Date: 06 July 2015

Issue: 1 **Page:** 1 of 77

Author: Jukka Pietarinen

Event Receiver

cPCI-EVR-220, cPCI-EVR-230, PMC-EVR-230, VME-EVR-230, VME-EVR-230RF, cPCI-EVRTG-300, cPCI-EVR-300, PCIe-EVR-300 and PXIe-EVR-300

Technical Reference

Firmware Version 0007

Contents

Safety Summary	5
Ground the Equipment.	5
Keep away From Live Circuits inside the Equipment	5
Do Not Substitute Parts or Modify Equipment.	5
Flammability	5
EMI Caution	5
CE Notice	5
Hardware Installation	7
Installing the 3U Boards (cPCI-EVR-2x0 or PXIe-EVR-300) into a Chassis	7
Installing the 6U Boards (VME-EVR-230, VME-EVR-230RF, cPCI-EVRTG-300 or cPC	I-
EVR-300) into a Chassis	
Installing the PMC-EVR-230 Board onto a Carrier	7
Installing the PCIe-EVR-300 Board into a Computer	8
Replacing SFP (Small Form Factor Pluggable) Transceivers	8
Introduction	9
Functional Description	9
Event Decoding	9
Heartbeat Monitor	
Event FIFO and Timestamp Events	10
Event Log	11
Distributed Bus and Data Transmission	11
Pulse Generators	11
Prescalers	12
Programmable Front Panel, Universal I/O and Backplane Connections	12
Front Panel CML Outputs (VME-EVR-230RF only)	13
cPCI-EVRTG-300 GTX Front Panel Outputs	15

Document: EVR-MRM-007 **Date:** 06 July 2015

Issue: 1 **Page:** 2 of 77

Author: Jukka Pietarinen

Configurable Size Data Buffer	20
Interrupt Generation	21
External Event Input	21
Programmable Reference Clock	21
Fractional Synthesiser	22
Hardware Configuration Summary	22
Connections	
cPCI-EVR-2x0 Front Panel Connections	23
VME-EVR-230 and VME-EVR-230RF Front Panel Connections	24
VME P2 User I/O Pin Configuration	25
PMC-EVR-230 Front Panel Connections	
PMC-EVR-230 Pn4 User I/O Pin Configuration	27
cRIO-EVR-300 Front Panel Connections	
cPCI-EVRTG-300 Front Panel Connections	29
cPCI-EVR-300 Front Panel Connections	29
PCIe-EVR-300 and IFB-300 Connections	30
PXIe-EVR-300 Front Panel Connections	30
PXIe-EVR-300 Backplane Connections	
VME-EVR-230 and VME-EVR-230RF Network Interface	
Assigning an IP Address to the Module	
Using Telnet to Configure Module	
Boot Configuration (command b)	33
Memory dump (command d)	
Memory modify (commands d and m)	34
Tuning Delay Line (command t)	
Upgrading IP2022 Microprocessor Software (command u)	
Linux	
Windows	
Upgrading FPGA Configuration File	
Linux	
Windows	
Linux	
Windows	
UDP Remote Programming Protocol	
Read Access (Type 0x01)	
Write Access (Type 0x02)	
cRIO-EVR-300.	
Connections	
Boot Monitor	
Firmware Upgrade (on Linux)	
Programming Details	
VME CR/CSR Support	
Event Receiver Function 0,1 and 2 Registers	
cPCI-EVR-300 and PCIe-EVR-300 Firmware Upgrade	
Register Map	
SFP Module EEPROM and Diagnostics	
Application Programming Interface (API)	
Function Reference	
1 WILVIOII 11010101100	UL

Document: EVR-MRM-007 **Date:** 06 July 2015

Issue: 1 **Page:** 3 of 77

Author: Jukka Pietarinen

int EvrOpen(struct MrfErRegs **pEr, char *device_name);	. 62
int EvrClose(int fd);	. 62
int EvrEnable(volatile struct MrfErRegs *pEr, int state);	. 63
int EvrGetEnable(volatile struct MrfErRegs *pEr);	
void EvrDumpStatus(volatile struct MrfErRegs *pEr);	
int EvrGetViolation(volatile struct MrfErRegs *pEr, int clear);	
void EvrDumpMapRam(volatile struct MrfErRegs *pEr, int ram);	
int EvrMapRamEnable(volatile struct MrfErRegs *pEr, int ram, int enable);	
int EvrSetForwardEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);	
int EvrEnableEventForwarding(volatile struct MrfErRegs *pEr, int state);	
int EvrGetEventForwarding(volatile struct MrfErRegs *pEr);	
int EvrSetLedEvent(volatile struct MrfErRegs *pEr), int ram, int code, int enable);	
U 1	
int EvrSetFIFOEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);	
int EvrSetLatchEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);	
int EvrSetLogStopEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);	
int EvrClearFIFO(volatile struct MrfErRegs *pEr);	
int EvrGetFIFOEvent(volatile struct MrfErRegs *pEr, struct FIFOEvent *fe);	
int EvrEnableLogStopEvent(volatile struct MrfErRegs *pEr, int enable);	
int EvrGetLogStopEvent(volatile struct MrfErRegs *pEr);	
int EvrEnableLog(volatile struct MrfErRegs *pEr, int enable);	. 66
int EvrGetLogState(volatile struct MrfErRegs *pEr, int enable);	. 67
int EvrGetLogStart(volatile struct MrfErRegs *pEr);	. 67
int EvrGetLogEntries(volatile struct MrfErRegs *pEr);	
void EvrDumpFIFO(volatile struct MrfErRegs *pEr);	
int EvrClearLog(volatile struct MrfErRegs *pEr);	
void EvrDumpLog(volatile struct MrfErRegs *pEr);	
int EvrSetPulseMap(volatile struct MrfErRegs *pEr, int ram, int code, int trig, int set, int	
clear);	. 67
int EvrClearPulseMap(volatile struct MrfErRegs *pEr, int ram, int code, int trig, int set, in	
clear);	
int EvrSetPulseParams(volatile struct MrfErRegs *pEr, int pulse, int presc, int delay, int	. 00
width);	68
void EvrDumpPulses(volatile struct MrfErRegs *pEr, int pulses);	
int EvrSetPulseProperties(volatile struct MrfErRegs *pEr, int pulse, int polarity, int	. 00
map_reset_ena, int map_set_ena, int map_trigger_ena, int enable);	60
1 1 00	
int EvrSetUnivOutMap(volatile struct MrfErRegs *pEr, int output, int map);	
void EvrDumpUnivOutMap(volatile struct MrfErRegs *pEr, int outputs);	
int EvrSetFPOutMap(volatile struct MrfErRegs *pEr, int output, int map);	
void EvrDumpFPOutMap(volatile struct MrfErRegs *pEr, int outputs);	
int EvrSetTBOutMap(volatile struct MrfErRegs *pEr, int output, int map);	
void EvrDumpTBOutMap(volatile struct MrfErRegs *pEr, int outputs);	
void EvrIrqAssignHandler(volatile struct MrfErRegs *pEr, int fd, void (*handler)(int));	
int EvrIrqEnable(volatile struct MrfErRegs *pEr, int mask);	
int EvrGetIrqFlags(volatile struct MrfErRegs *pEr);	
int EvrClearIrqFlags(volatile struct MrfErRegs *pEr, int mask);	
void EvrIrqHandled(int fd);	
int EvrSetPulseIrqMap(volatile struct MrfErRegs *pEr, int map);	. 71
int EvrUnivDlyEnable(volatile struct MrfErRegs *pEr, int dlymod, int enable);	

Document: EVR-MRM-007

Date: 06 July 2015

Issue: 1 **Page:** 4 of 77

Author: Jukka Pietarinen

int EvrUnivDlySetDelay(volatile struct MrfErRegs *pEr, int dlymod, int dly0, int dly1);	. 72
int EvrSetFracDiv(volatile struct MrfErRegs *pEr, int fracdiv);	. 72
int EvrGetFracDiv(volatile struct MrfErRegs *pEr);	
int EvrSetDBufMode(volatile struct MrfErRegs *pEr, int enable);	. 72
int EvrGetDBufStatus(volatile struct MrfErRegs *pEr);	. 73
int EvrReceiveDBuf(volatile struct MrfErRegs *pEr, int enable);	. 73
int EvrGetDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int size);	. 73
int EvrSetTimestampDivider(volatile struct MrfErRegs *pEr, int div);	. 74
int EvrSetTimestampDBus(volatile struct MrfErRegs *pEr, int enable);	. 74
int EvrGetTimestampCounter(volatile struct MrfErRegs *pEr);	. 74
int EvrGetSecondsCounter(volatile struct MrfErRegs *pEr);	. 74
int EvrGetTimestampLatch(volatile struct MrfErRegs *pEr);	. 74
int EvrGetSecondsLatch(volatile struct MrfErRegs *pEr);	. 74
int EvrSetPrescaler(volatile struct MrfErRegs *pEr, int presc, int div);	. 75
int EvrSetExtEvent(volatile struct MrfErRegs *pEr, int ttlin, int code, int edge_enable, int	t
level_enable);	. 75
int EvrSetBackEvent(volatile struct MrfErRegs *pEr, int ttlin, int code, int edge_enable, i	nt
level_enable);	. 75
int EvrSetExtEdgeSensitivity(volatile struct MrfErRegs *pEr, int ttlin, int edge);	. 76
int EvrSetExtLevelSensitivity(volatile struct MrfErRegs *pEr, int ttlin, int level);	. 76
int EvrSetTxDBufMode(volatile struct MrfErRegs *pEr, int enable);	. 76
int EvrGetTxDBufStatus(volatile struct MrfErRegs *pEr);	. 76
int EvrSendTxDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int size);	. 77
int EvrGetFormFactor(volatile struct MrfErRegs *pEr);	. 77

Page: 5 of 77

Safety Summary

The following general safety precautions must be observed during all phase of operation, service and maintenance of this equipment. Failure to comply with these precautions could result in personal injury or damage to the equipment.

Ground the Equipment.

To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground.

Keep away From Live Circuits inside the Equipment.

Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or other qualified service personnel may remove equipment covers for internal subassembly or component replacement or any internal adjustment. Service personnel should not replace components with power cable connected.

Avoid touching areas of integrated circuitry; static discharge can damage the equipment.

Use of an antistatic wrist strap is recommended when installing a system.

Do Not Substitute Parts or Modify Equipment.

Do not install substitute parts or perform any unauthorized modification of the equipment. Contact Micro-Research Finland for service and repair.

Flammability

All Micro-Research Finland Oy PCBs (Printed Circuit Boards) are manufactured with a flammability rating of 94V-0 by UL-recognized manufacturers.

EMI Caution

This equipment generates, uses and can radiate electromagnetic energy. It may cause or be susceptible to electromagnetic interference (EMI) if not installed and used with adequate EMI protection.

CE Notice

This is a Class A product. In a domestic environment, this product may cause radio interference, in which case the user may be required to take adequate measures.

This product has been designed to comply with the essential requirement of the following European Directives:

Electromagnetic Compatibility (EMC) Directive 2004/108/EC, Low-Voltage Directive 2006/95/EC.

Conformity is assessed in accordance to the following standards:

Document: EVR-MRM-007

Page: 6 of 77

EN55022 "Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment"; Equipment Class A

EN60950-1 (Safety)

Laser Eye Safety and Equipment Type Testing (Avago AFBR-57R5APZ transceivers): (IEC) EN60825.1: 1994 + A11 + A2, (IEC) EN60825-2: 1994 + A1, (IEC) EN60950: 1992 + A1 + A2 + A3 + A4 + A11

Page: 7 of 77

Hardware Installation

Installing the 3U Boards (cPCI-EVR-2x0 or PXIe-EVR-300) into a Chassis

Use the following steps to install the module into the chassis:

- 1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical ground. The ESD strip must be secured to your wrist and to ground throughout the procedure.
- 2. Remove the filler panel for the slot you want to mount the board into.
- 3. Unpack the board you want to install from its ESD bag.
- 4. Open handle by pushing grey levers. The fastening screw in the handle may have turned during transportation and prevent the handle from opening completely. Please use a screwdriver and turn screw clockwise if the handle does not open properly.
- 5. Install the top and bottom edge of the board into the guide rails of the chassis.
- 6. Slide the board into the slot until resistance is felt.
- 7. Use handle to insert board into slot. Simultaneously help slightly from the upper area of the front panel close to the countersunk screw. Do not push the board in using any other area of the front panel.
- 8. Make sure handle is in locked position (closed) and grey lever have clicked into the locked position.
- 9. Secure the board using the screw in the handle and top of board.
- 10. Connect appropriate cables to the board.

Installing the 6U Boards (VME-EVR-230, VME-EVR-230RF, cPCI-EVRTG-300 or cPCI-EVR-300) into a Chassis

Use the following steps to install the module into the chassis:

- 1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical ground. The ESD strip must be secured to your wrist and to ground throughout the procedure.
- 2. Remove the filler panel for the slot you want to mount the board into.
- 3. Unpack the board you want to install from its ESD bag.
- 4. Open handles by pushing grey levers. Fastening screws in the handles may have turned during transportation and prevent the handles from opening completely. Please use a screwdriver and turn screws clockwise if the handles do not open properly.
- 5. Install the top and bottom edge of the board into the guide rails of the chassis.
- 6. Slide the board into the slot until resistance is felt.
- 7. Use handles to insert board into slot. Do not push the board in using the front panel.
- 8. Make sure handles are in locked position (closed) and grey levers have clicked into the locked position.
- 9. Secure the board using the screws in the handles
- 10. Connect appropriate cables to the board.

Installing the PMC-EVR-230 Board onto a Carrier

Use the following steps to install the module onto the PMC carrier:

Document: EVR-MRM-007

Page: 8 of 77

- 1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical ground. The ESD strip must be secured to your wrist and to ground throughout the procedure.
- 2. Remove the carrier board from its chassis and place on ESD safe working surface.
- 3. Remove any PMC filler panel from the PMC slot.
- 4. Note: the PMC-EVR-230 is a Universal voltage board and can be mounted in PMC slots operating either on +3.3V or +5V PCI I/O voltage. Note however, that on the I/O connector Pn4 there are both +3.3V and +5V pins.
- 5. Unpack the PMC-EVR-230 from its ESD bag.
- 6. Carefully align PMC-EVR-230 front panel with the PMC carrier's front panel hole.
- 7. Make sure PMC connectors are aligned and carefully push the board onto its carrier.
- 8. Secure the board from the bottom side of carrier using four M2.5 screws.
- 9. Connect appropriate cables to the board.

Installing the PCIe-EVR-300 Board into a Computer

Use the following steps to install the module into a computer:

- 1. Power down your computer
- 2. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical ground. The ESD strip must be secured to your wrist and to ground throughout the procedure.
- 3. Remove any panels to get access to the PCI Express slot.
- 4. Remove any PCIe slot filler panel from the slot you want to install the EVR.
- 5. Unpack the PCIe-EVR-300 from its ESD bag.
- 6. Carefully align the PCIe-EVR-300 into the PCIe slot. Make sure both the front panel and PCIe connector are aligned and carefully push the board into its slot.
- 7. Secure the board front panel with a screw.
- 8. Connect appropriate cables to the board.
- 9. Remount any chassis panels removed during the process.

Replacing SFP (Small Form Factor Pluggable) Transceivers

SFP Transceivers are hot-pluggable and replaceable during operation. To replace a SFP transceiver use the following steps:

- 1. Attach ESD strap to your wrist. Attach the other end of the ESD strip to an electrical ground. The ESD strip must be secured to your wrist and to ground throughout the procedure.
- 2. Unplug any fibres connected to the transceiver you want to replace.
- 3. Pull out the transceiver using the transceiver handle that folds down.
- 4. Plug in a new transceiver.
- 5. Reconnect fibres.

Page: 9 of 77

Introduction

Event Receivers decode timing events and signals from an optical event stream transmitted by an Event Generator. Events and signals are received at predefined rate the event clock that is usually divided down from an accelerators main RF reference. The event receivers lock to the phase event clock of the Event Generator and are thus phase locked to the RF reference. Event Receivers convert event codes transmitted by an Event Generator to hardware outputs. They can also generate software interrupts and store the event codes with globally distributed timestamps into FIFO memory to be read by a CPU.

Functional Description

After recovering the event clock the Event Receiver demultiplexes the event stream to 8-bit distributed bus data and 8-bit event codes. The distributed bus may be configured to share its bandwidth with time deterministic data transmission.

Event Decoding

The Event Receiver provides two mapping RAMs of 256×128 bits. Only one of the RAMs can be active at a time, however both RAMs may be modified at any time. The event code is applied to the address lines of the active mapping RAM. The 128-bit data programmed into a specific memory location pointed to by the event code determines what actions will be taken.

Event code	Offset	Internal functions	Pulse Triggers	'Set' Pulse	'Reset' Pulse
0x00	0x0000	4 bytes/32 bits	4 bytes/32 bits	4 bytes/32 bits	4 bytes/32 bits
0x01	0x0010	4 bytes/32 bits	4 bytes/32 bits	4 bytes/32 bits	4 bytes/32 bits
0x02	0x0020	4 bytes/32 bits	4 bytes/32 bits	4 bytes/32 bits	4 bytes/32 bits
0xFF	0x0FF0	4 bytes/32 bits	4 bytes/32 bits	4 bytes/32 bits	4 bytes/32 bits

There are 32 bits reserved for internal functions which are by default mapped to the event codes shown in table . The remaining 96 bits control internal pulse generators. For each pulse generator there is one bit to trigger the pulse generator, one bit to set the pulse generator output and one bit to clear the pulse generator output.

Map bit	Default event code	Function
127	n/a	Save event in FIFO
126	n/a	Latch timestamp
125	n/a	Led event
124	n/a	Forward event from RX to TX
123	0x79	Stop event log
122	n/a	Log event
102 to 121	n/a	(Reserved)
101	0x7a	Hearbeat
100	0x7b	Reset Prescalers
99	0x7d	Timestamp reset event
98	0x7c	Timestamp clock event
97	0x71	Seconds shift register '1'
96	0x70	Seconds shift register '0'
80 to 95		(Reserved)

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 10 of 77

79 Trigger pulse generator 15

...

