Agriplots Linear Programming Model

Parameters

- N Set of possible locations to install PV's
- p_i Energy production (10⁶ kWh/year) for installing PV at location $i \in N$
- ullet a_i Area in dunam used for installing PV at location $i\in \mathbb{N}$
- c_i influence on crops from installing PV at location $i \in N$
- r_i potential revenue before installing PV at location $i \in N$
- ullet A- Upper bound on the total area in dunam that can be used for installing PV's
- C Minimal loss of revenue in percentage allowed as a result of influence on crops
- ullet D- Set of Yeshuvim that contain locations
- d_i upper bound of energy production in yeshuv $j \in D$
- E Set of Eshkolot that contain locations
- e_i Wealth ratio of eshkol $j \in E$
- F Set of Machozot that contain locations
- f_j upper bound of energy production in county $j \in F$
- ullet G_{max} upper bound on the Gini coefficient value

Decision Variables

- x_i Binary variable, equals to 1 if a PV is installed at location $i \in \mathbb{N}$, otherwise 0.
- y_i Total energy produced in eshkol $i \in E$.
- z_{ij} Absolute difference between energy production, weighted by wealth, for pair of eshkolot i,j ϵ E such that i<j. equals to $|e_j \cdot y_j e_i \cdot y_i|$.

Objective Function

Maximize
$$\sum_{i \in N} (x_i \cdot P_i)$$

Constraints

$$1. \qquad \sum_{i \in N} x_i \cdot a_i \le A$$

2.
$$\frac{\sum_{i \in N} x_i \cdot c_i \cdot r_i}{\sum_{i \in N} x_i \cdot r_i} \ge C$$

3.
$$\sum_{i \in j} x_i \cdot p_i \le d_j, \quad \forall j \in D$$

4.
$$\sum_{i \in j}^{i \in j} x_i \cdot p_i \le f_j, \quad \forall j \in F$$

5.
$$y_{j} = \sum_{i \in j} x_{i} \cdot p_{i}, \quad \forall j \in E$$
6.
$$z_{ij} \geq e_{j} \cdot y_{j} - e_{i} \cdot y_{i}, \quad \forall i, j \in E: i < j$$

6.
$$z_{ij} \ge e_i \cdot y_i - e_i \cdot y_i$$
, $\forall i, j \in E: i < j$

7.
$$z_{ij} \ge e_i \cdot y_i - e_j \cdot y_j$$
, $\forall i, j \in E: i < j$

8.
$$\sum_{i \in E} \sum_{j \in E, j > i} z_{ij} \leq G_{max} \cdot \sum_{i \in E} y_i, \quad \forall i, j \in E: i < j$$

9.
$$x_i \in \{0,1\} \ \forall i \in \mathbb{N}$$

Explanations

- The **objective function** maximizes the total energy production from the installed PV systems at various locations.
- **Constraint (1)** places an upper bound on the total area used for PV installations.
- **Constraint (2)** ensures that the change in revenue as a result of installing the PV's and influencing the crops remains above a certain threshold.
- **Constraint (3)** ensures that the total energy production for each Yeshuv does not exceed it's energy consumption limit.
- **Constraint (4)** ensures that the total energy production for each machoz does not exceed it's energy consumption limit.
- **Constraint (5)** assigns values to the y_i decision variables by summing the energy produced of all locations in eshkol i that had a PV installed in them $(x_i = 1)$, for all i.
- **Constraint (6) + (7)** linearize the absolute values of decision variables z_{ij} so that we could use it in our LP model
- **Constraint (8) places** an upper bound on the value of the Gini coefficient, using the G_{max} parameter. The value of the Gini coefficient G is calculated with the following formula:

$$G = \frac{\sum_{i \in E} y_i}{\sum_{i \in E} \sum_{j \in E, j > i} z_{ij}}$$

Constraint (9) requires that each decision variable x_i is binary, meaning that a PV system is either installed or not at each location.

Table of contents (need a better name)

Value/variable in the LP model	Value/variable in the data
N	OBJECTID (column from dataset)
p_i	Energy production (fix) mln kWh/year (column from dataset)
a_i	Dunam (column from dataset)
c_i	Average influence of PV on crops (modified column from dataset)
r_i	Potential revenue from crops before PV, mln NIS (column from dataset)
A	Parameter decided by user
С	Parameter decided by user
D	YeshuvName (column from dataset)
d_{j}	energy_consumption_by_yeshuv
Е	yeshuvim_in_eshkolot
e_j	energy_division_between_eshkolot
F	Machoz (column from dataset)
f_j	energy_consumption_by_machoz
G_{max}	G_max