

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2001036025 A

(43) Date of publication of application: 09.02.01

(51) Int. CI

H01L 27/10

H01L 21/3205

H01L 27/04

H01L 21/822

H01L 27/108

H01L 21/8242

(21) Application number: 11204713

(22) Date of filing: 19.07.99

(71) Applicant:

NEC CORP

(72) Inventor:

HIROI MASAYUKI

(54) MANUFACTURE OF FERROELECTRIC MEMORY DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a method for manufacturing a ferroelectric memory device which hardly COPYRIGHT: (C)2001, JPO has degradation in remanence polarity characteristic, even if a metal wiring is formed near a ferroelectric capacitor.

SOLUTION: A perovskite system oxide, which is a ferroelectric material 4, is interposed between an upper electrode 5 and a lower electrode 3, to form a ferroelectric capacitor 9. Using a remanence polarity characteristic of the capacitor 9, a ferroelectric memory device 10 is manufactured. In this case, when forming a metal wiring 7 having a large coefficient of thermal expansion such as an Al wiring on the upper electrode, the material of the metal wiring 7 is heated to a temperature exceeding the Curie temperature of the ferroelectric material 4 to form the metal wiring 7. Thereby, while the temperature decreases, the tensile stress applied to a capacitor 6 from the wiring 7 is reduced at the Curie temperature, and thereby the degradation of a polarization characteristic of the ferroelectric material 4 is suppressed. The same result would be obtained if a wiring is formed with a material, which is fluidized at a temperature higher than the Curie temperature of the ferroelectric material 4, and

thereafter the wiring is heated upto a fluidization temperature of the material of the wiring. Interposing a barrier film 8 between the upper electrode and the metal wiring 7 can also relax the influence of thermal expansion of the wiring.

		-
		•
		٠

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-36025 (P2001-36025A)

デーファート*(<u>余夫</u>)

(43)公開日 平成13年2月9日(2001.2.9)

(51) Int.Cl.'		識別記号		E. I				7	(1-1 (多号)
H01L	27/10	451		H 0	1 L	27/10		451	5 F O 3 3
	21/3205					21/88		N	5 F O 3 8
	27/04					27/04		С	5F083
	21/822					27/10		651	
	27/108		審査請求	有	請求	対項の数8	OL	(全 9 頁)	最終頁に続く
(21)出願番号	}	特題平11-204713		(71)	出願	•	4237 直気株式	会社	
(22)出願日		平成11年7月19日(1999.7.19)						五丁目7番1	号
(, / , 112, 174				(72)	発明	者 廣井	政幸		
					東京都	8港区芝	五丁目7番1	号 日本電気株	
					式会社	上内			
				(74)	代理	人 10008	9875		

TO T

最終頁に続く

(54) 【発明の名称】 強誘電体メモリ素子の製造方法

(57)【要約】

【課題】 キャパシタを構成する強誘電体の分極特性の 劣化を抑制する。

【解決手段】 強誘電体 4 としてペロブスカイト系酸化物を上部電極 5 および下部電極 3 の間に介在させ強誘電体キャパシタ9を形成して同キャパシタの残留分極特性を利用した強誘電体メモリ素子 1 0 を製造する場合に上部電極上に A 1 などの熱膨張率の大きい金属配線 7 を形成する際、金属配線 7 の材料を強誘電体 4 のキュリー点を超える温度に加熱して金属配線 7 を成膜する。 これにより降温時に上記キュリー点を通過するとき配線 7 からキャパシタ6 にかかる引張り応力が減弱し強誘電体 4 の分極特性の劣化が抑制される。また強誘電体 4 のキュリー点より高温度で流動化する材料の配線を上部電極上に形成した後、同配線材料が流動化する温度に加熱しても同様の結果となる。また上部電極と金属配線 7 との間にバリア膜 8 を介在させても配線の熱膨張の影響を緩和できる。

弁理士 野田 茂

【特許請求の範囲】

【請求項1】 強誘電体としてペロブスカイト系酸化物 を2つの電極の間に介在させ強誘電体キャパシタを形成 して、同強誘電体キャパシタの残留分極特性を利用した 強誘電体メモリ素子を製造する方法であって、

前記強誘電体メモリ素子の近傍に金属配線を形成する際 に、前記金属配線の材料を前記強誘電体のキュリー点を 超える温度に加熱して前記金属配線を成膜することを特 徴とする強誘電体メモリ素子の製造方法。

【請求項2】 強誘電体としてペロブスカイト系酸化物 を2つの電極の間に介在させ強誘電体キャパシタを形成 して、同強誘電体キャパシタの残留分極特性を利用した 強誘電体メモリ素子を製造する方法であって、

