0007636008 - Drawing available WPI ACC NO: 1996-254923/

Paper sheet sorting for copier - involves using of back holding mechanism to retain back of paper form at right time and second controller moves back

holding mechanism to holding position Patent Assignee: NISCA CORP (NISC-N) Inventor: KOBAYASHI M; SHIMURA M Patent Family (2 patents, 1 countries)

Patent

Application

Number Kind Date Number Kind Date Update

JP 8104460 A 19960423 JP 1993199092 A 19930716 199626 B JP 3331016 B2 20021007 JP 1993199092 A 19930716 200273 E

Priority Applications (no., kind, date): JP 1993199092 A 19930716

Alerting Abstract JP A

The method involves receiving of paper exhausted from a paper form supply appts. (C) and grouping the paper form into even number combination by a sorter (10). A process which integrates each group mistakes phase of termination of exhausted paper from the loading part.

The process is performed in the emergence direction terminal of the preceding phase group which projects to the paper form emergence direction of the paper form integration. The back of paper form emergence direction is retained from the group of the second rank physiognomy to the preceding phase group by a back holding mechanism (23).

ADVANTAGE - Enables moving of paper according to single paper form loading surface; divides many paper form loading surface necessary to group paper form.

19 BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ₁₀ DE 3331016 A1

(51) Int. Cl. 3: C09J7/00

DEUTSCHES PATENTAMT

② Aktenzeichen: P 33 31 016.5 ② Anmeldetag: 27. 8.83 (3) Offenlegungstag: 11. 10. 84

(3) Innere Priorität: (2) (3) (3) 06.04.83 DE 83100326

(71) Anmelder: Beiersdorf AG, 2000 Hamburg, DE ② Erfinder: Zimmermann, Dieter, 2155 Jork-Borstel, DE; Franzen, Kurt, Dipl.-Chem. Dr., 2000 Hamburg, DE

(54) Klebfolie für wiederlösbare Klebbindungen

Klebfolie für wiederlösbare Klebbindungen auf Basis von

a) thermoplastischem Kautschuk und

b) klebrigmachenden Harzen, wobei die Klebfolie

c) hohe Elastizität und

d) geringe Plastizität aufweist und wobei

e) die Adhäsion geringer als die Kohäsion ist,

f) das Haftvermögen beim Dehnen der Folie weitgehend verschwindet.

g) das Verhältnis von Abzugskraft zu Reißlast 1 : 2 oder grö-Berist, und wobei

h) eine damit hergestellte Klebbindung durch Ziehen an der Klebfolie in Richtung der Verklebungsebene lösbar ist.

1. Klebfolie für wiederlösbare Klebbindungen auf Basis von

- a) thermoplastischem Kautschuk und
- b) klebrigmachenden Harzen, wobei die Klebfolie
- 5 c) hohe Elastizität und

10

- d) geringe Plastizität aufweist und wobei
- e) die Adhäsion geringer als die Kohäsion ist,
- f) das Haftvermögen beim Dehnen der Folie weitgehend verschwindet.
- g) das Verhältnis von Abzugskraft zu Reißlast 1:2 oder größer ist, und wobei
- h) eine damit hergestellte Klebbindung durch Ziehen an der Klebfolie in Richtung der Verklebungsebene lösbar ist.
- 2. Klebfolie nach Anspruch 1, worin die Masse selbstklebend eingestellt ist.
- 15 3. Klebfolie nach Anspruch 1, wobei die Masse wärmeaktivierbar eingestellt ist.
 - 4. Klebfolie nach einem der Ansprüche 1 3, zum wiederlösbaren Verkleben zweier Fügeteile, von denen zumindest eines starr ist.
- 5. Klebfolie nach einem der Ansprüche 1 4, enthaltend Antioxidan-20 tien. UV-Stabilisatoren, Farbstoffe, Füllstoffe und/oder andere übliche Hilfsmittel.
 - 6. Klebfolie nach einem der Ansprüche 1 5, mit einer Dicke von 0,2 mm bis 0,6 mm.
- 7. Klebfolie nach einem der Ansprüche 1 7, enthaltend als thermoplastischen Kautschuk ein Styrol-Butadien-Blockpolymer und als klebrigmachendes Harz ein Colophonium-Derivat.

