Cryptography

Symmetric Cryptosystem

Scenario

- Alice wants to send a message (plaintext P) to Bob.
- The communication channel is insecure and can be eavesdropped
- If Alice and Bob have previously agreed on a symmetric encryption scheme and a secret key K, the message can be sent encrypted (ciphertext C)

Issues

- What is a good symmetric encryption scheme?
- What is the complexity of encrypting/decrypting?
- What is the size of the ciphertext, relative to the plaintext?

Basics

Notation

- Secret key K
- Encryption function $E_{\kappa}(P)$
- Decryption function $D_{\kappa}(C)$
- Plaintext length typically the same as ciphertext length
- Encryption and decryption are permutation functions (bijections) on the set of all n-bit arrays
- Efficiency
 - functions E_K and D_K should have efficient algorithms
- Consistency
 - Decrypting the ciphertext yields the plaintext
 - $-D_{\kappa}(E_{\kappa}(P))=P$

Attacks

- Attacker may have
 - a) collection of ciphertexts (ciphertext only attack)
 - b) collection of plaintext/ciphertext pairs (known plaintext attack)
 - c) collection of plaintext/ciphertext pairs for plaintexts selected by the attacker (chosen plaintext attack)
 - d) collection of plaintext/ciphertext pairs for ciphertexts selected by the attacker (chosen ciphertext attack)

Brute-Force Attack

- Try all possible keys K and determine if $D_K(C)$ is a likely plaintext
 - Requires some knowledge of the structure of the plaintext (e.g., PDF file or email message)
- Key should be a sufficiently long random value to make exhaustive search attacks unfeasible

Encrypting English Text

- English text typically represented with 8-bit ASCII encoding
- A message with t characters corresponds to an n-bit array, with n = 8t
- Redundancy due to repeated words and patterns
 - E.g., "th", "ing"
- English plaintexts are a very small subset of all n-bit arrays

Entropy of Natural Language

- Information content (entropy) of English: 1.25 bits per character
- t-character arrays that are English text:

$$(2^{1.25})^t = 2^{1.25 t}$$

n-bit arrays that are English text:

$$2^{1.25 \text{ n/8}} \approx 2^{0.16 \text{ n}}$$

- For a natural language, constant $\alpha < 1$ such that there are $2^{\alpha n}$ messages among all n-bit arrays
- Fraction (probability) of valid messages

$$2^{\alpha n} / 2^n = 1 / 2^{(1-\alpha)n}$$

- Brute-force decryption
 - Try all possible 2^k decryption keys
 - Stop when valid plaintext recognized
- Given a ciphertext, there are 2^k possible plaintexts
- Expected number of valid plaintexts

$$2^{k} / 2^{(1-\alpha)n}$$

 Expected unique valid plaintext, (no spurious keys) achieved at unicity distance

$$n = k / (1-\alpha)$$

 For English text and 256-bit keys, unicity distance is 304 bits

Substitution Ciphers

- Each letter is uniquely replaced by another.
- There are 26! possible substitution ciphers.
- There are more than
 4.03 x 10²⁶ such ciphers.

 One popular substitution "cipher" for some Internet posts is ROT13.

Frequency Analysis

- Letters in a natural language, like English, are not uniformly distributed.
- Knowledge of letter frequencies, including pairs and triples can be used in cryptologic attacks against substitution ciphers.

a:	8.05%	b:	1.67%	c:	2.23%	d:	5.10%
e:	12.22%	f:	2.14%	g:	2.30%	h:	6.62%
i:	6.28%	j:	0.19%	k:	0.95%	1:	4.08%
m:	2.33%	n:	6.95%	o:	7.63%	p:	1.66%
q:	0.06%	r:	5.29%	s:	6.02%	t:	9.67%
u:	2.92%	v:	0.82%	w:	2.60%	x:	0.11%
y:	2.04%	z:	0.06%				

Letter frequencies in the book The Adventures of Tom Sawyer, by

9/21/21 Twain.

Substitution Boxes

- Substitution can also be done on binary numbers.
- Such substitutions are usually described by substitution boxes, or S-boxes.

