Groups: Handwritten notes

by

Atiq ur Rehman

http://www.MathCity.org/atiq

PARTIAL CONTENTS

- 1. Groups; definition and examples 1
- 2. Order of group, order of element 3
- 3. Periodic group, mixed group 4
- 4. Subgroup 6
- 5. Invalution 8
- 6. Relation between groups, homomorphism, monomorphism, epimorphism, isomorphism, endomorphism, examples and related theorem 9
- 7. Kernel, definition and related theorems 13
- 8. Cyclic group, related theorems 18
- 9. Complex in a group, product of complexes and related theorems 24
- 10. Coset, definition and examples 30
- 11. Index of subgroup, Lagrange's theorem 31
- 12. Double coset, related theorem **33**
- 13. Normalizer, definition and related theorems **34**
- 14. Centralizer, centre of group, related theorem 36
- 15. Conjugate or transform of a group, definition and related theorems 37

- 16. Self conjugate, conjugancy class, related theorem 40
- 17. Class equation, p-group, definition and related theorems 43
- 18. Conjugate subgroup, definition and related theorems 45
- 19. Normal subgroup, definition and related theorems 49
- 20. Factor or quotient group, definition and related theorem 53
- 21. 1st isomorphism theorem, related theorem 55
- 22. 2nd isomorphism theorem **58**
- 23. 3rd isomorphism theorem 60
- 24. Endomorphism, automorphism, definition and related theorem 62
- 25. Conjugation as an automorphism **64**
- 26. Inner and outer automorphism, definition and related theorems 65
- 27. Commutator of a group, definition and related theorem 70
- 28. Derive group or commutative group, definition and related theorem 71
- 29. Direct product of groups, definition and related theorems 73
- 30. Invariant subgroup **79**
- 31. Characteristic subgroup 80°

Available at http://www.MathCity.org/msc

If you have any question, ask at http://forum.mathcity.org

MathCity.org is a non-profit organization, working to promote mathematics in Pakistan. If you have anything (notes, model paper, old paper etc.) to share with other peoples, you can send us to publish on MathCity.org. You may earn money by participating. For more information visit: http://www.MathCity.org/participate.html

MathCity.org

Merging man and maths

Groups (Handwritten notes)

WRITTEN BY: ATIQ UR REHMAN, CLASS: BS OR MSC (MATHS) Available online at http://www.MathCity.org , Version: 1.0.0

Group:-

A non-empty set & is group if

i) Closure law holds in G

ire for a, b ∈ G, axb ∈ G.

ii) Associative law holds in G

ie for a, b, c E G , a x(b x c) = (a x b) xc

Identity law holds in G.

re for a EG, axe = exa = a

where e is an identity element.

iv) Inverse law holds in G

ie for a eq 3 o'eq such that

a * a' = a' * a = e

If commulative law holds in G then G

is called abelian group.

Example:

(z, +), (R, +), (Q, +), $(\{\pm 1, \pm i\}, \bullet)$ are the examples of group.

 $A = \{1, \pm i, \pm j, \pm k\}$ with the condition $i \cdot i = j \cdot j = k \cdot k = 1$

 $i \cdot j = jk, \quad j \cdot k = i, \quad k \cdot i = j$ $i \cdot j \cdot i = -k, \quad k \cdot k = -j$

& IX=X Y XEA

then A is called group-

Question:

Prove that (Zn, 1) is a group.

Zn = {0,1,2, n-1}

i) For a, b ∈ Zn, then a+b ∈ Zn if a+b<n and if a+b≥n, then after dividing a+b byn, then remainder is less than n and so belongs to Zn.

i'e binary aperation () a defined

ii) () is associative in general.

iii) $0 \in \mathbb{Z}_n$ is an identity element.

iv) For $a \in \mathbb{Z}_n$, n-a is inverse of a.

i'e n = 1 is group under () n = 1 is group under () n = 1 is group under () Cancellation law holds in G.

ii) Identity element is unique.

iii) Inverse of the element is unique.

 $(a)^{-1} = a \quad \forall \quad a \in G.$

(ab) = b'a'

End of lesson at 1216PST

Order of Group:

G-is called the order of G and is denoted

by IGI Aco

A group G is said to be finite if G consists of only a finite number of elements. Otherwise G is said to be an infinite group.

Order of Element :-

G. A positive integer in is said to be the order of a if $a^n = e$ and n is the least such positive integer.

Question :-

the elements a, a, a, a, a, and are all distinct. Solution.

On the contrary let

at = aq for some pan qun , p ≠ q.

then

21. 29 = e

=> ap-9 = e = = p-9 <n

De pool

a contradiction : order of a is-n.

hence at + a9

therefore all elements are distinct:

```
# Theorem:-
```

let G: be a group, for a & G let a" = e then for some integer k, ak = e iff n/k. Solution

Let n/K then there is a some integer g, such that k = nq

 $a^{\kappa} = a^{nq} = (a^n)^{\kappa} = e^{\kappa} = e$

Conversely, Let zik = e 12 K>n.

so there are integers of and resuch that

k = nq + r ; r < n

8 = and +4 = 8 e ⇒ 2 ng, 2 = € > (a") 1. a = e

= = (e) 1. ar = e n is order of a.

ille a = e in in which is only possible if r=0 then k=ng > n/k.

Periodic Group:

def: If every element of a group G is of finite order. then a is periodic group.

Mixed Group:-

def: - If a group G contains elements of finite as well as infinite order, then 'G is called mixed group.

e é (R', \bullet) is mixed évoup. $R = R - \{0\}$

Sub-group :-

def: Let H be a non-empty subset of a group & then H is subgroup of & if H itself is a some group with the binary operation defined on G,

Turk # Theorem.

> Let G be a group and H a non-empty subset of G. then H is group sub-group iff a, b ∈ H => ab' ∈ H

Suppose that H is a subgroup of G. then (H, .) is a group, if beH, bie H hence a, b e H \Rightarrow a.b! \in H

Conversely, suppose that a, b ∈ H ⇒ ab' ∈ H. then a, a ∈ H ⇒ aā' ∈ H ⇒ e ∈ H Now e, beH) eb'eH > b'eH Again a, b e +1 + a, b' e + + a (61) = ab e +.

Thus H is closed in 9. The associative law holds for elements of H as it holds, in general for the element of G.

Hence all the axioms of a group are satisfied by the elements of H. Hence H is a group under the binary operation defined on G and so is a subgroup of G.

Available online at http://www.MathCity.org ***************

```
# Theorem !-
```

Let G be a abelian group and F be subset of all element of G with Finite order, then H is a subgroup.

Proof:

n such that

we have to prove ab' EF.

implies that ab! EF
therefore E is a subgroup.

Theorem:-

Intersection of any family of subgroups of a group G is subgroup of G.

Proof.

Let $H = \bigcap_{i \in I} H_i$ let $H = \bigcap_{i \in I} H_i$

let a, b ∈ H them a, b ∈ H; for each i ∈ I Since H; is a subgroup of G so ab ! ∈ H; for each i ∈ I

therefore ab' $\in \Pi$ $H_2 = H$

Hence H is subgroup of G.

Note: Union of two subdrove may not be
Note: Union of two subgroup may not be a subgroup. e & Z, = {0,3}, Z, = 1, {0,2,4} are
e & 7 = {0,3} Z, = {0,24} are
subgroup of a group Z = \$0,1,2,3,4,5 }
then 7117 - 502 2 4 5 12 14 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
then $Z_1 \cup Z_2 = \{0, 2, 3, 4\}$ is not a subgroup.
weorem:-
Let H, H, are two subgroup of a group
Then HUHZ is a subproup of a G
If either HICHX or HICH
Proof:
Let H, CH2 or H, CH1
then H, U192 = H(1) or H, UH, = H,
: H, & H, are subgroup 100 H, UH2 is
also subgroup.
Conversely
let H, UH2, is a substroup.
and let H, \$\pm\$ H, \$\pm\$ H, \$\pm\$ H, \$\pm\$ H,
then there are a, b & G such that a: E Hill Ho be Hold.
Les Entiribution of the bit bit bit H2.
2 8 bil Esthuth
As HIUH, are subgroup
therefore ab & H,UH, ab & H or ab & H2
-there was a second to the sec
a (ab) (± 1 b) ∈ H,
hence H_1UH_2 is subgroup iff $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$
Mence HIUHZ IS SUBOTOUP IT HIGH, OT HIGH

```
# Invalation_
```

def: An element & of order 2 in a group G is called invalution in G

Theorem ..

Every group of even order has atleast onc. invalution.

Proof:

Let G be a group of order 2n. and let $A = \{e, x \mid x^2 = e \land x \in G\}$ & $B = \{y \mid y^2 \neq e \land y \in G\}$

the last

AVB = G and ADB = Qif B = Q then A = G

then G contains invalution.

hence $(y^{-1})^2 \neq e \Rightarrow y^{-1} \in B$

ie y, y' e B

As IGI = IAI + IBI (only for disjoint sets) and so number of elements in A is even.

· e E A > A + 9

⇒ IAI ≥ 2

Since A = G

> G contains an invalution

```
* Relation between Groups:-
• Homomorphism
   def: Lat (G, x) and (H, .) be two
 Evoups. Define a mapping \varphi:G\to H
The \varphi is homomorphism if \varphi(x + y) = \varphi(x) \cdot \varphi(y)
   e é (R, 4), (R, .) be tuo groups
define \varphi(x) = e^x \quad \forall x \in \mathbb{R}
then for x, y E IR
       P(x+y) = e+4
                 = e^{x} \cdot e^{y}
                  = \varphi(x) \cdot \varphi(y)
   ⇒ P is homomorphism.
· Manamorphism
 monomorphism if
   monomorphism if

i) \varphi is homomorphism
       ii) A is injective (one-one)
   i.e \varphi(a) = \varphi(b) \Rightarrow a = b.
- • Epimorphism.
      def - A mapping a: G -> G is epimorphism
   such that
  i) of is homomorphism
     ii) & is surjective (onto).
       ie Y bé G there is a é G
        such that \varphi(a) = b.
```

• I somorphism
def: A mapping P: G > G is isomorphism
if is homomorphism
ii) & is bijective (one-one and onto).
(denoted as G~G)
• Endomorphism
def: A homomorphism mapping $\varphi: G \to G$
is called endomorphism (i.e. on same set).
Example
· Let $\varphi: (\mathbb{R}, +) \rightarrow (\mathbb{R}, +)$, where \mathbb{R} is set
of real number and IR, is the set of non-zero
tive real number
define $\varphi(x) = e^x \forall x \in \mathbb{R}$
is isomorphismatical in the
· Let (Z,+) and (E,+) be two groups runder
· Let (Z,+) and (E,+) be two groups under addition then the mapping of Z >> E defined
addition then the mapping of Z > E defined
by $\varphi(n) = 2n$ is isomorphism between
addition then the mapping of Z > E defined by $\varphi(n) = 2n$ is isomorphism between Z and E.
addition then the mapping of Z > Endetined by $\varphi(n) = 2n$ is isomorphism between Z and E.
addition then the mapping (z) $Z \rightarrow E$ defined by $\varphi(n) = 2n$ is isomorphism between Z and E . Let $(Z, +)$ and $(\{\pm 1\}, \bullet)$ be two groups
addition then the mapping $Z \rightarrow E$ defined by $\varphi(n) = 2n$ is isomorphism between Z and E . Let $(Z, +)$ and $(\{\pm 1\}, \bullet)$ be two groups define a mapping $\varphi: Z \rightarrow \{\pm 1\}$
addition then the mapping $Z \rightarrow E$ defined by $\varphi(n) = 2n$ is isomorphism between Z and E . Let $(Z, +)$ and $(\{\pm 1\}, \bullet)$ be two groups define a mapping $\varphi: Z \rightarrow \{\pm 1\}$
addition then the mapping $Z \rightarrow E$ defined by $\varphi(n) = 2n$ is isomorphism between Z and E . Let $(Z, +)$ and $(\{\pm 1\}, \bullet)$ be two groups define a mapping $\varphi: Z \rightarrow \{\pm 1\}$ by $\varphi(x) = \{\pm 1\}$ if $n \mapsto e^{-1}$
addition then the mapping $Z \rightarrow E$ defined by $\varphi(n) = 2n$ is isomorphism between Z and E . Let $(Z, +)$ and $(\{\pm 1\}, \bullet)$ be two groups define a mapping $\varphi: Z \rightarrow \{\pm 1\}$ by $\varphi(x) = \{\pm 1\}$ if $n \mapsto e^{-1}$
addition then the mapping (x) (z) $(z$
addition then the mapping $Z \rightarrow E$ defined by $\varphi(n) = 2n$ is isomorphism between Z and E . Let $(Z, +)$ and $(\{\pm 1\}, \cdot)$ be two groups define a mapping $\varphi: Z \rightarrow \{\pm 1\}$ by $\varphi(x) = \{\pm 1\}$ if n is odd, prove that φ is homomorphism and hence epimorphism.
addition then the mapping (x) (z) $(z$
addition then the mapping $Z \rightarrow E$ defined by $\varphi(n) = 2n$ is isomorphism between Z and E . Let $(Z, +)$ and $(\{\pm 1\}, \cdot)$ be two groups define a mapping $\varphi: Z \rightarrow \{\pm 1\}$ by $\varphi(x) = \{\pm 1\}$ if n is odd, prove that φ is homomorphism and hence epimorphism.

