

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

Could the true value of β_2 be 500?

Sales =
$$\beta_0$$
 + $\beta_1 Price$ + $\beta_2 AdExp$ + $\beta_3 PromExp$

Could the true value of β_2 be 500?

$$H_0$$
: $\beta_2 = 500$
 H_A : $\beta_2 \neq 500$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

Could the true value of β_2 be 500?

$$H_0$$
: $\beta_2 = 500$
 H_{Δ} : $\beta_2 \neq 500$

Conclusion:

- > Do not reject the Null hypothesis
- > True value of β_2 could be 500
- We cannot reject the belief held by salespeople

Another approach to Hypothesis Testing

Another approach to Hypothesis Testing the p-value approach

Step 1: Formulate Hypothesis

 H_0 : $\beta_2 = 500$

 H_A : $\beta_2 \neq 500$

Step 2: Calculate the t-statistic

t-statistic =
$$\frac{b_2 - \beta_2}{s_{b_2}} = 0.711$$

Another approach to Hypothesis Testing the p-value approach

Step 1: Formulate Hypothesis

$$H_0$$
: $\beta_2 = 500$

$$H_A$$
: $\beta_2 \neq 500$

Step 2: Calculate the t-statistic

t-statistic =
$$\frac{b_2 - \beta_2}{s_{b_2}} = 0.711$$

Another approach to Hypothesis Testing the p-value approach

Step 1: Formulate Hypothesis

 H_0 : $\beta_2 = 500$

 H_A : $\beta_2 \neq 500$

Step 2: Calculate the t-statistic

$$\checkmark \qquad \text{t-statistic} = \frac{b_2 - \beta_2}{s_{b_2}} = 0.711$$

Another approach to Hypothesis Testing the p-value approach

Step 1: Formulate Hypothesis

$$H_0$$
: $\beta_2 = 500$

$$H_A$$
: $\beta_2 \neq 500$

Step 2: Calculate the t-statistic

t-statistic =
$$\frac{b_2 - \beta_2}{s_{b_2}} = 0.711$$

Step 3: Calculate the p-value


```
p-value = 2*T.DIST(-|t-statistic|, residual df, TRUE)
= 0.4853
```


Another approach to Hypothesis Testing the p-value approach

```
p-value = 2*T.DIST(-|t-statistic|, residual df, TRUE)
= 0.4853
```

Conclusion:

- > Do not reject the Null hypothesis
- We cannot reject the belief held by salespeople

Another approach to Hypothesis Testing the p-value approach

```
p-value = 2*T.DIST(-|t-statistic|, residual df, TRUE)
= 0.4853
```

Conclusion:

- > Do not reject the Null hypothesis
- We cannot reject the belief held by salespeople

- > The t-cutoff approach
- > The p-value approach

- → > The t-cutoff approach
 - > The p-value approach

- > The t-cutoff approach
- → > The p-value approach

- > The t-cutoff approach
- > The p-value approach
- → > The confidence interval approach