ДИУ-лекция 6. Тригонометрические ряды Фурье

П. 1 Ряды Фурье и многочлены Фурье.

Функциональный ряд

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx \quad (1)$$

называется тригонометрическим рядом Фурье.

Если числовые ряды $\sum_{k=1}^{\infty} \left| a_k \right|$ и $\sum_{k=1}^{\infty} \left| b_k \right|$ сходятся, то ряд Фурье сходится равномерно ($\sum_{k=1}^{\infty} \left| a_k \right| + \left| b_k \right|$ - мажорирующий ряд) на всей оси к непрерывной, 2π — периодической функции f(x) .

В линейном (бесконечномерном!) пространстве функций f(x), определенных на отрезке $\left[-\pi;\pi\right]$, для которых существует $\int\limits_{-\pi}^{\pi}f^2(x)dx$ (это пространство обозначают $L_2\left(\left[-\pi;\pi\right]\right)$, можно определить скалярное произведение его элементов:

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$$

удовлетворяющее всем необходимым аксиомам. В частности, все непрерывные на отрезке $\left[-\pi;\pi\right]$ функции принадлежат $L_2\left(\left[-\pi;\pi\right]\right)$. Две функции f(x) и g(x) назовем ортогональными, если $\langle f,g\rangle=0$. Легко проверить, что каждая пара из системы функций

$$1, \sin kx, \cos mx, k, m \in \mathbb{Z}$$
 (*)

попарно ортогональные. Действительно,

$$\int_{-\pi}^{\pi} \sin kx \cdot \sin mx dx = 0, k, m \in Z \quad (a)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \cos mx dx = 0, k, m \in Z$$
 (6)

$$\int_{-\pi}^{\pi} 1 \cdot \sin kx dx = 0, \ k \in \mathbb{Z}, \quad \int_{-\pi}^{\pi} 1 \cdot \cos mx dx = 0, \quad m \in \mathbb{Z} \quad \text{(B)}$$

Докажем, например, (б):

$$\int_{-\pi}^{\pi} \sin kx \cdot \cos mx dx = \frac{1}{2} \left(\int_{-\pi}^{\pi} \sin(k+m)x dx + \int_{-\pi}^{\pi} \sin(k-m)x dx \right) = 0$$

В пространстве $L_2\left(\left[-\pi;\pi\right]\right)$ есть норма $\|f\|$, согласованная со скалярным произведением:

$$||f|| = \sqrt{\langle f, f \rangle}$$
,

для которой выполняются свойства:

1) $\|f + g\| \le \|f\| + \|g\|$ - неравенство «треугольника»

$$||f \cdot g|| \le ||f|| \cdot ||g||$$

Нормы элементов системы (*) равны $||1|| = \sqrt{2\pi} ||\sin kx|| = ||\cos mx|| = \sqrt{\pi}$

Проверим, например, для синусов:

$$\|\sin kx\|^2 = \int_{-\pi}^{\pi} \sin^2 kx dx = \frac{1}{2} \int_{-\pi}^{\pi} (1 - \cos 2kx) dx = \pi - \frac{1}{2} \int_{-\pi}^{\pi} \cos 2kx dx = \pi \rightarrow \|\sin kx\| = \sqrt{\pi}$$

Поэтому систему функций

$$\frac{1}{\sqrt{2\pi}}; \frac{1}{\sqrt{\pi}}\sin kx; \frac{1}{\sqrt{\pi}}\cos mx, \ k, m \in Z \quad (**)$$

называют ортонормированной (ОНС)

Теорема 1. Если ряд (1) равномерно сходится на R и имеет сумму f(x)

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$
, (2)

То коэффициенты a_k , b_k , k = 0,1,2,... вычисляются по формулам:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx, \ k = 0, 1, 2, ..., \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx, \ k = 1, 2, ...$$
 (3)

Док. Умножим правую и левую часть равенства (2) на $\cos nx$ и проинтегрируем полученный равномерно сходящийся ряд на отрезке $[-\pi;\pi]$:

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{a_0}{2} \int_{-\pi}^{\pi} 1 \cdot \cos nx dx + \sum_{k=1}^{\infty} a_k \int_{-\pi}^{\pi} \cos kx \cos nx dx + b_k \int_{-\pi}^{\pi} \sin kx \cos nx dx$$

При
$$n=0$$
 имеем $\int\limits_{-\pi}^{\pi}f(x)dx=\frac{a_0}{2}\cdot 2\pi=\pi a_0 \to a_0=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)dx$

При $n=k \neq 0$ с учетом ортогональности функций из (*) имеем

$$\int_{-\pi}^{\pi} f(x) \cos kx dx = a_k \int_{-\pi}^{\pi} \cos^2 kx dx = \pi a_k \to a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx, \quad k = 1, 2, \dots$$

Умножая равенство на $\sin nx$ и, интегрируя члены равномерно сходящегося ряда, придем к формуле (3) для определения коэффициентов b_k .

Опр. Если f(x) 2π — периодическая функция на R и $f(x) \in L_2\left(\left[-\pi;\pi\right]\right)$, то ей можно сопоставить ряд (1), коэффициенты a_k,b_k которого вычислены по формулам (3). Такой ряд называется рядом Фурье функции f(x) , а числа a_k,b_k - коэффициентами Фурье данной функции.

Теорема 1 устанавливает, что в случае равномерной сходимости ряд (1) является рядом Фурье своей суммы.

Пример 1. Функциональный ряд $\sum_{k=1}^{\infty} \frac{\sin kx}{k^2}$ является рядом Фурье своей суммы.

Лемма (Римана об осцилляции)

Пусть функция f(x) непрерывна на отрезке [a;b]. Тогда

$$\lim_{\lambda \to \infty} \int_{a}^{b} f(x) \cos \lambda x dx = \lim_{\lambda \to \infty} \int_{a}^{b} f(x) \sin \lambda x dx = 0$$

Док. Докажем лемму для $\cos \lambda x$ (для $\sin \lambda x$ - по аналогии). Сделаем замену $t=x-\frac{\pi}{\lambda}$. Тогда для функции

$$\tilde{f}(x) = \begin{cases} f(x), x \in [a; b] \\ 0, x \notin [a; b] \end{cases} \to \int_{a}^{b} f(x) \cos \lambda x dx = \int_{-\infty}^{\infty} \tilde{f}(x) \cos \lambda x dx = -\int_{-\infty}^{\infty} \tilde{f}(t + \frac{\pi}{\lambda}) \cos \lambda t dt \to \\
\int_{-\infty}^{\infty} \tilde{f}(x) \cos \lambda x dx = -\frac{1}{2} \int_{-\infty}^{\infty} \left[\tilde{f}(t + \frac{\pi}{\lambda}) - \tilde{f}(t) \right] \cos \lambda t dt \to \\
\left| \int_{-\infty}^{\infty} \tilde{f}(x) \cos \lambda x dx \right| \le \frac{1}{2} \int_{-\infty}^{\infty} \left| \tilde{f}(t + \frac{\pi}{\lambda}) - \tilde{f}(t) \right| dt \xrightarrow{\lambda \to \infty} 0$$

Утверждение леммы распространяется на абсолютно интегрируемые функции f(x) , для которых существует интеграл $\int\limits_a^b |f(x)| dx$ и бесконечные a и b .

Следствие. Коэффициенты ряда Фурье абсолютно интегрируемой функции f(x) на $\left[-\pi;\pi\right]$ являются бесконечно малыми последовательностями:

$$\lim_{k\to\infty}a_k=\lim_{k\to\infty}b_k=0$$

Частичная сумма $S_n(x)$ ряда (1) называется тригонометрическим многочленом или многочленом Фурье. Следующие понятия помогут представить $S_n(x)$ в более удобном виде.

Ядром Дирихле называют функцию $D_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos kx$. Ядру можно придать иной вид,

вычисляя сумму косинусов. Для $x \neq 2\pi m$ разделим и умножим выражение на $\sin\frac{x}{2}$:

$$D_{n}(x) = \frac{1}{2\sin\frac{x}{2}} \left(\sin\frac{x}{2} + \sum_{k=1}^{n} 2\sin\frac{x}{2}\cos kx\right) =$$

$$= \frac{1}{2\sin\frac{x}{2}} \left(\sin\frac{x}{2} + \sin\left(-\frac{x}{2}\right) + \sin\frac{3x}{2} + \sin\left(-\frac{3x}{2}\right) + \sin\frac{5x}{2} + \dots + \sin\left(\frac{1}{2} - n\right)x + \sin\left(\frac{1}{2} + n\right)x\right) =$$

$$= \frac{\sin\left(n + \frac{1}{2}\right)x}{2\sin\frac{x}{2}}$$

Значение $D_n(x)\big|_{x=2\pi m}=n+rac{1}{2}\,$ совпадает с пределом при $x o 2\pi m\,$ выражения $\dfrac{\sin\Big(n+rac{1}{2}\Big)x}{2\sinrac{x}{2}}$.

Ядро Дирихле является четной, 2π — периодической функцией, принимающей при x=0 максимальное значение $D_n(0)=n+\frac{1}{2}$ и имеющей на отрезке $\left[-\pi;\pi\right]$ интеграл не зависящий от n :

$$\frac{1}{\pi} \int_{-\pi}^{\pi} D_n(x) dx = \frac{2}{\pi} \int_{0}^{\pi} D_n(x) dx = 1$$

График ядра на отрезке $\left[-\pi;\pi
ight]$ изображен на рис.

