

8 BIT SIPO SHIFT LATCH REGISTER (3-STATE)

- HIGH SPEED
- $f_{MAX} = 73 \text{ MHz} (TYP.) \text{ AT V}_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } I_A = 25 \text{ °C}$
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE ||OH| = IOL = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 4094B

DESCRIPTION

The M54/74HC4094 is a high speed CMOS 8 BIT SIPO SHIFT LATCH REGISTER fabricated with silicon gate C²MOS technology.

It has the same high speed performance of LSTTL combined with true CMOS low power consumption. This device consists of an 8-bit shift register and an 8-bit latch with 3-state output buffer. Data is shifted serially through the shift register on the positive going transition of the clock input signal. The output of the last stage (Qs) can be used to cascade several devices.

Data on the Qs output is transferred to a second output (Qs') on the following negative transition of the clock input signal. The data of each stage of the shift register is provided with a latch, which latches data on the negative going transition of the STROBE input signal. When the STROBE input is held high, data propagates through the latch to a 3-state output buffer.

This buffer is enabled when OUTPUT ENABLE input is taken high. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

February 1993 1/12

LOGIC DIAGRAM

LOGIC DIAGRAM

TRUTH TABLE

СК	OE	ST	SI	PARALLE	L OUTPUT	SERIAL OUTPUT		
OK .		31	31	Q1	Qn	Qs	Qs'	
	Н	Н	L	L	Qn-1	Q7	NC	
L	Н	Н	Н	Н	Qn-1	Q7	NC	
	Н	L	Х	NC	NC	Q7	NC	
	L	Х	Х	Z	Z	Q7	NC	
	Н	Х	Х	NC	NC	NC	Qs	
	L	Х	Х	Z	Z	NC	Qs	

X: Don't Care Z: High Impedance NC: No Change

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	STROBE	Strobe Input
2	SERIAL IN	Serial Input
3	CLOCK	Clock Input
4, 5, 6, 7, 14, 13, 12, 11	Q1 to Q7	Parallel Outputs
9, 10	QS Q'S	Serial Outputs
15	OE	Output Enable Input
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	٧
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P _D	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T_{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	ပိုဂိ
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		V _{CC} = 6 V	0 to 400	

DC SPECIFICATIONS

		Test Conditions			Value							
Symbol	Parameter	Vcc			T _A = 25 °C 54HC and 74H0					-55 to 125 °C 54HC		Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	i
V_{OH}	High Level	2.0	Vı =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	VI	I _O =-20 μA	4.4	4.5		4.4		4.4		.,
		6.0 or 5.9 6.0 5.9		5.9		V						
		4.5	V _{IL}	I _O =-4.0 mA	4.18	4.31		4.13		4.10		7
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	V _I –	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.37		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.37		0.40	
lı	Input Leakage Current	6.0	Vı = '	Vcc or GND			±0.1		±1		±1	μΑ
l _{OZ}	3 State Output Off State Current	6.0		$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			±0.5		±5.0		±10	μΑ
I _{CC}	Quiescent Supply Current	6.0		V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Tes	t Conditions				Value				
Symbol	Parameter	Vcc			_A = 25 ^c C and 7		1	85 °C HC	1	125 °C HC	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0			30	75		95		110	
t _{THL}	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH}	Propagation	2.0			92	200		250		300	
t _{PHL}	Delay Time	4.5			26	40		50		60	ns
	(CLOCK - Qn)	6.0			20	34		43		51	
t _{PLH}	Propagation	2.0			65	150		190		225	
t _{PHL}	Delay Time	4.5			19	30		38		45	ns
	(CLOCK - QS, Q'S)	6.0			15	26		32		38	
t _{PLH}	Propagation	2.0			75	160		200		240	
t _{PHL}	Delay Time	4.5			20	32		40		48	ns
	(STROBE - Qn)	6.0			16	27		34		41	
t _{PZL}	3 State Output	2.0			58	150		190		225	
t _{PZH}	Enable Time	4.5			16	30		38		45	ns
	6.0			13	26		32		38		
t _{PHZ}	3 State Output	2.0			35	150		190		225	
t _{PLZ} Disable Time	4.5			16	30		38		45	ns	
	6.0			13	26		32		38		
f _{MAX}	f _{MAX} Maximum Clock	2.0		6	16		4.8		4		
	Frequency	4.5		30	66		24		20		MHz
		6.0		35	80		28		24		
t _{W(H)}	Minimum Pulse	2.0			17	75		95		110	
t _{W(L)}	Width	4.5			7	15		19		22	ns
		6.0			6	13		16		19	
t _{W(L)}	Minimum Pulse	2.0			28	75		95		110	
,	Width	4.5			6	15		19		22	ns
		6.0			6	13		16		19	
ts	Minimum Set-up	2.0			30	75		95		110	
	Time	4.5			7	15		19		22	ns
	(SI)	6.0			5	13		16		19	
ts	Minimum Set-up	2.0			45	100		125		145	
	Time	4.5			10	20		25		29	ns
	(ST)	6.0			8	17		21		25	
t _h	Minimum Hold	2.0				0		0		0	
	Time	4.5				0		0		0	ns
	(SI, ST)	6.0				0		0		0	
Cin	Input Capacitance				5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance				140						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. Icc(opr) = C_{PD} • V_{CC} • f_{IN} + I_{CC}/2 (per FLIP/FLOP)

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST WAVEFORM Icc (Opr.)

CPD CALCULATION

C_{PD} is to be calculated with the following formula by using the measured value of I_{CC} (Opr.) in the test circuit opposite. $C_{PD} = \frac{I_{CC}(Opr)}{f_{IN} \times V_{CC}}$

$$C_{PD} = \frac{I_{CC}(Opr)}{f_{IN} \times V_{CC}}$$

In determining the typical value of CPD, a relatively high frequency of 1 MHz was applied to fin, in order to eliminate any error caused by the quiescent supply current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

