Portfolio Optimization Constrained by Performance Attribution

Yuan Hu, W. Brent Lindquist and Svetlozar T. Rachev

https://www.mdpi.com/1911-8074/14/5/201

- This study investigates performance attribution measures as a basis for constraining portfolio optimization.
- We employ optimizations that minimize conditional value-atrisk and investigate two performance attributes, asset allocation (AA) and the selection effect (SE), as constraints on asset weights.
- The test portfolio consists of stocks from the Dow Jones Industrial Average index.
- The results suggest that achieving SE performance thresholds requires larger turnover values than that required for achieving comparable AA thresholds.

The Approach

Consider a managed portfolio p comprised of N assets, consisting of M asset classes with n_i assets in class i, i = 1, ..., M, such that $\sum_{i=1}^{M} n_i = N$. Let b denote a benchmark portfolio composed of Q assets comprising with same M asset classes. Assume all weights are non-negative and a fully invested portfolio is summation of weights equivalent to one. The quantities AA and SE for asset class i are defined as follows (Biglova and Rachev, 2007)

$$AA_{i} = \left(w_{i}^{(p)} - w_{i}^{(b)}\right) \left(R_{i}^{(b)} - R^{(b)}\right),$$

$$SE_{i} = w_{i}^{(b)} \left(R_{i}^{(p)} - R_{i}^{(b)}\right),$$

where
$$R_i^{(p)} = \sum_{j=1}^{n_i} \frac{w_{ij}^{(p)}}{w_i^{(p)}} E(r_{ij}), R_i^{(b)} = \sum_{j=1}^{q_i} \frac{w_{ij}^{(b)}}{w_i^{(b)}} E(r_{ij}), R^{(b)} = \sum_{i=1}^{M} \sum_{j=1}^{q_i} w_{ij}^{(b)} E(r_{ij}), R^{(b)} = \sum_{i=1}^{M} \sum_{j=1}^{n} w_{ij}^{(p)} E(r_{ij}) = \sum_{j=1}^{M} w_i^{(p)} R_i^{(p)}$$
 and $E(\cdot)$ denotes expected value.

Portfolio Optimization

We employ CVaR optimization (Rockafellar, 2000) in the study, $\min_{\omega} \text{CVaR}_{\alpha}(\omega) = \min_{\omega,\gamma} \left\{ \gamma - \frac{1}{\alpha T} \sum_{t=1}^{T} (\gamma - \omega' \boldsymbol{r}(t))^{+} \right\}$, where $\boldsymbol{r}(t)$ is a finite sample of asset returns. And we also consider soft constraints,

$$\min_{\omega} \text{CVaR}_{\alpha}(\omega) = \min_{\omega, \gamma} \left\{ \gamma - \frac{1}{\alpha T} \sum_{t=1}^{T} (\gamma - \omega' \mathbf{r}(t))^{+} + \beta((c_{1}(\omega))^{+})^{2} \right\},$$

where β can be set by the user, and $c_1(\omega) \leq 0$ is the optimization constraints.

Portfolio	All 'Hard'	TO	TO+AA	TO+SE	TO+SE+AA	no Solution for t
			TO	< ∞		
$P_{0.95}^{0}$	100.00%					0.00%
$P_{0.95}^{1.55}$	100.00%		0.00%			0.00%
$P_{0.95}^{2.55}$	44.11%			55.84%		0.04%
$\begin{array}{c} P^0_{0.95} \\ P^1_{0.95} \\ P^2_{0.95} \\ P^3_{0.95} \end{array}$	54.90%			42.99%	1.93%	0.18%
			TO	≤ 4%		
$P_{0.95}^{0}$	99.87%	0.13%				0.00%
$P_{0.95}^{1.55}$	98.61%	1.39%	0.00%			0.00%
$P_{0.95}^{2.55}$	41.24%	12.58%		46.13%		0.04%
$\begin{array}{c} P^0_{0.95} \\ P^1_{0.95} \\ P^2_{0.95} \\ P^3_{0.95} \end{array}$	45.54%	19.03%		34.39%	1.03%	0.00%
			TO <	≤ 0.4%		
$P_{0.95}^{0}$	78.15%	21.85%				0.00%
$P_{0.95}^{1.55}$	51.68%	48.32%	0.00%			0.00%
$P_{0.95}^{2.55}$	6.85%	87.51%		5.64%		0.00%
$\begin{array}{c} P^0_{0.95} \\ P^1_{0.95} \\ P^2_{0.95} \\ P^3_{0.95} \end{array}$	6.76%	90.06%		3.00%	0.18%	0.00%

Biglova, Almira, and Svetlozar T. Rachev. 2007. Portfolio performance attribution. Investment Management and Financial Innovations 4: 7–22.

Rockafellar, R. Tyrrell, and Stanislav Uryasev. 2000. Optimization of conditional value-at-risk. Journal of Risk 2: 21–41. [CrossRef]

Optimization Constraints

Consider four portfolio optimization problems:

$$P_{\alpha}^{0}$$
: (a) $w_{ij}^{(p)} \ge 0$, $\sum_{i,j} w_{ij}^{(p)} = 1$; (b) T0 $\le C_{TO}$

$$P_{\alpha}^{1}$$
: (a) $w_{ij}^{(p)} \ge 0$, $\sum_{i,j} w_{ij}^{(p)} = 1$; (b) T0 $\le C_{T0}$; and (c) $a_{1} \le AA \le b_{1}$

$$P_{\alpha}^{2}$$
: (a) $w_{ij}^{(p)} \ge 0$, $\sum_{i,j} w_{ij}^{(p)} = 1$; (b) T0 $\le C_{TO}$

and (d)
$$a_2 \le SE \le b_2$$

$$P_{\alpha}^{3}$$
: (a) $w_{ij}^{(p)} \ge 0$, $\sum_{i,j} w_{ij}^{(p)} = 1$; (b) T0 $\le C_{T0}$; (c) $a_{1} \le AA \le b_{1}$; and (d) $a_{2} \le SE \le b_{2}$

And TO is the turnover constraint,

TO =
$$\frac{1}{2} \sum_{i=1}^{M} \sum_{j=1}^{n_i} |w_{ij}^{(p)}(t) - w_{ij}^{(p)}(t-1)| \le C_{TO}$$

(c) SE