CHUYÊN ĐỀ 18_TOẠ ĐỘ VEC TƠ, BIỂU THỨC TOẠ ĐỘ VÀ CÁC PHÉP TOÁN VEC TƠ

A. KIẾN THỰC CƠ BẢN CẦN NẮM

3. Tọa độ điểm: (3, 3, 2) (3, 3, 2). Cho	, ta co:
$\overrightarrow{AB} = (x_B - x_A; y_B - y_A; z_B - z_A)$	$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$
Toạ độ trung điểm M của đoạn thẳng AB :	Toạ độ trọng tâm G của tam giác ABC :
$M\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right).$	$G\left(\frac{x_A + x_B + x_C}{3}; \frac{y_A + y_B + y_C}{3}; \frac{z_A + z_B + z_C}{3}\right).$
QUY TẮC CHIẾU ĐẶC BIỆT	
Chiếu điểm trên trục tọa độ	Chiếu điểm trên mặt phẳng tọa độ
$ \exists $	$\text{Biểm} \ M(x_M; y_M; z_M)^{3/4} \mathcal{S}_{Gið \"{a}ig\'{u}ye\acute{a}x, y}^{grj e\acute{a}y} M_1(x_M; y_M; 0)$
$ \exists i \hat{e} m \ M(x_M; y_M; z_M)^{3/4} (Gio arguyea y) M_2(0; y_M; 0) $	$\text{Biểm} M(x_M; y_M; z_M)^{3/4} \mathcal{S}_{A}^{\text{Griegly and Only}} M_2(0; y_M; z_M)$
$ \exists i \hat{e} m \ M(x_M; y_M; z_M)^{3/4} (Gio \hat{e} g u y e \hat{e} z) M_3(0; 0; z_M) $	$\operatorname{Bi\acute{e}m}^{M}(x_{M};y_{M};z_{M})^{3/4} \mathcal{E}_{A}^{Ghi\acute{e}g} \mathcal{E}_{A}^{Bg} \mathcal{E}_{A}^{Bg} \mathcal{E}_{A}^{Ghi\acute{e}g} \mathcal{E}_{A}^{Bg} \mathcal{E}_{A}^{Ghi\acute{e}g} \mathcal{E}_{A}^{Bg} \mathcal{E}_{A}^{Ghi\acute{e}g} \mathcal{E}_{A}$
Đối xứng điểm qua trục tọa độ	Đối xứng điểm qua mặt phẳng tọa độ
$M(x_M; y_M; z_M)^{3/4} (Gio origuye x, noadae y, z) M_1(x_M; - y_M; - z_M)$	$M(x_{M}; y_{M}; Z_{M})^{3/4} (S_{M}^{3/4} (X_{M}^{3/4} $
$M(x_M; y_M; Z_M)^{3/4} = M_{(Gioonguyen y; non dan x, z)}^{3/4} = M_{2}(-x_M; y_M; -z_M)^{3/4} = M_{2}(-x_M; y_M; -z_M)^{3$	M(x _M ; y _M ; z _M) ³ / ₄ ³ / ₄ ⁸ / ₉ é xörð gaguða 9 ya / 3 (3) M ₃ (- x _M ; y _M ; z _M)
$M(x_M; y_M; z_M)^{3/4} (Giõõngüyen z, non dan x, y) M_3(-x_M; -y_M; z_M)$)
4. Tích có hướng của hai vectơ:	

Thinh nghĩa: Cho , tích có hướng của và là: $|[a,b]| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin(\overrightarrow{a}, \overrightarrow{b})$ $[a, b] \perp b$ $[a, b] \perp a$ Tính chất: Điều kiện **cùng phương** của hai vector a & b là Điều kiện đồng phẳng của ba vecto a, b và c là a,b = 0 vái 0 = (0;0;0).[a, b].c = 0.

