Problema 3. (EUA) Para quantos inteiros positivos n entre 1 e 100 é possível fatorar $x^2 + x - n$ como produto de dois fatores lineares com coeficientes inteiros?

Sejam de
$$\beta$$
 raites de x^2+n-n
 $(\alpha, \beta \in \mathcal{U})$. Lago $\alpha + \beta = -1$ e $\alpha + \beta = -n$

Problema 4. (ITA) Se a,b,c são as raízes da equação $x^3-2x^3+x-4=0$, determine o valor de $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.

$$\frac{1+1+1}{abc} = \frac{ab+ac+bc}{abc} = \frac{1}{4}$$

Problema 5. (ITA) As raízes da equação $x^4+qx^3+rx^2+sx+t=0$, com $q,r,s,t\in\mathbb{Q}_+^*$, são L,M,N,P. Determine o valor de

$$\frac{L}{MNP} + \frac{M}{LNP} + \frac{N}{LMP} + \frac{P}{LMN}.$$

$$= (-9)^{2} - 2.r - 9^{2} - 2r + n$$

Problema 6. (IME) Sejam x_1 e x_2 as raízes da equação $x^2 + (m-15)x + m = 0$. Sabendo que x_1 e x_2 são números inteiros, determine o conjunto de valores possíveis para m.

$$x_1 + x_2 = 15 - \infty$$

 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.
 $x_1 \times x_2 = 15 - (x_1 + x_2)$.

como greremos aponas ens possibilidades de me as relações são sivétricos, basta pagos uma seguêncio que terasos os possíveis valores de m:

$$\begin{cases} x_1 + 1 = \frac{1}{2} \frac{1}{4} = 1 \\ x_2 = 15 - 17 + 1 - 9 + 3 - 5 \end{cases}$$

Problema 7. Os três números distintos a, b, c verificam as igualdades

$$\left\{ \begin{array}{lcl} a^3 + pa + q & = & 0 \\ b^3 + pb + q & = & 0 \\ c^3 + pc + q & = & 0 \end{array} \right. .$$

Prove que a+b+c=0.

Teros que a, b, c são raites de x³+px+q. Fortando a relação de Giror de pora obter a soma das raisos:

Problema 8. Sejam $m,n,k\in\mathbb{Q}$ as raízes de t^3+at+b . Prove que as raízes de mt^2+nt+k também são racionais.

Raizes de
$$mt^2 + nt + K \Rightarrow \alpha, \beta$$
.

$$\therefore \alpha + \beta = -n \cdot \lambda \beta = K$$

$$m'$$

Da priveira equação: m+n+K=0.

mn + mK+nK=a

mn K=-b

Se m+n+K=0, ntão lé raizde mt+n+x.

...
$$d=1$$
 e $\beta=K$ (ambas racionais).

Problema 9. (ITA) As raízes da equação de coeficientes reais $x^3 + ax^2 + bx + c = 0$ são inteiros consecutivos. A soma dos quadrados dessas raízes é igual a 14. Determine o valor de $a^2 + b^2 + c^2$.

Raites:
$$K-1$$
, $K \in K+1$.
 $(K-1)^2 + K^2 + (K+1)^2 = 14$
 $3K^2 + 2 = 14$
 $K=\pm 2 =) | K=2$

$$6 = -\alpha = 2 + 3 + 6 = 6$$

$$6 = -C$$

$$= 0 = -6$$

$$6 = 11 = 2 - 6 + 2 - 2 - 3 = 12 - 12 = 10 = 10$$

$$C = -6$$

Problema 10. Determine o valor da soma a+b para que as raízes do polinômio

$$4x^4 - 20x^3 + ax^2 - 25x + b$$

estejam em progressão aritmética de razão $\frac{1}{2}.$

Raizes:
$$X + 1/2$$
, $K + 1$, $K + 3/2$, $K + 2$

$$X + 3 + 2 = 5$$

$$X = 0$$

$$0 = 45 - 4 = 41$$

Problema 1. (ITA) Seja $k \in \mathbb{R}$ tal que a equação $2x^3 + 7x^2 + 4x + k = 0$ possua uma raiz dupla e inteira x_1 e uma raiz x_2 (ou seja, as raízes são x_1 , x_1 e x_2), distinta de x_1 . Determine o valor de $(k + x_1)x_2$.

