

SUPÉLEC

PinaPL Projet long : réseaux neuronaux cycliques

Auteur:
Maxime Amosse
Julien Hemery
Hugo Hervieux
Sylvain Pascou

Référent : Arpad RIMMEL Joanna TOMASIK

Résumé

Ici est écrit le résumé du projet PinaPL.

Table des matières

1	Pré	ésentation du projet 0				
	1.1	Object	${ m tifs} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	0		
	1.2	Equip	e	0		
	1.3	Outils		0		
		1.3.1	Le langage	0		
		1.3.2	Git	1		
		1.3.3	Zotero	1		
		1.3.4	LaTeX	1		
2	Rés	eau ne	euronal simple	2		
	2.1	Théori	ie	2		
		2.1.1	Le perceptron	2		
		2.1.2	Le réseau	2		
		2.1.3	Les réseaux à couche	3		
		2.1.4	L'apprentissage	4		
		2.1.5	La méthode des gradients	4		
		2.1.6	La rétropropagation	5		
	2.2	L'impl	lémentation	6		
		2.2.1	Le neurone	6		
		2.2.2	Le réseau	7		
		2.2.3	Améliorations apportées	7		
	2.3	Résult	ats	7		
		2.3.1	Le XOR	8		
		2.3.2	Le MNIST	8		
			2.3.2.1 Le classificateur linéaire	8		
			2.3.2.2 Réseau sans couche cachées	8		
		2.3.3	Réseau avec 1 couche cachée	8		

		2.3.3.1 Réseau avec deux couches cachées	8
3 R	eal time	e reccurent learning	9
3.	1 Théor	rie	9
	3.1.1	La grammaire de Reber	9
	3.1.2	Réseau RTRL	10
4 L	ong Sho	ort Term Memory	11
4.	1 Théor	rie	11
4.	2 Résul	tats sur la grammaire de Reber	11
Ann	exes		13
Anne	exe 1		13
1	Partie	e 1	13
	1.1	Sous-partie 1	13
	1.2	Sous-partie 2	13
	1.3	Sous-partie 3	13
2	Partie	e 2	13
	2.1	Sous-partie 1	13
	2.2	Sous-partie 2	13
	2.3	Sous-partie 3	14
Anne	exe 2		15
Pı	rérequis		15
1	Partie	e 1	15
	1.1	Sous-parie 1	15
	1.2	Sous-parie 2	15
2	Partie	e 2	15
3	Partie	e 3	16

Chapitre 1

Présentation du projet

1.1 Objectifs

Ce projet a été lancé le 23 septembre 2016 sur proposition de Mme. Joana Tomasik et M. Arpad Rimmel. Le but est de réimplémenter en moins d'un an l'algorithme LSTM ¹. Il s'agit d'un réseau neuronal avec mémoire présentant un cycle.

Un tel projet représente de fortes contraintes techniques (implémentation du réseau, gestion de la mémoire, performances, ...) mais aussi un défi théorique (preuve de terminaison, gestion des cycles, ...).

Pour arriver à ce résultat, l'année est découpée en différents "runs" et dans chacun nous devons découvrir et implémenter une spécificité des réseaux neuronaux. Tout d'abord nous voulons implémenter un réseau neuronal simple pour nous familiariser avec le concept des réseaux de neurones et mettre en place les outils adéquats pour les simuler. Puis, nous modifierons ces réseaux basiques pour y introduire des propriétés plus complexes, tels les réseaux récurrents. Enfin, nous adapterons le réseau et son algorithme pour qu'il corresponde à celui du LSTM.

1.2 Equipe

L'équipe du projet est composée de 4 élèves-ingénieurs : Maxime Amossé, Julien Hemery, Hugo Hervieux et Sylvain Pascou encadrés par deux enseignants-chercheurs , Mme. Joana Tomasik et Mr. Arpad Rimmel.

TODO

1.3 Outils

1.3.1 Le langage

Le langage de programmation choisi est le C++, pour sa rapidité d'execution et sa plus grande versatilité que le C. Il est important de faire remarquer que ce langage est compilé et donc ne permet donc pas directement à l'utilisateur d'intéragir avec les variables durant l'exécution, ce qui complique les phases de débugage.

