Interprétation abstraite (les bases)

November 15, 2021

- Interprétation abstraite: intro
- 2 La théorie: de la sémantique concrète à la sémantique abstraite
- Interprétation abstraite: abstractions, theorie et pratique

Objectif: la sûreté 1/2

Prouver que (certains) accès mémoire sont safe:

```
int main () {
  int v[10];
  v[0]=0; 
  return v[20]; 
}
```

► Ce programme a un accès illégal à un tableau.

«- 3 / 48 -»

Objectif: la sûreté 2/2

Prouver la correction (absence de bugs fonctionnels):

```
void find_mini (int a[N], int 1, int u){
  unsigned int i=1;
  int b=a[1]
  while (i <= u){
    if(a[i] < b) b=a[i];
    i++;
  }
  // here b = min(a[l..u])
}</pre>
```

► Ce programme trouve le minimum du sous-tableau.

Objectif: la performance 1/2

Permettre le parallelisme dans une boucle:

```
void fill_array (char *p){
  unsigned int i;
  for (i=0; i<4; i++)
      *(p + i) = 0;
  for (i=4; i<8; i++)
      *(p + i) = 2*i;
}</pre>
p \xrightarrow{p+3} \xrightarrow{p+4} p+7
```

▶ The two regions do not overlap.

«- 5 / 48 -»

Objectif: la performance 2/2

Permettre le déplacement de code:

```
void code_motion(int* p1, int *p2, int *p){
    // ...
    while(p2>p1){
    a = *p;
        *p2 = 4;
        p2 --;
    }
}
```

- ▶ Si p et p_2 ne pointent pas sur la même adresse, a=*p est invariant.
- ▶ On sors l'instruction de la boucle pour économiser un load par itération.

Reference books

Objectifs

Compilation vs analyse de programme:

- Compilation: générer du code (en préservant la sémantique).
- Analyse de programme: découvrir des propriétés, prouver l'absence de bugs.
- ▶ Dans les deux cas, les programmes sont des entrées.

Remerciements: Slides basées sur du travail de L. Gonnord, D. Monniaux, D. Hirschkoff, P. Roux,

Prouver des propriétés (non-triviales) sur des programmes

- Idée: les programmes ont des comportements définis mathématiquement.
- Prouver automatiquement des propriétés.

Pas de recette miracle

indécidable: pas d'analyse statique "magique". Il est impossible de prouver des propriétés intéressantes:

- automatiquement
- de manière exacte
- sur des programmes non bornés.

Pas de recette miracle

indécidable: pas d'analyse statique "magique". Il est im possible de prouver des propriétés intéressantes:

- automatiquement
- de manière exacte avec des faux positifs!
- sur des programmes non bornés.
- ► Interprétation abstraite = approximations conservatives.

- Interprétation abstraite: intro
- La théorie: de la sémantique concrète à la sémantique abstraite
 - Sémantique concrète

- Sémantique abstraite: calcul des invariants
- 3 Interprétation abstraite: abstractions, theorie et pratique

Objectifs de la section

- Comportement du programme: sémantique concrete
- Comportements acceptables: cf. slide suivante
- Approximation du comportement du prog.: sémantique

Notre language: le "mini-while"

grammaire (abstraite):

$$S(Smt) ::= x := e$$
 affectation $| skip |$ aucun effet $| S_1; S_2 |$ séquence $| if b then S_1 else S_2 |$ test $| while b do S done |$ boucle

$$e ::= x \mid n \mid e + e \mid e * e \dots$$

| rand (e,e) rand: nombre aléatoire entre les bornes

- Interprétation abstraite: intro
- 2 La théorie: de la sémantique concrète à la sémantique abstraite
 - Sémantique concrète
 - Sémantique abstraite: calcul des invariants
- Interprétation abstraite: abstractions, theorie et pratique
 - La notion de domaine abstrait
 - Domaine abstrait non-relationel

Expressions : ensembles de valeurs

Semantique des expressions: $\llbracket e \rrbracket_{\mathrm{E}} : (\mathsf{Var} \to \mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$

Environnement

L'<u>environnement</u> est la fonction σ : Var $\to \mathbb{Z}$ qui associe chaque variable à une valeur.

Sémantique concrète sur un CFG

La même sémantique peut être décrite sur un graphe de flot de controle:

```
0x = rand(0, 12);
1y = 15;
while 2(x > 0) \{
3y = y / 2;
4x = x - y;
5y = y + 8;
0 \xrightarrow{x = rand(0, 12)} 1 \xrightarrow{y = 15} 2 \xrightarrow{x > 0} 3
```

Terminologie

Ce CFG peut être vu comme un système de transitions.

Sémantique concrète et CFG 1/3

La sémantique concrète peut être exprimée sur ce systeme de transition:

• Une valuation est une paire (k, σ) avec

$$\sigma: \mathsf{Var} \to \mathbb{Z}$$
:

• Var est l'ensemble fini de d variables numérotées $[0, \ldots, d-1]$

Quelle est la sémantique:

- pour les conditions?
- pour les actions?
- pour le programme?

Sémantique concrète et CFG 2/3

Soit L l'ensemble des noeuds du CFG.

Un arc est de type $L \times commande \times L$ (commande = qqch qui modifie l'état)

Sémantique des commandes: $\llbracket c \rrbracket_{\mathrm{C}} : \mathcal{P}(\mathsf{Var} \to \mathbb{Z}) \to \mathcal{P}(\mathsf{Var} \to \mathbb{Z})$

Ensembles de valuation

Attention: Un état est un ensemble de valuations ($\mathcal{P}(Var \to \mathbb{Z})$).

Exercice Quelle est la sémantique pour:

- La commande x := 42 + x
- Avec l'état initial $\Sigma = \{ [x \mapsto 3], [x \mapsto 4] \}$

Sémantique concrète et CFG 3/3

Sémantique des programmes : $[\![(L,A)]\!]:L\to \mathcal{P}(\mathsf{Var}\to \mathbb{Z})$

On associe un meilleur invariant (un état) à chaque noeud du CFG.

C'est la plus petite solution (selon l'ordre ⊆) du système:

$$\begin{cases} R_0 = \mathsf{Var} \to \mathbb{Z} \\ R_{k'} = \bigcup_{(k,c,k') \in A} \llbracket c \rrbracket_{\mathrm{C}} (R_k) \end{cases} \qquad k' \neq 0$$

Théorème

()

Il existe forcément une solution (théorème de Knaster-Tarski).

Sémantique concrète: un exemple 1/2

$$_{0}x = 0;$$
while $_{1}(x \le 99) \{$
 $_{2}x = x + 1;$
 $_{3}$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$

La sémantique du programme ($L \to \mathcal{P}(Var \to \mathbb{Z})$) :

- \bullet $0 \mapsto \{[x \mapsto i], i \in \mathbb{Z}\}$
- Autres points de contrôle?

Interprétation abstraite (les bases)

Sémantique concrète: un exemple 2/2

Les équations (R_k est l'état associé au noeud k):

$$\begin{cases} R_0 = \mathsf{Var} \to \mathbb{Z} \\ R_{k'} = \bigcup_{(k,c,k') \in A} \llbracket c \rrbracket_{\mathrm{C}} (R_k) \ k' \neq 0 \end{cases}$$

Écrire les équations

Calculer la sémantique concrète: un algorithme informel

Les équations (R_k est l'état associé au noeud k):

$$\begin{cases} R_0 = \mathsf{Var} \to \mathbb{Z} \\ R_{k'} = \bigcup_{(k,c,k') \in A} \llbracket c \rrbracket_{\mathbf{C}} (R_k) \end{cases} \qquad k' \neq 0$$

- début: $i \leftarrow 0$, $R^0 \leftarrow$ "toutes les valuations possibles pour k=0, vide sinon"
- loop: Calculer R^{i+1} à partir de R^i :
 - appliquer $[\![c]\!]_{\mathbf{C}}$ sur les états R_k^i des arcs entrants.
 - faire l'union de ces ensembles pour obtenir $R_{k'}^{i+1}$
- Si $R^{i+1} = R^i$ alors renvoyer cet ensemble, sinon: goto loop.

Terminaison

Ceci ne termine pas en général. Si cela se termine, on obtient la sémantique concrète du programme.

- Interprétation abstraite: intro
- 2 La théorie: de la sémantique concrète à la sémantique abstraite
 - Sémantique concrète
 - Sémantique abstraite: calcul des invariants
- Interprétation abstraite: abstractions, theorie et pratique
 - La notion de domaine abstrait
 - Domaine abstrait non-relationel

Sémantique abstraite: calcul des invariants

Voici les équations qu'on résout avec notre algorithme itératif:

$$\begin{cases} R_0 = \mathsf{Var} \to \mathbb{Z} \\ R_{k'} = \bigcup_{(k,c,k') \in A} \llbracket c \rrbracket_{\mathbf{C}} (R_k) \end{cases} \qquad k' \neq 0$$

Il y a trois problèmes à régler :

- Représenter les états $R^i(k)$.
- Calculer $[c]_{C}(R^{i})$, ainsi que les unions.
- Le calcul peut ne pas se terminer. Donner un exemple!

Représenter les états 1/2

Premier problème : représenter les états valuations

$$R^{(i)}:(k\to):\mathcal{P}(\mathsf{Var}\to\mathbb{Z})$$

Observations:

- Les d variables peuvent etre numérotées de 0 à d-1
- Dans nos exemples, on attribue le numéro 0 à la variable x, le numéro 1 à la variable y, et ainsi de suite.
- La valeur de toutes les variables : représentée par un vecteur dans \mathbb{Z}^d :

Représenter les états 2/2

Idée: Représenter les valeurs des variables:

$$R_k \in \mathcal{P}(\mathbb{Z}^d)$$

par un sur-ensemble fini calculable R_k^{\sharp} :

▶ Et calculer ces valeurs abstraites for à chaque : "x is ≥ 0 at pc=42"

Calculer les relations de transition

Second problèmh : calculer les transitions pour les commandes et unions:

$$\bigcup_{(k,c,k')\in A} \llbracket c \rrbracket_{\mathcal{C}}(R_k) \quad \rightsquigarrow \bigsqcup_{(k,c,k')\in A}^{\sharp} \llbracket c \rrbracket_{\mathcal{C}}^{\sharp}(R_k^{\sharp})$$

- Les commandes travaillent sur des valeurs abstraites.
- L'union aussi.

