인공지능/머신러닝 기초

Module 1: 인공지능 Overview

인공지능/머신러닝 기초

☞ 교육 기간

2월 7일 ~ 3월 11일 (4주)

△ 선생님

김수인 선생님

▶ 라이브 수업

수요일 21:00 ~ 22:30

수강 대상

인공지능/머신러닝의 실체가 궁금한 개발자

인공지능/머신러닝을 본격적으로 공부 하기 위한 **입문과정**을 찾는 분

파이썬 기본 문법을 아는 누구나

선생님 소개

김수인 선생님 http://suin.kim/

(현)

- 엘리스 Research Lead
- KAIST 전산학부 박사과정

(전)

- Research Assistant, **Qatar Computing Research Institute**
- Research Intern, Microsoft Research Asia
- SWE, Google Korea

수업방식

필수 학습

수업 1주 전

교육 자료·녹화 영상 ·프로젝트 문제 공개

라이브 코딩

수업 당일

라이브 코딩으로 프로젝트 문제 풀이, 실시간 Q&A

다시 보기·헬프 센터

수업 후

다시 보기 영상, 헬프 센터 항시 오픈

주차별 커리큘럼

1 이 기초 선형대수학 및 인공지능/머신러닝 개요

인공지능/머신러닝의 기본 개념과 앞으로 진행할 수업의 기본이 되는 기초 선형대수학, NumPy 라이브러리에 대해 다룹니다.

2 ○ 선형회귀법

관찰한 데이터를 기반으로 새로운 데이터에 대한 예측을 진행할 수 있는 선형회귀법 (Linear Regression) 에 대해 배웁니다.

주차별 커리큘럼

3

확률론 및 나이브베이즈 분류기

동전 던지기 시뮬레이터, 인공지능 암 진단, Bag of Words를 구현하며 확률론과 나이브베이즈 분류법을 공부합니다.

4 O

군집화 알고리즘 및 챌린지! 데이터 사이언스 프로젝트

군집화 알고리즘의 대표적인 예인 K-means 알고리즘을 이용해 데이터를 최적화합니다. 마지막으로 지금까지 배운 인공지능 알고리즘을 이용해 엘리스 데이터 사이언스 챌린지 문제를 처음부터 끝까지 풀어봅니다.

4주 뒤

AI/ML 기본 개념을 이해하게 됩니다.

코드에 AI/ML 원리를 적용할 수 있습니다.

엘리스 데이터 챌린지에 도전할 수 있습니다.

인공지능/머신러닝 개론

Data Science

데이터 중심의 과학

데이터에서 지식과 통찰력을 발견하는 과학적인 방법론

통계학

패턴 인식

머신 러닝

Data Science Process

Early Data Science

19세기 중반 영국 런던

콜레라 발병

기존의 가설:

- Miasma라는 독이 공기를 통해 전파

John Snow:

- "콜레라는 왜 그리고 어떻게 전파되는가?"

Early Data Science

"지도에 발병자를 표시해 보자"

Early Data Science

콜레라로 인한 사망자는 한 펌프를 기준으로 퍼짐 다른 펌프를 이용한 사용자는 사망하지 않음 "콜레라를 옮기는 매개체는 공기가 아니라 물이다"

머신러닝

명시적으로 프로그래밍을 하지 않고도 컴퓨터가 **학습할 수 있는 능력**을 갖게 하는 것

데이터 마이닝

Feature 학습

추천

왜 머신 러닝이 필요한가?

명시적으로 프로그래밍을 하지 않고도 컴퓨터가 학습할 수 있는 능력을 갖게 하는 것

여러분은 페이스북의 데이터 사이언티스트로서 매일 발생하는 상태와 댓글을 분석하고자 한다.

왜 머신 러닝이 필요한가?

명시적으로 프로그래밍을 하지 않고도 컴퓨터가 <mark>학습할 수 있는 능력</mark>을 갖게 하는 것

여러분은 페이스북의 데이터 사이언티스트로서 매일 발생하는 상태와 댓글을 분석하고자 한다.

• •

한달 평균 18억 명의 active user 하루 평균 3억 건의 사진 1분 평균 51만 건의 댓글과 30만 건의 상태 업로드

그럼 어떤 걸 할수 있죠?

Regression Classification Clustering

100명의 일반인을 대상으로 BMI와 체지방률을 측정했다.

BMI 25인 사람의 체지방률을 예상할 수 있는가?

직선을 하나 그려 보자. 이 직선은 어떻게 그릴까? 약 30%로 예측하면 적절할까?

직선 말고 조금 더 제대로 할 수는 없을까?

2차곡선: 35%?

회귀분석:

결과값을 가장 잘 예측하는 방법을 찾는다.

Regression Classification Clustering

분류 문제는 새로운 데이터가 어떤 클래스(class)에 해당할지 판단하는 문제

분류(Classification)

이상적인 값을 가지는 산출값 (0 또는 1)

과일의 종류가 여러가지라면, 산출값이 여러가지일 수 있다.

예) O: 사과, 1: 오렌지, 2: 멜론, 3: 수박

이 중량을 가진 과일은 사과일까, 오렌지일까? 이것이 사과일 확률과 오렌지일 확률은 각각 얼마인가?

이 중량을 가진 과일은 사과일까, 오렌지일까? $P(\mathbf{S렌지}) = 0.2, \quad P(\mathbf{사과}) = 1 - 0.2 = 0.8$

데이터는 여러 개의 차원을 가질 수 있다.

Regression Classification Clustering

비지도학습

이런 데이터가 있다.

무엇을 할 수 있나?

x1

비지도학습

데이터에 대한 정보가 주어지지 않는다

→ 비슷한 것들끼리 **묶어낸다**

x1

비지도 학습 - 군집화

뉴스 기사와 같은 텍스트에도 적용할 수 있다

강화학습

어떤 환경 안에서 정의된 **에이전트**가 **현재의 상태**에서, 선택 가능한 행동들 중 **보상**을 최대화하는 **행동** 혹은 행동 순서를 선택하는 방법

