Alexandria University
Faculty of Engineering
Computer and Communications Program

Due : Wednesday 20/2/2019 CCE :Pattern Recognition

Sheet#1 PCA

Data Matrix

- 1. Given the Data Matrix on the right answer the following questions
 - a. What is number of dimensions?
 - b. What are the types of the attributes?
 - c. What is the distance between x1 and x3?
 - d. What is the length of x2?
 - e. What is the cos(angle) between x2 and x4?
 - f. Do we need attribute scaling?
 - g. Compute the attribute scaled data matrix after scaling each attribute linearly between 0 and 1
 - h. Repeat parts c,d,e on the scaled data matrix in part (g)
- Given the Data Matrix on the right submit your python code and its output that will do the following
 - a. Compute the norm of each instance. (5x1)
 - b. Compute the Cosine similarity matrix (5x5) matrix
 - c. Compute the Euclidean Distance matrix of the instances (5x5)

ID)	a1	a2	а3	a4
1		10	60	10	90
2		20	50	40	70
3		30	50	30	40
4		20	50	20	60
5		10	60	30	10

DATA MATRIX **D**

Principal Component Analysis

- 3. Given Data matrix above. Consider a1, a2 and a4 only
 - a. Write down the new data matrix **D3** (5x3)
 - b. Plot the data using 3d scatter plots
 - c. Compute the **mean** vector (3x1)
 - d. Compute centered data matrix **Z** by subtracting mean vector from the Data Matrix. (5x3)
 - e. Compute Covariance matrix **COV** (3x3)
 - f. Use python solvers to find eigenvalues (Diagonal 3x3 matrix) and eigen vectors (3x3) matrix. **Take care of the eigenvalues order.**

- g. Verify $U^T \wedge U = COV$.
- h. Compute the explained variance by the eigenvector corresponding to the largest eigenvalue. Do you think one eigenvector is good enough?
- Compute the projection matrix P to go to 2-dimensions. Consider the top two eigenvectors of matrix U according to eigenvalues.(3x2)
- j. Project the instances into a 2-Dimension space. $\mathbf{x}_{n} = \mathbf{P}^{\mathsf{T}} \mathbf{x}$
- k. Plot the resulting Data matrix **D2** using scatter plots.

4. Midterm1 Question Fall 2017

Given the data below, answer the following questions

- A. Compute 3x3 Covariance matrix of the 5 tuples dataset we have.
- B. The trace of the covariance matrix is the sum of the eigenvalues of the matrix.
 - 1. Compute the three eigenvalues of the covariance matrix if

$$\frac{\lambda_a}{\lambda_b}=0.505$$
 and $\frac{\lambda_b}{\lambda_c}=0.647$, where $\lambda_a<\lambda_b<\lambda_c$

2.**Determine** the explained variance using only λ_b, λ_c

	X_1	X_2	X_3
X 1	0.5	4.5	2.5
x ₂	2.2	1.5	0.1
X 3	3.9	3.5	1.1
X4	2.1	1.9	4.9
X 5	0.5	3.2	1.2

Notes and hints

- 1. NO hand written reports are allowed.
- 2. Make sure you did everything on your own.
- 3. Review slicing operators [:] in python/numpy. They are helpful with matrices and vectors.
- 4. Try to avoid loops unless you can't. Numpy optimized many operations on vectors and matrices.
- 5. Find many useful functions in numpy library. Always check the documentation and/ or stackoverflow.com
 - numpy.linalg.eigh(A) A is a matrix. Computes eigenvectors and eigenvalues of symmetric matrix A
 - numpy.dot(A,B) A, B are matrices/vectors. Computes dot product
 - numpy.mean(A, axis=0) A is matrix, axis =0 will average over the columns
 - numpy.diag(A) converts vector A into a diagonal matrix.
 - numpy.vstack((A,B)) expand matrices A,B into one wider matrix → number of rows of A and B must match.
 - numpy.transpose(A) will compute the transpose of a matrix/vector A.