^{1.} Long Short Term Memory

1.3.2 Git

Pour travailler en groupe de manière efficace nous avons utilisé le gestionnaire de version Git et un dépot distant sur la plateforme GitHub: https://github.com/supelec-lstm/PinaPL. Il nous a fallu une dizaine d'heures et quelques règles de bonne conduite pour ne pas créer des conflits à chaque merge et faciliter le travail de chacun.

Chaque développeur travaille donc sur la branche de la fonction qu'il implémente puis la merge dans la branche master lorsqu'il à une version stable qui compile et se comporte correctement.

1.3.3 Zotero

Zotero est un outil gratuit de gestion de bibliographie. Il permet à tous les membres du projet d'y enregistrer des références utiles, des articles papiers, mais aussi les fichiers PDF contenant les dits articles. De plus, il nous permet d'exporter régulièrement la bibliographie sous un format standard pour l'inclure dans ce rapport.

1.3.4 LaTeX

Il s'agit d'un langage de création de documents. Axé autour du document scientifique, il est reconnu par la communauté pour sa facilité d'utilisation et sa capacité à générer des documents propres et ordonnés. Ce rapport a été rédigé grâce à LaTeX.

Chapitre 2

Réseau neuronal simple

2.1 Théorie

2.1.1 Le perceptron

Le perceptron est le neurone le plus basique que l'on puisse trouver dans la littérature. Un perceptron est défini par :

- n entrées x_i
- -1 sortie y
- n poids w_i
- 1 biais θ
- 1 fonction de composition $g: \mathbb{R}^n \to \mathbb{R}$
- 1 fonction d'activation $f: \mathbb{R} \to \mathbb{R}$

Sur sa construction, le perceptron est fortement inspiré sur le neurone humain, sans pour autant en être une représentation réaliste. Le perceptron détermine avec ses entrées si il "active" ou non la sortie, c'est à dire s'il relaie le signal. Pour cela il rassemble toutes les données des entrées x_i à l'aide de la fonction de composition g. Le neurone ne donnant pas la même importance à chaque entrée, on les pondère préalablement par les poids notés w_i . Finalement, on décide du signal de sortie à l'aide de la fonction d'activation f. De base, le seuil d'activation est souvent centré en 0. Pour palier à ce problème, on prend également en entrée de la fonction d'activation un biais θ .

En résumé, on a :

$$y = f(g(x_1w_1, x_2w_2, \dots, x_nw_n) + \theta)$$

Usuellement, la fonction d'activation est la somme :

$$y = f(\sum_{i=1}^{n} x_i w_i + \theta)$$

On remarque que le biais agit comme le poids d'une entrée du neurone qui serait toujours 1.

2.1.2 Le réseau

Une réseau de neurones permet de créer des fonctions de bien plus grande complexité qu'un simple neurone, permettant de résoudre des problèmes jusqu'alors inaccessibles à la machine. Il permet par exemple de faire

des classifications sur le MNIST. Le MNIST est un problème classique où l'on a des images resprésentant des chiffres manuscrits et pour lequel l'on doit déterminer le chiffre représenté. C'est un problème d'une extrême simplicité pour un être humain, mais presque impossible à résoudre avec une programmation classique sans réseau neuronal. Ainsi, pour construire un réseau, chaque perceptron est mis en relation avec ses pairs (un perceptron prend en entrée les sorties d'autres perceptrons). On construit alors un graphe orienté dans lequel chaque sommet est un perceptron. On se limitera dans un premier temps au cas d'un réseau acyclique.

On peut définir plusieurs types de neurones dans un réseau :

- les neurones d'entrée
- les neurones cachés
- les neurones de sortie

Il faut donc autant de neurones d'entrée que de dimensions qu'a l'échantillon que l'on veut soumettre au réseau. Par exemple dans le cadre du MNIST (insert cite here) on veut en entrée une image de dimension 28×28 , on place donc 784 neurones d'entrées. En pratique, les neurones d'entrée sont des neurones fictifs; ils sont présents pour faciliter la construction du réseau de neurone. En effet, ils ne sont soumis à aucun apprentissage et leur sortie est la même que leur entrée. Nous ne les considérerons pas dans la théorie qui suit.

