MICROPROCESSORS 8051 & ARM

Author: Bharat Acharya Sem V – EXTC Mumbai 2018

SERIAL PORT OF 8051

8051 has a high speed, full duplex, software programmable Serial Port.

Data is **received** serially through the R_xD line, and **transmitted** through the T_xD line.

SBUF register acts as a **buffer for both** reception and transmission.

The **SCON** SFR mainly **controls** serial **Communication**.

The **SMOD** bit in the **PCON** SFR controls the baud rate.

SCON - Serial Control (SFR) [Bit-Addressable As SCON.7 to SCON.0]

	SM0	SM1	SM2	REN	TB8	RB8	ΤI	RI
--	-----	-----	-----	-----	-----	-----	----	----

SMO and SM1: (Serial Port Mode Bits 0 and 1)

SM0 SM1	SERIAL MODE	DESCRIPTION	BAUD RATE
0 0	Mode 0	Shift Register	Fixed → f _{osc} /12
0 1	Mode 1	8-bit UART	Variable
1 0	Mode 2	9-bit UART	Fixed \rightarrow f _{osc} /32 or f _{osc} /64
1 1	Mode 3	9-bit UART	Variable

SM2: (Serial Port Mode Bits 2)

Enables multiprocessor features in Mode 2 and Mode 3. i.e.

Mode 2 or Mode 3: If **SM2 = 1 RI will be 1 when** the **9**th **data bit** received is **"1"**. Mode 1: If **SM2 = 1 RI will be 1 when** the **Stop bit** received is **"1"**. (valid)

Mode 0: **SM2** is **kept 0** i.e. Not Used.

REN: (Receiver Enable)

REN = 1 Enables the Receiver. REN = 0 Disables the Receiver.

TB8: (Bit 8 i.e. 9th bit transmitted)

In Mode 2 and Mode 3 it holds the 9th Programable bit, to be transmitted.

In Mode 1 and Mode 0 it is not used.

RB8: (Bit 8 i.e. 9th bit recieved)

In Mode 2 and Mode 3 it is used to receive the 9th Programable bit.

In Mode 1 it recieves the Stop bit.

In Mode 0 it is not used.

RI: (Receive Interrupt)

 $RI = 1 \rightarrow One Complete character is received.$

RI must be explicitly cleared by software before receiving the next byte.

TI: (Transmit Interrupt)

 $TI = 1 \rightarrow One Complete character is transmitted.$

TI must be explicitly cleared by software before transmitting the next byte.

BHARAT ACHARYA EDUCATION

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

The Baud Rate is controlled by the bit SMOD in PCON SFR.

SMOD: (Serial Baud rate Modify Bit in PCON SFR)

SMOD = $1 \rightarrow$ Doubles the Baud rate of Timer 1 for Modes 1, 2 and 3.

 $SMOD = 0 \rightarrow Uses Timer 1 Baud Rate.$

SBUF Register

It is physically two registers, one for holding the received character and the other for holding the character to be transmitted.

Both receive and transmit registers are addressed 99H.

Serial data Interrupt

When a **complete character** is **received** the **RI** bit is **set** in the SCON Register.

When a complete character is transmitted the TI bit is set in the SCON Register.

These two bits are **OR'ed** to produce the serial data interrupt.

RI/TI bit must be **explicitly cleared** by the program before transferring the next charecter.

Data Transmission

Data written in SBUF.

Data **transmitted** through T_xD .

When a complete character is transmitted **TI** is **set**.

Serial Data interrupt occurs.

In its ISR the TI bit is reset.

New data written into SBUF and the process continues till all the data is transmitted.

Data Reception

REN in SCON must be set, this prevents receiving unwanted data (eg noise).

Data received through R_xD into the SBUF.

When a complete character is received **RI** is **set**.

Serial Data interrupt occurs. #Please refer Bharat Sir's Lecture Notes for this ...

In its ISR the RI bit is reset and so the program accepts the received data.

New data is received **in SBUF** and the process **continues** till all the data is received.

Author: Bharat Acharya Sem V – EXTC Mumbai 2018

Serial Data Transfer Modes

a) Mode 0 (Shift Register)

This is a **8-bit Half-Duplex** mode.

The **Start/Stop** bits are **not required**.

Both transmission and reception happen through the R_xD line.

