Recherche opérationnelle

DUT Info 2e année, parcours A

Programmation linéaire : l'algo du simplexe en détails

Florent Foucaud

L'algo du simplexe : principe

Principe général:

- 0. On part d'un PL en forme standard
- 1. On trouve une solution non-optimale en un point du polytope associé à notre PL
- 2. Tant qu'on peut, on évolue vers une solution proche qui améliore la fonction objectif (si on ne peut plus améliorer la solution courante, on s'arrête : on a trouvé une solution optimale!)

L'algo sur un exemple

maximiser: $x_1 + x_2$ tel que: $-x_1 + x_2 \le 1$ $x_1 \le 3$ $x_2 \le 2$ $x_1 \ge 0$ $x_2 \ge 0$

L'algo sur un exemple

maximiser:
$$x_1 + x_2$$

tel que: $-x_1 + x_2 \le 1$
 $x_1 \le 3$
 $x_2 \le 2$
 $x_1 \ge 0$
 $x_2 \ge 0$

On passe le PL en forme standard via des variables d'écart x_3 , x_4 , x_5 :

maximiser:
$$x_1 + x_2$$

tel que: $-x_1 + x_2 + x_3$ = 1
 $x_1 + x_2 + x_3 + x_4 = 3$
 $x_2 + x_5 = 2$
 $x_1 + x_2 + x_3 + x_5 = 2$
 $x_1 + x_2 + x_3 + x_5 = 2$
 $x_1 + x_2 + x_3 + x_5 = 2$

L'algo sur un exemple

maximiser:
$$x_1 + x_2$$

tel que: $-x_1 + x_2 \le 1$
 $x_1 \le 3$
 $x_2 \le 2$
 $x_1 \ge 0$
 $x_2 \ge 0$

On passe le PL en forme standard via des variables d'écart x_3 , x_4 , x_5 :

On voit que $x_1 = x_2 = 0$ est une solution (non-optimale) du PL originel.

 \rightarrow Cela implique $x_3 = 1$, $x_4 = 3$, $x_5 = 2$ dans le nouveau PL : solution (0, 0, 1, 3, 2).

Une première solution maximiser $z = x_1 + x_2 + x_3 + x_4 + x_4 + x_5 + x_5$

 $x_1 +$ x_2

 $\begin{array}{rcl}
 & = & 1 \\
 & = & 3 \\
x_5 & = & 2
\end{array}$ tel que : $-x_1 + x_2 + x_3$ x_1 + X4 χ_2 x₂ , X5 x_1 , X3 , X4 ,

maximiser
$$z=x_1+x_2$$
 tel que : $-x_1+x_2+x_3=1$ $x_1+x_2+x_3+x_4=3$ $x_2+x_5=2$ x_1 , x_2 , x_3 , x_4 , $x_5\geq 0$

X ₃	=	1	+	<i>x</i> ₁	_	X ₂
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution : (0, 0, 1, 3, 2), z = 0

On démarre avec notre solution basique $x_1 = x_2 = 0$, $x_3 = 1$, $x_4 = 3$, $x_5 = 2$. Les variables non-nulles x_3 , x_4 , x_5 sont appelées basiques.

On réécrit le PL sous forme d'un tableau de simplexe.

X3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X5	=	2			_	X2
Z	=			x_1	+	X2

Solution : (0, 0, 1, 3, 2), z = 0

On veut améliorer la solution en augmentant une seule variable qui était à 0.

X3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X5	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

On veut améliorer la solution en augmentant une seule variable qui était à 0.

On peut choisir x_1 ou x_2 : prenons x_2 . C'est le **pivot**.

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X ₂
X4	=	3	_	x_1		
X ₅	=	2			_	x_2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

On veut améliorer la solution en augmentant une seule variable qui était à 0.

On peut choisir x_1 ou x_2 : prenons x_2 . C'est le **pivot**.

Par exemple, si on prend $x_2 = 1$, on obtient z = 1.

Si on prend $x_2 = 2$, on obtient z = 2, c'est encore mieux.

X3	=	1	+	x_1	_	X2
X4	=	3	_	x_1		
X5	=	2			_	x_2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

On veut améliorer la solution en augmentant une seule variable qui était à 0.

On peut choisir x_1 ou x_2 : prenons x_2 . C'est le **pivot**.

Par exemple, si on prend $x_2 = 1$, on obtient z = 1.

Si on prend $x_2 = 2$, on obtient z = 2, c'est encore mieux.

Par contre, on aurait alors $x_3 = 1 + 0 - 2 < 0$ ce qui n'est pas autorisé....

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	x_2
Z	=			x_1	+	x_2

Solution: (0, 0, 1, 3, 2), z = 0

On veut améliorer la solution en augmentant une seule variable qui était à 0.

On peut choisir x_1 ou x_2 : prenons x_2 . C'est le **pivot**.

