

Vorlesungsskript

Falk Jonatan Strube

Vorlesung von Herrn Meinhold 27. Oktober 2015

Inhaltsverzeichnis

I.	Elementare Grundlagen	1
1.	Aussagen und Grundzüge der Logik	1
	1.1. Aussagen, Wahrheitswert	1
	1.2. Aussagesverschiebung	1
	1.3. Logische Gesetze (Tautologien)	2
	1.4. Aussagefunktionen, Quantoren, Prädikatenlogik	
2.	Mengen	5
	2.1. Begriffe	5
	2.2. Mengenverknüpfungen	6
	2.3. Relationen	
	2.3.1. Grundbegriffe	7
	2.3.2. Operationen auf Relationen	10
	2.3.3. Äquivalenzrelationen	14
	2.3.4. Ordnungsrelationen	
	2.3.5. Funktionen	

Teil I.

Elementare Grundlagen

1. Aussagen und Grundzüge der Logik

1.1. Aussagen, Wahrheitswert

Aussage: (im weiteren Sinne) Sprachlich sinnvoller, konsatierender Satz. In diesem Abschnitt werden nur zweiwertige Aussagen betrachtet, d.h. Aussagen, die entwoder wahr oder falsch sind.

Bsp. 1:

- (1) Es gibt unendlich viele Primzahlen (wahr)
- (2) Es gibt unendlich viele Primzahlzwillinge, z.B. (3,5), (5,7), (11,13), (17,19) usw. (Wahrheitswert nicth bekannt!)
- (3) 5+7=13 (falsch)
- (4) Wie spät ist es? (keine Aussage)
- (5) Diese Aussage ist falsch! (keine Aussage, paradox)
- (6) Am 30.06.2016 wird es in Dresden regnen.

(1)–(3) sind zweiwertige Aussagen, (4) und (5) sind keine Aussagen, (6) ist keine zweiwertige Aussage (Wahrscheinlichkeit, d.h. Zahl zwischen 0 und 1 angebbar).

Bezeichnungen:

p, q, r, ... Aussagen,falsche Aussage,wahre Aussage

Wahrheitswert:

$$v(p) = \begin{cases} 1 & \text{(falls p wahr)} \\ 0 & \text{(fallls p falsch)} \end{cases}$$
 $p \equiv q \text{ (p identisch q)} \dots \text{ p und q haben denselben Wahrheitswert}$

1.2. Aussagesverschiebung

1.) Negation \overline{p} ("nicht p") [oft auch p! bzw. $\neg p$]

$$egin{array}{c|ccc} p & \overline{p} & \\ \hline 0 & 1 & \\ 1 & 0 & \\ \hline \end{array}$$

2.) *Konjunktion* $p \wedge q$ ("p und q")

3.) Disjunktion $p \lor q$ ("p oder q") [Alternative – nicht ausschließendes Oder!]

p	q	$p \wedge q$	$p \lor q$
1	1	1	1
1	0	0	1
0	1	0	1
0	0	0	0

4.) Implikation $(p \Rightarrow q) := \overline{p} \lor q$ ("aus p folgt q", "wenn p, dann q")

p	q	\overline{p}	$p \Rightarrow q$
1	1	0	1
1	0	0	0
1	1	1	1
1	0	1	1

Begriffe: $p \Rightarrow q$ (p: *Prämisse*, q: *Konklusion*)

Eine Implikation ist genau dann falsch, wenn die Prämisse richtig und die Konklusion falsch ist!

Bsp. 2:

- -1 = 1 (falsch) $\Rightarrow 1 = 1$ (wahr) [durch Quadrieren]
- -1 = 1 (falsch) $\Rightarrow 0 = 2$ (falsch) [Addition von 1]

Aus einer falschen Aussage lassen sich durch richtiges Schließen sowohl falsche als auch richtige Aussagen gewinnen.

Andere Sprechweisen: "p ist hinreichend für q", "q ist notwendig für p"

5.) Äquivalenz $(p \Leftrightarrow q) :\equiv (p \Rightarrow q) \land (q \Rightarrow p)$ ("p äquivalent q", "p ist notwendig und hinreichend für q", "p genau dann wenn q") (ist genau dann wahr, wenn p und q den selben Wahrheitswert besitzen)

1.3. Logische Gesetze (Tautologien)

Eine Tautologie t ist eine Aussagenverbindung, die unabhängig vom Wahrheitswert der einzelnen Aussagen stets wahr ist (d.h. $t \equiv 1$).

Bsp. 3:

Einige wichtige Tautologien

1.)
$$p \Leftrightarrow \overline{\overline{p}}$$

(Negation der Negation)

2.) $p \vee \overline{p}$

(Satz vom ausgeschlossenem Dritten)

3.) a)
$$\overline{p \wedge q} \equiv (\overline{p \vee \overline{q}})$$
 b) $\overline{p \vee q} \equiv (\overline{p \wedge \overline{q}})$ (de Morgansche Regeln)

- 4.) $(p \Rightarrow q) \equiv (\overline{q} \Rightarrow \overline{p})$ (Kontrapositionsgesetz)
- 5.) $p \land (p \Rightarrow q)) \Rightarrow q$ (direkter Beweis)
- 6.) $p \wedge (\overline{q} \Rightarrow \overline{p})) \Rightarrow q$ (indirekter Beweis)

Beweise mittels Wahrheitstafeln (vgl. Übung 1).

Bemerkung zu 1., 3., 4.: Eine Äquivalenz ist genau dann eine Tautologie, wenn beide Seiten identisch sind, z.B. $p \equiv \overline{\overline{p}}$.

Beweistechniken:

Zu beweisen ist q.

- 1.) Direkter Beweis:
 - Nachweis von p (Voraussetzung)
 - Richtiger Schluss $p \Rightarrow q$ Dann q wahr (Behauptung)
- 2.) Indirekter Beweis: Annahme von \overline{q} auf Wiederspruch führen (auf unterschiedliche Weise möglich, vgl. folgendes Bsp).

Bsp. 4:

 $q = \sqrt{2}$ ist irrational" (keine rationale Zahl)

Beweis indirekt:

Es gelte \overline{q} , d.h. $\sqrt{2}$ ist rational, dann gelten folgende Schlüsse: $\sqrt{2}=\frac{m}{n}$ mit teilerfremden natürlichen Zahlen m und n.

