* Exercice 1

Soit E un \mathbb{R} -espace vectoriel de dimension n et f un endomorphisme de E. Pour tout réel a, on note $E_a(f) = \{x \in E \mid f(x) = a \cdot x\}$

1) Vérifier que pour tout réel $a, E_a(f)$ est un sous-espace vectoriel de E.

On dit qu'un réel a est une valeur propre de f si et seulement si il existe un vecteur x non nul de E tel que f(x) = ax.

- 2) Montrer que a est une valeur propre de f si et seulement si $E_a(f) \neq \{0\}$.
- 3) Montrer que si λ et μ sont deux réels distincts, alors $E_{\lambda}(f)$ et $E_{\mu}(f)$ sont en somme directe.
- 4) Montrer que si $\lambda_1, ..., \lambda_r$ sont r valeurs propres distinctes, alors $E_{\lambda_1}(f), ..., E_{\lambda_r}(f)$ sont en somme directe.
- 5) Montrer que si f admet n valeurs propres distinctes, alors il existe une base \mathcal{B} de E telle que la matrice $\mathrm{Mat}_{\mathcal{B}}(f)$ est diagonale.

- 1) Montrer que les valeurs propres d'une matrice triangulaire supérieure sont sur sa diagonale.
- 2) Donner un exemple de matrice carrée d'ordre 2 dont aucune des valeurs diagonale n'est valeur propre.

- 1) Montrer que pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$, M est inversible si et seulement si tM est inversible.
- 2) Soit A un matrice carrée d'ordre n et $\lambda \in \mathbb{R}$ une valeur propre de A. Montrer que λ est valeur propre de tA .

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 2 \end{pmatrix}$$

Montrer que f n'est pas diagonalisable.

*
Exercice 5

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$C = \begin{pmatrix} 2 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & -4 \end{pmatrix}$$

Justifier que f est diagonalisable, puis déterminer une base de diagonalisation.

Exercice 6

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 3 & 1 \\ 2 & 8 & 1 \end{pmatrix}$$

- 1) Montrer que $X^2 4X 5$ est un polynôme annulateur de A.
- 2) Montrer que $(u + \mathrm{Id}) \circ (u 5\mathrm{Id}) = (u 5\mathrm{Id}) \circ (u + \mathrm{Id}) = 0_{\mathcal{L}(\mathbb{R}^3)}$
- 3) En déduire que $\operatorname{Im}(u+\operatorname{Id})\subset\operatorname{Ker}(u-5\operatorname{Id})$ et que $\operatorname{Im}(u-5\operatorname{Id})\subset\operatorname{Ker}(u+\operatorname{Id})$.
- 4) En étudiant le rang de $u + \operatorname{Id}$ et $u 5\operatorname{Id}$, montrer que $\dim(\operatorname{Ker}(u + \operatorname{Id}) \oplus \operatorname{Ker}(u 5\operatorname{Id}) \ge 3$.
- 5) En déduire que u est diagonalisable.

On considère l'application linéaire $\varphi: \mathbb{R}^4 \to \mathbb{R}^4$ définie par

$$\varphi(x_1, x_2, x_3, x_4) = (x_1 + x_3, x_2 + x_4, x_1 + x_3, x_2 + x_4)$$

- 1) Déterminer la matrice représentative de φ dans la base canonique de \mathbb{R}^4 .
- 2) Montrer que 0 et 2 sont valeurs propres de φ .
- 3) Montrer que φ est diagonalisable en précisant la dimension de ses sous-espaces propres.

On considère l'application :

$$u: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

 $P(X) \longmapsto XP'(X) + P(X+1)$

- 1) Vérifier que u est bien un endomorphisme de $\mathbb{R}_n[X]$.
- 2) Déterminer la matrice représentative de u dans la base canonique de $\mathbb{R}_n[X]$
- 3) En déduire que u est diagonalisable.

Soit A un matrice carrée de taille n à coefficients réels. On suppose que A est de rang 1 et que $\operatorname{tr}(A) \neq 0$.

- 1) Justifier qu'il existe deux matrices X et Y dans $\mathcal{M}_{1,n}(\mathbb{R})$ telles que $A = {}^t XY$.
- 2) En déduire que $A^2 = tr(A)A$.
- 3) En déduire qu'il existe un réel c non nul tel que X(X-c) est un polynôme annulateur de A.
- 4) On pose F = Ker(A) et G = Ker(A cI). Montrer que F et G sont supplémentaires dans $\mathcal{M}_{n,1}(\mathbb{R})$ et en déduire que A est diagonalisable.

Soit E un \mathbb{R} -espace vectoriel de dimension finie n et soit $f \in \mathcal{L}(E)$.

- 1) Soit $k \geq 1$. Démontrer que $\operatorname{Ker}(f^k) \subset \operatorname{Ker}(f^{k+1})$ et $\operatorname{Im}(f^{k+1}) \subset \operatorname{Im}(f^k)$.
- 2) a) Démontrer que si $\operatorname{Ker}(f^p) = \operatorname{Ker}(f^{p+1})$ alors $\operatorname{Ker}(f^{p+1}) = \operatorname{Ker}(f^{p+2})$.
 - b) Démontrer qu'il existe $p \in \mathbb{N}$ tel que :
 - Si k < p, alors $Ker(f^p) \neq Ker(f^{k+1})$
 - Si $k \ge p$, alors $Ker(f^k) = Ker(f^{k+1})$.
 - c) Démontrer que $p \leq n$.
- 3) Démontrer que si k < p, alors $\text{Im}(f^k) \neq \text{Im}(f^{k+1})$ et si $k \geq p$, alors $\text{Im}(f^k) = \text{Im}(f^{k+1})$.
- 4) Démontrer que $Ker(f^p)$ et $Im(f^p)$ sont supplémentaires.
- 5) Démontrer qu'il existe deux sous-espaces vectoriels F et G de E tels que F et G sont supplémentaires dans E, $f_{|F}$ est nilpotent et $f_{|G}$ induit un automorphisme de G.
- 6) Pour tout $k \ge 1$ on note $d_k = \dim(\operatorname{Im}(f^k))$. Montrer que la suite $(d_k d_{k+1})$ est décroissante.

