Lecture #18 - GPU Programming

AMath 483/583

GPUs

- Well-suited for SIMD
- Massively parallel
 - many "cores"

NVIDIA Tesla P100: 3584 cores

- specializes in latency hiding
- Highly energy efficient (Gflops / \$ / Watt)

CUDA

- NVIDIA's superset of C/C++
- Write CPU and GPU code in same source file
- Creates "Host Program" on CPU and "Device Program" on GPU.
 - communication between host and device similar to MPI

NVIDIA Tesla C2075

- 448 cores
- 1150 MHz clock
- 144 GB/sec mem. bandwidth
- 6 GB RAM
- 515 GFLOPS double precision

Used in this week's demos.

x4 on americano.amath

NVIDIA Tesla P100

- 3584 cores
- 1328 MHz clock

- 720 GB/sec mem. bandwidth
- 16 GB RAM
- 5.3 TFLOPS double precision

Computing power of top supercomputer in 2000

CPU vs. GPU

Simple Processing Flow

1) Copy data from CPU (host) to GPU (device)

Simple Processing Flow

2) Load GPU program and execute on device data.

Data cached from global memory into SMs for performance.

Simple Processing Flow

3) Copy data from device back to host.

(Similar to MPI Send/Recv process workflow.)

Terminology

- <u>"Host-side"</u> code running on CPU. Directs GPU calls and memory transfer.
- <u>"Device-side"</u> code running on GPU. Only interacts with device-side memory.
- <u>"Kernel"</u> a function that runs on GPU. Invoked by host-side call. (Sometimes, device-side call.)

```
#include <cuda.h>
                   95% of host-side functions defined here
__global__ void cuda_hello(void) {
  // print a character buffer from the GPU!
  printf("Hello, world!");
int main(void) {
  // call the CUDA kernel from the GPU
  cuda_hello<<<1,1>>>();
  // wait for all CUDA kernels to finish
  cudaDeviceSynchronize();
  return 0;
```

```
#include <cuda.h>
__global__ void cuda_hello(void) {
  // print a character buffer from the GPU!
  printf("Hello, world!");
                                            A CUDA "kernel"
 Aside: printing from GPU is bananas!
                                      __global__ indicates that this
  // call the CUDA kernel from t
                                        function is run on the GPU
  cuda_hello<<<1,1>>>();
  // wait for all CUDA kernels to finish
  cudaDeviceSynchronize();
  return 0;
```

```
#include <cuda.h>
                                    Invocation of the Kernel
__global__ void cuda_h
  // print a character
                           For now, the <<<1,1>>> just means to run the
  printf("Hello, world
                                 kernel on a single GPU thread.
int main(void) {
  // call the CUDA kernel from the GPU
  cuda_hello<<<1,1>>>();
  // wait for all CUDA kernels to finish
  cudaDeviceSynchronize();
  return 0;
```

```
#include <cuda.h>
__global__ void cuda_hello(void) {
  // print a character buffer from the GPU!
  printf("Hello, world!")
                                       Synchronize GPU Threads
int main(void) {
                                  With for GPU threads to finish. CPU can
  // call the CUDA kernel from
                                     execute code in the meantime.
  cuda_hello<<<1,1>>>();
  // wait for all CUDA kernels to finish
  cudaDeviceSynchronize();
  return 0;
```

Compiling

Use the Nvidia CUDA C compiler

```
$ nvcc -arch=sm_20 hello.cu
$ ./a.out
"Hello, world!"
```

Different "compute capabilities" on different GPUS.
 (Compile targets different hardware levels.)

```
"-arch=sm_53" = Maxwell features
```

Demo

hello.cu

GPU Parallelism

- Shared Memory Environment (e.g. OpenMP)
- Thread organization:

Set thread / block count using triple chevrons

```
my_kernel<<<nblocks, nthreads_per_block>>>(...)
```

Threads and Block

Obtain current thread:

```
int tid = threadIdx.x;
```

Obtain current block:

```
int bid = blockIdx.x;
```

Hello World - Revisited

```
#include <cuda.h>
__global__ void cuda_hello(void) {
  int tid = threadIdx.x;
  printf("Hello, from thread %d\n", tid);
}
                       Run with 1 block, 4 threads.
int main(void) {
  cuda_hello<<<1,4>>>();
  cudaDeviceSynchronize();
  return 0;
```

Demo

hello.cu

Run with 2 blocks and 4 threads per block. "parallelism coordinate"

Vector Addition

- Recall three-step memory flow:
 - 1. Copy data from host to device
 - 2. Compute on device
 - 3. Copy results back to host
- Host memory separated from device memory
 - host pointers point to CPU memory
 - device pointers point to GPU memory

vec_add - Device Side

 For now, assume vectors of length N and we spawned 1 block, N threads

```
__global__ void
vec_add(int* out, int* v, int* w)
{
    size_t index = threadIdx.x;
    out[index] = v[index] + w[index];
}
```

vec_add - Device Side

 For now, assume vectors of length N and we spawned 1 block, N threads

```
Pointers to device-side memory.
__global__ void
vec_add(int* out, int* v, int* w)
{
    size_t index = threadIdx.x;
    out[index] = v[index] + w[index];
}
Determine vector index from thread / block indices.
```

Device-side analogues of common C memory funs

Copies data to/from host from/to device. (Depending on dir.)

