MATEMÁTICA DISCRETA

<u>Índice</u>

Unida	ad 1: Lógica y teoría de conjuntos	2
1.	Definiciones	2
2.	Leyes de la lógica	2
3.	Reglas de inferencia	3
4.	Lógica de predicados	3
5.	Teoría de conjuntos	
Unida	ad 2: Inducción matemática	
1.	Métodos para demostrar la verdad de una implicación	4
2.	Inducción matemática	
Unida	ad 3: Relaciones de recurrencia	
1.	Ecuaciones de recurrencia homogéneas	
2.	Ecuaciones de recurrencia no homogéneas	
3.	Sucesiones importantes	
Unida	ad 4: Relaciones	6
1.	Definiciones	
2.	Propiedades de las relaciones	6
3.	Matriz de una relación	6
4.	Relaciones de equivalencia y de orden	
5.	Elementos particulares	7
Unida	ad 5: Álgebras de Boole	7
1.	Definiciones y axiomas	7
2.	Funciones booleanas	
3.	Propiedades de los átomos	9
4.	Mapa de Karnaugh	9
5.	Isomorfismos entre álgebras de Boole	10
Unida	ad 6: Teoría de grafos	10
1.	Definiciones de grafos y digrafos	
2.	Aristas, vértices, caminos y grafos	
3.	Grafos de Euler	
5.	Representación de grafos por matrices	
6.	Niveles	
7.	Algoritmos de camino mínimo	
	ad 7: Árboles	
1.	Definiciones	
2.	Árboles generadores	
3.	Algoritmos para hallar un árbol generador mínimo	
	ad 8: Redes de transporte	
	·	
1.	Definiciones	
2.	Algoritmo de Ford-Foulkerson	17

Unidad 1: Lógica y teoría de conjuntos

1. Definiciones

Lógica: estudio de las formas correctas de pensar o razonar.

Proposición: afirmación que es verdadera o falsa, pero no ambas.

<u>Proposición primitiva:</u> proposición que no se puede descomponer en otras dos o más proposiciones. Siempre son afirmativas.

<u>Proposición compuesta:</u> proposición formada por dos o más proposiciones relacionadas mediante conectivas lógicas.

Tablas de verdad:

р	p	$\neg p$	p	p v q	p ⊻ q	$p \rightarrow q$	$p \leftrightarrow q$	p ↓ q	p q
		(NOT)	(AND)	(OR)	(XOR)	(IF)	(IIF)	(NOR)	(NAND)
٧	٧	F	V	V	F	V	V	F	F
٧	F	F	F	V	V	F	F	F	V
F	٧	V	F	V	V	٧	F	F	V
F	F	V	F	F	F	V	V	V	V

Nota: n proposiciones $\rightarrow 2^n$ líneas de tabla.

Negación: no, nunca, jamás, no es cierto que.

Conjunción: y, e, pero, como, aunque, sin embargo, mientras.

<u>Disyunción</u>: o, a menos que. <u>Disyunción excluyente</u>: o bien. Implicación: cuando, siempre que.

Doble implicación: si y sólo si (sii), cuando y solo cuando.

{|} y { \downarrow } son los únicos conjuntos adecuados de un solo conectivo diádico.

"p ⇒ q"	"p ⇔ q"
 Si p, entonces q. p implica q. p solo si q. p es el antecedente, q es el consecuente. q es necesario para p. p es suficiente para q. 	 p es necesario y suficiente para q. p si y solo si q.

Tautología: proposición que es verdadera siempre.

Contradicción: proposición que es falsa siempre.

<u>Contingencia</u>: proposición que puede ser verdadera o falsa, dependiendo de los valores de las proposiciones que la componen.

• $p \rightarrow q \equiv \neg p \lor q$ • $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ • $(p \lor q) \equiv (p \lor q) \land (\neg p \lor \neg q)$ • $a \rightarrow (b \land c) \equiv (a \rightarrow b) \land (a \rightarrow c)$ • $(p \lor q) \rightarrow t \equiv (p \rightarrow t) \lor (q \rightarrow t)$

2. Leyes de la lógica

1) Ley de la doble negación	$\neg\neg p \equiv p$
Ley de conmutatividad	a) $p \lor q \equiv q \lor p$
	b) $p \wedge q \equiv q \wedge p$
Ley de asociatividad	a) $p \lor (q \lor r) \equiv (p \lor q) \lor r$

	b) $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$
Ley de distributividad	a) $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
	c) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
5) Ley de idempotencia	a) $p \lor p \equiv p$
	b) $p \wedge p \equiv p$
6) Ley del elemento neutro	a) $p \vee F_0 \equiv p$
	b) $p \wedge T_0 \equiv p$
7) Leyes de De Morgan	a) $\neg (p \lor q) \equiv \neg p \land \neg q$
	b) $\neg(p \land q) \equiv \neg p \lor \neg q$
8) Ley del inverso	a) $p \lor \neg p \equiv T_0$
	b) $p \land \neg p \equiv F_0$
9) Ley de dominancia	a) $p \vee T_0 \equiv T_0$
	b) $p \wedge F_0 \equiv F_0$
10)Ley de absorción	a) $p \lor (p \land q) \equiv p$
	b) $p \land (p \lor q) \equiv p$

<u>Dual de S:</u> Sea S una proposición. Si S *no contiene* conectivas lógicas distintas de \land y \lor entonces el dual de S (S^d), se obtiene de reemplazar en S todos los \land (\lor) por \lor (\land) y todas las T₀ (F₀) por F₀ (T₀). Sean s y t dos proposiciones tales que s = t, entonces s^d = t^d.

- ✓ Recíproca: $(q \rightarrow p)$ es la recíproca de $(p \rightarrow q)$
- ✓ <u>Contra-recíproca:</u> $(\neg q \rightarrow \neg p)$ es la contra-recíproca de $(p \rightarrow q)$
- ✓ *Inversa*: $(\neg p \rightarrow \neg q)$ es la inversa de $(p \rightarrow q)$

3. Reglas de inferencia

Modus ponens o Modus ponendo ponens	$p \rightarrow q$
	∴ q
	$p \rightarrow q$
Modus tollens o Modus tollendo tollens	<u> </u>
	∴ ¬p

4. Lógica de predicados

<u>Función proposicional</u>: expresión que contiene una o más variables que al ser sustituidas por elementos del universo dan origen a una proposición.

