Рекуррентные сети и работа с текстами

О чем мы сегодня поговорим?

- Векторное представление текста, word2vec
- Классификация текста с помощью нейронных сетей
- Рекуррентные модели для классификации
 - RNN
 - LSTM
 - GRU

Как можно представить текст?

One-hot encoding

Как улучшить?

- 1. There is a bottle of _dkfhvbd___ on the table.
- 2. It's hard to pick a good _ dkfhvbd ___.
- 3. __ dkfhvbd __ makes you drunk.

	Контекст 1	Контекст 2	Контекст 3	Контекст п
dkfhvbd	1	0	1	1
масло	0	0	0	1
вино	1	1	1	1

Как улучшить?

- 1. There is a bottle of _dkfhvbd___ on the table.
- 2. It's hard to pick a good _ dkfhvbd ___.
- 3. __ dkfhvbd __ makes you drunk.

	Контекст 1	Контекст 2	Контекст 3	Контекст п
dkfhvbd	1	0	1	1
масло	0	0	0	1
вино	1	1	1	1

Похожие строки означают что смысл слов тоже схож

Как улучшить?

Главная идея: хотим использовать контекст для представления слов

Гипотеза - слова, которые часто встречаются в одном контексте, имеют похожее значение

- 1. На столе стоит бутылка _____.
- 2. Сложно выбрать хорошее ____.
- 3. ____ делает вас пьяным.

По контексту можем догадаться о чем идет речь

Посчитаем статистики!

Хотим определить:

- Что считать контекстом
- Как считать элементы матрицы

Co-occurrence counts

Контекст – встречающиеся слова в окне размера L

Элемент матрицы – кол-во раз которое встретится слово **w** в контексте **c**

Latent Semantic Analysis (LSA)

Контекст – документ из коллекции документов

Элемент матрицы – tf-idf

 $tf-idf(w, d, D) = tf(w, d) \cdot idf(w, D)$

N(w, d)

term frequency

inverse document frequency

Each element is the association between a word and a document

Word2Vec – prediction based метод

Параметры модели – векторы слов

Цель – сделать так, чтобы каждый вектор "знал" о контекстах, в которых он встречается

Как – будем обучать вектора, чтобы предиктить возможный контекст по слову

Итеративно:

- 1. Берем большой текстовый корпус
- 2. Скользящим окном идем по тексту — на каждом шаге будет центральное слово и контекст
- 3. Для центрального слова считаем вероятности контекста
- 4. Пересчитаем вектора, чтобы увеличить эту вероятность

$$P(w_{t-2}|w_t) P(w_{t-1}|w_t) P(w_{t+1}|w_t) P(w_{t+2}|w_t)$$

context central context words words

 W_{t-2} W_{t-1} W_t W_{t+1} W_{t+2}

$$P(w_{t-2}|w_t) \ P(w_{t-1}|w_t) \ P(w_{t+1}|w_t) \ P(w_{t+2}|w_t)$$
... I saw a cute grey cat playing in the garden ...
$$w_{t-2} \ w_{t-1} \ w_t \ w_{t+1} \ w_{t+2}$$

context **central** context words words

$$P(w_{t-2}|w_t) \ P(w_{t-1}|w_t) \ P(w_{t+1}|w_t) \ P(w_{t+2}|w_t)$$
 ... I saw a cute grey cat playing in the garden ...
$$w_{t-2} \ w_{t-1} \ w_t \ w_{t+1} \ w_{t+2}$$
 context central context words words

Что оптимизируем?

$$extbf{Likelihood} = L(heta) = \prod_{t=1}^T \prod_{-m \leq j \leq m, j
eq 0} P(w_{t+j}| extbf{w}_t, heta),$$

Хотим максимизировать правдоподобие — текст который мы встретили более правдоподобен, чем тот который мы не встречали

Как считать вероятности?

