▼ Import Dataset

```
import pandas as pd
from google.colab import data_table
data_table.enable_dataframe_formatter()

# Read CSV file with space delimiter
df = pd.read_csv('/content/Earthquake_Data.csv', delimiter=r'\s+')

# Print the first 5 rows of the data frame
display(df)
```

								1	to 25 c	of 180	30 entri	es Filt	er 🛭 🔞
index	Date(YYYY/MM/DD)	Time	Latitude	Longitude	Depth	Mag	Magt	Nst	Gap	Clo	RMS	SRC	EventID
0	1966/07/01	09:41:21.82	35,9463	-120.47	12.26	3.2	Mx	7	171	20	0.02	NCSN	-4540462
1	1966/07/02	12:08:34.25	35.7867	-120.3265	8.99	3.7	Mx	8	86	3	0.04	NCSN	-4540520
2	1966/07/02	12:16:14.95	35.7928	-120.3353	9.88	3.4	Mx	8	89	2	0.03	NCSN	-4540521
3	1966/07/02	12:25:06.12	35.797	-120.3282	9.09	3.1	Mx	8	101	3	0.08	NCSN	-4540522
4	1966/07/05	18:54:54.36	35.9223	-120.4585	7.86	3.1	Mx	9	161	14	0.04	NCSN	-4540594
5	1966/07/27	08:12:00.26	35.9103	-120.4397	8.02	3.0	Mx	10	158	12	0.02	NCSN	-4540837
6	1966/08/03	12:39:05.79	35.8137	-120.3527	6.59	3.4	Mx	10	131	2	0.05	NCSN	-4540891
7	1966/08/07	17:03:24.14	35.938	-120.4568	11.76	3.0	Mx	11	153	19	0.04	NCSN	-4540922
8	1966/08/19	22:51:20.04	35.914	-120.4272	1.67	3.3	Mx	6	165	11	0.1	NCSN	-4540969
9	1966/09/07	00:20:52.12	36.0032	-120.0317	10.61	3.4	Mx	13	258	27	0.14	NCSN	-4541046
10	1968/01/12	22:19:10.35	36.6453	-121,2497	6.84	3.0	ML	14	155	2	0.07	NCSN	-1001356
11	1968/02/09	13:42:37.05	37.1527	-121.5448	8.49	3.0	ML	25	157	7	0.08	NCSN	-1001405
12	1968/02/21	14:39:48.10	37.1783	-121.578	6.95	3.8	ML	29	142	4	0.1	NCSN	-1001431
13	1968/03/02	04:25:53.94	36.8343	-121.5447	5.35	3.0	Mx	17	106	5	0.16	NCSN	-1001455
14	1968/03/17	15:07:02.12	37.3088	-121.6615	4.39	3.0	ML	29	85	4	0.07	NCSN	-1001502
15	1968/03/21	21:54:59.94	37.0378	- 121.7407	11.86	4.3	ML	29	133	6	0.1	NCSN	-1001514
16	1968/05/03	21:39:57.28	37.729	-122.1162	10.08	3.2	ML	23	161	19	0.04	NCSN	-1001592
17	1968/05/21	22:33:01.20	37.3577	-121.631	8.0	3.0	Mx	7	151	9	0.06	NCSN	-1001624
18	1968/05/25	09:41:04.33	37.4133	-121.8243	1.77	3.42	Mx	21	115	5	0.12	NCSN	-1001633
19	1968/05/25	11:46:48.64	37.4225	-121.8105	4.05	3.14	Mx	14	105	3	0.08	NCSN	-1001634
20	1968/05/30	08:03:01.06	38.1722	-123.2057	5.0	4.2	ML	38	324	91	0.3	NCSN	-1001645
21	1968/06/20	07:50:28.11	36.8142	-121.5412	6.8	3.5	ML	25	72	3	0.2	NCSN	-1001698
22	1968/08/08	19:41:31.32	37.4095	-121.758	8.35	3.2	ML	31	76	3	0.07	NCSN	-1001806
23	1968/08/19	09:05:27.25	36.4967	-121.8773	4.99	3.23	Mx	5	270	43	0.06	NCSN	-1001831
24	1968/09/26	20:01:14.08	37.018	-121.701	9.85	3.14	Mx	30	65	4	0.15	NCSN	-1001894
Show [25 🕶 per page							1	2	10	100	700	720 722

Preprocessing

No preprocessing required because the data is already clean and structured. We just have to change the column names to meaningful names.

