Sistemi informativi aziendali ERP e sistemi di data analysis

Data mining

Maurizio Pighin, Anna Marzona

Uso dei Data Warehouse

- Esistono tre tipi di applicazioni front-end per data warehouse
 - Analisi statica (reporting)
 - elaborazione di situazioni aziendali da lanciare con elevata periodicità, con modalità invarianti nel tempo
 - riflette informazione di base
 - Analisi interattiva (OLAP)
 - analisi interattiva basata su ipotesi
 - supporta operazioni OLAP di base: slice-dice, drill up-down, pivot
 - Data mining
 - fa emergere nuova conoscenza rilevando pattern nascosti
 - supporta modelli descrittivi e predittivi

Limiti dei sistemi di analisi OLAP

- Le informazioni non sono facilmente identificabili
 - Quantità elevata dei dati
 - Complessità elevata delle relazioni esistenti tra i dati
- In assenza di strumenti adeguati i dati raccolti corrono il rischio di restare sotto-utilizzati
 - Il sistema è ricco di dati, ma povero di informazioni
- Gli strumenti OLAP non sono sufficienti
 - Operano a supporto di processi deduttivi dei decisori
 - Sviluppano percorsi di analisi da ipotesi formulate dall'utente, limitate dal suo bagaglio cognitivo

Tipi di inferenza

Deductive, Inductive, and Abductive Syllogisms

Deductive	Inductive	Abductive
All men are mortal;	Socrates is a man;	All men are mortal;
Socrates is a man;	Socrates is mortal;	Socrates is mortal;
Socrates is mortal.	:. All men are mortal.	Socrates is a man.

Adapted from: Hui, J., Cashman, T. and T. Deacon. 2008. Bateson's Method: Double Description. What is It? How Does It Work? What Do We Learn? in J. Hoffmeyer (ed.) A Legacy for Living Systems: Gregory Bateson As Precursor to Biosemiotics.

Data mining

- Attività volta a riconoscere ed estrarre automaticamente informazione da basi di dati di grandi dimensioni
- Passi del processo di mining
 - Pulizia
 - Integrazione
 - Selezione
 - Trasformazione
 - Data mining
 - Valutazione dei pattern
 - Presentazione della conoscenza
- Le prime fasi coincidono con quelle popolamento dei sistemi di data warehousing
- In ambito aziendale il data mining può essere considerato
 - Ampliamento del sistema di data warehousing
 - Complemento dei sistemi OLAP di analisi dei dati

Da OLAP a OLAM (On Line Analytical Mining)

- Partire dai Data warehouse garantisce l'accesso a dati ben strutturati, puliti, completi
- Il processo di mining non può essere completamente automatico
 - I pattern rilevati potrebbero essere troppi e non interessanti
- Il data mining deve essere un processo interattivo
 - Gli utenti indicano la direzione in cui "scavare"
- Lavorare con uno strumento interattivo consente l'affinamento iterativo delle ricerche

Sistemi informativi aziendali ERP e sistemi di data analysis Cap.13 – Data mining Maurizio Pighin, Anna Marzona

Architettura dei sistemi di Data Mining

- Data warehouse
 - E' una base di dati pronta, di elevata qualità e multidimensionale
 - I dati da analizzare sono definiti da un'interrogazione OLAP
- Base di conoscenza (Knowledge Base)
 - Insieme di regole e conoscenze 'date per note' utilizzate per guidare la ricerca e per filtrare i risultati sulla base del loro effettivo interesse
- Motore di data mining (Data Mining Engine)
 - Insieme delle funzioni di analisi dei dati
- Sistema di valutazione delle condizioni (Pattern Evaluation)
 - Effettua un postprocessing delle informazioni estratte dal mining (pattern) mantenendo le sole condizioni interessanti
- Sistema di presentazione
 - Interfaccia utente per l'attivazione delle funzioni di mining e la visualizzazione dei pattern

Macro classi del mining

- Le attività di mining possono essere ripartite in due macro classi
 - Mining descrittivo
 - estrae informazioni che descrivono le proprietà generali dei dati
 - Mining predittivo
 - determina regole generali e crea modelli per predire le tendenze nel futuro

I 4 principali tipi di analisi

I 4 principali tipi di analisi

https://lorenzogovoni.com/il-tipo-di-analisi-dei-dati-piu-semplice-analisi-descrittiva/

Funzioni di mining

- I sistemi presenti sul mercato propongono diversi insiemi di funzioni di mining
- Ogni funzione permette di ricercare un certo tipo di informazione o costruire un particolare modello di predizione
- La stessa funzione può essere elaborata tramite algoritmi diversi
- Le funzioni sono riconducibili a cinque tipologie
 - Caratterizzazione e discriminazione
 - Analisi associativa
 - Classificazione e predizione
 - Analisi dei cluster
 - Analisi degli outlier

Caratterizzazione e discriminazione

- Strumenti che permettono di descrivere in modo sintetico ma preciso i dati contenuti nel database
- Operano tramite
 - Generalizzazione
 - classificazione dei dati elementari in gruppi (classi) caratterizzati da attributi comuni
 - opera tramite tecniche OLAP e funzioni di induzione sugli attributi
 - Funzioni di descrizione delle classi
 - caratterizzazione: descrivono le particolarità della classe
 - discriminazione: marcano le differenze tra classe e classe

Sistemi informativi aziendali ERP e sistemi di data analysis Cap.13 – Data mining Maurizio Pighin, Anna Marzona

- Caratterizzazione
 - Descrive le caratteristiche di una classe
 - Calcola misure
 - di tendenza
 - di dispersione
 - Rappresentazione dei dati
 - Tabellare, Grafica, Boxplot
- Discriminazione
 - Permette di rilevare le differenze tra una classe e classi diverse paragonabili tramite il confronto diretto dei dati su tabelle o su grafici

Esempio di boxplot sui dati di una classe

Caratterizzazione e discriminazione

Esempi di rappresentazioni grafiche delle caratteristiche dei dati appartenenti ad una classe

Analisi associativa

- Permette di identificare condizioni che si verificano contemporaneamente con elevata frequenza
- Rileva pattern che si ripetono su determinati attributi e ne deriva regole di implicazione del tipo

$$A \Rightarrow B$$

- Esempi
 - compra(X, "divano 2 posti") ⇒ compra (X, "poltrona")
 - fatturato (X, "> 100M") ∧ struttura(X, "Spa") ⇒ compra(X, "Jaguar")
- Applicazioni
 - market basket analysis
 - profili clienti (abitudini di acquisto)
 - ottimizzazione delle manutenzioni
 - **—** ...

Significatività delle associazioni

- Viene valutata in base a
 - Confidenza: misura la certezza del pattern
 - Supporto: misura la frequenza con cui il pattern è presente sulla base di dati
 - Esempio

```
Compra(X, "divano 2 posti") \Rightarrow Compra (X, "poltrona") [c.85%;s.30%]
```

- L'85% di tutti coloro che comprano un divano 2 posti compra anche una poltrona
- Nel 30% delle vendite il cliente ha comprato sia un divano a due posti che una poltrona

Classificazione e predizione

- Costruzione di modelli per
 - Predire gli eventi futuri
 - Stimare il valore di elementi non noti
- Classificazione
 - Definizione di criteri che permettono di assegnare un soggetto ad una classe
- Predizione
 - Calcolo di funzioni di tendenza continue tramite
 l'interpolazione dei dati noti

Classificazione e predizione

- Costruzione "basata su esempi"
 - Il modello deriva da un sottoinsieme significativo dei dati esistenti
 - L'efficacia viene testata su un sottoinsieme diverso (disgiunto) dei dati
 - Se il modello si rivela efficace può essere usato come 'predittore'
- Applicazioni
 - Propensione all'acquisto dei clienti
 - Qualità dei fornitori
 - Affidabilità dei prodotti

— ...