Zahlen
$$m$$
 und n .
$$\Rightarrow 2 = \frac{m^2}{n^2} \Rightarrow 2 \cdot n^2 = m^2 \Rightarrow 2|m^2$$

$$\Rightarrow$$
 2|m (2 ist Teiler von m)

$$\Rightarrow 4|m^2 \text{ (mit } m^2 = 2n^2)$$

$$\Rightarrow 4|2n^2 \Rightarrow 2|n^2 \Rightarrow \boxed{2|n}$$

Widerspruch: Da m und n teilerfremd sind. #

Weitere Gesetze

$$p \land q \equiv q \land p$$
$$p \lor q \equiv q \lor p$$

(Kommutativgesetze)

•
$$(p \land q) \land r \equiv p \land (q \land r)$$

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

(Assoziativgesetze)

•
$$(p \land q) \lor r \equiv (p \lor r) \land (q \lor r)$$

 $(p \lor q) \land r \equiv (p \land r) \lor (q \land r)$
(Distributivgesetze)

- $p \land 1 \equiv p, p \lor 1 \equiv 1, p \land p \equiv p$ $p \land 0 \equiv 0, p \lor 0 \equiv p, p \land p \equiv p$
- $p \lor (p \land q) \equiv p$

(Absorptionsgesetz)

1.4. Aussagefunktionen, Quantoren, Prädikatenlogik

X sei eine Menge (Gesamtheit von Objekten x mit einem gemeinsamen Merkmal, vgl. Abschnitt 2) $x \in X \dots x$ ist Element von X. Die Objekte haben Eigenschaften (*Prädikate*)

Aussagefunktion (auch Aussageform) p(x): Jedem $x \in X$ ist eine Aussage p(x) zugeordnet. Dabei steht x für ein Objekt, p für ein Prädikat.

Bsp. 5:

```
X ... Menge der positiven natürlichen Zahlen (1, 2, 3, ...) p(x) := x ist eine Primzahl" p(5) ... wahr, p(10) ... falsch
```

Quantoren:

Betrachtet werden folgende Aussagen:

- 1.) "Für alle x (aus X) gilt p(x)" $\equiv \boxed{\forall x \ p(x)}$ (universeller Quantor / Allquantor)
- 2.) "Es existiert (wenigstens) ein x, für welches p(x) gilt" $\equiv \boxed{\exists x \ p(x)}$ (existenzieller Quantor)

Zur Schreibweise:

- Bei Anwendungen (außerhalb der reinen Logik) wird oft die Grundmenke X mit angegeben: $\forall x \in X \ p(x)$ usw.
- \bullet Falls sich Quantoren auf eine Teilmenge M von X beziehen sollen, dann können folgende Schreibweisen verwendet werden:

$$a = \forall x \in M \ p(x), b = \exists x \in M \ p(x).$$

• Die Schreibweisen in der formalen Logik sind dann: $a = \forall x \ (x \in M \Rightarrow p(x))$

$$\overline{\exists x \ p(x)} \equiv \exists x \ \overline{p(x)}$$

$$\overline{\exists x \ p(x)} \equiv \forall x \ \overline{p(x)}$$

Mehrstellige Aussagefunktionen

- $p(x_1,x_2,...,x_n)$, $x_1 \in X_1, x_2 \in X_2,...,x_n \in X_n$ Die Grundmengen X_i können, müssen aber nicht für jede Stelle gleich sein.
- Wird ein Quantor auf eine n-stellige Aussagefunktion angewandt, so entsteht eine (n-1)-stellige Aussagefunktion (eine 0-stellige Aussagefunktion ist eine Aussage)
 - z.B.: $\exists y \ p(x,y,z) =: q(x,z)$, die Variable y wird durch den Quantor \exists gebunden (y... gebundene Variable). Wichtig ist der Platz, nicht der Name der Variable.
 - $x, z \dots$ freie Variable, können durch weitere Quantoren gebunden werden.

2. Mengen Mathematik I

Bsp. 6:

Ein Dorf bestehe aus 2 Teilen (Ober- und Unterdorf). Es sei M die Menge aller Bewohner des Dorfes. M_1 bzw. M_2 seien die Teilmengen von M, die dem Ober- bzw. Unterdorf entsprechen.

Wir betrachten folgende zweistellige Aussagefunktionen:

```
k(x,y)... Person x (aus M) kennt Person y (aus M)
```

```
a) a(x) := \forall y \ k(x,y) \dots Person x kennt jeden (\Rightarrow "Für alle y gilt: x kennt y") b(y) := \exists x \ k(x,y) \dots es gibt jemanden, der y kennt c := \forall x \forall y \ k(x,y) \dots jeder kennt jeden d := \forall y \exists x \ k(x,y) \dots jeder wird von wenigstens einer Person gekannt e := \exists x \forall y \ k(x,y) \dots es gibt mindestens eine Person, die alle Personen kennt Man beachte:
```

- d und e sind nicht das Gleiche: Die Reihenfolge unterschiedlicher Quantoren muss beachtet werden. Bei d kann für jedes y ein anderes x mit k(x,y) existieren. Diese Abhängigkeit von y wird manchmal in Anwendungen durch $\forall y \exists x(y) \ k(x,y)$ ausgedrückt.
- Es gilt aber $e \Rightarrow d$ (stets wahr: Tautologie). Der Wahrheitsgehalt von z.B. c, d, e kann dagegen nicht mit logischen Mitteln bestimmt werden.
- b) Negation der Aussagen bzw. Aussageformen aus a).

```
Negation der Aussagen bzw. Aussagen men aus a). \overline{a(x)} \equiv \exists y \ \overline{k(x,y)} \dots x \text{ kennt wenigstens eine Person nicht} \overline{b(x)} \equiv \forall x \ \overline{k(x,y)} \dots \text{ keiner kennt } y \overline{c} \equiv \exists x \ \overline{\forall y \ k(x,y)} \equiv \exists x \ \exists y \ \overline{k(x,y)} \dots \text{ es gibt jemanden der wenigstens eine Person nicht kennt} (jemanden, der nicht alle kennt) \overline{d} \equiv \exists y \ \forall x \ \overline{k(x,y)} \dots \text{ es gibt jemanden, der von keiner Person gekannt wird } \overline{e} \equiv \forall x \ \exists y \ \overline{k(x,y)} \dots \text{ jeder kennt wenigstens eine Person nicht.}
```

c) Folgende Aussagen sind mit Hilfe von Quantoren auszudrücken:

```
f... jeder aus dem Oberdorf kennt wenigstens eine Person aus dem Unterdorf.
```

g... es gibt jemanden im Unterdorf, der alle Personen des Oberdorfs kennt.

```
f = \forall x \in M_1 \exists y \in M_2 \ k(x, y)
= \forall x \ (x \in M_1 \Rightarrow \exists y \ (y \in M_2 \land k(x, y)))
g = \exists x \in M_2 \ \forall y \in M_1 \ k(x, y)
= \exists x \ (x \in M_2 \land \forall y \ (y \in M_1 \Rightarrow k(x, y)))
```

