CSC410, Fall 2016 - Homework 4

Name: Siyuan Zheng

Student Number: 1000726814

Lecture: Tuesday

I am the sole author of this homework. Signature: _____ Zheng

Grace Day Tokens Usage:

Problem 1,

1, void problem1()

return; $def={}$, use ={}

2,statement 3: while(y>400) and y = 400; statement 9: require calculating the intersection of the fact of two(or more) other statements. 3, (Green arrors denotes the true executtion while red denotes the false one) U == unknownN == not a constantvoid problem1() (w,y,z)w=820; (U,U,U) → (820,U,U) $\mathbf{\Psi}$ y=410; (820,U,U) \rightarrow (820,410,U) while(y > 400){ $(820,N,N) \rightarrow (820,N,N)$ $\mathbf{\Psi}$ $if(y == 400) \{ (820,N,N) \rightarrow (820,N,N) \}$ $\leftarrow \leftarrow z = 1000; \{(820,N,N) \rightarrow (820,N,1000)\}$ $\{z = w + 5;\}(820,N,N) \rightarrow (820,N,N)$ $\mathbf{\Psi}$ $\mathbf{\Psi}$ $\mathbf{\Psi}$ $\mathbf{\Psi}$ y = 400; $\{(820,N,N) \rightarrow (820,400,N)\}$

return; $(820,N,N) \rightarrow (820,N,N)$

stm	t	in	out	If union or
				intersection, write
				here which
				statements are the
				input to the result
1	w = 820	(w,y,z) = (U,U,U)	(820,U,U)	
2	y=410	(820,U,U)	(820,410,U)	
3	whie (y>400){	(820,N,N)	(820,N,N)	stmt2 Union
				stmt 9
4	$if(y == 410)$ {	(820,N,N)	(820,N,N)	
5	z= 1000	(820,N,N)	(820,N,1000)	
6	}else{	N/A	N/A	
7	z = w + 5	(820,N,N)	(820,N,N)	
8	}	N/A	N/A	
9	y = 400	(820,N,N)	(820,400,N)	stmt5 Union
				stmt 7
10	}			
11	return	(820,N,N)	(820,N,N)	

4,

Forward flow and all-paths analysis.

Problem2, (c at the end of use denotes compute use while p denotes predicate use)

```
1. void problem2( int y ){ d_1(y)
```

2.
$$w = 820$$
 $d_2(w)$

3. while
$$(y > 400)$$
 { $u_3(y)$ P

4. if
$$(y == 410)$$
 { $u_4(y)$ P

5.
$$z = 1000$$
; $d_5(z)$ C

7.
$$z = w+5$$
; $d_7(z), u_7(w)$ C

8. }

9.
$$y = 1;$$
 $d_9(y), u_9(y)$

10. }

11. return;

C means C-use while P means P-use

1,

Requires $d_1(y)$, $d_2(w)$ and $d_9(y)$ reach its use at least once respectively.

1,2,3
$$(d_1(y) \text{ to } u_3(y))$$

$$1,2,3,4,7$$
 $(d_2(w) \text{ to } u_7(w))$

$$9,3,11$$
 $(d_9(y) \text{ to } u_3(y))$

Thus, test cases $\{1,2,3\}$, $\{1,2,3,4,7\},\ \{9,3,11\}$ allows 100% All-Defs Coverage.

```
2,
Requires:
d_1(y) to u_3(y) (1)
                                                    d_2(w) to u_7(w)(7)
                          d_9(y) to u_3(y)(4)
d_1(y) to u_4(y) (2)
                           d_9(y) to u_4(y)(5)
d_1(y) to u_9(y) (3)
                           d_9(y) to u_9(y)(6)
Test cases:
1,2,3,4,5,9 satisfies (1)(2)(3)
9,3,4,5,9 satisfies (4)(5)(6)
1,2,3,4,7 satisfies (7)
Thus, test cases {1,2,3,4,5,9} {9,3,4,5,9} {1,2,3,4,7} allow 100% "All-Uses" coverage
3,
All-du Paths:
Requires : A: d_1(y) to u_3(y),
              d_1(y) to u_4(y),
               both paths for d_1(y) to u_9(y)
            B: d_9(y) to u_3(y)
              d_9(y) to u_4(y)
                both paths for d_9(y) to u_9(y)
            C: d_2(w) to u_7(w)
Test cases:
1,2,3,4,5,9 satisfies A
9,3,4,5,9 satisfies B
1,2,3,4,7 satisfies C
Thus {1,2,3,4,5,9},{9,3,4,5,9} and {1,2,3,4,7} allow 100% "All-DU-Paths" coverage
4,
All C-use, some P-use:
Test case: 1,2,3,4,7
It is All C-use of d_2(w), and some P-use for d_1(y)
(By the annotated CFG above)
```

5,

All P-use, some C-use:

1,2,3,4,7

It is All P-use of $d_1(y)$, and some P-use for $d_2(w)$

(By the annotated CFG above)

Problem 3,

1,

Since this is the simplified code, x,y,z are defined before statement 1

2,

statement 7 : y += w.

3, **Notation** : **(X,Y,Z,w)**

stmt	in	out	If union or
			intersection, write
			here which
			statements are the
			input to the result
void problem3()		$\{x,y,z\}$	
1 w = x + y + z	$\{x,y,z\}$	{x,y}	
$2 \text{ if}(y > 10)$ {	{x,y}	{x,y}	
3 w = x-y	{x,y}	{y,w}	
4 }else{			
5 w= 2x	{x,y}	{y,w}	
6 }	N/A	N/A	
7 y += w	{y,w}	{}	intersection of stmt
			3 and 5
8 return;	{}	{}	

4,

backward flow analysis, as well as one path analysis.