

f sei die Treppenfunktion (schwarz) und sei

$$F(x) := \int_0^x f(x) dx$$

Was kann der Graph von F sein?

QQ₂

Welches der Bilder kann die folgende Menge darstellen?

$$B_1\left(rac{1+\mathrm{i}}{\sqrt{2}}
ight):=\left\{z\in\mathbb{C}\;\left|\;\left|z-rac{1+\mathrm{i}}{\sqrt{2}}
ight|<1
ight\}$$

Finden Sie vier parametrisierte Kurven, die als Bild die Kurven links im Bild ergeben.

Welche der folgenden Kurven gehört zum Bild?

- $A (t\cos t, t\sin t, t)^T$
- $B (\cos t, \sin t, t)^T$
- $(\cos t, t, \sin t)^T$
- $\mathsf{D} \ (\cos^2 t, \sin^2 t, t^2)^T$

Sei $\gamma \colon [0,2\pi] \to \mathbb{R}$, $t \mapsto (\cos(2t),\sin(2t))^T$. Das Bild von γ ist der Einheitskreis. Die Länge von γ ist $L(\gamma) = \int_0^{2\pi} |\gamma'(t)| dt = 4\pi$, also nicht der Umfang des Kreises. Falsch oder gar kein Problem?

- A Das Integral wurde falsch berechnet.
- ${\bf B}$ Da γ nicht injektiv ist, ist die Formel für die Länge der Kurve dann nicht gültig.
- C Die Rechnung stimmt. Die Länge von γ muss doppelt so lang sein wie der Umfang des Kreises.
- D Die Länge der Kurve γ hat mit dem Umfang des Kreises sowieso nichts zu tun.

Welche der folgenden Funktionen gehört zum Bild?

A
$$r(\theta) = 1 - \sin \theta \sin(3\theta)$$

B
$$r(\theta) = 1 - \cos\theta\cos(3\theta)$$

$$r(\theta) = 1 - \cos\theta \sin(3\theta)$$

$$D r(\theta) = 1 - \sin \theta \cos(3\theta)$$

Wie sieht die zugehörige Kurve $\gamma(t)$ in euklidischen Koordinaten aus?

Sei $\gamma \colon [a,b] \to \mathbb{R}^n$ eine stetig differenzierbare Kurve und f(x)=1. Dann ist $\int_{\gamma} f ds$

- A immer gleich Null.
- B immer gleich Eins.
- C immer gleich der Länge von γ .
- D Nichts von den dreien.

Sei $\gamma\colon [a,b]\to\mathbb{R}^2\cong\mathbb{C}$ eine *geschlossene* stetig differenzierbare Kurve und f(z)=1. Dann ist $\int_{\gamma}fdz$

- A immer gleich Null.
- B immer gleich Eins.
- C immer gleich der Länge von γ .
- D Nichts von den dreien.

Sei V(x,y)=(x,y) das radiale Vektorfeld im Bild. Sei γ eine glatte Kurve, deren Bild der blaue Kreis ist. Dann ist $\int_{\gamma} V \cdot ds$

- A 0, da V bei Rotation um den Ursprung gleich bleibt.
- B 0, da V senkrecht auf dem Kreis steht.
- C 2π , da V bei Rotation um den Ursprung gleich bleibt.
- D 2π , da V senkrecht auf dem Kreis steht.

Seien $\Omega_1, \Omega_2 \subset Q \subset \mathbb{R}^n$ Jordan-messbar und Q ein achsenparalleler Quader. Was stimmt nicht?

- A $\Omega_1 \cup \Omega_2$ ist Jordan-messbar mit $\operatorname{vol}_n(\Omega_1 \cup \Omega_2) = \operatorname{vol}_n\Omega_1 + \operatorname{vol}_n\Omega_2$
- B $\Omega_1 \times \Omega_2 \subset \mathbb{R}^{2n}$ ist Jordan-messbar mit $\operatorname{vol}_{2n}(\Omega_1 \times \Omega_2) = \operatorname{vol}_n \Omega_1 \cdot \operatorname{vol}_n \Omega_2$
- $egin{aligned} \mathsf{C} & Q \setminus \Omega_1 & \mathsf{ist} \ \mathsf{Jordan\text{-}messbar} \ \mathsf{mit} \ & \mathrm{vol}_n \ Q \setminus \Omega_1 = \mathrm{vol}_n \ Q \mathrm{vol}_n \ \Omega_1 \end{aligned}$
- D Ist $\Omega_1 \subset \Omega_2$, dann ist $\operatorname{vol}_n \Omega_1 \leq \operatorname{vol}_n \Omega_2$.

