પ્રકરણ 3 ધાતુઓ અને અધાતુઓ (Metals and Non-metals)

ધોરણ IXમાં તમે વિવિધ તત્ત્વો વિશે શીખી ગયાં છો. તમે જોયું છે કે તત્ત્વો તેમના ગુણધર્મોના આધારે ધાતુઓ અથવા અધાતુઓ સ્વરૂપે વર્ગીકૃત કરી શકાય છે.

- 🔳 તમારા દૈનિક જીવનમાં ધાતુઓ અને અધાતુઓના કેટલાક ઉપયોગો વિશે વિચારો.
- તત્ત્વોને ધાતુઓ અથવા અધાતુઓમાં વર્ગીકૃત કરતી વખતે તમે કયા ગુણધર્મોનો વિચાર કર્યો ?
- આ ગુણધર્મો આ તત્ત્વોની ઉપયોગિતા સાથે કેવી રીતે સંકળાયેલા છે ? ચાલો, આપણે આમાંના કેટલાક ગુણધર્મોને વિગતવાર જોઈએ.

3.1 ભૌતિક ગુણધર્મા (Physical Properties)

3.1.1 ધાતુઓ (Metals)

પદાર્થીના વર્ગીકરણ માટેનો સૌથી સરળ માર્ગ તેમના ભૌતિક ગુણધર્મીની સરખામણી છે. ચાલો, આપણે તેનો નીચે પ્રમાણેની પ્રવૃત્તિઓ દ્વારા અભ્યાસ કરીએ. પ્રવૃત્તિઓ 3.1 થી 3.6 માટે, નીચે પ્રમાણેની ધાતુઓના નમૂના એકત્ર કરો - લોખંડ (આયર્ન), તાંબુ (કૉપર), ઍલ્યુિમિનિયમ, મૅગ્નેશિયમ, સોડિયમ, સીસું (લેડ), ઝિંક (જસત) અને એવી કોઈ પણ અન્ય ધાતુ કે જે સરળતાથી પ્રાપ્ય હોય.

प्रवृत्ति 3.1

- લોખંડ, તાંબુ, ઍલ્યુમિનિયમ અને મૅગ્નેશિયમના નમૂના લો. દરેક નમૂનાના દેખાવની નોંધ કરો.
- કાચપેપર વડે ઘસીને દરેક નમૂનાની સપાટી સાફ કરો અને ફરીથી તેમના દેખાવની નોંધ કરો.

ધાતુઓ તેમની શુદ્ધ અવસ્થામાં ચળકાટવાળી સપાટી ધરાવે છે. આ ગુણધર્મને ધાત્વીય ચમક (metallic lustre) કહે છે.

प्रवृत्ति 3.2

- લોખંડ, તાંબુ, ઍલ્યુમિનિયમ અને મૅગ્નેશિયમના નાના ટુકડા લો. ધારદાર છરી વડે આ ધાતુઓને કાપવાનો પ્રયત્ન કરો અને તમારાં અવલોકનો નોંધો.
- ચીપિયા વડે સોડિયમના ટુકડાને પકડી રાખો.
 ચેતવણી: સોડિયમ ધાતુ સાથે હંમેશાં સાવચેતીપૂર્વક કામ કરવું. ગાળણપત્રની ગડી વચ્ચે દબાવીને તેને સુકવો.
- 🧧 તેને વૉચ-ગ્લાસ પર મૂકો અને છરી વડે તેને કાપવાનો પ્રયત્ન કરો.
- તમે શું અવલોકન કરો છો ?

તમે જોશો કે સામાન્ય રીતે ધાતુઓ સખત હોય છે. દરેક ધાતુની સખતાઈ અલગ–અલગ હોય છે.

प्रवृत्ति 3.3

- લોખંડ, ઝિંક, સીસું અને તાંબાના ટુકડા લો.
- લોખંડના એક ટુકડા પર કોઈ પણ એક ધાતુ મૂકો અને હથોડી વડે ચાર કે
 પાંચ વખત તેની પર પ્રહાર કરો. તમે શું અવલોકન કરો છો ?
- અન્ય ધાતુઓ સાથે તેનું પુનરાવર્તન કરો.
- આ ધાતુઓના આકારમાં થતો ફેરફાર નોંધો.

તમે જોશો કે કેટલીક ધાતુઓને ટીપીને (beaten) પાતળાં પતરાં બનાવી શકાય છે. આ ગુણધર્મને ટિપાઉપણું (Malleability) કહે છે. શું તમે જાણો છો કે સોનું અને ચાંદી સૌથી વધુ ટીપી શકાય તેવી ધાતુઓ છે ?

प्रवृत्ति 3.4

રોજિંદા જીવનમાં જે ધાતુઓના તાર જોયા હોય તેવી ધાતુઓની યાદી બનાવો.

ધાતુઓની પાતળા તારમાં ફેરવાઈ જવાની શમતાને તજ્ઞાવપશું (Ductility) કહે છે. સોનું સૌથી વધુ તનનીય ધાતુ છે. તમને જાણીને આશ્ચર્ય થશે કે એક ગ્રામ સોનામાંથી 2 km લંબાઈનો તાર બનાવી શકાય છે.

તે તેમનાં ટિપાઉપણા અને તણાવપણાના કારણે થાય છે, જેથી ધાતુઓને આપણી જરૂરિયાત પ્રમાણે જુદા-જુદા આકારો આપી શકાય છે.

તમે એવી કેટલીક ધાતુઓનાં નામ આપી શકો કે જે રસોઈનાં વાસણો બનાવવામાં ઉપયોગી છે ? તમે જાણો છો કે આ ધાતુઓ શા માટે વાસણો બનાવવા વપરાય છે ? ચાલો, જવાબ જાણવા માટે ચાલો, આપણે નીચે દર્શાવેલ પ્રવૃત્તિ કરીએ :

प्रवृत्ति 3.5

- ઍલ્યુમિનિયમ અથવા તાંબાનો તાર લો. આ તારને આકૃતિ 3.1માં દર્શાવ્યા પ્રમાણે સ્ટૅન્ડના ક્લૅમ્પ પર ગોઠવો.
- મીણની મદદથી તારના મુક્ત છેડા પર ટાંકણી લગાવો.
- જ્યાં તાર લગાવ્યો છે તે ક્લૅમ્પની નજીકના સ્થાને તેને સ્પિરિટ લૅમ્પ, મીણબત્તી અથવા બર્નર વડે ગરમ કરો.
- થોડા સમય પછી તમે શું અવલોકન કરો છો ?
- તમારાં અવલોકનો નોંધો. શું ધાતુનો તાર પીગળે છે ?

આકૃતિ 3.1 ધાતુઓ ઉષ્માના સારા વાહકો છે

ઉપર્યુક્ત પ્રવૃત્તિ દર્શાવે છે કે ધાતુઓ ઉષ્માના સારા વાહકો છે અને ઊંચા ગલનબિંદુ (Melting Points) ધરાવે છે. સિલ્વર અને કૉપર ઉષ્માના ઉત્તમ વાહકો છે. સીસું અને પારો સરખામણીમાં ઉષ્માના મંદ વાહકો છે.

શું ધાતુઓ વિદ્યુતનું પણ વહન કરે છે ? ચાલો, આપણે જાણીએ.

प्रवृत्ति 3.6

- આકૃતિ 3.2માં દર્શાવ્યા પ્રમાણે વિદ્યુત-પરિપથ (Electric Circuit)ની ગોઠવણ કરો.
- જેની ચકાસણી કરવાની છે તે ધાતુને અહીં દર્શાવ્યા પ્રમાણે પરિપથમાં A અને B છેડા વચ્ચે જોડો.
- શું બલ્બ પ્રકાશિત થાય છે ? તે શું સૂચવે છે ?

તમે ચોક્કસપણે જોયું હશે કે જે તાર તમારા ઘરે વિદ્યુત પહોંચાડે છે, તેની પર પોલિવિનાઇલ ક્લોરાઇડ (PVC) અથવા રબર જેવી સામગ્રીનું પડ લગાવેલું હોય છે. વિદ્યુત તારને શા માટે આ પ્રકારના પદાર્થો વડે પડ લગાવવામાં આવે છે ?

આકૃતિ 3.2 ધાતુઓ વિદ્યુતના સારા વાહકો છે

જયારે ધાતુઓને સખત સપાટી પર અફાળવામાં આવે ત્યારે શું થાય છે ? શું તેઓ ધ્વિનિ ઉત્પન્ન કરે છે ? જે ધાતુઓ સખત સપાટી પર અફાળવાથી ધ્વિનિ ઉત્પન્ન કરે છે તેમને રણકારયુક્ત (Sonorous) કહે છે. હવે તમે કહી શકો કે શાળાના ઘંટ શા માટે ધાતુઓના બનેલા હોય છે ?

3.1.2 અધાતુઓ (Non-metals)

અગાઉના ધોરણમાં તમે શીખી ગયાં કે ધાતુઓની તુલનામાં અધાતુઓ ઘણી ઓછી છે. કાર્બન, સલ્ફર, આયોડિન, ઑક્સિજન, હાઇડ્રોજન વગેરે અધાતુઓનાં કેટલાંક ઉદાહરણો છે. અધાતુઓ ઘન અથવા વાયુઓ છે, સિવાય કે બ્રોમિન જે પ્રવાહી છે.

શું અધાતુઓ પણ ધાતુઓ જેવા જ ભૌતિક ગુણધર્મો ધરાવે છે ? ચાલો, આપણે શોધી કાઢીએ.

પ્રવૃત્તિ 3.7

- કાર્બન (કોલસો અથવા ગ્રેફાઇટ), સલ્ફર અને આયોડિનના નમૂના એકત્ર કરો.
- 🔳 આ અધાતુઓ સાથે પ્રવૃત્તિઓ 3.1 થી 3.4 અને 3.6 કરો અને તમારાં અવલોકનો નોંધો.

ધાતુઓ અને અધાતુઓ સંબંધિત તમારાં અવલોકનોનું કોષ્ટક 3.1માં સંકલન કરો.

કોષ્ટક 3.1

તત્ત્વ	સંજ્ઞા	સપાટીનો પ્રકાર	સખતાઈ	ટિપાઉપણું	તણાવપણું	વિદ્યુતનું વહન	રણકારયુક્ત અવાજ

કોષ્ટક 3.1માં નોંધેલાં અવલોકનોના આધારે વર્ગમાં ધાતુઓ અને અધાતુઓના સામાન્ય ભૌતિક ગુણધર્મોની ચર્ચા કરો. તમે ચોક્કસપણે તે તારણ પર પહોંચશો કે આપણે માત્ર તત્ત્વોના ભૌતિક ગુણધર્મોના આધારે જ તેમનું વર્ગીકરણ કરી શકીએ નહિ, કારણ કે તેમનામાં ઘણા અપવાદો છે. ઉદાહરણ તરીકે,

(i) પારા (મરક્યુરિ) સિવાયની તમામ ધાતુઓ ઓરડાના તાપમાને ઘન સ્વરૂપમાં અસ્તિત્વ ધરાવે છે. પ્રવૃત્તિ 3.5માં તમે અવલોકન કર્યું છે કે ધાતુઓ ઊંચા ગલનબિંદુ ધરાવે છે, પરંતુ, ગેલિયમ અને સીઝિયમ ઘણાં નીચાં ગલનબિંદુ ધરાવે છે. આ બે ધાતુઓને તમારી હથેળી પર રાખતાં તે પીગળી જશે.

