Minimumkérdések

Gépelemek mechatronikai mérnököknek (BMEGEGIBMGE), Gépelemek I. (BMEGEGEAM1G)

A kérdések a fenti tantárgyak elsajátításához szükséges *alapfogalmakat* és *alapvető ismereteket* tartalmazzák, részben az előtanulmányi rendben előírt tárgyak ismeretanyagára alapozva.

A vizsgák és zárthelyi dolgozatok minimumkérdéseinek megválaszolásánál csak az alábbi részletességet várjuk el. A diagramok rajzolásánál minden esetben fel kell tüntetni a tengelyek megnevezését (fizikai mennyiség, mértékegység), szükség esetén jelölni kell a jellegzetes pontokat, szakaszokat, területeket, érintőket stb. Összefüggések, képletek felírásánál meg kell nevezni a bennük szereplő fizikai mennyiségeket és koherens rendszerben fel kell írni a mértékegységüket is.

A "megjegyzés" után írt szövegrészeket és ábrákat a minimumkérdések megválaszolásánál *nem* kérjük számon, azok a válasz könnyebb érthetőségét szolgálják vagy többlet információt adnak a tananyag vonatkozó részéből.

Bevezetés, a gépszerkesztés alapjai

1. Mi a tűrés és mi a szerepe? Válaszát ábrával is szemléltesse!

A tűrés az alkatrész méretszóródásának tervszerű korlátozása. Alkalmazását többek között a csereszabatosság, a szerelhetőség, az illesztések előírása indokolja.

2. Mire utal az ISO tűréseknél a betű és a számérték?

<u>Betűjel:</u> a tűrésmező elhelyezkedését mutatja az alapvonalhoz (névleges mérethez) képest, más szóval: az alapeltérést. Nagybetű furatra vagy belső méretre, kis betű csap- vagy külső méretre utal.

<u>Számérték (IT fokozat)</u>: a tűrésmező szélességét írja elő (amely emellett a névleges mérettől is függ). 01, 0, 1, 2, 3…17 számértékekhez rendre egyre nagyobb tűrésmező-szélesség tartozik.

3. Mit értünk illesztésen?

Az <u>illeszkedés</u> két összeszerelt alkatrész csatlakozása, amelynek jellemzésére az illeszkedés mérőszámát használjuk; ez az összeszerelés előtti tényleges méretekből számítható különbség. Az <u>illesztés</u> olyan előírás, amely két alkatrész csatlakozó méreteinek a tűréseit tartalmazza, meghatározott illeszkedések elérésére.

4. Mit jelent az alaplyuk rendszer? Ábrával is szemléltesse a jellegzetes tűrésmezők elhelyezkedését!

A furat tűrésének betűjele "H" (az alapeltérés értéke 0), ehhez választjuk a megfelelő csaptűrést a kívánt illesztésnek megfelelően. Az esetek többségében alaplyuk rendszerben választunk illesztést.

Megjegyzés: az ábra nem méretarányos.

5. Mit jelent az alapcsap rendszer? Ábrával is szemléltesse a jellegzetes tűrésmezők elhelyezkedését‼

A csap tűrésének betűjele "h" (az alapeltérés értéke 0), ehhez választjuk a megfelelő furattűrést a kívánt illesztésnek megfelelően. Többnyire szabványos, kereskedelmi áruk (pl. retesz) illesztésénél alkalmazzák.

Megjegyzés: az ábra nem méretarányos.

6. Mit jelent a szoros (szilárd) illesztés? Szemléltesse ábrával alaplyuk rendszerben és írjon alkalmazási példát is!

Az alkatrészek tűrése olyan, hogy bármilyen párosítás esetén a csap *tényleges* mérete nagyobb a furaténál, azaz *mindig túlfedés képződik*.

Tipikus alkalmazása: pl. rögzítés és nyomatékátvitel (kötések).

NF - legnagyobb fedés [mm], KF - legkisebb fedés [mm]

7. Mit jelent az átmeneti illesztés? Szemléltesse ábrával alaplyuk rendszerben és írjon alkalmazási példát is!

Az alkatrészek tűrése olyan, hogy a párosítástól függően a csap és a furat tényleges méretét figyelembe véve *vagy kismértékű túlfedés vagy kismértékű játék jön létre* (a tűrésmezők között – bármilyen módon – *átfedés* van).

Tipikus alkalmazása: pozícionálás, helyzetbiztosítás.

NJ – legnagyobb játék [mm], NF – legnagyobb fedés [mm]

8. Mit jelent a laza illesztés? Szemléltesse ábrával alaplyuk rendszerben és írjon alkalmazási példát is!

Az alkatrészek tűrése olyan, hogy bármilyen párosítás esetén a csap *tényleges* mérete kisebb a furaténál, azaz *mindig játék adódik*.

Tipikus alkalmazása: elmozdulást megengedő (csuklós) kapcsolatok.

NJ – legnagyobb játék [mm], KJ – legkisebb játék [mm]

9. Hogyan definiáljuk az átlagos érdességet?

A középvonalhoz képest mért csúcsmagasságok, illetve völgymélységek, másképp fogalmazva a középvonaltól mért eltérések *abszolút értékének* számtani középértéke a mérési hosszra (l) vonatkoztatva.

Megjegyzés: magyarázó ábra

10. Melyek a leggyakrabban előírt szabványos Ra számértékek? Ismertesse az Ra-skála felosztását!

Durva				Sima			Finom			Tükrös				
200	100	50	25	12,5	6,3	3,2	1,6	0,8	0,4	0,2	0,1	0,05	0,025	0,012

Durva: ált. forgács nélküli megmunkálás (öntés, képlékeny alakítás)

Sima: többnyire forgácsolás

Finom, tükrös: finomfelületi megmunkálások

11. Hogyan definiáljuk az egyenetlenség-magasságot?

Az alaphosszon mért i db (ált. i = 5) legnagyobb csúcsmagasság és völgymélység átlagtávolsága a középvonaltól.

Megjegyzés: magyarázó ábra

12. Hogyan definiáljuk az egyenetlenséget?

<u>Rt:</u> a mérendő szakaszon mért legmagasabb és legmélyebb pont középvonaltól való távolságának az összege adja az egyenetlenség értékét.

Megjegyzés: magyarázó ábra

4

Gépszerkezetek méretezésének alapelvei, szilárdságtani és anyagszerkezettani alapfogalmak

13. Írja fel és értelmezze a következő SI-prefixumokat: giga, mega, kilo, milli, mikro, nano!