()

▶ Il faut remplacer notre sémantique concrete $[]_{\mathbb{C}}$ par une sémantique abstraite $[]_{\mathbb{C}}$ et donner une union abstraite compatible.

Interprétation abstraite (les bases)

Algorithme de l'interprétation abstraite

Algorithme (haut niveau):

- Écrire les équations correspondantes à la sémantique abstraite
- Interpréter le programme depuis le début, mais de manière abstraite:
 - Calculer un élement de valeur abstraite pour chaque noeud:
 - Toujours faire l'union (join) avec l'ancienne valeur.
- Arreter lorsqu'il n'y a plus de changement (pour tous les points de controle).

credit exemples, P. Roux (Onera)

▶ **Objectif**: propager le **Signe** pour chaque variable, avec les notations ≥ 0 , ≤ 0 , \top (peut être positif ou negatif), \bot (aucune info disponible pour l'instant).

```
0x = rand(0, 12); 1y = 42;
while 2(x > 0) {
3x = x - 2;
4y = y + 4;
y = y + 4
x = rand(0, 12)  1
y = 42
x = rand(0, 12)  1
y = 42
x \le 0
```

$$\begin{split} R_0^{\sharp\,i+1} &= \top_{\text{nr}} \\ R_1^{\sharp\,i+1} &= R_0^{\sharp\,i+1} \left[x \mapsto \geqslant 0 \right] \\ R_2^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[y \mapsto \geqslant 0 \right] \sqcup_{\text{nr}}^{\sharp} \\ R_2^{\sharp\,i} &= R_1^{\sharp\,i+1} \left[y \mapsto R_4^{\sharp\,i} (y) +^{\sharp} (\geqslant 0) \right] \\ R_3^{\sharp\,i+1} &= R_2^{\sharp\,i+1} \left[x \mapsto R_2^{\sharp\,i+1} (x) \sqcap^{\sharp} \geqslant 0 \right] \\ R_4^{\sharp\,i+1} &= R_3^{\sharp\,i+1} \left[x \mapsto R_3^{\sharp\,i+1} (x) -^{\sharp} (\geqslant 0) \right] \\ R_5^{\sharp\,i+1} &= R_2^{\sharp\,i+1} \left[x \mapsto R_2^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0 \right] \end{split}$$

$$0x = rand(0, 12);_{1}y = 42;$$
while $_{2}(x > 0)$ {
$$3x = x - 2;$$

$$_{4}y = y + 4;$$
}
$$0 \xrightarrow{x = rand(0, 12)} 1 \xrightarrow{y = 42} 2 \xrightarrow{x \le 0}$$


```
0x = rand(0, 12); 1y = 42;
while 2(x > 0) {
3x = x - 2;
4y = y + 4;
y = y + 4
x = x - 2
y = y + 4
x = x - 2
y = y + 4
x = x - 2
y = y + 4
```



```
0x = rand(0, 12); 1y = 42;
while 2(x > 0) {
3x = x - 2;
4y = y + 4;
y = y + 4
x = x - 2
y = y + 4
x > 0
```

$$\begin{array}{llll} R_{1}^{\sharp\,i+1} &= \top_{\mathrm{nr}} & & & & & & & & & & & & \\ R_{1}^{\sharp\,i+1} &= R_{0}^{\sharp\,i+1} & [x\mapsto \geqslant 0] & & & & & & & & \\ R_{1}^{\sharp\,i+1} &= R_{0}^{\sharp\,i+1} & [y\mapsto \geqslant 0] \sqcup_{\mathrm{nr}}^{\sharp} & & & & & \\ R_{2}^{\sharp\,i+1} &= R_{1}^{\sharp\,i+1} & [y\mapsto \geqslant 0] \sqcup_{\mathrm{nr}}^{\sharp} & & & & & \\ & & & & & & & & \\ R_{3}^{\sharp\,i+1} &= R_{2}^{\sharp\,i+1} & [x\mapsto R_{2}^{\sharp\,i+1}(x) \sqcap^{\sharp} \geqslant 0] & & & & & \\ R_{3}^{\sharp\,i+1} &= R_{3}^{\sharp\,i+1} & [x\mapsto R_{3}^{\sharp\,i+1}(x) - \sharp \geqslant 0] & & & & & \\ R_{5}^{\sharp\,i+1} &= R_{2}^{\sharp\,i+1} & [x\mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0] & & & & & \\ \end{array}$$

$$0x = rand(0, 12); 1y = 42;$$
while $2(x > 0)$ {
$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$y = y + 4$$

$$x > 0$$

$$x = rand(0, 12) \rightarrow 1$$

$$y = 42$$

$$y = 42$$

$$0x = rand(0, 12); 1y = 42;$$
while $2(x > 0)$ {
$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$y = y + 4$$

