Bioquímica Geral

Sumário

ESTRUTURA DE PROTEÍNAS

- •Proteínas: Função e Classificação
- Níveis de organização estrutural das proteínas
- Estrutura primária
- Estrutura secundária
 - •Diagrama de Ramachandran.
 - •Elementos de estrutura secundária: hélice α e folha β
- •Estrutura terciária: Aminoácidos que se encontram no interior e no exterior. Forças que estabilizam a estrutura.
- Estrutura quaternária.
- •A sequência de aminoácidos determina a estrutura.
- Enrolamento e desnaturação das proteínas.
- •Métodos de determinação da estrutura 3D de proteínas

Conhecer a estrutura para compreender a função!

1ª determinação da estrutura de uma proteína globular John Kendrew 1958

"Perhaps the most remarkable features of the molecule are its complexity and lack of symmetry"

Mioglobina

Snapshot: July 1, 2010

Number of Entries

66212 released atomic coordinate

entries

Entries by Molecule Type

61280 proteins, peptides, and viruses

2746 protein/nucleic acid complexes

2148 nucleic acids

38 other

Entries by Experimental Technique

57298 X-ray

8449 NMR

295 electron microscopy

24 hybrid methods

146 other

O número de estruturas depositadas no PDB tem aumentado exponencialmente ao longo dos anos.

http://www.rcsb.org/pdb/

Proteínas: Função / Classificação

→ Função

- Catálise enzimática
- Estrutural (protecção e suporte)
- Movimento coordenado
- Defesa (protecção imunológica)
- Regulação da expressão genética
- Transporte
- geração e transmissão do impulso nervoso
- Transdução de energia

→ Classificação

1. Forma:

- Fibrosas, em forma de bastonete, longas, insolúveis em água, rígidas.
 Normalmente têm funções estruturais e de protecção.
- Globulares, esféricas, compactas, geralmente solúveis em água.
 Normalmente têm funções dinâmicas

2. Composição:

- Simples, constituídas apenas pela cadeia polipeptídica.
- Conjugadas, contêm, para além da cadeia polipeptídica, pelo menos um grupo químico (grupo prostético).

Proteínas: classificação

Monoméricas Poliméricas

homodímero / heterodímero

Dados Moleculares de Proteínas

	Molecular weight	Number of residues	Number of polypeptide chains
Cytochrome c (human)	13,000	104	1
Ribonuclease A (bovine pancreas)	13,700	124	1
Lysozyme (egg white)	13,930	129	1
Myoglobin (equine heart)	16,890	153	1
Chymotrypsin (bovine pancreas)	21,600	241	3
Chymotrypsinogen (bovine)	22,000	245	1
Hemoglobin (human)	64,500	574	4
Serum albumin (human)	68,500	609	1
Hexokinase (yeast)	102,000	972	2
RNA polymerase (E. coli)	450,000	4,158	5
Apolipoprotein B (human)	513,000	4,536	1
Glutamine synthetase (E. coli)	619,000	5,628	12
Titin (human)	2,993,000	26,926	1

Níveis de organização estrutural das proteínas:

- Estrutura primária
- · Estrutura secundária
- Estrutura terciária
- Estrutura quaternária

A hierarquia estrutural nas proteínas

Estrutura primária

Sequência linear de aminoácidos da cadeia polipeptídica.

Estrutura secundária

Arranjo espacial dos aminoácidos próximos na sequência linear: hélice- α , folha- β , volta- β

Estrutura terciária (3D)

Arranjo espacial da cadeia polipeptídica completa.

Estrutura quaternária

Arranjo espacial e interacções entre as diferentes cadeias polipeptídicas.

Só se aplica a proteínas poliméricas.

Níveis de estrutura

A estrutura primária. Definida pela sequência linear de aminoácidos da cadeia polipeptídica. Tem a ver com as ligações peptídicas (ligações covalentes – fortes.

A estrutura secundária. Descreve o arranjo espacial da cadeia polipeptídica sem ter em conta a conformação das cadeias laterais. Refere-se às repetições conformacionais locais que são estabilizadas por pontes de hidrogénio (hélice α , folha β , hélice tripla do colagénio).

A estrutura terciária. Refere-se à estrutura tridimensional da cadeia polipeptídica total. Inclui as interacções conformacionais espaciais e geométricas locais ou distantes. (Ligações fracas e pontes dissulfureto.)

