Chapter 26

Direct-Current Circuits

Combining resistors

• For three resistors R_1 , R_2 , R_3 .

(b) R_1 , R_2 , and R_3 in parallel

Combining resistors

- For three resistors R_1 , R_2 , R_3 .
 - (c) R_1 in series with parallel combination of R_2 and R_3

(d) R_1 in parallel with series combination of R_2 and R_3

• For any combination of resistors, we can always find a *single* resistor that could replace the combination and result in the same total current and potential difference.

Resistors in series

$$V_{ab} = V_{ax} + V_{xy} + V_{yb} = I(R_1 + R_2 + R_3)$$
$$\frac{V_{ab}}{I} = (R_1 + R_2 + R_3)$$

The equivalent resistance:

$$R_{eq} = (R_1 + R_2 + R_3)$$

Resistors in parallel

$$I = I_1 + I_2 + I_3$$

$$= \frac{V_{ab}}{R_1} + \frac{V_{ab}}{R_2} + \frac{V_{ab}}{R_3}$$

$$\frac{I}{V_{ab}} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)$$

(b) R_1 , R_2 , and R_3 in parallel

The equivalent resistance:

$$\frac{1}{R_{eq}} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)$$

Example 1

 Find the equivalent resistance of the network shown and find the current in each resistor. The source of emf has negligible internal resistance.

Example 1

Solution: The equivalent resistance

Example 1

Solution: Determining the currents

Junctions and loops

Two features of circuits

- Junction a point where three or more conductors meet.
- Loop is any closed conducting path.

Junctions and loops

Kirchhoff's junction rule: The algebraic sum of the currents into any junction is zero.

$$\sum I = 0$$

 Based on conservation of electric charge.

$$\sum I_{in} = \sum I_{out}$$

Junctions and loops

Kirchhoff's loop rule: The algebraic sum of the potential differences in any loop, including those associated with emfs and those of resistive elements, *must equal zero*.

$$\sum \Delta V = 0$$

Based on conservation of energy.

Sign convention for the loop rule:

(a) Sign conventions for emfs

(b) Sign conventions for resistors

Example 2:

Below is a "bridge" circuit. Find a) the current in each resistor and b) the equivalent resistance of the network of five resistors.

Example 2:

Solution:

a) Apply the loop rule to the three loops shown:

13 V -
$$I_1(1 \Omega)$$
 - $(I_1 - I_3)(1 \Omega) = 0$ (1)
- $I_2(1 \Omega)$ - $(I_2 + I_3)(2 \Omega)$ + 13 V = 0 (2)
- $I_1(1 \Omega)$ - $I_3(1 \Omega)$ + $I_2(1 \Omega)$ = 0 (3)

• From junction rule: $I_2 = I_1 + I_3$

13 V =
$$I_1(2 \Omega) - I_3(1 \Omega)$$
 (1')
13 V = $I_1(3 \Omega) + I_3(5 \Omega)$ (2')

$$I_1 = 6 \text{ A}$$
; $I_3 = -1 \text{ A}$; $I_2 = 5 \text{ A}$

Example 2:

Solution:

b) Equivalent resistance:

$$R_{eq} = \frac{\mathcal{E}}{I_1 + I_2} = \frac{13 \text{ V}}{11 \text{ A}} = 1.2 \Omega$$

• Potential difference V_{ab}

$$V_{ab} = I_3(1 \Omega) = -1 V$$

The Ammeter

An *ammeter* is a device for measuring current.

 The current in the circuit must flow through the ammeter; therefore the ammeter should have as low a resistance as possible, for the least disturbance.

The Voltmeter

A *voltmeter* measures the potential drop between two points in a circuit.

- It therefore is connected in parallel;
- In order to minimize the effect on the circuit, it should have as large a resistance as possible.

The Galvanometer

Many common devices, measure potential difference (voltage), current, or resistance using a **d'Arsonval galvanometer**

- A pivoted coil of fine wire is placed in the magnetic field of a permanent magnet.
- When there is a current in the coil, the magnetic field exerts a torque on the coil that is proportional to the current.
- The device can be calibrated to measure current or voltage.

The Galvanometer

- The essential electrical characteristics of the meter are the current I_{fs} required for *full-scale* deflection (typically on the order of 10 μ A to 10 mA) and the resistance R_C of the coil (typically on the order of 10 to 1000 Ω).
- The meter deflection is proportional to the *current* in the coil. If the coil obeys Ohm's law, the current is proportional to the *potential difference* between the terminals of the coil.

$$V_{fs} = I_{fs} R_C$$

The Galvanometer

- We can adapt any ammeter to measure currents larger than its full-scale reading by connecting a resistor in parallel with it.
 - The parallel resistor is called a shunt resistor or simply a shunt, denoted as R_{sh}
- We can extend the range of a voltmeter by connecting a resistor R_S in series with the coil.
 - Then only a fraction of the total potential difference appears across the coil itself, and the remainder appears across R_S

Charging a capacitor

A *battery* is connected to a *capacitor* through a *resistor*.

(a) Capacitor initially uncharged

(b) Charging the capacitor

When the switch is closed, the charge on the capacitor increases over time while the current decreases.

