	Compito	1	Prima	Parte
--	---------	---	-------	-------

Nome	
Cognome	
Matricola	

Architettura degli Elaboratori

Corso di Laurea in Informatica Prova Finale - 23 Febbraio 2009

1.	(2 punti) Convertire in base 8 il numero intero 100_{10} .
2.	(3 punti) Convertire il numero intero -139_{10} nella notazione
	(a) modulo e segno a 9 bit (b) complemento a 2 a 9 bit
3.	(3 punti) Convertire in base 10 il numero binario intero 11011001 ₂ rappresentato nella notazione (a) modulo e segno a 8 bit (b) complemento a 2 a 8 bit

4. (8 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

x_1	x_2	x_3	x_4	$f(x_1,x_2,x_3,x_4)$
0	0	0	0	1
0	0	0	1	-
0	0	1	0	-
0	0	1	1	1
0	1	0	0	-
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	-
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	-

SOP ____

5. (7 punti) Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) che restituisca in un determinato istante $i \geq 0$ uscita uguale a 1 se e solo se nella sequenza di bit finora letta si è avuto un numero dispari di sottosequenze 01. Si assuma che nell'istante iniziale il bit x_{-1} precedentemente letto sia 1.

6. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo T. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

\boldsymbol{x}	y_1	y_2	Y_1	Y_2	t_1	t_2	z
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

t_1 :	
t_2 :	
$z:$ _	

Disegno della rete :

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.