Algoritmi e Strutture Dati

a.a. 2013/14

Prima prova intermedia del 23/01/2014

Cognon	ne: Nome:
Matrico	ola: E-mail:
1.	Dato un albero binario i cui nodi sono colorati di <i>bianco</i> o di <i>nero</i> , scrivere una funzione (efficiente che calcoli il numero di nodi aventi lo stesso numero di discendenti bianchi e neri (Un nodo è discendente di se stesso.) Inoltre analizzare la complessità di tale algoritmo.
	Il tipo Node utilizzato per rappresentare l'albero binario è il seguente:
	<pre>typedef struct node { char * colore; struct node * left; struct node * right; } * Node;</pre>

2. Si può ordinare un dato insieme di *n* numeri costruendo un albero binario di ricerca che contiene questi numeri (usando ripetutamente *Tree-Insert* per inserire i numeri uno alla volta) e stampando poi i numeri utilizzando un certo tipo di visita. Scrivere l'algoritmo che realizza questo ordinamento e specificare il tipo di visita effettuata e il relativo algoritmo.

Quali sono i tempi di esecuzione nel caso peggiore e nel caso migliore per questo algoritmo di ordinamento?

3. Si definiscano formalmente le relazioni O, Ω , Θ e, **utilizzando le definizioni date e nient'altro**, si dimostri la verità o la falsità di ciascuna delle seguenti affermazioni:

a)
$$n \log n = \Theta(n^2)$$

b)
$$n + \sqrt{3n} = \Omega(\log n)$$

$$c) \quad 4n\log n = O(4n + \log n^2)$$

d)
$$2^{n+k} = O(2^n)$$
, dove k è una costante intera positiva

e)
$$2^{n+n} = O(2^n)$$