前記強誘電体メモリ素子の近傍に、前記強誘電体のキュ リー点より高い温度で流動化する材料から成る金属配線 を形成した後、少なくとも前記金属配線周辺を、前記金 属配線の材料が流動化する温度に加熱することを特徴と する強誘電体メモリ素子の製造方法。

【請求項3】 強誘電体としてペロブスカイト系酸化物 を第1および第2の電極の間に介在させ強誘電体キャパ シタを形成して、同強誘電体キャパシタの残留分極特性 を利用した強誘電体メモリ素子を製造する方法であっ

前記第1の電極の外側表面上に金属配線を形成する際 に、前記第1の電極に対して前記第1の電極の延在方向 に圧縮応力を作用させる膜によって前記第1の電極を被 覆し、その後、前記被覆膜の上に前記金属配線を成膜す ることを特徴とする強誘電体メモリ素子の製造方法。

400°C以下の温度でシリコン窒化物 を成膜して前記被覆膜とすることを特徴とする請求項3 記載の強誘電体メモリ素子の製造方法。

【請求項5】 前記金属配線の材料は、Al またはC u、あるいはAlおよびCuの合金を主成分とすること を特徴とする請求項1ないし3のいずれかに記載の強誘 電体メモリ素子の製造方法。

【請求項6】 前記金属配線の材料は、AlまたはC u、あるいはAIおよびCuの合金を主成分とし、AI またはCuの含有率、あるいはAlおよびCuの合計の 含有率が90%を越えることを特徴とする請求項5記載 の強誘電体メモリ素子の製造方法。

【請求項7】 前記金属配線は電極の外側表面上に形成 することを特徴とする請求項1または2に記載の強誘電 体メモリ素子の製造方法。

【請求項8】 前記強誘電体キャパシタはシリコン酸化 膜により表面が覆われたシリコン基板上に形成すること を特徴とする請求項1ないし3のいずれかに記載の強誘 電体メモリ素子の製造方法。

【発明の詳細な説明】

[0001]

の製造方法に関するものである。

[0002]

【従来の技術】強誘電体を用いたメモリ素子は、強誘電 体の残留分極を利用して、電源切断時にも情報を保持す る不揮発性メモリとして使用される。強誘電体キャパシ タの分極特性はヒステリシスを示し、いったん正の電界 をかけた後、電界を零に戻すと残留分極 Pr は正とな り、一方、いったん負の電界をかけた後、電界を零に戻 すと残留分極Prは負となる。強誘電体メモリ素子で は、これら正負の残留分極の差を用いて、情報の書き込 み、および読み出しが行われる。

【0003】強誘電体キャパシタは、PZT (Pb (Z rxTi1-x) O3) やY1 (SrBi2Ta2O9) のよう なペロブスカイト系酸化物により形成され、これをPt (金)、Ir(イリジウム)、IrO2(酸化イリジウ ム)、Ru(ルビジウム)、RuO2(酸化ルビジウ ム)といった酸化されにくい金属による電極、または導 電性を有する酸化物による電極で挟み込む構造とされ る。ところで、集積回路として上記強誘電体メモリ素子 を半導体基板上に集積化して用いる場合、Al (アルミ ニウム) などで各メモリ素子間の配線を行う必要があ る。この配線は、従来、強誘電体素子以外の素子と同一 の工程で形成されていた。

[0004]

【発明が解決しようとする課題】しかしながら、上記ペ ロブスカイト系酸化物を用いた強誘電体キャパシタにお いては、強誘電体キャパシタ上にAI配線が存在する と、強誘電体キャパシタの残留分極特性が劣化し、正負 の残留分極の差が小さくなって強誘電体キャパシタが記 憶素子としての機能を果たさなくなってしまうという問 題があった。たとえば、下部および上部にPt電極を配 したPZTからなる強誘電体キャパシタの上部に、シリ コン酸化膜からなる絶縁層を形成し、その上にTi(チ タン)およびAI層を室温でスパッタ法を用いて形成 し、その後に400°Cの熱処理を施すと、正負の残留 分極の差が熱処理前に比べて小さくなるとともに、上部 Pt電極とPZT容量間に剥離が生じてしまう。A1層 を形成しない場合、またはA1層を形成後除去した場合 には、同じ熱処理を施しても、残留分極特性の劣化およ び剥離は生じない。したがって、AI層が存在すること が上記の残留分極特性劣化および剥離の原因である。