- (ii) આયોડિન અધાત છે, પરંતુ તે ચમકદાર છે.
- (iii) કાર્બન અધાતુ છે જે વિવિધ સ્વરૂપોમાં અસ્તિત્વ ધરાવે છે. દરેક સ્વરૂપને અપરરૂપ (Allotrope) કહે છે. કાર્બનનું અપરરૂપ હીરો સૌથી સખત કુદરતી પદાર્થ તરીકે જાણીતો છે અને તે ખૂબ જ ઊંચું ગલનબિંદુ તેમજ ઉત્કલનબિંદુ ધરાવે છે. કાર્બનનું અન્ય અપરરૂપ ગ્રેફાઇટ વિદ્યુતનો સુવાહક છે.
- (iv) આલ્કલી ધાતુઓ (લિથિયમ, સોડિયમ, પોટેશિયમ) એટલી બધી નરમ હોય છે કે તેને છરી વડે પણ કાપી શકાય છે. તેઓ ઓછી ઘનતા અને નીચા ગલનબિંદુ ધરાવે છે. તત્ત્વોને તેમના રાસાયણિક ગુણધર્મોના આધારે ધાતુઓ અને અધાતુઓમાં વધુ ચોક્કસપણે વર્ગીકૃત કરી શકાય છે.

પ્રવૃત્તિ 3.8

- મૅગ્નેશિયમની પટ્ટી અને થોડો સલ્ફર પાઉડર લો.
- મૅગ્નેશિયમની પટ્ટીને સળગાવો. તેની રાખ એકત્ર કરી તેને પાણીમાં ઓગાળો.
- પરિણામી દ્રાવણને લાલ અને ભૂરા એમ બંને લિટમસ પેપર વડે તપાસો.
- મૅગ્નેશિયમને સળગાવતા ઉદ્ભવતી નીપજ ઍસિડિક છે કે બેઝિક ?
- હવે સલ્ફર પાઉડરને સળગાવો. ઉત્પન્ન ધુમાડા (Fumes)ને એકત્ર કરવા માટે સળગતા સલ્ફરની ઉપર કસનળી મૂકો.
- ઉપર્યુક્ત કસનળીમાં થોડું પાણી ઉમેરો અને હલાવો.
- 🏿 આ દ્રાવણને ભૂરા અને લાલ લિટમસ પેપર વડે તપાસો.
- સલ્ફરને સળગાવતાં ઉત્પન્ન થતી નીપજ ઍસિડિક છે કે બેઝિક ?
- શું તમે આ પ્રક્રિયાઓ માટેનાં સમીકરણો લખી શકશો ?

મોટા ભાગની અધાતુઓ પાણીમાં ઓગળે ત્યારે ઍસિડિક ઑક્સાઇડ ઉત્પન્ન કરે છે. જ્યારે બીજી તરફ મોટા ભાગની ધાતુઓ બેઝિક ઑક્સાઇડ આપે છે. તમે હવે પછીના વિભાગમાં આ ધાતુ ઑક્સાઇડો વિશે વધુ શીખશો.

પ્રશ્નો

- 1. એવી ધાતુનું ઉદાહરણ આપો :
 - (i) જે ઓરડાના તાપમાને પ્રવાહી છે.
 - (ii) જે છરી વડે આસાનીથી કાપી શકાય છે.
 - (iii) જે ઉષ્માની ઉત્તમ વાહક છે.
 - (iv) જે ઉષ્માની મંદવાહક છે.
- 2. ટિપાઉપશું અને તણાવપશું નો અર્થ સમજાવો.

3.2 ધાતુઓના રાસાયણિક ગુણધર્મો

(Chemical Properties of Metals)

આપણે વિભાગ 3.2.1 થી 3.2.4માં ધાતુઓના રાસાયણિક ગુણધર્મો વિશે શીખીશું. નીચે દર્શાવેલી ધાતુઓના નમૂના એકત્ર કરો. ઍલ્યુમિનિયમ, કૉપર, લોખંડ, લેડ, મૅગ્નેશિયમ, ઝિંક, સોડિયમ. 3.2.1 ધાતુઓ હવામાં સળગે ત્યારે શું થાય છે ?

(What happens when Metals are Burnt in Air ?)

તમે પ્રવૃત્તિ 3.8માં જોઈ ગયાં છો કે મૅગ્નેશિયમ હવામાં સફેદ (પ્રજ્વલિત) જ્યોત સાથે સળગે છે. શું તમામ ધાતુઓ આ જ પ્રકારે વર્તે છે ? ચાલો, આપણે નીચેની પ્રવૃત્તિ દ્વારા તપાસીએ :

प्रवृत्ति 3.9

ચેતવણી : નીચે દર્શાવેલ પ્રવૃત્તિ માટે શિક્ષકની મદદ જરૂરી છે. આંખોની સુરક્ષા માટે વિદ્યાર્થી ચશ્માં પહેરે તો વધુ સારું.

- ઉપર લીધેલા નમૂના પૈકી એકને ચીપિયા વડે બર્નરની જ્યોત પર સળગાવવાનો પ્રયાસ કરો. અન્ય ધાતુના નમૂના વડે તેનું પુનરાવર્તન કરો.
- જો નીપજ મળે તો તેને એકત્ર કરો.
- નીપજો તેમજ ધાતુની સપાટીને ઠંડી પાડો.
- 🏿 કઈ ધાતુઓ આસાનીથી સળગે છે ?
- 🔳 ધાતુ સળગી ત્યારે તમે જ્યોતના કયા રંગનું અવલોકન કર્યું ?
- સળગ્યા પછી ધાતુની સપાટી કેવી દેખાય છે ?
- ધાતુઓને તેમની ઑક્સિજન પ્રત્યેની પ્રતિક્રિયાત્મકતાના ઊતરતા ક્રમમાં ગોઠવો.
- શું નીપજો પાણીમાં દ્રાવ્ય છે ?

લગભગ તમામ ધાતુઓ ઑક્સિજન સાથે સંયોજાઈને ધાતુ ઑક્સાઇડ બનાવે છે.

ઉદાહરણ તરીકે, જ્યારે કૉપરને હવામાં ગરમ કરવામાં આવે ત્યારે તે ઑક્સિજન સાથે સંયોજાઈને કાળા રંગનો કૉપર(II) ઑક્સાઇડ બનાવે છે.

```
2Cu + O_2 \rightarrow 2CuO
(ક્રૉપર) (ક્રૉપર(II) ઑક્સાઇડ)
```

તેવી જ રીતે ઍલ્યુમિનિયમ ઍલ્યુમિનિયમ ઑક્સાઇડ બનાવે છે.

$$4 {\rm AI} + 3 {\rm O}_2 \rightarrow 2 {\rm AI}_2 {\rm O}_3$$
 (ઍલ્યુમિનિયમ) (ઍલ્યુમિનિયમ ઑક્સાઇડ)

પ્રકરણ 2માંથી યાદ કરો કે કૉપર ઑક્સાઇડ કેવી રીતે હાઇડ્રોક્લોરિક ઍસિડ સાથે પ્રક્રિયા કરે છે. આપણે શીખી ગયાં કે ધાતુ ઑક્સાઇડ સ્વભાવે બેઝિક હોય છે. પરંતુ અમુક ધાતુ ઑક્સાઇડ જેવાં કે, ઍલ્યુમિનિયમ ઑક્સાઇડ, ઝિંક ઑક્સાઇડ વગેરે, ઍસિડિક તેમજ બેઝિક એમ બંને વર્તણૂક દર્શાવે છે. એવા ધાતુ ઑક્સાઇડ જે ઍસિડ અને બેઇઝ એમ બંને સાથે પ્રક્રિયા કરીને ક્ષાર અને પાણી બનાવે છે, તે ઊભયગુણી ઑક્સાઇડ તરીકે ઓળખાય છે. ઍલ્યુમિનિયમ ઑક્સાઇડ નીચે પ્રમાણે ઍસિડ અને બેઇઝ સાથે પ્રક્રિયા કરે છે :

$$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$$
 $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$
(સોડિયમ
અંલ્યુમિનેટ)

મોટા ભાગના ધાતુ ઑક્સાઇડ પાણીમાં અદ્રાવ્ય હોય છે, પરંતુ આમાંના કેટલાક પાણીમાં દ્રાવ્ય થઈ આલ્કલી બનાવે છે. સોડિયમ ઑક્સાઇડ અને પોટૅશિયમ ઑક્સાઇડ પાણીમાં દ્રાવ્ય થઈ નીચે મુજબ આલ્કલી ઉત્પન્ન કરે છે :

$$Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)$$

 $K_2O(s) + H_2O(l) \rightarrow 2KOH(aq)$

આપણે પ્રવૃત્તિ 3.9માં જોયેલું છે કે, તમામ ધાતુઓ ઑક્સિજન સાથે સમાન દરે પ્રક્રિયા કરતી નથી. ભિન્ન-ભિન્ન ધાતુઓ ઑક્સિજન પ્રત્યે ભિન્ન-ભિન્ન પ્રતિક્રિયાત્મકતા દર્શાવે છે. પોટૅશિયમ અને સોડિયમ જેવી ધાતુઓ એટલી તીવ્ર પ્રક્રિયા કરે છે કે જો તેને ખુલ્લામાં (હવામાં) રાખવામાં આવે તો તે આગ પકડી લે છે. તેથી તેમને સુરક્ષિત રાખવા અને આકસ્મિક આગ રોકવા માટે, કૅરોસીનમાં ડુબાડીને રાખવામાં આવે છે. સામાન્ય તાપમાને, ધાતુઓ જેવી કે મૅગ્નેશિયમ, ઍલ્યુમિનિયમ, ઝિંક, સીસું વગેરેની સપાટીઓ ઑક્સાઇડના પાતળા સ્તર વડે ઢંકાઈ જાય છે. રક્ષણાત્મક ઑક્સાઇડનું સ્તર ધાતુનું વધુ ઑક્સિડેશન થતું અટકાવે છે. લોખંડને ગરમ કરતાં તે સળગતું નથી પરંતુ લોખંડના ભૂકાને બર્નરની જયોતમાં નાખતાં તે તીવ્રતાથી સળગે છે. કૉપર સળગતું નથી, પરંતુ ગરમ ધાતુ પર કાળા રંગનું કૉપર(II) ઑક્સાઇડનું સ્તર લાગી જાય છે. ચાંદી અને સોનું ઊંચા તાપમાને પણ ઑક્સિજન સાથે પ્રક્રિયા કરતું નથી.

એનોડીકરણ (anodisation) ઍલ્યુમિનિયમના ઑક્સાઇડનું જાડું પડ બનાવવાનો પ્રક્રમ છે. ઍલ્યુમિનિયમ જયારે હવાના સંપર્કના આવે છે ત્યારે ઑક્સાઇડનું પાતળું સ્તર તૈયાર થાય છે. ઍલ્યુમિનિયમ ઑક્સાઇડનું સ્તર (Coat) તેના વધુ ઑક્સિડેશનનો પ્રતિકાર કરે છે. ઑક્સાઇડનું સ્તર વધુ જાડું બનતા આ પ્રતિક્રિયાત્મકતામાં સુધારો થાય છે. એનોડીકરણ દરમિયાન ઍલ્યુમિનિયની સ્વચ્છ વસ્તુને ઍનોડ બનાવવામાં આવે છે અને મંદ સલ્ફ્યુરિક ઍસિડ વડે વિદ્યુતવિભાજન કરવામાં આવે છે. ઍનોડ પર ઉત્પન્ન થતો ઑક્સિજન વાયુ ઍલ્યુમિનિયમ સાથે પ્રક્રિયા કરી જાડું રક્ષણાત્મક ઑક્સાઇડ સ્તર બનાવે છે. આ ઑક્સાઇડ સ્તરને રંગક લગાવીને ઍલ્યુમિનિયમની વસ્તુઓને આકર્ષક બનાવી શકાય છે.

