LOAN DOCUMENT

UMBER	LEVEL	Pi	IOTOGRAPH THIS	SHEET	INVENTORY
DTIC ACCESSION NUMBER	WL-YR-	OCUMENT IDEN	075 TEFICATION 97	·	
		Approx	OTHON STATE red for points tribution Unite	release; lited	
(1884)08-108			DISTRIBUTIO	ON STATEMENT	
TIS GRAME DITC TRAC UNANNOUNCED JUSTIFICATION Y VISTRIBUTION/ VAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECI	AL.			DATE A	CCESSIONED
DANG	COURT TELLARD			DATE	RETURNED
1997	70703	056			
DATE RI	ECEIVED IN DTIC			REGISTERED OR	CERTIFIED NUMBER
	PHOTOGRAPH THIS	SHEET AND RI	ETURN TO DTIC-FI		
TIC FORM 70A		DOCUMENT PROCESS	SING SHEET		OUS EDITIONS MAY BE USED UNTIL.

WL-TR-97-4075

PROCEEDINGS OF THE ANNUAL MECHANICS OF COMPOSITES REVIEW (11TH)

Sponsored by:

Air Force Wright Aeronautical Laboratories Materials Laboratory

APRIL 1997

FINAL REPORT FOR PERIOD 22-24 OCTOBER 1985

Approved for public release; distribution unlimited

MATERIALS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AFB OH 45433-7734

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway. Suite 1204. Arignoton, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arington, VA 22			
1. AGENCY USE ONLY (Leave bla		3. REPORT TYPE AND DATES	
	April 1997	Final Report	22-24 OCT 1985
4. TITLE AND SUBTITLE		5. FUND	DING NUMBERS
PROCEEDINGS OF THE ANN	UAL MECHANICS OF COMPO	OSITES REVIEW	
(11th)			
6. AUTHOR(S)			
7. PERFORMING ORGANIZATION	NAME(C) AND ADDRESS(ES)	O DEDE	ORMING ORGANIZATION
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		ORT NUMBER
=		1	
Air Force Materials Laboratory			
Nonmetallic Materials Division			
Wright-Patterson AFB OH 4543	3		
9. SPONSORING/MONITORING A	GENCY NAME(S) AND ADDRESS(E		NSORING/MONITORING
Materials Directorate		AGE	NCY REPORT NUMBER
Wright Laboratory			WW PP 07 1077
Air Force Materiel Command			WL-TR-97-4075
Wright-Patterson AFB Ohio 454	22 7721		
- C			
POC:Tammy Oaks, WL/MLBM. 11. SUPPLEMENTARY NOTES	. 937-255-3008		
THE CONTESTMENT AND THE			
A DISTRIBUTION AVAILABILITY	/ OTATEMENT	I 42h Dio	TRIBUTION CODE
12a. DISTRIBUTION AVAILABILITY	STATEMENT	126. 018	TRIBUTION CODE
l			
APPROVED FOR PUBLIC REI	LEASE; DISTRIBUTION IS UN	LIMITED	
13. ABSTRACT (Maximum 200 wo	ords)		
This report contains the basic un-	edited vu-graphs of the presentat	ions at the "Mechanics" of Com	posites Review" sponsored
jointly by the Non-metallic Mate			
Flight Dynamics Laboratory and			
presentations cover current in-ho			
presentations cover current in-no	ouse and contract programs under	the sponsorship of these three of	gamzadons.
14. SUBJECT TERMS			15. NUMBER OF PAGES
epoxy-matrix composites; compo	osite materials; resin matrix comp	posites; composite bonded joints;	158
fatigue of graphite/epoxy compo			16. PRICE CODE
out or proposition open,	,		
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
LINICI A COTETED	LINICI A SSIEIED	LINICI ACCIEIED	CAD
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAR

AGENDA

MECHANICS OF COMPOSITES REVIEW 22-24 OCTOBER 1985

TUESDAY, 22	OCTOBER 1985	PAGE
7:15 A.M.	REGISTRATION	
8:15	OPENING REMARKS	
8:30	DETECTION OF FAILURE PROGRESSION IN CROSS-PLY GRAPHITE/EPOXY DURING FATIGUE LOADING THROUGH ACOUSTIC EMISSION: J. AWERBUCH, W. Eckles, and E. Katz, Drexel University	1
9:10	MONITORING ACOUSTIC EMISSION IN IMPACT-DAMAGED COMPOSITES: J. Awerbuch, S. Ghaffari, and E. Katz, Drexel University	12
9:50	BREAK	
10:20	PROCESSING THERMOPLASTIC COMPOSITES: G. Springer, Stanford University	22
11:00	COMPOSITE CRASH DYNAMICS: H. CARDEN, NASA LANGLEY RESEARCH CENTER, R. BOITNOTT AND K. JACKSON, U.S. ARMY/AVSCOM	26
11:40	LUNCH	
1:00 p.m.	DYNAMICS AND AEROELASTICITY OF COMPOSITE STRUCTURES: J. Dugundji and G-S. Chen, Massachusetts Institute of Technology	36
1:40	AN ELASTIC STRESS ANALYSIS OF THE DEBOND FRONT IN DCB SPECIMENS: J. CREWS AND K. SHIVAKUMAR, NASA LANGLEY RESEARCH CENTER, AND I. RAJU, ANALYTICAL SERVICES & MATERIALS, INC.	, 42
2:20	BREAK	
2:50	STATISTICAL LIFE PREDICTION OF COMPOSITE STRUCTURES: D. Jones and J. Yang, The George Washington University	48
3:30	ANALYSIS OF DELAMINATION GROWTH FROM MATRIX CRACKS IN LAMINATES SUBJECTED TO BENDING LOADS: G. Murri, NASA Langley Research Center, and E. Guynn, Kentron Inc.	49
4:10	ADJOURN	
5:00	SOCIAL	

AGENDA (CONTINUED) MECHANICS OF COMPOSITES REVIEW 22-24 OCTOBER 1985

WEDNESDAY,	23 OCTOBER 1985	PAG
8:30 A.M.	ANALYSIS OF PROGRESSIVE MATRIX CRACKING IN COMPOSITE LAMINATES: G. Dvorak, E. Wung and K. Ahangar, Rensselaer Polytechnic Institute, and N. Laws, University of Pittsburgh	50
9:10	INITIATION OF FREE-EDGE DELAMINATION IN COMPOSITE LAMINATE - PREDICTION AND EXPERIMENT: R. Kim, University of Dayton Research Institute, and S. Soni, AdTech Systems Research Inc.	59
9:50	BREAK	
10:20	STRENGTH, DEFLECTIONS AND IMPACT DAMAGE IN ADVANCED COMPOSITE STRUCTURES: P. Lagace, Massachusetts Institute of Technology	69
11:00	ANALYSIS OF COMPOSITE LAMINATES WITH DELAMINATIONS UNDER COMPRESSION LOADING: H. Kan, Northrop Corporation	71
11:40	LUNCH	
1:00 P.M.	SIMPLE RECTANGULAR ELEMENT FOR ANALYSIS OF LAMINATED COMPOSITE MATERIALS: J. WHITCOMB, NASA LANGLEY RESEARCH CENTER	84
1:40	FORMULATION OF LAMINATED BEAM AND PLATE ELEMENTS FOR A MICRO-COMPUTER: A. Chen and T. Yang, Purdue University	93
2:20	BREAK	
2:50	APPROXIMATE ANALYSIS OF COMPOSITES WITH DAMAGE: G. SENDECKYJ, FLIGHT DYNAMICS LABORATORY	94
3:30	A METHOD OF LAMINATE DESIGN: I. SUSUKI, MATERIALS LABORATORY	95
4:10	ADJOURN	

AGENDA (CONCLUDED) MECHANICS OF COMPOSITES REVIEW 22-24 OCTOBER 1985

THURSDAY, 2	4 OCTOBER 1985	PAG
8:30 A.M.	MECHANICS OF COMPRESSION FAILURE IN FIBER REINFORCED COMPOSITES: S. Wang, University of Illinois	10 5
9:10	SUPPRESSION OF DELAMINATION IN COMPOSITE LAMINATES SUBJECTED TO IMPACT LOADING: C. Sun, Purdue University	106
9:50	BREAK	
10:20	THERMOVISCOELASTIC PROPERTIES OF UNIDIRECTIONAL FIBER COMPOSITES: E. Humphreys and Z. Hashin, Materials Science Corporation	114
11:00	COMPOSITE MECHANICS/RELATED ACTIVITIES AT LEWIS RESEARCH CENTER: C. Chamis, C. Ginty, and P. Murthy, NASA Lewis Research Center	124
11:40	ADJOURN	
	APPENDIX A: PROGRAM LISTINGS	A-1

REVISED AGENDA

MECHANICS OF COMPOSITES REVIEW

22 - 24 OCTOBER 1985

TUESDAY, 2	2 OCTOBER 1985	PAGE
7:15 a.m.	REGISTRATION	
8:15	OPENING REMARKS	
8:30	DETECTION OF FAILURE PROGRESSION IN CROSS-PLY GRAPHITE/EPOXY DURING FATIGUE LOADING THROUGH ACOUSTIC EMISSION: J. Awerbuch, W. Eckles, and E. Katz, Drexel University	1
9:10	MONITORING ACOUSTIC EMISSION IN IMPACT-DAMAGED COMPOSITES: J. Awerbuch, S. Ghaffari, and E. Katz, Drexel University	12
9:50	BREAK	
10:20	PROCESSING THERMOPLASTIC COMPOSITES: G. Springer, Stanford University	22
11:00	COMPOSITE CRASH DYNAMICS: H. Carden, NASA Langley Research Center, R. Boitnott and K. Jackson, U.S. Army/AVSCOM	26
11:40	LUNCH	
1:00 p.m.	DYNAMICS AND AEROELASTICITY OF COMPOSITE STRUCTURES: J. Dugundji and G-S. Chen, Massachusetts Institute of Technology	36
1:40	AN ELASTIC STRESS ANALYSIS OF THE DEBOND FRONT IN DCB SPECIMENS: J. Crews and K. Shivakumar, NASA Langley Research Center, and I. Raju, Analytical Services & Materials, Inc.	42
2:20	BREAK	
2:50	A METHOD OF LAMINATE DESIGN: I. Susuki, Materials Laboratory	95
3:30	ANALYSIS OF DELAMINATION GROWTH FROM MATRIX CRACKS IN LAMINATES SUBJECTED TO BENDING LOADS: G. Murri, NASA Langley Research Center, and E. Guynn, Kentron Inc.	49
4:10	ADJOURN	
5:00	SOCIAL	

REVISED AGENDA (CONTINUED)

WEDNESDAY	, 23 OCTOBER 1985	PAGE
8:30 a.m.	ANALYSIS OF PROGRESSIVE MATRIX CRACKING IN COMPOSITE LAMINATES: G. Dvorak, E. Wung and K. Ahangar, Rensselaer Polytechnic Institute, and N. Laws, University of Pittsburgh	50
9:10	INITIATION OF FREE-EDGE DELAMINATION IN COMPOSITE LAMINATE - PREDICTION AND EXPERIMENT: R. Kim, University of Dayton Research Institute, and S. Soni, AdTech Systems Research Inc.	59
9:50	BREAK	
10:25	STRENGTH, DEFLECTIONS AND IMPACT DAMAGE IN ADVANCED COMPOSITE STRUCTURES: P. Lagace, Massachusetts Institute of Technology	69
11:05	ANALYSIS OF COMPOSITE LAMINATES WITH DELAMINATIONS UNDER COMPRESSION LOADING: H. Kan, Northrop Corporation	71
11:45	LUNCH	
1:15 p.m.	SIMPLE RECTANGULAR ELEMENT FOR ANALYSIS OF LAMINATED COMPOSITE MATERIALS: J. Whitcomb, NASA Langley Research Center	84
1:55	FORMULATION OF LAMINATED BEAM AND PLATE ELEMENTS FOR A MICRO-COMPUTER: A. Chen and T. Yang, Purdue University	93
2:35	BREAK	
3:10	COMPOSITE MECHANICS/RELATED ACTIVITIES AT LEWIS RESEARCH CENTER: C. Chamis, C. Ginty, and P. Murthy, NASA Lewis Research Center	124
3:50	ADJOURN	
THURSDAY,	24 OCTOBER 1985	
8:30 a.m.	MECHANICS OF COMPRESSION FAILURE IN FIBER REINFORCED COMPOSITES: S. Wang, University of Illinois	105
9:10	SUPPRESSION OF DELAMINATION IN COMPOSITE LAMINATES SUBJECTED TO IMPACT LOADING: C. Sun, Purdue University	106
9:50	BREAK	
10:30	THERMOVISCOELASTIC PROPERTIES OF UNIDIRECTIONAL FIBER COMPOSITES: E. Humphreys and Z. Hashin, Materials Science Corporation	114
11:10	ADJOURN	
	APPENDIX A: PROGRAM LISTINGS	A-1

FOREWORD

THIS REPORT CONTAINS THE ABSTRACTS AND VIEWGRAPHS OF THE PRESENTATIONS AT THE <u>ELEVENTH ANNUAL MECHANICS OF COMPOSITES REVIEW</u> SPONSORED BY THE MATERIALS LABORATORY. EACH WAS PREPARED BY ITS PRESENTER AND IS PUBLISHED HERE UNEDITED. IN ADDITION, A LISTING OF BOTH THE IN-HOUSE AND CONTRACTUAL ACTIVITIES OF EACH PARTICIPATING ORGANIZATION IS INCLUDED.

THE MECHANICS OF COMPOSITES REVIEW IS DESIGNED TO PRESENT PROGRAMS COVERING ACTIVITIES THROUGHOUT THE UNITED STATES AIR FORCE, NAVY, AND NASA. PROGRAMS NOT COVERED IN THE PRESENT REVIEW ARE CANDIDATES FOR PRESENTATION AT FUTURE MECHANICS OF COMPOSITES REVIEWS. THE PRESENTATIONS COVER BOTH IN-HOUSE AND CONTRACT PROGRAMS UNDER THE SPONSORSHIP OF THE PARTICIPATING ORGANIZATIONS.

SINCE THIS IS A REVIEW OF ON-GOING PROGRAMS, MUCH OF THE INFORMATION IN THIS REPORT HAS NOT BEEN PUBLISHED AS YET AND IS SUBJECT TO CHANGE; BUT TIMELY DISSEMINATION OF THE RAPIDLY EXPANDING TECHNOLOGY OF ADVANCED COMPOSITES IS DEEMED HIGHLY DESIRABLE. WORKS IN THE AREA OF MECHANICS OF COMPOSITES HAVE LONG BEEN TYPIFIED BY DISCIPLINED APPROACHES. IT IS HOPED THAT SUCH A HIGH STANDARD OF RIGOR IS REFLECTED IN THE MAJORITY, IF NOT ALL, OF THE PRESENTATIONS IN THIS REPORT.

FEEDBACK AND OPEN CRITIQUE OF THE PRESENTATIONS AND THE REVIEW ITSELF ARE MOST WELCOME AS SUGGESTIONS AND RECOMMENDATIONS FROM ALL PARTICIPANTS WILL BE CONSIDERED IN THE PLANNING OF FUTURE REVIEWS.

GEORGE E. HUSMAN, CHIEF

Nonmetallic Materials Division

MATERIALS LABORATORY

ACKNOWLEDGEMENT

WE EXPRESS OUR APPRECIATION TO THE AUTHORS FOR THEIR CONTRIBUTIONS AND TO THE POINTS OF CONTACT WITHIN THE ORGANIZATIONS FOR THEIR EFFORTS IN SUPPLYING THE PROGRAM LISTINGS.

DETECTION OF FAILURE PROGRESSION IN CROSS-PLY GRAPHITE/EPOXY
DURING FATIGUE LOADING THROUGH ACOUSTIC EMISSION

Jonathan Awerbuch, William F. Eckles and Eliezer Katz

Department of Mechanical Engineering and Mechanics
Drexel University
Philadelphia, Pennsylvania 19104

ABSTRACT

Monitoring acoustic emission (AE) during fatigue loading appears to offer a practical procedure for detecting fatigue damage and damage growth. This non-destructive tool is particularly attractive because of the simplicity in its use, the acquisition of data in real-time, its potentail for monitoring damage initiation, progression and accumulation, for anticipating failure sites, for identifying the different failure mechanisms and determining damage criticality, and for its sensitivity to non-visual damage.

Problems remain to be solved, however: proper interpretation of the voluminous data obtained, the appropriate test methodology to be employed, the correlation between AE results and the actual deformation characteristics and state of damage, identification of the various failure mechanisms and processes, and the distinction between emission generated by damage and that generated by friction.

In this study, AE is monitored in a variety of cross-ply graphite/epoxy laminates of different stacking sequences and containing different ratios of ply thickness. Three loading sequences are applied: monotonic quasi-static loading to failure, quasi-static loading-unloading while incrementally increasing the load to failure, and fatigue loading, all in uniaxial tension. The AE results are compared with a variety of nondestructive (visual, X-radiography, acousto-ultrasonics, and frequencey response) and destructive (laminate deplying, photomicrography, and scanning electron microscopy) techniques. AE is also monitored with specially designed lay-ups in which the different failure mechanisms can be isolated.

Results indicate that stacking sequence, and to a lesser degree the ratio of ply thicknesses, strongly affects the event intensities. Emphasis is placed on determining the correlation between the AE results and actual failure processes for different laminates. During both quasi-static and fatigue loading, a significant amount of emission is generated by friction, in some cases exceeding that generated by new damage. During fatigue loading, the friction generated emission can be discriminated by the load level at which it occurs and through proper correlation among the AE source intensity variables. Results indicate that matrix failure and fiber breakage result in middle and high range AE source intensities. Due to the rapidity with which matrix cracks and delamination progress, distinction of these processes is more difficult and investigation continues in this direction. Frequency response of the subject laminate is shown to have potential for determining the state of damage. Initiation of transverse cracks, damage accumulation, and the state of transverse crack saturation are clearly distinguished by this method in cross-ply laminates.

CONCLUSIONS

- 1. Stacking sequence and ply thickness have significant effect on damage initiation and accumulation and on the failure process as detected through acoustic emission.
- 2. A significant amount of emission is generated by friction among newly created fracture surfaces during both quasi-static and fatigue loading.
- 3. The friction generated emission can be distinguished from emission generated by new damage through proper correlation among various AE source intensities.
- 4. Preliminary results indicate that AE source intensities of friction generated emission depend on the type of failure.
- Monitoring AE during fatigue loading can indicate the cycle number at which damage initiates and progresses and the type of damage.

6. The frequency response of the subject laminate strongly depends on the state of damage. Amplitude reduction and shift in frequency can be qualtiatively correlated with state of damage.

DETECTION OF FAILURE PROGRESSION IN CROSS-PLY GRAPHITE/EPOXY DURING FATIGUE LOADING THROUGH ACOUSTIC EMISSION

Jonathan Awerbuch, William F. Eckles and Eliezer Katz

Department of Mechanical Engineering and Mechanics
Drexel University
Philadelphia, Pennsylvania 19104

Program sponsored by AFWAL/FDL, F33615-84-3204. George P. Sendeckyj of AFWAL/FIBEC is the program monitor.

OBJECTIVE

DETERMINE THE VALIDITY OF THE ACOUSTIC EMISSION TECHNIQUE
IN DETECTING DAMAGE INITIATION AND ACCUMULATION AND IN
IDENTIFYING THE FAILURE MECHANISMS AND PROCESSES IN
GRAPHITE/EPOXY LAMINATES DURING FATIGUE LOADING

APPROACH

- IDENTIFY THE APPROPRIATE TESTING, DATA REDUCTION AND DATA ANALYSIS METHODOLOGIES
- PERFORM EXPERIMENTAL PROGRAM WITH A VARIETY
 OF CROSS-PLY LAMINATES AND DETERMINE THE EFFECT
 OF STACKING SEQUENCE AND PLY THICKNESS ON ACOUSTIC
 EMISSION RESULTS
- DETERMINE THE ACOUSTIC EMISSION SOURCE-INTENSITIES WHICH BEST IDENTIFY MATRIX CRACKING, DELAMINATION, FIBER BREAKAGE AND FRICTION
- CORRELATE THE ACOUSTIC EMISSION RESULTS WITH OTHER NONDESTRUCTIVE (Visual, X-Radiography, Acousto-Ultrasonics, and Frequency Response) and DESTRUCTIVE (Laminate Deply, Photomicrography, and SEM) TECHNIQUES

Figure 1. Photomicrograph and X-radiograph of graphite/epoxy $\begin{bmatrix}902/02/90\end{bmatrix}_S$ laminate loaded to 60% of ultimate load. Number of transverse cracks is approximately 3 per mm.

Figure 2. Acoustic emission accumulated during quasi-static tensile loading to failure in two cross-ply graphite/epoxy laminates: a) count-rate and deformation; b) location distribution histograms of events; c) amplitude distribution histograms of events. Results indicate effect of stacking sequence on AE results.

Figure 3. Amplitude distribution histograms of events accumulated at different load levels (R = σ/σ_f x 100%) during quasi-static tensile loading to failure for two cross-ply graphite/epoxy laminates. Results indicate effect of stacking sequence on the failure process.

Acoustic emission accumulated during quasi-static tensile loading to failure of unidirectional graphite/epoxy. Inner 28 layers contain an artificial gap at the center of the specimen (inset). Delamination at the Tips of the gap and splitting of the outer 4 layers can be correlated with the amplitude distribution histograms of events accumulated at different stages of loading. Figure 4.

Figure 5. Distribution of AE source intensities for events accumulated during the initial part of fatigue loading (R = 0.1) of graphite/epoxy $[0_2/90_2/0]_s$ laminate. Significant emission is generated by friction among newly created fracture surfaces. High source intensities occur only at the upper load range.

Figure 6. Distribution of AE source intensities, for the same specimen shown in Figure 5, for events accumulated during a different range of cycle numbers. Practically no new damage has occurred and all emission is generated by friction.

Distribution of AE source intensities for events accumulated during the first 250 cycles of fatigue loading (R = 0.1) of double edge notched unidirectional graphite/epoxy. Initially significant emission is due to damage (matrix splitting). With increasing number of cycles most of the emission is due to friction and is generated at the lower range of the applied stress. Figure 7.

Figure 8. Distribution of AE source intensities for events accumulated during cycle 15 through 30 of the same specimen shown in Figure 7 for a) events generated at the upper part of the load range; b) events generated at the lower part of the load range. Low and middle range AE source intensities are generated by friction and matrix failure, respectively.

Figure 9. Distribution of AE source intensities for events accumulated during cycle 210 through 250 of the same specimen shown in Figure 7 for a) events generated at the upper part of the load range; b) events generated at the lower part of the load range. Identification of damage through AE may require analysis of several source intensities and load ranges.

Frequency response versus state of stress, and number of transverse cracks for graphite/epoxy $\{0_2/90_2/0\}$ laminate: a) unloaded specimen; b) specimen under 75% of maximum previous load cycle. Amplitude at frequencies of 150 and 470 KHz reduces dramatically with damage initiation. In the frequency range of 0.8 - 1.0 MHz amplitude is constant but a shift in frequency occurs during damage accumulation. Following damage saturation, frequency is unchanged. Figure 10.

MONITORING ACOUSTIC EMISSION IN IMPACT-DAMAGED COMPOSITES

Jonathan Awerbuch, Shahrokh Ghaffari and Eliezer Katz

Department of Mechanical Engineering and Mechanics
Drexel University
Philadelphia, Pennsylvania 19104

ABSTRACT

The composite laminates now being used in aircraft and aerospace structures are subjected to a variety of impact threats, such as dropped tools during fabrication and handling, or hard objects such as runway stones, ice balls, etc. Research results during the past two decades indicate that such impact damage is frequently non-visual but nevertheless results in significant performance degradation. This sensitivity of composites to non-visual internal damage is of major concern, primarily when these materials are used in primary structures.

Among the conventional nondestructive techniques for detecting and locating non-visual impact damage are ultrasonic C-scan and X-radiography. Monitoring acoustic emission (AE) is a promising NDT procedure in that it can provide information about damage progression and damage criticality in real-time. Consequently, this study focuses on the applicability of the AE technique to impact-damaged composites subjected to external loading.

This research constitutes a comprehensive program to provide a detailed characterization of impact damage in graphite/epoxy laminates subjected to low velocity (20-500 m/sec) impact and to develop the proper procedures for monitoring acoustic emission in impact-damaged laminates. A variety of experimental and analytical techniques are employed in order to determine impact damage criticality, with primary emphasis being placed on the applicability of the acoustic emission technique to detect and locate non-visual impact damage, monitor its progression under external loading, and determine its criticality. Four major areas are addressed in this program: 1. nondestructive detection and evaluation with emphasis on the acoustic emission technique; 2. destructive examination for detailed mapping of the impact-damaged region; 3. failure, fracture, degradation in performance and their modeling; and 4. determination of damage criticality to identify the major causes of degradation in properties and the NDT detection threshold.

The acoustic emission results indicate that artificially induced damage (e.g. circular holes and slits) could be easily detected and located at relatively early stages of loading. Similar results were obtained with laminates containing complete perforation due to impact. However, when non-visual impact damage occurs, with significant delamination, matrix cracking and splitting (as detected through stereo X-radiographs, ultrasonic C-and F-scans, photomicrographs and deplied laminates), detection and location of existing damage during proof loading is more difficult, mainly because of the sign-ificant emission generated from throughout the specimen length during the rapid progression and accumulation of the matrix dominated failures. It has been determined, through the analysis of the AE event intensities, that during quasi-static loading significant emission is generated by friction between impact-damaged fracture surfaces in contact with each other. The more severe the damge is, the larger the amount of friction generated emission and the lower the stress level at which it initiates. Only at higher loads is actual damage progression detected through the AE. quently, an experimental procedure and AE data analysis methodology have been developed to detect and locate non-visual impact damage during cyclic loading. The results indicate that, based on the friction generated emission, such damage could be easily detected and located with a few load cycles and for dynamic stress levels less than 30% of static ultimate stress. With an increasing number of cycles, damage initiation and progression could be identified as well.

