MA1521 Finals Cheatsheet v1.2 (2020-09-29) by Julius Putra Tanu Setiaji, page 1 of 3

Trigo Formulae

- $\sin^2 \theta + \cos^2 \theta = 1$, $\sin 2\theta = 2 \sin \theta \cos \theta$
- $\sin(A \pm B) = \sin A \cos B \pm \sin B \cos A$
- $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
- $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$, $\tan 2\theta = \frac{2 \tan \theta}{1 \tan^2 \theta}$
- $\cos 2\theta = \cos^2 \theta \sin^2 \theta = 2\cos^2 \theta 1 = 1 2\sin^2 \theta$
- $\sin P + \sin Q = 2 \sin \frac{1}{2} (P + Q) \cos \frac{1}{2} (P Q)$
- $\sin P \sin Q = 2\cos \frac{1}{2}(P+Q)\sin \frac{1}{2}(P-Q)$
- $\cos P + \cos Q = 2\cos\frac{1}{2}(P+Q)\cos\frac{1}{2}(P-Q)$ • $\cos P - \cos Q = -2\sin\frac{1}{2}(P+Q)\sin\frac{1}{2}(P-Q)$
- $a^2 = b^2 + c^2 2bc\cos\theta$ and $\frac{a}{\sin a} = \frac{b}{\sin b}$

2 Functions and Limits **Existence of Limits**

 $\lim_{x \to \infty} f(x)$ only exists when:

- $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$ (limit from left = right)
- For $a = \infty$ or $-\infty$, only if f(x) does not oscillate

Rules of Limits

- 1. $\lim_{x \to a} (f \pm g)(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
- 2. $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- 3. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ provided $\lim_{x \to a} g(x) \neq 0$
- 4. $\lim_{x \to a} k f(x) = k \lim_{x \to a} f(x)$

f is continuous at point $a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$

L'Hôpital's Rule

Suppose:

- 1. f and g are differentiable
- 2. f(a) = g(a) = 0
- 3. $g'(x) \neq 0$ for all $x \in I \setminus a$

Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

- Use L'Hôpital's Rule for ⁰/₀ and [∞]/_∞ forms.
- Common: $\lim_{x \to \frac{\pi^{-}}{2}} (\sin x)^{\tan x} = \lim_{x \to \frac{\pi^{-}}{2}} e^{\ln(\sin x)^{\tan x}}$
- $\lim_{x \to \infty} \tan x \ln(\sin x) \qquad \lim_{x \to \infty} \frac{\ln(\sin x)}{\cot x}$ (now in $\frac{0}{0}$ form)
- 1. Convert $0 \cdot \infty, \infty \infty$ by algebra manip
- 2. Convert 1^{∞} , ∞^{0} , 0^{0} by first taking ln

f'(a) = slope of tangent at pt a

3 Derivative

The derivative of f at point a is $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$, denoted by f'(a) provided the limit exists. $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \frac{dy}{dx} \Big|_{x = a}$ Some properties

- f'(a) exists $\Rightarrow f(x)$ is smooth (: continuous) at a

Since derivative is limit, if $\lim_{n \to \infty} f(a) = 2nd$ Derivative Test:

Formulae

Function	Derivat	ive
$(f(x))^n$	nf'(x)f(x)	
$\sin f(x)$	$f'(x)\cos$	
$\cos f(x)$	$-f'(x)\sin x$	
$\tan f(x)$	$f'(x)\sec^2$	
$\cot f(x)$	$-f'(x)\csc$	$^{2}f(x)$
$\sec f(x)$	$f'(x)\sec f(x)$	
$\csc f(x)$	$-f'(x)\csc f(x)$	
$a^{f(x)}$	$f'(x)a^{f(x)}\ln a$	
- P - C		Functio
Function	Derivative	. 1

Proceedings	Danissa Cissa	Function	Derivative
Function	Derivative	. 1	f'(x)
k	0	$\sin^{-1} f(x)$	1 2
$e^{f}(x)$	$f'(x)e^{f(x)}$		$\sqrt{1-f(x)^2}$
1 (()	f'(x)	$\cos^{-1} f(x)$	$-\frac{f'(x)}{}$
$\log_a f(x)$	$\overline{f(x)\ln a}$	cos f(x)	$\sqrt{1-f(x)^2}$
1 (()	f'(x)		V /
$\ln f(x)$	$\frac{f(x)}{f(x)}$	$\tan^{-1} f(x)$	$\frac{f'(x)}{(x)^2}$
		J ()	$1+f(x)^2$