		01				0	1	2	3
00	0011	0100 0110	1111	0001	0	3	8	15	1
01	1010	0110	0101	1011	1	10	6 13	5	11
10	1110	1101	0100	0010	2	14	13	4	2
11	0111	0000	1001	1100	3	7	0	9	12
	I ₁	(a)				ı	(b)		

Figure 8.3: A 4-bit S-box (a) An S-box in binary. (b) The same S-box in decimal.

One-Time Pads

- There is one type of substitution cipher that is absolutely unbreakable.
 - The one-time pad was invented in 1917 by Joseph Mauborgne and Gilbert Vernam
 - We use a block of shift keys, $(k_1, k_2, ..., k_n)$, to encrypt a plaintext, M, of length n, with each shift key being chosen uniformly at random.
- Since each shift is random, every ciphertext is equally likely for any plaintext.

Weaknesses of the One-Time Pad

- In spite of their perfect security, one-time pads have some weaknesses
- The key has to be as long as the plaintext
- Keys can never be reused
 - Repeated use of one-time pads allowed the U.S. to break some of the communications of Soviet spies during the Cold War.

Block Ciphers

- In a block cipher:
 - Plaintext and ciphertext have fixed length b (e.g., 128 bits)
 - A plaintext of length n is partitioned into a sequence of m
 blocks, P[0], ..., P[m-1], where n ≤ bm < n + b
- Each message is divided into a sequence of blocks and encrypted or decrypted in terms of its blocks.

Padding

- Block ciphers require the length n of the plaintext to be a multiple of the block size b
- Padding the last block needs to be unambiguous (cannot just add zeroes)
- When the block size and plaintext length are a multiple of 8, a common padding method (PKCS5) is a sequence of identical bytes, each indicating the length (in bytes) of the padding
- Example for b = 128 (16 bytes)
 - Plaintext: "Roberto" (7 bytes)
 - Padded plaintext: "Roberto999999999" (16 bytes), where 9 denotes the number and not the character
- We need to always pad the last block, which may consist only of padding

Block Ciphers in Practice

- Data Encryption Standard (DES)
 - Developed by IBM and adopted by NIST in 1977
 - 64-bit blocks and 56-bit keys
 - Small key space makes exhaustive search attack feasible since late 90s
- Triple DES (3DES)
 - Nested application of DES with three different keys KA, KB, and KC
 - Effective key length is 168 bits, making exhaustive search attacks unfeasible
 - $C = E_{KC}(D_{KB}(E_{KA}(P))); P = D_{KA}(E_{KB}(D_{KC}(C)))$
 - Equivalent to DES when KA=KB=KC (backward compatible)
- Advanced Encryption Standard (AES)
 - Selected by NIST in 2001 through open international competition and public discussion
 - 128-bit blocks and several possible key lengths: 128, 192 and 256 bits
 - Exhaustive search attack not currently possible
 - AES-256 is the symmetric encryption algorithm of choice

The Advanced Encryption Standard (AES)

- In 1997, the U.S. National Institute for Standards and Technology (NIST) put out a public call for a replacement to DES.
- It narrowed down the list of submissions to five finalists, and ultimately chose an algorithm that is now known as the Advanced Encryption Standard (AES).
- AES is a block cipher that operates on 128-bit blocks. It is designed to be used with keys that are 128, 192, or 256 bits long, yielding ciphers known as AES-128, AES-192, and AES-256.

9/21/21

AES Round Structure

- The 128-bit version of the AES encryption algorithm proceeds in ten rounds.
- Each round performs an invertible transformation on a 128-bit array, called state.
- The initial state X₀ is the XOR of the plaintext P with the key K:
- $X_0 = P XOR K.$
- Round i (i = 1, ..., 10) receives state X_{i-1} as input and produces state X_i.
- The ciphertext C is the output of the final round: $C = X_{10}$.

