Définition 2.8 - éléments associés

Deux un éléments d'un anneaux sont dits associés lorsqu'ils sont égaux à multiplication près par un élément inversible.

Définition 2.20 (1) - diviseurs de zéro

Soit $(A, +, \times)$ un anneau. on appelle diviseurs de zéro deux éléments a et b de A, tels que $ab = 0_A$

Définition 2.20 (2) - anneau intègre

Soit $(A, +, \times)$ un anneau. on dit que A est intègre lorsque :

- **1.** $A \neq \{0_A\}$
- $2. \times \text{est commutative}$
- **3.** A n'admet pas de diviseur zéro : $\forall (a,b) \in A^2, a \neq 0 \text{et} b \neq \Longrightarrow ab \neq 0$

Théorème 2.23 - caractérisation de la structure de corps

Soit $(\mathbb{K}, +, \times)$ un ensemble muni de deux lois de composition internes. \mathbb{K} est un corps si et seulement si :

- 1. $(\mathbb{K}, +)$ est un groupe abélien
- **2.** $(\mathbb{K} \setminus \{0_{\mathbb{K}}\}, \times)$ est un groupe abélien
- 3. \times est distributive sur +

Théorème 2.26 - caractérisation de sous-corps

Soit $(\mathbb{K}, +, \times)$ un corps et $L \subset \mathbb{K}$. L est un sous-corps de \mathbb{K} si et seulement si :

- 1. L est un sous-anneau de \mathbb{K}
- $\mathbf{2}$. tout élément non nul de L est inversible dans L

Proposition 2.29 - condition suffisante de caractère de corps

Tout anneau intègre fini est un corps.

Définition 2.30 - structure d'idéal

Soit $(A, +, \times)$ un anneau commutatif. On appelle $id\acute{e}al$ de A une partie I de A telle que :

- 1. (I, +) est un sous-groupe de (A, +)
- **2.** I est attracteur pour \times : $\forall i \in I, \forall a \in A, ai = ia \in I$

Proposition 2.32 - images directe et réciproque d'un idéal

Soit A et B deux anneaux commutatifs, $f:A\to B$ un morphisme d'anneaux.

- 1. L'image directe d'un idéal de A par f est un idéal de B
- 2. L'image réciproque d'un idéal de B par f est un idéal de A

Définition 2.34 - idéal engendré par un élément

Soit $(A, +, \times)$ un anneau commutatif. Soit $x \in A$ L'ensemble xA des multiples de x dans A est un idéal de A, appelé idéal engendré par x. On le note (x).

Théorème 2.36 - $idéaux de (\mathbb{Z}, +, \times)$

L'ensemble des idéaux de $(\mathbb{Z}, +, \times)$ est $\{n\mathbb{Z}, n \in \mathbb{Z}\}$: \mathbb{Z} est principal (car intègre aussi).

Définition 2.37 - plus grand commun diviseur de deux entiers

Étant donnés deux entiers a et b, l'ensemble $a\mathbb{Z} + b\mathbb{Z}$ est un idéal de \mathbb{Z} , son unique générateur positif est appelé le plus grand diviseur commun de a et b. Ainsi,

$$a\mathbb{Z} + b\mathbb{Z} = (a \wedge b)\mathbb{Z}$$

Définition 2.39 - plus petit commun multiple de deux entiers

Étant donnés deux entiers a et b, l'ensemble $a\mathbb{Z} \cap b\mathbb{Z}$ est un idéal de \mathbb{Z} , son unique générateur positif est appelé plus petit commun multiple de a et b. Ainsi,

$$a\mathbb{Z} \cap b\mathbb{Z} = (a \vee b)\mathbb{Z}$$

Théorème 2.44 - produit d'anneaux quotients

Soit $(n,p) \in \mathbb{N}^2$. Si n et p sont premiers entre eux, alors les anneaux $\mathbb{Z}/np\mathbb{Z}$ et $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ sont isomorphes.