Question:
let G and G are two groups and f: G > G is
let G and G are two groups and f: G > G is isomorphic then f-1: G'-> G is also isomorphic
A)DILLI (SM:
Since f: G → G' is bijective
so fig 7 G is also bijective
to prove fis honomorphism
let a, b ∈ G then there are x, y ∈ G
such that $f(x) = a$ and $f(y) = b$
or $x = f^{-1}(a)$ $y = f^{-1}(b)$
P
· f is homomorphism
$-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{2}\left($
$-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac$
$f^{-1}(a) \cdot f^{-1}(b) = x \cdot y$ = $f^{-1}(ab)$
+ (a) + (b) = x · y
$=f^{-1}(ab)$
hence f-1 is homomorphism
as f-1 is bijective therefore fi
isomorphism
Question -
- Let G, G', G" bre groups
and Fig & g' & g' are isomorphism
then of G & G' is also isomorphism.
<u> </u>
Sines composition of two bijective mapping
Since composition of two bijective mapping is bijective so dof is bijective
and $gof(xy) = g(f(xy))$
= g(f(x), f(y)) + is isomorphism
$= \not \simeq (f(n)) \cdot \not \simeq (f(\gamma))$
$= gof(x) \cdot gof(y)$

therefore gof is homomorphism and hence isomorphism
and bence isomorphism
Т
heorem.
Prove that isomorphic groups form an equivalence relation.
equivalence relation.
Proof
i) Reflexive
Define $I:G\to G$ by $I(x)=x$
then I is one one and onto
and also $I(x \cdot x) = x \cdot x = I(x) \cdot I(x)$
ii) Symmetric (ie Ga G Then Ga G)
Define F: G > G an isomorphic
then f: G > G is bijective
then $f': G \rightarrow G$ is bijective Now $f(xy) = f(x) \cdot f(y)$.
as in previous Question.
as in previous Question.
iii) Tansitive: (ie \$ G~G and G~G"=then G~G")
Suppose f: G > G and &: G -> G are. isomorphism. then prove sof is isomorphism.
isomorphism. then
prove sof is isomorphism
201 in proviou Oustie

```
bomomorphism
 aronp
cancellation
```

Theorem:-
The homomorphic image of a group is a group.
The homomorphic image of a group is a group. Proof.
inage of G under P
image of G under P
1) lot 9, 9, ∈ G Then 9(9,), 9(9,) ∈ 9(G)
그는 사람들이 되는 것이 되었다. 그리를 잘 누워들는 사람들이 살아 살아 살아 먹었다. 그는 그는 그는 그는 그는 그를 모르는 것이다.
and $\varphi(g_1g_2) = \varphi(g_1) \cdot \varphi(g_2) \in \varphi(G)$
- Gig. del coopers care
ie P(G) is closed.
2) Let $\varphi(g_1), \varphi(g_2), \varphi(g_3) \in \varphi(G)$ then
$-(9,)\cdot(9(9,),\varphi(9,)) = \varphi(9,)\cdot(\varphi(9,9,))$
$= \Phi(9, (9, 9_s))$
= \$\psi(\(\g_1\g_2\)-\g_3\)
$= \Phi(9_19_2) \Phi(9_3)$
$= (\Phi(g_1) \cdot \Phi(g_2)) \cdot \Phi(g_3)$
$\Rightarrow \varphi(G)$ is associative.
3) If e is identity of G then
$\varphi(x).\varphi(e) = \varphi(xe)$
$= \Phi(x)$
=> P(e) is an identity of P(4).
a) For $x \in G$, $x^{-1} \in G$
$\varphi(x).\varphi(x')=\varphi(xx')$
$= \varphi(e)$
i'e Q(G) contains inverse of its each element
: P(G) satisfy all the axioms of group.
: 9(G) is snoup.
CU

www.MathCity.org Group	vs: Handwritten notes
# Theorem:	
Let $\varphi: G \to H$ be homomorphism of	
group G into group H, then for a b & G	
$\Phi(a) = \Phi(b) \text{iff} ab \in k \times \Phi$	
Proofi	
Suppose $\varphi(a) = \varphi(b)$	
$N_{ab} = \varphi(a) \cdot \varphi(b')$	
$= \varphi(b).\varphi(b) : \varphi(a) =$	φ (b)
= Q(b,51)	
$= \varphi(e) = e' \in H$	
	·
⇒ Bo E Ker Q.	
Conversely, suppose ab E Kerp.	. : •
then $\varphi(ab') = e'$ where e'is identity	y of H
→ Φ(a) Φ(b') = e' Φ is homo	marphism
$\Rightarrow \varphi(a) [\varphi(b)]^{-1} = e'$	· · · · · · · · · · · · · · · · · · ·
$\Rightarrow \varphi(a) = \varphi(b)$ proved	
	•
# Theorem	
Let Q: G -> H be a homomorphism th	ren D
is one-one iff ker = \$ I a }	
Proof	· .
Suppose of is one-one.	1.9(I4)=IH
It is obvious that \$I a ? < kerp	> IG E KEND
and let a E Kerp	i-e & IH & Skerp
$\Rightarrow \varphi(a) = I_{H}$,
$\Rightarrow \varphi(a) = \varphi(I_G)$	
and : q is one-one	
	3
→ kerq ⊆ { Ic} and hence kerd	p = 3.163

Groups: Handwritten notes

www.MathCity.org

Conversely let Kerep = \$163	
ts ργονε 34 is ma-sor-	No.
- (a) = φ(b)	
$\Rightarrow \varphi(a).\varphi(b^{-1}) = \varphi(b)(\varphi(b^{-1})$	
$\Rightarrow \varphi(ab') = \varphi(bb')$	
→ \phi(ab') = \phi(14).	
$\Rightarrow \varphi(\mathfrak{b}') = I_{\mathfrak{p}}$	and the second s
sk' = Iq	
	4.4
⇒ op is one-one	
	, -

Available online at http://www.MathCity.org

Theorem:
Let H be a subgroup of a group G. Define a relation over G such that
and iff arteH
then relation ~ is equivalence relation.
Proof
i) Reflexive
:eeH > xx'eH VxeH
ie this relation is reflexive
i.e this relation is reflexive.
ii) Symmetric
Let xay then xy' & H
$\Rightarrow (xy^{1})^{-1} \in H := H \text{ is group.}$
1 e (xy1) = (x1) x
$= y \cdot x^{-1}$
so yxi EH ie y~x
is symmetric
iii) Transitive
Let x = y then xy ! E H
also y ~ Z then y z ! E H
Now $(xy^{\dagger})(y\overline{z}^{\dagger}) \in H$
or $x(\bar{y}'y)\bar{z}' \in H$ or $x(e)\bar{z}' \in H$
or x (e) \(\tilde{\x}^1 \) \(\tilde{\text{H}} \)
vy x ₹1 € H
> x ~ y z i'e ~ is trasitive.
hence the relation ~ is equivalence.

Cyclic Group:
def. A group G is called a cyclic group
if all of its element can be express as power
of a single element say a EG.
In this case 'a' is called to be a generator
of Give if a is generator then for x ∈ G
there is an integer k such that ak = x
Let G be a finite group of order n then
$Q = \{a, a^2, a^3, \dots, a^{n-1}, a^n = e\}$
Note that order tayalic group is equal to the
order of its generator - and the generating
element is not necessary unique.
Let $a = i$, $a^2 = i^2 = -1$
$3^3 = 2^3 = 2 \cdot 2^2 = -2^2$
$3^{+} = (z^{2})^{2} = 1$
Also if a = -2, then this is also generator
- i.e. i i ave a senerator

Available online at http://www.MathCity.org

# Theorem		
Any two cyc	lic group of same	order are
isomorphic.		
		· ·
1) For Finite		
	a calchic eyelic g	noup of morder m
	= < a · a · a · e >	
Consider evel	Lic proup Cn of r	, nth roots of
		e e e e e e e e e e e e e e e e e e e
defined by	e mapping 4: 4-7	xn=1=1+02
$\Phi(ak) = \epsilon$	e ²	= 601 2Kx+2 Sin2Kx
· O) me-m	0. 11.	$\chi = \frac{2kR}{n} + i \sin \frac{2kR}{n}$
for $\phi(a^k)$ =	= 0(am); ak, ame	G = e 7.
25年2	= e ² m£ ½	
- 1	2m 7 .	
$\frac{2}{n}$	= , n	
⇒ K =	$\frac{2m\bar{\lambda}}{n};$ $m \Rightarrow a^{k} = a$	m
		me-one
•	sely onto where	•
Tow eve	ry e 2kx 2 where	$e_{K}=0$
3 akec	V K	
		B. Maria Caralleria Company
· Now P(ak	am) = 4(xk+m)	
	2(K+m)	天 ;
	= 0 e n	2m 8 i
	mental A	(fam)
	$= \varphi(a), \gamma$	100 and the state of the
ے میں اور	banomorphism	ie Ge En
7 -13	The state of the s	
ii) For Infini	te Order:-	
Fir infinite	sylie cyclic é	houp we do fine
a mappings.		

then p is me-one
then \$ is one-one if (nak) = o (am). For ak, am EG
\Rightarrow $k = m$
3K - 3m.
and also for each KEZ J an element
- ake G such that p(ak) = k
- Be contained to the second of the second o
Also
Also $\varphi(a^{k}, a^{m}) = \varphi(a^{k+m})$ $= k + m$
= K+m
$= \varphi(a^{\kappa}) + \varphi(a^{m})$ $= \varphi(a^{\kappa}) + \varphi(a^{m})$ $= hence \qquad G \cong Z$ and the proof is complete.
+ is homomorphism
Donce
G = Z
and the proof is complete.
Theorem
let G be a cyclic group of order n and generated
by a. Let d in them there is a unique subservoup
of order d.
Proof. Let G = (8: 2"-e>
- din : 7 integeriq such that n = dq.
Take b = a then
bd = (87)d = aqd = yt = e
So H = < b; base > is required subgroup.
to see H is unique, suppose K is another subgroup
of G of order d. Then K is generated by an element
C = 2 K where k is least such two integer
- As k has order d
: akd = a cd = e Hence = b = a = c
where kd = is so that so that K= H and hence
K = 1 = q · H is migue
*

Theorem
Prost. Prost.
Let G be a cyclic évoup generated by a
let H be a st subgroup of G and k be the
least tive integer such that ak & H.
we prove that H is generated by at
for this lot a x = a = E H Y m > K
then I integers q and r such that
m = qk + r; of $r < k$.
then $a^m = a^{qk+\gamma}$
$= 2^{qk} \cdot a^{r}$ $\Rightarrow a^{m} \cdot a^{qk} = a^{r}$
$ \Rightarrow -2^{"'} \cdot 2^{\gamma} = 2^{\gamma}$
$\Rightarrow a^{m} (a^{k})^{q} = a^{r}$
am and (ak)-9 are in H
⇒ are H ·
but k is smallest for which ake H
and here are H and rck
so by minimality of k
are H only if r= 0
but if r-o
then m = qK
$\Rightarrow a^{m} = (a^{k})^{q} = \emptyset$
=> ak is generator of Hie His cyclic
Theorem:
The homomorphic image of a cyclic group
is exelic.
Let G be a cyclic group generated by a
Let Q(G) be a homomorphic image of G under
Let G be a cyclic group generated by a let $\varphi(G)$ be a homomorphic image of G under a homomorphism φ
·

we show that $\phi(G)$ is exclic
Take b= op(a)
Let $x \in \varphi(G)$, then there is an element $ak \in G$
such that
$x = \varphi(a^k)$
$= \varphi(a.a.aa) (k \text{ times})$
= \(\phi(a) \phi(a) \phi(a)\ \cdots \(\phi\) is homo.
= b.b.b b (Ktimes)
= bk
So $\varphi(G)$ is generated by b.
hence $\phi(q)$ is cyclic.

