

Attribute normalization, standardization and dimension reduction of data

Student's Name: Aryan Tiwari Mobile No: 8982562898

Roll Number: B20187 Branch: Electrical Engineering

1 a.

Table 1 Minimum and maximum attribute values before and after normalization

S. No.	Attribute	Before no	Before normalization		After normalization		
		Minimum	Maximum	Minimum	Maximum		
1	pregs	0	13	5	12		
2	plas	44	199	5	12		
3	pres (in mm Hg)	38	106	5	12		
4	skin (in mm)	0	63	5	12		
5	test (in mu U/mL)	0	318	5	12		
6	BMI (in kg/m ²)	18.2	50.0	5	12		
7	pedi	0.078	1.191	5	12		
8	Age (in years)	21	66	5	12		

Inferences:

- 1. Most of the time outliers are indicators of noisy data and are hence removed
- 2. Median is used replace the outliers as it is the central value of skewed data.
- 3. The varying range of different attributes becomes common.

b.

Table 2 Mean and standard deviation before and after standardization

S. No.	Attribute	Before stand	dardization	After star	ndardization
		Mean	Std. Deviation	Mean	Std. Deviation
1	pregs	3.78	3.27	0	1
2	plas	121.65	30.43	0	1
3	pres (in mm Hg)	72.19	11.14	0	1
4	skin (in mm)	20.43	15.69	0	1
5	test (in mu U/mL)	60.91	77.63	0	1
6	BMI (in kg/m ²)	32.19	6.41	0	1
7	pedi	0.427	0.245	0	1
8	Age (in years)	32.76	11.055	0	1

Attribute normalization, standardization and dimension reduction of data

Inferences:

1. Standardisation converts every attribute to normal distribution with mean =0 and variance = 1.

2 a.

Figure 1 Scatter plot of 2D synthetic data of 1000 samples

Inferences:

1. They are negatively correlated.

b.

Attribute normalization, standardization and dimension reduction of data

Figure 2 Plot of 2D synthetic data and Eigen directions

Inferences:

- 1. The data is spread more across the 1^{st} eigen vector than the 2^{nd} which shows the greater variance of 1^{st} .
- 2. The plot is very densely covered at intersection.

c.

Figure 3 Projected Eigen directions onto the scatter plot with 1st Eigen direction highlighted

Figure 4 Projected Eigen directions onto the scatter plot with 2nd Eigen direction highlighted

Inferences:

Attribute normalization, standardization and dimension reduction of data

- 1. The data is denser along the 1st eigen vector.
- 2. The variance along 1^{st} eigen column is more.
- **d.** Reconstruction error = 0.0

Inferences:

1. Since number of eigen vectors selected for reconstruction is same as dimension of original data, there is no loss.

3 a.

Table 3 Variance and Eigenvalues of the projected data along the two directions

Direction	Variance	Eigenvalue
1	1.992	1.992
2	1.853	1.853

Inferences:

1. The variance of PCA data frame is same as 2 largest eigen values.

Figure 5 Plot of data after dimensionality reduction

Inferences:

Attribute normalization, standardization and dimension reduction of data

- 1. Infer the correlation between the two attributes obtained after dimensionality reduction from the spread of data points
- 2. Inference 2(You may add or delete the number of inferences)

 Note: The scatter plots above are for illustration purposes. Replace it with the scatter plot obtained by you. Rename x-axis legend with x1 and y-axis legend with x2.

b.

Figure 6 Plot of Eigenvalues in descending order

Inferences:

- 1. The eigen-values decrease rapidly
- 2. The eigenvalue decrease significantly after 1.85.

c.

Attribute normalization, standardization and dimension reduction of data

Figure 7 Line plot to demonstrate reconstruction error vs. components

Inferences:

1. Higher the magnitude of variance of better is the quality of reconstruction.

Table 4 Covariance matrix for dimensionally reduced data (I=2)

	0	1
0	1.992463047089108	-2.8949752923732895e-16
1	-2.8949752923732895e-16	1.8534221929648187

Table 5 Covariance matrix for dimensionally reduced data (I=3)

	0	1	2
0	1.9924630470891052	-2.2001812222037e-16	9.611317970679321e-17
1	-2.2001812222037e-16	1.8534221929648182	-4.238243828034496e-
			16
2	9.611317970679321e-17	-4.238243828034496e-	0.9818791372481482
		16	

