Ruteo interno

Redes y Servicios Avanzados en Internet

Ruteo Interno - Parte 2 Protocolos de Estado de Enlace

Algunas imágenes y textos fueron extraídos de la teoría "Protocolos de Ruteo IGP" de Andrés Barbieri y Matías Robles

Sistemas autónomos

Resumen de ruteo

- Ruteo Interno (dentro de los AS)
 - Ruteo estático
 - Ruteo dinámico (Protocolos IGP)
 - Protocolos tipo Vector Distancia (DV)
 - RIP
 - Protocolos tipo Estado de enlace (LS)
 - OSPF
- Ruteo Externo (entre AS)
 - Protocolos EGP

Repaso – Protocolos de Vector Distancia

Los protocolos de enrutamiento tipo Vector Distancia:

- Corren el algoritmo conocido como Bellman-Ford
- Cada nodo intercambia información con sus vecinos (nodos directamente conectados)
 - La información se intercambia periódicamente
 - Ven la topología de la red desde la perspectiva de los vecinos
- Frente a cambios, convergen más lentamente
- Son propensos a lazos (LOOPS)
- Requieren menos memoria y CPU que los de Estado Enlace

Protocolo de Estado Enlace (LS)

- Todos los routers comparten toda la información con todos
 Ven la topología de la red completa en cada router
- Cada router
 - (1) Recolecta información completa sobre la estructura de la red
 - (2) Ejecuta Dijkstra para determinar el mejor camino: El mejor camino desde un router hacia todos los demás
 - (3) No intercambia constantemente información Se informan cambios, actualizaciones y se testean enlaces
- Hay un alto consumo de bandwidth al principio, hasta que la red converge

Protocolo de Estado Enlace (LS)

- Convergencia más rápida frente a cambios en la red
- Requieren más memoria y capacidad de procesamiento para operar puesto que:
 - Tienen que almacenar la información de la estructura de toda la red
 - Deben ejecutar el algoritmo de Dijkstra cada uno por separado, para determinar el mejor camino desde ellos hacia cada una de las redes
- Protocolos de Estado de Enlace conocidos:
 - OSPF / IS-IS

OSPF

- OSPF se encapsula directamente sobre IP (protocolo 89)
 - RIP usa UDP

```
Ethernet II, Src: 00:00:00 aa:00:05 (00:00:00:aa:00:05), Dst: IPv4mcast 05 (01:00:5e:00:00:05)
  Destination: IPv4mcast 05 (01:00:5e:00:00:05)
  ▶ Source: 00:00:00 aa:00:05 (00:00:00:aa:00:05)
    Type: IP (0x0800)
Internet Protocol Version 4, Src: 10.0.2.2 (10.0.2.2), Dst: 224.0.0.5 (224.0.0.5)
    Version: 4
    Header Length: 20 bytes
  ▶ Differentiated Services Field: 0xc0 (DSCP 0x30: Class Selector 6; ECN: 0x00: Not-ECT (Not ECN
    Total Length: 108
    Identification: 0x1efc (7932)
  ▶ Flags: 0x00
    Fragment offset: 0
    Time to live: 1
    Protocol: OSPF IGP (89)
  ▶ Header checksum: 0xad76 [validation disabled]
    Source: 10.0.2.2 (10.0.2.2)
    Destination: 224.0.0.5 (224.0.0.5)
    [Source GeoIP: Unknown]
    [Destination GeoIP: Unknown]
▼ Open Shortest Path First
  ▶ OSPF Header
  ▶ LS Update Packet
```

OSPF

- Soporta VLSM
- OSPF usa el costo como métrica.
- La métrica, se calcula en base al ancho de banda de las interfaces:
 - Puede modificarse con el parámetro:
 - mi_router(config-ip)# ip ospf cost <cost>
 - Alternativamente se puede modificar alterando el bandwidth de la interface
 - mi_router(config-if)# bandwidth 1000000

OSPF – Costos por interfaz

Tipo de interfaz	10 ⁸ /bps = Costo
Fast Ethernet y más rápida	10 ⁸ /100 000 000 bps = 1
Ethernet	10 ⁸ /10 000 000 bps = 10
E1	10 ⁸ /2 048 000 bps = 48
T1	10 ⁸ /1 544 000 bps = 64
128 kbps	10 ⁸ /128 000 bps = 781
64 kbps	108/64 000 bps = 1562
56 kbps	10 ⁸ /56 000 bps = 1785

