Втор парцијален испит по Математика 1 В паралелка, 16.11.2019

- 1. (20п) Да се покаже дека важи неравенството: $\frac{1}{\sqrt{2}} \le \int_0^1 \frac{dx}{\sqrt{x^3 + 1}} \le 1$.
- 2. а) (5п) Дали секоја интеграбилна функција е непрекината? Одговорот да се образложи преку пример.
 - (10π) Нека $Q(x) = \frac{x}{x^2 + b^2}$, да се пресмета $\int_b^{2b} Q(x) \, dx$.
 - в) (10п) Да се пресмета интегралот $\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{4-x^2} dx$.
- 3. Дадена е рамнинска фигура која што ја содржи точката (1,0), и е ограничена со графиците на функциите $x^2+y^2=5$, $2y^2=x$ и x+2y=0.
 - а) (10п) Да се скицира дадената рамнинска фигура.
 - б) (10п) Да се пресмета плоштината на фигурата.
 - в) (10п) Да се пресмета должината на кривата која што ја ограничува оваа фигура.
- 4. Дадена е гама функцијата дефинирана со $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ за x>0. Да се покаже дека:
 - a) $(10\pi) \Gamma(1) = 1$,
 - б) $(15\pi) \Gamma(n) = (n-1)!$.