

BGS14PN10

SP4T high linearity, high power RF Switch

Data Sheet

Revision 1.3 - 2016-08-24

Power Management & Multimarket

Edition 2016-08-24

Published by Infineon Technologies AG 81726 Munich, Germany

©2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History

Document No.: BGS14PN10.pdf

Revision History: 1.3

Previous Version: 1.2

Page	Subjects (major changes since last revision)
1	Updated title

Trademarks of Infineon Technologies AG

 $AURIX^{TM}, C166^{TM}, CanPAK^{TM}, CIPOS^{TM}, CIPURSE^{TM}, CoolGaN^{TM}, CoolMOS^{TM}, CoolSet^{TM}, CoolSiC^{TM}, CORECONTROL^{TM}, DAVE^{TM}, DI-POL^{TM}, EasyPIM^{TM}, EconoBRIDGE^{TM}, EconoDUAL^{TM}, EconoPACK^{TM}, EconoPIM^{TM}, EiceDRIVER^{TM}, eupec^{TM}, FCOS^{TM}, HITFET^{TM}, HybridPACK^{TM}, ISOFACE^{TM}, I^2RF^{TM}, IsoPACK^{TM}, MIPAQ^{TM}, ModSTACK^{TM}, my-d^{TM}, NovalithIC^{TM}, OmniTune^{TM}, OptiMOS^{TM}, ORIGA^{TM}, OPTIGA^{TM}, PROFET^{TM}, PRO-SIL^{TM}, PRIMARION^{TM}, PrimePACK^{TM}, RASIC^{TM}, ReverSave^{TM}, SatRIC^{TM}, SIEGET^{TM}, SIPMOS^{TM}, SOLID FLASH^{TM}, SmartLEWIS^{TM}, TEMPFET^{TM}, thinQ!^{TM}, TriCore^{TM}, TRENCHSTOP^{TM}. \\$

Other Trademarks

Advance Design SystemTM (ADS) of Agilent Technologies, AMBATM, ARMTM, MULTI-ICETM, PRIMECELLTM, REALVIEWTM, THUMBTM of ARM Limited, UK. AUTOSARTM is licensed by AUTOSAR development partnership. BluetoothTM of Bluetooth SIG Inc. CAT-iqTM of DECT Forum. COLOSSUSTM, FirstGPSTM of Trimble Navigation Ltd. EMVTM of EMVCo, LLC (Visa Holdings Inc.). EPCOSTM of Epcos AG. FLEXGOTM of Microsoft Corporation. FlexRayTM is licensed by FlexRay Consortium. HYPERTERMINALTM of Hilgraeve Incorporated. IECTM of Commission Electrotechnique Internationale. IrDATM of Infrared Data Association Corporation. ISOTM of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLABTM of MathWorks, Inc. MAXIMTM of Maxim Integrated Products, Inc. MICROTECTM, NUCLEUSTM of Mentor Graphics Corporation. MifareTM of NXP. MIPITM of MIPI Alliance, Inc. MIPSTM of MIPS Technologies, Inc., USA. muRataTM of MURATA MANUFACTURING CO., MICROWAVE OFFICETM (MWO) of Applied Wave Research Inc., OmniVisionTM of OmniVision Technologies, Inc. OpenwaveTM Openwave Systems Inc. RED HATTM Red Hat, Inc. RFMDTM RF Micro Devices, Inc. SIRIUSTM of Sirius Sattelite Radio Inc. SOLARISTM of Sun Microsystems, Inc. SPANSIONTM of Spansion LLC Ltd. SymbianTM of Symbian Software Limited. TAIYO YUDENTM of Taiyo Yuden Co. TEAKLITETM of CEVA, Inc. TEKTRONIXTM of Tektronix Inc. TOKOTM of TOKO KABUSHIKI KAISHA TA. UNIXTM of X/Open Company Limited. VERILOGTM, PALLADIUMTM of Cadence Design Systems, Inc. VLYNQTM of Texas Instruments Incorporated. VXWORKSTM, WIND RIVERTM of WIND RIVER SYSTEMS, INC. ZETEXTM of Diodes Zetex Limited.

