Caracterização do efeito fotoelétrico e determinação experimental da constante de Planck

A. C. M. Padilha, F. Marques, M. D. T. V. Steinkirch, e R. A. Tubero Instituto de Física da Universidade de São Paulo (Data: 27 de novembro de 2006)

O efeito fotoelétrico é um importante fenômeno que prova a quantização da matéria e que, hoje, tem grande aplicação no dia-a-dia. O presente experimento propõe a sua caracterização por meio da espectroscopia aplicada a lâmpadas de descarga de mercúrio (para cada uma das cinco cores obtidas a partir de suas decomposições: amarela, verde, azul, violeta, ultravioleta). Utilizando-se um sistema automatizado de aquisição de dados, constituído de um conversor analógico-digital e um software, obtiveram-se as curvas de corrente fotoelétrica em função da tensão aplicada para cada uma das linhas espectrais de uma rede de difração. E, por meio de três métodos: intersecção de dois ajustes lineares, desconsideração das correntes de fundo e de anodo e extrapolação da corrente positiva, obteve-se valores experimentais para constante de Planck, sendo que o valor obtido mais próximo do valor aceito foi o do segundo método, $h=7,18(145)\cdot 10^{-34} {\rm J}\cdot {\rm s}$, e para função-trabalho do metal, sobre o qual incidiam os fótons, $\phi_c=1,27(57){\rm V}$. Por fim, foi possível também obter-se evidências da instantaneidade do efeito fotoelétrico, da dependência da energia cinética dos fotoelétrons com freqüência da radiação incidente, e também, da existência de correntes espúrias, provenientes da parte eletrônica do aparato.

I. INTRODUÇÃO

Em 1887, ao estudar a produção de descargas elétricas entre duas superfícies submetidas a uma diferença de potencial, H. Hertz observou que uma faísca proveniente de uma superfície gerava uma faísca secundária na outra. A fim de visualizar melhor esta segunda, ele construiu uma proteção sobre o sistema para evitar a dispersão da luz. Isso porém ocasionou uma diminuição na faísca secundária, levando-o à observar que descargas elétricas ocorriam mais facilmente quando se fazia incidir luz ultra-violeta sobre o sistema. Tratava-se do efeito fotoelétrico. Dois anos mais tarde J. J. Thomson postulou que esse fenômeno se devia a emissão de elétrons. E, assim, demonstrou experimentalmente que o valor da razão $\frac{e}{m}$ das partículas emitidas no efeito fotoelétrico era o mesmo que para os elétrons associados aos raios catódicos [1]. A explicação do efeito fotoelétrico veio em 1905, com o modelo proposto por A. Einstein, no qual um quantum de luz (fóton) transfere toda a sua energia a um único elétron (figura 1). Tal energia é dada por (1).

$$E = h\nu \tag{1}$$

onde h é a constante de Planck e ν é a frequência da luz.

No interior do metal, os elétrons estão presos com uma energia $e\phi$, onde ϕ é denominado função trabalho, e que representa a energia necessária para que um elétron seja ejetado até atingir sua superfície. Dessa forma, se a frequência da luz é tal que

$$h\nu \ge e\phi$$
 (2)

é possível a ejeção de elétrons. Porém, se

Figura 1: Ilustração do efeito Fotoelétrico.

$$h\nu < e\phi$$
 (3)

o efeito é impossível, já que a probabilidade de que um elétron absorva dois fótons simultaneamente é mínima. Finalmente, o excesso de energia dos quanta torna-se energia cinética do elétron, e, dessa forma, Einstein propôs a equação (4).

$$E_{cin} = h\nu - e\phi \tag{4}$$

A teoria de Einstein, com o conceito de fóton, rompeu com a visão da luz com um caráter unicamente ondulatório e gerou um grande impacto, uma vez que um mesmo fenômeno (a luz) passava a ter duas explicações até então excludentes, conforme a comparação a seguir.

Na Teoria Clássica (Ondulatório):

- Não existe limite para a energia cinética máxima dos elétrons.
- A energia cinética dos elétrons dependeria da intensidade da luz incidente.

