Algorithmic Foundations 2 Propositional Logic (cont.)

Simon Fowler & Gethin Norman School of Computing Science University of Glasgow

Recap - Propositional logic

Propositions are the basic building blocks of logic

- declarative sentences that are either true or false
- denoted using lower case letters: p,q,...

Compound propositions (logical formula) generated using logical connectives to combine propositions

- denoted using upper case letters: P,Q,R,...
- negation (not): ¬p
- conjunction (and): p∧q
- disjunction (or): pvq
- exclusuive or: p⊕q
- conditional (implication): p→q
- biconditional: p ← q

Outline

Propositions

Connectives

Tautologies and contradictions

Logical equivalence

- introduction
- laws of logical equivalence
- examples

Two syntactically (i.e. textually) different compound propositions may be semantically identical (i.e. have the same meaning)

it such cases they are called logically equivalent

The statement P=Q expresses that P is logically equivalent to Q

 given any assignment to the propositions appearing in P and Q the truth values of P and O are the same

Logical equivalence can be proved by:

- by laws of logical equivalence (this lecture)
- by a truth table (i.e. show truth table columns are the same)
 - \cdot number of rows of a truth table is 2^n where n is number of propositions
- by some other line of reasoning

Two syntactically (i.e. textually) different compound propositions may be semantically identical (i.e. have the same meaning)

it such cases they are called logically equivalent

To show two compound propositions are not logically equivalent

- need to give one assignment to the propositions that makes one of the formulae true and the other formula false
 - · notice do not need to give the full truth table just one row

Example: $(pvq)\Lambda r$ and $pv(q\Lambda r)$ are not logically equivalent

- if p is true while both q and r are false, then
- (pvq)∧r evaluates to (true∨false)∧false
- p∨(q∧r) evaluates to true∨(false∧false)

Two syntactically (i.e. textually) different compound propositions may be semantically identical (i.e. have the same meaning)

it such cases they are called logically equivalent

To show two compound propositions are not logically equivalent

- need to give one assignment to the propositions that makes one of the formulae true and the other formula false
 - · notice do not need to give the full truth table just one row

Example: $(pvq)\Lambda r$ and $pv(q\Lambda r)$ are not logically equivalent

- if p is true while both q and r are false, then
- (pvq)∧r evaluates to true∧false
- p∨(q∧r) evaluates to true ∨ false

Two syntactically (i.e. textually) different compound propositions may be semantically identical (i.e. have the same meaning)

it such cases they are called logically equivalent

To show two compound propositions are not logically equivalent

- need to give one assignment to the propositions that makes one of the formulae true and the other formula false
 - · notice do not need to give the full truth table just one row

Example: $(pvq)\Lambda r$ and $pv(q\Lambda r)$ are not logically equivalent

- if p is true while both q and r are false, then
- (pvq) \(\text{r}\) evaluates to false
- pv(q∧r) evaluates to true

Outline

Propositions

Connectives

Tautologies and contradictions

Logical equivalence

- introduction
- laws of logical equivalence
- examples

Laws of logical equivalence

These are similar to the arithmetic identities such as:

```
• x \cdot 0 = 0

• x \cdot 1 = x

• x + y = y + x

• x \cdot (y + z) = x \cdot y + x \cdot z

• x + (y + z) = (x + y) + z
```

The identities hold for all possible values of x, y and z

Equality replaced by logical equivalence and applied to compound propositions (formulae)

- provides a pattern or template that can be used to match all or part of a much more complicated proposition and to find an equivalence for it
 - examples to come
- can replace pattern on either side of the law with that on the other

Outline

Propositions

Connectives

Tautologies and contradictions

Logical equivalence

- introduction
- laws of logical equivalence
- examples

Laws - Identity, domination, idempotent & double negation

Identity laws:

- $P \wedge true = P$
- $P \vee false = P$

Domination laws:

- P ∨ true ≡ true
- P ∧ false = false

Idempotent laws:

- $P \wedge P \equiv P$
- $P \lor P \equiv P$

Double negation law:

• $\neg(\neg P) \equiv P$

In either case: result only depends on P

Value of P is irrelevant: true dominates V and false dominates A

Multiple mentions of P does not change the meaning

```
¬¬true = ¬false = true
¬¬false = ¬true = false
```

Notice P is a compound proposition so example applications are $((p \lor q) \land r) \land true \equiv ((p \lor q) \land r)$ identity law $(\neg q \rightarrow p) \land false \equiv false$ domination law

Laws - Commutative & associative

Commutative laws:

- $P \wedge Q \equiv Q \wedge P$
- $P \lor Q \equiv Q \lor P$

Associative laws:

- $(P \land Q) \land R \equiv P \land (Q \land R)$
- $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$

Ordering using connective does not matter

Grouping using **same** connective does not matter

Laws - Distributive

Note: no way for me to go to beach and neither eat ice cream nor play video games!

Distributive laws:

• $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$

I play video games, or I go to the beach and eat ice cream

 \equiv

I play video games or go to the beach, and I play video games or eat ice cream

• $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$

I will walk the dog and either play Truck Simulator or Stardew Valley

 \equiv

I will walk the dog and play Truck Simulator, or I will walk the dog and play Stardew Valley

Laws - De Morgan

Let P be the proposition "The coffee machine is working"

Let Q be the proposition "The water boiler is working"

Disaster!

Laws - De Morgan, Contradiction, tautology & implication

De Morgan laws:

$$\neg(P \land Q) \equiv \neg P \lor \neg Q$$

If it is not the case that both the coffee machine and the boiler work, then either the coffee machine is broken or the boiler is broken

$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

If it is not the case that **either** machine works, then both the coffee machine and the boiler must be broken

Laws - De Morgan, Contradiction, tautology & implication

Contradiction and tautology laws:

- $P \wedge \neg P = false$
- $P \lor \neg P \equiv true$

Implication law:

•
$$P \rightarrow Q \equiv \neg P \lor Q$$

Proposition cannot be true and false at the same time!

Proposition must either be true or false!

р	q	p→q	¬p∨q
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

Laws - Exclusive OR and Biconditional

Exclusive or and biconditional laws:

- $P \oplus Q \equiv (P \vee Q) \wedge \neg (P \wedge Q)$
- $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$

Focus on **understanding** the laws and using them, rather than rote learning. Practice makes perfect.

The exam will include a formula sheet, so you don't need to learn the rules off by heart!

Slight detour...

Recall the double negation and de Morgan laws

- $\neg(\neg P) \equiv P$
- $\neg (P \land Q) \equiv \neg P \lor \neg Q$
- $\neg (P \lor Q) \equiv \neg P \land \neg Q$

therefore we have

• P
$$\wedge$$
 Q = $\neg(\neg(P \wedge Q))$ double negation law
= $\neg(\neg P \vee \neg Q)$ De Morgan law

so can define conjunction using disjunction and negation

also we have

• P V Q =
$$\neg(\neg(P \lor Q))$$
 double negation law
= $\neg(\neg P \land \neg Q)$ De Morgan law

so can define disjunction using conjunction and negation

Slight detour...

Recall also the implication law

•
$$P \rightarrow 0 \equiv \neg P \lor 0$$

it follows that

• P V Q =
$$\neg(\neg P)$$
 V Q double negation
= $\neg P$ → Q implication law

• P
$$\wedge$$
 Q $\equiv \neg(\neg(P \wedge Q))$ double negation $\equiv \neg(\neg P \vee \neg Q)$ De Morgan law $\equiv \neg(P \rightarrow \neg Q)$ implication law

so we can define disjunction and conjunction using implication and negation

Slight detour...