પ્રવૃત્તિ 3.9 કર્યા બાદ, તમે ચોક્કસપશે અવલોકન કર્યું હશે કે અહીં લીધેલા ધાતુના નમૂનાઓ પૈકી સોડિયમ સૌથી વધુ પ્રતિક્રિયાત્મક છે. મૅગ્નેશિયમની પ્રક્રિયા ઓછી તીવ્ર છે જે દર્શાવે છે કે તે સોડિયમ કરતા ઓછી પ્રતિક્રિયાત્મક છે. પરંતુ ઑક્સિજન સાથેની દહન-પ્રક્રિયા આપણને ઝિંક, લોખંડ, કૉપર અથવા સીસાની પ્રતિક્રિયાત્મકતા નક્કી કરવા માટે મદદરૂપ થતી નથી. ચાલો, આપણે આ ધાતુઓની પ્રતિક્રિયાત્મકતાના ક્રમ અંગેના તારણ પર પહોંચવા માટે કેટલીક વધુ પ્રક્રિયાઓ જોઈએ. 3.2.2 ધાતુઓ પાણી સાથે પ્રક્રિયા કરે ત્યારે શું થાય છે ?

(What happens when Metals React with Water ?)

प्रवृत्ति 3.10

ચેતવણી : આ પ્રવૃત્તિમાં શિક્ષકની મદદ જરૂરી છે.

- 🔳 પ્રવૃત્તિ 3.9 જેવા જ ધાતુઓના નમૂના એકત્ર કરો.
- ઠંડા પાણીથી અડધા ભરેલા બીકરમાં આ નમૂનાઓના નાના ટુકડા સ્વતંત્ર રીતે મૂકો.
- કઈ ધાતુઓ ઠંડા પાણી સાથે પ્રક્રિયા કરે છે ? તેમને ઠંડા પાણી સાથેની પ્રતિક્રિયાત્મકતાના ચડતા ક્રમમાં ગોઠવો.
- શું કોઈ ધાતુ પાણી પર આગ ઉત્પન્ન કરી છે ?
- શું કોઈ ધાતુ થોડા સમય બાદ તરવાનું શરૂ કરે છે ?
- એવી ધાતુઓ કે જેણે ઠંડા પાણી સાથે પ્રક્રિયા કરી નથી તેને ગરમ પાણીથી અડધા ભરેલા બીકરમાં મૂકો.
- જે ધાતુઓએ ગરમ પાણી સાથે પ્રક્રિયા કરી નથી તેના માટે આકૃતિ 3.3માં દર્શાવ્યા
 પ્રમાણે સાધનોની ગોઠવણ કરો અને તેની વરાળ સાથેની પ્રક્રિયાનું અવલોકન કરો.
- કઈ ધાતુઓએ વરાળ સાથે પણ પ્રક્રિયા કરી નથી ?
- ધાતુઓને તેમની પાણી સાથેની પ્રતિક્રિયાત્મકતાના ઊતરતા ક્રમમાં ગોઠવો.

આકૃતિ 3.3 ધાતુ પર વરાળની અસર

ધાતુઓ પાણી સાથે પ્રક્રિયા કરે છે અને ધાતુ ઑક્સાઇડ અને હાઇડ્રોજન વાયુ ઉત્પન્ન કરે છે. ધાતુ ઑક્સાઇડ જે પાણીમાં દ્રાવ્ય હોય છે, તે તેમાં ઓગળીને ધાતુ હાઇડ્રૉક્સાઇડ બનાવે છે. પરંતુ તમામ ધાતુઓ પાણી સાથે પ્રક્રિયા કરતી નથી.

ધાતુ
$$+$$
 પાણી \rightarrow ધાતુ ઑક્સાઇડ $+$ હાઇડ્રોજન ધાતુ ઑક્સાઇડ $+$ પાણી \rightarrow ધાતુ હાઇડ્રૉક્સાઇડ

પોર્ટેશિયમ અને સોડિયમ જેવી ધાતુઓ ઠંડા પાણી સાથે ઉગ્ર રીતે પ્રક્રિયા કરે છે. સોડિયમ અને પોર્ટેશિયમના કિસ્સામાં, પ્રક્રિયા એટલી હદે તીવ્ર અને ઉષ્માક્ષેપક (Exothermic) હોય છે કે ઉત્પન્ન થતો હાઇડ્રોજન તરત જ આગ પકડે છે.

$$2K(s) + 2H_2O(1) \rightarrow 2KOH(aq) + H_2(g) + ઉષ્માઊર્જા$$

 $2Na(s) + 2H_2O(1) \rightarrow 2NaOH(aq) + H_2(g) + ઉષ્માઊર્જા$

કૅલ્શિયમની પાણી સાથેની પ્રક્રિયા ઓછી તીવ્ર હોય છે. ઉત્પન્ન થતી ઉષ્મા હાઇડ્રોજન માટે આગ પકડવા માટે પૂરતી હોતી નથી.

$$Ca(s) + 2H_2O(1) \rightarrow Ca(OH)_2(aq) + H_2(g)$$

કૅલ્શિયમ સપાટી પર તરી આવે છે કારણ કે ઉત્પન્ન થતાં હાઇડ્રોજન વાયુના પરપોટા ધાતુની સપાટી પર ચીપકે છે.

મૅગ્નેશિયમ ધાતુ ઠંડા પાણી સાથે પ્રક્રિયા કરતી નથી. તે ગરમ પાણી સાથે પ્રક્રિયા કરીને મૅગ્નેશિયમ હાઇડ્રૉક્સાઇડ અને હાઇડ્રોજન વાયુ બનાવે છે. તેની સપાટી પર હાઇડ્રોજન વાયુના પરપોટા ચીપકવાથી તે પણ તરવાનું શરૂ કરે છે.

ઍલ્યુમિનિયમ, લોખંડ અને ઝિંક જેવી ધાતુઓ ઠંડા કે ગરમ પાણી સાથે પ્રક્રિયા કરતી નથી, પરંતુ તેઓ વરાળ સાથે પ્રક્રિયા કરી ધાતુ ઑક્સાઇડ અને હાઇડ્રોજન બનાવે છે.

$$2Al(s) + 3H_2O(g) \rightarrow Al_2O_3(s) + 3H_2(g)$$

 $3Fe(s) + 4H_2O(g) \rightarrow Fe_3O_4(s) + 4H_2(g)$

સીસું, કૉપર, ચાંદી અને સોના જેવી ધાતુઓ પાણી સાથે સહેજ પણ પ્રક્રિયા કરતી નથી. 3.2.3 ધાતુઓ ઍસિડ સાથે પ્રક્રિયા કરે ત્યારે શું થાય છે ?

(What happens when Metals react with Acids?)

તમે અગાઉ શીખી ગયાં છો કે ધાતુઓ ઍસિડ સાથે પ્રક્રિયા કરીને ક્ષાર અને હાઇડ્રોજન વાયુ આપે છે.

શું તમે જાણો છો ?

ધાતુ + મંદ ઍસિડ → ક્ષાર + હાઇડ્રોજન

પરંતુ શું તમામ ધાતુઓ સમાન રીતે વર્તે છે ? ચાલો, આપણે શોધી કાઢીએ.

प्रवृत्ति 3.11

- સોડિયમ અને પોટૅશિયમ સિવાયની ધાતુઓના નમૂના ફરીથી એકત્ર કરો. જો નમૂના નિસ્તેજ
 હોય તો તેને કાચપેપર વડે ઘસીને શુદ્ધ કરો.
 - ચેતવણી : સોડિયમ અને પોટેશિયમ ન લેશો કારણ કે તે ઠંડા પાણી સાથે પણ તીવ્ર રીતે પ્રક્રિયા કરે છે.
- નમૂનાઓને મંદ હાઇડ્રોક્લોરિક ઍસિડ ધરાવતી કસનળીઓમાં અલગ-અલગ રીતે મૂકો.
- થરમૉમિટરને કસનળીઓમાં એવી રીતે લટકાવો કે જેથી તેના ગોળા (બલ્બ) ઍસિડમાં ડૂબેલા રહે.
- ધ્યાનપૂર્વક પરપોટા ઉત્પન્ન થવાના દરનું અવલોકન કરો.
- કઈ ધાતુ મંદ હાઇડ્રોક્લોરિક ઍસિડ સાથે તીવ્રતાથી પ્રક્રિયા કરે છે ?
- કઈ ધાતુ માટે તમે મહત્તમ તાપમાન નોંધ્યું ?
- ધાતુઓને તેમની મંદ ઍસિડ પ્રત્યેની પ્રતિક્રિયાત્મકતાના ઊતરતા ક્રમમાં ગોઠવો.

મૅગ્નેશિયમ, ઍલ્યુમિનિયમ, ઝિંક અને લોખંડની મંદ સલ્ફ્યુરિક ઍસિડ સાથેની પ્રક્રિયાઓનાં સમીકરણો લખો.

જયારે ધાતુની નાઇટ્રિક ઍસિડ સાથે પ્રક્રિયા થાય ત્યારે હાઇડ્રોજન વાયુ ઉત્પન્ન થતો નથી કારણ કે HNO_3 પ્રબળ ઑક્સિડેશનકર્તા છે. તે H_2 નું ઑક્સિડેશન કરી પાણી ઉત્પન્ન કરે છે અને પોતે કોઈ પણ નાઇટ્રોજન ઑક્સાઇડમાં રિડક્શન પામે છે ($\mathrm{N}_2\mathrm{O}$, NO , NO_2). પરંતુ મૅગ્નેશિયમ (Mg) અને મૅંગેનીઝ (Mn) ખૂબ જ મંદ HNO_3 સાથે પ્રક્રિયા કરી H_2 વાયુ ઉત્પન્ન કરે છે.

તમે પ્રવૃત્તિ 3.11માં ચોક્કસપણે અવલોકન કર્યું છે કે મૅગ્નેશિયમના કિસ્સામાં પરપોટા ઉત્પન્ન થવાનો દર સૌથી વધુ હતો. આ કિસ્સામાં પ્રક્રિયા પણ સૌથી વધુ ઉષ્માક્ષેપક હતી. પ્રતિક્રિયાત્મકતા Mg > Al > Zn > Fe ક્રમમાં ઘટે છે. કૉપરના કિસ્સામાં પરપોટા જોવા મળતા નથી અને તાપમાનમાં પણ કોઈ ફેરફાર થતો નથી તે દર્શાવે છે કે કૉપર મંદ HCl સાથે પ્રક્રિયા કરતી નથી.

^

ઍક્વારિજીયા, ('રોયલ પાણી' માટે લૅટિન શબ્દ) (અમ્લરાજ) સાંદ્ર હાઇડ્રૉક્લોરિક ઍસિડ અને સાંદ્ર નાઇટ્રિક ઍસિડનું 3:1ના પ્રમાણમાં તૈયાર કરેલું તાજું મિશ્રણ છે. તે સોનાને ઓગાળી શકે છે, જયારે આ ઍસિડો પૈકી એક પણ ઍસિડ એકલો આમ કરી શકતો નથી. ઍક્વારિજીયા પ્રબળ ક્ષારીય, ધુમાયમાન પ્રવાહી છે. તે સોના અને પ્લેટિનમને ઓગાળી શકતા અમુક પ્રક્રિયકો પૈકીનો એક છે.

