Fundamentals of Information & Network Security ECE 471/571

Lecture #36: SSL/TLS

Instructor: Ming Li

Dept of Electrical and Computer Engineering
University of Arizona

Web Security

- The emerging of E-Commerce, on-line banking, online purchasing, etc. requires web security.
- Approaches
 - IP layer: IPsec
 - Transport layer : SSL/TLS
 - Transparent to applications
 - Embedded in specific applications, e.g., Netscape and IE
 - Application layer

Figure 17.1 Relative Location of Security Facilities in the TCP/IP Protocol Stack

What is SSL/TLS?

- Transport Layer Security protocol, version 1.0
 - De facto standard for Internet security
 - "The primary goal of the TLS protocol is to provide privacy and data integrity between two communicating applications"
 - In practice, used to protect information transmitted between browsers and Web servers
- Based on Secure Sockets Layers protocol, ver 3.0
 - Same protocol design, different algorithms
- Deployed in nearly every Web browser
- Allow two parties to authenticate and establish a session key that is used to cryptographically protect the remainder of the session

Application-level Protection

SSL/TLS in the Real World

History of the Protocol

- SSL 1.0
 - Internal Netscape design, early 1994?
 - Lost in the mists of time
- SSL 2.0
 - Published by Netscape, November 1994
 - Several weaknesses
- SSL 3.0
 - Published as an Internet draft document
 - Designed by Netscape and Paul Kocher, November 1996
- TLS 1.0
 - Internet standard based on SSL 3.0, January 1999, by IETF
 - Not interoperable with SSL 3.0
 - TLS uses HMAC instead of MAC; can run on any port

TLS Basics

- TLS consists of four protocols
 - Familiar pattern for key exchange protocols
- Handshake protocol
 - Use public-key cryptography to establish a shared secret key between the client and the server

Figure 17.2 SSL Protocol Stack

- Record protocol
 - Use the secret key established in the handshake protocol to protect communication between the client and the server
- Change cipher spec protocol
- Alert protocol

Record Protocol

- SSL Record protocol provides two services for SSL connections
 - Confidentiality & Message integrity

Handshake Protocol

- Two parties: client and server
- Negotiate version of the protocol and the set of cryptographic algorithms to be used
 - Interoperability between different implementations of the protocol
- Authenticate client and server (optional)
 - Use digital certificates to learn each other's public keys and verify each other's identity
- Use public keys to establish a shared secret
- Used before any application data transmitted

Handshaking

Protocol 19-1. (simplified) SSLv3/TLS

Computing Keys

- Pre-master key S
- Master keyK=f(S,R_{Alice},R_{bob})

Protocol 19-1. (simplified) SSLv3/TLS

- 6 session keys (for each direction)
 - encryption key
 - integrity-protection key
 - IV
 - hash results of K, R_{Alice}, and R_{Bob.}

Connection and Session

- Connection: A connection is a transport (in the OSI layering model definition)
 that provides a suitable type of service. For SSL, such connections are peer-topeer relationship. The connections are transient. Every connection is associated
 with one session.
- Session: A SSL session is an association between a client and a server. Sessions
 are created by the Handshake Protocol. Session defines a set of cryptographic
 security parameters, which can be shared among multiple connections.
 Sessions are used to avoid the expensive negotiation of new security parameters
 for each connection.

Session Initiation

• If session resumption is allowed, the server sends the client a session_id in the 2nd message and stores (session_id, master key).

Protocol 19-2. Session initiation if no previous state

Session Resumption

 When resuming a session, the client present the session_id in the first message so they can use the same master secret and skip the public key portion of the handshake.

Protocol 19-3. Session resumption if both sides remember session-id

Client Authentication

- Normally the clients send name/password to the server as application data
- The server has the option to send a "certificate" request in message 2 of the handshaking.

Reading Assignment

- Preview
 - [Kaufman] Chapters 23 (firewalls)