【0005】半導体メモリの製造プロセスにおいてAI またはCu(銅)などの低抵抗の金属材料による配線の 使用は必須である。さらに、保護膜の形成などのため、 配線を形成した後に熱が加わることは避けられない。通 常、一般的に用いられる配線の保護膜であるシリコン酸 化膜は、比較的低温の製法であるプラズマCVD法やS OG(Spin on Glass)を用いた場合にも 400°C程度の温度を必要とする。スパッタ法によれ 【発明の属する技術分野】本発明は強誘電体メモリ素子 50 ば室温のような低温においてもシリコン酸化膜は成膜可

能であるが、著しく膜質が悪いために用いられない。また、シリコン酸化膜以外の有機系低誘電率材料も、配線を被覆する材料として用いられるが、成膜には同様に400°C程度の高温を必要とする。したがって、従来、残留分極特性の劣化を抑えつつ強誘電体キャパシタを用いた半導体メモリ素子を製造することは困難であった。【0006】本発明はこのような問題を解決するためになされたもので、その目的は、強誘電体キャパシタの近傍に金属配線を形成しても残留分極特性の劣化が生じ難い強誘電体メモリ素子の製造方法を提供することにある

[0007]

【課題を解決するための手段】本発明は、上記目的を達 成するため、強誘電体としてペロブスカイト系酸化物を 2つの電極の間に介在させ強誘電体キャパシタを形成し て、同強誘電体キャパシタの残留分極特性を利用した強 誘電体メモリ素子を製造する方法であって、前記強誘電 体メモリ素子の近傍に金属配線を形成する際に、前記金 属配線の材料を前記強誘電体のキュリー点を超える温度 に加熱して前記金属配線を成膜することを特徴とする。 【0008】したがって、本発明の強誘電体メモリ素子 の製造方法では、その後の熱処理工程における降温時に キュリー点を通過するときには、前記金属配線は収縮し ようとして、キャパシタを構成する強誘電体に圧縮応力 がかかる。その結果、従来のように金属配線をより低い 温度で成膜した場合のように引っ張り応力が強誘電体に かかることがなく、強誘電体キャパシタの残留分極特性 の劣化を抑制して、強誘電体キャパシタの記憶素子とし ての性能を確保することができる。

【0009】また、本発明は、強誘電体としてペロブスカイト系酸化物を2つの電極の間に介在させ強誘電体キャパシタを形成して、同強誘電体キャパシタの残留分極特性を利用した強誘電体メモリ素子を製造する方法であって、前記強誘電体メモリ素子の近傍に、前記強誘電体のキュリー点より高い温度で流動化する材料から成る金属配線を形成した後、少なくとも前記金属配線周辺を、前記金属配線の材料が流動化する温度に加熱することを特徴とする。

【0010】このように金属配線を加熱して流動化させた場合には、金属配線は、流動化後に固化した温度で成膜されることと同等となり、金属配線を強誘電体のキュリー点より高い温度で熱処理して成膜した場合と同じ結果が得られる。したがって、本発明の強誘電体メモリ素子の製造方法によっても、従来のように金属配線をより低い温度で成膜した場合のように引っ張り応力が強誘電体にかかることがなく、強誘電体キャパシタの残留分極特性の劣化を抑制して、強誘電体キャパシタの記憶素子としての性能を確保することができる。

【0011】また、本発明は、強誘電体としてペロブス 成する強誘電体キャパシタ9の分極特性の実測結果を示カイト系酸化物を第1および第2の電極の間に介在させ 50 すグラフである。図中、縦軸は分極を表し、横軸は電圧

強誘電体キャパシタを形成して、同強誘電体キャパシタの残留分極特性を利用した強誘電体メモリ素子を製造する方法であって、前記第1の電極の外側表面上に金属配線を形成する際に、前記第1の電極に対して前記第1の電極の延在方向に圧縮応力を作用させる膜によって前記第1の電極を被覆し、その後、前記被覆膜の上に前記金属配線を成膜することを特徴とする。

【0012】したがって、本発明の強誘電体メモリ素子の製造方法では、前記被覆膜の上に形成した金属配線が、強誘電体のキュリー点以上の高温の熱処理により膨張し、強誘電体を膨張させようとする力が生じても、その力は第1の電極に対して圧縮力を与える被覆膜によって緩和される。その結果、強誘電体キャパシタの残留分極特性の劣化が抑制され、強誘電体キャパシタの記憶素子としての性能を確保することができる。

[0013]

