

Attestation use case:

Computational Offloading for Mobile Devices

Dynamic Computational Offloading

Background and basic idea: Extending the functionality of mobile devices through dynamic use of remote compute resources

Vinay Yadhav, et al. "Benefits of Dynamic Computational Offloading for Mobile Devices", CLOSER 2024.

https://www.scitepress.org/PublicationsDetail.aspx?ID=ccKzjw4ElfA=&t=1

Dynamic Computational Offloading

System Design

Requirements: platform independent, lightweight, secure, polyglot

UE = User Equipment

Vinay Yadhav, et al. "Benefits of Dynamic Computational Offloading for Mobile Devices", CLOSER 2024.

https://www.scitepress.org/PublicationsDetail.aspx?ID=ccKzjw4ElfA=&t=1

Authentication & Network Integration

3

- Offloading provided as a mobile network-integrated service
 - Authentication and Key Management for Applications (AKMA) used for authentication of a device based on SIM credentials
 - Pre-shared key (PSK) provisioned to the device and offloading service
 - Compute service at the Edge for (e.g.) low latency
- Mobile/dynamic use cases, may open new connections often

UE = User Equipment

Confidential Computing

3

- Offloading host / execution environment run in TEEs for protecting workloads
 - Needs to be attested to the device side before doing module migration
 - Also mutual attestation should be supported
 - We need to be able to use multiple types of TEEs (in a broad sense)
 - Execution environment possibly spawned on demand

Attested TLS

- TLS connections between the device (client) and offloading service (server)
 - PSK(-DHE) + attestation in the handshake
 - ...taking place as **quickly**, in as few milliseconds and round trips, as possible
 - tls-attestation draft used as the starting point
 - PSKs alongside attestation, mutual attestation, passport model

- Is the tls-attestation draft going to include, e.g., detailed mutual attstation and passport model examples?
- Can evidence generation and/or verification be parallellized within the handshake? Other optimizations?
- Certificate message used also with TLS PSK?
- Runtime attestation with long-term connections?

=

- Mutual attestation models combinations: client server
 - Background check Background check
 - Client needs to wait for its own attestation
 - Passport Passport
 - Server needs to wait with prepared passport for the client
 - Background check Passport
 - Server needs to wait with prepared passport for the client
 - Passport Background check

- Rustls https://github.com/rustls/rustls
- Attestation + PSKs
 - (For PSKs, our implementation requires "Importing External Pre-Shared Keys (PSKs) for TLS 1.3" RFC 9258)
- Token generation and verification is not yet implemented

PSK + attestation exchange (an initial draft)

Verifier Client (C) Server (S) Pregeneration phase Configure PSK_{base} Configure PSK_{base} TLS handshake ClientHello<..., SupportedGroups<...>, KeyShare<...>, EvidenceRequest<supported types<PSK ATTESTATION>, nonce_c>, PSKKeyExchangeModes<PSK_DHE_KE>, PresharedKey<PSK_{base}>> Check for matching PSK Verify binder of PSK_{base} ServerHello<... KevShare<...>. PresharedKey<selected_psk_idx>> EncryptedExtensions <EvidenceRequest<selected evidence type<PSK ATTESTATION>>> Resolve evidence E_S(nonce_C) Sign handshake transcript <sigs> Certificate < E_S(nonce_C)> CertificateVerify<sig₅> Finished VerificationRequest<Es(noncec), sigs> Verify E_s(nonce_c) Verify sigs VerificationResponse<result> Finished portal.org/smash/record.jsf?pid=diva Secure channel with attested party established Verifier Client (C) Server (S)

Leon Heidenberg Philip,

University, 2024

http://uu.diva-

Binding with Remote Party

Establishment of Secure Channel

Attestation, BSc thesis, Uppsala

2%3A1852751&dswid=-5478

PSK +
mutual
attestation
exchange
(an initial draft)

Leon Hejdenberg Philip, Establishment of Secure Channel Binding with Remote Party Attestation, BSc thesis, Uppsala University, 2024