Rules of Differentiation

- (kf)'(x) = kf'(x)
- $(f \pm g)'(x) = f'(x) \pm g'(x)$
- $\frac{d}{dx}uv = u\frac{dv}{dx} + v\frac{du}{dx}$
- $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$
- $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$ or $\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{du}{dx}$

Parametric Differentiation

Given $\begin{cases} y = u(t) \\ x = v(t) \end{cases}$, we have $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dx}}$

Second derivative

 $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$ then do implicit differentiation w.r.t x

Polar equation $(r = a\theta)$: $x = r\cos\theta$, $y = r\sin\theta$

mplicit Differentiation

Differentiate w.r.t. to var, then multiply by $\frac{d < \text{var}>}{dx}$ Common: $y = x^x \iff \ln y = x \ln x$

Higher Order Derivatives

The *n*-th derivative is denoted by $\frac{d^n y}{dx^n}$ or $f^{(n)}(x)$

Maxima and Minima

• f(c) is Local Maximum if $f(c) \ge f(x)$ for x near c

- f(c) is Local Minimum if $f(c) \le f(x)$ for x near c
- f(c) is abs maximum if $f(c) \ge f(x) \forall x \in domain$
- f(c) is abs minimum if $f(c) \le f(x) \forall x \in \text{domain}$

Critical Point:

Let f be a function with domain D. An interior point (not end-point) c in D is called a **Critical Point** of f if f'(c) = 0of f'(c) does not exist.

Method to find extreme values of f: Check critical points of f, end-points of domain D

Method to Find Local Extreme values

A function may not have a local extreme at a critical pt. Check using 1st/2nd derivative tests.

1st Derivative Test: Assume $c \in (a, b)$ is a critical point of f

- f'(x) > 0 for $x \in (a,c)$ and f'(x) < 0 for $x \in (c,b)$, then f is tan² xdx a local maximum f'(a) does not exist at **discontinuity, corner,** and **vertical** 2. f'(x) < 0 for $x \in (a,c)$ and f'(x) > 0 for $x \in (c,b)$, then f is $\int \sec x dx$ $\csc x dx$
 - a local minimum

 $f'(c) = 0 \begin{cases} f''(c) < 0 \iff f \text{ has local max at } c \\ f''(c) > 0 \iff f \text{ has local min at } c \end{cases}$

Note: if f'(c) = 0 and f''(c) = 0 then 2nd derivative test fails Use 1st derivative test.

Method to Find Absolute Extreme Values

- 1. Find all critical points *c* in the interior
- 2. Evaluate f(c), where c is a critical or end point
- 3. The largest and smallest of these values will be abs max & min respectively

Increasing and Decreasing Functions

Test for Monotonic Functions (f : I (interval) $\rightarrow \mathbb{R}$):

- f'(x) > 0 for any x in $I \Rightarrow f$ is **increasing** on I
- f'(x) < 0 for any x in $I \Rightarrow f$ is **decreasing** on I

Concativity

 $\int f''(x) < 0 \Leftrightarrow f'(x)$ is decreasing \Leftrightarrow Concave Down $f''(x) > 0 \Leftrightarrow f'(x)$ is increasing \Leftrightarrow Concave Up

Points of Inflection

Let $f: I \to \mathbb{Z}$ and $c \in I$.

concavity of f changes at c. In another word: c is pt of inflection $\rightarrow f''(c) = 0$ (but not $\left| \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x) \right|$ the reverse – c is a pt of inflection only if f''(c) crosses from Note the 2 x's: on $\frac{d}{dx}$ and \int_a^x and f(t) is indep of x (+) to (-) and vice versa.)

