1 Set Theory

- 1. The Universal Set \mathcal{U}
- 2. Union
- 3. Intersection
- 4. Set Difference
- 5. Relative Difference

- Chapter 4: Functions
 - Inverse of a Function
 - One-to-One and Onto
 - Special Functions

3 Chapter 3: Logic

2003 Question 3

Let p, q be the following propositions:

- \bullet p : this apple is red,
- \bullet q: this apple is ripe.

Express the following statements in words as simply as you can:

- (i) $p \to q$
- (ii) $p \wedge \neg q$.

Express the following statements symbolically:

- (iii) This apple is neither red nor ripe.
- (iv) If this apple is not red it is not ripe.

3.1 Logical Operations

- Logical "AND" (∧)
- Logical "OR" (∨)
- Logical "NOT"

Logic Networks

- AND Gates
- $\bullet~{\rm OR~Gates}$
- NOT Gates

Chapter 4: Functions

3.2 Arrow Diagrams

- Domain
- Co-Domain
- Range

Boolean Functions and ordered *n*-tuples 3.3

- Ordered Triples
- Boolean Fucntions

The Asbolute Value, Floor and Ceiling Functions

- The Absolute Value Function
- Floor
- Ceiling

Power functions and Polynomials

Consider the function f: Z-; Z defined by f(n) = 3n-1. Does this function have the onto property?

$$ax^2 + bx + c$$

Summer 2003 Question 4

X	
f(x)	
g(x)	

Functions

- Domain of a Function
- Range of a function
- Inverse of a function
- one-one (surjective)
- onto (bijective)

The complement rule in Probability

$$P(C') = 1 - P(C)$$

If the probability of C is 70% then the probability of C' is 30%

4 Matrices

What are the dimensions of the following matrix

$$\left(\begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right) \left(\begin{array}{cc} c_1 & d_1 \\ c_2 & d_2 \end{array} \right) = \left(\begin{array}{cc} (a_1 \times c_1) + (a_2 \times c_2) & (a_1 \times d_1) + (a_2 \times d_2) \\ (b_1 \times c_1) + (b_2 \times c_2) & (b_1 \times d_1) + (b_2 \times d_2) \end{array} \right)$$

$$\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} (1 \times 1) + (3 \times 4) & (1 \times 2) + (3 \times 1) \\ (0 \times 4) + (2 \times 4) & (0 \times 2) + (2 \times 1) \end{pmatrix} = \begin{pmatrix} 14 & 5 \\ 8 & 2 \end{pmatrix}$$

$$\left(\left(\begin{array}{cc} 1 & 2 \\ 4 & 1 \end{array} \right) \begin{array}{cc} 1 & 3 \\ 0 & 2 \end{array} \right) = ?$$