Capítulo 2: Asistentes de Pruebas para Programadores

3. Cálculo de Construcciones

1. Cálculo λ simplemente tipado Sintaxis

Términos

$$e ::= x | \lambda x.e | (e_1 e_2) | c$$

Tipos

$$\alpha := t \mid \alpha_1 \rightarrow \alpha_2$$

Contextos

$$\Gamma ::= [] | \Gamma, x:\alpha$$

(o directamente
$$\Gamma ::= x_1 : \alpha_1 ... x_n : \alpha_n \ (n \ge 0)$$
)

InCo

Sistema de tipos

Juicios de la forma: Γ - e: α

"la expresión e tiene tipo α bajo el contexto Γ "

Reglas:

$$\frac{\mathbf{x} : \alpha \in \Gamma}{\Gamma \mid \mathbf{-x} : \alpha} \mathbf{ctx}$$

$$\frac{\Gamma, x:\alpha \mid -e:\beta}{\Gamma \mid -\lambda x.e:\alpha \rightarrow \beta}$$
 abs

$$\frac{\Gamma|-e_1:\alpha \to \beta \ \Gamma|-e_2:\alpha}{\Gamma|-(e_1 e_2):\beta} \text{ app}$$

Sistema de tipos Ejemplos de términos tipados

- λx.x: ?
- λx.λy. x: ?
- $\lambda x.\lambda y.\lambda z.((x y) z)$: ?
- $\lambda x.\lambda y.\lambda z.((x z) (z y))$: ?

- ?: $\alpha \rightarrow \beta \rightarrow \beta$
- ?: $(\alpha \rightarrow \beta \rightarrow \delta) \rightarrow \beta \rightarrow \alpha \rightarrow \delta$

Reducciones

Reducción β

$$(\lambda x.e_1 e_2) \rightarrow_{\beta} e_1[x := e_2]$$

β-redex

Reducción η

$$\lambda x.(f x) \rightarrow_{\eta} f$$

 η -redex

Reducción δ

Si c:=
$$d$$
 entonces $c \rightarrow \delta d$

 δ -redex (unfold)

Reducciones - Ejemplos

- $((\lambda x.\lambda y.(x y) \lambda z.z) w)$ $((\lambda x.\lambda y.(x y) \lambda z.z) w) \rightarrow_{\beta} (\lambda y.(\lambda z.z y) w)$ $(\lambda y.(\lambda z.z y) w) \rightarrow_{\beta} (\lambda z.z w)$ $(\lambda z.z w) \rightarrow_{\beta} w$
- $(\lambda x.(\lambda z.z x) y)$ $(\lambda x.(\lambda z.z x) y) \rightarrow_{\eta} (\lambda z.z y)$ $(\lambda z.z y) \rightarrow_{\beta} y$

InCo

Reducciones infinitas

No siempre una cadena de reducciones β y η tiene fin. Ejemplos:

- Definimos $\Delta = \lambda x.(x x)$
 - Entonces $(\Delta \Delta) \rightarrow_{\beta} (\Delta \Delta) \rightarrow_{\beta} (\Delta \Delta) \rightarrow_{\beta} \dots$
- Definimos $\Delta_3 = \lambda x.(x \times x)$
 - Entonces $(\Delta_3 \ \Delta_3) \rightarrow_{\beta} (\Delta_3 \ \Delta_3 \ \Delta_3) \rightarrow_{\beta} \dots$

Propiedad importante: tener tipo garantiza que no haya computaciones infinitas

Dado un término e, si existe α tal que Γ |- e: α , entonces e es β - η -normalizable (toda cadena de reducciones temina en una **forma normal**)

InCo

Cálculo λ simplemente tipado en Coq

- Constantes de tipo: nat, bool, etc.
- Las abstracciones se escriben con fun ... =>
 ... El tipo de las variables aparece en las abstracciones:
 - fun x: nat \Rightarrow x : nat \rightarrow nat
 - fun x: bool \Rightarrow x : bool \rightarrow bool
 - fun $(f:nat \rightarrow bool)(x:nat) \Rightarrow f x : bool$
 - fun $(g:nat\rightarrow nat\rightarrow bool)(n:nat) \Rightarrow g n n : bool$
 - fun $(g:nat\rightarrow nat\rightarrow bool)(n:nat) \Rightarrow g n : nat \rightarrow bool$

2. Polimorfismo Paramétrico

• En los lenguajes funcionales (ML, Haskell) escribimos: $\lambda x. x : \alpha \rightarrow \alpha$

Variable de tipo!!