B. BÀI TẬP TRẮC NGHIỆM

- Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2;-2;1) trên mặt phẳng OxyCâu 1: có tọa độ là

 - **A.** (2;0;1). **B.** (2;-2;0). **C.** (0;-2;1). **D.** (0;0;1).
- Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2;1;-1) trên mặt phẳng OzxCâu 2: có tọa độ là
 - $A_{\bullet}(0;1;0)$

- **B.** (2;1;0). **C.** (0;1;-1). **D.** (2;0;-1).
- Trong không gian Oxyz, hình chiếu vuông góc của điểm A(1;2;5) trên trục Ox có tọa độ là Câu 3: A. (0;2;0) B. (0;0;5) C. (1;0;0) D. (0;2;5)
- Trong không gian Oxyz, hình chiếu vuông góc của điểm M(3;1;-1) trên trục Oy có tọa độ Câu 4:
 - **A.** (3;0;-1).
- **B.** (0;1;0). **C.** (3;0;0). **D.** (0;0;-1).
- Trong không gian Oxyz, hình chiếu vuông góc của điểm M(3;-1;1) trên trục Oz có tọa độ là Câu 5: Trang $_{0;0,1}^{2}$ / 6 **A.** (3;-1;0) $\mathbf{D}_{\cdot}(3;0;0)$

- Trong không gian Oxyz, hình chiếu vuông góc của điểm M(3;-1;1) trên trục Oz có tọa độ là Câu 5: **A.** (3;-1;0). **B.** (0;0;1). **C.** (0;-1;0). **D.** (3;0;0).

- Trong không gian với hệ trục tọa độ Oxyz cho M(4;5;6). Hình chiếu của M xuống mặt Câu 6: phẳng (Oyz) là M'. Xác định tọa độ M'.
 - **A.** M'(4;5;0). **B.** M'(4;0;6). **C.** M'(4;0;0). **D.** M'(0;5;6).

- Trong không gian với hệ trục tọa độ Oxyz cho điểm M(x;y;z). Trong các mệnh đề sau, mệnh Câu 7: đề nào đúng?
 - A. Nếu M' đối xứng với M' qua mặt phẳng $(Oxz)_{thì} M'(x;y;-z)$.
 - **B.** Nếu M' đối xứng với M' qua Oy thì M'(x; y; -z).
 - C. Nếu M' đối xứng với M qua mặt phẳng (Oxy) thì M'(x;y;-z).
 - **D.** Nếu M' đối xứng với M' qua gốc tọa độ $O_{\text{thì}} M'(2x;2y;0)$.
- Câu 8: Trong không gian Oxyz, tọa độ điểm đối xứng của M(1;2;3) qua mặt phẳng Oyz) là **A.** (0;2;3). **B.** (-1;-2;-3). **C.** (-1;2;3). **D.** (1;2;-3).

- Trong không gian Oxyz, cho điểm A(2;-3;5). Tìm tọa độ A' là điểm đối xứng với A' qua Câu 9: truc Oy.
- A. A'(2;3;5).

 Trang A'(2;-3;-5)C. A'(-2;-3;5)D. A'(-2;-3;-5)
- Câu 10: Trong không gian Oxyz cho hai điểm A(1;1;-2) và B(2;2;1) Vector \overrightarrow{AB} có tọa độ là

- A. A'(2;3;5).

 B. A'(2;-3;-5).

 C. A'(-2;-3;5).

 D. A'(-2;-3;-5).
- Câu 10: Trong không gian Oxyz, cho hai điểm A(1;1;-2) và B(2;2;1). Vector \overrightarrow{AB} có toa đô là
 - **A.** (-1;-1;-3) **B.** (3;1;1) **C.** (1;1;3)

- **D.** (3;3;-1)
- **Câu 11:** Trong không gian với hệ toạ độ Oxyz, cho điểm A(2;2;1). Tính độ dài đoạn thẳng OA. A. $OA = \sqrt{5}$ B. OA = 5

