Теоритично контролно №2 1, I, Информатика

Иво Стратев

9 август 2018 г.

1 Линейно изображение и линеен оператор

1.1 Определение линеен оператор

Нека $\mathbb V$ - Л.П. над полето $\mathbb F,\ \varphi:\mathbb V\to\mathbb V$

 $\forall n \in \mathbb{N}, \ \forall v_1, \dots, v_n \in \mathbb{V}, \ \forall \lambda_1, \dots, \lambda_n \in \mathbb{F}$

$$\varphi\left(\sum_{i=1}^{n} \lambda_{i} v_{i}\right) = \sum_{i=1}^{n} \lambda_{i} \varphi(v_{i}) \implies \varphi \in \operatorname{Hom} \mathbb{V}$$

1.2 Определение линейно изображение

Нека $\mathbb{V},\ \mathbb{W}$ - Л.П. над полето $\mathbb{F},\ \varphi:\mathbb{V}\to\mathbb{W}$

 $\forall n \in \mathbb{N}, \ \forall v_1, \dots, v_n \in \mathbb{V}, \ \forall \lambda_1, \dots, \lambda_n \in \mathbb{F}$

$$\varphi\left(\sum_{i=1}^{n} \lambda_{i} v_{i}\right) = \sum_{i=1}^{n} \lambda_{i} \varphi(v_{i}) \implies \varphi \in \operatorname{Hom}(\mathbb{V}, \mathbb{W})$$

1.3 Теорема $\exists ! \varphi \in \text{Hom}(\mathbb{V}, \mathbb{W})$

Нека \mathbb{V} , \mathbb{W} - Л.П. над полето \mathbb{F} , $\dim \mathbb{V} = n$

 e_1,\ldots,e_n — базис на $\mathbb V$

 w_1, \ldots, w_n — произволни вектори от \mathbb{W}

 $\implies \exists ! \ \varphi \in \operatorname{Hom}(\mathbb{V}, \ \mathbb{W}) \ : \ i = 1, \dots, n \quad \varphi(e_i) = w_i$

1.4 Определение за изоморфизъм на линейни пространства

Нека $\mathbb{V},\ \mathbb{W}$ - Л.П. над полето \mathbb{F} и $\varphi:\mathbb{V}\to\mathbb{W}$ е изображение.

 φ е изоморфизъм между $\mathbb {V}$ и $\mathbb {W}$ ($\mathbb {V}\cong \mathbb {W}),$ ако:

- 1) $\varphi \in \text{Hom}(\mathbb{V}, \mathbb{W})$ (φ е лин. изображение)
- $2) \varphi$ е биекция

1.5 Н.Д.У две крайно мерни Л.П. да са изоморфни

Нека $\mathbb{V},\ \mathbb{W}$ - К.М.Л.П. над полето \mathbb{F}

 $\mathbb{V}\cong\mathbb{W}\iff\dim\mathbb{V}=\dim\mathbb{W}\in\mathbb{N}$

2 Доказателства за линейни изображения

2.1 Докажете, че $\forall \ \varphi \in \mathrm{Hom}(\mathbb{U}, \ \mathbb{V}) \implies \varphi(\theta_{\mathbb{U}}) = \theta_{\mathbb{V}}$

Доказателство 1:

Нека
$$u \in \mathbb{U}$$
 $\theta_{\mathbb{V}} = 0 \varphi(u) = \varphi(0u) = \varphi(\theta_{\mathbb{U}})$ \square

Доказателство 2:

Нека
$$u \in \mathbb{U} \varphi(\theta_{\mathbb{U}}) = \varphi(u-u) = \varphi(u+(-1)u) =$$

$$=\varphi(u)+(-1)\varphi(u)=\varphi(u)-\varphi(u)=\theta_{\mathbb{V}}$$

Доказателство 3:

$$\varphi(\theta_{\mathbb{I}}) = \varphi(\theta_{\mathbb{I}} + \theta_{\mathbb{I}}) = \varphi(\theta_{\mathbb{I}}) + \varphi(\theta_{\mathbb{I}}) \mid -\varphi(\theta_{\mathbb{I}}) \implies$$

$$\varphi(\theta_{\mathbb{I}}) - \varphi(\theta_{\mathbb{I}}) = \varphi(\theta_{\mathbb{I}}) + \varphi(\theta_{\mathbb{I}}) - \varphi(\theta_{\mathbb{I}}) \implies$$

$$\theta_{\mathbb{V}} = \varphi(\theta_{\mathbb{U}}) \quad \Box$$

2.2 Докажете, че $\forall \varphi \in \text{Hom}(\mathbb{U}, \mathbb{V})$ $\forall u \in \mathbb{U} \implies \varphi(-u) = -\varphi(u)$

