Public Key Algorithms Lesson Introduction

- Modular arithmetic
- RSA
- Diffie-Hellman

Modular Arithmetic

 Public key algorithms are based on modular arithmetic

- Modular addition
- Modular multiplication
- Modular exponentiation

Modular Arithmetic

- Addition modulo (MOD) M
- Additive inverse: addition MOD M yields 0
 - \bullet E.g., M=10, for k=2, its inverse is k^{-1} =8 because 2+8 MOD 10 = 0
- Reversible: by adding the inverse
 - Convenient for decryption
 - \bullet E.g., for c = 3, p = c+k = 3+2 MOD 10 = 5; $p+k^{-1} = 5+8 \text{ MOD } 10 = 3 = c$

Additive Inverse Quiz

What is the additive inverse of 8 MOD 20?

Enter an answer in the textbox:

Modular Multiplication

- Multiplication modulo M
- Multiplicative inverse: multiplication MOD M yields 1
 - ●E.g., M=10, 3 and 7 are inverse of each other because 3×7 MOD 10 = 1
- Only some numbers have inverse
 - But 2, 5, 6, 8 do not have inverse when M=10

Modular Multiplication

- Use Euclid's algorithm to find inverse
 - Given x, n, it finds y such that xxy
 mod n = 1

Only the numbers relatively prime
 to n has MOD n multiplicative
 inverse

Modular Multiplication Quiz

What is multiplicative inverse of 3 MOD 17?

Enter an answer in the textbox:

Totient Function

- •x is relatively prime to n: no common factor other than
 1
- Totient function ø(n): number of integers smaller than n and relatively prime to n
 - if n is prime, ø(n)=n-1
 - •if $n=p\times q$, and p, q are primes, $\emptyset(n)=(p-1)(q-1)$
 - •if n=p×q, and p, q are relative prime to each other, $\emptyset(n)=\emptyset(p)\emptyset(q)$

If n = 21, what is $\emptyset(n)$?

Enter an answer in the textbox:

Modular Exponentiation

 $\bullet x^y \mod n = x^{y \mod \emptyset(n)} \mod n$

•if $y = 1 \mod \emptyset(n)$ then $x^y \mod n = x \mod n$

Modular Exponentiation Quiz

Use the totient technique to find c. Write your answer in the textbox:

$$c = 7^{27} \mod 30$$

$$c =$$

RSA (Rivest, Shamir, Adleman)

Widely used, and one of the first (1977)

 Support both public key encryption and digital signature

- Assumption/theoretical basis:
 - Factoring a very large integer is hard

RSA Characteristics

Variable key length

- Variable plaintext block size
 - Plaintext treated as an integer, and must be "smaller" than the key
 - Ciphertext block size is the same as the key length

RSA Algorithm

Key Generation

```
Select p,q. p and q, both prime; p \neq q. Calculate p \neq q. Calculate p \neq q. Calculate p \neq q. Select integer p \neq q. Select integer p \neq q. Calculate p \neq q. Calculate p \neq q. Select integer p \neq q. Select integ
```

Encryption

Plaintext:	M < n
Ciphertext:	$C = M^{e} \pmod{n}$

Decryption

Plaintext:	C .
Ciphertext:	$M = C^{d} (mod n)$

How Does RSA Work?

•Given KU = <e, n> and KR = <d, n>

- encryption: c = me mod n, m < n</pre>
- •decryption: m = c^d mod n
- •signature: s = m^d mod n, m < n
- verification: m = se mod n

Why does RSA Work?

Given pub = $\langle e, n \rangle$ and priv = $\langle d, n \rangle$

- \bullet n =p×q, \emptyset (n) =(p-1)(q-1)
- \bullet e×d = 1 mod ø(n)
- $\bullet x^{\text{exd}} = x \mod n$
- encryption: c = me mod n
- decryption: m = c^d mod n =
 m^{e×d} mod n =
 m mod n = m (since m < n)
- digital signature (similar)

Why does RSA Work?

RSA Quiz

Fill in the text boxes:

2. Compute
$$\varphi(n)$$
: $\varphi(n) = \square$

$$(e,n) = ($$

5. What is the private key

RSA Encryption Quiz

Given:

- Public key is (e, n) => (7, 33)
- Private key is (d, n) => (3, 33)
- Message m = 2

What is the encryption of m:

What formula is used to decrypt m?

(Use ** for denoting an exponent)

Why RSA is Secure?

Factoring an integer with at least512-bit is very hard!

- But if you can factor big number n then given public key <e,n>, you can find d, and hence the private key by:
 - •Knowing factors p, q, such that, $n = p \times q$
 - •Then compute $\emptyset(n) = (p-1)(q-1)$
 - Then find d such that $e \times d = 1 \mod \emptyset(n)$

RSA in Practice

Issues with schoolbook RSA

Deterministic:

- For the same key, a particular plaintext is always mapped to a particular ciphertext
- Special-case plaintexts 0, 1, or -1 produce ciphertexts 0, 1, or -1 regardless of keys

•Malleable:

- Transforming a ciphertext into another leads to predictable transformation to plaintext
 - -For c = m^e mod n, attacker change c to s^exc
 - –Receiver gets sxm instead of m

RSA in Practice

 PKCS (public key cryptography standard) uses OAEP (optimal asymmetric encryption padding)

 Append padding (seeded from random byte) as prefix to m

RSA in Practice Quiz

Select the best answer.

