

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

BÀI GIẢNG MÔN

KIẾN TRÚC MÁY TÍNH

CHƯƠNG 1 – GIỚI THIỆU CHUNG

NHÓM 3, 7, 8

Giảng viên: TS. Nguyễn Quý Sỹ

Điện thoại/E-mail: 091 339 4091/synq@ptit.edu.vn

Bộ môn: Khoa học máy tính - Khoa CNTT1

Học kỳ/Năm biên soạn: Học kỳ 2 năm học 2020-2021

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

BÀI GIẢNG MÔN KIẾN TRÚC MÁY TÍNH 3TC

CHƯƠNG 1 – GIỚI THIỆU CHUNG

Giảng viên: TS. Nguyễn Quý Sỹ

Điện thoại/E-mail: 091 339 4091/synq@ptit.edu.vn

Bộ môn: Khoa học máy tính - Khoa CNTT1

Học kỳ/Năm biên soạn: Học kỳ 2 năm học 2020-2021

TÀI LIỆU THAM KHẢO

- Hoàng Xuân Dậu, Bài giảng môn Kiến trúc Máy tính, Học viện Công nghệ Bưu chính Viễn thông, 2010;
- 2. Phạm Hoàng Duy, Bài giảng môn Kỹ thuật Vi xử lý, Học viện Công nghệ Bưu chính Viễn thông, 2011;
- 3. David A. Patterson and John L. Hennesy, Computer Organization and Architecture: Hardware and Software Interface, 5th Edition, Prentice Hall 2014.

Các tài liệu đã được tải lên phần học liệu trên TEAMS

ĐÁNH GIÁ MÔN HỌC

- Các điểm thành phần:
 - Chuyên cần: 10%
 - Kiểm tra: 10%
 - Microsoft Teams: Email Hoc viên-Team Code
 - Bài tập + thảo luận: 20%
 - Thi cuối kỳ: 60%

YÊU CẦU BÀI TẬP LỚN

- ❖ Bao gồm 2 nội dung cho mỗi nhóm 2-3 sinh viên
 - 1. Sinh viên tự tìm hiểu và nghiên cứu về cấu trúc của 1 máy chủ/tủ đĩa NAS/tủ đĩa SAN/Object Storage đảm bảo các yêu cầu HA (High Availability) về nguồn, CPU, Raid Controller, Node, và các thành phần khác... của các Hãng
 - 1. Nhóm 3: Các thiết bị của Dell EMC/HP/HPE
 - 2. Nhóm 7: Các thiết bị của Hitachi/Fujitsu
 - 3. Nhóm 8: Các thiết bị của IBM/Netapp/Supermicro

2.

NỘI DUNG MÔN HỌC

- 1. Chương 1: Tổng quan về kiến trúc máy tính
- 2. Chương 2: Khối xử lý trung tâm và Vi xử lý Intel 8086
- 3. Chương 3: Xử lý xen kẽ dòng mã lệnh và bộ nhớ Cache
- 4. Chương 4: Lập trình hợp ngữ với bộ vi xử lý 8086/8088
- 5. Chương 5: Phối ghép và lập trình điều khiển thiết bị
- 6. Chương 6: Kiến trúc máy tính tiên tiến

NỘI DUNG MÔN HỌC

- ❖ Công cụ hỗ trợ:
 - Microsoft Teams
 - Account: Email Hoc viên (*@stu.ptit.edu.vn)
 - Mã nhóm:
 - Facebook:
 - Bộ biên dịch hợp ngữ: Emu86

NỘI DUNG CHƯƠNG 1

- 1. Giới thiệu về kiến trúc và tổ chức máy tính
- 2. Lịch sử phát triển của máy tính điện tử
- 3. Một số kiến trúc máy tính
- 4. Hệ đếm và tổ chức lưu trữ dữ liệu trong hệ thống máy tính