Trigger pulse generator 0

48 to 63 (Reserved)

47 Set pulse generator 15 output high

.. ..

32 Set pulse generator 0 output high

16 to 31 (Reserved)

15 Reset pulse generator 15 output low

...

0 Reset pulse generator 0 output low

Heartbeat Monitor

A heartbeat monitor is provided to receive heartbeat events. Event code \$7A is by default set up to reset the heartbeat counter. If no heartbeat event is received the counter times out (approx. 1.6 s) and a heartbeat flag is set. The Event Receiver may be programmed to generate a heartbeat interrupt.

Event FIFO and Timestamp Events

The Event System provides a global timebase to attach timestamps to collected data and performed actions. The time stamping system consists of a 32-bit timestamp event counter and a 32-bit seconds counter. The timestamp event counter either counts received timestamp counter clock events or runs freely with a clock derived from the event clock. The event counter is also able to run on a clock provided on a distributed bus bit.

The event counter clock source is determined by the prescaler control register. The timestamp event counter is cleared at the next event counter rising clock edge after receiving a timestamp event counter reset event. The seconds counter is updated serially by loading zeros and ones (see mapping register bits) into a shift register MSB first. The seconds register is updated from the shift register at the same time the timestamp event counter is reset.

The timestamp event counter and seconds counter contents may be latched into a timestamp latch. Latching is determined by the active event map RAM and may be enabled for any event code.

An event FIFO memory is implemented to store selected event codes with attached timing information. The 80-bit wide FIFO can hold up to 511 events. The recorded event is stored along with 32-bit seconds counter contents and 32-bit timestamp event counter contents at the time of reception. The event FIFO as well as the timestamp counter and latch are accessible by software.

Document: EVR-MRM-007

Page: 11 of 77

Figure 1: Event FIFO and Timestamping

Event Log

Up to 512 events with timestamping information can be stored in the event log. The log is implemented as a ring buffer and is accessible as a memory region. Logging events can be stopped by an event or software.

Distributed Bus and Data Transmission

The distributed bus is able to carry eight simultaneous signals sampled with the event clock rate over the fibre optic transmission media. The distributed bus signals may be output on programmable front panel outputs.

The distributed bus bandwidth may be shared by transmission of a configurable size data buffer to up to 2 kbytes. When data transmission is enabled the distributed bus bandwidth is halved. The remaining bandwidth is reserved for transmitting data with a speed up to 50 Mbytes/s (event clock rate divide by two).

Pulse Generators

The structure of the pulse generation logic is shown in Figure 2. Three signals from the mapping RAM control the output of the pulse: trigger, 'set' pulse and 'reset' pulse. A *trigger* causes the delay counter to start counting, when the end-of-count is reached the output pulse changes to the 'set' state and the width counter starts counting. At the end of the width count the output pulse is cleared. The mapping RAM signal 'set' and 'reset' cause the output to change state immediately without any delay.

Document: EVR-MRM-007

Page: 12 of 77

Figure 2: Pulse Output Structure

32 bit registers are reserved for both counters and the prescaler, however, the prescaler is not necessarily implemented for all channels and may be hard coded to 1 in case the prescaler is omitted. Software may write 0xFFFFFFF to these registers and read out the actual width or hard-coded value of the register. For example if the width counter is limited to 16 bits a read will return 0x0000FFFF after a write of 0xFFFFFFFF.

Prescalers

The Event Receiver provides a number of programmable prescalers. The frequencies are programmable and are derived from the event clock. A special event code reset prescalers \$7B causes the prescalers to be synchronously reset, so the frequency outputs will be in same phase across all event receivers.

Programmable Front Panel, Universal I/O and Backplane Connections

All outputs are programmable: each pulse generator output, prescaler and distributed bus bit can be mapped to any output. The mapping is shown in table below.

Table 1: Signal mapping IDs

Mapping ID	Signal
0 to n-1	Pulse generator output (number n of pulse generators depends on HW and
	firmware version)
n to 31	(Reserved)
32	Distributed bus bit 0 (DBUS0)
•••	
39	Distributed bus bit 7 (DBUS7)
40	Prescaler 0
41	Prescaler 1
42	Prescaler 2
43 to 58	(Reserved)
59	Event clock output (only on PXIe-EVR-300)
60	Event clock output with 180° phase shift (only on PXIe-EVR-300)
61	Tri-state output (for PCIe-EVR-300/PXIe-EVR-300 with input module
	populated in Interface Module's Universal I/O slot, and PXIe-EVR-300
	bidirectional PXI trigger signals)
62	Force output high (logic 1)

Page: 13 of 77

63 Force output low (logic 0)

Front Panel TTL Outputs (VME-EVR-230 and VME-EVR-230RF)

The VME-EVR-230 provides eight programmable TTL outputs in the front panel TTL0 to TTL7 whereas the number of TTL level outputs in the VME-EVR-230RF is limited to four (TTL0 to TTL3). These outputs are capable of driving a TTL level signal into a 50 ohm ground terminated coaxial cable. The source for these signals are determined by mapping registers which allow selecting different types of pulse outputs, prescalers and distributed bus signals.

Front Panel Universal I/O Slots

Universal I/O slots provide different types of output with exchangeable Universal I/O modules. Each module provides two outputs e.g. two TTL output, two NIM output or two optical outputs. The source for these outputs is selected with mapping registers.

Two front panel Universal I/O slots have extra I/O pins to allow controlling the delay of UNIV-LVPECL-DLY modules. For the cPCI-EVR-300 the two slots that allow UNIV-LVPECL-DLY modules are UNIV8/9 and UNIV10/11.

An optional side-by-side front panel module for the cPCI-EVR-220 and cPCI-EVR-230 offers three additional Universal I/O slots with a maximum of six outputs. The cPCI-EVR-300 has six Universal I/O slots.

Front Panel CML Outputs (VME-EVR-230RF only)

Front Panel CML Outputs provide low jitter differential signals with special outputs. The outputs can work in different configurations: pulse mode, pattern mode and frequency mode.

CML Pulse Mode

The source for these outputs is selected in a similar way than the TTL outputs using mapping registers, however, the output logic monitors the state of this signal and distinguishes between state low (00), rising edge (01), high state (11) and falling edge (10). Based on the state a 20 bit pattern is sent out with a bit rate of 20 times the event clock rate.

Document: EVR-MRM-007 **Page:** 14 of 77

Figure 3: Block Diagram of Programmable CML Outputs

- When the source for a CML output is low and was low one event clock cycle earlier (state low), the CML output repeats the 20 bit pattern stored in pattern_00 register.
- When the source for a CML output is high and was low one event clock cycle earlier (state rising), the CML output sends out the 20 bit pattern stored in pattern_01 register.
- When the source for a CML output is high and was high one event clock cycle earlier (state high), the CML output repeats the 20 bit pattern stored in pattern 11 register.
- When the source for a CML output is low and was high one event clock cycle earlier (state falling), the CML output sends out the 20 bit pattern stored in pattern_10 register.

For an event clock of 125 MHz the duration of one single CML output bit is 400 ps. These outputs allow for producing fine grained adjustable output pulses and clock frequencies.

CML Frequency Mode

In frequency mode one can generate clocks where the clock period can be defined in steps of $1/20^{th}$ part of the event clock cycle i.e. 400 ps step with an event clock of 125 MHz. There are some limitations, however:

- Clock high time and clock low time must be $\geq 20/20^{th}$ event clock period steps
- Clock high time and clock low time must be < 65536/20th event clock period steps

The clock output can be synchronized by one of the pulse generators, distributed bus signal etc. When a rising edge of the mapped output signal is detected the frequency generator takes its

Document: EVR-MRM-007

Page: 15 of 77

output value from the trigger level bit and the counter value from the trigger position register. Thus one can adjust the phase of the synchronized clock in $1/20^{th}$ steps of the event clock period.

Usage example: Australian synchrotron booster clock. We have following:

- Event clock of 499.654 MHz/4
- Storage ring 360 RF buckets
- Booster 217 RF buckets
- Booster and storage ring coincidence clock on DBUS7

The CML outputs are running at a rate of 20 times the event clock or 499.654 MHz * 5, thus the booster revolution period is 217 * 5 CML bit periods. In CML frequency mode we can now set the output period (pulse high time + pulse low time) to 217 * 5 = 1085 bits. For approximately 50% duty cycle we set the pulse high time to 542 (0x21e) and the pulse low time to 543 (0x21f).

The actual register settings required are:
Write 0x00000011 to CML Control register (CMLxENA)
Write 0x021e to CML High Period Count register (CMLxHP)
Write 0x021f to CML Low Period Count register (CMLxLP)

We also need to set the trigger from DBUS7 by setting up register FPOutMapx.

To change the generated clock phase in respect to the trigger we can select the trigger polarity by bit CMLTL in the CML Control register and the trigger position also in the CML Control register.

CML Pattern Mode

In pattern mode one can generate arbitrary bit patterns taking into account following:

- The pattern length is a multiple of 20 bits, where each bit is 1/20th of the event clock period
- Maximum length of the arbitrary pattern is 20×2048 bits
- A pattern can be triggered from any pulse generator, distributed bus bit etc. When triggered the pattern generator starts sending 20 bit words from the pattern memory sequentially starting from position 0. This goes on until the pattern length set by the samples register has been reached.
- If the pattern generator is in recycle mode the pattern continues immediately from position 0 of the pattern memory.
- If the pattern generator is in single pattern mode, the pattern stops and the 20 bit word from the last position of the pattern memory (2047) is sent out until the pattern generator is triggered again.

cPCI-EVRTG-300 GTX Front Panel Outputs

All eight cPCI-EVRTG-300 front panel output are similar to the CML outputs on the VME-EVR-230RF. The GTX Outputs provide low jitter differential signals with special outputs. The outputs can work in different configurations: pulse mode, pattern mode and frequency mode. The difference compared to the CML output of the VME-EVR-230RF is that instead of 20 bits per

Document: EVR-MRM-007

Page: 16 of 77

event clock cycle the GTX outputs have 40 bits per event clock cycle doubling the resolution to 200 ps/bit at an event clock of 125 MHz.

In addition to the higher bit rate each of the GTX outputs has a programmable delay line between the FPGA and the actual output which allows a delay range of 1024 steps of ~9 ps. The delay value is set with registers GTX0Dly to GTX7Dly.

GTX Pulse Mode

The source for these outputs is selected in a similar way than the TTL outputs using mapping registers, however, the output logic monitors the state of this signal and distinguishes between state low (00), rising edge (01), high state (11) and falling edge (10). Based on the state a 40 bit pattern is sent out with a bit rate of 40 times the event clock rate.

Figure 4: Block Diagram of Programmable GTX Outputs

- When the source for a GTX output is low and was low one event clock cycle earlier (state low), the GTX output repeats the 40 bit pattern stored in pattern_00 register.
- When the source for a GTX output is high and was low one event clock cycle earlier (state rising), the GTX output sends out the 40 bit pattern stored in pattern_01 register.
- When the source for a GTX output is high and was high one event clock cycle earlier (state high), the GTX output repeats the 40 bit pattern stored in pattern_11 register.
- When the source for a GTX output is low and was high one event clock cycle earlier (state falling), the GTX output sends out the 40 bit pattern stored in pattern_10 register.

For an event clock of 125 MHz the duration of one single GTX output bit is 200 ps. These outputs allow for producing fine grained adjustable output pulses and clock frequencies.

Document: EVR-MRM-007

Page: 17 of 77

GTX Frequency Mode

In frequency mode one can generate clocks where the clock period can be defined in steps of $1/40^{th}$ part of the event clock cycle i.e. 200 ps step with an event clock of 125 MHz. There are some limitations, however:

- Clock high time and clock low time must be $\geq 40/40^{th}$ event clock period steps
- Clock high time and clock low time must be < 65536/40th event clock period steps

The clock output can be synchronized by one of the pulse generators, distributed bus signal etc. When a rising edge of the mapped output signal is detected the frequency generator takes its output value from the trigger level bit and the counter value from the trigger position register. Thus one can adjust the phase of the synchronized clock in $1/40^{th}$ steps of the event clock period.

To change the generated clock phase in respect to the trigger we can select the trigger polarity by bit CMLTL in the CML Control register and the trigger position also in the CML Control register.

GTX Pattern Mode

In pattern mode one can generate arbitrary bit patterns taking into account following:

- The pattern length is a multiple of 40 bits, where each bit is 1/40th of the event clock period
- Maximum length of the arbitrary pattern is 40×2048 bits
- A pattern can be triggered from any pulse generator, distributed bus bit etc. When triggered the pattern generator starts sending 40 bit words from the pattern memory sequentially starting from position 0. This goes on until the pattern length set by the samples register has been reached.
- If the pattern generator is in recycle mode the pattern continues immediately from position 0 of the pattern memory.
- If the pattern generator is in single pattern mode, the pattern stops and the 40 bit word from the last position of the pattern memory (2047) is sent out until the pattern generator is triggered again.

GTX GUN-TX-203 Mode

The cPCI-EVRTG-300 has two SFP outputs CH1 (GTX6) and CH2 (GTX7) that can generate a modulated signal that can be received by the Electron Gun trigger receiver GUN-RC-203. The GUN-TX-203 Mode has been designed to operate with a RF bucket clock of 499.654 MHz and event clock of ¼ of the RF clock.

To enable the GUN-TX-203 Mode one has to set bits GTX2MD and CMLENA in the CML/GTX Control register for the given GTX output. The pulse output delay can be changed in quarters of the event clock period by the GTXPH1:0 bits. For finer delay tuning the GTX delay lines may be adjusted (registers GTX6Dly for CH1 and GTX7Dly for CH2).

The two SFP outputs share an external inhibit signal that only allows triggers when the external inhibit signal is in a given state. To use the external inhibit function a UNIV-TTLIN-IL module has to be mounted in Universal I/O slot UNIV0/1. To allow output pulses the inhibit signal at

Document: EVR-MRM-007

Page: 18 of 77

UNIVO has to be pulled low. In case of an open circuit output pulses are inhibited. It is possible to override the inhibit input with a control register bit.

The GUN-TX-203 mode can be used in conjunction with the GTX pulse mode.

Pulse Mode Example

This example shows how to configure CH1 & CH2 using GUN-RC-203 to output a pulse on a received event. We use the telnet interface to the cPCI-EVRTG-300. This example assumes the following conditions:

- Event clock rate is set to 124.9135 MHz
- EVG is periodically sending out event code 0x01
- Register contents of EVR are power up default values

m 7a000004 8900	Enable EVR, Output Enable, Gun-tx inhibit input override
m 7a000006 0200	Enable mapping RAM 1
m 7a00000a 0015	Clear HW IRQ flag, heartbeat flag, violation flag
m 7a000202 0003	Enable pulse generator 0, enable event trigger
m 7a00020e 0064	Set pulse generator 0 width to 100 cycles
m 7a000212 0003	Enable pulse generator 1, enable event trigger
m 7a00021a 0064	Set pulse delay to 100 cycles
m 7a00021e 0064	Set pulse generator 1 width to 100 cycles
m 7a000408 0000	Map pulse generator 0 output to LVPECL 0
m 7a00040a 0001	Map pulse generator 1 output to LVPECL 1
m 7a00040c 0000	Map pulse generator 0 output to CH1
m 7a00040e 0001	Map pulse generator 1 output to CH2
m 7a004016 3	Map event code 0x01 to trigger pulse generator 0 & 1
m 7a000692 1	Enable pulse mode for GTX4 / LVPECL 0
m 7a0006b2 1	Enable pulse mode for GTX5 / LVPECL 1
m 7a0006d2 0401	Enable pulse mode & GUN-TX-203 mode for GTX6 / CH1
m 7a0006f2 0401	Enable pulse mode & GUN-TX-203 mode for GTX7 / CH2

GTX GUN-RC-300 Mode

The two front panel SFP outputs CH1 (GTX6) and CH2 (GTX7) can be configured to generate a modulated signal that can be received by an Electron Gun trigger receiver GUN-RC-300. The difference between the GUN-RC-203 and GUN-RC-300 is that the latter is capable of generating pulse trains with 2 ns resolution that is it allows triggering the gun bunch by bunch.

