9 - Recursion

A procedure that directly or indirectly calls itself. It has two properties:

- must have base criteria.
- each time it must be closer to the base criteria.

Example:

- Factorial:
 - if n = 0, then n! = 1.
 - if n > 0, then $n! = n \times (n-1)!$.
- Fibonacci Sequence:
 - if n = 0 or n = 1, then $F_n = n$.
 - if n > 0, then $F_n = F_{n-1} + F_{n-2}$.

Divide and Conquer Algorithm

Partitions S into smaller sets such that the solution of the problem P for S is reduced to the solution of P for one or more of the smaller sets. [here, S is the set of input data]

Example: Binary Search, Merge Sort, Quick Sort.

Ackermann Function

Definition:

- If m = 0, then A(m, n) = n + 1.
- If $m \neq 0$ but n = 0, then A(m, n) = A(m 1, 1).
- If $m \neq 0$ and $n \neq 0$, then A(m,n) = A(m-1,A(m,n-1)).

Properties:

- Highly recursive, not primitive recursive.
- Extremely fast growth.
- Demonstrates the power of recursion.
- Very large result for small input.

Tower of Hanoi

Algorithm:

- 1. If N = 1, then:
 - 1. Write: $BEG \rightarrow END$.
 - Return.
- 2. Call TOWER(N-1, BEG, END, AUX).
- 3. Write: $BEG \rightarrow END$.
- 4. Call TOWER(N-1, AUX, BEG, END).
- return.

Is it divide-and-conquer algorithm?

Yes, the solution for n disk is reduced to a solution for n-1 disks and a solution for n=1 disk.