Cross - correlazione con matlab

Esempio di cross - correlazione:

```
1  f1 = [1 1 1 1 1 1 1 1]; %box
2  f2 = [1 2 3 4 5 6 7 8]; %triangolo
3
4  figure; set(gcf,'name','Cross_Correlazione','IntegerHandle','off');
5  subplot(311); stem(f1);
6  subplot(312); stem(f2);
7  [f1xf2,lag] = xcorr(f1,f2);
8  subplot(313); plot(lag,f1xf2); hold; stem(lag,f1xf2);
```

Analisi codice:

figure	Crea una nuova sottofinestra.
subplot(nmp)	Suddivide la sottofinestra in una matrice di n righe e m colonne. Il valore p indica la posizione della "cella" in cui operare.
stem(array)	Basandosi su array, crea sul grafico dei segmenti terminati con un pallino (serve per disegnare segnali discreti).
stem(x, y)	Crea un segmento in posizione x alto y, terminante con un pallino.
xcorr(s1, s2)	Esegue la cross - correlazione tra s1 e s2. Ritorna due array differenti: il prima riporta il valore della cross correlazione per ogni punto di shift, mentre il secondo riporta lo shift del segnale s2.
plot(x, y)	Crea un grafico (continuo) a partire dagli array x e y.

Risultato:

