- → Solve Sudo Ku
- Word Break

Today's Agenda

N-Queens

airen N. Chessboard of dimensions NON.

N queens - such that no queen is killing another

quen.

[print all valid configurations]

imposible.

impossible

,	<i>)</i> 1	1	2	ک
N=4 = 0		Q		
ı				Q
2	0			
3			B	

1	6	1	2	3
6			Q	
١	Q			
2				Q
3		Q		

$$a_{m-2}$$
 $0-1$, $1-3$, $2-0$, $3-2$ $0-2$, $1-0$, $2-3$, $3-1$

observation - There can be only I queen in every row/column.


```
# code .-
 void naucens (mat[N][N], row, N)?
       if (row == N) { point (mat (7(7), return }
        for (int col = 0; col < N; col++)d
               B ( is Queen Safe ( mat 1717, row, (01) = = tom) }
                        mat [row] [(o]) = 'Q';
                        n Queens (mat(1(1, row+1, N);
                   mat (row) [101] = 1.7;
 bookan is Queensafe ( mat(N7(N7, int row, int col) of
                                                         T. (-> O(N)
        for ( i = 0; ic row; i+7) }
       [ if (mat[i7(col] == (Q)){ return false }
        for (i= row-1, j= col+1; i=0 kk j < N; i--, j++){
```

(mat [i7(j] == (Q^)) { return false }

return true;

for (i= row-1, j= col-1; i=0 ll j=0; i--, j--){

if (mat [17(j] == (Q)){ return false }


```
# code.
void naucens (mat (N)(N), i, N, cols[N], dlag(2N-1), anti-diay(2N-1)) of
      if ( i == N) { point (mat (7(7), return }
     for ( g = 0; j < N; j++)d
            if (cols(j) == false LL antidley [i+j] == false LL
                     diag(i-j+N-1) == false) {
                        mat[i][j] = 'Q';
                          cols[j] = true;
                          dlay (i-j+N-1) = tru;
                          antidiay (i+j) = true;
                       n Queens (mat(7[7, i+1, N, cols, diag, anti-diag);
                          mat[i][j] = '.';
                            cols[j] = falx;
                            dlay (i-j+N-1) = fale;
                            antidiay (i+j) = false;
                                                      T. ( > 0 (N))

S. ( > 0 (N2))
```

SydoKu

Given a partially solved state of sudoku. Find the solution of sudoku. [I unique solution exists]

		١	,2,4	_2	_,6	~	8,6		
	8	t	12	ય	4	5	G	7	8
•	5	3	1	2	7	6	•	•	•
1	6	•	•	1	9	5	•	•	•
2	•	9	8	*	4	•	•	6	•
3	8	•	•	•	6	•	•	٠	3
4	7	4	•	8	•	3	•	•	1
2	7	t	•	1	2	•	,	•	6
6	•	6	•	•	,	•	2	8	•
7	•	•	•	4)	9	•	c	5
8	·	•	•	•	8	•	•	Ŧ	9

<u>N</u>=9.

Rules for sudoky -

- · Each row must contain all the numbers from 1 to N.
- · Each column must contain all the numbers from 1-to N
- · Each IN. IN grid must contain all the numbers from 1-to N.

4.8.

L) closest multiple of 3 which is
$$\leq 4 \rightarrow 3$$

L) closest multiple of 3 which is $\leq 8 \rightarrow 6$

$$j \rightarrow closest$$
 multiple of JN which is $\leq i \Rightarrow j - (i \% JN)$
 $j \rightarrow closest$ multiple of JN which is $\leq j \Rightarrow j - (j \% JN)$

```
# code ._
boolean sudoky (mat [N](N), i, j, N) f
          Y ( j == N) {
          [2 j.0, i=i+1;
          B ( i == N)d
          [ return true;
         if (mat(i)(j) != '.'){
                of (Sudoku(mat(717, i, j+1, N) == true) \{
return true;
          else {
                for ( n=1; x = N; x++) {
                      is Valid (mat (N)(N), i, j, x) == tou){
                            mat [i][j] = 1;
                            if ( sudoKu ( mat (717, i, j+1, N) = = true) {
                            [ return tou;
                           mat (i)[j] = 1.7;
                                         Tic- O(N

SCD O(N2)
           return folse;
```

3

```
boolcon is Valid (mat (N7(N7, row, col, x) ) -> o (N)
                                   for ( j=0; j < ~; j++){
                                                              if mat (row] [i] == x) f return false 3
                                      for ( i = 0; i < N; i++) {
                                                                   if (mat [i7[col] == n) { return false }
                                     row - row - (row /. sn); } indices of top-left corner col - (col /. sn); } of the grid.
                                          for (1:0; ic so; i++) {
                                                          fir(j=0; j < JN; j^{++}) 
f(mat(nw+i)(col+j) == x) 
f(x) 
f(x)
                   - return true;
```

Liven a dictionary of words (strings) and a string A. Check if it is possible to break A into valid words from the dictionary.

Dict = { "i", "like", "mango", "man", "gone", "ili"] A -> ilikemango

illike mango Likemango Kemango

- General structure. (all possibilité)

-s consider all possibilities

-s valid possibilities

-s do change

- make recurrine calls

- undo - change.

$$\begin{array}{ccc}
1,2 \\
1 \\
1) \\
(1)(2)
\end{array} \Rightarrow \begin{array}{c}
1 \\
1 \\
2
\end{array}$$

1,2,3,4