S3PRL-VC: Open-source Voice Conversion Framework with Selfsupervised Speech Representations

Wen-Chin Huang, Shu-Wen Yang, Tomoki Hayashi, Hung-Yi Lee, Shinji Watanabe, Tomoki Toda

Nagoya University, Japan National Taiwan University, Taiwan Carnegie Mellon University, USA

AAAI SAS 2022

A trending paradigm in VC

- Voice conversion (VC)
 - A technique that converts one kind of speech to another, without changing the linguistic content.
- Recognition-synthesis (rec-syn) based VC
 - Information perspective: <u>Converted = input source + target</u>

- Ex. Can be realized by cascading an ASR & TTS model
- State-of-the-art in voice conversion challenge (VCC) 2020

Training and conversion

Intermediate representations

- Supervised speech representations
 - Ex. text, phonetic posteriorgram (PPG)
 - © Accurate; © Costly
- Self-supervised speech representations (S3Rs)
 - Learns rich, compact speech representations from large-scale unlabeled data.

Representation	Text	Phonetic	Self-supervised		
Representation	Text	Posteriorgram	speech representations		
Extractor	ASR	model	self-supervised model		
Training data	label	ed data	unlabeled data		
Resolution	token level	frame level			

VC as a proxy task for S3R

- S3Rs have been studied systematically in discriminative tasks.
 - Speech recognition, speaker verification, etc.
- Unclear what S3Rs are optimal for generation.
- Hypothesis: a good S3R for VC should be
 - Rich and compact in <u>content</u>;
 - 2. Contains little to none <u>speaker information</u>.

Contribution of this work

• <u>S3PRL-VC</u>: Extension of the S3PRL toolkit and SUPERB benchmark

SUPERB

Speech processing Universal PERformance Benchmark

- Evaluate S3R-based VC in a unified setting:
 - Dataset VCC2020
 - Tasks any-to-one/any, intra-/cross-lingual
 - Implementation synthesizer model, vocoder
 - Competing systems top systems in VCC2020
 - Evaluation metrics both objective and subjective

Dataset: Voice conversion challenge (VCC) 2020

- Bi-annual event to compare SOTA techniques.
- VCC2020 has two tasks:
 - Task 1: intra-lingual VC; task 2: cross-lingual VC

Tasks

- Any-to-one (A2O) VC
 - Unseen speaker → seen speaker
 - Consider intra-lingual and cross-lingual.

$$\mathbf{Y} = \text{Synth}(\mathbf{H}), \mathbf{H} = \text{Recog}(\mathbf{X})$$

- Any-to-any (A2A) VC (a.k.a. zero-shot VC)
 - Unseen speaker → unseen speaker
 - Unseen: data is limited (less than 1 min)
 - Only consider the intra-lingual setting.
 - Speaker info injected with pretrained d-vector.

$$\mathbf{Y} = \text{Synth}(\mathbf{H}, \mathbf{s}), \mathbf{H} = \text{Recog}(\mathbf{X}), \mathbf{s} = \text{SpkEnc}(\mathbf{D}_{\text{trg}}).$$

Implementation: Synthesizer models, vocoder

Vocoder: Hifi-GAN (non-AR vocoder) trained on VCC2020+VCTK (A2O) / VCTK (A2A)

Competing systems

- A collection of SOTA rec-syn based VC systems
 - VCC2020 top systems
 - PPGs
 - pretraining on a multi-speaker dataset
 - AR vocoders (WaveNet)
 - VCC2020 baseline
 - Cascade ASR+TTS (text as representation)
 - Non-AR vocoder (Parallel WaveGAN)

Evaluation metrics

Objective

- Mel cepstrum distortion (MCD↓): L2-norm based, commonly used in VC.
- Word error rate (WER↓): intelligibility measure from a pretrained wav2vec 2.0 model.
- Accept rate from <u>ASV</u>↑: cosine similarity between d-vectors extracted from converted and ground truth.

