Matrix Multiplication

เมทริกซ์ของจำนวนจริงขนาด p imes q สามารถแทนได้ด้วยลิสต์ขนาด p ช่องโดยที่แต่ละช่องเก็บลิสต์ขนาด q ช่อง เช่น

จงเขียนฟังก์ชัน

- mult_c(c, A) ที่คืนเมทริกซ์ที่เป็นผลจากการคูณจำนวนจริง c กับเมทริกซ์ A
- $\operatorname{mult}(\mathbf{A}, \mathbf{B})$ ที่คืนเมทริกซ์ที่เป็นผลจากการคูณเมทริกซ์ \mathbf{A} กับ \mathbf{B} (ซึ่งคือ $\mathbf{A} \times \mathbf{B}$)

```
def read_matrix():
m = []

nrows = int(input())
for k in range(nrows):

x = input().split()
r = []

for e in x:
r.append(float(e))

m.append(r)
return m

def mult_c(c, A):

def mult(A, B):
```

From wikipedia (https://en.wikipedia.org/wiki/Matrix multiplication)

Definition [edit]

If ${\bf A}$ is an $n \times m$ matrix and ${\bf B}$ is an $m \times p$ matrix,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mp} \end{pmatrix}$$

the matrix product C = AB (denoted without multiplication signs or dots) is defined to be the $n \times p$ matrix

$$\mathbf{C} = egin{pmatrix} c_{11} & c_{12} & \cdots & c_{1p} \ c_{21} & c_{22} & \cdots & c_{2p} \ dots & dots & \ddots & dots \ c_{n1} & c_{n2} & \cdots & c_{np} \end{pmatrix}$$

such that

$$c_{ij}=a_{i1}b_{1j}+\cdots+a_{im}b_{mj}=\sum_{k=1}^m a_{ik}b_{kj},$$

for i = 1, ..., n and j = 1, ..., p.

ข้อมูลนำเข้า

คำสั่งภาษา Python ที่ใช้ทดสอบการทำงานของฟังก์ชัน

ข้อมูลส่งออก

ผลที่ได้จากการสั่งทำงานคำสั่งที่ได้รับ

ตัวอย่าง

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
<pre>A=read_matrix();print(mult_c(0.5,A)) 3</pre>	[[0.5, 1.0], [1.0, 1.5], [1.5, 1.0]]
1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
3 2	
<pre>A=read_matrix();B=read_matrix();print(mult(A,B)) 3 1.0.2</pre>	[[14.0, 14.0], [6.0, 7.0], [12.0, 14.0]]
1 2 3 1 1 1 2 2 2	
3 1 2	
2 3 3 2	
3 2	