Доказателство:

$$\forall \varphi \in \text{Hom}(\mathbb{U}, \mathbb{V}), \ \forall u \in \mathbb{U}, \ \forall \lambda \in \mathbb{F} \implies \varphi(\lambda u) = \lambda \varphi(u)$$

$$\implies \lambda = -1 \implies \varphi(-u) = \varphi(-1u) = -1\varphi(u) = -\varphi(u)$$

$$\implies \varphi(-u) = -\varphi(u) \quad \square$$

2.3 Докажете, че $\forall \varphi \in \text{Hom}(\mathbb{V}) \implies \varphi(\theta) = \theta$

Доказателство 1:

Нека
$$v \in \mathbb{V}$$
 $\theta = 0 \varphi(v) = \varphi(0v) = \varphi(\theta)$ \square

Доказателство 2:

Нека
$$v \in \mathbb{V} \varphi(\theta) = \varphi(v - v) = \varphi(v + (-1)v) =$$

$$= \varphi(v) + (-1)\varphi(v) = \varphi(v) - \varphi(v) = \theta \quad \Box$$

Доказателство 3:

$$\varphi(\theta) = \varphi(\theta + \theta) = \varphi(\theta) + \varphi(\theta) \mid -\varphi(\theta) \implies$$

$$\varphi(\theta) - \varphi(\theta) = \varphi(\theta) + \varphi(\theta) - \varphi(\theta) \implies$$

$$\theta = \varphi(\theta) \quad \Box$$

2.4 Докажете, че $\forall \ \varphi \in \mathrm{Hom}(\mathbb{V})$

$$\forall v \in \mathbb{V} \implies \varphi(-v) = -\varphi(v)$$

Доказателство:

$$\forall \varphi \in \operatorname{Hom}(\mathbb{V}), \ \forall v \in \mathbb{V}, \ \forall \lambda \in \mathbb{F} \implies \varphi(\lambda v) = \lambda \varphi(v)$$

$$\implies \lambda = -1 \implies \varphi(-v) = \varphi(-1v) = -1\varphi(v) = -\varphi(v)$$

$$\implies \varphi(-v) = -\varphi(v) \quad \Box$$

2.5 Докажете, че едно линейно изображение изпраща линейно зависими вектори в линейно зависими вектори

Доказателство:

Нека
$$\mathbb{V}$$
, \mathbb{W} - Л.П. над полето \mathbb{F} , $\varphi \in \operatorname{Hom}(\mathbb{V}, \mathbb{W})$

Нека $n\in\mathbb{N}$ и нека $v_1,\ \dots,\ v_n\in\mathbb{V}$ - (линейно зависими)

$$\implies \exists \lambda_1, \dots, \lambda_n \in \mathbb{F} : (\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0) : \sum_{i=1}^n \lambda_i v_i = \theta_{\mathbb{V}}$$

Нека
$$v=\sum_{i=1}^n \lambda_i v_i \implies v=\theta_\mathbb{V} \mid \varphi \implies \varphi(v)=\varphi(\theta_\mathbb{V})=\theta_\mathbb{W} \implies$$

$$\varphi(v) = \varphi\left(\sum_{i=1}^{n} \lambda_i v_i\right) = \sum_{i=1}^{n} \lambda_i \varphi(v_i) = \theta_{\mathbb{W}} \implies \frac{n}{2}$$

$$\sum_{i=1}^{n} \lambda_i \varphi(v_i) = \theta_{\mathbb{W}}, \ (\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0) \implies$$

Векторите $\varphi(v_1), \ldots, \varphi(v_n)$ (образите на векторите v_1, \ldots, v_n) са линейно зависими \square

2.6 Докажете, че един линеен оператор изпраща линейно зависими вектори в линейно зависими вектори)

Доказателство:

