

Data Structure & Algorithms

Sunbeam Infotech

Nilesh Ghule

Check Connected-ness ✓

- 1. push starting vertex on stack & mark it.
- 2. begin counting marked vertices from 1.
- 3. pop a vertex from stack.
- 4. push all its non-marked neighbors on the stack, mark them and increment count.
- 5. <u>if count is same as number of vertices,</u> graph is connected (return).
- 6. repeat steps 3-5 until stack is empty.
- 7. graph is not connected (return)

DFS Spanning Tree

- push starting vertex on stack & mark it.
- 2. pop the vertex.
- 3. push all its non-marked neighbors on the stack, mark them. Also print the vertex to neighboring vertex edges.
- 4. repeat steps 2-3 until stack is empty.

BFS Spanning Tree

- push starting vertex on queue & mark it.
- 2. pop the vertex.
- 3. push all its non-marked neighbors on the queue, mark them. Also print the vertex to neighboring vertex edges.
- repeat steps 2-3 until queue is empty.

0

1

2

3

4

5

Single Source Path Length - for non-weighted graph.

- 1. Create path length array to keep distance of vertex from start vertex.
- 2. Consider dist of start vertex as 0.
- 3. push start vertex on queue & mark it.
- 4. pop the vertex.
- 5. push all its non-marked neighbors on the queue, mark them.
- For each such vertex calculate its distance as dist[neighbor] = dist[current] + 1
- 7. repeat steps 3-6 until queue is empty.
- 8. Print path length array.

Check Bipartite-ness

- 1. keep colors of all vertices in an array. Initially vertices have no color.
- 2. push start on queue & mark it. Assign it color1.
- 3. pop the vertex.
- push all its non-marked neighbors on the queue, mark them.
- 5. For each such vertex if no color is assigned yet, assign opposite color of current vertex (c1-c2, c2-c1).
- 6. If vertex is already colored with same of current vertex, graph is not bipartite (return).
- 7. repeat steps 3-6 until queue is empty.

Graph Implementation – Adjacency List

- Each vertex holds list of its adjacent vertices.
- For non-weighted graphs only, neighbour vertices are stored.
- For weighted graph, neighbour vertices and weights of connecting edges are stored.
- Space complexity of this implementation is O(V*E).
- If graph is sparse graph (with fewer number of edges), this implementation is more efficient (as compared to adjacency matrix method).

Problem solving technique: Greedy approach

- A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage with the intent of finding a global optimum.
- We can make choice that seems best at the moment and then solve the sub-problems that arise later.
- The choice made by a greedy algorithm may depend on choices made so far, but not on future choices or all the solutions to the sub-problem.
- It iteratively makes one greedy choice after another, reducing each given problem into a smaller one.
- A greedy algorithm never reconsiders its choices.
- A greedy strategy may not always produce an optimal solution.

 Greedy algorithm decides minimum number of coins to give while making change.

Union Find Algorithm - check is grown contains a cycle.

- Consider all vertices as disjoint sets (parent = -1).
- 2. For each edge in the graph
 - Find set of first vertex.
 - Find set of second vertex.
 - If both are in same set, cycle is detected.
 - 4. Otherwise, merge both the sets i.e. add root of first set under second set

Kruskal's MST min spanning tree

- 1. Sort all the edges in ascending order of their weight.
- 2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.
- 3. Repeat step 2 until there are (V-1) edges in the spanning tree.

src	des	wt
- 7	6	1
8	2	2
~ 6	5	2
_0	1	4
_2	5	4
-8-	-6	-6
- 2	3	7
7	8	7
_0	7	8
1	2	8
/ 3	4	9
5	4	10
1	7	-11
3_	_5_	-14

Union Find Algorithm – Analysis

- Consider all vertices as disjoint sets (parent = -1).
- 2. For each edge in the graph
 - Find set of first vertex.
 - 2. Find set of second vertex.
 - 3. If both are in same set, cycle is detected.
 - 4. Otherwise, merge both the sets i.e. add root of first set under second set

- Time complexity
 - Skewed tree implementation

- Improved time complexity
 - Rank based tree implementation

O(log V)

Kruskal's MST – Analysis

- 1. Sort all the edges in ascending order of their weight.
- 2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.
- 3. Repeat step 2 until there are (V-1) edges in the spanning tree.

- Time complexity
 - → Sort edges: O(E log E)
 - Pick edges (E edges): O(E)
 Union Find: O(log V)
- Time complexity
 - O(E log E + E log V) ←
 - E can max V².
 - So max time complexity: O(E log V).

Prim's MST - win special

- Create a set *mst* to keep track of vertices included in MST.
- Also keep track of parent of each vertex. Initialize parent of each vertex -1.
- Assign a key to all vertices in the input graph. Key for all vertices should be initialized to INF. The start vertex key should be 0.
- While *mst* doesn't include all vertices
 - Pick a vertex u which is not there in *mst* and has minimum key.
 - Include vertex u to *mst*.
 - Update key and parent of all adjacent vertices of u.
 - For each adjacent vertex v, if weight of edge u-v is less than the current key of v, then update the key as weight of u-v.
 - Record u as parent of v. b.

key(v) = weight(u,v)

Dijkstra's Algorithm - single see shortest poth also (SP+)

- Create a set spt to keep track of vertices included in shortest path tree.
- 2. Track distance of all vertices in the input graph. Distance for all vertices should be initialized to INF. The start vertex distance should be 0.
- 3. While spt doesn't include all vertices
 - i. Pick a vertex u which is not there in *spt* and has minimum distance.
 - ii. Include vertex u to *spt*.
 - iii. Update distances of all adjacent vertices of u. For each adjacent vertex v, if distance of u + weight of edge u-v is less than the current distance of v, then update its distance as distance of u + weight of edge u-v.

dist(v) = dist(u) + weist (u,v);

Dijkstra's SPT – Analysis

- 1. Create a set *spt* to keep track of vertices included in shortest path tree.
- 2. Track distance of all vertices in the input graph. Distance for all vertices should be initialized to INF. The start vertex distance should be 0.
- 3. While *spt* doesn't include all vertices
 - Pick a vertex u which is not there in spt and has minimum distance.
 - ii. Include vertex u to *spt*.
 - iii. Update distances of all adjacent vertices of u. For each adjacent vertex v, if distance of u + weight of edge u-v is less than the current distance of v, then update its distance as distance of u + weight of edge u-v.

- Time complexity (adjacency matrix)
 - V vertices: O(V)
 - get min key vertex: O(V)
 - update adjacent: O(V)
- Time complexity (adjacency matrix)
 - O(V²)
- Time complexity (adjacency list)
 - V vertices: O(V)
 - get min key vertex: O(log V)
 - update adjacent: O(E) E edges
- Time complexity (adjacency list)
 - O(E log V)

Thank you!

Nilesh Ghule <nilesh@sunbeaminfo.com>

