WO02083837

Publication Title:

METHODS FOR IDENTIFYING SMALL MOLECULES THAT BIND SPECIFIC RNA STRUCTURAL MOTIFS

Abstract:

Abstract of WO02083837

The present invention relates to a method for screening and identifying test compounds that bind to a preselected target ribonucleic acid ("RNA"). Direct, non-competitive binding assays are advantageously used to screen bead-based libraries of compounds for those that selectively bind to a preselected target RNA. Binding of target RNA molecules to a particular test compound is detected using any physical method that measures the altered physical property of the target RNA bound to a test compound. The structure of the test compound attached to the labeled RNA is also determined. The methods used will depend, in part, on the nature of the library screened. The methods of the present invention provide a simple, sensitive assay for high-throughput screening of libraries of compounds to identify pharmaceutical leads. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 24 October 2002 (24.10.2002)

PCT

(10) International Publication Number WO 02/083837 A1

(51) International Patent Classification⁷: C12M 1/38, 1/40, C12Q 1/68

(21) International Application Number: PCT/US02/11758

(22) International Filing Date: 11 April 2002 (11.04.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/282,966 11 April 2001 (11.04.2001) US

(71) Applicant (for all designated States except US): PTC THERAPEUTICS, INC. [US/US]; 100 Corporate Court, Middlesex Business Center, South Plainfield, NJ 07080 (US).

- (72) Inventor; and
- (75) Inventor/Applicant (for US only): ALMSTEAD, Neil, G. [US/US]; 1 Crocus Drive, Holmdel, NJ 07733 (US).
- (74) Agents: CORUZZI, Laura, A. et al.; Pennie & Edmonds LLP, 1155 Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS FOR IDENTIFYING SMALL MOLECULES THAT BIND SPECIFIC RNA STRUCTURAL MOTIFS

(57) Abstract: The present invention relates to a method for screening and identifying test compounds that bind to a preselected target ribonucleic acid ("RNA"). Direct, non-competitive binding assays are advantageously used to screen bead-based libraries of compounds for those that selectively bind to a preselected target RNA. Binding of target RNA molecules to a particular test compound is detected using any physical method that measures the altered physical property of the target RNA bound to a test compound. The structure of the test compound attached to the labeled RNA is also determined. The methods used will depend, in part, on the nature of the library screened. The methods of the present invention provide a simple, sensitive assay for high-throughput screening of libraries of compounds to identify pharmaceutical leads.

METHODS FOR IDENTIFYING SMALL MOLECULES THAT BIND SPECIFIC RNA STRUCTURAL MOTIFS

This application claims the benefit of U.S. Provisional Application No. 60/282,966, filed April 11, 2001, which is incorporated herein by reference in its entirety.

5

1. INTRODUCTION

The present invention relates to a method for screening and identifying test compounds that bind to a preselected target ribonucleic acid ("RNA"). Direct, non-competitive binding assays are advantageously used to screen bead-based libraries of compounds for those that selectively bind to a preselected target RNA. Binding of target RNA molecules to a particular test compound is detected using any method that measures the altered physical property of the target RNA bound to a test compound. The methods of the present invention provide a simple, sensitive assay for high-throughput screening of libraries of compounds to identify pharmaceutical leads.

2. BACKGROUND OF THE INVENTION

Protein-nucleic acid interactions are involved in many cellular functions, including transcription, RNA splicing, mRNA decay, and mRNA translation. Readily accessible synthetic molecules that can bind with high affinity to specific sequences of single- or double-stranded nucleic acids have the potential to interfere with these interactions in a controllable way, making them attractive tools for molecular biology and medicine. Successful approaches for blocking function of target nucleic acids include using duplex-forming antisense oligonucleotides (Miller, 1996, Progress in Nucl. Acid Res. & Mol. Biol. 52:261-291; Ojwang & Rando, 1999, Achieving antisense inhibition by oligodeoxynucleotides containing N_7 modified 2'-deoxyguanosine using tumor necrosis factor receptor type 1, METHODS: A Companion to Methods in Enzymology 18:244-251) and peptide nucleic acids ("PNA") (Nielsen, 1999, Current Opinion in Biotechnology 10:71-75), which bind to nucleic acids via Watson-Crick base-pairing. Triplex-forming 30 anti-gene oligonucleotides can also be designed (Ping et al., 1997, RNA 3:850-860; Aggarwal et al., 1996, Cancer Res. 56:5156-5164; U.S. Patent No. 5,650,316), as well as pyrrole-imidazole polyamide oligomers (Gottesfeld et al., 1997, Nature 387:202-205; White et al., 1998, Nature 391:468-471), which are specific for the major and minor grooves of a double helix, respectively.

5

10

15

20

30

35

In addition to synthetic nucleic acids (i.e., antisense, ribozymes, and triplexforming molecules), there are examples of natural products that interfere with deoxyribonucleic acid ("DNA") or RNA processes such as transcription or translation. For example, certain carbohydrate-based host cell factors, calicheamicin oligosaccharides, interfere with the sequence-specific binding of transcription factors to DNA and inhibit transcription in vivo (Ho et al., 1994, Proc. Natl. Acad. Sci. USA 91:9203-9207; Liu et al., 1996, Proc. Natl. Acad. Sci. USA 93:940-944). Certain classes of known antibiotics have been characterized and were found to interact with RNA. For example, the antibiotic thiostreptone binds tightly to a 60-mer from ribosomal RNA (Cundliffe et al., 1990, in The Ribosome: Structure, Function & Evolution (Schlessinger et al., eds.) American Society for Microbiology, Washington, D.C. pp. 479-490). Bacterial resistance to various antibiotics often involves methylation at specific rRNA sites (Cundliffe, 1989, Ann. Rev. Microbiol. 43:207-233). Aminoglycosidic aminocyclitol (aminoglycoside) antibiotics and peptide antibiotics are known to inhibit group I intron splicing by binding to specific regions of the RNA (von Ahsen et al., 1991, Nature (London) 353:368-370). Some of these same aminoglycosides have also been found to inhibit hammerhead ribozyme function (Stage et al., 1995, RNA 1:95-101). In addition, certain aminoglycosides and other protein synthesis inhibitors have been found to interact with specific bases in 16S rRNA (Woodcock et al., 1991, EMBO J. 10:3099-3103). An oligonucleotide analog of the 16S rRNA has also been shown to interact with certain aminoglycosides (Purohit et al., 1994, Nature 370:659-662). A molecular basis for hypersensitivity to aminoglycosides has been found to be located in a single base change in mitochondrial rRNA (Hutchin et al., 1993, Nucleic Acids Res. 21:4174-4179). Aminoglycosides have also been shown to inhibit the interaction between specific structural RNA motifs and the corresponding RNA binding protein. Zapp et al. (Cell, 1993, 74:969-978) has demonstrated that the aminoglycosides neomycin B, lividomycin A, and tobramycin can block the binding of Rev, a viral regulatory protein required for viral gene expression, to its viral recognition element in the IIB (or RRE) region of HIV RNA. This blockage appears to be the result of competitive binding of the antibiotics directly to the RRE RNA structural motif.

Single stranded sections of RNA can fold into complex tertiary structures consisting of local motifs such as loops, bulges, pseudoknots, guanosine quartets and turns (Chastain & Tinoco, 1991, Progress in Nucleic Acid Res. & Mol. Biol. 41:131-177; Chow & Bogdan, 1997, Chemical Reviews 97:1489-1514; Rando & Hogan, 1998, Biologic activity of guanosine quartet forming oligonucleotides in "Applied Antisense Oligonucleotide Technology" Stein. & Krieg (eds) John Wiley and Sons, New York, pages 335-352). Such

structures can be critical to the activity of the nucleic acid and affect functions such as regulation of mRNA transcription, stability, or translation (Weeks & Crothers, 1993, Science 261:1574-1577). The dependence of these functions on the native three-dimensional structural motifs of single-stranded stretches of nucleic acids makes it difficult to identify or design synthetic agents that bind to these motifs using general, simple-to-use sequence-specific recognition rules for the formation of double- and triple-helical nucleic acids used in the design of antisense and ribozyme type molecules. Approaches to screening generally involve competitive assays designed to identify compounds that disrupt the interaction between a target RNA and a physiological, host cell factor(s) that had been previously identified to specifically interact with that particular target RNA. In general, such assays require the identification and characterization of the host cell factor(s) deemed to be required for the function of the target RNA. Both the target RNA and its preselected host cell binding partner are used in a competitive format to identify compounds that disrupt or interfere with the two components in the assay.

5

10

20

30

Citation or identification of any reference in Section 2 of this application is not an admission that such reference is available as prior art to the present invention.

3. SUMMARY OF THE INVENTION

The present invention relates to methods for identifying compounds that bind to preselected target elements of nucleic acids including, but not limited to, specific RNA sequences, RNA structural motifs, and/or RNA structural elements. The specific target RNA sequences, RNA structural motifs, and/or RNA structural elements are used as targets for screening small molecules and identifying those that directly bind these specific sequences, motifs, and/or structural elements. For example, methods are described in which a preselected target RNA having a detectable label is used to screen a library of test compounds, preferably under physiologic conditions. Any complexes formed between the target RNA and a member of the library are identified using methods that detect the labeled target RNA bound to a test compound. In particular, the present invention relates to methods for using a target RNA having a detectable label to screen a bead-based library of test compounds. Compounds in the bead-based library that bind to the labeled target RNA will form a bead-based detectably labeled complex, which can be separated from the unbound beads and unbound target RNA in the liquid phase by a number of physical means, including, but not limited to, flow cytometry, affinity chromatography, manual batch mode separation, suspension of beads in electric fields, and microwave of the bead-based detectably labeled complex. The detectably labeled complex can then be identified by the label on the target

RNA and removed from the uncomplexed, unlabeled test compounds in the library. The structure of the test compound complexed with the labeled RNA is then ascertained by *de novo* structure determination of the test compounds using, for example, mass spectrometry or nuclear magnetic resonance ("NMR"). The test compounds identified are useful for any purpose to which a binding reaction may be put, for example in assay methods, diagnostic procedures, cell sorting, as inhibitors of target molecule function, as probes, as sequestering agents and the like. In addition, small organic molecules which interact specifically with target RNA molecules may be useful as lead compounds for the development of therapeutic agents.

5

10

20

25

The methods described herein for the identification of compounds that directly bind to a particular preselected target RNA are well suited for high-throughput screening. The direct binding method of the invention offers advantages over drug screening systems for competitors that inhibit the formation of naturally-occurring RNA binding protein:target RNA complexes; *i.e.*, competitive assays. The direct binding method of the invention is rapid and can be set up to be readily performed, *e.g.*, by a technician, making it amenable to high throughput screening. The method of the invention also eliminates the bias inherent in the competitive drug screening systems, which require the use of a preselected host cell factor that may not have physiological relevance to the activity of the target RNA. Instead, the methods of the invention are used to identify any compound that can directly bind to specific target RNA sequences, RNA structural motifs, and/or RNA structural elements, preferably under physiologic conditions. As a result, the compounds so identified can inhibit the interaction of the target RNA with any one or more of the native host cell factors (whether known or unknown) required for activity of the RNA *in vivo*.

The present invention may be understood more fully by reference to the detailed description and examples, which are intended to illustrate non-limiting embodiments of the invention.

3.1. <u>Definitions</u>

As used herein, a "target nucleic acid" refers to RNA, DNA, or a chemically modified variant thereof. In a preferred embodiment, the target nucleic acid is RNA. A target nucleic acid also refers to tertiary structures of the nucleic acids, such as, but not limited to loops, bulges, pseudoknots, guanosine quartets and turns. A target nucleic acid also refers to RNA elements such as, but not limited to, the HIV TAR element, internal ribosome entry site, "slippery site", instability elements, and adenylate uridylate-rich

elements, which are described in Section 4.1. Non-limiting examples of target nucleic acids are presented in Section 4.1 and Section 5.

As used herein, a "library" refers to a plurality of test compounds with which a target nucleic acid molecule is contacted. A library can be a combinatorial library, e.g., a collection of test compounds synthesized using combinatorial chemistry techniques, or a collection of unique chemicals of low molecular weight (less than 1000 daltons) that each occupy a unique three-dimensional space.

5

10

20

30

As used herein, a "label" or "detectable label" is a composition that is detectable, either directly or indirectly, by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include radioactive isotopes (e.g., 32P, 35S, and 3H), dyes, fluorescent dyes, electron-dense reagents, enzymes and their substrates (e.g., as commonly used in enzyme-linked immunoassays, e.g., alkaline phosphatase and horse radish peroxidase), biotin, digoxigenin, or haptens and proteins for which antisera or monoclonal antibodies are available. Moreover, a label or detectable moiety can include an "affinity tag" that, when coupled with the target nucleic acid and incubated with a test compound or compound library, allows for the affinity capture of the target nucleic acid along with molecules bound to the target nucleic acid. One skilled in the art will appreciate that a affinity tag bound to the target nucleic acids has, by definition, a complimentary ligand coupled to a solid support that allows for its capture. For example, useful affinity tags and complimentary ligands include, but are not limited to, biotin-streptavidin, complimentary nucleic acid fragments (e.g., oligo dT-oligo dA, oligo T-oligo A, oligo dG-oligo dC, oligo G-oligo C), aptamer complexes, or haptens and proteins for which antisera or monoclonal antibodies are available. The label or detectable moiety is typically bound, either covalently, through a linker or chemical bound, or through ionic, van der Waals or hydrogen bonds to the molecule to be detected.

As used herein, a "dye" refers to a molecule that, when exposed to radiation, emits radiation at a level that is detectable visually or via conventional spectroscopic means. As used herein, a "visible dye" refers to a molecule having a chromophore that absorbs radiation in the visible region of the spectrum (*i.e.*, having a wavelength of between about 400 nm and about 700 nm) such that the transmitted radiation is in the visible region and can be detected either visually or by conventional spectroscopic means. As used herein, an "ultraviolet dye" refers to a molecule having a chromophore that absorbs radiation in the ultraviolet region of the spectrum (*i.e.*, having a wavelength of between about 30 nm and about 400 nm). As used herein, an "infrared dye" refers to a molecule having a chromophore that absorbs radiation in the infrared region of the spectrum (*i.e.*, having a wavelength

between about 700 nm and about 3,000 nm). A "chromophore" is the network of atoms of the dye that, when exposed to radiation, emits radiation at a level that is detectable visually or via conventional spectroscopic means. One of skill in the art will readily appreciate that although a dye absorbs radiation in one region of the spectrum, it may emit radiation in another region of the spectrum. For example, an ultraviolet dye may emit radiation in the visible region of the spectrum. One of skill in the art will also readily appreciate that a dye can transmit radiation or can emit radiation via fluorescence or phosphorescence.

The phrase "pharmaceutically acceptable salt(s)," as used herein includes but is not limited to salts of acidic or basic groups that may be present in test compounds identified using the methods of the present invention. Test compounds that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids. The acids that can be used to prepare pharmaceutically acceptable acid addition salts of such basic compounds are those that form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, including but not limited to sulfuric, citric, maleic, acetic, oxalic, hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate (i.e., 20 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)) salts. Test compounds that include an amino moiety may form pharmaceutically or cosmetically acceptable salts with various amino acids, in addition to the acids mentioned above. Test compounds that are acidic in nature are capable of forming base salts with various pharmacologically or cosmetically acceptable cations. Examples of such salts include alkali metal or alkaline earth metal salts and, particularly, calcium, magnesium, sodium lithium, zinc, potassium, and iron salts.

By "substantially one type of test compound," as used herein, is meant that the assay can be performed in such a fashion that at some point, only one compound need be used in each reaction so that, if the result is indicative of a binding event occurring between the target RNA molecule and the test compound the test compound, can be easily identified.

30

4. <u>DETAILED DESCRIPTION OF THE INVENTION</u>

The present invention relates to methods for identifying compounds that bind to preselected target elements of nucleic acids, in particular, RNAs, including but not limited to preselected target RNA sequencing structural motifs, or structural elements. Methods are described in which a preselected target RNA having a detectable label is used to screen a

library of test compounds. Any complexes formed between the target RNA and a member of the library are identified using methods that detect the labeled target RNA bound to a test compound. In particular, the present invention relates to methods for using a target RNA having a detectable label to screen a bead-based library of test compounds. Compounds in the bead-based library that bind to the labeled target RNA will form a bead-based detectably labeled complex, which can be separated from the unbound target RNA in the liquid phase by a number of physical means, such as, but not limited to, flow cytometry, affinity chromatography, manual batch mode separation, suspension of beads in electric fields, and microwave of the bead-based detectably labeled complex. The detectably labeled complex can then be identified by the label on the target RNA and removed from the uncomplexed, unlabeled test compounds in the library. The structure of the test compound attached to the labeled RNA is then ascertained by *de novo* structure determination of the test compounds using, for example, mass spectrometry or nuclear magnetic resonance ("NMR").

10

15

30

Thus, the methods of the present invention provide a simple, sensitive assay for high-throughput screening of libraries of test compounds, in which the test compounds of the library that specifically bind a preselected target nucleic acid are easily distinguished from non-binding members of the library. The structures of the binding molecules are ascertained by *de novo* structure determination of the test compounds using, for example, mass spectrometry or nuclear magnetic resonance ("NMR"). The test compounds so identified are useful for any purpose to which a binding reaction may be put, for example in assay methods, diagnostic procedures, cell sorting, as inhibitors of target molecule function, as probes, as sequestering agents and lead compounds for development of therapeutics, and the like. Small organic compounds that are identified to interact specifically with the target RNA molecules are particularly attractive candidates as lead compounds for the development of therapeutic agents.

The assay of the invention reduces bias introduced by competitive binding assays which require the identification and use of a host cell factor (presumably essential for modulating RNA function) as a binding partner for the target RNA. The assays of the present invention are designed to detect any compound or agent that binds to the target RNA, preferably under physiologic conditions. Such agents can then be tested for biological activity, without establishing or guessing which host cell factor or factors is required for modulating the function and/or activity of the target RNA.

Section 4.1 describes examples of protein-RNA interactions that are important in a variety of cellular functions and several target RNA elements that can be used to identify test compounds. Compounds that inhibit these interactions by binding to the RNA and

successfully competing with the natural protein or host cell factor that endogenously binds to the RNA may be important, e.g., in treating or preventing a disease or abnormal condition, such as an infection or unchecked growth. Section 4.2 describes detectable labels for target nucleic acids that are useful in the methods of the invention. Section 4.3 describes libraries of test compounds. Section 4.4 provides conditions for binding a labeled target RNA to a test compound of a library and detecting RNA binding to a test compound using the methods of the invention. Section 4.5 provides methods for separating complexes of target RNAs bound to a test compound from an unbound RNA. Section 4.6 describes methods for identifying test compounds that are bound to the target RNA. Section 4.7 describes a secondary, biological screen of test compounds identified by the methods of the invention to test the effect of the test compounds in vivo. Section 4.8 describes the use of test compounds identified by the methods of the invention for treating or preventing a disease or abnormal condition in mammals.

15

20

25

5

4.1. Biologically Important RNA-Host Cell Factor Interactions

Nucleic acids, and in particular RNAs, are capable of folding into complex tertiary structures that include bulges, loops, triple helices and pseudoknots, which can provide binding sites for host cell factors, such as proteins and other RNAs. RNA-protein and RNA-RNA interactions are important in a variety cellular functions, including transcription, RNA splicing, RNA stability and translation. Furthermore, the binding of such host cell factors to RNAs may alter the stability and translational efficiency of such RNAs, and according affect subsequent translation. For example, some diseases are associated with protein overproduction or decreased protein function. In this case, the identification of compounds to modulate RNA stability and translational efficiency will be useful to treat and prevent such diseases.

The methods of the present invention are useful for identifying test compounds that bind to target RNA elements in a high throughput screening assay of libraries of test compounds in solution. In particular, the methods of the present invention are useful for identifying a test compound that binds to a target RNA elements and inhibits the interaction of that RNA with one or more host cell factors *in vivo*. The molecules identified using the methods of the invention are useful for inhibiting the formation of a specific bound RNA:host cell factor complexes *in vivo*.

In some embodiments, test compounds identified by the methods of the invention are useful for increasing or decreasing the translation of messenger RNAs ("mRNAs"), e.g., protein production, by binding to one or more regulatory elements in the 5'

untranslated region, the 3' untranslated region, or the coding region of the mRNA. Compounds that bind to mRNA can, *inter alia*, increase or decrease the rate of mRNA processing, alter its transport through the cell, prevent or enhance binding of the mRNA to ribosomes, suppressor proteins or enhancer proteins, or alter mRNA stability. Accordingly, compounds that increase or decrease mRNA translation can be used to treat or prevent disease. For example, diseases associated with protein overproduction, such as amyloidosis, or with the production of mutant proteins, such as *Ras*, can be treated or prevented by decreasing translation of the mRNA that codes for the overproduced protein, thus inhibiting production of the protein. Conversely, the symptoms of diseases associated with decreased protein function, such as hemophelia, may be treated by increasing translation of mRNA coding for the protein whose function is decreased, *e.g.*, factor IX in some forms of hemophilia.

5

The methods of the invention can be used to identify compounds that bind to mRNAs coding for a variety of proteins with which the progression of diseases in mammals is associated. These mRNAs include, but are not limited to, those coding for amyloid protein and amyloid precursor protein; anti-angiogenic proteins such as angiostatin, endostatin, METH-1 and METH-2; apoptosis inhibitor proteins such as survivin, clotting factors such as Factor IX, Factor VIII, and others in the clotting cascade; collagens; cyclins and cyclin inhibitors, such as cyclin dependent kinases, cyclin D1, cyclin E, WAF1, cdk4 inhibitor, and 20 MTS1; cystic fibrosis transmembrane conductance regulator gene (CFTR); cytokines such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17 and other interleukins; hematopoetic growth factors such as erythropoietin (Epo); colony stimulating factors such as G-CSF, GM-CSF, M-CSF, SCF and thrombopoietin; growth factors such as BNDF, BMP, GGRP, EGF, FGF, GDNF, GGF, HGF, IGF-1, IGF-2, KGF, myotrophin, NGF, OSM, PDGF, somatotrophin, TGF-β, TGF-α and VEGF; antiviral cytokines such as interferons, antiviral proteins induced by interferons, TNF-α, and TNF-β; enzymes such as cathepsin K, cytochrome P-450 and other cytochromes, farnesyl transferase, glutathione-s transferases, heparanase, HMG CoA synthetase, Nacetyltransferase, phenylalanine hydroxylase, phosphodiesterase, ras carboxyl-terminal 30 protease, telomerase and TNF converting enzyme; glycoproteins such as cadherins, e.g., Ncadherin and E-cadherin; cell adhesion molecules; selectins; transmembrane glycoproteins such as CD40; heat shock proteins; hormones such as 5-α reductase, atrial natriuretic factor, calcitonin, corticotrophin releasing factor, diuretic hormones, glucagon, gonadotropin, gonadotropin releasing hormone, growth hormone releasing factor, somatotropin, insulin, leptin, luteinizing hormone, luteinizing hormone releasing hormone,

parathyroid hormone, thyroid hormone, and thyroid stimulating hormone; proteins involved in immune responses, including antibodies, CTLA4, hemagglutinin, MHC proteins, VLA-4, and kallikrein-kiningen-kinin system; ligands such as CD4; oncogene products such as sis. hst, protein tyrosine kinase receptors, ras, abl, mos, myc, fos, jun, H-ras, ki-ras, c-fms, bcl-2, L-myc, c-myc, gip, gsp, and HER-2; receptors such as bombesin receptor, estrogen receptor, GABA receptors, growth factor receptors including EGFR, PDGFR, FGFR, and NGFR. GTP-binding regulatory proteins, interleukin receptors, ion channel receptors, leukotriene receptor antagonists, lipoprotein receptors, opioid pain receptors, substance P receptors, retinoic acid and retinoid receptors, steroid receptors, T-cell receptors, thyroid hormone receptors, TNF receptors; tissue plasminogen activator; transmembrane receptors; transmembrane transporting systems, such as calcium pump, proton pump, Na/Ca exchanger, MRP1, MRP2, P170, LRP, and cMOAT; transferrin; and tumor suppressor gene products such as APC, brea1, brea2, DCC, MCC, MTS1, NF1, NF2, nm23, p53 and Rb. In addition to the eukaryotic genes listed above, the invention, as described, can be used to define molecules that interrupt viral, bacterial or fungal transcription or translation efficiencies and therefore form the basis for a novel anti-infectious disease therapeutic. Other target genes include, but are not limited to, those disclosed in Section 4.1 and Section 5.

10

20

The methods of the invention can be used to identify mRNA-binding test compounds for increasing or decreasing the production of a protein, thus treating or preventing a disease associated with decreasing or increasing the production of said protein, respectively. The methods of the invention may be useful for identifying test compounds for treating or preventing a disease in mammals, including cats, dogs, swine, horses, goats, sheep, cattle, primates and humans. Such diseases include, but are not limited to, amyloidosis, hemophilia, Alzheimer's disease, atherosclerosis, cancer, giantism, dwarfism, hypothyroidism, hyperthyroidism, inflammation, cystic fibrosis, autoimmune disorders, diabetes, aging, obesity, neurodegenerative disorders, and Parkinson's disease. Other diseases include, but are not limited to, those described in Section 4.1 and diseases caused by aberrant expression of the genes disclosed in Example 5. In addition to the eukaryotic genes listed above, the invention, as described, can be used to define molecules that interrupt viral, bacterial or fungal transcription or translation efficiencies and therefore form the basis for a novel anti-infectious disease therapeutic.

In other embodiments, test compounds identified by the methods of the invention are useful for preventing the interaction of an RNA, such as a transfer RNA ("tRNA"), an enzymatic RNA or a ribosomal RNA ("rRNA"), with a protein or with another RNA, thus preventing, *e.g.*, assembly of an *in vivo* protein-RNA or RNA-RNA complex that

is essential for the viability of a cell. The term "enzymatic RNA," as used herein, refers to RNA molecules that are either self-splicing, or that form an enzyme by virtue of their association with one or more proteins, *e.g.*, as in RNase P, telomerase or small nuclear ribonuclear protein particles. For example, inhibition of an interaction between rRNA and one or more ribosomal proteins may inhibit the assembly of ribosomes, rendering a cell incapable of synthesizing proteins. In addition, inhibition of the interaction of precursor rRNA with ribonucleases or ribonucleoprotein complexes (such as RNase P) that process the precursor rRNA prevent maturation of the rRNA and its assembly into ribosomes. Similarly, a tRNA:tRNA synthetase complex may be inhibited by test compounds identified by the methods of the invention such that tRNA molecules do not become charged with amino acids. Such interactions include, but are not limited to, rRNA interactions with ribosomal proteins, tRNA interactions with tRNA synthetase, RNase P protein interactions with RNase P RNA, and telomerase protein interactions with telomerase RNA.

5

15

20

In other embodiments, test compounds identified by the methods of the invention are useful for treating or preventing a viral, bacterial, protozoan or fungal infection. For example, transcriptional up-regulation of the genes of human immunodeficiency virus type 1 ("HIV-1") requires binding of the HIV Tat protein to the HIV trans-activation response region RNA ("TAR RNA"). HIV TAR RNA is a 59-base stem-loop structure located at the 5'-end of all nascent HIV-1 transcripts (Jones & Peterlin, 1994, Annu. Rev. Biochem. 63:717-43). Tat protein is known to interact with uracil 23 in the bulge region of the stem of TAR RNA. Thus, TAR RNA is a potential binding target for test compounds, such as small peptides and peptide analogs that bind to the bulge region of TAR RNA and inhibit formation of a Tat-TAR RNA complex involved in HIV-1 upregulation (see Hwang *et al.*,1999 Proc. Natl. Acad. Sci. USA 96:12997-13002). Accordingly, test compounds that bind to TAR RNA are useful as anti-HIV therapeutics (Hamy *et al.*, 1997, Proc. Natl. Acad. Sci. USA 94:3548-3553; Hamy *et al.*, 1998, Biochemistry 37:5086-5095; Mei *et al.*, 1998, Biochemistry 37:14204-14212), and therefore, are useful for treating or preventing AIDS.

The methods of the invention can be used to identify test compounds to treat or prevent viral, bacterial, protozoan or fungal infections in a patient. In some embodiments, the methods of the invention are useful for identifying compounds that decrease translation of microbial genes by interacting with mRNA, as described above, or for identifying compounds that inhibit the interactions of microbial RNAs with proteins or other ligands that are essential for viability of the virus or microbe. Examples of microbial target RNAs useful in the present invention for identifying antiviral, antibacterial, anti-protozoan and anti-fungal compounds include, but are not limited to, general antiviral and anti-inflammatory targets

such as mRNAs of INF α , INF γ , RNAse L, RNAse L inhibitor protein, PKR, tumor necrosis factor, interleukins 1-15, and IMP dehydrogenase; internal ribosome entry sites; HIV-1 CT rich domain and RNase H mRNA; HCV internal ribosome entry site (required to direct translation of HCV mRNA), and the 3'-untranslated tail of HCV genomes; rotavirus NSP3 binding site, which binds the protein NSP3 that is required for rotavirus mRNA translation; HBV epsilon domain; Dengue virus 5' and 3' untranslated regions, including IRES; INF α , INF β and INF γ ; plasmodium falciparum mRNAs; the 16S ribosomal subunit ribosomal RNA and the RNA component of RNase P of bacteria; and the RNA component of telomerase in fungi and cancer cells. Other target viral and bacterial mRNAs include, but are not limited to, those disclosed in Section 5.

5

One of skill in the art will appreciate that, although such target RNAs are functionally conserved in various species (*e.g.*, from yeast to humans), they exhibit nucleotide sequence and structural diversity. Therefore, inhibition of, for example, yeast telomerase by an anti-fungal compound identified by the methods of the invention might not interfere with human telomerase and normal human cell proliferation.

Thus, the methods of the invention can be used to identify test compounds that interfere with one or more target RNA interactions with host cell factors that are important for cell growth or viability, or essential in the life cycle of a virus, a bacterium, a protozoa or a fungus. Such test compounds and/or congeners that demonstrate desirable biologic and pharmacologic activity can be administered to a patient in need thereof in order to treat or prevent a disease caused by viral, bacterial, protozoan, or fungal infections. Such diseases include, but are not limited to, HIV infection, AIDS, human T-cell leukemia, SIV infection, FIV infection, feline leukemia, hepatitis A, hepatitis B, hepatitis C, Dengue fever, malaria, rotavirus infection, severe acute gastroenteritis, diarrhea, encephalitis, hemorrhagic fever, syphilis, legionella, whooping cough, gonorrhea, sepsis, influenza, pneumonia, tinea infection, candida infection, and meningitis.

Non-limiting examples of RNA elements involved in the regulation of gene expression, *i.e.*, mRNA stability, translational efficiency via translational initiation and ribosome assembly, *etc.*, include the HIV TAR element, internal ribosome entry site, "slippery site", instability elements, and adenylate uridylate-rich elements, as discussed below.

4.1.1. HIV TAR Element

Transcriptional up-regulation of the genes of human immunodeficiency virus type 1 ("HIV-1") requires binding of the HIV Tat protein to the HIV trans-activation

response region RNA ("TAR RNA"), a 59-base stem-loop structure located at the 5' end of all nascent HIV-1 transcripts (Jones & Peterlin, 1994, Annu. Rev. Biochem. 63:717-43). Tat protein is known to interact with uracil 23 in the bulge region of the stem of TAR RNA.

Thus, TAR RNA is a useful binding target for test compounds, such as small peptides and peptide analogs that bind to the bulge region of TAR RNA and inhibit formation of a Tat-TAR RNA complex involved in HIV-1 up-regulation (see Hwang *et al.*,1999 Proc. Natl. Acad. Sci. USA 96:12997-13002). Accordingly, test compounds that bind to TAR RNA can be useful as anti-HIV therapeutics (Hamy *et al.*, 1997, Proc. Natl. Acad. Sci. USA 94:3548-3553; Hamy *et al.*, 1998, Biochemistry 37:5086-5095; Mei *et al.*, 1998, Biochemistry 37:14204-14212), and therefore, are useful for treating or preventing AIDS.

4.1.2. <u>Internal Ribosome Entry Site ("IRES")</u>

Internal ribosome entry sites ("IRES") are found in the 5' untranslated regions ("5' UTR") of several mRNAs, and are thought to be involved in the regulation of translational efficiency. When the IRES element is present on an mRNA downstream of a translational stop codon, it directs ribosomal re-entry (Ghattas *et al.*, 1991, Mol. Cell. Biol. 11:5848-5959), which permits initiation of translation at the start of a second open reading frame.

As reviewed by Jang et al., a large segment of the 5' nontranslated region,

20 approximately 400 nucleotides in length, promotes internal entry of ribosomes independent of the non-capped 5' end of picornavirus mRNAs (mammalian plus-strand RNA viruses whose genomes serve as mRNA). This 400 nucleotide segment (IRES), maps approximately 200 nt down-stream from the 5' end and is highly structured. IRES elements of different picornaviruses, although functionally similar in vitro and in vivo, are not identical in sequence or structure. However, IRES elements of the genera entero- and rhinoviruses, on the one hand, and cardio- and aphthoviruses, on the other hand, reveal similarities corresponding to phylogenetic kinship. All IRES elements contain a conserved Yn-Xm-AUG unit (Y, pyrimidine; X, nucleotide) which appears essential for IRES function. The IRES elements of cardio-, entero- and aphthoviruses bind a cellular protein, p57. In the 30 case of cardioviruses, the interaction between a specific stem-loop of the IREs is essential for translation in vitro. The IRES elements of entero- and cardioviruses also bind the cellular protein, p52, but the significance of this interaction remains to be shown. The function of p57 or p52 in cellular metabolism is unknown. Since picornaviral IRES elements function in vivo in the absence of any viral gene products, is speculated that IRES-like elements may also occur in specific cellular mRNAs releasing them from cap-dependent translation (Jang et al.,

1990, Enzyme 44(1-4):292-309).

5

10

20

30

4.1.3. "Slippery Site"

Programmed, or directed, ribosomal frameshifting, when ribosomes shift from one translation reading frame to another and synthesize two viral proteins from a single viral mRNA, is directed by a unique site in viral mRNAs called the "slippery site." The slippery site directs ribosomal frameshifting in the -1 or +1 direction that causes the ribosome to slip by one base in the 5' direction thereby placing the ribosome in the new reading frame to produce a new protein.

Programmed, or directed, ribosomal frameshifting is of particular value to viruses that package their plus strands, as it eliminates the need to splice their mRNAs and reduces the risk of packaging defective genomes and regulates the ratio of viral proteins synthesized. Examples of programmed translational frameshifting (both +1 and -1 shifts) have been identified in ScV systems (Lopinski et al., 2000, Mol. Cell. Biol. 20(4):1095-103, retroviruses (Falk et al., 1993, J. Virol. 67:273-6277; Jacks & Varmus, 1985, Science 230:1237-1242; Morikawa & Bishop, 1992, Virology 186:389-397; Nam et al., 1993, J. Virol. 67:196-203); coronaviruses (Brierley et al., 1987, EMBO J. 6:3779-3785; Herold & Siddell, 1993, Nucleic Acids Res. 21:5838-5842); giardiaviruses, which are also members of the Totiviridae (Wang et al., 1993, Proc. Natl. Acad. Sci. USA 90:8595-8599); two bacterial genes (Blinkowa & Walker, 1990, Nucleic Acids Res., 18:1725-1729; Craigen & Caskey, 1986, Nature 322:273); bacteriophage genes (Condron et al., 1991, Nucleic Acids Res. 19:5607-5612); astroviruses (Marczinke et al., 1994, J. Virol. 68:5588-5595); the yeast EST3 gene (Lundblad & Morris, 1997, Curr. Biol. 7:969-976); and the rat, mouse, Xenopus, and Drosophila ornithine decarboxylase antizymes (Matsufuji et al., 1995, Cell 80:51-60); and a significant number of cellular genes (Herold & Siddell, 1993, Nucleic Acids Res. 21:5838-5842).

Drugs targeted to ribosomal frameshifting minimize the problem of virus drug resistance because this strategy targets a host cellular process rather than one introduced into the cell by the virus, which minimizes the ability of viruses to evolve drug-resistant mutants. Compounds that target the RNA elements involved in regulating programmed frameshifting should have several advantages, including (a) any selective pressure on the host cellular translational machinery to adapt to the drugs would have to occur at the host evolutionary time scale, which is on the order of millions of years, (b) ribosomal frameshifting is not used to express any host proteins, and (c) altering viral frameshifting efficiencies by modulating

the activity of a host protein minimizing the likelihood that the virus will acquire resistance to such inhibition by mutations in its own genome.

4.1.4. Instability Elements

"Instability elements" may be defined as specific sequence elements that promote the recognition of unstable mRNAs by cellular turnover machinery. Instability elements have been found within mRNA protein coding regions as well as untranslated regions.

5

10

35

Altering the control of stability of normal mRNAs may lead to disease. The alteration of mRNA stability has been implicated in diseases such as, but not limited to, cancer, immune disorders, heart disease, and fibrotic disorders.

There are several examples of mutations that delete instability elements which then result in stabilization of mRNAs that may be involved in the onset of cancer. In Burkitt's lymphoma, a portion of the c-myc proto-oncogene is translocated to an Ig locus, producing a form of the c-myc mRNA that is five times more stable (see, e.g., Kapstein et al., 1996, J. Biol. Chem. 271(31):18875-84). The highly oncogenic v-fos mRNA lacks the 3' UTR adenylate uridylate rich element ("ARE") that is found in the more labile and weakly oncogenic c-fos mRNA (see, e.g., Schiavi et al., 1992, Biochim Biophys Acta.

1114(2-3):95-106). Differences between the benign cervical lesions brought about by nonintegrated circular human papillomavirus type 16 and its integrated form, that lacks the 3' UTR ARE and correlates with cervical carcinomas, may be a consequence of stabilizing the E6/E7 transcripts encoding oncogenic proteins. Integration of the virus results in deletion of the ARE instability element, resulting in stabilizion of the transcripts and over-expression of the proteins (see, e.g., Jeon & Lambert, 1995, Proc. Natl. Acad. Sci. USA 92(5):1654-8).

Deletion of AREs from the 3' UTR of the IL-2 and IL-3 genes promotes increased stabilization of these mRNAs, high expression of these proteins, and leads to the formation of cancerous cells (*see*, *e.g.*, Stoecklin *et al.*, 2000, Mol. Cell. Biol. 20(11):3753-63).

Mutations in trans-acting factors involved in mRNA turnover may also promote cancer. In monocytic tumors, the lymphokine GM-CSF mRNA is specifically stabilized as a consequence of an oncogenic lesion in a trans-acting factor that controls mRNA turnover rates. Furthermore, the normally unstable IL-3 transcript is inappropriately long-lived in mast tumor cells. Similarly, the labile GM-CSF mRNA is greatly stabilized in bladder carcinoma cells. *See, e.g.*, Bickel *et al.*, 1990, J. Immunol. 145(3):840-5.

The immune system is regulated by a large number of regulatory molecules that either activate or inhibit the immune response. It has now been clearly demonstrated that

stability of the transcripts encoding these proteins are highly regulated. Altered regulation of these molecules leads to mis-regulation of this process and can result in drastic medical consequences. For example, recent results using transgenic mice have shown that mis-regulation of the stability of the important modulator TNFα mRNA leads to diseases such as, but not limited to, rheumatoid arthritis and a Crohn's-like liver disease. *See, e.g.*, Clark, 2000, Arthritis Res. 2(3):172-4.

5

20

35

Smooth muscle in the heart is modulated by the β -adrenergic receptor, which in turn responds to the sympathetic neurotransmitter norepinephrine and the adrenal hormone epinephrine. Chronic heart failure is characterized by impairment of smooth muscle cells, which results, in part, from the more rapid decay of the β -adrenergic receptor mRNA. *See, e.g.*, Ellis & Frielle T., 1999, Biochem. Biophys. Res. Commun. 258(3):552-8.

A large number of diseases result from over-expression of collagen. For example, cirrhosis results from damage to the liver as a consequence of cancer, viral infection, or alcohol abuse. Such damage causes mis-regulation of collagen expression, leading to the formation of large collagen deposits. Recent results indicate that the sizeable increase in collagen expression is largely attributable to stabilization of its mRNA. See, e.g., Lindquist et al., 2000, Am. J. Physiol. Gastrointest. Liver Physiol. 279(3):G471-6.

4.1.5. Adenylate Uridylate-rich Elements ("ARE")

Adenylate uridylate-rich elements ("ARE") are found in the 3' untranslated regions ("3' UTR") of several mRNAs, and involved in the turnover of mRNAs, such as but not limited to transcription factors, cytokines, and lymphokines. AREs may function both as stabilizing and destabilizing elements. ARE mRNAs are classified into five groups, depending on sequence (Bakheet *et al.*, 2001, Nucl. Acids Res. 29(1):246-254). An ongoing database at the web site http://rc.kfshrc.edu.sa/ared contains ARE-containing mRNAs and their cluster groups, which is incorporated by reference in its entirety. The ARE motifs are classified as follows:

30	Group I Cluster	(AUUUAUUUAUUUAUUUA)	SEQ ID NO: 1
	Group II Cluster	(AUUUAUUUAUUUA) stretch	SEQ ID NO: 2
	Group III Cluster	(WAUUUAUUUAW) stretch	SEQ ID NO: 3
	Group IV Cluster	(WWAUUUAUUUAWW) stretch	SEQ ID NO: 4
	Group V Cluster	(WWWWAUUUAWWWW) stretch	SEQ ID NO: 5

The ARE-mRNAs were clustered into five groups containing five, four, three and two pentameric repeats, while the last group contains only one pentamer within the

13-bp ARE pattern. Functional categories were assigned whenever possible according to NCBI-COG functional annotation (Tatusov *et al.*, 2001, Nucleic Acids Research, 29(1): 22-28), in addition to the categories: inflammation, immune response, development/differentiation, using an extensive literature search.

Group I contains many secreted proteins including GM-CSF, IL-1, IL-11, IL-12 and Gro-β that affect the growth of hematopoietic and immune cells (Witsell & Schook, 1992, Proc. Natl Acad. Sci. USA, 89:4754–4758). Although TNFα is both a pro-inflammatory and anti-tumor protein, there is experimental evidence that it can act as a growth factor in certain leukemias and lymphomas (Liu *et al.*, 2000, J. Biol. Chem. 275:21086–21093).

Unlike Group I, Groups II–V contain functionally diverse gene families comprising immune response, cell cycle and proliferation, inflammation and coagulation, angiogenesis, metabolism, energy, DNA binding and transcription, nutrient transportation and ionic homeostasis, protein synthesis, cellular biogenesis, signal transduction, and apoptosis (Bakheet *et al.*, 2001, Nucl. Acids Res. 29(1):246-254).

Several groups have described ARE-binding proteins that influence the ARE-mRNA stability. Among the well-characterized proteins are the mammalian homologs of ELAV (embryonic lethal abnormal vision) proteins including AUF1, HuR and He1-N2 (Zhang *et al.*, 1993, Mol. Cell. Biol. 13:7652–7665; Levine *et al.*, 1993, Mol. Cell. Biol. 13:3494–3504: Ma *et al.*, 1996, J. Biol. Chem. 271:8144–8151). The zinc-finger protein tristetraprolin has been identified as another ARE-binding protein with destabilizing activity on TNFα, IL-3 and GM-CSF mRNAs (Stoecklin *et al.*, 2000, Mol. Cell. Biol. 20:3753–3763; Carballo *et al.*, 2000, Blood 95:1891–1899).

Since ARE-containing genes are clearly important in biological systems, including but not limited to a number of the early response genes that regulate cell proliferation and responses to exogenous agents, the identification of compounds that bind to one or more of the ARE clusters and potentially modulate the stability of the target RNA can potentially be of value as a therapeutic.

30

25

5

10

4.2. Detectably Labeled Target RNAs

Target nucleic acids, including but not limited to RNA and DNA, useful in the methods of the present invention have a label that is detectable via conventional spectroscopic means or radiographic means. Preferably, target nucleic acids are labeled with a covalently attached dye molecule. Useful dye-molecule labels include, but are not limited

to, fluorescent dyes, phosphorescent dyes, ultraviolet dyes, infrared dyes, and visible dyes. Preferably, the dye is a visible dye.

5

15

20

Useful labels in the present invention can include, but are not limited to, spectroscopic labels such as fluorescent dyes (*e.g.*, fluorescein and derivatives such as fluorescein isothiocyanate (FITC) and Oregon GreenTM, rhodamine and derivatives (e.g., Texas red, tetramethylrhodimine isothiocynate (TRITC), bora-3a,4a-diaza-s-indacene (BODIPY®) and derivatives, *etc.*), digoxigenin, biotin, phycoerythrin, AMCA, CyDyeTM, and the like), radiolabels (*e.g.*, ³H, ¹²⁵I, ³⁵S, ¹⁴C, ³²P, ³³P, *etc.*), enzymes (e.g., horse radish peroxidase, alkaline phosphatase *etc.*), spectroscopic colorimetric labels such as colloidal gold or colored glass or plastic (e.g. polystyrene, polypropylene, latex, etc.) beads, or nanoparticles – nanoclusters of inorganic ions with defined dimension from 0.1 to 1000 nm. The label may be coupled directly or indirectly to a component of the detection assay (*e.g.*, the detection reagent) according to methods well known in the art. A wide variety of labels may be used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions.

In one embodiment, nucleic acids that are labeled at one or more specific locations are chemically synthesized using phosphoramidite or other solution or solid-phase methods. Detailed descriptions of the chemistry used to form polynucleotides by the phosphoramidite method are well known (see, e.g., Caruthers et al., U.S. Pat. Nos. 4,458,066 and 4,415,732; Caruthers et al., 1982, Genetic Engineering 4:1-17; Users Manual Model 392 and 394 Polynucleotide Synthesizers, 1990, pages 6-1 through 6-22, Applied Biosystems, Part No. 901237; Ojwang, et al., 1997, Biochemistry, 36:6033-6045). The phosphoramidite method of polynucleotide synthesis is the preferred method because of its efficient and rapid coupling and the stability of the starting materials. The synthesis is performed with the growing polynucleotide chain attached to a solid support, such that excess reagents, which are generally in the liquid phase, can be easily removed by washing, decanting, and/or filtration, thereby eliminating the need for purification steps between synthesis cycles.

The following briefly describes illustrative steps of a typical polynucleotide synthesis cycle using the phosphoramidite method. First, a solid support to which is attached a protected nucleoside monomer at its 3' terminus is treated with acid, e.g., trichloroacetic acid, to remove the 5'-hydroxyl protecting group, freeing the hydroxyl group for a subsequent coupling reaction. After the coupling reaction is completed an activated intermediate is formed by contacting the support-bound nucleoside with a protected nucleoside phosphoramidite monomer and a weak acid, e.g., tetrazole. The weak acid

5

protonates the nitrogen atom of the phosphoramidite forming a reactive intermediate. Nucleoside addition is generally complete within 30 seconds. Next, a capping step is performed, which terminates any polynucleotide chains that did not undergo nucleoside addition. Capping is preferably performed using acetic anhydride and 1-methylimidazole. The phosphite group of the internucleotide linkage is then converted to the more stable phosphotriester by oxidation using iodine as the preferred oxidizing agent and water as the oxygen donor. After oxidation, the hydroxyl protecting group of the newly added nucleoside is removed with a protic acid, e.g., trichloroacetic acid or dichloroacetic acid, and the cycle is repeated one or more times until chain elongation is complete. After synthesis, the polynucleotide chain is cleaved from the support using a base, e.g., ammonium hydroxide or t-butyl amine. The cleavage reaction also removes any phosphate protecting groups, e.g., cyanoethyl. Finally, the protecting groups on the exocyclic amines of the bases and any protecting groups on the dyes are removed by treating the polynucleotide solution in base at an elevated temperature, e.g., at about 55°C. Preferably the various protecting groups are removed using ammonium hydroxide or t-butyl amine.

Any of the nucleoside phosphoramidite monomers can be labeled using standard phosphoramidite chemistry methods (Hwang *et al.*, 1999, Proc. Natl. Acad. Sci. USA 96(23):12997-13002; Ojwang *et al.*, 1997, Biochemistry. 36:6033-6045 and references cited therein). Dye molecules useful for covalently coupling to phosphoramidites preferably comprise a primary hydroxyl group that is not part of the dye's chromophore. Illustrative dye molecules include, but are not limited to, disperse dye CAS 4439-31-0, disperse dye CAS 6054-58-6, disperse dye CAS 4392-69-2 (Sigma-Aldrich, St. Louis, MO), disperse red, and 1-pyrenebutanol (Molecular Probes, Eugene, OR). Other dyes useful for coupling to phosphoramidites will be apparent to those of skill in the art, such as fluoroscein, cy3, and cy5 fluorescent dyes, and may be purchased from, *e.g.*, Sigma-Aldrich, St. Louis, MO or Molecular Probes, Inc., Eugene, OR.