- Existiria um tempo de absorção de energia pelo elétron.
- O efeito ocorreria independente da freqüência da luz.

Na Teoria Quântica:

- Existe energia cinética máxima igual a eV_0 . A energia máxima dos elétrons ejetados é independente da intensidade da fonte, já que o aumento da intensidade da fonte significa aumento do número de fótons que incide sobre a superfície metálica por unidade de tempo. Como conseqüência, um número proporcionalmente maior de elétrons é emitido pela superfície (aumenta a corrente fotoelétrica), mas a energia máxima de cada elétron continua sendo a mesma.
- Energia cinética independe da intensidade da luz. Come pode ser visto na equação (4).
- Não existe tempo mínimo para absorção de energia, ocorre instantaneamente. Mesmo para intensidades baixas da luz, como a energia de cada fóton é muito pequena, um grande número de fótons incide sobre a superfície, ejetando elétrons imediatamente.
- Depende da frequência de radiação incidente, já que existe frequência de corte, onde, abaixo dela, não ocorre o efeito fotoelétrico. Se a frequência da radiação for tal que a energia dos fótons seja menor do que $e\phi/h$, nenhum elétron terá energia suficiente para escapar do metal.

Hoje em dia, o efeito fotoelétrico é empregado, por exemplo, em tecnologia: em visores noturnos (sensíveis à radiação infra-vermelha), fotômetros, dispositivos para a abertura de portas e muitos outros [2]. Assim, fica aparente a relevância e os objetivos do presente experimento, que consistiu em realizar a observação dos fenômenos que comprovassem o caráter quântico da luz, através da verificação experimental das equações de Einstein para o efeito fotoelétrico.

Um esquema simplificado da aparelhagem utilizada no estudo do efeito fotoelétrico pode ser visualizado na figura 2. Quando a luz incide sobre a fotocélula em C (catodo), ocorre a emissão de elétrons pela superfície. Se alguns destes elétrons atingirem o anodo A, haverá uma corrente no circuito externo. O número de elétrons emitidos que atingem o anodo, pode ser aumentado ou diminuído fazendo-se o anodo mais positivo, ou mais negativo, em relação ao catodo.

Sendo aplicada uma tensão V entre C e A e sendo medida a corrente I pelo microamperímetro A, um gráfico da corrente fotoelétrica em função da tensão aplicada pode ser construído. A tensão é dita possitiva quando o coletor A tem um potencial maior que a superficie fotoelétrica C. Espera-se que a curva de I em função de V seja da forma da figura 3.

Figura 2: Esquema simplificado para medida do efeito fotoelétrico [3].

Figura 3: Curva teórica da corrente em função da tensão.

As curvas da figura 3, que são obtidas com o mesmo comprimento de onda da radiação incidente, apresentam, cada uma, um patamar que corresponde à situação em que todos os elétrons emitidos por C são coletados em A. Na curva b, a intensidade de luz incidente foi reduzida à metade da curva a, ou seja, a quantidade de fótons incidindo no metal foi diminuída com algum tipo de atenuador. O potencial limite V_0 é independente da intensidade da luz, mas as correntes de saturação I_a e I_b são diretamete proporcionais a ela. Para valores de V negativos, os elétrons são repelidos pelo anodo e somente aqueles com energia maior que |eV| conseguem atingí-lo. Variando-se a tensão V, determina-se V_0 , que é o potencial limiar de ocorrência do efeito fotoelétrico, quando os fotoelétrons são todos repelidos. Observando-se o esquema de energias da figura 4, nota-se que um elétron ejetado do catodo, havendo um potencial V entre este e o anodo, na realidade sentiria um potencial V', devido à diferença entre as funções trabalho de cada um dos materiais constituintes dos terminais da célula fotoelétrica. Tal diagrama pode ser representado por (5).

