自然语言处理技术报告

姓名: 袁昭新

学号: 2020K8009926029

一、数据来源

为了对比不同样本的差别,中文样本分别在<u>维基百科、纵横中文网</u>以及<u>人民网</u>上收集;英文样本在<u>维基百科、FullEnglishBooks</u>、<u>ABC News</u>以及<u>CNN</u>上收集。样本的类型覆盖了网络百科全书、小说和网络新闻。

图 1-数据来源

为了使数据尽可能多样,在爬取维基百科选取了多个类别作为起点,例如:科学、社会、文化、自然、宗教等,并在其中进行递归搜索。其他网站则遍历首页的文章,并在文章的相关推荐中递归爬取。

二、爬虫工具

Python 提供了 requests 模块,用于发送 HTTP 请求,然后利用 Beautiful Soup 库从 HTML 文件中解析和提取数据。基本的使用方式如下:

```
import requests
from bs4 import BeautifulSoup

response = requests.get(url)
html_doc = response.text
soup = BeautifulSoup(html_doc, 'html.parser')
```

根据不同网站的特点,使用不同的方式来爬取足够数量的文本。例如,维基百科的每个词条中都含有大量指向其他词条的链接;对于 CNN,含有大量文本的网页一般都以"index.html"结尾;对于小说网站,每一页的结尾都有指向下一页的链接……可以通过递归或 BFS 的方式来获取足量的文本。

另外,为了防止爬取到重复的内容,使用一个列表来存储待爬取的链接,每次发现新的链接时都需要检查是否已经在列表中。

递归的主函数大致如下(根据网站略有不同):

```
def crawl(current_url, file):
    print(f'正在访问链接: {current_url}')
    # 获取当前链接对应的网页内容
    .....
# 写入文件
    wr_txt(file, bodytxt)
    try:
        # 获取小说下一章的链接
        if href:
            crawl(href, file)
    except:
        pass
```

BFS 的主函数大致如下(根据网站略有不同):

```
def bfs(url, file):
   queue = [] # 存储待访问的链接
   counter = 0 # 记录已经爬取的次数
   while queue:
       if counter >= max:
           break
       # 超过最大数量则停止
       current_url = queue.pop(0)
       if current url not in visited:
           try:
              visited.add(current url)
              # 获取内容
              if souptext:
                  # 写入文件
              if len(queue) < max:</pre>
                  # 获取当前链接中的所有链接
                  # 将符合条件的链接加入列表
           except:
              pass
```

三、数据处理

获取的文本中往往含有乱码、数字等不需要的东西,使用 Python 来清洗样本,仅保留中文或者英文字符。

对于中文样本,除了非中文外,从维基百科上爬取的内容可能还含有繁体字,因此使用 opencc 库先将繁体字转化为简体字,再使用正则表达式去除所有非中文字符。汉字的 unicode 编码范围为 4e00 到 9fa5,因此样本清洗方法如下:

```
# 创建opencc对象,指定转换规则

converter = opencc.OpencC('t2s')

# 删除任何非汉字符号,定义正则表达式,匹配除了中文以外的任何字符

pattern = re.compile(r'[^\u4e00-\u9fa5]')

# 逐行读取输入文件内容,并将每行繁体字转换为简体字,然后写入输出文件

for line in input_file:
    simplified_line = converter.convert(line.strip())
    cleaned_line = re.sub(pattern, '', simplified_line.strip())
    output_file.write(cleaned_line)
```

对于英文样本,保留其中的英文和空格(同时将多个空格合并为一个),并将大写字母转为小写:

```
# 删除非字母

text = re.sub(r'[^a-zA-Z\s]', '', text)

text = re.sub(r"\s+", " ", text).strip()

# 大写转小写

text = text.lower()
```

清洗前后的样本规模如下表所示:

来源	原始样本规模(MB)	清洗后规模(MB)	丢弃率
维基百科(英文)	134.3	126.5	5.81%
ABC News & CNN	43.4	41	5.53%
Norvels	147.7	136.8	7.38%
维基百科(中文)	68.6	48.1	29.88%
人民网	69.2	60.3	12.86%
纵横中文网	62.6	53.2	15.02%