Преобразуем многочлен Фурье $S_{\scriptscriptstyle n}(x,f)$, коэффициенты которого вычислены по формулам (3):

$$S_{n}(x, f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt + \sum_{k=1}^{n} \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left[\cos kt \cos kx + \sin kt \sin kx\right] dt =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left[\frac{1}{2} + \sum_{k=1}^{n} \cos k(t-x) \right] dt = \frac{1}{\pi} \int_{-\pi}^{\pi} D_{n}(t-x) f(t) dt =$$

$$|u = t - x| = \frac{1}{\pi} \int_{-\pi-x}^{\pi-x} D_{n}(u) f(u+x) du = \frac{1}{\pi} \int_{-\pi}^{\pi} D_{n}(u) f(x+u) du$$

Последний интеграл называют интегралом Дирихле, которому можно придать еще один вид:

$$\begin{split} S_n(x,f) &= \frac{1}{\pi} \int\limits_{-\pi}^0 D_n(u) f(x+u) du + \frac{1}{\pi} \int\limits_0^\pi D_n(u) f(x+u) du = \left| \text{замена } v = -u \right| = \\ &= \frac{1}{\pi} \int\limits_0^\pi D_n(v) f(x-v) dv + \frac{1}{\pi} \int\limits_0^\pi D_n(u) f(x+u) du = \frac{1}{\pi} \int\limits_0^\pi D_n(t) \left(f(x+t) + f(x-t) \right) dt \end{split}$$

Лемма о локализации

Выберем любое $\delta\in (0;\pi)$ и разобьем последний интеграл на два: на отрезке $igl[0;\deltaigr]$ и $igl[\delta;\piigr]$. Подставим в них выражение для ядра Дирихле:

$$S_n(x,f) = \underbrace{\frac{1}{\pi} \int_{0}^{\delta} \frac{f(x+t) + f(x-t)}{2\sin(t/2)} \sin(n+0.5) t dt}_{J_1(n)} + \underbrace{\frac{1}{\pi} \int_{\delta}^{\pi} \frac{f(x+t) + f(x-t)}{2\sin(t/2)} \sin(n+0.5) t dt}_{J_2(n)}$$

Во втором интеграле знаменатель отделен от нуля:

$$\sin(t/2) \ge \sin(\delta/2), \forall t \in [\delta; \pi],$$

Поэтому, в предположении кусочно-непрерывности функций f и $\frac{f(x+t)+f(x-t)}{2\sin\left(t/2\right)}$, по лемме об осцилляции $J_2(n)=o(1)$, т.е.

$$S_n(x,f) = \frac{1}{\pi} \int_0^{\delta} \frac{f(x+t) + f(x-t)}{2\sin(t/2)} \sin(n+0.5)tdt + o(1)$$
 при $n \to \infty$

П.2 Поточечная сходимость ряда Фурье.

Точку $x_0 \in \left(-\pi;\pi\right)$ назовем регулярной для функции f(x) , если

1.
$$\exists \lim_{h \to +0} f(x_0 + h) = f(x_0 + 0), \ \exists \lim_{h \to +0} f(x_0 - h) = f(x_0 - 0)$$
 (4)

$$2. \exists \lim_{h \to +0} \frac{f(x_0 + h) - f(x_0 + 0)}{h} = f'_+(x_0), \ \exists \lim_{h \to +0} \frac{f(x_0 - h) - f(x_0 - 0)}{-h} = f'_-(x_0)$$
 (5)

3.
$$f(x_0) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}$$

Для 2π — периодических функций f(x) из класса $QC^1igl[-\pi;\piigr]$, для которых

А.
$$f(x)$$
 – кусочно-непрерывна на $[-\pi;\pi]$;

Б.
$$f'(x)$$
 — кусочно-непрерывна на $\left[-\pi;\pi\right]$;

B.
$$f(x) = \frac{f(x+0) + f(x-0)}{2}, \forall x \in [-\pi; \pi]$$

любая точка $x_0 \in R$ является регулярной.

Если функция f(x) в точках разрыва не удовлетворяет условию В., то ее заменяют на функцию

$$\tilde{f}(x) = \begin{cases} f(x) - \text{в точках непрерывности;} \\ \frac{f(x-0) + f(x+0)}{2} - \text{в точках разрыва} \end{cases}$$

Теорема 2. Ряд Фурье (2) -(3) 2π — периодической функции $f(x) \in QC^1[-\pi;\pi]$ сходится в любой точке x числовой оси и его сумма равна f(x).