Théorème 2.45 - inversibles de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$

Soit $k \in \mathbb{Z}$. la classe $\operatorname{cl}(k)$ est inversible dans $(\mathbb{Z}/n\mathbb{Z},\,+,\,\times)$ si et seulement si $k \wedge n = 1$.

Définition 2.48 - fonction indicatrice d'Euler

On appelle fonction indicatrice d'Euler la fonction $\varphi: \mathbb{N}^* \to \mathbb{N}$ qui à n associe le nombre $\varphi(n)$ d'entiers de l'intervalle [1, n] premiers avec n. En fait,

$$\forall n \in \mathbb{N}^*, \ \varphi(n) = \mathcal{U}\Big((\mathbb{Z}/n\mathbb{Z}, +, \times)\Big)$$

Proposition 2.48 bis - image de la fonction indicatrice d'Euler par un entier premier

Soit $p \in \mathbb{P}$. On a :

$$\varphi(p) = p - 1$$

Proposition 2.49 - théorème d'Euler

Soit k et n deux entiers premiers entre eux. Alors on a :

$$k^{\varphi(n)} \equiv 1 \left[n \right]$$

et donc $k^{\varphi(n)+1} \equiv k[n]$

Proposition 2.50 - caractérisation du caractère de corps de $\mathbb{Z}/n\mathbb{Z}$

 $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.

Théorème 2.51 - petit théorème de Fermat

Soit $p \in \mathbb{P}$. Pour tout entier x,

$$x^p \equiv x[p]$$

Théorème 2.52 - groupe des inversibles de $\mathbb{Z}/p\mathbb{Z}$, $p \in \mathbb{P}$

Soit $p \in \mathbb{P}$. Alors le groupe multiplicatif $\mathcal{U}(\mathbb{Z}/p\mathbb{Z})$ est isomorphe au groupe additif $\mathbb{Z}/(p-1)\mathbb{Z}$

Proposition 2.54 - indicatrice d'Euler du produit de premiers entre eux

Soit m et n premiers entre eux. Alors :

$$\varphi(mn) = \varphi(m)\varphi(n)$$

Proposition 2.55 - indicatrice d'Euler d'une puissance d'un premier

Soit p un nombre premier et $\alpha \in \mathbb{N}^*$. Alors :

$$\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}$$

Définition 2.72 - stucture d'algèbre

Un ensemble $(A, +, \times, \cdot)$: muni de deux lois de composition internes + et \times , et d'une loi \cdot externe sur \mathbb{K} , est une \mathbb{K} -algèbre si:

- 1. $(A, +, \times)$ est un anneau.
- **2.** $(A, +, \cdot)$ est un \mathbb{K} -espace vectoriel.
- **3.** \times et \cdot sont compatibles :

$$\forall (a,b) \in \mathcal{A}^2, \, \forall (\lambda,\mu) \in \mathbb{K}^2, \, (a \cdot x) \times (b \cdot y) = (ab) \cdot (x \times y)$$

Définition 2.74 - sous-algèbre

Un ensemble \mathcal{B} est une sous-algèbre d'une algèbre \mathcal{A} si :

- 1. \mathcal{B} est un sous-anneau de \mathcal{A} .
- **2.** \mathcal{B} est un sous-espace vectoriel de \mathcal{A} .

mais il suffit d'avoir :

- 1. $1_{\mathcal{A}} \in \mathcal{B}$
- **2.** \mathcal{B} stable par \times
- 3. \mathcal{B} stable par combinaison linéaire

Définition 2.76 - morphisme d'algèbre

Soit $(A, +_A, \times_A, \cdot_A)$ et $(B, +_B, \times_B, \cdot_B)$ deux \mathbb{K} -algèbres. $f: A \to B$ est un morphisme de \mathbb{K} -algèbres si :

- 1. f est linéaire.
- **2.** f respecte le produit.