When implementing RSA, it is best to use:

Your own custom software, to ensure a secure system

Use the standard libraries for RSA

Diffie and Hellman Key Exchange

- First published public-key algorithm
- By Diffie and Hellman in 1976 along with the exposition of public key concepts
- Used in a number of commercial products
- Practical method to exchange a secret key securely that can then be used for subsequent encryption of messages
- Security relies on difficulty of computing discrete logarithms

Diffie and Hellman Key Exchange

Publicly known numbers

q = Prime number, of at least 300 digits

 α = an integer that is a primate root of q, often a small number

User C

Knows q, α , Y_A , Y_B Must calculate $X_B = dlog_{\alpha,q}(Y_B)$

User A

Selects a number $X_A < q$. Now has Y_B sent by User B $s = Y_B \times_A \mod q$.

$$Y_A = \alpha^{X_A} \mod q$$

 $Y_B = \alpha^{\times_B} \mod q$

User B

Selects a number $X_B < q$. Now has Y_A sent by User A $s = Y_A^{X_B} \mod q$.

Diffie-Hellman Example

Have

- Prime number q = 353
- Prime number $\alpha = 3$

A and B each computer their public keys

- A computes $Y_A = 3^{97} \mod 353 = 40$ B computes $Y_B = 3^{233} \mod 353 = 248$

- Then exchange and computer secret key:
 For A: $K = (Y_B)^{XA} \mod 353 = 24897 \mod 353 = 160$ For B: $K = (Y_A)^{XB} \mod 353 = 40^{233} \mod 353 = 160$

- Attacker must solve: 3^{α} mod 353 = 40 which is hard Desired answer is 97, then computer key as B does

Diffie-Hellman Quiz

Alice and Bob agree to use prime q = 23 and primitive root $\alpha = 5$

Alice chooses secret a = 6 Bob chooses secret b= 15

What number does Alice send Bob?

What number does Bob send Alice?

Diffie-Hellman Security

- Shared key (the secret) itself never transmitted
- Discrete logarithm is very hard
- \bullet Y = α X mod q
- •Conjecture: given Y, α, and q, it is extremely hard to compute the value of X because q is a very large prime (discrete logarithm)

Diffie-Hellman Limitations

- Expensive exponential operation
 - DoS possible
- The scheme itself cannot be used to encrypt anything – it is for secret key establishment
- No authentication, so you cannot sign anything

Implementing the Diffie-Hellman Key Exchange

Alice and Bob share a prime q and do, such that do < q and do is a primitive root of q

Alice
generates a
private key
XA such that
XA < q

Alice
calculates a
public key YA
= \$\int X A mod
q

Alice receives Bob's public key Y_B in plaintext Alice
calculates
shared secret
key K =
(YB)XA mod
9

Alice and Bob share a prime q and a, such that a < q and a is a primitive root of q

Bob generates
a private key
XB such that
XB < q

Bob calculates a public key $Y_B = \phi X_B$ mod q Bob receives
Alcie's public
key Y_A in
plaintext

Bob calculates shared secret key K = (YA)XB mod q

Bucket Brigade Attack, Man-in-the-Middle(MIM)

Other Public-Key Algorithms

Digital Signal Standard:

- Makes use of SHA-1 and the Digital Signature Algorithm (DSA)
- Originally proposed in 1991, revised in 1993 due to security concerns, and another minor revision in 1996
- Cannot be used for encryption or key exchange
- Uses an algorithm that is designed to provide only the digital signature function

Other Public-Key Algorithms _

ıms←

Elliptic-Curve Cryptography (ECC):

- Equal security for smaller bit size than RSA
- Seen in standards such as IEEE P1363
- Confidence level in ECC is not yet as high as that in RSA
- Based on a mathematical construct known as the elliptic curve

RSA, Diffie-Hellman Quiz Check the statements that are True:

RSA is a block cipher in which the plaintext and ciphertext are integers between 0 and $n-1$ for some n
If someone invents a very efficient method to factor large integers, then RSA becomes insecure
The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing discrete logarithms
The Diffie-Hellman key exchange protocol is vulnerable to a man-in- the-middle attack because it does not authenticate the participants
RSA and Diffie-Hellman are the only public-key algorithms

Public Key Algorithms Lesson Summary

- Modular arithmetic the foundations of several public key algorithms
- RSA can be used for encryption and signature, its security is based on assumption that factoring a larger integer into two primes is hard
- Diffie-Hellman is used for key exchange, its security is based on the assumption that discrete logarithm on large numbers is hard
 - O No authentication means man-in-the-middle attack possible