1.1 KIẾN TRÚC & TỔ CHỰC MÁY TÍNH

- Kiến trúc và tổ chức máy tính là 2 khái niệm cơ bản của công nghệ máy tính.
 - Tổ chức máy tính (Computer organization) là khoa học nghiên cứu về các bộ phận của máy tính và phương thức làm việc của chúng;
 - Kiến trúc máy tính (Computer architecture) là một khoa học về lựa chọn và kết nối các thành phần phần cứng của máy tính nhằm đạt được các yêu cầu:
 - Hiệu năng / tốc độ (performance): nhanh → tốt
 - Chức năng (functionality): nhiều tính năng → tốt
 - Giá thành (cost): hợp lý → tốt

1.1 KIÉN TRÚC & TỔ CHỨC MÁY TÍNH (tiếp)

- Ba thành phần cơ bản của kiến trúc máy tính:
 - Kiến trúc tập lệnh (Instruction set architecture ISA) là hình ảnh trừu tượng của máy tính ở mức ngôn ngữ máy (hợp ngữ). Kiến trúc tập lệnh gồm:
 - Tập lệnh
 - Các chế độ địa chỉ bộ nhớ
 - Các thanh ghi
 - Các khuôn dạng địa chỉ và dữ liệu

1.1 KIẾN TRÚC & TỔ CHỨC MÁY TÍNH (tiếp)

- ii. Vi kiến trúc (micro-architecture), còn được gọi là tố chức máy tính là mô tả về hệ thống ở mức thấp, liên quan đến các vấn đề:
 - Các thành phần phần cứng của máy tính kết nối với nhau như thế nào?
 - Các thành phần phần cứng của máy tính tương tác với nhau như thế nào để thực thi tập lệnh?

1.1 KIÉN TRÚC & TỔ CHỨC MÁY TÍNH (tiếp)

ii.

- iii. Thiết kế hệ thống (System Design) bao gồm tất cả các thành phần phần cứng khác trong hệ thống tính toán, như:
 - Hệ thống kết nối như bus và các chuyển mạch
 - Điều khiển bộ nhớ và quản lý phân cấp hệ thống nhớ
 - Các cơ chế giảm tải cho CPU như là DMA
 - Các vấn đề khác như đa xử lý.

GIẢNG VIÊN: TS. NGUYỄN QUÝ SỸ Trang 13

Sơ đồ khối chức năng của hệ thống máy tính

GIẢNG VIÊN: TS. NGUYỄN QUÝ SỸ Trang 14

- ❖ Bộ xử lý trung tâm (Central Processing Unit CPU):
 - Chức năng:
 - Đọc lệnh từ bộ nhớ
 - Giải mã và thực hiện lệnh
 - CPU bao gồm:
 - Bộ điều khiển (Control Unit CU)
 - Bộ tính toán số học và logic (Arithmetic and Logic Unit ALU)
 - Các thanh ghi (Registers)

Vi xử lý Intel 8086 (1978)

Vi xử lý Intel Core 2 Duo (2006)

GIẢNG VIÊN: TS. NGUYỄN QUÝ SỸ

- ❖ Bộ nhớ trong (Internal Memory):
 - Chức năng: lưu trữ lệnh (instruction) và dữ liệu (data) cho
 CPU xử lý;
 - Bộ nhớ trong bao gồm:
 - ROM (Read Only Memory):
 - Lưu trữ lệnh và dữ liệu của hệ thống
 - Thông tin trong ROM vẫn tồn tại khi mất nguồn nuôi
 - RAM (Random Access Memory)
 - Lưu trữ lệnh và dữ liệu của hệ thống và người dùng
 - Thông tin trong RAM sẽ mất khi mất nguồn nuôi

❖ Bộ nhớ trong (Internal Memory):

