Digrafos - Representação Computacional

Prof. Andrei Braga

Conteúdo

- Representação computacional de digrafos
- Referências

Grafo dirigido – Digrafo (Revisão)

- Um grafo dirigido ou digrafo G é um par ordenado (V, E) composto por
 - o um conjunto de **vértices** *V* e
 - o um conjunto de **arestas** E, sendo cada aresta um par ordenado (v_i , v_i) de vértices de G
 - note que $(v_i, v_i) \neq (v_i, v_i)$;
 - lacktriangle denominamos v_i a **cauda** da aresta e v_j a **cabeça** da aresta
- Exemplo:
 - \circ G = (V, E), onde
 - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5, v_6 \} e$
 - $E = \{ (v_0, v_1), (v_1, v_3), (v_1, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_3), (v_4, v_6), (v_5, v_0), (v_5, v_2), (v_5, v_6), (v_6, v_1) \}$

Representação computacional

- Anteriormente, vimos duas formas comuns de representar computacionalmente um grafo não-dirigido: matriz de adjacências e listas de adjacência
- A seguir, veremos formas equivalentes de representar computacionalmente um digrafo

Matriz de adjacências

- A representação de um digrafo G como uma matriz de adjacências consiste em uma matriz de |V(G)| linhas, com índices 0, 1, ..., |V(G)| - 1, e de |V(G)| colunas, com índices 0, 1, ..., |V(G)| - 1, tal que a célula (i, j) da matriz é igual a
 - 1 se i j é uma aresta de G
 - 0 caso contrário

Matriz de adjacências de G

	0	1	2	3	4	5	6
0	0	1	0	0	0	0	0
1	0	0	0	1	1	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	1	1	0
4	0	0	0	1	0	0	1
5	1	0	1	0	0	0	1
6	0	1	0	0	0	0	0

Matriz de adjacências

Observações:

- Não é possível representar arestas paralelas
- Para digrafos simples, todas as células da diagonal principal da matriz são iguais a 0
- Uma aresta i j é representada por apenas uma célula da matriz: (i, j) a célula (j, i) representa uma aresta diferente, a aresta j i

Matriz de adjacências de G

	0	1	2	3	4	5	6
0	0	1	0	0	0	0	0
1	0	0	0	1	1	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	1	1	0
4	0	0	0	1	0	0	1
5	1	0	1	0	0	0	1
6	0	1	0	0	0	0	0

Matriz de adjacências

- Observações:
 - o Em geral, a matriz não é simétrica em relação à diagonal principal

Matriz de adjacências de G

	0	1	2	3	4	5	6
0	0	1	0	0	0	0	0
1	0	0	0	1	1	0	0
2	0	0	0	0	0	0	0
3	0	0	0	0	1	1	0
4	0	0	0	1	0	0	1
5	1	0	1	0	0	0	1
6	0	1	0	0	0	0	0

Listas de adjacência

 A representação de um digrafo G como listas de adjacência consiste em um vetor de |V(G)| elementos, com índices 0, 1, ..., |V(G)| - 1, tal que o elemento i do vetor armazena uma lista com os vizinhos de saída do vértice i em G

Listas de adjacência de G

Listas de adjacência

- Observações:
 - Uma aresta i j é representada em apenas uma lista de adjacência: o vértice j está na lista do vértice i

Listas de adjacência de G

Matriz de adjacências vs. listas de adjacência

- Dado um digrafo G = (V, E), a quantidade de memória utilizada para representar G
 - o como uma matriz de adjacências é proporcional a $|V|^2$ e
 - como listas de adjacência é proporcional a |V| + |E|
- Se G é um digrafo **esparso**, isto é, |E| é bem menor que $|V|^2$, então é usualmente mais interessante representar G como listas de adjacência
- Se G é um digrafo **denso**, isto é, |E| é um número próximo a $|V|^2$, então é usualmente mais interessante representar G como uma matriz de adjacências

Matriz de adjacências vs. listas de adjacência

• Dado um digrafo G = (V, E):

	Matriz de Adjacências	Listas de Adjacência		
Memória utilizada	$ V ^2$	V + E		
Tempo para inserir aresta	constante	constante		Valores
Tempo para verificar aresta	constante	pior caso: V		proporcionais a
Tempo para remover aresta	constante	pior caso: V		

Referências

- Esta apresentação é baseada nos seguintes materiais:
 - Capítulo 22 do livro
 Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms.
 3rd. ed. MIT Press, 2009.
 - Capítulo 19 do livro
 Sedgewick, R. Algorithms in C++ Part 5. Graph Algorithms. 3rd. ed.
 Addison-Wesley, 2002.