Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Estatística - ME430

Trabalho de ME430

Grupo

Bragantini, J. RA170844 Nogueira, N. RA204186 Betini, L. RA201357 Cunha, V. RA206493

Prof. Dr. Caio Azevedo

Campinas 2018

Questão 2 da Lista IV

1 Introdução

Este trabalho consiste na aplicação de técnicas aprendidas na disciplina ME430 - Técnicas de Amostragem - em um conjunto de dados da COMVEST. Esse conjunto de dados possui informações de 73498 candidatos ao vestibular 2017 e seus desempenhos nele. O objetivo é estimar i) a média da pontuação total de cada cadiadato, ii) a proporção de candidatos que cursaram todo o ensino médio em escola pública e iii) o total de quartos nas casas de todos os candidatos. A Seção 2 contém análises descritivas a nível populacional e obtidas por meio de amostras pilotos. A Seção 3 apresenta análises inferenciais, estimadores pontuais dos parâmetros de interesse e seus intervalos de confiança. Essas duas seções são dividas em três subseções cada, uma para cada parâmetro: *Média, Proporção* e *Total*, que se referem, respectivamente, aos parâmetros i), ii) e iii).

2 Análise Descritiva

Tratamos as análises realizas abaixos como indepentes visto que o âmbito de cada análise são diferentes.

2.1 Média

Inicialmente, para estimar μ , a pontuação média de todos os candidatos na 1ª fase, foi coletada uma amostra piloto de tamanho 200 sob uma amostragem estratificada (AE) com H=4 estratos, especificados a seguir, a fim de determinar o tamanho amostral e o plano amostral mais adequado. Para isso, foi estimado a variância $\sigma_{\mu}^2 = \frac{1}{N} \sum_{i=1}^{N} y_i$ da pontuação e a variância nos estratos $\sigma_{\mu h}^2 = \frac{1}{N_h} \sum_{i=1}^{N_h} y_{ih}$, onde N=73498 é o número de candidatos, N_h é o tamanho populacional do h-ésimo estrato, y_i é a pontuação do i-ésimo candidato e y_{ih} é a pontuação do i-ésimo candidato no h-ésimo estrato. A alocação dos estratos foi feita segundo alocação proporcional (AP). Nesse tipo de alocação, o tamanho amostral do h-ésimo estrato é $n_h=n\frac{N_h}{N}$.

Os estratos escolhidos foram as respostas agrupadas da Questão 14 no questionário que cada candidato deveria responder. Essa questão é como segue: "Somando a sua renda com a renda das pessoas que moram com você, quanto é, aproximadamente, a renda familiar mensal? O valor do salário mínimo (SM) é de R\$ 724,00". As respostas agrupadas determinam os seguintes estratos: 1 - dados faltantes, 2 - até 5 SM, 3 - entre 5 e 10 SM e 4 - mais que 10 SM.

A amostra piloto resultou em uma estimativa de $\hat{\sigma_{\mu}^2} = \hat{\sigma_d^2} + \hat{\sigma_e^2} = 473,9704$ (HELP WANTED) para a variância σ_{μ}^2 , onde $\hat{\sigma_d^2} = \sum_{i=1}^H \frac{N_h}{N} \hat{\sigma_h^2}$ é a variância estimada no h-ésimo estrato e $\hat{\sigma_e^2} = \sum_{i=1}^H \frac{N_h}{N} (\hat{\mu}_h - \mu)^2$ é a variância estimada das médias dos estratos. De posse dessa informação, para realizar AE com AP e erro de estimativa $\delta = 1$, é preciso um tamanho de amostra n de pelo menos $n \geq \frac{z_{0.95}^2}{\delta^2} \sum_{i=1}^H \frac{N_h}{N} \hat{\sigma}^2$ (OU SERIA S^2 AQUI?) para garantir que $P(|\mu - \hat{\mu}| \leq \delta) \geq 0,95$ [1], onde $z_{0.95}$ é o 0,95-quantil da normal padrão. Portanto, para os dados coletados, são necessárias pelo menos 1680 unidades amostrais.

Por outro lado, uma amostragem aleatória simples sem reposição (AASs) requer $\left(\frac{\delta^2}{\hat{s^2}z_{0,95}} + \frac{1}{N}\right)^{-1}$ unidades amostrais para garantir que $P(|\mu - \hat{\mu}| \leq \delta) \geq 0,95$ [1], onde $s_{\mu}^2 = \frac{n\sigma^2}{n-1}$. Para os dados observados, esse plano amostral precisa de 1777 unidades amostrais, número maior que no caso AE com AP. Portanto, é mais vantajoso realizar AE com AP.

