Regression Tables with huxreg

David Hugh-Jones 2017-04-20

Regression tables with huxreg

From version 0.2, huxtable includes the function huxreg to build a table of regressions.

huxreg can be called with a list of models. These models can be of any class which has a tidy method defined in the broom package. The method should return a list of regression coefficients with names term, estimate, std.error and p.value. That covers most standard regression packages.

Let's start by running some regressions to predict a diamond's price.

```
data(diamonds, package = 'ggplot2')

lm1 <- lm(price ~ carat + depth, diamonds)

lm2 <- lm(price ~ depth + factor(color, ordered = FALSE), diamonds)

lm3 <- lm(log(price) ~ carat + depth, diamonds)</pre>
```

Now, we call huxreg to display the regression output side by side.

```
huxreg(lm1, lm2, lm3)
```

(Intercept)	(1) 4045.333 ***	(2) 6491.466 ***	
carat	(286.205) $7765.141 ****$	(730.537)	1.971 ***
depth		-53.835 ***	
factor(color, ordered = FALSE)E	(4.635)	-95.14	(0.001)
factor(color, ordered = FALSE)F		(62.037) $554.742 ***$	
factor(color, ordered = FALSE)G		(62.374) 832.357 ***	
factor(color, ordered = FALSE)H		$ \begin{array}{c} (60.338) \\ 1324.183 **** \\ (64.296) \end{array} $	
factor(color, ordered = FALSE)I		$ \begin{array}{r} (04.290) \\ 1929.902 *** \\ (71.561) \end{array} $	
factor(color, ordered = FALSE)J		2164.044 *** (88.144)	
N	53940	53940	53940
R2	0.851	0.032	0.847
logLik	-472488.441	-522908.139	-26617.649
AIC	944984.882	1045834.277	53243.298
*** p < 0.001; ** p < 0.01; * p < 0.05.			

The basic output includes estimates, standard errors and summary statistics.

Some of those variable names are hard to read. We can change them by specifying a named list of variables in the coefs argument, like this:

```
color_names <- paste0('factor(color, ordered = FALSE)', LETTERS[5:10])
names(color_names) <- paste('Color:', LETTERS[5:10])
huxreg(lm1, lm2, lm3, coefs = c('Carat' = 'carat', 'Depth' = 'depth', color_names))</pre>
```

	(1)	(2)	(3)
Carat	7765.141 ***	()	1.971 ***
	(14.009)		(0.004)
Depth	-102.165 ***	-53.835 ***	-0.018 ***
_	(4.635)	(11.815)	(0.001)
Color: E	, ,	-95.14	, ,
		(62.037)	
Color: F		554.742 ***	
		(62.374)	
Color: G		832.357 ***	
		(60.338)	
Color: H		1324.183 ***	
		(64.296)	
Color: I		1929.902 ***	
		(71.561)	
Color: J		2164.044 ***	
		(88.144)	
N	53940	53940	53940
R2	0.851	0.032	0.847
logLik	-472488.441	-522908.139	-26617.649
AIC	944984.882	1045834.277	53243.298
*** p < 0.00	01; ** p < 0.01;	* $p < 0.05$.	

Alternatively, since the output from huxreg is just a huxtable, we could just edit its contents directly before we print it:

```
diamond_regs <- huxreg(lm1, lm2, lm3)
diamond_regs[seq(8, 18, 2), 1] <- paste('Color:', LETTERS[5:10])
diamond_regs</pre>
```

	(1)	(2)	(3)
(Intercept)			
1 /	(286.205)		(0.074)
carat	7765.141 ***	,	1.971 ***
	(14.009)		(0.004)
depth	-102.165 ***	-53.835 ***	
	(4.635)	(11.815)	(0.001)
Color: E		-95.14	
		(62.037)	
Color: F		554.742 ***	
		(62.374)	
Color: G		832.357 ***	
		(60.338)	
Color: H		1324.183 ***	
		(64.296)	
Color: I		1929.902 ***	
		(71.561)	
Color: J		2164.044 ***	
		(88.144)	
N	53940	53940	53940
R2	0.851	0.032	
logLik	-472488.441	-522908.139	-26617.649
AIC	944984.882	1045834.277	53243.298
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$.			

Of course, we aren't limited to just changing names. We can also make our table prettier. Let's add the "article" theme, and a vertical stripe for background colour, tweak a few details like font size, and add a caption. All of these are just standard huxtable commands.

