CSEE 3827: Fundamentals of Computer Systems

Finite State Machine Design

Recall: Sequential circuit

Example sequential circuit (schematic)

Reverse engineering a sequential circuit

State machine

A state machine model of a system's behavior in terms of **states** and **transitions** between those states that are triggered by **actions**.

State diagrams represent state machines

one or more states, indicated by nodes

input value that triggers transition on edge

Finite state machine (FSM)

A state machine that has a finite number of states

* Any finite state machine can be implemented with sequential logic

* All sequential circuits implement finite state machines

Implementing a finite state machine

1. describe operation

2. convert to truth table

S	in	S+	out
0 0	0	10	0
0 0	1	0 1	0
0 1	0	10	1
0 1	1	0 1	1
10	0	10	0
10	1	0 1	0

3. choose type of flip-flop

5. derive "next state" and "output" logic

6. wire circuit and flip-flops together together

4. annotate table with flip-flop inputs for next state

S	in	S+	out	T1	T2
00	0	10	0	1	0
00	1	0 1	0	0	1
0 1	0	10	1	1	1
01	1	0 1	1	0	0
10	0	10	0	0	0
10	1	0 1	0	1	1

From State Machine to Sequential Circuit

- Specify behavior of state machine (including input and output values)
- Encode states
 - figure out how many bits needed to store state (one FF per bit)
 - assign state values to states
- Select FF type (i.e., D, T, JK, etc.)
- Compute combinational logic functions
 - "next state" logic: S+ = F(S,inputs)
 - "output" logic:
 - Mealy machine: output = G(S,inputs)
 - Moore machine: output = H(S)

Example State Machine

- 1 input, 1 output
- Let X = # of 1's input so far, Y = # of 0's input so far.
- Output 1 whenever X-Y = 0 (mod 3)

State label is current value of X-Y mod 3

Binary Labeling

Design with D Flip-Flops

• D FF's are easy: we input the value to the FF that we want it set to

Acur	Bcur	In	Anext	B _{next}	Out
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	Χ	X	Χ
1	1	1	Χ	X	Χ

Acur	Bcur	In	Anext	D _A	Bnext	DB	Out
0	0	0	1	1	0	0	0
0	0	1	0	0	1	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	0	0	0
1	0	0	0	0	1	1	0
1	0	1	0	0	0	0	1
1	1	0	X	Χ	X	Χ	X
1	1	1	X	Χ	X	Χ	X

New columns indicate what values feed into D FF (mimic "next" values for that FF)

Design with D Flip-Flops Cont'd

 Build K-Maps, get equations for output and FF input vals (in terms of inputs and previous F vals)

Acur	Bcur	In	A _{next}	D _A	B _{next}	D _B	Out
0	0	0	1	1	0	0	0
0	0	1	0	0	1	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	0	0	0
1	0	0	0	0	1	1	0
1	0	1	0	0	0	0	1
1	1	0	X	Χ	Х	Χ	Х
1	1	1	Χ	Χ	Χ	Χ	Χ

$$D_A = \overline{A}\overline{B}\overline{I} + BI$$
 Out:
 $D_B = A\overline{B}\overline{I} + \overline{A}\overline{B}I$
Out = AI + B \overline{I}

Design with D FF's cont'd

Design with T Flip Flops

Value fed into T FF is 0 if FF should maintain value, 1 if it should flop

Acur	Bcur	In	Anext	B _{next}	Out
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	Χ	Χ	Χ
1	1	1	Χ	Χ	Χ

Acur	Bcur	In	Anext	T _A	Bnext	T _B	Out
0	0	0	1	1	0		0
0	0	1	0	0	1		0
0	1	0	0	0	0		1
0	1	1	1	1	0		0
1	0	0	0	1	1		0
1	0	1	0	1	0		1
1	1	0	X	X	X		X
1	1	1	Χ	Χ	X		X

T_A:

1 0 1 0 A_{cur} 1 1 X X

In

$$T_A = A + BI + \overline{BI}$$

Design with T Flip Flops

Value fed into T FF is 0 if FF should maintain value, 1 if it should flop

A _{cur}	Bcur	In	A _{next}	Bnext	Out
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	Χ	Χ	Χ
1	1	1	Χ	Χ	Χ

Acur	Bcur	In	Anext	T _A	Bnext	T _B	Out
0	0	0	1	1	0	0	0
0	0	1	0	0	1	1	0
0	1	0	0	0	0	1	1
0	1	1	1	1	0	1	0
1	0	0	0	1	1	1	0
1	0	1	0	1	0	0	1
1	1	0	X	X	X	X	X
1	1	1	X	X	Χ	Χ	X