É possível tornar a amostragem ainda mais robusta, utilizando a alocação ótima de Neyman (AON), que minimiza a variância da estimativa $\hat{\mu} = \sum$ para μ quando o custo de amostragem é homogêneo entre os estratos. Usando AON, temos que $n_h = n \frac{N_h \sigma_h}{\sum_{i=1}^H N_h \sigma_h}$ [1]. Como σ_h não são valores conhecidos,

foi usado $\hat{\sigma_h^2}$. As informações obtidas da amostra piloto e referentes à amostragem AE com AON estão

resumidas na Tabela 1. Observe que n = 1682 tem 2 unidades a mais sob AON, pelo fato de ter sido pego o menor inteiro maior que a expressão que determina n_h .

Tabela 1: Informações de cada estrato h: N_h - número de cadidatos no estrato, $\hat{\sigma_h^2}$ - variância no estrato estimada na amostra piloto, n_h - tamanho amostral do estrato segundo AON.

h	N_h	$\hat{\sigma_h^2}$	n_h
1	2223	416,1117	51
2	31859	327,359	638
3	21828	321,9126	434
4	17588	825,1429	559

2.2 Proporção

A nível populacional, observa-se que existe uma correlação de 0,6207 entre o setor (público ou privado) da escola de um candidato em um nível (Ensino Fundamental 1, Ensino Fundalmental 2 e Ensino Médio) ao nível subsequente. De encontro a essa informação, também se observa que alunos que estudaram o Ensino Fundamental 1 completamente em instituições públicas frequentaram o Ensino Fundamental 2 público numa proporção maior dos restantes dos indivíduos APRESENTAR DADOS QUE CORROBOREM AFIRMAÇÃO.

Assim dividiremos nossa população em dois estratos: 1 - candidatos que cursaram o Ensino Fundamental 1 por completo em escolas públicas e 2 - candidatos restantes.

Sob essa estratificação, selecionamos uma amostra piloto de tamanho 201, onde cada estrato foi amostrado com um tamanho proporcional a sua população e verificamos se o comportamento de se manter no mesmo setor do ensino quando se passa do Ensino Fundamental 2 para o Ensino Médio é similar ao do observado na Subseção 2.2.

Na Tabela 3 apresentamos as estatísticas da nossa amostra piloto. Utilizando essas informações, vemos que a variância dentro dos estratos, $\hat{s_d^2} = 0,102$ é consideravelmente menor que a estimativa da variância da amostra, $\hat{s^2} = \hat{s_d^2} + \hat{s_d^2} = 0,212$.

Com as estatísticas obtidas da amostra piloto estabelecemos nossa margem de erro desejada, $\delta=0,01$, e nosso intervalo de confiança desejado, $\gamma=0,95$, assim conforme a Equação ?? apresentada no Apêndice, obtemos o tamanho amostral n=3720.

Tabela 2: Informações de cada estrato h para amostra piloto: \hat{p}_h - proporção de canditatos estudaram o ensino medio completo em escolas públicas, N_h - número de cadidatos no estrato, \hat{s}_h^2 - variância no estrato estimada na amostra piloto, n_h - tamanho amostral do estrato.

h	N_h	\hat{p}_h	$\hat{s_h^2}$
1	19617	0,8519	0,1286
2	53881	0,102	0,0923

2.3 Total

No banco de dados há informações sobre eletrônicos domésticos, cômodos das casas e da estrutura familiar dos inscritos no vestibular da COMVEST. Para estimar o total de quartos de uma casa, foi verificado se existe alguma ligação entre a quantidade de banheiro, número de pessoas dependentes da mesma renda familiar e quantidade de televisões na casa com o total de quartos da casa. Essas variáveis foram selecionados supondo-se que normalmente uma casa com muitos quartos possui mais banheiros, mais dependentes e a possibilidade de haverem televisões em cômodos diferentes da casa.

3 Análise Inferencial

3.1 Média

3.2 Proporção

Uma vez definido o tamanho da amostra definimos o tamanho de cada estrato utilizando a Alocação Ótima de Neyman, Equação ?? vide Apêndice, dado isso obtemos nossa amostra, ... continuar blah blah blah

Tabela 3: Informações de cada estrato h: \hat{p}_h - proporção de canditatos estudaram o ensino medio completo em escolas públicas, N_h - número de cadidatos no estrato, \hat{s}_h^2 - variância no estrato estimada na amostra piloto, n_h - tamanho amostral do estrato.

			$Var(\hat{p}_h)$		n_h
1	19617	0,8238	0,000128	0,1453	1118
2	53881	0,1103	3,639e-05	0,0982	2602

3.3 Total

Tabela 4: Blah blah balh

$$N$$
 n $\hat{\tau}$ $Va\hat{r}(\hat{r})$ $\hat{s^2}$
73498 378 204550 8681721 0,6106

4 Conclusões

Referências

[1] Heleno Bolfarine. Elementos de amostragem. Blucher, 2005.

