Guía de Lenguajes y Autómatas Unidad 1

Antonio Emiko Ochoa Adame

12 de febrero de 2019

1. Conjunto

Es una ${\bf colecci\'on}$ bien definida de objetos, a los cuales se les llama ${\bf elementos}.$

```
a \in A: el elemento a pertencece al conjunto A. a \notin A: el elemento a no pertencece al conjunto A.
```

Las llaves "{}" para describir un conjunto.

2. Conjunto universal U

Todos los posibles objetos que se consideran para una determinada clase de conjuntos.

3. Cardinalidad

Cantidad de elementos que existen en un conjunto.

NOTA: Si un cojunto es infinito, **no** tiene cardinalidad.

Hay infinitos enumerables.

(Dos conjuntos tienen la misma cardinalidad)? Son equivalentes.

4. Conjunto vacío

No contiene elementos.

$$\emptyset = \{\}$$

Carnidalidad = 0

5. Conjuntos de números

5.1. Naturales (N)

Se les llama así porque resulta del proceso natural de contar.

 $1, 2, 3, 4, 5, \dots$

5.2. Enteros (Z)

Positivos y negativos.

5.3. Reales (R)

Decimales, infinitesimales, etc.

6. Aleph ℵ

Aleph \aleph 0: Es la cardinalidad del conjunto de todos los números naturales. Infinitos enumerables.

Ejemplos:

- Los cuadrados de los números
- Potencias perfectas
- Números primos
- Números pares

Aleph \aleph 1: Es la cardinalidad del conjunto de todos los números ordinales contables. Infinitos no enumerables.

Ejemplos:

No defined.

7. Operaciones con conjuntos

7.1. Intersección

Sean A y B, $(A \cap B)$, todos los elementos de A que también estań en B.

Si una intersección resulta vacío, se dice que es un conjunto "disjunto".

7.2. Unión

 $A \cup B$. Conjunto formado por todos los elementos de de A o B.

7.3. Complemento

 A^c . Elementos del universo que no pertenece a A.

7.4. Diferencia

A-B. Todos los elementos de A que no están en B. $A-B=A\cap B^c$

7.5. Diferencia simétrica

Todos los elementos de A que no están en B y todos los elementos de B que no están en A.

$$A \oplus B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

7.6. Igualdad de conjuntos

Dos conjuntos son iguales cuando los elementos son los mismos en ambos conjuntos.

7.7. Subconjunto

 $A \subset B$. Si cada elemento que pertenece a A también es un elemento de B.

 $A \subset B$. **Propio** (No deben ser iguales).

 $A \subseteq B$. Impropio (Pueden ser iguales).

7.8. Cardinalidad de la unión de dos conjuntos

$$N(A \cup B) = N(A) + N(B) - N(A \cap B)$$

7.9. Potencia

Conjunto formado por todos los posibles subconjuntos 2^A .

7.10. Partición

Todos los elementos de S deben estar en alguna partición.

Un elemento solo puede estar en un conjunto.

$$A_1 \cap A_2 = S \circ A_1 \cap A_2 = \emptyset$$

7.11. Producto cartesiano

 $A \times B$ como el conjunto de todas las parejas ordenadas (a, b) tales que a
 $\in A$ y b $\in B.$

NO ES CONMUTATIVA: $(2, 1) \neq (1, 2)$.

NOTA: El resultado son tuplas.

8. Relaciones

8.1. Relación

Subconjunto de un producto cartesiano.

 $A \rightarrow B$

A: Dominio (Proviene del primer conjunto). B: Contradomio (Proviene del segundo conjunto).

8.2. Relación reflexiva

En la matriz de adyacencia si solo hay "unos" en la diagonal. Ejemplos: (1, 1), (2, 2), (3, 3).

8.3. Relación irreflexiva

En la matriz de adyacencia si solo hay "ceros" en la diagonal.

8.4. Relación simétrica

Si
$$(a, b) \in R y (b, a) \in R$$
.

8.5. Relación asimétrica

No puede haber elementos del tipo (2, 2), pero también es irreflexiva.

8.6. Relación antisimétrica

Una relación binaria R sobre un conjunto A es antisimétrica cuando se da que si dos elementos de A se relacionan entre sí mediante R, entonces estos elementos son iguales.

8.7. Relación transitiva

$$(a, b) \in R y (b, c) \in R$$
, entonces $(a, c) \in R$.

8.8. Relación de equivalencia

Es una realación equivalencia si es reflexiva, simétrica y transitiva. Define una partición.

9. Símbolo

Es la representación tangible de un concepto.

• Letra: Símbolo gráfico (representa un sonido concreto).

- Un dígito es la representación de un valor numérico.
- Símbolos de ciencias e ingeniería.
- Señales
- Emblemas y logotipos.

Hay símbolos que pueden ser perceptibles por otros sentidos.

10. Alfabeto

Conjunto finito no vacío de símbolos.

Pueden tener orden, pero no todos.

Se representa con Σ .

Ejemplos:

- $\Sigma = \{0,1\}$ (Binario)
- $\Sigma = \{\alpha, \beta, \gamma, \delta, ..., \omega\}$
- $\Sigma = \{READ, INPUT, GET, FOR, ..., IF\}$

10.1. Propiedades de los alfabetos

Se pueden usar las siguientes operaciones: $\cup, \cap, -, \oplus$.

 $\Sigma_1 \cup \Sigma_2$ es un alfabeto.

 $\Sigma_1 \cap \Sigma_2$ es un alfabeto si Σ_1 y Σ_2 no son disjuntos.

 $\Sigma_1 - \Sigma_2$ es un alfabeto si $\Sigma_1 \not\subseteq \Sigma_2$.

 $\Sigma_2 - \Sigma_1$ es un alfabeto si $\Sigma_2 \not\subseteq \Sigma_1$.

