Import pandas as po Milk. Corpus Proposal Stopwords pd. sead_csv ("sysspambollection.csr") Sms = df. dxop(t 'Urramed: 2', 'Unramed: 3', 'Urramed: 4) , axis=1) sons. len (sms) a = ems. grouply ('label'). count() Y: sms. text y = sms. take from Sklearn. Medel-selection Propost train-test-split X-train, X-test, y-train, y-test-train-test_eplt (X,y,train_size = 0.0, tast_sizero-8) def process-text (msg): parctuations = "1()-[]{};: 11, <>./? @H \$ 1.18t. 2"" repair = [char for that in mag if that hot of productions hopunc = 11. John (ropunc) return [word for word in Mo. Aunc. Split() 4. word (bower) not in stop words. words english)

Natural Language Processing Lab Lab6. Spam Filtering using Multinomial NB

In this lab, you will build Naïve Bayes classifier using SMS data to classify a SMS into spam or not. Once the model is built, it can be used to classify an unknown SMS into spam or ham.

STEPS

- 1. Open "SMSSpamCollection" file and load into DataFrame. It contains two columns "label" and "text".
- 2. How many sms messages are there?
- 3. How many "ham" and "spam" messages?. You need to groupby() label column.
- 4. Split the dataset into training set and test set (Use 20% of data for testing).
- 5. Create a function that will remove all punctuation characters and stop words, as below

```
def process text(msq):
     nopunc =[char for char in msg if char not in string.punctuation]
     nopunc=''.join(nopunc)
      return [word for word in nopunc.split()
            if word.lower() not in stopwords.words('english')]
```

Create TfIdfVectorizer as below and perform vectorization on X_train, using fit_perform() method.

```
TfidfVectorizer(use idf=True,
      analyzer=process_text,
      ngram range=(1,3),
     \min df = 1,
      stop words = 'english')
```

- 7. Create MultinomialNB model and perform training on X_train and y_train using fit() method
- 8. Predict labels on the test set, using predict() method
- 9. Print confusion_matrix and classification_report
- 10. Modify ngram_range=(1,2) and perform Steps 7 to 9.

```
6) from sklearn feature extraction, feat import
that Vector Pan.
                                             the = Thid Vertonizer (use_talf = True, analyzer & procuss dext-
ngram range = (1, 3) min.dt =
                                                                                     M2 = lefe. fit = transform (x-train)
                                                                                My = = the transform (x-fest)
OFFICE PERCONSERVATION PROPERTY OF CONTROL O
```

DRIKERAKOMA

mz. shape X-train, X-test, X-train, X-test = train-test-split (X) y tean 2 20.8, from EKlasp. raive tauge 8m port Mortinania NB. Clf = Hultinomial NBC) CH. St (m2, y train) y pred = etf. predict (myz) · from St learn. Metrics import Confusion-notice Condustron - matrix (y-test, y-pxed) from Acloson, metrics import classification-report. target names = [Class d, Class 1] print (classification, report (y-test, y-pred, torget ed, target rames target romes)

NOTES

. 10) . Hodely ngram rounge = (1,2) the = Hedvectorices (use id strue, analyzer = process-text, ngram_range(1,2), 4,13. M3= 6/3. fit fransform (xtrain) my3= ff3. toansfrom (x test) M3. shape. my3. shape. Cf. fêt (m3, y-train) A-pred3 = CH. pred2+(my3) y-prd3. Confusion_matrix(y-test/y-prod3) farget_ranes = ("class o", (class 1") pant (classification-report (y-test, y-pred 3, targetrames = farget - rames)