Нека \mathbb{V} - Л.П. над полето $\mathbb{F}, \ \varphi \in \mathrm{Hom}(\mathbb{V})$

Нека $n \in \mathbb{N}$ и нека $v_1, \ldots, v_n \in \mathbb{V}$ - (линейно зависими)

$$\implies \exists \lambda_1, \dots, \lambda_n \in \mathbb{F} : (\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0) : \sum_{i=1}^n \lambda_i v_i = \theta$$

Нека
$$v = \sum_{i=1}^n \lambda_i v_i \implies v = \theta \mid \varphi \implies \varphi(v) = \varphi(\theta) = \theta \implies$$

$$\varphi(v) = \varphi\left(\sum_{i=1}^{n} \lambda_i v_i\right) = \sum_{i=1}^{n} \lambda_i \varphi(v_i) = \theta \implies$$

$$\sum_{i=1}^{n} \lambda_i \varphi(v_i) = \theta, \ (\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0) \implies$$

Векторите $\varphi(v_1),\ \dots,\ \varphi(v_n)$ (образите на векторите $v_1,\ \dots,\ v_n$) са линейно зависими $\ \square$

3 Действия с линейни изображения

3.1 Определение за сума на линейни изображения

Нека \mathbb{V} , \mathbb{W} - Л.П. над полето \mathbb{F} , $\varphi, \psi \in \mathrm{Hom}(\mathbb{V}, \mathbb{W})$

$$\varphi + \psi : \mathbb{V} \to \mathbb{W} : \forall v \in \mathbb{V} (\varphi + \psi)(v) = \varphi(v) + \psi(v)$$

3.2 Определение за произведение на линейно изображение със скалар

Нека \mathbb{V} , \mathbb{W} - Л.П. над полето \mathbb{F} , $\varphi \in \text{Hom}(\mathbb{V}, \mathbb{W})$, $\lambda \in \mathbb{F}$

$$\lambda \varphi : \mathbb{V} \to \mathbb{W} : \forall v \in \mathbb{V} \ (\lambda \varphi)(v) = \lambda \cdot \varphi(v)$$

3.3 Определение за произведение на линейни изображения

 \mathbb{V} , \mathbb{W} , \mathbb{U} - Л.П. над полето \mathbb{F} , $\varphi \in \operatorname{Hom}(\mathbb{V}, \mathbb{W}), \psi \in \operatorname{Hom}(\mathbb{W}, \mathbb{U})$

$$\psi \varphi : \mathbb{V} \to \mathbb{U} : \forall v \in \mathbb{V} (\psi \varphi)(v) = (\psi \circ \varphi)(v) = \psi(\varphi(v))$$

3.4 Определението за матрица на линейно изображение

Нека $\mathbb V,\ \mathbb W$ - К.М.Л.П. над полето $\mathbb F,\ \varphi\in \mathrm{Hom}(\mathbb V,\ \mathbb W),\ n=\mathrm{dim}\mathbb V,\ m=\mathrm{dim}\mathbb W$

 e_1,\ldots,e_n — базис на $\mathbb V$

 f_1,\ldots,f_m — базис на \mathbb{W}

$$i = 1, \dots, n$$
 $\varphi(e_i) = \sum_{j=1}^{m} \lambda_{ji} f_j, \quad \lambda_{ji} \in \mathbb{F}$

$$A=(\lambda_{ji})_{m \ imes n}=M_{e o f}(arphi) \in \mathbb{F}_{m \ imes n}$$
 - матрица на $arphi$ в базисите $e,\ f$

Тоест стълбовете на матрицата A са образите на векторите e_1, \ldots, e_n

$$A = (\varphi(e_1) \ldots \varphi(e_n))$$

3.5 изобразяване на координатите на образа на вектор под действието на линейно изображение чрез координатите на вектора и матрицата на линейното изображение

Нека $\mathbb V,\ \mathbb W$ - К.М.Л.П. над полето $\mathbb F,\ \varphi\in \mathrm{Hom}(\mathbb V,\ \mathbb W),\ n=\mathrm{dim}\mathbb V,\ m=\mathrm{dim}\mathbb W$

 e_1,\ldots,e_n — базис на $\mathbb V$

 f_1,\ldots,f_m — базис на W

 $A=(\lambda_{ji})_{m \ imes n}=M_{e o f}(arphi) \in \mathbb{F}_{m \ imes n}$ - матрица на arphi в базисите $e,\ f$