3.2.4 ધાતુઓ અન્ય ધાતુના ક્ષારના દ્રાવણ સાથે કેવી રીતે પ્રક્રિયા કરે છે ?

(How do Metals react with Solutions of other Metal Salts?)

प्रवृत्ति 3.12

- તાંબાનો એક શુદ્ધ તાર અને લોખંડની એક ખીલી લો.
- કસનળીઓમાં તાંબાના તારને આયર્ન સલ્ફેટના દ્રાવણમાં મૂકો અને લોખંડની ખીલીને કૉપર સલ્ફેટના દ્રાવણમાં મૂકો (આકૃતિ 3.4).
- 20 મિનિટ બાદ તમારાં અવલોકનો નોંધો.

- કઈ કસનળીમાં પ્રક્રિયા થયેલી છે તેવું તમને જાણવા મળે છે ?
- કયા આધારે તમે કહી શકો કે ખરેખર પ્રક્રિયા થયેલ છે ?
- શું તમે પ્રવૃત્તિઓ 3.9, 3.10 અને 3.11 માટે તમારાં અવલોકનો વચ્ચે કોઈ સહસંબંધ પ્રસ્થાપિત કરી શકો છો ?
- થયેલી પ્રક્રિયા માટે સમતોલિત રાસાયણિક સમીકરણ લખો.
- 🏿 પ્રક્રિયાના પ્રકારનું નામ આપો.

સિકય ધાતુ તેનાથી ઓછી સિકિય ધાતુને તેમનાં સંયોજનોના દ્રાવણ અથવા પીગાળેલ સ્વરૂપમાંથી વિસ્થાપિત કરી શકે છે.

અગાઉના વિભાગોમાં આપણે જોયું છે કે તમામ ધાતુઓ સમાન રીતે પ્રતિક્રિયાત્મક હોતી નથી. આપણે અલગ-અલગ ધાતુઓની ઑક્સિજન, પાણી અને ઍસિડ સાથે પ્રતિક્રિયાત્મકતા ચકાસી. પરંતુ તમામ ધાતુઓ આ પ્રક્રિયકો સાથે પ્રક્રિયા કરતી નથી, તેથી આપણે એકત્ર કરેલા તમામ ધાતુના નમૂનાઓને તેમની પ્રતિક્રિયાત્મકતાના ઊતરતા ક્રમમાં મૂકી શકતા નથી. પ્રકરણ1માં ભણી ગયેલ વિસ્થાપન

પ્રક્રિયાઓ ધાતુઓની પ્રતિક્રિયાત્મકતા વિશે વધુ સારા પુરાવા આપે છે. તે સમજવું સહેલું અને સરળ ^{પ્રક્રિયા} છે કે જો ધાતુ A ધાતુ Bને તેના દ્રાવણમાંથી વિસ્થાપિત કરે તો તે B કરતાં વધુ પ્રતિક્રિયાત્મક છે.

ધાતુ A + Bના ક્ષારનું દ્રાવણ \rightarrow Aના ક્ષારનું દ્રાવણ + ધાતુ B

પ્રવૃત્તિ 3.12માં તમારાં અવલોકનોના આધારે કૉપર કે લોખંડ કઈ ધાતુ વધુ પ્રતિક્રિયાત્મક છે ? 3.2.5 પ્રતિક્રિયાત્મકતા(સક્રિયતા) શ્રેણી (The Reactivity Series)

પ્રતિક્રિયાત્મકતા શ્રેણી ધાતુઓની ઘટતી જતી પ્રતિક્રિયાત્મકતાના ક્રમમાં ગોઠવેલી યાદી છે. વિસ્થાપન પ્રયોગો કર્યા બાદ (પ્રવૃત્તિઓ 1.9 અને 3.12) નીચે દર્શાવેલી શ્રેણી (કોષ્ટક 3.2)ને વિકસાવવામાં આવેલી છે, જેને પ્રતિક્રિયાત્મકતા અથવા સક્રિયતા શ્રેણી (Reactivity or Activity Series) કહે છે.

કોષ્ટક 3.2 સક્રિયતા શ્રેણી : ધાતુઓની સાપેક્ષ પ્રતિક્રિયાત્મકતા

	The state of the s	3
K	પોટૅશિયમ	સૌથી વધુ પ્રતિક્રિયાત્મક
Na	સોડિયમ	
Ca	કેલ્શિયમ	
Mg	મૅગ્નેશિયમ	
Al	ઍલ્યુમિનિયમ	
Zn	િઝંક	પ્રતિક્રિયાત્મકતા ઘટે છે.
Fe	આયર્ન	
Pb	લૅડ	
[H]	[હાઇડ્રોજન]	
Cu	કૉપર	
Hg	મરક્યુરિ	
Ag	સિલ્વર	
Au	ગોલ્ડ 🔪	🖊 સૌથી ઓછી પ્રતિક્રિયાત્મક
11270		

પ્રશ્નો

- 1. શા માટે સોડિયમને કૅરોસીનમાં રાખવામાં આવે છે ?
- 2. આ પ્રક્રિયાઓ માટે સમીકરણો લખો.
 - (i) વરાળ સાથે લોખંડ
 - (ii) પાણી સાથે કૅલ્શિયમ અને પોટૅશિયમ
- 3. ચાર ધાતુઓ A, B, C અને Dના નમૂના લીધેલા છે અને નીચે દર્શાવેલ દ્રાવણમાં એક પછી એક ઉમેરેલ છે. પ્રાપ્ત થયેલ પરિણામોને નીચે મુજબ કોપ્ટકમાં સારણીબદ્ધ કરેલ છે :

ધાતુ	આયર્ન(II) સલ્ફેટ	કૉપર(II) સલ્ફેટ	ઝિંક સલ્ફેટ	સિલ્વર નાઇટ્રેટ
A	કોઈ પ્રક્રિયા નહિ	વિસ્થાપન		
В	વિસ્થાપન		કોઈ પ્રક્રિયા નહિ	
C	કોઈ પ્રક્રિયા નહિ	કોઈ પ્રક્રિયા નહિ	કોઈ પ્રક્રિયા નહિ	વિસ્થાપન
D	કોઈ પ્રક્રિયા નહિ	કોઈ પ્રક્રિયા નહિ	કોઈ પ્રક્રિયા નહિ	કોઈ પ્રક્રિયા નહિ

ધાતુઓ A, B, C અને D વિશે નીચે દર્શાવેલા પ્રશ્નોના ઉત્તર માટે ઉપર્યુક્ત કોષ્ટકનો ઉપયોગ કરો.

- (i) સૌથી વધુ સક્રિય ધાતુ કઈ છે ?
- (ii) જો Bને કૉપર(II) સલ્ફેટના દ્રાવણમાં ઉમેરવામાં આવે તો તમે શું અવલોકન કરશો ?
- (iii) ધાતુઓ A, B, C અને Dને પ્રતિક્રિયાત્મકતા ઊતરતા ક્રમમાં ગોઠવો.
- 4. સિક્રિય ધાતુમાં મંદ હાઇડ્રોક્લોરિક ઍસિડ ઉમેરવામાં આવે ત્યારે કયો વાયુ ઉત્પન્ન થાય છે ? લોખંડની મંદ H_2SO_4 સાથેની પ્રક્રિયાનું રાસાયશિક સમીકરશ લખો.
- 5. જ્યારે આયર્ન(II) સલ્ફેટના દ્રાવણમાં ઝિંક ઉમેરવામાં આવે છે ત્યારે તમે શું અવલોકન કરો છો ? અહીં થતી રાસાયણિક પ્રક્રિયા લખો.

3.3 ધાતુઓ અને અધાતુઓ કેવી રીતે પ્રક્રિયા કરે છે ? (How do Metals and Non-metals React ?)

ઉપર્યુક્ત પ્રવૃત્તિઓમાં તમે અનેક પ્રક્રિયકો સાથે ધાતુઓની પ્રક્રિયાઓ નિહાળી. ધાતુઓ આ પ્રકારે પ્રક્રિયા શા માટે કરે છે ? ચાલો આપણે ધોરણ IXમાં તત્ત્વોની ઇલેક્ટ્રૉનીય રચના શીખી ગયાં હતા તે યાદ કરીએ. આપણે શીખી ગયાં કે ઉમદા વાયુઓ (noble gases) કે જે સંપૂર્ણ ભરાયેલી બાહ્યતમ કક્ષા ધરાવે છે તે ખૂબ જ અલ્પ પ્રમાણમાં રાસાયણિક ક્રિયાશીલતા દર્શાવે છે તેથી, આપણે તત્ત્વોની પ્રતિક્રિયાત્મકતાને સંપૂર્ણ ભરાયેલ સંયોજકતા કક્ષા પ્રાપ્ત કરવાની વૃત્તિ તરીકે સમજી શકીએ.

ચાલો આપણે નિષ્ક્રિય વાયુઓ અને કેટલીક ધાતુઓ તેમજ અધાતુઓની ઇલેક્ટ્રૉનીય રચના પર એક નજર કરીએ.

આપણે કોષ્ટક 3.3 પરથી જોઈ શકીએ છીએ કે સોડિયમ પરમાણુની બાહ્યતમ કક્ષામાં એક ઇલેક્ટ્રૉન છે. જો તે તેની M કક્ષામાંથી ઇલેક્ટ્રૉન ગુમાવે તો હવે L કક્ષા સ્થાયી અષ્ટક રચના ધરાવે છે. આ પરમાણુના કેન્દ્ર પાસે હજી પણ 11 પ્રોટોન છે, પરંતુ ઇલેક્ટ્રૉનની સંખ્યા 10 થઈ જશે, તેથી ત્યાં અસરકારક ધનભાર થશે જે આપણને સોડિયમ ધનાયન Na⁺ આપે છે જ્યારે બીજી તરફ ક્લોરિનની બાહ્યતમ કક્ષામાં સાત ઇલેક્ટ્રૉન છે અને તેને તેનું અષ્ટક પૂર્ણ કરવા માટે વધુ

46

કોષ્ટક 3.3 કેટલાંક તત્ત્વોની ઇલેક્ટ્રૉનીય રચના

તત્ત્વનો પ્રકાર	drei	તત્ત્વ પરમાણ્વીય ક્રમાં ક			કક્ષાઓમાં ઇલેક્ટ્રૉનની સંખ્યા			
		વરવાડવાવ કવાડ	K	L	M	N		
નિષ્ક્રિય (ઉમદા)	હિલિયમ (He)	2	2					
વાયુઓ	નિયોન (Ne)	10	2	8				
	આર્ગીન (Ar)	18	2	8	8			
ધાતુઓ	સોડિયમ (Na)	11	2	8	1			
	મૅગ્નેશિયમ (Mg)	12	2	8	2			
	ઍલ્યુમિનિયમ (Al)	13	2	8	3			
	પોટૅશિયમ (K)	19	2	8	8	1		
	કૅલ્શિયમ (Ca)	20	2	8	8	2		
અધાતુઓ	નાઇટ્રોજન (N)	7	2	5				
	ઑક્સિજન (O)	8	2	6				
	ફ્લોરિન (F)	9	2	7				
	ફૉસ્ફરસ (P)	15	2	8	5			
	સલ્ફર (S)	16	2	8	6			
	ક્લોરિન (Cl)	17	2	8	7			

એક ઇલેક્ટ્રૉનની જરૂર છે. જો સોડિયમ અને ક્લોરિન પ્રક્રિયા કરે ત્યારે સોડિયમ દ્વારા ગુમાવાતો ઇલેક્ટ્રૉન ક્લોરિન દ્વારા મેળવી લેવાય છે. ઇલેક્ટ્રૉન મેળવ્યા બાદ ક્લોરિન પરમાશુ એકમ ઋશ ભાર પ્રાપ્ત કરે છે, કારણ કે તેના કેન્દ્રમાં 17 પ્રોટોન હોય છે અને તેના K, L અને M કક્ષાઓમાં 18 ઇલેક્ટ્રૉન હોય છે. તે આપણને ક્લોરિન એનાયન CI આપે છે. તેથી આ બંને તત્ત્વો તેમની વચ્ચે નીચે પ્રમાણેનો આપ-લેનો સંબંધ ધરાવે છે:

આકૃતિ 3.5 સોડિયમ ક્લોરાઇડનું નિર્માણ

સોડિયમ અને ક્લોરાઇડ આયનો વિરુદ્ધ ભારવાળા હોવાથી એકબીજાને આકર્ષે છે અને સ્થિર વિદ્યુત આકર્ષણ બળથી જકડાઈને સોડિયમ ક્લોરાઇડ (NaCI) સ્વરૂપે અસ્તિત્વ ધરાવે છે. અત્રે તે નોંધવા યોગ્ય છે કે સોડિયમ ક્લોરાઇડ અશુ સ્વરૂપે નહિ પરંતુ વિરુદ્ધ ભારવાળા આયનોના સમુચ્ચય સ્વરૂપે અસ્તિત્વ ધરાવે છે.