Relações de Girad:
$$2x_1+x_2=-7/2$$

 $x_1^2+2x_1x_2=2$
 $x_1^2x_2=-x/2$

$$x_{1}^{2} + 2x_{1}\left(\frac{1}{2} + 2x_{1}\right) - 2$$

$$x_{1}^{2} - 1x_{1} - 4x_{1}^{2} - 2$$

$$3x_{1}^{2} + 1x_{1} + 1 = 0$$

$$x_{1} = -1 + \sqrt{44 - 24} = -1 + 5 = -2 \cdot 00 - \frac{1}{3}$$

$$x_{1} = -2 \cdot \frac{1}{3} \cdot \frac{1$$

Problema 2. Mostrar que $f(x) = x^3 + x^2 - 10x + 8$ é divisível por (x-1) mas não é divisível por $(x-1)^2$.

fazondo as raízes 1,2,6 e aplicando as relações de Girard:

Lege, x=1 não possui multiciplicidade l.
Portone (x-1) fixi, mas (x-1)2 X fixi.

Problema 3. Verifique se a equação $x^3 - 3x + 8 = 0$ tem raízes iguais.

faça as conites sere
$$\alpha$$
 α, α, β .

$$|2\alpha + \beta = 0|$$

$$|\alpha^{2} + 2\alpha\beta = -3|$$

$$|\alpha^{2}\beta = -8|$$

=)
$$d^{3} - 3d + 8 = 0$$

 $p^{3} - 3p + 8 = 0$ =) $-8d^{3} + bd + 8 = 0$
=) $d^{3} - 3d + 7d = -8d^{3} + 6d + 7d$
 $9d^{3} - 9d = 0$
 $d(d-1)(d+1) = 0$
 $d \neq 0$ =) $d \neq 1$ =) $d \neq -1$ (Absurdo).

Logo, a eguação vão possui raítes iguais

Problema 4. Determinar m
 para que a equação $x^3-7x+m=0$ tenha uma raiz igual ao dobro de uma outra.

Supaha as raízes a, la, b.

Fazonolo as releções de Grirard:

$$3a+b=0$$
 $2a^{2}+3ab=-7$
 $2a^{2}b=-m$
 $b=73a$
 $b=74$
 $b=73$
 $b=73$
 $b=73$
 $b=73$

Problema 5. (IME) Seja

$$p(x) = x^5 + bx^4 + cx^3 + dx^2 + ex + f$$

um polinômio com coeficientes inteiros. Sabe-se que as cinco raízes de p(x) são números inteiros positivos, sendo quatro deles pares e um ímpar. Determine o número de coeficientes pares de p(x).

toros que pigiris, t são raises e pigiris são pares e le é impar.

Andisando a paridade, tenos que c, d, e ef

Problema 6. (OCM) Considere todas as retas que encontram o gráfico da função

$$f(x) = 2x^4 + 7x^3 + 3x - 5$$

em quatro pontos distintos, digamos $(x_1,y_1),(x_2,y_2),(x_3,y_3),(x_4,y_4)$. Mostre que o valor de $\frac{x_1+x_2+x_3+x_4}{4}$ é independente da reta e ache esse valor.

Refa: y= ax +b =>

$$2x^{4} + 7x^{3} + 3x - 5 = ax + b$$

$$2x^{4} + 7x^{3} + (3-a)x - 5 - b = 0$$

Logo, x_1, x_2, x_3 e xu são caítes de $2x^4+7x^3+(3-a)x-5-b=0$

905 Girard: x1+x2+x3+x4=-7/2

.: 0 que queros é -7/8 /s.