BEIERSDORF AKTIENGESELLSCHAFT HAMBURG

KLEBFOLIE FÜR WIEDERLÖSBARE KLEBBINDUNGEN

Die Erfindung betrifft eine Klebfolie für wiederlösbare Klebbindungen, insbesondere von zwei Fügeteilen, von denen zumindest eines starr ist.

Während üblicherweise in der Verklebungstechnik Fügeteile fest verbunden werden und ein späteres Trennen weder beabsichtigt noch gewünscht wird, gibt es doch Klebverbunde, die vom Einsatzbereich her nach einer bestimmten Zeit wieder getrennt werden müssen.

10 Selbstklebende Bänder, Folien oder Etiketten lassen sich von festen Untergründen unter Schälbelastung leicht entfernen. So ist es z.B. für Pflaster und dergleichen bekannt (vgl. US-PS 4 335 026), einen biegsamen Träger mit einem Kleber zu beschichten, der Elastomer-Anteile enthält, womit eine Verletzung der Haut beim Abziehen vermieden werden soll.

15

20

Schwierig wird es, wenn auf starren festen Untergründen starre feste Materialien verklebt werden. In einigen Fällen mag ein zerstörungsfreies Lösen durch Wärmeeinwirkung oder Quellen und Lösen des Klebstoffs in Lösungsmittel möglich sein. Der Aufwand ist aber sehr hoch, und die Gefahr der Beschädigung der verklebten Teile ist nicht auszuschließen.

Aufgabe der Erfindung war es, ein Klebsystem zur Verfügung zu stellen, das es aufgrund spezieller Eigenschaften ermöglicht, belastungsfähige Klebverbunde von starren festen Fügeteilen z.B. Informationstafeln auf Schaufensterscheiben oder auf schichtstoffplattenverkleideten Wänden zu erstellen, die nach einer bestimmten Zeit ohne besonderen Aufwand

und ohne Schädigung der verklebten Materialien sich trennen lassen.

5

10

15

20

25

30

Überraschenderweise läßt sich diese Aufgabe mit einer selbstklebenden oder wärmeaktivierbaren Klebfolie lösen, die auf Basis eines thermoplastischen Kautschuks und klebrigmachender Harze aufgebaut ist.

Beim Verkleben von festen Materialien liefern derartige Systeme gute Bindesestigkeiten und Standsestigkeiten. Voraussetzung für die Wiederlösbarkeit ist eine Klebsolie mit einer hohen Elastizität und einer geringen Plastizität. Die Adhäsion muß geringer als die Kohäsion sein, und das Haftvermögen (Selbstklebe-Effekt) muß beim Dehnen der Klebsolie weitgehend verschwinden. Zur Trennung des Verbundes läßt sich die Klebsolie dann mit der Zugrichtung in der Ebene der Verklebung aus der Klebsuge herausziehen, was durch die durch starke Dehnung bewirkte Dickenabnahme begünstigt wird. Die Abzugskraft, die sich aus der Summe der Kräfte für die Versormung (Elastizität und Plastizität) und für die Schälung (Abschälung der Klebsolie) zusammensetzt, ist relativ niedrig. Weitere Hilfsmittel sind nicht erforderlich. Bei dieser Lösetechnik - vergleichbar mit dem Öffnen eines Reißverschlusses - bleiben die verklebten Teile unbeeinflußt.

Als thermoplastischer Kautschuk des Erfindungsgedankens lassen sich z.B. Styrol-butadien-Blockpolymere der Styrol-isopren-Blockpolymere verwenden.

Als klebrigmachende Harze eigenen sich z.B. Natur- und Syntheseharze, wie z.B. hydrierte, disproportionierte, dimerisierte Colophonium-Abkömmlinge, die verestert oder als freie Säuren vorliegen können, Terpenund Terpenphenolharze, synthetische Kohlenwasserstoff-Harze, um nur einige zu nennen.

Weiterhin können dem Elastomer-Harz-System Antioxidantien, UV-Stabilisatoren, Farbstoffe, Füllstoffe und andere übliche Hilfsmittel - wie dem Klebstoff-Fachmann bekannt - zugefügt werden.

Die Elastomerkomponente gibt dem System ohne Vulkanisation die notwendige Gummielastizität und Kohäsion, während das Harz vorrangig

für die Adhäsion auf den verschiedenen Untergründen verantwortlich ist. Die Kombinatorik erfolgt nach dem bekannten Stand der Technik.