ચાલો, આપણે વધુ એક આયનીય સંયોજન મૅગ્નેશિયમ ક્લોરાઇડનું નિર્માણ જોઈએ (આકૃતિ 3.6).

આકૃતિ 3.6 મૅગ્નેશિયમ ક્લોરાઇડનું નિર્માણ

આ પ્રકારે ધાતુમાંથી અધાતુમાં ઇલેક્ટ્રૉનની આપ-લે દ્વારા નિર્માણ પામતાં સંયોજનો આયનીય સંયોજનો (Ionic Compounds) અથવા વિદ્યુતસંયોજક સંયોજનો (Electrovalent componds) તરીકે ઓળખાય છે. શું તમે MgCl₂માં હાજર રહેલા ધનાયન અને ઋણાયનનાં નામ આપી શકશો ? 3.3.1 આયનીય સંયોજનના ગુણધર્મો (Properties of Ionic Compounds)

આયનીય સંયોજનોના ગુણધર્મા શીખવા માટે, ચાલો, આપણે નીચે પ્રમાણેની પ્રવૃત્તિ કરીએ :

આકૃતિ 3.7 क्षारना नमूनाने यमयी पर ગરમ કરવો

ક્ષારના દ્રાવણની વાહકતા ચકાસવી

પ્રવૃત્તિ 3.13

- વિજ્ઞાન પ્રયોગશાળામાંથી સોડિયમ ક્લોરાઇડ, પોટૅશિયમ આયોડાઇડ,
 બેરિયમ ક્લોરાઇડ અથવા અન્ય કોઈ ક્ષારના નમૂના લો.
- આ ક્ષારોની ભૌતિક અવસ્થા શું છે ?
- ધાતુની ચમચી પર અલ્પ માત્રામાં નમૂના લો અને જ્યોત પર સીધેસીધા જ ગરમ કરો (આકૃતિ 3.7) અન્ય નમૂનાઓ સાથે આ જ પ્રક્રિયાનું પુનરાવર્તન કરો.
- તમે શું અવલોકન કર્યું ? શું નમૂનાઓ જ્યોતને કોઈ રંગ આપે છે ? શું
 આ સંયોજનો પીગળે છે ?
- નમૂનાઓને પાણીમાં, પેટ્રોલમાં અને કેરોસીનમાં ઓગાળવાનો પ્રયત્ન કરો.
 શું તેઓ દ્રાવ્ય થાય છે ?
- આકૃતિ 3.8માં દર્શાવ્યા પ્રમાણે વિદ્યુતપરિપથ બનાવો અને કોઈ ક્ષારના દ્રાવણમાં વિદ્યુતધ્રુવો (electrodes) દાખલ કરો. તમે શું અવલોકન કર્યું ? અન્ય ક્ષારના નમૂનાઓને પણ આ જ રીતે ચકાસો.
- આ સંયોજનોની પ્રકૃતિ (સ્વભાવ) વિશે તમારું શું અનુમાન છે ?

કોષ્ટક 3.4 : કેટલાંક આયનીય સંયોજનોના ગલનબિંદુ તેમજ ઉત્કલનબિંદુ

	Total Control	
આયનીય	ગલનબિંદુ	ઉત્કલનબિંદુ
સંયોજન	(K)	(K)
NaCl	1074	1686
LiCl	887	1600
CaCl ₂	1045	1900
CaO	2850	3120
MgCl_2	981	1685

- તમે આયનીય સંયોજનોના નીચે પ્રમાણેના સામાન્ય ગુણધર્મોનું અવલોકન કરેલું છે -
- (i) ભૌતિક સ્વભાવ : ધન અને ઋષ આયનો વચ્ચે પ્રબળ આકર્ષણ બળ હોવાના કારણે આયનીય સંયોજનો ઘન અને થોડાં સખત હોય છે. આ સંયોજનો સામાન્ય રીતે બરડ (brittle) હોય છે અને દબાણ આપતાં તૂટીને ટુકડા થઈ જાય છે.
- (ii) ગલનબિંદુ અને ઉત્કલનબિંદુ : આયનીય સંયોજનો ઊંચા ગલનબિંદુ અને ઉત્કલનબિંદુ ધરાવે છે (જુઓ કોષ્ટક 3.4). પ્રબળ આંતર આયનીય આકર્ષણને તોડવા માટે નોંધપાત્ર પ્રમાણમાં ઊર્જાની જરૂર પડે છે તેના કારણે આમ બને છે.
- (iii) દ્રાવ્યતા : વિદ્યુતસંયોજક સંયોજનો સામાન્ય રીતે પાણીમાં દ્રાવ્ય તેમજ કેરોસીન, પેટ્રોલ વગેરે જેવા દ્રાવકોમાં અદ્રાવ્ય હોય છે.
- (iv) વિદ્યુતનું વહન : દ્રાવણમાંથી થતું વિદ્યુતનું વહન વીજભારિત કણોની ગતિશીલતાના કારણે થાય છે. પાણીમાં બનાવેલું આયનીય સંયોજનનું દ્રાવણ આયનો ધરાવે છે કે જે દ્રાવણમાંથી વિદ્યુતપ્રવાહ પસાર કરતાં વિરુદ્ધ વિદ્યુતપ્રુવો તરફ સ્થળાંતર પામે છે. ઘન અવસ્થામાં આયનીય સંયોજનો વિદ્યુતનું વહન કરતાં નથી કારણ કે, ઘનમાં તેમના બંધારણ દેઢ હોવાથી આયનોનું સ્થળાંતર શક્ય બનતું નથી. પરંતુ આયનીય સંયોજનો પીગળેલી અવસ્થામાં વિદ્યુતનું વહન કરે છે. ઉષ્માના કારણે વિરુદ્ધ વીજભાર ધરાવતાં આયનો વચ્ચે સ્થિરવિદ્યુતીય આકર્ષણ બળો નિર્બળ બનતા પીગળેલી અવસ્થામાં આવું શક્ય બને છે. આમ, આયનો આસાનીથી સ્થળાંતર કરી શકે છે અને વિદ્યુતનું વહન કરે છે.

પ્રશ્નો

- 1. (i) સોડિયમ, ઑક્સિજન અને મૅગ્નેશિયમ માટે ઇલેક્ટ્રૉન-બિંદુની રચના લખો.
 - (ii) ઇલેક્ટ્રોનના સ્થાનાંતરણ દ્વારા Na₂O અને MgOનું નિર્માણ દર્શાવો.
 - (iii) આ સંયોજનોમાં કયાં આયનો હાજર છે ?
- 2. આયનીય સંયોજનો શા માટે ઊંચા ગલનબિંદુ ધરાવે છે ?

3.4 ધાતુઓની પ્રાપ્તિ (Occurrence of Metals)

પૃથ્વીનું ભૂપૃષ્ઠ (પોપડો) ધાતુઓનો મોટો સ્રોત છે. દરિયાનું પાણી પણ સોડિયમ ક્લોરાઇડ, મૅગ્નેશિયમ ક્લોરાઇડ વગેરે જેવા દ્રાવ્ય ક્ષારો ધરાવે છે જે તત્ત્વો કે સંયોજનો પૃથ્વીના ભૂપૃષ્ઠમાંથી કુદરતી રીતે મળે છે તેને ખનીજો કહે છે. કેટલીક જગ્યાએ ખનીજો કોઈ ચોક્કસ ધાતુનું ઘણું ઊંચું ટકાવાર પ્રમાણ ધરાવે છે અને તેમાંથી ધાતુનું નિષ્કર્ષણ લાભદાયી હોઈ શકે છે. (તેમાંથી ધાતુ લાભદાયી રીતે નિષ્કર્ષિત કરી શકાય છે.) આવી ખનીજોને કાચીધાતુ (અયસ્ક)(ores) કહે છે.

3.4.1 ધાતુઓનું નિષ્કર્ષણ (Extraction of Metals)

તમે ધાતુઓની સક્રિયતા શ્રેણી વિશે શીખી ગયાં છો. તે જાણતા હોવાથી તમે આસાનીથી સમજી શકશો કે કાચી ધાતુમાંથી કેવી રીતે ધાતુ નિષ્કર્ષિત થાય છે. કેટલીક ધાતુઓ પૃથ્વીના ભૂપૃષ્ઠમાંથી મુક્ત અવસ્થામાં મળે છે. કેટલીક તેમનાં સંયોજનોના રૂપમાં મળે છે. સક્રિયતા શ્રેણીમાં તળિયે રહેલી ધાતુઓ સૌથી ઓછી સક્રિય છે.

આકૃતિ 3.9 સક્રિયતા શ્રેણી અને સંબંધિત ધાતુકર્મ વિધિ

મળ અવસ્થામાં

પ્રાપ્તિ

Ag

Au

તે ઘણી વાર મુક્ત અવસ્થામાં મળે છે. ઉદાહરણ તરીકે સોનું, ચાંદી, પ્લેટિનમ અને કૉપર મુક્ત અવસ્થામાં મળે છે. કૉપર અને સિલ્વર તેમની સલ્ફાઇડ અથવા ઑક્સાઇડ અયસ્ક (કાચી ધાતુ) સ્વરૂપે સંયોજિત અવસ્થામાં પણ મળે છે. સિક્રિયતા શ્રેણીમાં ટોચ પર રહેલી ધાતુઓ (K, Na, Ca, Mg અને AI) એટલી હદે સિક્રિય છે કે તે ક્યારેય કુદરતમાં મુક્ત તત્ત્વો રૂપે મળતી નથી. સિક્રિયતા શ્રેણીની મધ્યમાં રહેલી ધાતુઓ (Zn, Fe, Pb વગેરે) મધ્યમ સિક્રય છે. તે પૃથ્વીના ભૂપૃષ્ઠમાં ઑક્સાઇડ, સલ્ફાઇડ અથવા કાર્બોનેટ સ્વરૂપે મળે છે. તમે જોશો કે ઘણી ધાતુઓની અયસ્ક ઑક્સાઇડ હોય છે. આમ થવાનું કારણ એ છે કે ઑક્સિજન ખૂબ જ સિક્રય તત્ત્વ છે અને પૃથ્વી પર વિપુલ પ્રમાણમાં મળે છે.