1) Allocate some host-side data:

Storing the array size (not just length) will be useful later

```
int N = 16;
size_t size = N*sizeof(int);
int* host_v = (int*) malloc(size);
int* host_w = (int*) malloc(size);

// populate host_v and host_w with data
// ...
```

2) Allocate some corresponding device-side data:

```
int* dev_v;
int* dev_w;
int* dev_sum;

// note: cudaMalloc wants ptr to ptr
cudaMalloc((void**) &dev_v, size);
cudaMalloc((void**) &dev_w, size);
cudaMalloc((void**) &dev_out, size);
```

2) Allocate some corresponding device-side data:

```
int* dev_v;
int* dev_w;
These don't actually point to anywhere in
RAM or GPU memory. Just for reference.
```

```
// note: cudaMalloc wants ptr to ptr
cudaMalloc((void**) &dev_v, size);
cudaMalloc((void**) &dev_w, size);
cudaMalloc((void**) &dev_out, size);
```

3) Copy host-side data to device using dev ptrs.

• **Remember**: data communication to GPU is explicit (like MPI)

vec_add — Execute GPU Kernel on Device Data

• 4) Launch Kernel on N threads and wait to finish.

```
vec_add<<<1,N>>>(dev_sum,dev_v,dev_w);
cudaDeviceSychronize();
```

- **Note**: number of threads spawned = problem size
 - (no need to pass vector length)

vec_add — Copy Results Back to Host

Remember to free device-side data:

Demo

vec_add.cu

Combining Blocks and Threads

- Each block works on a "chunk" of the vector
- Each block thread adds across an index

Combining Blocks and Threads

- Compute "global index" = coordinate of vector as a function of threadIdx.x and blockIdx.x
- blockDim.x = number of allocated blocks

Combining Blocks and Threads

vec_add — Flexible Kernel

Works for any combination of threads / blocks:

Demo

vec_add.cu with variable block/kernel

Why Bother?

- Within each block threads can
 - communicate
 - fast "shared memory" between threads within a block (lives in L1 memory)
 - otherwise, slow global memory access
 - synchronize race cond. and branches

Why Bother?

- Latency hiding while one block makes mem. request another block can run on SM
 - "block swapping" hide transfer times
- Hardware Restrictions (C2075)
 - 1536 threads / SM
 - 8 blocks / SM
 - total 48 KB shmem / SM (shared among blocks)
 - 1024 threads / block

Why Bother?

- Latency hiding while one block makes mem. request another block can run on SM
 - "block swapping" hide trans
- Hardware Restrictions (§
 - 1536 threads / SM
 - 8 blocks / SM
 - total 48 KB shmem / SM ___ared among blocks)
 - 1024 threads / block

Recommend 128, 160, 192, 256 threads / block. (Multiples of 32)

Warps

- Key GPGPU Difference each SM splits blocks into "warps" of 32 threads. <u>All threads in a warp</u> <u>execute concurrently.</u>
 - warp waits until 32 cores are available on SM
 - if a block contains 48 threads: 32 in one warp 16 in another (+16 no-op threads)
 - performance issues: contiguity, sequential access, aligned access

mat_mul

```
// for each row of C
for (int i=0; i<N; ++i) {
    // for each column of C
    for (int j=0; j<N; ++j) {
        // compute the inner product
        for (int k=0; k<N; ++k)
            C[i*N + j] += A[i*N + k]*B[k*N + j];
    }
}</pre>
```

B (N x B) B: column j

Each thread is assigned a Cij to compute.

Take advantage of 2D thread / block arrangement notation!

Cij C (N x N)

Parallel mat_mul

• Each thread computes Cij — 2D organization of blocks and threads

```
size_t i = threadIdx.y + blockIdx.y*blockDim.y;
size_t j = threadIdx.x + blockIdx.x*blockDim.x;
```

Thread at "global index" (i,j) computes C[i*N+j]

Creating 2D Grids

Normal Kernel Call

```
mykernel<<<nblocks, thperblk>>>(...args...);
```

2D Grids — if each block contained thpblk_x * thpblk_y threads total

```
// specify block size
dim3 dim_block(thpblk_x, thpblk_y);
// specify number of blocks
dim3 dim_grid(nblocks_x, nblocks_y);
mykernel<<<dim_grid, dim_block>>>(...args...);
```

mat_mul — CUDA Kernel

```
__global__ void
mat_mul(double* C, double* A, double* B)
  // row#, col#, and row/col length
  size_t i = threadIdx.y + blockIdx.y*blockDim.y;
  size_t j = threadIdx.x + blockIdx.x*blockDim.x;
  size_t N = blockDim.x * gridDim.x;
  // inner product
  for (size_t k=0; k<N; ++k)</pre>
    C[i*N+j] = A[i*N+k] * B[k*N+j];
```