Clases de analisis avanzado

rosencrantz85

March 2025

1. Introduction

Demostración formal del límite usando la definición

Sea la sucesión:

$$a_n = \frac{n \cdot \sin\left(\frac{1}{n}\right)}{e^n}$$

Queremos demostrar que:

$$\lim_{n \to \infty} a_n = 0$$

usando la definición formal de límite.

Demostración

Sea $\varepsilon>0.$ Debemos encontrar $n_0\in\mathbb{N}$ tal que para todo $n\geq n_0$ se cumpla:

$$|a_n - 0| < \varepsilon$$

Observamos que:

$$\left|\frac{n\cdot\sin\left(\frac{1}{n}\right)}{e^n}\right| \leq \frac{n\cdot\frac{1}{n}}{e^n} = \frac{1}{e^n} \quad \text{ya que } \sin\left(\frac{1}{n}\right) \leq \frac{1}{n}$$

Entonces basta con que:

$$\frac{1}{e^n}<\varepsilon$$

Tomamos logaritmos:

$$e^n > \frac{1}{\varepsilon} \quad \Rightarrow \quad n > \ln\left(\frac{1}{\varepsilon}\right)$$

Definimos:

$$n_0 = \left\lceil \ln \left(\frac{1}{\varepsilon} \right) \right\rceil$$

Entonces, para todo $n \ge n_0$, se cumple:

$$|a_n - 0| < \varepsilon$$

Conclusión: hemos demostrado, usando la definición formal de límite, que:

$$\lim_{n \to \infty} \frac{n \cdot \sin\left(\frac{1}{n}\right)}{e^n} = 0$$

Ejercicio: Límite del cuadrado de una sucesión

Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales tal que:

$$\lim_{n \to \infty} a_n = \ell.$$

Demostrar, utilizando la definición formal de límite, que:

$$\lim_{n \to \infty} a_n^2 = \ell^2.$$

Demostración

Sea $\varepsilon > 0$. Queremos encontrar $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$ se cumpla:

$$|a_n^2 - \ell^2| < \varepsilon$$
.

Observamos que:

$$|a_n^2 - \ell^2| = |a_n - \ell| \cdot |a_n + \ell|.$$

Como $a_n \to \ell$, la sucesión (a_n) es convergente, y por lo tanto está acotada. Es decir, existe una constante M>0 tal que $|a_n|\leq M$ para todo $n\in\mathbb{N}$. Entonces:

$$|a_n + \ell| \le |a_n| + |\ell| \le M + |\ell| := K.$$

Por lo tanto:

$$|a_n^2 - \ell^2| = |a_n - \ell| \cdot |a_n + \ell| \le |a_n - \ell| \cdot K.$$

Queremos que:

$$|a_n - \ell| \cdot K < \varepsilon.$$

Esto se cumple si:

$$|a_n - \ell| < \frac{\varepsilon}{K}.$$

Como lím $a_n=\ell,$ existe $n_0\in\mathbb{N}$ tal que para todo $n\geq n_0$ se cumple:

$$|a_n - \ell| < \frac{\varepsilon}{K}.$$

Por lo tanto, para todo $n \ge n_0$ se tiene:

$$|a_n^2 - \ell^2| < \varepsilon.$$

Conclusión:

$$\lim_{n \to \infty} a_n^2 = \ell^2.$$

Ejercicio

Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales tal que

$$\lim_{n\to\infty} a_n = \ell \in \mathbb{R}.$$

- (a) Demostrar que si $r > \ell$, entonces existe $n_0 \in \mathbb{N}$ tal que $a_n < r$ para todo $n > n_0$.
- (b) Demostrar que si $r < \ell$, entonces existe $n_0 \in \mathbb{N}$ tal que $a_n > r$ para todo $n \ge n_0$.
- (c) ¿Es cierto que si $r \geq \ell$, entonces existe $n_0 \in \mathbb{N}$ tal que $a_n \leq r$ para todo $n \geq n_0$? Justificar.
- (d) Si se sabe que existe $n_0 \in \mathbb{N}$ tal que $a_n < r$ para todo $n \ge n_0$, ¿qué puede decirse sobre ℓ ?

Solución (a)

Sea $r > \ell$. Entonces $r - \ell > 0$, y definimos $\varepsilon = r - \ell$.

Como $\lim_{n\to\infty}a_n=\ell$, por definición de límite, dado $\varepsilon>0$, existe $n_0\in\mathbb{N}$ tal que para todo $n\geq n_0$ se cumple:

$$|a_n - \ell| < \varepsilon$$
.

Esto implica:

$$-\varepsilon < a_n - \ell < \varepsilon$$
.

Sumando ℓ en todos los miembros de la desigualdad:

$$\ell - \varepsilon < a_n < \ell + \varepsilon$$
.

Pero como $\varepsilon = r - \ell$, entonces $\ell + \varepsilon = r$, y obtenemos:

$$a_n < r$$
 para todo $n \ge n_0$.

Conclusión: si $r > \ell$, entonces existe $n_0 \in \mathbb{N}$ tal que $a_n < r$ para todo $n \ge n_0$.

Solución (c)

La afirmación:

Si $r \geq \ell$, entonces existe $n_0 \in \mathbb{N}$ tal que $a_n \leq r$ para todo $n \geq n_0$

no es necesariamente cierta.

