

Applied Deep Learning

Dr. Philippe Blaettchen Bayes Business School (formerly Cass)

Learning objectives of today

Goals: Creating neural networks – from logistic regression to feed-forward networks

- Use what we have learned about linear algebra and calculus to create a logistic regression algorithm from scratch
- Understand how what we learned generalizes to neural networks in general

How will we do this?

- We start with a quick recap on our discussion about logistic regression so far
- We then implement a logistic regression algorithm with numpy only
- Next, we visualize more general neural networks with the TensorFlow playground, before defining the concepts relevant for running our own networks

Taking a step back – logistic regression

What do we actually do when training a logistic regression model?

- We are given values $(x^{(i)}, y^{(i)})$, where $x^{(i)} \in \mathbb{R}^m$ and $y^{(i)} \in \{0,1\}$
- Our prediction $\hat{y}^{(i)}$ should reflect the probability that $y^{(i)} = 1$: $\hat{y}^{(i)} = P(y^{(i)} = 1 | x^{(i)})$
- We model this probability, using the sigmoid function:

What do we actually do when training a logistic regression model?

- We are given values $(x^{(i)}, y^{(i)})$, where $x^{(i)} \in \mathbb{R}^m$ and $y^{(i)} \in \{0,1\}$
- Our prediction $\hat{y}^{(i)}$ should reflect the probability that $y^{(i)} = 1$: $\hat{y}^{(i)} = P(y^{(i)} = 1 | x^{(i)})$
- We model this probability, using the sigmoid function:

dotaxitazxz ... + anto

The optimization part

- Remember that $w \in \mathbb{R}^m$ and $b \in \mathbb{R}$
- To get to the "right" model, we optimize our parameters w/b so that the $\hat{y}^{(i)}$ s are "as close as possible" to the y^i s
- What we do is to minimize the "cost-function" J(w,b), where $\hat{y}^{(i)} = \frac{1}{1+e^{-(x^{(i)}w+b)}}$:

$$J(w,b) = -\frac{1}{n} \sum_{i=1}^{n} \left[y^{(i)} \ln \hat{y}^{(i)} + (1 - y^{(i)}) \ln (1 - \hat{y}^{(i)}) \right]$$

$$y^{(i)} = 1 : \mathcal{O} \left[\ln \hat{y}^{(i)} + 0 \right] \rightarrow \infty : \hat{y}^{(i)} \rightarrow 0$$

$$y^{(i)} = 0 : - \left[0 + \ln \left(1 - \hat{y}^{(i)} \right) \right] \rightarrow 0$$

$$y^{(i)} = 0 : - \left[0 + \ln \left(1 - \hat{y}^{(i)} \right) \right] \rightarrow 0$$

$$y^{(i)} = 0 : - \left[0 + \ln \left(1 - \hat{y}^{(i)} \right) \right] \rightarrow 0$$

The optimization part

- Remember that $w \in \mathbb{R}^m$ and $b \in \mathbb{R}$
- To get to the "right" model, we optimize our parameters w, b so that the $\hat{y}^{(i)}$ s are "as close as possible" to the y^i s
- What we do is to minimize the "cost-function" J(w, b), where $\hat{y}^{(i)} = \frac{1}{1 + e^{-(x^{(i)}w + b)}}$:

$$J(\mathbf{w}, b) = -\frac{1}{n} \sum_{i=1}^{n} \left[y^{(i)} \ln \hat{y}^{(i)} + (1 - y^{(i)}) \ln(1 - \hat{y}^{(i)}) \right]$$

$$\uparrow J(\mathbf{w}, b)$$

$$y'' = \frac{1}{1 + e^{-\omega^* x^{(i)} + 6^*}}$$

Solving the optimization problem through gradient descent

Our first optimization algorithm

- Decide a "learning rate" α
- Start with some w and b and compute I(w, b)
- Until *J* "doesn't change" anymore:
 - Let w_1 : = $w_1 \alpha \frac{\partial J(w,b)}{\partial w_1}$ Let w_2 : = $w_2 \alpha \frac{\partial J(w,b)}{\partial w_2}$

 - Let w_m : = $w_m \alpha \frac{\partial J(w,b)}{\partial w_m}$ Let b: = $b \alpha \frac{\partial J(w,b)}{\partial b}$

 - Recompute I(w, b)
- Enjoy the fruits of your labor: you have fit a logistic regression model manually!

Wait a second, how do we find all those derivatives?