【発明の実施の形態】次に本発明の実施の形態例について図面を参照して説明する。図1は本発明による強誘電体メモリ素子の製造方法の一例によって作成した強誘電体メモリ素子を例示する断面側面図である。図1に示した強誘電体キャパシタ9から成る強誘電体メモリ素子10は、本発明の強誘電体メモリ素子の製造方法にもとづき次のようにして作成する。すなわち、まずシリコン基板1上に熟酸化によってシリコン酸化膜2を形成し、その上に下部電極3として20nmの厚さのTi層および200nmの厚さのPt層を順次積層する。その後、Pb(Zro.52Tio.48)O3をゾルゲル法によって600°Cで300nmの厚さに形成して強誘電体4とする。なお、Pbは鉛、Zrはジルコニウムをそれぞれ表す

【0014】つづいて、強誘電体4の上に上部電極5と して、IrO2およびIrの薄膜をそれぞれ50nmお よび150nmの厚さに順次、200°Cでスパッタ法 によって形成し、その後、イオンミリング法によってパ ターニングを行う。そして、酸素雰囲気中において60 0°Cで熱処理を行った後に、絶縁膜6となる500n m厚のシリコン酸化膜を、O3-TEOS (テトラエト キシシラン)を原料とするСVD法によって375°С の温度で形成する。その後、プロセスダメージを除去す るために、酸素雰囲気中で600°Cの熱処理を行う。 【0015】つづいて、金属配線7として、スパッタ法 によって、Ti、TiNの薄膜それぞれ50nm、50 nmの厚さに基板温度150°Cで順次形成した後、A lの薄膜を550nmの厚さに、強誘電体4のキュリー 点より高い500°Cで形成し、その後、窒素雰囲気中 で400°Cの熱処理を行う。

【0016】図2は本発明の強誘電体メモリ素子の製造方法の一例により作成した強誘電体メモリ素子10を構成する強誘電体キャパシタ9の分極特性の実測結果を示すグラフである。図中、縦軸は分極を表し、横軸は電圧

を表している。図2からわかるように分極特性は明瞭な ヒステリシス特性を示しており、良好な残留分極特性を 有する強誘電体キャパシタ9が形成されたことがわか る。

【0017】また、図3の(A)は、金属配線7を形成する際に基板温度を従来通りの150°CとしてAlを形成し、窒素雰囲気中での熱処理を行う前の分極特性の測定結果を示すグラフ、(B)は(A)の試料を400°Cで熱処理を行った場合の分極特性の測定結果を示すグラフ、(C)はAlを用いなかった場合の分極特性の測定結果を示すグラフである。図2のグラフを図3の(A)のグラフと比較すると、ヒステリシス特性の若干の低下が見られるもののその程度はきわめてわずかである。したがって、本発明にしたがって強誘電体メモリ素子10を作成した場合には、上述のように熱処理を行っても残留分極特性の劣化が抑制されることがわかる。

【0018】さらに、図2のグラフを図3の(B)のグラフと比較すると、その差は歴然としている。すなわち、従来通りの製造方法では、図3の(B)に示したようにヒステリシス特性はほとんど消滅しているのに対し、本実施の形態例では上述のように良好なヒステリシス特性、すなわち残留分極特性が得られている。また、図2のグラフを図3の(C)のグラフと比較すると、両グラフはほぼ一致している。このことは、本実施の形態例では、金属配線7の形成にAlを用いない場合とほぼ同程度に良好な残留分極特性が得られ、Alを用いているにもかかわらず残留分極特性が劣化していないことを示している。

【0019】なお、図3の(C)に示したように、金属 配線7の形成にAlを用いない場合には残留分極特性の 30 劣化が軽微であることから、金属配線7と強誘電体キャ パシタ9との間を接着している絶縁膜6としてのシリコ ン酸化膜の存在は残留分極特性には大きい影響を与えて いないことがわかる。シリコン酸化膜は、自身の熱膨張 係数10.3×10-6 K-1 (丸善、応用物理データブ ック、692頁)によって膨張、収縮の作用を及ぼす が、上記のCVD法によって成膜されたシリコン酸化膜 は、弾性率が比較的高くやわらかいため、結果として上 部の配線層からの応力を伝える媒体として主に作用し、 配線層からの応力が残留分極特性に大きく影響して図3 の(B)と図3の(C)との差が生じたものと考えられ る。同様に、金属配線7を構成する配線下部構造のTi およびTiNの影響もAlからの影響に比べて小さいと 考えられ、これはTiおよびTiNの膜厚が小さいため と思われる。

【0020】次に、本実施の形態例の製造方法により強誘電体メモリ素子10を作成した場合に、なぜ残留分極特性の劣化が抑制されるかについて詳しく説明する。まず、従来の製造方法で強誘電体キャパシタの残留分極特性が劣化する原因の分析結果について説明する。Jou

rnal of Applied Physics中の 関連論文(Vol. 78, No. 3, pp. 1926-1933, 1995)に記載されているうに、強誘電体 キャパシタに強誘電体のキュリー点を越える温度の熱処 理を施した場合には、降温時にキュリー点を通過する際 に強誘電体に引張り応力がかかっていると残留分極特性 が劣化し、逆に圧縮応力がかかっていると残留分極特性 が改善されることが知られている。

