Music Recommender System

Prakyath Madadi pm3140

What's a recommender system?

- A system which recommends content to users.
 - Spotify, Netflix, Amazon ...
- Why?
 - Better User experience
 - More profits
 - Proxy for recommendations from social interactions.

How?

- Based on user content interactions.
- Sources:
 - Implicit plays, watch/listen history
 - Explicit ratings
- Build a system that predicts content that a user will most likely engage with.

Matrix Factorization

- → I've used the matrix factorization method of Collaborative filtering.
- → Specifically, I've used the Alternating Least squares (ALS) method.
- → The user interaction matrix (The user-artist ratings) is decomposed into user and content embeddings.
- \rightarrow The embeddings are used to get the predictions.

Movies	User 1	User 2	User 3	User 4
Item 1	1		4	5
Item 2	5	4	1	2
Item 3	4	4		3
Item 4	2	2	4	
Item 5		5	3	2

Movies			User 1	User 2	User 3	User 4
			x6	x7	x8	х9
			y6	у7	y8	y9
Item 1	x1	y1	x1.x6+y1.y6	x1.x7+y1.y7	x1.x8+y1.y8	x1.x9+y1.y9
Item 2	x2	y2	x2.x6+y2.y6	x2.x7+y2.y7	x2.x8+y2.y9	x2.x9+y2.y9
Item 3	хЗ	уз	x3.x6+y3.y6			
Item 4	x4	y4	x4.x6+y4.y6			
Item 5	x5	у5	x5.x6+y5.y6			

The Algorithm

- In ALS, the algorithm tries to minimize 2 loss functions based on the user features (V) and content features (U).
- A is the rating matrix.
- The loss for minimizing with respect to content features:

$$\Sigma^n{}_j\Sigma_i{}^m(A_{ij}-U_iV_j{}^T)^2 \ \text{ for } r(i,j)\text{=1 or } (i,j)\in (\text{rated}) \ +\lambda/2 \ \Sigma_i{}^m(U_j)^2$$

The loss for minimizing with respect to user features:

$$\boldsymbol{\Sigma_{i}^{.m}\boldsymbol{\Sigma}^{n}}_{j}(\boldsymbol{A}_{ij} - \boldsymbol{U_{i}\boldsymbol{V_{j}}^{T}})^{2} \ \ \text{for } \boldsymbol{r(i,j)} = 1 \text{ or } (i,j) \in (\text{rated}) \ + \lambda 2 \ \boldsymbol{\Sigma}^{n}_{j} \ (\boldsymbol{V_{j}})^{2}$$

The algorithm alternates between the two equations, solving for 'U' and 'V'.

Advantages over other methods

 The user interaction matrix is sparse, making the models difficult to train.

 Cold start problem: New Users and Content will have very few interactions making it difficult for the predictions Scalability: When the number of users and Content scale, they might not fit in a single machine.

 ALS can deal with sparsity and cold start problem through feature projection. It also can be performed in a distributed way.

Disadvantages

- The ALS also can't predict the ratings for new items or features.
- Can be solved using projections.
- For every new item solve the following equation: (Similarly for new users)

$$\min_{v_{i_0}\in\mathbb{R}^d}\|A_{i_0}-Uv_{i_0}\|$$

It gets difficult to include side features like explicit ratings for songs/movies.

Data

- I've used a subset of the Last.Fm Dataset.
- The data consists of users, artists and ratings for the artists.
- The data is imported from json files.
- There are about 30,000 ratings for 10,000 artists.

Data

Users

id first name last name srunolfsdottir Seamus | Runolfsdottir cbartoletti Celestine Bartoletti kschamberger Kattie Schamberger sschamberger Sidney Schamberger vschamberger Victor Schamberger dmacejkovic Delfina Macejkovic Christiansen rchristiansen Roy eankunding Everette Ankunding erutherford Emilio Rutherford evandervort Vandervort Elvera Gregoria Ankunding gankunding hbartoletti Hector Bartoletti hcartwright Hailee Cartwright hgusikowski Gusikowski Howard karmstrong Kenyatta Armstrong drosenbaum Rosenbaum Dorothy ghalvorson Halvorson Gaylord kswaniawski Kyler Swaniawski Rosenbaum arosenbaum Amanda aschimmel Adelbert Schimmel