Les neurones des couches cachées sont présents entre les neurones d'entrée et de sortie. Ils sont utiles uniquement pour le calcul de la sortie. Le nombre de couches et la taille des couches influent sur l'action du réseau. Un réseau à multiples couches cachées sera capable de traiter des problèmes beaucoup plus complexes qu'un réseau à simple couche cachée. Il est évident que cela augmente néanmoins la complexité des calculs et le temps d'exécution.

Les neurones de sortie sont ceux qui servent pour la classification de l'échantillon d'entrée. Si l'on souhaite classifier une entrée il faut le même nombre de neurones de sortie que de classes différentes possibles. Ainsi dans l'exemple du MNIST, le but est de déterminer un chiffre donné sur une image. Il y a donc 10 possibilités (les 10 chiffres). Il y a donc 10 neurones de sortie.

Par la suite, on appellera $\{x_i\}_{i\leq n}$ les entrées, $\{y_i\}_{i\leq m}$ les sorties des neurones $\{y_i\}_{m+1-M\leq i\leq m}$ les sorties des neurones de sorties, $\{\sigma_i\}_{i\leq m}$ les fonctions d'activations et $\{\theta_i\}_{i\leq m}$ les biais.

On définit enfin $\{F_i\}_{i\leq m}$ tel que $j\in E_i$ si et seulement si la sortie du neurone j est reliée au neurone i. On peut ainsi numéroter les poids : $\{w_{ij}\}_{i\leq m,j\in F_i}$ le poids associé à l'entrée reliant le neurone j au neurone i.

D'après ce qui précède, on obtient $\forall i \in [1, m]$:

$$y_i = \sigma_i (\sum_{j \in F_i} y_j w_{ij} + \theta_i)$$

2.1.3 Les réseaux à couche

Il existe un type de réseau simplifié très utilisé. On partitionne l'ensemble des neurones en K ensembles. On chacun de ces ensembles une "couche". De plus, chaque neurone d'une couche a comme entrées l'ensemble (ou partie) des sorties des neurones de la couche précédente. On notera $\alpha_j^{(k)}$ l'élément j de la couche k de α . On notera également N_k le nombre de neuroneq à la couhce k. On a donc pour tout k>1:

$$y_i^{(k)} = \sigma_i^{(k)} \left(\sum_{j=0}^{N_{k-1}} y_j^{(k-1)} w_{ij}^{(k)} + \theta_i^{(k)} \right)$$

On remarque que l'on peut simplifier la notation en considérant la formule ci-dessus avec une approche vectorielle :

$$\overline{y^{(k)}} = w^{(k)} \times y^{(k-1)} + \theta^{(k)}$$
$$y^{(k)} = \sigma^{(k)}(\overline{y^{(k)}})$$

On peut montrer que tout réseau acyclique peut se ramener à un réseau à couches dont certains poids sont imposés comme nuls. Nous prenons donc l'hypothèse que le réseau est un réseau à K couches, que la première couche est l'ensemble des neurones d'entrée et la dernière couche l'ensemble des neurones de sortie, sans perte de généralité.

2.1.4 L'apprentissage

L'efficacité d'un réseau de neurones se mesure à la qualité de sa classification. Celle-ci dépend des poids qui sont attribués à chacune de ses entrées. Il faut donc déterminer la bonne combinaison de poids qui permettra au réseau de simuler la fonction voulue. Le nombre de poids présents dans un réseau augmente très rapidement et il devient complexe d'estimer cette bonne combinaison. Pour cela, on procède à une phase apprentissage : on utilise un échantillon de données dont on connaît le résultat pour construire un réseau avec les bon poids . On part ainsi d'un réseau avec des poids aléatoires, choisis dans un intervalle restreint et centré en zéro, et on les modifie en prenant en compte les erreurs entre les valeurs obtenues et les valeurs théoriques. Dans la suite, on s'intéressera à toute la démarche nécessaire pour arriver à cette modification de poids.

On notera $\{x_i\}_{i \le n}$ et $\{Y_i\}_{i \le M}$ les entrées et sorties des échantillons.