Table 1: Linear regressions of diamond prices

	(1)	(2)	(3)
(Intercept)	4045.333 ***	6491.466 ***	7.313 ***
	(286.205)	(730.537)	(0.074)
carat	7765.141 ***		1.971 ***
	(14.009)		(0.004)
depth	-102.165 ***	-53.835 ***	-0.018 ***
	(4.635)	(11.815)	(0.001)
Color: E		-95.14	
		(62.037)	
Color: F		554.742 ***	
		(62.374)	
Color: G		832.357 ***	
		(60.338)	
Color: H		1324.183 ***	
		(64.296)	
Color: I		1929.902 ***	
		(71.561)	
Color: J		2164.044 ***	
		(88.144)	
\mathbf{N}	53940	53940	53940
R2	0.851	0.032	0.847
logLik	-472488.441	-522908.139	-26617.649
\mathbf{AIC}	944984.882	1045834.277	53243.298

*** p < 0.001; ** p < 0.01; * p < 0.05.

We could do more, like changing the number_format of N to not display decimals. But let's explore what else huxreg itself can do.

By default, standard errors are shown below coefficient estimates. To display them in a column to the right, use error_pos = 'right':

huxreg(lm1, lm3, error_pos = 'right')

	(1)		(2)	
(Intercept)	4045.333 ***	(286.205)	7.313 ***	(0.074)
carat	7765.141 ***	(14.009)	1.971 ***	(0.004)
depth	-102.165 ***	(4.635)	-0.018 ***	(0.001)
N	53940		53940	
R2	0.851		0.847	
logLik	-472488.441		-26617.649	
AIC	944984.882		53243.298	

*** p < 0.001; ** p < 0.01; * p < 0.05.

This will give column headings a column span of 2.

To display standard errors in the same cell as estimates, use error_pos = 'same':

huxreg(lm1, lm3, error_pos = 'same')

```
(1)
               4045.333 *** (286.205)
                                           7.313 *** (0.074)
(Intercept)
                7765.141 *** (14.009)
                                           1.971 *** (0.004)
carat
                 -102.165 *** (4.635)
depth
                                          -0.018 *** (0.001)
                                                     53940
Ν
                               53940
R2
                               0.851
                                                      0.847
logLik
                         -472488.441
                                                 -26617.649
AIC
                          944984.882
                                                 53243.298
*** p < 0.001; ** p < 0.01; * p < 0.05.
```

You can change the default column headings by giving names to your models:

```
huxreg('Price' = lm1, 'Log price' = lm3)
```

	Price	Log price
(Intercept)	4045.333 ***	7.313 ***
	(286.205)	(0.074)
carat	7765.141 ***	1.971 ***
	(14.009)	(0.004)
depth	-102.165 ***	-0.018 ***
	(4.635)	(0.001)
N	53940	53940
R2	0.851	0.847
logLik	-472488.441	-26617.649
AIC	944984.882	53243.298
*** p < 0.00	1; ** p < 0.01; * p <	0.05.

To display a particular row of summary statistics, use the **statistics** parameter. This should be a character vector. Valid values are anything returned from your models by **broom::glance**. Another valid value is "nobs", which returns the number of observations from the regression. If the **statistics** vector has names, these will be used for row headings:

```
broom::glance(lm1)
```

```
(1)
                                              (2)
                                                7.313 ***
                   4045.333 ***
(Intercept)
                      (286.205)
                                                  (0.074)
                   7765.141 ***
                                                1.971 ***
carat
                       (14.009)
                                                  (0.004)
                    -102.165 ***
                                               -0.018 ***
depth
                                                  (0.001)
                         (4.635)
# observations
                          53940
                                                   53940
R squared
                          0.851
                                                    0.847
F statistic
                     153634.765
                                              149771.327
P value
                          0.000
                                                    0.000
*** p < 0.001; ** p < 0.01; * p < 0.05.
```

You aren't limited to displaying standard errors of the estimates. If you prefer, you can display t statistics or p values, using the error_style option:

huxreg(lm1, lm3, error_style = 'statistic')

```
(2)
                    (1)
               4045.333 ***
                                                7.313 ***
(Intercept)
                   (14.134)
                                                (99.383)
                                                1.971 ***
               7765.141 ***
carat
                  (554.282)
                                               (547.305)
depth
               -102.165 ***
                                               -0.018 ***
                  (-22.041)
                                               (-14.936)
Ν
                      53940
                                                   53940
R2
                      0.851
                                                   0.847
logLik
               -472488.441
                                              -26617.649
                944984.882
                                               53243.298
AIC
*** p < 0.001; ** p < 0.01; * p < 0.05.
```

huxreg(lm1, lm3, error_style = 'pvalue')

```
(1)
                                           (2)
                                                7.313 ***
(Intercept)
               4045.333 ***
                                                 (0.000)
                    (0.000)
               7765.141 ***
                                                1.971 ***
carat
                    (0.000)
                                                  (0.000)
               -102.165 ***
                                               -0.018 ***
depth
                    (0.000)
                                                  (0.000)
Ν
                      53940
                                                   53940
R2
                      0.851
                                                   0.847
logLik
               -472488.441
                                              -26617.649
AIC
                944984.882
                                               53243.298
*** p < 0.001; ** p < 0.01; * p < 0.05.
```

