29. a.	Given an integer array nums, find the contiguous subarray (conditioning at least one number) which has the largest sum and return its sum. A subarray is a contiguous part of an array. Input: nums = $[-2, 1, -3, 4, -1, 2, 1, -5, 4]$ that returns the maximum sum of the subarray. Write the algorithm and time complexity analysis.	12	4	2	3
	(OR)				
b.	Given a set of points S in the plane, partitioned into two subsets S_1 and S_2 . Solve the problem to find minimum distances of d_1 (for S_1) and d_2 (for S_2) using closest pair algorithm. Apply the algorithm to return the minimum distance of closest pair algorithm and derive the time complexity.	12	4	2	3
30. a.	Given a connected and undirected graph. Consider the graph below and show the construction of minimum spanning tree using Kruskals algorithm with the pseudo code.	12	4	3	4
	a 4 4 6 10				*
	(OR)				
b.	The capacity of the knapsack bag is $w = 3$. The weights and profits of the three items are given in the below table. Apply dynamic programming algorithm for the above $0/1$ knapsack problem. Items Weight Profits 1 1 1 2 2 6 3 4 4	12	4	3	4
31. a.	Demonstrate 8-queens algorithm with example and draw state space tree.	12	3	4	4
J 11 W.	2 monstage of queens argorithm with example and draw state space tree.				
	(OR)				
b.	Illustrate travelling salesman problem using branch and bound technique with example.	12	3	4	4
2. a.i.	Explain about Rabin Karp string matching algorithm with example.	6	3	5	1
ii.	Summarize randomized algorithm for hiring problem.	6	3	5	1
	(OR)				
b.	Write short notes on		3	5	1
	(i) P	3			
	(ii) NP-hard	3			
	(iii) NP-complete	3			
	(iv) Reducibility	3			

Reg. No.	3			2
			1 1	1 1

B.Tech. DEGREE EXAMINATION, MAY 2023

Fourth Semester

Note: (i)		MR sheet within first 40 minutes and	I OMR sheet shou	ld be	han	ıded
(ii)	over to hall invigilator at the end of Part - B & Part - C should be answered					
Time: 3	hours		Max. I	Marl	ks: 1	00
		$\times 1 = 20 \text{ Marks}$	Marks	BL	co	PO
		LL Questions				
1.	Define the rule f(n) to prove for		n ¹	1	1	1
	(A) Induction hypothesis	(B) Induction base				
	(C) Induction step	(D) Proven solution				
2.	Identify the correct order of gro	wth from slowest to fastest	1	2	1	1
	(A) $\log n, n \log n, n^3, n^2$	(B) $n^3, n^2, 2^n, n!$				
	(C) $n, n \log n, n^2, 2^n$	(D) $1, n, \log n, n^2$				
3.	deff()		1	2	1	,, 1
	ans = 0;					
	for $i = 1$ to n	a				
	for $j = 1$ to log (i) ans $+ = 1$;					
	print (ans);					
	(A) $O(n^3)$	(B) O (n)				
	(C) $O(n^2)$	(D) O $(n \log n)$				

	(C) Proof by completeness	(D) Proof by correctness				
5.	Merge sort is written using tempo	rary arrays, it is called	1	2	2	
	(A) Two array merge	(B) Stable sort				
	(C) Insort version of merge	(D) Three way arrange				

(B) Poof by contradiction

6. The most important condition for which closest pair is calculated for the 1 2 2 2

0.	The most important	condition to	or which	ciosest pair	is carculated i	tor the	•	_
	points (P _i , P _j) is?	•		7				
	(A) i>j		(B)	i! = j				
	(C) $i=j$		(D)	i < j				

7. In divide and conquer, the time for merging the sub problems is?

(A) O (n) (B) $O(n \log n)$

that the program will work correctly for all possible inputs.