આમ, સિક્રિયતાના આધારે આપશે ધાતુઓને નીચે દર્શાવેલ ત્રણ પ્રકારમાં વર્ગીકૃત કરી શકીએ (આકૃતિ 3.9). (i) નીચી સિક્રિયતા ધરાવતી ધાતુઓ (ii) મધ્યમ સિક્રિયતા ધરાવતી ધાતુઓ (iii) ઊંચી સિક્રિયતા ધરાવતી ધાતુઓ. દરેક પ્રકારમાં રહેલી ધાતુઓ મેળવવા માટે અલગ-અલગ તકનિકોનો ઉપયોગ કરવામાં આવે છે. અયસ્કમાંથી શુદ્ધ ધાતુઓના નિષ્કર્ષણમાં કેટલાંક સોપાનોનો સમાવેશ કરવામાં આવેલ છે. આ સોપાનોનો સારાંશ આકૃતિ 3.10માં આપેલ છે. નીચે દર્શાવેલ વિભાગોમાં દરેક સોપાનને વિસ્તૃત રીતે સમજાવેલ છે.

આકૃતિ 3.10 અયસ્કમાંથી ધાતુઓના નિષ્કર્ષણમાં સમાવિષ્ટ સોપાન

3.4.2 અયસ્કોની સમૃદ્ધિ (ધનિકતા) (Enrichment of Ores)

પૃથ્વીમાંથી ખોદીને બહાર કાઢેલી અયસ્કો સામાન્ય રીતે મોટા પ્રમાણમાં અશુદ્ધિઓ જેવી કે માટી, રેતી વગેરેથી દૂષિત હોય છે જેને ગેંગ કહે છે. ધાતુના નિષ્કર્ષણ પૂર્વે તેમાંથી અશુદ્ધિઓ દૂર કરવી જરૂરી છે. અયસ્ક ગેંગને દૂર કરવા માટે વપરાતી પદ્ધતિઓનો આધાર ગેંગ અને અયસ્કના ભૌતિક અથવા રાસાયણિક ગુણધર્મો વચ્ચે રહેલા તફાવત પર રહેલો છે. તે પ્રમાણે અલગ-અલગ અલગીકરણ તકનીકો અપનાવવામાં આવે છે.

3.4.3 સક્રિયતા શ્રેણીમાં નીચે રહેલી ધાતુઓનું નિષ્કર્ષણ

(Extracting Metals Low in the Activity Series)

સિક્રિયતા શ્રેણીમાં નીચે રહેલી ધાતુઓ ખૂબ જ નિષ્ક્રિય હોય છે. આ ધાતુઓના ઑક્સાઇડને માત્ર ગરમ કરીને તેનું રિડક્શન થઈ શકે છે. ઉદાહરણ તરીકે સિન્નાબાર (HgS) જે મરક્યુરિની કાચી ધાતુ છે. જ્યારે તેને હવામાં ગરમ કરવામાં આવે ત્યારે પ્રથમ તે મરક્યુરિક ઑક્સાઇડ (HgO)માં ફેરવાય છે ત્યાર બાદ મરક્યુરિક ઑક્સાઇડ વધુ ગરમ કરતા તેનું મરક્યુરિમાં રિડક્શન થાય છે.

$$2\text{HgO}(s) + 3\text{O}_2(g) \xrightarrow{\text{GVAL}} 2\text{HgO}(s) + 2\text{SO}_2(g)$$
 $2\text{HgO}(s) \xrightarrow{\text{GVAL}} 2\text{Hg(l)} + \text{O}_2(g)$

તેવી જ રીતે કૉપર જે કુદરતમાં $\mathrm{Cu}_2\mathrm{S}$ સ્વરૂપે તેના અયસ્ક તરીકે મળે છે તેને હવામાં ગરમ કરવાથી કૉપર મેળવી શકાય છે.

$$2Cu_2S + 3O_2(g)$$
 $\xrightarrow{\text{GRHI}}$ $2Cu_2O(s) + 2SO_2(g)$ $2Cu_2O + Cu_2S$ $\xrightarrow{\text{GRHI}}$ $6Cu(s) + SO_2(g)$

3.4.4 સક્રિયતા શ્રેણીની મધ્યમાં રહેલી ધાતુઓનું નિષ્કર્ષણ

(Extracting Metals in the Middle of the Activity Series)

સક્રિયતા શ્રેણીની મધ્યમાં રહેલી ધાતુઓ જેવી કે લોખંડ, ઝિંક, સીસું, કૉપર વગેરે મધ્યમ પ્રતિક્રિયાત્મક હોય છે. તે સામાન્ય રીતે કુદરતમાં સલ્ફાઇડ અથવા કાર્બોનેટ રૂપે મળે છે. ધાતુને તેના સલ્ફાઇડ અથવા કાર્બોનેટમાંથી મેળવવા કરતાં તેના ઑક્સાઇડમાંથી મેળવવી વધુ સરળ હોય છે. તેથી રિડક્શન કરતાં પહેલાં ધાતુ સલ્ફાઇડ અને કાર્બોનેટને ધાતુ ઑક્સાઇડમાં ફેરવવા ખૂબ જરૂરી છે. સલ્ફાઇડ કાચી ધાતુને વધુ પ્રમાણમાં હવાની હાજરીમાં સખત ગરમ કરતાં તે ઑક્સાઇડમાં ફેરવાય છે. આ પદ્ધતિને ભૂંજન (roasting) કહે છે. કાર્બોનેટ કાચી ધાતુને મર્યાદિત પ્રમાણમાં હવાની હાજરીમાં સખત ગરમ કરતાં તે ઑક્સાઇડમાં ફેરવાય છે. આ પદ્ધતિને કેલ્શિનેશન (Calcination) કહે છે. ઝિંક અયસ્કના ભૂંજન અને કેલ્શિનેશન દરમિયાન થતી રાસાયણિક પ્રક્રિયા નીચે પ્રમાણે દર્શાવી શકાય :

ભૂંજન :
$$2ZnS(s) + 3O_2(g) \xrightarrow{\text{ઉષ્મા}} 2ZnO(s) + 2SO_2(g)$$

કેલ્શિનેશન : $ZnCO_3(s) \xrightarrow{\text{ઉષ્મા}} ZnO(s) + CO_2(g)$

ત્યાર બાદ ધાતુ ઑક્સાઇડનું યોગ્ય રિડક્શનકર્તા જેવા કે કાર્બન વડે અનુરૂપ ધાતુમાં રિડક્શન કરવામાં આવે છે. ઉદાહરણ તરીકે, ઝિંક ઑક્સાઇડને કાર્બન સાથે ગરમ કરવામાં આવે ત્યારે તે ધાત્વીય ઝિંકમાં રિડક્શન પામે છે.

$$ZnO(s) + C(s) \rightarrow Zn(s) + CO(g)$$

તમે પ્રથમ પ્રકરણમાં સમજાવેલી ઑક્સિડેશન અને રિડક્શન પ્રક્રિયાથી પહેલેથી જ વાકેફ છો. ધાતુઓને તેમનાં સંયોજનોમાંથી મેળવવી એ પણ રિડક્શન પ્રક્રિયા છે.

કાર્બન(કોક)નો ઉપયોગ કરી ધાતુ ઑક્સાઇડનું ધાતુમાં રિડક્શન કરવા સિવાય કેટલીક વખત વિસ્થાપન પ્રક્રિયાઓ પણ ઉપયોગમાં લેવાય છે. ખૂબ જ સક્રિય ધાતુઓ જેવી કે સોડિયમ, કૅલ્શિયમ, ઍલ્યુમિનિયમ વગેરે રિડક્શનકર્તા તરીકે વપરાય છે, કારણ કે તે નીચી સક્રિયતા ધરાવતી ધાતુઓને તેમનાં સંયોજનોમાંથી વિસ્થાપિત કરી શકે છે. ઉદાહરણ તરીકે, જ્યારે મૅગેનીઝ ડાયૉક્સાઇડને ઍલ્યુમિનિયમના ભૂકા સાથે ગરમ કરવામાં આવે ત્યારે નીચે પ્રમાણેની પ્રક્રિયા થાય છે :

$3MnO_2(s) + 4Al(s) \rightarrow 3Mn(l) + 2Al_2O_3(s) + 324l$

શું તમે એવા પદાર્થોની ઓળખ કરી શકો કે જે ઑક્સિડેશન અથવા રિડક્શન પામે છે ?

3.4.5 સક્રિયતા શ્રેણીમાં ટોચ પર રહેલી ધાતુઓનું નિષ્કર્ષણ

(Extracting Metals towards the Top of the Activity Series)

સિકયતા શ્રેણીમાં ટોચ પર રહેલી ધાતુઓ ખુબ જ સિકય હોય છે. તેમનાં સંયોજનોને કાર્બન સાથે ગરમ કરવાથી તેને મેળવી શકાતી નથી. ઉદાહરણ

તરીકે, કાર્બન વડે સોડિયમ, મૅગ્નેશિયમ, કૅલ્શિયમ, ઍલ્યુમિનિયમ વગેરેના ઑક્સાઇડનું તેમની અનુરૂપ ધાતુઓમાં રિડક્શન કરી શકાતું નથી. આમ થવાનું કારણ એ છે કે ધાતુઓનું ઑક્સિજન પ્રત્યેનું આકર્ષણ કાર્બન કરતાં વધુ હોય છે. આ ધાતુઓ વિદ્યુતવિભાજનીય રિડક્શન (Electrolytic Reduction) દ્વારા મેળવાય છે. ઉદાહરણ તરીકે સોડિયમ, મૅગ્નેશિયમ અને કૅલ્શિયમને તેમના પિગાળેલા ક્લોરાઇડના વિદ્યુતવિભાજન દ્વારા મેળવવામાં આવે છે. ધાતુઓ કેથોડ (ઋણ વીજભારિત વિદ્યુતધ્રુવ) પર જમા થાય છે, જ્યારે ક્લોરિન ઍનોડ (ધન વીજભારિત વિદ્યુતધ્રુવ) પર જમા થાય છે. પ્રક્રિયાઓ આ પ્રમાણે છે :

કેથોડ પર : Na⁺ + e⁻ → Na

તેવી જ રીતે ઍલ્યુમિનિયમને ઍલ્યુમિનિયમ ઑક્સાઇડના વિદ્યુતવિભાજનીય રિડક્શન દ્વારા મેળવવામાં આવે છે.

આકૃતિ 3.11 રેલવેના પાટા જોડવા माटेनी थर्मिट प्रक्षिया

ઍનોડ ઍસિડિક કૉપર સલ્ફેટ દ્રાવણ

Pris

અશુદ્ધિઓ

(ઍનોડ પંક)

આકૃતિ 3.12 કૉપરનું વિદ્યુતવિભાજનીય રિડક્શન. ઍસિડિક કોંપર સલ્ફેટનું દ્રાવણ વિદ્યુતવિભાજય છે. ઍનોડ અશુદ્ધ કૉપર છે જ્યારે કેથોડ શુદ્ધ કૉપરની પટ્ટી છે. વિદ્યુતપ્રવાહ પસાર કરતાં, કેથોડ પર શુદ્ધ કોંપર જમા થાય છે

3.4.6 ધાતુઓનું શુદ્ધીકરણ (Refining of Metals)

ઉપર વર્ણવેલ વિવિધ રિડક્શન જેવી પ્રક્રિયાઓ દ્વારા ઉત્પન્ન થતી ધાતુઓ સંપૂર્ણપણે શુદ્ધ હોતી નથી. તેઓ અશુદ્ધિ ધરાવે છે કે જેને શુદ્ધ ધાતુઓ મેળવવા માટે દૂર કરવી જરૂરી છે. અશુદ્ધ ધાતુઓના શુદ્ધીકરણ માટે સૌથી વ્યાપક પ્રમાણમાં વપરાતી પદ્ધતિ વિદ્યુત- વિભાજનીય શુદ્ધીકરણ છે.

