Spacecraft and Aircraft Dynamics

Matthew M. Peet Illinois Institute of Technology

Lecture 4: Contributions to Longitudinal Stability

Aircraft Dynamics

Lecture 4

In this lecture, we will discuss

Airfoils:

- The wing Contribution to pitching moment
 - Rotate Lift and Drag vectors
 - Calculate moment about CG $(\vec{M} = \vec{r} \times \vec{F})$
 - Use approximations to simplify expression.

Two Confusing Figures

Confusion: For an airfoil, angle of attack is measured to the zero-lift-line.

• Thus $C_{M0} = 0$ for an un-inclined airfoil.

Confusion: We assume that the aerodynamic center is on the FRL.

• Thus as measure from the CG,

$$\vec{r}_{ac} = egin{bmatrix} X_{cg} - X_{ac} \\ 0 \\ Z_{c}g \end{bmatrix}.$$

3 / 26

 If there is any confusion on a problem, ask me to clarify.

Next Subject: Wing Contribution

Lift and Drag

The wing is a lifting surface which produces both **Lift** and **Drag**.

- · Lift is perpendicular to free-stream velocity.
 - ▶ If $\alpha_{FRL} > 0$, then lift vector pitches forward (nose-down direction) in the body-fixed frame.
- Drag is parallel to free-stream velocity.
 - ▶ If $\alpha_{FRL} > 0$, then drag also rotates in the nose-down direction.

To determine the contributions of Lift and drag in the body-fixed frame, these forces must be *rotated* by the angle of attack and any additional wing inclination.

Rotating the Lift and Drag

Rotation Matrices

Lift and Drag vectors rotate with angle of attack and wing inclination.

Example: Given a vector $\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and a pitch-up rotation, θ ,

$$\vec{v}' = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \cos \theta + z \sin \theta \\ y \\ -x \sin \theta + z \cos \theta \end{bmatrix}$$

The matrix is called a rotation matrix.

M. Peet Lecture 4: Wing Contribution

5 / 26

Rotation Matrices

Rotation matrices can be used to calculate the effect of ANY rotation.

Roll Angle ϕ :

Pitch Angle θ :

Yaw Angle ψ :

$$\vec{v}' = R_1(\phi)\vec{v}$$

$$\vec{v}' = R_2(\theta)\vec{v}$$

$$\vec{v}' = R_3(\psi)\vec{v}$$

Remember to use the right-hand rule to determine what is a positive rotation.

Rotation Matrices

The rotation matrices are (for reference):

Roll Rotation (ϕ) :

Pitch Rotation (θ):

Yaw Rotation (ψ):

$$R_1(\phi) \qquad \qquad R_2(\theta) \qquad \qquad R_3(\psi)$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix} \qquad = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \qquad = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_2(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_3(\psi) = \begin{bmatrix} \cos \psi & -\sin \psi & 0\\ \sin \psi & \cos \psi & 0\\ 0 & 0 & 1 \end{bmatrix}$$

M. Peet Lecture 4: Wing Contribution 7 / 26

Rotation Matrices: Multiple Rotations

Rotation matrices, can be used to calculate a sequence of rotations:

Roll-Pitch-Yaw:

$$\vec{v}_{RPY} = R_3(\psi)R_2(\theta)R_1(\phi)\vec{v}$$

Note the *order* of multiplication is critical.

$$\vec{v}_{RPY} = \left(R_3(\psi)\left(R_2(\theta)\left(R_1(\phi)\vec{v}\right)_1\right)_2\right)_3$$

M. Peet

Rotation Matrices: Example

Consider a pure lift force of 10MN after a pitch up of $10\deg$ and a yaw of $20\deg$.

$$\vec{L} = \begin{bmatrix} 0 \\ 0 \\ -10 \end{bmatrix}$$

$$\begin{split} \vec{L}_{PY} &= \begin{bmatrix} \cos 20 & -\sin 20 & 0 \\ \sin 20 & \cos 20 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos 10 & 0 & \sin 10 \\ 0 & 1 & 0 \\ -\sin 10 & 0 & \cos 10 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -10 \end{bmatrix} \\ &= \begin{bmatrix} 0.9397 & -0.3420 & 0 \\ 0.3420 & 0.9397 & 0 \\ 0 & 0 & 1.0000 \end{bmatrix} \begin{bmatrix} 0.9848 & 0 & 0.1736 \\ 0 & 1.0000 & 0 \\ -0.1736 & 0 & 0.9848 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -10 \end{bmatrix} \\ &= \begin{bmatrix} 0.9254 & -0.3420 & 0.1632 \\ 0.3368 & 0.9397 & 0.0594 \\ -0.1736 & 0 & 0.9848 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -10 \end{bmatrix} = \begin{bmatrix} -1.6318 \\ -0.5939 \\ -9.8481 \end{bmatrix} \end{split}$$