Problema 7. (IME) Determine o valor da soma das raízes da equação

$$y^{\frac{3}{2}} + 5y + 2y^{\frac{1}{2}} + 8 = 0.$$

face (y=d=) d3+5d2+2d+8=0.

$$i \cdot d_1 + d_2 + d_3 = -5$$

$$d_1 d_2 d_3 = -8$$

$$d_1 d_2 d_3 + d_2 d_3 = 2$$

Greenos
$$d_1^2 + d_1^2 + d_2^2 = K$$
 $(d_1 \times d_1^2 + d_2^2)^2 \cdot 2(d_1d_1^2 + d_1d_2^2 +$

Lego 20,620,070.

Problema 9. Suponha que $t^3 + pt + q = 0$ tenha uma raiz não real a + bi, sendo a, b, p, qtodos reais e $q \neq 0$. Mostre que aq > 0.

lego, as raites sae a-bi, a+bi, r.

Por Girard 2021 =0 $(a^{2}+b^{2}) \cdot r = -q$ $(a^{2}+b^{2}) \cdot 2a = q$

Se al0 =) 920 .1. ag20, albes os cases Se al0 =) 960

Problema 10. (OCM) Mostre que 1 é a única raiz real da equação $x^3 + x^2 = 2$.

$$x^{3}+x^{2}-2=(x-1)(x^{2}+2x+2)$$

$$x=-2\pm\sqrt{4-8}$$
 rations complexes

Outro j'eite, par Girarde, as raizes

Problema 11. (ITA) A equação $4x^3 - 3x^2 + 4x - 3 = 0$ admite i (unidade imaginária) como raiz. Determine as demais raízes.

cone os cuficientes séo rearis, entero -i tenhén é voit.

Por girard: $i-i+x=\frac{3}{4}$ --x=\frac{3}{4}

Raizes: 1,-1,3

Problema 1. Calcule i^{2011} , i^{2012} , i^{2013} .

Problema 2. Calcule o valor de $i^{8n+3} + i^{4n+1}$.

Problema 3. Calcule $(1+i)^{2011}$, $(1-i)^{2012}$, $(1+i)^{2013}$.

$$(1+i)^{L} = 2i = (1+i)^{4} = -4 \cdot (1+i)^{4} = -2i = (1+i)^{4} = -4$$

$$(1+i)^{2011} = (1+i)^{2000} \cdot (1+i)^{L} \cdot (1+i) = (1+i)^{4} \cdot (1+i)^{L} \cdot (1+i)$$

Problema 4. Encontre todas as raízes da equação $z^3 = 1$.

•
$$t = 1$$
• $t = -1 \pm \sqrt{1-4}$
• $t = -1 \pm \sqrt{3}$
2
• $t = -1 - 1\sqrt{3}$

Problema 5. Encontre as raízes das equações

a)
$$z^3 = 8$$
;

b)
$$z^4 = 81$$
.

a)
$$t^{3} - t^{3} = 0$$
 => $(t-2)(t^{1} + 1t + 4) = 0$
 $(t-2)((t+1)^{1} + 3) = 0$

Problema 6. Encontre números reais x, y, u, v satisfazendo

$$z=x+i, w=3+iy,$$

$$z+w=u-i, zw=14+iv.$$

Problema 7. Seja z=a+bi, em que $a,b\in\mathbb{R}.$ Encontre condições sobre a e b para que:

- a) z^3 seja real;
- b) z^3 seja imaginário puro.

$$a^{3} + a^{3}b_{1} + 2a^{2}b_{1} - 2ab^{2} - ab^{2} - b^{3}i = z^{3}$$

 $(a^{3} - 3ab^{2}) + i(3a^{2}b - b^{3}) = z^{3}EIR$

$$\frac{3a^{2}b-b^{3}=0}{|b=0|} = \frac{(3a^{2}-b^{2})}{|b=0|} = 0$$

b)
$$2 \notin IR$$

$$a^3 - 3ab^2 = 0 =) \quad a(a^2 - 3b^2) = 0 \quad a = \pm \sqrt{3} \cdot b$$

Problema 8. Para $z \in \mathbb{C}$, prove que

$$|z| = 1 \Leftrightarrow \overline{z} = \frac{1}{z}.$$

Neste coso
$$2.\bar{z}=1^2=1$$

$$(=\frac{1}{2}=\frac{1}{2}=)$$
 $(2-\frac{1}{2}=)$ $(2-\frac{1}{2})$

Problema 9. Prove que |1+iz|=|1-iz| se, e somente se, z é um número real.