Available online at http://www.MathCity.org

Theorem:-
i) Let G be a cyclic group of order n generated
by a then an element ake & is a generator of
G iff k and n are relatively prime.
ii) If G is infinite cyclic group then a and a
Proof -
let G = <a :="" a!="e"> be finite cyclic group.
Consider k and n are relatively prime then there
exists interfers p and q such that pk+qn=1.
let H be a subgroup generated by ak,
to prove $H = G$ $2' = a^{pk+qn}$
2 = 3
$= (a^{k})^{p} + (a^{n})^{q}$
$= (a^{k})^{p} (e)^{q} \cdot a^{n} = e$
$= (ak)^{p}$ $\therefore (ak)^{p} \text{ is an element of } t1$
$\Rightarrow a \in H$ $\therefore H = G$
ie G is also generated by at
Conversely,
let ak is generator of G
we prove k and n are relatively prime
- ak is generator
so for some integer P.
$(ak)^{p} = a \Rightarrow a^{pk} = a$
$\Rightarrow a^{pk-1} = e$
⇒ n pk-1 : n is least such integer,
so I integer q such that that an = e
pk-1=9n
$\Rightarrow p + k - qn = 1$
so k and n are relatively prime

ii) let G = < a> be infinite cyclic group.
Let ak is also a generator of G.
then $(a^k)^p = a$ for some integer p.
$\Rightarrow 2^{kp-1} = e$
· · · · · · · · · · · · · · · · · · ·
$\Rightarrow kp-1 \neq 0 \text{ ov } kp-1 = 0$
$-i + kp - 1 \neq 0$
Athen G is finite, a contradition
hence $kp-1=0 \Rightarrow kp=1$
Since k and p are integers
$\frac{-\text{therefore}}{-1} k = p = 1$
ie a, a are only generators.
- Consul
Complex in a group:
complex in C subset X of a group G is called
complex in G
Product of Complexes
def: If X and Y are two complexes in G
then the product XY is defined as

Available online at http://www.MathCity.org

Theorem
Let H and k be two suboroup of a group
Let H and k be two subgroup of a group G then HK is subgroup of G iff HK=KH.
11001
Let HK be a subgroup let $h_1K_1 \in HK$ for $h_1 \in H$, $K_1 \in K$
- (h,k,)-1 EHK : HK is subgroup.
Now (h, k,) = k, h, EKH : k, EK, h, EH
i.e HK SKH(i)
None for het KEK, FIKEHK
and Pakhelly
$\frac{Kh = (K^{I})^{-I}(h^{I})^{-I}}{Kh = (K^{I})^{-I}(h^{I})^{-I}} = (h^{I}K^{I})^{-I} \in HK$
→ KH ⊆ HK —— (ii)
from (i) and (ii)
HK = KH
Conversely, let HK = KH, to prove HK is subgroup Let be keep legocald hik, hoke EHK
for some h, h, eH, k, k, EK.
$\Rightarrow (h_1 k_1)(h_2 k_2) = (h_1 k_1)(k_2^{-1} h_2^{-1})$
$= h_1(k_1k_2^{-1})h_1^{-1}$
$= h_1 \left(k_3 h_2^{-1} \right) \text{for } k_1, k_2 \in \mathbb{K}$
$= h_1(h_2 k_3) \qquad k_3 = k_1 k_2 \in K$ $= h_1(h_2 k_3) \qquad k_3 = k_1 k_2 \in K$
= (h, h2) K3 for h, h2 EH, h3=h, h2 EH
$= h_3 k_3 \in H K$
2
therefore HK is a subgroup
Question: If H is subgroup of group G then
i) Prove that H2= H
ii) Prove that H'= HDo yourself

Groups: Handwritten notes www.MathCity.org
Theorem:-
-: If H and K are two subgroups of a finite
group G and $HOK = \{e\}$ then $O(HK) = O(H) \cdot O(K)$
Proof
HK = ink: heH, keki and HNK = iei
The only way in which O(HK) \neq O(H). O(K)
is that for some h, h, EH, h, + h, and
$k_1, k_2 \in K$, $k_1 \neq k_2$ we have $h_1 K_1 = h_2 K_2$
Let us consider
$h_1 K_1 = h_2 K_2$
$\Rightarrow h_2^{-1}(h_1k_1) = k_2$
$\Rightarrow (h_2^{-1}h_1) K_1 = K_2$
$\Rightarrow h_2^{-1}h_1 = k_2k_1^{-1} = g(say)$
: h, h, EH, h, h, h, l∈H > g = h, h, EH
and similarly q = k. k. EK
iegeH and gek
→ g ∈ HNK = {e}
→ g = e
$\therefore h_2 h_1 = g \text{and} k_2 k_1 = g$
$\Rightarrow h_2 h_1 = e$, $k_2 k_1' = e$
$\Rightarrow h_2 = h_1 \qquad k_2 = k_1$
which is a condradiction
hence $O(HK) = O(H) \cdot O(K)$.

Example:
$H = \{1, \omega, \omega^2\}$
K = 3±1, ± 23 are two subgroups of G
HNK = {1}
-16-
$HK = \{\pm 1, \pm i, \pm \omega_1, \pm \omega_2, \pm \omega_2, \pm \omega_2\}$
Question.
$G = \{e, f, g, gf, fg, g^2\}$
where $g^3 = e$, $f^3 = e$, $(fg)^2 = e$
prove that G is group.

 $A vailable \ on line \ at \ \textit{http://www.MathCity.org}$

Theorem:-
such that O(HNK) > 1 i.e HNK # ?e}
such that O(HNK) > 1 ie HNK # se}
$\frac{\text{then}}{O(HK) = \frac{O(H) \cdot O(K)}{O(H)} \cdot O(K)} = \frac{ H \cdot K }{O(HK)} = \frac{ H }{O(H$
$O(HK) = \frac{O(H) \cdot O(K)}{O(HNK)} or [HK] = \frac{ H \cdot K }{ HNK }$
Let $O(H) = P$, $O(K) = a$, $O(HOK) = r$, $O(HK) = r$
BS HK = {hK: h EH, K EK}
$= \{x_1, x_1, x_2, \dots, x_n\}$ (say)
$-150 - U(\Pi IIK) = F$
- so let HNK = {41,42, 43, 6, 4}
: each y: € HNK \ 1 = 1,2,,r
and HNK is a subgroup of
-: Yi ∈ HNK ¥ i= 1,2,, r.
so yi, yieH and yi, yiek.
Let $h \in H$, $K \in K$
$\Rightarrow hy_i \in H$ $\Rightarrow y_i k \in K$
=> (hyi)(yik) EHK
but (by)(y, k) = (by)(y, k) = (by)(y, k) =
= (hy)(y''k) = hk - x
1.e 2 is repeal y times in HK.
so total number of elements possible in HK is rm.
ie rm = pq
$\Rightarrow m = \frac{pq}{pq}$
r
$ie O(HK) = O(H) \cdot O(K)$
O(HNK).

Corollary:-
let H and K are subgroup of a group G such that $O(H) > IO(G)$, $O(K) > IO(G)$
them: HOK + 3e3
Proof
$: O(H) \geqslant \sqrt{O(G)} , O(K) \geqslant \sqrt{O(G)}$
as H and K sive subgroup of G
→ H⊆GJKSG
7 11 = 9 3 15 = 9
⇒ HK ⊆ G
\Rightarrow o(HK) $<$ o(G)
1 e 0(G) > 0(HK)
0(G) > 0(H) 10(K)
$\frac{O(HP^{1}O(G^{2}))}{O(HP^{2}O(G^{2}))}$
O(HNK)
> \(\sigma(G)\) \(\sigma(G)\)
O(HOK)
$= \frac{o(G)}{o(HnK)}$
O(HNK)
> a(Hnk) > 1
> UNK + 3e }.

Available online at http://www.MathCity.org

Coset:-

def: - let H be a subgroup of a group G. then the set Ha = {ha: heH} where a EG. is called right coset of H in G. Similarly att = {ah: heH} is left coset of

In case of addition a+H, H+a are left and right coset respectively.

Example:

ud G= {e, f, é, éf, fé, é²}

be a group where

 $f^{3} = e$, $g^{3} = e$, $(fg)^{2} = e$

Let H = se, g, g2 be a subgroup.

He = {e, &, g2}

 $H = \{ \xi, \xi^{2}, \xi^{3} = e \}$

Hg2= { g2, g3, g4} = { g2, e,g}

Hf = {f, éf, éf, é²f} = {f, éf, fé}.

As $(f\phi)^2 = e$ $f^2 = e \Rightarrow f \cdot f = e \Rightarrow f = f$ $\Rightarrow (f\phi)(f\phi) = e$ $\Rightarrow f\phi = \phi^2 f = e$ $\Rightarrow f\phi = \phi^2 f = e$

Hat = { &f, &zf, &zf} = { &f, fe, f}

Hfé = {fø, e(fø), e2(fø)} = {fe, e(é2f), e2(é2f)} = 行约, 行, 经行

Now He = Hé = Hé' = $\{e, g, g^2\}$. Hf = Hfé = Héf = $\{f, g^2, f^2\}$

i've we have only two disjoint right coset.

Index of Subgroup :-

def: - The number of distinct left or right cosets of Hin G is called index of H in G.

v
Index of subgroup:-
defi- The number of distinct left as or right
cosets of a subgroup H of a group q is called
the index of H in G and is denoted by [G:H].
Theorem: (Loagrange's Theorem):
-: Both the order and index of a subgroup
of a finite group divide the order of the group.
Proof:
Let G be a group of order n and H be
a subgroup of order m.
Also lot k be the index of H in G.
let att, att, att are the distinct
left cosets of H in G.
we prove $G = \bigcup_{i=1}^{\infty} a_i H$ and $a_i H \prod a_i H = \varphi$, $i \neq j$
and $z_{i,j}=1,2,,K$.
_ let a; ∈ G
then a: = 2 ie & aiH : because e & H
$so, G \subseteq UaiH$ (i)
Also each a; H is a subset of G
$: Ua_i H \subseteq G - (i)$
From (i) and (ii)
$G = Ua_iH$
Next, let aH and bH are distinct left cosets
and x E AH N bH
then x = ah = bh2 for some h, h, EH.
$\Rightarrow a = bh_2h_1^{-1}$
$= bh_3 \text{where } h_3 = h_2 h_1^{-1} (say)$
Now for heH, ah EaH
but ah = bhah is also an element of bH
$\Rightarrow 2H \subseteq bH$
Similarly bH = aH
[21]

lie aH = bH, a contradiction
Mence x & a H N b H
\Rightarrow ahnbh = φ .
⇒ all left wets of H in G define a partition
$ G = a_1H + a_2H + \cdots + a_kH = (iii)$
To find number of element in each coset
we define a mapping $\phi: H \rightarrow a; H$ by
$\varphi(h) = a_i h , h \in H$
tor $h_1, h_2 \in H$
$\varphi(h_1) = \varphi(h_2)$
\Rightarrow $=$ $a_i h_1 = a_i h_2$
$- \Rightarrow - h_1 = h_2$
→ P is one-one
Also for each ash EasH 3 heH.
so pis onto
hence the number of elements in H and 8; H
is the same for i = 1,2,, k
As H has m elements, each asH has m elements.
So from (iii) we have
$n = m + m + \dots + m - (k + limes)$
$\Rightarrow n = km$
> K n and m n
l'e order and index of subgroup divides
order of group

