

Machine Learning (P02)

Artificial Intelligence, 2022-23

João Apresentação (21152), Pedro Simões (21140), Gonçalo Cunha (21145)

Conteúdo

1.	Introduç	ão	3
	1.1. Con	texto	3
	1.2. Obje	etivos	3
	1.3. Estr	utura do documento	3
	1.4. Data	a set (Iris Species)	3
	1.4.1.	Descrição	3
	1.4.2.	Meta data	3
	1.4.2.1.	Colaboradores	3
	1.4.2.2.	Licença	3
	1.4.2.3.	Frequência de atualização esperado	3
2.	Classific	cação automática	4
	2.1. Obje	etivos de negócio a alcançar	4
	2.2. Algo	pritmos e parâmetros selecionados	4
	2.2.1.	SVM	4
	2.2.2.	Naive Bayes	5
	2.2.3.	Random Forest	5
	2.3. Crite	érios de seleção de dados e preparação dos dados	6
	2.4. Ava	liação dos modelos de classificação	7
	2.5. Res	ultados	8
3.	Clusteri	ng	9
	3.1. Obj	etivos de negócio a alcançar	9
	3.2. Crite	érios de seleção de dados e preparação dos dados	9
	3.3. Ava	liação da aplicação do algoritmo K-Means	10
4.	Regras	de Associação	11
	4.1. Obje	etivos de negócio a alcançar	11
	4.2. Crite	érios de seleção de dados e preparação dos dados	11
	4.3. Res	ultados da avaliação da aplicação do algoritmo Apriori	12
5.	Conclus	ão	13
6.	Bibliogra	afia	13

1. Introdução

1.1. Contexto

Este trabalho prático, relativo à unidade curricular de **Inteligência Artificial,** propende desenvolver um programa que lê uma Dataset e aplica algoritmos de Machine Learning para classificação, clustering e regras de associação.

Para o desenvolvimento foi utilizado o Knime para a classificação e clustering e Orange para a regras de associação.

1.2. Objetivos

- Implementar e analisar diferentes abordagens de Machine Learning;
- Métodos para resolver um problema específico usando um conjunto de dados aberto/público.

1.3. Estrutura do documento

O documento está estruturado de forma que seja de simples leitura. Existe recurso a referências de material fornecido pelo professor Joaquim Silva e/ou referências a excertos de Web grafia.

1.4. Data set (Iris Species)

Foi escolhida esta Dataset tendo em conta a sua fácil interpretação e dados adequados ao trabalho proposto.

Este foi utilizado em aula.

1.4.1.Descrição

O Data set selecionado para este projeto é de uma determinação da espécie da flor Iris, dividida em 3 espécies (Iris-septosa, Iris-versicolor, Iris-virginica).

A data set apresenta reduzidas caraterísticas, dividindo-se em 6 colunas:

- Id
- SepalLenghtCm (comprimento da sépala em cm);
- SepalWidthCm (largura da sépala em cm);
- PetalLengthCm (comprimento da pétala em cm);
- PetalWidthCm (largura da pétala em cm);
- Species (espécie) -> Categórico.

1.4.2.Meta data

1.4.2.1. Colaboradores

UCI Machine Learning (Owner)

1.4.2.2. Licença

CC0: Public Domain

1.4.2.3. Frequência de atualização esperado

Não especificado (Atualizado 6 anos atrás)

2. Classificação automática

Para a realização deste tópico foi utilizada a ferramenta Knime.

2.1. Objetivos de negócio a alcançar

Seleção de espécies: O modelo de classificação automática pode ser usado para selecionar espécies de Iris com características desejadas para reprodução ou venda. Isso pode ajudar a melhorar a qualidade e a rentabilidade da produção.

2.2. Algoritmos e parâmetros selecionados

Uma razão para testar a classificação automática com Naive Bayes, Random Forest e SVM é para avaliar qual algoritmo tem o melhor desempenho no Dataset de espécies de Iris. Cada algoritmo tem suas próprias vantagens e desvantagens e pode se sair melhor ou pior em diferentes conjuntos de dados e situações.

Comparando esses algoritmos, é possível avaliar qual é o melhor para classificar as espécies de Iris no Dataset específico. Isso pode ser útil para determinar qual algoritmo usar para um determinado problema.

