SalesForecasting using TimeSeries Model

Thomas K John

November 18, 2017

Problem Statement:

Forecasting for next 12 months ie., from Jan 2016 to Dec 2106 using Time series model for the three categories - MenClothing, WomenClothing and OthersClothing.

Preprocessing

Clearing the environment variabes

```
rm(list = ls(all = TRUE))
```

Setting the working directory

```
setwd("I:\\DATA-SCIENCE\\SalesForecasting")
```

Libraries used

```
library(dplyr)

## Warning: package 'dplyr' was built under R version 3.4.1

##

## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

##

## filter, lag

## The following objects are masked from 'package:base':

##

## intersect, setdiff, setequal, union

library(imputeTS)

## Warning: package 'imputeTS' was built under R version 3.4.1

library(forecast)

## Warning: package 'forecast' was built under R version 3.4.1
```

Reading the train and test data

```
sales_data= read.csv("Train.csv")
```

Understanding the dataset with str() and summary()

```
str(sales_data)
## 'data.frame':
                 252 obs. of 4 variables:
## $ Year
                           ## $ Month
                           : int 1112223334 ...
## $ ProductCategory
                           : Factor w/ 3 levels "MenClothing",..: 3 1 2 3 1 2 3 1 2 3 ...
## $ Sales.In.ThousandDollars.: int 1755 524 936 1729 496 859 2256 542 921 2662 ...
summary(sales data)
                                   ProductCategory
##
        Year
                    Month
         :2009
## Min.
                Min.
                     : 1.00
                              MenClothing :84
## 1st Qu.:2010
                1st Qu.: 3.75
                              OtherClothing:84
                Median: 6.50
## Median :2012
                              WomenClothing:84
                       : 6.50
## Mean
         :2012
                Mean
## 3rd Qu.:2014
                3rd Qu.: 9.25
## Max.
         :2015
                Max.
                     :12.00
##
## Sales.In.ThousandDollars.
## Min. : 471
## 1st Qu.: 714
## Median :1136
## Mean
         :1747
## 3rd Qu.:2804
## Max.
         :5874
## NA's
         :13
```

Viewing the first 10 rows

```
head(sales_data)
```

```
Year Month ProductCategory Sales.In.ThousandDollars.
## 1 2009
          1
                 WomenClothing
                                                    1755
## 2 2009
             1
                   MenClothing
                                                     524
## 3 2009
                 OtherClothing
                                                     936
## 4 2009
             2
                WomenClothing
                                                    1729
## 5 2009
             2
                   MenClothing
                                                     496
## 6 2009
                                                     859
             2
                 OtherClothing
```

Converting the date into Date datatype

```
sales_data$Date = paste(sales_data$Year, sales_data$Month,"1", sep ="/")
sales_data$Date= as.Date(sales_data$Date,"%Y/%m/%d")
```

Splitting the data into training and validation

```
train_data=sales_data[which(sales_data$Date <="2014/12/1"),]
validation_data = sales_data[which(sales_data$Date > "2014/12/1"),]
```

Verifying the train and validation

```
summary(train_data)
##
         Year
                       Month
                                        ProductCategory
##
   Min.
          :2009
                   Min. : 1.00
                                   MenClothing :72
##
   1st Qu.:2010
                  1st Qu.: 3.75
                                   OtherClothing:72
  Median:2012
                  Median: 6.50
                                   WomenClothing:72
```

Mean :2012 Mean : 6.50 ## 3rd Qu.:2013 3rd Qu.: 9.25 ## Max. :2014 Max. :12.00

##

Sales.In.ThousandDollars. ## Date Min. : 471.0 :2009-01-01 ## Min. ## 1st Qu.: 710.8 1st Qu.:2010-06-23 ## Median :1080.5 Median :2011-12-16 ## Mean :1702.4 Mean :2011-12-16

3rd Qu.:2750.8 3rd Qu.:2013-06-08 ## Max. :5664.0 Max. :2014-12-01

NA's :12

summary(validation_data)

```
Month
                                       ProductCategory
##
         Year
##
                                  MenClothing :12
  Min.
           :2015
                  Min.
                          : 1.00
   1st Qu.:2015
                  1st Qu.: 3.75
                                   OtherClothing:12
  Median:2015
                  Median: 6.50
##
                                   WomenClothing:12
          :2015
                          : 6.50
##
   Mean
                  Mean
##
   3rd Qu.:2015
                  3rd Qu.: 9.25
##
   Max.
          :2015
                  Max.
                          :12.00
##
##
  Sales.In.ThousandDollars.
                                  Date
## Min.
          : 560
                                     :2015-01-01
## 1st Qu.: 758
                              1st Qu.:2015-03-24
## Median :1300
                             Median :2015-06-16
## Mean
          :2005
                             Mean
                                     :2015-06-16
## 3rd Qu.:3732
                              3rd Qu.:2015-09-08
## Max.
           :5874
                             Max.
                                     :2015-12-01
##
   NA's
           :1
```