In another embodiment, dye-labeled target RNA molecules are synthesized enzymatically using *in vitro* transcription (Hwang *et al.*, 1999, Proc. Natl. Acad. Sci. USA 96(23):12997-13002 and references cited therein). In this embodiment, a template DNA is denatured by heating to about 90°C and an oligonucleotide primer is annealed to the template DNA, for example by slow-cooling the mixture of the denatured template and the primer from about 90°C to room temperature. A mixture of ribonucleoside-5'-triphosphates capable of supporting template-directed enzymatic extension of the primed template (*e.g.*, a mixture including GTP, ATP, CTP, and UTP), including one or more dye-labeled ribonucleotides (Sigma-Aldrich, St. Louis, MO), is added to the primed template. Next, a polymerase

enzyme is added to the mixture under conditions where the polymerase enzyme is active, which are well-known to those skilled in the art. A labeled polynucleotide is formed by the incorporation of the labeled ribonucleotides during polymerase-mediated strand synthesis.

5

10

20

25

30

35

In yet another embodiment of the invention, nucleic acid molecules are end-labeled after their synthesis. Methods for labeling the 5'-end of an oligonucleotide include but are by no means limited to: (i) periodate oxidation of a 5'-to-5'-coupled ribonucleotide, followed by reaction with an amine-reactive label (Heller & Morisson, 1985, in *Rapid Detection and Identification of Infectious Agents*, D.T. Kingsbury and S. Falkow, eds., pp. 245-256, Academic Press); (ii) condensation of ethylenediamine with 5'-phosphorylated polynucleotide, followed by reaction with an amine reactive label (Morrison, European Patent Application 232 967); (iii) introduction of an aliphatic amine substituent using an aminohexyl phosphite reagent in solid-phase DNA synthesis, followed by reaction with an amine reactive label (Cardullo *et al.*, 1988, Proc. Natl. Acad. Sci. USA 85:8790-8794); and (iv) introduction of a thiophosphate group on the 5'-end of the nucleic acid, using phosphatase treatment followed by end-labeling with ATP- S and kinase, which reacts specifically and efficiently with maleimide-labeled fluorescent dyes (Czworkowski *et al.*, 1991, Biochem. 30:4821-4830).

A detectable label should not be incorporated into a target nucleic acid at the specific binding site at which test compounds are likely to bind, since the presence of a covalently attached label might interfere sterically or chemically with the binding of the test compounds at this site. Accordingly, if the region of the target nucleic acid that binds to a host cell factor is known, a detectable label is preferably incorporated into the nucleic acid molecule at one or more positions that are spatially or sequentially remote from the binding region.

After synthesis, the labeled target nucleic acid can be purified using standard techniques known to those skilled in the art (see Hwang et al., 1999, Proc. Natl. Acad. Sci. USA 96(23):12997-13002 and references cited therein). Depending on the length of the target nucleic acid and the method of its synthesis, such purification techniques include, but are not limited to, reverse-phase high-performance liquid chromatography ("reverse-phase HPLC"), fast performance liquid chromatography ("FPLC"), and gel purification. After purification, the target RNA is refolded into its native conformation, preferably by heating to approximately 85-95°C and slowly cooling to room temperature in a buffer, e.g., a buffer comprising about 50 mM Tris-HCl, pH 8 and 100 mM NaCl.

In another embodiment, the target nucleic acid can also be radiolabeled. A radiolabel, such as, but not limited to, an isotope of phosphorus, sulfur, or hydrogen, may be

incorporated into a nucleotide, which is added either after or during the synthesis of the target nucleic acid. Methods for the synthesis and purification of radiolabeled nucleic acids are well known to one of skill in the art. See, e.g., Sambrook et al., 1989, in Molecular Cloning: A Laboratory Manual, pp 10.2-10.70, Cold Spring Harbor Laboratory Press, and the references cited therein, which are hereby incorporated by reference in their entireties.

5

20

30

In another embodiment, the target nucleic acid can be attached to an inorganic nanoparticle. A nanoparticle is a cluster of ions with controlled size from 0.1 to 1000 nm comprised of metals, metal oxides, or semiconductors including, but not limited to Ag₂S, ZnS, CdS, CdTe, Au, or TiO₂. Nanoparticles have unique optical, electronic and catalytic properties relative to bulk materials which can be adjusted according to the size of the particle. Methods for the attachment of nucleic acids are well know to one of skill in the art (see, e.g., Niemeyer, 2001, Angew. Chem. Int. Ed. 40: 4129-4158, International Patent Publication WO/0218643, and the references cited therein, the disclosures of which are hereby incorporated by reference in their entireties).

4.3. Libraries of Small Molecules

Libraries screened using the methods of the present invention can comprise a variety of types of test compounds on solid supports. In all of the embodiments described below, all of the libraries can be synthesized on solid supports or the compounds of the library can be attached to solid supports by linkers.

In some embodiments, the test compounds are nucleic acid or peptide molecules. In a non-limiting example, peptide molecules can exist in a phage display library. In other embodiments, types of test compounds include, but are not limited to, peptide analogs including peptides comprising non-naturally occurring amino acids, *e.g.*, D-amino acids, phosphorous analogs of amino acids, such as α -amino phosphoric acids and α -amino phosphoric acids, or amino acids having non-peptide linkages, nucleic acid analogs such as phosphorothioates and PNAs, hormones, antigens, synthetic or naturally occurring drugs, opiates, dopamine, serotonin, catecholamines, thrombin, acetylcholine, prostaglandins, organic molecules, pheromones, adenosine, sucrose, glucose, lactose and galactose. Libraries of polypeptides or proteins can also be used.

In a preferred embodiment, the combinatorial libraries are small organic molecule libraries, such as, but not limited to, benzodiazepines, isoprenoids, thiazolidinones, metathiazanones, pyrrolidines, morpholino compounds, and diazepindiones. In another embodiment, the combinatorial libraries comprise peptoids; random bio-oligomers; benzodiazepines; diversomers such as hydantoins, benzodiazepines and dipeptides;

vinylogous polypeptides; nonpeptidal peptidomimetics; oligocarbamates; peptidyl phosphonates; peptide nucleic acid libraries; antibody libraries; or carbohydrate libraries. Combinatorial libraries are themselves commercially available (see, e.g., Advanced ChemTech Europe Ltd., Cambridgeshire, UK; ASINEX, Moscow Russia; BioFocus plc, Sittingbourne, UK; Bionet Research (A division of Key Organics Limited), Camelford, UK; ChemBridge Corporation, San Diego, California; ChemDiv Inc, San Diego, California.; ChemRx Advanced Technologies, South San Francisco, California; ComGenex Inc., Budapest, Hungary; Evotec OAI Ltd, Abingdon, UK; IF LAB Ltd., Kiev, Ukraine;

Maybridge plc, Cornwall, UK; PharmaCore, Inc., North Carolina; SIDDCO Inc, Tucson, Arizona; TimTec Inc, Newark, Delaware; Tripos Receptor Research Ltd, Bude, UK; Toslab, Ekaterinburg, Russia).

In one embodiment, the combinatorial compound library for the methods of the present invention may be synthesized. There is a great interest in synthetic methods directed toward the creation of large collections of small organic compounds, or libraries, which could be screened for pharmacological, biological or other activity (Dolle, 2001, J. Comb. Chem. 3:477-517; Hall et al., 2001, ibid. 3:125-150; Dolle, 2000, ibid. 2:383-433; Dolle, 1999, *ibid.* 1:235-282). The synthetic methods applied to create vast combinatorial libraries are performed in solution or in the solid phase, i.e., on a solid support. Solid-phase synthesis makes it easier to conduct multi-step reactions and to drive reactions to completion with high yields because excess reagents can be easily added and washed away after each reaction step. Solid-phase combinatorial synthesis also tends to improve isolation. purification and screening. However, the more traditional solution phase chemistry supports a wider variety of organic reactions than solid-phase chemistry. Methods and strategies for the synthesis of combinatorial libraries can be found in A Practical Guide to Combinatorial Chemistry, A.W. Czarnik and S.H. Dewitt, eds., American Chemical Society, 1997; The Combinatorial Index, B.A. Bunin, Academic Press, 1998; Organic Synthesis on Solid Phase, F.Z. Dörwald, Wiley-VCH, 2000; and Solid-Phase Organic Syntheses, Vol. 1, A.W. Czarnik, ed., Wiley Interscience, 2001.

20

Combinatorial compound libraries of the present invention may be synthesized using apparatuses described in US Patent No. 6,358,479 to Frisina *et al.*, U.S. Patent No. 6,190,619 to Kilcoin *et al.*, US Patent No. 6,132,686 to Gallup *et al.*, US Patent No. 6,126,904 to Zuellig *et al.*, US Patent No. 6,074,613 to Harness *et al.*, US Patent No. 6,054,100 to Stanchfield *et al.*, and US Patent No. 5,746,982 to Saneii *et al.* which are hereby incorporated by reference in their entirety. These patents describe synthesis apparatuses

capable of holding a plurality of reaction vessels for parallel synthesis of multiple discrete compounds or for combinatorial libraries of compounds.

5

20

In one embodiment, the combinatorial compound library can be synthesized in solution. The method disclosed in U.S. Patent No. 6,194,612 to Boger *et al.*, which is hereby incorporated by reference in its entirety, features compounds useful as templates for solution phase synthesis of combinatorial libraries. The template is designed to permit reaction products to be easily purified from unreacted reactants using liquid/liquid or solid/liquid extractions. The compounds produced by combinatorial synthesis using the template will preferably be small organic molecules. Some compounds in the library may mimic the effects of non-peptides or peptides. In contrast to solid phase synthesize of combinatorial compound libraries, liquid phase synthesis does not require the use of specialized protocols for monitoring the individual steps of a multistep solid phase synthesis (Egner *et al.*, 1995, J.Org. Chem. 60:2652; Anderson *et al.*, 1995, J. Org. Chem. 60:2650; Fitch *et al.*, 1994, J. Org. Chem. 59:7955; Look *et al.*, 1994, J. Org. Chem. 49:7588; Metzger *et al.*, 1993, Angew. Chem., Int. Ed. Engl. 32:894; Youngquist *et al.*, 1994, Rapid Commun. Mass Spect. 8:77; Chu *et al.*, 1995, J. Am. Chem. Soc. 117:5419; Brummel *et al.*, 1994, Science 264:399; Stevanovic *et al.*, 1993, Bioorg. Med. Chem. Lett. 3:431).

Combinatorial compound libraries useful for the methods of the present invention can be synthesized on solid supports. In one embodiment, a split synthesis method, a protocol of separating and mixing solid supports during the synthesis, is used to synthesize a library of compounds on solid supports (*see* Lam *et al.*, 1997, Chem. Rev. 97:41-448; Ohlmeyer *et al.*, 1993, Proc. Natl. Acad. Sci. USA 90:10922-10926 and references cited therein). Each solid support in the final library has substantially one type of test compound attached to its surface. Other methods for synthesizing combinatorial libraries on solid supports, wherein one product is attached to each support, will be known to those of skill in the art (see, e.g., Nefzi et al., 1997, Chem. Rev. 97:449-472 and US Patent No. 6,087,186 to Cargill *et al.* which are hereby incorporated by reference in their entirety).

As used herein, the term "solid support" is not limited to a specific type of solid support. Rather a large number of supports are available and are known to one skilled in the art. Solid supports include silica gels, resins, derivatized plastic films, glass beads, cotton, plastic beads, polystyrene beads, doped polystyrene beads (as described by Fenniri *et al.*, 2000, J. Am. Chem. Soc. 123:8151-8152), alumina gels, and polysaccharides. A suitable solid support may be selected on the basis of desired end use and suitability for various synthetic protocols. For example, for peptide synthesis, a solid support can be a resin such as p-methylbenzhydrylamine (pMBHA) resin (Peptides International, Louisville, KY),

polystyrenes (e.g., PAM-resin obtained from Bachem Inc., Peninsula Laboratories, etc.), including chloromethylpolystyrene, hydroxymethylpolystyrene and aminomethylpolystyrene, poly (dimethylacrylamide)-grafted styrene co-divinyl-benzene (e.g., POLYHIPE resin, obtained from Aminotech, Canada), polyamide resin (obtained from Peninsula Laboratories), polystyrene resin grafted with polyethylene glycol (e.g., TENTAGEL or ARGOGEL, Bayer, Tubingen, Germany) polydimethylacrylamide resin (obtained from Milligen/Biosearch, California), or Sepharose (Pharmacia, Sweden). In another embodiment, the solid support can be a magnetic bead coated with streptavidin, such as Dynabeads Streptavidin (Dynal Biotech, Oslo, Norway).

5

10

15

20

25

30

In one embodiment, the solid phase support is suitable for *in vivo* use, *i.e.*, it can serve as a carrier or support for administration of the test compound to a patient (*e.g.*, TENTAGEL, Bayer, Tubingen, Germany). In a particular embodiment, the solid support is palatable and/or orally ingestable.

In some embodiments of the present invention, compounds can be attached to solid supports via linkers. Linkers can be integral and part of the solid support, or they may be nonintegral that are either synthesized on the solid support or attached thereto after synthesis. Linkers are useful not only for providing points of test compound attachment to the solid support, but also for allowing different groups of molecules to be cleaved from the solid support under different conditions, depending on the nature of the linker. For example, linkers can be, *inter alia*, electrophilically cleaved, nucleophilically cleaved, photocleavable, enzymatically cleaved, cleaved by metals, cleaved under reductive conditions or cleaved under oxidative conditions.

4.4. Library Screening

After a target nucleic acid, such as but not limited to RNA or DNA, is labeled and a test compound library is synthesized or purchased or both, the labeled target nucleic acid is used to screen the library to identify test compounds that bind to the nucleic acid. Screening comprises contacting a labeled target nucleic acid with an individual, or small group, of the components of the compound library. Preferably, the contacting occurs in an aqueous solution, and most preferably, under physiologic conditions. The aqueous solution preferably stabilizes the labeled target nucleic acid and prevents denaturation or degradation of the nucleic acid without interfering with binding of the test compounds. The aqueous solution can be similar to the solution in which a complex between the target RNA and its corresponding host cell factor is formed *in vitro*. For example, TK buffer, which is commonly used to form Tat protein-TAR RNA complexes *in vitro*, can be used in the

methods of the invention as an aqueous solution to screen a library of test compounds for TAR RNA binding compounds.

5

10

The methods of the present invention for screening a library of test compounds preferably comprise contacting a test compound with a target nucleic acid in the presence of an aqueous solution, the aqueous solution comprising a buffer and a combination of salts, preferably approximating or mimicking physiologic conditions. The aqueous solution optionally further comprises non-specific nucleic acids, such as, but not limited to, DNA; yeast tRNA; salmon sperm DNA; homoribopolymers such as, but not limited to, poly IC, polyA, polyU, and polyC; and non-specific RNA. The non-specific RNA may be an unlabeled target nucleic acid having a mutation at the binding site, which renders the unlabeled nucleic acid incapable of interacting with a test compound at that site. For example, if dye-labeled TAR RNA is used to screen a library, unlabeled TAR RNA having a mutation in the uracil 23/cytosine 24 bulge region may also be present in the aqueous solution. Without being bound by any theory, the addition of unlabeled RNA that is essentially identical to the dye-labeled target RNA except for a mutation at the binding site might minimize interactions of other regions of the dye-labeled target RNA with test compounds or with the solid support and prevent false positive results.

The solution further comprises a buffer, a combination of salts, and
optionally, a detergent or a surfactant. The pH of the solution typically ranges from about 5
to about 8, preferably from about 6 to about 8, most preferably from about 6.5 to about 8. A
variety of buffers may be used to achieve the desired pH. Suitable buffers include, but are
not limited to, Tris, Mes, Bis-Tris, Ada, Aces, Pipes, Mopso, Bis-Tris propane, Bes, Mops,
Tes, Hepes, Dipso, Mobs, Tapso, Trizma, Heppso, Popso, TEA, Epps, Tricine, Gly-Gly,
Bicine, and sodium-potassium phosphate. The buffering agent comprises from about 10 mM
to about 100 mM, preferably from about 25 mM to about 75 mM, most preferably from about
40 mM to about 60 mM buffering agent. The pH of the aqeuous solution can be optimized
for different screening reactions, depending on the target RNA used and the types of test
compounds in the library, and therefore, the type and amount of the buffer used in the
solution can vary from screen to screen. In a preferred embodiment, the aqueous solution has
a pH of about 7.4, which can be achieved using about 50 mM Tris buffer.

In addition to an appropriate buffer, the aqueous solution further comprises a combination of salts, from about 0 mM to about 100 mM KCl, from about 0 mM to about 1 M NaCl, and from about 0 mM to about 200 mM MgCl₂. In a preferred embodiment, the combination of salts is about 100 mM KCl, 500 mM NaCl, and 10 mM MgCl₂. Without being bound by any theory, Applicant has found that a combination of KCl, NaCl, and MgCl₂

stabilizes the target RNA such that most of the RNA is not denatured or digested over the course of the screening reaction. The optional concentration of each salt used in the aqueous solution is dependent on the particular target RNA used and can be determined using routine experimentation.

5

15

25

35

The solution optionally comprises from about 0.01% to about 0.5% (w/v) of a detergent or a surfactant. Without being bound by any theory, a small amount of detergent or surfactant in the solution might reduce non-specific binding of the target RNA to the solid support and control aggregation and increase stability of target RNA molecules. Typical detergents useful in the methods of the present invention include, but are not limited to, anionic detergents, such as salts of deoxycholic acid, 1-heptanesulfonic acid, Nlaurylsarcosine, lauryl sulfate, 1-octane sulfonic acid and taurocholic acid; cationic detergents such as benzalkonium chloride, cetylpyridinium, methylbenzethonium chloride, and decamethonium bromide; zwitterionic detergents such as CHAPS, CHAPSO, alkyl betaines, alkyl amidoalkyl betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, and phosphatidylcholine; and non-ionic detergents such as n-decyl a-D-glucopyranoside, n-decyl B-D-maltopyranoside, n-dodecyl B-D-maltoside, n-octyl B-D-glucopyranoside, sorbitan esters, n-tetradecyl \(\text{B-D-maltoside}, \) octylphenoxy polyethoxyethanol (Nonidet P-40). nonylphenoxypolyethoxyethanol (NP-40), and tritons. Preferably, the detergent, if present, is a nonionic detergent. Typical surfactants useful in the methods of the present invention include, but are not limited to, ammonium lauryl sulfate, polyethylene glycols, butyl glucoside, decyl glucoside, Polysorbate 80, lauric acid, myristic acid, palmitic acid, potassium palmitate, undecanoic acid, lauryl betaine, and lauryl alcohol. More preferably, the detergent, if present, is Triton X-100 and present in an amount of about 0.1% (w/v).

Non-specific binding of a labeled target nucleic acid to test compounds can be further minimized by treating the binding reaction with one or more blocking agents. In one embodiment, the binding reactions are treated with a blocking agent, *e.g.*, bovine serum albumin ("BSA"), before contacting with to the labeled target nucleic acid. In another embodiment, the binding reactions are treated sequentially with at least two different blocking agents. This blocking step is preferably performed at room temperature for from about 0.5 to about 3 hours. In a subsequent step, the reaction mixture is further treated with unlabeled RNA having a mutation at the binding site. This blocking step is preferably performed at about 4°C for from about 12 hours to about 36 hours before addition of the dyelabeled target RNA. Preferably, the solution used in the one or more blocking steps is substantially similar to the aqueous solution used to screen the library with the dye-labeled target RNA, *e.g.*, in pH and salt concentration.

Once contacted, the mixture of labeled target nucleic acid and the test compound is preferably maintained at 4°C for from about 1 day to about 5 days, preferably from about 2 days to about 3 days with constant agitation. To identify the reactions in which binding to the labeled target nucleic acid occurred, after the incubation period, bound from free compounds are determined using any of the methods disclosed in Section 4.5 *infra*.

5

4.5. Separation Methods for Screening Test Compounds

After the labeled target RNA is contacted with the library of test compounds immobilized on beads, the beads must then be separated from the unbound target RNA in the liquid phase. This can be accomplished by any number of physical means; *e.g.*, sedimentation, centrifugation. Thereafter, a number of methods can be used to separate the library beads that are complexed with the labeled target RNA from uncomplexed beads in order to isolate the test compound on the bead. Alternatively, mass spectroscopy and NMR spectroscopy can be used to simultaneously identify and separate beads complexed to the labeled target RNA from uncomplexed beads.

4.5.1. Flow Cytometry

In a preferred embodiment, the complexed and non-complexed target nucleic acids are separated by flow cytometry methods. Flow cytometers for sorting and examining biological cells are well known in the art; this technology can be applied to separate the labeled library beads from unlabeled beads. Known flow cytometers are described, for example, in U.S. Patent Nos. 4,347,935; 5,464,581; 5,483,469; 5,602,039; 5,643,796; and 6,211,477; the entire contents of which are incorporated by reference herein. Other known flow cytometers are the FACS VantageTM system manufactured by Becton Dickinson and Company, and the COPASTM system manufactured by Union Biometrica.

A flow cytometer typically includes a sample reservoir for receiving a biological sample. The biological sample contains particles (hereinafter referred to as "beads") that are to be analyzed and sorted by the flow cytometer. Beads are transported from the sample reservoir at high speed (>100beads/second) to a flow cell in a stream of liquid "sheath" fluid. High-frequency vibrations of a nozzle that directs the stream to the flow cell causes the stream to partition and form ordered droplets, with each droplet containing a single bead. Physical properties of beads can be measured as they intersect a laser beam within the cytometer flow cell. As beads move one by one through the interrogation point, they cause the laser light to scatter and fluorescent molecules on the labeled beads (*i.e.*, beads complexed with labeled target RNA) become excited.

Alternatively, if the target nucleic acid is labeled with an inorganic nanoparticle, the beads complexed with bound target nucleic acid can be distinguished not only by unique fluorescent properties but also on the basis of spectrometric properties (*e.g.* including but not limited to increased optical density due to the reduction of Ag⁺ ions in the presence of gold nanoparticles (see, *e.g.*, Taton *et al.* Science 2000, 289: 1757-1760)).

. 5

15

An appropriate detection system consisting of photomultiplier tubes, photodiodes or other devices for measuring light are focused onto the interrogation point where the properties are measured. In so doing, information regarding particle size (light scatter) and complex formation (fluorescence intensity) is obtained. Particles with the desired physical properties are then sorted by a variety of physical means. In one embodiment, the beads are sorted by an electrostatic method. To sort beads by an electrostatic method, the droplets containing the beads with the desired physical properties are electrically charged and deflected from the trajectory of uncharged droplets as they pass through an electrostatic field formed by two deflection plates held constant at a high electrical potential difference. In another embodiment, the beads are sorted by an air-diverting method. To sort beads by an air-diverting method, the droplets containing the beads with the desired physical properties are deflected from their trajectory by a focused stream of forced air. Both of these embodiments cause the trajectory of beads with the desired physical properties to become changed, thereby sorting them from other beads. Accordingly, the beads complexed to the labeled target RNA can be collected in an appropriate collecting vessel.

Thus, in one embodiment of the present invention, the complexed and non-complexed target nucleic acids are separated by flow cytometry methods. In a preferred embodiment, the target nucleic acid is labeled with a fluorescent label and the complexed and non-complexed target nucleic acids are separated by fluorescence activated cell sorting ("FACS"). Such methods are well known to one of skill in the art.

4.5.2. Affinity Chromatography

In another embodiment of the invention, the target RNA can be labeled with biotin, an antigen, or a ligand. Library beads complexed to the target RNA can be separated from uncomplexed beads using affinity techniques designed to capture the labeled moiety on the target RNA. For example, a solid support, such as but not limited to, a column or a well in a microwell plate coated with avidin/streptavidin, an antibody to the antigen, or a receptor for the ligand can be used to capture or immobilize the labeled beads. Complexed RNA may or may not be irreversibly bound to the bead by a further transformation between the bound

5

25

RNA and an additional moiety on the surface of the bead. Such linking methods include, but are not limited to: photochemical crosslinking between RNA and bead-bound molecules such as psoralen, thymidine or uridine derivates either present as monomers, oligomers, or as a partially complementary sequence; or chemical ligation by disulfide exchange, nitrogen mustards, bond formation between an electrophile and a nucleophile, or alkylating reagents. See, e.g., International Patent Publication WO/0146461, the contents of which are hereby incorporated by reference. The unbound library beads can be removed after the binding reaction by washing the solid phase. If the RNA is irreversibly bound to the bead, test compounds can be isolated from the bead following destruction of the bound RNA by preferably, but not limited to, enzymatic or chemical (e.g., alkaline hydrolysis) degradation. The library beads bound to the solid phase can then be eluted with any solution that disrupts the binding between the labeled target RNA and the solid phase. Such solutions include high salt solutions, low pH solutions, detergents, and chaotropic denaturants, and are well known to one of skill in the art. In another embodiment, the test compounds can be eluted from the solid phase by heat.

In one embodiment, the library of test compounds can be prepared on magnetic beads, such as Dynabeads Streptavidin (Dynal Biotech, Oslo, Norway). The magnetic bead library can then be mixed with the labeled target RNA under conditions that allow binding to occur. The separation of the beads from unbound target RNA in the liquid phase can be accomplished using a magnet. After removal of the magnetic field, the bead complexed to the labeled RNA may be separated from uncomplexed library beads via the label used on the target RNA; e.g., biotinylated target RNA can be captured by avidin/streptavidin; target RNA labeled with antigen can be captured by the appropriate antibody; target RNA labeled with ligand can be captured using the appropriate immobilized receptor. The captured library bead can then be eluted with any solution that disrupts the binding between the labeled target RNA and the immobilized surface. Such solutions include high salt solutions, low pH solutions, detergents, and chaotropic denaturants, and are well known to one of skill in the art. Complexed RNA may or may not be irreversibly bound to the bead by a further transformation between the bound RNA and an additional moiety on the surface of the bead. Such linking methods include, but are not limited to: photochemical crosslinking between RNA and bead-bound molecules such as psoralen, thymidine or uridine derivates either present as monomers, oligomers, or as a partially complementary sequence; or chemical ligation by disulfide exchange, nitrogen mustards, bond formation between an electrophile and a nucleophile, or alkylating reagents. See, e.g., International Patent Publication WO/0146461, the contents of which are hereby incorporated by reference. If the

RNA is irreversibly bound to the bead, test compounds can be isolated from the bead following destruction of the bound RNA by enzymatic degradation including, but not limited to, ribonucleases A, U₂, CL₃, T₁, Phy M, *B. cereus* or chemical degradation including, but not limited to, piperidine-promoted backbone cleavage of abasic sites (following treatment with sodium hydroxide, hydrazine, piperidine formate, or dimethyl sulfate), or metal-assisted (*e.g.* nickel(II), cobalt(II), or iron(II)) oxidative cleavage.

In another embodiment, the preselected target RNA can be labeled with a heavy metal tag and incubated with the library beads to allow binding of the test compounds to the target RNA. The separation of the labeled beads from unlabeled beads can be accomplished using a magnetic field. After removal of the magnetic field, the test compound can be eluted with any solution that disrupts the binding between the preselected target RNA and the test compound. Such solutions include high salt solutions, low pH solutions, detergents, and chaotropic denaturants, and are well known to one of skill in the art. In another embodiment, the test compounds can be eluted from the solid phase by heat.

4.5.3. Manual Batch

In one embodiment, a manual "batch" mode is used for separating complexed beads. To explore a bead-based library within a reasonable time period, the primary screens should be operated with sufficient throughput. To do this, the target nucleic acid is labeled with a dye and then incubated with the combinatorial library. An advantage of such an assay is the fast identification of active library beads by color change. In the lower concentrations of the dye-labeled target molecule, only those library beads that bind the target molecules most tightly are detected because of higher local concentration of the dye. When washed and plated into a liquid monolayer, colored beads are easily separated from non-colored beads with the aid of a dissecting microscope. One of the problems associated with this method could be the interaction between the red dye and library substrates. Control experiments using the dye alone and dye attached to mutant RNA sequences with the libraries are performed to eliminate this possibility.

30

5

4.5.4. Suspension of Beads in Electric Fields

In another embodiment of the invention, library beads bound to the target RNA can be separated from unbound beads on the basis of the altered charge properties due to RNA binding. In a preferred embodiment of this technique, beads are separated from unbound nucleic acid and suspended, preferably but not only, in the presence of an electric field where the bound RNA causes the beads bound to the target RNA to migrate toward the

anode, or positive, end of the field.

5

10

25

Beads can be preferentially suspended in solution as a colloidal suspension with the aid of detergents or surfactants. Typical detergents useful in the methods of the present invention include, but are not limited to, anionic detergents, such as salts of deoxycholic acid, 1-heptanesulfonic acid, N-laurylsarcosine, lauryl sulfate, 1-octane sulfonic acid, carboxymethylcellulose, carrageenan, and taurocholic acid; cationic detergents such as benzalkonium chloride, cetylpyridinium, methylbenzethonium chloride, and decamethonium bromide; zwitterionic detergents such as CHAPS, CHAPSO, alkyl betaines, alky amidoalkyl betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, and phosphatidylcholine; and non-ionic detergents such as n-decyl α-D-glucopyranoside, n-decyl-D-maltopyranoside, n-dodecyl-D-maltoside, n-octyl-D-glucopyranoside, sorbitan esters, n-tetradecyl-D-maltoside and tritons. Preferably, the detergent, if present, is a nonionic detergent. Typical surfactants useful in the methods of the present invention include, but are not limited to, ammonium lauryl sulfate, polyethylene glycols, butyl glucoside, decyl glucoside, Polysorbate 80, lauric acid, myristic acid, palmitic acid, potassium palmitate, undecanoic acid, lauryl betaine, and lauryl alcohol.

Complexed RNA may or may not be irreversibly bound to the bead by a further transformation between the bound RNA and an additional moiety on the surface of the bead. Such linking methods include, but are not limited to: photochemical crosslinking between RNA and bead-bound molecules such as psoralen, thymidine or uridine derivates either present as monomers, oligomers, or as a partially complementary sequence; or chemical ligation by disulfide exchange, nitrogen mustards, bond formation between an electrophile and a nucleophile, or alkylating reagents.

If the RNA is irreversibly bound to the bead, test compounds can be isolated from the bead following destruction of the bound RNA by enzymatic degradation including, but not limited to, ribonucleases A, U₂, CL₃, T₁, Phy M, B. cereus or chemical degradation including, but not limited to, piperidine-promoted backbone cleavage of abasic sites (following treatment with sodium hydroxide, hydrazine, piperidine formate, or dimethyl sulfate), or metal-assisted (e.g. nickel(II), cobalt(II), or iron(II)) oxidative cleavage.

4.5.5. Microwave

In another embodiment, the complexed beads are separated from uncomplexed beads by microwave. For example, as described in U.S. Patent Nos. 6,340,568; 6,338,968; and 6,287,874 to Hefti, the disclosures of which are hereby incorporated by reference, a system which is sensitive to the unique dielectric properties of

molecules and binding complexes, such as hybridization complexes formed between a nucleic acid probe and a nucleic acid target, molecular binding events, and protein/ligand complexes, can be used to analyze nucleic acids. In this system, the different hybridization complexes can be directly distinguished without the use of labels. The method involves contacting a nucleic acid probe that is electromagnetically coupled to a portion of a signal path with a sample containing a target nucleic acid. The portion of the signal path to which the nucleic acid probe is coupled typically is a continuous transmission line. A response signal is detected for a hybridization complex formed between the nucleic acid probe and the nucleic acid target. Detection may involve propagating a test signal along the signal path and then detecting a response signal formed through modulation of the test signal by the hybridization complex.

5

10

4.6. Methods for Identifying Test Compounds

If the library is a peptide or nucleic acid library, the sequence of the test compound on the isolated bead can be determined by direct sequencing of the peptide or nucleic acid. Such methods are well known to one of skill in the art.

4.6.1. Mass Spectrometry

Mass spectrometry (e.g., electrospray ionization ("ESI") and matrix-assisted laser desorption-ionization ("MALDI"), Fourier-transform ion cyclotron resonance ("FT-ICR")) can be used both for high-throughput screening of test compounds that bind to a target RNA and elucidating the structure of the test compound on the isolated bead.

MALDI uses a pulsed laser for desorption of the ions and a time-of-flight analyzer, and has been used for the detection of noncovalent tRNA: amino-acyl-tRNA synthetase complexes (Gruic-Sovulj *et al.*, 1997, J. Biol. Chem. 272:32084-32091). However, covalent cross-linking between the target nucleic acid and the test compound is required for detection, since a non-covalently bound complex may dissociate during the MALDI process.

ESI mass spectrometry ("ESI-MS") has been of greater utility for studying non-covalent molecular interactions because, unlike the MALDI process, ESI-MS generates molecular ions with little to no fragmentation (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356). ESI-MS has been used to study the complexes formed by HIV Tat peptide and protein with the TAR RNA (Sannes-Lowery *et al.*, 1997, Anal. Chem. 69:5130-5135).

Fourier-transform ion cyclotron resonance ("FT-ICR") mass spectrometry provides high-resolution spectra, isotope-resolved precursor ion selection, and accurate mass

assignments (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356). FT-ICR has been used to study the interaction of aminoglycoside antibiotics with cognate and non-cognate RNAs (Hofstadler *et al.*, 1999, Anal. Chem. 71:3436-3440; Griffey *et al.*, 1999, Proc. Natl. Acad. Sci. USA 96:10129-10133). As true for all of the mass spectrometry methods discussed herein, FT-ICR does not require labeling of the target RNA or a test compound.

5

25

An advantage of mass spectroscopy is not only the elucidation of the structure of the test compound, but also the determination of the structure of the test compound bound to the preselected target RNA. Such information can enable the discovery of a consensus structure of a test compound that specifically binds to a preselected target RNA.

In a preferred embodiment, the structure of the test compound is determined by time of flight mass spectroscopy ("TOF-MS"). In time of flight methods of mass spectrometry, charged (ionized) molecules are produced in a vacuum and accelerated by an electric field into a time of flight tube or drift tube. The velocity to which the molecules may be accelerated is proportional to the accelerating potential, proportional to the charge of the molecule, and inversely proportional to the square of the mass of the molecule. The charged molecules travel, *i.e.*, "drift" down the TOF tube to a detector. The time taken for the molecules to travel down the tube may be interpreted as a measure of their molecular weight. Time-of-flight mass spectrometers have been developed for all of the major ionization techniques such as, but limited to, electron impact ("EI"), infrared laser desorption ("IRLD"), plasma desorption ("PD"), fast atom bombardment ("FAB"), secondary ion mass spectrometry ("SIMS"), matrix-assisted laser desorption/ionization ("MALDI"), and electrospray ionization ("ESI").

4.6.2. NMR Spectroscopy

NMR spectroscopy can be used for elucidating the structure of the test compound on the isolated bead. NMR spectroscopy is a technique for identifying binding sites in target nucleic acids by qualitatively determining changes in chemical shift, specifically from distances measured using relaxation effects. Examples of NMR that can be used for the invention include, but are not limited to, one-dimentional NMR, two-dimentional NMR, correlation spectroscopy ("COSY"), and nuclear Overhauser effect ("NOE") spectroscopy. Such methods of structure determination of test compounds are well known to one of skill in the art.

Similar to mass spectroscopy, an advantage of NMR is the not only the elucidation of the structure of the test compound, but also the determination of the structure of the test compound bound to the preselected target RNA. Such information can enable the

discovery of a consensus structure of a test compound that specifically binds to a preselected target RNA.

4.6.3. Edman Degradation

5

15

20

30

In an embodiment wherein the library is a peptide library or a derivative thereof, Edman degradation can be used to determine the structure of the test compound. In one embodiment, a modified Edman degradation process is used to obtain compositional tags for proteins, which is described in U.S. Patent No. 6,277,644 to Farnsworth *et al.*, which is hereby incorporated by reference in its entirety. The Edman degradation chemistry is separated from amino acid analysis, circumventing the serial requirement of the conventional Edman process. Multiple cycles of coupling and cleavage are performed prior to extraction and compositional analysis of amino acids. The amino acid composition information is then used to search a database of known protein or DNA sequences to identify the sample protein. An apparatus for performing this method comprises a sample holder for holding the sample, a coupling agent supplier for supplying at least one coupling agent, a cleavage agent supplier for supplying a cleavage agent, a controller for directing the sequential supply of the coupling agents, cleavage agents, and other reagents necessary for performing the modified Edman degradation reactions, and an analyzer for analyzing amino acids.

In another embodiment, the method can be automated as described in U.S. Patent No. 5,565,171 to Dovichi et al., which is hereby incorporated by reference in its entirety. The apparatus includes a continuous capillary connected between two valves that control fluid flow in the capillary. One part of the capillary forms a reaction chamber where the sample may be immobilized for subsequent reaction with reagents supplied through the valves. Another part of the capillary passes through or terminates in the detector portion of an analyzer such as an electrophoresis apparatus, liquid chromatographic apparatus or mass spectrometer. The apparatus may form a peptide or protein sequencer for carrying out the Edman degradation reaction and analyzing the reaction product produced by the reaction. The protein or peptide sequencer includes a reaction chamber for carrying out coupling and cleavage on a peptide or protein to produce derivatized amino acid residue, a conversion chamber for carrying out conversion and producing a converted amino acid residue and an analyzer for identifying the converted amino acid residue. The reaction chamber may be contained within one arm of a capillary and the conversion chamber is located in another arm of the capillary. An electrophoresis length of capillary is directly capillary coupled to the conversion chamber to allow electrophoresis separation of the converted amino acid residue

as it leaves the conversion chamber. Identification of the converted amino acid residue takes place at one end of the electrophoresis length of the capillary.

4.6.4. <u>Vibrational Spectroscopy</u>

Vibrational spectroscopy (e.g. infrared (IR) spectroscopy or Raman spectroscopy) can be used for elucidating the structure of the test compound on the isolated bead.

5

15

20

25

Infrared spectroscopy measures the frequencies of infrared light (wavelengths from 100 to 10,000 nm) absorbed by the test compound as a result of excitation of vibrational modes according to quantum mechanical selection rules which require that absorption of light cause a change in the electric dipole moment of the molecule. The infrared spectrum of any molecule is a unique pattern of absorption wavelengths of varying intensity that can be considered as a molecular fingerprint to identify any compound.

Infrared spectra can be measured in a scanning mode by measuring the absorption of individual frequencies of light, produced by a grating which separates frequencies from a mixed-frequency infrared light source, by the test compound relative to a standard intensity (double-beam instrument) or pre-measured ('blank') intensity (single-beam instrument). In a preferred embodiment, infrared spectra are measured in a pulsed mode (FT-IR) where a mixed beam, produced by an interferometer, of all infrared light frequencies is passed through or reflected off the test compound. The resulting interferogram, which may or may not be added with the resulting interferograms from subsequent pulses to increase the signal strength while averaging random noise in the electronic signal, is mathematically transformed into a spectrum using Fourier Transform or Fast Fourier Transform algorithms.

Raman spectroscopy measures the difference in frequency due to absorption of infrared frequencies of scattered visible or ultraviolet light relative to the incident beam. The incident monochromatic light beam, usually a single laser frequency, is not truly absorbed by the test compound but interacts with the electric field transiently. Most of the light scattered off the sample with be unchanged (Rayleigh scattering) but a portion of the scatter light will have frequencies that are the sum or difference of the incident and molecular vibrational frequencies. The selection rules for Raman (inelastic) scattering require a change in polarizability of the molecule. While some vibrational transitions are observable in both infrared and Raman spectrometry, must are observable only with one or the other technique. The Raman spectrum of any molecule is a unique pattern of absorption wavelengths of varying intensity that can be considered as a molecular fingerprint to identify any compound.

Raman spectra are measured by submitting monochromatic light to the sample, either passed through or preferably reflected off, filtering the Rayleigh scattered light, and detecting the frequency of the Raman scattered light. An improved Raman spectrometer is described in US Patent No. 5,786,893 to Fink *et al.*, which is hereby incorporated by reference.

Vibrational microscopy can be measured in a spatially resolved fashion to address single beads by integration of a visible microscope and spectrometer. A microscopic infrared spectrometer is described in U.S. Patent No. 5,581,085 to Reffner *et al.*, which is hereby incorporated by reference in its entirety. An instrument that simultaneously performs a microscopic infrared and microscopic Raman analysis on a sample is described in U.S. Patent No. 5,841,139 to Sostek *et al.*, which is hereby incorporated by reference in its entirety.

In one embodiment of the method, test compounds are synthesized on polystyrene beads doped with chemically modified styrene monomers such that each resulting bead has a characteristic pattern of absorption lines in the vibrational (IR or Raman) spectrum, by methods including but not limited to those described by Fenniri *et al.*, 2000, J. Am. Chem. Soc. 123:8151-8152. Using methods of split-pool synthesis familiar to one of skill in the art, the library of compounds is prepared so that the spectroscopic pattern of the bead identifies one of the components of the test compound on the bead. Beads that have been separated according to their ability to bind target RNA can be identified by their vibrational spectrum. In one embodiment of the method, appropriate sorting and binning of the beads during synthesis then allows identification of one or more further components of the test compound on any one bead. In another embodiment of the method, partial identification of the compound on a bead is possible through use of the spectroscopic pattern of the bead with or without the aid of further sorting during synthesis, followed by partial resynthesis of the possible compounds aided by doped beads and appropriate sorting during synthesis.

In another embodiment, the IR or Raman spectra of test compounds are examined while the compound is still on a bead, preferably, or after cleavage from bead, using methods including but not limited to photochemical, acid, or heat treatment. The test compound can be identified by comparison of the IR or Raman spectral pattern to spectra previously acquired for each test compound in the combinatorial library.

5

10

2.0

4.7. Secondary Biological Screens

The test compounds identified in the binding assay (for convenience referred to herein as a "lead" compound) can be tested for biological activity using host cells containing or engineered to contain the target RNA element coupled to a functional readout system. For example, the lead compound can be tested in a host cell engineered to contain the target RNA element controlling the expression of a reporter gene. In this example, the lead compounds are assayed in the presence or absence of the target RNA. Alternatively, a phenotypic or physiological readout can be used to assess activity of the target RNA in the presence and absence of the lead compound.

5

10

In one embodiment, the lead compound can be tested in a host cell engineered to contain the target RNA element controlling the expression of a reporter gene, such as, but not limited to, β-galactosidase, green fluorescent protein, red fluorescent protein, luciferase, chloramphenicol acetyltransferase, alkaline phosphatase, and β-lactamase. In a preferred embodiment, a cDNA encoding the target element is fused upstream to a reporter gene wherein translation of the reporter gene is repressed upon binding of the lead compound to the target RNA. In other words, the steric hindrance caused by the binding of the lead compound to the target RNA repressed the translation of the reporter gene. This method, termed the translational repression assay procedure ("TRAP") has been demonstrated in *E. coli* and *S. cerevisiae* (Jain & Belasco, 1996, Cell 87(1):115-25; Huang & Schreiber, 1997, Proc. Natl. Acad. Sci. USA 94:13396-13401).

In another embodiment, a phenotypic or physiological readout can be used to assess activity of the target RNA in the presence and absence of the lead compound. For example, the target RNA may be overexpressed in a cell in which the target RNA is endogenously expressed. Where the target RNA controls expression of a gene product involved in cell growth or viability, the *in vivo* effect of the lead compound can be assayed by measuring the cell growth or viability of the target cell. Alternatively, a reporter gene can also be fused downstream of the target RNA sequence and the effect of the lead compound on reporter gene expression can be assayed.

Alternatively, the lead compounds identified in the binding assay can be tested for biological activity using animal models for a disease, condition, or syndrome of interest. These include animals engineered to contain the target RNA element coupled to a functional readout system, such as a transgenic mouse. Animal model systems can also be used to demonstrate safety and efficacy.

Compounds displaying the desired biological activity can be considered to be lead compounds, and will be used in the design of congeners or analogs possessing useful

5

pharmacological activity and physiological profiles. Following the identification of a lead compound, molecular modeling techniques can be employed, which have proven to be useful in conjunction with synthetic efforts, to design variants of the lead that can be more effective. These applications may include, but are not limited to. Pharmacophore Modeling (cf. Lamothe, et al. 1997, J. Med. Chem. 40: 3542; Mottola et al. 1996, J. Med. Chem. 39: 285; Beusen et al. 1995, Biopolymers 36: 181; P. Fossa et al. 1998, Comput. Aided Mol. Des. 12: 361), QSAR development (cf. Siddiqui et al. 1999, J. Med. Chem. 42; 4122; Barreca et al. 1999 Bioorg. Med. Chem. 7: 2283; Kroemer et al. 1995, J. Med. Chem. 38: 4917; Schaal et al. 2001, J. Med. Chem. 44: 155; Buolamwini & Assefa 2002, J. Mol. Chem. 45: 84), Virtual 10 docking and screening/scoring (cf. Anzini et al. 2001, J. Med. Chem. 44: 1134; Faaland et al. 2000, Biochem. Cell. Biol. 78: 415; Silvestri et al. 2000, Bioorg. Med. Chem. 8: 2305; J. Lee et al. 2001, Bioorg. Med. Chem. 9: 19), and Structure Prediction using RNA structural programs including, but not limited to mFold (as described by Zuker et al. Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide in RNA Biochemistry and Biotechnology pp. 11-43, J. Barciszewski & B.F.C. Clark, eds. (NATO ASI Series, Kluwer Academic Publishers, 1999) and Mathews et al. 1999 J. Mol. Biol. 288: 911-940); RNAmotif (Macke et al. 2001, Nucleic Acids Res. 29: 4724-4735; and the Vienna RNA package (Hofacker et al. 1994, Monatsh. Chem. 125: 167-188).

Further examples of the application of such techniques can be found in several 20 review articles, such as Rotivinen et al., 1988, Acta Pharmaceutical Fennica 97:159-166; Ripka, 1998, New Scientist 54-57; McKinaly & Rossmann, 1989, Annu. Rev. Pharmacol. Toxiciol. 29:111-122; Perry & Davies, OSAR: Quantitative Structure-Activity Relationships in Drug Design pp. 189-193 (Alan R. Liss, Inc. 1989); Lewis & Dean, 1989, Proc. R. Soc. Lond. 236:125-140 and 141-162; Askew et al., 1989, J. Am. Chem. Soc. 111:1082-1090. Molecular modeling tools employed may include those from Tripos, Inc., St. Louis, Missouri (e.g., Sybyl/UNITY, CONCORD, DiverseSolutions), Accelerys, San Diego, California (e.g., Catalyst, Wisconsin Package {BLAST, etc.}), Schrodinger, Portland, Oregon (e.g., QikProp, QikFit, Jaguar) or other such vendors as BioDesign, Inc. (Pasadena, California), Allelix, Inc. (Mississauga, Ontario, Canada), and Hypercube, Inc. (Cambridge, Ontario, Canada), and may include privately designed and/or "academic" software (e.g. RNAMotif, mFOLD). These application suites and programs include tools for the atomistic construction and analysis of structural models for drug-like molecules, proteins, and DNA or RNA and their potential interactions. They also provide for the calculation of important physical properties, such as solubility estimates, permeability metrics, and empirical measures of molecular "druggability" (e.g., Lipinski "Rule of 5" as described by Lipinski et al. 1997, Adv. Drug

Delivery Rev. 23: 3-25). Most importantly, they provide appropriate metrics and statistical modeling power (such as the patented CoMFA technology in Sybyl as described in US Patents 6,240,374 and 6,185,506) to develop Quantitative Structural Activity Relationships (QSARs) which are used to guide the synthesis of more efficacious clinical development candidates while improving desirable physical properties, as determined by results from the aforementioned secondary screening protocols.

5

20

4.8. Use of Identified Compounds That Bind RNA to Treat/Prevent Disease

Biologically active compounds identified using the methods of the invention or a pharmaceutically acceptable salt thereof can be administered to a patient, preferably a mammal, more preferably a human, suffering from a disease whose progression is associated with a target RNA:host cell factor interaction *in vivo*. In certain embodiments, such compounds or a pharmaceutically acceptable salt thereof is administered to a patient, preferably a mammal, more preferably a human, as a preventative measure against a disease associated with an RNA:host cell factor interaction *in vivo*.

In one embodiment, "treatment" or "treating" refers to an amelioration of a disease, or at least one discernible symptom thereof. In another embodiment, "treatment" or "treating" refers to an amelioration of at least one measurable physical parameter, not necessarily discernible by the patient. In yet another embodiment, "treatment" or "treating" refers to inhibiting the progression of a disease, either physically, *e.g.*, stabilization of a discernible symptom, physiologically, *e.g.*, stabilization of a physical parameter, or both. In yet another embodiment, "treatment" or "treating" refers to delaying the onset of a disease.

