Total"])*100,2)
```

Protein/NA	Protein/Oligosaccharide	Protein (only)
5.80	5.37	86.67
Oligosaccharide (only)	Other	Nucleic acid (only)
0.01	0.10	2.05

##Q.3 skipped

```
library(readr)
read_csv("PDBstats.csv")
```

Rows: 6 Columns: 8

-- Column specification ------

Delimiter: ","

chr (1): Molecular Type

dbl (3): Multiple methods, Neutron, Other

num (4): X-ray, EM, NMR, Total

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

#	A tibble: 6 x 8							
	`Molecular Type`	`X-ray`	EM	NMR	`Multiple methods`	Neutron	Other	Total
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Protein (only)	158844	11759	12296	197	73	32	183201
2	Protein/Oligosacc~	9260	2054	34	8	1	0	11357
3	Protein/NA	8307	3667	284	7	0	0	12265
4	Nucleic acid (onl~	2730	113	1467	13	3	1	4327
5	Other	164	9	32	0	0	0	205
6	Oligosaccharide (~	11	0	6	1	0	4	22

```
##Fraction of Uniprot

##Protein structures in PDB as a fraction of
##Uniprot sequences

round((pdbstats[1,"Total"]/251600768)*100,2)
```

[1] 0.07

Here is a lovely figure of HIP-Pr with the catalytic ASP residues, the MK1 compounds and the all important water 308. QUestion 6

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

Too small resolution of 2 armstrong is bigger than the hydrogen of water. You need 1 armstrom or better to see such small atoms.

Q5 There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have?

Water HOH 308

The bio3d package for structural bioinformatics

```
library(bio3d)
pdb<-read.pdb("1HSG")</pre>
```

Note: Accessing on-line PDB file

attributes(pdb)

```
$names
[1] "atom"
            "xyz"
                     "seqres" "helix" "sheet" "calpha" "remark" "call"
$class
[1] "pdb" "sse"
  head(pdb$atom)
 type eleno elety alt resid chain resno insert
                                                           У
                                          <NA> 29.361 39.686 5.862 1 38.10
1 ATOM
          1
                N < NA >
                         PRO
                                Α
                                      1
2 ATOM
                                      1
                                          <NA> 30.307 38.663 5.319 1 40.62
               CA <NA>
                         PRO
                                Α
3 ATOM
              C <NA>
                         PRO
                                     1 <NA> 29.760 38.071 4.022 1 42.64
                                      1 <NA> 28.600 38.302 3.676 1 43.40
4 ATOM
          4
                O <NA>
                         PRO
                                Α
5 ATOM
          5
               CB <NA>
                         PRO
                               A 1 <NA> 30.508 37.541 6.342 1 37.87
                               A 1 <NA> 29.296 37.591 7.162 1 38.40
6 ATOM
          6
               CG <NA>
                         PRO
 segid elesy charge
1 <NA>
           N <NA>
2 <NA>
           C <NA>
3 <NA>
           C <NA>
           O <NA>
4 <NA>
5 <NA>
           C <NA>
           C <NA>
6 <NA>
  pdb
       read.pdb(file = "1HSG")
  Total Models#: 1
    Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 172 (residues: 128)
    Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
```

QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE

${\tt ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP} \\ {\tt VNIIGRNLLTQIGCTLNF}$

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

```
##Predicting functional motions of a single structure
Let's finish today with a bioinformatics calculation to predict the functional motion of a PDB
structure.
  adk <- read.pdb("6s36")
  Note: Accessing on-line PDB file
  PDB has ALT records, taking A only, rm.alt=TRUE
  adk
Call: read.pdb(file = "6s36")
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
     Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
   Protein sequence:
      MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
      DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
      VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
      YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, segres, helix, sheet,
        calpha, remark, call
  m <- nma(adk)
```

Building Hessian... Done in 0.04 seconds. Diagonalizing Hessian... Done in 0.63 seconds.

plot(m)

mktrj(m, file="adk_m7.pdb")