Monetary Transmission Through the Housing Sector

Daniel Albuquerque Thomas Lazarowicz Jamie Lenney

BoE Macro Brownbag

18 September 2024

The views expressed in this paper are those of the authors and do not represent those of the Bank of England.

Rents ↑ & house prices (?) since Nov/2021

Rents ↑ & house prices (?) since Nov/2021

- 1. What is the impact of monetary policy on the housing sector?
- 2. Can we rationalise it in a HANK framework?

Motivation

- Housing/rents are usually either the biggest investment or biggest expense
 - → an important channel of the monetary transmission mechanism
- Extensive literature has looked at house prices ...
- ▶ ... but other dimensions, in particular the rental sector, remain underexplored
 - especially in HANK models

Contributions

- 1. Empirical results for monetary policy shock in the UK:
 - i house prices are slow to fall, but magnitude is large
 - ii **rents are stable** for 1-2 years, then fall

Contributions

- 1. Empirical results for monetary policy shock in the UK:
 - i house prices are slow to fall, but magnitude is large
 - ii rents are stable for 1-2 years, then fall
- 2. Build upon canonical HANK model: housing tenure
 - renter / owner-occupier / private landlord
 - match the model to the data
 - sticky house price expectations → i & ii

Contributions

- 1. Empirical results for monetary policy shock in the UK:
 - i house prices are slow to fall, but magnitude is large
 - ii rents are stable for 1-2 years, then fall
- 2. Build upon canonical HANK model: housing tenure
 - renter / owner-occupier / private landlord
 - match the model to the data
 - sticky house price expectations → i & ii
- 3. Answer policy questions
 - quantify the housing channel of monetary policy
 - private landlords vs commercial rental housing
 - ongoing: optimal policy response to rental market supply shock

Outline

- 1. Empirical strategy
- 2. Empirical results
- 3. HANK model with housing

SVAR

- Estimate a monthly VAR from 1997-2023, with dummies for the Covid period
- ▶ Baseline VAR with 6 variables: GDP, CPI core ex-rent, bank rate, mortgage spread, FTSE and house prices
 - → whenever there is need for another variable, it's 6 + 1 VAR
- ▶ Use target factor from Braun et al. (2024) as instrument for bank rate

∢ baseline IRFs

House prices: prolonged decline; rents: stable for at least year

Figure IRFs to 1p.p. monetary policy shock

Regional responses: some variation, mostly robust

Dwelling types: similar co-movement

 \rightarrow prices across regions and types react in the same way \rightarrow single p_h

Sales and stocks: reduced activity for at least one year

prices fall, but not as much to keep activity in housing market

Housing market

- ► HANK model, with 2 assets: financial wealth and housing
 - \rightarrow flats H_1 and houses H_2 , $H_2 > H_1$, only flats can be rented
 - → renters r, owner occupiers oo, or landlords ll
 - → borrowing against your home(s) subject to LTV/LTI constraints
 - → short-run analysis: fixed housing supply
 - ightarrow sticky rental transitions with probability $heta_r = ext{0.25}$

Housing market

- ► HANK model, with 2 assets: financial wealth and housing
 - \rightarrow flats H_1 and houses H_2 , $H_2 > H_1$, only flats can be rented
 - → renters r, owner occupiers oo, or landlords ll
 - → borrowing against your home(s) subject to LTV/LTI constraints
 - → short-run analysis: fixed housing supply
 - ightarrow sticky rental transitions with probability $heta_r =$ 0.25
- Equilibrium in the housing market

$$\bar{H} = H_1(s_{r,t} + s_{ooF,t}) + H_2(s_{oo,t} + s_{ll,t})$$

Equilibrium in the rental market

$$H_1 S_{r,t} = H_1 S_{ll1,t} + 2H_1 S_{ll2,t} + \overline{HA}$$

 \rightarrow Passive price taking housing association \overline{HA} to match the share of renters

Households

- ► Choose their transition h_t : $\{r, oo, ll\} \rightarrow \{r, oo, ll\}$ subject to:
 - 1. costs to each transition (financial & utility) → match transition rates
 - 2. idiosyncratic taste shocks → transition solution continuous on the state-space