De combien peut-on augmenter x_2 ?

X3	=	1	+	<i>x</i> ₁	_	X ₂
X4	=	3	_	x_1		
X ₅	=	2			_	χ_2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

On veut améliorer la solution en augmentant une seule variable qui était à 0.

On peut choisir x_1 ou x_2 : prenons x_2 . C'est le **pivot**.

De combien peut-on augmenter x_2 ?

$$x_3 = 1 + x_1 - x_2 \ge 0$$
 donc $1 - x_2 \ge 0$ et $1 \ge x_2$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

On veut améliorer la solution en augmentant une seule variable qui était à 0.

On peut choisir x_1 ou x_2 : prenons x_2 . C'est le **pivot**.

De combien peut-on augmenter x_2 ?

$$x_3 = 1 + x_1 - x_2 \ge 0$$
 donc $1 - x_2 \ge 0$ et $1 \ge x_2$

$$x_4 = 3 - x_1 \ge 0 \rightarrow \text{aucune influence sur } x_2$$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	<i>x</i> ₂
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	x_2

Solution: (0, 0, 1, 3, 2), z = 0

On veut améliorer la solution en augmentant une seule variable qui était à 0.

On peut choisir x_1 ou x_2 : prenons x_2 . C'est le **pivot**.

De combien peut-on augmenter x_2 ?

$$x_3 = 1 + x_1 - x_2 \ge 0$$
 donc $1 - x_2 \ge 0$ et $1 \ge x_2$

$$x_4 = 3 - x_1 \ge 0 \rightarrow \text{aucune influence sur } x_2$$

$$x_5 = 2 - x_2 \ge 0$$
 donc $2 - x_2 \ge 0$ et $2 \ge x_2$

X3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

On veut améliorer la solution en augmentant une seule variable qui était à 0.

On peut choisir x_1 ou x_2 : prenons x_2 . C'est le **pivot**.

De combien peut-on augmenter x_2 ?

Regardons nos contraintes (avec $x_1 = 0$):

$$x_3 = 1 + x_1 - x_2 \ge 0$$
 donc $1 - x_2 \ge 0$ et $1 \ge x_2$

$$x_4 = 3 - x_1 \ge 0 \rightarrow \text{aucune influence sur } x_2$$

$$x_5 = 2 - x_2 \ge 0$$
 donc $2 - x_2 \ge 0$ et $2 \ge x_2$

On augmente x_2 au maximum autorisé : $x_2 = 1$, et on garde $x_1 = 0$.

X3	=	1	+	<i>x</i> ₁	_	X ₂
X4	=	3	_	x_1		
X ₅	=	2			_	x_2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

On veut améliorer la solution en augmentant une seule variable qui était à 0.

On peut choisir x_1 ou x_2 : prenons x_2 . C'est le **pivot**.

De combien peut-on augmenter x_2 ?

Regardons nos contraintes (avec $x_1 = 0$):

$$x_3 = 1 + x_1 - x_2 \ge 0$$
 donc $1 - x_2 \ge 0$ et $1 \ge x_2$

$$x_4 = 3 - x_1 \ge 0 \rightarrow \text{aucune influence sur } x_2$$

$$x_5 = 2 - x_2 \ge 0$$
 donc $2 - x_2 \ge 0$ et $2 \ge x_2$

On augmente x_2 au maximum autorisé : $x_2 = 1$, et on garde $x_1 = 0$.

On calcule x_3 , x_4 et x_5 grâce au tableau : $x_3 = 0$, $x_4 = 3$, $x_5 = 1$

Nouvelle solution : (0, 1, 0, 3, 1) qui donne z = 1.

X3	=	1	+	x_1	_	X2
X4	=	3	_	x_1		
X5	=	2			_	x_2
Z	=			x_1	+	X2

Solution : (0, 0, 1, 3, 2), z = 0

Nouvelle solution : (0, 1, 0, 3, 1) qui donne z = 1.

X3	=	1	+	<i>x</i> ₁	_	X ₂
X4	=	3	_	x_1		
X5	=	2			_	x_2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

Nouvelle solution : (0, 1, 0, 3, 1) qui donne z = 1.

X3	=	1	+	x_1	_	X2
X4	=	3	_	x_1		
X5	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

Nouvelle solution : (0, 1, 0, 3, 1) qui donne z = 1.

$$x_2 = 1 + x_1 - x_3$$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X ₂
X4	=	3	_	x_1		
X ₅	=	2			_	x_2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

Nouvelle solution : (0, 1, 0, 3, 1) qui donne z = 1.

$$x_2 = 1 + x_1 - x_3$$

$$x_4 = 3 - x_1$$

X3	=	1	+	x_1	_	x_2
X4	=	3	_	x_1		
X ₅	=	2			_	x_2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

Nouvelle solution : (0, 1, 0, 3, 1) qui donne z = 1.