Sei $A := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1, y \ge 0\} \subset \mathbb{R}^2$. Wie viele der folgenden Integrale kann man ausrechnen, um den Flächeninhalt von A zu erhalten?

- (i) ∫_Δ dvol
- (ii) $\int_{[-1,1]^2} 1_A dvol$
- (iii) $\int_{-1}^{1} \left(\int_{0}^{\sqrt{1-x^2}} dy \right) dx$
- (iv) $\int_{-1}^{1} \sqrt{1-x^2} dx$
- A 1 B 2 C 3 D 4

Was stimmt nicht für das folgende Vektorfeld:

$$V(x,y) = (\sin x \cosh y, -\cos x \sinh y)$$

- A rot V = 0
- B div V = 0
- C Es ist ein Gradientenvektorfeld, d.h. es gibt ein $f: \mathbb{R}^2 \to \mathbb{R}$ mit grad f = V.
- D Das Vektorfeld hat nur in (0,0) eine Nullstelle.

Seien $A \subsetneq B \subset Q \subset \mathbb{R}^n$, Q ein Quader. Seien $1_A, 1_B \colon Q \to \mathbb{R}$ integrierbar. Sei $f \colon Q \to \mathbb{R}$ stetig mit f > 0. Was ist die stärkste Folgerung?

- A $\int_A f dvol \leq \int_B f dvol$
- B $\int_A f dvol < \int_B f dvol$
- C nichts davon, da $f|_A$ und $f|_B$ nicht integrierbar sein müssen.

Welche Integrale berechnen den Flächeninhalt von Ω ?

Was kann man über die Divergenz und Rotation dieses Vektorfeldes sagen?

Welche der folgenden Mengen sind Untermannigfaltigkeiten (also sind lokal Funktionsgraph einer glatten Funktion)?

(rein vom Bild her - ohne Beweis)

Welche Gleichung gehört zum Bild?

A
$$z = x^2 + y^2$$

B
$$z^2 = x^2 + y^2$$
, $z \ge 0$

C
$$z = |x| + |y|$$

D keine davon

Sei
$$M = \{(x, y, z)^T \in \mathbb{R}^3 \mid z^2 = x^2 + y^2, z \ge 0\}.$$

Mit dem Kriterium vom regulärem Wert kann man von welchen Punkten $p \in M$ zeigen, dass M lokal um p eine Untermannigfaltigkeit ist?

- A Für kein p, da M keine Untermannigfaltigkeit ist.
- B Für alle p.
- C Für alle *p* außer der Spitze.
- D Keine dieser drei Antworten ist richtig.

Die Ebene durch $p \in \mathbb{R}^3$, die durch die linear unabhängigen Vektoren $v_1, v_2 \in \mathbb{R}^3$ aufgespannt wird, ist eine zweidimensionale Untermannigfaltigkeit.

Was ist die Parameterdarstellung der Ebene? Ist das eine lokale Parametrisierung?

Eine Ebene im \mathbb{R}^3 ist durch die Ebenengleichung ax + by + cz = d für $a, b, c, d \in \mathbb{R}$ bestimmt.

Gibt das Kriterium vom regulären Wert hier, dass es sich um eine Untermannigfaltigkeit handelt?

Finden Sie eine lokale Parametrisierung für den Kegel $z^2 = x^2 + y^2$, z > 0.

QQ 22 – Bewegungsinvarianz

Isometrien des euklidischen Räumen:

$$\phi \colon \mathbb{R}^n \to \mathbb{R}^n$$
, $x \mapsto Ax + b$, für $A \in O(n)$, $b \in \mathbb{R}^n$

Sei $f: Q(= \text{Quader im } \mathbb{R}^n) \to \mathbb{R}$ integrierbar.

Was ist dann $\int_{\phi^{-1}(Q)} (f \circ \phi) dvol$? (einmal mit Anschauung und einmal mit Transformationssatz).

Welcher Punkt ist (ungefähr) der Schwerpunkt von der Menge im Bild?