Households

- ▶ Choose their transition h_t : $\{r, oo, ll\} \rightarrow \{r, oo, ll\}$ subject to:
 - 1. costs to each transition (financial & utility) → match transition rates
 - 2. idiosyncratic taste shocks → transition solution continuous on the state-space
- ▶ Get utility from consumption c, from the house they live in H, disutility from labour l, and extra utility ω_{oo} if owner of their home

$$u(c, H, l) = \frac{(c^{1-\phi_h}x(H)^{\phi_h})^{1-\sigma_c}}{1-\sigma_c} - \phi_l \frac{l^{1+\psi_l}}{1+\psi_l}, \quad x(H) = H(1+\omega_{oo}\mathbf{1}_{oo})$$

Households

- ► Choose their transition $h_t: \{r, oo, ll\} \rightarrow \{r, oo, ll\}$ subject to:
 - 1. costs to each transition (financial & utility) → match transition rates
 - 2. idiosyncratic taste shocks → transition solution continuous on the state-space
- ▶ Get utility from consumption c, from the house they live in H, disutility from labour l, and extra utility ω_{oo} if owner of their home

$$u(c, H, l) = \frac{(c^{1-\phi_h}x(H)^{\phi_h})^{1-\sigma_c}}{1-\sigma_c} - \phi_l \frac{l^{1+\psi_l}}{1+\psi_l}, \quad x(H) = H(1+\omega_{oo}\mathbf{1}_{oo})$$

Constraints:

$$a_{t+1} + c_t + C_h(p_{h,t}, p_{r,t}, h_t) = (1 + r_t + \mathbf{1}_{\mathbf{a_t} < \mathbf{0}} \bar{r}) a_t + z_{i,t} w_t l_t (1 - \tau) + \Pi(z_t)$$

$$a_{t+1} \geqslant \bar{a}(h_t, p_{h,t}, z_t, w_t, l_t)$$

Expectations

- lacktriangle Sticky information: households readjust their forecasts of prices with prob. $heta_{
 m SE}$
 - long literature: Gabaix and Laibson (2001), Mankiw and Reis (2002), Sims (2003)
 - Auclert at al. (2020), Carroll et al. (2020): key for matching IRFs of macro variables
- ► Contribution: specific probability θ_{SE,p_h} for house prices p_h
 - ↑ households pay more attention to prices that are more important
 - ↓ behavioural traits due to their purchase prices and capital gains expectations

Expectations

- ightharpoonup Sticky information: households readjust their forecasts of prices with prob. θ_{SE}
 - long literature: Gabaix and Laibson (2001), Mankiw and Reis (2002), Sims (2003)
 - Auclert at al. (2020), Carroll et al. (2020): key for matching IRFs of macro variables
- ► Contribution: specific probability θ_{SE,p_h} for house prices p_h
 - † households pay more attention to prices that are more important
 - ↓ behavioural traits due to their purchase prices and capital gains expectations
- Evidence on expectations on house prices?
 - a lot evidence that house price expectations are not rational
 - expectations (short-term) seem to be sluggish: Adam et al. (2024), Armona et al. (2018), Case et al. (2012)
 - lack of evidence on what happens after monetary policy shock
 - estimate through IRF matching

House price expectations: RICS - professional surveyors

Figure 3 months house price growth: expected vs actual

- ► RICS net balance measure: % that think ↑ % that think ↓
 - → measure of extensive rather than intensive margin of price expectations
- both variables are normalised for comparison

Rest of the model

- 1. Monopolistic competition for intermediate goods firms, with: $y_{i,t} = n_{i,t}$
- 2. Phillips curve for prices/wages, due to adjustment costs of firms/unions
- 3. Taylor rule for monetary policy
- 4. Labour tax adjusts to keep debt to gdp ratio stable in the long run

- 1. Estimated labour income process with transitory and persistent components
- 2. Internally calibrated parameters

Targeted Moment	Model	Data	Parameter	Source
Ann. Debt to GDP	0.69	0.65	β	ONS
Share of Renters	0.38	0.33	$\phi_h, \omega_{oo}, p_{r,ss}$	EHS (97-23)
Share of Flat Owners	0.08	0.10	$\phi_h, \omega_{oo}, p_{r,ss}$	EHS (97-23)
Share of Landlords	0.06	0.06	$\phi_h, \omega_{oo}, p_{r,ss}$	WAS (08-20)
Annual rate $oo \rightarrow r$	0.008	0.008	η_m	EHS (97-23)
Annual rate $LL(n) \rightarrow LL(n-1)$	0.16	0.10	η_{ll}	EPLS (97-23)