Other NDT techniques and examination procedures developed and applied in this research program include the acousto-ultrasonic (AU) technique and the frequency response of the impact-damaged laminate. The results indicate that both techniques can easily detect the existence of damage and its severity and they qualitatively correlate well with the strength degradation of the subject laminate. From stereo X-radiographs the

depth of the delaminated interfaces and the extent of splitting could be approximately identified, and these results also correlated well with the results obtained with the ultrasonic F-Span and deplying techniques. Other issues addressed in this study include the effects of artificially induced damage (e.g. delamination, broken fibers and notches), oblique impact, laminate thickness and configuration, strength degradation, etc., most of which are discussed in the formal presentation.

CONCLUSIONS

- Impact damage is largely non-visual, nevertheless nondestructive and destructive examinations reveal significant internal damage in the form of delamination, intraply cracks, matrix splitting in all damaged plies, and fiber breakage. Degree of stiffness and strength degradation depend on laminate configuration.
- During quasi-static loading in tension, the detection and location of non-visual impact damage through acoustic emission is difficult. Significant emission is generated by friction among the impact-damaged fracture surfaces.
- 3. However, based on this friction generated emission, during cyclic loading impact damage could be easily detected and located with a few load cycles and at relatively low dynamic stress levels. Damage progression could be easily tracked and failure mechanisms identified.
- 4. Damage severity could be easily determined through the acousto-ultrasonic technique. All event intensities strongly depend on the level of damage and rapidly attenuate with increasing severity.
- 5. Similar results are obtained using the frequency response of the subject laminate, which was found to be highly sensitive to impact damage. It seems that the frequency response depends on the details of the impact-damaged region.
- 6. Good qualitative correlation could be established between the various destructive and nondestructive examination procedures.

MONITORING ACOUSTIC EMISSION IN IMPACT-DAMAGED COMPOSITES

Jonathan Awerbuch, Shahrokh Ghaffari and Eliezer Katz

Department of Mechanical Engineering and Mechanics
Drexel University
Philadelphia, Pennsylvania 19104

Program sponsored by the Office of Naval Research, N00014-84-K-0460. Yapa Rajapakse is the program monitor.

OBJECTIVES

- DETERMINE THE APPLICABILITY OF THE ACOUSTIC EMISSION TECHNIQUE TO DETECT AND LOCATE IMPACT DAMAGE IN COMPOSITE LAMINATES, TRACK ITS PROGRESSION, IDENTIFY THE FAILURE MECHANISMS, AND EVALUATE ITS CRITICALITY
- CORRELATE THE ACOUSTIC EMISSION RESULTS WITH THE MOST COMMONLY USED NONDESTRUCTIVE AND DESTRUCTIVE **EXAMINATION TECHNIQUES**
- CONDUCT A DETAILED CHARACTERIZATION OF THE IMPACT-DAMAGED REGION AND IDENTIFY THE MAJOR MATERIAL VARIABLES AFFECTING ITS SEVERITY

APPROACH

- I. DETECTION TECHNIQUES (NON-DESTRUCTIVE)
- II. EXAMINATION TECHNIQUES (DESTRUCTIVE)
- 1. VISUAL

- 1. PHOTOMICROGRAPHY
- 2. X-RADIOGRAPHS (3-D)
- 2. DEPLYING
- 3. ULTRASONICS (C and F- SCANS) 3. S.E.M. (3-D)
- 4. ACOUSTO ULTRASONICS
- 5. FREQUENCY RESPONSE
- 6. ACOUSTIC EMISSION
- 7. C.C.T.Y.

III. FAILURE AND FRACTURE

- 1. STIFFNESS AND STRENGTH DEGRADATION
- 2. APPLICATION OF FRACTURE MODELS APPLIED TO COMPOSITES
- 3. FINITE ELEMENT SIMULATION OF IMPACT DAMAGE

IV. DAMAGE CRITICALITY

- 1. CORRELATION WITH ARTIFICIALLY INDUCED DAMAGE (Broken Fibers, Inserted delamination, Notches)
- 2. OBLIQUE IMPACT
- STACKING SEQUENCE EFFECT(S)
- 4. LAMINATE CONFIGURATION (EFFECTS)
- LOADING FUNCTION EFFECT(S)
- 6. THICKNESS EFFECT(S)

SPEC. NO. 2-B10 LAY - UP: $[0_2/\pm60/0_2/\pm60]_s$ Impact Velocity = 58 m/s

SPEC. NO. AQI-10 LAY - UP: $[0/\pm 45/90]_{25}$ Impact Velocity = 67 m/s

SPEC. NO. 1-B2 LAY - UP: $[0_2/\pm60/0_2/\pm60]$ s Impact Velocity = 86^2 m/s

0°and 60° Plies

SPEC. NO. 2-A4 LAY - UP: $\left[0_2/\pm60/0_2/\pm60\right]_{2s}$ Impact Velocity = 60° m/s

Ply No. 4, -60° Front

Figure 1. X-radiographs, a C-scan record, photomicrographs and a deplied interface of non-visual impact-damaged graphite/epoxy laminates, all showing significant amount of delamination, intraply matrix cracks and matrix splitting.

static loading to failure; and c) non-visual impact damage, recorded during low cycle fatigue loading. Results indicate that impact damage could be easily detect $ite/epoxy~[0/\pm45/90]_{2s}$ laminate with: a) non-visual impact damage, recorded during quasi-static loading to failure; b) visual impact damage, recorded during quasied and located during cyclic loading, while during static loading the detection of such damage is more difficult. distribution histrograms of events recorded for impact damaged graph-Location Figure 2.

Figure 3. Amplitude distribution histograms of events recorded at different load levels $(R = \sigma/\sigma_f \times 100\%)$ during quasi-static loading to failure of graphite/epoxy $[0/\pm45/90]_{2s}$ laminates containing: a) non-visual impact damage; and b) visual impact damage. The larger the damage is, the larger the amount of friction generated emission and the higher the relative load level at which damage progresses.

Figure 4. Event amplitudes as a function of applied load recorded during quasi-static loading to failure of the same specimen shown in Figure 3, containing: a) non-visual impact damage; b) visual impact damage. In the case of non-visual impact damage high amplitude events initiate at relatively lower load levels indicating early initiation of damage progression.

Figure 5. Distribution of acoustic emission source intensities for events accumulated during the initial part of fatigue loading (R=0.1) of graphite/epoxy [0/±45/90]_{2s} laminate: a) events generated through the entire load range; b) events generated at the lower part of the load range. Distinction between emission generaged by friction and by actual damage growth may require analysis of several source intensities and load ranges.

Figure 6. Acoustic emission source intensities as a function of applied dynamic stress and number of cycles during the initial part of fatigue loading of the same specimen shown in Figure 5: a) events generated through the entire load range; b) events generated at the lower part of the load range. High source intensities occur only at the upper part of the load range indicating damage accumulation. At the lower part of the load range all source intensities are of medium and low ranges, all of which are generated by friction. These results were obtained throughout the fatigue loading.

Figure 7. Frequency response of impact-damaged graphite/epoxy $[0/\pm45/90]_{2s}$ laminate and X-radiographs recorded for three different impact velocities. Results indicate that the frequency response of the subject laminate is sensitive to damage severity.

Figure 8. Peak amplitude of average signal level (A.S.L.) of the frequency response (examples of which are shown in Figure 7) measured at 350 KHz versus impact velocity (graphite/epoxy $[0/\pm45/90]_{28}$). The peak amplitude is highly sensitive to impact damage.

Figure 9. Acousto-ultrasonic (AU) event intensities (counts, duration and energy) versus impact velocity for graphite/epoxy $[0/\pm45/90]_{2s}$ laminate. All three AU variables are highly sensitive to state of damage.

PROCESSING THERMOPLASTIC COMPOSITES

George S. Springer

Department of Aeronautics and Astronautics Stanford University, Stanford, California 94305

Fiber reinforced thermoplastic resin composites are manufactured by heating the composite above the "melting" point of the resin followed by rapid cooling. Pressure is also applied during cooling. The cooling rate determines the crystal structure of the resin. The applied pressure assures the proper resin content and fiber distribution. Hence, both the cooling rate and the applied pressure affect strongly the mechanical properties of the composite. Therefore, the appropriate cooling rates and pressures must be employed to achieve the required mechanical properties.

The objectives of this investigation is to determine the effects of the processing parameters on the mechanical properties, and to establish methods for selecting the proper processing variables (cooling rate, pressure) for each application. To achieve these objectives, a model is being developed which simulates the manufacturing process, and relates the process variables to the thermal, chemical, and mechanical properties. The model consists of two sub-models. The "thermo-chemical" submodel relates the cooling rate to the crystallinity and the mechanical properties of the finished product. The "flow" submodel relates the applied pressure and the resin and fiber distributions.

Thus far, the "thermo-chemical" submodel has been developed. This model provides relationships between the cooling rate and crystallinity, and between the crystallinity and mechanical properties. The model was implemented with a "user-friendly" computer code suitable for generating numerical results for thermoplastic resin composites and, in particular, for PEEK resin composites.

Tests were also performed with PEEK resin. In these tests, first the relationship between the cooling rate and crystallinity was established using differential scanning calorimetry. Second, the tensile, compressive and shear strengths and moduli were measured as functions of the cooling rate. These data, together with the computer code, can be used to determine the optimum cooling rates to be used for PEEK resin composites.

PROCESSING THERMOPLASTIC COMPOSITES

Department of Aeronautics and Astronautics

Stanford University

Principal Investigator: George S. Springer

Investigators:

J. Burwasser

W. Lee

A. Miller

M. Talbott

OBJECTIVE

To establish procedures needed to determine optimum process variables (cooling rate, pressure)

APPROACH

THERMOCHEMICAL MODEL

COOLING RATE

CRYSTALLINITY

MECH. PROPERTIES

O FLOW MODEL

PRESSURE RESIN FLOW FIBER-RESIN DISTR. MECH. PROPERTIES

THERMOCHEMICAL MODEL

THERMOCHEMICAL MODEL

•
$$log[-ln(1-c)] = log \phi - nlog(\frac{dT}{dt})$$

$$c \equiv \frac{\Delta H}{H_T}$$
 Relative Crystallinity

$$c_{abs} \equiv c \cdot q = \frac{\Delta H}{H_{ult}}$$
Absolute Crystallinity

$$log[-in(1-c)] = log \phi - n log(\frac{dT}{dt})$$

$$\phi = -0.062 T + 20.2$$

$$\begin{split} &\log[-\ln(1-c)] = \log\,\varphi \,-\, n\log(\frac{dT}{dt}) \\ &\varphi = -\ln(1-c) \quad \text{when} \quad \frac{dT}{dt} = 1 \end{split}$$

$$q = -0.08 \ln \left(\frac{dT}{dt}\right) + 0.41$$

MECHANICAL PROPERTIES

1. Tensile Properties

MECHANICAL PROPERTIES

3. Shear Properties

MECHANICAL PROPERTIES

2. Compressive Properties

SUMMARY

PROGRESS TO DATE

- 1) GENERAL PROCEDURE FOR ESTABLISHING PROCESS VARIABLES
- 2) "USER FRIENDLY COMPUTER CODE FOR RELATING COOLING RATE, CRYSTALLINITY AND MECHANICAL PROPERTIES
- 3) TEST METHODS FOR DETERMINING CRYSTALLINITY
- 4) DATA AND EMPIRICAL CORRELATIONS FOR PEEK RESIN
 - CRYSTALLINITY AS A FUNCTION OF COOLING RATE
 - MECHANICAL PROPERTIES AS A FUNCTION OF COOLING RATE

COMPOSITE CRASH DYNAMICS

NASA Langley Research Center Hampton, VA. 23665

Richard L. Boitnott and Karen E. Jackson
Aerostructures Directorate
U.S. Army Aviation Research and Technology Activities-AVSCOM
NASA Langley Research Center
Hampton, VA. 23665

ABSTRACT

There have been many studies of the dynamic behavior of composite materials and structures. However, the majority of these studies have been concerned with the response of laminates to localized impact. Tolerance of the laminate to delamination, fiber breakage, and other forms of damage, and the influence of any damage on the strengths have been the principal concerns of these past studies. In contrast, little has been done to study large deformation transient dynamic response of structural elements as-a-whole, that is global response as opposed to local response. However, with the increasing usage of composite materials for major structural elements in aircraft, more research is needed to understand the response of structural elements to impacts which could simulate hard landings, wheels-up landings, or other short duration but intense loading events that will excite the entire structure, not just a localized region. In general, it is expected that the response of the structural elements to these crash-related loads will involve large deformations and failure. In addition, energy absorption or the lack of it during failure is an important variable if damage to other parts of the structure and possible injury to occupants is to be minimized. Because of these concerns with future structures, work is in progress to study the large deformation response of simple composite structural elements to intense dynamic loadings.

A research program has been formulated to investigate the response characteristics of generic composite components to simulated crash loadings. This program has been arranged to focus on three levels: the laminate level for material properties such as energy absorbing qualities and the behavior of skin materials; the element level focusing on more complex geometry and behavior of beams, frames (rings), arches, and panels; and the substructure level dealing with cylindrical shells, floors, and larger-scale components. Scaling studies will also be included.

The goal of research on the generic components is to provide a data base and understanding of generic composite component behavior subjected to crash loading conditions supported by validated analytical methods. To help achieve this goal, inhouse research, contractural efforts, and university grants are included in the program.

This presentation will summarize results from three of the research areas under the composite crash dynamics program that include: beam impact studies, composite fuselage frame impact studies, and abrasive loadings of skin materials.

COMPOSITE CRASH DYNAMICS

- INTRODUCTION AND BACKGROUND
- OMPOSITE IMPACT DYNAMICS PROGRAM
- EXPERIMENTAL RESULTS
 Composite Frames
 Beam Impact
 Abrasion
- ADDITIONAL RESEARCH EFFORTS
- CONCLUDING COMMENTS

RESPONSE OF GENERIC COMPOSITE COMPONENTS TO CRASH LOADINGS

COMPOSITE CRASH DYNAMICS PROGRAM GOALS

LAMINATE LEVEL

 Improve composite crush and energy absorption capability by developing data base on fundamental behavior of structures made from epoxy and thermoplastic resins

ELEMENT LEVEL

- Assess the local and global behavior of various composite structural elements under crash loadings
- Determine governing parameters that permit scaling of composite structural behavior under dynamic loadings

SUBSTRUCTÚRE LEVEL

- Evaluate performance of substructures assembled from various basic composite structural elements
 - Assess effects of liquid versus solid terrain on impact behavior

METAL BASELINE

 Include metal structural components as reference baseline for assessing composite behavior under impact loadings

FULL-SCALE TESTING

 Demonstrate structural performance of composite full-scale aircraft under crash loadings

APPARATUS FOR DYNAMIC TESTS OF BEAMS

BEAM LOADING CONFIGURATION

BEAM STATIC END LOAD AND STRAIN DISPLACEMENT

BEAM DYNAMIC END LOAD AND STRAIN HISTORY

BEAM END DISPLACEMENT

STATIC AND DYNAMIC LOAD AND STRAIN

BEAM END WORK

BEAM MODULUS-CURVATURE DATA [(30/0/-30)5]s16 TENSION MSI 14 MODULUS, 12 10 COMPRESSION 8 [(45/0/-45)5]s12 7 MSI 10 TENSION MODULUS, 8 COMPRESSION 6 4 0 .04 .08 .12 .16 .20

SPECIMEN IN DROP TOWER

CURVATURE, 1/IN.

TEST SPECIMEN IN IMPACT POSITION

SPECIMEN FAILURE REPEATABILITY

VERTICAL ACCELERATIONS

CIRCUMFERENTIAL STRAIN DISTRIBUTION

-Contact surface

Test Materials Aluminum 2024-74 Gr-Ep T 300/5208 (±45/0/90/±45/0/90) 3S

0.2

, 1, 12 in

TYPICAL SKIN COUPON ABRASION TEST SPECIMEN

Specimen holder

Load cell

Applied load

SCHEMATIC OF SKIN COUPON TEST APPARATUS

TYPICAL WEAR SURFACE OF GR-EP STIFFENED PANEL

WEAR RATE VERSUS VELOCITY FOR GR-EP SKINS

WEAR RATE VERSUS PRESSURE FOR ALUMINUM SKINS

COEFFICIENT OF FRICTION VERSUS VELOCITY

DYNAMICS AND AEROELASTICITY OF COMPOSITE STRUCTURES

John Dugundji

Gun-Shing Chen

Technology Laboratory for Advanced Composites
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

In previous investigations at M.I.T., the aeroelastic flutter and divergence behavior of a series of unswept and forward swept, graphite/epoxy cantilever wings were investigated in a small, low-speed wind tunnel. The wings were six-ply graphite/epoxy plates and had strong bending-twisting coupling (D₁₆ terms). By adjusting the bending-torsion coupling, the divergence tendency of the forward swept, cantilever wings could be eliminated and the flutter speed raised considerably. See Refs. 1 and 2.

Presently, an investigation is being made into the effects of rigid body aircraft modes on the aeroelastic behavior of forward swept wings. It has recently been pointed out in Refs. 3 and 4, that for forward swept wings, the rigid body modes may possibly couple with the wing bending mode to cause a new low frequency "body-freedom-flutter." Accordingly, a complete, two-sided 30° forward swept wing aircraft model was constructed and mounted with low friction bearings in both pitching and translation, inside the M.I.T. low speed acoustic wind tunnel. The wind tunnel had a 1.5 x 2.3 m (5 x 7 ft.) test section and could reach velocities of 30 m/s. Four different ply layup wings could be interchanged on the model, namely $[0_2/90]_S$, $[+152/0]_S$, $[+30_2/0]_S$ and $[-15_2/0]_S$. These wing surfaces were the same ones used in the previous cantilever tests (Refs. 1 and 2), and thus the present tests complemented the previous cantilever tests and isolated the effects of rigid body motions.

The wind tunnel tests included measurement of the static lift and moment characteristics (done at low speeds) and the dynamic stability, flutter, and divergence testing at higher speeds. For all free flying tests, the model was set to a low trim angle of attack, and aircraft vertical height. Also, TV movies were taken. Body-freedom-flutter was encountered for some configurations as well as torsional stall flutter, bending stall flutter, and dynamic instability. Examples are given of various flutter and dynamic instabilities encountered. These experimental tests, along with the previous cantilever wing tests and with corresponding analytical analyses, should provide insight into the actual aeroelastic behavior of forward swept wing aircraft in free flight.

REFERENCES

- Hollowell, S.J., and Dugundji, J., "Aeroelastic Flutter and Divergence of Stiffness Coupled, Graphite/Epoxy Cantilevered Plates," J. Aircraft, Vol. 21, No. 1, January 1984, pp. 69-76.
- Landsberger, B., and Dugundji, J., "Experimental Aeroelastic Behavior of Straight and Forward Swept Graphite/Epoxy Wings," <u>J. Aircraft</u>, Vol. 22, No. 8, August 1985, pp. 679-686.
- 3. Weisshaar, T.A., Zeiler, T.A., Hertz, T.J., and Shirk, M.J., "Flutter of Forward Swept Wings, Analyses and Tests," Proceedings of the 23rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, New Orleans, Louisiana, May, 1982, AIAA Paper 82-0646.
- 4. Chipman, R., Rauch, F., Rimer, M., Muniz, B., and Ricketts, R.H., "Transonic Tests of a Forward Swept Wing Configuration Exhibiting Body Freedom Flutter," Proceedings of the 26th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, April 15-17, 1985, AIAA Paper 85-0689.

DYNAMICS AND AEROELASTICITY OF COMPOSITE STRUCTURES

John Dugundji Gun-Shing Chen

Technology Laboratory for Advanced Composites
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

OBJECTIVES

- Investigate the effects of rigid body aircraft modes on the flutter and divergence of forward swept, graphite/epoxy wings
- Explore nonlinear effects of large angle of attack and stall flutter
- Obtain insight into actual deroelastic behavior of forward swept, deroelastically tailored directaft in free flight

APPROACH

- Build complete, two-sided 30° forward swept wing direct model with rigid pitch and rigid translation capability
- Obtain experimental data on model in low speed wind tunnel, and compare with corresponding cantilever wing tests
- Perform analytical flutter and divergence calculations including effects of rigid body modes

Test Set-Up in Tunnel (Contilever Wing)

Structural Deflections of [+302/0]s Wing

Experimental Flutter and Divergence Boundaries, Λ = - 30° (Cantilever Wing)

Flutter and Divergence at Low Poot Analyses, α_{σ} (Cantilever Wing)

34 (i) (i) (ii) (ii) (ii) (iii) (iii

Forward Swept Wing Model

Forward Swept Wing Model

M.I.T. Acoustic Tunnel Test Set-Up

EM Sending Mamon (Word)

Sending Mamon (Word)

The sending Mamon (Word

Flutter Record, Run #180, $[0_2/90]_s$, δ_c = 2.5°, V = 20 m/s

Torsional Stall Flutter, Run #198, [15 $_2/01_{
m S}$, $\delta_{
m C}$ = 2.5°, V = 28 m/s

Dynamic Instability, Run #185, $[0_2/90]_{\rm S}$, $\delta_{\rm C}$ = 0°, V = 10 m/s

$$W(x,y,t) = \sum_{i=1}^{7} \gamma_{i}(x,y) \ q_{i}(t)$$

$$q_1 = Rigid Trans1$$
. $q_2 = 1^{st} Torsion$
 $q_2 = Rigid Pitch$ $q_3 = 2^{nd}$ "
 $q_3 = 1^{st} Cantil Band$ $q_7 = 1^{st} Chordwise$
 $q_4 = 2^{nd}$ "

$$T = \frac{1}{2} \iint m \dot{w}^{2} dx dy = \frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} M_{i,j} \dot{q}_{i} \dot{q}_{j}$$

$$U = \frac{1}{2} \iint \{ D_{ii} w_{xx}^{2} + \cdots \} dx dy + \frac{1}{2} k_{i} q_{i}^{2} + \frac{1}{2} k_{o} q_{i}^{2}$$

$$= \frac{1}{2} \sum_{j=1}^{2} \sum_{k=1}^{2} K_{i,j} q_{i} q_{i}$$

$$\delta W = \sum_{k=1}^{2} Q_{i} \delta q_{i}$$

Theoretical Stability Plot, [02/90],

CURRENT STATUS

- · Currently, analyzing results of model wind tunnel tests
- Observed body-freedom-flutter, torsional stall flutter, dynamic instability, nonlinear phenomena
- Currently, performing analytical flutter and divergence analyses to assess experimental results, compare with cantilever results, and assess extent of nonlinear phenomena

AN ELASTIC STRESS ANALYSIS OF THE DEBOND FRONT IN DCB SPECIMENS

J. H. Crews, Jr. K. N. Shivakumar* I. S. Raju*

NASA Langley Research Center Hampton, Virginia 23665-5225

ABSTRACT

Double cantilever beam (DCB) specimens are widely used to measure mode I fracture toughness of adhesive debonding and composite delamination. Various combinations of adherend materials and specimen dimensions are currently being used for these DCB specimens. These specimen parameters can influence the stress distribution ahead of the debond front (ref. 1) and, therefore, should also be expected to influence fracture toughness. This can be especially important for tough resins. Whereas brittle resins fail under the influence of very localized stresses that are characterized by the debond front stress-intensity factor, tough resins may yield extensively ahead of the debond front before fracturing. The stresses ahead of the debond govern the extent of yielding and the corresponding plastic energy dissipation that provides fracture toughness. The objective of the present study was to evaluate several parameters that may influence the peel stress distribution ahead of the debond front.

Aluminum and graphite/epoxy DCB specimens were studied using finite-element analyses. The parameters that were varied included adherend and adhesive thicknesses as well as adherend longitudinal and transverse (thickness-direction) stiffnesses. Results were plotted as σ (peel) stress distributions ahead of the debond front.

Neither the adherend thickness nor the longitudinal stiffness had much influence on the peel stress distributions, despite their strong influence on the stress intensity factors. In contrast, both adherend transverse stiffness and adhesive thickness had a noticeable influence on the stress distributions, but did not affect stress intensity factors. Plastic zone sizes were estimated for a wide range of adhesive thicknesses and were found to have a peak value within this range. This trend agrees qualitatively with the well known dependence that DCB fracture toughness has on adhesive thickness.

REFERENCES

 S. S. Wang, J. F. Mandell, and F. J. McGarry, "An Analysis of the Crack Tip Stress Field in DCB Adhesive Fracture Specimens," International Journal of Fracture, Vol. 14, no. 1, February 1978.

^{*}Analytical Services & Materials, Inc.

AN ELASTIC STRESS ANALYSIS OF THE DEBOND FRONT IN DCB SPECIMENS

J. H. CREWS, JR. K. N. SHIVAKUMAR* I. S. RAJU*

NASA LANGLEY RESEARCH CENTER, HAMPTON, VA

OBJECTIVE

TO EVALUATE DCB SPECIMEN PARAMETERS THAT INFLUENCE

STRESSES AHEAD OF DEROND FRONT

DCB SPECIMEN CONFIGURATION AND LOADING

FINITE ELEMENT MODEL

STRESS DISTRIBUTION AHEAD OF DELAMINATION

COMPARISON OF STRESS DISTRIBUTIONS

ANALYSIS OF STRESS DISTRIBUTION FOR ALUMINUM DCB

COMPARISON OF ALUMINUM AND G/E DCB SPECIMENS

COMPARISON OF ALUMINUM AND G/E DCB SPECIMENS

ALUMINUM AND G/E DCB SPECIMENS WITH SAME D

YIELD ZONE SHAPES AND SIZES G/E DCB, P = 67.2N

YIELD ZONE SIZES

SIMMARY

- o Adhesive $\sigma_{\mathbf{v}}$ (PEEL) stresses were higher than those for monolithic case.
- o ADHEREND FLEXHRAL STIFFNESS HAD LITTLE EFFECT ON σ_{ν} distribution.
- o Adherend transverse stiffness (in thickness direction) had significant effect on σ_γ
 - DISTRIBUTION
- O PLASTIC ZONE SIZE VARIED WITH ADHESIVE THICKNESS AND HAD A PEAK VALUE.