Subjective

- Naturalness↑: mean opinion score (MOS) from 1-5

Results (1): Comparison of different models

·									
				Intr	a-lingual	A2O			
Upstream		Simple		5	Simple-AF	₹	Taco2-AR		
	MCD	WER	ASV	MCD	WER	ASV	MCD	WER	ASV
mel	8.41	48.5	59.00	8.92	22.7	49.75	8.47	38.3	77.25
PPG (TIMIT)	7.78	69.0	85.50	7.83	58.9	95.25	7.18	33.6	99.75
PASE+	9.29	5.0	26.75	9.52	5.7	26.00	8.66	30.6	63.20
APC	8.67	8.6	48.00	8.73	7.1	41.75	8.05	27.2	87.25
VQ-APC	8.12	10.8	81.25	8.37	7.4	60.50	7.84	22.4	94.25
NPC	7.74	39.0	92.75	8.15	21.1	76.75	7.86	30.4	94.75
Mockingjay	8.58	31.3	51.00	8.74	9.5	47.00	8.29	35.1	79.75
TERA	8.60	11.4	46.50	8.67	6.0	42.50	8.21	25.1	83.75
Modified CPC	8.71	9.4	40.00	8.87	7.0	30.00	8.41	26.2	71.00
DeCoAR 2.0	8.31	7.4	54.75	8.33	6.4	53.00	7.83	17.1	90.75
wav2vec	7.45	14.0	95.50	7.64	4.9	90.50	7.45	10.1	98.25
vq-wav2vec	7.41	13.4	91.00	7.24	11.6	98.75	7.08	13.4	100.00
wav2vec 2.0 Base	7.80	24.7	92.75	7.77	5.0	86.50	7.50	10.5	98.00
wav2vec 2.0 Large	7.64	12.5	81.75	7.67	9.0	82.75	7.63	15.8	97.25
HuBERT Base	7.70	5.5	89.25	7.79	4.7	84.25	7.47	8.0	98.50
HuBERT Large	7.54	5.6	95.00	7.54	5.6	93.00	7.22	9.0	99.25

Simple → **Simple-AR**: large improvements in WER

Results (1): Comparison of different models

				Int	ra-lingual .	A2O			
Upstream		Simple			Simple-AF			Taco2-AR	
	MCD	WER	ASV	MCD	WER	ASV	MCD	WER	ASV
mel	8.41	48.5	59.00	8.92	22.7	49.75	8.47	38.3	77.25
PPG (TIMIT)	7.78	69.0	85.50	7.83	58.9	95.25	7.18	33.6	99.75
PASE+	9.29	5.0	26.75	9.52	5.7	26.00	8.66	30.6	63.20
APC	8.67	8.6	48.00	8.73	7.1	41.75	8.05	27.2	87.25
VQ-APC	8.12	10.8	81.25	8.37	7.4	60.50	7.84	22.4	94.25
NPC	7.74	39.0	92.75	8.15	21.1	76.75	7.86	30.4	94.75
Mockingjay	8.58	31.3	51.00	8.74	9.5	47.00	8.29	35.1	79.75
TERA	8.60	11.4	46.50	8.67	6.0	42.50	8.21	25.1	83.75
Modified CPC	8.71	9.4	40.00	8.87	7.0	30.00	8.41	26.2	71.00
DeCoAR 2.0	8.31	7.4	54.75	8.33	6.4	53.00	7.83	17.1	90.75
wav2vec	7.45	14.0	95.50	7.64	4.9	90.50	7.45	10.1	98.25
vq-wav2vec	7.41	13.4	91.00	7.24	11.6	98.75	7.08	13.4	100.00
wav2vec 2.0 Base	7.80	24.7	92.75	7.77	5.0	86.50	7.50	10.5	98.00
wav2vec 2.0 Large	7.64	12.5	81.75	7.67	9.0	82.75	7.63	15.8	97.25
HuBERT Base	7.70	5.5	89.25	7.79	4.7	84.25	7.47	8.0	98.50
HuBERT Large	7.54	5.6	95.00	7.54	5.6	93.00	7.22	9.0	99.25

