

Transcriptómica

Clase 4 - Alineamiento y cuantificación Bionformática y Bioestadística 2023

Selene L. Fernández-Valverde regRNAlab.github.io
@SelFdz

Objetivos de aprendizaje

En esta clase aprenderemos:

- A alinear lecturas de RNA-Seq a una referencia:
 - Genoma
 - Transcriptoma
- Entender los formatos SAM y BAM.

Ensamblando transcriptomas

¿Qué significa alinear (mapear) una secuencia?

 Es identificar la posición de origen (alta similitud) de lecturas o transcritos secuenciados en una secuencia de referencia (genomas o transcritos)

No podemos usar BLAST

- BLAST hace un alineamiento local, lo cual lo hace muy útil para buscar alineamientos parciales y/o divergentes en bases de datos grandes.
- BLAST es muy lento para alinear secuencias, lo que lo hace poco práctico alinear millones de secuencias.
- Dado que generalmente esperamos un alto nivel de similitud con la referencia en un experimento de secuenciación masiva necesitamos un algoritmo de alineamiento semi-global y muy rápido.

Burrows-Wheeler transform (BWT)

- Descubierta por David Wheeler en 1983.
- Permutación reversible de los caracteres en una cadena usada originalmente para comprimir datos.
- En 2005 se encontró que era extremadamente útil para encontrar subcadenas.
- En 2009 se comenzó a usar para alinear lecturas resultado de experimentos de secuenciación masiva.
- En conjunto con índices comprimidos (e.g. FM index) permite que el tiempo de alineamiento crece de manera lineal con la cantidad de secuencias.
- Permite alinear ~100 millones de lecturas por hora (Bowtie 1 solo thread)

Generando una BWT

ATCTTATC\$ \$ATCTTATC TCTTATC\$A ATCATCTT CTTATC\$AT CTTATC\$ \$ATCTTAT ATCTTATC\$ ¡Esto es lo único que TTATC\$AT guardamos! ATC\$ATCT TC\$ATCTTA TC\$ATCTTA C\$ATCTTAT TCTTATC\$A TTATC\$AT \$ATCTTATC

\$ - Caracter que indica el final de una cadena

CT\$TTTAAC

Propiedad FT

El rango de los caracteres se mantiene en la primera (F) y última (L) columna.

La primera columna se puede reconstruir ordenando la última

Revirtiendo la transformación BWT

Renglón		BWT		
0	\$ ₀	Co		
1	${\sf A}_0$	\mathbf{T}_0		
2	${\sf A}_1$	\$ ₀		
3	\mathbf{C}_0	\mathbf{T}_1		
4	C_1	${f T}_2$	Lectura:	TTATC
5	${f T}_0$	T_3		
6	${\bf T_1}$	A_0		
7	${f T}_2$	A_1		
8	T_3	C ₁		

Lectura: TTATC

La lectura mapea a nuestra secuencia pero ... ¿dónde está en el genoma?

Renglón	Suffix array		
0 \$0	C ₀ 8	Lectura: TTATC	
$1 A_0$	T_0 5	$A_1 T_2 C_1 T_3 T_0 A_0 T_1 C_0 \$_0$	
$2 A_1$	$ \$_0 $ 0		
$3 C_0$	\mathbf{T}_1 7	Un sufijo podría indicarnos donde se encuentra en la secuencia original. Usa	
$4 C_1$	T_2 2		
$5 T_0$	T ₃ 4		
$6 \mathbf{T}_1$	A ₀ 6	mucho espacio si tenemos	
$7 \mathbf{T}_2$	A_1 1	millones de posiciones	
8 T 3	C_1 3		

Full-text Minute-size (FM) index

 C_0

 T_0

 T_3

 \mathbf{A}_0

 ${\sf A}_1$

Renglón

 $\begin{array}{ccc}
0 & \$_0 \\
1 & A_0
\end{array}$

 $2 A_1$

 $3 C_0$

 $4 C_1$

 $5 T_0$

 $6 T_1$

 $7 T_2$

 $8 T_3$

Checkpoints

Checkpoints

T₁ [A:0,T:1,C:1,G:0]

 \mathbf{T}_2

[A:2,T:4,C:1,G:0]

Lectura: TTATC

Lo que hacemos es utilizar "checkpoints" a lo largo del BWT para indicarnos la posición. Cuando encontramos un match, buscamos el "checkpoint" más cercano para identificar su posición en la referencia (genoma o transcriptoma).

A esto se le conoce como FM index y es muy pequeño.

Errores o Mismatches

- De no identificarse ningún alineamiento perfecto de la lectura a la secuencia de referencia se toman los alineamientos parciales y se permuta el nucleótido candidato a mismatch (A,T, C,G) y se trata de seguir extendiendo el sitio con similitud a la lectura de interés.
- A esto se le conoce como "backtracking" y generalmente se limita a un número arbitrario de ciclos para evitar incrementar demasiado el tiempo de alineamiento.
- Se hace más backtracking en nucleótidos con baja calidad.
- Dado que el tiempo de cálculo es lineal, no es tan tardado tratar de hacer esto para buscar el lugar de origen de lecturas con errores.

Lecturas en pares (paired-end)

 Muchas veces una sola lectura se encuentra usando alineamiento via BWT. Dado que sabemos el tamaño aproximado del inserto algunos algoritmos utilizan alineamientos Smith-Waterman (SW) para encontrar su par en la región vecina.

Programas para alinear lecturas a una referencia

- HISAT2 (https://ccb.jhu.edu/software/hisat2/manual.shtml)
- bowtie2 TopHat (https://ccb.jhu.edu/software/tophat/index.shtml)
- bowtie (http://bowtie-bio.sourceforge.net/index.shtml)
- STAR (https://github.com/alexdobin/STAR)

Programas para alinear transcritos a una referencia

- GMAP (http://research-pub.gene.com/gmap/)
- Blat (https://genome.ucsc.edu/goldenpath/help/ blatSpec.html)
- Exonerate (http://www.animalgenome.org/bioinfo/ resources/manuals/exonerate/beginner.html)

Práctica - alineando lecturas usando HISAT2

https://liz-fernandez.github.io/PBP_transcriptomics_2023/