Artists

+	++ name
+	++
00010eb3-ebfe-4965-81ef-0ac64cd49fde	La Niña de los Peines
00034ede-a1f1-4219-be39-02f36853373e	O Rappa
0003fd17-b083-41fe-83a9-d550bd4f00a1	安倍なつみ
0004537a-4b12-43eb-a023-04009e738d2e	Ultra Naté
0013bcdd-fe35-4c9f-ac41-4b41b9000e17	Siobhan Magnus
00302a51-04f5-4b2d-8993-fcd1c2ae1cf4	柚楽弥衣
0035a150-bceb-4abe-88ca-a494cdf14968	Laura McCormick
0035c656-9853-44a8-b105-c44089a43cea	Diandra
00376321-ce0f-4bd7-a98f-fcabdbf06ea7	Raappana
0039c7ae-e1a7-4a7d-9b49-0cbc716821a6	Death Cab for Cutie
003b2747-b74a-46c1-a51e-aeaffe88256c	Erdmöbel
0040c89b-f2e6-4bc3-b75d-5152fb0c890e	Bernhard Romberg
00413ec4-1dd2-4878-b98a-743cf6499501	Rauno Lehtinen
0042aa4d-a972-4a2a-b7cf-8044d09bbc67	Andrew Fletcher
00445d42-1e63-48e7-ba2f-066cd37a0927	Hilding Rosenberg
004e5eed-e267-46ea-b504-54526f1f377d	The Gathering
004e6286-a1c3-4174-b9f5-710666e39ecf	Richie Loop
005a1712-6d74-47cb-9032-8bd63febd966	Nichole Cordova
005dd8c0-1c1c-4ed2-8963-4249449f5901	Ernst Jandl
006631f4-5214-49ff-a386-a064853d1a1e	Marco Antonio Solís
+	++
only showing top 20 rows	

Data

+	·	+	+ -	·	+
artist_name	artist_idx	rating	first_name	last_name	user_idx
t		+	+		
Johann Ludwig Dei				Kuphal	147
Wojciech Kilar	8156	1.0	Grace	Keebler	135
Me G	1061	3.0	Annabelle	Kovacek	31
Johann Ludwig Dei	4103	4.5	Genevieve	Koepp	136
Marianne Hoppe	486	3.5	Paolo	Roob	295
Ken Mary	7399	4.0	Liza	Hayes	284
Christopher Smith	4577	4.0	Anabel	Raynor	156
Jānis Volkinšteins	3181	4.0	Maia	Turner	231
Jacob Appelbaum	9710	1.5	Alexis	Rice	273
Demetrio Stratos	2591	1.0	Hank	Greenholt	56
Laura McCormick	7	0.5	Burley	Cormier	97
Robert Pete Williams	7170	1.5	Alaina	Норре	212
Ilmari Kianto	7815	3.5	Patrick	Sipes	208
Andreas Melzer	1381	5.0	Maximilian	Beer	177
Terry Zwigoff	5393	3.0	Dorcas	Nitzsche	50
Sally Liebling	6705	1.0	Grant	Denesik	134
MINX		117735000139790		Frami	
Naked Lunch					
Ludwig van Beethoven	2000	<u>.</u>			
R5	7357				50000 5
+		' }	, }		+

Implementation

- I've used python and pyspark to implement the algorithm.
- Mean square error is the metric used to check the accuracy of the algorithm.
- I've also tuned the hyperparameters such as the 'rank', which is the number of features in the user/artists matrices, and regularization parameters using cross validation.

Results

```
user idx recommendations
         [{7544, 3.4299242}, {6788, 3.4201376}, {1819, 3.391148}, {8089, 3.383186}, {3136, 3.3413465}]
2
         [{6788, 3.3839545}, {8089, 3.3699589}, {4243, 3.359496}, {8918, 3.3417923}, {7544, 3.333958}]
         [{6788, 3.6798096}, {7544, 3.523285}, {8089, 3.4815512}, {1819, 3.4570453}, {7303, 3.3736715}]
         [{7544, 3.4695644}, {6788, 3.434499}, {1819, 3.4197497}, {8089, 3.3995671}, {3136, 3.3704789}]
         [{6788, 3.6248646}, {8089, 3.4687984}, {7544, 3.4566078}, {1819, 3.4042354}, {7694, 3.3865192}]
         [{7544, 3.5000014}, {6788, 3.476198}, {1819, 3.4270995}, {8089, 3.4048772}, {3136, 3.3552952}]
         [{3136, 3.3202245}, {4243, 3.3086903}, {7544, 3.2900515}, {8918, 3.2878594}, {1819, 3.2855673}]
         [{6788, 3.4894404}, {7694, 3.369728}, {2341, 3.344026}, {8089, 3.312599}, {8918, 3.2796593}]
         [{6788, 3.6929147}, {8089, 3.5765963}, {7544, 3.5674694}, {1819, 3.5080776}, {2341, 3.505864}]
10
         [{6788, 3.2889228}, {8089, 3.2568095}, {7544, 3.2424614}, {4243, 3.235199}, {1819, 3.228875}]
11
         [{6788, 3.487557}, {8089, 3.2995489}, {7544, 3.2794623}, {1819, 3.2380385}, {7694, 3.233576}]
12
         [{7544, 3.3825257}, {8089, 3.3678699}, {1819, 3.3520553}, {6788, 3.3459547}, {4243, 3.3431408}]
13
         [{7544, 3.2962694}, {6788, 3.2626708}, {8089, 3.2562191}, {1819, 3.2518914}, {3136, 3.2206428}]
14
         [{8918, 3.3932278}, {4243, 3.3337202}, {6788, 3.2984304}, {8089, 3.2972484}, {6316, 3.2892783}]
15
         [{7544, 3.5592954}, {6788, 3.5539331}, {8089, 3.5320318}, {1819, 3.5154307}, {4243, 3.478233}]
16
         [{7544, 3.4293418}, {3136, 3.4085493}, {1819, 3.4084687}, {8089, 3.3893166}, {4243, 3.3833141}]
17
         [{8918, 3.4218934}, {4243, 3.3960438}, {8089, 3.3795955}, {6788, 3.3744016}, {1819, 3.3549037}]
18
         [{6788, 3.4827743}, {7544, 3.429376}, {8089, 3.3829737}, {1819, 3.3740323}, {4243, 3.2913897}]
19
         [{7544, 3.4727392}, {1819, 3.393508}, {3136, 3.3823984}, {8089, 3.3384373}, {6788, 3.3067024}]
20
         [{7544, 3.5019748}, {1819, 3.443106}, {3136, 3.4262924}, {8089, 3.4194005}, {6788, 3.3979461}]
```

