МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 3.2.2

Резонанс напряжений в последовательном контуре

Автор: Клименко Виталий Евгеньевич Б01-202

1 Введение

Цель работы: изучение последовательной цепи переменного тока, наблюдение резонанса напряжений.

В работе используются: регулировочный автотрансформатор, катушка индуктивности с выдвижным сердечником, магазин ёмкостей, реостат, резистор, амперметр, три вольтметра, ваттметр, осциллограф, универсальный мост.

2 Теоретические сведения

Рассмотрим электрическую цепь, состоящую из резистора R и катушки индуктивности L с импедансом $Z_L = r_L + i\Omega L$, последовательно подключённых к внешнему источнику, ЭДС которого меняется по синусоидальному закону с частотой Ω (рис. 1).

Рис. 1: Схема установки для изучения закона Ома в цепи переменного тока.

Обозначим через U_R напряжение на резисторе, через U_L – напряжение на катушке и через U_{R+L} — суммарное напряжение на катушке и на резисторе. Для этих напряжений справедливы комплексные соотношения:

$$\widehat{U}_{R} = \widehat{I}R, \quad \widehat{U}_{L} = \widehat{I}(r_{L} + i\Omega L), \quad \widehat{U}_{R+L} = \widehat{I}(R + r_{L} + i\Omega L).$$
 (1)

Напомним, что здесь r_L – активное сопротивление катушки, которое характеризует суммарные потери энергии в катушке, в том числе потери в её ферромагнитном сердечнике.

Переходя к модулям и фазам токов и напряжений, найдём из (1):

$$U_R = I \cdot R, \quad \text{tg } \psi_1 = 0; \tag{2}$$

$$U_L = I \cdot \sqrt{r_L^2 + (\Omega L)^2}, \quad \operatorname{tg} \psi_2 = \frac{\Omega L}{r_L};$$
 (3)

$$U_{R+L} = I\sqrt{(R+r_L)^2 + (\Omega L)^2}, \quad \text{tg } \psi_3 = \frac{\Omega L}{R+r_L}.$$
 (4)

В этих формулах U и I обозначают эффективные значения напряжений и токов (показания приборов), как принято в электротехнике.

Измеряя с помощью трёх вольтметров значения U_R , U_L и U_{R+L} и зная сопротивление резистора R, нетрудно вычислить, пользуясь формулами (2), (3) и (4), силу тока в цепи, активное сопротивление катушки r_L , её индуктивность L, мощность P_L , выделяемую на катушке, и сдвиг фаз между током и напряжением на катушке.

Рассчитаем мощность переменного тока, выделяемую в катушке. Мгновенное значение мощности равно

$$P = U(t) \cdot I(t).$$

Средняя мощность за период T определяется формулой

$$\overline{P} = \frac{1}{T} \int_{0}^{T} U(t) \cdot I(t) dt.$$

Полагая $I(t) = I\sqrt{2}\cos\Omega t$, $U(t) = U\sqrt{2}\cos(\Omega t + \psi)$, получим после интегрирования:

$$P_L = U_L \cdot I \cos \psi = I^2 \cdot r_L. \tag{5}$$

Средняя мощность, выделяющаяся в катушке самоиндукции, определяется, таким образом, действительной частью её импеданса.

Активное сопротивление катушки r_L можно определить, если включить её в последовательный колебательный контур с известными параметрами – сопротивлением R и ёмкостью C (рис. 2). В контуре, настроенном в резонанс на частоту Ω внешнего источника (собственная частота контура и внешняя совпадают: $\omega_0 = \Omega$, реактивные сопротивления индуктивности и ёмкости одинаковы:

$$\omega_0 L = \frac{1}{\omega_0 C}.\tag{6}$$

Определив каким-либо экспериментальным способом добротность Q этого контура, можно рассчитать полное сопротивление контура R_{Σ} в резонансе, поскольку

$$Q = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}}.$$
 (7)

Резонансное сопротивление контура R_{Σ} , включает в себя известное со противление резистора R и активное сопротивление катушки r_L :

$$R_{\Sigma} = R + r_L. \tag{8}$$

3 Экспериментальная установка

Схема установки для исследования закона Ома в цепи переменного тока представлена на рис. 1. Цепь, состоящая из резистора $R_1 \simeq 100$ Ом и катушки L с выдвижным сердечником, подключена к автотрансформатору, выходное напряжение которого можно менять от 0 до 127 В. Напряжения на каждом из элементов и суммарное напряжение цепи измеряются тремя вольтметрами: V_R , V_L и V_{R+L} . Амперметр A измеряет ток в цени, а ваттметр P — мощность, выделяющуюся на катушке.

