

Pontificia Universidade Católica de Minas Gerais

Inteligência Artificial

Professora Cristiane Neri Nobre

Curso: Ciência da Computação, 4º período, turno manhã

Cecília Capurucho Bouchardet
Danielle Dias Vieira
Felipe Vilas Boas Marprates
João Augusto dos Santos Silva
Thiago de Campos Ribeiro Nolasco

Trabalho prático - Etapa 2

Belo Horizonte 2022

Etapa 2

Para a Etapa 2 do Trabalho Prático, nos foi pedido para executar os processos de pré-processamento na base de dados escolhida e após a análise para verificar qual etapa de pré-processamento deveria ser realizada, constatamos que a nossa base não possui nenhum tipo de atributo ausente, mas a base está desbalanceada com as três possíveis classes de classificação, o que está nos gerando problemas com a classificação das classes minoritárias, pois estão com as métricas baixas em relação a classe majoritária.

A fim de mantermos a base com uma boa quantidade de instâncias a serem classificadas, optamos em utilizar o algoritmo *Random Over Sampler* da biblioteca *imbalanced-learn* que gera novas instâncias de forma aleatória, deixando todas as classes da base com a mesma quantidade de instâncias.

A nossa base inicial possui 500 elementos, sendo eles 399 classificados como *positive*, 64 como *negative* e 37 como *neutral*, o que nos gera boas métricas para a classe *positive*, mas métricas ruins para as outras classes devido a grande diferença de tamanho entre elas. Após o balanceamento da base, aumentamos as instâncias classificadas como *negative* e *neutral*, deixando-as com 399 instância cada e com isso a nossa base deixou de ter 500 elementos e passou para 1197.

Para entender a diferença causada pela otimização da base, veja as comparações abaixo:

Resultados obtidos

Figura 1: Matriz de Confusão não-balanceada

Figura 2: Matriz de Confusão balanceada

	precision	recall	f1-score	support
negative	0.60	0.14	0.23	64
neutral	0.32	0.22	0.26	37
positive	0.83	0.96	0.89	399
accuracy			0.80	500
macro avg	0.58	0.44	0.46	500
weighted avg	0.76	0.80	0.76	500

Figura 3: Métricas geradas conforme matriz de confusão não-balanceada

	precision	recall	il-score	support
negative	0.91	0.82	0.86	399
neutral	0.95	0.88	0.91	399
positive	0.77	0.90	0.83	399
accuracy			0.87	1197
macro avg	0.88	0.87	0.87	1197
weighted avg	0.88	0.87	0.87	1197

Figura 4: Métricas geradas conforme matriz de confusão balanceada

Com a análise dos resultados obtidos e comparando-os, é facilmente perceptível a diferença causada pelo balanceamento da base de dados para todas as classes de nossa tabela. As métricas das classes negative e neutral apresentaram um

aumento significativo, já que no primeiro teste elas eram as classes minoritárias do modelo e por esse motivo, assim como é visível na matriz de confusão (Figura 1) para as classes *negative* e *neutral* existiram muitos erros de classificação que foram corrigidos e mostrados na segunda matriz de confusão (Figura 2).

Links

Base de dados no Kaggle:

https://www.kaggle.com/code/robikscube/sentiment-analysis-python-youtube-tut orial/notebook

Notebook com o código de classificação da base de dados em positivo, negativo e neutro utilizando a técnica RoBERTa:

https://colab.research.google.com/drive/1GmB-1Qdap5Dz4b1ISdgAozFVqAJiDsa0?usp=sharing

Notebook com o código de aprendizado de máquina com o algoritmo *Naive Bayes Multinomial*:

https://colab.research.google.com/drive/1cDcBNP-tW4c1-IXklZQ0DLp9y_yaMPRU?usp=sharing#scrollTo=UIKWxOs01US9

Notebook com o código de aprendizado de máquina com o algoritmo *Naive Bayes Multinomial para base balanceada*:

https://colab.research.google.com/drive/1FMsau3yPi8IWvMvRJeHoQgmXgjwE TJ0K?usp=sharing

Referências

scikit-learn. sklearn.naive_bayes.MultinomialNB. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html. Acesso em 16 de setembro de 2022.

imbalanced-learn.imblearn.over_sampling.RandomOverSampler.Disponível em: https://imbalanced-learn.org/stable/over_sampling.html?highlight=random%20over%20sampler. Acesso em 29 de setembro de 2022.