酸度系数

维基百科,自由的百科全书

酸度系数(英语: Acid dissociation constant,又名酸解离常数,代号 K_a 、 $\mathbf{p}K_a$ 、 $\mathbf{p}K_a$ 值),在化学及生物化学中,是指一个特定的平衡常数,以代表一种酸解离氢离子的能力。

该平衡状况是指由一种酸(HA)中,将<u>氢离子</u>(即<u>质子</u>)转移至水(H₂O)。水的浓度[H₂O]是不会在系数中显示的。一种酸的p K_a 越大则酸性越弱,p K_a 越小则酸性越强(反过来说, K_a 值越大,解离度高,酸性越强, K_a 值越小,部分解离,酸性越弱)。p K_a <o的酸在水中是强酸,介于o与4.0之间为中强酸,其他为弱酸。离解的化学反应(酸的电离反应通式)为:

$$\mathrm{HA}_{\left(\mathrm{aq}\right)} + \mathrm{H}_{2}\mathrm{O}_{\left(\mathrm{l}\right)} \leftrightarrow \mathrm{H}_{3}\mathrm{O}_{\left(\mathrm{aq}\right)}^{+} + \mathrm{A}_{\left(\mathrm{aq}\right)}^{-}$$

平衡状况亦会以氢离子来表达,反映出酸质子理论:

$$^{\mathrm{HA}}\left(\mathrm{aq}\right)\leftrightarrow\mathrm{H}^{+}\left(\mathrm{aq}\right)+\mathrm{A}^{-}\left(\mathrm{aq}\right)$$

平衡常数的方程为:

$$K_a = rac{[ext{H}_3 ext{O}^+][ext{A}^-]}{[ext{HA}]}$$

由于在不同的酸这个常数会有所不同,所以酸度系数会以<u>常用对数</u>的<u>加法逆元</u>,以符号 pK_a ,来表示:

$$pK_{\mathbf{a}} = -\log_{10} K_{\mathbf{a}}$$

在同一的浓度下,较大的 K_a 值(或较少的 pK_a 值)离解的能力较强,代表较强的酸。一般来说, $K_a>1$ (或 $pK_a<0$),则为强酸; $K_a<10^{-4}$ (或 $pK_a>4$),则为弱酸。

利用酸度系数,可以容易的计算酸的浓度、共轭碱、质子及氢氧离子。如一种酸是部分中和, K_a 值可以用来计算出缓冲溶液的pH值。在亨德森-哈塞尔巴尔赫方程亦可得出以上结论。

乙酸(醋酸)一种弱酸,捐出质子(氢离子,以绿色显示),以水的化学平衡(可逆反应)反应给出乙酸根离子和氢离子,红色:氧,黑:碳,白:氢。

目录

共轭碱的碱度系数
酸度系数与碱度系数的关系
影响酸碱强度的因素
p Ka值的重要性
一般物质的p Ka值
常见物质的p Ka数值
参考文献

共轭碱的碱度系数

由此类比,亦可以为共轭碱A一定义碱度系数 K_b 及 pK_b :

$$K_b = rac{[ext{HA}][ext{OH}^-]}{[ext{A}^-]}$$

$$pK_{b} = -\log_{10} K_{b}$$

以下是平衡状态的离解常数:

$$A^{-}_{\left(aq\right)}+H_{2}O_{\left(l\right)}\leftrightarrow HA_{\left(aq\right)}+OH^{-}_{\left(aq\right)}$$

同样的,较大的Kh值代表较强的碱,这是因在同一的浓度下可以接收更多的质子。

酸度系数与碱度系数的关系

由于HA与A⁻的电离作用就等同于水的自我离子化,酸度系数与碱度系数的<u>积</u>就相等于水的离解常数($K_{\rm w}$),故p $K_{\rm a}$ 与p $K_{\rm b}$ 的和即为p $K_{\rm w}$ 。其中 $K_{\rm w}$ 在25°C下为1.0×10⁻¹⁴,p $K_{\rm w}$ 为14。

$$K_{\mathbf{a}}K_{\mathbf{b}}=K_{\mathbf{w}}$$

$$\mathbf{p} K_a + \mathbf{p} K_b = \mathbf{p} K_w$$

由于 K_a 与 K_b 的积是一常数,较强的酸即代表较弱的<u>共轭碱</u>,较弱的酸,则代表较强的共轭碱。

影响酸碱强度的因素

作为一个平衡常数,酸度系数 K_a 是以反应物与化合物,更准确的应是质子化状态(AH)与脱质子化状态(A^-)的自由能差 ΔG° 来计算。分子的相互作用偏向脱质子化状态时会提升 K_a 值(因[A^-]与[AH]的比增加),或是降低 pK_a 值。相反的,分子作用偏向质子化状态时, K_a 值会下降,或提升 pK_a 值。