- Tổ chức vào ra: Các giao diện ghép nối với các thiết bị ngoại vi (Peripheral devices)
 - Thiết bị vào (Input devices): nhập dự liệu và điều khiển
 - Bàn phím (Keyboard)
 - Chuột (Mice)
 - Ö dĩa (Disk drives)
 - Máy quét (Scanner)
 - Các thiết bị ra (Output devices): kết xuất dữ liệu
 - Màn hình (Monitor/screen)
 - Máy in (Printer)
 - Máy vẽ (Plotter)
 - Ö dĩa (Disk drives)

❖ Các thiết bị vào ra - ổ đĩa cứng (HDD)

- ❖ Bus hệ thống (system bus):
 - Bus hệ thống là một tập các đường dây kết nối CPU với các thành phần khác của máy tính
 - Bus hệ thống thường gồm:
 - Bus địa chỉ (Address bus) Bus A
 - Bus dữ liệu (Data bus) Bus D
 - Bus điều khiển (Control bus) Bus C

❖ Bus hệ thống: PCI bus

www.ptit.edu.vn GIẢNG VIÊN: TS. NGUYỄN QUÝ SỸ Trang 22

1.2. CÁC THỂ HỆ MÁY TÍNH

- a) Thế hệ máy tính thứ nhất (1943-1957)
- b) Thế hệ máy tính thứ hai (1958-1964)
- c) Thế hệ máy tính thứ ba (1965-1971)
- d) Thế hệ máy tính thứ tư (1972-...)
- e) Thế hệ máy tính thứ năm-Khuynh hướng hiện tai

a) THẾ HỆ MÁY TÍNH I (1943-1957)

- Máy tính dùng đèn điện tử
- Máy tính ENIAC
 - 1943-1946
 - H 2,8m x L 20m x W vài mét
 - 18.000 đèn điện tử
 - 1.500 công tắc tự động
 - 30 tấn, 140kw/h
 - 20 thanh ghi 10 bit,
 - 5.000 phép cộng/giây
 - Lập trình bằng tay đấu nối các đầu cắm và ngắt điện
- Von Neumann tiếp tục phát triển ENIAC thành máy tính IAS-máy tính số đầu tiên có chương

www.ptit.edu.vn trüc cơ bản của máy tính ngày nay

a) THẾ HỆ MÁY TÍNH I (1943-1957)

- Kiến trúc máy tính gồm 5 thành phần cơ bản
 - CU
 - ALU
 - Bộ nhớ
 - Thiết bị vào
 - Thiết bị ra
- Bộ nhớ gồm 4096 từ, mỗi từ 40bit
- ALU có 1 thanh ghi tích luý 40 bit.

a) THẾ HỆ MÁY TÍNH I (1943-1957)

* Kiến trúc cơ bản của máy tính Von Neumann

b) THẾ HỆ MÁY TÍNH II (1958-1964)

- Máy tính dùng transistor
- Phát triển công nghệ điện tử
 - Transitors-1947
 - Thay thế đèn điện tử bằng đèn bán dẫn
 - Giảm kích thước
 - Giảm thể tích, khối lượng
 - Giảm công suất, năng lượng
 - Sử dụng mạch in, bộ nhớ bằng xuyến từ
- Xuất hiện ngôn ngữ bậc cao:
 - Fortran (1954-1957)
 - LISP và COBOL (1957)
 - ALGOL (1960)
- ❖ Hệ điều hành tuần tự

c) THẾ HỆ MÁY TÍNH III (1965-1971)

- Phát triển công nghệ điện tử
 - Mạch tích hợp: MSI, LSI
 - Mạch in nhiều lớp
 - Bộ nhớ bán dẫn thay thế bộ nhớ xuyến từ
- Máy tính đa chương trình
- Không gian địa chỉ lớn
- Hệ điều hành phân chia thời gian
- ❖ Mạng máy tính đầu tiên (ARPANet-1969)

c) THẾ HỆ MÁY TÍNH III (1965-1971)

