DURGESH PHYSICS

Complete Physics Study Notes for JEE, NEET & MHT-CET Preparation

Watch on YouTube: DURGESH PHYSICS

Contact Us: +917499668944

Mechanics

1. Kinematics

Key Concepts:

- Motion in one, two, and three dimensions
- Displacement, velocity, and acceleration
- Relative motion

Important Equations:

- v = u + at
- $s = ut + \frac{1}{2}at^2$
- $v^2 = u^2 + 2as$
- s = (u + v)t/2

Projectile Motion:

- Horizontal range: $R = u^2 \sin(2\theta)/g$
- Maximum height: $H = u^2 \sin^2 \theta / 2g$
- Time of flight: $T = 2u\sin\theta/g$

Key Points for Exams:

- Always draw proper free body diagrams
- Identify given and required quantities clearly
- Use appropriate kinematic equations
- Pay attention to signs and directions

2. Laws of Motion

Newton's Laws:

- 1. **First Law:** Object at rest stays at rest, object in motion stays in motion unless acted upon by external force
- 2. Second Law: F = ma
- 3. **Third Law:** Every action has equal and opposite reaction

Friction:

- Static friction: fs ≤ µsN
 Kinetic friction: fk = µkN
- Always opposing relative motion

Circular Motion:

- Centripetal force: Fc = $mv^2/r = m\omega^2r$
- Centripetal acceleration: ac = $v^2/r = \omega^2 r$

3. Work, Energy, and Power

Work: W = F·s·cos θ Kinetic Energy: KE = $\frac{1}{2}$ mv² Potential Energy: PE = mgh (gravitational) Conservation of Energy: KE₁ + PE₁ = KE₂ + PE₂ Power: P = W/t = F·v

Work-Energy Theorem: Net work done = Change in kinetic energy

4. Rotational Motion

Angular displacement: θ (radians) Angular velocity: $\omega = d\theta/dt$ Angular acceleration: $\alpha = d\omega/dt$

Moment of Inertia:

- Point mass: I = mr²
- Rod (center): I = ML²/12
- Rod (end): I = ML²/3
- Disk: I = MR²/2
- Sphere: I = 2MR²/5

Rotational Kinetic Energy: KErot = $\frac{1}{2}I\omega^2$ Torque: $\tau = rF \sin\theta = I\alpha$

Thermodynamics

1. Kinetic Theory of Gases

Ideal Gas Equation: PV = nRT = NkT Kinetic Energy: Average KE = (3/2)kT RMS Speed: vrms = $\sqrt{(3$ RT/M $)}$ = $\sqrt{(3}$ kT/m)

Maxwell-Boltzmann Distribution:

- Most probable speed: vmp = $\sqrt{(2RT/M)}$
- Average speed: vavg = $\sqrt{(8RT/\pi M)}$

2. Laws of Thermodynamics

Zeroth Law: Thermal equilibrium is transitive **First Law:** ΔU = Q - W (Energy conservation) **Second Law:** Entropy of isolated system never decreases **Third Law:** Entropy approaches zero at absolute zero

Thermodynamic Processes:

- Isothermal: $\Delta T = 0$, $\Delta U = 0$, Q = W = nRT ln(Vf/Vi)
- Adiabatic: Q = 0, $W = -\Delta U = -nCv\Delta T$
- Isobaric: $\Delta P = 0$, W = $P\Delta V$
- Isochoric: $\Delta V = 0$, W = 0, $Q = \Delta U$

Heat Engines:

- Efficiency: n = W/Qh = 1 Qc/Qh
- Carnot efficiency: ηc = 1 Tc/Th

Waves and Oscillations

1. Simple Harmonic Motion (SHM)

Equation: $x = A \sin(\omega t + \phi)$ **Velocity:** $v = A\omega \cos(\omega t + \phi)$ **Acceleration:** $a = -A\omega^2 \sin(\omega t + \phi) = -\omega^2 x$

Energy in SHM:

- Total energy: $E = \frac{1}{2}m\omega^2A^2$
- Kinetic energy: $KE = \frac{1}{2}m\omega^2(A^2 x^2)$
- Potential energy: PE = $\frac{1}{2}$ m ω^2 x²

Common SHM Systems:

- Spring-mass: $T = 2\pi\sqrt{(m/k)}$
- Simple pendulum: $T = 2\pi\sqrt{(l/g)}$

• Physical pendulum: $T = 2\pi\sqrt{I/mgd}$

2. Wave Motion

Wave Equation: $y = A \sin(kx - \omega t + \phi)$ Wave speed: $v = f\lambda = \omega/k$ Wave number: $k = 2\pi/\lambda$ Angular frequency: $\omega = 2\pi f$

Types of Waves:

- Transverse: Particle motion perpendicular to wave direction
- **Longitudinal:** Particle motion parallel to wave direction

Standing Waves:

- Nodes: Points of zero amplitude
- Antinodes: Points of maximum amplitude
- Distance between adjacent nodes = λ/2

Electromagnetism

1. Electrostatics

Coulomb's Law: $F = kq_1q_2/r^2 = q_1q_2/(4\pi\epsilon_0 r^2)$ Electric Field: $E = F/q = kQ/r^2$ Electric Potential:

V = kQ/r Relation: E = -dV/dr

Gauss's Law: ∮ E·dA = Qenc/ε₀

Capacitance:

- Parallel plate capacitor: C = ε₀A/d
- Energy stored: U = ½CV² = ½QV = Q²/2C
- Series: $1/Ceq = 1/C_1 + 1/C_2 + ...$
- Parallel: Ceq = $C_1 + C_2 + ...$