Док. Пусть x_0 — произвольная точка интервала $(-\pi;\pi)$:

$$S_{n}(x_{0}, f) - f(x_{0}) = \frac{1}{\pi} \int_{0}^{\pi} D_{n}(t) \left(f(x_{0} + t) + f(x_{0} - t) \right) dt - f(x_{0}) \cdot \frac{2}{\pi} \int_{0}^{\pi} D_{n}(t) dt =$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \left(\frac{f(x_{0} + t) + f(x_{0} - t) - 2f(x_{0})}{\sin \frac{t}{2}} \right) \sin \left(n + \frac{1}{2} \right) t dt =$$

$$= \underbrace{\frac{1}{\pi} \int_{0}^{\pi} \left(\frac{f(x_{0} + t) - f(x_{0} + 0)}{t} + \frac{f(x_{0} - t) - f(x_{0} - 0)}{t} \right) \cdot \frac{t}{2 \sin \left(t / 2 \right)} \sin \left(n + \frac{1}{2} \right) t dt + o(1)}_{J_{n}(\delta)}$$

Функции
$$\varphi_1(t) = \frac{f(x_0+t)-f(x_0+0)}{t}$$
 , $\varphi_2(t) = \frac{f(x_0-t)-f(x_0-0)}{t}$ и $\frac{t}{2\sin\left(t/2\right)}$ по условию,

имеют пределы при $t \to +0$, поэтому ограничены. Функция $\left|\sin\left(n+\frac{1}{2}\right)t\right| \le 1$, поэтому

 $\forall \, \varepsilon > 0 \, \exists \, \delta : \left| J_n(\delta) \right| \leq M \, \delta \leq \frac{\varepsilon}{2} \, , \, \forall \, n \, \, . \, \, \text{Осталось выбрать} \, N_\varepsilon > 0 \, : \, \forall \, n > N \, \to \left| o(1) \right| \leq \frac{\varepsilon}{2} \, . \, \, \text{Объединяя}$ последние два неравенства, получим $\left| S_n(x_0,f) - f(x_0) \right| \leq \left| J_n(\delta) \right| + \left| o(1) \right| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \, .$

Пример 2. Функция $f(x) = \begin{cases} (\pi - x)/2, \, x \in (0; 2\pi) \\ 0, \, x = 0 \end{cases}$ продолжена на всю числовую ось как $2\pi - (0; 2\pi)$ периодическая функция $\tilde{f}(x)$. Найти ее ряд Фурье.

Функция $\tilde{f}(x)$ нечетная, поэтому все коэффициенты $a_{\scriptscriptstyle n}=0$.

Вычисление коэффициентов
$$b_n = \frac{1}{2\pi} \int\limits_0^{2\pi} \left(\pi - x\right) \sin nx dx = \frac{1}{2\pi} \left((x-\pi) \frac{\cos nx}{n} \bigg|_0^{2\pi} + \int\limits_0^{2\pi} \frac{\cos nx}{n} \, dx\right) = \frac{1}{n}$$

Функция $ilde{f}(x)$ удовлетворяет условиям теоремы о поточечной сходимости, поэтому

$$\tilde{f}(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n}, \ \forall x \in R$$

П.3 Равномерная сходимость рядов Фурье.

Опр. Функцию $f(x), x \in [a;b]$ назовем кусочно- непрерывно дифференцируемой, если 1. она непрерывна на[a;b];

2) существует конечное разбиение отрезка [a;b] точками $a=a_1 < a_2 < ... < a_{m-1} < a_m = b$, для которого f'(x) непрерывна на любом интервале $(a_i;a_{i+1})$, а в точках $x=a_i$ имеет разрыв первого рода: $\exists \lim_{x \to a_i = 0} f'(x), \lim_{x \to a_i = 0} f'(x), \lim_{x \to a_i = 0} f'(x) \neq \lim_{x \to a_i = 0} f'(x)$

Опр. $2\pi-$ периодическая функция называется кусочно-непрерывно дифференцируемой, если она кусочно непрерывно дифференцируемая на отрезке $[0;2\pi]$.

Теорема 3. (о равномерной сходимости ряда Фурье)

Пусть f(x) 2π —периодическая, непрерывная функция, производная f'(x) которой — кусочнонепрерывна на отрезке $\left[0;2\pi\right]$. Тогда ее ряд Фурье сходится равномерно на R , причем справедлива оценка

$$\sup_{x \in R} \left| S_n(x, f) - f(x) \right| \le C \cdot \frac{\ln n}{n}$$

для всех $n \ge 2$ с константой C > 0 , не зависящей от n .

