Fundamentals of Database Systems

Unit 2: The Relational Data Model SQL
Relational Algebra
Datalog

(9 lectures*)

174A - 2021 Wi *Slides may change: refresh each lecture

Introduction to Data Management

Lecture 2: Data Models

Class Overview

- Unit 1: Intro
- Unit 2: Relational Data Models and Query Languages
 - Data models, SQL RA, Datalog
- Unit 3: Non-relational data
- Unit 4: RDMBS internals and query optimization
- Unit 5: Parallel query processing
- Unit 6: DBMS usability, conceptual design
- Unit 7: Transactions

Review

- What is a database?
 - A collection of files storing related data

- What is a DBMS?
 - An application program that allows us to manage efficiently the collection of data files

Data Models

- Recall our example: want to design a database of books:
 - author, title, publisher, pub date, price, etc
 - How should we describe this data?
- Data model = mathematical formalism (or conceptual way) for describing the data

Data Models

- Relational
 - Data represented as relations

Unit 2

- Semi-structured (JSon)
 - Data represented as trees
- Key-value pairs
 - Used by NoSQL systems
- Graph
- Object-oriented

Example: storing FB friends

Person1	Person2	is_friend
Peter	John	1
John	Mary	0
Mary	Phil	1
Phil	Peter	1

As a graph

As a relation

We will learn the tradeoffs of different data models later this quarter

3 Elements of Data Models

- Instance
 - The actual data
- Schema
 - Describe what data is being stored
- Query language
 - How to retrieve and manipulate data

Turing Awards in Data Management

Charles Bachman, 1973 IDS and CODASYL

Ted Codd, 1981

Relational model

Jim Gray, 1998

Transaction processing

Michael Stonebraker, 2014

INGRES and Postgres

174A - 2021 Wi

Relational Model columns / attributes / fields Data is a collection of relations / tables: for_profit country no employees cname **GizmoWorks** USA 20000 True rows / 50000 True Canon Japan tuples / Hitachi 30000 True Japan records HappyCam Canada 500 False

- mathematically, relation is a set of tuples
 - each tuple appears 0 or 1 times in the table
 - order of the rows is unspecified

The Relational Data Model

- Each attribute has a type. E.g.
 - Strings: CHAR(20), VARCHAR(50), TEXT
 - Numbers: INT, SMALLINT, FLOAT
 - MONEY, DATETIME, ...
 - Few more that are vendor specific
- Types statically and strictly enforced
- #Attributes= "degree" (arity) of a relation

 Key = one (or multiple) attributes that uniquely identify a record

 Key = one (or multiple) attributes that uniquely identify a record

Key

<u>cname</u>	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

 Key = one (or multiple) attributes that uniquely identify a record

Key Not a key

<u>cname</u>	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

 Key = one (or multiple) attributes that uniquely identify a record

/ \{	Not a key Is this a key?					
	<u>cname</u>	country	no_employees	for_profit		
	GizmoWorks	USA	20000	True		
	Canon	Japan	50000	True		
	Hitachi	Japan	30000	True		
	HappyCam	Canada	500	False		

No: future undates to the

 Key = one (or multiple) attributes that uniquely identify a record

Key	Not a key Is this a key? database may create duplicate no_employees					
	<u>cname</u>	country	no_employees	for_profit		
	GizmoWorks	USA	20000	True		
	Canon	Japan	50000	True		
	Hitachi	Japan	30000	True		
	HappyCam	Canada	500	False		

Multi-attribute Key

Key = fName,IName (what does this mean?)

