WHAT IS CLAIMED IS:

1. A method of minimizing detectability of an electronically communicated message, comprising:

establishing a nominal transmission frequency;

establishing a dwell period;

defining a predetermined frequency modulation pattern about the nominal transmission frequency, the predetermined frequency modulation pattern being suitable to vary the nominal transmission frequency during the dwell period:

dividing the dwell period into a plurality of sub-dwell periods, where each sub-dwell period has a nominal sub-frequency assigned thereto according to the predetermined frequency modulation pattern;

randomly ordering the plurality of sub-dwell periods and the respective assigned nominal sub-frequencies; and

transmitting the message according to the random ordering of the nominal sub-frequencies.

2. The method of claim 1, further including:

for each randomly ordered nominal sub-frequency, varying the nominal sub-frequency during the respective sub-dwell period by one of increasing and decreasing the nominal sub-frequency; and

transmitting the message at frequencies by which each randomly ordered nominal sub-frequency has been increased or decreased.

3. The method of claim 2, further including:

increasing a time that the transmitted frequency transitions from one randomly ordered nominal sub-frequency to a next randomly ordered nominal sub-frequency.

4. The method of claim 1, further including applying a band-limiting filter to each randomly ordered nominal sub-frequency..

- 5. The method of claim 1, wherein the nominal transmission frequency is one of a plurality of frequency hops of a frequency hopping strategy, and wherein the dwell period is an amount of time the frequency hopping algorithm is configured to maintain the one of the plurality of frequency hops.
- 6. The method of claim 1, wherein the random ordering of the nominal sub-frequencies is performed using a pseudo-random number generator.
- 7. The method of claim 1, wherein the predetermined frequency modulation pattern is a frequency jitter pattern that includes at least one of a frequency increase and a frequency decrease during the dwell period.
- 8. The method of claim 1, wherein the predetermined frequency modulation pattern is a frequency chirp characterized by one of an increase and a decrease in frequency during the dwell period.

9. A method of minimizing detectability of a message transmitted by a frequency hopping algorithm, the method comprising:

establishing a nominal frequency suitable for transmitting the message during a dwell period according to the frequency hopping algorithm;

defining a predetermined frequency modulation pattern about the nominal frequency, the predetermined frequency modulation pattern being suitable to vary the nominal frequency during the dwell period;

dividing the dwell period into a plurality of sub-dwell periods, where each sub-dwell period has a nominal sub-frequency assigned thereto according to the predetermined frequency modulation pattern;

rearranging a sequence of the plurality of sub-dwell periods and the respective assigned nominal sub-frequencies during the dwell period;

for each rearranged nominal sub-frequency, varying the nominal sub-frequency during the respective sub-dwell period by one of increasing and decreasing the nominal sub-frequency; and

transmitting the message at frequencies by which each rearranged nominal sub-frequency has been increased or decreased.

10. The method of claim 9, further including:

increasing a time that the transmitted frequency transitions from one rearranged nominal sub-frequency to a next rearranged nominal sub-frequency.

11. The method of claim 9, further including: applying a band-limiting filter to each rearranged nominal sub-frequency.

12. The method of claim 9, wherein the rearranging of the nominal sub-frequencies and the respective nominal sub-frequencies is performed using a pseudo-random number generator.

- 13. The method of claim 9, wherein the predetermined frequency modulation pattern is a frequency jitter pattern characterized by at least one of a frequency increase and a frequency decrease during the dwell period.
- 14. The method of claim 9, wherein the predetermined frequency modulation pattern is a frequency chirp characterized by one of an increase in frequency and a decrease in frequency during the dwell period.
 - 15. A method of electronically transmitting a message, comprising: establishing a nominal transmission frequency; establishing a dwell period;

defining a predetermined frequency modulation pattern about the nominal transmission frequency, the predetermined frequency modulation pattern being suitable to vary the nominal transmission frequency during the dwell period;

dividing the dwell period into a plurality of sub-dwell periods, where each sub-dwell period has a nominal sub-frequency assigned thereto according to the predetermined frequency modulation pattern;

rearranging a sequence of the plurality of sub-dwell periods and the respective assigned nominal sub-frequencies according to a pseudo-random algorithm; and

transmitting the message according to the rearranged ordering of the nominal sub-frequencies.

16. The method of claim 15, further including:

for each randomly ordered nominal sub-frequency, varying the nominal sub-frequency during the respective sub-dwell period by one of increasing and decreasing the nominal sub-frequency; and

transmitting the message at frequencies by which each randomly ordered nominal sub-frequency has been increased or decreased.

17. The method of claim 16, further including:

increasing a time that the transmitted frequency jumps from one randomly ordered nominal sub-frequency to a next randomly ordered nominal sub-frequency, wherein the increasing is accomplished by applying a band-limiting filter to the transmitted frequency.

- 18. The method of claim 15, wherein the nominal transmission frequency is one of a plurality of frequency hops of a frequency hopping strategy, and wherein the dwell period is an amount of time the frequency hopping algorithm is configured to maintain the one of the plurality of frequency hops.
- 19. The method of claim 15, wherein the predetermined frequency modulation pattern is a frequency chirp characterized by one of an increase in frequency and a decrease in frequency during the dwell period.