In certain embodiments, the compound or a pharmaceutically acceptable salt thereof is administered to a patient, preferably a mammal, more preferably a human, as a preventative measure against a disease associated with an RNA:host cell factor interaction *in vivo*. As used herein, "prevention" or "preventing" refers to a reduction of the risk of acquiring a disease. In one embodiment, the compound or a pharmaceutically acceptable salt thereof is administered as a preventative measure to a patient. According to this embodiment, the patient can have a genetic predisposition to a disease, such as a family history of the disease, or a non-genetic predisposition to the disease. Accordingly, the compound and pharmaceutically acceptable salts thereof can be used for the treatment of one manifestation of a disease and prevention of another.

When administered to a patient, the compound or a pharmaceutically

acceptable salt thereof is preferably administered as component of a composition that optionally comprises a pharmaceutically acceptable vehicle. The composition can be

administered orally, or by any other convenient route, for example, by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal, and intestinal mucosa, etc.) and may be administered together with another biologically active agent. Administration can be systemic or local. Various delivery systems are known, e.g., encapsulation in liposomes, microparticles, microcapsules, capsules, etc., and can be used to administer the compound and pharmaceutically acceptable salts thereof.

5

10

Methods of administration include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, oral, sublingual, intranasal, intracerebral, intravaginal, transdermal, rectally, by inhalation, or topically, particularly to the ears, nose, eyes, or skin. The mode of administration is left to the discretion of the practitioner. In most instances, administration will result in the release of the compound or a pharmaceutically acceptable salt thereof into the bloodstream.

In specific embodiments, it may be desirable to administer the compound or a pharmaceutically acceptable salt thereof locally. This may be achieved, for example, and not by way of limitation, by local infusion during surgery, topical application, *e.g.*, in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, nonporous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.

In certain embodiments, it may be desirable to introduce the compound or a pharmaceutically acceptable salt thereof into the central nervous system by any suitable route, including intraventricular, intrathecal and epidural injection. Intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir.

Pulmonary administration can also be employed, *e.g.*, by use of an inhaler or nebulizer, and formulation with an aerosolizing agent, or via perfusion in a fluorocarbon or synthetic pulmonary surfactant. In certain embodiments, the compound and pharmaceutically acceptable salts thereof can be formulated as a suppository, with traditional binders and vehicles such as triglycerides.

In another embodiment, the compound and pharmaceutically acceptable salts thereof can be delivered in a vesicle, in particular a liposome (see Langer, 1990, Science 249:1527-1533; Treat *et al.*, in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, *ibid.*, pp. 317-327; see generally *ibid.*).

In yet another embodiment, the compound and pharmaceutically acceptable salts thereof can be delivered in a controlled release system (see, *e.g.*, Goodson, in Medical

Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)). Other controlled-release systems discussed in the review by Langer, 1990, Science 249:1527-1533) may be used. In one embodiment, a pump may be used (see Langer, supra; Sefton, 1987, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald et al., 1980, Surgery 88:507 Saudek et al., 1989, N. Engl. J. Med. 321:574). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, 1983, J. Macromol. Sci. Rev. Macromol. Chem. 23:61; see also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105). In yet another embodiment, a controlled-release system can be placed in proximity of a target RNA of the compound or a pharmaceutically acceptable salt thereof, thus requiring only a fraction of the systemic dose.

Compositions comprising the compound or a pharmaceutically acceptable salt thereof ("compound compositions") can additionally comprise a suitable amount of a pharmaceutically acceptable vehicle so as to provide the form for proper administration to the patient.

15

In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. 20 Pharmacopeia or other generally recognized pharmacopeia for use in animals, mammals, and more particularly in humans. The term "vehicle" refers to a diluent, adjuvant, excipient, or carrier with which a compound of the invention is administered. Such pharmaceutical vehicles can be liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. The pharmaceutical vehicles can be saline, gum acacia, gelatin, starch paste, talc, keratin, colloidal silica, urea, and the like. In addition, auxiliary, stabilizing, thickening, lubricating and coloring agents may be used. When administered to a patient, the pharmaceutically acceptable vehicles are preferably sterile. Water is a preferred vehicle when the compound of the invention is administered intravenously. Saline solutions and 30 aqueous dextrose and glycerol solutions can also be employed as liquid vehicles, particularly for injectable solutions. Suitable pharmaceutical vehicles also include excipients such as starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, tale, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. Compound compositions, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.

Compound compositions can take the form of solutions, suspensions, emulsion, tablets, pills, pellets, capsules, capsules containing liquids, powders, sustained-release formulations, suppositories, emulsions, aerosols, sprays, suspensions, or any other form suitable for use. In one embodiment, the pharmaceutically acceptable vehicle is a capsule (see *e.g.*, U.S. Patent No. 5,698,155). Other examples of suitable pharmaceutical vehicles are described in Remington's Pharmaceutical Sciences, Alfonso R. Gennaro, ed., Mack Publishing Co. Easton, PA, 19th ed., 1995, pp. 1447 to 1676, incorporated herein by reference.

5

10

20

30

In a preferred embodiment, the compound or a pharmaceutically acceptable salt thereof is formulated in accordance with routine procedures as a pharmaceutical composition adapted for oral administration to human beings. Compositions for oral delivery may be in the form of tablets, lozenges, aqueous or oily suspensions, granules, powders, emulsions, capsules, syrups, or elixirs, for example. Orally administered compositions may contain one or more agents, for example, sweetening agents such as fructose, aspartame or saccharin; flavoring agents such as peppermint, oil of wintergreen, or cherry; coloring agents; and preserving agents, to provide a pharmaceutically palatable preparation. Moreover, where in tablet or pill form, the compositions can be coated to delay disintegration and absorption in the gastrointestinal tract thereby providing a sustained action over an extended period of time. Selectively permeable membranes surrounding an osmotically active driving compound are also suitable for orally administered compositions. In these later platforms, fluid from the environment surrounding the capsule is imbibed by the driving compound, which swells to displace the agent or agent composition through an aperture. These delivery platforms can provide an essentially zero order delivery profile as opposed to the spiked profiles of immediate release formulations. A time delay material such as glycerol monostearate or glycerol stearate may also be used. Oral compositions can include standard vehicles such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like. Such vehicles are preferably of pharmaceutical grade. Typically, compositions for intravenous administration comprise sterile isotonic aqueous buffer. Where necessary, the compositions may also include a solubilizing agent.

In another embodiment, the compound or a pharmaceutically acceptable salt thereof can be formulated for intravenous administration. Compositions for intravenous administration may optionally include a local anesthetic such as lignocaine to lessen pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water-free

concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the compound or a pharmaceutically acceptable salt thereof is to be administered by infusion, it can be dispensed, for example, with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the compound or a pharmaceutically acceptable salt thereof is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

5

20

30

The amount of a compound or a pharmaceutically acceptable salt thereof that will be effective in the treatment of a particular disease will depend on the nature of the disease, and can be determined by standard clinical techniques. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed will also depend on the route of administration, and the seriousness of the disease, and should be decided according to the judgment of the practitioner and each patient's circumstances. However, suitable dosage ranges for oral administration are generally about 0.001 milligram to about 200 milligrams of a compound or a pharmaceutically acceptable salt thereof per kilogram body weight per day. In specific preferred embodiments of the invention, the oral dose is about 0.01 milligram to about 100 milligrams per kilogram body weight per day, more preferably about 0.1 milligram to about 75 milligrams per kilogram body weight per day, more preferably about 0.5 milligram to 5 milligrams per kilogram body weight per day. The dosage amounts described herein refer to total amounts administered; that is, if more than one compound is administered, or if a compound is administered with a therapeutic agent, then the preferred dosages correspond to the total amount administered. Oral compositions preferably contain about 10% to about 95% active ingredient by weight.

Suitable dosage ranges for intravenous (i.v.) administration are about 0.01 milligram to about 100 milligrams per kilogram body weight per day, about 0.1 milligram to about 35 milligrams per kilogram body weight per day, and about 1 milligram to about 10 milligrams per kilogram body weight per day. Suitable dosage ranges for intranasal administration are generally about 0.01 pg/kg body weight per day to about 1 mg/kg body weight per day. Suppositories generally contain about 0.01 milligram to about 50 milligrams of a compound of the invention per kilogram body weight per day and comprise active ingredient in the range of about 0.5% to about 10% by weight.

Recommended dosages for intradermal, intramuscular, intraperitoneal, subcutaneous, epidural, sublingual, intracerebral, intravaginal, transdermal administration or administration by inhalation are in the range of about 0.001 milligram to about 200

milligrams per kilogram of body weight per day. Suitable doses for topical administration are in the range of about 0.001 milligram to about 1 milligram, depending on the area of administration. Effective doses may be extrapolated from dose-response curves derived from *in vitro* or animal model test systems. Such animal models and systems are well known in the art.

The compound and pharmaceutically acceptable salts thereof are preferably assayed *in vitro* and *in vivo*, for the desired therapeutic or prophylactic activity, prior to use in humans. For example, *in vitro* assays can be used to determine whether it is preferable to administer the compound, a pharmaceutically acceptable salt thereof, and/or another therapeutic agent. Animal model systems can be used to demonstrate safety and efficacy.

A variety of compounds can be used for treating or preventing diseases in mammals. Types of compounds include, but are not limited to, peptides, peptide analogs including peptides comprising non-natural amino acids, e.g., D-amino acids, phosphorous analogs of amino acids, such as α -amino phosphonic acids and α -amino phosphinic acids, or amino acids having non-peptide linkages, nucleic acids, nucleic acid analogs such as phosphorothioates or peptide nucleic acids ("PNAs"), hormones, antigens, synthetic or naturally occurring drugs, opiates, dopamine, serotonin, catecholamines, thrombin, acetylcholine, prostaglandins, organic molecules, pheromones, adenosine, sucrose, glucose, lactose and galactose.

5. EXAMPLE: THERAPEUTIC TARGETS

The therapeutic targets presented herein are by way of example, and the present invention is not to be limited by the targets described herein. The therapeutic targets presented herein as DNA sequences are understood by one of skill in the art that the sequences can be converted to RNA sequences.

5.1. Tumor Necrosis Factor Alpha ("TNF-α")

GenBank Accession # X01394:

5

10

30

35

- 1 geagaggace agetaagagg gagagaagea actaeagace eeceetgaaa acaaceetea
- 61 gaegecaeat eccetgaeaa getgeeagge aggttetett ecteteaeat aetgaeeeae
- 121 ggetecacce teteteceet ggaaaggaca ecatgageae tgaaageatg ateegggaeg
- 181 tggagetgge egaggaggeg etececaaga agacaggggg geeccaggge tecaggeggt
- 241 gettgtteet eageetette teetteetga tegtggeagg egeeaceaeg etettetgee
- 301 tgctgcactt tggagtgatc ggccccaga gggaagagtt ccccagggac ctctctctaa
- 361 teagecetet ggeceaggea gteagateat ettetegaae eeegagtgae aageetgtag

	421 cceatgttgt ageaaaccet eaagetgagg ggeageteea gtggetgaac egeegggeea
	481 atgecetect ggecaatgge gtggagetga gagataacca getggtggtg ecateagagg
	541 gcctgtacct catctactcc caggtcctct tcaagggcca aggctgcccc tccacccatg
5	601 tgetecteae ceacaceate ageograteg cegtetecta ceagaceaag gteaacetee
	661 tetetgecat caagageeee tgecagaggg agaeeeeaga gggggetgag gecaageee
	721 ggtatgagec eatetatetg ggaggggtet tecagetgga gaagggtgae egaeteageg
	781 ctgagatcaa teggeeegae tatetegaet ttgeegagte tgggeaggte taetttggga
	841 tcattgccct gtgaggagga cgaacatcca accttcccaa acgcctcccc tgccccaatc
10	901 cetttattae ecceteette agacaceete aacetettet ggeteaaaaa gagaattggg
10	961 ggcttagggt eggaacccaa gettagaact ttaagcaaca agaccaccae ttegaaacct
	1021 gggattcagg aatgtgtggc etgcacagtg aattgetggc aaccactaag aattcaaact
	1081 ggggceteca gaactcactg gggcetacag etttgatece tgacatetgg aatetggaga
	1141 ccagggagec tttggttctg gccagaatgc tgcaggactt gagaagacct cacctagaaa
15	1201 ttgacacaag tggacettag geetteetet etecagatgt ttecagaett eettgagaca
	1261 eggageceag ceeteceeat ggagecaget ecetetattt atgtttgeae ttgtgattat
	1321 ttattattta tttattattt atttatttac agatgaatgt atttatttgg gagaccgggg
	1381 tatectgggg gacccaatgt aggagetgee ttggeteaga eatgttttee gtgaaaaegg
	1441 agetgaacaa taggetgtte ecatgtagee ecetggeete tgtgeettet tttgattatg
	1501 ttttttaaaa tatttatetg attaagttgt etaaacaatg etgatttggt gaccaactgt
	1561 cactcattge tgageetetg etceeeaggg gagttgtgte tgtaategee etaetattea
	1621 gtggcgagaa ataaagtttg ctt (SEQ ID NO: 6)

General Target Regions:

25

30

(1) 5' Untranslated Region - nts 1 - 152

(2) 3' Untranslated Region - nts 852 - 1643

Initial Specific Target Motif:

Group I AU-Rich Element (ARE) Cluster in 3' untranslated region 5' AUUUAUUUAUUUAUUUAUUUAUUUA 3' (SEQ ID NO: 1)

5.2. Granulocyte-macrophage Colony Stimulating Factor ("GM-CSF")

GenBank Accession # NM_000758:

1 getggaggat gtggetgeag ageetgetge tettgggeae tgtggeetge ageatetetg
61 caccegeeeg etegeeeage eeeageaege ageeetggga geatgtgaat geeateeagg
121 aggeeeggeg teteetgaae etgagtagag acaetgetge tgagatgaat gaaacagtag

181 aagteatete agaaatgttt gaceteeagg ageegacetg eetacagace egeetggage
241 tgtacaagea gggeetgegg ggeageetea eeaageteaa gggeeeettg accatgatgg
301 eeageeaeta eaageageae tgeeeteeaa eeeeggaaae tteetgtgea acceagaeta
361 teacetttga aagttteaaa gagaacetga aggaetttet gettgteate eeetttgaet
421 getgggagee agteeaggag tgagaeegge eagatgagge tggeeaagee ggggagetge
481 teteteatga aacaagaget agaaacteag gatggteate ttggagggae eaaggggtgg
541 geeacageea tggtgggagt ggeetggaee tgeeetggge eacaetgaee etgatacagg
601 eatggeagaa gaatgggaat attttatet gacagaaate agtaatattt atatatttat
661 atttttaaaa tatttattta tttatttatt taagtteata tteeatattt atteaagatg
721 ttttacegta ataattatta ttaaaaatat gettet (SEQ ID NO: 7)

GenBank Accession # XM 003751:

1 tetggaggat gtggetgeag ageetgetge tettgggeac tgtggeetge ageatetetg 61 caccegeceg etegeceage eccageaege agecetggga geatgtgaat gecateeagg 15 121 aggeceggeg teteetgaac etgagtagag acaetgetge tgagatgaat gaaacagtag 181 aagteatete agaaatgttt gaceteeagg ageegaeetg eetacagaee egeetggage 241 tgtacaagca gggcctgegg ggcagcctca ccaagctcaa gggccccttg accatgatgg 301 ccagccacta caagcagcac tgccctccaa ecceggaaac ttcctgtgca acceagacta 361 teacetttga aagttteaaa gagaacetga aggaetttet gettgteate eeetttgaet 20 421 getgggagee agtecaggag tgagaeegge eagatgagge tggeeaagee ggggagetge 481 teteteatga aacaagaget agaaacteag gatggteate ttggagggae caaggggtgg 541 gecacageca tggtgggagt ggeetggaee tgeeetggge cacactgaee etgatacagg 601 catggcagaa gaatgggaat attttatact gacagaaatc agtaatattt atatatttat 661 atttttaaaa tatttattta tttatttatt taagtteata tteeatattt atteaagatg 25 721 ttttaccgta ataattatta ttaaaaatat gettet (SEQ ID NO: 8)

General Target Regions:

30 (1) 5' Untranslated Region - nts 1 - 32

(2) 3' Untranslated Region - nts 468 - 789

Initial Specific Target Motif:

35

Group I AU-Rich Element (ARE) Cluster in 3' untranslated region 5' AUUUAUUUAUUUAUUUAUUUA 3' (SEQ ID NO: 1)

5.3. <u>Interleukin 2 ("IL-2")</u>

α	1 .		- 11	TTO		
(tenk)	ank A	Accession	##	117	へん	16.
Cull		7000331011	. 77	U	-	/ \) .

5

10

15

20

25

1 atcactetet ttaateaeta eteaeattaa eeteaaetee tgeeaeaatg tacaggatge

- 61 aacteetgte ttgeattgea etaattettg eacttgteae aaacagtgea eetaetteaa
 - 121 gttcgacaaa gaaaacaaag aaaacacagc tacaactgga gcatttactg ctggatttac
 - 181 agatgatttt gaatggaatt aataattaca agaatcccaa actcaccagg atgctcacat
 - 241 ttaagtttta catgcccaag aaggccacag aactgaaaca getteagtgt etagaagaag
 - 301 aactcaaacc tetggaggaa gtgetgaatt tagetcaaag caaaaacttt caettaagac
- 361 ccagggactt aatcagcaat atcaacgtaa tagttctgga actaaaggga tctgaaacaa
 - 421 cattcatgtg tgaatatgca gatgagacag caaccattgt agaatttctg aacagatgga
 - 481 ttaccttttg tcaaagcate atctcaacac taacttgata attaagtgct tcccacttaa
 - 541 aacatatcag geettetatt tatttattta aatatttaaa ttttatattt attgttgaat
 - 601 gtatggttgc tacctattgt aactattatt cttaatctta aaactataaa tatggatctt
 - 661 ttatgattet ttttgtaage eetagggget etaaaatggt ttacettatt tateecaaaa
 - 721 atatttatta ttatgttgaa tgttaaatat agtatctatg tagattggtt agtaaaacta
 - 781 tttaataaat ttgataaata taaaaaaaaa aaacaaaaaa aaaaa (SEQ ID NO: 9)

General Target Regions:

- (1) 5' Untranslated Region nts 1 47
 - (2) 3' Untranslated Region nts 519-825

Initial Specific Target Motifs:

Group III AU-Rich Element (ARE) Cluster in 3' untranslated region 5' NAUUUAUUUAN 3' (SEQ ID NO: 10)

5.4. Interleukin 6 ("IL-6")

GenBank Accession # NM 000600:

- 1 ttetgeecte gageecaeeg ggaaegaaag agaageteta tetegeetee aggageecag
- 61 ctatgaacte etteteeaea agegeetteg gteeagttge etteteeetg gggetgetee
 - 121 tggtgttgcc tgctgccttc cctgccccag tacccccagg agaagattcc aaagatgtag
 - 181 cegececaca cagacageca etcacetett cagaacgaat tgacaaacaa atteggtaca
 - 241 tectegaegg cateteagee etgagaaagg agacatgtaa caagagtaac atgtgtgaaa
 - 301 gcagcaaaga ggcactggca gaaaacaacc tgaaccttcc aaagatggct gaaaaagatg
- 35 361 gatgetteea atetggatte aatgaggaga ettgeetggt gaaaateate aetggtettt
 - 421 tggagtttga ggtataccta gagtacctcc agaacagatt tgagagtagt gaggaacaag

481 ccagagetgt gcagatgagt acaaaagtee tgatecagtt cetgeagaaa aaggeaaaga
541 atetagatge aataaceace eetgaceeaa ccacaaatge cageetgetg acgaagetge
601 aggeacagaa ccagtggetg eaggacatga caacteatet cattetgege agetttaagg
661 agtteetgea gteeageetg agggetette ggeaaatgta gcatgggeae eteagattgt
721 tgttgttaat gggeatteet tettetggte agaaacetgt ecaetgggea eagaacttat
781 gttgttetet atggagaact aaaagtatga gegttaggae actattttaa ttattttta
841 tttattaata tttaaatatg tgaagetgag ttaatttatg taagteatat ttatatttt
901 aagaagtace aettgaaaca ttttatgtat tagttttgaa ataataatgg aaagtggeta
961 tgeagtttga atateetttg ttteagagee agateattte ttggaaagtg taggettaee
1021 teaaataaat ggetaactta tacatatttt taaagaaata tttatattgt atttatata
1081 tgtataaatg gtttttatae eaataaatgg cattttaaaa aatte (SEQ ID NO: 11)

General Target Regions:

15

20

35

- (1) 5' Untranslated Region nts 1 62
- (2) 3' Untranslated Region nts 699 1125

Initial Specific Target Motifs:

Group III AU-Rich Element (ARE) Cluster in 3' untranslated region 5' NAUUUAUUUAN 3' (SEQ ID NO: 10)

5.5. Vascular Endothelial Growth Factor ("VEGF")

GenBank Accession # AF022375:

1 aagageteea gagagaagte gaggaagaga gagaegggt eagagagage gegegggegt
61 gegageageg aaagegacag gggeaaagtg agtgacetge tittiggggt gacegeegga
121 gegeggegtg ageeeteece ettgggatee egeagetgae eagtegegt gaeggaeaga
181 eagaeagaca eegeeeceag eeceagttae eaceteetee eeggeeggeg geggaeagtg
241 gaegeggegg egageeggg geaggggeeg gageeeggeg geggaeagtg
301 gteggagete geggegtege actgaaaett tiegteeaae tietgggetg tietegette
361 ggaggageeg tigteegge gggggaagee gageegage gageeggag aagtgetage
421 tegggeegg aggageega geeggagag ggggaggag aagaagagaa ggaagagag
481 agggggeege agtggegaet eggegetegg aageeggget eatggaeggg tigaggegge
541 gigtgegeag acagtgetee agegegege eteeceagee eteggeegg
601 gaggaagagt agetegeega ggegeegag agagegggee geeceacage eegageegga

661 gagggacgcg agccgcgcc cccggtcggg cctccgaaac catgaacttt ctgctgtctt

721 gggtgcattg gagcettgce ttgetgetet acetecacea tgecaagtgg teecaggetg

- 48 -

	781 cacccatggc agaaggagga gggcagaatc atcacgaagt ggtgaagttc atggatgtct
	841 atcagegeag etactgeeat ecaategaga ecetggtgga eatetteeag gagtaceetg
	901 atgagatega gtacatette aagecatect gtgtgeeeet gatgegatge gggggetget
5	961 ccaatgacga gggcctggag tgtgtgccca ctgaggagtc caacatcacc atgcagatta
J	1021 tgcggatcaa acetcaccaa ggccagcaca taggagagat gagetteeta cagcacaaca
	1081 aatgtgaatg cagaccaaag aaagatagag caagacaaga
	1141 cagageggag aaagcatttg tttgtacaag atcegcagae gtgtaaatgt teetgeaaaa
	1201 acacacacte gegttgeaag gegaggeage ttgagttaaa egaaegtaet tgeagatgtg
10	1261 acaagcegag geggtgagee gggeaggagg aaggageete cetcagggtt tegggaacca
10	1321 gatetetete caggaaagae tgatacagaa egategatae agaaaceaeg etgeegeeae
	1381 cacaccatca ccatcgacag aacagtcett aatccagaaa cctgaaatga aggaagagga
	1441 gactetgege agageaettt gggteeggag ggegagaete eggeggaage atteeeggge
	1501 gggtgaccca gcacggtccc tettggaatt ggattcgcca ttttattttt ettgctgcta
15	1561 aatcacegag ceeggaagat tagagagttt tatttetggg atteetgtag acacaccac
	1621 ccacatacat acatttatat atatatatat tatatata
	1681 ttatatatat aaaatatata tattettttt ttaaattaae agtgetaatg ttattggtgt
	1741 etteaetgga tgtatttgae tgetgtggae ttgagttggg aggggaatgt teceaeteag
	1801 atcetgacag ggaagaggag gagatgagag actetggcat gatetttttt ttgteceaet
20	1861 tggtggggcc agggtcctct cccctgccca agaatgtgca aggccagggc atgggggcaa
_ -	1921 atatgaceca gttttgggaa caccgacaaa eecagecetg gegetgagee tetetacece
	1981 aggtcagacg gacagaaaga caaatcacag gttccgggat gaggacaccg gctctgacca
	2041 ggagtttggg gagettcagg acattgctgt gctttgggga ttccctccac atgctgcacg
	2101 cgcatctege ceccagggge actgeetgga agatteagga geetgggegg cettegetta
25	2161 eteteacetg ettetgagtt geceaggagg ecaetggeag atgteeegge gaagagaaga
	2221 gacacattgt tggaagaage agcccatgac agcgcccctt cetgggacte gecetcatee
	2281 tetteetget eccetteetg gggtgeagee taaaaggace tatgteetea eaceattgaa
	2341 accactagtt etgteeecee aggaaacetg gttgtgtgtg tgtgagtggt tgaeetteet
30	2401 ccateccetg gteetteect teeetteeeg aggeacagag agacagggea ggatecaegt
	2461 gcccattgtg gaggcagaga aaagagaaag tgttttatat acggtactta tttaatatcc
	2521 ctttttaatt agaaattaga acagttaatt taattaaaga gtagggtttt ttttcagtat
	2581 tettggttaa tatttaattt caactattta tgagatgtat ettttgetet etettgetet
	2641 cttatttgta ccggtttttg tatataaaat tcatgtttcc aatctctctc tccctgatcg
35	2701 gtgacagtca ctagcttate ttgaacagat atttaatttt gctaacactc agetetgeec
	2761 teccegatee cetggeteee cageacacat teetttgaaa gagggtttea atatacatet
	2821 acatactata tatatattgg gcaacttgta tttgtgtgta tatatatata tatatgttta

- 2881 tgtatatatg tgatcetgaa aaaataaaca tegetattet gttttttata tgtteaaace
- 2941 aaacaagaaa aaatagagaa ttotacatac taaatototo tootttttta attttaatat
- 3001 ttgttatcat ttatttattg gtgctactgt ttatccgtaa taattgtggg gaaaagatat
- 3061 taacatcacg tettigtete tagtgeagti titegagata tieggtagta catattiati
- 3121 tttaaacaac gacaaagaaa tacagatata tettaaaaaa aaaaaa (SEQ ID NO: 12)

General Target Regions:

5

15

30

35

- (1) 5' Untranslated Region nts 1 701
- 10 (2) 3' Untranslated Region nts 1275 3166

Initial Specific Target Motifs:

- 20 (2) Group III AU-Rich Element (ARE) Cluster in 3' untranslated region 5' NAUUUAUUUAUUUAN 3' (SEQ ID NO: 10)

5.6. Human Immunodeficiency Virus I ("HIV-1")

GenBank Accession # NC 001802:

- 25 l ggtetetetg gttagaceag atetgageet gggagetete tggetaaeta gggaaceeae
 - 61 tgcttaagcc tcaataaagc ttgccttgag tgcttcaagt agtgtgtgcc cgtctgttgt
 - 121 gtgactetgg taactagaga teeeteagae eettttagte agtgtggaaa atetetagea
 - 181 gtggcgcccg aacagggacc tgaaagcgaa agggaaacca gaggagctct ctcgacgcag
 - 241 gacteggett getgaagege geaeggeaag aggegaggg eggegaetgg tgagtaegee
 - 301 aaaaattttg actageggag getagaagga gagagatggg tgegagageg teagtattaa
 - 361 gcgggggaga attagatcga tgggaaaaaa ttcggttaag gccaggggga aagaaaaaat
 - 421 ataaattaaa acatatagta tgggcaagca gggagctaga acgattcgca gttaatcctg
 - 481 geetgttaga aacateagaa ggetgtagae aaataetggg acagetacaa ceatecette
 - 541 agacaggate agaagaactt agateattat ataatacagt agcaaccete tattgtgtge
 - 601 atcaaaggat agagataaaa gacaccaagg aagctttaga caagatagag gaagagcaaa
 - 661 acaaaagtaa gaaaaaagca cagcaagcag cagctgacac aggacacagc aatcaggtca

721 gecaaaatta eeetatagtg cagaacatee aggggcaaat ggtacateag gecatateae 781 ctagaacttt aaatgcatgg gtaaaagtag tagaagagaa ggctttcagc ccagaagtga 841 tacccatgtt ttcagcatta tcagaaggag ccaccccaca agatttaaac accatgctaa 901 acacagtggg gggacatcaa gcagccatgc aaatgttaaa agagaccatc aatgaggaag 5 961 ctgcagaatg ggatagagtg catccagtgc atgcagggcc tattgcacca ggccagatga 1021 gagaaccaag gggaagtgac atagcaggaa ctactagtac cettcaggaa caaataggat 1081 ggatgacaaa taatccacct atcccagtag gagaaattta taaaagatgg ataatcctgg 1141 gattaaataa aatagtaaga atgtatagee etaceageat tetggacata agacaaggae 1201 caaaggaace etttagagac tatgtagace ggttetataa aactetaaga geegageaag 10 1261 cttcacagga ggtaaaaaat tggatgacag aaaccttgtt ggtccaaaat gcgaacccag 1321 attgtaagac tattttaaaa gcattgggac cagcggctac actagaagaa atgatgacag 1381 catgtcaggg agtaggagga cccggccata aggcaagagt tttggctgaa gcaatgagcc 1441 aagtaacaaa ttcagctacc ataatgatgc agagaggcaa ttttaggaac caaagaaaga 1501 ttgttaagtg tttcaattgt ggcaaagaag ggcacacagc cagaaattgc agggccccta 15 1561 ggaaaaaggg ctgttggaaa tgtggaaagg aaggacacca aatgaaagat tgtactgaga 1621 gacaggetaa ttttttaggg aagatetgge etteetacaa gggaaggeea gggaatttte 1681 ttcagagcag accagagcca acagccccac cagaagagag cttcaggtct ggggtagaga 1741 caacaactee eecteagaag caggageega tagacaagga actgtateet ttaactteee 1801 teaggteact etttggeaac gaeceetegt cacaataaag atagggggge aactaaagga 20 1861 agetetatta gatacaggag cagatgatac agtattagaa gaaatgagtt tgccaggaag 1921 atggaaacca aaaatgatag ggggaattgg aggttttatc aaagtaagac agtatgatca 1981 gatacteata gaaatetgtg gacataaage tataggtaca gtattagtag gacetacace 2041 tgtcaacata attggaagaa atctgttgac tcagattggt tgcactttaa attttcccat 2101 tagecetatt gagactgtae cagtaaaatt aaagecagga atggatggee caaaagttaa 25 2161 acaatggcca ttgacagaag aaaaaataaa agcattagta gaaatttgta cagagatgga 2221 aaaggaaggg aaaatttcaa aaattgggcc tgaaaatcca tacaatactc cagtatttgc 2281 cataaagaaa aaagacagta ctaaatggag aaaattagta gatttcagag aacttaataa 2341 gagaactcaa gacttetggg aagtteaatt aggaatacca cateeegeag ggttaaaaaa 2401 gaaaaaatca gtaacagtac tggatgtggg tgatgcatat ttttcagttc cettagatga 30 2461 agacttcagg aagtatactg catttaccat acctagtata aacaatgaga caccagggat 2521 tagatatcag tacaatgtgc ttccacaggg atggaaagga tcaccagcaa tattccaaag 2581 tagcatgaca aaaatcttag agccttttag aaaacaaaat ccagacatag ttatctatca 2641 atacatggat gatttgtatg taggatetga ettagaaata gggeageata gaacaaaaat 2701 agaggagetg agacaacate tgttgaggtg gggaettace acaccagaca aaaaacatca 35 2761 gaaagaacct ccattccttt ggatgggtta tgaactccat cctgataaat ggacagtaca

2821 geetatagtg etgecagaaa aagacagetg gaetgteaat gaeatacaga agttagtggg 2881 gaaattgaat tgggcaagtc agatttaccc agggattaaa gtaaggcaat tatgtaaact 2941 ccttagagga accaaagcac taacagaagt aataccacta acagaagaag cagagctaga 3001 actggcagaa aacagagaga ttctaaaaga accagtacat ggagtgtatt atgacccatc 5 3061 aaaagactta atagcagaaa tacagaagca ggggcaaggc caatggacat atcaaattta 3121 teaagageea tttaaaaate tgaaaacagg aaaatatgea agaatgaggg gtgeeeacac 3181 taatgatgta aaacaattaa cagaggcagt gcaaaaaata accacagaaa gcatagtaat 3241 atggggaaag actectaaat ttaaactgee catacaaaag gaaacatggg aaacatggtg 3301 gacagagtat tggcaagcca cetggattee tgagtgggag tttgttaata eeeeteeett 10 3361 agtgaaatta tggtaccagt tagagaaaga acccatagta ggagcagaaa ccttctatgt 3421 agatggggca gctaacaggg agactaaatt aggaaaagca ggatatgtta ctaatagagg 3481 aagacaaaaa gttgtcaccc taactgacac aacaaatcag aagactgagt tacaagcaat 3541 ttatctaget ttgeaggatt egggattaga agtaaacata gtaacagaet eacaatatge 3601 attaggaate atteaageae aaceagatea aagtgaatea gagttagtea ateaaataat 15 3661 agagcagtta ataaaaaagg aaaaggteta tetggeatgg gtaccagcac acaaaggaat 3721 tggaggaaat gaacaagtag ataaattagt cagtgctgga atcaggaaag tactattttt 3781 agatggaata gataaggccc aagatgaaca tgagaaatat cacagtaatt ggagagcaat 3841 ggctagtgat tttaacctgc cacctgtagt agcaaaagaa atagtagcca gctgtgataa 3901 atgtcagcta aaaggagaag ccatgcatgg acaagtagac tgtagtccag gaatatggca 20 3961 actagattgt acacatttag aaggaaaagt tatcctggta gcagttcatg tagccagtgg 4021 atatatagaa gcagaagtta ttccagcaga aacagggcag gaaacagcat attttctttt 4081 aaaattagca ggaagatggc cagtaaaaac aatacatact gacaatggca gcaatttcac 4141 cggtgctacg gttagggccg cctgttggtg ggcgggaatc aagcaggaat ttggaattcc 4201 ctacaateec caaagteaag gagtagtaga atetatgaat aaagaattaa agaaaattat 25 4261 aggacaggta agagatcagg ctgaacatct taagacagca gtacaaatgg cagtattcat 4321 ccacaatttt aaaagaaaag gggggattgg ggggtacagt gcaggggaaa gaatagtaga 4381 cataatagca acagacatac aaactaaaga attacaaaaa caaattacaa aaattcaaaa 4441 ttttcgggtt tattacaggg acagcagaaa tccactttgg aaaggaccag caaagctcct 4501 ctggaaaggt gaaggggcag tagtaataca agataatagt gacataaaag tagtgccaag 30 4561 aagaaaagca aagatcatta gggattatgg aaaacagatg gcaggtgatg attgtgtggc 4621 aagtagacag gatgaggatt agaacatgga aaagtttagt aaaacaccat atgtatgttt 4681 cagggaaage taggggatgg ttttatagae atcactatga aageeeteat eeaagaataa 4741 gttcagaagt acacatccca ctaggggatg ctagattggt aataacaaca tattggggtc 4801 tgcatacagg agaaagagac tggcatttgg gtcagggagt ctccatagaa tggaggaaaa 35 4861 agagatatag cacacaagta gaccetgaac tagcagacca actaatteat etgtattact

	4921 ttgactgttt ttcagactct gctataagaa aggeettatt aggacacata gttageecta
	4981 ggtgtgaata tcaagcagga cataacaagg taggatctct acaatacttg gcactagcag
	5041 cattaataac accaaaaaag ataaagccac etttgeetag tgttacgaaa etgacagagg
5	5101 atagatggaa caagccccag aagaccaagg gccacagagg gagccacaca atgaatggac
J	5161 actagagett ttagaggage ttaagaatga agetgttaga catttteeta ggatttgget
	5221 ccatggetta gggcaacata tctatgaaac ttatggggat acttgggcag gagtggaagc
	5281 cataataaga attetgeaac aactgetgtt tateeatttt cagaattggg tgtegacata
	5341 gcagaatagg cgttactcga cagaggagag caagaaatgg agccagtaga tcctagacta
10	5401 gagccctgga agcatccagg aagtcagcct aaaactgctt gtaccaattg ctattgtaaa
10	5461 aagtgttget tteattgeea agtttgttte ataacaaaag cettaggeat eteetatgge
	5521 aggaagaage ggagacageg acgaagaget catcagaaca gteagactea teaagettet
	5581 ctatcaaagc agtaagtagt acatgtaatg caacctatac caatagtagc aatagtagca
	5641 ttagtagtag caataataat agcaatagtt gtgtggtcca tagtaatcat agaatatagg
15	5701 aaaatattaa gacaaagaaa aatagacagg ttaattgata gactaataga aagagcagaa
15	5761 gacagtggca atgagagtga aggagaaata teageaettg tggagatggg ggtggagatg
	5821 gggcaccatg ctccttggga tgttgatgat ctgtagtgct acagaaaaat tgtgggtcac
	5881 agtetattat ggggtacetg tgtggaagga ageaaceace actetatttt gtgcateaga
	5941 tgetaaagea tatgatacag aggtacataa tgtttgggee acacatgeet gtgtacceae
20	6001 agaccccaac ccacaagaag tagtattggt aaatgtgaca gaaaatttta acatgtggaa
20	6061 aaatgacatg gtagaacaga tgcatgagga tataatcagt ttatgggatc aaagcctaaa
	6121 gecatgtgta aaattaacee eactetgtgt tagtttaaag tgeaetgatt tgaagaatga
	6181 tactaatacc aatagtagta gcgggagaat gataatggag aaaggagaga taaaaaactg
	6241 etettteaat ateageacaa geataagagg taaggtgeag aaagaatatg catttttta
25	6301 taaacttgat ataataccaa tagataatga tactaccagc tataagttga caagttgtaa
	6361 cacetcagte attacacagg cetgteeaaa ggtateettt gageeaatte eeatacatta
	6421 ttgtgccccg gctggttttg cgattctaaa atgtaataat aagacgttca atggaacagg
	6481 accatgtaca aatgtcagca cagtacaatg tacacatgga attaggccag tagtatcaac
	6541 tcaactgetg ttaaatggca gtctagcaga agaagaggta gtaattagat ctgtcaattt
30	6601 caeggacaat getaaaacca taatagtaca getgaacaca tetgtagaaa ttaattgtae
	6661 aagacccaac aacaatacaa gaaaaagaat ccgtatccag agaggaccag ggagagcatt
	6721 tgttacaata ggaaaaatag gaaatatgag acaagcacat tgtaacatta gtagagcaaa
	6781 atggaataac actttaaaac agatagctag caaattaaga gaacaatttg gaaataataa
35	6841 aacaataate tttaageaat eeteaggagg ggaceeagaa attgtaaege acagttttaa
	6901 ttgtggaggg gaatttttct actgtaattc aacacaactg tttaatagta cttggtttaa
	6961 tagtacttgg agtactgaag ggtcaaataa cactgaagga agtgacacaa tcaccetece

	7021 atgcagaata aaacaaatta taaacatgtg gcagaaagta ggaaaagcaa tgtatgcccc
	7081 teccateagt ggacaaatta gatgtteate aaatattaca gggetgetat taacaagaga
	7141 tggtggtaat agcaacaatg agtccgagat cttcagacct ggaggaggag atatgaggga
5	7201 caattggaga agtgaattat ataaatataa agtagtaaaa attgaaccat taggagtagc
5	7261 acccaccaag gcaaagagaa gagtggtgca gagagaaaaa agagcagtgg gaataggagc
	7321 tttgttcctt gggttcttgg gagcagcagg aagcactatg ggcgcagcct caatgacgct
	7381 gacggtacag gccagacaat tattgtctgg tatagtgcag cagcagaaca atttgctgag
	7441 ggetattgag gegeaacage atetgttgea acteacagte tgggggeatea ageageteea
10	7501 ggcaagaate etggetgtgg aaagatacet aaaggateaa eageteetgg ggatttgggg
10	7561 ttgetetgga aaacteattt geaceaetge tgtgeettgg aatgetagtt ggagtaataa
	7621 atetetggaa cagatttgga ateacaegae etggatggag tgggacagag aaattaacaa
	7681 ttacacaage ttaatacact cettaattga agaategeaa aaccageaag aaaagaatga
	7741 acaagaatta ttggaattag ataaatgggc aagtttgtgg aattggttta acataacaaa
15	7801 ttggctgtgg tatataaaat tattcataat gatagtagga ggcttggtag gtttaagaat
10	7861 agtttttget gtacttteta tagtgaatag agttaggeag ggatatteae eattategtt
	7921 teagaceeae eteceaaeee egaggggaee egacaggeee gaaggaatag aagaagaagg
	7981 tggagagaga gacagagaca gatecatteg attagtgaac ggatecttgg caettatetg
	8041 ggacgatetg eggageetgt geetetteag etaceaeege ttgagagaet taetettgat
20	8101 tgtaacgagg attgtggaac ttctgggacg cagggggtgg gaagccctca aatattggtg
	8161 gaateteeta eagtattgga gteaggaact aaagaatagt getgttaget tgeteaatge
	8221 cacagecata geagtagetg aggggacaga tagggttata gaagtagtae aaggagettg
	8281 tagagetatt egecacatae etagaagaat aagacaggge ttggaaagga ttttgetata
	8341 agatgggtgg caagtggtca aaaagtagtg tgattggatg gcctactgta agggaaagaa
25	8401 tgagacgagc tgagccagca gcagataggg tgggagcagc atctcgagac ctggaaaaac
	8461 atggagcaat cacaagtagc aatacagcag ctaccaatgc tgcttgtgcc tggctagaag
	8521 cacaagagga ggaggaggtg ggttttccag tcacacctca ggtaccttta agaccaatga
	8581 cttacaagge agetgtagat ettageeaet ttttaaaaga aaagggggga etggaaggge
	8641 taatteacte ecaaagaaga caagatatee ttgatetgtg gatetaceae acacaagget
30	8701 actteectga ttagcagaac tacacaccag ggccaggggt cagatateca etgacetttg
	8761 gatggtgcta caagctagta ccagttgagc cagataagat agaagaggcc aataaaggag
	8821 agaacaccag cttgttacac cctgtgagcc tgcatgggat ggatgacccg gagagagaag
	8881 tgttagagtg gaggtttgac agccgcctag catttcatca cgtggcccga gagctgcatc
	8941 cggagtactt caagaactge tgacategag ettgetacaa gggaetttee getggggaet
- 35	9001 ttccagggag gcgtggcctg ggcgggactg gggagtggcg agccctcaga tcctgcatat
-	9061 aagcagetge tttttgeetg tactgggtet etetggttag accagatetg agectgggag

9121 etetetgget aactagggaa eccaetgett aageeteaat aaagettgee ttgagtgett 9181 c (SEQ ID NO: 14)

5 Initial Specific Target Motifs:

- (1) Trans-activation response region/Tat protein binding site TAR RNA nts 1 60
 "Minimal" TAR RNA element
 - 5' GGCAGAUCUGAGCCUGGGAGCUCUCUGCC 3' (SEQ ID NO: 15)
- (2) Gag/Pol Frameshifting Site "Minimal" frameshifting element
 5' UUUUUUAGGGAAGAUCUGGCCUUCCUACAAGGGAAGGCCAGG
 GAAUUUUCUU 3' (SEQ ID NO: 16)

5.7. Hepatitis C Virus ("HCV" - Genotypes 1a & 1b)

GenBank Accession # NC_001433:

20

25

- 1 ttggggggga cactccacca tagatcactc ccctgtgagg aactactgtc ttcacgcaga
- 61 aagegtetag ceatggegtt agtatgagtg ttgtgeagee teeaggacee eeecteegg
- 121 gagagecata gtggtetgeg gaaceggtga gtacaeegga attgeeagga egaeegggte
- 181 etttettgga teaaceeget eaatgeetgg agatttggge gtgeeeeege gagactgeta
- 241 geogagtagt gttgggtege gaaaggeett gtggtaetge etgatagggt gettgegagt
 - 301 geccegggag gtetegtaga eegtgeatea tgageacaaa teetaaacet caaagaaaaa
 - 361 ccaaacgtaa caccaaccgc cgcccacagg acgttaagtt cccgggcggt ggtcagatcg
 - 421 ttggtggagt ttacctgttg cegeggaggg geeceaggtt gggtgtgege gegactagga
 - 481 agaetteega geggtegeaa eetegtggaa ggegaeaace tateeceaag getegeegge
 - 541 ccgagggtag gacctgggct cagcccgggt accettggcc cctctatggc aacgagggta
 - 601 tggggtgggc aggatggctc ctgtcacccc gtggctctcg gcctagttgg ggccccacag
 - 661 accccggcg taggtcgcgt aatttgggta aggtcatcga tacccttaca tgcggcttcg
 - 721 cegaceteat ggggtacatt cegettgteg gegececect agggggeget gecagggeec
 - 781 tggcacatgg tgtccgggtt ctggaggacg gcgtgaacta tgcaacaggg aatctgcccg
- 841 gttgetettt etetatette etettagett tgetgtettg tttgaceate eeagetteeg
 - 901 cttacgaggt gegeaacgtg teegggatat accatgteac gaacgaetge teeaacteaa
 - 961 gtattgtgta tgaggcagcg gacatgatca tgcacacccc cgggtgcgtg ccctgcgtcc
 - 1021 gggagagtaa ttteteeegt tgetgggtag egeteaetee eaegetegeg geeaggaaca
 - 1081 geageateec eaccaegaea ataegaegee aegtegattt getegttggg geggetgete
- 1141 tetgtteege tatgtaegtt ggggatetet geggateegt tittetegte teeeagetgt
- 1201 teacettete acctegeegg tatgagaegg tacaagattg caattgetea atetateeeg

	1261 gecaegtate aggteaeege atggettggg atatgatgat gaaetggtea eetacaaegg
	1321 ccctagtggt ategeageta eteeggatee cacaageegt egtggacatg gtggeggggg
5	1381 eccaetgggg tgteetageg ggeettgeet actatteeat ggtggggaac tgggetaagg
	1441 tettgattgt gatgetacte tttgetggeg ttgaegggea cacceaegtg acagggggaa
	1501 gggtagecte eageacecag ageetegtgt eetggetete acaaggeeca teteagaaaa
	1561 tecaactegt gaacaccaac ggeagetgge acateaacag gaccgetetg aattgeaatg
	1621 actocctoca aactgggtte attgetgege tgttctaege acaeaggtte aacgegteeg
	1681 ggtgcccaga gcgcatggct agetgccgcc ccatcgatga gttcgctcag gggtggggtc
10	1741 ccatcactca tgatatgcct gagagetegg accagaggcc atattgctgg cactacgegc
10	1801 ctcgaccgtg cgggatcgtg cctgcgtcgc aggtgtgtgg tccagtgtat tgcttcactc
	1861 cgagccctgt tgtagtgggg acgaccgatc gtttcggcgc tcctacgtat agctgggggg
	1921 agaatgagac agacgtgetg etaettagea acaegeggee geetcaagge aactggtttg
	1981 ggtgcacgtg gatgaacagc actgggttca ccaagacgtg cgggggccct ccgtgcaaca
15	2041 teggggggt eggeaacaac acettggtet geeceaegga ttgetteegg aageaeceeg
15	2101 aggecactta cacaaagtgt ggetegggge eetggttgac acceaggtge atggttgact
	2161 acceatacag getetggeae tacceetgea etgttaaett tacegtettt aaggteagga
	2221 tgtatgtggg gggcgtggag cacaggctca atgctgcatg caattggact cgaggagagc
	2281 getgtgactt ggaggacagg gataggtcag aactcagece getgetgetg tetacaacag
20	2341 agtggcagat actgccctgt tccttcacca ccctaccggc cctgtccact ggettgatcc
~0	2401 atetteaceg gaacategtg gaegtgeaat acetgtaegg tatagggteg geagttgtet
	2461 cetttgeaat eaaatgggag tatateetgt tgetttteet tettetggeg gaegegegeg
	2521 tetgtgeetg ettgtggatg atgetgetga tageceagge tgaggeeace ttagagaace
	2581 tggtggteet caatgeggeg tetgtggeeg gagegeatgg cettetetee tteetegtgt
25	2641 tettetgege egeetggtac atcaaaggea ggetggteec tgggggggea tatgetetet
20	2701 atggcgtatg gccgttgctc ctgctcttgc tggccttacc accacgagct tatgccatgg
	2761 accgagagat ggctgcatcg tgcggaggcg cggtttttgt aggtctggta ctcttgacct
	2821 tgtcaccata ctataaggtg ttcctcgcta ggctcatatg gtggttacaa tattttatca
	2881 ccagagccga ggcgcacttg caagtgtggg tcccccctct caatgttcgg ggaggccgcg
30	2941 atgccateat ceteettaca tgcgcggtcc atccagaget aatetttgac atcaccaaac
	3001 teetgetege cataeteggt eegeteatgg tgeteeagge tggeataact agagtgeegt
	3061 actttgtacg cgctcagggg ctcatccgtg catgcatgtt agtgcggaag gtcgctggag
	3121 gecactatgt ccaaatggcc ttcatgaagc tggccgcgct gacaggtacg tacgtatatg
35	3181 accatettae teeaetgegg gattgggeee acgegggeet acgagacett geggtggeag
	3241 tagagecegt egtettetet gacatggaga etaaacteat eacetggggg geagacaceg
	3301 cggcgtgtgg ggacatcatc tcgggtctac cagtctccgc ccgaaggggg aaggagatac

