Devoir maison

à rendre pour le 15/05/12

Exercice 1.

- a) Montrer que l'équation $\tan(x) = x$ admet une unique solution u_n dans l'intervalle $I_n =] \frac{\pi}{2} + n\pi; \frac{\pi}{2} + n\pi[$ et donner un équivalent simple de u_n .
- b) Soit $x_n = \frac{\pi}{2} + n\pi u_n$ (distance du bord droit de l'intervalle I_n à la solution u_n). Exprimer $\tan(x_n)$ en fonction de u_n et en déduire que $x_n \underset{n \to \infty}{\sim} \frac{1}{n\pi}$.

Exercice 2.

- a) Quel est le reste de la division euclidienne de $X^n + 1$ par $X^2 1$?
- b) Soit a un réel fixé. Donner la décomposition en produit de facteurs irréductibles dans $\mathbb{R}[X]$ de

$$P(X) = X^{2n} - 2X^n \cos(a) + 1$$

Exercice 3.

a) Soit $(p,q) \in \mathbb{N}^2$. Calculer

$$I_{p,q} = \int_0^{2\pi} e^{ipx} e^{-iqx} dx \quad , \qquad J_{p,q} = \int_0^{2\pi} \cos px \cos qx dx,$$

$$K_{p,q} = \int_0^{2\pi} \cos px \sin qx dx \quad , \qquad L_{p,q} = \int_0^{2\pi} \sin px \sin qx dx.$$

- b) Soit $I_n = \int_0^1 \frac{dx}{(1+x^3)^n}$ pour $n \ge 1$. Trouver une relation de récurrence sur I_n .
- c) Montrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n} \frac{C_n^k}{k+1} = \frac{(2^{n+1}-1)}{n+1}$$

Indication : on écrira $\frac{1}{k+1}$ comme une intégrale faisant intervenir x^k