# Chapitre 1

# Fonctions harmoniques

On désignera par  $\mathbb{D}$  le disque unité ouvert de  $\mathbb{C}$  et par  $\mathbb{T}$  le cercle unité de  $\mathbb{C}$ . L'ensemble des fonctions holomorphes sur  $\mathbb{D}$  est noté  $\mathcal{H}ol(\mathbb{D})$ .

# 1.1 Rappels : théorème de Poincaré et théorème de Fejér

### 1.1.1 Le théorème de Poincaré

Soit w = f dx + g dy une 1-forme différentielle de classe  $C^1$  (i.e. f et g sont de classe  $C^1$ ) sur un ouvert  $\Omega$  de  $\mathbb C$ . Rappelons que dw est la 2-forme différentielle définie par  $dw = df \wedge dx + dg \wedge dy$  et rappelons que si f est de classe  $C^1$ , df est appelée la 1-forme différentielle associée à f et est définie par  $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ .

On dit que w est **fermée** si dw=0 et on dit que w est **exacte** s'il existe une fonction  $\varphi$  de classe  $C^2$  sur  $\Omega$  telle que  $w=d\varphi$  (i.e. w est la 1-forme différentielle associée à  $\varphi$ ).

**Lemme 1.1.1** Toute forme exacte sur un ouvert  $\Omega$  de  $\mathbb{C}$  est fermée.

**Preuve :** Si  $w = d\varphi = \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy$ , alors

$$dw = \left(\frac{\partial}{\partial x} \left(\frac{\partial \varphi}{\partial x}\right) dx + \frac{\partial}{\partial y} \left(\frac{\partial \varphi}{\partial x}\right) dy\right) \wedge dx + \left(\frac{\partial}{\partial x} \left(\frac{\partial \varphi}{\partial y}\right) dx + \frac{\partial}{\partial y} \left(\frac{\partial \varphi}{\partial y}\right) dy\right) \wedge dy.$$

Rappelons que le produit extérieur  $\wedge$  est **anticommutatif**, ce qui implique  $dx \wedge dy = -dy \wedge dx$ ,  $dx \wedge dx = 0 = dy \wedge dy$ . D'autre part, comme  $\varphi$  est de classe  $C^2$ , nous avons

 $\frac{\partial}{\partial x} \left( \frac{\partial \varphi}{\partial y} \right) = \frac{\partial^2}{\partial x \partial y} = \frac{\partial}{\partial y} \left( \frac{\partial \varphi}{\partial x} \right)$ . On obtient donc :

$$dw = \left(-\frac{\partial^2 \varphi}{\partial x \partial y} + \frac{\partial^2 \varphi}{\partial x \partial y}\right) dx \wedge dy = 0.$$

Il existe une réciproque du Lemme 1.1.1 que nous admettrons (la preuve utilise la formule de Stokes, [7], Chap. 1, Section 2.8).

Théorème 1.1.1 (de Poincaré) Soit  $\Omega$  un ouvert simplement connexe. Alors toute 1-forme différentielle fermée sur  $\Omega$  est exacte.

Remarque 1.1.1 Tout convexe est simplement connexe.

## 1.1.2 Le théorème de Fejér

Pour f continue sur  $\mathbb{T}$  et pour tout  $n \in \mathbb{Z}$ , on définit le n-ième **coefficient de Fourier** de f par

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it})e^{-int}dt.$$

La série de Fourier de f est la série  $\sum_{n\in\mathbb{Z}} \hat{f}(n)e^{int}$ . La somme partielle de la série de Fourier de f est  $S_m(f)(e^{it}) = \sum_{|n|\leq m} \hat{f}(n)e^{int}$ . Le théorème suivant, que nous admettrons, dit que les sommes partielles ne convergent pas en général mais, si f est continue, on peut les "régulariser" et les rendre convergentes en prenant leurs moyennes.

Théorème 1.1.2 (de Fejér)  $Si\ f$  est continue  $sur\ \mathbb{T}$ , alors la moyenne de Cesàro  $\frac{1}{n}\sum_{m=1}^{n}S_{m}(f)$  converge uniformément vers  $f\ sur\ \mathbb{T}$ .

Corollaire 1.1.1 Les polynômes trigonométriques sont denses dans l'ensemble des fonctions continues sur  $\mathbb{T}$ ,  $\mathcal{C}(\mathbb{T})$ , pour la convergence uniforme sur  $\mathbb{T}$ .

**Preuve :** Pour  $f \in \mathcal{C}(\mathbb{T})$ , la somme partielle  $S_m(f)$  est un polynôme trigonométrique (un polynôme trigonométrique est une fonction de la forme  $e^{it} \longmapsto \sum_{n=-p}^{p} c_n e^{int}$  avec  $c_n \in \mathbb{C}$ ).

# 1.2 Définition et premières propriétés des fonctions harmoniques

**Définition 1.2.1** Soit  $\Omega$  un ouvert de  $\mathbb{C}$  et soit f une fonction  $f:\Omega\to\mathbb{C}$ . On dit que f est harmonique sur  $\Omega$  si f est de classe  $C^2$  sur  $\Omega$  et si  $\Delta f\equiv 0$  sur  $\Omega$ , où  $\Delta f$  est le Laplacien de f défini par  $\Delta f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}$ .

Remarque 1.2.1 Pour toute fonction f de classe  $C^2$  sur un ouvert  $\Omega$  de  $\mathbb{C}$ , on a :

$$\Delta f = 4 \frac{\partial^2 f}{\partial z \partial \overline{z}} = 4 \frac{\partial^2 f}{\partial \overline{z} \partial z},$$

$$avec \ \frac{\partial}{\partial z} = \frac{1}{2} \left( \frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \ et \ \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

En effet,

$$\begin{array}{ll} \frac{\partial^2 f}{\partial z \partial \overline{z}} &=& \frac{\partial}{\partial z} \left( \frac{1}{2} \left( \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \right) \\ &=& \frac{1}{2} \left( \frac{1}{2} \left( \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) - i \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \right) \right) \\ &=& \frac{1}{4} \left( \frac{\partial^2 f}{\partial x^2} + i \frac{\partial^2 f}{\partial x \partial y} - i \frac{\partial^2 f}{\partial y \partial x} + \frac{\partial^2 f}{\partial y^2} \right) \\ &=& \frac{1}{4} \Delta f, \end{array}$$

car  $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$  puisque f est par hypothèse de classe  $C^2$ . Via un calcul analogue, on montre que  $\frac{\partial^2 f}{\partial \overline{z} \partial z} = \frac{1}{4} \Delta f$ .