3. Untargeted Moments:

Moment	Model	Data	Source
Housing Wealth to Financial Net Worth	7.2	7.0	WAS (08-20)
Top 10 pct. Total Wealth Share	0.30	0.48	WAS (08-20)
Share of Homeowners with Mortgage	0.48	0.53	EHS (97-23)
Share of Landlords with Mortgage	0.12	0.57	WAS (07-20)
Avg Rent to Renter Disposable Income	0.28	0.33	EHS (97-23)

IRF Matching

lacktriangledown $heta_{SE}=$ 0.08 > 0.01 = $heta_{SE,p_h}$: house prices are updated less frequently

Untargeted IRFs

Housing market equilibrium after interest rate shock

- ► Partial equilibrium response: $\bar{H} = \uparrow H_1(s_{r,t} + s_{ooF,t}) + \downarrow H_2(s_{oo,t} + s_{ll,t})$
- ► To close the gap **house prices dominate** → lower cost + capital gains

Rental market equilibrium after interest rate shock

- ▶ Partial equilibrium response: $\uparrow H_1 s_{r,t} = \downarrow H_1 s_{ll1,t} + \downarrow 2H_1 s_{ll2,t} + HA$
- ► House prices still dominate in GE → high price/income + lumpy investment

Role of sticky expectations

- ▶ RE: transaction costs, borrowing constraints, heterogeneity are not enough
- Sticky house price expectations:
 - → key to generate slow response of prices and rent
 - → house prices fall less because they are expected to increase by more

Policy I: consumption decomposition

housing channel is less relevant with sticky house price expectations

Policy II: commercial vs private landlords

- ightharpoonup Commercial sector borrows from banks and purchases rental housing $H_{CR,t}$
- Rents have limited impact on the (non-rental) housing market
- Higher pass-through of interest rates to rents

Conclusion

- 1. empirical evidence on the response of UK housing market to monetary policy shock
 - house prices show prolonged fall
 - rents are stable for a year
- 2. built a HANK + housing tenure model
 - housing tenure, including private landlords
 - sticky house price expectations
- 3. policy exercises:
 - housing channel less strong with sticky expectations
 - commercial rental sector increases pass-through to rents
 - optimal monetary policy to rental shock

IRFs for baseline VAR (Dack)

House prices and rents: 2005-2023

(B) Rents

House prices and rents: 1997-2019

(A) House prices

(B) Rents

Renter share in the LFS (back)

Housing consumption costs: details

Transition	C_h	ā
OOH - OOH	$-\delta_h H_2$	$min(a, max(-\kappa_h p_h H_2, -\kappa_y y))$
OOH - OOF	$-p_h(H_1 - H_2) - 2F - \delta_h H_1$	$max(-\kappa_h p_h H_1, -\kappa_v y)$
OOH - Rent	$p_h H_2 - F - p_r^*$	0
OOH - LL	$-p_h H_1 - F + p_r^* - \delta_h (H_1 + H_2)$	$max(-\kappa_h(p_h(H_1 + H_2), -\kappa_y y - \kappa_h H_1 p_h))$
OOF - OOF	$-\delta_h H_1$	$min(a, max(-\kappa_h p_h H_1, -\kappa_y y))$
OOF - OOH	$-p_h(H_2-H_1)-2F-\delta_hH_2$	$max(-\kappa_h p_h H_2, -\kappa_y y)$
OOF - Rent	$p_h H_1 - F - p_r^*$	0
Rent - OOF	$-p_hH_1-F-\delta_hH_1$	$max(-\kappa_h p_h H_1, -\kappa_y y)$
Rent - Rent	$-p_{r,i}$	0
LL - OOH	$H_1p_h - F - \delta_hH_2$	$min(a + p_h H_1 - F, max(-\kappa_h p_h H_2, -\kappa_y y))$
LL - LL	$p_{r,i} - \delta_h(H_2 + H_1)$	$min(a, max(-\kappa_h p_h(H_1 + H_2), -\kappa_h p_h H_1 - \kappa_y y))$
LL - LLx2	$-H_1p_h + 2p_{r,i} - F - \delta_h(H_2 + 2H_1)$	$min(a, max(-\kappa_h p_h(2H_1 + H_2), -\kappa_h 2p_h H_1 - \kappa_y y))$
LLx2 - LLx2	$2p_{r,i} - \delta_h(H_2 + 2H_1)$	$min(a, max(-\kappa_h p_h(2H_1 + H_2), -\kappa_h 2p_h H_1 - \kappa_y y))$
LLx2 - LL	$H_1p_h + p_{r,i} - F - \delta_h(H_2 + H_1)$	$min(a + H_1p_h - F, max(-\kappa_h p_h(H_1 + H_2), -\kappa_h p_h H_1 - \kappa_y y))$