Нека
$$v \in \mathbb{V} \implies v = \sum_{i=1}^n \lambda_i e_i, \quad \lambda_1, \dots, \lambda_n \in \mathbb{F}$$

 $(\lambda_1,\ldots,\lambda_n)$ - координатите на v спрямо базиса e на $\mathbb V$

$$\varphi(v)\in\mathbb{W} \implies \exists (\mu_1,\dots,\mu_m)\in\mathbb{F}^m \ : \ \varphi(v)=\sum_{i=1}^n\lambda_i\varphi(e_i)=\sum_{i=1}^m\mu_if_i$$

$$(\mu_1,\dots,\mu_m)\text{ - координатите на образа на }v\text{ спрямо базиса }f\text{ на }\mathbb{W}$$
 Тогава
$$(\mu_1,\dots,\mu_m)^t=A(\lambda_1,\dots,\lambda_n)^t$$

4 Матрици на линейни изображения, получени след действия с ЛИ

4.1 Определение за сума на линейни изображения

Нека \mathbb{V} , \mathbb{W} - Л.П. над полето \mathbb{F} , $\varphi, \psi \in \mathrm{Hom}(\mathbb{V}, \mathbb{W})$

$$\varphi + \psi : \mathbb{V} \to \mathbb{W} : \forall v \in \mathbb{V} (\varphi + \psi)(v) = \varphi(v) + \psi(v)$$

4.2 Определение за матрица на линейно изображение, което е сумата на две линейни изображения

Нека $\mathbb V,\ \mathbb W$ - К.М.Л.П. над полето $\mathbb F,\ \varphi,\ \psi\in \mathrm{Hom}(\mathbb V,\ \mathbb W),\ n=\mathrm{dim}\mathbb V,\ m=\mathrm{dim}\mathbb W$

Нека $\tau = \varphi + \psi \in \text{Hom}(\mathbb{V}, \mathbb{W})$

Нека e_1, \ldots, e_n — базис на \mathbb{V}

Нека f_1, \ldots, f_m — базис на \mathbb{W}

Нека $A=M_{e o f}(\varphi)\in \mathbb{F}_{m imes n}$ - матрицата на φ спрямо базисите $e,\ f$

Нека $B=M_{e\to f}(\psi)\in\mathbb{F}_{m\times n}$ - матрицата на ψ спрямо базисите $e,\ f$

Нека
$$C=M_{e\to f}(\tau)=M_{e\to f}(\varphi+\psi)=M_{e\to f}(\varphi)+M_{e\to f}(\psi)=A+B\in\mathbb{F}_{m\times n}$$

Тогава C е матрицата на $\tau = \varphi + \psi$ спрямо базисите e, f

4.3 Определение за матрица на линейно изображение, което е произведение на линейно изображение със скалар

Нека $\mathbb V$, $\mathbb W$ - К.М.Л.П. над полето $\mathbb F$, $\lambda \in \mathbb F$, $\varphi \in \mathrm{Hom}(\mathbb V, \ \mathbb W)$, $n=\dim \mathbb V$, $m=\dim \mathbb W$

Нека $\tau = \lambda \varphi \in \text{Hom}(\mathbb{V}, \mathbb{W})$

Нека e_1,\ldots,e_n — базис на $\mathbb V$

Нека f_1, \ldots, f_m — базис на \mathbb{W}

Нека $A=M_{e o f}(\varphi)\in \mathbb{F}_{m imes n}$ - матрицата на φ спрямо базисите $e,\ f$

Нека
$$C = M_{e \to f}(\tau) = M_{e \to f}(\lambda \varphi) = \lambda. M_{e \to f}(\varphi) = \lambda. A \in \mathbb{F}_{m \times n}$$

Тогава C е матрицата на $\tau = \lambda. \varphi$ спрямо базисите e, f

4.4 Определение за матрица на линейно изображение, което е произведение на две линейни изображения

Нека \mathbb{V} , \mathbb{W} , \mathbb{U} - К.М.Л.П. над полето \mathbb{F}

 $\varphi \in \operatorname{Hom}(\mathbb{V}, \mathbb{W}), \ \psi \in \operatorname{Hom}(\mathbb{W}, \mathbb{U}), \ n = \dim \mathbb{V}, \ m = \dim \mathbb{W}, \ k = \dim \mathbb{U}$