2. Mengen

2.1. Begriffe

Menge: Zusammenfassung gewisser wohl unterscheidbarer Objekte (Elemente) mit einem gemeinsamen Merkmal zu einem Ganzen.

Diskussion: Naiver Mengenbegriff führt zu Widerpsrüchen. z.B. Menge X aller Mengen, die sich nicht selbst als Element enthalten.

```
X = \{A | A Menge, A \not\in A\}
```

 $X \in X$? Wenn $X \in X \Rightarrow X \notin X$ und $X \notin X \Rightarrow X \in X$ (Widerspruch!).

Diese Widersprüche können umgangen werden, wenn nur Teilmengen einer sogenannten Grundmenge betrachtet werden.

Bezeichungen:

- meist große Buchstaben für Mengen: A, B, ..., M, ..., X
- $x \in M$... x ist Element von M
- $x \notin M$... x ist kein Element von M

Schreibweise:

 $M = \{ \ldots_{\text{Elemente}} \} \text{ oder } M = \{x|p(x)\}$

 $\operatorname{mit} p(x) = \operatorname{Aussage}$, die genau für die Elemente x aus M wahr ist.

Wichtige Grundmengen:

- N ... Menge der natürlichen Zahlen $\{0, 1, 2, 3, ...\}$
- $\mathbb{N}^* = \mathbb{N} \setminus \{0\} = \{1, 2, 3, ...\}$
- \mathbb{Z} ... Menge der ganzen Zahlen $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- \mathbb{Q} ... Menge der rationaln Zahlen $\{x|x=\frac{m}{n}, m\in\mathbb{Z}, n\in\mathbb{Z}, n\neq 0\}$
- $\bullet \ \mathbb{R} \dots$ Menge der reelen Zahlen
- $\bullet \ \mathbb{C} \ldots$ Menge der komplexen Zahlen $\{z|z=x+i\cdot y, \quad x,y\in \mathbb{R}, i^2=-1\}$

Bsp. 1:

 $M_1 \dots$ Menge der Primzahlen kleiner 10, $M_1 = \{2, 3, 5, 7\}$

 $M_2 \dots$ Menge der reelen Zahlen zwischen 0 und 1 $M_2 = \{x \in \mathbb{R} | 0 < x < 1\} =: (0,1)$ Intervallschreibweise

Def. 1: (Intervallschreibweisen)

Es seien a und b reele Zahlen mit a < b:

 $[a,b] := \{x \in \mathbb{R} | a \le x \le b\} \dots$ abgeschlossenes Intervall

 $(a,b) := \{x \in \mathbb{R} | a < x < b\} \dots$ offenes Intervall

 $[a,b) := \{ x \in \mathbb{R} | a \le x < b \}$

 $(-\infty, a) := \{x \in \mathbb{R} | -\infty < x < a\} = \{x \in \mathbb{R} | x < a\}$

usw.

Leere Menge: z.B. $\{x \in \mathbb{R} | x = x + 1\} = \{x \in \mathbb{R} | x^2 + 1 = 0\}$ enthält kein Element.

Bezeichnung: ∅ oder {}

2.2. Mengenverknüpfungen

Def. 2:

$$M_1 = M_2$$
 := $\forall x \ (x \in M_1 \Leftrightarrow x \in M_2)$ (Gleichheit)

Def. 3:

$$M_1\subseteq M_2$$
 := $\forall x\ (x\in M_1\Rightarrow x\in M_2)$ (*Inkulsion*) " M_1 ist Teilmenge von M_2 "

Diskussion:

Ist $M_1 \subseteq M_2$ aber $M_1 \neq M_2$ so kann man schreiben $M_1 \subset M_2$ (echte Teilmenge).

Def. 4:

1.) $A \cap B := \{x | x \in A \land x \in B\}$ A Durchschnitt von A und B

2.) $A \cup B := \{x | x \in A \lor x \in B\}$ Vereinigung von A und B

3.) $A \setminus B := \{x | x \in A \land x \not\in B\}$ Differenz "A minus B"

Bei Vorliegen einer Grundmenge E:

4.) $\overline{A} := E \setminus A$ Komplimentärmenge von A

Diskussion: (ausgewählte Rechenregeln)

- 1.) \cup und \cap sind kommutativ und assoziativ z.B. gilt $A \cup B = B \cup A$, $(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$
- 2.) Allg. I ... Indexmenge, z.B. $\{1,2,...,n\}$, \mathbb{N} , \mathbb{Z} , \mathbb{R} dann: $\bigcup_{i\in I}A_i:=\{x|\exists i\in I\quad x\in A_i\}$ $\bigcap_{i\in I}A_i:=\{x|\forall i\in I\quad x\in A_i\}$

2.3. Relationen

2.3.1. Grundbegriffe

Def. 5:

Die Menge $M_1 \times M_2 := \{(x_1,x_2) | x_1 \in M_1 \land x_2 \in M_2\}$ heißt kartesisches Produkt der Mengen M_1 und M_2 (= Menge aller geordneten Paare)

Bsp. 2:

 \mathbb{R} ... Menge der reelen Zahlen, veranschaulicht durch die Zahlengerade $\mathbb{R}^2:=\mathbb{R}\times\mathbb{R}=\{(x,y)|x\in\mathbb{R}\wedge y\in\mathbb{R}\}$... x-y-Ebene

Def. 6:

Eine Teilmenge $T \subseteq M_1 \times M_2$ heißt (binäre) Relation.

