Problem Set # 7

Given: Monday, Oct. 29 **Recommended Completion Date:** Monday, Nov. 05 **Do not submit for grading**

Problem 1: Consider forced convection from a slender streamlined object in cross flow, as shown in the figure. The total surface area of the object is $A_s = 0.02$ m². The surface of the object is maintained at a constant temperature of $T_w = 75^{\circ}$ C by means of electrical heating. The fluid temperature far from the object is also constant at $T_{\infty} = 25^{\circ}$ C. Experiments yield the following data on the free stream velocity, U_{∞} , and the total rate of heat loss, q_{total} :

Run 1: $U_{\infty} = 5 \text{ m/s}$; $q_{\text{total}} = 200 \text{ W}$ Run 2: $U_{\infty} = 24.02 \text{ m/s}$; $q_{\text{total}} = 600 \text{ W}$

- a) Calculate the heat transfer coefficient for Run 1 and Run 2.
- b) Calculate the total rate of heat loss from the object when U_{∞} , = 13.46 m/s
- c) The following fluid properties are known: $\rho = 1 \text{ kg/m}^3$; $c_p = 1000 \text{ J/kg-°C}$; k = 0.025 W/m-°C. The total friction drag in Run 1 is found to be 0.01 N. Calculate the dynamic viscosity of the fluid.

Ans.: (a) $h_1 = 200 \text{ W/m}^2 - ^{\circ}\text{C}$; $h_2 = 600 \text{ W/m}^2 - ^{\circ}\text{C}$; (b) $q_{total} = 400.02 \text{ W}$; (c) $\mu = 8.84 \times 10^{-6} \text{ kg/m-s}$

Problem 2: A smooth flat plate is aligned with a cross flow of a fluid, as shown in the figure. The length of the plate in the flow direction is L=1 m, and its width is W=1m. The plate is maintained at a constant temperature of $T_{\rm w}=50^{\circ}{\rm C}$ by electrical heating. Only the top surface of the plate is exposed to the fluid flow, and the bottom surface is very well insulated. Experimental data show the followings:

Run 1: Laminar flow throughout: $U_{\infty, 1} = 2 \text{ m/s}$; $T_{\infty, 1} = 10^{\circ}\text{C}$; $\text{Drag}_1 = 8.4 \times 10^{-3} \text{ N}$; and $q_{\text{total}, 1} = 168 \text{ W}$ Run 2: $U_{\infty, 2} = ? \text{ m/s}$; $T_{\infty, 2} = 10^{\circ}\text{C}$; $\text{Drag}_2 = 0.5854 \text{ N}$; and $q_{\text{total}, 2} = 1170.8 \text{ W}$

- a) What is the free-stream velocity in Run 2? (hint: use Chilton-Colburn analogy)
- b) Additional measurements yield the following fluid properties: $\rho = 1 \text{ kg/m}^3$; $c_p = 1000 \text{ J/kg-°C}$. using Run 1 data and the Blasius-Pohlhausen similarity solutions (exact solutions), determine the dynamic viscosity, μ , and the thermal conductivity, k, of the fluid.
- c) In Run 2, what is the total rate of heat loss from the plate in the region 0.1 m $\leq x \leq 1.0$ m?

Ans.: (a) $U_{\infty, 2} = 20 \text{ m/s}$; (b) $\mu = 2 \times 10^{-5} \text{ kg/m-s}$; k = 0.02 W/m-°C; (c) $q_{total} = 1002.82 \text{ W}$.

Problem 3: A solid is convectively cooled by a cross flow in $U_{\infty} = (10+0.05 \text{ t})$ m/s, where t is the time in seconds after the initiation of the cooling. The volume of the solid is 8×10^{-6} m³ and its surface is 2×10^{-3} m². The initial temperature of the solid, just before it is exposed to the convective cooling, is $T_{\rm i} = 420$ °C. the free-stream temperature remains constant throughout the cooling process at $T_{\infty} = 20$ °C. The thermophysical properties of the fluid and the solid may be assumed to remain constant throughout the cooling process at the following values:

Fluid properties:
$$\rho = 1 \text{ kg/m}^3$$
; $c_p = 1000 \text{ J/kg-°C}$; $\mu = 2 \times 10^{-5} \text{ kg/m-s}$; $k = 0.02 \text{ W/m-°C}$ Solid properties: $\rho = 2000 \text{ kg/m}^3$; $c_p = 500 \text{ J/kg-°C}$; $k = 400 \text{ W/m-°C}$

Measurements indicate the followings: (i) the temperature inside the solid is (essentially) spatially uniform throughout the process; (ii) at t = 0 s, $T = T_i = 420$ °C and dT/dt = -5.4°C/s; and (iii) at t = 60 s, T = 188.9 °C and dT/dt = -2.6 °C/s.

- a) Using the given data, and assuming that the general form $Nu = C Re^{-m} Pr^{-n}$ is instantaneously applicable throughout the cooling process determine the specific form of the variation of the heat transfer coefficient, h, with U_{∞} .
- b) Predict the temperature of the solid at t = 100 s.

Ans.: (a)
$$h = 17.08 \times (U_{\infty})^{1/2}$$
; (b) $T = 108.63$ °C.

Selected Problems from the Textbook

Please do the following problems (6th Edition):

7.24

7.42

7.88

Or Please do the following problems (7th Edition):

7.24

7.47

7.94