

education

Department: Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P3

FEBRUARY/MARCH 2010

MEMORANDUM

MARKS: 100

This memorandum consists of 8 pages.

DoE/Feb. - March 2010

QUESTION 1

1.1	313;633	✓✓ answers
		(2)
1.2	$13 = 2 \times 3 + 7$	✓ developing sequence
	$33 = 2 \times 13 + 7$	$\checkmark T_{n+1} = 2T_n + 7$
	$73 = 2 \times 33 + 7$	$\checkmark T_1 = 3$
	$T_{n+1} = 2T_n + 7, T_1 = 3 (n \ge 1)$	(3)
	OR $T_n = 2T_{n-1} + 7$, $T_1 = 3$ $(n \ge 2)$, ,
	OR	
	13 = 3 + 10	✓ developing sequence
	33 = 13 + 20	I developing sequence I
	73 = 33 + 40	n 11 n
	$T_{n+1} = T_n + 10.2^{n-1}, T_1 = 3 (n \ge 1)$	$\checkmark T_1 = 3$
		(3)
	OR $T_n = T_{n-1} + 10.2^{n-2}, T_1 = 3 (n \ge 2)$	[5]

QUESTION 2

2.1		/
2.1	Yes. All three graphs represent the annual profits for the same	✓ yes
	company (2005 – R60 million; 2006 – R100 million and 2007 –	✓ profits for the same
	R180 million). There are, however, differences in the way the	company but presented
	information is presented – the scale on the vertical axis has been	differently.
	changed in graph 2 and the order of the years reversed in graph 3.	(2)
2.2	In graph 2, the impression created is that the annual profit is	✓ graph 2 - annual
	levelling off or shows a slight increase year on year. In graph 3,	profit is levelling off
	the impression created is that the annual profit is decreasing.	✓ graph 3 - decreasing
		(2)
2.3	Graph 1.	✓ answer
	This graph shows a substantial increase in annual profits year on	✓ explanation (2)
	year.	[6]

QUESTION 3

3.1	39 minutes	✓ answer	
			(1)
3.2	The standard deviation is 8 minutes.		
	m = 39 + 2(8) = 55	\checkmark answer for m	
	n = 39 - 3(8) = 15	\checkmark answer for n	
			(2)
3.3	20 learners represent 16% of total number	✓ 20 = 16%	
	Total number = $\frac{20 \times 100}{16}$		
	$\frac{10 \text{tar number } = \frac{16}{16}$		
	= 125	✓ answer	(2)
3.4	The library assistant should be employed for one hour each	✓ one hour	
	afternoon. There is a small percentage (< 2%) of learners who	✓ justification	
	spend more than more than 1 hour in the library.		(2)
			[7]

4.1	P(A or B) = 0.3 + 0.5	✓ addition
	= 0.8	✓ answer
		(2)
4.2	Since A and B are independent	
		✓ $P(A \text{ and } B) = 0.15$
	P(A or B) = P(A) + P(B) - P(A and B)	\checkmark P(A and B) = 0,15 \checkmark 0,3 + 0,5 - 0,15
	=0.3+0.5-0.15	✓ answer
	= 0,65	(3)
		[5]

QUESTION 5

5.1		
	$ \begin{array}{c c} R & C \\ \hline 100-x & 70-x \\ \hline 6 & 10 \\ \hline 26 & B \end{array} $	✓ 16 ✓ 6 and 10 ✓ 26 (inside B only), 100 - x and $70 - x✓ 26 (outside) (4)$
5.2	100 - x + x + 16 + 6 + 26 + 10 + 70 - x + 26 = 240	✓ set up equation
	254 - x = 240 $x = 14$ ∴ Number of learners playing rugby and cricket = 30.	✓ answer $x = 14$ ✓ answer = 30 (3)
5.3.1	P(play basketball only) = $\frac{26}{240}$ = 0,108	$\checkmark = \frac{26}{240}$ $\checkmark \text{ answer}$ (2)
5.3.2	P(does not play original) 144	✓ 144
	P(does not play cricket) = $\frac{111}{240}$ = 0,600	✓ answer (2)
5.3.3	P(plays at least 2 sports) = $\frac{14+6+10+16}{240}$	✓ method
	$= \frac{46}{240} = 0,192$	✓ answer (2) [13]