Recall also the implication law

• $P \rightarrow 0 \equiv \neg P \lor 0$

it follows that

- $P \lor Q \equiv \neg(\neg P) \lor Q \equiv \neg P \rightarrow Q$
- $P \wedge Q \equiv \neg(\neg(P \wedge Q)) \equiv \neg(\neg P \vee \neg Q) \equiv \neg(P \rightarrow \neg Q)$

so we can define disjunction and conjunction using implication and negation

We can also define negation with implication (and false)

- ¬P is logically equivalent to P→false
 - for $P \rightarrow false$ to be true, then P must be false

This is very important for proof assistants (e.g., Lean / Agda)

It follows all operators can be defined using implication (and false)

When reducing one logic formula to another...

General guidelines

- start with the more complex side and "reduce" to the simpler formula
 - · if both sides complex attempt to reduce both to the same simple form

Eliminate

- · almost all rules concern only conjunction, disjunction and negation
- · first remove other connectives using the corresponding rules that reduce them to conjunction, disjunction and negation

Simplify

· simplify using the Identity, Domination, Idempotent, Contradiction and Tautology laws

Shuffle

 to be able to simplify using the above laws, move "related" propositions close together using the Commutative, Associative, Distributive and de Morgan Laws

$$\neg (P \lor (\neg P \land Q)) \equiv \neg P \land \neg Q$$

Recall negation has the highest precedence so this is equivalent to showing $\neg (P \lor ((\neg P) \land Q)) \equiv (\neg P) \land (\neg Q)$

$$\neg (P \lor (\neg P \land Q)) \equiv \neg P \land \neg Q$$

• we start with either the left or right hand side and apply laws of logical equivalence to derive the other side

$$\neg (P \lor (\neg P \land Q)) \equiv \neg P \land \neg Q$$

• we start with either the left or right hand side and apply laws of logical equivalence to derive the other side

$$\neg (P \lor (\neg P \land Q)) \equiv \neg ((P \lor \neg P) \land (P \lor Q))$$
 distributive law

Distributive law: $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$

• note pattern matching from law set P=P, $Q=\neg P$ and R=Q

```
\neg (P \lor (\neg P \land Q)) \equiv \neg P \land \neg Q
```

 we start with either the left or right hand side and apply laws of logical equivalence to derive the other side

```
\neg (PV(\neg P \land Q)) \equiv \neg ((PV \neg P) \land (PVQ)) distributive law \equiv \neg (true \land (PVQ)) tautology law
```

Tautology law: $P \lor \neg P \equiv true$

notice have removed the extra paretheses: (true) replaced by true

```
\neg (P \lor (\neg P \land Q)) \equiv \neg P \land \neg Q
```

 we start with either the left or right hand side and apply laws of logical equivalence to derive the other side

```
\neg (PV(\neg P \land Q)) \equiv \neg ((PV \neg P) \land (PVQ)) \text{ distributive law}
\equiv \neg (true \land (PVQ)) \text{ tautology law}
\equiv \neg ((PVQ) \land true) \text{ commutative law}
```

Commutative law: $P \land Q \equiv Q \land P$

note pattern matching again P=true and Q=PvQ

```
\neg (P \lor (\neg P \land Q)) \equiv \neg P \land \neg Q
```

 we start with either the left or right hand side and apply laws of logical equivalence to derive the other side

```
\neg (PV(\neg P \land Q)) \equiv \neg ((PV \neg P) \land (PVQ)) \text{ distributive law}
\equiv \neg (true \land (PVQ)) \text{ tautology law}
\equiv \neg ((PVQ) \land true) \text{ commutative law}
\equiv \neg (PVQ) \text{ identity law}
```

Identity law: $P \wedge true \equiv P$

again removed extra parentheses: ¬((PvQ)) replaced by ¬(PvQ)

```
\neg (P \lor (\neg P \land Q)) \equiv \neg P \land \neg Q
```

• we start with either the left or right hand side and apply laws of logical equivalence to derive the other side

```
\neg (PV(\neg P \land Q)) \qquad \equiv \neg ((PV \neg P) \land (PVQ)) \qquad \text{distributive law}
\equiv \neg (true \land (PVQ)) \qquad \text{tautology law}
\equiv \neg ((PVQ) \land true) \qquad \text{commutative law}
\equiv \neg (PVQ) \qquad \text{identity law}
\equiv \neg P \land \neg Q \qquad \text{De Morgan law}
```

