Exercice 1

On se place dans l'anneau $\mathbb{Z}[X]$ des polynômes à coefficients dans $\mathbb{Z}.$

- On note $(2,X):=2\mathbb{Z}[X]+X\mathbb{Z}[X]$ l'idéal de $\mathbb{Z}[X]$ engendré par 2 et X.
 - 2. Montrer que l'application $f: \mathbb{Z}[X] \to \mathbb{Z}/2\mathbb{Z}$ définie par $f(P) = \overline{P(0)}$ est un morphisme d'anneaux surjectif.
 - 3. Montrer que ker(f) = (2, X).
 - 4. En déduire que $\mathbb{Z}[X]/(2,X) \cong \mathbb{Z}/2\mathbb{Z}$.

1. Montrer que (2, X) n'est pas principal.

5. Que peut-on dire de l'idéal (2, X).

Exercice 2

Soit l'application $f: \mathbb{Z}[i] \to \mathbb{Z}/10\mathbb{Z}$ définie par $f(a+ib) = \overline{a+7b}$.

- Montrer que f est un morphisme d'anneaux surjectif.
- Soit (3+i) l'idéal principal de Z[i] engendré par 3+i.
 Montrer que 10 ∈ (3+i) et que ker(f) = (3+i).
- 3. En déduire que $\mathbb{Z}[i]/(3+i) \cong \mathbb{Z}/10\mathbb{Z}$.
- 4. 3 + i est-il premier dans $\mathbb{Z}[i]$? Justifier.

Exercice 3

En utilisant la définition d'un idéal maximal, montrer que l'idéal (X) est un idéal maximal de $\mathbb{R}[X]$.

Exercice 4

Dans $\mathbb{R}[X]$, on considère l'idéal (X^2+1) (l'idéal principal engendré par X^2+1).

- 1. Montrer que $(X^2 + 1)$ est un idéal premier de $\mathbb{R}[X]$.
- 2. L'idéal $(X^2 + 1)$ est-il maximal? Justifier.

Exercice 5 (Examen normal 2021-2022)

On note $\mathbb{Z}[i\sqrt{5}]$ l'ensemble des complexes suivant : $\mathbb{Z}[i\sqrt{5}] = \{a + ib\sqrt{5} : a, b \in \mathbb{Z}\}.$

1. Montrer que $(\mathbb{Z}[i\sqrt{5}],+,.)$ est un anneau commutatif et unitaire.

2. On considère l'application $N: \mathbb{Z}[i\sqrt{5}] \longrightarrow \mathbb{N}$ définie par $N(a+ib\sqrt{5}) = a^2 + 5b^2$. Vérifier que $\forall z, z' \in \mathbb{Z}[i\sqrt{5}]$, on a N(zz') = N(z)N(z').

3. Déterminer les éléments inversibles de $\mathbb{Z}[i\sqrt{5}].$

4. Montrer que les éléments $2; 3; 1+i\sqrt{5}$ et $1-i\sqrt{5}$ sont irréductibles dans $\mathbb{Z}[i\sqrt{5}]$.

5. En déduire que l'anneau $\mathbb{Z}[i\sqrt{5}]$ n'est pas factoriel.

Exercice 6

On considère l'anneau des entiers de Gauss $\mathbb{Z}[i] := \{a + ib : a, b \in \mathbb{Z}\}.$

On désigne par $Fr(\mathbb{Z}[i]) := \{\frac{u}{v} : u, v \in \mathbb{Z}[i], v \neq 0\}$ le corps des fractions de $\mathbb{Z}[i]$.

1. Montrer que $Fr(\mathbb{Z}[i]) = \mathbb{Q}[i] = \{z = x + iy : x, y \in \mathbb{Q}\}.$

2. Montrer que pour tout $x \in \mathbb{Q}$, il existe $a \in \mathbb{Z}$, tel que $|x-a| \leq \frac{1}{2}$.

3. Montrer que pour tout $u \in \mathbb{Q}[i]$ il existe $z \in \mathbb{Z}[i]$, tel que $|u-z|^2 < 1$.

4. En déduire que $\mathbb{Z}[i]$ est euclidien.

Exercice 7

Dans l'anneau $\mathbb{Z}[i\sqrt{5}]$ on considère les éléments :

$$z_1 = 2(1 + i\sqrt{5})$$
 et $z_2 = 6 = (1 + i\sqrt{5})(1 - i\sqrt{5})$.

1. Montrer que z_1 et z_2 n'ont pas de pgcd.

2. En déduire que $\mathbb{Z}[i\sqrt{5}]$ n'est pas principal.