Dijkstra's Algorithm

Sadatul Islam Sadi Irtiaz Kabir Wahid Al Azad Navid

Bangladesh University of Engineering and Technology

February 20, 2024

First Route:

A Graph Representation of the previous problem

Dijkstra's Algorithm

Definition

Dijkstra's algorithm is an greedy algorithm for finding the shortest paths between nodes in a weighted graph.

Dijkstra's Algorithm

Definition

Dijkstra's algorithm is an greedy algorithm for finding the shortest paths between nodes in a weighted graph.

History

$O(V^2)$ Algorithm

What is the shortest way to travel from Rotterdam to Groningen, in general: from given city to given city. It is the algorithm for the shortest path, which I designed in about twenty minutes. One morning I was shopping in Amsterdam with my young fiancée, and tired, we sat down on the café terrace to drink a cup of coffee and I was iust thinking about whether I could do this. and I then designed the algorithm for the shortest path. [1]

History

$O(V^2)$ Algorithm

What is the shortest way to travel from Rotterdam to Groningen, in general: from given city to given city. It is the algorithm for the shortest path, which I designed in about twenty minutes. One morning I was shopping in Amsterdam with my young fiancée, and tired, we sat down on the café terrace to drink a cup of coffee and I was iust thinking about whether I could do this. and I then designed the algorithm for the shortest path. [1]

O(E + VlogV) Algorithm

In 1984, Fredman & Tarjan proposed use of fibonacci heap to optimize the running time of the algorithm to $O(\|E\| + \|V\| log V)$ [2]

```
def Dijkstra(Graph, source):
 1
 2
 3
               Q = PriorivQueue()
               \mathtt{dist} \leftarrow \phi
 4
 5
               prev \leftarrow \phi
               for each vertex v in Graph. Vertices:
 8
                    dist[v] \leftarrow \infty if v is not source else 0
                    prev[v] \leftarrow None
                    Q.enqueue(v, dist[v])
10
11
12
               while Q is not empty:
13
                    u ← Q.extract_min()
14
                    for each neighbor v of u:
15
                         alt \leftarrow dist[u] + Graph.Edges(u, v)
16
17
                         if alt < dist[v]:
18
                              dist[v] \leftarrow alt
19
                              prev[v] \leftarrow u
20
                              Q.decrease_priority(v, alt)
21
22
23
               return dist, prev
```

```
def Dijkstra(Graph, source):
 1
 2
                Q = PrioriyQueue()
                \mathtt{dist} \leftarrow \phi
 5
                prev \leftarrow \phi
 6
 7
                for each vertex v in Graph. Vertices:
 8
                     dist[v] \leftarrow \infty if v is not source else 0
9
                     prev[v] ← None
                     Q.enqueue(v, dist[v])
10
11
12
                while Q is not empty:
13
                     u ← Q.extract_min()
14
                     for each neighbor v of u:
15
                          alt \leftarrow dist[u] + Graph.Edges(u, v)
16
17
                          if alt < dist[v]:
18
                               \texttt{dist[v]} \, \leftarrow \, \texttt{alt}
19
                               prev[v] \leftarrow u
20
                               Q.decrease_priority(v, alt)
21
22
23
                return dist, prev
```

```
def Dijkstra(Graph, source):
 1
 2
               Q = PrioriyQueue()
               \mathtt{dist} \leftarrow \phi
 5
               prev \leftarrow \phi
               for each vertex v in Graph. Vertices:
 8
                    dist[v] \leftarrow \infty if v is not source else 0
                    prev[v] \leftarrow None
                    Q.enqueue(v, dist[v])
10
11
               while Q is not empty:
12
13
                    u ← Q.extract_min()
14
                    for each neighbor v of u:
15
                         alt \leftarrow dist[u] + Graph.Edges(u, v)
16
17
                         if alt < dist[v]:
18
                              dist[v] \leftarrow alt
19
                              prev[v] \leftarrow u
20
                              Q.decrease_priority(v, alt)
21
22
23
               return dist, prev
```

```
def Dijkstra(Graph, source):
 1
 2
               Q = PrioriyQueue()
               \mathtt{dist} \leftarrow \phi
 5
               prev \leftarrow \phi
               for each vertex v in Graph. Vertices:
 8
                    dist[v] \leftarrow \infty if v is not source else 0
                    prev[v] \leftarrow None
                    Q.enqueue(v, dist[v])
10
11
12
               while Q is not empty:
13
                    u ← Q.extract_min()
14
                    for each neighbor v of u:
15
                         alt \leftarrow dist[u] + Graph.Edges(u, v)
16
17
                         if alt < dist[v]:
18
                              dist[v] \leftarrow alt
19
                              prev[v] \leftarrow u
20
                              Q.decrease_priority(v, alt)
21
22
23
               return dist, prev
```

```
def Dijkstra(Graph, source):
 1
 2
               Q = PrioriyQueue()
               \mathtt{dist} \leftarrow \phi
 5
               prev \leftarrow \phi
               for each vertex v in Graph. Vertices:
 8
                    dist[v] \leftarrow \infty if v is not source else 0
                    prev[v] \leftarrow None
                    Q.enqueue(v, dist[v])
10
11
12
               while Q is not empty:
13
                    u ← Q.extract_min()
14
                    for each neighbor v of u:
15
                         alt \leftarrow dist[u] + Graph.Edges(u, v)
16
17
                         if alt < dist[v]:
18
                              dist[v] \leftarrow alt
19
                              prev[v] ← u
20
                              Q.decrease_priority(v, alt)
21
22
```