$$t = a+bi$$
 =) $1+it = 1+ai-b = (1-b)+ai$
 $it = ai-b$ $1-it = 1+b-ai = (1+b)+ai$

Problema 10. Sejam a e b números reais. Se $a+bi\neq 0$, determine a forma algébrica do número $\frac{1}{a+bi}$.

$$\frac{1}{a+b} = \frac{a-b}{a^2+b^2} = \frac{a}{a^2+b^2}$$

Problema 11. (ITA) Seja z=a+bi um número complexo. Se $z+\frac{1}{z}$ é um número real, então mostre que b=0 ou |z|=1.

$$\frac{1}{2} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}$$

=)
$$\frac{1}{2} + 2 = \left(a + \frac{a}{a^2 + b^2}\right) + \left(b - \frac{b}{a^2 + b^2}\right)i$$

$$\frac{2+1}{2} \in \mathbb{R} \quad \stackrel{\cdot}{\longrightarrow} \quad \frac{b}{9^2+b^2} = 0$$

$$\frac{b}{\alpha_1^2 + b^2} \left(1 - \left(\alpha_1^2 + b^2\right) \right) = 0$$

Problema 12. (ITA) Se z_1 e z_2 são números complexos e $z_1 + z_2$ e $z_1 \cdot z_2$ são ambos reais, então mostre que z_1 e z_2 são ambos reais ou $z_1 = \overline{z}$.

$$z_1 = a + bi$$
 $z_1 + z_2 = (a + x) + (b + y)i$
 $z_2 = x + yi$
 $z_1 + z_2 = (ax - by) + (ay + bx);$

$$|y=0| \text{ ou } \alpha=x \quad \therefore \quad z_1=\alpha+b_1=x-y_1$$

$$|b=0| \quad b=-y \quad |z_1=\overline{z_2}|$$
Awas rearize

Problema 1. Escreva os seguintes números na forma trigonométrica.

- a) 2.
- b) 3*i*.
- c) 1 + i.
- d) $1 + i\sqrt{3}$.

Problema 2. Determine o polinômio de menor grau e com coeficientes reais que possui um número complexo com módulo 1 e argumento $\frac{2\pi}{3}$ como raiz.

... O polinàmio que possui cis (2×13) como ronit não é x3-1 e sin x2+x+1 (ele guero o nenos).

Problema 3. Sejam x = a + b, $y = a\omega + b\omega^2$, $z = a\omega^2 + b\omega$, onde $\omega^2 + \omega + 1 = 0$. Calcule x + y + z e expresse $x^3 + y^3 + z^3$ em termos de a e b.

$$x^{3}+y^{3}+z^{3}=)$$
 (and $x+y+z=0$) entro
 $x^{3}+y^{3}+z^{3}=3xy^{2}$.

$$\frac{-3(a^{3}+b^{3}+ab^{2}+a^{2}b-a^{2}b-a^{2}b-a^{2}b-a^{2}b^{2})}{\left|-3(a^{3}+b^{2})\right|_{a}}$$

Problema 4. (EUA) O número complexo z satisfaz z + |z| = 2 + 8i. Calcule $|z|^2$.

$$a + \sqrt{a^2 + b^2} = 2$$

$$\sqrt{a^{2}+64} = 2-a$$
 $\sqrt{2}+64 = 4-4a+a$
 $\sqrt{a}=-60$
 $\sqrt{a=-15}$

Problema 5. (IME) Dois números complexos z_1 e z_2 , não-nulos, são tais que $|z_1 + z_2| = |z_1 - z_2|$. Mostre que $\frac{z_2}{z_1}$ é imaginário puro.

