(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 17. Januar 2002 (17.01.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/04486 A2

(51) Internationale Patentklassifikation7:

(21) Internationales Aktenzeichen:

PCT/EP01/07333

C07K 14/00

(22) Internationales Anmeldedatum:

27. Juni 2001 (27.06.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

100 33 195.5

7. Juli 2000 (07.07.2000) DE

- (71) Anmelder: AVENTIS PHARMA DEUTSCHLAND GMBH [DE/DE]; Brüningstrasse 50, 65929 Frankfurt (DE).
- (72) Erfinder: HABERMANN, Paul; Rossertstrasse 35, 65817 Eppstein (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,

CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts
- mit dem Sequenzprotokollteil der Beschreibung in elektronischer Form getrennt veröffentlicht; auf Antrag vom Internationalen Büro erhältlich

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

•

(54) Title: BI-FUNCTIONAL FUSION PROTEINS FROM HIRUDIN AND TAP

(54) Bezeichnung: BIFUNKTIONALE FUSIONSPROTEINE AUS HIRUDIN UND TAP

(57) Abstract: The invention relates to bi-functional fusion proteins, comprising hirudin, or a variant of hirudin and TAP (Tick Anticoagulant Peptide) or a variant of TAP, the production and use of bi-functional fusion proteins and medicaments containing said bi-functional fusion proteins.

(57) Zusammenfassung: Die Erfindung betrifft bifunktionale Fusionsproteine, die Hirudin oder eine Variante von Hirudin und TAP (Tick Anticoagulant Peptide) oder eine Variante von TAP enthalten, die Herstellung und Verwendung der bifunktionalen Fusionsproteine sowie Arzneimittel, die diese bifunktionalen Fusionsproteine enthalten.

Beschreibung

Bifunktionale Fusionsproteine aus Hirudin und TAP

5

Die Erfindung betrifft bifunktionale Fusionsproteine, die Hirudin oder eine Variante von Hirudin und TAP (Tick Anticoagulant Peptide) oder eine Variante von TAP enthalten, die Herstellung und Verwendung der bifunktionalen Fusionsproteine sowie Arzneimittel, die diese bifunktionalen Fusionsproteine enthalten.

10

15

20

25

Die Komplexizität des humanen Blutgerinnungssystemes bedingt die Einbeziehung einer Vielzahl von Blutgerinnungsfaktoren. Diese können Proteinfamilien entstammen, deren Mitglieder gemeinsame strukturelle Eigenschaften aufweisen, anderseits aber aufgrund während der Evolution entwickelter geringfügiger struktureller Änderungen durch spezifische Wechselwirkung mit jeweils einer anderen Zielstruktur spezifisch wirken. Aufgrund der strukturellen Verwandtschaft der Mitglieder dieser Proteinfamilien und der während der Evolution entwickelten Spezifität ist es sehr schwierig, chemisch synthetisierte Moleküle zu finden, die einerseits hochspezifisch mit einem der Mitglieder interagieren anderseits aber mit den anderen Mitgliedern der Familie nicht interagieren, so daß bei therapeutischer Anwendung das Risiko von Nebenwirkungen minimiert ist.

Blutsaugende Parasiten verfügen über hunderte von Millionen von Jahren Evolution entwickelte Peptide, die spezifische mit Blutgerinnungsfaktoren wechselwirkend und dadurch den Wirt nur wenig schädigen. Dabei wurden während der Evolution Wirt -Parasit spezifische Mechanismen der Gerinnungshemmung entwickelt.

Blutegel vom Typ *Hirudo* entwickelten z.B. verschiedene Isoformen des
Thrombinhibitors Hirudin. Durch künstliche Variation des Moleküls, z.B.
Austausch der N-terminalen Aminosäure, wurde Hirudin für pharmazeutisch technische Anforderungen optimiert (z.B. EP 0 324 712).

Andere Blutegel wie z.B. Hementeria gigantii entwickelten Proteine die Blutgerinsel auflösen und ähnlich dem humanen tPA (Tissue Plasminogen Activator) wirken.

WO 02/04486

PCT/EP01/07333

Tuszynski et al. (J. of Biol. Chem. (1987), 262, 9718 – 9723) beschreiben ein ca. 17000dt großes Protein, das aus dem mexikanischen Blutegel isoliert werden kann und ein Inhibitor des Blutgerinnungsfaktors Xa ist.

- Auch Zecken haben Thrombininhibitoren entwickelt. EP 0 345 616 beschreibt ein Protein Amblyommin, welches aus afrikanischen Schildzecken isoliert werden kann. Amblyommin inhibiert Thrombin, obwohl es eine von Hirudin verschiedene Primärstruktur hat.
- Dies zeigt, daß bei gleichem Zielprotein dennoch verschiedene inhibitorische Proteine, die eine ähnliche Wirkung haben, während der Evolution entwickelt wurden. Weichzecken wie *Ornithodoros moubata*, haben Inhibitoren des Blutgerinnungsfaktors Xa entwickelt. Das Polypeptid TAP (Tick Anticoagulant Peptide) (Waxman L. et al. (Science 248pp. 595-596; 1990) hemmt spezifisch den Blutgerinnungsfaktor Xa, der inaktives Prothrombin in aktives Thrombin umwandelt. US 5,239,058 und US 5,328,997 beschreiben TAP und dessen Herstellung.

Diese Beispiele zeigen, daß verschiedene Stufen der Blutgerinnnungskaskade (verschiedene Blutgerinnungsfaktoren) als Ziel der Gerinnungshemmung während der Evolution entwickelt wurden und der Mechanismus der Hemmung spezifisch von einzelnen Tierspezies je nach den individuellen Lebensumständen optimiert wurde.

Von großem pharmazeutischen Interesse sind Proteine, die die Eigenschaften von verschiedenen dieser Inhibitoren miteinander kombinieren, so daß synthetische bifunktionale Proteine entstehen.

Seno et. al. (FEBS Letters 199, pp. 187-192 1986) und EP 0 288 809 beschreiben das Prinzip synthetischer bifunktioneller (bifunktionaler) Proteine. Grundlage für diese Proteine sind Polypeptide, die immunologisch wirksam sind und der Gruppe der Lymphokine und Interferone entstammen. EP 0 227 938 beschreibt für die Konstruktion von Fusionsproteinen die Verwendung einer Faktor Xa – Spaltstelle als Bindeglied zwischen Interleukin-2 und einem zweiten Teilprotein, das vorzugsweise Proinsulin oder Hirudin ist. Über die Faktor Xa-Spaltstelle kann das

20

Protein von Interesse abgetrennt werden. Im Fusionsprotein weist Interleukin-2 keine Interleukin-2 Aktivität auf.

EP 0 502 968 beschreibt eiweißartige Plasminogenanaloga, die durch ein an der 5 Blutgerinnung beteiligtes Enzym, wie z.B. Faktor Xa spaltbar sind, wodurch eine Verbindung mit Plasmin-Aktivität gebildet wird. Zunächst werden inaktive Fusionsproteine, bestehend z.B. aus Hirudin und Streptokinase über diese Spaltstelle fusioniert und nach Injektion in das Blutkreislaufsystem durch Enzyme der Gerinnungskaskade, z.B. durch den Faktor Xa gespalten, wodurch die jeweils 10 aktive Form des Teilproteins, z.B. Hirudin und Streptokinase (Hemmung der Blutgerinselbildung durch Hirudin und Fibrinolyse durch Streptokinase) gebildet werden. Die Fusionsproteine wirken als 'Prodrug'; d.h. sie müssen erst durch Spaltung in ihre aktive Form überführt werden. Als Prodrug sind sie nicht oder nur in geringem Maße aktiv. Das hat unter anderem den Nachteil, daß z. B. im Fall einer 15 massiven Verletzung, wie z.B. der Bildung von Thromben nach einer Operation, diese Fusionsproteine nicht sofort - sondern erst nach Aktivierung bzw. Spaltung und auch nicht in so ausreichendem Maße wirken, daß die Gefahr der Blutgerinselbildung unterdrückt wird.

