

Buses Are Great

MOUNT RAINIEF

(But a pain to use)

http://www.howwedrive.com/2010/06/28/german-efficiency/

Münster

Background

- Bus system economics, congestion reduction, and energy benefits depend directly on ridership
- All buses in Washington Metro Area Transit Authority (WMATA) are tracked by GPS, with information available by API
- Bus arrival predictions are available real-time through the website and another API
- Good bus predictions are likely to improve ridership and user satisfaction
- Bad bus predictions are certain to frustrate potential riders

Figure 1- Number and size of agencies with open data by state.

Illustration from http://www.prism.gatech.edu/~lreed3/opendata.pdf

Example Application o 1600 Pennsylvania Ave NW, Washington, DC 205 Mon-Sun: 5 AM-2 AM · every 12 min Next trip 10:48 AM - 11:09 AM (21 min) ↑ M Red > M Green * > 📦 S2 / S4 > * More options and times M > M 25 min Prospect St NW S Georgetown Cupcake (**) □ 26 min Baked & Wired 19 Farragut North Metro Capital Hilton Tesla Motors 1600 Pennsylvania O Ave NW Roosevelt

Example Application

MOUNT

Personal Example

DC Metro Transit ap

Columbia Heights Sherman Ave NW Metro Station & Gresham PI NW Edgewood Adams Morgan Pleasant Plains Saloon 8 8:00pm Bloomingdale Blue Planet Scuba (Y) Sushi Taro [50] Truxton Circle Washington Subway 24 min Transit 35 min 1 transfer Thef Geoff's World War II Memorial L'Enfant Plaza 901 D St SW 0 Metro Station Provi Southwest Waterfront

Google Maps

When NextBus Goes Wrong

- A bad prediction can be worse than no prediction
- Especially early on, next bus was littered with "ghost" buses, and predictions seemed problematic
- The NextBus algorithm is proprietary so the data community can't work on improving it directly

Question

- How good are NextBus predictions?
- Can we mash up NextBus with other data to improve predictions?

Data Structure Concept

UDC Van Ness-UDC	52 50 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TIES .
Field(s)	Description	Source
Route, Direction	e.g. 70	Route API
StopID, Lat, Lon	Stop Itentified and location	Route API
BusID, Lat, Lon	Bus Identified and location	BusLocation API
Deviation	How far behind the bus says it is	BusLocation API
TripID	Unique trip identifier	BusLocation / Nextbus API
Time / Date	Time the prediction was made	Datetime package
Weather / Temp	Reported weather	Openweathermap API
Predicted Arrival	In minutes, when the bus should arrive	NextBus API
Actual Arrival	In minutes, how long from the prediction the bus arrived	Calculated

The basic data unit is one prediction. Data collection is done from four APIs in real time and stored in a data frame / csv

WMATA APIs – Bus Positions

One data call for all bus positions. 249 buses in system (at 11 pm)

WMATA APIs – Bus Positions

Data Collection Overview

- Days collected:
 - 3/5, snow day, 5 am to 3 pm, with some data gaps
 - 3/8, Saturday, 8:30 pm to midnight
 - 3/9, Sunday, 5 am to 10:45
 - 3/10, Monday, 5 am to 8:30 am
 - -3/12, 7:30 am to 5:45 pm
- Frame Size
 - 500,000 future predictions, 10,000 arrivals
- ~100 MB on disk as csv

Method: Estimating Arrivals

- After I have a big database of predictions, identify arrivals
- 2 possible methods
 - Predicted arrival = 0 minutes
 - Lat/Lon check
- Pull the "predictions" where the bus has arrived and join that data frame to the predictions to assign the correct arrival time for each prediction
 - In my test data, covers 99% of all predictions
- The 'Error' is the difference between predicted arrival and actual arrival

A "Quality" Metric For Predictions

- Attempted to be reflective of our expectations for a prediction:
 - <1 is "perfect", far off = sucky.</p>
 - Should be more forgiving for further outCou be more critical of being wrong early (since you will miss the bus?
- For this pass, I used [1 | predicted actual | / actual]
 - Predicted 2 minutes, actual 4 minutes = 0.5
 - Predicted 5 minutes, actual 7 minutes = 0.71
 - Predicted 10 minutes, actual 12 minutes = 0.83

All Predictions

Actual Arrival – Predicted Arrival (positive means the bus was later than predicted)

Only predictions < 10 mins

Actual Arrival – Predicted Arrival (positive means the bus was later than predicted)