STATISTICAL LIFE PREDICTION OF COMPOSITE STRUCTURES

D. Jones and J. Yang

The George Washington University

Material not received in time for publication.

ANALYSIS OF DELAMINATION GROWTH FROM MATRIX CRACKS IN LAMINATES SUBJECTED TO BENDING LOADS

Gretchen Bostaph Murri
E. Gail Guynn*
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665-5225

ABSTRACT

Delamination is the most commonly observed damage mode in composite laminates. In thin plates under low-velocity impact from point loads, matrix cracks will form first in the laminate plies, and delaminations will then grow from these matrix cracks where they terminate at ply interfaces. In this study, delamination growth from matrix cracks in laminates subjected to bending loads was evaluated. Using laminate plate theory, simple equations were derived which relate the strain energy release rate associated with the delamination growth to the applied load and laminate stiffness properties. Several bending problems and boundary conditions were considered. In order to isolate the matrix crack and model the problem 2dimensionally, different layups of graphite-epoxy (5208/T300) laminates were modeled and tested. All tested layups were symmetric and had 90° plies on the outside. For such a laminate under a bending load, matrix cracks will form parallel to the fibers, through the 90° plies, on the tension surface of the laminate. Delaminations then form and grow in the interface between the inmost cracked 90° ply and the adjacent ply. To simulate pure bending, specimens were loaded across their width by pins which were free to rotate on ball bearings, in a 4-point bending apparatus. A three-point bend test was performed in the same type apparatus by supporting the specimen on two pins and loading it at the midspan. To simulate the deformations in laminates subjected to low-velocity impact, specimens were clamped at the ends and loaded across their width at the midspan. For all configurations, the laminates were loaded until delamination was first observed. The delamination loads predicted by the analysis correlated well with the measured delamination loads for the different layups and boundary conditions.

*PRC Kentron, Inc., Hampton, Virginia

ANALYSIS OF PROGRESSIVE MATRIX CRACKING IN COMPOSITE LAMINATES

George J. Dvorak Rensselaer Polytechnic Institute Troy, NY 12180

> Norman Laws University of Pittsburgh Pittsburgh, PA 15260

Edward Wung and Kaveh Ahangar Rensselaer Polytechnic Institute Troy, NY 12180

Sponsored by the Air Force Office of Scientific Research

ABSTRACT

The mechanics of transverse cracking in an elastic fibrous composite ply is explored, first for low crack density, and then during progressive cracking under increasing load. Cracks are assumed to initiate from a nucleus created by coalescence of localized fiber debonding and matrix cracking. Conditions for onset of unstable cracking are evaluated with regard to interaction of cracks with adjacent plies of different elastic properties. Interfacial damage is considered as well. It is found that crack propagation may take place in two directions on planes which are parallel to the fiber and perpendicular to the midplane of the ply, and that the actual propagation direction and ply strength depend on ply thickness.

Thin plies are defined by the requirement that the crack nucleus extends across the entire ply thickness before onset of unstable crack propagation. Of course, plies with preexisting through-the thickness cracks caused by other damage modes, such as impact, should also be regarded as thin plies regardless of their actual thickness. Strength of thin plies is found to be controlled by onset of crack propagation in the fiber direction; these longitudinal cracks are called type L cracks. The strain energy release rate G(L) for these cracks is derived. This leads to expressions which relate ply strength to ply thickness and toughness $G_{C}(L)$. Both simple and mixed loading modes are considered. Only two strain states, normal tension and longitudinal shear affect ply failure. Transverse shear seems to be neutralized by interlocking asperities created on the crack surface as the crack finds its way between closely spaced fibers.

Thick plies are defined by the condition that the width of a crack nucleus of critical size is much smaller than ply thickness. Thus there is no interaction between the nucleus and adjacent plies. The energy release rates for the nucleus are derived. In addition to G(L) for type L cracks, we also evaluate G(T) that corresponds to type T cracks which propagate in the transverse direction, perpendicular to the fiber axis, across the thickness of the ply. It is found that G(T) = 2G(L), i.e., there is a strong preference for the crack nucleus to propagate first as type T crack across ply thickness, and then change direction and continue as type L crack across the entire loaded area of the ply. It is recognized that the two different crack directions involve different values of ply toughness, $G_{\rm C}$, and that $G_{\rm C}(L) < G_{\rm C}(T)$. However, experimental evidence appears to indicate that $G_{\rm C}(T) < 2G_{\rm C}(L)$, hence the strength of thick plies is controlled by type T cracking, in the same way as strength of thin plies is controlled by type L cracking. Expressions for thick ply strength are obtained in terms of critical size of crack nucleus and ply toughness $G_{\rm C}(T)$. Since the nucleus size is not usually known, one cannot predict the strength of thick plies. However, it is possible to show that this strength does not depend on ply thickness for a given history of loading to failure.

These results for thin and thick plies compare well with experimentally measured dependence of ply strength on ply thickness. One of the conclusions that can be drawn from these results is that strength of all plies should be evaluated from thin ply formulae, to guard against strength reduction in thick plies which may be caused by preexisting cracks.

In the second part of the presentation, we analyse progressive cracking in a ply under increasing applied strain. This process is essentially a continuous repetition of first ply failure, but both formation of the initial crack nuclei, and energy release rates G(L) and G(T) for unstable cracks are influenced by interaction between the new crack and the cracks which are already present. This type of crack interaction is analyzed by several methods; the self-consistent method, as well as elasticity solutions for a row of parallel cracks are employed. It is found that very similar crack interaction effects are predicted by these different approaches. Of particular interest is the evaluation of G(L) and G(T) of a crack which is about to form in a ply that already contains a certain density of similar cracks. Also, the strain in the ligaments between existing cracks is evaluated.

REFERENCES

- G.J. Dvorak, N. Laws and M. Hejazi, "Analysis of Progressive Matrix Cracking in Composite Laminates. I. Thermoelastic Properties of a Ply with Cracks," <u>Journal of Composite Materials</u>, Vol. 19, May 1985, pp. 216-234.
- G.J. Dvorak and N. Laws, "Analysis of Progressive Matrix Cracking in Composite Laminates. II. First Ply Failure," to be published.

PRINCIPAL OBJECTIVES AND RESULTS

1. MECHANICS OF FIRST PLY FAILURE

O CRACK NUCLEATION

STRENGTH OF THIN PLIES

- Energy release rate for longitudinal (type L) slit crack
- Dependence of ply strength on ply thickness

0 STRENGTH OF THICK PLIES

- Energy release rates for initial flaws as transverse (type I) cracks
- Type I and type L cracks
- Dependence of ply strength on flaw size

0 PLIES OF INTERMEDIATE THICKNESS

- Interaction of flaws and ply cracks with adjacent plies
- O COMPARISON WITH EXPERIMENTAL DATA
- E-Glass/Epoxy
- **T300/934**
- O STRENGTH OF THIN AND DAMAGED PLIES IS CONTROLLED BY LONGITUDINAL (type L) CRACKS
- O STRENGTH OF THICK PLIES IS CONTROLLED BY TRANSVERSE (type T) CRACKS WHICH ARE AUTOMATICALLY FOLLOWED BY LONGITUDINAL (type L) CRACKS.

PRINCIPAL OBJECTIVES AND RESULTS - CONT.

2. PROGRESSIVE CRACKING OF A PLY

- 0 REPETITIVE FAILURES IN A PLY UNDER INCREASING STRAIN
- EVALUATION OF STIFFNESS CHANGES IN CRACKED PLY
- Self consistent estimates
- Row of parallel cracks solutions,
- O EVALUATION OF ENERGY RELEASE RATES FOR INTERACTING SLIT CRACKS IN A CRACKED PLY
- 0 EVALUATION OF LIGAMENT STRAINS BETWEEN INTERACTING CRACKS
- O COMPARISON WITH EXPERIMENTS
- Apparent threshold toughness of cracking ply
- Critical ligament strain as a criterion for progressive cracking
- O CONCLUSIONS

Figure 1. Slit crack in a uniformly strained composite ply. Fibers and cracks are aligned with x3 axis. Uniform strain imposed by adjacent parts b, b' of the plate. At first ply failure, crack is isolated and does not interact with other cracks.

Figure 2. Fiber debonding and coalescence of debonds create a nucleus.

. Subcritical growth under applied strain $\widetilde{\epsilon}$ δ = $\delta(\widetilde{\epsilon}(t))$ for δ < $^{\delta}c$

At δ = δ_{c} , nucleus becomes unstable and may propagate

- in transverse direction \boldsymbol{x}_1 as type T crack

- in longitudinal direction \mathbf{x}_3 as type L crack

STRENGTH OF THIN PLIES - 1

Figure 3. Unit extension of a slit crack

Definition of "thin" ply: $2\delta = 2a$ for $\delta \le \delta_C$ Energy release rate for longitudinal (type L) slit crack:

$$G(L) = W_a/2a$$

 W_{a} - interaction energy of a unit length crack of width 2a

$$\mathsf{G}(\mathsf{L}) \,=\, \frac{1}{4}\,\, \mathsf{mal}\, \xi_{\mathrm{I}} \,\, ^{0}_{22} \,\, ^{-2}_{22} \,+\, \xi_{\mathrm{II}} \,\, ^{0}_{44} \,\, ^{-2}_{023} \,+\, \xi_{\mathrm{III}} \,\, ^{0}_{66} \,\, ^{-2}_{72} \mathbf{1}_{2}$$

$$\Lambda_{22}^{0} = \Lambda_{66}^{0} = 2(\frac{1}{E_{T}} - \frac{\nu_{L}^{2}}{E_{L}}), \Lambda_{44}^{0} = 1/G_{L}$$

In the presence of interface damage: ξ_{i} = 1.

STRENGTH OF THIN PLIES - 2

- Evaluation of ply strength under simple loading conditions:

$$(\bar{\sigma}_{22})_{cr} = [46_{Ic}(L)/(\pi \xi_I \Lambda_{22}^0 a)]^{1/2}$$

at $\tilde{\sigma}_{23} = 0$,

$$(\bar{\sigma}_{23})_{cr} = [46_{IIc}(L)/(\pi \xi_{II} \Lambda_{44}^{0} a)]^{1/2}$$

at $\vec{\sigma}_{22} = 0$.

$$\mathfrak{q}_{\mathrm{Ic}}(\mathtt{L})$$
 , $\mathfrak{q}_{\mathrm{IIc}}(\mathtt{L})$ are ply toughness values for type L cracks.

For combined loading $\bar{\sigma}_{23}$ = 9 $\bar{\sigma}_{22}$ use a mixed mode failure criterion.

Example: Hahn (1983):

$$(1-g)(\frac{g_1}{G_{1c}})^{\frac{1}{2}} + g(\frac{g_1}{G_{1c}}) + (\frac{g_{11}}{G_{11c}}) \ge 1,$$

g = $G_{\rm IC}/G_{\rm IIC}$ $\stackrel{\sim}{\sim}$ 0.1 for epoxy matrices.

 Strength of thin or damaged plies is related only to onset of unstable longitudinal (type L) cracking

STRENGTH OF THICK PLIES - 1

- (D) Crack Nucleus(2) Running Longitudinal (Type L) Slit Crack
- Definition of "thick" ply: $2\delta << 2a$ for $\delta \le \delta_c$.

Energy release rates:

$G(T) = \frac{1}{2}\pi \delta [\Lambda_{22}^0 \vec{\sigma}_{22}^2 + \Lambda_{44}^0 \vec{\sigma}_{23}^2 + \Lambda_{66}^0 \vec{\sigma}_{12}^2]$, for $\delta << a$.

$$\mathsf{G}(\mathsf{L}) = \frac{1}{4} \, \pi \, \delta \big[\Lambda_{22}^0 \, \bar{\sigma}_{22}^2 \, + \, \Lambda_{44}^0 \, \bar{\sigma}_{23}^2 \, + \, \Lambda_{66}^0 \, \bar{\sigma}_{12}^2 \big] \, , \qquad \text{for } \delta << a \, .$$

$$G(T) = 2G(L)$$

Ply toughness:

$$G_{IC}(L) = \gamma_I G_{IC}(T)$$

$$G_{IIC}(L) = \gamma_{II} G_{IIC}(T)$$

STRENGTH OF THICK PLIES - 2

Relations between critical width of crack nucleus

$$\delta_{\mathrm{Ic}}(L) = 2\gamma_{\mathrm{I}} \delta_{\mathrm{Ic}}(\tau)$$

$$\delta_{\rm IIc}(L) = 2\gamma_{\rm II} \, \delta_{\rm IIc}(T)$$
.

Experimental data suggest:

$$2\gamma_{\rm I} > 1$$
, $2\gamma_{\rm II} > 1$

.. First ply failure of thick plies starts as a result of transverse (type T) cracking, followed by longitudinal (type L) cracking.

Ply strength:

For
$$\bar{\sigma}_{23}$$
 = 0, $\bar{\sigma}_{22}$ # 0, the strength is given by $(\bar{\sigma}_{22})_{\rm cr}$ = $\left[2{\rm G}_{\rm Ic}({\rm T})/({\rm m}~\Lambda_{22}^0~\delta_{\rm Ic}({\rm T}))\right]^{\frac{1}{2}}$

For
$$\tilde{\sigma}_{22}$$
 = 0, $\tilde{\sigma}_{23}$ \neq 0, the strength is given by $(\tilde{\sigma}_{23})_{\rm cr}$ = $[2 {\rm G}_{\rm IIc}({\rm T})/(\pi~\Lambda_{44}^0~{\rm s}_{\rm IIc}({\rm T}))]^{\frac{1}{2}}$

a. Figure 5. Comparison of theoretical results with experimental data.

Figure 4. Comparison of theoretical results with experimental data.

PART 2: PROGRESSIVE CRACKING OF A PLY

Definition of Crack Density Parameter $\boldsymbol{\beta}\colon$

Crack spacing:

$$n = \beta/2a$$
,

STIFFNESS CHANGES CAUSED BY CRACKS:

Self-Consistent Estimates

Ply properties:
$$\vec{g}$$
 = $L\tilde{\epsilon}$ - $\theta \underline{\mathfrak{L}}$, $\tilde{\epsilon}$ = $M\tilde{\sigma}$ + $\theta \tilde{m}$

 $L = L_0 - \frac{1}{4} \pi \beta L_0 \Lambda L$

Stiffness:

$$\tilde{g} = (I - \frac{1}{4} \pi \beta L \Lambda) \tilde{g}_0$$

Compliance:
$$M = M_0 + \frac{1}{4} \pi \beta \Lambda$$

INTERACTION ENERGY FOR ROW OF PARALLEL CRACKS

Self-Consistent Estimate

Ply under small constant strain $\tilde{\epsilon}$ = const.

Strain energy in RVE of volume V

$$U_0 = \frac{1}{2} \frac{\varepsilon}{\varepsilon} T L_0 \frac{\varepsilon}{\varepsilon} \cdot V$$

$$U = \frac{1}{2} \tilde{\varepsilon}^{T} L(\beta) \tilde{\varepsilon} \cdot V$$

Number of cracks in RVE: $N = \beta V/4a^2$

Interaction Energy of a Single Crack

$$W = (U_0 - U)/N = \frac{2a^2}{\beta} \tilde{\varepsilon}^T (L_0 - L(\beta)) \tilde{\varepsilon}$$

Energy Release Rate of Type L Crack

at
$$\beta \neq 0$$
: $G(L) = W/2a = \frac{a}{\beta} \tilde{\varepsilon}^T (L_0 - L(\beta)) \tilde{\varepsilon}$,

at B = 0:
$$G^0(L) = M_0/2a = \frac{1}{4} \pi a \left[\Lambda_{22}^0 \stackrel{-2}{\sigma}_{22}^2 + \Lambda_{44}^0 \stackrel{-2}{\sigma}_{23}^2 + \Lambda_{66}^0 \stackrel{-2}{\sigma}_{12}^2 \right]$$

Figure 6. Comparison of Different Evaluations of G(L) Reduction Caused by Crack Interaction. $s/a=2/\beta$.

Figure 7. Apparent Ply Toughness $\textbf{G}_{\text{Ic}}(\textbf{L})$ as a Function of Crack Density 8.

INITIATION OF FREE-EDGE DELAMINATION IN COMPOSITE LAMINATE - PREDICTION AND EXPERIMENT

Ran Y. Kim

University of Dayton Research Institute Dayton, Ohio 45469

and

Som R. Soni

AdTech Systems Research Inc. 211 N. Broad Street Fairborn, Ohio 45324

ABSTRACT

Delamination along the straight free edge of composite laminates under an inplane uniaxial load has been observed since the early 1970's. The growth of this delamination under load often results in a reduction of strength and stiffness of the laminate. Since then a large number of papers have reported on the free-edge problem in composite laminates, indicating that free-edge delamination is attributed to the existence of interlaminar stresses which are highly localized in the neighborhood of free edge under an inplane loading. As a result of this analytical work [1,2], the nature of interlaminar stresses with regard to magnitude and sign of each interlaminar stress component is reasonably well understood. In spite of the existence of the analytical models that provide interlaminar stress distributions in the free-edge region, no successful prediction method for the onset of delamination was reported.

In the present work an effort has been made to adequately predict the onset of delamination using stress analysis in conjunction with a failure theory.

The first phase of this work was to determine the interlaminar normal stress (σ_z) experimentally. Strain in the thickness direction was measured at the free edge by employing a miniature strain gage, and σ_z is calculated using three-dimensional constitutive relations in conjunction with axial and transverse strain [3]. The experimental results compare very well with the analytical results calculated from the global-local model developed by Pagano and Soni [4].

The second phase of this work was to develop a methodology to adequately predict the onset of delamination due to either interlaminar normal stress [5] or shear stress alone [6]. The global-local laminate variational model has been used to calculate the interlaminar stresses, and the average stress components over one layer from the free edge are assumed to be the effective stress level acting at the free edge. The predicted values in most cases are fairly well compared with the experimental results for a variety of laminates, and the predicted interface of delamination is the same as the experimentally observed one. The quadratic failure theory [7] has been utilized to improve the prediction capability in the case where both normal and shear stress components are significant [8].

REFERENCES

- N. J. Pagano and R. B. Pipes, "Some Observations on the Interlaminar Strength of Composite Laminates," Int. J. Mech. Sci., Vol. 15, 1973, pp 679-688.
- N. J. Pagano, "Stress Field in Composite Laminates," Int. J. Solid Structures, Vol. 14, 1978, pp 385-400.
- 3. R. Y. Kim and S. R. Soni, "Initiation of Delamination of Composite Laminates," Proceedings of the 1982 SEM Spring Conference on Experimental Mechanics, Honolulu, Hawaii, May 1982.
- N. J. Pagano and S. R. Soni, "Global-Local Laminate Variational Model," Int. J. Solids and Structures, Vol. 19, No. 3, 1983.

- R. Y. Kim and S. R. Soni, "Experimental and Analytical Studies on the Onset of Delamination in Laminated Composites," J. of Composite Materials, Vol. 18, January 1984.
- 6. S. R. Soni and R. Y. Kim, "Delamination of Composite Laminates Stimulated by Interlaminar Shear," presented at the 7th Symposium on Composite Materials: Testing and Design, Philadelphia, PA, April 1984.
- S. W. Tsai and E. M. Wu, "A General Theory of Strength for Anisotropic Materials," J. Composite Materials, Vol. 5, January 1971.
- 8. S. R. Soni and R. Y. Kim, "Mixed Mode Free-Edge Delamination of Composite Laminates," presented at the 19th Midwestern Mechanics Conference, Ohio State University, Columbus, Ohio, September 1985.

INITIATION OF FREE-EDGE DELAMINATION IN COMPOSITE LAMINATE PREDICTION AND EXPERIMENT

RAN Y. KIM
UNIVERSITY OF DAYTON RESEARCH INSTITUTE, DAYTON, OHIO
SOM R. SONI
ADTECH SYSTEMS RESEARCH INC., FAIRBORN, OHIO

SUPPORTED BY AFWAL MATERIALS LABORATORY

OBJECTIVE

TO DEVELOP A METHODOLOGY FOR PREDICTING THE FREE-EDGE DELAMINATION THRESHOLD STRESS AND LOCATION IN COMPOSITE LAMINATES UNDER APPLIED UNIAXIAL LOAD

<u>APPROACH</u>

CALCULATE INTERLAMINAR STRESS COMPONENTS AT FREE EDGE BY GLOBAL-LOCAL MODEL

OBSERVE DELAMINATION EXPERIMENTALLY

DETERMINE σ_z DETECT ONSET OF DELAMINATION
EXAMINE THE FRACTURED SURFACE

EMPLOY AVERAGE STRESS FAILURE THEORY

VARIATION OF STRESS COMPONENTS $\sigma_{\rm Z}$, $\tau_{\rm XZ}$ AND $\tau_{\rm YZ}$ FOR A (0/90/±45) $_{\rm S}$ LAMINATE ALONG THE WIDTH AT DIFFERENT INTERFACES

-1.00-

-1.001

0.00

00

61

VARIATION OF ${m \sigma}_{\rm Z}$ AT THE FREE EDGE OBTAINED FROM ANALYSIS

EFFECT OF STRAIN GAGE SIZE ON THE MEASUREMENT OF $\boldsymbol{\epsilon}_{7}$

TRANSVERSE STRAIN VS. AXIAL STRAIN

LOCATION OF STRAIN GAGES MOUNTED ON SPECIMEN

TRANSVERSE STRAIN (Z-DIRECTION) VS. AXIAL STRAIN

 $oldsymbol{\sigma_{\rm Z}}$ AT MIDPLANE OF LAMINATE FOR APPLIED AXIAL STRAIN OF 0.1% T300/5208 Gr/Ep

	** $oldsymbol{\sigma}_{\! z}$, psi					
LAMINATE	*ANALYSIS	EXPERIMENT	NO. OF SPECIMENS			
[±30 ₂ /90 ₂] _s	3,120	2, 870	3			
[±30 ₄ /90 ₄] _s	3,120	3,060	3			
$[(\pm 30)_2/90]_s$	4, 320	3,110	2			
$[(\pm 30)_4/90]_s$	4, 600	4, 360	2			
$[(\pm 30)_6/90]_s$	4, 800	4, 640	3			

*WITHOUT PRESENCE OF CURING RESIDUAL STRESS ** $\sigma_z = c_{iz} e_i$

UNDER APPLIED UNIAXIAL TENSION

COMPARISON OF EXPERIMENT AND PREDICTION FOR ONSET OF DELAMINATION: T300/5208 Gr/Ep

STRESS AND STRENGTH ANALYSIS AT DELAMINATION

T300/5208 .Gr/Ep

	1300/3200 :01 /25							
LAMINATE	${\overset{APPLIED}{\epsilon_1}}^{m}$	$ar{oldsymbol{\sigma}}_{\scriptscriptstyle oldsymbol{Z}}$	APPLIED $oldsymbol{\sigma}_1$ (ksi)					
(±45/0/90) _s	.52	7.9	40.5					
(0/±45/90) _s	. 66	8.1	51.4					
(0 ₂ /±45 ₂ /90 ₂) _s	.54	9.0	42.1					
(0/±15/90)	. 68	7.6	96.0					
(0/±30/90) _s	. 55	9.2	59.6					
(±30/90) _s	. 39	8. 4	30.4					
(±30 ₂ /90) _s	. 33	9.0	28. 2					
(±30 ₄ /90) _s	. 26	8.7	22. 4					
(±30 ₆ /90) _s	. 22	7.7	18.7					
(±30/±60)	. 61	8.4	34. 68					
(±30 ₂ /±60 ₂) _s	. 53	8.9	29.75					
(±30 ₂ /90 ₂) _s	.36	9.2	27.7					
(±30 ₄ /90 ₄) _s	. 25	7.7	19. 46					
(0 ₃ /±45 ₃ /90 ₃) _s	. 35	7.0	27.33					
(0/±45/90 ₃) _s	. 67	9.6	40. 61					
(0/±45/90 ₆) _s	.54	5.6	24. 66					
(0/90/±45)	66	6.6	-51,76					
(0/90 ₃ /±45) _s	68	8.3	-40. 67					
(0/90 ₆ /±45) _s	78	9.4	-35,37					