20 Eine Aufgabe der vorliegenden Erfindung war es, ein bifunktionales Fusionsprotein herzustellen, wobei beide Teilproteine bereits im Fusionsprotein aktiv sind und wobei beide Teilproteine die Blutgerinnung hemmen.

Gegenstand der Erfindung ist ein bifunktionales Fusionsprotein, daß Hirudin oder eine Variante von Hirudin und TAP oder eine Variante von TAP enthält.

Überraschend wurde gefunden, daß mit Hirudin und dem aus Weichzecken isolierten FaktorXa – Inhibitorpeptid Tick Anticoagulant Peptide (nachfolgend TAP) Fusionsproteine gebildet werden können, die bifunktional aktiv sind, d.h. beide Teilproteine des bifunktionalen Fusionsproteins – Hirudin und TAP – sind bereits ohne vorherige enzymatische Aktivierung bzw. Spaltung aktiv.

Da beide Funktionen – einerseits Hirudin oder eine Variante von Hirudin und andererseits TAP oder eine Variante von TAP – bereits im Fusionsprotein aktiv sind.

ist eine Spaltung in die Teilproteine – d.h. in Hirudin oder eine Variante von Hirudin einerseits und TAP oder eine Variante von TAP andererseits – für die Aktivität der Teilproteine keine notwendige Voraussetzung.

Vorzugsweise ist in diesen synthetischen bifunktionalen Fusionsproteinen jede einzelne Eigenschaft bzw. Funktion vergleichbar effizient zu der des jeweiligen Ausgangsproteins. Für eine pharmazeutische Anwendung brauchen die Teilproteine dann nicht getrennt oder als Mischung dargereicht zu werden. Die bifunktionalen Proteine haben verbesserte Halbwertszeiten, so daß von jedem Teilprotein weniger appliziert werden muß, als bei einzelner Darreichung. Ein Vorteil ist, daß dadurch das Blutungsrisiko verringert werden kann.

Darüber hinaus interagieren die beiden Teilproteine mit verschiedenen Zielen der Blutgerinnungskaskade. Dies hat den Vorteil, daß in akuten Situationen gleichzeitig durch Hirudin (welches Thrombin inhibiert), die Gerinselbildung gehemmt und durch TAP die Neubildung von Thrombin aus Prothrombin, die über die enzymatische Aktivität des Faktor Xa abläuft, verhindert wird. Dadurch wird die antithrombotische Wirkung verlängert und verstärkt.

20 Die Erfindung beinhaltet die Verwendung von Hirudin und Hirudin Varianten in dem bifunktionalen Fusionsprotein. In besonderen Ausführungsformen der Erfindung wird eine der natürlichen Isoformen des Hirudins (die natürlichen Isoformen werden zusammen als "Hirudin" bezeichnet) verwendet. Eine natürliche Isoform ist z.B. Val-Val-Hirudin. In anderen Ausführungsformen der Erfindung wird eine Variante einer 25 natürlichen Hirudin Isoform eingesetzt. Eine Variante leitet sich von einer natürlichen Isoform des Hirudins ab, enthält aber z.B. zusätzliche Aminosäuren und/oder Aminosäuredeletionen und/oder Aminosäureaustausche im Vergleich zu der natürlichen Isoform. Eine Variante von Hirudin kann alternierend Peptidabschnitte natürlicher Isoformen des Hirudins und neue Aminosäuren enthalten. Beispielsweise 30 kann eine Variante von Hirudin eine natürliche Sequenz von bis zu 15 Aminosäuren mit einer kurzen, vorzugsweise 6 -20 Aminosäure langen neuen Sequenz verknüpfen, vorzugsweise kann dadurch eine Hirudin-Variante erzeugt werden, die keine Disulfidbrücken enthält. Varianten des Hirudins sind bekannt und z.B. in DE 3 430 556 beschrieben. Eine besondere Ausführungsform betrifft die Hirudin-Variante

Refludan (Leu-Hirudin, auch bezeichnet als [Leu¹, Thr²]-63-Desulfatohirudin bzw.
Lepirudin; beschrieben in EP-B 0 324 12 Sequenz Nummer 4; SEQ ID NO 15). Eine weitere besondere Ausführungsform betrifft Hirudin-Varianten mit verzögerter Wirkung (z.B. PEG-Hirudin, beschrieben in EP 0 345 616). Eine besondere

5 Ausführungsform betrifft Hirudin und Hirudin-Varianten, die gegenüber den natürlichen Isoformen oder Varianten am N-Terminus und/oder C-Terminus verkürzt sind. Vorzugsweise hat eine Hirudin-Variante 80 % oder mehr Homologie (Aminosäureidentität) zu einer natürlichen Isoform des Hirudins.

- In analoger Weise können Isoformen und Varianten von TAP verwendet werden. In besonderen Ausführungsformen wird eine natürliche Isoform von TAP (natürliche Isoformen werden zusammen als "TAP" bezeichnet) verwendet z.B. TAP gemäß SEQ ID NO. 17 oder Waxman (Waxman et al. (1990) Science 248, 595-596). In anderen Ausführungsformen der Erfindung wird eine Variante von TAP verwendet.
- Eine Variante von TAP leitet sich von einer natürlichen Isoform des TAP's ab vorzugsweise von SEQ ID NO. 17, enthält aber z.B. zusätzliche Aminosäuren und/oder Aminosäuredeletionen und/oder Aminosäureaustausch (Mutationen) im Vergleich zur natürlichen Isoform. Eine besondere Ausführungsform betrifft TAP Varianten, die gegenüber der natürlichen Isoform oder TAP Varianten, vorzugsweise gegenüber SEQ ID NO. 17, am N-Terminus und/oder C-Terminus verkürzt sind. Vorzugsweise hat eine TAP-Variante 80 %, besonders bevorzugt 90% oder mehr Homologie (Aminosäureidentität) zu einer natürlichen Isoform des TAPs, vorzugsweise zu SEQ ID NO. 17.
- Eine besondere Ausführungsform der Erfindung betrifft ein bifunktionales Fusionsprotein, bei dem die Teilproteine über einen Spacer miteinander verbunden sind. Dieser Spacer besteht vorzugsweise aus 1 oder mehreren Aminosäuren, vorzugsweise maximal 10 Aminosäuren. Beispiele für Spacer sind: -Asp-Pro- und Ala-IIe-Glu-Gly-Arg-.

Eine besondere Ausführungsform der Erfindung betrifft ein bifunktionales Protein, bei dem die beiden Teilproteine über eine FaktorXa – Spaltstelle verknüpft sind. Dies hat den Vorteil, daß Spuren von nicht inaktiviertem Faktor Xa eine zusätzliche Spaltstelle als Substrat in Konkurrenz zu der natürlich vorhanden Spaltstelle im

Prothrombin angeboten wird. Durch diese Substratinhibition wird ein weiterer vorteilhafter Begleiteffekt erzielt. Überraschenderweise werden dabei weder die Hirudinwirkung noch die TAP – Wirkung beeinträchtigt.