Pour déterminer les modifications à effectuer, on calcule la sortie du réseau de neurones à un échantillon de test donné et on mesure l'erreur. Pour cela, on choisira une fonction qui mesurera la différence entre le vecteur de sortie et le vecteur des sorties théoriques. Classiquement, on utilise la méthode des moindres carrés E_m ou bien une fonction softmax à laquelle on rajoute une entropie croisée E_s :

$$E_m = \sum_{j=1}^{M} \frac{(Y_j - y_j^{(K)})^2}{2}$$

$$E_s = \sum_{j=1}^{M} Y_j \log \left(\frac{e^{y_j^{(K)}}}{\sum e^{y_i^{(K)}}} \right)$$

2.1.5 La méthode des gradients

On veut donc minimiser E en modifiant les w_{ij} . Le problème ici est que l'on a une connaissance limitée de E en fonction des w_{ij} car on ne dispose des valeurs théoriques de sortie que pour un nombre fini de valeurs. Or les méthodes de minimisation de fonctions reposent souvent sur une connaissance continue de ce que l'on veut optimiser. La seule méthode viable est la méthode des gradients.

On a une fonction f, appelée fonction de coût, que l'on veut minimiser par rapport à un facteur x. On crée alors une suite (x_n) telle que $x_{n+1} = x_n - \frac{\partial f}{\partial x}(x_n)$. L'idée est se déplacer sur le potentiel de f grâce à son gradient. Avec cette méthode, on peut calculer facilement la suite (x_n) car il suffit d'évaluer le gradient en un point et non plus en un nombre continuement infini.

Cependant, cette méthode est imprécise et il arrive qu'elle converge vers un minimum local. En pratique, l'ajout de neurones va augmenter le nombre de dimensions du gradient et donc permettre de limiter le nombre de minima locaux.

2.1.6 La rétropropagation

D'après ce qui précède, l'objectif est donc d'évaluer pour tout $w_{ij}^{(k)}: \frac{\partial E}{\partial w_{ij}^{(k)}}$

$$\begin{split} \frac{\partial E}{\partial w_{ij}^{(k)}} &= \sum_{l=1}^{M} \frac{\partial y_{l}^{(K)}}{\partial w_{ij}^{(k)}} \times \frac{\partial E}{\partial y_{l}} \\ &= \left\langle \frac{\partial y^{(K)}}{\partial w_{ij}^{(k)}}, \frac{\partial E}{\partial y} \right\rangle \\ &= \left\langle \frac{\partial \overline{y^{(K)}}}{\partial w_{ij}^{(k)}} \odot \sigma'(\overline{y}), \frac{\partial E}{\partial y} \right\rangle \\ &= \left\langle \frac{\partial \overline{y^{(K)}}}{\partial w_{ij}^{(k)}}, \sigma'(\overline{y^{(K)}}) \odot \frac{\partial E}{\partial y} \right\rangle \end{split}$$

Calculons maintenant $\frac{\partial \overline{y^{(l)}}}{\partial w_{ij}^{(k)}}$. Tout d'abord, remarquons que si l=k alors on a simplement :

$$\frac{\partial \overline{y^{(k)}}}{\partial w_{ij}^{(k)}} = E_{ij} y^{(k-1)} = y_j^{(k-1)} e_i$$

Ceci vient du fait que le réseau étant acyclique, $y^{(l)}$ ne dépend pas de $w_{ij}^{(k)}$ pour l < k. De même, pour l > k, on obtient :

$$\begin{split} \frac{\partial \overline{y^{(l)}}}{\partial w_{ij}^{(k)}} &= w^{(l)} \times \frac{\partial y^{(l-1)}}{\partial w_{ij}^{(k)}} \\ &= w^{(l)} \times \left(\sigma(\overline{y^{(l-1)}}) \odot \frac{\partial \overline{y^{(l-1)}}}{\partial w_{ij}^{(k)}} \right) \end{split}$$