Megnevezés	Jele	Értelmezése				
giga	G	10°				
mega	M	10 ⁶				
kilo	k	10 ³				
milli	m	10-3				
mikro	μ	10-6				
nano	n	10-9				

14. Mit fejez ki a rugalmassági (Young-) modulus? Írja fel az összefüggést és diagramon is szemléltesse!

Anyagjellemző, ami a feszültég (σ) és a relatív (fajlagos) alakváltozás, nyúlás (ε) kapcsolatát fejezi ki. Minél nagyobb a számértéke, annál kisebb az anyag alakváltozó képessége.

$$E=rac{{
m d}\sigma}{{
m d}arepsilon}$$
 a Hooke-törvény érvényessége esetén $E=rac{\Delta\sigma}{\Deltaarepsilon}$

ahol:

 σ – feszültség [MPa],

 ε - nyúlás [-],

E - rugalmassági (Young-) modulus [MPa]

15. Mit fejez ki a Hooke-törvény? Írja fel az összefüggést, és diagramon is szemléltesse!

A feszültség (azaz terhelés) és a nyúlás (vagyis a fajlagos alakváltozás) közötti *egyenes* arányosságot.

$$\sigma = E \cdot \varepsilon$$

ahol:

 σ – feszültség [MPa],

 ε - nyúlás [-],

E – rugalmassági (Young–) modulus [MPa]

Megjegyzés: hasonlóan felírható csúsztató feszültség (τ) és szögelfordulás, csúszás (γ) között is a csúsztató rugalmassági modulussal (*G*).

16. Rajzolja fel és értelmezze egy lágyacél jellegzetes szakítódiagramját! A diagram melyik szakaszán érvényes a Hooke-törvény?

A Hooke-törvény a rugalmassági határig érvényes (a görbe lineáris szakasza, valamivel a folyáshatár alatt ér véget).

σ – húzófeszültség [MPa]

R_m – szakítószilárdság [MPa]

R_{eH} – felső folyáshatár [MPa]

R_{eL} – alsó folyáshatár [MPa]

ε - megnyúlás [-]

17. Rajzolja fel egy szívós és egy rideg anyag szakítódiagramját! Írjon mindkettőre példát is!

<u>Rideq anyaq:</u> kis mértékű szakadási nyúlás, pl. öntöttvas, edzett (martenzites) acél. <u>Szívós anyaq:</u> nagy mértékű szakadási nyúlás, rugalmas és képlékeny alakváltozással, pl. nemesített acél.

 σ – feszültség [MPa], ϵ – fajlagos nyúlás [–]

18. Mit fejez ki a Poisson-tényező?

Az anyag kereszt- és hosszirányú nyúlásának hányadosa, anyagjellemző.

$$\mu = \frac{\varepsilon_d}{\varepsilon}$$
,

ahol:

 $\varepsilon_{\scriptscriptstyle d}$ – keresztirányú fajlagos nyúlás [-],

 ε – hosszirányú fajlagos nyúlás [-]

19. Értelmezze a biztonsági tényező fogalmát a klasszikus értelmezés szerint!

A biztonsági tényező a határállapotot jellemző érték (a károsodást okozó legkisebb igénybevétel) és az igénybevételi állapotot jellemző érték hányadosa:

 $biztonsági tényező = \frac{a \ határállapotot jellemző érték}{az \ igénybevételi állapotot jellemző érték}$

7

20. Mi a különbség a szilárdsági méretezés és ellenőrzés között?

<u>Méretezés:</u> ismert a terhelés, az anyag határállapotát jelző mennyiség és az előírt biztonsági tényező; *ismeretlen a szerkezeti elem geometriai mérete*.

<u>Ellenőrzés:</u> ismert a terhelés, az anyag határállapotát jelző mennyiség és a a szerkezeti elem geometriai mérete; *a biztonsági tényező mértékét kell meghatározni* és összehasonlítani a megkövetelt értékkel.

<u>Megjegyzés:</u> a fenti négy tényező bármelyike lehet ismeretlen, értéke a másik három jellemzőből határozható meg.

21. Írja fel egy prizmatikus rúd tiszta húzó vagy nyomó igénybevétele esetén a keresztmetszetben ébredő feszültséget és ábrán szemléltesse annak eloszlását!

$$\sigma = \frac{F}{A},$$

ahol:

 σ – húzó- ill. nyomófeszültség [MPa],

F – húzó– ill. nyomóerő [N],

A - keresztmetszet [mm²]

A feszültségeloszlás a keresztmetszetben konstans.

22. Írja fel egy prizmatikus rúd tiszta nyíró igénybevétele esetén a keresztmetszetben ébredő átlagos feszültséget!

$$\tau = \frac{F}{A},$$

ahol:

 τ – nyírófeszültség [MPa],

F - nyíróerő [N],

A - keresztmetszet [mm²]

23. Írja fel egy prizmatikus rúd tiszta hajlító igénybevétele esetén a keresztmetszetben ébredő feszültséget és rajzolja fel a feszültségeloszlást!

$$\sigma = \frac{M}{I}e,$$

ahol:

 σ – hajlítófeszültség (normálfeszültség) [MPa],

M - hajlítónyomaték [Nmm],

/ - másodrendű nyomaték [mm⁴],

e – távolság a keresztmetszet súlypontjától [mm]

Megjegyzés: A feszültségeloszlás a hajlítás tengelyétől (ahol a feszültség értéke 0) a szélső szál felé haladva – elméletileg – lineárisan növekszik (a külső oldalon lokálisan húzó, a belsőn nyomó igénybevétel lép fel).

24. Írja fel egy prizmatikus rúd tiszta csavaró igénybevétele esetén a keresztmetszetben ébredő feszültséget és rajzolja fel a feszültségeloszlást!

$$\tau = \frac{T}{I_p}e ,$$

ahol:

 τ – csavarófeszültség (csúsztató feszültség) [MPa],

T - csavarónyomaték [Nmm],

/_σ – poláris másodrendű nyomaték [mm⁴],

e – távolság a hajlítás tengelyétől [mm]

Megjegyzés: A feszültségeloszlás a csavarás tengelyétől (ahol a feszültség értéke 0) a szélső szál felé haladva – elméletileg – lineárisan növekszik.

9

25. Mikor méretezünk egy nyomott rudat kihajlásra?

$$i = \sqrt{\frac{I_{min}}{A}}, \lambda = \frac{l}{i}$$

σ – törőfeszültség [MPa]

λ - karcsúság [-]

l – kihajlási hossz (függ a megtámasztások módjától) [mm]

i – tehetetlenségi sugár (inerciasugár) [mm]

I_{min} – másodrendű nyomaték a legkisebb inercia irányában [mm⁴]

A - keresztmetszet [mm²]

Kihajlásra akkor méretezünk, ha a rúd karcsú, azaz $\lambda > 60$.

26. Hogyan számítható a kör másodrendű nyomatéka középpontján átmenő tengelyre?

$$I = \frac{d^4\pi}{64},$$

ahol:

d – a kör átmérője [mm],

/ – másodrendű nyomaték [mm⁴].