• En Coq, abstraemos el tipo. Los tipos de datos pertenecen a la clase Set:

fun $(X:Set)(x:X) => x : forall X:Set, X \rightarrow X$

Abstrayendo en la clase Set se obtiene polimorfismo paramétrico

3. Tipos dependientes

- Polimorfismo paramétrico = abstraer variables de tipo (de Set).
- En forma más general: podemos abstraer variables de cualquier tipo.

Tipos dependientes: un tipo puede *depender* no solo de otro tipo, sino también de un *objeto de cierto tipo*.

Tipos dependientes Ejemplos

- Array: Set → nat → Set
 - (Array bool 3)
 - zip: forall (A B:Set)(k:nat),(Array A k)→(Array B k)→(Array (A*B) k)

- Matrix: Set →nat→nat→Set
 - (Matrix nat 5 4)
 - prod:forall n m k:nat,

(Matrix nat n k) \rightarrow (Matrix nat k m) \rightarrow (Matrix nat n m)

Lenguaje de programación de Coq

 Es un lambda cálculo tipado con las siguientes características:


```
Cálculo de Construcciones (CC)

Cálculo de Construcciones Inductivas = CC + tipos inductivos (CCI)

Cálculo de Construcciones Inductivas y Coinductivos =

CCI+tipos coinductivos (CCI°)
```

4. <u>Cálculo de Construcciones</u> Sintaxis

1. Términos

```
T ::= Set | Prop | Type

| x variables

| (TT) aplicación

| [x:T]T abstracción

| (x:T)T producto

| T \rightarrow T tipo de las funciones*
```

Ejemplos: [A:Set][x:A]x [f: $A \rightarrow A \rightarrow A$][a:A](f a a)

^{*} A → B abrevia (x:A)B cuando x no ocurre libre en B

Sintaxis (cont.)

2. Contextos

$$\Gamma ::= [] | \Gamma, x:T$$

3. **Definiciones**

Sintaxis - Alcance

La lambda abstracción y el producto son operadores de ligadura

Definición [alcance]

- en el término [x:A]B el alcance de la abstracción [x:A] es B.
- en el tipo (x:A) B el alcance del cuantificador (x:A)
 es B.

Las nociones de variable libre y ligada son las usuales.

Sintaxis - Sustitución

<u>Definición</u> [sustitución] sean t y u dos términos y x una variable.

t[x := u] denota el término que resulta de sustituir todas las ocurrencias libres de x en t por el término u.

Otras notaciones: t[u/x], [u/x]t, t[x<-u], t{x:=u}

Asumiremos que la operación de sustitución evita la captura de variables renombrando adecuadamente las variables ligadas.

Reglas de Reducción

Definición [reducción beta y eta]

- ([x:T]f a) \rightarrow_{β} f [x := a]
- $[x:T] (f x) \rightarrow_{\eta} f$

Definición

- Se define como $\Rightarrow_{\beta} y \Rightarrow_{\eta}$ las relaciones correspondientes a la reescritura de un subtérmino utilizando $\Rightarrow_{\beta} y \Rightarrow_{\eta}$. Se define $\Rightarrow_{\beta\eta}$ como la unión de ambas relaciones.
- Se define como →_{β*} y →_{η*} la clausura reflexiva, transitiva de →_β y →_η respectivamente.
- Idem para →_{βη*}

InCo

Reglas Reducción (cont.)

Definición [beta y eta conversión]

- Se definen $\equiv_{\beta\eta}$ como la clausura reflexiva, transitiva y simétrica de $\Rightarrow_{\beta\eta^*}$
- Si $t \equiv_{\beta\eta} u$ se dice que t y u son $\beta\eta$ -convertibles

Definición [redex, forma normal]

- Un término t es un β -redex si $t \rightarrow_{\beta} u$ y es un η -redex si $t \rightarrow_{\eta} u$
- Un término t está en β-forma normal si ninguno de sus terminos es un β-redex (idem para η-forma normal y βη-forma normal).

