P3 de Álgebra Linear I-2010.1

Data: 18 de junho de 2010

Nome:	Matrícula:				
Assinatura:	Turma:				

Caderno de Respostas

Preencha CORRETA e COMPLETAMENTE todos os campos acima (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota ZERO.

Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Respostas a caneta. Respostas a lápis não serão corrigidas e terão nota <u>ZERO</u>.

Duração: 1 hora 50 minutos

Q	1.a	1.b	1.c	1.d	2.a	2.b	2.c	3.a	3.b	3.c	soma
\mathbf{V}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10.0
N											
\mathbf{R}											

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas e resoluções.
- Escreva de forma clara, ordenada e legível.
- Somente serão aceitas respostas devidamente <u>JUSTIFICADAS</u>.

Respostas a lápis não serão corrigidas e terão nota ZERO.

Questão 1)

Considere a transformação linear $T:\mathbb{R}^3\to\mathbb{R}^3$ cuja matriz na base canônica é:

$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}.$$

Sabendo que $\lambda = 1$ é autovalor de A:

- a) Ache todos os autovalores de A, indicando multiplicidades.
- **b)** Ache todos os autovetores de A, associados a cada autovalor.
- c) É A diagonalizável? Justifique.
- d) Ache a matriz de T na base $\beta = \{(1,1,2), (1,0,2), (0,0,1)\}.$

Respostas:

Resolução:

Questão 2)

Considere a matriz

$$B = \left(\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 6 & 0 \\ 3 & 0 & 1 \end{array}\right).$$

- (a) Determine todos os autovalores de B.
- (b) Determine uma base ortonormal de autovetores para B.
- (c) Determine uma forma diagonal D de B e uma matriz ortogonal M tal que $B = MDM^t$.

Respostas:

Resolução:

Questão 3)

Decida se as afirmações a seguir são Verdadeiras ou Falsas.

a) Considere a transformação linear cuja matriz na base canônica é

$$[T]_{can} = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}.$$

Sabendo que os autovalores são 0 (duplo) e 1 (simples), então segue que T é projeção ortogonal sobre o plano de equação x+y+z=0.

- **b)** Sejam λ_1 e λ_2 autovalores distintos e não-nulos de uma transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, com autovetores respectivos \overrightarrow{v}_1 e \overrightarrow{v}_2 . Então o conjunto $\{T(\overrightarrow{v}_1), T(\overrightarrow{v}_1)\}$ é L.I.
- c) Toda matriz ortogonal possui autovalores 1 e -1.

Resolução: