Bayesian statistics 3/4

Hypothesis testing

Oussama Abdoun (MEng, PhD) – oussama.abdoun@pm.me

Posterior-based hypothesis testing

The central role of the posterior distribution

In Bayesian statistics, all results are derived from the posterior distribution

Numerical simulation of the posterior: MCMC

Convergence of the Markov chain distribution towards the posterior distribution - - - True posterior distribution

When prior distributions are **not conjugate distributions** of the likelihood, we don't have an explicit expression of the posterior distribution anymore and we need to calculate it **numerically**. We use **Markov chain Monte Carlo** (MCMC) techniques, a family of algorithms sharing the same basic procedure:

- **1.** A **Markov chain** (= random process where each sample depends probabilistically on the previous one) is created such that it, *in the long run*, its distribution converges towards the true posterior distribution.
- **2.** A large number of **samples** (several to tens of thousands) are generated **iteratively** from the Markov chain.
- **3.** Initial samples (typically 1000) are considered as not converged yet and rejected ("warm up" phase); the rest of the samples is used as an approximation of the posterior distribution.

Point and interval estimates

point estimates

mean, median, mode/MAP

point_estimate()

credible intervals

HDI, (ETI)

hdi()

Credible intervals & numerical simulations

The more samples in the posterior distribution, the more stable the credible interval

Credible interval: 95% or 90%?

Compared to the 95%, the 90% credible interval is...

- + more stable to numerical errors
- less conservative
- → Use 95% if there are more than10.000 samples of the posterior distribution

In bayestestR, the default is **89%** (!) to highlight the arbitrariness of the confidence level.

Frequentist vs. Bayesian statistics

Frequentist

Bayesian

Degree of belief / certainty

Definition of probability

Long-run frequency of events

View on model parameters

True value: unknown
Estimate: fixed

True value: unknown *Estimate:* probabilistic

Method of estimation

From the data only

From the posterior (data + prior)

Uncertainty interval

"Confidence intervals"
Confidence level (e.g. 95%) is a property
of the procedure, not of the interval

"Credibility intervals"
Confidence level (e.g. 95%) is a measure
of the uncertainty around the estimate

Can we test a hypothesis on a parameter from its posterior distribution?

Hypothesis testing based on the posterior Exact/point/precise hypothesis

The **credible interval** defines a whole range of exact hypotheses that can be rejected with high confidence.

$$p\left(\theta_{low} \le \theta \le \theta_{high}\right) = .95$$

$$\Leftrightarrow p\left(\theta \notin [\theta_{low}, \theta_{high}]\right) = .05$$

$$\Longrightarrow p\left(\theta = \theta_{0}\right) < .05$$

Note: this is very different from the frequentist p-value which is $p(==y_{obs} \mid \theta = \theta_0)$

However, it does not allow to **accept** an exact hypothesis, only to reject it (at best).

Hypothesis testing based on the posterior Exact/point/precise hypothesis

For a continuous parameter, the **absolute probability** of an exact hypothesis, $p(H_0:\theta=\theta_0)$ is meaningless. That's why probability values are called **densities**.

But we could compare the probability of the null hypothesis with the probability of the most likely value (the MAP): $p(\theta = \theta_0)/p(\theta = \theta_{MAP})$

Limitations:

- ignores most of the information contained in the posterior distribution
- can not provide evidence for the null: at best, θ_0 is the MAP and p = 1

Strengths:

- no need for hypothesis-specific priors (unlike BF)
- no Jeffreys-Lindley-Bartlett paradox (unlike BF)

p_pointnull() in bayestestR

Hypothesis testing based on the posterior Range hypothesis

Arguments against point hypotheses

- the null hypothesis can always be rejected: trivial deviations due to measurement bias, sampling error and other uncontrolled factors will come out as statistically significant given sufficiently large sample sizes (Meehl 1978, Cohen 1994)
- rejecting the exact null hyothesis (the frequentist NHST approach) is a weak form of theory testing
- theories rarely make exact hypotheses (except when they specify a complete and detailed mechanism,
 e.g. physical equation).

Alternative: use a **range hypothesis** as a more powerful statement. Two possibilities:

- test a direction hypothesis
- test a null range, also called the region of practical equivalence (ROPE), that encodes negligible effects

Range hypotheses can be rejected, accepted or neither (no conclusion).

p_rope()
in bayestestR

2.

