EXERCICES — CHAPITRE 2

Exercice 1 – Un sac contient 4 boules numérotées de 1 à 4. On effectue deux tirages successifs d'une boule, avec remise.

On note X_1 le numéro de la première boule, X_2 le numéro de la deuxième boule et Y le plus grand des deux numéros obtenus.

- 1. Déterminer la loi du couple (X_1, X_2) .
- 2. (a) Déterminer la loi du couple (X_1, Y) .
 - (b) En déduire la loi de Y.
 - (c) Peut-on obtenir la loi de X_1 de façon analogue?

Exercice 2 – On lance un dé dont les faces sont numérotées de 1 à 6 et on note *X* le numéro obtenu. On choisit alors au hasard avec équiprobabilité un entier *Y* compris entre 1 et *X*.

- 1. Donner la loi de *X*.
- 2. Pour tout $x \in X(\Omega)$, donner la loi de Y sachant [X = x].
- 3. Déterminer la loi du couple (X, Y).
- 4. En déduire la loi de Y et retrouver la loi de X.

Exercice 3 – Soient X et Y deux variables aléatoires indépendantes qui suivent la loi uniforme sur [1;10].

- 1. Déterminer la probabilité que la valeur prise par *X* soit supérieure ou égale à 7.
- 2. Déterminer la probabilité pour que la valeur prise par X soit paire.
- 3. Déterminer la probabilité pour que les valeurs prises par *X* et *Y* soient égales.
- 4. Déterminer la probabilité pour que la valeur prise par *X* soit inférieure ou égale à la valeur prise par *Y*.

Exercice 4 – Soient X et Y deux variables aléatoires telles que $Y = X^2$. On suppose que la loi de X est donnée par le tableau suivant :

x_i	-2	-1	0	1	2
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{6}$

- 1. Justifier que la variable aléatoire *X* est bien définie.
- 2. Déterminer la loi conjointe de X et Y.
- 3. Déterminer la loi de *Y*.
- 4. Les variables aléatoires *X* et *Y* sont-elles indépendantes?

5. Calculer Cov(X, Y). Que peut-on en conclure?

Exercice 5 (**ESC 2018**) – Une urne contient une boule rouge et deux boules blanches. Un joueur effectue trois tirages successifs d'une boule dans cette urne. Il remet la boule obtenue dans l'urne après chaque tirage.

À partir du deuxième tirage, le joueur reçoit un point à chaque fois que la couleur obtenue à un tirage n'est pas celle qui a été obtenue au tirage précédent. Dans le cas contraire, il ne reçoit aucun point.

Ainsi, si les trois tirages successifs amènent : blanc, rouge, rouge, le joueur marque un point au deuxième tirage et aucun au troisième tirage.

On introduit, pour tout entier k compris entre 1 et 3, les évènements B_k : "obtenir une boule blanche au k-ième tirage" et R_k : "obtenir une boule rouge au k-ième tirage".

- 1. Soit X_2 la variable aléatoire de Bernoulli égale au gain du joueur lors du deuxième tirage. C'est-à-dire que X_2 est égale à 1 si le joueur marque un point lors du deuxième tirage et que X_2 est égale à 0 sinon.
 - (a) Justifier que $[X_2 = 1] = (B_1 \cap R_2) \cup (R_1 \cap B_2)$. Calculer $P(X_2 = 1)$.
 - (b) Donner $E(X_2)$ et $V(X_2)$.
- 2. Soit X_3 la variable aléatoire de Bernoulli égale au gain du joueur lors du troisième tirage.
 - (a) Justifier que X_3 suit la même loi que X_2 .
 - (b) Soit G la variable aléatoire égale au nombre total de points marqués lors des trois tirages. Exprimer G en fonction de X_2 et X_3 . En déduire E(G).
- 3. (a) Exprimer l'évènement $[X_2 = 1] \cap [X_3 = 1]$ en fonction de B_1 , B_2 B_3 et R_1 , R_2 , R_3 . En déduire que

$$P([X_2 = 1] \cap [X_3 = 1]) = \frac{2}{9}$$

(b) Compléter de la même manière le tableau suivant donnant la loi conjointe du couple (X_2, X_3) .

	$X_3 = 0$	$X_3 = 1$
$X_2 = 0$		
$X_2 = 1$		

En déduire que

$$Cov(X_2, X_3) = \frac{2}{81}$$

4. Calculer V(G).

Exercice 6 (**ESCP-Europe 2018**) – On suppose que l'on dispose d'un stock illimité de boules rouges et de boules blanches indiscernables au toucher. Une urne contient initialement une boule rouge et une boule blanche indiscernable au toucher.

On effectue dans cette urne une succession d'expériences aléatoires selon le protocole suivant : on extrait une boule de l'urne et après chaque tirage, la bole tirée est remise dans l'urne et on ajoute dans l'urne une boule de la même couleur que la boule tirée.

Pour tout entier $n \ge 1$, on note X_n (respectivement Y_n) la variable aléatoires égale au nombre de boules rouges (respectivement blanches) contenues dans l'urne à l'issue de la n-ième expérience, c'est-à-dire après le tirage d'une boule et la remise d'une boule supplémentaire.

Pour tout entier $k \ge 1$, on note R_k (respectivement B_k) l'évènement : "tirer une boule rouge (respectivement blanche) lors du k-ième tirage".

- 1. (a) Justifier que $X_1(\Omega) = [1;2]$. Donner la loi de X_1 . Calculer $E(X_1)$ et $V(X_1)$.
 - (b) Exprimer les évènements $[X_2 = 1]$, $[X_2 = 2]$ et $[X_2 = 3]$ en fonction des évènements B_1 , B_2 , R_1 et R_2 .
 - (c) Montrer que X_2 suit la loi discrète uniforme sur [1;3]. En déduire $E(X_2)$ et $V(X_2)$.
- 2. (a) Donner sous forme de tableau la loi conjointe du couple (X_1, X_2) .
 - (b) Calculer la covariance de X_1 et X_2 . Les variables aléatoires X_1 et X_2 sont-elles indépendantes?