EE113FZ Solid State Electronics Lecture 4: Electron Shell Configuration

Zhu DIAO

Email: zhu.diao@mu.ie

What is to be Discussed Today?

- What is an electron shell?
- Electron shell configuration:
 - Shell identifiers;
 - Relative energy levels of shells and subshells;
 - How the shells and subshells fit together.
- How many electrons are there in a shell?
 - Principal quantum numbers and their effects;
 - Subshell configuration.

What We Know About Electrons in Atoms

- Electrons surround the nucleus in an atom;
- Electrons can only exist at particular energy levels due to quantisation;
- Electron orbitals have fairly defined shapes (Recall the wave equations from the previous lecture);
- The questions are:
 - How many electrons are there at each level and why?
 - What determines their orbital shape?

- Electrons fill the shells following certain rules and these rules are defined by quantum mechanics:
 - Shell or principal quantum number (n): 1, 2, 3, 4, ...
 - Angular momentum quantum number (ℓ): 0, 1, 2, ..., (n-1)
 - Magnetic quantum number (m_l) :

$$-\ell$$
, $(-\ell+1)$, $(-\ell+2)$, ..., $(\ell-2)$, $(\ell-1)$, ℓ

• Spin quantum number (m_s) : $\pm \frac{1}{2}$.

Can't remember? No problem.

The maximum number of electrons a shell with principal quantum number n can accommodate is $2n^2$.

 The number of electrons that fit into each electron shell is given by

No. of electrons = $2n^2$

where *n* is the principal quantum number.

- So when n = 1, the max no. of electrons are $2(1)^2 = 2$. If n = 2, then it's $2(2)^2 = 8$.
- Each shell also has a letter associated with it.

Shell Number (Principal Quantum Number, n)	Shell Letter	Electron Capacity
1	K	2
2	L	8
3	M	18
4	N	32
5	0	50
6	Р	72

How the Electron Shells Are Related?

- As *n* increases, more electron's can be accommodated in a shell;
- This also means that the number of subshells increases as does the total energy in the system.

- There are rules about how the various quantum numbers (n, l, m_l) and m_s can combine;
- The principal quantum number, *n*, can never be zero. Allowed integer values are 1, 2, 3, etc;
- The angular momentum quantum number, l, can be any integer between zero (0) and (n-1);
- The magnetic quantum number, m_l , can be any integer between -l and +l.

Subshell Configuration

- What happens when the effect of the angular momentum quantum number, I, is included?
- Effectively the inclusion of, *l*, gives extra shapes to orbitals that electrons can take;
- These subshells (collections of orbitals) also have letters associated with them;
- Each subshell can have different orbitals defined by the magnetic quantum number, m_l ;
- Each orbital can only have 2 electrons (with different spin quantum numbers, m_s);
- Subshells first fill singly and then double up, according to the Pauli exclusion principle.

Shells, Subshells, and Orbitals

- We have used terms "shells", "subshells", and "orbitals" in our discussion. Let's make a clear distinction between them;
- Shells are collections of subshells with the same principal quantum number, *n*;
- Subshells are collections of orbitals with the same principal quantum number, *n*, and the same angular momentum quantum number, *l*.

Subshell Shapes

- The angular momentum quantum number, *l*, describes the shape of the subshell;
- These are spherical (I = 0), polar (I = 1), cloverleaf (I = 2).

This is not strictly true but we do not want to bog ourselves down here.

http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch6/quantum.html

How do All the Orbitals Fit Together?

- *n* gives the shell and hence the number of electrons in that shell;
- Then I gives the subshell. Subshells also have their labels:
 - I = 0, subshell is called s,
 - l = 1, subshell is p,
 - l = 2, subshell is called d,
 - I = 3, subshell is called f.
- Each subshell can have a few orbitals with different m_l 's (One may understand m_l as defining the orientation of the orbitals; but strictly speaking, shapes and orientations are correlated).

• You may have noticed that the 3d subshell has a higher energy level than the 4s subshell. Yes, it is indeed true. Energies of electrons are not only decided by their principal quantum numbers.

Shell name	Subshell name	Subshell max electrons	Shell max electrons
K	15	2	2
	28	2	2+6=8
L	2p	6	
М	3s	2	2 + 6 + 10 = 18
	3p	6	
	зd	10	
N	4 s	2	2 + 6 + + 10 + 14 = 32
	4P	6	
	4d	10	
	4f	14	

- Each subshell has a letter;
- Each subshell has at least an orbital where electrons can be located;
- Each orbital has a shape, such that orbitals don't interfere with each other.

Electron Subshell Total Electron Calculation

- Each subshell can hold (4/ + 2) total electrons;
- Recall when n = 1, shell is K and I can only be 0. So subshell is s. Therefore, the total number of electrons is:

$$((4*0) + 2) = 0 + 2 = 2;$$

• Recall when n = 2, shell is L and I can be 0 or 1, so subshell is s and p. Therefore, the total number of electrons is:

((4*0)+2)[s subshell] + ((4*1)+2)[p subshell] = 2 + 6 = 8.

Satisfy yourselves that this is correct for all shell numbers.

Applications of the Theory

- We can do calculations for
 - The energy levels of electrons;
 - Size of the radius of the orbitals;
 - The electron shell configuration;
 - The number of electrons in each shell, subshell, and orbital (2);
 - The amount of energy gained or lost when an electron moves from one orbital to another;
 - The effect of that movement.