$$x_2 = 1 + x_1 - x_3$$

$$x_4 = 3 - x_1$$

$$x_5 = 2 - x_2 = 2 - (1 + x_1 - x_3) = 1 - x_1 + x_3$$

X3	=	1	+	x_1	_	x_2
X4	=	3	_	x_1		
X ₅	=	2			_	x_2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

Nouvelle solution : (0, 1, 0, 3, 1) qui donne z = 1.

$$x_2 = 1 + x_1 - x_3$$

$$x_4 = 3 - x_1$$

$$x_5 = 2 - x_2 = 2 - (1 + x_1 - x_3) = 1 - x_1 + x_3$$

$$z = x_1 + x_2 = x_1 + (1 + x_1 - x_3) = 1 + 2x_1 - x_3$$

X3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution : (0, 0, 1, 3, 2), z = 0

Solution : (0, 1, 0, 3, 1), z = 1

Nouvelle solution : (0, 1, 0, 3, 1) qui donne z = 1.

$$x_2 = 1 + x_1 - x_3$$

$$x_4 = 3 - x_1$$

$$x_5 = 2 - x_2 = 2 - (1 + x_1 - x_3) = 1 - x_1 + x_3$$

$$z = x_1 + x_2 = x_1 + (1 + x_1 - x_3) = 1 + 2x_1 - x_3$$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X ₂
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	x_2

Solution : (0, 0, 1, 3, 2), z = 0

Solution : (0, 1, 0, 3, 1), z = 1

<i>x</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution : (0, 0, 1, 3, 2), z = 0

Solution : (0, 1, 0, 3, 1), z = 1

Quel **pivot** choisir? $\rightarrow x_1$, car x_3 ferait baisser la fonction objectif.

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution : (0, 0, 1, 3, 2), z = 0

Solution : (0, 1, 0, 3, 1), z = 1

Quel **pivot** choisir? $\rightarrow x_1$, car x_3 ferait baisser la fonction objectif.

De combien peut-on augmenter x_1 ?

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution :
$$(0, 0, 1, 3, 2), z = 0$$

Solution : (0, 1, 0, 3, 1), z = 1

Quel **pivot** choisir? $\rightarrow x_1$, car x_3 ferait baisser la fonction objectif.

De combien peut-on augmenter x_1 ?

$$x_2 = 1 + x_1 - x_3 \ge 0$$
 donc $1 + x_1 \ge 0$ et $x_1 \ge -1$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	<i>x</i> ₂
X4	=	3	_	x_1		
X5	=	2			_	X2
Z	=			x_1	+	X2

Solution :
$$(0, 0, 1, 3, 2), z = 0$$

Solution : (0, 1, 0, 3, 1), z = 1

Quel **pivot** choisir? $\rightarrow x_1$, car x_3 ferait baisser la fonction objectif.

De combien peut-on augmenter x_1 ?

$$x_2 = 1 + x_1 - x_3 \ge 0$$
 donc $1 + x_1 \ge 0$ et $x_1 \ge -1$

$$x_4 = 3 - x_1 \ge 0 \text{ donc } 3 \ge x_1$$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution : (0, 0, 1, 3, 2), z = 0

Solution : (0, 1, 0, 3, 1), z = 1

Quel **pivot** choisir? $\rightarrow x_1$, car x_3 ferait baisser la fonction objectif.

De combien peut-on augmenter x_1 ?

$$x_2 = 1 + x_1 - x_3 \ge 0$$
 donc $1 + x_1 \ge 0$ et $x_1 \ge -1$

$$x_4 = 3 - x_1 \ge 0 \text{ donc } 3 \ge x_1$$

$$x_5 = 1 - x_1 + x_3 \ge 0$$
 donc $1 - x_1 \ge 0$ et $1 \ge x_1$

X3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution :
$$(0, 0, 1, 3, 2), z = 0$$

Solution : (0, 1, 0, 3, 1), z = 1

Quel **pivot** choisir? $\rightarrow x_1$, car x_3 ferait baisser la fonction objectif.

De combien peut-on augmenter x_1 ?

Regardons nos contraintes (avec $x_3 = 0$):

$$x_2 = 1 + x_1 - x_3 \ge 0$$
 donc $1 + x_1 \ge 0$ et $x_1 \ge -1$

$$x_4 = 3 - x_1 \ge 0 \text{ donc } 3 \ge x_1$$

$$x_5 = 1 - x_1 + x_3 \ge 0$$
 donc $1 - x_1 \ge 0$ et $1 \ge x_1$

On augmente x_1 au maximum autorisé : $x_1 = 1$, et on garde $x_3 = 0$.

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	<i>x</i> ₂
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	x_2

Solution :
$$(0, 0, 1, 3, 2), z = 0$$

Solution : (0, 1, 0, 3, 1), z = 1

Quel **pivot** choisir? $\rightarrow x_1$, car x_3 ferait baisser la fonction objectif.

