- 1a. 0.7538961
- 1b. 0.7053127
- 1d. 0.7650897

```
```{r}
 #install.packages("dplyr")
 library(dplyr)
 sample1_train = sample_n(data, as.integer(nrow(data)*0.8))
 sample1_test = anti_join(data, sample1_train)
 P_c1 = length(sample1_train$X1[sample1_train$X1 == 1])/nrow(sample1_train)
 P_c1
 P_c0 = 1 - P_c1
 P_c0
col_1_mean = sapply(sample1_train[sample1_train$X1 == 1,], mean)
col_0_mean = sapply(sample1_train[sample1_train$X1 == 0,], mean)
col_1_sd = sapply(sample1_train[sample1_train$x1 == 1,], sd)
col_0_sd = sapply(sample1_train[sample1_train$x1 == 0,], sd)
 sample1_test\$X6_P1 = dnorm(sample1_test\$X6, col_1_mean[1], col_1_sd[1], log = TRUE)
 sample1_test$X6_P0 = dnorm(sample1_test$X6, col_0_mean[1], col_0_sd[1], log = TRUE)
 sample1_test\$x148_P1 = dnorm(sample1_test\$x148, col_1_mean[2], col_1_sd[2], log = TRUE)
 sample1_test\$X148_P0 = dnorm(sample1_test\$X148, col_0_mean[2], col_0_sd[2], log = TRUE)
 sample1_test\$X72_P1 = dnorm(sample1_test\$X72, col_1_mean[3], col_1_sd[3], log = TRUE) \\ sample1_test\$X72_P0 = dnorm(sample1_test\$X72, col_0_mean[3], col_0_sd[3], log = TRUE) \\
 sample1_test$x35_P1 = dnorm(sample1_test$x35, col_1_mean[4], col_1_sd[4], log = TRUE)
 sample1_test$X35_P0 = dnorm(sample1_test$X35, col_0_mean[4], col_0_sd[4], log = TRUE)
 sample1_test\$X0_P1 = dnorm(sample1_test\$X0, col_1_mean[5], col_1_sd[5], log = TRUE)
 sample1_test$X0_P0 = dnorm(sample1_test$X0, col_0_mean[5], col_0_sd[5], log = TRUE)
 sample1_test$x336_P1 = dnorm(sample1_test$x33.6, col_1_mean[6], col_1_sd[6], log = TRUE)
sample1_test$x336_P0 = dnorm(sample1_test$x33.6, col_0_mean[6], col_0_sd[6], log = TRUE)
sample1_test$x627_P1 = dnorm(sample1_test$x0.627, col_1_mean[7], col_1_sd[7], log = TRUE)
sample1_test$x627_P0 = dnorm(sample1_test$x0.627, col_0_mean[7], col_0_sd[7], log = TRUE)
 sample1_test\$X50_P1 = dnorm(sample1_test\$X50, col_1_mean[8], col_1_sd[8], log = TRUE)
sample1_test\$x50_P0 = dnorm(sample1_test\$x50, col_0_mean[8], col_0_sd[8], log = TRUE) \\ sample1_test\$x50_P1 = sample1_test\$x6_P1 + sample1_test\$x148_P1 + sample1_test\$x72_P1 + sample1_test\$x35_P1 + sample1_test\$x36_P1 + sample1_test\$x36_P1 + log(P_c1) \\ P1 + sample1_test\$x336_P1 + log(P_c1)
 sample1_test\$sum_p0 = sample1_test\$x6_p0+sample1_test\$x148_p0+sample1_test\$x72_p0+sample1_test\$x35_p0+sample1_test\$x0_testx0+sample1_test\$x0_p0+sample1_test\$x0_p0+sample1_test\$x0_p0
 P0+sample1_test\$X336_P0+sample1_test\$X627_P0+sample1_test\$X50_P0 + log(P_c0)
sample1_test$sum_p1
 sample1_test$sum_p0
 sample1_test$result = (sample1_test$sum_p1 > sample1_test$sum_p0)
 sample1_test$result
 accuracy = nrow(sample1_test[sample1_test$result == sample1_test$X1,])/nrow(sample1_test)
 sample2_train = sample_n(data, as.integer(nrow(data)*0.8))
 sample2_test = anti_join(data, sample1_train)
 P_c1 = length(sample1_train$X1[sample1_train$X1 == 1])/nrow(sample1_train
 P_c0 = 1 - P_c1
 col_1_mean = sapply(na.omit(sample2_train[sample2_train$X1 == 1,]), mean)
 col_0_mean = sapply(na.omit(sample2_train[sample2_train$x1 == 0,]), mean)
 col_1_sd = sapply(na.omit(sample2_train[sample2_train$X1 == 1,]), sd)
 col_0_sd = sapply(na.omit(sample2_train[sample2_train$X1 == 0,]), sd)
install.packages('klaR')
library('klaR')
library(e1071)
data = read.csv("pima-indians-diabetes.csv")
sample3_train = sample_n(data, as.integer(nrow(data)*0.8))
sample3_test = anti_join(data, sample3_train)
