

+

FIG 1: current frequency

1/14

$$p = \text{pulse duration} = T / 3$$

$$T = \text{time of one cycle} = 1 / f$$

$$f = \text{drive frequency in Hz}$$

$$f = c / (3 a) \text{ where } a = \text{segment length} = \text{plate separation in metres}$$

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales. Typical values for 'a' would range from 1 cm to 1 km

For example, if $a = 1 \text{ cm}$, ie 10^{-2} m , then

$$f = 3 \times 10^8 / (3 \times 10^{-2}) = 10^{10} \text{ Hz, ie } 10 \text{ GHz}$$

$$T = 1 / 10^{10} = 10^{-10} \text{ seconds, and } p = 10^{-10}/3 \text{ seconds}$$

+

FIG 2: phasing chart

p = pulse duration = $T / 3$

T = time of one cycle

f = drive frequency in Hz

$f = c / (3 a)$ where a = segment length = plate separation in metres

Distance ' a ' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales. Typical values for ' a ' would range from 1 cm to 1 km

For example, if $a = 1$ cm, ie 10^{-2} m, then

$$f = 3 \times 10^8 / (3 \times 10^{-2}) = 10^{10} \text{ Hz, ie } 10 \text{ GHz}$$

$$T = 1 / 10^{10} = 10^{-10} \text{ seconds, and } p = 10^{-10}/3 \text{ seconds}$$

FIG 3: x and z separation of 2 segments, ie segment pair

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales.
Typical values for 'a' would range from 1 cm to 1 km

FIG 4: x and z separations of neighboring segments

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales. Typical values for 'a' would range from 1 cm to 1 km

FIG 5: x and y separations in a single plate

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales.
Typical values for 'a' would range from 1 cm to 1 km

FIG 6: z and y separation in two plates

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales.
Typical values for 'a' would range from 1 cm to 1 km

FIG 7: perspective view of the two plates

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales.
Typical values for 'a' would range from 1 cm to 1 km

FIG 8: close-up perspective view of the two plates and current segments 8/14

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales. Typical values for 'a' would range from 1 cm to 1 km

FIG 9: m-n segment distance relationship

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales.
Typical values for 'a' would range from 1 cm to 1 km

FIG 10: Force between current-carrying conducting wires

10/14

I current in the wires

In this theoretical description, the values of a , h_1 , h_2 , l_1 , l_2 and I are variable

FIG 11: Plate 1 (0,0) to Plate 2 (m,n) segment distance, B

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales.
Typical values for 'a' would range from 1 cm to 1 km

FIG 12: timing differences

Explanation of time units

p = pulse duration = $T / 3$, T = time of one cycle = $1 / f$, f = drive frequency in Hz
 $f = c / (3 a)$ where a = segment length = plate separation in metres

Distance ' a ' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales.
Typical values for ' a ' would range from 1 cm to 1 km

For example, if $a = 1$ cm, ie 10^{-2} m, then
 $f = 3 \times 10^8 / (3 \times 10^{-2}) = 10^{10}$ Hz, ie 10 GHz
 $T = 1 / 10^{10} = 10^{-10}$ seconds, and $p = 10^{-10}/3$ seconds

Note: due to the Plate 2 phase shift of p , the Plate 1 arrival times are delayed (right-shifted) by p

FIG 13: Gazette view

Distance 'a' is fixed for a particular SCAM, but is flexible to support SCAMs of different scales.
Typical values for 'a' would range from 1 cm to 1 km

FIG 14: Relativistic force between current-carrying conducting wires

14/14

FIG 15 Lorentz length contraction