Нека $\tau = \psi \varphi \in \text{Hom}(\mathbb{V}, \mathbb{U})$

Нека e_1, \ldots, e_n — базис на \mathbb{V}

Нека f_1, \ldots, f_m — базис на \mathbb{W}

Нека g_1, \ldots, g_k — базис на \mathbb{U}

Нека $A=M_{e\to f}(\varphi)\in\mathbb{F}_{m\times n}$ - матрицата на φ спрямо базисите $e,\ f$

Нека $B = M_{f o g}(\psi) \in \mathbb{F}_{^{k \times m}}$ - матрицата на ψ спрямо базисите $f, \ g$

Нека
$$C = M_{e \to g}(\tau) = M_{e \to g}(\psi \varphi) = M_{e \to g}(\psi \circ \varphi) =$$

$$= M_{f \to g}(\psi).M_{e \to f}(\varphi) = B.A \in \mathbb{F}_{k \times n}$$

Тогава C е матрицата на $\tau = \psi \varphi$ спрямо базисите e, g

4.5 Размерност на $\Pi.\Pi$. на всички лин. изображения между две крайно мерни $\Pi.\Pi$

Нека \mathbb{V}, \mathbb{W} - К.М.Л.П. над полето $\mathbb{F}, n = \dim \mathbb{V}, m = \dim \mathbb{W}$

Тогава dimHom(\mathbb{V} , \mathbb{W}) = m.n

5 Ядро и Образ на Линейно изображение

 \mathbb{V} , \mathbb{W} - Л.П. над полето \mathbb{F} , $\varphi \in \operatorname{Hom}(\mathbb{V}, \mathbb{W})$

5.1 Определение за ядро на лин. изображение

$$\operatorname{Ker}\varphi = \{ v \in \mathbb{V} \mid \varphi(v) = \theta \}$$

5.2 Определение за образ за лин. изображение

$$\operatorname{Im}\varphi = \{\varphi(v) \mid v \in \mathbb{V}\} = \{w \in \mathbb{W} \mid \exists v \in \mathbb{V} : \varphi(v) = w\}$$

5.3 Определение за образ на подпространство

Нека $\mathbb{Y} \leq \mathbb{V}$, тогава образа на \mathbb{Y} под действието на φ се дефинира като:

$$\varphi(\mathbb{Y}) = \operatorname{Im}\varphi_{\mathbb{I}\mathbb{Y}} = \{\varphi(v) \mid v \in \mathbb{Y}\} = \{w \in \mathbb{W} \mid \exists y \in \mathbb{Y} : \varphi(y) = w\}$$

5.4 Определение за ранг на лин. изображение

 $r(\varphi) = \dim \operatorname{Im} \varphi$

5.5 Определение за дефект на лин. изображение

 $d(\varphi) = \dim \operatorname{Ker} \varphi$

5.6 Теорема(За ранга и дефекта)

 \mathbb{U} , \mathbb{S} - К.М.Л.П. над полето \mathbb{F} , $\psi \in \text{Hom}(\mathbb{U}, \mathbb{S})$

$$dim \mathbb{U} = p \implies r(\psi) + d(\psi) = p$$

5.7 Връзката между ранга на едно лин. изображение и ранга на една неговата матрица относно един всеки (в частност и един) базис е:

Нека e_1, \ldots, e_n — произволен базис на $\mathbb V$

Нека f_1, \ldots, f_m — произволен базис на \mathbb{W}

Ако
$$A = M_{e \to f}(\varphi) \implies r(\varphi) = r(A)$$

6 Обратомост на ЛИ и ЛО

6.1 Определение за обратимо линейно изображение

Нека $\mathbb{V},\ \mathbb{W}$ - Л.П. над полето $\mathbb{F},\ \varphi\in \mathrm{Hom}(\mathbb{V},\ \mathbb{W})$

 φ е обратимо Л.И, ако $\exists \psi \in \operatorname{Hom}(\mathbb{W}, \mathbb{V}) : \varphi.\psi = \operatorname{id}_{\mathbb{W}}, \psi.\varphi = \operatorname{id}_{\mathbb{V}}$

