IEOR 262: Homework 3

Arnaud Minondo

October 9, 2022

Problem 1.16:

Let p_1, p_2, p_3 the number of time process 1, 2, 3 are processed. The problem is:

$$\max(200p_1 + 60p_2 + 206p_3) \text{ s.t.} \quad \begin{array}{l} 3p_1 + p_2 + 5p_3 \le 8 * 10^6 \\ 5p_1 + p_2 + 3p_3 \le 5 * 10^6 \\ p_1, p_2, p_3 \ge 0 \end{array}$$

Problem 1.17:

Let $\forall i \in [1; n], x_i$ be the fraction of s_i sold. The problem is :

$$\max \left(\sum_{i=1}^{n} r_i s_i (1 - x_i) \right) \text{ s.t. } \sum_{i=1}^{n} x_i s_i p_i \ge K$$
$$\forall i \in [1; n], 0 \le x_i \le 1$$

Problem 2.10:

(a)

If n = m + 1 then we can define : $\forall i \in [1, m]$, $P_i = (x \in \mathbb{R}^n | a_i x = b_i)$ where a_i is the *i*-th row of A and b_i is the *i*-th coefficient of b.

We can notice that $P = \bigcap_{i=1}^{m} P_i$ where P_i is a hyperplane of \mathbb{R}^n and you have $\dim(P_i) = n-1$. Each a_i is perpendicular to P_i , and as each a_i are linearly independent the intersection of two hyperplanes will reduce the dimension of at least 1. So we have $\dim(P) = \dim(\bigcap_{i=1}^{m} P_i) \leq n-m=1$. There can only be two extreme points on a line.

(b)

I will only consider the case where P is nonempty and related to a linear optimization problem that is bounded. In this case : an optimal solution is a basic point and there is only a finite number of basic points as there are only m constraints so at most $\binom{n}{m}$ basic points. As it is a finite set it is bounded.

(c)

This is false: let (\mathcal{P}) : $\min(x_1 - x_2)$ s.t. $x_1 - x_2 = 1$, $x_1, x_2 \ge 0$, then $x_1 = \frac{3}{2}, x_2 = \frac{1}{2}$ is optimal but not basic and more than 1 variable is non zero.

(d)

This is true: let $x_1, x_2 \in P$ be two optimal solution, let $\lambda \in [0; 1]$ and $x_\lambda = \lambda x_1 + (1 - \lambda)x_2 \ge 0$ then $Ax_\lambda = \lambda Ax_1 + (1 - \lambda)Ax_2 = b$ thus $x_\lambda \in P$ and $c^Tx_\lambda = \lambda c^Tx_1 + (1 - \lambda)c^Tx_2 = c^Tx_1$ which is the optimal value. Therefore there are infinetely many optimal solutions.

(e)

This is false: let (P): $\min(x_1 - x_2)$ s.t. $x_1 - x_2 = 0$, $x_1 \ge 0, x_2 \ge 0$. There are multiple optimal solutions but only one basic optimal solution.

1

(f)

Let $P = \{(x_1, x_2, x_3) \in \mathbb{R}^n | x_1 + x_2 + x_3 = 1\}$ and (\mathcal{P}) : min(max $(x_1 - x_2 + x_3, -x_1 + x_2 - x_3))$ s.t. $x_1, x_2, x_3 \in P$ then an optimal solution is $x_1 = \frac{1}{2}, x_2 = \frac{1}{2}, x_3 = 0$ and is not a basic solution as only two constraints are active.

Problem 3.12:

(a)

The problem in standard form is:

$$\min(-2x_1 - x_2) \text{ s.t.} \quad \begin{aligned} x_1 - x_2 + s_1 &= 2\\ x_1 + x_2 + s_2 &= 6\\ x_1, x_2, s_1, s_2 &\geq 0 \end{aligned}$$

A solution to this problem would be $x_1 = 0, x_2 = 0, s_1 = 2, s_2 = 6$

(b)

Starting from the point : $(x_1, x_2, s_1, s_2) = (0, 0, 2, 6)$.

0	-2	-1	0	0
2	1	-1	1	0
6	1	1	0	1

 $\overline{x_1}$ and $\overline{x_2}$ reduced cost are both negative so I will choose that x_1 enters the basis, we compute $\theta = 2$ and s_1 leaves the basis.

2

 x_2 reduced cost is negative so x_2 enters the basis. Compute $\theta = 2$ and s_2 leaves the basis.

No reduced costs are negative so the point $x_1 = 4, x_2 = 2, s_1 = 0, s_2 = 0$ is optimal.

(c)

Problem 3.17:

The phase I:

Intialisation: as $B = I_3$, the reduced cost vector $\overline{c_N} = (0, 0, 0, 0, 0) - (1, 1, 1)N$ where $N = \begin{pmatrix} 1 & 3 & 0 & 4 & 1 \\ 1 & 2 & 0 & -3 & 1 \\ -1 & -4 & 3 & 0 & 0 \end{pmatrix}$,

	-1								
2	1 1	3	0	4	1	1	0	0	
2	1	$\overset{\circ}{2}$	0	-3	1	0	1	0	x_1
1	_1	_4	3	\cap	Ω	Ω	Ω	1	

enters the basis and s_1 leaves gives the new array:

	3	0	2	$ \begin{array}{c} -3 \\ 0 \\ 0 \\ 3 \end{array} $	3	0	1	0	0
2	2	1	3	0	4	1	1	0	0
()	0	-1	0	-7	0	-1	1	0
:	3	0	-1	3	4	1	1	0	1

 x_3 enters the basis and s_3 leaves gives the new reduced cost vec-

tor: $\overline{c_N} = (1,7,1,2,1) \ge 0$ so the solution $x_1 = 2, x_3 = 1$ and the others equal to 0 is optimal. But as s_2 is still in the basis we apply a change of basis : s_2 leaves and x_2 enters.

