Homework Test

Date limite : A rendre au plus tard le Samedi 01 Avril 2023 à 18 heures précises.

A rendre : Vous devrez envoyer votre travail en un seul fichier pdf à l'adresse *papaousmane6c@gmail.com*. Il faut mentionner vos nom et prénom(s) dans la première page et nommer le fichier comme suit **Nom-Prenom-DevoirMaths.pdf**

NB:

- Le travail est personnel.
- Il n'est pas autorisé de discuter avec d'autres personnes.
- Il n'est pas autorisé d'envoyer votre devoir en plusieurs fichiers.
- Vous pouvez répondre en français ou en anglais (ou dans les deux!).
- Lire et respecter les instructions!

Exercice 1. Let *M* be the matrix

$$M = \begin{pmatrix} -2 & 0 & 1 \\ -2 & 0 & 1 \\ -4 & 0 & 2 \end{pmatrix}$$

- (a) Compute the eigenvalues and the eigenvectors of M.
- (b) Is M diagonalizable?

Exercice 2. Let M

$$M = \begin{pmatrix} 0 & 0 & 2 \\ 2 & 3 & 2 \\ 1 & 3 & 0 \end{pmatrix}$$

- (a) Determine the eigenvalues and the eigenvectors of M over the field \mathbb{R} .
- (b) Say, justifying the answer, if there exist a matrix $P \in M_3(\mathbb{R})$ and a diagonal matrix $D \in M_3(\mathbb{R})$ such that $M = PDP^{-1}$
- (c) Determine a possible choice of such *P* and *D*.

Exercice 3. Let A

$$A = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

- 1. is A diagonalizable?
- 2. Triangularize the matrix A.
- 3. Determine the Jordan decomposition.

Exercice 4.:

In each of the following problems, find the A = LU factorization of the coefficient matrix, and solve the corresponding linear systems Ax = b.

(a)
$$A = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}; \qquad b = \begin{pmatrix} -1 \\ 1 \end{pmatrix}; \qquad b = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix}; \qquad b = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}; \qquad b = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Exercice 5.:

Frank speaks French and German; Musa speaks English, French and Italian; Omar speaks English, Italian, and Spanish; Assia speaks all the languages the others speak except French; and no one speaks any other language. Make a matrix $A = a_{ij}$ with rows representing the four people mentioned and columns representing the languages they speak. Put $a_{ij} = 1$ if person i speaks language j and $a_{ij} = 0$ otherwise. Explain the significance of the matrices AA^t and A^tA .

Exercice 6. A company makes bags and suitcases in two different factories. The table below gives the cost, in thousands of dollars, of manufacturing each product in each factory:

	Factory 1	Factory 2
Bags	135	150
Suitcases	627	681

- (a) Knowing that the personnel costs represent 2/3 of the total cost, find the matrix that gives the personnel cost of each product in each factory.
- (b) Find the matrix that gives the cost of the material of each product in each factory, assuming that, in addition to the personnel and material costs, there is a cost of 20.000 dollars for each product in each factory.

Exercice 7. Application :

Give Python code with numpy/scipy to find all results in exercises 1, 2, 3, 4, 5 and 6.