AES Rounds

- Each round is built from four basic steps:
- 1. SubBytes step: an S-box substitution step
- 2. ShiftRows step: a permutation step
- 3. MixColumns step: a matrix multiplication step
- **4. AddRoundKey step**: an XOR step with a **round key** derived from the 128-bit encryption key

Block Cipher Modes

- A block cipher mode describes the way a block cipher encrypts and decrypts a sequence of message blocks.
- Electronic Code Book (ECB) Mode (is the simplest):
 - Block P[i] encrypted into ciphertext block C[i] = $E_K(P[i])$
 - Block C[i] decrypted into plaintext block M[i] = $D_K(C[i])$

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

Strengths and Weaknesses of ECB

• Strengths:

- Is very simple
- Allows for parallel encryptions of the blocks of a plaintext
- Can tolerate the loss or damage of a block

Weakness:

 Documents and images are not suitable for ECB encryption since patters in the plaintext are repeated in the ciphertext:

(a)

Figure 8.6: How ECB mode can leave identifiable patterns in a sequence of blocks: (a) An image of Tux the penguin, the Linux mascot. (b) An encryption of the Tux image using ECB mode. (The image in (a) is by Larry Ewing, lewing@isc.tamu.edu, using The Gimp; the image in (b) is by Dr. Juzam. Both are used with permission via attribution.)

Cipher Block Chaining (CBC) Mode

- In Cipher Block Chaining (CBC) Mode
 - The previous ciphertext block is combined with the current plaintext block $C[i] = E_K(C[i-1] \oplus P[i])$
 - C[-1] = V, a random block separately transmitted encrypted (known as the initialization vector)
 - Decryption: $P[i] = C[i-1] \oplus D_K(C[i])$

Strengths and Weaknesses of CBC

Strengths:

- Doesn't show patterns in the plaintext
- Is the most common mode
- Is fast and relatively simple

Weaknesses:

- CBC requires the reliable transmission of all the blocks sequentially
- CBC is not suitable for applications that allow packet losses (e.g., music and video streaming)

Java AES Encryption Example

Source

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

Generate an AES key

```
KeyGenerator keygen = KeyGenerator.getInstance("AES");
SecretKey aesKey = keygen.generateKey();
```

Create a cipher object for AES in ECB mode and PKCS5 padding

```
Cipher aesCipher;
aesCipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
```

Encrypt

```
aesCipher.init(Cipher.ENCRYPT_MODE, aesKey);
byte[] plaintext = "My secret message".getBytes();
byte[] ciphertext = aesCipher.doFinal(plaintext);
```

Decrypt

```
aesCipher.init(Cipher.DECRYPT_MODE, aesKey);
byte[] plaintext1 = aesCipher.doFinal(ciphertext);
```

Stream Cipher

- Key stream
 - Pseudo-random sequence of bits S = S[0], S[1], S[2], ...
 - Can be generated on-line one bit (or byte) at the time
- Stream cipher
 - XOR the plaintext with the key stream C[i] = S[i] ⊕ P[i]
 - Suitable for plaintext of arbitrary length generated on the fly, e.g., media stream
- Synchronous stream cipher
 - Key stream obtained only from the secret key K
 - Works for unreliable channels if plaintext has packets with sequence numbers
- Self-synchronizing stream cipher
 - Key stream obtained from the secret key and q previous ciphertexts
 - Lost packets cause a delay of q steps before decryption resumes

Key Stream Generation

RC4

- Designed in 1987 by Ron Rivest for RSA Security
- Trade secret until 1994
- Uses keys with up to 2,048 bits
- Simple algorithm
- Block cipher in counter mode (CTR)
 - Use a block cipher with block size b
 - The secret key is a pair (K,t), where K a is key and t (counter) is a b-bit value
 - The key stream is the concatenation of ciphertexts

$$E_{K}(t)$$
, $E_{K}(t + 1)$, $E_{K}(t + 2)$, ...

