WYSZUKIWANIE BINARNE

Przykład wyszukiwania binarnego:

Zadanie: znajdź element *Y* w **uporządkowanej** liście *L*

Dane wejściowe: *Y* – poszukiwany element

L – uporządkowana lista o długości N

Pliki do wykorzystania: schemat blokowy - binarySearch_schemat.drawio, program - projekt BinarySearch

Złożoność obliczeniowa

Każde porównanie skraca długość listy wejściowej o połowę i proces ten dobiega końca, gdy (albo: zanim) lista staje się pusta. Ile razy wielkość N można podzielić przez 2 zanim zostanie zredukowana do 0? Ta liczba nazywa się logarytmem przy podstawie 2 z N i oznacza się $\log_2 N$.

N	$1 + \log_2 N$
10	4
100	7
1000	10
a million	20
a billion	30
a billion billions	60

Algorytm wykonuje się w najgorszym przypadku w czasie $O(\log N)$.