Док. Воспользуемся представлением остатка $S_n(x,f)-f(x)$ ряда Фурье, используемым при доказательстве теоремы 2:

$$S_n(x,f) - f(x) = \frac{1}{\pi} \int_0^\pi g(x,t) \sin \left(n + 0.5 \right) t dt = \frac{1}{\pi} \int_0^\delta g(x,t) \sin \left(n + 0.5 \right) t dt + \frac{1}{\pi} \int_\delta^\pi g(x,t) \sin \left(n + 0.5 \right) t dt$$
 где $g(x,t) = \frac{f(x+t) + f(x-t) - 2f(x)}{2 \sin \left(t / 2 \right)}, \ \forall \delta \in \left(0; \pi \right).$

Из условий теоремы следует, что $\exists M = \max_{x \in R} \left| f(x) \right|, M' = \max_{x \in R} \left| f'(x) \right|$. По теореме о среднем для производных: $\left| f(x+t) - f(x) \right| \leq M't$ и $\left| f(x) - f(x-t) \right| \leq M't$. Для функции $\sin\left(t/2\right)$ на отрезке $\left[0; \pi \right]$ справедлива оценка: $\sin\left(t/2\right) \geq \frac{t}{\pi} \to \frac{1}{\sin\left(t/2\right)} \leq \frac{\pi}{t}$

Оценка для функции g(x,t) на отрезке $t \in [0;\pi]$ при фиксированном x:

$$|g(x,t)| \le \frac{2M't\pi}{2t} = M'\pi$$
 (^)

Оценка для производной g'(x,t) по t:

$$|g'(x,t)| = \left| \frac{f'(x+t) - f'(x-t)}{2\sin(t/2)} \right| + |f(x+t) + f(x-t) - 2f(x)| \cdot \frac{\cos(t/2)}{4\sin^2(t/2)} \le \frac{2M'\pi}{2t} + \frac{2M'\pi^2t}{4t^2} = \frac{M'\pi}{2t} (2+\pi) \le \frac{M'\pi^2}{t} \quad (^{\land})$$

Оценим интеграл $I_1 = \frac{1}{\pi} \int\limits_0^\delta g(x,t) \sin \left(n+0,5\right) t dt$ с помощью (^): $\left|I_1\right| \leq M' \cdot \delta$.

Оценим интеграл $I_2=rac{1}{\pi}\int\limits_{s}^{\pi}g\left(x,t
ight)\sin\left(n+0.5
ight)tdt$, предварительно проинтегрировав его по частям:

$$I_{2} = \frac{1}{\pi} \int_{\delta}^{\pi} g(x,t) \sin(n+0.5)t dt = -\frac{1}{\pi} g(x,t) \cdot \frac{\cos(n+0.5)t}{n+0.5} \bigg|_{t=\delta}^{\pi} + \frac{1}{\pi} \int_{\delta}^{\pi} g'(x,t) \frac{\cos(n+0.5)t}{n+0.5} dt$$

$$\left|I_{2}\right| \leq \frac{2M}{(n+0,5)} + \frac{1}{\pi(n+0,5)} \int_{\delta}^{\pi} \left|g'(x,t)\right| dt \leq \frac{2M}{(n+0,5)} + \frac{M'\pi}{(n+0,5)} \int_{\delta}^{\pi} \frac{dt}{t} = \frac{2M}{(n+0,5)} + \frac{M'\pi \ln\left(\pi/\delta\right)}{(n+0,5)}$$

Полагая $\delta=\delta_n=\frac{1}{n}$, получим $\left|I_2\right|\leq \frac{1}{n+0.5}\left(c_1+c_2\ln n\right)$ для некоторых $c_1>0,c_2>0$. Объединяя оценки для I_1 и I_2 , получим

$$\left| S_n(x,f) - f(x) \right| \le \frac{M}{n} + \frac{1}{n+0.5} \left(c_1 + c_2 \ln n \right) \le \frac{1}{n} \left(M + c_1 + c_2 \ln n \right) \le C \frac{\ln n}{n}$$

с независимой от $n \ge 2$ константой C > 0. Последнее неравенство устанавливает равномерную сходимость ряда Фурье, а также скорость приближения его частичных сумм к функции f(x).

Теорема 3 может быть обобщена (без доказательства)

Теорема 4

Пусть $2\pi-$ периодическая функция f(x) имеет (m-1) непрерывных производных, а $f^{^{(m)}}(x)-$ кусочно- непрерывная функция. Тогда ряд Фурье сходится равномерно к функции f(x), причем

$$\sup_{x \in R} \left| S_n(x, f) - f(x) \right| = O\left(\frac{\ln n}{n^m}\right) = o\left(\frac{1}{n^{m-\varepsilon}}\right), n \to \infty, \forall \varepsilon > 0$$

Можно ли приблизить любую непрерывную, 2π — периодическую функцию на R тригонометрическим многочленом как угодно точно? Положительный ответ на этот вопрос дает Теорема 5.