Pulse Mode Example

This example shows how to configure CH1 and CH2 to output a pulse on a received event. We use the telnet interface to the cPCI-EVRTG-300. This example assumes the following conditions:

- Event clock rate is set to 124.9135 MHz
- EVG is periodically sending out event code 0x01

Page: 19 of 77

Register contents of EVR are power up default values

m	7a000004	8900	Enable EVR, Output Enable, Gun-tx inhibit input override
m	7a000006	0200	Enable mapping RAM 1
m	7a00000a	0015	Clear HW IRQ flag, heartbeat flag, violation flag
m	7a000202	0003	Enable pulse generator 0, enable event trigger
m	7a00020e	0064	Set pulse generator 0 width to 100 cycles
m	7a000212	0003	Enable pulse generator 1, enable event trigger
m	7a00021a	0064	Set pulse delay to 100 cycles
m	7a00021e	0064	Set pulse generator 1 width to 100 cycles
m	7a000408	0000	Map pulse generator 0 output to LVPECL 0 (for reference only)
m	7a00040a	0001	Map pulse generator 1 output to LVPECL 1 (for reference only)
m	7a00040c	0000	Map pulse generator 0 output to CH1
m	7a00040e	0001	Map pulse generator 1 output to CH2
m	7a004016	3	Map event code 0x01 to trigger pulse generator 0 & 1
m	7a000692	1	Enable pulse mode for GTX4 / LVPECL 0
m	7a0006b2	1	Enable pulse mode for GTX5 / LVPECL 1
m	7a0006d2	0801	Enable pulse mode & GUN-TX-300 mode for GTX6 / CH1
m	7a0006f2	0801	Enable pulse mode & GUN-TX-300 mode for GTX7 / CH2

Pattern Mode Example

This example shows how to configure CH1 and CH2 to output an arbitrary pulse pattern on a received event. We use the telnet interface to the cPCI-EVRTG-300. This example assumes the following conditions:

- Event clock rate is set to 124.9135 MHz
- EVG is periodically sending out event code 0x01
- Register contents of EVR are power up default values

m 7a000004 8900	Enable EVR, Output Enable, Gun-tx inhibit input override
m 7a000006 0200	Enable mapping RAM 1
m 7a00000a 0015	Clear HW IRQ flag, heartbeat flag, violation flag
m 7a000202 0003	Enable pulse generator 0, enable event trigger
m 7a00020e 0064	Set pulse generator 0 width to 100 cycles
m 7a000212 0003	Enable pulse generator 1, enable event trigger
m 7a00021a 0064	Set pulse delay to 100 cycles
m 7a00021e 0064	Set pulse generator 1 width to 100 cycles
m 7a000408 0000	Map pulse generator 0 output to LVPECL 0 (for reference only)
m 7a00040a 0001	Map pulse generator 1 output to LVPECL 1 (for reference only)
m 7a00040c 0000	Map pulse generator 0 output to CH1
m 7a00040e 0001	Map pulse generator 1 output to CH2
m 7a004016 3	Map event code 0x01 to trigger pulse generator 0 & 1
m 7a000692 1	Enable pulse mode for GTX4 / LVPECL 0
m 7a0006b2 1	Enable pulse mode for GTX5 / LVPECL 1
m 7a0006da 0100	Set pattern length to 256 event clock cycles
m 7a0006d2 0821	Enable pattern mode & GUN-TX-300 mode for GTX6 / CH1

Page: 20 of 77

m 7a0006fa 0100	Set pattern length to 256 event clock cycles
m 7a0006f2 0821	Enable pattern mode & GUN-TX-300 mode for GTX7 / CH2

The pattern is stored in the GTX pattern memory GTX6MEM for CH1 and GTX7MEM for CH2. The pattern memory has a resolution of 40 bits per event clock cycle, however, the GUN-RC-300 is only capable of reproducing pulses at rate of four 1 ns pulses every event clock cycle. The 40 bits of the pattern memory can be considered as four 10 bit blocks and each of these blocks may contain the following bit combinations only:

- 0000000000
- 11111100000
- 1111111111

Note that the pattern memory contains pre-programmed patterns for the GUN-TX-203 mode so the memory is not all-zero after power-up. Also if the pattern memory is modified the GUN-TX-203 mode could stop working.

Common GUN-TX Mode Considerations

- The GTX outputs should not be enable before the EVG/EVR link is up
- Disconnecting any fibre connection between EVG/EVR or EVR/GUN-RC can lead to a spurious pulses at the GUN-RC
- A lost EVG RF reference can cause spurious pulses at the GUN-RC
- When the Fine Delay value of a GUN-TX channels is changed the output is first forced low to prevent spurious triggers from glitches in the delay chip

Configurable Size Data Buffer

Some applications require deterministic data transmission. The configurable size data buffer provides a configurable size buffer that may be transmitted over the event system link. The buffer size is configured in the Event Generator to up to 2 kbytes. The Event Receiver is able to receive buffers of any size from 4 bytes to 2 kbytes in four byte (long word) increments.

Data reception is enabled by changing the distributed bus mode for data transmission (mode = 1 in Data Buffer Control Register). This halves the distributed bus update rate. Before a data buffer can be received the data buffer receiver has to be enabled (write enable = 1 in control register). This clears the checksum error flag and sets the rx_enable flag. When a data buffer has been received the rx_enable flag is cleared and rx_complete flag is set. If the received and computed checksums do not match the checksum error flag is set.

Document: EVR-MRM-007

Page: 21 of 77

Figure 5: Data Receive Buffer

The size of the data buffer transfer can be read from the control register. An interrupt may be generated after reception of a data buffer.

Interrupt Generation

The Event Receiver has multiple interrupt sources which all have their own enable and flag bits. The following events may be programmed to generate an interrupt:

- Receiver link state change
- Receiver violation: bit error or the loss of signal.
- Lost heartbeat: heartbeat monitor timeout.
- Write operation of an event to the event FIFO.
- Event FIFO is full.
- Data Buffer reception complete.

In addition to the events listed above an interrupt can be generated from one of the pulse generator outputs, distributed bus bits or prescalers. The pulse interrupt can be mapped in a similar way as the front panel outputs.

External Event Input

An external hardware input is provided to be able to take an external pulse to generate an internal event. This event will be handled as any other received event.

Programmable Reference Clock

The event receiver requires a reference clock to be able to synchronise on the incoming event stream sent by the event generator. For flexibility a programmable reference clock is provided to allow the use of the equipment in various applications with varying frequency requirements.

Document: EVR-MRM-007

Page: 22 of 77

Fractional Synthesiser

The clock reference for the event receiver is generated on-board the event receiver using a fractional synthesiser. A Micrel (http://www.micrel.com) SY87739L Protocol Transparent Fractional-N Synthesiser with a reference clock of 24 MHz is used. The following table lists programming bit patterns for a few frequencies.

Event Rate	Configuration Bit	Reference Output	Precision
	Pattern		(theoretical)
499.8 MHz/5	0x025B41ED	99.956 MHz	-40 ppm
= 99.96 MHz			
50 MHz	0x009743AD	50.0 MHz	0
499.8 MHz/10	0x025B43AD	49.978 MHz	-40 ppm
= 49.98 MHz			

The event receiver reference clock is required to be in ± 100 ppm range of the event generator event clock.

Hardware Configuration Summary

		cPCI- EVR-230	PMC- EVR-230	VME- EVR-230	VME- EVR- 230RF	cPCI- EVRTG- 300
Pulse		10	10	16	16	10
Genera	ators					
FP TT	L	2	1	2	2	0
inputs						
FP TT		0	3	8	4	0
output						
FP CM		0	0	0	3	81
output						
FP UN		4/2	0/0	4/2	4 / 2	4/2
I/O / s						
UNIV		8 / 2	0/0	8 / 2	8 / 2	8/2
pins / s			10			
TB Ou		0	10	16	16	0
TB Inputs		0	0	16	16	0
Presca	lers	3 x 32 bit	3 x 16 bit	3 x 32 bit	3 x 16 bit	3 x 32 bit
_	0	16, 32, 32	16, 32, 32	16, 32, 24	8, 32, 16	16, 32, 32
anc	1	16, 32, 32	16, 32, 32	16, 32, 24	8, 32, 16	16, 32, 32
ay	2	16, 32, 32	8, 32, 16	16, 32, 24	8, 32, 16	16, 32, 32
Sel	3	16, 32, 32	8, 32, 16	16, 32, 24	8, 32, 16	16, 32, 32
r, I	4	0, 32, 16	0, 32, 16	0, 32, 24	0, 32, 16	0, 32, 16
ale ts)	5	0, 32, 16	0, 32, 16	0, 32, 24	0, 32, 16	0, 32, 16
esc (bi	6	0, 32, 16	0, 32, 16	0, 32, 24	0, 32, 16	0, 32, 16
Pr	7	0, 32, 16	0, 32, 16	0, 32, 24	0, 32, 16	0, 32, 16
tor Sar	8	0, 32, 16	0, 32, 16	0, 32, 24	0, 32, 16	0, 32, 16
Pulse Generator Prescaler, Delay and Pulse Width Range (bits)	9	0, 32, 16	0, 32, 16	0, 32, 24	0, 32, 16	0, 32, 16
ren Vid	10	n/a	n/a	0, 32, 24	0, 32, 16	n/a
e e	11	n/a	n/a	0, 32, 24	0, 32, 16	n/a
sln	12	n/a	n/a	0, 32, 24	0, 32, 16	n/a
Ь	13	n/a	n/a	0, 32, 24	0, 32, 16	n/a

¹ From the software point of view all outputs show up as GTX/CML outputs. Physically there are four UNIV Outputs (two slots), two LVPECL outputs and two SFP outputs

Document: EVR-MRM-007

Page: 23 of 77

14	n/a	n/a	0, 32, 24	0, 32, 16	n/a
15	n/a	n/a	0, 32, 24	0, 32, 16	n/a

		cPCI-	cRIO-	PCIe-EVR-	PXIe-EVR-	PXIe-EVR-
		EVR-330	EVR-300	300	300I	300U
Pulse		14	8	16	16	16
Genera	ators					
FP TT	L	2	0	0	2	2
inputs						
FP TT	L	0	0	0	0	0
output						
FP CM		0	0	0	0	0
output	S					
FP UN		12/6	$4^2 / 0$	$16 / 8^3$	16 / 8 ⁴	4 / 2
I/O / s						
UNIV		8 / 2	0/0	0/0	0/0	8 / 2
pins / s						
TB Ou	•	0	0	0	58	58
TB Inp		0	0	0	42	42
Presca	lers	3 x 32 bit	3 x 16 bit	3 x 16 bit	4 x 32 bit	4 x 32 bit
4)	0	16, 32, 32	16, 32, 32	16, 32, 32	16, 32, 32	16, 32, 32
ulse	1	16, 32, 32	16, 32, 32	16, 32, 32	16, 32, 32	16, 32, 32
I P	2	16, 32, 32	16, 32, 32	16, 32, 32	16, 32, 32	16, 32, 32
anc	3	16, 32, 32	16, 32, 32	16, 32, 32	16, 32, 32	16, 32, 32
ay	4	0, 32, 16	0, 32, 16	0, 32, 16	0, 32, 16	0, 32, 16
)el	5	0, 32, 16	0, 32, 16	0, 32, 16	0, 32, 16	0, 32, 16
r, I	6	0, 32, 16	0, 32, 16	0, 32, 16	0, 32, 16	0, 32, 16
ale	7	0, 32, 16	0, 32, 16	0, 32, 16	0, 32, 16	0, 32, 16
esc	8	0, 32, 16	n/a	0, 32, 16	0, 32, 16	0, 32, 16
Pr ts)	9	0, 32, 16	n/a	0, 32, 16	0, 32, 16	0, 32, 16
tor (bi	10	0, 32, 16	n/a	0, 32, 16	0, 32, 16	0, 32, 16
era	11	0, 32, 16	n/a	0, 32, 16	0, 32, 16	0, 32, 16
Pulse Generator Prescaler, Delay and Pulse Width Range (bits)	12	0, 32, 16	n/a	0, 32, 16	0, 32, 16	0, 32, 16
e G	13	0, 32, 16	n/a	0, 32, 16	0, 32, 16	0, 32, 16
uls /idi	14	n/a	n/a	0, 32, 16	0, 32, 16	0, 32, 16
_ P	15	n/a	n/a	0, 32, 16	0, 32, 16	0, 32, 16

Connections

cPCI-EVR-2x0 Front Panel Connections

The front panel of the Event Receiver and its optional side-by-side module is shown in Figure 6 and Figure 7.

² From the software point of view the cRIO outputs show up as UNIV outputs. Physically they are available on the DSUB connector.

³ Universal I/O is available on the external I/O box

⁴ Universal I/O is available on the external I/O box, which from the software point of view are ports 4 to 19 (ports 0 to 3 are physically present on the PCB however, unavailable for mounting a Universal I/O module)

Page: 24 of 77

Figure 6: Event Receiver Front Panel

Figure 7: Optional Side-by-side Module Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led	Style	Level	Description
LNK	Red/Green		Red: receiver violation detected
	Led		Green: RX link OK, violation flag cleared
EVT	Red/Green		Green: link OK, flashes when event
LVI	Led		code received
			Red: Flashes on led event
TX	LC	optical	Transmit Optical Output (TX)
RX	LC	optical	Receiver Optical Input (RX)
TTL IN0	LEMO-EPY	TTL	External Event Input
TTL IN1	LEMO-EPY	TTL	External Event Input
UNIV0/1	Universal slot		Universal Output 0/1
UNIV2/3	Universal slot		Universal Output 2/3
UNIV4/5	Universal slot		Universal Output 4/6
UNIV6/7	Universal slot		Universal Output 6/7
UNIV8/9	Universal slot		Universal Output 8/9

VME-EVR-230 and VME-EVR-230RF Front Panel Connections

The front panel of the VME-EVR-230 Event Receiver is shown in Figure 6 and VME-EVR-230RF in Figure 9: VME-EVR-230RF Event Receiver Front PanelFigure 9 respectively.

Figure 8: VME-EVR-230 Event Receiver Front Panel

Document: EVR-MRM-007

Page: 25 of 77

Figure 9: VME-EVR-230RF Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led	Style	Level	Description
FAIL	Red Led		Module Failure/Interlock active
OFF	Blue Led		Module not Configured/Powered
			Down
RX LINK	Green Led		Receiver Link Signal OK
ENA	Green Led		Event Receiver Enabled
EVENT IN	Yellow Led		Incoming Event (RX)
EVENT OUT	Yellow Led		Active HW output
RX FAIL	Red Led		Receiver Violation
ERR	Red Led		SY87739L reference not locked
RUN	Green Led		Ubicom IP2022 software running
ACT	Yellow Led		Ubicom IP2022 telnet connection
			active
10baseT with LEDs	RJ45	10baseT	10baseT Ethernet Connection
	green Led		link established
	amber Led		link activity
10/100	RJ45		(reserved)
TX	LC	optical	Transmit Optical Output (TX)
RX	LC	optical	Receiver Optical Input (RX)
TTL IN0	LEMO-EPY	TTL	External Event Input
TTL IN1	LEMO-EPY	TTL	External Event Input
TTL OUT0	LEMO-EPY	TTL	Programmable TTL Output 0
TTL OUT1	LEMO-EPY	TTL	Programmable TTL Output 1
TTL OUT2	LEMO-EPY	TTL	Programmable TTL Output 2
TTL OUT3	LEMO-EPY	TTL	Programmable TTL Output 3
TTL OUT4	LEMO-EPY	TTL	Programmable TTL Output 4 ⁵
TTL OUT5	LEMO-EPY	TTL	Programmable TTL Output 5
TTL OUT6	LEMO-EPY	TTL	Programmable TTL Output 6
TTL OUT7	LEMO-EPY	TTL	Programmable TTL Output 7
CML OUT4	LEMO-EPY	CML	Programmable CML Output 4 ⁶
CML OUT5	LEMO-EPY	CML	Programmable CML Output 5
CML OUT6	LEMO-EPY	CML	Programmable CML Output 6
UNIV0/1	Universal slot		Universal Output 0/1
UNIV2/3	Universal slot		Universal Output 2/3
COM	RJ45	RS232	(reserved)

VME P2 User I/O Pin Configuration

The following table lists the connections to the VME P2 User I/O Pins.

⁵ TTL outputs TTL4-TTL7 available on VME-EVR-230 only

⁶ CML outputs available on VME-EVR-230RF only

Document: EVR-MRM-007 **Page:** 26 of 77

A1 Transition board ID0 A2 Transition board ID1 A3-A10 Ground A11 Transition board ID2 A12 Transition board ID3 A13-A15 Ground A16 Transition board handle switch A17-A26 Ground A27-A31 +5V A32 Power control for transition board C1 (reserved) C2 (reserved) C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 1 C24 Programmable transition board output 1 C25 Programmable transition board output 1 C26 Programmable transition board output 1 C27 Programmable transition board output 1 C28 (reserved) C30 (reserved) C31 (reserved) C31 (reserved) C32 (reserved)	Pin	Signal
A3-A10 Ground A11 Transition board ID2 A12 Transition board ID3 A13-A15 Ground A16 Transition board handle switch A17-A26 Ground A27-A31 +5V A32 Power control for transition board C1 (reserved) C2 (reserved) C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 11 C25 Programmable transition board output 11 C26 Programmable transition board output 13 C26 Programmable transition board output 13 C27 Programmable transition board output 11 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	A1	Transition board ID0
A11 Transition board ID2 A12 Transition board ID3 A13-A15 Ground A16 Transition board handle switch A17-A26 Ground A27-A31 +5V A32 Power control for transition board C1 (reserved) C2 (reserved) C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 3 C16 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 9 C22 Programmable transition board output 11 C24 Programmable transition board output 11 C25 Programmable transition board output 11 C26 Programmable transition board output 13 C26 Programmable transition board output 13 C27 Programmable transition board output 11 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	A2	Transition board ID1
A12 Transition board ID3 A13-A15 Ground A16 Transition board handle switch A17-A26 Ground A27-A31 +5V A32 Power control for transition board C1 (reserved) C2 (reserved) C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 7 C20 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 13 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	A3-A10	Ground
A13-A15 Ground A16 Transition board handle switch A17-A26 Ground A27-A31 +5V A32 Power control for transition board C1 (reserved) C2 (reserved) C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 5 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 11 C25 Programmable transition board output 13 C26 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 14 C27 Programmable transition board output 14 C29 (reserved) C30 (reserved) C31 (reserved)	A11	Transition board ID2
A16 Transition board handle switch A17-A26 Ground A27-A31 +5V A32 Power control for transition board C1 (reserved) C2 (reserved) C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 5 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 7 C20 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 11 C25 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 14 C28 (reserved) C30 (reserved) C31 (reserved)	A12	Transition board ID3
A17-A26 Ground A27-A31 +5V A32 Power control for transition board C1 (reserved) C2 (reserved) C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 5 C19 Programmable transition board output 5 C19 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 11 C25 Programmable transition board output 12 C26 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	A13-A15	Ground
A32 Power control for transition board C1 (reserved) C2 (reserved) C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 7 C20 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 11 C25 Programmable transition board output 11 C26 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 14 C28 (reserved) C30 (reserved) C31 (reserved)	A16	Transition board handle switch
C1 (reserved) C2 (reserved) C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 5 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 11 C25 Programmable transition board output 11 C26 Programmable transition board output 13 C26 Programmable transition board output 13 C26 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C30 (reserved) C31 (reserved)	A17-A26	Ground
C1 (reserved) C2 (reserved) C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 14 C28 (reserved) C30 (reserved) C31 (reserved)	A27-A31	+5V
C2 (reserved) C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 14 C28 (reserved) C30 (reserved) C31 (reserved)	A32	Power control for transition board
C3 (reserved) C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 8 C22 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 14 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C1	(reserved)
C4 (reserved) C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C2	(reserved)
C5 (reserved) C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C3	(reserved)
C6 (reserved) C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 12 C26 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C4	(reserved)
C7 (reserved) C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C5	(reserved)
C8 (reserved) C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C6	(reserved)
C9 (reserved) C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C7	(reserved)
C10 (reserved) C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C8	(reserved)
C11 (reserved) C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C30 (reserved) C31 (reserved)	C9	(reserved)
C12 Programmable transition board output 0 C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C10	(reserved)
C13 Programmable transition board output 1 C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C11	(reserved)
C14 Programmable transition board output 2 C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C12	Programmable transition board output 0
C15 Programmable transition board output 3 C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C13	Programmable transition board output 1
C16 Programmable transition board output 4 C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 14 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C14	Programmable transition board output 2
C17 Programmable transition board output 5 C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 14 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C15	Programmable transition board output 3
C18 Programmable transition board output 6 C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C16	Programmable transition board output 4
C19 Programmable transition board output 7 C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 14 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C17	Programmable transition board output 5
C20 Programmable transition board output 8 C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C18	Programmable transition board output 6
C21 Programmable transition board output 9 C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C19	Programmable transition board output 7
C22 Programmable transition board output 10 C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C20	Programmable transition board output 8
C23 Programmable transition board output 11 C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C21	Programmable transition board output 9
C24 Programmable transition board output 12 C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C22	Programmable transition board output 10
C25 Programmable transition board output 13 C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C23	Programmable transition board output 11
C26 Programmable transition board output 14 C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C24	Programmable transition board output 12
C27 Programmable transition board output 15 C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C25	Programmable transition board output 13
C28 (reserved) C29 (reserved) C30 (reserved) C31 (reserved)	C26	Programmable transition board output 14
C29 (reserved) C30 (reserved) C31 (reserved)	C27	Programmable transition board output 15
C30 (reserved) C31 (reserved)		(reserved)
C31 (reserved)		
*		(reserved)
C32 (reserved)		
	C32	(reserved)

Page: 27 of 77

PMC-EVR-230 Front Panel Connections

The front panel of the PMC Event Receiver is shown in Figure 10.

