

低功耗 LoRa 模块 ET001 使用手册

硬功馆科技有限公司

目录

1		产品概述	1				
2		产品特点	1				
3	3 应用领域						
4							
5		引脚定义	2				
6		应用电路及介绍					
	6.1	1 SPI 时序说明	1				
	6.2						
	6.3						
7		技术参数设置及使用注意事项					
	7.						
		7.1.1 载波频率					
		7.1.2 扩频因子					
		7.1.3 扩频带宽					
	7.2						
	7.3						
8		使用须知					
O	8.						
	8.2						
	8.3						
9		故障排除					
フ		以[半]非[5]	ί				

1 产品概述

ET001 是一款高性能、低功耗、远距离的微功耗无线扩频编码模块,内部自动扩频计算和硬件校验处理,用户不需要了解太复杂的射频和硬件知识,只需要调试底层 SPI 通信,就可以轻松的应用 ET001 模块。ET001 模块非常适合远距离,低数据量和低功耗等应用场合。

ET001 模块的射频芯片基于扩频跳频技术,在稳定性、抗干扰能力以及接收灵敏度上都很高的有优越性。

2 产品特点

- 1) 基于 LoRaTM 扩频调制技术。
- 2) 半双工通讯,标准 SPI 通信控制。
- 3) 433MHz 免申请频段, 其他频段(如 470 等)可定制。
- 4) 生产免调试, 2.1~3.6V 宽电压范围。
- 5) 微功率发射,标准 100mW,设置功率寄存器。
- 6) 接收灵敏度高达-148dBm,最大发射功率+20dBm。
- 7) 硬件检验,和硬件扩频编码,可以自定义调频机制。
- 8) 接收,发射,CAD 检测,休眠等多种模式任意切换。
- 9) 贴片封装,方便嵌入自己的 PCB。
- 10) 嵌套式屏蔽盖保护,增加抗干扰性能。

3 应用领域

- 1) 智能家居、智能交通、传感网络;
- 2) 工业自动化、农业现代化、建筑智能化;
- 3) 水、电、气、暖等计量表自动集中抄表系统;
- 4) 水利、油田、矿井、气象等设备信息采集;
- 5) 路灯控制、电网监测、风光互补系统;
- 6) 工业设备数据无线传输以及工业环境监测;
- 7) 掌机数据采集,和嵌入式设备数据传输;
- 8) 其他一切需要无线代替有线通讯的情况。

4 尺寸结构

5 引脚定义

序号	接口名	功能
1	VCC	电源 VCC
2	GND	电源地
3	DIO4	CADDetected, P111ocked
4	DI03	ModeReady, C1kOut
5	DIO2	可选,FHSS
6	DIO1	可选,RXTimeout、FHSS、CADDetected 信号
7	DIOO	必选,RXDone、TXDone、CADDone 信号
8	RST	必选,硬件复位
9	RF	射频输出
10	GND	电源地,射频地屏蔽
11	SCK	必选, SPI 接口
12	CSN	必选, SPI 使能
13	SI	必选,SPI 接口

		-
14	S0	必选, SPI 接口

注: RST 管脚在 9 章有图文介绍: DIO 管脚在 10 章有表格介绍 SPI 在第七章有时序介绍。

6 应用电路及介绍

无线扩频模块和用户 MCU 连接方式如图 8.1 所示,需要注意共地连接,否则模块可能无法正常工作。

图 8.1 无线模块和用户 MCU 链接图

注:在画原理图时要注意,RST,DIO0,SCK,SO,SI,NSS这些脚必须连接到MCU上面,并且DIO0连接的最好是中断脚。

6.1 SPI 时序说明

ET001 无线模块是标准的 4 线 SPI 接口,可以用 MCU 的 IO 口模拟,也可以使用 MCU 自带的 SPI 接口来进行通信。如果用 IO 口模拟,在高速 MCU 上面注意延时。模块 SPI 提供 3 种读写方式。

- 1) 一个地址后面跟一个数据, NSS 从写地址到(写/读)数据都为低电平, 直到数据完成。
- 2) 一个地址后面跟 N 个数据,在数据写入后地址也跟着增加,直到对应最后一个数据, NSS 从地址操作到数据完成都为低电平。
- 3) FIFO 地址操作,写入 FIFO 地址后,数据写入或读取后地址不增加,只是在 FIFO 地址里面存储或输出。

图 7.1 SPI单地址时序图

6.2 RST 管脚

RST 管脚主要是复位 ET001 无线模块,低电平有效,高电平运行。这个管脚一般是在初始 化的时候进行操作,初始华操作成功后就严禁使用此管脚,要保持 RST 管脚的高电平。

图 9.1 RST 管脚操作时序图

6.3 DIO 管脚

ET001 无线模块有 5 个普通的 DIO,这些 IO 口的功能可以通过模块的寄存器来设置功能。

地址	Bit	控制管脚	地址	Bit	控制管脚
	7~6	DIO0	0X41	7~6	DIO4
037.40	5~4	DIO1		保留	
0X40	3~2	DIO2		保留	
	1~0	DIO3		保留	

表 寄存器控制管脚对应表格

表 管脚功能对应表适应所有模式

寄存器值	D10 0	DIO 1	D10 2	D10 3	D104
00 (bit)	RxDone	RxTimeout	FhssChange Channel	CadDone	CadDetected
01 (bit)	TxDone	FhssChange Channel	FhssChange Channel	ValidHeader	PllLock
10 (bit)	CadDone	CadDetected	FhssChange Channel	PayloadCrc Error	PllLock
11 (bit)	保留	保留	保留	保留	保留

7 技术参数设置及使用注意事项

调制方式: LoRaTM扩频

工作频率: 433MHz(可定制)

发射功率: 20dBm

接收灵敏度: -148dBm

工作电压: 2.1~3.6V

发射电流: <120mA (发射功率 20dBm)

接收电流: ≤9.9mA

休眠模式: ≤luA

工作温度: -40~+80℃ (工业级别)

工作湿度: 10%~90%相对湿度,无冷凝

注:输入的电源纹波系数要控制在 50mV 以内,并可提供瞬间脉冲电流 300mA 以上,脉冲宽度大于 800ms。

7.1 扩频参数及设置

扩频模块几个基本的参数,下面就专门接收下模块的几个基本的参数。

7.1.1 载波频率

以 433MHz 频率基准进行扩频载频,如果无数据发送,那么就是出一个载波信号。

载波频率是通过寄存器来控制。这里介绍一下寄存器的值是如何计算。如:载波频率是433M。43300000/61.035=0X6C4012。这样就算出寄存器的值为0X6C,0X40,0X12。

注:在设置载波频率的时候要避开 32M (晶振)的倍数频率,如果设置为 32M 的倍数频率模块的接收灵敏度就会很低,会影响距离。

7.1.2 扩频因子

扩频因子是码分多址的基本组成部分,扩频因子=码片速率/符号速率,扩频因子的使用使得信道的符号速率选择性更大,扩频因子也决定了可接入终端的数量。扩频因子的大小决定了一个用户的实际数据数率的大小。但是因为正交码的存在,从基站上看,提高扩频因子,对某一用户的实际数据速率降低了,但同时可用用户数多了(扩频码)整体的实际数据数率却没变。

注:这里说的是实际数据,例如大家都传输 111111111 这个数据, A 用 11 表示 1, 那么他的实际数据是 1111, 而 B 用 1111 表示 1, 那么他的实际数据为 11, 这样 B 的出错概率就比 A 小, 但他的数据数率也比 A 小

扩频因子计算,在寄存器上有个专门的变量来体现。

当扩频因子SF=6时,LoRa调制解调器的数据传输速率最快,因此这一扩频因子仅在特定情况下使用。使用时,需在SX1276/78寄存器上进行以下几项设置:

- a) 在RegModemConfig2中,将SpreadingFactor设置为6;
- b) 将报头设置为隐式模式;
- c) 在寄存器地址(0x31)的2至0位中写入0b101一值;
- d) 在寄存器地址(0x37)中写入0x0C一值。

7.1.3 扩频带宽

扩频带宽,简单的说就是你的信号是在以基频为基准多宽的频率下进行调制。下图是 125K 和 250K 的扩频带宽图。扩频带宽的设置也取决于晶振的精度是否支持,我们推荐最低的扩频带宽是 125K。