$$x = x - 2$$

$$y = y + 4$$

$$x = x - 2$$

$$x = x - 2$$

$$y = y + 4$$

```
0x = rand(0, 12);_{1}y = 42;
while _{2}(x > 0) {
3x = x - 2;
_{4}y = y + 4;
}
0 = x = rand(0, 12)
x = rand(0, 12)
x = x + 2
x = x - 2
y = y + 4
x = x - 2
x = 0
```


$$0x = rand(0, 12); 1y = 42;$$
while $2(x > 0)$ {
$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$y = y + 4$$

$$x = x - 2$$

$$x = x - 2$$

$$y = y + 4$$

$$x = x - 2$$

$$x = x - 2$$

$$y = y + 4$$

$$R_{1}^{\sharp\,i+1} = \top_{\text{nr}} \\ R_{1}^{\sharp\,i+1} = R_{0}^{\sharp\,i+1} [x \mapsto \geqslant 0] \\ R_{2}^{\sharp\,i+1} = R_{1}^{\sharp\,i+1} [y \mapsto \geqslant 0] \sqcup_{\text{nr}}^{\sharp} \\ R_{3}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} (x) \sqcap^{\sharp} \geqslant 0] \\ R_{4}^{\sharp\,i+1} = R_{3}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} (x) \sqcap^{\sharp} \geqslant 0] \\ R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0]$$

$R_{0\ldots 1}^{\sharpi+1}= op_{\mathrm{nr}}$	k	${R_k^\sharp}^0$	$R_k^{\sharp \ 1}$	${R_k^{\sharp}}^2$	$R_k^{\sharp \ 3}$
$R_1^{\sharp i+1} = R_0^{\sharp i+1} \left[x \mapsto \geqslant 0 \right]$	0	(\bot,\bot)	(\top, \top)	(\top, \top)	
$R_2^{\sharp i+1} = R_1^{\sharp i+1} [y \mapsto \geqslant 0] \sqcup_{\operatorname{nr}}^{\sharp}$	1	(\bot,\bot)	$(\geqslant 0, \top)$	$(\geqslant 0, \top)$	
$R_4^{\sharp i} \left[y \mapsto R_4^{\sharp i} (y) +^{\sharp} (\geqslant 0) \right]$	2	(\bot,\bot)	$(\geqslant 0, \geqslant 0)$	$(\top, \geqslant 0)$	
	3	(\bot,\bot)	$(\geqslant 0, \geqslant 0)$	$(\geqslant 0, \geqslant 0)$	
$R_3^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1}(x) \sqcap^{\sharp} \geqslant 0 \right]$	4	(\bot,\bot)	$(\top, \geqslant 0)$	$(\top, \geqslant 0)$	
$R_4^{\sharp i+1} = R_3^{\sharp i+1} \left[x \mapsto R_3^{\sharp i+1}(x) - ^{\sharp} (\geqslant 0) \right]$	5	(\bot,\bot)	$(0,\geqslant 0)$	$(\leqslant 0, \geqslant 0)$	
$R_5^{\sharp \ i+1} = R_2^{\sharp \ i+1} \left[x \mapsto R_2^{\sharp \ i+1} \sqcap^{\sharp} \leqslant 0 \right]$					

$R_0^{\sharpi+1} = extstyle ag{nr}$	k	${R_k^{\sharp}}^0$	${R_k^{\sharp}}^1$	${R_k^\sharp}^2$	$R_k^{\sharp 3}$
$R_1^{\sharp i+1} = R_0^{\sharp i+1} \left[x \mapsto \geqslant 0 \right]$	0	(\bot,\bot)	(\top, \top)	(\top, \top)	(\top, \top)
$R_2^{\sharp i+1} = R_1^{\sharp i+1} \left[y \mapsto \geqslant 0 \right] \sqcup_{\operatorname{nr}}^{\sharp}$			$(\geqslant 0, \top)$		
$R_4^{\sharp i} \left[y \mapsto R_4^{\sharp i}(y) + ^{\sharp} (\geqslant 0) \right]$			$(\geqslant 0, \geqslant 0)$		
			$(\geqslant 0, \geqslant 0)$		
$R_3^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1}(x) \sqcap^{\sharp} \geqslant 0 \right]$			$(\top,\geqslant 0)$		
$R_4^{\sharp i+1} = R_3^{\sharp i+1} \left[x \mapsto R_3^{\sharp i+1}(x) - ^{\sharp} (\geqslant 0) \right]$	5	(\bot,\bot)	$(0,\geqslant 0)$	$(\leqslant 0, \geqslant 0)$	
$R_5^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right]$					