Figure 10: PMC-EVR-230 Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led	Style	Level	Description
LINK	Green Led		Receiver Link Signal OK
EVT	Yellow Led		Incoming Event (RX)
OUT	Yellow Led		Active HW output
FAIL	Red Led		Receiver Violation
TX (SFP) next to leds	LC	Optical 850 nm	Event link Transmit
RX (SFP) next to EXT.IN	LC	Optical 850 nm	Event link Receiver
OUT0	LEMO-EPL	TTL	Programmable TTL Output 0
OUT1	LEMO-EPL	TTL	Programmable TTL Output 1
OUT2	LEMO-EPL	TTL	Programmable TTL Output 2
EXT IN	LEMO-EPL	TTL	External Event Input

PMC-EVR-230 Pn4 User I/O Pin Configuration

The following table lists the connections to the PMC Pn4 User I/O Pins and to VME P2 pins when the module is mounted on a host with "P4V2-64ac" mapping complying VITA-35 PMC-P4 to VME-P2-Rows-A,C.

PMC Pn4 pin	VME P2 Pin	Signal
2	A1	Transition board ID0
4	A2	Transition board ID1
6, 8,, 20	A3-A10	Ground
22	A11	Transition board ID2
24	A12	Transition board ID3
26, 28, 30	A13-A15	Ground
32	A16	Transition board handle switch
34, 36,, 52	A17-A26	Ground
54, 56,, 62	A27-A31	+5V
64	A32	Power control for transition board
1	C1	(reserved)
3	C2	(reserved)
5	C3	(reserved)
7	C4	(reserved)

Document: EVR-MRM-007

Page: 28 of 77

9	C5	(reserved)
11	C6	(reserved)
13	C7	(reserved)
15	C8	(reserved)
17	C9	(reserved)
19	C10	(reserved)
21	C11	(reserved)
23	C12	Programmable transition board output 0
25	C13	Programmable transition board output 1
27	C14	Programmable transition board output 2
29	C15	Programmable transition board output 3
31	C16	Programmable transition board output 4
33	C17	Programmable transition board output 5
35	C18	Programmable transition board output 6
37	C19	Programmable transition board output 7
39	C20	Programmable transition board output 8
41	C21	Programmable transition board output 9
43	C22	Programmable transition board output 10
45	C23	Programmable transition board output 11
47	C24	Programmable transition board output 12
49	C25	Programmable transition board output 13
51	C26	Programmable transition board output 14
53	C27	Programmable transition board output 15
55	C28	(reserved)
57	C29	(reserved)
59	C30	(reserved)
61	C31	(reserved)
63	C32	(reserved)

cRIO-EVR-300 Front Panel Connections

Figure 11: cRIO-EVR-300 Event Receiver Front Panel

Connector / Led	Style	Level	Description
TX (SFP)	LC	Optical 850 nm	Event link Transmit
RX (SFP)	LC	Optical 850 nm	Event link Receiver
ETH	RJ45	10baseT/100baseTX	Ethernet port
V+	Terminal	+6 to +30 VDC	Power supply positive
			supply
GND	Terminal	Ground	Power supply ground

Page: 29 of 77

cPCI-EVRTG-300 Front Panel Connections

Figure 12: cPCI-EVRTG-300 Event Receiver Front Panel

Connector / Led	Style	Level	Description
10baseT with LEDs	RJ45	10baseT	10baseT Ethernet Connection
	green Led		link established
	amber Led		link activity
10/100/GbE	RJ45		(reserved)
LNK	led		10/100/GbE link led
ACT	led		10/100/GbE active led
COM	RJ45	RS-232	(reserved)
TX	Led		(reserved)
RX	Led		(reserved)
UNIV0/1	Universal slot		Universal Output 0/1
UNIV2/3	Universal slot		Universal Output 2/3
LVPECL 0	EPG.00.302	3.3V diff. LVPECL	LVPECL Output
LVPECL 1	EPG.00.302	3.3V diff. LVPECL	LVPECL Output
A	RGB Led		(reserved)
В	RGB Led		(reserved)
C	RGB Led		(reserved)
D	RGB Led		(reserved)
CH 1	LC	Optical 850 nm	GunTX Output
CH 2	LC	Optical 850 nm	GunTX Output
Link TX (SFP)	LC	Optical 850 nm	Event link Transmit
Link RX (SFP)	LC	Optical 850 nm	Event link Receiver

cPCI-EVR-300 Front Panel Connections

Figure 13: cPCI-EVR-300 Event Receiver Front Panel

Connector / Led	Style	Level	Description
UNIV0/1	Universal slot		Universal Output 0/1
UNIV2/3	Universal slot		Universal Output 2/3
UNIV4/5	Universal slot		Universal Output 4/5
UNIV6/7	Universal slot		Universal Output 6/7
UNIV8/9	Universal slot		Universal Output 8/9
UNIV10/11	Universal slot		Universal Output 10/11
USB	USB		(USB Serial Port, reserved)
10/100	RJ45		(10/100 Ethernet, reserved)
IN0	Lemo	TTL	TTL Input IN0
IN1	Lemo	TTL	TTL Input IN1
Link TX (SFP)	LC	Optical 850 nm	Event link Transmit

Document: EVR-MRM-007

Page: 30 of 77

Link RX (SFP) LC Optical 850 nm Event link Receiver

PCIe-EVR-300 and IFB-300 Connections

Due to its small bracket the PCIe-EVR-300 has only a SFP transceiver and a micro-SCSI type connector to interface to the IFB-300. The cable between the PCIe-EVR-300 and IFB-300 should be connected/disconnected only when powered down.

Connector / Led Link TX (SFP)	Style LC	Level Optical 850 nm	Description Event link Transmit	
			Green: TX enable Red: Fract.syn. not locked	
			Blue: Event out	
Link RX (SFP)	LC	Optical 850 nm	Event link Receiver	
Next to micro-SCSI		_	Green: link up	
			Red: link violation detected	
			Blue: event led	

The interface board IFB-300 has eight Universal I/O slots which can be populated with various types of Universal I/O modules. If an input module is populated in any slot a jumper has to be mounted in that slot's two pin header with marking "Insert jumper for input module". Please note that if an input module is mounted the corresponding Universal Output Mapping has to be tristated. Refer to Table 1: Signal mapping IDs for details.

Universal Slot 0/1 signals are hard-wired to the TTLIN 0/1 signals.

Figure 14: IFB-300 Event Receiver Interface Board Front Panel

Connector / Led	Style	Level	Description	
UNIV0/1	Universal slot		TTL Input / Universal I/O 0/1	
UNIV2/3	Universal slot		Universal I/O 2/3	
UNIV4/5	Universal slot		Universal I/O 4/5	
UNIV6/7	Universal slot		Universal I/O 6/7	
UNIV8/9	Universal slot		Universal I/O 8/9	
UNIV10/11	Universal slot		Universal I/O 10/11	
UNIV12/13	Universal slot		Universal I/O 12/13	
UNIV14/15	Universal slot		Universal I/O 14/15	
LINK	Green led		RX link up	
EVIN	Yellow led RX event in		RX event in	
EVOUT	Yellow led RX event led (mappe		RX event led (mapped)	
RXFAIL	Red led		RX violation detected	

PXIe-EVR-300 Front Panel Connections

The PXIe-EVR-300 is available in two different front panel configurations: the PXIe-EVR-300U with two Universal I/O slots and the PXIe-EVR-300I with a VHDCI connector for interfacing to an external I/O box, the IFB-300.

Document: EVR-MRM-007

Page: 31 of 77

Figure 15: PXIe-EVR-300I Event Receiver Front Panel

Figure 16: PXIe-EVR-300U Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led	Style	Level	Description
RX led	RGB Led		Red: receiver violation detected
			Green: RX link OK, violation flag cleared
			Yellow: RX link OK, violation detected
TX led	RGB Led		Green: link OK, flashes when event code received
			Red: Flashes on led event
LINK TX	LC	optical	Transmit Optical Output (TX)
LINK RX	LC	optical	Receiver Optical Input (RX)
TTL IN0	LEMO-EPY	TTL	External Event Input
TTL IN1	LEMO-EPY	TTL	External Event Input
UNIV0/1	Universal slot		Universal Output 0/1
UNIV2/3	Universal slot		Universal Output 2/3
VHDCI	VHDCI	LVDS	Connection to IFB-300

The IFB-300 Universal I/Os are mapped to UNIV4 to UNIV19 i.e. IFB-300 UNIV0 shows up as UNIV4 in the register map.

PXIe-EVR-300 Backplane Connections

The PXIe-EVR-300 provides a number of backplane I/O signals, conventional PXI timing and synchronization signals and new differential signals introduced by the PXI Express specification.

The PXI trigger bus and the the PXI star triggers are bidirectional. The direction of the signal path is specified by the output mapping register: the output has to be tri-stated for an external device to drive the signal.

PXIe Signal EVR Input Signal EVR Output Signal Description
--

Document: EVR-MRM-007

Page: 32 of 77

PXI_TRIG[0:7]	TBIN[0:7]	TBOUT[0:7]	PXI trigger bus
PXI_STAR[0:16]	TBIN[8:24]	TBOUT[8:24]	PXI star triggers
PXIe_DSTARA[0:16]	n/a	TBOUT[25:41]	PXIe differential
			LVPECL star
			triggers
PXIe_DSTARB[0:16]	n/a	TBOUT[42:58]	PXIe differential
			LVDS star
			triggers
PXIe_DSTARC[0:16]	TBIN[25:41]	n/a	PXIe differential
			LVDS star input
			signals

Page: 33 of 77

VME-EVR-230 and VME-EVR-230RF Network Interface

A 10baseT network interface is provided to upgrade the FPGA firmware and set up boot options. It is also possible to control the module over the network interface.

Assigning an IP Address to the Module

By default the modules uses DHCP (dynamic host configuration protocol) to acquire an IP address. In case a lease cannot be acquired the IP address set randomly in the 169.254.x.x subnet. The board can be programmed to use a static address instead if DHCP is not available.

The module can be located looking at the lease log of the DHCP server or using a Windows tool called Locator.exe.

Using Telnet to Configure Module

To connect to the configuration utility of the module issue the following command:

telnet 192.168.1.32 23

The latter parameter is the telnet port number and is required in Linux to prevent negotiation of telnet parameters which the telnet server of the module is not capable of.

The telnet server responds to the following commands:

Command Description

b Show/change boot parameters, IP address etc.

d Dump 16 bytes of memory

h / ? Show Help

m <address> [<data>] Read/Write FPGA CR/CSR, Function 0

r Reset Board

s Save boot configuration & dynamic configuration values into non-

volatile memory

t Tune delay line for event clock recovery

+ Manually increase delay line delay *)

- Manually decrease delay line delay *)

u Update IP2022 software

a Ouit Telnet

Boot Configuration (command b)

Command b displays the current boot configuration parameters of the module. The parameter may be changed by giving a new parameter value. The following parameters are displayed:

Parameter Description

Use DHCP 0 = use static IP address, 1 = use DHCP to acquire address, net mask

etc.

IP address of module

^{*)} This option has been added with IP2022 software version 060309 for VME-EVR-230RF (displayed in output from help command)

Micro-Research Finland Oy

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 34 of 77

Subnet mask of module

Default GW Default gateway

FPGA mode FPGA configuration mode

0 – FPGA is not configured after power up

1 – FPGA configured from internal Flash memory

2 – FPGA is configured from FTP server

FTP server IP address where configuration bit file resides

Username FTP server username Password FTP server password

FTP Filename FTP server configuration file name
Flash Filename Configuration file name on internal flash

µs divider Integer divider to get from event clock to 1MHz, e.g. 125 for

124.9135 MHz

Fractional divider Micrel SY87739UMI fractional divider configuration word to set

configuration word reference for event clock

Note that after changing parameters the parameters have to be saved to internal flash by issuing the Save boot configuration (s) command. The changes are applied only after resetting the module using the reset command or hardware reset/power sequencing.

Memory dump (command d)

This command dumps 16 bytes of memory starting at the given address, if the address is omitted the previous address value is increased by 16 bytes.

The most significant byte of the address determines the function of the access:

Address Function

0x78000000 CR/CSR space access 0x7a000000 EVR registers access

To dump the start of the EVR register map issue the 'd' command from the telnet prompt:

VME-EVR-230RF -> d 7a000000 4

VME-EVR-230RF -> d ↓

VME-EVR-230RF ->

Memory modify (commands d and m)

The access size is always a short word i.e. two bytes.

To check the status register from the telnet prompt:

 $\mbox{VME-EVR-230RF} \ \mbox{->} \ \mbox{m} \ \mbox{7a000000} \ \mbox{\ensuremath{\mbox{\ensuremath{\mbox{\sc v}}}}\ \mbox{\ensuremath{\mbox{\sc v}}} \label{eq:ensuremath{\mbox{\sc v}}}$

 ${\tt Addr~7a000000~data~1005}$

VME-EVR-230RF ->

To clear the violation flag issue:

VME-EVR-230RF -> m 7a000000 1005 4

Document: EVR-MRM-007

Page: 35 of 77

```
Addr 7a000000 data 0000
VME-EVR-230RF ->
```

Tuning Delay Line (command t)

The VME Event Receiver VME-EVR-230RF has to be configured for proper event clock rate and the on-board delay line has to be tuned for the operating conditions. Before setting up the board make sure you have an Event Generator with the correct event clock connected to the Event Receiver. Also, let the EVR reach operating temperature (power on for 10 minutes in crate). See previous section for setting up the event clock rate.

To start tuning issue command 't' from the telnet prompt:

```
VME-EVR-230RF -> t ↓
Starting tuning...
Adjusted sampling phase to 75
Initial DCM phase -85
Fine tuned sampling phase to 78
Final DCM phase -73.
VME-EVR-230RF ->
```

After tuning the tuned values have to be stored in non-volatile memory:

```
VME-EVR-230RF -> s →
Confirm save (yes/no) ? yes ↓
Configuration saved.
VME-EVR-230RF ->
```

Upgrading IP2022 Microprocessor Software (command u)

To upgrade the Ubicom IP2022 microprocessor software download the upgrade image containing the upgrade to the module using TFTP:

Linux

In Linux use e.g. interactive tftp:

```
$ tftp 192.168.1.32
tftp> bin
tftp> put upgrade.bin /fw
tftp> quit
```

Windows

In Windows command prompt issue the following command:

```
C:\> tftp -i 192.168.1.32 PUT upgrade.bin /fw
```

When the upgrade image has been downloaded and verified, enter at the telnet prompt following:

```
VME-EVR-230 -> u →
Really update firmware (yes/no) ? yes ↓
```

Document: EVR-MRM-007

Page: 36 of 77

```
Self programming triggered.
```

The Event Receiver starts programming the new software and restarts.

Upgrading FPGA Configuration File

When the FPGA configuration file resides in internal flash memory a new file system image has to be downloaded to the module. This is done using TFTP protocol:

Linux

In Linux use e.g. interactive tftp:

```
$ tftp 192.168.1.32
tftp> bin
tftp> put filesystem.bin /
tftp> quit
```

Windows

In Windows command prompt issue the following command:

```
C:\> tftp -i 192.168.1.32 PUT filesystem.bin /
```

Now the FPGA configuration file has been upgraded and the new configuration is loaded after next reset/power sequencing.

