§1. Limita posloupnosti

Určete několik prvních členů posloupnosti $\left\{\frac{n+1}{n}\right\}_{n=1}^{\infty}.$ nak
reslete její graf a určete, jak Př: se posloupnost chová pro vzrůstající n:

Def: Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnost, $A \in \mathbb{R}$ číslo. Řekneme, že posloupnost $\{a_n\}_{n=1}^{\infty} m \acute{a}$ limitu rovnu číslu A, jestliže $\forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in N : \forall n \geq n_0 : |a_n - A| < \epsilon$, zapisujeme $\lim_{n\to\infty} a_n = A.$

Pozn: $|a_n - A| < s \Leftrightarrow a_n \in (A - s; A + s)$

Má-li posloupnost limitu, pak se nazývá konvergentní, v opačném případě divergentní. Def:

V.1.1.: Každá posloupnost má nejvýše jednu limitu.

[Dk: Sporem: Nechť má posloup
nsost $\{a_n\}_{n=1}^\infty$ limitu A a $B,\,A < B.$

Položme $\epsilon = \frac{B-A}{2}$. Musí platit: $a_n \in (A-\epsilon;A+\epsilon) \cap a_n \in (B-\epsilon;B+\epsilon) \Rightarrow a_n \in \emptyset$, což je spor.]

V.1.2.: Každá konvergentní posloupnost je omezená.

Obrácení předchozí věty neplatí: $\{(-1)^n\}_{n=1}^{\infty}$. Př:

Důsledek: Jestliže posloupnost není omezená, pak je divergentní. Pozn:

Určete limitu posloupnosti $\left\{\frac{n+1}{n}\right\}_{n=1}^{\infty}$, hypotéza z předchozího příkladu: Máme dokázat: Př:

$$\forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : |a_n - A| < \epsilon$$

$$|a_n - A| < \epsilon \Leftrightarrow |\frac{n+n}{n} - 1| < \epsilon \Leftrightarrow |\frac{1}{n}| < s\epsilon \Leftrightarrow \frac{1}{n} < \epsilon, \text{ neboť } n \in \mathbb{N} \Leftrightarrow \frac{1}{\epsilon} < n \Rightarrow n_0 = \left[\frac{1}{\epsilon}\right] + 1.$$

V.1.3.: Každá nekonečná posloupnost vybraná z konvergentní posloupnosti je konvergentní a má stejnou limitu.

Pokud lze vybrat z posloupnosti $\{a_n\}_{n=1}^{\infty}$ dvě konvergentní posloupnosti s různou limitou, je posloupnost $\{a_n\}_{n=1}^{\infty}$ divergentní. (např.: $\{(-1)^n\}_{n=1}^{\infty}$) Pozn:

V.1.4.: Nechť $\{a_n\}_{n=1}^\infty$ a $\{b_n\}_{n=1}^\infty$ jsou posloupnosti takové, že $\forall n\in\mathbb{N}:0\leq a_n\leq b_n$ $\lim_{n\to\infty} b_n = 0$, pak $\lim_{n\to\infty} a_n = 0$

[Dk: $\forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : b_n < \epsilon \Rightarrow \forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : 0 \leq a_n \leq b_n < \epsilon$]

Pozn: Předpoklady předchozí věty lze zeslabit, nerovnosti nemusejí platit pro konečný počet členů posloupnosti.

V.1.5.: Věta o třech limitách:

Nechť $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ a $\{c_n\}_{n=1}^{\infty}$ jsou tři posloupnosti takové, že $\exists n_0: \forall n>n_0: a_n\leq b_n\leq c_n\cap\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=A.$ Pak $\lim_{n\to\infty}b_n=A.$

Př:

1. $\{1\}_{n=1}^{\infty}$ $\forall \epsilon > 0 : \forall n : a_n = 1 \Rightarrow \lim_{n \to \infty} 1 = 1.$

2. $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ $\forall \epsilon > 0 : \forall n > \frac{1}{\epsilon} : 0 < a_n = \frac{1}{n} < \frac{1}{1/\epsilon} = 0 + \epsilon \quad \Rightarrow \quad \lim_{n \to \infty} \frac{1}{n} = 0.$