4 Integration

Indefinite Integral

Denoted by $\int f(x)dx = F(x) + C$ **Geometrical Interpretation**

All curves y = F(x) + C s.t. their slopes at x are f(x)

- Rules of Indefinite Integration 1. $\int k f(x) dx = k \int f(x) dx$
- 2. $\int -f(x)dx = -\int f(x)dx$
- 3. $\int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx$

Integral Formulae

 $\int \frac{1}{x} dx$

 $\sin kx dx$

cos kxdx

 $\tan x dx$

I direction	Integral
$\int \cot x dx$	$ln(\sin x) + C$
$\int \sec x \tan x dx$	$\sec x + C$
$\int \csc x \cot x dx$	$\csc x + C$
$\int \sec^2 x dx$	$\tan x + C$
$\int \csc^2 x dx$	$-\cot x + C$
	44.1.1

$\int x^n dx$	$\frac{x^{n+1}}{n+1} + C, n \neq -1, n$ rational
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$\sin^{-1}(\frac{x}{a}) + C$
$\int \frac{1}{a^2+x^2} dx$	$\frac{1}{a} \tan^{-1}(\frac{x}{a}) + C$

 $1dx = \int dx$ $\int e^x dx$ $e^{x} + C$

 $\int a^x dx$ $\ln x dx$ $x \ln x - x + C$

 $\ln x + C$

 $-\frac{\cos kx}{\cos kx} + C$

 $\frac{\sin kx}{L} + C$

 $\ln(\sec x) + C$ or $-\ln(\sec x) + C$

Rules on Series

 $|\sum (a_n \pm b_n)| = \sum a_n \pm \sum b_n, \sum (ka_n) = k \sum a_n$

Riemann (Definite) Integrals

Function

Riemann sum on f on $[a,b] \approx \sum_{k=1}^{n} f(c_k) \Delta x$ Exact area = $\lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x$

Integral

 $\tan x - x + C$

 $\ln(\sec x + \tan x) + C$

 $\ln(\csc x - \cot x) + C$

Riemann Integral of f over [a, b]:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x$$

Rules of Definite Integrals

- 1. $\int_a^a f(x)dx = 0$, $\int_a^b kf(x)dx = k \int_a^b f(x)dx$
- 2. $\int_a^b f(x)dx = -\int_b^a f(x)dx$
- 3. $\int_{a}^{b} [f(x) \pm g(x)] = \int_{a}^{b} f(x) \pm \int_{a}^{b} g(x)$
- 4. If $f(x) \ge g(x)$ on [a,b], then $\int_a^b f(x)dc \ge \int_a^b g(x)dx$ If $f(x) \ge 0$ on [a, b], then $\int_a^b f(x) dx \ge 0$
- 5. If f is continuous on the interval joining a, b and c, then $\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx$

Fundamental Thm of Calculus

F'(x) = f(x) If F is an antiderivative of f on [a,b], then

- c is a pt of inflection of f if f is continuous at c and the $\int_a^b F'(x)dx = \int_a^b f(x)dx = F(b) F(a)$ x' Let f be continuous on [a,b]. Then

 - 1. $\frac{d}{dx} \int_0^2 t^2 dt = 0$, $\frac{d}{dx} \int_0^x \sin \sqrt{t} dt = \sin \sqrt{x}$
 - 2. $\frac{d}{dx} \left(\int_{1}^{x^4} \frac{t}{\sqrt{t^3 + 2}} dt \right) = \frac{d}{dx^4} \left(\int_{1}^{x^4} \frac{t}{\sqrt{t^3 + 2}} dt \right) \frac{dx^4}{dx}$ $=\frac{x^4}{\sqrt{(x^4)^3+2}}(4x^3)=\frac{4x^7}{\sqrt{x^12+2}}$
 - 3. $\frac{d}{dx} \int_{x}^{a} f(t)dt = -\frac{d}{dx} \int_{a}^{x} f(t)dt$
 - 4. $\frac{d}{dx} \int_{x^2}^{x^4} f(t) dt = \frac{d}{dx} \int_{a}^{x^4} f(t) dt \frac{d}{dx} \int_{a}^{x^2} f(t) dt$

Integration Methods

• Integration by Substitution :

Use the form $\int f(g(x))dg(x)$ OR use a dummy variable to get to a form in the Integral Formulae (taking into account chain

Integral	Sub	Use identity
$a^2 - u^2$	$u = a \sin \theta$	$1 - \sin^2 \theta = \cos^2 \theta$
$a^2 + u^2$	$u = a \tan \theta$	$1 + \tan^2 \theta = \sec^2 \theta$
$u^{2} - a^{2}$	$u = a \sec \theta$	$sec^2\theta - 1 = tan^2\theta$

