Tutoring of Mathematical Analysis I TEST SIMULATION - 3

- 1. The domain of the function $f(x) = \sqrt{\log_{1/2}(x-1) + 2}$ is:
 - (a) $[5, +\infty)$
 - (b) [1, 5]
 - (c) (1,5]
 - (d) $\mathbb{R} \setminus \{1\}$
 - (e) $(5, +\infty)$
- 2. Given the sets $A = \{z \in \mathbb{C} : |z i| < 1\}$ and $B = \{z \in \mathbb{C} : \mathbf{Re}(z + i) > 5\}$, it is true that
 - (a) $A \cup B$ is the whole complex plane
 - (b) $B \setminus A = A \setminus B$
 - (c) $A \cap B = \emptyset$
 - (d) $A \subseteq B$
 - (e) A = B
- $3. \lim_{x \to -\infty} \frac{e^{2x} + 5x + \cos x}{\sin x \log|x| x} =$
 - (a) 0
 - (b) $-\infty$
 - (c) -5
 - (d) $+\infty$
 - (e) ∄
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to -\infty} f(x) = -5$. Then we can conclude that
 - (a) f is a bounded function
 - (b) $\exists M > 0$ such that $f((-\infty, -M))$ is a bounded set
 - (c) $\inf_{m} f = -5$
 - (d) f(x) < 0 for every $x \in \text{dom } f$
 - (e) $\forall M > 0, f((-\infty, -M))$ is a bounded set
- 5. Given the function

$$f(x) = \begin{cases} \frac{1 - \cosh x}{2x^2} & \text{if } x \neq 0\\ 5 & \text{if } x = 0 \end{cases}$$

The limit $\lim_{x\to 0} f(x) =$

- (a) $\frac{1}{2}$
- (b) 0
- (c) 5
- (d) ∄
- (e) $-\frac{1}{4}$
- 6. The limit of the sequence $a_n = \left(\frac{n+1}{n-1}\right)^n$ equals
 - (a) 1
 - (b) e
 - (c) e^{-1}
 - (d) e^2
 - (e) $+\infty$

- 7. Given the monotonic sequence $n \rightarrow a_n$, then it is necessarily
 - (a) convergent
 - (b) not indeterminate
 - (c) indeterminate
 - (d) divergent
 - (e) neiher convergent nor divergent
- 8. The first derivative of the function $f(x) = \log \frac{\sqrt{1+x^2}}{x} \frac{1}{2x^2}$ is
 - (a) $f'(x) = \frac{1}{x^3(x^2+1)}$
 - (b) $f'(x) = \frac{1}{x^2(x^2+1)}$
 - (c) $f'(x) = -\frac{1}{x^3(x^2+1)}$
 - (d) $f'(x) = -\frac{1}{x^3(x^2-1)}$
 - (e) none of the previous answers is correct
- 9. The function $f: [-1,3] \longrightarrow \mathbb{R}, f(x) = x^3 + 2x 3$
 - (a) satisfies the Rolle Theorem hypothesis
 - (b) does not satisfy the Lagrange Theorem hypothesis
 - (c) has a unique Lagrange point $c = \sqrt{7/3}$
 - (d) has two Lagrange points $c_1 = \sqrt{7/3}$ and $c_2 = -\sqrt{7/3}$
 - (e) none of the previous answers is correct
- 10. The function $f: [-2,4] \longrightarrow \mathbb{R}, f(x) = \sqrt[3]{x^2}$
 - (a) has no global maxima
 - (b) has no global minima
 - (c) has a global maximum
 - (d) has a relative minimum that is not global
 - (e) has an inflection point with vertical tangent
- 11. The function $f(x) = x^{2a} \log (1 + 2x^a)$ is infinitesimal of order 5, for $x \to 0$, if a =
 - (a) 3
 - (b) 5/3
 - (c) 5
 - (d) 5/2
 - (e) -5/3
- 12. Which of the following statements holds for the function $f(x) = (x+2)\sqrt{x}$?
 - (a) $\lim_{x \to 0^+} f'(x) = 0$
 - (b) f(x) is infinite of order 1/2 for $x \to +\infty$
 - (c) f(x) is continuous and differentiable on its domain
 - (d) f(x) is infinitesimal of order 3/2 for $x \to 0$
 - (e) f(x) has a vertical tangent point in x = 0