3. $\left\{1+(-1)^{n+1}\frac{1}{n}\right\}_{n=1}^{\infty}$ $\forall \epsilon > 0: \forall n > \frac{1}{\epsilon}: 1-\epsilon=1-\frac{1}{1/\epsilon}=1-\frac{1}{n} \leq 1+(-1)^n\frac{1}{n}=a_n=1+(-1)^n\frac{1}{n} \leq 1+\frac{1}{n} < \frac{1}{1/\epsilon}=1+\epsilon \quad \Rightarrow \quad \lim_{n\to\infty}\frac{1}{n}=0.$

4. $\{(-1)^n\}_{n=1}^{\infty}$

Na sudých členech $\lim (-1)^{2n} = \lim 1 = 1$. Na lichých členech $\lim (-1)^{2n+1} = \lim -1 = -1$.

Diverguje!

V.1.6.: Nechť $\{a_n\}_{n=1}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ jsou dvě posloupnosti. Nechť $\lim_{n\to\infty}a_n=A\lim_{n\to\infty}b_n=B$ a nechť $c\in\mathbb{R}$:

1. $\lim_{n\to\infty} (a_n + b_n) = A + B$

2. $\lim_{n\to\infty} (a_n - b_n) = A - B$

3. $\lim_{n\to\infty} (c \cdot a_n) = c \cdot A$

4. $\lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$

5. $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{A}{B} \ (\forall n \in \mathbb{N} : b_n \neq 0; B \neq 0)$

Př: : Vypočítejte:

$$\lim_{n\to\infty}\left(\frac{n+1}{n}\right)=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)=\lim_{n\to\infty}1+\lim_{n\to\infty}\frac{1}{n}=1+0=0$$

Pozn: Konvergence AP a GP:

1. AP je konvergentní $\Leftrightarrow d = 0$

2. GP je konvergentní $\Leftrightarrow q \in (-1,1) \cap a_1 = 0$.

Pozn: Kromě limit zavedených v 1. definici tohoto paragrafu (tyto limity nazýváme vlastni limity) existují i tzv. nevlastni $limity \pm \infty$.

Def: Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnost. Řekněme, že posloupnost $\{a_n\}_{n=1}^{\infty}$:

- 1. *Má nevlastní limitu* $+\infty$ (diverguje k $+\infty$?) $\Leftrightarrow \forall K \in \mathbb{R} : \exists n_0 \in \mathbb{N} : \forall n \geq n_0, n \in \mathbb{N} : a_n > K$. Zapisujeme $\lim a_n = \infty$.
- 2. Má nevlastní limitu $+\infty$ (diverguje k $+\infty$?) $\Leftrightarrow \forall K \in \mathbb{R} : \exists n_0 \in \mathbb{N} : \forall n \geq n_0, n \in \mathbb{N} : a_n < K$. Zapisujeme $\lim a_n = -\infty$.

Pozn: Nechť $R(x)=\frac{P(x)}{Q(x)}=\frac{a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0}{b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0}$ je racionální lomaná funkce. Pak platí:

- 1. $st P(x) > st Q(x) \Rightarrow \lim_{n \to \infty} R(n) = \pm \infty$
- 2. $st\ P(x) = st\ Q(x) \Rightarrow \lim_{n \to \infty} R(n) = \frac{a_n}{b_n}$
- 3. $st P(x) < st Q(x) \Rightarrow \lim_{n \to \infty} R(n) = 0$
- V.1.7.: Nechť $\{a_n\}_{n=1}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ jsou dvě posloupnosti takové, želim $_{n\to\infty}$ $a_n=0$ a $\{b_n\}_{n=1}^{\infty}$ je omezená. Pak $\lim (a_nb_n)=0$.