Note! Due to the UDP protocol it is recommended to verify (read back and compare) the filesystem image before restarting the module. This is done following:

Linux

In Linux use e.g. interactive tftp:

```
$ tftp 192.168.1.32
tftp> bin
tftp> get / verify.bin
tftp> quit
$ diff filesystem.bin verify.bin
$
```

If files differ you should get following message:

```
Binary files filesystem.bin and verify.bin differ
```

Windows

In Windows command prompt issue the following command:

```
C:\> tftp -i 192.168.1.32 GET / verify.bin
C:\> fc /b filesystem.bin verify.bin
Comparing files filesystem.bin and verify.bin
FC: no differences encountered
```

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 37 of 77

UDP Remote Programming Protocol

The VME-EVR can be remotely programmed using the 10baseT Ethernet interface with a protocol over UDP (User Datagram Protocol) which runs on top of IP (Internet Protocol). The default port for remote programming is UDP port 2000. The UDP commands are built upon the following structure:

access_type (1 byte) status (1 byte) data (2 bytes)

address (4 bytes) ref (4 bytes)

The first field defines the access type:

access_type Description

0x01 Read Register from module

0x02 Write and Read back Register from module

The second field tells the status of the access:

Status Description 0 Command OK

-1 Bus ERROR (Invalid read/write address)

-2 Timeout (FPGA did not respond)

-3 Invalid command

The access size is always a short word i.e. two bytes. The most significant byte of the address determines the function of the access:

Address Function

0x78000000 CR/CSR space access 0x7a000000 EVR registers access

Read Access (Type 0x01)

The host sends a UDP packet to port 2000 of the VME-EVR with the following contents:

access_type (1 byte) status (1 byte) data (2 bytes)
0x01 0x00 0x0000

address (4 bytes)

0x7a000000 (Control and Status register Function 0 address)

ref (4 bytes) 0x00000000

If the read access is successful the VME-EVR replies to the same host and port the message came from with the following packet:

access_type (1 byte) status (1 byte) data (2 bytes) 0x01 0x00 0x0032

address (4 bytes)

0x7a000000 (Control and Status register Function 0 address)

Document: EVR-MRM-007

Page: 38 of 77

ref (4 bytes) 0x00000000

Write Access (Type 0x02)

The host sends a UDP packet to port 2000 of the VME-EVR with the following contents:

If the write access is successful the VME-EVR replies to the same host and port the message came from with the following packet:

Notice that in the reply message the data returned really is the data read from the address specified in the address field so one can verify that the data really was written ok.

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 39 of 77

cRIO-EVR-300

Connections

The cRIO-EVR connects to the CompactRIO backplane through a DSUB connector. The pin usage is as follows:

cRIO (DSUB) signal	EVR signal	Description
IDSEL	UART RXD	Asynchronous serial data receive
USER0	UNIV3 Output	
USER1	UNIV2 Output	
USER2	UNIV1 Output	
USER3	UNIV0 Output	
USER4	UNIV3 Input	
USER5	UNIV2 Input	
USER6	UNIV1 Input	
USER7	UNIV0 Input	
USER8	UART TXD	Asynchronous serial data transmit

The serial interface runs with a baud rate of 115200 baud, 8 bit data, one stop bit, no parity and no handshaking.

Boot Monitor

The boot monitor is started in case the cRIO-EVR receives a '@' character immediately after it has been powered up. The boot monitor can be used to flash the cRIO-EVR firmware. It supports the following commands:

Command	Description
EPI	Erase FPGA Primary configuration Image
	Outputs '+' for each successful sector erase
EGI	Erase FPGA Golden configuration Image
	Outputs '+' for each successful sector erase
L	Load S3-records into RAM
	'@' to stop loading records
V	Verify S3-records with RAM
	'@' to stop verifying records
PPI	Program FPGA Primary Image from RAM to flash.
	Outputs '+' for each successful page program
PGI	Program FPGA Golden Image from RAM to flash.
	Outputs '+' for each successful page program
RP	Load FPGA Primary Image from flash into RAM
RG	Load FPGA Golden Image from flash into RAM
•	Exit Boot Monitor

and Ov Document: EVR-MRM-007

Page: 40 of 77

Firmware Upgrade (on Linux)

The configuration flash memory of the cRIO-EVR holds two firmware images: a primary image and a golden image. The primary image is normally loaded and upgraded. If the primary image for gets corrupted because of a programming error or power failure during upgrade the golden image gets loaded which will allow retrying the firmware upgrade of the primary image.

This upgrade procedure will require the cRIO-EVR-UNIVIO –board connected to the cRIO-EVR. The firmware can be upgraded on a CompactRIO system using a tool written in LabView.

Connect a USB cable to the cRIO-EVR-UNIVIO USB connector and start your favourite terminal program with 115200 baud, 8 bit data, one stop bit, no parity and no handshaking.

- 1. Keep the '@' key pressed, power up the cRIO-EVR and wait until the cRIO-EVR responds with periods '.'
- 2. Enter the command 'EPI' (the characters are not echoed back). The cRIO-EVR will respond with a number of '+' one for each erased sector and a final '.' when complete.
- 3. Enter the command 'L'
- 4. From a command window send the new firmware image to the serial port e.g. dd if=firmware file.exo of=/dev/ttyusb0
- 5. When the previous operation is complete enter '@' on the terminal to stop loading Srecords. The cRIO-EVR will responds with the number of Srecords received and the number of checksum errors, two concatenated 32-bit hexadecimal numbers
- 6. Enter command 'PPI' to program the firmware image from RAM to flash. The cRIO-EVR will output lots of '+', one for each successful page program and a final '.'
- 7. The following steps are optional: Enter command 'RP' to refresh the RAM image from flash.
- 8. Enter command 'V'
- 9. From a command window send the new firmware image to the serial port e.g. dd if=firmware file.exo of=/dev/ttyusb0
- 10. When the previous operation is complete enter '@' on the terminal to stop loading S-records. The cRIO-EVR will responds with the number of S-records received and the number of checksum errors, two concatenated 32-bit hexadecimal numbers

Programming Details

VME CR/CSR Support

The VME Event Receiver modules provides CR/CSR Support as specified in the VME64x specification. The CR/CSR Base Address Register is determined after reset by the inverted state of VME64x P1 connector signal pins GA4*-GA0*. In case the parity signal GAP* does not match the GAx* pins the CR/CSR Base Address Register is loaded with the value 0xf8 which corresponds to slot number 31.

Note: the boards can be used in standard VME crates where geographical pins do not exist, in this case the user may either insert jumpers to set the geographical address or use the default setting when the board's CR/CSR base address will be set to 0xf8. The jumper settings for a non-VME64x crate as as follows:

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 41 of 77

slot	GAP*	GA4*	GA3*	GA2*	GA1*	GA0*
1	open	open	open	open	open	Jumper
2	open	open	open	open	Jumper	open
3	Jumper	open	open	open	Jumper	Jumper
4	open	open	open	Jumper	open	open
5	Jumper	open	open	Jumper	open	Jumper
6	Jumper	open	open	Jumper	Jumper	open
7	open	open	open	Jumper	Jumper	Jumper
8	open	open	Jumper	open	open	open
9	Jumper	open	Jumper	open	open	Jumper
10	Jumper	open	Jumper	open	Jumper	open
11	open	open	Jumper	open	Jumper	Jumper
12	Jumper	open	Jumper	Jumper	open	open
13	open	open	Jumper	Jumper	open	Jumper
14	open	open	Jumper	Jumper	Jumper	open
15	Jumper	open	Jumper	Jumper	Jumper	Jumper
16	open	Jumper	open	open	open	open
17	Jumper	Jumper	open	open	open	Jumper
18	Jumper	Jumper	open	open	Jumper	open
19	open	Jumper	open	open	Jumper	Jumper
20	Jumper	Jumper	open	Jumper	open	open
21	open	Jumper	open	Jumper	open	Jumper

After power up or reset the board responds only to CR/CSR accesses with its geographical address. Prior to accessing Event Receiver functions the board has to be configured by accessing the boards CSR space.

The Configuration ROM (CR) contains information about manufacturer, board ID etc. to identify boards plugged in different VME slots. The following table lists the required field to locate an Event Receiver module.

CR address Register VME-EVR-230RF

0x27, 0x2B, 0x2F Manufacturer's ID (IEEE 0x000EB2

OUI)

0x33, 0x37, 0x3B, 0x3F Board ID 0x455246E6

For convenience functions are provided to locate VME64x capable boards in the VME crate.

```
STATUS vmeCRFindBoard(int slot, UINT32 ieee_oui, UINT32 board_id, int *p_slot);
```

To locate the first Event Receiver in the crate starting from slot 1, the function has to be called following:

```
#include "vme64x_cr.h"
int slot = 1;
int slot_evr;
vmeCRFindBoard(slot, MRF_IEEE_OUI, MRF_EVR200RF_BID, &slot_evr);
```

Document: EVR-MRM-007

Page: 42 of 77

If this function returns OK, an Event Receiver board was found in slot slot_evr.

Event Receiver Function 0,1 and 2 Registers

The Event Receiver specific register are accessed via Function 0 and Function 1 as specified in the VME64x specification. The access size for Function 0 has been limited to 2 kbytes (0x0800) so not all EVR registers are accessible through this Function. The access size for Functions 1 and 2 is 256 kbytes, so this function should not be used for A16 access. Contrary to the VME64x specification the address/address modifier compare logic does not distinguish between privileged and non-privileged accesses and accepts both.

To enable a Function, the address decoder compare register for the Function in CSR space has to be programmed. For convenience a function to perform this is provided, too:

```
STATUS vmeCSRWriteADER(int slot, int func, UINT32 ader);
```

To configure Function 0 of a Event Receiver board in slot 3 to respond to A16 accesses at the address range 0x1800-0x1FFF the function has to be called with following values:

```
vmeCSRWriteADER(3, 0, 0x18A4);
```

ADER contents are composed of the address mask and address modifier, the above is the same as:

```
vmeCSRWriteADER(3, 0, (slot << 11) | (VME_AM_SUP_SHORT_IO << 2));</pre>
```

To get the memory mapped pointer to the configured Function 0 registers on the Event Receiver board the following VxWorks function has to be called:

Note: using the data transmission capability requires more than 4 kbytes, so using function 1 with addressing mode A24 is suggested, following:

cPCI-EVR-300 and PCIe-EVR-300 Firmware Upgrade

The cPCI-EVR-300 and PCIe-EVR-300 have a configuration memory that holds two configuration images, a so called primary and golden image. The golden image is a backup image that is loaded in case loading of the primary image fails due to a programming error. The primary image can be upgraded with the following command after loading the driver in Linux:

```
dd if=new image.bit of=/dev/er3a1
```

Document: EVR-MRM-007

Page: 43 of 77

A power cycle is required to load the new configuration image on the PCIe-EVR-300. A reboot is sufficient for the cPCI-EVR-300.

Document: EVR-MRM-007

Page: 44 of 77

Register Map

Address	Register	Type	Description
0x000	Status	UINT32	Status Register
0x004	Control	UINT32	Control Register
0x008	IrqFlag	UINT32	Interrupt Flag Register
0x00C	IrqEnable	UINT32	Interrupt Enable Register
0x010	PulseIrqMap	UINT32	Mapping register for pulse interrupt
0x020	DataBufCtrl	UINT32	Data Buffer Control and Status Register
0x024	TxDataBufCtrl	UINT32	TX Data Buffer Control and Status Register
0x02C	FWVersion	UINT32	Firmware Version Register
0x040	EvCntPresc	UINT32	Event Counter Prescaler
0x04C	UsecDivider	UINT32	Divider to get from Event Clock to 1 MHz
0x050	ClockControl	UINT32	Event Clock Control Register
0x05C	SecSR	UINT32	Seconds Shift Register
0x060	SecCounter	UINT32	Timestamp Seconds Counter
0x064	EventCounter	UINT32	Timestamp Event Counter
0x068	SecLatch	UINT32	Timestamp Seconds Counter Latch
0x06C	EvCntLatch	UINT32	Timestamp Event Counter Latch
0x070	EvFIFOSec	UINT32	Event FIFO Seconds Register
0x074	EvFIFOEvCnt	UINT32	Event FIFO Event Counter Register
0x078	EvFIFOCode	UINT16	Event FIFO Event Code Register
0x07C	LogStatus	UINT32	Event Log Status Register
0x080	FracDiv	UINT32	Micrel SY87739L Fractional Divider Configuration
			Word
0x088	RxInitPS	UINT32	Reserved for Initial value for RF recovery DCM
			phase shift (VME-EVR-230RF)
0x090	GPIODir	UINT32	Front Panel UnivIO GPIO signal direction
0x094	GPIOIn	UINT32	Front Panel UnivIO GPIO input register
0x098	GPIOOut	UINT32	Front Panel UnivIO GPIO output register
0x0A0	SPIData	UINT32	SPI Data Register
0x0A4	SPIControl	UINT32	SPI Control Register
0x100	Prescaler_0	UINT32	Prescaler 0 Divider
0x104	Prescaler_1	UINT32	Prescaler 1 Divider
0x108	Prescaler_2	UINT32	Prescaler 2 Divider
0x200	Pulse0Ctrl	UINT32	Pulse 0 Control Register
0x204	Pulse0Presc	UINT32	Pulse 0 Prescaler Register
0x208	Pulse0Delay	UINT32	Pulse 0 Delay Register
0x20C	Pulse0Width	UINT32	Pulse 0 Width Register
0x210			Pulse 1 Registers
0x220			Pulse 2 Registers
0x2F0	•••	•••	Pulse 15 Registers

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

0x4B4

TBOutMap26

UINT16

Transition Board Output 26 Map Register

0x400 FPOutMap0 UINT16 Front Panel Output 0 Map Register Front Panel Output 1 Map Register 0x402 FPOutMap1 UINT16 Front Panel Output 2 Map Register 0x404 FPOutMap2 UINT16 0x406 FPOutMap3 UINT16 Front Panel Output 3 Map Register 0x408 FPOutMap4 UINT16 Front Panel Output 4 Map Register FPOutMap5 UINT16 Front Panel Output 5 Map Register 0x40A 0x40C FPOutMap6 UINT16 Front Panel Output 6 Map Register 0x40E FPOutMap7 UINT16 Front Panel Output 7 Map Register 0x440 UnivOutMap0 UINT16 Front Panel Universal Output 0 Map Register 0x442UnivOutMap1 UINT16 Front Panel Universal Output 1 Map Register UINT16 Front Panel Universal Output 2 Map Register 0x444 UnivOutMap2 0x446 UnivOutMap3 UINT16 Front Panel Universal Output 3 Map Register 0x448 UnivOutMap4 UINT16 Front Panel Universal Output 4 Map Register UnivOutMap5 UINT16 Front Panel Universal Output 5 Map Register 0x44A Front Panel Universal Output 6 Map Register 0x44C UnivOutMap6 UINT16 UnivOutMap7 UINT16 Front Panel Universal Output 7 Map Register 0x44E 0x450 UnivOutMap8 UINT16 Front Panel Universal Output 8 Map Register 0x452 UnivOutMap9 UINT16 Front Panel Universal Output 9 Map Register TBOutMap0 UINT16 Transition Board Output 0 Map Register 0x480 0x482TBOutMap1 UINT16 Transition Board Output 1 Map Register 0x484 TBOutMap2 UINT16 Transition Board Output 2 Map Register 0x486 TBOutMap3 UINT16 Transition Board Output 3 Map Register 0x488 TBOutMap4 UINT16 Transition Board Output 4 Map Register 0x48A TBOutMap5 UINT16 Transition Board Output 5 Map Register 0x48C TBOutMap6 UINT16 Transition Board Output 6 Map Register 0x48E TBOutMap7 UINT16 Transition Board Output 7 Map Register 0x490 TBOutMap8 UINT16 Transition Board Output 8 Map Register 0x492 TBOutMap9 UINT16 Transition Board Output 9 Map Register 0x494 TBOutMap10 UINT16 Transition Board Output 10 Map Register 0x496 TBOutMap11 UINT16 Transition Board Output 11 Map Register 0x498 TBOutMap12 UINT16 Transition Board Output 12 Map Register 0x49A TBOutMap13 UINT16 Transition Board Output 13 Map Register 0x49C TBOutMap14 UINT16 Transition Board Output 14 Map Register 0x49E TBOutMap15 UINT16 Transition Board Output 15 Map Register 0x4A0 TBOutMap16 UINT16 Transition Board Output 16 Map Register 0x4A2TBOutMap17 UINT16 Transition Board Output 17 Map Register UINT16 Transition Board Output 18 Map Register 0x4A4 TBOutMap18 0x4A6 TBOutMap19 UINT16 Transition Board Output 19 Map Register TBOutMap20 Transition Board Output 20 Map Register 0x4A8 UINT16 TBOutMap21 UINT16 Transition Board Output 21 Map Register 0x4AA Transition Board Output 22 Map Register 0x4AC TBOutMap22 UINT16 TBOutMap23 UINT16 Transition Board Output 23 Map Register 0x4AE 0x4B0 TBOutMap24 UINT16 Transition Board Output 24 Map Register 0x4B2 TBOutMap25 UINT16 Transition Board Output 25 Map Register