- 5 Besondere Ausführungsformen der Erfindung betreffen die Fusionsproteine
 - Hir₁₋₆₃TAP₂₋₆₀
 (Aminosäuren 1-63 des Hirudins gemäß SEQ. ID. NO. 15, Aminosäuren 2-60 des TAPs gemäß SEQ ID NO. 17) Teile der Sequenz sind in Figur 1 (SEQ ID NO. 7) gezeigt;
- Hir₁₋₆₅-AspPro-TAP₁₋₆₀
 (Fusionsproteine enthaltend Aminosäuren 1-65 des Hirudins gemäß SEQ ID NO. 15, einen Spacer (Asp, Pro) und die Aminosäuren 1-60 aus TAP gemäß SEQ ID NO. 17);
- Hir₁₋₆₃-Ala Ile Glu Gly Arg-TAP₁₋₆₀ (Gly 34)
 (Aminosäuren 1-63 aus Hirudin gemäß SEQ ID NO. 15, einen Spacer, (- Ala Ile Glu Gly Arg -) mit einer Erkennungsstelle für Faktor Xa Protease;
 Aminosäuren 1-60 aus TAP gemäß SEQ ID NO. 17) wobei in Position 34 der TAP Sequenz ein Glycin (Gly 34) eingeführt ist,
- Ala-Hir₍₂₋₆₃₎-Ala Ile Glu Gly Arg-TAP₍₁₋₆₀₎
 (Aminosäure Ala N-Terminus; Aminosäuren 2-63 des Hirudins gemäß SEQ ID NO. 15, Spacer Ala Ile Glu Gly Arg -; Aminosäuren 1-60 aus TAP gemäß SEQ ID NO. 17; das Fusionsprotein enthält an Position 34 der TAP Peptid sequenz ein Glycin).
- Gegenstand der Erfindung ist auch ein bifunktionales Fusionsprotein, das eine der Signalsequenzen SEQ ID NO. 18–27, vorzugsweise SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21 oder SEQ ID NO. 22 enthält (Tabelle 1, DE 19 944 870.1).
- Gegenstand der Erfindung ist auch eine Nukleinsäure, vorzugsweise DNA, die für das bifunktionale Fusionsprotein kodiert. Beispielsweise enthält die DNA eine der Sequenzen SEQ ID NO. 14 (kodiert für Leu-Hirudin) und/oder SEQ ID NO. 16 (kodiert für TAP) oder Teile dieser Sequenzen. In besonderen Ausführungsformen der Erfindung, enthält die DNA außerdem eine Sequenz, die für eine der
- 35 Signalsequenzen aus Tabelle 1 kodiert.

Vorzugsweise wird das Fusionsprotein durch eine DNA kodiert, die für Hirudin oder eine Hirudin-Variante und TAP oder eine TAP-Variante kodiert. Die für das bifunktionale Fusionsprotein kodierende DNA liegt vorzugsweise in einem Plasmid vor, z.B. dem Plasmid pK152 (EP 0 448 093; Europäische Patentanmeldung Nr. 8974322). Das Plasmid pK 152 enthält die Sequenz für Hirudin gemäß EP 0 324 712. Gegenstand der Erfindung ist eine DNA, die für das bifunktionale Fusionsprotein kodiert sowie ein Plasmid, das diese DNA enthält. Gegenstand der Erfindung ist auch die Verwendung einer DNA, die für das bibunktionale Fusionsprotein kodiert und die Verwendung eines Plasmids, das diese DNA enthält. Vorzugsweise enthält das Plasmid auch einen für die Expression geeigneten Promotor.

Gegenstand der Erfindung ist auch eine Zelle, eukaryotisch oder prokaryotisch, die eine DNA, die für das bifunktionale Fusionsprotein kodiert, z.B. vorliegend in einem Plasmid, enthält. Eine besondere Ausführungsform betrifft eine Bakterienzelle, z. B. E.coli. Eine andere besondere Ausführungsform betrifft eine Hefezelle, z. B. Saccharomyces cerevisiae.

20 Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung des bifunktionalen Fusionsproteins. Vorzugsweise wird das bifunktionale Fusionsprotein durch heterologe Expression in rekombinanten eukaryotischen Zellen – z. B. Hefe –oder rekombinanten prokaryotischen Zellen - z.B. E. coli, z.B. E. coli K12 MC 1061 (Sambrock et al. Molecular Cloning, Cold Spring Harbor Laboratory Press 1989) -25 hergestellt. Es wurde überraschend gefunden, daß sich ein bifunktionales Fusionsprotein aus Hirudin und TAP in E. coli exprimieren läßt, wobei hohe Ausbeuten, vergleichbar der Expression von Lepirudin in Grammmengen in das Nährmedium abgegeben werden. Dies ist besonders überraschend, da das bifunktionale Fusionsprotein bis zu 12 für die biologische Funktion wichtige 30 Cysteinreste enthält. TAP enthält sechs Cysteine, die drei zusätzliche Cysteinbrücken ausbilden können. Beide funktionalen Gruppen des durch Expression in E. coli erhaltenen bifunktionalen Fusionsproteins sind biologisch aktiv. Die funktionale Aktivität kann wie in Beispiel 1 (Bestimmung der Hirudin-Aktivität nach Grießbach et al.) und Beispiel 2 (Bestimmung der Aktivität von TAP nach der in EP 0454372 beschriebenen Methode) beschrieben, bestimmt werden. Vorteilhaft ist auch, daß das bifunktionale Fusionsprotein bei der Expression in E. coli ins Medium ausgeschleust wird, insbesondere, wenn eine der Signalsequenzen aus De 19 944 870.1 verwendet wird.

5

Gegenstand der Erfindung ist ein Verfahren zur Herstellung des bifunktionalen Fusionsproteins, wobei vorzugsweise die Signalsequenzen, die in DE 19 944 870.1 beschrieben sind, verwendet werden. DE 19 944 870.1 beschreibt Vektoren und Signalsequenzen, die die Expression und und Sekretion von Hirudin und Hirudin Varianten sowie des bifunktionalen Fusionsproteins in das Fermentationsmedium erlauben. EP 0 448 093 beschreibt diesen Prozeß für die Hirudin Variante Ala – Hirudin (Beispiel 6). Aus dem Medium bzw. Zellüberstand kann das biologisch aktive bifunktionale Fusionsprotein isoliert werden. Vorzugsweise wird das bifunktionale Fusionsprotein dadurch hergestellt, daß die Zellen fermentiert werden.

15

25

30

10

Da das bifunktionale Fusionsprotein im Medium bzw. Zellüberstand gefunden wird, lassen sich die bifunktionalen Fusionsproteine über kostengünstige und einfache Verfahren, z.B. gemäß dem in EP 0 549 915 beschriebenen Verfahren, herstellen.

In besonderen Ausführungsformen wird das aufgereinigte bifunktionale Fusionsprotein anschließend gefriergetrocknet.

Gegenstand der Erfindung ist auch ein bifunktionales Fusionsprotein, enthaltend Hirudin oder eine Hirudin-Variante und TAP oder eine TAP Variante, das auch eine Signalsequenz, vorzugsweise eine in DE 19 944 870.1 beschriebene enthält (Tabelle 1). Vorzugsweise enthält das Fusionsprotein eine der Signalsequenzen SEQ ID NO. 18, SEQ ID NO. 19, SEQ ID NO. 20, SEQ ID NO. 21 oder SEQ ID NO. 22. Gegenstand der Erfindung ist auch die Verwendung der Signalsequenzen aus DE 19 944 870.1 bzw. Tabelle 1 zur Herstellung des bifunktionalen Fusionsproteins, wobei die Signalsequenz im Verlauf der Expression durch *E. coli* abgespalten wird.

