Circuits RC

Càrrega	Descàrrega
$q(t) = q(0) \left(1 - e^{-\frac{t}{\tau_C}}\right)$	$q(t) = q(0)e^{-\frac{t}{\tau_C}}$
$I(t) = \frac{\epsilon}{R} e^{-\frac{t}{\tau_C}}$	$I(t) = -\frac{V}{R}e^{-\frac{t}{\tau_C}}$

$$\tau_C = RC, q(0) = VC$$

Solenoides

$$\begin{array}{l} \underline{\text{Flux}}\text{: }\Phi = NBS = \frac{\mu_0 N^2 SI}{l} \\ \underline{\text{Coeficient d'autoinducci\'o}}\text{: } \frac{\Phi}{I} = \frac{\mu_0 N^2 S}{l} \\ \epsilon_L = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -L\frac{\mathrm{d}I}{\mathrm{d}t} \end{array}$$

Circuits RL

Càrrega	Descàrrega
$I(t) = \frac{\epsilon}{R} \left(1 - e^{-\frac{t}{\tau_L}} \right)$	$I(t) = \frac{V}{R}e^{-\frac{t}{\tau_L}}$
$ au_L = rac{L}{R}$	

Corrent alterna

f.e.m. alterna: $V(t) = V_0 \cos(\omega t + \varphi)$, $T = \frac{2\pi}{\omega}$, $I(t) = \frac{V(t)}{R} = \frac{V_0}{R} \cos(\omega t + \varphi) = I_0 \cos(\omega t + \varphi)$ Flux: $\Phi = BSN\cos(\omega t + \theta)$, B camp magnètic Ley Faraday: $\epsilon(t) = V_0 \sin(\omega t + \theta_0)$ Voltatge eficaç: $V_{ef} = \frac{V_0}{\sqrt{2}}$ Intensitat eficaç: $I_{ef} = \frac{I_0}{\sqrt{2}}$

Circuit amb condensador

Voltatge: $V(t) = V_0 \cos(\omega t)$ Intensitat: $I(t) = -V_0 \omega C \sin(\omega t) = -I_0 \sin(\omega t)$ $= I_0 \cos(\omega t + \frac{\pi}{2})$ (desfase de $\frac{\pi}{2}$) Sigui $V(t) = V_0 e^{i\omega t}$, llavors, $I(t) = V_0 i\omega C e^{i\omega t}$. Podem reproduir la llei d'Ohm ($V = IR_C$), $R_C = \frac{1}{i\omega C}$. Reactancia capacitiva: $X_C = |R_C| = \frac{1}{\omega C}$, $R_C = \frac{X_C}{i} = -iX_C$

Circuit amb inducció

Voltatge: $V(t) = V_0 \cos(\omega t)$ Autoinducció a la bobina: $\varepsilon_L = -L \frac{\mathrm{d}I}{\mathrm{d}t}$ Segona llei Kirchhoff: $V(t) + \varepsilon_L = 0 \Longrightarrow I(t) = \frac{V_0}{L\omega} \sin(\omega t) = I_0 \cos(\omega t - \frac{\pi}{2})$ (desfase de $\frac{\pi}{2}$) Sigui $V(t) = V_0 e^{i\omega t}$, llavors, $I = \frac{V_0}{i\omega L} e^{i\omega t}$. Podem reproduir la llei d'Ohm $V = IR_L$, $R_L = i\omega L$. Reactancia inductiva: $X_L = |R_L| = \omega L$, $R_L = iX_L$

Impedància. Llei d'Ohm