Last Trademarks Update 2012-12-13

Data Sheet 3 Revision 1.3 - 2016-08-24

	Confidential	ntent
Co	ntents	
1 F	Features	5
2 P	Product Description	6
3 N	Maximum Ratings	7
4 C	Operation Ranges	8
5 L	ogic Table	8
6 R	RF Characteristics for RF1 and RF3	9
7 R	RF Characteristics for RF2 and RF4	10
8 R	RF large signal parameter	11
9 P	Package Outline and Pin Configuration	13
1 2 3 4 5 6	Pinout (top view) Package Dimensions Drawing Land pattern and stencil mask Marking	13 14 14 15
1 2 3 4 5 6 7 8 9 1 1	Maximum Ratings, Table I Maximum Ratings, Table II Operation Ranges Logic Table RF Specifications RF Specifications RF Specifications RF large signal Specifications	7 8 8 8 9 10 11 11 12 12 12

Confidential

BGS14PN10 SP4T high linearity, high power RF Switch

1 Features

- High max RF power: 40 dBm CW @ 900 MHz, room temperature
- Two ultra-low loss ports (RF1 and RF3):
 - 0.19 dB @ f=0.9 GHz, P_{IN}=38 dBm
 - $0.29 \, dB \, @ f=1.9 \, GHz, P_{IN}=38 \, dBm$
 - 0.51 dB @ f=2.7 GHz, P_{IN} =33 dBm
 - $1.20 \, dB \, @ \, f=3.8 \, GHz, \, P_{IN}=33 \, dBm$
 - 1.90 dB @ f=5.8 GHz, P_{IN}=33 dBm
- Two low loss ports (RF2 and RF4):
 - 0.32 dB @ f=0.9 GHz, P_{IN}=38 dBm
 - $0.40 \, dB \, @ f=1.9 \, GHz, P_{IN}=38 \, dBm$
 - 0.64 dB @ f=2.7 GHz, P_{IN} =33 dBm
 - 1.19 dB @ f=3.8 GHz, P_{IN} =33 dBm
 - 1.78 dB @ f=5.8 GHz, P_{IN} =33 dBm
- No DC decoupling components required, if no external DC is applied on RF ports
- High ESD robustness
- Low harmonic generation
- · High linearity

RF1/RF3 72 dBm IIP3

RF2/RF4 74 dBm IIP3

- No power supply blocking required
- Supply voltage range: 1.8 to 3.6 V
- No insertion loss change within supply voltage range
- No linearity change within supply voltage range
- Suitable for EDGE / C2K / LTE / WCDMA / SV-LTE Applications
- Mobile cellular Rx/Tx applications, suitable for LTE/3G
- Applicable for main path and entire RF-Front-end without any power restrictions in mobile communication

DL/UL CA and MIMO

Micro/Pico Cells / Cellular base stations

Test equipment

Suitable for SV-LTE

- 0.5 to 6.0 GHz coverage
- Small form factor 1.1 mm x 1.5 mm
- 400 μ m pad pitch
- RoHS and WEEE compliant package

2 Product Description

The BGS14PN10 is a Single Pole Quad Throw (SP4T) RF antenna aperture switch optimized for mobile phone applications up to 6.0 GHz. This single supply chip integrates on-chip CMOS logic driven by a two simple, CMOS or TTL compatible control input signals. Unlike GaAs technology, the 0.1 dB compression point exceeds the switch maximum input power level, resulting in linear performance at all signal levels and external DC blocking capacitors at the RF ports are only required if DC voltage is applied externally.