Document: EVR-MRM-007

Page: 45 of 77

Document: EVR-MRM-007 **Page:** 46 of 77

0. 40.4	TD 0 .3.4 .07	LID ITTI	T 11 D 10
0x4B6	TBOutMap27	UINT16	Transition Board Output 27 Map Register
0x4B8	TBOutMap28	UINT16	Transition Board Output 28 Map Register
0x4BA	TBOutMap29	UINT16	Transition Board Output 29 Map Register
0x4BC	TBOutMap30	UINT16	Transition Board Output 30 Map Register
0x4BE	TBOutMap31	UINT16	Transition Board Output 31 Map Register
0x500	FPInMap0	UINT32	Front Panel Input 0 Mapping Register
0x504	FPInMap1	UINT32	Front Panel Input 1 Mapping Register
0x580	GTX0Dly	UINT32	GTX Output 0 Fine Delay Register
0x584	GTX1Dly	UINT32	GTX Output 1 Fine Delay Register
0x588	GTX2Dly	UINT32	GTX Output 2 Fine Delay Register
0x58C	GTX3Dly	UINT32	GTX Output 3 Fine Delay Register
0x590	GTX4Dly	UINT32	GTX Output 4 Fine Delay Register
0x594	GTX5Dly	UINT32	GTX Output 5 Fine Delay Register
0x598	GTX6Dly	UINT32	GTX Output 6 Fine Delay Register
0x59C	GTX7Dly	UINT32	GTX Output 7 Fine Delay Register
0x600	CML4Pat00	UINT32	20 bit output pattern for state low
0x604	CML4Pat01	UINT32	20 bit output pattern for state rising edge
0x608	CML4Pat10	UINT32	20 bit output pattern for state falling edge
0x60C	CML4Pat11	UINT32	20 bit output pattern for state high
0x610	CML4Ena	UINT32	CML 4 Output Control Register
	GTX0Ctrl		
0x614	CML4HP	UINT16	CML 4 Output High Period Count
	GTX0HP		1 0
0x616	CML4LP	UINT16	CML 4 Output Low Period Count
	GTX0LP		•
0x618	CML4Samp	UINT32	CML 4 Output Number of 20 bit word patterns
	GTX0Samp		GTX0 Output Number of 40 bit word patterns
0x620	CML5Pat00	UINT32	20 bit output pattern for state low
0x624	CML5Pat01	UINT32	20 bit output pattern for state rising edge
0x628	CML5Pat10	UINT32	20 bit output pattern for state falling edge
0x62C	CML5Pat11	UINT32	20 bit output pattern for state high
0x630	CML5Ena	UINT32	CML 5 Output Control Register
	GTX1Ctrl		
0x634	CML5HP	UINT16	CML 5 Output High Period Count
01100	GTX1HP	011(110	
0x636	CML5LP	UINT16	CML 5 Output Low Period Count
	GTX1LP		construction of the constr
0x638	CML5Samp	UINT32	CML 5 Output Number of 20 bit word patterns
	GTX1Samp		GTX1 Output Number of 40 bit word patterns
0x640	CML6Pat00	UINT32	20 bit output pattern for state low
0x644	CML6Pat01	UINT32	20 bit output pattern for state rising edge
0x648	CML6Pat10	UINT32	20 bit output pattern for state falling edge
0x64C	CML6Pat11	UINT32	20 bit output pattern for state high
0x650	CML6Ena	UINT32	CML 6 Output Control Register
0.1000	GTX2Ctrl	011 (132	onite of the state
	31712CH1		

Document: EVR-MRM-007 **Page:** 47 of 77

0x654	CML6HP GTX2HP	UINT16	CML 6 Output High Period Count
0x656	CML6LP GTX2LP	UINT16	CML 6 Output Low Period Count
0x658	CML6Samp GTX2Samp	UINT32	CML 6 Output Number of 20 bit word patterns GTX2 Output Number of 40 bit word patterns
0x670	GTX2Samp GTX3Ctrl	UINT32	GTX3 Output Control Register
0x674	GTX3CIII GTX3HP	UINT16	GTX3 Output Control Register GTX3 Output High Period Count
0x674	GTX3III GTX3LP	UINT16	GTX3 Output Fight Feriod Count GTX3 Output Low Period Count
0x678	GTX3Samp	UINT32	GTX3 Output Number of 40 bit word patterns
0x678	GTX4Samp	UINT32	GTX4 Output Control Register
0x690 0x694	GTX4CIII GTX4HP	UINT16	
0x694 0x696			GTX4 Output High Period Count
	GTX4LP	UINT16	GTX4 Output Low Period Count
0x698	GTX4Samp	UINT32	GTX4 Output Number of 40 bit word patterns
0x6B0	GTX5Ctrl	UINT32	GTX5 Output Control Register
0x6B4	GTX5HP	UINT16	GTX5 Output High Period Count
0x6B6	GTX5LP	UINT16	GTX5 Output Low Period Count
0x6B8	GTX5Samp	UINT32	GTX5 Output Number of 40 bit word patterns
0x6D0	GTX6Ctrl	UINT32	GTX6 Output Control Register
0x6D4	GTX6HP	UINT16	GTX6 Output High Period Count
0x6D6	GTX6LP	UINT16	GTX6 Output Low Period Count
0x6D8	GTX6Samp	UINT32	GTX6 Output Number of 40 bit word patterns
0x6E0	GTX7Ctrl	UINT32	GTX7 Output Control Register
0x6E4	GTX7HP	UINT16	GTX7 Output High Period Count
0x6E6	GTX7LP	UINT16	GTX7 Output Low Period Count
0x6E8	GTX7Samp	UINT32	GTX7 Output Number of 40 bit word patterns
0x800 -	DataBuf		Data Buffer Receive Memory
0xFFF			
0x1000 -			Diagnostics counters
0x17FF			
0x1800 -	TxDataBuf		Data Buffer Transmit Memory
0x1FFF			
0x2000 -	EventLog		512 x 16 byte position Event Log
0x3FFF			
0x4000 -	MapRam1		Event Mapping RAM 1
0x5FFF			
0x6000 -	MapRam2		Event Mapping RAM 2
0x7FFF			
0x8000 -	configROM		
0x80FF	•		
0x8100 -	scratchRAM		
0x81FF			
0x8200 -	SFPEEPROM		SFP Transceiver EEPROM contents (SFP address
0x82FF			0xA0)
0x8300 -	SFPDIAG		SFP Transceiver diagnostics (SFP address 0xA2)
-	=		5

Document: EVR-MRM-007

Page: 48 of 77

0x83FF		
0x20000 -	CML4PMEM	Pattern memory:
0x23FFF	GTX0MEM	8k bytes CML output 4 (VME-EVR-230RF)
		16k bytes GTX output 0 (cPCI-EVRTG-300)
0x24000 -	CML5PMEM	Pattern memory:
0x27FFF	GTX1MEM	8k bytes CML output 5 (VME-EVR-230RF)
		16k bytes GTX output 1 (cPCI-EVRTG-300)
0x28000 -	CML6PMEM	Pattern memory:
0x2BFFF	GTX2MEM	8k bytes CML output 6 (VME-EVR-230RF)
		16k bytes GTX output 2 (cPCI-EVRTG-300)
0x2C000 -	GTX3MEM	Pattern memory:
0x2FFFF		16k bytes GTX output 3 (cPCI-EVRTG-300)
0x30000 -	GTX4MEM	Pattern memory:
0x33FFF		16k bytes GTX output 4 (cPCI-EVRTG-300)
0x34000 -	GTX5MEM	Pattern memory:
0x37FFF		16k bytes GTX output 5 (cPCI-EVRTG-300)
0x38000 -	GTX6MEM	Pattern memory:
0x3BFFF		16k bytes GTX output 6 (cPCI-EVRTG-300)
0x3C000 -	GTX7MEM	Pattern memory:
0x3FFFF		16k bytes GTX output 7 (cPCI-EVRTG-300)

Status Register

address	bit 31	bit 30	bit 29	Bit 28	bit 27	bit 26	bit 25	bit 24
0x000	DBUS7	DBUS6	DBUS5	DBUS4	DBUS3	DBUS2	DBUS1	DBUS0
address	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16
0x001								LEGVIO
<u>'</u>								
address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
0x002								
								1
address	bit 7	bit 6	bit 5	Bit 4	bit 3	bit 2	bit 1	bit 0
0x003	SFPMOD	LINK	FIFOSTP					

Bit	Function
DBUS7	Read status of DBUS bit 7
DBUS6	Read status of DBUS bit 6
DBUS5	Read status of DBUS bit 5
DBUS4	Read status of DBUS bit 4
DBUS3	Read status of DBUS bit 3
DBUS2	Read status of DBUS bit 2
DBUS1	Read status of DBUS bit 1
DBUS0	Read status of DBUS bit 0
LEGVIO	Legacy VIO (series 100, 200 and 230)

Document: EVR-MRM-007

Page: 49 of 77

SFPMOD SFP module status:

'0' – plugged in

'1' – no module installed

Link status: LINK

'0' – link down

'1' – link up

Event FIFO stopped flag FIFOSTP

Control Register

LTS

address	bit 31	bit 30	bit 29	bit 28	bit 27	Obit 26	bit 25	bit 24
0x004	EVREN	EVFWD	TXLP	RXLP	OUTEN	SRST	LEMDE	GTXIO
<u>'</u>								
address	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16
0x005	CDREN							
address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
0x006		TSDBUS	RSTS			LTS	MAPEN	MAPRS
<u>'</u>								
address	bit 7	bit 6	bit 5	Bit 4	bit 3	bit 2	bit 1	bit 0
0x007	LOGRS	LOGEN	LOGDIS	LOGSE	RSFIFO			

Bit	Function
EVREN	Event Receiver Master enable
TXLP	Transmitter loopback:
	0 – Receive signal from SFP transceiver (normal operation)
	1 – Loopback EVR TX into EVR RX
RXLP	Receiver loopback:
	0 – Transmit signal from EVR on SFP transceiver TX
	1 – Loopback SFP RX on SFP TX
OUTEN	Output enable for FPGA external components / IFB-300 (cPCI-EVRTG-
	300, PCIe-EVR-300, PXIe-EVR-300I)
	0 – disable outputs
	1 – enable outputs
SRST	Soft reset IP
LEMDE	Little endian mode (cPCI-EVR-300, PCIe-EVR-300)
	0 – PCI core in big endian mode (power up default)
	1 – PCI core in little endian mode
GTXIO	GUN-TX output hardware inhibit override
	0 – honor hardware inhibit signal (default)
	1 – inhibit override, don't care about hardware inhibit input state
CDREN	PCIe-EVR-300 External Clock and Data recovery enable
	0 – CDR Bypassed
	1 – CDR Enabled
TSDBUS	Use timestamp counter clock on DBUS4
RSTS	Reset Timestamp. Write 1 to reset timestamp event counter and timestamp
	latch

Latch Timestamp: Write 1 to latch timestamp from timestamp event

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 50 of 77

counter to timestamp latch.

MAPEN Event mapping RAM enable.

MAPRS Mapping RAM select bit for event decoding:

0 – select mapping RAM 1 1 – select mapping RAM 2.

LOGRS Reset Event Log. Write 1 to reset log.

LOGEN Enable Event Log. Write 1 to (re)enable event log. LOGDIS Disable Event Log. Write 1 to disable event log.

LOGSE Log Stop Event Enable.

RSFIFO Reset Event FIFO. Write 1 to clear event FIFO.

Interrupt Flag Register

address 0x008	bit 31	bit 30	bit 29	bit 28	bit 27	bit 26	bit 25	bit 24
address	Bit 7	bit 6	bit 5	Bit 4	bit 3	bit 2	bit 1	bit 0
0x00b		IFLINK	IFDBUF	IFHW	IFEV	IFHB	IFFF	IFVIO

D	T 4 *	
Bit	Function	'n
DIL	1 uncuoi	

IFLINK Link state change interrupt flag

IFDBUF Data buffer flag

IFHW Hardware interrupt flag (mapped signal)

IFEV Event interrupt flag
IFHB Heartbeat interrupt flag
IFFF Event FIFO full flag
IFVIO Receiver violation flag

Interrupt Enable Register

address	Bit 31	bit 30	bit 29	bit 28	bit 27	bit 26	bit 25	bit 24
0x00c	IRQEN	PCIIE						
address	Bit 7	bit 6	bit 5	Bit 4	bit 3	bit 2	bit 1	bit 0
0x00f		IELINK	IEDBUF	IEHW	IEEV	IEHB	IEFF	IEVIO

Bit		4 •
Kit	HIII	ction
1311		

IRQEN Master interrupt enable:

0 – disable all interrupts 1 – allow interrupts

PCIIE PCI core interrupt enable (cPCI-EVR-300, PCIe-EVR-300, PXIe-EVR-

300)

This bit is used by the low level driver to disable further interrupts before

the first interrupt has been handled in user space

IELINK Link state change interrupt flag IEDBUF Data buffer interrupt enable

IEHW Hardware interrupt enable (mapped signal)

IEEV Event interrupt enable

Document: EVR-MRM-007

Page: 51 of 77

IEHB Heartbeat interrupt enable IEFF Event FIFO full interrupt enable Receiver violation interrupt enable IEVIO

Hardware Interrupt Mapping Register

address	Bit 7	bit 6	bit 5	Bit 4	bit 3	bit 2	bit 1	bit 0
0x013			Mapping II	D (see Table	e 1 for mar	oping IDs)		

Receive Data Buffer Control and Status Register

address	Bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
0x022	DBRX/	DBRDY/	DBCS	DBEN		RXSIZI	E(11:8)	
	DBENA	DBDIS						
addrace	hit 7	hit 6	hit 5	hit 4	hit 3	hit 2	hit 1	hit ()

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x023				RXSIZ	/ H (/ · ())			

Bit	Function
DBRX	Data Buffer Receiving (read-only)
DBENA	Set-up for Single Reception (write '1' to set-up)
DBRDY	Data Buffer Transmit Complete / Interrupt Flag
DBDIS	Stop Reception (write '1' to stop/disable)
DBCS	Data Buffer Checksum Error (read-only)
	Flag is cleared by writing '1' to DBRX or DBRDY or disabling
	data buffer
DBEN	Data Buffer Enable Data Buffer Mode
	'0' – Distributed bus not shared with data transmission, full speed
	distributed bus
	'1' – Distributed bus shared with data transmission, half speed
	distributed bus
RXSIZE	Data Buffer Received Buffer Size (read-only)

Transmit Data Buffer Control Register

address	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16
0x025				TXCPT	TXRUN	TRIG	ENA	MODE
address	bit 15	Bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
0x026	DIL 15	DIL 14	DIL 13	DIL 12	DIL 11	~	DTSZ(10:8	
0.11020							2122(1010)	/
address	Bit 7	bit 6	bit 5	Bit 4	bit 3	bit 2	bit 1	bit 0
0x027	·		DTS	Z(7:2)			0	0

Bits	Function
TXCPT	Data Buffer Transmission Complete
TXRUN	Data Buffer Transmission Running – set when data transmission has
	been triggered and has not been completed yet
TRIG	Data Buffer Trigger Transmission

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 52 of 77

Write '1' to start transmission of data in buffer

ENA Data Buffer Transmission enable

'0' – data transmission engine disabled '1' – data transmission engine enabled

MODE Distributed bus sharing mode

'0' - distributed bus not shared with data transmission

'1' – distributed bus shared with data transmission

DTSZ(10:8) Data Transfer size 4 bytes to 2k in four byte increments

FPGA Firmware Version Register

address	bit 31		bit 27	bit 26		bit 24
0x02C		EVR = 0x1			Form Factor	
•						
address	bit 23					bit 8
0x02D			Rese	erved		
address	bit 7					bit 0
0x02F			Versi	on ID		

Bits Function

Form Factor 0 – CompactPCI 3U

1 - PMC

2 - VME64x

3 - CompactRIO

4 - CompactPCI 6U

6 – PXIe

7 - PCIe

Event Counter Clock Prescaler Register

address	bit 15	bit 0
0x042	Timestamp Event Counter Clock Prescaler Register	,

Microsecond Divider Register

address	bit 15	bit 0	
0x04e	Round	ed integer value of 1 µs * event clock	

For 100 MHz event clock this register should read 100, for 50 MHz event clock this register should read 50. This value is used e.g. for the heartbeat timeout.

Clock Control Register

address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
0x052	RECDCM	RECDCM	RECDCM	EVDCM	EVDCM	EVDCM	CGLOCK	RECDCM
0A032	RUN	INITDONE	PSDONE	STOPPED	LOCKED	PSDONE		PSDEC

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x053	RECDCM	RECDCM	EVDCM	EVDCM	EVDCM	EVDCM	EVDCM	EVCLKSEL

Document: EVR-MRM-007

Page: 53 of 77

	PSINC	RES	PSDEC		PSINC		SRUN	SRES	RES	
	Bit Function CGLOCK Micrel SY87739L locked (read-only) Other bits n/a on cPCI-EVR									
Second	s Shift Re	gister								
address	bit 31									bit 0
0x05c			Sec	ond	ls Shift	Reg	gister (rea	d-only)		
Second	s Counter	Registe	er							
address	bit 31									bit 0
0x060			Seco	nds	Counte	r Re	egister (re	ead-only)		
Timesta	amp Even	t Count	ter Re	gis	ter					
address	bit 31		,	0						bit 0
0x064		T	imestam	pЕ	vent Co	ount	er Regist	er (read-c	only)	
	s Latch Ro	egister								
address	bit 31				T . 1	D	•	1 1)		bit 0
0x068			Seco	ona	s Latch	Reg	gister (rea	ad-only)		
Timesta	amp Even	t Latch	Regis	tei	•					
address	bit 31									bit 0
0x06c			Γimestar	np]	Event L	atcl	h Registe	r (read-or	ıly)	
FIFO S	econds Re	egister								
address	bit 31	O								bit 0
0x070			FIF	O S	econds	Reg	gister (rea	nd-only)		
FIFO T	imestamp	Regist	er							
	bit 31	C								bit 0
0x074			FIFO	Tiı	mestam	p R	egister (re	ead-only)		
FIFO F	Event Regi	ster								
address	bit 7									bit 0
0x07b			FIFO	Eve	ent Cod	le R	egister (r	ead-only)		
		-								

Note that reading the FIFO event code registers pulls the event code and timestamp/seconds value from the FIFO for access. The correct order to read an event from FIFO is to first read the event code register and after this the timestamp/seconds registers in any order. Every read access to the FIFO event register pulls a new event from the FIFO if it is not empty.

