BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI-HYDERABAD CAMPUS SECOND SEMESTER 2019-2020 COURSE HANDOUT- (QM I)

Date: 06.01.2020

Course No. : PHY F242

Course Title : Quantum Mechanics I
Instructor-in-Charge : Subhash Karbelkar
Instructor : Subhash Karbelkar

Course Description: Origin of the quantum theory - black body radiation, photoelectric effect, Compton scattering, electron diffraction, Bohr model of hydrogen atom, Frank-Hertz experiment, Bohr-Sommerfeld quantization condition; notion of wave function, statistical interpretation of the wave function, issues of normalization, the Heisenberg uncertainty relation; Schrodinger equation, stationary states and time independent Schrodinger equation, energy eigenvalues and eigen-functions, one-dimensional problems – potential wells, potential barriers, the harmonic oscillator; Hilbert space formalism – state vectors, Dirac's bra-ket notation, observables as Hermitian operators, eigenvalues and eigenstates of Hermitian operators, the measurement postulate, Three dimensional problems- Particle in a three-dimensional Box, The Schrodinger equation in spherical polar coordinates, Angular momentum and spherical harmonics, The hydrogen atom.

Scope & Objectives:

The course on QM I aims to

- provide a thorough basic understanding of the fundamental principles of quantum physics,
- furnish insight in the microscopic structure of matter and
- develop an ability to employ the principles of quantum mechanics to solve a variety of simple quantum systems

Text Book:

T1: Introduction to Quantum Mechanics (Second edition) by D J Griffiths, LPE, Pearson

Reference Books:

R1: Modern Quantum Mechanics by J J Sakurai, **R2:** Quantum Physics (2nd. Edition), Stephen Gasiorowicz, **R3:** Principles of Quantum Mechanics, R Shankar

Course Plan

Lecture Number	Learning Objectives	Topics to be covered	Chapter in the Text Book
1 - 4	The Schroedinger equation	The Schroedinger equation and	1.1 to 1.4
		statistical interpretation of wavefunction,	
		probability and normalization	

5-6	Uncertainty principle	Momentum and uncertainty principle	1.5-1.6
7-12	Time independent Schroedinger equation	Stationary states, Continuity (or otherwise) conditions, one dimensional piecewise constant potentials: infinite and finite square well potentials, delta function potential	2.1-2.6 (2.3 listed below)
13-16	The harmonic oscillator	The harmonic oscillator	2.3
17-20	Formalism	Hilbert space, observables, Hermitian operators	3.1-3.3
21-24	Generalized statistical interpretation	Generalized statistical interpretation, the uncertainty principle, Dirac notation	3.4-3.6
25-27	Spherically symmetric potentials	Schroedinger equation in spherical coordinates	4.1
28-30	The Hydrogen atom	The hydrogen atom	4.2
31-33	Angular momentum	Commutation relations, eigenvalues and eigen functions	4.3
34-36	Spin	Spin ½, Addition of angular momenta	4.4
37-42	Identical particles	Two particle systems	5.1
	What next?	(Obviously) quantum mechanics II	

Evaluation Scheme:

Closed book
Closed book
Open Book
_

- **Notices:** Notices for the course will be uploaded only on **CMS**.
- Open book: <u>only the textbook, reference books and class notes allowed.</u>
- Make-up Policy: Very strict to genuine cases only i.e. No make up for tut tests.
 - **(i) Sickness leading to hospitalization**. (No make up for stomach-ache, diarrhea, vomiting, head-ache unless seriousness is verified by medical test.)
 - (ii) Out of station with **prior intimation** & **permission**.
 - (iii) request for granting make up must reach me on or before the actual time of the concerned component; please send email snkarbelkar@gmail.com stating reason/s and the earliest date make up can be conducted. Attach pictures of documentary proof in support of such request.

- **Award of NC grade:** The senate may require instructors to specify the conditions an NC grade will be awarded. **For this course an NC grade may be recommended if the total score is less than or equal to 10% of the maximum course total for the course.** For example, if the highest score is 80% then those scoring 8% or less may be recommended NC grade.
- **Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge PHY F242