【0021】また、ペロブスカイト系酸化物による強誘電体の熱膨張係数は、現在のところあまり明らかにはなっていないが、たとえばPZTでは 2.0×10^{-6} K $^{-1}$ (Journal of Applied Physics, Vol. <math>34, pp. 1392-1398, 1963) という値が報告されており、 $Alo28.7\times10^{-6}$ K $^{-1}$ 、 $Cuo18.2\times10^{-6}$ K $^{-1}$ (丸善、応用物理データブック、530 頁より)などの半導体素子中の配線に用いられる金属材料の熱膨張係数に比べてかなり小さい。

【0022】従来は、強誘電体キャパシタの上部や周辺にAIなどの配線を配する場合、配線材料は室温または200°C以下の比較的低温で成膜されていた。ペロブスカイト系酸化物強誘電体のキュリー点は、たとえばPZTでは300~400°Cの間であり、一般に従来の配線材料成膜温度よりも高い。したがって、その後の工程において強誘電体のキュリー点を越えるような熱処理が施されたとき、配線材料料は成膜時よりも高温にさらされるために膨張し、これに対して強誘電体はそれほど膨張しないために、配線材料から強誘電体に対する引張り応力が生じる。

2 【0023】図10の(A)は従来の製造方法における 金属配線7と強誘電体4とが離れているとした場合の各 温度における金属配線7および強誘電体4の状態を示す 模式断面図、(B)は金属配線7と強誘電体4とが接着 されている場合の各温度における金属配線7および強誘 電体4の状態を示す模式断面図である。図中、図1と同 一の要素には同一の符号が付されている。

【0024】強誘電体4のキュリー点より低い温度Tで金属配線7を成膜すると、その後、キュリー点Tcの熱処理を行った場合、図10の(A)に示したように、A1などの金属配線7は、強誘電体4に比べ大幅に膨張する。したがって、実際の強誘電体メモリ素子10では、金属配線7と強誘電体4とが電極(図示せず)を介して接着されているため、図10の(B)に示したように、金属配線7には圧縮応力が働き、一方、強誘電体4には引っ張り応力が働く。従来の製造方法では、このことが原因となって、強誘電体4の残留分極特性が劣化する。【0025】図4の(A)は実施の形態例における金属配線7と強誘電体4とが離れているとした場合の各温度における金属配線7および強誘電体4の状態を示す模式断面図、(B)は金属配線7と強誘電体4とが接着され

50

ている場合の各温度における金属配線7および強誘電体 4の状態を示す模式断面図である。

【0026】本実施の形態例では、上述のようにAlを 含む金属配線7は、強誘電体4のキュリー点Tcより高 い温度Tで成膜する。したがって、その後、キュリー点 Tcの熱処理を行った場合、図4の(A)に示したよう に、AIなどの金属配線7は、強誘電体4より大きく収 縮する。したがって、金属配線7と強誘電体4とが電極 を介して接着されている実際の強誘電体メモリ素子10 では、図4の(B)に示したように、金属配線7には引 っ張り応力が働き、一方、強誘電体4には圧縮応力が働 く。すなわち、熱膨張係数の大きな金属配線7を強誘電 体4のキュリー点よりも高温で成膜することにより、そ の後の熱処理工程における降温時にキュリー点を通過す るときには、熱膨張係数の大きな金属配線7は相対的に 大きく収縮しようとするため、強誘電体4には圧縮応力 がかかる。その結果、本実施の形態例の製造方法では、 従来の低温成膜時に問題となった引張り応力による残留 分極特性の劣化を抑制することができる。

【0027】なお、このことから明らかなように、金属配線7を形成する際には、強誘電体4のキュリー点より可能な限り成膜温度を高くする方がよく、できればその後の全工程で用いられる全ての温度よりも高い温度とすることが望ましい。本実施の形態例では、金属配線7はA1を用いて形成したが、同じく熱膨張率の大きいCuを用いる場合、さらにはA1とCuとの合金を用いる場合にも本発明は無論有効である。そして、金属配線7はA1やCuだけによって形成する場合に限らず、それらを主成分とする材料により形成する場合にも、本発明は有効である。例えば、A1またはCuの含有率、あるいはA1およびCuの合計の含有率が90%を越えるような材料を用いる場合、本発明により残留分極特性の劣化を効果的に抑制することができる。

