

Determine Edges

Problem

You are given an integer N and N-1 bidirectional edges. These edges connect N vertices in such a way that there exists a path¹ between any two vertices (i.e., they form a tree). You must assign weights to each of the edges such that the following property holds in the tree:

For every integer x between 1 and $\left\lfloor \frac{2N^2}{9} \right\rfloor$, there exists a pair of vertices i, j such that the sum of the weights on the simple path² between i and j is equal to x.

Implementation Details

You must implement the function $Determinar_aristas()$. This function receives an integer N and two vectors u and v, each with N-1 elements. For each $0 \le i \le N-2$, u[i] and v[i] are the vertices connected by edge i. This function must return a vector with N-1 elements, the weights you chose. The function would look like this:

```
#include <bits/stdc++.h>
using namespace std;

vector<int> Determinar_aristas(int N, vector<int> u, vector<int> v) {
     // Implement this function.
}
```

The grader will run the function **multiple** times for each test case.

Example

Example 1:

• The grader calls the function

Determinar_aristas(6, {0, 1, 2, 2, 1}, {1, 2, 3, 4, 5})

the tree in this case is as follows:

¹Sequence of vertices such that any two adjacent vertices belong to an edge of the graph.

²That does not repeat edges.

■ You could obtain the full points for this case by returning the vector {2, 1, 2, 4, 5}. Which corresponds to the following choice of edges:

This is because:

- The path between vertices (1,2) has a weight of 1.
- The path between vertices (0,1) has a weight of 2.
- The path between vertices (0,2) has a weight of 3.
- The path between vertices (2,4) has a weight of 4.
- The path between vertices (1,5) has a weight of 5.
- The path between vertices (2,5) has a weight of 6.
- The path between vertices (0,5) has a weight of 7.
- The path between vertices (3,5) has a weight of 8.

Constraints

■ $1 \le N \le 2000$.

- The vectors u and v will have exactly N-1 elements.
- For each $0 \le i \le N-2$, it holds that $0 \le u[i] \ne v[i] \le N-1$.
- It is guaranteed that the graph formed by the edges is a tree.
- Let S_N be the sum of the values of N over all calls to the function in a case. It holds that $S_N \leq 2000$.

Subtasks

- (6 points) $N \leq 4$.
- (7 points) You will obtain the points for this subtask if your choice of edges satisfies the condition for $1 \le x \le N$.
- (22 points) For all $0 \le i \le N-2$, it holds that u[i] = i+1, v[i] = i+2.
- (25 points) For all $0 \le i \le N-2$, it holds that $u[i] = i+1, v[i] = \lfloor \frac{i}{2} \rfloor$.
- (40 points) No additional restrictions.