$$2x = a + bi$$
 $(a + x)^{2} + (b + y)^{2} = (a - x)^{2} + (b - y)^{2}$
 $2x + 2by + 2ax + 2by = 0$
 $2x + by = 0$

$$\frac{21}{21} = \frac{x+yi}{a+bi} = \frac{(x+yi)(a-bi)}{a^2+b^2}$$

$$= \frac{ax - bx^{2} + ay^{2} + by}{a^{2} + b^{2}} = \frac{(ax + by)}{a^{2} + b^{2}} + \frac{(ay - bx)^{2}}{a^{2} + b^{2}}$$

= (ay-bx): (imaginário puro)

Problema 6. (IME) Sendo a,b e c números naturais em progressão aritmética e z um número complexo de módulo unitário, determine um valor para cada um dos números a,b,c e z de forma que eles satisfaçam a igualdade

$$\frac{1}{z^a} + \frac{1}{z^b} + \frac{1}{z^c} = z^9.$$

Como o exercício pede para encontror un valor, padenes temos i=z.

$$a = b - c$$

$$b = b$$

$$c = b^{T} c$$

$$c = b^{T} c$$

$$\frac{(-1)^{c}+1+1^{c}=1^{b+c+1}}{(-1)^{c}+1+1^{c}=1^{b+c+1}}$$

z- z- z-

Problema 7. (ITA) Determine todos os números complexos z, que são raízes da equação |z| - z = 1 + 2i, sendo i a unidade imaginária.

$$(\sqrt{a^2+b^2}-a)-bi=1+2i$$

$$(2=a+bi)$$

$$| \sqrt{a^2 + b^2} - \alpha = |$$

$$| -b > 2$$

$$| b = -2$$

$$\sqrt{a^{2}+4} = a+1$$
 $a^{2}+4 = a+1$
 $a=3/1$
 $a=3/1$
 $a=3/2-2i$

Problema 8. (ITA) Considerando z e w números complexos arbitrários e $u = z \cdot w + \overline{z} \cdot \overline{w}$, mostre que o conjugado de u é igual ao dobro da parte real do número $z \cdot w$.

$$u = 2w + 2w \left(\overline{2} \cdot w = 2w\right)$$

Tenes gre $\left(2 + \overline{2} = 2ke(2)\right)$
 $a + bi + a - bi = 2a$

Problema 9. (ITA) Determine o valor da expressão $|1-z|^2 + |1+z|^2$, sendo z um número complexo unitário.

$$2 = a_1b_1 = 1$$

$$|(1-a)-b_1| + |(1+a)+b_1|$$

$$= (1-a)^2 + b^2 + (1+a)^2 + b^2$$

$$= 1-2b + a^2 + b^2 + (1+2b + a^2 + b^2)$$

$$= (1+1+1+1=4)$$

Problema 10. (ITA) Determine o produto dos números complexos z = x + yi que têm módulo igual a $\sqrt{2}$ e tais que y = 2x - 1.

Problema 11. (ITA) Mostre que, resolvendo a equação $z^2 = \overline{2+z}$ no conjunto dos números complexos, todas as raízes são números inteiros.

$$a^{2}+2abi-b^{2}=(a+2)-bi$$

 $a^{1}-b^{2}=a+2$
 $a^{2}-b^{2}=-b$

$$b(2a+1)=0$$

 $b=0$ ou $a=-1/2$

Se
$$\alpha = -1/1 =$$
) $\frac{1}{4} - \frac{1}{6} = \frac{3}{2} = \frac{1}{2} = \frac{5}{4}$ (Abosurda)
 $b = 0 =$) $a^2 = a + 2 =$) $a^2 - a - 2 = 0$
 $(a - 2)(a + 1) = 0$
 $a = +2$ $1 = 2 \cdot 2 = 1 \in \mathbb{Z}$

Problema 12. (ITA) Sejam x e y números reais, com $x \neq 0$, satisfazendo $(x+iy)^2 = (x+y)i$. Mostre que x é uma raiz da equação $x^3 + 3x^2 + 2x - 6 = 0$.

$$n^2 + 2nyi - y^2 = ni+yi$$

$$\begin{cases} x^{2}-y^{2}=0 \\ 2xy=x+y \end{cases} = x = y \cdot x = y \cdot x = -y \cdot x = y \cdot x = -y \cdot x$$

I)
$$x=y=$$
, $2x^2-2x=$) $x=0$ ou $x=1$, $(Raniz)$ 1

II) $x=-y=$) $-2x^2-0$ (Absurdo)

Problema 13. Resolva a equação $(z+i)^2 + (z-i)^2 = 2$.