De Morgan law: $\neg (P \lor Q) \equiv \neg P \land \neg Q$

We start with either the left or right hand side and apply laws of logical equivalence to derive the other side

- when showing something is equivalent to true or false easier to start with that side
- otherwise hard to know where to begin
 - · i.e. which law to apply first

$$(P \land Q) \rightarrow (P \lor Q)$$

$$(P \wedge Q) \rightarrow (P \vee Q) \equiv \neg (P \wedge Q) \vee (P \vee Q)$$
 implication law

Implication law: $P \rightarrow Q \equiv \neg P \lor Q$

Algorithmic Foundations 2, 2024

```
(P \wedge Q) \rightarrow (P \vee Q) \equiv \neg (P \wedge Q) \vee (P \vee Q) implication law \equiv (\neg P \vee \neg Q) \vee (P \vee Q) De Morgan law
```

De Morgan law: $\neg (P \land Q) \equiv \neg P \lor \neg Q$

```
(P \wedge Q) \rightarrow (P \vee Q) \equiv \neg (P \wedge Q) \vee (P \vee Q) implication law \equiv (\neg P \vee \neg Q) \vee (P \vee Q) De Morgan law \equiv \neg P \vee (\neg Q \vee (P \vee Q)) associative law
```

Associative law: $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$

• pattern matching $P = \neg P$, $Q = \neg Q$ and $R = (P \lor Q)$

Algorithmic Foundations 2, 2024

```
(P \wedge Q) \rightarrow (P \vee Q) \equiv \neg (P \wedge Q) \vee (P \vee Q) implication law \equiv (\neg P \vee \neg Q) \vee (P \vee Q) De Morgan law \equiv \neg P \vee (\neg Q \vee (P \vee Q)) associative law \equiv \neg P \vee (\neg Q \vee (Q \vee P)) commutative law
```

Commutative law: $P \lor Q \equiv Q \lor P$

```
(P \wedge Q) \rightarrow (P \vee Q) \equiv \neg (P \wedge Q) \vee (P \vee Q) implication law \equiv (\neg P \vee \neg Q) \vee (P \vee Q) De Morgan law \equiv \neg P \vee (\neg Q \vee (P \vee Q)) associative law \equiv \neg P \vee (\neg Q \vee (Q \vee P)) commutative law \equiv \neg P \vee ((\neg Q \vee Q) \vee P) associative law
```

Associative law: $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$

```
(P \land Q) \rightarrow (P \lor Q) \equiv \neg (P \land Q) \lor (P \lor Q) implication law \equiv (\neg P \lor \neg Q) \lor (P \lor Q) De Morgan law \equiv \neg P \lor (\neg Q \lor (P \lor Q)) associative law \equiv \neg P \lor (\neg Q \lor Q \lor P) commutative law \equiv \neg P \lor (\neg Q \lor Q) \lor P associative law \equiv \neg P \lor (true \lor P) tautology & commutative
```

Tautology and commutative laws: $\neg P \lor P \equiv P \lor \neg P \equiv true$

can apply two laws at once if not confusing

```
(P \land Q) \rightarrow (P \lor Q) \qquad \equiv \neg (P \land Q) \lor (P \lor Q) \qquad \text{implication law}
\equiv (\neg P \lor \neg Q) \lor (P \lor Q) \qquad \text{De Morgan law}
\equiv \neg P \lor (\neg Q \lor (P \lor Q)) \qquad \text{associative law}
\equiv \neg P \lor (\neg Q \lor Q \lor P)) \qquad \text{commutative law}
\equiv \neg P \lor ((\neg Q \lor Q) \lor P) \qquad \text{associative law}
\equiv \neg P \lor (\mathsf{true} \lor P) \qquad \text{tautology \& commutative}
\equiv \neg P \lor \mathsf{true} \qquad \text{domination \& commutative}
```