NEGATIVE SIGN DENOTES COMPRESSION AVERAGE OF 4 TO 10 SPECIMENS FOR EACH LAMINATE

ANALYTICAL AND EXPERIMENTAL RESULTS ON ONSET OF DELAMINATION

LAMINATE	TYPE OF	AVG STRESS, KSI FOR € _x = 0.1%			€ _X AT ONSET OF DELAMINATION, %		OBSERVED INTERFACE	
	LOADING	$ar{m{\sigma}}_{_{Z}}$	$ar{ au}_{XZ}$	INTERFACE	PREDICTION	EXPERIMENT	DELAMI NATED	
PURE GRAPHITE	TEN	2.3	0	MP	0.33	0. 37	MP & -30/90	
	COMP	≃0	3.0	+30/-30	0.42	0. 45	30/-30	
HYBRID (±30 ₂ c/90 ₂ s) _s	TEN COMP	1.88 ≃0	0 2.80	MP +30/-30	0.51 0.45	0. 46 0. 50	MP & -30/90 30/-30	
HYBRID II	TEN	0.88	0	MP	0.85	0.76	MP & -30/90	
(±30 ₂ s/90 ₂ c) _s	COMP	≃0	1.32	+ 3 0/-30	1.18	1.26	30/-30	
PURE GRAPHITE (0 ₂ /±15 ₂) _s	COMP	0.08	4.00	+15/-15	0.31	0. 45	15/-15	
HYBRID (0 ₂ c±15 ₂ s) _s	TEN	-0.03	1.18	+15/-15	1.31	1.38	15/-15	
	COMP	0.03	1.18	+15/-15	1.31	1.14	15/-15	
HYBRID	TEN	-0. 28	3. 4	+15/-15	0.37	0. 67	15/-15 & 0/15	
(0 ₂ s/±15 ₂ c) _s	COMP	0. 28	3. 4	+15/-15	0.37	0. 50	15/-15	

c: T300/934C Gr/Ep

s: S-2/934C GI/Ep

MP: Midplane

QUADRATIC POLYNOMIAL FAILURE CRITERION

STRENGTH RATIO R AT ONSET OF DELAMINATION USING QUADRATIC FAILURE CRITERION

-2 $= 2$ $= 7$			(COMPRE		_		
$F_{ZZ} \overline{\sigma}_{Z}^{2} + F_{XZ} \overline{\tau}_{XZ}^{2} + F_{Z} \overline{\sigma}_{Z} = 1$	Laminate	E ₁₁ (MS1)	$\sigma_{\sf Del(KSI)}$	€ Dei(%)	$ar{m{\sigma}}_{Z(KSI)}$	$ar{ au}_{XZ}(KSI)$	R
$F_{ZZ} = \frac{1}{ZZ^{1}}, F_{XZ} = \frac{1}{S^{2}}, F_{Z} = \frac{1}{Z} - \frac{1}{Z'}$	(90 ₄ /±15 ₄) _s	12.2	41.6	0.34	2.72	-16.25	.73
22 22 × S _{XZ}	(90 ₄ /±30 ₄)s	7.7	20.8	0.27	4.13	-10,77	.93
$R = \frac{\boldsymbol{\sigma} \text{ allowed}}{\boldsymbol{\sigma} \text{ applied}}$	(90 ₄ /±45 ₄) _s	3.7	13.7	0.37	4.77	-7.44	1.1
$aR^2 + bR + C = 0$	(0 ₄ /±15 ₄) _s	17.7	61.8	0.35	0.74	17.54	0.75
ak + Dk + C = 0	(0 ₄ /±30 ₄) _s	11.7	41.5	0.35	1.54	12.95	0.96
$R = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	(0 ₄ /±45 ₄)	8.4	66. 4	0.79	1.82	-11.85	1.0
2.0	(±15 ₄) _s	16.3	56.3	0.35	14	-17.2	0.78
	(±30 ₄) _s	6.8	27.9	0.41	0.21	-14.4	0.93
	(0 ₂ /90 ₂ /±45 ₂) _s	7.8	43.9	0.56	5.9	-8, 85	0.90
			(TENS	51 ON)			
	(0 ₄ /±15 ₄) _s	17.7	100.9	.57	-1.2	-28.57	. 48
	(0 ₄ /±30 ₄) _s	11.7	99.5 T300/93 4	.85 4C Gr/	-3.74 /Fp	-31.45	. 46

DELAMINATION UNDER APPLIED COMPRESSION

MIDPLANE $\begin{bmatrix} 0_2/90_2/\pm 45_2 \end{bmatrix}_s$

+30/-30 INTERFACE $\left[\pm 30_{2} \text{s}/90_{2} \text{c}\right]_{\text{s}}$

DELAMINATION DUE TO σ_{z} UNDER APPLIED COMPRESSION DELAMINATION DUE TO τ_{xz} UNDER APPLIED COMPRESSION

CONCLUSIONS

THE EXPERIMENTALLY DETERMINED $oldsymbol{\sigma}_{\! extsf{Z}}$ CORRELATES CLOSELY WITH THE ANALYTICAL RESULT.

THE PREDICTED ONSET OF DELAMINATION LOADS EMPLOYING AVERAGE STRESS FAILURE CRITERIA ARE CLOSE TO THE OBSERVED VALUES WHERE SINGLE PREDOMINANT INTERLAMINAR STRESS COMPONENT EXISTS.

QUADRATIC FAILURE CRITERION PREDICTS STRENGTH RATIOS CLOSE TO OBSERVED ONES FOR A NUMBER OF LAMINATES.

THE MODE AND LOCATION OF DELAMINATION IN COMPOSITE LAMINATES ARE PREDICTED ACCURATELY. THE PREDICTED MODES OF DELAMINATION DUE TO σ_7 OR $oldsymbol{ au}_{ exttt{XZ}}$ CAN BE CLEARLY IDENTIFIED BY SEM.

FURTHER WORK IS REQUIRED TO INVESTIGATE THE EFFECT OF ORIENTATION ON INTERLAMINAR SHEAR STRENGTH.

STRENGTH, DEFLECTIONS AND IMPACT DAMAGE IN ADVANCED COMPOSITE STRUCTURES

Paul A. Lagace

TECHNOLOGY LABORATORY FOR ADVANCED COMPOSITES
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

The plans for and the progress on two three-year contractual efforts concerning composite materials will be presented. Although the two major work areas are related, they will be treated, for the purpose of presentation, separately. The first area involves the "Strength and Deflections of Advanced Composite Sandwich Structures". The second area is entitled "The Sensitivity of Kevlar/Epoxy and Graphite/Epoxy Structures to Damage from Fragment Impact".

Sandwich construction has been used in the aerospace industry for a number of years. The current effort seeks to investigate such construction for application to high efficiency, ultralight aircraft. This involves the investigation of sandwich structures with relatively thin graphite/epoxy face sheets. Due to this construction, a number of failure modes must be considered: ply or sublaminate buckling, skin debonding, core failure, plate buckling, and facesheet fracture. This three-year program has thrusts in three principal areas: the development of analytical tools necessary to predict the strength and deflection of graphite/epoxy sandwich structures; experimentation on sandwich plates to determine their buckling and deflection characteristics to compare with the analysis; and experimentation on sandwich plates to determine their strength properties.

The work during the last nine months has centered on the development of the analytical methodology. The analysis is based on a Rayleigh-Ritz type discretization of the displacement fields and uses direct minimization of the potential energy. All eighteen terms in the A, B, and D matrices are taken into account so that anisotropic plates can be analyzed. Mindlin plate theory is used to incorporate the effects of transverse shear and the effect of initial imperfections can also be evaluated as the program uses Marguerre's shallow shells theory. The loading on the plate can be longitudinal compression, transverse compression, shear, or any combination thereof. The program solves the general buckling/postbuckling problem via an optimal search and a typical plate takes about 20 seconds of CPU time on a VAX 11/782 computer for analysis. Typical results are presented and, where available, agree well with other reported analytical results.

An experimental program has also been devised. The purpose of the program is to investigate the effects of various core materials on the deflections and, ultimately, strength behavior. The experimental technique is discussed and preliminary results presented which correlate well with the analysis for these configurations.

The response of composite laminates to impact is an important consideration in assessing the damage tolerance of a composite structure. Composites are sensitive to impact due to their tendency to delaminate. Furthermore, this damage often goes undetected although it may cause considerable strength reduction in the composite part. The effort in this three-year program is directed toward first establishing the basic response of composites to impact via generic specimens (i.e. coupon type), analysis of the impact event, and the response of the composite to the damage induced by impact. Once the basic mechanisms are established and better understood, the work will progress to structures typically used in aircraft such as stiffened panels, pressurized cylinders (which model fuselages) and the like.

The analysis of the impact event has been broken down into parts. The treatment involves either analysis or experimentally determined data for the contact law and a plate solution for the overall parameters in order to model the local contact problem of a static indentor. This is used with a plate solution to determine the dynamic response on the plate to the impact event. These two analyses yield the stress and strain fields which are then used in conjunction with failure criteria to determine the damage caused by the impact. A modified Bessel function approach is used to solve the axisymmetric contact problem. The analytical solution shows excellent correlation with experimental data presented in the literature. The dynamic problem is solved via a Rayleigh-Ritz formulation and includes shear deformation. The technique is currently being implemented.

An extensive experimental program is underway as well. An impact gun has been setup along with monitoring equipment and this will be discussed. A number of graphite/epoxy coupons have been impacted and then sectioned to characterize the damage. Typical damage modes will be shown. Some tests to failure have also been conducted on impacted specimens and these preliminary results will also be discussed. Additionally, work has been accomplished on modelling damage due to impact via delaminations implanted via teflon inserts. A number of other authors have looked at the compressive response of graphite/epoxy with implanted delaminations. In this investigation, the initial work has been conducted under tension in order to separate out the basic effect the delamination has on the fracture of the material from the structural effect the delamination induces due to local ply/sublaminate buckling. The preliminary results, which will be presented, indicate that a delamination located at the midplane of a six-ply laminate is benign in that no strength and little stiffness changes are noted. However, the cases where delaminations are implanted at every ply interface, which is more typical of the damage in an impacted specimen, show strength reductions of 30% for a 30 mm circular delamination in a 70 mm wide specimen.

In addition to the results attained to date, the next steps in the research will be outlined in each case.

ANALYSIS OF COMPOSITE LAMINATES WITH DELAMINATIONS UNDER COMPRESSION LOADING

HAN-PIN KAN

NORTHROP CORPORATION
AIRCRAFT DIVISION
HAWTHORNE, CALIFORNIA 90250

ABSTRACT

Delaminations in composite structures are of great concern to aircraft designers and analysts. This is because of the possible local buckling and growth of the delaminations when such a structure is subjected to in-service loading. An extensive technology assessment conducted under Reference 1 has identified that impact damage and delamination are the most critical damage modes that degrade structural strength and fatigue life. Unlike metallic structures, where the material defects propagate under tensile loading, delaminations in composite laminates usually do not propagate under tension. However, under compressive static and fatigue loading, local buckling of the delaminated region may occur below the compression strength of the laminate. The local buckling of the delaminated region provides a means of releasing strain energy and thus making energy available for the delamination to grow. To design composite structures for damage tolerance, analytical methods are needed to predict the initial buckling, to compute the strain-energy-release rate and to determine the mode of failure of the structure.

In the present paper, an analytical method to determine the initial buckling of the delaminated region and to compute the strain-energy-release rate is presented and the interaction of laminate failure mode is discussed. Three types of delaminations, namely, through-the-width, circular and elliptical delaminations are considered. The influence of delamination size and depth on the initial buckling and strain-energy-release rate is investigated,

The initial buckling analysis is based on the energy method employing the Rayleigh-Ritz method. The delaminated laminate is modelled as a homogeneous, elastic, orthotropic plate. The plate is separated into two layers in the delaminated region. The strain energy expression is taken from Reference 2. Out-of-plane displacement functions, satisfying the boundary conditions, are assumed for different delamination types. The initial buckling load is determined by performing the necessary integrations and variations to minimize the total potential energy of the system. Results of the analysis show that the initial buckling load depends on the delamination size, shape, depth and the laminate stacking reference.

As the applied compression load exceeds the initial buckling load of a laminate with a delamination, strain energy will be released for delamination growth. The total strain-energy-release rate, G, is computed. The value of G is obtained under a constant load and according to the usual definition that G is the energy required to create a unit new free surface in the system.

The two layers of a composite laminate separated by a delamination behave as a single undamaged laminate when the applied load is below the initial buckling load; hence the strain energy release rate G = O in the prebuckling range. Beyond initial buckling, the value of G depends on the initial buckling load which is a function of the delamination size, shape and depth. The results indicate that the value of G, under a constant compression loading, is very sensitive to delamination size, when the delamination is slightly larger than the critical size corresponding to the applied load. As the delamination becomes large as compared to the critical size, the value of G approaches a constant.

The initial buckling of the delaminated region in a laminate with delamination usually does not cause failure of the laminate. The static compression strength of a composite structure with delaminations depends on the initial buckling strength, the material compression strength and interlaminar toughness, and the structural geometries. The mode of failure may be gross compression, local or global buckling or catastrophic delamination growth. A failure prediction technique is developed which takes into consideration of the failure mode interactions. In this technique, the failure strength for different failure mode is plotted as a function of the delamination size. The laminate

failure strength is then given by the minimum strength among all the failure modes. By doing this, the failure is divided into three or more regions depending on the delamination size.

REFERENCES

- McCarty, J. E. et al, "Damage Tolerance of Composites," AFWAL Contract No. F33615-82-C-3213, Interim Report No. 1-4, March 1983-September 1984.
- Lekhniskii, S. G., Anisotropic Plates, Gordon and Breach, New York, 1968.

ACKNOWLEDGEMENT

The work reported here was preformed under Northrop's Independent Research and Development Program in support of AFWAL Contract No. F33615-82-C-3213, "Damage Tolerance of Composites."

ANALYSIS OF COMPOSITE LAMINATES WITH DELAMINATIONS UNDER COMPRESSION LOADING

HAN-PIN KAN

NORTHROP CORPORATION
AIRCRAFT DIVISION
HAWTHORNE, CALIFORNIA 90250

OBJECTIVE

TO PREDICT RESIDUAL STRENGTH AND FAILURE MODE
OF COMPOSITE LAMINATES WITH DELAMINATIONS
UNDER COMPRESSION LOADING

APPROACH

- DETERMINE INITIAL BUCKLING OF DELAMINATED REGION
- COMPUTE STRAIN-ENERGY-RELEASE RATE FOR DELAMINATION GROWTH
- CONSIDER FAILURE MODE FOR STRENGTH PREDICTION

ANALYSIS FEATURES

- SINGLE DELAMINATION
- ANY DELAMINATION SIZE, SHAPE, AND DEPTH
- BOUNDARY VARIATION OF STRAIN-ENERGY-RELEASE
 RATE INCLUDED
- MULTIPLE FAILURE MODES FOR STRENGTH PREDICTION

BUCKLING ANALYSIS

- DELAMINATED LAMINATE MODELED AS TWO SEPARATED LAYERS OF HOMOGENEOUS, ELASTIC, ORTHOTROPIC PLATES
- ENERGY FORMULATION EMPLOYED
- INITIAL BUCKLING STRENGTH OF THE WEAKER LAYER IS OBTAINED USING RAYLEIGH-RITZ METHOD
- INITIAL BUCKLING LOAD DEPENDS ON THE DELAMINATION SHAPE, SIZE, LOCATION, AND THE LAMINATE STACKING SEQUENCE

THROUGH-THE-WIDTH DELAMINATION

LAMINATE WITH AN ELLIPTICAL DELAMINATION

DISPLACEMENT FUNCTIONS

THROUGH-THE-WIDTH DELAMINATION

$$w = w(x) = Ae^{\alpha x} + Be^{-\alpha x} + C\sin \alpha x + D\cos \alpha x$$

ELLIPTICAL DELAMINATION

$$w = w(x,y) = \frac{A}{a^4 b^4} (a^2 b^2 - b^2 x^2 - a^2 y^2)^2$$

INITIAL BUCKLING LOADS

THROUGH-THE-WIDTH DELAMINATION

$$N_{CRI} = k(\frac{II}{a})^2 \cdot D_{11}$$
, $k = 1.0306$ for lowest buckling mode

ELLIPTICAL DELAMINATION

$$N_{CRI} = \frac{3}{a^2} \left[4D_{11} + \frac{8}{3} \left(\frac{a}{b} \right)^2 D_{12} + 4 \left(\frac{a}{b} \right)^4 D_{22} + \frac{16}{3} \left(\frac{a}{b} \right)^2 D_{66} \right]$$

 \mathbf{D}_{ij} ARE PLATE RIGIDITIES OF THE DELAMINATION LAYER

INITIAL BUCKLING STRENGTH

DISPLACEMENT PROFILE OF THE DELAMINATED LAYER

STRAIN-ENERGY RELEASE RATE ANALYSIS

- ASSUME NO ENERGY RELEASED AT APPLIED LOAD LEVEL BELOW INITIAL BUCKLING STRENGTH OF THE DELAMINATED LAYER
- OVERALL STRAIN-ENERGY-RELEASED-RATE IS DETERMINED UNDER CONSTANT LOAD CONDITION
- STRAIN-ENERGY-RELEASE-RATE

$$G = \frac{\partial (W-U)}{\partial a}$$

- G IS A FUNCTION OF DELAMINATION SHAPE, SIZE, LOCATION, AND THE INITIAL BUCKLING LOAD
- FOR CIRCULAR AND ELLIPTICAL DELAMINATIONS, G ALSO VARIES AROUND THE DELAMINATION FRONT

STRAIN-ENERGY RELEASE RATE 16-PLY LAMINATE 3-PLY-DEEP DELAMINATION

EFFECTS OF STACKING SEQUENCE ON STRAIN ENERGY RELEASE RATE

EFFECTS OF PLY THICKNESS ON STRAIN-ENERGY-RELEASE RATE

STRAIN-ENERGY-RELEASE RATE CIRCULAR DELAMINATION

PERIPHERAL VARIATION OF STRAIN-ENERGY-RELEASE-RATE CIRCULAR DELAMINATION

EFFECTS OF LAMINATE THICKNESS ON STRAIN-ENERGY-RELEASE-RATE

EFFECTS OF DELAMINATION DEPTH ON STRAIN-ENERGY-RELEASE-RATE

STRAIN-ENERGY-RELEASE-RATE ELLIPTICAL DELAMINATION

EFFECT OF ELLIPTICAL ASPECT RATIO ON THE STRAIN-ENERGY-RELEASE-RATE

STATIC FAILURE MODES FOR LAMINATE WITH DELAMINATIONS

MODE	DESCRIPTION
1	GROSS COMPRESSION FAILURE
2	INITIAL BUCKLING OF THE DELAMINATION FOLLOWED BY COMPRESSION FAILURE OF THE REMAINING LAYER
3	GLOBAL BUCKLING
4	INITIAL BUCKLING OF THE DELAMINATION FOLLOWED BY GLOBAL BUCKLING OF THE LAMINATE GLOBAL
5	LOCAL BUCKLING INITIAL BUCKLING OF THE DELAMINATION FOLLOWED BY LOCAL BUCKLING OF THE REMAINING LAYER
6	DELAMINATION GROWTH INITIAL BUCKLING OF THE DELAMINATION FOLLOWED BY DELAMINATION GROWTH AND EVENTUALLY FAILED BY MODE 2, 4 OR 5

GROSS COMPRESSION FAILURE (FAILURE MODE 1)

INITIAL BUCKLING OF THE DELAMINATION FOLLOWED BY COMPRESSION FAILURE (FAILURE MODE 2)

GLOBAL BUCKLING (FAILURE MODE 3)

FOLLOWED BY GLOBAL BUCKLING (FAILURE MODE 4)

LOCAL BUCKLING (FAILURE MODE 5)

FOLLOWED BY DELAMINATION GROWTH (FAILURE MODE 6)

FAILURE MODE INTERACTION

SUMMARY

- AN ANALYTICAL PROCEDURE HAS BEEN DEVELOPED FOR STATIC COMPRESSION STRENGTH PREDICTION OF COMPOSITE LAMINATES WITH DELAMINATIONS
- THE INFLUENCE OF DELAMINATION CONFIGURATION ON THE FAILURE STRENGTH AND FAILURE MODE HAS BEEN INVESTIGATED
- THE INFLUENCE OF LAMINATE THICKNESS, PLY THICKNESS AND STACKING SEQUENCE ON STRAIN-ENERGY-RELEASE RATE HAS BEEN EXAMINED

SIMPLE RECTANGULAR ELEMENT FOR ANALYSIS OF LAMINATED COMPOSITE MATERIALS

John D. Whitcomb

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665-5225

ABSTRACT

The development of an appropriate finite element mesh is a key step in successful finite element analysis. For homogeneous materials the mesh refinement is dictated by geometrical considerations. The shape of a structure should be faithfully modeled. Also, extra mesh refinement is required in regions with strong strain gradients caused by holes, cracks, or boundary conditions. For laminated materials the analyst must also account for the different material properties of the various laminae. These ideas are illustrated by the laminated composite beam shown in the first figure. Geometrical considerations require very few elements except close to the points where load is applied, where strain gradients are large. But since standard finite elements cannot account for stacking sequence effects, such elements should not span across lamina boundaries. Hence, because of the laminated character of the material, the mesh should be highly refined even where the strain gradients are small.

The expense of modeling each lamina individually rapidly becomes intolerable as the number of laminae increases. Reference 1 presents an approximate technique to reduce costs. Laminate theory is used to obtain effective extensional moduli for a group of laminae. Then the group of laminae, rather than the individual laminae, are modeled using finite elements. This approach ignores stacking sequence effects within the lamina group. Therefore, the flexural and flexural-extension coupling properties of the lamina group cannot be faithfully modeled. Reference 2 presents a hybrid analysis for thick laminates. In this analysis (which is not a finite element analysis) the laminate is divided into global and local regions. The terms global and local refer to the detail with which the individual lamina is modeled; the local region is modeled with much greater detail than the global region. Conceptually, this is similar to using a finite element model with smaller- or higher-order elements in one region than in another. However, the analysis in reference 2 does not offer the inherent flexibility of the finite element method for modeling complicated geometries and for performing convergence checks. The objective of this paper is to introduce a new type of two-dimensional (i.e., plane stress or plane strain) finite element for analysis of laminated composites.

The element is a four-node, bilinear, rectangular element. An ordinary bilinear rectangle performs poorly in modeling bending-type deformation. The performance can be improved by using reduced numerical integration or substitute shape functions (ref. 3). Because of the multiple laminae within the element, numerical integration is not appropriate. Therefore, substitute shape functions are used to improve the performance. Explicit integration of the element stiffness matrix in terms of generalized displacements minimizes the algebraic effort required to account for the various laminae within a single element.

After describing the theoretical aspects of the element, results from analyses of several simple configurations are discussed.

REFERENCES

 Wang, A. S. D.; and Crossman, F. W.: Calculation of Edge Stresses in Multi-Layer Laminates by Sub-Structuring. Journal of Composite Materials, vol. 12, Jan. 1978, pp. 76-83.

REFERENCES (CONTINUED)

 Pagano, N. J.; and Soni, S. R.: Global-Local Laminate Variational Model. International Journal for Solids and Structures, vol. 19, no. 3, 1983, pp. 207-228.

Agenty Co.

3. Zienkiewicz, O. C.: The Finite Element Method in Engineering Science, 3rd Ed., McGraw-Hill, New York, pp. 276-284.

SIMPLE RECTANGULAR ELEMENT FOR ANALYSIS OF LAMINATED COMPOSITE MATERIALS

John D. Whitcomb NASA Langley Research Center

ANALYSIS OF THICK LAMINATES

COMPARISON OF TRADITIONAL AND RLC ELEMENT

RECTANGULAR LAMINATED COMPOSITE ELEMENT

- ¥ Plane stress/plane strain
- $m{\times}$ Includes stacking sequence effects
 - * Extensional and shear stiffness
 - * Flexural stiffness
 - * Extension-flexure coupling
- * Technique valid for 3-D element

ELEMENT CONFIGURATION

- * Four node rectangle
- * Lamina interfaces parallel to X-axis

STIFFNESS MATRIX

$$K_{mn} = t \int C_{ij} \frac{\partial \epsilon_i}{\partial \Delta_m} \frac{\partial \epsilon_j}{\partial \Delta_n} dA$$

NORMAL STRAINS:

$$u = a + bx + cy + dxy$$

$$v = \overline{a} + \overline{b}x + \overline{c}y + \overline{d}xy$$

$$\epsilon_{y} = \frac{\partial u}{\partial x} = b + dy$$

$$\epsilon_{y} = \frac{\partial u}{\partial y} = \overline{c} + \overline{d}x$$

SHEAR STRAIN:

$$u = e + fx + gy$$

$$v = \overline{e} + \overline{f}x + \overline{g}y$$

$$\epsilon_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = g + \overline{f} = h$$

STIFFNESS COEFFICIENTS

$$A_{ii} = \sum C_{ii}^{i} (y_{i+i} - y_{i})$$

$$A_{12} = \sum C_{12}^{i} (y_{1+i} - y_{i})$$

$$A_{22} = \sum C_{22}^{i} (y_{i+1} - y_{i})$$

$$A_{33} = \sum C_{33}^{i} (y_{i+1} - y_{i})$$

$$B_{ii} = 1/2\sum_{i=1}^{i} (y_{i+1}^2 - y_i^2)$$

$$B_{12}=1/2\sum_{i=1}^{1}C_{12}^{i}(y_{i+1}^{2}-y_{i}^{2})$$

$$D_{ii}=1/3\Sigma C_{ii}^{i} (y_{i+1}^{3} - y_{i}^{3})$$

TRANSFORMATION TO NODAL DISPLACEMENTS

GENERALIZED DISPLACEMENTS: $[K][\Delta] = [F]$

$$[K] [\Delta] = [F]$$

NODAL DISPLACEMENTS:

$$[\bar{K}]$$
 $[\delta] = [\bar{F}]$

WHERE
$$[\bar{K}] = [T]^T [K] [T]$$

$$[\bar{F}] = [T]^T [F]$$

TRANSFORMATION MATRIX:

$$[\Delta] = [T] [\delta]$$

BUT [
$$\Delta$$
] = $\left[\frac{\Delta_{\text{NORMAL}}}{\Delta_{\text{SHEAR}}}\right]$

$$T = \begin{bmatrix} T_{\text{NORMAL}} \\ T_{\text{SHEAR}} \end{bmatrix}$$

EXAMPLE PROBLEMS

- * MECHANICAL LOAD
- * THERMAL LOAD
- * ISOTROPIC
- * DIFFERENT MODULI OR EXPANSION COEFFICIENTS

CANTILEVERED BEAM WITH TIP LOAD

UNSYMMETRIC CANTILEVERED BEAM WITH THERMAL LOAD

FINITE ELEMENT MODEL

ERROR IN CALCULATED TIP DISPLACEMENT < .1%

BEAM UNDER PURE BENDING

ASSUMED: $\epsilon_{x} = b + dy$ $\epsilon_{y} = \bar{c} + \bar{d}x$ (CONSTANT) $\epsilon_{xy} = h$ (ZERO)

THEORETICAL:

$$\epsilon_{x} = b + dy$$

 $\epsilon_{y} = -\nu (b + dy)$
 $\epsilon_{xy} = ZERO$

CANTILEVERED BEAM WITH TIP LOAD

SUMMARY

- * Need new element to analyse thick laminates
- * Developed Rectangular Laminated Composite element
 which accounts for stacking sequence effects
- * Performed well in initial tests

FORMULATION OF LAMINATED BEAM AND PLATE ELEMENTS FOR A MICROCOMPUTER A. Chen and T. Yang Purdue University

Material not received in time for publication.