3361 ttctaggacc ggccgatagt tttggagagc aggggtggcg gctccttgcg cctatcacgg 3421 cetattecea acaaaegegg ggeetgettg getgtateat eaetageete acaggteggg 3541 cgacctgcgt caatggcgtg tgttggaccg tctaccatgg tgccggctcg aagaccctgg 5 3601 ccggcccgaa gggtccaatc acccaaatgt acaccaatgt agaccaggac ctcgtcggct 3661 ggccggcgcc ccccggggcg cgctccatga caccgtgcac ctgcggcagc tcggaccttt 3721 acttggtcac gaggcatgct gatgtcgttc cggtgcgccg gcggggcgac agcaggggga 3781 gcctgctttc ccccaggccc atctcctacc tgaagggctc ctcgggtgga ccactgcttt 3841 gecetteggg geaegttgta ggeatettee gggetgetgt gtgeaeeegg ggggttgega 10 3901 aggeggtgga etteatacce gttgagteta tggaaactae catgeggtet eeggtettea 3961 cagacaacte atecceteeg geegtaeege aaacatteea agtggeacat ttacaegete 4021 ccactggcag cggcaagage accaaagtge cggctgcata tgcagcccaa gggtacaagg 4081 tgctcgtcct aaacccgtcc gttgccgcca cattgggctt tggagcgtat atgtccaagg 4141 cacatggcat cgagcctaac atcagaactg gggtaaggac catcaccacg ggcggccca 15 4201 teacgtacte eacetattge augtteettg eegaeggtgg atgeteeggg ggegeetatg 4261 acatcataat atgtgatgaa tgccactcaa ctgactcgac taccatcttg ggcatcggca 4321 cagteetgga teaggeagag aeggetggag egeggetegt egtgetegee aeegeeaege 4381 etcegggate gateacegtg ecacacecea acategagga agtggecetg tecaacactg 4441 gagagattee ettetatgge aaageeatee eeattgagge eateaagggg ggaaggeate 20 4501 tcatcttctg ccattccaag aagaagtgtg acgagctcgc cgcaaagctg acaggcctcg 4561 gactcaatgc tgtagcgtat taccggggtc tcgatgtgtc cgtcataccg actagcggag 4621 acgtcgttgt cgtggcaaca gacgctctaa tgacgggttt taccggcgac tttgactcag 4681 tgategactg caacacatgt gtcacccaga cagtegattt cagettggat cccacettca 4741 ccattgagac gacaacgctg ccccaagacg cggtgtcgcg tgcgcagcgg cgaggtagga 25 4801 etggeagggg eaggagtgge atetacaggt ttgtgactee aggagaacgg ceetcaggea 4861 tgttcgactc ctcggtcctg tgtgagtgct atgacgcagg ctgcgcttgg tatgagctca 4921 egecegetga gaceteggtt aggttgeggg ettacetaaa tacaceaggg ttgeeegtet 4981 gecaggacca cetagagtte tgggagageg tetteacagg ceteacecae atagatgece 5041 acttettgte ceagaceaaa eaggeaggag acaaceteee etaeetggta geataceaag 30 5101 ccacagtgtg cgccaggget caggetecae etceategtg ggaccaaatg tggaagtgte 5161 tcatacggct aaagcccaca ctgcatgggc caacgcccct gctgtacagg ctaggagccg 5221 ttcaaaatga ggtcactctc acacaccca taaccaaata catcatggca tgcatgtcgg 5281 ctgacctgga ggtcgtcact agcacctggg tgctagtagg cggagtcctt gcggctctgg 5341 ccgcgtactg cctgacgaca ggcagcgtgg tcattgtggg caggatcatc ttgtccggga 35 5401 ggccagctgt tattcccgac agggaagtcc tctaccagga gttcgatgag atggaagagt

5461 gtgcttcaca cctcccttac atcgagcaag gaatgcagct cgccgagcaa ttcaaacaga 5521 aggcgetegg attgetgeaa acagceacea agcaagegga ggetgetget ecegtggtgg 5581 agtecaagtg gegageeett gaggtettet gggegaaaca catgtggaac tteateageg 5641 ggatacagta cttggcagge ctatecacte tgeetggaaa eeeegegata geateattga 5 5701 tggettttac agcetetate accageege teaceacea aaataceete etgtttaaca 5761 tettgggggg atgggtgget geceaacteg etceeceag egetgetteg getttegtgg 5821 gcgccggcat tgccggtgcg gccgttggca gcataggtct cgggaaggta cttgtggaca 5881 ttctggcggg ctatggggcg ggggtggctg gcgcactcgt ggcctttaag gtcatgagcg 5941 gegagatgee etceaetgag gatetggtta atttacteee tgeeateett teteetggeg 10 6001 ccctggttgt cggggtcgtg tgcgcagcaa tactgcgtcg gcacgtgggc ccgggagagg 6061 gggctgtgca gtggatgaac cggctgatag cgttcgcttc gcggggtaac cacgtctccc 6121 ccacgcacta tgtgcccgag agegacgccg cggcgcgtgt tactcagatc ctctccagcc 6181 ttaccatcac tcagttgctg aagaggette atcagtggat taatgaggac tgetceaege 6241 cttgttccgg ctcgtggcta aaggatgttt gggactggat atgcacggtg ttgagtgact 15 6301 teaagacttg geteeagtee aageteetge egeggttace gggacteeet tteetgteat 6361 gccaacgcgg gtacaaggga gtctggcggg gggatggcat catgcaaacc acctgcccat 6421 gtggagcaca gatcaccgga catgtcaaaa atggctccat gaggattgtt gggccaaaaa 6481 cctgcagcaa cacgtggcat ggaacattee ccatcaacge atacaccacg ggeccetgea 6541 cgccctcccc agcgccgaac tattccaggg cgctgtggcg ggtggctgct gaggagtacg 20 6601 tggaggttac gcgggtgggg gatttccact acgtgacggg catgaccact gacaacgtga 6661 aatgeeeatg eeaggtteea geeeetgaat tttteaegga ggtggatgga gtaeggttge 6721 acaggtatgc tocagtgtgc aaacctctcc tacgagagga ggtcgtattc caggtcgggc 6781 teaaccagta cetggteggg teacagetee eatgtgagee egaaceggat gtggeagtge 6841 teactteeat geteacegae eceteteata ttacageaga gaeggeeaag egtaggetgg 25 6901 ccagggggtc tececetec ttggecaget etteagetag ccagttgtet gegeettett 6961 tgaaggegae atgtactace catcatgact ecceggaege tgaceteate gaggeeaace 7021 teetgtggeg geaggagatg ggegggaaca teaccegtgt ggagteagaa aataaggtgg 7081 taateetgga etetttegat eegatteggg eggtggagga tgagagggaa atateegtee 7141 cggcggagat cctgcgaaaa cccaggaagt tcccccagc gttgcccata tgggcacgcc 30 7201 eggattacaa ecetecaetg etagagteet ggaaggacee ggaetaegte eeeeeggtgg 7261 tacaegggtg ccetttgcca tetaccaagg ccccccaat accacetcca eggaggaaga 7321 ggacggttgt cetgacagag tecacegtgt ettetgeett ggeggagete getactaaga 7381 cetttggcag etcegggteg teggeegttg acageggeac ggegaetgge ceteeegate 7441 aggecteega egaeggegae aaaggateeg aegttgagte gtacteetee atgeeceee 35 7501 tegagggaga gecaggggae ecegaeetea gegaegggte ttggtetaee gtgageggg

7561 aagetggtga ggacgtegte tgetgeteaa tgteetatae atggacaggt geettgatea 7621 egecatgege tgeggaggag ageaagttge ceateaatee gttgageaac tetttgetge 7681 gtcaccacag tatggtctac tccacaacat ctcgcagcgc aagtctgcgg cagaagaagg 7741 teacetttga cagaetgeaa gteetggaeg accaetaeeg ggaegtgete aaggagatga 5 7801 aggegaagge gteeacagtt aaggetagge ttetatetat agaggaggee tgeaaactga 7861 egececaca tteggecaaa teeaaatttg getaegggge gaaggaegte eggageetat 7921 ccagcaggge egteaaceae ateegeteeg tgtgggagga ettgetggaa gacaetgaaa 7981 caccaattga taccaccatc atggcaaaaa atgaggtttt etgegteeaa eeagagaaag 8041 gaggeegeaa geeagetege ettategtat teecagacet gggggtaegt gtatgegaga 10 8101 agatggccct ttacgacgtg gtctccaccc ttcctcaggc cgtgatgggc ccctcatacg 8161 gattccagta ctctcctggg cagcgggtcg agttcctggt gaatacctgg aaatcaaaga 8221 aatgeeetat gggettetea tatgacaeee getgetttga eteaaeggte aetgagaatg 8281 acatccgtac tgaggaatca atttaccaat gttgtgactt ggcccccgaa gccaggcagg 8341 ccataaggtc gctcacagag eggetttatg tegggggtcc cetgactaat tegaaggggc 15 8401 agaactgegg ttategeegg tgeegegeaa gtggegtget gaegactage tgeggeaaea 8461 ccctcacatg ttacttgaag gccactgegg cctgtcgagc tgcaaagctc caggactgca 8521 cgatgctcgt gaacggagac gaccttgtcg ttatctgtga gagtgcggga acccaggagg 8581 atgeggegge cetaegagee tteaeggagg etatgactag gtatteegee eeeeeegggg 8641 accegecca accagaatac gaettggage tgataaegte atgeteetee aatgtgtegg 20 8701 tegegeaega tgeateegge aaaagggtgt actaceteae eegtgaeeee aceaeeeeee 8761 tegeaeggge tgegtgggag acagttagae acaeteeagt eaacteetgg etaggeaata 8821 teateatgta tgegeceaec etatgggega ggatgattet gatgaeteat ttetteteta 8881 teettetage teaggageaa ettgaaaaag eeetggattg teagatetae ggggeetgtt 8941 actocattga gecaettgae etaeeteaga teattgaaeg actocatggt ettagegeat 25 9001 tttcactcca cagttactct ccaggtgaga tcaatagggt ggcttcatgc ctcaggaaac 9061 ttggggtacc gcctttgcga gtctggagac atcgggccag aagtgtccgc gctaagctac 9121 tgtcccaggg ggggagggt gccacttgcg gcaagtacct cttcaactgg gcagtaaaga 9181 ccaagettaa acteaeteea ateeeggetg egteeeaget agaettgtee ggetggtteg 9241 ttgctggtta caacggggga gacatatate acagcetgte tegtgecega eccegttggt 30 9301 teatgttgtg cetactecta etttetgtag gggtaggeat etacetgete eccaaceggt 9361 gaacggggag ctaaccacte caggecaata ggecatteee tttttttttt ttc (SEQ ID NO: 17)

General Target Region:

5' Untranslated Region - nts 1 - 328 - Internal Ribosome Entry Site (IRES):

5'UUGGGGGCACACUCCACCAUAGAUCACUCCCCUGUGAGGAACUACUGUCUU CACGCAGAAAGCGUCUAGCCAUGGCGUUAGUAUGAGUGUUGUGCAGCCUCCA GGACCCCCCUCCCGGGAGAGCCAUAGUGGUCUGCGGAACCGGUGAGUACACC GGAAUUGCCAGGACGACCGGGUCCUUUCUUGGAUCAACCCGCUCAAUGCCUGG AGAUUUGGGCGUGCCCCGCGAGACUGCUAGCCGAGUAGUGUUGGGUCGCGA AAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCCGGGAGGUCU CGUAGACCGUGCAU3' (SEQ ID NO: 18)

Initial Specific Target Motifs:

- (1) Subdomain IIIc within HCV IRES nts 213 226 5'AUUUGGGCGUGCCC3' (SEQ ID NO: 19)
- (2) Subdomain IIId within HCV IRES nts 241-267
 5'GCCGAGUAGUGUUGGGUCGCGAAAGGC3' (SEQ ID NO: 20)

15

20

5.8. Ribonuclease P RNA ("RNaseP")

GenBank Accession #s

X15624 Homo sapiens RNaseP H1 RNA:

- 1 atgggcggag ggaageteat eagtggggee acgagetgag tgegteetgt eacteeacte
- 61 ccatgtccct tgggaaggtc tgagactagg gccagaggcg gccctaacag ggctctccct
 - 121 gagetteagg gaggtgagtt eccagagaac ggggeteege gegaggteag actgggeagg
 - 181 agatgccgtg gaccccgccc ttcggggagg ggcccggcgg atgcctcctt tgccggagct
 - 241 tggaacagac tcacggccag cgaagtgagt tcaatggctg aggtgaggta ccccgcaggg
 - 301 gaceteataa eccaatteag accaetetee teegeeeatt (SEQ ID NO: 21)

25

30

U64885 Staphylococcus aureus RNaseP (rrnB) RNA:

- 1 gaggaaagte egggeteaca eagtetgaga tgattgtagt gttegtgett gatgaaacaa
- 61 taaatcaagg cattaattig acggcaatga aatateetaa gtettiegat atggatagag
- 121 taatttgaaa gtgccacagt gacgtagctt ttatagaaat ataaaaggtg gaacgcggta
- 181 aaccectega gtgageaate caaatttggt aggageaett gtttaaegga atteaaegta
- 241 taaacgagac acacttcgcg aaatgaagtg gtgtagacag atggttatca cctgagtacc
- 301 agtgtgacta gtgcacgtga tgagtacgat ggaacagaac gcggcttat (SEQ ID NO: 22)

M17569 Escherichia coli RNA component (M1 RNA) of ribonuclease P (rnpB) gene:

35

1 gaagetgace agacagtege egettegteg tegteetett egggggagae gggeggaggg

61 gaggaaagtc cgggctccat agggcagggt gccaggtaac gcctgggggg gaaacccacg 121 accagtgcaa cagagagcaa accgccgatg gcccgcgcaa gcgggatcag gtaagggtga 181 aagggtgegg taagagegea eegeggget ggtaacagte egtggeaegg taaacteeae 241 ccggagcaag gccaaatagg ggttcataag gtacggcccg tactgaaccc gggtaggctg 301 cttgagecag tgagegattg etggeetaga tgaatgaetg teeacgacag aacceggett 361 ateggteagt tteacet (SEQ ID NO: 23)

5

Z70692

Mycobacterium tuberculosis RNaseP (rnpB) RNA: 1 ccaccggtta cgatcttgcc gaccatggcc ccacaatagg gccggggaga cccggcgtca 10 61 gtggtggggg gcacggtcag taacgtctgc gcaacacggg gttgactgac gggcaatatc 121 ggetecatag egteggeege ggatacagta aaggageatt etgtgaegga aaagaegeee 181 gacgacgtct tcaaacttgc caaggacgag aaggtcgaat atgtcgacgt ccggttctgt 241 gacetgeetg geateatgea geactteaeg atteeggett eggeetttga eaagagegtg 301 tttgacgacg gettggeett tgacggeteg tegattegeg ggttecagte gatecacgaa 15 361 teegacatgt tgettettee egateeegag aeggegegea tegaceegtt eegegegee 421 aagacgetga atateaaett etttgtgeae gaeeegttea eeetggagee gtaeteege 481 gaccegegea acategeege caaggeegag aactacetga teagcactgg categeegac 541 accgcatact teggegeega ggeegagtte tacatttteg atteggtgag ettegaeteg 601 cgcgccaacg gctccttcta cgaggtggac gccatctcgg ggtggtggaa caccggcgcg 20 661 gegacegagg cegaeggeag teceaacegg ggetacaagg teegecacaa gggegggtat 721 ttcccagtgg cccccaacga ccaatacgtc gacctgcgcg acaagatgct gaccaacctg 781 atcaacteeg getteateet ggagaaggge caccaegagg tgggeagegg eggaeaggee 841 gagatcaact accagttcaa ttegetgetg caegeegeeg aegacatgea gttgtacaag 901 tacatcatca agaacaccge etggcagaac ggcaaaacgg tcacgttcat gcccaagccg 25 961 etgtteggeg acaaegggte eggeatgeae tgteateagt egetgtggaa ggaeggggee 1021 ccgctgatgt acgacgagac gggttatgcc ggtctgtcgg acacggcccg tcattacatc 1081 ggcggcctgt tacaccacgc gccgtcgctg ctggccttca ccaacccgac ggtgaactcc 1141 tacaagegge tggtteeegg ttaegaggee eegateaace tggtetatag eeagegeaac 1201 cggtcggcat gcgtgcgcat cccgatcacc ggcagcaacc cgaaggccaa gcggctggag 30 1261 ttccgaagec ccgactegte gggcaacceg tatetggegt teteggecat getgatggea 1321 ggcctggacg gtatcaagaa caagatcgag ccgcaggcgc ccgtcgacaa ggatctctac 1381 gagetgeege eggaagagge egegagtate eegeagaete egaceeaget gteagatgtg 1441 ategacegte tegaggeega eeaegaatae eteaeegaag gaggggtgtt eaeaaaegae 1501 ctgategaga egtggateag ttteaagege gaaaaegaga tegageeggt eaacateegg 35 1561 ecgeatecet acgaattege getgtactae gaegtttaag gaetettege agteegggtg

1621 tagagggagc ggcgtgtcgt tgccagggcg ggcgtcgagg tttttcgatg ggtgacggtg 1681 geeggeaacg gegegeegae eacegetgeg aagageeegt ttaagaacgt teaaggaegt 1741 ttcagecggg tgccacaacc egettggcaa teateteecg accgecgage gggttgtett 1801 tcacatgcgc cgaaactcaa gccacgtcgt cgcccaggcg tgtcgtcgcg gccggttcag 5 1861 gttaagtgte ggggattegt egtgegggeg ggegteeaeg etgaceaaeg gggcagteaa 1921 etceegaaca etttgegeae tacegeettt geeggegeg teaeeegtag gtagttgtee 1981 aggaatteec caeegtegte gtttegeeag eeggeegga eegegaeege attgagetgg 2041 egecegggte eeggeagetg gteggtggge ttgeegegea eeaacaceag egegttgegg 2101 gecegggtgg eggteageca ggeetgaegg ageageteca egteggetge gggaaceaga 10 2161 teggeggeeg egatgacate eagggattge agegtegagg tgttgtgeag ggegggaace 2221 tggtgcgcat gctgtagctg cagcaactgc acggtccatt cgatgtcggc cagtccgccg 2281 eggeceagtt tggtgtgtgt gttggggteg geaeeggeg geaaeegete ggaetegata 2341 egggeettga tgeggegaat etegegeace gagteagegg acacacegte gggeggatae 2401 egegttttgt egaceateeg taggaatege tgacecaact eggeategee ggeaacegeg 15 2461 tgtgcgcgta gcagggcctg gatctcccat ggctgtgccc actgctcgta gtatgcggcg 2521 taggacccca gggtgcggac cagcggaccg ttgcggccct cgggtcgcaa attggcgtcg 2581 agetecageg geggategae getgggtgte eccageageg eccgaaceeg eteggegate 2641 gatgtegace attteacege eegtgeateg tegacgeegg tggeeggete acagacgaac 2701 atcacgtcgg catccgaccc gtagcccaac tcggcaccac ccagccgacc catgccgatg 20 2761 accgcgatgg ccgccggggc gcgatcgtcg tcgggaaggc tggcccggat catgacgtcc 2821 agegeggeet geageacege cacceacace gaegteaaeg eeeggeacac eteggtgaee 2881 tegageagge egageaggte egeegaaceg atgegggeea getetegaeg acgeagegtg 2941 cgcgcgccgg cgatggcccg ctccgggtcg gggtagcggc tcgccgaggc gatcagcgcc 3001 egagecaegg eggegggete ggtetegage agetteggge eegeaggeee gteetegtae 25 3061 tgctggatga cccgcggcgc gcgcatcaac agatccggca catacgccga ggtacccaag 3121 acatgcatga geogettgge caeegeggge ttgteeegea gegtggeeag gtaeeagett 3181 teggtggeea gegeeteact gageegeegg taggeeagea gteegeegte gggategggg 3241 gcatacgaca tecagtecag cageetggge ageageaceg actgeaceeg teegegegg 3301 cegetttgat tgaccaaege egacatgtgt tteaaegegg tetgeggtee etegtageee 30 3361 agegeggeea geeggegee egeggeetee aaegteatge egtgggegat etecaaeeeg 3421 gtegggeega tegatteeag eageggttga tagaagagtt tggtgtgtaa ettegaeace 3481 cgcacgttet gettettgag tteeteeege ageaeeeegg eegeategtt teggeeateg 3541 ggccggatgt gggccgcgcg cgccagccag cgcactgcct cctcgtcttc gggatcggga 3601 agcaggtggg tgcgcttgag ccgctgcaac tgcagtcggt gctcgagcag cctgaggaac 35 3661 teatacgaeg eggteatgtt egeegegtee teaegeega tgtageegee ttegeeeaae

3721 geogeoaatg egtecacegt ggaegeeace egtaaegaet egtegetaeg ggeatgaace 3781 agetgeagta getgtaegge gaacteeaeg tegegeaate egeegetgee gagtttgage 3841 tegeggeege ggacategge gggcaceage tgetecaeee geegeegeat ggeetgeaee 3901 tegaceacaa agtettegeg etegeagget egecacacea teggeateaa ggeggteagg 5 3961 taacgetege caagtteege gtegeeaacg actggeegtg ettteageaa egeetgaaac 4021 teccaggtet tggeccageg etggtagtag gegatgtgeg actegagegt aeggaccage 4081 teccegttge geceeteegg acgeagggeg gegteeacet egaaaaagge egeegaggee 4141 accegcatea tetegetgge eaegegegeg ttgegegggt eggagegete ggeaacgaat 4201 atgacatega egtegetgae gtagtteagt tegegegeae egeaettgee eategegatg 10 4261 accgccagge geggtggegg gtgctegeeg cacaegeteg eeteggeeac gegeagegee 4321 geogecagag eggegteege ggegteegee aggegtgegg ecaecaeggt gaatggeage 4381 accggttegt cetegacegt egeggeeagg tegagagegg eeageattag eaegtagteg 4441 cggtactggg ttcgcaatcg gtgcacgagc gagcccggca taccctccga ttcctcgacg 4501 cactegacga acgacegetg cagetggtca tgggacggca gtgtgacett geecegeage 15 4561 aatttecagg actgeggatg ggegaceagg tgategeeca acgeeagega egageecage 4621 accgagaaca geogeoegeg cagactgegt tegegeagea gageogegtt gagetegtee 4681 catceggtgt etggattete egacageegg ateaaggege geageggge ateggegtee 4741 ggagegegtg acagegacea cageaggteg acgtgegect gatectegtg cegateceae 4801 cccagctgag ccagacgctc accagcaggg gggtcaacta atccgagccg gccaacgctg 20 4861 ggcaacttcg gccgctgcgt ggcgagtttg gtcacgacca cgacggtagc gcaaagcgcg 4921 teggegtegg ateaaceggt agatetggge tacagegaca ggtaggtgeg cagetegtat 4981 ggcgtgacgt ggctgcggta gttcgcccac tccgtgcgct tgttgcgcaa gaaaaagtca 5101 ctatecaaac tggacggeaa tteteggtac eccategete ggegtteete gggtgtgagg 25 5161 teccatacgt tgteetegge etgegggeee ageaegtaac cettetetae acceegeaat 5221 cccgcggcca gcagcacggc gaatgtcaga tagggattgc acgccgaatc agggctgcgt 5281 acttegacce geegegaega ggtettgtge ggegtgtaca teggeaeceg caetagggeg 5341 gateggttgg eggeececa egaegeggee gtgggegett egeegeetg eaceageege 5401 ttgtaagagt tgaccactg atttgtgacc gegetgatet egeaagegtg eteeaggate 30 5461 ceggegatga acgatttace cactteegae agetgeageg gateateage getgtggaae 5521 gegttgacat caccetegaa caggeteatg tgggtgtgea tegeogagee egggtgetgg 5581 cegaatgget tgggeatgaa egaegeeegg gegeeetett eeagegegae ttetttgatg 5641 acgtagcgga aggtcatcac gttgtcagcc atcgacagag cgtcggcaaa ccgcaggtcg 5701 atctcctgct ggccgggtgc gccttcgtga tggctgaact ccaccgagat gcccatgaat 35 5761 tecagggeat egategegtg geggegaaag tteaaggegg agtegtgeae egettggteg

5821 aaatageegg egttgtegae egggaeggge accgaecegt eetegggtee gggettgage 5881 aggaagaact cgatttcggg atgcacgtag caggagaagc cgagttcgcc ggccttcgtc 5941 agetgeegee geaacaegtg eegegggtee geecaegaeg gegageegte eggeatggtg 6001 atgtcgcaaa acatccgcgc tgagtggtgg tggccggaac tggtggccca gggcagcacc 5 6061 tggaaggtcg acgggtccgg gtgcgccacc gtatcggatt ccgagacccg cgcaaagccc 6121 tegategagg ateegtegaa geegatgeet teetegaagg egeectegag tteggetggg 6181 gcgatggcga ccgacttgag gaaaccgagc acgtctgtga accacagccg gacgaagcgg 6241 atgtegegtt ettecagggt acgaagaacg aatteettet gteggteeat acetegaaca 6301 gtatgcactg tctgttaaaa ccgtgttacc gatgcccggc cagaagcgtt gcgggggggc 10 6361 ccgcaagggg agtgcgcggt gagttcaggg cgcgcaccgc agactcgtcg gcggcaaggt 6421 cccgtcgaga aaatagtgca tcaccgcaga gtccacacac tggttgccat cgaacaccgc 6481 agtgtgttgg gtgccgtcga aggtgatcag cggtgcgccc agctggcggg ccaggtctac 6541 cccggactga tacggagtgg ccgggtcgtg ggtggtggac accacgacga ccttgccagc 6601 cccggccggc gccgcggggt gcggcgtcga cgttgccggc accggccaca gcgcgcacag 15 6661 atcgcggggg gcggatccgg tgaactgccc gtagctaagg aacggggcga cctgacggat 6721 ccgttggtcg gcggccaccc aggccgctgg atcggccggt gtgggcgcat cgacgcaccg 6781 gaccgcgttg aacgcgtcct ggtcgttgct gtagtgcccg tctgcatccc ggccgtcata 6841 gtcgtcggca agcaccagca agtcgccggc gtcgctgccg cgctgcagcc ccagcagacc 6901 actggtcagg tacttccagc gctgagggct gtacagcgcg ttgatggtgc ccgtcgtcgc 20 6961 gteggegtag eteaggeeae gtggateega egtettaeee ggettetgea eeagegggte 7021 aaccagggeg tggtageggt tgacccactg ggccgagteg gtgcccagag ggcaggccgg 7081 cgagcggcg cagtcggcgg cgtagtcatt gaaagcggtc tgaaatcccg ccatttggct 7141 gatgetttee tegattggge taaeggetgg ategatageg eegtegagga eeategeeeg 7201 cacatgagta ccgaaccgtt ccaggtaagc ggtgcccaac tcggtgccgt agctgtatcc 25 7261 gaggtagttg atctgategt cacctaacge ttggegaace atgtecatgt ecegtgegae 7321 ggacgcggta ccgatattgg ccaagaagct gaagcccatc cggtcaacac agtcctgggc 7381 caactgeegg tagacetgtt egacgtgggt gacaceggee ggactgtagt eggecategg 7441 atcgcgccgg tacgcgtcga actcggcgtc ggtgcgacac cgcaacgcag gggtcgagtg 7501 geogaeceet etegggtega ageceaecag gtegaagtgg eggagaatgt eggtgtegge 30 7561 gategegggt gecatagegg egaceatgte gacegeegae geceegggte eeceaggatt 7621 gaccagcagt geteegaate getgteeegt egeggggaeg eggateaceg ecaaettege 7681 ttgtgtccca ccgggttggt cgtagtcgac ggggacggac accgtcgcgc agcgtgcagt 7741 gcgaatttcg ctggtgtcgg cgatgaactc gcggcagctg ttccaactct gttgcggcgc 7801 cacgaccggc gcacccgggg tttggccggc gccgggttct tcagtcgcgc cggccaacgg 35 7861 gggcgctgct aggggcagtc cgccgagcag caacccgaag gacagcagcg ccgagctcaa

7921 eggtetgegg egecacatgg eegecategt eteaeeggeg aatacetgtg aeggeggaa 7981 atgatcacac cttcgtttct tcgccccgct agcacttggc gccgctgggc ggcgtggtgc 8041 egcegattaa ataegeegte aegtaetegt eaatgeaget gtegeeetgg aataeeaeeg 8101 tgtgctgggt tccgtcgaag gtcagcaacg aaccgcgaag ctggttcgcc aggtcgaccc 5 8161 eggeettgta eggegtegee gggteatggg tggtggatae eaceaeegte ggeaetagge 8221 cgggcgccga gacggcatgg ggctgacttg tgggtggcac cggccagaac gcgcaggtgc 8281 ccageggege atcaceggtg aactteeegt ageteatgaa eggtgegate teeegggege 8341 ggcggtcttc gtcgatgacc ttgtcgcgat cggtaaccgg gggctgatcg acgcaattga 8401 tegecaeceg egegteaecg gaattgttgt ageggeegtg egagteega egeatgtaca 10 8461 tgteggecag agecageagg gtgteteege gattgtegae eageteegae agecegtegg 8521 teaagtgttg ceacagatte ggtgagtaea gegecataat ggtgeecaeg atggegtege 8581 tataactcag eccgegega teettegtge gegeeggeet getgateete gggttgteeg 8641 ggtcgaccaa cggatcgacc aggctgtggt agacctcgac ggctttggcc gggtcggcgc 8701 ccagcgggca gcccgcgttc ttggcgcagt cggcggcata gttgttgaac gcgtcctgga 15 8761 agecettgge etggegeage teegeetega tgggategge attggggteg aeggeaeegt 8821 cgagaatcat tgcccgcacc cgctgcggaa attcctcggc atacgcggag ccgatccggg 8881 tgccgtacga gtagcccagg taggtcagct tgtcgtcgcc caacgccgcg cgaatggcat 8941 ccaggtcett ggegaegttg accgteega catgggeeag aaagttettg cccatettgt 9001 ccacacageg acegacgaat tgettggtet egttetegat gtgegecaca ccetecegge 20 9061 tgtagtcaac ctgcggctcg gcccgcagcc ggtcgttgtc ggcatcggag ttgcaccaga 9121 tegeoggeeg ggaegaegee acceegeggg ggtegaacee aaceaggteg aacetttegt 9181 geaccegett eggeaatgte tggaagaege ceaaggegge etegataeeg gattegeegg 9241 gtccaccggg atttatgacc agcgaaccga tettgtctcc cgtcgccgga aagcgaatca 9301 gegecagege egecacgtea ceategggge ggtegtagte gaceggtaea gegagettge 25 9361 cgcataacgc gccgccgggg atctttactt gcgggtttga cgaccggcac ggtgtccact 9421 ccaccggetg geccagette ggeteegeea tacgagegeg teeccegace aegeggatge 9481 ageceacaag aaccaaegee aeggeggega gegeggeeea gateaacage atgegegega 9541 tettgtegeg gegagaeage eteatgeeca caatgetgee agageagaee egagateetg 9601 gecageggee acceteggee gactaacegg eegetgecag eagteetgee ategeegatg 30 9661 gegaactegt eggecateee ceataegtee ggtaacagat eegggeaaga caeegaeeeg 9721 tegaceggat eeggeaeggg egegteggee teggeggtge acaactgega cateaggttg 9781 gegetggeae eeegteeaeg eeggeatggt geaeettgge eategeeega gggegateee 9841 cgatgccgtc caccccttcg acgaacccat ctcccacggc ggtcgccggc agcgacgcga 9901 tgtggccgca gatctccgag agttcggccc gcccgcccgg cgacggcaac ccgatgccgt 35 9961 gcaagtgacg atcgatgtga ggttcaaggt tcagegcact gctggcaagc tttttccgaa

10021 accgcggcct cgccttgatc tggagtcaga acgcgtcacg cagccggtca aaggcgtaac 10081 ccatgetega geaaacatge atgggetgag tggaegttte cagacacage aactggegte 10141 caggocactg agcogotgoa tgogogatgg tatgcogatg ggggccccgg gcgcgtctga 10201 ggggaagaag tggcagactg tcagggtccg acgaacccgg ggaccctaac gggccacgag 5 10261 gategacceg accaccatta gggacagtga tgtetgagca gaetatetat ggggecaata 10321 cccccggagg ctccgggccg cggaccaaga tccgcaccca ccacctacag agatggaagg 10381 ccgacggcca caagtgggcc atgctgacgg cctacgacta ttcgacggcc cggatcttcg 10441 acgaggeegg cateceggtg etgetggteg gtgattegge ggeeaacgte gtgtaegget 10501 acgacaccae egtgecgate tecategacg agetgatece getggteegt ggegtggtge 10 10561 ggggtgcccc gcacgcactg gtcgtcgccg acctgccgtt cggcagctac gaggcggggc 10621 ccaccgccgc gttggccgcc gccacccggt tcctcaagga cggcggcgca catgcggtca 10681 agetegaggg eggtgagegg gtggeegage aaategeetg tetgaeegeg gegggeatee 10741 eggtgatgge acacategge tteacceege aaagegteaa cacettggge ggetteeggg 10801 tgcagggccg cggcgacgcc gccgaacaaa ccatcgccga cgcgatcgcc gtcgccgaag 15 10861 ccggagcgtt tgccgtcgtg atggagatgg tgcccgccga gttggccacc cagatcaccg 10921 geaagettac catteegacg gtegggateg gegetgggee caactgegae ggeeaggtee 10981 tggtatggca ggacatggcc gggttcagcg gcgccaagac cgcccgcttc gtcaaacggt 11041 atgccgatgt cggtggtgaa ctacgccgtg ctgcaatgca atacgcccaa gaggtggccg 11101 geggggtatt cecegetgae gaacacagtt tetgaccaag cegaateage eegatgegeg 20 11161 ggcattgegg tggegecetg gatgeegteg aegeeggatt geeggegegg aegegeeage 11221 gggacccatc ggcgtcgcgt tcgccggttg agcccggggt gagcccagac attcgatgtg 11281 cccaacacca teegeeacag eccaattgat gtggeactet atgeatgeet ateeeegaee 11341 aaccaccacc geggegaege atcatgaeeg gaggegaaga tgecagtaga ggegeecaga 11401 ccagcgcgcc atctggaggt cgagcgcaag ttcgacgtga tcgagtcgac ggtgtcgccg 25 11461 tegttegagg geategeege ggtggttege gtegageagt egeegaeeca geagetegae 11521 geggtgtact tegacacaec gtegeacgae etggegegea accagateae ettgeggege 11581 cgcaccggcg gcgccgacgc cggctggcat ctgaagctgc cggccggacc cgacaagcgc 11641 accgagatge gageaccget gteegeatea ggegaegetg tgeeggeega gttgttggat 11701 gtggtgctgg cgatcgtceg cgaccagccg gttcagccgg tcgcgcggat cagcactcac 30 11761 cgcgaaagcc agatectgta cggcgccggg ggcgacgcgc tggcggaatt ctgcaacgac 11821 gacgtcaccg catggtcggc cggggcattc cacgccgctg gtgcagcgga caacggccct 11881 gccgaacagc agtggcgcga atgggaactg gaactggtca ccacggatgg gaccgccgat 11941 accaagetae tggacegget agceaacegg etgetegatg eeggtgeege acetgeegge 12001 cacggeteca aactggegeg ggtgeteggt gegaeetete eeggtgaget geecaaegge 35 12061 cegeageege eggeggatee agtacacege geggtgteeg agcaagtega geagetgetg

12121 ctgtgggatc gggccgtgcg ggccgacgcc tatgacgccg tgcaccagat gcgagtgacg 12181 accegeaaga teegeagett getgaeggat teeeaggagt egtttggeet gaaggaaagt 12241 gcgtgggtca tcgatgaact gcgtgagctg gccgatgtcc tgggcgtagc ccgggacgcc 12301 gaggtacteg gtgaccgcta ccagegegaa etggacgege tggegeegga getggtaege 5 12361 ggccgggtgc gcgagcgcct ggtagacggg gcgcggcggc gataccagac cgggctgcgg 12421 egateactga tegeattgeg gtegeagegg taetteegte tgetegaege tetagaegeg 12481 cttgtgtccg aacgcgccca tgccacttct ggggaggaat cggcaccggt aaccatcgat 12541 geggeetace ggegagteeg eaaageegea aaageegeaa agaeegeegg egaeeaggeg 12601 ggegaccacc acegegaega ggeattgeae etgateegea agegegegaa gegattaege 10 12661 tacaccgcgg cggctactgg ggcggacaat gtgtcacaag aagccaaggt catccagacg 12721 ttgctaggeg atcatcaaga cagegtggte ageegggaac atctgateea geaggecata 12781 geogegaaca eegeeggega ggacacette acetaeggte tgetetaeea acaggaagee 12841 gacttggccg agcgctgccg ggagcagctt gaagccgcgc tgcgcaaact cgacaaggcg 12901 gtccgcaaag cacgggattg agcccgccag gggcggacga gttggcctgt aagccggatt 15 12961 ctgttccgcg ccgccacagc caagctaacg gcggcacggc ggcgaccatc catctggaca 13021 caccettacc gggtgcctcg agcggcctac ccgcaggctc gggcgagcaa ccctcaagcg 13081 cctgcgcgc cgcactttcg gtgcggcctt cttggccttg cttcgggtgg ggtttgccta 13141 gecaccegg teacceggaa tgetggtgeg etettacege acegttteac cettgecace 13201 acgaggatgg cggtctgttt tctgtggcac tttcccgcga gtcacctcgg attgccgtta 20 13261 gcaatcaccc tgctctgtga agtccggact ttcctcgact cgacgctgaa cctcgtgaat 13321 ccacacaage cctacgegag ccgcggccgc ccagccaact catccgcgac gaccacgcta 13381 ccccgctggg cggtgtcgcg gccagtgtga ccgctggacg acacggctag tcggacagcc 13441 gateeggegg geagteetta tegtggactg gtgacaeggt gggacaaaeg egtegactee 13501 ggegactggg aegecatege tgeegaggte agegagtaeg gtggegeaet getaeetegg 25 13561 ctgatcaccc ccggcgaggc cgcccggctg cgcaagctgt acgccgacga cggcctgttt 13621 cgctcgacgg tcgatatggc atccaagcgg tacggcgccg ggcagtatcg atatttccat 13681 gececetate eegagtgate gagegtetea ageaggeget gtateeeaaa etgetgeega 13741 tagegegeaa etggtgggee aaactgggee gggaggegee etggeeagae ageettgatg 13801 actggttggc gagctgtcat gccgccggcc aaacccgatc cacagcgctg atgttgaagt 30 13861 acggcaccaa cgactggaac gccctacacc aggatctcta cggcgagttg gtgtttccgc 13921 tgcaggtggt gatcaacctg agegatccgg aaaccgacta caccggcggc gagttcctgc 13981 ttgtcgaaca geggectege geceaateee ggggtaeege aatgeaactt eegeagggae 14041 atggttatgt gttcacgacc cgtgatcggc cggtgcggac tagccgtggc tggtcggcat 14101 ctccagtgcg ccatgggctt tcgactattc gttccggcga acgctatgcc atggggctga 35 14161 tettteaega egeageetga ttgeaegeea tetatagata geetgtetga tteaecaate

14221 gcaccgacga tgccccatcg gcgtagaact cggcgatgct cagcgatgcc agatcaagat 14281 gcaaccgata taggacgece gacceggeat ccaacgccag ccgcaacaac attttgateg 14341 gegtgacatg tgacaccace ageacegteg egeettegta gecaacgatg atecgateae 14401 gtccccgccg aacccgccgc agcacgtcgt cgaagctttc cccacccggg ggcgtgatgc 5 14461 tggtgtcctg cagccagcga cggtgcagct cgggatcgcg ttctgcggcc tccgcgaacg 14521 teagecete eeaggegeeg aagteggtet egaceaggte gteategaeg aceaegteea 14581 gggccagggc tctggcggcg gtcaccgcgg tgtcgtaagc ccgctgtagc ggcgaggaga 14641 ccaccgcage gatecegeeg egeegegea gataceegge egeegeacea acetggegee 14701 accecacete gtteaacece gggttgeege geecegaata geggegttge teegaeaget 10 14761 ccgtctgccc gtggcgcaac aaaagtagtc gggtgggtgt accgcgggcg ccggtccagc 14821 egggagatgt eggtgacteg gtegeaacga ttttggeagg ateegeatee geegeageeg 14881 attgegegge ggegtecate gegteattgg ccaaeeggte tgeataegtg tteegggeae 14941 geggaaceca etegtagttg ateetgegaa aetgggaege caaegeetga geetggaeat 15001 agagetteag eagateeggg tgettgacet teeacegeee ggacatetge teeaceacea 15 15061 gettggagte cateageace geggeetegg tggeacetag ttteaeggeg tegtecaaac 15121 eggetateag geogeggtat teggegaegt tgttegtege eeggeegate geetgettgg 15181 acteggecag eaeggtggag tgateggegg tecacaceae egegeegtat eeggeeggte 15241 egggattgee eegegateeg eegteggett egatgacaae ttteacteet eaaateette 15301 gageegeaac aagategete egeatteegg geagegeace aetteateet eggeggeege 20 15361 cgagatetgg gecagetege egeggeegat etegateegg eaggeaceae ategatgace 15421 ttgcaaccgc coggeccetg gecegetec ggecegetgt etttegtaga geceegeaag 15481 ctcgggatca agtgtcgccg tcagcatgtc gcgttgcgat gaatgttggt gccgggcttg 15541 gtcgatttcg gcaagtgcct cgtccaaagc ctgctgggcg gcggccaggt cggcccgcaa 15601 cgcttggage geeegegaet eggeggtetg ttgageetge ageteetege ggegtteeag 25 15661 cacctccagc agggeatett ccaaactggc ttgacggcgt tgcaagctgt cgagctcgtg 15721 etgeagatea geeaattget tggegteegt tgeaceegaa gtgageaaeg aeeggteeeg 15781 gtcgccacge ttacgcaccg catcgatete cgactcaaaa cgcgacacet ggccgtccaa 15841 gtcctccgcc gcgattcgca gggccgccat cctgtcgttg gcggcgttgt gctcggcctg 15901 cacctgctgg taagccgccc gctgcggcag atgggtagcc cgatgcgcga tccgggtcag 30 15961 etcagcatec agettegeca attecagtag egacegttge tgtgecaete eggettteat 16021 gcctgatctc tcccagtttc gtgatcgagg ttccacgggt cggtgcagat ggtgcacaca 16081 cgcaccggca gcgacgcgcc gaaatgagac cgcaacactt cggcggcctg gccgcaccac 16141 gggaattege ttgeceaatg egegaegteg ateagggeea ettgegaage teggeaatge 16201 tegteggetg gatgatgteg eagateggee gtaacgtacg ettgeaegte egeggeggee 35 16261 acggtggcaa gcaacgagtc cccggcgccg ccgcagaccg cgacccgcga caccagcagg

16321 tegggatece eggeggege cacaceggte geagteggeg geaacgegge etceagaegg 16381 gcaacaaagg tgcgcagcgg ttcgggtttt ggcagtctgc caatccggcc taacccgctg 16441 ccgaccggcg gtggtaccag cgcgaagatg tcgaatgccg gctcctcgta agggtgcgcg 16501 gegegeateg eegecaacac eteggegege getegtgegg gtgegaegae etegaeeegg 5 16561 tecteggeea eccettegae ggtacegaeg etgeetatgg egggegaege eccettegtge 16621 gecaggaact geceggtace egegacacte cagetgeagt gegagtagte gecgatatgg 16681 ccggcaccgg cctcaaagac cgctgcccgc accgcctctg agttctcgcg cggcacatag 16741 atgacccact tgtcgagatc ggccgctccg ggcaccgggt cgagaacggc gtcgacggtc 16801 agaccaacag cgtgtgccag cgcgtcggac acacccggcg acgccgagtc ggcgttggtg 10 16861 tgcgcggtaa acaacgagcg accggtccgg atcaggcggt gcaccagcac accetttggc 16921 gtgttggccg cgaccgtatc gaccccacgc agtaacaacg ggtggtgcac caatagcagt 16981 ceggeetggg gaacetggte caccacegee ggegtegegt ecacegeaac ggteacegaa 17041 tecaccaegt egteggggte geegeacaee agaeceaeeg aateeeaega etgggeaage 17101 cgcggcggt aggcctggtc cagcacgtcg atgacatcgg ccagccgcac actcatcggc 15 17161 gtcctccacg ctttgcccac teggegateg eegecaccag caegggccac teegggegea 17221 cegeegeeg eaggtacege gegteeagge egaegaaggt gteacegegg egeaeegeaa 17281 ttcctttgct ctgcaaatag tttcgtaatc cgtcagcatc ggcgatgttg aacagtacga 17341 aaggggeege accategace aceteggeac ecacegatet eagteeggee accateteeg 17401 cgcgcagcgc cgtcaaccgc accgcatcgg ctgcggcagc ggcgaccgcc cgggggggcgc 20 17461 ageaageage gatggeegte agttgeaatg tteecaaegg eeagtgeget egetgeaegg 17521 teaacegage cageacgtet ggegageega gegegtagee caceggaat eeggeeageg 17581 accaegtttt egteaageta eggageacea geacateggg eagegagtea teggeeaaeg 17641 attgeggete geegggaace caateagega aegeetegte gaccaccagg atgegteeg 17701 geoggegtaa etegageage tgetegegga ggtgeageae egaggtgggg ttggteggat 25 17761 tacccacgac gacaaggteg gegtegteag geaegtgege ggtgteeage aegaaeggeg 17821 getttaggac aacatggtge geegtgatte eggeageget eaaggetatg geeggetegg 17881 tgaacgeggg cacgacgatt getgeeegea eeggacttag gttgtgeage aatgegaate 17941 ceteegeege eeegaegage gggageaett egteaegggt tetgeeatga egtteagega 18001 cegegtettg egeceggtge acategtegg tgeteggata gegggecage teeggeagea 30 18061 gegeggegag etgeeggace aaceatteeg ggggeeggte atggeggaeg ttgaeggega 18121 agtecageae geegggegeg acateetgat caeegtggta gegegeegeg geaageggge 18181 tagtgtctag actcgccaca gcgtcaaaca gtagtgggcc ggtgtgcggg ccaagaatcc 18241 agagcaccgc cgacgcgttg tctacgcggc gacaaccgcg acatcacagg cagctaacag 18301 ggcgtcggcg gtgatgatcg tcaggccaag cagctgtgcc tgggcgatga gcacacggtc 35 18361 gaatggatgt cgatggtgat ccggaagctc tgcggtgcgc agtgtgtgcg tggtcaactg

