

Varianta 84

Subjectul I.

$$\mathbf{a)} \quad \left| \frac{1+i}{2-3i} \right| = \frac{\sqrt{26}}{13} \, .$$

b)
$$\frac{5\sqrt{3}}{3}$$
.

c) Ecuația tangentei este x+3y-4=0

d) Punctele L, M, N sunt coliniare, deoarece $\overrightarrow{LN} = 2 \cdot \overrightarrow{LM}$.

e)
$$V_{ABCD} = \frac{10}{3}$$
.

f) a = 2 și b = 11.

Subjectul II.

1.

a)
$$a_{10} = 512$$
.

b) Probabilitatea căutată este $p = \frac{2}{3}$

c)
$$g(1)+g(2)=1$$
.

d)
$$x = 1$$
.

e)
$$x_1 \cdot x_2 \cdot x_3 = 24$$
.

a)
$$f'(x) = 2x + \cos x$$
, $x \in \mathbb{R}$.

b)
$$\int_{0}^{1} f(x) dx = \frac{4}{3} - \cos 1$$
.

c) f''(x) > 0, $\forall x \in \mathbf{R}$, deci funcția f este convexă pe \mathbf{R} . d) $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 2 + \cos 1$

d)
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 2 + \cos x$$

e)
$$\lim_{x\to\infty}\frac{f(x)}{x^2}=1.$$

Subjectul III.

a) Se demonstrează prin reducere la absurd.

b) Funcția polinomială asociată polinomului f este strict crescătoare și de grad impar, de unde rezultă că f are o unică rădăcină $a \in \mathbf{R}$.

c) Pentru polinomul din enunt, $f \in \mathbf{Q}[X]$, avem că f(a) = 0, deci $0 \in \mathbf{Q}(a)$.

Considerăm $g \in \mathbf{Q}[X]$, g = f + 1. Avem g(a) = f(a) + 1 = 1, deci $1 \in \mathbf{Q}(a)$.

d) Evident.

e) Notăm $M = \{ p + qa + ra^2 \mid p, q, r \in \mathbf{Q} \}$

" \supset " Pentru orice $p, q, r \in \mathbf{Q}$ și $p + qa + ra^2 \in M$, alegem polinomul $g = p + qX + rX^2 \in \mathbf{Q}[X]$ şi avem $p + qa + ra^2 = g(a) \in \mathbf{Q}(a)$, aşadar $M \subset \mathbf{Q}(a)$. " \subset " Reciproc, considerăm elementul $\alpha \in \mathbf{Q}(a)$ și polinomul $g \in \mathbf{Q}[X]$, astfel încât $g(a) = \alpha$. Din teorema împărțirii cu rest, există și sunt unice $q \in \mathbf{Q}[X]$ și $p, q, r \in \mathbf{Q}$, astfel încât $g = f \cdot q + rX^2 + qX + p$

iar $\alpha = g(a) = ra^2 + qa + p \in M$, deci $\mathbf{Q}(a) \subset M$.

f) Deoarece $a \in \mathbf{R} \setminus \mathbf{Q}$ este rădăcină a lui f, avem $a^3 = -3a - 3 \in \mathbf{R} \setminus \mathbf{Q}$ Considerăm $p, q, r \in \mathbf{Q}$, astfel încât $p + qa + ra^2 = 0$.

Înmulțind relația precedentă cu $a \neq 0$ și reducându-l pe a^2 , rezultă: $(pr-3r^2-q^2)\cdot a=3r^2+pq$. Decoarece $a\in \mathbf{R}\setminus \mathbf{Q}$, obţinem $q^3+3r^2q+3r^3=0$

Dacă $r \neq 0$, împărțind relația precedentă la $r^3 \neq 0$ deducem $\left(\frac{q}{r}\right)^3 + 3\frac{q}{r} + 3 = 0$,

așadar $\alpha = \frac{q}{r} \in \mathbf{Q}$ este o rădăcină a lui f, contradicție cu punctul \mathbf{a}).

Obţinem că r=0 şi apoi q=0 şi p=0.

g) Presupunem că $a^{2007} = t \in \mathbf{Q}$. Considerăm polinomul $g \in \mathbf{Q}[X]$, $g = X^{2007} - t$. Din teorema împărțirii cu rest, există și sunt unice $q \in \mathbf{Q}[X]$ și $p, q, r \in \mathbf{Q}$, astfel încât $g = f \cdot q + rX^2 + qX + p$. Deoarece g(a) = 0, rezultă $p + qa + ra^2 = 0$ și din f) obținem că p = q = r = 0, deci $g = f \cdot q$. În concluzie, toate rădăcinile lui f sunt și rădăcini ale lui g. Deoarece toate rădăcinile lui g au același modul, rezultă că și rădăcinile a, x_2, x_3 ale lui f sunt de module egale. Rezultă $a = -\sqrt[3]{3}$. Cum $f(-\sqrt[3]{3}) = 3 \cdot \sqrt[3]{3} \neq 0$, am ajuns la o contradicție, așadar $a^{2007} \in \mathbf{R} \setminus \mathbf{Q}$.

Subjectul IV.

- a) $I_0(a) = \sin a$, $\forall a \ge 0$.
- b) Se arată prin calcul direct.
- c) Se folosește primul principiu al inducției matematice și punctul b).
- d) Pentru orice $x \in \mathbf{R}$, se demonstrează prin inducție că

$$\forall k \in \mathbf{N}$$
, $\sin^{(k)} x = \sin\left(x + \frac{k\pi}{2}\right) \in [-1, 1]$

Avem:
$$0 \le |I_n(a)| \le \int_0^a \frac{|a-x|^n}{n!} \cdot |\sin^{(n+1)} x| dx \le \int_0^a \frac{(a-x)^n}{n!} dx = \frac{a^{n+1}}{(n+1)!}.$$

- e) Se folosește criteriul raportului.
- f) Trecând la limită în inegalitatea de la d) și folosind punctul e) și criteriul clestelui, obtinem concluzia.

g) Din (2) rezultă $\forall n \in \mathbb{N}$, $\sin^{(2n)}(0) = 0$ și $\sin^{(2n+1)}(0) = (-1)^n$

Pentru orice
$$n \in \mathbb{N}$$
 si $x \in \mathbb{R}$, din c) obţinem:

$$\sin 0 + \frac{x}{1!} \sin'(0) + \frac{x^2}{2!} \sin^{(2)}(0) + ... + \frac{x^{2n+1}}{(2n+1)!} \sin^{(2n+1)}(0) + I_{2n+1}(x) = \sin x \iff 0$$

$$\Leftrightarrow \frac{x}{1!} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + I_{2n+1}(x) = \sin x$$

și trecând la limită și ținând cont de punctul **f**) deducem
$$\lim_{n\to\infty} \left(\frac{x}{1!} - \frac{x^3}{3!} + ... + (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right) = \sin x.$$