1 An Overview (week 1)

Overview DIS

2 Semistructured Data Management

2.1 Horizontal Fragmentation

2.1.1 Relational Databases

- 1. At which phase of the database lifecycle is fragmentation performed?
 - O At database design time
 - O During distributed query processing
 - O During updates to a distributed database
- 2. The reconstruction property expresses that
 - O In case of a node failure the data can be recovered from a fragment from another node
 - The original data can be fully recovered from the fragments
 - Every data value of the original data can be found in at least one fragment

2.1.2 Primary Horizontal Fragmentation (week 2)

- 1. Example: application A1 accesses
 - 1. Fragment F1: with frequency 3
 - 2. Fragment F2: with frequency 1

A1 accesses the whole relation with frequency

- \bigcirc 13/7
- \bigcirc 4/7
- \bigcirc 14/7

2. Consider the access frequencies below: How many horizontal fragments would a minimal and complete fragmentation have?

- \bigcirc 3
- \bigcirc 4
- \bigcirc 6
- 3. Which of the following sets of simple predicates is complete?

- O Location = "Munich", Budget > 200000
- O Location = "Munich", Location = "Bangalore"
- \bigcirc Location = "Paris", Budget ≤ 200000
- O None of those
- 4. Which is true for MinFrag algorithm?
 - The output is independent of the order of the input
 - O It produces a monotonically increasing set of predicates
 - O It always terminates
 - All of the above statements are true
- 5. When deriving a horizontal fragmentation for relation S from a horizontally fragmented relation R
 - \bigcirc Some primary key attribute in R must be a foreign key in S
 - \bigcirc Some primary key attribute in S must be a foreign key in R
 - O Both are required

2.2 Graph Databases (week 3)

2.2.1 Semi-structured Data

1.	Semi-stru	ctured data
	\bigcirc	Is always schema-less
	\bigcirc	Always embeds schema information into the data
	\bigcirc	Must always be hierarchically structured
	\bigcirc	Can never be indexed
2.	Why is X	ML a document model?
	\bigcirc	It supports application-specific markup
	\bigcirc	It supports domain-specific schemas
	\bigcirc	It has a serialized representation
	\bigcirc	It uses HTML tags
2.2	.2 Grap	oh Data Model
1.	In a grap	h database
	\bigcirc	There is a unique root node
	\bigcirc	Each node has a unique identifier
	\bigcirc	Data values in leaf nodes are unique
	\bigcirc	The labels of edges leaving a node are different
	\bigcirc	There is a unique path from the root to each leaf
2.	The simu	lation relationship is a relation
	\bigcirc	Among nodes in the data and schema graph
	\bigcirc	Among edges in the data and schema graph
	\bigcirc	Among sets of nodes in the data and schema graph
	\bigcirc	Among sets of edges in the data and schema graph
3.	Which is	true?
	\bigcirc	For each labelled edge in S a corresponding edge in D can be identified
	\bigcirc	For each root node in S a corresponding root node D can be identified
	\bigcirc	For each leaf node in ${\cal D}$ a corresponding typed node in ${\cal S}$ can be identified
	\circ	For each node in S a unique path reaching it from a root node can be identified
4.		xists a uniquely defined simulation relationship among a graph database ${\cal D}$ ema graph ${\cal S}$
	\bigcirc	The data and schema graph are simulation equivalent
	\bigcirc	Ambiguous classification cannot occur

	\bigcirc	Multiple classification cannot occur
5. If	schema	graph S_1 subsumes S_2
	\bigcirc	Every graph database corresponding to S_1 corresponds also to S_2
	\bigcirc	S_2 simulates S_1
	\bigcirc	S_1 has fewer nodes than S_2
2.2.3	Sche	ma Extraction
1. W	hich is	wrong? In a dataguide
	\bigcirc	Every path in the data graph occurs only once
	\bigcirc	Every node in the data graph occurs only in one data guide node
	\bigcirc	Every data guide node has a unique set of nodes
	\bigcirc	A leaf node in the data graph corresponds always to a leaf node in the data guide
2. In	a non-	deterministic schema graph
	\bigcirc	Every node of the data graph occurs exactly once
	\bigcirc	Every path of the data graph occurs at most once
	\bigcirc	Every label of an outgoing edge of a node in the schema graph is unique
$egin{array}{ccc} 3.1 \end{array}$		rmation Retrieval and Data Mining rmation Retrieval (week 4)
3.1.1	Infor	rmation Retrieval
1. A	retrieva	al model attempts to model
	\bigcirc	The interface by which a user is accessing information
	\bigcirc	The importance a user gives to a piece of information
	\bigcirc	The formal correctness of a query formulation by user
	\bigcirc	All of the above
2. If	the top	100 documents contain 50 relevant documents
	\bigcirc	The precision of the system at 50 is 0.5
	\bigcirc	The precision of the system at 100 is 0.5
	\bigcirc	The recall of the system is 0.5
	\bigcirc	None of the above
3. If	retrieva	al system A has a higher precision than system B
	\bigcirc	The top k documents of A will have higher similarity values than the top k documents of B