**Proposition 1.2.1** Toute fonction holomorphe ou anti-holomorphe sur un ouvert  $\Omega$  est harmonique sur  $\Omega$ 

**Preuve :** Si  $f \in \mathcal{H}ol(\mathbb{D})$ , f est de classe  $C^2$  et de plus  $\frac{\partial f}{\partial \overline{z}} \equiv 0$  sur  $\Omega$ . Par conséquent,  $\Delta f = 4\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial \overline{z}}\right) \equiv 0$ . Si f est anti-holomorphe, f est de la forme  $\overline{g}$  où g est holomorphe. Ainsi f est elle-aussi de classe  $C^2$  et  $\frac{\partial f}{\partial z} \equiv 0$  sur  $\Omega$ . Par conséquent,  $\Delta f = 4\frac{\partial}{\partial \overline{z}}\left(\frac{\partial f}{\partial z}\right) \equiv 0$ .

Remarque 1.2.2 Soit  $\Omega$  un ouvert de  $\mathbb{C}$ . Une fonction  $f : \Omega \to \mathbb{C}$  est harmonique si et seulement si Re(f) et Im(f) sont harmoniques sur  $\Omega$ .

La remarque ci-dessus est une conséquence immédiate du fait que  $Re(\Delta f) = \Delta(Re(f))$  et  $Im(\Delta f) = \Delta(Im(f))$ .

Corollaire 1.2.1 Soit  $\Omega$  un ouvert de  $\mathbb{C}$ . Si une fonction  $f:\Omega\to\mathbb{C}$  est holomorphe, alors Re(f) et Im(f) sont harmoniques sur  $\Omega$ .

Le corollaire ci-dessus admet une réciproque à condition d'imposer une condition supplémentaire sur l'ouvert  $\Omega$ .

**Théorème 1.2.1** Soit  $\Omega$  un ouvert **simplement connexe** de  $\mathbb{C}$  et soit  $f:\Omega\to\mathbb{R}$  de classe  $C^2$ . Si f est une fonction harmonique sur  $\Omega$  alors il existe une fonction  $\varphi$  holomorphe sur  $\Omega$  telle que  $Re(\varphi) = f$ .

**Preuve :** On cherche une fonction  $g:\Omega\to\mathbb{R}$ , de classe  $C^2$  telle que f+ig soit holomorphe sur  $\Omega$ . D'après les **équations de Cauchy-Riemann**, f+ig est holomorphe si et seulement si  $\frac{\partial f}{\partial x}=\frac{\partial g}{\partial y}$  et  $\frac{\partial f}{\partial y}=-\frac{\partial g}{\partial x}$  sur  $\Omega$ .

Considérons la 1-forme différentielle w de classe  $C^1$  définie par  $w=-\frac{\partial f}{\partial y}dx+\frac{\partial f}{\partial x}dy$ . Alors w est une forme fermée. En effet,

$$dw = \left(-\frac{\partial^2 f}{\partial x \partial y} dx - \frac{\partial^2 f}{\partial y^2} dy\right) \wedge dx + \left(\frac{\partial^2 f}{\partial x^2} dx + \frac{\partial^2 f}{\partial y \partial x} dy\right) \wedge dy$$

$$= \left(\frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial x^2}\right) dx \wedge dy$$

$$= \Delta f dx \wedge dy$$

$$= 0.$$

L'ouvert  $\Omega$  étant simplement connexe, d'après le théorème de Poincaré, il existe une fonction g de classe  $C^2$  sur  $\Omega$  telle que

$$-\frac{\partial f}{\partial y}dx + \frac{\partial f}{\partial x}dy = w = dg = \frac{\partial g}{\partial x}dx + \frac{\partial g}{\partial y}dy.$$

On a donc  $\frac{\partial g}{\partial x} = -\frac{\partial f}{\partial y}$  et  $\frac{\partial g}{\partial y} = \frac{\partial f}{\partial x}$ . La fonction  $\varphi : \Omega \to \mathbb{C}$  définie par  $\varphi = f + ig$  est donc holomorphe sur  $\Omega$  et par construction  $f = Re(\varphi)$ .

Remarque 1.2.3 L'hypothèse " $\Omega$  simplement connexe" est nécessaire.

En effet, posons  $f(z) = \log |z|$  pour  $z \neq 0$ . Si  $a \in \mathbb{C} \setminus \{0\}$ , il existe une détermination holomorphe  $\varphi$  du logarithme sur D(a, |a|), le disque ouvert centré en a et de rayon |a| (en fait, plus généralement, il existe une détermination holomorphe du logarithme sur  $\mathbb{C}$  privé d'une demi-droite d'extrémité l'origine). On a donc  $e^{\varphi(z)} = z$  pour |z - a| < |a|, ce qui

implique  $|z| = e^{Re(\varphi(z))}$  et  $\log |z| = Re(\varphi(z))$ . Ainsi  $\log |z|$  est une fonction harmonique sur D(a,|a|) pour tout  $a \neq 0$  et donc  $\log |z|$  est une fonction harmonique à valeurs réelles sur  $\mathbb{C} \setminus \{0\}$ . S'il existait une fonction  $\varphi_1$  holomorphe sur  $\mathbb{C} \setminus \{0\}$  telle que  $Re(\varphi_1(z)) = \log |z|$ , on obtiendrait une détermination holomorphe  $\Psi$  du logarithme sur  $\mathbb{C} \setminus \{0\}$ , ce qui est absurde. En effet, rappelons qu'une fonction  $\Psi$  holomorphe sur un ouvert non vide  $\Omega$  est une détermination holomorphe du logarithme sur  $\Omega$  si  $e^{\Psi(z)} = z$  sur  $\Omega$ . D'après les équations de Cauchy-Riemann, on a l'équivalence suivante :

$$\begin{cases} e^{\Psi(z)} = z, \ z \in \Omega \\ \Psi \text{ holomorphe sur } \Omega \end{cases} \iff \begin{cases} Re(\Psi(z)) = \log|z| \text{ sur } \Omega \\ \Psi \text{ holomorphe sur } \Omega \\ \exists z_0 \in \Omega \text{ tel que } e^{\Psi(z_0)} = z_0. \end{cases}$$

S'il existait une fonction  $\varphi_1$  holomorphe sur  $\mathbb{C} \setminus \{0\}$  telle que  $Re(\varphi_1(z)) = \log |z|$ , on obtiendrait une détermination holomorphe  $\varphi_1$  du logarithme sur  $\mathbb{C} \setminus \{0\}$  en posant  $\Psi(z) = \varphi_1(z) - \varphi_1(1)$ . Ceci est absurde car toute détermination holomorphe du logarithme sur  $\Omega$  est une primitive de 1/z, ce qui implique  $\int_{\gamma} 1/z dz = 0$  pour tout lacet tracé dans  $\Omega$ . Or l'ouvert  $\mathbb{C} \setminus \{0\}$  ne vérifie pas cette dernière condition.