વિદ્યુતવિભાજનીય શુદ્ધીકરણ (Electrolytic Refining) : અનેક ધાતુઓ જેવી કે કૉપર, ઝિંક, ટિન, નિકલ, ચાંદી, સોનું વગેરે વિદ્યુતવિભાજનીય રીતે મેળવાય છે. આ પ્રક્રમમાં અશુદ્ધ ધાતુનો ઍનોડ અને શુદ્ધ ધાતુની પાતળી પટ્ટીનો કેથોડ બનાવવામાં આવે છે. ધાતુ ક્ષારના દ્રાવણનો વિદ્યુતવિભાજય (Electrolyte) તરીકે ઉપયોગ કરવામાં આવે છે. સાધનોની ગોઠવણી આકૃતિ 3.12માં દર્શાવ્યા પ્રમાણે કરવામાં આવે છે. વિદ્યુતવિભાજ્યમાંથી વિદ્યુતપ્રવાહ પસાર કરતાં, ઍનોડમાંથી શુદ્ધ ધાતુ વિદ્યુતવિભાજ્યમાં ઓગળે છે. વિદ્યુતવિભાજ્યમાંથી સમતુલ્ય પ્રમાણમાં શુદ્ધ ધાતુ કેથોડ પર જમા થાય છે. દ્રાવ્ય અશુદ્ધિઓ દ્રાવણમાં જાય છે, જ્યારે અદ્રાવ્ય અશુદ્ધિઓ ઍનોડના તળિયે નિક્ષેપિત (જમા) થાય છે, તેને ઍનોડ પંક (Anode mud) કહેવાય છે.

પ્રશ્નો

- 1. નીચેનાં પદોને વ્યાખ્યાયિત કરો :
 - (i) ખનીજ
- (ii) કાચી ધાતુ (અયસ્ક)
- (iii) ગેંગ
- 2. કુદરતમાં મુક્ત અવસ્થામાં મળતી બે ધાતુઓનાં નામ આપો.
- 3. ધાતુને તેના ઑક્સાઇડમાંથી મેળવવા માટે કઈ રાસાયણિક પ્રક્રિયા વપરાય છે ?

3.5 ક્ષારણ (Corrosion)

તમે પ્રકરણ 1માં ક્ષારણ વિશે નીચેની બાબતો શીખી ગયાં છો -

- ચાંદીની વસ્તુઓને હવામાં ખુલ્લી રાખતાં થોડા સમય બાદ તે કાળી પડી જાય છે. આમ થવાનું કારણ એ છે કે, તે હવામાંના સલ્ફર સાથે પ્રક્રિયા કરી સિલ્વર સલ્ફાઇડનું સ્તર બનાવે છે.
- કૉપર હવામાંના ભેજયુક્ત કાર્બન ડાયૉક્સાઇડ સાથે પ્રક્રિયા કરે છે અને ધીરે-ધીરે તેનો ચમકદાર કથ્થાઈ રંગ ગુમાવીને લીલું સ્તર પ્રાપ્ત કરે છે. આ લીલો પદાર્થ કૉપર કાર્બોનેટ છે.
- લોખંડને ભેજવાળી હવામાં લાંબો સમય ખૂલ્લું રાખતા તેની પર કથ્થાઈ પદાર્થનો થર જામે છે, તેને કાટ (rust) કહે છે.
 ચાલો, આપણે એવી પરિસ્થિતિઓ શોધી કાઢીએ કે જેમાં લોખંડને કાટ લાગે છે.

प्रवृत्ति 3.14

- ત્રણ કસનળી લો અને દરેકમાં લોખંડની ખીલી મૂકો.
- આ કસનળીઓને A, B અને C ચિલ્લનિત કરો. કસનળી Aમાં
 થોડું પાણી ઉમેરીને તેને બચ લગાવો.
- કસનળી Bમાં ઉકાળેલું શુદ્ધ પાણી ઉમેરો. આશરે 1 mL તેલ ઉમેરીને તેને બૂચ લગાવો. તેલ પાણી પર તરશે અને હવાને પાણીમાં ઓગળતી અટકાવશે.
- કસનળી Cમાં થોડો નિર્જળ કૅલ્શિયમ ક્લોરાઇડ લો અને તેને બૂચ લગાવો. જો હવામાં ભેજ હશે તો નિર્જળ કૅલ્શિયમ ક્લોરાઇડ ભેજ શોષી લેશે. થોડા દિવસો સુધી આ કસનળીઓને મૂકી રાખો અને પછી અવલોકન કરો (આકૃતિ 3.13).

તમે અવલોકન કરશો કે કસનળી Aમાં લોખંડની ખીલીઓ કટાય છે, પરંતુ કસનળી B અને Cમાં તે કટાતી નથી. કસનળી Aમાં ખીલીઓ હવા અને પાણી બંનેના સંપર્કમાં આવે છે. કસનળી B માં ખીલીઓ માત્ર પાણીના સંપર્કમાં આવે છે અને કસનળી Cમાં ખીલીઓ સૂકી હવાના સંપર્કમાં આવે છે. એવી પરિસ્થિતિઓ કે જેમાં લોખંડની વસ્તુઓને કાટ લાગે છે તેના વિશે તે આપણને શું કહે છે ?

આકૃતિ 3.13

કઈ પરિસ્થિતિઓમાં લોખંડને કાટ લાગે છે તેની તપાસ કરવી. કસનળી Aમાં હવા અને પાણી બંને હાજર છે. કસનળી Bમાં પાણીમાં હવા ઓગળેલી નથી. કસનળી Cમાં હવા શુષ્ક છે. 3.5.1 ક્ષારણનો અટકાવ (Prevention of Corrosion)

રંગ કરીને, તેલ લગાવીને, ગ્રીઝ લગાવીને, ગૅલ્વેનાઇઝિંગ કરીને, ક્રોમ પ્લેટિંગ કરીને, એનોડીકરણ દ્વારા અથવા મિશ્રધાતુઓ બનાવીને લોખંડનું ક્ષારણ અટકાવી શકાય છે.

સ્ટીલ અને લોખંડને કાટ સામે રક્ષણ આપવા માટે તેમની પર ઝિંકનું પાતળું સ્તર લગાવવાની પદ્ધતિ ગૅલ્વેનાઇઝેશન છે. જો ઝિંકનું સ્તર તૂટી જાય તોપણ ગૅલ્વેનાઇઝડ વસ્તુનું કાટ સામે રક્ષણ થાય છે. શું તમે તેનું કારણ આપી શકો છો ?

મિશ્રધાતુ બનાવવી (Alloying) એ ધાતુના ગુણધર્મોમાં સુધારા કરવા માટેની વધુ સારી પદ્ધતિ છે. આ પદ્ધતિથી આપણે ઇચ્છિત ગુણધર્મો મેળવી શકીએ છીએ. ઉદાહરણ તરીકે, લોખંડ વ્યાપક પ્રમાણમાં ઉપયોગમાં લેવાતી ધાતુ છે, પરંતુ તે ક્યારેય શુદ્ધ અવસ્થામાં વપરાતી નથી. આમ થવાનું કારણ એ છે કે શુદ્ધ લોખંડ ખૂબ જ નરમ હોય છે અને ગરમ હોય ત્યારે સહેલાઈથી ખેંચી શકાય તેવું હોય છે. પરંતુ જો તેને કાર્બનના થોડા પ્રમાણ (આશરે 0.05 %) સાથે મિશ્ર કરવામાં આવે તો તે સખત અને મજબૂત બને છે. જ્યારે લોખંડને નિકલ અને ક્રોમિયમ સાથે મિશ્ર કરવામાં આવે ત્યારે આપણે સ્ટેનલેસ સ્ટીલ મેળવી શકીએ છીએ કે જે સખત હોય છે અને તેને કાટ લાગતો નથી. આમ, લોખંડને બીજા કેટલાક પદાર્થો સાથે મિશ્ર કરવામાં આવે તો, તેના ગુણધર્મો બદલાય છે. વાસ્તવમાં કોઈ પણ ધાતુને જો બીજા કોઈ પદાર્થ સાથે મિશ્ર કરવામાં આવે તો તેના ગુણધર્મો બદલી શકાય છે. ઉમેરવામાં આવતો પદાર્થ ધાતુ અથવા અધાતુ હોઈ શકે છે. મિશ્રધાતુ (Alloy) એ બે કે તેથી વધુ ધાતુઓ અથવા ધાતુ અને અધાતુનું સમાંગ (homogeneous) મિશ્રણ છે. સૌ પ્રથમ પ્રાથમિક ધાતુને પીગાળીને ત્યાર બાદ નિશ્ચિત પ્રમાણમાં અન્ય તત્ત્વો તેમાં ઓગાળીને તૈયાર કરવામાં આવે છે. ત્યાર બાદ તેને ઓરડાના તાપમાને ઠંડી પાડવામાં આવે છે.

શુદ્ધ સોનું, 24 કૅરેટ સોના તરીકે ઓળખાય છે અને ખૂબ જ નરમ હોય છે તેથી તે ઘરેણાં બનાવવા માટે યોગ્ય નથી. તેને સખત બનાવવા માટે તેને ચાંદી કે કૉપર સાથે મિશ્ર કરવામાં આવે છે. સામાન્ય રીતે ભારતમાં 22 કૅરેટ સોનાના દાગીના બનાવવા માટે ઉપયોગમાં લેવાય છે તેનો અર્થ એ થાય કે 22 ભાગ શુદ્ધ સોનું, 2 ભાગ કૉપર કે ચાંદી સાથે મિશ્ર કરવામાં આવે છે.

જો ધાતુઓ પૈકીની એક મરક્યુરિ હોય તો તે મિશ્રધાતુને સંરસ (amalgam) તરીકે ઓળખવામાં આવે છે. મિશ્રધાતુની વિદ્યુતવાહકતા અને ગલનબિંદુ શુદ્ધ ધાતુઓ કરતાં ઓછા હોય છે. ઉદાહરણ તરીકે પિત્તળ (કૉપર અને ઝિંકની મિશ્રધાતુ (Cu અને Zn)) અને બ્રોન્ઝ (કૉપર અને ટીનની મિશ્રધાતુ (Cu અને Sn)) વિદ્યુતના સારા વાહકો નથી જ્યારે કૉપર વિદ્યુતીય પરિપથ બનાવવા વપરાય છે. સોલ્ડર (Solder) સીસું અને ટીનની મિશ્રધાતુ (Pb અને Sn) છે, જે નીચું ગલનબિંદુ ધરાવે છે અને વિદ્યુતીય તારનું એકબીજા સાથે વેલિંડગ (રેશ) કરવા માટે ઉપયોગમાં લેવાય છે.