Simple-AR → Taco2-AR: large improvements in ASV, moderate degradation in WER

Results (1): Comparison of different models

				Intr	a-lingual	A2O			
Upstream		Simple		5	Simple-AF	3	Taco2-AR		
	MCD	WER	ASV	MCD	WER	ASV	MCD	WER	ASV
mel	8.41	48.5	59.00	8.92	22.7	49.75	8.47	38.3	77.25
PPG (TIMIT)	7.78	69.0	85.50	7.83	58.9	95.25	7.18	33.6	99.75
PASE+	9.29	5.0	26.75	9.52	5.7	26.00	8.66	30.6	63.20
APC	8.67	8.6	48.00	8.73	7.1	41.75	8.05	27.2	87.25
VQ-APC	8.12	10.8	81.25	8.37	7.4	60.50	7.84	22.4	94.25
NPC	7.74	39.0	92.75	8.15	21.1	76.75	7.86	30.4	94.75
Mockingjay	8.58	31.3	51.00	8.74	9.5	47.00	8.29	35.1	79.75
TERA	8.60	11.4	46.50	8.67	6.0	42.50	8.21	25.1	83.75
Modified CPC	8.71	9.4	40.00	8.87	7.0	30.00	8.41	26.2	71.00
DeCoAR 2.0	8.31	7.4	54.75	8.33	6.4	53.00	7.83	17.1	90.75
wav2vec	7.45	14.0	95.50	7.64	4.9	90.50	7.45	10.1	98.25
vq-wav2vec	7.41	13.4	91.00	7.24	11.6	98.75	7.08	13.4	100.00
wav2vec 2.0 Base	7.80	24.7	92.75	7.77	5.0	86.50	7.50	10.5	98.00
wav2vec 2.0 Large	7.64	12.5	81.75	7.67	9.0	82.75	7.63	15.8	97.25
HuBERT Base	7.70	5.5	89.25	7.79	4.7	84.25	7.47	8.0	98.50
HuBERT Large	7.54	5.6	95.00	7.54	5.6	93.00	7.22	9.0	99.25

Taco2-AR is chosen to be the final model because:

- (1) WER is a strict measurement of intelligibility
- (2) Yields best MCD scores

Results (2): different tasks

	V							
	Intr	a-lingual A	A2O	Cross-li	ingual A2O	Intra	a-lingual A	A2A
Upstream		Taco2-AF	3	Tac	o2-AR		Taco2-AR	
	MCD	WER	ASV	WER	ASV	MCD	WER	ASV
mel	8.47	38.3	77.25	39.0	46.67	9.49	4.2	19.50
PPG (TIMIT)	7.18	33.6	99.75	51.0	84.67	8.31	12.9	83.50
PASE+	8.66	30.6	63.20	36.3	34.67	9.85	4.2	8.00
APC	8.05	27.2	87.25	33.9	52.33	9.57	3.5	23.25
VQ-APC	7.84	22.4	94.25	28.4	68.00	9.43	4.0	22.00
NPC	7.86	30.4	94.75	37.6	59.00	9.39	4.4	21.00
Mockingjay	8.29	35.1	79.75	39.2	46.00	9.43	5.0	25.00
TERA	8.21	25.1	83.75	29.2	49.33	9.31	5.2	18.75
Modified CPC	8.41	26.2	71.00	35.3	32.83	9.61	4.1	10.75
DeCoAR 2.0	7.83	17.1	90.75	26.8	59.33	9.28	4.0	27.00
wav2vec	7.45	10.1	98.25	13.9	75.83	8.77	3.5	40.00
vq-wav2vec	7.08	13.4	100.00	21.0	88.83	8.47	4.2	73.25
wav2vec 2.0 Base	7.50	10.5	98.00	14.9	82.17	9.03	3.2	27.00
wav2vec 2.0 Large	7.63	15.8	97.25	22.7	78.00	8.99	4.1	22.25
HuBERT Base	7.47	8.0	98.50	13.5	82.33	9.19	3.4	23.25
HuBERT Large	7.22	9.0	99.25	15.9	86.50	9.13	3.0	27.75

S3Rs still works in cross-lingual VC even trained on mono-lingual data. However, WER and ASV both degraded.

