EJERCICIOS PRÁCTICOS:

Problema No. 1

Un herrero con 80 Kg. de acero y 120 Kg. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente a 20.000 y 15.000 pesos cada una para sacar el máximo beneficio. Para la de paseo empleará 1 Kg. De acero y 3 Kg. de aluminio, y para la de montaña 2 Kg. de ambos metales. ¿Cuántas bicicletas de paseo y de montaña deberá fabricar para maximizar las utilidades?

	Requerimient	Precio de venta		
	Acero	Aluminio	Precio de venta	
Bicicletas de paseo	1 kg	3 kg	\$ 20,000	
Bicicletas de montaña	2 kg	2 kg	\$ 15,000	

Disponibilidad 80 kg 120 kg

Definición de variables

X = Cantidad de bicicletas de paseo a producir.

Y = Cantidad de bicicletas de montaña a producir.

Restricciones

X + 2Y <= 80 (Disponibilidad de acero)
3X + 2Y <= 120 (Disponibilidad de aluminio)
X; Y >= 0 (Restricciones de NO negatividad)

Función objetivo

Zmax = 20000X + 15000Y

Problema No. 2

Un autobús que hace el recorrido Cali-Buga, ofrece asientos para fumadores al precio de 10.000 pesos y a no fumadores al precio de 6.000 pesos. Al no fumador se le deja llevar 50 Kg. de peso y al fumador 20 Kg. Si el autobús tiene 90 asientos y admite un equipaje de hasta 3.000 Kg. ¿Cuál ha de ser la oferta de asientos de la compañía para cada tipo de pasajeros, con la finalidad de optimizar el beneficio?

Además, debe considerarse que por políticas de la empresa, deben ofrecerse cómo mínimo 10 asientos para pasajeros no fumadores.

	Equipaje permitido	Precio de pasaje
Fumadores	20 kg	\$10,000
No fumadores	50 kg	\$6,000

Disponibilidad 3,000 Kg

Cantidad de asientos: 90

Problema No. 3

Un comerciante acude al mercado popular a comprar naranjas con 50.000 pesos. Le ofrecen dos tipos de naranjas: las de tipo A a 50 pesos el Kg. y las de tipo B a 80 pesos el Kg. Sabiendo que sólo dispone de su camioneta con espacio para transportar 700 Kg. de naranjas como máximo y que piensa vender el Kg. de naranjas tipo A a 58 pesos. y el Kg. de tipo B a 90 pesos. plantee un modelo de programación lineal que permita resolver la situación anterior.

http://ingenieria-industrial.net/software/jsimplex

http://www.phpsimplex.com/simplex/simplex.htm

RESPUESTAS 1:

Función objetivo / Ingresos por ventas	Valor final
Ingresos por ventas	850000
Variables de decisión / Cantidades a producir	Valor final
Cantidad de bicicletas de paseo a producir	20
Cantidad de bicicletas de montaña a producir	30
Restricciones / Consumo de MP	Valor de la celda
Consumo de materias primas Acero	80
Consumo de materias primas Aluminio	120

RESPUESTA 2:

Definición de variables

X = Cantidad de asientos reservados a fumadores.

Y = Cantidad de asientos reservados a no fumadores.

Restricciones

 $20X + 50Y \le 3000$ (Equipaje permitido) $X + Y \le 90$ (Asientos disponibles) Y >= 10 (Políticas no fumadores) X; Y >= 0 (No negatividad)

Función objetivo

Zmax = 10000X + 6000Y

Solución mediante SOLVER

Función Objetivo	Valor final	
Ingresos por pasajes vendidos	860000	
Variables de decisión	Valor final	
Cantidad de asientos reservados a fumadores	80	
Cantidad de asientos reservados a no fumadores	10	
Restricciones	Valor de la celda	
Cantidad total de asientos utilizados	90	
Peso total del equipaje de los pasajeros	2100	
Cantidad de asientos reservados a no fumadores	10	

RESPUESTA 3:

	Costo	Peso	Precio de venta	Utilidad
Naranjas tipo A	\$50 / kg	1 Kg	\$58 / kg	\$8/kg
Naranjas tipo B	\$80 / kg	1 Kg	\$ 90 / kg	\$10/Kg

Disponibilidad \$50,000 700 Kg

Definición de las variables

X = Cantidad de Kg de naranjas tipo A a comprar.

Y = Cantidad de Kg de naranjas tipo B a comprar.

Restricciones

50X + 80Y <= 50.000 (Dinero disponible para comprar)

 $X + Y \le 700$ (Capacidad de transporte)

Función Objetivo

Zmax = 8X + 10Y

Solución obtenida mediante SOLVER

Función Objetivo	Valor final
Utilidad de la compraventa de naranjas	6600
Variables de decisión	Valor final
Cantidad de Kg de naranjas tipo A a comprar	200
Cantidad de Kg de naranjas tipo B a comprar	500
Restricciones	Valor de la celda
Costo total de la compra de naranjas	50000
Peso total de las naranjas compradas	700