

LE MACHINE-LEARNING EN PRATIQUE

Vincent Guigue vincent.guigue@agroparistech.fr

Introduction

Différents cadres de machine learning

Supervisé

Supervised Learning Algorithms

Non-supervisé

Algorithms

Semi-supervisé

Learning Algorithms

Renforcement

... et différentes évaluations

- Différents algorithmes...
- Différentes données, différents coûts...

Et une nouvelle donne avec Amazon Mechanical Turk

Grande familles de problématiques supervisées

Régression

Classification

Ordonnancement

Chaine de traitement

Identifier les entrées / sorties + évaluation

... En version abstraite

Chaine de traitement

En plus concret:

- Sélection des bonnes colonnes
- Ajout de colonnes intéressantes (calculs, sources de données externes, ...)

Classes de modèles

Introduction Classes de modèles • o o o Evaluation

Modèles de ML : références historiques

■ Arbre de décision : entre IA symbolique & apprentissage statistique

- Ensemble de règles
- Interprétable (selon la profondeur)
- Apprenable (sur critère entropique)

■ Modélisation bayesienne

- Lois de probabilité
- Max. de vraisemblance
- Naive Bayes
- A priori des experts

01123456787 01123456789 01123456789 01123456789 01123456789 01123456789 01123456789

_

Modèles de ML : les bonnes affaires

■ Modèles linéaires : Moindre carrés (MSE), régression logistique, ...

- Formulation simple & efficace
- Classif, régression
- Références très solides / modèle discriminant
- Descente de gradient

- SVM, noyaux et méthodes discriminantes
- Perceptron
- Régularisation
- SVM
- Projection non linéaire

Introduction Classes de modèles ○ ○ ● ○ Evaluation

Modèles de ML : approches non-supervisées

■ Estimation de densité

- Parzen
- Nadaraya-Watson
- Détour par les Knn
- EM

■ Clustering

- clustering hierarchique
- k-means / C-EM
- Clustering spectral
- A Priori

Modèles de ML : l'état de l'art

■ Approches ensemblistes

- Bagging
- Boosting
- Forêt, forêt aléatoire
- XGBoost

■ Réseaux de neurones (⇒ pytorch)

- Perceptron
- Réseaux de neurones
- Rétropropagation du gradient
- Différentes architecture

EVALUATION

Introduction Classes de modèles Evaluation

Evaluation du modèle / Sélection de modèle

!! L'évaluation est aussi importante que l'apprentissage!!

- Evaluer sur les données d'apprentissage (=qui ont servi à régler les paramètres)
 - ⇒ Tricherie, surestimation des performances
- Evaluer sur des données vierges = OK

Problème de la répartition entre apprentissage et test

■ La validation croisée

Introduction Classes de modèles Evaluation

Evaluation du modèle / Sélection de modèle

!! L'évaluation est aussi importante que l'apprentissage!!

- Evaluer sur les données d'apprentissage (=qui ont servi à régler les paramètres)

 ⇒ Tricherie, surestimation des performances
- Evaluer sur des données vierges = OK
- La validation croisée

- Anomalies,
- Fraudes,
- Entités dans les textes
- **...**