<u>fName</u>	<u>IName</u>	Income	Department
Alice	Smith	20000	Testing
Alice	Thompson	50000	Testing
Bob	Thompson	30000	SW
Carol	Smith	50000	Testing

Multiple Keys

<u>SSN</u>	fName	IName	Income	Department
111-22-3333	Alice	Smith	20000	Testing
222-33-4444	Alice	Thompson	50000	Testing
333-44-5555	Bob	Thompson	30000	SW
444-55-6666	Carol	Smith	50000	Testing

We can choose one key and designate it as <u>primary key</u> E.g.: primary key = SSN

Foreign Key

Company(<u>cname</u>, country, no_employees, for_profit)
Country(<u>name</u>, population)

Company

Foreign key to Country.name

<u>cname</u>	country	no_employees	for_profit
Canon	Japan	50000	Υ
Hitachi	Japan	30000	Υ

Country

<u>name</u>	population
USA	320M
Japan	127M

Keys: Summary

- Key = columns that uniquely identify tuple
 - Usually we underline
 - A relation can have many keys, but only one can be chosen as *primary key*
- Foreign key:
 - Attribute(s) whose value is a key of a record in some other relation
 - Foreign keys are sometimes called semantic pointer

Query Language

- SQL
 - Structured Query Language
 - Developed by IBM in the 70s
 - Most widely used language to query relational data
- Other relational query languages
 - Datalog, relational algebra

Our First DBMS

- SQL Lite
- Will switch to Postgres SQL later in the quarter

Demo 1

Discussion

- Tables are NOT ordered
 - they are sets or multisets (bags)
- Tables are FLAT
 - No nested attributes
- Tables DO NOT prescribe how they are implemented / stored on disk
 - This is called physical data independence

How would you implement this?

<u>cname</u>	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

How would you implement this?

<u>cname</u>	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

Row major: as an array of objects

GizmoWorks USA	Canon Japan	Hitachi Japan	HappyCam Canada
20000	50000	30000	500
True	True	True	False

How would you implement this?

<u>cname</u>	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

Column major: as one array per attribute

GizmoWorks	Canon	Hitachi	HappyCam
USA	Japan	Japan	Canada
20000	50000	30000	500
True	True	74A - 2021 Wi True	False

How would you implement this?

<u>cname</u>	country	no_employees	for_profit
GizmoWorks	USA	20000	True
Canon	Japan	50000	True
Hitachi	Japan	30000	True
HappyCam	Canada	500	False

Physical data independence

The logical definition of the data remains unchanged, even when we make changes to the actual implementation

<u>cname</u>	country	no_employees	for_profit
Canon	Japan	50000	Υ
Hitachi	Japan	30000	Υ

 All relations must be flat: we say that the relation is in *first normal form*

<u>cname</u>	country	no_employees	for_profit
Canon	Japan	50000	Υ
Hitachi	Japan	30000	Υ

- All relations must be flat: we say that the relation is in first normal form
- E.g. we want to add products manufactured by each company:

<u>cname</u>	country	no_employees	for_profit
Canon	Japan	50000	Υ
Hitachi	Japan	30000	Υ

- All relations must be flat: we say that the relation is in first normal form
- E.g. we want to add products manufactured by each company:

<u>cname</u>	country	no_employees	for_profit	products
Canon	Japan	50000	Υ	pnamepricecategorySingleTouch149.99PhotographyGadget200Toy
Hitachi	Japan	30000 174A - 202	1 Y /Vi	pnamepricecategoryAC300Appliance

<u>cname</u>	country	no_employees	for_profit
Canon	Japan	50000	Υ
Hitachi	Japan	30000	Υ

- All relations must be flat: we say that the relation is in first normal form
- E.g. we want to add products manufactured by each company:

<u>cname</u>	country	no_employees	for_profit	products
Canon	Japan	50000	Y	pnamepricecategorySingleTouch149.99PhotographyGadget200Toy
Hitachi	Japan	30000 174A - 202	1 Y /Vi	pnamepricecategoryAC300Appliance

Company

<u>cname</u>	country	no_employees	for_profit
Canon	Japan	50000	Υ
Hitachi	Japan	30000	Υ

Products

<u>pname</u>	price	category	manufacturer
SingleTouch	149.99	Photography	Canon
AC	300	Appliance	Hitachi
Gadget	200	Toy	Canon

Data Models: Summary

- Schema + Instance + Query language
- Relational model:
 - Database = collection of tables
 - Each table is flat: "first normal form"
 - Key: may consists of multiple attributes
 - Foreign key: "semantic pointer"
 - Physical data independence