Integration by Part:

 $\int uv'dx = uv - \int u'vdx$

Choose u by LIATE (Logarithmic, Inverse trigo, Algebraic, Trigo, Exponential)

Area between 2 curves

 $A = \int_{a}^{b} (g(x) - f(x)) dx$ provided g(x) is above f(x)Volume of a solid

Volume (around x-axis) = $\int_{a}^{b} \pi y^{2} dx$ 5 Series

MA1521 Finals Cheatsheet v1.2 (2020-09-29) by Julius Putra Tanu Setiaji, page 2 of 3

Ratio Test

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho\text{, the series }\begin{cases} \text{converges if } & \rho<1\\ \text{diverges if } & \rho>1\\ \text{no conclusion if } & \rho=1 \end{cases}$$
 p-series

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \text{diverges} & 0 \le p \le 1\\ \text{converges} & p > 1 \end{cases}$$
Radius of convergence (*R***)**

Use the Ratio Test to find range of convergence of Power

Series about x = a, $\sum_{n=0}^{\infty} c_n (x-a)^n$ 1. R = 0, converges only at a

- 2. R = h, converges in (a h, a + h) but diverges outside
- 3. $R = \infty$, converges at every x
- Differentiation and Integration of Power Series

Let $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$, a-h < x < a+h where h is Radius of Convergence, then for a - h < x < a + h,

$$f'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} (c_n (x-a)^n) = \sum_{n=1}^{\infty} n c_n (x-a)^{n-1}$$

$$f''(x) = \sum_{n=1}^{\infty} n c_n \frac{d}{dx} (x-a)^{n-1} = \sum_{n=2}^{\infty} n (n-1) c_n (x-a)^{n-2}$$
Note lower bound of sum increases by 1

$$\int_{0}^{x} f(x)dx = \int_{0}^{x} \sum_{n=0}^{\infty} c_{n}(x-a)^{n} = \sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}$$

The radius of convergence is h after diff and integ Taylor Series of f at a

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$$

MacLaurin Series

Taylor series of f at 0, i.e. $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ List of common MacLaurin Series

1.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, -1 < x < 1, R = 1$$

2. $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, -1 < x < 1, R = 1$

3.
$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} x^2 n, -1 < x < 1, R = 1$$

3.
$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} x^2 n, -1 < x < 1, R = 1$$

4.
$$ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}, -1 < x < 1, R = 1$$

5. $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, -\infty < x < \infty, R = \infty$

5.
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x}{(2n+1)!}, -\infty < x < \infty, R = \infty$$

6.
$$\cos x = \sum_{n=1}^{\infty} \frac{(-1)^n x^2 n}{(2n)!}, -\infty < x < \infty, R = \infty$$

7.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, -\infty < x < \infty, R = \infty$$

8.
$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, -1 \le x \le 1, R = 1$$

9.
$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}, -1 < x < 1, R = 1$$

0.
$$\frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=2}^{\infty} n(n-1)x^{n-2}, -1 < x < 1, R = 1$$

1.
$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n, -1 < x < 1, R = 1$$

1.
$$(1+x)^{k} = \sum_{n=0}^{\infty} {n \choose n} x^{n}, -1 < x < 1, R = 1$$

2. $(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!} x^{2} + \frac{n(n-1)(n-2)}{3!} x^{3} + ..., -1 < x < 1$

Taylor Polynomials

The n-th order Taylor Polynomial of f at a $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k$

 $f(x) = P_n(x) + R_n(x)$ where

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} \text{ for } a < c < x.$$

 $R_n(x)$ is remainder of order n or error term

Harmonic Series

$$H_{\infty} = \sum_{k=1}^{\infty} \frac{1}{k}$$

$$H_{n} = \sum_{k=1}^{n} \frac{1}{k} = \gamma + \psi_{0}(n+1) = \Theta(\log n)$$
, where γ is the Euler-Mascheroni constant and $\psi_{0}(x)$ is the

, where
$$\gamma$$
 is the Euler-Mascheroni constant and $\psi_0(x)$ is the digamma function.

