Complete Title of the Journal Article

Ziqiang Cui, Pengyu Yang and Huaxiang Wang

Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering Tianjin University Tianjin 300072, China

E-mail: cuiziqiang@tju.edu.cn

December 2020, submitted to Meas. Sci. Technol.

Abstract. Here comes the abstract ...

1. Introduction

This is a well organized LATEX template for the IEEE papers that can be used by the graduate students to prepare the IOP journal papers.

1.1. Titles

One can modify the author list, institution, address, correspondence email and title of paper in the file article.tex.

1.2. Math formula

Some frequently used formulas can be found in the file math.tex. To refer a formula, use the corresponding command. For example, we can add the Maxwell's equations as \maxwell, and produce:

More formated equations are summerized in the appendix.

2. Methods

2.1. How to improve the academic English writing

The easiest way is to ...

- Find 10 or more relevant papers that wrote by the native speakers, read and memorize the classic sentences.
- Learn how to describe and discuss the results, figures and tables; conclude the work and demonstrate the significance.
- Keep in mind that NO PLAGIARISM is allowed.
- One can avoid plagiarism by word-by-word rephrasing the sentences.

Short title 2

Table 1. Summery of effective medium	approximation formulas.
---	-------------------------

Relation	Formula	Correction factor
Parallel/Linear	$\delta_h^p = \frac{\varepsilon_e - \varepsilon_l}{\varepsilon_h - \varepsilon_l}$	1
Series	$\delta_h^s = rac{arepsilon_h}{arepsilon_e} rac{(arepsilon_e - arepsilon_l)}{(arepsilon_h - arepsilon_l)}$	$\left(rac{arepsilon_h}{arepsilon_e} ight)$
Maxwell-Garnett	$\delta_h^M = \frac{(\varepsilon_h + 2\varepsilon_l)}{(\varepsilon_e + 2\varepsilon_l)} \frac{(\varepsilon_e - \varepsilon_l)}{(\varepsilon_h - \varepsilon_l)}$	$\left(\frac{\varepsilon_h + 2\varepsilon_l}{\varepsilon_e + 2\varepsilon_l}\right)$
Bruggeman	$\delta_h^{Br} = \frac{\varepsilon_e + \varepsilon_h}{2\varepsilon_e} \frac{(\varepsilon_e - \varepsilon_l)}{(\varepsilon_h - \varepsilon_l)}$	$\left(rac{arepsilon_e + arepsilon_h}{2arepsilon_e} ight)$
Böttcher	$\delta_h^{Bo} = \frac{(\varepsilon_h + 2\varepsilon_e)}{3\varepsilon_e} \frac{(\varepsilon_e - \varepsilon_l)}{(\varepsilon_h - \varepsilon_l)}$	$\left(\frac{2\varepsilon_e + \varepsilon_h}{3\varepsilon_e}\right)$

2.2. Figures & Tables

Use of figures and tables to illustrate the results should be firstly considered.

Figure 1. Circuit sample.

3. Results and Discussions

4. Conclusion