<u>Universo:</u> Son las ciertas opciones "permisibles" que podré reemplazar por la variable.

<u>Cuantificador universal</u>: proposición que es verdadera para todos los valores de x en el universo.

$$\forall x (P(x)) \Longrightarrow \cdots P(-1) \land P(0) \land P(1) \land \dots$$

<u>Cuantificador existencial</u>: proposición en que existe un elemento x del universo tal que la función proposicional es verdadera.

$$\exists x (P(x)) \Longrightarrow \cdots P(-1) \lor P(0) \lor P(1) \lor \dots$$

- $\checkmark \quad \exists x \ [p(x) \land q(x)] \Rightarrow \exists x \ p(x) \land \ \exists x \ q(x)$
- \checkmark $\exists x [p(x) \lor q(x)] \Leftrightarrow \exists x p(x) \lor \exists x q(x)$
- $\checkmark \forall x [p(x) \land q(x)] \Leftrightarrow \forall x p(x) \land \forall x q(x)$
- $\checkmark \forall x p(x) \lor \forall x q(x) \Rightarrow \forall x [p(x) \lor q(x)]$
- $\checkmark \exists x [p(x) \land q(x)] \neq \exists x p(x) \land q(x)$

5. Teoría de conjuntos

Negación de proposiciones cuantificadas:

- $\neg [\forall x \ p(x)] \equiv \exists x \ \neg p(x)$
- $\neg [\exists x \ p(x)] \equiv \forall x \ \neg p(x)$

<u>Conjunto de partes</u>: dado un conjunto A, p(A) es el conjunto formado por todos los subconjuntos de A, incluídos A y \emptyset . Si A tiene n elementos, p(A) tendrá 2^n elementos. *Ejemplo*: $A = \{1,2,3\}$

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\$$

$$A = \{x : x \in A\}$$

$$P(A) = \{S : S \subset A\}$$

$$S \subset A \iff \forall x \in S: x \in A$$

<u>Pertenencia</u>: un elemento "pertenece" a un conjunto. <u>Inclusión</u>: un conjunto está "incluido" en un conjunto.

Operaciones entre conjuntos:

<u>Unión:</u> $A \cup B = \{x \in U : x \in A \lor x \in B\}$ <u>Intersección:</u> $A \cap B = \{x \in U : x \in A \land x \in B\}$ <u>Diferencia:</u> $A - B = \{x \in U : x \in A \land x \notin B\}$

Diferencia simétrica: $A \triangle B = \{x \in U : x \in A \cup B \land x \notin A \cap B\}$

Complemento: $\bar{A} = \{x \in U : x \notin A\}$

Leves del álgebra de conjuntos: Para cualquier A, B \subset U:

Leyes conmutativas	$A \cap B = B \cap A$
	$A \cup B = B \cup A$
Leyes asociativas	$A \cup (B \cup C) = (A \cup B) \cup C$
	$A \cap (B \cap C) = (A \cap B) \cap C$
Leyes distributivas	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Leyes de idempotencia	$A \cup A = A$
	$A \cap A = A$
Leyes de identidad	$A \cup \emptyset = A$
	$A \cup U = U$
	$A \cap \emptyset = \emptyset$
	$A \cap U = A$
Complementación doble	$\bar{A} = A$
Leyes del complemento	$A \cup \bar{A} = U$
	$A \cap \bar{A} = \emptyset$
Leyes de De Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$
	$\overline{A \cap B} = \overline{A} \cup \overline{B}$

Unidad 2: Inducción matemática

- 1. Métodos para demostrar la verdad de una implicación
- 1) Método directo: V → V
- 2) Método indirecto:
 - a) Por el contrarrecíproco: F ← F
 - b) Por el absurdo: supongo el antecedente verdadero y el consecuente falso y busco llegar a una contradicción de proposiciones.
 - 2. Inducción matemática

I)
$$P(1)$$

II) $P(h) \rightarrow P(h+1)$ $\forall x (x \in N \rightarrow P(x))$

Unidad 3: Relaciones de recurrencia

Orden de una relación: mayor subíndice - menor subíndice.

1. Ecuaciones de recurrencia homogéneas

Sea la ecuación $a_n + c_1 a_{n-1} + c_2 a_{n-2} = 0$ (*). Resolverla significa:

- Hallar las raíces de la ecuación característica de (*): $r^2 + c_1 r + c_2 = 0$
- II) Utilizar los teoremas siguientes para hallar la solución.

Teorema 1: si t_n y s_n son soluciones de la ecuación (*), entonces $r_n = At_n + Bs_n$ también es solución de (*) $\forall A, B \in \mathbb{R}$.

Teorema 2: si r_0 es raíz de la ecuación característica, entonces r_0^n es solución de (*).

Teorema 3: si r_1 y r_2 $(r_1 \neq r_2)$ son soluciones de la ecuación característica, entonces $s_n = Ar_1^n + Br_2^n$ es solución de (*)y $\forall a_0, a_1 \in \mathbb{R} \ \exists A, B \in \mathbb{R}$: $\begin{cases} s_0 = a_0 \\ s_1 = a_1 \end{cases}$

Teorema 4: si $r_0(r_0 \neq 0)$ es raíz doble de la ecuación característica, entonces $s_n = nr_0^n$ es solución de (*). **Teorema 5**: si $r_0(r_0 \neq 0)$ es raíz doble de la ecuación característica, entonces $s_n = Ar_0^n + Bnr_0^n$ es solución de (*) y $\forall a_0, a_1 \in \mathbb{R} \ \exists A, B \in \mathbb{R}$: $\begin{cases} s_0 = a_0 \\ s_1 = a_1 \end{cases}$

2. Ecuaciones de recurrencia no homogéneas

Sea la ecuación $a_n + c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} = f(n)$ (*), con $f(n) \neq 0$. Resolverla significa:

- I) Resolver la ecuación homogénea asociada y obtener a_n^H .
- II) Hallar *una* solución particular de la ecuación (*), a_n^P .
- III) La solución general será: $a_n = a_n^H + a_n^P$

Nota: en la solución particular propuesta no debe haber sumandos que aparecen en la solución de la ecuación homogénea.

f(n)	a _n ^P propuesta
ka^n (a no es raíz de la ecuación	ka^n
característica)	
ka^n (a es raíz de multiplicidad t de la	kn^ta^n
ecuación característica)	
Polinomio de grado k y 1 no es raíz de la	Polinomio genérico de grado k
ecuación característica	
Polinomio de grado k y 1 es raíz de	Polinomio genérico de grado k
multiplicidad t de la ecuación característica	multiplicado por n^t
A. $\sin(a_n)$ ó B. $\cos(a_n)$	$C. sen(a_n) + D. cos(a_n)$

Caso especial 1: $a_n + c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} = f_1(n) + f_2(n)$

- I) Proponer una solución a_n^{P1} para $a_n+c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}=f_1(n)$
- II) Proponer una solución a_n^{P2} para $a_n+c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}=f_2(n)$
- III) La solución será $a_n^{P1} + a_n^{P2}$.

