]	Laboratoriu	n Elektroni	ki	
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	
Informatyka	_	I	L6	
Temat Laboratorium			•	Numer lab.
	Tranzystor MOS	S		6
Skład grupy ćwiczeniowej oraz numery indel	csów			•
Maciej Kaszkowiak (1.	51856), Dawid <mark>J</mark> ędra	szczyk(148293), Mie	chał Kalinowski(151	758)
Uwagi			Ocena	

1 Cel

Celem zajęć było zapoznanie się z tranzystorami polowymi pMOS oraz nMOS. Naszym zadaniem od strony teoretycznej było zrozumienie działania podanych tranzystorów, ich zastowosowania i różnic między nimi. Natomiast od strony praktycznej zajęliśmy się tworzeniem podstawowych układów elektoronicznych składających się z między innymi: tranzystora, rezystancji oraz diody, wyznaczaniem napięć w układzie, pobudzaniem układów róznymi sygnałami i częstotliwościami.

2 nMOS

2.1 Charakterystyka bramkowa nMOS

Zbudowaliśmy następujący układ na płytce prototypowej:

Rysunek 1: Układ służący do zmierzenia charakterystyki bramkowej.

Uzyskaliśmy następujące pomiary:

Tablica 1: Pomiary prądu drenu w zależności od napięcia Bramka - Źródło

Napięcie Bramka - Źródło [V]	Prąd drenu [mA]
0.00	22.00
0.65	21.22
1.10	20.38
1.61	19.33
2.15	20.73
2.18	21.77
2.23	24.46
2.29	30.22
2.38	48.00
2.54	111.00
2.61	152.00
3.10	160.16
5.11	160.50

Napięcie progowe U_{th} tranzystora BS170 zgodnie z notą katalogową należy do przedziału od 0.8 do 3V. [1] Typowe napięcie progowe wynosi 2.1V, natomiast drogą pomiarów ustaliliśmy napięcie progowe w okolicach wartości 2.2V.

Rysunek 2: Napięcie progowe tranzystora nMOS z naniesionym typowym napięciem progowym.

Wniosek: aby tranzystor nMOS zaczął przewodzić prąd, napięcie bramki względem masy musi osiągnąć wartość większą od napięcia progowego. [2] W naszym konkretnym przypadku napięcie musi być w przybliżeniu wyższe niż 2.2V.

2.2 Charakterystyka drenowa nMOS

Zbudowaliśmy następujący układ na płytce prototypowej:

Rysunek 3: Układ służący do zmierzenia charakterystyki drenowej.

Uzyskaliśmy następujące pomiary:

Napięcie na zasilaczu[V]	U_ds [mV]	I_d [mA]
1	17.5	0.982
2	35.4	2
3	53.1	2.95
4	71	3.94
5	89	4.92
6	107.3	5.9
7	125.5	6.88
8	143.9	7.86
9	163	38.84
10	182	9.91

Tablica 2: Prąd drenu względem napięcia dren - źródło.

Rysunek 4: Prąd drenu względem napięcia dren - źródło.

Zmodyfikowaliśmy powyższy układ w celu wyznaczenia charakterystyki drenowej dla obniżonego napięcia bramki:

Rysunek 5: Układ służący do zmierzenia charakterystyki drenowej dla obniżonego napięcia bramki.

Uzyskaliśmy następujące pomiary:

Napięcie na zasilaczu[V]	U_ds [mV]	I_d [mA]
1	15.5	0.892
2	28.4	1.84
3	41	2.77
4	63	3.76
5	76	4.72
6	89.4	5.72
7	113.5	6.69
8	126.8	7.66
9	149.2	8.63
10	167.3	9.72

Tablica 3: Prąd drenu względem napięcia dren - źródło przy obniżonym napięciu bramki.

Rysunek 6: Prąd drenu względem napięcia dren - źródło przy obniżonym napięciu bramki.

Możemy przedstawić powyższe wyniki na wspólnym wykresie:

Rysunek 7: Prąd drenu względem napięcia dren - źródło w zależności od napięcia bramki.

Wniosek: Wraz ze wzrostem napięcia na bramce zwiększa się prąd drenu I_d i napięcie źródła U_ds. Obie te wartości rosną liniowo.

Napięcie progowe U_{th} tranzystora BS170 zgodnie z notą katalogową należy do przedziału od 0.8 do 3V. Typowe napięcie progowe wynosi 2.1V, natomiast drogą pomiarów ustaliliśmy napięcie progowe w okolicach wartości 2.2V.

2.3 Tranzystor nMOS jako przełącznik

Zbudowaliśmy następujący układ na płytce prototypowej:

Rysunek 8: Układ służący do badania tranzystora nMOS w roli przełącznika

Następnie zmodyfikowaliśmy powyższy układ w celu wprowadzenia opóźnienia wyłączania:

Rysunek 9: Układ służący do pokazania opóźnienia wyłączenia.

Dany układ działa jak wyłącznik czasowy, czyli kiedy dokonamy chwilowego zwarcia wyprowadzeń A-A i przestaniemy to układ będzie działał jeszcze chwile, aż do wyczerpania kondensatora. Po jego wyczerpaniu bramka się zamknie tworząc dziure w obwodzie. W praktyce można go na przykład wykorzystać w klatkach schodowych w lampie, która po wejściu mieszkańca pali się jeszcze przez określony czas albo w zamku drzwi, który otwiera się na określony czas po wpisaniu kodu.