Viewing the first and last rows in train and validation data

head(train_data)

```
##
     Year Month ProductCategory Sales.In.ThousandDollars.
                                                                  Date
## 1 2009
                                                      1755 2009-01-01
              1
                  WomenClothing
## 2 2009
              1
                    MenClothing
                                                       524 2009-01-01
## 3 2009
              1
                  OtherClothing
                                                       936 2009-01-01
## 4 2009
              2
                  WomenClothing
                                                      1729 2009-02-01
## 5 2009
              2
                    MenClothing
                                                       496 2009-02-01
## 6 2009
              2
                  OtherClothing
                                                       859 2009-02-01
tail(train_data)
```

```
Year Month ProductCategory Sales.In.ThousandDollars.
                                                   4525 2014-11-01
## 211 2014 11 WomenClothing
## 212 2014 11
                    MenClothing
                                                    803 2014-11-01
## 213 2014 11 OtherClothing
                                                   1468 2014-11-01
## 214 2014 12 WomenClothing
                                                   5664 2014-12-01
## 215 2014 12
                    MenClothing
                                                   1070 2014-12-01
## 216 2014 12 OtherClothing
                                                   1967 2014-12-01
head(validation data)
      Year Month ProductCategory Sales.In.ThousandDollars.
                                                              Date
                  WomenClothing
                                                   3041 2015-01-01
## 217 2015
              1
## 218 2015
               1
                    MenClothing
                                                    560 2015-01-01
## 219 2015
              1
                  OtherClothing
                                                   1190 2015-01-01
## 220 2015
              2 WomenClothing
                                                   3646 2015-02-01
## 221 2015
                    MenClothing
              2
                                                    602 2015-02-01
## 222 2015
                  OtherClothing
                                                   1210 2015-02-01
tail(validation data)
      Year Month ProductCategory Sales.In.ThousandDollars.
##
                                                              Date
                  WomenClothing
## 247 2015 11
                                                    4401 2015-11-01
## 248 2015
             11
                    MenClothing
                                                    643 2015-11-01
## 249 2015 11 OtherClothing
                                                   1478 2015-11-01
## 250 2015 12 WomenClothing
                                                  5874 2015-12-01
## 251 2015
            12
                    MenClothing
                                                    967 2015-12-01
## 252 2015 12 OtherClothing
                                                   1680 2015-12-01
```

Spliting the Train data into three categories: 1. MenClothing, 2. WomenClothing, 3. OthersClothing

```
train_data_men = train_data[which(train_data$ProductCategory == "MenClothing"),]
train_data_women = train_data[which(train_data$ProductCategory == "WomenClothing"),]
train_data_others = train_data[which(train_data$ProductCategory == "OtherClothing"),]
```

Spliting the validation data into three categories: 1. MenClothing, 2. WomenClothing, 3. OthersClothing

```
validation_data_men = validation_data[which(validation_data$ProductCategory == "MenClothing"),]
validation_data_women = validation_data[which(validation_data$ProductCategory == "WomenClothing"),]
validation_data_others = validation_data[which(validation_data$ProductCategory == "OtherClothing"),]
```

Spliting the whole data into three categories: This will be used for the final prediction

```
total_data_men = sales_data[which(sales_data$ProductCategory == "MenClothing"),]
total_data_women = sales_data[which(sales_data$ProductCategory == "WomenClothing"),]
total_data_others = sales_data[which(sales_data$ProductCategory == "OtherClothing"),]
```

Interpolation of the sales data

Interpolation of the Train data with "linear"

```
train_data_men_linear = na.interpolation(train_data_men$Sales.In.ThousandDollars.,option="linear")
train_data_women_linear = na.interpolation(train_data_women$Sales.In.ThousandDollars.,option="linear")
train_data_others_linear = na.interpolation(train_data_others$Sales.In.ThousandDollars.,option="linear")
```

Interpolation of the total data with linear

```
total_data_men_linear = na.interpolation(total_data_men$Sales.In.ThousandDollars.,option="linear")
total_data_women_linear = na.interpolation(total_data_women$Sales.In.ThousandDollars.,option="linear")
total_data_others_linear = na.interpolation(total_data_others$Sales.In.ThousandDollars.,option="linear")
```