$$V_0' = e(V_0 - \phi_c + \phi_a)$$
 (5)

onde ϕ_a é a função trabalho do anodo e ϕ_c , do catodo. Substituindo (5) em (4), pode-se obter,

$$V_0 = \frac{h}{e}\nu - \phi_a \tag{6}$$

Para valores de tensão $V < V_0$ espera-se que nenhum elétron consiga chegar ao anodo. Entretanto, a luz espalhada tanto pela superfície do catodo quanto por outros objetos pode gerar uma ejeção de fotoelétros do anodo e estes podem ser capturados pelo catodo se houver uma tensão suficientemente negativa. Como o número de fótons incidentes na superfície do anodo é muito menor que na superfície do catodo, a ejeção de fotoelétrons deste ocorre em uma escala menor, fazendo com que a corrente proveniente dos fotoelétrons do anodo seja muito menor que a corrente dos fotoelétros do catodo.

Figura 4: Relação dos potenciais e funções trabalho.

A corrente I medida pelo microamperímetro é dada por:

$$I = I_{CAT} + I_{AN} + I_{F} \tag{7}$$

onde I_{CAT} e I_{AN} são, respectivamente, as correntes devidas ao efeito fotoelétrico no catodo e no anodo e I_F é uma corrente de fundo resultante de efeitos espúrios. O gráfico teórico da figura 3 representa o caso em que $I = I_{CAT}$ e pode ser obtido caso se conheça $(I_{AN} + I_F)$, descontando-se isso do valor de I medido.

II. DESCRIÇÃO EXPERIMENTAL

A. Equipamento

O equipamento utilizado consistia em uma aparelhagem contendo uma lâmpada de mercúrio, uma rede de difração, uma lente (sistema ótico) e um circuito semelhante ao descrito na introdução (figura 2). Esse circuito recebia a luz da lâmpada por meio de uma fotocélula (figura 5) que ficava dentro de uma caixa com um orifício por onde a luz podia entrar. A rede de difração separava a luz da lâmpada em suas várias linhas espectrais e a lente focalizava essa luz de modo que, posicionadose a caixa convenientemente e utilizado filtros adequados era possível selecionar a luz de comprimento de onda específico que chegaria à fotocélula. A tensão foi variada

de duas formas: manual e automatizada, e os valores negativos de tensão podiam ser medidos acionando-se uma chave inversora.

Figura 5: Fotocélula.

A variação manual, realizada por meio de um botão giratório, foi efetuada apenas com o intuito de se observar qualitativamente o fenômeno. Os diferentes valores de tensão e corrente podiam ser observados por meio de um voltímetro a de um amperímetro conectados ao sistema de acordo com a figura 2.

A variação automatizada foi feita por um circuito que variava a tensão linearmente aproximadamente de 0 a 5V em um intervalo de tempo de cerca de 40s. Para coletar os valores de tensão e corrente foi utilizada uma interface ADC ligada ao computador. Cada dado fornecido por esse sistema de aquisição corresponde a uma média de varias medidas e sua respectiva incerteza.

B. Tomada de dados

Por meio da variação automatizada, foram levantadas curvas da corrente em função da tensão, para cada uma das linhas espectrais visíveis da lâmpada de mercúrio. Essas curvas foram feitas para as regiões correspondentes às tensões negativas ou tensões de freamento dos fotoelétrons do catodo. Para as linhas verde e amarela tomou-se o cuidado de utilizar filtros para cada uma dessas cores a fim de se evitar a superposição de comprimentos de onda indesejados nas medidas, provenientes de difrações de ordem superior das outras linhas. Para as linha amarela e violeta foram levantadas também curvas correspondentes a diferentes intensidades de luz (100, 80, 60, 40 e 20%), obtidas utilizando-se um atenuador na entrada na célula fotoelétrica.

A corrente de fundo I_F foi medida utilizando-se a variação automatizada da tensão e a célula fotoelétrica tampada. Com isso, esperava-se medir as correntes espúrias no circuito.

Um cuidado adicional foi tomado ao anotar o fundo de escala do microamperímetro para cada curva levantada. Como o ADC fornecia valores de tensão entre -1 e 1, todos os valores das coordenadas y dos pontos das curvas deveriam ser multiplicados por este fundo de escala.