Mang ARPANet

- Công nghệ điện tử
 - Công nghệ mạch tích hợp mật độ cao (LSI) và VLSI
 - Bộ vi xử lý chứa cả phần thực hiện và chương trình điều khiển
 - Bộ nhớ bán dẫn, bộ nhớ cache, bộ nhớ ảo
 - Kỹ thuật cải tiến tốc độ bộ xử lý không ngừng phát triển: kỹ thuật đường ống, xử lý song song...
- Các loại máy tính
 - Vi điều khiển
 - Máy vi tính-PC
 - MiniComputer
 - SuperMini
 - Mainframe-server

❖ Các chip vi xử lý (Intel 4004) và đĩa từ: 1970

Siêu máy tính đầu tiên (Cray-1)-1976, với 150 triệu phép tính dấu phẩy động/giây

- Các bộ xử lý (tính toán trên máy tính)
 - World Star (1978)
 - SpreadSheet (1979)
- ❖ Hệ điều hành
 - PC-DOS (1982)

❖ Các thế hệ chip vi xử lý Intel

Bộ xử lý Intel	Năm SX	Số lượng transistor tích hợp
4004	1971	2,250
8008	1972	2,500
8080	1974	5,000
8086	1978	29,000
286	1982	120,000
Intel386 TM processor	1985	275,000
Intel486 TM processor	1989	1,180,000
Intel® Pentium® processor	1993	3,100,000
Intel® Pentium® II processor	1997	7.500.000
Intel® Pentium® III processor	1999	24,000,000
Intel® Pentium® 4 processor	2000	42,000,000
Intel® Itanium® processor	2002	220,000,000
Intel® Itanium® 2 processor	2003	410,000,000

e) THẾ HỆ MÁY TÍNH V-Khuynh hướng hiện nay

- Máy tính thông minh
- Trí tuệ nhân tạo
- Giao diện thông minh
- Thế hệ các máy tính xử lý song song
- ❖ Sản phẩm điển hình ASIMO (1986-2004)

Định luật Moore-Sự phát triển của máy tính

Kiến trúc von-Neumann cổ điển

Kiến trúc von-Neumann hiện đại

- ❖ Kiến trúc von-Neumann cổ điển được nhà toán học người Mỹ John von-Neumann giới thiệu năm 1945.
- ❖ Kiến trúc von-Neumann dựa trên 3 khái niệm cơ sở:
 - Lệnh và dữ liệu được lưu trữ trong bộ nhớ đọc ghi chia sẻ;
 - Bộ nhớ được đánh địa chỉ theo vùng, không phụ thuộc vào nội dung nó lưu trữ;
 - Các lệnh của một chương trình được thực hiện tuần tự.

- Các lệnh được thực hiện theo 3 giai đoạn (stages) chính:
 - CPU đọc (fetch) lệnh từ bộ nhớ;
 - CPU giải mã và thực hiện lệnh; nếu lệnh yêu cầu dữ liệu,
 CPU đọc dữ liệu từ bộ nhớ;
 - CPU ghi kết quả thực hiện lệnh vào bộ nhớ (nếu có).

1.3 MỘT SỐ KIẾN TRÚC MÁY TÍNH Kiến trúc Harvard

Sơ đồ kiến trúc Harvard

1.3 MỘT SỐ KIẾN TRÚC MÁY TÍNH Kiến trúc Harvard

- ❖ Bộ nhớ được chia thành 2 phần:
 - Bộ nhớ lưu mã chương trình
 - Bộ nhớ lưu dữ liệu
- CPU sử dụng 2 hệ thống bus để giao tiếp với bộ nhớ:
 - Bus A, D và C cho bộ nhớ chương trình
 - Bus A, D và C cho bộ nhớ dữ liệu

1.3 MỘT SỐ KIẾN TRÚC MÁY TÍNH Kiến trúc Harvard

- Kiến trúc Harvard nhanh hơn kiến trúc von-Neumann do băng thông của bus lớn hơn
- ❖ Hỗ trợ nhiều thao tác đọc/ghi bộ nhớ tại một thời điểm → giảm xung đột truy nhập bộ nhớ, đặc biệt khi CPU sử dụng kỹ thuật đường ống (pipeline).

