Silicon Labs' Social Entrepreneurship Challenge

Inter IIT Tech Meet | Team 11

FINFLOW

IoT Enabled Smart Pond Monitoring System

INDUSTRY INSIGHTS

\$ 23 B

Size of Fish Industry

\$ 16 B

Size of Inland Fish Market in 2020.

10.5%

CAGR, The industry is further expected to grow.

BACKYARD FISHING

70%

Contribution in overall fish production by inland fisheries.

0.05 - 0.1 Ha Size

1.5 - 2.0 m Depth

of an Artificial fish pond.

Typical Fish farmers are:

-Not skilled with cutting-edge water monitoring technology.

-Financially backward: access to insurance, credit, and information is limited.

HEALTH OF THE FISH IS DIRECTLY AFFECTED BY WATER QUALITY

As a Fish farmer, I need to know status of my water pond on real time basis so that if there are any discrepancies, I can prevent further losses.

CORE USER NEED

PROBLEMS

Water quality which is checked by parameters like

NH₄

Ammonia

NO₃

Nitrate

рΗ

Turbidity

 NO_2

Nitrite

 O_2

Dissolved Oxygen

Salinity

Temperature

Production Loss of

26%

due to diseases and poor management in the freshwater aquaculture sector.

WATER HEALTH SERVICES DO EXIST BUT...

Unavailablitiy and infrequency of such consultancies

INR 30,000

Consultancies for water monitoring charge per pond per year

High end water monitoring systems are:

- Too expensive
- Not vertically intergrated
- Do not give actionable feedback.

IoT Enabled Smart Pond Monitoring System

PRESENTING - FINFLOW

Provides real time insights into contaminants of the water body through phone Interface.

Provides actionable feedback on the status.

Creates an ecosystem for the fish farmers that can be expanded to open up insurance, marketplace, credit and other opportunities for the Fish Farmers within the app.

HARDWARE IOT DEVICE

THE ENTIRE SETUP IS DIVIDED INTO TWO SUBMODULES, ONE WHICH USES **VOLUMETRIC TITRATION**, AND THE OTHER **USES DIRECT SENSORS** FOR MEASUREMENT.

Submodule 1

SENSOR MEASUREMENTS

Submodule 2

VOLUMETRIC ANALYSIS

Submodule 3

UPLOADING TO CLOUD

SOFTWARE IMPLEMENTATION

Android app, made on flutter.

The app fetches data from firebase cloud and performs computations to alert users if any parameter is above or below threshold values.

User will be suggested actionable to restore the parameter/s value into the ideal range

Technical Details

PROTOTYPE

Link: <u>Prototype</u>

USER INTERFACE

Software and UI Implementation

LOG IN

A mobile number will be the unique identifier of the user.

Software and UI Implementation

DASHBOARD

- Real-time parameters are shown on the dashboard.
- A parameter card gets
 highlighted when its value
 deviates from standard values.

Software and UI Implementation

DASHBOARD

Upon clicking the parameter card,

- User can see the image of the actionable required to control that parameter.
- Additionally, user can read some basic information about the significance of that parameter.

BUSINESS OVERLOOK

Small-Scale inland fish farmers

Pricing Rs. 25,000

TAM = 1.3 M x 25,000 = Rs. 33Billion

Initial Target Audience:

DISTRIBUTION PLAN

1. Fisheries Equipment stores:

#Stores in 735 districts * 150 shops = 100K shops

Commision

10%

2. Awareness and Direct Sell

Awareness and demonstration of our products through exhibitions at mandi, FFDAs (Fish Farmers Development Agencies), KVKs (Kishan Vigyan Kendra).

COST AND EXPENSES

COST ANALYSIS

COST

RS. 15,000

Our distribution channels will be existing stores of fishery products and equipment.

Other expenses per product = 2500 (fixed commission) + 2000*10% (referral cost) + 500-1000 (variable cost: transportation + marketing) = Rs. 4000

COST TABLE

Sensor probes	Cost (in INR)
Dissolved oxygen	2400
ph	2000
Turbidity	1000
Salinity (TDS)	1500
Temperature	100
Volumetric Analysis Probe for Nitrate and Ammonia	4300
Arduino	1300
Other Costs	2400

REVENUE DETAILS

PRICING

Rs Rs Rs Rs
$$= \frac{15,000 - 15,000 + 4,000}{\frac{15,000 + 4,000}{\frac{15,$$

GROSS MARGIN

NET MARGIN

40%

24%

Referral program: Referrer and the referred person can get the monetary value up to Rs. 1000. Social Proof works well in Rural areas.

REVENUE PROJECTIONS

Revenue

First

400

customers in 2 months:
10 districts from each of 4
prominent fishery states

Next

5000

customers in the next 6 months.

ONE-STOP FISHERY SUPPORT ECOSYSTEM

By leveraging:

- The data of water quality
- Already acquired users

Insurance

Affordable premium using our water quality data

Lending

Providing organized credit required for expansion and upgradation

Marketplace

Taking mandi online

Service Contact

Doctor, mud services, labour etc.

FINFLOW 2.0

Moving to the next target segment:

Medium and Large scale farmers

A premium product which will include:

Automated fish feeding

Automatic parameter control

Disease detection

Automated detection of residue antibiotics and chemicals used.

Density determination

THANKYOU

REFERENCES

- [1] Department of Fisheries. Inland Fisheries | Department of Fisheries, Gol. (n.d.). Retrieved March 19, 2022, from https://dof.gov.in/inland-fisheries
- [2]Aquaculture Systems and SPECIES1. Aquaculture Systems and Species. (n.d.). Retrieved March 19, 2022, from https://www.fao.org/3/ab412e/ab412e07.htm
- [3] Www.dof.gov.in. (n.d.). Retrieved March 19, 2022, from https://www.dof.gov.in/sites/default/files/2021-09/PDF_032.pdf
- [4] Present status of fish disease management in freshwater aquaculture in India: State-of-the-art-review. (n.d.). Retrieved March 19, 2022, from http://www.heraldopenaccess.us/openaccess/present-status-of-fish-disease-management-in-freshwater-aquaculture-in-india-state-of-the-art-review
- [5] How to achieve good water quality management in Aquaculture. The Fish Site. (2022, March 17). Retrieved March 19, 2022, from https://thefishsite.com/articles/how-to-achieve-good-water-quality-management-in-aquaculture
 [6] Water Quality / Bioremediation. Biomin. (n.d.). Retrieved March 19, 2022, from
- https://www.biomin.net/species/aquaculture/water-quality-
- bioremediation/#:~:text=Water%20quality%20is%20of%20utmost,growth%20of%20farmed%20aquatic%20species.

