

Power Conversion Circuits and Diodes

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Power Conversion Circuits (PCC)

DC-to-DC UP converter

Power efficiency of converter important, so use lots of devices:

MOSFET switches, clock circuits, inductors, capacitors, op amps, diodes

Reading: Chapter 16 and 4.4 of A & L.

First, let's look at the diode

Can use this exponential model with analysis methods learned earlier

■ analytical ■ graphical ■ incremental

(Our fake expodweeb was modeled after this device!)

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Another analysis method: piecewise-linear analysis

P-L diode models:

Ideal diode model

Another analysis method: piecewise-linear analysis

"Practical" diode model ideal with offset

Another analysis method: piecewise-linear analysis

Piecewise-linear analysis method

- Replace nonlinear characteristic with linear segments.
- Perform linear analysis within each segment.

Example

(We will build up towards an AC-to-DC converter)

 v_I is a sine wave

Example

"Short segment":

"Open segment":

Example

Now consider — a half-wave rectifier

A half-wave rectifier

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

The circuit has 3 states:

- I. S is on, diode is off i increases linearly
- II. S turns off, diode turns on C charges up, v_O increases
- III. S is off, diode turns off C holds v_O (discharges into load)

More detailed analysis

I. Assume i(0) = 0, $v_O(0) > 0$ S on at t = 0, diode off

$$i(T) = \frac{V_I T}{L}$$

$$\vdots$$

$$slope = \frac{V_I}{L}$$

$$i \text{ is a ramp}$$

$$t$$

$$\Delta E = energy \ stored \ at \ t = T : \frac{1}{2} Li(T)^2$$

$$\Delta E = \frac{{V_I}^2 T^2}{2L}$$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

II. S turns off at t = T diode turns on (ignore diode voltage drop)

Diode turns off at T' when i tries to go negative.

II. S turns off at t = T, diode turns on Let's look at the voltage profile

Diode turns off at T' when I tries to go negative.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

II. S turns off at t = T, diode turns on Let's look at the voltage profile

Diode turns off at T' when I tries to go negative.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

III. S is off, diode turns off

C holds v_O after T' i is zero

III. S is off, diode turns off

C holds v_O after T' i is zero

until S turns ON at T_P , and cycle repeats I II III I III ...

Thus, v_O increases each cycle, if there is no load.

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

What is v_O after n cycles $\rightarrow v_O(n)$?

Use energy argument ... (KVL tedious!) Each cycle deposits ΔE in capacitor.

$$\Delta E = \frac{1}{2} \frac{{V_I}^2 T^2}{L}$$

$$\Delta E = \frac{1}{2} L i (t = T)^2$$

$$= \frac{1}{2} L \left(\frac{V_I T}{L}\right)^2$$

After n cycles, energy on capacitor

$$n\Delta E = \frac{nV_I^2 T^2}{2L}$$

This energy must equal $\frac{1}{2}Cv_O(n)^2$

so,
$$\frac{1}{2}Cv_O^2(n) = \frac{nV_I^2T^2}{2L}$$

$$v_O(n) = \sqrt{\frac{nV_I^2 T^2}{LC}} \qquad \left\{ \omega_O = \frac{1}{\sqrt{LC}} \right\}$$

$$v_O(n) = V_I T \omega_O \sqrt{n}$$

How to maintain v_0 at a given value?

Another example of negative feedback:

if
$$(v_O - v_{ref}) \uparrow$$
 then $T \downarrow$
if $(v_O - v_{ref}) \downarrow$ then $T \uparrow$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].