- **D.** OA = 9
- Câu 12: Trong không gian với hệ trục tọa độ \overrightarrow{Oxyz} , cho ba vecto $\overrightarrow{a(1;2;3)}; \overrightarrow{b(2;2;-1)}; \overrightarrow{c(4;0;-4)}$. Toa độ của vecto $d = \overrightarrow{a} - b + 2\overrightarrow{c}$ là
 - **A.** $\overrightarrow{d(-7;0;-4)}$ **B.** $\overrightarrow{d(-7;0;4)}$ **C.** $\overrightarrow{d(7;0;-4)}$ **D.** $\overrightarrow{d(7;0;4)}$

- Câu 13: Trong không gian Oxyz, cho hai điểm A(0;1;-1), B(2;3;2). Vector \overrightarrow{AB} có tọa độ là **A.** (2;2;3). **B.** (1;2;3). **C.** (3;5;1).

- **D.** (3;4;1).
- Câu 14: Trong không gian Oxyz cho $\overrightarrow{a} = (2;3;2)$ và $\overrightarrow{b} = (1;1;-1)$. Vector $\overrightarrow{a} \overrightarrow{b}$ có toa đô là A. (3;4;1). B. (-1;-2;3). C. (3;5;1). D. (1;2;3).

- Câu 15: Trong không gian với hệ trục tọa độ Oxyz, cho $\overrightarrow{a} = (2;-3;3)$, $\overrightarrow{b} = (0;2;-1)$, $\overrightarrow{c} = (3;-1;5)$. Tìm tọa độ của vector $\overrightarrow{u} = 2\overrightarrow{a} + 3\overrightarrow{b} - 2\overrightarrow{c}$.
 - **A.** (10;-2;13). **B.** (-2;2;-7). **C.** (-2;-2;7). **D.** (-2;2;7).

- **Câu 16:** Trong không gian với hệ trục tọa độ Oxyz, cho $\overrightarrow{a} = -\overrightarrow{i} + 2\overrightarrow{j} 3\overrightarrow{k}$. Tọa độ của vector \overrightarrow{a} là **A.** (-1;2;-3). **B.** (2;-3;-1). **C.** (2;-1;-3). **D.** (-3;2;-1).

- Câu 17: Trong không gian với hệ tọa độ tọa độ tọa độ tọa độ của vector $\overrightarrow{u} = 2a + 3b 2c$. The contract $\overrightarrow{a} = (2; -3; 3)$ $\overrightarrow{b} = (0; 2; -1)$, $\overrightarrow{c} = (3; -1; 5)$. Tìm

 $(2,2,7) \qquad (2,2,7)$

Câu 17: Trong không gian với hệ tọa độ Oxyz, cho a = (2; -3; 3), b = (0; 2; -1), c = (3; -1; 5). Tìm tọa độ của vector u = 2a + 3b - 2c.

A. (10; -2; 13).

B. (-2; 2; -7).

C. (-2; -2; 7).

D. (-2; 2; 7).

Câu 18: Trong không gian với hệ tọa độ Oxyz, cho hai vector $\overrightarrow{x} = (2;1;-3)$ và $\overrightarrow{y} = (1;0;-1)$. Tìm toa đô của vecto a = x + 2y.

A. $\vec{a} = (4;1;-1)$.

B. $\vec{a} = (3;1;-4)$.

C. $\vec{a} = (0;1;-1)$.

D. $\vec{a} = (4;1;-5)$.

Câu 19: Trong không gian Oxyz, cho A(2;-1;0) và B(1;1;-3). Vector \overrightarrow{AB} có toa đô là

A. (3;0;-3). **B.** (-1;2;-3). **C.** (-1;-2;3). **D.** (1;-2;3).

Câu 20: Trong không gian Oxyz cho A(2;-2;1), B(1;-1;3). Tọa độ vecto $\stackrel{\square}{AB}$ là:

A. (-1;1;2). **B.** (-3;3;-4). **C.** (3;-3;4). **D.** (1;-1;-2)

Câu 21: Trong không gian Oxyz với i, j, k lần lượt là các vecto đơn vị trên các trục Ox, Oy, Oz. Tính tọa độ của vecto i+j-k. **A.** $\vec{i} + \vec{j} - \vec{k} = (-1; -1; 1)$. **B.** $\vec{i} + \vec{j} - \vec{k} = (-1; 1; 1)$. **C.** $\vec{i} + \vec{j} - \vec{k} = (1; 1; -1)$. **D.** $\vec{i} + \vec{j} - \vec{k} = (1; -1; 1)$.

