

Chp3 Fleetrical Potential

At Conservative Force: work is not related to path

Curl:
$$\begin{vmatrix} \hat{n} & \hat{y} & \hat{z} \\ \frac{1}{3\pi} & \frac{3}{3y} & \frac{3}{3z} \\ x & y & z \end{vmatrix}$$

* central force anservative

$$f(r) = \frac{1}{4\pi\epsilon_0} \cdot \frac{q \cdot l_0}{r^2} \quad V(r) = \frac{1}{4\pi\epsilon_0} \cdot \frac{q \cdot l_0}{r} + C$$

$$V(x) = 0 \Rightarrow V(r) = \frac{1}{4\pi\epsilon_0} \cdot \frac{q \cdot l_0}{r}$$

A Potential Energy:

(1) (2) (2) (2) (3)

 Θ

* Potential:
$$V = \frac{U}{q_0}$$

how to calculate V:

V: 476. object | \bar{r}-\bar{r}|

VA-VB= \int_{A-7B} \bar{E} dr * pay attention how you integral * Self-Energy Charge Configuration

* useful (scalar)

$$\int_{0}^{\infty} \frac{1}{8\pi \epsilon_{0}} \int_{i,j=1}^{\infty} \frac{q_{i} \cdot q_{j}}{v_{ij}} = \frac{1}{2} \int_{i=1}^{\infty} q_{i} \cdot V(v_{i}) = \frac{1}{2} \int_{i=1}^{\infty} q_{i} \cdot$$

- (i) $\overline{E} = 0$ inside a conductor.
- (ii) No net (excess) charge inside a conductor; any net charge resides on the surface.
- (iii) A conductor is an equipotential.

(iv) Just outside of the conductor, \overline{E} is perpendicular to the conductor's surface.

D Electrostatic Shield: C静电屏蔽)

E = F

$$C = \frac{Q}{V} \qquad V = \int_{\Xi} E \cdot dV = \frac{Q}{\varepsilon_0} \cdot d = \frac{Q}{\varepsilon_0} \cdot \frac{d}{A}$$

$$E \cdot C = \varepsilon_0 \cdot A$$

$$C = \frac{O}{V} \quad V = \int E \cdot dL = C = 4\pi t_0 \frac{k_0 R_b}{R_b \cdot R_a}$$

$$E = \frac{G G}{G \cdot t_0} \quad Porellel = C = G \cdot t_0 \quad (VE \ge 15)$$

À	Methods	of	Images:		
	€	· (Q	_ Electric	Field?	
أً					7

EXAMPLE 3-7 Determine the **E** field caused by a spherical cloud of electrons with a volume charge density $\rho = -\rho_o$ for $0 \le R \le b$ (both ρ_o and b are positive) and $\rho = 0$ for R > b.

FIGURE 3-10 Electric field intensity of a spherical electron cloud (Example 3-7).

Solution First we recognize that the given source condition has spherical symmetry. The proper Gaussian surfaces must therefore be concentric spherical surfaces. We must find the E field in two regions. Refer to Fig. 3-10.

a) $0 \le R \le b$

A hypothetical spherical Gaussian surface S_i with R < b is constructed within the electron cloud. On this surface, E is radial and has a constant magnitude:

the electron cloud. On this surface, E is radial and has a constant magnitude:

$$\mathbf{E} = \mathbf{a}_{R} E_{R}, \qquad d\mathbf{s} = \mathbf{a}_{R} ds.$$

The total outward E flux is

$$\oint_{S_i} \mathbf{E} \cdot d\mathbf{s} = E_R \int_{S_i} ds = E_R 4\pi R^2.$$

The total charge enclosed within the Gaussian surface is

Substitution into Eq. (3-7) yields

$$\mathbf{E} = -\mathbf{a}_R \frac{\rho_o}{3\epsilon_0} R, \qquad 0 \le R \le b.$$

We see that within the uniform electron cloud the E field is directed toward the center and has a magnitude proportional to the distance from the center.

b) $R \geq b$

For this case we construct a spherical Gaussian surface S_o with R > b outside the electron cloud. We obtain the same expression for $\oint_{S_o} \mathbf{E} \cdot d\mathbf{s}$ as in case (a). The total charge enclosed is

$$\oint_{S_i} \mathbf{E} \cdot d\mathbf{s} = E_R \int_{S_i} ds = E_R 4\pi R^2.$$

$$Q = -\rho_o \frac{4\pi}{3} b^3.$$

Consequently,

$$\mathbf{E} = -\mathbf{a}_R \frac{\rho_o b^3}{3\epsilon_o R^2}, \qquad R \ge b,$$

which follows the inverse square law and could have been obtained directly from Eq. (3-12). We observe that *outside* the charged cloud the E field is exactly the same as though the total charge is concentrated on a single point charge at the center. This is true, in general, for a spherically symmetrical charged region even

though ρ is a function of R.

$$\mathbf{E} = \mathbf{a}_R E_R = \mathbf{a}_R \frac{q}{4\pi\epsilon_0 R^2} \qquad (V/m).$$

Electron

Electric Potential

Metal spherical shell and ball (originally not charged);

The inner ball is grounded;

A charge q (q>0) is placed at distance d from the center of inner ball:

- (1) Find induced charge qa
- (2) Find the potential difference between inner shell and the surface of the inner ball (distance: b and a from O)

Ansd:

1)
$$V_0 = k \cdot \frac{qa}{a} + k \cdot \frac{-qa}{b} + k \cdot \frac{qa}{b} + k \cdot \frac{q}{d} = 0$$

$$qa = -\frac{a}{d} \cdot q$$
2)
$$k \frac{qa}{b} - k \cdot \frac{qa}{a}$$