

Data analysis on stroke detection

- "Stroke" is the medical term for damage to brain tissue or the death of a portion of it, due to insufficient blood supply to an area of the brain
- It is responsible for approximately 11% of total deaths
- Normal values of glucose: 60-110 mg/dl
 - > 126 diabetes
- Normal BMI range: 18.5 24.9
 - > 30.0 obesity

Dataset

id	gender	age	hypert.	hd	ev_ marr	work_ type	res_ type	glucose	bmi	smoking	stroke
9046	Male	67	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
51676	Female	61	0	0	Yes	Self- employed	Rural	202.21	N/A	never smoked	1
31112	Male	80	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
60182	Female	49	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
1665	Female	79	1	0	Yes	Self- employed	Rural	174.12	24	never smoked	1

Dataset

 Data variables: id, gender, age, hypertension, heart_disease, ever_married, work_type, Residence_type, avg_glucose_level, bmi, smoking_status, stroke

- Missing values
- Unbalanced data: 4,26% of the people get a stroke

Age distribution

Data cover people of all ages from babies of 8 days to seniors of 82 years old

Explanatory Data Analysis (EDA)

- High glucose level and bmi do not imply directly a stroke
- Rare/interesting cases of stroke
- Strong relation between age and stroke

Not an easy problem

- Non-linear separable
- Not easy to identify a direct relationship with stroke diseases

Not an easy problem

Glucose levels and Bmi could not be so strictly related to the disease but maybe correlated to other illnesses linked to it.

Not an easy problem

• Strong correlation with *age*

• Weak correlation with *Bmi*

Correlation between features

- Presence of collinearity:
 - Age ~ Ever married : 0.68
 - Age ~ Work type : 0.54
 - Age ~ Smoking status : 0.39
 - Ever married ~ Bmi: 0.34
- Correlated variables:
 - Stroke ~ Age: 0.23
 - Stroke ~ Hypertension: 0.14
 - Stroke ~ Avg. glucose level: 0.14

Relevant Questions:

- Which factors are the most related to the stroke disease?
- How strong are the relations between the features?
- Are the given variables enough to predict a good accuracy of some possible person affected by stroke?
- Is it possible to prevent the stroke?

Tested Models

• Logistic Regression

- Full and Reduced Models
- Interaction Models
- Polynomial Models

• Bayesian Models

- LDA Model
- QDA Model

LOGISTIC REGRESSION

• A type of Generalized linear model (GLM)

• The dependent variable is binary

Model selection:

- Hypothesis
- p-value
- AIC

Reduced Model

Feature	Coef.	Level of significance
Age	0.067547	< 2e-16
Avg. Glucose level	0.004802	0.000129
Heart disease	0.404298	0.046895
Hypertension	0.539613	0.001820

AIC: 1384.6

Reduced Model Plots

- Non-linearity in dataset
- Residuals do not follow normal distribution
- Heteroscedasticity
- Leverage points
- Outliers

"Outliers"

Able to infer some particular stroke cases, anomaly detection.

	gender	age	hypert.	hd	ev_marr	work_type	res_type	glucose	bmi	smoking	stroke
119	Female	38	0	0	No	Self-employed	Urban	82.28	24.0	formerly smoked	1
183	Female	32	0	0	Yes	Private	Rural	76.13	29.9	smokes	1
246	Female	14	0	0	No	children	Rural	57.93	30.9	Unknown	1

Interaction between features

- age ~ heart_disease, avg_glucose_level, bmi, hypertension
- avg_glucose_level ~ heart_disease, bmi, hypertension
- heart_disease ~ hypertension
- bmi ~ hypertension

Best Interaction Model

Feature	Coef.	Level of significance
Age	0.070133	< 2e-16
Avg. Glucose level	0.004702	0.000176
Heart disease	2.765299	0.047694
Hypertension	0.536550	0.001880
Age:heart disease	-0.032872	0.091604

AIC: 1384

Best Model Selection

To choose the best model among the electives ones we used Training and Validation testing method.

Data splits should be done carefully cause of unbalanced issue.

- 75% Training
- 25% Validation
- Both splits have 4% of stroke cases

Validation set

Best Model Selection

- False Rates?
 - False negatives in medical cases
 - ROC or Precision-Recall curves?
 - Threshold

ROC vs Prec-Recall Curves

Best Model Selection

REDUCED MODEL							
		Predicted					
		0	1				
Ground thruth	0	497	681				
	1	1	48				

LDA MODEL							
			Predicted				
			0	1			
Groui thrut		0	490	688			
		1	1	48			

INTERACTION MODEL						
		Predicted				
		0	1			
Ground thruth	0	499	679			
	1	1	48			

QDA MODEL						
		Predicted				
		0	1			
Ground thruth	0	599	579			
	1	4	45			

Best Model Selection - Error Rates -

REDUCED MODEL:

• Positive rates: 0.0658

• Negative rates: 0.0020

INTERACTION MODEL:

• Positive rates: 0.0660

Negative rates: 0.0020

LDA MODEL:

• Positive rates: 0.0652

• Negative rates: 0.0020

QDA MODEL:

• Positive rates: 0.0721

• Negative rates: 0.0066

Conclusions

- Interaction model is the best
- Older people have higher probability to get a stroke
- Not easy to make secure predictions
- Increase the number of data
- Find more features related with stroke
- Find out the appropriate false rate