Table 6 Covariance matrix for dimensionally reduced data (I=4)

	0	1	2	3
0	1.9924630470891058	7.157826410392958e-	-	-6.80319193707723e-
		16	2.0641173834621555e-	17
			16	
1	7.157826410392958e-	1.8534221929648191	1.5676291208201362e-	-
	16		16	2.2316640785082596e-
				16

Attribute normalization, standardization and dimension reduction of data

2	- 2.0641173834621555e- 16	1.5676291208201362e- 16	0.9818791372481482	2.967349674682622e- 18
3	-6.80319193707723e-	-	2.967349674682622e-	0.8583073274875039
	17	2.2316640785082596e-	18	
		16		

Table 7 Covariance matrix for dimensionally reduced data (I=5)

	0	1	2	3	4
0	1.9924630470891	3.8445271882717	3.6881985224835	-	-
	045	285e-16	71e-16	9.7271169823742	4.7130197759837
				53e-17	16e-16
1	3.8445271882717	1.8534221929648	3.6708286707293	6.9479407016958	-
	285e-16	207	31e-16	94e-18	1.1464102157798
					227e-16
2	3.6881985224835	3.6708286707293	0.9818791372481	-	3.1960527227801
	71e-16	31e-16	508	1.5053871520341	113e-16
				105e-16	
3	-	6.9479407016958	-	0.8583073274875	4.4524719996701
	9.7271169823742	94e-18	1.5053871520341	052	19e-16
	53e-17		105e-16		
4	-	-	3.1960527227801	4.4524719996701	0.8387495985802
	4.7130197759837	1.1464102157798	113e-16	19e-16	278
	16e-16	227e-16			

Table 8 Covariance matrix for dimensionally reduced data (I=6)

	0	1	2	3	4	5
0	1.99246304708	8.56912686542	3.89663674353	-	6.60054366661	-
	9105	4937e-17	44475e-16	3.05709390874	11e-17	2.54757825728
				61936e-16		84946e-17
1	8.56912686542	1.85342219296	-	-	-	9.14812192389
	4937e-17	48163	1.06535090759	2.01490280349	2.25808072805	9594e-17
			33706e-16	18094e-16	11657e-16	
2	3.89663674353	-	0.98187913724	1.27378912864	-	8.68492587711
	44475e-16	1.06535090759	81492	42473e-16	2.61705766430	9867e-19
		33706e-16			54535e-16	
3	-	-	1.27378912864	0.85830732748	1.81804448361	2.54178830670
	3.05709390874	2.01490280349	42473e-16	75033	04257e-16	3748e-16
	61936e-16	18094e-16				

Attribute normalization, standardization and dimension reduction of data

4	6.60054366661	-	-	1.81804448361	0.83874959858	-
	11e-17	2.25808072805	2.61705766430	04257e-16	02265	1.80067463185
		11657e-16	54535e-16			6186e-16
5	-	9.14812192389	8.68492587711	2.54178830670	-	0.63640836886
	2.54757825728	9594e-17	9867e-19	3748e-16	1.80067463185	76926
	84946e-17				6186e-16	

Table 9 Covariance matrix for dimensionally reduced data (I=7)

	_					_	
	0	1	2	3	4	5	6
0	1.992463047	1.139462275	-	-	1.065350907	1.412747942	-
	0891072	0781268e-	1.893313841	2.315980233	5933706e-	6781653e-	9.842915994
		15	2121313e-	8986317e-	16	16	069184e-17
			16	17			
1	1.139462275	1.853422192	2.130701815	-	4.475631802	7.642734771	2.315980233
	0781268e-	964821	1867411e-	6.021548608	009106e-16	865484e-17	8986317e-
	15		16	136442e-17			17
2	-	2.130701815	0.981879137	-	-	3.705568374	1.389588140
	1.893313841	1867411e-	2481492	2.344929986	2.408619443	2378105e-	3391788e-
	2121313e-	16		8223645e-	254577e-16	17	17
	16			16			
3	-	-	-	0.858307327	4.574060961	2.260975703	-
	2.315980233	6.021548608	2.344929986	4875037	949797e-17	343539e-16	8.684925877
	8986317e-	136442e-17	8223645e-				119869e-18
	17		16				
4	1.065350907	4.475631802	-	4.574060961	0.838749598	-	9.553418464
	5933706e-	009106e-16	2.408619443	949797e-17	5802265	5.732051078	831856e-17
	16		254577e-16			899114e-17	
5	1.412747942	7.642734771	3.705568374	2.260975703	-	0.636408368	-
	6781653e-	865484e-17	2378105e-	343539e-16	5.732051078	8676925	3.297376858
	16		17		899114e-17		013177e-16
6	-	2.315980233	1.389588140	-	9.553418464	-	0.434142819
	9.842915994	8986317e-	3391788e-	8.684925877	831856e-17	3.297376858	8613043
	069184e-17	17	17	119869e-18		013177e-16	

