Chap. VII: MOMENT DE TORSION

L'état de torsion est caractérisé par le fait que des six composantes des efforts internes, seul le moment de torsion Mx = Mt n'est pas nul tandis que toutes les autres sont égales à zéro.

1- Conclusions fondamentales de la théorie de la torsion des poutres prismatiques

a) Les sections droites gauchissent

Elles perdent dans la déformation leur caractère plan. Le déplacement axial u du point courant P de (S) est une fonction en général non linéaire de y et z. Il est indépendant de x. Le gauchissement est le même pour toutes les sections droites. Les poutres en forme de cylindre de révolution (plein ou creux) font exception à cela.

b) axe de torsion – centre de torsion

Toute section droite (S) subit une rotation d'ensemble d'amplitude ϕ_x , autour d'un axe parallèle à la ligne moyenne.

Au gauchissement, se superpose donc un déplacement transversal du point courant P de (S), de composantes.

$$\overrightarrow{\delta P} \begin{cases} \mathbf{v} = (-\frac{\mathbf{B}}{2.\mathbf{G}}.\mathbf{z} + \gamma). \mathbf{x} \\ \mathbf{w} = (\frac{\mathbf{B}}{2.\mathbf{G}}.\mathbf{y} - \beta). \mathbf{x} \end{cases}$$

Où B, β et γ sont des constantes et G : module de glissement (ou module d'élasticité transversal).

Ce déplacement identiquement nul sur la section initiale (So) est proportionnel à l'abscisse x de (S) pour une fibre donnée.

Dans le plan de (S), le point C de coordonnés :

$$C \begin{cases} y_c = -\frac{2 \cdot G \cdot \beta}{B} \\ z_c = \frac{2 \cdot G \cdot \gamma}{B} \end{cases}$$

A un déplacement transversal nul, ce point est appelé « centre de torsion » (pour V=W=0) de la section droite.

Dans le repère (Co, x'y' z') parallèle à (O, x y z) avec Co: centre de torsion de la section initiale, les relations précédentes s'écrivent (x est parallèle à x, pas de rotation donc pas de déformation):

$$\frac{1}{\delta P} \begin{cases}
V = -\frac{B \cdot x}{2 \cdot G} \cdot z! = -\phi_{x} \cdot z! \\
W = \frac{B \cdot x}{2 \cdot G} \cdot y! = \phi_{x} \cdot y!
\end{cases}$$

(On est toujours dans le plan de la section, les termes β et γ sont nuls)

Le déplacement dans le plan de (S) du point P est donc purement ortho-radial et de valeur

algébrique :

$$\overline{\delta P} = \frac{B.x}{2.G}.r = \phi_x.r$$

Toute section droite subit, en plus de gauchissement, une rotation d'ensemble autour de l'axe Cox', d'angle $\phi_x = \frac{B}{2.G}.x^i$ (avec x' confondu avec x)

c) Dans le cas général, nous avons :

T : Résultante générale en G : effort tranchant

 $\vec{\mathbf{M}}_{\mathbf{x}}$: Moment résultant en G: moment longitudinal

M, : Moment résultant en G : moment de torsion

Et
$$\vec{M}_{t} = \vec{M}_{x} + \vec{C}\vec{G} \wedge \vec{T}$$

Si dans une section (S) $\vec{T} = \vec{0}$, on a: $\vec{M}_{t} = \vec{M}_{x}$

2- Théorie simplifiée de la torsion d'une barre circulaire

Nous utiliserons les coordonnées cylindriques d'axe Cx (axe de torsion local), θ désignant l'angle polaire de l'axe radial Cr par rapport cy'. Donc le point $P(r, \theta)$

Nous supposerons que la distribution de τ est linéaire sur toute radiale Cr. On peut donc écrire, au point courant P de (S) : $\tau = \mathbf{K}(\theta) \cdot \mathbf{r}$

Distribution des contraintes

Une génératrice ab est tracée à la surface d'un arbre non chargé se déplace en a'b' après l'application de Mt.

γ: déformation de cisaillement (exprimée en radians) = distorsion

r : rayon de la section transversale

Tang
$$\gamma \approx \gamma = \mathbf{r} \cdot \frac{d\varphi}{dx} = \mathbf{r} \cdot \theta$$

avec $\theta = \frac{d\phi}{dx}$: angle de torsion par unité de longueur (θ : angle de torsion relatif)

Connaissant (loi de Hook en cisaillement) : $\tau = G.\gamma = G.r.\theta$ donc $K(\theta) = G.\theta$

Si on considère un élément semi-circulaire à l'intérieur de la barre de rayon ρ , on a :

$$\tau = G.\rho.\theta$$
 avec $\rho \le r$

Par définition, le moment de torsion : $M_t = \iint \tau . \rho . ds = \iint G . \rho^2 \theta . ds = G . \theta \iint \rho^2 . ds$

D'où $M_t = G.\theta.J$ avec $J = \iint \rho^2.ds$

Et
$$\frac{d \varphi}{dx} = \frac{M}{G . J}$$

 $\frac{d\phi}{dx}$: Rotation relative de deux sections droites voisines distantes de dx