Два вектора для каждого слова

Посчитаем скалярное произведение векторов

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$
 Dot product: measures similarity of o and c Larger dot product = larger probability

Normalize over entire vocabulary to get probability distribution

$$softmax(x_i) = rac{\exp(x_i)}{\sum\limits_{j=i}^n \exp(x_j)}.$$

1. Take dot product of v_{cat} with all u

exp

3. sum all

4. get loss (for this one step)

5. evaluate the gradient, make an update

$$J_{t,j}(\theta) = -u_{cute}^T v_{cat} + \log \sum_{w \in V} \exp(u_w^T v_{cat})$$

$$v_{cat} := v_{cat} - \alpha \frac{\partial J_{t,j}(\theta)}{\partial v_{cat}}$$

$$u_w := u_w - \alpha \frac{\partial J_{t,j}(\theta)}{\partial v_{w}} \ \forall \ w \in V$$

Negative Sampling

Dot product of v_{cat} :

- with u_{cute} increase,
- with <u>all other</u> u decrease

Dot product of v_{cat} :

- with u_{cute} increase,
- with <u>a subset of other</u> u decrease

Parameters to be updated:

u

• v_{cat}

v

• u_w for all w in |V| + 1 vectors the vocabulary

Parameters to be updated:

- v_{cat}
- u_{cute} and u_w for $w \in \mathbb{K} + 2$ vectors in K negative examples

Вариации Word2Vec

Word2Vec – линейная структура

semantic: $v(king) - v(man) + v(woman) \approx v(queen)$

syntactic: $v(kings) - v(king) + v(queen) \approx v(queens)$

Бинарная — два класса, один правильный

Мультиклассовая — много классов, один правильный

Мультилейбл – много лейблов, сразу несколько могут быть правильными

get probability distribution over classes

process text (document)

Как обучать?

Training example: I liked the cat on the mat <eos>

Model prediction: Target: p^*

$$\begin{array}{c|c} & & & & 0 \\ \hline & & & & & & 0 \\ \hline & & & & & & & 1 \\ \hline \end{array}$$

Cross-entropy loss:

$$-\sum_{i=1}^{K} p_i^* \cdot \log P(y=i|x) \to min \quad (p_k^* = 1, p_i^* = 0, i \neq k)$$

For one-hot targets, this is equivalent to

$$-\log P(y=\mathbf{k}|x) \to min$$

$$h_{i+1} = tanh(W_x \cdot X_{i+1} + W_y \cdot h_i)$$

Vanilla RNN

$$h_t = tanh(h_{t-1}W_h + x_tW_x)$$

Text: I like the cat on a mat <eos>
not read yet

RNN - минусы

"the clouds are in the sky"

"I grew up in France...
I speak fluent *French*"

LSTM

Neural Network Layer

Pointwise Operation

Vector Transfer

Concatenate

Copy

Copy

<u>Hochreiter & Schmidhuber</u> (1997)

Copy

Operation

Vector Transfer

Concatenate

Cell state:

- "труба" которая позволяет проходить информации
- LSTM может с помощью гейтов на каждом шаге регулировать, какую информацию оставить и какую добавить
- Гейты это сигмоида, которая принимает значения от 0 до 1
- 0 не пропускаем информацию, 1 пропускаем все
- LSTM содержит три таких гейта

Transfer

Concatenate

Copy

Forget gate layer:

Сколько информации мы выкинем из cell state

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Пример – встретили объект нового пола, надо забыть старый

LSTM

- Какую новую информацию мы будем хранить в cell state
- Input gate layer решает что именно мы обновляем
- Ct вектор кандидатов, которые можно будет добавить к cell state

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Пример – встретили объект нового пола, выделяем пол в векторе и заменяем на новый

LSTM

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTM

А что на выходе?

• Сигмоида чтобы понять, какую часть cell state мы хотим получить на выходе

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Пример – увидели объект, хотим вывести информацию, относящуюся к глаголу, на случай, если это будет нужно дальше. Например, можно выводить существительное в единственном или множественном числе, чтобы мы знали, в какую форму следует спрягать глагол в будущем

GRU

- Объединим forget и input гейты в один update gate
- Соединим cell state и hidden state

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$