27. Hogyan számítható a körgyűrű másodrendű nyomatéka középpontján átmenő tengelyre?

A külső és a belső átmérőre számított másodrendű nyomaték kivonásával.

$$I = \frac{D^4 \pi}{64} - \frac{d^4 \pi}{64},$$

ahol:

D - a külső átmérő [mm],

d - a belső átmérő [mm],

/ - másodrendű nyomaték [mm⁴].

28. Hogyan számítható egy téglalap másodrendű nyomatéka az egyik oldallal párhuzamos és középponton átmenő tengelyre?

$$I=\frac{ab^3}{12},$$

ahol:

a — a hajlítás tengelyével *párhuzamos* oldal hossza [mm],

b - a hajlítás tengelyére merőleges oldal hossza [mm],

/ – másodrendű nyomaték [mm⁴].

29. Mi az összefüggés a tengelyre számított és a poláris másodrendű nyomaték között?

A poláris (pontra számított) másodrendű nyomaték két, a ponton átmenő, egymásra merőleges tengelyre számított másodrendű nyomaték összege.

$$I_p = I_x + I_y ,$$

ahol:

l_x – másodrendű nyomaték az egyik tengelyre [mm⁴],

l, – másodrendű nyomaték a másik tengelyre [mm⁴],

l。 – poláris másodrendű nyomaték [mm⁴].

30. Mi az összefüggés a másodrendű nyomaték és a keresztmetszeti tényező között?

A másodrendű nyomatékot a szélső szál távolságával elosztva kapjuk meg a keresztmetszeti tényezőt.

$$K_{x}=\frac{I_{x}}{e}$$
,

ahol:

 K_x – keresztmetszeti tényező az adott tengelyre [m m^3],

l_x – másodrendű nyomaték az adott tengelyre [mm⁴],

e – a szélső szál távolsága [mm].

31. Miért vonhatók ki egymásból a másodrendű nyomatékok, a keresztmetszeti tényezők pedig miért nem?

Összetett keresztmetszetnél (pl. körgyűrű) több szélső szál távolságot is megkülönböztethetünk (a gyűrű belső és külső gyűrűjének távolsága a tengelytől), viszont a másodrendű nyomaték kivonással kapott értékét – ami a keresztmetszetet jellemzi – csak *egy* szélső szálra vett távolsággal elosztva kaphatjuk meg a keresztmetszeti ténvezőt.

Könnyen belátható, hogy a külön-külön számolt keresztmetszeti tényezők kivonása eltérő és téves eredményt ad.

Megjegyzés: példa körgyűrű keresztmetszetre

$$\left(\frac{D^4\pi}{64} - \frac{d^4\pi}{64}\right) \cdot \frac{2}{D} \neq \frac{D^3\pi}{32} - \frac{d^3\pi}{32}$$

ahol D a körgyűrű külső átmérője [mm], d a belső átmérő [mm].

32. Írja fel az egyenértékű feszültség összefüggését a Huber-Mises-Hencky (HMH)-elmélet és a Mohr-elmélet szerint!

$$\sigma_{egy}^{HMH} = \sqrt{(\sigma^2 + 3\tau^2)}, \quad \sigma_{egy}^{Mohr} = \sqrt{(\sigma^2 + 4\tau^2)}$$

ahol σ a normálfeszültségeket (húzás, hajlítás), a τ pedig a csúsztató (nyíró, csavaró) feszültségeket jelenti [MPa]–ban.

<u>Megjegyzés:</u> a keresztmetszeti feszültségeloszlásokat alapul véve prizmatikus rúdban a húzó és hajlító feszültség közvetlenül összegezhető, a nyírás és csavarás viszont nem.

11

33. Hogyan számítható egy húzóerővel terhelt prizmatikus rúd megnyúlása? Rajzoljon magyarázó ábrát is!

ahol:

dL - megnyúlás [mm]

F – terhelő erő [N]

L - eredeti hossz [mm]

A - keresztmetszet [mm²]

E – rugalmassági modulus [MPa]

34. Hogyan számítható egy csavaró nyomatékkal terhelt prizmatikus rúd végének szögelfordulása? Rajzoljon magyarázó ábrát is!

$$\varphi = \frac{ML}{I_p G}$$

ahol:

φ – szögelfordulás [rad]

M – csavarónyomaték [Nmm]

L – a rúd hossza [mm]

 $I_{\scriptscriptstyle p}$ — poláris másodrendű nyomaték [mm $^{\scriptscriptstyle 4}$]

G – csúsztató rugalmassági modulus [MPa]

35. Hogyan számítható egy befogott, koncentrált hajlító erővel terhelt prizmatikus rúd végének lehajlása? Rajzoljon magyarázó ábrát is!

ahol:

f - lehajlás [mm]

F – terhelő erő [N]

L - a rúd hossza [mm]

I – másodrendű nyomaték [mm⁴]

E - rugalmassági modulus [MPa]

36. Hogyan számítható egy befogott, hajlító nyomatékkal terhelt prizmatikus rúd végének szögelfordulása? Rajzoljon magyarázó ábrát is!

$$\varphi = \frac{ML}{IE}$$

ahol:

φ – szögelfordulás [rad]

M – hajlítónyomaték (= F·k) [Nmm]

L – a rúd hossza [mm]

I – másodrendű nyomaték [mm⁴]

E -rugalmassági modulus [MPa]

37. Milyen keresztmetszetek a legalkalmasabbak csavarással terhelt tartóelem készítésére és miért?

Leginkább csövek és zártszelvények (az oldalak arányától függően) a kedvező anyagkihasználás (a keresztmetszet menti feszültségeloszlás) miatt.

38. Mik az anyagválasztás legfőbb szempontjai? Írjon fel legalább három szempontot!

- szilárdsági és más fizikai jellemzők,
- funkcióra való alkalmasság,
- külső hatásokkal (hő, korrózió, ionizáló sugárzás stb.) szembeni ellenállás,
- adott technológiára való alkalmasság (forgácsolhatóság, hidegalakíthatóság, hegeszthetőség stb.),
- járatos félkész gyártmány,
- költségek (anyag, megmunkálás stb.),

39. Mik a polimerek legfontosabb, a fémekétől eltérő tulajdonságai? Írjon fel legalább három jellemzőt!

- kis sűrűség,
- viszonylag kis szilárdság,
- rossz hő- és elektromos vezetőképesség,
- nem követik a Hooke-törvényt,
- kis rugalmassági modulus -> az elemeket általában alakváltozásra és nem feszültségre méretezik, sok esetben merevítés szükséges,
- tartósfolyás hatása jelentős,

<u>Megjegyzés:</u> A fenti tulajdonságok részben kompenzálhatók ill. módosíthatók kompozit anyagszerkezetek alkalmazásával.

13

Kötések (bevezető kérdések)

40. Ismertesse és ábrával szemléltesse az anyaggal záró kötések hatásmechanizmusát!

A kötést a felületek közötti (adhéziós) ill. anyagon belüli (kohéziós) molekuláris kötőerők hozzák létre.