Sec. B-1

APPROXIMATE ANALYSIS OF COMPOSITES WITH DAMAGE

G. Sendeckyj

Flight Dynamics Laboratory

Material not received in time for publication.

A Method of Laminate Design

Ippei Susuki
Japan National Aerospace Laboratory
1880 Jindaiji-machi, Chofu, Tokyo 182, Japan
presently
Air Force Wright Aeronautical Laboratories/MLBM
Wright-Patterson Air Force Base, Ohio 45433

abstract

The objective of this research is to develop a design method to translate the strength characteristics of unidirectional composites to that of a multidirectional laminate with maximum strength. Composite laminates have the advantage that their mechanical properties can be tailored through fiber orientations, ply thickness ratios, and stacking sequences. This capability gives a designer an additional degree of flexibility to obtain the desired stiffness or strength.

This work is limited to laminates which are symmetric, and consist of plies with 0,90,45, and -45 degree fiber orientations. A method is developed to find the optimal combination of these four ply groups to obtain the maximum strength for a given set of in-plane loadings. The classical laminated plate theory is used in analyzing the stress and strain of each ply. The laminate strength is determined by the first ply failure envelope based on the quadratic failure criterion.

Numerical results using T300/5208 graphite/epoxy composite include:

- 1. the strength of optimized laminate is about six times as high as that of quasi-isotropic one.
- 2. the principal stress design is not always the best,
- 3. theoretical, and fractinal ply ratios must be rounded off for practical laminates. The effects of the unit ply thickness and the absolute values of applied loads will be illustrated.
- 4. the penalty of using balanced laminates under non principal loads(with shears) are also discussed.

User friendly programs on PRIME(by FORTRAN) or EPSON QX-10(by BASIC) for this work are available to interested users upon request.

COORDINATE SYSTEM AND NOTATION OF MULTIDIRECTIONAL LAMINATE

S1, S2, S6: LAMINATE STRESSES

(SHOWN ARE POSITIVE)

 ϕ k : PLY ANGLE OF k-TH PLY GROUP

 $v(\phi k)$: PLY THICKNESS RATIO OF

k-TH PLY GROUP

H : ONE-HALF OF THE TOTAL THICKNESS

hk : ONE-HALF OF k-TH PLY GROUP THICKNESS

ALUMINUM AND Gr/Ep ELASTIC PROPERTIES

The state of the s						
MATERIAL	DENSITY [kg/m ³]	Ex [GPa]	Ey [GPa]	$ u_{X}$	Es [GPa]	
Gr/Ep (T300/5208)	1600	181	10.3	0.28	7.17	
ALUMINUM (2024-T3)	2771	. 72	72	0.30	27.7	

STRENGTH PROPERTIES

	LONG TENS	LONG COMP	TRANS TENS	TRANS COMP	SHEAR (MPa)
Gr/Ep (T300/5208)	1500	1500	40	246	68
A LUM I NUM (2024-T3)	345	345	345	345	199

STRENGTH SURFACE OF A QUASI-ISOTROPIC LAMINATE IN REGION T (S1=1 MPa)

STRENGTH SURFACE OF A QUASI-ISOTROPIC LAMINATE REGION C (S1=-1 MPa)

STRENGTH SURFACE OF (90q/45r/-45s) LAMINATE UNDER (51,52,56)=(1,.5,.3) MPa

TETRAHEDRON, SCHEMATIC EXPRESSION OF CONSTRAINT ON (0p/90q/45r/-45s) LAMINATE ANALYSIS

SUBREGION IN TETRAHEDRON CONSTRAINT

NO	SUBREGION		PLY THICKNESS RATIO				LAMINATE
			v(0)	v (90)	v (45)	v (-45)	
			р	g	r	S	
0		Α	I	0	0	0	[0]
1	VERTEX	В	0	1	0	0	[90]
2	VERIEN	С	0	0	1	0	[45]
3		0	0	0	0	1	[-45]
4		AB	- x	x	0	0	[Op/9Oq]
5		AC	1-x	0	x	0	[Op/45r]
6	EDGE	OA	i-x	0	0	x	[Op/-45s]
7	EDGE	ВС	0	-x	x	0	[90q/45r]
8		ОВ	0	1-x	0	X	[90 _q /-45 _s]
9		ОС	0	0	l-x	x	[45 _r /-45 _s]
10		OBC	0	l-x-y	x	у	[90q/45r/-45s]
11	CUDEACE	OPC	l-x-y	0	x	у	[Op/45r/-45s]
12	SURFACE	OAB	l-x -y	x	0	у	[Op/90q/-45s]
13		ABC	l-x-y	x	у	0	[Op/9Oq/45 _r]
14	BODY	O-ABC	i-x-y-z	X	у	Z	[O _p /90 _q /45 _r /-45 _s]

0 < x, y, z < 1

STRENGTH SURFACE OF
OPTIMIZED LAMINATE IN REGION T (S1=1 MPa)

PLY GROUPS OF OPTIMIZED LAMINATE IN REGION T (\$1=1 MPa)

STRENGTH VARIATION IN OPTIMIZED LAMINATE AT S6=.1 MPa IN REGION T

PLY THICKNESS RATIOS OF OPTIMIZED LAMINATE AT S6=.1 MPa IN T


```
<u>Uniaxial Compression</u>
[ 1] Stress resultant N1 N2 N6 (MN/m):
                                                -1.000
                                                            0.000
                                                                      0.000
                               Graphite/Epoxy 0 90 45-451 FPTF
                                                  with f = -0.5
      Material : T300/5208
  No. NTPY H(mm) NHPY C
                                                    Rmin
                                                          R(
                                                                0)R(90)R(45)R(-45)
                                          0)
                                                   1.125 | 1.125 0.000 0.000 0.000
              0.751
    123
                               523
                                                           1.060 2.186 0.000 0.000
          6
              0.751
                         3
                           (
                                   1
                                      0
                                          0)
                                                   1.060
                                                   1.552: 1.552 3.220 0.000 0.000
              1.001
                                      0
          8
                         4
                                   1
                                          0)
              1.001
    4 5
          8
                         4
                                   0
                                      0
                                          0)
                                                   1.5001
                                                           1.500 0.000 0.000 0.000
                                  2
                                      0
                                          0)
                                                   1.1081
                                                           1.108 2.269 0.000 0.000
          8
              1.001
                         4
                           (
                                      0
                                                 0
                                                   2.031:
                                                            2.031 4.238 0.000 0.000
    6
              1.251
                           (
                                  1
                                          0)
         10
                               53
                                                                  0.000 0.000 0.000
              1.251
                                   0
                                      0
                                          0)
                                                 0
                                                   1.8751
                                                            1.875
         10
                           (
                         5
    8
              1.251
                           (
                                   2
                                      0
                                          0)
                                                 0
                                                   1.6181
                                                            1.618
                                                                   3.326 0.000 0.000
         10
                                                   1.3391
                                                            1.339 2.680 0.000 1.871
1.339 2.680 1.871 0.000
    \bar{9}
                                   1
                                      0
              1.251
                           (
                                          1)
         10
              1.25!
                                      1
                                          0)
   10
         10
                                                                        next:31
# N1(MN/m) = -10
      Uni-axial Compression
[ 2] Stress resultant N1 N2 N6 (MN/m): -10.000
                                                            0.000
                                                                      0.000
     Material :T300/5208 Graphite/Epoxy with f=-0.5
NTPY H(mm) NHPY E 0 90 45-45] FPTF Rmin R(
                                                                 0)R( 90)R( 45)R(-45)
  No. NTPY H(mm) NHPY E
                                                 0 1.032 | 1.032 2.210 0.000 0.000
0 1.023 | 1.023 2.164 0.000 0.000
                                  3
                             22
21
              6.001
                                          0)
         48
                       24 (
                                      0
    23
              6.001
                           (
                        24
                                      0
         48
                                          0)
                                                            1.008 2.207 0.000 0.000
1.074 2.304 0.000 0.000
              6.00!
                        24
                           (
                              53
                                  123
                                                   1.008
         48
                                      0
                                          0)
                                                 0
     4
         50
              6.251
                        25
                           (
                              53
                                                   1.0741
                                      0
                                          0)
                                                 0
     5
                        25
                                                                   5.565
         50
              6.251
                           (
                              55
                                      0
                                          0)
                                                 0
                                                   1.0681
                                                            1.068
                                                                          0.000
                                                                                 0.000
    67
                        25
25
25
                                                                   2.296
              6.251
         50
                                                                          0.000 0.000
                              24
                                   1
                                      0
                                          0)
                                                 0
                                                   1.0481
                                                            1.048
                                                            1.046 2.196 0.000 0.000
1.015 2.119 0.000 0.000
1.117 2.398 0.000 0.000
1.113 2.359 0.000 0.000
              6.251
         50
                              21
                                   4
                                          0)
                                                 0
                                                   1.046!
                             20 24 23
         50
                                   5
    8
                                                   1.015!
                           0
                                          0)
                                                 0
    9
              6.501
                        26
         52
                           (
                                      0
                                          0)
                                                 0
                                   3
                                                   1.113
         52
              6.501
   10
                           (
                                      0
                                          0)
                        26
                                                 0
                                                                        next:
         54
              6.75
                        27 ( 27
                                   0
                                      0
                                          0)
                                                 0 1.013
                               Biaxial Tension
                                                   2.000
[ 4] Stress resultant N1 N2 N6 (MN/m) :
                                                             0.400
                                                                       0.000
                               Graphite/Epoxy with f=-0.5
0 90 45-45] FPTF Rmin R( 0)R( 90)R( 45)R(-45)
      Material : T300/5208
                      NHPY [
  No. NTPY H(mm)
                                                 45 1.025| 1.339 0.000 1.025 1.025
               3.501
                        14 (
                                       3
                                       ā
                                                 45 1.101: 1.382 0.000 1.101 1.101
                                           3)
          30
               3.751
                        15
                                9
                                   0
     2
                           (
                                       3
               3.751
                        15
                                           4)
                                               -45 1.039: 1.465 0.000 1.111 1.039
     3
          30
                           (
                                8
                                   0
              3.751
                        15
                                8
                                       4
                                           3)
                                                 45 1.039; 1.465 0.000 1.039 1.111
     4
          30
                                   0
                                7
                                                 45 1.0241 1.523 0.000 1.024 1.024
                        15
                                       4
     5
               3.751
                                   0
                                           4)
          30
     67
                        15
                                       2
                                           3)
                                               -45 1.005: 1.191 0.000 1.115 1.005
               3.751
                              10
                                   0
          30
                           (
                                       3
                        15
                              10
                                                 45 1.005   1.191 0.000 1.005 1.115
               3.751
                                   0
                                           2)
          30
                           (
                        15
                                   0
                                           2)
                                               -45 1.002: 1.045 0.000 1.002 1.002
     8
               3.751
                            (
                              11
          30
                                       3
                                           3)
                                                 45 1.171 | 1.417 0.000 1.171 1.171
                        16
                           (
                              10
                                   0
     9
          32
               4.001
                                       4
                                           4)
                                                 45 1.127: 1.615 0.000 1.127 1.127
              4.001
                                8
                                   0
    10
          32
                        16
                           (
                                       3
                                9
                                   0
                                           4)
                                               -45 1.121: 1.522 0.000 1.201 1.121
          32
              4.001
                        16
                           (
    11
                                9
                                   0
                                       4
                                           3)
                                                 45 1.1211
                                                             1.522 0.000 1.121 1.201
    12
          35
              4.001
                        16
                            (
                                                             1.215 0.000 1.054 1.169
                                       3
    13
                                   0
                                           5)
                                                 45 1.0541
          35
              4.001
                        16
                           (
                              11
    14
          35
              4.001
                         16
                           (
                              11
                                   0
                                           3)
                                                -45 1.0541
                                                             1.215 0.000 1.169 1.054
                               8
    15
                                       3
          35
                                   0
                                           5)
                                                -45 1.047!
                                                             1.546 0.000 1.171 1.047
              4.001
                         16
                           (
                                       5
          32
                               8
                                   0
                                           3)
                                                 45 1.047!
                                                             1.546 0.000 1.047
                                                                                   1.171
    16
              4.001
                         16
                           (
    17
                                       2
          32
                                           2)
                                                 45 1.0421
                                                             1.065 0.000 1.042 1.042
                                   0
               4.001
                         16 (
                              12
                                7
                                       4
                                           5)
                                                             1.606 0.000 1.077 1.031
          35
                                   0
                                                -45 1.031!
    18
               4.001
                         16
                            (
                                                             1.606 0.000 1.031 1.077
    19
                                7
                                   0
                                       5
                                           4)
          32
               4.001
                                                 45 1.0311
                         16
                                                -45 1.028: 1.301 0.000 1.221 1.028
                                       2
    20
          32
               4.001
                         16 (
                              10
                                   0
                                           4)
                                                 45 1.028: 1.301 0.000 1.028 1.221
    21
                                   0
                                           2)
          35
               4.001
                         16
                            (
                              10
                                       4
    22
                                       2
                                                 90 1.028; 1.315 1.028 1.143 1.143
          35
               4.001
                            (
                               11
                                    1
                                           2)
                         16
    23
                                                 90 1.0271
                                                             1.253 1.027 1.122 1.122
          35
               4.001
                               12
                                   2
                                       1
                                           1)
                         16
                            (
                                                             1.211 1.026 0.000 0.000
    24
          32
               4.001
                         16
                            (
                               13
                                    3
                                       0
                                           0)
                                                 90 1.026
                                                             1.051 1.017
    25
                               13
                                                                            1.033 1.033
          35
               4.001
                         16
                            (
                                    1
                                       1
                                           1)
                                                 90 1.0171
                                                 90 1.015 | 1.042 1.015 0.000
          32
                               14
                                       0
                                                                                   0.000
    26
               4.001
                         16
                            (
                                           0)
```

103

Design w/wo Shear

```
(1) T300/5208
                                                         0.100
E 13 Stress resultant N1 N2 N6 (MN/m) :
                                                  1.000
                                                                     0.100
                              Graphite/Epoxy 0 90 45-451 FPTF
                                                  with f = -0.5
      Material :T300/5208
                                                                0)R( 90)R( 45)R(-45)
                                                    Rmin R(
  No. NTPY H(mm) NHPY E
                                                   1.033 | 1.243 0.000 1.033 0.000
1.270 | 1.387 0.000 1.270 0.000
                                                45
                                          0)
              1.25!
                                      1
         10
                               5
                                          0)
                                                45
                                   0
                         6
     S
S
         12
              1.501
                                                45 1.032| 1.574 0.000 1.032 0.000
                                      2
                                          0)
                               4
                                   0
              1.501
                         6777
         12
                                                45 1.490: 1.503 0.000 1.490 0.000
                               6
5
                                   Õ
                                      1
                                          0)
              1.75!
                           (
     4
         14
                                      53
                                                45 1.297: 1.863 0.000 1.297 0.000
                                   0
                                          0)
                           (
     567
              1.751
         14
                                                45 1.020: 1.672 0.000 1.020 0.000
                               47
                                   0
                                          0)
              1.751
                           (
         14
                                                 0 1.605| 1.605 0.000 1.694 0.000
                         8 (
                                   0
                                      1
                                          0)
              2.001
         16
                                                45 1.560: 2.106 0.000 1.560 0.000
                               6
                                      2
                                          0)
                         8 (
                                   0
     8
              2.001
         16
                                                45 1.283: 2.033 0.000 1.283 0.000
                                      3
                               5
                                   0
                                          0)
                         8
     9
              2.00!
         16
                                               -45 1.165; 2.027 0.000 1.432 1.165
                               5
                                   0
                                      5
                         8
                                          1)
              100.5
                           - (
   10
         16
                                                            0.089
                                                  1.011
                                                                      0.000
[ 2] Stress resultant N1 N2 N6 (MN/m):
                                                  with f = -0.5
                              Graphite/Epoxy wi
0 90 45-45] FPTF
      Material : T300/5208
                                                            R( 0)R( 90)R( 45)R(-45)
  No. NTPY H(mm) NHPY E
                                                    Rmin
                                                45 1.208; 1.823 0.000 1.208 1.208
          14
              1.751
                                      1
                                          1)
                                                90 1.006: 1.454 1.006 0.000 0.000
     3
              1.75!
                         7 (
                               66557466
                                   1
                                      0
                                          0)
          14
                                                            2.034 0.000 1.406 1.406
                                   0
                                                45 1.406
              2.001
                         8
                                      1
                                          1)
          16
                                                            2.004 0.000 1.331 1.202
                                   0
                                      12020
                                          2)
                                               -45 1.2021
              2.001
                         8
          16
                                                            2.004 0.000 1.202 1.331
                         8
                            ĺ
                                   0
                                                45 1.2021
              2.001
                                          1)
          16
                                                            1.637 1.163 0.000 0.000
              2.001
                         888
                                   1
                                          0)
                                                90 1.1631
          16
                                                            1.894 0.000 1.094 1.094
                                                45 1.0941
          16
              2.001
                                   2
                                          2)
                                                            1.657 1.041 0.000 0.000
              2.001
                                          0)
                                                90 1.0411
     8
          16
                                                90 1.0271 1.549 1.027 0.000 1.075
     9
                                          1)
          16
               2.001
                                                90 1.027 1.549 1.027 1.075 0.000
               2.001
                                          0)
    10
                                                      (2) Kevlar49/Epoxy
                                                           0.100
[10] Stress resultant N1 N2 N6 (MN/m):
                                                  1.000
                                                                      0.100
      Material : Kevlar 49/Epoxy
NTPV H(mm) NHPY E 0 90
                                    Aramid/Epoxy f=-0.5
45-45] FPTF Rmin R(
  No. NTPY H(mm) NHPY E
                                                                 0)R( 90)R( 45)R(-45)
                                                   1.204: 1.460 0.000 1.204 0.000
                                          0)
                                                45
              1.501
                         6
7
                                   a
                                      1
          12
                                                            1.510 0.000 1.503 0.000
1.529 0.000 1.776 0.000
                                                   1.5031
                               67
                                                45
              1.75
                                   0
                                      1
                                          0)
                           (
     3
          14
                         8 (
                                   0
                                      1
                                          0)
                                                   1.5291
              2.00:
          16
                                                            2.279 0.000 1.154 0.000
                                                45 1.1541
              2.001
                         8 (
                               6
                                   0
                                      2
                                          0)
          16
                                                            1.536 0.000 2.024 0.000
                               8
7
              2.251
                         9 (
                                   0
                                      1
                                          0)
                                                   1.5361
          18
                                                            2.516 0.000 1.458 0.000
                                      5
                                                45
              2.251
                         9 (
                                   0
                                          0)
                                                   1.4581
          18
                               .
8
9
7
                                                            2.697 0.000 1.775 0.000
                                   0
                                                45 1.7751
                        10 (
                                          0)
          20
              2.501
                                                   1.5401
                                   0
                                      1
                                                 0
                                                            1.540 0.000 2.250 0.000
              2.50!
                                          0)
          20
                        10
                           (
                                                            2.810 0.000 1.177 0.000
                                   0
                                      3
                                                   1.1771
                                          0)
                                                45
              2.501
                        10
                           (
     g
          92
                               9
                                   0
                                          0)
                                                45 2.094: 2.828 0.000 2.094 0.000
              2.751
    10
                        11 (
                                                                      0.000
[11] Stress resultant N1 N2 N6
                                     (MN/m):
                                                  1.011
                                                            0.089
                                    Aramid/Epoxy f=-0.5
45-45] FPTF Rmin R(
  Material :Kevlar 49/Epoxy
No. NTPY H(mm) NHPY E 0 90
                                                               0)R( 90)R( 45)R(-45)
                                          5)
                                                45 1.060 | 3.551 0.000 1.060 1.060
              3.251
                                      522
                        13
                                                            3.847 0.000 1.138 1.138
                                   0
                                                   1.138
     3
                        14
                              10
                                                45
                                                            3.193 0.000 1.101 1.101
          58
               3.501
                                   0
                                          3)
                                                45 1.1011
                        14
                               8
                                                            2.468 0.000 1.022 1.032
          28
              3.501
                              12
                                   0
                                                45 1.022!
     4567
                        14
                           (
                                      1231
                                          1)
                                                            4.096 0.000 1.213 1.213
              3.751
                                                   1.2131
                            ( 11
                                                45
          30
                        15
                                   000
                                          5)
               3.751
                                          3)
                               9
                                                   1.1991
                                                            3.620 0.000 1.199 1.199
                        15
                                                45
          30
                              137
                                                            2.479 0.000 1.031 1.031
               3.75i
          30
                        <u>15</u>
                                                45
                                                                                 1.073
                                          1)
                                                   1.081
          30
30
30
                                                   1.072
1.058
1.058
                        15
15
                                               45
-45
                                                            2.694 0.000
3.988 0.000
                                                                          1.072
1.397
     8
                                   0
                                       4
               3.75
                                          4)
                                      5
     9
               3.751
                              10
                                   0
                                          3)
                            (
                                                            3.988 0.000 1.058
               3.751
                        15
                              10
                                   0
                                          2)
                                                45
    10
```

MECHANICS OF COMPRESSION FAILURE IN FIBER REINFORCED COMPOSITES

S. Wang

University of Illinois

Material not received in time for publication.

SUPPRESSION OF DELAMINATION IN COMPOSITE LAMINATES SUBJECTED TO IMPACT LOADING

C. T. Sun

School of Aeronautics and Astronautics Purdue University West Lafayette, Indiana 47907

ABSTRACT

Two major failure modes are predominant in composite laminates subjected to low velocity impact, i.e., matrix cracks and delamination [1]. Delamination, in particular, may cause a great reduction in compressive strength and, thus, suppression of delamination is highly desirable.

Analysis results indicate that delamination is induced by matrix cracks. Two types of matrix cracks are induced by transverse shear stresses and bending stresses. Bending cracks usually occur in the bottom layer where bending stresses are the greatest, while transverse shear cracks occur more often in the interior layers. Delamination can result from branching of both bending cracks and transverse shear cracks. In thin laminates it is not produced by reflection of waves propagating through the thickness of the laminate.

Two methods of delamination suppression are investigated: adding through-the-thick-ness reinforcements by stitching, and adding tough adhesive layers along interfaces of the laminate. Experimental results indicate that stitching can reduce the spreading of delamination cracks but cannot prevent initiation of delamination. On the other hand, the use of adhesive layers proves to be quite effective in suppressing delamination.

Thin structural adhesives were placed along the interfaces of a composite laminate subjected to impact loading. The base line specimen was AS4/3501-6 graphite/epoxy $\begin{bmatrix} 0_5/90_5/0_5 \end{bmatrix}$ laminate. One group of specimens contained layers of 5 mil thick adhesive film (FM1000 by American Cyanamid) between the 0°- and 90°-plies. Impacted beam specimens were sectioned transversely and longitudinally through the impact site and were examined using an optical electron microscope and then photographed. From these photographs, matrix cracks and delamination size were measured. The X-ray technique was also used to map the delamination area.

When compared, the base line laminate and the one with adhesive layers exhibited significant differences in damage mode. For instance, the threshold velocity at which damage (matrix cracking or delamination) occurred, was found to be much lower for the laminate with no adhesives. It was found that a delamination crack could not be initiated in the laminate with adhesives until the impact velocity reached 26 m/sec, while under a 13 m/sec impact, the laminate without adhesives began to suffer delamination.

Transverse shear crack in the upper lamina was also noted to be affected by the presence of adhesive layers. For example, at 15 m/sec transverse shear cracks appeared in the upper lamina in the specimen without adhesives, while no transverse cracks emerged in the upper lamina in the beam with adhesives at velocities below 26 m/sec. There was indication that delamination could be caused by transverse cracks.

The adhesive layers in the laminate appeared to have affected the size of indentation during impact. As a result, the distribution of contact pressure was also affected. Experiments were conducted, and the relations between the contact area and impact velocity for laminates with adhesives and without adhesives were obtained. The results showed that adhesive layers tended to enlarge the contact area and, as a result, spread out the contact pressure. The distribution of the contact pressure was found to significantly affect the transverse shear stress distribution through the thickness. This result was used successfully to interpret the difference in transverse shear crack patterns in the two types of laminates due to impact loading.

The effect of adhesive layers on transverse shear stress distribution was studied by using 2-D finite elements. The results show that the adhesive layer can diffuse shear stress concentration in the top layer (impacted side) resulting in a significant reduction in transverse shear cracks. Effects of adhesive layer locations were also investigated.

ACKNOWLEDGMENT

This work was supported by ONR Contract NOO014-84-K-0554. Dr. Yapa Rajapakse is Technical Monitor.