De combien peut-on augmenter x_1 ?

Regardons nos contraintes (avec $x_3 = 0$):

$$x_2 = 1 + x_1 - x_3 \ge 0$$
 donc $1 + x_1 \ge 0$ et $x_1 \ge -1$

$$x_4 = 3 - x_1 \ge 0 \text{ donc } 3 \ge x_1$$

$$x_5 = 1 - x_1 + x_3 \ge 0$$
 donc $1 - x_1 \ge 0$ et $1 \ge x_1$

On augmente x_1 au maximum autorisé : $x_1 = 1$, et on garde $x_3 = 0$.

On calcule x_2 , x_4 et x_5 grâce au tableau : $x_2 = 2$, $x_4 = 2$, $x_5 = 0$

Nouvelle solution : (1, 2, 0, 2, 0) qui donne z = 3.

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

X2	=	1	+	<i>x</i> ₁	_	<i>X</i> ₃
X4	=	3	_	x_1		
X5	=	1	_	x_1	+	X3
Z	=	1	+	$2x_1$	_	<i>X</i> ₃

Solution : (0, 1, 0, 3, 1), z = 1

Nouvelle solution : (1, 2, 0, 2, 0) qui donne z = 3.

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution : (0, 0, 1, 3, 2), z = 0

Solution : (0, 1, 0, 3, 1), z = 1

Nouvelle solution : (1, 2, 0, 2, 0) qui donne z = 3.

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	<i>x</i> ₂

Solution : (0, 0, 1, 3, 2), z = 0

Solution : (0, 1, 0, 3, 1), z = 1

Nouvelle solution : (1, 2, 0, 2, 0) qui donne z = 3.

$$x_1 = 1 + x_3 - x_5$$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X5	=	2			_	X2
Z	=			x_1	+	<i>x</i> ₂

Solution : (0, 0, 1, 3, 2), z = 0

Solution : (0, 1, 0, 3, 1), z = 1

Nouvelle solution : (1, 2, 0, 2, 0) qui donne z = 3.

$$x_1 = 1 + x_3 - x_5$$

$$x_2 = 1 + x_1 - x_3 = 1 + (1 + x_3 - x_5) - x_3 = 2 + x_5$$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	<i>x</i> ₂

Solution: (0, 0, 1, 3, 2), z = 0

Solution : (0, 1, 0, 3, 1), z = 1

Nouvelle solution : (1, 2, 0, 2, 0) qui donne z = 3.

$$x_1 = 1 + x_3 - x_5$$

$$x_2 = 1 + x_1 - x_3 = 1 + (1 + x_3 - x_5) - x_3 = 2 + x_5$$

$$x_4 = 3 - x_1 = 3 - (1 + x_3 - x_5) = 2 - x_3 + x_5$$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	x_2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

Solution : (0, 1, 0, 3, 1), z = 1

Nouvelle solution : (1, 2, 0, 2, 0) qui donne z = 3.

$$x_1 = 1 + x_3 - x_5$$

$$x_2 = 1 + x_1 - x_3 = 1 + (1 + x_3 - x_5) - x_3 = 2 + x_5$$

$$x_4 = 3 - x_1 = 3 - (1 + x_3 - x_5) = 2 - x_3 + x_5$$

$$z = 1 + 2x_1 - x_3 = 1 + 2(1 + x_3 - x_5) - x_3 = 3 + x_3 - 2x_5$$

X3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution : (0, 0, 1, 3, 2), z = 0

Solution : (0, 1, 0, 3, 1), z = 1

Nouvelle solution : (1, 2, 0, 2, 0) qui donne z = 3.

 x_1 est maintenant une variable basique, mais plus x_5 ! On réécrit le tableau :

$$x_1 = 1 + x_3 - x_5$$

$$x_2 = 1 + x_1 - x_3 = 1 + (1 + x_3 - x_5) - x_3 = 2 + x_5$$

$$x_4 = 3 - x_1 = 3 - (1 + x_3 - x_5) = 2 - x_3 + x_5$$

$$z = 1 + 2x_1 - x_3 = 1 + 2(1 + x_3 - x_5) - x_3 = 3 + x_3 - 2x_5$$

Solution : (1, 2, 0, 2, 0), z = 3

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X ₂
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			<i>x</i> ₁	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

<i>x</i> ₁	=	1	+	<i>X</i> ₃	_	X ₅
X2	=	2			+	x_5
X4	=	2	_	Х3	+	<i>X</i> 5
Z	=	3	+	<i>X</i> ₃	_	$2x_5$

Solution : (1, 2, 0, 2, 0), z = 3

X2	=	1	+	<i>x</i> ₁	_	<i>X</i> ₃
X4	=	3	_	x_1		
X5	=	1	_	x_1	+	<i>X</i> ₃
Z	=	1	+	$2x_1$	_	Х3

Solution : (0, 1, 0, 3, 1), z = 1

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X ₂
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

X2	=	1	+	x_1	_	x_3
X4	=	3	_	x_1		
X5	=	1	_	x_1	+	<i>X</i> ₃
Z	=	1	+	$2x_1$	_	<i>X</i> ₃

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (1, 2, 0, 2, 0), z = 3

Quel **pivot** choisir? $\rightarrow x_3$, car x_5 ferait baisser la fonction objectif.