18421 acageggega egtgeegeag eggegeatte gategggeae gtaagaagee gatggetegg 18481 geggeggag ettgeegagg eggtagttga tegegatete eeaggeactg geggeegaca 18541 agagaatgct gttgcggacg teetgaacaa tegecegtgt ttegttgacg geateegeag 18601 ccaaacgtgg gtgtcgatga ggtagcgctt caccggtgaa agcgttcgag cacgtcgtct 5 18661 gacaacggag cgtccaaatc gtcgggcacg cggtacacgc catggtcaat gcctaaccgc 18721 cgagteteat gaggatgeag eggeacaage tttgetaeeg getegeegeg gegggeaate 18781 teaacetetg ecceetgtag acgageegea geagetegga eaggegtgte ttegeetegt 18841 gaacgccgac ccgcttcgca ggcgcccaga ctttcgcgtc gaccacctgc tcaccaaact 18901 tegegateat egeetgatae eacagegeea aegggtageg gtttgteeaa eegettegte 10 18961 aacgacaatg ggatcgtgac cgacacgacc gcgagcggga ccaattgccc gcctcctcca 19021 egegeegeeg eaeggegege ategtegeeg ggtgaatege egeagetggt gatettegat 19081 etggacggca egetgacega eteggegege ggaategtat ecagetteeg acaegegete 19141 aaccacateg gtgccccagt accegaagge gacetggcca etcacategt eggecegeee 19201 atgcatgaga cgctgcgcgc catggggctc ggcgaatccg ccgaggaggc gatcgtagcc 15 19261 taccgggccg actacagcgc ccgcggttgg gcgatgaaca gcttgttcga cgggatcggg 19321 ccgctgctgg ccgacctgcg caccgccggt gtccggctgg ccgtcgccac ctccaaggca 19381 gageegaeeg eaeggegaat eetgegeeae tteggaattg ageageaett egaggteate 19441 gegggegega geaeegatgg etegegagge ageaaggteg aegtgetgge eeaegegete 19501 gcgcagctgc ggccgctacc cgagcggttg gtgatggtcg gcgaccgcag ccacgacgtc 20 19561 gacggggcgg ccgcgcacgg catcgacacg gtggtggtcg gctggggcta cgggcgcgcc 19621 gactttateg acaagacete caccacegte gtgacgcatg cegecacgat tgacgagetg 19681 agggaggege taggtgtetg atccgetgea egteacatte gtttgtaegg geaacatetg 19741 ccggtcgcca atggccgaga agatgttcgc ccaacagctt cgccaccgtg gcctgggtga 19801 egeggtgega gtgaccagtg egggeaeegg gaaetggeat gtaggeagtt gegeegaega 25 19861 gegggeggee ggggtgttge gageceaegg etaecetaee gaecaeeggg eegeaeaagt 19921 eggeacegaa eacetggegg eagacetgtt ggtggeettg gacegeaace aegetegget 19981 gttgeggeag eteggegteg aageegeeeg ggtaeggatg etgeggteat tegaeeeaeg 20041 etegggaace catgegeteg atgtegagga teectactat ggegateact eegacttega 20101 ggaggtette geegteateg aateegeeet geeeggeetg eacgaetggg tegaegaaeg 30 20161 tetegegegg aacggacega gttgatgeee egectagegt teetgetgeg geeeggetgg 20221 ctggcgttgg ccctggtcgt ggtcgcgttc acctacctgt gctttacggt gctcgcgccg 20281 tggcagctgg gcaagaatgc caaaacgtca cgagagaacc agcagatcag gtattccctc 20341 gacaccege eggtteeget gaaaaccett etaccacage aggattegte ggegeeggae 20401 gegeagtgge geegggtgae ggeaacegga eagtacette eggaegtgea ggtgetggee 35 20461 cgactgcgcg tggtggaggg ggaccaggcg tttgaggtgt tggccccatt cgtggtcgac

20521 ggcggaccaa ccgtcctggt cgaccgtgga tacgtgcggc cccaggtggg ctcgcacgta 20581 ccaccgatec eccectece ggtgcagaeg gtgaccatea ecgegegget gegtgaetee 20641 gaaccgageg tggegggeaa agacccatte gteagagaeg getteeagea ggtgtatteg 20701 atcaataccg gacaggtcgc cgcgctgacc ggagtccagc tggctgggtc ctatctgcag 5 20761 ttgatcgaag accaaccegg egggetegge gtgeteggeg tteegeatet agateeeggg 20821 ccgttcctgt cctatggcat ccaatggatc tcgttcggca ttctggcacc gatcggcttg 20881 ggctatttcg cctacgccga gatecgggcg cgccgccggg aaaaagcggg gtcgccacca 20941 ccggacaage caatgacggt cgagcagaaa ctcgctgace gctacggccg ccggcggtaa 21001 accaacatea eggecaatac egeageceee geetggaeca eeegegaeag eaccaeggeg 10 21061 eggegeagat eggecacett gggegaeegg eegtegeeea aggtgggeeg gatetgeaac 21121 tcatggtggt accgggtggg cccacccagc cgcacgtcaa gcgccccagc aaacgccgcc 21181 tcgacgacac cggcgttggg gctgggatgg cgggcggcgt cgcgccgcca ggcccgtacc 21241 geacegeggg gegacecaee gaceaeegge gegeagatea eeaeeageae egeegtegee 21301 egtgegecaa catagttgge ecagteatee aategtgetg eageceaace gaateggaga 15 21361 taacgeggeg ageggtagee gateategag tecagggtgt tgatggeaeg atateceage 21421 accgcaggea egeegetega ageegeecac ageageggea ecaeetggge gteggeggtg 21481 ttttcggcca ccgactccag cgcggcacgc gtcaggcccg ggccgcccag ctgggccggg 21541 teaegeeege acagegaegg cageageegt egegeegeet egacategte gegeteeaac 21601 aggtccgata tctggcggcc ggtgcgcgcc agcgaagttc cgcccagcgc tgcccaggtg 20 21661 geogtegegg tggeegecae gggeeaggae etgeegggta geogetgeag tgeegegeeg 21721 ageaageeca eegegeegae eageaggeeg aegtgtaeeg eaceggegae eeggeegtea 21781 cggtaggtga tetgetecag ettggeggee geeegaeega acagggeeae eggatgaeet 21841 cgtttggggt cgccgaacac gacgtcgagc aggcagccga tcagcacgcc gacggccctg 21901 gtctgccagg tcgatgcaaa cactccggca gcgtcgcaca cgtggtctac gctcagctat 25 21961 ttatgacctc atacggcagc tatccacgat gaageggcca gctacceggg ttgccgacct 22021 gttgaacccg gcggcaatgt tgttgccggc agcgaatgtc atcatgcagc tggcagtgcc 22081 gggtgteggg tatggegtge tggaaageee ggtggaeage ggeaaegtet acaageatee 22141 gttcaagegg geeeggacea eeggeaceta eetggeggtg gegaeeateg ggaeggaate 22201 cgaccgagcg ctgatccggg gtgccgtgga cgtcgcgcac cggcaggttc ggtcgacggc 30 22261 ctcgagccca gtgtcctata acgccttcga cccgaagttg cagctgtggg tggcggcgtg 22321 tetgtacege tacttegtgg accageaega gtttetgtac ggeceaeteg aagatgeeae 22381 cgccgacgcc gtctaccaag acgccaaacg gttagggacc acgctgcagg tgccggaggg 22441 gatgtggccg ccggaccggg tcgcgttcga cgagtactgg aagcgctcgc ttgatgggct 22501 gcagatcgac gcgccggtgc gcgagcatct tcgcggggtg gcctcggtag cgtttctccc 35 22561 gtggccgttg cgcgcggtgg ccgggccgtt caacctgttt gcgacgacgg gattettggc

22621 accggagtte egegegatga tgeagetgga gtggteaeag geeeageage gtegettega 22681 gtggttactt teegtgetae ggttageega eeggetgatt eegeateggg eetggatett 22741 egtttaceag etttacttgt gggacatgeg gtttegegee egacaeggee geegaategt 22801 ctgatagage ceggeegagt gtgageetga cageeegaca eeggeggegt gtgtegegte 5 22861 gecaggttca egeteggega tetagageeg eegaaaaeet aettetgggt tgeeteeega 22921 atcaacgtgc tgatctgctc gagcagctca cgcatatcgg cgcgcatcgc atccaccgcg 22981 gcatacaggt cggccttggt cgccggcagc tggtccgacg tcattggccg caccggcggt 23041 getgtetgte gegeegeget gtegetttga aacceaggte geteacceae gaccaegaea 23101 ctgecatate eggegeeeeg eegacaaega ageacageta geeggtggge geggaeggga 10 23161 tegaacegee gacegetggt gtgtaaaace agagetetae egetgageta egegeeeatg 23221 accgccgcag gctacacgcc ttgcggccaa gcacccaaaa ccttaggccg taagcgccgc 23281 cagagegteg gtecacagee getgategeg aactteacee ggetgettea teteggegaa 23341 ccgaatgate cetgacegat egaceacaaa ggtgeeeegg ttagegatge eggeetgete 23401 gttgaagacg ccgtaggcct gactgaccgc gccgtgtggc cagaagtccg acaacagcgg 15 23461 aaacgtgaat ccgctctgcg tcgcccagat cttgtgagtg ggtggcgggc ccaccgaaat 23521 cgctagcgcg gcgctgtcgt cgttctcaaa ctcgggcagg tgatcacgca actggtccag 23581 ctcgccctgg cagatgcccg tgaacgccaa cggaaagaac accaacagca cgttctttgc 23641 accceggtag cegegeaggg tgacaagetg etgattetgg tegegeaacg tgaagteagg 23701 ggeggtgget cegaegttea geateagege ttgceagece gegatttegg etgtaceaat 20 23761 ctgctggcgc tccagttgcc cagattgacc gacgaggtcg gcatcagccc agctgtgggc 23821 geogeotegg caatetegge gggeaataea tggeoggget ggeoggtett gggegteaec 23881 acccaaatca caccgtcctc ggcgagcggg ccgatcgcat ccatcagggt gtccaccaaa 23941 tegeogtege cateaegeca ecacaaeagg aegacatega tgaeetegte ggtgtettea 24001 tegageaact eteeceegea egettetteg atggeegege ggatgtegte gteggtgtet 25 24061 tegteceage cecatteetg gataagttgg tetegttgga tgeceaattt gegggegtag 24121 ttcgaggcgt gatccgccgc gaccaccgtg gaacctcctt cagtetccgc gggccatgtg 24181 cacacegteg egatgggcat tategtegea cagecagaac eggtecacec gecegeetea 24241 gaaggeggee acgeacattg teaatgeett tgtettggtg tegttgagee gateaaceeg 24301 ccggttgaat tccgctgtcg acgcgtgcgc accgatggca tttgccaccg cgcgggccgc 30 24361 gtcgacatat gcgttgageg cateccccag ttgcgcggac agcgcggcgc tcagactgcc 24421 tgagaccgtc gaggcactgt tgttgagcgc gtcgatggcc ggaccttcgg tcggcccggt 24481 gttgeggeec tgattgaaeg eggeeaegta ggegtteaec ttgtegatgg egteettget 24541 ggtggccgcc agcgcgtcac acgaggtgcg aatcgccttg gtcgtcagcg attgttggcg 24601 etgegaetee eggatgeteg aegtegeege egaageegae aeegaegeg aeaeegaega 35 24661 geggtaggee ggtgegaegt tggtgteggg catggeegta eegteggtga eagtggtaca

24721 tecgaegate eccateagea geagegegat geageegage geeagggege etegeetggg 24781 gageteecce cegtgeetge gaggeaegge gegecateeg atgageaegg eatgtgaggt 24841 tacetggteg cageggace gegetggeeg tggtgtgteg egeateegea gaacegageg 24901 gagtgegget ateegeegee gaegeeggtg eggeaegata gggggaegae catetaaaca 5 24961 gcacgcaagc ggaagcccgc cacctacagg agtagtgcgt tgaccaccga tttcgcccgc 25021 cacgatetgg eccaaaacte aaacagegea agegaaceeg acegagtteg ggtgateege 25081 gagggtgtgg cgtcgtattt gcccgacatt gatcccgagg agacctcgga gtggctggag 25141 teetttgaca egetgetgea aegetgegge eegtegeggg eeegetaeet gatgttgegg 25201 ctgctagage gggccggcga geagegggtg gccatecegg cattgaegte taeegaetat 10 25261 gtcaacacca teeegacega getggageeg tggtteeeeg gegaegaaga egtegaaegt 25321 egttategag egtggateag atggaatgeg gecateatgg tgeacegtge geaacgaeeg 25381 ggtgtgggcg tgggtggcca tatctcgacc tacgcgtcgt ccgcggcgct ctatgaggtc 25441 ggtttcaacc acttetteeg eggeaagteg eaceegggeg geggegatea ggtgttcate 25501 cagggecaeg etteeceggg aatetaegeg egegeettee tegaagggeg gttgaeegee 15 25561 gagcaacteg acggatteeg ceaggaacae agceatgteg geggegggtt geegteetat 25621 eegeaceege ggeteatgee egaettetgg gaatteecea eegtgtegat gggtttggge 25681 cegeteaacg ceatetacea ggeaeggtte aaceactate tgeatgaceg eggtateaaa 25741 gacaceteeg ateaacaegt gtggtgtttt ttgggegaeg gegagatgga egaaceegag 25801 agccgtgggc tggcccacgt cggcgcgctg gaaggettgg acaacttgac ettcgtgate 20 25861 aactgcaate tgcagegact cgaeggceeg gtgcgcggca acggcaagat catccaggag 25921 ctggagtcgt tettccgcgg tgccggctgg aacgtcatca aggtggtgtg gggccgcgaa 25981 tgggatgccc tgctgcacgc cgaccgcgac ggtgcgctgg tgaatttaat gaatacaaca 26041 cccgatggcg attaccagae ctataaggce aacgacggcg getacgtgcg tgaccactte 26101 tteggeegeg acceaegeae caaggegetg gtggagaaca tgagegacea ggatatetgg 25 26161 aaceteaaac ggggeggeea egattacege aaggtttaeg eegeetaeeg egeegeegte 26221 gaccacaagg gacagecgac ggtgateetg gecaagacca teaaaggeta egegetggge 26281 aagcattteg aaggaegeaa tgecaccae cagatgaaaa aactgaecet ggaagaeett 26341 aaggagttte gtgacaegea geggatteeg gteagegaeg eecagettga agagaateeg 26401 tacctgccgc cctactacca ccccggcctc aacgccccgg agattcgtta catgctcgac 30 26461 eggegeeggg ceeteggggg etttgtteee gagegeagga ceaagteeaa agegetgaee 26521 etgeeggte gegacateta egegeegetg aaaaaggget etgggeacea ggaggtggee 26581 accaccatgg cgacggtgcg cacgttcaaa gaagtgttgc gcgacaagca gatcgggccg 26641 eggatagtee egateattee egaegaggee egeacetteg ggatggaete etggtteeeg 26701 tegetaaaga tetataaceg caatggecag etgtataeeg eggttgaege egacetgatg 35 26761 ctggcctaca aggagagcga agtcgggcag atcctgcacg agggcatcaa cgaagccggg

26821 teggtggget egtteatege ggeeggeace tegtatgega egeacaaega accgatgate 26881 cecatttaca tettetaete gatgttegge ttecagegea eeggegatag ettetgggee 26941 geggeegace agatggeteg agggttegtg eteggggeea eegeegggeg eaccaceetg 27001 accggtgagg geetgeaaca egeegaeggt eactegttge tgetggeege caecaaceeg 5 27061 geggtggttg ectaegaece ggeettegee taegaaateg ectaeategt ggaaagegga 27121 ctggccagga tgtgcgggga gaacccggag aacatettet tetacateae cgtetacaae 27181 gagccgtacg tgcagccgcc ggagccggag aacttcgatc ccgagggcgt gctgcggggt 27241 atctaccgct atcacgcggc caccgagcaa cgcaccaaca aggegcagat cetggcctcc 27301 ggggtagega tgecegegge getgegggea geacagatge tggeegeega gtgggatgte 10 27361 gccgccgacg tgtggtcggt gaccagttgg ggcgagctaa accgcgacgg ggtggccatc 27421 gagaccgaga ageteegeea eecegategg eeggegggeg tgeeetaegt gaegagageg 27481 etggagaatg eteggggeee ggtgategeg gtgteggaet ggatgegege ggteeeegag 27541 cagateegae egtgggtgee gggeacatae etcaegttgg geaeegaegg gtteggettt 27601 tecgacacte ggeeegeege tegeogetae tteaacaceg aegeegaate eeaggtggte 15 27661 geggttttgg aggegttgge gggegaegge gagategaee eateggtgee ggtegeggee 27721 geoegecagt aceggatega egacgtggeg getgegeeeg ageagaceae ggateeeggt 27781 eccggggeet aacgeeggeg ageegaeege etttggeega atetteeaga aatetggegt 27841 agettttagg agtgaacgac aatcagttgg etceagttge eegeeegagg tegeegeteg 27901 aactgetgga eactgtgeee gattegetge tgeggeggtt gaageagtae tegggeegge 20 27961 tggccaccga ggcagtttcg gccatgcaag aacggttgcc gttcttcgcc gacctagaag 28021 cgtcccagcg cgccagcgtg gcgctggtgg tgcagacggc cgtggtcaac ttcgtcgaat 28081 ggatgcacga cccgcacagt gacgtcggct ataccgcgca ggcattcgag ctggtgcccc 28141 aggatetgae gegaeggate gegetgegee agacegtgga eatggtgegg gteaceatgg 28201 agttettega agaagtegtg eccetgeteg eccetteega agageagttg acegeectea 25 28261 eggtgggeat tttgaaatae ageeggaee tggeatteae egeegeeaeg geetaegeeg 28321 atgeggeega ggeacgagge acctgggaca geeggatgga ggecagegtg gtggaegegg 28381 tggtacgcgg cgacaccggt cccgagctgc tgtcccgggc ggccgcgctg aattgggaca 28441 ccaccgegee ggegacegta etggtgggaa eteeggegee eggtecaaat ggetecaaca 28501 gegaeggega eagegagegg geeageeagg atgteegega eacegegget egeeaeggee 30 28561 gegetgeget gaccgacgtg cacggcacct ggetggtgge gatcgtetee ggecagetgt 28621 egecaacega gaagtteete aaagaeetge tggeageatt egeegaegee eeggtggtea 28681 teggececae ggegeceatg etgacegegg egeacegeag egetagegag gegateteeg 28741 ggatgaacgc cgtcgccggc tggcgcggag cgccgcggcc cgtgctggct agggaacttt 28801 tgcccgaacg cgccctgatg ggcgacgcct cggcgatcgt ggccctgcat accgacgtga 35 28861 tgeggeceet ageegatgee ggaeegaege teategagae getagaegea tatetggatt

28921 gtggcggcgc gattgaagct tgtgccagaa agttgttcgt tcatccaaac acagtgcggt 28981 accggeteaa geggateace gaetteaceg ggegegatee caeceageea egegatgeet 29041 atgtccttcg ggtggcggcc accgtgggtc aactcaacta teegacgccg cactgaagca 29101 tegacageaa tgeegtgtea tagatteeet egeeggteag agggggteea geaggggeee 5 29161 cggaaagata ccaggggcgc cgtcggacgg aaagtgatcc agacaacagg tcgcgggacg 29221 atctcaaaaa catagcttac aggcccgttt tgttggttat atacaaaaac ctaagacgag 29281 gttcataatc tgttacaccg cgcaaaaccg tcttcacagt gttctcttag acacgtgatt 29341 gcgttgctcg cacceggaca gggttcgcaa accgagggaa tgttgtcgcc gtggcttcag 29401 ctgcccggcg cagcggacca gatcgcggcg tggtcgaaag ccgctgatct agatcttgcc 10 29461 eggetgggca ecacegeete gacegaggag atcacegaca eegeggtege ecagecattg 29521 ategtegeeg egactetget ggeeeaceag gaactggege geegatgegt getegeegge 29581 aaggacgtca tcgtggccgg ccactccgtc ggcgaaatcg cggcctacgc aatcgccggt 29641 gtgatageeg eegaegaege egtegegetg geegeeaeee geggegeega gatggeeaag 29701 geetgegeea eegageegae eggeatgtet geggtgeteg geggegaega gaeegaggtg 15 29761 ctgagtegee tegageaget egaettggte eeggeaaace geaacgeege eggeeagate 29821 gtegetgeeg geeggetgae egegttggag aagetegeeg aagaeeegee ggeeaaggeg 29881 egggtgegtg eactgggtgt egeeggageg ttecaeaceg agtteatgge geeggeaett 29941 gacggctttg cggcggccgc ggccaacatc gcaaccgccg accccaccgc cacgctgctg 30001 tecaacegeg aegggaagee ggtgacatee geggeegegg egatggacae eetggtetee 20 30061 cageteacce aaceggtgeg atgggacetg tgeacegega egetgegega acaeacagte 30121 acggcgatcg tggagttccc ccccgcgggc acgcttagcg gtatcgccaa acgcgaactt 30181 eggggggtte eggeaegege egteaagtea eeegeagaee tggaegaget ggeaaaceta 30241 taaccgcgga ctcggccaga acaaccacat accegtcagt tcgatttgta cacaacatat 30301 tacgaaggga agcatgctgt gcctgtcact caggaagaaa tcattgccgg tatcgccgag 25 30361 atcategaag aggtaacegg tategageeg teegagatea eeeeggagaa gtegttegte 30421 gacgacetgg acategacte getgtegatg gtegagateg eegtgeagae egaggacaag 30481 tacggcgtca agatccccga cgaggacctc gccggtctgc gtaccgtcgg tgacgttgtc 30541 geetacatee agaagetega ggaagaaaac eeggaggegg eteaggegtt gegegegaag 30601 attgagtegg agaacceega tgeegttgee aacgtteagg egaggettga ggeegagtee 30 30661 aagtgagtca geetteeace getaatggeg gttteeceag egttgtggtg acegeegtea 30721 cagcgacgac gtcgatctcg ccggacatcg agagcacgtg gaagggtctg ttggccggcg 30781 agageggeat ecaegeacte gaagaegagt tegteaceaa gtgggateta geggteaaga 30841 teggeggtea ceteaaggat eeggtegaca gecacatggg eegactegac atgegacgea 30901 tgtcgtacgt ccagcggatg ggcaagttgc tgggcggaca gctatgggag tccgccggca 35 30961 georggaggt egatecagae eggttegeeg ttgttgtegg caeeggteta ggtggageeg

31021 agaggattgt egagagetae gacetgatga atgegggegg ecceeggaag gtgteeeege 31081 tggccgttca gatgatcatg cccaacggtg ccgcggcggt gatcggtctg cagcttgggg 31141 cccgcgccgg ggtgatgacc ccggtgtcgg cctgttcgtc gggctcggaa gcgatcgccc 31201 acgcgtggcg teagatcgtg atgggcgacg ccgacgtcgc cgtctgcggc ggtgtcgaag 5 31261 gacccatega ggegetgece ategeggegt tetecatgat gegggecatg tegaccegea 31321 acgacgagec tgagcgggcc teeeggeegt tegacaagga eegegaegge tttgtgtteg 31381 gcgaggccgg tgcgctgatg ctcatcgaga cggaggagca cgccaaagcc cgtggcgcca 31441 ageogttgge cegattgetg ggtgeeggta teaectegga egeettteat atggtggege 31501 ccgcggccga tggtgttcgt gccggtaggg cgatgactcg ctcgctggag ctggccgggt 10 31561 tgtegeegge ggacategae eaegteaaeg egeaeggeae ggegaegeet ateggegaeg 31621 ccgcggaggc caacgccatc cgcgtcgccg gttgtgatca ggccgcggtg tacgcgccga 31681 agtetgeget gggecaeteg ateggegegg teggtgeget egagteggtg eteaeggtge 31741 tgacgetgeg egacggegte atecegeega eeetgaacta egagacaeee gateeegaga 31801 tegacettga egtegtegee ggegaacege getatggega ttacegetae geagteaaca 15 31861 actogttegg gtteggegge caeaatgtgg egettgeett egggegttae tgaageaega 31921 categogggt egegaggee gaggtggggg tececeeget tgegggggeg agteggaeeg 31981 atatggaagg aacgttcgca agaccaatga cggagctggt taccgggaaa gcctttccct 32041 acgtagtcgt caccggcatc gccatgacga ccgcgctcgc gaccgacgcg gagactacgt 32101 ggaagttgtt getggaeege caaageggga teegtaeget egatgaeeca ttegtegagg 20 32161 agttegacet gecagttege ateggeggae atetgettga ggaattegae eaceagetga 32221 cgcggatcga actgcgccgg atgggatacc tgcagcggat gtccaccgtg ctgagccggc 32281 gcctgtggga aaatgccggc tcacccgagg tggacaccaa tcgattgatg gtgtccatcg 32341 geaceggeet gggtteggee gaggaactgg tetteagtta egacgatatg egegetegeg 32401 gaatgaagge ggtetegeeg etgacegtge agaagtacat geecaaeggg geegeegegg 25 32461 cggtcgggtt ggaacggcac gccaaggccg gggtgatgac gccggtatcg gcgtgcgcat 32521 ccggcgccga ggccatcgcc cgtgcgtggc agcagattgt gctgggagag gccgatgccg 32581 ccatctgcgg cggcgtggag accaggatcg aagcggtgcc catcgccggg ttcgctcaga 32641 tgcgcatcgt gatgtccacc aacaacgacg accccgccgg tgcatgccgc ccattcgaca 32701 gggaccgcga cggctttgtg ttcggcgagg gcggcgccct tctgttgatc gagaccgagg 30 32761 agcacgecaa ggcacgtggc gccaacatcc tggcccggat catgggcgcc agcatcacct 32821 cegatggett ecaeatggtg geeceggace ecaaegggga aegegeeggg eatgegatta 32881 egegggegat teagetggeg ggeetegeee eeggegaeat egaecaegte aatgegeaeg 32941 ccaccggcac ccaggtcggc gacctggccg aaggcagggc catcaacaac gccttgggcg 33001 gcaaccgacc ggcggtgtac gccccaagt ctgccctcgg ccactcggtg ggcgcggtcg 35 33061 gegeggtega ategatettg aeggtgeteg egttgegega teaggtgate eegeegaeae

33121 tgaatctggt aaacctcgat cccgagatcg atttggacgt ggtggcgggt gaaccgcgac 33181 egggcaatta eeggtatgeg ateaataact egtteggatt eggeggeeae aaegtggeaa 33241 tegeettegg aeggtactaa acceeagegt taegegacag gagacetgeg atgacaatea 33301 tggccccga ggcggttggc gagtcgctcg accccgcga tccgctgttg cggctgagca 5 33361 acttettega egaeggeage gtggaattge tgeaegageg tgaeegetee ggagtgetgg 33421 ccgcggcggg caccgtcaac ggtgtgcgca ccatcgcgtt ctgcaccgac ggcaccgtga 33481 tgggcggcgc catgggcgtc gaggggtgca cgcacatcgt caacgcctac gacactgcca 33541 tegaagacea gagteecate gtgggeatet ggeatteggg tggtgeeegg etggetgaag 33601 gtgtgcgggc gctgcacgcg gtaggccagg tgttcgaagc catgatccgc gcgtccggct 10 33661 acatecegea gateteggtg gtegteggtt tegeegeegg eggegeegee taeggaeegg 33721 cgttgaccga cgtcgtcgtc atggcgccgg aaagccgggt gttcgtcacc gggcccgacg 33781 tggtgcgcag cgtcaccggc gaggacgtcg acatggcctc gctcggtggg ccggagaccc 33841 accacaagaa gtccggggtg tgccacatcg tcgccgacga cgaactcgat gcctacgacc 33901 gtgggcgccg gttggtcgga ttgttctgcc agcaggggca tttcgatcgc agcaaggccg 15 33961 aggceggtga caccgacate cacgegetge tgeeggaate etegegaegt geetaegaeg 34021 tgcgtccgat cgtgacggcg atcctcgatg cggacacacc gttcgacgag ttccaggcca 34081 attgggcgcc gtcgatggtg gtcgggctgg gtcggctgtc gggtcgcacg gtgggtgtac 34141 tggccaacaa cccgctacgc ctgggcggct gcctgaactc cgaaagcgca gagaaggcag 34201 egegtttegt geggetgtge gaegegtteg ggatteeget ggtggtggtg gtegatgtge 20 34261 cgggctatct geceggtgte gaceaggagt ggggtggegt ggtgegeegt ggegeeaagt 34321 tgctgcacgc gttcggcgag tgcaccgttc cgcgggtcac gctggtcacc cgaaagacct 34381 acggcggggc atacattgcg atgaactccc ggtcgttgaa cgcgaccaag gtgttcgcct 34441 ggccggacgc cgaggtcgcg gtgatgggcg ctaaggcggc cgtcggcatc ctgcacaaga 34501 agaagttggc egcegeteeg gageaegaac gegaageget geaegaecag ttggeegeeg 25 34561 agcatgagcg catcgccggc ggggtcgaca gtgcgctgga catcggtgtg gtcgacgaga 34621 agategacce ggegeatact egeageaage teacegagge getggegeag geteeggeae 34681 ggcgcggccg ccacaagaac atcccgctgt agttctgacc gcgagcagac gcagaatcgc 34741 acgegegagg teegegeegt gegattetge gtetgetege eagttateee eageggtgge 34801 tggtcaacgc gaggcgctcc tcgcatgctc ggacggtgcc taccgacgcg ctaacaattc 30 34861 tegagaagge eggeggtte gecaecaceg egcaattget eaeggteatg accegecaac 34921 agetegaegt ecaagtgaaa aacggeggee tegttegegt ttggtaeggg gtetaegegg 34981 cacaagagee ggacetgttg ggeegettgg eggetetega tgtgtteatg ggggggeaeg 35041 ccgtcgcgtg tctgggcacc gccgccgcgt tgtatggatt cgacacggaa aacaccgtcg 35101 ctatecatat getegateee ggagtaagga tgeggeecae ggteggtetg atggteeaee 35 35161 aacgcgtcgg tgcccggctc caacgggtgt caggtcgtct cgcgaccgcg cccgcatgga

35221 etgeegtgga ggtegeaega eagttgegee geegggge getggeeaec etegaegeeg 35281 cactaeggte aatgegetge getegeagtg aaattgaaaa egeegttget gageagegag 35341 geogeogagg categtegeg gegegegaac tettaceett egeogaegga egegeggaat 35401 eggecatgga gagegagget eggetegtea tgategacea egggetgeeg ttgeeegaac 5 35461 ttcaatacce gatacacggc cacggtggtg aaatgtggcg agtcgacttc gcctggcccg 35521 acatgcgtct cgcggccgaa tacgaaagca tcgagtggca cgcgggaccg gcggagatgc 35581 tgcgcgacaa gacacgctgg gccaagctcc aagagctcgg gtggacgatt gtcccgattg 35641 tegtegaega tgteagaege gaaceeggee geetggegge eegeategee egeeaceteg 35701 accgcgcgc tatggccggc tgaccgctgg tgagcagacg cagagtcgca ctgcggccgg 10 35761 cgcagtgcga ctctgcgtct gctcgcgctc aacggctgag gaactcctta gccacggcga 35821 ctacgcgctc gcgatcccgt ggcaccagac cgatccgggt ccggcggtcg aggatatcgt 35881 ccacatecag egececetea tgggteaceg egtattegaa eteegeeegg gteacgtega 35941 tgccgtcggc gaccggctcg gtgggccgct cacatgtggc ggcggcagcg acgttggccg 36001 ceteggeece gtacegegee accagegact egggeaatee ggegeeegat eegggggeeg 15 36061 geccagggtt egeeggtgeg eegateageg geaggttgeg agtgeggeae ttegeggete 36121 geaggtgteg eagegtgatg gegegattea geaeatecte tgeeatgtag eggtatteeg 36181 teagettgee geegaceaea etgateaege eegaeggega tteaaaaaea gegtggteae 36241 gcgaaacgtc ggcggtgcgg ccctggacac cagcaccgcc ggtgtcgatt agcggccgca 36301 atcccgcata ggcaccgatg acatecttgg tgccgaccgc cgtccccaat gcggtgttca 20 36361 ccgtatccag caggaacgtg atctcttccg aagacggttg tggcacatcg ggaatcgggc 36421 egggtgegte ttegteggte ageeegagat agateeggee eagetgeteg ggeatggega 36481 acacgaageg gtteagetea eeggggateg gaatggteag egeggeagte ggattggeaa 36541 acgacttcgc gtcgaagacc agatgtgtgc cgcggctggg gcgtagcctc agggacgggt 36601 cgateteace egeceacaeg eeegeeget tgatgaegge aegegeegae agegegaaeg 25 36661 actgeogggt gegeoggteg gteaacteea eegaagtgee ggtgacatte gaegegeeca 36721 cgtaagtgag gatgcgggcg ccgtgctggg ccgcggtgcg cgcgacggcc atgaccagcc 36781 gggcgtcgtc gatcaattgc ccgtcgtacg cgagcagacc accgtcgagg ccgtcccgcc 36841 gaacggtggg agcaatetee accaeccgtg acgccgggat teggegegat eggggeaacg 36901 tegeogeegg egtaceeget ageaceegea aagegtegee ggecaggaaa eeggeaegea 30 37021 geacgagatg aggagegttg egtgteatea ggatteegeg ttegaeggeg etgegeeggg 37081 cgatgcccac gttgccgctg gccagatagc gcagaccgcc gtgcaccaac ttcgagetcc 37141 ageggetggt geegaaegee agateatget ttteeaceaa ggeeaeegte agaeegeggg 37201 tggcagcatc taaggcaatg ccaacaccgg taatgccgcc gcctatcacg atgacgtcga 35 37261 gtgcgccacc gtcggccagt gcggtcaggt cggcggagcg acgcgccgcg ttgagtgcag

37321 ccgagtgggg catcagcaca aatatccgtt cagtgcgtgg gtaagttcgg tggccagcgc 37381 ggcggaatcg aggatcgaat cgacgatgtc cgcggactgg atggtcgact gggcgatcag 37441 caacaccatg gtcgccagtc gacgagcgtc gccggagcgc acactgcccg accgctgcgc 37501 cactgteage egggeggeea acceetegat eaggacetge tggetggtge egaggegete 5 37561 ggtgatgtac accetggcca gctccgagtg catgaccgac atgatcagat cgtcacccg 37621 caaceggteg gecacegega caatetgett taccaaeget teeeggtegt eeeegtegag 37681 gggcacctcc egcagcacgt eggegatatg getggteage atggaegeea tgategaceg 37741 ggtgtcegge cagegacggt atacggtegg geggetcacg ceegegegee gggegatete 37801 ggcaagtgte acceggteea egeegtaate gaegaegeag etegeegetg eeegeaggat 10 37861 acgaccaccg gtatccgcgc ggtcattact cattgacagc atgtgtaata ctgtaacgcg 37921 tgactcaccg cgaggaactc cttccaccga tgaaatggga cgcgtgggga gatcccgccg 37981 eggecaagee actttetgat ggegteeggt egttgetgaa geaggttgtg ggeetagegg 38041 acteggagea geoegaacte gacceegege aggtgeaget gegeeegtee gecetgtegg 38101 gggcagacca (SEQ ID NO: 24) 15

5.9. X-linked Inhibitor of Apoptosis Protein ("XIAP")

GenBank Accession # U45880:

1 gaaaaggtgg acaagtccta ttttcaagag aagatgactt ttaacagttt tgaaggatct 61 aaaacttgtg tacctgcaga catcaataag gaagaagaat ttgtagaaga gtttaataga 20 121 ttaaaaactt ttgctaattt teeaagtggt agteetgttt eageateaac aetggeaega 181 gcagggtttc tttatactgg tgaaggagat accgtgcggt gctttagttg tcatgcagct 241 gtagatagat ggcaatatgg agactcagca gttggaagac acaggaaagt atccccaaat 301 tgcagattta tcaacggett ttatettgaa aatagtgeea cgcagtetae aaattetggt 361 atccagaatg gtcagtacaa agttgaaaac tatctgggaa gcagagatca ttttgcctta 25 421 gacaggecat etgagacaca tgeagactat ettttgagaa etgggeaggt tgtagatata 481 teagacacca tataccegag gaaccetgee atgtattgtg aagaagetag attaaagtee 541 tttcagaact ggccagacta tgctcaccta accccaagag agttagcaag tgctggactc 601 tactacacag gtattggtga ccaagtgcag tgcttttgtt gtggtggaaa actgaaaaat 661 tgggaacett gtgategtge etggteagaa eaeaggegae aettteetaa ttgettettt 30 721 gttttgggcc ggaatettaa tattcgaagt gaatetgatg etgtgagtte tgataggaat 781 ttcccaaatt caacaaatct tccaagaaat ccatccatgg cagattatga agcacggatc 841 tttacttttg ggacatggat atactcagtt aacaaggagc agettgcaag agetggattt 901 tatgetttag gtgaaggtga taaagtaaag tgettteaet gtggaggagg getaactgat 961 tggaagccca gtgaagaccc ttgggaacaa catgctaaat ggtatccagg gtgcaaatat 35 1021 ctgttagaac agaagggaca agaatatata aacaatatte atttaactea tteacttgag

	1081	gagtgtetgg taagaactae tgagaaaaca eeateactaa etagaagaat tgatgatace
	1141	atetteeaaa ateetatggt acaagaaget atacgaatgg ggtteagttt caaggacatt
	1201	aagaaaataa tggaggaaaa aattcagata tctgggagca actataaatc acttgaggtt
5	1261	ctggttgcag atctagtgaa tgctcagaaa gacagtatgc aagatgagtc aagtcagact
	1321	tcattacaga aagagattag tactgaagag cagctaagge gcetgcaaga ggagaagett
	1381	tgcaaaatct gtatggatag aaatattgct atcgtttttg ttccttgtgg acatctagtc
	1441	acttgtaaac aatgtgctga agcagttgac aagtgtccca tgtgctacac agtcattact
	1501	ttcaagcaaa aaatttttat gtcttaatet aactetatag taggcatgtt atgttgttet
10	1561	tattaccetg attgaatgtg tgatgtgaac tgactttaag taatcaggat tgaattccat
	1621	tagcatttgc taccaagtag gaaaaaaaat gtacatggca gtgttttagt tggcaatata
	1681	atetttgaat ttettgattt tteagggtat tagetgtatt atecattitt tttaetgtta
	1741 1	tttaattgaa accatagact aagaataaga agcatcatac tataactgaa cacaatgtgt
	1801	atteatagta taetgattta atttetaagt gtaagtgaat taateatetg gattttttat
15	1861	tetttteaga taggettaae aaatggaget ttetgtatat aaatgtggag attagagtta
	1921	atctccccaa tcacataatt tgttttgtgt gaaaaaggaa taaattgttc catgctggtg
	1981	gaaagataga gattgttttt agaggttggt tgttgtgttt taggattctg tccattttct
	2041	tgtaaaggga taaacacgga cgtgtgcgaa atatgtttgt aaagtgattt gccattgttg
	2101	aaagcgtatt taatgataga atactatcga gccaacatgt actgacatgg aaagatgtca
20	2161	gagatatgtt aagtgtaaaa tgcaagtggc gggacactat gtatagtctg agccagatca
	2221 :	aagtatgtat gttgttaata tgcatagaac gagagatttg gaaagatata caccaaactg
	2281 1	ttaaatgtgg tttctcttcg gggagggggg gattggggga ggggccccag aggggtttta
	2341	gaggggeett tteaettteg aettttttea ttttgttetg tteggatttt ttataagtat
	2401	gtagaccccg aagggtttta tgggaactaa catcagtaac ctaacccccg tgactatcct
25	2461	gtgetettee tagggagetg tgttgtttee eacceaceae cettecetet gaacaaatge
	2521	ctgagtgctg gggcactttg (SEQ ID NO: 25)

General Target Region:

30

Internal Ribosome Entry Site (IRES) in 5' untranslated region:
5'AGCUCCUAUAACAAAAGUCUGUUGCUUGUGUUUCACAUUUUGGAUUU
CCUAAUAUAAUGUUCUCUUUUUAGAAAAAGGUGGACAAGUCCUAUUUUC
AAGAGAAG3' (SEQ ID NO: 26)

Initial Specific Target Motif:

RNP core binding site within XIAP IRES
5'GGAUUUCCUAAUAUAAUGUUCUCUUUUUU3' (SEQ ID NO: 27)

5.10. Survivin

GenBank Accession # NM 001168:

1 ccgccagatt tgaatcgcgg gacccgttgg cagaggtggc ggcggcggca tgggtgcccc 61 gacgttgccc cctgcctggc agccctttct caaggaccac cgcatctcta cattcaagaa 5 121 etggecette ttggaggget gegeetgeae eeeggagegg atggeegagg etggetteat 181 ccactgccc actgagaacg agccagactt ggcccagtgt ttcttctgct tcaaggagct 241 ggaaggetgg gagccagatg acgaccccat agaggaacat aaaaagcatt cgtccggttg 301 egettteett tetgteaaga ageagtttga agaattaace ettggtgaat ttttgaaact 361 ggacagagaa agagccaaga acaaaattgc aaaggaaacc aacaataaga agaaagaatt 10 421 tgaggaaact gcgaagaaag tgcgccgtgc catcgagcag ctggctgcca tggattgagg 481 cetetggeeg gagetgeetg gteecagagt ggetgeacea ettecagggt ttatteeetg 541 gtgccaccag cettectgtg ggcccettag caatgtetta ggaaaggaga teaacatttt 601 caaattagat gtttcaactg tgeteetgtt ttgtettgaa agtggeacea gaggtgette 661 tgcctgtgca gegggtgctg ctggtaacag tggctgcttc tetetetet tetetttttt 15 721 gggggctcat ttttgctgtt ttgattcccg ggcttaccag gtgagaagtg agggaggaag 781 aaggeagtgt ceettttget agagetgaea getttgtteg egtgggeaga geetteeaea 841 gtgaatgtgt etggacetea tgttgttgag getgteacag teetgagtgt ggaettggea 901 ggtgcctgtt gaatetgage tgeaggttee ttatetgtea eacetgtgee teeteagagg 20 1021 gtgatgagag aatggagaca gagteeetgg eteetetaet gtttaacaac atggetttet 1081 tattttgttt gaattgttaa tteacagaat ageacaaact acaattaaaa etaageacaa 1141 agccattcta agtcattggg gaaacggggt gaacttcagg tggatgagga gacagaatag 1201 agtgatagga agegtetgge agatactect tttgecaetg etgtgtgatt agacaggece 1261 agtgageege ggggeacatg etggeegete etceeteaga aaaaggeagt ggeetaaate 25 1321 ctttttaaat gacttggete gatgetgtgg gggactgget gggetgetge aggeegtgtg 1381 tetgteagee caacetteae atetgteaeg tteteeaeae gggggagaga egeagteege 1441 ccaggtcccc gctttctttg gaggcagcag ctcccgcagg gctgaagtct ggcgtaagat 1501 gatggatttg attegeette eteeetgtea tagagetgea gggtggattg ttaeagette 1561 getggaaace tetggaggte ateteggetg tteetgagaa ataaaaagee tgteattte (SEQ ID NO: 28) 30

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.

Various publications are cited herein, the disclosures of which are incorporated by reference in their entireties.

The invention can be illustrated by the following embodiments enumerated in the numbered paragraphs that follow:

- 1. A method for identifying a test compound that binds to a target RNA molecule, comprising the steps of (a) contacting a detectably labeled target RNA molecule with a library of solid support-attached test compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of solid support-attached test compounds so that a detectably labeled target RNA:support-attached test compound is formed; (b) separating the detectably labeled target RNA:support-attached test compound complex formed in step (a) from uncomplexed target RNA molecules and test compounds, and (c) determining a structure of the test compound of the RNA:support-attached test compound complex.
- 15 2. The method of paragraph 1 in which the target RNA molecule contains an HIV TAR element, internal ribosome entry site, "slippery site", instability element, or adenylate uridylate-rich element.
- 3. The method of paragraph 1 in which the RNA molecule is an element derived from the mRNA for is tumor necrosis factor alpha ("TNF-α"), granulocytemacrophage colony stimulating factor ("GM-CSF"), interleukin 2 ("IL-2"), interleukin 6 ("IL-6"), vascular endothelial growth factor ("VEGF"), human immunodeficiency virus I ("HIV-1"), hepatitis C virus ("HCV" genotypes 1a & 1b), ribonuclease P RNA ("RNaseP"), X-linked inhibitor of apoptosis protein ("XIAP"), or survivin.

- 4. The method of paragraph 1 in which the detectably labeled RNA is labeled with a fluorescent dye, phosphorescent dye, ultraviolet dye, infrared dye, visible dye, radiolabel, enzyme, spectroscopic colorimetric label, affinity tag, or nanoparticle.
- 5. The method of paragraph 1 in which the test compound is selected from a combinatorial library comprising peptoids; random bio-oligomers; diversomers such as hydantoins, benzodiazepines and dipeptides; vinylogous polypeptides; nonpeptidal peptidomimetics; oligocarbamates; peptidyl phosphonates; peptide nucleic acid libraries; antibody libraries; carbohydrate libraries; and small organic molecule libraries including, but not limited to, benzodiazepines, isoprenoids, thiazolidinones, metathiazanones, pyrrolidines, morpholino compounds, or diazepindiones.

6. The method of paragraph 1 in which screening a library of test compounds preferably comprises contacting the test compound with the target nucleic acid in the presence of an aqueous solution, the aqueous solution comprising a buffer and a combination of salts, preferably approximating or mimicking physiologic conditions

- 7. The method of paragraph 6 in which the aqueous solution optionally further comprises non-specific nucleic acids comprising DNA, yeast tRNA, salmon sperm DNA, homoribopolymers, and nonspecific RNA.
- 8. The method of paragraph 6 in which the aqueous solution further comprises a buffer, a combination of salts, and optionally, a detergent or a surfactant. In another embodiment, the aqueous solution further comprises a combination of salts, from about 0 mM to about 100 mM KCl, from about 0 mM to about 1 M NaCl, and from about 0 mM to about 200 mM MgCl₂. In a preferred embodiment, the combination of salts is about 100 mM KCl, 500 mM NaCl, and 10 mM MgCl₂. In another embodiment, the solution optionally comprises from about 0.01% to about 0.5% (w/v) of a detergent or a surfactant.
- 9. Any method that detects an altered physical property of a target nucleic acid complexed to a test compound attached to a solid support from the unbound target nucleic acid may be used for separation of the complexed and non-complexed target nucleic acids in the method of paragraph 1. Methods such as flow cytometry, affinity chromatography, manual batch mode separation, suspension of beads in electric fields, and microwave are used for the separation of the complexed and non-complexed target nucleic acids.
- RNA:test compound complex of paragraph 1 is determined, in part, by the type of library of test compounds. In a preferred embodiment wherein the combinatorial libraries are small organic molecule libraries, mass spectroscopy, NMR, or vibration spectroscopy are used to determine the structure of the test compounds. In an embodiment wherein the combinatorial libraries are peptide or peptide-based libraries, Edman degradation is used to determine the structure of the test compounds.

5

WHAT IS CLAIMED IS:

1. A method for identifying a test compound that binds to a target RNA molecule, comprising the steps of:

- (a) contacting a detectably labeled target RNA molecule with a library of solid support-attached test compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of solid support-attached test compounds so that a detectably labeled target RNA:support-attached test compound complex is formed;
- (b) separating the detectably labeled target RNA:support-attached test compound complex formed in step (a) from uncomplexed target RNA molecules and test compounds by flow cytometry; and
- (c) determining a structure of the substantially one type of test compound of the RNA:support-attached test compound complex by mass spectroscopy.

20

10

15

25

30

SEQUENCE LISTING

<110> PCT Therapeutics, Inc.