Double Cosets:-
def:- Let H and K are two subgroups of
a group G then for a E G the set
Hak = {hak: heH, kek}
is called coset of module (H,K).
Theorem:-
Let H and K are two subgroup of a group G. then the collection of all double cosets defines
G. then the cultertion of all double cosels defines
a partition in G.
a partition in G. Proof:- Let Hak be a collection of all double
tot Mak be a collection of all aprile
uset of H and K in G
we have to prove $G = U(HaK) \text{ and } HaK \sqcap HbK = \Phi.$
Since each Hak = G
> U(HaK) ⊆ G 0)
⇒ U(HaK) ⊆ G — (i) if a ∈ G then eae ∈ HaK ie a ∈ HaK ⇒ G ⊆ U(HaK) — (ii)
$\Rightarrow U(HaK) \subseteq G - ui)$ $if a \in G \text{ then eae } \in HaK$ $ie a \in HaK$ $\Rightarrow G \subseteq U(HaK) - uii)$ from (i) and (ii)
⇒ U(HaK) ⊆ G — (i) if a ∈ G then eae ∈ HaK ie a ∈ HaK ⇒ G ⊆ U(HaK) — (ii) from (i) and (ii) G = U(HaK)
⇒ U(HaK) ⊆ G — (i) if a ∈ G then eae ∈ HaK i.e. a ∈ HaK ⇒ G ⊆ U(HaK) — (ii) from (i) and (ii) G = U(HaK) Now consider HaK and HbK are two
⇒ U(HaK) ⊆ G — (i) if a ∈ G then eae ∈ HaK i.e. a ∈ HaK ⇒ G ⊆ U(HaK) — (ii) from (i) and (ii) G = U(HaK) Now consider HaK and HbK are two distinct double cosets
⇒ U(HaK) ⊆ G — (i) if a ∈ G then eae ∈ HaK i.e. a ∈ HaK → G ⊆ U(HaK) — (ii) from (i) and (ii) G = U(HaK) Now consider HaK and HbK are two distinct double cosets Lot x ∈ (HaK) N(HbK)
⇒ U(HaK) ⊆ G (i) if a ∈ G then eae ∈ HaK ie a ∈ HaK ⇒ G ⊆ U(HaK) — (ii) from (i) and (ii) G = U(HaK) Now consider HaK and HbK are two distinct double cosets let x ∈ (HaK) ∩(HbK) ⇒ x ∈ HaK and x ∈ HbK
⇒ U(HaK) ⊆ G — (i) if a ∈ G then eae ∈ HaK i.e. a ∈ HaK → G ⊆ U(HaK) — (ii) from (i) and (ii) G = U(HaK) Now consider HaK and HbK are two distinct double cosets Lot x ∈ (HaK) N(HbK)
⇒ U(HaK) ⊆ G — (i) if a ∈ G then eae ∈ HaK i.e. a ∈ HaK ⇒ G ⊂ U(HaK) — (ii) from (i) and (ii) G = U(HaK) Now consider HaK and HbK are two distinct double cosets lot x ∈ (HaK) N(HbK) ⇒ x ∈ HaK and x ∈ HbK ∴ x = hak and x = h, bk, ⇒ hak = h, bk,
⇒ U(HaK) ⊆ G — (i) if a ∈ G then eae ∈ HaK i.e. a ∈ HaK ⇒ G ⊆ U(HaK) — (ii) from (i) and (ii) G = U(HaK) Now consider HaK and HbK are two distinct double cosets Lot x ∈ (HaK) N(HbK) ⇒ x ∈ HaK and x ∈ HbK ∴ x = hak and x = h, bk1

if y ∈ Hak
-then $\gamma = h_2 a k_2$
= h2 (h'h, bk, k') k2
= h2 h'h1 b K1 K' K2 E HbK
→ Y ∈ HbK
- Hak S Hbk
Similarly, we ean get
HbK S HaK
→ HaK = HbK
which is contradiction as Hak and HbK are distinct.
hence Hakn Hbk = p
T1
The proof is complete.
Normalizer
def: - lot X be a subset of a group G then
the set $N_{G}(x) = \{a : a \in G, ax = xa\}$
is called Normalizer of X in G.
here $ax = xa$ means, for $a \in X$, there is $x' \in X$ such that $ax = x'a$
Theorem:
The normalizer N _q (x) of a subset x is
n- D
1 t a L C N (V)
Proof:- Let $a, b \in N_{\varsigma}(X)$ Then $aX = Xa$ and $bX = Xb$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
then $ax = xa$ and $bx = xb$ bx = xb $b(bx)b' = (xb)b'$ $b(xb') = x(bb')$

$\Rightarrow b(xb^{-1}) = x$
$\Rightarrow xb' = b'x$
\Rightarrow $b^{-1} \in N_{G}(x)$.
Now $ab'(x) = a(b'x)$
$= a(xb^{-1}) \cdot b^{-1} \in N_q(x)$
(, ,) (, -1)
$= (2x)(b')$ $= (xa)b' : a \in N_{G}(x)$
$= \times (ab^{-1})$
A Sable N./V)
- V 7 20 E NG(X)
\Rightarrow $ab' \in N_G(x)$ hence $N_G(x)$ is a subgroup of G .
Corollary:-
Corollary:- If H is a subgroup of G then H = NG(H).
Proof: ~ 1
let heH
then hH = H = Hh : at = H \ightrightarrow a \ightrightarrow H
- ie hH = Hh
- > he Ne(H)
so H ⊆ Ng(H)
56 M = 146 Cm
Note:
The above corollary can also be state as.
"Normalizer of a subgroup contains that subgroup!
Also converse of above corollary may not true
A second

 $A vailable \ on line \ at \ \textit{http://www.MathCity.org}$

```
# Centralizer
def: - Let X be a subset of a group G and
\forall x \in X, then the set

C_G(x) = \{a: a \in G \land ax = xa\}
          is called centralizer of X in G.
# Centre of G
  def:- The centralizer of G in G is called
 centre of G.
                                                   in the second of the second of
The centralizer of X in G is a subgroup
 of G. ...
Proofi-
let a, b ∈ Cq(X)
then by definition, \forall x \in X
                           bx = xb _____(ii)
      From (ii)
 bx = xb \Rightarrow (bx)b^{-1} = (xb)b^{-1}
     \Rightarrow b(xb^{-1}) = x(bb^{-1})
  \Rightarrow b(xb') = x
             \Rightarrow xb' = b'x (iii)
     (ab')x = a(b'x)
   = a(x 6^{1}) \qquad by (iii)
 = (3x)b^{-1}
    =(xa)b^{-1} by (i)
       = x(ab')
\Rightarrow ab \in C_{G}(X)
       hence C_G(x) is a subgroup of G.
```

Conjugate or Transform in a group: def: - Lot a E G, then an element gag's geg
del: - Lot a E G, then an element gag's gEG
15 EXHIBECT ANNUILLISALA A-1 St.
or for a, b $\in G$, b is conjugate of a if $b = gag^{\dagger}$, $g \in G$.
if b= gag1, g & G.
T theorems.
-: The relation of conjugarcy between element of
-: The relation of conjugatory between element of group & is equivalence relation Proof:- We denote the conjugacy relation of element by R or i) Refet Reflexive
We denote the conjugacy relation of element
by R or a.
by R or \sim . i) Refal Reflexive $a = eae', e \in G \Rightarrow a \sim a,$ ii) Symmetric. Let $a \sim b$
: a = eae, e ∈ G → a~a,
ii) Symmetric.
The state of the s
$\Rightarrow b = gag'$, $g \in G$
$\Rightarrow gag' = b$
\Rightarrow $ag^{-1}=g^{-1}b$
$\Rightarrow a = g^{\dagger}bg$
$\Rightarrow a = g'bg$ $\Rightarrow a = g'b(g')^{-1}$ where $g' \in G$.
3 b~2 → ~ is symmetric.
iii) Transitive
Let and de bac
$\Rightarrow b = g_1 a g_1' \forall c = g_2 b g_2' \text{for } g_1, g_2 \in G_1$
Since
$c = g_2 b g_2^{-1}$
$= g_2 (g_1 \otimes g_1) g_2$
= (9, 9,) a (9, 9,)
= (9,9,) a (9,9,)
$\Rightarrow a \sim c$
hence ~ is an equivalence relation.

· · · · · · · · · · · · · · · · · · ·	
Question	
G is a group such the	
G = (a, b: 84 =	$b^2 = (ab)^2 = 1$
and subset i) $X = \{1, 3^2\}$	$X = \{1, a, a^2, a^3\}$
Find contralizer of X	
Dolution:	
i) $G = \langle a, b : a^4 = b^2 =$	$= (ab)^2 = 1 >$
$= \{1, 2, 2, 5, 3^3,$	ab , a^2b , a^3b ?
$\frac{34}{3} = 1$	b ² -1
	⇒ b ⁻¹ = b
<u>v</u> (86) = 1	k (ab)=
\Rightarrow (ab)(ab) = 1.	$\Rightarrow (8b)(ab) = 1$
$\Rightarrow ab = b^{1}a^{-1}$	≥ 2(ba) b = 1'
$- bg^3$	$ba = \bar{a}b'$
	$= a^3b$
- CG(X) contains those ele	ments of G which commute
with every element of x	
for a	
$\underline{\qquad \qquad 2\cdot 1 = n = 1.}$	<u>a</u>
	2 . a
For a	
$\frac{a^2 \cdot 1}{a^2} = \frac{1 \cdot a^2}{a^2}$	
$\frac{a^2 \cdot a^2}{a^2 \cdot a^2} = \frac{a^2 \cdot a^2}{a^2 \cdot a^2}$	
_ Fov 2 ²	
$3^3 \cdot 1 = 3^3 = 1.5$	a ³
$\frac{3^3 \cdot 3^2}{2^2} = 3^5 = 3^2.$	<u>a</u> .
for b	
b.l = b = 1. b	
$b.2^2 = a^2b (ba)$	$a = (a^3 \cdot b)a = a^3(ba)$
$= a^3(a^3b) =$	$a^6b = a^4 \cdot (a^2b) = a^2b$
For ab	
$(ab) \cdot 1 = ab =$	1.(3b)

```
(ab) a^2 = (ba^3) a^2 = ba^5 - (ba) a^4 = ba
      = a^3b = a^2(ab)
    (a^3b) \cdot a^2 = (ba) \cdot a^2 = ba^3 =
 (a^2.(a^8b) = a^5b = a^4(ab) = ab
  \Rightarrow (a^3b).a^2 - a^2.(a^3b)
  (a^2b) \cdot 1 = 1 \cdot (a^2b)
 (a^2b).a^2 = a(ab)a^2 = a(ba^3).a^2
             = a(ba) = a(a^3b) = a^4b = a^2 \cdot (a^2b)
    As all element of a commute with element
   of X therefore Co(x)= G.
        ba = ab so b does not commute with a
                 \{1,a,a',a'\} = X.
# Exercise.
       Find the center of Do :
                          Ans: Ca(4) = {e,a2}
# Exercise:
     Find No (2) No (x) if G = D8
     ii) (1, a, a, a)
```

```
# Remarks
      • Let b = gag^{\dagger} \Rightarrow a = \bar{g}^{\dagger}b(\bar{g}^{\dagger})^{-1}

\Rightarrow b^{m} = (ga\bar{g}^{\dagger})^{m} = ga^{m}\bar{g}^{\dagger} and a^{m} = \bar{g}^{\dagger}b^{m}(\bar{g}^{\dagger})
  • If -X = \{x\} = \text{singleton set}
           then CG(X) = NG(X).
 * Solf-Conjugate:
                        n element a E G is called
self-conjugate if for g E G, a = gaglic gaga

self conjugate elements also called contrar elements.

# Corollary
   Corollary

-: An element or in a group G is self-conjugite
_# Corollary
   iff x ∈ C<sub>G</sub>(G).
Propri-
         let x is self-conjugate then there is g E G
        such that x = gagi gxg'
           then xq = qx
             > x = q'x q'
           → x is self emjugate.
_# Conjugancy Class
             def: - Let a E G then the subset of all
element of G conjugate to a is called conjugacy.
    class. i.e. C_2 = \frac{5}{5}b : b \in G, b = gag = g \in G.
```

Theorem
-: The number of elements in a conjugacy class
Ca of an element a E G is equal to the
index of its normalizer in G and hence divides
their order of G.
Proof.
let G be a group and a E G let Ca be
the conjudacy class of G containing a Let N be a normalizer of 323 in G i.e NG(523) = N.
2 normalizer of 323 in Gie Ng (323) = N.
Let A be the collection of all right cosets
of normalizer
in A is equal to number of elements in Ca.
Define a mapping
Define a mapping $q: A \rightarrow Ca$ by $q(Ng) = \bar{g}^{l}ag$, $g \in G$.
i) q is well define
Let $Ng_1 = Ng_2^2$ where $g_1, g_2 \in G$
$\Rightarrow N = \{ Ng_2g_1' \} $ if all H
\Rightarrow $g_2 g_1 \in N$ then $8H = H$
$9_29_1 = n (say n \in N)$
N 1
$g_{1}^{2} a g_{2} = (ng_{1}) a (ng_{1})$: $g_{1} = ng_{1}$
$= (\underline{q}, \underline{n}) a (\underline{n}, \underline{q})$
$= g_i^{-1}(n^i a n) g_i$
= 9, 29, nan=a
$\Rightarrow \varphi(Ng_1) = \varphi(Ng_1)$
⇒ q is well defined.
ii) q is onto as to every glage Ca, we
have right coset Ng.