return dist, prev

23

Running time - revisiting the pseudocode

```
1
     def Dijkstra(Graph, source):
2
          Q = PriorivQueue()
          dist \leftarrow \phi
4
5
          prev \leftarrow \phi
          for each vertex v in Graph. Vertices:
              dist[v] \leftarrow \infty if v is not source else 0
8
              prev[v] ← None
              Q.enqueue(v, dist[v])
10
11
12
          while Q is not empty:
13
              u ← Q.extract_min()
14
              for each neighbor v of u:
15
                   alt \leftarrow dist[u] + Graph.Edges(u, v)
16
17
                   if alt < dist[v]:
18
                        dist[v] \leftarrow alt
19
                        prev[v] \leftarrow u
20
                        Q.decrease_priority(v, alt)
21
22
23
          return dist, prev
```

Can you identify the costly operations performed here?

```
def Dijkstra(Graph, source):
2
          Q = PrioriyQueue()
          dist \leftarrow \phi
5
          prev \leftarrow \phi
          for each vertex v in Graph. Vertices:
8
               dist[v] \leftarrow \infty if v is not source else 0
               prev[v] ← None
               Q.enqueue(v, dist[v])
10
11
12
          while Q is not empty:
13
              u \leftarrow Q.extract_min()
14
               for each neighbor v of u:
15
                    alt \leftarrow dist[u] + Graph.Edges(u, v)
16
17
                    if alt < dist[v]:
18
                        dist[v] \leftarrow alt
19
                        prev[v] \leftarrow u
20
                         Q.decrease_priority(v, alt)
21
22
23
          return dist, prev
```

Number of calls

Extract min (T_{em}) $\Theta(|V|)$ Decrease priority (T_{dp}) $\Theta(|E|)$

Number of calls

Extract min (T_{em}) $\Theta(|V|)$

Decrease priority (T_{dp}) $\Theta(|E|)$

Total running time

$$T = \Theta(|E|.T_{dp} + |V|.T_{em})$$

$$T = \Theta(|E|.T_{dp} + |V|.T_{em})$$

Implementation	T_{dp}	T _{em}	T
Singly Linked List	$\Theta(1)$	$\Theta(V)$	$\Theta(V^2)$

$$T = \Theta(|E|.T_{dp} + |V|.T_{em})$$

Implementation	T_{dp}	T_{em}	T
Singly Linked List	Θ(1)	$\Theta(V)$	$\Theta(V^2)$
Binary Heap	$\Theta(\log V)$	$\Theta(\log V)$	$\Theta((E+V)log V)$

$$T = \Theta(|E|.T_{dp} + |V|.T_{em})$$

Implementation	T_{dp}	T _{em}	T
Singly Linked List	Θ(1)	$\Theta(V)$	$\Theta(V^2)$
Binary Heap	$\Theta(log V)$	$\Theta(log V)$	$\Theta((E+V)log V)$
Fibonacci Heap	$\Theta(1)$	$\Theta(log V)$	$\Theta(E + Vlog V)$

Drawbacks

Traversing unnecessarily

When we are eager to know the distance from the source to a particular node, Dijkstra's algorithm may result in a longer run-time.

Drawbacks

Fails in case of negative weight edge

If a graph contains negative weight edge(s), the algorithm may often produce wrong results.

 \bullet Thus, the algorithm gives us the shortest distance of 8 by taking the path $S \to A \to C$

• However, taking the path $S \rightarrow B \rightarrow A$ would result in a shorter distance of 6-2+3=7

Specialized variants

 When arc weights are small integers (bounded by a parameter C), specialized queues which take advantage of this fact can be used to speed up Dijkstra's algorithm.

Name	Data Structure	Running Time
Dial's algorithm	Bucket queue	O(E + V * C)

Specialized variants

 When arc weights are small integers (bounded by a parameter C), specialized queues which take advantage of this fact can be used to speed up Dijkstra's algorithm.

Name	Data Structure	Running Time
Dial's algorithm	Bucket queue	O(E + V * C)
Van Embde Boas Tree	Priority Queue	O(E loglogC)

Specialized variants

 When arc weights are small integers (bounded by a parameter C), specialized queues which take advantage of this fact can be used to speed up Dijkstra's algorithm.

Name	Data Structure	Running Time
Dial's algorithm	Bucket queue	O(E + V * C)
Van Embde Boas Tree	Priority Queue	O(E loglogC)
Ahuja <i>et al.</i>	Fibonacci Heap	$O(E + V \sqrt{logC})$

• Routing Protocols in Computer Networks:

Dijkstra's algorithm is often used in routing protocols such as OSPF (Open Shortest Path First) and IS-IS (Intermediate System to Intermediate System)

• GPS Navigation Systems:

In GPS navigation, Dijkstra's algorithm is employed to find the shortest route between two locations, considering factors like distance, traffic conditions, and road types.

• Game Development:

In video games, especially those involving maps and navigation, Dijkstra's algorithm can be employed to create intelligent and efficient path-finding for characters or objects.

Resource Management in Operating Systems:
 Dijkstra's algorithm is applied in resource management to allocate resources optimally.

4日 > 4日 > 4日 > 4 目 > 4目 > 目 の9○

Thank You

References

🚺 M.L. Fredman and R.E. Tarjan.

Fibonacci heaps and their uses in improved network optimization algorithms.

In 25th Annual Symposium onFoundations of Computer Science, 1984., pages 338–346, 1984.