Câu 22: Trong không gian với hệ tọa độ Oxyz giả sử $u = 2\vec{i} + 3\vec{j} - \vec{k}$, khi đó tọa độ véc tơ u là

 A_{\bullet} (-2;3;1)

Trang 2; 33 1) / 6 - (\mathfrak{D} , -3; -+)

 \mathbf{D} . (2;3;1)

Câu 23: Trong không gian Oxyz, cho
$$\overrightarrow{a} = (1;2;1)$$
 và $\overrightarrow{b} = (-1;3;0)$. Vector $\overrightarrow{c} = 2\overrightarrow{a} + \overrightarrow{b}$ có tọa độ là A. $(1;7;2)$.

B. $(1;5;2)$.

C. $(3;7;2)$.

D. $(1;7;3)$.

Câu 24: Trong không gian với trục hệ tọa độ
$$\overrightarrow{Oxyz}$$
, cho $\overrightarrow{a} = -\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k}$. Tọa độ của vector \overrightarrow{a} là:

A. $\overrightarrow{a(-1;2;-3)}$.

B. $\overrightarrow{a(2;-3;-1)}$.

C. $\overrightarrow{a(-3;2;-1)}$.

D. $\overrightarrow{a(2;-1;-3)}$.

Câu 25: Trong không gian với hệ tọa độ
$$Oxyz$$
, cho hai điểm $A^{\left(1;-3;1\right)}, B^{\left(3;0;-2\right)}$. Tính độ dài AB .

A. 26. B. 22. C. $\sqrt{26}$. D. $\sqrt{22}$.

Câu 26: Trong không gian
$$Oxyz$$
, cho hai điểm $A(1;-2;-1)$, $B(1;4;3)$. Độ dài đoạn thẳng AB là A. $2\sqrt{13}$ B. $\sqrt{6}$ C. AB D. A

Câu 27: Trong không gian Oxyz, cho
$$\overrightarrow{a(-2;2;0)}, \overrightarrow{b(2;2;0)}, \overrightarrow{c(2;2;2)}$$
. Giá trị của $|\overrightarrow{a+b+c}|$ bằng A. 6. B. 11. C. $2\sqrt{11}$. D. $2\sqrt{6}$.

Câu 28: Trong không gian
$$Oxyz$$
, cho 2 điểm $A(1;3;5)$, $B(2;2;3)$. Độ dài đoạn AB bằng A. $\sqrt{7}$.

B. $\sqrt{8}$.

C. $\sqrt{6}$.

D. $\sqrt{5}$.

C. D(-2;1;0) D(-4;0;0)

Câu 29: Trong không gian
$$Oxyz$$
, cho hai điểm $A(2;-4;3)$ và $B(2;2;7)$. Trung điểm của đoạn thẳng AB có tọa độ là

A. $(4;-2;10)$
B. $(1;3;2)$
C. $(2;6;4)$
D. $(2;-1;5)$

Câu 30: Trong không gian với hệ tọa độ
$$Oxyz$$
, cho các điểm $A(3;-4;0)$, $B(-1;1;3)$, $C(3,1,0)$. Tìm tọa độ điểm D trên trục hoành sao cho $AD = BC$.

A. $D(6;0;0)$, $D(12;0;0)$
Trang A
 $D(6;0;0)$

D. D(0;0;0) D(-6;0;0)

$$D(6;0;0)$$
 $D(12;0;0)$

B. D(0;0;0) D(6;0;0)

C.
$$D(-2;1;0)$$
, $D(-4;0;0)$

D. D(0;0;0) D(-6;0;0)

Câu 31: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;-2;3) và B(-1;2;5). Tìm toa đô trung điểm I của đoạn thẳng AB.