On obtient ainsi la caractérisation suivante des fonctions harmoniques à valeurs réelles.

Corollaire 1.2.2 Soit  $\Omega$  un ouvert de  $\mathbb{C}$  et soit  $f:\Omega\to\mathbb{R}$  de classe  $C^2$ . Les trois conditions suivantes sont équivalentes :

- 1. f est harmonique sur  $\Omega$ .
- 2. Pour tout  $z_0 \in \Omega$ , il existe r > 0 et  $\varphi$  holomorphe sur  $D(z_0, r)$  tels que  $f = Re(\varphi)$  sur  $D(z_0, r)$ .
- 3. Pour tout ouvert simplement connexe  $\mathcal{U}$  de  $\Omega$ , il existe  $\psi$  holomorphe sur  $\mathcal{U}$  tel que  $f = Re(\psi)$  sur  $\mathcal{U}$ .

Les fonctions harmoniques sur un disque ouvert D(a,r) ( $a \in \mathbb{C}$  et r > 0), continues sur le disque fermé  $\overline{D(a,r)}$  et à valeurs complexes ont la propriété suivante.

Corollaire 1.2.3 Soit f une fonction continue sur  $\overline{D(a,r)}$  ( $a \in \mathbb{C}$  et r > 0), harmonique

 $sur\ D(a,r)$  et à valeurs complexes. Alors on a **la formule de la moyenne** :

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{it}) dt$$
$$= \frac{1}{\pi r^2} \iint_{\overline{D(a,r)}} f(x + iy) dx dy.$$

**Preuve :** Supposons que f soit harmonique sur  $D(a, \rho)$  avec  $\rho > r$ . Soit  $f_1 = Re(f)$ . Alors  $f_1$  est harmonique sur  $D(a, \rho)$ . Comme  $D(a, \rho)$  est simplement connexe, d'après le Théorème 1.2.1, il existe  $\varphi$  holomorphe sur  $D(a, \rho)$  telle que  $f_1 = Re(\varphi)$  sur  $D(a, \rho)$ . D'après la **formule de Cauchy**, nous avons :

$$\varphi(a) = \frac{1}{2i\pi} \int_{\Gamma(a,r)} \frac{\varphi(\xi)}{\xi - a} d\xi,$$

avec  $0 < r < \rho$  et où  $\Gamma(a,r)$  est le cercle centré en a et de rayon r. Posons  $\xi = a + re^{it}$  pour  $0 \le t \le 2\pi$ . On obtient :

$$\varphi(a) = \frac{1}{2i\pi} \int_0^{2\pi} \frac{\varphi(a + re^{it})}{re^{it}} ire^{it} dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \varphi(a + re^{it}) dt.$$

Ainsi,

$$f_1(a) = Re(\varphi(a)) = \frac{1}{2\pi} \int_0^{2\pi} Re(\varphi(a + re^{it})) dt = \frac{1}{2\pi} \int_0^{2\pi} f_1(a + re^{it}) dt,$$

avec  $f_1 = Re(f)$ . De même, en remplaçant  $f_1$  par  $f_2 = Im(f)$  on montre que  $Im(f(a)) = \frac{1}{2\pi} \int_0^{2\pi} Im(f(a+re^{it}))dt$ . On obtient donc

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{it}) dt,$$

sous l'hypothèse f harmonique sur  $D(a, \rho)$  avec  $\rho > r$ .

Dans le cas général, on a, pour tout s < r,

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + se^{it}) dt.$$

En faisant tendre s vers r et par continuité de f sur  $\overline{D(a,r)}$ , on obtient :

$$f(a) = \lim_{s \to r^{-}} \frac{1}{2\pi} \int_{0}^{2\pi} f(a + se^{it}) dt = \frac{1}{2\pi} \int_{0}^{2\pi} f(a + re^{it}) dt.$$

Calculons à présent  $\frac{1}{\pi r^2} \iint_{\overline{D(a,r)}} f(x+iy) dx dy$ . En posant  $x+iy=se^{i\theta}$  (ce qui donne  $dx dy = sds d\theta$ ) et grâce à la continuité de f sur le compact  $\overline{D(a,r)}$  (ce qui implique que f est uniformément bornée) on peut alors calculer l'intégrale double de la façon suivante :

$$\iint_{\overline{D(a,r)}} f(x+iy)dxdy = \int_0^r \int_0^{2\pi} f(a+se^{i\theta})sdsd\theta$$

$$= \int_0^r s\left(\int_0^{2\pi} f(a+se^{i\theta})d\theta\right)ds$$

$$= \int_0^r s(2\pi f(a))ds$$

$$= 2\pi f(a)\frac{r^2}{2} = \pi r^2 f(a).$$

Nous allons à présent démontrer le **Principe du maximum** pour les fonctions harmoniques à valeurs réelles et définies sur un ouvert connexe.

Corollaire 1.2.4 (Principe du Maximum)  $Soit \Omega$  un ouvert connexe et soit  $f : \Omega \to \mathbb{R}$  une fonction harmonique. Si f admet un maximum relatif sur  $\Omega$ , alors f est constante.

**Preuve :** Soit S l'ensemble des maxima relatifs de f sur  $\Omega$ . Supposons que S est non vide. Soit  $a \in S$  et soit D(b, r) un disque ouvert centré en b, de rayon r, contenant a et contenu dans  $\Omega$  (cf. Figure 1.1).