REFERENCES

 S. P. Joshi and C. T. Sun, "Impact Induced Fracture in a Laminated Composite," Journal of Composite Materials, Vol. 19, No. 1, 1985, pp. 51-66.

SUPPRESSION OF DELAMINATION IN COMPOSITE LAMINATES SUBJECTED TO IMPACT LOADING

C. T. SUN

School of Aeronautics and Astronautics Purdue University West Lafayette, Indiana 47907

Sponsored by ONR Technical Monitor: Dr. Y. Rajapakse

APPROACH

- IMPACT [05/905/05] LAMINATES WITH STITCHING AND ADHESIVE LAYERS
- DETERMINE CONTACT AREAS
- USE PHOTOMICROGRAPHS TO OBSERVE IMPACT DAMAGE
- USE 2-D FINITE ELEMENTS TO PERFORM DYNAMIC STRESS ANALYSIS TO INTERPRET EXPERIMENTAL RESULTS

OBJECTIVE

TO INVESTIGATE THE EFFECTIVENESS IN USING STITCHING AND ADHESIVE LAYERS FOR SUPPRESSION OF DELAMINATION

(a) $[0_5/90_5/0_5]$ laminate without adhesives

(b) [0₅/A/90₅/A/0₅]

Transverse cross sections of laminates after impact of a $1/2^m$ steel ball at velocity 21 m/s

(a) $[0_5/90_5/0_5]$ laminate without adhesives

Transverse cross sections of laminates after impact of a 1/2" steel ball at velocity about 26 $\ensuremath{\text{m/s}}$

Delamination zones

UPPER INTERFACE DELAMINATION

LOWER INTERFACE DELAMINATION

S MM

IMPACT VELOCITY 23 m/sec

Delamination zones

impact velocity 34 m/sec delamination in O_5 -layer fiber breakage

impact velocity 14.6 m/sec adhesive layers in $\boldsymbol{0}_5$ layer

impact velocity 14 m/sec
adhesive layer near top
and bottom surface

impact velocity 14.6 m/sec adhesive layer at the middle surface

CONCLUSIONS

- STITCHING CAN REDUCE DELAMINATION SIZE BUT CANNOT SUPPRESS INITIATION.
- ADHESIVE LAYERS WHEN PLACED AT INTERFACES ARE EFFECTIVE IN SUPPRESSING DELAMINATION.
- ADHESIVE LAYERS CAN REDUCE TRANSVERSE SHEAR CRACKS.
- ADHESIVE LAYERS CANNOT STOP BENDING CRACKS.

THERMOVISCOELASTIC PROPERTIES OF UNIDIRECTIONAL FIBER COMPOSITES

Z. Hashin and E. A. Humphreys

Materials Sciences Corporation Gwynedd Plaza II Bethlehem Pike Spring House, Pennsylvania 19477

ABSTRACT

Structural materials in space are subjected to severe thermal cycling as the structure moves between full sunlight and the shadow of the earth. The range of temperatures experienced can be as large as 116°K to 589°K. For polymeric matrix fiber composites this produces creep deformations and relaxation of stress which must be accurately assessed. The purpose of this study is to (a) provide analytical methods to determine the thermoviscoelastic (TVE) properties of graphite/polymer unidirectional fiber composite (UFC), (b) to apply this information to the assessment of composite structural response.

TVE characterization of polymeric matrix materials is not a simple matter and various schemes have been devised in addressing this problem. In this study we have adopted the simplest representation which can adequately characterize the response of a TVE polymer. The representation used retains the temperature dependence of the initial elastic modulus while the time dependent response is governed by a temperature dependent time shift function.

It will be recalled that for isothermal viscoelasticity there is a correspondence principle which directly relates effective viscoelastic and elastic properties for any model of a composite materials [1,2] but no such correspondence exists for a composite with a TVE constituent. It therefore becomes necessary to resort to direct analysis of a model. We have employed two models of a UFC - the composite cylinder assemblage (CCA) model which is suitable for axisymmetric states, including free thermal expansion and for axial shear, and the hexagonal array model for the case of transverse shear. It may be shown that any average stress or strain state can be decomposed into axisymmetric part, transverse shear and axial shear. Thus analysis of these three states provides the general stress-strain response of a UFC.

The advantage of the CCA model is in that the analysis reduces to that of a single composite cylinder. Carrying out such analyses for axisymmetric states and axial shear it was found that in each case the problem was reduced to solution a system of integral equations in the time which is easily done numerically in an incremental fashion. The CCA model is not amenable to transverse shear analysis and therefore this case has been analyzed in terms of the hexagonal array model with TVE finite elements which were specially developed for this study. Note that the CCA and the hexagonal array are both transversely isotropic models as required and that their predictions for elastic constants of UFC are numerically literally identical.

The constitutive relations for UFC developed have to be utilized to study the vibrations of a cantilever beam. With respect to this vibration problem it is important to recognize that a UFC will have small time dependent response when loaded in fiber direction and large time dependence when sheared along the fiber direction (axial shear). Thus, in bending vibrations of a beam which is uniaxially reinforced in the direction of the beam axis the effect of shear is very significant and therefore, we have based the analysis on the Timoshenko beam concept which takes into account shear deformation and rotatory inertia. For this purpose the Timoshenko beam vibration equations have been converted to viscoelasticity in terms of complex moduli (axial Young's modulus and axial shear modulus) of the UFC. These have been evaluated at different temperatures in terms of matrix complex moduli and fiber elastic moduli. We have evaluated the attenuation of free bending vibrations of a cantilever with circular tubular section without and with the shear deformation effect. The results show that shear deformation provides very significant attenuation of vibrations. Indeed it is seen that modes higher than the first are effectively eliminated by the damping.

REFERENCES

- Z. Hashin, "Viscoelastic Behavior of Heterogeneous Media," J. Appl. Mech., 32, 1965, pp. 157-173.
- Z. Hashin, "Viscoelastic Fiber Reinforced Materials," AIAA J., 1966, pp. 1411-1417.

OBJECTIVES

- O OBTAIN THERMO-VISCOELASTIC CONSTITUTIVE RELATIONS
 FOR UNIDIRECTIONAL FIBER COMPOSITES
- O INVESTIGATE COMPOSITE STRUCTURAL RESPONSE

APPROACH

- MICROMECHANICS MODELLING
- STRUCTURAL MODELLING

THERMO-VISCOELASTIC RESPONSE OF UNIDIRECTIONAL FIBER COMPOSITE

FIBERS - THERMO-ELASTIC ANISOTROPIC GRAPHITE, CARBON

MATRIX - THERMO-VISCOELASTIC POLYMER

INPUT -
$$\bar{\varepsilon}_{ij}(t)$$
, $\phi(t)$ FIND - $\bar{\sigma}_{ij}(t)$

RELAXATION

INPUT -
$$\bar{\sigma}_{ij}(t)$$
, $\phi(t)$ FIND - $\bar{\epsilon}_{ij}(t)$

CREEP

THERMO-ELASTIC DILATATION RESPONSE

$$\sigma_{ij} = \sigma \delta_{ij} + s_{ij}$$

$$\sigma = \frac{1}{3} (\sigma_{11} + \sigma_{22} + \sigma_{33})$$

$$\varepsilon_{ij} = \varepsilon \delta_{ij} + e_{ij}$$

$$\varepsilon = \frac{1}{3} (\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33})$$

$$\sigma \left[\phi(t)\right] = 3K \left[\phi(t)\right] \left\{\epsilon(t) - \alpha[\phi(t)] \phi(t)\right\}$$

THERMO-ELASTIC RELATION

φ(t) - TIME DEPENDENT TEMPERATURE

THERMO-VISCOELASTICITY

ISOTHERMAL
$$\phi = CONST$$

$$s_{ij}(t) = 2G(t,\phi) e_{ij}(0) + 2\int_{0^{+}}^{t} G(t-t',\phi) \frac{\partial e_{ij}}{\partial t'} dt'$$

$$\mathbf{e}_{\mathbf{i}\mathbf{j}}(\mathsf{t}) = \frac{1}{2}g(\mathsf{t},\phi) \ \mathbf{S}_{\mathbf{i}\mathbf{j}}(0) + \frac{1}{2}\int_{0^{+}}^{\mathsf{t}} \ g(\mathsf{t}-\mathsf{t'},\phi) \ \frac{\partial \mathbf{S}_{\mathbf{i}\mathbf{j}}}{\partial \mathsf{t'}} \ \mathsf{d}\mathsf{t'}$$

G(t, 0) - SHEAR RELAXATION MODULUS

g(t, ¢) - SHEAR CREEP COMPLIANCE

THERMORHEOLOGICALLY SIMPLE

$$S_{ij}(t) = 2G(\xi) e_{ij}(0) + 2\int_{0^{+}}^{t} G(\xi - \xi') \frac{\partial e_{ij}}{\partial t'} dt'$$

$$e_{ij}(t) = \frac{1}{2}g(\xi) S_{ij}(0) + \frac{1}{2}\int_{0^{+}}^{t} g(\xi - \xi'') \frac{\partial s}{\partial t'} dt'$$

$$\xi(t) = \int_{0^{+}}^{t} \frac{du}{a[\phi(u)]} REDUCED TIME$$

a - HORIZONTAL SHIFT FACTOR

$$G(t,\phi_0) = F(logt)$$

$$G(t,\phi) = F[\log(t/a)]$$

THERMORHEOLOGICALLY COMPLEX

SIMPLEST MODEL

$$\begin{split} & G(t,\phi) = G_0(0,\phi_0) + G_1(0,\phi) + G_2(t,\phi) \\ & S_{ij}(t) = 2 \left\{ G_0(0,\phi_0) \cdot e_{ij}(t) + [G_1(0,\phi) + G_2(\xi)] \cdot e_{ij}(0) + \int_0^t [G_1(0,\phi) + G_2(\xi-\xi^\dagger)] \cdot \frac{\partial e_{ij}}{\partial \tau} \cdot dt' \right\} \\ & e_{ij}(t) = \frac{1}{2} \left\{ g_0(0,\phi_0) \cdot S_{ij}(t) + [g_1(0,\phi) + g_2(\xi)] \cdot S_{ij}(0) + \int_0^t [g_1(0,\phi) + g_2(\xi-\xi^\dagger)] \cdot \frac{\partial S_{ij}}{\partial \tau} \cdot dt' \right\} \\ & S_{ij} = 2\underline{\Gamma} \cdot e_{ij} \end{split}$$

TRANSVERSELY ISOTROPIC FIBER COMPOSITE

$$\left[\overline{\sigma}_{\mathbf{i}\,\mathbf{j}} \right] = \begin{bmatrix} \overline{\sigma}_{11} & 0 & 0 & 0 \\ 0 & \frac{1}{2} (\overline{\sigma}_{22} + \overline{\sigma}_{33}) & 0 & + & 0 & \frac{1}{2} (\overline{\sigma}_{22} - \overline{\sigma}_{33}) & 0 \\ 0 & 0 & \frac{1}{2} (\overline{\sigma}_{22} + \overline{\sigma}_{33}) \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & -\frac{1}{2} (\overline{\sigma}_{22} - \overline{\sigma}_{33}) & 0 & + & \overline{\sigma}_{12} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} (\overline{\sigma}_{22} - \overline{\sigma}_{33}) \end{bmatrix} + \begin{bmatrix} 0 & 0 & -\frac{1}{2} (\overline{\sigma}_{22} - \overline{\sigma}_{33}) & 0 & 0 \\ \overline{\sigma}_{13} & 0 & 0 & 0 \end{bmatrix}$$

$$\left[\overline{\varepsilon}_{\mathbf{i}\,\mathbf{j}} \right] = \begin{bmatrix} \overline{\varepsilon}_{11} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} (\overline{\varepsilon}_{22} + \overline{\varepsilon}_{33}) & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} (\overline{\varepsilon}_{22} - \overline{\varepsilon}_{33}) & 0 & 0 & \overline{\varepsilon}_{12} & \overline{\varepsilon}_{13} \\ 0 & 0 & 0 & -\frac{1}{2} (\overline{\varepsilon}_{22} - \overline{\varepsilon}_{33}) & 0 & \overline{\varepsilon}_{12} & \overline{\varepsilon}_{13} \\ 0 & 0 & 0 & -\frac{1}{2} (\overline{\varepsilon}_{22} - \overline{\varepsilon}_{33}) & 0 & \overline{\varepsilon}_{13} & 0 & 0 \end{bmatrix}$$

COMPOSITE CYLINDER

ASSEMBLAGE

HEXAGONAL

ARRAY

COMPOSITE CYLINDER

ASSEMBLAGE

COMPOSITE CYLINDER ASSEMBLAGE

AXISYMMETRIC

$$u_1 = \varepsilon_{11}(t)x_1$$

$$u_1 = \varepsilon_{11}(t) x_1$$
 or $\overline{\sigma}_{11}(t)$ Given

$$u_r(b,t) = \varepsilon_T(t)b$$
 or $\sigma_{rr}(b,t) = \sigma_T(t)$

$$\sigma_{--}(b,t) = \sigma_{-}(t)$$

$$\varepsilon_{\mathrm{T}} = \frac{1}{2} \quad (\overline{\varepsilon}_{22} + \overline{\varepsilon}_{33})$$

$$\sigma_{\rm T} = \frac{1}{2} \left(\overline{\sigma}_{22} + \overline{\sigma}_{33} \right)$$

$$\phi = \phi (t$$

FREE THERMAL EXPANSION

$$\overline{\sigma}_{11} = 0$$
 $\sigma_{rr} (b,t) = 0$

PERIODIC HEXAGONAL ARRAY AND REPEATING ELEMENT

STRAIN HISTORY FOR 1 MPA $oldsymbol{\sigma}_2$ STRESS AND CYCLIC TEMPERATURE

ELASTIC BEAM VIBRATIONS

NEGLECT SHEAR DEFORMATION AND ROTATORY INERTIA

$$EI \frac{\partial^4 W}{\partial x^4} + \rho A \frac{\partial^2 W}{\partial t^2} = 0$$

WITH SHEAR DEFORMATION AND ROTATORY INERTIA.

TIMOSHENKO BEAM

$$EI \frac{\partial^4 W}{\partial x^4} + \rho A \frac{\partial^2 W}{\partial t^2} - \rho I \left(1 + \frac{E}{k'G}\right) \frac{\partial^4 W}{\partial x^2 \partial t^2} + \frac{\rho^2 I}{k'G} \frac{\partial^4 W}{\partial t^4} = 0$$

k' - SHEAR COEFFICIENT

VISCOELASTIC VIBRATIONS

$$W(\mathbf{x},t) = W(\mathbf{x}) e^{i\widetilde{\omega}t}$$

$$E \rightarrow E'(\omega) + i E''(\omega)$$

$$\widetilde{\omega}_{n} = \omega_{n}' + i \omega_{n}''$$

$$COMPLEX NATURAL FREQUENCY$$

FIRST MODE NATURAL FREQUENCIES, CANTILEVER BEAM

ENVELOPE OF FIRST MODE RESPONSE, CANTILEVER BEAM

ENVELOPE OF SECOND MODE RESPONSE, CANTILEVER BEAM

ENVELOPE OF FIRST MODE RESPONSE, CANTILEVER BEAM

- TEMPERATURE DEPENDENCE OF INITIAL PROPERTIES SIGNIFICANT
- O SECONDARY STRESS DOMINATE BEAM DAMPING
- o STRUCTURAL MODELS MUST INCORPORATE SECONDARY STRESSES

COMPOSITE MECHANICS/RELATED ACTIVITIES AT LEWIS RESEARCH CENTER

C. C. CHAMIS, C. A. GINTY, AND P. L. N. MURTHY

NASA LEWIS RESEARCH CENTER CLEVELAND, OHIO 44135

ABSTRACT

Lewis research activities and progress in composite mechanics and closely related areas are summarized. The research activities summarized include: (1) Composite Mechanics; (2) Computer Programs for Composites; and (3) High Temperature Composites. The research activities focus on: (1) Composite mechanics -- simplified procedures for sizing laminates, substructuring in composite mechanics for free edge stressfield behavior, interlaminar fracture toughness in composites, and progressive fracture in composites; (2) Computer programs for composites -- integrated composite analysis, composite blade structural analysis, composite durability structural analysis, thermoviscoplastic composite behavior, structural tailoring of engine and SSME blades, and structural tailoring of advanced turboprops; and (3) High temperature composites -- test methods development and characterization, composite burner liner and refractory wire reinforced superalloys for SSME turbopump blades.

OB JECT IVE

COMPOSITE MECHANICS/RELATED ACTIVITIES
AT LEWIS RESEARCH CENTER

SUMMARY OF LEWIS RESEARCH ACTIVITIES AND PROGRESS IN:

- o COMPOSITE MECHANICS
- O COMPUTER PROGRAMS FOR COMPOSITES
- o HIGH TEMPERATURE COMPOSITES

C. C. CHAMIS, C. A. GINTY, AND P. L. N. MURTHY

NASA LEWIS RESEARCH CENTER

CLEVELAND, OHIO 44135

COMPOSITE MECHANICS

ELEVENTH ANNUAL MECHANICS OF COMPOSITES REVIEW DAYTON. OHIO, OCTOBER 22-24. 1985

- O SIMPLIFIED PROCEDURES FOR SIZING LAMINATES
- O SUBSTRUCTURING IN COMPOSITE MECHANICS: WIDTH, LOADING CONDITION AND ENVIRONMENTAL EFFECTS ON FREE EDGE STRESSES
- O INTERLAMINAR FRACTURE IN COMPOSITES
- O PROGRESSIVE FRACTURE OF COMPOSITES WITH AND WITHOUT DEFECTS

SCHEMATICS OF SELECT COMPOSITE STRUCTURAL COMPONENTS WITH RESPECTIVE GEOMETRY AND TYPICAL LOADINGS

LEWIS DEVELOPED DESIGN PROCEDURE

CONSISTS OF:

- TABULATED TYPICAL PROPERTIES OF VARIOUS UNIDIRECTIONAL COMPOSITES
- SUITABLE GRAPHS TO EXPEDITE REPETITIOUS CALCULATIONS
- PLY STRESS INFLUENCE COEFFICIENTS
- EXPLICIT, SIMPLE EQUATIONS FOR HYGROTHERMAL EFFECTS AND FATIGUE
- APPROXIMATE, SIMPLE EQUATIONS FOR BUCKLING

ELASTIC PROPERTIES OF AS-GRAPHITE-FIBER/EPOXY (AS/E) ±0 LAMINATES

REDUCED STIFFNESSES OF AS GRAPHITE-FIBER/EPOXY (AS/E) ±0 LAMINATES

THERMAL EXPANSION COEFFICIENTS OF AS GRAPHITE-FIBER/EPOXY (AS/E) $\pm \theta$ LAMINATES

MOISTURE EXPANSION COEFFICIENTS OF AS GRAPHITE-FIBER/EPOXY (ASIE) ± 8 LAMINATES

PLY STRESS INFLUENCE COEFFICIENTS (PSIC) - DEFINITION

PSIC (\mathcal{G}) RELATE THE θ PLY MATERIAL AXES STRESSES TO LAMINATE STRUCTURAL AXES STRESSES

LAMINATE STRUCTURAL AXES (X, Y) STRESSES

9 PLY MATERIAL AXES (1, 2) STRESSES

$$\sigma_{\ell 11} = \mathcal{I}_{LIX} \, \sigma_{\mathsf{CXX}} + \mathcal{I}_{LIY} \, \sigma_{\mathsf{CYY}} + \mathcal{I}_{LIS} \, \sigma_{\mathsf{CXY}}$$

$$\sigma_{\ell 22} = \mathcal{I}_{T/X} \, \sigma_{\mathsf{cxx}} + \mathcal{I}_{T/Y} \, \sigma_{\mathsf{cyy}} + \mathcal{I}_{T/S} \, \sigma_{\mathsf{cxy}}$$

$$\sigma_{\ell 12} = \mathcal{I}_{S/X} \sigma_{cxx} + \mathcal{I}_{S/Y} \sigma_{cyy} + \mathcal{I}_{S/S} \sigma_{cxy}$$

SAMPLE DESIGN: COMPOSITE PANEL SUBJECTED TO IN-PLANE COMBINED LOADS

COMPOSITE SYSTEM: AS/E, ABOUT 0.6 FVR

GENERAL LAMINATE DESIGN RESULTS SUMMARY

[LAMINATE CONFIGURATION: [+45/0/90/0] $_{2S}$ AS/E; $_{c}$ = 0.10 in.]

MARGIN	IS OF SAFETY	(M. O. S.)	FOR:						
DISPLA	CEMENT	PLY STRESSES			BUCKLING				
TYPE	M. O. S.	PLY	M. O. S.			CASE, kši			M. O. S.
ula	0, 43		σ _{ℓ11}	o _{ℓ22}	^σ ℓ12	σ _{CXX}	осуу	σ _{CXY}	
v/b	1.94	0	2,77	0.61	1.30	0	0	20	-0.74
Δθ	. 33	+45	0.79	∞	∞	40	20	20	3, 35
		-45	4, 43	a. 27	∞				
		90	6.00	.12	1.30				

^aAT SPECIFIED LOAD (AT DESIGN LOAD M. S. = 0.38).

CD-85-16564

FREE-EDGE SUPERELEMENT

(224 F. E.; 2355 D. O. F.)

CASES STUDIED

- FREE-EDGE AXIAL STRESS VARIATION VERSUS PLY ANGLE
- WITH/THICKNESS RATIO EFFECTS ON FREE-EDGE STRESSES
- AXIAL TENSION REFERENCE

 IN-PLANE SHEAR/BENDING

 OUT-OF-PLANE SHEAR/BENDING

 BENDING MOMENT

 TWISTING MOMENT

 COMBINED LOADING (AXIAL TENSION/IN-PLANE SHEAR)

 UNIFORM THERMAL LOAD

 UNIFORM MOISTURE LOAD

FINITE ELEMENT MODEL OF ANGLEPLIED LAMINATE UNDER UNIFORM EXTENSIONAL STRESS

F. E. STATISTICS 1589 20-NODE SOLID F. E. 224 F. E. 'S IN SUPERELEMENT 22683 D. O. F.

PROPERTIES (AS/EP 00 PLY AND INTERPLY LAYER)

COMPARISON OF FREE-EDGE STRESSES DUE TO ENVIRONMENTAL LOADS

(±100 AS/E APL AT 0. 55 FVR)

 $G_{23} = 0.4473 G_{33} = 1.483 G_{44} = 0.6667 G_{55} = 0.3974$

 $G_{66} = 0.6667 E = 0.50; v = 0.35$ (UNITS x 10^6 psi)

COMPARISON OF FREE-EDGE STRESSES DUE TO MECHANICAL LOADS

(±100 AS/E APL AT 0. 55 FVR)

WIDTH TO THICKNESS RATIO EFFECTS OF

SCHEMATIC OF FLEXURAL TEST FOR INTERLAMINAR FRACTURE MODE TOUGHNESS

 FND-NOTCH-FLEXURE ENERGY RELEASE RATE-COMPARISONS

GENERAL PROCEDURE FOR PREDICTING COMPOSITE INTERLAMINAR FRACTURE TOUGHNESS USING THE END-NOTCH-FLEXURE (ENF)

OR MIXED-MODE-FLEXURE (MMF) METHOD

- DETERMINE REQUISITE PROPERITES AT DESIRED CONDITIONS USING COMPOSITE MICROMECHANICS
- © RUN 3-D FINITE ELEMENT ANALYSIS ON ENF (MMF) FOR AN ARBITRARY LOAD
- © SCALE LOAD TO MATCH INTERLAMINAR SHEAR STRESS AT ELEMENT NEXT TO CRACK-TIP
- WITH SCALED LOAD EXTEND CRACK AND PLOT STRAIN ENERGY RELEASE RATE
 VS CRACK LENGTH
- SELECT CRITICAL "G" } ...
- METHOD HAS VERSATILITY/GENERALITY

EXTENDED TO SEXTENDED TO SEXTEN

FIBER VOLUME RATIO EFFECT ON INTERLAMINAR FRACTURE TOUGHNESS PARAMETERS

END-NOTCH-FLEXURE (AS/E)

CODSTRAN RESULTS

SUCCESSIVE DAMAGE EXTENT AND DEFECT GROWTH [±15] GRAPHITE/EPOXY SOLID LAMINATE

SUCCESSIVE DAMAGE EXTENT AND DEFECT GROWTH [±15] GRAPHITE/EPOXY LAMINATE WITH THROUGH-SLIT

SUCCESSIVE DAMAGE EXTENT AND DEFECT GROWTH [±15] GRAPHITE/EPOXY LAMINATE WITH THROUGH-HOLE

FRACTURE MODES* OF [+0]_S G/E LAMINATES (PREDICTED BY CODSTRAN)

	PLY ORIENTATION; [+θ] _s ; θ IN DEGREES									
NOTCH TYPE	0	3	5	10	15	30	45	60	75	90
UNNOTCHED SOLID	LT	LT S3	LT S3	LT S3	I S	s	I S	TT	тт	ĪΤ
NOTCHED THRU SLIT	s ¹ LT	S ¹ LT	S ¹ LT	s	s	I 4 S	1 ⁴ S	1 ⁴ 11 5 ²	ŧτ	TT
NOTCHED THRU HOLE	S ¹ LT	S ¹ LT	S ¹ LT	5	S LT	4 1 5	1 ⁴ 5 11	I ⁴ TT	Τĭ	TT

LT = LONGITUDINAL TENSION TT = TRANSVERSE TENSION S = INTRAPLY SHEAR:

INITIAL FRACTURE DUE TO INTRAPLY SHEAR IN THE NOTCH TIP ZONE MINIMAL INTRAPLY SHEARING DURING FRACTURE
SOME INTRAPLY SHEAR OCCURRING NEAR CONSTRAINTS (GRIPS)