Table 10 Covariance matrix for dimensionally reduced data (I=8)

Attribute normalization, standardization and dimension reduction of data

	0	1	2	3	4	5	6	7
0	1.99246305	1.14E-15	-1.89E-16	-2.08E-17	1.07E-16	1.41E-16	-9.84E-17	-2.36E-16
1	1.14E-15	1.85342219	2.13E-16	-4.40E-17	4.48E-16	7.64E-17	2.32E-17	-1.32E-16
2	-1.89E-16	2.13E-16	0.98187914	-2.38E-16	-2.41E-16	3.71E-17	1.39E-17	1.71E-16
3	-2.08E-17	-4.40E-17	-2.38E-16	0.85830733	4.57E-17	2.26E-16	-8.68E-18	-4.40E-17
4	1.07E-16	4.48E-16	-2.41E-16	4.57E-17	0.8387496	-5.73E-17	9.55E-17	2.93E-16
5	1.41E-16	7.64E-17	3.71E-17	2.26E-16	-5.73E-17	0.63640837	-3.30E-16	-1.86E-16
6	-9.84E-17	2.32E-17	1.39E-17	-8.68E-18	9.55E-17	-3.30E-16	0.43414282	-1.16E-18
7	-2.36E-16	-1.32E-16	1.71E-16	-4.40E-17	2.93E-16	-1.86E-16	-1.16E-18	0.40462751

Inferences:

- 1. The off-diagonal elements are tending towards 0 because the eigen-vectors are orthonormal and hence the projection don't overlap which makes the attributes uncorrelated.
- 2. The diagonal elements are variance of individual attributes and hence non-zero but the off diagonal elements represent correlation coefficient of PCA df which is 0.
- 3. The diagonal values are in decreasing order.
- 4. PCA of sklearn sorts the eigen-values(variance) in decreasing order.
- 5. The 1st diagonal element is biggest and hence the 1st column (0th index) captures the data best.
- 6. The 1st diagonal element is same for every matrix as it is the highest eigen-value of the dataframe.
- 7. The 2nd diagonal element is also same for every matrix as it is fixed(2nd highest eigen value).
- 8. The diagonal elements of covariance matrix won't change as they are eigen values or variance and are pre-calculated.

d.

Attribute normalization, standardization and dimension reduction of data

Table 11 Covariance matrix for original data

	pregs	plas	pres	skin	Test	BMI	pedi	Age
				-9.67E-	-1.08E-			
pregs	1	1.18E-01	2.09E-01	02	01	2.83E-02	4.52E-03	5.61E-01
plas	1.18E-01	1	2.05E-01	6.00E-02	1.80E-01	2.28E-01	8.16E-02	2.74E-01
					-5.10E-			
pres	2.09E-01	2.05E-01	1	2.56E-02	02	2.72E-01	2.25E-02	3.26E-01
	-9.67E-							-1.01E-
skin	02	6.00E-02	2.56E-02	1	4.73E-01	3.74E-01	1.53E-01	01
	-1.08E-		-5.10E-					-7.37E-
test	01	1.80E-01	02	4.73E-01	1	1.72E-01	1.99E-01	02
BMI	2.83E-02	2.28E-01	2.72E-01	3.74E-01	1.72E-01	1	1.24E-01	7.77E-02
pedi	4.52E-03	8.16E-02	2.25E-02	1.53E-01	1.99E-01	1.24E-01	1	3.61E-02
				-1.01E-	-7.37E-			
Age	5.61E-01	2.74E-01	3.26E-01	01	02	7.77E-02	3.61E-02	1

Inferences:

- 1. The off-diagonal elements are non-zero as the attributes are correlated.
- 2. The diagonal values of original data covariance matrix are 1 as the data is standardized, while the diagonal elements decrease in I=8 PCA covariance matrix .
- 3. The columns of original matrix are equally important with equal variance while the importance of each column decreases along the PCA matrix.