Rotation Matrices: Example

Compare this to the same rotations in the reverse order (Yaw, then Pitch)

$$\vec{L}_{YP} = \begin{bmatrix} \cos 10 & 0 & \sin 10 \\ 0 & 1 & 0 \\ -\sin 10 & 0 & \cos 10 \end{bmatrix} \begin{bmatrix} \cos 20 & -\sin 20 & 0 \\ \sin 20 & \cos 20 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -10 \end{bmatrix}$$
$$= \begin{bmatrix} -1.7365 \\ 0 \\ -9.8481 \end{bmatrix}$$

Which is still in the x-z plane!!! Why?

Compare to Pitch, Yaw value:

$$\vec{L}_{PY} = \begin{bmatrix} -1.6318 \\ -0.5939 \\ -9.8481 \end{bmatrix}$$

Next Subject: Wing Contribution

Lift and Drag

The **magnitude** of lift and drag are given by:

$$L_{wing} = C_{L,w}QS$$
 and $D_{wing} = C_{D,w}QS$

The two important angles are angle of attack of the aircraft, $lpha_{FRL}$ and

• inclination i_w of the wing. Most wings are rotated up - this increases the angle of attack of the wing.

 C_L can be determined as

$$C_L = C_{L\alpha}\alpha_w = C_{L\alpha}(\alpha_{FRL} + i_w)$$

where $\alpha_w = \alpha_{FRL} + i_w$ is the angle of the wing with the free-stream.

M. Peet Lecture 4: Wing Contribution

11 / 26

Next Subject: Wing Contribution

Lift and Drag

 C_D is usually determined using $C_{D\alpha}$ and C_{D0} from the tables.

$$C_D = C_{D\alpha}\alpha_w + C_{D0}$$

Wing Contribution

Moment Contribution

The wing makes three contributions to the moment about the Center of Gravity (CG) of the aircraft.

- The lift force, multiplied by "lever arm"
- The drag force, multiplied by a shorter "lever arm"
- ullet The moment exerted on the wing itself (due to C_{M0})

As a reference point, we choose the leading edge of the wing.

- ullet X_{ac} is the distance from the leading edge to the aerodynamic center of the wing
- ullet X_{cg} is the distance from the leading edge to the center of mass of the aircraft
- ullet Z_{cg} is the height of the CG above the Fuselage Reference Line (FRL)

M. Peet Lecture 4: Wing Contribution 13 / 26

Wing Contribution

Moment Contribution

The moment produced by a force about point is

$$\vec{M} = \vec{r} \times \vec{F}$$

For example,
$$\vec{F}=\begin{bmatrix}F_x\\0\\F_z\end{bmatrix}$$
 and $\vec{r}=\begin{bmatrix}r_x\\0\\r_z\end{bmatrix}$, which implies

$$\vec{M} = \vec{r} \times \vec{F} = \det \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ r_x & 0 & r_z \\ F_x & 0 & F_z \end{bmatrix} = -(r_x F_z - F_x r_z) \hat{y}.$$

M. Peet Lecture 4: Wing Contribution 14 / 26

Wing Contribution: Simple Case

Zero Angle of Attack

Consider when $\alpha=0.$ Then the force in the body-fixed frame, the lift and drag forces are

$$F_{w, \alpha = 0} = egin{bmatrix} -D_w \\ 0 \\ -L_w \end{bmatrix}, \qquad ext{applied at} \qquad ec{r}_w = egin{bmatrix} X_{cg} - X_{ac} \\ 0 \\ Z_{cg} \end{bmatrix}$$