6.2 Определение за обратното линейно изображение на дадено линейно изображение

Нека \mathbb{V} , \mathbb{W} - Л.П. над полето \mathbb{F} , $\varphi \in \operatorname{Hom}(\mathbb{V}, \mathbb{W})$

Ако φ е обратимо Л.И, то

$$\exists ! \ \varphi^{-1} \in \mathrm{Hom}(\mathbb{W}, \ \mathbb{V}) \ : \ \varphi.\varphi^{-1} = \mathrm{id}_{\mathbb{W}}, \ \varphi^{-1}.\varphi = \mathrm{id}_{\mathbb{V}}$$

 φ^{-1} е обратното Л.И. на φ

6.3 Доказателство обратният на обратим линеен оператор също е обратим

Нека $\mathbb V$ - Л.П. над полето $\mathbb F,\ \varphi\in\mathrm{Hom}\mathbb V$

$$\varphi$$
 - обратим Л.О. $\implies \varphi.\varphi^{-1} = \varphi^{-1}.\varphi = \mathrm{id}_{\mathbb{V}}$

Ако
$$\varphi^{-1}$$
 е обратим Л.О, то $(\varphi^{-1})^{-1}.\varphi^{-1} = \varphi^{-1}.(\varphi^{-1})^{-1} = \mathrm{id}_{\mathbb{V}}$

$$\varphi = \varphi.\mathrm{id}_{\mathbb{V}} = \varphi(\varphi^{-1}.(\varphi^{-1})^{-1}) = (\varphi.\varphi^{-1}).(\varphi^{-1})^{-1} = \mathrm{id}_{\mathbb{V}}.(\varphi^{-1})^{-1} = (\varphi^{-1})^{-1}$$

$$\implies (\varphi^{-1})^{-1} = \varphi$$

6.4 Теорема

Нека \mathbb{V}, \mathbb{W} - Л.П. над полето $\mathbb{F}, \varphi \in \text{Hom}(\mathbb{V}, \mathbb{W})$

$$\varphi$$
 е интективно $\iff \operatorname{Ker} \varphi = \{\theta_{\mathbb{V}}\}$

Доказателство (в двете посоки):

Доказателство (
$$\Longrightarrow$$
) $\{\theta_{\mathbb{V}}\}\subseteq \mathrm{Ker}\varphi\ (\theta_{\mathbb{V}}\in \mathrm{Ker}\varphi)$

Нека
$$v \in \text{Ker}\varphi \implies \varphi(v) = \theta_{\mathbb{W}} = \varphi(\theta_{\mathbb{V}})$$

$$\varphi$$
 - инективно $\implies v = \theta_{\mathbb{V}} \implies \mathrm{Ker} \varphi \subseteq \{\theta_{\mathbb{V}}\} \implies \mathrm{Ker} \varphi = \{\theta\}$

Доказателство (\Leftarrow)

Нека
$$u, v \in \mathbb{V} : \varphi(u) = \varphi(v) \Longrightarrow$$

$$\theta_{\mathbb{V}} = \varphi(u) - \varphi(v) = \varphi(u - v) \implies$$

$$u - v = \theta_{\mathbb{V}}, \{\theta_{\mathbb{V}}\} = \operatorname{Ker}\varphi \implies$$

 $u = v \implies \varphi$ е инективно

6.5 Обратимо линейно изображение изпраща линейно независими вектори в линейно независими вектори

Нека \mathbb{V}, \mathbb{W} - Л.П. над полето $\mathbb{F}, \dim \mathbb{V} = n, \varphi \in \operatorname{Hom}(\mathbb{V}, \mathbb{W})$ - обратимо Л.И.

Нека $k \in \mathbb{N}$: $k \leq n$ и нека $v_1, \ldots v_k \in \mathbb{V}$ са лин. независи вектори