Caso especial 2: $a_n + c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} = f_1(n) \cdot f_2(n)$

- I) Proponer una solución a_n^{P1} para $a_n+c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}=f_1(n)$
- Proponer una solución $a_n^{p_2}$ para $a_n+c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}=f_2(n)$
- III) La solución será $a_n^{P1}.a_n^{P2}.$ Luego, comparar con la solución del homogéneo y arreglar si es necesario.

3. Sucesiones importantes

Interés	Fibonacci	Torres de Hanoi	Desarreglos
$a_n = 1,12.a_{n-1}$	$F_n = F_{n-1} + F_{n-2}$	$h_n = 2h_{n-1} + 1$	$d_n = (n-1).(d_{n-1} + d_{n-2})$

Unidad 4: Relaciones

1. Definiciones

Producto cartesiano: $A \times B = \{(x, y) : x \in A \land y \in B\}$

Relación n-aria: dado un conjunto A se llama relación R en conjunto A \Leftrightarrow R \subseteq A×A. Una relación se puede definir por extensión (mencionando todos sus elementos) o por comprensión (dando una característica de los elementos).

Relación 'R': Siendo $x \in A$, $y \in A$, decimos que $xRy \Leftrightarrow (x,y) \in R$.

Relación inversa: dada $R \subseteq A \times B$, la relación inversa R^{-1} es tal que: $R^{-1} = \{(x,y): (y,x) \in R\}$

Repaso de funciones

Sean A y B dos conjuntos. Una relación es función si:

 $\nexists a \in A / f(a) = b_0 \land f(a) = b_1 \ (b_0, b_1 \in B \ b_0 \neq b_1)$ (No existe elemento del dominio que tenga dos imágenes)

Sea $f: A \rightarrow B$ función, $a \in A$, $b \in B$:

- f es <u>inyectiva</u> \Leftrightarrow $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$ (Para puntos distintos del dominio, distintas imágenes)
- ❖ f es sobreyectiva $\Leftrightarrow \forall b \in B, \exists a \in A / f(a) = b$ (La imagen de A es todo B)
- f es biyectiva ⇔ f es inyectiva y sobreyectiva (Si es biyectiva existe la inversa)

2. Propiedades de las relaciones

Sea R una relación en el conjunto A.

- 1) R es reflexiva ⇔∀ x ∈A: xRx
- 2) R es simétrica $\Leftrightarrow \forall x,y \in A : (xRy \rightarrow yRx)$
- 3) R es transitiva $\Leftrightarrow \forall x,y,z \in A : (xRy \land yRz) \rightarrow xRz$
- 4) R es antisimétrica $\Leftrightarrow \forall x,y \in A : (xRy \land yRx \rightarrow x=y)$

Nota: Todo elemento cumple las tres primeras consigo mismo. Cuidado con la 4º: no simétrica ≠ antisimétrica.

3. Matriz de una relación

Sea R una relación en un conjunto finito A. La misma puede representarse matricialmente por:

$$M(R) \in \{0,1\}^{n \times n}$$
 siendo $n=|A|$ definida por $a_{ij} = \begin{cases} 1 \text{ si } a_iRa_j \\ 0 \text{ si } a_iRa_j \end{cases}$

Relación de orden entre matrices booleanas: $C \le D \iff c_{ij} \le d_{ij} \ \forall i,j: 1 \le i,j \le n$. Es decir, una matriz C es menor a D si D tiene al menos los mismos 1 en las mismas posiciones que C.

Sea / la matriz identidad de n x n. Entonces:

- R es reflexiva \Leftrightarrow I \leq M(R)
- R es simétrica \Leftrightarrow M(R) = M(R)^T
- R es antisimétrica \iff M(R). M(R)^T \le I (el producto se entiende posición por posición)
- R es transitiva \Leftrightarrow M²(R) \leq M(R)

4. Relaciones de equivalencia y de orden

Relación de equivalencia (~)	Relación de orden (≤)
- Reflexividad	- Reflexividad
- Simetría	- Antisimetría
- Transitividad	- Transitividad

- ✓ Orden total: $\forall x,y \in A$: $(xRy \lor yRx)$. En el diagrama de Hasse se ve una línea recta.
- ✓ Orden parcial: ∃ x,y ∈ A : (xRy ∧ yRx)

(Si no es orden total, es orden parcial.)

<u>Clase de equivalencia</u>: sea R una *relación de equivalencia* en A. Se llama clase de equivalencia de un $a \in A$, al conjunto $\bar{a} = [a] = cl[a] = \{x \in A : xRa\}$

Teorema: sea R una relación de equivalencia en A. Se verifica:

- ∀a ∈ A: [a] ⊆ A
- ∀a ∈ A: [a] ≠ Ø
- $\forall a, b \in A : aRb \iff [a] = [b]$
- $[a_i] \cap [a_i] = \emptyset (i \neq j)$
- \cup $[a_i] = A$

<u>Conjunto cociente</u>: $A \mid R = \{[a]: a \in A\}$. El conjunto cociente es una partición de A.

<u>Partición</u>: $P = \{A_1, A_2, ..., A_n\}$ es una partición del conjunto A si y solo si:

- 1) $A_i \neq \emptyset \ \forall i : 1 \leq i \leq n$
- 2) $A_i \subseteq A \ \forall i : 1 \le i \le n$
- 3) $\bigcup_{i=1}^{n} A_i = A$
- 4) $A_i \cap A_j = \emptyset, \forall i \neq j, 1 \leq j \leq n$

<u>Congruencia módulo n:</u> En \mathbb{Z} , y para $n \in \square$, se define la relación $aRb \Leftrightarrow n|a-b \Leftrightarrow a-b=nk$ ($k \in \square$)

<u>Diagrama de Hasse</u>: representación gráfica simplificada de un conjunto (finito) ordenado parcialmente. Con ellos se eliminan los lazos de reflexividad y los atajos de transitividad. Si dos elementos están relacionados, digamos **aRb**, entonces dibujamos **b** a un nivel superior de **a**.

