SOLVING TWO-MOVE GAMES WITH PERFECT INFORMATION

George B. Dentzig
P-1459

August 11, 1958

Approved for OTS release

SUMMARY

A two-move game with perfect information is considered, such as a move and counter-move situation between two firms or economies. This leads to the problem of finding a global minimum of a concave function over a convex domain and the distressing possibility of local minima at every extreme point. It is shown however that the global minimum can be obtained by solving a linear programming system with side conditions that at least one of certain pairs of variables vanish. The latter problem can be shown to be equivalent to solving a linear programming problem with some integer valued variables.

SOLVING TWO-MOVE GAMES WITH PERFECT INFORMATION George B. Dantzig

Consider a two-move game where player X can engage in any vector $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ of activity levels $\mathbf{x}_j \geq 0$, consistent with a fixed inventory vector $\mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_m)$, say

$$(1) Ex = e (x \ge 0)$$

where E is an m x n matrix. This constitutes X's move. In so doing he leaves an inventory position f + Ex for player Y where E is a given m' x n matrix and f an m' component vector. This requires that Y chose as his move an activity vector $y = (y_1, y_2, \dots, y_{n'})$ so that

where F is a given m' x n' matrix. It is assumed that x must be chosen so that an admissible move for Y exists. We remark in passing that a chess or checker game restricted to one move by each player can be cast in this form if there are added side constraints regarding the discrete character of a move.

Mowever a competitive situation of a move and a counter-move between two firms or two economies, would be more significant.

Let us suppose the payment to Y by X is given by

$$z = \alpha x - \beta y$$

where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ and $\beta = (\beta_1, \beta_2, \dots, \beta_n)$. It is clear that an optimum for X is to chose x so that his payment to Y is

(4)
$$\hat{z} = \min_{\mathbf{x}} \left[\alpha \mathbf{x} - \min_{\mathbf{y} \mid \mathbf{x}} \beta \mathbf{y} \right]$$

where we further assume βy is bounded from below for fixed x.

This is basically a very difficult problem because Miny By for y satisfying (2) is a convex function of x but this implies that

(5)
$$z' = [\alpha x - Min_y by]$$

is a concave function of x which is to be minimized over a convex domain of x satisfying (1) and (2). This can lead to local optima at one, many, or all extreme points of the convex domain of x.

For example suppose

(6)
$$x_{1} \leq 1 \qquad x_{1} \geq 0$$

$$y_{1} \leq 1 - x_{1} \qquad y_{1} \geq 0$$

$$y_{1} \leq x_{1}$$

$$z = 0 \cdot x_{1} - (-y_{1}) = y_{1}$$

then the function z' to be minimized is

(7)
$$z' = -\min(-y) = \begin{cases} x_1 & \text{if } 0 \le x_1 \le 1/2 \\ 1 - x_1 & \text{if } 1/2 \le x_1 \le 1 \end{cases}$$

which has two local minima, one at $x_1 = 0$ and the other at $x_1 = 1$:

The values of s' at these local minima happen to be equal but a slight perturbation could cause either one to be the global minimum.

By careful application of the duality theorem this problem can be reduced to a linear programming problem subject to a set of n' pairs of linear conditions either $y_j \ge 0$ or $\eta_j \ge 0$ for j = 1, 2, ..., n'; here η_j are the dual variables along with $\pi = (\pi_1, \pi_2, ..., \pi_m)$ satisfying

where F_j is the j^{th} column of F. We first remark for any fixed x, there exist an optimum $y = y^*$ satisfying (2) which minimizes βy . Associated with this x is also an optimum solution to the dual of (2) with variables π (unrestricted in sign associated with the m' equations) and non-negative variables $n_j \geq 0$ corresponding to y_j satisfying (9). The necessary and sufficient conditions that a solution of the primal and dual systems be optimal is that

(10) either
$$y_j = 0$$
 for $j = 1, 2, ..., n'$
or $n_j = 0$.

We now prove the following fundamental theorem:

THEOREM: An optimal solution to the two-move game (1), (2), (3) is found by choosing x and y satisfying (1) and (2), auxiliary variables π and η satisfying (9) and (10), and Min z satisfying (3).

Proof: The proof is along standard lines and immediate. An optimal solution to the game exists at one of the extreme points of the convex of x defined by (1) and (2) say at $x = \hat{x}$ for which there is a $y = \hat{y}$ and $\pi = \hat{\pi}$, $\eta = \hat{\eta}$ that satisfy (2), (9), (10) and yields the value $z = \hat{z}$ defined by (4). Hence

$$(11) \qquad \qquad \text{Min } z \leq 2$$

On the other hand we can produce a solution x^*, y^*, π^*, η^* to (1), (2) (9), (10) which minimizes z by devices considered in [1] which shows that this type of problem is equivalent to a linear programming problem with some integer valued variables for which efficient procedure may exist [2], [3]. For the chosen value of $x = x^*$, (10) implies that the y^* is chosen so as to minimize βy . Hence the set of x^*, y^* , chosen this way is an admissible two moves in a game and its $z = \min z$ must satisfy

2 < Min z ;

(12)

whence from (11) we have

(13)

2 = Min z

completing the proof.

REFERENCES

- 1. Dentzig, George B., "On the Significance of Solving Linear Programming Problems with Some Integer Variables," to appear.
- 2. Gomory, Ralph, "Essentials of an Algorithm for Integer Solutions to Linear Programs" [communicated to Bull. Amer. Math. Soc. in letter from Princeton April 23, 1958]. This work was directly extended by Gomory at RAND in June 1958 to the case where some variables have integer values.
- 3. Beele, E.M.L., "A Method of Solving Linear Programming Problems with Some but Not all of the Variables must take Integral Values." Unpublished draft approximately dated May 1958.