

PROJET: RADAR VOITURE SUR SERVOMOTEUR

DENYS KARPOV

MYKOLA MAKEDON

NIKITA ONEGIN

ILLIA VEREMII

1. MOTIVATION, OBJECTIFS, PROBLÉMATIQUE

Motivation:

- Développer un système de détection et de suivi d'objets accessible et précis.
- Exploiter la flexibilité de la carte UCA pour le contrôle en temps réel.

Objectifs:

- Réaliser un radar capable de balayer un espace grâce à un servomoteur.
- Détecter des objets via un capteur de distance et faire fonctionner le servomoteur.
- Afficher les résultats en temps réel en connexion sans fil.

Problématique:

- Comment générer des signaux sans fil précis pour piloter un servomoteur via une carte UCA?
- Comment synchroniser les mesures du capteur avec le mouvement du radar ?
- Comment assurer la fiabilité et la réactivité du système ?

II. FONCTIONNEMENT ET SCHÉMA

Principe de fonctionnement :

- La carte UCA génère un signal pour contrôler la position du servomoteur.
- À chaque position angulaire, le capteur mesure la distance.
- Les données sont stockées, montrés sur le Serial Monitor, quelques LEDs et peuvent être envoyées en direct vers une autre carte UCA par connexion P2P.

Schéma fonctionnel:

Schéma réel

III. PLANNING ET DIAGRAMME DE GANTT

			1	2	3	4	5	6	97	8
	1	Analyse des besoins, choix des composants	XX						b.	
	2-3	Programmation du module PWM sur FPGA		XX	XX					
	4	Interface capteur de distance avec FPGA			XX	XX				
	5	Synchronisation servomoteur + capteur				XX	XX			
6		Développement de l'affichage des données					XX	XX		
	7	Tests et validation du système						XX	XX	
	8	Rédaction du rapport et préparation de la soutenance							XX	XX

IV. ÉTAPE D'ASSEMBLAGE DE LA MACHINE ET DES COMPOSANTS, AINSI QUE LA CONNEXION À L'ARDUINO

V. MATÉRIEL UTILISÉ ET DÉBUT DU PROJET

Materiel utilisé:

Carte UCA microcontrolleur x2 pour connexion P2P

Servomoteur

Capteur de distance (HC-SR04)

Alimentation USB

PC pour connexion filiaire

Voiture à RC comme carcasse, design et démo

VI. AVANCEMENT DU PROJET

Date / Séance	Nikita	Mykola	Denys	Illia
07 Avril – PRÉRÉUNION	progression du projet	Propose l'idée du radar pour voiture. Prend en charge la partie électronique/mécanique.	Participe à la discussion sur le projet voiture + radar. S'occupe du design et présentation.	Rejoint le groupe. Se positionne sur la partie codage.
23 Avril – RÉUNION 1	ingrole Aide a recentrer le projet sur	Soutient l'idée d'un système complet. Échange avec Nikita.	Suggère des ressources pour la démo. Prêt à apporter du matériel.	Identifie les besoins matériels pour le code.
28 Avril – DÉMO INTERMEDIAIRE	Présente à l'oral. Rédige les textes et structure le discours.	Fait l'intro et crée une image du prototype avec ChatGPT.	Assemble les slides et présente le planning.	Présente les besoins en matériel pour le codage.
5–16 Mai – Examens				
		Corrige le positionnement capteur/servomoteur. Monte tout sur une vraie voiture à RC.	Participe à l'amélioration. Apporte une voiture robuste.	Travaille sur les optimisations du code et de son originalité.
24 Mai – RÉUNION 2		Assemble le système sur la voiture. Tente de stabiliser la connexion.	Connecte les fils, aide Illia sur le code. Participe à un long atelier de groupe.	Essaye de connecter le module LoRa au serveur TTN (sans succès).
PRESENTATION	Redige la presentation. Met en forme	Répare la connexion USB. Accompagne Denys à la fac pour les tests de résolution de problèmes.	Va demander conseil au prof. Propose d'utiliser une LED externe.	Implémente une nouvelle connexion P2P suite au changement de stratégie.
27 Mai – FINALISATION	Codage principal, connexion P2P	Fixation de la carte émetteur	Résolution des soucis au cours du travail	Aide au codage en distanciel

VII. CONCLUSIONS

- Le projet montre l'efficacité et l'universalité d'une carte UCA pour piloter des systèmes temps réel complexes.
- La synchronisation précise entre la rotation du servomoteur et la mesure du capteur est essentielle.
- Ce radar compact peut être utilisé dans des applications de robotique, surveillance ou navigation autonome.
- Perspectives : créer une connexion carte-PC, améliorer la résolution et sensibilité du radar, ajouter un balayage 3D avec un second axe motorisé, changer le design de l'interprétation du signal.