

COMPUTER SECURITY

ART and SCIENCE MATT BISHOP With contributions from ELISABETH SULLIVAN and MICHELLE RUPPEL

FREE SAMPLE CHAPTER

SHARE WITH OTHERS

Computer Security

Second Edition

Computer Security Art and Science

Second Edition

Matt Bishop

with contributions from Elisabeth Sullivan and Michelle Ruppel

★Addison-Wesley

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2018950017

Copyright © 2019 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-321-71233-2 ISBN-10: 0-321-71233-1 To my dear Holly; our children Heidi, Steven, David, and Caroline; our grandchildren Skyler and Sage; and our friends Seaview, Tinker Belle, Stripe, Baby Windsor, Scout, Fur, Puff, Mouse, Shadow, Fuzzy, Dusty, and the rest of the menagerie.

Contents

		nentsx	
Abou	t the Aut	hor	lix
PAR	T I : INTI	RODUCTION	1
Chap	ter 1 A	n Overview of Computer Security	3
1.1		sic Components	
	1.1.1	Confidentiality	
	1.1.2	Integrity	
	1.1.3	Availability	. 6
1.2	Threats	· · · · · · · · · · · · · · · · · · ·	. 6
1.3	Policy a	and Mechanism	. 9
	1.3.1	Goals of Security	10
1.4	Assumj	otions and Trust	11
1.5	Assura	nce	12
	1.5.1	Specification	14
	1.5.2	Design	14
	1.5.3	Implementation	15
1.6	Operati	onal Issues	16
	1.6.1	Cost-Benefit Analysis	16
	1.6.2	Risk Analysis	17
	1.6.3	Laws and Customs	19
1.7	Human	Issues	
	1.7.1	Organizational Problems	20
	1.7.2	People Problems	21
1.8	Tying I	t All Together	22
1.9	Summa	ıry	24
1.10	Researc	ch Issues	24
1.11	Further	Reading	25
1.12	Exercis	es	25

PART II: FOUNDATIONS 29			
Chapt	ter 2 A	ccess Control Matrix	. 31
2.1	Protect	ion State	. 31
2.2		Control Matrix Model	
	2.2.1	Access Control by Boolean Expression Evaluation	
	2.2.2	Access Controlled by History	
2.3	Protect	ion State Transitions	
	2.3.1	Conditional Commands	
2.4	Copyin	g, Owning, and the Attenuation of Privilege	
	2.4.1	Copy Right	
	2.4.2	Own Right	
	2.4.3	Principle of Attenuation of Privilege	
2.5	Summa	ıry	. 44
2.6	Researc	ch Issues	. 44
2.7	Further	r Reading	. 44
2.8	Exercis	es	. 45
Chapt		oundational Results	
3.1		neral Question	
3.2		esults	
3.3		ke-Grant Protection Model	
	3.3.1	Sharing of Rights	
	3.3.2	Interpretation of the Model	
	3.3.3	Theft in the Take-Grant Protection Model	
	3.3.4	Conspiracy	
	3.3.5	Summary	
3.4	_	the Gap: The Schematic Protection Model	
	3.4.1	Link Predicate	
	3.4.2	Filter Function	
	3.4.3	Putting It All Together	
	3.4.4	Demand and Create Operations	
	3.4.5	Safety Analysis	
3.5	_	sive Power and the Models	
	3.5.1	Brief Comparison of HRU and SPM	
	3.5.2	Extending SPM	
	3.5.3	Simulation and Expressiveness	
	3.5.4	Typed Access Matrix Model	
3.6	-	ring Security Properties of Models	
	3.6.1	Comparing Schemes and Security Properties	
	3.6.2	Augmented Typed Access Matrix Model	. 99

3.7	Summary	101	
3.8	Research Issues		
3.9	Further Reading		
3.10	Exercises		
PAR	Γ III : POLICY	107	
Chap	ter 4 Security Policies	109	
4.1	The Nature of Security Policies	109	
4.2	Types of Security Policies	113	
4.3	The Role of Trust	115	
4.4	Types of Access Control	117	
4.5	Policy Languages		
	4.5.1 High-Level Policy Languages		
	4.5.2 Low-Level Policy Languages		
4.6	Example: Academic Computer Security Policy		
	4.6.1 General University Electronic Communications		
	Policy	127	
	4.6.2 Implementation at UC Davis		
4.7	Security and Precision		
4.8	Summary	136	
4.9	Research Issues	136	
4.10	Further Reading	137	
4.11	Exercises	138	
Chan	ter 5 Confidentiality Policies	111	
5.1	Goals of Confidentiality Policies		
5.2	The Bell-LaPadula Model		
	5.2.1 Informal Description		
	5.2.2 Example: Trusted Solaris		
	5.2.3 Formal Model		
<i>-</i> 2	5.2.4 Example Model Instantiation: Multics		
5.3	Tranquility		
<i>-</i> 4	5.3.1 Declassification Principles		
5.4	The Controversy over the Bell-LaPadula Model		
	5.4.1 McLean's †-Property and the Basic Security Theorem		
	5.4.2 McLean's System Z and More Questions	166	
5.5	Summary	169	
5.6	Research Issues	169	
5.7	Further Reading	170	
5.8	Exercises	171	

Chap	ter 6 li	ntegrity Policies	'3
6.1	Goals		13
6.2	The Bi	ba Model	15
	6.2.1	Low-Water-Mark Policy	6
	6.2.2	Ring Policy	7
	6.2.3	Biba's Model (Strict Integrity Policy)	17
6.3	Lipner	's Integrity Matrix Model	8
	6.3.1	Lipner's Use of the Bell-LaPadula Model 17	18
	6.3.2	Lipner's Full Model	31
	6.3.3	Comparison with Biba	32
6.4	Clark-	Wilson Integrity Model	3
	6.4.1	The Model	
	6.4.2	Comparison with the Requirements	
	6.4.3	Comparison with Other Models	
6.5	Trust I	Models	
	6.5.1	5	
	6.5.2	Reputation-Based Trust Management	
6.6		ary	
6.7		ch Issues	
6.8		er Reading	
6.9	Exerci	ses	18
Chap	ter 7 A	Availability Policies)1
7.1	Goals	of Availability Policies	1
7.2	Deadle	ock)2
7.3	Denial	of Service Models)3
	7.3.1	Constraint-Based Model)4
	7.3.2	State-Based Modes	
7.4	Examp	ble: Availability and Network Flooding	
	7.4.1	Analysis	.6
	7.4.2	Intermediate Systems	
	7.4.3	TCP State and Memory Allocations	
	7.4.4	Other Flooding Attacks	
7.5		ary 22	
7.6		rch Issues	
7.7		er Reading	
7.8	Exerci	ses	<u>'</u> 4
Chap	ter 8 F	lybrid Policies	27
8.1	Chines	se Wall Model	27
	8.1.1	Informal Description	
	8.1.2	Formal Model	

	8.1.3 Aggressive Chinese Wall Model	233
	8.1.4 Bell-LaPadula and Chinese Wall Models	234
	8.1.5 Clark-Wilson and Chinese Wall Models	236
8.2	Clinical Information Systems Security Policy	
	8.2.1 Bell-LaPadula and Clark-Wilson Models	239
8.3	Originator Controlled Access Control	239
	8.3.1 Digital Rights Management	241
8.4	Role-Based Access Control	244
8.5	Break-the-Glass Policies	249
8.6	Summary	250
8.7	Research Issues	250
8.8	Further Reading	251
8.9	Exercises	252
Chapt	ter 9 Noninterference and Policy Composition	255
9.1	The Problem	255
	9.1.1 Composition of Bell-LaPadula Models	
9.2	Deterministic Noninterference	
	9.2.1 Unwinding Theorem	
	9.2.2 Access Control Matrix Interpretation	
	9.2.3 Security Policies That Change over Time	
	9.2.4 Composition of Deterministic Noninterference-Secure	
	Systems	270
9.3	Nondeducibility	
,	9.3.1 Composition of Deducibly Secure Systems	
9.4	Generalized Noninterference	
· · ·	9.4.1 Composition of Generalized Noninterference Systems	
9.5	Restrictiveness	
J.5	9.5.1 State Machine Model	
	9.5.2 Composition of Restrictive Systems	
9.6	Side Channels and Deducibility	
9.7	Summary	
9.8	Research Issues	
9.9	Further Reading	
9.10	Exercises	
D A D	Γ IV : IMPLEMENTATION I: CRYPTOGRAPHY	287
ran I	IV : IMPLEMENTATION I: CRIPTOGRAPHY	2 0/
Chapt	ter 10 Basic Cryptography	289
10.1	Cryptography	289
	10.1.1 Overview of Cryptanalysis	

10.2	Symme	etric Cryptosystems
	10.2.1	Transposition Ciphers
	10.2.2	Substitution Ciphers
	10.2.3	Data Encryption Standard
	10.2.4	Other Modern Symmetric Ciphers
	10.2.5	Advanced Encryption Standard
10.3	Public 1	Key Cryptography
	10.3.1	El Gamal
	10.3.2	RSA 309
	10.3.3	Elliptic Curve Ciphers
10.4	Crypto	graphic Checksums
	10.4.1	HMAC 317
10.5	Digital	Signatures
	10.5.1	Symmetric Key Signatures
	10.5.2	Public Key Signatures
10.6	Summa	nry 323
10.7		ch Issues
10.8	Further	r Reading
10.9	Exercis	es
Chap	ter 11	Key Management
11.1		and Interchange Keys
11.2		change
11,2	11.2.1	
	11.2.1	
	11.2.3	Public Key Cryptographic Key Exchange and
	11.2.5	Authentication
11.3	Kev Ge	eneration
11.4		graphic Key Infrastructures
	11.4.1	Merkle's Tree Authentication Scheme
	11.4.2	Certificate Signature Chains
	11.4.3	Public Key Infrastructures
11.5		and Revoking Keys
	11.5.1	Key Storage
	11.5.2	Key Revocation
11.6		ary
11.7		ch Issues
11.8		r Reading
11.9		es
11.7	LACICIS	

Chap	ter 12 (Cipher Techniques	367
12.1	Probler	ms	367
	12.1.1	Precomputing the Possible Messages	367
	12.1.2	Misordered Blocks	368
	12.1.3	Statistical Regularities	
	12.1.4	Type Flaw Attacks	369
	12.1.5	Summary	370
12.2	Stream	and Block Ciphers	370
	12.2.1	Stream Ciphers	371
	12.2.2	Block Ciphers	374
12.3	Authen	nticated Encryption	377
	12.3.1	Counter with CBC-MAC Mode	377
	12.3.2	Galois Counter Mode	379
12.4	Networ	rks and Cryptography	381
12.5		le Protocols	
	12.5.1	Secure Electronic Mail: PEM and	
		OpenPGP	384
	12.5.2	Instant Messaging	
	12.5.3	Security at the Transport Layer: TLS and SSL	
	12.5.4	Security at the Network Layer: IPsec	
	12.5.5	Conclusion	
12.6	Summa	ary	410
12.7		ch Issues	
12.8	Furthe	r Reading	411
12.9	Exercis	ses	413
Chap	ter 13	Authentication	415
13.1	Authen	ntication Basics	415
13.2	Passwo	ords	416
13.3	Passwo	ord Selection	418
	13.3.1	Random Selection of Passwords	418
	13.3.2	Pronounceable and Other Computer-Generated	
		Passwords	420
	13.3.3	User Selection of Passwords	421
	13.3.4	Graphical Passwords	425
13.4	Attack	ing Passwords	
	13.4.1	Off-Line Dictionary Attacks	
	13.4.2	On-Line Dictionary Attacks	
	13.4.3	Password Strength	

	Passwo:	rd Aging	434
	13.5.1		
13.6	Challen	ge-Response	
	13.6.1	Pass Algorithms	
	13.6.2	Hardware-Supported Challenge-Response Procedures	
	13.6.3	Challenge-Response and Dictionary Attacks	
13.7	Biomet	rics	
	13.7.1	Fingerprints	442
	13.7.2	Voices	443
	13.7.3	Eyes	443
	13.7.4	Faces	444
	13.7.5	Keystrokes	
	13.7.6		
13.8	Locatio	n	445
13.9	Multifa	ctor Authentication	446
13.10		ry	
		h Issues	
		Reading	
		es	
		PLEMENTATION II: SYSTEMS	453
Chapt	ter 14 🏻 🖺	Design Principles	455
14.1			
14.1	Underly	ying Ideas	455
14.1		ying Ideas	
			457
	Princip	les of Secure Design	457 457
	Princip	les of Secure Design	457 457 458
	Princip 14.2.1 14.2.2	les of Secure Design	457 457 458
	Princip 14.2.1 14.2.2 14.2.3	les of Secure Design	457 457 458 459 460
	Princip 14.2.1 14.2.2 14.2.3 14.2.4	les of Secure Design Principle of Least Privilege Principle of Fail-Safe Defaults Principle of Economy of Mechanism Principle of Complete Mediation Principle of Open Design	457 457 458 459 460
	Princip 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5	les of Secure Design	457 458 459 460 461
	Princip 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6	les of Secure Design Principle of Least Privilege Principle of Fail-Safe Defaults Principle of Economy of Mechanism Principle of Complete Mediation Principle of Open Design Principle of Separation of Privilege	457 458 459 460 461 463
	Princip 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6 14.2.7 14.2.8	les of Secure Design Principle of Least Privilege Principle of Fail-Safe Defaults Principle of Economy of Mechanism Principle of Complete Mediation Principle of Open Design Principle of Separation of Privilege Principle of Least Common Mechanism Principle of Least Astonishment	457 458 459 460 461 463 464
14.214.3	Princip 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6 14.2.7 14.2.8 Summa	les of Secure Design Principle of Least Privilege Principle of Fail-Safe Defaults Principle of Economy of Mechanism Principle of Complete Mediation Principle of Open Design Principle of Separation of Privilege Principle of Least Common Mechanism	457 458 459 460 461 463 464
14.2 14.3 14.4	Princip 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6 14.2.7 14.2.8 Summa Researce	les of Secure Design Principle of Least Privilege Principle of Fail-Safe Defaults Principle of Economy of Mechanism Principle of Complete Mediation Principle of Open Design Principle of Separation of Privilege Principle of Least Common Mechanism Principle of Least Astonishment ry	457 458 459 460 461 463 464 466
14.2	Princip 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6 14.2.7 14.2.8 Summa Researc Further	les of Secure Design Principle of Least Privilege Principle of Fail-Safe Defaults Principle of Economy of Mechanism Principle of Complete Mediation Principle of Open Design Principle of Separation of Privilege Principle of Least Common Mechanism Principle of Least Astonishment Principle of Least Astonishment	457 458 459 461 463 463 466 466
14.2 14.3 14.4 14.5	Princip 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6 14.2.7 14.2.8 Summa Research Further Exercise	les of Secure Design Principle of Least Privilege Principle of Fail-Safe Defaults Principle of Economy of Mechanism Principle of Complete Mediation Principle of Open Design Principle of Separation of Privilege Principle of Least Common Mechanism Principle of Least Astonishment	457 458 459 460 461 463 464 466 466 468
14.2 14.3 14.4 14.5 14.6	Princip 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6 14.2.7 14.2.8 Summa Research Further Exercise	les of Secure Design Principle of Least Privilege Principle of Fail-Safe Defaults Principle of Economy of Mechanism Principle of Complete Mediation Principle of Open Design Principle of Separation of Privilege Principle of Least Common Mechanism Principle of Least Astonishment	457 458 459 460 461 463 464 466 466 468
14.2 14.3 14.4 14.5 14.6 Chap t	Princip 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6 14.2.7 14.2.8 Summa Researc Further Exercise	les of Secure Design Principle of Least Privilege Principle of Fail-Safe Defaults Principle of Economy of Mechanism Principle of Complete Mediation Principle of Open Design Principle of Separation of Privilege Principle of Least Common Mechanism Principle of Least Astonishment	457 458 459 461 463 466 466 467 468

15.4	Groups and Roles
15.5	Naming and Certificates
	15.5.1 Conflicts
	15.5.2 The Meaning of the Identity
	15.5.3 Trust
15.6	Identity on the Web
	15.6.1 Host Identity
	15.6.2 State and Cookies
15.7	Anonymity on the Web
	15.7.1 Email Anonymizers
	15.7.2 Onion Routing
15.8	Summary
15.9	Research Issues
15.10	Further Reading
	Exercises
Chap	ter 16 Access Control Mechanisms 50
16.1	Access Control Lists
	16.1.1 Abbreviations of Access Control Lists
	16.1.2 Creation and Maintenance of Access Control Lists 51
	16.1.3 Revocation of Rights
	16.1.4 Example: NTFS and Access Control Lists
16.2	Capabilities
	16.2.1 Implementation of Capabilities
	16.2.2 Copying and Amplifying Capabilities
	16.2.3 Revocation of Rights
	16.2.4 Limits of Capabilities
	16.2.5 Comparison with Access Control Lists
	16.2.6 Privileges
16.3	Locks and Keys
	16.3.1 Type Checking
	16.3.2 Sharing Secrets
16.4	Ring-Based Access Control
16.5	Propagated Access Control Lists
16.6	Summary
16.7	Research Issues
16.8	Further Reading
16.9	Exercises
Chap	ter 17 Information Flow 53
17.1	Basics and Background
_ , , .	17.1.1 Entropy-Based Analysis
	17.1.2 Information Flow Models and Mechanisms
	1,11,= 11101111WIOII 1 10 1, 1110WIO WIIG 1110011WIIIU 1,1,1,1,1,1,1,1

17.2	Nonlati	tice Information Flow Policies	542
	17.2.1	Confinement Flow Model	543
	17.2.2	Transitive Nonlattice Information Flow Policies	544
	17.2.3	Nontransitive Information Flow Policies	545
17.3	Static N	Mechanisms	548
	17.3.1	Declarations	
	17.3.2	Program Statements	550
	17.3.3	Exceptions and Infinite Loops	557
	17.3.4	Concurrency	558
	17.3.5	Soundness	
17.4	Dynam	ic Mechanisms	
	17.4.1	Fenton's Data Mark Machine	
	17.4.2	Variable Classes	565
17.5	Integrit	y Mechanisms	566
17.6	Examp	le Information Flow Controls	
	17.6.1	Privacy and Android Cell Phones	568
	17.6.2		
17.7		ury	
17.8		ch Issues	
17.9		r Reading	
17.10	Exercise	es	576
Chapt	er 18 (Confinement Problem	579
18.1	The Co	nfinement Problem	579
18.2		on	
		Controlled Environment	
	18.2.2	Program Modification	
18.3		Channels	
	18.3.1		
	18.3.2		
	18.3.3	=	
18.4	Summa	ıry	
18.5		ch Issues	
18.6		r Reading	
18.7		es	
PART	VI : AS	SSURANCE	625
Contr	ibuted b	y Elisabeth Sullivan and Michelle Ruppel	
Chapt	er 19 I	ntroduction to Assurance	627
19.1	Assuran	nce and Trust	627
	19.1.1	The Need for Assurance	629

			Contents	xvii
	10.1.2 TI	D.I. CD.		(21
		e Role of Requirements in Assurance		
10.2		surance throughout the Life Cycle		
19.2		cure and Trusted Systems		
		e Cycle		
		le Software Development		
		ner Models of Software Development		
19.3				
19.4	•	sues		
19.5		iding		
19.6				
-		ing Systems with Assurance		
20.1		n Requirements Definition and Analysis		
		reats and Security Objectives		
		chitectural Considerations		
		icy Definition and Requirements Specification		
20.2		tifying Requirements		
20.2		sign Techniques That Support Assurance		
		sign Document Contents		
		lding Documentation and Specification		
		tifying That Design Meets Requirements		
20.3		n Implementation and Integration		
_0.0		plementation Considerations That Support		000
	Ass	urance		685
	20.3.2 Ass	urance through Implementation Managemen	t	686
	20.3.3 Just	tifying That the Implementation Meets		
		Design		
20.4		luring Operation and Maintenance		
20.5				
20.6		sues		
20.7		ding		
20.8	Exercises			698
Chap	ter 21 Form	al Methods		699
21.1		fication Techniques		
21.1		cification		
21.3		al Verification Techniques		
	-	e Hierarchical Development Methodology		
		nanced HDM		
		e Gypsy Verification Environment		

21.4	Curren	t Verification Systems	713
	21.4.1	The Prototype Verification System	713
	21.4.2	The Symbolic Model Verifier	716
	21.4.3	The Naval Research Laboratory Protocol Analyzer	720
21.5	Function	onal Programming Languages	721
21.6	Formal	lly Verified Products	722
21.7	Summa	ry	723
21.8	Researc	ch Issues	724
21.9	Further	r Reading	725
21.10	Exercis	es	725
Chapt	ter 22 I	Evaluating Systems	727
22.1	Goals	of Formal Evaluation	727
	22.1.1	Deciding to Evaluate	
	22.1.2	Historical Perspective of Evaluation Methodologies	
22.2		2: 1983–1999	
	22.2.1	TCSEC Requirements	
	22.2.2	The TCSEC Evaluation Classes	
	22.2.3	The TCSEC Evaluation Process	
	22.2.4	Impacts	
22.3	Interna	tional Efforts and the ITSEC: 1991–2001	
	22.3.1	ITSEC Assurance Requirements	
	22.3.2	The ITSEC Evaluation Levels	
	22.3.3	The ITSEC Evaluation Process	741
	22.3.4	Impacts	
22.4	Commo	ercial International Security Requirements: 1991	
	22.4.1	CISR Requirements	743
	22.4.2	Impacts	743
22.5	Other O	Commercial Efforts: Early 1990s	744
22.6	The Fe	deral Criteria: 1992	744
	22.6.1	FC Requirements	745
	22.6.2	Impacts	745
22.7	FIPS 1	40: 1994–Present	746
	22.7.1	FIPS 140 Requirements	
	22.7.2	FIPS 140-2 Security Levels	747
	22.7.3	Additional FIPS 140-2 Documentation	748
	22.7.4	Impact	
	22.7.5	Future	
22.8		ommon Criteria: 1998–Present	
	22.8.1	Overview of the Methodology	
	22.8.2	CC Requirements	
	22.8.3	CC Security Functional Requirements	756

	22.8.4	Assurance Requirements	759
	22.8.5	Evaluation Assurance Levels	
	22.8.6	Evaluation Process	
	22.8.7	Other International Organizations	
	22.8.8	Impacts	
	22.8.9	Future of the Common Criteria	764
22.9	SSE-CN	MM: 1997–Present	765
	22.9.1	The SSE-CMM Model	765
	22.9.2	Using the SSE-CMM	767
22.10	Summa	ıry	
		ch Issues	
		Reading	
		es	
PAR	Γ VII : SI	PECIAL TOPICS	773
Chapt	ter 23 N	Malware	775
23.1		ection	
23.2	Trojan	Horses	
	23.2.1	Rootkits	
	23.2.2	Propagating Trojan Horses	779
23.3	Compu	ter Viruses	
	23.3.1		
	23.3.2	Concealment	785
	23.3.3	Summary	790
23.4	Compu	ter Worms	790
23.5	Bots an	d Botnets	793
23.6	Other N	Malware	796
	23.6.1	Rabbits and Bacteria	796
	23.6.2	Logic Bombs	797
	23.6.3	Adware	797
	23.6.4	Spyware	799
	23.6.5	Ransomware	800
	23.6.6	Phishing	802
23.7	Combin	nations	803
23.8	Theory	of Computer Viruses	803
23.9	Defense	es	808
	23.9.1	Scanning Defenses	808
	23.9.2	Data and Instructions	
	23.9.3	Containment	812
	23.9.4	Specifications as Restrictions	817

	23.9.5 23.9.6	Limiting Sharing	. 819
22.10	23.9.7	The Notion of Trust	
		ry	
		h Issues	
		Reading	
23.13	Exercise	es	. 822
Chapt	er 24 V	/ulnerability Analysis	. 825
24.1	Introdu	ction	. 825
24.2	Penetra	tion Studies	. 827
	24.2.1	Goals	. 827
	24.2.2	Layering of Tests	
	24.2.3	Methodology at Each Layer	
	24.2.4	Flaw Hypothesis Methodology	
	24.2.5	Versions	
	24.2.6	Example: Penetration of the Michigan Terminal	. 000
		System	. 837
	24.2.7	Example: Compromise of a Burroughs System	. 839
	24.2.8	Example: Penetration of a Corporate Computer System	. 840
	24.2.9	Example: Penetrating a UNIX System	. 841
	24.2.10	Example: Penetrating a Windows System	. 843
	24.2.11	Debate	. 844
	24.2.12	Conclusion	. 845
24.3	Vulnera	bility Classification	. 845
	24.3.1	Two Security Flaws	
24.4	Framew	vorks	. 849
	24.4.1	The RISOS Study	
	24.4.2	Protection Analysis Model	
	24.4.3	The NRL Taxonomy	
	24.4.4	Aslam's Model	
	24.4.5	Comparison and Analysis	
24.5	Standar	rds	
	24.5.1	Common Vulnerabilities and Exposures (CVE)	
	24.5.2	Common Weaknesses and Exposures (CWE)	
24.6		and Gligor's Theory of Penetration Analysis	
	24.6.1	The Flow-Based Model of Penetration Analysis	
	24.6.2	The Automated Penetration Analysis Tool	
	24.6.3	Discussion	
24.7		ry	
24.8		h Issues	
24.9		Reading	
	Fyereises 876		

Chapt	er 25 A	auditing	879
25.1	Definiti	on	879
25.2		ny of an Auditing System	
	25.2.1	Logger	
	25.2.2	Analyzer	
	25.2.3	Notifier	883
25.3	Designi	ng an Auditing System	884
	25.3.1	Implementation Considerations	
	25.3.2	Syntactic Issues	887
	25.3.3	Log Sanitization	888
	25.3.4	Application and System Logging	891
25.4	A Poste	riori Design	893
	25.4.1	Auditing to Detect Violations of a Known Policy	893
	25.4.2	Auditing to Detect Known Violations of a Policy	895
25.5	Auditin	g Mechanisms	897
	25.5.1	Secure Systems	897
	25.5.2	Nonsecure Systems	899
25.6	Exampl	es: Auditing File Systems	900
	25.6.1	Audit Analysis of the NFS Version 2 Protocol	900
	25.6.2	The Logging and Auditing File System (LAFS)	905
	25.6.3	Comparison	907
	25.6.4	Audit Browsing	
25.7		ry	
25.8		h Issues	
25.9		Reading	
25.10	Exercise	28	913
Chapt	er 26 Ir	ntrusion Detection	917
26.1	Principl	es	917
26.2		strusion Detection	
26.3			
	26.3.1	Anomaly Modeling	
	26.3.2	Misuse Modeling	
	26.3.3	Specification Modeling	
	26.3.4	Summary	
26.4		cture	
	26.4.1	Agent	
	26.4.2	Director	
	26.4.3	Notifier	
26.5		ation of Intrusion Detection Systems	
	26.5.1	Monitoring Network Traffic for Intrusions: NSM	948
	26.5.2	Combining Host and Network Monitoring: DIDS	949
	26.5.3	Autonomous Agents: AAFID	952

26.6	Summary	54
26.7	Research Issues	54
26.8	Further Reading9	55
26.9	Exercises	56
Chap	er 27 Attacks and Responses	59
27.1	Attacks	59
27.2	Representing Attacks	60
	27.2.1 Attack Trees	
	27.2.2 The Requires/Provides Model 9	65
	27.2.3 Attack Graphs	
27.3	Intrusion Response 9	
	27.3.1 Incident Prevention	
	27.3.2 Intrusion Handling	
27.4	Digital Forensics	
	27.4.1 Principles	
		90
	27.4.3 Anti-Forensics	94
27.5	Summary	
27.6	Research Issues	
27.7	Further Reading	
27.8	Exercises	
PAR ⁻	VIII : PRACTICUM 10	03
Chap	er 28 Network Security	05
28.1	Introduction	05
28.2	Policy Development	06
	28.2.1 Data Classes	07
	28.2.2 User Classes	08
	28.2.3 Availability	10
	28.2.4 Consistency Check	10
28.3	Network Organization	
	28.3.1 Analysis of the Network Infrastructure	13
	28.3.2 In the DMZ 10	
	28.3.3 In the Internal Network	21
	28.3.4 General Comment on Assurance	25
28.4	Availability	26

28.5	Anticip	ating Attacks	1027	
28.6	Summary			
28.7	Research Issues			
28.8		Reading		
28.9		es	1030	
Chapt	er 29 S	System Security	1035	
29.1	Introdu	ction	1035	
29.2	Policy		1036	
	29.2.1	The WWW Server System in the DMZ	1036	
	29.2.2	The Development System	1037	
	29.2.3	Comparison	1041	
	29.2.4	Conclusion	1041	
29.3	Networ	ks	1042	
	29.3.1	The WWW Server System in the DMZ	1042	
	29.3.2	The Development System	1045	
	29.3.3	Comparison	1047	
29.4	Users.	· · · · · · · · · · · · · · · · · · ·	1048	
	29.4.1	The WWW Server System in the DMZ	1048	
	29.4.2	The Development System	1050	
	29.4.3	Comparison	1052	
29.5	Authen	tication	1053	
	29.5.1	The WWW Server System in the DMZ	1053	
	29.5.2	Development Network System	1054	
	29.5.3	Comparison	1055	
29.6	Process	es	1055	
	29.6.1	The WWW Server System in the DMZ	1055	
	29.6.2	The Development System	1059	
	29.6.3	Comparison	1060	
29.7	Files .	· · · · · · · · · · · · · · · · · · ·	1061	
	29.7.1	The WWW Server System in the DMZ	1061	
	29.7.2	The Development System	1063	
	29.7.3	Comparison	1065	
29.8	Retrosp	pective	1066	
	29.8.1	The WWW Server System in the DMZ	1066	
	29.8.2	The Development System	1067	
29.9	Summa	ry	1068	
29.10		rh Issues	1068	
		Reading		
	Exercises			

Chapt	ter 30 L	Jser Security	1073
30.1	Policy		1073
30.2	•		
	30.2.1	Passwords	1074
	30.2.2	The Login Procedure	
	30.2.3	Leaving the System	
30.3	Files an	nd Devices	1080
	30.3.1	Files	1080
	30.3.2	Devices	1084
30.4	Process	es	1087
	30.4.1	Copying and Moving Files	1087
	30.4.2	Accidentally Overwriting Files	1088
	30.4.3	Encryption, Cryptographic Keys, and Passwords	1089
	30.4.4	Startup Settings	1090
	30.4.5	Limiting Privileges	1091
	30.4.6	Malicious Logic	
30.5	Electron	nic Communications	
	30.5.1	Automated Electronic Mail Processing	
	30.5.2	Failure to Check Certificates	1093
	30.5.3	Sending Unexpected Content	
30.6		ry	
30.7		ch Issues	
30.8		Reading	
30.9	Exercise	es	1096
Chani	lau 21 - F	Drawam Casurity	1099
Chapt		Program Security	
31.1		a	
31.2	-	ements and Policy	
	31.2.1	Requirements	
21.2	31.2.2	Threats	
31.3	Design		1104
	31.3.1	Framework	
21.4	31.3.2	Access to Roles and Commands	
31.4		nent and Implementation	
		First-Level Refinement	
	31.4.2	Second-Level Refinement	
	31.4.3	Functions	1114
21.5	31.4.4	Summary	1117
31.5		on Security-Related Programming Problems	1117
	31.5.1	Improper Choice of Initial Protection Domain	
	31.5.2	Improper Isolation of Implementation Detail	1123

	31.5.3 Improper Change	1125
	31.5.4 Improper Naming	
	31.5.5 Improper Deallocation or Deletion	
	31.5.6 Improper Validation	
	31.5.7 Improper Indivisibility	
	31.5.8 Improper Choice of Operand or Operation	
	31.5.9 Summary	
31.6	Testing, Maintenance, and Operation	1141
	31.6.1 Testing	
	31.6.2 Testing Composed Modules	1145
	31.6.3 Testing the Program	1145
31.7	Distribution	1146
31.8	Summary	1147
31.9	Research Issues	1147
31.10	Further Reading	1148
31.11	Exercises	1148
	T.IV. 4 P.P. 1101010	
PAR	T IX : APPENDICES	1151
A mm a	ndix A Lattices	1150
A.1	Basics	
A.2	Lattices	
A.3	Exercises	1155
Appe	ndix B The Extended Euclidean Algorithm	1157
B.1	The Euclidean Algorithm	
B.2	The Extended Euclidean Algorithm	
B.3	Solving $ax \mod n = 1$	
B.4	Solving $ax \mod n = b$	
B.5	Exercises	
D .5	LACICISCS	1101
Appe	ndix C Entropy and Uncertainty	1163
C.1	Conditional and Joint Probability	1163
C.2	Entropy and Uncertainty	
C.3	Joint and Conditional Entropy	
	C.3.1 Joint Entropy	
	C.3.2 Conditional Entropy	
	C.3.3 Perfect Secrecy	

Apper	ndix D	Virtual Machines	1171
D.1 D.2		Machine Structure Machine Monitor Privilege and Virtual Machines Physical Resources and Virtual Machines Paging and Virtual Machines	1171 1172 1175
D.3	Exercis	ses	1176
Apper	ndix E	Symbolic Logic	1179
E.1		sitional Logic	
	E.1.1	Natural Deduction in Propositional Logic	
	E.1.2	Rules	
	E.1.3	Derived Rules	
	E.1.4	Well-Formed Formulas	
	E.1.5	Truth Tables	1182
	E.1.6	Mathematical Induction	1183
E.2	Predica	ate Logic	1184
	E.2.1	Natural Deduction in Predicate Logic	1185
E.3	Tempo	ral Logic Systems	1186
	E.3.1		
	E.3.2	Semantics of CTL	1186
E.4	Exercis	ses	1188
Apper	ndix F	The Encryption Standards	1191
F.1		Encryption Standard	
	F.1.1	Main DES Algorithm	
	F.1.2	Round Key Generation	
F.2	Advan	ced Encryption Standard	
	F.2.1	Background	
	F.2.2	AES Encryption	1197
	F.2.3	Encryption	1199
	F.2.4	Round Key Generation	1201
	F.2.5	Equivalent Inverse Cipher Implementation	
F.3	Exercis	ses	1205
Apper	ndix G	Example Academic Security Policy	1207
G.1	Accept	able Use Policy	1207
	G.1.1	Introduction	1208
	G.1.2	Rights and Responsibilities	1208
	G.1.3	Privacy	1208

	G.1.4	Enforcement of Laws and University Policies	1209
	G.1.5	Unacceptable Conduct	1209
	G.1.6	Further Information	1212
G.2	Univer	rsity of California Electronic Communications Policy	1212
	G.2.1	Introduction	1212
	G.2.2	General Provisions	1213
	G.2.3	Allowable Use	1216
	G.2.4	Privacy and Confidentiality	1220
	G.2.5	Security	1225
	G.2.6	Retention and Disposition	1227
	G.2.7	Appendix A: Definitions	1227
	G.2.8	Appendix B: References	1230
	G.2.9	Appendix C: Policies Relating to Access Without	
		Consent	1232
G.3	User A	Advisories	
	G.3.1	Introduction	1234
	G.3.2	User Responsibilities	1234
	G.3.3	Privacy Expectations	1235
	G.3.4	Privacy Protections	1236
	G.3.5	Privacy Limits	1237
	G.3.6	Security Considerations	1239
G.4	Electro	onic Communications—Allowable Use	1241
	G.4.1	Purpose	1241
	G.4.2	Definitions	1242
	G.4.3	Policy	1242
	G.4.4	Allowable Users	1242
	G.4.5	Allowable Uses	1243
	G.4.6	Restrictions on Use	1245
	G.4.7	References and Related Policies	1246
Appendix H		Programming Rules	1247
H.1	Implen	mentation Rules	1247
H.2	-	gement Rules	
Refer	ences .		1251
Index			1341

Preface

HORTENSIO: Madam, before you touch the instrument

To learn the order of my fingering,
I must begin with rudiments of art
To teach you gamouth in a briefer sort,
More pleasant, pithy and effectual,
Than hath been taught by any of my trade;
And there it is in writing, fairly drawn.

— The Taming of the Shrew, III, i, 62–68.

Preface to the Second Edition

Since the first edition of this book was published, the number of computer and information security incidents has increased dramatically, as has their seriousness. In 2010, a computer worm infected the software controlling a particular type of centrifuge used in uranium-enrichment sites [1116, 1137]. In 2013, a security breach at Target, a large chain of stores in the United States, compromised 40 million credit cards [1497, 1745, 2237]. Also in 2013, Yahoo reported that an attack compromised more than 1 billion accounts [779]. In 2017, attackers spread ransomware that crippled computers throughout the world, including computers used in hospitals and telecommunications companies [1881]. Equifax estimated that attackers also compromised the personal data of over 100,000,000 people [176].

These attacks exploit vulnerabilities that have their roots in vulnerabilities of the 1980s, 1970s, and earlier. They seem more complex because systems have become more complex, and thus the vulnerabilities are more obscure and require more complex attacks to exploit. But the principles underlying the attacks, the vulnerabilities, and the failures of the systems have not changed—only the arena in which they are applied has.

Consistent with this philosophy, the second edition continues to focus on the principles underlying the field of computer and information security. Many newer examples show how these principles are applied, or not applied, today; but the principles themselves are as important today as they were in 2002, and earlier. Some have been updated to reflect a deeper understanding of people and systems. Others have been applied in new and interesting ways. But they still ring true.

That said, the landscape of security has evolved greatly in the years since this book was first published. The explosive growth of the World Wide Web, and the consequent explosion in its use, has made security a problem at the forefront of our society. No longer can vulnerabilities, both human and technological, be relegated to the background of our daily lives. It is one of the elements at the forefront, playing a role in everyone's life as one browses the web, uses a camera to take and send pictures, and turns on an oven remotely. We grant access to our personal lives through social media such as Facebook, Twitter, and Instagram, and to our homes through the Internet of Things and our connections to the Internet. To ignore security issues, or consider them simply ancillary details that "someone will fix somehow" or threats unlikely to be realized personally is dangerous at best, and potentially disastrous at worst.

Ultimately, little has changed. The computing ecosystem of our day is badly flawed. Among the manifestations of these technological flaws are that security problems continue to exist, and continue to grow in magnitude of effect. An interesting question to ponder is what might move the paradigm of security away from the cycle of "patch and catch" and "let the buyer beware" to a stable and safer ecosystem.

But we must continue to improve our understanding of, and implementation of, security. Security nihilism—simply giving up and asserting that we cannot make things secure, so why try—means we accept these invasions of our privacy, our society, and our world. Like everything else, security is imperfect, and always will be—meaning we can improve the state of the art. This book is directed towards that goal.

Updated Roadmap

The dependencies of the chapters are the same as in the first edition (see p. xl), with two new chapters added.

Chapter 7, which includes a discussion of denial of service attack models, contains material useful for Chapters 23, 24, 27, and 28. Similarly, Chapter 27 draws on material from the chapters in Part III as well as Chapters 23, 25, 26, and all of Part VIII.

In addition to the suggestions in the preface to the first edition on p. xli about topics for undergraduate classes, the material in Chapter 27 will introduce undergraduates to how attacks occur, how they can be analyzed, and what their effects are. Coupled with current examples drawn from the news, this chapter should prove fascinating to undergraduates.

As for graduate classes, the new material in Chapter 7 will provide students with some background on resilience, a topic increasing in importance. Otherwise, the recommendations are the same as for the first edition (see p. xlii).

Changes to the First Edition

The second edition has extensively revised many examples to apply the concepts to technologies, methodologies, and ideas that have emerged since the first edition was published. Here, the focus is on new material in the chapters; changes to examples are mentioned only when necessary to describe that material. In addition to what is mentioned here, much of the text has been updated.

Chapter 1, "An Overview of Computer Security": This chapter is largely unchanged.

Chapter 2, "Access Control Matrix": Section 2.2.2, "Access Controlled by History" has been changed to use the problem of preventing downloaded programs from accessing the system in unauthorized ways, instead of updating a database. Section 2.4.3, "Principle of Attenuation of Privilege," has been expanded slightly, and exercises added to point out differing forms of the principle.

Chapter 3, "Foundational Results": Definition 3–1 has been updated to make clear that "leaking" refers to a right being added to an element of the access control matrix that did not contain it initially, and an exercise has been added to demonstrate the difference between this definition and the one in the first edition. Section 3.6 discusses comparing security properties of models.

Chapter 4, "Security Policies": Section 4.5.1, "High-Level Policy Languages," now uses Ponder rather than a Java policy constraint language. Section 4.6, "Example: Academic Computer Security Policy," has been updated to reflect changes in the university policy.

Chapter 5, "Confidentiality Policies": Section 5.3.1 discusses principles for declassifying information.

Chapter 6, "Integrity Policies": Section 6.5 presents trust models.

Chapter 7, "Availability Policies": This chapter is new.

Chapter 8, "Hybrid Policies": Section 8.1.3 modifies one of the assumptions of the Chinese Wall model that is unrealistic. Section 8.3.1 expands the discussion of ORCON to include DRM. Section 8.4 adds a discussion of several types of RBAC models.

Chapter 9, "Noninterference and Policy Composition": This chapter adds Section 9.6, which presents side channels in the context of deducibility.

Chapter 10, "Basic Cryptography": This chapter has been extensively revised. The discussion of the DES (Section 10.2.3) has been tightened and the algorithm

moved to Appendix F. Discussions of the AES (Section 10.2.5) and elliptic curve cryptography (Section 10.3.3) have been added, and the section on digital signatures moved from Chapter 11 to Section 10.5. Also, the number of digits in the integers used in examples for public key cryptography has been increased from 2 to at least 4, and in many cases more.

Chapter 11, "Key Management": Section 11.4.3 discusses public key infrastructures. Section 11.5.1.4, "Other Approaches," now includes a brief discussion of identity-based encryption.

Chapter 12, "Cipher Techniques": Section 12.1, "Problems," now includes a discussion of type flaw attacks. Section 12.3 discusses authenticated encryption with associated data, and presents the CCM and GCM modes of block ciphers. A new section, Section 12.5.2, discusses the Signal Protocol. Section 12.5.3, "Security at the Transport Layer: TLS and SSL," has been expanded and focuses on TLS rather than SSL. It also discusses cryptographic weaknesses in SSL, such as the POODLE attack, that have led to the use of SSL being strongly discouraged.

Chapter 13, "Authentication": A discussion of graphical passwords has been added as Section 13.3.4. Section 13.4.3 looks at quantifying password strength in terms of entropy. The discussion of biometrics in Section 13.7 has been expanded to reflect their increasing use.

Chapter 14, "Design Principles": The principle of least authority follows the principle of least privilege in Section 14.2.1, and the principle of least astonishment now supersedes the principle of psychological acceptability in Section 14.2.8.

Chapter 15, "Representing Identity": Section 15.5, "Naming and Certificates," now includes a discussion of registration authorities (RAs). Section 15.6.1.3 adds a discussion of the DNS security extensions (DNSSEC). Section 15.7.2 discusses onion routing and Tor in the context of anonymity.

Chapter 16, "Access Control Mechanisms": Section 16.2.6 discusses sets of privileges in Linux and other UNIX-like systems.

Chapter 17, "Information Flow": In contrast to the confidentiality-based context of information flow in the main part of this chapter, Section 17.5 presents information flow in an integrity context. In Section 17.6, the SPI and SNSMG examples of the first edition have been replaced by Android cell phones (Section 17.6.1) and firewalls (Section 17.6.2).

Chapter 18, "Confinement Problem": Section 18.2 has been expanded to include library operating systems (Section 18.2.1.2) and program modification techniques (Section 18.2.2).

Chapter 19, "Introduction to Assurance": Section 19.2.3, which covers agile software development, has been added.

Chapter 20, "Building Systems with Assurance": The example decomposition of Windows 2000 into components has been updated to use Windows 10.

Chapter 21, "Formal Methods": A new section, Section 21.5, discusses functional programming languages, and another new section, 21.6, discusses formally verified products.

Chapter 22, "Evaluating Systems": Sections 22.7, on FIPS 140, and 22.8, on the Common Criteria, have been extensively updated.

Chapter 23, "Malware": Section 23.5 presents botnets, and Sections 23.6.3, 23.6.4, 23.6.5, and 23.6.6 discuss adware and spyware, ransomware, and phishing. While not malware, phishing is a common vector for getting malware onto a system and so it is discussed here.

Chapter 24, "Vulnerability Analysis": Section 24.2.5 reviews several penetration testing frameworks used commercially and based on the Flaw Hypothesis Methodology. Section 24.5 presents the widely used CVE and CWE standards.

Chapter 25, "Auditing": Section 25.3.3, which discusses sanitization, has been expanded.

Chapter 26, "Intrusion Detection": Section 26.3.1 has been expanded to include several widely used machine learning techniques for anomaly detection. Incident response groups are discussed in Section 27.3.

Chapter 27, "Attacks and Responses": This chapter is new.

Chapter 28, "Network Security": The discussion of what firewalls are has been moved to Section 17.6.2, but the discussion of how the Drib configures and uses them remains in this chapter. The Drib added wireless networks, which are discussed in Section 28.3.3.1. Its analysis of using the cloud is in Section 28.3.3.2. The rest of the chapter has been updated to refer to the new material in previous chapters.

Chapter 29, "System Security": This chapter has been updated to refer to the new material in previous chapters.

Chapter 30, "User Security": Section 30.2.2 describes the two-factor authentication procedure used by the Drib. The rest of the chapter has been updated to refer to the new material in previous chapters.

Chapter 31, "Program Security": This chapter has been updated to refer to the new material in previous chapters.

Two new appendices have been added. Appendix F presents the DES and AES algorithms, and Appendix H collects the rules in Chapter 31 for easy reference. In addition, Appendix D examines some hardware enhancements to aid virtualization, and Appendix G contains the full academic security policy discussed in Section 4.6.