1 to 25 of 18030 entries Filter 📙	to 25 of 18030 entries Filt	ter 🔲	
---------------------------------------	-----------------------------	-------	--

index	Latitude(deg)	Longitude(deg)	Depth(km)	Magnitude(ergs)	Magnitude
1966-07-01 09:41:21.820000	35.9463	-120.47	12.26	3.2	Mx
1966-07-02 12:08:34.250000	35.7867	-120.3265	8.99	3.7	Mx
1966-07-02 12:16:14.950000	35.7928	-120,3353	9.88	3.4	Mx
1966-07-02 12:25:06.120000	35.797	-120.3282	9.09	3.1	Mx
1966-07-05 18:54:54.360000	35.9223	-120.4585	7.86	3.1	Mx
1966-07-27 08:12:00.260000	35.9103	-120,4397	8.02	3.0	Mx
1966-08-03 12:39:05.790000	35.8137	-120.3527	6.59	3.4	Mx
1966-08-07 17:03:24.140000	35.938	-120.4568	11.76	3.0	Mx
1966-08-19 22:51:20.040000	35.914	-120.4272	1.67	3.3	Mx
1966-09-07 00:20:52.120000	36.0032	-120.0317	10.61	3.4	Mx
1968-01-12 22:19:10.350000	36.6453	-121.2497	6.84	3.0	ML
1968-02-09 13:42:37.050000	37.1527	-121.5448	8.49	3.0	ML
1968-02-21 14:39:48.100000	37.1783	-121.578	6.95	3.8	ML
1968-03-02 04:25:53.940000	36.8343	-121.5447	5.35	3.0	Mx
1968-03-17 15:07:02.120000	37.3088	-121.6615	4.39	3.0	ML
1968-03-21 21:54:59.940000	37.0378	-121.7407	11.86	4.3	ML
1968-05-03 21:39:57.280000	37.729	-122.1162	10.08	3.2	ML
1968-05-21 22:33:01.200000	37.3577	-121.631	8.0	3.0	Mx
1968-05-25 09:41:04.330000	37.4133	-121.8243	1.77	3.42	Mx
1968-05-25 11:46:48.640000	37.4225	-121.8105	4.05	3.14	Mx
1968-05-30 08:03:01.060000	38.1722	-123.2057	5.0	4.2	ML
1968-06-20 07:50:28.110000	36 8142	-121 5412	6.8	3.5	MI

df.info()

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 18030 entries, 1966-07-01 09:41:21.820000 to 2007-12-28 23:20:28.120000
Data columns (total 11 columns):
```

#	Column	Non-Null Count	Dtype	
0	Latitude(deg)	18030 non-null	float64	
1	Longitude(deg)	1 8030 non-null	float64	
2	Depth(km)	1 8030 non-null	float64	
3	Magnitude(ergs)	1 8030 non-null	float64	
4	Magnitude_type	18030 non-null	object	
5	No_of_Stations	18030 non-null	int64	
6	Gap	1 8030 non-null	int64	
7	Close	18030 non-null	int64	
8	RMS	18030 non-null	float64	
9	SRC	18030 non-null	object	
10	EventID	18030 non-null	int64	
<pre>dtypes: float64(5), int64(4), object(2)</pre>				

memory usage: 1.7+ MB

▼ Export Preprocessed dataset

Export the data into xlsx file

```
file_name = 'Earthquake_data_processed.xlsx'
# saving the excel
df.to_excel(file_name)
print('DataFrame is written to Excel File successfully.')
     DataFrame is written to Excel File successfully.
import warnings
warnings.filterwarnings('ignore')
```

Partition the data into Training and Testing data

```
from sklearn.model_selection import train_test_split

# Select relevant columns
X = df[['Latitude(deg)', 'Longitude(deg)', 'Depth(km)', 'No_of_Stations']]
y = df['Magnitude(ergs)']

# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```

Linear regression

Loading the model and fitting it with training data

Predict the testing data

Find the predicted values and evaluate it using metrics of linear regression

Predict for new data

Plot multiple linear regression model

```
import seaborn as sns
import matplotlib.pyplot as plt

# Plot the regression line
sns.regplot(x=X_test['Latitude(deg)'], y=y_test, color='blue', scatter_kws={'s': 10})
sns.regplot(x=X_test['Longitude(deg)'], y=y_test, color='red', scatter_kws={'s': 10})
sns.regplot(x=X_test['Depth(km)'], y=y_test, color='yellow', scatter_kws={'s': 10})
sns.regplot(x=X_test['No_of_Stations'], y=y_test, color='violet', scatter_kws={'s': 10})
plt.legend(labels=['Latitude(deg)', 'Longitude(deg)', 'Depth(km)', 'No_of_Stations'])
plt.xlabel('Predictor Variables')
plt.ylabel('Magnitude')
plt.title('Multiple Linear Regression Model')
plt.show()
```