41. Soroljon fel legalább három anyaggal záró kötést!

Hegesztett kötés, forrasztott kötés, ragasztott kötés.

Megjegyzés: Ide sorolható még (legalábbis részben) a beágyazás és a kiöntés (pl. műgyantával, betonnal) is.

42. Ismertesse és ábrával szemléltesse az alakkal záró kötések hatásmechanizmusát!

A kötés az elemek geometriai kialakítása folytán jön létre, egymásba akadó felületek révén, amelyeken felületi nyomás alakul ki (vastag vonallal jelölve). A veszélyes keresztmetszet (szabadkézi vonallal jelölve) igénybevétele nyírás.

43. Milyen igénybevételekre ellenőrizzük (általában) az alakkal záró kötéseket?

Felületi nyomásra, nyíró igénybevételre a veszélyes keresztmetszetben, ezek mellett rendszerint ellenőrizzük az ún. szállítófeszültség mértékét is.

44. Soroljon fel legalább három alakkal záró kötést!

Reteszkötés, bordástengely-hornyos agy kötés, poligontengely kötés (ezek ún. nyomatékkötések)

Szegecskötés, szegkötés, csapszegkötés, bepattanó kötés, peremezés stb.

45. Ismertesse és ábrával szemléltesse az erővel záró kötések hatásmechanizmusát! Mi viszi át a nyomatékot ezeknél a kötéseknél?

A kötést a felületek közötti nyugvó (tapadási) súrlódási erő hozza létre, azaz a nyomatékátvitelt a súrlódási erő biztosítja.

46. Soroljon fel legalább három erővel záró kötést!

Pl. túlfedéssel szerelt kötések (sajtolt kötés és zsugorkötés), kúpos kötés, kúposgyűrűs kötések, szorítókötés, ékkötés (utóbbi csak részben).

47. Soroljon fel legalább három oldható kötést!

Pl. csavarkötés, csapszegkötés, alakkal záró tengelykötések, kúpos tengelykötés, reteszkötés.

Megjegyzés: a sajtolt ill. zsugorkötések oldhatósága kérdéses.

48. Soroljon fel legalább három nem oldható kötést!

Pl. hegesztett, forrasztott, ragasztott kötések, szegecskötés, peremezés.

Megjegyzés: előfordul oldható ragasztott kötés is.

Csavarkötések

49. Mit jelent csavaroknál a 12.9-es szilárdsági osztály?

Az első szám 100-szorosa a minimális szakítószilárdságot adja meg MPa-ban, a második szám a névleges folyáshatár és a névleges szakítószilárdság hányadosának 10-szerese. A példában $R_{\scriptscriptstyle m} = \underline{1200 \text{ MPa}}$ és $R_{\scriptscriptstyle eH} = 0.9\cdot1200 = \underline{1080 \text{ MPa}}$.

50. Mit jelent anyáknál a 6-os szilárdsági osztály?

A számérték százszorosa a csavaranya ún. <u>vizsqálati feszültsége</u> MPa-ban kifejezve, ami annak az orsónak a minimális szakítószilárdsága, amellyel az anya párosítható.

51. Rajzolja fel a Klein-diagramot, és magyarázza meg, mit fejez ki!

A meghúzási nyomaték (M_k) és az előfeszítő erő (F_v) közötti összefüggést, figyelembe véve a nyomatékkulcs pontosságát $(M_{kmax}$ és $M_{kmin})$ valamint a súrlódási tényező szórását (μ_{min}, μ_{max}) . Ezek alapján az előfeszítő erő minimális (F_{vmin}) és maximális (F_{vmax}) értéke kiszámítható. M [Nmm], F_v [N], μ [-].

52. Írja fel a csavar meghúzásához szükséges nyomaték összefüggését!

$$M = F_v \frac{d_2}{2} tg(\alpha + \rho') + F_v \frac{d_a}{2} \mu_a,$$

ahol

M – a csavar meghúzásához szükséges teljes nyomatékszükséglet [Nmm],

 d_2 – a csavarmenet középátmérője [mm],

 α – a csavarmenet emelkedési szöge [° vagy rad],

 ρ' – a látszólagos súrlódási félkúpszög [° vagy rad],

 d_a – a csavaranya közepes átmérője (a névleges átmérő és a laptávolság között) [mm],

 μ_a – az anya homlokfelülete és a csatlakozó alkatrész közötti súrlódási tényező [–]

<u>Megjegyzés:</u> az összeg első tagja a meneten ébredő, a második pedig az anya felfekvő felülete alatti súrlódás legyőzéséhez szükséges nyomaték. A csavaró igénybevétel számításánál csak az első tagot vesszük figyelembe.

53. Milyen statikus igénybevételekre ellenőrizzük általában a csavarkötéseket?

Húzásból (előfeszítő erő) és csavarásból (meghúzási nyomaték) számított egyenértékű feszültségre, amelyet a Mohr- vagy a HMH-elmélet szerint számolunk.

<u>Megjegyzés:</u> ez csak a szabványos csavarokra vonatkozik, ahol az anyát külön nem ellenőrizzük. Ha az anya nem szabványos, akkor azt ellenőrizni kell nyírásra és felületi nyomásra, azaz alakkal záró kötésként!

54. Mikor önzáró egy csavarkötés?

Ha $\alpha \leq \rho'$

Ez azt jelenti, *a menetemelkedés szöge ne haladja meg a látszólagos súrlódási félkúpszög értékét*, különben az anya "lecsúszik" a meneten, azaz a kötés kilazul.

55. Hol és miért előnyös a trapézmenet alkalmazása?

Mozgatóorsóknál, nagy terhelés esetén. A profilszög (ß = 30°) miatt nő a látszólagos súrlódási tényező, ezáltal nagyobb a surlódási erő. Mivel a menetprofil nem "éles", és a magátmérő felé haladva vastagodik, a teherbírás is nagy.

Megjegyzés:

$$\rho' = arc \ tg \ \mu' = arc \ tg \ \frac{\mu}{\cos \frac{\beta}{2}}$$

 μ – súrlódási tényező [-], ρ – súrlódási félkúpszög [° vagy rad], β – a menet profilszöge [°]. A vesszővel (′) jelölt mennyiségek a megnövekedett, látszólagos értékek.

56. Hol előnyös a zsinórmenet alkalmazása?

Mozgatóorsóknál, nagy terhelés esetén. Szennyeződésekre – az erősen lekerekített profil miatt – nem érzékeny (pl. élelmiszeripari gépek menetes orsói, vasúti csavarkapocs).

16

Anyaggal záró kötések

57. Hogyan értelmezzük általában egy varrat gyökméretét? Rajzoljon magyarázó ábrát is!

<u>Tompavarratnál</u>: általában a lemez vastagságával azonos (de pl. a nagyobb vastagságú lemezeknél gyakran alkalmazott Y-varratnál ez nem igaz).