દિલ્લીમાં આવેલો લોહસ્તંભ

પ્રાચીન ભારતીય ધાતુકર્મ વિધિની અજાયબી

1600 કરતાં વધુ વર્ષો પહેલાં ભારતના લોખંડ કામદારો દ્વારા દિલ્લીમાં કુતુબિમનાર પાસે લોહસ્તંભ બંધાયો હતો. તેઓએ એક પદ્ધતિ વિકસાવી કે જે લોખંડનું ક્ષારણ અટકાવતી હતી. તેના ક્ષારણ પ્રતિકારકતાના ગુણ માટે થઈને દુનિયાના તમામ ખૂણાના વૈજ્ઞાનિકો દ્વારા તેને ચકાસવામાં આવેલ છે. લોહસ્તંભ 8 m ઊંચો અને 6 ટન (6000 kg) વજનનો છે.

પ્રશ્નો

1. ઝિંક, મૅગ્નેશિયમ અને કૉપરના ધાતુ ઑક્સાઇડો નીચે દર્શાવેલ ધાતુઓ સાથે ગરમ કરવામાં આવ્યા :

ધાતુ	[ින්ස	મૅગ્નેશિયમ	કૉપર
ઝિંક ઑક્સાઇડ			1
મૅગ્નેશિયમ ઑક્સાઇડ			
કૉપર ઑક્સાઇડ			

કયા કિસ્સામાં તમે વિસ્થાપન પ્રક્રિયા થતી જોઈ શકો છો ?

- 2. કઈ ધાતુઓ આસાનીથી કટાતી નથી ?
- 3. મિશ્રધાતુઓ એટલે શું ?

તમે શીખ્યાં કે

- તત્ત્વોને ધાતુઓ અને અધાતુઓ સ્વરૂપે વર્ગીકૃત કરી શકાય છે.
- ધાતુઓ ચમકદાર (lustrous), ટિપનીય (malleable), તનનીય (ductile) અને ઉષ્મા તેમજ વિદ્યુતના સારા વાહકો છે. તેઓ ઓરડાના તાપમાને ઘન હોય છે સિવાય કે મરક્યુરિ જે પ્રવાહી છે.
- ધાતુઓ અધાતુઓને ઇલેક્ટ્રૉન આપીને ધનાયન બનાવી શકે છે.
- ધાતુઓ ઑક્સિજન સાથે સંયોજાઈને બેઝિક ઑક્સાઇડ બનાવે છે. ઍલ્યુમિનિયમ ઑક્સાઇડ અને ઝિંક ઑક્સાઇડ બેઝિક તેમજ ઍસિડિક ઑક્સાઇડ એમ બંનેના ગુણધર્મો દર્શાવે છે. આ ઑક્સાઇડ ઊભયગુણી (amphoteric) ઑક્સાઇડ તરીકે ઓળખાય છે.
- જુદી-જુદી ધાતુઓની પાણી અને મંદ ઍસિડ સાથે સિક્રિયતા જુદી-જુદી હોય છે.
- સામાન્ય ધાતુઓની તેમની પ્રતિક્રિયાત્મકતાના ઊતરતા ક્રમમાં ગોઠવેલી યાદીને સક્રિયતા શ્રેણી તરીકે ઓળખવામાં આવે છે.
- સક્રિયતા શ્રેણીમાં હાઇડ્રોજનની ઉપર રહેલી ધાતુઓ મંદ ઍસિડમાંથી હાઇડ્રોજનનું વિસ્થાપન કરી શકે છે.
- વધુ સિક્રય ધાતુ તેનાથી ઓછી સિક્રય ધાતુને તેના ક્ષારના દ્રાવણમાંથી વિસ્થાપિત કરે છે.
- કુદરતમાં ધાતુઓ મુક્ત તત્ત્વો અથવા તેના સંયોજનોના સ્વરૂપમાં મળી આવે છે.
- કાચી ધાતુમાંથી ધાતુનું નિષ્કર્ષણ અને ત્યાર બાદ તેમના ઉપયોગ માટે તેમનું શુદ્ધીકરણ, ધાતુકર્મ વિધિ (metallurgy) તરીકે ઓળખાય છે.
- મિશ્રધાતુ બે કે તેથી વધુ ધાતુઓ કે ધાતુ અને અધાતુનું સમાંગ મિશ્રણ છે.
- કેટલીક ધાતુઓ જેવી કે લોખંડની સપાટી લાંબો સમય ભેજયુક્ત હવાના સંપર્કમાં આવે ત્યારે તેને કાટ લાગે છે. આ ઘટનાને ક્ષારણ તરીકે ઓળખવામાં આવે છે.
- અધાતુઓ ધાતુઓ કરતાં વિરુદ્ધ ગુણધર્મો ધરાવે છે. તેઓ નથી ટીપનીય હોતી કે નથી તનનીય. તેઓ ઉષ્મા અને વિદ્યુતની અવાહક હોય છે સિવાય કે ગ્રેફાઇટ જે વિદ્યુતનું વહન કરે છે.

- અધાતુઓ જ્યારે ધાતુઓ સાથે પ્રક્રિયા કરે છે ત્યારે ઇલેક્ટ્રૉન મેળવીને ઋણવીજભારિત આયનો બનાવે છે.
- અધાતુઓ ઑક્સાઇડ બનાવે છે, જે ઍસિડિક અથવા તટસ્થ હોય છે.
- અધાતુઓ મંદ ઍસિડમાંથી હાઇડ્રોજનનું વિસ્થાપન કરતી નથી. તેઓ હાઇડ્રોજન સાથે પ્રક્રિયા કરી હાઇડ્રાઇડ
 બનાવે છે.

સ્વાધ્યાય

- 1. નીચેની પૈકી કઈ જોડ વિસ્થાપન પ્રક્રિયાઓ આપે છે ?
 - (a) NaCl દ્રાવશ અને કૉપર ધાતુ
 - (b) MgCl2 દ્રાવણ અને ઍલ્યુમિનિયમ ધાતુ
 - (c) FeSO₄ દ્રાવશ અને ચાંદી ધાતુ
 - (d) AgNO3 દ્રાવણ અને કૉપર ધાતુ
- 2. નીચેના પૈકી કઈ પદ્ધતિ લોખંડની સાંતળવાની તવી (Frying Pan)ને કાટ લાગવાથી અટકાવી શકે છે ?
 - (a) ગ્રીઝ લગાવવાની
 - (b) રંગ લગાવવાની
 - (c) ઝિંકનું સ્તર લગાવવાની
 - (d) ઉપર્યુક્ત તમામ
- 3. એક તત્ત્વ ઑક્સિજન સાથે પ્રક્રિયા કરી ઊંચું ગલનબિંદુ ધરાવતું સંયોજન આપે છે. આ સંયોજન પાણીમાં પણ દ્રાવ્ય છે. આ તત્ત્વ હોઈ શકે.
 - (a) કેલ્શિયમ
- (b) કાર્બન
- (c) સિલિકોન
- (d) આયર્ન
- 4. ખાદ્યપદાર્થના ડબા પર ટીનનું સ્તર લાગે છે નહિં કે ઝિંકનું, કારણ કે
 - (a) ઝિંક ટીન કરતા મોંઘી છે.
 - (b) ઝિંક ટીન કરતાં ઊચું ગલનબિંદુ ધરાવે છે.
 - (c) ઝિંક ટીન કરતાં વધુ સક્રિય છે.
 - (d) ઝિંક ટીન કરતાં ઓછી સક્રિય છે.
- 5. તમને એક હથોડી, બૅટરી, ગોળો, તાર અને સ્વિચ આપેલા છે.
 - (a) તમે તેમનો ધાતુઓ અને અધાતુ વચ્ચે ભેદ પારખવા કેવી રીતે ઉપયોગ કરી શકશો ?
 - (b) ધાતુઓ અને અધાતુઓ વચ્ચેની આ પરખ કસોટીઓની ઉપયોગિતાનું મૂલ્યાંકન કરો.
- 6. ઊભયગુણી ઑક્સાઇડ એટલે શું ? ઊભયગુણી ઑક્સાઇડનાં બે ઉદાહરણો આપો.
- એવી બે ધાતુઓ જે મંદ ઍસિડમાંથી હાઇડ્રોજનનું વિસ્થાપન કરશે અને બે ધાતુઓ જે આમ ન કરી શક્તી હોય તેમનાં નામ આપો.

- 8. ધાતુ M ના વિદ્યુતવિભાજનીય શુદ્ધીકરણમાં ઍનોડ, કેથોડ અને વિદ્યુતવિભાજય તરીકે તમે શું લેશો ?
- 9. પ્રત્યુષે સ્પેચ્યુલા પર સલ્ફર પાઉડર લીધો અને તેને ગરમ કર્યો. નીચેની આકૃતિમાં દર્શાવ્યા પ્રમાણે તેણે તેની ઉપર કસનળી ઊંધી રાખીને ઉત્પન્ન થતો વાયુ એકત્ર કર્યો.
 - (a) વાયુની અસર
 - (i) શુષ્ક લિટમસ પેપર પર શી થશે ?
 - (ii) ભેજયુક્ત લિટમસ પેપર પર શી થશે ?
 - (b) પ્રક્રિયા માટે સમતોલિત રાસાયણિક સમીકરણ લખો.
- 10. લોખંડનું ક્ષારણ અટકાવવાના બે ઉપાય જણાવો.
- જયારે અધાતુઓ ઑક્સિજન સાથે સંયોજાય ત્યારે બનતા ઑક્સાઇડના પ્રકાર કયા છે ?
- 12. કારણ આપો :
 - (a) પ્લેટિનમ, સોનું અને ચાંદી આભૂષણો બનાવવા વપરાય છે.
 - (b) સોડિયમ, પોટૅશિયમ અને લિથિયમનો તેલમાં સંગ્રહ કરવામાં આવે છે.
 - (c) ઍલ્યુમિનિયમ ખૂબ જ પ્રતિક્રિયાત્મક ધાતુ છે તેમ છતાં રસોઈનાં વાસણો બનાવવા માટે વપરાય છે.
 - (d) કાર્બોનેટ અને સલ્ફાઇડ અયસ્ક સામાન્ય રીતે નિષ્કર્ષણ દરમિયાન ઑક્સાઇડમાં ફેરવાય છે.

- 14. રાસાયિશક ગુણધર્મોના આધારે ધાતુઓ અને અધાતુઓ વચ્ચે ભેદ પારખો.
- 15. એક વ્યક્તિ ઘરે-ઘરે સુવર્શકાર તરીકે જઈને ઊભો રહે છે. તે જૂના અને નિસ્તેજ (ઝાંખા) સોનાનાં ઘરેશાની ચમક પાછી લાવી આપવાનું વચન આપે છે. એક બિનસાવધ ગૃહિશી તેને સોનાની બંગડીઓનો સેટ આપે છે, જેને તેશે એક ખાસ દ્રાવશમાં ડુબાડ્યો. બંગડીઓ નવા જેવી જ ચમકવા લાગી પરંતુ તેના વજનમાં ભારે ઘટાડો થયો. ગૃહિશી ઉદાસ થઈ ગઈ પરંતુ નિરર્થક દલીલ પછી વ્યક્તિ ઉતાવળે ફેરો કરી જતો રહ્યો. શું તમે ગૃપ્તચર તરીકે વર્તી તેશે ઉપયોગમાં લીધેલા દ્રાવશનો પ્રકાર શોધી શકશો ?
- કારણ આપો કે કોપર ગરમ પાણીની ટાંકી બનાવવા માટે વપરાય છે પરંતુ સ્ટીલ (આયર્નની મિશ્રધાતુ) વપરાતું નથી.

