Analisi II

Appunti delle Lezioni di Analisi II $Anno\ Accademico:\ 2024/25$

Giacomo Sturm

Dipartimento di Ingegneria Industriale, Elettronica e Meccanica Università degli Studi "Roma Tre"

Sorgente del file LATEXdisponibile al seguente link: https://github.com/00Darxk/Analisi-II/

Indice

1	Serie Numerica			
	1.1	Serie 7	Гelescopica	2
	1.2	Serie (Geometrica	3
	1.3	Criteri	i di Convergenza	5
		1.3.1	Criterio del Confronto	6
		1.3.2	Criterio della Radice	7
		1.3.3	Criterio del Rapporto	8
		1.3.4	Criterio dell'Integrale	9
		1.3.5	Criterio di Condensazione	10
		1.3.6	Criterio del Confronto Asintotico	12
2	Fun	zioni		17

1 Serie Numerica

Una serie numerica $\{a_n\}$ è una particolare successione numerica; è una particolare funzione che ha come dominio l'insieme dei numeri naturali \mathbb{N} e come codominio un sottoinsieme \mathbb{C} dell'asse dei numeri reali \mathbb{R} .

$$\{a_n\}: \mathbb{N} \to \mathbb{C} \in \mathbb{R}$$
 (1.0.1)

Quindi è di interesse studiare il comportamento della serie numerica quando la variabile indipendente n tende all'infinito. Data una successione numerica, si interessa quindi:

$$\lim_{n \to \infty} a_n \tag{1.0.2}$$

Si generalizza nel limite di una funzione quando si sostituisce alla variabile n una variabile indipendente reale $x \in \mathbb{R}$.

Una successione può convergere ad un numero reale, può divergere positivamente o negativamente, in questi due casi è regolare, quindi ha un limite definito o indefinito. Altrimenti è possibile che il limite non esiste, quindi la sequenza non si stabilisce su nessun numero reale ed oscilla per n tendente ad ∞ .

$$\lim_{n \to \infty} a_n = \begin{cases} i \in \mathbb{R} \\ \pm \infty \\ \frac{\pi}{2} \end{cases}$$
 (1.0.3)

Si costruisce una serie numerica $\{s_n\}$, partendo da una sequenza nota $\{a_k\}$, si può costruire definendo per ogni valore n il valore di s_n tale sia pari alla somma dei primi a_n elementi della sequenza:

$$\forall n \in \mathbb{N} : s_n := a_1 + \dots + a_n \tag{1.0.4}$$

 s_n viene chiamata somma parziale della serie $\{s_n\}$ e viene definita con il seguente simbolo:

$$s_n := \sum_{k=1}^{\infty} a_k \tag{1.0.5}$$

La serie numerica è la successione delle somme parziali che costruisce sulla successione $\{a_k\}$.

Una serie numerica si dice convergente se il limite della successione delle somme parziali, costruite a partire dalla successione a_k , è pari ad un numero s:

$$\{s_n\}$$
: converge se $\lim_{n\to\infty} s_n = s \in \mathbb{R}$ (1.0.6)

Si dice divergente se il limite della successione delle somme parziali tende ad infinito:

$$\{s_n\}$$
: diverge se $\lim_{n\to\infty} s_n = \pm \infty$ (1.0.7)

Se converge o diverge la serie numerica si dice regolare, se invece studiando il comportamento delle somme parziali per $n \to \infty$, il limite della somma non è definito, quindi la serie si dice irregolare:

$$\{s_n\}$$
: irregolare se $\lim_{n\to\infty} s_n = \#$ (1.0.8)

Studiare il comportamento della serie vuol dire studiare il comportamento delle somme parziali. La somma parziali si avrà sempre in forma aperta, se fosse possibile esprimere in forma chiusa la forma parziale, allora il limite è di facile calcolo.

Considerando il seguente limite:

$$\lim_{n\to\infty} (1+2+\cdots+n)$$

Esiste una funzione per esprimere in forma chiusa questa funzione, dimostrabile per induzione:

$$\lim_{n\to\infty}\left(\frac{n(n+1)}{2}\right)=+\infty$$

Quindi è facile determinare che si tratta di una serie divergente ad infinito positivo. Questo passaggio non d'ora in avanti non sarà più possibile, basterà stabilire il carattere di una serie, senza sapere il valore a cui converga. Solo nel caso della serie telescopica e della serie geometrica sarà possibile determinare il valore della convergenza.

1.1 Serie Telescopica

Il caso più rappresentativo di una serie telescopica è la seguente:

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} \tag{1.1.1}$$

Analizzando la somma parziale s_n fino ad un certo valore $n \in \mathbb{N}$ si ha:

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{2} + \dots + \frac{1}{n(n+1)}$$

Utilizzando la tecnica dei fratti semplici si può riscrivere la somma parziale come:

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1} \right)$$

In questo modo calcolando la somma parziale si ottiene:

$$s_n = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1} \right)$$
$$\left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n} \right) + \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

Si può notare come l'addendo 1/2 si cancella con l'addendo della differenza successiva, così con 1/3, così per ogni valore della sommatoria, permettendo quindi di scrivere la somma parziale s_n in forma chiusa esprimendo solamente il primo addendo e l'ultimo addendo:

$$\left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$$

Considerando il limite di questa serie si ha:

$$\lim_{n\to\infty}\left(1-\frac{1}{n+1}\right)=1$$

In generale una serie telescopica, ha i suoi termini a_k definiti come la differenza tra il termine k + 1-esimo ed il termine k-esimo di una particolare successione $\{A_k\}$:

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (A_{k+1} - A_k)$$

1.2 Serie Geometrica

La serie geometrica è esprimibile come:

$$\sum_{k=0}^{\infty} x^k$$

Come altre serie dipende da un parametro reale $x \in \mathbb{R}$, questo si chiama ragione della serie.

