ARF2 and ARF5 DapSeq regions

How to predict ARFs binding sites ?

ROC best score on all the regions (OMalley monomer matrices)

How negative sets are built for 1000 regions

Let suppose the 1000 first regions are the true one bound

1000 first regions of the DAPSeq - ARF2 (first method)

1000 first regions of the DAPSeq - ARF2 (second method)

1000 first regions of the DAPSeq - ARF5 (first method)

1000 first regions of the DAPSeq - ARF5 (second method)

Predictions vs wet lab

Comparisons EMSAS DAPSeq - ARF5

['get_interdistances.py', '4ac', 'ARF5', '-pc', '0.001', '-maulnter', '20', '4b', '-6', '-7', '-8', '-9', '-10', '-11', '-12', '-neg', './sequences/ARF5_neg_2.fas', './sequences/ARF5_neg_3.fas', './sequences/ARF5_neg_4.fas', './sequences/ARF5_neg

Comparisons EMSAS DAPSeq - ARF2

Comparisons EMSAS DAPSeq - EMSAS DR

Looking for some DNA features

```
DR0
       GTTTTGTCGCTGTCGGATTAATTAATTAATTAATTAATA
DR1
       GTTTTGTCGGATGTCGGATTAATTAATTAATTAATTAAT
DR2
       GTTTTGTCGGAATGTCGGATTAATTAATTAATTAA
DR3
       GTTTTGTCGGAATTGTCGGATTAATTAATTAATTAATAAT
DR4
       GTTTTGTCGGAATTTGTCGGATTAATTAATTAATTAATA
DR5
       GTTTTGTCGGAATTATGTCGGATTAATTAATTAATTAAT
DR6
       GTTTTGTCGGAATTAATGTCGGATTAATTAATTAA
DR7
       GTTTTGTCGGATTAATTTGTCGGATTAATTAATTAATAT
DR8
       GTTTTGTCGGATTAATTTTGTCGGATTAATTAATTAATA
DR9
       GTTTTGTCGGATTAATTAATGTCGGATTAATTAATTAAT
DR10
       GTTTTGTCGGATTAATTAATTGTCGGATTAATTAA
DR11
       GTTTTGTCGGATTAATTAATTTGTCGGATTAATTAATA
DR12
       GTTTTGTCGGATTAATTAATTTTGTCGGATTAATTAATA
DR13
       GTTTTGTCGGATTAATTAATTAATGTCGGATTAATTAAT
DR14
       GTTTTGTCGGATTAATTAATTAATTGTCGGATTAATTAA
DR15
       GTTTTGTCGGATTAATTAATTAATTTGTCGGATTAATAT
DR16
       GTTTTGTCGGATTAATTAATTTATTTGTCGGATTAATA
DR17
       GTTTTGTCGGATTAATTAATTAATTAATGTCGGATTAAT
DR18
       GTTTTGTCGGATTAATTAATTAATTAATTGTCGGATTAA
DR19
       GTTTTGTCGGATTAATTAATTAATTAATTTGTCGGATAT
DR20
       GTTTTGTCGGATTAATTAATTAATTAATTTTGTCGGATA
```

Looking for some DNA features

	pos	neg
Α	14.1648	13.6238
AA	3.5699	3.4598
AAA	1.2182	1.1603
AAAA	0.45	0.4079
T	12.6375	13.7292
TT	3.2065	3.5429
TTT	1.0938	1.1673
TTTT	0.4076	0.4552
AT	3.6528	3.9219
TA	2.9816	3.3333
AAT	1.1697	1.2244
TTA	0.9269	1.093
ATT	1.1353	1.2566
TAA	0.9331	1.0623
AAAT	0.4467	0.4665
TTTA	0.3589	0.4005
AATT	0.3509	0.3895
TTAA	0.2804	0.3438
ATTT	0.4252	0.481
TAAA	0.3546	0.3836

Methylation ?

Methylation?