Converting the sales price from total data into Timeseries

```
total_data_men_linear_ts = ts(total_data_men_linear, frequency = 12, start = c(2009,1,1))
total_data_women_linear_ts = ts(total_data_women_linear, frequency = 12, start = c(2009,1,1))
total_data_others_linear_ts = ts(total_data_others_linear, frequency = 12, start = c(2009,1,1))
```

Converting the sales price from train data into Timeseries (Without interpolation)

```
train_data_men_ts = ts(train_data_men$Sales.In.ThousandDollars., frequency = 12, start = c(2009,1,1))
train_data_women_ts = ts(train_data_women$Sales.In.ThousandDollars., frequency = 12, start = c(2009,1,1)
train_data_others_ts = ts(train_data_others$Sales.In.ThousandDollars., frequency = 12, start = c(2009,1)
```

Converting the sales price from train data into Timeseries (linear interpolation)

```
train_data_men_linear_ts = ts(train_data_men_linear, frequency = 12, start = c(2009,1,1))
train_data_women_linear_ts = ts(train_data_women_linear, frequency = 12, start = c(2009,1,1))
train_data_others_linear_ts = ts(train_data_others_linear, frequency = 12, start = c(2009,1,1))
```

Plotting the times series of train data

Plotting of the Training data without any imputation of missing values

Plotting sales for Mens Clothing (Without Interpolation)

Plotting sales for Womens Clothing (Without Interpolation)

Plotting sales for Others Clothing (Without Interpolation)

Plotting of the Traing data after interpolation (linear)

Plotting sales for Mens Clothing (With Interpolation)

Plotting sales for Womens Clothing (With Interpolation)

Plotting sales for Others Clothing (With Interpolation)

Decomposing the Train data to check the Trend, Seasonality and Noise

Decomposing the Time Series created with linear imputation

```
train_data_men_spl_decomposed=decompose(train_data_men_linear_ts)
train_data_women_spl_decomposed=decompose(train_data_women_linear_ts)
train_data_others_spl_decomposed=decompose(train_data_others_linear_ts)
par(mfrow=c(1,3))
plot(train_data_men_spl_decomposed,col="blue")
```

Decomposition of additive time series

plot(train_data_women_spl_decomposed,col="#FF1493")

Decomposition of additive time series

plot(train_data_others_spl_decomposed,col="green")

Decomposition of additive time series

Holt-Winters Model

HoltWinters Model for Mens Category

```
hw_men = HoltWinters(train_data_men_linear_ts,alpha = 0.6, beta=TRUE, gamma=TRUE, seasonal = "additive"
hw_men
## Holt-Winters exponential smoothing with trend and additive seasonal component.
## Call:
## HoltWinters(x = train_data_men_linear_ts, alpha = 0.6, beta = TRUE,
                                                                            gamma = TRUE, seasonal = "ad
## Smoothing parameters:
    alpha: 0.6
##
##
    beta : TRUE
    gamma: TRUE
##
## Coefficients:
##
              [,1]
## a
        738.415654
         -0.530101
## b
## s1
       -181.696280
       -166.476048
## s2
## s3
        -78.527038
```

```
48.633098
## s4
## s5
         99.267378
## s6
         13.869755
        -52.977014
## s7
## s8
        -51.988413
## s9
        -44.481638
## s10
         18.797428
         64.054245
## s11
## s12 331.584346
forecast_hw_men = forecast(hw_men, h=12)
hw_acc_men =accuracy(forecast_hw_men,validation_data_men$Sales.In.ThousandDollars.)
hw_acc_men
                                   RMSE
##
                            ME
                                             MAE
                                                        MPE
                                                                 MAPE
                                                                           MASE
                  0.002492418 50.53613 38.22271 -0.3102968 5.771822 0.3812605
## Training set
                -26.891648617 62.65156 45.83660 -3.6575856 6.352519 0.4572069
## Test set
                        ACF1
## Training set -0.04928946
## Test set
                         NA
plot(forecast_hw_men,col="blue", )
```

Forecasts from HoltWinters


```
# Creating the model on the entire dataset and predicting for mens category
hw_men_total = HoltWinters(total_data_men_linear_ts,alpha = 0.6, beta=TRUE, gamma=TRUE, seasonal = "adhw_men_total"
```

Holt-Winters exponential smoothing with trend and additive seasonal component.

```
##
## Call:
## HoltWinters(x = total_data_men_linear_ts, alpha = 0.6, beta = TRUE, gamma = TRUE, seasonal = "ad
## Smoothing parameters:
## alpha: 0.6
## beta : TRUE
## gamma: TRUE
##
## Coefficients:
##
            [,1]
       602.47593
## a
## b
       -61.62107
## s1 -180.17199
## s2 -155.85696
## s3
       -99.33299
## s4
        17.25625
       130.29862
## s5
        32.45825
## s6
       -46.33906
## s7
## s8
       -38.84759
## s9
       -68.43144
## s10
       24.87235
## s11 -21.09700
## s12 364.52407
forcast_hw_men_total = forecast(hw_men_total, h = 12)
plot(forcast_hw_men_total, col = "blue", xlab = "Sales")
```