Diskussion:

- 1.) Verallgemeinerung: $M_1 \times M_2 \times ... \times M_n = \{(x_1, x_2, ..., x_n) | x_1 \in M_1, ..., x_n \in M_n\}$ (= Menge geordneter n-Tupel)
 - Eine Teilmenge $T \subseteq M_1 \times M_2 \times ... \times M_n$ heißt *n-stellige Relation*.
- 2.) Jede Teilmenge von $M_1 \times M_2$ ist eine Relation, also auch die Grenfälle \emptyset (gesamt leere Menge) und $M_1 \times M_2$ (vollständige Menge). Wichtig sind aber im allgemeinen die echten Teilmengen, die die verschiedensten Beziehungen zwischen den Elementen von M_1 und M_2 ausdrücken.

Def. 7: (Eigenschaften binärer Relationen in $M_1 \times M_2$)

Eine Relation $T \subseteq M_1 \times M_2$ heißt:

- a) linksvollständig (linkstotal), wenn für jedes $x_1 \in M_1$ (wenigstens) ein $x_2 \in M_2$ existiert mit $(x_1, x_2) \in T$.
- b) recthvollständig (rechtstotal, wenn für jedes $x_2 \in M_2$ (wenigstens) ein $x_1 \in M_1$ existiert mit $(x_1, x_2) \in T$.
- c) rechteindeutig, wenn für jedes $x_1 \in M_1$ höchstens ein $x_2 \in M_2$ existiert mit $(x_1, x_2) \in T$.
- d) *linkseindeutig*, wenn für jedes $x_2 \in M_2$ höchstens ein $x_1 \in M_1$ existiert mit $(x_1, x_2) \in T$.

Bsp. 3:

Es seien S bzw. L folgende Mengen von Städten bzw. Ländern:

 $S = \{Berlin, Dresden, K\"{o}ln, Paris, Ram, Neapel, Oslo\}$

 $L = \{D(eutschland), F(rankreich), B(elgien), I(talien), P(olen), N(orwegen)\}$

Die Relation $T \subseteq S \times L$ soll darstellen, welche Stadt in welchem Land liegt.

Man gebe *T* elementweise an und stelle die Relation graphisch dar!

Welche der Eigenschaften aus Def. 7 treffen zu?

- $T = \{(Berlin, D), (Dresden, D), (K\"{o}ln, D), (Paris, F), (Rom, I), (Neapel, I), (Oslo, N)\}$
- graphische Darstellung:

 $(x,y) \in T: x \to y$ (gerichteter Graph)

• Eigenschaften:

linksvollständig

nicht rechtsvollständig

rechtseindeutig

nicht linkseindeutig

(solche Relationen nennt man auch "Funktionen", eindeutige Zuordnung [von Stadt \rightarrow Land])

Def. 8: (Eigenschaften binärer Relationen in $M \times M$)

Eine Relation $T \subseteq M \times M$ (Sprechweise auch "Relation auf M") heißt...

- a) *reflexiv*, wenn $(x, x) \in T$ für alle $x \in M$,
- b) symmetrisch, wenn $(x,y) \in T \Rightarrow (y,x) \in T$,
- c) antisymmetrisch, wenn $((x,y) \in T \land (y,x) \in T) \Rightarrow x = y$,
- d) asymmetrisch, wenn $(x,y) \in T \Rightarrow (y,x) \notin T$,
- e) transitiv, wenn $((x,y) \in T \land (y,z) \in T) \Rightarrow (x,z) \in T$
- ... jeweils für *alle* $x, y, z \in M$ gilt.

Bsp. 4:

Welche Eigenschaften aus Def. 8 besitzen folgende Relationen? Es sei P eine Menge von Personen.

- a) Eine Person $x \in P$ sei jünger als $y \in P$, wenn ihr Geburtstag später als der von y ist. for all for all for all for a graph of the person <math>for all for all fo
- b) Zwei Personon $x \in P$ und $y \in P$ heißen gleichaltrig, wenn x und y das gleiche Geburtsjahr besitzen.

 $\curvearrowright G \subseteq P \times P$ mit $G = \{(x, y) | x \text{ und } y \text{ sind gleichaltrig} \}.$

G ist offensichtlich reflexiv, symmetrisch und transitiv.

Derartige Relationen nennt man Äquivalenzrelationen, vgl. Abschnitt 2.3.3. Sie teilen P in disjunkte sogenannte Äquivalenzklassen auf (x äquivalent y heißt, x und y besitzen gleiches Geburtsjahr).

Graphische Darstellung von Relationen T in $M \times M$ (auf M). Möglichkeiten:

1.) Elemente von M nur einmal darstellen, Pfeildarstellun wie bisher, bei $(x,x)\in T$ eine Schlinge zeichnen.

(gerichteter Graph)

(Koordinatensystem)

Diese Variante ist auch bei Relationen in $M_1 \times M_2$ möglich.

Diskussion:

1.) Die Eigenschaften Reflexivität, Symmetrie und Transitivität lassen sich beim gerichteten Graphen leicht nachprüfen.

Reflexivität: Bei jedem Element ist eine Schlinge.

Symmetrie: Jeder Pfeil $x \to y \ (y \ne x)$ besitzt "umkehrpfeil" $(x \leftarrow y)$.

Antisymmetrie: Schlinge möglich, aber keine Umkehrpfeile.

Asymmetrie: weder Schlingen noch Umkehrpfeile.

Transitivität: Falls ein Pfeil $x \to y$ eine "Fortsetzung" $y \to z$ besitzt, so verläuft auch ein Pfeil von x nach z.

2.) Auch die Darsteellung von Koordinatensystem lassen sich die Eigenschaften Reflexivität und Symmetrie sofort überprüfen.