"Quality" Metric

mean	0.641955
std	3.706173
min 🦵	-1198.000000
25%	0.647815
50%	0.782870
75%	0.893502
max	1.000000

Recall 0.5 means it was as far off as the total time the bus took to arrive. About half of predictions are better than 0.8, meaning ~ within 20%

Some evidence (from one day!) that snow increases error

 Lateness looks like somewhat of a predictor of more lateness

Results: NextBus Performance 100 80 60 Prediction Error (min) 40 20 -40-6040000

Regression To Improve Predictions

- Variables considered
 - Predicted Arrival (hopefully this will be the major predictor!)
 - Deviation (how late the bus is reporting itself to be)
 - Weather (text descriptor, created dummy variable)
 - Time (for now, as a linear variable... non-ideal)

Regression Results

- On all data:
 - Predicted arrival: 1.107 (predictions high by 10% on average)
 - Deviation: -0.0007
 - BadWeather: 1.028 (on average rain / snow increase error)
 - Time: 0.0002
 - R² = 0.836 (same when done w/ train-test-split)

Regression Results

Not really an improvement, seems to fix one problem and cause another

Regression Results

On quality
metric, looks
better – but I
think this means
my quality
metric isn't
great...

Improvement: Training Variables

- Try:
 - Time of day dummy variables (rush hour?)
 - Day of week
 - Bus ID (as a proxy for driver)
 - Temperature (another proxy for weather?)
 - Location / stop ID (downtown?)

Other Next Steps

- More complete data collection
 - More routes
 - All stops
 - Consistent time coverage
- Use WMATA Incident API to explore effect of reported incidents on bus arrival predictions
- Better optimization functions / other algorithms besides linear regression
 - e.g. Lasso to reduce useless features, or random forests to divide by classes (rush hour, weather, etc)
- Explore outlier buses is there an algorithm to identify errors in real time?
- Fun stuff like animated maps

DC Transit Agencies Status (2012)

	Schedule data			Real-time data		
	Public GTFS	Shapes in GTFS	On Google	Tracking	Tracking API	
Metrorail	Here	8	and <u>Bing</u>		Custom	
Metrobus	Ø	Most ¹	and <u>Bing</u>	(7)	Custom	
Circulator (DC)	WMATA2	9	WMATA2		Nextbus	
ART (Arlington)	Here	(In process	(7)	Connexionz	
DASH (Alexandria)	Via email only ³		(X		
Ride On (Montgomery)	Old? ⁴	3	Ø	7	More info	
The Bus (Prince George's)		3	3		Nextbus	
MTA (Maryland) commuter bus	Here	9	Ø	S		
MARC	Confusingly5	9	Ø	Here	S	

	Schedule data			Real-time data	
Ave- Breaklan	Public GTFS	Shapes in GTFS	On Google	Tracking	Tracking API
MARC	Confusingly ⁵	Ø		Here	3
Fairfax (County) Connector	3	3	3		3
CUE (Fairfax City)	8	3			Nextbus
Loudoun County Transit		3		Text/email alerts	3
PRTC			3		
VRE	Unofficial ⁶	3	3	Mix of GPS & manual ⁷	

¹ WMATA's GTFS file contains most Metrobus routes, but some paths cut diagonally across the grid over some long sections such as freeway or bridge segments of routes.

² Circulator route and schedule data is included as part of the WMATA GTFS feed. However, there are some quality issues such as route names.

³ DASH feed is not publicly available, but officials can provide it via email.

A Ride On's feed no longer appears to be on their website. GTFS Data Exchange has cached a version from December 2010 which was apparently posted in a news release.

MARC lines are listed in the MTA Maryland feed as lines 300, 301, and 302, which doesn't very easily differentiate them for someone unfamiliar with their GTFS feed.

⁶ Someone not affiliated with VRE created a GTFS file in 2009, but it hasn't been updated since and VRE does not offer an official one.

⁷ VRE has <u>a page with train status</u> which lists some trains' positions through GPS and some from manual reports from the conductor.

Notes

- GTFS: General Transit Feed Specification (originally Google)
- GTFS feed is composed of a series of text files collected in a ZIP file. Each file models a particular aspect of transit information: stops, routes, trips, and other schedule data.
- Routes can include shapeform coordinates

APIs Used

- WMATA Route Structure
 - To get list and lat / lon of stops
- WMATA Bus Position
 - To get list and lat / lon of buses, as well as 'deviation'
- WMATA NextBus Predictions
 - To get predicted arrivals for each stop
- OpenWeatherMap