GPT-2 Model Summary

Extract and explain contents

The document "Language Models are Unsupervised Multitask Learners" by Alec Radford et al. introduces GPT-2, an advanced unsupervised language model trained on a large dataset called WebText. The paper explores how GPT-2 can perform multiple NLP tasks without explicit supervision, demonstrating the potential of zero-shot learning.

Key Points:

1. Unsupervised Learning & Zero-Shot Transfer

- Traditional NLP tasks (question answering, summarization, translation) require supervised datasets.
- GPT-2, trained on WebText (millions of webpages), learns these tasks without
 explicit supervision by leveraging context.
- Achieves **55 F1 on CoQA** without training on its 127,000 examples.

2. Model Architecture & Training

- GPT-2 is a **1.5 billion parameter Transformer model**.
- It improves performance in a **log-linear fashion** as model size increases.
- Uses Byte Pair Encoding (BPE) for handling diverse text inputs.

3. Performance on NLP Benchmarks

- Outperforms previous state-of-the-art (SOTA) models on 7 out of 8 language modeling datasets.
- Excels in reading comprehension, translation, question answering, and summarization.
- Demonstrates strong generalization but still underfits WebText.

4. Training Dataset - WebText

- Scraped from Reddit links with at least 3 karma to ensure quality.
- Contains 40GB of text from over 8 million documents.
- Wikipedia was excluded to prevent overlap with existing NLP benchmarks.

5. Experiments & Insights

- Reading Comprehension: Matches or exceeds 3 out of 4 baselines without finetuning.
- **Summarization:** Performs well but struggles with **factual consistency**.
- Question Answering: Answers 4.1% of Natural Questions dataset correctly,
 improving significantly with model size.
- Translation: Achieves 5 BLEU on English-French, improving when given context.

6. Generalization vs. Memorization

- Overlap analysis shows **minimal memorization**, meaning GPT-2 genuinely **learns patterns** rather than memorizing text.
- Some memorization exists for high-frequency phrases like famous speeches.

7. Conclusions & Future Work

- High-capacity language models can learn tasks naturally from diverse datasets.
- Zero-shot performance indicates unsupervised learning has vast potential.
- Fine-tuning could further improve performance across tasks.

Would you like a more detailed explanation on any of these points? 🚀

Explain it's architecture

GPT-2 Architecture Explained 👚

GPT-2 (Generative Pre-trained Transformer 2) is a **Transformer-based** neural network model designed for **unsupervised language modeling**. It improves upon the original **GPT (Radford et al., 2018)** by significantly increasing model capacity and dataset diversity.

1. Transformer-Based Architecture

GPT-2 is built on the **Transformer decoder** architecture, which uses **self-attention** and **feed-forward layers** to model text. It follows the **stacked multi-layer Transformer decoder** structure.

Unlike BERT (which uses both encoder and decoder), GPT-2 uses only the decoder.

 It generates text autoregressively, meaning it predicts the next word based on previous words.

2. Model Components

(a) Tokenization: Byte-Pair Encoding (BPE)

- Uses Byte-Pair Encoding (BPE) to break words into subword units.
- Helps handle out-of-vocabulary (OOV) words efficiently.
- Expands the vocabulary size to 50,257 tokens.

(b) Positional Embeddings

- Since Transformers do not have recurrence (like RNNs), GPT-2 uses positional encodings to retain word order.
- Unlike sinusoidal embeddings used in BERT, GPT-2 learns positional embeddings during training.

(c) Multi-Head Self-Attention

GPT-2 uses the **self-attention mechanism** to learn contextual relationships between words.

- Multi-Head Attention: Instead of attending to all words equally, the model assigns
 different attention weights to different words in the sequence.
- GPT-2 uses masked self-attention, meaning it can only attend to previous tokens (left-to-right generation).

(d) Layer Normalization

- Instead of Batch Normalization, GPT-2 uses Layer Normalization (LN) after each selfattention and feed-forward layer.
- Helps stabilize training by normalizing activations.

(e) Feed-Forward Network (FFN)

- Each attention block is followed by a **fully connected feed-forward network (FFN)**.
- Consists of two linear layers with a non-linearity (ReLU or GELU) in between.

Increases model capacity and non-linearity.

(f) Residual Connections

- Uses **skip connections (residual connections)** around attention and FFN layers.
- Helps gradient flow and speeds up convergence.

3. Model Hyperparameters

GPT-2 was trained in **four different model sizes**, each with a different number of layers and parameters.

Model Size	Layers	Hidden Size (d_model)	Attention Heads	Parameters
117M	12	768	12	117M
345M	24	1024	16	345M
762M	36	1280	20	762M
1.5B (GPT-2)	48	1600	25	1.5B

- Increasing model size leads to log-linear improvements in performance.
- The largest model, **GPT-2 (1.5B parameters)**, outperforms previous state-of-the-art models on multiple tasks.

4. Training Process

- Objective: Trains using the causal language modeling (CLM) objective, predicting the next word given previous words.
- **Dataset: WebText** (~40GB of high-quality text from the internet).
- Optimizer: Adam with weight decay (variant of AdamW).
- Batch Size: 512
- Context Length: 1024 tokens (longer than GPT-1's 512 tokens).

• **Training Data Cleaning:** Removed **Wikipedia** to avoid overlap with standard NLP benchmarks.

5. Differences from Previous Models

Feature	GPT-1	GPT-2	BERT
Architecture	Transformer Decoder	Transformer Decoder	Transformer Encoder
Training Data	BooksCorpus (5GB)	WebText (40GB)	Wikipedia + Books
Training Objective	Causal LM	Causal LM	Masked LM (MLM)
Context Window	512 tokens	1024 tokens	512 tokens
Fine-tuning Needed?	Yes	No (zero-shot learning)	Yes
Use Case	Text Generation	Unsupervised Task Learning	NLP Understanding

6. Strengths & Weaknesses

Strengths:

- Unsupervised multitask learning: Learns tasks without labeled data.
- State-of-the-art (SOTA) language modeling: Achieves high scores in multiple benchmarks.
- Scalability: Larger models improve performance log-linearly.
- Zero-shot generalization: No need for fine-tuning to perform well.

X Weaknesses:

- **Computationally expensive**: Requires **huge GPU resources** for training and inference.
- **Prone to hallucinations**: Generates fluent but sometimes factually incorrect text.
- **Bias in training data**: Inherits biases from WebText corpus.

7. Summary

GPT-2 is a **massive**, **unsupervised**, **autoregressive Transformer** trained to predict text in a **left-to-right** manner. Its architecture scales well and demonstrates **zero-shot task transfer**, revolutionizing NLP. However, it also requires **significant computing power** and **suffers from biases** due to its training data.

Would you like a code breakdown of how GPT-2 processes text? 🚀