Reflexivität: Die Diagonale $I_M=\{(x,x)|x\in M\}$ gehört zu T (I_M heißt auch *Identitätsrelation*, diese Relation ist eine spezielle Funktion, identische Funktion $y=f(x))=x, x\in M$ später als Funktion auch mit i_M bezeichnet)

Symmetrie: T ist spiegelsymmetrisch bzgl. I_M

ist reflexiv aber nicht symmetrisch

ist symmetrisch aber nicht reflexiv

Alternative Schreibweisen: Es sei $T\subseteq M_1\times M_2$ eine binäre Relation. Anstelle $[(x,y)\in T]$ kann man schreiben:

- xTy (x steht in Relation T zu y), für viele wichtige Relationen gibt es spezielle Zeichen, z.B. x < y, x = y, g||h oder $A \subseteq B$ usw.
- Aussageformen (vgl. Prädikatenlogik): T(x,y) (auch mit mehreren Variablen möglich)

2.3.2. Operationen auf Relationen

Da Relationen spezielle Mengen sind, gibt es Operationen wie \cup , cap usw. auch hier. Weitere für Relationen wichtige Operationen in den folgenden Definitionen:

Def. 9:

Es sein T eine Relation in $U \times V$.

Die Menge $proj_1(T) = \{x \in U | \exists y \in V, (x,y) \in T\}$ heißt *Projektion* von T auf u (1. Faktor des kartesischen Produkts).

Analog ist $proj_2(T) = \{y \in V | \exists x \in U, (x,y) \in T\}$ die Projektion auf den 2. Faktor.

Veranschaulichung:

Bsp. 5:

Es sei $S=\{1,2,3,4,5\}$ eine Menge von Studenten und $F=\{a,b,c,d,e,f\}$ eine Menge von Fächern. Es sei $P\subseteq S\times F$ die Relation, die angibt, welcher Student in welchem Fach eine Nach- bzw. Wiederholungsprüfung im bevorstehenden Prüfungsabschnitt hat.

Die Studenten 1 und 3 haben keine Prüfung ausstehen, Student 2 muss die Prüfungen in a. d und e, 4 in b und f sowie 5 in b, d, e und f ablegen.

- a) Man gebe die Relation *P* elementweise an und stelle sie in einem Koordinatensystem dar.
- b) Man ermittle die Projektionen P auf S bzw. F und kennzeichne diese in der Skizze.

Lösung:

a)
$$P = \{(2, a), (2, d), (2, e), (4, b), (4, f), (5, b), (5, d), (5, e), (5, f)\}$$

b)
$$proj_1(P) = \{2,4,5\} \subseteq S$$
 (= Menge der Studenten, die wenigsten eine N/W-Prüfung haben.) $proj_2(P) = \{a,b,d,e,f\} \subseteq F$ (= Menge der Fächer, in denen Student(en) eine N/W-Prüfung haben.)

Def. 10:

Es sei $T \subseteq M_1 \times M_2$ eine binäre Relation.

Die Relation $T^{-1} := \{(y, x) | (x, y) \in T\} \subseteq M_2 \times M_1$ heißt *inverse Relation* (bzw. kurz: *Inverse*) von T.

Bsp. 6: (vgl. Bsp. 5)
$$P^{-1} = \{(a,2), (b,4), (b,5), (d,2), (d,5), (e,2), (e,5), (f,4), (f,5)\}$$
 Besonders wichtig ist die folgende Operation:

Def. 11:

Es seien $T_1 \subseteq M_1 \times M_2$ und $T_2 \subseteq M_2 \times M_3$ binäre Relationen.

Als *Komposition* (oder auch *Verkettung*) $T_1 \circ T_2$ (" T_2 nach T_1 ") wird die Relation $T_1 \circ T_2 := \{(x,z) \in M_1 \times M_3 | \exists y \in M_2 \quad (x,y) \in T_1 \wedge (y,z) \in T_2 \}$ in $M_1 \times M_3$ bezeichnet.

Bsp. 7:

Es sei M die Menge aller Menschen, die zu einem bestimmten Zeitpunkt leben. Weiter seien $S=\{(x,y)|x$ ist Mutter von $y\}\subseteq M\times M$ und $T=\{(y,z)|y$ ist verheiratet mit $z\}\subseteq M\times M$.

Dann bedeutet $(x, z) \in S \circ T$: Es gibt ein y, sodass x die Mutter von y ist $((x, y) \in S)$ und y mit z verheiratet $((y, z) \in T)$ ist, d.h. "x ist die Schwiegermutter von z".

Diskussion: Wichtige Eigenschaft der Komposition o:

• Die Operation \circ ist *assoziativ*, d.h. seien $T_1 \subseteq A \times B$, $T_2 \subseteq B \times C$ und $T_3 \subseteq C \times D$, dann gilt: $(\underbrace{T_1 \circ T_2}_{\subseteq A \times C}) \circ T_3 = \underbrace{T_1}_{\subseteq A \times B} \circ (\underbrace{T_2 \circ T_3}_{\subseteq R \times D}) = T_1 \circ T_2 \circ T_3 \subseteq A \times D$

Def. 12:

Es sei T eine Relation in $M \times M$ (auf M).

Als transitive Hülle T^+ von T bezeichnet man die kleinste Relation, die T enthält und transitiv ist.

Satz 1: Es gilt:
$$T^+ = T \cup (T \circ T) \cup (T \circ T \circ T) \cup \dots$$

Damit ist
$$T^+ = \bigcup_{j=1}^{\infty} T^j$$

Beweis:

- 1.) T^+ ist transitiv, denn sei $(x,y) \in T^+$ und $(y,z) \in T^+$, dann existieren natürliche Zahlen $j_1,j_2 \ge 1$ $\mathsf{mit}\ (x,y) \in T^{j_1}\ \mathsf{und}\ (y,z) \in T^{j_2},$
 - d.h. y wird in j_1 Schritten von x aus erreicht und z in j_2 Schritten von y aus erreicht. Also wird z in $j_1 + j_2$ Schritten von x aus erreicht,

d.h.
$$(x,z) \in T^{j_1+j_2} \subseteq T^+$$

2.) Es sei $T \subseteq S$ für eine transitive Relation S.

 $\Rightarrow T \circ T \subseteq S \circ S \subset S$ und für beliebiges $j \ge 1$:

$$T^j\subseteq S^j_{\infty}\subseteq S$$
 und somit: $T^+=\bigcup_{j=1}^{\infty}T^j\subseteq S,$

d.h. T^+ ist tatsächlich die kleinste transitive Relation, die T enthält.

Diskussion:

1.) Analog zur transitiven Hülle einer Relation T in $M \times M$ (auf M) werden die reflexive Hülle bzw. die symmetrische Hülle von T als die jeweils kleinsten Relationen die T enthalten und reflexiv bzw. symmetrisch sind definiert.