Х3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

1 7 2 -	= Т	+	x_1	_	X3
X4 =	= 3	_	x_1		
X ₅ =	= 1	_	x_1	+	<i>X</i> ₃
Z =	= 1	+	$2x_1$	_	Х3

Solution : (0, 1, 0, 3, 1), z = 1

Solution: (1, 2, 0, 2, 0), z = 3

Quel **pivot** choisir? $\rightarrow x_3$, car x_5 ferait baisser la fonction objectif.

De combien peut-on augmenter x_3 ?

Х3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

X2	=	Τ	+	x_1	_	X3
X4	=	3	_	x_1		
<i>X</i> ₅	=	1	_	x_1	+	X3
Z	=	1	+	$2x_1$	_	<i>X</i> ₃

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (1, 2, 0, 2, 0), z = 3

Quel **pivot** choisir? $\rightarrow x_3$, car x_5 ferait baisser la fonction objectif.

De combien peut-on augmenter x_3 ?

$$x_1 = 1 + x_3 - x_5 \ge 0$$
 donc $1 + x_3 \ge 0$ et $x_3 \ge -1$

X3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

X2	=	1	+	x_1	_	<i>X</i> ₃
X4	=	3	_	x_1		
X5	=	1	_	x_1	+	X3
Z	=	1	+	$2x_1$	_	X3

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (1, 2, 0, 2, 0), z = 3

Quel **pivot** choisir? $\rightarrow x_3$, car x_5 ferait baisser la fonction objectif.

De combien peut-on augmenter x_3 ?

$$x_1 = 1 + x_3 - x_5 \ge 0$$
 donc $1 + x_3 \ge 0$ et $x_3 \ge -1$

$$x_2 = 2 + x_5 \ge 0 \rightarrow \text{aucune influence sur } x_3$$

Х3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

X2	=	1	+	x_1	_	<i>X</i> ₃
X4	=	3	_	x_1		
X5	=	1	_	x_1	+	<i>X</i> ₃
Z	=	1	+	$2x_1$	_	X3

Solution : (0, 1, 0, 3, 1), z = 1

$$X_1 = 1 + X_3 - X_5$$

 $X_2 = 2 + X_5$
 $X_4 = 2 - X_3 + X_5$
 $X_5 = 3 + X_3 - 2X_5$

Solution : (1, 2, 0, 2, 0), z = 3

Quel **pivot** choisir? $\rightarrow x_3$, car x_5 ferait baisser la fonction objectif.

De combien peut-on augmenter x_3 ?

$$x_1 = 1 + x_3 - x_5 \ge 0$$
 donc $1 + x_3 \ge 0$ et $x_3 \ge -1$

$$x_2 = 2 + x_5 \ge 0 \rightarrow \text{aucune influence sur } x_3$$

$$x_4 = 2 - x_3 + x_5 \ge 0$$
 donc $2 - x_3 \ge 0$ et $2 \ge x_3$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X5	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

X2	=	1	+	<i>x</i> ₁	_	X3
X4	=	3	_	x_1		
X5	=	1	_	x_1	+	<i>X</i> ₃
Z	=	1	+	$2x_1$	_	X3

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (1, 2, 0, 2, 0), z = 3

Quel **pivot** choisir? $\rightarrow x_3$, car x_5 ferait baisser la fonction objectif.

De combien peut-on augmenter x_3 ?

Regardons nos contraintes (avec $x_5 = 0$):

$$x_1 = 1 + x_3 - x_5 \ge 0$$
 donc $1 + x_3 \ge 0$ et $x_3 \ge -1$

$$x_2 = 2 + x_5 \ge 0 \rightarrow \text{aucune influence sur } x_3$$

$$x_4 = 2 - x_3 + x_5 \ge 0$$
 donc $2 - x_3 \ge 0$ et $2 \ge x_3$

On augmente x_3 au maximum autorisé : $x_3 = 2$, et on garde $x_5 = 0$.

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	<i>x</i> ₂

Solution : (0, 0, 1, 3, 2), z = 0

$x_4 = 3 - x_1$ $x_5 = 1 - x_1 + x_2$	<i>x</i> ₂	=	1	+	x_1	_	<i>X</i> ₃
$x_5 = 1 - x_1 + x_2$	X4	=	3	_	x_1		
	X ₅	=	1	_	<i>x</i> ₁	+	Х3
$z = 1 + 2x_1 - x_1$	Z	=	1	+	$2x_1$	_	<i>X</i> ₃

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (1, 2, 0, 2, 0), z = 3

Quel **pivot** choisir? $\rightarrow x_3$, car x_5 ferait baisser la fonction objectif.

