Übungen zur Algebra I

Wintersemester 2020/21

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. M. Leonhardt

Blatt 02

Abgabetermin: Freitag, 20.11.2020, 9:15 Uhr

Aufgabe 1. (Die Ringe $\mathbb{Z}[\sqrt{d}]$) (6 Punkte)

(a) (2 Punkte) Es sei $d \in \mathbb{Z}$ kein Quadrat. Zeigen Sie, dass

$$\mathbb{Z}[\sqrt{d}] := \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}\$$

der kleinste Teilring von \mathbb{C} ist, der \sqrt{d} enthält.

(b) (2 Punkte) Es sei nun d = -5. Zeigen Sie, dass die Abbildung

$$N : \mathbb{Z}[\sqrt{-5}] \longrightarrow \mathbb{Z}, \quad N(a+b\sqrt{-5}) := a^2 + 5b^2$$

multiplikativ ist. Folgern Sie, dass $u \in \mathbb{Z}[\sqrt{-5}]$ genau dann eine Einheit ist, wenn N(u) = 1 gilt, und damit $\mathbb{Z}[\sqrt{-5}]^{\times} = \{\pm 1\}.$

(c) (2 Punkte) Zeigen Sie, dass das Element $2 \in \mathbb{Z}[\sqrt{-5}]$ irreduzibel ist. Sie dürfen nun annehmen, dass die Elemente $3, 1 + \sqrt{-5}, 1 - \sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ ebenfalls irreduzibel sind. Folgern Sie, dass $\mathbb{Z}[\sqrt{-5}]$ nicht faktoriell ist.

Aufgabe 2. (Endliche Körper und mehr) (6 Punkte)

(a) (2 Punkte) Endliche, nullteilerfreie Ringe R sind Körper. (Hinweis: Für $x \in R \setminus \{0\}$ könnte die Abbildung $R \to R$, $y \mapsto xy$ nützlich sein.)

Nun sei R ein Ring. Wir nehmen an, es gibt ein $n \in \mathbb{N}$, sodass $x^n = x$ für alle $x \in R$. Zeigen Sie:

- (b) (2 Punkte) Falls R nullteilerfrei ist, ist R ein endlicher Körper.
- (c) (2 Punkte) Für allgemeines R gilt, dass jedes Primideal in R maximal ist.

Aufgabe 3. (Irreduzible Polynome) (6 Punkte) Es sei \mathbb{F}_2 der Körper mit 2 Elementen. Bestimmen Sie alle irreduziblen Polynome vom Grad ≤ 3 in $\mathbb{F}_2[X]$. Bestimmen Sie außerdem die Anzahl der irreduziblen Polynome vom Grad 4 in $\mathbb{F}_2[X]$.

Aufgabe 4. (Diverse Beispiele) (6 Punkte; jeweils 1 Punkt) Finden Sie (mit Begründung) ...

- (a) ... zwei Elemente $f, g \in \mathbb{R}(X) := Q(\mathbb{R}[X])$ mit $v_{X-1}(f) = 3$ und $v_{X-1}(g) = -2$.
- (b) ... ein irreduzibles Polynom vom Grad 2 in $\mathbb{R}[X]$.
- (c) ... ein Ideal von $\mathbb{Z}[X]$, welches kein Hauptideal ist.
- (d) ... einen nullteilerfreien Ring R sowie ein Primideal $0 \neq \mathfrak{p} \subset R$, welches nicht maximal ist.
- (e) ... einen faktoriellen Ring R sowie zwei Elemente $a, b \in R$, sodass $(a) + (b) \neq (ggT(a, b))$.
- (f) ... einen Körper der Charakteristik p > 0 mit unendlich vielen Elementen.

Bonusaufgabe 5. (Die Zahl 26) (6 Bonuspunkte)

(a) (2 Bonuspunkte) Fertigen Sie eine Skizze von $\mathbb{Z}[\sqrt{-2}] \subset \mathbb{C}$ an und wiederholen Sie das Argument aus der Linearen Algebra 2 (SS 2020, Blatt 3, Aufgabe 13; verfügbar auf Mampf), um zu zeigen, dass $\mathbb{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} \mid a,b \in \mathbb{Z}\}$ euklidisch ist bzgl. der Normfunktion (= Betragsquadrat in \mathbb{C})

$$N: \mathbb{Z}[\sqrt{-2}] \longrightarrow \mathbb{Z}, \quad N(a+b\sqrt{-2}) := a^2 + 2b^2.$$

- (b) (1 Bonuspunkt) Zeigen Sie, dass $\mathbb{Z}[\sqrt{-2}]^{\times} = \{\pm 1\}$. (Hinweis: Aufgabe 1(b).)
- (c) (3 Bonuspunkte) Zeigen Sie, dass die 26 die einzige ganze Zahl ist, die auf eine Quadratzahl folgt und deren Nachfolger eine Kubikzahl ist. (Hinweis: Gesucht sind die Lösungen $(x,y) \in \mathbb{Z}^2$ der Gleichung $x^3 = y^2 + 2$. Faktorisieren Sie die rechte Seite im Ring $\mathbb{Z}[\sqrt{-2}]$, bestimmen Sie den ggT der beiden Faktoren und benutzen Sie dann, dass $\mathbb{Z}[\sqrt{-2}]$ faktoriell ist, um zu zeigen, dass die einzelnen Faktoren selbst dritte Potenzen in $\mathbb{Z}[\sqrt{-2}]$ sind.)