Для любой непрерывной, 2π — периодической на R функции f(x) и любого числа $\varepsilon>0$ существует тригонометрический многочлен $T_n(x)=\frac{a_0}{2}+\sum_{k=1}^n a_k\cos kx+b_k\sin kx$, для которого

$$\sup_{x \in R} |f(x) - T_n(x)| \le \varepsilon$$

Док. Разобьем отрезок $\left[0;2\pi\right]$ точками $x_i=\frac{2\pi}{n}\cdot i,$ i=0,1,2,...n-1,n и рассмотрим кусочнолинейную функцию $\tilde{f}(x)$, построенную по узлам $(x_i;f(x_i)),$ i=0,1,2,...,n .

Поскольку функция f(x) , непрерывная на отрезке $\left[0;2\pi\right]$, является равномерно непрерывной на этом отрезке и $\forall \, \varepsilon > 0 \, \exists n$, для которого $\sup_{x \in R} \left| f(x) - \tilde{f}(x) \right| \leq \frac{\varepsilon}{2}$. Функция $\tilde{f}(x)$ непрерывная и кусочно- непрерывно дифференцируемая, удовлетворяет условию теоремы 3, поэтому для 2π — периодически продолженной на всю числовую ось функции $\hat{f}(x)$ найдется n и тригонометрический многочлен $T_n(x)$ Фурье, для которого $\sup_{x \in R} \left| \hat{f}(x) - T_n(x) \right| \leq \frac{\varepsilon}{2}$. Тогда объединяя оба неравенства, получим

$$\sup_{x \in R} \left| f(x) - T_n(x) \right| = \sup_{x \in R} \left| f(x) - \tilde{f}(x) + \tilde{f}(x) - T_n(x) \right| \le \sup_{x \in R} \left| f(x) - \tilde{f}(x) \right| + \sup_{x \in R} \left| \hat{f}(x) - T_n(x) \right| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

П.4 Тригонометрические ряды Фурье на отрезке $\left[-l;l
ight]$ (растяжение отрезка)

Функцию $f(t) \in QC\left[-l;l\right]$ линейной заменой $x = \frac{\pi t}{l}$ можно привести к функции $g(x) = f\left(\frac{xl}{\pi}\right) \in QC\left[-\pi;\pi\right]$, которую разложим в ряд Фурье

$$g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right),$$

где
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos nx dx$$
, $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \sin nx dx$, $n = 0, 1, 2, ...$

Возвращаясь к переменной t при условии g(x) = f(t):

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi nt}{l} + b_n \sin \frac{\pi nt}{l} \right),$$

где

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos nx dx = \frac{1}{\pi} \int_{-l}^{l} f(t) \cos \frac{\pi nt}{l} \cdot \frac{\pi}{l} dt = \frac{1}{l} \int_{-l}^{l} f(t) \cos \frac{\pi nt}{l} dt$$

Аналогично,

$$b_n = \frac{1}{l} \int_{-l}^{l} f(t) \sin \frac{\pi nt}{l} dt$$

Пример. Разложить функцию f(t) = t на отрезке $\begin{bmatrix} -1;1 \end{bmatrix}$ в ряд Фурье

Функция нечетная, поэтому $a_{\scriptscriptstyle n}=0, n=1,2,\ldots$. Коэффициенты

$$b_n = \int_{-1}^{1} t \sin \pi n t dt = -\frac{t \cos \pi n t}{\pi n} \bigg|_{t=-1}^{t=1} + \frac{1}{\pi n} \int_{-1}^{1} \cos \pi n t dt = \frac{1}{\pi n} \Big((-1)^{n+1} - (-1)^n \Big) + \frac{1}{\pi^2 n^2} \sin \pi n t \bigg|_{t=-1}^{t=1} = \frac{2 \cdot (-1)^{n+1}}{\pi n} \Big|_{t=-1}^{t=1} \Big|_{t=-1}^{t=1} = \frac{2 \cdot (-1)^{n+1}}{\pi n} \Big|_{t=-1}^{t=1} \Big|_{$$

Тогда

$$t = \sum_{n=1}^{\infty} \frac{2 \cdot (-1)^{n+1}}{\pi n} \sin \pi nt$$

Разложение функций $f(t) \in QC[0;l]$ по синусам и косинусам

Рассмотрим четную функцию $\tilde{f}(t) = \begin{cases} f(t), t \in \left[0; l\right] \\ f(-t), t \in \left[-l; 0\right] \end{cases}$. Тогда ее разложение в ряд Фурье на