 $\Sigma_1 \oplus \Sigma_2$ es un alfabeto si $\Sigma_1 \neq \Sigma_2$.

Ejemplos:

Dado

$$\Sigma_1 = \{0, 1, 2, 3, 4\} \ \Sigma_2 = \{0, 2, 5, 6\} \ \Sigma_3 = \{0, 2\}$$

Realizar las siguientes operaciones:

$$\Sigma_1 \cup \Sigma_2 = \{0, 1, 2, 3, 4, 5, 6\}$$

$$\Sigma_1 \cap \Sigma_3 = \{0, 2\}$$

$$\Sigma_2 - \Sigma_3 = \{5, 6\}$$

 $\Sigma_3 - \Sigma_1 = \text{No existe alfabeto}$. El alfabeto \emptyset no es posible.

$$\Sigma_1 \oplus \Sigma_3 = \{1, 3, 4\}$$

11. Cadena

Secuencia finita de símbolos de un alfabeto dado, yuxtapuestos uno a continuación de otro.

Ejemplos:

```
\begin{split} \Sigma &= \{0,1\} \\ x &= 000011111, y = 10101, w = 11, z = 0 \\ \Sigma &= \{a,b,c,d,e\} \\ x1 &= beca \\ x2 &= aaaaaaaaaa \\ x3 &= c \\ x4 &= \varepsilon \\ x5 &= decada \end{split}
```

NOTA: El orden importa, es decir, $luis \neq suli$

12. Cadena vacía

Se forma por una secuencia de cero símbolos de cualquier alfabeto. La cadena vacía se denot con $\varepsilon.$

La longitud de una cadena es la cantidad de símbolos que contiene.

13. Ambigüedad de cadenas

Se suele usar \0 (o \O?) para eliminar ambigüedad de cadenas vacías.

Ejemplo de ambigüedad de cadenas:

```
\Sigma = \{01, 1, 0\}
 x = 0101 No se sabe que longitud tiene.
```

14. Longitud de una cadena

```
w_1 = 101011, entonces |w_1| = 6

w_2 = 10110100101, entonces |w_2| = 11

w_3 = \varepsilon, entonces |w_3| = 0
```

15. Concatenación

Es yuxtaponer dos cadenas, una a continuación de la otra.

```
x \cdot w \circ xw
```

16. Propiedades de la concatenación

NOTA: No es conmutativa, es decir, $wx \neq xw$.

La longitud de la concatenación es igual a la suma de las longitudes de las cadenas individuales.

|wx| = |w| + |x||wx| = |xw| son differentes, pero tienen la misma longitud.

La cadena vacía es el elemento neutro de la concatenación.

Sea w un cadena, para cualquier $n \ge 0$, se tiene la enésima potencia de w.

$$w^n = \begin{cases} \varepsilon & n = 0 \\ ww^{n-1} & n > 0 \end{cases}$$

Ejemplos:

Con w = abc

 $w^0 = \varepsilon$ $w^1 = ww^0 = abc\varepsilon = abc$ $w^2 = ww^1 = abcabc$

NOTA: La potencia no es conmutativa.

w = 01 x = 10 $(wx)^2 = (0110)^2 = 01100110$ $w^2x^2 = (01)^2(10)^2 = 01011010$

17. Prefijos y sufijos

17.1. Prefijos

El sufijo es el complemento de prefijo.

Una cadena de longitud n, tendría n-1 prefijos propios y 1 impropio.

w=xz donde x es el prefijo de w y z es el sufijo de w. Si $z\neq\varepsilon$ \therefore x es prefijo propio. Si x=w \therefore x es prefijo impropio.

17.2. Sufijos

Una cadena de longitud n, tendría n-1 prefijos propios y 1 impropio.

w = xz

Si $x \neq \varepsilon$: z es sufijo propio.

Si z = w : z es sufijo impropio.

17.3. Cadena vacía

La cadena vacía (ε) es prefijo y sufijo impropio de cualquier cadena.

18. Subcadenas

Cualquier prefijo y sufijo propio es una subcadena.

w = xyz si x y z son subcadenas (en sentido propio).

¿Cuántas subcadena tiene una cadena?

 $N = \frac{n(n+1)}{2}$, pero N disminuye si hay símbolos repetidos.

19. Inversa de una cadena

La inversa de una cadena w es la cadena w^R , tal que es la imagen reflejada de w.

$$w^R = \begin{cases} \varepsilon & w = 0 \\ y^R a & w = ay \end{cases}$$

Ejemplo:

$$w=amor$$

$$w^R=(amor)^R=(mor)^Ra=(m(or)^R)a=((or)^Rm)a=(o(r)^R)ma=(r)^Roma=roma$$

19.1. Propiedades de la inversa de una cadena

$$(x^R)^R = x.$$

Si x = wy, entonces $x^R = y^R w^R$.

Una cadena es un **palíndromo** si $w = w^R$.

19.2. Lenguajes formal

Es un conjunto de palabras o cadenas formadas a partir de los símbolos un alfabeto dado.

Un lenguaje puede ser finito o infinito, pero el alfabeto debe ser finito.

Ejemplos:

```
(Lenguaje finito) Sea \Sigma=\{a,b\} (el alfabeto). L=\{\varepsilon,ab,abbab,abbba,aba\} (Lenguaje infinito) Sea \Sigma=\{0,1\} (el alfabeto). L=\{\varepsilon,0,1,00,11,000,010,101,111,...\} (El lenguaje formado por todas palíndromas sobre \Sigma). o L=\{w|w=w^R\} (El lenguaje formado por todas palíndromas sobre \Sigma).
```

 ${f NOTA}:$ El autor de este documento no se hace responsable de uso indebido del mismo.