Si costruisce la somma parziale della serie:

$$s_n = \sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n$$

Si vuole esprimere questa somma in forma chiusa. Per x = 0, per ogni valore di n, la somma vale sempre 1, poiché:

$$\forall n \in \mathbb{N} : s_n = 0^0 + 0^1 + 0^2 + \dots + 0^n = 1$$

Un altro caso analogo con x = 1, si ha la seguente somma parziale:

$$\forall n \in \mathbb{N} : s_n = 1 + 1 + 1 + \dots + 1 = 1 \cdot n$$

Questa serie quindi converge per x = 0, diverge per x = 1, mentre per altri valori reali non è ancora noto il suo comportamento. Si considera ora il caso generale con una ragione diversa da zero e da uno $\forall x \in \mathbb{R} \setminus \{0,1\}$. Si considera noto il valore s_n :

$$s_n = \sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n$$

Si moltiplica la somma parziale per la ragione e si sottrae alla somma parziale:

$$xs_n = x \cdot \sum_{k=0}^n x^k = \sum_{k=1}^n x^k$$
$$(1-x)s_n = 1 + x + x^2 + \dots + x^n - (x + x^2 + x^3 + \dots + x^n + x^{n+1}) = 1 - x^{n+1}$$

Della prima somma sopravvive solamente il primo addendo 1, e della seconda l'ultimo addendo x^{n+1} , tutti gli altri si cancellano a vicenda, quindi per ottenere il valore della somma parziale si divide il primo ed il secondo membro per il fattore 1-x:

$$s_n = \frac{1 - x^{n+1}}{1 - x} \tag{1.2.1}$$

Si provvede ora a calcolare il limite di questa somma parziale, dividendolo per la proprietà di linearità, supponendo che questi due limiti risultanti non corrispondono ad una forma indeterminata:

$$\lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \lim_{n \to \infty} \frac{1}{1 - x} - \lim_{n \to \infty} \frac{x^{n+1}}{1 - x}$$

Il primo fattore non dipende da n, per il limite corrisponde a sé stesso, in seguito si mette in evidenza il fattore 1-x ottenendo:

$$\frac{1}{1-x} \left(1 - \lim_{n \to \infty} x^{n+1} \right)$$

Il comportamento di questo limite dipende dalla ragione:

$$\lim_{n \to \infty} x^{n+1} = \begin{cases} 0 & -1 < x < 1 \\ +\infty & x > 1 \\ \nexists & x \le -1 \end{cases}$$

Per |x| < 1 la funzione è decrescente, e tende a zero, mentre per x > 1, la funzione è esponenziale e quindi tende ad infinito. Invece per x < -1 si considera il limite, mettendo in evidenza il segno negativo:

$$\lim_{n\to\infty}(-|x|)^{n+1}=\lim_{n\to\infty}\left[(-1)^{n+1}\cdot|x|^{n+1}\right]$$

Il secondo fattore diverge, mentre il primo fattore oscilla di segno in base alla parità di n, per cui questa funzione oscilla di ampiezza sempre maggiore, per cui è irregolare. Per x = -1 il secondo fattore vale uno, mentre il primo fattore si considera comunque, per cui continua ad oscillare alla stessa ampiezza, quindi rappresenta allo stesso modo un comportamento irregolare.

Noto il comportamento di questo limite allora il valore della serie geometrica in base alla ragione è dato da:

$$\sum_{k=0}^{\infty} = \begin{cases} \frac{1}{1-x} & -1 < x < 1 \\ +\infty & x \ge 1 \\ \nexists & x \le -1 \end{cases}$$

Questa serie ha un addendo in più poiché parte da k=0, per cui esprimendola come una serie partendo da k=1:

$$\sum_{k=1}^{\infty} = \sum_{k=0}^{\infty} -1$$

Il valore di questa successione quindi si comporta analogamente al precedente, considerando l'addendo in più:

$$\sum_{k=1}^{\infty} = \begin{cases} \frac{1}{1-x} - 1 & -1 < x < 1 \\ +\infty & x \ge 1 \\ \frac{\pi}{2} & x \le -1 \end{cases}$$

1.3 Criteri di Convergenza

Esistono vari criteri per determinare la convergenza di una serie numerica.