Externally calibrated parameters

Parameter	Value	Source	
Frisch	0.5	Auclert et al. (2021)	
EIS	0.5	Auclert et al. (2021)	
Steady state markup	1.2	Auclert et al. (2021)	
Borrowing wedge $\bar{r}(ann)$	0.0126	EHS (97-23) 2yr 75pct LTV	
Transaction cost	0.02p _{h,ss}	Halifax	
\overline{H}	$\frac{p_{h,ss}}{\bar{v}} = 6.3$	EHS (97-23)	
Loan to value max κ_h	0.90	PSD 90 th pctile; FTB	
Loan to income max κ_y	4.5	PSD 90 th pctile; FTB	
Rental price adj. prob θ_r	0.25	1 year contract	

Parameters used for IRF matching

Parameter	IRF matched value	
Price Philips Curve κ_p	0.199	
Wage Philips Curve κ_w	0.046	
Fiscal rules (debt stab.)	0.034	
Taylor rule $\left(oldsymbol{\phi}_{\pi},oldsymbol{\phi}_{y},oldsymbol{ ho}_{m} ight)$	2.42, 0.028, 0.96	
Price forecast adj. prob $ heta_{ extit{SE}}$	0.08	
House price forecast adj. prob θ_{SE,p_h}	0.01	

Estimated labour income parameters

Persistent $z_{1,i}$ and transitory $z_{2,i}$ components

$$z_i' = z_{1,i} + z_{2,i}$$

where

$$z_{j,i}' =
ho_{j,z} z_{j,i} + \epsilon_{j,z}, \quad \epsilon_{j,z} \sim N(o, \sigma_{j,z}^2)$$

Moment	Value	Parameter	Source
Cross sectional labour income std. dev	0.66	$\rho_{z,1}, \rho_{z,2}, \sigma_{z,1}^2, \sigma_{z,2}^2$	Bell et al. (2022)
One year earnings change std. dev	0.19	$\rho_{z,1}, \rho_{z,2}, \sigma_{z,1}^2, \sigma_{z,2}^2$	Bell et al. (2022)
Five year earnings change std. dev	0.38	$\rho_{z,1}, \rho_{z,2}, \sigma_{z,1}^2, \sigma_{z,2}^2$	Bell et al. (2022)
90-10 ratio	4.66	$\rho_{z,1}, \rho_{z,2}, \sigma_{z,1}^2, \sigma_{z,2}^2$	Bell et al. (2022)

Transition Probabilities

Average Household iMPCs

IRF Matching: macro variables

Commercial Sector Pricing

- Commercial sector can borrow from bank and purchase rental housing.
- Subject to fixed costs to make price same in steady state
- Same contract constraints as private landlords.
- Any profits (unexpected capital gains on housing) distributed with aggregate dividends
- Sets marginal price as follows.

$$Vr_{1,\tau,t} = H_{1}\delta_{h} + \frac{1}{1+r_{t+1}} \left(r_{t+1}p_{h,\tau} + (p_{h\tau} - p_{h,t+1})\theta_{r} \right) H_{1} + \frac{1-\theta_{r}}{1+r_{t+1}} Vr_{1,\tau,t+1}$$

$$Vr_{2,\tau,t} = 1 + \frac{1-\theta_{r}}{1+r_{t+1}} Vr_{2,\tau,t+1}$$

$$p_{r,t} = \frac{Vr_{1,\tau,t}}{Vr_{2,\tau,t}} + F_{cm}$$
(1)

Sticky expectations mute the effects of future prices **Clack**

- need to add text
- ► However, higher p_h today $\rightarrow \uparrow$ rental demand, with a higher multiplier than that of future rents: $\rightarrow \uparrow$ rents for market clearing

Do expectations matter? [NOT USED ANYMORE]

▶ Panel Local Projection, interacting regional house price expectations $(x_{i,t})$ with monetary policy shock (s_t) , for $y_{i,t}$ = house prices, rents.

$$y_{i,t+h} - y_{i,t} = \alpha_{i,h} + \alpha_{t,h} + \beta_h s_t x_{i,t} + \sum_{p=0}^{12} \delta_{p,h} x_{i,t-p} + \sum_{p=1}^{12} \phi_{p,h} y_{i,t-p} + u_{i,t,h}$$