Or you can display confidence intervals using 'ci'. Use ci_level to set the confidence level for the interval:

```
huxreg(lm1, lm3, error_style = 'ci') # default is .95
huxreg(lm1, lm3, error_style = 'ci', ci_level = .99)
```

```
(1)
                                                  (2)
                                                   7.313 ***
                         4045.333 ***
(Intercept)
               (3484.381 - 4606.285)
                                            (7.169 - 7.457)
                         7765.141 ***
                                                   1.971 ***
carat
               (7737.683 - 7792.599)
                                            (1.964 - 1.978)
                         -102.165 ***
                                                  -0.018 ***
depth
                 (-111.250 - -93.080)
                                           (-0.020 - -0.015)
Ν
                               53940
                                                      53940
R2
                                0.851
                                                      0.847
logLik
                                                 -26617.649
                          -472488.441
AIC
                          944984.882
                                                 53243.298
*** p < 0.001; ** p < 0.01; * p < 0.05.
                         (1)
                                                  (2)
                                                   7.313 ***
                         4045.333 ***
(Intercept)
               (3308.117 - 4782.549)
                                            (7.123 - 7.502)
                         7765.141 ***
                                                   1.971 ***
carat
               (7729.055 - 7801.226)
                                            (1.962 - 1.981)
                         -102.165 ***
                                                  -0.018 ***
depth
                 (-114.105 - -90.226)
                                           (-0.021 - -0.015)
Ν
                               53940
                                                      53940
R2
                                0.851
                                                      0.847
logLik
                          -472488.441
                                                 -26617.649
AIC
                          944984.882
                                                 53243.298
*** p < 0.001; ** p < 0.01; * p < 0.05.
```

If you choose more than one error_style option, the second one will be shown in square brackets:

```
huxreg(lm1, lm3, error_style = c('stderr', 'ci'))
```

```
(1)
                                                                (2)
                                                                     7.313 ***
                                   4045.333 ***
(Intercept)
                (286.205) [3484.381 - 4606.285]
                                                       (0.074) [7.169 - 7.457]
                                   7765.141 ***
                                                                     1.971 ***
carat
                 (14.009) [7737.683 - 7792.599]
                                                       (0.004) [1.964 – 1.978]
                                    -102.165 ***
                                                                    -0.018 ***
depth
                    (4.635) [-111.250 - -93.080]
                                                     (0.001) [-0.020 - -0.015]
Ν
                                          53940
                                                                        53940
R2
                                          0.851
                                                                        0.847
logLik
                                    -472488.441
                                                                   -26617.649
AIC
                                    944984.882
                                                                   53243.298
*** p < 0.001; ** p < 0.01; * p < 0.05.
```

To change the footnote, use note. If note contains the string "%stars%" it will be replaced by a description of the significance stars used. If you don't want a footnote, just set note = NULL.

```
huxreg(lm1, lm3, note = 'Linear regressions on diamond price. %stars%.')
```

	(1)	(2)
(Intercept)	4045.333 ***	7.313 ***
	(286.205)	(0.074)
carat	7765.141 ***	1.971 ***
	(14.009)	(0.004)
depth	-102.165 ***	-0.018 ***
	(4.635)	(0.001)
N	53940	53940
R2	0.851	0.847
logLik	-472488.441	-26617.649
AIC	944984.882	53243.298

Linear regressions on diamond price. *** p < 0.001; ** p < 0.01; * p < 0.05.

To change number formatting, set the number_format parameter. This works the same as the number_format property for a huxtable - if it is numeric, numbers will be rounded to that many decimal places; if it is character, it will be taken as a format to the base R sprintf function; if it is a function, the function will be called to format the number. huxreg tries to be smart and to format summary statistics like nobs as integers.

huxreg(lm1, lm3, number_format = 2)

	(1)	(2)
(Intercept)	4045.33 ***	7.31 ***
	(286.21)	(0.07)
carat	7765.14 ***	1.97 ***
	(14.01)	(0.00)
depth	-102.17 ***	-0.02 ***
	(4.64)	(0.00)
N	53940	53940
R2	0.85	0.85
logLik	-472488.44	-26617.65
AIC	944984.88	53243.30
*** p < 0.00	1; ** p < 0.01; * p <	0.05.

Lastly, if you want to bold all significant coefficients, set the parameter bold_signif to a maximum significance level:

huxreg(lm1, lm3, bold_signif = 0.05)

	(1)	(2)
(Intercept)	4045.333 ***	7.313 ***
_ ,	(286.205)	(0.074)
carat	7765.141 ***	1.971 ***
	(14.009)	(0.004)
depth	-102.165 ***	-0.018 ***
	(4.635)	(0.001)
N	53940	53940
R2	0.851	0.847
logLik	-472488.441	-26617.649
AIC	944984.882	53243.298
*** p < 0.00	1; ** p < 0.01; * p < 0.08	<u>.</u>