Juicio de tipabilidad en CC

Definición [juicio de tipado]

Los juicios t tiene tipo T en el contexto Γ (Γ |- t:T) y Γ es un contexto bien formado se definen en forma mutuamente recursiva

El conjunto S de clases de objetos se define como : S = {Set, Prop, Type, Type1, Type2, ...}

El conjunto R de reglas de formación de productos es:

```
R = \{ \langle Prop, Prop, Prop \rangle, \langle Set, Prop, Prop \rangle, \langle Type_i, Prop, Prop \rangle, \langle Set, Set, Set \rangle, \langle Prop, Set, Set \rangle, \langle Type_i, Type_i, Type_i \rangle, \langle Set, Type_i, Type_i \rangle, \langle Type_i, Type_i, Type_{max\{i,j\}} \rangle \mid i \in N \}
```

Juicio de Tipabilidad (cont) Reglas de Buena formación de Contextos

[] bien formado

 $\Gamma \mid -T$:S $X \notin \Gamma$ DECLARACION DE VARIABLES

 Γ , x:T bien formado

Juicio de Tipabilidad (cont) Reglas de Tipado I

[] |- Tipe_i:Type _{i+1}

 $\frac{\Gamma \mid -\mathsf{T:s_1}}{\Gamma \mid -\mathsf{(x:T)U:s_3}} < S1,S2,S3> \in R \ (PROD)$

Juicio de Tipabilidad (cont) Reglas de Tipado II

$$\frac{\Gamma \text{ bien formado} \quad x:t \in \Gamma}{\Gamma \mid -x:t}$$

$$\frac{\Gamma \mid - (x:T)U:s \qquad \Gamma \text{, } x:T \mid - t:U}{\Gamma \mid - [x:T]t : (x:T)U}$$

$$\frac{\Gamma \mid - f:(x:T)U \qquad \Gamma \mid - t:T}{\Gamma \mid - (f \ t) : U \ [x \leftarrow t]}$$

Juicio de Tipabilidad (cont) Reglas de Tipado III

δ-Reducción

Definición [regla delta]

si C :=E es una definición incorporada al contexto Γ

 $t \rightarrow_{\delta, \Gamma} t'$ donde t' es el resultado remplazar una ocurrencia del símbolo de constante C por E en t.

Observar que este remplazo no es una sustitución pues C es un símbolo de constante.

Las definiciones de forma normal y conversion vistas para $\beta\eta$ se definen de forma análoga para δ .

Ver: presentación de CC con δ en Cap. 4 del manual y [Paulin-Mohring96]

Coq: Tácticas vinculadas a la reducción

- Estrategias de reducción
 - cbv flag₁ flag₂
 - lazy flag₁ flag₂
 - donde flag_i es el nombre de la reducción (beta o delta)
- Reducción Delta
 - unfold id₁... id_n
 - fold term
- Estrategias de reducción
 - compute calcula la forma normal
 - simp aplica β y luego δ a constantes transparentes

Propiedades del Cálculo de Construcciones

Normalización

Si el juicio Γ –A:B es derivable entonces A tiene forma normal.

Confluencia

Si $\Gamma \mid -A:B$ y $A \Rightarrow_{\beta\eta^*} A_1$ y $A \Rightarrow_{\beta\eta^*} A_2$ entonces existe C tal que $A_1 \Rightarrow_{\beta\eta^*} C$ y $A_2 \Rightarrow_{\beta\eta^*} C$.

Más Propiedades del Cálculo de Construcciones

Decidibilidad del tipado

Existe un algoritmo que dado un término U y un contexto Γ:

- devuelve un término V tal que Γ|−U : V es derivable, o bien
- reporta un error si no existe un término V tal que Γ|–U: V pueda derivarse.

Problemas ligados al tipado

1. Chequeo de tipos:

 $\Gamma \mid -\mathsf{U} : \mathsf{V} ?$

2. Inferencia de tipos:

Dados Γ y U existe V tal que Γ |–U : V ?

3. Vacuidad de un tipo:

Dados Γ y V existe U tal que Γ |–U : V ?

Los problemas 1 y 2 son decidibles en el cálculo de construcciones, 3 no lo es.