#model = svmlight(x = sample3_train[,1:8], grouping = sample3_train$x1)
1 - 144/nrow(sample3_train)
```

Х	Method		Probability
1	Gaussian + untouched	0.52354	
2	Gaussian + stretched	0.83115	
3	Bernoulli + untouched	0.83375	
4	Bernoulli + stretched	0.79005	
5	10 trees + 4 depth + untouched	0.10315	
6	10 trees + 4 depth + stretched	0.75810	
7	10 trees + 16 depth + untouched	0.10035	
8	10 trees + 16 depth + stretched	0.96660	
9	30 trees + 4 depth + untouched	0.10205	
10	30 trees + 4 depth + stretched	0.79535	
11	30 trees + 16 depth + untouched	0.10115	
12	30 trees + 16 depth + stretched	0.97385	
xinruiy2_12.csv 2 minutes ago by RAYING add submission details			<b>♂</b>
xinruiy2_11.csv 3 minutes ago by RAYING add submission details		0.10115	<b>∀</b>
xinruiy2_10.csv 4 minutes ago by RAYING add submission details		0.79535	<b>∀</b>
xinruiy2_9.csv 4 minutes ago by RAYING add submission details		0.10205	<b>∀</b>
xinruiy2_8.csv 6 minutes ago by RAYING add submission details		0.96660	<b></b>
xinruiy2_7.csv 7 minutes ago by RAYING add submission details		0.10035	<b>∀</b>
xinruiy2_6.csv 9 minutes ago by RAYING add submission details		0.75810	<b>∀</b>
xinruiy2_5.csv 10 minutes ago by RAYING add submission details		0.10315	<b>∀</b>
xinruiy2_4.csv 12 minutes ago by RAYING add submission details		0.79005	<b>∀</b>
15 min	y2_3.csv lutes ago by RAYING lbmission details	0.83375	<b>∀</b>
17 min	xinruiy2_2.csv 17 minutes ago by RAYING add submission details		
20 mir	y2_1.csv nutes ago by RAYING abmission details	0.52354	<b>∀</b>

Gaussian + untouched : 0 1 2 3 4 5 6 7 8 9

Bernoulli + Untouched: 0 1 2 3 4 5 6 7 8 9

Gaussian + Stretched: 0123456789

Bernoulli + Stretched: 0/23456789

```
#install.packages("e1071")
library(e1071)
library(caret)
library(naivebayes)
model = naive_bayes(train[,3:786], train[,2])
pred = predict(model, newdata = val[,2:785])
sum(pred == val$label)/2000
pred_t = predict(model, newdata = test[,1:784])
library(quanteda)
bernoulli_model = textmodel_nb(as.dfm(train[,3:786]), as.factor(train[,2]), distribution = "Bernoulli")
bernoulli_pred = predict(bernoulli_model, newdata = as.dfm(val[,2:785]))
correct = as.vector(as.integer(val$label == bernoulli_pred))
sum(correct)/2000
bernoulli_pred_t = predict(bernoulli_model, newdata = as.dfm(test[,1:784]))
library(OpenImageR)
resize = function(image){
model = naive_bayes(new_train[,2:401], train[,2])
pred_s = predict(model, newdata = new_val[2:401])
sum(pred_s == val$label)/2000
pred_t1 = predict(model, newdata = new_test)
as.data.frame(new_test)
new_testV401 = as.integer(pred_t1) - 1
bernoulli_model = textmodel_nb(as.dfm(new_train[,2:401]), as.factor(train[,2]), distribution = "Bernoulli")
bernoulli_pred = predict(bernoulli_model, newdata = as.dfm(new_val[,2:401]))
correct = as.vector(as.integer(val$label == bernoulli_pred))
sum(correct)/2000
bernoulli_pred_t1 = predict(bernoulli_model, newdata = new_test[,2:401])
import numpy as np
import pandas as pd
import math
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import BernoulliNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from skimage import io
from skimage, transform import resize
def get_rf_acc(train_x, train_y, test_x, depth, trees):
 rf = RandomForestClassifier(max_depth=depth, n_estimators=trees)
 rf.fit(train x, train y)
 # test
 test result = rf. predict(test x)
 #cm = confusion_matrix (test_y, test_result)
 #acc = accuracy_score(test_y, test_result)
 return(test result)
```