		SM		a = 15 ft
Hi = 10.4 ft		ML SC	$\varepsilon_c = 0.02 \mathrm{ft}$	Elev. 10 ft
		ML		H = 7 ft
Hi = 1.6 ft	XXX	SP	$\varepsilon_c = 0.0 \text{ ft}$	$\gamma = 120 \text{ pcf}$
Hi = 2.5 ft	\bigcirc	SP	$\varepsilon_c = 0.01 \mathrm{ft}$	
Hi = 5 ft	•	ML	$\varepsilon_c = 0.14 \text{ ft}$	
Hi = 5 ft		SP-SM	ε_c = 0.01 ft	
Hi = 15 ft		ML ML MH	$\varepsilon_c = 0.3 \mathrm{ft}$	-0.3 - \
Hi = 20 ft		SP	$\varepsilon_c = 0.02 \mathrm{ft}$	Total settlement (ft) -0.6 -
Hi = 15 ft		ML	$\varepsilon_c = 0.17 \mathrm{ft}$	-0.7
Hi = 26 ft		CL SM CH	$\varepsilon_{c}=0.0~\mathrm{ft}$	Total settlement =0.67 ftat x = 100 ft
Hi = 9 ft		SM SP	$\varepsilon_c = 0.0 \text{ ft}$	

- Notes:
 1. REF: ELASTIC SOLUTIONS FOR SOIL AND ROCK MECHANICS, BY H.G. POULOS & E.H. DAVIS
 2. REF: AN INTRODUCTION TO GEOTECHNICAL ENGINEERING, BY R.D. HOLTZ & W.D. KOVACS

SPARROWS POINT LNG SPARROWS POINT, MARYLAND AES SPARROWS POINT LNG TERMINAL

HA-204 PRELIMINARY SETTLEMENT DUE TO NEW FILL

8/21

FIGURE 32907-260