Anomaly Detection via Isolation Forest Embedding

Manuel Salamino

Advisor: Prof. Giacomo Boracchi

Co-advisor: Filippo Leveni

Academic year: 2020-21

Politecnico di Milano

Introduction

Anomaly Detection: a Data Mining process with the aim of finding patterns in data that do not conform to expected behavior ¹

¹V. Chandola, A. Banerjee, and V. Kumar. *Anomaly detection: A survey.* 2009.

Anomaly Detection: a Data Mining process with the aim of finding patterns in data that do not conform to expected behavior ¹

¹V. Chandola, A. Banerjee, and V. Kumar. *Anomaly detection: A survey.* 2009.

Anomaly detection is used in many different fields, and *anomalies* usually represent *negative events*.

Anomaly detection is used in many different fields, and *anomalies* usually represent *negative events*.

For example, anomalies in **credit card transaction** data could indicate credit card or identity theft.

Anomaly detection is used in many different fields, and anomalies usually represent negative events.

For example, anomalies in **credit card transaction** data could indicate credit card or identity theft.

Or, in a **computer network** an anomalous traffic pattern could represent an hacked computer.

Problem Formulation

The Anomaly Detection problem consists in monitoring a set of *n* data:

$$\mathcal{X} = \{x_1, \dots, x_n \mid x_i \in \mathbb{R}^d\}$$

each element x_i is realization of a random variable having the following pdf

$$x_i \sim \begin{cases} \phi_0 & \text{normal data} \\ \phi_1 & \text{anomalies} \end{cases}$$

where $\phi_0 \neq \phi_1$ and ϕ_0 and ϕ_1 are **unknown**.

3

Our Work

Our Work

In this thesis we faced the problem by taking as starting point a milestone anomaly detection algorithm: Isolation Forest².

We use the **intermediate output** of Isolation Forest to create an **embedding**, hence a new data representation to be used in other anomaly detection techniques.

²F. T. Liu, K. M. Ting and Z. Zhou. *Isolation Forest.* 2008.

Isolation Forest (iForest) is a **breakthrough** unsupervised model-based method for anomaly detection.

Isolation Forest (iForest) is a **breakthrough** unsupervised model-based method for anomaly detection.

Other methods:

- ightarrow construct a normal data profile $\hat{\phi_0}$
 - · conform to $\hat{\phi}_0 \Rightarrow$ normal
 - $\cdot \ \ \mathsf{not} \ \mathsf{conform} \Rightarrow \mathsf{anomaly}$

Isolation Forest (iForest) is a **breakthrough** unsupervised model-based method for anomaly detection.

Other methods:

- ightarrow construct a normal data profile $\hat{\phi_0}$
 - · conform to $\hat{\phi}_0 \Rightarrow$ normal
 - not conform \Rightarrow anomaly

iForest:

- · anomalies are few and different
- · directly isolates anomalies
- · anomalies are susceptible to isolation

The model is based on a trees ensemble, each tree is called *Isolation Tree* (iTree).

https://machinelearninggeek.com/outlier-detection-using-isolation-forests/

Two nodes type:

- · terminal node, leaf with no child
- internal node, with exactly two child nodes (left and right)

Each internal node has a splitting criterion

Each internal node has a splitting criterion

- splitting attribute q is randomly selected (among the d possible)
- split value v in randomly selected in range of values of q

Repeat splits until:

- 1. the tree reaches a height limit *l*, or
- 2. |X| = 1, or
- 3. all data in X have the same value.

iForest:

- · anomalies are few and different
- directly isolates anomalies
- · anomalies are susceptible to isolation

(a) Isolating normal.

(b) Isolating anomaly.

F. T. Liu, K. M. Ting and Z. Zhou. Isolation Forest. 2008.

Isolation Forest - Evaluation

Predicted label depends on the depth of the leaf on which x falls

https://machinelearninggeek.com/outlier-detection-using-isolation-forests/

Anomaly Score

Anomaly score s of an instance x:

$$s(x,n) = 2^{-\frac{E(p(x))}{c(n)}}$$

where E(p(x)) is the average path length p(x). c(n) is a normalization factor and depends on samples n used to train each iTree.

Anomaly Score

Anomaly score s of an instance x:

$$s(x,n) = 2^{-\frac{E(p(x))}{c(n)}}$$

where E(p(x)) is the average path length p(x). c(n) is a normalization factor and depends on samples n used to train each iTree.