- Can use a shorter counter concatenated with a random value
- Synchronous stream cipher

Attacks on Stream Ciphers

- Repetition attack
 - if key stream reused, attacker obtains XOR of two plaintexts
- Insertion attack [Bayer Metzger, TODS 1976]
 - retransmission of the plaintext with
 - a chosen byte inserted by attacker
 - using the same key stream
 - e.g., email message resent with new message number

Original

Р	P[i]	P[i+1]	P[i+2]	P[i+3]
S	S[i]	S[i+1]	S[i+2]	S[i+3]
С	C[i]	C[i+1]	C[i+2]	C[i+3]

Retransmission

Р	P[i]	X	P[i+1]	P[i+2]
S	S[i]	S[i+1]	S[i+2]	S[i+3]
С	C[i]	C'[i+1]	C'[i+2]	C'[i+3]

Public Key Encryption

Facts About Numbers

- Prime number *p*:
 - p is an integer
 - $p \ge 2$
 - The only divisors of p are 1 and p
- Examples
 - -2, 7, 19 are primes
 - -3, 0, 1, 6 are not primes
- Prime decomposition of a positive integer n:

$$n = p_1^{e_1} \times \ldots \times p_k^{e_k}$$

Example:

$$-200 = 2^3 \times 5^2$$

Fundamental Theorem of Arithmetic

The prime decomposition of a positive integer is unique

Greatest Common Divisor

- The greatest common divisor (GCD) of two positive integers a and b, denoted gcd(a, b), is the largest positive integer that divides both a and b
- The above definition is extended to arbitrary integers
- Examples:

$$gcd(18, 30) = 6$$
 $gcd(0, 20) = 20$
 $gcd(-21, 49) = 7$

Two integers a and b are said to be relatively prime if

$$gcd(\boldsymbol{a}, \boldsymbol{b}) = 1$$

- Example:
 - Integers 15 and 28 are relatively prime

Modular Arithmetic

Modulo operator for a positive integer n

$$r = a \mod n$$

equivalent to

$$a = r + kn$$

and

$$r = a - \lfloor a/n \rfloor n$$

Example:

$$29 \mod 13 = 3$$
 $13 \mod 13 = 0$ $-1 \mod 13 = 12$ $29 = 3 + 2 \times 13$ $13 = 0 + 1 \times 13$ $12 = -1 + 1 \times 13$

Modulo and GCD:

$$gcd(a, b) = gcd(b, a \mod b)$$

Example:

$$gcd(21, 12) = 3$$
 $gcd(12, 21 \mod 12) = gcd(12, 9) = 3$

Euclid's GCD Algorithm

 Euclid's algorithm for computing the GCD repeatedly applies the formula

$$gcd(a, b) = gcd(b, a \mod b)$$

Example

$$-\gcd(412, 260) = 4$$

```
Algorithm EuclidGCD(a, b)
Input integers a and b
Output gcd(a, b)

if b = 0
return a
else
return EuclidGCD(b, a mod b)
```

а	412	260	152	108	44	20	4
b	260	152	108	44	20	4	0

Analysis

- Let a_i and b_i be the arguments of the i-th recursive call of algorithm EuclidGCD
- We have

$$a_{i+2} = b_{i+1} = a_i \mod a_{i+1} < a_{i+1}$$

• Sequence $a_1, a_2, ..., a_n$ decreases exponentially, namely

$$a_{i+2} \le \frac{1}{2} a_i$$
 for $i > 1$
Case 1 $a_{i+1} \le \frac{1}{2} a_i$ $a_{i+2} < a_{i+1} \le \frac{1}{2} a_i$ $a_{i+2} = a_i \mod a_{i+1} = a_i - a_{i+1} \le \frac{1}{2} a_i$

 Thus, the maximum number of recursive calls of algorithm *EuclidGCD(a. b)* is

$$1 + 2 \log \max(\boldsymbol{a}. \, \boldsymbol{b})$$

- Algorithm EuclidGCD(a, b) executes $O(\log \max(a, b))$ arithmetic operations
- The running time can also be expressed as $O(\log \min(a, b))$

Multiplicative Inverses (1)

The residues modulo a positive integer n are the set

$$Z_n = \{0, 1, 2, ..., (n-1)\}$$

• Let x and y be two elements of Z_n such that

$$xy \mod n = 1$$

We say that y is the multiplicative inverse of x in Z_n and we write $y = x^{-1}$

- Example:
 - Multiplicative inverses of the residues modulo 11

										10
x^{-1}	1	6	4	3	9	2	8	7	5	10

Multiplicative Inverses (2)