举例假设AH在质子化状态下释放一个<u>氢键</u>给<u>原子</u>X,这个氢键在脱质子化状态下是欠缺的。因质子化状态有着氢键的优势, pK_a 值随之而上升(K_a 下降)。 pK_a 值的转移量可以透过以下方程从 ΔG° 的改变来计算:

$$K_a = e^{-rac{\Delta G^\circ}{RT}}$$

其他的分子相互作用亦可以转移p K_a 值:只要在一个分子的滴定氢附近加入一个抽取<u>电子</u>的化学基(如<u>氧</u>、<u>卤化物</u>、<u>氰基或甚至苯基</u>),就能偏向脱质子化状态(当质子离解时须稳定余下的电子)使p K_a 值下降。例如将<u>次</u>氯酸连续<u>氧化</u>,就能得出不断上升的 K_a 值:HClO < HClO₂ < HClO₃ < HClO₄。次氯酸(HClO)与过氯酸(HClO₄) K_a 值的差约为11个数量级(约11个p K_a 值的转移)。 <u>静电</u>的相互作用亦可对平衡状态有所影响,负电荷的存在会影响带负电、脱质子化物质的形成,从而提升了p K_a 值。这即是分子中的一组化学基的离子化,会影响另一组的p K_a 值。

富马酸及马来酸是 pK_a 值转移的经典例子。它们两者都有相同的分子结构,以两组双键碳原子来分隔两组<u>羧酸</u>。富马酸是<u>反式异构体</u>,而马来酸则是顺式异构体。按照其对称性,有人会想这两个羧酸拥有同样约为4的 pK_a 值。在富马酸可以说是接近的推论,它的 pK_a 值约为3.5及4.5。相反,马来酸却有着约1.5及6.5的 pK_a 值。这是因当其中一个羧酸脱质子化时,另一组却形成一强烈的氢键与它连合,整体上来说,这个改变偏向了脱质子化状态下接受氢键的羧酸(由约4降至1.5),及偏向质子化状态下放出氢键的羧酸(由约4上升至6.5)。

pKa值的重要性

 pK_a 值会影响一物质的特征,例如活跃性、水溶性及光谱性质。在<u>生物化学</u>上,<u>蛋白质</u>及<u>氨基酸</u>侧链的 pK_a 值是对酶的活跃性及蛋白质的稳定性十分重要。

一般物质的pKa值

以下列出一些物质在25°C水下量度的 pK_a 值,同时列出酸性强于高氯酸的质子酸的 H_o 值:

物质名称	化学式	рК _а	pK _{a2}	pK _{a3}	H ₀	来源
氟锑酸	HSbF ₆	-25.00			-31.3	
魔酸	HSbF ₆ SO ₃	-19.20				
碳硼烷酸	H(CHB ₁₁ Cl ₁₁)	-12.00			-18	
氟磺酸	HSO ₃ F	-10.00			-15.1	
高氯酸	HClO ₄	-10.00			-13	
氢碘酸	HI	-9.48				
氢溴酸	HBr	-9.00				
盐酸	HCI	-8.00				
硫酸	H ₂ SO ₄	-3.00	1.99		-12	
硝酸	HNO ₃	-2.00				
水合氢离子	H ₃ O ⁺	-1.76				
氨基磺酸	HSO ₃ NH ₂	-1				
三氟乙酸	CF ₃ COOH	0.23				
三氯乙酸	CCI ₃ COOH	0.64				
磷酸三氢根离子	H ₃ PO ₄	2.12	7.21	12.67		
叶酸	C ₁₉ H ₁₉ N ₇ O ₆	2.3	8.3			
柠檬酸三氢根离子	C ₆ H ₈ O ₇	3.09	4.76	6.40		
氢氟酸	HF	3.18				
甲酸	НСООН	3.75				
抗坏血酸 (维生素C)	C ₆ H ₈ O ₆	4.04				
琥珀酸	C ₄ H ₆ O ₄	4.19				
苯甲酸	C ₆ H ₅ COOH	4.20				
苯胺*	C ₆ H ₇ N	4.63				
乙酸 (醋酸)	CH ₃ COOH	4.75				
柠檬酸二氢根离子		4.76				
<u> </u>		5.21				
碳酸*	H ₂ CO ₃	6.35				
柠檬酸一氢根离子		6.40				
ATP		6.5				
乙二胺*		6.99				
<u>咪唑</u> *(作为酸)		7.00				
硫化氢*	H ₂ S	7.00	19.0			
磷酸二氢根离子		7.21				
次氯酸	HOCI	7.50				
<u>氨</u> *	NH ₃ (g)	9.25				