отрезке $\left[-l;l\right]$ будет содержать только косинусы:

$$\tilde{f}(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{\pi nt}{l}$$
, где $a_n = \frac{1}{l} \int_{-l}^{l} \tilde{f}(t) \cos \frac{\pi nt}{l} dt = \frac{2}{l} \int_{0}^{l} f(t) \cos \frac{\pi nt}{l} dt$ (4)

Рассмотрим нечетную функцию $\hat{f}(t) = \begin{cases} f(t), t \in \left(0; l\right] \\ -f(-t), t \in \left[-l; 0\right) \end{cases}, \hat{f}(0) = 0$. Тогда ее разложение в ряд

Фурье на отрезке $\left[-l;l\right]$ будет содержать только синусы:

$$\hat{f}(t) = \sum_{n=1}^{\infty} b_n \sin \frac{\pi nt}{l}, b_n = \frac{1}{l} \int_{-l}^{l} \hat{f}(t) \sin \frac{\pi nt}{l} dt = \frac{2}{l} \int_{0}^{l} f(t) \sin \frac{\pi nt}{l} dt$$
 (5)

Пример. Разложить функцию $f(x) = 1 - |x-1|, x \in [0;2]$ по синусам

l=2 , продолжаем функцию нечетным образом (рис) .Вычисляем коэффициенты Фурье по формулам (5)

$$b_n = \int_0^2 (1 - |x - 1|) \sin \frac{\pi nx}{2} dx = \int_0^1 x \sin \frac{\pi nx}{2} dx + \int_1^2 (2 - x) \sin \frac{\pi nx}{2}$$

Вычислим первообразную функции $x \sin \frac{\pi nx}{2}$:

$$F(x) = \frac{2}{\pi n} \int x d\left(-\cos\frac{\pi nx}{2}\right) = \frac{2}{\pi n} \left(-x\cos\frac{\pi nx}{2} + \int\cos\frac{\pi nx}{2} dx\right) = \frac{2}{\pi n} \left(-x\cos\frac{\pi nx}{2} + \frac{2}{\pi n}\sin\frac{\pi nx}{2}\right)$$

Тогда
$$F(0)=0,\,F(1)=-rac{2}{\pi n}\cosrac{\pi n}{2}+rac{4}{\pi^2n^2}\sinrac{\pi n}{2},F(2)=rac{4(-1)^{n+1}}{\pi n}$$
 и

$$b_n = 2F(1) - F(2) + 2\int_{1}^{2} \sin\frac{\pi nx}{2} dx = \frac{8}{\pi^2 n^2} \sin\frac{\pi n}{2} = \begin{cases} 0, n = 2k \\ \frac{8(-1)^k}{\pi^2 (2k+1)}, n = 2k+1 \end{cases}$$

Окончательно,

$$f(x) = \frac{8}{\pi^2} \sum_{k=0}^{\infty} (-1)^k \frac{\sin \frac{\pi (2k+1)x}{2}}{n^2}$$

П. Ряд Фурье функции f(x) на отрезке [a;b]

Продолжим функцию f(x) , заданную на отрезке $\left[a;b\right]$, на числовую ось как периодическую функцию $\tilde{f}(x)$ с периодом T=b-a так, что $\tilde{f}(x)=f(x), \forall x\in \left(a;b\right)$

Разложим функцию $\widetilde{f}(x)$ на отрезке $\left[-l;l\right]$, где $l=\frac{b-a}{2}$ в ряд Фурье:

$$\tilde{f}(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_n \cos \frac{\pi nx}{l} + b_n \sin \frac{\pi nx}{l} \right),$$

Где

$$a_n = \frac{1}{l} \int_{-l}^{l} \tilde{f}(x) \cos \frac{\pi nx}{l} dx = \frac{2}{b-a} \int_{a}^{b} f(x) \cos \frac{2\pi nx}{b-a} dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} \tilde{f}(x) \sin \frac{\pi nx}{l} dx = \frac{2}{b-a} \int_{a}^{b} f(x) \sin \frac{2\pi nx}{b-a} dx$$

Здесь используется свойство периодических функций: интеграл от периодической функции по отрезку длины периода не зависит от начала отрезка.

Пример. Разложить функцию $f(x) = x^2$ на отрезке [1;2] в ряд Фурье, сумма которого является периодической функцией сT=1.

