Lattice QCD

Angelo V. Brade*1

 $^1{\rm Rheinische}$ Friedrich-Wilhelms-Universität Bonn

June 28, 2024

^{*}s72abrad@uni-bonn.de

Contents

1	$\mathbf{p2g}$	${f g}$	1
	1.1	Lower bound	1
	1.2	Upper bound	2
	1.3	Results	2

1 P2GG 1

1 p2gg

1.1 Lower bound

Figure 1: Lower bound for stable correlations.

<u>1 P2GG</u> <u>2</u>

1.2 Upper bound

Figure 2: Upper bound for stable correlations.

1.3 Results

1 P2GG 3

Figure 3: Lower bound for stable correlations.

Wir finden die in Tablle 1 aufgeführten Werte, wobei die Correlatoren von $t_{\text{lower}} = 16$ und $t_{\text{upper}} = 80$ ausgewertet wurden, mit $\chi^2 = 0.2657$, $X_0 := X$ ohne Bootstrapping, $X_{\text{boot.}} := X$ mit Bootstrapping, $\frac{X_0 - X_{\text{boot.}}}{X_0} := \text{der normierten}$ relativen Abweichung des Bootstrapps zu dem originalem Wert und $\frac{\sigma_{X_{\text{boot.}}}}{X_0} := \text{dem normierten}$ Fehler des Bootstrapps.

X	X_0	σX_0	$X_{\text{boot.}}$	$\sigma X_{\rm boot.}$	$\frac{X_0 - X_{\text{boot.}}}{X_0}$	$\frac{\sigma_{X_{\text{boot.}}}}{X_0}$
$^{\rm C}$	3.35e-03	1.77e-05	3.34e-03	2.96e-05	4.83e-03	8.83e-03
\mathbf{E}	4.73e-02	3.10e-05	4.73e-02	4.79e-05	-4.71e-05	1.01e-03

Table 1: Ergebnisse zur p2gg Auswertung.