Verathon Medical

FloPoint Sensor

June 22, 2007

Report No. VERA0015 Rev 01

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2007 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: June 22, 2007 Verathon Medical Model: FloPoint Sensor

Emissions										
Test Description	Specification	Test Method	Pass	Fail						
Field Strength of Fundamental	FCC 15.249:2006	ANSI C63.4:2003	\boxtimes							
Spurious Radiated Emissions	FCC 15.249:2006	ANSI C63.4:2003	\boxtimes							

Modifications made to the product
See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

On Manager

Don Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
01	Removed reference to 120V/60Hz power settings (unit is battery operated)	10/24/07	10, 13-14, 17-18

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Party Requesting the Test

Company Name:	Verathon Medical			
Address:	21222 30th Drive SE, Suite 120			
City, State, Zip:	Bothell, WA 98021			
Test Requested By:	Tim Chinowsky			
Model:	FloPoint Sensor			
First Date of Test:	May 18, 2007			
Last Date of Test:	June 12, 2007			
Receipt Date of Samples:	May 18, 2007			
Equipment Design Stage:	Prototype			
Equipment Condition:	No Damage			

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):
2.4 GHz radio transceivers. Device uses a Cypress CYWUSB6934 "Wireless USB" chip for remote control and data transmission between a handheld remote and a urine flowmeter located in a bathroom.

Testing Objective:

Seeking TCB authorization under 15.249.

EUT Photo

CONFIGURATION 1 VERA0014

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT - Sensor	Verathon Medical	FloSensor	07040601

CONFIGURATION 3 VERA0015

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT - Sensor	Verathon Medical	FloSensor	07040601

	Equipment modifications												
Item	Date	Test	Modification	Note	Disposition of EUT								
1	5/18/2007	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.								
2	6/11/2007	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.								
3	6/12/2007	Field Strength of Spurious Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.								

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting with modulation mid channel

Transmitting with modulation low channel

Transmitting with modulation high channel

POWER SETTINGS INVESTIGATED

Rattery

EDEA	HENCY	/ D A NI	ᅊᄞᇄ	VI-STI	GATED
	CLIVE	NAM	GLIIN	VLOII	GAILD

Start Frequency 30 MHz Stop Frequency 25 GHz

CLOCKS AND OSCILLATORS

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOK	1/14/2007	13
Antenna, Horn	EMCO	3160-07	AHP	NCR	0
A292 Cable for Standard Gain Horn	ESM Cable Corp.	LA292	SUL	2/14/2007	13
Antenna, Horn	EMCO	3115	AHM	2/20/2006	24
SU07 cables a,h,c			SUB	2/14/2007	13
Antenna, Biconilog	EMCO	LPB-2513	AXC	NCR	0
SU07 cables a,f,c			SUA	3/30/2006	16
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/7/2006	13
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQA	12/7/2006	13
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2006	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	12/29/2006	13
Low Pass Filter 0-1000 MHz	Micro-Tronics	LPM50004	LFD	12/29/2006	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	12/29/2006	13
Antenna, Biconilog	EMCO	3141	AXE	12/28/2005	24
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	5/10/2007	13
Antenna, Horn	EMCO	3115	AHC	8/24/2006	12
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	5/10/2007	13
Antenna, Horn	EMCO	3160-08	AHK	NCR	0
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	3/23/2006	17
Antenna, Horn	EMCO	3160-09	AHG	NCR	0
EV01 cables c,g, h			EVA	12/29/2006	13
EV01 cables g,h,j			EVB	5/10/2007	13
EV01 Cable D			EVD	3/30/2006	15
EV01 cables g,h,l			EVF	5/10/2007	13

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

	RTHWEST MC			S	PURI	ous i	RADI	ATED	EMIS	SSION	IS			Q 2007.05.07 MI 2006.12.04
		IT- F	loPoint S									ork Order:	VER 40014	
Seri	ial Numb			CIISOI							• • • • • • • • • • • • • • • • • • • •		05/18/07	
			erathon I								Ten	nperature:		
			im Chino	wsky							Danama	Humidity:		
	Proje		one Chris Sear	ls				Power:	Battery		Barome	tric Pres.: Job Site:		
EST S	PECIFIC			10				T GWGI.	Test Meth	od		OOD OILO.	0001	
	.249:2000 ARAMET								ANSI C63	3.4:2003				
Antenn	a Height(1 - 4				Test Dista	nce (m)					
COMME	ENTS													
	PERATIN													
ransm DEVIAT	itting at	2442 OM	Mhz TEST STA	NDARD										
lo devi	iations.													
Run #			2								Que	1.1.		
	ıration #		1									early		
Results	;		Pa	SS						Signature				
	120.0													
Æ	80.0 -													
dBuV/m	60.0 -												*	
	40.0 -	*											•	
	20.0 -													
	0.0 - 4800	.000)	5300.0	000	580	0.000	6 MHz	300.000		6800.000		7300.00	00
	Freq MHz)		Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	External Attenuation (dB)	Polarity	Detector	Distance Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Compared to Spec. (dB)
,	7325.1		33.5	16.3	104.0	1.5	3.0	0.0		AV	0.0	49.8	54.0	-4.2
	7326.3		26.2	16.3	134.0	1.5	3.0			AV	0.0	42.5	54.0	-11.5
	7325.1 4884.0		43.5 28.4	16.3 9.1	104.0 144.0	1.5 1.1	3.0 3.0			PK AV	0.0	59.8 37.5	74.0 54.0	-14.2 -16.5
	7326.3		28.4 40.1	16.3	134.0	1.1	3.0			PK	0.0	56.4	54.0 74.0	-16.5
	4884.0		24.6	9.1	296.0	1.1	3.0			AV	0.0	33.7	54.0	-20.3
	4884.0	062	39.5	9.1	144.0	1.1	3.0	0.0	H-Horn	PK	0.0	48.6	74.0	-25.4
	4884.0)56	37.7	9.1	296.0	1.1	3.0	0.0	V-Horn	PK	0.0	46.8	74.0	-27.2

