(CSC165H1) "Problem Set 0"

Youngsin Ryoo

My courses

- CSC165H1, Mathematical Expression and Reasoning for Computer Science, Lindsey Shorser
- COG250Y1, Introduction to Cognitive Science, John Vervaeke
- CSC207H1, Software Tools and Systems Programming, Karen Reid
- NEW334H1, Science of Wisdom: Buddhist and Western Traditions, Michel Ferrari

Set notation

$$S_1 \setminus S_2 = \{165, 207, 209, 258, 263, 369, 373\}$$

A truth table

p	q	r	$ \neg (p \land q \land r) \iff (p \Rightarrow q) $
Т	Т	Т	F
Τ	Т	F	${ m T}$
T	F	Т	${ m F}$
T	F	F	\mathbf{F}
\mathbf{F}	Τ	Т	${ m T}$
\mathbf{F}	Τ	F	${ m T}$
\mathbf{F}	F	Т	${ m T}$
F	F	F	${ m T}$

A calculation

a) Simplifying using the given formula gives (d = 4 and k = -315):

$$\sum_{i=0}^{n-1} (di+k) = \sum_{i=0}^{n-1} (4i-315)$$
$$= 4(\frac{n(n-1)}{2}) - 315n$$
$$= 2n^2 - 317n$$

b) Applying quadratic formula after solving inequality gives two answers:

$$\sum_{i=0}^{n-1} (4i - 315) > 2020$$

$$2n^2 - 317n > 2020$$

$$2n^2 - 317n - 2020 > 0$$

$$n = \frac{317 \pm \sqrt{116649}}{4}$$

$$n = -6.13, 164.63$$

The zeros are roughly -6.13 and 164.63. However, since n is the positive integer, n should be 165. Therefore, the smallest positive integer, n, that makes $\sum_{i=0}^{n-1} (4i-315)$ greater than 2020, is 165.