Der Flächeninhalt des Inneren der blauen Kurve $r(\theta) = 1 - \cos \theta \sin(3\theta)$ wird berechnet durch:

A
$$\int_0^{r(\theta)} \left(\int_0^{2\pi} (1 - \cos \theta \sin(3\theta)) d\theta \right) dr$$

B
$$\int_0^{r(\theta)} \left(\int_0^{2\pi} d\theta \right) r dr$$

C
$$\int_0^{2\pi} \left(\int_0^{r(\theta)} r dr \right) d\theta$$

D
$$\int_0^{2\pi} \left(\int_0^{r(\theta)} (1 - \cos \theta \sin(3\theta)) dr \right) d\theta$$

QQ 25 – Wie skalieren die Größen?

Was ist die Abhängigkeit folgender Größen von a > 0?

A
$$vol(B_a(0) = \{x \in \mathbb{R}^n \mid |x| < a\})$$

$$\mathsf{B} \ \mathsf{vol}(S_{\mathsf{a}}(0) = \{x \in \mathbb{R}^n \mid |x| = \mathsf{a}\})$$

QQ 26 – Offene Mengen von Teilmengen

Wir betrachten $[0,1]^2\subset\mathbb{R}^2$ als metrischen Raum zusammen mit der euklidischen Metrik. Welche der folgenden Mengen sind offen als Teilmenge von $[0,1]^2$, welche als Teilmenge von \mathbb{R}^2 ? ('Teile des Randes', die farblich hervorgehoben sind, ist Teil der Menge, ansonsten ist es gepunktet.)

Sei $A = [0,1]^2 \cap \mathbb{Q}^2$. Welche Ausssage stimmt <u>nicht</u>?

- A Innere $A = \emptyset$
- $B \ \overline{A} = [0, 1]^2$
- $Oldsymbol{C} \partial A = [0,1]^2$
- D A ist kompakt

Skizzieren Sie Ω_1 und Ω_2 in:

$$\int_{\Omega_1} \dots dvol \stackrel{\mathsf{Fubini}}{=} \int_{\frac{1}{2}}^{\frac{\pi}{2}} \int_{\frac{1}{2}x}^{\sin x} \dots dy dx$$
$$\int_{\Omega_2} \dots dvol \stackrel{\mathsf{Fubini}}{=} \int_{\frac{1}{2}}^{\frac{\pi}{2}} \int_{\frac{1}{2}y}^{\sin y} \dots dx dy$$

 Ω sei der abgebildete Vollzylinder.

Was ist für jedes $p\in\partial\Omega$ der äußere Einheitsnormalenvektor (wenn dort existent)?

Was ist eine lokale Parametrisierung der Mantelfläche?

Sei
$$M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = -1, z \ge 0\}.$$

Skizzieren Sie M und geben Sie eine lokale Parametrisierung von M an.

Ein glattes Vektorfeld habe die Form $V = (V_1, V_2, 0)^T$.

Was kann man über rot V sagen?

Sei
$$F:(u,v)\in\mathbb{R}^2\mapsto(u,v,uv)\in\mathbb{R}^3.$$

Wie sieht $F(\mathbb{R}^2)$ aus?

Ist F eine lokale Parametrisierung?

Sei $F: (u, v) \in \mathbb{R}^2 \mapsto (u, v, uv) \in \mathbb{R}^3$.

$$\int_{F([0,1]^2)} dvol = \int_0^1 \int_0^1 f(u,v) du dv$$

Wie lautet der Volumenverzerrungsfaktor f(u, v)?

Welche der folgenden Darstellungen definieren immer Mengen im \mathbb{R}^3 , die rotationssymmetrisch bzgl. der z-Achse sind? Welche zumindest manchmal, wenn die Funktion(en) 'gut' gewählt werden?

Gesucht ist $\int_{\gamma} V \cdot ds$ für $V(x,y) = (x,0)^T$.

Gesucht ist $\int_{\gamma} f(z)dz$ für $f(z) = \operatorname{Re} z$.

Wo kann man den Cauchy-Integralsatz direkt anwenden? Wo nicht?

- A $\int_{\partial B_1(0)} e^{z^2} dz$
- $\mathsf{B} \int_{\partial B_1(0)} \bar{z}^2 dz$
- $C \int_{\partial [0,1]^2} \sin z dz$
- $D \int_{\partial [0,1]^2} \frac{1}{z-0.5} dz$

Die Kurven γ_1 und γ_2 haben die gleiche Spur, nur die Art diese Spur zu durchlaufen ist anders.

Mit welchem Kurvenintegral kann man $\int_{\gamma_1} f(z)dz - \int_{\gamma_2} f(z)dz$ darstellen?

Kann es eine holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ geben, die auf der x-Achse der Funktion |x| entspricht?