四、数据分析

(一) 不同样本的熵

每次添加 1M 个英文(或中文)字母, 计算文本的熵, 并绘图如下:

图 2-三个英文样本的熵

图 3-三个中文样本的熵

随着样本规模的增大,样本的熵逐渐趋于稳定。对于英文而言,三种不同来源的样本的熵有一定的差别,并且这种差别较为稳定。而对于中文而言,三种来源的样本之间熵的 差距比英文更明显,而且更不稳定。

在中英文样本中,当样本达到一定的规模后,熵最低的都是小说。小说的特点决定了其中会出现重复的人名、地名等,所以其熵可能因此偏低。

(二) 中、英文的熵

将样本合并之后计算熵,结果如下:

中文熵	英文熵
9.83036	4.13069

表2

合并所有文本后中文的熵变大了,这可能是因为三个样本的重合程度稍低造成的。另外,观察统计结果发现,样本中生僻的字较多,这也可能导致整体的熵偏大。

(三) 样本的其他特征

1. 频率最高的字符

各样本出现频率最高的五个字符,虽然不同样本间有差别,但总体上出现频率最高的 几个字符都相同。

来源	出现频率最高的五个字符
维基百科(英文)	空格, e, t, α, i
ABC News & CNN	空格, e, t, α, i
英文小说	空格, e, t, a, o
维基百科(中文)	的,在,国,为,是
人民网	的,人,中,一,国
纵横中文网	的,一,了,是,不

2. 汉字、词的频率和特征

汇集所有中文样本,一共出现了7474个汉字,出现次数大于1的有6833个,出现频率最高的五个字如下,都是虚词,"的"是使用频率最高的汉字。

汉字	频率	概率
的	1645327	3.05%
<u> </u>	648783	1.20%
是	541520	1.00%
了	471559	0.88%
在	470710	0.87%

表4

中文样本中,除去所有虚词后,频率最高的十个字、词及其频率如下:

字	频率	概率	实词	频率	概率
他	167360	0.30%	发展	72337	0.13%
人	105370	0.19%	一个	65743	0.12%
我	104628	0.20%	没有	57517	0.11%
年	95612	0.17%	中国	50401	0.09%
你	95164	0.18%	自己	48153	0.09%
中	94352	0.18%	他们	48089	0.09%
不	90655	0.17%	工作	46828	0.09%
上	84528	0.16%	我们	43189	0.08%
被	78960	0.15%	已经	37475	0.07%
对	78061	0.15%	国家	37285	0.07%

表5

汉字中出现频率最高的字是"他",可能的原因是,数据来源是百科、新闻和小说,大多都需要使用客观第三人称来叙述。

3. 英文字母、单词的频率和特征

汇集所有英文样本,英文出现频率最高的五个字母:

字母	频率	概率
空格	51926050	17.06%
e	30907740	10.16%
t	22531193	7.40%
α	20943067	6.88%
i	18763347	6.17%

表6

英文样本中,除去所有虚词后,频率最高的十个单词及其频率如下:

单词	频率	概率
said	251357	0.29%
like	171906	0.20%
time	138165	0.16%
just	135769	0.16%
know	116123	0.14%
did, didn't, don't	98443, 97871, 94073	0.11%, 0.11%, 0.11%
people	87308	0.10%
way	86606	0.10%
new	84116	0.10%
going	80239	0.09%

表7

英文同理,said 是出现频率最高的单词,原因也很可能是这些文本来源都需要从客观第三人称来叙述。

4. 验证齐夫定律

将中文和英文样本分别汇集之后,计算频率最高的 10 个字(字母)的频率和排名的对数,并将其绘制成图像,如下所示:

图 4-中英文样本频率和排序位次的对数关系

log(r)与 log(f)的取值关系近似为一条直线,基本符合齐夫定律。

五、不足

从上面的数据可以看到,本次选取的数据大多倾向于从客观第三人称来叙述,数据的 覆盖面可能不够广,样本不够丰富。并且,相较于英文样本,本次选取的中文样本量较 少,可能对结论的准确性和普适性有负面的影响。