

200 mA very low quiescent current linear regulator IC

DFN4 1x1

SOT23-5L

Features

- Input voltage from 1.5 to 5.5 V
- Ultra low dropout voltage (200 mV typ. at 200 mA load)
- Very low quiescent current (20 μA typ at no load, 0.03 μA typ in off mode)
- Output voltage tolerance: ± 0.5 % (A version) or ± 2.0 % @ 25 °C (standard version)
- · 200 mA guaranteed output current
- High PSRR (80 dB@1 kHz, 50 db@100 kHz)
- Wide range of output voltages available on request: from 0.8 V up to 5.0 V in 50 mV step
- Logic-controlled electronic shutdown
- Internal soft-start
- Optional output voltage discharge feature
- Compatible with ceramic capacitor $C_{OUT} = 0.47 \mu F$
- · Internal current limit and thermal protections
- Available in DFN4 1x1 and SOT23-5L packages
- Operating temperature range: -40 °C to 125 °C

Applications

- · Mobile phones
- Tablets
- Digital still cameras (DSC)
- Cordless phones and similar battery-powered systems
- · Portable media players

Description

The LD39020 high accuracy voltage regulator provides 200 mA of maximum current from an input voltage ranging from 1.5 V to 5.5 V, with a typical dropout voltage of 200 mV.

It is available in DFN4 1x1 and SOT23-5L packages, allowing the maximum space saving.

The device is stabilized with a ceramic capacitor on the output. The ultra low drop voltage, low quiescent current and low noise features, together with the internal soft-start circuit, make the LD39020 suitable for low power battery-operated applications.

An enable logic control function puts the LD39020 in shutdown mode allowing a total current consumption lower than 0.1 $\mu A.$ Constant current and thermal protection are provided.

Maturity status link

LD39020

1 Diagram

Nout

Bias generator

OPAMP

Thermal protection

AM13852V1

Figure 2. Block diagram

Note: The output discharge MOSFET is optional.

DS9956 - Rev 5 page 2/30

2 Pin configuration

Figure 3. Pin connection (top view)

Table 1. Pin description

Pin DFN4 1x1	Pin SOT23-5L	Symbol	Function
1	5	OUT	Output voltage
2	2	GND	Common ground
3	3	EN	Enable pin logic input: Low = shutdown, High = active
4	1	IN	Input voltage
Thermal pad	-	GND	Connect to GND on the PCB
-	4	NC	Not internally connected

DS9956 - Rev 5 page 3/30

3 Typical application

Figure 4. Typical application circuits

DS9956 - Rev 5 page 4/30

4 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	Input voltage	- 0.3 to 7	V
V _{OUT}	Output voltage	- 0.3 to V _{IN} + 0.3	V
V _{EN}	Enable input voltage	- 0.3 to 7	V
I _{OUT}	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	- 40 to 150	°C
T _{OP}	Operating junction temperature range	- 40 to 125	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient, DFN4 1x1	250	°C/W
R _{thJC}	Thermal resistance junction-case, SOT23-5L	81	°C/W
R _{thJA}	Thermal resistance junction-ambient, SOT23-5L	255	°C/W

Table 4. ESD performance

Symbol	Parameter	Test conditions	Value	Unit
		НВМ	4	kV
ESD	ESD Protection voltage	MM	400	V
		CDM	500	V

DS9956 - Rev 5 page 5/30

5 Electrical characteristics

 $T_{J} = 25~^{\circ}C,~V_{IN} = V_{OUT(NOM)} + 1~V~,~C_{IN} = C_{OUT} = 1~\mu\text{F},~I_{OUT} = 1~\text{mA},~V_{EN} = V_{IN},~\text{unless otherwise specified}.$

Table 5. Electrical characteristics for LD39020T, LD39020DT

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage		1.5		5.5	V
		I _{OUT} = 1 mA, T _J = 25 °C	-2		2	%
V _{OUT}	V _{OUT} accuracy	I _{OUT} = 1 mA, -40 °C < T _J < 125 °C	-3		3	%
ΔV_{OUT}	Static line regulation (1)	$V_{OUT(NOM)}$ + 1 V \leq V _{IN} \leq 5.5 V, I_{OUT} = 10 mA		0.02		%/V
		-40 °C < T _J < 125 °C			0.2	
437	Otatia la adura sudatia s	I _{OUT} = 0 mA to 200 mA		10		mV
ΔV_{OUT}	Static load regulation	-40 °C < T _J < 125 °C			0.01	%/mA
		I _{OUT} = 30 mA,V _{OUT} = 2.8 V		35		
V_{DROP}	Dropout voltage	I _{OUT} = 200 mA, V _{OUT} = 2.8 V -40 °C < T _J < 125 °C		200	350	mV
e _N	Output noise voltage	10 Hz to 100 kHz, I _{OUT} = 10 mA		45		μV _{RMS} / V _{OUT}
SVR	Supply voltage rejection	$V_{IN} = V_{OUT(NOM)} + 1 V + /- V_{RIPPLE}$ $V_{RIPPLE} = 0.2 V$ Freq. = 1 kHz $I_{OUT} = 30 \text{ mA}$		80		dB
		$\begin{split} &V_{\text{IN}} = V_{\text{OUT(NOM)}} + 1 \text{ V +/- V}_{\text{RIPPLE}}, \\ &V_{\text{RIPPLE}} = 0.2 \text{ V} \\ &\text{Freq.} = 100 \text{ kHz, I}_{\text{OUT}} = 30 \text{ mA} \end{split}$		55		
		I _{OUT} = 0 mA		20	40	
ΙQ	Quiescent current	I _{OUT} = 200 mA		100		μA
I _{Standby}	Standby current	V _{IN} input current in OFF MODE: V _{EN} = GND		0.03	1	μА
I _{SC}	Short circuit current	R _L = 0	250	350		mA
R _{ON}	Output voltage discharge MOSFET	(only on LD39020DT)		100		Ω
V _{EN}	Enable input logic low	V _{IN} = 1.5 V to 5.5 V -40 °C < T _J < 125 °C			0.4	V
¥ EN	Enable input logic high	V _{IN} = 1.5 V to 5.5 V -40 °C < T _J < 125 °C	1			V
I _{EN}	Enable pin input current	V _{EN} = V _{IN}			100	nA
T _{ON} (2)	Turn on time			100		μs

DS9956 - Rev 5 page 6/30

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Т	Thermal shutdown			160		°C	
T _{SHDN}	Hysteresis			20		C	
C _{OUT}	Output capacitor	Capacitance see Figure 18. Stability area vs. (C _{OUT} , ESR)	0.47		22	μF	

^{1.} Not applicable for $V_{out(nom)} > 4.5 \text{ V}$

 $T_{J} = 25~^{\circ}C,~V_{IN} = V_{OUT(NOM)} + 1~V~,~C_{IN} = C_{OUT} = 1~\mu\text{F},~I_{OUT} = 1~\text{mA},~V_{EN} = V_{IN},~\text{unless otherwise specified}.$

Table 6. Electrical characteristics for LD39020AT, LD39020ADT

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage		1.5		5.5	V
		I _{OUT} = 1 mA, T _J = 25 °C	-0.5		0.5	%
V_{OUT}	V _{OUT} accuracy	I _{OUT} = 1 mA,	4.5		4.5	%
		-40 °C < T _J < 125 °C	-1.5		1.5	%
ΔV_{OUT}	Static line regulation ⁽¹⁾	$V_{OUT(NOM)}$ + 1 V \leq V _{IN} \leq 5.5 V, I _{OUT} = 10 mA		0.02		%/V
	-	-40 °C < T _J < 125 °C			0.2	
417	Otatia la ad as audatia a	I _{OUT} = 0 mA to 200 mA		10		mV
ΔV_{OUT}	Static load regulation	-40 °C < T _J < 125 °C			0.01	%/mA
		I _{OUT} = 30 mA, V _{OUT} = 2.8 V		35		
V_{DROP}	Dropout voltage	I _{OUT} = 200 mA, V _{OUT} = 2.8 V			350	mV
		-40 °C < T _J < 125 °C		200		
0	Output poigo voltago	10 Hz to 100 kHz,		45		μV _{RMS} /
e _N	Output noise voltage	I _{OUT} = 10 mA		45		V _{OUT}
		V _{IN} = V _{OUT(NOM)} + 1 V +/- V _{RIPPLE}				
		V _{RIPPLE} = 0.2 V		80		
		Freq. = 1 kHz				
SVR	Supply voltage rejection	I _{OUT} = 30 mA				dB
		$V_{IN} = V_{OUT(NOM)} + 1 V +/- V_{RIPPLE},$ $V_{RIPPLE} = 0.2 V$		55		
		Freq. = 100 kHz, I _{OUT} = 30 mA				
1-	Quianant gurrant	I _{OUT} = 0 mA		20	40	
ΙQ	Quiescent current	I _{OUT} = 200 mA		100		μA
I _{Standby}	Standby current	V_{IN} input current in OFF MODE: V_{EN} = GND		0.03	1	μА
I _{SC}	Short circuit current	R _L = 0	250	350		mA

DS9956 - Rev 5 page 7/30

^{2.} Turn-on time is time measured between the enable input just exceeding VEN high value and the output voltage just reaching 95 % of its nominal value

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
R _{ON}	Output voltage discharge MOSFET	(only on LD39020ADT)		100		Ω
V _{EN}	Enable input logic low	V _{IN} = 1.5 V to 5.5 V -40 °C < T _J < 125 °C			0.4	V
VEN	Enable input logic high	V _{IN} = 1.5 V to 5.5 V -40 °C < T _J < 125 °C	1			V
I _{EN}	Enable pin input current	$V_{EN} = V_{IN}$			100	nA
T _{ON} (2)	Turn on time			100		μs
T _{SHDN}	Thermal shutdown			160		°C
SHDN	Hysteresis			20		
C _{OUT}	Output capacitor	Capacitance see Figure 18. Stability area vs. (C _{OUT} , ESR)	0.47		22	μF

^{1.} Not applicable for $V_{out(nom)} > 4.5 \text{ V}$

DS9956 - Rev 5 page 8/30

^{2.} Turn-on time is time measured between the enable input just exceeding VEN high value and the output voltage just reaching 95 % of its nominal value

6 Application information

6.1 Soft-start function

The LD39020 has an internal soft start circuit. By increasing the startup time up to 100 μs, without the need of any external soft start capacitor, this feature is able to keep the regulator inrush current at startup under control.

6.2 Output discharge function

The LD39020 integrates a MOSFET connected between V_{OUT} and GND. This transistor is activated when the EN pin goes to low logic level and has the function to quickly discharge the output capacitor when the device is disabled by the user.

The device is available with or without auto-discharge feature.

See Table 10. DFN4 1x1 order code for more details.

6.3 Input and output capacitors

The LD39020 requires external capacitors to assure the regulator control loop stability.

Any good quality ceramic capacitor can be used but, the X5R and the X7R are suggested since they guarantee a very stable combination of capacitance and ESR overtemperature.

Locating the input/output capacitors as closer as possible to the relative pins is recommended.

The LD39020 requires an input capacitor with a minimum value of 1 µF.

This capacitor must be located as closer as possible to the input pin of the device and returned to a clean analog ground.

The control loop of the LD39020 is designed to work with an output ceramic capacitor.

This capacitor must meet the requirements of minimum capacitance and equivalent series resistance (ESR), as shown in Figure 18. Stability area vs. (C_{OUT}, ESR). To assure stability, the output capacitor must maintain its ESR and capacitance in the stable region, over the full operating temperature range.

The LD39020 shows stability with a minimum effective output capacitance of 220 nF.

However, to keep stability in all operating conditions (temperature, input voltage and load variations), a minimum output capacitor of $0.47~\mu F$ is recommended.

The suggested combination of 1 μ F input and output capacitors offers a good compromise among the stability of the regulator, optimum transient response and total PCB area occupation.

DS9956 - Rev 5 page 9/30

7 Typical characteristics

(C_{IN} = C_{OUT} = 1 μ F, V_{EN} to V_{IN}, T_J = 25 °C unless otherwise specified)

DS9956 - Rev 5 page 10/30

DS9956 - Rev 5 page 11/30

DS9956 - Rev 5 page 12/30

DS9956 - Rev 5 page 13/30

DS9956 - Rev 5 page 14/30

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

DS9956 - Rev 5 page 15/30

8.1 DFN4 1x1 package info

Figure 29. DFN4 1x1 package outline

8405587_A

DS9956 - Rev 5 page 16/30

Table 7. DFN4 1x1 mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
Α	0.34	0.37	0.40		
A1	0	0.02	0.05		
A3		0.10			
b	0.17	0.22	0.27		
D	0.95	1.00	1.05		
D2	0.43	0.48	0.53		
E	0.95	1.00	1.05		
E2	0.43	0.48	0.53		
е		0.65			
L	0.20	0.25	0.30		
K	0.15				

DS9956 - Rev 5 page 17/30

Figure 30. DFN4 1x1 recommended footprint

Notes:

1) This footprint is able to ensure insulation up to 10 Vrms (according to CEI IEC 664-1)

2) The device must be positioned within $\begin{tabular}{|c|c|c|c|c|c|} \hline & 0.02 & A & B \\ \hline \end{tabular}$

8405587_A

DS9956 - Rev 5 page 18/30

Figure 31. DFN4 1x1 tape outline

+/- 0.05 0.50 2.00 +/- 0.10 +/- 0.10 8.00

- ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Figure 32. DFN4 1x1 reel outline

Tape width (mm)	A max.	N min.	W1 max.	W2 max.	W3 min. / max.
8	180	60	8.4	14.4	7.9 / 10.9

DS9956 - Rev 5 page 19/30

Figure 33. DFN4 1x1 orientation

DS9956 - Rev 5 page 20/30

8.2 SOT23-5L mechanical data

Figure 34. SOT23-5L package outline

_

Table 8. SOT23-5L package mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
Α	0.90		1.45		
A1	0		0.15		
A2	0.90		1.30		
b	0.30		0.50		
С	0.09		0.20		
D		2.95			
E		1.60			
е		0.95			
Н		2.80			
L	0.30		0.60		
θ	0°		8°		

DS9956 - Rev 5 page 21/30

Figure 35. SOT23-5L recommended footprint

Note: Dimensions are in mm

DS9956 - Rev 5 page 22/30

8.3 SOT23-5L packing information

Figure 36. SOT23-5L tape and reel outline

Table 9. SOT23-5L tape and reel mechanical data

Dim.	mm			
Dilli.	Min.	Тур.	Max.	
Α			180	
С	12.8	13.0	13.2	
D	20.2			
N	60			
Т			14.4	
Ao	3.13	3.23	3.33	
Во	3.07	3.17	3.27	
Ко	1.27	1.37	1.47	
Ро	3.9	4.0	4.1	
Р	3.9	4.0	4.1	

DS9956 - Rev 5 page 23/30

9 Order code

Table 10. DFN4 1x1 order code

Order code	Output voltage (V)	Auto-discharge	Tolerance (%)	Marking
LD39020ADTPU08R	0.0		0.5	A1
LD39020DTPU08R	0.8 Yes	2	08	
LD39020ADTPU11R	1.1 Yes	0.5	A4	
LD39020DTPU11R	1.1	Yes	2	11
LD39020ADTPU13R	1.3 Y	V	0.5	AP
LD39020DTPU13R	1.3	Yes	2	13
LD39020ADTPU15R (1)	1.5 Yes	0.5	A6	
LD39020DTPU15R	1.5	Yes	2	15
LD39020ADTPU18R		.,	0.5	A7
LD39020DTPU18R	1.8	Yes	2	18
LD39020ATPU185R	4.05	.,	0.5	BR
LD39020TPU185R	1.85	No	2	CR
LD39020ADTPU21R		.,	0.5	A9
LD39020DTPU21R ⁽¹⁾	2.1	Yes	2	21
LD39020ADTPU25R		.,	0.5	AA
LD39020DTPU25R	2.5	Yes	2	25
LD39020ADTPU27R ⁽¹⁾	2.7		0.5	AB
LD39020DTPU27R ⁽¹⁾		Yes	2	27
LD39020ADTPU28R	2.8 Yes		0.5	AC
LD39020DTPU28R ⁽¹⁾		Yes	2	28
LD39020ADTPU30R	- 3		0.5	AF
LD39020DTPU30R		Yes	2	30
LD39020ADTPU31R ⁽¹⁾			0.5	AG
LD39020DTPU31R	3.1	Yes	2	31
LD39020ATPU32R			0.5	ВН
LD39020TPU32R	3.2	No	2	СН
LD39020ADTPU33R		.,	0.5	AJ
LD39020DTPU33R		Yes	2	33
LD39020ATPU33R	3.3		0.5	BJ
LD39020TPU33R		No	2	CJ
LD39020ADTPU40R ⁽¹⁾		.,	0.5	AL
LD39020DTPU40R	4	Yes	2	40
LD39020ADTPU47R ⁽¹⁾		.,	0.5	AM
LD39020DTPU47R	4.7	Yes	2	47

^{1.} Available on request.

DS9956 - Rev 5 page 24/30

Table 11. SOT23-5L order code

Order code	Output voltage (V)	Auto-discharge	Tolerance (%)	Marking
LD39020ADM30R	3.0	Yes	0.5	AD30

DS9956 - Rev 5 page 25/30

Revision history

Table 12. Document revision history

Date	Revision	Changes
04-Dec-2013	1	Initial release.
02-Apr-2014	2	Updated Table 10: "DFN4 1x1 order codes"
05-Jun-2015	3	Added SOT23-5L package. Modified features and description in cover page. Updated Section 7: "Pin configuration" and Table 3: "Thermal data". Added Section 13.2: "SOT23-5L package information" and Section 13.3: "SOT23-5L packing information". Minor text changes.
03-Jul-2015	4	Updated package name from DFN1x1-4L to DFN4 1x1. Updated note in Table 11: "SOT23-5L order code". Minor text changes.
07-Jan-2019	5	Added Figure 31. DFN4 1x1 tape outline, Figure 32. DFN4 1x1 reel outline and Figure 33. DFN4 1x1 orientation. Updated Section 9 Order code.

