Quantifiers (I)

Contents

Basics of Quantifiers

2 Universal and Existential Quantifiers

Notes on Quantifiers

Basics of Quantifiers

Motivation

Let x be a real number. Consider the following sentences.

- A(x): If x > 3, then x > 1.
- B(x): $x^2 4 > 0$.

The truth value of each sentence depends on the value of the variable x.

- A(x) is true for all x.
- B(x) is true for x < -2 or x > 2.

In general, they can be rephrased using quantifiers as:

- For all x, A(x) is true.
- For some x, B(x) is true.

Quantifiers

The quantifiers \forall and \exists , along with the logical connectives, are main ingredients of modern symbolic logic.

Quantifier	Symbol	Technical Name
"for each"	\forall	universal quantifier
"for some"	Ξ	existential quantifier

Example. Let x be a person in this class room. Let P(x) stands for "x likes ramen." Then

- $(\forall x)P(x)$: "For each x, x likes ramen." or "Everybody likes ramen."
- $(\exists x)P(x)$: "For some x, x likes ramen." or "Somebody likes ramen."

Notes

Alternate ways to read.

$$(\forall x)P(x)$$
:

For each x, P(x).

For all x, P(x).

For every x, P(x).

For any x, P(x).

$(\exists x)P(x)$:

For some x, P(x).

For at least one x, P(x).

There exists x such that P(x).

Universe of Discourse

The collection over which the variable x ranges is called the universe of discourse. When clear from context, it is omitted in notation; if not, specify the universe of discourse using the following notation.

$$(\forall x \in U)P(x)$$
 or $(\exists x \in U)P(x)$.

Frequently used collections.

- N: the set of natural numbers, $\{1, 2, 3, \ldots\}$
- \mathbb{Z} : the set of integers, $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- Q: the set of rational numbers
- \mathbb{R} : the set of real numbers
- C: the set of complex numbers

Free and Bound Variables

- In P(x), x can stand for any particular element of the universe of discourse; it is called a *free variable*.
- In $(\forall x)P(x)$ or $(\exists x)P(x)$, x varies over the universe of discourse, not standing for any particular element; it is called a *bound variable* or a *dummy variable*.

Universal and Existential Quantifiers

Universal Quantifier

Let U be the universe of discourse.

- $(\forall x)P(x)$ is true when P(x) is true for all values of x in U.
- To show $(\forall x)P(x)$ is false, it suffices to show that P(x) is false for at least one value of x in U; such x is said to be a counterexample that disproves the universal sentence.

Universal Quantifier (cont')

Example. State whether each of the following sentences is true or false.

2
$$(\forall x \in \mathbb{R})(x^2 + 6x + 10 > 0)$$

Existential Quantifier

Let U be the universe of discourse.

- $(\exists x)P(x)$ is true when P(x) is true for at least one value of x in U; such x is said to be an example that proves the existential sentence.
- To show $(\exists x)P(x)$ is false, it is necessary to show that P(x) is false for all values of x in U.

Existential Quantifier (cont')

Example. State whether each of the following sentences is true or false.

•
$$(\exists x \in \mathbb{R})(x-2=5)$$

•
$$(\exists x \in \mathbb{R})(x^2 + 6x + 10 < 0)$$

Notes on Quantifiers

Connections to Logical Connectives

Suppose the universe of discourse consists only of two objects $\{a,b\}$. Note that

- $(\forall x)P(x)$ is true exactly when $P(a) \wedge P(b)$ is true.
- $(\exists x)P(x)$ is true exactly when $P(a)\vee P(b)$ is true.

In general, when the universe of discourse is a finite set $\{a_1, a_2, \dots, a_n\}$, then

- $(\forall x)P(x)$ has the same truth value as $P(a_1) \wedge P(a_2) \wedge \cdots \wedge P(a_n)$.
- $(\exists x)P(x)$ has the same truth value as $P(a_1)\vee P(a_2)\vee \cdots \vee P(a_n)$.

Notation

Suppose A is a subcollection of the universe of discourse. Then

- $(\forall x \in A)P(x)$ is a shorthand notation for $(\forall x)[(x \in A) \Rightarrow P(x)]$.
- $(\exists x \in A)P(x)$ is a shorthand notation for $(\exists x)[(x \in A) \land P(x)]$.

When the universe of discourse is \mathbb{R} , a subcollection may be characterized by an inequality in which case one may use notations e.g.,

•
$$(\forall x > 0)(2x + 7 = 3)$$

• $(\exists x \ge 7)(x^2 - 4x + 3 > 0)$

Scope of Quantifiers

The scope of a quantifier is specified using appropriate delimiters.

Example. Let n be an element in $\{2, 3, 5, 7\}$ and let

P(n): n is a prime number.

Q(n): n is an even number.

Then

• $(\forall n)P(n) \wedge Q(n)$ stands for

• $(\forall n)[P(n) \land Q(n)]$ stands for