Note that we assume the aerodynamic center is on the FRL. Now we have

$$\vec{M}_{w,\alpha=0} = M_{0,w}\hat{y} + \vec{r} \times \vec{F} = M_w\hat{y} + \det \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ X_{cg} - X_{ac} & 0 & Z_{cg} \\ -D_w & 0 & -L_w \end{bmatrix}$$
$$= (M_{0,w} + L_w(X_{cg} - X_{ac}) - D_w Z_{cg})\hat{y}.$$

M. Peet

Wing Contribution: Simple Case

Zero Angle of Attack

Thus the pitching moment produced by the lift and Drag at zero angle of attack $(\alpha_{FRL}=0)$ is

$$M_{w,\alpha=0} = M_{0,w} + L_w(X_{cg} - X_{ac}) - D_w Z_{cg}.$$

Converting to non-dimensional form, the pitching moment is

$$C_{Mw,\alpha_{FRL}=0} = C_{M,w} + C_{L,w}(X_{cg} - X_{ac}) - C_{D,w}Z_{cg}.$$

M. Peet Lecture 4: Wing Contribution 16 / 26

Wing Contribution

Moment Contribution: Angle of Attack

- Because Lift is perpendicular to free-stream and Drag is parallel, a positive angle of attack will rotate \vec{F} in the negative pitch direction (nose down-direction).
- In the body-fixed frame, these forces become

$$\vec{F}_w = \begin{bmatrix} \cos(-\alpha) & 0 & \sin(-\alpha) \\ 0 & 1 & 0 \\ -\sin(-\alpha) & 0 & \cos(-\alpha) \end{bmatrix} \begin{bmatrix} -D_w \\ 0 \\ -L_w \end{bmatrix} = \begin{bmatrix} -D_w \cos \alpha + L_w \sin \alpha \\ 0 \\ -D_w \sin \alpha - L_w \cos \alpha \end{bmatrix}$$

where $\alpha = \alpha_{FRL}$ and recall $\sin(-\alpha) = -\sin \alpha$, $\cos(-\alpha) = \cos \alpha$

Now we can calculate the moment contribution as before from

$$\vec{M}_w = M_{0,w} + \vec{r}_w \times \vec{F}_w$$

M. Peet

Wing Contribution

Moment Contribution: Angle of Attack

This contribution is readily calculated as

$$\vec{M}_w = \vec{M}_{0,w} + \vec{r}_w \times \vec{F}_w$$

That is,

$$M_w = M_{0,w} + F_x Z_{cg} - F_z (X_{cg} - X_{ac})$$

= $M_{0,w} + (L_w \sin \alpha - D_w \cos \alpha) Z_{cg}$
+ $(D_w \sin \alpha + L_w \cos \alpha) (X_{cg} - X_{ac})$

or, in *non-dimensional* form, divide by $QS\bar{c}$ to get

$$C_{M,w} = C_{M,0,w} + (C_{L,w} \sin \alpha - C_{D,w} \cos \alpha) \frac{Z_{cg}}{\bar{c}} + (C_{D,w} \sin \alpha + C_{L,w} \cos \alpha) \left(\frac{X_{cg}}{\bar{c}} - \frac{X_{ac}}{\bar{c}}\right)$$

Recall that

$$C_{L,w} = C_{L\alpha}\alpha_w = C_{L\alpha}(\alpha_{FRL} + i_w)$$
 and $C_D = C_{D\alpha}\alpha_w + C_{D0}$

At this point we decide the equation are **too complicated**. We need to make some Approximations.

18 / 26

M. Peet Lecture 4: Wing Contribution

Wing Contribution: Simplification

Small Angle Approximations

Our moment equation is now

$$C_{M,w} = C_{M,0,w} + (C_{L,w} \sin \alpha - C_{D,w} \cos \alpha) \frac{Z_{cg}}{\bar{c}} + (C_{D,w} \sin \alpha + C_{L,w} \cos \alpha) \left(\frac{X_{cg}}{\bar{c}} - \frac{X_{ac}}{\bar{c}}\right)$$

But this is nonlinear and I promised linear equations. Therefore we use the **Small Angle Approximations** to linearize. If $\alpha \cong 0$, then

 $\sin \alpha \cong \alpha$

 $\cos \alpha \cong 1$

M. Peet Lecture 4: Wing Contribution

Wing Contribution: Simplification

Other Approximations

Replacing $\sin \alpha$ with α and $\cos \alpha$ with 1, we get

$$C_{M,w} \cong C_{M,0,w} + \left(C_{L,w}\alpha - C_{D,w}\right) \frac{Z_{cg}}{\bar{c}} + \left(C_{D,w}\alpha + C_{L,w}\right) \left(\frac{X_{cg}}{\bar{c}} - \frac{X_{ac}}{\bar{c}}\right).$$

The equation is **linear**, but still complicated.