Arithmetic Series

Arithmetic Series

$S_n = \frac{n}{2}(2a + (n-1)d)$ Geometric Series

$$\sum_{r=1}^{n} ar^{n-1} = a \frac{1-r^n}{1-r}$$

$$\sum_{r=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \text{ if } |r| < 1, \text{ diverges otherwise}$$

Quadratic Sequences

A quadratic sequence is a sequence of numbers in which or $D_u f(a,b,c) = f_X(a,b,c)u_1 + f_V(a,b,c)u_2 + f_Z(a,b,c)u_3$ the second difference between any two consecutive terms is $df = D_u f(a, b) \cdot dt$ (normal · multiplication) measures change g $|\inf f(df)|$ when we move a small distance dt, and u is the

E.g.: 1, 3, 6, 10..., where the second difference is 1.

 $T_n = an^2 + bn + c$, where you obtain a, b, and c by subbing pt

Common Sequences $-i^2 - \frac{(n)(n+1)(2n+1)}{n+1}$

CHANGE NAME

Let j_1, j_2, \dots, j_l be any arbitrary l positive integers st $|D_u f(a, b)| < 0$ and min when $\cos \theta = -1 \iff \theta = 180^\circ$ $\sum_{t=1}^{l} j_t < m.$ **Max and Min Values** Critical Points - First Derivative Test

$$\frac{j_1}{m} + \frac{j_2}{m - j_1} + \frac{j_3}{m - j_1 - j_2} + \dots + \frac{j_\ell}{m - j_1 - j_2 - \dots - j_{\ell-1}} \le \log m$$

$$f_x = 0 \land f_y = 0 \text{ (But not the converse)}$$
Second Derivative Test
Disriminant = $f_{xx}(a, b) f_{yy}(a, b) - f_{xy}(a, b)^2$
1. $D > 0 \land f_{xx}(a, b) > 0 \rightarrow f$ has a local min at (a, b)
2. $D > 0 \land f_{xx}(a, b) < 0 \rightarrow f$ has a local max at (a, b)

Vector **Dot Product**

$$v_1 = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}, v_2 = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}, v_1 \cdot v_2 = x_1 x_2 + y_1 y_2 + z_1 z_2$$

$$\cos \theta = \frac{v_1 \cdot v_2}{\|v_1\| \|v_2\|}, \text{ Projection of } b \text{ onto } a = \frac{b \cdot a}{\|a\|^2} a$$

Commut, assoc, distr, and $v_1 \cdot v_1 = ||v_1||^2$ Cross Product $\frac{1}{1} \times v_2 = (y_1 z_2 - y_2 z_1) \mathbf{i} - (x_1 z_2 - x_2 z_1) \mathbf{j} + (x_1 y_2 - x_2 y_1) \mathbf{k} \text{ Area Cooling/Heating: } \int \frac{dT}{T - T_0} = \int k dt, T(t) - T_0 = (T(0) - T_0) e^{kt}$

of parallellogram = $||v_1 \times v_2|| = ||v_1|| ||v_2|| \sin \theta$ Distr, assoc, but $v_1 \times v_2 = -v_2 \times v_1$ and $v_1 \times v_1 = O$ 7 Functions of Several Variables

Partial Derivatives

of
$$z = f(x, y)$$
 w.r.t. x is denoted by $\frac{\partial z}{\partial x}\Big|_{(a, b)}$ or $f_x(a, b)$

Method: Fix the other variable (Note:
$$f_{xy} = f_{yx}$$
)

Directional Derivative

Gradient Vector

Denoted by $\nabla f = f_x \mathbf{i} + f_v \mathbf{j}$ where

Second Derivative Test

4. $D = 0 \rightarrow \text{no conclusion}$

First order ODE

 $|\nabla f(a,b) \cdot u = D_u f(a,b) = ||\nabla f(a,b)|| \cos \theta$

3. $D < 0 \rightarrow f$ has a saddle-point at (a, b)

1. $\frac{dy}{dx} = \frac{M(x)}{N(y)} \iff \int M(x)dx = \int N(y)dy$

3. $y' = \frac{ax + by + c}{a_1x + b_1y + c_1} \Leftrightarrow \text{Let } u = ax + by$

5. Bernoulli eqn $y' + p(x)y = q(x)y^n \Leftrightarrow$

Retarded fall: $m\frac{dv}{dt} = mg - bv^2$,

Form: $\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = F(x)$

Second order linear ODE

 $v = k \frac{1 + ce^{-pt}}{1 - ce^{-pt}}, k^2 = \frac{mg}{h}, c = \frac{v(0) - k}{v(0) + k}, p = \frac{2kb}{m}$

Ordinary Differential Equation (ODE)

ODE. Intersection point of 2 curves is the initial pt.

