Lesson 5: I. General Rigid Motion in 183 (MLS 2.3) II. Homogeneous Representation (MLS 2.3.1) II. Exponential Coordinates for Rigid Motion (MLS 2.3.2) I. General Rigid Motion in R3 · Let P. LER3 be a position vector Rab & SO(3) be orientation of B relative to frame A. · Configuration of B relative to A is (Pas, Rab) Def: Special Euclidean Group or "Big SE(3)" $SE(3) := \{ (p, R) | p \in \mathbb{R}^3, R \in SO(3) \} = \mathbb{R}^3 \times SO(3)$ note: This is in 3D, but can also define for n 22 • Let $g = (p, R) \in SE(3)$, by abuse of notation we write g(q) to denote the action of a rigid transformation on a point q. · Given a point 90, ga = Pab + Rab gb · For vector V = S-r where S, r & R3 g (v) = g(s) - g(r) = Rs - Rr = R(s-r) = Rv

=> general RBT of vectors is just rotation.

Pap 2.7:	Elements of SE(3) represent rigid motion.	
	1 -1 - (55 (2)	
	1) Is length preserved?	
	$ g(p_1) - g(p_2) = Rp_1 - Rp_2 = p_1 - p_2 \checkmark$	_
	E) Is cross product preserved?	
	g*(v) × g*(w) = Rv × Rw = R(v × w) = g*(v × w))
	for all vectors v, w	
In s	ammary, SO(3) represents rigid votations.	
II. Homogen	SE(3) represents general rigid motions. eous Representation of SE(3)	
Point		
Vector	$\overline{\mathbf{v}} = \begin{bmatrix} \mathbf{v} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ 0 \end{bmatrix}$	

Rules of Sntax
1) Sums and differences of vectors are vectors.
2) Sum of a vector and a point is a point.
3) Difference between two points is a vector.
4) Sum of points is meaningless (never see a 2 in 4th ra
· Can now represent $g_{ab} = (P_{ab}, R_{ab}) \in SE(3)$ as a linear transformations (i.e. a matrix)
a linear transformations (i.e. a matrix)
$\overline{q}_{a} = \begin{bmatrix} q_{a} \\ 1 \end{bmatrix} = \begin{bmatrix} R_{ab} q_{b} + P_{ab} \\ 1 \end{bmatrix} = \begin{bmatrix} R_{ab} & P_{ab} \\ Q_{1k3} & 1 \end{bmatrix} \begin{bmatrix} q_{b} \\ 1 \end{bmatrix} = \overline{q}_{ab} \cdot \overline{q}$
$\int_{0}^{\infty} \left[\left(\int_{0}^{\infty} \int_{0}^{\infty} g_{nk} \right) \right] = \int_{0}^{\infty} \int_{0}^{\infty} g_{nk} \cdot g_{nk}$
[0 0 0] 4x4 motrix gas honogeneous representation
honogeneous representation
of gab & SEC3)
note: Slight abuse of notation, gab & SE(3)
why use this?
- Allows linear operator, analogous to SO(3)
- Allows composition
gac = gas · grc = Rab · Risc Rab Pbc + Pab
Jac 9 as 95c 0 1×3
Is a group
1) \bar{g}_{1} , \bar{g}_{2} \in SE(3) for \bar{g}_{1} , \bar{g}_{2} \in SE(3) (closure)
2.) I 4x4 & SE(3) (Identity)

$$\begin{array}{lll} \overrightarrow{g}^{-1} &= \begin{bmatrix} \mathbb{R}^T & \mathbb{R}^T \mathbb{P} \end{bmatrix} \in SE(3) & \text{ for } \overrightarrow{g} &= \begin{bmatrix} \mathbb{R} & \mathbb{P} \end{bmatrix} \in SH3 \\ & \mathbb{R}^T & \mathbb{P} \end{bmatrix} & \mathbb{P} & \mathbb{P$$

	Assu																	
	F	>(t)	=	ω	×	(p(t) ·	- 8)	_	$\hat{\omega}$	• (PU	t) —	g)			
				<u>^</u>		r ,		.,7										
De	F: T	۱۷۱۰۰	-	ξ	=	0,43		0		uh	eve		v =	- c	× ب	g		
							~ 1×4	ٽ					=	- ć	છે જ			
							•											
	The	v i	~ <i>V</i>	ronce	ge	neol	rS	coc	ord	> :					/			
		أ أ	_	$\hat{\omega}$		-ω [,]	· 8] [[>7			÷	_	۸ ک ج	_ (7	_ine	ur Ince	rio
		o]		0,,,	3	- w › د	•] ['				P		> 1		DAF	eg.	
		⇒ >	ج ا	(t)	=	ex	P (ξ.	t)	•	P(o) ,		6.0				
	_		51	(9	=	exp		<u>\</u>	}	ลิเ	(g)		11 w	= (9'= - t	\		
			1 (,		~~	\ \	, С	ر ر	ι '				-7 0				
						wit	_	-										

<u>Def</u> : "Li++1	e" se(3)			
se(3)) = { (v, ú) ve R	3, û t sol3	5
twists	$\xi = \begin{bmatrix} \hat{\omega} \\ 0 \end{bmatrix}$			
	5 0	o JE sels)		
Then, [û v 7 V		and [$\int_{0}^{\infty} \left[\frac{\partial}{\partial v} \right] dv$ $\int_{0}^{\infty} \left[\frac{\partial}{\partial v} \right] dv$ $\int_{0}^{\infty} \left[\frac{\partial}{\partial v} \right] dv$
		$\begin{bmatrix} \omega \end{bmatrix}$.7 [00]
		\$ are the	, twist coords	of a twist
				€ € %(3)
If votat	ion v = -c	w×g for	any g on	axis w
If trans	lation $\omega =$	o and v	s is axis	of translation.