Forecasts from HoltWinters


```
forcast_hw_men_total$mean
##
              Jan
                        Feb
                                  Mar
                                            Apr
                                                      May
## 2016 360.68287 323.37683 318.27973 373.24790 424.66921 265.20777 124.78939
              Aug
                        Sep
                                  Oct
                                            Nov
                                                      Dec
## 2016 70.65978 -20.54513 11.13758 -96.45284 227.54716
print("Lower: 80%")
## [1] "Lower: 80%"
forcast_hw_men_total$lower[,1]
         288.04151
## [1]
                      209.90740
                                  145.15538
                                              127.55251
                                                           96.25311
## [6] -154.60653
                                 -554.56254 -758.63287
                    -394.17711
                                                         -846.03051
                     -885.17059
## [11] -1078.58987
print("Lower: 90%")
## [1] "Lower: 90%"
forcast_hw_men_total$lower[,2]
## [1]
         249.587494
                       149.840304
                                     53.508883
                                                  -2.510768
                                                              -77.599873
## [6] -376.842795 -668.901380
                                  -885.535251 -1149.352910 -1299.787895
## [11] -1598.501806 -1474.207781
print("Upper: 80% - Preffered")
## [1] "Upper: 80% - Preffered"
```

```
forcast_hw_men_total$upper[,1]

## [1] 433.3242 436.8463 491.4041 618.9433 753.0853 685.0221 643.7559

## [8] 695.8821 717.5426 868.3057 885.6842 1340.2649

print("Upper: 90%")

## [1] "Upper: 90%"

forcast_hw_men_total$upper[,2]

## [1] 471.7783 496.9134 583.0506 749.0066 926.9383 907.2583 918.4802

## [8] 1026.8548 1108.2626 1322.0631 1405.5961 1929.3021
```

Holtwinters Model for WomenCategory

```
hw_women = HoltWinters(train_data_women_linear_ts, alpha = 0.6, beta=TRUE, gamma=TRUE, seasonal = "addi
hw women
## Holt-Winters exponential smoothing with trend and additive seasonal component.
##
## Call:
## HoltWinters(x = train_data_women_linear_ts, alpha = 0.6, beta = TRUE,
                                                                             gamma = TRUE, seasonal = ".
## Smoothing parameters:
## alpha: 0.6
## beta : TRUE
##
   gamma: TRUE
## Coefficients:
##
              [,1]
        4347.89949
## a
## b
         -27.17041
## s1
      -1221.22705
        -940.88408
## s2
## s3
         221.39009
## s4
         650.62227
## s5
        946.10773
## s6
        -11.18528
## s7
        -562.69901
## s8
        -391.12005
        -82.92805
## s9
## s10 -123.57670
## s11
        149.93011
## s12 1316.10051
forecast_hw_women = forecast(hw_women, h=12)
hw_acc_women =accuracy(forecast_hw_women,validation_data_women$Sales.In.ThousandDollars.)
hw_acc_women
                      ME
                             RMSE
                                       MAE
                                                  MPE
                                                          MAPE
                                                                    MASE
## Training set -2.06123 402.2797 310.5280 -1.0184086 9.523478 0.6619475
                38.07341 351.0151 294.7216 0.6594328 6.833982
## Test set
                      ACF1
##
## Training set 0.09116328
```

```
## Test set NA
plot(forecast_hw_women,col="#FF1493")
```

Forecasts from HoltWinters


```
# Creating the model on the entire dataset and predicting for Womens category
hw_women_total = HoltWinters(total_data_women_linear_ts,alpha = 0.6, beta=TRUE, gamma=TRUE, seasonal =
hw_women_total
## Holt-Winters exponential smoothing with trend and additive seasonal component.
##
## Call:
## HoltWinters(x = total_data_women_linear_ts, alpha = 0.6, beta = TRUE,
                                                                              gamma = TRUE, seasonal = ".
##
## Smoothing parameters:
    alpha: 0.6
##
##
    beta : TRUE
    gamma: TRUE
##
##
## Coefficients:
##
              [,1]
        4450.41270
## a
## b
         130.59620
## s1
       -1244.62786
## s2
        -795.47295
```