Il primo criterio definisce una condizione necessaria per la convergenza di una serie geometrica. Si considera per ipotesi che una data serie numerica converge, equivale a dire che la serie delle somme parziali converge:

$$\sum_{k=1}^{\infty} a_k \to s_n = \sum_{k=1}^{n} a_k$$
$$\lim_{n \to \infty} s_n = s$$

Considerando il limite della successione generata aumentando l'indice di uno n+1, la combinazione lineare tra queste due successioni converge a zero, poiché rappresentano la stessa successione traslata di un elemento:

$$\lim_{n \to \infty} s_{n+1} = s$$
$$\lim_{n \to \infty} (s_{n+1} - s_n) = 0$$

La successione s_{n+1} corrisponde alla prima successione s_n sommata ad un ulteriore elemento a_{n+1} , per cui si può riscrivere la loro differenza come:

$$s_{n+1} = s_n + a_{n+1}$$
$$s_{n+1} - s_n = a_{n+1}$$

Quindi la successione può convergere se il termine infinitesimo della serie converge:

$$\lim_{n \to \infty} a_{n+1} = 0 \tag{1.3.1}$$

Queste rappresenta solo una condizione necessaria, non garantisce che una serie converga, non è quindi una condizione sufficiente. Se il termine infinitesimo di una serie non converge, allora la serie non può convergere, quindi diverge oppure è irregolare.

Si considera la seguine serie:

$$\sum_{k=1}^{\infty} \frac{3k^2 + 1}{2k^2 + 3}$$

Si vuole studiare il carattere della seguente serie utilizzando la condizione appena descritta:

$$\lim_{k \to \infty} \frac{3k^2 + 1}{2k^2 + 3} = \frac{3}{2} \neq 0$$

Questa serie quindi non può converge, potrebbe quindi divergere oppure essere irregolare.

Esiste un teorema che tratta le successioni numeriche, e si riflette sulle serie. Questo teorema afferma che data una successione monotona crescente $\{a_k\} \uparrow$ o decrescente $\{a_k\} \downarrow$, ovvero se tra il termine a_k ed il termine a_{k+1} esiste una relazione d'ordine, definitivamente, $\forall k \geq k_0$. Allora la successione non può essere irregolare.

Sia una serie $\sum_{k=0}^{\infty} a_k$, se $\forall k \geq k_0$ si ha $a_k > 0$, allora la serie non è irregolare. Considerando un valore di $n \geq k_0$, si ha:

$$s_{n+1} = s_n + \overbrace{a_{n+1}}^{>0} \implies s_{n+1} > s_n$$

Poiché viene sommato ad s_n un valore non nullo positivo, quindi una serie di termini di segno costante positivo corrisponde ad una successione di somme parziali definitivamente monotona crescente. Questa serie allora converge o diverge, è regolare.

Considerando la serie dell'esempio precedente, con il primo criterio si è confermato che la serie non converge, analizzando i segni della serie si ha:

$$3k^2 + 1 > 0 \land 2k^2 + 3 > 0 \implies \frac{3k^2 + 1}{2k^2 + 3}$$

Quindi la serie è composta da termini definitivamente positivi, quindi la serie non può essere irregolare. Questa serie allora diverge ad infinito positivo.

Si considerano due serie $\sum a_k$ e $\sum b_k$, convergenti rispettivamente a α e β , la serie combinazione lineare delle due serie $\sum (Aa_k + Bb_k)$ allora converge al valore $A\alpha + B\beta$. Tramite questa proprietà è possibile scomporre una serie ed analizzare i singoli termini per determinare il carattere della serie da cui derivano. Se una delle due diverge, mentre l'altra converge, allora la serie combinazione lineare diverge, allo stesso segno della serie divergente, per qualunque valore di A e B, vale anche se entrambe le serie convergono ad infinito di segno concorde. Se invece entrambe le serie divergono ed il segno discorde, allora questo genera una forma indeterminata e quindi non è possibile determinare il comportamento della serie combinazione lineare.

1.3.1 Criterio del Confronto

Siano $\sum_{k=1}^{\infty} a_k$ e $\sum_{k=1}^{\infty} b_k$ due serie di segno definitivamente costante tale che vale la seguente condizione: $\forall k \geq k_0 \to 0 < a_k \leq b_k$. Allora se lla serie maggiorante $\sum_{k=1}^{\infty} b_k$ converge, allora si dimostra che anche la serie minorante $\sum_{k=1}^{\infty} a_k$ converge. Analogamente vale il duale di questa proprietà se la serie minorante $\sum_{k=1}^{\infty} a_k$ diverge, allora anche la serie maggiorante $\sum_{k=1}^{\infty} b_k$ diverge anch'essa.

Si considera la seguente serie, bisogna analizzarne il comportamento, tramite il criterio del confronto:

$$\sum_{k=1}^{\infty} \frac{|\sin k|}{2^k}$$

Si considera il modulo per avere termini definitivamente positivi, allora il termine generico della serie sarà maggiorato dal termine generico:

$$\frac{|\sin k|}{2^k} < \frac{1}{2^k}, \, \forall k \in \mathbb{N}$$

È certamente diverso dal termine generico, poiché k non può essere un multiplo di π . La serie maggiorante corrisponde ad una serie geometrica di ragione 1/2, e converge poiché la ragione è di modulo minore di uno, quindi converge anche la serie minorante.

Si considera la seguente serie:

$$\sum_{k=1}^{\infty} \frac{2 + \cos k}{k}$$

Si può esprimere una serie maggiorante e minorante di questa serie:

$$\frac{1}{k} < \frac{2 + \cos k}{k} < \frac{3}{k}$$

La serie minorante è una serie armonica, si dimostrerà che diverge a più infinito:

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty$$

Mentre la serie armonica generalizzata, per $\alpha \in \mathbb{R}$ diverge solo per certi valori di α :

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$

Si considera la seguente serie:

$$\sum_{k=1}^{\infty} \frac{|\cos k|}{k}$$

La serie maggiorante rappresenta la serie armonica descritta precedentemente, per cui non è possibile utilizzare il criterio del confronto. Non è possibile stabilire il carattere della serie utilizzando questo criterio.