Consideremos el caso particular en que $r = \ell$. La definición de límite dice que, dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que para todo $n \ge n_0$ se cumple:

$$|a_n - \ell| < \varepsilon$$
, es decir, $\ell - \varepsilon < a_n < \ell + \varepsilon$.

Esto implica que los términos a_n están cerca de ℓ , pero pueden ser tanto menores como mayores que ℓ . Por lo tanto, **no se puede garantizar que $a_n \leq \ell$ para n suficientemente grande.**

Contraejemplo:

Sea la sucesión:

$$a_n = \ell + \frac{1}{n}$$

Entonces:

$$\lim_{n \to \infty} a_n = \ell, \quad \text{pero } a_n > \ell = r \text{ para todo } n \in \mathbb{N}.$$

En este caso, no existe ningún n_0 tal que $a_n \leq r$ para todo $n \geq n_0$, ya que todos los términos de la sucesión son mayores que $r = \ell$.

Conclusión: La afirmación es falsa. No se puede deducir una desigualdad no estricta del tipo $a_n \leq r$ a partir del hecho de que lím $a_n = \ell \leq r$.

Teorema del Sandwich (o del Encajonamiento)

Sea $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}, (c_n)_{n\in\mathbb{N}}$ sucesiones de números reales. Supongamos que existen $n_0 \in \mathbb{N}$ y $\ell \in \mathbb{R}$ tales que:

1. Para todo $n \ge n_0$, se cumple:

$$a_n \leq b_n \leq c_n$$

$$2. \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = \ell.$$

Entonces:

$$\lim_{n\to\infty}b_n=\ell.$$

Demostración

Sea $\varepsilon > 0$. Como $\lim_{n \to \infty} a_n = \ell$, por definición de límite, existe $n_1 \in \mathbb{N}$ tal que para todo $n \ge n_1$ se cumple:

$$|a_n - \ell| < \varepsilon$$
.

Esto implica:

$$\ell - \varepsilon < a_n < \ell + \varepsilon$$
.

Análogamente, como $\lim_{n\to\infty} c_n = \ell$, existe $n_2 \in \mathbb{N}$ tal que para todo $n \geq n_2$:

$$|c_n - \ell| < \varepsilon \quad \Rightarrow \quad \ell - \varepsilon < c_n < \ell + \varepsilon.$$

Sea ahora $n_0' = \max\{n_0, n_1, n_2\}$. Para todo $n \geq n_0'$, se cumplen simultáneamente:

- $a_n \leq b_n \leq c_n$ (por hipótesis),
- $a_n > \ell \varepsilon,$
- $c_n < \ell + \varepsilon$.

Entonces:

$$\ell - \varepsilon < a_n \le b_n \le c_n < \ell + \varepsilon$$
, para todo $n \ge n'_0$.

Por lo tanto:

$$|b_n - \ell| < \varepsilon$$
 para todo $n \ge n'_0$.

Esto prueba que:

$$\lim_{n\to\infty}b_n=\ell.$$

Teorema

Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales **creciente**, y sea $(a_{n_k})_{k\in\mathbb{N}}$ una subsucesión tal que:

$$\lim_{k \to \infty} a_{n_k} = \ell.$$

Entonces:

$$\lim_{n \to \infty} a_n = \ell.$$

Demostración

Sea (a_n) una sucesión creciente y sea (a_{n_k}) una subsucesión tal que lím $a_{n_k} = \ell$. Queremos demostrar que lím $a_n = \ell$.

Paso 1: Probar que $a_n \leq \ell$ para todo $n \in \mathbb{N}$.

Supongamos por contradicción que existe $m \in \mathbb{N}$ tal que:

$$a_m > \ell$$
.

Sea:

$$\varepsilon := a_m - \ell > 0.$$

Como $a_{n_k} \to \ell$, existe $k_0 \in \mathbb{N}$ tal que para todo $k \ge k_0$ se cumple:

$$|a_{n_k} - \ell| < \varepsilon \quad \Rightarrow \quad a_{n_k} < \ell + \varepsilon = a_m.$$

Pero como la sucesión es creciente, si $n_k \ge m$, entonces $a_{n_k} \ge a_m$, lo cual contradice lo anterior. Entonces, nuestra suposición era falsa, y se concluye que:

$$a_n \le \ell$$
 para todo $n \in \mathbb{N}$.

Paso 2: Probar que $a_n \to \ell$.

Sea $\varepsilon > 0$. Como $a_{n_k} \to \ell$, existe $k_0 \in \mathbb{N}$ tal que:

$$a_{n_k} > \ell - \varepsilon$$
 para todo $k \ge k_0$.

Como la sucesión es creciente, si $n \ge n_{k_0}$, entonces:

$$a_n \ge a_{n_{k_0}} > \ell - \varepsilon.$$

Además, por el paso 1 ya sabemos que $a_n \leq \ell$, así que:

$$\ell - \varepsilon < a_n \le \ell$$
 para todo $n \ge n_{k_0}$.

Por lo tanto:

$$|a_n - \ell| < \varepsilon$$
 para todo $n \ge n_{k_0}$.

Conclusión:

$$\lim_{n \to \infty} a_n = \ell.$$