6.1	Number of ways in which performances take place : $= 7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$ $= 5040$	✓ multiplication rule ✓ answer (2)
6.2	Since first and last performance are fixed, the number of different ways performances can be arranged in 5 cities $= 1 \times 5! \times 1 = 5 \times 4 \times 3 \times 2 \times 1$ $= 120$	✓ 5 cities ✓ multiplication rule ✓ answer (3)
6.3	The different ways the coastal cities tours can take place = 4! = 24 Total number of ways the itinerary can be arranged = 4! × 4! = 24 × 24 = 576	✓ coastal cities = 4! ✓ ✓ 4! × 4! ✓ answer (4) [9]

7.1		7.1
&	Scatter Plot of North Latitude vs Mean Maximum	✓✓✓ plotting
7.3	Temperature for April	points
		(3)
	Wearing To the second of the s	7.3 ✓ gradient correct ✓ x-intercept (2)
7.2	- 20.04 (20.04260425)	✓✓ a-value
1.2	a = 39.94 (39.94369425)	• • a-value
	$b = -0.52 \qquad (-0.5235636749)$	✓ b-value
	Equation of regression line	✓ equation
	$\hat{y} = 39,94 - 0,52x$	(4)
7.4	The <i>y</i> -intercept represents the mean maximum temperature for April	(4)
7.4	at the equator.	✓ answer
	at the equator.	(1)
7.5	Mean maximum temperature for April in Madrid	(1)
7.5	= 39,94 – 0,52(40)	✓ substitution
	= 19,14 °C	✓ answer
	- 1),14 C	(2)
7.6	r = -0.91 (-0.9129015212)	✓ ✓ answer
/.0	(0,7127013212)	(2)
7.7	The value of r is close to -1 and suggests that there is a very strong	✓ very strong and
, , ,	relationship between distance from the equator and the mean	further away from
	maximum temperature for April.	the equator, the
	The further one moves away from the equator, the colder it gets.	colder it gets
	The following more and more equator, the colder it gots.	(1)
		[15]
L		[13]

8.1	Equal to 360°	✓ answer	
			(1)
8.2.1	reflex $\hat{O} = 360^{\circ} - 100^{\circ} = 260^{\circ}$ (\angle 's round a point)	✓ reflex $\hat{O} = 260^{\circ}$	
	2LMN = reflex Ô (∠ circ centre = 2 ∠ circumference) ∴ LMN = $\frac{260^{\circ}}{2}$ = 130°	✓ reason ✓ LMN = 130°	(3)
8.2.2	$\hat{N}_1 = \frac{180^\circ - 130^\circ}{2} = 25^\circ \qquad \text{(base angles LM = MN)}$	√ = 25°	(-)
	$\therefore \hat{K} = 25^{\circ} $ (angles in same segment)	✓ answer ✓ reason	
			(3)
			[7]

QUESTION 9

9.1	Is equal to the angle subtended by the chord in the alternate segment	✓ answer
		(1)
9.2.1	$\hat{A}_2 = x$ (tangent chord theorem)	✓ answer ✓
	$\hat{A}_5 = x$ (vertically opp. angles)	reason
	$\hat{P}_2 = x$ (tangent chord theorem)	✓ answer
		✓ answer
		✓reason
		(-)
		(5)
9.2.2	PT = TA (tangents drawn from same point)	
	$\hat{P}_1 = \hat{A}_3$ (angles opp equal sides); $PT = TA$	✓ statement
	$\hat{A}_3 = \hat{A}_6$ (vertical opp angles)	✓ statement
	$\hat{A}_6 = \hat{R}_2$ (tangent chord theorom)	✓ statement
	$\therefore \hat{P}_1 = \hat{R}_2$	✓ equal angles
	∴ APTR is a cyclic quadrilateral (converse : ext angle of cycl.quad.)	✓ reason
	(converse . ext angle of cycliquad.)	(5)
		[11]