iii) & is one-one
φ(Ng,) = φ(Ng,)
$\Rightarrow \tilde{g_1} \approx g_1 = \tilde{g_2} \approx g_2$
그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
$\Rightarrow 9, (9, 29,)9, = 8$
$\Rightarrow (9_{2}9_{1}^{1}) 2 (9_{1}9_{1}^{1}) = 3$
$\Rightarrow (9.\overline{9}_{2}^{1})^{1} \times (9.\overline{9}_{2}^{1}) = a$
⇒ 9.5' € N
$\Rightarrow g_1 \in Ng_2 \text{but } g_1 \in Ng_1$
$\Rightarrow Ng_1 \subseteq Ng_2$
Similarly
Similarly Ng. S. Ng.
=> Ng = Ng so p is one-one
→ P is bijective
i.e no of elements in A = no of elements in Ca
no of elements in Ca is equal to the
no. of right cosets of normalizer of {a},
and since by Lagrango's theorem index (no. of
right easets) divides order of the group G
* Review:
. Let B & G, then the subset of all element
of G conjugate to a is called conjugacy class
- le ca = {b : b ∈ G , b = gag , g ∈ G }
If X = { 23} then.
If $X = \{8\}$ then $N_{\mathbf{q}}(X) = C_{\mathbf{q}}(X)$
ie Normalizer of X in G = Contralizer of X in G.

Class Equation
defin Let G be a finite drawn of order or
then the number of conjugacy classes will also be
finite. Let C1, C1, C3, Cr be the all
conjudacy classes with m, m, m, m, m, number
_ at elements vespertively.
then $n = e_1 + e_2 + \cdots + e_r > \cdots$
C T TIGO
where each mi divides n
then equation (i) is called class equation,
P-Group
def: - Let G be a group of order P", where
p is a prime number then p divides G = pm
It order of every element a E G is also a
power of that prime number p
then G is called p-group.
Theorem:
Proof. The centre of p-group is non-trivial.
Let G be a p-group of order p" and
its class equation
$- p^n - m_1 + m_2 + \cdots + m_p$
where each mi divides pm
Since each m; divides pr so it must be
of the form p^{α_2} , p^{α_2} , p^{α_2} , p^{α_r}
$p^{\alpha_1}, p^{\alpha_2}, \dots, p^{\alpha_r}$
Let one of them say mi is one due to
conjugacy class of identity element.
Alta conjugace alosses of soll and right along the
Also conjugacy classes of self-conjugate element
contain only only that element i.e a is - self-conjugate then $C_2 = \{a\}$

but if beca
then b = g ag
bo = 0 \$
by = ag : a is self-conjugate
Let such classes of the above two types by be K
Without loss of joine vality those are
Now
N_{ov} $p^{n} = m_{1} + m_{2} + i - i + m_{k+1} + m_{k+2} + \cdots + m_{r}^{i}$
\cdot
$= 1 + 1 + \dots + 1 + m_{K+1} + m_{K+2} + \dots + m_{V}$
= K+ p K+1 + p K+2 + + p dr
$\Rightarrow K = p^n = (p^{\alpha_{K+1}} + p^{\alpha_{K+2}} + \cdots + p^{\alpha_{r}}),$
- De Francisco de Production de la constantina del constantina de la constantina de la constantina del constantina del constantina del constantina de la constantina de la constantina de la constantina del constantina
= p ⁿ - \(\frac{1}{2}\) p ⁿ .
1 2ml 2 m. 2
plp" and plp" for each = K+1, K+2, or
$\Rightarrow p \mid p^n - \sum_{i=K+1}^r p^{\alpha_i}$
Y.e. PT. K
-> centre of p-group is non-trivial
- All - 1: 04 b
Alternative Statements for has non-trivial centre:
· Every finite p-group has non-trivial centre.

Conjugate Subgroup
def: - Lot H be a subgroup of a group G
Define a set
$K = gH\bar{g}^{1} = \frac{2}{3}gh\bar{g}^{1} : h \in H_{2}^{2}$ $= \frac{1}{3}gh\bar{g}^{1} : h \in H_{2}^{2}$ $= \frac{1}{3}gh\bar{g}^{1} : h \in H_{2}^{2}$ $= \frac{1}{3}gh\bar{g}^{1} : h \in H_{2}^{2}$
foi some 9 E G.
Theorem
-: If H is a subgroup of a group G and K is conjugate to H. then K is also subgroup of G.
K is conjugate to H. then Ki is also subgroup
Proof
K = gHq" = {ghq": h ∈ H}
$\underline{lot} \ a, b \in K$
then a = ghig', b=ghig' where hish, EH.
New 1-1 / 1 -17/1 -17
ab' = (gh, g')(gh, g')
$= (gh_1g')(gh_2'g')$
$= gh_1(g^1g)h_2g^{-1}$
$= qh_1eh_2^{-1}\bar{q}^{-1}$
$=$ $g n_1 n_2 g$
. h, h, ∈ H and H is substroup
: h, h, e H & h, h, = h, (say)
3 3 5 1 3 5 5 1
$-7 = 4^{\circ} = 9$
=> ab EK => . K is subgroup

Available online at http://www.MathCity.org

Theorem
- Let G be a group of finite order n then
-: Let G be a group of finite order n then order of a subgroup H and that of its conjugate K is same.
conjugate K is same.
3
Conjugate subgroups H and K are isomorphism.
Troots
Let H and K are two subgroups
where K is conjugate to H by 9
where K is conjugate to H by g . $K = gH\bar{g}' = 3gh\bar{g}' : h \in H$? Define a mappine
Define a mappino
i) then φ is onto
KEK is image of hell as k=ghg!
ii) q is me-one
$P(h_1) = \varphi(h_1)$
$=$ $k_1 = k_2$
$gh,\bar{g}'=gh,\bar{g}'$
$h_1 = h_2$
So no of element in H and K are equal.
So no of element in H and K are equal.
To prove φ(h,h2) = φ(h1) φ(h2) ie honomorphism
- (hrhz) = gh, h, g
$= (gh_1)(h_2g^{\dagger})$
$= (gh_1)\bar{g}^{\dagger}g(h_2\bar{g}^{\dagger})$
$= (gh, \bar{g}')(gh_2\bar{g}')$
$= \varphi(h_1) \cdot \varphi(h_2)$
= + momorphism
: q is bijective
: H and K are isomorphism.

Theorem
-: H and K are finite subgroups of a group
-: H and K are finite subgroups of a group 4 then each double coset Hak contains mn
number of elements.
where $O(H) = m$, $O(K) = n$ and $O(B) = q$
with Q = Hnaka
Proof:
so number of elements in Hak is also finite
so number of elements in Hak is also finite
Let Hak = {9, 92, 39r} = U {92}, r <n< td=""></n<>
then Haka = U. Egila's
Haka' = U ? 9i / a?
TO THE PROPERTY OF THE PROPERT
then each $g_i \bar{a}'$ is distinct . P: Hak > Haka' by that for $z' \neq j$ if $g_i \bar{a}' = g_j \bar{a}'$ by that haka'
but for 2 + j it 9;2 = 9;8 (hak) = haka
\Rightarrow $g_i = g_j$
$\Rightarrow HaK = HaK\bar{s}' $ (i)
Also let aka' = K then
number of elements in K, being conjugate
to K, is n
$ \text{Hark}\bar{a}' = \text{HK} $
= 1HI/K/I SIEDIK
HOK! HAK
m.n have 1HnK/=1Q1(say)
[0]
$= \frac{mn}{q} \qquad (ii) a = q (say)$
9
The state of the s
where Q = HNK = HNaKa
By is and (ii)

Theorem — Let H and K are subgroups of a group G, Hak is a double coset and Q = HMaka! Then there is one-one correspondence between the left coset of K in Hak and the left coset of Q in H. Proof. Let A be the collection of all left cosets hak of K in Hak and B be the collection of all
then there is one-one correspondence between the left coset of K in Hak and the left coset of Q in H. Proof. Let A be the collection of all left cosets hak
then there is one-one correspondence between the left coset of K in Hak and the left coset of a in H. Proof. Lot A be the collection of all left cosets hak
left coset of K in Hak and the left coset of a in H Proof. Let A be the collection of all left cosets hak
Proof. Let A be the collection of all left easets hak
Let A be the collection of all left cosets hak
of K in Hak and B be the collection of all
1.81
left cosets ha of a
Perfine a mapping of: A → B as follows: For each half € A we have a left coret
hQ of Q in H
$- e \varphi(haK) = hQ$
then φ is well define.
As hak = hak
⇒ hak = hak for k, k ∈ K
→ h'h = a k'k'a' 'E aka' as k'k' E K
→ hth ∈ Q
⇒ h ∈ h'Q, but h ∈ hQ
\Rightarrow hQ \subseteq h'Q
Similarly we can show
$ha \leq ha \Rightarrow ha = ha$
i.e $\phi(hak) = \phi(hak)$ So ϕ is well define. Also ha = hae \in hak $\phi(hak) = \phi(hak)$
so φ is well define Also ha = hae ∈ hak
= nah and nah aye
$\varphi(haK) = \varphi(haK)$ not disjoint $\Rightarrow hak = hak$
> Kha = a Also p is onto obviously
Correspondence between
So hh = aka : Q = HNaKal element of A and B
> ha = hak E hak

```
# Normal Subgroup
     def - Let H be a subgroup of a group G.
  If a Ha = H for a & G
 or a ha E H for h E H, a E G.
 then H is called normal subgroup.
 and we write HAG.
 Note:
    If ā'ha ∈ H then ā'ha=h, > ha=ah,
# Theorem
  Let G and H are two groups and q: G -> H
 is a homomorphism. Then ker & is a normal subgroup
  of G.
Proof
    let a, b e ker q
    \Rightarrow \Phi(a) = I_{H} and \Phi(b) = I_{H}
To prove kerop is a subgroup, we show that ab Ekerop.
    \varphi(ab') = \varphi(a) \cdot \varphi(b') : \varphi is homomorphism
        = I_{H} \cdot (\varphi(b))^{-1} \cdot \varphi(a) = I_{H}
              = I_H \cdot (I_H)^{-1}
⇒ ab' € ker o
  Let K E ker of
 to prove gkg' E ker P, g E G.
\varphi(gkg') = \varphi(g) \cdot \varphi(K) \cdot \varphi(g') = \varphi is homomorphism
        = \Phi(g) \cdot I_{H} \cdot \Phi(\bar{q}^{1})
             = \varphi(g) \cdot \varphi(\bar{g}^1)
             = \varphi(qq')
⇒ gkg' ∈ ker $
          > kerq is normal subgroup.
```

Theorem
-: If H and K are normal subgroup of G
with HNK = 3e}. Show that every element of H
commute with every element of K
Proof.
Let $h \in H$ and $k \in K$
then we have to prove hk = kh
For this we consider the element hkhlk!
As His normal subgroup of G.
\Rightarrow kh k' \in H for h' \in H, k \in K \subseteq G.
$- \Rightarrow h(kh^{1}k^{1}) \in H$ by closure law as $h \in H$.
or hkhiki E H
Also K is normal subgroup of G.
- > hkh'EK for KEK, hEHEG.
\Rightarrow (hkh') $k' \in K$ by closure law as $k' \in K$
$\Rightarrow hkh'k' \in K$
1 -1 -
- hkh'k'EH and hkh'k'EK
: hkhk CHNK - 3e?
⇒ hkh'k'=e
Companies and the second secon
=> hK = Kh proved
Corollary
ilet G los an abolian same than and
subgroup of G is normal in G.
Proof
Let H is a subgiroup of G.
G is abelian is ab = ba Y'a, b G G
\uparrow = $ah = ha \ \forall \ h \in H \ and \ a \in G$
$h = \bar{a} h a \in H$
Mence H is normal in G.

```
# Theorem 1
      -: Let H be a subgroup of a group G.
then following are equivalent.
 i) H is normal subgroup of G.
      gHg'= H for each q E G.
  ii) gH = Hg.
- Proof
_____(i) ⇒ (ii) ...
Let H is normal subgroup of G.
 then gHg' EH, g E G
   > qHq1 ⊆ H - (A)
If heH
                            : g'hg EH, g EG.
 h = (q\bar{q})h(q\bar{q})
 = q(\bar{g}hq)\bar{g}
  = ghgt EgHgt
 \Rightarrow H \leq 9 H\frac{1}{9} (B)
    from (A) and (B)
     gHg^{\dagger}=H
Now (ii) = (iii)
         ie gHg = H
   = ghg = h, h, h'e H
  or h = q^{\dagger}h^{\prime}q^{\dagger}
  For gh \in gH
gh = g(\bar{g}'hg)
           = (gg) hg = ehg.
             = kg & Hg
      → 9H ⊆ H9 --- (6)
        que si Hg ⊆gH = Hg
Likewise
```