2. $y' = f(\frac{y}{x}) \Leftrightarrow \text{Let } v = \frac{y}{x}, f(v) = y' \Leftrightarrow \frac{dv}{f(v) - v} = \frac{dx}{x}$

4. $\frac{dy}{dx} + p(x)y = Q(x) \Leftrightarrow ye^{\int p(x)dx} = \int Q(x)e^{\int p(x)dx}dx$

Uranium-Thorium: $\frac{T}{U} = \frac{k_U}{k_T - k_{IJ}} (1 - e^{-(k_T - k_U)t}) k_N = \frac{\ln 2}{\tau_N}$

 $\cosh x = \frac{e^x + e^{-x}}{2}$, $\sinh x = \frac{e^x + e^{-x}}{2}$, $\tanh x = \frac{\sinh x}{\cosh x} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$

homogeneous $\Leftrightarrow F(x) = 0$, else non-homogeneous

Let $z = v^{1-n} \Leftrightarrow z' + (1-n)p(x)z = (1-n)q(x)$

Radioactive decay: $\frac{dx}{dt} = kx$, $x(t) = x(0)e^{-\frac{\ln 2}{\tau}t}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} \text{ AND } \frac{dw}{dt} = \frac{\partial w}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial w}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial w}{\partial z} \cdot \frac{dz}{dt}$$

$$z = f(x, y),$$

$$x = x(t), y = y(t)$$
but not a general soln
$$\frac{\partial z}{\partial x} \times \frac{\partial w}{\partial t} \times \frac{\partial$$

 $f_x(a, b)$ is rate of change of f along direction of x-axis

 $u = u_1 \mathbf{i} + u_2 \mathbf{j}$ is $D_u f(a, b) = f_x(a, b) u_1 + f_v(a, b) u_2$

 $|D_u f(a,b) > 0$ and max when $\cos \theta = 1 \iff \theta = 0^\circ$

f has a local max or min at $(a,b) \wedge f_x$ exists $\wedge f_v$ exists

y = y(t), z = z(t)

y_1, y_2 are lin. indep. solns \Rightarrow a general soln is $y = c_1y_1 + c_2y_2$ y_1, y_2 are NOT lin. indep. solns $\Rightarrow y = c_1 y_1 + c_2 y_2$ is a soln

but not a general soln $\frac{d^2y}{dx^2} + A\frac{dy}{dx} + By = 0$ has the trivial soln y = 0 and non-trivial soln: Let $y = e^{\lambda x}$, solve $\lambda^2 + A\lambda + B = 0$, general soln is: (PS: Reverse is $A = -(\lambda_1 + \lambda_2)$, $B = \lambda_1 \lambda_2$

Directional derivative of f at (a,b) in direction of unit vector 1. 2 real roots: $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$ 2. 1 real root: $y = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x}$

Homogeneous 2nd order linear ODE

- 3. 2 complex roots (a+ib): $y = e^{ax}(c_1 \cos bx + c_2 \sin bx)$ Mathematical Modelling (B = birth rate, D = death

unit directional vector of the change and (a, b) is the original Malthusian Population Growth $N(t) = N(0)e^{kt}$ where k = B - D. Conditions:

1. k > 0 (B > D): popn explosion $(e^{kt} \to \infty, N(t) \to \infty)$ as

2.
$$k = 0$$
 ($B = D$): stable ($N(t) = N(0)$ for all t)

$$K = 0$$
 ($B = D$): Stable ($N(t) = N(0)$ for all t)

3.
$$k < 0 \ (B < D)$$
: extinction $(e^{kt} \rightarrow 0, N(t) \rightarrow 0 \text{ as } t \rightarrow \infty)$

Logistic Growth Model

Eqn:
$$\frac{dN}{dt} = (B-D)N, N(0) = \hat{N}, N_{\infty} = \frac{B}{s}$$

 $\frac{dN}{dt} = (B-D)N = (B-sN)N = BN - sN^2$ where s is a small

8 Ordinary Differential Equation (ODE)
No Crossing Principle: solution curves do not cross each other
$$\frac{dt}{dt} = 0$$
 when $N \approx \frac{B}{s}$ (population stops growing)