Nota: Para FastEthernet, GigaE y 10GigaE el costo es el mismo.

```
n2# conf t
n2(config)# int eth0
n2(config-if)# bandwidth
 <1-10000000> Bandwidth in kilobits
n2(config-if)# bandwidth 56
n2(config-if)# ^Z
n2#
n2# sh ip ospf interface eth0
eth0 is up
 ifindex 91, MTU 1500 bytes, BW 56 Kbit < UP, BROADCAST, RUNNING, MULTICAST >
 Internet Address 10.0.1.1/24, Area 0.0.0.0
 MTU mismatch detection:enabled
 Router ID 10.0.1.1, Network Type BROADCAST, Cost: 1786
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 10.0.1.1, Interface Address 10.0.1.1
  Backup Designated Router (ID) 10.0.0.1, Interface Address 10.0.1.2
 Multicast group memberships: OSPFAllRouters OSPFDesignatedRouters
 Timer intervals configured, Hello 10s, Dead 40s, Wait 40s, Retransmit 5
    Hello due in 0.085s
 Neighbor Count is 1, Adjacent neighbor count is 1
```

OSPF (cont)

- Soporta jerarquías, dividiendo el AS en diversas áreas
- La división en áreas, permite que los routers conozcan sólo la información completa del área en la que se encuentran y NO toda la red. Muy útil en redes grandes
 - La información de un área se resume al resto de la red
 - Los cambios en un área en particular, no afectan a las otras áreas
- Existe un área backbone (área 0) que representa el troncal de la red.
 - Las otras áreas deben estar conectadas al área 0
 - Las rutas intercambiadas entre las distintas áreas, se hace a través del área backbone

Tipos de routers OSPF

Routers Internos

- Routers que tienen todas sus interfaces dentro de un área solamente
- Routers fronterizos de área o ABRs (Area Border Routers)
 - Routers que están conectados a más de un área
 - Mantienen la base de datos de toda la red de cada una de las áreas a las que están conectados
- Routers fronterizos del AS o ASBRs (Autonomous System Border Routers)
 - Routers que conectan la porción de la red manejada con OSPF con rutas aprendidas a través de otros protocolos o en forma estática. Se inyectan rutas desde y hacia el AS OSPF

Routers backbone

 Routers que pertenecen al área backbone (área 0). Un router backbone, también podría ser ABR, ASBR o un router interno.

Áreas y tipo de Routers

Tipos de Áreas

- Area Backbone:
 - Este área SIEMPRE debe estar presente!!!
 - Mantiene conexión física o lógica con el resto de las áreas
- Area stub
 - Tiene un único punto de conexión con el área 0
 - No recibe rutas externas, por pueden haber ASBRs dentro del área.
 - Posee rutas inter área (redes en otras áreas) e intra área (redes dentro del mismo área)

Tipos de Áreas - Extensiones propietarias

- Totally stubby area
 - Es como el área stub
 - No se ven las rutas inter área (redes en otras áreas)
 - Las rutas a redes fuera del área stub se manejan inyectando en el área un default gateway
- NSSA, No So Stubby Area
 - Es como el área "Totally stubby area" pero se permite que en ella haya routers ASBRs

OSPF - Vecinos

Para que dos routers se conviertan en vecinos con el objeto de intercambiar datos, los mismos deben estar de acuerdo en una serie de cosas:

- Deben estar en el mismo segmento de red.
- Deben tener el mismo mecanismo de autenticación
- Deben anunciarse en el mismo área
- Deben considerar al área de la misma manera (normal, stub, totally stub, NSSA).
- Los timers utilizados deben coincidir. Por defecto:
 - Hello interval (10 segundos).
 - Dead interval (40 segundos).
 - Si se modifican estos valores, hay que hacerlo de manera consistente para que los routers se consideren vecinos y se hablen.

OSPF en redes Broadcast (LAN)

- En una red broadcast, si cada routers establece una adyacencia con cada uno de los otros routers vecinos el resultado no será eficiente.
 - Si tenemos n routers, habrá n(n-1)/2 adyacencias.
 - Cada router enviará n-1 LSA, siendo de O(n²) el total de LSAs envíados
- Aparecen múltiples copias del mismo LSA en la red

OSPF en redes Broadcast (LAN)

- Por ello, en este tipo de redes, se determinan:
 - un DR (router designado)
 - un BDR (router designado de backup)
- Todos los routers de la red broadcast deben establecer dos adyacencias:
 - una con el DR
 - y otra con el BDR
- Estos routers administran y gestionan el flooding de LSAs en la red. Si un router debe transmitir el estado de un enlace, sólo lo transmite al DR y al BDR. El DR retransmitirá la información al resto.