I(1;0;4)

B. I(2;0;8). **C.** I(2;-2;-1). **D.** I(-2;2;1).

Câu 32: Trong không gian với hệ tọa độ Oxyz cho hai điểm A(3;-2;3) và B(-1;2;5). Tìm tọa đô trung điểm I của đoạn thẳng AB là :

A. I(-2;2;1). **B.** I(1;0;4). **C.** I(2;0;8). **D.** I(2;-2;-1).

Câu 33: Trong không gian cho hệ trục toạ độ Oxyz, cho ba điểm A(1;-2;3), B(-1;2;5), C(0;0;1). Tìm toạ độ trọng tâm G của tam giác ABC.

A. G(0;0;3). **B.** G(0;0;9). **C.** G(-1;0;3). **D.** G(0;0;1).

Câu 34: Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;3;4), B(2;-1;0), C(3;1;2). Tọa độ trọng tâm G của tam giác ABC là

G(2;1;2) G(6;3;6)

C. $G\left(3; \frac{2}{3}; 3\right)$. D. $G\left(2; -1; 2\right)$

A.

B.

Câu 35: Trong không gian với hệ trực tọa độ Oxyz, cho hai vector $\frac{1}{a} = (2;1;0)$ và b = (-1;0;-2). Tính 000(0,6)

$$\cos\binom{r}{a,b} = -\frac{2}{25} \qquad \cos\binom{r}{a,b} = -\frac{2}{5} \qquad \cos\binom{r}{a,b} = \frac{2}{25} \qquad \mathbf{D.} \quad \cos\binom{r}{a,b} = \frac{2}{5}$$

Câu 36: Trong không gian $\overrightarrow{o}xyz$, cho vecto $\overrightarrow{a} = (2; -2; -4)$, $\overrightarrow{b} = (1; -1; 1)$. Mệnh đề nào dưới đây sai?

A. $\overrightarrow{a} + \overrightarrow{b} = (3; -3; -3)$ B. $\overrightarrow{a} \text{ và } \overrightarrow{b}$ cùng phương

C. $|\overrightarrow{b}| = \sqrt{3}$ D. $\overrightarrow{a} \perp \overrightarrow{b}$

Câu 37: Trên mặt phẳng toạ độ Oxy, cho tam giác ABC biết A(1;3), B(-2;-2), C(3;1). Tính cosin góc A của tam giác.

$$\cos A = \frac{2}{\sqrt{17}} \qquad \cos A = \frac{1}{\sqrt{17}} \qquad \cos A = -\frac{2}{\sqrt{17}}$$

$$\cos A = \cos\left(\overrightarrow{AB}; AC\right) = \frac{AB.AC}{AB.AC} = \frac{-3.2 + 5.2}{\sqrt{34}.2\sqrt{2}} = \frac{1}{\sqrt{17}}$$
D. $\cos A = -\frac{1}{\sqrt{17}}$

Câu 38: Trong không gian Oxyz, góc giữa hai vector \overrightarrow{i} và $\overrightarrow{u} = \left(-\sqrt{3}; 0; 1\right)$ là A. 120°. B. 60°. C. 150°. D. 30°.

Câu 39: Trong không gian \overrightarrow{o}_{xyz} , cho $\overrightarrow{a} = (-3;4;0)$, $\overrightarrow{b} = (5;0;12)$. Côsin của góc giữa \overrightarrow{a}_{ya} $\overrightarrow{b}_{bằng}$ A. $\frac{3}{13}$.

B. $\frac{5}{6}$.

C. $-\frac{5}{6}$.

D. $-\frac{3}{13}$.

Câu 40: Trong không gian tọa độ Oxyz góc giữa hai vector $\stackrel{-}{i}$ và $\stackrel{-}{u} = \left(-\sqrt{3};0;1\right)$ là A. 120°. C. 60°. D. 150°.

Câu 41: Trong không gian vớ Trangọa 5.0 $9xyz_6$, cho $\sec(340;1)$ và v = (2;1;0). Tính tích vô hướng u.v.