Table 1: Ordering Information

Туре	Package	Marking	Chip
BGS14PN10	TSNP10-1	4P	M4821C

Data Sheet 6 Revision 1.3 - 2016-08-24

Confidential

Figure 1: BGS14PN10 block diagram

3 Maximum Ratings

Table 2: Maximum Ratings, Table I at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Frequency Range	f	0.5	_	_	GHz	1)
Supply voltage	V_{DD}	-0.5	_	3.6	V	_
Storage temperature range	T _{STG}	-55	_	150	°C	_
RF input power	P_{RF_TRx}	_	_	40	dBm	25% duty cycle
ESD capability Human Body Model	V _{ESD_{HBM}}	-1	_	+1	kV	
ESD capability ANT port (according	V _{ESD_{ANT}}	-8	_	+8	kV	On application board with
IEC 61000-4-2 contact)						27nH shunt inductor
Junction temperature	T_j	_	_	125	°C	_

 $^{^{1)}}$ Switch has no highpass response. There is also a high ohmic DC to the RF path. The DC voltage at RF ports V_{RFDC} has to be 0V.

Data Sheet 7 Revision 1.3 - 2016-08-24

Table 3: Maximum Ratings, Table II at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Maximum DC-voltage on RF-Ports	V_{RFDC}	0	_	0	٧	No DC voltages allowed on
and RF-Ground						RF-Ports
Control Voltage Levels	V _{CTRL}	-0.7	_	3.3	V	_

4 Operation Ranges

Table 4: Operation Ranges

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply voltage	V_{DD}	1.8	2.85	3.6	V	_	
Supply current ¹⁾	I _{DD}	-	75	120	μ A	_	
Control voltage low	V _{Ctrl,low}	0		0.45	V	_	
Control voltage high	V _{Ctrl,high}	1.2	1.8	2.85	V	$V_{Ctrl,high} \ll V_{DD}$	
Control current low	I _{Ctrl,low}	-1	0	1	μ A	_	
Control current high	I _{Ctrl,high}	-1	0	1	μ A	$V_{Ctrl,high} \ll V_{DD}$	
Ambient temperature	T _A	-40	25	85	°C	_	
RF switching time 2)	t _{sw}	1	2	5	μ s	_	
Startup time 2)	t _{sw}		10	30	μ s	_	

5 Logic Table

Table 5: Logic Table

CTRL 1	CTRL 2	Mode
0	0	RF1 connected to ANT
0	1	RF2 connected to ANT
1	0	RF3 connected to ANT
1	1	RF4 connected to ANT

Data Sheet 8 Revision 1.3 - 2016-08-24

 $^{^{1)}}T_A$ = -30 °C - +85 °C, V_{BATT} = 1.8 - 3.6 V $^{2)}$, Represents actual alpha status. To be updated.

6 RF Characteristics for RF1 and RF3

Table 6: RF Specifications

Parameter	Symbol	Values			Unit	Note / Test Condition			
		Min.	Тур.	Max.					
Insertion Loss	1	-							
698 - 960 MHz		_	0.18	0.26	dB				
1710 - 1980 MHz	ļ ,,	_	0.29	0.36	dB	-			
1981 - 2170 MHz	- IL	_	0.30	0.41	dB	-			
2171 - 2690 MHz		_	0.51	0.68	dB				
3400 - 3800 MHz		_	1.20	1.40	dB				
5150 - 5850 MHz		_	1.90	2.35	dB	$V_{DD} = 1.8 - 3.6 V$			
Return Loss		•				$T_{A} = -30 \dots +85 ^{\circ}\text{C},$			
All Ports @ 698 - 915 MHz	RL	23	30	_	dB	$Z_0 = 50 \Omega$,			
All Ports @ 1710 - 1980 MHz] nL	16	19	_	dB	P_{IN} up to 38 dBm			
All Ports @ 1981 - 2170 MHz		14	17	-	dB				
All Ports @ 2171 - 2690 MHz		11	12	_	dB				
All Ports @ 3400 - 3800 MHz		7	8	_	dB				
All Ports @ 5150 - 5850 MHz		6	7	_	dB				
Isolation RFC			•						
698 - 915 MHz		34	41	_	dB				
1710 - 1980 MHz	ISO	27	32	_	dB				
1981 - 2170 MHz	150	26	30	-	dB				
2171 - 2690 MHz		24	28	_	dB				
3400 - 3800 MHz		20	24	_	dB				
5150 - 5850 MHz		15	18	_	dB				
Isolation RF1,2,3,4 - RF4,3,2,1			•						
698 - 915 MHz		43	50	_	dB				
1710 - 1980 MHz	ISO	34	38	_	dB				
1981 - 2170 MHz	130	33	36	_	dB				
2170 - 2690 MHz		30	33	_	dB				
3400 - 3800 MHz		24	28	_	dB				
5150 - 5850 MHz		18	21	-	dB				