Bayes Factors

Hypotheses as generative models

Different **hypotheses can be encoded as distinct models making specific predictions** for the data. Here, a model = statistical model + prior distribution for the parameters θ . Examples for a binary outcome experiment (coin toss, medical treatment, test accuracy, etc.):

Bayes Factor

As a (marginal) likelihood ratio

Testing the likelihood of isolated hypotheses is of little interest. We are usually interested in how *competing* hypotheses are *differentially* supported by data.

Definition: the **Bayes Factor** is the ratio of the likelihoods of two statistical models, integrated over the prior probabilities of their parameters ("marginal likelihood"):

$$BF_{ij} = \frac{p(y|M_i)}{p(y|M_j)} =$$

Interpretation: "Model M_i predicts the data BF_{ij} times better than M_j "

If M_0 is a **null hypothesis**, then:

$$BF_{i0} = \frac{p(y|M_i)}{p(y|M_0)} = \frac{\int p(y|\theta_i)p(\theta_i)d\theta_i}{p(y|\theta_0)}$$

Compare with the **likelihood ratio test**:

$$LR = \frac{p(y|\theta_{MLE})}{p(y|\theta_0)}$$

Bayes Factor

As relative belief updating

Applying the Bayes theorem:

$$BF_{10} = \frac{p(y|M_1)}{p(y|M_0)} = \frac{\frac{p(M_1|y)}{p(M_1)}}{\frac{p(M_0|y)}{p(M_0)}}$$

= belief updating of model M_1

= belief updating of model M_0

Thus, the Bayes factor is...

- ...a continuous measure of evidence
- ...a predictive updating factor
- ...independent of models' prior probability
- ...equal to the posterior model odds if models are equally probable *a priori*

Which we can rewrite:

$$\frac{p(M_1|y)}{p(M_0|y)} = BF_{10} \times \frac{p(M_1)}{p(M_0)}$$

posterior likelihood prior model odds ratio model odds

Initially, I believed M_1 was \bigcirc times more likely than M_0 . After seeing the new data, which is \bigcirc times better predicted by M_1 than M_0 , I now believe M_1 is \bigcirc times more likely than M_0 . Therefore, my prior belief ratio has changed by a factor \bigcirc

Bayes Factor for range hypotheses

The calculation of the BF is straightforward when the competing models are non-overlapping, complementary intervals from the same distribution

Bayes Factor for range hypotheses

Bayes Factor for range hypotheses

Probability of direction

bf_params() in bayestestR

Bayes Factor for exact hypotheses Savage-Dickey density ratio

Let H_0 be an exact null hypothesis $(H_0: \theta = \theta_0)$ and H_1 the complementary hypothesis $(H_1: \theta \neq \theta_0)$. Then:

$$BF_{01} = \frac{p(\theta = \theta_0|y)}{p(\theta = \theta_0)}$$

This special case of the Bayes Factor is called the **Savage-Dickey density ratio**.

bf_params()
in bayestestR

Bayes Factor for exact hypotheses Support interval

Which values of the parameter are best supported by data?

Support interval = all values for which the Savage-Dickey density ratio is above a certain threshold (here, 10).

si() in bayestestR

Bayes Factor Measure of evidence

Conventional interpretation of Bayes factor values (Kass & Raftery 1995)

BF	log ₁₀ BF	Strength of evidence
1 to 3	0 to 1/2	Barely worth mentioning
3 to 10	1/2 to 1	Substantial
10 to 100	1 to 2	Strong
> 100	> 2	Decisive

Don't replace the p-value dichotomous ritual by a BF multichotomous ritual!!

Bayes Factor

Application to the two-sample location test

Approach implemented in **BayesFactor** and **JASP**:

- parametrize the model in terms of the standardized effect size (~ Cohen's d): $\delta = {}^{\mu}/_{\sigma}$
- prior = Cauchy distribution with scale r (~ variance)
- ⇒ fatter tails than the normal distribution

ttestBF() in the
BayesFactor package

Rouder, Speckman, Sun, Morey & Iverson (2009). *Bayesian t tests for accepting and rejecting the null hypothesis*. Psychonomic Bulletin & Review doi.org/10.3758/PBR.16.2.225

Bayes Factor

Application to the two-sample location test

(a) One-sided analysis for testing: $H_+: \delta > 0$

(b) Two-sided analysis for estimation: $\mathcal{H}_1: \delta \sim \text{Cauchy}$

Bayes Factor Application to the ANOVA

Guinea pigs are assigned to one of two treatments (vitamin C or orange juice) in one of three doses. The effect on tooth growth is measured.

or

Bayes Factor Application to the ANOVA

New challenges:

- multiple variables ⇒ multiple parameters
- a single variable (here, *dose*) can be encoded with **2** parameters

Solution implemented in *BayesFactor* and *JASP* = **comparison between nested models** e.g. with (M_2) and without (M_1) the interaction

$$BF_{21} = \frac{p(y|M_2)}{p(y|M_1)}$$

BF apply not only to models with different priors, but also to models with different structures!

