Imperial College London

MSc EXAMINATIONS (STATISTICS) January 2020

M5MS02

Fundamentals of Statistical Inference (Solutions)

Setter's signature	Checker's signature	Editor's signature

$$R(\theta, d) = E_{\theta}L(\theta, d(Y)),$$

where E_{θ} denotes expectation with respect to distribution of Y, assuming Y has distribution defined by parameter value θ .

A decision rule d is $strictly\ dominated$ by rule d' if $R(\theta, d') \leq R(\theta, d)$ for $all\ \theta \in \Omega_{\theta}$ and $R(\theta, d') < R(\theta, d)$ for $at\ least\ one\ point\ \theta \in \Omega_{\theta}$. A decision rule which is **not** strictly dominated by another rule is **admissible**.

2

Given a prior $\pi(\theta)$, the Bayes risk of a decision rule d is $r(\pi,d) = \int_{\Omega_{\theta}} R(\theta,d)\pi(\theta)d\theta$. A decision rule d is a **Bayes rule** with respect to the given prior $\pi(\theta)$ if it minimises the Bayes risk:

$$r(\pi, d) = \inf_{d'} r(\pi, d').$$

2

The Bayes decision rule is found by minimising the expected posterior loss. For any given data y, the Bayes rule $\delta(y)$ is characterised by: $\delta(y)$ is the action which minimises

$$\int_{\Omega_{\theta}} L(\theta, \delta(y)) \pi(\theta|y) d\theta,$$

where $\pi(\theta|y) \propto \pi(\theta) \times f(y;\theta)$ is the posterior density of θ , given y.

3

Suppose decision rule d is unique Bayes for prior $\pi(\theta)$, but is inadmissible. Then d is strictly dominated, as defined above, by a rule, δ say. But then we would have $r(\pi,\delta)=\int_{\Omega_{\theta}}R(\theta,\delta)\pi(\theta)d\theta\leq\int_{\Omega_{\theta}}R(\theta,d)\pi(\theta)d\theta=r(\pi,d)$. Since d is Bayes, we would then require $r(\pi,\delta)=r(\pi,d)$, so that δ is also Bayes, contradicting uniqueness, so d must be admissible.

4

(ii) We have, as functions of θ ,

part seen \downarrow

$$f(y; \theta) \propto \exp\left\{y^T \theta / \sigma^2 - \theta^T \theta / (2\sigma^2)\right\},$$

and

$$\pi(\theta) \propto \exp\left\{\theta^T\theta_0/\tau_0^2 - \theta^T\theta/(2\tau_0^2)\right\}.$$

Therefore,

$$\pi(\theta|y) \propto \exp\left\{\theta^T [\theta_0/\tau_0^2 + y/\sigma^2] - \theta^T \theta [1/\sigma^2 + 1/\tau_0^2]/2\right\} = \exp\left\{\theta^T \theta_1/\tau_1^2 - \theta^T \theta/(2\tau_1^2)\right\},$$

where

$$1/\tau_1^2 = 1/\tau_0^2 + 1/\sigma^2, \ \theta_1 = \frac{1/\tau_0^2}{1/\tau_0^2 + 1/\sigma^2} \theta_0 + \frac{1/\sigma^2}{1/\tau_0^2 + 1/\sigma^2} y,$$

of the form $w\theta_0 + (1-w)y$. So, the posterior distribution is $N_p(\theta_1, \tau_1^2 I_p)$.

Under the given loss function, the unique Bayes estimator is the posterior mean, θ_1 .

Then, given $w\in(0,1)$, fix τ_0^2 so that $\frac{1/\tau_0^2}{1/\tau_0^2+1/\sigma^2}=w$. We have that $\delta(Y)$ is the unique Bayes estimator under the normal prior $N_p(\theta_0,\tau_0^2I_p)$, and hence admissible by the result in (i).

Yes, $\delta(Y)$ is an admissible estimator in the case σ^2 is unknown. If not, it would be strictly dominated by some estimator $\delta'(Y)$. Then we would have

$$\forall (\theta, \sigma^2), R((\theta, \sigma^2), \delta') \leq R((\theta, \sigma^2), \delta),$$

$$\exists (\theta_0, \sigma_0^2), R((\theta_0, \sigma_0^2), \delta') < R((\theta_0, \sigma_0^2), \delta).$$

But, this would contradict admissibility of $\delta(Y)$ for estimating θ when σ^2 is known to equal σ_0^2 .

Total 25

4

2

3

unseen ↓

seen \Downarrow

3

S is said to be complete if $E_{\theta}\{g(S)\}=0 \ \forall \theta \implies P_{\theta}\{g(S)=0\}=1 \ \forall \theta.$ The importance of completeness in point estimation is contained in the result that says that if there exists an unbiased estimator of θ which is a function of a complete sufficient statistic, then it is the unique such estimator. Let S be a complete sufficient statistic for a parameter θ and let $\phi(S)$ be any estimator based only on S. Then $\phi(S)$ is the unique minimum variance estimator of its expectation.

