

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 14 martie 2015

CLASA a XI-a

Problema 1. Fie $f:[0,1]\to [0,1]$ o funcție cu proprietatea că pentru oricare $y\in [0,1]$ și oricare $\varepsilon>0$ există $x\in [0,1]$ astfel încât $|f(x)-y|<\varepsilon$.

- a) Demonstrați că dacă f este continuă pe [0,1] atunci f este surjectivă.
- b) Dați un exemplu de funcție f cu proprietatea din enunț, care să nu fie surjectivă.

Problema 2. Fie două matrice $A, B \in \mathcal{M}_2(\mathbb{R})$ astfel încât $(A-B)^2 = O_2$.

- a) Arătați că $\det(A^2 B^2) = (\det(A) \det(B))^2$.
- b) Demonstrați că $\det(AB-BA)=0$ dacă și numai dacă $\det(A)=\det(B)$. $Gazeta\ Matematică$

Problema 3. Determinați toate numerele naturale $k \geq 1$ și $n \geq 2$ cu proprietatea că există $A, B \in \mathcal{M}_n(\mathbb{Z})$ astfel încât $A^3 = O_n$ și $A^k B + BA = I_n$.

Problema 4. Fie $(x_n)_{n\geq 1}$ un şir de numere reale din intervalul $[1,\infty)$. Presupunem că şirul $\left(y_n^{(k)}\right)_{n\geq 1}$, definit prin $y_n^{(k)}=\left[x_n^k\right],\ n\geq 1$, este convergent pentru oricare $k\in\mathbb{N}^*$. Să se demonstreze că şirul $(x_n)_{n\geq 1}$ este convergent. (Prin [a] se notează partea întreagă a numărului real a.)