Indoor Rowing Pace Prediction

Indoor Rowing Pace Prediction

- Goal: Predict 2000m rowing result on a Concept2 Rowing Machine
 - Standard test and competition distance in rowing
 - Data scraped from Concept2 Logbook
- Using other test results
 - No more than two
 - Shorter than 2km
- Using other personal statistics
- Target model performance of +/- 10 seconds to be of practical use

Available Variables

Variable Selection

Tests:

- 1km
- 1 minute

Other:

- Age
- Height
- Weight
- Weight Class
- Gender

Dataset size:

• Train: 1787

• Validate: 383

• Test: 383

Target vs Predictors

Linear Regression 1st Order **Iteration 1**

- Weight class: $p > \alpha$ (0.05)
 - Highly correlated with weight (completely explained by weight)
 - Drop from the dataset

	coef	std err	t	P> t	[0.025	0.975]
Intercept	265.0040	21.239	12.477	0.000	223.348	306.660
weight_class[T.L]	0.5819	1.549	0.376	0.707	-2.456	3.620
<pre>gender[T.M]</pre>	-3.9472	1.900	-2.077	0.038	-7.674	-0.220
result_1	-0.2338	0.029	-8.032	0.000	-0.291	-0.177
result_1000	1.4589	0.034	42.476	0.000	1.392	1.526
age	0.2189	0.044	4.988	0.000	0.133	0.305
height	-0.4281	0.085	-5.014	0.000	-0.596	-0.261
weight	0.2139	0.048	4.441	0.000	0.119	0.308

Linear Regression 1^{st} Order $R^2 = 0.869$ • RMSE 22.1 (4.65%)

	coef	std err	t	P> t	[0.025	0.975]
Intercept gender[T.M] result_1 result_1000 age	266.7838	20.699	12.889	0.000	226.187	307.380
	-3.7725	1.842	-2.048	0.041	-7.386	-0.159
	-0.2338	0.029	-8.034	0.000	-0.291	-0.177
	1.4589	0.034	42.485	0.000	1.392	1.526
	0.2181	0.044	4.977	0.000	0.132	0.304
height	-0.4335	0.084	-5.153	0.000	-0.599	-0.269
weight	0.2048	0.042	4.928	0.000	0.123	0.286

Interpretation

- Being male improves your 2km result.
- The better your 1-minute result, the better your 2km result.
- The better your 1km result, the better your 2km result.
- Being younger improves your 2km result.
- Being taller improves your 2km result.
- Being lighter improves your 2km result.

Validity of Model

- 1. Linearity X
- Statistical independence of residuals
- 3. Homoscedasticity X
- 4. Normality X

Linear Regression 2nd Order **Iteration 4**

- $R^2 = 0.869 \leftrightarrow$
- RMSE = 21.8 (4.59%) **↓**

Plot of Model Residuals

Linear Regression Logarithmic Transformation Iteration 2

- $R^2 = 0.872$ ↑
- RMSE = 22.2 (4.67%) ↑

Power

Rowing machines directly measure athlete power, then convert to pace (and time & distance):

$$P = \frac{2.80}{pace^3}$$

Where: pace = t/d

Non-linear transformation

Linear Regression Power Iteration 2

- $R^2 = 0.890$ ↑
- RMSE = 22.2 (4.65%) ↓

Linear Regression Logarithmic Power Iteration 2

- $R^2 = 0.877 \checkmark$
 - RMSE = 22.0 (4.61%) ↓

 $R^2 = 0.869$ RMSE = 21.8 (4.59%)

 $R^2 = 0.872$ RMSE = 22.2 (4.65%)

R² = 0.890 RMSE = 22.2 (4.65%) $R^2 = 0.877$ RMSE = 22.0 (4.61%)

Best R²
Better residuals
Real basis for transformation
Easier to interpret

Interpretation

```
coef

gender[F] -26.1714
gender[M] -21.6351
result_1 0.0656
result_1000 0.6441
age -0.2577
height 0.5055
weight -0.2547
```

- Being male improves your 2km result.
- The better your 1-minute result, the better your 2km result.
- The better your 1km result, the better your 2km result.
- Being younger improves your 2km result.
- Being taller worsens your 2km result.
- Being lighter improves your 2km result.

Testing

Results

Chosen model

RMSE: 73.3 (15.6%)

Comparison to Paul's Law

+5s for each doubling of distance RMSE = 27.9

Conclusions

- Huge RMSE compared to validation data
- Non-normal residuals resulting in unpredictable behaviour
- Not accurate enough to be useful
- Worse than "rule of thumb"

Next Steps

- Try models that do not have normality as an assumption
- Further refine data
 - Outliers
 - Non-representative performances
- Train model over a narrower range of results

Distribution - Before

Missing Data

Missing heights and weights strongly correlated with each other.

Poor correlation between other missing data.

Consider this as MCAR

Can drop missing data