Sarokvarratnál: a varrat keresztmetszetét jelentő háromszög magassága.

a – gyökméret [mm], v – lemezvastagság [mm]

58. Értelmezze és magyarázó ábrán szemléltesse egy tompavarratban az ébredő feszültségkomponenseket!

 σ – normálfeszültség (pl. húzás) [MPa], τ – csúsztató feszültség (pl. nyírás) [MPa], \bot – a varrat középsíkjára merőleges komponens, II – a varrat középsíkjával párhuzamos komponens

59. Értelmezze és magyarázó ábrán szemléltesse egy sarokvarratban az ébredő feszültségkomponenseket!

 σ – normálfeszültség (pl. húzás) [MPa], τ – csúsztató feszültség (pl. nyírás) [MPa], \bot – a varrat középsíkjára merőleges komponens, \Vert – a varrat középsíkjával párhuzamos komponens. Az index nélküli σ feszültség általános irányú, és síkban felbontható a fenti két összetevőre (bal oldali ábra).

60. Hogyan számítható egy csavarással terhelt, zárt, körbefutó sarokvarrat igénybevétele (Bredt-képlet)?

$$\tau_{II} = \frac{M}{2aA_0},$$

ahol:

 $\tau_{\scriptscriptstyle \parallel}$ – az ébredő feszültség [MPa]

M – csavaró nyomaték [Nmm]

a – a varrat gyökmérete [mm]

A_o – a varrat középvonala által bezárt terület [mm²]

61. Melyik a legkedvezőbb és a legkedvezőtlenebb igénybevétel egy ragasztott kötés számára?

A legkedvezőbb a nyíró igénybevétel. Emellett a nyomás is kedvezőnek mondható.

A legkedvezőtlenebbek, azaz kerülendők a húzó és lefejtő jellegű igénybevételek.

62. Melyik a legkedvezőbb igénybevétel egy forrasztott kötés számára?

A nyíró igénybevétel. Emellett a nyomás is kedvezőnek mondható.

63. Mit nevezünk ellenirányú kötésnek? Rajzoljon magyarázó ábrát is!

Akkor beszélünk ellenirányú kötésről, ha a két elem *terhelése ellentétes előjelű*. Az ábrán szemléltetve: *a felső lemez nyomott, míg az alsó húzott*.

64. Mit nevezünk egyirányú kötésnek? Rajzoljon magyarázó ábrát is!

Egyirányú kötés esetén a kapcsolódó alkatrészek *terhelése azonos irányú*. A fenti ábra szerint *mindkét lemez húzott*. Ha a lemezek rugalmassága azonos, az egyirányú kötés kb. kétszer akkora terhelést képes átvinni, mint az ellenirányú.

Alakkal záró kötések

65. Definiálja a bepattanó kötést!

Olyan, <u>alakkal záró</u> kötés, amelynél az összeszerelendő alkatrészeket <u>túlfedéses</u> szakaszon keresztül toljuk össze. A szerelés során egyik vagy mindkét alkatrész <u>ruqalmasan</u> deformálódik, majd terheletlen állapotba ugrik vissza.

66. Mi a szegecskötés mértékadó igénybevétele? Ábrával is szemléltesse!

Nyírás és palástnyomás (a lemezekben húzófeszültség mint szállítófeszültség ébred).

67. Rajzoljon fel egy egy- és egy kétnyírású szegecskötést, és jelölje be a nyírt keresztmetszeteket!

Egynyírású szegecskötés

Kétnyírású szegecskötés

68. Hogyan határozható meg a palástnyomás szeg- és szegecskötéseknél? Rajzoljon magyarázó ábrát is!

A terhelőerőt elosztjuk a nyomott palástfelületnek a szeg, ill. szegecs hossztengelyére vett merőleges vetületével.

$$p=\frac{F}{ds},$$

ahol:

p – palástnyomás [MPa]

d – a szeg vagy szegecs átmérője [mm]

s – lemezvastagság [mm]

69. Milyen igénybevételre ellenőrizzük a csapszegeket?

Nyírásra, felületi nyomásra és hajlításra. Utóbbi járulékos igénybevétel a nem tiszta nyírás (viszonylag nagy hézag) miatt.

Nyomatékkötések

70. Mi a különbség a sajtolt és a zsugorkötés között?

<u>Sajtolt kötés:</u> a szerelés erővel történik. A szerelés alatt egymáson elmozduló alkatrészek miatt a felület sérül, érdessége megváltozik.

<u>Zsugorkötés:</u> hőtágulás segítségével szerelik. Az egyik alkatrészt a kívánt túlfedésnek megfelelően felmelegítik, a másikat – ha szükséges – lehűtik.

71. Mitől függ az átvihető nyomaték és a szerelési erőszükséglet nagysága szilárd illesztésű kötéseknél?

Az átvihető nyomaték (mint kerületi erő) és a szerelési erőszükséglet – mivel erővel záró kötésről van szó – *súrlódási erővel* azonosítható. Ehhez *felületi nyomás* szükséges, amit az azzal arányos *túlfedés* határoz meg.

Mindig a legkedvezőtlenebb esettel számolunk: a nyomatékot a legkisebb túlfedéssel is át kell vinni, a szerelést pedig a legnagyobb erőszükséglettel (azaz túlfedéssel) is meg kell valósítani.

72. Mi a reteszkötés (és a tengely) mértékadó igénybevétele?

Felületi nyomás (szabványos kialakításnál és szokásos anyagválasztás esetén az agyhoronynál ellenőrizve). Emellett a kötést a retesz nyíró igénybevételére, a tengelyt pedig csavarásra, mint szállítófeszültségre is ellenőrizzük.

Megjegyzés: magyarázó ábra.

A felületi nyomás *valós* eloszlása – sem radiális irányban, sem pedig a retesz hossza mentén – nem lineáris, ezért átlagértékkel számolunk.

73. Mi a bordástengely kötés (és a tengely) mértékadó igénybevétele?

Felületi nyomás a bordák oldalfelületein. Emellett a kötést a bordák nyíró igénybevételére, a tengelyt pedig csavarásra, mint szállítófeszültségre is ellenőrizzük.

Megjegyzés: magyarázó ábra

Rugók (rugalmas kötések)

74. Mi a rugók funkciója? Soroljon fel (példával) legalább hármat!

- Rugalmas szorítás, erő fenntartás (pl. motorszelep-rugó, bútorrugó)
- Energiatárolás, elnyelés, visszaadás (pl. ütközők, lökhárítók, órarugók)
- Rendszerek dinamikai illesztése: elhangolás, ráhangolás (pl. rugalmas tengelykapcsolók, vibrátorok)
- Rezgéscsillapítás (pl. gépalapozás, lengéscsillapítók)
- Erő/nyomaték határolása (pl. biztonsági szelep, biztonsági tengelykapcsolók)
- Erő/nyomaték mérése, szabályozása (pl. rugós mérlegek)
- Egyebek: kötések, ágyazások, erőkiegyenlítés, stb

75. Mit fejez ki a rugókarakterisztika? Válaszát ábrával szemléltesse!

A terhelő erő (F) ill. nyomaték (M) és a rugó alakváltozása (megnyúlás, összenyomódás – f ill. elcsavarodás ϕ) közötti függvénykapcsolatot.