1.3.2 Criterio della Radice

Sia una serie definitivamente monotona crescente $\sum_{k=1}^{\infty} a_k$, $\forall k \geq k_0$. Si basa sulla definizione di una successione ausiliaria. Per costruire questa successione ausiliaria si considera, da $k > k_0$, $\{\sqrt[k]{a_k}\}$. Si considera per ipotesi che questa successione sia regolare:

$$\lim_{k \to \infty} \sqrt[k]{a_k} = \Lambda$$

Se questo limite converge ad un valore positivo maggiore di uno, oppure diverge ad infinito positivo, allora è dimostrabile che la serie di partenza diverge. Se questo limite è positivo e minore di uno, allora la serie converge. Mentre se il limite è esattamente pari ad uno, allora il problema rimane aperto, e non è possibile stabilire il comportamento della serie tramite questa successione.

$$\sum_{k=1}^{\infty} a_k : \begin{cases} \text{diverge} & \Lambda > 1 \lor \Lambda = +\infty \\ \text{converge} & 0 \le \Lambda < 1 \\ ? & \Lambda = 1 \end{cases}$$
 (1.3.2)

Considerando la seguente serie, determinare il carattere tramite il metodo della radice:

$$\sum_{k=1}^{\infty} \left(\frac{1}{k}\right)^k$$

La sua serie ausiliaria è:

$$\left\{\sqrt[k]{\left(\frac{1}{k}\right)^k}\right\} = \left\{\frac{1}{k}\right\}$$

Questa successione corrisponde alla serie armonica, e diverge quindi la serie di partenza diverge.

1.3.3 Criterio del Rapporto

Sia una serie definitivamente monotona crescente $\sum_{k=1}^{\infty} a_k$, $\forall k \geq k_0$. Si basa sulla definizione di una successione ausiliaria. Per costruire questa successione ausiliaria si considera, da $k > k_0$:

$$\left\{\frac{a_{k+1}}{a_k}\right\}$$

Si considera per ipotesi che questa successione sia regolare:

$$\lim_{k \to \infty} \sqrt[k]{a_k} = \Lambda$$

Esistono casi dove la successione ausiliaria creata è irregolare, e quindi non è possibile utilizzare questi criteri. Analogamente al criterio precedente, in base al valore del limite la serie diverge, converge, oppure non è possibile determinarne il carattere:

$$\sum_{k=1}^{\infty} a_k : \begin{cases} \text{diverge} & \Lambda > 1 \ \lor \Lambda = +\infty \\ \text{converge} & 0 \le \Lambda < 1 \\ ? & \Lambda = 1 \end{cases}$$
 (1.3.3)

Si considera la seguente serie:

$$\sum_{k=1}^{\infty} \frac{2^k}{k!}$$

La sua serie ausiliaria è quindi:

$$\frac{\frac{2^{k+1}}{(k+1)!}}{\frac{2^k}{k!}} = \frac{2^{k+1}}{(k+1)!} \cdot \frac{k!}{2^k} = \underbrace{\frac{k!}{(k+1)!} \cdot \frac{\frac{1}{k+1}}{2^k}}_{k+1}^2 = \frac{2}{k+1}$$

$$\lim_{k \to \infty} \frac{2}{k+1} = 0$$

La serie quindi converge, invece se i termini della serie fossero inversi:

$$\sum_{k=1}^{\infty} \frac{k!}{2^k}$$

1.3.4 Criterio dell'Integrale

Sia una serie definitivamente monotona crescente $\sum_{k=1}^{\infty} a_k$, $\forall k \geq k_0$. Si considera la funzione associata che sostituisce $\{a_k\} \to \{f(x)\}$. La funzione associata deve essere decrescente a partire da k_0 : $f(x) \downarrow \forall x > k_0$. Sia:

$$t_n = \int_{k_0}^n f(x) \mathrm{d}x$$

Allora la successione definita su t_n : $\{t_n\}$ e la serie $\sum a_k$ hanno lo stesso carattere.

Si applica il criterio dell'integrale sulla serie armonica generalizzata, questa soddisfa l'ipotesi da $k_0=1$:

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}, \ \alpha \in \mathbb{R}$$
$$f(x) = \frac{1}{x^{\alpha}}$$

Se α fosse negativo, la funzione associata sarebbe monotona crescente, ma se fosse negativo la serie sarebbe $\sum k^{|\alpha|}$, per cui diverge. Per $\alpha=0$, tutti i termini della serie sono pari ad uno, quindi il termine generico è uno e quindi la serie diverge allo stesso modo. Quindi solo per $\alpha>0$ la serie converge, e quindi solo per questo caso ha senso lo studio della serie armonica generalizzata