Př:

$$\lim_{n\to\infty}\left(\frac{(n+1)^2}{2n^2}\right)=\lim_{n\to\infty}\left(\frac{n^2+2n+1}{2n^2}\right)=\frac{1}{2}$$

Př:

$$\lim_{n \to \infty} (2n^2 - 3) = +\infty$$

Př: 39/1:

- 1. Vezměmw posloupnost na lichých imdexech: $\lim_{n\to\infty}\left((-1)^{2n}(2n-1)\right)=\lim_{n\to\infty}(2n-1)=2\lim_{n\to\infty}n-\lim_{n\to\infty}1=2\infty+1=\infty.$ A na lichých indexech: $\lim_{n\to\infty}\left((-1)^{2n+1}(2n)\right)=-\lim_{n\to\infty}2n=-2\lim_{n\to\infty}n=-2\infty=-\infty.$ Podposloupnost diverguje.
- 2. $\lim_{n\to\infty} \left(\frac{6n}{-3n+1}\right) = \frac{6}{-3} = -2$ (rac. lom. funkce)
- 3. $\lim_{n\to\infty} \left(\frac{2n^2-1}{n^2+2}\right) = \frac{2}{1} = 2$
- 4. $\lim_{n\to\infty} \left(\frac{-6n+5}{3n+5}\right) = \frac{6}{3} = 2$
- 5. $\lim_{n\to\infty} \left(\frac{(n^2+7)^2}{4n^4-5n+3} \right) = \lim_{n\to\infty} \left(\frac{n^4+14n^2+49}{4n^4-5n+3} \right) = \frac{1}{4}$
- 6. $\lim_{n\to\infty}\left(\frac{5}{2^n}-\frac{3n+5}{n^2}\right)\lim_{n\to\infty}\frac{5}{2^n}-\lim_{n\to\infty}\frac{3n+5}{n^2}=0+0=0$ První limita protože pro skoro všechna $n:\frac{5}{2^n}<\frac{5}{n}$ (2^n roste rychleji naž jakýkoliv polynom v n), dále už jen rac. lom. funkce.
- 7. $\lim_{n\to\infty} \frac{2n-3}{4n+5} = \frac{2}{4} = \frac{1}{2}$
- 8. $\lim_{n\to\infty} \frac{3n-7}{n+2} = 3$
- 9. $\lim_{n\to\infty} \frac{n^2+4}{3n^n-1} = \frac{1}{3}$

10.
$$\lim_{n\to\infty} \frac{3n-7}{n+2} = \frac{3}{1} = 3$$

11.
$$\lim_{n\to\infty} \frac{n}{n+1} = \frac{1}{1} = 1$$

Př: 39/3:

$$1. \lim_{n \to \infty} \frac{-n+2}{n} = -1$$

2.
$$\lim_{n \to \infty} \frac{-4n+3}{n^2} = 0$$

3. Sudé pozice
$$\lim_{n\to\infty} \frac{2-(-1)^{2n}\cdot 3}{(-1)^{2n}} = \lim_{n\to\infty} \frac{2-3}{1} = 1$$

Liché pozice $\lim_{n\to\infty} \frac{2-(-1)^{2n-1}\cdot 3}{(-1)^{2n-1}} = \lim_{n\to\infty} \frac{2+3}{1} = 5$
Diverguje

4. Sudé pozice
$$\lim_{n\to\infty} ((4+5)(7+10)) = 9\cdot 17$$

Liché pozice $\lim_{n\to\infty} ((4-5)(7-10)) = 3$
Diverguje.

Př: 9:

1.
$$\lim_{n \to \infty} \frac{4-n^2}{2+n} = 0$$

$$2. \lim_{n \to \infty} \frac{n^1 + 5n - b}{n + 2} = \infty$$

Př: 10:

1.
$$\forall x \in \mathbb{R}^+ : n_0 = \log_q x : \forall n > n_0 : q^n < q^{\log_q x} = x.$$

2.
$$\ln q^n = \ln 1^n \ln 1 =$$

3.
$$\forall x \in \mathbb{R}^+ : n_0 = \log_q x : \forall n > n_0 : q^n > q^{\log_q x} = x.$$

4. Rozložíme na sudé a liché indexy:
$$\lim q^{2n} = \lim (q^2)^n + \infty \\ \lim q^{2n+1} = \lim q(q^2)^n = q \cdot + \infty = -\infty \\ \text{Diverguje.}$$