Ejemplo: sea el conjunto $A = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$ (todos los divisores de 60). Este conjunto está ordenado parcialmente por la relación de divisibilidad. Su diagrama de Hasse puede ser representado como sigue.

5. Elementos particulares

Sea R una relación de orden en A:

<u>Maximal</u>: x_0 es *maximal* de $A \Leftrightarrow \nexists x \in A : x_0 Rx$ (x_0 no se relaciona con nadie). <u>Minimal</u>: x_0 es *minimal* de $A \Leftrightarrow \nexists x \in A : xRx_0$ (No hay elementos que se relacionen con el x_0 .)

Sea X un subconjunto de A:

<u>Cota Superior</u>: $x_0 \in A$ es *Cota Superior* de $X \Leftrightarrow \forall x \in X : xRx_0$. <u>Cota Inferior</u>: $x_0 \in A$ es *Cota Inferior* de $X \Leftrightarrow \forall x \in X : x_0Rx$.

<u>Supremo:</u> $s \in A$ es <u>el</u> <u>Supremo</u> de $X \Leftrightarrow s$ es la <u>menor</u> de todas los cotas superiores $\Leftrightarrow \forall x \in X : xRs$. <u>Ínfimo:</u> $i \in A$ es *Ínfimo* de $X \Leftrightarrow i$ es la <u>mayor</u> de todas las cotas inferiores $\Leftrightarrow \forall x \in X : iRx$.

 $\underline{\text{Máximo:}} \ M \in A \ \text{es} \ \textit{Máximo} \ \text{de} \ X \Leftrightarrow M \ \text{es} \ \text{supremo} \ \text{de} \ X \ y \ M \in X.$ $\underline{\text{Mínimo:}} \ m \in A \ \text{es} \ \textit{Mínimo} \ \text{de} \ X \Leftrightarrow m \ \text{es} \ \text{infimo} \ \text{de} \ X \ y \ m \in X.$

Unidad 5: Álgebras de Boole

1. Definiciones y axiomas

Álgebra de Boole: Sea K ($|K| \ge 2$) un conjunto no vacío que contiene dos elementos especiales, 0 (cero o elemento neutro) y 1 (uno o elemento unidad) sobre el cual definimos las operaciones cerradas +, • y el complemento. Entonces β =(K, 0, 1, +, •, $\overrightarrow{\ }$) es un Álgebra de Boole si cumple las siguientes condiciones:

A1) Axioma de conmutatividad	x + y = y + x
	x.y = y.x
A2) Axioma de asociatividad	(x + y) + z = x + (y + z) = x + y + z
	(x.y).z = x.(y.z) = x.y.z
A3) Axioma de la doble distributividad	x.(y + z) = x.y + x.z
	x + (y.z) = (x + y).(x + z)
A4) Axioma de existencia de elementos neutros	x + 0 = x
	x.1 = x
A5) Axioma de existencia de complementos	$x + \overline{x} = 1$
	$x. \bar{x} = 0$

Expresión dual: se obtiene cambiando todos los +(•) por • (+) y los 0(1) por 1(0).

Principio de dualidad: en toda álgebra de Boole, si una expresión es válida, su expresión dual también lo es.

1) Ley del doble complemento:	$\bar{\bar{x}} = x$
2) Leyes de Morgan:	a) $\overline{x + y} = \overline{x}.\overline{y}$
	b) $\overline{x}.\overline{y} = \overline{x} + \overline{y}$
3) Leyes conmutativas:	a) $x + y = y + x$
	b) $x.y = y.x$
4) Leyes asociativas:	a) $x + (y + z) = (x + y) + z$
	b) $x.(y.z) = (x.y).z$
5) Leyes distributivas:	a) $x + (y.z) = (x + y).(x + z)$
	b) $x.(y + z) = xy + xz$
6) Leyes de idempotencia:	a) x + x = x
	b) $x.x = x$
7) Leyes de identidad:	a) $x + 0 = x$
	b) $x.1 = x$
8) Leyes de inversos:	a) $x + \overline{x} = 1$
	b) $x.\overline{x} = 0$
9) Leyes de acotación:	a) x + 1= 1
	b) $x.0 = 0$
10) Leyes de absorción:	a) $x + xy = x$ $x + \overline{x}y = x + y$
	b) $x.(x + y) = x$ $x.(\bar{x} + y) = x.y$

Observación:
$\wedge \equiv \bullet \equiv \bigcirc$
$\vee \equiv + \equiv \cup$

Permitido	Prohibido		
$\checkmark x + y = 0 \rightarrow (x = 0) \land (y = 0)$	• $x.y = 0 \rightarrow (x = 0) \lor (y = 0)$		
$\checkmark x.y = 1 \rightarrow (x = 1) \land (y = 1)$	$ x + y = y + z \rightarrow x = z $		
\checkmark $X + \overline{y} = Z + \overline{y} \land X + y = Z + y \rightarrow X = Z$			
$\checkmark x + \overline{y} = x.y \rightarrow x = y$			

2. Funciones booleanas

<u>Función booleana</u>: $f: \{0,1\}^n = \{0,1\} \times \{0,1\} \times ... \times \{0,1\} \to \{0,1\}$. Dadas n variables, existen 2^{2^n} funciones booleanas posibles.

MINITERMINOS	MAXITERMINOS		
m = x.y.z	M = x + y + z		
Forma canónica, normal, normal disyuntiva SP: suma booleana de minitérminos.	Forma canónica, normal, normal conjuntiva PS: producto booleano de maxitérminos.		
f(x,y,z) = suma de los minitérminos que dan 1	f(x,y,z) = producto de los maxitérminos que dan 0		
Codificación: $x \to 1$, $\bar{x} \to 0$	Codificación: $x \to 0$, $\bar{x} \to 1$		

Observación:

La suma de los minitérminos de una función ≡ producto de los maxitérminos que no aparecen en la SP.

