Université Paris-Sud - Topologie et Calcul Différentiel Année 2021-2022

Examen du mardi 26 Avril 2021

Début 13h30 Durée : 3 heures

Les téléphones portables doivent obligatoirement être rangés <u>éteints</u>. Documents et appareils électroniques interdits.

Dans tout cet énoncé, \mathbb{R}^n est muni de la norme euclidienne, notée $||\ ||$, et de la distance euclidienne. Donc $||x|| = \left\{\sum_{j=1}^n x_j^2\right\}^{1/2}$. On notera $\langle x,y\rangle$ le produit scalaire euclidien entre $x\in\mathbb{R}^n$ et $y\in\mathbb{R}^n$. On note (e_1,e_2,\ldots,e_n) la base canonique de \mathbb{R}^n .

Exercice 1. Soit $\Omega \subset \mathbb{R}^n$ un ouvert connexe; on rappelle que connexe signifie que $(1-t)x + ty \in \Omega$ pour $x \in \Omega$, $y \in \Omega$, et $t \in [0,1]$. Soit $f : \Omega \to \mathbb{R}$ une fonction différentiable.

On suppose que Df(x) = 0 pour tout $x \in \Omega$, et on veut en déduire que f est constante sur Ω , mais on est prié ne ne pas utiliser le résultat du cours qui dit ceci.

Soient $x, y \in \Omega$, avec $x \neq y$. On pose h(t) = f((1-t)x + ty) pour $t \in [0,1]$.

- 1. Expliquer pourquoi h est définie et continue sur [0,1].
- 2. Expliquer pourquoi h est dérivable sur]0,1[, et calculer sa dérivée en $t \in]0,1[$ (à partir de la différentielle Df de f).
- 3. Démontrer que h(1) = h(0) et conclure.

Exercice 2. On considère l'application $G: \mathbb{R}^4 \to \mathbb{R}^2$ donnée par ses coordonnées

$$g_1(x_1, x_2, x_3, x_4) = \cos(x_1^2) + 6\sin(x_1x_2) + 4x_3 - 3x_4$$

$$g_2(x_1, x_2, x_3, x_4) = e^{x_1 + x_2} + 3x_3 - 2x_4.$$

On considère aussi le point $w = (1,1) \in \mathbb{R}^2$ et l'ensemble

$$S = G^{-1}(w) = \{x \in \mathbb{R}^4 ; G(x) = w\}.$$

- 1. Calculez les dérivées partielles des g_i en tout point $x=(x_1,x_2,x_3,x_4) \in \mathbb{R}^4$, et en déduire que G est differentiable sur \mathbb{R}^4 .
- 2. Enoncer le théorème des fonctions implicites qui devrait vous permettre de montrer que près de 0, l'ensemble S est le graphe d'une fonction $(x_1, x_2) \mapsto \varphi(x_1, x_2)$.
- 3. Vérifier les hypothèses et conclure.
- 4. On note $\varphi_1(x_1, x_2)$ et $\varphi_2(x_1, x_2)$ les deux coordonnées de $\varphi(x_1, x_2)$. Expliquer pourquoi

$$g_1(x_1, x_2, \varphi_1(x_1, x_2), \varphi_2(x_1, x_2)) = g_2(x_1, x_2, \varphi_1(x_1, x_2), \varphi_2(x_1, x_2)) = 1$$

pour tout $(x_1, x_2) \in \mathbb{R}^2$ assez proche de 0.

5. Utiliser la question précédente pour calculer les quatre dérivées partielles $\frac{\partial \varphi_i}{\partial x_j}(0,0)$, i=1,2, j=1,2.

1

Exercice 3. On considère la région triangulaire

$$T = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, \text{ et } x + y \le 2\},\$$

et l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(x,y) = xy(x+y) pour $(x,y) \in \mathbb{R}^2$. On pose

$$m = \inf \{ f(x, y) ; (x, y) \in T \} \text{ et } M = \inf \{ f(x, y) ; (x, y) \in T \}.$$

- 1. Vérifier que f est différentiable et calculer ses dérivées partielles.
- 2. Vérifier que l'ensemble des points critiques de f est exactement l'union des deux axes de coordonnées.
- 3. Démontrer qu'il existe $(x_1, y_1) \in T$ tel que $f(x_1, y_1) = m$, et $(x_2, y_2) \in T$ tel que $f(x_2, y_2) = M$.
- 4. Démontrer que m=0 et déterminer l'ensemble des points $(x_1,y_1) \in T$ tels que $f(x_1,y_1) = (0,0)$.
- 5. Démontrer que (x_2, y_2) appartient au bord de T, puis que $x_2 + y_2 = 2$.
- 6. Etudier la fonction h définie par h(x) = 2x(2-x) et en déduire la valeur de M et de (x_2, y_2) .

Exercice 4. On considère la matrice $M = \begin{pmatrix} 2 & \alpha & 0 \\ \alpha & -3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$, où α est un paramètre réel, et on note Q la forme quadratique sur \mathbb{R}^3 définie par $Q(x) = \langle Mx, x \rangle$ pour $x \in \mathbb{R}^3$.

