Stochastic gradient methods for machine learning

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - April 2013

Context Machine learning for "big data"

- Large-scale machine learning: large p, large n, large k
 - -p: dimension of each observation (input)
 - -k: number of tasks (dimension of outputs)
 - -n: number of observations
- Examples: computer vision, bioinformatics, signal processing
- Ideal running-time complexity: O(pn + kn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins and Monro, 1951)
 - Mixing statistics and optimization

Outline

Introduction

- Supervised machine learning and convex optimization
- Stochastic approximation algorithms (Bach and Moulines, 2011; Bach, 2013)
 - Stochastic gradient and averaging
 - Strongly convex vs. non-strongly convex
 - Adaptivity
- Going beyond stochastic gradient (Le Roux, Schmidt, and Bach, 2012, 2013)
 - More than a single pass through the data
 - Linear (exponential) convergence rate for strongly convex functions

Supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top}\Phi(x)$ of features $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$$

convex data fitting term + regularizer

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$

Supervised machine learning

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top}\Phi(x)$ of features $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$$

convex data fitting term + regularizer

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
 - May be tackled simultaneously

ullet A function $g:\mathbb{R}^p o \mathbb{R}$ is $L ext{-smooth}$ if and only if it is twice differentiable and

$$\forall \theta \in \mathbb{R}^p, \ g''(\theta) \preccurlyeq L \cdot Id$$

ullet A function $g:\mathbb{R}^p o \mathbb{R}$ is $L ext{-smooth}$ if and only if it is twice differentiable and

$$\forall \theta \in \mathbb{R}^p, \ g''(\theta) \leq L \cdot Id$$

Machine learning

- with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
- Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$
- Bounded data

• A function $g: \mathbb{R}^p \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \geqslant g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2$$

• If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \succcurlyeq \mu \cdot Id$

• A function $g: \mathbb{R}^p \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \geqslant g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2$$

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \succcurlyeq \mu \cdot Id$
- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$
 - Data with invertible covariance matrix (low correlation/dimension)
 - ... or with added regularization by $\frac{\mu}{2} \|\theta\|^2$

Iterative methods for minimizing smooth functions

- **Assumption**: g convex and smooth on $\mathcal{F} = \mathbb{R}^p$
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions
 - $O(e^{-\rho t})$ convergence rate for strongly convex functions
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $-O(e^{-\rho 2^t})$ convergence rate
- Key insights from Bottou and Bousquet (2008)
 - 1. In machine learning, no need to optimize below statistical error
 - 2. In machine learning, cost functions are averages

⇒ Stochastic approximation

Stochastic approximation

- Goal: Minimizing a function f defined on $\mathcal{F} = \mathbb{R}^p$
 - given only unbiased estimates $f'_n(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathcal{F}$

Stochastic approximation

- Observation of $f'_n(\theta_n) = f'(\theta_n) + \varepsilon_n$, with $\varepsilon_n = \text{i.i.d. noise}$
- Non-convex problems

Machine learning - statistics

– loss for a single pair of observations: $|f_n(\theta) = \ell(y_n, \theta^\top \Phi(x_n))|$

$$f_n(\theta) = \ell(y_n, \theta^{\top} \Phi(x_n))$$

- $-f(\theta) = \mathbb{E} f_n(\theta) = \mathbb{E} \ell(y_n, \theta^{\top} \Phi(x_n)) =$ generalization error
- Expected gradient: $f'(\theta) = \mathbb{E} f'_n(\theta) = \mathbb{E} \left\{ \ell'(y_n, \theta^\top \Phi(x_n)) \Phi(x_n) \right\}$

Convex smooth stochastic approximation

- **Key assumption**: smoothness and/or strongly convexity
- **Key algorithm:** stochastic gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$
- Which learning rate sequence γ_n ? Classical setting: $| \gamma_n = Cn^{-\alpha} |$

$$\gamma_n = C n^{-\alpha}$$

Convex stochastic approximation Related work

- Known global minimax rates of convergence (Nemirovski and Yudin, 1983; Agarwal et al., 2010)
 - Strongly convex: $O(n^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov and Vial (2008); Nemirovski et al. (2009)