【0028】また、金属配線7が流動化する温度が、強誘電体4のキュリー点よりも高い場合には、金属配線7を強誘電体4のキュリー点よりも低い温度で成膜した後に、金属配線7が流動化する温度にまで熱を加えることによっても、同様の効果を得ることができる。その理由は、金属配線7は、流動化後に固化した温度で成膜されることと同等となるからであり、したがって、金属配線7を強誘電体4のキュリー点より高い温度で熱処理して成膜した場合と同じ結果となる。

【0029】図5は、金属配線7を低温で成膜した後、高温で流動化させた場合の分極特性を示すグラフである。この例では、金属配線7を150°Cで形成した後、スパッタ装置内から出さずに真空中で600°Cまで加熱し、流動化させた。図4のグラフを図2のグラフと比較してわかるように、金属配線7の形成温度を高温にした場合と同様に、残留分極特性の劣化が抑制されている。600°Cという温度は、常圧におけるAlの融

点660°C(丸善、応用物理データブック、630 頁)よりも低いが、真空中では400°C程度の低温で も表面のAIが流動するため、常圧よりも低温で応力が 減少する効果が得られたと考えられる。

【0030】次に、本発明の第2の実施の形態例につい て図面を参照して説明する。図6は本発明による強誘電 体メモリ素子の製造方法の第2の実施の形態例によって 作成した強誘電体メモリ素子を例示する断面側面図であ る。図中、図1と同一の要素には同一の符号が付されて いる。図6に示した強誘電体キャパシタ9から成る強誘 電体メモリ素子11は、本発明の強誘電体メモリ素子の 製造方法にもとづき次のようにして作成する。すなわ ち、まず上記実施の形態例の場合と同様に、シリコン基 板1上に熱酸化によってシリコン酸化膜2を形成し、そ の上に下部電極3として20nmの厚さのTi層および 200nmの厚さのPt層を順次積層する。その後、P b (Zro.52 Tio.48) O3をゾルゲル法によって60 0° Cで300nmの厚さに形成して強誘電体4とす る。つづいて、強誘電体4の上に上部電極5として、 I r O2および I r の薄膜をそれぞれ50 n mおよび15 0 n mの厚さに順次、200° Cでスパッタ法によって 形成し、イオンミリング法によりパターニングを行う。 そして、酸素雰囲気中において600°Cで熱処理を行

【0031】その後、絶縁膜の形成において、100 nm厚のシリコン酸化膜6 Aを、O3-TEOS(テトラエトキシシラン)を原料とするCVD法によって375°Cで形成し、つづいてスパッタ法によってバリア膜8となるシリコン窒化膜を室温で400 nmの厚さに成膜する。すなわち、第2の実施の形態例では、図1に示した絶縁膜6を成す500 nm厚のシリコン酸化膜6の代わりに、400 nm厚のシリコン酸化膜6 Aの2層構造の絶縁膜を形成する。

【0032】その後、プロセスダメージを除去するために、酸素雰囲気中で600° Cの熱処理を行う。つづいて、金属配線 7 として、Ti、Ti N、ならびにAl の薄膜をそれぞれ50 n m、50 n m、ならびに550 n mの厚さに、スパッタ法によって基板温度150° Cで順次形成し、その後、窒素雰囲気中で400° Cの熱処理を行う。

【0033】図7は第2の実施の形態例により作成した 強誘電体メモリ素子11を構成する強誘電体キャパシタ 9の分極特性の実測結果を示すグラフである。図中、縦 軸は分極を表し、横軸は電圧を表している。図7からわ かるように分極特性は明瞭なヒステリシス特性を示して おり、良好な残留分極特性を有する強誘電体キャパシタ 9が形成されたことがわかる。

にした場合と同様に、残留分極特性の劣化が抑制されて 【0034】シリコン窒化膜の熱膨張係数はシリコンと いる。600°Cという温度は、常圧におけるAlの融 50 ほぼ似た値で、約 $2\sim4\times10^{-6}\,\mathrm{K}^{-1}$ 程度(丸善、化学

40

便覧応用化学編I、110頁など)であり、A1の28.7×10-6 K-1より一桁程度低く、PZTの熱膨張係数とほぼ同程度である。また、シリコン窒化膜に関しては、成膜したのみで真性応力が発生し、その応力は成膜法によって大きく変動することが知られている。一般に減圧化学気相成長法による600°C以上の比較的高い温度での成膜時には引張り応力が生じ、スパッタ法やプラズマ化学気相成長法などによる400°C以下の低い温度での成膜では圧縮応力が生じる。第2の実施の形態例においては、成膜時に圧縮応力が生じており、こ10れが上層のA1配線による引張り応力を相殺するために、熱処理における残留分極特性の劣化が抑制される。