<120> METHODS FOR IDENTIFYING SMALL MOLECULES THAT BIND SPECIFIC RNA STRUCTURAL MOTIFS

<130> 10589-008-228

<140> To be assigned

<141> 2002-04-11

<150> 60/282,966

<151> 2001-04-11

<160> 28

<170> PatentIn version 3.0

<210> 1

<211> 21

<212> RNA

<213> Homo sapiens

<400> 1

auuuauuuau uuauuuauuu a

21

<210> 2

<211> 17

<212> RNA

<213> Homo sapiens

<400> 2

auuuauuuau uuauuua 17

<210>	3					
<211>	15					
<212>	RNA					
<213>	Homo sapiens					
<400> wauuuai	3 uuua uuuaw					15
<210>	4					
<211>	13					
<212>	RNA					
<213>	Homo sapiens					
<400>	4 auuu aww					13
wwaaaa	adda aww					
<210>	5					
<211>	13					
<212>	RNA					
<213>	Homo sapiens					
<400>	5 uaw www					13
<210>	6					
<211>	1643					
<212>	DNA					
<213>	Homo sapiens					
<400> gcagago	6 gacc agctaagagg	gagagaagca	actacagacc	ccccctgaaa	acaaccctca	60
gacgcca	acat cccctgacaa	gctgccaggc	aggttctctt	cctctcacat	actgacccac	120
ggctcca	accc tctctcccct	ggaaaggaca	ccatgagcac	tgaaagcatg	atccgggacg	180
tggagct	tggc cgaggaggcg	ctccccaaga	agacaggggg	gccccagggc	tccaggcggt	240
acttatt	cet careetette	teetteetga	teatageagg	caccaccaca	ctcttctacc	300

tgctgcactt tggagtgatc	ggcccccaga	gggaagagtt	ccccagggac	ctctctctaa	360
tcagccctct ggcccaggca	gtcagatcat	cttctcgaac	cccgagtgac	aagcctgtag	420
cccatgttgt agcaaaccct	caagctgagg	ggcagctcca	gtggctgaac	cgccgggcca	480
atgeeeteet ggeeaatgge	gtggagctga	gagataacca	gctggtggtg	ccatcagagg	540
goctgtacct catctactcc	caggtcctct	tcaagggcca	aggctgcccc	tccacccatg	600
tgctcctcac ccacaccatc	agccgcatcg	ccgtctccta	ccagaccaag	gtcaacctcc	660
tetetgecat caagagecee	tgccagaggg	agaccccaga	gggggctgag	gccaagccct	720
ggtatgagcc catctatctg	ggaggggtct	tccagctgga	gaagggtgac	cgactcagcg	780
ctgagatcaa tcggcccgac	tatctcgact	ttgccgagtc	tgggcaggtc	tactttggga	840
tcattgccct gtgaggagga	cgaacatcca	accttcccaa	acgectecce	tgccccaatc	900
cctttattac cccctccttc	agacaccctc	aacctcttct	ggctcaaaaa	gagaattggg	960
ggcttagggt cggaacccaa	gcttagaact	ttaagcaaca	agaccaccac	ttcgaaacct	1020
gggattcagg aatgtgtggc	ctgcacagtg	aattgctggc	aaccactaag	aattcaaact	1080
ggggcctcca gaactcactg	gggcctacag	ctttgatccc	tgacatctgg	aatctggaga	1140
ccagggagcc tttggttctg	gccagaatgc	tgcaggactt	gagaagacct	cacctagaaa	1200
ttgacacaag tggaccttag	gccttcctct	ctccagatgt	ttccagactt	ccttgagaca	1260
cggagcccag ccctccccat	ggagccagct	ccctctattt	atgtttgcac	ttgtgattat	1320
ttattattta tttattattt	atttatttac	agatgaatgt	atttatttgg	gagaccgggg	1380
tatcctgggg gacccaatgt	aggagctgcc	ttggctcaga	catgttttcc	gtgaaaacgg	1440
agctgaacaa taggctgttc	ccatgtagcc	ccctggcctc	tgtgccttct	tttgattatg	1500
ttttttaaaa tatttatctg	attaagttgt	ctaaacaatg	ctgatttggt	gaccaactgt	1560
cactcattgc tgagcctctg	ctccccaggg	gagttgtgtc	tgtaatcgcc	ctactattca	1620
gtggcgagaa ataaagtttg	ctt				1643

<210> 7

<211> 756

<212> DNA

<213> Homo sapiens

<400> 7
gctggaggat gtggctgcag agcctgctgc tcttgggcac tgtggcctgc agcatctctg 60
cacccgcccg ctcgcccagc cccagcacgc agccctggga gcatgtgaat gccatccagg 120
aggcccggcg tctcctgaac ctgagtagag acactgctgc tgagatgaat gaaacagtag 180

aagtcatctc	agaaatgttt	gacctccagg	agccgacctg	cctacagacc	cgcctggagc	240
tgtacaagca	gggcctgcgg	ggcagcctca	ccaagctcaa	gggccccttg	accatgatgg	300
ccagccacta	caagcagcac	tgccctccaa	ccccggaaac	ttcctgtgca	acccagacta	360
tcacctttga	aagtttcaaa	gagaacctga	aggactttct	gcttgtcatc	ccctttgact	420
gctgggagcc	agtccaggag	tgagaccggc	cagatgaggc	tggccaagcc	ggggagctgc	480
tctctcatga	aacaagagct	agaaactcag	gatggtcatc	ttggagggac	caaggggtgg	540
gccacagcca	tggtgggagt	ggcctggacc	tgccctgggc	cacactgacc	ctgatacagg	600
catggcagaa	gaatgggaat	attttatact	gacagaaatc	agtaatattt	atatatttat	660
atttttaaaa	tatttattta	tttatttatt	taagttcata	ttccatattt	attcaagatg	720
ttttaccgta	ataattatta	ttaaaaatat	gcttct			756

<210> 8

<211> 756

<212> DNA

<213> Homo sapiens

<400> 8 tctggaggat	gtggctgcag	agcctgctgc	tcttgggcac	tgtggcctgc	agcatctctg	60
cacccgcccg	ctcgcccagc	cccagcacgc	agccctggga	gcatgtgaat	gccatccagg	120
aggcccggcg	tctcctgaac	ctgagtagag	acactgctgc	tgagatgaat	gaaacagtag	180
aagtcatctc	agaaatgttt	gacctccagg	agccgacctg	cctacagacc	cgcctggagc	240
tgtacaagca	gggcctgcgg	ggcagcctca	ccaagctcaa	gggccccttg	accatgatgg	300
ccagccacta	caagcagcac	tgccctccaa	ccccggaaac	ttcctgtgca	acccagacta	360
tcacctttga	aagtttcaaa	gagaacctga	aggactttct	gcttgtcatc	ccctttgact	420
gctgggagcc	agtccaggag	tgagaccggc	cagatgaggc	tggccaagcc	ggggagctgc	480
tctctcatga	aacaagagct	agaaactcag	gatggtcatc	ttggagggac	caaggggtgg	540
gccacagcca	tggtgggagt	ggcctggacc	tgccctgggc	cacactgacc	ctgatacagg	600
catggcagaa	gaatgggaat	attttatact	gacagaaatc	agtaatattt	atatatttat	660
atttttaaaa	tatttattta	tttatttatt	taagttcata	ttccatattt	attcaagatg	720
ttttaccgta	ataattatta	ttaaaaatat	gcttct			756

<210> 9

<211> 825

```
<212> DNA
```

<213> Homo sapiens

```
<400> 9
atcactctct ttaatcacta ctcacattaa cctcaactcc tgccacaatg tacaggatgc
                                                                     60
aactcctgtc ttgcattgca ctaattcttg cacttgtcac aaacagtgca cctacttcaa
                                                                    120
gttcgacaaa gaaaacaaag aaaacacagc tacaactgga gcatttactg ctggatttac
                                                                    180
                                                                    240
agatgatttt gaatggaatt aataattaca agaatcccaa actcaccagg atgctcacat
                                                                    300
ttaaqtttta catqcccaaq aagqccacaq aactgaaaca gcttcagtgt ctagaagaag
aactcaaacc tetggaggaa gtgctgaatt tagctcaaag caaaaacttt cacttaagac
                                                                    360
ccaqqqactt aatcaqcaat atcaacqtaa tagttctgga actaaaggga tctgaaacaa
                                                                    420
                                                                    480
cattcatgtg tgaatatgca gatgagacag caaccattgt agaatttctg aacagatgga
ttaccttttg tcaaagcatc atctcaacac taacttgata attaagtgct tcccacttaa
                                                                    540
                                                                    600
aacatatcag gccttctatt tatttattta aatatttaaa ttttatattt attgttgaat
                                                                    660
gtatggttgc tacctattgt aactattatt cttaatctta aaactataaa tatggatctt
ttatgattct ttttgtaagc cctaggggct ctaaaaatggt ttaccttatt tatcccaaaa
                                                                    720
                                                                    780
atatttatta ttatgttgaa tgttaaatat agtatctatg tagattggtt agtaaaacta
                                                                     825
tttaataaat ttgataaata taaaaaaaaa aaacaaaaaa aaaaa
```

<210> 10

<211> 15

<212> RNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (1)..(1)

 $\langle 223 \rangle$ N = A, U, G, OR C

<220>

<221> misc_feature

<222> (15)..(15)

<223> N = A, U, G, OR C

<400> 10 nauuuauuua uuuan	15
<210> 11	
<211> 1125	
<212> DNA	
<213> Homo sapiens	
<400> 11 ttetgecete gageceaecg ggaacgaaag agaageteta tetegeetee aggageceag	60
ctatgaactc cttctccaca agcgccttcg gtccagttgc cttctccctg gggctgctcc	120
tggtgttgcc tgctgccttc cctgccccag tacccccagg agaagattcc aaagatgtag	180
ccgccccaca cagacagcca ctcacctctt cagaacgaat tgacaaacaa attcggtaca	240
teetegaegg cateteagee etgagaaagg agacatgtaa caagagtaac atgtgtgaaa	300
gcagcaaaga ggcactggca gaaaacaacc tgaaccttcc aaagatggct gaaaaagatg	360
gatgetteca atetggatte aatgaggaga ettgeetggt gaaaateate aetggtettt	420
tggagtttga ggtataccta gagtacctcc agaacagatt tgagagtagt gaggaacaag	480
ccagagctgt gcagatgagt acaaaagtcc tgatccagtt cctgcagaaa aaggcaaaga	540
atctagatge aataaccace cetgacecaa ceacaaatge cageetgetg acgaagetge	600
aggcacagaa ccagtggctg caggacatga caactcatct cattctgcgc agctttaagg	660
agttectgea gtecageetg agggetette ggeaaatgta geatgggeae eteagattgt	720
tgttgttaat gggcattcct tcttctggtc agaaacctgt ccactgggca cagaacttat	780
gttgttctct atggagaact aaaagtatga gcgttaggac actattttaa ttattttaa	840
tttattaata tttaaatatg tgaagctgag ttaatttatg taagtcatat ttatatttt	900
aagaagtacc acttgaaaca ttttatgtat tagttttgaa ataataatgg aaagtggcta	960
tgcagtttga atatcctttg tttcagagcc agatcatttc ttggaaagtg taggcttacc	1020
tcaaataaat ggctaactta tacatatttt taaagaaata tttatattgt atttatataa	1080
tgtataaatg gtttttatac caataaatgg cattttaaaa aattc	1125
<210> 12	
<211> 3166	
<212> DNA	
<213> Homo sapiens	

<400> 12						
aagagctcca	gagagaagtc	gaggaagaga	gagacggggt	cagagagagc	gcgcgggcgt	60
gcgagcagcg	aaagcgacag	gggcaaagtg	agtgacctgc	ttttgggggt	gaccgccgga	120
gcgcggcgtg	agccctcccc	cttgggatcc	cgcagctgac	cagtcgcgct	gacggacaga	180
cagacagaca	ccgcccccag	ccccagttac	cacctcctcc	ccggccggcg	gcggacagtg	240
gacgcggcgg	cgagccgcgg	geaggggeeg	gagecegece	ccggaggcgg	ggtggagggg	300
gtcggagctc	gcggcgtcgc	actgaaactt	ttcgtccaac	ttctgggctg	ttctcgcttc	360
ggaggagccg	tggtccgcgc	gggggaagcc	gagccgagcg	gagccgcgag	aagtgctagc	420
tegggeeggg	aggagccgca	gccggaggag	ggggaggagg	aagaagagaa	ggaagaggag	480
agggggccgc	agtggcgact	cggcgctcgg	aagccgggct	catggacggg	tgaggcggcg	540
gtgtgcgcag	acagtgctcc	agcgcgcgcg	ctccccagcc	ctggcccggc	ctcgggccgg	600
gaggaagagt	agctcgccga	ggcgccgagg	agagcgggcc	gccccacagc	ccgagccgga	660
gagggacgcg	ageegegege	cccggtcggg	cctccgaaac	catgaacttt	ctgctgtctt	720
gggtgcattg	gagccttgcc	ttgctgctct	acctccacca	tgccaagtgg	tcccaggctg	780
cacccatggc	agaaggagga	gggcagaatc	atcacgaagt	ggtgaagttc	atggatgtct	840
atcagcgcag	ctactgccat	ccaatcgaga	ccctggtgga	catcttccag	gagtaccctg	900
atgagatcga	gtacatcttc	aagccatcct	gtgtgcccct	gatgcgatgc	gggggctgct	960
ccaatgacga	gggcctggag	tgtgtgccca	ctgaggagtc	caacatcacc	atgcagatta	1020
tgcggatcaa	acctcaccaa	ggccagcaca	taggagagat	gagcttccta	cagcacaaca	1080
aatgtgaatg	cagaccaaag	aaagatagag	caagacaaga	aaatccctgt	gggccttgct	1140
cagagcggag	aaagcatttg	tttgtacaag	atccgcagac	gtgtaaatgt	tcctgcaaaa	1200
acacacactc	gcgttgcaag	gcgaggcagc	ttgagttaaa	cgaacgtact	tgcagatgtg	1260
acaagccgag	gcggtgagcc	gggcaggagg	aaggagcctc	cctcagggtt	tcgggaacca	1320
gatctctctc	caggaaagac	tgatacagaa	cgatcgatac	agaaaccacg	ctgccgccac	1380
cacaccatca	ccatcgacag	aacagtcctt	aatccagaaa	cctgaaatga	aggaagagga	1440
gactetgege	agagcacttt	gggtccggag	ggcgagactc	cggcggaagc	attcccgggc	1500
gggtgaccca	gcacggtccc	tcttggaatt	ggattcgcca	ttttatttt	cttgctgcta	1560
aatcaccgag	cccggaagat	tagagagttt	tatttctggg	attcctgtag	acacacccac	1620
ccacatacat	acatttatat	atatatatat	tatatatata	taaaaataaa	tatctctatt	1680
ttatatatat	aaaatatata	tattcttttt	ttaaattaac	agtgctaatg	ttattggtgt	1740
cttcactgga	tgtatttgac	tgctgtggac	ttgagttggg	aggggaatgt	tcccactcag	1800

atcctgacag	ggaagaggag	gagatgagag	actctggcat	gatcttttt	ttgtcccact	1860
tggtggggcc	agggtcctct	cccctgccca	agaatgtgca	aggccagggc	atgggggcaa	1920
atatgaccca	gttttgggaa	caccgacaaa	cccagccctg	gcgctgagcc	tctctacccc	1980
aggtcagacg	gacagaaaga	caaatcacag	gttccgggat	gaggacaccg	gctctgacca	2040
ggagtttggg	gagcttcagg	acattgctgt	gctttgggga	ttccctccac	atgctgcacg	2100
cgcatctcgc	ccccaggggc	actgcctgga	agattcagga	gcctgggcgg	ccttcgctta	2160
ctctcacctg	cttctgagtt	gcccaggagg	ccactggcag	atgtcccggc	gaagagaaga	2220
gacacattgt	tggaagaagc	agcccatgac	agcgcccctt	cctgggactc	gccctcatcc	2280
tcttcctgct	ccccttcctg	gggtgcagcc	taaaaggacc	tatgtcctca	caccattgaa	2340
accactagtt	ctgtccccc	aggaaacctg	gttgtgtgtg	tgtgagtggt	tgaccttcct	2400
ccatcccctg	gtccttccct	tcccttcccg	aggcacagag	agacagggca	ggatccacgt	2460
gcccattgtg	gaggcagaga	aaagagaaag	tgttttatat	acggtactta	tttaatatcc	2520
ctttttaatt	agaaattaga	acagttaatt	taattaaaga	gtagggtttt	ttttcagtat	2580
tcttggttaa	tatttaattt	caactattta	tgagatgtat	cttttgctct	ctcttgctct	2640
cttatttgta	ccggtttttg	tatataaaat	tcatgtttcc	aatctctctc	tccctgatcg	2700
gtgacagtca	ctagcttatc	ttgaacagat	atttaatttt	gctaacactc	agctctgccc	2760
tccccgatcc	cctggctccc	cagcacacat	tcctttgaaa	gagggtttca	atatacatct	2820
acatactata	tatatattgg	gcaacttgta	tttgtgtgta	tatatatata	tatatgttta	2880
tgtatatatg	tgatcctgaa	aaaataaaca	togotattot	gttttttata	tgttcaaacc	2940
aaacaagaaa	aaatagagaa	ttctacatac	taaatctctc	tcctttttta	attttaatat	3000
ttgttatcat	ttatttattg	gtgctactgt	ttatccgtaa	taattgtggg	gaaaagatat	3060
taacatcacg	tctttgtctc	tagtgcagtt	tttcgagata	ttccgtagta	catatttatt	3120
tttaaacaac	gacaaagaaa	tacagatata	tottaaaaaa	aaaaaa		3166

<210> 13

<211> 249

<212> RNA

<213> Homo sapiens

<400> 13 cegggeucau ggaeggguga ggeggeggug ugegeagaea gugeuceage gegeggeuc 60 cecageceug geeeggeeuc gggeeggag gaagaguage uegeegagge geegaggaga 120 gegggeegee ceacageeeg ageeggaga ggaegegage egeegegeece gguegggeeu 180

<210> 14

<211> 9181

<212> DNA

<213> Homo sapiens

<400> 14 ggtctctctg gttagaccag atctgagcct gggagctctc tggctaacta gggaacccac 60 tgcttaagcc tcaataaagc ttgccttgag tgcttcaagt agtgtgtgcc cgtctgttgt 120 gtgactctgg taactagaga tccctcagac ccttttagtc agtgtggaaa atctctagca 180 gtggcgcccg aacagggacc tgaaagcgaa agggaaacca gaggagctct ctcgacgcag 240 300 gactoggett gctgaagege gcacggcaag aggcgagggg cggcgactgg tgagtacgcc aaaaattttg actagcqqaq qctagaagga gagagatggg tgcgagagcg tcagtattaa 360 420 gcgggggaga attagatcga tgggaaaaaa ttcggttaag gccaggggga aagaaaaaat 480 ataaattaaa acatatagta tgggcaagca gggagctaga acgattcgca gttaatcctg 540 qcctgttaga aacatcagaa ggctgtagac aaatactggg acagctacaa ccatcccttc 600 agacaggatc agaagaactt agatcattat ataatacagt agcaaccctc tattgtgtgc 660 atcaaaggat agagataaaa gacaccaagg aagctttaga caagatagag gaagagcaaa 720 acaaaagtaa gaaaaaagca cagcaagcag cagctgacac aggacacagc aatcaggtca 780 gccaaaatta ccctatagtg cagaacatcc aggggcaaat ggtacatcag gccatatcac ctagaacttt aaatgcatgg gtaaaagtag tagaagagaa ggctttcagc ccagaagtga 840 900 tacccatgtt ttcagcatta tcagaaggag ccaccccaca agatttaaac accatgctaa acacagtggg gggacatcaa gcagccatgc aaatgttaaa agagaccatc aatgaggaag 960 1020 ctqcaqaatq qqataqaqtq catccaqtqc atgcaqgqcc tattqcacca ggccaqatqa 1080 qaqaaccaaq qqqaaqtqac ataqcaggaa ctactagtac ccttcaggaa caaataggat ggatgacaaa taatccacct atcccagtag gagaaattta taaaagatgg ataatcctgg 1140 gattaaataa aatagtaaga atgtatagcc ctaccagcat tctggacata agacaaggac 1200 caaaggaacc ctttagagac tatgtagacc ggttctataa aactctaaga gccgagcaag 1260 1320 cttcacagga ggtaaaaaat tggatgacag aaaccttgtt ggtccaaaat gcgaacccag 1380 attgtaagac tattttaaaa gcattgggac cagcggctac actagaagaa atgatgacag catgtcaggg agtaggagga cccggccata aggcaagagt tttggctgaa gcaatgagcc 1440

-9-

aagtaacaaa	ttcagctacc	ataatgatgc	agagaggcaa	ttttaggaac	caaagaaaga	1500
ttgttaagtg	tttcaattgt	ggcaaagaag	ggcacacagc	cagaaattgc	agggccccta	1560
ggaaaaaggg	ctgttggaaa	tgtggaaagg	aaggacacca	aatgaaagat	tgtactgaga	1620
gacaggctaa	ttttttaggg	aagatctggc	cttcctacaa	gggaaggcca	gggaattttc	1680
ttcagagcag	accagagcca	acagccccac	cagaagagag	cttcaggtct	ggggtagaga	1740
caacaactcc	ccctcagaag	caggagccga	tagacaagga	actgtatcct	ttaacttccc	1800
tcaggtcact	ctttggcaac	gacccctcgt	cacaataaag	ataggggggc	aactaaagga	1860
agctctatta	gatacaggag	cagatgatac	agtattagaa	gaaatgagtt	tgccaggaag	1920
atggaaacca	aaaatgatag	ggggaattgg	aggttttatc	aaagtaagac	agtatgatca	1980
gatactcata	gaaatctgtg	gacataaagc	tataggtaca	gtattagtag	gacctacacc	2040
tgtcaacata	attggaagaa	atctgttgac	tcagattggt	tgcactttaa	attttcccat	2100
tagccctatt	gagactgtac	cagtaaaatt	aaagccagga	atggatggcc	caaaagttaa	2160
acaatggcca	ttgacagaag	aaaaaataaa	agcattagta	gaaatttgta	cagagatgga	2220
aaaggaaggg	aaaatttcaa	aaattgggcc	tgaaaatcca	tacaatactc	cagtatttgc	2280
cataaagaaa	aaagacagta	ctaaatggag	aaaattagta	gatttcagag	aacttaataa	2340
gagaactcaa	gacttctggg	aagttcaatt	aggaatacca	catcccgcag	ggttaaaaaa	2400
gaaaaaatca	gtaacagtac	tggatgtggg	tgatgcatat	ttttcagttc	ccttagatga	2460
agacttcagg	aagtatactg	catttaccat	acctagtata	aacaatgaga	caccagggat	2520
tagatatcag	tacaatgtgc	ttccacaggg	atggaaagga	tcaccagcaa	tattccaaag	2580
tagcatgaca	aaaatcttag	agccttttag	aaaacaaaat	ccagacatag	ttatctatca	2640
atacatggat	gatttgtatg	taggatctga	cttagaaata	gggcagcata	gaacaaaaat	2700
agaggagctg	agacaacatc	tgttgaggtg	gggacttacc	acaccagaca	aaaaacatca	2760
gaaagaacct	ccattccttt	ggatgggtta	tgaactccat	cctgataaat	ggacagtaca	2820
gcctatagtg	ctgccagaaa	aagacagctg	gactgtcaat	gacatacaga	agttagtggg	2880
gaaattgaat	tgggcaagtc	agatttaccc	agggattaaa	gtaaggcaat	tatgtaaact	2940
ccttagagga	accaaagcac	taacagaagt	aataccacta	acagaagaag	cagagctaga	3000
actggcagaa	aacagagaga	ttctaaaaga	accagtacat	ggagtgtatt	atgacccatc	3060
aaaagactta	atagcagaaa	tacagaagca	ggggcaaggc	caatggacat	atcaaattta	3120
tcaagagcca	tttaaaaatc	tgaaaacagg	aaaatatgca	agaatgaggg	gtgcccacac	3180
taatgatgta	aaacaattaa	cagaggcagt	gcaaaaaata	accacagaaa	gcatagtaat	3240
atggggaaag	actcctaaat	ttaaactgcc	catacaaaag	gaaacatggg	aaacatggtg	3300
gacagagtat	tggcaagcca	cctggattcc	tgagtgggag	tttgttaata	cecetecett	3360

agtgaaatta	tggtaccagt	tagagaaaga	acccatagta	ggagcagaaa	ccttctatgt	3420
agatggggca	gctaacaggg	agactaaatt	aggaaaagca	ggatatgtta	ctaatagagg	3480
aagacaaaaa	gttgtcaccc	taactgacac	aacaaatcag	aagactgagt	tacaagcaat	3540
ttatctagct	ttgcaggatt	cgggattaga	agtaaacata	gtaacagact	cacaatatgc	3600
attaggaatc	attcaagcac	aaccagatca	aagtgaatca	gagttagtca	atcaaataat	3660
agagcagtta	ataaaaaagg	aaaaggtcta	tctggcatgg	gtaccagcac	acaaaggaat	3720
tggaggaaat	gaacaagtag	ataaattagt	cagtgctgga	atcaggaaag	tactattttt	3780
agatggaata	gataaggccc	aagatgaaca	tgagaaatat	cacagtaatt	ggagagcaat	3840
ggctagtgat	tttaacctgc	cacctgtagt	agcaaaagaa	atagtagcca	gctgtgataa	3900
atgtcagcta	aaaggagaag	ccatgcatgg	acaagtagac	tgtagtccag	gaatatggca	3960
actagattgt	acacatttag	aaggaaaagt	tatcctggta	gcagttcatg	tagccagtgg	4020
atatatagaa	gcagaagtta	ttccagcaga	aacagggcag	gaaacagcat	attttctttt	4080
aaaattagca	ggaagatggc	cagtaaaaac	aatacatact	gacaatggca	gcaatttcac	4140
cggtgctacg	gttagggccg	cctgttggtg	ggcgggaatc	aagcaggaat	ttggaattcc	4200
ctacaatccc	caaagtcaag	gagtagtaga	atctatgaat	aaagaattaa	agaaaattat	4260
aggacaggta	agagatcagg	ctgaacatct	taagacagca	gtacaaatgg	cagtattcat	4320
ccacaatttt	aaaagaaaag	gggggattgg	ggggtacagt	gcaggggaaa	gaatagtaga	4380
cataatagca	acagacatac	aaactaaaga	attacaaaaa	caaattacaa	aaattcaaaa	4440
ttttcgggtt	tattacaggg	acagcagaaa	tccactttgg	aaaggaccag	caaagctcct	4500
ctggaaaggt	gaaggggcag	tagtaataca	agataatagt	gacataaaag	tagtgccaag	4560
aagaaaagca	aagatcatta	gggattatgg	aaaacagatg	gcaggtgatg	attgtgtggc	4620
aagtagacag	gatgaggatt	agaacatgga	aaagtttagt	aaaacaccat	atgtatgttt	4680
cagggaaagc	taggggatgg	ttttatagac	atcactatga	aagccctcat	ccaagaataa	4740
gttcagaagt	acacatccca	ctaggggatg	ctagattggt	aataacaaca	tattggggtc	4800
tgcatacagg	agaaagagac	tggcatttgg	gtcagggagt	ctccatagaa	tggaggaaaa	4860
agagatatag	cacacaagta	gaccctgaac	tagcagacca	actaattcat	ctgtattact	4920
ttgactgttt	ttcagactct	gctataagaa	aggccttatt	aggacacata	gttagcccta	4980
ggtgtgaata	tcaagcagga	cataacaagg	taggatctct	acaatacttg	gcactagcag	5040
cattaataac	accaaaaaag	ataaagccac	ctttgcctag	tgttacgaaa	ctgacagagg	5100
atagatggaa	caageceeag	aagaccaagg	gccacagagg	gagccacaca	atgaatggac	5160
actagagett	ttagaggagc	ttaagaatga	agctgttaga	cattttccta	ggatttggct	5220
ccatggctta	gggcaacata	tctatgaaac	ttatggggat	acttgggcag	gagtggaagc	5280

cataataaga	attctgcaac	aactgctgtt	tatccatttt	cagaattggg	tgtcgacata	5340
gcagaatagg	cgttactcga	cagaggagag	caagaaatgg	agccagtaga	tcctagacta	5400
gagccctgga	agcatccagg	aagtcagcct	aaaactgctt	gtaccaattg	ctattgtaaa	5460
aagtgttgct	ttcattgcca	agtttgtttc	ataacaaaag	ccttaggcat	ctcctatggc	5520
aggaagaagc	ggagacagcg	acgaagagct	catcagaaca	gtcagactca	tcaagcttct	5580
ctatcaaagc	agtaagtagt	acatgtaatg	caacctatac	caatagtagc	aatagtagca	5640
ttagtagtag	caátaataat	agcaatagtt	gțgtggtcca	tagtaatcat	agaatatagg	5700
aaaatattaa	gacaaagaaa	aatagacagg	ttaattgata	gactaataga	aagagcagaa	5760
gacagtggca	atgagagtga	aggagaaata	tcagcacttg	tggagatggg	ggtggagatg	5820
gggcaccatg	ctccttggga	tgttgatgat	ctgtagtgct	acagaaaaat	tgtgggtcac	5880
agtctattat	ggggtacctg	tgtggaagga	agcaaccacc	actctatttt	gtgcatcaga	5940
tgctaaagca	tatgatacag	aggtacataa	tgtttgggcc	acacatgcct	gtgtacccac	6000
agaccccaac	ccacaagaag	tagtattggt	aaatgtgaca	gaaaatttta	acatgtggaa	6060
aaatgacatg	gtagaacaga	tgcatgagga	tataatcagt	ttatgggatc	aaagcctaaa	6120
gccatgtgta	aaattaaccc	cactctgtgt	tagtttaaag	tgcactgatt	tgaagaatga	6180
tactaatacc	aatagtagta	gcgggagaat	gataatggag	aaaggagaga	taaaaaactg	6240
ctctttcaat	atcagcacaa	gcataagagg	taaggtgcag	aaagaatatg	cattttttta	6300
taaacttgat	ataataccaa	tagataatga	tactaccagc	tataagttga	caagttgtaa	6360
cacctcagtc	attacacagg	cctgtccaaa	ggtatccttt	gagccaattc	ccatacatta	6420
ttgtgccccg	gctggttttg	cgattctaaa	atgtaataat	aagacgttca	atggaacagg	6480
accatgtaca	aatgtcagca	cagtacaatg	tacacatgga	attaggccag	tagtatcaac	6540
tcaactgctg	ttaaatggca	gtctagcaga	agaagaggta	gtaattagat	ctgtcaattt	6600
cacggacaat	gctaaaacca	taatagtaca	gctgaacaca	tctgtagaaa	ttaattgtac	6660
aagacccaac	aacaatacaa	gaaaaagaat	ccgtatccag	agaggaccag	ggagagcatt	6720
tgttacaata	ggaaaaatag	gaaatatgag	acaagcacat	tgtaacatta	gtagagcaaa	6780
atggaataac	actttaaaac	agatagctag	caaattaaga	gaacaatttg	gaaataataa	6840
aacaataatc	tttaagcaat	cctcaggagg	ggacccagaa	attgtaacgc	acagttttaa	6900
ttgtggaggg	gaatttttct	actgtaattc	aacacaactg	tttaatagta	cttggtttaa	6960
tagtacttgg	agtactgaag	ggtcaaataa	cactgaagga	agtgacacaa	tcaccctccc	7020
atgcagaata	aaacaaatta	taaacatgtg	gcagaaagta	ggaaaagcaa	tgtatgcccc	7080
tcccatcagt	ggacaaatta	gatgttcatc	aaatattaca	gggctgctat	taacaagaga	7140
tggtggtaat	agcaacaatg	agtccgagat	cttcagacct	ggaggaggag	atatgaggga	7200

caattggaga	agtgaattat	ataaatataa	agtagtaaaa	attgaaccat	taggagtagc	7260
acccaccaag	gcaaagagaa	gagtggtgca	gagagaaaaa	agagcagtgg	gaataggagc	7320
tttgttcctt	gggttcttgg	gagcagcagg	aagcactatg	ggcgcagcct	caatgacgct	7380
gacggtacag	gccagacaat	tattgtctgg	tatagtgcag	cagcagaaca	atttgctgag	7440
ggctattgag	gcgcaacagc	atctgttgca	actcacagtc	tggggcatca	agcagctcca	7500
ggcaagaatc	ctggctgtgg	aaagatacct	aaaggatcaa	cagctcctgg	ggatttgggg	7560
ttgctctgga	aaactcattt	gcaccactgc	tgtgccttgg	aatgctagtt	ggagtaataa	7620
atctctggaa	cagatttgga	atcacacgac	ctggatggag	tgggacagag	aaattaacaa	7680
ttacacaagc	ttaatacact	ccttaattga	agaatcgcaa	aaccagcaag	aaaagaatga	7740
acaagaatta	ttggaattag	ataaatgggc	aagtttgtgg	aattggttta	acataacaaa	7800
ttggctgtgg	tatataaaat	tattcataat	gatagtagga	ggcttggtag	gtttaagaat	7860
agtttttgct	gtactttcta	tagtgaatag	agttaggcag	ggatattcac	cattatcgtt	7920
tcagacccac	ctcccaaccc	cgaggggacc	cgacaggccc	gaaggaatag	aagaagaagg	7980
tggagagaga	gacagagaca	gatccattcg	attagtgaac	ggatccttgg	cacttatctg	8040
ggacgatctg	cggagcctgt	gcctcttcag	ctaccaccgc	ttgagagact	tactcttgat	8100
tgtaacgagg	attgtggaac	ttctgggacg	cagggggtgg	gaagccctca	aatattggtg	8160
gaatctccta	cagtattgga	gtcaggaact	aaagaatagt	gctgttagct	tgctcaatgc	8220
cacagccata	gcagtagctg	aggggacaga	tagggttata	gaagtagtac	aaggagcttg	8280
tagagctatt	cgccacatac	ctagaagaat	aagacagggc	ttggaaagga	ttttgctata	8340
agatgggtgg	caagtggtca	aaaagtagtg	tgattggatg	gcctactgta	agggaaagaa	8400
tgagacgagc	tgagccagca	gcagataggg	tgggagcagc	atctcgagac	ctggaaaaac	8460
atggagcaat	cacaagtagc	aatacagcag	ctaccaatgc	tgcttgtgcc	tggctagaag	8520
cacaagagga	ggaggaggtg	ggttttccag	tcacacctca	ggtaccttta	agaccaatga	8580
cttacaaggc	agctgtagat	cttagccact	ttttaaaaga	aaagggggga	ctggaagggc	8640
taattcactc	ccaaagaaga	caagatatcc	ttgatctgtg	gatctaccac	acacaaggct	8700
acttccctga	ttagcagaac	tacacaccag	ggccaggggt	cagatatcca	ctgacctttg	8760
gatggtgcta	caagctagta	ccagttgagc	cagataagat	agaagaggcc	aataaaggag	8820
agaacaccag	cttgttacac	cctgtgagcc	tgcatgggat	ggatgacccg	gagagagaag	8880
tgttagagtg	gaggtttgac	agccgcctag	catttcatca	cgtggcccga	gagctgcatc	8940
cggagtactt	caagaactgc	tgacatcgag	cttgctacaa	gggactttcc	gctggggact	9000
ttccagggag	gcgtggcctg	ggcgggactg	gggagtggcg	agccctcaga	tcctgcatat	9060
aagcagctgc	tttttgcctg	tactgggtct	ctctggttag	accagatctg	agcctgggag	9120

ctctctç	ggct aactagggaa	cccactgctt	aagcctcaat	aaagcttgcc	ttgagtgctt	9180
С						9181
<210>	15					
<211>	29					
<212>	RNA					
<213>	Homo sapiens					
<400> ggcagai	15 icug agccugggag	cucucugee				29
<210>	16					
<211>	52					
<212>	RNA					
<213>	Homo sapiens					
<400> uuuuuu	16 aggg aagaucuģgc	cuuccuacaa	gggaaggcca	gggaauuuuc	uu	52
<210>	17					
<211>	9413					
<212>	DNA					
<213>	Homo sapiens					
<400> ttggggg	17 gega cactecacea	tagatcactc	ccctgtgagg	aactactgtc	ttcacgcaga	60
aagcgto	ctag ccatggcgtt	agtatgagtg	ttgtgcagcc	tccaggaccc	cccctcccgg	120
gagagco	cata gtggtctgcg	gaaccggtga	gtacaccgga	attgccagga	cgaccgggtc	180
ctttctt	tgga tcaacccgct	caatgcctgg	agatttgggc	gtgcccccgc	gagactgcta	240
gccgagt	tagt gttgggtcgc	gaaaggcctt	gtggtactgc	ctgatagggt	gcttgcgagt	300
gccccg	ggag gtctcgtaga	ccgtgcatca	tgagcacaaa	tcctaaacct	caaagaaaaa	360
ccaaac	gtaa caccaaccgc	cgcccacagg	acgttaagtt	cccgggcggt	ggtcagatcg	420
ttggtg	gagt ttacctgttg	ccgcgcaggg	gccccaggtt	gggtgtgcgc	gcgactagga	480
agactto	cega geggtegeaa	cctcgtggaa	ggcgacaacc	tatccccaag	gctcgccggc	540
ccgagg	gtag gacctgggct	cagcccgggt	acccttggcc	cctctatggc	aacgagggta	600

tggggtgggc ag	ggatggctc	ctgtcacccc	gtggctctcg	gcctagttgg	ggccccacag	660
acccccggcg ta	aggtcgcgt	aatttgggta	aggtcatcga	tacccttaca	tgcggcttcg	720
ccgacctcat go	gggtacatt	ccgcttgtcg	gagacacact	agggggcgct	gccagggccc	780
tggcacatgg tg	gtccgggtt	ctggaggacg	gcgtgaacta	tgcaacaggg	aatctgcccg	840
gttgctcttt c	tctatcttc	ctcttagctt	tgctgtcttg	tttgaccatc	ccagcttccg	900
cttacgaggt go	cgcaacgtg	tccgggatat	accatgtcac	gaacgactgc	tccaactcaa.	960
gtattgtgta to	gaggcagcg	gacatgatca	tgcacacccc	cgggtgcgtg	ccctgcgtcc	1020
gggagagtaa t	ttctcccgt	tgctgggtag	cgctcactcc	cacgctcgcg	gccaggaaca	1080
gcagcatccc ca	accacgaca	atacgacgcc	acgtcgattt	gctcgttggg	geggetgete	1140
tctgttccgc ta	atgtacgtt	ggggatctct	gcggatccgt	ttttctcgtc	tcccagctgt	1200
tcaccttctc ac	cctcgccgg	tatgagacgg	tacaagattg	caattgctca	atctatcccg	1260
gccacgtatc ag	ggtcaccgc	atggcttggg	atatgatgat	gaactggtca	cctacaacgg	1320
ccctagtggt at	tcgcagcta	ctccggatcc	cacaagccgt	cgtggacatg	gtggcggggg	1380
cccactgggg to	gtcctagcg	ggccttgcct	actattccat	ggtggggaac	tgggctaagg	1440
tcttgattgt ga	atgctactc	tttgctggcg	ttgacgggca	cacccacgtg	acagggggaa	1500
gggtagcctc ca	agcacccag	agcctcgtgt	cctggctctc	acaaggccca	tctcagaaaa	1560
tccaactcgt ga	aacaccaac	ggcagctggc	acatcaacag	gaccgctctg	aattgcaatg	1620
actccctcca a	actgggttc	attgctgcgc	tgttctacgc	acacaggttc	aacgcgtccg	1680
ggtgcccaga g	cgcatggct	agctgccgcc	ccatcgatga	gttcgctcag	gggtggggtc	1740
ccatcactca to	gatatgcct	gagagctcgg	accagaggcc	atattgctgg	cactacgcgc	1800
ctcgaccgtg c	gggatcgtg	cctgcgtcgc	aggtgtgtgg	tccagtgtat	tgcttcactc	1860
cgagccctgt to	gtagtgggg	acgaccgatc	gtttcggcgc	tcctacgtat	agctgggggg	1920
agaatgagac a	gacgtgctg	ctacttagca	acacgcggcc	gcctcaaggc	aactggtttg	1980
ggtgcacgtg ga	atgaacagc	actgggttca	ccaagacgtg	cgggggccct	ccgtgcaaca	2040
tcgggggggt c	ggcaacaac	accttggtct	gccccacgga	ttgcttccgg	aagcaccccg	2100
aggccactta ca	acaaagtgt	ggctcggggc	cctggttgac	acccaggtgc	atggttgact	2160
acccatacag go	ctctggcac	tacccctgca	ctgttaactt	taccgtcttt	aaggtcagga	2220
tgtatgtggg g	ggcgtggag	cacaggctca	atgctgcatg	caattggact	cgaggagagc	2280
gctgtgactt g	gaggacagg	gataggtcag	aactcagccc	gctgctgctg	tctacaacag	2340
agtggcagat a	ctgccctgt	tccttcacca	ccctaccggc	cctgtccact	ggcttgatcc	2400
atcttcaccg ga	aacatcgtg	gacgtgcaat	acctgtacgg	tatagggtcg	gcagttgtct	2460
cctttgcaat ca	aaatgggag	tatatcctgt	tgcttttcct	tcttctggcg	gacgcgcgcg	2520

tatgtgaatg	cttgtggatg	atgctgctga	tagcccaggc	tgaggccacc	ttagagaacc	2580
tggtggtcct	caatgcggcg	tctgtggccg	gagcgcatgg	ccttctctcc	ttcctcgtgt	2640
tcttctgcgc	cgcctggtac	atcaaaggca	ggctggtccc	tggggcggca	tatgctctct	2700
atggcgtatg	gccgttgctc	ctgctcttgc	tggccttacc	accacgagct	tatgccatgg	2760
accgagagat	ggctgcatcg	tgcggaggcg	cggtttttgt	aggtctggta	ctcttgacct	2820
tgtcaccata	ctataaggtg	ttcctcgcta	ggctcatatg	gtggttacaa	tattttatca	2880
ccagagccga	ggcgcacttg	caagtgtggg	tocccctct	caatgttcgg	ggaggccgcg	2940
atgccatcat	cctccttaca	tgcgcggtcc	atccagagct	aatctttgac	atcaccaaac	3000
tcctgctcgc	catactcggt	ccgctcatgg	tgctccaggc	tggcataact	agagtgccgt	3060
actttgtacg	cgctcagggg	ctcatccgtg	catgcatgtt	agtgcggaag	gtcgctggag	3120
gccactatgt	ccaaatggcc	ttcatgaagc	tggccgcgct	gacaggtacg	tacgtatatg	3180
accatcttac	tccactgcgg	gattgggccc	acgcgggcct	acgagacctt	gcggtggcag	3240
tagagcccgt	cgtcttctct	gacatggaga	ctaaactcat	cacctggggg	gcagacaccg	3300
cggcgtgtgg	ggacatcatc	tcgggtctac	cagtctccgc	ccgaaggggg	aaggagatac	3360
ttctaggacc	ggccgatagt	tttggagagc	aggggtggcg	gctccttgcg	cctatcacgg	3420
cctattccca	acaaacgcgg	ggcctgcttg	gctgtatcat	cactagcctc	acaggtcggg	3480
acaagaacca	ggtcgatggg	gaggttcagg	tgctctccac	cgcaacgcaa	tctttcctgg	3540
cgacctgcgt	caatggcgtg	tgttggaccg	tctaccatgg	tgccggctcg	aagaccctgg	3600
ccggcccgaa	gggtccaatc	acccaaatgt	acaccaatgt	agaccaggac	ctcgtcggct	3660
ggccggcgcc	ccccggggcg	cgctccatga	caccgtgcac	ctgcggcagc	tcggaccttt	3720
acttggtcac	gaggcatgct	gatgtcgttc	cggtgcgccg	geggggegae	agcaggggga	3780
gcctgctttc	ccccaggccc	atctcctacc	tgaagggctc	ctcgggtgga	ccactgcttt	3840
gcccttcggg	gcacgttgta	ggcatcttcc	gggctgctgt	gtgcacccgg	ggggttgcga	3900
aggcggtgga	cttcataccc	gttgagtcta	tggaaactac	catgcggtct	ccggtcttca	3960
cagacaactc	atcccctccg	gccgtaccgc	aaacattcca	agtggcacat	ttacacgctc	4020
ccactggcag	cggcaagagc	accaaagtgc	cggctgcata	tgcagcccaa	gggtacaagg	4080
tgctcgtcct	aaacccgtcc	gttgccgcca	cattgggctt	tggagcgtat	atgtccaagg	4140
cacatggcat	cgagcctaac	atcagaactg	gggtaaggac	catcaccacg	ggcggcccca	4200
tcacgtactc	cacctattgc	aagttccttg	ccgacggtgg	atgctccggg	ggcgcctatg	4260
acatcataat	atgtgatgaa	tgccactcaa	ctgactcgac	taccatcttg	ggcatcggca	4320
cagtcctgga	tcaggcagag	acggctggag	cgcggctcgt	cgtgctcgcc	accgccacgc	4380
ctccgggatc	gatcaccgtg	ccacacccca	acatcgagga	agtggccctg	tccaacactg	4440

gagagattcc	cttctatggc	aaagccatcc	ccattgaggc	catcaagggg	ggaaggcatc	4500
tcatcttctg	ccattccaag	aagaagtgtg	acgagctcgc	cgcaaagctg	acaggcctcg	4560
gactcaatgc	tgtagcgtat	taccggggtc	tcgatgtgtc	cgtcataccg	actagcggag	4620
acgtcgttgt	cgtggcaaca	gacgctctaa	tgacgggttt	taccggcgac	tttgactcag	4680
tgatcgactg	caacacatgt	gtcacccaga	cagtcgattt	cagcttggat	cccaccttca	4740
ccattgagac	gacaacgctg	ccccaagacg	cggtgtcgcg	tgcgcagcgg	cgaggtagga	4800
ctggcagggg	caggagtggc	atctacaggt	ttgtgactcc	aggagaacgg	ccctcaggca	4860
tgttcgactc	ctcggtcctg	tgtgagtgct	atgacgcagg	ctgcgcttgg	tatgagctca	4920
cgcccgctga	gacctcggtt	aggttgcggg	cttacctaaa	tacaccaggg	ttgcccgtct	4980
gccaggacca	cctagagttc	tgggagagcg	tcttcacagg	cctcacccac	atagatgccc	5040
acttcttgtc	ccagaccaaa	caggcaggag	acaacctccc	ctacctggta	gcataccaag	5100
ccacagtgtg	cgccagggct	caggctccac	ctccatcgtg	ggaccaaatg	tggaagtgtc	5160
tcatacggct	aaagcccaca	ctgcatgggc	caacgcccct	gctgtacagg	ctaggagccg	5220
ttcaaaatga	ggtcactctc	acacacccca	taaccaaata	catcatggca	tgcatgtcgg	5280
ctgacctgga	ggtcgtcact	agcacctggg	tgctagtagg	cggagtcctt	gcggctctgg	5340
ccgcgtactg	cctgacgaca	ggcagcgtgg	tcattgtggg	caggatcatc	ttgtccggga	5400
ggccagctgt	tattcccgac	agggaagtcc	tctaccagga	gttcgatgag	atggaagagt	5460
gtgcttcaca	cctcccttac	atcgagcaag	gaatgcagct	cgccgagcaa	ttcaaacaga	5520
aggcgctcgg	attgctgcaa	acagccacca	agcaagcgga	ggctgctgct	cccgtggtgg	5580
agtccaagtg	gegagecett	gaggtcttct	gggcgaaaca	catgtggaac	ttcatcagcg	5640
ggatacagta	cttggcaggc	ctatccactc	tgcctggaaa	ccccgcgata	gcatcattga	5700
tggcttttac	agcctctatc	accagcccgc	tcaccaccca	aaataccctc	ctgtttaaca	5760
tcttgggggg	atgggtggct	gcccaactcg	ctccccccag	cgctgcttcg	gctttcgtgg	5820
gcgccggcat	tgccggtgcg	gccgttggca	gcataggtct	cgggaaggta	cttgtggaca	5880
ttctggcggg	ctatggggcg	ggggtggctg	gcgcactcgt	ggcctttaag	gtcatgagcg	5940
gcgagatgcc	ctccactgag	gatctggtta	atttactccc	tgccatcctt	tctcctggcg	6000
ccctggttgt	cggggtcgtg	tgcgcagcaa	tactgcgtcg	gcacgtgggc	ccgggagagg	6060
gggctgtgca	gtggatgaac	cggctgatag	cgttcgcttc	gcggggtaac	cacgtctccc	6120
ccacgcacta	tgtgcccgag	agcgacgccg	cggcgcgtgt	tactcagatc	ctctccagcc	6180
ttaccatcac	tcagttgctg	aagaggcttc	atcagtggat	taatgaggac	tgctccacgc	6240
cttgttccgg	ctcgtggcta	aaggatgttt	gggactggat	atgcacggtg	ttgagtgact	6300
tcaagacttg	gctccagtcc	aagctcctgc	cgcggttacc	gggactccct	ttcctgtcat	6360

gccaacgcgg	gtacaaggga	gtctggcggg	gggatggcat	catgcaaacc	acctgcccat	6420
gtggagcaca	gatcaccgga	catgtcaaaa	atggctccat	gaggattgtt	gggccaaaaa	6480
cctgcagcaa	cacgtgģcat	ggaacattcc	ccatcaacgc	atacaccacg	ggcccctgca	6540
cgccctcccc	agcgccgaac	tattccaggg	cgctgtggcg	ggtggctgct	gaggagtacg	6600
tggaggttac	gcgggtgggg	gatttccact	acgtgacggg	catgaccact	gacaacgtga	6660
aatgcccatg	ccaggttcca	gcccctgaat	ttttcacgga	ggtggatgga	gtacggttgc	6720
acaggtatgc	tccagtgtgc	aaacctctcc	tacgagagga	ggtcgtattc	caggtcgggc	6780
tcaaccagta	cctggtcggg	tcacagctcc	catgtgagcc	cgaaccggat	gtggcagtgc	6840
tcacttccat	gctcaccgac	ccctctcata	ttacagcaga	gacggccaag	cgtaggctgg	6900
ccagggggtc	tccccctcc	ttggccagct	cttcagctag	ccagttgtct	gcgccttctt	6960
tgaaggcgac	atgtactacc	catcatgact	ccccggacgc	tgacctcatc	gaggccaacc	7020
tcctgtggcg	gcaggagatg	ggcgggaaca	tcacccgtgt	ggagtcagaa	aataaggtgg	7080
taatcctgga	ctctttcgat	ccgattcggg	cggtggagga	tgagagggaa	atatccgtcc	7140
cggcggagat	cctgcgaaaa	cccaggaagt	tccccccagc	gttgcccata	tgggcacgcc	7200
cggattacaa	ccctccactg	ctagagtcct	ggaaggaccc	ggactacgtc	cccccggtgg	7260
tacacgggtg	ccctttgcca	tctaccaagg	ccccccaat	accacctcca	cggaggaaga	7320
ggacggttgt	cctgacagag	tccaccgtgt	cttctgcctt	ggcggagctc	gctactaaga	7380
cctttggcag	ctccgggtcg	tcggccgttg	acagcggcac	ggcgactggc	cctcccgatc	7440
aggcctccga	cgacggcgac	aaaggatccg	acgttgagtc	gtactcctcc	atgcccccc	7500
tcgagggaga	gccaggggac	cccgacctca	gcgacgggtc	ttggtctacc	gtgagcgggg	7560
aagctggtga	ggacgtcgtc	tgctgctcaa	tgtcctatac	atggacaggt	gccttgatca	7620
cgccatgcgc	tgcggaggag	agcaagttgc	ccatcaatcc	gttgagcaac	tctttgctgc	7680
gtcaccacag	tatggtctac	tccacaacat	ctcgcagcgc	aagtctgcgg	cagaagaagg	7740
tcacctttga	cagactgcaa	gtcctggacg	accactaccg	ggacgtgctc	aaggagatga	7800
aggcgaaggc	gtccacagtt	aaggctaggc	ttctatctat	agaggaggcc	tgcaaactga	7860
cgcccccaca	ttcggccaaa	tccaaatttg	gctacggggc	gaaggacgtc	cggagcctat	7920
ccagcagggc	cgtcaaccac	atccgctccg	tgtgggagga	cttgctggaa	gacactgaaa	7980
caccaattga	taccaccatc	atggcaaaaa	atgaggtttt	ctgcgtccaa	ccagagaaag	8040
gaggccgcaa	gccagctcgc	cttatcgtat	teccagaeet	gggggtacgt	gtatgcgaga	8100
agatggccct	ttacgacgtg	gtctccaccc	ttcctcaggc	cgtgatgggc	ccctcatacg	8160
gattccagta	ctctcctggg	cagegggteg	agttcctggt	gaatacctgg	aaatcaaaga	8220
aatgccctat	gggcttctca	tatgacaccc	gctgctttga	ctcaacggtc	actgagaatg	8280

acatccgtac	tgaggaatca	atttaccaat	gttgtgactt	ggcccccgaa	gccaggcagg	8340
ccataaggtc	gctcacagag	cggctttatg	tcgggggtcc	cctgactaat	tcgaaggggc	8400
agaactgcgg	ttatcgccgg	tgccgcgcaa	gtggcgtgct	gacgactage	tgcggcaaca	8460
ccctcacatg	ttacttgaag	gccactgcgg	cctgtcgagc	tgcaaagctc	caggactgca	8520
cgatgctcgt	gaacggagac	gaccttgtcg	ttatctgtga	gagtgcggga	acccaggagg	8580
atgcggcggc	cctacgagcc	ttcacggagg	ctatgactag	gtattccgcc	cccccgggg	8640
acccgcccca	accagaatac	gacttggagc	tgataacgtc	atgctcctcc	aatgtgtcgg	8700
tcgcgcacga	tgcatccggc	aaaagggtgt	actacctcac	ccgtgacccc	accacccccc	8760
tcgcacgggc	tgcgtgggag	acagttagac	acactccagt	caactcctgg	ctaggcaata	8820
tcatcatgta	tgcgcccacc	ctatgggcga	ggatgattct	gatgactcat	ttcttctcta	8880
tccttctagc	tcaggagcaa	cttgaaaaag	ccctggattg	tcagatctac	ggggcctgtt	8940
actccattga	gccacttgac	ctacctcaga	tcattgaacg	actccatggt	cttagcgcat	9000
tttcactcca	cagttactct	ccaggtgaga	tcaatagggt	ggcttcatgc	ctcaggaaac	9060
ttggggtacc	gcctttgcga	gtctggagac	atcgggccag	aagtgtccgc	gctaagctac	9120
tgtcccaggg	ggggagggct	gccacttgcg	gcaagtacct	cttcaactgg	gcagtaaaga	9180
ccaagcttaa	actcactcca	atcccggctg	cgtcccagct	agacttgtcc	ggctggttcg	9240
ttgctggtta	caacggggga	gacatatatc	acagcctgtc	tcgtgcccga	ccccgttggt	9300
tcatgttgtg	cctactccta	ctttctgtag	gggtaggcat	ctacctgctc	cccaaccggt	9360
gaacggggag	ctaaccactc	caggccaata	ggccattccc	tttttttt	ttc	9413

