Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 2332 CALIBRATION DATE: 24-Apr-19

SBE 37 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = 3.608189e - 005

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
22.0000	0.0000	0.0000	2578.32	0.0000	0.00000
1.0000	34.7911	2.97402	5141.73	2.97402	0.00000
4.5000	34.7711	3.28088	5335.84	3.28088	0.0000
15.0000	34.7282	4.26195	5912.95	4.26193	-0.00002
18.5000	34.7188	4.60683	6102.57	4.60683	0.00000
23.9999	34.7079	5.16427	6396.86	5.16429	0.00002
29.0000	34.7005	5.68548	6659.88	5.68547	-0.00001
32.5000	34.6941	6.05709	6840.98	6.05695	-0.00013

f = Instrument Output(Hz) * sqrt(1.0 + WBOTC * t) / 1000.0

t = temperature (°C); p = pressure (decibars); δ = CTcor; ϵ = CPcor;

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

