Mathematical Logic Assignment 1

522030910158 Song Yuanyi

October 2024

- **1.(a)** From $f: \mathbb{N} \to A$, we can make a listing $f(0), f(1), \ldots, f(n), \ldots$. Because f is surjective, this listing include all members of A and maybe have repetition. Construct $g(a_i)$ = the position of the first occurrence in the listing for $\forall a_i \in A$. If A is finite, it must be countable. If A is infinite, we only need to list $g(a_i)$ in order, which is enumerable so countable.
- **1.(b)** From $f: \mathbb{N} \to A$, we have $\forall a_i \in A, \exists n \in \mathbb{N}, f(a_i) = n$. Namely, every a_i can map only one nature number but different a_i can map to the same nature number. From f is surjective, we have $\forall n \in \mathbb{N}, \exists a_k \in A, f(a_k) = n$, namely every nature number be mapped to a elemnet of A. Therefore, $\mathbb{N} \preceq A$. \mathbb{N} is infinite so A is infinite.
- **2.** Let ${}^{\mathbb{N}}\mathbb{N}=\{f_i|i=0,1,2,\dots\}$ is the set of function mapping from \mathbb{N} to \mathbb{N} . Obviously, $\forall f_i\in{}^{\mathbb{N}}\mathbb{N}, f_i:\mathbb{N}\to S\subset\mathbb{N}$. For every $n\in\mathbb{N}$, $f_i(n)$ is correspondent to some nature number which is in S. Construct function f_x s.t. $f_x(i)\neq f_i(i), i\in\mathbb{N}$. We can list ${}^{\mathbb{N}}\mathbb{N}$ as a table whose row are functions f_i and columns are nature numbers $0,1,2,\ldots$. Therefore by diagonal argument, f_x is not in the table. If $f_x\in{}^{\mathbb{N}}\mathbb{N}$, it is contradicted with $f_x(x)\neq f_x(x)$. If $f_x\not\in{}^{\mathbb{N}}\mathbb{N}$, f_x satisfies the demand of function, which is contradicted. To sum up, ${}^{\mathbb{N}}\mathbb{N}$ is uncountable.
- 3. Given a constant number, it is easy to determine if it is a perfect number. First we can find its divisors, then add them to see that if the summation equals to the number itself. For example, $28=1\times28=2\times14=4\times7=1+2+4+7+14$, $35=1\times35=5\times7\neq1+5+7$.
 - 1. give input i
 - 2. find divisors of i : for k = 1 : i / 2
 - (a) if i/k is integer, k and i/k is divisors
 - (b) k++
 - 3. sum the divisors and avoid repetitions

- 4. compare summation and i
 - (a) if sum==i, output yes
 - (b) else, output no

The existence of this algorithm shows the set of perfect numbers is effectively decidable.

- **4.** $A \subset \mathbb{N}$. Give a number x, first determine if x is a nature number. Subsequently, compare x with one member of A and one member of $\mathbb{N} \setminus A$ in every loop in the order of listing (from effectively enumerable) to determine whether or not $x \in A$. It is obvious that $x \in A$ or $x \in \mathbb{N} \setminus A$, so this algorithm can halt. Assume the the algorithms of listing the member of A and $\mathbb{N} \setminus A$ are $A(\cdot)$ and $B(\cdot)$ respectively. '.' means the position of listing (ordered from 0).
 - 1. give input x
 - 2. i = 0
 - 3. if x = A(i), decide $x \in A$ (output yes), the algorithm halts
 - 4. if $x = \mathcal{B}(i)$, decide $x \notin A$ (output no), the algorithm halts
 - 5. i++
 - 6. back to 3
- 5. First analyse the relationship between P and R. $P = \{n \in \mathbb{N} | \forall x < n, x \in R\}$, set P contains the elements which all of the nature number smaller than is in R. So P means the continuous members from 0 to x+1 in R, for example if $R = \{0,1,2,3,5,6,8\}$ where x=3 then $P = \{0,1,2,3,4\}$. We can construct such algorithm, maintain a variable x (same as example) to mark the end number of continuous sequence with the beginning number 0 in R. As long as s is updated, we can print newly discovered members of P. The algorithm should halt when the algorithm of listing R halt and assume this algorithm is A. Therefore, P is effectively enumerable.
 - 1. let x = 0 to mark, i = 0 to count(list), a bool array arr=[false] and arr[k] record the existence of k in R
 - 2. loop i with stride 1 (i=i+1)
 - (a) $arr[\mathcal{A}(i)] = true$
 - (b) if $\mathcal{A}(i) = x+1$, update x : check elements of arr from $\operatorname{arr}[x+1]$, $x = \max\{x | \forall i \leq x, arr[i] = true\}$ and print from old x+2 to new x+1
 - 3. halt when \mathcal{A} halt