 $\Sigma m(0, 1, 3, 5, 7) = \Pi M(2, 4, 6)$

Orden en un álgebra de Boole: sea $\beta = (K,+,\cdot,0,1,-)$ un álgebra de Boole. En K se define:

$$\forall a, b \in K: aRb \iff a \le b \iff a.b = a \iff a+b=b \iff a.\bar{b}=0$$

Teorema: $\forall x \in K$: $0 \le x \le 1$. Todo álgebra de Boole está acotada.

<u>Átomo de un álgebra de Boole:</u> $x_0 \in B \ (x_0 \neq 0)$ es un *átomo* de B $\Leftrightarrow \forall y \in B: (y \le x_0 \longrightarrow y = 0 \lor y = x_0)$

Nota: Si B tiene *n* átomos \Rightarrow B tiene 2^n elementos.

Circuitos lógicos:

3. Propiedades de los átomos

- 1) x_0 átomo $\Rightarrow \forall y \in B: (y.x_0 = 0 \lor y.x_0 = x_0)$ (El producto de cualquier elemento de B con un átomo es 0 o es el átomo)
- 2) x_0 , x_1 átomos distintos $\Rightarrow x_0.x_1 = 0$ (Si hay dos átomos distintos el producto entre ellos es 0)
- 3) Sean $x_1, x_2, ..., x_n$ átomos de B $\land x \in B$: $(x.x_i = 0 \ \forall i: 1 \le i \le n \Rightarrow x = 0)$ (Si hay un x que multiplicado por cada uno de los átomos da 0, x es el 0)

Teorema: sean $x_1, x_2, ..., x_n$ los átomos de B. Entonces $\forall x \in B \ \exists c_1, c_2, ..., c_n \in \{0,1\}$ tales que $x = c_1x_1 + \cdots + c_nx_n$.

Teorema: $\sum_{x_i \in A} x_i = 1$, con x_i átomo de B.

Nota: Si n es la cantidad de variables de f, el número máximo de términos es 2ⁿ.

4. Mapa de Karnaugh

Para simplificar una función booleana. Se colorean los cuadrados de los minitérminos correspondientes y luego se escribe cada término, teniendo en cuenta que si un cuadrado tiene un vecino (abajo, arriba, derecha o izquierda) este último no se escribe.

xy\zw	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

$$f = \sum m(1, 3, 9, 11, 14, 6)$$

 $f = (w.\overline{y} + z.\overline{w}.y)$

5. Isomorfismos entre álgebras de Boole

<u>Isomorfismo entre dos álgebras de Boole:</u> sean $B_1 = (K_1, +_1, \bullet_1, 0_1, 1_1, -_1)$ y $B_2 = (K_2, +_2, \bullet_2, 0_2, 1_2, -_2)$ dos álgebras de Boole. Se dice que B_1 y B_2 (# $B_1 = \#B_2$) son isomorfos $\Leftrightarrow \exists f: K_1 \to K_2$ biyectiva tal que:

$$\begin{cases} f(x+_1y) = f(x) +_2 f(y) \\ f(x,_1y) = f(x) +_2 f(y) \\ f(\bar{x}^1) = \overline{f(x)}^2 \end{cases}$$

El número de isomorfismos posibles es (#B₁)!

Propiedades:

- 1) $f(0_1) = 0_2$
- 2) $f(1_1) = 1_2$
- 3) $f(\text{átomo } B_1) = \text{átomo } B_2$
- 4) $x R_1 y \rightarrow f(x) R_2 f(y)$

Unidad 6: Teoría de grafos

1. Definiciones de grafos y digrafos

<u>Grafo no orientado</u>: terna $G = (V,A,\delta)$ que representa una relación entre un conjunto finito de Vértices ($V \neq \emptyset$) y otro conjunto finito de Aristas (A), y δ es la función de incidencia.

$$\delta: A \rightarrow X(V)$$
, siendo $X(V) = \{X: X \subseteq V \land |X| = 1 \ o \ 2\}$.

Si
$$\delta(a) = \{u,v\}$$
 entonces
$$\begin{cases} u \ y \ v \ son \ extremos \ de \ a \\ u \ y \ v \ son \ v\'ertices \ adyacentes \\ a \ es \ incidente \ en \ u \ y \ v \end{cases}$$

<u>Grafo orientado / digrafo</u>: terna D = $\{V,A,\phi\}$ con V $\neq \emptyset$ que representa una relación entre un conjunto finito de Vértices y otro conjunto finito de Aristas, y ϕ es la función de incidencia. $\phi: A \to V \times V$.

Si
$$\varphi(a) = (v,w)$$
 entonces
$$\begin{cases} v \text{ es extremo inicial y w es extremo final de a} \\ v \text{ y w son vértices adyacentes} \\ a \text{ incide positivamente en w y negativamente en v} \end{cases}$$

2. Aristas, vértices, caminos y grafos

Aristas

Aristas adyacentes: aristas que tienen un solo extremo en común.

Arista paralelas o múltiples: $a_1, a_2 \in A$ son aristas paralelas $\Leftrightarrow \phi(a_1) = \phi(a_2)$. Es decir, sii ϕ no es inyectiva. Lazo o bucle: arista que une un vértice con sí mismo.

Arista incidente: Se dice que "e es incidente en v" si v esta en uno de los vértices de la arista e.

Extremo (para digrafos): Un extremo es inicial(final) si es el primer(ultimo) vértice de la arista.

Aristas paralelas (para digrafos): Si E.I(a) = E.I(b) \wedge E.F(a) = E.F(b) en otro caso son anti paralelas.

Puente: Es la arista que al sacarla el grafo deja de ser conexo.

Vértices

<u>Vértices adyacentes</u>: Se dice que "v y w son adyacentes" si existe una arista entre los dos vértices.

✓ Un vértice es adyacente a sí mismo si tiene lazo.

Grado de un vértice: gr(v) es la cantidad de aristas que inciden en él. Los lazos cuentan doble.

- ✓ Se dice que un vértice es 'par' o 'impar' según lo sea su grado.
- $\checkmark \quad \sum_{v \in V} gr(v) = 2|A|$
- ✓ La cantidad de vértices de grado impar es un número par.
- ✓ Si gr(v) = 0, v es un vértice aislado.

<u>Grado positvo (para digrafos):</u> gr⁺(v) es la cantidad de veces que se usa el vértice como extremo final. Grado negativo (para digrafos): gr⁻(v) es la cantidad de veces que se usa el vértice como extremo inicial.