This constant $\frac{B}{s}$ is called carrying capacity, sustainable population, or logistic equilibrium population. Or that the population stabilises at $\frac{B}{s}$

$$N(t) =$$

Case 2: B - sN(t) < 0 at all t (Popn > sustainable popn)

There is only 1 soln for initial value problem with 1st order

Case 1:
$$B - sN(t) > 0 \ \forall t$$
 (Popn < sustainable popn)
Logistic curve increasing
Case 2: $B - sN(t) < 0$ at all t (Popn > sustainable population of the population of the population)

Logistic curve decreasing

Case 3:
$$B - sN(t) = 0$$
 at all t (Popn > sustainable popn)

Case 3: $B - sN(t) = 0$ at all t (At sustainable popn)

Population constant at
$$N(0)$$

MA1521 Finals Cheatsheet v1.2 (2020-09-29) by Julius Putra Tanu Setiaji, page 3 of 3

Harvesting

 $\frac{dN}{dt} = BN - sN^2 - E$ where E is fish caught per year.

DO NOT ATTEMPT TO SOLVE THE ODE. They will just ask to draw graph.

Method:

- 1. Let $F(N) = \frac{dN}{dt} = -sN^2 + BN E$
- 2. Discriminant = $B^2 4(-s)(-E) = B^2 4sE$
- (a) D < 0: No equiblirium soln (Popn is decreasing to extinction)

Note:
$$-s < 0$$
, shape is \cap , $F(N) \neq 0$

(b) D > 0: 2 equilibrium solns

Solve F(N) for β_1 , β_2 where $\beta_1 < \beta_2 < \frac{B}{s}$ There are 3 possible cases:

$$\frac{B}{S} = \beta_1 + \beta_2, \frac{E}{S} = \beta_1 \beta_2$$

 $\frac{1}{3} = P1 + P2 \cdot s$ F1F2 β_2 is stable (N(0) slightly diff from β_2 , popn will still **Division** (definition): $\frac{a}{b} mod n = ((amod n)(b^1 mod n))mod n$ tend to β_2). β_1 is not stable (N(0) slightly diff from β_1 will not tend to β_1)

(c) D = 0: 1 equilibrium solns

Suppose $N(0) > \frac{B}{2c}$ then max. harvesting w/o extinc-

tion
$$E = \frac{B^2}{4s}$$

PS: more precise curves, follow the original logistic growth model graph (S-shaped) increasing: gentle-steep-gentle, decreasing: steep-gentle-steep

10 Algebra

Exponential

$$a^{-1} = 1/a$$

$$(a^{m})^{n} = a^{mn}$$

$$a^{m}a^{n} = a^{m+n}$$

$$e^{x} \ge 1 + x$$

Logarithmic

$$a = b^{\log_b a}$$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b(1/a) = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b a} = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

$$e^{\ln(x)} = x$$

$$\log\log(n) \neq (\log^2 n = (\log n)^2)$$

Modulo Properties Identity:

- 1. (amodn)modn = amodn
- 2. $n^x \mod n = 0, \forall x \in \mathbb{Z}^+$
- 3. If p is a prime number which is not divisor of b, then $ab^{p-1} mod p = amod p$ due to Fermat's Little Theorem.

Inverse:

- 1. (-amodn + amodn)modn = 0
- 2. b^{-1} mod n denotes the modular multiplicative inverse, which is defined if and only if b and n are relatively prime, which is the case when the left hand side is de fined: $((b^{-1} mod n)(b mod n)) mod n = 1$

Distributive:

- 1. (a+b)modn = ((amodn) + (bmodn))modn
- 2. abmodn = [(amodn)(bmodn)]modn

when the right hand side is defined (that is when b and n are coprime. Undefined otherwise.

Inverse Multiplication: $((abmodn)(b^{-1}modn))modn =$

- If the question is in powers above 2, e.g. $\frac{dN}{dt} = aN^4$ $bN^3 + cN^2 + dN + e$, the same rule about the graph still ap plies: the stable populations are the solutions to $aN^4 + bN^3$ $cN^2 + dN + e = 0$
- If there is no harvesting, then N = 0 is also a solution.