11.50684

482.36801

948.95631

s3

s4 ## s5

```
## s6   330.10668
## s7   -280.31659
## s8   -526.16797
## s9   -396.96457
## s10   21.54951
## s11   81.18350
## s12   1423.58730

forcast_hw_women_total = forecast(hw_women_total, h = 12)
plot(forcast_hw_women_total, col = "#FF1493")
```

Forecasts from HoltWinters


```
print("mean-Preffered")
## [1] "mean-Preffered"
forcast_hw_women_total$mean
##
             Jan
                      Feb
                               Mar
                                        Apr
                                                 May
                                                          Jun
                                                                   Jul
## 2016 3336.381 3916.132 4853.708 5455.165 6052.350 5564.097 5084.269
##
                      Sep
                               Oct
                                        Nov
             Aug
## 2016 4969.014 5228.814 5777.924 5968.154 7441.154
print("Lower: 80%")
## [1] "Lower: 80%"
forcast_hw_women_total$lower[,1]
## [1] 2798.9238 3076.5971 3572.7997 3637.3201 3622.4725 2457.9842
```

```
## [7] 1244.5521
                    343.1338 -232.1326 -564.0714 -1298.4584 -791.5960
print("Lower: 90%")
## [1] "Lower: 90%"
forcast_hw_women_total$lower[,2]
   [1] 2514.4111 2632.1741 2894.7277 2675.0109 2336.1731
        -788.0715 -2105.6594 -3122.9831 -3921.3210 -5145.1709 -5149.7509
print("Upper: 80%")
## [1] "Upper: 80%"
forcast_hw_women_total$upper[,1]
## [1] 3873.838 4755.667 6134.617 7273.011 8482.227
                                                         8670.209 8923.987
## [8] 9594.895 10689.760 12119.920 13234.767 15673.905
print("Upper: 90%")
## [1] "Upper: 90%"
forcast_hw_women_total$upper[,2]
   [1] 4158.351 5200.090 6812.689 8235.320 9768.527 10314.485 10956.610
   [8] 12043.688 13580.611 15477.169 17081.480 20032.060
```

HoltWinters Model for OthersCategory

s7 -142.548292

s9 -393.711982

-60.198699

s8

```
hw_others = HoltWinters(train_data_others_linear_ts, alpha = 0.2, beta=TRUE, gamma=TRUE, seasonal = "ad
hw_others
## Holt-Winters exponential smoothing with trend and additive seasonal component.
## Call:
## HoltWinters(x = train data others linear ts, alpha = 0.2, beta = TRUE,
                                                                               gamma = TRUE, seasonal =
## Smoothing parameters:
##
  alpha: 0.2
## beta : TRUE
   gamma: TRUE
##
##
## Coefficients:
##
              [,1]
## a
       1482.399388
         16.951391
## b
## s1
         62.853984
         30.969400
## s2
## s3
        211.053844
## s4
        93.567473
         92.744075
## s5
## s6
       -17.207118
```

```
## s10 -307.284655
          2.552004
## s11
## s12 484.600612
forecast_hw_others = forecast(hw_others, h=12)
hw_acc_others =accuracy(forecast_hw_others, validation_data_others$Sales.In.ThousandDollars.)
hw_acc_others
                                 RMSE
                                                         MPE
                                                                  MAPE
##
                         ME
                                             MAE
                   1.195638 87.60679 62.38197
                                                 -0.1261985 5.348396
## Training set
                -253.532650 299.30637 256.82433 -18.9829609 19.243998
## Test set
                               ACF1
                     MASE
## Training set 0.4516284 0.3713851
## Test set
                1.8593380
plot(forecast_hw_others,col="green")
```

Forecasts from HoltWinters


```
# Creating the model on the entire dataset and predicting for Others category
hw_others_total = HoltWinters(total_data_others_linear_ts,alpha = 0.2, beta=TRUE, gamma=TRUE, seasonal
hw_others_total

## Holt-Winters exponential smoothing with trend and additive seasonal component.

##
## Call:
## HoltWinters(x = total_data_others_linear_ts, alpha = 0.2, beta = TRUE, gamma = TRUE, seasonal =
##
## Smoothing parameters:
## alpha: 0.2
```

```
beta : TRUE
    gamma: TRUE
##
##
## Coefficients:
##
             [,1]
## a
       1724.31719
## b
        -39.08542
      -234.90983
## s1
## s2
       -119.74233
## s3
         94.55090
## s4
        117.78880
        333.77017
## s5
##
  s6
        341.15981
        176.72991
## s7
## s8
         85.00026
## s9
       -244.12591
## s10 -387.25859
## s11 -285.40262
## s12 -44.31719
forcast_hw_others_total = forecast(hw_others_total, h = 12)
plot(forcast_hw_others_total, col = "green")
```