Ваттметр электродинамической системы состоит из двух катушек, одна из которых вращается в магнитном поле другой, если через них течёт ток. Токовая катушка ваттметра II^* включается последовательно в исследуемую цепь, а катушка напряжений (потенциальная) VV^* – параллельно к элементу, в котором измеряется выделяемая мощность.

Два из четырёх зажимов ваттметра помечены звёздочкой (*). Эти зажимы надо соединить вместе. Предел измерений устанавливается при помощи переключателей или штепселей, которые вставляются в соответствующие гнёзда: произведение цифр против штепселя токовой катушки II^* и против переключателя катушки напряжений VV^* определяет мощность, соответствующую отклонению стрелки на всю шкалу. Отсчёт мощности ведётся но любой из шкал, обозначенных буквой P.

Рис. 2: Схема установки для наблюдения резонанса напряжений.

Схема установки для изучения резонанса напряжений изображена на рис. 2. Последовательно соединены резистор $R_2 \approx 5$ Ом, катушка L и магазин ёмкостей C. Амперметр A измеряет ток в цепи, вольтметр V_C — напряжение на ёмкости, вольтметр V_{Σ} — суммарное напряжение на контуре. Резонанс можно зафиксировать с помощью осциллографа, если подать на вход X напряжение с контура, а на вход Y — напряжение с резистора R_2 , пропорциональное току в цепи. В общем случае на экране виден эллипс. При резонансе эллипс вырождается в прямую линию. Резонансные напряжения на контуре $U_{\Sigma, \text{ рез}}$ и на ёмкости $U_{C, \text{ рез}}$ равны соответственно

$$U_{\Sigma, \text{ pe3}} = I_{\text{pe3}} R_{\Sigma}, \quad U_{C, \text{ pe3}} = \frac{I_{\text{pe3}}}{\Omega C}.$$
 (9)

Сравнивая (7) и (9), получим

$$Q = \frac{U_{C, \text{ pe3}}}{U_{\Sigma, \text{ pe3}}}, \quad \sigma_Q = Q\sqrt{\left(\frac{\sigma_{U_{C, \text{ pe3}}}}{U_{C, \text{ pe3}}}\right)^2 + \left(\frac{\sigma_{U_{\Sigma, \text{ pe3}}}}{U_{\Sigma, \text{ pe3}}}\right)^2}.$$
 (10)

Формула (10) показывает, что добротность контура может быть найдена по измеренным значениям напряжений на контуре и на конденсаторе при резонансе. Зная добротность контура и ёмкость C, можно рассчитать R_{Σ} , по формуле (7), а затем определить r_L .

4 Обработка и предоставление результатов

N	C_n, nF	f_0n, kHz	U(f_0n), V	E(f_0n), V	L, muH	rho, Om	Z_res, Om	Q	R_sum, Om	R_sm, Ом	R_L, Ом
1	25,1	32	1,5	0,3019	986,523	198,252	5008,28	25,2751	7,839786	0,19825	4,141534
2	33,2	27,8	1,38	0,302	988,219	172,527	4606,09	26,7113	6,455678	0,17253	2,78315
3	47,3	23	0,99	0,3021	1013,36	146,37	3303,28	22,5795	6,479139	0,14637	2,832769
4	57,4	21	0,85	0,3021	1001,68	132,102	2836,15	21,4803	6,146801	0,1321	2,514699
5	67,5	19,4	0,7	0,302	998,099	121,6	2336,42	19,2237	6,322337	0,1216	2,700736
6	82,7	17,7	0,59	0,302	978,653	108,783	1969,27	18,1119	6,003121	0,10878	2,394338
7	101,6	16,1	0,48	0,3019	962,798	97,3466	1602,65	16,4717	5,906938	0,09735	2,309592
Ср. знач.					989,905						2,810974
Случ. погр.					16,4908						0,618673