【0035】図8の(A)は第2の実施の形態例における金属配線7と、バリア膜8が被着された強誘電体4とが離れているとした場合の各温度における金属配線7および強誘電体4の状態を示す模式断面図、(B)は金属配線7と、バリア膜8が被着された強誘電体4とが接着されている場合の各温度における金属配線7および強誘電体4の状態を示す模式断面図である。第2の実施の形態例では、上述のようにAlを含む金属配線7は、強誘電体4のキュリー点Tcより低い温度Tで成膜するが、強誘電体キャパシタ9と金属配線7との間にあらかじめ、強誘電体4に対して圧縮応力を加えるような材料がバリア膜8として成膜しておく。

【0036】そして、第2の実施の形態例では、バリア膜8の熱膨張係数は強誘電体4と同程度であり、上述のように成膜時に真性応力として強誘電体4の延在方向(すなわち上部電極の延在方向)に圧縮応力が現れるような成膜法によってバリア膜8を形成する。その結果、バリア膜8は常に収縮しようとするため、強誘電体4は不図示の上部電極を介して圧縮される(図8の

(A))。これによって、キュリー点Tcにおける金属配線7による引張り応力、すなわち強誘電体4を膨張させようとする力が緩和され(図8の(B))、強誘電体4の残留分極特性の劣化が抑制される。

【0037】また、上記シリコン窒化膜からなるバリア膜8上に、CVD法によって100nmのシリコン酸化膜を成膜した場合、すなわち、上記図1の絶縁膜6をシリコン酸化膜/シリコン酸化膜/シリコン酸化膜という構造で形成した場合にも、図9のグラフに示したように、熱処理後の残留分極特性は図7とほぼ同じとなった。したがって、バリア膜8となるシリコン窒化膜は金属配線7の直下にある場合だけでなく、他の膜を介して金属配線7と強誘電体キャパシタ9との間に挿入されることで、金属配線7から発生する引張り応力を減弱させることが確認された。

【0038】また、第1の実施の形態例で形成した、強誘電体4のキュリー点以上の高温で成膜した金属配線7は、第2の実施の形態例におけるバリア膜8と同様の効果を持つ。すなわち、強誘電体4のキュリー点以上の高

温で成膜された熱膨張係数の大きな金属配線7のさらに 上部に熱膨張係数の大きな第2の金属配線を配する場合 にも、残留分極特性の劣化を防止する上で、やはりキュ リー点以上の温度で成膜することが望ましい。しかし、 この第2の金属配線をキュリー点以下で成膜したとして も、第2の金属配線から強誘電体4が受ける引張り応力 は、下部にある高温で成膜された膜の圧縮応力によって 軽減されて強誘電体4に伝えられるため、残留分極特性 の劣化が抑制される。

【0039】なお、本発明は上記各実施の形態例に限定されず、本発明の技術思想の範囲内において、各実施の 形態例は適宜変更され得ることは明らかである。

[0040]

【発明の効果】以上説明したように本発明は、強誘電体としてペロプスカイト系酸化物を2つの電極の間に介在させ強誘電体キャパシタを形成して、同強誘電体キャパシタの残留分極特性を利用した強誘電体メモリ素子を製造する方法であって、前記強誘電体メモリ素子の近傍に金属配線を形成する際に、前記金属配線の材料を前記強誘電体のキュリー点を超える温度に加熱して前記金属配線を成膜することを特徴とする。

【0041】したがって、本発明の強誘電体メモリ素子の製造方法では、その後の熱処理工程における降温時にキュリー点を通過するときには、前記金属配線は収縮しようとして、キャパシタを構成する強誘電体に圧縮応力がかかる。その結果、従来のように金属配線をより低い温度で成膜した場合のように引っ張り応力が強誘電体にかかることがなく、強誘電体キャパシタの残留分極特性の劣化を抑制して、強誘電体キャパシタの記憶素子としての性能を確保することができる。

【0042】また、本発明は、強誘電体としてペロブスカイト系酸化物を2つの電極の間に介在させ強誘電体キャパシタを形成して、同強誘電体キャパシタの残留分極特性を利用した強誘電体メモリ素子を製造する方法であって、前記強誘電体メモリ素子の近傍に、前記強誘電体のキュリー点より高い温度で流動化する材料から成る金属配線を形成した後、少なくとも前記金属配線周辺を、前記金属配線の材料が流動化する温度に加熱することを特徴とする。