Results (2): different tasks

	Intra	a-lingual A	A2O	Cross-li	ngual A2O	Cross-lingual A2O Intra-		
Upstream		Taco2-AF	2	Tac	o2-AR	,	Taco2-AR	
	MCD	WER	ASV	WER	ASV	MCD	WER	ASV
mel	8.47	38.3	77.25	39.0	46.67	9.49	4.2	19.50
PPG (TIMIT)	7.18	33.6	99.75	51.0	84.67	8.31	12.9	83.50
PASE+	8.66	30.6	63.20	36.3	34.67	9.85	4.2	8.00
APC	8.05	27.2	87.25	33.9	52.33	9.57	3.5	23.25
VQ-APC	7.84	22.4	94.25	28.4	68.00	9.43	4.0	22.00
NPC	7.86	30.4	94.75	37.6	59.00	9.39	4.4	21.00
Mockingjay	8.29	35.1	79.75	39.2	46.00	9.43	5.0	25.00
TERA	8.21	25.1	83.75	29.2	49.33	9.31	5.2	18.75
Modified CPC	8.41	26.2	71.00	35.3	32.83	9.61	4.1	10.75
DeCoAR 2.0	7.83	17.1	90.75	26.8	59.33	9.28	4.0	27.00
wav2vec	7.45	10.1	98.25	13.9	75.83	8.77	3.5	40.00
vq-wav2vec	7.08	13.4	100.00	21.0	88.83	8.47	4.2	73.25
wav2vec 2.0 Base	7.50	10.5	98.00	14.9	82.17	9.03	3.2	27.00
wav2vec 2.0 Large	7.63	15.8	97.25	22.7	78.00	8.99	4.1	22.25
HuBERT Base	7.47	8.0	98.50	13.5	82.33	9.19	3.4	23.25
HuBERT Large	7.22	9.0	99.25	15.9	86.50	9.13	3.0	27.75

In A2A VC, only vq-wav2vec provided the required disentanglement.

Results (3): compare with SOTA

System	MCD	WER	ASV	Naturalness	Similarity			
		Intra-li	ngual A2O					
mel	8.47	38.3	77.25	2.61 ± 0.11	$35\% \pm 3\%$			
PPG (TIMIT)	7.18	33.6	99.75	3.32 ± 0.10	$58\% \pm 4\%$			
PASE+	8.66	30.6	63.20	2.58 ± 0.12	$31\% \pm 3\%$			
APC	8.05	27.2	87.25	2.92 ± 0.11	$43\% \pm 4\%$			
VQ-APC	7.84	22.4	94.25	3.08 ± 0.10	$40\% \pm 4\%$			
NPC	7.86	30.4	94.75	2.98 ± 0.11	$46\% \pm 3\%$			
Mockingjay	8.29	35.1	79.75	2.81 ± 0.12	$42\% \pm 4\%$			
TERA	8.21	25.1	83.75	2.91 ± 0.12	$37\% \pm 4\%$			
Modified CPC	8.41	26.2	71.00	2.74 ± 0.11	$33\% \pm 3\%$			
DeCoAR 2.0	7.83	17.1	90.75	3.04 ± 0.11	$43\% \pm 4\%$			
wav2vec	7.45	10.1	98.25	3.40 ± 0.05	$52\% \pm 2\%$			
vq-wav2vec	7.08	13.4	100.00	3.59 ± 0.10	$59\% \pm 4\%$			
wav2vec 2.0 B.	7.50	10.5	98.00	3.36 ± 0.06	$51\% \pm 2\%$			
wav2vec 2.0 L.	7.63	15.8	97.25	3.26 ± 0.10	$50\% \pm 4\%$			
HuBERT B.	7.47	8.0	98.50	3.48 ± 0.10	$55\% \pm 4\%$			
HuBERT L.	7.22	9.0	99.25	3.47 ± 0.10	$54\% \pm 4\%$			
USTC-2018†	_	6.5	99.00	4.20 ± 0.08	$55\% \pm 4\%$			
USTC-2020	6.98	5.4	100.00	4.41 ± 0.07	$82\% \pm 3\%$			
SRCB	8.90	11.5	92.00	4.16 ± 0.08	$68\% \pm 3\%$			
CASIA	7.13	11.0	98.25	4.25 ± 0.08	$61\% \pm 4\%$			
ASR+TTS	6.48	8.2	100.00	3.84 ± 0.09	$75\% \pm 3\%$			
Target	_	0.7	_	4.57 ± 0.14	_			