Convex stochastic approximation Related work

- Known global minimax rates of convergence (Nemirovski and Yudin, 1983; Agarwal et al., 2010)
 - Strongly convex: $O(n^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
 Ruppert, 1988)
 - All step sizes $\gamma_n=Cn^{-\alpha}$ with $\alpha\in(1/2,1)$ lead to $O(n^{-1})$ for strongly convex problems

Convex stochastic approximation Related work

- Known global minimax rates of convergence (Nemirovski and Yudin, 1983; Agarwal et al., 2010)
 - Strongly convex: $O(n^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
 Ruppert, 1988)
 - All step sizes $\gamma_n=Cn^{-\alpha}$ with $\alpha\in(1/2,1)$ lead to $O(n^{-1})$ for strongly convex problems
 - A single algorithm with global convergence rate?

Adaptive algorithm for logistic regression

- Logistic regression: $(x_n, y_n) \in \mathbb{R}^p \times \{-1, 1\}$
 - Single data point: $f_n(\theta) = \log(1 + \exp(-y_n \theta^{\top} x_n))$
 - Generalization error: $f(\theta) = \mathbb{E}f_n(\theta)$
- Cannot be strongly convex ⇒ local strong convexity
 - unless restricted to $|\theta^{\top}x_n| \leqslant M$
 - μ = lowest eigenvalue of the Hessian at the optimum $f''(\theta_*)$

Adaptive algorithm for logistic regression

- Logistic regression: $(x_n, y_n) \in \mathbb{R}^p \times \{-1, 1\}$
 - Single data point: $f_n(\theta) = \log(1 + \exp(-y_n \theta^\top x_n))$
 - Generalization error: $f(\theta) = \mathbb{E}f_n(\theta)$
- Cannot be strongly convex ⇒ local strong convexity
 - unless restricted to $|\theta^{\top}x_n| \leqslant M$
 - μ = lowest eigenvalue of the Hessian at the optimum $f''(\theta_*)$
- n steps of averaged SGD with constant step-size $1/(2R^2\sqrt{n})$
 - with R = radius of data (Bach, 2013):

$$\mathbb{E}f(\bar{\theta}_n) - f(\theta_*) \leqslant \min\left\{\frac{1}{\sqrt{n}}, \frac{R^2}{n\mu}\right\} \left(15 + 5R\|\theta_0 - \theta_*\|\right)^4$$

- Proof based on generalized self-concordance (Bach, 2010)

Conclusions / Extensions Stochastic approximation for machine learning

Mixing convex optimization and statistics

- Non-asymptotic analysis through moment computations
- Averaging with longer steps is (more) robust and adaptive

• Future/current work - open problems

- High-probability through all moments $\mathbb{E}\|\theta_n-\theta_*\|^{2d}$
- Non-random errors (Schmidt, Le Roux, and Bach, 2011)
- Line search for stochastic gradient
- Non-parametric stochastic approximation
- Going beyond a single pass through the data

Going beyond a single pass over the data

Stochastic approximation

- Assumes infinite data stream
- Observations are used only once
- Directly minimizes testing cost $\mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$

Machine learning practice

- Finite data set $(x_1, y_1, \dots, x_n, y_n)$
- Multiple passes
- Minimizes training cost $\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
- Need to regularize (e.g., by the ℓ_2 -norm) to avoid overfitting

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^{n} f_i'(\theta_{t-1})$
 - Linear (e.g., exponential) convergence rate
 - Iteration complexity is linear in n

• Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$

• Batch gradient descent: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^{n} f_i'(\theta_{t-1})$
 - Linear (e.g., exponential) convergence rate
 - Iteration complexity is linear in n

- Stochastic gradient descent: $\theta_t = \theta_{t-1} \gamma_t f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1,\ldots,n\}$
 - Convergence rate in O(1/t)
 - Iteration complexity is independent of n

• Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$

• Batch gradient descent: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$

• Stochastic gradient descent: $\theta_t = \theta_{t-1} - \gamma_t f'_{i(t)}(\theta_{t-1})$

• Goal = best of both worlds: linear rate with O(1) iteration cost

• Goal = best of both worlds: linear rate with O(1) iteration cost

Accelerating gradient methods - Related work

Nesterov acceleration

- Nesterov (1983, 2004)
- Better linear rate but still O(n) iteration cost
- Hybrid methods, incremental average gradient, increasing batch size
 - Bertsekas (1997); Blatt et al. (2008); Friedlander and Schmidt (2011)
 - Linear rate, but iterations make full passes through the data.

Accelerating gradient methods - Related work

- Momentum, gradient/iterate averaging, stochastic version of accelerated batch gradient methods
 - Polyak and Juditsky (1992); Tseng (1998); Sunehag et al. (2009);
 Ghadimi and Lan (2010); Xiao (2010)
 - Can improve constants, but still have sublinear O(1/t) rate
- Constant step-size stochastic gradient (SG), accelerated SG
 - Kesten (1958); Delyon and Juditsky (1993); Solodov (1998); Nedic and Bertsekas (2000)
 - Linear convergence, but only up to a fixed tolerance.
- Stochastic methods in the dual
 - Shalev-Shwartz and Zhang (2012)
 - Linear rate but limited choice for the f_i 's

Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i=1,\ldots,n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

$$- \text{ Iteration: } \theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t \text{ with } y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$$

- Stochastic version of incremental average gradient (Blatt et al., 2008)
- Extra memory requirement
 - Supervised machine learning
 - If $f_i(\theta) = \ell_i(y_i, \Phi(x_i)^\top \theta)$, then $f_i'(\theta) = \ell_i'(y_i, \Phi(x_i)^\top \theta) \Phi(x_i)$
 - Only need to store n real numbers

Stochastic average gradient - Convergence analysis

Assumptions

- Each f_i is L-smooth, $i = 1, \ldots, n$
- $-g = \frac{1}{n} \sum_{i=1}^{n} f_i$ is μ -strongly convex (with potentially $\mu = 0$)
- constant step size $\gamma_t = 1/(16L)$
- initialization with one pass of averaged SGD
- Strongly convex case (Le Roux et al., 2012, 2013)

$$\mathbb{E}\left[g(\theta_t) - g(\theta_*)\right] \leqslant \left(\frac{8\sigma^2}{n} + \frac{4L\|\theta_0 - \theta_*\|^2}{n}\right) \exp\left(-t \min\left\{\frac{1}{8n}, \frac{\mu}{16L}\right\}\right)$$

- Linear (exponential) convergence rate with O(1) iteration cost
- After one pass, reduction of cost by $\exp\left(-\min\left\{\frac{1}{8},\frac{n\mu}{16L}\right\}\right)$

Stochastic average gradient - Convergence analysis

Assumptions

- Each f_i is L-smooth, $i = 1, \ldots, n$
- $-g = \frac{1}{n} \sum_{i=1}^{n} f_i$ is μ -strongly convex (with potentially $\mu = 0$)
- constant step size $\gamma_t = 1/(16L)$
- initialization with one pass of averaged SGD
- Non-strongly convex case (Le Roux et al., 2013)

$$\mathbb{E}\left[g(\theta_t) - g(\theta_*)\right] \leqslant 48 \frac{\sigma^2 + L\|\theta_0 - \theta_*\|^2}{\sqrt{n}} \frac{n}{k}$$

- Improvement over regular batch and stochastic gradient
- Adaptivity to potentially hidden strong convexity

Stochastic average gradient Simulation experiments

- protein dataset (n = 145751, p = 74)
- Dataset split in two (training/testing)

Stochastic average gradient Simulation experiments

- cover type dataset (n = 581012, p = 54)
- Dataset split in two (training/testing)