O	top k documents of A will contain more relevant documents than the
\circ	A will recall more documents above a given similarity threshold than B
0	Relevant documents in A will have higher similarity values than in B
3.1.2 Text	-based Information Retrieval
1. Full-text	retrieval means that
\bigcirc	The document text is grammatically deeply analyzed for indexing
\bigcirc	The complete vocabulary of a language is used to extract index terms
\bigcirc	All words of a text are considered as potential index terms
\bigcirc	All grammatical variations of a word are indexed
2. The term	n-document matrix indicates
\bigcirc	How many relevant terms a document contains
\bigcirc	How relevant a term is for a given document
\bigcirc	How often a relevant term occurs in a document collection
\bigcirc	Which relevant terms are occurring in a document collection
	query be represented by the following vectors: $(1, 0, -1)$ $(0, -1, 1)$; the t by the vector $(1, 0, 1)$
\bigcirc	Matches the query because it matches the first query vector
\bigcirc	Matches the query because it matches the second query vector
\bigcirc	Does not match the query because it does not match the first query vector
0	Does not match the query because it does not match the second query vector
4. Which is	right? The term frequency is normalized
\bigcirc	By the maximal frequency of a term in the document
\bigcirc	By the maximal frequency of a term in the document collection
\bigcirc	By the maximal frequency of a term in the vocabulary
\bigcirc	By the maximal term frequency of any document in the collection
5. The inve	rse document frequency of a term can increase
\bigcirc	By adding the term to a document that contains the term
0	By adding a document to a document collection that does not contain the term
0	By removing a document from the document collection that does not contain the term
\bigcirc	By adding a document to a document collection that contains the term

3.2 Advanced Retrieval Models (week 5)

3.2.1 Latent Semantic Indexing

1. In vector space retrieval each row of the matrix M^t corresponds to
○ A document
○ A concept
○ A query
○ A query result
2. Applying SVD to a term-document matrix \mathbf{M} . Each concept is represented
○ As a singular value
○ As a linear combination of terms of the vocabulary
○ As a linear combination of documents in the document collection
\bigcirc As a least square approximation of the matrix ${\bf M}$
3. The number of term vectors in the SVD for LSI
\bigcirc Is smaller than the number of rows in the matrix ${\bf M}$
\bigcirc Is the same as the number of rows in the matrix ${\bf M}$
\bigcirc Is larger than the number of rows in the matrix ${f M}$
4. A query transformed into the concept space for LSI has
\bigcirc s components (number of singular values)
\bigcirc m components (size of vocabulary)
\bigcirc n components (number of documents)
3.2.2 User Relevance Feedback
1. Can documents which do not contain any keywords of the original query receive a positive similarity coefficient after relevance feedback?
○ No
\bigcirc Yes, independent of the values β and γ
\bigcirc Yes, but only if $\beta > 0$
\bigcirc Yes, but only if $\gamma > 0$
3.2.3 Link-based Ranking
2. A positive random jump value for exactly one node implies that
○ a random walker can leave the node even without outgoing edges
 a random walker can reach the node multiple times even without outgoing edges
○ a random walker can reach the node even without incoming edges

- O none of the above
- 3. Given the graph below and an initial hub vector of (1,1,1). The hub-authority ranking will result in the following

- \bigcirc authority vector (0,0,1); hub vector (1,1,0)
- \bigcirc authority vector (0,0,2); hub vector (2,2,0)
- \bigcirc authority vector (0,0,1); hub vector $(\frac{1}{2},\frac{1}{2},0)$
- \bigcirc authority vector (0,0,2); hub vector (1,1,0)

3.2.4 Inverted Files (week 6)

- 1. A posting indicates
 - O The frequency of a term in the vocabulary
 - The frequency of a term in a document
 - The occurrence of a term in a document
 - The list of terms occurring in a document
- 2. When indexing a document collection using an inverted file, the main space requirement is implied by

 - O The index file
 - The postings file
- 3. Using a trie in index construction
 - Helps to quickly find words that have been seen before
 - Helps to quickly decide whether a word has not seen before
 - O Helps to maintain the lexicographic order of words seen in the documents
 - All of the above
- 4. Maintaining the order of document identifiers when partitioning the document collection is important
 - O In the index merging approach for single node machines

In the map-reduce approach for parallel clusters
O In both
○ In neither of the two
3.2.5 Distributed Retrieval
1. When applying Fagin's algorithm for a query with three different terms for finding the k top documents, the algorithm will scan
○ 2 different lists
○ 3 different lists
$\bigcirc k$ different lists
it depends how many rounds are taken
2. Once k documents have been identified that occur in all of the lists
\bigcirc These are the top- k documents
\bigcirc The top- k documents are among the documents seen so far
\bigcirc The search has to continue in round-robin till the top- k documents are identified
\bigcirc Other documents have to be searched to complete the top- k list

Credits

Quiz questions were taken from the lecture notes of Prof. Karl Aberer.