 T_xD line **provides** the **shift clock** for data transfer.

The signal on the T_xD line is a square wave high for S_6 , S_1 , and S_2 and low for S_3 , S_4 , and S_5 .

During Tramsnission data is "shifted" out of SBUF during S₆ P₂, #Please refer Bharat Sir's Lecture Notes for this ...

During Reception R_xD is sampled during $S_5 P_2$ and then "shifted".

This mode is **mainly used** for high **speed data collection** using discrete logic.

It is **not intended** for data communication **between computers**.

Baud rate: Fixed.

 $f_{Baud} = f/12$. (f = Oscillator Frequency).

BHARAT ACHARYA EDUCATION

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

b) Mode 1 (8-bit "Standard" UART)

This is a 10-bit Full-Duplex mode.

 R_xD receives data, T_xD transmits data.

For Transmission data is sent as **1 Start** bit (0), **8 Data** bits (LSB first), **1 Stop** bit (1).

Transmit Interrupt flag **TI** is **set** only **after** all the above **10** bits are **transmitted**.

Each bit interval is inverse of Baud rate i.e. each bit has to be maintained for that interval.

Data is also **received** in the **same order** at the programmed Baud Rate.

During reception, Start bit is discarded, 8 Data bits received in SBUF, Stop bit saved in RB8.

The RI will be set only if SM2 = 0 (unconditional) or the RB8 = 1 (condition satisfied). This is an anti-noise safeguard.

Once RI is set the program is interrupted to accept the data just received.

Baud Rate: Variable (can be controlled be changing the overflow rate using difeent counts)

$$f_{Baud} = \frac{2^{SMOD}}{32} \times \text{(Timer 1 overflow frequency)}.$$

$$f_{Baud} = \frac{1}{32} \times \text{(Timer 1 overflow frequency); {when SMOD} = 0}.$$

$$f_{\text{Baud}} = \frac{1}{16} \times \text{(Timer 1 overflow frequency); } \{ \text{ when SMOD} = 1 \}.$$

MICROPROCESSORS 8051 & ARM

Author: Bharat Acharya Sem V - EXTC Mumbai 2018

c) Mode 2 (9-bit UART) (Multiporcessor Mode)

This mode is similar to Mode 1 except that it has **11 bits** per character.

Format: **1 Start** bit (0), **8 Data** bits, **9th Programmable Bit** and **1 Stop** bit (1). During **Transmission** the **9th** data bit is **copied** form bit **TB8** of SCON.

During Reception the 8 data bits are received in SBUF, 9th bit in RB8 of SCON.

Both **Start** bit and **Stop** bits are **discarded**.

This 9th bit can be used to control Multiprocessor Communication.

Baud Rate: Fixed (cannot be controlled be Timer1)

$$\begin{split} & \textbf{f}_{\text{Baud}} = \underbrace{\frac{2^{\text{SMOD}}}{64}} \times \text{(Oscillator Frequency).} \\ & \textbf{f}_{\text{Baud}} = \underbrace{\frac{1}{64}} \times \text{(Oscillator Frequency)} \text{ \{when SMOD} = 0\}. \\ & \textbf{f}_{\text{Baud}} = \underbrace{\frac{1}{32}} \times \text{(Oscillator Frequency)} \text{ \{when SMOD} = 1\}. \end{split}$$

d) Mode 3 (9-bit UART) (Multiporcessor Mode)

This mode is exactly the same as Mode 2 except that the Baud rate is Variable i.e. it is determined using the Timer 1 overflow rate as in Mode 1.

BHARAT ACHARYA EDUCATION

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

Multiprocessor Communication in Mode 2:

This mode is also used for multiprocessor communication.

Here the 9^{th} bit is very useful.

If the **9**th bit is **1** ... Then **every processor** will be **interrupted** and hence will **recive** the

data (SM2=0 or 1)

This can be use to "Broadcast" the data to all processors.

It the 9th bit is 0 ... Then **ONLY** those processors with **SM2 = 0** will be **interrupted**,

hence **receive** the data.

This enables **Selective Transmission** i.e. processors can selectively talk to

one another.

In the above example,

If "A" send data with the 9th bit as 1 then all will receive, and it will be a "Broadcast" If "A" send data with the 9th bit as 0 then only "C" will receive, and hence it will be "Selective Transmission".