```
title: "partiel Thomas SERVANT"
author: "Thomas SERVANT"
date: "12/22/2020"
output:
 html document: default
 pdf document: default
```{r setup, include=FALSE}
knitr::opts chunk$set(echo = TRUE)
R Markdown

 Spr> Dans le cadre de notre partiel, nous devons réaliser un total de 12
travaux retracant notre parcours et notre travail durant les 30 heures de
cours.
 Le travail à faire est le suivant :

- Une entête comportant un titre, un lien Github avec le ou les noms
des auteurs.
 - Une synthese de ce travail
 - Un extrait commenté avec des parties de codes clé avec explication
et commentaire.

 - Une évalutation du travail avec nos 5 criteres.
 - Une conclusion du travail

Definition des 5 critères de notations :

 1) Présentation et lisibilité du RMD.

 2) Knit opérationnel.

 3) Contenue facilement compréhensible.

 4) Facilité de réutilisation du code.

 5) Explication des outils utilisés.
Travail n°2 : "MNIST et Fashion MNIST (illustration dans R)"
Travail réalisé par "Kanlanfeyi Kabirou / Hounsinou Jordy".
https://github.com/kabirou7/PSBX/blob/main/MNIST.Rmd
Synthese :

br> Le RMD effectué par ces deux étudiants se base sur les technologies de
Machine Learning et de Deep Learning, deux technologie qui s'imposent dans
tous les secteurs d'activité de nos jours.

 MNIST et Fashion MNIST sont des bases de données a la bases de
l'apprentissage de ces technologies novatrices.

 Ils ont par ailleurs mis en place différentes applications d'algorithmes
pour montrer leur utilité.
Extrait commenté du code :
Dans leur introduction , les auteurs ont utilisé le code ci-dessous pour
illustrer leur exemple :
```{r, eval=FALSE}
library(readr)
```

```
library(randomForest)
library(caret)
library(naivebayes)
library(class)
#Pour fractionner les données
library(dplyr)
#Librairies Installée
#caret pour la matrice de confusion
#Lire les deux données: MNIST et fashion MNIST
mnist <- read csv("mnist train.csv")</pre>
fashion <- read csv("fashion mnist train.csv")</pre>
#Encodage de la colonne label
mnist$label = factor(mnist$label)
fashion$label = factor(fashion$label)
#Visualisation de la structure des données en affichant les premières lignes
head(mnist[1:10,1:10])
head(fashion[1:10,1:10])
#Données scindé en deux parties
train mnist <- sample frac(mnist, 0.8)</pre>
test mnist <- anti_join(mnist, train_mnist)</pre>
train fashion <- sample frac(fashion, 0.8)</pre>
test fashion <- anti join(fashion, train fashion)</pre>
#Random Forest
rf MNIST <- randomForest(label ~ ., data = train mnist, ntree = 10)
pred MNIST1 <- predict(rf MNIST, test mnist)</pre>
rf FASH <- randomForest(label ~ ., data = train fashion, ntree = 10)
pred FASH1 <- predict(rf FASH, test fashion)</pre>
#Naive bayes
bayes MNIST <- randomForest(label ~ ., data = train mnist)</pre>
pred MNIST2 <- predict(bayes MNIST, test mnist)</pre>
bayes FASH <- randomForest(label ~ ., data = train_fashion)</pre>
pred FASH2 <- predict(bayes FASH, test fashion)
#Utilisation de la matrice de confusion pour évaluer nos modèles construit
cm rf1 <- confusionMatrix(pred MNIST1, test mnist$label)</pre>
cm rf2 <- confusionMatrix(pred FASH1, test fashion$label)</pre>
cm nb1 <- confusionMatrix(pred MNIST2, test mnist$label)</pre>
cm nb2 <- confusionMatrix(pred FASH2, test fashion$label)</pre>
#Nous créons une matrice 2x2
valeurs <-
matrix(c(cm nb1$overall["Accuracy"],cm nb2$overall["Accuracy"],cm rf1$overall["Accuracy"],
ncol = 2)
colnames(valeurs)<- c("Naive Bayes", "Random Forest")</pre>
rownames(valeurs)<- c("MNIST", "Fashion MNIST")</pre>
tableau <- as.table(valeurs)</pre>
print(tableau)
# Visualisation de la matrice
cm rf1
## Evaluation du travail :
Ce tutoriel a pour but d'aborder les principes du machine Learning et du Deep
Learning, malheureusement le knit n'etant pas executable cela ne permet pas
de voir quelles sont les résultats obtenue.
<br> 1) Présentation et lisibilité du RMD : RMD structuré et facile a lire.
<br> 2) Knit opérationnel : RMD difficile a kniter, après avoir passé un long
moment a retrouver les fichier en csv, une erreur récurrente apparait au
```


 3) Contenue facilement compréhensible : Bonnes explication avec un bon

niveau de la ligne 65 et 66.

détail de chaque étape.

 4) Facilité de réutilisation du code : Le code a l'air d'être bien détaillé, cependant ne marchant pas chez moi il semble donc très peu réutilisable.

br> 5) Explication des outils utilisés : Les différents chunk de code sont bien détaillé, cela aide a la compréhension d'utilisation de tel fonction ou packages.

Conclusion :

On peux donc en conclure que c'est un bon RMD, facile a lire et a comprendre grâce a leurs nombreuses explications. Cependant, le faite que leur travail soit autant tournés vers un seul exemple rend le code difficilement réutilisable.