Apêndice

Este Apêndice apresenta expressões e estimadores usados no trabalho. A subseção Parâmetros populacionais apresenta as expressões que definem os parâmetros pupolacionais que aparecem no corpo do texto de uma população de tamanho N de valores $y_1,...,y_N$. A subseção Estimadores apresenta os estimadores usados. Finalmente, a subseção Tamanho amostral e alocação apresenta as expressões que definem os tamanhos amostrais para alguns planos amostrais e, no caso da Amostragem Estratificada com H estratos, cada um de tamanho N_h e onde y_{hi} é o valor do i-ésimo elemento do h-ésimo estrato, os tamanhos de cada estrato segundo algumas alocações.

Parâmetros populacionais

De modo geral, temos os seguintes parâmetros: total $\tau = \sum_{i=1}^{N} y_i$ (1), média $\mu = \frac{1}{N} \sum_{i=1}^{N} y_i$ (2), variância $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mu)^2$ (3) e $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \mu)^2$ (4).

Sob Amostragem Estratificada, temos que o total do h-ésimo estrato é $\tau_h = \sum_{i=1}^{N_h} y_{hi}$ (5), a média do h-ésimo estrato é $\mu_h = \frac{1}{N_h} \sum_{i=1}^{N_h} y_{hi}$ (6), as variâncias do h-ésimo estrato são $\sigma_h = \frac{1}{N_h} \sum_{i=1}^{N_h} (y_{hi} - \mu_h)^2$ (7) e $s_h = \frac{1}{N_h - 1} \sum_{i=1}^{N_h} (y_{hi} - \mu_h)^2$ (8).

3

Assim, sendo $W_h = \frac{N_h}{N}$, temos que $\tau = \sum_{i=1}^{H} \tau_h$ (9), $\mu = \sum_{i=1}^{H} W_h \mu_h$ (10), $\sigma^2 = \sigma_d^2 + \sigma_e^2$ (11) e $s^2 = s_d^2 + s_e^2$ (12), onde $\sigma_d^2 = \sum_{i=1}^{H} W_h \sigma_h^2$ (13), $\sigma_e^2 = \sum_{i=1}^{H} W_h (\mu_h - \mu)^2$ (14), $s_d^2 = \sum_{i=1}^{H} \frac{N_h - 1}{N - 1} s_h^2$ (15), $s_e^2 = \sum_{i=1}^{H} \frac{N_h}{N - 1} (\mu_h - \mu)^2$ (16).

Se y_i , i=1,...,N, assumem somente valores 0 ou 1, então $p=\mu$ (17) é uma proporção, $\sigma^2=p(1-p)$ (18) e $s^2=\frac{N}{N-1}p(1-p)$ (19). E, no caso da Amostragem Estratificada, $p_h=\mu_h$ (20) é a proporção do h-ésimo estrato, $\sigma_h^2=p_h(1-p_h)$ (21) e $s_h^2=\frac{N}{N-1}\sigma_h^2$ (22).

Estimadores

Os seguintes estimadores se referem a uma amostra de tamanho n.

Sob Amostragem Simples sem reposição: $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n Y_i \ \hat{\tau} = N \hat{\mu}$ e $\hat{s}^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \hat{\mu})^2$.

Sob Amostragem Estratificada: $\hat{\mu}_h = \frac{1}{N_h} \sum_{i=1}^{N_h} Y_{ih}$, $\hat{\mu} = \sum_{i=h}^{H} W_h \hat{\mu}_h$, \hat{s}^2 **QUAL???**. No caso em que y_i , i=1,...,N, assumem somente valores 0 ou 1, \hat{p} , \hat{p}_h , \hat{s}^2 e \hat{s}_h^2 têm a mesma forma que $\hat{\mu}$, $\hat{\mu}_h$, $\hat{\mu}^2$ e $\hat{\mu}_h^2$, respectivamente (23).

Tamanho amostral e alocação

Segundo Bolfarine et al. [1], as seguintes expressões para n garantem que $P(|\mu - \hat{\mu}| \le \delta) \ge \gamma$, onde z_{γ} é o $(\frac{1-\gamma}{2})$ -quantil da normal padrão.

Sob Amostragem Simples sem reposição:

$$n = \left[\left(\frac{\delta^2}{\hat{s}^2 z_{0.95}} + \frac{1}{N} \right)^{-1} \right] \tag{24}$$

Sob Amostragem Estratificada QUAL FÓRMULA???:

$$n = \left[\frac{1}{\frac{\delta^2}{z_\gamma \sum_{h=1}^H W_h \hat{s}_h^2} + \frac{1}{N}} \right]$$
 (25)

Ainda sob Amostragem Estratificada e tomando o menor inteiro maior que e expressção que determina n_h para todo estrato, a Alocação Proporcional determina que

$$n_h = \lceil nW_h \rceil \tag{26}$$

A Alocação Ótima de Neyman determina que

$$n_h = \left\lceil n \frac{N_h \hat{s}_h}{\sum_{h=1}^H N_h \hat{s}_h} \right\rceil \tag{27}$$