()

$$0x = rand(0, 12); 1y = 42;$$
while $2(x > 0)$ {
$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$y = y + 4$$

$$x > 0$$

$$x = rand(0, 12)$$

$$y = 42$$

$$x \le 0$$

$$R_{1}^{\sharp\,i+1} = \top_{\text{nr}} \\ R_{1}^{\sharp\,i+1} = R_{0}^{\sharp\,i+1} \begin{bmatrix} x \mapsto \geqslant 0 \end{bmatrix} \\ R_{1}^{\sharp\,i+1} = R_{0}^{\sharp\,i+1} \begin{bmatrix} x \mapsto \geqslant 0 \end{bmatrix} \\ R_{2}^{\sharp\,i+1} = R_{1}^{\sharp\,i+1} \begin{bmatrix} y \mapsto \geqslant 0 \end{bmatrix} \sqcup_{\text{nr}}^{\sharp} \\ R_{3}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} \begin{bmatrix} x \mapsto R_{2}^{\sharp\,i+1} (x) \sqcap^{\sharp} \geqslant 0 \end{bmatrix} \\ R_{3}^{\sharp\,i+1} = R_{3}^{\sharp\,i+1} \begin{bmatrix} x \mapsto R_{2}^{\sharp\,i+1} (x) \sqcap^{\sharp} \geqslant 0 \end{bmatrix} \\ R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} \begin{bmatrix} x \mapsto R_{2}^{\sharp\,i+1} (x) \sqcap^{\sharp} \geqslant 0 \end{bmatrix} \\ R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} \begin{bmatrix} x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0 \end{bmatrix}$$

$$0x = rand(0, 12); 1y = 42;$$
while $2(x > 0)$ {
$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$y = y + 4$$

$$x > 0$$

$$x = rand(0, 12) \rightarrow 1$$

$$y = 42$$

$$y = 42$$

$$x \le 0$$

$$R_{1}^{\sharp\,i+1} = \top_{\text{nr}} \\ R_{1}^{\sharp\,i+1} = R_{0}^{\sharp\,i+1} [x \mapsto \geqslant 0] \\ R_{2}^{\sharp\,i+1} = R_{1}^{\sharp\,i+1} [y \mapsto \geqslant 0] \sqcup_{\text{nr}}^{\sharp} \\ R_{3}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} (x) \sqcap^{\sharp} \geqslant 0] \\ R_{3}^{\sharp\,i+1} = R_{3}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} (x) \dashv^{\sharp} \geqslant 0] \\ R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0]$$

$$R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0]$$

$$R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0]$$

$$R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0]$$

$$R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0]$$

$$R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0]$$

$$R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0]$$

$$R_{5}^{\sharp\,i+1} = R_{5}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0]$$

$$0x = rand(0, 12);_{1}y = 42;$$
while $_{2}(x > 0)$ {
$$3x = x - 2; \\
4y = y + 4;$$

$$y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$R_{1}^{\sharp\,i+1} = \top_{\text{nr}} \\ R_{1}^{\sharp\,i+1} = R_{0}^{\sharp\,i+1} [x \mapsto \geqslant 0] \\ R_{2}^{\sharp\,i+1} = R_{1}^{\sharp\,i+1} [y \mapsto \geqslant 0] \sqcup_{\text{nr}}^{\sharp} \\ R_{3}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} (x) \sqcap^{\sharp} \geqslant 0] \\ R_{4}^{\sharp\,i+1} = R_{3}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} (x) \sqcap^{\sharp} \geqslant 0] \\ R_{5}^{\sharp\,i+1} = R_{2}^{\sharp\,i+1} [x \mapsto R_{2}^{\sharp\,i+1} \sqcap^{\sharp} \leqslant 0]$$

$R_{0\ldots 1}^{\sharpi+1}= op_{\mathrm{nr}}$	k	$R_k^{\sharp \ 0}$	$R_k^{\sharp \ 1}$	${R_k^\sharp}^2$	$R_k^{\sharp 3}$
$R_1^{\sharp i+1} = R_0^{\sharp i+1} \left[x \mapsto \geqslant 0 \right]$	0	(\bot,\bot)	(\top, \top)	(\top, \top)	(\top, \top)
$R_2^{\sharp i+1} = R_1^{\sharp i+1} [y \mapsto \geqslant 0] \sqcup_{\operatorname{nr}}^{\sharp}$			$(\geqslant 0, \top)$	$(\geqslant 0, \top)$	$(\geqslant 0, \top)$
$R_4^{\sharp i} \left[y \mapsto R_4^{\sharp i}(y) + {}^{\sharp}(\geqslant 0) \right]$			$(\geqslant 0, \geqslant 0)$	$(\top, \geqslant 0)$	$(\top,\geqslant 0)$
	3	(\bot, \bot)	$(\geqslant 0, \geqslant 0)$	$(\geqslant 0, \geqslant 0)$	$(\geqslant 0, \geqslant 0)$
$R_3^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1}(x) \sqcap^{\sharp} \geqslant 0 \right]$	4	(\bot, \bot)	$(\top, \geqslant 0)$	$(\top, \geqslant 0)$	$(\top,\geqslant 0)$
$R_4^{\sharp i+1} = R_3^{\sharp i+1} \left[x \mapsto R_3^{\sharp i+1}(x) - ^{\sharp} (\geqslant 0) \right]$	5	(\bot,\bot)	$(0,\geqslant 0)$	$(\leqslant 0, \geqslant 0)$	
$R_5^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right]$					

$$0x = rand(0, 12); 1y = 42;$$
while $2(x > 0)$ {
$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$y = y + 4$$