Puisque  $a \in \mathcal{S}$ , il existe  $\rho > 0$  tel que  $\overline{D(a,\rho)} \subset D(b,r)$  et tel que  $f(a) \geq f(z)$  pour tout  $z \in \overline{D(a,\rho)}$ . D'après le Corollaire 1.2.3, nous avons :

$$f(a) = \frac{1}{\pi \rho^2} \iint_{\overline{D(a,\rho)}} f(x+iy) dx dy.$$
 Comme  $\pi \rho^2 = \iint_{\overline{D(a,\rho)}} dx dy$ , on a donc  $f(a) = \frac{1}{\pi \rho^2} \iint_{\overline{D(a,\rho)}} f(a) dx dy$ , et ainsi 
$$\iint_{\overline{D(a,\rho)}} (f(a) - f(x+iy)) dx dy = 0,$$



Fig. 1.1 – Principe du maximum

avec  $(x,y) \longmapsto f(a) - f(x+iy)$  continue et positive sur  $\overline{D(a,\rho)}$ . Ainsi f(z) = f(a) pour tout  $z \in \overline{D(a,\rho)}$ . De ce fait  $D(a,\rho) \subset \mathcal{S}$  et donc  $\mathcal{S}$  est ouvert dans  $\Omega$ .

Nous allons montrer qu'en fait f(z) = f(a) pour tout  $z \in D(b, r)$ , autrement dit que f est constante sur tout disque ouvert contenu dans  $\Omega$  et contenant un maximum relatif. D'après l'assertion 2. du Corollaire 1.2.2, il existe une fonction  $\varphi$  holomorphe sur D(b, r) telle que  $f = Re(\varphi)$  sur D(b, r). Nous venons de montrer que nécessairement  $Re(\varphi)$  était constante sur  $D(a, \rho)$ . D'après les équations de Cauchy-Riemann,  $Im(\varphi)$  est également constante sur  $D(a, \rho)$ . Il résulte du **principe des zéros isolés** que  $\varphi$  est constante sur D(b, r). Ainsi f est elle aussi constante sur D(b, r).

Nous allons montrer à présent que  $\mathcal{S}$  est aussi fermé dans  $\Omega$ . Soit  $u \in \Omega \cap \overline{\mathcal{S}}$ . Soit s > 0 tel que  $D(u,s) \subset \Omega$ . Comme  $u \in \overline{\mathcal{S}}$ ,  $D(u,s) \cap \mathcal{S} \neq \emptyset$ . D'après ce qui précède, on a donc  $D(u,s) \subset \mathcal{S}$  et donc en particulier,  $u \in \mathcal{S}$ , ce qui prouve que  $\mathcal{S}$  est fermé dans  $\Omega$ .

Comme  $S \neq \emptyset$  est un sous-ensemble à la fois ouvert et fermé de  $\Omega$  qui est connexe, on obtient  $S = \Omega$ . La fonction f est donc localement constante sur  $\Omega$ . Comme par hypothèse f (de classe  $C^2$ ) est continue, f est donc constante sur  $\Omega$ .

Nous terminerons cette section avec un dernier corollaire.

Corollaire 1.2.5 Soit K un compact non vide de  $\mathbb{C}$  et soit f une fonction (à valeurs complexes) continue sur K et harmonique sur l'intérieur de K,  $\overset{\circ}{K}$ . Alors

$$\sup_{z \in K} |f(z)| = \sup_{z \in Fr(K)} |f(z)|,$$

où Fr(K) désigne la frontière de K.

**Preuve :** Comme une fonction continue sur un compact atteint son supremum, il existe  $z_0 \in K$  tel que  $|f(z_0)| \ge |f(z)|$  pour tout  $z \in K$ . Si  $z_0 \in Fr(K)$ , la preuve du corollaire est terminé.

Supposons que  $z_0 \in \mathring{K}$ . Soit  $\mathcal{U}$  la composante connexe de  $z_0$  dans  $\mathring{K}$ . Rappelons que les composantes connexes de tout ouvert  $\mathcal{V}$  de  $\mathbb{C}$  sont à la fois ouvertes et fermées dans  $\mathcal{V}$  (cf. Chap. II, § 9, Remarque 9 de [19]). Ceci résulte en fait d'un résultat beaucoup plus général qui dit que les composantes connexes de tout espace localement connexe sont à la fois ouvertes et fermées (cf. Chap. II, § 9, Théorème 2.9.19 de [19]).

Supposons que  $|f(z_0)| > 0$  et posons  $g(z) = \frac{|f(z_0)|}{f(z_0)} f(z)$ . Par construction, g est harmonique sur  $\overset{\circ}{K}$ , |g(z)| = |f(z)| pour tout  $z \in K$  et  $g(z_0) = |f(z_0)|$ . Pour  $z \in K$ , on a :

$$Re(g(z)) \le |g(z)| = |f(z)| \le |f(z_0)| = g(z_0) = Re(g(z_0)).$$

D'après le Corollaire 1.2.4, Re(g) est constante sur l'ouvert connexe  $\mathcal{U}$ . Comme Re(g) est continue sur  $\overline{\mathcal{U}}$ , Re(g) est constante sur  $\overline{\mathcal{U}}$ . Il existe donc  $z_1 \in Fr(\mathcal{U})$  tel que  $Re(g(z_1)) = Re(g(z_0)) = g(z_0)$ . On a donc

$$|f(z_1)| \ge Re(g(z_1)) = g(z_0) = |f(z_0)| \ge |f(z_1)|.$$

Par conséquent,  $|f(z_1)| = |f(z_0)|$  et |f| atteint son maximum en  $z_1$  avec  $z_1 \in Fr(\mathcal{U})$ . Comme  $\mathcal{U}$  est une composante connexe de  $\overset{\circ}{K}$ ,  $\mathcal{U}$  est fermé dans  $\overset{\circ}{K}$ . On en déduit que nécessairement  $z_1 \in Fr(K)$  car  $z_1 \in \overset{\circ}{K}$  implique  $z_1 \in \mathcal{U}$  puisque  $\overline{\mathcal{U}} \cap \overset{\circ}{K} = \mathcal{U} \cap \overset{\circ}{K}$ . Ceci termine la preuve du corollaire.

## 1.3 Formule de Poisson

**Définition 1.3.1** Pour  $0 \le r < 1$ ,  $t \in \mathbb{R}$ , on pose

$$P_r(t) = \sum_{n=-\infty}^{+\infty} r^{|n|} e^{int}.$$

Pour r fixé,  $0 \le r < 1$ ,  $P_r$  est appelé un **noyau de Poisson** et  $(P_r)_{0 \le r < 1}$  est appelée la famille des noyaux de Poisson.

