ENGG2020 Digital Logic and Systems Chapter 6: Sequential Logic Circuits

The Chinese University of Hong Kong

Sequential Logic Circuits

- The outputs at any instant of time depend upon the present inputs as well as past inputs/outputs i.e. there are elements used to store past information
- Finite State Machine (FSM) can be used to design the sequential logic circuits

Finite State Machines

Mealy Machine Model

 Outputs are a function of inputs and states

Moore Machine Model

 Outputs are a function of states only

Finite State Machines (2)

- Each FSM is defined by a list of its states, and the triggering condition for each transition
 - The machine is in only one state at a time
 - Current state the state it is in at any given time
 - Transition change from one state to another when initiated by a triggering event or condition
- State Table shows what state a FSM will move to, based on the current state and other inputs
- State Diagram is a graphic representation of the state table

State Table

Present	Next	state	Outp	ut Z
state	X=0	X=1	X=0	X=1
A	A	В	0	0
В	A	C	0	0
C	D	C	0	0
D	A	В	0	1

State table

Present	Next	state	Outp	out Z
state	X=0	X=1	X=0	X=1
00	00	01	0	0
01	00	11	0	0
11	10	11	0	0
10	00	01	0	1

State names replaced by binary codes (A=00; B=01; C=11; D=10)

State Diagram

Mealy Machine Model

Label input/output along each arc

Moore Machine Model

- Label input along each arc
- Label output inside the circle

State Diagram Examples

Mealy Machine Model Moore Machine Model Example 1 Example 1 a/p a S_k S_k/p S_{j} S_j/q b/p b a/q a b/q b 0/0 Example 2 Example 2 0/0, 1/1 0, 1 S_1 $S_0/0$ S_0 $S_1/1$ 1/0

Design a Sequential Circuit

Step 1: Obtain either the state diagram or the state table

Step 2: Make a Next State Truth Table

Step 3: Pick Flip-Flop type for each bit and add Flip-Flop

inputs to the Next State Truth Table

Step 4: Solve equations for Flip-Flop inputs

Step 5: Solve equations for Flip-Flop outputs

Step 6: Implement the circuit

Excitation Table for Flip-Flops

- The excitation table rearranges the order of true table (characteristic table) of the flip-flops in order to list the required inputs for a given change of state
- The inputs of the excitation table are Q_n and Q_{n+1} while the output of the excitation table is the flip-flop's control bits

Excitation Table for Flip-Flops (2)

• D Flip-Flop

Q _n	Q _{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

• T Flip-Flop

Q _n	Q _{n+1}	Т
0	0	0
0	1	1
1	0	1
1	1	0

Excitation Table for Flip-Flops (3)

• SR Flip-Flop

Q _n	Q _{n+1}	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Х	0

• JK Flip-Flop

Q_n	Q _{n+1}	J	К
0	0	0	X
0	1	1	X
1	0	X	1
1	1	Х	0

Design with Moore Machine Example

Design a sequence recognizer to recognize 01 or 10

Step 1: Get the state diagram or state table

Design with Moore Machine Example (2)

Step 2a: Make a Next State Truth Table

Reset	Current State	Input	Next State	Output
0	d	d	А	0
1	Α	0	В	0
1	А	1	С	0
1	В	0	В	0
1	В	1	D	0
1	С	0	Е	0
1	С	1	С	0
1	D	0	Е	1
1	D	1	С	1
1	E	0	В	1
1	E	1	D	1

Design with Moore Machine Example (3)

Step 2b: Make a Next State Truth Table using Binary Code

Reset	Current State Q ₂ Q ₁ Q ₀	Input X	Next State Q ₂ +Q ₁ +Q ₀ +	Output Z
0	ddd	d	000	0
1	000	0	001	0
1	000	1	010	0
1	001	0	001	0
1	001	1	011	0
1	010	0	100	0
1	010	1	010	0
1	011	0	100	1
1	011	1	010	1
1	100	0	001	1
1	100	1	011	1

Design with Moore Machine Example (4)

Step 3: Pick Flip-Flop type for each bit and add Flip-Flop inputs to the Next State Truth Table

Reset	Current State Q ₂ Q ₁ Q ₀	Input X	Next State Q ₂ +Q ₁ +Q ₀ +	Flip-Flop Input D ₂ D ₁ D ₀	Output Z
0	ddd	d	000	000	0
1	000	0	001	001	0
1	000	1	010	010	0
1	001	0	001	001	0
1	001	1	011	011	0
1	010	0	100	100	0
1	010	1	010	010	0
1	011	0	100	100	1
1	011	1	010	010	1
1	100	0	001	001	1
1	100	1	011	011	1

