THE KONDO MODEL

Jens Schalkowski, 08.07.2010

Content

- * History
 - * Resistivity of a metal
 - * Kondo effect
- * The Kondo model
 - * perturbation method
 - * PMS

History Resistivity of a metal

- * determined by different scattering mechanisms:
 - * between conduction elelctrons and lattice distortions

$$*\rho_{Phonon}^{el} \propto T^5$$

* electron-electron

$$*\rho_{el-el}^{el} \propto T^2$$

* between electrons and static impurities

History

Resistivity of a metal

* monotonic temperature dependence

$$*\rho^{el}(T) = ac_{imp}\rho_0^{el} + bT^2 + cT^5$$

* saturation in the limit $T \rightarrow 0$

$$*lim_{T\to 0}\rho^{el}(T) = ac_{imp}\rho_0^{el}$$

History

Kondo effect

- * 1934 de Haas, de Boer and van den Berg
- * electrical resistivity of Au
- * unexpected local minimum

History Kondo effect

- * 1964 solved by J. Kondo
- * minimum associated with magnetic impurities
- * novel scattering mechanism
 - * spin-flip scattering
 - * temperature dependant

History Kondo effect

- * new energy scale
 - * Kondo temperature T_K
- * Kondo effect dominates for temperature near T_K

*
$$\rho^{el}(T) = ac_{imp}\rho_0^{el} + bT^2 + cT^5 + c_{imp}\rho_1^{el} \ln\left[\frac{T_K}{T}\right]$$

* characteristic resistivity ρ_1^{el}

perturbation method

* scattering of conduction electrons from a localized magnetic impurity

$$*\hat{H}_K = \hat{H}_l + \hat{H}'$$

$$*\hat{H}' = 2J\hat{S} \cdot \hat{s}_0$$

perturbation method

* Schrödinger equation

$$*(\epsilon - \hat{H}_l) \mid \Psi \rangle = \hat{H}' \mid \Psi \rangle$$

* formal solution

$$*|\Psi\rangle = |\Psi_0\rangle + \frac{1}{\epsilon + i0^+ - \hat{H}_l} \hat{H}' |\Psi\rangle$$

$$*\mathcal{T} = \hat{H}' + \hat{H}' \frac{1}{\epsilon + i0^{+} - \hat{H}_{l}} \hat{H}' + \hat{H}' \frac{1}{\epsilon + i0^{+} - \hat{H}_{l}} \hat{H}' \frac{1}{\epsilon + i0^{+} - \hat{H}_{l}} \hat{H}' + \dots$$

perturbation method

perturbation method

* first order contributions

perturbation method

- * second order in J
- * scattering propability

$$*W_{kk'} = \frac{2\pi N_{imp}}{\hbar} ||T_{kk'}^{(1)}||^2 = |J|^2 \frac{2\pi N_{imp}}{\hbar} S(S+1)$$

$$*S = \langle S^z \rangle$$

 $*N_{imp}$ number of magnetic impurities

perturbation method

$$* \rho_{imp}^{el} = \frac{m}{ne^2\tau (k_F)}$$

$$*[\tau(k_F)]^{-1} = \sum_{\overrightarrow{k}'} W_{\overrightarrow{k}}_{\overrightarrow{k}'} (1 - \cos\theta') \delta\left(\epsilon_{\overrightarrow{k}} - \epsilon_{\overrightarrow{k}'}\right)$$

$$*[\tau(k_F)]^{-1} = \frac{3\pi J^2 S(S+1)c_{imp}n}{2\epsilon_F \hbar}$$

perturbation method

* second order contribution to the resistivity

$$* \rho_{imp}^{el,(2)} = \frac{3\pi m J^2 S(S+1) c_{imp}}{2e^2 \epsilon_F \hbar}$$

* temperature independent

perturbation method

perturbation method

* second order processes (c)

$$*\langle k' \uparrow | \mathcal{T}^{(2)} | k \uparrow \rangle = \sum_{k_i} J^2 \frac{S^- S^+ [1 - f(\epsilon_{k_i})]}{\epsilon - \epsilon_{k_i} + i0^+}$$

perturbation method

* transport relaxation time

$$*[\tau(k_F)]^{-1} = \frac{3\pi J^2 S(S+1) c_{imp} n}{2\epsilon_F \hbar} \left[1 + 4J\rho(0) \ln \frac{D}{\max(|\epsilon|, kT)} \right]$$

$$*\rho_{imp}^{el,(3)} = \frac{3\pi m J^2 S(S+1) c_{imp}}{2e^2 \epsilon_F \hbar} \left[1 - 4J\rho(0) \ln\left(\frac{kT}{D}\right) \right]$$

perturbation method

* resistivity:

$$*\rho^{el}(T) = ac_{imp}\rho_0^{el} + bT^2 + cT^5 + c_{imp}\rho_1^{el} \ln \left[\frac{T_K}{T}\right]$$

- * unphysical, divergent resistivity
- * perturbative method fails for sufficiently small temperatures

The Kondo model PMS

- * Poor man's scaling (PMS)
 - * 1970 P.W. Anderson
 - * effective Hamiltonian that captures the low-energy properties of a given system
- * scaling equation of the Kondo

$$*\frac{dJ}{d\ln D} = -2\rho J^2$$

Summary

* The non-trivial physics associated with the presence of magnetic impurities in a solid is referred to as the Kondo effect

References

- * Introduction to the Kondo effect
- * Kondo Effekt in Supraleitender Umgebung Diplomarbeit von Julia Sabelin