DELAMINATIONS OCCUR IN NOTCH TIP ZONE PRIOR TO ANY INTRAPLY DAMAGE 4)

I = INTERPLY DELAMINATION

COMPOSITE MICROMECHANICS - SCALE LEVELS INTERFACE INT

S, II_E SQUARE ARRAY (7)

COMPUTER PROGRAMS FOR COMPOSITES

0	ICAN	INTEGRATED COMPOSITES ANALYZER - INTERACTIVE
0	COBSTRAN	COMPOSITE BLADE STRUCTURAL ANALYSIS - STAND ALONE
0	CODS TR AN	COMPOSITE DURABILITY STRUCTURAL ANALYSIS - STAND ALONE
0	N. L. COBSTRAN	NONLINEAR COMPOSITE BLADE STRUCTURAL ANALYSIS - STAND ALONE
0	STAEBL	STRUCTURAL TAILORING OF ENGINE BLADES - HIGH TEMPERATURE
0	STAT	STRUCTURAL TAILORING OF ADVANCED TURBOPROPS

STRUCTURALLY TAILORED SHROUDLESS BLADES WITH COMPLEX INTERNAL STRUCTURE

PARAMETER	PERCENT CHANGE FROM REFER HOLLOW BLADE WITH COMPOSITE INLAYS	SUPERHYBRID - COMPOSITE
BLADE CHORD	-18	-9
BLADE WEIGHT	-52	-37
DIRECT OPERATIONAL COST PLUS INTEREST (DOC +1)		
. ENGINE WEIGHT	-0.33	-0.23
. ENGINE COST	-0.15	-0,18
. MAINTENANCE COST	+0.03	+0.05
TOTAL'	-0,45	-0.36

- DESIGN REQUIREMENTS SATISFIED:
 RESUMANCE MARGINS (FIRST, SECOND, THIRD, AND FOURTH MODES)
 FLUTTER-LOG DECREMENT (FIRST, SECOND, AND THIRD MODES)
 BIRD INGESTION (LOCAL AND ROOT STRESSES)
 STEADY-STATE STRESS (THROUGHOUT THE BLADE)

OPTIMUM BLADE DESIGN EFFECT OF THERMAL AND PRESSURE LOADS

OPTIMUM DESIGN	PRES	SURE LO	AD ONLY	PRESSURE AND THERMAL LO TEMPERATURE - DEPENDE PROPERTIES		
WEIGHT (LRS) PERCENT SPAN THICKNESS (IN) CHORD (IN) THICK/CHORD	0. ,47 3.33 ,14	9.88 50. .08 3.66	100. .10 4.22	0. .48 3.27 .14	9.69 50. .08 3.60	100. .08 4.15 .02
CONSTRAINTS RESUNANCE MARGINS MODE 1 MODE 2 MODE 3		.05 1.55 1.71			.05 1.47 1.67	
FLUTTER CONSTRAINT ROOT STRESS		.510 .782			.520 .813	

OPTIMIM BLADE DESIGN EFFECT OF THERMAL ENVIRONMENT

OPTIMUM DESIGN	CONTROL CASE: No.THERMAL LOADS	THERMAL LOADS TEMPERATURE INDEPENDEN PROPERTIES	THERMAL LOADS TEMPERATURE DEPENDENT PROPERTIES	
METCHT (FRE)	7.95	8.22	8.24	
PERCENT SPAN	0. 50. 100.	0. 50. 100.	0. 50. 100.	
THICKNESS (IN)	.24 .13 .08	.24 .15 .08	.24 .15 .08	
CHORD (IN)	1.70 1.88 2.16	1.68 1.85 2.13	1.69 1.86 2.14	
INICK/CHORD	.14 .07 .04	.14 .08 .04	.14 .08 .04	
CONSTRAINTS				
RESONANCE MARGINS				
Root 1	.05	.06	.06	
Root 2	1.27	1.28	1.27	
Root 3	1.65	1.67	1.65	
FLUTTER CONSTRAINS	.988	.999	.999	
ROOT STRESS	.055	.062	.062	

COMPOSITE TURBOPROP BLADE

COMPOSITE TURBOPROP VIBRATION ANALYSIS

VIBRATION MODE
COMPOSITE TURBOPROP BLADE

		ANALYSIS		TEST
	BENDING	MEMBRANE BENDING	MEMBRANE BENDING	
			TRAN. SHEAR	
1st BENDING	154	158	147	156
1st EDGE	338	339	334	325
2nd BENDING	373	369	364	371
1st TORSION	585	571	561	536
3rd BENDING	655	650	635	623

NATURAL FREQUENCIES OF SR7A

HIGH TEMPERATURE COMPOSITES

- O TEST METHODS AND CHARACTERIZATION
 - O COMPOSITE BURNER LINER
 - o FRS FOR SSME TURBOPUMP BLADES

CONCLUSIONS

- O CURRENT LEWIS RESEARCH ACTIVITIES ON COMPOSITE MECHANICS/RELATED AREAS INCLUDE:
 - O COMPOSITE MECHANICS, COMPUTER PROGRAMS FOR COMPOSITES, HIGH TEMPERATURE COMPOSITES AND COMPOSITE ENGINE STRUCTURAL COMPONENTS
 - O RECENT PROGRESS INCLUDES:
 - O SIMPLIFIED DESIGN PROCEDURE FOR GENERAL LAMINATES
 - O WIDTH, LOADING CONDITIONS AND ENVIRONMENTAL EFFECTS ON FREE EDGE STRESSES
 - O INTERLAMINAR FRACTURE IN COMPOSITES
 - O PROGRESSIVE FRACTURE OF COMPOSITES WITH/WITHOUT DEFECTS
 - CONTINUING DEVELOPMENT OF: ICAN, CODSTRAN, N. L. COBSTRAN, STAEBL, STAT
 - O INITIATION OF RESEARCH IN HIGH TEMPERATURE COMPOSITES
 - O STRUCTURAL TAILORING OF COMPOSITE FAN BLADES, TURBOPROPS, SSME BLADES
 - O THERMOVISCOPLASTIC STRUCTURAL ANALYSIS OF TURBINE BLADES MADE FROM TUNGSTEN-FIBER REINFORCED SUPERALLOYS DEDICATE ANALYSIS

APPENDIX A: PROGRAM LISTINGS

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES MATERIALS LABORATORY

INHOUSE

ADVANCED COMPOSITES
WORK UNIT DIRECTIVE (WUD) NUMBER 45
77 April - 85 April

WUD Leader: James M. Whitney

Materials Laboratory

Air Force Wright Aeronautical Laboratories

AFWAL/MLBM

Wright-Patterson AFB, OH 45433-6533 (513) 255-2340 Autovon: 785-2340

Objective: The objective of the current thrust under this work is to develop and

demonstrate concepts of damage resistance as applied to fiber reinforced

composite laminates. Short term objectives (1-2 yrs) include the

following:

(a) Development of failure mode models with emphasis on delamination and matrix cracking.

(b) Assess the role of matrix toughness in composite failure processes.

(c) To develop concepts of interface/interphase strengthening.

CONTRACTS

IMPROVED, DAMAGE RESISTANT COMPOSITE MATERIALS F33615-84-C-5070 1 Sep 84 - 1 Feb 88

Project Engineer: James M. Whitney

Materials Laboratory

Air Force Wright Aeronautical Laboratories

AFWAL/MLBM

Wright-Patterson AFB, OH 45433-6533 (513) 255-2340 Autovon: 785-2340

Principal Investigator: Ron Servais

University of Dayton Research Institute

300 College Park Avenue

Dayton, OH 45469

Objective: The objective of this program is to investigate from both an experimental and analytical standpoint the potential of new and/or modifications of existing polymeric materials and reinforcement forms for use in advanced composite materials, including processing/mechanical property relationships. Such materials are subsequent candidates for use in advanced

aircraft and aerospace structural applications.

3-DIMENSIONAL RESPONSE OF COMPOSITES F33615-85-C-5034
1 Jun 85 - 1 Dec 87

Project Engineer: Nicholas J. Pagano

Materials Laboratory Air Force Wright Aeronautical Laboratories

AFWAL/MLBM

Wright-Patterson AFB, OH 45433-6533 (513) 255-6762 Autovon: 785-6762

Principal Investigator: Som R. Soni

Adtech Systems Research Inc.

211 N. Broad Street Fairborn, OH 45324

Objective:

The objective of this program is to develop 3-dimensional analytical models capable of predicting the mechanical response of thick laminated

composites and residual stress failure of carbon-carbon composites.

INITIAL IMPACT DAMAGE OF COMPOSITES

F33615-84-C-5096 28 Sep 84 - 15 Sep 86

James M. Whitney Project Engineer:

Materials Laboratory

Air Force Wright Aeronautical Laboratories

AFWAL/MLBM

Wright-Patterson AFB, OH 45433-6533 (513) 255-2340 Autovon: 785-2340

Jonathan Goering Principal Investigator:

Materials Sciences Corporation

Gwynedd Plaza II Bethlehem Pike Springhouse, PA 19477

Objective: The objective of this program is to develop an analytical model for

predicting damage initiation in laminated fiber reinforced composites

subjected to low velocity impact.

FUNDAMENTAL MATRIX STIFFNESS FORMULATIONS FOR LAMINATE STRUCTURES

F33615-83-C-5076 1 Jun 83 - 31 Mar 86

Steven L. Donaldson Project Engineer:

Materials Laboratory

Air Force Wright Aeronautical Laboratories

AFWAL/MLBM

Wright-Patterson AFB, OH 45433-6533 (513) 255-3068 Autovon: 785-3068

Principal Investigator: Henry T. Yang

School of Aeronautical & Astronautical Engineering

Purdue University

West Lafayette, IN 47907

(317) 494-5117

This program will develop the mathematical formulation of the stiffness Objective:

and mass matrices of laminated plates and beams, to ultimately obtain the stress fields, the vibrational, and the buckling response of

structural laminates. A through-the-thickness calculation shall be made of individual ply stresses and strength ratios. The elements will be formulated in such a way that they can be simply implemented on micro

and minicomputers.

FAILURE ANALYSIS FOR COMPOSITE STRUCTURE MATERIALS

F33615-84-C-5010 Jun 84 - Nov 86

Frank Fechek Project Engineer:

Materials Laboratory

Air Force Wright Aeronautical Laboratories

AFWAL/MLSE

Wright-Patterson AFB, OH 45433-6533 (513) 255-7483 Autovon: 785-7483

Principal Investigator: Brian Smith

The Boeing Company P.O. Box 3707 Mail Stop 73-43 Seattle, WA 98124

Objective: The objectives of this program are: a) to verify the capability of state-of-the-art analysis techniques and procedures to produce useful data toward the understanding of the cause of composite failures, beginning

with the failed part and, b) to organize this information into a compendium defining a failure logic network which will assist the failure analyst in sequentially selecting the appropriate tests, techniques, and procedures to be applied when conducting a failure analysis of a composite

structure.

CURING PROCESS OF COMPOSITE MATERIALS F33615-84-C-5049 Sep 84 - 1 Oct 87

Stephen W. Tsai Project Engineer:

Materials Laboratory

Air Force Wright Aeronautical Laboratories

AFWAL/MLBM

Wright-Patterson AFB, OH 45433 (513) 255-3068 Autovon: 785-3068

George S. Springer Principal Investigator:

Dept of Aeronautics and Astronautics

Stanford University Stanford, CA 94305 (415) 497-4135

Objective: To extend the analytical modeling developed by the Principal Investigator to include the curing thermosetting and thermal plastics as the matrix

materials. To provide criteria for automated process controls and

optimization.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

INHOUSE

NONE

GRANTS AND CONTRACTS

DAMAGE MODELS FOR CONTINUOUS FIBER COMPOSITES 84 February 01 - 87 January 31

Principal Investigator: Dr David H Allen

Department of Aerospace Engineering

Texas A&M University College Station, TX 77843

(409) 845-7541

Program Manager: Maj David A Glasgow

AFÖSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To develop a damage model for predicting strength and stiffness of continuous fiber composite structure subjected to fatigue loading, and to verify this model with experimental results.

DELAMINATION AND TRANSVERSE FRACTURE IN GRAPHITE/EPOXY COMPOSITES 84 February 01 - 86 March 31

Principal Investigator: Dr Walter L Bradley

Department of Mechanical Engineering

Texas A&M University College Station, TX 77843

(409) 845-1259

Program Manager: Maj David A Glasgow

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To better define the deformation and fracture physics of delamination and transverse fracture in graphite epoxy composites, and to incorporate more realistic macroscopic measures of the fracture process into linear and nonlinear materials characterization.

DYNAMICS AND AEROELASTICITY OF COMPOSITE STRUCTURES 84 May 01 - 86 June 30

Principal Investigator: Dr John Dugundji

Department of Aeronautics & Astronautics Massachusetts Institute of Technology

Cambridge, MA 02139 (617) 253-3758

Program Manager: Dr Anthony K Amos

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To pursue combined experimental and theoretical investigations of aeroelastic tailoring effects on flutter and divergence of aircraft systems.

ANALYTICAL AND EXPERIMENTAL CHARACTERIZATION OF DAMAGE PROCESSES IN COMPOSITE LAMINATES 84 September 30 - 85 September 29

Principal Investigator: Dr George J Dvorak

Department of Civil Engineering Rensselaer Polytechnic Institute Troy, NY 12181

(518) 266-6943

Program Manager: Maj David A Glasgow

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To develop distributed damage analysis applicable to high matrix crack densities, examine damage propagation across and along ply interfaces, model damage growth from intensely damaged regions, and analyze stability and compressive strength of laminated plates containing distributed and/or concentrated damage.

BEHAVIOR OF FIBRE REINFORCED COMPOSITES UNDER DYNAMIC TENSION 84 March 15 - 86 March 14

Principal Investigators: Dr John Harding

Dr C Ruiz

Department of Engineering Science

University of Oxford Oxford, OX1 3PJ England

Program Manager: Dr Anthony K Amos

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To characterize the mechanical behavior and failure mechanisms of carbon/epoxy, Kevlar/epoxy, and hybrid composites under tensile impact loading using specially designed split Hopkinson bar equipment.

ANALYSIS OF FATIGUE DAMAGE AND FAILURE IN COMPOSITE MATERIALS 84 September 30 - 87 December 31

Principal Investigator: Dr Zvi Hashin

Dept of Materials Science and Engineering

University of Pennsylvania Philadelphia, PA 19104

(215) 898-8337

Program Manager: Maj David A Glasgow

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To evaluate stiffness change in laminates due to distribution of intralaminar and interlaminar cracks by the use of variational methods, and to determine the relationship between the stiffness deterioration and the strength deterioration of cracked laminates.

RESISTANCE CURVE APPROACH TO PREDICTING RESIDUAL STRENGTH OF COMPOSITES 84 August 01 - 86 July 31

Dr H P Kan Principal Investigator:

Northrop Corporation One Northrop Avenue Hawthorne, CA 90250 (213) 970-2134

Program Manager: Maj David A Glasgow

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To experimentally determine the Mode II delamination growth resistance of composite laminates and to develop analytical techniques for application of the R-curve concept to residual strength prediction of composite laminates with delaminations.

ULTRASONIC NDE OF DAMAGE IN CONTINUOUS FIBER COMPOSITES 84 February 01 - 87 January 31

Principal Investigator: Dr Vikram K Kinra

Department of Aerospace Engineering

Texas A&M University College Station, TX 77843

(409) 845-1667

Program Manager: Maj David A Glasgow

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

To develop, test, and implement ultrasonic nondestructive evaluation techniques to Objective: characterize damage states produced in continuous fiber composites by monotonic and fatigue loading.

FRACTURE AND LONGEVITY OF COMPOSITE STRUCTURES 82 January 01 - 85 March 14

Principal Investigator: Dr Paul A Lagace

Department of Aeronautics & Astronautics Massachusetts Institute of Technology Cambridge, MA 02139

(617) 253-2426

Program Manager: Maj David A Glasgow

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To develop theoretical and semi-empirical fracture laws and failure criteria and to correlate them with extensive experimental data generated in the program.

NONLINEAR DYNAMIC RESPONSE OF COMPOSITE ROTOR BLADES 82 September 01 - 86 November 30

Principal Investigators: Dr Ozden Ochoa

Department of Mechanical Engineering

Texas A&M University College Station, TX 77843

(409) 845-2022

Dr John J Engblom

Department of Mechanical Engineering

Texas A&M University College Station, TX 77843

(409) 845-2813

Program Manager: Dr Anthony K Amos

AFOSR/NA

Bolling AFB DC 20332 (202) 767-4937

Objective: To develop nonlinear finite element models suitable for predicting the structural dynamic response and resulting damage of composite rotor blades under impact and other transient excitations.

INTERLAMINAR FRACTURE TOUGHNESS IN RESIN MATRIX COMPOSITES 83 January 01 - 87 April 14

Principal Investigator: Dr Lawrence W Rehfield

School of Aerospace Engineering Georgia Institute of Technology

Atlanta, GA 30332 (404) 894-3067

Program Manager: Maj David A Glasgow

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To develop a Mode II interlaminar fracture coupon and test that can be used in both tension and compression testing, can be analyzed conveniently so that behavior can be readily interpreted and provides an experimental means for isolating Mode II contributions to fracture.

DAMAGE MODELS FOR DELAMINATION AND TRANSVERSE FRACTURE IN FIBROUS COMPOSITES 84 February 15 - 86 February 14

Principal Investigator: Dr Richard A Schapery

Department of Civil Engineering

Texas A&M University College Station, TX 77843

(409) 845-7512

Program Manager: Maj David A Glasgow

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To develop and verify mathematical models of delamination and transverse fracture which account for local (crack tip) and global damage distributions, separating the lay-up dependent fracture energy associated with microcracking from the intrinsic fracture energy of the separation process which occur at the tip of an advancing delamination crack.

EFFECT OF LOCAL MATERIAL IMPERFECTIONS ON BUCKLING OF COMPOSITE STRUCTURAL ELEMENTS 83 June 30 - 85 August 31

Principal Investigator: Dr George J Simitses

Dept of Engineering Science and Mechanics

Georgia Institute of Technology

Atlanta, GA 30332 (404) 894-2770

Program Manager: Dr Anthony K Amos

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To investigate the effects of localized material, geometric, and process imperfections on the buckling characteristics of composite structural elements, and to incorporate them in analytical prediction methods. COMPREHENSIVE STUDY ON DAMAGE TOLERANCE PROPERTIES OF NOTCHED COMPOSITE LAMINATES

84 September 30 - 85 September 29

Principal Investigator: Dr Albert S D Wang

Dept of Mechanical Engineering and Mechanics

Drexel University Philadelphia, PA 19104

(215) 895-2297

Program Manager: Maj David A Glasgow

AFOSR/NA

Bolling AFB DC 20332-6448

(202) 767-4937

Objective: To conduct a comprehensive analysis of the stress fields in notched laminates so as to develop a fundamental understanding of the damage mechanisms near the notch region.

RESIDUAL STRESS INDUCED DAMAGE IN COMPOSITE MATERIALS 84 February 01 - 85 January 31

Principal Investigator: Dr Y Weitsman

Department of Civil Engineering

Texas A&M University College Station, TX 77843

(409) 845-7512

Program Manager: Maj David A Glasgow AFOSR/NA

Bolling AFB DC 20332-6448 (202) 767-4937

Objective: To develop and verify methods for predicting damage formation, growth, and arrest due to residual stresses in fiber-reinforced, resin matrix composites.

OFFICE OF NAVAL RESEARCH ARLINGTON, VA 22217

CONTRACTS

FLAW GROWTH AND FRACTURE OF COMPOSITE MATERIALS AND ADHESIVE JOINTS N00014-79-C-0579 July 83 - Nov 87

Project Engineer: Dr. Yapa Rajapakse

OFFICE OF NAVAL RESEARCH Mechanics Division, Code 432S

Arlington, VA 22217

(202) 696-4306 Autovon 226-4306

Principal Investigator: Prof. S. S. Wang

University of Illinois

Department of Theoretical and Applied Mechanics

Urbana, Illinois 61801

(217) 333-1835

Analytical and numerical studies will be conducted of flaw growth and Objective: Fracture in Fiber Composite Laminates and adhesively bonded structural

joints under static and dynamic loading conditions.

DAMAGE ACCUMULATION AND RESIDUAL PROPERTIES OF COMPOSITES N00014-82-K-0572 July 82 - March 86

Dr. Yapa Rajapakse Project Engineer:

OFFICE OF NAVAL RESEARCH Mechanics Division, Code 432S

Arlington, VA 22217

(202) 696-4306 Autovon 226-4306

Principal Investigator: Prof. I. M. Daniel

Illinois Institute of Technology Department of Mechanical Engineering

Chicago, Illinois 60616

(312) 567-3186

Investigate damage mechanisms and damage accumulation in graphite/epoxy Objective:

laminates for the development of models for predicting residual

stiffness, residual strength, and residual life.

INVESTIGATIONS OF ENVIRONMENTAL EFFECTS AND ENVIRONMENTAL DAMAGE IN COMPOSITES N00014-82-K-0562 October 84 - September 87

Dr. Yapa Rajapakse Project Engineer:

OFFICE OF NAVAL RESEARCH Mechanics Division, Code 423S

Arlington, VA 22217 (202) 696-4306 Autovon 226-4306

Principal Investigator: Prof. Y. Weitsman

Texas A&M University

Department of Civil Engineering College Station, Texas 77843

(713) 845-7512

Objective: Research will be conducted to study the effects of stress and moisture on the mechanical response of graphite/epoxy composites. Special attention will be given to environmental induced damage growth and its effect on compressive and shear response.

INVESTIGATIONS OF IMPACT DAMAGE IN COMPOSITES

N00014-84-K-0460 June 84 - Jan 88

Project Engineer: Dr. Yapa Rajapakse

OFFICE OF NAVAL RESEARCH

Mechanics Division, Code 423S

Arlington, VA 22217

(202) 696-4306 Autovon 226-4306

Principal Investigator: Prof. J. Awerbuch

Drexel University

Department of Mechanical Engineering and Mechanics

Philadelphia, PA 19104

(215) 895-2291

Investigations of damage in graphite/epoxy laminates due to normal and Objective:

oblique impact will be carried out using a variety of experimental techniques. The use of acoustic emission for damage assessment will be

explored fully.

SUPPRESSION OF DELAMINATION IN COMPOSITE LAMINATES SUBJECTED

TO IMPACT LOADING N00014-84-K-0554 July 84 - June 86

Dr. Yapa Rajapakse Project Engineer:

OFFICE OF NAVAL RESEARCH

Mechanics Division, Code 423S

Arlington, VA 22217 (202) 696-4306 Autovon 226-4306

Principal Investigator: Prof. C. T. Sun

Purdue University

West Lafayette, IN 47907

(317) 494-5130

Objective: Research will be performed to investigate and establish quantative models

for delamination growth in composite laminates specifically designed to

suppress delamination by the use of 3-D stitching reinforcement and by the introduction of soft adhesive layers.

CONSTRUCTION OF NON-LINEAR MODEL FOR BINARY METAL MATRIX COMPOSITES

N00014-84-K-0468 July 84 - June 86

Dr. A. S. Kushner Project Engineer:

OFFICE OF NAVAL RESEARCH

Mechanics Division, Code 423S

Arlington, VA 22213

(202) 696-4306 Autovon 226-4306

Principal Investigator: Prof. H. Murakami

University of California, San Diego

La Jolla, CA 92093 (619) 452-3821

Objective: Non-linear theory for metal matrix composites will be developed, based on

variational principles and multi-variable asmptotic expansion techniques. The theory will account for the effect of fiber breakage, fiber-matrix

debonding and slip, matrix plasticity and delamination.

METAL MATRIX COMPOSITE INTERFACES

N00014-84-K-0495

September 84 - August 87

Project Engineer: Dr. A. S. Kushner OFFICE OF NAVAL RESEARCH

Mechanics Division, Code 423S

Arlington, VA 22213

(202) 692-4306 Autovon 226-4306

Prof. A. S. Argon MIT Principal Investigator:

Department of Mechanical Engineering

Cambridge, MA 02139

(617) 253-2217

Objective: Research will be conducted to develop the micro-mechanical model of the interface in metal matrix composites which have the features of predictability for the purpose of optimizing existing fiber-matrix systems.

FRACTURE OF FIBROUS COMPOSITES AND LAMINATES N00014-85-K-0247 March 85 - Apr 87

Dr. Yapa Rajapakse Project Engineer:

OFFICE OF NAVAL RESEARCH Mechanics Division, Code 423S Arlington, VA 22217

(202) 696-4306 Autovon 226-4306

Principal Investigator: Prof. G. J. Dvorak

Rensselaer Polytechnic Institute Department of Civil Engineering

Troy, NY 12181 (518) 266-6363

Objective: Research will be conducted to investigate the fracture behavior of notched metal matrix composites, accounting for plasticity effects.

MECHANICAL PROPERTIES OF COMPOSITES AT ELEVATED TEMPERATURES

N00014-85-K-0480 July 85 - June 88

Project Engineer: Dr. Yapa Rajapakse

OFFICE OF NAVAL RESEARCH Mechanics Division, Code 423S Arlington, VA 22217 (202) 696-4306 Autovon 226-4306

Principal Investigator: Prof. G. S. Springer

Stanford University

Dept. of Aeronautics and Astronautics

Stanford, CA 94305 (415) 497-4135

Objective: Mechanics-based models for changes in mechanical properties and failure characteristics of organic-matrix composites will be established.