Nel caso $\alpha > 0$ la condizione necessaria è soddisfatta, quindi la funzione potrebbe convergere. Si studia il suo carattere con il criterio dell'integrale, si ha la seguente serie ausiliaria:

$$t_n = \int_1^n \frac{1}{x^{\alpha}} dx = \begin{cases} \left| \log(x) \right|_1^n & \alpha = 1 \\ \frac{1}{1 - \alpha} \left| x^{1 - \alpha} \right|_1^n & \alpha \neq 1 \end{cases} = \begin{cases} \log(n) & \alpha = 1 \\ \frac{1}{1 - \alpha} \left(n^{1 - \alpha} - 1 \right) & \alpha \neq 1 \end{cases}$$

Per $\alpha=1,$ la successione diverge, poiché il logaritmo è una funzione monotona crescente, mentre per $\alpha\neq 1$:

$$\frac{1}{1-\alpha} \lim_{n \to \infty} \left(n^{1-\alpha} - 1 \right) = \begin{cases} +\infty & \alpha < 1 \\ \frac{1}{1-\alpha} & \alpha > 1 \end{cases}$$

La serie quindi diverge per $\alpha < 1$, mentre converge per $\alpha > 1$

Il carattere della serie armonica generalizzata è quindi dato dal seguente:

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} : \begin{cases} \text{diverge} & \alpha \le 1\\ \text{converge} & \alpha > 1 \end{cases}$$
 (1.3.4)

Conviene applicare il criterio dell'integrale quando la funzione associata è facilmente integrabile. Considerata la seguente serie:

$$\sum_{k=1}^{\infty} \frac{\arctan k}{1+k^2}$$

Per valutare il carattere di questa serie si potrebbe considerare il criterio del confronto, poiché l'arcotangente è una funzione superiormente limitata da $\pi/2$:

$$\frac{\arctan k}{1+k^2} < \frac{\pi/2}{1+k^2} < \frac{\pi}{2k^2}$$

Considerando la serie maggiorante, questa è una serie armonica generalizzata con parametro $\alpha=2>1$, questa converge, quindi per il criterio del confronto converge anche la serie di partenza. In questo caso funziona anche il criterio dell'integrale. La sua funzione associata è:

$$f(x) = \frac{\arctan x}{1 + x^2}$$

Si può notare come la funzione associata è il prodotto dell'arcotangente per la sua derivata, quindi l'integrale è immediato. Per utilizzare il criterio dell'integrale bisogna determinare che la funzione è monotona decrescente, si analizza quindi la sua derivata:

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \frac{\frac{1}{1+x^2}(1+x^2) - 2x\arctan x}{(1+x^2)^2}$$
$$1 - 2x\arctan x < 0$$

Il numeratore è sempre negativo per $x \in (1, \infty)$, per cui la funzione ausiliaria è monotona decrescente ed è possibile utilizzare il criterio dell'integrale:

$$t_k = \int_1^k f(x) dx = \int_1^k \frac{\arctan x}{1 + x^2} dx$$
$$u = \arctan x \to \int_1^{\arctan k} u du = \left| \frac{u^2}{2} + c \right|_1^{\arctan k} = \frac{1}{2} + \frac{1}{2} +$$

1.3.5 Criterio di Condensazione

Sia una serie di segno definitivamente positivo: $\sum_{k=1}^{\infty} a_k | a_k > 0 \,\forall k \geq k_0$. Si considera la serie monotona decrescente $a_k \downarrow$, allora la serie $\sum 2^k a_{2^k}$ ha lo stesso carattere della serie di partenza. Generalmente si applica solo nel caso dove in a_k è presente un fattore logaritmo di k.

Si considera la serie:

$$\sum_{k=1}^{\infty} \frac{\ln k}{k}$$

Si calcola la derivata della sua funzione ausiliaria:

$$f(x) = \frac{\ln x}{x}$$
$$f'(x) = \frac{1 - \ln x}{x^2} < 0$$

Si è verificata l'ipotesi della monotonia della serie. Si applica quindi il criterio di condensazione:

$$\sum_{k=1}^{\infty} 2^{k} \frac{\ln 2^{k}}{2^{k}}$$

Sfruttando le proprietà del logaritmo questo diventa:

$$\sum_{k=1}^{\infty} k \cdot \ln 2 = \ln 2 \sum_{k=1}^{\infty} k$$

Non verificando l'ipotesi di convergenza, non può convergere. Si considera ora la serie:

$$\sum_{k=1}^{\infty} \frac{\ln k}{k^2}$$

$$f(x) = \frac{\ln x}{x^2}$$

$$f'(x) = \frac{x - 2x \ln x}{x^4} = \frac{\cancel{x}(1 - 2\ln x)}{\cancel{x^4}} < 0$$

Si applica il criterio di condensazione:

$$\sum_{k=1}^{\infty} 2^{k} \frac{\ln 2^{k}}{(2^{k})^{\frac{d}{2}}} = \ln 2 \sum_{k=1}^{\infty} \frac{k}{2^{k}}$$

Si studia il criterio del rapporto per poter determinarne il carattere:

$$\frac{\frac{k+1}{2^{k+1}}}{\frac{k}{2^k}} = \frac{k+1}{k} \frac{2^k}{2^{k+1}} = \frac{1}{2} \frac{k+1}{k}$$
$$\frac{1}{2} \lim_{k \to \infty} \frac{k+1}{k} = \frac{1}{2} < 1$$

Poiché $a_{k+1}/a_k < 1$ la serie converge, e quindi per il criterio di condensazione anche la serie di partenza converge.