9H = H9 \Rightarrow ghg' = h' \in H >> H is normal subgroup of group G. DR Let G be a group and H a subgroup of index two then H A G. Let H. be a subgroup of index two ie I has two distinct right (or left) coset in G. One of the two right coset is H=He and the other one is Ha then a & H : if a & H then Ha = H. Similarly one left west is H (= eH) and the - other left coset is a H By lagrange's theorem all right (or left) coset define a partition define a partition ie G = HUHa = HUAH and $H \cap H = a + D + = \varphi$ i.e each left coset is equal to right coset \Rightarrow ah = ah' for h, h' \in H and a \in G. $\Rightarrow ah\bar{a}' = h' \in H$ = ahā'e H → H △ G

Factor or Quotient Group.
Let H be a normal subgroup of a group
G. Consider a collection of all right cosets Ha
of Hin G.
ie Q = G/H = {Ha: a ∈ G}
is called the quotient group of G by H.
We define multiplication in Q by
For Ha, Hb E Q
Ha. Hb = Hab
This multiplication is well define
For ha EHa, hab EHb
we have $h_1ah_2b = h_1(ah_2)b$ $: H \triangle G$ $aH = Ha$
$= h_1(h_3 a)b \Rightarrow ah_2 = h_3 a \Rightarrow h_2 h_3 \in H$
$= (h_1h_3)(ab) \qquad \qquad$
= h, ab
→ Ha Hb = Hab
Also Q is évoup.
: i) Q is closed as Ha. Hb = Hab EQ
ii) Q is associative
Ha. (Hb. He) = Ha. Hbc
= Ha(bc) = H(ab)c
= Hab. He = (Ha. Hb). Hc
iii) H is identity of Q
: Ha.H = Ha.He = Hae = Ha
and H. Ha = He. Ha = Hea = Ha
iv) for $a \in G$ $\exists a' \in G$
such that Ha. Ha' = Haā' = He = H
also $H\bar{a}' \cdot H\bar{a} = H\bar{a}'\bar{a} = H\bar{e} = H$
=> 12 contain inverse of each right coset
: Q = 9/H = 3Ha: a 6 6}
is a quotient group

Theorem
-: let H be a normal subgroup of G and Q: G > G/H
is a mapping given by $\varphi(a) = Ha \ \forall \ a \in G$.
then & is epimorphism (homomorphism tonto) and ker = H.
Proof
· · · · · · · · · · · · · · · · · · ·
$\varphi(a) = H\dot{a}$, $a \in G$
_ i) P is well defined as
$a=b$, $a,b\in G$
Ha = Hb
$\Rightarrow \Phi(a) = \Phi(b)$
ii) P is onto as
Ha E G/H is an image of a E G under P.
iii) P is homomorphism?
$\Phi(a) \cdot \rho(b) = Ha \cdot Hb$
= Hab
$= \varphi(ab)$
i.e $\varphi(ab) = \varphi(a).\varphi(b) \Rightarrow \varphi$ is homomorphism.
-> P is epimorphism as it is onto & homomorphism.
→ P is epimorphism as it is onto & homomorphism. To prove ker P = H
→ P is epimorphism as it is onto & homomorphism. To prove ker P = H
→ P is epimorphism as it is onto & homomorphism. To prove ker P = H
\Rightarrow \Rightarrow is epimorphism as it is onto d homomorphism. To prove $\ker \varphi = H$ Let $a \in H \subseteq G$ $\varphi(a) = Ha$ \Rightarrow
→ P is epimorphism as it is onto & homomorphism. To prove ker P = H Let a ∈ H ⊆ G P(a) = Ha # H Then Ha = H = identity of Quotient group.
⇒ \$\$\text{\$\tex{
⇒ \$\P\$ is epimorphism \$\text{8s}\$ it is onto \$\P\$' homomorphism. To prove \(\key \P = \text{H} \) Let \$a \in \text{H} \subseteq \(\frac{}{} \) \text{P(\(\alpha\)} = \text{H} \) \text{# then } \$\text{H} \alpha = \text{H} \) \text{= identity of Quotient givoup} \text{\$\rightarrow\$ } \text{\$\rightarrow\$ \text{Evy} \(\rightarrow\$ \) \text{\$\rightarrow\$ } \text{\$\text{Evy} \(\rightarrow\$ \) \text{\$\rightarrow\$ } \text{\$\text{Q} \cdot \text{Output} \)
→ P is epimorphism as it is onto d' homomorphism. To prove ker P = H Let a ∈ H ⊆ G P(a) = Ha + H - identity of Quotient group ⇒ a ∈ ker P H ⊆ ker P Conversely, let a ∈ ker P
⇒ φ is epimorphism as it is onto & homomorphism. To prove ker φ = H Let a ∈ H ⊆ G φ(a) = Ha + H + H - identity of Quotient group ⇒ a ∈ ker φ ⇒ H ⊆ ker φ ⇒ Φ(a) = H Conversely, Let a ∈ ker φ
⇒ \$\Phi\$ is epimorphism as it is onto \$\phi\$ homomorphism. To prove \(\ker \Phi = H \) Let a \(\epsilon \) H \(\epsilon \) \(\text{when } a \(\epsilon \) H \(\epsilon \) H \(\epsilon \) \(\epsilon \) H \(\epsilon \) \(
⇒ \$\Phi\$ is epimorphism as it is onto \$\phi\$ homomorphism. To prove ker \$\Phi\$ = H Let a \$\infty\$ H \$\sigma \text{(a)}\$ = Ha. \$\phi\$ identity of Quotient givoup \$\Rightarrow\$ A \$\infty\$ \text{(a)}\$ = H Conversely, Let a \$\infty\$ ker \$\Phi\$ \$\Rightarrow\$ A(a) = H \$\Rightarrow\$ A \$\infty\$ A \$\infty\$ H \$\alpha\$ = H
→ \$\$\text{\$\ext{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{
⇒ \$\Phi\$ is epimorphism as it is onto \$\phi\$ homomorphism. To prove ker \$\Phi\$ = H Let a \$\infty\$ H \$\sigma \text{(a)}\$ = Ha. \$\phi\$ identity of Quotient givoup \$\Rightarrow\$ A \$\infty\$ \text{(a)}\$ = H Conversely, Let a \$\infty\$ ker \$\Phi\$ \$\Rightarrow\$ A(a) = H \$\Rightarrow\$ A \$\infty\$ A \$\infty\$ H \$\alpha\$ = H

```
# Ist Isomorphism theorem
  -: Let Q: G + G be an epimorphism then the
 quotient group G/K is isomorphic to G' = \varphi(G)
and K is ker P.
Proof:
    > + (9) = 9' for q ∈ G , g' ∈ G
Define a mapping & such that
     W: G/K -> G defined by
    Ψ(gK) = g' = φ(g)
                                             For each of EG
                                            17989 such
  then Y is well define
                                             that 9'=9(9)
   for g, g, e G > gK, g, K ∈ G/K
if 9K = 9K
  \Rightarrow K = \bar{q}'q, K
   > 9'9, E K
     \Rightarrow \varphi(q^{\dagger}q) = e'
                            · p is homomorphism
     \Rightarrow \varphi(g^1) \cdot \varphi(g) = e'
    \Rightarrow \varphi(g).\varphi(g').\varphi(g)=\varphi(g).e'
    \Rightarrow \varphi(gg') \cdot \varphi(g_i) = \varphi(g)
    \Rightarrow \varphi(e) \cdot g' = g'
     = e g = 9/
      \Rightarrow \Psi(g_1K) = \Psi(gK)
   > p is well define.
ii) For q' \in Q'
     g' = \varphi(g) and \varphi(g) = \Psi(gK)
     g' = \varphi(g) = \Psi(gK)
 i.e every element g'EG' is an image of gKEG/K
    => 4 is onto.
```

iii) y is one-one
As $\psi(gK) = \psi(g_1K)$
$\Rightarrow \varphi(g) = \varphi(g_1)$
$\Rightarrow \varphi(\bar{q}^1) \cdot \varphi(q) = \varphi(\bar{q}^1) \cdot \varphi(q_1)$
$\Rightarrow \varphi(\bar{q}'q) = \varphi(\bar{q}'g_1) := \varphi$ is homomorphism
$ \Rightarrow $
$\Rightarrow e' = \varphi(\bar{g} g_i)$ where $\varphi(e) = e'$
= q'q e K
gregk also gregk
$\Rightarrow gK = g_1K$
y is one-one
(iv) To prove y is homomorphism
for gk, g, K ∈ G/K
$\psi(gK,g,K) = \psi(gg,K)$ quotient group
= 9(991)
$= \varphi(g).\varphi(g_1) : \varphi is homomorphism$
$= \psi(gK). \psi(gK)$
- Dien dien
> 4 15 Momentor pros.
/hence $G/K \cong \varphi(G)$ or $G/K \cong G'$

Available online at http://www.MathCity.org

Discuss your problems at http://forum.mathcity.org

```
# Theorem
        Let 9: G De epimorphism then a subgroup
   H' of G is normal in G if, and only if, inverse
image H = φ'(H') = {h: h ∈ H, φ(h) = h', h' ∈ H'}
   is normal in G.
Proch
    Let H' be normal subgroup of G
   and H = P'(H') = $h: P(h) = h' E H'}
led heH, gea, to prove ghat EH
         \varphi(ghg^{\dagger}) = \varphi(g).\varphi(h).\varphi(g^{\dagger})
                 = φ(9)·φ(h)·(φ(9)) ∈ H : H is normal
   \Rightarrow \varphi(ghq^i) \in H'
         aha' ∈ φ(H') = H
    > H is normal subgroup of G
Conversely, Let H is normal subgroup of G. For hEH, g'E G consider the element g'hg"
  Let g' and h' are image of geG, heH
     \Rightarrow qhq = \varphi(q),\varphi(h),\varphi(q')
                 = P(ghq!) := P is homomorphism
      · HAG > ghaleH
                  > p(ghg¹) € H
            ie ghg-lett
           ⇒ H' & G'
```