 $\mathbf{G.J}:$ Rigidité à la torsion de la poutre

G : module de glissement est une caractéristique du matériau ($G = \frac{E}{2.(1 + v)}$)

J: de dimension L⁴, ne dépend que de la géométrie de la section droite (analogie au moment quadratique polaire Io)

θ: angle de torsion par unité de longueur, $θ = \frac{M_t}{G.J}$: varie directement avec avec Mt et inversement avec (G.J)

 $\phi = \Phi$: angle totale de torsion = $\frac{\mathbf{M_t L}}{\mathbf{G.I}} = \theta \mathbf{L}$

La contrainte de cisaillement en un point de la section à une distance ρ du centre est :

$$\tau = \mathbf{G}.\rho.\theta = \mathbf{G}.\rho.\frac{\mathbf{M_t}}{\mathbf{G}.\mathbf{J}}$$

$$\tau = \frac{M_{t}.\rho}{J}$$

Remarques:

a) La contrainte maximale de cisaillement pour une barre de section circulaire de rayon R est:

$$\tau_{\text{max}} = \frac{\mathbf{M}_{\text{t}}.\mathbf{R}}{\mathbf{J}} = \frac{\mathbf{M}_{\text{t}}}{\mathbf{W}_{\text{p}}}$$

avec $J = \frac{\pi . R^4}{2}$ et $W_p = \frac{J}{R} = \frac{\pi R^3}{2}$: moment résistant polaire

b) cas d'une section creux de section circulaire $r_1 \le \rho \le r_2$: $M_t = G.J.\theta$

$$J = \frac{\pi}{2} (r_2^4 - r_1^4) \text{ et } W_p = \frac{J}{r_2} = \frac{\pi r_2^3}{2} . (1 - (\frac{r_1}{r_2})^4)$$

c) cas d'une section rectangulaire bxh (b : largeur et h : hauteur)

$$\tau_{max} = \frac{\dot{M}_t}{k_1 \cdot b \cdot h^2} \text{ avec } k_1 = f(\frac{b}{h})$$

Si $\frac{b}{h} \to \infty$ on $a k_1 = \frac{1}{3}$

3- Résistance et rigidité

* $\tau_{max} = \frac{\left| \mathbf{M}_{t} \right|_{max}}{\mathbf{W}_{t}} \le \left| \tau \right|$ donc $\mathbf{W}_{p} \ge \frac{\left| \mathbf{M}_{t} \right|_{max}}{\left| \tau \right|}$; τ : contrainte tangentielle admissible

*
$$\theta_{\text{max}} = \frac{\left| \mathbf{M}_{t} \right|_{\text{max}}}{\mathbf{G}.\mathbf{J}} \le \left| \theta \right| \text{ donc } \mathbf{W}_{p} \ge \frac{\left| \mathbf{M}_{t} \right|_{\text{max}}}{\left| \mathbf{G} \right| \left| \theta \right|}$$
; θ : angle de torsion admissible

4- Energie potentielle élastique

La densité d'énergie emmagasinée est : $\frac{dw}{dv} = \frac{1}{2} . tr([\sigma][\epsilon]) \text{ avec } [\sigma] = \begin{bmatrix} 0 & \tau_{yx} & \tau_{zx} \\ \tau_{yx} & 0 & 0 \\ \tau_{zx} & 0 & 0 \end{bmatrix}$

$$\text{Et} \quad \left[\epsilon\right] = \frac{1+\nu}{E} \begin{bmatrix} 0 & \tau_{yx} & \tau_{zx} \\ \tau_{yx} & 0 & 0 \\ \tau_{zx} & 0 & 0 \end{bmatrix} = \frac{1}{2.G} \begin{bmatrix} 0 & \tau_{yx} & \tau_{zx} \\ \tau_{yx} & 0 & 0 \\ \tau_{zx} & 0 & 0 \end{bmatrix}$$

$$\boxed{\frac{dw}{dv} = \frac{1}{2.G}.(\tau_{yx}^2 + \tau_{zx}^2) = \frac{1}{2.G}.\tau^2}, \text{ cas d'une poutre} \qquad \boxed{\frac{dw}{dx} = \frac{1}{2.G}.\iint_{(S)} \tau^2.ds}$$

Nous pouvons donner une autre expression, plus commode dans les applications de cette énergie :

$$\frac{\mathrm{dw}}{\mathrm{dx}} = \frac{1}{2} \cdot \frac{\mathrm{M_{t}}^{2}}{\mathrm{G.J}}$$

Démonstration:

$$dw = \frac{1}{2} M_t d\phi$$
 et $\frac{dw}{dx} = \frac{1}{2} M_t \frac{d\phi}{dx} = \frac{1}{2} M_t \frac{M_t}{GJ} = \frac{1}{2} \frac{M_t^2}{GJ}$

L'énergie total est :
$$W = \frac{1}{2} \cdot \frac{M_t^2}{G.J} \cdot L = \frac{1}{2} \cdot M_t \cdot \phi$$