Machine Learning System Design

Question 1

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's F_1 score (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.157

Precision is 0.087 and recall is 0.85, so F_1 score is (2 * precision * recall) / (precision + recall) = 0.158

Question 2

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which are the two?

 \checkmark A human expert on the application domain can confidently predict y when given only the features x (or more generally, if we have some way to be confident that x contains sufficient information to predict y accurately).

	It is important that the features contain sufficient information, as otherwise no amount of data can solve a learning problem in which the features do not contain enough information to make an accurate prediction.
	The classes are not too skewed.
	Our learning algorithm is able to represent fairly complex functions (for example, if we train a neural network or other model with a large number of parameters).
	You should use a complex, "low bias" algorithm, as it will be able to make use of the large dataset provided. If the model is too simple, it will underfit the large training set.
	When we are willing to include high order polynomial features of x (such as x_1^2 , x_2^2 , x_1x_2 , etc).
Qu	estion 3
Supp	ose you have trained a logistic regression classifier which is outputing $h_{ heta}(x).$
	ently, you predict 1 if $h_{ heta}(x) \geq ext{threshold}$, and predict 0 if $h_{ heta}(x) < ext{threshold}$, where currently preshold is set to 0.5.
Supp	ose you decrease the threshold to 0.3. Which of the following are true? Check all that apply.
	The classifier is likely to now have higher precision.
√	The classifier is likely to now have higher recall.
	Lowering the threshold means more $y = 1$ predictions. This will increase the number of true positives and decrease the number of false negatives, so recall will increase.
	The classifier is likely to have unchanged precision and recall, but lower accuracy.
	The classifier is likely to have unchanged precision and recall, but higher accuracy.
Qu	estion 4
and r	ose you are working on a spam classifier, where spam emails are positive examples $(y=1)$ non-spam emails are negative examples $(y=0)$. You have a training set of emails in which of the emails are non-spam and the other 1% is spam. Which of the following statements are Check all that apply.
	f you always predict spam (output $y=1$), your classifier will have a recall of 0% and precision of 99%.
	If you always predict non-spam (output $y=0$), your classifier will have an accuracy of 99%.
	Since 99% of the examples are $y = 0$, always predicting 0 gives an accuracy of 99%. Note, however, that this is not a good spam system, as you will never catch any spam.

lacksquare If you always predict spam (output $y=1$), your classifier will have a recall of 100% and precision of 1%.		
Since every prediction is $y = 1$, there are no false negatives, so recall is 100%. Furthermore, the precision will be the fraction of examples with are positive, which is 1%.		
lacksquare If you always predict non-spam (output $y=0$), your classifier will have a recall of 0%.		
Since every prediction is $y = 0$, there will be no true positives, so recall is 0%.		
Question 5		
Which of the following statements are true? Check all that apply.		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
Using a very large training set makes it unlikely for model to overfit the training data.		
A sufficiently large training set will not be overfit, as the model cannot overfit some of the examples without doing poorly on the others.		
After training a logistic regression classifier, you must use 0.5 as your threshold for predicting whether an example is positive or negative.		
It is a good idea to spend a lot of time collecting a large amount of data before building your first version of a learning algorithm.		
$oldsymbol{\checkmark}$ On skewed datasets (e.g., when there are more positive examples than negative examples), accuracy is not a good measure of performance and you should instead use F_1 score based on the precision and recall.		
You can always achieve high accuracy on skewed datasets by predicting the most the same output (the most common one) for every input. Thus the ${\cal F}_1$ score is a better way to measure performance.		