De combien peut-on augmenter x_3 ?

Regardons nos contraintes (avec $x_5 = 0$):

$$x_1 = 1 + x_3 - x_5 \ge 0$$
 donc $1 + x_3 \ge 0$ et $x_3 \ge -1$

$$x_2 = 2 + x_5 \ge 0 \rightarrow \text{aucune influence sur } x_3$$

$$x_4 = 2 - x_3 + x_5 \ge 0$$
 donc $2 - x_3 \ge 0$ et $2 \ge x_3$

On augmente x_3 au maximum autorisé : $x_3 = 2$, et on garde $x_5 = 0$.

On calcule x_1 , x_2 et x_4 grâce au tableau : $x_1 = 3$, $x_2 = 2$, $x_4 = 0$

Nouvelle solution : (3, 2, 2, 0, 0) qui donne z = 5.

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X5	=	2			_	x_2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

X2	=	1	+	<i>x</i> ₁	_	<i>X</i> ₃
X4	=	3	_	x_1		
X5	=	1	_	x_1	+	<i>X</i> ₃
Z	=	1	+	$2x_1$	_	Х3

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (1, 2, 0, 2, 0), z = 3

Nouvelle solution : (3, 2, 2, 0, 0) qui donne z = 5.

Х3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

X2	=	1	+	<i>x</i> ₁	_	<i>X</i> ₃
X4	=	3	_	x_1		
X5	=	1	_	x_1	+	<i>X</i> ₃
Z	=	1	+	$2x_1$	_	X3

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (1, 2, 0, 2, 0), z = 3

Nouvelle solution : (3, 2, 2, 0, 0) qui donne z = 5.

$$x_3 = 2 - x_4 + x_5$$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

X2	=	1	+	x_1	_	<i>X</i> ₃
X4	=	3	_	x_1		
X5	=	1	_	x_1	+	X3
Z	=	1	+	$2x_1$	_	X3

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (1, 2, 0, 2, 0), z = 3

Nouvelle solution : (3, 2, 2, 0, 0) qui donne z = 5.

$$x_3 = 2 - x_4 + x_5$$

$$x_1 = 1 + x_3 - x_5 = 1 + (2 - x_4 + x_5) - x_5 = 3 - x_4$$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

X2	=	1	+	x_1	_	<i>X</i> ₃
X4	=	3	_	x_1		
X5	=	1	_	x_1	+	<i>X</i> ₃
Z	=	1	+	$2x_1$	_	X3

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (1, 2, 0, 2, 0), z = 3

Nouvelle solution : (3, 2, 2, 0, 0) qui donne z = 5.

$$x_3 = 2 - x_4 + x_5$$

$$x_1 = 1 + x_3 - x_5 = 1 + (2 - x_4 + x_5) - x_5 = 3 - x_4$$

$$x_2 = 2 - x_5$$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

X2	=	1	+	<i>x</i> ₁	_	<i>X</i> ₃
X4	=	3	_	x_1		
X5	=	1	_	x_1	+	<i>X</i> ₃
Z	=	1	+	$2x_1$	_	X3

Solution : (0, 1, 0, 3, 1), z = 1

$$X_1 = 1 + X_3 - X_5$$

 $X_2 = 2 + X_5$
 $X_4 = 2 - X_3 + X_5$
 $X_5 = 3 + X_3 - 2X_5$

Solution : (1, 2, 0, 2, 0), z = 3

Nouvelle solution : (3, 2, 2, 0, 0) qui donne z = 5.

$$x_3 = 2 - x_4 + x_5$$

$$x_1 = 1 + x_3 - x_5 = 1 + (2 - x_4 + x_5) - x_5 = 3 - x_4$$

$$x_2 = 2 - x_5$$

$$z = 3 + x_3 - 2x_5 = 3 + (2 - x_4 + x_5) - 2x_5 = 5 - x_4 - x_5$$

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

<i>x</i> ₁	=	1	+	<i>X</i> ₃	_	X ₅
X2	=	2			+	<i>X</i> ₅
X4	=	2	_	Х3	+	X 5
Z	=	3	+	<i>X</i> ₃	_	$2x_5$

Solution : (1, 2, 0, 2, 0), z = 3

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (3, 2, 2, 0, 0), z = 5

Nouvelle solution : (3, 2, 2, 0, 0) qui donne z = 5.

$$x_3 = 2 - x_4 + x_5$$

$$x_1 = 1 + x_3 - x_5 = 1 + (2 - x_4 + x_5) - x_5 = 3 - x_4$$

$$x_2 = 2 - x_5$$

$$z = 3 + x_3 - 2x_5 = 3 + (2 - x_4 + x_5) - 2x_5 = 5 - x_4 - x_5$$

X3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X5	=	2			_	x_2
Z	=			x_1	+	X2

