

Predictive Analytics and Modelling of Data

CMSE11428 (2020-2021)

Dr Xuefei Lu

The University of Edinburgh Business School

Regression and Classification - Part I

Linear and logistic regression

Business School

Regression - simple linear regression

 $y = \beta_0 + \beta_1 x$ Varying the values β_0 and β_1 obtain different distances of the observations to the curve

A univariate linear regression model is to find a line in the two-dimensional space created by the single independent and dependent variable, which is closest to all data points. A straight line in two dimensions $y = \beta_0 + \beta_1 x$.

The equation that defines the simple linear regression model

$$y = \beta_0 + \beta_1 x + \epsilon$$

- The structural part of the model $y = \beta_0 + \beta_1 x$
- The error part of the model ϵ , captures the unexplained behaviour that is not attributed to the independent variable.

The goal of fitting a linear regression model is to estimate the two parameters, the slope β_1 and the intercept β_0 , that minimises the overall distance.

Regression - simple linear regression

Since we estimate β_0 and β_1 , we write the estimated regression line $\hat{v} = \widehat{\beta_0} + \widehat{\beta_1} x$

The values \hat{y} of the response variable returned by the estimated regression line are called the predicted (or fitted) values.

In general, \hat{y}_i differ from the actual observed values for the response (y_i) and the difference between the two are the so called residuals

$$e_i = y_i - \widehat{y}_i$$

We identify as the (estimated) linear relationship between y and x the particular line that fits the data at best. The approach usually adopted to find the "best-fit" line is called **the least squares method**.

The idea of least squares: among all possible lines that pass through the points in the scatterplot, the best one is the line that minimizes the sum of squared residuals (which represents a measure of the overall prediction error):

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i))^2$$

Regression - simple linear regression

Example:

If we the relation between supply (s) and demand (d) is

$$d = 10 - 2s$$

And we find in linear regression $\widehat{\beta}_0 = 10$ and $\widehat{\beta}_1 = 2$, we can predict that a supply of 5 results in a demand of 0. The slope indicates that for every 1 unit increase in supply, the demand will decrease with 2.

- The main: the relationship between the independent and dependent variable is linear.
- One may include higher order relationships.
- In practice, sometimes transformations such as **log transformations** can make the data suitable for finding a linear relationship.

Linear regression

Please watch the video through this <u>link</u>:

https://media.ed.ac.uk/media/Linear+Regression/1_v9yj8lq9/117185481

Regression - Logistic Regression

- Logistic regression is used for binary classification, meaning its output predictions $y \in \{0,1\}$. It models the probability of the occurrence of an event.
- Assume the chance of an event occurring is p, consider the ratio between the event occurring over the event not occurring: $\frac{p}{1-n}$, also called the odds.
- The **logit transformation** of p is the logarithm of the odds for the event

$$log(\frac{p}{1-p})$$

• The logistic regression model models the log odds of the event occurs (y=1) as a linear function of the predictors

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$$

typically the natural log, ln, is used.

Regression - Logistic Regression

- Consider calculate whether someone is going to buy a product given a particular price x. We would calculate the log odds of it being bought $log(p/(1-p)) = \beta_0 + \beta_1 x$
- To calculate the actual probability of a customer buying the product

$$\frac{p}{1-p} = \ln(e^{\beta_0 + \beta_1 x})$$

• So

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

- A decision rule is required: e.g. $>0.5 \rightarrow$ the event happens
- Finding the best parameters β_0 and β_1 means maximising/optimising the log odds of the function.

If $\beta_1 > 0 \implies$ the log odds increase with an increase of x; then the probability increases with x (as $e^{-\beta_1 x}$ is larger than 1 and subtracts of the denominator).

Now please study the file: 18 - modelling_linear_and_logistic_regression.ipynb

Activity: Linear and logistic regression

Q1. Which two of the following statements are true?

- A. Linear regression requires numeric inputs and continuous outputs.
- B. Linear regression requires numeric inputs and discrete outputs.
- C. Logistic regression requires numeric inputs and continuous outputs.
- D. Logistic regression requires numeric inputs and continuous outputs.

Q2. What makes a logistic regression a classification algorithm?

- A. Using probabilities
- B. Using a decision function
- C. Using a sigmoid function
- D. None of the above

Q3. Which of the following statements are correct?

- A. The steeper the slope, the stronger the impact of the independent variable on the dependent
- B. The flatter the slope, the stronger the impact of the independent variable on the dependent
- C. The direction of the relationship is determined by the intercept.
- D. The distance between observations is measured by the intercept.

Q4. Why do we use the sigmoid function?

- A. Because it is the best way to model the log transform of odds
- B. Because it has a 0/1 outcome
- C. Because its shape forces outcomes to the edges of its range
- D. None of the above

Research & Discussion

Try to find papers or Real-life applications that discuss linear and logistic regression.

Please summarise your findings into a succinct and descriptive summary which you will share in the discussion area.

Think about the following two questions as you share your thoughts:

- How where the results measured and visualised?
- Did other techniques perform significantly better?

Datasets and problem scenario

Please watch the video through this link:

https://media.ed.ac.uk/media/Dat asets+and+Problem+Scenario/1_1n u58b46/117185481

You will explore two datasets that were covered in the previous video.

- CS_Purchase_data.csv
- CS_Customer_data.csv

Before start modelling, you should think about the problem description and the following research question: can we obtain a well-performing predictive model that predicts the purchase size of a customer?

Have a first look at the data (in Python, Excel, R, whatever suits you), and check all steps we have performed before:

- pre-processing
- transformation
- normalisation

Brainstorm the various actions that you believe are necessary before modelling can begin. Then, think about what predictive model would be best suited for this.

Homework: Complete the modelling process

You will now implement the complete modelling process in three parts; starting with preprocessing, next transformation and finally modelling.

This activity is all about transforming variables into the correct format, preparing datasets and feeding data into a model to get answers.

- 19 A1 Assessment_pre_proces_complete_the_modelling_process_solution.ipynb + CS_Purchase_data.csv + CS_Customer_data.csv
 - → Save your result in a file called 'CS_pre_processed_data.csv', which will be used for the next activity A2
- 2. 20 A2 Assessment_trans_complete_the_modelling_process.ipynb + CS_pre_processed_data.csv(from A1)
 - → Save your result in a file called 'CS_transformed_data.csv', which will be used for the next activity A3
- 3. 21 A3 Assessment_model_complete_the_modelling_process.ipynb + CS_transformed_data.csv(from A2)

Activity: More on the datasets