Forecasts from HoltWinters


```
print("mean")
## [1] "mean"
```

```
forcast_hw_others_total$mean
              Jan
                                  Mar
                                            Apr
                                                      May
## 2016 1450.3219 1526.4040 1701.6118 1685.7643 1862.6602 1830.9645 1627.4491
##
                                  Oct
              Aug
                        Sep
                                            Nov
## 2016 1496.6341 1128.4225
                             946.2044 1008.9749 1210.9749
print("Lower: 80%")
## [1] "Lower: 80%"
forcast_hw_others_total$lower[,1]
    [1] 1249.04617 1309.62337 1453.46238 1389.95053 1504.86461 1399.27603
   [7] 1111.93162 888.79456 420.80143 132.09425
                                                      82.23166 165.89032
print("Lower: 90%")
## [1] "Lower: 90%"
forcast_hw_others_total$lower[,2]
   [1] 1142.49721 1194.86663 1322.10001 1233.35619 1315.45904 1170.75397
  [7] 839.03314 567.02377
                                46.20948 -298.86961 -408.35658 -387.34404
print("Upper: 80%")
## [1] "Upper: 80%"
forcast hw others total$upper[,1]
   [1] 1651.598 1743.185 1949.761 1981.578 2220.456 2262.653 2142.967
   [8] 2104.474 1836.044 1760.314 1935.718 2256.060
print("Upper: 90%")
## [1] "Upper: 90%"
forcast_hw_others_total$upper[,2]
   [1] 1758.147 1857.941 2081.124 2138.172 2409.861 2491.175 2415.865
   [8] 2426.244 2210.635 2191.278 2426.306 2809.294
```

ACF and PACF

- Autocorrelation is the linear dependence of a variable with itself at two points in time
- For stationary processes, autocorrelation between any two observations only depends on the time lag h between them
- Partial autocorrelation is the autocorrelation between yt and yt(h) after removing any linear dependence on $y1, y2, \ldots, yt(h+1)$

Verifying the ACF and PACF values

```
par(mfrow=c(2,2))
acf(train_data_men_linear_ts,lag.max =120)
pacf(train_data_men_linear_ts,lag.max =120)
```

par(mfrow=c(2,2))

Series train_data_men_linear_ts

Series train_data_men_linear_ts


```
acf(train_data_women_linear_ts,lag.max =120)
pacf(train_data_women_linear_ts,lag.max =120)
par(mfrow=c(2,2))
```

Series train_data_women_linear_ts

Series train_data_women_linear_ts


```
acf(train_data_others_linear_ts,lag.max =120)
pacf(train_data_others_linear_ts,lag.max =120)
```

Series train_data_others_linear_ts

Series train_data_others_linear_ts

AUTO ARIMA

```
auto_arima_men = auto.arima(train_data_men_linear_ts, ic='aic')
auto_arima_women = auto.arima(train_data_women_linear_ts, ic='aic')
auto_arima_others = auto.arima(train_data_others_linear_ts, ic='aic')
```

Summary of the Auto arima model

```
summary(auto_arima_men)
## Series: train data men linear ts
```

```
## Series: train_data_men_linear_ts
## ARIMA(1,0,1)(0,1,1)[12] with drift
##
## Coefficients:
##
            ar1
                             sma1
                                    drift
                     ma1
         0.9432 -0.7060
                         -0.7751 1.9181
##
## s.e. 0.0717
                  0.1065
                           0.3325 0.6076
##
## sigma^2 estimated as 739.7: log likelihood=-286.36
               AICc=583.83
                              BIC=593.19
## AIC=582.72
## Training set error measures:
```

```
##
                       ME
                              RMSE
                                         MAE
                                                    MPE
                                                            MAPE
                                                                       MASE
## Training set 0.7238923 23.98609 18.47167 -0.1019525 2.771932 0.5177763
##
## Training set -0.1148345
summary(auto_arima_women)
## Series: train_data_women_linear_ts
## ARIMA(0,1,1)(0,1,0)[12]
##
## Coefficients:
##
##
         -0.5664
## s.e.
         0.1218
##
## sigma^2 estimated as 43269: log likelihood=-398.32
## AIC=800.65
               AICc=800.86
                              BIC=804.8
##
## Training set error measures:
##
                                                   MPE
                                                           MAPE
                                                                     MASE
                      ME
                             RMSE
                                       MAE
## Training set 9.105897 186.6967 132.436 -0.07783658 4.044671 0.3539965
##
                      ACF1
## Training set 0.05254706
summary(auto_arima_others)
## Series: train data others linear ts
## ARIMA(0,0,1)(0,1,1)[12] with drift
##
## Coefficients:
##
            ma1
                    sma1
                           drift
         0.3956 -0.5064 5.9778
##
## s.e. 0.1137
                  0.1713 0.6729
##
## sigma^2 estimated as 5339: log likelihood=-342.94
## AIC=693.89
               AICc=694.61
                              BIC=702.27
##
## Training set error measures:
                       ME
                              RMSE
                                        MAE
                                                    MPE
                                                            MAPE
                                                                       MASE
## Training set -1.989613 65.01565 45.01269 -0.5419672 3.824652 0.5749972
                      ACF1
## Training set 0.03508462
```