PRECISION ULTRASONIC MEASUREMENTS IN COMPOSITE

MATERIALS

N00014-85-K-0595 July 85 - June 87

Project Engineer: Dr. Yapa Rajapakse

OFFICE OF NAVAL RESEARCH Mechanics Division, Code 423S Arlington, VA 22217 (202) 696-4306 Autovon 226-4306

Principal Investigator: Prof. W. Sachse Cornell University

Dept. of Theoretical and Applied Mechanics

Ithaca, NY 14853

Objective: Research will be conducted to establish the capability to distinguish

between the different failure modes in composite by the analysis of

acoustic emission signals.

NAVAL AIR SYSTEMS COMMAND WASHINGTON, D.C. 20361

INHOUSE

DEVELOPMENT OF CERTIFICATION METHODOLOGY FOR COMPOSITE MATERIALS
October 84 - October 87

Principal Investigator: Prof. E. Wu

Naval Post Graduate School

Department of Aeronautics, Code 67WT

Montery, CA 93943

(408)646-3459 Autovon 878-3459

Objective: Develop probabilistic-based certification methods through experimental and probabilistic modeling to insure the strength and life of critical

composite structure.

CONTRACTS

FATIGUE LIFE AND RESIDUAL STRENGTH OF COMPOSITE STRUCTURES September 83 - September 85

Project Engineer: Dr. D. R. Mulville

Naval Air Systems Command Washington, D.C. 20361

(202) 692-7443 Autovon 222-7443

Principal Investigators: Dr. J. Yang and

Dr. D. Jones

The George Washington University

Washington, D.C. 20052

(202) 676-6929

Objective: Develop statistical models to describe fatigue life and residual strength of composite structures including bolted and bonded composite joints.

STRENGTH AND IMPACT RESISTANCE OF ADVANCED COMPOSITE SANDWICH STRUCTURES NO.0019-85-C-0090

December 84 - December 87

Project Engineer: Dr. D. R. Mulville

Naval Air Systems Command Washington, D.C. 20361

(202) 692-7443

Principal Investigators: Prof. E. A. Witmer and

Prof. P. A. Lagace

Massachusetts Institute of Technology Department of Aeronautics and Astronautics

Cambridge, MA 02139

(617) 253-3628

Objective: Further develop the technology for advanced composite structures with sandwich or honeycomb cores.

NAVAL RESEARCH LABORATORY WASHINGTON, D.C. 20375

INHOUSE

STRUCTURAL RESPONSE OF DAMAGED COMPOSITES October 79 - September 86

Project Engineer: Dr. P. W. Mast

Naval Research Laboratory Washington, D.C. 20375

(202) 767-2165 Autovon 297-2165

Objective: Develop a capability for predicting the structural response of composite structures containing a defect or damage.

NAVAL AIR DEVELOPMENT CENTER AIRCRAFT AND CREW SYSTEMS TECHNOLOGY DIRECTORATE WARMINSTER, PA 18974

INHOUSE

IMPROVED MATRIX DOMINATE PROPERTIES October 82 - September 86

Project Engineer: Ramon Garcia

Naval Air Development Center

ACSTD/6043

Warminster, PA 18974

(215) 441-1321 Autovon 441-1321

Objective: Investigate methods to improve composite performance by reinforcing the

matrix with silicon carbide wiskers.

HYBRID COMPOSITE FRACTURE CHARACTERIZATION September 85 - October 87

Project Engineer: Lee W. Gause

Naval Air Development Center

ACSTD/6043

Warminster, PA 18974

(215) 441-1330 Autovon 441-1330

Objective: Characterize the strength, mechanical properties, and damage tolerance of woven and hybrid composite structures.

METAL MATRIX CRACK INITIATION/PROPAGATION September 85 - October 87

Project Engineer: Dr. H. C. Tsai

Naval Air Development Center

ACSTD/6043

Warminster, PA 18974

(215) 441-2871 Autovon 441-2871

Objective: Characterize the crack initiation/propagation mechanics of silicon carbide/titanium metal matrix composites as applied to landing gear and arrester

hooks in the Naval shipboard environment.

CONTRACTS

DESIGN OF HIGHLY LOADED COMPOSITE JOINTS AND ATTACHMENTS FOR TAIL STRUCTURES N62269-82-C-0239 February 82 - January 86

Project Engineer: Ramon Garcia

Naval Air Development Center

ACSTD/6043

Warminster, PA 18974

(215) 441-1321 Autovon 441-1321

Principal Investigator: S. W. Averill

Northrop Corporation Aircraft Group Hawthorne, CA 90250

(213) 970-3442

Objective: To develop composite designs which will permit the use of metal to composite bolted root attachments in aircraft tail structures as an alternative to high-load transfer adhesive bonded titanium step joints. To improve damage tolerance, survivability and repairability over current composite designs. Structural efficiency, manufacturing feasibility and quality assurance requirements will be determined.

DESIGN OF HIGHLY LOADED COMPOSITE JOINTS AND ATTACHMENTS FOR WING STRUCTURES N62269-82-C-0238

February 82 - December 85

Ramon Garcia Project Engineer:

Naval Air Development Center

ACSTD/6043

Warminster, PA 18974

(215) 441-1321 Autovon 441-1321

Principal Investigator: M. J. Ogonowski

McDonnell Aircraft Co. P.O. Box 516 St. Louis, MO 63166 (314) 233-8630

To develop composite designs which will permit the use of metal to Objective: composite bolted root attachments in aircraft wing structures as an alternative to high-load transfer adhesive bonded titanium step joints. Strain concentration around fastener holes, fatigue and environmental affects, damage tolerance and repairability for each concept will be determined.

IMPACT RESPONSE OF COMPOSITE STRUCTURES N62269-85-M-3131 March 85 - September 85

Project Engineer: Lee W. Gause

Naval Air Development Center

ACSTD/6043

Warminster, PA 18974

(215) 441-1330 Autovon 441-1330

Principal Investigator: Prof. P. V. McLaughlin

Villanova University

Department of Mechanical Engineering

Villanova, PA 19085

(215) 645-4991

Objective: Analytically describe the effects of viscoelasticity, contact deformation, and shear deformation to the impact response of composite material and correlate these results to observed experimental behavior.

INFLUENCE OF LOAD FACTORS AND TEST METHODS ON IN-SERVICE RESPONSE OF COMPOSITE MATERIALS AND STRUCTURES N62269-85-C-0234 June 85 - June 88

Project Engineer: Lee W. Gause

Naval Air Development Center

ACSTD/6043

Warminster, PA 18974 (215) 441-1330 Autovon 441-1330

Principal Investigator: Prof. K. L. Reifsnider

Virginia Polytechnic and State University Depart. of Engineering Science & Mechanics

Blacksburg, VA 24061

(703) 961-5316

Objective: Develop an understanding of the relationship between composite laminate response to high load levels for short time periods and response to low load levels for long time periods. Develop an understanding of the relationship between test methods and laminate response. Establish the manner in which these relationships are associated with strength and life. Formulate a mechanistic model which can be used to anticipate long-term behavior.

LAMINATED COMPOSITE MIXED-MODE PLANE CRACK GROWTH CRITERIA N62269-85-C-0246 June 85 - June 86

Project Engineer: Lee W. Gause

Naval Air Development Center

ACSTD/6043

Warminster, PA 18974 (215) 441-1330 Autovon 441-1330

Principal Investigator: Prof. A. S. D. Wang

Drexel University

Department of Mechanical Engineering & Mechanics

Philadelphia, PA 19104

(215) 895-2297

Objective: Define the critical conditions necessary to propagate a mixed-mode plane crack in composite laminates for use in the automated crack-growth

simulation program.

Eleventh Annual Mechanics of Composites Review October 22-24. 1985

FORMULATION OF LAMINATED BEAM AND PLATE
FINITE ELEMENTS FOR A MICROCOMPUTER
A. T. Chen and T. Y. Yang
School of Aeronautics and Astronautics
Purdue University
West Lafayette, Indiana 47906

ABSTRACT

The purpose of this paper is to develop simple yet efficient formulation for laminated composite finite elements and also to develop highly efficient numerical algorithms for structural analysis and design using stand alone desktop microcomputers.

In the finite element formulations, an 8 degree of freedom beam element and an 18 d.o.f triangular plate element in bending with anisotropic symmetrically laminated composite materials are formulated. In the development of numerical procedures, emphasis has been placed upon minimization and condensation of memory storage and efficiency of computation so that the present development is suitable for implementation on desktop microcomputers. The present development is not only limited to linear static stress analysis, it also includes eigenvalue analysis for free vibration and buckling problems. For the special case of lumped mass matrices, a special condensation technique making use of zero terms along the diagonal of the mass matrix is used.

To demonstrate and evaluate the present development, numerical analyses on the static, free vibration, and buckling analysis of anisotropic symmetrically laminated beam and plate problems have been analyzed using a microcomputer.

FIG. 1. LAMINATED BEAM CONVENTIONS

FIG. 2a. 12 D.O.F. BEAM FINITE ELEMENT

FIG. 2b. 8 D.O.F. BEAM FINITE ELEMENT

FIG. 3. 18 D.O.F. PLATE FINITE ELEMENT

R-S

FIG. 4. TWO MAYS OF LUMPING THE ELEMENT MASSES

STATIC CONDENSATION FOR LUMPED MASS

$$-\lambda[M]\{x\} + [K]\{x\} = \emptyset$$

$$-\lambda[M \ \emptyset] \left\{ y \right\} + \left[KPP \ KPO \right] \left\{ y \right\} = \left\{ y \right\} + \left[KPO \ KO \right] \left\{ y \right\} = \left\{ y \right\} = \left\{ y \right\} + \left[y \right\} + \left[y \right] \left\{ y \right\} = \left\{ y \right\} + \left[y \right] + \left$$

where $\{y\}$ denote degree of freedom associated with mass $\{z\}$ denote massless d.o.f.

$$[KP0]^{T} \{y\} = -[K00] \{z\}$$

 $\{z\} = -[K00]^{-1} [KP0]^{T} \{y\}$

- \[\{ \langle \text{RP0} - \

$$\lambda [M] \{y\} + [KII] \{y\} = \emptyset$$

where [M] is a diagonal matrix [KIT] is the symmetrical reduced matrix

FIG. 5. STATIC CONDENSATION FOR LUMPED MASSES

FIG. 6. TECHNIQUE TO MAKE EIGENUALUE MATRIX SYMMETRIC

FIG. 7. VARIOUS STORAGE SCHEMES

Table 1. Various Schemes for Memory Storage for [K] for a Simply Supported Square Isotropic Plate Under Uniform Load

Plate Element (18 d.o.f. triangular)

Mesh for a Quadrant	Degrees of Freedom	St Full Hatrix	orage Kodes Symmetric	Band	Skyline
3x3	60	3600	1830	1395	1601
4x4	104	10816	5460	3569	2737
5x5	160	25600	12880	6664	5257

Table 2. Comparison of Centerline Deflections of Two Modellings for a Uniformly Loaded Cantilever Beam

Five 12 d.o.f. Beam Elements

Fiber		n Deflec			e Deflec	tion
Angle	Tip (x=2) (1)	x=0.62 (2)	x=0.62/x=2 (2)/(1)	Tip(x=2) (3)	x=0.62 (4)	x=0.62/x=2 (3)/(4)
0 30 45 60 90	5.45 34.24 58.89 79.37 95.69	2.57 16.17 27.81 37.48 45.19	8.4722 8.4723 9.4722 9.4722 0.4723	5.299 29.108 52.788 74.578 93.160	2.518 13.351 24.550 35.113 44.262	0.4752 0.4587 0.4651 0.4708 0.4751

Table 3. Comparison of Centerline Twist of Two Modellings for a Uniformly Loaded Cantilever Beam

40 18 d.o.f. Plate Elements

Fiber Angle	Tip (x=2)	Beam Twi x=0.62 (2)	st x=0.61/x=1 (2)/(1)	Tip(x=L) (3)	Plate Twi x=0.62 (4)	st x=0.62/x=2 (3)/(4)
90 30 45 60 90	0.0 -3.126 -3.047 -2.153 0.0	0.0 -2.885 -2.813 -1.987 0.0	0.9231 0.9232 0.9231 0.9231	0.0 -2.687 -2.787 -2.046 0.0	0.0 -2.483 -2.597 -1.912 0.0	0.9240 0.9317 0.9347

Table 4. Natural Frequencies (Hz) for a Thin Anisotropic 6 layer [0]/01s Cantilever Plate

							DEE	[1]
Layup Sequence	8 el	(1) 32 el	d Kass (2 8el	32 el		tent Hass 147 dof	REF Exp	[1] 365 dof
	50 dof	147 dof	8 dof	24 dof				
[0 ₂ /90]s	10.7 21.0 56.9	10.9 31.0 66.4	10.7 22.9 59.2	11.0 32.2 67.0	11.0 39.5 69.2 8.9	11.0 39.5 69.2 8.9	11.2 42.4 70.5 9.4	11.1 39.5 69.5 8.9
[15 ₂ /0]s	8.6 24.7 47.4 6.1	8.8 35.2 56.8 6.2	8.8 26.7 50.3 6.2	8.9 36.7 57.6 6.3	42.9 62.9 6.3	42.8 62.6 6.3	45.8 66.2 6.6	42.9 62.7 6.3
[30 ₂ /0]s	27.2 35.4 4.7	34.5 45.9 4.8	28.9 36.9 4.8	35.6 47.1 4.8	37.3 58.0 4.9	37.2 57.0 4.9	40.0 59.1 4.8	37.3 56.9 4.9
[45 ₂ /8]s	25.3 27.6 4.1	28.8 39.0 4.1	27.4 29.0 4.1	29.4 40.4 4.2	30.1 50.8 4.2	30.0 49.7 4.2	29.8 51.3 4.3	30.1 49.4 4.2
[60 ₂ /8]s	22.7 22.9 3.8	25.1 32.8 3.8	23.5 24.9 3.8	25.5 24.1 3.9	26.1 42.8 3.9	26.0 41.9 3.9	27.1 47.7 3.8	26.1 41.7 3.9
[75 ₂ /0]s	19.8 21.5 3.7	23.5 28.9 3.8	20.9 22.9 3.7	23.7 30.1 3.8	24.3 37.3 3.8	24.3 36.8 3.8	25.1 38.9 3.7 24.3	24.3 36.7 3.8 23.9
[90 ₂ /0]s	18.7 21.1	23.0 27.6	19.9 22.3	23.2 28.7	23.8 35.2	23.8 35.1	38.2	35.1

8.7

Table 5. Comparison of Matural Frequencies (Hz) of Two Modellings for a Cantilever Beam

Layup	Beam I	Element		Plate Ele	went	
Sequence		nt Mass		l Mass	Consiste	
	4 el	10 el	20 el	40 el	20 el	40 el
	17 dof	52 dof	20 dof	30 dof	122 dof	183 dof
[0 ₂ /90]s	0.01026	0.01026	0.01022	0.01022	0.01026	0.01026
	0.06436	0.06429	0.04751	0.06301	0.06432	0.06432
	0.07716 0.00525	0.07716 0.00525 0.03274	0.06322 0.00549	0.06755 0.00549	0.08235 0.00551	0.08234 0.00551 0.03439
[30 ₂ /01s	0.03278 0.09172 0.00424	0.09092 0.09424	0.03374 0.06970 0.00435	0.03390 0.09393 0.00435	0.03440 0.09651 0.00436	0.03437 0.09646 0.00436
[45 ₂ /0]s	0.02655	0.02651	0.02688	0.02690	0.02730	0.02730
	0.07456	0.07404	0.06260	0.07455	0.07645	0.07645
[60 ₂ /0]s	0.00378	0.00378	0.00382	0.00382	0.00383	0.00383
	0.02374	0.02371	0.02363	0.02364	0.02399	0.02400
	0.06685	0.06634	0.05351	0.06548	0.06715	0.06717
[90 ₂ /0]s	0.00353	0.00353	0.00352	0.00352	0.00354	0.00354
	0.02218	0.02215	0.02180	0.02181	0.02216	0.02216
4	0.06250	0.06204	0.04560	0.06023	0.06204	0.06204

Table 6. Critical Buckling Loads for a Simply Supported Anisotropic Square Plate Under Uniform Compressive Axial Load

Fiber Angle	Present 32 el 94 dof	Ref. [2]	Ехр. [3]	Exact [4]
90 45 60 90	318.86 387.90 354.67 355.40 203.88	285 425 406 381 210	271 399 364 433 251	318.91 203.75

REFERENCES

- Jensen, D.W. and Crawley, E.F., "Frequency Determination techniques for Cantilevered Plates with Bending-Torsion Coupling", AIAA Jounal, vol 22, No 3, P.415 (March, 1985)
- 2. Chamis, C.C., Buckling of Anisotropic Composite Plates, Journal of the Structural Division, Proceedings of the American Society of Civil Engineers, Oct., 1969, ST 10, PP 2119-2139.
- 3. Mandell, J.F., An Experimental Investigation of the Buckling of Anisotropic Plates, thesis, presented to Case Western Reserve University, in Cleveland, Ohio, in June, 1968, in partial fulfillment of the requirements for the degree of Master of Science.
- Aston, J.E., Whitney, J.M., Theory of Laminated Plates, Progress in Material Science Series vol IV, Technomic Publishing Co., Inc., Stamford, Conn., 1970.

STRENGTH, DEFLECTIONS AND IMPACT DAMAGE IN ADVANCED COMPOSITE STRUCTURES

PAUL A. LAGACE

TECHNOLOGY LABORATORY FOR ADVANCED COMPOSITES
DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

OVERVIEW: SANDWICH STRUCTURES

JOINT NAVY/FAA EFFORT

NAVAIR,: STRENGTH AND DEFLECTIONS OF ADVANCED NADC COMPOSITE SANDWICH STRUCTURES

FAA: THE SENSITIVITY OF KEVLAR/EPOXY AND GRAPHITE/EPOXY STRUCTURES DAMAGE FROM FRAGMENT IMPACT

SANDWICH STRUCTURES: MODES OF FAILURE

7. Core Flexural Crushing		8. Core Transverse Shear Failure		9. Core Local Crushing	
4. Facesheet Buckling: Core Compression Failure	- IIII)	5. Facesheet Ply Buckling: Interlaminar Failure	+	6. Facesheet Fracture	
I. Overall Buckling	-	2. Core Shear Crimping	•	3. Facesheet Buckling: Adhesive Bond Faiture	-

ANALYSIS OVERVIEW

- Rectangular Plate
- Averaged Properties
 (Å, B, D -- CLPT)

COMPOSITE FACE SHEET

- Transverse shear deformation (Mindlin Plate Theory)
- Nonlinear (geometric) strains used for postbuckling (similar to von Karman equations)
- Effect of initial out-of-plane imperfections (Marguerre equations)
 - Linear stress-strain behavior assumed
- Core has only transverse shear stiffness

SOFTWARE OPERATION

- Facesheet layup, material properties Core properties, thickness
 - - Boundary conditions Initial imperfections
 - Loading
- OUTPUTS
- Displacements Stresses and strains in core and facesheets (ply-by-ply)
- 2000 FORTRAN instructions
- VAX 11/782
- 20 seconds CPU time for one complete loading

E .

SOLUTION PROCEDURE

- Use Rayleigh-Ritz method
- $(f, g, g, g) = \sum_{i} \sum_{j} \psi_{ij} + f(g)g_{ij}(g)$
- Use Potential Energy approach

Use direct energy minimization to find plate-response for a given loading

TYPICAL RESULTS: LOAD VS. END SHORTENING

TYPICAL RESULTS: LOAD VS. CENTER DEFLECTION

TEST SPECIMEN GEOMETRY

TEST MATRIX FOR BUCKLING/POSTBUCKLING CHARACTERISTICS OF SANDWICH PLATES

			CORE MATERIAL	ATERIAL	
CORE THTCKNESS [MM]	THICKNESS-TO- WIDTH RATIO (WZ FACES)	ALUMINUM BONEYCOMB (4,5 PCF)	HOME Y COMB	Symractic Foam (6 ^B Pcf)	ROHACELL (4.4 PCF)
3.18	610'	,	3	\$	3
6.35	.031	3.4	3	*	•
9.53	.043		2		~
CORE SHEAR !	CORE SHEAR MODULUS [MPA]	00h	90	80h	30

A INDICATES NUMBER OF SPECIMENS

TOTAL: 30 SPECIMENS

BAPPRUXIMATE VALUES

 $\overline{\text{NOI}(S)}$. All face sheets are $\{145/0\}_S$ ASy/3501-6 graphite/epoxy todes clamped: Side edges simply-supported

EXPERIMENTAL APPARATUS

m

EXPERIMENTAL APPARATUS: 9-TRANSDUCER RACK

LOAD VS. CENTER DEFLECTION

PREDICTED VS. EXPERIMENTAL CONTOUR PLOTS

PREDICTED CONTOUR

MEASURED CONTOUR

LOAD = 62 KN EACH LINE REPRESENTS 0.25 MM DEFLECTION

STATUS OF WORK ON SANDWICH STRUCTURES

- Buckling and postbuckling analysis operational
- Experimental program for buckling/postbuckling well underway
- Effort on failure, effects of defects commencing

OVERVIEW: IMPACT RESPONSE

DEFORMATION RESPONSE OF LAMINATE TO LOW VELOCITY IMPACT

LOCAL CONTACT PROBLEM

INDENTOR AND LOAD MODEL

LOCAL CONTACT PROBLEM SOLUTION OVERVIEW

- Constitutive properties E_{θ} , E_{λ} , λ_{A_1} , λ_{A_2} , G_{λ} , (transverse isotropy assumed in r- θ plane) Indentor radius and penetration (approach) Edge moment (from plate or FEM solution of
 - impact event)

PROCEDURE

- Stress potential approach: $\phi(r,z)$ Loading and solution in form of Fourier-Bessel Series
 Implemented on DEC Pro 350 personal
 - computer

OUTPUTS

- Load vs. approach Axisymmetric strain distribution throughout entire plate

Classicat plate

0.2

[0/+45/0/-45/0]₂₈ a = 3.18 x 10-2mm Load = 231N

0

%,_{7,7} niotis prioside analopiM

0.2 0.4 0.6 0.8 Normalized radius, r/Rp

GLOBAL PLATE BENDING SOLUTION OVERVIEW

11111111

- ASSUMPTIONS
- anisotropic plate (include D₁₆, D₂₈) Forcing function is - Transversely loaded
- impacting mass (ball) with nonlinear spring

- Mass, velocity of ball
 Density and mechanical properties of plate
 Support conditions, geometric parameters
 Initial loads: N, N,
- OUTPUTS
- Force on plate due to ball
 - Center deflection

CAPABILITIES OF IMPACT GUN SETUP

- Launch any 12.7 mm diameter ball
- Velocity measurement device designed, built, and installed
- Maximum recorded velocity of 106 m/s for steel
- Frame constructed to handle various sized test specimens with various edge boundary conditions

STATUS OF GLOBAL PLATE BENDING SOLUTION

- Solution implemented on computer and nearly completely debugged
- Newmark Implicit Integration Scheme employed
- Software runs and initial results obtained. (Results will be compared with previous work.)

PHASE I TEST PROGRAM FOR IMPACT RESPONSE

	BAMAGE	BANAGE INSPECTION LECHNIQUE	HALOUE
LAMINATE	SECTIONING AND MICROSCOPY	L-SCAN	X-RAY
1±45/01 ₂₅ AS4/3501-6	5*	- 5	۶
[+45/0]25 KEVLAR/EPOXY	₹5	5	5

AMILE NOT BE TESTED TO FAILURE AFTER IMPACT

NOTES: TEST OTHER IMPACTED SPECIMENS TO FAILURE IMPACT AT VARIOUS VELOCITY LEVELS

ONLY STEEL BALLS USED

PHASE II TEST PROGRAM FOR IMPACT RESPONSE

CONDITIONS	-		14 14		0 % O 4
BOUNDARY)	u u			J J W W
IN-PLANE TENSTLE LOAD	0	00	000	را دا دا	000
VELOCITY	^1	> >	> ² > 5	5,2,5,	> > > > >
ENERGY LEVEL	t,	£2 £3	201		5555
NUMBER OF SPECIMENS	5.A	~ ~		~ ~ ~	~~~

*ALL TESTS CONDUCTED ON [445/U], SPECIMENS OF BOTH GRAPHITE/EPOXY AND KEVLAR/EPOXY

C = CLAMPED S = SIMPLY SUPPORTED F = FREE

NOTE: ALL SPECIMENS INSPECTED VIA NDE AFTER IMPACT AND BEFORE RESIDUAL STRENGIH IESTING

CHARACTERISTICS OF TESTING

- MTS 810 MATERIAL TEST SYSTEM
- HYDRAULIC GRIPS
- CONSTANT STROKE RATE (~! mm/MINUTE) GIVES STRAIN RATE OF ~5000 MICROSTRAIN/MINUTE
- DATA TAKEN AUTOMATICALLY THROUGH PROPER CONDITIONERS TO PDP/1134 COMPUTER
- TESTED TO FRACTURE
- EACH SPECIMEN PHOTOGRAPHED AFTER FRACTURE

SPECIMEN CONFIGURATION FOR IMPLANTED DELAMINATION TESTS

LOCAL STRESS VERSUS STRAIN FOR SPECIMEN WITH CIRCULAR DELAMINATION AT MIDPLANE

FRACTURE STRESSES FOR VARIOUS DELAMINATION CONFIGURATIONS

STATUS OF IMPACT WORK

- Analysis for local contact problem operational.
- Analysis for dynamic plate response formulated and implemented and is being checked
- Experimental facility established.
- Impact, sectioning, and microscopic examination underway
- Delaminations modelled with teflon inserts and experiments conducted in tension
- Residual strength tests on impacted specimens commencing.
- Failure criteria being assessed

FOLLOW-UP WORK ON EFFECT, IN TENSION, OF IMPLANTED DELAMINATIONS

- · Completely delaminated midplane
- Circular delamination at first interface (nonsymmetric)
- Circular delamination at <u>each</u> interface throughout thickness