Theorem

An element x of Z_n has a multiplicative inverse if and only if x and n are relatively prime

- Example
 - The elements of Z_{10} with a multiplicative inverse are 1, 3, 7, 9

Corollary

If is $m{p}$ is prime, every nonzero residue in $m{Z}_p$ has a multiplicative inverse

Theorem

A variation of Euclid's GCD algorithm computes the multiplicative inverse of an element x of Z_n or determines that it does not exist

x	0	1	2	3	4	5	6	7	8	9
x^{-1}		1		7				3		9

Example: Measuring Lengths

- Consider a stick of length a and a stick of length b such that a and b are relatively prime
- Given two integers i and j, we can measure length

$$n = ia + jb$$

- We show that any integer n can be written as n = ia + jb for some integers i and j
 - Let s be the inverse of a in Z_b We have $sa \mod b = 1$
 - There exists integer t such that sa + tb = 1
 - Pick i = ns and j = nt
- Thus, given two sticks of relatively prime integer lengths, we can measure any integer length
- Example, measure length 2 with sticks of length 3 and 7

Example: Double Hashing

- Consider a hash table whose size n is a prime
- In open addressing with double hashing, an operation on key x probes the following locations modulo n

$$i, i+d, i+2d, i+3d, ..., i+(n-1)d$$

- where $\boldsymbol{i} = \boldsymbol{h}_1(\boldsymbol{x})$ and $\boldsymbol{d} = \boldsymbol{h}_2(\boldsymbol{x})$
- We show that each table location is probed by this sequence once
 - Suppose $(i + jd) \mod n = (i + kd) \mod n$ for some integers j and k in the range [0, n-1]
 - We have $(\mathbf{j} \mathbf{k})\mathbf{d} \mod \mathbf{n} = 0$
 - Since n is prime, we have that n and d are relatively prime
 - Thus, d has an inverse d^{-1} in Z_n
 - Multiplying each side by d^{-1} , we obtain $(j k) \mod n = 0$
 - We conclude that j = k

Powers

- Let p be a prime
- The sequences of successive powers of the elements of \mathbf{Z}_p exhibit repeating subsequences
- The sizes of the repeating subsequences and the number of their repetitions are the divisors of p-1
- Example (p = 7)

x	x^2	x^3	x^4	x^5	x^6
1	1	1	1	1	1
2	4	1	2	4	1
3	2	6	4	5	1
4	2	1	4	2	1
5	4	6	2	3	1
6	1	6	1	6	1

Fermat's Little Theorem

Theorem

Let p be a prime. For each nonzero residue x of Z_p , we have $x^{p-1} \mod p = 1$

• Example (p = 5):

```
1^4 \mod 5 = 1 2^4 \mod 5 = 16 \mod 5 = 1 3^4 \mod 5 = 81 \mod 5 = 1 4^4 \mod 5 = 256 \mod 5 = 1
```

Corollary

Let p be a prime. For each nonzero residue x of \mathbb{Z}_p , the multiplicative inverse of x is $x^{p-2} \mod p$

Proof

 $x(x^{p-2} \bmod p) \bmod p = xx^{p-2} \bmod p = x^{p-1} \bmod p = 1$

Euler's Theorem

- The multiplicative group for Z_n , denoted with Z_n^* , is the subset of elements of Z_n relatively prime with n
- The totient function of n, denoted with $\phi(n)$, is the size of Z^*_n
- Example

$$Z^*_{10} = \{1, 3, 7, 9\}$$
 $\phi(10) = 4$

• If *p* is prime, we have

$$Z^*_p = \{1, 2, ..., (p-1)\}$$
 $\phi(p) = p-1$

Euler's Theorem

For each element x of Z_n^* , we have $x^{\phi(n)} \mod n = 1$

• Example (*n*= 10)

$$3^{\phi(10)} \mod 10 = 3^4 \mod 10 = 81 \mod 10 = 1$$

 $7^{\phi(10)} \mod 10 = 7^4 \mod 10 = 2401 \mod 10 = 1$

$$9^{\phi(10)} \mod 10 = 9^4 \mod 10 = 6561 \mod 10 = 1$$

RSA Cryptosystem

• Setup:

- -n = pq, with p and q primes
- -e relatively prime to $\phi(n) = (p-1)(q-1)$
- -d inverse of e in $Z_{\phi(n)}$

• Keys:

- -Public key: $K_E = (n, e)$
- -Private key: $K_D = d$

• Encryption:

- -Plaintext M in \mathbb{Z}_n
- $-C = M^e \mod n$

• Decryption:

$$-M = C^d \mod n$$

Example

- Setup:
 - p = 7, q = 17
 - n = 7.17 = 119
 - $\phi(n) = 6.16 = 96$
 - e = 5
 - d = 77
- Keys:
 - public key: (119, 5)
 - private key: 77
- Encryption:
 - M = 19
 - $C = 19^5 \mod 119 = 66$
- Decryption:
 - $C = 66^{77} \mod 119 = 19$

Complete RSA Example

• Setup:

$$-p = 5, q = 11$$

 $-n = 5.11 = 55$
 $-\phi(n) = 4.10 = 40$
 $-e = 3$
 $-d = 27 (3.27 = 81 = 2.40 + 1)$

- Encryption
 - $C = M^3 \mod 55$
- Decryption

■
$$M = C^{27} \mod 55$$

M	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
\boldsymbol{C}	1	8	27	9	15	51	13	17	14	10	11	23	52	49	20	26	18	2
M	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
\boldsymbol{C}	39	25	21	33	12	19	5	31	48	7	24	50	36	43	22	34	30	16
M	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
C	53	37	29	35	6	3	32	44	45	41	38	42	4	40	46	28	47	54

Security

- Security of RSA based on difficulty of factoring
 - Widely believed
 - Best known algorithm takes exponential time
- RSA Security factoring challenge (discontinued)
- In 1999, 512-bit challenge factored in 4 months using 35.7 CPU-years
 - 160 175-400 MHz SGI and Sun
 - 8 250 MHz SGI Origin
 - 120 300-450 MHz Pentium II
 - 4 500 MHz Digital/Compaq

- In 2005, a team of researchers factored the RSA-640 challenge number using 30 2.2GHz CPU years
- In 2004, the prize for factoring RSA-2048 was \$200,000
- Current practice is 2,048-bit keys
- Estimated resources needed to factor a number within one year

Length (bits)	PCs	Memory			
430	1	128MB			
760	215,000	4GB			
1,020	342×10 ⁶	170GB			
1,620	1.6×10 ¹⁵	120TB			

Correctness

- We show the correctness of the RSA cryptosystem for the case when the plaintext M does not divide n
- Namely, we show that $(M^e)^d oxnomma n = M$
- Since $ed \mod \phi(n) = 1$, there is an integer k such that

$$ed = k\phi(n) + 1$$

 Since M does not divide n, by Euler's theorem we have

$$M^{\phi(n)} \mod n = 1$$

Thus, we obtain $(M^e)^d \mod n =$ $M^{ed} \mod n =$ $M^{k\phi(n)+1} \mod n =$ $MM^{k\phi(n)} \mod n =$ $M (M^{\phi(n)})^k \mod n =$ $M (M^{\phi(n)})^k \mod n =$ $M (1)^k \mod n =$ $M \mod n =$ $M \mod n =$

Proof of correctness can be extended to the case when the plaintext *M* divides *n*

Algorithmic Issues

- The implementation of the RSA cryptosystem requires various algorithms
- Overall
 - Representation of integers of arbitrarily large size and arithmetic operations on them
- Encryption
 - –Modular power
- Decryption
 - –Modular power

- Setup
 - -Generation of random numbers with a given number of bits (to generate candidates p and q)
 - -Primality testing (to check that candidates p and q are prime)
 - -Computation of the GCD (to verify that e and $\phi(n)$ are relatively prime)
 - –Computation of the multiplicative inverse (to compute *d* from *e*)