▼ SVM

Loading the model and fitting it with training data

```
# Select a subset of the training data
subset_size = 500
X_train_subset = X_train[:subset_size]
y_train_subset = y_train[:subset_size]
# Create an SVM model
svm = SVR(kernel='rbf', C=1e3, gamma=0.1)
# Train the SVM model on the subset of data
svm.fit(X_train_subset, y_train_subset)
# Evaluate the model on the test set
score = svm.score(X_test, y_test)
print("Test score:", score)

Test score: -2.6273211125904736
```

Predict the testing data

Find the predicted values and evaluate it using metrics like MSE, r2

```
# Predict on the testing set
```

```
y_pred_svm = svm.predict(X_test)

# Compute R^2 and MSE
r2_svm = r2_score(y_test, y_pred_svm)
mse_svm = mean_squared_error(y_test, y_pred_svm)

scores['mse'].append(mse_svm)
scores['R^2'].append(r2_svm)

print("SVM R^2: {:.2f}, MSE: {:.2f}".format(r2_svm, mse_svm))

SVM R^2: -2.63, MSE: 0.70
```

Predict for new data

```
# Predict on new data
new_pred_svm = svm.predict(new_data)
print("New SVM predictions:", new_pred_svm)
New SVM predictions: [4.030623 3.68010607]
```

Plot model

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import style
from sklearn.svm import SVC
style.use('fivethirtyeight')
# create mesh grids
def make_meshgrid(x, y, h = .02):
    x_{min}, x_{max} = x.min() - 1, x.max() + 1
    y_{min}, y_{max} = y.min() - 1, y.max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    return xx, yy
# plot the contours
def plot_contours(ax, clf, xx, yy, **params):
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    out = ax.contourf(xx, yy, Z, **params)
    return out
# color = ['y', 'b', 'g', 'k']
subset_size = 500
# modify the column names based on the dataset
features = df[['Magnitude(ergs)','Latitude(deg)']][:subset_size].values
classes = df['Magnitude_type'][:subset_size].values
# create 3 svm with rbf kernels
svm1 = SVC(kernel ='rbf')
svm2 = SVC(kernel ='rbf')
svm3 = SVC(kernel ='rbf')
svm4 = SVC(kernel ='rbf')
# fit each svm's
svm1.fit(features, (classes=='ML').astype(int))
svm2.fit(features, (classes=='Mx').astype(int))
svm3.fit(features, (classes=='Md').astype(int))
fig, ax = plt.subplots()
X0, X1 = features[:, 0], features[:, 1]
xx, yy = make_meshgrid(X0, X1)
# plot the contours
plot_contours(ax, svm1, xx, yy, cmap = plt.get_cmap('hot'), alpha = 0.8)
plot_contours(ax, svm2, xx, yy, cmap = plt.get_cmap('hot'), alpha = 0.3)
plot_contours(ax, svm3, xx, yy, cmap = plt.get_cmap('hot'), alpha = 0.5)
color = ['y', 'b', 'g', 'k', 'm']
for i in range(subset_size):
    if classes[i] == 'ML':
        plt.scatter(features[i][0], features[i][1], s = 20, c = color[0])
    elif classes[i] == 'Mx':
        plt.scatter(features[i][0], features[i][1], s = 20, c = color[1])
    elif classes[i] == 'Md':
        plt.scatter(features[i][0], features[i][1], s = 20, c = color[2])
    else:
        plt.scatter(features[i][0], features[i][1], s = 20, c = color[4])
plt.show()
```


▼ Naive Bayes

Note: Naive bayes is used for strings and numbers(categorically) it can be used for classification so it can be either 1 or 0 nothing in between like 0.5 (regression). Even if we force naive bayes and tweak it a little bit for regression the result is disappointing; A team experimented with this and achieve not so good results.

This code is just for predicting categorical data magnitude type with Naive Bayes

