

Monitoring Nvidia GPU Resource Usage

Understanding performance metrics Marcel Ferrari (CSCS)

February 15, 2024

Table Of Contents

- 1. Problem Overview
- 2. Existing Solutions
- 3. Nvidia DCGM
- 4. AGI Alps GPU Insights
- 5. Performance metrics
- 6. Profiling workflow
- 7. Practical case & interpreting metrics

Problem

Problem Overview

- Number of workloads accelerated by GPUs is always increasing
- Need to understand how resources are used
- For CPUs → look at core usage
- For GPUs → look at GPU usage
 - This can be deceiving!
 - GPU usage = total work ≠ useful work!
 - Need a way to quantify useful work

Existing Solutions

Existing Solutions

- Nvidia offers different solution to profile its GPUs
- Nsight Compute
 - Very detailed kernel level information
 - High overhead and no MPI support
- Nsight Systems
 - Detailed function level information
 - Variable overhead → depends on metrics
 - MPI support
- DCGM
 - Coarse grained information
 - System-wide monitoring support
 - Very little overhead

Source: ALCF Developer Session

DCGM

- Data Center GPU Manager
 - Open source project that enables easy GPU performance monitoring
- Nvidia GPU drivers offer access to hundreds of metrics
 - Eg.: temperature, power consumption, memory usage, ...
 - DCGM offers APIs for easy access to "profiling" metrics
 - Handles communication with Nvidia drivers
- Why DCGM?
 - Introduces little overhead → minimal code changes for users
 - Few simple to understand yet powerful profiling metrics
- Limitations:
 - Confusing and not user friendly → designed for system administrators
 - No integration with SLURM

AGI - Alps GPU Insight

AGI - Alps GPU Insights

- Alps GPU Insights
 - Goal: simplify and streamline the collection of GPU metrics
- Currently implemented key features:
 - Easy to run with minimal code changes
 - Simple options that are easy to understand
 - Very little overhead, can profile real workloads
 - SLURM and MPI integration
 - Automatic data analysis
 - Metrics overview summary
 - Process warmup and outlier detection
 - Time series averaging and visualisation
 - Load balancing visualisation

Profiling Metrics

Profiling Metrics

- DCGM offers hundreds of metrics
 - We are interested in the following profiling metrics:
 - 1. SM Activity
 - 2. SM Occupancy
 - 3. Tensor Activity
 - 4. FP64/32/16 Engine Activity
 - 5. DRAM activity
 - 6. PCIe Bandwidth
 - 7. (NVLink Bandwidth)

SM Activity

The fraction of time at least one warp was active on a multiprocessor, averaged over all N multiprocessors:

$$SM_{
m activity} = rac{1}{N} \sum_{i=1}^{N} rac{t_{
m active}}{\Delta t}, \quad \Delta t = {
m sampling time}$$

- Active warps include those waiting on memory, not just computing
- A value ≥ 0.8 is necessary for effective GPU use, ≤ 0.5 suggests inefficiencies
- The value is not instantaneous!
 - SM = 1 → 100% GPU activity over full time interval
 - SM = 0.2 could mean eg.:
 - 20% of SMs at 100% activity over full interval
 - 100% of SMs at 20% activity over full interval
 - 100% of SMs at 100% activity over 20% of interval
- Warp activity measurement does not depend on threads per block!

SM Occupancy

 Fraction of resident warps on a multiprocessor, relative to the maximum number of concurrent warps supported on a SM

$$SM_{\text{occupancy}} = \frac{1}{N \times \Delta t} \sum_{i=1}^{N} \int_{t_0}^{t_0 + \Delta t} \frac{W_i^{\text{resident}}(t)}{W_i^{\text{max}}} dt$$

- Higher occupancy doesn't always mean better GPU usage
- For memory bound workloads, higher occupancy indicates more effective use
- For compute bound workloads, higher occupancy doesn't necessarily mean better usage
- Occupancy calculation depends on GPU properties, threads per block, registers per thread, and shared memory per block

Tensor Activity

The fraction of cycles the tensor pipeline was active

$$TA = \frac{1}{N \times \Delta t} \sum_{i=1}^{N} \frac{1}{N_{\text{cycles}}} \sum_{i=1}^{N_{\text{cycles}}} \delta_{j}, \quad N_{\text{cycles}} = \frac{f \times \Delta t}{2}$$

f= clock frequency, $\delta_j=1\Leftrightarrow$ instruction issued on cycle j

- Higher values show greater Tensor Cores utilisation
 - 100% activity → tensor instruction issued every other cycle throughout the interval
 - 20% activity could mean eg.:
 - 20% of SMs at 100% utilisation for 100% of the interval
 - 100% of SMs at 20% utilisation or 100% of the interval
 - 100% of SMs at 100% utilisation for 20% of the interval
- SM activity can help disambiguate these situations!