#### Remarque 1.3.1

- 1. Pour r fixé,  $0 \le r < 1$ , la série  $\sum_{n=-\infty}^{+\infty} r^{|n|} e^{int}$  converge normalement, donc uniformément en t. La fonction  $P_r$  est continue sur  $[0, 2\pi]$
- 2. Pour r fixé,  $0 \le r < 1$ , on a

$$\frac{1}{2\pi} \int_0^{2\pi} P_r(t)dt = 1.$$

Pour voir ceci, on peut inverser l'intégrale et la série qui définit  $P_r(t)$  ou encore remarquer que  $\frac{1}{2\pi} \int_0^{2\pi} P_r(t) dt = \widehat{P_r}(0)$ , le 0-ième coefficient de Fourier de la fonction continue  $P_r$ .

**Proposition 1.3.1** Pour  $z = re^{i\theta}$  avec  $0 \le r < 1$  et  $\theta \in \mathbb{R}$ , on a :

$$P_r(\theta - t) = 1 + 2\sum_{n=1}^{\infty} r^n \cos(n(\theta - t))$$
(1.1)

$$= Re\left(\frac{e^{it} + z}{e^{it} - z}\right) \tag{1.2}$$

$$= \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2}. (1.3)$$

Preuve: La première égalité est immédiate. Elle provient du fait que

$$P_r(\theta - t) = 1 + \sum_{n=1}^{\infty} r^n e^{in(\theta - t)} + \sum_{n=1}^{\infty} r^n e^{-in(\theta - t)} = 1 + 2\sum_{n=1}^{\infty} r^n \cos(n(\theta - t)).$$

Pour démontrer la deuxième égalité on remarque que :

$$\frac{e^{it}+z}{e^{it}-z} = \frac{e^{it}+re^{i\theta}}{e^{it}-re^{i\theta}} = \frac{1+re^{i(\theta-t)}}{1-re^{i(\theta-t)}}$$

$$= \frac{1 - re^{i(\theta - t)} + 2re^{i(\theta - t)}}{1 - re^{i(\theta - t)}} = 1 + \frac{2re^{i(\theta - t)}}{1 - re^{i(\theta - t)}}$$
$$= 1 + 2re^{i(\theta - t)} \sum_{n=0}^{\infty} r^n e^{in(\theta - t)}$$
$$= 1 + 2\sum_{n=1}^{\infty} r^n e^{in(\theta - t)}.$$

On obtient donc

$$Re\left(\frac{e^{it}+z}{e^{it}-z}\right) = 1 + 2\sum_{n=1}^{\infty} r^n \cos(n(\theta-t)) = P_r(\theta-t).$$

La troisième égalité s'obtient en remarquant que :

$$\frac{e^{it} + z}{e^{it} - z} = \frac{(e^{it} + z)(e^{-it} - \overline{z})}{|e^{it} - z|^2} = \frac{1 - |z|^2 + (ze^{-it} - \overline{z}e^{it})}{|e^{it} - z|^2}.$$

Comme  $ze^{-it} - \overline{z}e^{it}$  est imaginaire pur

$$Re\left(\frac{e^{it}+z}{e^{it}-z}\right) = \frac{1-|z|^2}{|e^{it}-z|^2} = \frac{1-r^2}{|e^{it}-z|^2} = \frac{1-r^2}{|1-ze^{-it}|^2} = \frac{1-r^2}{|1-re^{i(\theta-t)}|^2}.$$

Enfin on calcule

$$|1 - re^{i(\theta - t)}|^2 = |1 - r\cos(\theta - t) - ir\sin(\theta - t)|^2$$
$$= (1 - r\cos(\theta - t))^2 + r^2\sin^2(\theta - t)$$
$$= 1 + r^2 - 2r\cos(\theta - t),$$

et la preuve de la proposition est achevée.

Remarque 1.3.2 Il résulte de la proposition précédente qu'un noyau de Poisson est une fonction uniformément continue sur  $\mathbb{T}$ ,  $2\pi$ -périodique, positive et paire.

La proposition suivante nous montre comment construire des fonctions harmoniques dans  $\mathbb{D}$  à partir de mesures complexes sur  $\mathbb{T}$ .

**Proposition 1.3.2** Soit  $\mu$  une mesure complexe sur  $\mathbb{T}$ . Pour  $z = re^{i\theta}$  avec  $0 \le r < 1$  et  $\theta \in \mathbb{R}$ , on pose :

$$P(\mu)(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) d\mu(e^{it}).$$

Alors  $P_{\mu}$  est une fonction harmonique sur  $\mathbb{D}$ .

**Preuve :** La mesure complexe  $\mu$  est de la forme  $\mu = \mu_1 + i\mu_2$  avec  $\mu_1$  et  $\mu_2$  mesures réelles définies par  $\mu_1(A) = Re(\mu(A))$  et  $\mu_2(A) = Im(\mu(A))$  pour tout borélien A de  $\mathbb{T}$ . Ainsi  $P(\mu)(z) = P(\mu_1)(z) + iP(\mu_2)(z)$  et pour montrer que  $P_{\mu}$  (avec  $\mu$  mesure complexe sur  $\mathbb{T}$ ) est une fonction harmonique sur  $\mathbb{D}$  il suffit de montrer que si  $\nu$  est une mesure **réelle** sur  $\mathbb{T}$  alors  $P(\nu)$  est une fonction harmonique sur  $\mathbb{D}$ . Pour cela on remarque que :

$$P(\nu)(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} Re\left(\frac{e^{it} + z}{e^{it} - z}\right) d\nu(e^{it}) = Re\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\nu(e^{it})\right) = Re(\varphi(z)),$$

avec  $\varphi(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\nu(e^{it})$ . La fonction  $\varphi$  étant holomorphe sur  $\mathbb{D}$  (comme intégrale de la fonction holomorphe  $z \longmapsto \frac{e^{it} + z}{e^{it} - z}$  sur  $\mathbb{D}$ ), d'après le Corollaire 1.2.1,  $P(\nu)$  est harmonique sur  $\mathbb{D}$ . Ceci termine la preuve de la proposition.