Допускаме, че техните образи са лин. зависими, тоест:

$$\exists \lambda_1, \ldots, \lambda_k \in \mathbb{F} : (\lambda_1, \ldots, \lambda_k) \neq (0, \ldots, 0) \quad \sum_{i=1}^k \lambda_i \varphi(v_i) = \theta_{\mathbb{W}} \mid \varphi^{-1} \Longrightarrow$$

$$\varphi^{-1} \left(\sum_{i=1}^k \lambda_i \varphi(v_i) \right) = \sum_{i=1}^k \lambda_i \varphi^{-1} (\varphi(v_i)) = \sum_{i=1}^k \lambda_i v_i = \varphi^{-1} (\theta_{\mathbb{W}}) = \theta_{\mathbb{V}} \Longrightarrow$$

$$\sum_{i=1}^n \lambda_i v_i = \theta_{\mathbb{V}} \Longrightarrow v_1, \ldots v_k \text{- лин. зависими} \Longrightarrow f$$

$$\sum_{i=1}^n \lambda_i v_i = heta_{\mathbb{V}} \implies v_1, \; \dots v_k$$
 - лин. зависими $\implies
otin$

$$\implies \varphi(v_1),\; \ldots \varphi(v_k)$$
 - лин. независими

Смяна на базиса

Определението за матрица на прехода между два базиса

Нека \mathbb{V} - К.М.Л.П. над полето \mathbb{F} , $\dim \mathbb{V} = n$ e_1,\ldots,e_n - един базис на $\mathbb V$

 f_1,\ldots,f_n - друг базис на $\mathbb V$

$$i = 1, \dots, n$$
 $f_i = \sum_{j=1}^{n} \tau_{ji} e_j, \quad j, \ i = 1, \dots, n, \ \tau_{ji} \in \mathbb{F}$

 $T_{e \to f} = (\tau_{ji})_{n \times n} \in M_n$ е матрица на прехода между базисите e, f на $\mathbb V$

7.2 Промяна на координатите на вектор при смяна на базиса

Нека \mathbb{V} - К.М.Л.П. над полето \mathbb{F} , dim $\mathbb{V}=n$

Нека e_1, \ldots, e_n - един базис на \mathbb{V}

Нека f_1,\ldots,f_n - друг базис на $\mathbb V$

Нека
$$v = \sum_{i=1}^n \lambda_i e_i = \sum_{i=1}^n \mu_i f_i \in \mathbb{V}, \quad i = 1, \dots, n \ \lambda_i, \ \mu_i \in \mathbb{F}$$

 $(\lambda_1,\dots,\lambda_n)^t=T_{e\to f}(\mu_1,\dots,\mu_n)^t,\ T_{e\to f}$ - матрицата на прехода между базисите e и f.

7.3 Промяна на матрицата на линейно изображение при смяна на базиса

Нека \mathbb{V} , \mathbb{W} - К.М.Л.П. над полето \mathbb{F} , $\dim \mathbb{V} = n$, $\dim \mathbb{W} = m$, $\varphi \in \operatorname{Hom}(\mathbb{V}, \mathbb{W})$

Нека s_1, \ldots, s_n е един базис на $\mathbb V$

Нека s_1',\ldots,s_n' е друг базис на $\mathbb V$

Нека u_1, \ldots, u_m е базис на \mathbb{W}

Нека u_1', \ldots, u_m' е друг базис на \mathbb{W}

Нека $A=M_{s o u}(\varphi)$ е матрицата на оператора φ спрямо базисите $s,\ u$

и нека $B=T_{s \to s'}$ е матрицата на прехода между базисите s и s'

и нека $C = T_{u \to u'}$ е матрицата на прехода между базисите u и u'

и нека $D = M_{s' \to u'}(\varphi)$ е матрицата на оператора φ спрямо базисите s', u'.

Тогава е в сила равенството $D = CAB^{-1}$.

Бележка: $M_{s'\to u'}(\varphi) = T_{u\to u'} \circ M_{s\to u}(\varphi) \circ T_{s'\to s}$.

Комутативна диаграма

$$V_{s} \xleftarrow{B^{-1}} V_{s'}$$

$$A \downarrow \qquad \qquad \downarrow D$$

$$W_{u} \xrightarrow{C} W_{u'}$$

7.4 Промяна на матрицата на линеен оператор при смяна на базиса

Нека $\mathbb V$ - К.М.Л.П. над полето $\mathbb F$, $\dim \mathbb V=n,\ \varphi\in \mathrm{Hom}\mathbb V$

Нека b_1,\ldots,b_n - един базис на $\mathbb V$

Нека b_1',\dots,b_n' - друг базис на $\mathbb V$

Нека $A=M_b(\varphi)$ - матрицата на оператора φ в базиса b

и нека $B = T_{b o b'}$ - матрицата на прехода между базисите b и b'.

