Прикладная статистика. Проверка гипотез. Критерии согласия.

Леонид Иосипой

Программа «Математика для анализа данных» Центр непрерывного образования, ВШЭ

10 февраля 2021

• Повторение

• Проверка гипотез

• Критерии согласия

В проверке гипотез делается предположение о процессе, генерирующем данные, и задача состоит в том, чтобы определить, содержат ли данные достаточно информации, чтобы отвергнуть это предположение или нет.

Чтобы иметь возможность отвергнуть предположение, необходимо зафиксировать альтернативу — другое предположение о данных, относительно которого мы будем решать, отвергать основную гипотезу или нет.

Пример

Предположим, что кто-то подбросил 10 раз монетку, и в 8 случаях она упала гербом вверх. Можно ли считать эту монетку симметричной?

Пусть
$$X_1, \ldots, X_n \sim \mathbf{B_p}$$
.

 $H_0: p = \frac{1}{2}$ (основная гипотеза).

 $H_1: p \neq \frac{1}{2}$ (альтернативная гипотеза).

Как проверить гипотезу H_0 о том, что p=1/2?

Правило, позволяющее принять или отвергнуть гипотезу H_0 на основе данных называется статистическим критерием.

Обычно критерий задается при помощи статистики критерия $T(x_1, \ldots, x_n)$ такой, что для нее типично принимать умеренные значения в случае, когда гипотеза H_0 верна, и большие (иногда малые) значения, когда H_0 не выполняется.

Статистика критерия T должна обладать важным свойством:

- при верной H_0 статистика T должна иметь известное нам распределение G_0 ;
- при неверной H_0 должна иметь какое-либо распределение отличное от G_0 .

В нашем примере в качестве статистики T можно взять

$$T(x_1,\ldots,x_n)=x_1+\ldots+x_n.$$

Тогда гипотезе H_0 : p=1/2 противоречат значения, которые близки к 0 или n.

Более того,

- ▶ при верной H_0 имеет биномиальное распределение ${\bf B_{n,1/2}};$
- ▶ при верной H_1 имеет биномиальное распределение ${f B_{n,p}},$ но с $p \ne 1/2.$

Если значение T попало в область, имеющую при выполнении гипотезы H_0 малую вероятность, то можно заключить, что данные противоречат гипотезе H_0 в пользу альтернативы H_1 .

Если значение T попало в область, имеющую при выполнении гипотезы H_0 большу́ю вероятность, то можно заключить, что данные не свидетельствуют против гипотезы H_0 в пользу альтернативы H_1 .

Формализация задачи:

выборка: $\mathbf{X} = (X_1, ..., X_n), X_i \sim F$

нулевая гипотеза: $H_0: F \in \mathcal{F}_0$

альтернатива: $H_1: F \in \mathcal{F}_1$, $\mathcal{F}_1 \cap \mathcal{F}_0 = \varnothing$

статистика: $T(x_1,...,x_n)$, $T(\mathbf{X}) \sim G_0$ при H_0 $T(\mathbf{X}) \sim G_0$ при H_1

реализация выборки: $\mathbf{x} = (x_1, ..., x_n)$

 $\mathbf{x} = (x_1, \dots, x_n)$ $t = T(\mathbf{x})$

реализация статистики: достигаемый уровень значимости

 $p(\mathbf{x}) = \mathbb{P}(T(\mathbf{X}) \ge t \mid H_0)$

или p-value:

(если для T экстремальные

значения — большие)

Достигаемый/Фактический уровень значимости (p-value) — это вероятность для статистики T при верной H_0 получить значение t или ещё более экстремальное.

Если для для статистики T экстремальными значениями являются большие значения, то это можно записать так:

$$p(\mathbf{x}) = \mathbb{P}(T(\mathbf{X}) \geq t \mid H_0).$$

Нулевая гипотеза H_0 отвергается при $p(\mathbf{x}) \leq \alpha$, α — уровень значимости, который мы задаем.

	H_0 верна	H_0 неверна
H_0 принимается	H_0 верно принята	Ошибка второго рода
		(False negative)
H_0 отвергается	Ошибка первого рода (False positive)	H_0 верно отвергнута

Type I error (false positive)

Type II error (false negative)

Если величина p-value достаточно мала, то данные свидетельствуют против нулевой гипотезы H_0 в пользу альтернативы H_1 .

Если величина p-value недостаточно мала, то данные не свидетельствуют против нулевой гипотезы H_0 в пользу альтернативы H_1 .

При помощи инструмента проверки гипотез нельзя доказать справедливость нулевой гипотезы!

Вероятность отвергнуть нулевую гипотезу зависит не только от того, насколько она отличается от истины, но и от размера выборки.

По мере увеличения n нулевая гипотеза может сначала приниматься, но потом выявятся более тонкие несоответствия выборки гипотезе H_0 , и она будет отвергнута.

Задача

Джеймс Бонд говорит, что предпочитает взболтанный мартини, но не смешанный. Проверим, так это или нет.

Проведём слепой тест: n раз предложим ему пару напитков и выясним, какой из двух он предпочитает.

Выборка: $\mathbf{X} = (X_1, \dots, X_n)$, где $X_i \sim \mathbf{B_p}$.

Реализация выборки: $\mathbf{x} = (x_1, \dots, x_n)$ — это бинарный вектор длины n, где

- ▶ 1 Джеймс Бонд выбрал взболтанный мартини
- ▶ 0 Джеймс Бонд выбрал смешанный мартини

 H_0 : Д.Б. не различает два вида мартини, p=1/2.

 H_1 : Д.Б. предпочитает взболтанный мартини, p>1/2.

Статистика: $T(x_1, ..., x_n) = x_1 + ... + x_n$.

Реализация статистики: $t = T(\mathbf{x})$.

Какие значения T считаются экстремальными?

При альтернативе H_1 экстремальными являются большие значения t (они свидетельствуют против H_0 в пользу H_1).

Повторение Проверка гипотез Критерии согласия

Проверка гипотез

Если H_0 справедлива и Джеймс Бонд не различает два вида мартини, то T будет иметь распределение ${\bf B}_{n,1/2}$.

Пусть n=16, тогда ${\bf B}_{n,1/2}$ будет иметь следующий вид:

Допустим, что t=12, то есть в 12 случаях из 16 Джеймс Бонд выбрал взболтанный мартини.

Тогда достигаемый уровень значимости p-value paвeн:

$$\mathbb{P}(T(\mathbf{X}) \ge 12|H_0) = \frac{2517}{65536} \approx 0.0384.$$

Давайте поменяем альтернативу.

 H_1 : Джеймс Бонд предпочитает какой-то определённый вид мартини, но неизвестно какой, то есть $p \neq 1/2$.

При такой альтернативе и большие, и маленькие значения t свидетельствуют против H_0 в пользу H_1 .

Допустим, что t=12, то есть в 12 случаях из 16 Джеймс Бонд выбрал взболтанный мартини.

Тогда достигаемый уровень значимости p-value paвeн:

$$\mathbb{P}(T(\mathbf{X}) \ge 12$$
 или $T(\mathbf{X}) \le 4|H_0) = \frac{5034}{65536} \approx 0.0768.$

Чем ниже достигаемый уровень значимости, тем сильнее данные свидетельствуют против нулевой гипотезы в пользу альтернативы.

Достигаемый уровень значимости нельзя интерпретировать как вероятность справедливости нулевой гипотезы!