Ising model

Speaker: Yichen Lu

 $\mathrm{May}\ 25,\ 2023$

Contents

1 Simple model of a magnet

2 Solutions

Ising model

In an approximation called mean-field theory, the equation governing the equilibrium value of m(average spin or magnetization) is

$$h = T \tanh^{-1} m - Jnm \tag{1}$$

where J and n are constants; J > 0 is the ferromagnetic coupling strength and n is the number of neighbors of each spin; T > 0 is the temperature.

 \blacksquare a) Analyze the solutions m^* of equation 1, using a graphical approach.

Ising model

In an approximation called mean-field theory, the equation governing the equilibrium value of m(average spin or magnetization) is

$$h = T \tanh^{-1} m - Jnm \tag{1}$$

where J and n are constants; J > 0 is the ferromagnetic coupling strength and n is the number of neighbors of each spin; T > 0 is the temperature.

- lacksquare a) Analyze the solutions m^* of equation 1, using a graphical approach.
- For the special case h = 0, find the critical temperature T_c at which a phase transition occurs.

Contents

1 Simple model of a magnet

2 Solutions

Solution to a)

$$h = T \tanh^{-1} m - Jnm$$

 $Jnm + h = T \tanh^{-1} m$

We plot the graphs of y = km + h, (k = Jn) and $y = T \tanh^{-1} m$ on the same axes, and look for intersections

Solution to a)

Due to $(\tanh^{-1} m) \prime = 1/(1-m^2)$, we know that $T \tanh^{-1} m$ develops a slope of T at the origin. So when $k = Jn \in (0, T]$, $h \in \mathbb{R}$, the two curves intersect at only one point.

Solution to a)

When k = Jn > T, there are one, two, or three solutions depending on the values depending on h.

Solution to b)

For the special case h = 0, find the critical temperature T_c at which a phase transition occurs.

■ If h = 0 and the phase transition occurs when the slope of the line k = Jn = T, so the critical temperature is $T_c = Jn$.

Thank you for listening!