OSPF en redes broadcast (cont)

- EI DR:
 - Será el encargado de propagar el estado de los enlaces a todos los routers de la red
- Para ello, se usan dos direcciones multicast:
 - 224.0.0.5: La usa el DR para transmitir información a todos los routers de la red (All OSPF Routers - DR Others)
 - 224.0.0.6: La usa un router cada vez que quiere mandar información al DR y al BDR (All OSPF Designated Routers)

Mecanismo de elección de DR y BDR

- Ocurre en redes multiacceso y no en redes punto a punto.
- Mecanismo de elección del DR:
 - El router con la prioridad más alta.
 - El router que tenga el router-id más alto
 - Se puede configurar manualmente
 - Si tiene IP de loopback, es la más alta.
 - Si no tiene loopback, es la IP más alta del router.

Comunicación DR y BDR con otros routers

Intercambio de información OSPF

- OSPF, al principio:
 - identifica sus vecinos (neighbor) en las redes a las que el router está conectado
 - establece **adyacencias** con sus vecinos
- Luego OSPF empieza a intercambiar información con sus vecinos
- Los mensajes y protocolos utilizados son:
 - Paquetes Hello, para descubrir vecinos / elegir el roles DR, BDR u otro en redes broadcast.
 Verifica I
 - Paquetes de descripción de la base de datos DBD (DataBase Description). Realiza la sincronización inicial de la base de datos.
 - Paquetes de estado de enlaces o LSA (Link State Advertisment) para el mantenimiento de la Base de datos

Router Links (RL) Network Links (NL)
Summary Links (SL) External Links (EL)

Link State Advertisments (LSA)

- Router Links (RL) Type 1
 - Estado y costo de los links
 - Generado por todos los routers
- Network Links (NL) Type 2
 - Describen todos los routers de una red broadcast
 - Los envía el DR a través de flooding.
- Summary Links (SL) Type 3/4
 - Describen redes que están fuera del área.
 - También informan sobre la presencia de ASBRs en otra área
 - Los envían los ABR
- External Links (EL) Type 5
 - Describen destinos fuera del AS
 - Enviados por los ASBR

Ejemplo de configuración OSPF

¿Cómo se configura OSPF en el router 2003 si todos los routers estuviesen en el área 0?

Ejemplo de configuración OSPF

Entrar al modo de configuración

2003# conf t 2003(config)#

Habilitar el protocolo de enrutamiento OSPF

2003(config) # router ospf 2003(config-router) #

Publicar red directamente conectada al router a través de OSPF

2003(config-router) # network 10.0.0.0/8 area 0 2003(config-router) # network 30.0.0.0/24 area 0

Ver información de adyacencias con vecinos OSPF

2003# sh ip ospf neighbor

Tipos de Rutas OSPF

O - OSPF Intra área

Rutas originadas en un área y que son conocidas por los routers de la misma área.

- O IA OSPF Inter área
 Rutas que atraviesan un ABR.
- O E1 OSPF External Type 1 rutas a redes que están fuera del AS OSPF (inyectadas en algún lugar)
- O E2 OSPF External Type 2 rutas a redes que están fuera del AS OSPF (inyectadas en algún lugar)

Preferencia de rutas OSPF

Según la RFC 2328, el órden de preferencia de las rutas es:

- 1) O OSPF Intra área
- 2) O IA OSPF Inter área
- 3) O E1 OSPF External Type 1
 - El costo hacia la ruta, es la suma del costo propio de la ruta más el costo para llegar al ASBR que anuncia dicha ruta
- 4) O E2 OSPF External Type 2
 - El costo en cualquier lugar dentro del AS hacia la red es siempre el mismo

Virtual Link

Algunas áreas OSPF, pueden presentar problemas para estar conectadas físicamente con el área 0 (backbone)

 En estos casos existe una alternativa llamada Virtual Link (conexión lógica con el área backbone)

http://www.cisco.com/en/US/tech/tk365/technologies_configuration_example09186a00801ec9ee.shtml

