Lecture 3: Planning by Dynamic Programming

David Silver

Outline

- 1 Introduction
- 2 Policy Evaluation
- 3 Policy Iteration
- 4 Value Iteration
- 5 Extensions to Dynamic Programming
- 6 Contraction Mapping

Lecture 3: Planning by Dynamic Programmir

-Introduction

What is Dynamic Programming?

Dynamic sequential or temporal component to the problem Programming optimising a "program", i.e. a policy

- c.f. linear programming
- A method for solving complex problems
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

Lecture 3: Planning by Dynamic Programmin

Introduction

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
- Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be cached and reused
- Markov decision processes satisfy both properties
 - Bellman equation gives recursive decomposition
 - Value function stores and reuses solutions

ecture 3: Planning by Dynamic Programmin

-Introductio

Introduction

Planning by Dynamic Programming

- Dynamic programming assumes full knowledge of the MDP
- It is used for *planning* in an MDP
- For prediction:
 - \blacksquare Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and policy π
 - or: MRP $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
 - lacksquare Output: value function v_π
- Or for control:
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$
 - Output: optimal value function v_*
 - and: optimal policy π_*

Other Applications of Dynamic Programming

Dynamic programming is used to solve many other problems, e.g.

- Scheduling algorithms
- String algorithms (e.g. sequence alignment)
- Graph algorithms (e.g. shortest path algorithms)
- Graphical models (e.g. Viterbi algorithm)
- Bioinformatics (e.g. lattice models)

Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- $\mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow ... \rightarrow \mathbf{v}_{\pi}$
- Using synchronous backups,
 - At each iteration k+1
 - For all states $s \in \mathcal{S}$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - \blacksquare where s' is a successor state of s
- We will discuss asynchronous backups later
- lacktriangle Convergence to v_{π} will be proven at the end of the lecture

Iterative Policy Evaluation (2)

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$
$$\mathbf{v}^{k+1} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k$$

Policy Evaluation

Policy Evaluation

Evaluating a Random Policy in the Small Gridworld

$$r = -1$$
 on all transitions

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Iterative Policy Evaluation in Small Gridworld

cture 3: Planning by Dynamic Programming

-Policy Evaluation

Policy Iteration

Iterative Policy Evaluation in Small Gridworld (2)

How to Improve a Policy

- \blacksquare Given a policy π
 - Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + ... | S_t = s\right]$$

■ Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \mathsf{greedy}(v_\pi)$$

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to $\pi*$

Policy Iteration

Jack's Car Rental

- States: Two locations, maximum of 20 cars at each
- Actions: Move up to 5 cars between locations overnight
- Reward: \$10 for each car rented (must be available)
- Transitions: Cars returned and requested randomly
 - Poisson distribution, *n* returns/requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$
 - 1st location: average requests = 3, average returns = 3
 - 2nd location: average requests = 4, average returns = 2

Greedy policy improvement

Policy Iteration

Policy Iteration in Jack's Car Rental

Policy Iteration

Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can *improve* the policy by acting greedily

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} q_{\pi}(s, a)$$

■ This improves the value from any state s over one step,

$$q_\pi(s,\pi'(s)) = \max_{s \in \mathcal{A}} \, q_\pi(s,s) \geq q_\pi(s,\pi(s)) = v_\pi(s)$$

■ It therefore improves the value function, $v_{\pi'}(s) \geq v_{\pi}(s)$

$$\begin{split} v_{\pi}(s) &\leq q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s \right] \\ &\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_t = s \right] \\ &\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi}(S_{t+2}, \pi'(S_{t+2})) \mid S_t = s \right] \\ &\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \dots \mid S_t = s \right] = v_{\pi'}(s) \end{split}$$

Policy Iteration

Policy Improvement (2)

If improvements stop,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

■ Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

- lacksquare Therefore $v_\pi(s)=v_*(s)$ for all $s\in\mathcal{S}$
- \blacksquare so π is an optimal policy

Modified Policy Iteration

- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition
 - \blacksquare e.g. ϵ -convergence of value function
- Or simply stop after *k* iterations of iterative policy evaluation?
- For example, in the small gridworld k = 3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k=1
 - This is equivalent to value iteration (next section)

Generalised Policy Iteration

Policy evaluation Estimate v_{π} Any policy evaluation algorithm

Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

Principle of Optimality

Any optimal policy can be subdivided into two components:

- An optimal first action A_{*}
- lacktriangle Followed by an optimal policy from successor state S'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if

- For any state s' reachable from s
- \blacksquare π achieves the optimal value from state s', $v_{\pi}(s') = v_{*}(s')$

Value Iteration

Deterministic Value Iteration

- If we know the solution to subproblems $v_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards
- Still works with loopy, stochastic MDPs

-Value Iteration

Example: Shortest Path

0 0 Problem

0

0

-2 -2 -2 -2 -2 -2 -2 -2 -2

0

0

0

0

-2 -3 -4 -2 -3 -4 -3 -4 -5 -6 V₇

Value Iteration └Value Iteration in MDPs

Value Iteration

- Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $\mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow ... \rightarrow \mathbf{v}_*$
- Using synchronous backups
 - At each iteration k + 1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- \blacksquare Convergence to v_* will be proven later
- Unlike policy iteration, there is no explicit policy
- Intermediate value functions may not correspond to any policy

Value Iteration

Value Iteration (2)

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

$$v_{k+1} = \max \mathcal{R}^a + \gamma \mathcal{P}^a v_k$$

Example of Value Iteration in Practice

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative
		Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $q_{\pi}(s, a)$ or $q_{*}(s, a)$
- Complexity $O(m^2n^2)$ per iteration

http://www.cs.ubc.ca/~poole/demos/mdp/vi.html

Extensions to Dynamic Programming

Asynchronous Dynamic Programming

- DP methods described so far used *synchronous* backups
- i.e. all states are backed up in parallel
- Asynchronous DP backs up states individually, in any order
- For each selected state, apply the appropriate backup
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