2.2.1.SVM

SVM é conhecido por sua eficácia na classificação e capacidade de lidar com dados de alta dimensionalidade, mas pode ser mais difícil de interpretar.

Knime - Aprendizagem SVM

2.2.2.Naive Bayes

Naive Bayes é conhecido por ser rápido e eficiente com poucos dados, mas pode ser menos preciso quando há muitas características.

O que é favorável para esta Dataset tendo em conta que ela possui apenas 4 caraterísticas (atributos).

Knime 1 - Aprendizagem Naive Bayes

2.2.3.Random Forest

Random Forest é um algoritmo robusto e preciso, mas pode ser mais lento e requerer mais dados.

Knime 2 - Aprendizagem Random Forest

2.3. Critérios de seleção de dados e preparação dos dados

Knime 3 - Partição do Dataset

Inicialmente foi discretizado a coluna referente ao id, tendo em conta o seu reduzido impacto na classificação

Foi selecionado da data set inicial, 30% para treino e 70% para testes.

A razão para ter uma maior percentagem de dados no conjunto de teste do que no conjunto de treino é para fornecer uma amostra suficientemente grande de dados para avaliar a capacidade de generalização do modelo. Quanto maior o conjunto de teste, maior a precisão da avaliação do modelo. Além disso, um conjunto de teste maior também permite avaliar o desempenho do modelo em diferentes subconjuntos de dados, o que é útil para identificar tendências e problemas.

Desses 70% para testes, 30% são usados para fazer a avaliação da precisão dos treinos, e 70% para fazer a avaliação da precisão dos testes.

6

2.4. Avaliação dos modelos de classificação

Encontram-se aqui os dois modelos de classificação, um do Naive Bayes e outro do SMV. Estes são importados tendo em conta que após o treino de cada algoritmo é feita uma exportação em PMML.

Não foi feito um modelo de classificação para o Random Forest tendo em conta que a previsão final é baseada na média das previsões de cada árvore presente.

Knime 4 - PMML Predictor

2.5. Resultados

O SVM terá obtido os piores resultados devido ao conjunto de dados possuir poucas caraterísticas.

O Random Forest terá obtido resultados melhores na fase de treinos, mas em resultados de modelo o Naive Bayes superou.

Na fase de avaliação dos modelos de classificação, o Naive Bayes teve o melhor resultado para previsão dos dados, com uma precisão de 97.3%, devido á Dataset apresentar um elevado numero de dados e reduzido numero de caraterísticas.

Random-forest

Knime 5 - Resultados dos algoritmos de treino

Row ID	TruePo	FalsePo	TrueNe	FalseN	D Recall	D Precision	D Sensitivity	D Specificity	D F-meas	D Accuracy	D Cohen'
Iris-setosa	24	0	50	0	1	1	1	1	1	?	?
Iris-versicolor	26	11	37	0	1	0.703	1	0.771	0.825	?	?
Iris-virginica	13	0	50	11	0.542	1	0.542	1	0.703	?	?
Overall	7	?	?	?	?	?	?	?	?	0.851	0.776
SVM - Class				T FalseN	D Recall	D Precision	D Sensitivity	D Specificity	D F-meas	D Accuracy	D Cohen'
SVM - Class			ision TrueNe	FalseN	D Recall	D Precision	D Sensitivity	D Specificity	D F-meas	D Accuracy	D Cohen'
Row ID	TruePo		TrueNe	0	1	1	1	1	D F-meas 1 0.962	D Accuracy	D Cohen'
Row ID Iris-setosa	TruePo		TrueNe	0	1 0.962	1 0.962	1 0.962	1 0.979	1	D Accuracy ? ?	D Cohen' ? ? ?

Naive Bayes - Classification Model Precision

Knime 6 - Resultados dos modelos de classificação

Foi possível também obter as matrizes de confusão de cada avaliação de precisão (tanto nos testes como para modelos), segue-se abaixo um exemplo de uma matriz de confusão na avaliação de precisão do modelo de classificação de Naive Bayes:

Row ID	Iris-set	Iris-ver	Iris-virg
Iris-setosa	24	0	0
Iris-versicolor	0	25	1
Iris-virginica	0	1	23

Knime 7 - Matriz de confusão Naive Bayes Predictor

Neste exemplo verifica-se a existência de um falso positivo e falso negativo, no caso da previsão de uma Iris-virginica e obteve-se Iris-versicolor e o resto dos resultados terem sido verdadeiros positivos.