Preface to the First Edition¹

On September 11, 2001, terrorists seized control of four airplanes. Three were flown into buildings, and a fourth crashed, with catastrophic loss of life. In the aftermath, the security and reliability of many aspects of society drew renewed scrutiny. One of these aspects was the widespread use of computers and their interconnecting networks. The issue is not new. In 1988, approximately 5,000 computers throughout the Internet were rendered unusable within 4 hours by a program called a worm [842]. While the spread, and the effects, of this program alarmed computer scientists, most people were not worried because the worm did not affect their lives or their ability to do their jobs. In 1993, more users of computer systems were alerted to such dangers when a set of programs called sniffers were placed on many computers run by network service providers and recorded login names and passwords [670].

After an attack on Tsutomu Shimomura's computer system, and the fascinating way Shimomura followed the attacker's trail, which led to his arrest [1736], the public's interest and apprehension were finally aroused. Computers were now vulnerable. Their once reassuring protections were now viewed as flimsy.

Several films explored these concerns. Movies such as *War Games* and *Hackers* provided images of people who can, at will, wander throughout computers and networks, maliciously or frivolously corrupting or destroying information it may have taken millions of dollars to amass. (Reality intruded on *Hackers* when the World Wide Web page set up by MGM/United Artists was quickly altered to present an irreverent commentary on the movie and to suggest that viewers see *The Net* instead. Paramount Pictures denied doing this [869].) Another film, *Sneakers*, presented a picture of those who test the security of computer (and other) systems for their owners and for the government.

Goals

This book has three goals. The first is to show the importance of theory to practice and of practice to theory. All too often, practitioners regard theory as irrelevant and theoreticians think of practice as trivial. In reality, theory and practice are symbiotic. For example, the theory of covert channels, in which the goal is to limit the ability of processes to communicate through shared resources, provides a mechanism for evaluating the effectiveness of mechanisms that confine processes, such as sandboxes and firewalls. Similarly, business practices in the commercial world led to the development of several security policy models such as the Clark-Wilson model and the Chinese Wall model. These models in turn help the designers of security policies better understand and evaluate the mechanisms and procedures needed to secure their sites.

¹Chapter numbers have been updated to correspond to the chapters in the second edition.

²Section 23.4 discusses computer worms.

The second goal is to emphasize that computer security and cryptography are different. Although cryptography is an essential component of computer security, it is by no means the only component. Cryptography provides a mechanism for performing specific functions, such as preventing unauthorized people from reading and altering messages on a network. However, unless developers understand the context in which they are using cryptography, and unless the assumptions underlying the protocol and the cryptographic mechanisms apply to the context, the cryptography may not add to the security of the system. The canonical example is the use of cryptography to secure communications between two low-security systems. If only trusted users can access the two systems, cryptography protects messages in transit. But if untrusted users can access either system (through authorized accounts or, more likely, by breaking in), the cryptography is not sufficient to protect the messages. The attackers can read the messages at either endpoint.

The third goal is to demonstrate that computer security is not just a science but also an art. It is an art because no system can be considered secure without an examination of how it is to be used. The definition of a "secure computer" necessitates a statement of requirements and an expression of those requirements in the form of authorized actions and authorized users. (A computer engaged in work at a university may be considered "secure" for the purposes of the work done at the university. When moved to a military installation, that same system may not provide sufficient control to be deemed "secure" for the purposes of the work done at that installation.) How will people, as well as other computers, interact with the computer system? How clear and restrictive an interface can a designer create without rendering the system unusable while trying to prevent unauthorized use or access to the data or resources on the system?

Just as an artist paints his view of the world onto canvas, so does a designer of security features articulate his view of the world of human/machine interaction in the security policy and mechanisms of the system. Two designers may use entirely different designs to achieve the same creation, just as two artists may use different subjects to achieve the same concept.

Computer security is also a science. Its theory is based on mathematical constructions, analyses, and proofs. Its systems are built in accordance with the accepted practices of engineering. It uses inductive and deductive reasoning to examine the security of systems from key axioms and to discover underlying principles. These scientific principles can then be applied to untraditional situations and new theories, policies, and mechanisms.

Philosophy

Key to understanding the problems that exist in computer security is a recognition that the problems are not new. They are old problems, dating from the beginning of computer security (and, in fact, arising from parallel problems in the non-computer world). But the locus has changed as the field of computing has

changed. Before the mid-1980s, mainframe and mid-level computers dominated the market, and computer security problems and solutions were phrased in terms of securing files or processes on a single system. With the rise of networking and the Internet, the arena has changed. Workstations and servers, and the networking infrastructure that connects them, now dominate the market. Computer security problems and solutions now focus on a networked environment. However, if the workstations and servers, and the supporting network infrastructure, are viewed as a single system, the models, theories, and problem statements developed for systems before the mid-1980s apply equally well to current systems.

As an example, consider the issue of assurance. In the early period, assurance arose in several ways: formal methods and proofs of correctness, validation of policy to requirements, and acquisition of data and programs from trusted sources, to name a few. Those providing assurance analyzed a single system, the code on it, and the sources (vendors and users) from which the code could be acquired to ensure that either the sources could be trusted or the programs could be confined adequately to do minimal damage. In the later period, the same basic principles and techniques apply, except that the scope of some has been greatly expanded (from a single system and a small set of vendors to the world-wide Internet). The work on proof-carrying code, an exciting development in which the proof that a downloadable program module satisfies a stated policy is incorporated into the program itself, is an example of this expansion.³ It extends the notion of a proof of consistency with a stated policy. It advances the technology of the earlier period into the later period. But in order to understand it properly, one must understand the ideas underlying the concept of proof-carrying code, and these ideas lie in the earlier period.

As another example, consider Saltzer and Schroeder's principles of secure design. Enunciated in 1975, they promote simplicity, confinement, and understanding. When security mechanisms grow too complex, attackers can evade or bypass them. Many programmers and vendors are learning this when attackers break into their systems and servers. The argument that the principles are old, and somehow outdated, rings hollow when the result of their violation is a non-secure system.

The work from the earlier period is sometimes cast in terms of systems that no longer exist and that differ in many ways from modern systems. This does not vitiate the ideas and concepts, which also underlie the work done today. Once these ideas and concepts are properly understood, applying them in a multiplicity of environments becomes possible. Furthermore, the current mechanisms and technologies will become obsolete and of historical interest themselves as new forms of computing arise, but the underlying principles will live on, to underlie the next generation—indeed the next era—of computing.

The philosophy of this book is that certain key concepts underlie all of computer security, and that the study of all parts of computer security enriches

³Section 23.9.5.1 discusses proof-carrying code.

⁴Chapter 14 discusses these principles.

the understanding of all parts. Moreover, critical to an understanding of the applications of security-related technologies and methodologies is an understanding of the theory underlying those applications. Advances in the theory of computer protection have illuminated the foundations of security systems. Issues of abstract modeling, and modeling to meet specific environments, lead to systems designed to achieve a specific and rewarding goal. Theorems about composability of policies⁵ and the undecidability of the general security question⁶ have indicated the limits of what can be done. Much work and effort are continuing to extend the borders of those limits.

Application of these results has improved the quality of the security of the systems being protected. However, the issue is how compatibly the assumptions of the model (and theory) conform to the environment to which the theory is applied. Although our knowledge of how to apply these abstractions is continually increasing, we still have difficulty correctly transposing the relevant information from a realistic setting to one in which analyses can then proceed. Such abstraction often eliminates vital information. The omitted data may pertain to security in non-obvious ways. Without this information, the analysis is flawed.

The practitioner needs to know both the theoretical and practical aspects of the art and science of computer security. The theory demonstrates what is possible. The practical makes known what is feasible. The theoretician needs to understand the constraints under which these theories are used, how their results are translated into practical tools and methods, and how realistic are the assumptions underlying the theories. *Computer Security: Art and Science* tries to meet these needs.

Unfortunately, no single work can cover all aspects of computer security, so this book focuses on those parts that are, in the author's opinion, most fundamental and most pervasive. The mechanisms exemplify the applications of these principles.

Organization

The organization of this book reflects its philosophy. It begins with mathematical fundamentals and principles that provide boundaries within which security can be modeled and analyzed effectively. The mathematics provides a framework for expressing and analyzing the requirements of the security of a system. These policies constrain what is allowed and what is not allowed. Mechanisms provide the ability to implement these policies. The degree to which the mechanisms correctly implement the policies, and indeed the degree to which the policies themselves meet the requirements of the organizations using the system, are questions of assurance. Exploiting failures in policy, in implementation, and in assurance comes next, as well as mechanisms for providing information on the attack. The book concludes with the applications of both theory and policy focused

⁵See Chapter 9, "Noninterference and Policy Composition."

⁶See Section 3.2, "Basic Results."

on realistic situations. This natural progression emphasizes the development and application of the principles existent in computer security.

Part I, "Introduction," describes what computer security is all about and explores the problems and challenges to be faced. It sets the context for the remainder of the book.

Part II, "Foundations," deals with basic questions such as how "security" can be clearly and functionally defined, whether or not it is realistic, and whether or not it is decidable. If it is decidable, under what conditions is it decidable, and if not, how must the definition be bounded in order to make it decidable?

Part III, "Policy," probes the relationship between policy and security. The definition of "security" depends on policy. In Part III we examine several types of policies, including the ever-present fundamental questions of trust, analysis of policies, and the use of policies to constrain operations and transitions.

Part IV, "Implementation I: Cryptography," discusses cryptography and its role in security. It focuses on applications and discusses issues such as key management and escrow, key distribution, and how cryptosystems are used in networks. A quick study of authentication completes Part III.

Part V, "Implementation II: Systems," considers how to implement the requirements imposed by policies using system-oriented techniques. Certain design principles are fundamental to effective security mechanisms. Policies define who can act and how they can act, and so identity is a critical aspect of implementation. Mechanisms implementing access control and flow control enforce various aspects of policies.

Part VI, "Assurance," presents methodologies and technologies for ascertaining how well a system, or a product, meets its goals. After setting the background, to explain exactly what "assurance" is, the art of building systems to meet varying levels of assurance is discussed. Formal verification methods play a role. Part VI shows how the progression of standards has enhanced our understanding of assurance techniques.

Part VII, "Special Topics," discusses some miscellaneous aspects of computer security. Malicious logic thwarts many mechanisms. Despite our best efforts at high assurance, systems today are replete with vulnerabilities. Why? How can a system be analyzed to detect vulnerabilities? What models might help us improve the state of the art? Given these security holes, how can we detect attackers who exploit them? A discussion of auditing flows naturally into a discussion of intrusion detection—a detection method for such attacks.

Part VIII, "Practicum," presents examples of how to apply the principles discussed throughout the book. It begins with networks and proceeds to systems, users, and programs. Each chapter states a desired policy and shows how to translate that policy into a set of mechanisms and procedures that support the policy. Part VIII tries to demonstrate that the material covered elsewhere can be, and should be, used in practice.

Each chapter in this book ends with a summary, descriptions of some research issues, and some suggestions for further reading. The summary highlights the important ideas in the chapter. The research issues are current "hot topics" or are topics that may prove to be fertile ground for advancing the state of the art and

science of computer security. Interested readers who wish to pursue the topics in any chapter in more depth can go to some of the suggested readings. They expand on the material in the chapter or present other interesting avenues.

Roadmap

This book is both a reference book and a textbook. Its audience is undergraduate and graduate students as well as practitioners. This section offers some suggestions on approaching the book.

Dependencies

Chapter 1 is fundamental to the rest of the book and should be read first. After that, however, the reader need not follow the chapters in order. Some of the dependencies among chapters are as follows.

Chapter 3 depends on Chapter 2 and requires a fair degree of mathematical maturity. Chapter 2, on the other hand, does not. The material in Chapter 3 is for the most part not used elsewhere (although the existence of the first section's key result, the undecidability theorem, is mentioned repeatedly). It can be safely skipped if the interests of the reader lie elsewhere.

The chapters in Part III build on one another. The formalisms in Chapter 5 are called on in Chapters 20 and 21, but nowhere else. Unless the reader intends to delve into the sections on theorem proving and formal mappings, the formalisms may be skipped. The material in Chapter 9 requires a degree of mathematical maturity, and this material is used sparingly elsewhere. Like Chapter 3, Chapter 9 can be skipped by the reader whose interests lie elsewhere.

Chapters 10, 11, and 12 also build on one another in order. A reader who has encountered basic cryptography will have an easier time with the material than one who has not, but the chapters do not demand the level of mathematical experience that Chapters 3 and 9 require. Chapter 13 does not require material from Chapter 11 or Chapter 12, but it does require material from Chapter 10.

Chapter 14 is required for all of Part V. A reader who has studied operating systems at the undergraduate level will have no trouble with Chapter 16. Chapter 15 uses the material in Chapters 10 and 11; Chapter 17 builds on material in Chapters 5, 14, and 16; and Chapter 18 uses material in Chapters 4, 14, and 17.

Chapter 19 relies on information in Chapter 4. Chapter 20 builds on Chapters 5, 14, 16, and 19. Chapter 21 presents highly mathematical concepts and uses material from Chapters 19 and 20. Chapter 22 is based on material in Chapters 5, 19, and 20; it does not require Chapter 21. For all of Part VI, a knowledge of software engineering is very helpful.

Chapter 23 draws on ideas and information in Chapters 5, 6, 10, 14, 16, and 18 (and for Section 23.8, the reader should read Section 3.1). Chapter 24 is self-contained, although it implicitly uses many ideas from assurance. It also assumes a good working knowledge of compilers, operating systems, and in some cases networks. Many of the flaws are drawn from versions of the UNIX operating

system, or from Windows systems, and so a working knowledge of either or both systems will make some of the material easier to understand. Chapter 25 uses information from Chapter 4, and Chapter 26 uses material from Chapter 25.

The practicum chapters are self-contained and do not require any material beyond Chapter 1. However, they point out relevant material in other sections that augments the information and (we hope) the reader's understanding of that information.

Background

The material in this book is at the advanced undergraduate level. Throughout, we assume that the reader is familiar with the basics of compilers and computer architecture (such as the use of the program stack) and operating systems. The reader should also be comfortable with modular arithmetic (for the material on cryptography). Some material, such as that on formal methods (Chapter 21) and the mathematical theory of computer security (Chapter 3 and the formal presentation of policy models), requires considerable mathematical maturity. Other specific recommended background is presented in the preceding section. Part IX, the appendices, contains material that will be helpful to readers with backgrounds that lack some of the recommended material.

Examples are drawn from many systems. Many come from the UNIX operating system or variations of it (such as Linux). Others come from the Windows family of systems. Familiarity with these systems will help the reader understand many examples easily and quickly.

Undergraduate Level

An undergraduate class typically focuses on applications of theory and how students can use the material. The specific arrangement and selection of material depends on the focus of the class, but all classes should cover some basic material—notably that in Chapters 1, 10, and 14, as well as the notion of an access control matrix, which is discussed in Sections 2.1 and 2.2.

Presentation of real problems and solutions often engages undergraduate students more effectively than presentation of abstractions. The special topics and the practicum provide a wealth of practical problems and ways to deal with them. This leads naturally to the deeper issues of policy, cryptography, non-cryptographic mechanisms, and assurance. The following are sections appropriate for non-mathematical undergraduate courses in these topics.

- *Policy*: Sections 4.1 through 4.4 describe the notion of policy. The instructor should select one or two examples from Sections 5.1, 5.2.1, 6.2, 6.4, 8.1.1, and 8.2, which describe several policy models informally. Section 8.4 discusses role-based access control.
- Cryptography: Key distribution is discussed in Sections 11.1 and 11.2, and a common form of public key infrastructures (called PKIs) is discussed in Section 11.4.2. Section 12.1 points out common errors

- in using cryptography. Section 12.4 shows how cryptography is used in networks, and the instructor should use one of the protocols in Section 12.5 as an example. Chapter 13 offers a look at various forms of authentication, including non-cryptographic methods.
- Non-cryptographic mechanisms: Identity is the basis for many access control mechanisms. Sections 15.1 through 15.4 discuss identity on a system, and Section 15.6 discusses identity and anonymity on the Web. Sections 16.1 and 16.2 explore two mechanisms for controlling access to files, and Section 16.4 discusses the ring-based mechanism underlying the notion of multiple levels of privilege. If desired, the instructor can cover sandboxes by using Sections 18.1 and 18.2, but because Section 18.2 uses material from Section 4.5, the instructor will need to go over those sections as well.
- Assurance: Chapter 19 provides a basic introduction to the often over-looked topic of assurance.

Graduate Level

A typical introductory graduate class can focus more deeply on the subject than can an undergraduate class. Like an undergraduate class, a graduate class should cover Chapters 1, 10, and 14. Also important are the undecidability results in Sections 3.1 and 3.2, which require that Chapter 2 be covered. Beyond that, the instructor can choose from a variety of topics and present them to whatever depth is appropriate. The following are sections suitable for graduate study.

- Policy models: Part III covers many common policy models both informally and formally. The formal description is much easier to understand once the informal description is understood, so in all cases both should be covered. The controversy in Section 5.4 is particularly illuminating to students who have not considered the role of policy and the nature of a policy. Chapter 9 is a highly formal discussion of the foundations of policy and is appropriate for students with experience in formal mathematics. Students without such a background will find it quite difficult.
- *Cryptography*: Part IV focuses on the applications of cryptography, not on cryptography's mathematical underpinnings. It discusses areas of interest critical to the use of cryptography, such as key management and some basic cryptographic protocols used in networking.
- *Non-cryptographic mechanisms*: Issues of identity and certification are complex and generally poorly understood. Section 15.5 covers these problems. Combining this with the discussion of identity on the Web

⁷The interested reader will find a number of books covering aspects of this subject [440, 787, 788, 914, 1092, 1093, 1318, 1826].

- (Section 15.6) raises issues of trust and naming. Chapters 17 and 18 explore issues of information flow and confining that flow.
- Assurance: Traditionally, assurance is taught as formal methods, and Chapter 21 serves this purpose. In practice, however, assurance is more often accomplished by using structured processes and techniques and informal but rigorous arguments of justification, mappings, and analysis. Chapter 20 emphasizes these topics. Chapter 22 discusses evaluation standards and relies heavily on the material in Chapters 19 and 20 and some of the ideas in Chapter 21.
- *Miscellaneous Topics*: Section 23.8 presents a proof that the generic problem of determining if a generic program is a computer virus is in fact undecidable. The theory of penetration studies in Section 24.2, and the more formal approach in Section 24.6, illuminate the analysis of systems for vulnerabilities. If the instructor chooses to cover intrusion detection (Chapter 26) in depth, it should be understood that this discussion draws heavily on the material on auditing (Chapter 25).
- *Practicum*: The practicum (Part VIII) ties the material in the earlier part of the book to real-world examples and emphasizes the applications of the theory and methodologies discussed earlier.

Practitioners

Practitioners in the field of computer security will find much to interest them. The table of contents and the index will help them locate specific topics. A more general approach is to start with Chapter 1 and then proceed to Part VIII, the practicum. Each chapter has references to other sections of the text that explain the underpinnings of the material. This will lead the reader to a deeper understanding of the reasons for the policies, settings, configurations, and advice in the practicum. This approach also allows readers to focus on those topics that are of most interest to them.

Acknowledgments

It is not possible to separate those who contributed to the second edition from those who contributed to the first edition, because everything done for the first edition, especially after the first printing, has contributed to the second. So these acknowledgments apply to both editions. That said ...

Special Acknowledgments

Elisabeth Sullivan and Michelle Ruppel contributed the assurance part of this book.

For the first edition, Liz wrote several drafts, all of which reflect her extensive knowledge and experience in that aspect of computer security. I am particularly grateful to her for contributing her real-world knowledge of how assurance is managed. Too often, books recount the mathematics of assurance without recognizing that other aspects are equally important and more widely used. These other aspects shine through in the assurance section, thanks to Liz. As if that were not enough, she made several suggestions that improved the policy part of this book. I will always be grateful for her contribution, her humor, and especially her friendship.

For the second edition, Michelle stepped in to update that part based on her extensive experience and real-world knowledge as a practitioner. She was careful to maintain the tone and style of Liz's writing, and her contributions strengthened the assurance part. I am grateful to her for agreeing to step in, for the exceptional effort she put forth, and the high quality that resulted.

In summary, I am very grateful for their contributions.

Acknowledgments

Many people offered comments, suggestions, and ideas for the second edition. Thanks to Marvin Schaefer, Sean Peisert, Prof. Christian Probst, Carrie Gates, and Richard Ford for their reviews of the various chapters. I appreciate Prof. Ken

Rosen and Prof. Alfred Menezes for their help with Chapter 10, Steven Templeton and Kara Nance for their suggestions on Chapter 27, Karl Levitt for his comments on Chapter 26, and Richard Ford for his many suggestions on Chapter 23. Their advice and suggestions were invaluable in preparing this edition. Of course, any errors in the text are my responsibility, and usually occurred because I did not always follow their advice.

Thanks also to Pasquale Noce, who sent me a thorough analysis of many of the theorems, proving them constructively as opposed to how they were done in the book. He made many other helpful comments and caught some errors.

The students in Peter Reiher's COM SCI 236-80, Computer Security, class at UCLA in the Spring Quarter 2018, and the students in my ECS 153, Computer Security, classes over the past few years at UC Davis used parts of this edition in various stages of preparation. I thank them for their feedback, which also improved the book.

Many others contributed to this book in various ways. Special thanks to Steven Alexander, Amin Alipour, Jim Alves-Foss, Bill Arbaugh, Andrew Arcilla, Alex Aris, Rebecca Bace, Belinda Bashore, Vladimir Berman, Rafael Bhatti, Ziad El Bizri, David Bover, Logan Browne, Terry Brugger, Gordon Burns, Serdar Cabuk, Raymond Centeno, Yang Chen, Yi Chen, HakSoo Choi, Lisa Clark, Michael Clifford, Christopher Clifton, Dan Coming, Kay Connelly, Crispin Cowan, Shayne Czyzewski, Tom Daniels, Dimitri DeFigueiredo, Joseph-Patrick Dib, Till Dörges, Felix Fan, Robert Fourney, Guillermo Francia III, Jeremy Frank, Conny Francke, Martin Gagne, Nina Gholami, Ron Gove, James Hinde, James Hook, Xuxian Jiang, Jesper Johansson, Mark Jones, Calvin Ko, Mark-Neil Ledesma, Ken Levine, Karl Levitt, Luc Longpre, Yunhua Lu, Gary McGraw, Alexander Meau, Nasir Memon, Katherine Moore, Mark Morrissey, Ather Nawaz, Iulian Neamtiu, Dan Nerenburg, Kimberly Nico, Stephen Northcutt, Rafael Obelheiro, Josko Orsulic, Holly Pang, Sean Peisert, Ryan Poling, Sung Park, Ashwini Raina, Jorge Ramos, Brennen Revnolds, Peter Rozental, Christoph Schuba, night SH, David Shambroom, Jonathan Shapiro, Clay Shields, Sriram Srinivasan, Mahesh V. Tripunitara, Vinay Vittal, Tom Walcott, James Walden, Dan Watson, Guido Wedig, Chris Wee, Han Weili, Patrick Wheeler, Paul Williams, Bonnie Xu, Charles Yang, Xiaoduan Ye, Xiaohui Ye, Lara Whelan, John Zachary, Linfeng Zhang, Aleksandr Zingorenko, and to everyone in my and others' computer security classes, who (knowingly or unknowingly) helped me develop and test this material.

The Pearson folks, in particular my editors Laura Lewin and Malobika Chakraborty, and Sheri Replin, were incredibly helpful and patient. Their patience and enthusiasm ensured this second edition was completed, although a bit later than expected. The production people, especially Julie Nahil, Ramya Gangadharan, and Charles Roumeliotis, moved the book smoothly into print, and I thank them for making it as painless as possible. I owe them many thanks. Similarly, for the first edition, the Addison-Wesley folks, Kathleen Billus, Susannah Buzard, Bernie Gaffney, Amy Fleischer, Helen Goldstein, Tom Stone, Asdis Thorsteinsson, and most especially my editor, Peter Gordon, were incredibly patient and

helpful, despite fears that this book would never materialize. The fact that it did so is in great measure attributable to their hard work and encouragement. I also thank the production people at Argosy, especially Beatriz Valdés and Craig Kirkpatrick, for their wonderful work.

Dorothy Denning, my advisor in graduate school, guided me through the maze of computer security when I was just beginning. Peter Denning, Barry Leiner, Karl Levitt, Peter Neumann, Marvin Schaefer, Larry Snyder, and several others influenced my approach to the subject. I hope this work reflects in some small way what they gave to me and passes a modicum of it along to my readers.

I also thank my parents, Leonard Bishop and Linda Allen. My father, a writer, gave me some useful tips on writing, which I tried to follow. My mother, a literary agent, helped me understand the process of getting the book published, and supported me throughout.

Finally, I would like to thank my family for their support throughout the writing. My wife Holly, our children Heidi, Steven, David, and Caroline, and grandchildren Skyler and Sage were very patient and understanding and made sure I had time to work on the book. They also provided delightful distractions. To them all, my love and gratitude.

About the Author

Matt Bishop is a professor in the Department of Computer Science at the University of California at Davis. He received his Ph.D. in computer science from Purdue University, where he specialized in computer security, in 1984. He was a systems programmer at Megatest Corporation, a research scientist at the Research Institute of Advanced Computer Science and was on the faculty at Dartmouth College.

His main research area is the analysis of vulnerabilities in computer systems, including modeling them, building tools to detect vulnerabilities, and ameliorating or eliminating them. This includes detecting and handling all types of malicious logic. He works in the areas

of network security, the study of denial of service attacks and defenses, policy modeling, software assurance testing, resilience, and formal modeling of access control. He has worked extensively in electronic voting, was one of the members of the RABA study for Maryland, and was one of the two principle investigators of the California Top-to-Bottom Review, which performed a technical review of all electronic voting systems certified in the State of California.

He is active in information assurance education. He was co-chair of the Joint Task Force that developed the *Cybersecurity Curricula 2017: Curriculum Guidelines for Post-Secondary Degree Programs in Cybersecurity*, released in December 2017. He teaches introductory programming, software engineering, operating systems, and (of course) computer security.

Chapter 31

Program Security

CLOWN: What is he that builds stronger than either the mason, the shipwright, or the carpenter? OTHER CLOWN: The gallows-maker; for that frame outlives a thousand tenants.

— Hamlet, V, i, 42–45.

The software on systems implements many mechanisms that support security. Some of these mechanisms reside in the operating system, whereas others reside in application and system programs. This chapter discusses the design and implementation of a program to grant users increased privileges. It also presents common programming errors that create security problems, and offers suggestions for avoiding those problems. Finally, testing and distribution are discussed.

This chapter shows the development of the program from requirements to implementation, testing, and distribution.

31.1 Problem

The purpose of this chapter is to provide a glimpse of techniques that provide better than ordinary assurance that a program's design and implementation satisfy its requirements. This chapter is not a manual on applying high-assurance techniques. In terms of the techniques discussed in Part VI, "Assurance," this chapter describes low-assurance techniques.

However, given the current state of programming and software development, these low-assurance techniques enable programmers to produce significantly better, more robust, and more usable code than they could produce without these techniques. So, using a methodology similar to the one outlined in this chapter will reduce vulnerabilities and improve both the quality and the security of code.

A specific problem will illustrate the methods in this chapter. On the Drib's development network infrastructure systems, numerous system administrators

must assume certain roles, such as *bin* (the installers of software), *mail* (the manager of electronic mail), and *root* (the system administrator). Each of these roles is implemented as a separate account, called a *role account*. Unfortunately, this raises the problem of password management. To avoid this problem, as well as to control when access is allowed, the Drib will implement a program that verifies a user's identity, determines if the requested change of account is allowed, and, if so, places the user in the desired role.

31.2 Requirements and Policy

The problem of sharing a password arises when a system implements administrative roles as separate user accounts.

EXAMPLE: Linux systems implement the administrator role as the account *root* (and several other accounts that have more limited functionality). All individuals who share access to the account know the account's password. If the password is changed, all must be notified. All these individuals must remember to notify the other individuals should they change the password.

An alternative to using passwords is to constrain access on the basis of identity and other attributes. With this scheme, a user would execute a special program that would check the user's identity and any ancillary conditions. If all these conditions were satisfied, the user would be given access to the role account.

31.2.1 Requirements

The first requirement comes directly from the description of the alternative scheme above. The system administrators choose to constrain access through known paths (locations) and at times of day when the user is expected to access the role account.

Requirement 31.1. Access to a role account is based on user, location, and time of request.

Users often tailor their environments to fit their needs. This is also true of role accounts. For example, a role account may use special programs kept in a subdirectory of the role account's home directory. This new directory must be on the role account's search path, and would typically be set in the startup file

¹See Section 14.2.1, "Principle of Least Privilege," for an explanation of how the existence of the *root* account violates the principle of least privilege.

executed when the user logged in. A question is whether the user's environment should be discarded and replaced by the role account's environment, or whether the two environments should be merged. The requirement chosen for this program is as follows.

Requirement 31.2. The settings of the role account's environment shall replace the corresponding settings of the user's environment, but the remainder of the user's environment shall be preserved.

The set of role accounts chosen for access using this scheme is critical. If unrestricted access is given (essentially, a full command interpreter), then any user in the role that maintains the access control information can change that information and acquire unrestricted access to the system. Presumably, if the access control information is kept accessible only to *root*, then the users who can alter the information—all of whom have access to *root*—are trusted. Thus:

Requirement 31.3. Only *root* can alter the access control information for access to a role account.

In most cases, a user assuming a particular role will perform specific actions while in that role. For example, someone who enters the role of *oper* may perform backups but may not use other commands. This restricts the danger of commands interacting with the system to produce undesirable effects (such as security violations) and follows from the principle of least privilege.² This form of access is called "restricted access."

Requirement 31.4. The mechanism shall allow both restricted access and unrestricted access to a role account. For unrestricted access, the user shall have access to a standard command interpreter. For restricted access, the user shall be able to execute only a specified set of commands.

Requirement 31.4 implicitly requires that access to the role account be granted to authorized users meeting the conditions in Requirement 31.1. Finally, the role account itself must be protected from unauthorized changes.

Requirement 31.5. Access to the files, directories, and objects owned by any account administered by use of this mechanism shall be restricted to those authorized to use the role account, to users trusted to install system programs, and to *root*.

We next check that these requirements are complete with respect to the threats of concern.

²See Section 14.2.1, "Principle of Least Privilege."

31.2.2 Threats

The threats against this mechanism fall into distinct classes. We enumerate the classes and discuss the requirements that handle each threat.

31.2.2.1 Group 1: Unauthorized Users Accessing Role Accounts

There are four threats that involve attackers trying to acquire access to role accounts using this mechanism.

Threat 31.1. An unauthorized user may obtain access to a role account as though she were an authorized user.

Threat 31.2. An authorized user may use a nonsecure channel to obtain access to a role account, thereby revealing her authentication information to unauthorized individuals.

Threat 31.3. An unauthorized user may alter the access control information to grant access to the role account.

Threat 31.4. An authorized user may execute a Trojan horse (or other form of malicious logic), ³ giving an unauthorized user access to the role account.

Requirements 31.1 and 31.5 handle Threat 31.1 by restricting the set of users who can access a role account and protecting the access control data. Requirement 31.1 also handles Threat 31.2 by restricting the locations from which the user can request access. For example, if the set of locations contains only those on trusted or confidential networks, a passive wiretapper cannot discover the authorized user's password or hijack a session begun by an authorized user. Similarly, if an authorized user connects from an untrusted system, Requirement 31.1 allows the system administrator to configure the mechanism so that the user's request is rejected.

The access control information that Requirement 31.1 specifies can be changed. Requirement 31.3 acknowledges this but restricts changes to trusted users (defined as those with access to the root account). This answers Threat 31.3.

Threat 31.4 is more complex. This threat arises from an untrusted user, without authorization, planting a Trojan horse at some location at which an authorized user might execute it. If the attacker can write into a directory in the role account's search path, this attack is feasible. Requirement 31.2 states that the role account's search path may be selected from two other search paths: the default search path for the role account, and the user's search path altered to include those components of the role account's search path that are not present. This leads to Requirement 31.5 which states that, regardless of how the search path is

³See Chapter 23, "Malware."

derived, the final search path may contain only directories (and may access only programs) that trusted users or the role account itself can manipulate. In this case, the attacker cannot place a Trojan horse where someone using the role account may execute it.

Finally, if a user is authorized to use the role account but is a novice and may change the search path, Requirement 31.4 allows the administrators to restrict the set of commands that the user may execute in that role.

31.2.2.2 Group 2: Authorized Users Accessing Role Accounts

Because access is allowed here, the threats relate to an authorized user changing access permissions or executing unauthorized commands.

Threat 31.5. An authorized user may obtain access to a role account and perform unauthorized commands.

Threat 31.6. An authorized user may execute a command that performs functions that the user is not authorized to perform.

Threat 31.7. An authorized user may change the restrictions on the user's ability to obtain access to the account.

The difference between Threats 31.5 and 31.6 is subtle but important. In the former, the user deliberately executes commands that violate the site security policy. In the latter, the user executes authorized commands that perform covert, unauthorized actions as well as overt, authorized actions—the classic Trojan horse. Threat 31.6 differs from Threat 31.4 because the action may not give access to authorized users; it may simply damage or destroy the system.

Requirement 31.4 handles Threat 31.5. If the user accessing the role account should execute only a specific set of commands, then the access controls must be configured to restrict the user's access to executing only those commands.

Requirements 31.2 and 31.5 handle Threat 31.6 by preventing the introduction of a Trojan horse, as discussed in the preceding section.

Requirement 31.3 answers Threat 31.7. Because all users who have access to *root* are trusted by definition, the only way for an authorized user to change the restrictions on obtaining access to the role account is to implant a backdoor (which is equivalent to a Trojan horse) or to modify the access control information. But the requirement holds that only trusted users can do that, so the authorized user cannot change the information unless he is trusted—in which case, by definition, the threat is handled.

31.2.2.3 Summary

Because the requirements handle the threats, and because all requirements are used, the set of requirements is both necessary and sufficient. We now proceed with the design.

31.3 Design

To create this program, we build modules that fit together to supply security services that satisfy the requirements. First, we create a general framework to guide the development of each interface. Then we examine each requirement separately, and design a component for each requirement.

31.3.1 Framework

The framework begins with the user interface and then breaks down the internals of the program into modules that implement the various requirements.

31.3.1.1 User Interface

The user can run the program in two ways. The first is to request unrestricted access to the account. The second is to request that a specific program be run from the role account. Any interface must be able to handle both.

The simplest interface is a command line. Other interfaces, such as graphical user interfaces, are possible and may make the program easier to use. However, these GUIs will be built in such a way that they construct and execute a command-line version of the program.

The interface chosen is

```
role role_account [ command ]
```

where *role_account* is the name of the role account and *command* is the (optional) command to execute under that account. If the user wants unrestricted access to the role account, he omits *command*. Otherwise, the user is given restricted access and *command* is executed with the privileges of the role account.

The user need not specify the time of day using the interface, because the program can obtain such information from the system. It can also obtain the location from which the user requests access, although the method used presents potential problems (see Section 31.4.3.1). The individual modules handle the remainder of the issues.

31.3.1.2 High-Level Design

The basic algorithm is as follows.

1. Obtain the role account, command, user, location, and time of day. If the command is omitted, the user is requesting unrestricted access to the role account.

- 2. Check that the user is allowed to access the role account
 - a. at the specified location;
 - b. at the specified time; and
 - c. for the specified command (or without restriction).

If the user is not, log the attempt and quit.

- 3. Obtain the user and group information for the role account. Change the privileges of the process to those of the role account.
- 4. If the user has requested that a specific command be run, overlay the child process with a command interpreter that spawns the named command.
- 5. If the user has requested unrestricted access, overlay the child process with a command interpreter.

This algorithm points out an important ambiguity in the requirements. Requirements 31.1 and 31.4 do not indicate whether the ability of the user to execute a command in the given role account requires that the user work from a particular location or access the account at a particular time. This design uses the interpretation that a user's ability to run a command in a role account is conditioned on location and time.

The alternative interpretation, that access only is controlled by location and time, and that commands are restricted by role and user, is equally valid. But sometimes the ability to run commands may require that users work at particular times. For example, an operator may create the daily backups at 1 a.m. The operator is not to do backups at other times because of the load on the system. The interpretation of the design allows this. The alternative interpretation requires the backup program, or some other mechanism, to enforce this restriction. Furthermore, the design interpretation includes the alternative interpretation, because any control expressed in the alternative interpretation can be expressed in the design interpretation.

Requirement 31.4 can now be clarified. The addition is in boldface.

Requirement 31.6. The mechanism shall allow both restricted access and unrestricted access to a role account. For unrestricted access, the user shall have access to a standard command interpreter. For restricted access, the user shall be able to execute only a specified set of commands. The level of access (restricted or unrestricted) shall depend on the user, the role, the time, and the location.

Thus, the design phase feeds back into the requirements phase, here clarifying the meaning of the requirements. It is left as an exercise for the reader to verify that the new form of this requirement counters the appropriate threats (see Exercise 2).

31.3.2 Access to Roles and Commands

The user attempting access, the location (host or terminal), the time of day, and the type of access (restricted or unrestricted) control access to the role account. The access checking module returns a value indicating success (meaning that access is allowed) or failure (meaning that access is not allowed). By the principle of fail-safe defaults, an error causes a denial of access.

We consider two aspects of the design of this module. The interface controls how information is passed to the module from its caller, and how the module returns success or failure. The internal structure of the module includes how it handles errors. This leads to a discussion of how the access control data is stored. We consider these issues separately to emphasize that the interface provides an entry point into the module, and that the entry point will remain fixed even if the internal design of the module is completely changed. The internal design and structures are hidden from the caller.

31.3.2.1 Interface

Following the practice of hiding information among modules,⁴ we minimize the amount of information to be passed to the access checking module. The module requires the user requesting access, the role to which access is requested, the location, the time, and the command (if any). The return value must indicate success or failure. The question is how this information is to be obtained.

The command (or request for unrestricted access) must come from the caller, because the caller provides the interface for the processing of that command. The command is supplied externally, so the principles of layering require it to pass through the program to the module.

The caller could also pass the other information to the module. This would allow the module to provide an access control result without obtaining the information directly. The advantage is that a different program could use this module to determine whether or not access *had been* or *would be* granted at some past or future point in time, or from some other location. The disadvantage is a lack of portability, because the interface is tied to a particular representation of the data. Also, if the caller of the module is untrusted but the module is trusted, the module might make trusted decisions based on untrusted data, violating a principle of integrity. So we choose to have the module determine all of the data.

This suggests the following interface:

boolean accessok(role rname, command cmd);

where *rname* is the name of the requested role and *cmd* is the command to be executed (or is empty if unrestricted access is desired). The routine returns **true** if access is to be granted, and **false** otherwise.

⁴This is one aspect of the principle of least common mechanism (see Section 14.2.7).

⁵This follows from Biba's low-water-mark policy (see Section 6.2.1).

31.3.2.2 Internals

This module has three parts. The first part gathers the data on which access is to be based. The second part retrieves the access control information. The third part determines whether the data and the access control information require access to be granted.

The module queries the operating system to determine the needed data. The real user identification data is obtained through a system call, as is the current time of day. The location consists of two components: the entry point (terminal or network connection) and the remote host from which the user is accessing the local system. The latter component may indicate that the entry point is directly connected to the system, rather than using a remote host.

Part I: Obtain user ID, time of day, entry point, and remote host.

Next, the module must access the access control information. The access control information resides in a file. The file contains a sequence of records of the following form:

```
role account user names locations from which the role account can be accessed times when the role account can be accessed command and arguments
```

If the "command and arguments" line is omitted, the user is granted unrestricted access. Multiple command lines may be listed in a single record.

Part II: Obtain a handle (or descriptor) to the access control information. The programmer will use this handle to read the access control records from the access control information.

Finally, the program iterates through the access control information. If the role in the current record does not match the requested role, it is ignored. Otherwise, the user name, location, time, and command are compared with the appropriate fields of the record. If they all match, the module releases the handle and returns success. If any of them does not match, the module continues on to the next record. If the module reaches the end of the access control information, the handle is released and the module returns failure. Note that records never deny access, but only grant it. The default action is to deny. Granting access requires an explicit record.

If any record is invalid (for example, if there is a syntax error in one of the fields or if the user field contains a nonexistent user name), the module logs the error and ignores the record. This again follows the principle of fail-safe defaults, in which the system falls into a secure state when there is an error.

⁶If the time interval during which access is allowed expires after the access control check but before the access is granted, Requirement 31.1 is met (as it refers to the time of request). This eliminates a possible race condition.

⁷See Section 14.2.2, "Principle of Fail-Safe Defaults."

Part III: Iterate through the records until one matches the data or there are no more records. In the first case, return success; in the second case, return failure.

31.3.2.3 Storage of the Access Control Data

The system administrators of the local system control access to privileged accounts. To keep maintenance of this information simple, the administrators store the access control information in a file. Then they need only edit the file to change a user's ability to access the privileged account. The file consists of a set of records, each containing the components listed above. This raises the issue of expression. How should each part of the record be written?

For example, must each entry point be listed, or are wildcards acceptable? Strictly speaking, the principle of fail-safe defaults⁸ says that we should list explicitly those locations from which access may be obtained. In practice, this is too cumbersome. Suppose a particular user was trusted to assume a role from any system on the Internet. Requiring the administrators to list all hosts would be time-consuming as well as infeasible. Worse, if the user were not allowed to access the role account from one system, the administrators would need to check the list to see which system was missing. This would violate the principle of least astonishment. Given the dynamic nature of the Internet, this requirement would be absurd. Instead, we allow the following special host names, both of which are illegal [1365]:

```
*any* (a wildcard matching any system)
*local* (matches the local host name)
```

In BNF form, the language used to express location is

```
location ::= '(' location ')' | 'not' location | location 'or' location | basic basic ::= '*any*' | '*local*' | '.' domain | host
```

where *domain* and *host* are domain names and host names, respectively. The strings in single quotation marks are literals. The parentheses are grouping operators, the "not" complements the associated locations, and the "or" allows either location.

EXAMPLE: A user is allowed to assume a role only when logged into the local system, the system "control.fixit.com", and the domain "watchu.edu". The appropriate entry would be

```
*local* | control.fixit.com | .watchu.edu
```

⁸See Section 14.2.2.

⁹See Section 14.2.8.

A similar question arises for times. Ignoring how times are expressed, how do we indicate when users may access the role account? Considerations similar to those above lead us to the following language, in which the keyword

```
*any*
```

allows access at any time. In BNF form, the language used to express time is

```
time ::= '(' time ')' | 'not' time | time 'or' time | time time | time '-' time | basic
basic ::= day_of_year day_of_week time_of_day | '*any*'
day_of_year ::= month [ day ] [ ',' year ] | nmonth 'l' [ day 'l' ] year | empty
day_of_week ::= 'Sunday' | ... | 'Saturday' | 'Weekend' | 'Weekday' | empty
time_of_day ::= hour [ ':' min ] [ ':' sec ] [ 'AM' | 'PM' ] | special | empty
special ::= 'noon' | 'midnight' | 'morning' | 'afternoon' | 'evening'
empty ::= ''
```

where *month* is a string naming the month, *nmonth* is an integer naming the month, *day* is an integer naming the day of the month, and *year* is an integer specifying the year. Similarly, *hour*, *min*, and *sec* are integers specifying the hour, minute, and second. If *basic* is empty, it is treated as not allowing access. ¹⁰

EXAMPLE: A user is allowed to assume a role between the hours of 9 o'clock in the morning and 5 o'clock in the evening on Monday through Thursday. An appropriate entry would be

Monday-Thursday 9a.m.-5p.m.

This is different than saying

Monday 9a.m.-Thursday 5p.m.

because the latter allows access on Monday at 10 p.m., whereas the former does not.

Finally, the users field of the record has a similar structure:

```
*anv*
```

In BNF form, the language used to express the set of users who may access a role is

```
userlist ::= '(' userlist ')' | 'not' userlist | userlist ',' userlist | user
```

where *user* is the name of a user on the system.

¹⁰By the principle of fail-safe defaults (see Section 14.2.2).

These "little languages" are straightforward and simple (but incomplete; see Exercise 5). Various implementation details, such as allowing abbreviations for day and month names, can be added, as can an option to change the American expression of days of the year to an international one. These points must be considered in light of where the program is to be used. Whatever changes are made, the administrators must be able to configure times and places quickly and easily, and in a manner that a reader of the access control file can understand quickly. ¹¹

The listing of commands requires some thought about how to represent arguments. If no arguments are listed, is the command to be run without arguments, or should it allow any set of arguments? Conversely, if arguments are listed, should the command be run only with those arguments? Our approach is to force the administrator to indicate how arguments are to be treated.

Each command line contains a command followed by zero or more arguments. If the first word after the command is an asterisk ("*"), then the command may be run with any arguments. Otherwise, the command must be run with the exact arguments provided.

EXAMPLE: Charles is allowed to run the install command when he accesses the *bin* role. He may supply any arguments. The line in the access control file is

```
/bin/install *
```

He may also copy the file log from the current working directory to the directory /var/install. The line for this is

```
/bin/cp log /var/install/log
```

Finally, he may run the *id* command to ensure that he is working as *bin*. He may not supply other arguments to the command, however. This would be expressed by

/usr/bin/id

The user must type the command as given in the access control file. The full path names are present to prevent the user from accidentally executing the command *id* with *bin* privileges when *id* is a command in the local directory, rather than the system *id* command.¹²

¹¹See Section 14.2.8, "Principle of Least Astonishment."