り 【0043】このように金属配線を加熱して流動化させた場合には、金属配線は、流動化後に固化した温度で成膜されることと同等となり、金属配線を強誘電体のキュリー点より高い温度で熱処理して成膜した場合と同じ結果が得られる。したがって、本発明の強誘電体メモリ素子の製造方法によっても、従来のように金属配線をより低い温度で成膜した場合のように引っ張り応力が強誘電体にかかることがなく、強誘電体キャパシタの残留分極特性の劣化を抑制して、強誘電体キャパシタの記憶素子としての性能を確保することができる。

50 【0044】また、本発明は、強誘電体としてペロブス

カイト系酸化物を第1および第2の電極の間に介在させ 強誘電体キャパシタを形成して、同強誘電体キャパシタ の残留分極特性を利用した強誘電体メモリ素子を製造す る方法であって、前記第1の電極の外側表面上に金属配 線を形成する際に、前記第1の電極に対して前記第1の 電極の延在方向に圧縮応力を作用させる膜によって前記 第1の電極を被覆し、その後、前記被覆膜の上に前記金 属配線を成膜することを特徴とする。

【0045】したがって、本発明の強誘電体メモリ素子の製造方法では、前記被覆膜の上に形成した金属配線が、強誘電体のキュリー点以上の高温の熱処理により膨張し、強誘電体を膨張させようとする力が生じても、その力は第1の電極に対して圧縮力を与える被覆膜によって緩和される。その結果、強誘電体キャパシタの残留分極特性の劣化が抑制され、強誘電体キャパシタの記憶素子としての性能を確保することができる。

【図面の簡単な説明】

【図1】本発明による強誘電体メモリ素子の製造方法の一例によって作成した強誘電体メモリ素子を例示する断面側面図である。

【図2】本発明の強誘電体メモリ素子の製造方法の一例 により作成した強誘電体メモリ素子を構成する強誘電体 キャパシタの分極特性の実測結果を示すグラフである。

【図3】(A)は、実施の形態例において金属配線を形成する際に最後の500°Cの熱処理を行わなかった場合の残留分極特性の測定結果を示すグラフ、(B)は従来通り400°Cで熱処理を行った場合の残留分極特性の測定結果を示すグラフ、(C)はA1を用いなかった場合の分極特性の測定結果を示すグラフである。

【図4】(A)は実施の形態例における金属配線と強誘電体とが離れているとした場合の各温度における金属配線および強誘電体の状態を示す模式断面図、(B)は金

【図1】

属配線と強誘電体とが接着されている場合の各温度にお ける金属配線および強誘電体の状態を示す模式断面図で

【図5】金属配線を低温で成膜した後、高温で流動化させた場合の分極特性を示すグラフである。

12

【図6】本発明による強誘電体メモリ素子の製造方法の 第2の実施の形態例によって作成した強誘電体メモリ素 子を例示する断面側面図である。

【図7】第2の実施の形態例により作成した強誘電体メモリ素子を構成する強誘電体キャパシタの分極特性の実測結果を示すグラフである。

【図8】(A)は第2の実施の形態例における金属配線と、バリア膜が被着された強誘電体とが離れているとした場合の各温度における金属配線および強誘電体の状態を示す模式断面図、(B)は金属配線と、バリア膜が被着された強誘電体とが接着されている場合の各温度における金属配線および強誘電体の状態を示す模式断面図である。

【図9】絶縁膜をシリコン酸化膜/シリコン窒化膜/シ リコン酸化膜という構造で形成した場合の分極特性の測 定結果を示すグラフである。

【図10】(A)は従来の製造方法における金属配線と強誘電体とが離れているとした場合の各温度における金属配線および強誘電体の状態を示す模式断面図、(B)は金属配線と強誘電体とが接着されている場合の各温度における金属配線および強誘電体の状態を示す模式断面図である。

【符号の説明】

1……シリコン基板、2……シリコン酸化膜、3……下 部電極、4……強誘電体、5……上部電極、6……絶縁 膜、7……金属配線、8……バリア膜、9……強誘電体 キャパシタ、10、11……強誘電体メモリ素子。

10 7 6 5 4 9 2

【図2】

【図5】

【図10】

フロントページの続き

(51) Int. Cl. ⁷

識別記号

FΙ

テーマコード(参考)

HO1L 21/8242

Fターム(参考) 5F033 HH08 HH18 HH33 PP15 QQ73

RR04 SS04 SS11 WW03 XX00

XX14 XX19

5F038 AC05 AC14 AC15 CD01 CD18

DF05 EZ11 EZ17

5F083 AD21 FR01 GA27 GA30 JA15

JA17 JA36 JA37 JA38 JA39

JA40 JA43 JA56 PR21 PR22

PR23 PR33

. Ą