Design with Moore Machine Example (5)

Step 4: Solve equations for Flip-Flop inputs

Get the equations

$$D_2 = m(4,6) + d(10,11,12,13,14,15)$$

$$D_1 = m(1,3,5,7,9) + d(10,11,12,13,14,15)$$

$$D_0 = m(0,2,3,8,9) + d(10,11,12,13,14,15)$$

Simplify the equations

$$D_2 = Q_1 \overline{X}$$

$$D_1 = X$$

$$D_0 = \overline{Q_1} \overline{X} + \overline{Q_1} Q_0 + Q_2$$

Design with Moore Machine Example (6)

Step 5: Solve equations for Flip-Flop outputs

As this is a Moore Machine, the output does not depend on the inputs, so X can be neglected

Get the equation

$$Z = m(3,4) + d(5,6,7)$$

Simplify the equations

$$Z = Q_1 Q_0 + Q_2$$

Design with Moore Machine Example (7)

Step 6: Implement the circuit

Synchronous Counter

- All the clock inputs tied together so that each flip-flop changes state at the same time
 - Propagation for the whole counter is the same as one flip-flop
- Each flip-flop must be steered by using the JK input \rightarrow change to its proper state when the next clock comes along

Synchronous Counter Example

• Same as divide-by-16 ripple counter, but this is much faster

Step 1: Obtain either the state diagram or the state table

Step 2: Make a Next State Truth Table

Step 3: Pick Flip-Flop type for each bit and add Flip-Flop

inputs to the Next State Truth Table

Step 4: Solve equations for Flip-Flop inputs

Step 5: Solve equations for Flip-Flop outputs

Step 6: Implement the circuit

Step 1: Obtain either the state diagram or the state table

Step 2: Make a Next State Truth Table

Current State Q ₂ Q ₁ Q ₀	Next State Q ₂ +Q ₁ +Q ₀ +	Output Z ₂ Z ₁ Z ₀
000	001	001
001	010	010
010	011	011
011	100	100
100	000	000

Step 3: Pick Flip-Flop type for each bit and add Flip-Flop inputs to the Next State Truth Table

Current State Q ₂ Q ₁ Q ₀	Next State $Q_2^+Q_1^+Q_0^+$	J ₂	K ₂	J ₁	K ₁	J _o	K ₀	Output Z ₂ Z ₁ Z ₀
000	001	0	X	0	X	1	X	001
001	010	0	X	1	Х	Х	1	010
010	011	0	Х	Х	0	1	Х	011
011	100	1	Х	X	1	Х	1	100
100	000	X	1	0	X	0	Х	000

Step 4: Solve equations for Flip-Flop inputs

Current State Q ₂ Q ₁ Q ₀	Next State $Q_2^+Q_1^+Q_0^+$	J ₂	K ₂	J ₁	K ₁	J _o	K _o	$J_2 = m(3) + d(4, 5, 6, 7)$
000	001	0	X	0	X	1	X	$K_2 = m(4) + d(0, 1, 2, 3)$
001	010	0	Х	1	Х	X	1	$J_1 = m(1) + d(2, 3, 5, 6)$
010	011	0	Х	X	0	1	X	$K_1 = m(3) + d(0, 1, 4, 5)$
011	100	1	Х	X	1	X	1	$J_0 = m(0,2) + d(1,3,5)$
100	000	х	1	0	X	0	X	$K_0 = m(1,3) + d(0,2,4)$

$$K_2 = m(4) + d(0, 1, 2, 3, 5, 6, 7)$$

$$J_1 = m(1) + d(2, 3, 5, 6, 7)$$

$$K_1 = m(3) + d(0, 1, 4, 5, 6, 7)$$

$$J_0 = m(0, 2) + d(1, 3, 5, 6, 7)$$

$$J_2 = Q_1 Q_0$$

$$K_2 = 1$$

$$J_1 = Q_0$$

$$K_1 = Q_0$$

$$J_0 = \overline{Q_2}$$

$$K_0 = 1$$

Step 5: Solve equations for Flip-Flop outputs

As the output is exact the same as the next state value, the output of all flip-flops will be the circuit's output

$$Z_2 = Q_2^+$$

$$Z_1 = Q_1^+$$

$$Z_0 = Q_0^+$$

Step 6: Implement the circuit

