Stylometry with R

Part 3. Distance and uncertainty

Joanna Byszuk, Artjoms Šeļa and Maciej Eder

1. Quick intro to Burrows' Delta

"Wealth of variables, many of which may be weak discriminators, almost always offer more tenable results than a smaller number of strong ones. [...] At all events, a distinctive 'stylistic signature' is usually made up of many tiny strokes."

$$\Delta = \sum_{i=1}^{n} \frac{|z(x_i) - z(y_i)|}{n}$$

John Burrows (1928-2019)

 \triangle (T1.T2)=[6.15.10]

Manhattan, or city-block distance!
But also reinvented by Burrows
(with important adjustment)

$$\triangle$$
 (T1.T2)= 7+15+8= 30

Petr Plecháč: https://versologie.cz/talks/2017chicago/ (a) Macy's 8th Ave AKC I ry 😙 M W 34th St E 38th St W30th St Pennsylvania Station E37th St Marquee New York W 29th St 34 St - Herald Sq M Chelsea Park W33rdSt ZARA 😩 W30th St The Morgan Library & Museum Marks-Gallery Stewart 😜 E 35th St W 29th St Empire State Building W 26th St Fashion E W S2th St W 30th St Nordstrom Rack Institute of Technology 6 W 27th St allery 28 St M Moxy NYC Chelsea Brooklyn Bagel & Coffee Company Arlo NoMad 33 St M buybuy BABY W 26th St W 24th St 5 W 22nd St Baby 23rd StM W27st St WarthSt E E 28th St # W 22nd St Dover Street A W 19th St W21st St Poster House National Museum 🔝 W 22nd Street ₩ of Mathematics 28 St M E 26th St Eataly NYC Flatiron WIZHSI & E28th St Madison W 18th St N 17th St The Home Depot Square Park Slate ogle My Maps Flatiron Building Jack's Wife Baruch E27

Petr Plecháč: https://versologie.cz/talks/2017chicago/

Petr Plecháč: https://versologie.cz/talks/2017chicago/

Manhattan, or city-block distance!
But also reinvented by Burrows
(with important adjustment)

$$\triangle$$
 (T1.T2)= 7+15+8= 30

DISTANCE MATRIX

	Ti	Т2	тз
T1	O		
Т2	0.3	0	
тз	0.7	0.9	0

DISTANCE MATRIX

	Ti	Т2	тз
Τi	Ō		
Т2	0.3	0	
тз	0.7	0.9	0

DISTANCE MATRIX

Sample:

p = 0.66

Sample:

p = 0.66

Sample:

p = 0.66

Resample 1:

Resample 2: **A** 0.66

Sample:

p = 0.66

Resample 1:

Resample 2: **A** 0.66

Resample 3: **A A A B A O**.33

Sample:

p = 0.66

Resample 1:

Resample 2: **A** 0.66

Resample 3: **A A A O**.33

Resample 4:

Sample:

p = 0.66

3. Estimating uncertainty in text similarity

- (Bootstrap) consensus trees (Eder 2013)
- (Bootstrap) consensus networks (Eder 2017)
- General Impostors (Kestemont et al. 2016)

Feature set 1

Feature set 1

Feature set 2

Feature set 1

Feature set 2

Feature set 3

Feature set 1

Feature set 2

0.0

Feature set 3

Feature set 4

4. Majority rule (>50% of branches)

Feature set 1

Feature set 2

Feature set 3

Feature set 4

Using stylo() out of the box you can "bootstrap":

- MFW length
- Culling strength
- Text themselves (take samples from texts)

5. Consensus trees

Using stylo() out of the box you can "bootstrap":

- MFW length
- Culling strength
- Text themselves (take samples from texts)

. . . .

But the possibilities are limitless

5. Consensus trees

1. Look at the neighbours!

5. Consensus trees

- 1. Look at the neighbours!
- 2. Then look at the neighbours many times!

- Try using stylo.network() (alpha version!)
- Or brave the depths of Gephi
- Or work with networks from R!
 - Best tutorial I know:
 - https://kateto.net/network-visualization

Α

Α

Random samples Random features Random imposters

Random samples
Random features
Random imposters

Random samples
Random features
Random imposters

7. Cross-validation: estimating the distribution of prepredictions

