Homework 1 hints

You need not make use of these hints. There may be simpler ways to solve the problems. Problem (Golan 16). Let z_1 , z_2 , and z_3 be complex numbers satisfying $|z_i| = 1$ for i = 1, 2, 3. Show that $|z_1z_2 + z_1z_3 + z_2z_3| = |z_1 + z_2 + z_3|$.

Hint. Let $w = z_1 z_2 z_3$. Note that the modulus of w is |w| = 1, since each z_i has modulus 1. The left hand side of the equality we want to establish is $|w/z_3 + w/z_2 + w/z_1|$. Factoring out |w|, we have $|w||1/z_3 + 1/z_2 + 1/z_1|$. Note that since $|z_i| = 1$, the conjugate of z_i is $1/z_i$.

Problem (Golan 22 Abel's inequality). Let z_1, \ldots, z_n be a list of complex numbers and, for each $1 \le k \le n$, let $s_k = \sum_{i=1}^k z_i$. For real numbers a_1, \ldots, a_n satisfying $a_1 \ge a_2 \ge \cdots \ge a_n \ge 0$, show that

$$\left| \sum_{i=1}^{n} a_i z_i \right| \le a_1 \left(\max_{1 \le k \le n} |s_k| \right). \tag{1}$$

Hint. The kth term of $\sum a_i z_i$ is $a_k z_k = a_k (z_1 + \cdots + z_k) - a_k (z_1 + \cdots + z_{k-1})$, so

$$\left| \sum_{i=1}^{n} a_i z_i \right| = \left| a_n (z_1 + \dots + z_n) - a_n (z_1 + \dots + z_{n-1}) \right|$$

$$+ a_{n-1} (z_1 + \dots + z_{n-1}) - a_{n-1} (z_1 + \dots + z_{n-2})$$

$$\vdots$$

$$+ a_2 (z_1 + z_2) - a_2 z_1 + a_1 z_1 \right|.$$

Collecting like terms in the expression on the right, we have

$$|z_1(a_1-a_2)+(z_1+z_2)(a_2-a_3)+\cdots+(z_1+\cdots+z_{n-1})(a_{n-1}-a_n)+(z_1+\cdots+z_n)a_n|$$

Consider bounding this expression by the maximum of its terms (maximizing over both j and k). Finally, note that $a_j - a_{j+1} < a_1$. Use these facts, filling in any missing details, to establish the claim.