(A) Proof by contrapositive

(C) $O(n^2)$ (D) O (log n)

	8.	How many cases are there under master's theorem? (A) 2 (B) 3 (C) 4 (D) 5	1 1	1 2	2	18.	What is the worst case running time of Rabin Karp algorithm? (A) θ (n) (B) θ (n - m) (C) θ (n - m +1) m) (D) θ (n log m)	3	1
	9.	Which of the following is the property of a dynamic programming problem? (A) Optimal substructure (C) Greedy approach (B) Overlapping subproblems (D) Both optimal substructure and overlapping sub problems			1	19.	Which of the following is incorrect about randomized quicksort? (A) It has the same time (B) It has the same space complexity as standard quicksort (C) It is an in-place sorting (D) It cannot have a time algorithm complexity of O(n²) in any case	5	1
	10.	What is correct? Algorithm Design paradigm 1. Dijsktra's shortest path a. Greedy design 2. Floyd arashall's A/c pair shorted path b. Divide and conquer	1 2	2 3	2	20.	(A) Greedy algorithm (B) 2D dynamic programming (C) 1D dynamic programming (D) Divide and conquer	5	1
		3. Kruskal's minimum spanning tree c. Dynamic programming 4. Merge sort algorithm (A) 1 - a, 2 - b, 3 - c, 4 - c (B) 1 - a, 2 - c, 3 - a, 4 - b					PART – B ($5 \times 4 = 20 \text{ Marks}$) Answer ANY FIVE Questions	co	PO
	11.	(C) 1 - c, 2 - b, 3 - a, 4 - b (D) 1 - a, 2 - b, 3 - a, 4 - c What is the time complexity of the brute force algorithm that is used to find the longest common subsequence?	1 2	2 3	2	21.	Analyze the growth of order for the given function $F(n) = 2n^2 + 5$ and $g(n) = 7n$ using big omega notation. Also write the definition of big omega notation.	1	2
		(A) $O(n)$ (B) $O(n^2)$ (C) $O(n^3)$ (D) $O(2^n)$	1	3 3	2	22.	Multiply the following two matrices using Strassen's multiplication $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$.	2	2
	12.	A test is made up of the characters a, b, c, d, e each occurring with the probability 0.11, 0.40, 0.16, 0.09 and 0.24. The optimal Huffman coding technique will have the average length of (A) 2.40 (B) 2.16 (C) 2.26 (D) 2.15	,	<i>J</i>	2		Illustrate 0/1 Knapsack algorithm with time complexity analysis. 4 3 Draw the state space tree for 4-queens problem. 4 4	3	1
	13.	In how many directions do queens attack each other? (A) 1 (B) 2	1	1 4	2 =		What is NP-hard problem? How to handle NP-hard problems to find solution? Write the algorithm and derive the time complexity of merge sort.	5	
	14.	(C) 3 (D) 4 Backtracking algorithm is implemented by constructing a tree of choices called as	1	2 4	. 2			5	2
		(A) State space tree (C) Node tree (B) State chart tree (D) Backtracking tree					PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	со	PO
	15.	In what manner is a state space tree constructed for a backtracking algorithm? (A) Partle Sunt rough (B) Proof the first sourch	. 1	1 4	4	28. a.i	Explain all asymptotic notations with example. 6 3	1	1
		 (A) Depth first search (B) Breadth first search (C) Twice around the tree (D) Nearest neighbour first 				ii	Write both recursive and non-recursive algorithm to compute Fibonacci ⁶ series. Compare their performance.	1	2
	16.	The travelling salesman problem can be solved using (A) A spanning tree (B) A minimum spanning tree (C) Bellman-ford algorithm (D) DFS traversal		1 4		b	Solve the following recurrence relation (i) $T(n) = T(n-1) + n$ using forward and backward substitution 6	1	2
	17.	If an NP hard problem can be solved in polynomial time, then all problems can be solved in polynomial time. (A) NP problem (B) NP complete (C) N complete (D) N hard	1	2	5 1		method (ii) $T(n) = T(n/2) + n$ using recursion tree method		
Pag	ge 2 of 4		31MA4-18	BAIC20	6 J	Page 3 of	31MA4-18A	1C206J	