Die Ermittlung gestaltet sich etwas "einfacher" als bei der transitiven Hülle:

Reflexive Hülle von $T: |T \cup I_M|$ (dabei ist $I_M = \{(x, x) | x \in M\}$ [Diagonale / Identitätsrelation])

Symmetrische Hülle von $T: |T \cup T^{-1}|$

2.) Von Bedeutung ist auch die *reflexiv-transitive* Hüllo ven T:

$$T^* = T^+ \cup I_M$$
 (dabei $T^+ \dots$ transitive Hülle von T)

Bsp. 8:

Gegeben sei die Menge $M = \{a, b, c, d, e, f\}$ sowie die Relation $T = \{(a, b), (b, c), (c, e), (b, d), (d, e), (e, f)\}.$

- a) Transitive Hülle: Zur Ermittlung der Komposition $S \circ T$: Für jedes Element $(x,y) \in S$ alle Fortsetzungen $(y,z) \in T$ suchen (x,z) als Element von $S \circ T$ notieren, falls es noch nicht vorkommt. Bspw.:
 - (a,b), Fortsetzungen wären (b,c), (b,d) Elemente (a,c) und (a,d) notieren.
 - (b,c), Fortsetzung $(c,e) \curvearrowright (b,e)$ notieren
 - USW.

$$\Rightarrow T\circ T=\{(a,c),(a,d),(b,e),(c,f),(d,f)\}=T^2$$

$$T^3=T\circ (T\circ T)=\{(a,e),(b,f)\} \text{ (ausgehend von } T\text{ in }T\circ T\text{ nach Fortsetzung suchen)}$$

$$T^4=T\circ T^3=\{(a,f)\}$$

$$\Rightarrow T^+ = T \cup \underbrace{(T \circ T)}_{\text{2 Schritte}} \cup \underbrace{(T \circ T \circ T)}_{\text{3 Schritte}} \cup \underbrace{(T \circ T \circ T \circ T)}_{\text{4 Schritte}} = T \cup T^2 \cup T^3 \cup T^4$$

(Formel bricht im endlichen Fall nach endlich vielen Schritten ab.)

b) Reflexive Hülle: $T \cup \{(a, a), (b, b), (c, c), (d, d), (e, e), (f, f)\}$

c) Symmetrische Hülle: $T \cup T^{-1} = T \cup \{(b, a), (c, b), (e, c), (d, b), (e, d), (f, e)\}$

Zur Überprüfung der Eigenschaften aus Def. 8 ist folgender Satz nützlich:

Satz 2:

Es sei $T \subseteq M \times M$ eine binäre Relation. Dann gilt:

- a) T ist reflexiv $\Leftrightarrow I_M \subseteq T$ ($I_M \dots$ Identitätsrelation)
- b) T ist symmetrisch $\Leftrightarrow T^{-1} \subseteq T \quad [\Leftrightarrow T^{-1} = T]$
- c) T ist antisymmetrisch $\Leftrightarrow T \cap T^{-1} \subseteq I_M$
- d) T ist asymmetrisch $\Leftrightarrow T \cap T^{-1} = \emptyset$
- e) T ist transitiv $\Leftrightarrow T \circ T \subseteq T$

Disskussion:

- 1.) Beweise ergeben sich unmittelbar aus Def. 8, vgl. Übungs-Aufgabe 1.24 (für b) und e))
- 2.) Aus c) und d) ergibt sich z.B.

T asymmetrisch $\Rightarrow T$ antisymmetrisch (da \emptyset Teilmenge jeder Menge ist)

2.3.3. Äquivalenzrelationen

Def. 13:

Eine Relation $T\subseteq M\times M$ heißt Äquivalenzrelation auf M, wenn sie reflexiv, symmetrisch und transitiv ist

Diskussion:

- 1.) Durch eine Äuivalenzrelation wird M vollständig in paarweise elementfremde (disjunkte) Äquivalenklassen zerlegt. Die Menge aller Äquivalenzklassen von M bezüglich T heißt Quotientenmenge M/T.
 - Aufgrund der 3. Eigenschaft aus Def. 13 erhält eine Äquivalenzklasse alle Elemente, die untereinander erreichbar sind (=äquivalent) und nur diese.
- 2.) Äquivalenzklassen enthalten alle Elemente, die bezüglich einer bestimmten Eigenschaft nicht unterscheidbar sind, z.B. Bsp. 4 mit M=P (Menge von Personen), Äquivalenzrelation $G\subseteq P\times P$ mit $G=\{(x,y)|x$ und y haben gleiches Geburtsjahr $\}$, Äquivalenzklassen sind die Jahrgänge.
- 3.) Anstelle der Schreibweise $(x,y) \in T$, xTy oder T(x,y) verwendet man bei beliebigen Äquivalenzrelationen auf $x \sim y$. Bei vielen speziellen Äquivalenzrelationen spezielle Symbole, sie folgendes Beispiel.

Bsp. 9:

a) M sei eine beliebige Menge $T_1=I_M=\{(x,y)\in M\times M|x=y\}$ (Identitätsrelation) ist eine Äquivalenzrelation.

Äguivalent heißt hier gleich!

Äquivalenzklassen sind sämtliche einelementige Teilmengen $\{x\}, x \in M$. T_1 heißt die feinste Zerlegung von M die möglich ist. Die größte Zerlegung liefert die Relation $T_2 = M \times M$, die trivialer Weise ebenfalls eine Äquivalenzrelation ist mit nur einer Äquivalenzklasse M. Für die Anwendungen sind natürlich Relationen wichtig, die eine feinere Zerlegung liefern.

- b) $M = \mathbb{Z}$ (ganze Zahlen), $m \in \mathbb{N}^*$, $T \subseteq \mathbb{Z} \times \mathbb{Z}$ mit
 - $(x,y) \in T := x$ und y lassen bei Division durch m den gleichen Rest"
 - Bezeichunung $x \equiv y \pmod{m} \dots x$ kongruent $y \pmod{m}$, z.B. $29 \equiv 8 \pmod{7}$
 - T ist eine Äquivalenzrelation auf \mathbb{Z} , Äquivalenzklassen: Restklassen modulo m (siehe Übungs-Aufgabe 1.19)
- c) $M \dots$ Menge aller Geraden einer Ebene, $T \subseteq M \times M$ mit
 - $(x,y) \in T :\equiv x$ ist zu y parallel", Bezeichnung: $x||y \sim T$ ist Äquivalenzrelation auf M (siehe Übungs-Aufgabe 1.21.)

