

Este test eliminatorio consta de 15 preguntas con un total de 15 puntos. Las respuestas incorrectas no restan. Sólo una respuesta es correcta a menos que se indique algo distinto. Este examen se valora dentro de la nota de teoría con un máximo de 15 puntos. Para continuar el examen de teoría deberá responder TODAS las preguntas pudiendo fallar un máximo de 4.

Apellidos:	Nombre:	Grupo:
1. (1p) ¿Con qué capa/s del modelo OSI	está relacionada Ethernet?	
□ a) 3	■ c) 1 y 2	
□ b) 2 y 3	□ d) 1 y 3	
2. (1p) ¿Cuántos bits tienen las direccion	nes MAC?	
\square a) 12	c) 48	
□ b) 24	□ d) 64	
3. (1p) Elige la sentencia que mejor deso	cri <mark>be la comunicación entre dos dispositivos de</mark> una	a LAN:
	tos en una trama con la MAC del destino y la trans cesa aquel cuya MAC corresponda.	smite. Todos los hosts de
ma en la LAN, d <mark>onde sólo e</mark> l ho	ntos y coloca la dirección MAC destino e <mark>n la tr</mark> amentos est con dirección MAC coincidente puede comprob	ar el campo de dirección.
El host cuya <mark>dirección coi</mark> nci <mark>da</mark>		
d) Cada host de la LAN recibe la mantiene o la descarta.	trama, la procesa y la pasa a la computadora, dono	de el sofware decide si la
4. (1p) Señala cuál de las siguientes afirm	maci <mark>one</mark> s, r <mark>eferidas a enrut</mark> amiento IP, <mark>es</mark> correcta:	
a) Los paquetes con el mismo des	tino pueden seguir rutas distintas.	
☐ b) Los paquetes con el mismo des	tino deben seguir rutas distintas.	
c) Los paquetes con el mismo des	tino <mark>deben seguir la misma ruta.</mark>	
☐ d) La ruta que siguen los paquetes	s es aleatoria.	
	ernet que e <mark>ncapsula un paq</mark> uete IP. Al analizarla, v enecen a interfaces diferentes. ¿Qué ocurre?	vemos que la dirección MAC
a) Es un paquete perdido.		
b) El paquete llegó a través del ro	uter local.	
C) Es lo normal, así me lo aprendí	yo.	
\Box d) Se trata de un paquete ICMP.		
6. (1p) Marca la sentencia correcta en re	ferencia al tamaño de los fragmentos IP:	
a) Pueden tener cualquier tamaño.		
b) El tamaño de los fragmentos pu	uede llegar a ser igual al MTU de la red.	
_	ner un tamaño múltiplo de 8, si es menor, se rellena	a con ceros.
d) Sólo los fragmentos con el bit l	MF activo deben tener un tamaño múltiplo de 8.	
7. (1p) Recibimos un fragmento IP que	tiene el bit MF a cero. ¿Porqué sabemos que es un	fragmento?
a) Porque el offset es distinto de 0) .	
	fragmentos tienen el bit MF activado.	
c) Porque su carga útil es un segm	ento UDP.	
\Box d) No hay forma de saberlo.		

UNIVERSIDAD DE CASTILLA-LA MANCHA Escuela Superior de Informática

8.	3. (1p) ¿Para qué sirve el protocolo ARP?				
	a) Permite asignar automáticamente direcciones IP a los hosts.				
	□ b) Permite asignar automágicamente direcciones MAC a los hosts	S.			
	c) Permite averiguar la dirección MAC de un interfaz conocida su IP.				
	☐ d) Permite averiguar la dirección IP de un interfaz conocida su MAC.				
9.	. (1p) Cuando un enrutador hace entrega directa de un paquete es porque				
	a) no sabe cuál es el siguiente enrutador en la ruta.				
	b) desconoce la dirección destino del paquete.				
	c) tiene alguna de sus interfaces en la misma red que el destino.				
	☐ d) no hay un enrutador por defecto.				
10.	. (1p) Un dispositivo puede tener varias direcciones IP				
	a) sólo si tiene varias interfaces de red.				
	☐ b) sólo si es un router.				
	c) sólo si es un switch.				
	d) incluso sin tener interfaces de red físicas.				
11.	1. (1p) ¿Cuántas subredes útiles (como máximo) se pueden obtener de una red clase C utilizando subnetting?				
	a) Tantas como se quiera				
	□ b) 32				
	c) 64				
	☐ d) 128				
12	2. (1p) ¿Qué protocolo informa de fallos en la entrega de datagramas?				
12.	\Box a) IP \Box f) IR(
	\Box b) ARP \Box g) LO				
	□ c) ICMP □ h) AF				
	e) TCP				
13	13. (1p) ¿Qué campo de la cabecera UDP es opcional?				
		ecksum			
	□ b) puerto destino □ d) lor				
		ighted.			
14.	14. (1p) ¿Qué ventajas ofrece TCP respecto a UDP?				
	a) TCP permite enviar paquetes más grandes aumentando así el rendimiento.				
	b) TCP incluye un mecanismo de reenvío para evitar la pérdida de paquetes descartados.				
	c) TCP tiene una cabecera más pequeña que UDP.				
	☐ d) Todas las anteriores.				
15.	(1p) ¿Qué protocolo de transporte intercambia datagramas sin acuses de recibo o sin garantía de entrega?				
	□ a) IP □ e) LC	CC			
	\blacksquare b) UDP \square f) AR	P			
	\square c) TCP \square g) DF	НСР			
	\square d) IRQ \square h) IC	MP			