Câu 41: Trong không gian với hệ tọa độ Oxyz, cho vector $\overrightarrow{u} = (3;0;1)$ và $\overrightarrow{v} = (2;1;0)$. Tính tích vô hướng u.v.

A. u.v = 8.

B. $\overrightarrow{u.v} = 6$. **C.** $\overrightarrow{u.v} = 0$. **D.** $\overrightarrow{u.v} = -6$.

Câu 42: Trong không gian tọa độ Oxyz, góc giữa hai vector $\stackrel{-}{i}$ và $\stackrel{-}{u} = \left(-\sqrt{3};0;1\right)$ là

A. 30° .

B. 120° . **C.** 60° . **D.** 150° .

Câu 43: Trong không gian Oxyz, cho ba điểm A(-1;-2;3) B(0;3;1), C(4;2;2). Cosin của góc BAC

A. $\frac{9}{\sqrt{35}}$.

B. $-\frac{9}{\sqrt{35}}$.

C. $-\frac{9}{2\sqrt{35}}$.

D. $\frac{9}{2\sqrt{35}}$.

Câu 44: Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(1;0;0), B(0;0;1), C(2;1;1). Diện tích của tam giác ABC bằng:

A. $\frac{\sqrt{11}}{2}$ B. $\frac{\sqrt{7}}{2}$ C. $\frac{\sqrt{6}}{2}$ D. $\frac{\sqrt{5}}{2}$

Câu 45: Trong hệ tọa độ Oxy, cho $\overrightarrow{u} = \overrightarrow{i} + 3\overrightarrow{j}$ và $\overrightarrow{v} = (2;-1)$. Tính $\overrightarrow{u.v}$.

A. $\overrightarrow{u.v} = -1$. **B.** $\overrightarrow{u.v} = 1$. **C.** $\overrightarrow{u.v} = (2; -3)$. **D.** $\overrightarrow{u.v} = 5\sqrt{2}$

Câu 46: Cho hai véc to $\overrightarrow{a} = (1; -2; 3)$, $\overrightarrow{b} = (-2; 1; 2)$. Khi đó, tích vô hướng $(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{b}$ bằng

A. 12.

Câu 47: Trong không gian với hệ trục tọa độ Oxyz, cho hai vector a = (2;1;-3) $\overrightarrow{b} = (-4;-2;6)$

Câu 50: Trong không gian với hệ trục tọa độ Oxyz, cho $\overrightarrow{u} = (2;-1;1)$ và $\overrightarrow{v} = (0;-3;-m)$. Tìm số thực m sao cho tích vô hướng u.v = 1.

A. m = 4.

B. m = 2. **C.** m = 3. **D.** m = -2.

Câu 51: Trong không gian Oxyz cho A(1;2;3); B(-1;2;1); C(3;-1;-2). Tính tích vô hướng $\overrightarrow{AB}.\overrightarrow{AC}$. C. 14.

B. -14. **A.** -6.

Câu 52: Trong không gian với hệ tọa độ Oxyz, cho hai vector $a = (2;1;-2)_{và \ vector}$ b = (1;0;2). Tìm tọa độ vector c là tích có hướng của a và b.

A. c = (2;6;-1) B. c = (4;6;-1) C. c = (4;-6;-1) D. c = (2;-6;-1)

Câu 53: Trong không gian Oxyz, tọa độ một vector n vuông góc với cả hai vector $\overrightarrow{a} = (1;1;-2)$, $b = (1,0,3)_{12}$

A. (2;3;-1). **B.** (3;5;-2). **C.** (2;-3;-1). **D.** (3;-5;-1).

Câu 54: Trong không gian với hệ toạ độ Oxyz, cho $\overrightarrow{a} = (1;-2;3)$ và $\overrightarrow{b} = (1;1;-1)$. Khẳng định nào sau đây sai?

 $|\overrightarrow{a} + \overrightarrow{b}| = 3$ $|\overrightarrow{a} + \overrightarrow{b}| = 5$ $|\overrightarrow{a} + \overrightarrow{b}| = 5$