Class 18: Mutational Signatures

Aparajita Pranjal 6/2/23

1. Exploring a cancer sequencing data portal

I chose to work on lung squamous cell carcinomas.

- Q. How many cancer samples are included in the dataset? 487 samples
- Q. Which is the most mutated gene? **TP53**
- Q. Which is the most common treatment undergone by patients? Cisplatin

2. Downloading cancer sequencing data

Downloaded lusc data from cBioPortal and added to class18 folder.

3. Generating mutational matrices and visualizing mutational profiles

```
#BiocManager::install("maftools")
#BiocManager::install("BSgenome.Hsapiens.UCSC.hg19")
#BiocManager::install("MutationalPatterns")

# Read maf file
library(maftools)
coad = read.maf('data_mutations.txt')
```

```
-Reading
-Validating
--Removed 14038 duplicated variants
-Silent variants: 60539
-Summarizing
--Possible FLAGS among top ten genes:
  MUC16
  USH2A
  SYNE1
-Processing clinical data
--Missing clinical data
-Finished in 18.3s elapsed (14.6s cpu)
  # Generate mutational matrix (SBS96 context)
  mm coad = trinucleotideMatrix(maf = coad, prefix = 'chr', add = TRUE,
                                 ref_genome = "BSgenome.Hsapiens.UCSC.hg19")
Warning: replacing previous import 'S4Arrays::read_block' by
'DelayedArray::read_block' when loading 'SummarizedExperiment'
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
    table, tapply, union, unique, unsplit, which.max, which.min
```

```
The following object is masked from 'package:utils':
    findMatches
The following objects are masked from 'package:base':
    expand.grid, I, unname
Attaching package: 'Biostrings'
The following object is masked from 'package:base':
    strsplit
-Extracting 5' and 3' adjacent bases
-Extracting +/- 20bp around mutated bases for background C>T estimation
-Estimating APOBEC enrichment scores
--Performing one-way Fisher's test for APOBEC enrichment
---APOBEC related mutations are enriched in 30.128 % of samples (APOBEC enrichment score > 1
-Creating mutation matrix
--matrix of dimension 469x96
  mm_coad = t(mm_coad$nmf_matrix)
Generating mutational profiles from lusc data:
  # Generate mutational profiles (4 random samples)
  library(MutationalPatterns)
Loading required package: NMF
Loading required package: registry
Loading required package: rngtools
Loading required package: cluster
NMF - BioConductor layer [OK] | Shared memory capabilities [NO: bigmemory] | Cores 2/2
```

```
To enable shared memory capabilities, try: install.extras(' \ensuremath{\mathsf{NMF}}')
```

Attaching package: 'NMF'

The following object is masked from 'package:S4Vectors':

nrun

```
set.seed(11111) # fixing the seed for random number generation
samples_to_plot = sample(1:ncol(mm_coad),4) # selecting 4 random samples
plot_96_profile(mm_coad[,samples_to_plot], condensed = T)
```



```
# Generate mutational profiles (top 4 mutated samples and top 4 less mutated)
mutations_in_samples = colSums(mm_coad)
mutations_in_samples = sort(mutations_in_samples, decreasing = T)
samples_to_plot = names(mutations_in_samples)[1:4]
```

plot_96_profile(mm_coad[,samples_to_plot], condensed = T)

Sorting profiles:

```
mutations_in_samples = sort(mutations_in_samples, decreasing = F)
samples_to_plot = names(mutations_in_samples)[1:4]
plot_96_profile(mm_coad[,samples_to_plot], condensed = T)
```


Averaging profiles:

4. COSMIC reference mutational signatures

5. Assigning reference mutational signatures

6. Visualizing mutational signature assignment results

```
# Visualization of signature assignment results (fit_to_signatures)
set.seed(11111)
samples_to_plot = sample(1:ncol(mm_coad),4)

plot_contribution(contributions[,samples_to_plot], mode = "absolute")
```


plot_contribution(contributions[,samples_to_plot], mode = "relative")

plot_contribution_heatmap(contributions, cluster_samples = F)


```
# Visualization of signature assignment results (strict)
plot_contribution(contributions_strict[,samples_to_plot], mode = "absolute")
```


plot_contribution(contributions_strict[,samples_to_plot], mode = "relative")

plot_contribution_heatmap(contributions_strict, cluster_samples = F)

- Q. Which is the etiology of the top absolute contributing signature for liver cancer? **Aristolochic acid exposure**
- Q. Which is the most prominent mutational context for the top contributing signature in skin cancer? C>T
- Q. The etiology of the top contributing signature for lung cancer corresponds to an endogenous cellular mechanism. FALSE
- Q. SBS4 is one of the most common signatures found in lung cancer and is associated with tobacco smoking. TRUE
- Q. SBS7d is one of the most common signatures in skin cancer and is associated with UV light exposure and high numbers of C>T mutations. FALSE

7. Advanced mutational signature analysis using the SigProfilerAssignment python package [OPTIONAL]

```
# Install R wrapper (SigProfilerAssignmentR)
#if (!require("devtools")){
# install.packages("devtools")
#}
```