Examen del Curso Propedéutico: Control Clásico

Departamento de Control Automático, CINVESTAV-IPN

Miércoles, 26 de junio

Sea un sistema lineal invariante en el tiempo descrito por la siguiente EDO:

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} + \frac{\mathrm{d}}{\mathrm{d}t}\right)y(t) = \left(\frac{\mathrm{d}}{\mathrm{d}t} - 1\right)u(t),\tag{1}$$

donde y(t) es la salida y u(t) la entrada.

- 1. Función se transferencia. Encuentre su función de transferencia, y(s)/u(s). ¿Cuáles son los polos y los ceros?
- 2. Routh-Hurwitz. Como primer intento para controlar a (1), se propone una ley de control, con la siguiente función de transferencia:

$$\frac{u(\mathbf{s})}{v(\mathbf{s})} = K \frac{(\mathbf{s} - a)}{(\mathbf{s} + b)},\tag{2}$$

donde: K > 0, a > 0 y b > 0.

- (a) Utilizando el criterio de Routh-Hurwitz, determine las relaciones que debe guardar la ganacia K con los parámetros a y b, para que el sistema en lazo cerrado sea Hurwitz estable.
- (b) Proponga valores numéricos para los parámetros a y b, y determine el rango de ganancias K para que el sistema en lazo cerrado sea Hurwitz estable. ¿Cuál es la ganancia crítica, K_c , para la cual, el sistema en lazo cerrado presenta una respuesta oscilatoria?

3. Lugar de las raices.

- (a) Compruebe el rango encontrado en el inciso 2.(b) utilizando el lugar de las raices.
- (b) Determine una ganancia K, para que los polos dominantes tengan un coeficiente de amortiguamiento de 0.5. ¿Cuál será el porcentaje de sobre paso M_p ? ¿Donde se localizan los polos dominantes? ¿Cuáles son los valores de sus frecuencias naturales no amortiguada, ω_n , y amortiguada, ω_d ?
- (c) Con el valor de ganancia, K, encontrado en el inciso 3.(b), trace la respuesta al escalón del sistema en lazo cerrado. Comente la gráfica.

4. Nyquist.

(a) Con los valores numéricos de a y b, propuestos en el inciso 2.(b), trace el diagrama de Nyquist de la función de transferencia en lazo abierto:

$$G(s) = \left(\frac{(s-a)}{(s+b)}\right) \left(\frac{(s-1)}{s(s+1)}\right) \tag{3}$$

(b) Determine graficamente el número de polos no Hurwitz del sistema en lazo cerrado:

$$G_{\ell c}(\mathbf{s}) = \frac{KG(\mathbf{s})}{1 + KG(\mathbf{s})},\tag{4}$$

para los casos: (i) $K = K_c/2$ y (ii) $K = 2K_c$.

5. Bode.

- (a) Con los valores numéricos de a y b, propuestos en el inciso 2.(b), trace el diagrama de Bode de (3).
- (b) Determine graficamente la frecuencia y la ganancia, del sistema en lazo abierto KG(s), para las cuales se tenga una fase de 180°, en los casos: (i) $K = K_c/2$ y (ii) $K = 2K_c$.
- 6. Controlador PID. ¿El sistema descrito por la EDO (1) puede ser controlado por un controlador del tipo PID? En caso negativo justifique su respuesta. En caso positivo diseñelo.

7. Representación de estado.

(a) Dar una representación de estado,

$$dx(t)/dt = Ax(t) + bu(t) , \quad y(t) = c^{T}x(t), \tag{5}$$

del sistema descrito por la EDO (1), tal que su matriz de controlabilidad sea de rango pleno por filas.

- (b) De la representación de estado propuesta (5), calcule: (i) su función de transferencia, (ii) su espectro (los valores propios), (iii) los ceros del sistema (las raíces del determinante de la matriz sistema), (iv) el determinante de su matriz de controlabilidad y (iv) el determinante de su matriz de observabilidad.
- 8. Retroalimentación de estado. Diseñe una retroalimentación de estado,

$$u(t) = f^T x(t) + v(t), \tag{6}$$

tal que:

- (a) la función de transferencia en lazo cerrado sea: $(s-1)/(s+1)^2$
- (b) ¿Es factible la función de transferencia en lazo cerrado: 1/(s+1)?
- 9. Observador de estado. Diseñe un observador de estado,

$$d\hat{x}(t)/dt = (A + kc^{T})\hat{x}(t) + \begin{bmatrix} b & -k \end{bmatrix} \begin{bmatrix} u(t) \\ u(t) \end{bmatrix}, \tag{7}$$

tal que: $\det(sI - (A + kc^T)) = (s + 10)^2$.

10. Simulación numérica. Realice la simulación numérica de la representación de estado (5), controlado por la ley de control:

$$\begin{cases}
d\hat{x}(t)/dt = (A + kc^T)\hat{x}(t) + \begin{bmatrix} b & -k \end{bmatrix} \begin{bmatrix} u(t) \\ y(t) \end{bmatrix}, \\
u(t) = f^T\hat{x}(t)
\end{cases} (8)$$

con las condiciones iniciales: $x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ y $\hat{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Grafique: (i) la ley de control, u, (ii) la salida, y, (iii) el error de estimación, $\sqrt{(x-\hat{x})^T(x-\hat{x})}$ y (iv) las cuatro componentes del estado, de la representación de estado en lazo cerrado, expresada en su forma de Jordan.