

escola britânica de artes criativas & tecnologia

Profissão: Cientista de Dados

Módulo 10: Descritiva para resposta contínua

Introdução:

Modelagem com resposta contínua

Correlação e covariância

Variância

$$\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n}$$

Variância: medida de dispersão dos dados em torno da média.

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{N - 1}$$

Variância amostral: estimativa não viesada da variância com uma amostra.

Desvio padrão

$$\sigma = \sqrt{\sigma^2}$$

Desvio padrão: Tem a mesma unidade de medida da variável.

$$s = \sqrt{s^2}$$

Desvio padrão amostral: Não viesado para a variância amostral.

Covariância e correlação

$$cov(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{N - 1}$$

Covariância: Medida de associação entre

duas variáveis.

Domínio: $[-\infty, +\infty]$

Unidade de mensuração: U(x).U(y)

$$cor(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

$$cor(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sigma_x \sigma_y}$$

Correlação: Medida de associação entre

duas variáveis padronizada.

Domínio: [-1,+ 1]

Unidade de mensuração: sem unidade

Correlação

Correlação

Correlação Medida de associação linear

com não linearidade

captura toda a associação

Matriz de correlação

Matriz de variância e covariância

$$\mathbf{S}^{2} = \begin{bmatrix} S_{1}^{2} & S_{1,2} & \dots & S_{1,p} \\ S_{2,1} & S_{2}^{2} & \dots & S_{2,p} \\ \vdots & \ddots & \vdots \\ S_{p,1} & S_{p,2} & \dots & S_{p}^{2} \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} 1 & r_{1,2} & \dots & r_{1,p} \\ r_{2,1} & 1 & \dots & r_{2,p} \\ \vdots & \ddots & \vdots \\ r_{p,1} & r_{p,2} & \dots & 1 \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} 1 & r_{1,2} & \dots & r_{1,p} \\ r_{2,1} & 1 & \dots & r_{2,p} \\ \vdots & \ddots & \vdots \\ r_{p,1} & r_{p,2} & \dots & 1 \end{bmatrix}$$

Matriz de dispersão

Clustermap

Outliers

Outliers

Outliers

Ranking (posto)

Índice	Valor	Rank			
0	12.1	5	In [139]:	1 2 3 4	d d d
1	4	2	Out[139]:		
2	7	4		1	3.
3	3	1		3	 5. 2.
4	5	3			۷.

```
1  df4_rank = pd.concat([df4, df4.rank()], axis = 1)
2  df4_rank.columns = ['x', 'y', 'x_rank', 'y_rank']
4  df4_rank
```

_		х	У	x_rank	y_rank
	0	0.409429	1.079676	7.0	3.0
	1	3.975723	40.489423	49.0	42.0
	2	1.528080	5.608276	12.0	14.0
	3	5.702499	461.775559	69.0	73.0
	4	2.975968	17.708827	31.0	31.0

Explicativas qualitativas

Comparando médias

Comparação de médias

Princípios de inferência

Princípios de inferência

Coletamos 10 pessoas aleatoriamente:

Média amostral = 1,62

Média amostral 2 = 1,78

•

•

•

Média amostral 20 = 1,75

Princípios de inferência

Erro padrão

O erro padrão é uma estimativa do desvio padrão do parâmetro de interesse.

Estimador consistente: O erro padrão diminui conforme aumentamos a amostra

No caso, o desvio padrão da média amostral.

 $erro padrão = \sigma/\sqrt{n}$

Distribuição amostral da média

Erro padrão

O erro padrão é uma estimativa do desvio padrão do parâmetro de interesse.

Estimador consistente: O erro padrão diminui conforme aumentamos a amostra

No caso, o desvio padrão da média amostral.

$$erro padrão = \sigma/\sqrt{n}$$

$$IC95\% \sim [\bar{x} \pm 2 * ep]$$

Distribuição amostral da média

Gráfico de perfis de médias

Comparação de médias