Donc en supposant qu'il existe un vecteur v tel que $\frac{\partial E}{\partial w_{ij}^{(k)}} = \left\langle \frac{\partial \overline{y^{(l)}}}{\partial w_{ij}^{(k)}}, v \right\rangle$:

$$\begin{split} \frac{\partial E}{\partial w_{ij}^{(k)}} &= \left\langle w^{(l)} \times \left(\sigma(\overline{y^{(l-1)}}) \odot \frac{\partial \overline{y^{(l-1)}}}{\partial w_{ij}^{(k)}} \right), v \right\rangle \\ &= \left\langle \sigma(\overline{y^{(l-1)}}) \odot \frac{\partial \overline{y^{(l-1)}}}{\partial w_{ij}^{(k)}}, {}^t\!w^{(l)} \times v \right\rangle \\ &= \left\langle \frac{\partial \overline{y^{(l-1)}}}{\partial w_{ij}^{(k)}}, \sigma(\overline{y^{(l-1)}}) \odot ({}^t\!w^{(l)} \times v) \right\rangle \end{split}$$

$$\text{Donc il existe } u = \sigma(\overline{y^{(l-1)}}) \odot ({}^t\!w^{(l)} \times v) \text{ tel que } \frac{\partial E}{\partial w_{ij}^{(k)}} = \left\langle \frac{\partial \overline{y^{(l-1)}}}{\partial w_{ij}^{(k)}}, u \right\rangle$$

Donc par récurrence, pour tout $l \ge k$ il existe $\delta y^{(l)}$ tel que :

$$\frac{\partial E}{\partial w_{ij}^{(k)}} = \left\langle \frac{\partial \overline{y^{(l)}}}{\partial w_{ij}^{(k)}}, \delta y^{(l)} \right\rangle$$

On remarquera que $\delta y^{(l)}$ ne dépend pas de $w_{ij}^{(k)}$. On appellera $\delta y_j^{(l)}$ le gradient du neurone j de la couche l. Ce gradient vérifie la relation de reccurence suivante d'après ce qui précède :

$$\begin{cases} \delta y^{(K)} = \sigma'(\overline{y^{(K)}}) \odot \frac{\partial E}{\partial y} \\ \delta y^{(k)} = \sigma(\overline{y^{(k)}}) \odot ({}^t\!w^{(k+1)} \times \delta y^{(k+1)}) \end{cases}$$

On a alors:

$$\begin{split} \frac{\partial E}{\partial w_{ij}^{(k)}} &= \left\langle \frac{\partial \overline{y^{(k)}}}{\partial w_{ij}^{(k)}}, \delta y^{(k)} \right\rangle \\ &= \left\langle y_j^{(k-1)} e_i, \delta y^{(k)} \right\rangle \\ &= y_j^{(k-1)} \times \delta y_i^{(k)} \end{split}$$

Donc:

$$\Delta w_{ij}^{(k)} = \lambda \times y_{i}^{(k-1)} \times \delta y_{i}^{(k)}$$

$$\Delta w^{(k)} = \lambda \times (\delta y^{(k)} \times {}^t\!y^{(k-1)})$$

On obtient donc un algorithme d'apprentissage qui se fait en deux temps : tout d'abord le calcul du gradient qui se fait récursivement, puis le calcul de la différence de poids à appliquer. On remarque dans ce cas que l'on propage le gradient de la fin du réseau vers le début. C'est ceci qui donne le nom à la méthode employée : la rétropropagation.

2.2 L'implémentation

2.2.1 Le neurone

Le neurone est une classe, il a pour attributs :

- le nombre de ses entrées (int).
- les valeurs de ses entrées (vector<double>).
- les poids qu'il leur attribue (vector<double>).
- son biais (int).
- sa fonction de composition (compositionFunction).
- sa fonction d'activation (activationFunction).

Il dispose des méthodes suivantes:

- description() : indique l'état du neurone.
- reset() : remet à zero ses entrées et sa sortie.
- les getters et les setters pour les poids, le nombre d'entrées, les fonctions de composition...
- calculateOutput() : calcul la sortie du neurone en fonction de ses entrées.

- getActivationDerivative : calcul de la dérivée de la fonction d'activation au point observé.
- getCompositionDerivative : idem pour la fonction de composition.