<210> 18

<211> 328

<212> RNA

<213> Homo sapiens

<400> 18 uugggggcga cacuccacca uagaucacuc cccugugagg aacuacuguc uucacgcaga 60 aagcgucuag ccauggcguu aguaugagug uugugcagcc uccaggaccc ccccucccgg 120 gagagccaua guggucugcg gaaccgguga guacaccgga auugccagga cgaccggguc 180 cuuucuugga ucaacccgcu caaugccugg agauuugggc gugcccccgc gagacugcua 240 gccgaguagu guugggucgc gaaaggccuu gugguacugc cugauagggu gcuugcgagu 300 gccccgggag gucucguaga ccgugcau

WO 02/083837	PCT/US02/11758

<210>	19						
<211>	14						
<212>	RNA						
<213>	Homo	sapiens					
<400> auuuggg	19	accc					14
auduggg	,cgu	9000					
<210>	20						
<211>	27						
<212>	RNA						
<213>	Homo	sapiens					
<400>	20	guugggucgc	assagg				27
geegage	agu	gaagggacge	gaaagge				2,
<210>	21						
<211>	340						
<212>	DNA						
<213>	Homo	sapiens					
<400>	21	ggaagctcat	cantagaacc	acqaqctqaq	tacatectat	cactccactc	60
		tgggaaggtc					120
		gaggtgagtt					180
		gacccgccc					240
		tcacggccag					300
		cccaattcag				J 333	340
gaooco							
<210>	22						
<211>	349						
<212>	DNA						
<213>	Homo	sapiens					
<400>	22						

gaggaaagtc	cgggctcaca	cagtctgaga	tgattgtagt	gttcgtgctt	gatgaaacaa	60
taaatcaagg	cattaatttg	acggcaatga	aatatcctaa	gtctttcgat	atggatagag	120
taatttgaaa	gtgccacagt	gacgtagctt	ttatagaaat	ataaaaggtg	gaacgcggta	180
aacccctcga	gtgagcaatc	caaatttggt	aggagcactt	gtttaacgga	attcaacgta	240
taaacgagac	acacttcgcg	aaatgaagtg	gtgtagacag	atggttatca	cctgagtacc	300
agtgtgacta	gtgcacgtga	tgagtacgat	ggaacagaac	geggettat		349
<210> 23		r				
<211> 377						
<212> DNA						
	annione					
<213> Homo	o sapiens					
<400> 23 gaagctgacc	agacagtcgc	cgcttcgtcg	tegteetett	cgggggagac	gggcggaggg	60
gaggaaagtc	cgggctccat	agggcagggt	gccaggtaac	gċctgggggg	gaaacccacg	120
accagtgcaa	cagagagcaa	accgccgatg	gcccgcgcaa	gcgggatcag	gtaagggtga	180
aagggtgegg	taagagcgca	ccgcgcggct	ggtaacagtc	cgtggcacgg	taaactccac	240
ccggagcaag	gccaaatagg	ggttcataag	gtacggcccg	tactgaaccc	gggtaggctg	300
cttgagccag	tgagcgattg	ctggcctaga	tgaatgactg	tccacgacag	aacccggctt	360
atcggtcagt	ttcacct					377
<210> 24						
<211> 381	1.0					
<211> 301.						
<213> Home	o sapiens					
<400> 24 ccaccggtta	cgatcttgcc	gaccatggcc	ccacaatagg	gccggggaga	cccggcgtca	60
gtggtgggcg	gcacggtcag	taacgtctgc	gcaacacggg	gttgactgac	gggcaatatc	120
ggctccatag	cgtcggccgc	ggatacagta	aaggagcatt	ctgtgacgga	aaagacgccc	180
gacgacgtct	tcaaacttgc	caaggacgag	aaggtcgaat	atgtcgacgt	ccggttctgt	240
gacctgcctg	gcatcatgca	gcacttcacg	attccggctt	cggcctttga	caagagcgtg	300

360 420

tttgacgacg gcttggcctt tgacggctcg tcgattcgcg ggttccagtc gatccacgaa

tecgacatgt tgettettee egateeegag aeggegegea tegaceegtt eegegeggee

aagacgctga	atatcaactt	ctttgtgcac	gacccgttca	ccctggagcc	gtactcccgc	480
gacccgcgca	acategeeeg	caaggccgag	aactacctga	tcagcactgg	catcgccgac	540
accgcatact	teggegeega	ggccgagttc	tacattttcg	attcggtgag	cttcgactcg	600
cgcgccaacg	gctccttcta	cgaggtggac	gccatctcgg	ggtggtggaa	caccggcgcg	660
gcgaccgagg	ccgacggcag	teccaacegg	ggctacaagg	tccgccacaa	gggcgggtat	720
ttcccagtgg	cccccaacga	ccaatacgtc	gacctgcgcg	acaagatgct	gaccaacctg	780
atcaactccg	gcttcatcct	ggagaagggc	caccacgagg	tgggcagcgg	cggacaggcc	840
gagatcaact	accagttcaa	ttcgctgctg	cacgccgccg	acgacatgca	gttgtacaag	900
tacatcatca	agaacaccgc	ctggcagaac	ggcaaaacgg	tcacgttcat	gcccaagccg	960
ctgttcggcg	acaacgggtc	cggcatgcac	tgtcatcagt	cgctgtggaa	ggacggggcc	1020
ccgctgatgt	acgacgagac	gggttatgcc	ggtctgtcgg	acacggcccg	tcattacatc	1080
ggcggcctgt	tacaccacgc	gccgtcgctg	ctggccttca	ccaacccgac	ggtgaactcc	1140
tacaagcggc	tggttcccgg	ttacgaggcc	ccgatcaacc	tggtctatag	ccagcgcaac	1200
cggtcggcat	gcgtgcgcat	cccgatcacc	ggcagcaacc	cgaaggccaa	gcggctggag	1260
ttccgaagcc	ccgactcgtc	gggcaacccg	tatctggcgt	tctcggccat	gctgatggca	1320
ggcctggacg	gtatcaagaa	caagatcgag	ccgcaggcgc	ccgtcgacaa	ggatctctac	1380
gagctgccgc	cggaagaggc	cgcgagtatc	ccgcagactc	cgacccagct	gtcagatgtg	1440
atcgaccgtc	tegaggeega	ccacgaatac	ctcaccgaag	gaggggtgtt	cacaaacgac	1500
ctgatcgaga	cgtggatcag	tttcaagcgc	gaaaacgaga	tcgagccggt	caacatccgg	1560
ccgcatccct	acgaattcgc	gctgtactac	gacgtttaag	gactcttcgc	agtccgggtg	1620
tagagggagc	ggcgtgtcgt	tgccagggcg	ggcgtcgagg	tttttcgatg	ggtgacggtg	1680
gccggcaacg	gcgcgccgac	caccgctgcg	aagagcccgt	ttaagaacgt	tcaaggacgt	1740
ttcagccggg	tgccacaacc	cgcttggcaa	tcatctcccg	accgccgagc	gggttgtctt	1800
tcacatgcgc	cgaaactcaa	gccacgtcgt	cgcccaggcg	tgtcgtcgcg	gccggttcag	1860
gttaagtgtc	ggggattcgt	cgtgcgggcg	ggcgtccacg	ctgaccaacg	gggcagtcaa	1920
ctcccgaaca	ctttgcgcac	taccgccttt	geeegeegeg	tcacccgtag	gtagttgtcc	1980
aggaattccc	caccgtcgtc	gtttcgccag	ccggccgcga	ccgcgaccgc	attgagctgg	2040
cgcccgggtc	ccggcagctg	gteggtggge	ttgccgcgca	ccaacaccag	cgcgttgcgg	2100
gcccgggtgg	cggtcagcca	ggcctgacgg	agcagctcca	cgtcggctgc	gggaaccaga	2160
teggeggeeg	cgatgacatc	cagggattgc	agcgtcgagg	tgttgtgcag	ggcgggaacc	2220
tggtgcgcat	gctgtagctg	cagcaactgc	acggtccatt	cgatgtcggc	cagtccgccg	2280
cggcccagtt	tggtgtgtgt	gttggggtcg	gcaccgcgcg	gcaaccgctc	ggactcgata	2340

cgggccttga	tgcggcgaat	ctcgcgcacc	gagtcagcgg	acacaccgtc	gggcggatac	2400
cgcgttttgt	cgaccatccg	taggaatcgc	tgacccaact	cggcatcgcc	ggcaaccgcg	2460
tgtgcgcgta	gcagggcctg	gatctcccat	ggctgtgccc	actgctcgta	gtatgcggcg	2520
taggacccca	gggtgcggac	cagcggaccg	ttgcggccct	cgggtcgcaa	attggcgtcg	2580
agctccagcg	gcggatcgac	gctgggtgtc	cccagcagcg	cccgaacccg	ctcggcgatc	2640
gatgtcgacc	atttcaccgc	ccgtgcatcg	tcgacgccgg	tggccggctc	acagacgaac	2700
atcacgtcgg	catccgaccc	gtagcccaac	tcggcaccac	ccagccgacc	catgccgatg	2760
accgcgatgg	ccgccggggc	gcgatcgtcg	tcgggaaggc	tggcccggat	catgacgtcc	2820
agcgcggcct	gcagcaccgc	cacccacacc	gacgtcaacg	cccggcacac	ctcggtgacc	2880
tcgagcaggc	cgagcaggtc	cgccgaaccg	atgcgggcca	gctctcgacg	acgcagcgtg	2940
cgcgcgccgg	cgatggcccg	ctccgggtcg	gggtagcggc	tcgccgaggc	gatcagcgcc	3000
cgagccacgg	cggcgggctc	ggtctcgagc	agcttcgggc	ccgcaggccc	gtcctcgtac	3060
tgctggatga	cccgcggcgc	gcgcatcaac	agatccggca	catacgccga	ggtacccaag	3120
acatgcatga	gccgcttggc	caccgcgggc	ttgtcccgca	gcgtggccag	gtaccagctt	3180
tcggtggcca	gcgcctcact	gagccgccgg	taggccagca	gtccgccgtc	gggatcgggg	3240
gcatacgaca	tccagtccag	cagcctgggc	agcagcaccg	actgcacccg	tccgcgccgg	3300
ccgctttgat	tgaccaacgc	cgacatgtgt	ttcaacgcgg	tetgeggtee	ctcgtagccc	3360
agcgcggcca	gccggcgccc	cgcggcctcc	aacgtcatgc	cgtgggcgat	ctccaacccg	3420
gtcgggccga	tegattecag	cagcggttga	tagaagagtt	tggtgtgtaa	cttcgacacc	3480
cgcacgttct	gcttcttgag	ttcctcccgc	agcaccccgg	ccgcatcgtt	teggeeateg	3540
ggccggatgt	gggccgcgcg	cgccagccag	cgcactgcct	cctcgtcttc	gggatcggga	3600
agcaggtggg	tgcgcttgag	ccgctgcaac	tgcagtcggt	gctcgagcag	cctgaggaac	3660
tcatacgacg	cggtcatgtt	cgccgcgtcc	tcacgcccga	tgtagccgcc	ttcgcccaac	3720
gccgccaatg	cgtccaccgt	ggacgccacc	cgtaacgact	cgtcgctacg	ggcatgaacc	3780
agctgcagta	gctgtacggc	gaactccacg	tegegeaate	cgccgctgcc	gagtttgagc	3840
tegeggeege	ggacatcggc	gggcaccagc	tgctccaccc	gccgccgcat	ggcctgcacc	3900
tcgaccacaa	agtcttcgcg	ctcgcaggct	cgccacacca	tcggcatcaa	ggcggtcagg	3960
taacgctcgc	caagttccgc	gtcgccaacg	actggccgtg	ctttcagcaa	cgcctgaaac	4020
tcccaggtct	tggcccagcg	ctggtagtag	gcgatgtgcg	actcgagcgt	acggaccagc	4080
tccccgttgc	gcccctccgg	acgcagggcg	gcgtccacct	cgaaaaaggc	cgccgaggcc	4140
acccgcatca	tctcgctggc	cacgcgcgcg	ttgcgcgggt	cggagcgctc	ggcaacgaat	4200
atgacatcga	cgtcgctgac	gtagttcagt	tegegegeae	cgcacttgcc	catcgcgatg	4260

accgccaggc	gcggtggcgg	gtgctcgccg	cacacgctcg	cctcggccac	gcgcagcgcc	4320
gccgccagag	cggcgtccgc	ggcgtccgcc	aggcgtgcgg	ccaccacggt	gaatggcagc	4380
accggttcgt	cctcgaccgt	cgcggccagg	tcgagagcgg	ccagcattag	cacgtagtcg	4440
cggtactggg	ttcgcaatcg	gtgcacgagc	gagcccggca	taccctccga	ttcctcgacg	4500
cactcgacga	acgaccgctg	cagctggtca	tgggacggca	gtgtgacctt	gccccgcagc	4560
aatttccagg	actgcggatg	ggcgaccagg	tgatcgccca	acgccagcga	cgagcccagc	4620
accgagaaca	gccgcccgcg	cagactgcgt	tcgcgcagca	gagccgcgtt	gagctcgtcc	4680
catccggtgt	ctggattctc	cgacagccgg	atcaaggcgc	gcagcgcggc	atcggcgtcc	4740
ggagcgcgtg	acagcgacca	cagcaggtcg	acgtgcgcct	gatectegtg	ccgatcccac	4800
cccagctgag	ccagacgctc	accagcaggg	gggtcaacta	atccgagccg	gccaacgctg	4860
ggcaacttcg	gccgctgcgt	ggcgagtttg	gtcacgacca	cgacggtagc	gcaaagcgcg	4920
tcggcgtcgg	atcaaccggt	agatctgggc	tacagcgaca	ggtaggtgcg	cagctcgtat	4980
ggcgtgacgt	ggctgcggta	gttcgcccac	tccgtgcgct	tgttgcgcaa	gaaaaagtca	5040
aaaacgtgct	cccccaaggc	ctccgcgacg	agttcggagg	cctccatggc	gegeagegea	5100
ctatccaaac	tggacggcaa	ttctcggtac	cccatcgctc	ggcgttcctc	gggtgtgagg	5160
tcccatacgt	tgtcctcggc	ctgcgggccc	agcacgtaac	ccttctctac	accccgcaat	5220
cccgcggcca	gcagcacggc	gaatgtcaga	tagggattgc	acgccgaatc	agggctgcgt	5280
acttcgaccc	gccgcgacga	ggtcttgtgc	ggcgtgtaca	teggcaeceg	cactagggcg	5340
gatcggttgg	cggcccccca	cgacgcggcc	gtgggcgctt	cgccgccctg	caccageege	5400
ttgtaagagt	tgacccactg	atttgtgacc	gcgctgatct	cgcaagcgtg	ctccaggatc	5460
ccggcgatga	acgatttacc	cacttccgac	agctgcagcg	gatcatcagc	gctgtggaac	5520
gcgttgacat	caccctcgaa	caggctcatg	tgggtgtgca	tegeegagee	cgggtgctgg	5580
ccgaatggct	tgggcatgaa	cgacgcccgg	gegeeetett	ccagcgcgac	ttctttgatg	5640
acgtagcgga	aggtcatcac	gttgtcagcc	atcgacagag	cgtcggcaaa	ccgcaggtcg	5700
atctcctgct	ggccgggtgc	gccttcgtga	tggctgaact	ccaccgagat	gcccatgaat	5760
tccagggcat	cgatcgcgtg	gcggcgaaag	ttcaaggcgg	agtcgtgcac	cgcttggtcg	5820
aaatagccgg	cgttgtcgac	cgggacgggc	accgacccgt	cctcgggtcc	gggcttgagc	5880
aggaagaact	cgatttcggg	atgcacgtag	caggagaagc	cgagttcgcc	ggccttcgtc	5940
agctgccgcc	gcaacacgtg	ccgcgggtcc	gcccacgacg	gcgagccgtc	cggcatggtg	6000
atgtcgcaaa	acatccgcgc	tgagtggtgg	tggccggaac	tggtggccca	gggcagcacc	6060
tggaaggtcg	acgggtccgg	gtgcgccacc	gtatcggatt	ccgagacccg	cgcaaagccc	6120
tcgatcgagg	atccgtcgaa	gccgatgcct	tcctcgaagg	cgccctcgag	ttcggctggg	6180

gcgatggcga	ccgacttgag	gaaaccgagc	acgtctgtga	accacageeg	gacgaagcgg	6240
atgtcgcgtt	cttccagggt	acgaagaacg	aattccttct	gtcggtccat	acctcgaaca	6300
gtatgcactg	tctgttaaaa	ccgtgttacc	gatgcccggc	cagaagcgtt	gcggggcggc	6360
ccgcaagggg	agtgcgcggt	gagttcaggg	cgcgcaccgc	agactcgtcg	gcggcaaggt	6420
cccgtcgaga	aaatagtgca	tcaccgcaga	gtccacacac	tggttgccat	cgaacaccgc	6480
agtgtgttgg	gtgccgtcga	aggtgatcag	cggtgcgccc	agctggcggg	ccaggtctac	6540
cccggactga	tacggagtgg	ccgggtcgtg	ggtggtggac	accacgacga	ccttgccagc	6600
cccggccggc	gccgcggggt	gcggcgtcga	cgttgccggc	accggccaca	gcgcgcacag	6660
atcgcggggg	gcggatccgg	tgaactgccc	gtagctaagg	aacggggcga	cctgacggat	6720
ccgttggtcg	gcggccaccc	aggccgctgg	atcggccggt	gtgggcgcat	cgacgcaccg	6780
gaccgcgttg	aacgcgtcct	ggtcgttgct	gtagtgcccg	tctgcatccc	ggccgtcata	6840
gtcgtcggca	agcaccagca	agtegeegge	gtcgctgccg	cgctgcagcc	ccagcagacc	6900
actggtcagg	tacttccagc	gctgagggct	gtacagcgcg	ttgatggtgc	ccgtcgtcgc	6960
gtcggcgtag	ctcaggccac	gtggatccga	cgtcttaccc	ggcttctgca	ccagcgggtc	7020
aaccagggcg	tggtagcggt	tgacccactg	ggccgagtcg	gtgcccagag	ggcaggccgg	7080
cgagcgggcg	cagtcggcgg	cgtagtcatt	gaaagcggtc	tgaaatcccg	ccatttggct	7140
gatgctttcc	tcgattgggc	taacggctgg	atcgatagcg	ccgtcgagga	ccatcgcccg	7200
cacatgagta	ccgaaccgtt	ccaggtaagc	ggtgcccaac	tcggtgccgt	agctgtatcc	7260
gaggtagttg	atctgatcgt	cacctaacgc	ttggcgaacc	atgtccatgt	cccgtgcgac	7320
ggacgcggta	ccgatattgg	ccaagaagct	gaagcccatc	cggtcaacac	agtcctgggc	7380
caactgccgg	tagacctgtt	cgacgtgggt	gacaccggcc	ggactgtagt	cggccatcgg	7440
atcgcgccgg	tacgcgtcga	actcggcgtc	ggtgcgacac	cgcaacgcag	gggtcgagtg	7500
gccgacccct	ctcgggtcga	agcccaccag	gtcgaagtgg	cggagaatgt	cggtgtcggc	7560
gatcgcgggt	gccatagcgg	cgaccatgtc	gaccgccgac	gccccgggtc	ccccaggatt	7620
gaccagcagt	gctccgaatc	gctgtcccgt	cgcggggacg	cggatcaccg	ccaacttcgc	7680
ttgtgtccca	ccgggttggt	cgtagtcgac	ggggacggac	accgtcgcgc	agcgtgcagt	7740
gcgaatttcg	ctggtgtcgg	cgatgaactc	gcggcagctg	ttccaactct	gttgcggcgc	7800
cacgaccggc	gcacccgggg	tttggccggc	gccgggttct	tcagtcgcgc	cggccaacgg	7860
gggcgctgct	aggggcagtc	cgccgagcag	caacccgaag	gacagcagcg	ccgagctcaa	7920
cggtctgcgg	cgccacatgg	ccgccatcgt	ctcaccggcg	aatacctgtg	acggcgcgaa	7980
atgatcacac	cttcgtttct	tegeceeget	agcacttggc	gccgctgggc	ggcgtggtgc	8040
cgccgattaa	atacgccgtc	acgtactcgt	caatgcaget	gtcgccctgg	aataccaccg	8100

tgtgctgggt	tccgtcgaag	gtcagcaacg	aaccgcgaag	ctggttcgcc	aggtcgaccc	8160	
cggccttgta	cggcgtcgcc	gggtcatggg	tggtggatac	caccaccgtc	ggcactaggc	8220	
cgggcgccga	gacggcatgg	ggctgacttg	tgggtggcac	cggccagaac	gcgcaggtgc	8280	
ccagcggcgc	atcaccggtg	aacttcccgt	agctcatgaa	cggtgcgatc	tecegggege	8340	
ggcggtcttc	gtcgatgacc	ttgtcgcgat	cggtaaccgg	gggctgatcg	acgcaattga	8400	
tcgccacccg	cgcgtcaccg	gaattgttgt	agcggccgtg	cgagtcccga	cgcatgtaca	8460	
tgtcggccag	agccagcagg	gtgtctccgc	gattgtcgac	cagctccgac	agcccgtcgg	8520	
tcaagtgttg	ccacagattc	ggtgagtaca	gcgccataat	ggtgcccacg	atggcgtcgc	8580	
tataactcag	cccgcgcgga	tccttcgtgc	gcgccggcct	gctgatcctc	gggttgtccg	8640	
ggtcgaccaa	cggatcgacc	aggctgtggt	agacctcgac	ggctttggcc	gggtcggcgc	8700	
ccagcgggca	gcccgcgttc	ttggcgcagt	cggcggcata	gttgttgaac	gcgtcctgga	8760	
agcccttggc	ctggcgcagc	tccgcctcga	tgggatcggc	attggggtcg	acggcaccgt	8820	
cgagaatcat	tgcccgcacc	cgctgcggaa	attcctcggc	atacgcggag	ccgatccggg	8880	
tgccgtacga	gtagcccagg	taggtcagct	tgtcgtcgcc	caacgccgcg	cgaatggcat	8940	
ccaggtcctt	ggcgacgttg	accgtcccga	catgggccag	aaagttcttg	cccatcttgt	9000	
ccacacagcg	accgacgaat	tgcttggtct	cgttctcgat	gtgcgccaca	ccctcccggc	9060	
tgtagtcaac	ctgcggctcg	gecegeagee	ggtcgttgtc	ggcatcggag	ttgcaccaga	9120	
tcgccggccg	ggacgacgcc	accccgcggg	ggtcgaaccc	aaccaggtcg	aacctttcgt	9180	
gcacccgctt	cggcaatgtc	tggaagacgc	ccaaggcggc	ctcgataccg	gattcgccgg	9240	
gtccaccggg	atttatgacc	agcgaaccga	tcttgtctcc	cgtcgccgga	aagcgaatca	9300	
gcgccagcgc	cgccacgtca	ccatcggggc	ggtcgtagtc	gaccggtaca	gcgagcttgc	9360	
cgcataacgc	geegeegggg	atctttactt	gcgggtttga	cgaccggcac	ggtgtccact	9420	
ccaccggctg	gcccagcttc	ggctccgcca	tacgagcgcg	tcccccgacc	acgcggatgc	9480	
agcccacaag	aaccaacgcc	acggcggcga	gegeggeeca	gatcaacagc	atgcgcgcga	9540	
tcttgtcgcg	gcgagacagc	ctcatgccca	caatgctgcc	agagcagacc	cgagatcctg	9600	
gccagcggcc	accgtcggcc	gactaaccgg	ccgctgccag	cagtcctgcc	atcgccgatg	9660	
gcgaactcgt	cggccatccc	ccatacgtcc	ggtaacagat	ccgggcaaga	caccgacccg	9720	
tcgaccggat	ccggcacggg	cgcgtcggcc	tcggcggtgc	acaactgcga	catcaggttg	9780	
gcgctggcac	cccgtccacg	ccggcatggt	gcaccttggc	categeeega	gggcgatccc	9840	
cgatgccgtc	caccccttcg	acgaacccat	ctcccacggc	ggtcgccggc	agcgacgcga	9900	
tgtggccgca	gatctccgag	agttcggccc	gcccgcccgg	cgacggcaac	ccgatgccgt	9960	
gcaagtgacg	atcgatgtga	ggttcaaggt	tcagcgcact	gctggcaagc	tttttccgaa	10020	

accgcggcct	cgccttgatc	tggagtcaga	acgcgtcacg	cagccggtca	aaggcgtaac	10080
ccatgctcga	gcaaacatgc	atgggctgag	tggacgtttc	cagacacagc	aactggcgtc	10140
caggccactg	agccgctgca	tgcgcgatgg	tatgccgatg	ggggccccgg	gcgcgtctga	10200
ggggaagaag	tggcagactg	tcagggtccg	acgaacccgg	ggaccctaac	gggccacgag	10260
gatcgacccg	accaccatta	gggacagtga	tgtctgagca	gactatctat	ggggccaata	10320
ccccggagg	ctccgggccg	cggaccaaga	tccgcaccca	ccacctacag	agatggaagg	10380
ccgacggcca	caagtgggcc	atgctgacgg	cctacgacta	ttcgacggcc	cggatcttcg.	10440
acgaggccgg	cateceggtg	ctgctggtcg	gtgattcggc	ggccaacgtc	gtgtacggct	10500
acgacaccac	cgtgccgatc	tccatcgacg	agctgatccc	gctggtccgt	ggcgtggtgc	10560
ggggtgcccc	gcacgcactg	gtcgtcgccg	acctgccgtt	cggcagctac	gaggcggggc	10620
ccaccgccgc	gttggccgcc	gccacccggt	tcctcaagga	cggcggcgca	catgcggtca	10680
agctcgaggg	cggtgagcgg	gtggccgagc	aaatcgcctg	tctgaccgcg	gcgggcatcc	10740
cggtgatggc	acacatcggc	ttcaccccgc	aaagcgtcaa	caccttgggc	ggcttccggg	10800
tgcagggccg	cggcgacgcc	gccgaacaaa	ccatcgccga	cgcgatcgcc	gtcgccgaag	10860
ccggagcgtt	tgccgtcgtg	atggagatgg	tgcccgccga	gttggccacc	cagatcaccg	10920
gcaagcttac	cattccgacg	gtcgggatcg	gegetgggee	caactgcgac	ggccaggtcc	10980
tggtatggca	ggacatggcc	gggttcagcg	gcgccaagac	cgcccgcttc	gtcaaacggt	11040
atgccgatgt	cggtggtgaa	ctacgccgtg	ctgcaatgca	atacgcccaa	gaggtggccg	11100
gcggggtatt	ccccgctgac	gaacacagtt	tctgaccaag	ccgaatcagc	ccgatgcgcg	11160
ggcattgcgg	tggcgccctg	gatgccgtcg	acgccggatt	geeggegegg	acgcgccagc	11220
gggacccatc	ggcgtcgcgt	tegeeggttg	agcccggggt	gagcccagac	attcgatgtg	11280
cccaacacca	tccgccacag	cccaattgat	gtggcactct	atgcatgcct	atccccgacc	11340
aaccaccacc	gcggcgacgc	atcatgaccg	gaggcgaaga	tgccagtaga	ggcgcccaga	11400
ccagcgcgcc	atctggaggt	cgagcgcaag	ttcgacgtga	tcgagtcgac	ggtgtcgccg	11460
tcgttcgagg	gcatcgccgc	ggtggttcgc	gtcgagcagt	cgccgaccca	gcagctcgac	11520
gcggtgtact	tcgacacacc	gtcgcacgac	ctggcgcgca	accagatcac	cttgcggcgc	11580
cgcaccggcg	gcgccgacgc	cggctggcat	ctgaagctgc	cggccggacc	cgacaagcgc	11640
accgagatgc	gagcaccgct	gtccgcatca	ggcgacgctg	tgccggccga	gttgttggat	11700
gtggtgctgg	cgatcgtccg	cgaccagccg	gttcagccgg	tcgcgcggat	cagcactcac	11760
cgcgaaagcc	agatcctgta	cggcgccggg	ggcgacgcgc	tggcggaatt	ctgcaacgac	11820
gacgtcaccg	catggtcggc	cggggcattc	cacgccgctg	gtgcagcgga	caacggccct	11880
gccgaacagc	agtggcgcga	atgggaactg	gaactggtca	ccacggatgg	gaccgccgat	11940

accaagctac	tggaccggct	agccaaccgg	ctgctcgatg	ccggtgccgc	acctgccggc	12000
cacggctcca	aactggcgcg	ggtgctcggt	gcgacctctc	ccggtgagct	gcccaacggc	12060
cegcageege	cggcggatcc	agtacaccgc	gcggtgtccg	agcaagtcga	gcagctgctg	12120
ctgtgggatc	gggccgtgcg	ggccgacgcc	tatgacgccg	tgcaccagat	gcgagtgacg	12180
acccgcaaga	tccgcagctt	gctgacggat	tcccaggagt	cgtttggcct	gaaggaaagt	12240
gcgtgggtca	tcgatgaact	gcgtgagctg	gccgatgtcc	tgggcgtagc	ccgggacgcc	12300
gaggtactcg	gtgaccgcta	ccagcgcgaa	ctggacgcgc	tggcgccgga	gctggtacgc	12360
ggccgggtgc	gcgagcgcct	ggtagacggg	gegeggegge	gataccagac	cgggctgcgg	12420
cgatcactga	tcgcattgcg	gtcgcagcgg	tacttccgtc	tgctcgacgc	tctagacgcg	12480
cttgtgtccg	aacgcgccca	tgccacttct	ggggaggaat	cggcaccggt	aaccatcgat	12540
gcggcctacc	ggcgagtccg	caaagccgca	aaagccgcaa	agaccgccgg	cgaccaggcg	12600
ggcgaccacc	accgcgacga	ggcattgcac	ctgatccgca	agcgcgcgaa	gcgattacgc	12660
tacaccgcgg	cggctactgg	ggcggacaat	gtgtcacaag	aagccaaggt	catccagacg	12720
ttgctaggcg	atcatcaaga	cagcgtggtc	agccgggaac	atctgatcca	gcaggccata	12780
gccgcgaaca	ccgccggcga	ggacaccttc	acctacggtc	tgctctacca	acaggaagcc	12840
gacttggccg	agcgctgccg	ggagcagctt	gaagccgcgc	tgcgcaaact	cgacaaggcg	12900
gtccgcaaag	cacgggattg	agcccgccag	gggcggacga	gttggcctgt	aagccggatt	12960
ctgttccgcg	ccgccacagc	caagctaacg	gcggcacggc	ggcgaccatc	catctggaca	13020
caccgttacc	gggtgcctcg	agcggcctac	ccgcaggctc	gggcgagcaa	ccctcaagcg	13080
catgagaga	cgcactttcg	gtgcggcctt	cttggccttg	cttcgggtgg	ggtttgccta	13140
gccaccccgg	tcacccggaa	tgctggtgcg	ctcttaccgc	accgtttcac	ccttgccacc	13200
acgaggatgg	cggtctgttt	tctgtggcac	tttcccgcga	gtcacctcgg	attgccgtta	13260
gcaatcaccc	tgctctgtga	agtccggact	ttcctcgact	cgacgctgaa	cctcgtgaat	13320
ccacacaagc	cctacgcgag	ccgcggccgc	ccagccaact	catccgcgac	gaccacgcta	13380
ccccgctggg	cggtgtcgcg	gccagtgtga	ccgctggacg	acacggctag	teggacagee	13440
gatccggcgg	gcagtcctta	tcgtggactg	gtgacacggt	gggacaaacg	cgtcgactcc	13500
ggcgactggg	acgccatcgc	tgccgaggtc	agcgagtacg	gtggcgcact	gctacctcgg	13560
ctgatcaccc	ccggcgaggc	cgcccggctg	cgcaagctgt	acgccgacga	cggcctgttt	13620
cgctcgacgg	tcgatatggc	atccaagcgg	tacggcgccg	ggcagtatcg	atatttccat	13680
gccccctatc	ccgagtgatc	gagcgtctca	agcaggcgct	gtatcccaaa	ctgctgccga	13740
tagcgcgcaa	ctggtgggcc	aaactgggcc	gggaggcgcc	ctggccagac	agccttgatg	13800
actggttggc	gagctgtcat	gccgccggcc	aaacccgatc	cacagegetg	atgttgaagt	13860

acggcaccaa	cgactggaac	gccctacacc	aggatctcta	cggcgagttg	gtgtttccgc	13920
tgcaggtggt	gatcaacctg	agcgatccgg	aaaccgacta	caccggcggc	gagttcctgc	13980
ttgtcgaaca	gaggaataga	gcccaatccc	ggggtaccgc	aatgcaactt	ccgcagggac	14040
atggttatgt	gttcacgacc	cgtgatcggc	cggtgcggac	tagccgtggc	tggtcggcat	14100
ctccagtgcg	ccatgggctt	tcgactattc	gttccggcga	acgctatgcc	atggggctga	14160
tctttcacga	cgcagcctga	ttgcacgcca	tctatagata	gcctgtctga	ttcaccaatc	14220
gcaccgacga	tgccccatcg	gcgtagaact	cggcgatgct	cagcgatgcc	agatcaagat	14280
gcaaccgata	taggacgccc	gacccggcat	ccaacgccag	ccgcaacaac	attttgatcg	14340
gcgtgacatg	tgacaccacc	agcaccgtcg	cgccttcgta	gccaacgatg	atccgatcac	14400
gtccccgccg	aacccgccgc	agcacgtcgt	cgaagctttc	cccacccggg	ggcgtgatgc	14460
tggtgtcctg	cagccagcga	cggtgcagct	cgggatcgcg	ttctgcggcc	tccgcgaacg	14520
tcagcccctc	ccaggcgccg	aagtcggtct	cgaccaggtc	gtcatcgacg	accacgtcca	14580
gggccagggc	tctggcggcg	gtcaccgcgg	tgtcgtaagc	ccgctgtagc	ggcgaggaga	14640
ccaccgcagc	gatecegeeg	cgccgcgcca	gatacccggc	cgccgcacca	acctggcgcc	14700
accccacctc	gttcaacccc	gggttgccgc	gccccgaata	gcggcgttgc	tccgacagct	14760
ccgtctgccc	gtggcgcaac	aaaagtagtc	gggtgggtgt	accgcgggcg	ccggtccagc	14820
cgggagatgt	cggtgactcg	gtcgcaacga	ttttggcagg	atecgcatec	gccgcagccg	14880
attgcgcggc	ggcgtccatc	gcgtcattgg	ccaaccggtc	tgcatacgtg	ttccgggcac	14940
gcggaaccca	ctcgtagttg	atcctgcgaa	actgggacgc	caacgcctga	gcctggacat	15000
agagcttcag	cagatccggg	tgcttgacct	tccaccgccc	ggacatctgc	tccaccacca	15060
gcttggagtc	catcagcacc	geggeetegg	tggcacctag	tttcacggcg	tcgtccaaac	15120
cggctatcag	gccgcggtat	teggegaegt	tgttcgtcgc	ccggccgatc	gcctgcttgg	15180
actcggccag	cacggtggag	tgatcggcgg	tccacaccac	cgcgccgtat	ccggccggtc	15240
cgggattgcc	ccgcgatccg	ccgtcggctt	cgatgacaac	tttcactcct	caaatccttc	15300
gagccgcaac	aagatcgctc	cgcattccgg	gcagcgcacc	acttcatcct	cggcggccgc	15360
cgagatctgg	gccagctcgc	cgcggccgat	ctcgatccgg	caggcaccac	atcgatgacc	15420
ttgcaaccgc	ceggeceetg	gecegeetee	ggcccgctgt	ctttcgtaga	gccccgcaag	15480
ctcgggatca	agtgtcgccg	tcagcatgtc	gcgttgcgat	gaatgttggt	gccgggcttg	15540
gtcgatttcg	gcaagtgcct	cgtccaaagc	ctgctgggcg	gcggccaggt	cggcccgcaa	15600
cgcttggagc	gcccgcgact	cggcggtctg	ttgagcctgc	agctcctcgc	ggcgttccag	15660
cacctccagc	agggcatctt	ccaaactggc	ttgacggcgt	tgcaagctgt	cgagctcgtg	15720
ctgcagatca	gccaattgct	tggcgtccgt	tgcacccgaa	gtgagcaacg	accggtcccg	15780

gtcgccacgc	ttacgcaccg	catcgatctc	cgactcaaaa	cgcgacacct	ggccgtccaa	15840
gtcctccgcc	gcgattcgca	gggccgccat	cctgtcgttg	gcggcgttgt	gctcggcctg	15900
cacctgctgg	taagccgccc	gctgcggcag	atgggtagcc	cgatgcgcga	tccgggtcag	15960
ctcagcatcc	agcttcgcca	attccagtag	cgaccgttgc	tgtgccactc	cggctttcat	16020
gcctgatctc	tcccagtttc	gtgatcgagg	ttccacgggt	cggtgcagat	ggtgcacaca	16080
cgcaccggca	gcgacgcgcc	gaaatgagac	cgcaacactt	cggcggcctg	gccgcaccac	16140
gggaattcgc	ttgcccaatg	cgcgacgtcg	atcagggcca	cttgcgaagc	tcggcaatgc	16200
tcgtcggctg	gatgatgtcg	cagatcggcc	gtaacgtacg	cttgcacgtc	cgcggcggcc	16260
acggtggcaa	gcaacgagtc	cccggcgccg	ccgcagaccg	cgacccgcga	caccagcagg	16320
tcgggatccc	cggcggcgcg	cacaccggtc	gcagtcggcg	gcaacgcggc	ctccagacgg	16380
gcaacaaagg	tgcgcagcgg	ttcgggtttt	ggcagtctgc	caatccggcc	taacccgctg	16440
ccgaccggcg	gtggtaccag	cgcgaagatg	tcgaatgccg	gctcctcgta	agggtgcgcg	16500
gcgcgcatcg	ccgccaacac	ctcggcgcgc	gctcgtgcgg	gtgcgacgac	ctcgacccgg	16560
tcctcggcca	cccgttcgac	ggtaccgacg	ctgcctatgg	cgggcgacgc	cccgtcgtgc	16620
gccaggaact	gcccggtacc	cgcgacactc	cagctgcagt	gcgagtagtc	gccgatatgg	16680
ccggcaccgg	cctcaaagac	egetgeeege	accgcctctg	agttctcgcg	cggcacatag	16740
atgacccact	tgtcgagatc	ggccgctccg	ggcaccgggt	cgagaacggc	gtcgacggtc	16800
agaccaacag	cgtgtgccag	cgcgtcggac	acacccggcg	acgccgagtc	ggcgttggtg	16860
tgcgcggtaa	acaacgagcg	accggtccgg	atcaggcggt	gcaccagcac	accetttggc	16920
gtgttggccg	cgaccgtatc	gaccccacgc	agtaacaacg	ggtggtgcac	caatagcagt	16980
ccggcctggg	gaacctggtc	caccaccgcc	ggcgtcgcgt	ccaccgcaac	ggtcaccgaa	17040
tccaccacgt	cgtcggggtc	gccgcacacc	agacccaccg	aatcccacga	ctgggcaagc	17100
cgcggcgggt	aggcctggtc	cagcacgtcg	atgacatcgg	ccagccgcac	actcatcggc	17160
gtcctccacg	ctttgcccac	tcggcgatcg	ccgccaccag	cacgggccac	teegggegea	17220
ccgccgcccg	caggtaccgc	gcgtccaggc	cgacgaaggt	gtcaccgcgg	cgcaccgcaa	17280
ttcctttgct	ctgcaaatag	tttcgtaatc	cgtcagcatc	ggcgatgttg	aacagtacga	17340
aaggggccgc	accatcgacc	accteggcae	ccaccgatct	cagtccggcc	accatctccg	17400
cgcgcagcgc	cgtcaaccgc	accgcatcgg	ctgcggcagc	ggcgaccgcc	cggggggcgc	17460
agcaagcagc	gatggccgtc	agttgcaatg	ttcccaacgg	ccagtgcgct	cgctgcacgg	17520
tcaaccgagc	cagcacgtct	ggcgagccga	gcgcgtagcc	cacccgcaat	ccggccagcg	17580
accacgtttt	cgtcaagcta	cggagcacca	gcacatcggg	cagcgagtca	tcggccaacg	17640
attgcggctc	gccgggaacc	caatcagcga	acgcctcgtc	gaccaccagg	atgcgtcccg	17700

gccggcgtaa	ctcgagcagc	tgctcgcgga	ggtgcagcac	cgaggtgggg	ttggtcggat	17760
tacccacgac	gacaaggtcg	gcgtcgtcag	gcacgtgcgc	ggtgtccagc	acgaacggcg	17820
gctttaggac	aacatggtgc	gccgtgattc	cggcagcgct	`caaggctatg	geeggetegg	17880
tgaacgcggg	cacgacgatt	gctgcccgca	ccggacttag	gttgtgcagc	aatgcgaatc	17940
cctccgccgc	cccgacgagc	gggagcactt	cgtcacgggt	tctgccatga	cgttcagcga	18000
ccgcgtcttg	cgcccggtgc	acatcgtcgg	tgctcggata	gcgggccagc	tccggcagca	18060
gcgcggcgag	ctgccggacc	aaccattccg	ggggccggtc	atggcggacg	ttgacggcga	18120
agtccagcac	gccgggcgcg	acatcctgat	caccgtggta	gegegeegeg	gcaagcgggc	18180
tagtgtctag	actcgccaca	gcgtcaaaca	gtagtgggcc	ggtgtgcggg	ccaagaatcc	18240
agagcaccgc	cgacgcgttg	tctacgcggc	gacaaccgcg	acatcacagg	cagctaacag	18300
ggcgtcggcg	gtgatgatcg	tcaggccaag	cagctgtgcc	tgggcgatga	gcacacggtc	18360
gaatggatgt	cgatggtgat	ccggaagctc	tgcggtgcgc	agtgtgtgcg	tggtcaactg	18420
acagcggcga	cgtgccgcag	cggcgcattc	gatcgggcac	gtaagaagcc	gatggctcgg	18480
gcggcgggag	cttgccgagg	cggtagttga	tegegatete	ccaggcactg	gcggccgaca	18540
agagaatgct	gttgcggacg	tcctgaacaa	tegecegtgt	ttcgttgacg	gcatccgcag	18600
ccaaacgtgg	gtgtcgatga	ggtagcgctt	caccggtgaa	agcgttcgag	cacgtcgtct	18660
gacaacggag	cgtccaaatc	gtcgggcacg	cggtacacgc	catggtcaat	gcctaaccgc	18720
cgagtctcat	gaggatgcag	cggcacaagc	tttgctaccg	gctcgccgcg	gcgggcaatc	18780
tcaacctctg	cccgccgtag	acgagccgca	gcagctcgga	caggcgtgtc	ttcgcctcgt	18840
gaacgccgac	ccgcttcgca	ggcgcccaga	ctttcgcgtc	gaccacctgc	tcaccaaact	18900
tcgcgatcat	cgcctgatac	cacagegeca	acgggtagcg	gtttgtccaa	ccgcttcgtc	18960
aacgacaatg	ggatcgtgac	cgacacgacc	gcgagcggga	ccaattgccc	gcctcctcca	19020
cgcgccgccg	cacggcgcgc	atcgtcgccg	ggtgaatcgc	cgcagctggt	gatcttcgat	19080
ctggacggca	cgctgaccga	ctcggcgcgc	ggaatcgtat	ccagcttccg	acacgcgctc	19140
aaccacatcg	gtgccccagt	acccgaaggc	gacctggcca	ctcacatcgt	cggcccgccc	19200
atgcatgaga	cgctgcgcgc	catggggctc	ggcgaatccg	ccgaggaggc	gatcgtagcc	19260
taccgggccg	actacagcgc	ccgcggttgg	gcgatgaaca	gcttgttcga	cgggatcggg	19320
ccgctgctgg	ccgacctgcg	caccgccggt	gtccggctgg	ccgtcgccac	ctccaaggca	19380
gagccgaccg	cacggcgaat	cctgcgccac	ttcggaattg	agcagcactt	cgaggtcatc	19440
gcgggcgcga	gcaccgatgg	ctcgcgaggc	agcaaggtcg	acgtgctggc	ccacgcgctc	19500
gcgcagctgc	ggccgctacc	cgagcggttg	gtgatggtcg	gcgaccgcag	ccacgacgtc	19560
gacggggcgg	ccgcgcacgg	catcgacacg	gtggtggtcg	gctggggcta	cgggcgcgcc	19620