Problema 14. (ITA) Escreva as formas algébrica e trigonométrica da potência $\left(\frac{\sqrt{2}}{1+i}\right)^{93}$.

$$\left(\frac{\sqrt{2}(1-i)}{2}\right)^{93}$$
 $\sqrt{2}(1-i) = \sqrt{2}.\sqrt{2}eis(-\pi/4)$

$$\left(\begin{array}{c} 4 \cos(-\pi/4) \end{array}\right)^{93} = \cos\left(\frac{1.93\pi}{4}\right) = \cos\left(\frac{651\pi}{4}\right)$$

1. (ARML) Seja z uma raiz de $x^5 - 1 = 0$, com $z \neq 1$. Determine o valor de $z^{15} + z^{16} + z^{16}$ $z^{17} + \ldots + z^{50}$.

$$\chi_{+}^{5} = (26 \text{ rait})$$

 $\chi_{+}^{4} \times \chi_{+}^{3} \times \chi_{+}^{2} \times$

$$2^{15} + 2^{18} + 2^{17} + \dots + 2^{50} =$$

$$(1 + 2 + 2^{7} + 2^{3} + 2^{4}) + (1 + 2 + 2^{7} + 2^{5} + 2^{4}) + \dots +$$

$$(1 + 2 + 2^{7} + 2^{3} + 2^{4}) + 2^{50} = 0 + 0 + \dots + 0 + 0 + 0 = 1$$

2. (AIME) Seja z um número complexo tal que $z + \frac{1}{z} = 2\cos 3^{\circ}$. Determine o menor inteiro maior que $z^{2000} + \frac{1}{z^{2000}}$.

Terres que
$$z+\overline{z}=2p\cos\theta=)$$
 $z=p\cos\theta$, se $p=1$, entaro $z.\overline{z}=1$ e $\overline{z}=1$.

Alén disso $z^{n+\overline{z}}=2cisn\theta=)$ $z+1=2cisn\theta$.

Alén olisso
$$z^{n+2}=2cisn\theta \Rightarrow z+1=2cisn\theta$$
.

$$\cdot \tilde{\mathcal{L}} = GSNQ$$
.

$$e^{\frac{1000}{2}} + \frac{1}{2000} = 2.05(3.2000) = 2.05(9000)$$

=
$$2\omega_5(16.360+249)$$
 = $2\omega_5240^{\circ}$ = $2.\cos(180+60^{\circ})$
= $-2\omega_5(\omega)$ $+\frac{1}{2}$

3. (Harvard - MIT) O polinômio
$$f(x)=x^{2007}+17x^{2006}+1$$
 tem raízes distintas $r_1,\ r_2,\ \dots,\ r_{2007}$. Um polinômio P de grau 2007 tem a propriedade que $P\left(r_j+\frac{1}{r_j}\right)=0$ para $j=1,\ \dots,\ 2007$. Determine o valor de $\frac{P(1)}{P(-1)}$.

$$P(x) = \left(x - \left(r_1 + \frac{1}{r_1}\right)\right)\left(x - \left(r_2 + \frac{1}{r_2}\right)\right) - \left(x - \left(r_{2007} + \frac{1}{r_{2007}}\right)\right) - \alpha$$

$$f(x) = \begin{cases} f(x) = f(x) \\ f(x) = f(x) \end{cases}$$

$$P(x) = K \cdot \frac{1}{\int \left(x - \left(r + 1\right)\right)}$$

$$\frac{207}{P(1)/P(-1)} = X \qquad \frac{207}{I} \qquad \frac{207}{I} \qquad \frac{I}{I} \qquad \frac{I}{$$

$$\frac{2007}{2} = \frac{((2-(1+1))^{2} - (1+1))}{((2+(1+1))^{2} + (1+1))} = \frac{(1+1)}{(1+1)}$$