- $E(p(x)) \to 0 \Rightarrow s(x,n) \to 1 \Rightarrow$ anomalous instance;
- $E(p(x)) \rightarrow n-1 \Rightarrow s(x,n) \rightarrow 0 \Rightarrow \text{normal instance}$.

Correction Factor

When tree height limit *l* is reached, the iTree is truncated.

Correction Factor

c(Size) estimates the truncated subtree height, Size is the number of not split elements in that leaf node.

Correction Factor

c(Size) estimates the truncated subtree height, Size is the number of not split elements in that leaf node.

c(n): estimate the height of a Binary Search Tree with n elements

$$c(n) = 2H(n-1) - \frac{2(n-1)}{n}$$

where H(i) = ln(i) + 0.5772156649.

Proposed Solution

Idea

Idea: use the intermediate output of iForest to create an embedding, hence a new data representation to be used in other anomaly detection techniques.

Outline

Outline:

- · Embedding definition
- · New anomaly score
- · Anomaly detection technique in embedding representation

Some definitions for the embedding:

• depths vector y: intermediate output of iForest, $y \in \mathbb{R}^t$ t: number of trees, y_i is the returned depth of the i-th iTree

Some definitions for the embedding:

• depths vector y: intermediate output of iForest, $y \in \mathbb{R}^t$ t: number of trees, y_i is the returned depth of the i-th iTree

Some definitions for the embedding:

· histogram h: histogram of depths vector y,

$$h = histogram(y), \qquad ||h||_1 = 1$$

 $h \in \mathbb{Q}^n, \qquad n = ceil(max(y))$

Some definitions for the embedding:

· histogram h: histogram of depths vector y,

$$h = histogram(y), \qquad ||h||_1 = 1$$

 $h \in \mathbb{Q}^n, \qquad n = ceil(max(y))$

Let's summarize the steps:

$$x \in \mathbb{R}^d \xrightarrow{iForest} y \in \mathbb{R}^t \xrightarrow{histogram} h \in \mathbb{Q}^n$$

The **embedding** consists in the **histogram** representation of a set of data *X*.

Embedding - Simplex

Embedding lies on hyperplane $h_1 + h_2 + ... + h_n = 1$. $h_i \in [0, 1]$ constraints data points in this region of the hyperplane.

Correction Factor in Embedding

The correction factor c(n) leads to two problems in the embedding:

- 1. increases the embedding dimension (increases n=ceil(max(y)) of \mathbb{Q}^n), and
- 2. the depth becomes a real number, $y \in \mathbb{R}^t$, instead of integer.

We **remove** the **correction factor** in order to avoid these two drawbacks.

New Anomaly Score

New Anomaly Score

Idea: find a new anomaly score starting from the embedding formulation of E(p(x)).

New Anomaly Score - Average Path Length

In **traditional iForest** the average path length is computed as follows:

$$E(p(x)) = \frac{1}{t} \sum_{i=1}^{t} y_i$$

New Anomaly Score - Average Path Length

In traditional iForest the average path length is computed as follows:

$$E(p(x)) = \frac{1}{t} \sum_{i=1}^{t} y_i$$

Using the **embedding** there is a new formulation:

$$E(p(x)) = \sum_{i=1}^{n} i \cdot h_i$$

This formulation can be seen as a linear combination.

New Anomaly Score - Average Path Length

We can find new weights $\hat{w_i}$.

New weights $\hat{w_i}$ are computed using a supervised technique (*Linear Discriminant Analysis - LDA*) to test **how much margin for improvement** there is using linear combination.

Embedding + LDA

Linear Discriminant Analysis

The new formulation is:

$$L(y) = \sum_{i=1}^{n} \hat{w}_i \cdot h_i,$$

 $\hat{w_1}, \ldots, \hat{w_n}$ weights computed using LDA.

We are computing an **upper bound** of the performance of iForest using linear combination of h, since the optimal weights \hat{w} are dataset-specific.

Embedding + LDA - Experiment

Dataset	iForest	Embedding+LDA
Http	1.000	0.999
ForestCover	0.938	0.969
Mulcross	0.899	0.957
Smtp	0.850	0.853
Shuttle	0.995	0.997
Mammography	0.764	0.823
Annthyroid	0.816	0.818
Satellite	0.707	0.726
Pima	0.631	0.638
Breastw	0.957	0.972
Arrhythmia	0.781	0.776
Ionosphere	0.863	0.856

Embedding+LDA shows that the margin for improvement is small.

