NAME:		CLASS:	11:30am	OR	4pm

MATH 2415 (Fall 2012) Exam II, Nov 9th

No calculators, books or notes! Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 2 hour exam is worth XX points.

- (1) [14 pts] Let $z = f(x, y) = 1 + e^x + 3\sin y + x^2y^3$.
- (a) Calculate the equation of the tangent plane to the graph of f at (x, y) = (0, 0).

(c) What is the maximum rate of change of f at (0,0) and in which direction does it occur?

- (2) [12 pts]
- (a) Let z = f(x, y) be a function so that

x	1	2	3	2	2
y	5	5	5	4	6
f(x,y)	3	4	6	2	7

Estimate $\frac{\partial f}{\partial y}$ at (x, y) = (2, 5).

- (b) Which of the following functions satisfies Laplace's equation $u_{xx} + u_{yy} = 0$?
- (i) $u(x,y) = x^3 + 3xy$

(ii) $u(x,y) = e^{-y} \cos x$

- (3) [10 pts]
- (a) Suppose that z = f(x, y) is a function and $(x, y) = \mathbf{r}(t)$ is a parametrized curve. State the version of the Chain Rule you would use to differentiate the composition $f \circ \mathbf{r}$.

(b) Let $z = f(x, y) = x^3y^2 + \ln(x^3)$ and suppose that $(x, y) = \mathbf{r}(t)$ is a parametrized curve so that

t	x	y	$\frac{dx}{dt}$	$\frac{dy}{dt}$
-1	0	0	3	-4
0	1	3	-2	5
1	3	2	5	4

Calculate $\frac{dz}{dt}(0)$.

(4) [12 pts] Consider the surface that is parametrized by

$$x = r\cos\theta,$$

$$y = r\sin\theta,$$

$$z = r$$
,

for $1 \le r \le 3$ and $0 \le \theta \le 2\pi$.

(a) Find an equation of the form F(x, y, z) = 0 for this surface.

(b) Sketch the graph of the surface. Also sketch the grid curves $\theta = \frac{\pi}{4}$ and r = 2 on the surface.

(a) Draw an example of a region that is Type II but not Type I.

(b) Calculate $\iint_D x^2 y^3 dA$, where D is the domain bounded by the curves y = x and $x = y^4$.

(6) [12 pts] Find the local max	xima, minima, and sa	ddle points of the fund	etion $z = f(x, y) = y^{t}$	$x^3 - 12xy + 8x^3$.

7) [15 pts] Use the method of Lagrange multipliers to find the absolute maximum and minimum of unction $z = f(x, y) = x^2y$ on the circle $x^2 + y^2 = 1$.	the

(8) [10 pts] Let $z = f(x, y)$ be a function so that $\nabla f(0, 0) = 3\mathbf{i}$.
(a) Let $\mathbf{u} = (\cos \theta, \sin \theta)$ be a unit length vector in direction given by an angle $\theta \in [0, 2\pi]$. For which values of θ is the directional derivative $D_{\mathbf{u}}f(0,0) < 0$?
(b) What is the equation of the tangent line to the level curve of f at the point $(0,0)$?
Please sign the following honor statement:
On my honor, I pledge that I have neither given nor received any aid on this exam.
Signature: