Result Report

Basic Information Laboratory

Subject: Basic Information Laboratory

Professor: Jongil Lee

<u>Department</u>: Information & Telecommunication

Student ID: 202301558

Name: Gyeol Kim

Submission Date: 2024. 12. 4.

Result

I completed the planned eleventh experiment. I will include the results related to our learning below this line.

procedure

Task 1: I-V characteristics of a diode

Task 1-1: Observing current versus voltage

We composed the circuit like the picture below. With 1kohms, and IN4001 diode and the power supplier is connected as input

In task 1-1, we varied the voltage values from 0.1V to 1.5V in 0.1V intervals. This is our result table and V-I characteristics graph

V_D	0.1V	0.2V	0.3V	0.4V	0.5V	0.6V	0.7V	0.8V	0.9V	1.0V	1.1V	1.2V	1.3V	1.4V	1.5V
i_D	0.02	0.03	0.03	0.07	0.19	1.29	9.94	24.66							

Task 1-2: Observing output voltage versus input voltage
We set up the circuit to see V-V characteristics like below

In set 1 of tasks 1-2, we varied the voltage values from 0.1V to 1.0V in 0.1V intervals. This is our result table and V-V characteristics graph

v_s	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
v	0.01	0.04	0.08	0.17	0.2	0.27	0.38	0.51	0.58	0.6
$v_s - v$	0.09	0.16	0.22	0.23	0.3	0.33	0.32	0.29	0.32	0.4

In set 2 of tasks 1-2, we varied the voltage values from 2V to 10V in 2V intervals. This is our result table and V-V characteristics graph

v_s	2	4	6	8	10
v	1.63	3.57	5.53	7.5	9.42
$v_s - v$	0.37	0.33	0.47	0.5	0.58

Task 1-3: observe waveform with a function generator

We replaced the power supplier with a function generator and applied a sinusoidal waveform with a frequency of 1 kHz and an amplitude of 4V.

Now, we can see that the diode rejects the negative signal.

In addition, by using cursors, we could observe that the output signal v is set to approximately 3.3V, which matches a theoretical value in the preliminary report. (I mentioned that the barrier potential would be 0.7V with a silicone diode.)

This circuit is called a rectifier

Discussion

These are the group's discussions about the assigned tasks.

Task 1: I-V characteristics of a diode

- A diode is a two-terminal electronic component that allows current to flow in one direction while blocking it in the reverse direction.
- Checking the anode and cathode is essential when working with this element. Confirming the correct direction is vital for circuit design.
- -The V-I graph of the diode is non-linear and shows a significant upward trend.
- The barrier potential is the voltage level where the V-I graph begins to increase significantly. We assume that current flows into the element from this point. Each diode has its barrier potential.
- Using the characteristics of a diode, we can design a rectifier that rejects negative signals.
- The output signal's peak point is theoretically set to $V_{peak\ of\ input}$ -0.7 V

Conclusion

Through this lecture, I discovered several things about basic electrical knowledge.

- Since the diode is sensitive to the current direction, check the line on the element to determine the allowed direction in the circuit.
- Make sure to check the barrier potential when planning your experiment.
- After the barrier potential, we can get a wide range of current by adjusting the voltage slightly.