

Introduction to Machine Learning for Beginners

Some Applications

Why Now?

→ Availability of huge amount of data

Why Now?

→ Availability of huge amount of data

→ Powerful machines that can handle computations quickly

Why Now?

→ Availability of huge amount of data

→ Powerful machines that can handle computations quickly

→ Advancement of technology and knowledge among people

Learning from Data

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Supervised Learning

Supervised Learning

Unsupervised Learning

supervised learning

unsupervised learning

Reinforcement Learning

Features

Regression

Classification

Clustering

→ Images

- → Images
- → Videos

- → Images
- → Videos
- → Audio

- → Images
- → Videos
- → Audio
- → Text
- → One Hot encoding

- → Images
- → Videos
- → Audio
- → Text
- → One Hot encoding
- → Data standardization

Model

→ Model is a function in the feature space

Model

- → Model is a function in the feature space
- → Dimensions
- → Parameters
- → Hyperparameters

Error/Cost and Optimization

Result of training: values of parameters.

$$\frac{\chi_{1}}{2}$$
 $\frac{\chi_{2}}{3}$ $\frac{\chi_{2}}{3}$ $\frac{\chi_{3}}{3}$ $\frac{\chi_{4}}{3}$ $\frac{\chi_{5}}{3}$ $\frac{\chi_{5}}{3}$

$$Ji = \int (x_i) x_i = \int (x_i) x_i = 0$$

$$\hat{\mathcal{Y}}_i = \int (\mathcal{X}_{1i}, \mathcal{X}_{2i})$$

Error/Cost and Optimization

$$ext{MSE} = rac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2.$$

Linear Regression

$$\frac{y_i}{x_i + b} = \frac{y_i}{y_i}$$

Linear Regression

Minimum-to-mean distance Classifier

Overfitting

Generalization and Validation Set

Performance measures

Errox Aub # of true predictions # of Samples 80% Patient with const

Performance measures

Confusion Matrix. 1/0 (1/51/VM

Probability Distributions and Curse of Dimensionality

Dimensionality Reduction PCA

Deep Learning: ANNs

input layer

hidden layer 1

hidden layer 2

output layer

Deep Learning: CNNs

Deep Learning: RNNs

$$f(x) = ax + b$$

$$w = \begin{bmatrix} a \\ b \end{bmatrix}$$

$$\sum_{i=1}^{n} L(x_i, y_i)$$

$$y_i + \sum_{i=1}^{n} L(y_i)$$

Jeguerraessing, regulaiser

quem 4ity 1.

LA EXCE MK)

$$\int_{W}(x_{i}) = \frac{w_{1}x_{i_{1}}^{2} + w_{2}x_{i_{2}}^{2} + w_{3}x_{i_{1}}x_{i_{2}} + w_{4}x_{i_{1}}}{+ w_{7}x_{i_{2}}^{2} + w_{6}} \\
+ w_{7}x_{i_{2}}^{2} + w_{6}$$

$$\frac{x_{i_{1}}^{2} + x_{i_{1}}^{2} + x_{i_{1}}x_{i_{2}}}{x_{i_{1}}x_{i_{2}} + x_{i_{1}}^{2}} \times x_{i_{1}} \times x_{i_{2}}$$

$$\int_{W}(x_{i}) = \frac{w_{1}x_{i_{1}}^{2} + w_{2}x_{i_{2}} + w_{3}}{x_{i_{1}}^{2} + w_{3}x_{i_{1}}} \times x_{i_{2}}$$

$$\int_{W}(x_{i}) = \frac{w_{1}x_{i_{1}}^{2} + w_{2}x_{i_{2}} + w_{3}x_{i_{1}}}{x_{i_{2}}^{2} + w_{3}x_{i_{1}}}$$

$$\int_{W}(x_{i}) = \frac{w_{1}x_{i_{1}}^{2} + w_{2}x_{i_{2}} + w_{3}x_{i_{1}}}{x_{i_{2}}^{2} + w_{3}x_{i_{1}}}$$

$$\int_{W}(x_{i}) = \frac{w_{1}x_{i_{1}}^{2} + w_{2}x_{i_{2}}}{x_{i_{1}}^{2} + w_{3}^{2}}$$

$$\int_{W}(x_{i}) = \frac{w_{1}x_{i_{1}}^{2} + w_{2}x_{i_{2}}^{2} + w_{3}^{2}}$$

$$\int_{W}(x_{i}) = \frac{w_{1}x_{i_{1}}^{2} + w_{2}x_{i_{2}}^{2} + w_{3}^{2}}$$

$$\int_{W}(x_{i}) = \frac{w_{1}x_{i_{1}}^{2} + w_{2}^{2} + w_{3}^{$$

$$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1$$

Pogistic Yepression

$$F_i = P(y=1|A_i)$$

$$P_i = P(y=1|A_i)$$

$$P(y=1|X(i)=P_i) = P(y_i=0|M_i) = 1-P_i$$