C. Métodos de análise

Pretendia-se utilizar os gráficos correspondentes às diferentes intensidades de luz amarela e violeta na verificação da hipótese de que alterações na intensidade luminosa não devem modificar o valor de V_0 para uma mesma cor.

Três diferentes critérios para estimar o potencial limiar ou potencial de corte V_0 foram propostos.

1. Critério A - Primeiro ponto em tendência de subida

Consiste em escolher V_0 como a abscissa do primeiro ponto da que se encontra pelo menos 3 incertezas acima de $I_{CAT}=0$, apresentando uma clara tendência de subida nas curvas da corrente de catodo I_{CAT} em função da tensão de freamento para as diferentes linhas do espectro.

2. Critério B - Intersecção de ajuste linear com o eixo

Consiste em ajustar uma reta aos pontos correspondentes as regiões de descida, anteriores às partes curvadas, dessas curvas de I_{CAT} em função da tensão de freamento. Desse modo o valor de V_0 é estimado como sendo a coordenada x do ponto de intersecção do ajuste com o eixo x (tensões de freamento).

3. Critério C - Intersecção de ajustes lineares

Corresponde a uma determinação gráfica feita diretamente a partir dos gráficos da corrente total I em função da tensão de freamento. Essa determinação é feita ajustando-se duas retas a cada uma das curvas correspondentes a cada linha espectral. As retas são ajustadas aos pontos correspondentes às duas regiões dos gráficos que não incluem a curvatura associada à inversão da corrente. O valor de V_0 estimado desse modo deve ser o correspondente à coordenada x do ponto de intersecção dos dois ajustes.

III. DISCUSSÃO E ANÁLISE

A. Determinação da corrente de fundo

A corrente de fundo foi determinada por meio do gráfico da figura 6, de acordo com o que está explicado na descrição experimental.

Figura 6: Corrente elétrica em função da tensão com a célula fotoelétrica tampada.

B. Determinação de curvas de corrente fotoelétrica

As curvas da corrente I em função da tensão de freamento para diversas intensidades da luz amarela e violeta encontram-se, respectivamente, nas figuras 7 e 8.

Figura 7: Corrente elétrica em função da tensão de freamento para diferentes intensidades de luz amarela.

C. Determinação do potencial de corte

1. Critério A - Primeiro ponto em tendência de subida

A determinação de V_0 por meio do critério A se deu por meio da figura 9. Foram tomados como os valores de V_0 , os primeiros pontos da corrente de catodo distantes mais de 3 incertezas de zero em regime de subida.

2. Critério B - Intersecção de ajuste linear com o eixo

Para este critério de estimativa de V_0 foram utilizados os ajustes lineares da figura 9. Os valores obtidos desse

Figura 8: Corrente elétrica em função da tensão de freamento para diferentes intensidades de luz violeta.

Figura 9: Gráficos da corrente de catodo em função da tensão de freamento para diversas cores e respectivos ajustes de reta para as regiões lineares com $I_{CAT} \neq 0$.

modo correspondem à intersecção dos ajustes com o eixo das abscissas.

Os valores de V_0 obtidos por tais métodos encontramse na tabela I

Tabela I: Potencial de corte determinado pelos métodos A e B, em V.

amarelo	verde	azul	violeta	ultravioleta
A - 2,118(7)	-1,9161(6)	-1,9804(1)	-2,1569(0)	-2,5686(0)
B -1,12(7)	-0,99(11)	-1,66(10)	-1,80(10)	-2,01(16)

3. Critério C - Intersecção de ajustes lineares

Os valores de V_0 para cada linha do espectro foram determinados pelo critério C, como explicado na descrição experimental e encontra-se ilustrado na figura 10. Esses valores podem ser vistos na tabela II.

Figura 10: Gráficos da corrente I em função da tensão de freamento para diversas cores e respectivos ajustes de reta para as regiões lineares de I > 0 e I < 0.