- We can use again the computation graph!
- Recall that $\hat{y}^{(i)} = \frac{1}{1+e^{-\left(x^{(i)}w+b\right)}} = \sigma\left(x^{(i)}w+b\right)$

As the same parameters influence all examples, we have to consider one final step

• Recall that
$$J(\mathbf{w}, b) = -\frac{1}{n} \sum_{i=1}^{n} \left[y^{(i)} \ln \hat{y}^{(i)} + \left(1 - y^{(i)} \right) \ln \left(1 - \hat{y}^{(i)} \right) \right] = \frac{1}{n} \sum_{i=1}^{n} L^{(i)}$$

• We have that
$$\frac{\partial J(w,b)}{\partial w_j} = \frac{1}{n} \sum_{i=1}^n \frac{\partial L^{(i)}}{\partial w_j}$$

We can now implement a logistic regression

Visualizing a logistic regression – our first neural network

Schema of a logistic regression

Putting multiple neurons together

What neurons learn

Training neural networks visually

Open https://playground.tensorflow.org/

- 1. A simple case of binary classification:
 - Change to the pattern on the lower left
 - Set the level of "Noise" to 50
 - Set "Ratio of training to test data" to 50%
 - Set up the neural network: 1 hidden layer, 1 neuron, then press play
 - Answer the following questions:
 - Did the training eventually find a model that seems to capture the pattern in the data?
 - How would you describe the pattern the model captured?
 - Record the "Training loss" and "Test loss"
 - How do your answers change when you select the pattern at the top right? What about setting the noise to 0?

Training neural networks visually

2. A shallow neural network:

- Stick with the pattern at the top right, a noise of 0 and a ratio of 50%
- Now use 3 neurons for your hidden layer
- Answer the three questions from before:
 - Did the training eventually find a model that seems to capture the pattern in the data?
 - How would you describe the pattern the model captured?
- Record the "Training loss" and "Test loss"
- How do your answers change when you use 6 neurons instead?

3. A deep neural network:

- Use a second hidden layer, with 3 neurons each (and the other setups from 2.)
- How do your answers change now?

Key components of a neural network

Components

CITY, UNIVERSITY OF LONDON

Source: Liang

Hidden layers

"
$$x$$
" = $a^{[l-1]}$ $z = a^{[l-1]}w + b$ $f(z)$

- *f* is what we call an "activation function"
- There are many activation functions, and new ones are invented all the time
- Many of these functions do just fine, or slightly better than existing ones

Source: Liang

Typical activation functions: logistic (sigmoid) function

Typical activation functions: hyperbolic tangent

$$f(z) = \tanh(z) = \frac{e^{2z} - 1}{e^{2z} + 1}$$

Typical activation functions: Rectified Linear Unit

CITY, UNIVERSITY OF LONDON

Typical activation functions: Leaky ReLU

$$f(z) = \max\{0.1, z\}$$

CITY, UNIVERSITY OF LONDON

Binary classification

- Input: $a^{[L-1](i)}$
- As usual, we make a linear transformation: $z^{[L](i)} = a^{[L-1](i)} w^{[L]} + b^{[L]}$
- We then use the logistic sigmoid function $\hat{y}^{(i)} = f(z^{[L](i)}) = \sigma(z^{[L](i)}) = \frac{1}{1 + e^{-z^{[L](i)}}}$
- We can interpret the output as the probability of $y^{(i)} = 1$

Multi-class classification

- We again make a linear transformation with a matrix of weights: $\mathbf{z}^{[L](i)} = \mathbf{a}^{[L-1](i)} \mathbf{W}^{[L]} + \mathbf{b}^{[L]}$
- Note that $\mathbf{z}^{[L](i)} = \begin{pmatrix} z_1^{[L](i)} & z_2^{[L](i)} & \cdots & z_K^{[L](i)} \end{pmatrix}$
- We then use the softmax function on each of the outputs:

$$\hat{y}_k^{(i)} = f(\mathbf{z}^{[L](i)}) = \frac{e^{-z_k^{[L](i)}}}{\sum_{k=1}^K e^{-z_k^{[L](i)}}}$$

- This implies that $\hat{y}_k^{(i)} \in (0,1)$ and $\sum_{k=1}^K \hat{y}_k^{(i)} = 1$
- Hence, we can interpret $\hat{y}_k^{(i)}$ as the probability that $y^{(i)} = k$ ("belongs to class k")

Cost functions

Recall from logistic regression:

$$J(\mathbf{w}, b) = \frac{1}{n} \sum_{i=1}^{n} L^{(i)} = -\frac{1}{n} \sum_{i=1}^{n} \left[y^{(i)} \ln \hat{y}^{(i)} + (1 - y^{(i)}) \ln (1 - \hat{y}^{(i)}) \right]$$

• Generally, to learn parameters θ , we define the cross-entropy

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} L^{(i)} = -\frac{1}{n} \sum_{i=1}^{n} \ln p_{\theta} (y^{(i)} | x^{(i)})$$

- Also known as "maximum likelihood estimator"
- Mean square error tends to perform poorly, especially when we have activation functions with e^z

Generalizing our optimization algorithm

- Decide a "learning rate" α
- Start with some parameters θ and compute $J(\theta)$ (forward propagation)
- Until *J* "doesn't change" anymore:
 - Let $\theta := \theta \alpha \nabla_{\theta} J(\theta)$
 - Recompute $J(\theta)$

(back-propagation)

(forward propagation)

Initializing parameters

- Initialize weights to small random values (e.g., np.random.randn(shape of W) * 0.01)
- Bias terms can be initialized randomly, but can also just be initialized to zero (e.g., np.zeros(shape of b))

Step 1: Forward propagation through the computational graph

Step 2: Back-propagation through the computational graph