 $\checkmark \Sigma gr^{-}(v) = \Sigma gr^{+}(v) = \#A$

 \checkmark gr_{total}(v) = gr⁺(v) + gr⁻(v)

 \checkmark gr_{neto}(v) = gr⁺(v) - gr⁻(v)

✓ El lazo cuenta como arista incidente positiva y negativamente en el vértice.

Vértice de aristas múltiples: Es aquel que tiene más de un arista.

Caminos

<u>Camino</u>: sucesión finita no vacía de aristas distintas que contengan a v_x y v_y en su primer y último término.

Así: $\{v_x, v_1\}, \{v_2, v_3\}, ..., \{v_n, v_y\}$

Longitud del camino: número de aristas de un camino.

<u>Circuito o camino cerrado</u>: camino en el cual $v_0 = v_n$.

Camino simple: camino que no repite vértices.

 \checkmark $\forall v, w \in V (v \neq w)$: (\exists camino de v a $w \Rightarrow \exists$ camino simple de v a w)

Circuito simple: circuito que no repite vértices salvo el primer y último vértice.

Ciclo: circuito simple que no repite aristas.

✓ Circuito simple de longitud \geq 3 en grafos (\geq 2 en digrafos) es un ciclo.

Nota: Si $\forall v \in V$ gr(v) $\geq 2 \Rightarrow$ el grafo tiene un circuito.

Grafos

Orden de un grafo: Es su número de vértices.

Grafo acíclico: grafo que no tiene ciclos.

<u>Grafo conexo:</u> grafo tal que dados 2 vértices distintos es posible encontrar un camino entre ellos. $\forall u, v \in V: (u = v \lor \exists \text{ camino de } u \text{ a } v)$

Grafo simple: grafo que carece de aristas paralelas y lazos.

Grafo regular: Aquel con el mismo grado en todos los vértices.

Grafo k-regular: $G=(V,A,\phi)$ es k-regular $\Leftrightarrow \forall v \in V$: gr(v) = k

<u>Grafo bipartito:</u> Es aquel con cuyos vértices pueden formarse dos conjuntos disjuntos de modo que no haya adyacencias entre vértices pertenecientes al mismo conjunto.

<u>Grafo $K_{n,m}$ </u>: grafo bipartito simple con la mayor cantidad de aristas.

$$\checkmark$$
 #A_{K_{n,m}}= n.m

Grafo K_n : grafo simple con n vértices y la mayor cantidad de aristas.

$$\sqrt{\#A_{K_n}} = \frac{n(n-1)}{2}$$

Grafo completo: grafo simple con mayor cantidad de aristas. Todos están conectados con todos.

 $\checkmark \forall v \in V, gr(v) = \#V - 1.$

✓ Si G(V,A) es completo ⇒ G es regular (No vale la recíproca)

✓ Dos grafos completos con mismo #V son isomorfos.

<u>Grafo complemento</u>: dado $G=(V_G,A_G)$ simple se llama grafo complemento a $\bar{G}=(V_{\bar{G}},A_{\bar{G}})$ tal que $\begin{cases} V_{\bar{G}}=V_G \\ A_{\bar{G}}=A_{K_n}-A_G \end{cases}$. Es el grafo G' que tiene conectados los vértices no conectados de G y desconectados los vértices conectados de G.

✓ $G \cup G' = Grafo completo$.

✓ Si dos grafos son complementarios, sus isomorfos también.

✓ Sea $gr_G(v) = k \Rightarrow gr_{G'}(v) = \#V - k - 1$.

Grafo plano: Aquel que admite una representación bidimensional sin que se crucen sus aristas.

Grafo ponderado: Es el grafo en cual cada arista tiene asignado un nº real positivo llamado peso.

<u>Digrafo:</u> Grafo con todas sus aristas dirigidas. Por tanto, los pares de vértices que definen las aristas, son pares ordenados.

Digrafo conexo: Si su grafo asociado es conexo.

<u>Digrafo fuertemente conexo:</u> $\forall v \in V \exists$ camino que me permite llegar a cualquier otro vértice.

<u>Digrafo k-regular</u>: D=(V,A,φ) es k-regular \Leftrightarrow ∀ v ∈ V: gr⁺(v) = gr⁻(v) = k

<u>Subgrafo de G:</u> Dado G = (V, A), G' = (V', A') es subgrafo de G si $V' \subseteq V$ y $A' \subseteq A$ <u>Grafo parcial de G:</u> Dado G = (V, A), G' = (V', A') es grafo parcial de G si $V' \subseteq V$ y $A' \subseteq A$ <u>Multigrafo:</u> Grafo que tiene alguna arista múltiple.

✓ Un multigrafo se transforma en grafo añadiendo un vértice en mitad de cada arista múltiple.

Pseudografo: Grafo con algún lazo.

3. Grafos de Euler

Grafo de Euler: grafo en el cual se puede encontrar un ciclo o un camino de Euler.

- > Camino de Euler: camino que no repite aristas.
- Circuito de Euler: circuito que no repite aristas.

Teorema de Euler:

- Para grafos conexos:
 - G tiene un Camino de Euler ⇔ G tiene exactamente 2 vértices de grado impar.
 - G tiene un Circuito de Euler ⇔ G tiene exactamente 0 vértices de grado impar.
- Para digrafos:
 - $\blacksquare \quad \text{G tiene un Camino de Euler} \Leftrightarrow \exists \ u,w \in V \ (u \neq w) \begin{cases} gr^-(u) = gr^+(u) + 1 \\ gr^+(w) = gr^-(w) + 1 \\ gr^+(v) = gr^-(v) \ \ \forall v \in V \ (v \neq u,v \neq w) \end{cases}$
 - G tiene un Circuito de Euler $\Leftrightarrow \forall v \in V \text{ gr}^+(v) = \text{gr}^-(v)$

Grafo de Hamilton: grafo en el cual es posible hallar un camino o circuito de Hamilton.

- > Camino de Hamilton: Es un camino que no repite vértices. (Puede no pasar por todas las aristas)
- > Circuito de Hamilton: Es un circuito que no repite vértices. (Puede no pasar por todas las aristas)

Teorema de Ore: Si un grafo es conexo con $\#V \ge 3$ y $\forall v, w \in V : gr(v) + gr(w) \ge \#V \Rightarrow G$ es Grafo Hamiltoniano.