Charging a capacitor

By Kirchhoff's loop rule:

$$\mathcal{E} + v_{ab} + v_{ab} = 0$$
$$\mathcal{E} - Ri - \frac{q}{C} = 0$$

The current charges the capacitor:

$$R\frac{dq}{dt} + \frac{1}{C}q = \mathcal{E}; \quad i = \frac{dq}{dt}$$

• The charge and current are functions of time. [q = q(t); i = i(t)]

Charging a capacitor

• Initial condition (at t = 0):

$$q = 0$$

$$i(0) = \frac{\mathcal{E}}{R} = I_0$$

• At steady state $(t \to \infty)$:

$$i \rightarrow 0$$

$$q(\infty) = C\mathcal{E} = Q_f$$

Charging a capacitor

Solving differential equation:

$$\frac{dq}{dt} + \frac{1}{RC}q = \frac{\mathcal{E}}{R}$$

$$q(t) = C\mathcal{E}(1 - e^{-t/RC})$$

$$= Q_f(1 - e^{-t/RC})$$

The current:

$$i(t) = \frac{Q_f}{RC} e^{-t/RC} = I_o e^{-t/RC}$$

Charging a capacitor

The charge:

$$q(t) = Q_f(1 - e^{-t/RC})$$

The current:

$$i(t) = I_o e^{-t/RC}$$

Charging a capacitor

The time constant:

$$t = \tau = RC$$

The charge and current:

$$q(\tau) = Q_f (1 - e^{-1})$$

= 0.63 Q_f

$$i(\tau) = I_o e^{-1}$$
$$= 0.37 I_o$$

Charging a capacitor

• Energy transfer (power):

$$\mathcal{E} = Ri + \frac{q}{C}$$

$$\mathcal{E} i = Ri^2 + \frac{qi}{C} = P$$

The total energy transferred:

$$U = \int (\mathcal{E} i) dt$$
$$= \mathcal{E} I_o \int_0^\infty e^{-t/\tau} dt$$
$$= \mathcal{E} Q_f$$

Charging a capacitor

The total energy transferred:

$$U = \mathcal{E} Q_f$$

The energy stored in capacitor:

$$U_C = \frac{1}{2} \frac{Q_f^2}{C} = \frac{1}{2} \mathcal{E} Q_f$$

The energy dissipated in resistor:

$$U_R = \int (Ri^2)dt = \frac{1}{2} \mathcal{E} Q_f$$

Example 3: Charging a capacitor

A 10 M Ω resistor is connected in series with a 1.0 μ F capacitor and a battery with emf 12.0 V. Before the switch is closed at time t=0 the capacitor is uncharged. (a) What is the time constant? (b) What fraction of the final charge Q_f is on the capacitor at t=46 s? (c) What fraction of the initial current is still flowing at t=46 s?

a) Time constant:
$$\tau = RC = (10 \times 10^6 \,\Omega)(1.0 \times 10^{-6} \,\mathrm{F}) = 10 \,\mathrm{s}$$

Total charge:
$$Q_f = C\mathcal{E} = 12.0 \ \mu\text{C}$$

Maximum current: $I_0 = \mathcal{E}/R = 1.2 \,\mu\text{A}$

Example 3: Charging a capacitor

b) Charge on the capacitor at t = 46 s

$$\frac{q}{Q_f} = (1 - e^{-t/RC})$$

$$= 1 - e^{-(46)/(10)}$$

$$= 0.99$$

c) Current at t = 46 s

$$\frac{i}{I_0} = (e^{-t/RC})$$

$$= e^{-(46)/(10)}$$

$$= 0.010$$

Discharging a capacitor

A *capacitor* is discharged through a *resistor*.

(a) Capacitor initially charged

(b) Discharging the capacitor

When the switch is closed, the charge on the capacitor and the current both decrease over time.

Discharging a capacitor

By Kirchhoff's loop rule:

$$v_{ab} + v_{bc} = 0$$
$$Ri + \frac{q}{C} = 0$$

The discharge current:

$$\frac{dq}{dt} = -\frac{1}{RC}q$$

Initial conditions (at t=0):

$$q(0) = Q_0$$

 $i(0) = -Q_0/RC = I_0$

Discharging a capacitor

Differential equation:

$$\frac{dq}{dt} = -\frac{1}{RC}q$$

The charge:

$$q(t) = Q_0 e^{-t/RC}$$

The current:

$$i(t) = -I_0 e^{-t/RC}$$

Example 4: Discharging a capacitor

The resistor and capacitor are reconnected as shown. ($R=10 \text{ M}\Omega$; $C=1.0 \text{ }\mu\text{F}$). The capacitor has an initial charge of $Q_0=5.0 \text{ }\mu\text{C}$ and is discharged by closing the switch at t=0. (a) At what time will the charge be equal to $0.50 \text{ }\mu\text{C}$. (b) What is the current at this time?

$$au = RC = 10 \text{ s}$$

$$Q_0 = 5.0 \,\mu\text{C}$$

$$I_0 = Q_0/RC = 0.5 \,\mu\text{A}$$

Example 4: Discharging a capacitor

a) When the charge on the capacitor = $0.50 \mu C$

$$t = -RC \ln\left(\frac{q}{Q_f}\right) = -(10 \text{ s}) \ln\left(\frac{0.50}{5.0}\right) = 23 \text{ s}$$

b) Current

$$i = I_0(e^{-t/RC}) = (0.5 \,\mu\text{A})e^{-2.3} = 0.05 \,\mu\text{A}$$

END