Domination and commutative laws: true \lor P \equiv P \lor true \equiv true

```
(P \land Q) \rightarrow (P \lor Q)
                         \equiv \neg (P \land Q) \lor (P \lor Q)
                                                        implication law
                            (\neg P \lor \neg Q) \lor (P \lor Q)
                                                             De Morgan law
                            \neg P \lor (\neg Q \lor (P \lor Q))
                                                             associative law
                         \equiv \neg P \lor (\neg Q \lor (Q \lor P))
                                                             commutative law
                         \equiv \neg P \lor ((\neg Q \lor Q) \lor P)
                                                             associative law
                             ¬P∨(true∨P)
                                                             tautology & commutative
                                                             domination & commutative
                             ¬P∨true
                                                             domination law
                              true
```

Domination law: P ∨ true ≡ true

Derivation is not necessarily unique and can often show equivalence a number of different ways

- one way might require less steps
- but this does not mean it is any more correct

$$(P \wedge Q) \rightarrow (P \vee Q) \equiv \neg (P \wedge Q) \vee (P \vee Q)$$
 implication law

Implication law: $P \rightarrow Q \equiv \neg P \lor Q$

Algorithmic Foundations 2, 2024

```
(P \land Q) \rightarrow (P \lor Q) \equiv \neg (P \land Q) \lor (P \lor Q) implication law \equiv (\neg P \lor \neg Q) \lor (P \lor Q) De Morgan law
```

De Morgan law: $\neg (P \land Q) \equiv \neg P \lor \neg Q$

```
(P \wedge Q) \rightarrow (P \vee Q) \equiv \neg (P \wedge Q) \vee (P \vee Q) implication law \equiv (\neg P \vee \neg Q) \vee (P \vee Q) De Morgan law \equiv ((\neg P \vee \neg Q) \vee P) \vee Q associative law
```

Associative law: $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$

- now applied the other way around
- pattern matching $P = (\neg P \lor \neg Q), Q = P \text{ and } R = Q$

```
(P \wedge Q) \rightarrow (P \vee Q) \equiv \neg (P \wedge Q) \vee (P \vee Q) implication law \equiv (\neg P \vee \neg Q) \vee (P \vee Q) De Morgan law \equiv ((\neg P \vee \neg Q) \vee P) \vee Q associative law \equiv ((\neg Q \vee \neg P) \vee P) \vee Q commutative law
```

Commutative law: $P \lor Q \equiv Q \lor P$

```
(P \wedge Q) \rightarrow (P \vee Q) \equiv \neg (P \wedge Q) \vee (P \vee Q) implication law \equiv (\neg P \vee \neg Q) \vee (P \vee Q) De Morgan law \equiv ((\neg P \vee \neg Q) \vee P) \vee Q associative law \equiv ((\neg Q \vee \neg P) \vee P) \vee Q commutative law \equiv (\neg Q \vee (\neg P \vee P)) \vee Q associative law
```

Associative law: $(P \lor Q) \lor R \equiv P \lor (Q \lor R)$

```
(P \wedge Q) \rightarrow (P \vee Q) \equiv \neg (P \wedge Q) \vee (P \vee Q) implication law \equiv (\neg P \vee \neg Q) \vee (P \vee Q) De Morgan law \equiv ((\neg P \vee \neg Q) \vee P) \vee Q associative law \equiv ((\neg Q \vee \neg P) \vee P) \vee Q commutative law \equiv (\neg Q \vee (\neg P \vee P)) \vee Q associative law \equiv (\neg Q \vee (\neg P \vee P)) \vee Q tautology & commutative
```