Gegenstand der Erfindung sind auch bifunktionale Fusionsproteine, die an einen Träger gekoppelt sind. Vorzugsweise erfolgt die Kopplung über Hirudin oder die

Hirudin-Variante, beispielsweise wie in EP 0 345 616 beschrieben. Als Träger wird beispielsweise PEG (Polyethylenglykol) oder Dextran verwendet.

- Gegenstand der Erfindung ist die Verwendung der bifunktionalen Fusionsproteine, insbesondere als pharmazeutischer Wirkstoff. Die Erfindung betrifft auch Verfahren zur Herstellung eines Arzneimittels, das das bifunktionale Fusionsprotein enthält; insbesondere ein Verfahren, wobei zuerst das bifunktionale Fusionsprotein hergestellt und dieses dann mit einem geeigneten pharmazeutischen Träger und
 gegebenenfalls weiteren Zusatzstoffen gemischt wird. Gegenstand der Erfindung ist ein Arzneimittel, das ein bifunktionales Fusionsprotein und ggf. weitere Zusatzstoffe und geeignete pharmazeutische Träger enthält. Insbesondere betrifft die Erfindung ein Arzneimittel, hergestellt durch Mischung und Gefriertrocknung. Insbesondere betrifft die Erfindung ein Arzneimittel für die orale oder nasale Applikation.
 Insbesondere betrifft die Erfindung ein Nasal Spray, das das bifunktionale Fusionsprotein enthält sowie die Verwendung des Nasal Sprays insbesondere für
- Das bifunktionale Fusionsprotein bzw. ein Arzneimittel, das dieses bifunktionale Fusionsprotein enthält, kann zur Behandlung und Prävention von thrombotischen Ereignissen verwendet werden. Sie eignen sich insbesondere z.B. zur Prophylaxe venöser und arterieller Thrombosen, zur Verhinderung der Verbrauchskoagulopathie oder zur Behandlung der instabilen Angina pectoris.

akute Angina pectoris. Gegenstand der Erfindung sind auch Arzneimittel, die ein

bifunktionales Fusionsprotein, gebunden an einen Träger, enthalten.

- Figur 1: Figur 1 zeigt die Sequenz des DNA Fragmentes, das für die Aminosäuren 57 63 aus Lepirudin und 2 –60 aus TAP kodiert.
- Figur 2: Figur 2 zeigt die Sequenz der Oligonukleotide hir 65_DP_zehna 1 und hir 65_DP_zehna 2, die zusätzlich zu den Oligonukleotiden Zwehna3 bis zehna6 aus Figur 1 zur Konstruktion von Lepirudin (1 65)-Asp, Pro TAP (1-60) benötigt werden. Dabei markieren die unterstrichenen Sequenzbereiche die Codone für die neu eingeführten Aminosäuren.

5 Figur 3:

Figur 3 zeigt die Oligonukleotide, die zusätzlich zu den in Figur 1 beschriebenen Sequenzen zehna5 / 6 zur Konstruktion von Lepirudin (1-63) - Ala, Ile, Glu, Gly, Arg – TAP (1-60) benötigt werden.

Die unterstrichenen Sequenzabschnitte markieren die jeweils beschriebenen Änderungen.

Figur 4: Darstellung der DNA- (SEQ ID NO. 14) und Aminosäuresequenz (SEQ ID NO. 15) von Lepirudin (Leu-Hirudin). Die Sequenz entspricht der Sequenz aus pk 152.

Figur 5 : Darstellung der DNA – (SEQ ID NO. 16) und Aminosäuresequenz (SEQ ID NO. 17) von TAP

20 Beispiele

Beispiel 1: Bestimmung der Hirudinaktivität

Die Bestimmung der Hirudinkonzentration wird entsprechend der Methode von

Grießbach et al. (Thrombosis Research 37, 347 –350, 1985) "Chromogenic assay"
durchgeführt. Dazu werden definierte Mengen einer Lepirudin-Standardlösung (z.B.
Hirudin Variante (Leu Hirudin) aus EP 0 324 712) zur Erstellung einer Eichkurve in
die Meßreihe mit einbezogen. Damit kann die Ausbeute direkt in mg /I angegeben
werden.

30

Beispiel 2: Bestimmung der Aktivität des Zecken antikoagulatorischen Peptides (TAP)

Die Verifikation der Expression von aktiven TAP –Protein kann entsprechend der Beschreibung in EP 0454 372 B1 durchgeführt werden. Die bakteriellen Überstände

können dazu 1:5 und dann in einer Verdünnungsreihe mit in einem Puffer aus 50mM Tris (pH 7,5 –8,0), 150mM NaCl 0,1% BSA und 10% DMSO verdünnt werden. Zur Bestimmung der Inhibitorkonstante wird die mit Hirudin oder Lepirudin ermittelte Proteinkonzentration und das Molekulargewicht des jeweiligen bifunktionalen Fusionsproteins zugrunde gelegt. Die Festlegung der Konstante kann entsprechend der Beschreibung von Waxman et al. (Science (1990) 248, 595-596) erfolgen.

Beispiel 3: Konstruktion von Hir ₁₋₆₃ TAP ₂₋₆₀ Hybrid (DNA, die für Fusionsprotein Hirudin-TAP kodiert)

Zur Konstruktion der dieses Protein kodierenden DNA – Sequenz wird das Plasmid pK152, das die Sequenz für Hirudin gemäß EP 0 324 712 enthält, verwendet.

15

5

Zur Konstruktion des Expressionsplasmides wird beispielhaft der in DE 12 944 870.1 in Beispiel 1 beschriebene Vektor (Laborbezeichnung pD2B) benutzt. Die das TAP kodierende DNA – Sequenz wird synthetisch hergestellt. Dazu werden 6 Oligonukleotide – Sequenzen SEQ ID NO. 1 bis SEQ ID NO. 6 – z.B. mit Hilfe des Expedite Synthesegerätes (PerSeptive Biosystems) hergestellt. Diese Oligonukleotide haben folgende Bezeichnungen und Sequenzen:

SEQ ID NO. 1: (hir63 zehna1):

25

20

GluTyrAsn

5 - CGAAGAGATCCCTGAGGAATACAACCGTCTGTGCATCAAACCGCGTGACTGGATC -3 -

30 SEQ ID NO. 2: (hir63_zehna2):

5 - GCATTCGTCGATCCAGGCGGTTTGATGCACAGACGGTTGTATTCCTCAGGGATCTC TT -3

SEQ ID NO. 3: (Zehna3):

35

5´- GAATGCGACTCCAACGAAGGTGGTGAACGTGCTTACTTCCGTAACGGTAAAGGTGGTTGCGATTCCTTC
TGGATCTGCCC -3´

SEQ ID NO. 4: (Zehna4):

5 - TCTTCCGGGCAGATCCAGAAGGAATCGCAACCACCTTTACCGTTACGGAAGTAAGCACGTTCACCACCTT

CGTTGGAGTC - 3 -

SEQ ID NO. 5: (Zehna5):

5 - GGAAGACCACACCGGTGCTGACTACTCCTCCTACCGTGACTGCTTCAACGCTTGCATCTAATGA- 3 -

SEQ ID NO.: 6 (Zehna6):

10

20

25

5 - AGCTTCATTAGATGCAAGCGTTGAAGCAGTCACGGTAGGAGGAGTAGTAGTCAGCACCGGTGTGG -3

Die drei in der Sequenz SEQ ID NO. 1 in Aminosäuren übersetzten Codone markieren den Übergang von Hirudin nach TAP (Figur 1).

