BMD ENG 301 Quantitative Systems Physiology (Nervous System)

Upper Motor System 2022_v2

Professor Malcolm MacIver

dPM: dorsal pre-motor cortex

M1: primary motor cortex

PF: prefrontal cortex

SMA: supplementary motor area

S1: primary somatosensory cortex

V1: primary visual cortex

BG: basal ganglia

C: cerebellum

RF: reticular formation

RN: red nucleus

VN: vestibular nucleus

Nature Reviews | Neuroscience

Figure on right: Haggard 200i, 'Human volistion'

Nature Reviews | Neuroscience

Figure on right: Haggard 200i, 'Human volistion'

dPM: dorsal pre-motor cortex

M1: primary motor cortex

PF: prefrontal cortex

SMA: supplementary motor area

S1: primary somatosensory cortex

V1: primary visual cortex

BG: basal ganglia

C: cerebellum

RF: reticular formation

RN: red nucleus

VN: vestibular nucleus

Primary motor cortex and premotor areas in the human cerebral cortex

(A) Lateral view

CENTRAL MOTOR PROGRAM

- Identification of task to perform
- Plan of action includes translation into the motor control program
- Execution of the plan

Inputs to the primary motor cortex

SENSORY

Roles performed

Motor control signals

Cytoarchitectonic appearance of the primary motor cortex in the human brain

Topographic map of movement in the primary motor cortex

NEUROSCIENCE 6e, Figure 17.5
© 2018 Oxford University Press

Patterns of facial weakness and their importance for localizing neurological injury

NEUROSCIENCE 6e, Clinical Applications 17
© 2018 Oxford University Press

The influence of single cortical upper motor neurons on muscle activity

(A) Detection of postspike facilitation

Time (ms)

After Porter and Lemon (1993) Oxford: Oxford University Press.

NEUROSCIENCE 6e, Figure 17.6 © 2018 Oxford University Press

Purposeful movements of the contralateral arm and hand in a macaque monkey

After Graziano et al. (2005) J. Neurophysiol. 94: 4209–4223.

NEUROSCIENCE 6e, Figure 17.7 © 2018 Oxford University Press

What do motor maps represent?

- Hand-to-mouth
- Defensive
- Central space/manipulation
- Reach
- Other outward arm movements
- Climbing/leaping
- × No movement

NEUROSCIENCE 6e, Box 17A © 2018 Oxford University Press

Directional tuning of an upper motor neuron in the primary motor cortex

NEUROSCIENCE 6e, Figure 17.8 © 2018 Oxford University Press

Divisions of the motor cortex in the macaque monkey brain

After Geyer et al. (2000) Anat. Embryol. 202: 443-474.

NEUROSCIENCE 6e, Figure 17.9
© 2018 Oxford University Press

Inputs to the premotor cortex

Multisensory information from the inferior and superior parietal lobules

Motivation and intention information from the rostral divisions of the frontal lobe

Mirror motor neuron activity in a ventral-anterior sector of the lateral premotor cortex

NEUROSCIENCE 6e, Figure 17.10 © 2018 Oxford University Press

Descending projections from the brainstem to the spinal cord

NEUROSCIENCE 6e, Figure 17.11
© 2018 Oxford University Press

Descending projections from the brainstem to the spinal cord

NEUROSCIENCE 6e, Figure 17.12 © 2018 Oxford University Press

Location of the reticular formation

Anticipatory maintenance of body posture

NEUROSCIENCE 6e, Figure 17.14 © 2018 Oxford University Press

NEUROSCIENCE 6e, Figure 17.15
© 2018 Oxford University Press

Indirect pathways from the motor cortex to the spinal cord

NEUROSCIENCE 6e, Figure 17.16 © 2018 Oxford University Press

(A) Normal plantar response

NEUROSCIENCE 6e, Figure 17.17
© 2018 Oxford University Press

(B) Extensor plantar response (Babinski sign)

TABLE 17.1 ■ Signs and Symptoms of Lower and Upper Motor Neuron Lesions

	Lower motor neuron syndrome	Upper motor neuron syndrome
Strength	Weakness or paralysis	Weakness
Muscle bulk	Severe atrophy develops	Mild or no atrophy develops
Reflexes	Hypoactive superficial and deep reflexes	Hyperactive deep reflexes after initial period of spinal shock
Special signs and symptoms	Initial signs and symptoms persist	Initial period of spinal shock, then spasticity ensues
	Fasciculations and fibrillations	Babinski's sign and clonus
	Geographic distribution of impairment (reflecting distribution of affected spinal segments, cranial nuclei, or spinal/cranial nerves)	More widespread (nongeograph- ic) distribution of impairment in body regions
	Impairments of reflexive and gross and/or fine voluntary movements	Impairment of fine voluntary movements; gross movements relatively unimpaired