Modular Power

- The repeated squaring algorithm speeds up the computation of a modular power $a^p \mod n$
- Write the exponent p in binary

$$p = p_{b-1} p_{b-2} \dots p_1 p_0$$

Start with

$$Q_1 = a^{p_{b-1}} \bmod n$$

Repeatedly compute

$$\mathbf{Q}_i = ((\mathbf{Q}_{i-1})^2 \bmod n) a^{p_{b-i}} \bmod n$$

We obtain

$$Q_b = a^p \mod n$$

• The repeated squaring algorithm performs $O(\log p)$ arithmetic operations

Example

$$-3^{18} \mod 19 (18 = 10010)$$

$$-Q_1 = 3^1 \mod 19 = 3$$

$$-\mathbf{Q}_2 = (3^2 \mod 19)3^0 \mod 19 = 9$$

$$-\mathbf{Q}_3 = (9^2 \mod 19)3^0 \mod 19 = 81 \mod 19 = 5$$

$$-Q_4 = (5^2 \mod 19)3^1 \mod 19 =$$
 $(25 \mod 19)3 \mod 19 =$
 $18 \mod 19 = 18$

$$-\mathbf{Q}_5 = (18^2 \mod 19)3^0 \mod 19 =$$
 $(324 \mod 19) \mod 19 =$
 $17 \cdot 19 + 1 \mod 19 = 1$

p _{5 - i}	1	0	0	1	0
2 ^p 5 - i	3	1	1	3	1
Qi	3	9	5	18	1

Modular Inverse

Theorem

Given positive integers *a* and *b*, let *d* be the smallest positive integer such that

$$d = ia + jb$$

for some integers i and j.

We have

$$d = \gcd(a,b)$$

Example

$$- a = 21$$

$$- b = 15$$

$$- d = 3$$

$$-i=3, j=-4$$

$$-3 = 3.21 + (-4).15 = 63 - 60 = 3$$

 Given positive integers a and b, the extended Euclid's algorithm computes a triplet (d,i,j) such that

$$- d = \gcd(a,b)$$

$$-d=ia+jb$$

- To test the existence of and compute the inverse of $x \in \mathbb{Z}_n$, we execute the extended Euclid's algorithm on the input pair (x,n)
- Let (*d*,*i*,*j*) be the triplet returned

$$-d=ix+jn$$

Case 1:
$$d = 1$$

i is the inverse of x in Z_n

Case 2:
$$d > 1$$

x has no inverse in Z_n

Pseudoprimality Testing

- The number of primes less than or equal to n is about $n / \ln n$
- Thus, we expect to find a prime among O(b) randomly generated numbers with b bits each
- Testing whether a number is prime (primality testing) is a difficult problem, though polynomial-time algorithms exist
- An integer $n \ge 2$ is said to be a base-x pseudoprime if
 - $-x^{n-1} \mod n = 1$ (Fermat's little theorem)
- Composite base-x pseudoprimes are rare:
 - A random 100-bit integer is a composite base-2 pseudoprime with probability less than 10⁻¹³
 - The smallest composite base-2 pseudoprime is 341
- Base-x pseudoprimality testing for an integer n:
 - Check whether $x^{n-1} \mod n = 1$
 - Can be performed efficiently with the repeated squaring algorithm

Randomized Primality Testing

• Compositeness witness function witness(x, n) with error probability q for a random variable x

```
Case 1: n is prime

witness(x, n) = false always

Case 2: n is composite

witness(x, n) = true in most cases, false

with small probability q < 1
```

- Algorithm RandPrimeTest tests whether n
 is prime by repeatedly evaluating
 witness(x, n)
- A variation of base- x pseudoprimality provides a suitable compositeness witness function for randomized primality testing (Rabin-Miller algorithm)

Algorithm RandPrimeTest(n, k)

Input integer n, confidence parameter k and composite witness function witness(x,n) with error probability q

Output an indication of whether n is composite or prime with probability 2^{-k}

```
t \leftarrow k/\log_2(1/q)

for i \leftarrow 1 to t

x \leftarrow random()

if witness(x, n) = true

return "n is composite"

return "n is prime"
```