图 11.2 125K 扩频带宽图

图 11.3 250K 扩频带宽图

扩频带宽计算,在寄存器上有个专门的变量来体现。

注: 在调试模块的通信时,如果两模块要进行通信,一定要保证模块的载波频率,扩频因子,扩频带宽这 三个参数相同。

7.2 硬件设计注意事项

ET001 是贴片式的无线射频模块,所以在设计电路板时就应当把模块当一个元件单元设计。所以在 PCB 布局和走线方面就有很多注意的地方。

7.2.1 PCB 布局

在 PCB 布局时,在符合模具结构的前提下,无线模块应当远离功率器件,场器件,如:蜂鸣器,开关电源电感等一些可以产生干扰的器件和发热器件。

在贴模块区域内,PCB 背面严禁摆放器件。如用内置弹簧天线,那么天线的摆放不可以和模块重叠放置,要么垂直 PCB 板子,或平行模块板边。下面有几个内置天线摆放图片,供参考。

图 天线的摆放位置

如果天线焊接在 PCB 板子上面,那么天线的焊接点不可以离模块太远,射频线不应走的过长。在电源接口处尽量多放点快速响应的电容器件,以保障电源的瞬间脉冲。

7.2.2 PCB 走线

数据线的连接最好平行,在同一个面上,线尽量等长。贴模块的区域内部应当走线,尽量保持铜皮的完整性。但天线下面禁止有铺地铜皮,最好是掏空电路板子。

注:输入的电源纹波系数要控制在 50mV 以内,并可提供瞬间脉冲电流 300mA 以上,脉冲宽度大于 800ms。

7.3 天线选择

天线是通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。一般有两个方面:

- 1) 天线类型——天线的电波覆盖是否符合系统设计要求;
- 2) 电气性能——天线的频率带宽、增益、阻抗、额定功率等是否符合系统设计要求,一般要求天线的阻抗为50欧,驻波比小于1.5。

提供多种天线方案,用户根据实际情况选择,以便达到最佳传输效果。

8 使用须知

考虑到空中传输的复杂性,无线数据传输方式固有的一些特点,应注意以下几个问题。

8.1 数据延迟

由于无线通信发射端是从终端设备接收到一定数量的数据后,或等待一定的时间没有新的数据才开始发射,无线通信发射端到无线通信接收端存在着几到几十毫秒延迟(具体延迟是、空中速率以及数据包的大小决定),另外从无线通信接收端到终端设备也需要一定的时间,但同样的条件下延迟时间是固定的。

8.2 流量控制

为了确保数据完整性,请尽量控制单次发送的数据包大小,FIFO 是 64 个字节,避免因缓存不足而造成数据溢出,减少丢包的概率。

8.3 差错控制

ET001 模块虽具有很强的抗干扰能力,但在极端恶劣的条件下时,难免出现接收不佳或丢包的状况。此时可增加对系统的链路层协议的开发,如增加丢包重发功能,可提高无线网络的可靠性和灵活性。

9 故障排除

故障现象	故障原因	解决方法
	环境复杂,障碍物多	在空旷环境使用,架高天线或引到室外
// / / / / / / /	天气恶劣,如雾霾、雨雪、沙尘等	避免在恶劣天气使用,或更换高功率模块
传输距离 不远	天线不匹配, 天线增益小	选择匹配的天线,尽量用高增益天线
	传输速率过快	降低通信速率,包括串口速率和空中速率
	可能存在同频或强磁或电源干扰	更换信道或远离干扰源
	接线不正确	参照说明书接线图正确接线
	接触不良	重新接好电源线、信号线,尽可能焊死
一 无法正常 通讯	MCU 的 SPI 时钟过快	调整好 SIP 时序
NE IN	收发模块之间的参数不匹配	重新配置参数,频率、信道、空中速率等
	数据吞吐量太大	分包传输,或更换性能更高的模块

	模块主体已损坏	更换新的模块
	附近有同频信号干扰	远离干扰源或者修改频率、信道避开
	天馈系统匹配不好	更换良好的天馈系统
误码率太	SPI 上时钟波形不标准	检查 SPI 线上是否有干扰
高	通讯速率过大	尽可能低速通讯,特别是空中速率
	电源纹波大	更换稳定的电源
	接口电缆线过长	更换好的电缆线或者缩短电缆长度