```
import pandas as pd
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
import matplotlib.pyplot as plt
import seaborn as sns
# Read CSV file with space delimiter
df = pd.read_csv('/content/Earthquake_Data.csv', delimiter=r'\s+')
new_column_names = ["Date(YYYY/MM/DD)", "Time(UTC)", "Latitude(deg)", "Longitude(deg)", "Depth(km)", "Magnitude",
                    "Magnitude_Category", "No_of_Stations", "Gap", "Close", "RMS", "SRC", "EventID"]
df.columns = new_column_names
# Convert magnitude column to categorical data
df['Magnitude_Category'] = pd.cut(df['Magnitude'], bins=[0, 5, 6, 7, np.inf], labels=['Minor', 'Moderate', 'Strong', '
# Encode Magnitude Category
le = LabelEncoder()
df['Magnitude_Category_Encoded'] = le.fit_transform(df['Magnitude_Category'])
# Normalize latitude and longitude values
scaler = MinMaxScaler()
df[['Latitude(deg)', 'Longitude(deg)']] = scaler.fit_transform(df[['Latitude(deg)', 'Longitude(deg)']])
# Select features
X = df[['Latitude(deg)', 'Longitude(deg)', 'No_of_Stations']]
y = df['Magnitude_Category_Encoded']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Train the Gaussian Naive Bayes model on the training data
gnb = GaussianNB()
gnb.fit(X_train, y_train)
      ▼ GaussianNB
     GaussianNB()
# Use the trained model to make predictions on the testing data
y_pred = gnb.predict(X_test)
# Calculate the accuracy of the model
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
# Calculate and print the confusion matrix and classification report
cm = confusion_matrix(y_test, y_pred)
print('Confusion Matrix:\n', cm)
cr = classification_report(y_test, y_pred, labels=[0, 1, 2, 3], target_names=['Minor', 'Moderate', 'Strong', 'Major'])
print('Classification Report:\n', cr)
     Accuracy: 0.9853947125161767
     Confusion Matrix:
      [[5327
                     1]
      [ 38
               3
                    1]
               0
         4
                    011
     Classification Report:
                    precision
                                 recall f1-score
                                                    support
            Minor
                        0.00
                                  0.00
                                            0.00
                                                          0
         Moderate
                        0.99
                                  0.99
                                            0.99
                                                       5363
           Strong
                        0.08
                                  0.07
                                            0.07
                                                        42
            Major
                        0.00
                                  0.00
                                            0.00
                                                          4
        micro avg
                        0.99
                                  0.99
                                            0.99
                                                       5409
```

macro avg 0.27 0.27 5409 weighted avg 0.98 0.99 0.98 5409

```
# Create a scatter plot of actual vs predicted values
plt.figure(figsize=(8, 8))
plt.scatter(X\_test['Longitude(deg)'], \ X\_test['Latitude(deg)'], \ c=y\_test, \ cmap='viridis')
plt.title('Actual Magnitude Category')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.show()
print(" ")
plt.figure(figsize=(8, 8))
plt.scatter(X_test['Longitude(deg)'], X_test['Latitude(deg)'], c=y_pred, cmap='viridis')
plt.title('Predicted Magnitude Category')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.show()
print(" ")
# Create a heatmap of the confusion matrix
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g')
plt.xlabel('Predicted Magnitude Category')
plt.ylabel('Actual Magnitude Category')
plt.show()
print(" ")
cr = classification_report(y_test, y_pred, labels=[0, 1, 2, 3], target_names=['Minor', 'Moderate', 'Strong', 'Major'],
# Convert classification report dictionary to DataFrame
cr_df = pd.DataFrame(cr).transpose()
# Create bar plot of classification report scores
plt.figure(figsize=(8, 6))
sns.barplot(x=cr_df.index, y=cr_df['f1-score'])
plt.xlabel('Magnitude Category')
plt.ylabel('F1 Score')
plt.title('F1 Score by Magnitude Category')
plt.show()
print(" ")
```


▼ Random Forest

11/17/23, 4:37 PM

Loading the model and fitting it with training data

Predict the testing data and evaluate it

RandomForestRegressor(random_state=42)

Find the predicted values and evaluate it using metrics like MSE, r2

```
# Predict the target variable on the test data
y_pred = rf.predict(X_test)

# Evaluate the performance of the model using mean squared error and R^2 score
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

scores['mse'].append(mse)
scores['R^2'].append(r2)

print('Mean Squared Error: ', mse)
print('R^2 Score: ', r2)

Mean Squared Error: 0.01258607875762618
R^2 Score: -0.18318898696107633
```

Plot model

Scatter plot

```
# Plot the predicted and actual values
plt.scatter(y_test, y_pred)
plt.xlabel('Actual Magnitude')
plt.ylabel('Predicted Magnitude')
plt.title('Random Forest Regression Results')
plt.show()
```


Feature Importance

This plot shows the importance of each feature in the model. You can create a feature importance plot using the feature_importances_ attribute of the random forest model.

Residual Plot

A residual plot shows the difference between the actual values and the predicted values. You can create a residual plot using the residplot() function from the seaborn library.

```
import seaborn as sns
sns.residplot(x= y_test, y =y_pred, color='orange')
plt.xlabel('Predicted Magnitude')
plt.ylabel('Residual')
plt.title('Residual Plot')
plt.show()
```


Actual vs. Predicted Line Plot

Actual vs. Predicted Line Plot: A line plot can be used to show the trend of the actual and predicted values over time (if the data is time-series). You can create a line plot using the plot() function.

```
plt.plot(y_test.index[:20], y_test[:20], color='blue', label='Actual Magnitude')
plt.plot(y_test.index[:20], y_pred[:20], color='orange', label='Predicted Magnitude')
plt.xlabel('Index')
plt.ylabel('Magnitude')
plt.title('Actual vs. Predicted Line Plot')
plt.legend()
plt.show()
```