10.1	OC = OB	(radii)	✓ OC = OB
	Hence $AE = BE$	(midpoint theorem)	✓ conclusion and
	O.D.		reason (2)
	OR		
	CÂB = 90°	(diameter subtends right angle)	
	$\hat{OEB} = \hat{CAB} = 90^{\circ}$	(corresponding angles AC//OE)	\checkmark OÊB = CÂB = 90°
	\therefore AE = BE	(line drawn from centre, perpend. to chord	✓ conclusion and
10.2	In $\triangle AED$ and $\triangle CEB$	or midpoint theorem)	reason (2)
10.2			
	AÊD = CÊB	(vertically opp angles)	✓ statement
	$\hat{\mathbf{D}} = \hat{\mathbf{B}}$	(angles in same segment)	✓ statement
	$\hat{\mathbf{A}}_3 = \hat{\mathbf{C}}_1$	(angles in same segment)	✓statement
	∴ ΔAED /// ΔCEB	(equi - angular)	
			(3)
10.3	$\frac{AE}{}=\frac{CE}{}$	(deduction)	AE CE
	DE BE	` ,	$\checkmark \frac{AE}{DE} = \frac{CE}{BE}$
	AE.BE = DE.CE		DE BE
	but $AE = BE$	(proven)	\checkmark AE = BE
	$\therefore AE^2 = DE.CE$		(2)
10.4	AEDE DEC	II.	/AEDE DECE
	AE.BE = DE.C $But AE.BE = EF.C$		✓ AE.BE = DE.CE ✓ AE.BE = EF.CE
	$\therefore DE.CE = EF.C$		✓ DE.CE = EF.CE
	DE = EF		
	∴ E is the midpoint	of DF	(3)
	OR		
	$AE^2 = DE.CE$		✓ AE.BE = EF.CE
	AE.BE = EF.CE		$\checkmark \Rightarrow AE^2 = EF.CE$
	\Rightarrow AE ² = EF.CE		✓∴ EF.CE = DE.CE
	∴ EF.CE = DE.CE		
	$EF = DE$ $\therefore E \text{ is the midpoint}$	of DE	(3)
	E is the inapoint	01 101	[10]

11.1	In ΔBDA and ΔCDB	
	$\overrightarrow{BDA} = \overrightarrow{CDB} = 90^{\circ}$	$\checkmark BDA = CDB$
	$\hat{\mathbf{B}}_{1} = \hat{\mathbf{C}} $ (both = x)	$\checkmark \overset{\circ}{\mathrm{B}}_{1} = \overset{\circ}{\mathrm{C}}$
	$\hat{A} = \hat{B}_2$ (remaining angles)	$\checkmark \hat{A} = \hat{B}_2$
	$\Delta BDA /// \Delta CDB$ (equiangular)	(3)
11.2	AD: DC = 3:2	
	$\therefore CD = \frac{2}{3} \times 15 = 10$	✓ CD
	But $\frac{BD}{AD} = \frac{CD}{BD}$	$\checkmark \frac{BD}{AD} = \frac{CD}{BD}$
	$\therefore BD^2 = AD.CD$ $BD^2 = 15.10$ $= 150$	AD BD
	$BD = \sqrt{150}$	
11.3	$AB^{2} = (\sqrt{150})^{2} + (15)^{2}$ (Theorem of Pythagoras)	✓ BD (3) ✓ using Pythagoras
	= 150 + 225 = 375	
	$AB = \sqrt{375}$	✓ answer
	$\hat{E}_1 = A\hat{B}C = 90^{\circ}$	✓ = 90°
	∴ BC // DE	✓ :: BC // DE
	$\frac{AE}{AB} = \frac{AD}{AC}$ (proportion theorem)	$\checkmark \frac{AE}{AB} = \frac{AD}{AC}$
	$\frac{AE}{\sqrt{375}} = \frac{15}{25}$	AD AC
	$AE = \frac{15 \times \sqrt{375}}{25} = \sqrt{135} = 3\sqrt{15}$	✓ answer (6) [11]

TOTAL: 100