¹²See Chapter 23, "Malware."

31.4 Refinement and Implementation

This section focuses on the access control module of the program. We refine the high-level design presented in the preceding section until we produce a routine in a programming language.

31.4.1 First-Level Refinement

Rather than use any particular programming language, we first implement the module in pseudocode. This requires two decisions. First, the implementation language will be block-structured, like C or Java, rather than functional, like Scheme or ML. Second, the environment in which the program will function will be a UNIX-like system such as FreeBSD or Linux.

The basic structure of the security module is

We now verify that this sketch matches the design. Clearly, the interface is unchanged. The variable *status* will contain the status of the access control file check, becoming true when a match is found. Initially, it is set to false (deny access) because of the principle of fail-safe defaults. If *status* were not set, and the access control file were empty, *status* would never be set and the returned value would be undefined.

The next three lines obtain the user ID, the current time of day, and the system entry point. The following line opens the access control file.

The routine then iterates through the records of that file. The iteration has two requirements—that if any record allows access, the routine is to return true, and that if no record grants access, the routine is to return false. From the

structure of the file, one cannot create a record to deny access. By default, access is denied. Entries explicitly grant access. So, iterating over the records of the file either produces a record that grants access (in which case the match routine returns true, terminating the loop and causing *accessok* to return with a value of true) or produces no such record. In that case, *status* is false, and *currecord* is set to EOF when the records in the access control file are exhausted. The loop then terminates, and the routine returns the value of *status*, which is false. Hence, this pseudocode matches the design and, transitively, the requirements.

31.4.2 Second-Level Refinement

Now we will focus on mapping the pseudocode above to a particular language and system. The C programming language is widely available and provides a convenient interface to UNIX-like systems. Given that our target system is a UNIX-like system, C is a reasonable choice. As for the operating system, there are many variants of the UNIX operating system. However, they all have fundamental similarities. The Linux operating system will provide the interfaces discussed below, and they work on a wide variety of UNIX systems.

On these systems, roles are represented as normal user accounts. The root account is really a role account, ¹³ for example. Each user account has two distinct representations of identity: ¹⁴ an internal user type uid_-t , ¹⁵ and a string (name). When a user specifies a role, either representation may be used. For our purposes, we will assume that the caller of the accessok routine provides the uid_-t representation of the role identity. Two reasons make this representation preferable. First, the target systems are unable to address privilege in terms of names, because, within the kernel, process identity is always represented by a uid_-t . So the routines will need to do the conversion anyway. The second reason is more complex. Roles in the access control file can be represented by numbers or names. The routine for reading the access control file records will convert the roles to uid_-t s to ensure consistency of representation. This also allows the input routine to check the records for consistency with the system environment. Specifically, if the role name refers to a nonexistent account, the routine can ignore the record. So any comparisons would require the role from the interface to be converted to a uid_-t .

This leads to a design decision: represent all user and role IDs as integers internally. Fortunately, none of the design decisions discussed so far depend on the representation of identity, so we need not review or change our design.

Next, consider the command. On the target system, a command consists of a program name followed by a sequence of words, which are the command-line arguments to the command. The command representation is an array of strings, in

¹³See Section 15.4, "Groups and Roles."

¹⁴See Section 15.3. "Users."

¹⁵On Linux systems, and on most UNIX-like systems, this is an integer.

which the first string is the program name and the other strings are the commandline arguments.

Putting this all together, the resulting interface is

```
int accessok(uid_t rname, char *cmd[])
```

Next comes obtaining the user ID. Processes in the target system have several identities, but the key ones are the *real UID* (which identifies the user running the process) and the *effective UID* (which identifies the privileges with which the process runs). ¹⁶ The effective UID of this program must have *root* privileges (see Exercise 4) regardless of who runs the process. Hence, it is useless for this purpose. Only the real UID identifies the user running the program. So, to obtain the user ID of the user running the program, we use

```
userid = getuid();
```

The time of day is obtained from the system and expressed in internal format. The internal representation can be given in seconds since a specific date and time (the *epoch*)¹⁷ or in microseconds since that time. It is unlikely that times will need to be specified in microseconds in the access control file. For both simplicity of code and simplicity of the access control data, ¹⁸ the internal format of seconds will be used. So, to obtain the current time, we use

```
timeday = time(NULL);
```

Finally, we need to obtain the location. There is no simple method for obtaining this information, so we defer it until later by encapsulating it in a function. This also localizes any changes should we move this program to a different system (for example, the methods used on a Linux system may differ from those used on a FreeBSD system).

```
entry = getlocation();
```

Opening the access control file for reading is straightforward:

```
if ((fp = fopen(acfile, "r")) == NULL){
    logerror(errno, acfile);
    return(0);
}
```

¹⁶See Section 15.3, "Users."

¹⁷On Linux and most other UNIX-like systems, the epoch is midnight on January 1, 1970 (UTC).

¹⁸See Section 14.2.3, "Principle of Economy of Mechanism," and Section 14.2.8, "Principle of Least Astonishment."

Notice first the error checking, and the logging of information on an error. The variable errno is set to a code indicating the nature of the error. The variable acfile points to the access control file name. The processing of the access control records follows:

Here, we read in the record—assuming that any records remain—and check the record to see if it allows permission. This looping continues until either some record indicates that permission is to be given or all records are checked. The exact internal record format is not yet specified; hence, the use of functions. The routine concludes by closing the access control file and returning status:

```
(void) fclose(fp);
return(status);
```

31.4.3 Functions

Three functions remain: the function for obtaining location, the function for getting an access control record, and the function for checking the access control record against the information of the current process. Each raises security issues.

31.4.3.1 Obtaining Location

UNIX and Linux systems write the user's account name, the name of the terminal on which the login takes place, the time of login, and the name of the remote host (if any) to the *utmp* file. Any process may read this file. As each new process runs, it may have an associated terminal. To determine the *utmp* record associated with the process, a routine may obtain the associated terminal name, open the *utmp* file, and scan through the record to find the one with the corresponding terminal name. That record contains the name of the host from which the user is working.

This approach, although clumsy, works on most UNIX and Linux systems. It suffers from two problems related to security.

- 1. If any process can alter the *utmp* file, its contents cannot be trusted. Several security holes have occurred because any process could alter the *utmp* file [2254].
- 2. A process may have no associated terminal. Such a detached process must be mapped into the corresponding *utmp* record through other means.

However, if the *utmp* record contains only the information described above, this is not possible because the user may be logged into multiple terminals. The issue does not arise if the process has an associated terminal, because only one user at a time may be logged into a terminal.

In the first case, we make a design decision that if the data in the *utmp* file cannot be trusted because any process can alter that file, we return a meaningless location. Then, unless the location specifier of the record allows access from any location, the record will not match the current process information and will not grant access. A similar approach works if the process does not have an associated terminal.

The outline of this routine is

```
hostname getlocation()
    status ← false
    mvterm \leftarrow name of terminal
    obtain access control list for utmp
    if any user other than root can alter it then
        return "*nowhere*"
    open utmp
    repeat
        term ← obtain next entry from utmp; otherwise EOF
        if term \neq EOF and myterm = term then
                status ← true
    until term = EOF or status = true
    if host field of utmp entry = empty
        host = "localhost"
    else
        host = host field of utmp entry
    close utmp
    return host
```

We omit the implementation due to space limitations.

31.4.3.2 The Access Control Record

The format of the records in the access control file affects both the reading of the file and the comparison with the process information, so we design it here.

Our approach is to consider the match routine first. Four items must be checked: the user name, the location, the time, and the command. Consider these items separately.

The user name is represented as an integer. Thus, the internal format of the user field of the access control record must contain either integers or names that the match routine can convert to integers. If a match occurs before all user names have been checked, then the program needs to convert no more names to integers. So, we adopt the strategy of representing the user field as a string read directly

from the file. The match routine will parse the line and will use lazy evaluation to check whether or not the user ID is listed.

A similar strategy can be applied to the location and the set of commands in the record.

The time is somewhat different, because in the previous two cases, the process user ID and the location had to match one of the record entries exactly. However, the time does not have to do so. Time in the access control record is (almost always) a range. For example, the entry "May 30" means any time on the date of May 30. The day begins at midnight and ends at midnight, 24 hours later. So, the range would be from May 30 at midnight to May 31 at midnight, or in internal time (for example) between 1527638400 and 1527724800. In those rare cases in which a user may assume a role only at a precise second, the range can be treated as having the same beginning and ending points. Given this view of time as ranges, checking that the current time falls into an acceptable range suggests having the match routine parse the times and checking whether or not the internal system time falls in each range as it is constructed.

This means that the routine for reading the record may simply load the record as a sequence of strings and let the match routine do the interpretation. This yields the following structure:

```
record
    role rname
    string userlist
    string location
    string timeofday
    string commands[]
    integer numcommands
end record;
```

The *commands* field is an array of strings, each command and argument being one string, and *numcommands* containing the number of commands.

Given this information, the function used to read the access control records, and the function used to match them with the current process information, are not hard to write, but error handling does deserve some mention.

31.4.3.3 Error Handling in the Reading and Matching Routines

Assume that there is a syntax error in the access control file. Perhaps a record specifies a time incorrectly (for example, "Thurxday"), or a record divider is garbled. How should the routines handle this?

The first observation is that they cannot ignore the error. To do so violates basic principles of security (specifically, the principle of least astonishment¹⁹). It also defeats the purpose of the program, because access will be denied to users

¹⁹See Section 14.2.8, "Principle of Least Astonishment."

who need it.²⁰ So, the program must produce an indication of error. If it is printed, then the user will see it and should notify the system administrator maintaining the access control file. Should the user forget, the administrator will not know of the error. Hence, the error must be logged. Whether or not the user should be told why the error has occurred is another question. One school of thought holds that the more information users have, the more helpful they will be. Another school holds that information should be denied unless the user needs to know it, and in the case of an error in the access control file, the user only needs to know that access will be denied.

Hence, the routines must log information about errors. The logged information must enable the system administrator to locate the error in the file. The error message should include the access control file name and line or record number. This suggests that both routines need access to that information. Hence, the record counts, line numbers, and file name must be shared. For reasons of modularity, this implies that these two routines should be in a submodule of the access checking routine. If they are placed in their own module, no other parts of the routine can access the line or record numbers (and none need to, given the design described here). If the module is placed under the access control routine, no external functions can read records from the access control file or check data against that file's contents.

31.4.4 Summary

This section has examined the development of a program for performing a security-critical function. Beginning with a requirements analysis, the design and parts of the implementation demonstrate the need for repeated analysis to ensure that the design meets the requirements and that design decisions are documented. From the point at which the derivation stopped, the implementation is simple.

We will now discuss some common security-related programming problems. Then we will discuss testing, installation, and maintenance.

31.5 Common Security-Related Programming Problems

Unfortunately, programmers are not perfect. They make mistakes. These errors can have disastrous consequences in programs that change the protection domains. Attackers who exploit these errors may acquire extra privileges (e.g., access to a system account such as *root* or *Administrator*). They may disrupt the normal functioning of the system by deleting or altering services over which they

²⁰Note that a record with a syntax error will never grant access (see Exercise 6).

should have no control. They may simply be able to read files to which they should have no access.²¹ So the problem of avoiding these errors, or security holes, is a necessary issue to ensure that the programs and system function as required.

We present both management rules (installation, configuration, and maintenance) and programming rules together. Although there is some benefit in separating them, doing so creates an artificial distinction by implying that they can be considered separately. In fact, the limits on installation, configuration, and maintenance affect the implementation, just as the limits of implementation affect the installation, configuration, and maintenance procedures.

Researchers have developed several models for analyzing systems for these security holes. ²² These models provide a framework for characterizing the problems. The goal of the characterization guides the selection of the model. Because we are interested in technical modeling and not in the reason or time of introduction, many of the categories of the NRL model²³ are inappropriate for our needs. We also wish to analyze the multiple components of vulnerabilities rather than force each vulnerability into a particular point of view, as Aslam's model²⁴ does. So either the PA model²⁵ or the RISOS model²⁶ is appropriate. We have chosen the PA model for our analysis.

We examine each of the categories and subcategories separately. We consider first the general rules that we can draw from the vulnerability class, and then we focus on applying those rules to the program under discussion.

31.5.1 Improper Choice of Initial Protection Domain

Flaws involving improper choice of initial protection domain arise from incorrect setting of permissions or privileges. There are three objects for which permissions need to be set properly: the file containing the program, the access control file, and the memory space of the process. We will consider them separately.

31.5.1.1 Process Privileges

The principle of least privilege²⁷ dictates that no process have more privileges than it needs to complete its task, but the process must have enough privileges to complete its task successfully.

Ideally, one set of privileges should meet both criteria. In practice, different portions of the process will need different sets of privileges. For example, a process may need special privileges to access a resource (such as a log file) at the beginning

²¹See Chapter 24, "Vulnerability Analysis."

²²See Section 24.4, "Frameworks."

²³See Section 24.4.3, "The NRL Taxonomy."

²⁴See Section 24.4.4, "Aslam's Model."

²⁵See Section 24.4.2, "Protection Analysis Model."

²⁶See Section 24.4.1, "The RISOS Study."

²⁷See Section 14.2.1, "Principle of Least Privilege."

and end of its task, but may not need those privileges at other times. The process structure and initial protection domain should reflect this.

Implementation Rule 31.1. Structure the process so that all sections requiring extra privileges are modules. The modules should be as small as possible and should perform only those tasks that require those privileges.

The basis for this rule lies in the reference monitor.²⁸ The reference monitor is verifiable, complete (it is always invoked to access the resource it protects), and tamperproof (it cannot be compromised). Here, the modules are kept small and simple (verifiable), access to the privileged resource requires the process to invoke these modules (complete), and the use of separate modules with well-defined interfaces minimizes the chances of other parts of the program corrupting the module (tamperproof).

Management Rule 31.1. Check that the process privileges are set properly.

Insufficient privileges could cause a denial of service. Excessive privileges could enable an attacker to exploit vulnerabilities in the program. To avoid these problems, the privileges of the process, and the times at which the process has these privileges, must be chosen and managed carefully.

One of the requirements of this program is availability (Requirements 31.1 and 31.4). On Linux and UNIX systems, the program must change the effective identity of the user from the user's account to the role account. This requires special (setuid) privileges of either the role account or the superuser.²⁹ The principle of least privilege³⁰ says that the former is better than the latter, but if one of the role accounts is *root*, then having multiple copies of the program with limited privileges is irrelevant, because the program with privileges to access the *root* role account is the logical target of attack. After all, if one can compromise a less privileged account through this program, the same attack will probably work against the *root* account. Because the Drib plans to control access to *root* in some cases, the program requires setuid to *root* privileges.

If the program does not have root privileges initially, the UNIX protection model does not allow the process to acquire them; the permissions on the program file corresponding to the program must be changed. The process must log enough information for the system administrator to identify the problem,³¹ and should notify users of the problem so that the users can notify the system administrator. An alternative is to develop a server that will periodically check the permissions on the program file and reset them if needed, or a server that the program can notify should it have insufficient privileges. The designers felt that the benefits of

³⁰See Section 14.2.1, "Principle of Least Privilege."

²⁸See Section 20.1.2.2, "Building Security In or Adding Security Later." Programs implemented following this rule are *not* reference monitors.

²⁹See Section 15.3, "Users."

³¹See Section 25.3, "Designing an Auditing System."

these servers were not sufficient to warrant their development. In particular, they were concerned that the system administrators investigate any unexpected change in file permissions, and an automated server that changed the permissions back would provide insufficient incentive for an analysis of the problem.

As a result, the developers required that the program acquire *root* permission at start-up. The access control module is executed. Within that module, the privileges are reset to the user's once the log file and access control file have been opened.³² Superuser privileges are needed only once more—to change the privileges to those of the role account should access be granted. This routine, also in a separate module, supplies the granularity required to provide the needed functionality while minimizing the time spent executing with *root* privileges.

31.5.1.2 Access Control File Permissions

Biba's models³³ emphasize that the integrity of the process relies on both the integrity of the program and the integrity of the access control file. The former requires that the program be properly protected so that only authorized personnel can alter it. The system managers must determine who the "authorized personnel" are. Among the considerations here are the principle of separation of duty³⁴ and the principle of least privilege.³⁵

Verifying the integrity of the access control file is critical, because that file controls the access to role accounts. Some external mechanism, such as a file integrity checking tool, can provide some degree of assurance that the file has not changed. However, these checks are usually periodic, and the file might change after the check. So the program itself should check the integrity of the file when the program is run.

Management Rule 31.2. The program that is executed to create the process, and all associated control files, must be protected from unauthorized use and modification. Any such modification must be detected.

In many cases, the process will rely on the settings of other files or on some other external resources. Whenever possible, the program should check these dependencies to ensure that they are valid. The dependencies must be documented so that installers and maintainers will understand what else must be maintained in order to ensure that the program works correctly.

Implementation Rule 31.2. Ensure that any assumptions in the program are validated. If this is not possible, document them for the installers and maintainers, so they know the assumptions that attackers will try to invalidate.

³²Section 14.2.3, "Principle of Complete Mediation," provides detail on why this works.

³³See Section 6.2, "The Biba Model."

³⁴See Section 6.1. "Goals."

³⁵See Section 14.2.1, "Principle of Least Privilege."

The permissions of the program, and its containing directory, are to be set so only *root* can alter or move the program. According to Requirement 31.2, only *root* can alter the access control file. Hence, the file must be owned by *root*, and only *root* can write to it. The program should check the ownership and permissions of this file, and the containing directories, to validate that only *root* can alter it.

EXAMPLE: The naive way to check that only *root* can write to the file is to check that the owner is *root* and that the file permissions allow only the owner to write to it. But consider the group permissions. If *root* is the only member of the group, then the group permissions may allow members of the group to write to the file. The problem is that checking group membership is more complicated than looking up the members of the group. A user may belong to a group without being listed as a member, because the GID of the user is assigned from the password file, and group membership lists are contained in a different file.³⁶ Either the password file and the group membership list must both be checked, or the program should simply report an error if anyone other than the user can write to the file. For simplicity,³⁷ the designers chose the second approach.

31.5.1.3 Memory Protection

As the program runs, it depends on the values of variables and other objects in memory. This includes the executable instructions themselves. Thus, protecting memory against unauthorized or unexpected alteration is critical.

Consider sharing memory. If two subjects can alter the contents of memory, then one could change data on which the second relies. Unless such sharing is required (for example, by concurrent processes), it poses a security problem because the modifying process can alter variables that control the action of the other process. Thus, each process should have a protected, unshared memory space.

If the memory is represented by an object that processes can alter, it should be protected so that only trusted processes can access it. Access here includes not only modification but also reading, because passwords reside in memory after they are types. Multiple abstractions are discussed in more detail in the next section.

Implementation Rule 31.3. Ensure that the program does not share objects in memory with any other program, and that other programs cannot access the memory of a privileged process.

³⁶Specifically, if the group field of the password file entry for *matt* is 30, and the group file lists the members of group 30 as *root*, the user *matt* is still in group 30, but a query to the group file (the standard way to determine group membership) will show that only *root* is a member.

³⁷See Section 14.2.3, "Principle of Economy of Mechanism."

Interaction with other processes cannot be eliminated. If the running process obtains input or data from other processes, then that interface provides a point through which other processes can reach the memory. The most common version of this attack is the buffer overflow.

Buffer overflows involve either altering of data or injecting of instructions that can be executed later. There are a wide variety of techniques for this [32, 706]. Several remedies exist. For example, if buffers reside in sections of memory that are not executable, injecting instructions will not work. Similarly, if some data is to remain unaltered, the data can be stored in read-only memory.

Management Rule 31.3. Configure memory to enforce the principle of least privilege. If a section of memory is not to contain executable instructions, turn execute permission off for that section of memory. If the contents of a section of memory are not to be altered, make that section read-only.

These rules appear in three ways in our program. First, the implementers use the language constructs to flag unchanging data as constant (in the C programming language, this is the keyword *const*). This will cause compile-time errors if the variables are assigned to, or runtime errors if instructions try to alter those constants.

The other two ways involve program loading. The system's loader places data in three areas: the *data* (initialized data) segment, the *stack* (used for function calls and variables local to the functions), and the *heap* (used for dynamically allocated storage). A common attack is to trick a program into executing instructions injected into three areas. The vector of injection can be a buffer overflow,³⁹ for example. The characteristic under discussion does not stop such alteration, but it should prevent the data from being executed by making the segments or pages of all three areas nonexecutable. This suffices for the data and stack segments and follows Management Rule 31.3.

If the program uses dynamic loading to load functions at runtime, the functions that are loaded may change over the lifetime of the program. This means that the assumptions the programmers make may no longer be valid. One solution to this problem is to compile the program in such a way that it does not use dynamic loading. This also also prevents the program from trying to load a module at runtime that may be missing. This could occur if a second process deleted the appropriate library. So disabling of dynamic loading also follows Implementation Rule 31.3.41

Finally, some UNIX-like systems (including the one on which this program is being developed) allow execution permission to be turned off for the stack. The boot file sets the kernel flag to enforce this.

³⁸However, alternative techniques involving corrupting data, causing the flow of control to change improperly, do work. See Section 31.5.6, "Improper Validation."

³⁹Buffer overflows can also alter data. See Section 31.5.3.1, "Memory," for an example.

⁴⁰See Section 31.5.3.2, "Changes in File Contents."

⁴¹Other considerations contributed. See Section 31.5.4, "Improper Naming."

31.5.1.4 Trust in the System

This analysis overlooks several system components. For example, the program relies on the system authentication mechanisms to authenticate the user, and on the user information database to map users and roles into their corresponding UIDs (and, therefore, privileges). It also relies on the inability of ordinary users to alter the system clock. If any of this supporting infrastructure can be compromised, the program will not work correctly. The best that can be done is to identify these points of trust in the installation and operation documentation so that the system administrators are aware of the dependencies of the program on the system.

Management Rule 31.4. Identify all system components on which the program depends. Check for errors whenever possible, and identify those components for which error checking will not work.

For this program, the implementers should identify the system databases and information on which the program depends, and should prepare a list of these dependencies. They should discuss these dependencies with system managers to determine if the program can check for errors. When this is not possible, or when the program cannot identify all errors, they should describe the possible consequences of the errors. This document should be distributed with the program so that system administrators can check their systems before installing the program.

31.5.2 Improper Isolation of Implementation Detail

The problem of improper isolation of implementation detail arises when an abstraction is improperly mapped into an implementation detail. Consider how abstractions are mapped into implementations. Typically, some function (such as a database query) occurs, or the abstraction corresponds to an object in the system. What happens if the function produces an error or fails in some other way, or if the object can be manipulated without reference to the abstraction?

The first rule is to catch errors and failures of the mappings. This requires an analysis of the functions and a knowledge of their implementation. The action to take on failure also requires thought. In general, if the cause cannot be determined, the program should fail by returning the relevant parts of the system to the states they were in when the program began.⁴²

Implementation Rule 31.4. The error status of every function must be checked. Do not try to recover unless the cause of the error, and its effects, do not affect any security considerations. The program should restore the state of the system to the state before the process began, and then terminate.

⁴²See Section 14.2.2, "Principle of Fail-Safe Defaults."

The abstractions in this program are the notion of a user and a role, the access control information, and the creation of a process with the rights of the role. We will examine these abstractions separately.

31.5.2.1 Resource Exhaustion and User Identifiers

The notion of a user and a role is an abstraction because the program can work with role names and the operating system uses integers (UIDs). The question is how those user and role names are mapped to UIDs. Typically, this is done with a user information database that contains the requisite mapping, but the program must detect any failures of the query and respond appropriately.

EXAMPLE: A mail server allowed users to forward mail by creating a forwarding file [2225]. The forwarding file could specify files to which the mail should be appended. In this case, the mail server would deliver the letter with the privileges of the owner of the forwarding file (represented on the system as an integer UID). In some cases, the mail server would queue the message for later delivery. When it did so, it would write the name (not the UID) of the user into a control file. The system queried a database, supplying the UID, and obtaining the corresponding name. If the query failed, the mail server used a default name specified by the system administrator.

Attackers discovered how to make the queries fail. As a result, the user was set to a default user, usually a system-level user (such as *daemon*). This enabled the attackers to have the mail server append mail to any file to which the default user could write. They used this to implant Trojan horses into system programs. These Trojan horses gave them extra privileges, compromising the system.

The designers and implementers decided to have the program fail if, for any reason, the query failed. This application of the principle of fail-safe defaults⁴³ ensured that in case of error, the users would not get access to the role account.

31.5.2.2 Validating the Access Control Entries

The access control information implements the access control policy (an abstraction). The expression of the access control information is therefore the result of mapping an abstraction to an implementation. The question is whether or not the given access control information correctly implements the policy. Answering this question requires someone to examine the implementation expression of the policy.

The programmers developed a second program that used the same routines as the role-assuming program to analyze the access control entries. This program prints the access control information in an easily readable format. It allows the system managers to check that the access control information is correct. A specific procedure requires that this information be checked periodically, and always after the file or the program is altered.

⁴³See Section 14.2.2, "Principle of Fail-Safe Defaults."

31.5.2.3 Restricting the Protection Domain of the Role Process

Creating a role process is the third abstraction. There are two approaches. Under UNIX-like systems, the program can spawn a second, *child*, process. It can also simply start up a second program in such a way that the parent process is replaced by the new process. This technique, called *overlaying*, is intrinsically simpler than creating a child process and exiting. It allows the process to replace its own protection domain with the (possibly) more limited one corresponding to the role. The programmers elected to use this method. The new process inherits the protection domain of the original one. Before the overlaying, the original process must reset its protection domain to that of the role. The programmers do so by closing all files that the original process opened, and changing its privileges to those of the role.

EXAMPLE: The effective UIDs and GIDs⁴⁴ control privileges. Hence, the programmers reset the effective GID first, and then the effective UID (if resetting were done in the opposite order, the change to GIDs would fail because such changes require *root* privileges). However, if the UNIX-like system supports saved UIDs, an authorized user may be able to acquire *root* privileges even if the role account is not *root*. The problem is that resetting the effective UID sets the saved UID to the previous UID—namely, *root*. A process may then reacquire the rights of its saved UID. To avoid this problem, the programmers used the *setuid* system call to reset *all* of the real, effective, and saved UIDs to the UID of the role. Thus, all traces of the *root* UID are eliminated and the user cannot reacquire those privileges.

Similarly, UNIX-like systems check access permissions only when the file is opened. If a *root* process opens a privileged file and then the process drops *root* privileges, it can still read from (or write to) the file.

The components of the protection domain that the process must reset before the overlay are the open files (except for standard input, output, and error), which must be closed, the signal handlers, which must be reset to their default values, and any user-specific information, which must be cleared.

31.5.3 Improper Change

This category describes data and instructions that change over time. The danger is that the changed values may be inconsistent with the previous values. The previous values dictate the flow of control of the process. The changed values cause the program to take incorrect or nonsecure actions on that path of control.

The data and instructions can reside in shared memory, in nonshared memory, or on disk. The last includes file attribute information such as ownership and access control list.

⁴⁴See Section 15.3, "Users."

31.5.3.1 Memory

First comes the data in shared memory. Any process that can access shared memory can manipulate data in that memory. Unless all processes that can access the shared memory implement a concurrent protocol for managing changes, one process can change data on which a second process relies. As stated above, this could cause the second process to violate the security policy.

EXAMPLE: Two processes share memory. One process reads authentication data and writes it into the shared memory space. The second process performs the authentication, and writes a boolean *true* back into the shared memory space if the authentication succeeds, and *false* if it fails. Unless the two processes use concurrent constructs to synchronize their reading and writing, the first process may read the result before the second process has completed the computation for the current data. This could allow access when it should be denied, or vice versa.

Implementation Rule 31.5. If a process interacts with other processes, the interactions should be synchronized. In particular, all possible sequences of interactions must be known and, for all such interactions, the process must enforce the required security policy.

A variant of this situation is the asynchronous exception handler. If the handler alters variables and then returns to the previous point in the program, the changes in the variables could cause problems similar to the problem of concurrent processes. For this reason, if the exception handler alters any variables on which other portions of the code depend, the programmer must understand the possible effects of such changes. This is just like the earlier situation in which a concurrent process changes another's variables in a shared memory space.

Implementation Rule 31.6. Asynchronous exception handlers should not alter any variables except those that are local to the exception handling module. An exception handler should block all other exceptions when begun, and should not release the block until the handler completes execution, unless the handler has been designed to handle exceptions within itself (or calls an uninvoked exception handler).

A second approach applies whether the memory is shared or not. A user feeds bogus information to the program, and the program accepts it. The bogus data overflows its buffer, changing other data, or inserting instructions that can be executed later.

EXAMPLE: The buffer overflow attack on *fingerd* described in Section 24.4.5.2 illustrates this approach. The return address is pushed onto the stack when the input routine is called. That address is not expected to change between its being pushed onto the stack and its being popped from the stack, but the buffer

overflow changes it. When the input function returns, the address popped from the stack is that of the input buffer. Execution resumes at that point, and the input instructions are used.

This suggests one way to detect such transformations (the *stack guard approach*) [469]. Immediately after the return address is pushed onto the stack, push a random number onto the stack (the *canary*). Assume that the input overflows the buffer on the stack and alters the return address on the stack. If the canary is n bits long and has been chosen randomly, the probability of the attacker not changing that cookie is 2^{-n} . When the input procedure returns, the canary is popped and compared with the value that was pushed onto the stack. If the two differ, there has been an overflow.⁴⁵

In terms of trust, the return address (a trusted datum) can be affected by untrusted data (from the input). This lowers the trustworthiness of the return address to that of input data. One need not supply instructions to breach security.

EXAMPLE: One (possibly apocryphal) version of a UNIX login program allocated two adjacent arrays. The first held the user's cleartext password and was 80 characters long, and the second held the password hash 46 and was 13 characters long. The program's logic loaded the password hash into the second array as soon as the user's name was determined. It then read the user's cleartext password and stored it in the first array. If the contents of the first array hashed to the contents of the second array, the user was authenticated. An attacker simply selected a random password (for example, "password") and generated a valid hash for it (here, "12CsGd8FRcMSM"). The attacker then identified herself as *root*. When asked for a password, the attacker entered "password", typed 72 spaces, and then typed "12CsGd8FRcMSM". The system hashed "password", got "12CsGd8FRcMSM", and logged the user in as *root*.

A technique in which canaries protect data, not only the return address, would work, but raises many implementation problems (see Exercise 7).

Implementation Rule 31.7. Whenever possible, data that the process trusts and data that it receives from untrusted sources (such as input) should be kept in separate areas of memory. If data from a trusted source is overwritten with data from an untrusted source, a memory error will occur.

In more formal terms, the principle of least common mechanism⁴⁷ indicates that memory should not be shared in this way.

 $^{^{45}}$ If the goal is to alter data on the stack other than the return address, the canary will not be altered.

This technique will not detect the change. (See Exercise 7.)

⁴⁶See Section 13.2, "Passwords."

⁴⁷See Section 14.2.7, "Principle of Least Common Mechanism."

These rules apply to our program in several ways. First, the program does not interact with any other program except through exception handling. ⁴⁸ So Implementation Rule 31.5 does not apply. Exception handling consists of calling a procedure that disables further exception handling, logs the exception, and immediately terminates the program.

Illicit alteration of data in memory is the second potential problem. If the user-supplied data is read into memory that overlaps with other program data, it could erase or alter that data. To satisfy Implementation Rule 31.7, the programmers did not reuse variables into which users could input data. They also ensured that each access to a buffer did not overlap with other buffers.

The problem of buffer overflow is solved by checking all array and pointer references within the code. Any reference that is out of bounds causes the program to fail after logging an error message to help the programmers track down the error.

31.5.3.2 Changes in File Contents

File contents may change improperly. In most cases, this means that the file permissions are set incorrectly or that multiple processes are accessing the file, which is similar to the problem of concurrent processes accessing shared memory. Management Rule 31.2 and Implementation Rule 31.5 cover these two cases.

A nonobvious corollary is to be careful of dynamic loading. Dynamic load libraries are not part of this program's executable. They are loaded, as needed, when the program runs. Suppose one of the libraries is changed, and the change causes a side effect. The program may cease to function or, even worse, work incorrectly.

If the dynamic load modules cannot be altered, then this concern is minimal, but if they can be upgraded or otherwise altered, it is important. Because one of the reasons for using dynamic load libraries is to allow upgrades without having to recompile programs that depend on the library, security-related programs using dynamic load libraries are at risk.

Implementation Rule 31.8. Do not use components that may change between the time the program is created and the time it is run.

This is another reason that the developers decided not to use dynamic loading.

31.5.3.3 Race Conditions in File Accesses

A race condition in this context is the *time-of-check-to-time-of-use* problem. As with memory accesses, the file being used is changed after validation but before

⁴⁸If the access control information or the authentication information came from servers, then there would be interaction with other programs (the servers). The method of communication would need to be considered, as discussed above.

access.⁴⁹ To thwart it, either the file must be protected so that no untrusted user can alter it, or the process must validate the file and use it indivisibly. The former requires appropriate settings of permission, so Management Rule 31.2 applies. Section 31.5.7, "Improper Indivisibility," discusses the latter.

This program validates that the owner and access control permissions for the access control file are correct (the check). It then opens the file (the use). If an attacker can change the file after the validation but before the opening, so that the file checked is not the file opened, then the attacker can have the program obtain access control information from a file other than the legitimate access control file. Presumably, the attacker would supply a set of access control entries allowing unauthorized accesses.

EXAMPLE: The UNIX operating system allows programs to refer to files in two ways: by name and by file descriptor. Once a file descriptor is bound to a file, the referent of the descriptor does not change. Each access through the file descriptor always refers to the bound file (until the descriptor is closed). However, the kernel reprocesses the file name at each reference, so two references to the same file name may refer to two *different* files. An attacker who is able to alter the file system in such a way that this occurs is exploiting a race condition. So any checks made to the file corresponding to the first use of the name may not apply to the file corresponding to the second use of the name. This can result in a process making unwarranted assumptions about the trustworthiness of the file and the data it contains.

In the *xterm* example⁵¹ the program can be fixed by opening the file and then using the file descriptor (handle) to obtain the owner and access permissions.⁵² Those permissions belong to the opened file, because they were obtained using the file descriptor. The validation is now ensured to be that of the access control file.

The program does exactly this. It opens the access control file and uses the file descriptor, which references the file attribute information directly to obtain the owner, group, and access control permissions. Those permissions are checked. If they are correct, the program uses the file descriptor to read the file. Otherwise, the file is closed and the program reports a failure.

31.5.4 Improper Naming

Improper naming refers to an ambiguity in identifying an object. Most commonly, two different objects have the same name. The programmer intends the name to refer to one of the objects, but an attacker manipulates the environment and the

⁴⁹Section 24.3.1, "Two Security Flaws," discusses this problem in detail.

⁵⁰See Section 15.2, "Files and Objects."

⁵¹See Section 24.3.1, "Two Security Flaws."

⁵²The system call used would be *fstat*.

process so that the name refers to a different object. Avoiding this flaw requires that every object be unambiguously identified. This is both a management concern and an implementation concern.

Objects must be uniquely identifiable or completely interchangeable. Managing these objects means identifying those that are interchangeable and those that are not. The former objects need a controller (or set of controllers) that, when given a name, selects one of the objects. The latter objects need unique names. The managers of the objects must supply those names.

Management Rule 31.5. Unique objects require unique names. Interchangeable objects may share a name.

A name is interpreted within a context. At the implementation level, the process must force its own context into the interpretation, to ensure that the object referred to is the intended object. The context includes information about the character sets, process and file hierarchies, network domains, and any accessible variables such as the search path.

EXAMPLE: Stage 3 in Section 24.2.9 discussed an attack in which a privileged program called *loadmodule* executed a second program named *ld.so*. The attack exploited *loadmodule*'s failure to specify the context in which *ld.so* was named. *Loadmodule* used the context of the user invoking the program. Normally, this caused the correct *ld.so* to be invoked. In the example, the attacker changed the context so that another version of *ld.so* was executed. This version had a Trojan horse that would grant privileged access. When the attacker executed *loadmodule*, the Trojan horse was triggered and maximum privileges were acquired.

Implementation Rule 31.9. The process must ensure that the context in which an object is named identifies the correct object.

This program uses names for external objects in four places: the name of the access control file, the names of the users and roles, the names of the hosts, and the name of the command interpreter (the *shell*) that the program uses to execute commands in the role account.

The two file names (access control file and command interpreter) must identify specific files. Absolute path names specify the location of the object with respect to a distinguished directory called / or the "root directory." However, a privileged process can redefine / to be any directory. This program does not do so. Furthermore, if the root directory is anything other than the root directory of the system, a trusted process has executed it. No untrusted user could have done so. Thus, as long as absolute path names are specified, the files are unambiguously named.

⁵³Specifically, the system call *chroot* resets / to mean the named directory. All absolute path names are interpreted with respect to that directory. Only the superuser, *root*, may execute this system call.

The name provided may be interpreted in light of other aspects of the environment. For example, differences in the encoding of characters can transform file names. Whether characters are made up of 16 bits, 8 bits, or 7 bits can change the interpretation, and therefore the referent, of a file name. Other environment variables can change the interpretation of the path name. This program simply creates a new, known, safe environment for execution of the commands.⁵⁴

This has two advantages over sanitization of the existing context. First, it avoids having the program analyze the environment in detail. The meaning of each aspect of the environment need not be analyzed and examined. The environment is simply replaced. Second, it allows the system to evolve without compromising the security of the program. For example, if a new environment variable is assigned a meaning that affects how programs are executed, the variable will not affect how this program executes its commands because that variable will not appear in the command's environment. So this program closes all file descriptors, resets signal handlers, and passes a new set of environment variables for the command.

These actions satisfy Implementation Rule 31.9.

The developers assumed that the system was properly maintained, so that the names of the users and roles would map into the correct UIDs. (Section 31.5.2.1 discusses this.) This applies to Management Rule 31.5.

The host names are the final set of names. These may be specified by names or IP addresses. If the former, they must be fully qualified domain names to avoid ambiguity. To see this, suppose an access control entry allows user *matt* to access the role *wheel* when logging in from the system *amelia*. Does this mean the system named *amelia* in the local domain, or any system named *amelia* from any domain? Either interpretation is valid. The former is more reasonable, ⁵⁵ and applying this interpretation resolves the ambiguity. (The program implicitly maps names to fully qualified domain names using the former interpretation. Thus, *amelia* in the access control entry would match a host named *amelia* in the local domain, and not a host named *amelia* in another domain.) This implements Implementation Rule 31.9. ⁵⁶

As a side note, if the local network is mismanaged or compromised, the name *amelia* may refer to a system other than the one intended. For example, the real host *amelia* may crash or go offline. An attacker can then reset the address of his host to correspond to *amelia*. This program will not detect the impersonation.

31.5.5 Improper Deallocation or Deletion

Failing to delete sensitive information raises the possibility of another process seeing that data at a later time. In particular, cryptographic keywords, passwords,

⁵⁴The principle of fail-safe defaults (see Section 14.2.2) supports this approach.

⁵⁵According to the principle of least privilege (see Section 14.2.1).

⁵⁶As discussed in Section 15.6.1, "Host Identity," host names can be spoofed. For reasons discussed in the preceding chapters, the Drib management and security officers are not concerned with this threat on the Drib's internal network.

and other authentication information should be discarded once they have been used. Similarly, once a process has finished with a resource, that resource should be deallocated. This allows other processes to use that resource, inhibiting denial of service attacks.

A consequence of not deleting sensitive information is that dumps of memory, which may occur if the program receives an exception or crashes for some other reason, contain the sensitive data. If the process fails to release sensitive resources before spawning unprivileged subprocesses, those unprivileged subprocesses may have access to the resource.

Implementation Rule 31.10. When the process finishes using a sensitive object (one that contains confidential information or one that should not be altered), the object should be erased, then deallocated or deleted. Any resources not needed should also be released.

Our program uses three pieces of sensitive information. The first is the cleartext password, which authenticates the user. The password is hashed, and the hash is compared with the stored hash. Once the hash of the entered password has been computed, the process must delete the cleartext password. So it overwrites the array holding the password with random bytes.

The second piece of sensitive information is the access control information. Suppose an attacker wanted to gain access to a role account. The access control entries would tell the attacker which users could access that account using this program. To prevent the attacker from gaining this information, the developers decided to keep the contents of the access control file confidential. The program accesses this file using a file descriptor. File descriptors remain open when a new program overlays a process. Hence, the program closes the file descriptor corresponding to the access control file once the request has been validated (or has failed to be validated).

The third piece of sensitive information is the log file. The program alters this file. If an unprivileged program such as one run by this program were to inherit the file descriptor, it could flood the log. Were the log to fill up, the program could no longer log failures. So the program also closes the log file before spawning the role's command.

31.5.6 Improper Validation

The problem of improper validation arises when data is not checked for consistency and correctness. Ideally, a process would validate the data against the more abstract policies to ensure correctness. In practice, the process can check correctness only by looking for error codes (indicating failure of functions and procedures) or by looking for patently incorrect values (such as negative numbers when positive ones are required).

As the program is designed, the developers should determine what conditions must hold at each interface and each block of code. They should then validate that these conditions hold.

What follows is a set of validations that are commonly overlooked. Each program requires its own analysis, and other types of validation may be critical to the correct, secure functioning of the program, so this list is by no means complete.

31.5.6.1 Bounds Checking

Errors of validation often occur when data is supposed to lie within bounds. For example, a buffer may contain entries numbered from 0 to 99. If the index used to access the buffer elements takes on a value less than 0 or greater than 99, it is an invalid operand because it accesses a nonexistent entry. The variable used to access the element may not be an integer (for example, it may be a set element or pointer), but in any case it must reference an existing element.

Implementation Rule 31.11. Ensure that all array references access existing elements of the array. If a function that manipulates arrays cannot ensure that only valid elements are referenced, do not use that function. Find one that does, write a new version, or create a wrapper.

In this example program, all loops involving arrays compare the value of the variable referencing the array against the indexes (or addresses) of both the first and last elements of the array. The loop terminates if the variable's value is outside those two values. This covers all loops within the program, but it does not cover the loops in the library functions.

For loops in the library functions, bounds checking requires an analysis of the functions used to manipulate arrays. The most common type of array for which library functions are used is the character string, which is a sequence of characters (bytes) terminating with a 0 byte. Because the length of the string is not encoded as part of the string, functions cannot determine the size of the array containing the string. They simply operate on all bytes until a 0 byte is found.

EXAMPLE: The program sometimes must copy character strings (defined in C as arrays of character data terminating with a byte containing 0). The canonical function for copying strings does no bounds checking. This function, strcpy(x, y), copies the string from the array y to the array x, even if the string is too long for x. A different function, strncpy(x, y, n), copies at most n characters from array y to array x. However, unlike strcpy, strncpy may not copy the terminating 0 byte. The program must take two actions when strncpy is called. First, it must insert a 0 byte at the end of the x array. This ensures that the contents of x meet the definition of a string in C. Second, the process must check that both x and y are arrays of characters, and that n is a positive integer.

The programmers use only those functions that bound the sizes of arrays. In particular, the function *fgets* is used to read input, because it allows the

⁵⁷ If the string in y is longer than n characters, strncpy will not add a 0 byte to the characters copied into x.

programmer to specify the maximum number of characters to be read. (This solves the problem that plagued *fingerd*. ⁵⁸)

31.5.6.2 Type Checking

Failure to check types is another common validation problem. If a function parameter is an integer, but the actual argument passed is a floating point number, the function will interpret the bit pattern of the floating point number as an integer and will produce an incorrect result.

Implementation Rule 31.12. Check the types of functions and parameters.

A good compiler and well-written code will handle this particular problem. All functions should be declared before they are used. Most programming languages allow the programmer to specify the number and types of arguments, as well as the type of the return value (if any). The compiler can then check the types of the declarations against the types of the actual arguments and return values.

Implementation Rule 31.13. When compiling programs, ensure that the compiler reports inconsistencies in types. Investigate all such warnings and either fix the problem or document the warning and why it is spurious.

31.5.6.3 Error Checking

A third common problem involving improper validation is failure to check return values of functions. For example, suppose a program needs to determine ownership of a file. It calls a system function that returns a record containing information from the file attribute table. The program obtains the owner of the file from the appropriate field of the record. If the function fails, the information in the record is meaningless. So, if the function's return status is not checked, the program may act erroneously.

Implementation Rule 31.14. Check all function and procedure executions for errors.

This program makes extensive use of system and library functions, as well as its own internal functions (such as the access control module). Every function returns a value, and the value is checked for an error before the results of the function are used. For example, the function that obtains the ownership and access permissions of the access control file would return meaningless information should the function fail. So the function's return value is checked first for an error; if no error has occurred, then the file attribute information is used.

⁵⁸See Section 24.4.5.2, "The *fingerd* Buffer Overflow."

As another example, the program opens a log file. If the open fails, and the program tries to write to the (invalid) file descriptor obtained from the function that failed, the program will terminate as a result of an exception. Hence, the program checks the result of opening the log file.

31.5.6.4 Checking for Valid, Not Invalid, Data

Validation should apply the principle of fail-safe defaults.⁵⁹ This principle requires that valid values be known, and that all other values be rejected. Unfortunately, programmers often check for invalid data and assume that the rest is valid.

EXAMPLE: A metacharacter is a character that is interpreted as something other than itself. For example, to the UNIX shells, the character "?" is a metacharacter that represents all single character files. A vendor upgraded its version of the command interpreter for its UNIX system. The new command interpreter (shell) treated the character "'" (back quote) as a delimiter for a command (and hence a metacharacter). The old shell treated the back quote as an ordinary character. Included in the distribution was a program for executing commands on remote systems. The set of allowed commands was restricted. This program carefully checked that the command was allowed, and that it contained no metacharacters, before sending it to a shell on the remote system. Unfortunately, the program checked a list of metacharacters to be rejected, rather than checking a list of characters that were allowed in the commands. As a result, one could embed a disallowed command within a valid command request, because the list of metacharacters was not updated to include the back quote.