2.4 Czas załączania tranzystora nMOS

Zbudowaliśmy następujący układ na płytce prototypowej:

Rysunek 10: Układ służący do zbadania jasności diody LED w zależności od wypełnienia sygnału PWM.

Ustawiliśmy częstotliwość pobudzenia 3kHz. Zmieniając wypełnienie sygnału PWM mogliśmy zaobserwować, że większe wypełnienie sygnału sterującego przekładało się na większą jasność świecenia diody LED.

Rysunek 11: Oscylogram dla małego stopnia wypełnienia sygnału.

Rysunek 12: Oscylogram dla dużego stopnia wypełnienia sygnału.

Następnie ustawiliśmy częstotliwość pobudzenia na poziom 1.25*MHz*. Przy pomocy oscyloskopu ustaliliśmy, że wartość opóźnienia w przełączeniach tranzystora BS170 wynosi 88*ns*.

Rysunek 13: Oscylogram przedstawiający opóźnienie w przełączeniach tranzystora.

3 pMOS

3.1 Charakterystyka bramkowa pMOS

Zbudowaliśmy następujący układ na płytce prototypowej:

Rysunek 14: Układ służący do zmierzenia charakterystyki bramkowej.

Uzyskaliśmy następujące pomiary:

Tablica 4: Prąd drenu w zależności od napięcia na zasilaczu V1.

Napięcie na zasilaczu V1 [V]	Prąd drenu [mA]
0.8400	5.0500
1.4000	5.0500
2.1000	5.0500
2.6400	5.0520
3.1200	4.0570
3.4000	3.2000
3.5000	2.1000
3.9000	0.1600
4.2000	0.0000
4.3000	0.0000
4.6000	0.0000
5.0000	0.0000

Zgodnie z prawem Kirchoffa ustaliliśmy, że:

$$U1 = 5V \tag{1}$$

$$U2 = 0..5V \tag{2}$$

$$Ugs = U2 - U1 \tag{3}$$

Uzyskana zależność przedstawia się następująco:

Rysunek 15: Napięcie progowe tranzystora pMOS z naniesionym typowym napięciem progowym.

Napięcie progowe U_{th} tranzystora 2N7000 zgodnie z notą katalogową należy do przedziału od -3V do -0.8V. [3] Typowe napięcie progowe wynosi -2.1V, natomiast drogą pomiarów ustaliliśmy napięcie progowe w okolicach wartości -2.6V.

3.2 Charakterystyka drenowa pMOS

Zbudowaliśmy następujący układ na płytce prototypowej:

Rysunek 16: Układ służący do zmierzenia charakterystyki drenowej.

Otrzymaliśmy następujące pomiary:

Tablica 5: Wartość prądu drenu w zależności od napięcia drenu

Napięcie Dren - Źródło [V]	Prąd drenu [mA]
-1.1000	0.5100
-2.2000	1.4920
-3.1440	2.4300
-4.2500	3.5300
-5.1350	4.4620
-6.2300	5.6400
-7.2100	6.8920
-8.0100	8.2120
-9.9450	9.1230
-10.0230	10.2170

Zmodyfikowaliśmy powyższy układ w celu wyznaczenia charakterystyki drenowej dla obniżonego napięcia bramki:

Rysunek 17: Układ służący do zmierzenia charakterystyki drenowej dla obniżonego napięcia bramki.

Tablica 6: Wartość prądu drenu w zależności od napięcia drenu

Napięcie Dren - Źródło [V]	Prąd drenu [mA]
-1.1230	0.0000
-2.2300	0.0000
-3.1200	0.0000
-4.3200	0.0000
-5.2600	0.0000
-6.7300	0.0000
-7.2100	1.7200
-8.1800	8.2200
-9.2560	9.2930
-10.1980	10.2530

Zależność wartości prądu drenu od napięcia Dren - Źródło

Wniosek: wyższe napięcie bramka - źródło powinno spowodować wzrost napięcia progowego dren - źródło, przy którym wartość prądu powinna gwałtownie się zmienić. Niestety nie zaobserwowaliśmy tego drogą pomiarów ze względu na źle przeprowadzone pomiary. Wniosek wysunęliśmy na podstawie zasymulowania układu.

4 Wnioski

Zaznajomiliśmy się z różnicami w budowie i zastosowaniu między podanymi tranzystorami, np. warunków koniecznych, żeby przez tranzystory płynął prąd.Poznaliśmy definicje prądu drenu, nasycenia oraz odcięcia. Zauważyliśmy różnice w zachowaniach tranzystorów pMOS i nMOS dla różnych napięć, sygnałów i częstotliwości.

Spis treści

1	Cel	1
2		1 1 2
	2.3 Tranzystor nMOS jako przełącznik	6 6
3	pMOS 3.1 Charakterystyka bramkowa pMOS	9 9 11
4	Wnioski	12
Li	iteratura	
[1]	O. Semiconductor, <i>Nota katalogowa tranzystora nMOS BS170</i> . ON Semiconductor, 2010. [Online Available: https://www.farnell.com/datasheets/2304244.pdf	e].
[2]	E. AISBERG, <i>Tranzystor ależ to bardzo proste</i> . Wydawnictwo Naukowo Techniczne, 1969. [Online Available: https://docer.pl/doc/s0115x	e].

[3] O. Semiconductor, Nota katalogowa tranzystora pMOS 2N7000. ON Semiconductor, 2019. [Online].

Available: https://www.onsemi.com/pdf/datasheet/nds7002a-d.pdf