76. Mit jelent a lineáris rugókarakterisztika? Nevezzen meg és vázoljon fel egy ilyen karakterisztikájú rugót!

A terhelő erő (nyomaték) és a rugó alakváltozása egymással arányos. Példa: hengeres csavarrugó.

F – terhelő erő [N], f – összenyomódás [mm]. Helyettük – más rugótípusnál – nyomaték (M [Nmm]) és szögelfordulás (φ [rad]] is szerepelhet.

77. Mit jelent a progresszív rugókarakterisztika? Nevezzen meg és vázoljon fel egy ilyen karakterisztikájú rugót!

A terhelő erő (nyomaték) növekedéséhez viszonyítva az alakváltozás egyre kevésbé növekszik (a terhelés növekedésével a rugó "keményedik"). Példa: kúpos csavarrugó.

F – terhelő erő [N], f – összenyomódás [mm]. Helyettük – más rugótípusnál – nyomaték (M [Nmm]) és szögelfordulás (φ [rad]] is szerepelhet.

78. Mit fejez ki a degresszív rugókarakterisztika? Nevezzen meg és vázoljon fel egy ilyen karakterisztikájú rugót!

A terhelő erő (nyomaték) növekedéséhez viszonyítva az alakváltozás egyre jobban növekszik (a terhelés növekedésével a rugó "lágyul"). Példa: tányérrugó.

F – terhelő erő [N], f – összenyomódás [mm]. Helyettük – más rugótípusnál – nyomaték (M [Nmm]) és szögelfordulás (φ [rad]] is szerepelhet.

79. Mi a rugómerevség?

Egységnyi alakváltozást okozó erő, amit a rugókarakterisztika alapján az alábbiak szerint számolunk.

$$s = \frac{\mathrm{d}F}{\mathrm{d}f} = \frac{F}{f} ,$$

ahol:

s - rugómerevség [N/mm],

F - terhelő erő [N],

f - összenyomódás [mm]

80. Mit fejez ki a torziós rugómerevség?

A rugót terhelő csavarónyomaték és a rugóvég szögelfordulásának (differenciál)hányadosa.

$$s_T = \frac{\mathrm{d}M}{\mathrm{d}\varphi} = \frac{M}{\varphi} \ ,$$

ahol:

 s_{τ} – torziós rugómerevség [Nmm],

M – terhelő nyomaték [Nmm],

arphi – szögelfordulás (elcsavarodás) [rad]

81. Hogyan írható fel a rugóban tárolható energia f összenyomódás esetén? Diagramon is ábrázolja!

 $W=\int_0^f F \mathrm{d}f$, lineáris karakterisztika esetén $W=\frac{1}{2}Ff$ (a rugókarakteriszika görbe alatti területe).

Ahol:

W – a tárolható energia [N·m] = [J],

F – a rugót terhelő erő [N],

f – a rugó alakváltozása (összenyomódása, megnyúlása) [m]

82. Hogyan írható fel a rugóban tárolható energia ϕ elcsavarodás esetén? Diagramon is ábrázolja!

 $W=\int_0^{\varphi}M\mathrm{d}\varphi$, lineáris karakterisztika esetén $W=\frac{1}{2}M\varphi$ (a rugókarakteriszika görbe alatti területe).

ahol

W – a tárolható energia $[N \cdot m] = [J]$,

M – a rugót terhelő csavarónyomaték [Nm],

 φ – a rugóvég elcsavarodása [rad]

83. Hogyan értelmezhető egy rugó kihasználtsági foka?

A rugóban tárolt energia és a rugó térfogatának hányadosa (W/V).

84. Mikor beszélünk egy rugórendszeren belül két rugó soros kapcsolásról? Hogyan határozható meg az eredő rugómerevség?

Ha a rugók terhelése megegyezik, alakváltozásuk pedig összeadódik.

Az eredő rugómerevség [N/mm]:

$$\frac{1}{s_{ered6}} = \frac{1}{s_1} + \frac{1}{s_2}$$

85. Mikor beszélünk egy rugórendszeren belül két rugó párhuzamos kapcsolásáról? Hogyan határozható meg az eredő rugómerevség?

Ha a rugók elmozdulása megegyezik, terhelésük pedig megoszlik.

Az eredő rugómerevség [N/mm]:

$$s_{ered0} = s_1 + s_2$$

86. Írjon példát olyan rugóra, amelynél a terhelés és az igénybevétel egymástól eltérő jellegű!

A húzó-nyomó csavarrugó esetében *a terhelés húzás ill. nyomás*, de a rugóhuzal *igénybevétele csavarás*. Ugyanígy, egy *csavaró terhelést* kapó csavarrugónál a huzal *hajlító igénybevételt* szenved.

87. Mik a gumirugók méretezésének főbb sajátosságai? Említsen meg legalább három jellegzetes eltérést a fémrugókhoz képest!

- Rugalmassági modulusuk a fémekénél nagyságrendekkel kisebb -> a teherbírást elsősorban a megengedhető alakváltozás korlátozza.
- A rugalmassági modulus nem csak az anyagtól függ o látszólagos rugalmassági modulus.
- A Hooke-törvényt csak a keresztmetszet-csökkenést is figyelembe véve követik → a rugalmas anyagmodell korlátozásokkal, de használható.
- Jelentős a hiszterézis.
- A statikus és dinamikus rugómerevség értéke eltér.

88. Mi a formatényező (alaktényező) gumirugóknál?

A deformációban gátolt (fegyverzettel borított) és a deformációban nem gátolt (szabad) felületek hányadosa.

89. Mitől függ a látszólagos rugalmassági (Young-) modulus gumirugóknál?

A formatényezőtől (alaktényezőtől) és a gumi Shore-keménységétől.

<u>Megjegyzés:</u> a görbesereg progresszív jellegű is lehet. A számértékeket nem kell feltüntetni.

90. Mitől függ a látszólagos csúsztató rugalmassági modulus gumirugóknál?

A formatényezőtől (alaktényezőtől) és a gumi Shore-keménységétől. Ha a formatényező értéke az 1-et meghaladja, csak a Shore-keménységtől.

Megjegyzés: az 1-es alaktényezőn, mint határértéken kívül más számértéket nem kell felírni.

91. Mi a hiszterézis? Válaszát diagrammal is szemléltesse!

F - terhelés [N], f - alakváltozás [mm].