Solution : (0, 0, 1, 3, 2), z = 0

<i>x</i> ₁	=	1	+	<i>X</i> ₃	_	X ₅
X2	=	2			+	<i>X</i> ₅
X4	=	2	_	X3	+	<i>X</i> 5
Z	=	3	+	<i>X</i> ₃	_	$2x_5$

Solution : (1, 2, 0, 2, 0), z = 3

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (3, 2, 2, 0, 0), z = 5

X3	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

<i>x</i> ₁	=	1	+	<i>X</i> ₃	_	X ₅
X2	=	2			+	X ₅
X4	=	2	_	Х3	+	X 5
Z	=	3	+	<i>X</i> ₃	_	$2x_5$

Solution : (1, 2, 0, 2, 0), z = 3

Quel **pivot** choisir?

Solution : (0, 1, 0, 3, 1), z = 1

Solution : (3, 2, 2, 0, 0), z = 5

<i>X</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X5	=	2			_	x_2
Z	=			x_1	+	X2

Solution: (0, 0, 1, 3, 2), z = 0

<i>x</i> ₁	=	1	+	<i>X</i> ₃	_	X ₅
X2	=	2			+	x_5
X4	=	2	_	Х3	+	<i>X</i> 5
Z	=	3	+	X3	_	$2x_5$

Solution: (1, 2, 0, 2, 0), z = 3

Solution : (0, 1, 0, 3, 1), z = 1

<i>X</i> ₃	=	2	_	X4	+	X ₅
x_1	=	3	_	X4		
X2	=	2			+	X5
Z	=	5	_	X4	_	χ_5

Solution : (3, 2, 2, 0, 0), z = 5

Quel **pivot** choisir?

Aucun, car on baisserait la valeur de la fonction objectif.

L'algorithme est terminé!

La solution optimale est $(x_1, x_2, x_3, x_4, x_5) = (3, 2, 2, 0, 0)$ avec z = 5.

<i>x</i> ₃	=	1	+	<i>x</i> ₁	_	X2
X4	=	3	_	x_1		
X ₅	=	2			_	X2
Z	=			x_1	+	X2

Solution : (0, 0, 1, 3, 2), z = 0

<i>x</i> ₁	=	1	+	<i>X</i> ₃	_	<i>X</i> ₅
X2	=	2			+	<i>X</i> ₅
X4	=	2	_	Х3	+	X 5
Z	=	3	+	<i>X</i> ₃	_	$2x_5$

Solution : (1, 2, 0, 2, 0), z = 3

Solution : (0, 1, 0, 3, 1), z = 1

X3	=	2	_	X4	+	X ₅
x_1	=	3	_	χ_4		
X2	=	2			+	X5
Z	=	5	_	X4	_	χ_5

Solution : (3, 2, 2, 0, 0), z = 5

La solution optimale est $(x_1, x_2, x_3, x_4, x_5) = (3, 2, 2, 0, 0)$ avec z = 5.

Résumé de l'algorithme

- O. On part d'un PL en forme standard
- 1. On trouve une solution non-optimale en un point du polytope associé à notre PL
- Tant qu'on peut, on évolue vers une solution proche qui améliore la fonction objectif. On réitère :
 - a. Déterminer les variables basiques (non-nulles dans la solution courante)
 - Écrire le tableau de simplexe qui exprime les variables basiques et la fonction objectif z en fonction des variables non-basiques
 - c. Trouver une variable non-basique à augmenter pour augmenter z : c'est le pivot
 - d. Si aucun pivot n'existe (on ne peut plus augmenter z), on a trouvé la solution optimale! STOP
 - e. Sinon, l'augmenter au maximum possible en fonction des contraintes de type $x_i \ge 0$ avec x_i les variables basiques (s'il n'y a pas de restriction sur le pivot, le PL est non borné : STOP)
 - f. Calculer les nouvelles valeurs des variables : on obtient une nouvelle solution.

• Trouver la solution initiale n'est pas forcément facile!

• Trouver la solution initiale n'est pas forcément facile!

maximiser: $x_1 - x_2 + x_3$ tel que: $2x_1 - x_2 + 2x_3 \le 4$ $2x_1 - 3x_2 + x_3 \le -5$ $-x_1 + x_2 - 2x_3 \le -1$

• Trouver la solution initiale n'est pas forcément facile!

maximiser:
$$x_1 - x_2 + x_3$$

tel que: $2x_1 - x_2 + 2x_3 \le 4$
 $2x_1 - 3x_2 + x_3 \le -5$
 $-x_1 + x_2 - 2x_3 \le -1$
 $x_1, x_2, x_3 \ge 0$ $(0, 0, 0)$ n'est pas une solution!