2. Current Electricity

Ohm's Law: V = IR Resistance: $R = \rho I/A$ Power: $P = VI = I^2R = V^2/R$

Kirchhoff's Laws:

- Current Law (KCL): Sum of currents at a junction = 0
- Voltage Law (KVL): Sum of voltage drops in a loop = 0

Series Resistance: Req = R_1 + R_2 + R_3 + ... Parallel Resistance: $1/Req = 1/R_1 + 1/R_2 + 1/R_3 + 1/R_3 + 1/R_4 + 1/R_5 + 1/$

3. Magnetism

Magnetic Force:

• On moving charge: F = qvB sinθ

• On current-carrying conductor: F = BII sinθ

Biot-Savart Law: dB = $(\mu_0/4\pi) \times (Idl \times r)/r^3$

Ampere's Law: ∮ B·dl = µ₀lenc

Magnetic Field:

Straight wire: B = μ₀I/(2πr)

Center of circular loop: B = μ₀I/(2R)

Solenoid: B = μ₀nI

4. Electromagnetic Induction

Faraday's Law: $\varepsilon = -d\Phi/dt$ Lenz's Law: Induced current opposes the change causing it

Motional EMF: $\varepsilon = Blv$

Self-Inductance: $\varepsilon = -L(dI/dt)$ Energy in Inductor: $U = \frac{1}{2}LI^2$

AC Circuits:

• RMS values: Vrms = $V_0/\sqrt{2}$, Irms = $I_0/\sqrt{2}$

Power: P = VrmsIrms cosφ

• Reactances: $XL = \omega L$, $XC = 1/(\omega C)$

• Impedance: $Z = \sqrt{(R^2 + (XL - XC)^2)}$

Optics

1. Geometric Optics

Reflection:

• Law: Angle of incidence = Angle of reflection

Mirror equation: 1/f = 1/u + 1/v
Magnification: m = -v/u = h'/h

Refraction:

- Snell's Law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- Critical angle: $\sin\theta c = n_2/n_1 (n_1 > n_2)$
- Lens equation: 1/f = 1/u + 1/v
- Lens maker's formula: $1/f = (n-1)(1/R_1 1/R_2)$

2. Wave Optics

Interference:

- Constructive: Path difference = nλ
- Destructive: Path difference = (n + ½)λ
- Young's double slit: $\beta = \lambda D/d$

Diffraction:

- Single slit: $a \sin\theta = n\lambda \text{ (minima)}$

Polarization:

- Malus's Law: I = I₀cos²θ
- Brewster's angle: tanθB = n

Modern Physics

1. Photoelectric Effect

Einstein's Equation: $hf = \phi + KEmax$ Stopping potential: $eV_0 = KEmax = hf - \phi$ Threshold

frequency: $f_0 = \phi/h$

2. Atomic Structure

Bohr's Model:

- Angular momentum: $mvr = nh/2\pi$
- Energy levels: En = $-13.6/n^2$ eV (for hydrogen)
- Rydberg formula: $1/\lambda = R(1/n_1^2 1/n_2^2)$

3. Nuclear Physics

Important Formulas Summary

Mechanics

- $v^2 = u^2 + 2as$
- F = ma
- $W = F \cdot s \cdot \cos\theta$
- KE = $\frac{1}{2}$ mv²
- PE = mgh
- $T = I\alpha$

Thermodynamics

- PV = nRT
- ΔU = Q W
- $\eta = 1 Tc/Th$ (Carnot)

Waves

- $v = f\lambda$
- $T = 2\pi\sqrt{(m/k)}$
- $T = 2\pi\sqrt{(I/g)}$

Electricity

- V = IR
- $P = VI = I^2R$
- C = Q/V
- $F = kq_1q_2/r^2$

Magnetism

- $F = qvB sin\theta$
- B = $\mu_0 I/(2\pi r)$
- $\varepsilon = -d\Phi/dt$

Optics

• 1/f = 1/u + 1/v

- $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- $\beta = \lambda D/d$

Modern Physics

- E = hf
- E = mc²
- En = -13.6/n² eV

Problem-Solving Strategies

General Approach:

- Read carefully Understand what's given and what's asked
- 2. **Draw diagrams** Visual representation helps
- 3. Identify concepts Which physics principles apply?
- 4. List known values Organize given information
- 5. Choose appropriate formula Select relevant equations
- 6. Solve systematically Step-by-step calculation
- 7. Check units Ensure dimensional consistency
- 8. Verify answer Does it make physical sense?

Common Mistakes to Avoid:

- Not drawing free body diagrams
- Mixing up signs and directions
- Using wrong formulas
- Calculation errors
- Not checking units
- Rushing through problems

Time Management Tips:

- Attempt easy questions first
- Don't spend too much time on one problem
- Practice speed with accuracy
- Review and revise regularly
- Solve previous year papers

Important Topics by Weightage:

NEET High Priority:

- Mechanics (25-30%)
- Thermodynamics (10-12%)
- Waves and Sound (8-10%)
- Electricity (15-18%)
- Optics (10-12%)
- Modern Physics (12-15%)

JEE Main High Priority:

- Mechanics (30-35%)
- Electricity and Magnetism (20-25%)
- Thermodynamics (8-10%)
- Waves (8-10%)
- Modern Physics (10-12%)
- Optics (8-10%)

Prepared by **DURGESH PHYSICS** for additional practice problems and detailed solutions, consult standard physics textbooks and previous year question papers.

