Procedure and data

A small piece of steel wool is added to sulphuric acid H_2SO_4 . The solution is heated until the wool is dissolved, then passed through paper filter, approximately 200 ml of water is added and the solution goes to a thermostatic bath. Finally the solution is diluted to 250 ml and titrated.

The titration utilises potassium permanganate $\mathrm{KMnO_4}$, which also acts as the indicator.

• Half Equations

$$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$$

 $MnO_4^- + 5e^- \longrightarrow Mn_2^+$

• Balanced equation

$$5 \operatorname{Fe}^{2+}_{(aq)} + \operatorname{MnO_4}^{-}_{(aq)} + 8 \operatorname{H}^{+}_{(aq)} \longrightarrow 5 \operatorname{Fe}^{3+}_{(aq)} + \operatorname{Mn}^{2+}_{(aq)} + 4 \operatorname{H}_2 O_{(1)}$$
(1)

• Data Mass of steel wool: 0,945 g

Solution	Volume KMnO ₄ \pm 0,1 ml
0	16,6
1	16,3
2	15,9
Average	16,3 $\pm 0,4$

Calculations

Amount = Volume·Molar concentration $\Rightarrow n = 16, 3ml \cdot 0, 0197mol/l = 3, 21 \cdot 10^{-4}mol$.

As per equation 1, the ratio of Fe^{2+} to MnO_4^- is 5:1, so the solution must contain following amount of Fe^{2+} :

$$n(\text{Fe}^{2+}) = 3,21 \cdot 10^{-4} \text{mol} \cdot 5 = 1,60 \cdot 10^{-3} \text{mol}$$
 (2)

Given the molar mass of Fe, M(Fe) = 55,8 g/mol, $n(Fe^{2+})$ found previously, and only a tenth of the solution being utilised, we can calculate the estimated mass of Fe in the steel wool, m(Fe²⁺):

$$m(\text{Fe}^{2+}) = M \cdot n = 55, 8 \cdot 1,60 \cdot 10^{-3} \cdot 10 = 0,893g$$
 (3)

Repeating the process for Solutions 0, 1 and 2 in order to establish margins of error, we have:

Solution	Volume KMnO ₄ \pm 0,1(ml)	Fe mass $\pm 0,001(g)$	Fe mass percentage
0	16,6	0,912	96,6%
1	16,3	0,893	94,5%
2	15,9	0,874	$92,\!5\%$
Average	16,3 $\pm 0, 4$	0.893 ± 0.019	$94,\!5\%$

Considerations

The most obvious issue is the accuracy of our data, which presents an error of about 4% compared to the expected result 98,5%, however the precision of measurements of both the volume and mass is around 2% – well within the acceptable range.

One of the considerations as to why the percentage of mass of iron is lower than expected is a mistake in our procedure: wherein we did pour water through the filter in order to flush any leftover iron stuck on the filter.