Auf der für das bifunktionale Fusionsprotein kodierenden DNA (SEQ ID NO. 7) sind die Oligonukeotide so angeordnet, daß drei Blöcke hir63-zehna1 und hir63-zehna2, zehna3 und zehna4 sowie zehna5 und zehna6 als Sense und Antisense – Stränge entstehen, die miteinander hybridisieren können. Dabei entstehen 5' überhängende Enden, die jeweils mit dem überhängenden Ende des nächsten Blockes hybridisieren und ligiert werden können. Figur 1 verdeutlicht das Schema. Die überhängenden Enden am Anfang und am Ende der für TAP kodierenden Sequenz stellen jeweils eine Hälfte der Erkennungsstellen für die Restriktionsenzyme Bstb1 und Hind3 dar. Diese können für die Klonierung der in Figur 1 dargestellten DNA (SEQ ID NO. 7) verwendet werden.

Zur Herstellung der in Figur 1 dargestellten DNA werden je 1µg der 6

Oligonukleotide in 1ml H₂O vereint und anschließend 10'bei 94°C dann 20'bei 65°C inkubiert. Am Ende der Hybridisierungsreaktion wird das Gemisch in ein Eisbad überführt. Von dem Ansatz wird ein Aliquot von 150 µl entnommen und in eine T4 – Ligasereaktion eingesetzt.

Die Reaktionsprodukte werden mittels Ethanolfällung konzentriert und über ein 8% - iges PAA – Gel voneinander getrennt. Die DNA – <u>Bande, die</u> der erwarteten Größe von ca.200bp der in Figur 1 abgebildeten DNA (SEQ ID NO.: 7) entspricht, wird

ausgeschnitten und aus dem Gelstück isoliert. Nach Elution und Reinigung wird das Fragment in das mit Bstb1 und Hind3 geöffnete Plasmid pK152 in einer T4 – Ligasereaktion insertiert. Kompetente Zellen des Stammes *E. coli* MC1061 werden mit den Ligationsprodukten transformiert und von Transformanten Plasmid – DNA isoliert und charakterisiert. Von einem Klon wird das insertierte DNA – Fragment über Sequenzanalyse als richtig identifizert. Die Plasmid -DNA dieses Klones dient als Ausgangsmaterial für die weitere Klonierung. Sie enthält die DNA, die für das gewünschte Hirudin–TAP Fusionsprotein kodiert.

Das Bstb1/ Hind3 – Fragment wird aus dem Plasmid reisoliert und in das Plasmid pD2B in einer T4 – DNA – Ligasereaktion insertiert. Kompetente Zellen des Stammes *E. coli* K12 MC1061 (Sambrook et al. "Molecular Cloning" (Old Spring Habor Laboratory Press 1989) werden mit dem Ligationsgemisch transformiert und von Transformanten Plasmid – DNA zur Charakterisierung isoliert. Parallel wird von den über Plasmidanalyse charakterisierten Transformanten eine Erhaltungsplatte angelegt. Ausgehend von dieser Platte werden Expressionexperimente wie in Beispiel 3 von EP 0 549 915 beschrieben, durchgeführt.

Die Zellen werden nach Expression abzentrifugiert und die klaren Überstände auf Hirudinwirkung und TAP – Aktivität über prüft. Als Kontrolle dient ein Expressionsüberstand von rekombinanten *E.coli* MC1061 – Zellen, die mit dem Plasmid pD2B transformiert sind. Es zeigt sich, daß die entwickelte Hirudinaktivität in den Überständen aus Kontrollversuch und Expression des bifunktionalen Fusionsproteins vergleichbar hoch sind. Die Konstante der Faktor Xa Inhibition wird im nanomolaren Bereich bestimmt, während im Kontrollversuch keine bzw. nur geringe inhibitorische Wirkung beobachtet wird. Die Ergebnisse zeigen, daß das bifunktionale Fusionsprotein beide Wirkungen voll entfaltet und das *E. coli* Varianten überraschend in der Lage sind dieses Protein in aktiver Form auszuschleusen.

30

35

25

20

5

Beispiel 4: Konstruktion von Hir₍₁₋₆₅₎ –Asp Pro – TAP₍₁₋₆₀₎

Das Beispiel beschreibt die Herstellung und Expression eines bifunktionalen Fusionsproteins, das die vollständige Sequenz des Hirudin und des TAP umfaßt. Beide Proteine sind durch ein Brückenglied (Spacer) der Form Asp-Pro voneinander

getrennt. Zur Konstruktion geht man entsprechend Beispiel 3 vor. Dabei werden aber die Oligonukleotide mit den Sequenzen SEQ ID NO. 1 (hir63_zehna1) und SEQ ID NO. 2 (hir63_zehna2) durch die Sequenzen SEQ ID NO. 8 (hir65_DP_zehna1) und SEQ ID NO. 9 (hir65_DP_zehna2) ersetzt (vgl. Figur 2).

5

Nach Expression ergibt sich eine zu Beispiel 3 vergleichbare Ausbeute an bifunktionalem Fusionsprotein, das sowohl wie Hirudin als auch wie TAP wirkt.

10 Beispiel 5: Konstruktion Hir₍₁₋₆₃₎-Ala Ile Glu Gly Arg – TAP₍₁₋₆₀₎ (Gly34)

Das Beispiel beschreibt die Konstruktion eines hybriden Proteines das in Position 64 der Hirudinsequenz Alanin anstelle von Leucin und die Aminosäure 65- Glutamindeletiert enthält und in Position 34 des TAP Proteines die Aminosäure Glycin statt

Asparaginsäure trägt. Beide Mutationen sind für das jeweilige Einzelprotein nicht beschrieben. Getrennt werden die beiden Fusionspartner durch die Erkennungsstelle Ile Glu Gly Arg der FaktorXa Protease.

Zur Konstruktion der das Protein kodierenden DNA – Sequenz geht man 20 entsprechend Beispiel 3 vor. Man benötigt aber vier neue Oligonukleotid (vgl. Figur 3).

Nach Expression ergibt sich eine zu Beispiel 3 vergleichbare Ausbeute an hybriden Protein, das sowohl wie Hirudin als auch wie TAP wirkt. Basierend auf der gemessenen Hirudinaktivität liegt die TAP Aktivität charakterisierende Inhibitionskonstante im nanomolaren Bereich.

Beispiel 6

30

35

25

Das Beispiel beschreibt die Konstruktion eines Plasmides, das für ein Hirudin – TAP – Derivat kodiert, welches der in Beispiel 5 beschriebenen Sequenz entspricht, N – terminal im Hirudin aber Ala statt Leucin trägt. Dazu wird das, in EP0 448 093 beschriebene Plasmid pCM7053 mit den Restriktionsenzyme BamH1 und Hind3 geöffnet und mit dem aus dem in Beispiel 5 konstruierten Plasmid isolierten BamH1

Hirudin - TAP - Hind3 Fragment ligiert. Das entstanden Plasmid kodiert nun für das Protein Ala – Hir $_{(2-63)}$ - Ala Ile Glu Gly Arg TAP $_{(1-60)}$ (Gly34). Das Protein läßt sich mit zu Leu – Hirudinvarianten vergleichbaren Ausbeuten aktiv exprimieren.