A estrutura quaternária. Descreve a estrutura 3D e as interacções entre as diferentes cadeias polipeptídicas. Associações por ligações fracas e pontes dissulfureto das subunidades das proteínas poliméricas.

A estrutura primária

A estrutura primária de uma proteína é determinada pela sequência de bases no DNA do gene que a codifica.

Sequência de aminoácidos do citocromo *c* humano. Comparação com proteínas homólogas de outras espécies:

- a.a. conservados
- a.a. substituídos semelhantes substituições conservativas
 (identidade / homologia)
- 🗌 a.a. variáveis

Proteínas homólogas

(relacionadas do ponto de vista evolutivo)

Mutações ↔ Doenças

A função de uma proteína depende da sua sequência de aminoácidos porque a sequência vai determinar a estrutura.

A estrutura secundária

A estrutura secundária de uma proteína define-se como a conformação local da cadeia polipeptídica, excluindo a contribuição das cadeias laterais (backbone).

A conformação de uma cadeia polipeptídica pode ser descrita pelos ângulos rotacionais (ângulos diedro) das ligações covalentes: ângulos Φ e Ψ

As cadeias polipeptídicas podem formar estruturas regulares

Nem todas as combinações de ângulos diedro são permitidas: **Diagrama de Ramachandran**

As conformações que envolverem distâncias interatómicas menores do que as distâncias de van der Waals são estericamente proibidas.

Elementos de estrutura secundária

As cadeias polipeptídicas podem formar estruturas regulares

Hélice α e folha β

São as estruturas secundárias termodinamicamente mais estáveis em proteínas, porque são estabilizadas por pontes de hidrogénio entre os grupos CO e NH das ligações peptídicas.

Localização da hélice α e da folha β no diagrama de Ramachandran. Ângulos ψ e ϕ característicos dos dois tipos de estrutura secundária.

Hélice α é uma estrutura relativamente compacta.

Este arranjo rígido da cadeia polipeptídica é comum em proteínas

A hélice α : representações esquemáticas

A hélice α

A formação de hélice α é dependente do tipo e da sequência de aminoácidos.

A estrutura compacta da hélice α é **destabilizada** por:

repulsão electrostática entre grupos laterais carregados de resíduos consecutivos (Glu, Lis, Arg)

grupos laterais volumosos próximos destabilizam a estrutura devido a impedimentos estéricos (Asn, Ser, Tre, Leu)

ocorrência de Pro ou Gli

Cadeias polipeptídicas que atravessam membranas adoptam frequentemente uma estrutura secundária em hélice α

Estrutura secundária: Folha β

É uma estrutura relativamente distendida. Todos os grupos C=O e NH das ligações peptídicas formam ligações de hidrogénio **entre** cadeias.

Na folha β as cadeias laterais dos aminoácidos dispõem-se alternadamente para cima e para baixo do plano da folha.

A folha β: representações esquemáticas

β turn (volta β)

O grupo C=O do resíduo i forma uma ligação de hidrogénio com o grupo NH do resíduo i+3 para estabilizar a volta.

'turns' e 'loops' **não são** estruturas regulares ou periódicas como as hélices α e as folhas β mas são geralmente rígidas e bem definidas.

Encontram-se à superfície das proteínas onde muitas vezes participam em interacções com outras moléculas.

A Pro e a Gli no enrolamento da estrutura

- Devido à sua configuração estrutural, em anel, a Pro não se encaixa numa hélice $\alpha \to$ ocorrência nas extremidades \to "dobra" ou "cotovelos" no termo do segmento helicoidal
- A Gli ocorre, muitas vezes, nas "dobras" devido ao facto da sua cadeia lateral (H) se poder encaixar num pequeno espaço (impedimentos estéricos)

⇒ Tripla hélice do colagénio:

[Gli-X-Pro(HiPro)]_n Gli (●) na junção das 3 hélices

$\Rightarrow \beta$ turns:

Type II

A estrutura terciária

Relação entre aminoácidos que estão longe na sequência linear. (Estrutura tri-dimensional que uma proteína adopta como consequência das interacções entre os grupos laterais dos diferentes resíduos.)

Representações

Backbone da cadeia polipeptídica, destaca os elementos de estrutura secundária

Inclusão das cadeias laterais

Surface contour, vizualização de cavidades

http://www.rcsb.org/pdb/

Estrutura terciária: interacções

Em solução aquosa, as proteínas globulares enrolam-se formando estruturas compactas. Os resíduos hidrofóbicos ficam no interior e os resíduos com carga, polares, ou com capacidade de formar ligações de hidrogénio, ficam voltados para o exterior.