- In-place dynamic programming
- Prioritised sweeping
- Real-time dynamic programming

Extensions to Dynamic Programming

In-Place Dynamic Programming

Synchronous value iteration stores two copies of value function

$$v_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{old}(s') \right)$$

■ In-place value iteration only stores one copy of value function for all s in S

$$\mathbf{v(s)} \leftarrow \max_{\mathbf{a} \in \mathcal{A}} \left(\mathcal{R}_{\mathbf{s}}^{\mathbf{a}} + \gamma \sum_{\mathbf{s'} \in \mathcal{S}} \mathcal{P}_{\mathbf{ss'}}^{\mathbf{a}} \mathbf{v(s')} \right)$$

Extensions to Dynamic Programming

Prioritised Sweeping

■ Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{a \in \mathcal{A}} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v(s') \right) - v(s) \right|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Real-Time Dynamic Programming

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t , A_t , R_{t+1}
- Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^a v(s') \right)$$

Full-Width Backups

- DP uses full-width backups
- For each backup (sync or async)
 - Every successor state and action is considered
 - Using knowledge of the MDP transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality
 - Number of states n = |S| grows exponentially with number of state variables
- Even one backup can be too expensive

Extensions to Dynamic Programming

Sample Backups

- In subsequent lectures we will consider sample backups
- Using sample rewards and sample transitions $\langle S, A, R, S' \rangle$
- lacksquare Instead of reward function ${\cal R}$ and transition dynamics ${\cal P}$
- Advantages:
 - Model-free: no advance knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - Cost of backup is constant, independent of n = |S|

-Extensions to Dynamic Programming

Approximate Dynamic Programming

- Approximate the value function
- Using a function approximator $\hat{v}(s, \mathbf{w})$
- Apply dynamic programming to $\hat{v}(\cdot, \mathbf{w})$
- \blacksquare e.g. Fitted Value Iteration repeats at each iteration k,
 - lacksquare Sample states $ilde{\mathcal{S}} \subseteq \mathcal{S}$
 - For each state $s \in \mathcal{\tilde{S}}$, estimate target value using Bellman optimality equation,

$$\tilde{v}_k(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \hat{v}(s', \mathbf{w_k}) \right)$$

■ Train next value function $\hat{v}(\cdot, \mathbf{w}_{k+1})$ using targets $\{\langle s, \tilde{v}_k(s) \rangle\}$

Contraction Mapping

Contraction Mapping

Some Technical Questions

- How do we know that value iteration converges to v_* ?
- Or that iterative policy evaluation converges to v_{π} ?
- And therefore that policy iteration converges to v_* ?
- Is the solution unique?
- How fast do these algorithms converge?
- These questions are resolved by contraction mapping theorem

Value Function Space

- lacktriangle Consider the vector space ${\cal V}$ over value functions
- There are |S| dimensions
- **Each** point in this space fully specifies a value function v(s)
- What does a Bellman backup do to points in this space?
- We will show that it brings value functions *closer*
- And therefore the backups must converge on a unique solution

Value Function ∞-Norm

Bellman Expectation Backup is a Contraction

- \blacksquare We will measure distance between state-value functions u and v by the ∞ -norm
- Define the Bellman expectation backup operator T^{π} ,

■ i.e. the largest difference between state values,

$$T^{\pi}(\mathbf{v}) = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}$$

 $||u-v||_{\infty} = \max_{s \in \mathcal{S}} |u(s)-v(s)|$

 \blacksquare This operator is a $\gamma\text{-contraction, i.e.}$ it makes value functions closer by at least $\gamma,$

$$||T^{\pi}(u) - T^{\pi}(v)||_{\infty} = ||(\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi}u) - (\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi}v)||_{\infty}$$

$$= ||\gamma \mathcal{P}^{\pi}(u - v)||_{\infty}$$

$$\leq ||\gamma \mathcal{P}^{\pi}||u - v||_{\infty}||_{\infty}$$

$$\leq \gamma ||u - v||_{\infty}$$

Lecture 3: Planning by Dynamic Programmin

—Contraction Mapping

Lecture 3: Planning by Dynamic Programming

Contraction Mapping

Contraction Mapping Theorem

Convergence of Iter. Policy Evaluation and Policy Iteration

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an operator T(v), where T is a γ -contraction,

- T converges to a unique fixed point
- lacksquare At a linear convergence rate of γ

- lacktriangle The Bellman expectation operator \mathcal{T}^π has a unique fixed point
- v_{π} is a fixed point of T^{π} (by Bellman expectation equation)
- By contraction mapping theorem
- Iterative policy evaluation converges on v_π
- Policy iteration converges on v_*

Lecture 3: Planning by Dynamic Programmin

Contraction Mapping

Lecture 3: Planning by Dynamic Programming

Contraction Mapping

Convergence of Value Iteration

Bellman Optimality Backup is a Contraction

■ Define the Bellman optimality backup operator T^* ,

$$T^*(v) = \max_{a \in A} \mathcal{R}^a + \gamma \mathcal{P}^a v$$

■ This operator is a γ -contraction, i.e. it makes value functions closer by at least γ (similar to previous proof)

$$||T^*(u) - T^*(v)||_{\infty} \le \gamma ||u - v||_{\infty}$$

- lacktriangle The Bellman optimality operator \mathcal{T}^* has a unique fixed point
- lacksquare v_* is a fixed point of \mathcal{T}^* (by Bellman optimality equation)
- By contraction mapping theorem
- Value iteration converges on v_*