5

Tabelle 1

Signalsequenz	Primärstruktur	SEQ ID NO.:
Kontrolle: cgtase-Ala-Hirudin	MKRNRFFNTS AAIAISIALNTFF	18
	CSMQTIA	
äußeres Membranprotein/Serrtia	MKKTAIALAVALAGFATVAQA	19
marcescens		
opRF – Protein / Pseudomonas	MKNTLGLAIGSLIAATSFGVLA	20
fluorescens		
lambB-Protein / E.coli	MMITLRKLPLAVAVAAGVMS	21
	AQAMA	
Furmat Reduktase /Shewanella	MKKMNLAVCIATLMGTAGLM	22
putrifaciens	GTAVA	
ß-Lactamase /pBR322	MSIQHFRVALIPFFAAFSLPVFA	23
alk. Phosphatase / E.coli	MKQSTIALALLPLLFTPVTKA	24
alk. Phosphatase / E. fergusonii	MKQSAIALALLSCLITPVSQA	25
Gyclodextrin Glucotransferase /	MKSRYKRLTSLALSLSMALGI	26
Paenibacillus macerans	SLPAWA	-
Outer Membrane Protein / S.	MSFHHRVFKLSALSLALFSHLSFA	27
typhimurium		

Patentansprüche:

1. Bifunktionales Fusionsprotein aus Hirudin oder einer Variante von Hirudin und TAP (Tick Anticoagulant Peptide) oder einer Variante von TAP.

5

- Bifunktionales Fusionsprotein nach Anspruch 1, enthaltend die Hirudin– Variante [Leu¹, Thr²]-63-Desulfatohirudin oder einen Teil davon.
- Bifunktionales Fusionsprotein nach einem der Ansprüche 1 und 2 enthaltend
 die Aminosäuren 1–63 aus Sequenz SEQ ID NO. 15.
 - 4. Bifunktionales Fusionsprotein nach einem der Ansprüche 1 bis 3, wobei TAP die Sequenz SEQ ID NO. 17 hat.
- Bifunktionales Fusionsprotein nach einem der Ansprüche 1 bis 3, wobei die
 Variante von TAP einem Teil der Sequenz SEQ ID NO. 17 entspricht.
- Bifunktionales Fusionsprotein nach einem oder mehreren der Ansprüche 1 bis
 wobei Hirudin oder dessen Variante und TAP oder dessen Variante über
 einen Spacer, der aus einer oder mehreren Aminosäuren besteht, verbunden sind.
 - 7. Bifunktionales Fusionsprotein nach einem oder mehreren der Ansprüche 1 bis 6, wobei das Fusionsprotein an einen Träger gekoppelt ist.

- 8. Bifunktionales Fusionsprotein nach Anspruch 7, wobei der Träger Polyethylenglycol (PEG) oder Dextran ist.
- 9. Bifunktionales Fusionsprotein nach einem der Ansprüche 1 bis 8, enthaltend 30 ein Signalpeptid.
 - DNA kodierend für ein bifunktionales Fusionsprotein nach einem oder mehreren der Ansprüche 1 bis 9.
- 35 11. Plasmid, enthaltend eine DNA nach Anspruch 10.

10

15

25

- 12. Plasmid, enthaltend eine DNA nach Anspruch 11 und eine für die Expression geeignete Promotorsequenz.
- Zelle, enthaltend eine DNA nach Anspruch 10 oder ein Plasmid nach
 Anspruch 11 oder 12.
 - 14. Verfahren zur Herstellung eines bifunktionalen Fusionsproteins nach einem der Ansprüche 1 bis 9, wobei eine DNA, die für das bifunktionale Fusionsprotein kodiert, in eine Zelle eingebracht und exprimiert wird.
- 15. Verfahren nach Anspruch 14, wobei die Zelle eine Bakterienzelle oder eine Hefezelle ist.
 - 16. Verfahren nach Anspruch 15, wobei die Zelle eine E.coli Zelle ist.
 - 17. Verfahren nach Anspruch 14 bis 16, wobei das bifunktionale Fusionsprotein aus dem Medium bzw. Zellüberstand aufgereinigt wird.
- Verfahren nach einem der Ansprüche 14 bis 17, wobei das bifunktionale
 Fusionsprotein anschließend gefriergetrocknet wird.
 - 19. Verfahren zur Herstellung eines Arzneimittels wobei ein bifunktionales Fusionsprotein nach einem oder mehreren der Ansprüche 1 bis 9 hergestellt und mit einem geeigneten pharmazeutischen Träger und gegebenenfalls weiteren Zusatzstoffen gemischt wird.
 - 20. Verfahren zur Herstellung eines nasal applizierbaren Arzneimittels wobei ein bifunktionales Fusionsprotein nach einem oder mehreren der Ansprüche 1 bis 9 hergestellt, mit einem geeigneten pharmazeutischen Träger und gegebenenfalls weiteren Zusatzstoffen gemischt und gefriergetrocknet wird.
 - 21. Arzneimittel enthaltend ein bifunktionales Fusionsprotein nach einem oder mehreren der Ansprüche 1 bis 9.

22. Nasal Spray enthaltend ein bifunktionales Fusionsprotein nach einem der Ansprüche 1 bis 9.

Figur 1

SEQ ID NO. 7

1/2Bstb1 hir63_zehna1 SEQ ID NO. 7
CGAAGAGATCCCTGAGGAATACAACCGTCTGTGCATCAAACCGCGTGACTGGATCGACGAATGC
TTCTCTAGGGACTCCTTATGTTGGCAGATACGTAGTTTGGCGCACTGACCTAGCTGCTTACG
hir63_zehna2

10

zehna3
GACTCCAACGAAGGTGGTGAACGTGCTTACTTCCGTAACGGTAAAGGTGGTTGCGATTCCTTCTGGA
CTGAGGTTGCTTCCACCACCTTGCACGAATGAAGGCATTGCCATTTCCACCAACGCTAAGGAAGACCT
zehna4

15

zehna5
TCTGCCCGGAAGACCACACCGGTGCTGACTACTACTCCTCCTACCGTGACTGCTTCAACGCTTG
AGACGGCCTTCTGGTGTGGCCACGACTGATGATGAGGAGGATGGCACTGACGAAGTTGCGAAC
zehna6

20 CATCTAATGA GTAGATTACTTCGA

½ Hind3

25

Figur 2:

30 SEQ ID NO. 8

hir65 DP zehna1:

GluGluTyrLeuGlnAspProTyrAsn

5 -CGAAGAGATCCCTGAGGAATACCTTCAGGATCCCTACAACCGTCTGTGCATCAAACCGCGTGACTGGATC

SEQ ID NO. 9

40 hir65_DP_zehna2:

5 - GCATTCGTCGATCACGCGGTTTGATGCACAGACGGTTGTAGGGATCCTGAAG
GTATTCCTCAGGGATCTC TT -3 -3 -

Figur 3:

SEQ ID NO. 10 (zehna1)

5

Ala Ile Glu Gly ArgTyr

5 '- CGAAGAGATCCCTGAGGAATACGCTATCGAAGGTCGTTACAACCGTCTGTGCATCAAACCGCGT
GACTGGATC -3 '

10

SEQ ID NO. 11 (zehna2)

15

5'- GCATTCGTCGATCAGGCGGTTTGATGCACAGACGGTTGTAACGACCTTCGATAGC GTATTCCTCAGGGATCTCTT -3'

SEQ ID NO. 12 (zehna3)

20

5´- GACGAATGCGACTCCAACGAAGGTGGTGAACGTGCTTACTTCCGTAACGGTAAAGGTGGT TGC<u>GGTT</u>CCTTCTGGATCTGCC - 3´ Gly

25

SEQ ID NO. 13 (zehna4)

5´- TCTTCCGGGCAGATCCAGAAGGAACCGCAACCACCTTTACCGTTACGGAAGTAAGCACGT TCACCACCTTCGTTGGAGTC - 3´

CTCCTTATGGAAGTC E E Y L Q

Figur 5:

Synthetische DNA – Sequenz kodierend für TAP zugeordnet

5 SEQ ID NO. 16 ► TACAACCGTCTGTGCATCAAACCGCGTGACTGGATCGACGAATGCGACTCCAACGAAGGT 10 ATGTTGGCAGACACGTAGTTTGGCGCACTGACCTAGCTGCTTACGCTGAGGTTGCTTCCA SEQ ID NO. 17 15 RLCIKPRDWIDECDSNEG GGTGAACGTGCTTACTTCCGTAACGGTAAAGGTGGTTGCGATTCCTTCTGGATCTGCCCG 20 61 -----+ 120 CCACTTGCACGAATGAAGGCATTGCCATTTCCACCAACGCTAAGGAAGACCTAGACGGGC G E R A Y F R N G K G G C D S F W I C P 25 GAAGACCACCGGTGCTGACTACTCCTCCTACCGTGACTGCTTCAACGCTTGCATC 121 -----+ 180 CTTCTGGTGTGGCCACGACTGATGATGAGGAGGATGGCACTGACGAAGTTGCGAACGTAG 30 EDHTGADYYSSYRDCFNACI 35 40

SEQUENZPROTOKOLL

```
<110> Aventis Pharma Deutschland GmbH
<120> Bifunktionale Fusionsproteine aus Hirudin und TAP
<130> AVE D-2000/A032
<140> 10033195.5
<141> 2000-07-07
<160> 27
<170> PatentIn Ver. 2.1
<210> 1
<211> 55
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen
      Sequenz:Oligonucleotid
<220>
<221> misc_feature
<222> (1)..(55)
<400> 1
cgaagagatc cctgaggaat acaaccgtct gtgcatcaaa ccgcgtgact ggatc
 ----
<210> 2
<211> 62
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen
      Sequenz:Oligonucleotid
<220>
<221> misc_feature
<222> (1)..(62)
<400> 2
gcattcgtcg atccagtcac gcggtttgat gcacagacgg ttgtattcct cagggatctc 60
tt
                                                                   62
```

```
<210> 3
<211> 80
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen
      Sequenz:Oligonucleotid
<220>
<221> misc_feature
<222> (1)..(80)
<400> 3
gaatgcgact ccaacgaagg tggtgaacgt gcttacttcc gtaacggtaa aggtggttgc 60
gattccttct ggatctgccc
                                                                    80
<210> 4
<211> 80
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen
      Sequenz:Oligonucleotid
<220>
<221> misc_feature
<222> (1)..(80)
<400> 4
tcttccgggc agatccagaa ggaatcgcaa ccacctttac cgttacggaa gtaagcacgt 60
tcaccacctt cgttggagtc
                                                                    80
<210> 5
<211> 67
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen
      Sequenz:Oligonucleotid
<220>
```

```
WO 02/04486
                                      3
 <221> misc_feature
 <222> (1)..(67)
 <400> 5
 ggaagaccac accggtgctg actactactc ctcctaccgt gactgcttca acgcttgcat 60
 ctaatga
                                                                     67
 <210> 6
 <211> 65
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen
      Sequenz:Oligonucleotid
<220>
<221> misc_feature
<222> (1)..(65)
<400> 6
agcttcatta gatgcaagcg ttgaagcagt cacggtagga ggagtagtag tcagcaccgg 60
tgtgg
<210> 7
<211> 412
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen
      Sequenz:Oligonucleotid
<220>
<221> misc_feature
<222> (1)..(412)
<400> 7
```

cgaagagatc cctgaggaat acaaccgtct gtgcatcaaa ccgcgtgact ggatcgacga 60 atgettetet agggaeteet tatgttggca gatacgtagt ttggegeact gacetagetg 120 cttacggact ccaacgaagg tggtgaacgt gcttacttcc gtaacggtaa aggtggttgc 180 gattccttct ggactgaggt tgcttccacc acttgcacga atgaaggcat tgccatttcc 240 accaacgcta aggaagacct tetgeeegga agaccacace ggtgetgaet actaeteete 300 ctaccgtgac tgcttcaacg cttgagacgg gccttctggt gtggccacga ctgatgatga 360

ggaggatggc actgacgaag ttgcgaacca tctaatgagt agattacttc ga

```
<210> 8
 <211> 70
 <212> DNA
 <213> Künstliche Sequenz
 <220>
<223> Beschreibung der künstlichen
      Sequenz:Oligonucleotid
 <220>
 <221> misc_feature
<222> (1)..(70)
<400> 8
cgaagagatc cctgaggaat accttcagga tccctacaac cgtctgtgca tcaaaccgcg 60
tgactggatc
                                                                    70
<210> 9
<211> 77
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen
      Sequenz:Oligonucleotid
<220>
<221> misc_feature
<222> (1)..(77)
<400> 9
gcattcgtcg atccagtcac gcggtttgat gcacagacgg ttgtagggat cctgaaggta 60
ttcctcaggg atctctt
<210> 10
<211> 73
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen
      Sequenz:Oligonucleotid
<220>
<221> misc_feature
```

```
<222> (1)..(73)
<400> 10
cgaagagatc cctgaggaat acgctatcga aggtcgttac aaccgtctgt gcatcaaacc 60
gcgtgactgg atc
                                                                   73
<210> 11
<211> 80
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen
      Sequenz:Oligonucleotid
<220>
<221> misc_feature
<222> (1)..(80)
<400> 11
gcattcgtcg atccagtcac gcggtttgat gcacagacgg ttgtaacgac cttcgatagc 60
gtattcctca gggatctctt
                                                                   80
<210> 12
<211> 82
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen
    Sequenz:Oligonucleotid
<220>
<221> misc_feature
<222> (1)..(82)
<400> 12
gacgaatgcg actccaacga aggtggtgaa cgtgcttact tccgtaacgg taaaggtggt 60
tgcggttcct tctggatctg cc
<210> 13
<211> 80
<212> DNA
<213> Künstliche Sequenz
```

```
<220>
```

<223> Beschreibung der künstlichen Sequenz:Oligonucleotid

<220>

<221> misc_feature

<222> (1)..(80)

<400> 13

tcttccgggc agatccagaa ggaaccgcaa ccacctttac cgttacggaa gtaagcacgt 60 tcaccacctt cgttggagtc 80

<210> 14

<211> 120

<212> DNA

<213> Hirudo medicinalis

<400> 14

cttacgtata ctgactgcac tgaatctggt cagaacctgt gcctgtgcga aggatctaac 60 gaatgcatat gactgacgtg acttagacca gtcttggaca cggacacgct tcctagattg 120

