	Utech
Name:	
Roll No. :	A Phone (V Sample) and Explana
Invigilator's Signature :	

2011

CONTROL SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) The maximum overshoot for a unity feedback system with open-loop transfer function $G(s) = \frac{1}{s(s+1)}$ for unit step input is
 - a) 0.14

b) 0.16

c) 0·15

- d) 0.17.
- ii) For a feedback control system of type1, the steady state error for a ramp input is
 - a) infinite
- b) 0
- c) constant
- d) indeterminate.

5101 Turn over

a) x = 6

b) x = 2.4

c) x = 2

- d) x = -2.
- iv) For an underdamped second order system settling time
 - a) increases with ξ , w_n remaining fixed
 - b) decreases with ξ , w_n with remaining fixed
 - c) remains same
 - d) is indeterminate.
- v) A unit ramp is applied to a first order system defined by $G(s) = \frac{k}{Ts+1}$. The output exhibits
 - a) O offset
- b) constant offset
- c) infinite offset
- d) overshoot.
- vi) The open-loop transfer function of a feedback control system is $G(s) = \frac{1}{(s+1)^3}$. The gain margin of the system is
 - a) 16

b) 4

c) 8

- d) 2.
- vii) A linear time invariant system, when subjected to a unit step produces a response $c(t) = te^{-t}$. The transfer function is
 - a) $\frac{1}{(s+1)^2}$
- b) $\frac{1}{s(s+1)^2}$

c) $\frac{s}{(s+1)^2}$

d) none of these.

- viii) The type of a transfer function denotes the number of
 - a) poles at origin
- b) poles at infinity
- c) zeros at origin
- d) finite poles.
- ix) Addition of delay to a transfer function can be approximated by addition of
 - a) right half pole
- b) right half zero
- c) left half zero
- d) none of these.
- x) A unity feedback system has 3 open-loop poles at $(-2 \pm j2)$ and 0. It has a single zero at (-4 + j0). The angle of departure of the root locus branch starting from pole at (-2 j2) is
 - a) 135°

b) 0°

c) 225°

- d) -45° .
- xi) When the phase crossover frequency is equal to the gain crossover frequency, the closed-loop system exhibits
 - a) damped oscillatory response
 - b) sustained oscillation
 - c) unbounded undamped oscillatory response
 - d) overdamped response.
- xii) The function $\frac{1}{1+sT}$ has a slope of
 - a) 6 dB/decade
- b) 6 dB/decade
- c) 20 dB/decade
- d) 20 dB/decade.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. For the system shown in figure, a force F is applied as shown.

- a) Write the equations governing x_1 and x_2 considering F as input.
- b) Draw the electrical analogous circuit using force voltage analogy. 3 + 2
- 3. A pulse shown in figure below is applied to a first order system defined by $G(s) = \frac{1}{(0.1s+1)}$. Sketch the output.

5101

4. For the system shown in figure below find the range of *K* for the system to be stable.

Assume K, T_1 , $T_2 > 0$, $T_1 > T_2$.

- 5. Define position and velocity error for a system with transfer function G(s). Calculate the steady state error if a system with transfer function $G(s) = \frac{2}{s(0 \cdot 1s + 1)}$ is excited by a function $r(t) = 5U_{-1}(t)$, in unity feedback closed loop configuration.
- 6. For a PID controller $k_p + \frac{k_i}{s} + sk_D$ define integral time and reset rate. What happens if k_i is increased keeping k_p and k_0 constant?

GROUP - C

(Long Answer Type Questions) Answer any *three* of the following.

- For an underdamped second order system described by 7.

$$G(s) = \frac{W_n^2}{s^2 + 2\xi W_n s + W_n^2}$$
 obtain an expression for peak

overshoot due to a unit step input and hence show that this depends on ξ only. Symbols carry usual significance.

- 8. A unity feedback system has an open loop transfer function $G(s) = \frac{k(s+4)}{s(s+2)}$. Sketch the root locus. Plot with k as the variable parameter. What is the maximum value of k for which both the closed loop poles will be real? 10 + 5
- 9. a) State Nyquist Stability Criterion.
 - An open loop transfer function of a unity feedback b) system is defined by $G(s) = \frac{10}{s(1+s)(1+0.5s)}$. Is the open loop system stable? Using Nyquist stability criterion comment on the stability of the closed loop system.

5101

- 10. Sketch the Bode plots for magnitude and phase for a system defined by $G(s) = \frac{10}{s(1+0.5s)(1+0.01s)}$. Determine the gain cross-over frequency and phase margin. 10+5
- 11. What is a synchro? Deduce an expression for voltage across rotor of synchro control transformer for a small angular displacement between the rotors of the synchro transmitter and control transformer.3 + 12

=========