2008 级大学物理期末试题 A 卷

2009年6月23日

姓名

题号	1-5	6-19	20	21	22	23	总分
得分							

一 选择题 (共15分, 每题3分)

请将答案写在试卷上指定方括号[

一内。

- 1. 质点的质量为m,置于光滑球面的顶点A处(球面固定不动),如图所示. 当它由静止 开始下滑到球面上 B点时,它的加速度的大小为
 - (A) $a = 2g(1 \cos\theta)$.
 - (B) $a = g \sin \theta$.
 - (C) a = g.
 - (D) $a = \sqrt{4g^2(1-\cos\theta)^2 + g^2\sin^2\theta}$.

ŗ

2. 质量为 m的小孩站在半径为 R的水平平台边缘上, 平台可以绕通过其中心的竖直光滑 固定轴自由转动,转动惯量为 .J. 平台和小孩开始时均静止. 当小孩突然以相对于地面 为 υ 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向 分别为

(A)
$$ω = \frac{mR^2}{J} \left(\frac{v}{R} \right)$$
, 顺时针.

(B)
$$\omega = \frac{mR^2}{J} \left(\frac{v}{R} \right)$$
, 逆时针.

(C)
$$\omega = \frac{mR^2}{J + mR^2} \left(\frac{v}{R}\right)$$
,顺时针.

(C)
$$\omega = \frac{mR^2}{J + mR^2} \left(\frac{v}{R}\right)$$
, 順时针. (D) $\omega = \frac{mR^2}{J + mR^2} \left(\frac{v}{R}\right)$, 逆时针.

3. 下列 4 个图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的 分子速率分布曲线?

- 4. 用余弦函数描述一简谐振子的振动. 若其速度~时间 $(v\sim t)$ 关系曲线如图所示,则振动的初相位为
 - (A) $\pi/6$.

(B) $\pi/3$.

- (C) $\pi/2$.
- (D) $2\pi/3$.

(E) $5\pi/6$.

- $-\frac{1}{2}v_{m}$ $-v_{m}$ t(s)
- 5. 在玻璃(折射率 n_2 =1.60)表面镀一层 MgF_2 (折射率 n_3 =1.38)薄膜作为增透膜. 为了使波长为 500nm(1nm= 10^9 m)的光从空气(n_1 =1.00)正入射时尽可能少反射, MgF_2 薄膜的最少厚度应是
 - (A) 78.1 nm (B)) 90.6 nm (C) 125 nm (D) 181 nm (E) 250nm
- 二 填空题(共 50 分) 请将答案写在指定横线上。

- 7. (4分) 一个力 F 作用在质量为 1.0 kg 的质点上,使之沿 x 轴运动。已知在此力作用下质点的运动学方程为 $x = 3t 4t^2 + t^3$ (SI)。在 0 到 4 s 的时间间隔内,
 - (1) 力 F 的冲量大小 I= _____。
 - (2) 力 F 对质点所作的功 $W = _____$ 。
- 8. (4分) 一人造地球卫星绕地球作椭圆运动,近地点为 A,远地点为 B。A、B 两点距地心分别为 r_1 、 r_2 。设卫星质量为 m,地球质量为 M,万有引力常数为 G。则卫星在 A、B 两点处的动能之差 $E_{kB}-E_{kA}=$ ______。

9. (4 分)转动着的飞轮的转动惯量为J,在 t=0 时角速度为 ω 。 此后飞轮经历制动过程。 阻力矩 M 的大小与角速度 ω 的平方成正比,比例系数为 k (k 为大于 0 的常量)。当 $\omega = \frac{1}{3}\omega_0$ 时,飞轮的角加速度 $\beta =$ _______。从开始制动到 $\omega = \frac{1}{3}\omega_0$ 所

10. (4分)光滑的水平桌面上有长为 2L、质量为 m 的匀质细杆,可绕通过其中点 O 且垂 直于桌面的竖直固定轴自由转动,起初杆静止。有一质量 也为 m 的小球沿桌面正对着杆的一端, 在垂直于杆长的 方向上,以速率ν运动,如图所示. 当小球与杆端发生碰 撞后,就与杆粘在一起随杆转动,则这一系统碰撞后的转

经过的时间 t=_____

- 11. (3分)两个容器中分别贮有氦气和氧气。已知氦气的压强是氧气压强的 1/2, 氦气 的容积是氧气的 2 倍。则氦气的内能是氧气内能的 倍。
 - 12. (4分) 用总分子数 N、气体分子速率 v 和速率分布函数 f(v) 表示下列各量:
- (1) 速率大于 v_0 的分子数=
- (2) 速率大于 v_0 的那些分子的平均速率= ;
- (3) 多次观察某一分子的速率,发现其速率大于 ν_0 的概率=
- 13. (4 分) 一质点作简谐振动。其振动曲线如图所示。

则该振动的周期为 T=____s; 用余弦函数描述其 位移随时间变化的函数关系时初相为。

14. (4 分) 一平面简谐波沿x 轴正方向传播, 波长为 λ =2.0m。 P_1 和 P_2 为x 轴上的两点, 它们的坐标分别为 $x_1 = 6.0$ m, $x_2=15$ m。已知 P_1 点处质元的振动方程为 $y_1 = 0.1\cos(\omega t - \frac{\pi}{2})$, \mathbb{N}

