Elementy struktury drugorzędowej RNA i porównanie sekwencji przedstawionych w notacji kropkowo-nawiasowej z pominięciem pseudowęzłów

Anna Glinka

Plan projektu

Struktury drugorzędowe RNA

Notacja kropkowo-nawiasowa

niesparowane nukleotydy) para sparownych nukleotydów

Motywy:

- Pień (((())))
- Spinka do włosów ((....))
- Wybrzuszenie (((((((((())))..))))
- Pętla wewnętrzna ((((...(((())))..))))
- Skrzyżowanie ((((...((()))....((()))..))))

Elementy struktury drugorzędowej - identyfikacja

 Wykorzystanie struktury stosu – identyfikacja sparowanych nukleotydów

```
stos = []
for i, j in enumerate(RNA_kropkowo_nawiasowa):
    if j == '(':
        stos.append(i)
    elif j == ')':
        para1 = stos.pop()
        para2 = i
        mapaWiazan[para1] = para2
        mapaWiazan[para2] = para1
```

• Wyrażenia regularne – identyfikacja spinki do włosów oraz rozgałęzień

```
re.compile('[(][.]{1,100}[)]')
re.compile('[)][.]{0,100}[(]')
```

Metody porównywania struktury RNA -Metryka Hausdorffa

Pary PS2/PS1	PS2_1	PS2_2
PS1_1	max(1, 1)	max(0,2)
PS1_2	max(2,0)	max(1, 1)

da(BS1,BS2) – max z min po	C
kolumnach =1	

$$dh - max z max = 1$$

Pary PS2/PS1	PS2_1	PS2_2	Rz min
PS1_1	1	2	1
PS1_2	2	1	1
kol min	1	1	

Metody porównywania struktury RNA -Metryka Hausdorffa

Pary PS4/PS3	PS4_1	PS4_2	PS4_3	PS4_4	PS4_5	Rz min
PS3_1	0	1	2	3	22	0
PS3_2	1	0	1	2	21	0
PS3_3	2	2	0	1	20	O
PS3_4	3	2	1	0	19	0
kol min	0	0	0	0	19	

Metody porównywania struktury RNA – Mountain metric

$$d_m\left(\boxed{1}, 2\right) = 12$$

$$d_m\left(\boxed{1},\boxed{3}\right) = 4$$

SCHIRMER, S. 2012. Comparing forests

S1=..(((....)))..
$$vS1 = (0; 0; 1; 2; 3; 3; 3; 3; 3; 3; 3; 2; 1; 0; 0; 0) = 24$$

S2=.((((....)))). $vS1 = (0; 1; 2; 3; 4; 4; 4; 4; 4; 4; 4; 3; 2; 1; 0; 0) = 36$
S3=..((((...)))).. $vS3 = (0; 0; 1; 2; 3; 4; 4; 4; 4; 4; 3; 2; 1; 0; 0; 0) = 28$

$$dm(S1; S2) = |24 - 36| = 12$$
 $dm(S1; S3) = |24 - 28| = 4$

Metody porównywania struktury RNA – drzewa (metoda Kitagawa)

12010 1220010

Dopasowanie sekwencji:

12**010

1220010

Literatura

- MAURI, G., & PAVESI, G. (2005). Algorithms for pattern matching and discovery in RNA secondary structure. Theoretical Computer Science. 335, 29-51.
- SCHIRMER, S. (2012). Comparing forests. Bielefeld, Universitätsbibliothek Bielefeld, Hochschulschriften. http://nbn-resolving.de/urn:nbn:de:hbz:361-24742380.
- GRUBER, ANDREAS R, BERNHART, STEPHAN H, HOFACKER, IVO L, & WASHIETL, STEFAN. (2008). Strategies for measuring evolutionary conservation of RNA secondary structures. BioMed Central Ltd. BioMed Central Ltd. http://www.biomedcentral.com/1471-2105/9/122.

Dziękuję za uwagę