1.3.6 Criterio del Confronto Asintotico

In questo criterio si considerano due serie, entrambe a termini definitivamente positivi $\sum_{k=1}^{\infty} a_k \wedge \sum_{k=1}^{\infty} b_k | a_k > 0, b > 0 \,\forall k \geq k_0$. Allora se il limite del rapporto all'infinito converge ad un numero reale non nullo, allora hanno lo stesso carattere

$$\lim_{k \to \infty} \frac{a_k}{b_k} = l \in \mathbb{R} \setminus \{0\}$$

Se l=1 allora le due successioni, analogamente per le funzioni, si dicono asintoticamente equivalenti per $k\to\infty$: a_k b_k . Spesso si userà questo simbolo generalizzandolo come due funzioni asintoticamente equivalenti a meno di una costante, poiché è di interessa solamente il carattere e non il valore effettivo esplicito di una serie. Se invece il rapporto converge a zero e la serie $\sum b_k$ converge, allora anche la serie $\sum a_k$ converge, ovvero a_k è un infinitesimo di ordine superiore a b_k . Se invece il limite di questo rapporto tende ad infinito, e la serie $\sum b_k$ diverge, allora divergerà anche la serie $\sum a_k$, b_k è un infinitesimo di ordine superiore di a_k .

Si considera la seguente serie:

$$\sum_{k=1}^{\infty} \sin\left(\frac{1}{k}\right)$$

È soddisfatta la condizione necessaria per la convergenza, avendo:

$$\lim_{k \to \infty} \sin\left(\frac{1}{k}\right) = 0$$

Bisogna ora trovare una serie $\sum b_k$, tale che:

$$\lim_{k \to \infty} \frac{\sin\left(\frac{1}{k}\right)}{b_k} = l \in \mathbb{R} \setminus \{0\}$$

Per il limite notevole $\sin x/x$, questa serie è $b_k=1/k$, per cui il limite converge ad uno:

$$\lim_{k \to \infty} \frac{\sin\left(\frac{1}{k}\right)}{\frac{1}{k}} = 1$$

Queste due serie sono asintoticamente equivalenti tra di loro:

$$\sum_{k=1}^{\infty} \sin\left(\frac{1}{k}\right) \sum_{k=1}^{\infty} \frac{1}{k}$$

La serie di destra è una serie armonica e diverge, quindi diverge anche la serie di partenza. 5 Data ora la seguente serie:

$$\sum_{k=1}^{\infty} \sin\left(\frac{1}{k^2}\right)$$

I termini sono sempre positivi, ed è soddisfatta la condizione necessaria, la serie asintoticamente equivalente è data da:

$$\sum_{k=1}^{\infty} \sin\left(\frac{1}{k^2}\right) \sum_{k=1}^{\infty} \frac{1}{k^2}$$

Questa è una serie armonia generalizzata per $\alpha=2>1,$ quindi converge. Allora anche la serie di partenza converge.

Si considera la seguente serie:

$$\sum_{k=1}^{\infty} \ln \left(\frac{k+1}{k} \right)$$

La serie ha termini di segno definitivamente positivo, poiché l'argomento è certamente maggiore di uno: k + 1 > k. Si scrive in forma equivalente l'argomento per evidenziare il limite notevole:

$$\sum_{k=1}^{\infty} \ln \left(\frac{k+1}{k} \right) = \sum_{k=1}^{\infty} \ln \left(1 + \frac{1}{k} \right) \sum_{k=1}^{\infty} \frac{1}{k}$$

Questa serie ha lo stesso carattere di una serie armonica divergente, quindi diverge. Si considera la seguente serie:

$$\sum_{k=1}^{\infty} \left(e^{1/k} - 1 \right) \sum_{k=1}^{\infty} \frac{1}{k}$$

Per il limite notevole è asintoticamente equivalente ad una serie armonica divergente, quindi diverge. Considerando ora la seguente serie:

$$\sum_{k=1}^{\infty} \left(e^{1/\sqrt{k}} - 1 \right) \sum_{k=1}^{\infty} \frac{1}{k^{1/2}}$$

Essendo asintoticamente equivalente ad una serie armonica generalizzata divergente, diverge. Per avere avere una serie convergente, deve avere come argomento almeno un k^{α} , con $\alpha > 1$..

Si considera la seguente serie:

$$\sum_{k=1}^{\infty} \ln \left(\frac{k^2 + 5k - 2}{k^2 + 3} \right)$$

Sicuramente è una serie a termini positivi, si vuole quindi riscrivere l'argomento del logaritmo nella forma 1 + x:

$$\frac{k^2 + 5k - 2}{k^2 + 3} = 1 + \frac{5k - 5}{k^2 + 3}$$

Questa serie si comporta in modo equivalente alla serie:

$$\sum_{k=1}^{\infty} \ln \left(\frac{k^2 + 5k - 2}{k^2 + 3} \right) = \sum_{k=1}^{\infty} \ln \left(1 + \frac{5k - 5}{k^2 + 3} \right) \sum_{k=1}^{\infty} \frac{5k - 5}{k^2 + 3} \sum_{k=1}^{\infty} \frac{5k}{k^2} = 5 \sum_{k=1}^{\infty} \frac{1}{k^2}$$

Essendo asintoticamente equivalente ad una serie armonica divergente, anche essa diverge.

