TP Performance - Introduction

mouhcine.mendil@inria.fr

Monday 5th November, 2018

Multiple access to the channel

Performance metrics:

- Spectrum efficiency
- Latency
- Throughput
- ..

Performance metrics:

- Spectrum efficiency
- Latency
- Throughput
- ...

Event A execution (t_1) :

- Update system state
- ② Schedule event A' at t_3

Sim Time	Event
t_1	Α
t_1	В
t_2	С

Event B execution (t_1) :

- Update system state
- ② Schedule event B' at t_4

Sim Time	Event
t ₁	В
t_2	С
t ₃	A'

Event C execution (t_2) :

- Update system state
- No event to schedule

Sim Time	Event
t_2	С
t_3	A'
t_4	B'

Event A' execution (t_2) :

- Update system state
- 2 Schedule event A" at t_5
- **3** ...

Sim Time	Event
t ₃	A'
t ₄	B'

Simpy

• SimPy (GPL) is a discrete-event simulation library

import simpy

Simpy

• SimPy (GPL) is a discrete-event simulation library

```
import simpy
```

 The simulation environment manages the simulation time as well as the scheduling and processing of events

```
env = simpy.Environment() # create environement
env.process(event_generator())
env.run(until=20) # Run simulation until
# the 20th time step
```

Simpy

• SimPy (GPL) is a discrete-event simulation library

```
import simpy
```

 The simulation environment manages the simulation time as well as the scheduling and processing of events

```
env = simpy.Environment() # create environement
env.process(event_generator())
env.run(until=20) # Run simulation until
# the 20th time step
```

- Simpy is event-process based:
 - Events are wrapped in process functions (or methods)
 - A process function creates events, yield them to be scheduled, and updates the system state

```
def packet_generator(env):
     while True:
          yield env.timeout(1) # Wait for 1 time step
          packet_count+=1
```

In practice

SimPy implementation requires:

- A process function (or method) for each event that yields an action and updates the system state
- An environment (scheduler) that determines the order the event processes should be called

Exercice - Analysis

Problem

- Formulate the problem as M/M/1 queue.
- What is the stability condition ?
- Ompute the following in the stationary regime:
 - Average number of packets in the system
 - Average latency of the system

Problem

A router is sending packets through a 64 kbps link. The length of the packets is an exponential random variable with mean 400 bytes. The interval between arrival of packets is an exponential random variable with mean 15 packets per second. During a packet transmission, the router bufferizes the other arriving packets in a FIFO queue.

1 M/M/1 queue: $\mu = 6400/(400 \cdot 8) = 20 \text{s}^{-1}$, $\lambda = 15 \text{s}^{-1}$

Problem

1 M/M/1 queue:
$$\mu = 6400/(400 \cdot 8) = 20 \text{s}^{-1}$$
, $\lambda = 15 \text{s}^{-1}$

2 Stability:
$$\rho = \frac{\lambda}{\mu} = 0.75 \le 1$$

Problem

- **1** M/M/1 queue: $\mu = 6400/(400 \cdot 8) = 20 \text{s}^{-1}$, $\lambda = 15 \text{s}^{-1}$
- ② Stability: $\rho = \frac{\lambda}{\mu} = 0.75 \le 1$
- Ompute the following in the stationary regime:
 - Average number of packets in the system: $N = \frac{\rho}{1-\rho} (= \frac{\lambda}{\mu-\lambda}) = \frac{0.75}{0.25} = 3$

Problem

- **1** M/M/1 queue: $\mu = 6400/(400 \cdot 8) = 20 \text{s}^{-1}$, $\lambda = 15 \text{s}^{-1}$
- **2** Stability: $\rho = \frac{\lambda}{\mu} = 0.75 \le 1$
- Ompute the following in the stationary regime:
 - Average number of packets in the system: $N = \frac{\rho}{1-\rho} (= \frac{\lambda}{\mu-\lambda}) = \frac{0.75}{0.25} = 3$
 - Average latency of the system (Little formula): $T = \frac{N}{\lambda} = \frac{3}{15} = 0.2s$

Exercice - Simulation 1

Problem

A router is sending packets through a 64 kbps link. The length of the packets is an exponential random variable with mean 400 bytes. The interval between arrival of packets is an exponential random variable with mean 15 packets per second. During a packet transmission, the router bufferizes the arriving packets in a FIFO queue.

- Using SimPy, simulate the corresponding Poisson process packet generator (use random.expovariate)
- What is the average number of generated packets per time unit (use env.now)?

Git repo:

 https://gricad-gitlab.univ-grenoblealpes.fr/mendilm/tp_perf2018.git

SimPy ressources

 Stores are object containers (pair of lists) with a limited or unlimited capacity

```
store = simpy.Store(env, capacity=10)
```

SimPy ressources

 Stores are object containers (pair of lists) with a limited or unlimited capacity

```
store = simpy.Store(env, capacity=10)
```

• Putting elements in a store is an event

SimPy ressources

 Stores are object containers (pair of lists) with a limited or unlimited capacity

```
store = simpy.Store(env, capacity=10)
```

• Getting elements from a store is an event

Exercice - Simulation 2

Problem

- Using SimPy, model the queue/server system corresponding to the router/link
- $oldsymbol{0}$ Using SimPy, simulate the M/M/1 queue
- Ompute the following in the stationary regime:
 - Average number of packets in the system
 - Average latency of the system

References

- SimPy official page: https://simpy.readthedocs.io/en/latest/contents.html
- @ Git repo: https://gricad-gitlab.univ-grenoblealpes.fr/mendilm/tp_perf2018.git
- Introduction to simulation: Sanchez, Paul J. "As simple as possible, but no simpler: a gentle introduction to simulation modeling." In Simulation Conference, 2006. WSC 06. Proceedings of the Winter, pp. 2-10. IEEE, 2006.