DS9956 - Rev 5 page 26/30

Contents

1	Diag	gram	2
2	Pin	configuration	3
3	Турі	ical application	4
4	Max	rimum ratings	5
5	Elec	ctrical characteristics	6
6	Арр	olication information	9
	6.1	Soft start function	9
	6.2	Output discharge function	9
	6.3	Input and output capacitors	9
7	Турі	ical characteristics	10
8	Pac	kage information	15
	8.1	DFN4 1x1 package information	15
	8.2	SOT23-5L package information	21
	8.3	SOT23-5L packing information	22
9	Ord	er codes	24
Rev	ision	history	26
Cor	tents	·	27
List	of ta	bles	28
List	of fig	gures	29

List of tables

Table 1.	Pin description	. 3
Table 2.	Absolute maximum ratings	. 5
Table 3.	Thermal data	. 5
Table 4.	ESD performance	. 5
Table 5.	Electrical characteristics for LD39020T, LD39020DT	. 6
Table 6.	Electrical characteristics for LD39020AT, LD39020ADT	. 7
Table 7.	DFN4 1x1 mechanical data	17
Table 8.	SOT23-5L package mechanical data	21
	SOT23-5L tape and reel mechanical data	
	DFN4 1x1 order code	
Table 11.	SOT23-5L order code	25
Table 12.	Document revision history	26

List of figures

rigure 2.	Block diagram	. 2
Figure 3.	Pin connection (top view)	. 3
Figure 4.	Typical application circuits	
Figure 5.	Output voltage vs. temperature (I _{OUT} = 1 mA)	10
Figure 6.	Output voltage vs. temperature (I _{OUT} = 200 mA)	10
Figure 7.	Line regulation vs. temperature	10
Figure 8.	Load regulation vs. temperature	10
Figure 9.	Quiescent current vs. temperature (I _{OUT} = 0 mA)	11
Figure 10.	Quiescent current vs. temperature (I _{OUT} = 200 mA)	11
Figure 11.	Shutdown current vs. temperature	11
Figure 12.	Quiescent current vs. load current	11
Figure 13.	Quiescent current vs. input voltage	
Figure 14.	Dropout voltage vs. temperature	
Figure 15.	Supply voltage rejection vs. frequency	
Figure 16.	Supply voltage rejection vs. input voltage	
Figure 17.	Output noise spectral density	
Figure 18.	Stability area vs. (C _{OUT} , ESR)	
Figure 19.	Enable startup (V _{OUT} = 1 V)	
Figure 20.	Enable startup (V _{OUT} = 5 V)	
Figure 21.	Turn-on time (V _{OUT} = 1 V)	13
Figure 22.	Turn-off time (V _{OUT} = 1 V)	13
Figure 23.	Turn-on time (V _{OUT} = 5 V)	13
Figure 24.	Turn-off time (V _{OUT} = 5 V)	13
Figure 25.	Line transient (V _{OUT} = 1 V)	13
Figure 26.	Line transient (V _{OUT} = 5 V)	13
Figure 27.	Load transient (V _{OUT} = 1 V)	14
Figure 28.	Load transient (V _{OUT} = 5 V)	14
Figure 29.	DFN4 1x1 package outline	16
Figure 30.	DFN4 1x1 recommended footprint	18
Figure 31.	DFN4 1x1 tape outline	19
Figure 32.	DFN4 1x1 reel outline	19
Figure 33.	DFN4 1x1 orientation	
Figure 34.	SOT23-5L package outline	
Figure 35.	SOT23-5L recommended footprint	
Figure 36.	SOT23-5L tape and reel outline	23

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS9956 - Rev 5 page 30/30

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

 LD39020DTPU33R
 LD39020DTPU31R
 LD39020DTPU18R
 LD39020ADTPU25R
 LD39020TPU32R

 LD39020ADTPU33R
 LD39020TPU33R
 LD39020DTPU13R
 LD39020ADTPU18R
 LD39020ADTPU21R

 LD39020ADTPU08R
 LD39020ADTPU30R
 LD39020ATPU33R
 LD39020DTPU30R
 LD39020ADTPU30R

 LD39020TPU18F
 LD39020DTPU47R
 LD39020ATPU18F
 LD39020ADM30R
 LD39020DTPU11R

 LD39020ADTPU11R
 LD39020DTPU15R
 LD39020ATPU32R
 LD39020DTPU25R