http://uu.diva-

portal.org/smash/record.jsf?pid=diva

2%3A1852751&dswid=-5478

Verifier 1 Client (C) Server (S) Verifier 2 Pregeneration phase Configure PSK_{base} Configure PSK_{base} TLS handshake ClientHello<..., SupportedGroups<...>, KeyShare<...>, EvidenceRequest<supported_types<PSK_ATTESTATION>, nonce_C>, EvidenceProposal<supported types<PSK ATTESTATION>>, PSKKeyExchangeModes<PSK_DHE_KE>, PresharedKey<PSK_{base}>> Check for matching PSK Verify binder of PSK_{base} ServerHello<... KeyShare<...>, PresharedKey<selected_psk_idx>> EncryptedExtensions <EvidenceRequest<selected evidence type<PSK ATTESTATION>>, EvidenceProposal<selected evidence type<PSK ATTESTATION>, nonces>> Resolve evidence E_S(nonce_C) Sign handshake transcript <sigs> CertificateRequest<..> Certificate < E_s(nonce_)> CertificateVerify<sig_<> Finished $VerificationRequest < E_S(nonce_C)$, $sig_S >$ Verify E_S(nonce_C) Verify sigs VerificationResponse<result> Resolve evidence E_C(nonce_S) Sign handshake transcript <sig_C> Certificate $< E_C(nonce_S) >$ CertificateVerify<sig_C> Finished $VerificationRequest < E_C(nonce_S), sig_S >$ Verify E_C(nonce_S) Verify sig_C VerificationResponse<result> Secure channel with attested party established Verifier 2 Verifier 1 Client (C) Server (S)

| EJIMKJA Jimmy Kjällman | 2024-05-15 | Open | Page 12

TLS with integrated attestation

PSK + attestation	Original		PSK + attestation	Example	
Task	Mean execution time (ms)	% of total	Task	Calc. execution time (ms)	% of total
Initialize Client	0.7729	15.178	Initialize Client	0.7729	0.858
→ Prepare ClientHello	0.2109	4.142	→ Prepare ClientHello	0.2109	0.234
→ Rest of task	0.5620	11.036	→ Rest of task	0.5620	0.624
Handshake	4.2451	83.365	Handshake	89.2452	99.060
→ (S) Generate evidence	0.0084	0.165	→ (S) Generate evidence	50.0084	55.508
→ (S) Prepare ServerHello	1.1976	23.518	→ (S) Prepare ServerHello	1.1976	1.329
→ (S) Prepare CertificateVerify	0.0215	0.422	→ (S) Prepare CertificateVerify	25.0215	27.773
→ (C) Verify evidence	0.0016	0.032	→ (C) Verify evidence	5.0016	5.552
→ (C) Verify signature	0.0058	0.113	→ (C) Verify signature	5.0058	5.556
→ Rest of task	3.0103	59.115	→ Rest of task	3.0103	3.341
[Other] (calculated)	0.0742	1.457	[Other]	0.0742	0.082
All	5.0922	100.000	All	90.0923	100.000

Actual evidence generation and verification time is not included.

E.g., on AWS EC2, AMD SEV-SNP attestation report generation seems to take very roughly ~50 ms and verification ~5 ms. The CertificateVerify signing and verification (w/ Identity Key) numbers used here are only examples.

PSK + mutual attestation	Original		PSK + mutual attestation	Example	
Task	Mean execution time (ms)	% of total	Task	Calc. execution time (ms)	% of total
Initialize Client	0.7957	14.934	Initialize Client	0.7957	0.454
→ Prepare ClientHello	0.2134	4.005	→ Prepare ClientHello	0.2134	0.122
→ Rest of task	0.5823	10.929	→ Rest of task	0.5823	0.332
Handshake	4.4673	83.841	Handshake	174.4675	99.509
→ (S) Generate evidence	0.0087	0.164	→ (S) Generate evidence	50.0087	28.523
→ (S) Prepare ServerHello	1.1938	22.404	→ (S) Prepare ServerHello	1.1938	0.681
→ (S) Prepare CertificateVerify	0.0199	0.373	→ (S) Prepare CertificateVerify	25.0199	14.270
→ (C) Verify evidence	0.0016	0.029	→ (C) Verify evidence	5.0016	2.853
\rightarrow (C) Verify signature	0.0100	0.187	→ (C) Verify signature	5.0100	2.857
→ (C) Generate evidence	0.0018	0.035	→ (C) Generate evidence	50.0018	28.519
→ (C) Prepare CertificateVerify	0.0137	0.256	→ (C) Prepare CertificateVerify	25.0137	14.267
→ (S) Verify evidence	0.0030	0.055	→ (S) Verify evidence	5.0030	2.854
\rightarrow (S) Verify signature	0.0036	0.067	→ (S) Verify signature	5.0036	2.854
→ Rest of task	3.2114	60.271	→ Rest of task	3.2114	1.832
[Other] (calculated)	0.0653	1.226	[Other]	0.0653	0.037
All	5.3283	100.000	All	175.3285	100.000

Actual evidence generation and verification time is not included.

E.g., on AWS EC2, AMD SEV-SNP attestation report generation seems to take very roughly ~50 ms and verification ~5 ms. The CertificateVerify signing and verification (w/ Identity Key) numbers used here are only examples.