- (1) 该波的波函数为,
- (2) P₂点的振动方程为 _____

15. (3 分) 如图所示, 两列波长为 λ 的相干波在 P 点相遇. S_1 点的初位相是 φ_1 , S_1 到 P点的距离是 r_1 ; S_2 点的初位相是 φ_2 , S_2 到P点的距 离是 r_2 ,以k代表零或正、负整数,则P点是干涉 极大的条件为: _____。

16. (3 分) 折射率为 $n_1 = 1.51$ 的玻璃上覆盖着一层厚度均匀的介质膜,膜的折射率为 no=1.36。用多种颜色的单色光垂直照射到介质膜。发现当波长为 512nm 时反射光中出 现于涉极小; 当波长为 640nm 时反射光中出现干涉极大。则介质膜的厚度 为____。

17. (3 分)在单缝夫琅和费衍射实验中,波长为 λ 的单色光垂直射在宽度 $\alpha = 5\lambda$ 的单缝 上,对应于衍射角 ø 的方向上,若单缝处波面恰好可分成 5 个半波带,则衍射角 $\phi =$.

18. (3分)某单色光垂直入射到一个每毫米有800条刻线的光栅上,如果第一级谱线的衍 射角为 30°,则入射光的波长应为_____nm。

19. (3 分)三个偏振片 P_1 , P_2 与 P_3 堆叠在一起, P_1 与 P_3 的偏振化方向相互垂直, P_2 与 P_1 的偏振化方向间的夹角为 30°. 强度为 I_0 的自然光垂直入射于偏振片 P_1 , 并依次透 过偏振片 P_1 、 P_2 与 P_3 ,则通过三个偏振片后的光强为 ______。

三 计算题(共 35 分)

20. (10 分)两个匀质圆盘,一大一小,同轴地粘结在一起,构成 一个组合轮。小圆盘的半径为 r, 质量为 m; 大圆盘的半径 r' = 2r,质量m'=2m。组合轮可绕通过其中心且垂直于盘面的光滑 水平固定轴 O 转动,两圆盘边缘上分别绕有轻质细绳,细绳下端 各悬挂质量为m的物体A和B,如图所示。这一系统从静止开 始运动,绳与盘无相对滑动,绳的长度不变。已知r=10cm。求:

- (1)组合轮的角加速度 α ;
- (2) 当物体 A 上升 h=40cm 时,组合轮的角速度 ω 。

21.(10 分)一以理想气体为工质的热机,其循环过程如图所示,试证明此热机的效率为

$$\eta = 1 - \gamma \frac{2J(1-1)}{p_2/p_1 - 1}$$
。

$$P$$

$$P_2$$
绝热线

(1) 证明干涉花样明环的半径为 $r = \sqrt{\frac{(2k-1)R\lambda}{2}}$, k = 1, 2, 3... (2) 求在半径为 $r_{\rm m} = 2$ mm 的范围内,总共能观察到多少个明环? (3) 如果将凸透镜向上平移 $e_0 = 1$ μm,则最靠近中心 O 处

22. (10 分)图示为一观察牛顿环的装置,平凸透镜的凸面是半径为 R=1m 的球面。用

波长2=500nm 的单色光垂直照射。

的明环是第几级明环?

23. (5 分) 热机工作于 600K 和 300K 的两个热源之间,在一次循环中从高温热源吸热 4000 焦耳。(1) 若该热机为一可逆的卡诺机,每经过一个循环两热源及热机组成系统熵

变化了多少? (2) 若某热机的循环效率为 0.25, 计算每经过一个循环两热源及热机组

成系统熵变化。(3) 比较上面两个熵变结果,说明什么问题?

一 选择题 (共15分, 每题3分)

D A B A $\mathscr{C}(B)$

6.
$$(4 \%)$$
 $4(m \cdot s^{-1})$, $6(m \cdot s^{-1})$, $-12(m \cdot s^{-2})$

8.
$$GMm \frac{r_1 - r_2}{r_2 r_1} (4 \%)$$

9.
$$-\frac{k\omega_0^2}{9J}$$
 (2 分), $\frac{2J}{k\omega_0}$ (2 分)

12.
$$(4 分)$$
 $\int_{u}^{c} Nf(v) dv$

$$\int_{u}^{c} v f(v) dv / \int_{u}^{c} f(v) dv$$
$$\int_{u}^{c} f(v) dv$$

13. 3.43 s (24/7 s) (2分),
$$-2\pi/3$$
 (4 $\pi/3$) (2分)

1分

2分

1分

(3分)

14.
$$(4 \, \text{分}) \quad y = 0.1\cos(\pi x + \omega t \, \hat{\#} \, \frac{\pi}{2})$$

$$y_0 = 0.1\cos(\omega t - \frac{\pi}{2}); \quad y_2 = 0.1\cos(\omega t + \frac{\pi}{2})$$

15.
$$\varphi_1 - \varphi_2 + 2\pi (r_2 - r_3) / \lambda = 2k\pi$$
;

17.
$$\phi = 30$$
, (3 分)

19.
$$3I_0$$
 / 32 (3 $\frac{4}{2}$)