Решение.
$$l = \frac{1}{2}$$

$$\begin{split} a_0 &= 2\int_{1}^{2} x^2 dx = \frac{14}{3} \\ a_n &= 2\int_{1}^{2} x^2 \cos(2\pi nx) dx = \frac{1}{\pi n} \left(x^2 \sin(2\pi nx) \Big|_{x=1}^{x=2} - 2\int_{1}^{2} x \sin(2\pi nx) dx \right) = \\ &= \frac{1}{\pi^2 n^2} \int_{1}^{2} x d \left(\cos(2\pi nx) \right) = \frac{1}{\pi^2 n^2} \left(x \cos(2\pi nx) \Big|_{x=1}^{x=2} - \int_{1}^{2} \cos(2\pi nx) dx \right) = \\ &= \frac{1}{\pi^2 n^2} \left(1 - \frac{1}{2\pi n} \sin(2\pi nx) \Big|_{x=1}^{x=2} \right) = \frac{1}{\pi^2 n^2} \\ b_n &= 2\int_{1}^{2} x^2 \sin(2\pi nx) dx = -\frac{1}{\pi n} \int_{1}^{2} x^2 d \left(\cos(2\pi nx) \right) = -\frac{1}{\pi n} \left(x^2 \cos(2\pi nx) \Big|_{x=1}^{x=2} - 2\int_{1}^{2} x \cos(2\pi nx) dx \right) = \\ &= -\frac{1}{\pi n} \left(3 - \frac{1}{\pi n} \left(x \sin(2\pi nx) \Big|_{x=1}^{x=2} - \int_{1}^{2} \sin(2\pi nx) dx \right) \right) = -\frac{1}{\pi n} \left(3 - \frac{2}{2\pi^2 n^2} \cos(2\pi nx) \Big|_{x=1}^{x=2} \right) = -\frac{3}{\pi n} \end{split}$$

Окончательно

$$f(x) = \frac{7}{3} + \sum_{n=1}^{\infty} \left(\frac{1}{\pi^2 n^2} \cos(2\pi nx) - \frac{3}{\pi n} \sin(2\pi nx) \right)$$

П. Комплексная форма тригонометрических рядов Фурье

В форме (2) для ряда Фурье $f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$ применим формулы Эйлера

$$\cos kx = \frac{e^{ikx} + e^{-ikx}}{2}, \sin kx = \frac{e^{ikx} - e^{-ikx}}{2i}$$

$$\frac{a_0}{2} + \frac{1}{2} \sum_{k=1}^{\infty} a_k \left(e^{ikx} + e^{-ikx} \right) - ib_k \left(e^{ikx} - e^{-ikx} \right) = \frac{a_0}{2} + \frac{1}{2} \sum_{k=1}^{\infty} \left(a_k - ib_k \right) e^{ikx} + \left(a_k + ib_k \right) e^{-ikx}$$

Обозначим $c_0=rac{a_0}{2}, c_k=rac{a_k-ib_k}{2}, c_{-k}=rac{a_k+ib_k}{2}$, тогда ряд примет вид:

$$c_0 + \sum_{k=1}^{\infty} c_k e^{ikx} + c_{-k} e^{-ikx} = \sum_{k=-\infty}^{\infty} c_k e^{ikx}$$
 (6)

где
$$c_k = \frac{a_k - ib_k}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) (\cos kx - i\sin kx) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$$

Аналогично, $c_{-k} = \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} f(x) e^{ikx} dx$ и после объединения, получим комплексную форму ряда Фурье

$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx}$$
 , где $c_k = \frac{1}{2\pi} \int\limits_{-\infty}^{\pi} f(t) e^{-ikt} dt$

Пример. Написать комплексную форму ряда Фурье функции $f(x) = \cos \alpha x, \, \alpha \in \mathbb{Z}, \, x \in (-\pi; \pi)$

Решение.

$$\begin{split} c_{k} &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos \alpha t \cdot e^{-ikt} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{i\alpha t} + e^{-i\alpha t}}{2} e^{-ikt} dt = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left(e^{i(\alpha - k)t} + e^{-i(\alpha + k)t} \right) dt = \\ &= \frac{1}{4\pi} \left(\frac{1}{i(\alpha - k)} e^{i(\alpha - k)t} \Big|_{t = -\pi}^{t = \pi} + \frac{1}{i(\alpha + k)} e^{i(\alpha + k)t} \Big|_{t = -\pi}^{t = \pi} \right) = \frac{1}{2\pi} \left(\frac{1}{\alpha - k} \sin(\alpha - k)\pi - \frac{1}{\alpha + k} \sin(\alpha + k)\pi \right) = \\ &= \frac{1}{2\pi} \left(\frac{(-1)^{k} \sin \alpha \pi}{\alpha - k} - \frac{(-1)^{k} \sin \alpha \pi}{\alpha + k} \right) = \frac{k(-1)^{k} \sin \alpha \pi}{\pi (\alpha^{2} - k^{2})} \end{split}$$

Тогда

$$\cos \alpha x = \frac{\sin \alpha \pi}{\pi} \cdot \sum_{k=-\infty}^{\infty} \frac{(-1)^k k}{(\alpha^2 - k^2)} e^{ikx}$$