Implementation Rule 31.15. Check that a variable's values are valid.

This program checks that the command to be executed matches one of the authorized commands. It does not have a set of commands that are to be denied. The program will detect an invalid command as one that is not listed in the set of authorized commands for that user accessing that role at the time and place allowed.

As discussed in Section 31.3.2.3, it is possible to allow all users except some specific users access to a role by an appropriate access control entry (using the keyword not). The developers debated whether having this ability was appropriate because its use could lead to violations of the principle of fail-safe defaults. On one key system, however, the only authorized users were system administrators and one or two trainees. The administrators wanted the ability to shut the trainees out of certain roles. So the developers added the keyword and recommended against its use except in that single specific situation.

⁵⁹See Section 14.2.2, "Principle of Fail-Safe Defaults."

Implementation Rule 31.16. If a trade-off between security and other factors results in a mechanism or procedure that can weaken security, document the reasons for the decision, the possible effects, and the situations in which the compromise method should be used. This informs others of the trade-off and the attendant risks.

31.5.6.5 Checking Input

All data from untrusted sources must be checked. Users are untrusted sources. The checking done depends on the way the data is received: into an input buffer (bounds checking) or read in as an integer (checking the magnitude and sign of the input).

Implementation Rule 31.17. Check all user input for both form and content. In particular, check integers for values that are too big or too small, and check character data for length and valid characters.

The program determines what to do on the basis of at least two pieces of data that the user provides: the role name and the command (which, if omitted, means unrestricted access).⁶⁰ Users must also authenticate themselves appropriately. The program must first validate that the supplied password is correct. It then checks the access control information to determine whether the user is allowed access to the role at that time and from that location.

The length of the input password must be no longer than the buffer in which it is placed. Similarly, the lines of the access control file must not overflow the buffer allocated for it. The contents of the lines of the access control file must make up a valid access control entry. This is most easily done by constraining the format of the contents of the file, as discussed in the next section.

An excellent example of the need to constrain user input comes from formatted print statements in C.

EXAMPLE: The *printf* function's first parameter is a character string that indicates how *printf* is to format output data. The following parameters contain the data. For example,

```
printf("%d %d\n", i, j);
```

prints the values of i and j. Some versions of this library function allow the user to store the number of characters printed at any point in the string. For example, if i contains 2, j contains 21, and m and n are integer variables,

prints

2 21 2

⁶⁰See Section 14.2.6, "Principle of Separation of Privilege."

and stores 4 in m and 7 in n, because four characters are printed before the first "%n" and seven before the second "%n" (the sequence "\n" is interpreted as a single character, the newline). Now, suppose the user is asked for a file name. This input is stored in the array str. The program then prints the file name with

```
printf(str);
```

If the user enters the file name "log%n", the function will overwrite some memory location with the integer 3. The exact location depends on the contents of the program stack, and with some experimentation it is possible to cause the program to change the return address stored on the stack. This leads to the buffer overflow attack described earlier.

31.5.6.6 Designing for Validation

Sometimes data cannot be validated completely. For example, in the C programming language, a programmer can test for a NULL pointer (meaning that the pointer does not hold the address of any object), but if the pointer is not NULL, checking the validity of the pointer may be very difficult (or impossible). Using a language with strong type checking is another example.

The consequence of the need for validation requires that data structures and functions be designed and implemented in such a way that they can be validated. For example, because C pointers cannot be properly validated, programmers should not pass pointers or use them in situations in which they must be validated. Methods of data hiding, type checking, and object-oriented programming often provide mechanisms for doing this.

Implementation Rule 31.18. Create data structures and functions in such a way that they can be validated.

An example will show the level of detail necessary for validation. The entries in the access control file are designed to allow the program to detect obvious errors. Each access control entry consists of a block of information in the following format:

```
role name
    user comma-separated list of users
    location comma-separated list of locations
    time comma-separated list of times
    command program and arguments
    . . .
    command program and arguments
endrole
```

This defines each component of the entry. (The lines need not be in any particular order.) The syntax is well-defined, and the access control module in the

program checks for syntax errors. The module also performs other checks, such as searching for invalid user names in the **user** field and requiring that the full path names of all commands be specified. Finally, note that the module computes the number of commands for the module's internal record. This eliminates a possible source of error—namely, that the user may miscount the number of commands.

In case of any error, the process logs the error, if possible, and terminates. It does not allow the user to access the role.

31.5.7 Improper Indivisibility

Improper indivisibility⁶¹ arises when an operation is considered as one unit (indivisible) in the abstract but is implemented as two units (divisible). The race conditions discussed in Section 31.5.3.3 provide one example. The checking of the access control file attributes and the opening of that file are to be executed as one operation. Unfortunately, they may be implemented as two separate operations, and an attacker who can alter the file after the first but before the second operation can obtain access illicitly. Another example arises in exception handling. Often, program statements and system calls are considered as single units or operations when the implementation uses many operations. An exception divides those operations into two sets: the set before the exception, and the set after the exception. If the system calls or statements rely on data not changing during their execution, exception handlers must not alter the data.

Section 31.5.3 discusses handling of these situations when the operations cannot be made indivisible. Approaches to making them indivisible include disabling interrupts and having the kernel perform operations. The latter assumes that the operation is indivisible when performed by the kernel, which may be an incorrect assumption.

Implementation Rule 31.19. If two operations must be performed sequentially without an intervening operation, use a mechanism to ensure that the two cannot be divided.

In UNIX systems, the problem of divisibility arises with root processes such as the program under consideration. UNIX-like systems do not enforce the principle of complete mediation. For *root*, access permissions are not checked. Recall the *xterm* example in Section 24.3.1. A user needed to log information from the execution of *xterm*, and specified a log file. Before appending to that file, *xterm* needed to ensure that the real UID could write to the log file. This required an extra system call. As a result, operations that should have been indivisible (the access check followed by the opening of the file) were actually divisible. One way to make these operations indivisible on UNIX-like systems is to drop privileges to those of the real UID, then open the file. The access checking is done in the kernel as part of the open.

⁶¹This is often called "atomicity."

⁶²See Section 14.2.4, "Principle of Complete Mediation."

Improper indivisibility arises in our program when the access control module validates and then opens the access control file. This should be a single operation, but because of the semantics of UNIX-like systems, it must be performed as two distinct operations. It is not possible to ensure the indivisibility of the two operations. However, it is possible to ensure that the target of the operations does not change, as discussed in Section 31.5.3, and this suffices for our purposes.

31.5.7.1 Improper Sequencing

Improper sequencing means that operations are performed in an incorrect order. For example, a process may create a lock file and then write to a log file. A second process may also write to the log file, and then check to see if the lock file exists. The first program uses the correct sequence of calls; the second does not (because that sequence allows multiple writers to access the log file simultaneously).

Implementation Rule 31.20. Describe the legal sequences of operations on a resource or object. Check that all possible sequences of the program(s) involved match one (or more) legal sequences.

In our program, the sequence of operations in the design shown in Section 31.3.1.2 follows a proper order. The user is first authenticated. Then the program uses the access control information to determine if the requested access is valid. If it is, the appropriate command is executed using a new, safe environment.

A second sequence of operations occurs when privileges to the role are dropped. First, group privileges are changed to those of the role. Then all user identification numbers are changed to those of the role. A common error is to switch the user identification numbers first, followed by the change in group privileges. Because changing group privileges requires *root* privileges, the change will fail. Hence, the programmers used the stated ordering.

31.5.8 Improper Choice of Operand or Operation

Preventing errors of choosing the wrong operand or operation requires that the algorithms be thought through carefully (to ensure that they are appropriate). At the implementation level, this requires that operands be of an appropriate type and value, and that operations be selected to perform the desired functions. The difference between this type of error and improper validation lies in the program. Improper implementation refers to a validation failure. The operands may be appropriate, but no checking is done. In this category, even though the operands may have been checked, they may still be inappropriate.

EXAMPLE: The UNIX program *su* allows a user to substitute another user's identity, obtaining the second user's privileges. According to an apocryphal story, one version of this program granted the user *root* privileges if the user information database did not exist (see Exercise 10 in Chapter 14). If the program could not

open the user information database file, it assumed that the database did not exist. This was an inappropriate choice of operation because one could block access to the file even when the database existed.

Assurance techniques⁶³ help detect these problems. The programmer documents the purpose of each function and then checks (or, preferably, others check) that the algorithms in the function work properly and that the code correctly implements the algorithms.

Management Rule 31.6. Use software engineering and assurance techniques (such as documentation, design reviews, and code reviews) to ensure that operations and operands are appropriate.

Within our program, many operands and operations control the granting (and denying) of access, the changing to the role, and the execution of the command. We first focus on the access part of the program, and afterwards we consider two other issues.

First, a user is granted access only when an access control entry matches all characteristics of the current session. The relevant characteristics are the role name, the user's UID, the role's name (or UID), the location, the time, and the command. We begin by checking that if the characteristics match, the access control module returns *true* (allowing access). We also check that the caller grants access when the module returns true and denies access when the module returns *false*.

Next, we consider the user's UID. That object is of type $uid_{-}t$. If the interface to the system database returns an object of a different type, conversion becomes an issue. Specifically, many interfaces treat the UID as an integer. The difference between the types int and $uid_{-}t$ may cause problems. On the systems involved, $uid_{-}t$ is an unsigned integer. Since we are comparing signed and unsigned integers, C simply converts the signed integers to unsigned integers, and the comparison succeeds. Hence, the choice of operation (comparison here) is proper.

Checking location requires the program to derive the user's location, as discussed above, and pass it to the validator. The validator takes a string and determines whether it matches the pattern in the location field of the access control entry. If the string matches, the module should continue; otherwise, it should terminate and return false.

Unlike the location, a variable of type *time_t* contains the current time. The time checking portion of the module processes the string representing the allowed times and determines if the current time falls in the range of allowed times. Checking time is different than checking location because legal times are ranges, except in one specific situation: when an allowed time is specified to the exact second. A specification of an exact time is useless, because the program may not obtain the time at the exact second required. This would lead to a denial of service, violating Requirement 31.4. Also, allowing exact times leads to ambiguity.

⁶³See Chapter 20, "Building Systems with Assurance."

EXAMPLE: The system administrator specifies that user *matt* is allowed access to the role *mail* at 9 a.m. on Tuesdays. Should this be interpreted as *exactly* 9 a.m. (that is, 9:00:00 a.m.) or as *sometime during* the 9 a.m. hour (that is, from 9:00:00 to 9:59:59 a.m.)? The latter interprets the specification as a range rather than an exact time, so the access control module uses that interpretation.

The use of signal handlers provides a second situation in which an improper choice of operation could occur. A signal indicates either an error in the program or a request from the user to terminate, so a signal should cause the program to terminate. If the program continues to run, and then grants the user access to the role account, either the program has continued in the face of an error or it has overridden the user's attempt to terminate the program.

31.5.9 Summary

This type of top-down analysis differs from the more usual approach of taking a checklist of common vulnerabilities and using it to examine code. There is a place for each of these approaches. The top-down approach presented here is a design approach, and should be applied at each level of design and implementation. It emphasizes documentation, analysis, and understanding of the program, its interfaces, and the environment in which it executes. A security analysis document should describe the analysis and the reasons for each security-related decision. This document will help other analysts examine the program and, more importantly, will provide future developers and maintainers of the program with insight into potential problems they may encounter in porting the program to a different environment, adding new features, or changing existing features.

Once the appropriate phase of the program has been completed, the developers should use a checklist to validate that the design or implementation has no common errors. Given the complexity of security design and implementation, such checklists provide valuable confirmation that the developers have taken common security problems into account.

Appendix H lists the implementation and management rules in a convenient form.

31.6 Testing, Maintenance, and Operation

Testing provides an informal validation of the design and implementation of the program. The goal of testing is to show that the program meets the stated requirements. When design and implementation are driven by the requirements, as in the method used to create the program under discussion, testing is likely to uncover only minor problems, but if the developers do not have well-articulated requirements, or if the requirements are changed during development, testing may uncover major problems, requiring changes up to a complete redesign and reimplementation of a program. The worst mistake managers and developers can make is to take a program that does not meet the security requirements and add features to it to meet those requirements. The problem is that the basic design does not meet the security requirements. Adding security features will not ameliorate this fundamental flaw.

Once the program has been written and tested, it must be installed. The installation procedure must ensure that when a user starts the process, the environment in which the process is created matches the assumptions embodied in the design. This constrains the configuration of the program parameters as well as the manner in which the system is configured to protect the program. Finally, the installers must enable trusted users to modify and upgrade the program and the configuration files and parameters.

31.6.1 Testing

The results of testing a program are most useful if the tests are conducted in the environment in which the program will be used (the production environment). So, the first step in testing a program is to construct an environment that matches the production environment. This requires the testers to know the intended production environment. If there are a range of environments, the testers must test the programs in all of them. Often there is overlap between the environments, so this task is not so daunting as it might appear.

The production environment should correspond to the environment for which the program was developed. A symptom of discrepancies between the two environments is repeated failures resulting from erroneous assumptions. This indicates that the developers have implicitly embedded information from the development environment that is inconsistent with the testing environment. This discrepancy must be reconciled.

The testing process begins with the requirements. Are they appropriate? Do they solve the problem? This analysis may be moot (if the task is to write a program meeting the given requirements), but if the task is phrased in terms of a problem to be solved, the problem drives the requirements. Because the requirements drive the design of the program, the requirements must be validated before designing begins.

As many of the software life cycle models indicate, this step may be revisited many times during the development of the program. Requirements may prove to be impossible to meet, or may produce problems that cannot be solved without changing the requirements. If the requirements are changed, they must be reanalyzed and verified to solve the problem.

Then comes the design. Section 31.4 discusses the stepwise refinement of the program. The decomposition of the program into modules allows us to test the program as it is being implemented. Then, once it has been completed, the testing of the entire program should demonstrate that the program meets its requirements in the given environment.

The general philosophy of testing is to execute all possible paths of control and compare the results with the expected results. In practice, the paths of control are too numerous to test exhaustively. Instead, the paths are analyzed and ordered. Test data is generated for each path, and the testers compare the results obtained from the actual data with the expected results. This continues until as many paths as possible have been tested.

For security testing, the testers must test not only the most commonly used paths but also the *least commonly used* paths.⁶⁴ The latter often create security problems that attackers can exploit. Because they are relatively unused, traditional testing places them at a lower priority than that of other paths. Hence, they are not as well scrutinized, and vulnerabilities are missed.

The ordering of the paths relies on the requirements. Those paths that perform multiple security checks are more critical than those that perform single (or no) security checks because they introduce interfaces that affect security requirements. The other paths affect security, of course, but there are no interfaces.

First, we examine a module that calls no other module. Then we examine the program as a composition of modules. We conclude by testing the installation, configuration, and use instructions.

31.6.1.1 Testing the Module

The module may invoke one or more functions. The functions return results to the caller, either directly (through return values or parameter lists) or indirectly (by manipulation of the environment). The goal of this testing is to ensure that the module exhibits correct behavior regardless of what the functions returns.

The first step is to define "correct behavior." During the design of the program, the refinement process led to the specification of the module and the module's interface. This specification defines "correct behavior," and testing will require us to check that the specification holds.

We begin by listing all interfaces to the module. We will then use this list to execute four different types of tests. The types of test are as follows:

- 1. *Normal data tests*. These tests provide unexceptional data. The data should be chosen to exercise as many paths of control through the module as possible.
- 2. Boundary data tests. These tests provide data that tests any limits to the interfaces. For example, if the module expects a string of up to 256 characters to be passed in, these tests invoke the module and pass in arrays of 255, 256, and 257 characters. Longer strings should also be used in an effort to overflow internal buffers. The testers can examine the source code to determine what to try. Limits here do not apply simply to arrays or strings. In the program under discussion, the lowest allowed UID is 0, for root. A good test would be to try a UID of -1 to see what happens. The module should report an error.

⁶⁴See Section 20.3.3.1, "Security Testing."

EXAMPLE: One UNIX system had UIDs of 16 bits. The system used a file server that would not allow a client's *root* user to access any files. Instead, it remapped root's UID to the public UID of -2. Because that UID was not assigned to any user, the remapped root could access only those files that were available to all users. The limit problem arose because one user, named Mike, had the UID 65534. Because 65534 = -2 in two's complement 16-bit arithmetic, the remote root user could access all of Mike's files—even those that were not publicly available.

3. Exception tests. These tests determine how the program handles interrupts and traps. For example, many systems allow the user to send a signal that causes the program to trap to a signal handler, or to take a default action such as dumping the contents of memory to a core file. These tests determine if the module leaves the system in a nonsecure state—for example, by leaving sensitive information in the memory dump. They also analyze what the process does if ordinary actions (such as writing to a file) fail.

EXAMPLE: An FTP server ran on a system that kept its authentication information confidential. An attacker found that she could cause the system to crash by sending an unexpected sequence of commands, causing multiple signals to be generated before the first signal could be handled. The crash resulted in a core dump. Because the server would be restarted automatically, the attacker simply connected again and downloaded the core dump. From that dump, she extracted the authentication information and used a dictionary attack⁶⁵ to obtain the passwords of several users.

4. *Random data tests*. These tests supply inputs generated at random and observe how the module reacts. They should not corrupt the state of the system. If the module fails, it should restore the system to a safe state. ⁶⁶

EXAMPLE: In a study of UNIX utilities [1345], approximately 30% crashed when given random inputs. In one case, an unprivileged program caused the system to crash. In 1995, a retest showed some improvement, but still "significant rates of failure" [1346, p. 1]. Other tested systems fared little better [705, 1344].

Throughout the testing, the testers should keep track of the paths taken. This allows them to determine how complete the testing is. Because these tests are highly informal, the assurance they provide is not as convincing as the techniques discussed in Chapter 20. However, it is more than random tests, or no tests, would provide.

⁶⁵See Section 13.4, "Attacking Passwords."

⁶⁶See Section 14.2.2, "Principle of Fail-Safe Defaults."

31.6.2 Testing Composed Modules

Now consider a module that calls other modules. Each of the invoked modules has a specification describing its actions. So, in addition to the tests discussed in the preceding section, one other type of test should be performed.

5. Error handling tests. These tests assume that the called modules violate their specifications in some way. The goal of these tests is to determine how robust the caller is. If it fails gracefully, and restores the system to a safe state, then the module passes the test. Otherwise, it fails and must be rewritten.

EXAMPLE: Assume that a security-related program, running with *root* privileges, logs all network connections to a UNIX system. It also sends mail to the network administrator with the name of the connecting host on the subject line. To do this, it executes a command such as

```
mail -s hostname netadmin
```

where *hostname* is the name of the connecting host. This module obtains *hostname* from a different module that is passed the connecting host's IP address and uses the Domain Name Service to find the corresponding host name. A serious problem arose because the DNS did not verify that *hostname* was composed of legal characters. The effects were discovered when one attacker changed the name of his host to

```
hi nobody; rm -rf *; true
```

causing the security-related program to delete critical files. Had the calling module expected failure, and checked for it, the error would have been caught before any damage was done.

31.6.3 Testing the Program

Once the testers have assembled the program and its documentation, the final phase of testing begins. The testers have someone follow the installation and configuration instructions. This person should not be a member of the testing team, because the testing team has been working with the program and is familiar with it. The goal of this test is to determine if the installation and configuration instructions are correct and easy to understand. The principle of least astonishment⁶⁷ requires that the tool be as easy to install and use as possible. Because most installers and users will not have experience with the program, the

⁶⁷See Section 14.2.8, "Principle of Least Astonishment."

testers need to evaluate how they will understand the documentation and whether or not they can install the program correctly by following the instructions. An incorrectly installed security tool does not provide security; it may well detract from it. Worse, it gives people a false sense of security.

31.7 Distribution

Once the program has been completed, it must be distributed. Distribution involves placing the program in a repository where it cannot be altered except by authorized people, and from which it can be retrieved and sent to the intended recipients. This requires a policy for distribution. Specific factors to be considered are as follows.

- 1. Who can use the program? If the program is licensed to a specific organization, or to a specific host, then each copy of the program that is distributed must be tied to that organization or host so it cannot be redistributed or pirated. This is an originator controlled policy.⁶⁸ One approach is to provide the licensee with a secret key and encipher the software with the same key. This prevents redistribution without the licensee's consent, unless the attacker breaks the cryptosystem or steals the licensee's key.⁶⁹
- 2. How can the integrity of the master copy be protected? If an attacker can alter the master copy, from which distribution copies are made, then the attacker can compromise all who use the program.

EXAMPLE: The program *tcp_wrappers* provides host-level access control for network servers. It is one of the most widely used programs in the UNIX community. In 1996, attackers broke into the site from which that program could be obtained [2238]. They altered the program to allow all connections to succeed. More than 50 groups obtained the program before the break-in was detected.

Part of the problem is credibility. If an attacker can pose as the vendor, then all who obtain the program from the attacker will be vulnerable to attack. This tactic undermines trust in the program and can be surprisingly hard to counter. It is analogous to generating a cryptographic checksum for a program infected with a computer virus. When an uninfected program is obtained, the integrity checker complains because the checksum is wrong. In our example, when the real vendor

⁶⁸See Section 8.3, "Originator Controlled Access Control."

⁶⁹See Section 14.2.5, "Principle of Open Design."

⁷⁰See Section 23.9.1, "Scanning Defenses."

- contacts the duped customer, the customer usually reacts with disbelief, or is unwilling to concede that his system has been compromised.
- 3. How can the availability of the program be ensured? If the program is sent through a physical medium, such as a read-only DVD, availability is equivalent to the availability of mail or messenger services between the vendor and the buyer. If the program is distributed through electronic means, however, the distributor must take precautions to ensure that the distribution site is available. Denial of service attacks such as SYN flooding may hamper the availability.

Like a program, the distribution is controlled by a policy. All considerations that affect a security policy affect the distribution policy as well.

31.8 Summary

This chapter discussed informal techniques for writing programs that enforce security policies. The process began with a requirements analysis and continued with a threat analysis to show that the requirements countered the threats. The design process came next, and it fed back into the requirements to clarify an ambiguity. Once the high-level design was accepted, we used a stepwise refinement process to break the design down into modules and a caller. The categories of flaws in the program analysis vulnerability helped find potential implementation problems. Finally, issues of testing and distribution ensured that the program did what was required.

31.9 Research Issues

The first research issue has to do with analysis of code. How can one analyze programs to discover security flaws? This differs from the sort of analysis that is performed in the development of high-assurance systems, because the program and system are already in place. The goal is to determine what, and where, the problems are. Some researchers are developing analysis tools for specific problems such as buffer overflows and race conditions. Others are using flow analysis tools to study the program for a wide variety of vulnerabilities.

Related to this issue is the development of languages that are safer with respect to security. For example, some languages automatically create an exception if a reference is made beyond the bounds of an array. How much overhead does this add? Can the language use special-purpose hardware to minimize the impact of checking the references? What else should a language constrain, and how should it do so?

31.10 Further Reading

Robust programming—the art of writing programs that work correctly and handle errors gracefully—is a topic of great interest, often in the guise of "secure programming." Kernighan and Plauger's book [1039] describes the principles and ideas underlying good programming style. Kernighan and Pike [1040] also discuss style and other elements of good programming. Stavely's book [1819] combines formalisms with informal steps. Maguire's book [1234] is much more informal, and is a collection of tips on how to write robust programs. Martin [1257] focuses on robust practices for agile programming, while McConnell [1277] discusses robust programming in the general context of software construction.

Howard and LeBlanc [926] discuss secure coding, emphasizing the Windows and .NET environment. Howard, LeBlanc, and Viega's book [927] describes 24 serious but common software flaws and how programmers can avoid them.

Much focus is on the C and C++ programming languages, because of their wide use, lack of type-safe features, and ability to manipulate memory directly. Seacord [1704] and Viega and Messier [1935] discuss ways to make programs in these languages more robust and secure. Sutter and Alexandrescu [1843] present a set of coding standards for C++. Similarly, developing robust, secure web applications is critical, and several books [119, 1241, 1393, 1734] discuss how to do so.

Graff and van Wyk [804] provide a general overview of principles and practice, and much sound advice. Viega and McGraw's book [1932] is also general, with many examples focusing on UNIX and Linux systems. Its design principles give good advice. McGraw [1287] expands on these in a later book. Garfinkel, Schwartz, and Spafford [747] has a wonderful chapter on trust, which is must reading for anyone interested in security-related programming. Wheeler [2000] also provides valuable information and insight.

31.11 Exercises

- 1. Consider the two interpretations of a time field that specifies "1 a.m." One interpretation says that this means exactly 1:00 a.m. and no other time. The other says that this means any time during the 1 a.m. hour.
 - a. How would you express the time of "exactly 1 a.m." in the second interpretation?
 - b. How would you express "any time during the 1 a.m. hour" in the first interpretation?
 - c. Which is more powerful? If they are equally powerful, which do you think is least astonishing? Why?

- 2. Verify that the modified version of Requirement 31.4 shown as Requirement 31.6 on page 1105 counters the appropriate threats.
- 3. Assume the alternative interpretation of Requirement 31.4 given in Section 31.3.1.2, so that access only is controlled by location and time, and that commands are restricted by role and user. This means that if a user is authorized to run a command, she can run it from any location he is authorized to use. How would you change the way information is stored in the access control file described in Section 31.3.2.2?
- 4. Currently, the program described in this chapter is to have setuid-to-root privileges. Someone observed that it could be equally well-implemented as a server, in which case the program would authenticate the user, connect to the server, send the command and role, and then let the server execute the command.
 - a. What are the advantages of using the server approach rather than the single program approach?
 - b. If the server responds only to clients on the local machine, using interprocess communication mechanisms on the local system, which approach would you use? Why?
 - c. If the server were listening for commands from the network, would that change your answer to the previous question? Why or why not?
 - d. If the client sent the password to the server, and the server authenticated, would your answers to any of the three previous parts change? Why or why not?
- 5. The little languages presented in Section 31.3.2.3 have ambiguous semantics. For example, in the location language, does "not host1 or host2" mean "neither at host1 nor at host2" or "at host2 or not at host1"?
 - a. Rewrite the BNF of the location language to make the semantics reflect the second meaning (i.e., the precedence of "not" is lower than that of "or"). Are the semantics unambiguous now? Why or why not?
 - b. Rewrite the BNF of the time language to make the semantics reflect the second meaning (i.e., the precedence of "not" is higher than that of "or"). Are the semantics unambiguous now? Why or why not?
- 6. Suppose an access control record is malformed (for example, it has a syntax error). Show that the access control module would deny access.
- 7. The canary for StackGuard simply detects overflow that might change the return address. This exercise asks you to extend the notion of a canary to detection of buffer overflow.
 - a. Assume that the canary is placed directly after the array, and that after every array, access is checked to see if it has changed. Would this detect a buffer overflow? If so, why do you think this is not suitable for use in

- practice? If not, describe an attack that could change a number beyond the buffer without affecting the canary.
- b. Now suppose that the canary was placed directly after the buffer but—like the canary for StackGuard—was only checked just before a function return. How effective do you think this method would be?

Index

Symbols

Symbols	Access control
-* symbol, Take-Grant Protection Model, 33	affecting function of server, 579–582
- symbol, Take-Grant Protection Model, 33	break-the-glass policies overriding, 249–250
†-property, Basic Security Theorem controversy, 164–166	Clinical Information Systems security policy on, 237–23
*-property, Bell-LaPadula	DMZ WWW server vs. development system, 1047
Basic Security Theorem and, 143, 145, 152–155	electronic communications policy at UCD, 1218
Basic Security Theorem controversy, 164–166, 167	file permissions, 1120–1121
and Chinese Wall Models, 235	improper choice of operand/operation and, 1140
instantiation, 147	improper deallocation/deletion of information and, 113
limits of capabilities, 522–523	obtaining record of, 1115–1116
Lipner's integrity matrix model, 180	preserving confidentiality via, 4
Multics system, 159–161	schemes, 95–97
rules of transformation, 155–157	shared password problem in, 1100–1101
	types of, 117–118
Numbers	unauthorized access to role accounts, 1102
	using identity for, 472
2-Step Verification protocol, Google, 446–447	validating entries, 1124
64-bits. See Data Encryption Standard (DES)	via capabilities. See Capabilities
128-bits. See Advanced Encryption Standard (AES)	wrappers, 977, 1046
	Access control lists (ACLs)
A	abbreviations of, 508–511
A posteriori design	capabilities vs., 519, 523–524
auditing to detect known violations of policy, 895–897	Cisco dynamic, 527–528
auditing to detect violations of known policy, 893–895	creating/maintaining, 511–514
a priori design vs., 900	on DMZ WWW server, 1056
A posteriori testing	NTFS and, 515–517
penetration testing as form of, 773, 844	outer firewall configuration, 1014–1015
techniques in, 16	overview of, 507–508
AAFID. See Autonomous Agents for Intrusion Detection	PACL vs., 532
(AAFID)	revocation of rights and, 514–515
Absolute path names, improper naming, 1130	Access control matrix
Abstract data type managers, capability systems, 522	architectural security, 651–657
Abstract machines, HDM, 705–707	copy right and, 42
Abstraction	determining system safety, 52–56
application log advantages, 891–893	formal model of Bell-LaPadula Model, 151, 153
improper isolation of implementation detail, 1123–1124	model. See Access control matrix model
level of weakness, CWE, 868	own right and, 42–43
library OSs and, 586	Principle of Attenuation of Privilege, 43–44
representing attacks, 960–964	protection state, 31–32
Academic computer security policy example	protection state transitions, 37–41
electronic communications policy, 127–129	review, 44–47
full description of. See Electronic communications	security policies changing, 268–270
policy, UCD	unwinding theorem, 266–268
implementation at UC Davis, 130–131	Access control matrix model
overview of, 126–127	ATAM vs. TAM, 99–101
user advisories, 129–130	Boolean expression evaluation in, 35–36
Acceptable use policy, UCD	comparing HRU, SPM and, 82
incorporating into allowable use policy,	history and, 36–37
1241–1246	malleability of, 61
overview of, 130–131, 1207–1212	as protection system, 32–34
Acceptable vs. legal practices, 19–20	TAM model as expansion of, 92–94

Access control mechanisms ACLs. See access control lists (ACLs)	ciphers that were finalists to, 303 decryption, 1200–1201
capabilities, 518–526	encryption, 1199
locks and keys, 526–531 overview of, 507	equivalent inverse cipher, 1203–1205 modes, 305
Propagated Access Control List (PACL), 533–534	overview of, 303, 1196
review, 535–537	replacing DES, 302
ring-based access control, 531–533	review, 1205
Access control module	round key generation, 1201–1203
defined, 1104 design, framework, 1104–1105	strong mixing function of, 342 structure, 303–304
design, roles and commands, 1106–1110	Adware, 797–799
first-level refinement, 1111–1112	AEAD. See Authenticated encryption with associated data
functions, 1114–1117	(AEAD)
review, 1117	Aegis kernel, isolation via library OS, 585
second-level refinement, 1112–1114	AES. See Advanced Encryption Standard (AES)
Access points, wireless networks, 1023 Access Restriction Facility (ARF) program, 35–36	Agents AAFID autonomous, 952–953
Access, user security	intrusion detection architecture, 942–945
leaving system unattended, 1079	NSM network, 950
login procedure, 1076–1079	Aggregation principle, 238
passwords, 1074–1076	Aggressive Chinese Wall Model, 233–234
Access without consent, electronic communications policy,	Agile software development, 641–644
129, 1221–1222, 1232–1233 Accessibility	Aging, password, 434–438 AH. See authentication header (AH)
electronic communications policy at UCD f, 1219	AI. See artificial intelligence (AI)
password wallet disadvantages, 425	Aldus FreeHand, MacMag Peace virus and, 782
using cloud remotely for, 1024	Alert protocol, TLS, 399
Accountability	Algorithms
auditing for, 174, 472	determining system safety, 51–56
identities for, 472 Accuracy (classification rate), intrusion detection methods,	generating random numbers, 341–342
925	main DES, 1191–1194 system security questions, 49–51
ACK packet	Allowable use, electronic communications policy
availability, and SYN flooding, 215	overview of, 127–128, 1216–1220
in pulsing DoS attack, 221–222	updated version, 1241–1246
SYN flooding countermeasures, 217	user advisories, 1235
ACLs. See Access control lists (ACLs)	Alteration, and threats, 7
Actions considering effects of, 989	AM security level. See Audit Manager (AM) security level Amplification
DIDS, 950–951	attacks, 221–222
Activation transition, resource allocation system, 211–212	as increasing privileges, 521
Active side channel attacks, 280	Anagramming, attacking transposition cipher, 292
Active wiretapping, 7	Analysis engine
Acyclic attenuating schemes, 77–81, 87–88	DIDS centralized, 950
Acyclic creates rule, 73–74 Adaptive directors, altering rules, 946	intrusion detection, 945–946 Analysis phase, digital forensics, 993–994
Adaptive intrusion detection models, 920	Analysis procedure, Protection Analysis (PA) model, 854–856
Adaptive timeouts, availability in flooding attacks, 220	Analyzer, auditing system, 883
Address space layout randomization (ASLR), 974–975	And-access, cryptographic locks and keys, 527
AddRoundKey transformation, AES, 304, 1199, 1203–1205	And, joining conditions with, 41
Adjacent pairs of specification, 677–680	Anderson's Formula, attacking passwords, 426–427
Adleman, Len, 781 Administrative accounts	Android cell phones Geinimi Trojan horse and, 776–777
shared password problem, 1100–1103	loading libraries for process confinement, 593–594
user configuration for development system, 1050–1053	privacy information flow issue, 568–570
Administrative assurance, defined, 634	Animal game, 779, 984
Adore-ng rootkit, 778	Annotated programs, formally verified products, 722–723
Adorned names, listing all SLDs in MLD, 148–149	Anomaly detection
Advanced Encryption Standard (AES) analysis of, 304–305	clustering, 926–928
analysis of, 304–305 background, 1196–1197	defined, 920 distance to neighbor, 930–931
basic transformations, 1197–1199	incident prevention via, 972
as block cipher, 370	intrusion detection, 972

machine learning, 924–925	ASLR, See Address space layout randomization (ASLR)
Markov models, 922–924	Assertions, policy-based trust models, 192
misuse detection vs., 941–942	Assignment statements, information flow, 551
neural nets, 928–929	Assumptions
other methods, 932	conception stage of life cycle, 636
overview of, 920–921	logging in forensics not controlled by, 988–989
self-organizing maps, 928–930	trust and, 11–12, 115–117
statistical methods, 921–922	Assurance. See also Systems, building with assurance
support vector machine (SVM), 931–932	design and, 14–15
threshold metrics, 921	evaluation of evidence for. See Evaluation of systems
Anon.penet.fi, Swedish anonymizer, 491	example of, 22–24
Anonymity	formal evaluation methodology for, 728
electronic communications policy, 1218	formal methods. See Formal methods
erosion of privacy/need for, 482	implementation. See Implementation assurance
on web. See Web, anonymity on	improper choice of operand/operation and, 1140
Anonymizers email, 491–494	low-assurance programs. <i>See</i> Program security practicum network organization and, 1025–1026
hiding origins of connections, 490–491	security policies and, 110
Anonymizing sanitizers, auditing, 889–891	specifications and, 14
Anonymous Diffie-Hellman, 394	and trust, 12–13
Anonymous (persona) certificates, 482	Assurance, introduction to
Anti-forensics, 994–996	Agile software development, 641–644
Anti-replay	life cycle, 634–639
AH protocol, 408	need for, 629–631
IPsec architecture, 405	other models of software development, 644–645
Antivirus scanners, 808–809	review, 645–648
APA tool. See Automated penetration analysis (APA) tool	role of requirements in, 631–632
AppAudit, 570	throughout life cycle, 632–634
Append right, access control matrix, 33	and trust, 627–629
Appendices in this book	waterfall life cycle model, 639–641
academic security policy. See Academic computer	Assurance requirements
security policy example	CISR, 743
electronic communications policy at UCD, 1227–1233	Common Criteria, 752, 759
encryption standards. See Encryption standards	Federal Criteria, 745
entropy and uncertainty, 1163–1169	ITSEC, 739
Extended Euclidean Algorithm, 1157–1161	TCSEC, 732–733
lattices, 1153–1155	Astonishment. See Principle of least astonishment
logic. See Symbolic logic	ATAM. See Augmented Typed Access Matrix Model
overview, 1151	(ATAM)
virtual machines, 1171–1177	Attack and response
Apple iPhones, Pegasus spyware for, 799–800	anti-forensics, 994–996
Applesed trust model, 198	attack definitions, 959–960
Application data protocol, TLS, 400	attack graphs, 969–971
Application level firewalls. See Proxy (or application level)	attack trees, 961–964
firewalls Application logs, auditing design, 891–893	digital forensics. <i>See</i> Digital forensics intrusion response. <i>See</i> Intrusion response
Arc attacks, 848, 974–975	representing attacks, 960–961
Architecture	requires/provides model, 965–969
building systems with assurance, 651–657	review, 996–1001
of capabilities vs. ACLs, 519	Attack graphs, 969–971
intrusion detection, 942–948	Attack phase, GISTA, 836
IPsec, 404–407	Attack trees
TCSEC, 733	developing, 961–964
waterfall life cycle model, 640	requires/provides model, 965–969
ARF, See Access Restriction Facility (ARF) program	as subset of attack graphs, 969–971
ARHIVEUS-A ransomware, 801	Attacker, remote shell (rsh) attack, 966–967
Arrays, bounds checking and, 1133–1134	Attacks
Artificial intelligence (AI), exploratory programming model,	anticipating, 1027–1028
644	on cryptosystem, 290–291
ASCII characters	defined, 987
cryptographic checksums and, 315-316	on DNS, 487
PEM design and, 387–388	further reading, 25
UNIX passwords and, 417	password, 426–434
Aslam's model, 859–860, 862–864	protecting system after. See Intrusion response

risk analysis of probability of, 17-18	Authority
on systems failing to meet principles, 917–918 threats vs., 7	to change, electronic communications policy, 1233–1234 key identifier extension, PKI certificates, 351
transposition cipher, 292	principle of least, 458
Vigenére cipher, 294–299	Authorization
Attenuating create-rule, 74	electronic communications policy, 1226
Attenuation of privilege. See Principle of attenuation of	integrity policies and, 111
privilege	policy specifications in Ponder, 119–121
Audit browsing, 908–910	Authorization scheme, TAM, 93
Audit logger, LAFS, 906	Authorized (secure) states, security policy, 109–113
Audit logs, IDIOT monitoring, 934 Audit Manager (AM) security level, Lipner, 178–180, 182	Authorized transfer of rights, system safety, 50
Audit UID, 474	Authorizing (certificate producing) participants, SOG-IS, 762 Autokey cipher, 373–374
Auditing	Automated penetration analysis (APA) tool, Gupta and
commercial requirements, 174	Gligor, 872–873
definition of, 879–880	Automation
electronic communications policy, 1227	classifying verification technologies via, 700
file systems, 900–907	intrusion detection process, 918
firewalls for, 573	legacy of Protection Analysis, 856
intrusion detection as automated, 942	polymorphic viruses for instruction, 788
mechanisms for, 897–900	of security test suites, 689
review, 910–915	sophisticated system attacks, 918
security violations, 879	specification languages, 703
TCSEC functional requirements, 732 Auditing, designing system	Autonomous Agents for Intrusion Detection (AAFID), 952–953
anatomy of, 881–884	Availability
application/system logging, 891–893	as basic to computer security, 6
implementation/, 886–887	configurations for system security, 1044–1045
log sanitization, 888–891	countering threats with, 7
overview of, 884–886	DoS attacks attempting to block, 6
a posteriori design, 893–897	ensuring program, 1147
syntactic issues, 887–888	nature of security policies, 111
Augmented Typed Access Matrix Model (ATAM), 98–99	policy development practicum, 1010
Aurasium, constraints for Android apps, 593–594	Availability policies
Authenticated encryption with associated data (AEAD),	denial of service models, 203–204
377–381, 392 Authentication	denial of service models, constraint-based, 204–210
accessing to attack passwords, 426–434	denial of service models, state-based, 210–215
basics of, 415–416	goals of, 201–202
biometrics as, 441–445	handling deadlock, 202–203
challenge-response, 438–441	network flooding example, 215–221
defined, 415	other flooding attacks, 221–222
dynamic vs. static naming and, 486–487	review, 222–225
in electronic communications policy, 1226, 1240	Avoidance, deadlock, 203
graphical passwords, 425–426	
improper deallocation or deletion of information,	В
1131–1132 Kerberos protocol, 337–338	BABEL. See Mixmaster remailer
location and, 445–446	Backdoor.IRC.Aladinz bot, 794
multifactor, 446–448	Backoff techniques, on-line dictionary attacks, 430–431
one-time passwords, 436–438	Backups
origin integrity as, 5	to cloud, 1025
password aging, 434–438	development system users, 1051-1052
password selection, 418–425	electronic communications policy for, 1227,
passwords, 416–418	1240–1241
review, 448–452	Bacterium, 796, 803
symmetric key exchange and, 333–336	Bandwidth
system security practicum, 1053–1055 using cookies for, 490	as property of covert channels, 595–596
Authentication header (AH), IPsec, 403–408	SYN flooding consuming, 216, 1026 Banker's Algorithm, deadlock avoidance, 203
Authentication path, Merkle's tree authentication, 345	Banners, adware installation via, 798
Authentication policy, CA, 477	Basic blocks, 554–556
Authenticity of digital image, anti-forensics hindering,	Basic constraints extension, X.509 PKI certificates,
994–996	351–352