The final tableau is

:	3	0	2	-3	3	0	1	0	0
	2	1	0	0	-17	1	-2	3	0
	0	0	1	0	7	0	1	-1	0
	1	0	0	3	11	1	2	-1	1

Phase II:

sis, $B = \begin{pmatrix} 1 & 3 & 0 \\ 1 & 2 & 0 \\ -1 & -4 & 3 \end{pmatrix}$ and $B^{-1} = \begin{pmatrix} -2 & 3 & 0 \\ 1 & -1 & 0 \\ 2/3 & -1/3 & 1/3 \end{pmatrix}$, reduced cost vector $\frac{7 \mid 0 \mid 0 \mid 0 \mid 3 \mid -5}{2 \mid 1 \mid 0 \mid 0 \mid -17 \mid 1}$. Thus x_5 enters the basis and x_1 leaves and the new Taking x_1, x_2, x_3 as the basis, B =

is (3,-5) and the array is

and $x_5 = 2, x_3 = 1/3$ is an optimal degenerate solution of the pb as

 x_4 has to enter the base but $x_2 = 0$ has to leave the basis and you are going to exchange forever those two.

Problem 3.19:

(a)

Let $\alpha = 0, \beta = 0, \gamma = 0, \eta = 0, \delta = -2$, there are mulitple solutions.

(b)

Let $\alpha = -1, \gamma = -1, \beta = 1, \eta = 1, \delta = -1$ the problem is unbounded as if x_1 is chosen to enter the basis then all coefficient are negative and you can choose any θ .

(c)

Let $\alpha = 1, \gamma = 1, \beta = 1, \eta = 1, \delta = -1$.

Problem 4.33:

Let $p_S = S$ be the price of the stock, $p_B = 1$ the price of the bond and p_O the price of the option. $R = \begin{pmatrix} Su & r & \max(0, Su - K) \\ Sd & r & \max(0, Sd - K) \end{pmatrix}, \text{ after theorem 4.8, the absence of arbitrage condition yields there exist}$ $\delta, \gamma > 0$ such that $p_S = \gamma Su + \delta Sd = S$ and $p_B = \gamma r + \delta r$ and $p_O = \gamma \max(0, Su - K) + \delta \max(0, Sd - K)$

3

So:

$$p_O = \gamma \max(0, Su - K) + \delta \max(0, Sd - K)$$
 where $1 = \gamma u + \delta d$ and $\frac{1}{r} = \delta + \gamma$

Problem 4.39:

Let $A \in \mathcal{M}_{m,n}(\mathbb{R})$ without any loss of generality suppose n rows of A are linearly independent. We can suppose this because if there exist an dependent row we can drop it. Let $C = \{x \in \mathbb{R}^n | Ax \ge 0\}$.

Definition 1: $d \in C$ is an extreme ray if there are n-1 constraints bounding.

Definition 2: $d \in C$ is an extreme ray if $\forall (f, g) \in C^2$, $f + g = d \implies (f, g) \in \text{Vect}(d)^2$

Suppose $d \in C$ extreme ray after definition 1 ie. $\forall i \in [1; n-1], \sum_{j=1}^{n} a_{ij}d_j = 0$. Let $f, g \in C$ such that d = f + g, if f = 0 or g = 0 then either f = d or g = d so we can suppose $f \neq 0$ and

Thus $\sum_{i=1}^{n} a_{ij} f_j + \sum_{i=1}^{n} a_{ij} g_j = 0$ (1)

Moreover, $f \in C$ so $Af \ge 0$ so $\forall i [1; m], \sum_{j=1}^{n} a_{ij} f_j \ge 0$ and the same holds for g.

Both terms in (1) are positive and the sum is equal to 0 thus both terms have to be 0.

Thus $\forall i \in [1; n-1]$, $\sum_{j=1}^{n} a_{ij} f_j = 0$ and $\sum_{j=1}^{n} a_{ij} g_j = 0$.

Now suppose that $f \notin \text{Vect}(g)$ then $\dim(\text{Vect}(f,g)) = 2$ and Vect(f,g) is orthogonal to $\text{Vect}(a_1, a_2, a_3, ..., a_{n-1})$. By learly independence hypothesis: $\dim(\operatorname{Vect}(a_1,...,a_{n-1})) = n-1$

Thus $\dim(\operatorname{Vect}(a_1, a_2, ..., a_{n-1}) + \operatorname{Vect}(f, g)) = n+1$ but $\operatorname{Vect}(a_1, a_2, ..., a_{n-1}) + \operatorname{Vect}(f, g) \subseteq \mathbb{R}^n$ and we have a contradiction.

So f is proportional to g ie. $\exists \lambda \in \mathbb{R}^n$ s.t. $f = \lambda g$, moreover $A(\lambda g) \geq 0$ so $\lambda \geq 0$ thus $d = f + g = (1 + \lambda)g = 0$ $(1+\frac{1}{\lambda})f$ and both are proportional to d.

Now let d an extreme ray after definition 2 ie. $\forall (f,g) \in C^2, f+g=d \implies (f,g) \in \operatorname{Vect}(d)^2$.

Let f be an extreme ray after definition 1 and g = d - f we have f = d - g and after proof 1 we have d verifies n-1 bounds.