Linear Independence Visualization

Figure 1: Linear Independence Visualization

Linear Algebra Day 3 — Basis and Dimension

⊠ Objectives
• Understand what a basis is in a vector space
• Learn the meaning of dimension and how it relates to the basis
• Identify linearly independent vs dependent sets
Use visuals and examples to build intuition
1⊠ Concept Summary
□ Definition
A basis of a vector space is a set of vectors that: 1. Span the space 2. Are linearly independent
• A basis is like the coordinate frame of a space
• Every vector in the space can be expressed uniquely as a combination or basis vectors
The dimension of a space is the number of vectors in any basis for that space
Below, blue and red vectors point in the same direction \rightarrow linearly dependent. Blue and green vectors point in different directions \rightarrow linearly independent.

2⊠ Key Formulas and Rules

⊠ Linear independence

A set of vectors (v_1 , v_2 , \cdots , v_k) is linearly independent if:

$$a_1v_1+a_2v_2+\cdots+a_kv_k=\begin{bmatrix}0\\ \vdots\\ 0\end{bmatrix}$$

only when:

$$a_1=a_2=\cdots=a_k=0$$

\boxtimes Dimension

The **dimension** of a vector space is:

the number of vectors in a basis of that space

Examples:

- \boxtimes^2 \rightarrow dimension 2
- \boxtimes^3 \rightarrow dimension 3
- A line through the origin in \boxtimes^2 \rightarrow dimension 1

3⊠ Worked Examples

⊠ Example 1: Check if vectors form a basis

Are these a basis of \boxtimes^2 ?

$$v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

Check: is one a multiple of the other?

$$v_2 = 3 \cdot v_1$$

→ Yes → Linearly dependent → 🛛 Not a basis

 \boxtimes Example 2: Standard basis in \boxtimes^3

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 \rightarrow These are linearly independent and span \boxtimes^3

 $oxed{\boxtimes}$ They form a basis

4⊠ Practice Problems

1. Do the vectors form a basis of \mathbb{X}^2 ?

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

2. Are these vectors linearly independent?

$$\begin{bmatrix} 2\\1\\0 \end{bmatrix}, \quad \begin{bmatrix} -1\\3\\1 \end{bmatrix}, \quad \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

3. What's the dimension of the span of:

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

5⊠ Metacognition Check

☐ Can I test independence with the zero vector condition?

☐ Can I explain dimension in terms of basis count?

☐ Can I visualize basis vs non-basis examples?

6⊠ Real-World Applications

• Robotics: Robot movement spaces depend on basis and dimensionality

3

- **Data Science**: Dimensionality reduction = choosing a new basis
- **Physics**: Vectors like forces and velocities live in vector spaces with defined bases

⋈ Tomorrow's Preview

Day 4: Matrix Representation & Linear Transformations

We'll use matrices to represent how vectors move, rotate, stretch, or shrink.