Anomaly Detection Technique in Embedding Representation

One-Class SVM

We exploit the new framework in a different way.

We apply *One-Class Support Vector Machine* (OC SVM) in the embedding representation.

Dataset	iForest	Embedding+OC SVM
Http	1.000	0.999
ForestCover	0.943	0.912
Mulcross	0.896	0.918
Smtp	0.878	0.872
Shuttle	0.995	0.997
Mammography	0.752	0.754
Annthyroid	0.823	0.828
Satellite	0.703	0.711
Pima	0.631	0.641
Breastw	0.957	0.966
Arrhythmia	0.780	0.787
Ionosphere	0.868	0.865

Embedding+OC SVM shows results that are very similar to traditional iForest, the differences are small (<0.01).

Interesting insight on OC SVM parameter tuning.

Comparing <code>embedding+OC</code> SVM and OC SVM on original data, we note that <code>embedding+OC</code> SVM version has much more stability with different parameter values than OC SVM on original data.

Dataset	kernel	gamma	ν	Embedding+OC SMV	OC SVM
Pima	poly	auto	0.9	0.618	0.243
Pima	poly	auto	0.1	0.618	0.307
Pima	poly	scale	0.9	0.618	0.243
Pima	poly	scale	0.1	0.618	0.307
Pima	linear	auto	0.9	0.618	0.237
Pima	linear	auto	0.1	0.618	0.292
Pima	linear	scale	0.9	0.618	0.237
Pima	linear	scale	0.1	0.618	0.292
Pima	rbf	auto	0.9	0.449	0.490
Pima	rbf	auto	0.1	0.547	0.530
Pima	rbf	scale	0.9	0.453	0.636
Pima	rbf	scale	0.1	0.552	0.669
Pima	sigmoid	auto	0.9	0.618	0.5
Pima	sigmoid	auto	0.1	0.618	0.5
Pima	sigmoid	scale	0.9	0.618	0.233
Pima	sigmoid	scale	0.1	0.618	0.274

Conclusion

Conclusion

We faced the problem of anomaly detection by using a state-of-theart algorithm: iForest.

The main contributions are:

- use iForest as an embedding where we are able to represent data in a totally different way, based on the iForest intermediate output;
- new algorithms to perform anomaly detection, even if the margin for improvement is small.

Future Works

Future works includes:

- · Define the embedding using iForest with correction factor;
- Apply in the embedding space other anomaly detection techniques that can be applied also in original space.

Thank you for your attention!

Backup Slides

Embedding

Since:

$$||h||_1 = 1$$
 \Rightarrow $\sum_{i=1}^n h_i = 1, h_i \in [0,1]$

Considering $h_1 + h_2 + ... + h_n = 1$ we obtain an **hyperplane**.

And given the constraint $h_i \in [0, 1]$, for i, ..., n the data points are limited in region of the hyperplane, a **simplex** (a n-dimensional triangle).

Embedding - Simplex

Remove Correction Factor - Experiment

Goal. Check whether iForest with correction factor and iForest without correction factor have the same performance.

We use Paired-T-test to check it.

The test is made on ROC AUCs obtained executing 10 times iForest with correction and without correction.

Remove Correction Factor - Experiment

We perform two tests over all the dataset in [3]:

- two-sided paired-T-test, to check if the ROC AUCs of the two variants are **equivalent**. It shows a *p-value*=0.00313, and this means that the null hypothesis of identical averages is **rejected** and the two variants have different performances;
- one-sided to verify if without correction performs better than with correction, it returns a positive *t-statistic*, but a *p-value*=0.0007, hence is rejected.

We can state that **traditional iForest performs better than that with- out correction**. We have to take this into account, but to avoid the problems listed before, we use iForest *without correction*.

³F. T. Liu, K. M. Ting and Z. Zhou. *Isolation Forest.* 2008.

For this experiment there is also an interesting insight on **OC SVM** parameter tuning. We test three parameters:

- **Kernel**, function to compute the similarity of two instances in feature space. Tested kernels: *linear*, *poly*, *rbf* and *sigmoid*.
- **Gamma**, how far the influence of a single training example reaches. Two predefined values: *scale* and *auto*.
- ν , upper bound to the fraction of anomalies that can lie outside the boundary of normal region (e.g. if $\nu=0.1$, at most 10% outside the decision boundary).