Basic Security Module (BSM) nonsecure systems and, 899–900 using grammar, 888 Visual Audit Browser tool kit, 909–910 Basic Security Theorem	Bit-oriented ciphers AES. See Advanced Encryption Standard (AES) DES, 300–302 one-time pad, 371 Bitcoins, CryptoLocker ransomware, 801
formal Bell-LaPadula Model, 152–155 McLean's †-property, 164–166 McLean's System Z, 166–168	Black box (functional) testing, 688–689 Bledsoe theorem prover, Gypsy, 712–713 Block ciphers
preliminary version, 143, 145 Bayes signatures, worm detection, 810 Behavior, reputation-based trust models, 194–196	CCM mode using AEAD for, 377–379 multiple encryption, 375–377 overview of, 374–375
Behavioral analysis, malware detection, 810–811	stream ciphers vs., 370
Belief types, trust in technological world, 190–191	Blocks
Bell-LaPadula Model Android two-level security model, 568	misordered ciphtertext message and, 368 TLS record protocol, 396
Biba's strict integrity model, 177–178	Blowfish, modern symmetric cipher, 303
composition of two models, 256–258	BMU. See best matching unit (BMU)
configuring outer firewall, 1014–1015	Boolean expressions, access control by evaluating, 35–36
controversy over, 164–168	BOOLEAN type, SPECIAL specification, 703
declassification principles, 163–164	Boot sector infectors, 782–783, 786
designing auditing for, 884–885	Botmaster, 793
emulating Chinese Wall Model, 234–236	Bots and botnets, 793–796
formal model, 151–158	Boundary controller, IDIP, 978
formal specifications, 702–705	Boundary data tests, 1143–1144
influencing TCSEC approach, 730	Bounding set of privileges, processes, 524
informal description of, 142–146	Bounds checking, improper validation, 1133–1134
lattice-based information policy, 539–540 limits of capabilities, 522–523	Boyer-Moore theorem prover, 707, 709–710 BPF. See Berkeley packet filter (BPF)
Lipner's use of, 178–180	Brain (or Pakistani) virus, IBM PC, 782, 783
military-style classifications of, 141	Branch instruction, Data Mark Machine, 564
MLS implementing SRI model of, 707	Branching time logic systems, 1186
nonlattice information flow, 542–543	Breach, security, 110, 112
restricting flow of information, 183	Break-the-glass policies, 249–250
review, 169–172	Bridge relays, Tor, 499
role of tranquility in, 164	Bridges, Take-Grant Protection Model, 60-61
separating policy from mechanism, 256	Bro, misuse intrusion detection, 937–938
as subset of Clinical Information Systems Security	Browser plug-ins, allowing adware, 798
Policy, 239	Browsing, audit, 908–910
Trusted Solaris example, 146–151	BSM. See Basic Security Module (BSM)
Bell V22 Osprey helicopter crashes, 631	Buffer overflow attacks
Bellare-Rogaway protocol, symmetric key exchange, 336 Berkeley packet filter (BPF), malware defense,	memory protection and, 1122 restricting access via type checking, 528, 847–848
818–819	Bugs, maintenance releases/hot fixes for, 695–696
Bernstein conditions, 34	Burroughs B5700 system, penetration study, 839–40
Best matching unit (BMU), self-organizing maps,	Businesses, key escrow system for, 354–355
929–930	"By law" or "by right" (de jure) rules, 57–61
Biba model	
Clark-Wilson model vs., 188–189	
lattice-based information policy in, 539	C
Lipner's integrity matrix model vs., 182–183	C (CONFIDENTIAL) security clearance, Bell-LaPadula
overview of, 175–178	Model, 142–146
scanning as malware defense, 808	C-List. See capability list (C-List)
Biconditional commands, protection state transitions, 41	CA certificate, X.509 PKI, 350–351
Biconditional monotonic protection systems, 55–56 Biometrics	Cache Kernel, isolation via library OS, 585–586
authentication and, 441–442	Cache poisoning attacks, 487, 488 Caching of information, restricting, 460–461
combinations, 445	Caesar (shift) cipher, 289–291, 294
eves, 443–444	Call bracket, ring-based access control, 531–532
faces, 444	Can-create function, SPM, 73–74, 82–85
fingerprints, 442–443	Canadian Trusted Computer Product Evaluation Criteria
generating cryptographic keys, 342–343	(CTCPEC), 737–738
keystroke dynamics, 444–445	Capabilities
voices, 443	access control lists vs., 523–524
Bionic libc, Aurasium, 594	copying and amplifying, 520-521

in JIGSAW language, 967–969 limits of, 522–523 mechanisms protecting, 519–520	Certificate policy extension, X.509 PKI, 351–352 Certificate producing (authorizing) participants, SOG-IS, 762 Certificate revocation list, X.509 PKI, 359
overview of, 518–519	Certificate signature chains, 346–350
privileges, 524–526	Certificates
requires/provides model, 965–966	binding cryptographic keys to identifiers, 476
revocation of rights, 522 Capability list (C-List), 518, 522–523	binding identity to cryptographic key, 344 conflicts, 479–481
Capability Maturity Levels, SSE-CMM, 767	expired vs. revoked, 358–359
Capability mode, Capsicum, 589	Merkle's tree authentication scheme, 344–345
Capacitative technique, fingerprint biometrics, 442	naming and. See Naming and certificates
Capacity, covert channel, 611–616	PKI, 350–353
Capsicum	policy-based trust models, 191
file descriptor capabilities in, 526	TLS handshake protocol, 398
sandboxing single application via, 589–590	Certification
CAPSL. See Common Authentication Protocol Specification	Clark-Wilson integrity model rules, 184–186
Language (CAPSL)	ITSEC, 738
CAPTCHAs, thwarting on-line dictionary attacks, 431	Certified licensed evaluation facilities (CLEFs), ITSEC, 741
CAs, See Certificate authorities (CAs)	Cert_type, TLS handshake protocol, 398
Categories	CFB. See Cipher feedback (CFB) mode
commercial vs. military environments, 174 easy to guess passwords, 421–422	Chain entry, CWE, 867 Chain key, instant messaging, 390–392
Lipner's integrity matrix model, 179–182	Challenge-response authentication, 438–441
Categories, Bell La-Padula Model	Challenger space shuttle disaster, 1986, 630
adding to security classification, 143–146	Change authorization, 686–687
Chinese Wall Models and, 234–236	Change cipher spec protocol, TLS, 399
formal model of, 151–158	Change, improper program, 1125–1129
principle of tranquility, 161–163	Channels, OSSTMM, 834, 835
Trusted Solaris, 146–151	Character frequencies, table of, 293
Category entry, CWE, 867	Characters, and monitors, 1086
CAVP. See Cryptographic Algorithm Validation Program	Checking input, improper validation, 1136–1137
(CAVP)	Checksums
CBC mode. See Cipher block chaining (CBC) mode	cryptographic, 315–318
CC. See Common Criteria (CC)	key escrow system, and Clipper chip, 356
CC Evaluation Methodology (CEM), 750–751, 761,	malware defense using, 817
764–765 CCDB. See Common Criteria Development Board (CCDB)	Merkle's tree authentication scheme, 344–345
CCEVS. See Common Criteria Evaluation and Validation	TLS setup phase, 394 Chinese Wall Model
Scheme (CCEVS)	aggressive, 233–234
CCM. See Counter with CBC-MAC (CCM) mode	auditing design for, 885–886
CCMB. See Common Criteria Management Board (CCMB)	Bell-LaPadula and, 234–236
CCRA. See Common Criteria Recognition Arrangement	Clark-Wilson and, 236
(CCRA)	formal model, 230–233
CCUF. See Common Criteria Users Forum (CCUF)	informal description, 228–230
CCured program, compiling, 592	overview of, 227
CDIs. See Constrained data items (CDIs)	CHMK instruction, privilege/virtual machines,
CDs. See Company datasets	1172–1173
Cells, Tor onion router, 497–499	Chosen plaintext attack, 291
CEM, See CC Evaluation Methodology (CEM)	Chroot system, UNIX, 1056–1057
Centralized botnets, 793	CIAC. See Computer Incident Advisory Capability (CIAC)
Centralized security enforcement, architecture, 651–652 Cert_chain, TLS handshake protocol, 397–398	CIF. See Common Internal Form (CIF) Cipher block chaining (CBC) mode, 302, 375
Certificate authorities (CAs)	Cipher feedback (CFB) mode, 302, 374
assurance of trust, 481–484	Cipher techniques
authentication policy, 477	authenticated encryption, 377–381
certificate conflicts, 479–481	block ciphers, 370, 374–377
controlling issuing of certificates, 476–478	example protocols, 384
cross-certified, 347–348	instant messaging, 389–393
defined, 347	network layer security (IPsec), 402-410
extensions supported by, 350–351	networks and cryptography, 381-384
issuance policy, 477	overview of, 367
meaning of identity, 481–484	problems, 367–370
X.509 certificate signature chains, 347–348	review, 410–414
X.509 PKI certificates, 351	secure electronic mail, 384–389

stream ciphers, 370–374 transport layer security. See Transport layer (TLS and	Codebook mode, statistical regularities, 369 The Codebreakers (Kahn), 325
SSL) security	Coding faults, Aslam's model, 859
Cipher_list, TLS handshake protocol, 397	Cohen, Fred, 781
Ciphertext	COI classes. See Conflict of interest (COI) classes
perfect secrecy and, 1168–1169	Collaboration mission, CSIRT, 986
security problems with messages, 367–370 self-synchronous stream ciphers, 373–374	Collaborative Protection Profiles (cPP), 751 Collisions, off-line dictionary attacks, 429
substitution ciphers, 292–294	Colored Petri Automaton (CPA), IDIOT system, 933–934
transposition ciphers, 291	Combinations
Ciphertext only attack, 290	of biometrics, 445
Circular wait, deadlocks from, 202	of malware, 803
Cisco routers, dynamic access control lists, 527–528	Combining sources of information, agents, 943–944
CISR. See Commercial International Security Requirements (CISR)	Command and control (C&C) servers/motherships, 793–795 Command line, program security design, 1104–1105
Clark-Wilson integrity model	Commands
Chinese Wall Models and, 236	comparing HRU and SPM, 82
Clinical Information Systems Security Policy, 239	designing access to roles and, 1106-1110
comparing to other models, 188	protection state transitions, 38–41
comparing to requirements, 187–188	refinement to access control module, 1112–1114
implementing under UNIX, 186–187	Tor, 497–499
the model, 184–186	Comment resolution, in review process, 684
overview of, 183–184 Classes	Commercial integrity policies, 173–174 Commercial International Security Requirements (CISR),
CC assurance requirements, 759	742–744
CC security functional requirements, 756–759	Commercial off-the-shelf (COTS) components, 696–697, 730
OSSTMM, 834–835	Commercial security policies, 114
policy development with data, 1007-1008	Committee on National Security Systems (CNSS), 729–730
policy development with user, 1008–1010	Common Authentication Protocol Specification Language
TCSEC evaluation, 733–734, 736	(CAPSL), 720–721
of threats, 7 Classification	Common Criteria (CC)
Aslam's model, 859–860	assurance requirements, 759 defined, 727
confidentiality, 142–146	evaluation assurance levels, 759–761
flaws in Protection Analysis model, 849–851	evaluation process, 761–762
flaws in RISOS study, 849–851	functional requirements, 756–759
Gupta and Gligor's penetration analysis theory,	future of, 764–765
868-873	impacts, 763–764
Lipner's integrity, 181–182	informal arguments, 680–681
NRL taxonomy for vulnerabilities, 857–859	methodology, 751–756
principle of tranquility, 161–163	overview of, 749–751
Trusted Solaris, 146–151 verification technologies, 700	requirements, 756 SOG-IS, 762–763
vulnerability frameworks for, 845–848	standards replaced by, 629
Classification rate (accuracy), intrusion detection methods,	Common Criteria Development Board (CCDB), 764–765
925	Common Criteria Evaluation and Validation Scheme
Clearance, Trusted Solaris, 146–151 CLEFs. See certified licensed evaluation facilities (CLEFs)	(CCEVS), 750 Common Criteria Management Board (CCMB), 764–765
Client, confinement problem, 579–582	Common Criteria Recognition Arrangement (CCRA),
Clinical Information Systems security policy, 236–239	749–751, 764–765
Clipper Chip, and key escrow system, 355–357	Common Criteria Users Forum (CCUF), 763
Clock synchronization, Kerberos, 338	Common Internal Form (CIF), HDM, 706–707
Cloud	Common Vulnerabilities and Exposures (CVE) database,
defined, 1024	864–866
network security practicum for, 1024–1025	Common Weaknesses and Exposures (CWE) database,
Clustering, anomaly detection and, 926–928 CMVP. See Cryptographic Module Validation Program	866–868 Communications path, TCSEC, 732
(CMVP)	Company datasets (CDs)
CNSS. See Committee on National Security Systems (CNSS)	Aggressive Chinese Wall Model, 233–234
Cocks, Clifford, 309	Bell-LaPadula and Chinese Wall Models, 234–236
Code Red I computer worm, 791	Chinese Wall Model audit design, 885–886
Code Red II computer worm, 792	Chinese Wall Model formal model, 230–233
Code review (walkthroughs), implementation, 687–688	Chinese Wall Model informal description, 228–230
Code standards, implementation, 686	Compartmented Mode Workstation, auditing, 898

Compatibility, PEM design principles, 386 Compiling, process confinement via, 592–593	CONFIDENTIAL (C) security clearance, Bell-LaPadula Model, 142–146
Complete mediation. See Principle of complete mediation	Confidentiality
Completion, review process, 685	as basic to computer security, 4–5
Complexity of programs, implementation phase, 15	Chinese Wall Model and, 227
Components	Clinical Information Systems policy, 236–239
auditing system, 881–884	consistency check, policy development, 1010–1011
defined, 663	constraints to control flow of information, 566–567
example, 663–664	countering threats, 7
Extended Components Definition, CC, 752	data moving from internal network to Internet,
external functional specification, 666	1011–1012
internal design description, 669–672	electronic communications policy, 128, 1220–1225
Composed modules, testing, 1145	military security policy, 113–114
Composition	nature of security policies, 110–111 security threats as breaches of, 650
deducibly secure systems, 273–274 deterministic noninterference-secure systems, 270–271	TCSEC emphasis on, 730–731
generalized noninterference systems, 275–277	Confidentiality policies
policy. See Noninterference, and policy composition	Bell-LaPadula Model. See Bell-LaPadula Model
of restrictive systems, 279	Bell-LaPadula Model, controversy, 164–168
Compositional security analysis instance, 96–97	defined, 111, 115
Compound element composite entry, CWE, 867	developing via mapping, 658–660
Compound sentences, composing, 1179	goals of, 141–142
Compound statements, information flow, 551–553, 559–560	impact on logs, 888–889
Compression_list, TLS handshake protocol, 397	information flow policy within, 539–540
Compromise Remote Users/Sites, ISSAF, 833–834	Multics system example, 158–161
Computer forensics. See Digital forensics	principle of tranquility, 161–164
Computer Incident Advisory Capability (CIAC),	review, 169–172
ransomware and, 800–801	security/precision in, 131–134
Computer security incident response team (CSIRT),	trust and, 114
985–987	Configuration assistant, LAFS, 906
Computer security, overview	Configuration errors, Aslam's model, 859
assumptions and trust, 11–12	Configuration management, 686–687, 732
assurance, 12–16	Configuration of system, deployment stage of life cycle, 638
basic components, 3–6	Confinement
example, 22–24	analyzing suspected malware, 810
human issues, 20–22	flow model, 543–544
operational issues, 16–20	internal address issues, 1014
policy and mechanism, 9–11	problem of, 579–582
review, 24–28	review, 619–623
threats, 6–9	via covert channels. See Covert channels
Computer-supported collaborative working confidentiality	via isolation. See Isolation
policies, 170	Confinement principle, 238, 239
Computer viruses	Conflict of interest (COI) classes
concealment, 785–790	Aggressive Chinese Wall Model, 233–234
defined, 780	Bell-LaPadula and Chinese Wall Models, 235–236
infection vectors, 782–785 overview of, 780–782	Chinese Wall Model audit design, 885–886 Chinese Wall Model formal model, 230–233
summary, 790	Chinese Wall Model informal description, 228–230
theory of, 803–807	Conflict resolution, review process, 684
COMSEC class, OSSTMM, 834	Conflicts, certificate, 479–481
Concealment, of computer viruses, 785–790	Conformance claims, 751–752
Conception stage, life cycle process, 635–636	Conjunction, propositional logic, 1179–1180
Concurrency, 209–210, 558–561	Conjunction signatures, worm detection, 810
Condition set consistency prover, automated penetration	Connection ID, Network Security Monitor, 948–949
analysis, 873	Connections
Condition validation errors, Aslam's model, 859	anonymizers hiding origins of, 490
Conditional and joint probability, 1163–1165	TLS, 393–394, 397
Conditional commands, TAM, 93	Connectives
Conditional entropy, 1167–1168	compound sentences, 1179
Conditional instruction, Data Mark Machine, 563	natural deduction in propositional logic,
Conditional statements, information flow, 552-553	1180–1181
Conditional transitivity of trust, 189–190	Conservativity principle, declassification policy, 163
Conficker botnet, neutralizing, 570–571	Consistency check, policy development, 1010–1011
Confidence, security assurance as, 628	Consistent state (or consistent), integrity of system data, 183

Consistent static analysis, state-based audits, 894 Conspiracy, Take-Grant Protection Model, 66–68 Constrained data items (CDIs), Wilson integrity model,	Counter (CTR) mode, AES, 305 Counter method cipher feedback mode, 374
184–188	synchronous stream ciphers, 373
Constraint-based denial of service model	Counter with CBC-MAC (CCM) mode, AEAD, 377–379
finite waiting time policy, 207–208	Counterattacking, forms/consequences of, 983–984
overview of, 204–205	Countermeasures, SYN flooding, 216
service specification, 208–210	Courtesy, electronic communications policy, 1235
user agreement, 205–207	Covert channels
Constraints	adware installed via, 797–799
affecting penetration study, 827–828	analysis of noisy capacity, 614-616
audit analysis of NFSv2, 902, 904–905	capacity/noninterference and, 611–613
designing auditing system, 884–885	confinement problem and, 594–596
dynamic analysis for information flow, 568–570	defined, 580
information flow integrity, 566–567	infinite loops and, 558
low-level policy languages as, 125–126	measuring capacity, 613
policies begin as, 127	mitigation of, 616-619
RBAC ₂ , 247–248	review, 619-623
Consuming participants, SOG-IS agreement, 762	side channels vs., 581
Containers, providing isolation via, 584–585	spyware installed via, 799–800
Containment, as malware defense	types of, 581–582
information flow metrics, 812–813	virtual machines for, 584
reducing rights, 813–816	Covert channels, detecting
sandboxing, 816–817	via covert flow trees, 602–610
Containment phase, intrusion handling, 975–977	via information flow analysis, 601–602
Content delivery servers, 794–795	via noninteference, 596–598
Content, digital rights management, 242	via shared resource matrix, 598–600
Content Scrambling System (CSS), DVDs, 461–462	Covert flow trees
Context, for meaning in forensics, 989–990	completed, 607, 609
Contradiction, in propositional logic, 1180	constructing two lists, 607, 610
Control, architectural security and, 651-657	nodes of, 603
Control rights (RC), SPM, 69, 71–72	overview of, 602
Control Tree Logic (CTL), 716–720, 1186–1188	stages of building, 605–608
Controlled access protection, TCSEC, 733	using at any point in SDLC, 610
Controlled environment, process isolation	Covert purposes, of Trojan horses, 776, 781
library operating systems, 585–586	Covert storage channels
overview of, 582–583	analyzing, 598–599
sandboxes, 586–590	for covert flow trees, 605–606
virtual machines, 583–585	defined, 594
Controversy, Bell-LaPadula Model, 164–168	Covert timing channels
Cookies	analyzing, 600
right to privacy and, 501	mitigating covert channels, 617–618
and state, 488–490	overview of, 594
Copy flags	CP commands, IBM VM/370, 1175–1176
access control matrix, 4	CPA. See Colored Petri Automaton (CPA)
associated with capabilities, 520	CpD class. See corporate data (CpD) class
Schematic Protection Model tickets, 69	CPP. See Collaborative Protection Profiles (CPP)
Copy right, 42–43	Create-rule, SPM, 73–74
Copyable tickets, SPM, 70–71	Create rule, Take-Grant Protection Model, 57, 65
Copying of capabilities, 520–523	Create rules, ESPM, 83–88
Copying strings, 1133	Credentials, policy-based trust models, 191–194
Copyright, 241–244, 1209	Credit card company alerts, 947
Corporate computer system, penetration of, 840–841 Corporate data (CpD) class, policy development, 1007–1009,	Crimea virus, 789 Criteria creep, 736, 764
1011	Cross-certificate, X.509 PKI, 351
Corporation executives class, policy development,	
1008–1010	Cross-certified CAs, 347–348 Cross-realm operation, Kerberosv5, 338
	Cryptanalysis
Correctness-preserving transformations, 644–645 Correspondence between schemes, simulation in models,	defined, 289
89–90	differential, 301
Cost-benefit analysis, operations, 16–17	
COTS components. See commercial off-the-shelf (COTS)	linear, 301 overview of, 290–291
components	Cryptographic Algorithm Validation Program (CAVP), 749
Counter, amplifying capabilities, 521	Cryptographic checksums, 315–318

Cryptographic keys. <i>See</i> also Key management defined, 4 encrypted viruses do not encrypt, 786–787 improper deallocation or deletion of, 1131–1132 Cryptographic Module Validation Program (CMVP), 748, 749 Cryptographic modules, FIPS 140-2, 746–749	computer viruses infecting, 782, 786 creating structures that can be validated, 1137–1138 improper change over time, 1125–1129 macro viruses infecting file, 785 malware defenses, 811–812 Data classes configuring internal network, 1021–1022
Cryptography	consistency check, 1010–1011
cipher techniques. See Cipher techniques formal methods for analyzing protocols, 702 key management. See Key management locks and keys, 527 NPA protocol verification, 720–721 offensively used in ransomware, 801	policy development practicum, 1007–1008 Data descriptions, external functional specification, 666 Data encipherment key (DEK), PEM, 386–387 Data Encryption Standard (DES) AES replacing, 302
preserving confidentiality via, 4	analysis of, 301–302 EDE mode, 376
protecting capabilities via, 519–520	main algorithm, 1191–1194
as secret writing, 289	and modes, 302
Cryptography, basics	overview of, 299–300, 1191
checksums, 315–318	retirement of, 302 review exercises, 1205
cryptanalysis, 290–291 digital signatures, 318–323	round key generation, 1195
overview of, 289–290	structure, 300
public key. See Public key cryptography	three-key Triple DES mode, 377
review, 324–329	two-key Triple DES mode, 376
symmetric cryptosystems. See Symmetric cryptosystems CryptoLocker ransomware, 801	Data integrity. See also Integrity; Integrity policies cryptography for, 290
Cryptosystems	defined, 5
cryptanalysis as analysis of, 290–291	DNSSEC providing, 488
defined, 289	nature of security policies, 110-111
perfect secrecy and, 1168–1169	Data Mark Machine, Fenton's, 562–566
principle of open design and, 461 symmetric. See Symmetric cryptosystems	Data networks class, OSSTMM, 834 Data recovery component, key escrow systems, 355
timing attacks on, 280–282	Data segments, ring-based access control, 531–532
transformations, 290	Database security, access control matrix model, 44
CSIRT. See computer security incident response team	DDEP class. See development data for existing products
(CSIRT) CSS. See Content Scrambling System (CSS)	(DDEP) class DDFP class. See development data for future products
CTCPEC. See Canadian Trusted Computer Product	(DDFP) class
Evaluation Criteria (CTCPEC)	DDoS. See distributed denial of service attack (DDoS)
CTL. See Control Tree Logic (CTL)	De jure ("by law" or "by right") rules, 57–61
CTR mode. See Counter (CTR) mode CuD class. See customer data (CuD) class	Deactivation transition, resource allocation system, 211–212 Deadlock, availability and, 202–203
Cued-recall systems, graphical passwords, 426	Deallocation, improper deletion of, 1131–1132
Current rights, access control by history, 36–37 Customer data (CuD) class, 1007–1009, 1011	Deception, as class of threat, 7–8 Deception Tool Kit (DTK), 976
Customer service, fielded product life stage, 638	Declarations
Customs, operational controls and, 19–20	information flow and, 549–550
CVE database. See Common Vulnerabilities and Exposures (CVE) database	PVS language and, 714 SMV program, 717–718
CWE database. See Common Weaknesses and Exposures (CVE) database	Declassification, 162–164 Decoy servers, honeypots as, 976
Cyber-physical systems, information flow in, 575 Cypherpunk remailers, 492–493	Decryption, AES transformations, 1200–1201, 1203–1205 Decryption key, encrypted viruses do not encrypt, 786–787
_	Defender's dilemma, intrusion detection using, 973
D	Defenses, malware. See Malware defenses
D (Development) category, Lipner, 179–180 D-WARD, defense against DoDS attacks, 217–218	Definitions, electronic communications policy allowable use, 1242
DAC. See Discretionary access control (DAC) Dalvik executables (DEX) bytecode, Android, 568–569	general provisions, 1214–1215 overview of, 1227–1230
DARPA off-line intrusion detection evaluations, 925	summary of, 129
Data	DEK. See Data encipherment key (DEK)
checking for valid, 1135–1136 checking input from untrusted sources, 1136–1137	Delay, as form of usurpation, 8–9 Delegation, 7–8, 119–120

Deletion	principle of least authority, 458
file, 1082–1084	principle of least common mechanism, 463–464
HRU model allowing, 82	principle of least privilege, 457–458
improper deallocation or, 1131–1132	principle of open design, 461–462
Demand operations, SPM, 72–75	principle of separation of privilege, 463
Demilitarized zone (DMZ)	psychological acceptability, 465–466
anticipating attacks within, 1027	review, 466–469
configuring inner firewall, 1016–1017	supporting assurance, 664
configuring internal network, 1022–1023	underlying ideas, 455–457
configuring outer firewall, 1014–1015	DESIGNATOR type, SPECIAL specification, 703
defined, 1011	Destroy object rule, HRU model, 82
firewalls between internal network and, 573	Destroy subject rule, HRU model, 82
firewalls between Internet and, 573	Detection mechanisms
network organization, servers in, 1017	deadlock, 203
science, 946 Demonstrable conformance CC methodology 752	as goal of security, 10 and integrity, 5
Demonstrable conformance, CC methodology, 752 Denial of receipt, as deception, 8	Detection (true positive) rate, intrusion detection, 925
Denial of service (DoS)	Deterministic noninterference
attempting to block availability, 6	access control matrix, 266–268
definition of, 204	composition of secure systems, 270–271
disallowing deadlocks, 202–203	overview of, 259–263
as form of usurpation, 8–9	security policies changing over time, 268–270
protection base, 213–215	unwinding theorem, 263–265
resources/services unavailable in, 201–202	Deterministic packet selection, IP header marking, 981
security threats asf, 650–651	Developers class, policy development, 1008–1010
when resource or service is not available, 201–202	Development (D) category, Lipner, 179–180
Denial of service models	Development data for existing products (DDEP) class,
availability policies and, 203–204	1007–1009, 1011
constraint-based, 204–210	Development data for future products (DDFP) class,
further reading on inhibiting attacks, 223–224	1007–1009, 1011
state-based, 210–215	Development (ID) entities category, Lipner,
Denial of service protection base (DPB), resource allocation,	181–182
213–215	Development system
Deployment stage, life cycle process, 637–638	attacking to test security, 1047
Derivable state, safety analysis of SPM, 75–77, 79	authentication, 1054-1055
Derived rules, natural deduction, 1181–1182	file configuration, 1063–1066
Derived Test Requirements (DTR) for FIPS PUB 140-2, 748	network configuration, 1045–1047
Derived Test Requirements for FIPS PUB 140–2, 748	policies, 1037–1041
Descriptor (handle), access control information, 1107	process configuration, 1054–1055
Design	retrospective on system security, 1067–1068
access to roles/commands, 1106–1110	user configuration, 1052–1053
auditing system. See Auditing, designing system	Device, digital rights management, 242
implementation and, 15–16	Devices, user security
implementation in HDM, 707	monitors and characters, 1086
privacy-enhanced electronic mail, 386	monitors and Windows systems, 1086–1087
program security framework, 1104–1105	smart terminals, 1085–1086
testing, 1142–1143	writable devices, 1084–1085
for validation, 1137–1138	DEX bytecode. See Dalvik executables (DEX) bytecode
Design assurance, system/software	Dictionaries, PACL for, 532
design documents contents, 665	Dictionary attacks
design principles, 662–664 external interfaces, 666–673	challenge response and, 439–440 on-line, 430–432
internal design, 673–675	password guessing in, 427
need for, 630	salting to thwart, 429–430
overview of, 14–15	withstanding off-line, 428–430
security functions, 665–666	DIDS. See Distributed Intrusion Detection System (DIDS)
TCSEC requirements, 733	Differential cryptanalysis, 301, 305
techniques for, 662–664	Diffie-Hellman ciphers
throughout life cycle, 633–634	instant messaging with ECDH, 390–392
Design principles	public key exchange, 339–341
principle of complete mediation, 460–461	as TLS interchange ciphers, 394
principle of economy of mechanism, 459–460	Diffusion, in cryptosystems, 290
principle of fail-safe defaults, 458–459	Digital Equipment Corporation, virtual machines,
principle of least astonishment, 464–465	583–584

Digital forensics	DMZ WWW server
anti-forensics, 994–996	basic security policy of, 1036-1037
defined, 987	configuring outer firewall, 1015
overview of, 987	devnet developer security policy vs., 1041
practice of, 990–994	file configuration, 1061–1063, 1065–1066
principles, 987–990	network configuration, 1042–1045, 1047
review, 996–1001	network infrastructure, 1014, 1018–1019
Digital rights management (DRM), 241–244, 778–779	policy configuration, 1036–1037
Digital signatures	process configuration, 1053–1105
defined, 318	retrospective on system security, 1066–1067
El Gamal, 321–323	system security and, 1035–1036
overview of, 318–319	system security authentication, 1053–1105
public key signatures, 319–323	user configuration, 1048–1050, 1052–1053
RSA, 319–321	DNS. See Domain Name Service (DNS)
secret key signatures, 319	DNSKEY RR. See public key resource record (DNSKEY
Dijkstra's Banker's Algorithm, deadlock avoidance, 203	RR) DNSSEC DNS See Domain Name System Security
Direct recognition goal, covert flow tree, 605–606	DNSSEC DNS. See Domain Name System Security
Direct trust, 190, 195 Director	Extensions (DNSSEC DNS)
AAFID, 953	Docker, isolation features of, 585 Documentation
DIDS, 950	additional FIPS 140-2, 748
intrusion detection system, 942	penetration testing usefulness from, 829
intrusion detection system, 542	security trade-offs/attendant risks, 1136
Directories, in Trusted Solaris, 148–151	and specification, 675–677
Disabling, thwarting on-line dictionary attacks, 431	TCSEC assurance for product, 733
Disclosure	Documentation, design contents
as class of threat, 7	design document specification, 673–675
commercial vs. military integrity policies, 174	external functional specification, 666–668
confidentiality policies prevent unauthorized, 141	internal design description, 668–673
military security policy constraints on, 114	overview of, 664
Disconnection, thwarting on-line dictionary attacks, 431	security functions summary specification, 665–666
Discovery phase, GISTA, 836	Documented or known (overt) purpose, Trojan horses, 776,
Discrete logarithm problem, Diffie-Hellman, 339–341	781
Discrete logarithm problem, El Gamal, 307–309	Domain flux botnet, 795–796
Discretionary access control (DAC)	Domain Name Service (DNS)
Bell-LaPadula Model using, 142, 153	amplification attack, 221
built-in security vs. adding later in UNIX, 656–657	associating host names with IP addresses, 485–487
security policy, 117–118	security extensions for integrity, 487–488
security policy changing over time, 268–270	security issues, 487
TCSEC functional requirements, 731	Domain Name System Security Extensions (DNSSEC
Trusted Solaris, 147–148	DNS), 487–488
Discretionary protection, TCSEC, 733	Domain-type enforcement language (DTEL), 121–125, 529
Disjunction, propositional logic, 1179	Domain value, cookies, 489
Disposition, electronic communications policy, 1227, 1241	Domains DIDC 050 051
Disruption, as class of threat, 7 Distance to neighbor, anomaly detection, 930–931	DIDS, 950–951 DTEL associating subjects with, 122–125
Distinguished Names, 476, 479–480, 481–482	in Schematic Protection Model, 69
Distinguished rights, 33, 56	DoS. See Denial of service (DoS)
Distributed denial of service attack (DDoS), 215, 796	Double flux botnet, 795
Distributed Intrusion Detection System (DIDS),	Downgraded directory, Trusted Solaris, 147
949–952	DPB. See denial of service protection base (DPB)
Distributed security enforcement, 651–652	Drawbridge library OS, process isolation, 586
Distribution	Drive-by download, defined, 798
deployment stage of life cycle process, 637	DRM. See digital rights management (DRM)
of program, 1146–1147	DroidDisintegrator, 569–570
Diversity, intrusion detection using, 972–973	Ds-property, Bell-LaPadula
Divisibility, improper indivisibility, 1138–1139	Basic Security Theorem, 153, 155, 165–167
DMZ. See Demilitarized zone (DMZ)	Multics system, 159–161
DMZ DNS server	rules of transformation, 155, 157
network configurations, 1044–1045	DT. See direct trust (DT)
network infrastructure, 1013	DTE, configuring sandboxes via, 587
network organization practicum, 1020	DTEL. See domain-type enforcement language (DTEL)
DMZ log server, 1020–1021, 1027	DTK. See Deception Tool Kit (DTK)
DMZ mail server, 1013, 1015–1018	DTR. See Derived Test Requirements (DTR)

Dual mapping, nontransitive information flow,	Electronic mail anonymizers
546–547	Cypherpunk remailers, 492–493
Duff, Tom, 782	Mixmaster remailers, 493–494
Dynamic access control lists, Cisco routers, 527–528	pseudo-anonymous remailers, 491–494
Dynamic debuggers, sandboxes via, 587	Electronic voting systems, physical isolation of, 583
Dynamic identifiers, 485–487	Electronmagnetic radiation emissions, side channel attacks,
Dynamic information flow analysis tool, TaintDroid, 568–570	282 Elimination rules, natural deduction, 1180–1181
Dynamic loading, 1122, 1128	Elliptic curve ciphers
Dynamic mechanisms, information flow, 562–566	El Gamal digital signature using, 322–323
Dynamic-Typed Access Matrix Model, 102	instant messaging with ECDH, 390–392
	public key cryptography, 312–315
_	TLS interchange cipher in Diffie-Hellman, 394
E	Elliptic curve Diffie-Hellman (ECDH), instant messaging,
EALs. See Evaluation Assurance Levels (EALs)	390–392
Earlybird worm detector, 809–810	Ellis, James, 306
Eavesdropping (snooping), 7	Emergent faults, Aslam's model, 859
ECB. See Electronic codebook (ECB) mode ECDH. See elliptic curve Diffie-Hellman (ECDH)	Employees class, policy development, 1008–1010 Encapsulating security payload (ESP), IPsec
Economy of mechanism. See Principle of economy of	architecture, 405–407
mechanism	message security, 403–404
Economy of mechanism principle, 459–460	overview of, 408–410
EDE mode. See Encrypt-Decrypt-Encrypt (EDE) mode	Encoding of characters, improper naming and, 1131
Edge adding operations, in models, 88–89	Encrypt-Decrypt-Encrypt (EDE) mode, 302, 376
EES. See Escrowed Encryption Standard (EES)	Encrypted key exchange (EKE), defeating off-line dictionary
Effective set (ES) of privileges, Trusted Solaris, 525	attacks, 440–441
Effective set of privileges, processes, 524–525	Encrypted viruses, 786–787
Effective UID, 474 Efficiency, thwarting off-line dictionary attacks, 428–429	Encryption AES transformations for, 1199–1201
EFTA. See European Free Trade Association (EFTA)	authenticated cipher, 377–381
EHDM. See Enhanced Hierarchical Development	block ciphers using multiple, 375–377
Methodology (EHDM)	electronic communications policy at UCD, 1226–1227
EKE. See encrypted key exchange (EKE)	networks and cryptographic protocols, 382-384
El Gamal cryptosystem, 307–309, 315	order of AES transformations for, 1203-1205
El Gamal digital signatures, 321–323	Encryption standards
Electronic codebook (ECB) mode, 302, 369	AES, 1196–1205
Electronic communications	DES, 1191–1195 review, 1205
automated electronic mail processing, 1092–1093 failure to check certificates, 1093–1094	End entity certificate, X.509 PKI, 350
sending unexpected content, 1094	End-to-end protocols, networks/cryptography, 381–384
user security and, 1092	Endorsements, electronic communications policy, 1218
Electronic communications policy, UCD	Enforcement
acceptable use policy. See Acceptable use policy, UCD	of acceptable use policy, 1209
allowable use, 1216–1220, 1241–1246	Clinical Information Systems Security Policy, 238
Appendix A, Definitions, 1227–1230	rules, Clark-Wilson integrity model, 184–186
Appendix B, References, 1230–1232	Engineering, manufacturing stage of life cycle, 637
Appendix C, Access Without Consent, 1232–1233	Enhanced Hierarchical Development Methodology (EHDM), 705, 710–711, 713
general provisions, 1213–1215	Entity name, tickets in Schematic Protection Model, 69
introduction, 1212–1213	Entropy
overview of? 127–129	password strength and, 432–433
posting and authority to change, 1233-1234	as uncertainty, 540–541, 1163
privacy and confidentiality, 1220-1225	Entropy and uncertainty
retention and disposition, 1227	conditional and joint probability, 1163–1165
security, 1225–1227	conditional entropy, 1167–1168
user advisories, 1234–1241	joint entropy, 1166–1167 overview of, 1165–1166
Electronic mail basic design, 386–387	perfect secrecy. 1168–1169
design principles, 385–386	Entropy-based analysis, information flow, 540–541
instant messaging and, 389–393	Enumerating Further, ISSAF, 833–834
other considerations, 387–388	Environment
PEM and OpenPGP, 388–389	CAPSL specification for, 721
protocols (PEM and OpenPGP), 385	emergent faults in Aslam's model, 859
state of typical network service, 384-385	risk analysis as function of, 18

Ephemeral Diffie-Hellman, 394	Expansion table, main DES algorithm, 1193
Equifax breach of 2017, 638–639	Expansive packet marking, IP header, 981
Equivalent Inverse Cipher, AES, 304, 1203–1205	Expert system, 932–938, 950–952
Eradication phase, intrusion handling, 977–980	Expires field, cookies, 489
EROS. See Extremely Reliable Operating System (EROS)	Explicit flows of information
Error handling	checking flow requirements, 562
Data Mark Machine and, 565	entropy-based analysis and, 540-541
improper validation, 1134–1135	goto statements and, 554–555
in reading/matching routines, 1116–1117	infinite loops and, 558
in second-level refinement to access control module, 1114	Exploitable logic error class of flaw, RISOS study, 851
testing composed modules, 1145	Exploitable vulnerabilities, defined, 825–826
ES privileges. See effective set (ES) privileges	Exploratory programming model, software, 644
Escrowed Encryption Standard (EES), and Clipper Chip, 355–357	Exponential backoff, thwarting on-line dictionary attacks, 430–431
ESP. See Encapsulating security payload (ESP)	Expressions, functional programming via mathematical, 721
ESPM. See Extended Schematic Protection Model (ESPM)	Expressions, functional programming via mathematical, 721 Expressiveness
EU. See European Union (EU)	ATAM vs. TAM, 101
European Free Trade Association (EFTA), SOG-IS	ESPM vs. SPM, 90–92
agreement, 762–764	state-matching reductions and, 98–99
Evaluation Assurance Levels (EALs), CC, 750–751,	Extended components definition
759–763	CC protection profiles, 753
Evaluation classes, TCSEC, 730, 733–734, 735–737	ST, 752
Evaluation levels, ITSEC, 738, 740–741	Extended Euclidean Algorithm, 1157–1161
Evaluation of systems	Extended Schematic Protection Model (ESPM)
CISR 1991, 742–744	multiple parenting, 83–88
Common Criteria (CC), 749–765	security properties of HRU vs., 94–101
Federal Criteria (FC), 744–745	simulation/expressiveness, 88–92
FIPS 140, 746–748	Typed Access Matrix Model similar to, 92–94
goals of formal evaluation, 727–730	Extended scheme, salting, 429–430
international efforts and ITSEC, 737–742	Extensible markup language (XML), security policies,
other commercial efforts, 744	137–138
overview of, 727	Extension_list, TLS handshake protocol, 397
review, 768–771	Extensions, certificate, 347, 351–352
SOG-IS agreement, 762–763	External events, triggering logic bombs, 797
SSE-CMM model, 765–768	External functions
TCSEC, 730–737	design document specification, 666–668
Evaluation process	design documentation, 665
CC, 761–762	requirements tracing/informal correspondence,
ITSEC, 741 TCSEC, 724, 727	677–680 Extreme Programming (VP), Agila, 643
TCSEC, 734–737	Extreme Programming (XP), Agile, 643 Extremely Policial Operating System (EPOS), 510, 536
Event engine, Bro, 937 Exact conformance, CC, 752	Extremely Reliable Operating System (EROS), 519, 536 Eyes, biometric authentication, 443–444
Exception handling, improper indivisibility in, 1138	Lyes, bioinettle authentication, 445–444
Exceptions Exceptions	
causing information flow problems, 557–558	F
electronic communications policy, 128	Face recognition, biometric authentication, 444
testing module, 1145	Fail-safe defaults. See Principle of fail-safe defaults
Exchange. See Key exchange	Failed attacks, dealing with, 1027–1028
Executable files, macro viruses can infect, 785	Failure symbol node, covert flow trees, 603
Executable infectors	Fairness constraints, SMV program, 717–718
computer viruses as, 783–784	Fairness policy, 207–208, 216
multipartite viruses as, 783–784	FairPlay digital rights management, Apple iTunes store,
stealth virus as, 786	242–243
TSR viruses as, 786	False alarm rate (false positive rate), intrusion detection, 925
Zmist computer virus, 789	False identity, 1211, 1218
Execute right, access control matrix, 33	Fast flux botnet, 795
Execution phase, computer viruses, 781, 817	Father Christmas worm, 791, 803
Execution phase, computer worms, 791	Fault trees, covert flow trees, 602–610
Execution trace of subject, 939	FC. See Federal Criteria (FC)
Existence	FEAL, modern symmetric cipher, 302
of data, preserving confidentiality, 4	Feature descriptor, biometrics, 343
as property of covert channels, 595–596	Federal Criteria (FC), 743–745
Existential security analysis instance, 96–98 Exokernel, isolation via library OS, 585–586	Federal Information Processing Standard (FIPS) Publication
Exorcine, isolation via notaly OS, 383–380	140-2, 727, 746–749