- 13. Let $f: \mathbb{R} \to \mathbb{R}$ be a function of class C^2 and $x_0 \in \mathbb{R}$. In order to guarantee that x_0 is a maximum point for f, the condition $f'(x_0) = 0$ and $f''(x_0) < 0$ is:
 - (a) sufficient but not necessary
 - (b) necessary and sufficient
 - (c) necessary but not sufficient
 - (d) neither necessary, nor sufficient
 - (e) necessary if there exists also $f'''(x_0)$
- 14. The principal part of the function $f(x) = e^{1-\cos x} x\sin(2x) 1$ for $x \to 0$ is
 - (a) $\frac{8}{3}x^4$
 - (b) $-\frac{3}{2}x^2$
 - (c) $6x^2$
 - (d) $\frac{8}{3}x^4 + o(x^4)$
 - (e) $6x^2 + o(x^2)$
- 15. The Mac Laurin expansion of order 3 of the function $f(x) = \sqrt{1+x}$ is
 - (a) $f(x) = 1 + \frac{1}{2}x \frac{1}{8}x^2 + \frac{1}{16}x^3$
 - (b) $f(x) = \frac{1}{16}x^3 + o(x^3)$
 - (c) $f(x) = 1 + \frac{1}{2}x + \frac{1}{2}x^2 + \frac{1}{2}x^3 + o(x^3)$
 - (d) $f(x) = 1 + \frac{1}{2}x \frac{1}{8}x^2 + o(x^3)$
 - (e) $f(x) = 1 + \frac{1}{2}x \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)$
- 16. Given the function $f \in C^{(4)}(\mathbb{R})$ and its Mac Laurin expansion $f(x) = 1 7x^3 + o(x^4)$, which of the following is FALSE?
 - (a) f(x) has an inflection point in x = 0
 - (b) f'(x) has a maximum in x = 0
 - (c) f''(x) is increasing in a neighborhood of x = 0
 - (d) f'''(0) = -42
 - (e) $f^{(4)}(0) = 0$
- 17. $\int_0^4 \frac{1}{1 + \sqrt{x}} \, \mathrm{d}x =$
 - (a) 0
 - (b) $2 4 \log 3$
 - (c) 3
 - (d) $4 2 \log 3$
 - (e) $4 2 \log 3 + c$
- 18. Suppose the Substitution Theorem applies, by means of the substitution x = g(t), then
 - (a) $\int f(x) dx = \int f(g^{-1}(x)) dx$
 - (b) $\int f(x) dx = \int f(g(t)) dt$
 - (c) $\int f(x) dx = \int f(g(t)) g'(t) dt$
 - (d) $\int f(x) dx = \int f(t) g'(t) dt$
 - (e) $\int f(x) dx = \int f(g(t)) g'(t) dx$

- 19. The improper integral $\int_0^{+\infty} \frac{\arctan x}{x^{\alpha}} dx$
 - (a) converges $\forall \alpha \in \mathbb{R}$
 - (b) converges $\forall \alpha < 1$
 - (c) converges $\forall \alpha \in (1,2)$
 - (d) converges $\forall \alpha > 1$
 - (e) diverges $\forall \alpha \in \mathbb{R}$
- 20. The differential equation y'' + y' = 0
 - (a) has infinite constant solutions
 - (b) has a unique constant solution
 - (c) has no constant solutions
 - (d) has $y(x) = e^x$ as particular integral
 - (e) has $y(x; c_1, c_2) = c_1 e^{-x} + c_2 e^x$ as general integral

$\underline{\mathbf{A}}\underline{\mathbf{N}}\underline{\mathbf{S}}\underline{\mathbf{W}}\underline{\mathbf{E}}\underline{\mathbf{R}}\underline{\mathbf{S}}$

Item n.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Answer	c	c	c	b	e	d	b	a	c	c	b	e	a	b	e	c	d	c	С	a