Available online at http://www.MathCity.org

2nd Isomorphism Theorem
-: Let G be a group. H a subgroup and K
a normal subgroup of G then
i) HNK is normal subgroup of H
ii) HK is subgroup of G.
ii) H/HOK = HK/K
Proof.
i) To prove HOK is a normal subgroup
Let x E HOK
\Rightarrow x \in H and x \in K:
: K is normal subgroup
hxh' EK for heH = G
also hati EH h, x EH and H is subgroup.
→ hxh' e HNK
> HOK is normal subgroup
ii) & To prove HK is a subgroup
let x1, x, & HK
then $x_1 = h_1 k_1$, $x_2 = h_1 k_2$ for $h_1, h_2 \in H$, $k_1, k_2 \in K$
$\chi_1 \chi_2 = (h_1 k_1)(h_2 k_2)$
$= (h_1 k_1) (k_2 h_2) = h_1 (k_1 k_2) h_2$
= $h_1 k_3 h_2$ where $k_1 k_2 \in K$ $\Rightarrow k_1 k_2' = k_3 (say)$
$= h_1(h_1 h_1) k_3 h_z$
$= (h_1 h_2^{-1}) (h_2 k_3 h_2^{-1}) \in HK$
$= (h_1h_2^{-1})(h_2k_3h_2^{-1}) \in HK$ because $h_1h_2^{-1} \in H$ and $h_2k_3h_2^{-1} \in K$ as K is normal
$= (h_1 h_2^{-1}) (h_2 k_3 h_2^{-1}) \in HK$
$= (h_1h_2^{-1})(h_2k_3h_2^{-1}) \in HK$ $\Rightarrow HK \text{ is subgroup of } G$
$= (h_1h_2^{-1})(h_2k_3h_2^{-1}) \in HK$ because $h_1h_2^{-1} \in H$ and $h_2k_3h_2^{-1} \in K$ as K is normal \Rightarrow HK is subgroup of G . iii) To prove $H/HDK \cong HK/K$
$= (h_1h_2^{-1})(h_2k_3h_2^{-1}) \in HK$ because $h_1h_2^{-1} \in H$ and $h_2k_3h_2^{-1} \in K$ as K is normal. $\Rightarrow HK \text{ is subgroup of } G$ iii) To prove $H/HDK \cong HK/K$ Define a mapping
$= (h_1h_2^{-1})(h_2k_3h_2^{-1}) \in HK$ because $h_1h_2^{-1} \in H$ and $h_2k_3h_2^{-1} \in K$ as K is normal \Rightarrow HK is subgroup of G . iii) To prove $H/HDK \cong HK/K$

then \$\phi\$ is obviously well define and onto
Nav
$\varphi(h_1h_2) = h_1h_2 K$
= (h, K)(h, K) by multiplication (h, K)(h, K) in quotient group.
= $\varphi(h_1). \varphi(h_2)$ in quotient group.
ie P is homomorphism
By Ist isomorphism theorem 1 1st Isomorphism Th.
By Ist isomorphism theorem 1st Isomorphism Th.
Ker & P(H) P: G -> G is epimorphism
The H/Kerp = HK/K then. G/K = G
1.e G/. ~ P(G)
Now to prove $\ker \varphi = HOK$ i.e $G/\ker \varphi \cong \varphi(G)$
Let he Kero
⇒ $\varphi(h) = \chi$ K is identity of quotient
$\frac{1}{2} \frac{h K}{h} = \frac{1}{K} \frac{h}{h} $
$\begin{array}{c} \rightarrow & h \in K \text{also} h \in H \\ \rightarrow & h \in H \cap K \end{array}$
⇒ h ∈ Hn K
Now Let x & HAK
$\Rightarrow x \in H$ and $x \in K$
$\varphi(x) = x K \qquad \text{for } \omega$
$= K \qquad \qquad \times \in K$
> P(x) = K (identity of quotient éroup)
⇒ × € Key Ф
→ HNK = Kev & (iii)
From (ii) 2nd. (iii) Ker $\phi = HnK$
$-H/K \approx HK/K$
→ H/Hnk = HK/K
Q.E.D.

```
# 3rd Isomorphism Theorem -
          et H and K are two normal subaroups
of G with H \subseteq K then (G/H)/(K/H)
Proof
  _ Since H △ G and H ⊆ K
  ->- H_<u>A_K</u>
  To see K/H is normal in G/H.
for kH ∈ K/H and gH ∈ G/H
   (gH)kH(gH) = (gH)(kH)(g'H)
            = (gkH)(g^1H)
            = 9kg! H by multiplication of quotient erroup.
     · K & G ; gkg ∈ K
  so gkg'H E K/H
 > K/H = 9/H
 Define a mapping P: G/H -> G/K
        by φ(gH) = gK
then P is clearly ento
  Also (9, H 9, H) = p(9,9,H)
                  = 9,9,K
              = g, K. g, K
                  = \varphi(g,H), \varphi(g_2H)
   ⇒ P is homomorphism.
- p is epimorphism as it is onto and homomorphism,
by Ist isomorphism theorem if \Phi: G \to G is epimorp-

(G/H)/Ker \Phi \cong G/Z hism their

(G/Ker \Phi \cong G
```

To prove ker $\Phi = K/H$
Let 9H € Ker P
⇒ $\phi(gH) = K$ (identity of quotient group)
Also (9H) = 9K
→ gK = K
\Rightarrow g \in K
\Rightarrow gH \in K/H
\Rightarrow Ker $\phi \subseteq K/H$ — (1)
Now let $kH \in K/H$.
then $\varphi(kH) = kK$
= K (identix)
⇒ kH ∈ ker ₽
→ K/H ⊆ Ker p (ii)
From (i) and (ii)
$\ker \varphi = K/H$
·: (9/H)/ = 9/K
\Rightarrow $(G/H)/\cong G/K$
proved
· · · · · · · · · · · · · · · · · · ·

Available online at http://www.MathCity.org

```
# Endomorphism:
      defi- Let G be a group and a: G->G be
 homomorphism from G into G then & is called
endomorphism of G.
   The set of endomorphism of G is usually denoted
   as End(G) or E(G).
# Automorphism=
 def- Let G be a group and a: G > G be
homorphism, if the mapping a is bijective then
a is called automorphism.
le x: G + G is automorphism if
 i) a is homomorphism
      ii) a is bijective.
The set of all automorphism of G is usually
denoted by A(G) or Aut(G).
# Remarks.
    It can be easily seen that Aut (G) = End (G).
# Theorem:
    The set A(G) or aut (G) of all automorphism.
of GT is a group (under the composition of mappings)
 i) The let \alpha, \beta \in A(G), then since \alpha, \beta are
bijective mappinos, so their product (cosmposition) or B
is also bijective mapping
   and for g, g EG
       \alpha \circ \beta(9,9_1) = \alpha(\beta(9,9_2))
                  = a(p(g,)):a(p(g,)) : a is homo.
                    xop(91) · xop(92).
    \Rightarrow \alpha \circ \beta is homomorphism \Rightarrow \alpha \circ \beta \in A(G).
```

```
ii) Since mappings are associative in general
therefore associative property holds in A(G).
Define I: G \rightarrow G by I(g) = g \quad \forall \quad g \in G
            I(9,9,) = 9,9_1 = I(9,) \cdot I(9,)
  ⇒ I is homomorphism.
Also \alpha I(g) = \alpha o I(g) = \alpha (I(g)) = \alpha(g)
Similarly I\alpha = \alpha
 > I is identity of A(G).
iv) To prove for \alpha \in A(G) \exists \alpha \in A(G)
     ·· a: G > G is bijective
     : \(\vec{a}\): \(\vec{a} \to \vec{G} \to \vec{G} \) is also bijective.
      \alpha'(9_19_1) = \alpha'(I(9_19_1))
              = \alpha'(I(g_1).I(g_2))
            = \alpha^{-1}(\alpha \alpha^{-1}(q_1) \cdot \alpha \alpha^{-1}(q_2))
                 = \overline{\alpha} \alpha \left( \alpha (g_1) \cdot \overline{\alpha} (g_2) \right)
              = I(\bar{\alpha}'(g_1),\bar{\alpha}'(g_2))
               = \bar{\alpha}'(g_1), \bar{\alpha}'(g_1)
   \Rightarrow \alpha' is homomorphism \Rightarrow \alpha' \in A(G).
  i'e for each mapping in A(G) there exist
        inverse mapping in A(G).
     \Rightarrow A(G) is a group.
```

Lemma: (Conjugation es en automorphism)
-: Let G be a évoup, a & G, define a
mapping pa: G > G by
$\Phi_{a}(q) = a \cdot q a$
then Pa is automorphism
Proofe
- i) p is onto
- for $g \in G$, $a \in G$ we have $ag\bar{a}' \in G$ then g is image of $ag\bar{a}'$ under φ
$\therefore \Phi_{a}(ag\bar{a}') = \bar{a}'(ag\bar{a}')a$
$= (\bar{a} a) g (\bar{a} a)$
= 9
⇒ p is ento.
ii) 4 is one-one
$P_{a}(g_{1}) = \varphi_{a}(g_{2})$
$\Rightarrow a'g_1a = \overline{a'}g_2a$
⇒ 9, = 9,
iii) & is homomorphism
$4_{2}(9.9_{2}) = 4 \overline{2} 9.9_{2} 4$
$= \bar{a}'g_1(a\bar{a}')g_2a$
$= (\bar{a}, a) (\bar{a}, g, a)$
$= \varphi_a(g_1) \cdot \varphi_a(g_2)$
hence Pa is automorphism

```
# Inner and Outer automorphism
    definite set I(G) or Ino(G) of all
mapping of the type of = agai is called inner
automorphism of G.
     and the set which is not containing inner
 automorphism is called outer automorphism.
# Theorem
   The set I(G) of all inner automorphism
 of a group G is a normal subgroup of A(G).
Let \varphi_a, \varphi_b \in I(G)
then \varphi_a = aga^{\dagger}, \varphi_b = bgb^{\dagger}
Φ<sub>b</sub>· Φ<sub>b</sub>-1 (9) = Φ<sub>b</sub>( b'q (5'))
              = Pb(bgb)
              = b (b'gb) bt
         = (bb^{1}) g (bb^{1})
            = egel
              = P,
\Rightarrow \varphi_{b'} = (\varphi_b)^{-1}
Now let x = Pa, y = Pb
 x\bar{y}' = -Q_B(Q_B)^{-1}(Q)
    = P_8 P_{51}(9) = P_8(596)
   = a (b g b) a
= (ab^{-1}) q (ba^{-1})
       = (ab') q (ab')^{-1}
        = 4ab (G)
   → I(G) is a subgroup.
```

Let
$$\varphi_8 \in I(G)$$
, $\alpha \in A(G)$

Now

$$\propto \mathcal{Q}_{a} \, \bar{\alpha}'(g) = \alpha \mathcal{Q}_{a} (\bar{\alpha}'(g))$$

$$= \propto \left(2 \left(\overline{\alpha(g)}\right) \overline{a}^{1}\right)$$

$$= \alpha(a) \cdot g \cdot (\alpha(a))^{\frac{1}{2}} \cdot \alpha \text{ is bijective}$$

$$= \varphi_{\alpha(a)} \in I(G)$$

homa I(G) A A(G)

Available online at http://www.MathCity.org

- FSc
- **❖** BSc
- ❖ MSc/BS
- ❖ MPhil / MS
- ❖ PhD
- Old Papers / Entry Test
 - Check out all these at
- http://www.MathCity.org

Theorem
- let G be a group with c(G) as it contre
and I(G) the group of inner automorphism then
and I(G) the group of inner automorphism then G/C(G) is isomorphic to I(G). Proof:
Consider a mapping $\psi: G \to I(G)$
defined by
$\Psi(a) = \varphi_a \text{where } a \in G, \varphi_a \in I(G)$
3
if $a = b \Rightarrow \bar{a}' = b^{-1}$
$\Rightarrow ag = bg$
$\Rightarrow ags' = bgb'$
$\Rightarrow \frac{ags' = bgb'}{\varphi a} = \varphi_b$ $\Rightarrow \frac{\varphi a}{\varphi b} = \frac{\varphi b}{\varphi b}$
$\Rightarrow \psi(a) = \psi(b)$
ii) V is clearly mits
ii) Y is clearly onto as every Pa E I(G) is an image of a EG.
18 11 15 21 1112 07 2 2 3
iii) y is homomorphism as
$\Psi(ab) = \varphi_{ab}$
$= (ab) g (ab)^{-1}$
$= (ab)g(b^{1}a^{-1})$
$= a (bgb')a^{-1}$
$= a \left(\varphi_b \right) \bar{a}^{\dagger}$
= Pa(Pb) = PaOPb (composite fn)
= (a) (b) = P3 P2
$= \psi(a), \psi(b)$
,
> 4 is epimorphism as it is homomorphism and onto
Now By first isomorphism theorem : if 4: 4 > 4 is
$\frac{G}{\ker \varphi} \cong I(G)$ epimorphism then $\frac{G}{\ker \varphi} \cong G$
(Kox 0) = 4

Groups: Handwritten notes

To prove
$$\ker \Psi = C(G)$$
.