Feedback	Flaw classes
in Kanban, 643	Aslam's model, 859–860
noninterference-secure systems and, 276–277	NRL taxonomy, 857–859
Fenton's Data Mark Machine, 562–565	Protection Analysis (PA), 852–854
FER. See final evaluation report (FER) Fielded product life stage, life cycle process, 638–639	RISOS study, 849–851 Flaw detection module, automated penetration analysis tool,
Fielding the system, waterfall life cycle model, 641	873
File descriptors, Capsicum, 589	Flaw elimination, Flaw Hypothesis Methodology, 830,
File system, auditing	832–833
comparing NFSv2 and LAFS, 907	Flaw generalization, Flaw Hypothesis Methodology, 830,
LAFS, 905–907	832, 843–844
NFSv2, 900–905	Flaw hypothesis, Flaw Hypothesis Methodology
overview of, 900	Burroughs B5700, 839–840
File Transfer Protocol (FTP)	corporate computer system, 840–841
access control matrix model and, 33–34	ISSAF version, 833
Class FTP, CC security requirements, 758 network configuration for development system, 1046	Michigan Terminal System, 838–839 OSSTMM version, 835
on systems other than development systems,	overview of, 830
1045–1046	in PTES, 837
Files	UNIX system, 842
improper changes in contents of, 1128	using, 830–831
improper naming of, 1129–1131	Windows system, 844
permissions for access control, 1120–1121	Flaw Hypothesis Methodology
race conditions in, 1128–1129	flaw elimination, 832–833
Files, user security	flaw generalization, 832
deletion, 1082–1084 group access, 1081–1082	flaw testing, 831–832 goal of vulnerability analysis, 845–846
identifying by assigning names, 472–473	information gathering and flaw hypothesis, 830–831
improper change in contents of, 1128	penetration testing methodology springs from, 829
overview of, 1080–1084	problems with, 845
permissions on creation, 1081	steps of, 830
system security practicum, 1061–1066	Flaw Hypothesis Methodology versions
Filter function	GISTA, 835–836
firewalls, 570–573	ISSAF, 833–834
specification-based intrusion detection, 939	OSSTMM, 834–835
SPM, 69–72, 86–87	PTES, 836–837
Filters, AAFID, 953 Final evaluation report (FER), TCSEC evaluation process,	Flaw testing, Flaw Hypothesis Methodology Burroughs B5700, 840
735	corporate computer system, 840–841
Finger protocol, UNIX security flaw, 847–848	ISSAF version, 833
Finger veins, biometrics authentication, 443	Michigan Terminal System, 838–839
Fingerd flaw	OSSTMM version, 835
buffer overflow, 862–864	overview of, 830
comparison and analysis, 860	in PTES, 837
as condition validation error in Aslam's model, 859	UNIX system, 842–843, 844
UNIX, 847–848	using, 831–832
Fingerprints, biometric authentication, 442–443 Finite-state machine, security policies, 109–113	Flooding attacks
Finite waiting time policy	availability and, 215–221, 223 other types of, 221–222
constraint-based denial of service model, 207–208	using IDIP to handle, 979
SYN flooding analysis and, 216	Flow-based model of penetration analysis, Gupta and
FIPS Publication 140-2. See Federal Information Processing	Gligor, 869–872
Standard (FIPS) Publication 140-2	Flow function, safety analysis of SPM, 75–76
Firewalls	Follow-up phase, intrusion handling, 980–985
anticipating attacks, 1027	Forensics. See Digital forensics
blocking attacks via, 979	Formal evaluation methodology, 728
configuring inner, 1016–1017	Formal languages, 676–677
configuring internal network, 1021 configuring outer, 1014–1015	Formal methods
as information flow controls, 570–573	current verification systems, 713–721 early formal verification techniques, 705–713
network configurations for systems, 1042–1045	formal specifications, 702–705
network organization and, 1012–1014	formal verification techniques, 699–702
First-level refinement, access control module, 1111–1112	functional programming languages, 721–723
Flame worm, 795	overview of, 699

proving programs are correct, 695 review, 723–726 Formal model	Protection Analysis (PA) model, 851–856 review, 864 RISOS study, 849–851
Bell-LaPadula Model, 151–158	structure determined by goals of, 849
Chinese Wall Model, 230–233 Formal proof mechanisms, 681–682	vulnerability classification, 845–848 FreeBSD system
Formal security evaluation, 727–730	availability during flooding attacks, 219–220
Formal specifications	implementing Biba's strict integrity model, 178
defined, 702	long passwords in v10, 417
documentation and, 676–677	supporting audit ID in v10.3, 1049
Gypsy, 711–712	FTP. See File Transfer Protocol (TFP)
justifying design meets requirements, 681–682	Full specification verification, 700
NPA Temporal Requirements Language (NPATRL), 720–721	Function f, main DES algorithm, 1191–1192
overview of, 702–705	Function flow generator, automated penetration analysis, 873 Functional (black box) testing, 688–689
Prototype Verification System (PVS), 713–715	Functional programming languages, 721
SPECIAL. See SPECIAL formal specification language	Functional requirements
Symbolic Model Verifier (SMV), 716–718	CC, 752, 756–759
Formal transformation model, software development,	CISR, 743
644–645	Federal Criteria, 745
Formal verification	TCSEC, 731–732
formal specification as part of, 703	United Kingdom IT Security Evaluation and
overview of, 699–702 penetration testing vs., 826	Certification Scheme Certification Body, 738 waterfall life cycle model, 639
of products, 722–723	Functional specification, design documentation, 666–668
proving absence of vulnerabilities, 826	Functions
Formal verification, current techniques	access control module issues, 1114-1117
Naval Research Laboratory (NRL) Protocol Analyzer	documentation for high-level security, 665-666
(NPA), 720–721	at heart of SPECIAL specification, 703–704
overview of, 713	role as group tying membership to, 475
Prototype Verification System (PVS), 713–716 Symbolic Model Verifier (SMV), 716–720	separation of, 174
Formal verification, early techniques	validation, 1137–1138 Fuzzy time, mitigating covert channels, 617
Boyer-Moore theorem prover, 709–710 Enhanced HDM, 710–711	
Gypsy Verification Environment (GVE), 711–713	G
Hierarchical Development Methodology (HDM),	Galois Counter Mode (GCM), AEAD, 379–381
705–708 overview of, 705	GCIR. See generalized conflict of interest relation (GCIR) GCM. See Galois Counter Mode (GCM)
Formulas	Geinimi, Android cell phones, 776–777
compound sentences as, 1179	Gemsos system, 655
connectives of propositional logic, 1179	General provisions, electronic communications policy,
reaching proof using truth tables, 1182–1183	1213–1215
well-formed, 1182	Generalized noninterference, policy, 274–277
Forward search	Generation effect, user-created passwords, 421–425
countermeasures to, 312 overview of, 332	Generation, key, 341–343 Genesis, NRL taxonomy flaws, 857
precomputing possible messages, 367–368	Get-read rule, 159–160, 165
preventing with session keys, 332	GISTA. See Guide to Information Security Testing and
Foundational results	Assessment (GISTA)
basic results, 51–56	Give-access rule, Bell-LaPadula, 702-705
comparing expressive power of models, 81–94	Give-read rule, Multics system, 160-161
comparing security properties of models, 94–101	Global identifier, on web, 486
general question, 49–51	Global object tables, 522
overview of, 49 review, 101–105	Global Positioning System (GPS), location authentication, 445–446
Schematic Protection Model (SPM), 68–81	Goals
Take-Grant Protection Model. See Take-Grant	attack trees and, 961–964
Protection Model	of attackers, 959–960
Framework, design for program security, 1104–1105	of attacks, 960–961
Frameworks, vulnerability	of confidentiality policies, 141–142
Aslam's model, 859–860	of covert flow tree, 605–606
comparison and analysis of, 860–864	of formal evaluation, 727–730
NRL taxonomy, 857–859	of intrusion detection systems, 918–919

in network security policy practicum, 1006	SPM vs., 82
of penetration studies, 827–828	Typed Access Matrix Model, 92–94
of privacy-enhanced electronic mail, 386	Hash functions
role of requirements in assurance, 631–632	key crunching with, 420
of security, 10–11	Merkle's tree authentication, 344–345
Good symbols node, covert flow trees, 603	UNIX password mechanism, 417
Good_cert_authorities, TLS handshake protocol, 398	Haskell functional programming language, 721
Google Chrome, sandboxing using Capsicum, 590	Haystack, anomaly detection, 922
Google, two-factor authentication, 446–447	HDM. See Hierarchical Development Methodology (HDM)
Goto statements, information flow and, 554–556	Heartbeat protocol extension, TLS, 399–400
Government (military)	Hierarchical Development Methodology (HDM)
Bell-LaPadula Model. See Bell-LaPadula Model	early formal verification via, 705–707
early driver of computer security research,	Enhanced HDM (EHDM), 705, 710–711
729–730	formal verification example, 701–702
integrity policies, 174	verification in, 707–708
protection of citizen's privacy, 141	Hierarchical domains, Ponder, 119
GPS. See Global Positioning System (GPS)	Hierarchies
Grammar, specifying log content using, 887–888	certificate-based key management, 477–478
Grant, digital rights management, 242	control scheme, large botnets, 793
Grant policies, break-the-glass policy, 249	formal model of Bell-LaPadula Model, 151–158
Grant rule, Take-Grant Protection Model	RBAC adding role, 247
formulating as instance of SPM, 71–72	Hierarchy consistency checker, HDM, 706
interpretation of, 61–63	Hierarchy Specification Language (HSL), HDM, 705–706
overview of, 56	High-level design, user interface, 1104–1105
sharing of rights, 58–59	High-level policy languages, 119–125
theft, 62–66	High-level test specifications (HLTS), PGWG, 693–695
Graph-based representation	High severity behavior, adware/madware, 798
comparing security models, 88–92	Highland, Harold Joseph, 782
Take-Grant Protection Model. See Take-Grant Protection Model	History
	access control by, 36–37
Graphical interfaces intrusion detection systems, 946–947	safety analysis of SPM, 75, 77–81 HKDF. See HMAC-based key derivation function (HKDF)
Network Security Monitor, 949	HLTS. See High-level test specifications (HLTS)
Graphical Intrusion Detection System (GrIDS), 946–947,	HMAC-based key derivation function (HKDF), instant
952	messaging, 390–392
Graphical passwords, authentication, 425–426	HMAC-Based One-Time Password Algorithm (HOTP),
Graphs, attack, 969–971	437–438
Greatest lower bound, lattices, 1154	HMAC functions, 317–318
GrIDS. See Graphical Intrusion Detection System (GrIDS)	HMAC-SHA-1, one-time passwords, 436–438
Groups, 475–476, 1081–1082	HMAC_SHA256, instant messaging, 390–392
GTbot, 793	Hold and wait, deadlocks from, 202
Guessing entropy, passwords, 432–433	Hold specification, Gypsy, 712
Guide to Information Security Testing and Assessment	Homomorphic encryption schemes, 325
(GISTA), 835–836	Honeynet Project, 976
Gupta and Gligor's penetration analysis theory, 868–873	Honeypot (honeyfile or honeydocument), 976-977
GVE. See Gypsy Verification Environment (GVE)	Host-based information gathering, agents, 942–943
Gypsy Verification Environment (GVE), 711–713	Host monitoring, 949–952
	Host names
	DNS associating IP address with, 485–486
Н	identity on web and, 484–485
Halt instruction, Data Mark Machine, 564	security issues with DNS, 487
Halting problem, 52, 54	specifying, 1131
Handle (descriptor), access control information, 1107	Hostname resource record (NSEC RR), DNSSEC, 488
Handshake protocol, TLS, 397–399	Hosts, network, 381–383
Hardware-based virtual machines (HVMs), 584	Hot fixes, maintenance, 695–696
Hardware-supported challenge-response procedures, 439	HOTP. See HMAC-Based One-Time Password Algorithm
Harrison-Ruzzo-Ullman (HRU) Model	(HOTP)
basic results, 51–56	HSL. See Hierarchy Specification Language (HSL)
as central to safety analysis, 82	Human class, OSSTMM, 834 Human factors
of computer security, 49 ESPM security properties vs., 94–101	of graphical passwords, 426
general question, 49–51	implementing security controls, 20
relationship between ESPM and, 87–88	organizational problems, 20–21
simulation and expressiveness of 88–92	neonle problems 21–22

principle of least astonishment, 464–465 principle of psychological acceptability, 465–466 HVMs. See Hardware-based virtual machines (HVMs) Hybrid policies	verification in HDM, 707–708 in waterfall life cycle model, 640 Implementation assurance considerations, 685–686
break-the-glass policies, 249–250 Chinese Wall Model. <i>See</i> Chinese Wall Model clinical information systems security policy, 236–239	defined, 634 implementation management, 686–687 justifying implementation meets design, 687–688 need for, 630
ORGCON or ORCON access control, 239–244 overview of, 227	overview of, 15–16 security testing for, 688–689
RBAC, 244–249 review, 250–253	security testing using PGWG, 689–695 Implementation Guidance for FIPS PUB 140-2, 748
HYDRA, amplifying capabilities for, 521	Implementation-level constructs, DTEL, 121–125
Hypertext display technique, audit browsing, 908	Implication, connectives of propositional logic,
Hypervisor (virtual machine monitor), 1171–1172	1179–1180
Hypervisors, virtual machines and, 583–585	Implicit flows of information
Hypotheses, Gupta and Gligor, 869	Data Mark Machine studying, 562–565 defined, 541 dynamic mechanisms involving, 562
	may occur in goto statements, 554–556
I&A. See Identification and authentication (I&A) IBAC. See Identity-based access control (IBAC)	Implicit sharing of privileged/confidential data class of flaw, RISOS study, 850
IBM, cryptographic locks and keys, 527	Importing, file systems from another zone, 149–150
ICMP packets, Smurf attacks, 221	Improper change, program security, 1125–1129
IDEA, modern symmetric cipher, 303	Improper choice of operand or operation flaws, Protection
Ideas, conception stage of life cycle process, 635–636	Analysis (PA), 853–854, 1139–1141
Identification and authentication (I&A), TCSEC, 732	Improper deallocation or deletion, program security,
Identifiers, static or dynamic, 485–487	1131–1132
Identity	Improper indivisibility, program security, 1138–1139
anonymity on web, 490–501	Improper naming, program security, 1129–1131
capabilities encapsulating object, 518	Improper protection flaws, Protection Analysis, 852–853
confirming. See Authentication files and objects, 472–473	Improper synchronization flaws, Protection Analysis, 853–854
groups and roles, 475–476	Improper validation flaws, 853, 1132–1138
intruders changing, 950	Inadequate identification/authentication/authorization class
naming and certificates, 475–484	of flaw, RISOS study, 850
overview of, 471	Incident prevention, 971–975
review, 501–505	Incident response groups, 985–987
theft, 501	Incomplete parameter validation class of flaw, RISOS study,
understanding, 471–472	849–850
user, 473–475	Inconsistent parameter validation class of flaw, RISOS study,
on web, 484–490 Identity based access control (IPAC) accounity policy	849–850 Inconsistant static analysis state based auditing 804
Identity-based access control (IBAC), security policy, 117–118	Inconsistent static analysis, state-based auditing, 894 Incremental development, Gypsy language, 711
Identity pair IK, instant messaging, 390	Independence, PEM design principles, 386
IDES Intrusion Detection Expert System (IDES)	Indirect trust, 190
IDEVAL dataset, 925, 930–931	Indirection, revoking rights in capability systems, 522
IDIOT. See Intrusion Detection In Our Time (IDIOT)	Indivisibility, improper, 1138–1139
IDIP. See Intruder Detection and Isolation Protocol (IDIP)	Induction phase, OSSTMM modules, 835
IFD. See immediate forward dominator (IFD)	Inductive verification techniques, 700–701, 703
IG. See Security Requirements for Cryptographic Modules	Inetd daemon, development system, 1059–1060
(IG) HS web servers and Code Red Learnmuter warm, 701, 702	Infection phase, computer viruses, 817
IIS web servers, and Code Red I computer worm, 791–792 IKE protocol. <i>See</i> Internet Key Exchange (IKE) protocol	Infection vectors, computer viruses, 782–785 Inferred recognition goal, covert flow tree, 605–606
Immediate forward dominator (IFD), basic blocks, 555–556	Inferred via-goal, covert flow tree, 606
Implementation	Infinite loops, unexpected information flow, 558
access control module, 1114–1117	Informal arguments, 680–681
Agile, 642–644	Informal description, Chinese Wall Model, 228–230
auditing system design and, 886-887	Informal (representation) correspondence, 677–680
computer security and, 15–16	Information
improper isolation of detail, 1123–1125	aggregation in commercial integrity policies, 174
noncryptographic. See Noncryptographic	assurance, 628 extracting from data in digital forensics, 992
implementation mechanisms rules, 1247–1248	filtering, 120

leakage, 111	Initialization vector, block ciphers, 375, 379
processing/presenting in digital forensics, 990	Input
Information flow	checking all user, 1136–1137
basics and background, 539–540	parameters, 549–550
Bell-LaPadula Model restricting, 183	Inquest phase, OSSTMM modules, 835
concurrency, 558–561	Insecure (unauthorized) states, security policies, 109–113
configuring internal network, 1021	Insertion phase, computer viruses, 780–781
configuring outer firewall, 1014–1015	Insiders
dynamic mechanisms, 562–566	problems from, 21
entropy-based analysis, 540–541 examples of controls, 567–573	threats to security from, 650–651 Installation of system, deployment stage, 638
high assurance, 655	Instant messaging
integrity mechanisms, 566–567	supplanting some use of electronic mail, 389–393
metrics for malware containment, 812–813	transition-based logging, 895
models and mechanisms for, 541–542	Instructions, improper change over time, 1125–1129
nonlattice policies for, 542–548	Integration
policies. See Confidentiality policies	as implementation management tool, 687
review, 573–577	of security at beginning, 653–657
soundness, 561–562	supporting assurance, 685–686
static mechanisms, 548–558	in waterfall life cycle model, 640-641
uncovering covert channels in, 601-602	Integrity
Information flow generator, penetration analysis, 873	as basic to computer security, 5–6
Information gathering, Flaw Hypothesis Methodology	Chinese Wall Model and, 227
Burroughs B5700, 839	Clinical Information Systems security policy, 236–239
corporate computer system, 840	in commercial security policies, 114
ISSAF version, 833	constraints, Clark-Wilson integrity model, 184–186
Michigan Terminal System, 837–839	countering threats with, 7 cryptography providing, 290
overview of, 830 in PTES, 837	of data moving from internal network, 1011–1012
UNIX system, 841–842	of data moving from Internat network, 1011–1012
using, 830–831	DNSSEC providing DNS, 488
Windows system, 844	in electronic communications policy, 1226
Information Systems Security Assessment Framework	file configuration for DMZ WWW server and, 1063
(ISSAF), 833–834	of information flow mechanisms, 566-567
Information Technology Security Evaluation Criteria	protecting master copy of program, 1146
(ITSEC)	security policies and, 110–111
assurance requirements, 739	security threats as disruptions of, 650
CISR, 742	Integrity levels
evaluation levels, 740–741	Biba's model, 175–178
evaluation process, 741	Clark-Wilson model vs. Biba model, 188
evaluation process limitations, 742 impacts of, 741–742	Lipner's full model, 181–182
overview of, 738–739	Integrity models Clark-Wilson. See Clark-Wilson integrity model
replaced by Common Criteria, 629	Lipner. See Lipner's integrity matrix model
requirements not found in TCSEC, 739–740	SPM subsuming, 82
suitability analysis, 660–662	trust models vs., 189
Information transfer path, Biba Model, 175	Integrity policies
Infrastructure as a service cloud, 1024–1025	Biba model, 175–178
Infrastructures	Clark-Wilson integrity model, 183–189
analysis of network, 1013–1017	definition of, 111, 115
key. See Key infrastructures	goals of, 173–174
Inheritable set (IS) privileges, Trusted Solaris, 525	information flow policy within, 539-540
Inhibit anyPolicy extension, X.509 PKI certificates, 352	Lipner's integrity matrix model, 178–183
Initial message, instant messaging, 391–392	penetration tests violate constraints in, 827–828
Initial product assessment report (IPAR), TCSEC evaluation	review, 196–200
process, 735	security and precision in, 131, 133–135
Initial protection domain, flaws access control file permissions, 1120–1121	trust and, 114–115 trust models, 189–196
memory protection, 1121–1122	Integrity Value Check (IVC), AH protocol, 407–408
overview of, 1118	Integrity variate Check (1VC), ATI protocol, 407–408 Integrity verification procedures (IVPs), Clark-Wilson
process privileges, 1118–1120	integrity worlded, 184–186
trust in system, 1123	Intel architectures
Initial state operations, comparing simulation in models,	privilege and virtual machines, 1174–1175
88–89	ring-based access control for Itanium, 533

Intellectual property, electronic communications policy, 1219–1220	Intrusion Detection Message Exchange Format (IDMEF) 947-948
Interaction phase, OSSTMM modules, 835	Intrusion detection models
Interchange key	as adaptive or static, 920
Bellare-Rogaway protocol, 336	anomaly modeling, 920–932
PEM design, 386–387	misuse modeling, 932–938
session key vs., 332	overview of, 920
TLS cryptography, 394	specification-based modeling, 938–941
Interface	summary, 941–942
for external functional specification, 667	Intrusion handling
operations, 207–208	containment phase, 975–977
Interference	eradication phase, 977–980
electronic communications policy on, 1218–1219	follow-up phase, 980–985
noninterference. See Noninterference, and policy	incident response groups, 985–987
composition	intrusion response, 975
system security and, 259	phases of, 975–987
Intermediate systems, and network flooding, 216–218	Intrusion prevention system, 948
Internal design	Intrusion response
access to roles/commands, 1107–1108	containment phase, 975–977
design documentation, 665, 668–673	digital forensics. See Digital forensics
requirements tracing/informal correspondence, 677–680	eradication phase, 977–980
specification, 673–675	follow-up phase, 980–985
Internal network	incident prevention, 971–975
concealing addresses of, 1013–1014	incident response groups, 985–987
configuring inner firewall, 1016–1017	intrusion handling, 975
network organization practicum, 1021–1025	review, 996–1001
using firewalls to protect, 573	InvMixColumns transformation, AES decryption, 304, 1201–1205
Internal packet marking, IP header marking, 981 Internet	InvShiftRows transformation, AES decryption, 304,
anonymity on web. See Web, anonymity on	1200–1205
identity on web. See Web, identity on	InvSubBytes transformation, AES decryption, 304,
isolating electronic voting systems from, 583	1200–1205
Internet Key Exchange (IKE) protocol, 361, 404	IO integrity classification. See Operational (IO) integrity
Internet of Things, and botnets, 796	classification
Internet Policy Registration Authority (IPRA), 477–481	IP address hopping, network defense, 973–974
Internet worm	IP addresses
as bacterium, 803	concealing on internal networks, 1013
incident response groups and, 985	DNS associating host names with, 485–486
overview of, 790–791	DNS security issues, 487
publicizing flaw in UNIX, 847–848	IP flux botnets, 795
Interpretation, Take-Grant Protection Model, 61–63	IP header marking, 981
Interprocess communication, DMZ WWW server, 1058	IPAR. See Initial product assessment report (IPAR)
Intervention phase, OSSTMM modules, 835	IPRA. See Internet Policy Registration Authority (IPRA)
Introduction rules, natural deduction, 1180–1181	IPsec
Introduction section, CC protection profiles, 752	AH protocol, 407–408
Intruder Detection and Isolation Protocol (IDIP),	architecture, 404–407
978–979	ESP protocol, 408–410
Intrusion detection	network layer security via, 402–404
adding signatures of known attacks, 1028	IRC channel, as C&C channel for bots, 793–794
anticipating attacks, 1027	Iris, eye biometrics, 443–444
architecture, 942–948	IS privileges. See Inheritable set (IS) privileges
autonomous agents via AAFID, 952–953	ISL. See System Low (ISL) integrity classification
basic, 918–920	Islands, Take-Grant Protection Model, 59–61
goals of, 918–919	ISO/IEC standardization
host/network monitoring with DIDS, 949–952	future of Common Criteria, 764–765
incident prevention via, 971–975 monitoring network traffic with NSM, 948–949	impact of FIPS 140-2, 748
organizing systems, 948–953	SSE-CMM, 765 ISO. See International Standards Organization (ISO)
principles, 917–918	ISO/OSI model
review, 954–957	context for host naming, 484–485
Intrusion Detection Exchange Protocol (IDXP), 947–948	network layer security. See IPsec
Intrusion Detection Exertainge Flotocol (IDAF), 947–948 Intrusion Detection Expert System (IDES), 819, 921–922,	network layer security. See Free networks and cryptography, 381–384
924	transport layer security. See Transport layer (TLS and
Intrusion Detection In Our Time (IDIOT), 933–934	SSL) security
~ //	

Isolation confinement problem, 582 controlled environment, 582–590	later rootkits altering parts of, 778 library operating systems enforcing isolation, 585–586 sandboxes restricting actions, 587–590
of implementation detail, improper, 1123–1125 library operating systems, 585–586	Key crunching, 420 Key Escrow Decrypt Processor (KEDP), and Clipper chip,
program modification, 590–594	355–357
review, 619–623 sandboxes, 586–590	Key escrow system and Clipper chip, 355–357
virtual machines, 583–585	key escrow component, 355
ISP integrity classification. See System Program (ISP)	key storage using, 354–355
integrity classification	Yaksha security system, 357
Israeli (Jerusalem) virus, 783–784	Key exchange
ISSAF. See Information Systems Security Assessment	Kerberos, 337–339
Framework (ISSAF)	overview of, 332–333
Issuance policy, CA, 477	public key cryptographic, 338–341
Issuer, digital rights management, 242	symmetric cryptographic, 333–336
Iteration, in stages of water life cycle model, 641	Key infrastructures
Iterative statements, information flow, 553–554	Merkle's tree authentication scheme, 344–345
ITSEC. See Information Technology Security Evaluation	overview of, 343–344 PGP certificate signature chains, 348–350
Criteria (ITSEC) IVC. See Integrity Value Check (IVC)	PKIs, 350–353
IVPs. See integrity varies check (IVC)	X.509 certificate signature chains, 346–348
1715. See integrity vermeation procedures (1715)	Key length, AES, 303
•	Key management
J	hierarchical certificate-based, 477–478
Jailbreaking, Pegasus spyware, 800	key exchange. See Key exchange
Jailing technique, 432, 971–972 Janus, user-level sandbox, 587–588	key generation, 341–343
Java applets, blocking at firewalls, 572, 979	key infrastructures. See Key infrastructures
Java, as type-safe language, 592	overview of, 331
Jerusalem (Israeli) virus, 783–784	review, 359–365
JIGSAW language, 967	revocation, 358–359
Joint and conditional probability, 1163–1165	session and interchange keys, 332, 386–387
Joint creation operation, ESPM, 83–88	storage, 353–358
Joint entropy, 1166–1167	Key usage extension, X.509 PKI certificates, 351–352
Justification	Keyed cryptographic checksums, 317 Keyless cryptographic checksums, 317
of security requirements, 660–662	Keynote trust management system, 191–194, 198
that design meets requirements. See Requirements,	Keys, PEM design, 386–387
justifying that design meets	Keystroke dynamics, biometric authentication, 444–445
	Knark rootkit, 778
K	Knowledge-based subsystem, malware containment, 814-815
Kanban, Agile software development, 643	Known plaintext attack, 291
Kasiski attack method, Vigenére cipher, 294–299	Konheim's model of single-character frequencies,
KDDCUPS- 99 (or KDD-99) dataset	substitution ciphers, 294
analyzing with neural nets, 928	
analyzing with self-organizing maps, 930	L
anomaly detection using distance to neighbor, 931	Labeled security protection, TCSEC, 734
intrusion detection evaluations, 925 Keccak hash function, as SHA-3, 317	Labeled zones (zones), directories in Trusted Solaris, 149–150
KEDP. See Key Escrow Decrypt Processor (KEDP)	Labels Labels
Kerberos	security vs. integrity, 175
further reading, 361	TCSEC functional requirements, 732
key exchange, 337–338	Trusted Solaris security classifications, 146–151
user identity, 474–475	LAFS. See Logging and Auditing File System (LAFS)
Kerckhoff's Principle, security of cryptosystem, 290–291	Lagrange interpolating polynomials, secret sharing via,
Kernel function, anomaly detection with SVM, 931–932	530–531
Kernels	Lampson, 580, 616
audit analysis of NFSv2, 900-901	Land attack, auditing to detect known violations, 896–897
building system with security, 654	Lanes of work, in Kanban, 643
containers enforcing isolation, 584–585	Languages
events in system logs, 892	DTEL, 121–125, 529
as formally verified products, 722–723 hypervisor functioning as, 583–584	formal specification. <i>See</i> Formal specifications HSL, 705–706
identifying covert channels in source code, 601	programming. See Programming languages
adminying covert channels in source code, our	programming, occ i rogramming languages

Lattach command, LAFS, 906 Lattices	overview of, 69–70 putting it all together, 71–72
Bell-LaPadula Model, 143–144, 235	Link protocols, networks and cryptography, 381–384
Bell-LaPadula Model information flow policy, 539	Linux Rootkit IV, 777–779, 918–919
composition of Bell-LaPadula models, 256–258	Linux system
embedding nonlattice policies into, 548	adore-ng rootkit on, 778
mathematical nature of, 1153–1155	Android based on, 568
as models of information flow policies, 541-542	Crimea virus targeting, 790
nonlattice information flow policies, 542–548	isolation features of Docker in, 585
self-organizing maps with neurons arranged in,	Lipner's integrity matrix model
929–930	comparing to Biba, 182–183
Law Enforcement Access Field (LEAF), 356	full model, 181–182
Laws	overview of, 178
electronic communications policy and, 1209, 1215	use of Bell-LaPadula Model, 178–180
key escrow system and, 354–357	LLTS. See low-level test specifications (LLTS)
operational issues and, 19–20 Layers	Loading libraries, process confinement, 593–594 <i>Loadmodule</i> , penetration testing UNIX system, 842–843
abstraction in representing attacks, 960–964	Local identifier, on web, 486
architecture security mechanisms, 652–653	Locality frame count (LFC), intrusion detection with system
ISO/OSI model, 381–382	calls, 972
penetration study, 828–829	Locard's Exchange Principle, 987
penetration testing at all, 829	Location
simplifying design to support assurance, 662–664	authentication by, 445–446
LEAF. See Law Enforcement Access Field (LEAF)	function for obtaining, 1114–1115
Leakage of information, 580–582	improper choice of operand/operation, 1140
Leaking of rights, determining system safety, 50–52	NRL taxonomy, flaws by, 857
Least astonishment. See Principle of least astonishment	second-level refinement to access control module, 1113
Least authority, principle of, 458	unauthorized users accessing role accounts, 1102
Least common mechanism. See Principle of least common	Location signature sensor (LSS), location authentication,
mechanism	445–446
Leaving system unattended, user security and, 1079	Locks and keys, access control, 526–530
Legal mechanisms, counterattacking and, 983–984	Locky ransomware, 801
Legal practices, 19–20	Log files
Legal transitions, SPM, 75, 77, 79	analysis phase in digital forensics, 993–994
Lemmata, Gypsy execution of, 712	computer security and, 880
Less than or equal to relation, lattices, 1153–1155 Levels	definition of, 879 director eliminates unnecessary records in, 945–946
of adware, 797–798	improper deallocation or deletion of, 1132
Biba model integrity, 175–178	network configurations for system security, 1045
security. See Security levels	processes on development systems and, 1060
LFC. See locality frame count (LFC)	transition-based, 895
LFSR method. See linear feedback shift register (LFSR)	Log sanitization, auditing system design, 888–891
method	Logging and Auditing File System (LAFS), 905–907
Libcapsicum library, Capsicum, 589	Logic. See Symbolic logic
Libraries	Logic bombs, triggering on external event, 797
confinement constraints via loading, 593–594	Logical Coprocessor Kernel (LOCK) system
Prototype Verification System (PVS), 714	malware detection on data/information, 812
Library operating systems, isolation via, 585–586	sharing procedures and, 818
Licenses	type checking, 528–529
digital rights management, 242	Login
unacceptable conduct for, 1209 Life cycle	procedure, 1076–1079
	UID, 474 LOKI89, modern symmetric cipher, 302
assurance throughout, 632–634 of bots in botnet, 793	LOKI91, modern symmetric cipher, 302 LOKI91, modern symmetric cipher, 302
building secure/trusted systems, 634–639	LOKI97, modern symmetric cipher, 303
PVS proof checker, 715–716	LOOKUP request, audit analysis of NFSv2, 901, 903–904
waterfall life cycle model, 639–641	Loops
Linear cryptanalysis attack, 301, 305	information flow using semaphores, 560
Linear feedback shift register (LFSR) method, synchronous	iterative statements/information flow, 553
stream ciphers, 371–372	unexpected information flow from infinite, 558
Linear time logic systems, 1186	Lotus 1-2-3, virus, 782
Link predicates, SPM	Low-level policy languages, 125–126
defined, 69	Low-level test specifications (LLTS), using PGWG, 693–695
multiple parenting in ESPM, 85–87	Low severity behavior, adware, 797

Low-water-mark policy, Biba Model, 176–177 Lower bound, lattices, 1154–1155 LSS. <i>See</i> location signature sensor (LSS) LUCIFER algorithm, modified as DES, 300	of security threats to security objectives, 651 of specifications in HDM, 706–707 strongly security-preserving, 97–99 of system to existing model for policy definition,
20 cm 2n algorium, moumea ao 225, 500	658–659
	that preserves security properties, 95-99
M	threats to requirements, 661-662
MAC. See Mandatory access control (MAC)	Markov models, anomaly detection, 922–924
Machine learning, anomaly detection, 924–925	Masquerading, 7–8
MacMag Peace virus, 782	Master Comment List, review process, 684
Macro viruses, 785	Master secret
Macro worms, 791	instant messaging, 391–392
Madware, 798 Maintenance	SSLv3 vs. TLSv1.2, 400–401 TLS, 393–395, 398–399
assurance during system, 695–696	Mathematical induction, proof technique, 1183–1184
fielded product life stage, 638	Mathematics
waterfall life cycle model, 641	Boyer-Moore theorem prover, 709–710
Malware	cryptosystem attack using, 291
adware, 797–799	El Gamal cryptosystem using, 307–309
bots and botnets, 793–796	elliptic curve ciphers based on, 312–315
combinations, 803	Extended Euclidean Algorithm and, 1157–1161
computer viruses, 780–790	formal security models, 700
computer worms, 790–792	formal specification in BLP security policy as,
defined, 775–776	702–705
introduction, 775–776	functional programming, 721
logic bombs, 797	public key systems based on, 306-307
phishing, 802–803	RSA cryptosystem, 309–312
rabbits and bacteria, 796	Symbol Model Verifier (SMV) based on, 716–720
ransomware, 800–801	symbolic logic and. See Symbolic logic
review, 820–824	transposition ciphers and, 292
spyware, 799–800	underlying all verification techniques, 700
theory of computer viruses, 803–807	Matrix, Network Security Monitor, 949
Trojan horses, 776–780	Maximal state, SPM, 75–78, 81
Malware defenses	McLean's †-property, Basic Security Theorem, 164–166
containment, 812–817	McLean's System Z, Bell-LaPadula Model, 166–168
data and instructions, 811–812	MDCs. See manipulation detection codes (MDCs)
limiting sharing, 817–819 notion of trust, 819–820	Mebroot, Torpig botnet, 794 Mechanisms. See Security mechanisms
scanning, 808–811	Mediation. See Principle of complete mediation
specifications as restrictions, 817	Medical records, Clinical Information Systems security
statistical analysis, 819	policy, 236–239
Man-in-the-middle attack	Medium severity behavior, adware, 797–798
integrity services countering, 7	Melissa virus, 785
problems with SSL, 402	Membership, in group, 475
public key exchange and, 339	Memory
Management, computer security incident response team, 986	digital forensics and data stored in, 991–992
Management rules	improper choice of initial protection domain and,
list of, 1249	1121–1122
security-related problems. See Program security	network flooding, TCP state and, 218–221
practicum, common programming problems	protecting capabilities, 519
Mandatory access control (MAC)	SYN flooding consuming, 216
Bell-LaPadula Model, 142, 153	Merkle's tree authentication scheme, 344–345
RBAC as form of, 245–246	Message integrity check (MIC), PEM, 387, 388
security policy, 118	Message key, instant messaging, 390–392
TCSEC requirements, 731–732	Message transfer agent (MTA), network mail service,
Trusted Solaris, 146–151	384–385 Metamorphic viruses, 789
UNIX built-in security in vs. adding later and, 656–657 Manifesto for Agile Software Development, 642	Methodologies
Manipulation detection codes (MDCs), malware defense, 808	Agile, 642–644
Manufacturing stage, life cycle process, 636–637	at each layer of penetration studies, 829
Mapping Mapping	evidence of assurance/trustworthiness, 629
in compositional security analysis, 96–97	Flaw Hypothesis Methodology, 830
of improper isolation of implementation detail,	vulnerability analysis goal is developing,
1123–1125	845–846

Metrics	building specifications in HDM, 706
anomaly detection using distance to neighbor, 930-931	defined, 663
assurance, 646–647	designing access to roles/commands, 1106–1110
intrusion detection methods, 925	designing framework, 1104–1105
recommendation system, 196	developing systems designed in, 686
MIC-CLEAR mode, PEM, 388	FIPS 140 cryptographic, 748
MIC. See message integrity check (MIC)	PVS language supporting, 714
Michigan Terminal System, penetration testing, 837–839	simplifying design to support assurance, 662–664
MieLog, audit browser, 910 Military, as early driver of computer security research,	SMV program, 717 SPECIAL module specification, 703
729–730	testing, 1143–1144
Military (governmental) security policies, 113–115	testing composed, 1145
Millen model, SYN flooding analysis, 216	Modus tollens rules, natural deduction, 1181–1182
Min-entropy, passwords, 432–433	Monitoring
Minimum Security Functionality Requirements for	network traffic by agents, 943
Multi-User Operating Systems (MISR), FC, 745	network traffic with NSM, 948–949
Mirai Internet-of-Things botnet, 793	Monitors
Misordered blocks, ciphertext problems, 368	AFFID system and, 953
MISR. See Minimum Security Functionality Requirements	and characters, 1086
for Multi-User Operating Systems (MISR)	Windows systems and, 1086–1087
Misuse detection	Mono-operational protection systems, safety in, 51–52
anomaly detection vs., 941–942	Monoalphabetic cipher, Vigenére cipher, 294
Bro, 937–938	Monoconditional commands, protection state transitions, 41
defined, 920	Monoconditional monotonic protection systems, safety in,
IDIOT, 933–934	55–56
overview of, 932–933	Monotonic protection systems, safety in, 55–56
specification-based detection vs., 942	Monotonic Typed Access Matrix (MTAM) Model, 92–94
STAT, 934–937	Monotonicity of release principle, declassification, 163
summary, 941	Moving target defenses, intrusion detection, 973–974
Mitigation	MOVPSL instruction, privilege and virtual machines,
of covert channels, 616–619	1172–1173
security objectives for identified threats, 651	MRA. See Mutual Recognition Arrangement (MRA)
MITRE tool, 712, 865	MTA. See message transfer agent (MTA)
MixColumns transformation, AES, 304, 1198, 1199, 1203–1205	MTAM Model. See Monotonic Typed Access Matrix (MTAM) Model
Mixing functions, software pseudorandom number	MtE tool kit. See Mutation Engine (MtE) tool kit
generators, 342	Multiconditional commands, HRU, 82
Mixmaster remailers, 493–494	Multicreate command, HRU, 82
MLD. See Multilevel Directory (MLD)	Multics system
MLS tool. See Multilevel Security (MLS) tool	analysis procedure for PA, 855–856
Mobile computing, wireless network practicum, 1023–1024 Model checking	example model instantiation, 158–161 ring-based access control, 531–533
formal specification languages in, 703	for secure applications, 655
formal verification, 700	Multifactor authentication, 446–448
overview of, 701	Multilevel Directory (MLD), Trusted Solaris, 148–149
processing specification to meet constraints, 681–682	Multilevel Security (MLS) tool
Models	formal verification, 701–702
of information flow, 541–542	HDM design verification package for, 707-708
intrusion detection. See Intrusion detection models	providing axions to theorem prover, 709–710
specific; Foundational results	SRI model embedded in, 707–708
verification techniques based on, 700	Multilevel security models
Moderator, review process, 682–685	limit sharing for malware defense, 818
Modes	shared resource matrix and covert channels, 598-599
AES, 305	SPM subsuming, 82
DES, 302	Multipartite viruses, 783–784
IPsec, 403	Multiple encryption, block ciphers, 375–377
Modification	Multiple parenting
constructing covert flow tree, 605	comparing expressive power of models, 90–92
specifications, 675	comparing simulation in models, 88–90
and threats, 7 Modular scheme, salting, 430	in ESPM, 83–88 Multistage attacks, 960, 965
Modules	Mutation Engine (MtE) tool kit, 788
analyzing OSSTMM channels, 834	Mutual exclusion, deadlocks from, 202
building specifications in EHDM, 710–711	Mutual Recognition Arrangement (MRA), 749

N	Neural nets, anomaly detection, 928–929
N previous password, password aging, 435 N-stage nonlinear feedback shift register (NLFSR) method,	New nonargument (NNA) files, malware containment, 815–816
372–373 N. version programming, as malware defense, 817	NewDES, modern symmetric cipher, 302
N-version programming, as malware defense, 817 Name constraints extension, X.509 PKI certificates, 352	NFS. See Network File System (NFS) NFSv2 (NFS version 2) protocol
Name (or key) value, cookies, 489	audit analysis of, 900–905
Naming	LAFS vs., 905–907
assigning user login, 474 file and objects, 472–473	NID. See network identification number (NID) Nizza architecture, 591
implementing logging criteria and, 886–887	NLFSR method. See n-stage nonlinear feedback shift
imported file systems in Solaris Trusted Extensions,	register (NLFSR)
149–150	NNA files. See new nonargument (NNA) files
improper, 1129–1131	No preemption, deadlocks from, 202
static and dynamic, 485–487	Node creation operations, simulation in models, 88–89
user, 473–474	Nodes, attack tree, 961–964
Naming and certificates	Noiseless covert channels, 595
conflicts, 479–481	Noisy covert channels, 595
meaning of identity, 481–484 overview of, 476–479	Non-competition, electronic communications policy at UCD, 1217
NAT. See Network Address Translation (NAT)	Nonce
National Computer Security Center (NCSC), and TCSEC,	Galois Counter Mode (GCM) of AEAD, 379
731, 736	Needham-Schroeder protocol, 334
National Scheme, CC evaluation methodology, 750	Noncryptographic implementation mechanisms
Natural deduction	access control. See Access control mechanisms
in predicate logic, 1185	confinement. See Confinement principle
in propositional logic, 1180–1184	design principles. See Design principles
Naval Research Laboratory (NRL), Protocol Analyzer	information flow. See Information flow
(NPA), 720–721 NCSC. See National Computer Security Center (NCSC)	representing identity. See Identity Nondeductibility
Need for assurance, 629–631	noninterference/policy composition and, 271–274
Need to know rule, 143–144, 457–458	and side channels, 280–282
Needham-Schroeder protocol, 333–335, 337–339	Nonfunctional requirements, waterfall life cycle model, 639
Negation, connectives of propositional logic, 1179–1180 Network Address Translation (NAT), 1013	Noninterference covert channels and, 596–598, 613–614
Network-based information gathering, agents, 942–943	policy model, 146–151
Network File System (NFS), development system, 1051	Noninterference, and policy composition
Network File System version 2 (NFSv2) audit analysis of,	deducibly secure systems, 273–274
900–905 LAFS vs., 905–907	deterministic noninterference. See Deterministic
Network identification number (NID), DIDS, 950–951	noninterference
Network Security Monitor (NSM), 949–952	generalized noninterference, 274–277
Network security practicum analysis of infrastructure, 1013–1017	nondeductibility, 271–273 overview of, 255
anticipating attacks, 1027–1028	the problem, 255–258
availability, 1026	restrictiveness, 277–279
cloud, 1024–1025	review, 282–286
DMZ DNS server, 1020	side channels and deducibility, 280-282
DMZ log server, 1020–1021	Nonlattice information flow policies
DMZ mail server, 1017–1018	confinement flow model, 543–544
DMZ WWW server, 1018–1019	nontransitive, 545–548
general comment on assurance, 1025–1026	overview of, 542–543
internal network, 1021–1023 introduction, 1005–1006	transitive, 544–545 Nonmalicious computations, with botnets, 796
overview of, 1011–1013	Nonrepudiation
policy development, 1006–1011	digital signatures providing, 318
review, 1028–1033	PEM design, 387
wireless network, 1023-1024	Nonsecure systems, auditing mechanisms for, 899–900
Networks	Nontransitive information flow policies, 545–548
computer incident security response, 743	Normal behavior (traces), anomaly detection, 923–924
and cryptography, 381–384	Normal data tests, 1143
layer security. See IPsec	Notifier
monitoring traffic in DIDS, 949–952 monitoring traffic with NSM, 948–949	auditing system component, 883–884 intrusion detection system architecture, 946–948
system security practicum, 1042–1047	Notion of trust, malware defenses, 819–820
	,

The Nozzle, 224	Open design. See Principle of open design
NP-complete problems, public key systems, 306–307	Open files, interception of requests to, 816
NPA. See NRL Protocol Analyzer (NPA)	Open Source Security Testing Methodology Manual
NPA Temporal Requirements Language (NPATRL),	(OSSTMM), 834–835
720–721	OpenPGP, 348–350, 388–389
NPATRL. See NPA Temporal Requirements Language (NPATRL)	Operand or operation, improper choice of, 853–854, 1139–1141
NRL. See Naval Research Laboratory (NRL)	Operation
NRL taxonomy, 857–859, 861–863	assurance during system, 695–696
NSEC RR. See hostname resource record (NSEC RR)	waterfall life cycle model, 641
NSM. See Network Security Monitor (NSM)	Operation symbol node, covert flow trees, 603
NSTISSP #11 policy, for IA and IA-enabled products,	Operational assurance
728–729	defined, 634
	need for, 630
0	overview of, 695–696
Objects	TCSEC functional requirements, 732 Operational (IO) integrity classification, Lipner, 181–182
access control matrix model and, 32–37	Operational issues
adding categories to security classifications for, 143–146	computer security and, 16
Aggressive Chinese Wall Model and, 233–234	cost-benefit analysis, 16–17
basic results of determining system safety, 51–52	laws and customs, 19–20
Bell-LaPadula Model and, 142–143, 151–158	risk analysis, 17–18
Biba model for integrity policy, 175–178	Operations
capabilities and, 518	commercial integrity policies, 173–174
Chinese Wall Model, formal model, 230–233	improper choice of operand or, 853-854, 1139-1141
Chinese Wall Model, informal description, 228–230	improper sequencing of, 1139
detecting covert channels via noninterference, 597–598	Operator user account, development system backups,
DTEL associating types with, 122	1051–1052
example model instantiation in Multics, 158–161	Optical devices, fingerprint biometrics, 442
identifying by assigning names, 472–473	Or symbol node, covert flow trees, 603
improper naming of, 1129–1131	ORCON. See Originator controlled access control (ORCON or ORGCON)
Lipner's security levels for, 180, 182 principle of tranquility for security levels of, 161–163	Organizational certificates, issuing, 478
Propagated Access Control List (PACL), 533–534	Organizational problems
as protection types in SPM, 69	operational controls and, 20–21
Take-Grant Protection Model and. See Take-Grant	security life cycle and, 22–24
Protection Model	Organizational security policies (OSPs), 752
TCSEC reuse requirements, 731	ORGCON. See Originator controlled access control
Trusted Solaris security classifications for, 146–151	(ORCON or ORGCON)
Obligation, policy specifications in Ponder, 121	Origin integrity
Oblivious transfer, cryptography, 358	as authentication. See Authentication
Observation component, D-WARD, 218	cryptography providing, 290
OCaml functional programming language, 721	defined, 5
Occlusion principle, declassification, 163	DNSSEC providing, 488
OCSP. See Online Certificate Status Protocol (OCSP)	nature of security policies, 110–111
OFB mode. See output feedback (OFB) mode	Originator controlled access control (ORCON or ORGCON
Off-line dictionary attacks, 428–430, 440–441 Official Comment List, review process, 684–685	PACL implementation for, 533–534 security policy, 118
OFUNs, SPECIAL specification and, 703–704	Originator controlled access control (ORCON or ORGCON
On-line dictionary attacks, thwarting, 430–432	digital rights management, 241–244
One-time pad	further reading, 251
meeting perfect secrecy requirement, 1168–1169	overview of, 239–241
as proven secure, 371	PACL implementation for, 533–534
simulating with LFSR method, 372	security policy, 118
as substitution cipher, 299	OSPs. See organizational security policies (OSPs)
weakness of, 299	OSSTMM. See Open Source Security Testing Methodology
One-time password authentication, 436–438	Manual (OSSTMM)
One-time pre-key pair OPK, instant messaging, 390–392	Otway-Rees protocol, 335–336, 369–370
Onfusion, in cryptosystems, 290	Output
Onion proxy, Tor, 497–499	conception stage of life cycle, 636
Onion routing, anonymity on web, 494–498	feedback mode, 372
Online Certificate Status Protocol (OCSP), X.509 PKI online	manufacturing stage of life cycle, 637 parameters, 549–550
revocation, 359 Online revocation system, X.509 PKI, 359	Output feedback (OFB) mode, DES, 302
Oninie revocation system, Alboy r ixi, 557	Output recoduck (Of D) mode, DED, 302

Outsiders	PATH variable, penetration testing in UNIX, 842–843
problems from, 21	Paths, testing ordering of, 1143
threats to security from, 650	Patients, Clinical Information Systems security policy,
Outsiders class, policy development, 1008–1010	236–239
Overt (documented or known) purpose, Trojan horses, 776, 781	Pattern-directed protection evaluation, Protection Analysis (PA) model, 851
OVFUNs, 703–704, 708	Patterns of usage, audit reviews of, 880
Own right, access control matrix, 33, 42–43	PC CYBORG ransomware, 800–801
Ownership, allowable use and, 1216–1217	PC category. See Production Code (PC) category
	PCAs. See policy certification authorities (PCAs)
_	PCC. See proof-carrying code (PCC)
P	PD category. See Production Data (PD) category
PA model. See Protection Analysis (PA) model	PD class. See public data (PD) class
Packets, IP header marking and, 981–983	Peer-to-peer botnets, 794
PacketScore, 224	Peer-to-peer Overnet protocol, 794
PACL. See Propagated Access Control List (PACL)	PeerTrust recommendation system, 196
Padding Oracle On Downgraded Legacy Encryption	Pegasus spyware, iPhones, 799–800
(POODLE) attack, SSL, 401–402	PEM, See Privacy-enhanced Electronic Mail (PEM)
Paging, virtual machines and, 1175–1176	Penetration analysis theory, Gupta and Gligor, 868–873
Pakistani (or Brain) virus, IBM PC, 782, 783	Penetration studies
PAM. See pluggable authentication modules (PAM)	conclusion, 845
Panorama, analyzing suspected malware, 810–811	debate on validity of, 844–845
Parameters	Flaw Hypothesis Methodology, 830–833
passing information into/out of procedures via, 549–550 validation flaws in RISOS study, 849–850	Flaw Hypothesis Methodology, versions, 833–837 goals, 827–828
Parent component, internal design, 669–670	layering of tests, 828–829
Parenting	methodology at each layer, 829
comparing expressive power of models, 91–92	overview of, 827
ESPM multiple, 83–88	Penetration studies examples
Partial ordering, lattices, 1153–1154	compromise of Burroughs system, 839–840
Pascal programming language, Gypsy based on, 711	penetration of corporate computer system, 840–841
Pass algorithms, challenge-response authentication, 438–439	penetration of Michigan Terminal System, 837–839
Passive side channel attack, deducibility, 280	penetration of UNIX system, 841–843
Passive wiretapping, 7	penetration of Windows system, 843–844
Passively monitoring attack, containment in intrusion	Penetration testing
handling, 975–976	formal verification vs., 826
Passphrases	using attack graphs to guide, 970–971
used with passwords, 424–425	Penetration Testing Execution Standard (PTES), 836
voice recognition systems, 443	People problems
Passports, as certificates/assurance of trust, 483	operational controls and, 21–22
Password space, defined, 416–417	security life cycle and, 22–24
Passwords	Perceptron neural network, anomaly detection, 928
aging, 434–438	Perfect secrecy, 1168–1169
attacks on, 426–434	Performance
authentication via, 416–418, 1053–1055	intrusion detection using system calls, 972
challenge response authentication for, 438–441	paging, virtual machines, and loss of, 1176
graphical, 425–426	Permissions
improper deallocation or deletion of, 1131–1132	access control file, 1120–1121
meters for password strength, 434	on file creation, 1081
in multifactor authentication, 446–448	security-related programming problems. See Program
one-time, 436–438	security practicum, common programming
passphrases used with, 424–425	problems Permitted act (PS) privileges Traveted Selection 525
password wallet or password manager, 425 policy enforcing restrictions on new, 422–424	Permitted set (PS) privileges, Trusted Solaris, 525 Permutation table, main DES algorithm, 1193
principle of open design and, 461	Personal conduct, acceptable use policy for,
problem of sharing. See Program security practicum	1209–1212
pronounceable, 420–421	Personal health information, Clinical Information Systems
random, 418–420	security policy, 236–239
strength, 432–434	Personal information, privacy/confidentiality policy, 1223
user-created, 421–425	Personal use
user security and, 1074–1076	allowable use policy, 1219
writing down, 419–420	unacceptable conduct policy, 1212
Patching of bugs, 638	Petri nets, IDIOT system, 933–934
Path value, cookies, 489	PGP. See Pretty Good Privacy (PGP)