Classificazione

- Permette di indicare l'appartenenza di un elemento ad una certa classe
- Diversi tipi di modelli
 - Funzioni matematiche
 - Analisi statistiche
 - Regole associative
 - Alberi di decisione
 - Reti della verità bayesiane
 - Reti neurali

Alberi di decisione

 Struttura di classificazione basata sulla valutazione di condizioni del tipo if-then-else

- Nodi interni
 - Attributi del soggetto da classificare
- Archi in uscita
 - Etichettati con i valori che l'attributo può assumere
- Nodi foglia
 - Classi
- La classificazione avviene seguendo un percorso guidato dai valori assunti dagli attributi dell'elemento da classificare

Esempio di albero di decisione

Predizione

- Permette di identificare valori non noti di elementi il cui dominio è continuo
- Costruzione delle funzioni di tendenza tramite interpolazione sui punti noti (regressione)
- Diversi modelli di regressione
 - Lineare semplice (distribuzioni bivariate)

•
$$Y = q + m X$$

Multilineare (distribuzioni multivariate)

•
$$Y = q + m_1 X_1 + m_2 X_2 + m_3 X_3$$

- Non-lineare (polinomiale, esponenziale, logaritmica, ...)
 - Y = q + m_1X + m_2X^2 + m_3X^3 (polinomiale di grado 3)

Predizione

Confronto tra regressione lineare e polinomiale di terzo grado sugli stessi punti

Clustering

- Ripartisce gli elementi in classi anonime sulla base delle affinità rilevate tramite l'osservazione dei dati
 - Classi non definite a priori
 - Classi proposte all'utente come "agglomerati spontanei" di dati
 - Dall'analisi dei cluster l'utente può derivare informazioni e nuovi criteri su cui costruire modelli di classificazione
- I cluster presentano
 - La massima similarità tra gli elementi appartenenti ad una classe
 - La minima similarità tra gli elementi appartenenti classi diverse

Clustering

- I metodi di clustering si fondano su diverse tecniche
 - Partizionamento
 - l'utente indica in quante classi ripartire i dati
 - l'algoritmo ripartisce gli elementi nel numero di classi indicato sulla base delle reciproche distanze
 - Classificazione gerarchica
 - Basata su aggregazione: costruisce le classi aggregando iterativamente gli elementi sulla base delle similitudini
 - Basata su divisione: ripartisce iterativamente l'insieme dei dati in sottoinsiemi di elementi simili
 - Valutazione della densità
 - i cluster sono identificati dalle zone topologicamente dense.

Clustering

Esempio di clustering con partizionamento su 7 classi

Ricerca degli outlier

- Outlier: eccezione, elemento fuori range
- La ricerca
 - Si basa sugli stessi principi del clustering
 - Concentra gli sforzi sull'identificazione degli elementi che si discostano maggiormente dagli altri
- Metodi per la ricerca degli outlier
 - Statistici
 - applicabili se sui dati è identificabile una distribuzione
 - Basati sulla distanza
 - ricercano gli elementi che massimizzano la distanza dai restanti elementi del set di analisi
 - Basati sulla deviazione
 - identificano gli outlier come elementi che 'deviano' dalle caratteristiche tendenziali del gruppo

Processo di mining dei dati

- L'utente effettua iterativamente interrogazioni di mining sul sistema
- Ogni analisi di mining dei dati si basa su
 - Insieme dei dati di analisi
 - query multidimensionale e condizioni di filtro
 - Tipo di informazioni da ricercare
 - funzione di mining che verrà attivata
 - Misure di interesse
 - criteri di interesse dei pattern
 - Modalità di presentazione dei pattern

Misure di interesse dei pattern

- Il mining può restituire insiemi molto numerosi di pattern
- E' necessario un passo di post-processing che permetta di identificare i pattern interessanti
- Caratteristiche che rendono un pattern interessante
 - Novità
 - riduzione tramite l'omissione di informazioni ridondanti
 - Semplicità
 - riduzione tramite valori di soglia (ad esempio sulla lunghezza delle regole associative, sul numero di livelli negli alberi di decisione)
 - Certezza
 - riduzione tramite valori di soglia (ad esempio su confidenza e supporto nell'analisi associativa)
 - Utilità
 - riduzione tramite valori di soglia (ad esempio, sul numero di elementi appartenenti ad un cluster)