Bayes Factor Comparing multiple models

Transitivity

Imagine we have k models to compare: M_1 , M_2 , ..., M_k

To compare them, we don't need to calculate all pairwise *BF*. Thanks to the **transitivity** of Bayes Factors, we only need *BF*,**transitivity**

$$BF_{32} = \frac{p(M_3|y)}{p(M_2|y)} = \frac{p(M_3|y)}{p(M_1|y)} \times \frac{p(M_1|y)}{p(M_2|y)} = \frac{BF_{31}}{BF_{21}}$$

Posterior model probability

Using the definition of Bayes factors and the Bayes law, we can show that:

$$p\left(M_{i}|y\right) = \frac{BF_{i1}.p(M_{i})}{\sum_{j=0}^{k}BF_{j1}\times p(M_{j})}$$
 which can be simplified, **when the prior** distribution is uniform over the model space:
$$p\left(M_{i}|y\right) = \frac{BF_{i1}}{\sum_{j=0}^{k}BF_{j1}}$$

Bayes Factor

Application to multiple regression

Suppose we study a phenomenon for which we have several candidate predictors. For example, the concentration of a pollutant in the air might depend on temperature, humidity and/or wind:

conc ~ temp, humid, wind

Instead, we can try all possible models, with any combination of the 3 predictors. Each can be included or not, so there are $2^3 = 8$ possible models:

null		1 predictor		2 predictors		3 predictors	
~ 1	M_0	~ temp	M_1	~ temp, humid	M_4	~ temp, humid, wind	M_7
		~ humid	M_2	~ temp, wind	M_5		
		~ wind	M_3	~ humid, wind	M_6		

Bayesian Model Averaging (BMA)

Application to multiple regression

Now we can calculate the posterior probability of including **temp** as a predictor by summing up the posterior probabilities of the models where it shows up:

$$p(incl_{temp}|y) = p(M_1|y) + p(M_4|y) + p(M_5|y) + p(M_7|y)$$

We can run a similar calculation for the *prior* probability of including **temp** as a predictor and derive a **Bayes factor of inclusion**: $BF_{incl} = p(incl_{temp}|y) / p(incl_{temp})$

The **estimation** of the effect of a specific predictor (e.g. temperature **temp**) depends on the model considered. Instead of relying on a single model, we average on all models that include **temp** as a predictor, weighted by their respective posterior model probabilities to obtain a **weighted posterior distribution** of the regression coefficient for **temp**.

null 1 pr		1 predic	tor	2 predictors		3 predictors	
~ 1	M_0	~ temp	M_1	~ temp, humid	M_4	~ temp, humid, wind	M_7
		~ humid	M_2	~ temp, wind	M_5		
		~ wind	M_3	~ humid, wind	M_6		

$$\begin{split} p(\beta_{temp}|y) &= p(\beta_{temp} \ M_1) \times p(M_1|y) + \\ & \dots + \\ p(\beta_{temp}|y,M_7) \times p(M_7|y) \end{split}$$

The many ways of Bayesian hypothesis testing

Software & package ecosystem

Frequentist vs. Bayesian statistics

	Frequentist	Bayesian		
Definition of probability	Long-run frequency of events	Degree of belief / certainty		
View on model parameters	Fixed	Probabilistic		
Point estimates	Derived from the sample	Derived from the posterior distribution		
Interval estimates	Confidence interval; confidence level is a property of the procedure, not of the intervals themselves	Credibility intervals ; confidence level is a statement about the uncertainty of the model parameters		
Hypothesis testing	Point hypotheses only Can only reject a hypothesis	Point and range hypotheses Can select the best one among multiple		
Limitations	Interpretability Usefulness	Time consuming (prior + computation) Lack of standards, rapid evolution		