Face
$$w^3 = 1$$
 e $w^2 + w + (= 0$.

$$\frac{2007}{3} = \frac{2007}{((i^{2} - (i+1)))} = \frac{2007}{((i^{2} + (i+1)))} = \frac{((i^{2} - (i+1)))}{((i^{2} + (i+1))} = \frac{((i^{2} - (i+1)))}{((i^{2} + (i+1))} = \frac{((i^{2} - (i+1)))}{((i^{2} + (i+1)))} = \frac{((i^{2} - (i+1)))}{((i^{2} + (i+1))} = \frac{((i^{2} -$$

$$= \frac{f(-w) \cdot f(-w^2)}{f(w) \cdot f(w^2)} = \frac{(-w^2)^3 + (7w^2)^{2006} + (1)(-w^4)^{14} + (17w^2)^{14}}{(w^{2007} + (17w^2)^{2006} + (1)(w^{4014} + (17w^2)^{14})}$$

$$= \frac{(-1+17w^{2}+1)(-1+17w+1)}{(1+17w^{2}+1)(1+17w+1)} = \frac{17}{259} + \frac{289}{259}$$

$$(2+17w^{2})(2+17w) = \frac{17}{259} + \frac{289}{259}$$

$$(2+17w^{2})(2+17w) = \frac{17}{259} + \frac{289}{259}$$

4. (OCM) Seja A_1, A_2, \ldots, A_n os vértices de um polígono regular de n lados inscrito na circunferência unitária S e A um ponto dessa circunferência. Encontre o valor máximo do produto P dos n segmentos $A_1A, A_2A, \ldots A_nA$ e a posição de A para o qual esse máximo ocorre.

Coro teres un poligono de n lados e réstices que é regular e esté inscrite en una circunferència unitéria poderes persos nas raites n-ésimas da unidado:

$$AK = \left(\cos \frac{2K\pi}{n}, \sin 2K\pi\right); A = \left(\cos \theta, \sin \theta\right)$$

$$1 - \cos(\theta - dx) = 1 - (\cos^2(\theta - dx) - \sin(\theta - dx))$$

= $2 \sin^2(\theta - dx)$.

$$P = (\sqrt{2})^{n} \cdot \sqrt{2} \cdot \sqrt{2}$$

$$P = 2^{n} \cdot \sqrt{2} \cdot \sqrt{2}$$

$$N = 1$$

$$N =$$

$$\frac{\partial}{\partial x} = \frac{1}{2} \qquad \frac{\partial}{\partial x} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} =$$

$$\theta = \pi + 2 \kappa \pi$$

▶ Problema 4

Determine (se existirem) todos os números inteiros positivos n de modo que a fração $\frac{2n+3}{5n+7}$ seja redutível.

► Duahlama #

$$mde(5n+7, 2n+3) = 1.$$
= $mde(5n+7-2(2n+3), 2n+3)$
= $mde(n+1, 2n+3) = (2n+3-2(n+1), n+1) = (1, n+1)$
= 1

▶ Problema 7

Determine a soma e o produto das raízes reais da equação

$$x^2 + 18x + 30 = \sqrt{x^2 + 18x + 45}.$$

$$x^{2} + 18x + (30 - (1+161)) = 0$$

$$a+b = -18$$
 $ab = 30 - (1+16)$

▶ Problema 1

Encontre todas as raízes reais da equação

$$\sqrt{\frac{x^2 - 2x - 2}{x^2 + 4x + 2}} + \sqrt{\frac{x^2 + 4x + 2}{x^2 - 2x - 2}} = 2.$$