Le théorème suivant est la solution du **problème de Dirichlet** que l'on peut formuler ainsi :

Etant donnée une fonction f continue sur  $\mathbb{T}$ , trouver une fonction g continue sur le disque fermé unité  $\overline{\mathbb{D}}$ , harmonique dans  $\mathbb{D}$  et telle que  $g_{|\mathbb{T}} = f$ .

**Théorème 1.3.1** Soit f une fonction continue sur  $\mathbb{T}$ . Alors il existe une unique fonction g continue sur  $\overline{\mathbb{D}}$ , harmonique dans  $\mathbb{D}$  et vérifiant  $g_{|\mathbb{T}} = f$ . De plus, pour  $z = re^{i\theta}$  avec  $0 \le r < 1$  et  $\theta \in \mathbb{R}$ , on a  $g(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt$ . On notera P(f) la fonction définie par  $re^{i\theta} \longmapsto \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt$ .

**Preuve :** Montrons tout d'abord l'**unicité** de la solution du problème de Dirichlet. Soient  $g_1$  et  $g_2$  deux solutions du problème de Dirichlet. D'après le Corollaire 1.2.5, comme  $g_1 - g_2$  est continue sur le compact  $\overline{\mathbb{D}}$  et harmonique sur  $\mathbb{D}$ , on a :

$$\sup_{z \in \overline{\mathbb{D}}} \{ |g_1(z) - g_2(z)| \} = \sup_{z \in \mathbb{T}} \{ |g_1(z) - g_2(z)| \} = 0,$$

puisque  $g_1(z) = f(z) = g_2(z)$  sur  $\mathbb{T}$ . Ceci termine la preuve de l'unicité de la solution du problème de Dirichlet.

Montrons à présent l'**existence** d'une solution au problème de Dirichlet. D'après la Proposition 1.3.2, P(f) est harmonique sur  $\mathbb{D}$ . Posons  $\tilde{P}(f)(z) = \left\{ \begin{array}{ll} P(f)(z) & \text{si } |z| < 1 \\ f(z) & \text{si } |z| = 1 \end{array} \right.$ 

Il nous reste à démontrer la continuité de  $\tilde{P}(f)$  sur  $\overline{\mathbb{D}}$ . Pour cela nous allons montrer que  $\tilde{P}(f)$  est la limite uniforme de fonctions continues sur  $\overline{\mathbb{D}}$ .

La **première étape** consiste à vérifier que pour toute fonction f continue sur  $\mathbb{T}$  on a :

$$|\tilde{P}(f)(z)| \le ||f||_{\infty} \text{ pour } |z| \le 1.$$
 (1.4)

Pour |z| < 1,  $z = re^{i\theta}$ , on a:

$$|\tilde{P}(f)(z)| = |P(f)(z)| = \left| \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) f(e^{it}) dt \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) |f(e^{it})| dt$$

$$\leq ||f||_{\infty} \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) dt$$

$$= ||f||_{\infty}.$$

En effet, comme  $s \mapsto P_r(s)$  est  $2\pi$  périodique et paire, via le changement de variable  $s = t - \theta$ , on obtient :

$$\int_0^{2\pi} P_r(\theta - t)dt = \int_0^{2\pi} P_r(t - \theta)dt$$
$$= \int_{-\theta}^{-\theta + 2\pi} P_r(s)ds$$
$$= \int_0^{2\pi} P_r(s)ds$$
$$= 2\pi,$$

d'après la Remarque 1.3.1. Comme pour |z|=1, par définition, on a  $|\tilde{P}(f)(z)|=|f(z)|$ , l'inégalité (1.4) est vérifiée.

Pour  $p \in \mathbb{Z}$ , on considère la fonction  $e_p$  fonction continue de  $\mathbb{T}$  dans lui-même définie par  $e_p(e^{it}) = e^{ipt}$ . C'est aussi la fonction  $z \longmapsto z^p$  si  $p \geq 0$  et  $z \longmapsto \overline{z}^{-p}$  si p < 0. La solution au problème de Dirichlet est triviale pour les fonctions  $e_p$ : il s'agit de la fonction  $g(z) = z^p$  sur  $\overline{\mathbb{D}}$  si  $p \geq 0$  et  $g(z) = \overline{z}^{-p}$  si p < 0 (fonctions harmoniques sur  $\mathbb{D}$  d'après la Proposition 1.2.1). La **deuxième étape** consiste à montrer que  $\tilde{P}(e_p)$  est  $z \longmapsto z^p$  si  $p \geq 0$  et est égale à  $z \longmapsto \overline{z}^{-p}$  si p < 0. Ceci nous montrera que  $\tilde{P}(e_p)$  **est continue sur** 

 $\overline{\mathbb{D}}$  pour tout  $p \in \mathbb{Z}$ . Pour  $z = re^{i\theta}$  avec  $0 \le r < 1$  et  $\theta \in \mathbb{R}$ , par définition, nous avons :

$$\tilde{P}(e_p)(z) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) e^{ipt} dt = \frac{1}{2\pi} \int_0^{2\pi} \left( \sum_{n \in \mathbb{Z}} r^{|n|} e^{in(\theta - t)} \right) e^{ipt} dt.$$

Comme, pour r fixé,  $0 \le r < 1$ , la série  $\sum_{n \in \mathbb{Z}} r^{|n|} e^{in(\theta - t)}$  converge normalement, donc uniformément sur  $[0, 2\pi]$ , on peut inverser l'intégrale et la somme dans l'égalité ci-dessus. On obtient ainsi :

$$\tilde{P}(e_p)(z) = \sum_{n \in \mathbb{Z}} \frac{r^{|n|} e^{in\theta t}}{2\pi} \int_0^{2\pi} e^{i(p-n)} dt$$
$$= r^{|p|} e^{ip\theta}.$$

car  $\int_0^{2\pi} e^{i(p-n)t} dt = 0$  si  $p \neq n$  et  $\int_0^{2\pi} e^{i(p-n)t} dt = 2\pi$  si p = n. On obtient ainsi, pour tout  $z \in \overline{\mathbb{D}}$ ,  $\tilde{P}(e_p)(z) = z^p$  si  $p \geq 0$  et  $\tilde{P}(e_p)(z) = \overline{z}^{-p}$  si p < 0.