Esercitazione

Studiare il carattere della serie numerica:

$$\sum_{k=1}^{\infty} \frac{k^2 + 1}{k^3 + 1} \ln \left(1 + \frac{1}{k} \right)$$

Per il limite notevole, il carattere di questa serie è asintoticamente equivalente alla serie:

$$\sum_{k=1}^{\infty} \frac{k^2 + 1}{k^3 + 1} \ln \left(1 + \frac{1}{k} \right) \sum_{k=1}^{\infty} \frac{k^2 + 1}{k^3 + 1} \frac{1}{k} = \sum_{k=1}^{\infty} \frac{k^2 + 1}{k^4 + k}$$

Il numeratore si comporta come k^2 , sono asintoticamente equivalenti, mentre il denominatore è asintoticamente equivalente a k^4 , quindi la serie è equivalente a:

$$\sum_{k=1}^{\infty} \frac{k^2 + 1}{k^4 + k} \sum_{k=1}^{\infty} \frac{k^2}{k^4}$$

Questa è una serie armonica generalizzata con $\alpha = 2 > 1$, per cui converge.

Si può realizzare una serie di stesso carattere sostituendo il fattore trascendente con un altro sempre appartenente ad un limite notevole:

$$\sum_{k=1}^{\infty} \frac{k^2 + 1}{k^3 + 1} \left(e^{1/k} - 1 \right) \sum_{k=1}^{\infty} \frac{k^2 + 1}{k^3 + 1} \frac{1}{k} = \sum_{k=1}^{\infty} \frac{k^2 + 1}{k^4 + k} \sum_{k=1}^{\infty} \frac{k^2 + 1}{k^4 + k}$$

Studiare il carattere della seguente serie:

$$\sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k+1}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(1 + \frac{1}{k} \right) \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \frac{1}{k} = \sum_{k=1}^{\infty} \frac{k^5 + k^4}{k^6 + k} \sum_{k=1}^{\infty} \frac{\cancel{k}^6}{k^6} = \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{k^5 + 1} \ln \left(\frac{k}{k} \right) = \sum_{k=1}^{\infty} \frac{k^4 + k^3}{$$

Essendo asintoticamente equivalente ad una serie armonica divergente, la serie diverge.

Studiare il carattere della seguente serie:

$$\sum_{k=1}^{\infty} \frac{5^k}{k^2 (2^k + 4^k)}$$

Poiché il calcolo della condizione necessaria di convergenza è complessa, per risolvere l'esercizio si suppone sia corretta e si utilizza subito uno dei criteri:

$$\sum_{k=1}^{\infty} \frac{5^k}{k^2(2^k+4^k)} = \sum_{k=1}^{\infty} \frac{5^k}{k^24^k(1/2^k+1)}$$

Si mette in evidenza l'esponenziale con base maggiore, poiché il fattore con base minore di uno per $k \to \infty$ tende a zero, quindi questa serie è asintoticamente equivalente a:

$$\sum_{k=1}^{\infty} \frac{5^k}{k^2 4^k (1/2^k + 1)} \sum_{k=1}^{\infty} \frac{1}{k^2} \left(\frac{5}{4}\right)^k$$

Si utilizza ora il criterio del rapporto, si determina la serie ausiliaria:

$$\frac{\frac{1}{(k+1)^2} \left(\frac{5}{4}\right)^{k+1}}{\frac{1}{k^2} \left(\frac{5}{4}\right)^k} = \frac{5}{4} \left(\frac{k}{k+1}\right)^2$$

$$\frac{5}{4} \lim_{k \to \infty} \left(\frac{k}{k+1}\right)^2 = \frac{5}{4} > 1$$

Quindi la serie diverge.

Studiare il carattere della seguente serie:

$$\sum_{k=1}^{\infty} \frac{k^2 3^k}{2^k + 4^k}$$

Questo esercizio è molto simile al precedente, ed analogamente si manipola il denominatore per rimuovere la somma di esponenziali:

$$\sum_{k=1}^{\infty} \frac{k^2 3^k}{2^k + 4^k} = \sum_{k=1}^{\infty} \frac{k^2 3^k}{4^k (1/2^k + 1)} \sum_{k=1}^{\infty} \frac{k^2 3^k}{4^k} = \sum_{k=1}^{\infty} k^2 \left(\frac{3}{4}\right)^k$$

Si utilizza analogamente alla precedente il criterio del rapporto; la sua serie ausiliaria è:

$$\frac{(k+1)^2 \left(\frac{3}{4}\right)^{k+1}}{k^2 \left(\frac{3}{4}\right)^k} = \frac{3}{4} \left(\frac{k+1}{k}\right)^2$$

$$\lim_{k \to \infty} \frac{3}{4} \left(\frac{k+1}{k}\right)^2 = \frac{3}{4} < 1$$

Poiché il rapporto tendente all'infinito è minore di uno, allora la serie converge.

Studiare il carattere della seguente serie:

$$\sum_{k=1}^{\infty} \frac{k^2 + 1}{k^3 + 1} \ln \left(\frac{k+1}{k} \right)$$

Questo è esattamente uguale al primo esercizio, quindi anch'esso diverge, l'argomento del logaritmo è scritto in una forma equivalente.