Tautology and commutative laws: $\neg P \lor P \equiv P \lor \neg P \equiv true$

```
(P \wedge Q) \rightarrow (P \vee Q) \equiv \neg (P \wedge Q) \vee (P \vee Q) implication law
\equiv (\neg P \vee \neg Q) \vee (P \vee Q) De Morgan law
\equiv ((\neg P \vee \neg Q) \vee P) \vee Q associative law
\equiv ((\neg Q \vee \neg P) \vee P) \vee Q commutative law
\equiv (\neg Q \vee (\neg P \vee P)) \vee Q associative law
\equiv (\neg Q \vee \text{true}) \vee Q tautology & commutative
\equiv \text{true} \vee Q domination & commutative
```

Domination and commutative laws: true \vee P \equiv P \vee true \equiv true

```
\equiv \neg (P \land Q) \lor (P \lor Q)
(P \land Q) \rightarrow (P \lor Q)
                                                      implication law
                            (\neg P \lor \neg Q) \lor (P \lor Q)
                                                            De Morgan law
                        \equiv ((\neg P \lor \neg Q) \lor P) \lor Q
                                                            associative law
                        \equiv ((\neg Q \lor \neg P) \lor P) \lor Q
                                                           commutative law
                           (\neg Q \lor (\neg P \lor P)) \lor Q
                                                           associative law
                                                            tautology & commutative
                            (¬Q∨true)∨Q
                                                      domination & commutative
                             true/0
                                                            domination & commutative
                             true
```

Domination and commutative laws: true \vee P \equiv P \vee true \equiv true

If we have true=1 and false=0, then we can define negation and conjuction by:

- not(P) = 1-P
- and(P,Q) = $P \cdot Q$

But what about disjunction, i.e. what is or (P,Q)?

• be careful, what is P+Q?

Can be derived using logical equivalences

- by expressing disjunction in terms of a logically equivalent formula including only conjunction and negation
- then applying above definitions for not(P) and and(P,Q)

We showed earlier that $P \lor Q \equiv \neg (\neg P \land \neg Q)$

```
or(P,Q) = not(and(not(P), not(Q))
```

```
We showed earlier that P \lor Q \equiv \neg(\neg P \land \neg Q)
```

```
or(P,Q) = not(and(not(P),not(Q))
= not(and(1-P,1-Q))
```

```
Using not(P) = 1-P
```

```
We showed earlier that P \lor Q \equiv \neg (\neg P \land \neg Q)
```

Using this equivalence we have

```
or(P,Q) = not(and(not(P),not(Q))
= not(and(1-P,1-Q))
= not((1-P)·(1-Q))
```

Using and $(P,Q) = P \cdot Q$

```
We showed earlier that P \lor Q \equiv \neg (\neg P \land \neg Q)
```

Using this equivalence we have

```
or(P,Q) = not(and(not(P),not(Q))
= not(and(1-P,1-Q))
= not((1-P)·(1-Q))
= 1 - (1-P)·(1-Q)
```

Using not(P) = 1-P

We showed earlier that $P \lor Q \equiv \neg (\neg P \land \neg Q)$

```
or(P,Q) = not(and(not(P),not(Q))
= not(and(1-P,1-Q))
= not((1-P)·(1-Q))
= 1 - (1-P)·(1-Q)
= 1 - (1 - P - Q + P·Q)
```

We showed earlier that $P \lor Q \equiv \neg (\neg P \land \neg Q)$

```
or(P,Q) = not(and(not(P),not(Q))

= not(and(1-P,1-Q))

= not((1-P)·(1-Q))

= 1 - (1-P)·(1-Q)

= 1 - (1 - P - Q + P·Q)

= P + Q - P·Q
```

Summary

Atomic propositions: p, q, r

Boolean connectives: ¬ ∧ ∨ ⊕ → ↔

Compound propositions

• e.g. $P = (p \land \neg q) \lor r$

Logical equivalences and laws of equivalence

(there is a pdf on moodle summarising all the laws)

Proving equivalences: use truth tables or laws of logical equivalence

Please look at the LaTeX exercise

LaTeX is a typesetting system that makes it easy to write out mathematical formulae

You will need to submit the answers to your assessed exercises using LaTeX

The first week's tutorial is a LaTeX exercise (designed by 4th year students in the CS Education course).

Designed to be entertaining!