$$x > 0$$

$R_0^{\sharpi+1} = op_{ m nr}$	k	$R_k^{\sharp \ 0}$	${R_k^{\sharp}}^1$	${R_k^\sharp}^2$	$R_k^{\sharp 3}$
$R_1^{\sharp i+1} = R_0^{\sharp i+1} \ [x \mapsto \geqslant 0]$	0	(\bot,\bot)	(\top, \top)	(\top, \top)	(\top, \top)
$R_2^{\sharp i+1} = R_1^{\sharp i+1} [y \mapsto \geqslant 0] \sqcup_{\text{nr}}^{\sharp}$	1	(\bot, \bot)	$(\geqslant 0, \top)$	$(\geqslant 0, \top)$	$(\geqslant 0, \top)$
$R_4^{\sharp i} \left[y \mapsto R_4^{\sharp i} (y) +^{\sharp} (\geqslant 0) \right]$			$(\geqslant 0, \geqslant 0)$	$(\top,\geqslant 0)$	$(\top,\geqslant 0)$
$n_4 \mid y \mapsto n_4 \mid (y) + (\geqslant 0)$	3	(\bot,\bot)	$(\geqslant 0, \geqslant 0)$	$(\geqslant 0, \geqslant 0)$	$(\geqslant 0, \geqslant 0)$
$R_3^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1}(x) \sqcap^{\sharp} \geqslant 0 \right]$	4	(\bot, \bot)	$(\top, \geqslant 0)$	$(\top, \geqslant 0)$	$(\top, \geqslant 0)$
$R_4^{\sharp i+1} = R_3^{\sharp i+1} \left[x \mapsto R_3^{\sharp i+1}(x) - ^{\sharp} (\geqslant 0) \right]$	5	(\bot,\bot)	$(0,\geqslant 0)$	$(\leqslant 0, \geqslant 0)$	$(\leqslant 0, \geqslant 0)$
$R_5^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right]$					

$R_0^{\sharpi+1} = op_{ m nr}$	k	$R_k^{\sharp \ 0}$	${R_k^\sharp}^1$	${R_k^\sharp}^2$	$R_k^{\sharp 3}$	
$R_1^{\sharp i+1} = R_0^{\sharp i+1} [x \mapsto \geqslant 0]$	0	(\bot,\bot)	(\top, \top)		(\top, \top)	
$R_2^{\sharp i+1} = R_1^{\sharp i+1} \left[y \mapsto \geqslant 0 \right] \sqcup_{\operatorname{nr}}^{\sharp}$	1	(\bot, \bot)	$(\geqslant 0, \top)$	$(\geqslant 0, \top)$	$(\geqslant 0, \top)$	
$R_4^{\sharp i} \left[y \mapsto R_4^{\sharp i}(y) + ^{\sharp} (\geqslant 0) \right]$	2	(\bot, \bot)	$(\geqslant 0, \geqslant 0)$	$(\top,\geqslant 0)$	$(\top, \geqslant 0)$	
	3	(\bot, \bot)	$(\geqslant 0, \geqslant 0)$	$(\geqslant 0, \geqslant 0)$	$(\geqslant 0, \geqslant 0)$	
$R_3^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1}(x) \sqcap^{\sharp} \geqslant 0 \right]$	4	(\bot,\bot)	$(\top, \geqslant 0)$	$(\top, \geqslant 0)$	$(\top, \geqslant 0)$	
$R_4^{\sharp i+1} = R_3^{\sharp i+1} \left[x \mapsto R_3^{\sharp i+1}(x) - ^{\sharp} (\geqslant 0) \right]$	5	(\bot,\bot)	$(0, \geqslant 0)$	$(\leqslant 0, \geqslant 0)$	$(\leqslant 0, \geqslant 0)$	
$R_5^{\sharp i+1} = R_2^{\sharp i+1} \left[x \mapsto R_2^{\sharp i+1} \sqcap^{\sharp} \leqslant 0 \right]$		Point-five atteint				

Conclusion de la section

Idée principale: Abstraction

Abstraire les ensembles de valuations permet d'avoir une analyse decidable

Comment construire la sémantique abstraite:

- de manière correcte?
- de manière a garantir la terminaison par construction?
- ▶ Il faut un peu plus de formalisation.

- 1 Interprétation abstraite: intro
- 2 La théorie: de la sémantique concrète à la sémantique abstraite
- 3 Interprétation abstraite: abstractions, theorie et pratique
 - La notion de domaine abstrait
 - Domaine abstrait non-relationel

- Interprétation abstraite: intro
- 2 La théorie: de la sémantique concrète à la sémantique abstraite
 - Sémantique concrète

()

- Sémantique abstraite: calcul des invariants
- Interprétation abstraite: abstractions, theorie et pratique
 - La notion de domaine abstrait
 - Domaine abstrait non-relationel

Représenter les états

Représenter Abstraire un état: $R_k \in \mathcal{D}$ par un a sur-ensemble fini calculable $R_k^{\sharp} \in \mathcal{D}^{\sharp}$:

Domaine abstrait: notations

Definition (domaine abstrait \mathcal{D}^{\sharp})

Un domaine abstrait définit:

- un ensemble \mathcal{D}^{\sharp} d'élements abstraits;
- ullet des opérations abstraites [] correspondantes aux opérations concretes [] .