IF	ID	EX	MEM	WB				
į	IF	ID	EX	MEM	WB			
<i>t</i> →		IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB	
				IF	ID	EX	MEM	WB

www.ptit.edu.vn GIẢNG VIÊN: TS. NGUYỄN QUÝ SỸ Trang 43

BÀI GIẢNG MÔN KIẾN TRÚC MÁY CHƯƠNG 1 – GIỚI THIỆU CH CPU

TỔ CHỨC CỦA **MÁY TÍNH HIỆN** ĐẠI

GIẢNG VIÊN: TS. NGUYỄN QUÝ SỸ

Trang 44 www.ptit.edu.vn

TỔ CHỨC CỦA MÁY TÍNH HIỆN ĐẠI

Một bảng mạch chính (motherboard)

Một bảng

mạch chính

BÀI GIẢNG MÔN KIẾN TRÚC MÁY TÍNH

www.ptit.edu.vn Trang 46

BÀI GIẢNG MÔN KIẾN TRÚC MÁY TÍNH

www.ptit.edu.vn GIANG VIEN: 15. NGUYEN QUY 5Y Trang 47

1.4 CÁC HỆ SỐ ĐẾM

- Trong hầu hết các hệ thống tính toán, hệ đếm nhị phân (binary numbering system) được sử dụng để biểu diễn dữ liệu;
- Trong hệ đếm nhị phân, chỉ 2 chữ số 0 và 1 được sử dụng: 0 biểu diễn giá trị Sai (False) và 1 biểu diễn giá trị Đúng (True);
- Ngoài ra, hệ đếm thập lục phân (hexadecimal numbering system) cũng được sử dụng. Hệ thập lục phân sử dụng 16 chữ số: 0-9, A, B, C, D, E, F.

1.7.1 CÁC HỆ SỐ ĐẾM – HỆ THẬP PHÂN (10)

- ♣ Hệ thập phân (Decimal numbering system) là hệ đếm cơ số 10 và sử dụng 10 chữ số: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- Mỗi số trong hệ 10 có thể được biểu diễn thành 1 đa thức:

$$(a_n a_{n-1...} a_1, b_1 b_2...b_n)_{10}$$

= $a_n * 10^{n-1} + a_{n-1} * 10^{n-2} + ... + a_1 * 10^0 + b_1 * 10^{-1} + b_2 * 10^{-2} + ... + b_n * 10^{-n}$

❖ Ví dụ:

$$123,456 = 1*10^2 + 2*10^1 + 3*10^0 + 4*10^{-1} + 5*10^{-2} + 6*10^{-3}$$

1.7.1 CÁC HỆ SỐ ĐẾM – HỆ THẬP PHẦN (10)

- Hệ thập phân (Decimal numbering system) là hệ đếm cơ số 10 và sử dụng 10 chữ số: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- Mỗi số trong hệ 10 có thể được biểu diễn thành 1 đa thức:

$$a_n a_{n-1...} a_1 a_0 = a_n^* 10^n + a_{n-1}^* 10^{n-1} + ... + a_1^* 10^0$$

❖ Ví du:

$$123 = 1*10^{2} + 2 * 10^{1} + 3*10^{0} = 100+20+3$$

$$123.456 = 1*10^{2} + 2*10^{1} + 3*10^{0} + 4*10^{-1} + 5*10^{-2} + 6*10^{-3}$$

$$= 100 + 20 + 3 + 0.4 + 0.05 + 0.006$$

1.7.1 CÁC HỆ SỐ ĐẾM – HỆ NHỊ PHÂN (2)

- ❖ Hệ nhị phân (Binary numbering system) là hệ đếm cơ số 2 và chỉ sử dụng 2 chữ số: 0 và 1.
- Mỗi số trong hệ 2 cũng có thể được biểu diễn thành 1 đa thức:

$$(a_n a_{n-1\dots} a_1, b_1 b_2 \dots b_n)_2$$

$$= a_n^* 2^{n-1} + a_{n-1}^* 2^{n-2} + \dots + a_1^* 2^0 + b_1^* 2^{-1} + b_2^* 2^{-2} + \dots + b_n^* 2^{-n}$$