- 1. Calculer $Q(e_1), Q(e_2), Q(e_3)$, et $Q(e_1 + e_2)$, où l'on a noté (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .
- 2. Montrer que Q ne peut pas être ni définie positive ni définie négative.
- 3. Calculer le rang de M et en déduire que Q n'est pas non plus dégénérée.
- 4. On suppose que M est la matrice hessienne en 0 = (0, 0, 0) d'une fonction de classe $C^2 f : \mathbb{R}^3 \to \mathbb{R}$, et que Df(0) = 0. Donner un développement limité d'ordre 2 de $f(x_1, x_2, x_3)$ au voisinage de 0.
- 5. Déduire des questions précédentes que f n'a ni minimum local en 0, ni maximum local en 0.
- 6. Expliquez pourquoi $M'=\begin{pmatrix}2&2&0\\-2&-3&0\\0&0&4\end{pmatrix}$ n'est pas la matrice hessienne en 0=(0,0,0) d'une fonction de classe C^2 .

Exercice 5. On considère la fonction $F: \mathbb{R}^2 \to \mathbb{R}^2$ définie par ses coordonnées

$$F_1(x,y) = \cos(x) + 4\sin(y) + \frac{1}{1+x^2+y^2}$$

$$F_2(x,y) = 2x + 3y - \sin(x+y).$$

- 1. Démontrer que F est différentiable et calculer ses dérivées partielles.
- 2. Vérifier que $|2x| \leq 1 + x^2$, puis que $\left|\frac{\partial F_1}{\partial x}(x,y)\right| \leq 2$, $\left|\frac{\partial F_1}{\partial y}(x,y)\right| \leq 5$, $\left|\frac{\partial F_2}{\partial x}(x,y)\right| \leq 3$, et $\left|\frac{\partial F_2}{\partial y}(x,y)\right| \leq 4$ pour $(x,y) \in \mathbb{R}^2$.
- 3. En déduire que $||\nabla F_1||_{\infty} \leq \sqrt{29}$ et $||\nabla F_2||_{\infty} \leq 5$.
- 4. En déduire que F_1 est $\sqrt{29}$ -Lipschitzienne et F_1 est 5-Lipschitzienne.
- 5. En déduire que F est $\sqrt{54}$ -Lipschitzienne.
- 6. Utiliser un théorème important du cours pour montrer qu'il existe un unique $(x,y) \in \mathbb{R}^2$ tel que F(x,y) = 100(x,y).

Exercice 6. Soit E un sous-ensemble de \mathbb{R}^n . On dit que E est convexe quand $(1-t)x+ty\in E$ pour tout $x\in E$, tout $y\in E$, et tout $t\in [0,1]$.

On dit que E est connexe si pour tout choix de deux ensembles ouverts U_1 et U_2 de \mathbb{R}^n tels que

$$E \subset U_1 \cup U_2 \quad \text{et} \quad U_1 \cap U_2 \cap E = \emptyset, \tag{1}$$

on a soit $E \subset U_1$ (et donc $E \cap U_2 = \emptyset$), soit $E \subset U_2$ (et donc $E \cap U_1 = \emptyset$).

On admettra dans cet exercice que l'intervalle $[0,1] \subset \mathbb{R}$ est connexe.

1. On prend $E = [a, b] \subset \mathbb{R}$ (avec $a, b \in \mathbb{R}$, a < b). Vérifier que E est convexe.

On veut maintenant montrer que si $E \subset \mathbb{R}^n$ est un ensemble convexe (non vide), alors E est connexe. On se donne donc U_1 et U_2 , deux ouverts de \mathbb{R}^n tels qu'on ait (1), et on suppose qu'on peut trouver $x_1 \in E \cap U_1$ et $x_2 \in E \cap U_2$. Donc $x_1 \neq x_2$.

On pose $V_1 = \{t \in \mathbb{R} ; (1-t)x_1 + tx_2 \in U_1\}$ et $V_2 = \{t \in \mathbb{R} ; (1-t)x_1 + tx_2 \in U_2\}.$

- 2. Montrer que V_1 et V_2 sont des ouverts de \mathbb{R} .
- 3. Montrer que V_1 et V_2 sont disjoints.
- 4. Montrer que $[0,1] \subset V_1 \cup V_2$.
- 5. En déduire une contradiction et conclure.

Exercice 7. On considère la fonction $g: \mathbb{R}^2 \to \mathbb{R}$ définie par $g(x,y) = 3x^2 + 3y^2 - 2xy + 16x$.

- 1. Déterminer les points critiques de f.
- 2. Démontrer que $|2xy| \le x^2 + y^2$ pour $(x,y) \in \mathbb{R}^2$ et $16x \le 16\sqrt{x^2 + y^2} \le x^2 + y^2$, pour tout (x,y) tel que $\sqrt{x^2 + y^2} \ge 16$.
- 3. On pose $K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2^8\}$, puis

$$m_1 = \inf \{ g(x,y) ; (x,y) \in K \} \text{ et } m_2 = \inf \{ g(x,y) ; (x,y) \in \mathbb{R}^2 \}.$$

- 4. Montrer qu'il existe $(x_0, y_0) \in K$ tel que $g(x_0, y_0) = m_1$.
- 5. Vérifier que $m_2 \leq m_1 \leq 0$.
- 6. Vérifier que $m_2 = m_1$.
- 7. En déduire que g atteint son minimum sur \mathbb{R}^2 , déterminer (x_0, y_0) , et calculer m_2 .