NEW ABSTRACT

A position determining system for determining a position of a rotor of a rotating motor has sensors that are coupled to the rotor. The sensors generate, in response to a rotation of the rotor, a quadrature signal that has sine and cosine components. The position determining system calculates a sum (A^2) of a squared value of the sine component $(A^2\sin^2x)$ and a squared value of the cosine component $(A^2\cos^2x)$. An amplitude correction factor (A) is calculated as the squared root of the sum (A^2) . An amplitude corrected sine component $(\sin(x))$ is obtained by dividing the sine component $(A\sin(x))$ by the amplitude correction factor (A). An amplitude corrected cosine component $(\cos(x))$ is obtained by dividing the cosine component $(A\cos(x))$ by the amplitude correction factor (A).