Kezdés ideje	2024. május 12., vasárnap, 19:08
Állapot	Befejezte
Befejezés dátuma	2024. május 12., vasárnap, 19:12
Felhasznált idő	3 perc 6 mp
Pontok	2,00/2,00
Pont	10,00 a(z) 10,00 maximumból (100 %)

1. kérdés

Helyes

1,00/1,00 pont

Adja meg a $p(x)=x^4+4x^3-13x^2-40x+48$ polinom második legnagyobb zérushelyét. Válasszon ki egyet: \bigcirc a. -3 $>> x = [1 \ 4 \ -13 \ -40 \ 48];$ \bigcirc b. -4>> roots(x) \circ c. -7● d. 1 ✓ ans = \odot e. -6 \circ f. -10-4.0000 + 0.0000i-4.0000 - 0.0000i3.0000 + 0.0000i A helyes válasz: 1 1.0000 + 0.0000i

2. kérdés

Helyes

1,00/1,00 pont

Közelítse a $\cos(x^6) - \sin(x^3 - 1) = 0$ egyenlet 0-hoz legközelebbi gyökét 4 tizedesjegy pontossággal!

>> $f = @(x) \cos(x.^6) - \sin(x.^3 - 1);$ >> $f = (x) \cos(x.^6) - \sin(x.^5) - \sin(x.^5)$ | $f = (x) \cos(x.^6) - \sin(x.^6) - \sin(x.^6)$ | $f = (x) \cos(x.^6) - \sin(x.^6)$ | $f = (x) \cos($

1.0566