Die aufgeführten Rohstoffe können in einem Lösungsmittel z.B. Benzin gelöst und als hochprozentige Lösung mit einem Streichrakel auf Trennpapier oder Trennfolie gestrichen und in einem Trockenkanal getrocknet werden. Dieses Material kann zu Rollen geschnitten werden. Einfacher ist die Fertigung, wenn die Rohstoff-Mischung heiß geknetet und bei 120 - 160°C auf Trennpapier extrudiert wird.

5

10

15

20

Der Verklebungsvorgang und die Prüfung der Verbundfestigkeiten erfolgt nach der in der Klebstofftechnik üblichen Praxis, wobei vorteilhaft alle Arten von starren Fügeteilen miteinander verklebt werden können, wie Informationstafeln auf Schaufensterscheiben, Bilder oder Spiegel an Wänden oder Scheiben, Ausstellungsmaterial an Standwänden oder Gerüsten, aber auch Papier, Pappe oder Fotos auf ausreichend starren Untergründen.

Daß die Klebfoliendicke für den Abzieheffekt eine entscheidende Bedeutung hat, zeigt folgende vereinfachende Überlegung. Wenn eine bestimmte 0,6 mm dicke Klebstoff-Folie eine Abzugskraft von 20 N und eine Reißlast von 50 N und eine 1,2 mm Folie 30 und 100 N, läßt sich nach der Gleichung: Abzugskraft = Kraft für Verformung und Kraft für Schälung folgende Tabelle aufstellen:

		Verformung (N/25 mm)	Schälung (N/25 mm)	Abzugskraft (N/25 mm)	Reißlast (N/25 mm)
	1,2	20	10	30	100
	0,6	10	10	20	50
25	0,3	5	10	15	25
	0,15	2,5	10	12,5	12,5

Der Prinzip-Rechnung läßt sich entnehmen, daß der erfindungsgemäße Gedanke nur für Folien ab bestimmter Dicke gilt, nicht aber für sehr dünne

wo die Abzugskraft sich größenmäßig der Reißlast nähert. Allgemein - bei vergleichbarer Adhäsion und Kohäsion wird die Klebfolie beim Abziehen reißen. Aus Sicherheitsgründen soll sich die Abzugskraft zur Reißlast wie 1:2 bis 1:3 verhalten. Noch höhere Verhältniszahlen setzen noch dickere Folien voraus, wobei die obere Grenze von der Wirtschaftlichkiet gegeben wird.

Beispiel:

5

10 .

20

10 kg Styrolbutadien-Blockpolymer-Kautschuk (Viskosität einer 25-prozentigen Lösung in Toluol: ca. 4 Pa's),

10 kg Harz = hydriertes, mit Pentaervthrit verestertes
Colophonium und

0,2 kg Antioxidants (Basis aromatisches Amin) werden zwei Stunden

bei ca. 150°C geknete und bei 120-160°C zur 0,6 mm dicken, selbstklebenden
Folie extrudiert und einseitig mit Trennpapier abgedeckt. Für die weiteren
Versuche wurde das Material in 25 mm breite Rollen aufgeschnitten.

Reißlast : 50 N/25 mm Dehnung : über 1200 %

Stirnzugfestigkeit einer Aluminium/GFK-Verklebung (bei 80°C mit 10 bar verpreßt): 1 N/mm²

Zugscherfestigkeit (Bindefestigkeit) einer Aluminium/Aluminium-Verklebung

- bei RT mit 10 bar verpreßt : 4,4 N/mm²
- bei 80°C mit 10 bar verpreßt : 5,0 N/mm²

Eine Polymethacrylat-Platte auf Schichtstoffplatte verklebt (zum leichteren Abziehen läßt man einige Millimeter Klebfolie als Anfasser überstehen) und im erfindungsgemäßen Gedanken in der Verklebungsebene die Klebfolie abgezogen, ergibt eine Abzugskraft von: 20 N/25 mm, Deh-

nung: ca. 1000 %, wobei eine beträchtliche Verminderung der Foliendicke von 0,6 auf 0,2 mm eintritt und dann die Folie kaum selbstklebend ist.