Data Sheet 9 Revision 1.3 - 2016-08-24

7 RF Characteristics for RF2 and RF4

Table 7: RF Specifications

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Insertion Loss	•			·			
698 - 960 MHz		_	0.30	0.40	dB		
1710 - 1980 MHz	IL.	_	0.40	0.50	dB		
1981 - 2170 MHz] <i>IL</i>	_	0.41	0.54	dB		
2171 - 2690 MHz		_	0.64	0.80	dB		
3400 - 3800 MHz		_	1.19	1.45	dB		
5150 - 5850 MHz		_	1.78	2.09	dB	$V_{DD} = 1.8 - 3.6 V$,	
Return Loss	•			•		$T_A = -30 \dots +85 ^{\circ}\text{C},$	
All Ports @ 698 - 915 MHz	RL	23	27	_	dB	$Z_0 = 50 \Omega$,	
All Ports @ 1710 - 1980 MHz		17	20	_	dB	P_{IN} up to 38 dBm	
All Ports @ 1981 - 2170 MHz		14	18	_	dB		
All Ports @ 2171 - 2690 MHz		11	15	_	dB		
All Ports @ 3400 - 3800 MHz		7	9	_	dB		
All Ports @ 5150 - 5850 MHz		6	8	_	dB		
Isolation RFC							
698 - 915 MHz		34	41	_	dB		
1710 - 1980 MHz	ISO	27	32	_	dB		
1981 - 2170 MHz	130	26	30	_	dB		
2171 - 2690 MHz		24	28	_	dB		
3400 - 3800 MHz		20	24	_	dB		
5150 - 5850 MHz		14	18	_	dB		
Isolation RF1,2,3 - RF3,2,1							
698 - 915 MHz		43	50	_	dB		
1710 - 1980 MHz	ISO	34	38	_	dB		
1981 - 2170 MHz	130	33	36	_	dB	1	
2170 - 2690 MHz		30	33	_	dB		
3400 - 3800 MHz		24	28	_	dB		
5150 - 5850 MHz		18	21	_	dB		

Data Sheet 10 Revision 1.3 - 2016-08-24

8 RF large signal parameter

Table 8: RF large signal specifications for RF1 and RF3

Parameter	Symbol		Values			Note / Test Condition	
		Min.	Тур.	Max.			
Max. RF input power	_	_	-	38	dBm	for typical H_x behavior	
Harmonic Generation up to	⊥ 2.75 GHz ^{(1,2}	,3)					
Second Order Harmonics	P _{H2}	-	-100	_	dBc	25 dBm, 50Ω, CW mode	
Third Order Harmonics	P _{H3}	_	-115	_	dBc	25 dBm, 50Ω, CW mode	
All RF Ports	P _{Hx}	-	-100	_	dBc	25 dBm, 50Ω, CW mode	
Intermodulation Distortion II	MD2 (1,2,3)		'				
IIP2, low	IIP2,I	-	110	_	dBm	HDO and Plant Lable O	
IIP2, high	IIP2,h	-	125	_	dBm	IIP2 conditions table 8	
Intermodulation Distortion II	/ID3 (1,2,3)						
IIP3	IIP3	-	72	_	dBm	IIP3 conditions table 9	
SV LTE Intermodulation (1,2,3)			•	•	•		
IIP3,SVLTE	IIP3,SV	_	73	_	dBm	SV-LTE conditions table 10	