NORTHWEST EMC			S	PURI	OUS F	RADI	ATED	EMIS	SION	S			CQ 2007.05.07 MI 2006.12.04
		FloPoint S	ensor							W	ork Order:	VERA0014	1
Serial Nur			CIIOOI							• • • • • • • • • • • • • • • • • • • •		05/18/07	•
		Verathon N	Medical							Ten	nperature:		
		Tim Chino									Humidity:		
	oject:		,							Barome	etric Pres.:		
		Chris Sear	ls				Power:	Battery			Job Site:		
TEST SPECIF								Test Metho	d				
FCC 15.249:2	006							ANSI C63.4	1:2003				
TEST PARAM								, ,					
Antenna Heig	ht(s) (m)	1 - 4				Test Dista	nce (m)					
COMMENTS													
None EUT OPERAT	ING M	IODES											
Transmitting DEVIATIONS	FROM		NDARD										
No deviations	·.	3	, 1								/		
Run#										Chur le	rele		
Configuration	#	1											
Results		Pa	SS						Signature				
120.0	,												_
100.0	,												
80.0)												
M/Wab	,												
40.0) +												
20.0	,												
0.0 97		0 9710.0	00 9720	.000 973	0.000 97	40.000	9750.000	9760.000	9770.00	00 9780.0	000 9790	0.000 980	00.000
							MHz						
Freq (MHz)		Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	External Attenuation (dB)	Polarity	Detector	Distance Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Compared to Spec. (dB)
	8.120	45.9	-6.6	287.0	1.2	3.0			AV	0.0	39.3		
	8.120	39.5	-6.6	287.0	1.2	3.0		V-Horn	AV	0.0	32.9		-21.1
976	8.120	51.2 47.8	-6.6	287.0	1.2	3.0		H-Horn	PK	0.0	44.6		-29.4
_	8.120		-6.6	287.0	1.2	3.0	0.0	V-Horn	PK	0.0	41.2	74.0	-32.8

4804.098

9608.285

4804.030

9608.090

4804.040

4804.108

4804.128

4803.965

28.9

40.2 27.4

36.2

42.8 41.0

40.5

39.2

15.8

7.4

15.8

7.4 7.4

7.4

7.0

151.0

28.0

23.0

278.0

28.0

7.0

225.0

1.2

1.3

1.0

1.2

1.0

1.0

1.2

3.0

3.0

3.0

3.0

3.0

3.0

3.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

H-Horn

H-Horn

V-Horn

V-Horn

V-Horn V-Horn

H-Horn

H-Horn

ΑV

PK AV

PK

PK PK

PK

0.0

0.0

0.0

0.0

0.0

0.0

0.0

36.3

56.0

34.8

52.0

50.2

48.4

47.9

46.6

54.0

74.0 54.0

74.0

74.0 74.0

74.0

74.0

-18.0

-19.2

-22.0

-23.8

-25.6

-26.1

-27.4

EUT on side

EUT on side

EUT on side

EUT on side

EUT typical orientation EUT typical orientation

EUT typical orientation

EUT typical orientation

7437.518

4958.088

4958.050

9916.330

9915.855

4958.010

4958.185

44.3

28.7

28.6

39.2

38.5

41.5

41.2

14.5

8.0

8.0

16.2

16.2

8.0

272.0

345.0

315.0

299.0

22.0

315.0

345.0

1.2

1.0

1.2

1.7

1.2

1.2

1.0

3.0

3.0

3.0

3.0

3.0

3.0

0.0

0.0

0.0

0.0

0.0

0.0

V-Horn

V-Horn

H-Horn

H-Horn V-Horn

H-Horn

V-Horn

PK

AV

ΑV

PK PK

PK PK 0.0

0.0

0.0

0.0

0.0

0.0

0.0

58.8

36.7

36.6

55.4 54.7

49.5

49.2

74.0

54.0

54.0

74.0 74.0

74.0

-15.2

-17.3

-18.6

-19.3

-24.8

EUT on side

EUT on side

EUT on side

EUT on side

EUT typical orientation

EUT typical orientation

EUT typical orientation

SPURIOUS RADIATED EMISSIONS

SPURIOUS RADIATED EMISSIONS

FIELD STRENGTH OF FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting with modulation

POWER SETTINGS INVESTIGATED

Battery

FREQUENCY RANGE INV	/ESTIGATED		
Start Frequency	2400 MHz	Stop Frequency	2483.5 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2006	13
Antenna, Horn	EMCO	3115	AHC	8/24/2006	12
EV01 cables g,h,j			EVB	5/10/2007	13

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made usi	ng the bandwidths and det	ectors specified. No video filter	was used.

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and/or receiving while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003).

FIELD STRENGTH OF FUNDAMENTAL

FIELD STRENGTH OF FUNDAMENTAL