A fel- és leterhelés karakterisztikája különböző, így a rugó a csak függőleges vonalkázással jelölt területnek megfelelő energiát (a közölt és visszanyert energia különbségét) nyel el és alakít hővé. Ez egyfelől csillapítja a rezgéseket, másrészt viszont a rugó anyagát melegíti.

92. Hogyan értelmezzük a csillapítás mérőszámát rugók esetén?

F - terhelés [N], f - alakváltozás [mm], W - energia (munka) [N·mm]

Tengelyek, forgórészek

93. Mit nevezünk tengelynek, és milyen főbb típusait különböztetjük meg?

Azokat a gépelemeket, amelyek forgó alkatrészeket hordoznak (álló hordozó tengelyek), vagy csapágyakon támaszkodva forognak, tengelyeknek nevezzük. Azokat a tengelyeket, amelyek teljesítményt továbbítanak közlő tengelyeknek, amelyek nem, azokat hordozó tengelyeknek nevezzük.

94. Mi a jellemző igénybevétele egy forgó hordozótengelynek?

Fárasztó igénybevétel, amelynek jellege *forgóhajtogatás* (a keresztmetszet szélső szálában a forgó tengely helyzetétől függően hol húzó, hol pedig nyomó igénybevétel ébred).

Megjegyzés: magyarázó ábra

 σ – hajlítófeszültség (sinusos váltakozó feszültség) [MPa], F – terhelés, önsúly stb. [N], n – fordulatszám [1/s], t – idő [s].

95. Mik a jellemző igénybevételei egy közlőtengelynek?

Fárasztó igénybevétel, amelynek jellege *forgóhajtogatás* és csavarás, amely lehet általános lengő csavarás is.

Megjegyzés: magyarázó ábra

F – terhelés, önsúly stb. [N], M – csavarónyomaték [Nm], n – fordulatszám [1/s].

96. Mi okozza a fáradásos törést?

A fáradást az anyagban meglévő *mikrorepedések* okozzák, amelyek az *ismétlődő, dinamikus terhelés* hatására terjedni kezdenek. Amikor a repedés mérete eléri a kritikus értéket, a maradék keresztmetszet teherbírása már nem elegendő, és az elem eltörik. Az ún. nagyciklusú (Wöhler-) fáradás már folyáshatár alatti, ismétlődő feszültségnél bekövetkezhet.

97. Milyen a fáradásos törés jellegzetes képe?

A törési felületen *két, jól elkülöníthető terület* különböztethető meg: a *kagylós töret* a repedés terjedésére, az elvált felületek súrlódására utal, míg a *szívós töretű rész* a "maradék" keresztmetszet átszakadására.

98. Mi a különbség a fáradásos törés és a rideg törés között?

<u>Fáradásos törés:</u> az anyagban levő mikrorepedések és az ismétlődő terhelés okozza. A repedés terjedése viszonylag lassú, a töréskép két jellegzetes zónára osztható.

<u>Rideq törés:</u> a mikrorepedések gyors, robbanásszerű terjedése okozza. A rugalmas ill. képlékeny alakváltozás mértéke csekély, az anyag ridegen viselkedik. Főbb befolyásoló tényezői: anyagvastagság, az anyag szilárdsága, hőmérséklet. Így nagyobb anyagvastagság, nagy szilárdságú anyag alkalmazása vagy alacsony hőmérséklet esetén törésmechanikai számításokat (is) végeznek.

99. Mit nevezünk egy tengely kritikus fordulatszámának? Hogyan számítható az ehhez tartozó szögsebesség?

A forgórészek rugalmasságuk miatt lengőrendszerek, a sajátfrekvenciájuknak megfelelő fordulatszámot kritikus fordulatszámnak nevezzük.

Az ehhez tartozó szögsebesség:

$$\omega_k = \sqrt{\frac{s}{m}}$$
 hajlító lengésnél, $\omega_k = \sqrt{\frac{s_t}{\theta}}$ csavaró lengésnél.

 ω_k – kritikus szögsebesség [1/s], s – a tengely rugómerevsége [N/m], m – a forgórész tömege [kg], s, – a tengely torziós rugómerevsége [Nm], θ – a forgórész tehetetlenségi nyomatéka [kg·m²]

100.Rajzolja fel és értelmezze a rezonanciagörbét!

 ω – szögsebesség [1/s], ω_k – kritikus szögsebesség [1/s], |v| – nagyítási tényező [–]

Az ω/ω_k = 1 környezete a rezonancia tartomány. Az ω/ω_k < 1 az ún. föléhangolt tartomány, az ω/ω_k > 1 tartomány az ún. aláhangolt tartomány. Az ω/ω_k > $\sqrt{2}$ \approx 1,41 tartományban a tengely önmagától központos helyzetbe áll be, és nyugodtabban jár, mint a föléhangolt tartományban.

<u>Megjegyzés:</u> az aláhangolt tartományban üzemeltetett rendszereknél arra kell ügyelni, hogy indításnál és megállásnál a rezonancia tartományban minél rövidebb ideig működjön a berendezés a károsodások elkerülése érdekében.

101. Mi a különbség a lengő és lüktető jellegű feszültség között?

<u>Lüktető feszültség:</u> a feszültség a minimális és maximális érték között nem vált előjelet. <u>Lengő feszültség:</u> a feszültség a minimális és maximális érték között előjelet (azaz irányt) vált. Váltakozó feszültségnek is nevezik, a lüktető feszültségi állapotnál veszélyesebb.

Megjegyzés: magyarázó ábra

102.Szemléltesse diagramon a középfeszültség és a feszültség amplitúdó fogalmát!

 σ_m – középfeszültség [MPa], σ_a – feszültség amplitúdó [MPa], t – idő [s]. τ feszültségekre ugyanígy értelmezhető.

103.Mit ábrázol a Wöhler-görbe? Rajzolja fel (acélokra), és nevezze meg jellegzetes szakaszait!

Az ébredő feszültség amplitúdókat (σ) ábrázolja egy keresztmetszetben a terhelési ciklusszám (N) függvényében (adott törési valószínűséggel) egy adott anyagminőségre. A ciklusszámot logaritmikus léptékben vesszük fel.

a – kisciklusú ("statikus") szakasz, b – élettartamszakasz, c – kifáradási határ (σ, [MPa]).

Megjegyzés: a legtöbb színes- és könnyűfémnek (pl. alumínium) nincs kifáradási határa.

104.Mit jelent az élettartam-szilárdság (időtartam-szilárdság)?

Az az ismétlődő feszültség, amelyet a próbatest N-szer képes elviselni eltöréséig. Valószínűségi változóként kezelendő. Jele: $R_{m/t}$ [MPa]

105.Mit jelent a kifáradási határ?