We now make 2 more assumptions

- 1. Z_{cq} is small compared to $X_{cq} X_{ac}$.
 - $ightharpoonup C_{D,w}Z_{cq} + C_{L,w}(X_{cq} X_{ac}) \cong C_{L,w}(X_{cq} X_{ac})$
 - 2. α is small.
 - $C_{D,w}\alpha + C_{L,w} \cong C_{L,w}$

What we have left is

$$C_{M,w} \cong C_{M,0,w} + C_{L,w} \left(\frac{X_{cg}}{\overline{c}} - \frac{X_{ac}}{\overline{c}} \right).$$

Wing Contribution: Approximations

Exceptions

Beechcraft Skipper USA

Type: light training aircraft

Accommodation: two pilots, one passenger

Dimensions:

Length: 23 ft 10 in (7.3 m) Wingspan: 30 ft (9.1 m) Height: 7 ft 6 in (2.3 m)

Weights:

Empty: 1103 lb (500 kg)

Max T/O: 1650 lb (748 kg) Payload: n\a

piston engine Thrust: 115 hp (85 kw)

Performance: Max speed: 120 mph (196 kmh) Range: 413 nm (764 km) Power plant: one 0-235

Variants:

none

Notes: Built in small numbers, the Skipper is mainly used for training purposes.

Wing Contribution: Approximations

Exceptions

Wing Contribution: Continued

We now include the expression for Lift:

$$C_{L,w} = C_{L\alpha,w}\alpha_w = C_{L\alpha,w}\left(\alpha_{FRL} + i_w\right)$$

this yields

$$C_{M,w} = C_{M,0,w} + C_{L\alpha,w} \left(\alpha_{FRL} + i_w \right) \left(\frac{X_{cg}}{\bar{c}} - \frac{X_{ac}}{\bar{c}} \right)$$
$$= C_{M,0,w} + C_{L\alpha,w} i_w \left(\frac{X_{cg}}{\bar{c}} - \frac{X_{ac}}{\bar{c}} \right) + C_{L\alpha,w} \alpha_{FRL} \left(\frac{X_{cg}}{\bar{c}} - \frac{X_{ac}}{\bar{c}} \right) \alpha_{FRL}$$

Thus we have

$$C_{M,total} = C_{M,total,0} + C_{M,total,\alpha} \alpha_{FRL}$$

where

$$C_{M,total,0} = C_{M,0,w} + C_{L\alpha,w} i_w \left(\frac{X_{cg}}{\bar{c}} - \frac{X_{ac}}{\bar{c}} \right)$$
$$C_{M,total,\alpha} = C_{L\alpha,w} \left(\frac{X_{cg}}{\bar{c}} - \frac{X_{ac}}{\bar{c}} \right)$$

Wing Contribution: Stability

Recall for nose-up steady flight, we need

$$C_{M,total,0} = C_{M,0,w} + C_{L\alpha,w} i_w \left(\frac{X_{cg}}{\bar{c}} - \frac{X_{ac}}{\bar{c}} \right) \ge 0$$

and

$$C_{M,total,\alpha} = C_{L\alpha,w} \left(\frac{X_{cg}}{\bar{c}} - \frac{X_{ac}}{\bar{c}} \right) \le 0$$

Since $C_{L\alpha,w} > 0$, this can only be achieved when we have both

CG ahead of wing:

Negative Camber:

$$X_{ca} - X_{ac} < 0$$

$$C_{M,0,w} > 0$$

which is unusual.

which would be odd.

Thus we need a tail contribution.

Conclusion

In this lecture, we have

- Calculated the moment about the CG produced by Lift and Drag on a Wing.
- Made small-angle approximations to get a linear expression.
- Neglected some Moment contributions.
- Developed impractical conditions for stability of a wing-only aircraft

Next Lecture

- Do the same thing for the tail.
- Discuss our new design variables.
- Discuss equilibrium and stability conditions.