<210> 15

<211> 349

<212> PRT

<213> Hirudo medicinalis

<400> 15

Leu Thr Tyr Thr Asp Cys Thr Glu Ser Gly Gln Asn Leu Cys Leu Cys 1 5 10 15

Glu Gly Ser Asn Asx Ala Met His Ile Gly Thr Thr Thr Gly Cys Gly
20 25 30

Gly Cys Cys Ala Gly Gly Thr Ala Ala Cys Ala Ala Ala Thr Gly
35 40 45

Cys Ala Thr Cys Cys Thr Thr Gly Gly Ala Thr Cys Cys Gly Ala Cys
50 55 60

Gly Gly Thr Gly Ala Ala Ala Gly Ala Ala Cys Cys Ala Gly Thr
65 70 75 80

Gly Cys Gly Thr Thr Cys Ala Ala Ala Cys Gly Cys Cys Gly Gly Thr

Cys Cys Cys Ala Thr Thr Gly Thr Thr Thr Ala Cys Gly Thr Ala Gly

100

105

110

Ala Val Cys Gly Gln Gly Asn Lys Cys Ile Leu Gly Ser Asp Gly Glu 145 150 155 160

Lys Asn Gln Cys Val Lys Pro Asn Ile Asx Ser Thr Asx Ile Ala Cys 165 170 175

Thr Gly Gly Cys Gly Ala Ala Gly Gly Thr Ala Cys Cys Cys Gly 180 185 190

Ala Ala Cys Cys Gly Cys Ala Gly Thr Cys Thr Cys Ala Thr Ala 195 200 205

Ala Cys Gly Ala Cys Gly Gly Cys Gly Ala Cys Thr Thr Cys Gly Ala 210 215 220

Ala Gly Ala Gly Ala Thr Cys Cys Cys Thr Thr Gly Ala Cys Cys Gly
225 230 235 240

Cys Thr Thr Cys Cys Ala Thr Gly Gly Gly Gly Cys Thr Thr Thr Gly
245 250 255

Gly Cys Gly Thr Cys Ala Gly Ala Gly Thr Ala Thr Thr Gly Cys Thr
260 265 270

Gly Cys Cys Gly Cys Thr Gly Ala Ala Gly Cys Thr Thr Cys Thr Cys 275 280 285

Thr Ala Gly Gly Gly Ala Thr Gly Glu Gly Thr Pro Lys Pro Gln Ser 290 295 300

His Asn Asp Gly Asp Phe Glu Glu Ile Pro Gly Ala Gly Gly Ala Ala 305 310 315 320

Thr Ala Cys Cys Thr Thr Cys Ala Gly Cys Thr Cys Cys Thr Thr Ala 325 330 335

Thr Gly Gly Ala Ala Gly Thr Cys Glu Glu Tyr Leu Gln 340 345 <210> 16

<211> 120

<212> DNA

<213> Ornithodoros moubata

<400> 16

tacaaccgtc tgtgcatcaa accgcgtgac tggatcgacg aatgcgactc caacgaaggt 60 atgttggcag acacgtagtt tggcgcactg acctagctgc ttacgctgag gttgcttcca 120

<210> 17

<211> 300

<212> PRT

<213> Ornithodoros moubata

<400> 17

Tyr Asn Arg Leu Cys Ile Lys Pro Arg Asp Trp Ile Asp Glu Cys Asp 1 5 10 15

Ser Asn Glu Gly Gly Gly Thr Gly Ala Ala Cys Gly Thr Gly Cys Thr
20 25 30

Thr Ala Cys Thr Thr Cys Cys Gly Thr Ala Ala Cys Gly Gly Thr Ala 35 40 45

Ala Ala Gly Gly Thr Gly Gly Thr Thr Gly Cys Gly Ala Thr Thr Cys
50 55 60

Cys Thr Thr Cys Thr Gly Gly Ala Thr Cys Thr Gly Cys Cys Cys Gly 65 70 75 80

Cys Cys Ala Cys Thr Thr Gly Cys Ala Cys Gly Ala Ala Thr Gly Ala 85 90 95

Ala Gly Gly Cys Ala Thr Thr Gly Cys Cys Ala Thr Thr Thr Cys Cys
100 105 110

Ala Cys Cys Ala Ala Cys Gly Cys Thr Ala Ala Gly Gly Ala Ala Gly
115 120 125

Ala Cys Cys Thr Ala Gly Ala Cys Gly Gly Gly Cys Gly Glu Arg Ala 130 135 140

Tyr Phe Arg Asn Gly Lys Gly Gly Cys Asp Ser Phe Trp Ile Cys Pro 145 150 155 160

Gly Ala Ala Gly Ala Cys Cys Ala Cys Ala Cys Cys Gly Gly Thr Gly

9

165

170

175

Cys Thr Gly Ala Cys Thr Ala Cys Thr Ala Cys Thr Cys Cys Thr Cys 180 185 190

Cys Thr Ala Cys Cys Gly Thr Gly Ala Cys Thr Gly Cys Thr Thr Cys
195 200 205

Ala Ala Cys Gly Cys Thr Thr Gly Cys Ala Thr Cys Cys Thr Thr Cys
210 215 220

Thr Gly Gly Thr Gly Thr Gly Gly Cys Cys Ala Cys Gly Ala Cys Thr 225 230 235 240

Gly Ala Thr Gly Ala Gly Gly Ala Gly Gly Ala Thr Gly
245 250 255

Gly Cys Ala Cys Thr Gly Ala Cys Gly Ala Ala Gly Thr Thr Gly Cys
260 265 270

Gly Ala Ala Cys Gly Thr Ala Gly Glu Asp His Thr Gly Ala Asp Tyr
275 280 285

Tyr Ser Ser Tyr Arg Asp Cys Phe Asn Ala Cys Ile 290 295 300

<210> 18

<211> 30

<212> PRT

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: Mutagen

<400> 18

Met Lys Arg Asn Arg Phe Phe Asn Thr Ser Ala Ala Ile Ala Ile Ser 1 5 10 15

Ile Ala Leu Asn Thr Phe Phe Cys Ser Met Gln Thr Ile Ala
20 25 30

<210> 19

<211> 21

<212> PRT

10 <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:Mutagen <400> 19 Met Lys Lys Thr Ala Ile Ala Leu Ala Val Ala Leu Ala Gly Phe Ala Thr Val Ala Gln Ala 20 <210> 20 <211> 22 <212> PRT <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:Mutagen <400> 20 Met Lys Asn Thr Leu Gly Leu Ala Ile Gly Ser Leu Ile Ala Ala Thr 10 15 Ser Phe Gly Val Leu Ala 20 <210> 21 <211> 25 <212> PRT <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz:Mutagen <400> 21 Met Met Ile Thr Leu Arg Lys Leu Pro Leu Ala Val Ala Val Ala Ala

1 5 10 15

Gly Val Met Ser Ala Gln Ala Met Ala 20 25

```
11
 <210> 22
 <211> 25
 <212> PRT
 <213> Künstliche Sequenz
 <220>
 <223> Beschreibung der künstlichen Sequenz: Mutagen
 <400> 22
 Met Lys Lys Met Asn Leu Ala Val Cys Ile Ala Thr Leu Met Gly Thr
                                      10
 Ala Gly Leu Met Gly Thr Ala Val Ala
              20
 <210> 23
 <211> 23
 <212> PRT
 <213> Künstliche Sequenz
 <220>
 <223> Beschreibung der künstlichen Sequenz:Mutagen
 <400> 23
 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala
                                       10
 Phe Ser Leu Pro Val Phe Ala
              20
__ = · _____
<210> 24
 <211> 21
 <212> PRT
 <213> Künstliche Sequenz
 <220>
 <223> Beschreibung der künstlichen Sequenz:Mutagen
 <400> 24
 Met Lys Gln Ser Thr Ile Ala Leu Ala Leu Leu Pro Leu Leu Phe Thr
                                       10
```

Pro Val Thr Lys Ala

```
<210> 25
<211> 21
<212> PRT
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz:Mutagen
<400> 25
Met Lys Gln Ser Ala Ile Ala Leu Ala Leu Ser Cys Leu Ile Thr
                                      10
Pro Val Ser Gln Ala
              20
. <210> 26
 <211> 27
 <212> PRT
 <213> Künstliche Sequenz
 <220>
 <223> Beschreibung der künstlichen Sequenz: Mutagen
 <400> 26
 Met Lys Ser Arg Tyr Lys Arg Leu Thr Ser Leu Ala Leu Ser Leu Ser
                                      10
 Met Ala Leu Gly Ile Ser Leu Pro Ala Trp Ala
              20
 <210> 27
 <211> 24
 <212> PRT
 <213> Künstliche Sequenz
 <220>
 <223> Beschreibung der künstlichen Sequenz:Mutagen
 <400> 27
 Met Ser Phe His His Arg Val Phe Lys Leu Ser Ala Leu Ser Leu Ala
```

10

Leu Phe Ser His Leu Ser Phe Ala 20