Teorema de Dirac: un grafo simple con $\#V \ge 3$ es Hamiltoniano si $\forall v \in V: gr(v) \ge \frac{\#V}{2}$

4. Isomorfismos de grafos

Dados G=(V, A) y G'=(V', A'), se denomina *isomorfismo de G a G'* a la aplicación biyectiva f tal que para a,b $\in V$, $\{a,b\} \in A \Leftrightarrow$ se cumple $\{f(a),f(b)\} \in A'$. Es decir, la aplicación que relaciona biyectivamente pares de vértices de A con pares de vértices de A', de modo que los vértices conectados siguen estándolo.

- √ #V = #V' y #A = #A'
- ✓ Se cumple que $\delta(a)=\delta(f(a))$
- ✓ Si dos grafos son isomorfos, sus complementarios también.
- ✓ G y G' tienen igual cantidad de vértices aislados.
- ✓ G y G' tienen igual cantidad de lazos o bucles.
- ✓ Se mantienen los caminos.
- ✓ Se mantienen los ciclos.
- ✓ Si dos grafos complementarios son isomorfos se los llama auto complementarios.

✓ Dos grafos simples G_1 y G_2 son isomorfos \Leftrightarrow para cierto orden de sus vértices las M_A son iguales.

Automorfismo: Es un isomorfismo en sí mismo. f(a) = a.

5. Representación de grafos por matrices

Propiedad: en la matriz $M_A(G)^k$, cada coeficiente a_{ij} indica la cantidad de caminos de longitud k que hay entre v_i y v_j .

$$\mathbf{M_{C}(G)} = \left[\mathbf{b_{ij}}\right]_{nxn} = \begin{cases} 1 & \text{si vRw} \\ 0 \text{ en otro caso} \end{cases}$$

<u>Matriz de adyacencia booleana</u>: sea un grafo $G=(V,A,\phi)$ con $V=\{v_1,...,v_n\}$ y $A=\{a_1,...,a_m\}$. Se define la matriz de adyacencia de G a una matriz booleana de $n\times n$ tal que:

$$M_A(G) = (m_{ij}) \text{ tal que } m_{ij} = \begin{cases} 1 & \text{si } v_i \text{ es adyacente a } v_j \\ 0 \text{ si } v_i \text{ NO es adyacente a } v_j \end{cases}$$

<u>Matriz de incidencia booleana</u>: sea un grafo $G=(V,A,\phi)$ con $V=\{v_1,...,v_n\}$ y $A=\{a_1,...,a_m\}$. Se define la matriz de adyacencia de G a una matriz booleana de $n\times m$ tal que:

$$M_{I}(G) = m_{ij} \text{ tal que } m_{ij} \begin{cases} 1 & \text{si } a_{i} \text{ es incidente a } v_{j} \\ 0 \text{ si } a_{i} \text{ NO es incidente a } v_{j} \end{cases}$$

6. Niveles

<u>Vértice alcanzable</u>: sea D=(V,A) un digrafo. Se dice que $w \in V$ se alcanza de $v \in V \Leftrightarrow \exists$ camino dirigido de v a w.

<u>Niveles de un digrafo</u>: Un conjunto vértices N constituye o está en nivel superior a otro conjunto de vértices K si ningún vértice de N es alcanzable desde algún vértice de K.

```
Dibujar M_A i=1 while M_A:

Nivel i=v_i's tales que sus filas y columnas en M_A sean nulas M_A=M_A-\{\text{columnas y filas que sean nulas}\} i=i+1

Nivel 1: A,G

Nivel 2: B

Nivel 3: E

Nivel 4: C

Nivel 5: F

Nivel 6: D
```

7. Algoritmos de camino mínimo

Objetivo: Hallar el camino mínimo de S a L:

- λ (v) es la etiqueta del vértice v.
- i es un contador.

Algoritmo de Moore o BFS (Breadth First Search)

Dado un grafo o digrafo no ponderado, calcula la distancia entre dos vértices.

```
\lambda\left(S\right) = 0 i = 0 \text{while (v\'ertices adyacentes a los etiquetados con i no etiquetados):} \lambda\left(v\right) = i+1 \text{if (L is etiquetado): break} \text{i} = i+1
```

Algoritmo de Dijkstra

 Dado un grafo o digrafo con pesos no negativos, calcula caminos mínimos del vértice a todos los vértices.

```
\lambda(S) = 0
for v in V:
\lambda(V) = \infty
T = V
```

```
while (L \in T): Elijo v \in T con mínimo \lambda(v) advacente al último etiquetado \forallx / x advacente v: \lambda(x) = \min\{\lambda(x), \ \lambda(v) + a(v,x)\} T = T - {v}
```

Algoritmo de Ford

Solo para digrafos, acepta pesos negativos y detecta circuitos negativos.

```
\begin{array}{lll} \lambda(S) &=& 0 \\ \text{for } v \text{ in } V \text{:} \\ & \lambda(v) &=& \infty \\ \text{j} &=& 1 \\ \text{while } (\text{ j} \neq |V|) \text{:} \\ & \text{T} &=& \{v \in V \ / \ v \text{ sea adyacente al último etiquetado}\} \\ & \forall x \in V, \ \forall v \in T \text{ :} \\ & \lambda(v) &=& \min\{\lambda(x), \ \lambda(v) \ + \ a(v,x)\} \\ & \text{Si no hubo cambios: break} \\ & \text{Else: j} &=& \text{j} + 1 \\ \text{return } T \end{array}
```

Unidad 7: Árboles

1. <u>Definiciones</u>

<u>Árbol</u>: G=(V,A) es un árbol $\Leftrightarrow \forall$ u,v ∈ V (u = v ∨ ∃! camino simple de u a v)

Teorema 1: dado un grafo G=(V,A). Las siguientes afirmaciones son equivalentes:

- a) G es conexo y acíclico
- b) G es acíclico y si se le agrega una artista deja de serlo
- c) G es conexo y si se le elimina una arista deja de serlo
- d) G es árbol

Teorema 2: dado un grafo G=(V,A). Las siguientes afirmaciones son equivalentes:

- a) G es conexo y acíclico
- b) G es conexo y |A| = |V| 1
- c) G es acíclico y |A| = |V| 1

Propiedad: si G es un árbol con # $V \ge 2 \Rightarrow$ hay al menos 2 vértices de grado 1.

Bosque: un grafo G=(V,A) es bosque $\Leftrightarrow G$ es acíclico.