Тогава $C = B^{-1}AB$ е матрицата на оператора φ в базиса b'.

Toect $C = T_{b'\to b} M_b(\varphi) T_{b\to b'} = M_{b'}(\varphi)$.

7.5 Първа теорема за ранг на матрици

Нека $m, n \in \mathbb{N}, A \in \mathbb{F}_{m \times n} \implies r(A) = r(A^t)$

8 Дуалност

8.1 Определение за дуалното пространство на дадено линейно пространство

Нека $\mathbb V$ - Л.П. над полето $\mathbb F$

Тогава $\mathbb{V}^* = \mathrm{Hom}(\mathbb{V}, \mathbb{F})$ е дуалното пространство на Л.П. на \mathbb{V}

8.2 Определение за линеен функционал

Нека \mathbb{V} , \mathbb{W} - Л.П. над полето \mathbb{F}

fе линеен функционал на $\mathbb{V} \iff f \in \mathbb{V}^*$

8.3 Определение за дуалното изображение на дадено линейно изображение

Нека \mathbb{V} , \mathbb{W} - Л.П. над полето \mathbb{F}

 \mathbb{V}^* , \mathbb{W}^* - Дуалните пространства на Л.П. \mathbb{V} , \mathbb{W}

Ако
$$\varphi \in \text{Hom}(\mathbb{V}, \mathbb{W}) \implies \varphi^* \in \text{Hom}(\mathbb{W}^*, \mathbb{V}^*)$$

$$\forall f \in \mathbb{W}^* \ \varphi^*(f) = f \circ \varphi$$

8.4 Определение за за дуален базис

Нека \mathbb{V} - Л.П. над полето \mathbb{F} , $\dim \mathbb{V} = n$, \mathbb{V}^* - дуалното пространство на \mathbb{V}

$$e_1,\ldots,e_n$$
 - базис на $\mathbb V$

 f^1,\ldots,f^n - дуален базис на базиса e_1,\ldots,e_n

$$j, i = 1, \dots, n$$
 $f^{i}(e_{j}) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

8.5 Дуално изображение на произведението на две линейни изображения

Нека \mathbb{V} , \mathbb{W} , \mathbb{U} - Л.П. над полето \mathbb{F} , $\in \text{Hom}(\mathbb{V}, \mathbb{W})$, $\psi \in \text{Hom}(\mathbb{W}, \mathbb{U})$

$$\psi\varphi\in \operatorname{Hom}(\mathbb{V},\,\mathbb{U}) \implies (\psi\varphi)^*\in Hom(\mathbb{U}^*,\mathbb{V}^*)$$

$$\forall f \in \mathbb{U}^* \ (\psi \varphi)^*(f) = f \circ (\psi \varphi) = (f \circ \psi) \circ \varphi =$$

$$= \varphi^*(f \circ \psi) = \varphi^*(\psi^*(f)) = (\varphi^*\psi^*)(f)$$

$$\implies (\psi \varphi)^* = \varphi^* \psi^*$$

8.6 Връзката между матриците на едно линейно изображение и неговото дуално изображение

Нека \mathbb{V} , \mathbb{W} - К.М.Л.П. над полето \mathbb{F}

$$\varphi \in \operatorname{Hom}(\mathbb{V}, \mathbb{W}), \ \varphi^* \in \operatorname{Hom}(\mathbb{W}^*, \mathbb{V}^*)$$

Нека e_1, \ldots, e_n — базис на \mathbb{V}

Нека e_1',\dots,e_n' — дуален базис на базиса e_1,\dots,e_n

Нека
$$f_1,\ldots,f_m$$
 — базис на $\mathbb W$

Нека
$$f_1',\dots,f_m'$$
 — дуален базис на базиса f_1,\dots,f_m

Тогава
$$M_{f' \to e'}(\varphi^*) = (M_{e \to f}(\varphi))^t$$

8.7 Определение за анихилатор \mathbb{U}^0 на едно линейно подпространсво \mathbb{U} на едно линейно пространство \mathbb{V}

Нека $\mathbb V$ - Л.П. над полето $\mathbb F$

$$\mathbb{U} < \mathbb{V} \implies \mathbb{U}^0 = \{ f \in \mathbb{V}^* \mid \forall u \in \mathbb{U} \ f(u) = 0 \}$$