PGWG. See Process Action Team Guidance Working Group (PGWG)	Polymorphic viruses, 787–789 Ponder
Phases	expressing trust relationships via, 194
GISTA, 835–836	as high-level policy language, 119–121
OSSTMM modules, 835	POODLE attack. See Padding Oracle On Downgraded
PTES, 836–837	Legacy Encryption (POODLE) attack
Phenomes, voice recognition systems, 443	Poset, partial ordering and, 1153
Phishing, impersonating legitimate entity, 802–803 Phonemes, pronounceable passwords based on, 420–421	Postconditions, vulnerability analysis, 826 Postdevelopment verification technique, 700
Physical class, OSSTMM, 834	Posting and authority to change, electronic communications
Physical resources, virtual machines and, 1175	policy, 1233–1234
PHYSSEC class, OSSTMM, 834	Power, establishing clear chains of responsibility and, 20–21
Pigeonhole principle, cryptographic checksums, 316	PP-Configuration, CC, 753
PKI. See public key infrastructure (PKI)	PP-Module, CC, 753
Plagiarism, as unacceptable conduct, 1209	PP. See protection profiles (PP)
Plaintext	PP Reference, CC, 753
block ciphers and, 374–377	Practice, of digital forensics, 990–994
ciphertext messages security issues, 367–370	Pre-key bundle, instant messaging, 391
perfect secrecy and, 1168–1169	Precedence rules, Control Tree Logic, 1186
self-synchronous stream ciphers, 373–374	Precision
substitution ciphers changing characters in, 292–294	degree of overrestrictiveness, 134
transposition ciphers rearranging characters in, 291–292	security mechanisms and, 12
Planning phase, GISTA, 835	security policies and, 9–10, 131–136
Plans, manufacturing stage of life cycle, 637	Precomputing off-line dictionary attacks, 428
Platform as a service cloud, 1024	Precomputing possible messages, ciphertext problems,
PlayReady DRM, Microsoft, 243–244 Pluggable authentication modules (PAM), UNIX, 447–448,	367–368 Preconditions vulnerability analysis 826
1053, 1054	Preconditions, vulnerability analysis, 826 Predevelopment verification technique, 700
Pluggable transports, Tor, 499	Predicate logic (predicate calculus or first order logic),
Pointers, specifying confinement for compiler, 592	1184–1185
Policies. See also Noninterference, and policy composition	Predicate subtypes, PVS language, 714
assurance, throughout life cycle, 632–633	Preliminary technical review (PTR), TCSEC, 734
availability policies. See Availability policies	Preludes, as predefined theories in PVS, 714
computer security incident response team, 986	Premaster secret, TLS handshake protocol, 398
confidentiality policies. See Confidentiality policies	Pretty Good Privacy (PGP)
high-level, 119–125	certificate revocation, 359
how certificates encode, 477–478	certificate signature chains, 348–350
hybrid policies. See Hybrid policies	certificates and assurance of trust, 483-484
information flow, 539–540	creation of, 385–386
integrity policies. See Integrity policies	OpenPGP and PEM, 388–389
low-level, 125–126	Prevention mechanisms
models of information flow, 541–542	deadlock, 202–203
nonlattice information flow, 542–548	as goal of security, 10
overview of, 118 password, 422–423	and integrity, 5 PRF function, TLS, 394–395
policy-based trust models, 191–192	Primitive commands, 38–41
program distribution, 1146–1147	Primitive commands, 56–41 Primitive flow generator, penetration analysis tool, 872–873
security. See Security policy	Primitive inference rules, PVS proof checker, 715–716
shared password, 1100–1101	Primitive operations
system security practicum, 1036–1041	basic results of, 51–52
user security practicum, 1072–1073	as mono-operational, 51
Policy-based trust models, 191–194	TAM, 92–93
Policy certification authorities (PCAs), 478–479, 481–484	Primitive rights, determining system safety, 50, 52–56
Policy checkers, 906, 942–943	Principals
Policy development practicum	assigning rights to groups, 475
availability, 1010	authentication policy defines proof of identity for,
consistency check, 1010–1011	481–484
data classes, 1007–1008	certificates bind cryptographic keys to, 476–478
overview of, 1006–1007	in digital rights management, 242
user classes, 1008–1010 Policy models, 113, 632	floating identifiers assigned to, 486 host identity on web identifying, 485
Policy models, 113, 632 Policy script interpreter, Bro, 937	as unique entities specified by identity, 471
Political activity, unacceptable conduct policy, 1211–1212	Principle, Locard's Exchange, 987
Polyalphabetic cipher, 294	Principle of attenuation of privilege, 42–44, 74

Principle of complete mediation	overview of, 461–462
access to developer systems, 1040	user classes in policy development, 1008–1010
development system, 1060	Principle of psychological acceptability, 465–466
direct login to sysadmin account, 1050	Principle of semantic consistency, declassification, 163
improper choice of initial protection domain, 1120	Principle of separation of duty
inner firewall meeting, 1014	access control file permissions, 1120
overview of, 460	commercial integrity policies, 174, 183–184
restricting caching, 460–461	overview of, 463
	· · · · · · · · · · · · · · · · · · ·
systems not enforcing, 1056	policy-based trust models, 193–194
WWW server system in DMZ, 1066	RBAC modeling, 246
Principle of conservativity, declassification, 163	Principle of separation of privilege
Principle of economy of mechanism	configuring outer firewall, 1014
access control file permissions, 1121	data classes in policy development, 1007–1008
autonomous agents and, 953	overview of, 463
configuration of outer firewall, 1015	user classes in policy development, 1008–1010
development system, 1045–1046	via threshold scheme, 530
overview of, 459–460	Principle of tranquility, security levels, 161–163
refinement of program security, 1113	Principles
Principle of fail-safe defaults	access to medical records, 237–238
design access to roles/commands, 1107	composition policy, 257–258
overview of, 458–459	declassification, 163–164
principle of least astonishment vs., 1066	intrusion detection, 917–918
storage of access control data, 1108–1109	record creation and information deletion, 238–239
validation should apply principle of, 1135	<i>Printf</i> function, checking input from untrusted sources,
Principle of least astonishment	1136–1137
development system, 1045, 1047, 1063	Privacy
overview of, 464–465	Android cell phones and, 568–570
overwriting files, 1089	assurance of, 630
principle of fail-safe defaults vs., 1066	Clinical Information Systems security policy, 236–239
refinement and implementation, 1113, 1116–1117	and confidentiality, 114, 1220-1225
storage of access control data, 1108, 1110	electronic communications policy and, 128–129,
testing program, 1145–1146	1208–1209, 1220–1225
Principle of least authority, 458	expectations, 1235–1236
Principle of least common mechanism	limits, 1237–1239
analysis of network infrastructure, 1014	protections, 1236–1237
development system, 1064	right to anonymity, 500–501
hiding information among modules, 1051	Privacy Act of the United States, 114, 141
memory programming problems, 1127	Privacy-enhanced Electronic Mail (PEM)
network services, 1047	basic design, 386–387
overview of, 463–464	certificate conflicts, 479–481
users for system security, 1052	certificates and assurance of trust, 482–483
Principle of least privilege	creation of, 385
cell phones in violation of, 568	design principles, 385–386
configuring memory to enforce, 1122	OpenPGP and, 388–389
configuring outer firewalls, 1014–1015	Privacy Research Group, 385
confinement enforcing, 581	Private functions, SPECIAL specification, 703–704
containment of internal addresses, 1014	Private key, public key cryptography
data classes in policy development, 1007–1008	defined, 306
for improper choice of initial protection domain,	infrastructures. See Key infrastructures
1118–1119	public key cryptographic key exchange, 338–341
for malware containment, 813–816	Privileges
overview of, 457–458	amplifying for capabilities, 521
processes run on development system, 1059–1060	improper choice of initial protection domain and
processes run on DMZ WWW server, 1055	process, 1118–1120
processes with fine-grained restrictions, 524	overriding restrictions on access via, 524–526
Trusted Solaris privilege sets, 525–526	principle of attenuation of privilege, 42–44, 74
user classes in policy development, 1008–1010	principle of fail-safe defaults, 458–459
Principle of monotonicity of release, declassification, 163	principle of least privilege, 457–458
Principle of occlusion, declassification, 163	principle of separation of privilege, 463
Principle of open design	programming problems. See Program security practicum
data classes in policy development, 1007–1008	common programming problems
development system, 1064	RBAC managing assignment of, 248
distribution of program, 1146	virtual machines and, 583–584, 1172–1175
minimize secrets, 462	Proactive password checking, 422–424

Proactive password selection, 421 Probabilistic packet selection, IP headers, 981 Problem sources, in computer systems, 630 Procedure calls, information flow and, 556–557 Procedure segments, ring-based access control, 531–532	improper choice of operand or operation, 1139–1141 improper deallocation or deletion, 1131–1132 improper indivisibility, 1138–1139 improper isolation of implementation detail, 1123–1125
Procedures, electronic communications policy, 127 Process Action Team Guidance Working Group (PGWG), security testing, 689–695	improper naming, 1129–1131 improper validation, 1132–1138 overview, 1117–1118
Processes	Program statements
configuration of development system, 1059–1061	assignment statements, 551
configuration of DMZ WWW server, 1055–1061	certified information flow policy and, 548
confinement problem, 580–582	classification of, 550–551
isolation of. See Isolation	compound statements, 551–552
limitations of TCSEC, 736	conditional statements, 552–553
SSE-CMM analysis of existing, 765–768 system security practicum, 1055–1061	goto statements, 554–556 iterative statements, 553–554
three sets of privileges in, 524	procedure calls, 556–557
trusted UNIX, 815	Programming languages
Processes, user security	choice affects assurance of implementation, 685–686
accidentally overwriting files, 1088–1089	formal specification. See Formal specifications
copying and moving files, 1087–1088	functional, 721
encryption, cryptographic keys, and passwords,	information flow control in, 575
1089–1090	type-safe, 592
limiting privileges, 1091	Programming rules
malicious logic, 1091–1092	implementation, 1247–1248
startup settings, 1090–1091	management, 1249
Processor status longword (PSL), virtual machines, 1172–1174	Pronounceable passwords, 420–421 Proof
Product backlog, Scrum, 643	by contradiction, 1183
Product cipher, DES as, 300	of correctness, 15, 318
Production Code (PC), Lipner, 179–180	logical systems used in formal proof technologies. See
Production Data (PD), Lipner, 179–180	Symbolic logic
Production, deployment stage of life cycle, 637	PVS based on constructing/writing proofs, 713–716
Production (IP) entities, Lipner, 181–182	rules, 1180
Products	theory, SMV, 718–720
formally verified, 722–723 retirement of, 638	using truth tables in natural deduction, 1182–1183
TCSEC documentation requirements, 733	Proof-based verification techniques, vs. model-based, 700
tools for generation of, 687	Proof-carrying code (PCC), malware defense, 818–819
Profile registry, Federal Criteria, 745	Proof checkers
Program	overview of, 681–682
distribution, 1146–1147	Prototype Verification System (PVS), 713, 715–716
memory protection, 1122	Proof of concept, conception stage of life cycle, 636
testing, 1145–1146 Program modification	Propagated Access Control List (PACL), 533–534 Propagating (or replicating) Trojan horse, 779–780
compiling, 592–593	Propagation phase, computer worms, 791–792
loading, 593–594	Properties
overview of, 590	ATAM vs. TAM, 99–101
rewriting, 590–591	cloud, 1024–1025
sandboxes using, 589–590	comparing in access control models, 95-99
Program security practicum	mapping system to existing model for policy definition
designing access to roles and commands, 1106–1110	659–660
designing framework, 1104–1105	nature of security policies, 111
distribution, 1146–1147	SMV proof theory for, 718–720
overview of, 1099	Property-based testing, detecting vulnerabilities, 826
password management problem, 1099–1100 refinement and implementation, 1111–1117	Property specification verification, 700 Propositional logic (propositional calculus), 1179–1180
requirements and policy, 1100–1103	Protected memory, 519
review, 1147–1150	Protected memory, 319 Protection Analysis (PA) model
testing, maintenance, and operation, 1141–1146	analysis procedure, 854–856
Program security practicum, common programming	fingerd buffer overflow flaw, 862–863
problems	flaw classes, 852–854
improper change over time, 1125–1129	legacy, 856
improper choice of initial protection domain, 1118–1123	overview of, 851–852

Protection state access control matrix model of, 32–37 describing via access control matrix, 31–32 determining if system is safe, 50–51 results of determining system safety, 51–56 Take-Grant Protection Model of. See Take-Grant Protection Model transitions, 37–41 Typed Access Matrix Model (TAM), 92–94 Protection type, Schematic Protection Model, 69 Protocol Analyzer (NPA), NRL, 720–721 Protocol verifiers, 703 Protocols affect on security of cryptosystems, 367–370 CAPSL specification, 721 electronic mail (PEM and OpenPGP), 384–389 formal methods for analyzing cryptographic, 702 key management for instant messaging, 390–393 networks and cryptographic, 381–384 NPA cryptographic protocol verification, 720–721 symmetric key exchange/authentication, 333–336 Prototype Verification System (PVS) as current verification system, 713 experience with, 716 proof checker, 715–716 specification language, 713–715 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 Sprivileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudocode, 1111–1114 Pseudocode, 1111–1114 Pseudocode, 1111–1114 Pseudocode, 11218 Pseudorandom numbers, key generation, 341–342 Pseudorandom numbers, 491 Pseudorandom numbers, key generation, 341–342 Pseudorandom numbers, key generation, 341–342 Pseudorandom numbers, 491 Pseudorandom numbers, 491 Pseudorandom numbers, 491 Pseudorandom num	programming problems. See Program security practicum, common programming problems xterm log file flaw, 860–861 Protection domain, restricting for role processes, 1125 Protection flaws, improper, 852–853 Protection mechanisms, 132–135 Protection profiles (PP) CC, 751–753 evaluating security target against, 754–756 Federal Criteria, 744–745 Protection rings, 531	Public key infrastructure (PKI), 350–353 Public key resource record (DNSKEY RR), DNSSEC, 488 Public records, electronic communication policy, 1224 Publication mission, CSIRT, 986 Pulsing denial-of-service attack, 221–222 Pumps, mitigation of covert channels via, 617–619 Purge function, noninterference security, 261–263 Purpose, electronic communications policy, 1213 PVS. See Prototype Verification System (PVS)
determining if system is safe, 50–51 results of determining system safety, 51–56 Take-Grant Protection Model of. See Take-Grant Protection Model of. See Take-Grant Protection Model of. See Take-Grant Protection Model (TAM), 92–94 Protection type, Schematic Protection Model, 69 Protocol variefiers, 703 Protocols affect on security of cryptosystems, 367–370 CAPSL specification, 721 electronic mail (PEM and OpenPGP), 384–389 formal methods for analyzing cryptographic, 702 key management for instant messaging, 390–393 networks and cryptographic, 381–384 NPA cryptographic protocol verification, 720–721 symmetric key exchange-fauthentication, 733–336 Prototype Verification System (PVS) as a current verification system, 713 experience with, 716 proof checker, 715–716 specification language, 713–715 specification language, 713–715 specification language, 713–719 provideges. Peeudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudonymizing sanitizers, auditing system design, 889–891 blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 pp privileges. Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudonymizing sanitizers, auditing system design, 889–891 [Again, 307–309 ellpic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public data (PD) class, policy development, 1007–1008 Public key digital signatures BR A. See Registration authority (RA) Rabbits, exhausting resources, 796 Rac conditions detectin in file accesses, 817, 1128–1129 improper indivisibility of, 1138 RACF, security enhancement package for IBM, 881 RACF, security enhancement package for IBM,	Protection state access control matrix model of, 32–37	Quality of service, availability policy ensuring, 201
Protection Model Transitions, 37-41 Typed Access Matrix Model (TAM), 92-94 Protection type, Schematic Protection Model, 69 Protocol Analyzer (NPA), NRL, 720-721 Protocol verifiers, 703 Protocol verifiers, 703 Protocol security of cryptosystems, 367-370 CAPSL specification, 721 electronic mail (PEM and OpenPGP), 384-389 formal methods for analyzing cryptographic, 702 key management for instant messaging, 390-393 networks and cryptographic, 381-384 NPA cryptographic protocol verification, 720-721 symmetric key exchange/authentication, 333-336 Prototype Verification System (PVS) as current verification system (PVS) as current verification system (PVS) as current verification system (PVS) configuration language, 713-715 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83-88 Proxy for application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571-572 See Prediction communications policy at UCD, 1218 Pseudonaming sanitizers, auditing system design, 889-891 Pseudonyms, electronic communications policy at UCD, 1218 Pseudorandom numbers, key generation, 341-342 PSL. See processor status longword (PSL) PTR. See preliminary technical review (PTR) Public data (PD) class, policy development, 1007-1008 Public key cryptography El Gamal, 307-309 elliptic curve ciphers, 312-315 key exchange, 338-341 overview of, 306-307 RSA3, 399-312 TLS, 394 Public key digital signatures El Gamal, 321-322 Pacted accesses, 817, 1128-1129 improper indivisibility of, 1138 RACF. security enhancement package for IBM, 881 RAMP. See Ratinus Mintenance Program (RAMP) Random data tests, testing indicutes, 149 Random data tests, testing modules, 1145. RAndom data tests, testing modules, 1145. Random numbers, key generation, 321-342 Random (or pseudorandom) pumber generator, 419 Random variable, 1163, 1165-1166 Random variable, 1163, 1163-11	determining if system is safe, 50–51 results of determining system safety, 51–56	_
transitions, 37-41 Typed Access Matrix Model (TAM), 92-94 Protection type, Schematic Protection Model, 69 Protocol value (PA), NRL, 720-721 affect on security of cryptosystems, 367-370 CAPSL specification, 721 electronic mail (PEM and OpenPGP), 384-389 formal methods for analyzing cryptographic, 702 key management for instant messaging, 390-393 networks and cryptographic, 381-384 NPA cryptographic protocol verification, 720-721 symmetric key exchange/authentication, 333-336 Prototype Verification System (PVS) as current verification system, 713 experience with, 716 proof checker, 715-716 prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83-88 Proxy (or application level) firewalls blocking lava applets with, 978 configuration of outer firewall, 1015 overview of, 571-572 pseudo-anonymous (or pseudonymous) remailers, 491 Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudonymizing sanitizers, auditing system design, 889-891 Pseudonymizing sanitizers, auditing system design, 889-891 Pseudonymizing sanity experience (PD) class, policy development, 1007-1008 Public data (PD) class, policy development, 1007-1008 Public key cryptography El Gamal, 307-309 elliptic curve ciphers, 312-315 key exchange, 338-341 overview of, 306-307 RSA, 309-312 TLS, 394 Public data (PD) class, policy development, 1007-1008 Public key digital signatures El Gamal (PTES) PTE. See Prenetration Testing Execution Standard (PTES) PTE. See Proteoses or status longword (PSL) PTES, See Prenetration Testing Execution Standard (PTES) PTE, See propose, 202 Protocological properation and protocological protocological protocological protoco		
Typed Access Matrix Model (TAM), 92–94 Protection type, Schematic Protection Model, 69 Protocol Analyzer (NPA), NRL, 720–721 Protocol verifiers, 703 Protocol affect on security of cryptosystems, 367–370 CAPSL, specification, 721 electronic mail (PEM and OpenPGP), 384–389 formal methods for analyzing cryptographic, 702 key management for instant messaging, 390–393 networks and cryptographic, 381–384 NPA cryptographic, 381–384 NPA cryptographic, 581–364 NPA cryptographic protocol verification, 720–721 symmetric key exchange/authentication, 333–336 Prototype Verification System (PVS) as current verification system (PVS) as current verification system (PVS) as current verification system, 713 experience with, 716 proof checker, 715–716 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) frewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudocode, 1111–1114 Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Premitration Testing Execution Standard (PTES) PTES. See Premetration Testing Execution Standard (PTES) PTES. See processor status longword (PSL) PSUBLic Reversional review (PTR) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA3, 309–312 TLS, 394 Public data (PLS) PSA Commender trust (RT), trust value semantics, 195 Recommender trust (RT), trust value semantics, 195 Recommender trust (RT), trust value semantics, 195 Recovery, 10–11, 1		
Protocol Analyzer (NPA), NRL, 720–721 Protocol verifiers, 703 Protocols affect on security of cryptosystems, 367–370 CAPSL specification, 721 electronic mail (PEM and OpenPGP), 384–389 formal methods for analyzing cryptographic, 702 key management for instant messaging, 390–393 networks and cryptographic, 381–384 NPA cryptographic, 381–384 NPA cryptographic protocol verification, 720–721 symmetric key exchanged authentication, 333–336 Prototype Verification System (PVS) as current verification system, 713 experience with, 716 proof checker, 715–716 proof checker, 715–716 prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewall, 1015 overview of, 571–572 Pseudocanonymous (or pseudonymous) remailers, 491 Pseudoanonymous (or pseudonymous) remailers, 491 Pseudorandom numbers, key generation, 341–342 PSBL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See profilminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–344 overview of, 306–307 RASA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Edecting in file accesses, 817, 1128–1129 improper indivisibility of, 1138 RAMP. See Ratings Maindenance Program (RAMP) Random (or pseudorandom) passwords, 436–438 Random (or pseudorandom) pa		
Protocol Analyzer (NPA), NRL, 720–721 Protocol verifiers, 703 Protocols affect on security of cryptosystems, 367–370 CAPSL specification, 721 electronic mail (PEM and OpenPGP), 384–389 formal methods for analyzing cryptographic, 702 key management for instant messaging, 390–393 networks and cryptographic, 381–384 NPA cryptographic protocol verification, 720–721 symmetric key exchange/authentication, 333–336 Prototype Verification System (PVS) as current verification system, 713 experience with, 716 specification language, 713–715 Prototypic model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudonymizing sanitizers, auditing system design, 889–819 Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Penetration Testing Execution St		
Protocols affect on security of cryptosystems, 367–370 CAPSL specification, 721 electronic mail (PEM and OpenPGP), 384–389 formal methods for analyzing cryptographic, 702 key management for instant messaging, 390–393 networks and cryptographic, 381–384 NPA cryptographic protocol verification, 720–721 symmetric key exchange/authentication, 333–336 Prototype Verification System (PVS) as current verification system (PSS) as current verification system, 713 experience with, 716 proof checker, 715–716 sprototypic model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudoomymizing sanitizers, auditing system design, 889–891 Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Penctration Testing Execution Standard (PTES) PTES. See preliminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal cryptograpkine, 48 Random or pseudorandom) numbers, key generation and, 341–342 Random or pseudorandom) passwords, 436–438 Random password selection, 418–420 Random (or pseudorandom) passwords, 425-438 Random password selection, 418–420 Random or pseudorandom) passwords, 425-438 Random password selection, 418–420 Random or pseudorandom) passwords, 426-438 Random password selection, 418–420 Random or pseudorandom passwords, 426-438 Random password selection, 418–420 Random or pseudorandom passwords, 425-438 Random password selection, 418–420 Random or pseudorandom passwords, 425-48 Random password selection, 418–420 Random or rebelled, 163, 1163–1166 Random oration, 193, 141–342 Random oration, 193, 141–342 Random oration, 193, 141–342 Rand	Protocol Analyzer (NPA), NRL, 720–721	
affect on security of cryptosystems, 367–370 CAPSL specification, 721 electronic mail (PEM and OpenPGP), 384–389 formal methods for analyzing cryptographic, 702 key management for instant messaging, 390–393 networks and cryptographic, 381–384 NPA cryptographic protocol verification, 720–721 symmetric key exchange/authentication, 333–336 Prototype Verification System (PVS) as current verification system (PVS) as current verification system, 713 experience with, 716 proof checker, 715–716 specification language, 713–715 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS speudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudocode, 1111–1114 Pseudocode, 1111–1114 Pseudocode, 1111–1114 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonymizing sanitizers auditing system design, 889–891 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTR. See preliminary technical review (PTR) Public ked yeryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 399–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Eandom data tests, testing annumbers agandom unumbers, 491 Random numbers, key generation, 341–342 Random data tests, testing madulen of reseudorandom) numbers agandom or pseudorandom) numbers agandom of versidents in sudandom or pseudorandom numbers and sudandom or pseudorandom numbers. 416 Random data tests, testing a	Protocol verifiers, 703	
CAPSL specification, 721 electronic mail (PEM and OpenPGP), 384–389 formal methods for analyzing cryptographic, 702 key management for instant messaging, 390–393 networks and cryptographic, 781–384 NPA cryptographic protocol verification, 720–721 symmetric key exchange/authentication, 333–336 Prototype Verification System (PVS) as current verification system (PTS) as current verification system, 713 experience with, 716 specification language, 713–715 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonyms, electronic communications policy at UCD, 1218 Pseudonyms, electronic communications policy at UCD, 1218 Pseudonandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Ponetration Testing Execution Standard (PTES) PTES. See Penetration Testing Execution Standard (PTES) PTES. See	Protocols	
electronic mail (PEM and OpenPGP), 384–389 formal methods for analyzing cryptographic, 702 key management for instant messaging, 390–393 networks and cryptographic, 381–384 NPA cryptographic protocol verification, 720–721 symmetric key exchange/authentication, 333–336 Prototype Verification System (PVS) as current verification system, 713 experience with, 716 proof checker, 715–716 specification language, 713–715 Prototyping model, software development, 644 Prox, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 Sprivileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudocode, 1111–1114 Pseudocode, 1111–1114 Pseudorom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Preliminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 PUBlic key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RRA, 309–312 TLS, 394 Public key digital signatures El Gamal cryptosystem, 309 key generation and, 341–343 Random variable, 1163, 1165–1166 Randommens El Gamal cryptosystem, 309 key generation and, 341–343 Random variable, 1163, 1165–1166 Randommens El Gamal cryptosystem, 309 key generation and, 341–343 Random variable, 1163, 1165–1166 Randommens El Gamal cryptosystem, 309 key generation and, 341–343 Random variable, 1163, 1165–1166 Randommens El Gamal cryptosystem, 309 key generation and, 341–342 Random variable, 1163, 1165–1166 Randommens El Gamal cryptosystem, 309 key generation and, 341–342 Random variable, 1163, 1165–1166 Randommens El Gamal cryptosystem, 309 key generation and, 341–342 Random variable, 1163, 1165–1166 Randommens El Gamal cryptosystem, 309 Random variable, 1163, 1165–1166 Randommens El Gamal cryptosystem, 309 Random variable, 1163, 1165–1166 Randommens El Gamal		
formal methods for analyzing cryptographic, 702 key management for instant messaging, 390–393 networks and cryptographic, 381–384 NPA cryptographic protocol verification, 720–721 symmetric key exchange/authentication, 333–336 Prototype Verification System (PVS) as current verification system, 713 experience with, 716 proof checker, 715–716 specification language, 713–715 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudonyms, electronic communications policy at UCD, 1218 Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) 1218 Pseudorandom numbers, key generation, 341–342 PSL. See precliminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Hand and the secondary of the seconda		
key management for instant messaging, 390–393 networks and cryptographic, 381–384 NPA cryptographic protocol verification, 720–721 symmetric key exchange/authentication, 333–336 Prototype Verification System (PVS) as current verification system, 713 experience with, 716 proof checker, 715–716 specification language, 713–715 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudorandom numbers, key generation, 341–342 PSEL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Penetration Testing Execution Standard (PTES) PLDIG clare (PD) class, policy development, 1007–1008 Public data (PD) class, policy development, 1007–1008 Public data (PD) class, policy development, 1007–1008 Public date (PD) class, policy development, 1007–1008 Publi		
NPA cryptographic protocol verification, 720–721 symmetric key exchange/authentication, 333–336 Prototype Verification system (PSS) as current verification system, 713 experience with, 716 proof checker, 715–716 specification language, 713–715 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudoode, 1111–1114 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudorandom numbers, key generation, 341–342 PSEL. See processor status longword (PSL) PTES. See Preferation Testing Execution Standard (PTES) PIS. See processor status longword (PSL) PTES. See Pretration Testing Execution Standard (PTES) PIS. See processor status longword (PSL) PTES. See processor status longwor		
Prototype Verification System (PVS) as current verification system, 713 experience with, 716 proof checker, 715–716 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudonymizing samitizers, auditing system design, 889–891 Pseudonymizing samitizers, auditing system design, 889–891 Pseudonymizing samitizers, auditing system design, 889–891 PSPENS. See Penetration Testing Execution Standard (PTES) PTES. See Preliminary technical review (PTR) PUBlic data (PD) class, policy development, 1007–1008 Public key cyptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 El Gamal cryptosystem, 309 key generation and, 341–343 RANSOM-A ransonware, 801 Ransomware, 800–801 Rapid prototyping, Extreme Programming model, 644 Rate-limiting component, D-WARD, 218 Rated product, TCSEC, 731 Ratings Maintenance Program (RAMP), 735, 737 Ratings, TCSEC trust management, 731 Ratings Maintenance Program (RAMP), 735, 737 Ratings, TCSEC, 752 Raw error patterns, Protection Analysis (PA), 854 RBAC. See role-based access control (RBAC) Recognition fights (RC) Read UID, 474 Re-call based systems, graphical passwords, 425 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Real UID, 474 Recognition branch, covert flow tree, 605–606 Recognition flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
Prototype Verification System (PVS) as current verification system, 713 experience with, 716 proof checker, 715–716 proof checker, 715–716 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Penetration Testing Execution Standard (PTES) PUBlic data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Red termetration and, 341–343 RANSOM-A ransomware, 801 Ransomware, 801 Ransomware, 800 Ransomware, 801 Ransomwere, 904–81 Rations, exploratory programming model, 644 Rate-limiting component, D-WARD, 218 Ratiog product, TCSEC, 731 Ratiog profile, SECCMM, 767–768 Rating Profile, SECMM, 767–768 Rating Profile, SECMM, 767–768 Rating Profile, SECMM, 767–768 Rating Profile, SECCMM, 767–768 Rating Profile, SECCMM, 767–768 Rating Prof		
as current verification system, 713 experience with, 716 proof checker, 715–716 specification language, 713–715 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudoondo, 1111–1114 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Prenting Execution Standard (PTES) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 RANSOM-A ransomware, 801 Ransomware, 800–801 Rapid prototyping, Extreme Programming, 643 Rapid prototyping, Extreme Programming, 643 Rapid prototyping, Extreme Programming, 643 Rapid prototyping, Extreme Programming model, 644 Pate-limiting component, D-WARD, 218 Rated product, TCSEC, 731 Ratings, TCSEC trust management, 731 Ratings, TCSEC trust management, 731 Rationale, CC, 752 Rave error patterns, Protection Analysis (PA), 854 RBAC. See role-based access control (RBAC) RC. See control rights (RC) Read able object set, detecting covert channels, 597–598 Real UID, 474 Reallocation transition, 211–212 Recognition goal, covert flow tree, 605–606 Recognition goal, covert flow tree, 605–606 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
experience with, 716 proof checker, 715–716 specification language, 713–715 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonymizing sanitizers, auditing system design, 889–891 PSEL. See processor status longword (PSL) PTES. See Preliminary technical review (PTR) PUBlic data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Ransomware, 800–801 Rapid prototyping, Extreme Programming, 643 Rapid prototyping, Extreme Programming, 643 Rapid system in prototyping, exploratorry programming model, 644 Rate-limiting component, D-WARD, 218 Rated product, TCSEC, 731 Ratings Maintenance Program (RAMP), 735, 737 Ratings, TCSEC trust management, 731 Rationale, CC, 752 Raw error patterns, Protection Analysis (PA), 854 RBAC. See role-based access control (RBAC) RC. See control rights (RC) Rc. See control rights (RC) Re-call based systems, graphical passwords, 425 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read lottle, 474 Reallocation transition, 211–212 Recognition branch, covert flow tree, 605–606 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
proof checker, 715–716 Prototyping model, software development, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonymous electronic communications policy at UCD, 1218 Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Prenetration Testing Execution Standard (PTES) PTES. See Prenetration Testing Execution Standard (PTES) PUblic data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Rapid prototyping, Extreme Programming, 643 Rapid system iterations, exploratory programming model, 644 Rate-limiting component, D-WARD, 218 Rated product, TCSEC, 731 Ratings TCSEC trust management, 731 PRATINGENT TOPICS, 22 Raw error patterns, Protection Analysis (PA), 854 Rated product, TCSEC, 731 Rating Profile, SSE-CMM, 767–768 Ratings, TCSEC trust management, 731 PRES See control rights (RC) RC. See control rights (RC) Rc. See control rights (RC) Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Real UID, 474 Reallocation transition, 211–212 Recognition-based systems, graphical passwords, 425–426 Recognition poal, covert flow tree, 605–606 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		*
Rapid system iterations, exploratory programming model, 644 Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudooryms, electronic communications policy at UCD, 1218 Pseudonyms, electronic communications policy at UCD, 1218 PSEUL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Preliminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 PUBlic key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Rapid system iterations, exploratory programming model, 644 Rate-limiting component, D-WARD, 218 Rated product, TCSEC, 731 Ratings Profile, SSE-CMM, 767–768 Ratings Maintenance Program (RAMP), 735, 737 Ratings, TCSEC trust management, 731 Ratings, TCSEC trust management, 731 Ratings Profile, SSE-CMM, 767–768 Rating Profile, SSE-CMM, 767–768 Ratings Maintenance Program (RAMP), 735, 737 Ratings, TCSEC trust management, 731 Ratings, TCSEC trust management, 731 Ratings Profile, SSE-CMM, 767–768 Ratings Maintenance Program (RAMP), 735, 737 Ratings, TCSEC trust management, 731 Ratings Profile, SSE-CMM, 767–768 Ratings Maintenance Program (RAMP), 735, 737 Ratings, TCSEC trust management, 731 Ratings Naticeance Program (RAMP), 735, 737 Ratings Maintenance Progr		
Proxy, multiple parenting in ESPM, 83–88 Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonymizing sanitizer	specification language, 713–715	Rapid system iterations, exploratory programming model,
Proxy (or application level) firewalls blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 Ratings Maintenance Program (RAMP), 735, 737 Ratings, TCSEC trust management, 731 Rationale, CC, 752 Rationale, CC, 752 Rationale, CC, 752 Rationale, CC, 752 Raw error patterns, Protection Analysis (PA), 854 RBAC. See role-based access control (RBAC) RC. See control rights (RC) RBAC. See processor status longword (PSL) Readorandom numbers, key generation, 341–342 Reallocation transition, 211–212 Readable object set, detecting covert channels, 597–598 Real UID, 474 Reallocation transition, 211–212 Recognition branch, covert flow tree, 605–606 Recognition branch, covert flow tree, 605–606 Recognition goal, covert flow tree, 605–606 Recommendation systems, reputation-based trust models, key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Recognition studies	Prototyping model, software development, 644	
blocking Java applets with, 978 configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudorandom numbers, key generation, 341–342 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonymizing sanitizers, auditing system design, 899 Pseudorandom numbers, key generation, 889–891 Pseudorandom numbers, key generation, 889–891 Pseudorandom numbers, key generation, 889–891 Ps		
configuration of outer firewall, 1015 overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonyms, electronic communications policy at UCD, 1218 Pseudorandom numbers, key generation, 341–342 PSEL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Peneiminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Ratings Maintenance Program (RAMP), 735, 737 Ratings, TCSEC trust management, 731 Rationale, CC, 752 Raw error patterns, Protection Analysis (PA), 854 RBAC. See role-based access control (RBAC) RC. See control rights (RC) Rdist UNIX program, 939–941 Re-call based systems, graphical passwords, 425 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Real UID, 474 Reallocation transition, 211–212 Recognition branch, covert flow tree, 605–606 Recognition poal, covert flow tree, 605–606 Recommendation systems, reputation-based trust models, 194–196 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red UID, 474 Recommender trust (RT), trust value semantics, 195 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
overview of, 571–572 PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonyms, electronic communications policy at UCD, 1218 Pseudorandom numbers, key generation, 341–342 Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTR. See preliminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Ratings, TCSEC trust management, 731 Rationale, CC, 752 Raw error patterns, Protection Analysis (PA), 854 RBAC. See role-based access control (RBAC) Rc Rad UNIX program, 939–941 Re-call based systems, graphical passwords, 425 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read UID, 474 Reallocation transition, 211–212 Recognition-based systems, graphical passwords, 425–426 Recognition branch, covert flow tree, 605–606 Recommendation systems, reputation-based trust models, 194–196 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
PS privileges. See permitted set (PS) privileges Pseudo-anonymous (or pseudonymous) remailers, 491 Pseudocode, 1111–1114 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonyms, electronic communications policy at UCD, 1218 Pseudorandom numbers, key generation, 341–342 PSEL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Penetration Testing Execution Standard (PTES) PUblic data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Rationale, CC, 752 Raw error patterns, Protection Analysis (PA), 854 RBAC. See role-based access control (RBAC) RC. See control rights (RC) Rdist UNIX program, 939–941 Re-call based systems, graphical passwords, 425 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Real UID, 474 Reallocation transition, 211–212 Recognition branch, covert flow tree, 605–606 Recommendation systems, reputation-based trust models, 194–196 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
Pseudocode, 1111–1114 Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonyms, electronic communications policy at UCD, 1218 Pseudorandom numbers, key generation, 341–342 PSEL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTR. See preliminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 RBAC. See role-based access control (RBAC) RC. See control rights (RC) Rdist UNIX program, 939–941 Re-call based systems, graphical passwords, 425 Read right, access control (RBAC) RC See control rights (RC) Rdist UNIX program, 939–941 Re-call based systems, graphical passwords, 425 Read right, access control (RBAC) RC See control rights (RC) Rdist UNIX program, 939–941 Re-call based systems, graphical passwords, 425 Read right, access control (RBAC) RC See control rights (RC) Rdist UNIX program, 939–941 Re-call based systems, graphical passwords, 425 Read right, access control (RBAC) Rc See control rights (RC) Rdist UNIX program, 939–941 Re-call based systems, graphical passwords, 425 Read right, access control (RBAC) Rc see control rights (RC) Rdist UNIX program, 939–941 Re-call based systems, graphical passwords, 425 Read right, access control (RBAC) Rc see control rights (RC) Rdist UNIX program, 939–941 Re-call based systems, graphical passwords, 425 Read right, access control (RBAC) Rc sed right, access control (RBAC)	PS privileges. See permitted set (PS) privileges	
Pseudonymizing sanitizers, auditing system design, 889–891 Pseudonyms, electronic communications policy at UCD, 1218 Pseudorandom numbers, key generation, 341–342 PSEL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Penetration Testing Execution Standard (PTES) PTR. See preliminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 RC. See control rights (RC) Rdist UNIX program, 939–941 Re-call based systems, graphical passwords, 425 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Real UID, 474 Reallocation transition, 211–212 Recognition-based systems, graphical passwords, 425–426 Recognition branch, covert flow tree, 605–606 Recognition goal, covert flow tree, 605–606 Recommendation systems, reputation-based trust models, 194–196 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies	Pseudo-anonymous (or pseudonymous) remailers, 491	
Pseudonyms, electronic communications policy at UCD, 1218 Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTR. See preliminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 PIG Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 PRES. See Penetration Testing Execution Standard (PTES) Read tight, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Read right, access control matrix, 33 Readable object set, detecting covert flow tree, 605–606 Recognition-based systems, graphical passwords, 425–426 Recognition-based systems, graphical passwords, 425–426 Recognition-based systems, graphical passwords, 425–4		` '
Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Re-call based systems, graphical passwords, 425 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Real UID, 474 Reallocation transition, 211–212 Recognition-based systems, graphical passwords, 425–426 Recognition panch, covert flow tree, 605–606 Recognition goal, covert flow tree, 605–606 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
Pseudorandom numbers, key generation, 341–342 PSL. See processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTR. See preliminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Read right, access control matrix, 33 Readable object set, detecting covert channels, 597–598 Real UID, 474 Reallocation transition, 211–212 Recognition-based systems, graphical passwords, 425–426 Recognition branch, covert flow tree, 605–606 Recommendation systems, reputation-based trust models, 194–196 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
PSL. See Processor status longword (PSL) PTES. See Penetration Testing Execution Standard (PTES) PTES. See Preliminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Readable object set, detecting covert channels, 597–598 Real UID, 474 Reallocation transition, 211–212 Recognition-based systems, graphical passwords, 425–426 Recognition branch, covert flow tree, 605–606 Recognition goal, covert flow tree, 605–606 Recommendation systems, reputation-based trust models, 194–196 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies	Pseudorandom numbers, key generation, 341–342	
PTR. See preliminary technical review (PTR) Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Reallocation transition, 211–212 Recognition-based systems, graphical passwords, 425–426 Recognition branch, covert flow tree, 605–606 Recognition goal, covert flow tree, 605–606 Recognition goal, covert flow tree, 605–606 Recognition systems, reputation-based trust models, 194–196 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies	PSL. See processor status longword (PSL)	
Public data (PD) class, policy development, 1007–1008 Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Recognition-based systems, graphical passwords, 425–426 Recognition branch, covert flow tree, 605–606 Recognition goal, covert flow tree, 605–606 Recognition systems, reputation-based trust models, 194–196 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies	PTES. See Penetration Testing Execution Standard (PTES)	
Public key cryptography El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Recognition branch, covert flow tree, 605–606 Recognition goal, covert flow tree, 605–606 Recognition systems, reputation-based trust models, 194–196 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
El Gamal, 307–309 elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 Recommender trust (RT), trust value semantics, 195 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Recommender trust (RT), trust value semantics, 195 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
elliptic curve ciphers, 312–315 key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Recommendation systems, reputation-based trust models, 194–196 Recommender trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
key exchange, 338–341 overview of, 306–307 RSA, 309–312 TLS, 394 Public key digital signatures El Gamal, 321–322 Reconder trust (RT), trust value semantics, 195 RECON guard, information flow control, 655 Record layer, TLS, 396 Recovery, 10–11, 1227 Red team attack. See Penetration studies		
RSA, 309–312 RECON guard, information flow control, 655 TLS, 394 Record layer, TLS, 396 Public key digital signatures Recovery, 10–11, 1227 El Gamal, 321–322 Red team attack. See Penetration studies	key exchange, 338–341	
TLS, 394 Record layer, TLS, 396 Public key digital signatures Recovery, 10–11, 1227 El Gamal, 321–322 Red team attack. See Penetration studies		
Public key digital signatures Recovery, 10–11, 1227 El Gamal, 321–322 Red team attack. See Penetration studies		
El Gamal, 321–322 Red team attack. See Penetration studies		• / /
RSA, 318–321 REDOC-II, modern symmetric cipher, 302		
	RSA, 318–321	