2.3.4. Ordnungsrelationen

Def. 14:

- a) Eine Relation $T \subseteq M \times M$ heißt Ordnungsrelation auf M, wenn sie reflexiv, antisymmetrisch und transitiv ist.
- b) Eine Ordnungsrelation heißt *vollstandig* oder *linear*, wenn für alle $x,y\in M$ gilt $(x,y)\in T\vee (y,x)\in T$.

Def. 15:

Eine Relation $T\subseteq M\times M$ heißt *strikte Ordnungsrelation* auf M, wenn sie asymmetrisch und transitiv ist. Eine strikte Ordnungsrelation heißt vollständig, wenn für alle $x,y\in M$ mit $x\neg=y$ gilt $(x,y)\in T\vee (y,x)\in T$.

Bsp. 10:

- a) $M = \mathbb{R}$, $T \subseteq \mathbb{R} \times \mathbb{R}$ mit $(x, y) \in T :\equiv x \leq y$ ist eine vollständige Ordnungsrelation auf \mathbb{R} .
- b) Die Relation "<" ist eine (vollständige) strikte Ordnungsrelation.
- c) E sei eiine Menge, M sei die *Menge aller Teilmengen von* E, d.h. M ist die Potenzmenge $M=\mathcal{P}(E)$ von E. $T\subseteq M\times M$ mit $A\cap E$ ist eine Ordnungsrelation auf $A\cap E$ (Inklusion).

Diskussion:

- 1.) In der Literatur wird manchmal die Relation im Sinne von Def. 14 als Halbordnung und nur eine vollständige als Ordnung als Ordnungsrelation bezeichnet.
- 2.) Zu jeder Ordnung T_1 (auf M) gehört eine strikte Ordnung T_2 und umgekehrt: $T_2 = T_1 \setminus I_M$ bzw. $T_1 = T_2 \cup I_M$ (T_1 eist die reflexive Hülle von T_2), z.B. (\leq , <) oder (\subseteq , \subset).
- 3.) Die Symbole ≤ (bzw. <) können anstelle der Paarschreibweise auch bei beliebigen Ordnungen verwendet werden, falls keine anderen Zeichen dafür üblich sind.

Def. 16:

T sei eine Ordnungsrelation auf eine Menge M. Weiter sei A eine Teilmenge von M.

- a) Ein Element $a \in M$ heißt obere Schranke von A, wenn gilt: $\forall x \in A \quad x \leq a \quad (x \leq a \text{ d.h. } (x,a) \in T, \text{ vgl. 3.})$ der vorhergehenden Diskussion)
- b) Es sei B die Menge der oberen Schranken von A, diese sei nicht leer. Falls es eine *kleinste obere Schranke* s von A gibt, d.h. $\exists s \in B \quad \forall b \in B \quad s \leq b$, so heißt s das *Supremum von* A, $s = \sup A$
- c) Gilt $s \in A$, so heißt s das Maximum von A: s = max A = sup A
- d) Ein Element $m \in A$ heißt maximal, wenn es kein größeres Element in A gibt, d.h. $\forall x \in A \ (m \le x \Rightarrow m = x)$

Diskussion:

- 1.) Die Begriffe aus Def. 16 lassen sich auf strikte Ordnungen S übertragen, indem anstelle von S die reflexive Hülle $T=S\cup I_M$ verwendet wird.
- 2.) Bei Ordnungsrelationen T (auch für strikte Ordnungen) auf endlichen Mengen M kann ein vereinfachter Graph, das sogenannte HASSE-Diagramm, betrachtet werden.

a \longrightarrow b $(a \neg = b)$ bedeutet $(a, b) \in T$ und es gibt kein Zwischenglied $c \neg = a$ und $c \neg = b$ mit $(a, c) \in T \land (c, b) \in T$ (a ist unmittelbarer Vorgänger von b bzw. b Nachfolger von a).

Diesem Diagramm entspricht eine Teilrelation $U \subseteq T$, deren transitiv-reflexive Hülle (bzw. transitive Hülle bei strikten Ordnungen) T ist.

3.) Veranschaulichung von Def. 16 mit einem HASSE-Diagramm einer nicht vollständingen Ordnung (nicht linear)

z.B. Arbeitsgänge, die in einer bestimmten Reihenfolge durchgeführt werden müssen, A bspw. Teilarbeiten einer Zweigfirma

obere Schranken: e, f, g

sup A = e

Maximum von A: existiert nicht, da $e \neg \in A$

maximale Elemente von A: c, d

4.) Bei nichtlinearen Ordnungen müssene obere Schranken, Supremum und Maximum nicht existieren, es kann mehrere maximale Elemente $A\subseteq M$ geben. Bei linearen Ordungen auf *endlichen* Mengen gibt es genau ein maximales Element = $\max A = \max A$

max B

5.) Analog zur Def. 16 werden die Begriffe untere Schranken a von A ($\forall x \in A \ a \leq x$), größte untere Schranke (Infinum) s von A ($B \neg = \emptyset$... Menge der unteren Schranken, $\exists s \in B \ \forall a \in B \forall a \leq s$), Minimum von A ($min\ A = inf\ A = s$ falls $s \in A$) und minimales Element m von A ($\forall x \in A \ (x \leq m \Rightarrow x = m)$) definiert.

Bsp. 11:

Eine bestimmte Arbeitsaufgabe besteht aus mehreren Arbeitsgängen.

Es sei $A=\{1,2,3,4,5,6\}$ die Menge der Arbeitsgänge. Die Arbeitsgänge $\{2,3,5\}=:S$ werden von einer Subfirma durchgeführt. Für die Reihenfolge gilt: 1 muss vor 2, 2 vor 3 und 5, 3 vor 4 sowie 5 vor 6 durchgeführt werden.

- a) Man beschreibe diese Forderungen durch eine Relation $U \subseteq A \times A$ und stelle sie graphisch dar (HASSE-Diagramm).
- b) Man ermittle die transitive Hülle U^+ von U.
- c) Man gebe (falls vorhanden) obere Schranken, Supremum, Maximum, max. Elemente sowie untere Schranken, Infinum, Minimum, min. Elemente von S an.

