11.9.3.17

EE23BTECH11017 - Eachempati Mihir Divyansh*

Question: If the 4^{th} , 10^{th} and 16^{th} terms of a G.P. are x, y, and z, respectively. Prove that x, y, zare in G.P.

TABLE 0 GIVEN INFORMATION

Symbol	Value	Description
x	ar^3	x(4)
у	ar ⁹	x(10)
z	ar^{15}	x(16)
a	$x^{\frac{3}{2}}y^{-\frac{1}{2}}$	x(1)
r	$y^{\frac{1}{6}}x^{-\frac{1}{6}}$	$\frac{x(n)}{x(n-1)}$
x(n)	$y^{n-1}x^{2-n}u(n)$	General Term

Solution:

The nth term of a G.P. is $a_n = a_1 r^{n-1}$. Given that x, y, z are the 4^{th} , 10^{th} and 16^{th} terms of a G.P., From the Table,

$$x = a_4 = ar^{4-1} = ar^3$$

 $y = a_{10} = ar^{10-1} = ar^9$
 $z = a_{16} = ar^{16-1} = ar^{15}$

Consider $\frac{y}{x}$ and $\frac{z}{y}$;

$$\frac{y}{x} = \frac{ar^9}{ar^3} = r^6$$
 (1)
$$\frac{z}{y} = \frac{ar^{15}}{ar^9} = r^6$$
 (2)

$$\frac{z}{v} = \frac{ar^{15}}{ar^9} = r^6 \tag{2}$$

Since, $\frac{y}{x} = \frac{z}{y}$;

x, y, z are in G.P.

For this G.P, with x, y, z, as the first three terms, the general term x(n) can be defined as:

Common Ratio =
$$\frac{y}{x}$$

$$x(n) = x(\frac{y}{x})^{n-1}$$
 (3)
also, $x(n) = x \cdot (\frac{z}{y})^{n-1}$ (4)

$$\therefore x(n) = \frac{y^{n-1}}{x^{n-2}} \forall n \ge 1$$

To extend the domain of n to -ve integers, the step function u(n) can be used.

$$\therefore x(n) = \frac{y^{n-1}}{x^{n-2}}u(n) \ \forall \ n \in \mathbb{Z}$$

a and r can be expressed in terms of x, y, and zin the following manner.

$$x = ar^{3}$$

$$\frac{y}{x} = r^{6}$$

$$\Rightarrow r = \sqrt[6]{\frac{y}{x}} = (\frac{y}{x})^{\frac{1}{6}}$$

$$a = \frac{x}{r^{3}}$$

$$a = x(\frac{x}{y})^{\frac{3}{6}}$$

$$\therefore a = x^{\frac{3}{2}}y^{-\frac{1}{2}}$$
(6)

and
$$r = (\frac{y}{x})^{\frac{1}{6}} = y^{\frac{1}{6}}x^{-\frac{1}{6}}$$
 (7)