T_B:

0 1 0 0
ur 1 0 X X
Bcur

In

$$T_B = A\overline{B}\overline{I} + \overline{A}\overline{B}I$$

Design with JK Flip-Flops

• Note: to change A_{cur} to the correct A_{next} value, two possible input pairs can be fed into the J,K inputs of a JK Flip-Flop

J	К	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

Acur	A _{next}	J,K
0	0	0,0 or 0,1 (0,X)
0	1	1,0 or 1,1 (1,X)
1	0	0,1 or 1,1 (X,1)
1	1	0,0 or 1,0 (X,0)

Design with JK Flip-Flop

A _{cur}	A _{next}	J,K
0	0	0,0 or 0,1 (0,X)
0	1	1,0 or 1,1 (1,X)
1	0	0,1 or 1,1 (X,1)
1	1	0,0 or 1,0 (X,0)

Acur	Bcur	In	Anext	Bnext	Out
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	X	X	Χ
1	1	1	Χ	Χ	Χ

Acur	Bcur	In	Anext	J_A	KA	Bnext	J _B	K _B	Out
0	0	0	1	1	Χ	0			0
0	0	1	0	0	Χ	1			0
0	1	0	0	0	Χ	0			1
0	1	1	1	1	Χ	0			0
1	0	0	0	X	1	1			0
1	0	1	0	X	1	0			1
1	1	0	X	Χ	Χ	X			X
1	1	1	X	Χ	Χ	X			X

Design with JK Flip-Flop

A _{cur}	A _{next}	J,K		
0	0	0,0 or 0,1 (0,X)		
0	1	1,0 or 1,1 (1,X)		
1	0	0,1 or 1,1 (X,1)		
1	1	0,0 or 1,0 (X,0)		

A _{cur}	Bcur	ln	Anext	B _{next}	Out
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	X	X	Χ
1	1	1	Χ	Χ	Χ

Acur	Bcur	In	Anext	JA	KA	Bnext	J_B	K _B	Out
0	0	0	1	1	X	0	0	X	0
0	0	1	0	0	X	1	1	Χ	0
0	1	0	0	0	X	0	Χ	1	1
0	1	1	1	1	X	0	Χ	1	0
1	0	0	0	X	1	1	1	Χ	0
1	0	1	0	X	1	0	0	Χ	1
1	1	0	X	X	X	Χ	X	Χ	X
1	1	1	X	X	X	Χ	X	Χ	X

Design with JK Flip-Flop

Acur	Bcur	In	Anext	J_A	KA	Bnext	J_{B}	K _B	Out
0	0	0	1	1	Χ	0	0	Χ	0
0	0	1	0	0	Χ	1	1	Χ	0
0	1	0	0	0	Χ	0	X	1	1
0	1	1	1	1	Χ	0	Χ	1	0
1	0	0	0	Χ	1	1	1	Χ	0
1	0	1	0	X	1	0	0	Χ	1
1	1	0	X	Χ	Χ	Χ	Χ	Χ	Χ
1	1	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ

J_A:

A_{cur}

In

1 0 1 0

X X X X

B_{cur}

A:

Acur

In

X X X X

Acur

Bcur

J_B:

A_{cur}

0 1 X X
1 0 X X
B_{cur}

In

X X 1 1

Acur X X X X

Bcur

 $J_A = BI + \overline{BI}$

 $K_A = 1$

 $J_B = \overline{A}I + A\overline{I}$

K_B:

 $K_B = 1$

Design with JK FF's cont'd

$$J_A = BI + \overline{BI}$$
 $K_A = 1$ $J_B = \overline{A}I + A\overline{I}$ $K_B = 1$

In class exercise: design a 3-bit counter

Moore machine

a circuit in which the output depends only on the current state

Mealy machine

a circuit in which the outputs depend on the inputs as well as the current state

A Mealy or Moore circuit?

© 2008 Pearson Education, Inc. M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

An example Moore circuit

5-16

Present state	Inputs		Next state	Output
A	ΧΥ		A	Z
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(b) State table

© 2008 Pearson Education, Inc. M. Morris Mano & Charles R. Kime

FSM timing characteristics

Advanced FSM design and implementation

Unused states: extra state encodings (e.g., using 3 FFs to represent 6 states leaves 2 unused states) can be treated as "don't care" values and used to simplify the combinational logic

State minimization: two states are equivalent if they transition to the same or equivalent states on the same inputs (while producing the same outputs in the case of a Mealy machine)