- ✓ Los bosques son grafos no conexos cuyas componentes conexas son árboles.
- \checkmark |A| = |V| t, siendo t la cantidad de árboles del bosque.

Hoja / terminal: Vértice sin hijos.

Vértice interno: Vértice con hijos.

Árbol n-ario: todos los nodos tienen a lo sumo n hijos.

<u>Árbol n-ario completo:</u> todos los nodos tienen 0 o *n* hijos.

Nivel de un vértice: número de aristas que le separan de la raíz. La raíz tiene nivel 0.

Altura de un árbol: máximo nivel de sus vértices.

Árbol equilibrado: las hojas llegan al mismo nivel.

Teorema: Si T = (V, A) es una árbol m-ario completo con i vértices internos entonces: $\begin{cases} \text{Hojas} = (m-1)i + 1 \\ \text{Hojas} = (m-1)i + 1 \end{cases}$

2. Árboles generadores

Árbol generadores

$$\frac{\text{Árbol generadores}}{\text{Arbol generador}} : T=(V_T, A_T) \text{ es un árbol generador de } G=(V_G, A_G) \Leftrightarrow \begin{cases} T \text{ es árbol} \\ V_T = V_G \\ A_T \subseteq A_G \end{cases}$$

Árbol generador minimal: es un árbol generador, de peso mínimo. No es único.

Teorema: G es un grafo no dirigido y conexo ⇔ G tiene árbol generador.

3. Algoritmos para hallar un árbol generador mínimo

Sea G = (V, A) un grafo conexo ponderado. Existen dos algoritmos para hallar un árbol generador mínimo de G.

Algoritmo de Prim

```
v = vértice cualquiera de G
T = \{v\}
while (|T| \neq |V|):
      a = arista de mínimo peso incidente en un v \in T y un w \notin T
      T = T + \{w\}
return T
```

Algoritmo de Kruskal

```
a = arista de mínimo peso de G
T = \{a\}
while (|T| < |V|-1):
      b = arista de mínimo peso tal que b ∉ T y T + {b} es acíclico
      T = T + \{b\}
return T
```

Unidad 8: Redes de transporte

1. Definiciones

Red de transporte: sea G = (V, A) un digrafo conexo y sin lazos. G es una red de transporte si se verifican:

- 1) Vértice Fuente: $\exists ! \text{ vértice } f \in V / gr^+(f) = 0 \text{ (no llegan flechas)}$
- 2) *Vértice Sumidero*: \exists ! vértice $s \in V / gr^-(s) = 0$ (no salen fleches)
- 3) Capacidad de la Arista: \exists una función $C: A \rightarrow N_0$ / si $a = (v_i, v_i) \in A$, $C(a) = C_{ij}$

Flujo de una red: Si G = (V, A) es una red de transporte se llama flujo de G a una función F: A \rightarrow N₀ tal que:

```
1) \forall a \in A: F(a) \leq C(a)
                                                                           (Si F(a) = C(a) se dice que la arista está saturada)
2) \forall v \in V \ (v \neq f, v \neq s) se tiene que \sum_{w \in V} F(w, v) = \sum_{w \in V} F(v, w)
                                                                                                    (Flujo entrante = Flujo saliente)
```


Teorema 1: Si F es el flujo asociado a una red de transporte se cumple que $\sum_{w \in V} F(f, w) = \sum_{w \in V} F(w, s)$ (Todo lo que sale de la fuente llega al sumidero)

<u>Valor del flujo</u>: suma de los flujos de todas las aristas que salen del vértice fuente: $val(F) = \sum_{v \in V} F(f, v)$

Corte de una red: Un corte (P, \overline{P}) en una red de transporte G = (V, A) es un conjunto P tal que: $\begin{cases} P \subset V \\ P \cup \overline{P} = V \\ f \in P.s \in \overline{P} \end{cases}$

<u>Capacidad de un corte</u>: Se llama capacidad de un corte (P, \overline{P}) al número: $C(P, \overline{P}) = \sum_{v \in P} \sum_{w \in \overline{P}} C(v, w)$. Es la suma de todas las aristas incidentes en v y w tal que $v \in P$ y $w \in \overline{P}$. (Las aristas por donde pasa el corte).

Teorema 2: Sea F un flujo de la red G = (V, A) y sea (P, \overline{P}) un corte de G. Entonces: $C(P, \overline{P}) \ge val(F)$

Teorema 3 (del flujo Máximo y Corte Minimal): Si $C(P, \overline{P}) = val(F) \Rightarrow el flujo es máximo y el corte es minimal.$

Teorema 4:
$$C(P, \overline{P}) = val(F) \Leftrightarrow \begin{cases} F(x, v) = C(x, v) & \forall x \in P, v \in \overline{P} \\ F(v, x) = 0 & \forall v \in \overline{P}, x \in P \end{cases}$$

2. Algoritmo de Ford-Foulkerson

Se utiliza para hallar el flujo máximo en una red de transporte.

Dada una red de transporte G = (V, A), con f (fuente) y s (sumidero):

- $\lambda(v)$ función de etiquetación de v.
- e_k capacidad residual de v_k.
- 1) Poner en la red un flujo compatible.
- 2) Etiqueto la fuente con (f , , ∞) $v\acute{e}rtice$ desde tipo de capacidad donde vine etiqueta residual
- 3) Para cualquier vértice x advacente a a, etiquetamos a x:
 - a) Si C(a,x) F(a,x) > 0, etiquetamos $x \operatorname{con}(a^+, C(a,x) F(a,x))$.
 - b) Si C(a, x) F(a, x) = 0, no etiquetamos x.
- 4) Mientras exista ($x \neq a$) en V tal que x esté etiquetado y exista una arista (x,y) tal que y no esté etiquetado, etiquetamos a y:
 - a) Si C(x,y) F(x,y) > 0, etiquetamos y como $(x^+, \min\{C(a,x) F(a,x); C(x,y) F(x,y)\})$
 - b) Si C(x, y) F(x, y) = 0, no etiquetamos y.
- 5) Mientras exista ($x \neq a$) en V tal que x esté etiquetado y exista una arista (x,y) tal que y no esté etiquetado, etiquetamos a y:
 - c) Si F(x,y) > 0, etiquetamos y como $(x^-, \min\{C(a,x) F(a,x); F(x,y)\})$
 - d) Si F(x, y) = 0, no etiquetamos y.