FP64/32/16 Engine Activity

The fraction of cycles the FP64/32/16 pipeline was active

$$FP = \frac{1}{N \times \Delta t} \sum_{i=1}^{N} \frac{1}{N_{\text{cycles}}} \sum_{i=1}^{N_{\text{cycles}}} \delta_{j}, \quad N_{\text{cycles}} = \frac{f \times \Delta t}{k}$$

 $f = {
m clock} \; {
m frequency}, \;\; \delta_j = 1 \Leftrightarrow {
m instruction} \; {
m issued} \; {
m on} \; {
m cycle} \, j$

- Higher values show greater FP engine utilisation
- On Volta arch. 100% utilisation means 1 instruction every...
 - ... 4th cycle for FP64 calculations $\rightarrow k = 4$
 - ... other cycle for FP32, Integer and FP16 calculations $\rightarrow k = 2$
- 20% can mean different scenarios → see tensor core activity
- SM activity can help disambiguate these situations!

DRAM Activity

The fraction of cycles where data was sent to or received from device memory

$$DRAM = \frac{1}{N \times \Delta t} \sum_{i=1}^{N} \frac{1}{N_{\text{cycles}}} \sum_{j=1}^{N_{\text{cycles}}} \delta_j, \quad N_{\text{cycles}} = f \times \Delta t$$

 $f = {
m clock} \; {
m frequency}, \;\; \delta_j = 1 \Leftrightarrow {
m DRAM} \; {
m instruction} \; {
m on} \; {
m cycle} \, j$

- Higher values show greater device memory utilisation (not in terms of GB!)
 - Eg.: moving data from device memory to cache or registers
 - More likely that application is memory bound, although not always
- 100% utilisation means 1 DRAM instruction every cycle
 - Practical limit is 80%
- 20% activity indicates DRAM activity in 20% of the cycles → no ambiguity!

PCle Bandwidth

 The rate of data transmitted / received over the PCIe bus, including both protocol headers and data payloads, in bytes per second

PCIE_{BW} =
$$\frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} TR(t) dt$$
, $TR(t) = \text{transfer rate at time } t$

- The value is an average rate over a time interval, not instantaneous
- The rate ignores whether data is transferred constantly or in bursts
 - Example: 1 GB transferred over 1 second equals a rate of 1 GB/s
- Theoretical maximum bandwidth for PCIe Gen3 is 985 MB/s per lane
- High PCIe bandwidth usage can be caused by
 - Heavy CPU-GPU communication
 - Heavy GPU-GPU communication for multi-GPU workloads (No NVLinks)

A Note On Sampling Frequency

- All metrics offered by DCGM are expressed either as time or cycle averages
 - Shrinking sampling time interval (i.e. increasing sampling frequency) increases overhead, but yields values closer to the true instantaneous value:

$$\frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} f(t) dt \xrightarrow{\Delta t \to 0} f(t_0)$$

- Increasing sampling time interval (i.e. decreasing sampling frequency)
 decreases overhead, but yields more aggregate values
- Need to find a balance between resolution and overhead!

Profiling Workflow

Profiling workflow

- 1) Profile workload using AGI
 - This generates an SQLite database containing the collected metrics
- 2) Use the analysis utility to generate a report
 - 2-dimensional data → time and space (GPUs)
 - Three intuitive ways to aggregate data
 - Average over all dimensions → point wise estimate
 - Average over space → average time series
 - Average over time → load balance heatmap

Profiling workflow

- Profile workload using AGI
 - This generates an SQLite database containing the collected metrics
 - srun -N 2 -n8 --gpus-per-task=1 AGI --wrap="python dgemm.py"
- Use the analysis utility to generate a report
 - 2-dimensional data → time and space (GPUs)
 - Three intuitive ways to aggregate data
 - Average over all dimensions → point wise estimate
 - AGI analyze --summary -i dgemm.sql
 - Average over space → average time series
 - AGI analyze --plot-time-series -i dgemm.sql
 - Average over time → load balance heatmap
 - AGI analyze --plot-load-balancing -i dgemm.sql

Summary

Summary of GPU metrics (average ov	er all GPUs	and all	time steps)
	mean	median	min	max
DEV_GPU_UTIL	99.98%	100.00%	80.00%	100.00%
SM_ACTIVE	89.62%	100.00%	0.00%	100.00%
SM_OCCUPANCY	11.20%	12.50%	0.00%	12.50%
PIPE_TENSOR_CORE_ACTIVE	0.00%	0.00%	0.00%	0.00%
PIPE_FP64_ACTIVE	89.14%	99.69%	0.00%	99.72%
PIPE_FP32_ACTIVE	0.00%	0.00%	0.00%	0.00%
PIPE_FP16_ACTIVE	0.00%	0.00%	0.00%	0.00%
DRAM_ACTIVE	54.93%	55.97%	14.11%	72.30%
PCIE_TX_BYTES	8.75 MB	8.61 MB	2.65 MB	18.45 MB
PCIE_RX_BYTES	25.06 MB	24.9 <u>6</u> MB	7.39 MB	44.83 MB