• Trouver la solution initiale n'est pas forcément facile!

maximiser:
$$x_1 - x_2 + x_3$$

tel que: $2x_1 - x_2 + 2x_3 \le 4$
 $2x_1 - 3x_2 + x_3 \le -5$
 $-x_1 + x_2 - 2x_3 \le -1$

 $x_1, x_2, x_3 \ge 0$

(0, 0, 0) n'est pas une solution!

PL auxiliaire:

maximiser : $-x_0$

tel que : $2x_1 - x_2 + 2x_3 - x_0 \le 4$ $2x_1 - 3x_2 + x_3 - x_0 \le -5$

 $-x_1 + x_2 - 2x_3 - x_0 \le -1$

 $x_1, x_2, x_3 \ge 0$

• Trouver la solution initiale n'est pas forcément facile!

maximiser:
$$x_1 - x_2 + x_3$$
 ≤ 4 $2x_1 - 3x_2 + x_3 \leq -5$ $-x_1 + x_2 - 2x_3 \leq -1$ $x_1, x_2, x_3 \geq 0$
$$(0, 0, 0) \text{ n'est pas une solution !}$$
 PL auxiliaire:
$$\max \text{imiser: } -x_0 \\ \text{tel que: } 2x_1 - x_2 + 2x_3 - x_0 \leq 4 \\ 2x_1 - 3x_2 + x_3 - x_0 \leq -5 \\ -x_1 + x_2 - 2x_3 - x_0 \leq -1$$

On a la solution (5, 0, 0, 0)

• Trouver la solution initiale n'est pas forcément facile!

maximiser:
$$x_1 - x_2 + x_3$$

tel que: $2x_1 - x_2 + 2x_3 \le 4$
 $2x_1 - 3x_2 + x_3 \le -5$
 $-x_1 + x_2 - 2x_3 \le -1$

 $x_1,x_2,x_3\geq 0$

(0, 0, 0) n'est pas une solution!

PL auxiliaire:

maximiser : $-x_0$

tel que :
$$2x_1 - x_2 + 2x_3 - x_0 \le 4$$

 $2x_1 - 3x_2 + x_3 - x_0 \le -5$
 $-x_1 + x_2 - 2x_3 - x_0 \le -1$

 $x_1, x_2, x_3 \ge 0$

On a la solution (5, 0, 0, 0)

Proposition

Le PL originel a une solution si et seulement si le PL auxiliaire a une solution optimale (avec $x_0=0$).

• Il faut éviter de boucler en cours de route

• Il faut éviter de boucler en cours de route

On a parfois le choix entre plusieurs pivots. Il faut une règle pour les départager.

• Il faut éviter de boucler en cours de route

On a parfois le choix entre plusieurs pivots. Il faut une règle pour les départager.

Hélas, la plupart des règles peuvent créer des cycles sans fin!

 \rightarrow L'algo ne termine pas...

• Il faut éviter de boucler en cours de route

On a parfois le choix entre plusieurs pivots. Il faut une règle pour les départager.

Hélas, la plupart des règles peuvent créer des cycles sans fin!

ightarrow L'algo ne termine pas...

Robert G. Bland

Théorème (Bland, 1977)

Si on choisit toujours comme pivot et comme variable sortante (si plusieurs choix possible) la variable avec le plus petit indice, on ne boucle pas.

Pourquoi le nom "simplexe"?

Un simplexe dans un espace à n dimensions, c'est le polytope le plus simple dans cet espace.

→ En 2D : triangle, en 3D : tétrahèdre, etc.

Pourquoi le nom "simplexe"?

Un simplexe dans un espace à n dimensions, c'est le polytope le plus simple dans cet espace.

→ En 2D : triangle, en 3D : tétrahèdre, etc.

Interprétation géométrique de l'algorithme :

On est dans un espace à n dimensions, avec m variables basiques et n-m variables non-basiques.

Pourquoi le nom "simplexe"?

Un simplexe dans un espace à n dimensions, c'est le polytope le plus simple dans cet espace.

→ En 2D : triangle, en 3D : tétrahèdre, etc.

Interprétation géométrique de l'algorithme :

On est dans un espace à n dimensions, avec m variables basiques et n-m variables non-basiques.

Les m variables basiques forment un simplexe en m dimensions.

Quand on pivote en changeant les valeurs de certaines variables, on trouve un nouveau simplexe en m dimensions.

Un mot sur la complexité de l'algo

En pratique, l'algo du simplexe est rapide : la plupart du temps, $\approx 3m$ étapes de pivot (pour m contraintes) suffisent.

MAIS il existe des cas pathologiques (construits par Klee et Minty en 1973) avec environ 2^m étapes de pivot : on doit visiter tous les sommets du polytope...

Le cube de Klee et Minty

Victor L. Klee

George Minty

Il existe maintenant des algorithmes plus rapides, mais plus compliqués :

→ exemple : la méthode des points intérieurs