Results

```
artist idx recommendations
1
           | [{264, 2.8941636}, {64, 2.714923}, {144, 2.6994388}, {167, 2.6796587}, {151, 2.66272} |
2
           \lceil \{264, 2.9103405\}, \{189, 2.7131872\}, \{143, 2.6199155\}, \{64, 2.5764272\}, \{144, 2.505271\} \rceil
3
           [{264, 2.8888388}, {143, 2.5938532}, {189, 2.5587416}, {64, 2.548776}, {144, 2.4307094}]
           [{271, 2.8172092}, {151, 2.8040452}, {144, 2.8008206}, {8, 2.7958412}, {167, 2.7786841}]
           [{264, 3.2092507}, {189, 2.9546824}, {144, 2.9401858}, {64, 2.9273157}, {151, 2.8702097}]
           [{264, 3.593741}, {189, 3.2614257}, {64, 3.2275956}, {143, 3.2243874}, {144, 3.1612148}]
           [{264, 3.4889274}, {143, 2.98212}, {64, 2.975236}, {189, 2.9597526}, {144, 2.857447}]
           [{264, 3.439353}, {64, 3.0507367}, {143, 3.0077093}, {144, 2.9767878}, {272, 2.9580722}]
           [{264, 2.9044318}, {258, 2.8173397}, {167, 2.8134878}, {143, 2.7507231}, {43, 2.7214255}]
10
           [{264, 3.3771493}, {189, 3.1540482}, {143, 3.1138847}, {258, 3.0464172}, {64, 3.0440028}]
11
           [{264, 2.6846313}, {143, 2.4745443}, {189, 2.461676}, {64, 2.442401}, {258, 2.4124374}]
12
           \[{264, 3.226561}, {189, 2.994365}, {143, 2.9604566}, {64, 2.9286032}, {258, 2.8598876}]
13
           \lceil \{264, 2.9316895\}, \{64, 2.7189112\}, \{144, 2.710484\}, \{151, 2.6634367\}, \{189, 2.6629453\} \rceil
           [{264, 3.365703}, {143, 3.0124838}, {64, 2.9809248}, {189, 2.9762921}, {144, 2.8620853}]
14
15
           [{264, 2.82973}, {64, 2.4995947}, {143, 2.4728336}, {189, 2.4676938}, {144, 2.4461305}]
16
           [{264, 3.7510567}, {189, 3.3900373}, {143, 3.322585}, {64, 3.264126}, {144, 3.143033}]
17
           [{264, 2.4740593}, {64, 2.2544217}, {143, 2.2348223}, {144, 2.2053916}, {189, 2.1996322}]
18
           \lceil \{264, 2.8612745\}, \{64, 2.6036758\}, \{144, 2.5715928\}, \{143, 2.5552077\}, \{189, 2.5330293\} \rceil
19
           [{264, 4.0491486}, {189, 3.5195308}, {143, 3.442467}, {64, 3.2949424}, {35, 3.1672206}]
20
           [{264, 2.9501026}, {189, 2.6810246}, {64, 2.6440535}, {143, 2.6231587}, {144, 2.6115296}]
```

Future Scope

• The embeddings can be learnt using Neural networks.

Predict by analyzing the content. For example, giving recommendations based on lyrics.

Accommodate side features like explicit ratings.

Questions?

Thanks!

