Introduction Soit ω une 1-forme et X un champ de vecteur sur M variété différentiable de dimension n.

On note $\varphi_t: M \to M$ l'application exponentielle associée au champ tX, on supposera (quitte à remplacer M) qu'elle est définie pour tout t. Elle satisfait l'équation différentielle :

$$\begin{cases} \frac{\partial \varphi_t}{\partial t}|_{t=t_0} = X \circ \varphi_{t_0} \\ \varphi_0 = id_M \end{cases}$$

On s'intéresse à la forme $\omega_t = \varphi_t^* \omega$. On sait que

$$\frac{\partial(\varphi_t^*\omega)}{\partial t}|_{t=t_0} = \lim_{t \to t_0} \frac{\varphi_t^*\omega - \varphi_{t_0}^*\omega}{t} = \lim_{s \to 0} \frac{\varphi_s^*\omega_{t_0} - \omega_{t_0}}{t} = L_X\omega_{t_0} = (\mathrm{d}\omega_{t_0})(X) + \mathrm{d}(\omega_{t_0}(X))$$

En particulier pour Y champ de vecteur sur M on a :

$$\frac{\partial(\varphi_t^*\omega)}{\partial t}|_{t=t_0}(Y) = (L_X\omega_{t_0})(Y) = X(\omega_{t_0}(Y)) - \omega_{t_0}([X,Y])$$

Orthogonalité. On suppose désormais que $\omega(X) = 0$, alors on peut faire le calcul ainsi :

$$\frac{\partial(\varphi_t^*\omega)}{\partial t}|_{t=t_0} = \lim_{t \to t_0} \frac{\varphi_t^*\omega - \varphi_{t_0}^*\omega}{t} = \varphi_{t_0}^* \left(\lim_{s \to 0} \frac{\varphi_s^*\omega - \omega}{t} \right) = \varphi_{t_0}^* L_X \omega = \varphi_{t_0}^* ((\mathrm{d}\omega)X)$$

Or on sait que pour Φ un difféomorphisme $\Phi^*(\alpha Y) = \Phi^*(\alpha)(\Phi_* Y)$ où $\Phi_* Y = D\Phi^{-1} Y \circ \Phi$. Et de plus φ_t vérifie la relation : $(\varphi_t)_* X = X$. On peut donc écrire :

$$\frac{\partial \omega_t}{\partial t} = (\mathrm{d}\omega_t)(\varphi_t)_* X = (\mathrm{d}\omega_t) X$$

Intégrabilité Supposons maintenant que X et Y satisfassent $\omega(X) = \omega(Y) = 0$, et que ω soit intégrable ($\omega \wedge d\omega = 0$), alors on peut observer :

$$(d\omega)(X,Y) = d(\omega(X))(Y) - d(\omega(Y))(X) - \omega([X,Y]) = -\omega([X,Y])$$

Or par hypothèse d'intégrabilité ω divise d ω donc cette dernière s'annule en (X,Y) d'où ω s'annule en [X,Y].

Sous ces hypothèses on a alors :

$$\frac{\partial \omega_t}{\partial t}|_{t=0}(Y) = X(\omega(Y)) - \omega([X,Y]) = 0$$

Intégrabilité 2 Supposons $\omega(X) = 0$ et $d\omega = \omega \wedge \theta$. Alors :

$$\frac{\partial \omega_t}{\partial t} = (\mathrm{d}\omega_t)X = (\omega_t \wedge \theta_t)X = \omega_t(X)\theta_t - \theta_t(X)\omega_t = -\theta_t(X)\omega_t = -(\theta(X)\circ\varphi_t)\omega_t$$

En effet $\omega_t(X) = \varphi_t^*(\omega(\varphi_{-t})_*X) = \varphi_t^*(\omega X) = 0.$

Donc ω_t est solution de l'équation différentielle

$$\begin{cases} \frac{\partial \omega_t}{\partial t} &= -(\theta(X))_t \omega_t \\ \omega_0 &= \omega \end{cases}$$

Schéma de preuve du théorème de Frobenius en codimension 1 On prend $(x^1, \cdots x^n)$ des coordonnées, on a donc $\frac{\partial}{\partial x^i}$ une base locale du fibré tangent. On cherche un difféomorphisme Φ tel que :

$$(\Phi^*\omega)\left(\frac{\partial}{\partial x^i}\right) = 0 \quad \forall i > 2$$

donc $\Phi^*\omega = f dx^1$ et ainsi :

$$\omega = (f \circ \Phi^{-1}) \,\mathrm{d} \big(x^1 \circ \Phi^{-1} \big)$$

Version "formes" Soit ω une 1-forme intégrable $(\omega \wedge d\omega = 0)$. Soit (x^1, \dots, x^n) une carte locale telle que $\omega \wedge dx^2 \wedge dx^3 \wedge \dots \wedge dx^n \neq 0$.

On cherche un difféomorphisme local Φ tel que :

$$\begin{cases} \omega \wedge \Phi^* \eta_1 \neq 0 \\ \omega \wedge \Phi^* \eta_i = 0 \quad \forall i > 1 \end{cases} \quad \text{où} \quad \eta_i = \mathrm{d} x^1 \wedge \dots \wedge \mathrm{d} \dot{x^i} \wedge \dots \wedge \mathrm{d} x^n$$