Informe técnico NBA 2003 a 2013

Introducción

El presente informe técnico tiene como objetivo analizar el desempeño y las tendencias clave de la NBA durante el período comprendido entre los años 2003 y 2013. Este análisis abarca aspectos fundamentales del juego, incluyendo estadísticas de jugadores, rendimiento de los equipos, y patrones estratégicos que marcaron una década significativa en la historia de la liga.

Durante este lapso, la NBA experimentó importantes transformaciones, tanto a nivel competitivo como estructural, que influyeron directamente en el desarrollo del deporte. La llegada de jugadores de renombre como LeBron James, Dwyane Wade y Carmelo Anthony en el Draft de 2003, así como la consolidación de leyendas como Kobe Bryant y Tim Duncan, redefinieron los estándares de excelencia en el baloncesto profesional.

El análisis realizado utiliza datos históricos y métricas avanzadas para identificar las tendencias de rendimiento, evaluar la influencia de los jugadores clave y examinar el impacto de estrategias ofensivas y defensivas a lo largo de la década. Asimismo, se exploran dinámicas relevantes como la evolución del juego perimetral, el rol del tiro de tres puntos, y los cambios en los patrones de victorias y derrotas.

Documentación del Proceso de ETL y Análisis de Datos

Herramientas y Tecnologías Utilizadas

- 1. Entorno de Desarrollo: Visual Studio Code
- 2. Librerías Python Implementadas:
- kagglehub: Importada para descargar y gestionar los datos desde la plataforma Kaggle.
- pandas: Utilizada para la manipulación y análisis de datos estructurados.
- numpy: Empleada para cálculos numéricos y manejo eficiente de arrays.
- seaborn y matplotlib: Librerías gráficas para la visualización de datos.
- pyodbc: Implementada para la conexión y manipulación de bases de datos en SQL Server.

Descripción del Proceso de ETL (Extract, Transform, Load)

- 1. Extracción de Datos:
- Descargamos los conjuntos de datos directamente desde Kaggle mediante la librería kagglehub.
- Definimos una ruta específica para la carpeta que contiene los archivos CSV descargados.
- Creamos una lista de archivos relevantes que serán utilizados en el análisis, filtrando solo los necesarios.
- 2. Transformación de Datos:
- Iteramos sobre los archivos seleccionados dentro de la carpeta especificada.
- Limpieza de datos:
- Eliminación de registros duplicados.
- Manejo de valores nulos o vacíos.
- Unificamos tablas mediante operaciones de merge para obtener una visión consolidada de la información.
- Creamos nuevas variables que sintetizan la información clave, permitiendo una exportación precisa a archivos CSV.
- Optimizamos el proceso mediante parámetros definidos para reducir el consumo de recursos y mejorar el rendimiento.
- 3. Carga de Datos:
- Exportamos los datos transformados a archivos CSV, listos para ser utilizados en análisis y visualización.
- Conectamos la base de datos con SQL Server utilizando pyodbo para un manejo eficiente y la posibilidad de integración con futuras fuentes de datos.

Exploratory Data Analysis (EDA)

Durante esta etapa, realizamos un análisis exploratorio exhaustivo para identificar patrones, tendencias y relaciones entre los datos.

Pasos Clave del EDA:

- Análisis gráfico mediante seaborn y matplotlib para visualizar:
- Distribuciones de datos.

- Comparaciones entre equipos locales y visitantes.
- Correlaciones entre variables clave.
- Identificación de datos relevantes para el diseño del dashboard en Power Bl.

Consolidación y Preparación de Datos

- Se realizó un "merge" para integrar información sobre equipos locales y visitantes, permitiendo un análisis comparativo detallado.
- Los datos consolidados están optimizados para responder a preguntas específicas y generar insights accionables.

CONEXIÓN SQL SERVER Y PYTHON

Conexión con SQL Server

La conexión a SQL Server mediante pyodbc permitió:

- Manipular y consultar los datos de manera eficiente.
- Establecer una infraestructura que facilita la integración de nuevas fuentes de datos en el futuro.

Uso en Visualización y Dashboard

Los datos procesados fueron integrados en Power BI para crear un dashboard interactivo y fácil de interpretar. Este dashboard permite:

- Analizar información clave sobre equipos, desempeños y tendencias.
- Generar insights específicos que apoyan la toma de decisiones basada en datos.