❖ Ví dụ:

$$(11001010)_2 = 1*2^7 + 1*2^6 + 0*2^5 + 0*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0$$
$$= 128 + 64 + 8 + 2 = (202)_{10}$$

1.7.1 CÁC HỆ SỐ ĐẾM – HỆ NHỊ PHÂN (2)

Chuyển từ số hệ 10 sang số hệ 2

1.7.1 CÁC HỆ SỐ ĐẾM – HỆ THẬP LỤC PHÂN (16)

- ♣ Hệ thập lục phân (Hexadecimal numbering system) là hệ đếm cơ số 16 và sử dụng 16 chữ số: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
- Mỗi số trong hệ 16 được biểu diễn bởi 4 chữ số trong hệ nhị phân:

Hexa	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

www.ptit.edu.vn GIẢNG VIÊN: TS. NGUYỄN QUÝ SỸ Trang 53

❖ Bits:

- Bit là đơn vị lưu trữ nhỏ nhất.
- Một bit chỉ có thể lưu 2 giá trị: 0 hoặc 1, hay đúng hoặc sai.

Nibbles:

- Một nibble là một nhóm của 4 bits
- Một nibble có thể lưu tối đa 16 giá trị, từ (0000)₂ đến (1111)₂, hoặc một chữ số thập lục phân.

❖ Bytes:

- Một byte là một nhóm của 8 bits hoặc 2 nibbles.
- Một byte có thể lưu đến 256 giá trị, từ (0000 0000)₂ đến (1111 1111)₂, hoặc từ (00)₁₆ đến (FF)₁₆.

❖ Words (từ):

- Một word là một nhóm của 16 bits, hoặc 2 bytes
- Một word có thể lưu đến 2¹⁶ (65536) giá trị, từ (0000)₁₆ đến (FFFF)₁₆.

- ❖ Double words (từ kép):
 - Một double word là một nhóm 32 bits, hoặc 4 bytes, hoặc 2 words
 - Một double word có thể lưu đến 2³² giá trị, từ (0000 0000)₁₆ đến (FFFF FFFF)₁₆.

1.7.3 SỐ CÓ DẤU VÀ KHÔNG DẤU

- ❖ Trong hệ 2, bít bên trái nhất của đơn vị lưu trữ được sử dụng để biểu diễn dấu của số có dấu:
 - Bít bên trái nhất là 1 → số âm
 - Bít bên trái nhất là 0 → số dương
- ❖ Ví dụ: nếu sử dụng 4 bít là đơn vị lưu trữ
 - 0011, 0111, 0101 là các số dương
 - 1011, 1111, 1101 là các số âm
- Với các số không dấu, tất cả các bít được sử dụng để biểu diễn giá trị của số.

1.7.3 SỐ CÓ DẤU VÀ KHÔNG DẤU

- ❖ Miền giá trị có thể biểu diễn của một số gồm n bít:
 - Số nguyên: từ -(2ⁿ⁻¹-1) đến + (2ⁿ⁻¹-1)
 - 8 bits: từ -127 đến +127
 - 16 bits: từ -32767 đến +32767
 - 32 bits: từ -2,147,483,647 đến +2,147,483,647
 - Số tự nhiên: từ 0 đến 2ⁿ-1
 - 8 bits: từ 0 đến 255
 - 16 bits: từ 0 đến 65535
 - 32 bits: từ 0 đến 4,294,967,295
 - $-(-5)_{10}=(-0101)_2=(1000\ 0101)_2$

