Question

To model how long Amir will wait for a back-up using a continuous uniform distribution, save his lowest possible wait time as `min_time` and his longest possible wait time as `max_time`. Calculate specific waiting time probabilities using `scipy.stats.uniform`.

Explanation of the Question

This problem models Amir's waiting time for a backup, assumed to occur uniformly between 0 and 30 minutes. The task involves calculating probabilities for waiting less than 5 minutes, more than 5 minutes, and between 10 and 20 minutes.

Full Answer

```
# Min and max wait times for back-up that happens every 30 minutes min\_time = 0 max\_time = 30
```

- # Import uniform from scipy.stats from scipy.stats import uniform
- # Calculate probability of waiting less than 5 minutes
 prob_less_than_5 = uniform.cdf(5, loc=min_time, scale=max_time min_time)
 print("Probability Amir has to wait less than 5 minutes:", prob_less_than_5)
- # Calculate probability of waiting more than 5 minutes prob_greater_than_5 = 1 prob_less_than_5 print("Probability Amir has to wait more than 5 minutes:", prob_greater_than_5)
- # Calculate probability of waiting between 10 and 20 minutes prob_between_10_and_20 = uniform.cdf(20, loc=min_time, scale=max_time min_time) uniform.cdf(10, loc=min_time, scale=max_time min_time) print("Probability Amir has to wait between 10 and 20 minutes:", prob between 10 and 20)

Explanation of the Answer

The code uses a continuous uniform distribution to model Amir's waiting times between 0 and 30 minutes. It calculates probabilities using cumulative distribution functions (CDFs) for specific intervals, enabling precise probability computation for less than 5 minutes, more than 5 minutes, and between 10 and 20 minutes.