 $^{^{1)}}$ Terminating Port Impedance: Z_0 = 50 Ω $^{2)}$ Supply Voltage: V_{DD} = 1.8 - 3.6 V $^{3)}$ On application board without any matching components

Table 9: RF large signal specifications for RF2 and RF4

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Max. RF input power	_	-	_	38	dBm	for typical H_x behavior	
Harmonic Generation up to 1	2.75 GHz ^(1,2,3)						
Second Order Harmonics	P _{H2}	_	-105	_	dBc	25 dBm, 50Ω, CW mode	
Third Order Harmonics	P _{H3}	_	-105	_	dBc	25 dBm, 50Ω, CW mode	
All RF Ports	P _{Hx}	_	-105	_	dBc	25 dBm, 50Ω, CW mode	
Intermodulation Distortion IM	ID2 ^(1,2,3)						
IIP2, low	IIP2,I	_	110	_	dBm	UDO liti t-l-l- O	
IIP2, high	IIP2,h	_	130	_	dBm	IIP2 conditions table 8	
Intermodulation Distortion IM	ID3 ^(1,2,3)	•	•				
IIP3	IIP3	_	74	_	dBm	IIP3 conditions table 9	
SV LTE Intermodulation (1,2,3)		•	,				
IIP3,SVLTE	IIP3,SV	_	74	_	dBm	SV-LTE conditions table 10	

 $^{^{1)}}$ Terminating Port Impedance: $Z_0 = 50~\Omega$ $^{2)}$ Supply Voltage: $V_{DD} = 1.8 - 3.6~V$ $^{3)}$ On application board without any matching components

Data Sheet 11 Revision 1.3 - 2016-08-24

Table 10: IIP2 conditions table

Band	In-Band Frequency	Blocker Frequency 1	Blocker Power 1	Blocker Frequency 2	Blocker Power 2
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band 1 Low	2140	1950	20	190	-15
Band 1 High	2140	1950	20	4090	-15
Band 5 Low	881.5	836.5	20	45	-15
Band 5 High	881.5	836.5	20	1718	-15

Table 11: IIP3 conditions table

Band	In-Band Frequency	Blocker Frequency 1	Blocker Power 1	Blocker Frequency 2	Blocker Power 2
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band 1	2140	1950	20	1760	-15
Band 5	881.5	836.5	20	791.5	-15

Table 12: SV-LTE conditions table

Band	In-Band Frequency	Blocker Frequency 1	Blocker Power 1	Blocker Frequency 2	Blocker Power 2
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band 5	872	827	23	872	14
Band 13	747	786	23	747	14
Band 20	878	833	23	2544	14

Data Sheet 12 Revision 1.3 - 2016-08-24

9 Package Outline and Pin Configuration

Figure 2: Pinout (top view)

Table 13: Pin Description

Pin No.	Name	Pin	Buffer	Function
		Туре	Type	
1	RF1	I/O		RF1
2	GND	GND		Ground
3	RF2	I/O		RF2
4	VDD	PWR		Supply voltage
5	CTRL 1	I		Control Pin 1
6	CTRL 2	I		Control Pin 2
7	RF4	I/O		RF4
8	GND	GND		Ground
9	RF3	I/O		RF3
10	ANT	I/O		Common RF / Antenna

Table 14: Mechanical Data

Parameter	Symbol	Value	Unit
X-Dimension	X	1.1 ± 0.05	mm
Y-Dimension	Y	1.5 ± 0.05	mm
Size	Size	1.65	mm ²
Height	Н	0.375	mm

Data Sheet 13 Revision 1.3 - 2016-08-24

Figure 3: Package Dimensions Drawing

Figure 4: Land pattern and stencil mask

Data Sheet 14 Revision 1.3 - 2016-08-24

Figure 5: Marking

Figure 6: Tape drawing

Data Sheet 15 Revision 1.3 - 2016-08-24

www.infineon.com