3. Clustering

Para a realização deste tópico foi utilizada a ferramenta Knime.

3.1. Objetivos de negócio a alcançar

Previsão de espécies: O modelo de classificação automática treinado com o dataset de espécies de Iris pode ser usado para prever a espécie de uma planta de Iris com base em suas características, como comprimento e largura da sépala e pétala. Isso pode ser útil para ajudar os jardineiros e vendedores a identificar corretamente as plantas de Iris.

3.2. Critérios de seleção de dados e preparação dos dados

Para a montagem do clustering foi inicialmente normalizado os dados para todas as caraterísticas (exceto id) apresentarem uma mesma escala de valores entre 0 e 10. Foi identificado e removido linhas que incluíam outliers pois k-Means é sensível.

Knime 8 - Clustering

3.3. Avaliação da aplicação do algoritmo K-Means

O k-Means recebe como parâmetros as caraterísticas todas (exceto o id) e o k.

O valor de k selecionado foi 3, tendo em conta que o objetivo deste clustering era fazer a divisão em 3 grupos de espécies de Iris presentes no atributo categórico.

Foi selecionada como número de iterações máximo 100, e este valor foi determinado após vários testes.

Knime 9 - Resultados Clustering

4. Regras de Associação

Para a realização deste tópico foi utilizada a ferramenta Orange Data Mining.

4.1. Objetivos de negócio a alcançar

- 1. **Identificação de características importantes:** As regras de associação podem ser usadas para identificar quais características das espécies de Iris são mais importantes para a classificação das espécies. Isso pode ajudar a identificar quais características são as mais relevantes para distinguir as espécies.
- 2. **Identificação de relações entre características:** As regras de associação podem ser usadas para identificar relações entre as características das espécies de Iris, como quais características são frequentemente encontradas juntas em uma mesma espécie. Isso pode ajudar a entender como as características das espécies estão relacionadas entre si.

4.2. Critérios de seleção de dados e preparação dos dados

É feita uma **remoção** do id e **discretização** de dados para estes serem utilizados na identificação de conjuntos de dados frequentes.

Orange 1 - Preparação dos dados

Os dados tiveram que ser discretizados tendo em conta que a Dataset possui variáveis continuas, mas para determinar o conjunto de dados frequentes é necessário trabalhar com variáveis discretas.

Esta operação resolve este problema.

Orange 2 - Discretização

4.3. Resultados da avaliação da aplicação do algoritmo Apriori

Através da seguinte imagem é possível observar os resultados obtidos pelo algoritmo.

Orange 3 - Resultados Apriori

Nestas linhas de exemplo que se seguem é possível observar que:

- 1. Cerca de **24.7%** das Iris com comprimento de pétala menor a 1.55 cm, tem **100%** de grau de confiança para ser da espécie setosa;
- 2. Cerca de **22.7%** das Iris com comprimento de pétala maior ou igual a 5.15 cm, tem **100%** de grau de confiança para ser da espécie virginica;
- 3. Cerca de **22.7%** das Iris com largura de pétala menor que 0.25 cm, tem **100%** de grau de confiança para ser da espécie setosa.

Supp Conf Cov	vr Strg	Lift	Levr	Antecedent		Consequent
0.247 1.000 0.24	47 1.351	3.000	0.164	PetalLengthCm= < 1.5	5 -	→ Species=Iris-setosa
0.227 1.000 0.22	27 1.471	3.000	0.151	PetalLengthCm=≥ 5.7	5 -	→ Species=Iris-virginica
0.227 1.000 0.22	27 1.47	3.000	0.151	PetalWidthCm= < 0.2	25 -	→ Species=Iris-setosa

Orange 4 - Resultados Apriori (exemplos)

5. Conclusão

Com a elaboração deste pequeno projeto foi possível aplicar todas as aulas teóricas relacionadas com Machine Learning, desde algoritmos de aprendizagem à construção de modelos de classificação, clustering e regras de associação.

6. Bibliografia

Iris Species Data set: https://www.kaggle.com/datasets/uciml/iris

Knime install: https://www.knime.com/downloads

Orange install: https://orangedatamining.com

Repositório GitHub: https://github.com/L0ud3r/MachineLearning

13