Worksheet 2 – Basics of Optimization

1 Optimization problems in practice

Rewrite the following practical optimization problems using the following canonical form

$$\min_{\boldsymbol{x} \in \Omega} f(\boldsymbol{x}), \quad \Omega = \{\boldsymbol{x} \in \mathbb{R}^n | \ \boldsymbol{h}(\boldsymbol{x}) = 0, \ \boldsymbol{g}(\boldsymbol{x}) \leq 0\}$$

where $h : \mathbb{R}^n \to \mathbb{R}^m$ represents m equality constraints $(h(x) = [h_i(x)]_{i=1}^m)$ and $g : \mathbb{R}^n \to \mathbb{R}^p$ represents p inequality constraints $(g(x) = [g_j(x)]_{j=1}^p)$.

- 1. Find two positive numbers whose sum is 300 and whose product is a maximum.
- 2. Find two positive numbers whose product is 750 and for which the sum of one and 10 times the other is a minimum.
- 3. We are going to fence in a rectangular field. If we look at the field from above the cost of the vertical sides are \$10/ft, the cost of the bottom is \$2/ft and the cost of the top is \$7/ft. If we have \$700 determine the dimensions of the field that will maximize the enclosed area.
- 4. We have $45m^2$ of material to build a box with a square base and no top. Determine the dimensions of the box that will maximize the enclosed volume.
- 5. We want to build a box whose base length is 6 times the base width and the box will enclose 20 m^3 . The cost of the material of the sides is $\$3/m^2$ and the cost of the top and bottom is $\$15/m^2$. Determine the dimensions of the box that will minimize the cost.
- 6. We want to construct a cylindrical can with a bottom but no top that will have a volume of $30cm^3$. Determine the dimensions of the can that will minimize the amount of material needed to construct the can.
- 7. We have a piece of cardboard that is 50 cm by 20 cm and we are going to cut out the corners and fold up the sides to form a box. Determine the height of the box that will give a maximum volume.

2 Gradient and Hessian

For each of the following functions, compute the gradient and the Hessian of f.

- 1. $f(\mathbf{x}) = 2x_1^3 + 3x_2^2 + 3x_1^2x_2 24x_2$.
- 2. $f(\mathbf{x}) = (x_1^2 + x_2^2 1)^2 + (x_2^2 1)^2$.
- 3. $f(\mathbf{x}) = -2x_1^2 + x_1x_2^2 + 4x_1^4$.
- 4. $f(\mathbf{x}) = \frac{x_1 + x_2}{x_1^2 + x_2^2 + 1}$.

3 On the use of the chain rule

- 1. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be a differentiable function over \mathbb{R}^3 and $g: \mathbb{R}^2 \to \mathbb{R}^2$ given by $g(x) = f(\cos(x_1) + \sin(x_2), \sin(x_1) + \cos(x_2), x_1 x_2)$. Assuming that the value of the Jacobian of f at the point $[1, 1, 0]^{\top}$ is $\begin{bmatrix} 1 & -2 & 2 \\ 3 & 0 & 1 \end{bmatrix}$, compute the Jacobian of f at the point $[0, 0]^{\top}$.
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function over \mathbb{R}^n . Let $\boldsymbol{x} \in \mathbb{R}^n$ and $\boldsymbol{d} \in \mathbb{R}^n$, consider the function $\phi(t) = f(\boldsymbol{x} + t\boldsymbol{d})$ where $t \in \mathbb{R}$. Show that

$$\phi'(t) = \nabla f(\boldsymbol{x} + t\boldsymbol{d})^{\top} \boldsymbol{d}.$$