Document: EVR-MRM-007

Page: 54 of 77

Event 1	Log St	tatus 1	Register

address	bit 31	bit 30	bit 29	bit 28	bit 27	bit 26	bit 25	bit 24
0x07C	LOGOV							
			•			•	•	
address	bit 15		bit	9 bit	8			bit 0
0x07E					I	Log writing	pointer	

SY87739L Fractional Divider Configuration Word

address	bit 31	bit 0
0x080	SY87739L Fractional Divider Configuration Word	

Configuration Word	Frequency with 24 MHz reference oscillator
0x00DE816D	125 MHz
0x00FE816D	124.95 MHz
0x0C928166	124.908 MHz
0x018741AD	119 MHz
0x072F01AD	114.24 MHz
0x049E81AD	106.25 MHz
0x008201AD	100 MHz
0x025B41ED	99.956 MHz
0x0187422D	89.25 MHz
0x0082822D	81 MHz
0x0106822D	80 MHz
0x019E822D	78.900 MHz
0x018742AD	71.4 MHz
0x0C9282A6	62.454 MHz
0x009743AD	50 MHz
0x025B43AD	49.978 MHz
0x0176C36D	49.965 MHz

Prescaler 0 Register

address	Bit 15	bit 0
0x102	Prescaler 0 Register	

Prescaler 1 Register

address	Bit 15	bit 0
0x106	Prescaler 1 Register	

Prescaler 2 Register

address	Bit 15	bit 0
0x10a	Prescaler 2 Register	

Document: EVR-MRM-007

Page: 55 of 77

Pulse Generator Registers

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x203	PxOUT	PxSWS	PxSWR	PxPOL	PxMRE	PxMSE	PxMTE	PxENA
!			•					
address	bit 31							bit 0
0x204			Pulse G	enerator P	rescaler Re	egister		
·								
address	bit 31							bit 0
0x208			Pulse	Generator	Delay Reg	ister		
<u>'</u>								
address	bit 31							bit 0
0x20C			Pulse	Generator	Width Reg	gister		

Note: addresses shown above are for pulse generator 0.

bit	Function
PxOUT	Pulse Generator Output (read-only)
PxSWS	Pulse Generator Software Set
PxSWC	Pulse Generator Software Reset
PxPOL	Pulse Generator Output Polarity
	0 – normal polarity
	1 – inverted polarity
PxMRE	Pulse Generator Event Mapping RAM Reset Event Enable
	0 – Reset events disabled
	1 – Mapped Reset Events reset pulse generator output
PxMSE	Pulse Generator Event Mapping RAM Set Event Enable
	0 – Set events disabled
	1 – Mapped Set Events set pulse generator output
PxMTE	Pulse Generator Event Mapping RAM Trigger Event Enable
	0 – Event Triggers disabled
	1 – Mapped Trigger Events trigger pulse generator
PxENA	Pulse Generator Enable
	0 – generator disabled
	1 – generator enabled

Front Panel Output Mapping Registers

address	Bit 7	bit 6	bit 5	Bit 4	bit 3	bit 2	bit 1	bit 0
0x401		Front par	nel OUT0 M	Sapping ID	(see Table	1 for mapp	oing IDs)	
0x403			Front	panel OU	Г1 Марріп	g ID		
0x405			Front	panel OU	Г2 Марріп	g ID		
0x407			Front	panel OU	ГЗ Марріп	g ID		
0x409			Front	panel OU	Γ4 Mappin	g ID		
0x40B			Front	panel OU	Г5 Марріп	g ID		
0x40D			Front	panel OU	Г6 Марріп	g ID		
0x40F			Front	panel OU	Γ7 Mappin	g ID		
Notes:				-		_		

PMC-EVR does not have any Front panel outputs.
PMC-EVR has three front panel outputs OUT0 to OUT2.
VME-EVR-230 has eight Front panel outputs OUT0 to OUT7.

Document: EVR-MRM-007

Page: 56 of 77

VME-EVR-230RF has seven Front panel outputs OUT0 to OUT3 (TTL level), OUT4 to OUT6 CML level (see section about CML outputs for details).

Universal I/O Output Mapping Registers

address	Bit 7	bit 6	bit 5	Bit 4	bit 3	bit 2	bit 1	bit 0
0x441		Universal I	O UNIVO	Mapping II	O (see Tab)	le 1 for ma	pping IDs)	
0x443			Univer	sal I/O UN	IV1 Mappi	ng ID		
0x445			Univer	sal I/O UN	IV2 Mappi	ng ID		
0x447			Univer	sal I/O UN	IV3 Mappi	ng ID		
0x449			Univer	sal I/O UN	IV4 Mappi	ng ID		
0x44b			Univer	sal I/O UN	IV5 Mappi	ng ID		
0x44d			Univer	sal I/O UN	IV6 Mappi	ng ID		
0x44f			Univer	sal I/O UN	IV7 Mappi	ng ID		
0x451			Univer	sal I/O UN	IV8 Mappi	ng ID		
0x453			Univer	sal I/O UN	IV9 Mappi	ng ID		
0x453			Univers	sal I/O UNI	V10 Mapp	ing ID		
0x453			Univers	sal I/O UNI	V11 Mapp	ing ID		
Notes:						•		

 $cPCI-EVR-220/230\ has\ two\ Universal\ I/O\ slots\ (four\ outputs\ UNIV0\ to\ UNIV3).\ An\ optional\ side-by-side\ module\ provides\ three\ more\ slots\ (six\ additional\ outputs\ UNIV4\ to\ UNIV9).$

PMC-EVR does not have any Universal I/O slots.

VME-EVR has two Universal I/O slots (four outputs UNIV0 to UNIV3).

cPCI-EVR-300 has six Universal I/O slots (twelve outputs UNIV0 to UNIV11).

Transition Board Output Mapping Registers

address	Bit 7	bit 6	bit 5	Bit 4	bit 3	bit 2	bit 1	bit 0
0x481	Trans	sition Board	Output TB	OUT0 Map	ping ID (se	ee Table 1 f	for mapping	g IDs)
0x483		Tı	ransition Bo	oard Output	TBOUT1	Mapping II	D	
0x485		Tı	ransition Bo	oard Output	TBOUT2	Mapping II	D	
				•••				
Notes:								

cPCI-EVRs and cRIO-EVR do not have any Transition board outputs.

Front Panel Input Mapping Registers

address	bit 31	bit 30	bit 29	bit 28	bit 27	bit 26	bit 25	bit 24
0x500			EXTLV0	BCKLE0	EXTLE0	EXTED0	BCKEV0	EXTEV0
•								
address	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16
0x501	T0DB7	T0DB6	T0DB5	T0DB4	T0DB3	T0DB2	T0DB1	T0DB0
•								
address	bit 15							bit 8
0x502		Bac	kward Ever	nt Code Re	gister for fr	ont panel in	nput 0	
						•	•	
address	bit 7					•	•	bit 0
address 0x503	bit 7	Ext	ternal Even	t Code Reg	ister for fro	ont panel in	put 0	bit 0
	bit 7	Ext	ternal Even	t Code Reg	ister for fro	ont panel in	put 0	bit 0
	bit 7	Ext	ternal Even	t Code Reg	ister for fro	ont panel in	put 0 bit 25	bit 0
0x503					•	•	•	
0x503 address			bit 29	bit 28	bit 27	bit 26	bit 25	bit 24

Document: EVR-MRM-007

Page: 57 of 77

0x505	T1DB7	T1DB6	T1DB5	T1DB4	T1DB3	T1DB2	T1DB1	T1DB0
	11/48							14.0
address	bit 15							bit 8
0x506		Bac	kward Ever	nt Code Re	gister for fr	ont panel in	nput 1	
						•	•	
address	bit 7							bit 0
0x507		Ext	ternal Even	t Code Reg	sister for fro	ont panel in	put 1	

bit	Function
EXTLV x	Backward HW Event Level Sensitivity for input x
	0 – active high
	1 – active low
BCKLEx	Backward HW Event Level Trigger enable for input x
	0 – disable level events
	1 – enable level events, send out backward event code every 1 us when
	input is active (see EXTLVx for level sensitivity)
EXTLEx	•
	0 – disable level events
	1 – enable level events, apply external event code to active mapping
	RAM every 1 us when input is active (see EXTLVx for level sensitivity)
EXTED x	
	0 – trigger on rising edge
	1 – trigger on falling edge
BCKEV x	
	0 – disable backward HW event
	1 – enable backward HW event, send out backward event code on
	detected edge of hardware input (see EXTEDx bit for edge)
EXTEV x	
	0 – disable external HW event
	1 – enable external HW event, apply external event code to active
	mapping RAM on edge of hardware input
TxDB7-	Backward distributed bus bit enable:
TxDB0	0 – disable distributed bus bit
	1 – enable distributed bus bit control from hardware input: e.g. when
	TxDB7 is '1' the hardware input x state is sent out on distributed bus bit
	7.

CML Output Pattern Registers (CMLxPatxx)

_		_	•				
bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16
				19 MSB	18	17	16
bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
15	14	13	12	11	10	9	8
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
7	6	5	4	3	2	1	0 LSB

Document: EVR-MRM-007

Page: 58 of 77

Bit 19 MSB is sent out first, LSB last

Note that GTX pattern registers are accessed through the first four address locations of the GTX pattern memory.

CML/GTX Output Control Register

Address	bit 31								bit 16
0x610			F	requenc	y mo	de trigg	er position		
Address	bit 15	bit 14	bit 13	bit 12	b	it 11	bit 10	bit 9	bit 8
0x612					GT	X3MD	GTX2MD	GTXPH1	GTXPH0
•		<u> </u>							
4 7 7	1 * 4 =	1.4.6	1 •			1.4.2	1.4.0	144	1.4.0
Address	bit 7	bit 6	<u>bit</u>		it 4	bit 3	bit 2	bit 1	bit 0
0x613	CMLRC	CMLTL	. C.	MLMD			CMLRES	CMLPWD	CMLENA
	GTX3MI		GUN-TX) – CML/			PCI-EV	/RTG-300 oi	nly)	
	GTX2MI) (l – SFP o GUN-TX) – CML/	-203 Mo	ode (d		00 Mode /RTG-300 or	nly)	
	GTXPH1	:0	l – SFP o GUN-TX	output in -203 Tri	GUN			PCI-EVRTG	-300 only)
	CMLRC CMLTL CMLMD	(1 1 ((((10 – outp	ut pulse ut pulse ut pulse tern recy quency i de Selec sic mode uency m	delay delay cle mode et:	yed by ½ yed by ¾	ź event clock ź event clock	a period (~2 n a period (~4 n a period (~6 n	s)
	CMLRES	1 5 (1	l 1 = unde CML Res l = reset () = norma	efined set CML ou al operat	tput ((default	on EVR pow	ver up)	
	CMLPW!	1 (A () = norma CML Ena	outputs al operat able output o	powerion	led (defa	vn (default o uult on EVR	n EVR power	·up)

SFP Module EEPROM and Diagnostics

Small Form Factor Pluggable (SFP) transceiver modules provide a means to identify the module by accessing an EEPROM. As an advanced feature some modules also support reading dynamic

Page: 59 of 77

Document: EVR-MRM-007

information including module temperature, receive and transmit power levels etc. from the module. The EVR gives access to all of this information through a memory window of 2×256 bytes. The first 256 bytes consist of the EEPROM values and the rest of the advanced values.

Byte # Decimal	Field size (bytes)	Notes	Value Hex
	,	BASE ID FIELDS	
0	1	Type of serial transceiver	03 = SFP transceiver
1	1	Extended identifier of type serial	04 = serial ID module
		transceiver	definition
2	1	Code for connector type	07 = LC
3 - 10	8	Code for electronic compatibility or	
		optical compatibility	
11	1	Code for serial encoding algorithm	
12	1	Nominal bit rate, units of 100	
10		MBits/sec	
13	1	Reserved	
14	1	Link length supported for 9/125 μm	
1.5	1	fiber, units of km	
15	1	Link length supported for 9/125 µm	
16	1	fiber, units of 100 m	
16	1	Link length supported for 50/125 µm fiber, units of 10 m	
17	1	Link length supported for 62.5/125	
17	1	μm fiber, units of 10 m	
18	1	Link length supported for copper,	
10	1	units of meters	
19	1	Reserved	
20 - 35	16	SFP transceiver vendor name	
		(ASCII)	
36	1	Reserved	
37 - 39	3	SFP transceiver vendor IEEE	
		company ID	
40 - 55	16	Part number provided by SFP	
		transceiver vendor (ASCII)	
56 – 59	4	Revision level for part number	
		provided by vendor (ASCII)	
60 - 62	3	Reserved	
63	1	Check code for Base ID Fields	
(1 (5	2	EXTENDED ID FIELDS	
64 - 65	2	Indicated which optional SFP	
66	1	signals are implemented	
66 67	1 1	Upper bit rate margin, units of % Lower bit rate margin, units of %	
68 – 83	16	Serial number provided by vendor	
00 – 05	10	(ASCII)	
84 - 91	8	Vendor's manufacturing date code	
92 – 94	3	Reserved	
95	1	Check code for the Extended ID	
-			

Document: EVR-MRM-007

Page: 60 of 77

		Fields	_
		VENDOR SPECIFIC ID FIELD	S
96 – 127	32	Vendor specific data	
128 - 255		Reserved	
		ENHANCED FEATURE SET MEM	
256 - 257	2	Temp H Alarm	Signed twos complement
			integer in increments of 1/256 °C
258 - 259	2	Temp L Alarm	Signed twos complement
			integer in increments of 1/256 °C
260 - 261	2	Temp H Warning	Signed twos complement
			integer in increments of 1/256 °C
262 - 263	2	Temp L Warning	Signed twos complement
			integer in increments of 1/256 °C
264 - 265	2	VCC H Alarm	Supply voltage decoded as
			unsigned integer in increments
			of 100 μV
266 - 267	2	VCC L Alarm	Supply voltage decoded as
			unsigned integer in increments of $100 \ \mu V$
268 - 269	2	VCC H Warning	Supply voltage decoded as
			unsigned integer in increments
			of 100 μV
270 - 271	2	VCC L Warning	Supply voltage decoded as
			unsigned integer in increments
			of 100 μV
272 - 273	2	Tx Bias H Alarm	Laser bias current decoded as
			unsigned integer in increment
			of 2 μA
274 - 275	2	Tx Bias L Alarm	Laser bias current decoded as
			unsigned integer in increment
076 077	2	T. D. H.W.	of 2 μA
276 – 277	2	Tx Bias H Warning	Laser bias current decoded as
			unsigned integer in increment
279 270	2	T-Dist West	of 2 µA
278 - 279	2	Tx Bias L Warning	Laser bias current decoded as
			unsigned integer in increment
200 201	2	Tx Power H Alarm	of 2 µA
280 - 281	2	Ix Power H Alariii	Transmitter average optical
			power decoded as unsigned
			integer in increments of 0.1 µW
282 - 283	2	Tx Power L Alarm	μνν Transmitter average optical
202 – 203	<i>L</i>	1 A I OWEL L AIGHH	power decoded as unsigned
			integer in increments of 0.1
			μW
			μπ

Document: EVR-MRM-007

Page: 61 of 77

284 – 285	2	Tx Power H Warning	Transmitter average optical power decoded as unsigned integer in increments of 0.1 μW
286 – 287	2	Tx Power L Warning	Transmitter average optical power decoded as unsigned integer in increments of 0.1 µW
288 – 289	2	Rx Power H Alarm	Receiver average optical power decoded as unsigned integer in increments of 0.1 µW
290 – 291	2	Rx Power L Alarm	Receiver average optical power decoded as unsigned integer in increments of 0.1 µW
292 – 293	2	Rx Power H Warning	Receiver average optical power decoded as unsigned integer in increments of 0.1 µW
294 – 295	2	Rx Power L Warning	Receiver average optical power decoded as unsigned integer in increments of 0.1 µW
296 - 311	16	Reserved	•
312 - 350		External Calibration Constants	
351	1	Checksum for Bytes 256 – 350	
352 – 353	2	Real Time Temperature	Signed twos complement integer in increments of 1/256 °C
354 – 355	2	Real Time VCC Power SupplyVoltage	Supply voltage decoded as unsigned integer in increments of 100 µV
356 – 357	2	Real Time Tx Bias Current	Laser bias current decoded as unsigned integer in increment of 2 µA
358 – 359	2	Real Time Tx Power	Transmitter average optical power decoded as unsigned integer in increments of 0.1 μW
360 – 361	2	Real Time Rx Power	Receiver average optical power decoded as unsigned integer in increments of 0.1 µW
362 - 365	4	Reserved	
366	1	Status/Control	bit 7: TX_DISABLE State bit 6 – 3: Reserved bit 2: TX_FAULT State bit 1: RX_LOS State

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

EVR	-MRN	I-()()7
	EVR	: EVR-MRM

Page: 62 of 77

			bit 0: Data Ready (Bar)
367	1	Reserved	
368	1	Alarm Flags	bit 7: Temp High Alarm
			bit 6: Temp Low Alarm
			bit 5: VCC High Alarm
			bit 4: VCC Low Alarm
			bit 3: Tx Bias High Alarm
			bit 2: Tx Bias Low Alarm
			bit 1: Tx Power High Alarm
			bit 0: Tx Power Low Alarm
369	1	Alarm Flags cont.	bit 7: Rx Power High Alarm
			bit 6: Rx Power Low Alarm
			bit $5 - 0$: Reserved
370 - 371	2	Reserved	
372	1	Warning Flags	bit 7: Temp High Warning
			bit 6: Temp Low Warning
			bit 5: VCC High Warning
			bit 4: VCC Low Warning
			bit 3: Tx Bias High Warning
			bit 2: Tx Bias Low Warning
			bit 1: Tx Power High Warning
			bit 0: Tx Power Low Warning
373	1	Warning Flags cont.	bit 7: Rx Power High Warning
			bit 6: Rx Power Low Warning
			bit $5 - 0$: Reserved
374 - 511		Reserved/Vendor Specific	

Application Programming Interface (API)

A Linux device driver and application interface is provided to setup up the Event Receiver.

Function Reference

int EvrOpen(struct MrfErRegs **pEr, char *device_name);

Description Opens the EVR device for access. Simultaneous

accesses are allowed.

Parameters struct MrfErRegs **pEr EvgOpen returns pointer to EVR registers by

memory mapping the I/O registers into user

space.

char *device_name Holds the device name of the EVR, e.g.

/dev/ega3. The device names are set up by the module_load script of the device driver.

module_load script of the device driv

Return value Return file descriptor on success.