Forecasting for Men clothing, Women Clothing and Others Clothing on train and validation

```
forecast_a_arima_men = forecast(auto_arima_men, h=12)
forecast_a_arima_women = forecast(auto_arima_women, h=12)
forecast_a_arima_others = forecast(auto_arima_others, h=12)
acc_men =accuracy(forecast_a_arima_men,validation_data_men$Sales.In.ThousandDollars.)
acc_women =accuracy(forecast_a_arima_women,validation_data_women$Sales.In.ThousandDollars.)
acc_others =accuracy(forecast_a_arima_others,validation_data_others$Sales.In.ThousandDollars.)
acc_men
```

ME RMSE MAE MPE MAPE MASE

```
0.7238923\ 23.98609\ 18.47167\ -0.1019525\ 2.771932\ 0.1842496
## Training set
## Test set
                -47.5273688 74.91789 53.85209 -6.7553972 7.575423 0.5371590
##
## Training set -0.1148345
## Test set
                        NA
acc_women
                                 RMSE
                                                        MPE
##
                         ME
                                           MAE
                                                                  MAPE
## Training set
                   9.105897 186.6967 132.4360 -0.07783658 4.044671
## Test set
                -769.693687 800.2802 769.6937 -19.09462591 19.094626
                     MASE
                                 ACF1
## Training set 0.2823117 0.05254706
## Test set
                       NA
acc_others
##
                        ME
                                RMSE
                                                     MPE
                                                              MAPE
                                                                        MASE
                                          MAE
## Training set -1.989613 65.01565 45.01269 -0.5419672 3.824652 0.3258796
                -22.063661 92.63618 73.00588 -1.5956867 5.411289 0.5285426
                      ACF1
## Training set 0.03508462
## Test set
```

Plotting the values

```
plot(forecast_a_arima_men,col="blue", xlab = "Year", ylab = "Sales(In ThousandDollars)")
```

Forecasts from ARIMA(1,0,1)(0,1,1)[12] with drift

Forecasts from ARIMA(0,1,1)(0,1,0)[12]

plot(forecast_a_arima_others,col="green", xlab = "Year", ylab = "Sales(In ThousandDollars)")

Forecasts from ARIMA(0,0,1)(0,1,1)[12] with drift

Forecasting (Auto ARIMA):

```
# Creating an auto arima model
auto_arima_total_men = auto.arima(total_data_men_linear_ts, ic='aic')
auto_arima_total_women = auto.arima(total_data_women_linear_ts, ic='aic')
auto_arima_total_others = auto.arima(total_data_others_linear_ts, ic='aic')
# On Combined Data
summary(auto_arima_total_men)
## Series: total_data_men_linear_ts
  ARIMA(0,1,1)(0,1,1)[12]
##
## Coefficients:
##
                     sma1
             ma1
##
         -0.6454
                  -0.4626
## s.e.
          0.1149
                   0.1641
##
## sigma^2 estimated as 1359: log likelihood=-357.56
## AIC=721.11
                AICc=721.47
                              BIC=727.9
##
## Training set error measures:
                                                                        MASE
##
                                RMSE
                                          MAE
                                                     MPE
                                                             MAPE
## Training set -0.4499339 33.40999 23.66468 -0.1198056 3.450731 0.6287294
##
                        ACF1
```

```
## Training set -0.001875814
summary(auto_arima_total_women)
## Series: total_data_women_linear_ts
## ARIMA(0,1,1)(0,1,1)[12]
##
## Coefficients:
##
            ma1
                     sma1
##
        -0.5382 -0.5683
## s.e. 0.1202
                 0.1803
##
## sigma^2 estimated as 45928: log likelihood=-483.32
## AIC=972.65
              AICc=973.01
                             BIC=979.44
##
## Training set error measures:
                     ME
                             RMSE
                                      MAE
                                                 MPE
                                                         MAPE
                                                                   MASE
## Training set -8.48645 194.2339 136.468 -0.7281371 4.081784 0.4058108
                       ACF1
## Training set -0.02042828
summary(auto_arima_total_others)
## Series: total_data_others_linear_ts
## ARIMA(0,0,1)(0,1,1)[12] with drift
##
## Coefficients:
##
                  sma1
                           drift
           ma1
        0.2793 -0.7029 5.7726
## s.e. 0.1181 0.1511 0.4418
## sigma^2 estimated as 5287: log likelihood=-413.34
## AIC=834.69
              AICc=835.29
                             BIC=843.8
##
## Training set error measures:
                              RMSE
                                        MAE
                                                   MPE
                                                           MAPE
                                                                     MASE
##
## Training set -1.477429 65.90174 47.56879 -0.4329567 3.917721 0.5723518
##
## Training set 0.0008476278
# Forecasting
forecast_auto_arima_men = forecast(auto_arima_total_men, h=12)
forecast_auto_arima_women = forecast(auto_arima_total_women, h=12)
forecast_auto_arima_others = forecast(auto_arima_total_others, h=12)
# Plotting the forecasted results
plot(forecast_auto_arima_men,col="blue", xlab = "Year", ylab = "Sales(In ThousandDollars)")
```

