UNets

CNN4N Journal Club

Amr Elsawy

Fully Convolutional Network

• A deep neural network (DNN) that has only Conv layers (i.e., no fully connected layers).

Problem

• Low level details vanish with pooling operations.

UNet

- *UNet* is a fully convolutional network that has U-like shape.
- *UNet* consists of two parts
 - encoder, encoding path, contracting path
 - decoder, decoding path, expanding path
- Additionally, skip connections are used to link between the E and D.

Cont.

- *UNet* is the common network used in segmentation tasks.
- In segmentation tasks, every pixel is labelled as background or foreground (i.e., object).
- *UNet* is used extensively for medical image segmentation.

Segmentation

Cont.

- Think of E and D as two similar network.
- UNet represents a mapping that reconstructs the mask m from the data x.

$$m = D(E(x))$$

Architecture

Encoder

Decoder

(None, 28, 28, 1) Conv2D (None, 28, 28, 32) output: (None, 28, 28, 32) input: MaxPooling2D Encoder (None, 14, 14, 32) (None, 14, 14, 32) Conv2D (None, 14, 14, 32) output: (None, 14, 14, 32) input: MaxPooling2D (None, 7, 7, 32) (None, 7, 7, 32) Dropout output: (None, 7, 7, 32) (None, 7, 7, 32) UpSampling2D (None, 14, 14, 32) output: [(None, 14, 14, 32), (None, 14, 14, 32)] input: Concatenate (None, 14, 14, 64) (None, 14, 14, 64) input: Decoder (None, 14, 14, 32) input: (None, 14, 14, 32) UpSampling2D (None, 28, 28, 32) [(None, 28, 28, 32), (None, 28, 28, 32)] Concatenate (None, 28, 28, 64) (None, 28, 28, 64) Conv2D (None, 28, 28, 32) (None, 28, 28, 32) input: output: (None, 28, 28, 1)

input: [(None, 28, 28, 1)]

output: [(None, 28, 28, 1)]

Autoencdoer

UNet

Schematic View

Results

Fashion-MNIST

MNIST

Endothelial Cell Alizarine Data Set

 The dataset consists of 30 images of corneal endothelium acquired from 30 porcine eyes stained with alizarine red and the corresponding manually segmented images.

A. Ruggeri, F. Scarpa, M. De Luca, C. Meltendorf, J. Schroeter. "A system for the automatic estimation of morphometric parameters of corneal endothelium in alizarine red stained images", Br J Ophthalmol, 94:643-7, 2010.

Preprocessing

Results

	Training	Validation
Dice Loss	0.7478	0.8054
Dice + CE Losses	0.7074	0.7375

Cont.

Dice Loss

Dice & Cross-Entropy Losses

Thanks!