2.2.2 Le réseau

Le réseau est aussi implémenté en tant que classe. Un réseau dispose :

- d'un nom (string).
- d'une date de création (string).
- de ses neurones (vector<Neuron>).
- de la liste de ses neurones d'entrée (vector<unsigned long>).
- de la liste de ses neurones de sortie (vector<unsigned long>).
- de la matrice des liens entre neurones (vector<vector<double>>).
- de son facteur d'apprentissage (unsigned long).
- de ses valeurs en entrée (vector<double>).
- de la matrice des sorties des neurones (vector<double>).

Il dispose des méthodes nécessaires à la propagation du signal ainsi qu'à sa rétropropagation.

2.2.3 Améliorations apportées

Nous avons ensuite amélioré le code pour diminuer le temps de calcul et clarfier la structure. Les éléments à améliorer sont :

- La structure orientée objet
- Le single-threading
- calcul à chaque pas des sorties de chaque neurone

Nous nous sommes progressivement débarrassés de la structure d'objet du neurone en effectuant les conversions suivantes :

structure objet	nouvelle structure
neurones.poids + matrice des poids + matrice des relations	matrice des poids
${\bf neuron. activation Function}$	vecteur de fonctions d'activation
${\bf neuron. composition Function}$	on ne considère plus que la somme
${\bf neuron.inputs/output}$	vecteur des entrées/sorties de tout le réseau
neuron. bias	vecteur des biais de chaque neurone du réseau
dérivée de la fonction de composition	vaut 1

De plus, nous avons déterminé en amont les neurones voisins qui nécessitaient un rafraîchissement de leur sortie. Cela permet de ne pas calculer à chaque itération la sortie de tous les neurones du réseau. Lors de la création du réseau est construite une liste de vecteurs des neurones dont il faut évaluer la sortie au tour i.

2.3 Résultats

Après une longue période de débogage, nous avons obtenu des résultats satisfaisants.

TODO

2.3.1 Le XOR

TODO

2.3.2 Le MNIST

Les données du problème du MNIST sont réparties en deux fichiers :

- Le set d'apprentissage qui contient 60000 entrées (images de 784 pixels des chiffres manuscrits suivis des données des chiffres représentés)
- Le set de test qui contient 10000 entrées (différentes de celle du set d'apprentissage)

Les valeurs des entrées sont stockées dans les fichiers entre 0 et 255, nous les avons centrées et normalisées (entre -0.5 et 0.5).

Tous les résultats présentés par la suite sont établis en soumettant au réseau après apprentissage les 10000 entrées du set de test et en comparant la sortie attendue et la sortie obtenue. On obtient le résultat du calcul du réseau en prenant la sortie du réseau avec la valeur maximale.

2.3.2.1 Le classificateur linéaire

En créant un réseau neuronal sans bias ni couche cachées on obtient un classificateur linéaire. Les 10 neurones de sortie sont reliés chacun aux 784 neurones d'entrées. Les poids sont initialisés aléatoirement entre -1 et 1 selon une loi uniforme. La fonction d'activation est une siogmoïde, la composition est une somme pondérée, et la fonction de coût est l'écart quadratique. Le facteur d'apprentissage λ est fixé à 0.3 en accord avec la littérature sur le sujet.

Les résultats d'un tel réseau sont forts intéressants car permettent après un apprentissage stochastique des 60000 échantillons de test d'obtenir un pourcentage moyen d'erreur de XX %. (Moyenne effectuée sur 100 réalisations).

TODO

2.3.2.2 Réseau sans couche cachées

2.3.3 Réseau avec 1 couche cachée

2.3.3.1 Réseau avec deux couches cachées

Chapitre 3

Real time reccurent learning

A partir de cette section, les objectifs sont de reconnaître une chaine de caractère en temps réel : c'est à dire que en donnant un ou plusieurs caractères , on doit être capable de prédire la fin de la chaine. Ce genre de problème peut être étendu à la recherche comportementale en temps réel. Pour résoudre ce genre de problème, on utilise des réseaux neuronaux récurrents, qui ont l'avantage de se souvenir des états précedents pour pouvoir prédire efficacement les états suivants ; ils comportent une mémoire courte. Dans un premier temps, nous allons nous interesser aux réseaux RTRL.

