

THE FINITE ELEMENT METHOD (2b)

EXERCISE

Milano, 18 May 2016 Luca Amerio

Exercise

DATA:

- Mass per unit length m = 9.75 kg/m
- Flexural rigidity $EJ = 1.34 \cdot 10^4 \text{ Nm}^2$
- Axial stiffness $EA = 2.57 \cdot 10^7 \text{ N}$
- Lumped mass $M_c = 10 \text{ kg; } J_c = 1 \text{ kgm}^2$
- Springs $k_x = 2.0 \cdot 10^6 \text{ N/m}; k_v = 3.0 \cdot 10^6 \text{ N/m};$
- Structural Damping Matrix $[C_s] = \alpha[M] + \beta[K]$

We want to calculate (up to 100 Hz):

- Natural frequencies;
- Mode shapes.

Definition of length of beam finite element

Length of beam finite element $l_{fe} = 0.5 \text{ m}$

Assembly of Mass Matrix

Assembly of Stiffness Matrix

Natural Frequencies and Mode Shapes

Structural Damping Matrix

As an example, from experimental analysis $h_1 = 0.01$ and $h_2 = 0.015$. We want to estimate α and β parameters.

$$h_i = \frac{c_i}{2m_i\omega_{n,i}} = \frac{\alpha}{2\omega_{n,i}} + \frac{\beta\omega_{n,i}}{2}$$

$$\begin{bmatrix} \frac{1}{2\omega_1} & \frac{\omega_1}{2} \\ \frac{1}{2\omega_2} & \frac{\omega_2}{2} \\ \frac{1}{2\omega_n} & \frac{\omega_n}{2} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} h_1 \\ h_2 \\ \dots \\ h_n \end{bmatrix}$$

$$\alpha = 1.51 \,\mathrm{s}^{-1}$$
 $\beta = 6.16 \cdot 10^{-5} \,\mathrm{s}$

$$[C_s] = \alpha[M] + \beta[K]$$

Frequency Response Function

FRF Y₄/F

Frequency Response Function

FRF Y₅/F

Reaction force

Remember the equation of motion for the system

$$\begin{bmatrix} M_{FF} & M_{FC} \\ M_{CF} & M_{CC} \end{bmatrix} \begin{Bmatrix} \ddot{x_F} \\ \ddot{x_C} \end{Bmatrix} + \begin{bmatrix} C_{FF} & C_{FC} \\ C_{CF} & C_{CC} \end{bmatrix} \begin{Bmatrix} \dot{x_F} \\ \dot{x_C} \end{Bmatrix} + \begin{bmatrix} K_{FF} & K_{FC} \\ K_{CF} & K_{CC} \end{bmatrix} \begin{Bmatrix} x_F \\ x_C \end{Bmatrix} = \begin{Bmatrix} F \\ R \end{Bmatrix}$$

In this problem $x_C = \underline{0}$ therefore

$$R = M_{CF} \dot{x_F} + C_{CF} \dot{x_F} + K_{CF} x_F$$

Reaction force

Assuming

$$x_F = x_0 e^{i\Omega t}$$

In this problem $x_C = \underline{0}$ therefore

$$x_F = (-\Omega^2 M_{FF} + i\Omega C_{FF} \dot{x_F} + K_{FF})^{-1} F$$

And the reactions:

$$R = (-\Omega^2 M_{CF} + i\Omega C_{CF} \dot{x_F} + K_{CF}) x_F$$

Frequency Response Function

FRF M₁/F