Tabela II: Potencial de corte determinado pela intersecção dos ajustes, em ${\bf V}$

amarelo	verde	azul	violeta	ultravioleta
-1,13(7)	-0,99(10)	-1,67(10)	-1,81(11)	-2,05(15)

A determinação de V_0 por meio do critério C se deu por meio do gráfico da figura 10

D. Determinação da constante de Planck e da função trabalho do anodo

Utilizando os valores de V_0 obtidos pelos três métodos expostos anteriormente e conhecendo-se a frequência da luz incidente para cada curva, (tabela III), as curvas de V_0 em função de ν pôde ser traçada e, de acordo com (6), a constante de Planck pôde ser determinada a partir do coeficiente angular do gráfico, assim como a função trabalho do anodo, que pôde ser determinada a partir do coeficiente angular.

Tabela III: Frequências correspondentes às raias da lâmpada de mercúrio, em $10^{14}s^{-1}$

amarelo	verde	azul	violeta	ultravioleta
5,19	5,49	6,10	6,88	7,41

Nota-se que no gráfico da figura 11 as incertezas dos pontos correspondentes ao método A apresentaram-se muito pequenas, uma vez que estas eram as incertezas fornecidas pelo ADC. Isto fez com que o ajuste da reta nestes pontos fosse considerado insatisfatório, uma vez que todos os pontos encontravam-se a mais de três incertezas de distância da reta ajustada. Os outros dois ajustes, pelo contrário, mostraram-se muito satisfatórios pois todos os pontos encontravam-se a menos de três barras de incerteza da reta ajustada e estavam igualmente

distribuídos acima e abaixo da reta.

Figura 11: Gráficos das tensões V_0 , obtidas por meio dos critérios A, B e C, em função da fequência das diversas cores.

Tabela IV: Valores da constante de Planck e da função trabalho do anodo determinados por meio dos ajustes da figura 11 para os critérios A, B e C.

critério	A	В	C
$h(10^{-34} \text{J} \cdot \text{s})$	7, 18(145)	10,4(230)	7, 37(147)
$\phi_a({ m V})$	1,27(57)	2,22(93)	1,33(57)

IV. CONCLUSÃO

Nesse experimento, observou-se as evidências desejáveis da proposta quântica para o efeito fotoelétrico, como a sua instantaneidade, a sua dependência da energia cinética dos fotoelétrons com frequência da radiação incidente, e também, a existência de correntes espúrias, provenientes da parte eletrônica do aparato. A ocorrência do efeito fotoelétrico foi observada sempre que a luz incidia na célula, de forma instântanea. em que o atenuador foi utilizado mostraram claramente uma diminuição da intensidade da corrente de saturação, como pode ser visto claramente nas figuras 7 e 8. Os três métodos de obtenção da constante de Planck e da função trabalho puderam ser analisados, e destes, somente o método A foi considerado insatisfatório, devido ao fato de apresentar incertezas muito pequenas para que o ajuste pudesse ser considerado bom, como notado na figura 11. Os métodos B e C mostraram-se satisfatórios, fornecendo valores da constante de Planck e da função trabalho compatíveis com os valores esperados, porém com incertezas bem altas. O valor que mais se aproximou do aceito, foi obtido pelo método B $h = 7,18(145) \cdot 10^{-34} \text{J} \cdot \text{s}$. Para a função-trabalho do metal, esse valor foi $\phi_c = 1,27(57)V$. O fato das correntes espúrias do sistema serem significativas na região estudada dificultou a determinação precisa do potencial de corte V_0 , logo, uma proposta seria utilizar um sistema cuja eletrônica não apresentasse tantas correntes desconhecidas.

^[1] C. dos Santos, Efeito fotoelétrico (www.if.ufrgs.br/einstein/efeitofotoeletricoindex.html) (2002).

^[2] C. T. M. Cavalcante, Uma aula sobre o efeito fotoelétrico no desenvolvimento de competências e habilidades (http://sbfisica.org.br/fne/Vol3/Num1/a08.pdf), PUC-SP (2002).

^[3] _____, Apostila de Física Experimental V - Efeito Fotoelétrico, IFUSP (2006).

^[4] R. Eisberg, R. Resnick, Física Quântica (1994).

^[5] A. C. Melissinos, Experiments in Modern Physics (New York, 1966).

^[6] J. H. Vuolo, Fundamentos da teoria de erros (????).