A estrutura terciária é estabilizada por interacções fracas: interacções electrostáticas, pontes de hidrogénio, interacções hidrofóbicas. Também podem ocorrer ligações dissulfureto (S-S) entre resíduos de cis.

Distribuição espacial dos resíduos:

- Resíduos não-polares (Val, Leu, Ile, Met, e Fen) → interior
- Resíduos polares carregados (Arg, His, Lis, Asp, e Glu) → superfície, em contacto com o solvente aquoso
- Resíduos polares não-carregados (Ser, Tre, Asn, Gln, e Tir) → superfície / interior (pontes de H).

Forças moleculares envolvidas na estabilização da estrutura terciária

Estrutura terciária

Predomina hélice α

Predomina folha β

Misto folha β e hélice α

A predominância dos elementos de estrutura secundária é muito variável de proteína para proteína.

ESTRUTURAS SECUNDÁRIAS EM ALGUMAS PROTEÍNAS
MONOMÉRICAS

Proteína (nº resíduos)	Resíduos (%)	
	Hélice $lpha$	Folha β
Chimotripsina (247)	14	45
Ribonuclease (124)	26	35
Carboxipeptidase (307)	38	17
Citocromo c (104)	39	0
Lisozima (129)	40	12
Mioglobina (153)	78	0

Flexibilidade / rigidez das estruturas proteicas

Algumas proteínas são rígidas enquanto que outras apresentam flexibilidade

As estruturas rigídas estão, normalmente, associadas a funções estruturais

Proteínas com estruturas flexíveis (limitada) estão associadas a funções de catálise, interacção proteínas/ligando

As alterações conformacionais que ocorrem devido à ligação de Fe na lactoferrina permite que outras moléculas possam distinguir as formas ligadas e não-ligado ao metal.

Estrutura quaternária

Refere-se ao arranjo espacial das cadeias polipeptídicas nas proteínas oligoméricas (relação entre várias subunidades)

As subunidades associam-se através de interacções não-covalentes (fracas) segundo uma determinada geometria (simetria).

Folding

- O que determina a estrutura nativa da proteína?
- Quais os factores que interferem com a estabilidade da forma nativa da proteína?
- Será que podemos prever estruturas?

A sequência de aminoácidos determina a estrutura 3D

A propriedade de auto-enrolamento ('self-folding') das proteínas permite passar do Universo unidimensional das sequências (DNA e estrutura primária) para o Universo tridimensional das funções biológicas.

Os diferentes aminoácidos têm propensão diferente para formar hélices α , folhas β ou voltas β .

hélice α: Ala Cis Leu Met Glu Gln His Lis

folha β : Val Ile Fen Tir Trp Thr volta β : Gli Ser Asp Asn Pro Arg

Experiência de Anfinsen com a ribonuclease bovina

Conclusão: a informação necessária para especificar a estrutura da ribonuclease com actividade catalítica está contida na sequência de aminoácidos.

Métodos de previsão de estrutura de proteínas

Comparação da sequência de aminoácidos da proteína em estudo com bases de dados de sequências de outras proteínas cuja estrutura já é conhecida.

Há programas de modelação que permitem 'compor' a estrutura na nova proteína a partir das regiões semelhantes encontradas nas outras proteínas da base de dados.

BIOINFORMÁTICA

Quando não há sequências semelhantes na base de dados também há programas que permitem fazer previsões da estrutura com base em cálculos termodinâmicos, procurando a conformação a que corresponde a energia mínima.

"Folding" de proteínas e sua estabilidade

Desnaturação representa a ruptura da conformação nativa da proteína (desenrolamento e perda da estrutura terciária). Este processo é cooperativo.

Factores desnaturantes:

- Aumento da temperatura.

- Adição de agentes caotrópicos (5 a 10 M), ião guanidinium ou ureia.

(Agentes caotrópicos ≡ iões ou pequenas moléculas orgânicas que aumentam a solubilidade de substâncias não-polares em água).

A desnaturação das proteínas pode ser reversível ou irreversível.

Na célula há proteínas que ajudam ao enrolamento e inserção de cofactores noutras proteínas (chamam-se *chaperones*).