Conclusión

El proceso ETL implementado, combinado con un análisis exploratorio detallado y la integración en Power BI, proporcionó una base sólida para el análisis de datos y la generación de insights relevantes. Además, la conexión con SQL Server asegura escalabilidad y flexibilidad para futuros proyectos.

A continuación damos una descripción del código que se ejecuto en Python para la conexion con SQL server:

import pyodbo # Importamos la librería

Parámetros de conexión

```
server = "DESKTOP-UTQDVSQ\SQLEXPRESS" # Nombre del servidor
database = "DATOSFINALESNBA2023"
                                           # Nombre de la base de datos
# Lista de tablas a consultar
tablas = ["game_detail_table", "games_table", "inactive_players_table", "teams_table"]
# Establecemos la conexión
try:
  # Intentamos conectar
  conexion = pyodbc.connect(
    f"DRIVER={{SQL Server}};SERVER={server};DATABASE={database};Trusted_Connection=yes;"
  )
  print("Conexión exitosa")
  # Cursor para ejecutar consultas
  cursor = conexion.cursor()
  # Iterar sobre las tablas
  for tabla in tablas:
    print(f"\nConsultando datos de la tabla: {tabla}")
    query = f"SELECT TOP 10 * FROM dbo.{tabla}" # Consulta para cada tabla
    cursor.execute(query)
    # Imprimir resultados
    for row in cursor:
      print(row)
```

```
except pyodbc.Error as e:

# Manejo de errores

print("Error en la conexión:", e)

#finally:

# Cerrar conexión

#if 'conexion' in locals():

#conexion.close()

# print("\nConexión cerrada")
```

Con estos pasos, se puede conectar Python con SQL y realizar consultas sobre tablas ya cargadas. Este enfoque simplifica el trabajo con datos relacionales y facilita el análisis posterior.

Dashboard power bi

Documentacion Power BI

Obtención de los orígenes de datos.

Conexión Base de Datos.

Base de datos SQL Server

Aceptar Cancelar

DATOSFINALESNBA2023 [7]				
	game_detail_table			
	games_table			
	inactive_players_table			
	info_players			
	sysdiagrams			
	teams_table			
$\Box f_x$	fn_diagramobjects			

Dependencias de Consulta Inicial

Diagrama Inicial

Transformación de datos

- · Corrección de errores de formato fecha, enteros, decimales, texto y numero
- · Eliminación de datos Inconsistentes
- · Reemplazar valores nulos o erróneos
- · Eliminar duplicados
- · Corrección de errores de formato

Cambio de Estructura de Datos

- · Ajustar forma en que los datos están organizados para que sean más útiles y eficientes.
- · Conversión de columnas en filas.
- · Convertir filas en columnas.
- · Combinar datos de varias tablas (mediante uniones o fusiones).

Filtro de Datos

- · Excluir datos innecesarios.
- · Filtrar filas por rango de fechas.
- · Se excluyen registros que no cumplen con lo que se requiere.

Alimentación de tablas

- · Creación de nuevas columnas o métricas para agregar valor.
- · Creación columnas calculadas.
- · Aplicar funciones personalizadas

Integración de Datos

- · Combinación de datos de varias fuentes en el modelo.
- · Fusión de datos para combinar tablas con relaciones comunes y agregar filas a las tablas que requieran información especifica

Creación de Cálculos (medidas)

· Creación de reglas y cálculos específicos para obtención de Insaits

∨ 🖺 Medic	das
□Σ	Column
	Partidos Jugados
	Porcentaje Puntos Jugador Local
	Porcentaje Puntos Jugador Visitante
	Porcentaje Victorias Local
	PorcentajeVictorias Visitantes
	Puntos Promedio por Partido Local
	Puntos Promedio por Partido Visitante
	Puntos Totales Partido Local
	Puntos Totales Partido Visitante
	Puntos Totales Partidos
	Puntuación Promedio Local
	Puntuación Promedio Visitante
	Tasa de Victorias
	Top N Rango Local
	Top N Rango Visitante
	Total Partidos Jugados
	Victorias Local Global
	Victorias Visitante Global

Relación

 \cdot Creación de relaciones entre tablas y medidas.

Visualización y resultados

· Datos Diagramas y gráficos con insaits necesarios

· Diagrama de Relación Final