Nous allons à présent conclure la preuve du théorème en utilisant le **théorème de Fejér**. Rappelons qu'un polynôme trigonométrique est une application p définie sur  $\mathbb{T}$  de la forme  $e^{it} \longmapsto \sum_{|n| \leq k} c_n e^{int}$  avec  $c_n \in \mathbb{C}$ . Autrement dit  $p = \sum_{|n| \leq k} c_n e_n$ . Par définition, de façon évidente, nous avons :

$$\tilde{P}(p) = \sum_{|n| \le k} c_n \tilde{P}(e_n).$$

Ainsi, d'après la deuxième étape,  $\tilde{P}(p)$  est continue sur  $\overline{\mathbb{D}}$  pour tout polynôme trigonométrique p. D'après le Théorème de Fejér, il existe une suite de polynômes trigonométriques  $(p_m)_{m\geq 1}$  telle que  $\lim_{m\to\infty}\|f-p_m\|_{\infty}=0$ . Il nous reste à vérifier que  $\tilde{P}(f)$  est la limite uniforme de  $\tilde{P}(p_m)$ . Pour cela, on remarque que, par définition,  $\tilde{P}(f)(z)-\tilde{P}(p_m)(z)=\tilde{P}(f-p_m)(z)$ . De plus, d'après (1.4),  $|\tilde{P}(f-p_m)(z)|\leq \|f-p_m\|_{\infty}$  et donc

$$\lim_{m \to \infty} \sup_{z \in \overline{\mathbb{D}}} |\tilde{P}(f)(z) - \tilde{P}(p_m)(z)| \le \lim_{m \to \infty} ||f - p_m||_{\infty} = 0.$$

Ainsi  $\tilde{P}(f)$  est bien continue sur  $\mathbb{T}$  comme limite uniforme d'une suite de fonctions continues sur  $\mathbb{T}$ . Ceci termine la preuve du théorème.

**Remarque 1.3.3** Si f est une fonction harmonique réelle sur D(0,r) avec  $r \ge 1$ , on a :

$$f(z) = Re\left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} f(e^{it}) dt\right) pour |z| \le 1$$

et la fonction  $z \longmapsto \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} f(e^{it}) dt$  est holomorphe sur  $\mathbb{D}$ . On a ainsi redémontré le résultat annoncé par le Théorème 1.2.1 de façon constructive.

Si l'on souhaite trouver une solution au problème de Dirichlet en remplaçant le disque unité  $\mathbb{D}$  par un disque quelconque de  $\mathbb{C}$ , il suffit de faire un changement de variable. C'est ce que nous dit le corollaire suivant.

Corollaire 1.3.1 Soient  $a \in \mathbb{C}$  et R > 0. Pour toute fonction f continue sur  $\Gamma(a,R)$  où  $\Gamma(a,R) = \{z \in \mathbb{C} : |z-a| = R\}$ , il existe une unique fonction g continue sur  $\overline{D(a,R)} := \{z \in \mathbb{C} : |z-a| \leq R\}$ , harmonique sur  $D(a,R) := \{z \in \mathbb{C} : |z-a| < R\}$  et telle que  $g_{|\Gamma(a,R)} = f$ . De plus, si  $z = a + re^{i\theta}$  avec  $0 \leq r < R$  et  $\theta \in \mathbb{R}$  on a:

$$g(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{r/R}(\theta - t) f(a + Re^{it}) dt.$$

**Preuve :** Comme dans la preuve du Théorème 1.3.1, l'unicité de la solution résulte du principe du maximum. Pour démontrer l'existence d'une solution g posons  $f_1(z) = f(a+Rz)$  pour |z| = 1. Comme  $f_1$  est continue sur  $\mathbb{T}$ , d'après le Théorème 1.3.1, il existe une fonction  $g_1$  harmonique sur  $\mathbb{D}$ , continue sur  $\overline{\mathbb{D}}$  et telle que la restriction de  $g_1$  à  $\mathbb{T}$  coïncide avec  $f_1$ . On pose  $g(z) = g_1\left(\frac{z-a}{R}\right)$  pour  $z \in \overline{D(a,r)}$ . Par construction on vérifie aisément que g vérifie les hypothèses du corollaire. Notons aussi que

$$P_{r/R}(\theta - t) = \frac{1 - \frac{r^2}{R^2}}{1 - 2\frac{r}{R}\cos(\theta - t) + \frac{r^2}{R^2}} = \frac{R^2 - r^2}{R^2 - 2rR\cos(\theta - t) + r^2}.$$

D'après le Corollaire 1.2.3, si une fonction f est harmonique sur un ouvert  $\Omega$  de  $\mathbb C$  alors f vérifie la "propriété de la moyenne" sur  $\Omega$ , i.e., pour  $a \in \Omega$  et pour tout disque fermé  $\overline{D(a,r)}$  tel que  $\overline{D(a,r)} \subset \Omega$  on a  $f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a+re^{it}) dt$ . Le théorème suivant est en quelque sorte la réciproque de ce résultat : on montre que si f vérifie la **propriété de la moyenne faible** (condition un peu moins forte que la propriété de la moyenne) sur  $\Omega$ , nous pourrons conclure à l'harmonicité de la fonction f sur  $\Omega$ .

Théorème 1.3.2 Soit f une fonction continue sur  $\Omega$  vérifiant la propriété suivante dite "propriété de la moyenne faible" sur  $\Omega$ : pour tout  $a \in \Omega$ , il existe une suite  $(r_n)_{n\geq 1}$  de réels positifs tels que  $\overline{D(a,r_n)} \subset \Omega$ ,  $\lim_{n\to\infty} r_n = 0$  et  $f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a+r_ne^{it}) dt$  pour tout  $n \geq 1$ . Alors f est harmonique sur  $\Omega$ .