3

unseen ↓

(ii) Suppose $\widehat{\theta}$ is UMVU and let U satisfy $E_{\theta}(U)=0, E_{\theta}(U^2)<\infty.$ For arbitrary $\lambda\in\mathbb{R}$, define $\widehat{\theta}_{\lambda}=\widehat{\theta}+\lambda U$. Then

$$\begin{array}{lcl} 0 & \leq & \mathrm{var}_{\theta}(\widehat{\theta}_{\lambda}) - \mathrm{var}_{\theta}(\widehat{\theta}) = 2\lambda \mathrm{cov}_{\theta}(\widehat{\theta}, U) + \lambda^2 E_{\theta}(U^2) \\ & = & E_{\theta}(U^2) \left(\lambda + \frac{\mathrm{cov}_{\theta}(\widehat{\theta}, U)}{E_{\theta}(U^2)}\right)^2 - \frac{\mathrm{cov}_{\theta}^2(\widehat{\theta}, U)}{E_{\theta}(U^2)}. \end{array}$$

This inequality can only be satisfied at $\lambda = -\frac{\text{COV}_{\theta}(\widehat{\theta}, U)}{E_{\theta}(U^2)}$ if $\text{cov}_{\theta}(\widehat{\theta}, U) = 0$, or equivalently $E_{\theta}(\widehat{\theta}U) = 0$, for all $\theta \in \Omega_{\theta}$.

8

unseen ↓

(iii) From the given density function,

$$E_{\theta}(Y_{(n)}) = \int_{\theta}^{2\theta} y \frac{n}{\theta} \left(\frac{y-\theta}{\theta}\right)^{n-1} dy = \int_{0}^{\theta} (x+\theta) \frac{n}{\theta} x^{n-1} dx = \frac{2n+1}{n+1} \theta.$$

Use symmetry, $E_{\theta}(Y_{(n)}-\frac{3}{2}\theta)=E_{\theta}(\frac{3}{2}\theta-Y_{(1)})$, to obtain $E(Y_{(1)})=\frac{n+2}{n+1}\theta$, so that $E_{\theta}(\widehat{\theta})=\theta$, as required to show unbiased.

3

Then $U=(2n+1)Y_{(1)}-(n+2)Y_{(n)}$ is an unbiased estimator of 0. Directly, using the given information,

$$3E_{\theta}(\widehat{\theta}U) = E_{\theta}[(Y_{(1)} + Y_{(n)})\{(2n+1)Y_{(1)} - (n+2)Y_{(n)}\}]$$

$$= (2n+1)E_{\theta}(Y_{(1)}^2) + (n-1)E_{\theta}(Y_{(1)}Y_{(n)}) - (n+2)E_{\theta}(Y_{(n)}^2)$$

$$= \frac{(n-1)}{(n+1)(n+2)}\theta^2 \neq 0,$$

on simplification. So, $\widehat{\theta}$ is \mathbf{not} UMVU.

8

Total 25

seen \downarrow

Define a test in terms of its test function $\phi(Y)$, so that $\phi(y)$ is the probability that H_0 is rejected when Y=y, and define the power function of the test ϕ to be $w(\theta)=E_{\theta}\{\phi(Y)\}.$

A uniformly most powerful (UMP) test of size α is a test $\phi_0(\cdot)$ for which: (a) $E_{\theta}\{\phi_0(Y)\} \leq \alpha$ for all $\theta \in \Theta_0$; (b) given any other test $\phi(\cdot)$ for which $E_{\theta}\{\phi(Y)\} \leq \alpha$ for all $\theta \in \Theta_0$, we have $E_{\theta}\{\phi_0(Y)\} \geq E_{\theta}\{\phi(Y)\}$ for all $\theta \in \Theta_1$. A test ϕ of $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$ is unbiased of size α if $\sup_{\theta \in \Theta_0} E_{\theta}\{\phi(Y)\} = \alpha$ and $E_{\theta}\{\phi(Y)\} \geq \alpha$ for all $\theta \in \Theta_1$. A test which is uniformly most powerful amongst the class of all unbiased tests is uniformly most powerful unbiased (UMPU): a test $\phi_0(\cdot)$ is UMPU if $E_{\theta}\{\phi_0(Y)\} \geq E_{\theta}\{\phi(Y)\}$ for all $\theta \in \Theta_1$, and any test $\phi(\cdot)$ which is unbiased of size α .

