影像處理

(Image Processing)

Course 4 點處理 真理大學 資訊工程系 吳汶涓老師

Outline

- 4.1 前言
- 4.2 數學運算
- 4.3 直方圖(灰階值分布圖)
- 4.4 查詢表格

4.1 前言

- 影像處理運算可分成三個等級:
 - □ 轉換 (transforms)
 - □ 鄰域處理 (neighborhood processing)
 - □ 點運算 (point operations)

圖 4.1 轉換處理的結構

4.2 數學運算

數學運算是對每個像素進行某些簡單的函數 運算。

$$y = f(x)$$

$$y = x + C$$

$$y = x * C$$
....

不管是哪一種函數都必須調整輸出結果,讓 結果落在0...255的範圍之內。

$$y \leftarrow \begin{cases} 255 & \text{if } y > 255 \\ 0 & \text{if } y < 0 \end{cases}$$

255

■ 補色(complement):就是對應於相片的負片

$$f(x) = 255 - x$$

f(x)= 255-x → 白變黑、黑變白

練習:

- >> x= imread("blocks.tif");
- >> xc=imcomplement(x);
- >> imshow(xc)

>> bc=imcomplement(b);
>> imshow(bc)

圖 4.6 影像補色

4.3 直方圖(灰階值分布圖)

■ 直方圖(histogram)是一張標示每個灰階值在 影像中出現次數的圖表

4000

3500

3000

□使用imhist函數來檢視影像的直方圖

100

150

200

50

>> p=imread('pout.tif');

>> imshow(p),figure,imhist(p),axis tight

250

(a) 全動態範圍,對比低

(b) 偏暗

(c) 前景和背景分明

- 直方圖擴展法(對比擴展法)
 - →動態範圍太窄 (min, max)

映設至最大範圍(0, 255)

讓使用者設定伸展後的像素最大最小值

$$f(x) = \frac{(x-5)}{(9-5)} * (14-2) + 2$$

$$\frac{b-a}{d-c} = \frac{x-a}{f(x)-c}$$

$$(b-a)*(f(x)-c) = (x-a)*(d-c)$$

$$f(x) = c + \frac{(x-a)}{(b-a)}*(d-c)$$

■ imadjust函數還有另一個可選用的參數: gamma值 (x α)γ

$$y = \left(\frac{x - a}{b - a}\right)^{\gamma} (d - c) + c$$

圖 4.11 gamma 值不等於 1 時的 imadjust 函數

```
>> t=imread('tire.tif');
>> th=imadjust(t,[],[],0.5);
>> imshow(t),figure,imshow(th)
```


圖 4.12 輪胎影像及 gamma 值修正後的輪胎影像

>> plot(t,th,'.'),axis tight

圖 4.13 圖 4.12 中使用的函數

- 直方圖等化法 (histogram equalization)
 - →達到影像全動態範圍且灰階值分佈均匀
 - □ 全自動化(適性、不需人工操作選a、b值)
 - □ 最佳的對比
 - □ 使用 histeq 函數

```
>> p=imread('pout.tif');
>> ph=histeq(p);
>> imshow(ph),figure,imhist(ph)
```

□ 作法:將影像看作連續函數f(x, y) ,而直方圖就當作機率密度函數 來處理。


```
>> en=imread('engineer.tif');
>> e=imdivide(en,4);
>> imshow(e),figure,imhist(e),axis tight
```


engineer.tif 的暗色版本及其直方圖

圖 4.20

- >> eh=histeq(e);
- >> imshow(eh),figure,imhist(eh),axis tight

圖 4.21

圖 4.20 等化後的影像及其直方圖

■練習題:

Example 1: 像素總數100, 灰階值0~7

輸入灰階 r	像素 個數	p(r)	cdf	輸出灰階 s
0	1	0.01	0.01	$7 \times 0.01 = 0$
1	1	0.01	0.02	$7 \times 0.02 = 0$
2	1	0.01	0.03	$7 \times 0.03 = 0$
3	1	0.01	0.04	$7 \times 0.04 = 0$
4	12	0.12	0.16	$7 \times 0.16 = 1$
5	18	0.18	0.34	$7 \times 0.34 = 2$
6	26	0.26	0.60	$7 \times 0.60 = 4$
7	40	0.40	1.00	$7 \times 1.00 = 7$

灰階s	像素個數
0	4
1	12
2	18
3	0
4	26
5	0
6	0
7	40

4.4 查詢表格

- 使用查詢表格 (lookup table, LUT)執行點運算 會十分有效率
 - Example:

```
索引值: 0 1 2 3 4 5 ... 250 251 252 253 254 255
LUT: 0 0 1 1 2 2 ... 125 125 126 126 127 127
```

```
>> T=uint8(floor([0:255]/2))
>> b=imread('blocks.tif');
>>b2=T(b+1);
>> imshow(b2)
```


■ Example: 執行對比擴展函數 255

$$y = \frac{64}{96}x$$

$$y = \frac{192 - 64}{160 - 96}(x - 96) + 64$$

$$y = \frac{255 - 192}{255 - 160}(x - 160) + 192$$

$$y = 0.6632x + 85.8947$$

$$>>$$
b2=T(b+1);

>> imshow(b2)

練習

- 在M-file中,撰寫以下運算對應的LUT並將 影像的原圖、結果圖以及對應的直方圖顯示 出來。(灰階影像任意選擇)
 - □ 灰階值乘以2
 - □影像補色
 - □ 灰階值加150