CONCOURS 1998

DES ÉCOLES DES MINES D'ALBI, ALÈS, DOUAI, NANTES

Epreuve spécifique de Mathématiques (filière MPSI))

Instructions générales:

Les candidats sont invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées.

PREMIER PROBLEME

 \mathbb{R} désigne l'ensemble des nombres réels.

On considère n et p deux entiers naturels supérieurs ou égaux à 2.

On notera $\mathfrak{M}_n(\mathbb{R})$ l'ensemble des matrices carrées d'ordre n à coefficients réels, $GL_n(\mathbb{R})$ l'ensemble des matrices inversibles de $\mathfrak{M}_n(\mathbb{R})$, et $\mathcal{D}_n(\mathbb{R})$ l'ensemble des matrices diagonales de $\mathfrak{M}_n(\mathbb{R})$.

 I_n désigne la matrice identité de $\mathfrak{M}_n(\mathbb{R})$, c'est-à-dire la matrice diagonale d'ordre n dont les termes diagonaux sont tous égaux à 1.

Le but de ce problème est l'étude des ensembles

$$\mathcal{R}_n(p) = \{ A \in \mathfrak{M}_n(\mathbb{R}) \mid A^p = I_n \}.$$

Dans la deuxième et la troisième partie, E désigne un \mathbb{R} -espace vectoriel de dimension 2 muni d'une base $\mathcal{B} = (e_1, e_2)$, et Id_E désigne l'identité de E.

I. Généralités

- 1. $\mathcal{R}_n(p)$ est-il un sous-espace vectoriel de $\mathfrak{M}_n(\mathbb{R})$?
- 2. Soit $A \in \mathcal{R}_n(p)$. Montrer que $A \in GL_n(\mathbb{R})$ et que $A^{-1} \in \mathcal{R}_n(p)$.
- 3. Soit $A \in \mathcal{R}_n(p)$ et $P \in GL_n(\mathbb{R})$. Montrer que $P^{-1}AP \in \mathcal{R}_n(p)$.
- 4. Montrer que $\mathcal{R}_n(p) \cap \mathcal{D}_n(\mathbb{R})$ est un ensemble fini dont on déterminera le cardinal.
- 5. On considère q un entier naturel supérieur ou égal à 2, et on appelle d le plus grand diviseur commun de p et q. Montrer que $\mathcal{R}_n(p) \cap \mathcal{R}_n(q) = \mathcal{R}_n(d)$.

II. Etude de $\mathcal{R}_2(2)$

- 1. Soit A un élément de $\mathcal{R}_2(2)$ tel que $A \neq I_2$ et $A \neq -I_2$, et soit u l'endomorphisme de E dont la matrice dans la base \mathcal{B} est A.
 - (a) Montrer que $\ker(u Id_E) \oplus \ker(u + Id_E) = E$.
 - (b) En déduire qu'il existe une base de E dans laquelle la matrice de u est $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
 - (c) Montrer qu'il existe quatre réels a, b, c et d tels que $ad bc \neq 0$ et

$$A = \frac{1}{ad - bc} \begin{pmatrix} ad + bc & -2ab \\ 2cd & -ad - bc \end{pmatrix}.$$

2. Montrer que $\mathcal{R}_2(2)$ muni de la multiplication des matrices n'est pas un groupe. Interpréter géométriquement ce résultat.

III. Etude de $\mathcal{R}_2(3)$

Dans toute la suite du problème, M désigne un élément de $\mathcal{R}_2(3)$, et v l'endomorphisme de E dont la matrice dans \mathcal{B} est M. On considère les sous-espaces vectoriels de E:

$$F = \ker(v - Id_E)$$
 et $G = \ker(v^2 + v + Id_E)$

où $v^2 = v \circ v$.

1.