3.1 Théorie

Dans la suite, nous allons nous interesser au problème de la grammaire de Reber, qui servira d'échantillon de test pour RTRL.

3.1.1 La grammaire de Reber

Une grammaire de Reber est un langage défini par l'automate déterministe cyclique suivant :

Figure 3.1 – Grammaire de Reber simple

De base, on considère une probabilité uniforme de chosir l'état suivant parmis les états possibles suivants. La lettre B et la lettre E sont des lettres indiquant simplement le début et la fin de la chaîne, elles n'ont pas d'interet propre pour la grammaire. Les autres lettres présentes sur les arêtes peuvent variées, mais elles doivent respecter les règles suivantes :

- Chaque lettre doit apparaître exactement deux fois
- On ne peut pas obtenir deux lettres consécutives en passant par des états différents.

L'interet de la grammaire de Reber est que c'est un automate simple qui ne nécessite que la mémoire de la

dernière et de l'avant dernière lettre pour trouver la suivante. En effet, d'après la dernière règle, connaitre les deux dernières lettres impose l'état actuel dans l'automate. En outre, chaque lettre apparaissant deux fois, la connaissance seule de la dernière lettre ne suffit pas à prédir la suivante correctement. On remarque que l'on peut résoudre ce problème avec un perceptron classique si on donne en entrée du perceptron les deux dernières lettres du mot. Ce modèle bien que résolvant ce problème, n'est pas adapté au calcul en temps réel. De plus il ne résout pas le problème de la grammaire de Reber double.

Le problème de la grammaire double est un problème similaire à la grammaire simple. L'automate le représentant est :

FIGURE 3.2 – Grammaire de Reber symetrique

On remarque qu'il est consitué de deux grammaires de Reber simple qui sont reliés en entrée et en sortie. La difficulté de ce problème est qu'il faut mémorisé la première valeur pour en déduire la dernière. Dans ce cas, une mémoire "infini" est nécessaire theoriquement pour se souvenir de la première entrée. Il est donc impensable d'utiliser de la même façon un réseau de perceptron classique. On a alors besoin de réseau récurrent, dont la sortie à un instant t va dépendre de la sortie à un instant t-1.

3.1.2 Réseau RTRL

Chapitre 4

Long Short Term Memory

- 4.1 Théorie
- 4.2 Résultats sur la grammaire de Reber

Annexes

Annexe 1

Intro

1 Partie 1

Bla

1.1 Sous-partie 1

Bla

1.2 Sous-partie 2

Bla

1.3 Sous-partie 3

Bla

2 Partie 2

Bla

2.1 Sous-partie 1

Bla

2.2 Sous-partie 2

2.3 Sous-partie 3

Annexe 2

Intro

Prérequis

Bla

- item1;

-- it em 2;

— item3; — item4.

Bla

1 Partie 1

Bla

1.1 Sous-parie 1

Bla

1.2 Sous-parie 2

Bla

2 Partie 2

ATTENTION!

 $Texte\ d'avertissement$

3 Partie 3

Bla

Figure 4.1 – Presentation schema

Paragraphe 1

Bla

Paragraphe 2

Bla

Paragraphe 3

Bibliographie

- [1] Neural computing: new challenges and perspectives for the new millennium: proceedings of the IEEE-INNS-ENNS international joint conference on neural networks, IJCNN 2000, como, italy, 24 27 july 2000.
- [2] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. 18(5):602–610.
- [3] Marius-Constantin Popescu, Valentina E. Balas, Liliana Perescu-Popescu, and Nikos Mastorakis. Multilayer perceptron and neural networks. 8(7):579–588.
- [4] Alberto Prieto, Beatriz Prieto, Eva Martinez Ortigosa, Eduardo Ros, Francisco Pelayo, Julio Ortega, and Ignacio Rojas. Neural networks: An overview of early research, current frameworks and new challenges.
- [5] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. In *Advances in neural information processing systems*, pages 3104–3112.
- [6] Paul J. Werbos. Backpropagation through time: what it does and how to do it. 78(10):1550–1560.
- [7] Ronald J. Williams and David Zipser. Gradient-based learning algorithms for recurrent networks and their computational complexity. pages 433–486.