Returns -1 on error.

int EvrClose(int fd);

Description Closes the EVR device after opening by

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 63 of 77

EvrOpen.

Parameters int fd File descriptor returned by EvrOpen

Return valueReturns zero on success.
Returns -1 on error.

int EvrEnable(volatile struct MrfErRegs *pEr, int state);

Description Enables the EVR and allows reception of

events.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int state 0: disable

1: enable

Return value Returns zero when EVR disabled

Returns non-zero when EVR enabled

int EvrGetEnable(volatile struct MrfErRegs *pEr);

Description Retrieves state of the EVR.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns zero when EVR disabled

Returns non-zero when EVR enabled

void EvrDumpStatus(volatile struct MrfErRegs *pEr);

Description Dump EVR status.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value None

int EvrGetViolation(volatile struct MrfErRegs *pEr, int clear);

Description Get/clear EVR link violation status.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int clear 0: don't clear

1: clear status

Return value Returns 0 when no violation detected.

Return non-zero when violation detected.

void EvrDumpMapRam(volatile struct MrfErRegs *pEr, int ram);

Description Dump EVR mapping RAM.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int ram Number of RAM: 0 or 1

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 64 of 77

Return value None

int EvrMapRamEnable(volatile struct MrfErRegs *pEr, int ram, int enable);

Description Enable/disable EVR mapping RAM.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Number of RAM: 0 or 1 int ram

int enable 0: disable RAM

1: enable RAM

Return value None

int EvrSetForwardEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);

Description Enable/disable EVR event forwarding. **Parameters** volatile struct MrfErRegs *pEr

Pointer to memory mapped EVR register

base.

Number of mapping RAM: 0 or 1 int ram int code Event code to enable/disable event

forwarding

int enable 0: disable event forwarding for code

1: enable event forwarding for code

Return value None

int EvrEnableEventForwarding(volatile struct MrfErRegs *pEr, int state);

Description Enables forwarding of enabled event codes.

volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register **Parameters**

base.

int state 0: disable forwarding

1: enable forwarding

Returns zero when forwarding disabled Return value

Returns non-zero when forwarding enabled

int EvrGetEventForwarding(volatile struct MrfErRegs *pEr);

Retrieves state of event forwarding. Description

Pointer to memory mapped EVR register **Parameters** volatile struct MrfErRegs *pEr

base.

Returns zero when forwarding disabled Return value

Returns non-zero when forwarding enabled

int EvrSetLedEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);

Description Enable/disable EVR led event (Front panel

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 65 of 77

led will flash up for enabled event codes).

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int ram Number of mapping RAM: 0 or 1

int code Event code to enable/disable led event for

int enable 0: disable led event for code 1: enable led event for code

1. Chable le

Return value None

int EvrSetFIFOEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);

Description Enable/disable storing specified event code

into FIFO.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int ram Number of mapping RAM: 0 or 1 int code Event code to enable/disable

0: disable storing event code in FIFO1: enable storing event code in FIFO

Return value None

int enable

int EvrSetLatchEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);

Description Enable/disable latching timestamp on

specified event code.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int ram Number of mapping RAM: 0 or 1 int code Event code to enable/disable

int enable 0: disable latching of timestamp on event

code

1: enable latching of timestamp upon

reception of event code

Return value None

int EvrSetLogStopEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);

Description Enable/disable stopping of writes to event

log on reception of event code.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int ram

Number of mapping RAM: 0 or 1
int code
int enable

Event code to enable/disable
0: disable stop log event

1: stop log writes upon reception of event

code

Return value None

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 66 of 77

int EvrClearFIFO(volatile struct MrfErRegs *pEr);

Description Clear EVR Event FIFO.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value None.

int EvrGetFIFOEvent(volatile struct MrfErRegs *pEr, struct FIFOEvent *fe);

DescriptionGet one Event from EVR Event FIFO.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

struct FIFOEvent *fe Pointer to structure to place event in.

struct FIFOEvent {
u32 TimestampHigh;
u32 TimestampLow;
u32 EventCode;

};

Return value 0 – Event retrieved successfully

-1 – Event FIFO was empty

int EvrEnableLogStopEvent(volatile struct MrfErRegs *pEr, int enable);

Description Enable/disable stopping of writing to event

log on reception of event codes with STOP

Log mapping bit set.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int enable 0: disable stop log event

1: stop log writes upon reception of event codes with STOP log mapping bit set.
Returns zero when stop events disabled

Return valueReturns zero when stop events disabled
Returns non-zero when stop events enabled

int EvrGetLogStopEvent(volatile struct MrfErRegs *pEr);

Description Check if log stop events are enabled.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns zero when stop events disabled

Returns non-zero when stop events enabled

int EvrEnableLog(volatile struct MrfErRegs *pEr, int enable);

Description Enable/disable writing to log.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int enable 0: disable writes to log

1: enable writes to log

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 67 of 77

Return value Returns zero when log enabled

Returns non-zero when log stopped.

int EvrGetLogState(volatile struct MrfErRegs *pEr, int enable);

Description Get log state.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns zero when logging enabled

Returns non-zero when logging stopped.

int EvrGetLogStart(volatile struct MrfErRegs *pEr);

Description Get log start position.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns relative address to first log entry in

log ring buffer.

int EvrGetLogEntries(volatile struct MrfErRegs *pEr);

Description Get number of entries in log.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Returns number of entries in log (0 to 512).

void EvrDumpFIFO(volatile struct MrfErRegs *pEr);

Description Dump EVR FIFO on stdout.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value None

int EvrClearLog(volatile struct MrfErRegs *pEr);

Description Empty EVR Event Log.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value None.

void EvrDumpLog(volatile struct MrfErRegs *pEr);

Description Print out full EVR event log on stdout.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value None

int EvrSetPulseMap(volatile struct MrfErRegs *pEr, int ram, int code, int trig, int set, int clear);

Description Set up pulse generators for event codes.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 68 of 77

int ram Number of mapping RAM: 0 or 1

int code Event code affected

int trig 0: no change

1: Trigger pulse generator from event code

int set 0: no change

1: Set pulse high with this event code

int clear 0: no change

1: Pull pulse low with this event code

Return value None

int EvrClearPulseMap(volatile struct MrfErRegs *pEr, int ram, int code, int trig, int set, int clear);

Description Set up pulse generators for event codes.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int ram Number of mapping RAM: 0 or 1

int code Event code affected

int trig 0: no change

1: Don't trigger pulse generator from this

event code

int set 0: no change

1: Don't set pulse high with this event code

int clear 0: no change

1: Don't pull pulse low with this event code

Return value None

int EvrSetPulseParams(volatile struct MrfErRegs *pEr, int pulse, int presc, int delay, int width);

Description Set pulse generator parameters.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int pulse Number of pulse generator 0-9

int presc Prescaler value int delay Delay Value int width Width Value

Return value Returns 0 on success, -1 on error

void EvrDumpPulses(volatile struct MrfErRegs *pEr, int pulses);

Description Dump EVR pulse generator settings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base

int pulses Number of pulse generators to dump

Return value None

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 69 of 77

int EvrSetPulseProperties(volatile struct MrfErRegs *pEr, int pulse, int polarity, int map_reset_ena, int map_set_ena, int map_trigger_ena, int enable);

Description Set pulse generator properties.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Number of pulse generator 0-9 int pulse

int polarity 0: normal polarity

1: inverted polarity

int map_reset_ena 0: disable reset input

1: enable reset input 0: disable set input

int map_set_ena

1: enable set input

0: disable trigger input int map_trigger_ena

1: enable trigger input 0: pulse output disabled

int enable 1: pulse output enabled

Returns 0 on success, -1 on error Return value

int EvrSetUnivOutMap(volatile struct MrfErRegs *pEr, int output, int map);

Description Set up universal output mappings.

Pointer to memory mapped EVR register **Parameters** volatile struct MrfErRegs *pEr

base.

int output Universal Output number

int map Signal mapping (see erapi.h for details)

Returns 0 on success, -1 on error Return value

void EvrDumpUnivOutMap(volatile struct MrfErRegs *pEr, int outputs);

Description Dump EVR Universal output mappings.

Pointer to memory mapped EVR register **Parameters** volatile struct MrfErRegs *pEr

base.

int outputs Number of outputs to dump

Return value None

int EvrSetFPOutMap(volatile struct MrfErRegs *pEr, int output, int map);

Description Set up front panel output mappings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int output Front Panel Output number

Signal mapping (see erapi.h for details) int map

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 70 of 77

Return value Returns 0 on success, -1 on error

void EvrDumpFPOutMap(volatile struct MrfErRegs *pEr, int outputs);

Description Dump EVR Front panel output mappings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int outputs Number of outputs to dump

Return value None

int EvrSetTBOutMap(volatile struct MrfErRegs *pEr, int output, int map);

Description Set up Transition board output mappings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int output Transition Board Output number

int map Signal mapping (see erapi.h for details)

Return value Returns 0 on success, -1 on error

void EvrDumpTBOutMap(volatile struct MrfErRegs *pEr, int outputs);

Description Dump EVR Transition board output

mappings.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int outputs Number of outputs to dump

Return value None

void EvrlrqAssignHandler(volatile struct MrfErRegs *pEr, int fd, void (*handler)(int));

Description Assign EVR interrupt handler.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int fd File descriptor returned by EvrOpen void (*handler)(int) Pointer to interrupt handler function

Return value None

int EvrlrqEnable(volatile struct MrfErRegs *pEr, int mask);

Description Enable EVR interrupts.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int mask (see erapi.h) for mask bits.

Return value Returns mask read back from EVR.

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 71 of 77

int EvrGetIrgFlags(volatile struct MrfErRegs *pEr);

Description Get EVR interrupt flags.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Returns EVR interrupt flags. Return value

int EvrClearIrqFlags(volatile struct MrfErRegs *pEr, int mask);

Clears EVR interrupt flags. Description

volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register **Parameters**

Interrupt clear mask (see erapi.h) for flag int mask

bits.

Return value Returns flags read back from EVR.

void EvrIrgHandled(int fd);

Description Function to call at the end of interrupt

handler function.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

File descriptor returned by EvrOpen int fd

Return value None

int EvrSetPulseIrqMap(volatile struct MrfErRegs *pEr, int map);

Description Set up interrupt mappings.

volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register **Parameters**

base.

Signal mapping (see erapi.h for details) int map

Returns 0 on success, -1 on error Return value

int EvrUnivDlyEnable(volatile struct MrfErRegs *pEr, int dlymod, int enable);

Description Enable/disable UNIV-LVPECL-DLY output.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int dlymod Number of UNIV-LVPECL-DLY module:

cPCI-EVR-230:

0 – module slot UNIV0/1 1 – module slot UNIV2/3

cPCI-EVR-300:

0 – module slot UNIV10/11 1 – module slot UNIV8/9

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

int dly1

Document: EVR-MRM-007

Page: 72 of 77

int enable 0 – disable module output

1 – enable module output

Return value Returns 0 on success, -1 on error

int EvrUnivDlySetDelay(volatile struct MrfErRegs *pEr, int dlymod, int dly0, int dly1);

Description Enable/disable UNIV-LVPECL-DLY output.

Parameters Pointer to memory mapped EVR register volatile struct MrfErRegs *pEr

base.

int dlymod Number of UNIV-LVPECL-DLY module:

cPCI-EVR-230:

0 – module slot UNIV0/1 1 – module slot UNIV2/3

cPCI-EVR-300:

0 – module slot UNIV10/11 1 – module slot UNIV8/9

int dly0 Delay value for output even slot # 0/2/8/10:

0 – shortest delay

1023 – longest delay (approx. 9-10 ps/step) Delay value for output odd slot # 1/3/9/11:

0 – shortest delay

1023 – longest delay (approx. 9-10 ps/step)

Return value Returns 0 on success, -1 on error

int EvrSetFracDiv(volatile struct MrfErRegs *pEr, int fracdiv);

Description Set fractional divider control word which

provides reference frequency for receiver.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int fracdiv Fractional divider control word

Return value Returns control word written

int EvrGetFracDiv(volatile struct MrfErRegs *pEr);

Description Get fractional divider control word which

provides reference frequency for receiver.

volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register **Parameters**

base.

Return value Returns control word

int EvrSetDBufMode(volatile struct MrfErRegs *pEr, int enable);

Enable/disable data buffer mode. When data Description

buffer mode is enabled every other distributed bus byte is reserved for data

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 73 of 77

transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int enable 0 – disable data buffer mode

1 – enable data buffer mode

Return value Data buffer status (see Receive Data Buffer

Control and Status Register on page 51 for

bit definitions).

int EvrGetDBufStatus(volatile struct MrfErRegs *pEr);

Description Get data buffer mode. When data buffer

mode is enabled every other distributed bus byte is reserved for data transmission thus the

distributed bus bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Data buffer status (see Receive Data Buffer

Control and Status Register on page 51 for

bit definitions).

int EvrReceiveDBuf(volatile struct MrfErRegs *pEr, int enable);

Description Enable reception of data buffer. After

reception of a data buffer further reception is

disabled until re-enabled by software.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int enable 0 – disable data buffer reception.

1 – enable data buffer reception

Return value Data buffer status (see Receive Data Buffer

Control and Status Register on page 51 for

definitions).

int EvrGetDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int size);

Description Receive data buffer data.

Return value

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

char *dbuf Pointer to local data buffer

int size Size of dbuf buffer.
Size of received buffer.

-1 on error (no buffer received, local buffer

too small or checksum error)

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 74 of 77

int EvrSetTimestampDivider(volatile struct MrfErRegs *pEr, int div);

Set timestamp counter divider **Description**

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int div Timestamp divider value:

0 – count timestamp events (or use DBUS4

as clock)

1 to 65535 – count at event clock/value rate

Return divider value. Return value

int EvrSetTimestampDBus(volatile struct MrfErRegs *pEr, int enable);

Description Control timestamp counter count from

distributed bus bit 4 (DBUS4).

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

0 – disable counting from DBUS4 int enable

1 – enable timestamp counting from DBUS4.

Note: Timestamp counter has to be 0.

Return value

int EvrGetTimestampCounter(volatile struct MrfErRegs *pEr);

Get Timestamp Counter value **Description**

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

Return value Timestamp Counter value

int EvrGetSecondsCounter(volatile struct MrfErRegs *pEr);

Get Timestamp Seconds Counter value **Description**

volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register **Parameters**

base.

Timestamp Seconds Counter value Return value

int EvrGetTimestampLatch(volatile struct MrfErRegs *pEr);

Description Get Timestamp Latch value

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Timestamp Latch value

int EvrGetSecondsLatch(volatile struct MrfErRegs *pEr);

Description Get Timestamp Seconds Latch value volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register **Parameters**

Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

Document: EVR-MRM-007

Page: 75 of 77

base.

Return value Timestamp Seconds Latch value

int EvrSetPrescaler(volatile struct MrfErRegs *pEr, int presc, int div);

Description Set prescaler divider

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base

int presc Number of prescaler int div Prescaler divider value:

1 to 65535 – count at event clock/value rate

Return value Return divider value.

int EvrSetExtEvent(volatile struct MrfErRegs *pEr, int ttlin, int code, int edge_enable, int level_enable);

Description Set external event code

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int ttlin Number of front panel input: 0, 1

int code Event code to generate on detected edge/level

int edge_enable 0 - disable

1 – enable events on active edge

int level_enable 0 - disable

1 – enable sending out event every 1 us on

active level

Return value 0 – successful

-1 - error

int EvrSetBackEvent(volatile struct MrfErRegs *pEr, int ttlin, int code, int edge_enable, int level_enable);

Description Set backwards event code

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

int ttlin Number of front panel input: 0, 1

int code Event code to send out on detected edge/level

int edge_enable 0 – disable

1 – enable events on active edge

int level_enable 0 - disable

1 – enable sending out event every 1 us on

active level

Return value 0 – successful

-1 – error

Document: EVR-MRM-007

Page: 76 of 77

int EvrSetExtEdgeSensitivity(volatile struct MrfErRegs *pEr, int ttlin, int edge);

Description Set external input edge sensitivity

Pointer to memory mapped EVR register **Parameters** volatile struct MrfErRegs *pEr

base.

int ttlin Number of front panel input: 0, 1

int edge 0 – detect rising edges

1 – detect falling edges

0 – successful Return value

-1 - error

int EvrSetExtLevelSensitivity(volatile struct MrfErRegs *pEr, int ttlin, int level);

Description Set external input edge sensitivity

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

Number of front panel input: 0, 1 int ttlin int level 0 – detect high level (active high) 1 – detect low level (active low)

Return value 0 – successful

-1 - error

int EvrSetTxDBufMode(volatile struct MrfErRegs *pEr, int enable);

Description Enable/disable transmitter data buffer mode.

> When data buffer mode is enabled every other distributed bus byte is reserved for data

transmission thus the distributed bus

bandwidth is halved.

volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register **Parameters**

base.

0 – disable transmitter data buffer mode int enable

> 1 – enable transmitter data buffer mode Transmit data buffer status (see Transmit

Return value Data Buffer Control Register on page 51 for

bit definitions).

int EvrGetTxDBufStatus(volatile struct MrfErRegs *pEr);

Description Get transmit data buffer status. When data

> buffer mode is enabled every other distributed bus byte is reserved for data transmission thus the distributed bus

bandwidth is halved.

volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register **Parameters**

Return value Transmit data buffer status (see Transmit

Data Buffer Control Register on page 51 for

Document: EVR-MRM-007

Page: 77 of 77

bit definitions).

int EvrSendTxDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int size);

Description Get transmit data buffer status. When data

buffer mode is enabled every other distributed bus byte is reserved for data transmission thus the distributed bus

bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

oase.

char *dbuf Pointer to local data buffer

int size Size of data in bytes to be transmitted:

4, 8, 12, ..., 2048.

Return value Size of buffer being sent.

-1 on error.

int EvrGetFormFactor(volatile struct MrfErRegs *pEr);

Description Get form factor code from EVR.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Return value Form factor. See FPGA Firmware Version

Register on page 52 for details.