Cálculo Numérico: Lista de Exercícios 3

Métodos para Encontrar Raízes Reais de Funções Reais

- 1. Mostre que as seguintes equações possuem exatamente uma raiz e que em cada caso a raiz está no intervalo [0.5, 1].
 - (a) $x^2 + ln(x) = 0$
 - (b) $xe^x 1 = 0$

Determine essas raízes com até duas casas decimais corretas (i.e., com $\epsilon = 10^{-2}$), usando o método da Bisseção.

- 2. Encontre o zero das seguintes funções pelo método da Bisseção, com $\epsilon=0.03$ ou até seis iterações do método (i.e., k = 6):
 - (a) $x^2 + sen(x) 5$ no intervalo [1.2, 2.4]
 - (b) $x^3 2x^2 20x + 30$ no intervalo [1.3, 4.8]

(obs: use sempre radianos para avaliar funções trigonométricas)

- 3. Aplique o método da Bisseção e o da Falsa Posição para calcular a raiz positiva de $x^2-7=0$ com $\epsilon = 10^{-2}$, partindo do intervalo inicial [2.0, 3.0].
- 4. Aplique o método da Bisseção para resolver:
 - (a) $e^x 3x = 0$
 - (b) $x^3 + \cos(x) = 0$,

obtendo, em cada caso o intervalo inicial [a, b] graficamente.

- 5. Considere o problema de encontrar o zero da função f(x) = x + ln(x) no intervalo [0.5, 0.6] usando um método de ponto fixo. Analise a convergência, quando a função de iteração é dada por:
 - (a) $\varphi(x) = -ln(x)$;
 - (b) $\varphi(x) = e^{-x}$.
- **6.** A equação $x^2 + 5x 1 = 0$ tem uma raiz em [0, 0.5]. Verifique quais dos processos abaixo podem ser usados, com sucesso, para obtê-la.

 - (a) $x_{k+1} = \frac{1-x_k^2}{5}$ (b) $x_{k+1} = \frac{1-5x_k}{x_k}$
 - (c) $x_{k+1} = \sqrt{1 5x_k}$
- 7. A equação $x^3 2x 17 = 0$ tem apenas uma raiz real. Determine seu valor correto até duas casas decimais usando o método de Newton-Raphson e o método da Secante.
- 8. Encontre o zero das seguintes funções pelo método de Newton-Raphson e o método da Secante com $\epsilon = 0.0005$ ou até seis iterações (i.e., k = 6):
 - (a) $f(x) = x^3 \cos(x)$ no intervalo [0,1]
 - (b) $f(x) = 2x^3 + ln(x) 5$ no intervalo [1,2]
- 9. O valor de π pode ser obtido através da resolução das seguintes equações:
 - (a) sen(x) = 0
 - (b) cos(x) + 1 = 0

Aplique o método de Newton com $x_0 = 3$ e com precisão 10^{-7} em cada caso e compare os resultados obtidos. Justifique.

- 10. Suponha que você deseja calcular b/a em um computador capaz de somente somar, subtrair e multiplicar. Responda:
 - (a) Use o método de Newton para estabelecer uma forma de calcular 1/a (dica: note que 1/a é o zero de f(x) = 1/x a).
 - (b) Mostre que o método de Newton converge quando o ponto inicial x_0 está no intervalo [1/2a, 3/2a].
 - (c) Usando o método do item (a) calcule 10/9 neste computador.
- 11. Suponha que você deseja computar \sqrt{b} em um computador que não possui a função de "raiz quadrada". Responda:
 - (a) Use o método de Newton para estabelecer uma forma de calcular a raiz (dica: note que \sqrt{b} é zero da função $f(x) = x^2 b$).
 - (b) Usando o método do item (a) calcule $\sqrt{2}$ neste computador.
- 12. Use o método de Newton para encontrar o zero da função $f(x)=(x-2)^3$, com até duas casas decimais corretas (i.e., $|x_{k+1}-2|<\epsilon=10^{-2}$). Porque o método demora para convergir para a raiz $\xi=2$?
- 13. A equação $x^2 b = 0$ tem como raiz $\xi = \sqrt{b}$. Considere o método de ponto fixo com $\varphi(x) = b/x$:
 - (a) comprove que $\varphi'(\xi) = -1$;
 - (b) o que acontece com a sequência $\{x_k\}$ gerada pelo processo iterativo $x_{k+1} = \varphi(x_k)$?
 - (c) sua conclusão do item (b) pode ser generalizada para qualquer função de iteração $\varphi(x)$ tal que $|\varphi'(\xi)| = 1$?
- 14. Use o método de Newton-Raphson para obter a menor raiz positiva das equações a seguir com precisão $\epsilon = 10^{-4}$:
 - (a) x/2 tan(x) = 0
 - (b) $2\cos(x) = e^x/2$
 - (c) $x^5 6 = 0$
- 15. Deduza o método de Newton a partir de sua interpretação geométrica.
- **16.** Seja $f(x) = e^x 4x^2$ e ξ sua raiz no intervalo (0,1). Tomando $x_0 = 0.5$, encontre ξ com $\epsilon = 10^{-4}$ usando:
 - (a) o método de ponto fixo com $\varphi(x) = (e^{x/2})/2$;
 - (b) o método de Newton.

Compare a rapidez de convergência.

17. Seja $f(x) = x^2/2 + x(\ln(x) - 1)$. Obtenha seus pontos críticos com o auxílio de um método numérico.

Referências

- [1] Ruggiero, M., e Lopes, V., Cálculo Numérico: Aspectos Teóricos e Computacionais, Segunda Edição, Makron, Books, 1998.
- [2] Franco, N. B., Cálculo Numérico, Prentice Hall, 2006.