Annak a tiszta lengőfeszültségnek az amplitúdója, amelynél a vizsgált próbatestek 90 %-a eléri a 10 $^{\circ}$ számú igénybevételt. Jele: σ_{v} ill. τ_{v} vagy általánosan R_{D} [MPa]

106. Mire használatos a Smith- és a Haigh-diagram?

Ismétlődő (lengő vagy lüktető) terhelés esetén a biztonsági területet jelöli ki adott anyagminőségre.

107.Rajzolja fel az egyszerűsített (VDI-szerinti) Smith-diagramot! Mikor használjuk?

 σ_a – feszültség amplitúdó [MPa], σ_m – középfeszültség [MPa], σ_v – lengőszilárdság [MPa] <u>Alkalmazása:</u> ha az adott anyagminőségre kimért (pontos) Smith-diagram nem áll rendelkezésre.

Megjegyzés:

A szerkesztés menete: (1) R_m felmérése, (2) 45° -os egyenes berajzolása, (3) $+\sigma_v$ és $-\sigma_v$ felmérése a függőleges tengelyre, (4) σ_v /2 felmérése a sarokpontból, (5) $+\sigma_v$ és σ_v /2 összekötése, (6) R_{eH} felmérése és a felső határvonal berajzolása, (7) $-\sigma_v$ és a felső sarok összekötése, (8) az R_{eH} -nál levő töréspont letükrözése a 45° -os egyenesre, (9) alsó határgörbe megrajzolása.

108.Rajzolja fel a (közelítő) Haigh-diagramot, és értelmezze a biztonsági tényezőt!

<u>Biztonsági tényező:</u> AT/AM, ha σ_m = áll., OB/OM, ha σ_m/σ_a = áll.

 $\sigma_{\scriptscriptstyle a}$ – feszültség amplitúdó [MPa], $\sigma_{\scriptscriptstyle m}$ – középfeszültség [MPa], $R_{\scriptscriptstyle m}$ – szakítószilárdság [MPa],

 R_{eH} – felső folyáshatár [MPa], σ_v – lengőszilárdság [MPa]

109.Mitől függ, és hogyan határozható meg egy hajlító igénybevétellel terhelt *alkatrész* kifáradási határa, ha ismert az adott anyagú *próbatest* kifáradási határa? A legegyszerűbb modell szerint írja fel!

$$\sigma_v' = \frac{b_1 b_2}{\beta_k} \sigma_v$$

ahol:

σ', – az alkatrész kifáradási határa [MPa],

 b_1 - mérettényező [-],

 b_2 – felületi érdesség tényező [–],

 β_k – gátlástényező [–],

 σ_v – a szabványos próbatest kifáradási határa [MPa]

110. Hogyan értelmezzük az alaktényezőt (feszültségtorlódás esetén)? Rajzoljon magyarázó ábrát is!

A vizsgát keresztmetszetben ébredő maximális és névleges feszültség hányadosa.

$$\alpha_k = \frac{\sigma_{max}}{\sigma_n}$$

 α_k – alaktényező [–], σ_n – névleges feszültség (bemetszés nélkül) [MPa], σ_{max} – maximális feszültség (feszültségcsúcs) [MPa]

Tömítések

111. 1 bar hány MPa-lal egyenlő?

 $1 \text{ bar} = 10^5 \text{ Pa} = 0.1 \text{ MPa}.$

112. Mi a tömítések feladata?

Két tér elkülönítése, a két tér közötti nem kívánatos közegáramlás megakadályozása vagy mérséklése.

113. Írjon fel legalább három példát nyugvó felületek érintkező tömítésére!

Tömítőmasszák, tömítőhegesztés (anyaggal záró tömítések) Lapostömítések, profilos tömítések (pl. 0-gyűrű)

114. Írjon fel legalább három példát nem érintkező tömítésekére!

Pl. réstömítés, labirinttömítés, visszahordó menet, folyadékszóró tömítés.

115. Írjon fel legalább három példát haladó és forgó mozgást megengedő tömítésekre!

Pl. tömszelence, ajakos tömítések (pl. U-gyűrű), nemezgyűrű, radiális tengelytömítőgyűrű (Simmering), axiális tömítőgyűrűk.

Csővezetékek, csőszerelvények, nyomástartó edények

116. Szemléltesse milyen feszültségek ébrednek egy belső nyomással terhelt, vékonyfalú zárt csőben? Melyik a legnagyobb komponens?

Tangenciális (σ_r) , axiális (σ_a) , radiális (σ_r) . A legnagyobb komponens a tangenciális feszültség.

117. Írja fel egy belső nyomással terhelt, vékonyfalú csőben ébredő tangenciális feszültséget!

$$\sigma_t = \frac{pD}{2s} \ ,$$

ahol

 $\sigma_{\scriptscriptstyle t}$ – tangenciális feszültség [MPa],

p – belső nyomás [MPa],

D - belső átmérő [mm],

s – falvastagság [mm]

118. Írja fel egy belső nyomással terhelt, vékonyfalú csőben ébredő axiális feszültséget!

$$\sigma_a = \frac{pD}{4s}$$
,

ahol

 σ_a – axiális feszültség [MPa],

p – belső nyomás [MPa],

D - belső átmérő [mm],

s – falvastagság [mm]

119. Írja fel egy belső nyomással terhelt, vékonyfalú cső belső falán ébredő radiális feszültséget!

 $\sigma_r = -p$ a cső falának belső felületén, $\sigma_r = 0$ a külső palástfelületen.

p – belső nyomás [MPa]

A radiális feszültség 1:10 falvastagság/átmérő viszony alatt elhanyagolható.

120.Soroljon fel legalább három példát csőkötésekre!

Pl. tokos, karimás (hegesztőtoldatos, lazakarimás), csőanyás (hollandi)

121. Mi a csőkompenzátorok szerepe?

A csővezetékekben a hőtágulások okozta hosszváltozások biztosítása járulékos erők ébredése nélkül.

122. Soroljon fel legalább háromféle csőelzáró szerelvénytípust!

Pl. csap, szelep, tolózár, pillangószelep, csappantyú.

125. Mit jelent a nyomástartó edény kifejezés? Soroljon fel legalább három példát is!

Olyan folyadékot, gázt vagy gőzt tartalmazó, zárt tereket határoló szerkezet, amelyet belső és/vagy külső nyomás terhel. Néhány példa: vegyipari tartályok, légtartályok, autoklávok, szállítótartályok, gőzkazánok, gázpalackok.

Egyes ábrák forrásai:

Dr. Grőb Péter: Gépszerkesztés alapjai előadásvázlat

Dr. Kerényi György: Gépelemek 1 előadásvázlat

Dr. Tóth Sándor - Molnár László - Dr. Bisztray-Balku Sándor - Dr. Marosfalvi János:

Gépelemek 1. Műegyetemi Kiadó, Budapest, 2007. Jegyzetazonosító: 45080.

Dr. Zsáry Árpád: Gépelemek I. (2. kiadás), Nemzeti Tankönyvkiadó, Budapest, 2005.