Definition (abstraction α , concrétisation γ)

- Une fonction d'abstraction α qui fait correspondre chaque état concret R_k à un objet abstrait R_k^{\sharp} , approximant R.
- Une fonction de concrétisation γ qui fait correspondre chaque état abstrait R_k^{\sharp} au plus grand état concret R_k dont il est l'approximation.

Concrete vs Abstract: digest

Du treillis au domaine abstrait 1/2

Definition (Treillis)

Un **treillis** est un ensemble partiellement ordonné (\sqsubseteq) pour lequel chaque paire d'élements (x,y) a:

- un sup: $x \sqcup y$, aussi appelé union, ou join (abstrait).
- un inf: $x \sqcap y$, aussi appelé intersection, ou meet (abstrait).

Il peut être représenté par un diagramme de Hasse:

Treillis des partitions d'un ensemble de 4 élements

From User:ed a2s. Personal Work, CC BY-SA 3.0, https:

//commons.wikimedia.org/w/index.php?curid=318292

Du treillis au domaine abstrait 2/2

- Onstruire (α, γ) , une correspondance de Galois du domaine concret \mathcal{D} (\subseteq , \cap , \emptyset , \mathbb{Z}^d) vers le domaine abstrait \mathcal{D}^{\sharp} (un treillis: $\sqsubseteq^{\sharp}, \sqcap^{\sharp}, \bot, \top$).
- ② Construire les fonctions de transfert abstraites (qui doivent être sures).

Definition (Correspondance de Galois)

 (α, γ) est une correspondance de Galois ssi $\forall x \in \mathcal{D}, x \subseteq \gamma(\alpha(x))$

Definition (Sûreté)

- sûreté de l'ordre abstrait: $\forall x^{\sharp}, y^{\sharp} \in \mathcal{D}^{\sharp}, \quad x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp} \Rightarrow \gamma(x^{\sharp}) \subseteq \gamma(y^{\sharp})$
- sûreté des opérations abstraites: $f(x) \subseteq \gamma(f^{\sharp}(\alpha(x)))$

Quelques exemples d'abstractions

Pour des valeurs numériques, on peut:

- Abstraire $\mathcal{P}(\mathsf{Var} \to \mathbb{Z})$ en $\mathsf{Var} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en \mathcal{D}^\sharp
 - <u>non relationel</u>: les valeurs de x et y sont indépendantes
 - exemples: signes, constantes, intervales.
- Abstraire $\mathcal{P}(\mathsf{Var} \to \mathbb{Z})$ directement en \mathcal{D}^{\sharp}
 - relationel: certaines combinaisons de x et y sont impossibles
 - + plus précis
 - plus compliqué, plus coûteux...
 - Octagones, polyèdres

Notion de sûreté

Definition (Sûreté de l'analyse / de la sémantique)

La sémantique abstraite est une **sur-approximation sûre** de la sémantique concrète, ssi $\forall k \in L$, on a: $R_k \subseteq \gamma\left(R_k^\sharp\right)$

- Interprétation abstraite: intro
- 2 La théorie: de la sémantique concrète à la sémantique abstraite
 - Sémantique concrète
 - Sémantique abstraite: calcul des invariants
- Interprétation abstraite: abstractions, theorie et pratique
 - La notion de domaine abstrait
 - Domaine abstrait non-relationel

Domaine non-relationel (nr): une construction simple

Abstraire $\mathcal{P}(\mathsf{Var} \to \mathbb{Z})$ en $\mathsf{Var} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en \mathcal{D}^{\sharp}

C'est-à-dire abstraire chaque variable indépendamment:

$$ullet$$
 $\mathcal{D}_{\mathrm{nr}}^{\sharp} = \mathsf{Var} o \mathcal{D}^{\sharp}$

•
$$x^{\sharp} \sqsubseteq_{\mathrm{nr}}^{\sharp} y^{\sharp}$$
 quand $\forall v \in \mathsf{Var}, \, x^{\sharp}(v) \sqsubseteq^{\sharp} y^{\sharp}(v)$

$$\bullet \ \gamma_{\mathrm{nr}} \left(x^{\sharp} \right) = \left\{ \rho \in \left(\mathsf{Var} \to \mathbb{Z} \right) \ \middle| \ \forall v \in \mathsf{Var}, \sigma(v) \in \gamma \left(x^{\sharp}(v) \right) \right\}$$

•
$$\alpha_{\rm nr}(x) = v \mapsto \alpha \left(\{ \rho(v) \mid \sigma \in x \} \right)$$

$$\bullet$$
 $\top_{nr} = v \mapsto \top$

$$\bullet$$
 $\perp_{nr} = v \mapsto \perp$

$$\bullet \ x^{\sharp} \sqcup_{\mathrm{nr}}^{\sharp} y^{\sharp} = v \mapsto x^{\sharp}(v) \sqcup^{\sharp} y^{\sharp}(v)$$

•
$$x^{\sharp} \sqcap_{\operatorname{nr}}^{\sharp} y^{\sharp} = v \mapsto x^{\sharp}(v) \sqcap^{\sharp} y^{\sharp}(v)$$