gactttatcg	acaagacctc	caccaccgtc	gtgacgcatg	ccgccacgat	tgacgagctg	19680
agggaggcgc	taggtgtctg	atccgctgca	cgtcacattc	gtttgtacgg	gcaacatctg	19740
ccggtcgcca	atggccgaga	agatgttcgc	ccaacagctt	cgccaccgtg	gcctgggtga	19800
cgcggtgcga	gtgaccagtg	cgggcaccgg	gaactggcat	gtaggcagtt	gcgccgacga	19860
gegggeggee	ggggtgttgc	gagcccacgg	ctaccctacc	gaccaccggg	ccgcacaagt	19920
cggcaccgaa	cacctggcgg	cagacctgtt	ggtggccttg	gaccgcaacc	acgctcggct	19980
gttgcggcag	ctcggcgtcg	aagccgcccg	ggtacggatg	ctgcggtcat	tcgacccacg	20040
ctcgggaacc	catgcgctcg	atgtcgagga	tccctactat	ggcgatcact	ccgacttcga	20100
ggaggtcttc	gccgtcatcg	aatccgccct	gcccggcctg	cacgactggg	tcgacgaacg	20160
tctcgcgcgg	aacggaccga	gttgatgccc	cgcctagcgt	tcctgctgcg	gcccggctgg	20220
ctggcgttgg	ccctggtcgt	ggtcgcgttc	acctacctgt	gctttacggt	gctcgcgccg	20280
tggcagctgg	gcaagaatgc	caaaacgtca	cgagagaacc	agcagatcag	gtattccctc	20340
gacaccccgc	cggttccgct	gaaaaccctt	ctaccacagc	aggattcgtc	ggcgccggac	20400
gcgcagtggc	gccgggtgac	ggcaaccgga	cagtaccttc	cggacgtgca	ggtgctggcc	20460
cgactgcgcg	tggtggaggg	ggaccaggcg	tttgaggtgt	tggccccatt	cgtggtcgac	20520
ggcggaccaa	ccgtcctggt	cgaccgtgga	tacgtgcggc	cccaggtggg	ctcgcacgta	20580
ccaccgatcc	cccgcctgcc	ggtgcagacg	gtgaccatca	ccgcgcggct	gcgtgactcc	20640
gaaccgagcg	tggcgggcaa	agacccattc	gtcagagacg	gcttccagca	ggtgtattcg	20700
atcaataccg	gacaggtcgc	cgcgctgacc	ggagtccagc	tggctgggtc	ctatctgcag	20760
ttgatcgaag	accaacccgg	cgggctcggc	gtgctcggcg	ttccgcatct	agatcccggg	20820
ccgttcctgt	cctatggcat	ccaatggatc	tcgttcggca	ttctggcacc	gatcggcttg	20880
ggctatttcg	cctacgccga	gateegggeg	cgccgccggg	aaaaagcggg	gtcgccacca	20940
ccggacaagc	caatgacggt	cgagcagaaa	ctcgctgacc	gctacggccg	ccggcggtaa	21000
accaacatca	cggccaatac	cgcagccccc	gcctggacca	cccgcgacag	caccacggcg	21060
cggcgcagat	cggccacctt	gggcgaccgg	ccgtcgccca	aggtgggccg	gatctgcaac	21120
tcatggtggt	accgggtggg	cccacccagc	cgcacgtcaa	gcgccccagc	aaacgccgcc	21180
tcgacgacac	cggcgttggg	gctgggatgg	cgggcggcgt	cgcgccgcca	ggcccgtacc	21240
gcaccgcggg	gcgacccacc	gaccaccggc	gcgcagatca	ccaccagcac	cgccgtcgcc	21300
cgtgcgccaa	catagttggc	ccagtcatcc	aatcgtgctg	cagoccaaco	gaatcggaga	21360
taacgcggcg	agcggtagcc	gatcatcgag	tccagggtgt	tgatggcacg	atatcccagc	21420
accgcaggca	cgccgctcga	agcegeecae	agcagcggca	ccacctgggc	gtcggcggtg	21480
ttttcggcca	ccgactccag	cgcggcacgc	gtcaggcccg	ggccgcccag	ctgggccggg	21540

tcacgcccgc	acagcgacgg	cagcagccgt	cgcgccgcct	cgacatcgtc	gcgctccaac	21600
aggtccgata	tctggcggcc	ggtgcgcgcc	agcgaagttc	cgcccagcgc	tgcccaggtg	21660
gccgtcgcgg	tggccgccac	gggccaggac	ctgccgggta	gccgctgcag	tgccgcgccg	21720
agcaagccca	ccgcgccgac	cagcaggccg	acgtgtaccg	caccggcgac	ccggccgtca	21780
cggtaggtga	tctgctccag	cttggcggcc	gcccgaccga	acagggccac	cggatgacct	21840
cgtttggggt	cgccgaacac	gacgtcgagc	aggcagccga	tcagcacgcc	gacggccctg	21900
gtctgccagg	tcgatgcaaa	cactccggca	gcgtcgcaca	cgtggtctac	gctcagctat	21960
ttatgacctc	atacggcagc	tatccacgat	gaagcggcca	gctacccggg	ttgccgacct	22020
gttgaacccg	gcggcaatgt	tgttgccggc	agcgaatgtc	atcatgcagc	tggcagtgcc	22080
gggtgtcggg	tatggcgtgc	tggaaagccc	ggtggacagc	ggcaacgtct	acaagcatcc	22140
gttcaagcgg	gcccggacca	ccggcaccta	cctggcggtg	gcgaccatcg	ggacggaatc	22200
cgaccgagcg	ctgatccggg	gtgccgtgga	cgtcgcgcac	cggcaggttc	ggtcgacggc	22260
ctcgagccca	gtgtcctata	acgccttcga	cccgaagttg	cagctgtggg	tggcggcgtg	22320
tctgtaccgc	tacttcgtgg	accagcacga	gtttctgtac	ggcccactcg	aagatgccac	22380
cgccgacgcc	gtctaccaag	acgccaaacg	gttagggacc	acgctgcagg	tgccggaggg	22440
gatgtggccg	ccggaccggg	tcgcgttcga	cgagtactgg	aagcgctcgc	ttgatgggct	22500
gcagatcgac	gcgccggtgc	gcgagcatct	tcgcggggtg	gcctcggtag	cgtttctccc	22560
gtggccgttg	cgcgcggtgg	ccgggccgtt	caacctgttt	gcgacgacgg	gattcttggc	22620
accggagttc	cgcgcgatga	tgcagctgga	gtggtcacag	gcccagcagc	gtcgcttcga	22680
gtggttactt	tccgtgctac	ggttagccga	ccggctgatt	ccgcatcggg	cctggatctt	22740
cgtttaccag	ctttacttgt	gggacatgcg	gtttcgcgcc	cgacacggcc	gccgaatcgt	22800
ctgatagagc	ccggccgagt	gtgagcctga	cagcccgaca	ccggcggcgt	gtgtcgcgtc	22860
gccaggttca	cgctcggcga	tctagagccg	ccgaaaacct	acttctgggt	tgcctcccga	22920
atcaacgtgc	tgatctgctc	gagcagctca	cgcatatcgg	cgcgcatcgc	atccaccgcg	22980
gcatacaggt	cggccttggt	cgccggcagc	tggtccgacg	tcattggccg	caccggcggt	23040
gctgtctgtc	gcgccgcgct	gtcgctttga	aacccaggtc	gctcacccac	gaccacgaca	23100
ctgccatatc	eggegeeeeg	ccgacaacga	agcacagcta	gccggtgggc	gcggacggga	23160
tcgaaccgcc	gaccgctggt	gtgtaaaacc	agagctctac	cgctgagcta	cgcgcccatg	23220
accgccgcag	gctacacgcc	ttgcggccaa	gcacccaaaa	ccttaggccg	taagcgccgc	23280
cagagcgtcg	gtccacagcc	gctgatcgcg	aacttcaccc	ggctgcttca	tctcggcgaa	23340
ccgaatgatc	cctgaccgat	cgaccacaaa	ggtgccccgg	ttagcgatgc	cggcctgctc	23400
gttgaagacg	ccgtaggcct	gactgaccgc	gccgtgtggc	cagaagtccg	acaacagcgg	23460

aaacgtgaat	ccgctctgcg	tcgcccagat	cttgtgagtg	ggtggcgggc	ccaccgaaat	23520
cgctagcgcg	gcgctgtcgt	cgttctcaaa	ctcgggcagg	tgatcacgca	actggtccag	23580
ctcgccctgg	cagatgcccg	tgaacgccaa	cggaaagaac	accaacagca	cgttctttgc	23640
accccggtag	ccgcgcaggg	tgacaagctg	ctgattctgg	tegegeaacg	tgaagtcagg	23700
ggcggtggct	ccgacgttca	gcatcagcgc	ttgccagccc	gcgatttcgg	ctgtaccaat	23760
ctgctggcgc	tccagttgcc	cagattgacc	gacgaggtcg	gcatcagccc	agctgtgggc	23820
gccgcctcgg	caatctcggc	gggcaataca	tggccgggct	ggccggtctt	gggcgtcacc	23880
acccaaatca	caccgtcctc	ggcgagcggg	ccgatcgcat	ccatcagggt	gtccaccaaa	23940
tegeegtege	catcacgcca	ccacaacagg	acgacatcga	tgacctcgtc	ggtgtcttca	24000
tcgagcaact	ctcccccgca	cgcttcttcg	atggccgcgc	ggatgtcgtc	gtcggtgtct	24060
togtoccago	cccattcctg	gataagttgg	tctcgttgga	tgcccaattt	gcgggcgtag	24120
ttcgaggcgt	gateegeege	gaccaccgtg	gaacctcctt	cagtctccgc	gggccatgtg	24180
cacaccgtcg	cgatgggcat	tatcgtcgca	cagccagaac	cggtccaccc	gcccgcctca	24240
gaaggcggcc	acgcacattg	tcaatgcctt	tgtcttggtg	tcgttgagcc	gatcaacccg	24300
ccggttgaat	tccgctgtcg	acgcgtgcgc	accgatggca	tttgccaccg	cgcgggccgc	24360
gtcgacatat	gcgttgagcg	catcccccag	ttgcgcggac	agegeggege	tcagactgcc	24420
tgagaccgtc	gaggcactgt	tgttgagcgc	gtcgatggcc	ggaccttcgg	teggeeeggt	24480
gttgcggccc	tgattgaacg	cggccacgta	ggcgttcacc	ttgtcgatgg	cgtccttgct	24540
ggtggccgcc	agcgcgtcac	acgaggtgcg	aatcgccttg	gtcgtcagcg	attgttggcg	24600
ctgcgactcc	cggatgctcg	acgtcgccgc	cgaagccgac	accgacgcgg	acaccgacga	24660
gcggtaggcc	ggtgcgacgt	tggtgtcggg	catggccgta	ccgtcggtga	cagtggtaca	24720
tccgacgatc	cccatcagca	gcagcgcgat	gcagccgagc	gccagggcgc	ctcgcctggg	24780
gageteece	ccgtgcctgc	gaggcacggc	gegecateeg	atgagcacgg	catgtgaggt	24840
tacctggtcg	cagcgcgacc	gcgctggccg	tggtgtgtcg	cgcatccgca	gaaccgagcg	24900
gagtgcggct	atccgccgcc	gacgccggtg	cggcacgata	gggggacgac	catctaaaca	24960
gcacgcaagc	ggaagcccgc	cacctacagg	agtagtgcgt	tgaccaccga	tttcgcccgc	25020
cacgatctgg	cccaaaactc	aaacagcgca	agcgaacccg	accgagttcg	ggtgatccgc	25080
gagggtgtgg	cgtcgtattt	gcccgacatt	gatcccgagg	agacctcgga	gtggctggag	25140
tcctttgaca	cgctgctgca	acgctgcggc	ccgtcgcggg	cccgctacct	gatgttgcgg	25200
ctgctagagc	gggccggcga	gcagcgggtg	gccatcccgg	cattgacgtc	taccgactat	25260
gtcaacacca	tcccgaccga	gctggagccg	tggttccccg	gcgacgaaga	cgtcgaacgt	25320
cgttatcgag	cgtggatcag	atggaatgcg	gccatcatgg	tgcaccgtgc	gcaacgaccg	25380

ggtgtgggcg tgggtggcca	tatctcgacc	tacgcgtcgt	ccgcggcgct	ctatgaggtc	25440
ggtttcaacc acttcttccg	cggcaagtcg	cacccgggcg	gcggcgatca	ggtgttcatc	25500
cagggccacg cttccccggg	aatctacgcg	cgcgccttcc	tcgaagggcg	gttgaccgcc	25560
gagcaactcg acggattccg	ccaggaacac	agccatgtcg	gcggcgggtt	gccgtcctat	25620
ccgcacccgc ggctcatgcc	cgacttctgg	gaattcccca	ccgtgtcgat	gggtttgggc	25680
ccgctcaacg ccatctacca	ggcacggttc	aaccactatc	tgcatgaccg	cggtatcaaa	25740
gacacctccg atcaacacgt	gtggtgtttt	ttgggcgacg	gcgagatgga	cgaacccgag	25800
agccgtgggc tggcccacgt	cggcgcgctg	gaaggcttgg	acaacttgac	cttcgtgatc	25860
aactgcaatc tgcagcgact	cgacggcccg	gtgcgcggca	acggcaagat	catccaggag	25920
ctggagtcgt tcttccgcgg	tgccggctgg	aacgtcatca	aggtggtgtg	gggccgcgaa	25980
tgggatgccc tgctgcacgo	cgaccgcgac	ggtgcgctgg	tgaatttaat	gaatacaaca	26040
cccgatggcg attaccagad	ctataaggcc	aacgacggcg	gctacgtgcg	tgaccacttc	26100
ttcggccgcg acccacgcac	caaggcgctg	gtggagaaca	tgagcgacca	ggatatctgg	26160
aacctcaaac ggggcggcca	cgattaccgc	aaggtttacg	ccgcctaccg	cgccgccgtc	26220
gaccacaagg gacagccgad	ggtgatcctg	gccaagacca	tcaaaggcta	cgcgctgggc	26280
aagcatttcg aaggacgcaa	tgccacccac	cagatgaaaa	aactgaccct	ggaagacctt	26340
aaggagtttc gtgacacgca	geggatteeg	gtcagcgacg	cccagettga	agagaatccg	26400
tacctgccgc cctactacca	ceceggeete	aacgccccgg	agattcgtta	catgctcgac	26460
cggcgccggg ccctcggggg	ctttgttccc	gagcgcagga	ccaagtccaa	agcgctgacc	26520
ctgccgggtc gcgacatcta	cgcgccgctg	aaaaagggct	ctgggcacca	ggaggtggcc	26580
accaccatgg cgacggtgcg	cacgttcaaa	gaagtgttgc	gcgacaagca	gatcgggccg	26640
cggatagtcc cgatcattcc	: cgacgaggcc	cgcaccttcg	ggatggactc	ctggttcccg	26700
tcgctaaaga tctataacco	caatggccag	ctgtataccg	cggttgacgc	cgacctgatg	26760
ctggcctaca aggagagcga	agtegggeag	atcctgcacg	agggcatcaa	cgaagccggg	26820
teggtggget egtteatege	ggccggcacc	tcgtatgcga	cgcacaacga	accgatgatc	26880
cccatttaca tettetacte	gatgttcggc	ttccagcgca	ccggcgatag	cttctgggcc	26940
geggeegace agatggeteg	agggttcgtg	ctcggggcca	ccgccgggcg	caccaccctg	27000
accggtgagg gcctgcaaca	cgccgacggt	cactcgttgc	tgctggccgc	caccaacccg	27060
gcggtggttg cctacgacco	ggccttcgcc	tacgaaatcg	cctacatcgt	ggaaagcgga	27120
ctggccagga tgtgcgggga	gaacccggag	aacatcttct	tctacatcac	cgtctacaac	27180
gagccgtacg tgcagccgcd	ggagccggag	aacttcgatc	ccgagggcgt	gctgcggggt	27240
atctaccgct atcacgcgg	: caccgagcaa	cgcaccaaca	aggcgcagat	cctggcctcc	27300

ggggtagcga	tgcccgcggc	gctgcgggca	gcacagatgc	tggccgccga	gtgggatgtc	27360
gccgccgacg	tgtggtcggt	gaccagttgg	ggcgagctaa	accgcgacgg	ggtggccatc	27420
gagaccgaga	agctccgcca	ccccgatcgg	ccggcgggcg	tgccctacgt	gacgagagcg	27480
ctggagaatg	ctcggggccc	ggtgatcgcg	gtgtcggact	ggatgcgcgc	ggtccccgag	27540
cagatccgac	cgtgggtgcc	gggcacatac	ctcacgttgg	gcaccgacgg	gttcggcttt	27600
tccgacactc	ggcccgccgc	togoogotac	ttcaacaccg	acgccgaatc	ccaggtggtc	27660
gcggttttgg	aggcgttggc	gggcgacggc	gagatcgacc	catcggtgcc	ggtcgcggcc	27720
gcccgccagt	accggatcga	cgacgtggcg	getgegeeeg	agcagaccac	ggatcccggt	27780
cccggggcct	aacgccggcg	agccgaccgc	ctttggccga	atcttccaga	aatctggcgt	27840
agcttttagg	agtgaacgac	aatcagttgg	ctccagttgc	ccgcccgagg	tegeegeteg	27900
aactgctgga	cactgtgccc	gattcgctgc	tgcggcggtt	gaagcagtac	tegggeegge	27960
tggccaccga	ggcagtttcg	gccatgcaag	aacggttgcc	gttcttcgcc	gacctagaag	28020
cgtcccagcg	cgccagcgtg	gcgctggtgg	tgcagacggc	cgtggtcaac	ttcgtcgaat	28080
ggatgcacga	cccgcacagt	gacgtcggct	ataccgcgca	ggcattcgag	ctggtgcccc	28140
aggatctgac	gcgacggatc	gcgctgcgcc	agaccgtgga	catggtgcgg	gtcaccatgg	28200
agttcttcga	agaagtcgtg	cccctgctcg	cccgttccga	agagcagttg	accgccctca	28260
cggtgggcat	tttgaaatac	agccgcgacc	tggcattcac	cgccgccacg	gcctacgccg	28320
atgcggccga	ggcacgaggc	acctgggaca	gccggatgga	ggccagcgtg	gtggacgcgg	28380
tggtacgcgg	cgacaccggt	cccgagctgc	tgtcccgggc	ggccgcgctg	aattgggaca	28440
ccaccgcgcc	ggcgaccgta	ctggtgggaa	ctccggcgcc	cggtccaaat	ggctccaaca	28500
gcgacggcga	cagcgagcgg	gccagccagg	atgtccgcga	caccgcggct	cgccacggcc	28560
gegetgeget	gaccgacgtg	cacggcacct	ggctggtggc	gatcgtctcc	ggccagctgt	28620
cgccaaccga	gaagttcctc	aaagacctgc	tggcagcatt	cgccgacgcc	ccggtggtca	28680
tcggccccac	ggcgcccatg	ctgaccgcgg	cgcaccgcag	cgctagcgag	gcgatctccg	28740
ggatgaacgc	cgtcgccggc	tggcgcggag	cgccgcggcc	cgtgctggct	agggaacttt	28800
tgcccgaacg	cgccctgatg	ggcgacgcct	cggcgatcgt	ggccctgcat	accgacgtga	28860
tgcggcccct	agccgatgcc	ggaccgacgc	tcatcgagac	gctagacgca	tatctggatt	28920
gtggcggcgc	gattgaagct	tgtgccagaa	agttgttcgt	tcatccaaac	acagtgcggt	28980
accggctcaa	gcggatcacc	gacttcaccg	ggcgcgatcc	cacccagcca	cgcgatgcct	29040
atgtccttcg	ggtggcggcc	accgtgggtc	aactcaacta	tccgacgccg	cactgaagca	29100
tcgacagcaa	tgccgtgtca	tagattccct	cgccggtcag	agggggtcca	gcaggggccc	29160
cggaaagata	ccaggggcgc	cgtcggacgg	aaagtgatcc	agacaacagg	tcgcgggacg	29220

atctcaaaaa	catagcttac	aggcccgttt	tgttggttat	atacaaaaac	ctaagacgag	29280
gttcataatc	tgttacaccg	cgcaaaaccg	tcttcacagt	gttctcttag	acacgtgatt	29340
gcgttgctcg	cacccggaca	gggttcgcaa	accgagggaa	tgttgtcgcc	gtggcttcag	29400
ctgcccggcg	cagcggacca	gatcgcggcg	tggtcgaaag	ccgctgatct	agatcttgcc	29460
cggctgggca	ccaccgcctc	gaccgaggag	atcaccgaca	ccgcggtcgc	ccagccattg	29520
atcgtcgccg	cgactctgct	ggcccaccag	gaactggcgc	gccgatgcgt	gctcgccggc	29580
aaggacgtca	tcgtggccgg	ccactccgtc	ggcgaaatcg	cggcctacgc	aatcgccggt	29640
gtgatagccg	ccgacgacgc	cgtcgcgctg	gccgccaccc	geggegeega	gatggccaag	29700
gcctgcgcca	ccgagccgac	cggcatgtct	gcggtgctcg	gcggcgacga	gaccgaggtg	29760
ctgagtcgcc	tcgagcagct	cgacttggtc	ccggcaaacc	gcaacgccgc	cggccagatc	29820
gtcgctgccg	gccggctgac	cgcgttggag	aagctcgccg	aagacccgcc	ggccaaggcg	29880
cgggtgcgtg	cactgggtgt	cgccggagcg	ttccacaccg	agttcatggc	gcccgcactt	29940
gacggctttg	eggeggeege	ggccaacatc	gcaaccgccg	accccaccgc	cacgctgctg	30000
tccaaccgcg	acgggaagcc	ggtgacatcc	gcggccgcgg	cgatggacac	cctggtctcc	30060
cagctcaccc	aaccggtgcg	atgggacctg	tgcaccgcga	cgctgcgcga	acacacagtc	30120
acggcgatcg	tggagttccc	ccccgcgggc	acgcttagcg	gtatcgccaa	acgcgaactt	30180
cggggggttc	cggcacgcgc	cgtcaagtca	cccgcagacc	tggacgagct	ggcaaaccta	30240
taaccgcgga	ctcggccaga	acaaccacat	acccgtcagt	togatttgta	cacaacatat	30300
tacgaaggga	agcatgctgt	gcctgtcact	caggaagaaa	tcattgccgg	tatcgccgag	30360
atcatcgaag	aggtaaccgg	tatcgagccg	tccgagatca	ccccggagaa	gtcgttcgtc	30420
gacgacctgg	acatcgactc	gctgtcgatg	gtcgagatcg	ccgtgcagac	cgaggacaag	30480
tacggcgtca	agatccccga	cgaggacctc	gccggtctgc	gtaccgtcgg	tgacgttgtc	30540
gcctacatcc	agaagctcga	ggaagaaaac	ccggaggcgg	ctcaggcgtt	gcgcgcgaag	30600
attgagtcgg	agaaccccga	tgccgttgcc	aacgttcagg	cgaggcttga	ggccgagtcc	30660
aagtgagtca	gccttccacc	gctaatggcg	gtttccccag	cgttgtggtg	accgccgtca	30720
cagegaegae	gtcgatctcg	ccggacatcg	agagcacgtg	gaagggtctg	ttggccggcg	30780
agagcggcat	ccacgcactc	gaagacgagt	tcgtcaccaa	gtgggatcta	gcggtcaaga	30840
tcggcggtca	cctcaaggat	ccggtcgaca	gccacatggg	ccgactcgac	atgcgacgca	30900
tgtcgtacgt	ccagcggatg	ggcaagttgc	tgggcggaca	gctatgggag	tccgccggca	30960
gcccggaggt	cgatccagac	cggttcgccg	ttgttgtcgg	caccggtcta	ggtggagccg	31020
agaggattgt	cgagagctac	gacctgatga	atgcgggcgg	cccccggaag	gtgtccccgc	31080
tggccgttca	gatgatcatg	cccaacggtg	ccgcggcggt	gatcggtctg	cagcttgggg	31140

cccgcgccgg	ggtgatgacc	ccggtgtcgg	cctgttcgtc	gggctcggaa	gcgatcgccc	31200
acgcgtggcg	tcagatcgtg	atgggcgacg	ccgacgtcgc	cgtctgcggc	ggtgtcgaag	31260
gacccatcga	ggcgctgccc	atcgcggcgt	tctccatgat	gcgggccatg	tcgacccgca	31320
acgacgagcc	tgagcgggcc	teceggeegt	tcgacaagga	ccgcgacggc	tttgtgttcg	31380
gcgaggccgg	tgcgctgatg	ctcatcgaga	cggaggagca	cgccaaagcc	cgtggcgcca	31440
agccgttggc	ccgattgctg	ggtgccggta	tcacctcgga	cgcctttcat	atggtggcgc	31500
ccgcggccga	tggtgttcgt	gccggtaggg	cgatgactcg	ctcgctggag	ctggccgggt	31560
tgtcgccggc	ggacatcgac	cacgtcaacg	cgcacggcac	ggcgacgcct	atcggcgacg	31620
ccgcggaggc	caacgccatc	cgcgtcgccg	gttgtgatca	ggccgcggtg	tacgcgccga	31680
agtctgcgct	gggccactcg	atcggcgcgg	teggtgeget	cgagtcggtg	ctcacggtgc	31740
tgacgctgcg	cgacggcgtc	atcccgccga	ccctgaacta	cgagacaccc	gatcccgaga	31800
tcgaccttga	cgtcgtcgcc	ggcgaaccgc	gctatggcga	ttaccgctac	gcagtcaaca	31860
actcgttcgg	gttcggcggc	cacaatgtgg	cgcttgcctt	cgggcgttac	tgaagcacga	31920
catcgcgggt	cgcgaggccc	gaggtggggg	tecccccgct	tgcgggggcg	agtcggaccg	31980
atatggaagg	aacgttcgca	agaccaatga	cggagctggt	taccgggaaa	gcctttccct	32040
acgtagtcgt	caccggcatc	gccatgacga	ccgcgctcgc	gaccgacgcg	gagactacgt	32100
ggaagttgtt	gctggaccgc	caaagcggga	tccgtacgct	cgatgaccca	ttcgtcgagg	32160
agttcgacct	gccagttcgc	atcggcggac	atctgcttga	ggaattcgac	caccagctga	32220
cgcggatcga	actgcgccgg	atgggatacc	tgcagcggat	gtccaccgtg	ctgagccggc	32280
gcctgtggga	aaatgccggc	tcacccgagg	tggacaccaa	tcgattgatg	gtgtccatcg	32340
gcaccggcct	gggttcggcc	gaggaactgg	tcttcagtta	cgacgatatg	cgcgctcgcg	32400
gaatgaaggc	ggtctcgccg	ctgaccgtgc	agaagtacat	gcccaacggg	gccgccgcgg	32460
cggtcgggtt	ggaacggcac	gccaaggccg	gggtgatgac	gccggtatcg	gcgtgcgcat	32520
ccggcgccga	ggccatcgcc	cgtgcgtggc	agcagattgt	gctgggagag	gccgatgccg	32580
ccatctgcgg	cggcgtggag	accaggatcg	aagcggtgcc	catcgccggg	ttcgctcaga	32640
tgcgcatcgt	gatgtccacc	aacaacgacg	accccgccgg	tgcatgccgc	ccattcgaca	32700
gggaccgcga	cggctttgtg	ttcggcgagg	geggegeeet	tctgttgatc	gagaccgagg	32760
agcacgccaa	ggcacgtggc	gccaacatcc	tggcccggat	catgggcgcc	agcatcacct	32820
ccgatggctt	ccacatggtg	gccccggacc	ccaacgggga	acgcgccggg	catgcgatta	32880
cgcgggcgat	tcagctggcg	ggcctcgccc	ccggcgacat	cgaccacgtc	aatgcgcacg	32940
ccaccggcac	ccaggtcggc	gacctggccg	aaggcagggc	catcaacaac	gccttgggcg	33000
gcaaccgacc	ggcggtgtac	gcccccaagt	ctgccctcgg	ccactcggtg	ggcgcggtcg	33060

gcgcggtcga	atcgatcttg	acggtgctcg	cgttgcgcga	tcaggtgatc	ccgccgacac	33120
tgaatctggt	aaacctcgat	cccgagatcg	atttggacgt	ggtggcgggt	gaaccgcgac	33180
cgggcaatta	ccggtatgcg	atcaataact	cgttcggatt	cggcggccac	aacgtggcaa	33240
tcgccttcgg	acggtactaa	accccagcgt	tacgcgacag	gagacctgcg	atgacaatca	33300
tggcccccga	ggcggttggc	gagtcgctcg	acccccgcga	tccgctgttg	cggctgagca	33360
acttcttcga	cgacggcagc	gtggaattgc	tgcacgagcg	tgaccgctcc	ggagtgctgg	33420
ccgcggcggg	caccgtcaac	ggtgtgcgca	ccatcgcgtt	ctgcaccgac	ggcaccgtga	33480
tgggcggcgc	catgggcgtc	gaggggtgca	cgcacatcgt	caacgcctac	gacactgcca	33540
tcgaagacca	gagtcccatc	gtgggcatct	ggcattcggg	tggtgcccgg	ctggctgaag	33600
gtgtgcgggc	gctgcacgcg	gtaggccagg	tgttcgaagc	catgatccgc	gcgtccggct	33660
acatecegea	gatctcggtg	gtcgtcggtt	tcgccgccgg	cggcgccgcc	tacggaccgg	33720
cgttgaccga	cgtcgtcgtc	atggcgccgg	aaagccgggt	gttcgtcacc	gggcccgacg	33780
tggtgcgcag	cgtcaccggc	gaggacgtcg	acatggcctc	gctcggtggg	ccggagaccc	33840
accacaagaa	gtccggggtg	tgccacatcg	tcgccgacga	cgaactcgat	gcctacgacc	33900
gtgggcgccg	gttggtcgga	ttgttctgcc	agcaggggca	tttcgatcgc	agcaaggccg	33960
aggccggtga	caccgacatc	cacgcgctgc	tgccggaatc	ctcgcgacgt	gcctacgacg	34020
tgcgtccgat	cgtgacggcg	atcctcgatg	cggacacacc	gttcgacgag	ttccaggcca	34080
attgggcgcc	gtcgatggtg	gtcgggctgg	gtcggctgtc	gggtcgcacg	gtgggtgtac	34140
tggccaacaa	cccgctacgc	ctgggcggct	gcctgaactc	cgaaagcgca	gagaaggcag	34200
cgcgtttcgt	gcggctgtgc	gacgcgttcg	ggattccgct	ggtggtggtg	gtcgatgtgc	34260
cgggctatct	gcccggtgtc	gaccaggagt	ggggtggcgt	ggtgcgccgt	ggcgccaagt	34320
tgctgcacgc	gttcggcgag	tgcaccgttc	cgcgggtcac	gctggtcacc	cgaaagacct	34380
acggcggggc	atacattgcg	atgaactccc	ggtcgttgaa	cgcgaccaag	gtgttcgcct	34440
ggccggacgc	cgaggtcgcg	gtgatgggcg	ctaaggcggc	cgtcggcatc	ctgcacaaga	34500
agaagttggc	cgccgctccg	gagcacgaac	gcgaagcgct	gcacgaccag	ttggccgccg	34560
agcatgagcg	catcgccggc	ggggtcgaca	gtgcgctgga	catcggtgtg	gtcgacgaga	34620
agatcgaccc	ggcgcatact	cgcagcaagc	tcaccgaggc	gctggcgcag	gctccggcac	34680
ggcgcggccg	ccacaagaac	atcccgctgt	agttctgacc	gcgagcagac	gcagaatcgc	34740
acgcgcgagg	teegegeegt	gcgattctgc	gtctgctcgc	cagttatccc	cagcggtggc	34800
tggtcaacgc	gaggcgctcc	tegeatgete	ggacggtgcc	taccgacgcg	ctaacaattc	34860
tcgagaaggc	cggcgggttc	gccaccaccg	cgcaattgct	cacggtcatg	acccgccaac	34920
agctcgacgt	ccaagtgaaa	aacggcggcc	tcgttcgcgt	ttggtacggg	gtctacgcgg	34980

cacaagagcc	ggacctgttg	ggccgcttgg	cggctctcga	tgtgttcatg	ggggggcacg	35040
ccgtcgcgtg	tctgggcacc	gccgccgcgt	tgtatggatt	cgacacggaa	aacaccgtcg	35100
ctatccatat	gctcgatccc	ggagtaagga	tgcggcccac	ggtcggtctg	atggtccacc	35160
aacgcgtcgg	tgcccggctc	caacgggtgt	caggtcgtct	cgcgaccgcg	cccgcatgga	35220
ctgccgtgga	ggtcgcacga	cagttgcgcc	gcccgcgggc	gctggccacc	ctcgacgccg	35280
cactacggtc	aatgcgctgc	gctcgcagtg	aaattgaaaa	cgccgttgct	gagcagcgag	35340
gccgccgagg	catcgtcgcg	gcgcgcgaac	tcttaccctt	cgccgacgga	cgcgcggaat	35400
cggccatgga	gagcgaggct	cggctcgtca	tgatcgacca	cgggctgccg	ttgcccgaac	35460
ttcaataccc	gatacacggc	cacggtggtg	aaatgtggcg	agtcgacttc	gcctggcccg	35520
acatgcgtct	cgcggccgaa	tacgaaagca	tcgagtggca	cgcgggaccg	gcggagatgc	35580
tgcgcgacaa	gacacgctgg	gccaagctcc	aagagctcgg	gtggacgatt	gtcccgattg	35640
tcgtcgacga	tgtcagacgc	gaacccggcc	gcctggcggc	ccgcatcgcc	cgccacctcg	35700
accgcgcgcg	tatggccggc	tgaccgctgg	tgagcagacg	cagagtcgca	ctgcggccgg	35760
cgcagtgcga	ctctgcgtct	gctcgcgctc	aacggctgag	gaactcctta	gccacggcga	35820
ctacgcgctc	gcgatcccgt	ggcaccagac	cgatccgggt	ccggcggtcg	aggatatcgt	35880
ccacatccag	cgccccctca	tgggtcaccg	cgtattcgaa	ctccgcccgg	gtcacgtcga	35940
tgccgtcggc	gaccggctcg	gtgggccgct	cacatgtggc	ggcggcagcg	acgttggccg	36000
cctcggcccc	gtaccgcgcc	accagcgact	cgggcaatcc	ggcgcccgat	ccgggggccg	36060
gcccagggtt	cgccggtgcg	ccgatcagcg	gcaggttgcg	agtgcggcac	ttegeggete	36120
gcaggtgtcg	cagcgtgatg	gcgcgattca	gcacatcctc	tgccatgtag	cggtattccg	36180
tcagcttgcc	gccgaccaca	ctgatcacgc	ccgacggcga	ttcaaaaaca	gcgtggtcac	36240
gcgaaacgtc	ggcggtgcgg	ccctggacac	cagcaccgcc	ggtgtcgatt	agcggccgca	36300
atcccgcata	ggcaccgatg	acatccttgg	tgccgaccgc	cgtccccaat	gcggtgttca	36360
ccgtatccag	caggaacgtg	atctcttccg	aagacggttg	tggcacatcg	ggaatcgggc	36420
cgggtgcgtc	ttcgtcggtc	agcccgagat	agatccggcc	cagctgctcg	ggcatggcga	36480
acacgaagcg	gttcagctca	ccggggatcg	gaatggtcag	cgcggcagtc	ggattggcaa	36540
acgacttcgc	gtcgaagacc	agatgtgtgc	cgcggctggg	gcgtagcctc	agggacgggt	36600
cgatctcacc	cgcccacacg	cccgccgcgt	tgatgacggc	acgcgccgac	agcgcgaacg	36660
actgccgggt	gcgccggtcg	gtcaactcca	ccgaagtgcc	ggtgacattc	gacgcgccca	36720
cgtaagtgag	gatgcgggcg	ccgtgctggg	ccgcggtgcg	cgcgacggcc	atgaccagcc	36780
gggcgtcgtc	gatcaattgc	ccgtcgtacg	cgagcagacc	accgtcgagg	ccgtcccgcc	36840
gaacggtggg	agcaatctcc	accacccgtg	acgccgggat	teggegegat	cggggcaacg	36900

tcgccgccgg	cgtacccgct	agcacccgca	aagcgtcgcc	ggccaggaaa	ccggcacgca	36960
ccaacgcccg	cttggtgtga	cccatcgacg	gcaacaacgg	gaccagttgc	ggcatggcat	37020
gcacgagatg	aggagcgttg	cgtgtcatca	ggattccgcg	ttcgacggcg	ctgcgccggg	37080
cgatgcccac	gttgccgctg	gccagatagc	gcagaccgcc	gtgcaccaac	ttcgagctcc	37140
agcggctggt	gccgaacgcc	agatcatgct	tttccaccaa	ggccaccgtc	agaccgcggg	37200
tggcagcatc	taaggcaatg	ccaacaccgg	taatgccgcc	gcctatcacg	atgacgtcga	37260
gtgcgccacc	gtcggccagt	gcggtcaggt	cggcggagcg	acgcgccgcg	ttgagtgcag	37320
ccgagtgggg	catcagcaca	aatatccgtt	cagtgcgtgg	gtaagttcgg	tggccagcgc	37380
ggcggaatcg	aggatcgaat	cgacgatgtc	cgcggactgg	atggtcgact	gggcgatcag	37440
caacaccatg	gtcgccagtc	gacgagcgtc	gccggagcgc	acactgcccg	accgctgcgc	37500
cactgtcagc	cgggcggcca	acccctcgat	caggacctgc	tggctggtgc	cgaggcgctc	37560
ggtgatgtac	accetggeea	gctccgagtg	catgaccgac	atgatcagat	cgtcaccccg	37620
caaccggtcg	gccaccgcga	caatctgctt	taccaacgct	teceggtegt	ccccgtcgag	37680
gggcacctcc	cgcagcacgt	cggcgatatg	gctggtcagc	atggacgcca	tgatcgaccg	37740
ggtgtccggc	cagcgacggt	atacggtcgg	gcggctcacg	cccgcgcgcc	gggcgatctc	37800
ggcaagtgtc	acceggteca	cgccgtaatc	gacgacgcag	ctcgccgctg	cccgcaggat	37860
acgaccaccg	gtatccgcgc	ggtcattact	cattgacagc	atgtgtaata	ctgtaacgcg	37920
tgactcaccg	cgaggaactc	cttccaccga	tgaaatggga	cgcgtgggga	gatecegeeg	37980
cggccaagcc	actttctgat	ggcgtccggt	cgttgctgaa	gcaggttgtg	ggcctagcgg	38040
actcggagca	gcccgaactc	gaccccgcgc	aggtgcagct	gcgcccgtcc	gccctgtcgg	38100
gggcagacca						38110

<210> 25

<211> 2540

<212> DNA

<213> Homo sapiens

<400> 25
gaaaaggtgg acaagtccta ttttcaagag aagatgactt ttaacagttt tgaaggatct 60
aaaacttgtg tacctgcaga catcaataag gaagaagaat ttgtagaaga gtttaataga 120
ttaaaaactt ttgctaattt tccaagtggt agtcctgttt cagcatcaac actggcacga 180
gcagggtttc tttatactgg tgaaggagat accgtgcggt gctttagttg tcatgcagct 240
gtagatagat ggcaatatgg agactcagca gttggaagac acaggaaagt atccccaaat 300

tgcagattta	tcaacggctt	ttatcttgaa	aatagtgcca	cgcagtctac	aaattctggt	360
atccagaatg	gtcagtacaa	agttgaaaac	tatctgggaa	gcagagatca	ttttgcctta	420
gacaggccat	ctgagacaca	tgcagactat	cttttgagaa	ctgggcaggt	tgtagatata	480
tcagacacca	tatacccgag	gaaccctgcc	atgtattgtg	aagaagctag	attaaagtcc	540
tttcagaact	ggccagacta	tgctcaccta	accccaagag	agttagcaag	tgctggactc	600
tactacacag	gtattggtga	ccaagtgcag	tgcttttgtt	gtggtggaaa	actgaaaaat	660
tgggaacctt	gtgatcgtgc	ctggtcagaa	cacaggcgac	actttcctaa	ttgcttcttt	720
gttttgggcc	ggaatcttaa	tattcgaagt	gaatctgatg	ctgtgagttc	tgataggaat	780
ttcccaaatt	caacaaatct	tccaagaaat	ccatccatgg	cagattatga	agcacggatc	840
tttacttttg	ggacatggat	atactcagtt	aacaaggagc	agcttgcaag	agctggattt	900
tatgctttag	gtgaaggtga	taaagtaaag	tgctttcact	gtggaggagg	gctaactgat	960
tggaagccca	gtgaagaccc	ttgggaacaa	catgctaaat	ggtatccagg	gtgcaaatat	1020
ctgttagaac	agaagggaca	agaatatata	aacaatattc	atttaactca	ttcacttgag	1080
gagtgtctgg	taagaactac	tgagaaaaca	ccatcactaa	ctagaagaat	tgatgatacc	1140
atcttccaaa	atcctatggt	acaagaagct	atacgaatgg	ggttcagttt	caaggacatt	1200
aagaaaataa	tggaggaaaa	aattcagata	tctgggagca	actataaatc	acttgaggtt	1260
ctggttgcag	atctagtgaa	tgctcagaaa	gacagtatgc	aagatgagtc	aagtcagact	1320
tcattacaga	aagagattag	tactgaagag	cagctaaggc	gcctgcaaga	ggagaagctt	1380
tgcaaaatct	gtatggatag	aaatattgct	atcgtttttg	ttccttgtgg	acatctagtc	1440
acttgtaaac	aatgtgctga	agcagttgac	aagtgtccca	tgtgctacac	agtcattact	1500
ttcaagcaaa	aaatttttat	gtcttaatct	aactctatag	taggcatgtt	atgttgttct	1560
tattaccctg	attgaatgtg	tgatgtgaac	tgactttaag	taatcaggat	tgaattccat	1620
tagcatttgc	taccaagtag	gaaaaaaaat	gtacatggca	gtgttttagt	tggcaatata	1680
atctttgaat	ttcttgattt	ttcagggtat	tagctgtatt	atccattttt	tttactgtta	1740
tttaattgaa	accatagact	aagaataaga	agcatcatac	tataactgaa	cacaatgtgt	1800
attcatagta	tactgattta	atttctaagt	gtaagtgaat	taatcatctg	gattttttat	1860
tcttttcaga	taggcttaac	aaatggagct	ttctgtatat	aaatgtggag	attagagtta	1920
atctccccaa	tcacataatt	tgttttgtgt	gaaaaaggaa	taaattgttc	catgctggtg	1980
gaaagataga	gattgttttt	agaggttggt	tgttgtgttt	taggattctg	tccattttct	2040
tgtaaaggga	taaacacgga	cgtgtgcgaa	atatgtttgt	aaagtgattt	gccattgttg	2100
aaagcgtatt	taatgataga	atactatcga	gccaacatgt	actgacatgg	aaagatgtca	2160
gagatatgtt	aagtgtaaaa	tgcaagtggc	gggacactat	gtatagtctg	agccagatca	2220

aagtatg	tat	gttgttaata	tgcatagaac	gagagatttg	gaaagatata	caccaaactg	2280
ttaaatg	tgg	tttctcttcg	gggaggggg	gattggggga	ggggccccag	aggggtttta	2340
gaggggc	ctt	ttcactttcg	acttttttca	ttttgttctg	ttcggatttt	ttataagtat	2400
gtagacc	ccg	aagggtttta	tgggaactaa	catcagtaac	ctaacccccg	tgactatcct	2460
gtgctct	tcc	tagggagctg	tgttgtttcc	cacccaccac	ccttccctct	gaacaaatgc	2520
ctgagtg	ctg	gggcactttg					2540
<210>	26	-					
	103						
	RNA						
		sapiens					
		•					
<400>	26						
agcuccua	aua	acaaaagucu	guugcuugug	uuucacauuu	uggauuuccu	aauauaaugu	60
ucucuuui	uua	gaaaaggugg	acaaguccua	uuuucaagag	aag		103
<210>	27						
<211>	28						
<212>	RNA						
<213>	Homo	sapiens					
	27						0.0
ggauuuc	cua	auauaauguu	cucuuuuu				28
<210> 2	28						
<211>	1619)					
<212> I	DNA						
<213> I	Homo	sapiens					
	28 att	tgaatcgcgg	gacccgttgg	cagaggtggc	ggcggcggca	tgggtgcccc	60
gacgttg	ccc	cctgcctggc	agccctttct	caaggaccac	cgcatctcta	cattcaagaa	120
ctggccct	ttc	ttggagggct	gcgcctgcac	cccggagcgg	atggccgagg	ctggcttcat	180
ccactgc	ccc	actgagaacg	agccagactt	ggcccagtgt	ttcttctgct	tcaaggagct	240
ggaaggct	tgg	gagccagatg	acgaccccat	agaggaacat	aaaaagcatt	cgtccggttg	300

cgctttcctt tctgtcaa	ga agcagtttga	agaattaacc	cttggtgaat	ttttgaaact	360
ggacagagaa agagccaa	ga acaaaattgc	aaaggaaacc	aacaataaga	agaaagaatt	420
tgaggaaact gcgaagaa	ag tgcgccgtgc	catcgagcag	ctggctgcca	tggattgagg	480
cctctggccg gagctgcc	tg gtcccagagt	ggctgcacca	cttccagggt	ttattccctg	540
gtgccaccag ccttcctg	tg ggccccttag	caatgtctta	ggaaaggaga	tcaacatttt	600
caaattagat gtttcaac	tg tgctcctgtt	ttgtcttgaa	agtggcacca	gaggtgcttc	660
tgcctgtgca gcgggtgc	tg ctggtaacag	tggctgcttc	tctctctctc	tctcttttt	720
gggggctcat ttttgctg	tt ttgattcccg	ggcttaccag	gtgagaagtg	agggaggaag	780
aaggcagtgt cccttttg	ct agagctgaca	gctttgttcg	cgtgggcaga	gccttccaca	840
gtgaatgtgt ctggacct	ca tgttgttgag	gctgtcacag	tcctgagtgt	ggacttggca	900
ggtgcctgtt gaatctga	gc tgcaggttcc	ttatctgtca	cacctgtgcc	tcctcagagg	, 960
acagtttttt tgttgttg	tg tttttttgtt	ttttttttt	ggtagatgca	tgacttgtgt	1020
gtgatgagag aatggaga	ca gagtccctgg	ctcctctact	gtttaacaac	atggctttct	1080
tattttgttt gaattgtt	aa ttcacagaat	agcacaaact	acaattaaaa	ctaagcacaa	1140
agccattcta agtcattg	gg gaaacggggt	gaacttcagg	tggatgagga	gacagaatag	1200
agtgatagga agcgtctg	gc agatactcct	tttgccactg	ctgtgtgatt	agacaggccc	1260
agtgagccgc ggggcaca	tg ctggccgctc	ctccctcaga	aaaaggcagt	ggcctaaatc	1320
ctttttaaat gacttggc	tc gatgctgtgg	gggactggct	gggctgctgc	aggccgtgtg	1380
tctgtcagcc caaccttc	ac atctgtcacg	ttctccacac	gggggagaga	cgcagtccgc	1440
ccaggtcccc gctttctt	tg gaggcagcag	ctcccgcagg	gctgaagtct	ggcgtaagat	1500
gatggatttg attcgccc	tc ctccctgtca	tagagctgca	gggtggattg	ttacagette	1560
gctggaaacc tctggagg	tc atctcggctg	ttcctgagaa	ataaaaagcc	tgtcatttc	1619

INTERNATIONAL SEARCH REPORT

International application No. PCT/US02/11758

	SSIFICATION OF SUBJECT MATTER						
IPC(7) :C12M 1/38, 1/40; C12Q 1/68 US CL :485/6, 91.2, 172.3, 286.1, 286.5, 282.2							
According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIEL	DS SEARCHED						
Minimum d	ocumentation searched (classification system followed	by classification symbols)					
U.S. : 4	485/6, 91.2, 172.3, 286.1, 286.5, 282.2						
Documentat searched	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
	lata base consulted during the international search (na ISPAT, DERWENT/EP ABSTRACT.	ame of data base and, where practicable,	search terms used)				
C. DOC	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.				
Y	US 6,060,240 A(KAMB et al.) 09 May	2000, see entire document.	1				
Y	5,716,825A (HANCOCK et al.) 10 February 1998, see entire document, especially columns 7-8.						
A	US 5,667,975 A (DYKSTRA et al.) 16 document.		1				
Furt!	her documents are listed in the continuation of Box (C. See patent family annex.					
"A" do	secial categories of cited documents; comment defining the general state of the art which is not considered	"I" later document published after the inter date and not in conflict with the appli the principle or theory underlying the	cation but cited to understand				
l	be of particular relevance rlier document published on or after the international filing date	"X" document of particular relevance; the					
"L" do	cument which may throw doubts on priority claim(a) or which is	considered novel or cannot be consider when the document is taken alone	** Triorie our Histories onch				
sp	ted to establish the publication date of another citation or other cotal reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive step v with one or more other such docum	when the document is combined				
"P" do	cans soument published prior to the international filing date but later	obvious to a person skilled in the art "&" document member of the same patent					
	an the priority date claimed actual completion of the international search	Date of mailing of the international sea	arch report				
17 JUNE		18 SEP 2002	-				
Commission Box PCT	mailing address of the ISA/US oner of Patents and Trademarks on, D.C. 20231	Authorized officer Valence Bell-Ho	arris for				
	No. (703) 305-3230	Telephone No. (705) 308-0196	•				