Métodos para determinação da estrutura 3D das proteínas:

- Cristalografia de raios X
- Ressonância Magnética Nuclear (RMN)

Determinação de estrutura 3D por Cristalografia de Raios X

Obtenção de cristais

Detector

(e.g., film)

· Os electrões difractam os raios X.

As ondas difractadas recombinam-se.

 A forma como as ondas recombinam depende apenas do arranjo atómico.

 Obtém-se um conjunto de reflexões com diferentes posições e intensidades (padrão de difracção)

 A partir dos padrões de difracção é possível construir mapas de densidade electrónica e reconstituir a estrutura da molécula.

cristais de mioglobina

padrão de difracção

Determinação da estrutura terciária

Cristalografia de Raios-X

Requisitos:

Obtenção de bons cristais (grandes e estáveis)

Vantagens:

Tamanho ilimitado

Interacção substrato(s)/inibidores

Desvantagens:

A estrutura nas condições de cristalização pode não corresponder à estrutura fisiológica.

Determinação da estrutura 3D de proteínas por NMR

Requisitos:

•concentrações elevadas ≈ 1 mM

Vantagens:

•Estruturas de proteínas em solução (mais próximo das condições fisiológicas)

Desvantagens:

proteínas pequenas (< 250 aminoácidos)

11/11

Espectro NOESY
Permite identificar
pares de protões que
estão próximos no
espaço (4 Å)

THE PARTY OF THE P

Família de estruturas

Núcleos	abundância
	natural (%)
¹ H	99.984
¹³ C	1.108
15 N	0.365
³¹ P	100.0

Curiosidades

Proteínas fibrosas

Proteínas fibrosas são moléculas muito longas cuja estrutura é dominada por motivos de estrutura secundária.

Exemplos:

- A queratina: uma hélice de hélices α .
- A fibra da seda (fibroína): constituída por folhas β antiparalelas plissadas que se estendem ao longo do eixo da fibra.
- O colagénio: constituída por 3 hélices (enroladas para a esquerda) enroladas umas nas outras para a direita (hélice tripla do colagénio).

ESTRUTURAS SECUNDÁRIAS E PROPRIEDADES DAS PROTEÍNAS FIBROSAS			
Estrutura	Características	Número de subunidades	
Hélice α, ligadas por ligações –S-S-	Rígidas, insolúveis, funções de protecção, dureza e flexibilidade variáveis	lpha-Keratina do cabelo, pelos e unhas	
Folhas β	Macias, filamentos flexíveis	Fibroína da seda	
Hélice tripla do colagénio	Extensibilidade elevada	Colagénio dos tendões, matriz dos ossos	

O colagénio

Está presente em todos os animais multicelulares, sendo a proteína mais abundante nos vertebrados.

É uma proteína extracelular constituída por fibras insolúveis que suportam uma elevada força de tensão → Existe nos tecidos onde a tracção mecânica deve ser transmitida eficazmente, tais como os tendões ligamentos, ossos, dentes, vasos sanguíneos, etc.

Composição de aminoácidos:

35% Gli, 11% Ala, 21% Pro e 4-Hidroxi-Pro

Sequência de aminoácidos:

 $(Gli - X - Pro (HiPro))_n$

A torção característica desta hélice é causada pela ocorrência de prolina (ou HiPro) em cada 3 aminoácidos.

A hélice é extremamente compacta e rígida ↔ elevada resistência à tensão.

→ Gli () em cada 3 a.a. permite a aproximação das 3 hélices.

A queratina α

- É uma proteína presente em todos os vertebrados superiores, ocorrendo na camada epidérmica da pele, nas unhas e no cabelo / pelos (lã), penas, escamas, calos, chifres.
- A queratina α é rica em resíduos de Cis, que formam pontes dissulfureto entre as cadeias polipeptídicas adjacentes → as fibras são insolúveis e extensíveis.

Reacções químicas que ocorrem quando se faz uma permanente no cabelo.

A fibra da seda (fibroína)

A **seda** é produzida por alguns insectos e aranhas para a construção de casulos, teias ou ninhos.

- Constituída por folhas β antiparalelas plissadas
- Sequência de aminoácidos: (Gli-Ser-Gli-Ala-Gli-Ala)n
- Estrutura da fibroína:

- A estrutura empilhada da fibroína resistência e rigidez baixa extensibilidade
- As fibras de fibroína da seda são flexíveis devido às fracas interacções de van der Waals entre as várias folhas.