► Dualdama 0

$$\frac{a}{b} + \frac{b}{a} - 2 = 0$$
 $\frac{a^{2} + b^{2}}{ab} - 2 = 0$
 $a^{2} + b^{2} - 2ab = 0$

$$\frac{1}{4} - 2 \times -2 = 1 \times \frac{1}{4} + 4 \times +2$$

$$6 \times = -4$$

$$6 \times = -\frac{1}{4}$$

5. Prove que para todo natural n e α real satisfazendo n>1 e $\sin\alpha\neq 0$, o polinômio

$$P(x) = x^{n} \sin \alpha - x \sin n\alpha + \sin(n-1)\alpha$$

é divisível pelo polinômio $Q(x) = x^2 - 2x \cos \alpha + 1$.

$$Q(x)=0 = 1 \qquad x = 2 \cos d \pm \sqrt{4 \cos^2 x - 4}$$

$$x = \cos d \pm i \operatorname{send}$$

considére z=aisd e $\overline{z}=ais(-a)$.

Se z=cisd for ranit de P(x), pelo teorema da ranit conjugada, à tembém será ranit de P(x) e Q(x) | P(x) (todas as ranites de Q também são ranites de P).

P(t) = (cisd) send - cisd sennd + sen(n-1)d

= Cisnd send - cisd sennd + sennd cosd - send cosnd = cosnot send + i send sennd - cosd sennd - i send sennd + sennd cosd - send cosnd = 0

$$x^{10} + (13x - 1)^{10} = 0$$

possui 10 raízes complexas r_1 , $\overline{r_1}$, r_2 , $\overline{r_2}$, r_3 , $\overline{r_3}$, r_4 , $\overline{r_4}$, r_5 , $\overline{r_5}$. Determine o valor

$$\frac{1}{r_{1}\overline{r_{1}}}+\frac{1}{r_{2}\overline{r_{2}}}+\frac{1}{r_{3}\overline{r_{3}}}+\frac{1}{r_{4}\overline{r_{4}}}+\frac{1}{r_{5}\overline{r_{5}}}.$$

$$x \neq 0$$
 = $1 + (13 - \frac{1}{X})^{10} = 0$

$$\omega^{10} = -1$$
.

$$W = cis \left(\frac{2K\pi + \pi}{10} \right)$$

Usando Di Mairre:
$$w=cis\left(\frac{2K\pi+\pi}{10}\right)$$
.
 $(9=\pi)$ peis quando $K=0=0$ cis $\pi=-1$).

$$d = 13 - cis((2(K+1))) \times (6(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))$$

$$dx.\overline{dx} = \left(13 - cis\left(\frac{2(k+1)\pi}{10}\right)\right)\left(13 - cis\left(-\frac{2(k+1)\pi}{10}\right)\right)$$

$$= 169 - 13\left(cis\left(\frac{2K+1}{10}\pi\right) + cis\left(\frac{2(K+1)\pi}{10}\right) + \frac{1}{2}$$

 $850 - 26 \left(\frac{31}{10} + \frac{3}{10} + \frac{3}{10$

3ª QUESTÃO

Para n inteiro positivo, seja $I_n = \{x \in \mathbb{N} \mid 0 \le x \le n-1\} = \{0, 1, \dots, n-1\}$. São dados dois inteiros positivos m e n primos entre si.

- (a) Para cada par ordenado $(x,y) \in I_m \times I_n$, prove que existe um único elemento z de I_{mn} tal que $z \equiv x \pmod{m}$ e $z \equiv y \pmod{n}$.
- (b) Prove que a função $f \colon I_{\mathfrak{m}} \times I_{\mathfrak{n}} \to I_{\mathfrak{m}\mathfrak{n}}$ definida pela regra $f(x,y) \equiv x \pmod{\mathfrak{m}}$ e $f(x,y) \equiv y \pmod{\mathfrak{n}}$ é bijetiva.
- (c) Seja I_n^* o subconjunto de I_n formado pelos seus elementos primos com n, ou seja, $I_n^* = \{x \in I_n \mid (x,n)=1\}$. Prove que a função $f^* \colon I_m^* \times I_n^* \to I_{mn}^*$, definida por $f^*(x,y) = f(x,y)$, é bijetiva.

<u>a</u>)