3. Biểu diễn số có dấu phảy động (t)

- ❖ Biểu diễn số thập phân
- ❖ Biểu diễn theo chuẩn
 - = ± 1, $f_1f_2f_3...f_n \times 2^{\pm E}$
 - Phần dấu
 - Phần mũ
 - Phần định trị
- ❖ Tiêu chuẩn IEEE
 - Biếu diễn với độ chính xác đơn: 32 bit
 - Biểu diễn với độ chính xác kép: 64 bit

3. Biểu diễn số thập phân (t)

- Tiêu chuẩn IEEE-Biểu diễn với độ chính xác đơn: 32 bit
 - $(-1)^{S} * (1,f_1f_2...f_{23}) * 2^{(E-127)}$
 - Trường dấu (S): 1 bit
 - Trường mũ (E): 8 bit

```
bit 31 30 23 22 bit 1 bit 0 S E f_1 f_2 ....... f_{22} f_{23}
```


3. Biểu diễn số thập phân (t)

- Tiêu chuẩn IEEE-Biểu diễn với độ chính xác kép: 64 bit
 - $-(-1)^{S} * (1,f_1f_2...f_{52}) * 2^{(E-1024)}$
 - Trường dấu (S): 1 bit
 - Trường mũ (E): 11 bit
 - Phần lẻ (F): 52 bit

bit	63	62		52	2 51			bit 1	bit 0
	S		E		f_1	\mathbf{f}_2	•••••	f ₅₁	\mathbf{f}_{52}

1.7.4 BẢNG MÃ ASCII

- ASCII (American Standard Code for Information Interchange) là bảng mã các ký tự chuẩn tiếng Anh;
- ❖ Sử dụng 8 bít để biểu diễn 1 ký tự
- Bảng ASCII định nghĩa 128 ký tự thông thường:
 - 33 ký tự điều khiển (không in ra được)
 - 94 ký tự có thể in được (gồm cả dấu trắng)
- Các vị trí còn lại trong bảng (129-255) để dành cho sử dụng trong tương lai.

1.7.4 BẢNG MÃ ASCII – CÁC KÝ TỰ ĐIỀU KHIỂN

Binary	Oct	Dec	Hex	Abbr	PR ^[t 1]	CS ^[t 2]	CEC ^[t 3]	Description
000 0000	000	0	00	NUL	NUL	^@	\0	Null character
000 0001	001	1	01	SOH	SOH	^Д		Start of Header
000 0010	002	2	02	STX	STX	^B		Start of Text
000 0011	003	3	03	ETX	ETX	^C		End of Text
000 0100	004	4	04	EOT	EOT	^D		End of Transmission
000 0101	005	5	05	ENQ	ENQ	۸E		Enquiry
000 0110	006	6	06	ACK	ACK	۸F		Acknowledgment
000 0111	007	7	07	BEL	BEL	^G	\a	Bell
000 1000	010	8	80	BS	BS	^H	/b	Backspace ^{[t 4][t 5]}
000 1001	011	9	09	HT	нт	Λ	\t	Horizontal Tab
000 1010	012	10	0A	LF	LF	۸J	\n	Line feed

www.ptit.edu.vn GIẢNG VIÊN: TS. NGUYỄN QUÝ SỸ Trang 64

1.7.4 BẢNG MÃ ASCII – CÁC KÝ TỰ IN ĐƯỢC

Binary	Oct	Dec	Hex	Glyph
010 0000	040	32	20	SP
010 0001	041	33	21	!
010 0010	042	34	22	"
010 0011	043	35	23	#
010 0100	044	36	24	\$
010 0101	045	37	25	%
010 0110	046	38	26	&
010 0111	047	39	27	
010 1000	050	40	28	(
010 1001	051	41	29)
010 1010	052	42	2A	*
010 1011	053	43	2B	+
010 1100	054	44	2C	,

