Лабораторная работа №3

Модель боевых действий - Модель Ланчкстера

Абу Сувейлим Мухаммед Мунифович

Содержание

Цель работы	4
Задание	5
Теоретическое введение	6
Выполнение лабораторной работы	7
Модель боевых действий между регулярными войсками	7
Модлеирование на языке программеровании Julia	7
Модлеирование на языке программеровании OpenModelica	10
Модель ведение боевых действий с участием регулярных войск и пар-	
тизанских отрядов	11
Модлеирование на языке программеровании Julia	11
Модлеирование на языке программеровании OpenModelica	13
Исходный код	14
Julia	14
OpenModelica	17
Вывод	19
Библиография	20

Список иллюстраций

1	Plots и DifferentialEquations Packges	7
2	Initial Values	8
3	Time interval for simulation	8
4	Model One	8
5	ODE	9
6	Model One Graph	9
7	OpenModelica Model One	10
8	OpenModelica Model One Graph	10
9	Model Two Julia code part one	11
10	Model Two Julia code part two	12
11	Model Two Graph Julia	13
12	Model Two OpenModelica	14
13	Model Two Graph OpenModelica	14

Цель работы

- Целью работы является познокомится с простейшими моделими боевых действий модели Ланчестера.
- Сделать начальный аналих этих модлей.

Задание

- 1. Постройте графики изменения численности войск армии X и армии У для следующих случаев:
 - Модель боевых действий между регулярными войсками;
 - Модель боевых действий между регулярными войсками.
- 2. Графики должны быть созданы/построенны используя Julia и OpenModelica.

Теоретическое введение

Законы Ланчестера (законы Осипова — Ланчестера) — математическая формула для расчета относительных сил пары сражающихся сторон — подразделений вооруженных сил. В статье «Влияние численности сражающихся сторон на их потери», опубликованной журналом «Военный сборник» в 1915 году, генерал-майор Корпуса военных топографов М. П. Осипов описал математическую модель глобального вооружённого противостояния, практически применяемую в военном деле при описании убыли сражающихся сторон с течением времени и, входящую в математическую теорию исследования операций, на год опередив английского математика Ф. У. Ланчестера. Мировая война, две революции в России не позволили новой власти заявить в установленном в научной среде порядке об открытии царского офицера.

Уравнения Ланчестера — это дифференциальные уравнения, описывающие зависимость между силами сражающихся сторон A и D как функцию от времени, причем функция зависит только от A и D.

Выполнение лабораторной работы

Модель боевых действий между регулярными войсками

Модлеирование на языке программеровании Julia

1. Во-первых, я использвал пакеты Plots и Differential Equations.

```
In [1]: using Plots
using DifferentialEquations
```

Рис. 1: Plots и DifferentialEquations Packges

2. Инициализировал нужны нам константи и функции в моделии. x0 - численность первой армии x; y0 - численность второй армии y; a - константа, характеризующая степень влияния различных факторов на потери; b - эффективность боевых действий армии y; c - ффективность боевых действий армии x; h - константа, характеризующая степень влияния различных факторов на потери. P(t) - возможность подхода подкрепления к армии y.

```
х0 = 22022 #численность первой армии х
у0 = 33033 #численность второй армии у
а = 0.401 #константа, характеризующая степень влияния различных факторов на потери
b = 0.707 #эффективность боевых действий армии у
с = 0.606 #ффективность боевых действий армии х
h = 0.502 # константа, характеризующая степень влияния различных факторов на потери
P(t) = sin(8*t) #возможность подхода подкрепления к армии х
Q(t) = cos(6*t) #возможность подхода подкрепления к армии у
```

Рис. 2: Initial Values

3. Я еше добавил интервал времении от 0 до 1.

```
manpower = [x0, y0]
p = (a, b, c, h)
T = [0, 1]
```

Рис. 3: Time interval for simulation

4. Теперь можно построиет модель боевых действий между регулярными войсками №1

```
function modelOne(du, u, p, t)
    a, b, c, h = p
    du[1] = -a * u[1] - b * u[2] + P(t)
    du[2] = -c * u[1] - b * u[2] + Q(t)
end

prob = ODEProblem(modelOne, manpower, T, p)
```

Рис. 4: Model One

5. Осталось только решить ОДУ.

Рис. 5: ODE

6. График уоказывет числоности армии Х и Ү. Армия Ү побеждает.

Рис. 6: Model One Graph

Модлеирование на языке программеровании OpenModelica

1. В OpenModelica все прощее. Я просто переписал код из Julia. В этой прошраиие все величины имею тот же смысл, что и в Julia.

```
model lab3_1

Real x;
Real y;

Real a = 0.401;
Real b = 0.707;
Real c = 0.606;
| Real h = 0.502;
Real t = time;

initial equation
x = 22022;
y = 33033;

equation
der(x) = -a*x - b*y + sin(8*t);
der(y) = -c*x -b*y + cos(6*t);

end lab3 1;
```

Рис. 7: OpenModelica Model One

2. График в OpenModelica уоказывет числоности армии X и Y. Армия Y побеждает.

