

<u>Course</u> > <u>Week 1</u>... > <u>Compr</u>... > Quiz 10

# Quiz 10

## Problem 1

| T TODICITI T                                                                                                                                                                                 |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1/1 point (graded) True or false: Autoencoding is a destructive process, meaning that it is not possible to get an approximation to the original data point given its latent representation. |  |  |
|                                                                                                                                                                                              |  |  |
| True                                                                                                                                                                                         |  |  |
| <ul><li>False</li></ul>                                                                                                                                                                      |  |  |
|                                                                                                                                                                                              |  |  |
| Submit                                                                                                                                                                                       |  |  |
| Problem 2                                                                                                                                                                                    |  |  |
| 1/1 point (graded) For the $k$ -means autoencoder, what is the hidden representation of the data that we hope to reveal?                                                                     |  |  |
| The projection for a data point onto a different vector                                                                                                                                      |  |  |
| The location of the mean for the cluster that each data point belongs to                                                                                                                     |  |  |
| The cluster label that each data point belongs to                                                                                                                                            |  |  |
| The squared distance from each data point to its mean                                                                                                                                        |  |  |

Submit

#### Problem 3

1/1 point (graded)

What is a "one-hot" encoding?

- An encoding that cannot be changed as other encodings depend on it
- An encoding that makes a single pass over the data set
- $\ \, \bullet \,$  An encoding which produces a vector where a single element is 1, and the rest are all 0
- A trivial encoding where every data point is mapped to the same value



Submit

## Problem 4

1/1 point (graded)

What kind of relationship between words is captured by co-occurrence probabilities?

- Words with similar frequencies are closely related
- Words of similar length are closely related
- Words which are preceded or succeeded by similar words are closely related
- Words with similar spelling are closely related



Submit

### Problem 5

1/1 point (graded)

In a feedforward neural net, nodes which aren't input nodes or output nodes are called what?

| Hidden units       |  |  |
|--------------------|--|--|
| Middle units       |  |  |
| Floating nodes     |  |  |
| Intermediary nodes |  |  |
| <b>✓</b>           |  |  |
| Submit             |  |  |

#### Problem 6

1/1 point (graded)

True or false: Each layer of the feedforward neural net must be calculated sequentially as the values of any non-input row are calculated from the values of previous rows.



### Problem 7

1/1 point (graded)

You have a neural network with three fully connected layers, each containing 800 nodes. Approximately how many total edges does this graph have?

| 27/2019                   | Quiz 10   Comprehension Quiz 10   DSE220x Courseware   edX        |
|---------------------------|-------------------------------------------------------------------|
| 800                       |                                                                   |
| 2400                      |                                                                   |
| <ul><li>1280000</li></ul> |                                                                   |
| 512000000                 |                                                                   |
| ✓                         |                                                                   |
| Submit                    |                                                                   |
| or neither?               | the neural network can best be described as convex, concave, both |
| convex                    |                                                                   |
| concave                   |                                                                   |
| both                      |                                                                   |
| <ul><li>neither</li></ul> |                                                                   |
| <b>✓</b>                  |                                                                   |
| Submit                    |                                                                   |
| Problem 9                 |                                                                   |
| 1/1 point (graded)        |                                                                   |

Which of the following algorithms would be acceptable to use to optimize the loss function of a very large neural network?

### Problem 10

11/27/2019

1/1 point (graded)

True or false: Dropout is used with neural networks to reduce the time and space complexity of the model.



© All Rights Reserved