Preuve: En considérant séparément Re(f) et Im(f) on peut se limiter au cas où f est à valeurs réelles. Soit R>0 tel que  $\overline{D(a,R)}\subset\Omega$ . D'après le Corollaire 1.3.1, puisque f est continue sur le cercle  $\Gamma(a,R)=\{z\in\mathbb{C}:|z-a|=R\}$ , il existe une fonction g réelle, continue sur  $\overline{D(a,R)}$ , harmonique sur D(a,R) et telle que g et f soient égales sur  $\Gamma(a,R)$ . La fonction g, étant harmonique sur D(a,R), vérifie la propriété de la moyenne sur D(a,R) et donc elle vérifie aussi la propriété de la moyenne faible sur D(a,R). Ainsi la fonction f is f réelle vérifie la propriété de la moyenne faible sur f identiquement nulle sur f identification f identification

$$K = \{ \xi \in \overline{D(a,R)} : h(\xi) = m \}.$$

Comme h est continue sur le compact  $\overline{D(a,R)}$ , K est un compact non vide de  $\overline{D(a,R)}$ . Supposons que m>0. Alors  $K\subset D(a,R)$ . Soit  $z_0$  un point de la frontière de K en lequel la fonction continue sur le compact K définie par  $z\longmapsto |z-a|$  atteint son maximum. Comme h vérifie la propriété de la moyenne faible sur D(a,R), il existe une suite  $(r_n)_{n\geq 0}$  de réels positifs tels que  $\lim_{n\to\infty} r_n=0$ ,  $\overline{D(z_0,r_n)}\subset D(a,R)$  avec

$$m = h(z_0) = \frac{1}{2\pi} \int_0^{2\pi} h(z_0 + r_n e^{it}) dt.$$

On a donc:

$$\frac{1}{2\pi} \int_0^{2\pi} (h(z_0) - h(z_0 + r_n e^{it})) dt = 0,$$

avec  $t \mapsto h(z_0) - h(z_0 + r_n e^{it})$  continue, réelle et positive sur  $[0, 2\pi]$ . Par conséquent  $h(z_0) = h(z_0 + r_n e^{it})$  et donc  $\Gamma(z_0, r_n) \subset K$ , ce qui est absurde d'après le choix de  $z_0$ . On obtient ainsi m = 0 (puisque h(z) = 0 pour  $z \in \Gamma(a, R)$ ) et donc  $h(z) \leq 0$  pour  $z \in \overline{D(a, R)}$ . En appliquant un raisonnement analogue à -h on montre que  $h(z) \geq 0$  pour  $z \in \overline{D(a, R)}$ . Finalement h(z) = 0 pour  $z \in \overline{D(a, R)}$ . La fonction f est donc harmonique car elle coïncide avec une fonction harmonique au voisinage de tout point de  $\Omega$ .



Fig. 1.2 – Propriété de la moyenne faible et harmonicité

Remarque 1.3.4 Soit f est une fonction continue sur un ouvert  $\Omega$  de  $\mathbb{C}$ . Les trois assertions suivantes sont équivalentes :

- 1. La fonction f est harmonique sur  $\Omega$ .
- 2. La fonction f vérifie la "propriété de la moyenne faible" sur  $\Omega$ .
- 3. La fonction f vérifie la "propriété de la moyenne" sur  $\Omega$ .

### 1.4 Exercices

#### Exercice 1.4.1

- Soient u et v deux fonctions harmoniques à valeurs réelles dans un ouvert connexe
   Ω de C. A quelles conditions la fonction uv est-elle harmonique?
   (remarquer que la réponse dépend fortement du fait que les fonctions considérées sont
   à valeurs réelles).
- 2. Montrer que  $u^2$  ne peut être harmonique dans  $\Omega$  que si u est constante.
- 3. Pour quelles fonctions  $f \in \mathcal{H}ol(\Omega)$  la fonction  $|f|^2$  est-elle harmonique?

#### Exercice 1.4.2

Soit  $\Omega$  un ouvert connexe de  $\mathbb{C}$  et soit  $f:\Omega\to\mathbb{C}$  harmonique et telle que  $f^2$  est harmonique.

- 1. Démontrer que f ou  $\overline{f}$  est holomorphe.
- 2. Si l'on remplace l'hypothèse " $f^2$  est harmonique" par  $|f|^2$  est harmonique, que dire de f?

#### Exercice 1.4.3

Soit  $\Omega$  un ouvert de  $\mathbb C$  et soit  $f \in \mathcal{H}ol(\Omega)$  ne s'annulant pas sur  $\Omega$ .

Démontrer que  $\log |f|$  est harmonique en calculant son laplacien.

#### Exercice 1.4.4

Soit  $\Omega$  un ouvert simplement connexe de  $\mathbb{C}$  et soit  $f \in \mathcal{H}ol(\Omega)$  ne s'annulant pas sur  $\Omega$ . Démontrer que  $\log |f|$  est harmonique (sans calculer son laplacien!).

#### Exercice 1.4.5

Soit  $\Omega$  un ouvert de  $\mathbb{C}$  et soit  $f:\Omega\to\mathbb{C}$  une fonction harmonique. Montrer que si  $g:\Omega\to\mathbb{C}$  défini par g(z)=zf(z) est harmonique alors f est analytique sur  $\Omega$ .

#### Exercice 1.4.6

Soit f une fonction de classe  $C^3$  sur un ouvert  $\Omega$  de  $\mathbb{C}$ .

1. Démontrer que si f est harmonique sur  $\Omega$ , les dérivées partielles de f sont elles aussi harmoniques.

1.4. EXERCICES 25

2. Vérifier par un calcul direct que pour t fixé,  $re^{i\theta} \longmapsto P_r(\theta - t)$  est une fonction harmonique sur  $\mathbb{D}$ .

3. En déduire (sans introduire de fonction holomorphe) que l'intégrale de Poisson P(μ) de toute mesure de Borel finie sur T est harmonique dans D en montrant que toute dérivée partielle de P(μ) est égale à l'intégrale de la dérivée correspondante du noyau.

#### Exercice 1.4.7

- 1. Soit u une fonction harmonique positive sur  $\mathbb{D}$  et telle que u(0) = 1. Majorer et minorer du mieux possible u(1/2).
- 2. Soit f = u + iv,  $f \in \mathcal{H}ol(\mathbb{D})$ , f(0) = 0 et  $|u| \le 1$  sur  $\mathbb{D}$ . Pour 0 < r < 1, majorer  $|f(re^{i\theta})|$ .

#### Exercice 1.4.8

Soit u une fonction Lebesgue-mesurable dans un ouvert connexe  $\Omega$  et appartenant localement à  $L^1$  (cela signifie que l'intégrale de |u| sur tout sous-ensemble compact de  $\Omega$  est finie). Démontrer que u est harmonique si elle satisfait la forme suivante de la propriété de la moyenne :

$$u(a) = \frac{1}{\pi r^2} \int \int_{\overline{D(a,r)}} u(x,y) dx dy,$$

 $d\grave{e}s\ que\ \overline{D(a,r)}\subset\Omega.$