Binary	Oct	Dec	Hex	Glyp
100 0000	100	64	40	@
100 0001	101	65	41	Α
100 0010	102	66	42	В
100 0011	103	67	43	С
100 0100	104	68	44	D
100 0101	105	69	45	Е
100 0110	106	70	46	F
100 0111	107	71	47	G
100 1000	110	72	48	Н
100 1001	111	73	49	-1
100 1010	112	74	4A	J
100 1011	113	75	4B	K
100 1100	114	76	4C	L

Binary	Oct	Dec	Hex	Glyph
110 0000	140	96	60	•
110 0001	141	97	61	а
110 0010	142	98	62	b
110 0011	143	99	63	С
110 0100	144	100	64	d
110 0101	145	101	65	е
110 0110	146	102	66	f
110 0111	147	103	67	g
110 1000	150	104	68	h
110 1001	151	105	69	i
110 1010	152	106	6A	j
110 1011	153	107	6B	k
110 1100	154	108	6C	- 1

www.ptit.edu.vn GIẢNG VIÊN: TS. NGUYỄN QUÝ SỸ Trang 65

CÂU HỎI ÔN TẬP

- 1. Phân biệt khái niệm kiến trúc & tổ chức máy tính
- 2. Nêu sơ đồ khối và mô tả chức năng từng khối của máy tính?
- 3. So sánh hai kiến trúc von-Neumann và Harvard
- 4. Nhận dạng các thành phần phần cứng của cấu trúc máy tính hiện đại.
- 5. Các hệ đếm 2, 10 và 16.
- 6. Các đơn vị lưu trữ dữ liệu trên máy tính.

ĐƠN VỊ DUNG LƯỢNG

- 1. Byte = 8bit
- 2. KByte = 2^10 Byte (KB, KiB)
- 3. Mbyte = 2^10 KByte (MB, MiB)
- 4. Gbyte = 2^10 MByte (GB, GiB) 500GB
- 5. TByte = 2^10 GByte (TB, TiB) 1TB
- 6. $PByte = 2^10 TByte$

VÍ DỤ MỘT SỐ THIẾT BỊ CHO BÀI TẬP LỚN

- 1. Hitachi G130
- 2. Dell EMC PowerVault ME4024
- 3. HP MSA 2050
- 4. ETERNUS DX100 S5
- 5. HPE 8200
- 6. HPE MSA 2050

Chú ý: Sinh viên không được sử dụng các thiết bị này cho bài tập lớn mà phải lựa chọn thiết bị tương tự!

1. Thời gian hạn cuối:

NỘP BÀI TẬP LỚN

1. Nhóm 3,7,8: 23h59 ngày 26/04/2023

2. Nộp bài tập

- File word
 - 1. Tên file: "Nhom X To YY.docx" và gửi email synq@ptit.edu.vn
 - Định dạng file word: Theo định dạng của Đồ án/Khóa luận của Học viện Công nghệ BCVT.
 - 3. Nội dung báo cáo:
 - Tổng quan về thiết bị (Thông số kỹ thuật của thiết bị), Kiến trúc, cấu tạo của thiết bị
 - Các giao diện của thiết bị
 - 3. Cơ chế đảm bảo HA của thiết bị
 - 4. Tài liệu tham khảo chính hãng
 - 1. Datasheet
 - 2. Architecture, Hardware Manua/Hardware Reference

GIẢNG VIÊN: TS. NGUYỄN QUÝ SỸ

NỘP BÀI TẬP LỚN

- 1. Báo cáo dùng Slides
 - 1. Báo cáo trong thời gian 5-7 phút
 - 2. Mỗi nhóm có 10 phút để báo cáo và trả lời.
- 2. Đánh giá:
 - 1. Điểm bài tập (20%) = ½(điểm quyển + điểm báo cáo) + điểm trả lời câu hỏi