Cross-lingual A2O									
PPG (TIMIT)	_	51.0	84.67	2.79 ± 0.08	$43\% \pm 3\%$				
vq-wav2vec	_	21.0	88.83	3.28 ± 0.08	$44\% \pm 3\%$				
HuBERT L.	_	15.9	86.50	3.13 ± 0.08	$41\% \pm 3\%$				
USTC-2018	_	5.6	97.67	4.17 ± 0.06	$34\% \pm 3\%$				
USTC-2020	_	7.6	96.00	4.27 ± 0.07	$43\% \pm 3\%$				
SRCB	_	8.6	78.67	4.34 ± 0.07	$34\% \pm 3\%$				
CASIA	_	10.5	91.67	4.11 ± 0.07	$45\% \pm 3\%$				
ASR+TTS	_	34.5	67.83	2.51 ± 0.08	$39\% \pm 3\%$				
Target	_	_	_	4.48 ± 0.12	_				

Intra-lingual A2A								
PPG (TIMIT)	8.32	12.7	84.25	3.41 ± 0.08	$34\% \pm 4\%$			
vq-wav2vec	8.47	4.2	73.25	3.58 ± 0.09	$28\% \pm 3\%$			
S2VC†	_	12.4	71.50	2.90 ± 0.09	$29\% \pm 3\%$			

- Best upstream in A2O: vq-wav2vec
- There is still a gap between vq-wav2vec and SOTA
- vq-wav2vec beats S2VC (SOTA in A2A VC)

Results (4): impact of supervision

System	MCD	WER	ASV	Naturalness	Similarity
		Intra-li	ngual A2O		
mel	8.47	38.3	77.25	2.61 ± 0.11	$35\% \pm 3\%$
PPG (TIMIT)	7.18	33.6	99.75	3.32 ± 0.10	$58\% \pm 4\%$
PASE+	8.66	30.6	63.20	2.58 ± 0.12	$31\% \pm 3\%$
APC	8.05	27.2	87.25	2.92 ± 0.11	$43\% \pm 4\%$
VQ-APC	7.84	22.4	94.25	3.08 ± 0.10	$40\% \pm 4\%$
NPC	7.86	30.4	94.75	2.98 ± 0.11	$46\% \pm 3\%$
Mockingjay	8.29	35.1	79.75	2.81 ± 0.12	$42\% \pm 4\%$
TERA	8.21	25.1	83.75	2.91 ± 0.12	$37\% \pm 4\%$
Modified CPC	8.41	26.2	71.00	2.74 ± 0.11	$33\% \pm 3\%$
DeCoAR 2.0	7.83	17.1	90.75	3.04 ± 0.11	$43\% \pm 4\%$
wav2vec	7.45	10.1	98.25	3.40 ± 0.05	$52\% \pm 2\%$
vq-wav2vec	7.08	13.4	100.00	3.59 ± 0.10	59% ± 4%
wav2vec 2.0 B.	7.50	10.5	98.00	3.36 ± 0.06	$51\% \pm 2\%$
wav2vec 2.0 L.	7.63	15.8	97.25	3.26 ± 0.10	$50\% \pm 4\%$
HuBERT B.	7.47	8.0	98.50	3.48 ± 0.10	$55\% \pm 4\%$
HuBERT L.	7.22	9.0	99.25	3.47 ± 0.10	54% ± 4%
USTC-2018†	_	6.5	99.00	4.20 ± 0.08	$55\% \pm 4\%$
USTC-2020	6.98	5.4	100.00	4.41 ± 0.07	$82\% \pm 3\%$
SRCB	8.90	11.5	92.00	4.16 ± 0.08	$68\% \pm 3\%$
CASIA	7.13	11.0	98.25	4.25 ± 0.08	$61\% \pm 4\%$
ASR+TTS	6.48	8.2	100.00	3.84 ± 0.09	$75\% \pm 3\%$
Target	_	0.7	-	4.57 ± 0.14	