Solution $\operatorname{A} = \operatorname{A} = \operatorname{$

Available online at http://www.MathCity.org

Ask questions at http://forum.mathcity.org

- ❖ FSc
- ❖ BSc
- ❖ MSc / BS
- ❖ MPhil / MS
- PhD
- Old Papers / Entry Test
 - o Check out all these at
- http://www.MathCity.org

Theorem.
$=: \varphi: G \to G \text{ by } \varphi(x) = x^{-1} \text{ then } \varphi \text{ is}$
Proof. Proof.
Let G be abelian
$ \varphi(g_1g_1) = (g_1g_1)^{-1} $
$\frac{1}{9^{-1}} \frac{9^{-1}}{9^{-1}} \frac{9^{-1}}{1} \frac{1}{1} $
$= g_1^{-1} g_2^{-1} \qquad :: G \text{ is abelian}$
$\varphi(g_1) \cdot \varphi(g_2)$
⇒ P is homomorphism
P is onto because each g E G we have
$Q(\bar{g}') = (\bar{g}')^{-1} = g$
p is one-one
$\varphi(g_1) = \varphi(g_2)$
$97 = 91 \Rightarrow 91 = 92$
⇒ P is automorphism,
conversely, let op is automorphism
1 & P is hamomorphism
Conversely, let cp is automorphism i.e. P is homomorphism $P(9_19_2) = P(9_1) \cdot P(9_2)$
$(g_1g_2)^{-1} = g_1^{-1} g_2^{-1}$ $\Rightarrow g_2^{-1} g_1^{-1} = g_1^{-1} g_2^{-1}$
$(g_1g_2)^{-1} = g_1^{-1} g_2^{-1}$ $\Rightarrow g_2^{-1} g_1^{-1} = g_1^{-1} g_2^{-1}$
\Rightarrow $(9,9_2)^{-1} = (9,9_2)^{-1}$

```
# Commutator of a group
      def: Let G be a group end a, b E G
then the element x = aba b is called com
 commutator of G and we write [a, b] = aba'b'
# Theorem.
-: The following commutator results hold in G.
For a, b e G
i) [b, a] = [a, b]
 (i) [ab,c] = [a,b]

(ii) [ab,c] = [b,c]^{a} [a,c] [b,c]^{a} = a[b,c]a^{-1}
      =a \lceil b, c \rceil \overline{a}' \cdot \lceil a, c \rceil
 -iii) [a,bc] = [a,b][a,c]<sup>b</sup>
[a,b'] = [b,a]^{b'}, [a',b] = [b,a]^{a}
  [a,b][b,a] = (aba'b')(bab'a')
= ab\bar{a}'(b'b)ab'a'
   = ab(a|a)b|a|
      = a (bb^{-1}) \overline{a}^{-1}
i.e [b, a] is inverse of [a, b]
    \Rightarrow [a,b] = [b,a]
ii) [ab, c] = (ab)c(ab)^{-1}c^{-1}
= abcb[\bar{a}]\bar{c}
 = abe b'ele s'cl
          = a (bebel) a (acaci)
           = [b,c]^{a} [a,c]
                          proved.
[a,bc] = a(bc) \overline{a}(bc)^{-1}
= a bje ā ē b!
= abāļacā e b
  = aba'b'b aca'c'b'
```

```
= (ab\bar{a}'b')b(ac\bar{a}'\bar{c}')b'
   = [8, b][a, c]b proved.
(iv) [8, 6] = ab[\bar{a}](5)
    = , ab'a'b
     = b'bab'a'b
            = 6' (ba 5'ā') b
           = b^{-1} (bab^{-1}a^{-1})(b^{-1})^{-1}
          = [b,a]^{b'} proved
[a',b] = a'b(a')'b'
             = \underline{a}' \underline{b} \underline{a} \underline{b}'
     = a bab a's
             = a'(bab'a')8
             = \bar{a}' (bab | \bar{a}') (\bar{a}')^{-1}
            = [b,a]<sup>8</sup>
# Derive Group or Commutative subgroup.
def. Let G be a évoup and G be a subgroup.
of G. If G is generated by a set of commutators
then G is called derived group
              G' = \{x_1, x_2, \dots, x_n\}
Note: Product of two commutators may not be a commutator.
# Theorem:-
-: Let G be a group then
 i) the derived group & is a normal subgroup of G.
ii) The quotient group 6/6 is abdian.
iii) If K is normal subgroup of G such that G/K
is abelian them GEK.
Proef
      To prove GAG, Stet for geg
    g[a,b]g'=q(aba'b')g'
```

```
= (aG)(bG)(aG)'(bG)
= (8G')(6G')(8G')(6G')
  (abā'b') ( by multiplication of
  a,b
                            ab = ba
                      2 E H
```

Check out notes of other subjects at http://www.MathCity.org

```
# Direct Product of Groups
def: - Let H and K are two subgroups of a
group G we define the direct product of these
two groups by
         HxK = 3(h, k): heHAKEK?
 under multiplication
  (h_1, k_1) \cdot (h_1, k_2) = (h_1 h_2, k_1 k_2)
Note: Under multiplication HxK is a group with
identity (e, e') where e is identity of it and
e' is identity of K. And inverse of (h, k)
__is (h',k').
    -: Let a group G be a direct product of
its two normal subgroups H with HOK = 7e ?,
G = HK then
i) Every element of H is permutable (commute)
with every element of K
ii) Every element of G is uniquely expressible
as q = hk
Prople
Proof
    Consider an element hk h'k"
then khiki EH : AHAG
⇒ h(kh'k') € H ·· h ∈ H
 also bkhlek KKAG
                   : kiek
   > (hkh)k e K
    Te hkhiki e HMK = {e} (given)
    ⇒ hkh'k'=e
     \Rightarrow hk = kh
→ every element of H is permutable with every element of K.
```

ii) Let if possible, q has two expressions
ii) Let if possible, g has two expressions g = h.k. & g = h.k.
for hishzeH > kisk≥ € K
$h_1 \neq h_2 \rightarrow k_1 \neq k_2$
$\Rightarrow h_1 k_1 = h_2 k_2$
$\Rightarrow h_2 h_1 = k_2 k_1 \in K$ and 11
$\Rightarrow h_2 h_1 = k_2 k_1 \in H \cap K$
$\Rightarrow h_1 h_1 = e + k_2 k_1 = e$
$\rightarrow h_1 = h_2 & k_1 = k_2$
Which is a contradiction
nence g=h,k, is a unique representation.
iii) To prove G = HxK
Défine a mappine 9: G -> BRH HXK
by $\varphi(g) = (h, k)$
a) The mapping is well define as
- for 91 = 92
$\Rightarrow h_1 k_1 = h_2 k_2 \qquad \therefore G = HK$
$\Rightarrow h_1 = h_2 \Rightarrow k_1 = k_2$
$\Rightarrow \varphi(g_1) = \varphi(g_2)$
b) of is ento as
(h, k) E Hx K is image of g=hk E HK = 4
: (h, k) ∈ H×K
\Rightarrow h \in H, k \in K \Rightarrow hk \in HK
c) of is one-one
$\varphi(g_1) = \varphi(g_2)$
$\Rightarrow (h_1, k_1) = (h_2 > k_2)$

```
= 0 (h, k, h2 k2)
                  = \Phi\left(h_1\left(k_1h_2\right)k_2\right)
                  = 4 \left(h_1 \left(h_2 k_1\right) k_2\right)
                        φ(hiki) · φ(hzki)
                     homomorphism
                 isomorphism as it is
         G \cong H \times K
G is abelian group if H= se is derived
```

FSc

- **❖** BSc
- ❖ MSc/BS
- ❖ MPhil / MS
- ❖ PhD
- Old Papers / Entry Test
 - o Check out all these at
 - http://www.MathCity.org

```
# Lemma
    Let G be a direct product of two
Subéroup H and K and H, AH then prove that
H, △ G.
Proof
let h, EH, and g EG
 then g=hk for h ∈ H, k ∈ K
        -(hk)h+(k'h')
          = h (kh,) (k'h') ... h, EH, SH
          = h(h,k)(k'h') & H and K commute
     = hh(kk^{-1})h^{-1} element wis
           = hh, k' EH, HAH,
        H, A G proved.
+ heorem
  If G = Hx K then show that
       c(G) = c(H) \times c(K)
where C(4), C(H) and C(K) denotes centre of
 G. H and K respectively
Proof
   To prove c(H)x C(K) = c(G)
Let x ∈ C(H) x C(K)
  then x = Z_1 Z_2 where Z_1 \in C(H), Z_2 \in C(K)
let q=hk for hell, kEK, gEG
       9x = (hk)(z, z,)
         = h(kz_1)\overline{z_2}
            h (Z, K) ZL
```

```
= (hz,)(kz,
            z, (hz,) k
         = (z, z_2)(hk)
Now to prove c(G) < c(H) x c(K)
 in particular
        zh = hz, zk = kz k \in K \subseteq G
          (h'k') h = h'(k'h) = h'hk'
           = h'h > h'ec(H)
          WK' € C(H) x C(K)
        Z ∈ C(H) x C(K)
       C(G) \subseteq C(H) \times C(K)
 rom (i) and (ii)
        e(G) = e(H) \times e(K)
```

```
# Theorem
   -: If G = Hx K, then the factor group G/K is
  isomorphic to H.
 Proof.

G/K = \{gK = hkK = hK, h \in H\} : g = hk
 Define a mapping \varphi: G/K \to H by \varphi(gK) = \varphi(hK) = h
then P is well define as
            3,K = 9,K
       \Rightarrow h, K = h, K
      ⇒ h, h, K = K
       ⇒ hih, ∈ K but also hih, ∈ H
         > h2 h1 E HNK = {e} ----
         \Rightarrow h_1 h_1 = e \Rightarrow h_1 = h_2
    \Rightarrow \varphi(h,K) = \varphi(h,K)
  P. is onto and one one as
    for h ∈ H there is a coset hK ∈ G/K ie P(hK) = h
and \varphi(h,K) = \varphi(h,K)
      \Rightarrow h_{1} = h_{2}
\Rightarrow h_1K = b_2K
     4(9,K.g.K) = +(h,K.hzK)
         = \Phi(h, h, K)
           hiha
         = \psi(h,K). \psi(h,K)
       = \varphi(g,K) \cdot \varphi(g,K)
   ⇒ P is homomorphism
therefore G/K = H proved
```

```
# Lemma:
        H and K are cyclic groups of order m
 and n respectively, where m and n are relatively prime
then HXK is a eyelic group.
Proof
 H = \langle a : a^m = e \rangle
 K = \langle b : b^m = e \rangle
and element of HxK is of the form (a,b)
   for (a,b)^k = (a^k,b^k) = (e,e) iff m \mid k, n \mid k.
As m, n are relatively prime
  \Rightarrow mn | k
    As no of element in Hxk is mn
    (a,b)^{mn}=(a^{mn},b^{mn})
             = \left( \left( \mathbf{a}^{m} \right)^{m}, \left( \mathbf{b}^{n} \right)^{m} \right) = \left( \mathbf{e}, \mathbf{e} \right)
   ie H \times K = \langle (a,b) : (a,b)^{mn} = e \rangle
   => HxK is cyclic group of order mn.
# Invariant Subgroup
    - def:= let G be a group and φ: G→G is
endomorphism then an element q(g) = g is called
A subgroup H of G is fully invarient if under
all endomorphism \varphi(h) \in H or \varphi(H) \subseteq H
# Example:
Commutator subgroup G is fully invarient
Let [x,y] E G'
  \Phi([x,y]) = \Phi(xyx'y')
                    = \varphi(x) \cdot \varphi(y) \cdot \varphi(\overline{x}') \cdot \varphi(\overline{y}')
                    = \phi(x) \cdot \phi(y) \cdot (\phi(y))^{-1} [\phi(x), \phi(y)] \in G
        → G is fully invarient.
```

```
# Characteristic Subgroup:
      A subgroup H of G is characteristic subgroup
  if it remain fully invarient under all automorphism.
    ise for all he'H, for all P E Aut (G)
                \varphi(h) \in H or \varphi(H) = H.
# Question
     -: Centre of G is characteristic subgroup of G.
   Solution
     Let x \in C(G)
      \Rightarrow 9x = x9 \forall a \in G
   let φ: G → G be an automorphism
       \Phi(qx) = \Phi(rq)
    \Rightarrow \varphi(g) \varphi(x) = \varphi(x) \varphi(g)
   As g ∈ G ⇒ 9(g) ∈ G
    so 4(x) € C(G)
   > c(G) is characteristic.
# Question
    -: Every characteristic subgroup is normal.
  Solution:
Let H is a characteristic subgroup of G.
   then \varphi(H) = H \quad \forall \quad \varphi \in \operatorname{aut}(G)
  In particular
     Pg(H) = H : Pg is an inner automorphism.
    = 9Hq" = H
      > H is normal subgroup of a.
```

={ The End }=