Cryptographic Hash Functions

Hash Functions

- A hash function h maps a plaintext x to a fixed-length value x = h(P) called hash value or digest of P
 - A collision is a pair of plaintexts P and Q that map to the same hash value,
 h(P) = h(Q)
 - Collisions are unavoidable
 - For efficiency, the computation of the hash function should take time proportional to the length of the input plaintext
- Hash table
 - Search data structure based on storing items in locations associated with their hash value
 - Chaining or open addressing deal with collisions
 - Domain of hash values proportional to the expected number of items to be stored
 - The hash function should spread plaintexts uniformly over the possible hash values to achieve constant expected search time

Cryptographic Hash Functions

- A cryptographic hash function satisfies additional properties
 - Preimage resistance (aka one-way)
 - Given a hash value x, it is hard to find a plaintext P such that h(P) = x
 - Second preimage resistance (aka weak collision resistance)
 - Given a plaintext P, it is hard to find a plaintext Q such that h(Q) = h(P)
 - Collision resistance (aka strong collision resistance)
 - It is hard to find a pair of plaintexts P and Q such that h(Q) = h(P)
- Collision resistance implies second preimage resistance
- Hash values of at least 256 bits recommended to defend against bruteforce attacks
- A random oracle is a theoretical model for a cryptographic hash function from a finite input domain ${\mathcal F}$ to a finite output domain ${\mathcal X}$
 - Pick randomly and uniformly a function h: $\mathscr{P} \rightarrow \mathscr{X}$ over all possible such functions
 - Provide only oracle access to h: one can obtain hash values for given plaintexts,
 but no other information about the function h itself

Birthday Attack

- The brute-force birthday attack aims at finding a collision for a hash function h
 - Randomly generate a sequence of plaintexts X₁, X₂, X₃,...
 - For each X_i compute $y_i = h(X_i)$ and test whether $y_i = y_j$ for some j < i
 - Stop as soon as a collision has been found
- If there are m possible hash values, the probability that the i-th plaintext does not collide with any of the previous i -1 plaintexts is 1 (i 1)/m
- The probability F_k that the attack fails (no collisions) after k plaintexts is

$$F_k = (1 - 1/m) (1 - 2/m) (1 - 3/m) ... (1 - (k - 1)/m)$$

• Using the standard approximation $1 - x \approx e^{-x}$

$$F_k \approx e^{-(1/m + 2/m + 3/m + ... + (k-1)/m)} = e^{-k(k-1)/2m}$$

• The attack succeeds/fails with probability $\frac{1}{2}$ when $F_k = \frac{1}{2}$, that is,

$$e^{-k(k-1)/2m} = \frac{1}{2}$$

$$k \approx 1.17 \text{ m}^{\frac{1}{2}}$$

 We conclude that a hash function with b-bit values provides about b/2 bits of security

Message-Digest Algorithm 5 (MD5)

- Developed by Ron Rivest in 1991
- Uses 128-bit hash values
- Still widely used in legacy applications although considered insecure
- Various severe vulnerabilities discovered
- <u>Chosen-prefix collisions attacks</u> found by Marc Stevens, Arjen Lenstra and Benne de Weger
 - Start with two arbitrary plaintexts P and Q
 - One can compute suffixes S1 and S2 such that P||S1 and Q||S2 collide under MD5 by making 250 hash evaluations
 - Using this approach, a pair of different executable files or PDF documents with the same MD5 hash can be computed

Secure Hash Algorithm (SHA)

- Developed by NSA and approved as a federal standard by NIST
- SHA-0 and SHA-1 (1993)
 - 160-bits
 - Considered insecure
 - Still found in legacy applications
 - Vulnerabilities less severe than those of MD5
- SHA-2 family (2002)
 - 256 bits (SHA-256) or 512 bits (SHA-512)
 - Still considered secure despite published attack techniques
- Public competition for SHA-3 announced in 2007

Iterated Hash Function

- A compression function works on input values of fixed length
- An iterated hash function extends a compression function to inputs of arbitrary length
 - padding, initialization vector, and chain of compression functions
 - inherits collision resistance of compression function
- MD5 and SHA are iterated hash functions

