The Processor: Speculation, Power Efficiency Memory Hierarchy

Dr. Vincent C. Emeakaroha

06-03-2017

vc.emeakaroha@cs.ucc.ie

Dynamic Scheduling: Speculation

- Predict branch and continue issuing
 - Don't commit until branch outcome determined
- Load speculation
 - Avoid load and cache miss delay
 - Predict the effective address
 - Predict loaded value
 - Load before completing outstanding stores
 - Bypass stored values to load unit
 - Don't commit load until speculation cleared

Why Do Dynamic Scheduling?

- Why not just let the compiler schedule code?
- Not all stalls are predicable
 - e.g., cache misses
- Can't always schedule around branches
 - Branch outcome is dynamically determined
- Different implementations of an ISA have different latencies and hazards

Does Multiple Issue Work in Practice?

- Yes, but not as much as we'd like
- Programs have real dependencies that limit ILP
- Some dependencies are hard to eliminate
 - e.g., pointer aliasing
- Some parallelism is hard to expose
 - Limited window size during instruction issue
- Memory delays and limited bandwidth
 - Hard to keep pipelines full
- Speculation can help if done well

Power Efficiency

- Complexity of dynamic scheduling and speculations requires power
- Multiple simpler cores may be better

Microprocessor	Year	Clock Rate	Pipeline Stages	Issue width	Out-of-order/ Speculation	Cores	Power
i486	1989	25MHz	5	1	No	1	5W
Pentium	1993	66MHz	5	2	No	1	10W
Pentium Pro	1997	200MHz	10	3	Yes	1	29W
P4 Willamette	2001	2000MHz	22	3	Yes	1	75W
P4 Prescott	2004	3600MHz	31	3	Yes	1	103W
Core	2006	2930MHz	14	4	Yes	2	75W
UltraSparc III	2003	1950MHz	14	4	No	1	90W
UltraSparc T1	2005	1200MHz	6	1	No	8	70W

Cortex A8 and Intel i7

Processor	ARM A8	Intel Core i7 920	
Market	Personal Mobile Device	Server, cloud	
Thermal design power	2 Watts	130 Watts	
Clock rate	1 GHz	2.66 GHz	
Cores/Chip	1	4	
Floating point?	No	Yes	
Multiple issue?	Dynamic	Dynamic	
Peak instructions/clock cycle	2	4	
Pipeline stages	14	14	
Pipeline schedule	Static in-order	Dynamic out-of-order with speculation	
Branch prediction	2-level	2-level	
1 st level caches/core	32 KiB I, 32 KiB D	32 KiB I, 32 KiB D	
2 nd level caches/core	128-1024 KiB	256 KiB	
3 rd level caches (shared)	-	2-8 MB	

ARM Cortex-A8 Pipeline

Divided into three sections

- Instruction fetch (3 stages)
- Instruction decode (5 stages)
- 3. Execute (6 stages)

ARM Cortex-A8 Performance

SPEC2000 Benchmark Running small size input programs

Core i7 Pipeline

- Microarchitecture
 - Organisation of processor including the major functional units, their interconnection, and control.
- Fetch instructions translated in MIPS-like instruction
 - Called Micro-operations
- Uses register renaming to remove antidependences
 - Explicit architectural registers renaming into physical registers
- x86 instructions goes through eight stages for execution
- Branch misprediction
 - Cost 17 clock cycles

Core i7 Performance

Fallacies

- Pipelining is easy (!)
 - The basic idea is easy
 - The devil is in the details
 - e.g., detecting data hazards
- Pipelining is independent of technology
 - So why haven't we always done pipelining?
 - More transistors make more advanced techniques feasible
 - Pipeline-related ISA design needs to take account of technology trends
 - e.g., predicated instructions

Pitfalls

- Poor ISA design can make pipelining harder
 - e.g., complex instruction sets (VAX, IA-32)
 - Significant overhead to make pipelining work
 - IA-32 micro-op approach
 - e.g., complex addressing modes
 - Register update side effects, memory indirection
 - e.g., delayed branches
 - Advanced pipelines have long delay slots

Concluding Remarks

- ISA influences design of both datapath and control
- Pipelining improves instruction throughput using parallelism
 - More instructions completed per second
 - Latency for each instruction not reduced
- Hazards: structural, data, control
- Multiple issue and dynamic scheduling (ILP)
 - Dependencies limit achievable parallelism
 - Complexity leads to the power wall

Large and Fast: Exploiting Memory Hierarchy

Principle of Locality

- Programs access a small proportion of their address space at any time
- Temporal locality
 - Items accessed recently are likely to be accessed again soon
 - e.g., instructions in a loop, induction variables
- Spatial locality
 - Items near those accessed recently are likely to be accessed soon
 - E.g., sequential instruction access, array data

Taking Advantage of Locality

- Memory hierarchy
- Store everything on disk
- Copy recently accessed (and nearby) items from disk to smaller DRAM memory
 - Main memory
- Copy more recently accessed (and nearby) items from DRAM to smaller SRAM memory
 - Cache memory attached to CPU

Memory Hierarchy Levels

- Block (aka line): unit of copying
 - May be multiple words
- If accessed data is present in upper level
 - Hit: access satisfied by upper level
 - Hit ratio: hits/accesses
- If accessed data is absent
 - Miss: block copied from lower level
 - Time taken: miss penalty
 - Miss ratio: misses/accesses
 - = 1 hit ratio
 - Then accessed data supplied from upper level

Memory Technology

- Four primary memory technologies
 - Static RAM (SRAM)
 - 0.5ns 2.5ns, \$2000 \$5000 per GB
 - Dynamic RAM (DRAM)
 - 50ns 70ns, \$20 \$75 per GB
 - Flash memory
 - 5000ns 50000ns
 - Magnetic disk
 - 5ms 20ms, \$0.20 \$2 per GB
- Ideal memory
 - Access time of SRAM
 - Capacity and cost/GB of disk

DRAM Technology

- Data stored as a charge in a capacitor
 - Single transistor used to access the charge
 - Must periodically be refreshed
 - Read contents and write back
 - Performed on a DRAM "row"
- DRAM is organised in banks

Advanced DRAM Organization

- Bits in a DRAM are organized as a rectangular array
 - DRAM accesses an entire row
 - Burst mode: supply successive words from a row with reduced latency
- Double data rate (DDR) DRAM
 - Transfer on rising and falling clock edges
 - Enable double speed
- Quad data rate (QDR) DRAM
 - Separate DDR inputs and outputs