- (a) Montrer que $F \cap G = \{0\}$.
- (b) Soit $x \in E$. Montrer que $\frac{1}{3}(x+v(x)+v^2(x)) \in F$ et que $\frac{1}{3}(2x-v(x)-v^2(x)) \in G$.
- (c) En déduire que $E = F \oplus G$.
- 2. Que peut-on dire de M si F est de dimension 2 ?
- 3. Le but de cette question est de montrer à l'aide d'un raisonnement par l'absurde que F n'est pas de dimension 1. On suppose donc que F est de dimension 1.
 - (a) Montrer qu'il existe une base $\mathcal{G} = (g_1, g_2)$ de E telle que F soit la droite vectorielle engendrée par g_1 et G soit la droite vectorielle engendrée par g_2 .
 - (b) En considérant le vecteur $v^2(g_2) + v(g_2) + g_2$, obtenir une contradiction.
- 4. On suppose dans cette question que F est de dimension 0.
 - (a) Montrer que $(e_1, v(e_1))$ est une base de E.
 - (b) En déduire qu'il existe un réel a et un réel non nul b tels que

$$M = \frac{1}{b} \begin{pmatrix} ab & -1 - a - a^2 \\ b^2 & -ab - b \end{pmatrix}.$$

DEUXIEME PROBLEME

- 1. Résoudre dans \mathbb{R} l'équation : $t + \sin t = 0$.
- 2. Pour tout réel t tel que $t + \sin t \neq 0$, on pose :

$$\psi(t) = \frac{1}{t + \sin t}.$$

Montrer que l'intégrale $\int_{x}^{2x} \psi(t) dt$ est définie pour tout $x \in \mathbb{R}^*$.

On notera f(x) sa valeur.

L'objet de ce problème est l'étude de la fonction f associée, définie sur \mathbb{R}^* .

- 3. Etudier la parité de f.
- 4. Montrer que f est de classe C^{∞} sur \mathbb{R}^* , et calculer f'(x) sous forme factorisée pour x>0.
- 5. En déduire le sens de variation de f sur $]0, +\infty[$.
- 6. On cherche à étudier le comportement de f au voisinage de $+\infty$.

(a) Montrer que, pour tout x > 0,

$$\left| f(x) - \int_{x}^{2x} \frac{dt}{t} \right| \leqslant \int_{x}^{2x} \frac{dt}{t(t + \sin t)}.$$

- (b) Montrer qu'il existe m > 0 tel que, pour tout $t \ge m$, on ait : $t + \sin t \ge \frac{t}{2}$.
- (c) En déduire que f(x) admet une limite finie quand x tend vers $+\infty$.
- 7. On cherche à étudier le comportement de f au voisinage de 0.
 - (a) Montrer qu'il existe deux réels a et b tels que

$$\frac{1}{t + \sin t} = \frac{a}{t} + bt + o(t)$$

au voisinage de 0.

(b) Soit g une fonction de $]0, +\infty[$ dans $\mathbb R$ telle que $\lim_{t\to 0^+}g(t)=0$. Montrer que

$$\lim_{x \to 0^+} \sup_{t \in [x, 2x]} |g(t)| = 0.$$

- (c) En déduire que si h est une fonction continue de $]0, +\infty[$ dans $\mathbb R$ telle que h(x)=o(x) au voisinage de 0, alors $\int\limits_{x}^{2x}h(t)\,dt=o(x^2)$ au voisinage de 0.
- (d) Montrer que f admet au voisinage de 0 un développement limité à l'ordre 2 que l'on déterminera.
- (e) Montrer que f peut se prolonger en 0 en une fonction dérivable (on notera encore f ce prolongement), et déterminer f(0) et f'(0).
- (f) Quelle est, au voisinage de 0, la position de la courbe représentative de f par rapport à sa tangente au point d'abscisse 0?
- (g) Déterminer un équivalent simple de f'(x) au voisinage de 0.
- (h) En déduire que f est deux fois dérivable en 0, et calculer f''(0).
- 8. Déterminer le tableau de variations de f sur \mathbb{R} .