Signes 1/4: abstraction d'une variable

$$\begin{array}{c|c} \top & \text{quand } \exists s,s' \in S, s < 0,s' > 0 \\ \leqslant 0 & \text{quand } \forall s \in S, s \leqslant 0 \land \exists s \in S, s < 0 \\ \geqslant 0 & \text{quand } \forall s \in S, s \geqslant 0 \land \exists s \in S, s > 0 \\ 0 & \text{quand } S = \{0\} \\ \bot & \text{quand } S = \emptyset \\ \end{array}$$

$$\gamma(\top) = \mathbb{Z}
\gamma(\leqslant 0) =] - \infty, 0]
\gamma(\geqslant 0) = [0, +\infty[
\gamma(0) = {0}$$

Abstraction d'un ensemble de valeurs pour une seule variable

Propriétés:

- Sûreté de \sqsubseteq ? Prouver que $x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp} \Rightarrow \gamma(x^{\sharp}) \subseteq \gamma(y^{\sharp})$
- Galois? Prouver que $\gamma(\alpha(X)) \subset X$

()

Signes 2/4: abstraction de toutes les variables

• Abstraction: rappel: $\alpha_{nr}(x) = v \mapsto \alpha\left(\{\sigma(v) \mid \sigma \in x\}\right)$

Exemple:
$$x = \{(1, 2), (2, 3), (-1, 7)\}$$
 $\alpha_{nr}(x) = ?$

• Intersection (meet): rappel $x^{\sharp} \sqcap_{\operatorname{nr}}^{\sharp} y^{\sharp} = v \mapsto x^{\sharp}(v) \sqcap^{\sharp} y^{\sharp}(v)$. Exemple

$$x^{\sharp} = (\geqslant 0, 0), y^{\sharp} = (\top, \geqslant 0), x^{\sharp} \sqcap_{\text{nr}}^{\sharp} y^{\sharp} = ?$$

Essayez pour ⊔ et □

()

Sémantique des expressions pour les domaines non-relationels

Sémantique des expressions: $\llbracket e \rrbracket_{\mathrm{E}}^{\sharp} : (\mathsf{Var} \to \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$

Sémantique des expressions pour les domaines non-relationels

Sémantique des expressions: $\llbracket e \rrbracket_{\mathrm{E}}^{\sharp} : (\mathsf{Var} \to \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$

Remarque

C'est tout à fait calculable.

()

Signes 3/4: définir les opérations arithmétiques abstraites

$$\bullet \ n^{\sharp} = \alpha(\{n\}) \left\{ \begin{array}{ll} \leqslant 0 & \text{si } n < 0 \\ \geqslant 0 & \text{si } n > 0 \\ 0 & \text{si } n = 0 \end{array} \right.$$

()

$$\bullet \ \mathbf{rand}^{\sharp}(n_1,n_2) = \alpha(\llbracket n_1,n_2 \rrbracket) = \left\{ \begin{array}{ll} \bot & \text{si } n_1 > n_2 \\ 0 & \text{si } n_1 = n_2 = 0 \\ \leqslant 0 & \text{sinon si } n_2 \leqslant 0 \\ \geqslant 0 & \text{sinon si } n_1 \geqslant 0 \\ \top & \text{sinon} \end{array} \right.$$

Interprétation abstraite (les bases)

Signes 3/4: définir les opérations arithmétiques abstraites (suite)

•
$$x^{\sharp} + {}^{\sharp} y^{\sharp} = \alpha \left(\left\{ x + y \mid x \in \gamma(x^{\sharp}), y \in \gamma(y^{\sharp}) \right\} \right) =$$

■ Definir —[#]

()

Signes 4/4: définir les commandes abstraites

Sémantique des commandes: $[\![c]\!]_{\mathrm{C}}^{\sharp}: (\mathsf{Var} \to \mathcal{D}^{\sharp}) \to (\mathsf{Var} \to \mathcal{D}^{\sharp})$

Que vaut $[x>0]_{\mathbf{C}}^{\sharp}(x\mapsto\top)$?

Remarque

C'est toujours parfaitement calculable.

Sémantique abstraite d'un programme (rappel)

Rappel : c'est la plus petite solution (selon l'ordre $\sqsubseteq_{nr}^{\sharp}$) du système d'équations:

$$\left\{ \begin{array}{l} R_0^\sharp = \operatorname{Var} \to \top \\ R_{k'}^\sharp = \bigsqcup_{(k,c,k') \in A}^{\sharp_{\operatorname{nr}}} \llbracket c \rrbracket_{\operatorname{C}}^\sharp \left(R_k^\sharp \right) \\ \end{array} \right. \quad k' \neq 0$$

qu'on calcule comme ceci:

- On part de $R^{\sharp 0} := L \to \perp_{\operatorname{nr}};$
- ② On calcule $R^{\sharp^{i+1}}$ à partir du précédent R^{\sharp^i} ;
- 3 On revient à l'étape 2 jusqu'a aboutir à un point-fixe.
- ▶ Terminaison? Sûreté ?