Average Time Series - Device Activity

Average Time Series - FLOP Activity

Load Balancing - FP64 Engine Activity

Load Balancing - SM Occupancy

Practical case: training a NN with different optimisers

A Practical Example

- Example data collected from a practical example workload
 - Goal: train a simple fully connected NN using different implementations of the Adam optimiser offered in PyTorch
 - Test three implementations of Adam
 - Standard Adam
 - Foreach Adam
 - Fused Adam

The Adam Optimiser

```
Algorithm 1: Pseudocode for a Step of the Adam Optimizer
 Input: \gamma (lr), \beta_1, \beta_2 (betas), \theta_0 (params), f(\theta) (objective)
 Input: \lambda (weight decay)
 // Initialize moments
 m_0 \leftarrow 0, v_0 \leftarrow 0, v_0^{max} \leftarrow 0
 // Iterate over all weights
 for t = 1 to ... do
                                                             oldsymbol{--} Iterate over all weights 	heta_{\scriptscriptstyle t}
     // Compute gradient of weights
     g_t \leftarrow \nabla f_t(\theta_{t-1})
                                                                   Compute gradient via backpropagation
     if \lambda \neq 0 then
         // Apply weight decay
         g_t \leftarrow g_t + \lambda \theta_{t-1}
                                                                          Apply weight decay
      end
     // Update moments
     m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t
     v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2
     \widehat{m}_t \leftarrow m_t/(1-\beta_1^t)
                                                                                Update moments
     \widehat{v}_t \leftarrow v_t/(1-\beta_2^t)
     // Update Weights
      \theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)
                                                                                  Update weights
 end
```

Computing $\nabla f_t(\theta_{t-1})$ is the only loop dependency!

Idea: compute gradients a priori in order to parallelise the remaining the remaining operations

The Adam Optimiser - For Each Implementation

Algorithm 1: Pseudocode for a Step of the Adam Optimizer **Input:** γ (lr), β_1, β_2 (betas), θ_0 (params), $f(\theta)$ (objective) **Input:** λ (weight decay) // Initialize moments $m_0 \leftarrow 0, v_0 \leftarrow 0, v_0^{max} \leftarrow 0$ // Iterate over all weights for t = 1 to ... do // Compute gradient of weights $g_t \leftarrow \nabla f_t(\theta_{t-1})$ if $\lambda \neq 0$ then // Apply weight decay $g_t \leftarrow g_t + \lambda \theta_{t-1}$ for_each $(g_t \leftarrow g_t + \lambda \theta_{t-1})$ end // Update moments $m_{t} \leftarrow \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t}$ $v_{t} \leftarrow \beta_{2} v_{t-1} + (1 - \beta_{2}) g_{t}^{2}$ $\widehat{m}_{t} \leftarrow m_{t} / (1 - \beta_{1}^{t})$ for each(...) $\widehat{v}_t \leftarrow v_t/(1-\beta_2^t)$ // Update Weights $\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$...

Option 1:

Distribute the outer for loop onto all internal operations. This allows to reduce the number of kernel calls by stacking tensors.

Eg.:
$$\begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix}$$
 instead of $a+c, b+d$

This is known as the **for each** implementation.

end

The Adam Optimiser - Fused Implementation

Algorithm 1: Pseudocode for a Step of the Adam Optimizer

```
Input: \gamma (lr), \beta_1, \beta_2 (betas), \theta_0 (params), f(\theta) (objective)
Input: \lambda (weight decay)

// Initialize moments
m_0 \leftarrow 0, v_0 \leftarrow 0, v_0^{max} \leftarrow 0
```

```
// Iterate over all weights
for t = 1 to ... do
     // Compute gradient of weights
     g_t \leftarrow \nabla f_t(\theta_{t-1})
     if \lambda \neq 0 then
          // Apply weight decay
          g_t \leftarrow g_t + \lambda \theta_{t-1}
     end
     // Update moments
     m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t
     v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2
     \widehat{m}_t \leftarrow m_t/(1-\beta_1^t)
     \widehat{v}_t \leftarrow v_t/(1-\beta_2^t)
     // Update Weights
     \theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)
```

Dispatched to GPU

Option 2:

Dispatch full computation to GPU using a Kernel that implements the full optimisation step.

This is known as the "fused" implementation as everything is fused into a single kernel.

end

GPU Utilization

SM Activity

SM Occupancy

FP32 Engine Activity

FP64 Engine Activity

DRAM Activity

Tensor Core Activity

PIPE_TENSOR_CORE_ACTIVE

Interpreting Metrics - How efficient is my workload?

- Initial idea → use single "score" to describe efficiency of a workload
- What does efficiency mean?
 - Maximising FLOP/s?
 - Linear relationship between FP/Tensor activity and FLOP/s
 - Getting the most out of my GPU?
 - Need to consider if the application is compute or memory bound
 - For memory bound → maximise occupancy
 - Increasing operational intensity?
 - Maximise FP/Tensor engine activity and decrease Occupancy/DRAM activity
- It is difficult to give a single universal value for efficiency!

Thank you for your attention.