4

Consider a random vector \boldsymbol{Y} with density belonging to a full exponential family of the form

4

| seen ↓

$$f(y; \theta) = h(y) \exp \left\{ \sum_{i=1}^{m} t_i(y) \theta^i - k(\theta) \right\}.$$

One-parameter case: m=1. Then UMP one-sided tests on the natural parameter θ^1 can be constructed using $T_1=t_1(Y)$ as test statistic. For instance, to test $H_0:\theta^1=\theta^{1*}$ against $H_1:\theta^1>\theta^{1*}$, for specified θ^{1*} , a UMP test is of the form: reject H_0 if $T_1>c$, where c is fixed so that $P_{\theta^1=\theta^{1*}}(T_1>c)=\alpha$, for a test of size α . UMPU two-sided tests are similarly based on the statistic T_1 . For instance, to test $H_0:\theta^1=\theta^{1*}$ against $H_1:\theta^1\neq\theta^{1*}$, a UMPU test is of the form: reject H_0 if $T_1>c_1$ or $T_1< c_2$, where c_1,c_2 are fixed so that the probability of rejection is α under H_0 and the test is unbiased (so that the derivative of the power function is 0 at θ^{1*}).

3

Multi-parameter case: m>1. Write $T_i=t_i(Y)$ and suppose we wish to test a hypothesis about θ^1 , with θ^2,\ldots,θ^m nuisance. Then optimal (UMPU) tests are based on the conditional distribution of T_1 , given $T_i=t_i, i=2,\ldots,m$, where t_i is the observed data value of T_i . The precise form of test will depend on the hypothesis being tested [one-side, two-sided, point null hypothesis], but, as illustration, to test $H_0:\theta^1\leq\theta^{1*}$ against $H_1:\theta^1>\theta^{1*}$, for a specified θ^{1*} , the test is of the form: reject H_0 if $T_1>t_1^c$, where we require

$$P_{\theta^{1*}}(T_1 > t_1^c | T_2 = t_2, \dots, T_m = t_m) = \alpha,$$

for a test of required size α .

4

(ii) The joint pdf of
$$Y = (Y_1, \dots, Y_n)$$
 is

seen similar \downarrow

$$f(y; \mu, \sigma) \propto \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right\}$$
 (1)

$$\propto \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n y_i^2 + \frac{\mu}{\sigma^2}\sum_{i=1}^n y_i\right\}. \tag{2}$$

In the case when μ is known, (1) identifies a one-parameter exponential family, with natural parameter $\theta^1=-\frac{1}{2\sigma^2}$. Testing $H_0:\sigma=\sigma_0$ against $H_1:\sigma>\sigma_0$ is equivalent to testing $H_0:\theta^1=\theta^{1*}=-\frac{1}{2\sigma_0^2}$ against $H_1:\theta^1>\theta^{1*}$. Then, from lecture theory, a \mathbf{UMP} test exists, of the form: reject H_0 if

$$\frac{1}{\sigma_0^2} \sum_{i=1}^n (Y_i - \mu)^2 > c,$$

where c is such that

$$P_{\sigma=\sigma_0}\left(\frac{1}{\sigma_0^2}\sum_{i=1}^n (Y_i - \mu)^2 > c\right) \equiv P(\chi_n^2 > c) = \alpha,$$

for a test of size α .

In the case when μ is unknown, (2) identifies a two-parameter exponential family, with natural parameters $\theta^1=-\frac{1}{\sigma^2}, \theta^2=\frac{\mu}{\sigma^2}$. Now we wish to test $H_0:\theta^1=\theta^{1*}$ against $H_1:\theta^1>\theta^{1*}$, with θ^2 nuisance. From theory, a \mathbf{UMPU} test exists, of conditional form, conditional on the observed data value of $\sum_{i=1}^n Y_i$, or equivalently \bar{Y} . The size α test is: reject H_0 if $\sum_{i=1}^n Y_i^2 > k$, say, where

$$P_{\sigma=\sigma_0}\left(\sum_{i=1}^n Y_i^2 > k|\bar{Y} = \bar{y}\right) = \alpha,$$

where $\bar{\boldsymbol{y}}$ is the observed sample mean.

Let $S^2=\sum_{i=1}^n(Y_i-\bar{Y})^2=\sum_{i=1}^nY_i^2-n\bar{Y}^2$. Then, S^2 is a increasing function of $\sum_{i=1}^nY_i^2$ for fixed \bar{Y} . Then, 'a useful result' gives that the UMPU conditional test is equivalent to the test based on the marginal distribution of S^2 . So, reject H_0 if $S^2/\sigma_0^2>c'$, where

$$P_{\sigma=\sigma_0}\left(\frac{S^2}{\sigma_0^2} > c'\right) \equiv P(\chi_{n-1}^2 > c') = \alpha,$$

for a level α test.

6

4

Total 25

4. Entirely descriptive question. Notes can been seen at

 $http://www2.imperial.ac.uk/{\sim}ayoung/m5ms02coursenotes2019-20.pdf.$

Marked as 13+13, capped at 25. For each of the two chosen parts, marking according to: basic definitions etc. 5; appropriate examples, illustration 5; bonus/style 3.

Total 25