Рис. 8: OpenModelica Model One Graph

Модель ведение боевых действий с участием регулярных войск и партизанских отрядов

Модлеирование на языке программеровании Julia

1. Все то же самое как для первой модели только величены разные и модель то же разнная.

```
In [4]: using Plots
using DifferentialEquations

%0 = 22022
y0 = 33033

a = 0.343
b = 0.895
c = 0.699
h = 0.433

P(t) = 2 * sin(2*t)
Q(t) = 2 * cos(t)

manpower = [x0, y0]
p = (a, b, c, h)
T = [0, 1]

function F(du, u, p, t)
a, b, c, h = p
du[1] = -a * u[1] - b * u[2] + P(t)
du[2] = -c * u[1]*u[2] - b * u[2] + Q(t)

end

prob = ODEProblem with uType Vector{Int64} and tType Int64. In-place: true
timespan: (0, 1)
u0: 2-element Vector{Int64}:
22022
33033
```

Рис. 9: Model Two Julia code part one

```
Out[5]:

retcode: Success
Interpolation: specialized 4th order "free" interpolation, specialized 2nd order "free" stiffness-aware interpolation t: 86-element Vector(Float64): 0.0

7.172847746826926e-5
0.00010404765155495742
0.0001573663865909362
0.0002099957083640141
0.00025199234322974945
0.00030084947343323495
0.00030849473433353495
0.0003684373433338064
0.00045633273866333595
0.0005990711732293949
0.000562555652377288
0.0006158783701186638
1
0.8171228592665443
0.8370111972103351
0.8561989520275517
0.87474092645704620
0.8926870763656339
0.9108028710303033
0.9269696556877294
0.9433850076136675
0.993630753440611
0.974349001552963
0.99012870690279
1.0
```

Рис. 10: Model Two Julia code part two

2. График в Julia уоказывет числоности армии X и Y. Армия X побеждает.

Рис. 11: Model Two Graph Julia

Модлеирование на языке программеровании OpenModelica

1. Все то же самое как для первой модели только величены разные и модель то же разнная.

```
model lab3_2

Real x;
Real y;

Real a = 0.343;
Real b = 0.895;
Real c = 0.699;
Real h = 0.433;
Real t = time;

initial equation
x = 22022;
y = 33033;

equation
der(x) = -a*x - b*y + 2*sin(2*t);
der(y) = -c*x*y -b*y + 2*cos(t);
end lab3_2;
```

Рис. 12: Model Two OpenModelica

2. График в OpenModelica уоказывет числоности армии X и Y. Армия X побеждает.

Рис. 13: Model Two Graph OpenModelica

Исходный код

Julia

1. Модель боевых действий между регулярными войсками

```
using Plots
using Differential Equations
x0 = 22022 #численность первой армии x
у0 = 33033 #численность второй армии у
а = 0.401 #константа, характеризующая степень влияния различных факторов на потер
b = 0.707 #эффективность боевых действий армии у
с = 0.606 #ффективность боевых действий армии х
h = 0.502 # константа, характеризующая степень влияния различных факторов на поте
P(t) = \sin(8*t) #возможность подхода подкрепления к армии х
Q(t) = \cos(6*t) #возможность подхода подкрепления к армии у
manpower = [x0, y0]
p = (a, b, c, h)
T = [0, 1] #итервал временни
function modelOne(du, u, p, t)
    a, b, c, h = p
    du[1] = -a * u[1] - b * u[2] + P(t)
    du[2] = -c * u[1] - b * u[2] + Q(t)
end
prob = ODEProblem(modelOne, manpower, T, p)
solOne = solve(prob)
plot(solOne)
```

2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов

```
using Differential Equations
x0 = 22022
y0 = 33033
a = 0.343
b = 0.895
c = 0.699
h = 0.433
P(t) = 2 * sin(2*t)
Q(t) = 2 * cos(t)
manpower = [x0, y0]
p = (a, b, c, h)
T = \lceil 0, 1 \rceil
function F(du, u, p, t)
    a, b, c, h = p
    du[1] = -a * u[1] - b * u[2] + P(t)
    du[2] = -c * u[1]*u[2] - b * u[2] + Q(t)
end
prob = ODEProblem(F, manpower, T, p)
sol = solve(prob)
plot(sol)
```

using Plots

OpenModelica

1. Модель боевых действий между регулярными войсками

```
model lab3_1
Real x;
Real y;
Real a = 0.401;
Real b = 0.707;
Real c = 0.606;
Real h = 0.502;
Real t = time;
initial equation
x = 22022;
y = 33033;
equation
der(x) = -a*x - b*y + sin(8*t);
der(y) = -c*x -b*y + cos(6*t);
end lab3_1;
  2. Модель ведение боевых действий с участием регулярных войск и партизан-
     ских отрядов
model lab3_2
Real x;
Real y;
```

```
Real a = 0.343;
Real b = 0.895;
Real c = 0.699;
Real h = 0.433;
Real t = time;

initial equation

x = 22022;
y = 33033;

equation

der(x) = -a*x - b*y + 2*sin(2*t);
der(y) = -c*x*y -b*y + 2*cos(t);
```

Вывод

- В первом случае армия Y побеждает блягодря большее числонести армии. Во втором случае армия Y проеграла даже с большее количество солдатов из-за боейвих действей с пртизанами, а не с регулярной армию.
- В общем моделирвать математические процесии легче и быстрее в OpenModelica чем на Julia

Библиография

- 1. Julia 1.10 Documentation // Julia URL: https://docs.julialang.org/en/v1/ (дата обращения: 24.02.2024).
- 2. М.П. Осипов: к идентификации личности автора первой модели глобальных процессов. Дата обращения: 22 сентября 2020. Архивировано 29 сентября 2020 года. (из Wikipedia)