Cross-lingual A2O								
PPG (TIMIT)	_	51.0	84.67	2.79 ± 0.08	$43\% \pm 3\%$			
vq-wav2vec	_	21.0	88.83	3.28 ± 0.08	$44\% \pm 3\%$			
HuBERT L.	_	15.9	86.50	3.13 ± 0.08	$41\% \pm 3\%$			
USTC-2018	_	5.6	97.67	4.17 ± 0.06	$34\% \pm 3\%$			
USTC-2020	_	7.6	96.00	4.27 ± 0.07	$43\% \pm 3\%$			
SRCB	_	8.6	78.67	4.34 ± 0.07	$34\% \pm 3\%$			
CASIA	_	10.5	91.67	4.11 ± 0.07	$45\% \pm 3\%$			
ASR+TTS	_	34.5	67.83	2.51 ± 0.08	$39\% \pm 3\%$			
Target	_	-	_	4.48 ± 0.12	_			

Intra-lingual A2A								
PPG (TIMIT)	8.32	12.7	84.25	3.41 ± 0.08	$34\% \pm 4\%$			
vq-wav2vec	8.47	4.2	73.25	3.58 ± 0.09	$28\% \pm 3\%$			
S2VC†	_	12.4	71.50	2.90 ± 0.09	$29\% \pm 3\%$			

- A more fair comparison between PPG and S3Rs in a unified setting.
- PPG (TIMIT): trained with TIMIT (3 hours)
 - Low quality proven by high WER &low naturalness
 - Good speaker disentanglement ability shown by high ASV & high similarity

Results (5): justify the objective metrics

System	MCD	WER	ASV	Naturalness	Similarity
Intra-lingual A2O					
mel	8.47	38.3	77.25	2.61 ± 0.11	$35\% \pm 3\%$
PPG (TIMIT)	7.18	33.6	99.75	3.32 ± 0.10	$58\% \pm 4\%$
PASE+	8.66	30.6	63.20	2.58 ± 0.12	$31\% \pm 3\%$
APC	8.05	27.2	87.25	2.92 ± 0.11	$43\% \pm 4\%$
VQ-APC	7.84	22.4	94.25	3.08 ± 0.10	$40\% \pm 4\%$
NPC	7.86	30.4	94.75	2.98 ± 0.11	$46\% \pm 3\%$
Mockingjay	8.29	35.1	79.75	2.81 ± 0.12	$42\% \pm 4\%$
TERA	8.21	25.1	83.75	2.91 ± 0.12	$37\% \pm 4\%$
Modified CPC	8.41	26.2	71.00	2.74 ± 0.11	$33\% \pm 3\%$
DeCoAR 2.0	7.83	17.1	90.75	3.04 ± 0.11	$43\% \pm 4\%$
wav2vec	7.45	10.1	98.25	3.40 ± 0.05	$52\% \pm 2\%$
vq-wav2vec	7.08	13.4	100.00	3.59 ± 0.10	$59\% \pm 4\%$
wav2vec 2.0 B.	7.50	10.5	98.00	3.36 ± 0.06	$51\% \pm 2\%$
wav2vec 2.0 L.	7.63	15.8	97.25	3.26 ± 0.10	$50\% \pm 4\%$
HuBERT B.	7.47	8.0	98.50	3.48 ± 0.10	$55\% \pm 4\%$
HuBERT L.	7.22	9.0	99.25	3.47 ± 0.10	$54\% \pm 4\%$

linear corr. coeff. using the intra-lingual A2O results

Motivation: listening tests can be expensive.

Goal: examine if the objective measures align well with human perception.

Finding: MCD best aligns with both naturalness and similarity

Samples and codebase

 Demo webpage: <u>https://unilight.github.io/Publication-Demos/publications/s3prl-vc/index.html</u>

Codebase:

https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/a2o-vc-vcc2020

Future research directions

VC perspective:

- Better downstream model design.
 Ex. d-vector in A2A VC → a proper speaker encoder?
- 2. Close performance gap between SOTA Ex. better vocoder, waveform modeling, etc.

S3R perspective:

- 1. Use VC as a probing task when designing new S3R
- 2. Analyze what components are key to VC Ex. discretization (quantization) in vq-wav2vec?