Studiare il carattere della seguente serie:

$$\sum_{k=1}^{\infty} \frac{2^k (k^2 + \sin e^k)}{3^k} \sum_{k=1}^{\infty} \frac{2^k k^2}{3^k} = \sum_{k=1}^{\infty} k^2 \left(\frac{2}{3}\right)$$

Nel numeratore si ha $k^2 + \sin e^k \ k^2$, poiché l'oscillazione di $\sin e^k$ viene smorzata all'infinito da k^2 , può essere dimostrato tramite il criterio del confronto. Si applica il criterio del rapporto:

$$\frac{(k+1)^2 \left(\frac{2}{3}\right)^{k+1}}{k^2 \left(\frac{2}{3}\right)^k} = \frac{3}{4} \left(\frac{k+1}{k}\right)^2$$

$$\lim_{k \to \infty} \frac{2}{3} \left(\frac{k+1}{k} \right)^2 = \frac{2}{3} < 1$$

Essendo il limite minore di uno, la serie converge.

La formula di Stirling afferma che un fattoriale di un numero intero si comporta al limite per $k \to \infty$ come:

$$\lim_{k \to \infty} \frac{k!}{\sqrt{2k\pi} \left(\frac{k}{e}\right)^k} = 1$$
$$k! \sqrt{2k\pi} \left(\frac{k}{e}\right)^k$$

Studiare il carattere della seguente serie:

$$\sum_{k=1}^{\infty} \frac{\sin k^3 - k^{3/5}}{k^{1/4} \ln(k^k + k!)}$$

Il denominatore è sempre positivo, mentre nel numeratore il seno può essere al massimo pari ad uno, mentre l'altro fattore $k^{3/5}$ è sicuramente maggiore di uno da un certo k_0 , quindi si può esprimere come:

$$-\sum_{k=1}^{\infty} \frac{k^{3/5} - \sin k^3}{k^{1/4} \ln(k^k + k!)}$$

Il numeratore può essere sostituito con $k^{3/5}$, analogamente alla precedente utilizzando il criterio del confronto può essere dimostrato come il seno diviso questo fattore tende a zero per $k \to \infty$, quindi la serie si può riscrivere come:

$$-\sum_{k=1}^{\infty} \frac{k^{3/5} - \sin k^3}{k^{1/4} \ln(k^k + k!)} - \sum_{k=1}^{\infty} \frac{k^{3/5}}{k^{1/4} \ln(k^k + k!)} = -\sum_{k=1}^{\infty} \frac{k^{7/20}}{\ln(k^k + k!)}$$

Essendo k^k un infinito di ordine superiore a k!, si può esprimere il denominatore in modo asintoticamente equivalente come:

$$-\sum_{k=1}^{\infty} \frac{k^{7/20}}{\ln(k^k + k!)} = -\sum_{k=1}^{\infty} \frac{k^{7/20}}{\ln\left[k^k \left(1 + \frac{k!}{k^k}\right)\right]} = -\sum_{k=1}^{\infty} \frac{k^{7/20}}{\ln k^k + \ln\left(1 + \frac{k!}{k^k}\right)} - \sum_{k=1}^{\infty} \frac{k^{7/20}}{\ln k^k}$$

Si dimostra:

$$\lim_{k \to \infty} \frac{\ln k^k + \ln \left(1 + \frac{k!}{k^k}\right)}{\ln k^k} = \lim_{k \to \infty} \left[\frac{\ln k^k}{\ln k^k} + \frac{\ln \left(1 + \frac{k!}{k^k}\right)}{\ln k^k} \right]$$

$$\lim_{k \to \infty} \ln \left(1 + \frac{k!}{k^k} \right) = 0 \to \lim_{k \to \infty} \frac{\ln k^k + \ln \left(1 + \frac{k!}{k^k} \right)}{\ln k^k} = 1$$

Si può riscrivere come:

$$-\sum_{k=1}^{\infty} \frac{k^{7/20}}{k} \frac{1}{\ln k} = -\sum_{k=1}^{\infty} \frac{1}{k^{13/20} \ln k}$$

In questa situazione si applica il criterio di condensazione creando la serie ausiliaria:

$$-\sum_{k=1}^{\infty} 2^k \frac{1}{(2^k)^{13/20} \ln 2^k} = -\sum_{k=1}^{\infty} \frac{2^k}{(2^k)^{13/20}} \frac{1}{k \ln 2} = -\sum_{k=1}^{\infty} \frac{2^{7k/20}}{k \ln 2} = -\frac{1}{\ln 2} \sum_{k=1}^{\infty} \frac{2^{7k/20}}{k}$$

Applicando il criterio del rapporto si ha:

$$\frac{2^{7(k+1/20)}}{k+1} \frac{k}{2^{7k/20}} = 2^{7/20} \frac{k}{k+1}$$

$$\lim_{k \to \infty} 2^{7/20} \frac{k}{k+1} = 2^{7/20} < 1$$

Poiché il limite tende ad un valore minore di uno, la serie converge.

2 Funzioni

Si vuole approssimare funzioni come la somma di una serie parametriche rispetto ad una fattore x, che diventerà la variabile indipendente della funzione. Una funzione algebrica si può rappresentare come una certa serie, dimostrato nel caso di una serie telescopica e geometrica. Per serie di segno definitivamente positivo è possibile rappresentarle in forma esplicita, mentre per serie che non rispettano questa condizione, molto probabilmente non è possibile, quindi non è possibile ottenere una rappresentazione algebrica di queste.