Lösung:

Mathematik I

b)
$$U \circ U = \{(1,3), (1,5), (2,4), (2,6)\}$$

 $U \circ (U \circ U) = \{(1,4), (1,6)\}$
 $U^4 = \emptyset$

2.3.5. Funktionen

Def. 17:

Eine Relation $f \subseteq x \times y$ heißt Funktion (Abbildung) von X in Y, wenn sie linksvollständig und rechtseindeutig ist.

Diskussion:

 Gemäß Def. 7 a+c aus Kapitel 2.3.1 bedeutet linksvollständig und rechtseindeutig, dass zu jedem $x \in X$ genau ein $y \in Y$ mit $(x, y) \in f$ existiert, also eindeutige Zuordnung:

$$x \longmapsto y =: f(x)$$

Schreibweise: $f: X \to Y$ (manchmal $f|X \to Y$

y = f(x) heißt auch *Bild* von x, x *ein* Urbild von y (muss nicht eindeutig sein).

• X = Db(f)... Definitionsbereich, $Wb(f) = \{y \in Y | \exists x \in x \ (x,y) \in f\} \subseteq Y \dots$ Wertebereich

$$f: \mathbb{R} \to \{0,1\}$$

Def. 18:

- a) Eine Abbildung f heißt surjektiv (Auch Abbildung auf Y),
- b) Eine Funktion f heißt injektiv, wenn zu jedem $y \in Wb(f)$ genau ein $x \in Db(f)$ existiert mit $(x,y) \in f$:

$$y \longmapsto x =: f^{-1}(y)$$

$$\in Wb(f) \qquad \in Db(f)$$

("f oben -1")

Die dadurch erklärte Abbildung $f^{-1}:Wb(f)\to Db(f)$ heißt *Umkehrfunktion* von f, vgl. auch Kap 1.4.

- c) Eine injektive *und* surjektive Abb. von *X* auf *Y* heißt *bijektiv*.
- d) Gebräuchlich sind auch die Begriffe Surjektion, Injektion und Bijektion!

Bsp. 12:

Gegeben sind die Mengen $X = \{a, b, c\}$ und $Y = \{1, 2, 3, 4\}$ sowie folgende Relation in $X \times Y$:

a) T_1 : (X) (Y)

 T_1 ist eine Funktion $f(=T_1): f: X \to Y$ (1) diese ist injektiv, $Db(f) = X = \{a,b,c\}$, $Wb(f) = \{1,2,4\} =: W, f: X \to W$ (2) ist surjektiv, also sogar bijektiv. Als Relation sind (1) und (2) nicht zu unterscheiden, aber als Funktion.

b) T_2 : (X) (Y)

 T_2 ist keine Funktion, nicht linksvollständig. Betrachtet man $D=\{a,b\}\subset X$, so ist durch T_2 eine Funktion $f:D\to Y$ beschrieben, die Funktion ist injektiv und kann mit $W:=f(D)=\{1,3\}$ zu einer bijektiven Abbildung $f:D\to W$ umgewandelt werden.

c) T_3 : (X) (Y)

 T_3 ist keine Funktion, da nicht rechtseindeutig.

Bsp. 13:

a) $f:[0,\infty)\to\mathbb{R}$ mit " $x\to y=f(x)=\sqrt{x}$ ist eine Funktion einer reelen Veränderlichen (injektiv).

b) $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $(x,y) \longmapsto x^2 + y^2 = f(x,y) =: z$ Funktion zweier reeller Veränderlicher.

(Paraboloid)

$$Db(f) = \mathbb{R} \times \mathbb{R}$$
 (x-y-Ebene) $Wb(f) = [, \infty)$

c) $f:\mathbb{N}\to\mathbb{R}$ mit $n\longmapsto f(n)=\frac{n}{n+1}$ ist eine (reelle) Zahlenfolge. $f(0)=1, f(1)=\frac{1}{2}, f(2)=\frac{2}{3}, \dots$ Bezeichnung meist mit Index: $a_n=f(n)\curvearrowright ZF(a_n)$ $n\in\mathbb{N}$

Def. 19:

Es seien $g:=X\to U$ mit $x\longmapsto u=g(x)$ und $f:U\to Y$ mit $u\longmapsto y=f(u)$ zwei Abbildungen. Dann stellt man die Zuordnung $x\longmapsto y=f(g(x))$ eine Abbildung von X in Y dar, eine sogenannte mittelbare Funktion (Komposition / Verkettung). Bezeichnung: $g\circ f:X\to Y$ mit $y=(g\circ f)(x)=f(g(x))$

Diskussion:

 $x \longmapsto u = g(x) \quad u \longmapsto f(u) = f(g(x))$

Paarschreibweise: $(x, u) \in q$ $(u, y) \in f \curvearrowright (x, y) \in q \circ f$

- 2.) g wird zuerst angewendet, dann f. Wie bei beliebigen Relationen die die Schreibweise $g \circ f$
- 3.) In der Literatur findet man oft die Schreibweise $f \circ g$ angelehnt an die Schreibweise f(g(x)). Die Reihenfolge der Berechnung ast aber von innen nach außen, erst innere Funktion g, dann die äußere f.

Satz 3:

Es sei $f:X\to Y$ eine *Bijektion*, d.h. es existiert die Umkehrfunktion $f^{-1}:Y\to X$, weiter sei i_A für eine beliebige Menge A die identische Abbildung (Identitätsrelation): $i_A:A\to A$ mit $i_A(x)=x$ für alle $x\in A$.

Es gilt dann:

$$f\circ f^{-1} = id_X, \text{ d.h. } (f\circ f^{-1})(x) = f^{-1}(f(x)) = x(\forall x\in X) \text{ und } f^{-1}\circ f = id_Y, \text{ d.h. } (f^{-1}\circ f)(y)) = f(f^{-1}(y)) = y(\forall y\in Y)$$

(Funktion und Umkehrfunktion nacheinander angewandt heben sich auf).

Satz 4:

Es seien $g=X \to U$ und $h:U \to Y$ zwei Bijektionen. Dann ist die Komposition $f:=g\circ h:X \to Y$ ebenfalls eine Bijektion und es gilt:

$$f^{-1} = (g \circ h)^{-1} = h^{-1} \circ g^{-1}$$