氢氰酸	HCN	9.30			
苯甲胺*		9.33			
三甲胺*		9.81			
苯酚	PhOH	9.9			
乙二胺*		10.08			
甲胺*		10.66			
二甲胺*		10.73			
<u>乙胺</u> *		10.81			
三乙胺*		11.01			
二乙胺*		11.09			
过氧化氢	H ₂ O ₂	11.65	25		
<u>m</u> *		12.50			
磷酸一氢根离子		12.67			
<u>咪唑</u> (作为碱)		14.58			
水	H ₂ O	15.74			
<u>氨基钠</u>	NaNH ₂	- 19.00 (pKb)			
六甲基二硅基氨基钾(KHMDS)		26.00			
液氨*	NH ₃ (l)	34			
四甲基哌啶锂(LiTMP)		37.00			
二异丙基氨基锂 (LDA)		37.00			
丙烷	C ₃ H ₈	45.00			
乙烷	C ₂ H ₆	50.00			

- *氨和氨基的数值是相应的氨离子的p Ka值。(非与水反应)
- **碳酸的浓度假定为碳酸与二氧化碳的浓度和。
- ***质子化能力高于高氯酸的质子酸所列数据为H_o值,高氯酸的H_o值为-13。

常见物质的pKa数值

有多种技术来确定化学物质的pKa值,导致不同来源之间存在一些差异。 测量值之间通常有0.1个单位的误差。下列物质的数据都是在25℃时水中测得。[1]

化学名称	化学平衡	р <i>К</i> а	
B = 腺嘌呤	$BH_2^{2+} \rightleftharpoons BH^+ + H^+$	4.17	
	BH ⁺ ⇌ B + H ⁺	9.65	
H ₃ A = <u>亚</u> 砷酸	$H_3A \rightleftharpoons H_2A^- + H^+$	2.22	
	$H_2A^- \rightleftharpoons HA^{2-} + H^+$	6.98	
	$HA^{2-} \rightleftharpoons A^{3-} + H^+$	11.53	
HA = <u>苯甲酸</u>	HA ⇌ H ⁺ + A ⁻	4.204	
HA = <u>丁酸</u>	HA ⇌ H ⁺ + A ⁻	4.82	
H ₂ A = <u>铬酸</u>	$H_2A \rightleftharpoons HA^- + H^+$	0.98	
	$HA^- \rightleftharpoons A^{2-} + H^+$	6.5	
B = <u>可待因</u>	BH ⁺ ⇌ B + H ⁺	8.17	
HA = <u>甲酚</u>	HA ⇌ H ⁺ + A ⁻	10.29	
HA = <u>甲酸</u>	HA ⇌ H ⁺ + A ⁻	3.751	
HA = 氢氟酸	HA ⇌ H ⁺ + A ⁻	3.17	
HA = 氢氰酸	HA ⇌ H ⁺ + A ⁻	9.21	
HA = <u>硒化氢</u>	HA ⇌ H ⁺ + A ⁻	3.89	
HA = 过氧化氢 (90%)	HA ⇌ H ⁺ + A ⁻	11.7	
HA = <u>乳酸</u>	HA ⇌ H ⁺ + A ⁻	3.86	
HA = <u>丙酸</u>	HA ⇌ H ⁺ + A ⁻	4.87	
HA = <u>苯酚</u>	HA ⇌ H ⁺ + A ⁻	9.99	
H ₂ A = <u>维生素C</u>	$H_2A \rightleftharpoons HA^- + H^+$	4.17	
	$HA^- \rightleftharpoons A^{2-} + H^+$	11.57	

参考文献

1. Speight, J.G. Lange's Handbook of Chemistry 18th. McGraw–Hill. 2005. <u>ISBN 0-07-</u>143220-5. Chapter 8

取自 "https://zh.wikipedia-mirror.org/w/index.php?title=酸度系数&oldid=55597022"

本页面最后修订于2019年8月10日 (星期六) 13:55。

本站的全部文字在知识共享署名-相同方式共享3.0协议之条款下提供,附加条款亦可能应用。(请参阅<u>使用条款</u>) Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。 维基媒体基金会是按美国国内税收法501(c)(3)登记的非营利慈善机构。