High to High Dimensional Multivariate Mixture Regression

Alex White

2/19/2021

Idea

Goal: Correctly cluster observations & regress in high dimensional X & Y.

- $Y_{n\times q}$
- $ightharpoonup X_{n \times p}$ (sparse in p)
- ▶ *k* clusters

$$f(\mathbf{y}_{i} \mid \mathbf{x}_{i}; \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_{k} \mathcal{N}_{q}(\mathbf{y}_{i}; \mathbf{x}_{i} A_{k}, \Sigma_{k})$$

Parameter space $\theta = \{\pi_k, A_k, \Sigma_k; k = 1...K\}$ solved by EM using SARRS to compute A_k .

SARRS

Algorithm 1: Subspace Assisted Regression with Row Sparsity (SARRS)

Input: Observed response matrix Y, design matrix X, rank r, initial matrix $V_{(0)}$ and penalty function $\rho(\cdot; \lambda)$ with penalty level λ . Output: Estimated coefficient matrix \widehat{A} .

1 Group penalized regression

$$B_{(1)} = \underset{B \in \mathbb{R}^{p \times r}}{\arg\min} \left\{ \|YV_{(0)} - XB\|_F^2 / 2 + \rho(B; \lambda) \right\},\,$$

- **2** Compute the left singular vectors of $XB_{(1)}$, denoted by $U_{(1)}$.
- 3 Compute the right singular vectors of $U_{(1)}U'_{(1)}Y$, denoted by $V_{(1)}$.
- 4 Group penalized regression

$$B_{(2)} = \underset{B \in \mathbb{R}^{p \times r}}{\min} \left\{ \|YV_{(1)} - XB\|_F^2 / 2 + \rho(B; \lambda) \right\},\,$$

5 Compute the estimated coefficient matrix by $\widehat{A} = B_{(2)}V'_{(1)}$.

Figure 1: "SARRS Main Algorithm"

HTH Mixture Algorithm

- ▶ Initialize: $\pi_k^{(0)} = \frac{n_k^{(0)}}{n}$
- ▶ Randomly initialize observations into k clusters

While not converged (m = 1, ..., M) do:

- ▶ for k = 1, ..., K apply SARRS on all observations in $C_k^{(m-1)}$ to obtain $A_k^{(m)}$, $\Sigma_k^{(m)}$
- ightharpoonup compute $\mu_{ik}^{(m)} = \mathcal{N}_p\left(oldsymbol{y_i}; A_k^{(m)} oldsymbol{x_i}, \Sigma_k^{(m)}
 ight)$
- $C_k^{(m)} = \{i | ML \text{ component } k\}$

Data Simulation

- $ightharpoonup X_k$ consists of iid random vectors sample from $MVN(\mathbf{0}, \Sigma_k)$
- \triangleright Σ_k independent
- ▶ Noise matrix $Z_k \in \mathbb{R}^{n \times q}$ has iid $N(0, \sigma^2)$ entries

$$A_k = \left(\begin{array}{c} b_k B_{0_k} B_{1_k} \\ 0 \end{array} \right)$$

- ▶ with b > 0, $B_0 \in \mathbb{R}^{s \times r}$, $B_1 \in \mathbb{R}^{r \times q}$
- $Y_k = X_k A_k + Z_k$

Finally, combine X & Y

Performance

- In simulated data, current algorithm clusters well (perfectly in many cases):
 - ightharpoonup p < N
 - ► sufficiently large N (> 100)
 - Non overlapping nonzero rows of A_k with $s \ll p$
 - ► Large q (> 5000)
- ► Challenges:
 - ightharpoonup Large p, p > N
 - Non independent covariance structure