MA REVOLUTIONIZING MULTI-AGENT LLM TRAINING

Problem Statement:

- Current LLMs operate in isolation
- Missing joint training methods
- No established multi-agent framework

Why It Matters:

- Growing need for autonomous systems
- Gap in collaborative Al development

* Key Innovation:

- First Multi-agent LLM framework
- Sequential specialized agent setup
- Doint training with credit assignment

THREE SPECIALIZED AGENTS:

GENERATOR (G) 📝

- INPUT → QUESTION (Q)
- OUTPUT → INITIAL SOLUTION
- ROLE → SOLUTION GENERATION

VERIFIER (V) 🔍

- INPUT → GENERATOR OUTPUT + QUESTION
- OUTPUT → QUALITY FEEDBACK
- ROLE → CRITICAL EVALUATION

REFINEMENT MODEL (R) 🐎

- INPUT → ALL PREVIOUS OUTPUTS
- OUTPUT → FINAL REFINED ANSWER
- ROLE → SOLUTION IMPROVEMENT

→ FLOW: QUESTION → G → SOLUTION → V → FEEDBACK → R →

FINAL ANSWER

MALT Training Methodology

📊 Data Generation:

- Sampling Strategy:
 - Tree-based sampling
 - ∘ ✓ n³ trajectory generation
 - Exponential solution space
- Value Attribution:
 - ∘ **V**/**X** Binary rewards
 - ► Backward value propagation
 - \circ \circ θ = 0.5 threshold

🔁 Training Pipeline

- 1. Initial Dataset Collection: Raw data preprocessing Question-answer pairs setup Quality filtering
- 2. Trajectory Expansion: Branching factor n application Multiple solution paths generation Search space exploration
- 3. Credit Assignment: Value propagation through tree Performance attribution Role-specific feedback
- 4. Model-Specific Training: Individual agent optimization Role specialization Capability enhancement

Technical Implementation

Implementation Details & Algorithms

📊 Credit Assignment Strategy:

1 Value Functions:

- V(vi,j,k) = EI[V(ri,j,k,l)]
- V(gi,j) = Ek[V(vi,j,k)]

2. @ Binarization Process:

- $\theta = 0.5$ threshold
- **Values** > 0.5 → correct
- X Values ≤ 0.5 → incorrect

💢 Training Methods:

- E SFT (Supervised Fine-Tuning)
- LoRA adaptation

Experimental Results & Benchmarks

PERFORMANCE IMPROVEMENTS:

- 1. MATH Dataset:
 - M Baseline: 49.50%
 - ∘ **M** MALT: 56.50%
- 2. III GSM8k Dataset:
 - M Baseline: 84.25%
 - **MALT**: 90.25%
- 3. S CSQA Dataset:

 - **MALT**: 81.50%

© KEY FINDINGS:

- Consistent improvements
- Successful collaboration

Current Applications:

1. Complex Problem Solving:

- Mathematical reasoning
- Research support
- Code development
- Creative tasks

2. Safety Applications:

- Verification systems
- Oversight mechanisms
- Trusted AI systems

Future Research:

1. X Technical Improvements:

- PPO implementation
- Dynamic thresholding
- Search optimization

2. **M** Scaling Directions:

- Multi-agent expansion
- Role diversification
- Architecture scaling

Key Implementation Notes:

- \circ Temperature: $\tau = 0.3$
- o Base model: Llama 3.18B
- LoRA parameters optimized
- Branching factor n = 3

? Research Questions:

- B Optimal agent count
- o **@** Role optimization
- II Scaling efficiency

Implementating the concept

Code Base

https://github.com/Nimitkothari/MALT

NIMIT KOTHARI

SAVE THIS POST IF YOU FIND IT USEFUL