Reduced-round AES, 305	Requirements, definition and analysis
Reductio ad absurdum rules, natural deduction, 1181–1182	architecture, 651–657
REFEREE trust model, 198	justifying requirements, 660–662
Reference monitor	policy definition/requirements specification, 657–660
building system with security, 654	system assurance, 649
defined, 654	threats and security objectives, 650–651
heavily influencing TCSEC approach, 730	Requirements, justifying that design meets
Reference validation, 662	formal methods/proof techniques, 681–682
Reference validation mechanism (RVM), 654, 730	informal arguments, 680–681
Refinement, access control module, 1111–1114	overview of, 677
Reflector attacks, 221	requirements tracing/informal correspondence, 677–680
Refrain, policy specifications in Ponder, 120–121	review, 682–685
Registration authority (RA)	Requirements tracing, 677–680
CA delegates certificate requirements to, 477	Research Into Secure Operating Systems. See RISOS
certificates and assurance of trust, 484	
certificates in X.509 PKI, 351	(Research Into Secure Operating Systems) study
Registration, instant messaging, 391	Research Into Secure Operating Systems (RISOS) study
	fingerd buffer overflow flaw, 863, 864
Regular fixes, 695–696	flaw classes, 849–851
Relational database browsing, audit browsing, 908	legacy of, 851
Relations, describing properties of, 1153–1155	overview of, 849
Relationships, digital rights management, 242	xterm log file flaw, 861
Relay commands, Tor, 497–499	Residential certificates, issuing, 478
Reliability	Resource allocation system model, 210–215
need for assurance of, 630	Resource monitor, 213
paging, virtual machines and loss of, 1176	Resource Public Key Infrastructure (RPKI), 361
Religious activity, acceptable use policy, 1211–1212	Resource records (RRs), DNS and DNSSEC, 488
Remote shell (rsh) connection spoofing attack	Resources
JIGSAW representation of, 967–969	constraint-based DoS model and, 209
overview of, 966–967	exhausted by malware, 796
using attack graphs, 970–971	integrity of electronic communications, 1210
Remove rule, Take-Grant Protection Model, 57	leakage of information from shared, 581
Repetitions	mitigation of covert channels via obfuscation,
attacks on Vigenére cipher and, 294–299	616–617
iterative statements/information flow, 553	preserving confidentiality via hiding, 4
Replay attacks	problems from lack of, 21
Kerberos clock synchronization and, 338	SYN flooding consuming, 216, 1026
symmetric key exchange vulnerability, 333–336	UIDs and exhaustion of, 1124
on voice recognition systems, 443	virtual machines and physical, 1175
Replay technique, audit browsing, 908–909	Responsibilities
Reporting phase, GISTA, 836	electronic communications policy at UCD, 1208, 1215
Repository, program distribution, 1146	establishing clear chains of, 20–21
Representation	of users, 1234–1235
correspondence, justifying design meets requirements,	Restrictions
677–680	as design principle, 455–457
electronic communications policy at UCD, 1218	electronic communications policy at UCD, 1217–1218
Repudiation of origin, as form of deception, 8	malware defense using specifications as, 817
Reputation-based trust models, 194–196	noninterference and policy composition, 277–279
Requirements	shared password requirements, 1100–1101
access to role accounts, 1100–1103	Retention, policy for, 129, 1227
CISR, 743	Retina, eye biometrics, 443–444
commercial integrity policies, 173–174, 187–188	Retirement, of DES, 302
Common Criteria (CC), 752, 756	Retrospective, for system security practicum,
conception stage of life cycle, 636	1066–1068
design phase feeds back into, 1105	Return oriented programming (ROP) flaw, UNIX, 848
Federal Criteria, 745	Return-to-libc attacks, 848, 974–975
FIPS 140, 746–747	Returns control, Data Mark Machine, 563
formal evaluation methodology, 728	Reusable components, system assembly from, 645
levels of abstract machines in HDM, 705–706	Reverse name lookup, DNS, 487
mapping security functions to security, 666	Review process, design meets requirements, 682–685
policy definition and specification of, 657–660	Revocation
role in assurance, 631–632	key, 358–359
TCSEC functional, 731–732	of rights, capability systems, 522
testing begins with, 1142	rule, HRU vs. SPM, 82
waterfall life cycle model, 639–640	Rewriting, program modification via, 590–591

D: 1.	1
Rights	obtaining location, 1114–1115
acceptable use policy for, 1208	refining high-level design to produce, 1111–1112
access control model entries as, 32–37	in second-level refinement, 1112–1114
capabilities and. See Capabilities	Routing, anonymity on web with onion, 494–498
delegation policy specifications in Ponder, 119–120	RPKI. See Resource Public Key Infrastructure (RPKI)
determining system safety, 49–56	RRs. See resource records (RRs)
	` '
formal model of Bell-LaPadula Model, 151–158	RRSIG RR. See signature resource record (RRSIG RR)
Multics rules for, 158–161	RSA ciphers
multiple parenting in ESPM, 83–88	digital signatures, 319–321
passing to other users, 269–270	misordered blocks and, 368
principle of least privilege, 457–458	public key cryptography, 309–312
reducing to contain malware, 813–816	as TLS interchange cipher, 394
SPM, 69–72	Yaksha security system based on, 357
SPM vs. HRU revocation rule, 82	RSA's SecurID system. phishing attack on, 803
testing in TAM via ATAM, 99–101	RSA's SecurID system, phishing attack on, 803
Rights expression language, digital rights management,	RST packet, SYN flooding countermeasure, 217
243–244	RT. See recommender trust (RT)
Rights, Take-Grant Protection Model	Rule of transitive confinement, 581
conspiracy, 66–68	Rules
interpretation of, 61–63	for access control by Boolean expressions, 35-36
overview, 56–57	altered by adaptive directors, 946
sharing, 57–61	for Bell-LaPadula Model transformation, 155–158
theft and, 62–66	break-glass, 249
Rijndael, as AES, 303	Control Tree Logic (CTL), 1186
Ring-based access control, 531–533	of engagement, penetration studies, 828
Ring compression, privilege and virtual machines, 1174	for Multics system rights, 158–161
Ring policy, Biba Model, 177	for multiple parenting in ESPM, 83–85
Risk	natural deduction in predicate logic, 1185
affecting level of trust in system, 730	natural deduction in propositional logic, 1180–1182
analysis, 17–18	Network Security Monitor, 949
RISOS study. See Research Into Secure Operating Systems	programming, 1247–1249
	PVS proof checker, 715–716
(RISOS) study	*
Role account	for Take-Grant Protection Model, 56–57, 61–63
designing access to roles/commands, 1106–1110	Trusted Solaris, 146–147
shared password problem, 1100–1101	Rumpole's enforcement model, break-the-glass policy,
threats against, 1102–1103	249–250
user interface design for access to, 1104–1105	Running state
Role-based access control (RBAC), 244–249	denial of service protection base, 214
Role engineering, 248	model of resource allocation system, 210–211
Role mining, 249	Rust functional programming language, 721
Roles	RVM. See reference validation mechanism (RVM)
	KV W. See reference varidation incentation (KV W)
designing access to commands and, 1106–1110	
issuing certificates to principals as, 479	•
keys can belong to, 354	S
representing identity, 475–476	S-boxes
role-based access control (RBAC), 244–249	AES, 304–305
in second-level refinement to access control module,	DES, 300-301, 1193-1194
1112–1114	S/Key system, one-time passwords, 437
ROM, for key storage, 354	SA. See Security association (SA)
Root key, instant messaging, 390–392	SA database (SAD), IPsec, 405–409
Rootkits, as pernicious Trojan horses, 777–779	SAD. See SA database (SAD)
ROP flaw. See return oriented programming (ROP) flaw	Safe state, Banker's Algorithm, 203
RotWord transformation, AES, 1202–1203	Safety analysis
Round key	of Augmented TAM (ATAM), 99–101
AES, 1201–1203	comparing HRU and SPM, 82
DES, 1191–1195	MTÂM, 94
Round key schedule generation, AES, 1203	SPM, 75–81
Rounds	Safety, need for assurance of, 630
AES, 303–305, 1196	Salting, thwarting off-line dictionary attacks, 429–430
DES, 300, 1191–1192	Sandboxes
Routers, as filtering firewalls, 571	loading libraries for process confinement vs., 593
Routines	malware attempts to evade detection in, 811
access control record, 1115–1116	malware containment via, 816–817
error handling in reading/matching, 1116–1117	process restriction using, 586–590

Sanitization, auditing system for log, 888–891	electronic communications policy at UCD, 1225–1227,
SAT system, detecting covert channels, 596–597	1237–1239
Saved set of privileges, processes, 524	feasibility, in conception stage of life cycle, 636
Saved set (SS) privileges, Trusted Solaris, 525	functional testing, 688–689
Saved UID, 474	kernels. See Kernels
SCADA systems. See supervisory control and data acquisition (SCADA) systems, 582	no longer exclusive realm of government/military, 730 patches, 115–117
Scalability, of formal verification methods, 733	principle of, 257–258
Scanning	problem definition, 752
as malware defense, 808–811	problems from overloaded administrators, 21
network configuration for development system, 1046	specifications, 675–676
Schematic Protection Model (SPM)	structural testing, 688
of computer security, 68–69	TCSEC domains, 734
demand and create operations, 72–75	test suites, 689
ESPM, 83–88	testing, 688–695
filter function, 70–71	Security association (SA)
HRU vs., 82	AH protocol, 407–408
link predicate, 69–70	bundle, 406
putting it all together, 71–72	ESP protocol, 408–409
results of SSR Protection Model, 68-69	IPsec architecture, 404–407
safety analysis, 75–81	tunnel mode and transport mode, 406
simulation and expressiveness of, 88–92	Security classifications
Typed Access Matrix Model, 92–94	declassification problem, 162
Schematic Send-Receive (SSR) Protection Model, 68	model instantiation in Multics, 161–163
Schemes	objects in Bell-LaPadula Model, 142
in access control models, 95–99	principle of tranquility for security levels, 161–163
comparing simulation in models, 89–90	Trusted Solaris, 146–151
in digital rights management, 242	Security clearance
as finite set of link predicates in SPM, 70	Bell-LaPadula and Chinese Wall Models, 234–236
Science DMZ, 946	commercial vs. military integrity policies, 174
Scope	formal model of Bell-LaPadula Model, 151-158
electronic communications policy at UCD, 1213–1214	forming security levels from, 143–144
limitations of TCSEC, 736	Lipner's full model, 181–182
Scrum, Agile software development, 643	of subjects in Bell-LaPadula Model, 142
SD category. See System Development (SD) category	Security Features User's Guide (SFUG), TCSEC, 733
Second-level refinement, access control module,	Security functional requirements (SFRs), CC, 752
1112–1114	Security functions
Secret key cryptosystems. See Symmetric cryptosystems	design documentation, 665
Secret key digital signatures, 318	requirements tracing/informal correspondence,
SECRET (S) security clearance, Bell-LaPadula Model,	677–680
142–146	summary specification, design document, 665-666
Secrets	Security gateway, IPsec, 403
minimizing in principle of open design, 462	Security levels
planning for compromised, 462	in Bell-LaPadula and Chinese Wall Models, 234–236
sharing, 529–530	in Bell-LaPadula Model, formal model, 151–158
Secure communication mission, CSIRT, 986	change of access within, 143–146
Secure, definition of, 49–51	FIPS 140-2, 747–748
Secure field, cookies, 489	in Lipner's full model, 181–182
Secure Shell (SSH) protocol	in Lipner's integrity matrix model, 178–180
authentication for development system, 1054	in Multics, 158–159
authentication for DMA WWW server, 1053-1054	principle of tranquility for, 161–163
configuring inner firewall, 1016–1017	in Trusted Solaris, 148–151
network configuration for development system, 1045	Security life cycle, 22–24
processes running on development system, 1060	Security mechanisms
user configuration for DMZ WWW server, 1050	auditing, 897–900
Secure Sockets Layer (SSL), 394, 400–402	cost-benefit analysis of, 17
Secure systems	design principles for. See Design principles
auditing mechanisms, 897–898	laws and customs as constraints on, 19-20
basic security theorem and, 143, 145	in layered architecture, 652–653
definition of, 109	protection state and, 31
Secure Xenix kernel, 602	security and precision in, 131–135
Security	security policies vs., 9–10, 112–113
assurance, 628–629	supporting availability, 202
CC protection profiles, 752–753	TLS cryptographic, 394–396

Security models	Trusted Solaris labels, 146–151
definition of, 632	virtual machines and, 1172–1175
formal vs. informal, 700	Separation of duty. See Principle of separation of duty
Security-Oriented Analysis of Application Programs	Separation of function, 174
(SOAAP), 722–723	Separation of privilege. See Principle of separation of
Security Parameters Index (SPI), 405–409	privilege
Security policy. See also Noninterference, and policy	Sequences of events, in specification-based detection, 938
composition	Sequencing, improper, 1139
attacks violating, 959	Servers, confinement problem, 579–582
auditing to detect violations, 893–897	Service providers, access control and, 579–580
definition of, 109, 631–632	Service specification, denial of service models, 208–210
definition/requirements specification, 657–660	Session keys
determining safety of system, 49–51	Bellare-Rogaway protocol, 336
development of, 1006–1011	interchange key vs., 332
example. See Academic computer security policy	Kerberos protocol, 337–338
example firewalls, 570–571	Needham-Schroeder protocol, 333–335 Otway-Rees protocol, 335–336
HRU vs. SPM, 82	public key exchange and authentication, 338–341
justifying requirements, 660–662	Session_id, TLS handshake protocol, 397
languages, 118–126	Sessions
laws/customs as constraints on, 19–20	instant messaging setup, 391–392
malware causing violation of, 775–776	TLS, 393–394
nature of, 109–113	Setuid programs, 474
penetration tests violate constraints stated in, 827–828	SFRs. See security functional requirements (SFRs)
protection state and, 31	SFUG. See Security Features User's Guide (SFUG)
review, 136–139	SHA-256-based password hashing, 1053
role of trust in, 115–117	Shared resource matrix model, SDLC, 610
security and precision in, 131–136	Shared resource matrix (SRM) methodology, 598–600
security mechanisms vs., 9–10	Sharing
as set of noninterference assertions, 262	limiting for malware defense, 817–819
system security. See System security practicum	limiting with least common mechanism, 463–464
types of, 7	memory, 1121–1122, 1126–1128
types of access control, 117–118	problems with password. See Program security practicum
using vulnerability to violate, 825	resources, 581, 594
Security policy databases (SPDs), IPsec, 404–405 Security-preserving rules, Bell-LaPadula Model, 155	secrets, 529–530 Sharing rights, Take-Grant Protection Model
Security Requirements for Cryptographic Modules (IG), 748	conspiracy, 66–68
Security specifications, 657, 675–677, 702	overview of, 57–61
Security target (ST), CC, 751, 754–756	theft, 62–66
Security target (ST), ITSEC	Shift (Caesar) cipher, 289–291, 294
assurance requirements, 739	ShiftRows transformation, AES, 304, 1197–1199,
defined, 738	1203–1205
evaluation process, 741	Shipping, deployment stage of life cycle, 637
examples of informal arguments, 680–681	Side channel attacks
justifying requirements, 660–662	covert channels vs., 581
limitations of vendor-provided, 742	and deducibility, 280–282
Security targets, vendor-provided, 742	defined, 280
Segment identifier, untrusted modules, 591	as form of covert channel, 582 Sidewinder firewall
Segment matching, untrusted modules, 591 Segments, ring-based access control, 531–533	restricting access via type checking, 529
seL4 microkernel, as formally verified product, 722	as sandbox built into kernel, 587
Self-healing property, 374, 375–376	Siemens systems, targeted by Stuxnet worm, 792
Self-issued certificate, X.509 PKI, 350	Signal handlers, improper operation of, 1141
Self-organizing maps, anomaly detection, 928–930	Signal protocol, instant messaging, 390
Self-signed certificates, 349, 350	Signature-based detection, incident prevention, 972
Semantic consistency principle, declassification, 163	Signature block, scanning as malware defense, 808
Semantics, object name, 472–473	Signature chains. See Certificate signature chains
Semaphores, information flow using, 558–561	Signature, malware, 809
Sending instant messages, 392	Signature resource record (RRSIG RR), DNSSEC, 488
Sendmail, penetration testing UNIX system, 841–842	Signature_algorithm, TLS handshake protocol, 398
Sensitive data	Signatures
Bell-LaPadula Model labels, 142	adding dynamically in IDIOT system, 934
consistency check in policy development, 1010–1011	malware, 809–810
improper deletion of, 1131–1132	Signcryption, cryptographic primitive, 326

G' 1 1 'GDV' 4 4 ' 200 202	G
Signed pre-key pair SPK, instant messaging, 390–392 Simplicity, as design principle, 455–456	Specifications access control matrix and, 32
Simulation, ESPM vs. SPM, 88–90	assurance and, 13–14
Simultaneity policy, finite waiting time policy, 207–208	defined, 657, 702
Simultaneous users, copied material and, 1209	design satisfying, 14–15
Single flux botnet, 795	external interfaces, 666–668
Single key cryptosystems. See Symmetric cryptosystems	formal. See Formal specifications
Single-level directories (SLDs), Trusted Solaris, 148–149	Gypsy for external/internal, 712
Skipjack symmetric cipher, 355–356	implementation satisfying, 15–16
SL security level. See System Low (SL) security level	internal design, 673–674
SLDs. See single-level directories (SLDs)	modification, 675
Sleeping state	overview of, 658
denial of service protection base, 214	policy definition and requirements, 657–660
resource allocation system, 210 Slicing technique, audit browsing, 909	PVS based on writing, 713–715 requirements tracing/informal correspondence, 677–680
Smallest bucket problem, pronounceable passwords,	as restrictions, in malware defense, 817
420–421	security, 657, 675–677, 702
Smart cards, for key storage, 354	security functions summary, 665–666
Smart terminals, user security and, 1085–1086	security testing, 688–689, 693–695
SMTP	service, 208–210
anticipating attacks in network security, 1027	SPECSEC class, OSSTMM, 834
configuring inner firewall, 1015–1016	SPI. See Security Parameters Index (SPI)
configuring outer firewall, 1015	SPM. See Schematic Protection Model (SPM)
network configuration for development system,	Spoofing attacks
1045–1046	as deception and usurpation, 7
Smurf attack, as amplification attack, 221	DNSSEC immediately detecting, 488
SMV. See Symbolic Model Verifier (SMV)	on facial recognition systems, 444
Snooping (eavesdropping), 7	on identity of host on web, 485
SOAAP. See Security-Oriented Analysis of Application Programs (SOAAP)	remote shell connection, 966–971 Sprints, Scrum, 643
Social engineering, 22	Spyware, 799–800
Software Software	SRI model, Bell-LaPadula Model vs., 707–708
adware entering system via, 798–799	SRM. See shared resource matrix (SRM)
design. See Design assurance, system/software	SS privileges. See saved set (SS) privileges
development life cycle, 635–639	Ssc-preserving rules, Bell-LaPadula Model, 155–156
fault isolation, 587, 591	SSE-CMM. See System Security Engineering Capability
Software as a service cloud, 1024	Maturity Model (SSE-CMM)
Software development models	SSH protocol. See Secure Shell (SSH) protocol
Agile, 641–644	SSL. See Secure Sockets Layer (SSL)
other, 644–645	SSR Protection Model. See Schematic Send-Receive (SSR) Protection Model
waterfall life cycle model, 640–641 Software Tools (T) category, Lipner, 179–180, 181	ST reference, 754
SOG-IS. See Senior Officials Group Information Systems	ST. See security target (ST)
Security (SOG-IS)	Stacking, PAM modules, 448
Sony, DRM implementation, 244	Stages, of life cycle process, 635–639
Soundness, of information flow rules, 561–562	Stand-alone technique, formal specification in, 703
Source code, identifying covert channels in, 601	Stand up meeting, Scrum, 643
SPDs. See security policy databases (SPDs)	Standards, examining vulnerabilities, 864–868
Speaker recognition, biometrics authentication, 443	STAT, misuse intrusion detection, 934–937
Speaker verification, biometrics authentication, 443	State
Spearphishing, tailored for particular victim, 802–803	cookies and, 488–490
SPECIAL formal specification language	system, 31
eliminated as specification language for EHDM, 710	State-based auditing, 894
in formal verification example, 701–702 MLS tool and, 707–708	State-based denial of service model, 210–215 State machine model, 277–279
precise semantics of, 702–705	State-matching reductions, 97–101
strengths of, 703	State transitions
Special topics	affecting protection state, 32
attack and response. See Attack and response	ATAM, 99–101
auditing. See Auditing	comparing schemes/security properties, 95–98
intrusion detection. See Intrusion detection	deterministic noninterference and, 259-261
malicious logic. See Malware	model of resource allocation system, 211–212
vulnerability analysis. See Vulnerability analysis	security in terms of, 271–272
Specification-based detection, 920, 938–942	unwinding theorem, 263–265

Stateful firewalls, 572	Subjects
Statement of importance, electronic communications policy,	access control matrix model and, 32-37
127	adding categories to security classification of, 143–146
Statements. See Program statements	Aggressive Chinese Wall Model, 233–234
Static analysis, malware detection, 811	basic results of determining system safety, 51–52
Static identifiers, on web, 485–487	Biba model for integrity policy, 175–178
Static intrusion detection models, 920	capabilities and, 518
Static keystroke recognition, biometric authentication, 444	Chinese Wall Model, formal model, 230–233
Static mechanisms, information flow	Chinese Wall Model, informal description, 229–230
assignment statements, 551	DTEL associating domains with, 122–125
compound statements, 551–552	example model instantiation in Multics, 158–161
conditional statements, 552–553	formal model of Bell-LaPadula Model, 151–158
declarations, 549–550	link predicate in SPM as relation between two, 69–70
exceptions and infinite loops, 557–558	Lipner's full model of security/integrity levels for, 182
goto statements, 554–556 iterative statements, 553–554	Lipner's security levels for, 179–180 principle of tranquility for security levels of, 161–163
overview of, 548	Propagated Access Control List (PACL), 533–534
procedure calls, 556–557	as protection types in SPM, 69
program statements overview, 550–551	security clearance in Bell-LaPadula Model, 142–143
Static rights, access control by history, 36–37	Take-Grant Protection Model. See Take-Grant
Statistical analysis, as malware defense, 819	Protection Model Protection Model
Statistical methods, anomaly detection, 921–922	Trusted Solaris security classification/categories, 146–151
Statistical regularities, ciphertext problems,	Subnets, wireless networks, 1023
368–369	Substitution ciphers
Statistics, cryptosystem attack using, 291	one-time pad, 299
Stealing, as theft in Take-Grant Protection Model,	overview of, 292–295
63–66	Vigenére cipher, 295–299
Stealth virus, 786	Substitution, DES using, 300
Storage	Subsystem, defined, 663
of access control data, 1108–1110	Subtrace of trace, 938
in cloud, 1025	SubWord transformation, AES round key generation,
covert channels constraining access to, 581	1202–1203
Storage, key	Suitability analysis map, 660–662
key escrow, 354–355	Supervised machine learning methods, anomaly detection,
key escrow system and Clipper chip, 355–357	924
other approaches to, 357–358	Supervisory control and data acquisition (SCADA) systems,
overview of, 353–354	582
Yaksha security system, 357	Surreptitious forwarding attack, 322
Stream ciphers	SVM. See support vector machine (SVM)
block ciphers vs., 371	Symbolic logic
generating random, infinitely long key, 370	overview of, 1179
self-synchronous, 373–374	predicate logic, 1184–1185
synchronous, 371–373	propositional logic, 1179–1184
Strength, password, 432–434	review exercises, 1188–1189
Strict conformance, CC methodology, 752 Strict integrity policy (Biba's model), 177–178	temporal logic systems, 1186–1188 used in formal proof technologies, 700
Strict integrity policy (Bioa's model), 177–178 Strong hash function, 316	Symbolic Model Verifier (SMV)
Strong mixing function, 342	experience with, 720
Strong one-way hash function, 316	proof theory, 718–720
Strong tranquility principle, 162	specification language, 716–718
Structural (white box) testing, 688	Symmetric cryptosystems
Structure, AES, 303–304	AES, 303–306
Structure, DES, 300	DES, 299–302
Structured protection, TCSEC, 734	key exchange, 333–336
Student information, electronic communication privacy,	other modern symmetric ciphers, 302–303
1223–1224	overview of, 291
Stuxnet worm, 792	as single key or secret key, 291
SubBytes transformation, AES encryption, 304, 1197–1199,	substitution ciphers, 292–299
1203–1205	transposition ciphers, 291–292
Subcomponents, 663–664	Symmetric key exchange protocol, Diffie-Hellman as, 340
Subgoals, of attacks, 960-966	SYN/ACK packet
Subject alternative name extension, X.509 PKI certificates,	availability and SYN flood attack, 215, 218-221
352	remote shell (rsh) attack on, 966–967
Subject key identifier extension, X.509 PKI certificates, 351	SYN cookies, and flooding attacks, 219–220

SYN flood attack, availability and, 215–221, 1026	create rule, 57
SYN packets	demand and create operations in SPM vs., 72–75
availability during flooding attacks, 218–221	formulating as instance of SPM, 72
SYN flooding countermeasures, 217	grant rule, 56
Synchronization	interpretation of model, 61–63
coding faults in Aslam's model, 859	principle of least authority and, 458
flaws, 853–854	remove rule, 57
one-time passwords and, 436–438	review, 68
Synchronous stream ciphers, 371–374	schemes and security properties, 95–99
Syntactic issues, auditing system design, 887–888	sharing of rights, 57–61
System administrator, authentication, 1054	SPM subsuming, 82
System Development (SD) category, Lipner, 179–180	take rule, 56
System Low (ISL) integrity classification, Lipner, 181–182	theft in, 62–66
System Low (SL) security level, Lipner, 178–180, 182	Take rule, Grant-Protection Model
System Program (ISP) integrity classification, Lipner,	conspiracy, 61–63
181–182	demand and create operations, 72
System Security Engineering Capability Maturity Model	overview of, 56
(SSE-CMM), 628, 765–768	sharing of rights, 58–59
System security practicum	theft, 64–66
authentication, 1053–1055	TAM Model. See Type Access Matrix (TAM) Model
files, 1061–1066	Target
introduction, 1035–1036	of attacks, 960
networks, 1042–1047	moving target defense, 973
policy, 1036–1041	Target Corporation breach of 2013, 638
processes, 1055–1061 retrospective, 1066–1068	Target of evaluation (TOE), 738, 752–756
review, 1068–1072	Target selection phase, computer worms, 791–792 Tautologies, 1180–1181
users, 1048–1053	Tautology, natural deduction in propositional logic, 1180
System trace, definition of, 938	Taxonomy, enforcing security via NRL, 857–859
Systems Systems	TCB. See trusted computing base (TCB)
architecture, 728, 732	TCC. See type correctness condition (TCC)
assembly from reusable components, 645	TCP intercept mode, SYN flooding countermeasures, 217
digital forensics for entire, 990–992, 998–999	TCP state, 218–221
evaluation of. See Evaluation of systems	TCP three-way handshake
intrusion detection, 972	auditing to detect known violations of policy,
logs, designing auditing system, 891–893	896–897
monitoring, 1225	availability and SYN flood attack, 215-216
problems from administrators, 22	SYN flooding countermeasures, 217
testing, 640–641, 688	TCP wrappers, configuring network development system,
Systems, building with assurance	1046
documentation and specification, 675–677	Tcp_wrappers program, transition-based auditing, 895
implementation. See Implementation assurance	TCSEC. See Trusted Computer System Evaluation Criteria
operation and maintenance, 695–696	(TCSEC)
overview of, 673	TDI. See Trusted Database Management System
requirements definition. See Requirements, definition	Interpretation (TDI)
and analysis	Technical review board (TRB), TCSEC, 735
requirements design. See Requirements, justifying that	Technical review, design meets requirements, 683
design meets review, 696–698	Telecommunications class, OSSTMM, 834 Telephone conversations, privacy protection/limits, 1224
system/software design. See Design assurance,	Temporal logic systems, types of, 1186
system/software	Terminate and stay resident (TSR) viruses, 785–786
system/software	Test assertions, security testing using PGWG, 690, 693
	Test matrices, security testing using PGWG, 690–692
T	Testing
T (Software Tools) category, Lipner, 179–180, 181	for informal validation of design/implementation, 1142
T (tainted) lower level security model, Android, 568	satisfying assurance via, 16
Tags, protecting capabilities via, 519	security, 688–689
Taint sinks, Android, 568	TCSEC, 733
TaintDroid, Android, 568–570	Text display technique, audit browsing, 908
Tainted (T) lower level security model, Android, 568	TFM. See Trusted Facility Manual (TFM)
Take-Grant Protection Model	Theft, in Take-Grant Protection Model, 62-66
of computer security, 56	Theorem prover
conspiracy in, 66–68	Bledsoe, 712–713
controlling copying of capabilities, 523	Boyer-Moore, 709–710

EHDM, 710–711 PVS tightly integrated with, 713	TOE Security Functions (TSF), CC, 750 TOE Security Policy (TSP), CC, 750
Theorems formal mathematical specifications in BLP security	TOE. See target of evaluation (TOE) Token-subsequence signatures, worm detection, 810 Tokens
policy, 702–705 undecidability of virus detection, 803–808	hardware challenge-response procedures and, 439
Theories, PVS language and, 714	using cookies for authentication, 490
Theory of computer viruses, 803–807	TOP SECRET (TS), Bell-LaPadula Model, 142–146
Theory of penetration analysis, Gupta and Gligor, 868–873	Topmost goal, covert flow trees, 605
Therac 25 computer-based electron accelerator radiation	Tor onion router, 497–499
therapy, 630–631	Torpig botnet, 793–796
Third party	Total isolation, 580, 616
independent testing, 688	Total ordering, lattices, 1153–1154
spyware recording data for use by, 799-800	TOTP. See Time-Based One-Time Password Algorithm
Threats	(TOTP)
from botnets, 793–796	Toyota manufacturing, Kanban, 643
building trusted system, 650–651	TPE. See Trident Polymorphic Engine (TPE)
classes of, 7	TPs. See transformation procedures (TPs)
identifying in conception stage of life cycle, 636	Traces
mapping to requirements, 661–662	of events, 938–939
monitoring with audit trails, 879	every contact leaves, 987–990
overview of, 6–9	left by anti-forensic tools, 996
role accounts accessed by authorized users, 1102–1103 Security Problem Definition, CC, 752	Traditional scheme, salting, 429 Traffic analysis, as cryptanalysis, 383–384
vulnerabilities vs., 650	Traffic-policing component, D-WARD, 218
Three-key Triple DES mode, 377	Traffic Validation Architecture, 224
Three Mile Island nuclear failure, 631	Training data
Threshold metrics, anomaly detection, 921	anomaly detection using distance to neighbor, 931
Threshold scheme	anomaly detection with Markov models, 924
one-time pad as, 299	anomaly detection with neural nets, 928–929
principle of separation of privilege via, 530	anomaly detection with self-organizing maps, 929–930
Thumbprinting, tracing attack through network, 980	in systems using clustering, 926
Ticket-granting servers, Kerberos, 337–338	Tranquility principle, 161–164, 885
Tickets	Transactions
Kerberos, 337–338	as basic operation. See Clark-Wilson integrity model
multiple parenting in ESPM, 83–88	integrity security policies, 114
safety analysis of SPM, 75–81	maintaining state to simplify, 488–490
SPM, 69–75 Tiger team attack. See Penetration studies	RBAC, 244–249
TIM research system, Digital Equipment Corporation,	Transceivers, AAFID, 953 Transformation procedures, as sequences of state transitions,
922–923	38
Time	Transformation procedures (TPs), Clark-Wilson integrity
covert channels and, 581–582	model, 184–188
covert timing channels, 594	Transformations, AES
of day, access control module, 1113	decryption, 1200–1201
hardware challenge-response procedures and, 439	encryption, 1197–1199
improper choice of operand/operation and, 1140-1141	order for encryption vs. decryption, 1203–1205
interpreting for key storage, 357–358	round key generation, 1201–1203
of introduction, in NRL taxonomy flaws, 857	Transformations, cryptosystem, 290
mitigating covert channels via, 617	Transitions
in password aging, 435	auditing based on, 881–883, 895
risk changing with, 18	logging based on, 895
in temporal logic systems, 1186 Time-based inductive learning, anomaly detection, 922–923	protection state, 37–41 Transitive confinement, rule of, 581
Time-Based One-Time Password Algorithm (TOTP), 438	Transitive commence, rule of, 381 Transitive nonlattice information flow policies, 544–545
Time flaw attacks, Otway-Rees protocol vulnerability, 336	Transitivity of trust, 189
Time-of-check-to-time-of-use problem, race conditions,	Translucent cryptography, 358
1128–1129	Transmatrix procedure, 555–557
Timestamps	Transport adjacency, IPsec, 406
cryptographic key infrastructure and, 344	Transport Layer Security (TLS) protocol
detecting replay attacks, 335–336	alert protocol, 399
Timestomp plug-in, 995	application data protocol, 400
TLS protocol. See Transport Layer Security (TLS) protocol	change cipher spec protocol, 399
TNI. See Trusted Network Interpretation (TNI)	cryptographic mechanisms, 394–396

handshake protocol, 397–399	reducing user rights for malware containment, 815-816
Heartbeat protocol extension, 399–400	role in computer security, 115–117
overview of, 393–394	security issues with DNS, 487
record layer, 396	in system, 1123
SSLv3 vs. TLSv1.2, 400–401	Trust anchor, CA certificate as, 351
Transport layer (TLS and SSL) security	Trust models
application data protocol, 400	integrity models vs., 189
Heartbeat protocol extension, 399–400	overview of, 189–191
overview of, 393–394	policy-based, 191–194
problems with SSL, 401–402	reputation-based, 194–196
SSLv3 vs. TLSv1.2, 400–401	Trusted Computer System Evaluation Criteria (TCSEC)
supporting cryptographic mechanisms, 394–396	assurance requirements, 732–733
TLS alert protocol, 399	Canadian efforts, 737–738
TLS change cipher spec protocol, 399	CISR, 742–743
TLS handshake protocol, 397–399	defined, 727
TLS record protocol, 396	evaluation classes, 733–734
Transport mode, IPsec, 403	evaluation process, 734–735
Transport mode SAs, IPsec, 406	Federal Criteria developed to replace, 744–745
Transposition cipher, 291	functional requirements, 731–732
Transposition, DES using, 300	impacts, 735–737
TRB. See technical review board (TRB)	ITSEC evaluation vs., 741–742
Tree authentication scheme, Merkle, 344–345	overview of, 730–731
Trees, attack, 961–964, 965–971	requirements in ITSEC not found in, 739–740
The Trial (Kafka), 500	Trusted Database Management System Interpretation (TDI),
Trident Polymorphic Engine (TPE), 788	TCSEC, 736
Trident Vulnerabilities, Pegasus spyware, 799–800	Trusted distribution, TCSEC assurance, 732
Triple DES mode, 302	Trusted modules, software fault isolation for, 591
Tripwire	Trusted Network Interpretation (TNI), TCSEC, 736
low-level policy language, 125–126	Trusted path requirements, TCSEC, 732
scanning as malware defense, 808	Trusted, remote shell (rsh) attack and, 966–967
static analysis and, 894	Trusted Solaris example
Trojan horse	directories and labels, 148–151
accessing role accounts, 1102–1103	limiting sharing for malware defense, 818
adware as, 797	privileges in, 525–526
computer viruses as, 781	security classification and categories, 146–148
overview of, 776–777	weak tranquility in, 162–163
propagating, 779–780	Trusted systems
ransomware as, 800–801	defined, 629
rootkits as pernicious, 777–779	development of, 632–634
spyware as, 799–800	formal security evaluation in, 728–730
Stuxnet worm carried via, 792	scanning as malware defense, 808–809
theft in Take-Grant Protection Model, 63	Trusted systems, building secure and
triggering with logic bombs, 797	Agile software development, 641–644
Trojan.Peacomm bot, 794	life cycle, 634–639
True positive (detection) rate, intrusion detection, 925	other models of software development, 644–645
Trust	waterfall life cycle model, 639–641
assumptions and, 11–12 assurance and, 12–13, 627–629	Trusted third party key escrow system, 354–355
attempted attacks within DMZ/misuse of, 1027	secret key digital signatures rely on, 318
	symmetric key exchange relies on, 333
Biba model integrity levels and, 175–178 certificates and assurance of, 482–484	Trusted users, Multics system, 158–161
confidentiality policies and, 114	Trustworthiness
DNSSEC improving DNS, 488	integrity as data or resource, 5–6
formal evaluation and, 728–729	methodologies assigning levels of, 629
of host name in DNS database, 486	trust as measure of, 628
information flow metrics containing malware, 813	Truth tables, natural deduction, 1182–1183
integrity policies and, 114–115	TS. See TOP SECRET (TS)
ITSEC levels of, 731, 738	TSF. See TOE Security Functions (TSF)
malware defense and notion of, 819–820	TSP. See TOE Security Policy (TSP)
malware detection on data/information, 812	TSR viruses. See terminate and stay resident (TSR) viruses
meaning of identity in, 481–484	Tunnel mode, IPsec, 403
no longer realm of government/military, 730	Tunnel mode SAs, IPsec, 406
problems with PKIs, 352–353	Turing machine, 52–56, 804–808
propagation 190	Two-bit machine, 259–263, 272–273

Two-factor authentication, 446–447 Two-key Triple DES mode, 376	trusted processes, 815 type checking, 528
Two-level security model, Android, 568	type checking, 328 types of file names, 472–473
Twofish cipher, 303	user identity, 474
Type-1 hypervisor, 583, 1172–1173	Unsafe instruction, untrusted modules, 591
Type-2 hypervisor, 583, 1172–1173	Unsafe state, Banker's Algorithm, 203
Type Access Matrix (TAM) Model ATAM, 99–101	Unsupervised machine learning methods, anomaly detection, 924
Dynamic TAM Model, 102	Untainted (U) higher level security model, Android, 568
MTAM, 93–94 overview of, 92–93	Untrained personnel problems, 21–22 Untrusted modules, software fault isolation for, 591–592
Type checking	Unwinding theorem, 263–268, 596–597
designing for validation, 1137–1138	Upper bound, lattices, 1154–1155
improper validation and, 1134	USENET news network, logic bomb, 797
locks and keys access control, 527–528	User accounts, password sharing/administrative roles,
Type flaw attacks, ciphertext problems, 369–370	1100–1103
Type-safe programming languages, implementing	User advisories, electronic communications policy
confinement, 592	introduction, 1234
Types CAPSI and Services 721	overview of, 129–130
CAPSL specification, 721 DTEL based on, 121–125	privacy expectations, 1235–1236
SPECIAL specification and, 703–705	privacy limits, 1237–1239 privacy protections, 1236–1237
Typed Access Matrix Model, 92–94	security considerations, 1239–1241
-,,,,-	user responsibilities, 1234–1235
	User agent (UA), network mail service, 384–385
U	User agreement
UA. See user agent (UA)	constraint-based DoS model, 205–207
UC Davis. See Academic computer security policy example	denial of service models, 204
UC clearance. See UNCLASSIFED (UC) clearance	denial of service protection base, 213–214
UDIs. See unconstrained data items (UDIs) UID. See Unique Identifier for Device (UID)	finite waiting time policy, 207–208 User classes
UIDs. See User identification numbers (UIDs)	configuring internal network, 1021–1022
Unacceptable conduct, electronic communications policy,	policy development practicum, 1008–1011
1209–1212	User identification numbers (UIDs)
Unauthorized access, electronic communications policy, 1210	access control module refinement, 1113
Unauthorized (insecure) states, security policies, 109–113	FreeBSD 10.3 and audit, 1049
Uncertainty. See Entropy and uncertainty	improper choice of operand/operation, 1140
UNCLASSIFED (UC) clearance, Bell-LaPadula Model,	privileges and, 524–525 process configuration on development system, 1049
142–146 Unconditional commands, TAM, 93	resource exhaustion and, 1124
Unconstrained data items (UDIs), Clark-Wilson integrity	UNIX accounts represented by, 1049
model, 184–186	user configuration for development system,
Unique objects, require unique names, 1130	1051–1052
Unit testing, 640, 688–689	User identity, 473–475
United Kingdom IT Security Evaluation and Certification	User interface
Scheme Certification Body, 738	access to roles/commands, 1106
UNIVAC 1108 computer, virus development, 782 Universal security analysis instance, 96, 98	designing for program security, 1104–1105 testing module, 1143–1144
UNIX systems	User security component, key escrow systems, 355
authentication for DMA WWW server, 1053	User security practicum
built-in security in vs. adding later, 656–657	access, 1074–1079
Clark-Wilson model implementation, 186–187	devices, 1084–1087
Internet worm, 790–791	electronic communications, 1092–1094
known security flaws, 846–848	files, 1080–1084
malware detection on data, 812 multifactor authentication, 447–448	overview of, 1072 policy, 1072–1073
opening files, 518	processes, 1087–1092
password mechanism, 417–418	review, 1094–1097
penetrating, 841–843	Users
privileges, 524–526	checking input from untrusted sources, 1136–1137
process configuration for system security, 1056–1057	system security practicum, 1048–1053
representing accounts by UID, 1049	unacceptable conduct, 1210–1211
specification-based intrusion detection, 939–941	USTAT, misuse intrusion detection, 935–937
spread of viruses, 782	Usurpation, as class of threat, 7–9

V	Virtual machines
Valid access lists (VALs), malware containment, 815-816	defined, 583
Validation	exercises, 1176–1177
of access control entries, 1124	malware attempts to evade detection in, 811
failure and CCM, 379	malware containment via, 816-817
Validation, improper	monitor, 1171–1172
bounds checking, 1133–1134	overview of, 1171
checking for valid data, 1135–1136	paging and, 1175–1176
checking input, 1136–1137	physical resources and, 1175
designing for validation, 1137–1138	privilege and, 1172–1175
error checking, 1134–1135	providing isolation via, 583–585
flaws, 853	structure of, 1171
improper indivisibility, 1138–1139	Virtual private network (VPNs), 1015, 1023–1024 Virtualization fault, Intel VT-i architecture, 1174
improper sequencing, 1139 overview of, 1132–1133	Virus detection problem, 803–808
type checking, 1134	Viruses. See Computer viruses
Values, cookie, 489	Visible functions, SPECIAL specification and,
Variable classes, information flow, 565–566	703–704
Variables	Visual Network Rating Methodology (VNRM), 647
checking that values are valid, 1135	VMM. See virtual machine monitor (VMM)
identifying covert channels, 601–602	VMX root and nonroot operations, Intel VT-x, 1174
VAX-11/750 computer, developing virus for, 781–782	VNRM. See Visual Network Rating Methodology (VNRM)
VAX architecture, privilege and virtual machines,	Voice recognition systems, biometrics, 443
1172–1175	VPNs. See virtual private network (VPNs)
VAX hardware, virtual machines, 583–585	VT-i architecture, Intel, 1174
VAX VMM system, auditing mechanisms, 897–898	VT-x architecture, Intel, 1174–1175
VAX/VMM system, paging and, 1176	Vulnerabilities
VAX/VMS system, paging and, 1176	Apple patches for Trident, 800
VCMS control structure, Intel VT-x, 1174–1175	penetration studies to find, 827–828
VCs. See verification conditions (VCs)	threats vs., 650
Vendor Security Analyst, RAMP, 735	Vulnerability analysis
Verbs, access control by Boolean expression, 35–36 Verification	configuring outer firewall, 1015 frameworks, 849–864
formal techniques for, 699–702	Gupta and Gligor's penetration analysis theory,
as goal of Gypsy language, 711	868–873
in HDM, 707–708	introduction, 825–827
implementation phase issues, 15	overview of, 825
TCSEC assurance requirements, 733	penetration studies. See Penetration studies
Verification conditions (VCs), in HDM, 708	review, 873–878
Verified protection, TCSEC evaluation classes, 734	standards, 864–868
Verisign Corporation, CA issuance/authentication policies,	vulnerability classification frameworks, 845-848
477	Vulnerability classification frameworks, 845–848
Version control and tracking, implementation management,	Vulnerability (or security flaw), defined, 825
686	
VFS layer. See virtual file system (VFS) layer	147
VFUNs, 703–704, 708	W
Victim, remote shell (<i>rsh</i>) attack, 966–967	Waiting time policy
View entry, CWE, 867	denial of service models, 204
Vigenére cipher	denial of service protection base, 213
autokey versions of, 373–374 one-time pad as variant of, 299	SYN flooding analysis and, 216 Walkthroughs (code review), implementation management,
overview of, 294–299	687–688
as stream cipher, 370, 373–374	Warning message, password aging, 435–436
Violable prohibition/limit class of flaw, RISOS study,	Waterfall life cycle model, 639–641
850–851	Watergate scandal, 500
Violations of law and policy	Weak tranquility principle, 162–163
acceptable use policy at UCD, 1209	Weakness base entry, CWE, 867
electronic communications policy, 1215	Weakness class entry, CWE, 867
Virtual circuits, Tor, 497–498	Weakness variant entry, CWE, 867
Virtual file system (VFS) layer, adore-ng rootkit	Web, anonymity on
compromising, 778	for better or worse, 499–501
Virtual machine monitor (hypervisor), 1171–1172	electronic mail anonymizers, 491–494
Virtual machine monitor (VMM), 583–584, 587,	onion routing, 495–499
1171–1172	overview of, 490–491

Web, identity on	X
DNS security extensions, 487–488	X.509
host identity, 484–485	certificate conflicts, 479–480
overview of, 484	certificate signature chains, 346–348
security issues with DNS, 487	certificates and assurance of trust, 482-483
state and cookies, 488–490	PGP certificate signature chains vs.,
static and dynamic identifiers, 485–487	349–350
Well-formed transactions, integrity of data, 183–184	PKI, 350–352
WFFs. See well-formed formulas (WFFs)	PKI certificate revocation, 359
Whistleblower policy, 129	public-key certificates using Distinguished Names
Windows Event Log Service, 882–883	476
Windows systems	using Resource Public Key Infrastructure, 361
components/subcomponents, 663-664	XCP anti-piracy software, Sony BMG, 778–779
and monitors, 1086–1087	Xen 3.0 hypervisor, 584
penetration of, 843–844	XML. See extensible markup language (XML)
Trojan.Peacomm bot infecting, 794	XP. See Extreme Programming (XP)
Windows 10 logger, 882–883	Xterm flaw, 859–862
Wireless communication class, OSSTMM, 834	Xterm security flaw, UNIX, 846–847
Wireless networks, security practicum, 1023–1024	
Witness, graph rewriting rules as, 57	γ
WordPerfect cipher, Kerberos, 338	Yaksha security system, 357
Workstation security requirements, CISR, 743	Yu-Gligor denial of service model, 204–205, 216
Worms, computer, 790–792	Tu-Gligor delitar or service model, 204–203, 210
Wrappers, blocking attacks, 977–978	_
Writable devices, user security, 1084–1085	Z
Write right, access control matrix, 33	Zmist computer virus, 789
Writing, and Trusted Solaris, 147	Zones
Written passwords, obscuring, 419–420	DMZ. See demilitarized zone (DMZ)
WWW-clone, updating DMZ web server, 1019	in Trusted Solaris, 149–150