Conclusions / Extensions Stochastic average gradient

Going beyond a single pass through the data

- Keep memory of all gradients for finite training sets
- Linear convergence rate with O(1) iteration complexity
- Randomization leads to easier analysis and faster rates

Future/current work - open problems

- Including a non-differentiable term
- Line search
- Using second-order information or non-uniform sampling
- Distributed optimization
- Going beyond finite training sets (bound on testing cost)

References

- A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds on the oracle complexity of convex optimization, 2010. Tech. report, Arxiv 1009.0571.
- F. Bach. Self-concordant analysis for logistic regression. *Electronic Journal of Statistics*, 4:384–414, 2010. ISSN 1935-7524.
- F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine learning, 2011.
- Francis Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. arXiv preprint arXiv:1303.6149, 2013.
- D. P. Bertsekas. A new class of incremental gradient methods for least squares problems. *SIAM Journal on Optimization*, 7(4):913–926, 1997.
- D. Blatt, A.O. Hero, and H. Gauchman. A convergent incremental gradient method with a constant step size. 18(1):29–51, 2008.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In *Advances in Neural Information Processing Systems (NIPS)*, 20, 2008.
- L. Bottou and Y. Le Cun. On-line learning for very large data sets. *Applied Stochastic Models in Business and Industry*, 21(2):137–151, 2005.
- B. Delyon and A. Juditsky. Accelerated stochastic approximation. *SIAM Journal on Optimization*, 3: 868–881, 1993.

- J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. *Journal of Machine Learning Research*, 10:2899–2934, 2009. ISSN 1532-4435.
- M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting. *Arxiv* preprint arXiv:1104.2373, 2011.
- S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization. *Optimization Online*, July, 2010.
- E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. *Machine Learning*, 69(2):169–192, 2007.
- H. Kesten. Accelerated stochastic approximation. Ann. Math. Stat., 29(1):41-59, 1958.
- G. Lan. An optimal method for stochastic composite optimization. *Mathematical Programming*, pages 1–33, 2010.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. Technical Report 00674995, HAL, 2012.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. Technical Report 00674995, HAL, 2013.
- A. Nedic and D. Bertsekas. Convergence rate of incremental subgradient algorithms. *Stochastic Optimization: Algorithms and Applications*, pages 263–304, 2000.
- A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on Optimization*, 19(4):1574–1609, 2009.

- A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. 1983.
- Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.
- Y. Nesterov. *Introductory lectures on convex optimization: a basic course*. Kluwer Academic Publishers, 2004.
- Y. Nesterov and J. P. Vial. Confidence level solutions for stochastic programming. *Automatica*, 44(6): 1559–1568, 2008. ISSN 0005-1098.
- B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. *SIAM Journal on Control and Optimization*, 30(4):838–855, 1992.
- H. Robbins and S. Monro. A stochastic approximation method. *Ann. Math. Statistics*, 22:400–407, 1951. ISSN 0003-4851.
- D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical Report 781, Cornell University Operations Research and Industrial Engineering, 1988.
- M. Schmidt, N. Le Roux, and F. Bach. Optimization with approximate gradients. Technical report, HAL, 2011.
- S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set size. In *Proc. ICML*, 2008.
- S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. Technical Report 1209.1873, Arxiv, 2012.
- S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In *Proc. ICML*, 2007.

- S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In *Conference on Learning Theory (COLT)*, 2009.
- M.V. Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. *Computational Optimization and Applications*, 11(1):23–35, 1998.
- P. Sunehag, J. Trumpf, SVN Vishwanathan, and N. Schraudolph. Variable metric stochastic approximation theory. *International Conference on Artificial Intelligence and Statistics*, 2009.
- P. Tseng. An incremental gradient(-projection) method with momentum term and adaptive stepsize rule. SIAM Journal on Optimization, 8(2):506–531, 1998.
- L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. *Journal of Machine Learning Research*, 9:2543–2596, 2010. ISSN 1532-4435.