Forecasts from ARIMA(0,1,1)(0,1,1)[12]

plot(forecast_auto_arima_women,col="#FF1493", xlab = "Year", ylab = "Sales(In ThousandDollars)")

Forecasts from ARIMA(0,1,1)(0,1,1)[12]

plot(forecast_auto_arima_others,col="green", xlab = "Year", ylab = "Sales(In ThousandDollars)")

Forecasts from ARIMA(0,0,1)(0,1,1)[12] with drift

Forecasted results for each category

Select the values from either mean, or lower or upper confidence values based on the plot.

```
forecast_auto_arima_men$upper[,1]
##
                         Feb
                                   Mar
                                                        May
                                                                   Jun
                                                                              Jul
              Jan
                                              Apr
## 2016
         552.1939
                   589.8645
                              654.4571
                                        720.6724
                                                              705.5750
                                                                        656.2969
##
                         Sep
                                   Oct
                                              Nov
                                                        Dec
              Aug
        700.5545
                   702.9290
                              787.5001
                                        720.3351 1030.2746
forecast_auto_arima_women$lower[,1]
##
             Jan
                       Feb
                                Mar
                                                             Jun
                                                                      Jul
                                          Apr
                                                   May
## 2016 3073.368 3557.138 4269.758 4319.133 4417.653 3845.442 3707.821
                      Sep
                                Oct
                                         Nov
             Aug
## 2016 3874.131 3982.189 4167.292 4263.557 5524.443
forecast_auto_arima_others$lower[,2]
##
             Jan
                       Feb
                                Mar
                                          Apr
                                                   May
                                                             Jun
                                                                      Jul
## 2016 1106.704 1152.899 1283.141 1193.310 1267.173 1280.334 1210.174
             Aug
                       Sep
## 2016 1295.228 1128.258 1201.094 1371.712 1709.052
```

Manual ARIMA model

Manual AARIMA model for women

Step 1: Plot the Sales Forecasting data

```
plot(total_data_women_linear_ts, col = "#FF1493", main = "Sales for the period from 2009 to 2015: ARIMA
    sub = "Category: Womens' Clothing", xlab = "Year", ylab = "Sales(In ThousandDollars)")
```

Sales for the period from 2009 to 2015: ARIMA(0,0,0)

Step 2: Plotting ACF and PACF to get preliminary understanding of the process

```
acf = acf(total_data_women_linear_ts, lag.max =120, plot = FALSE)
pacf = pacf(total_data_women_linear_ts, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acf, col = "#FF1493", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacf, col = "#FF1493", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

Series total_data_women_linear_ Series total_data_women_linear_

Step 3: The suspension bridge pattern in ACF suggests both nonstationarity and strong seasonality. Perform a non-seasonal difference to give an ARIMA(0,1,0) model.

```
par(mfrow = c(1, 1), bg = "white")
total_data_women_linear_ts_diff1 = diff(total_data_women_linear_ts, differences = 1)
plot(total_data_women_linear_ts_diff1, col = "#FF1493", main = "Sales for the period from 2009 to 2015:
    sub = "Category: Womens' Clothing", xlab = "Year", ylab = "Sales(In ThousandDollars)")
```

Sales for the period from 2009 to 2015: ARIMA(0,1,0)

Step 4: Check ACF and PACF to explore remaining dependencies

```
acf_1 = acf(total_data_women_linear_ts_diff1, lag.max =120, plot = FALSE)
pacf_1 = pacf(total_data_women_linear_ts_diff1, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acf_1, col = "#FF1493", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacf_1, col = "#FF1493", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

Series total_data_women_linear_ts_series total_data_women_linear_ts_

Step 5: The differenced series looks stationary but has strong seasonal lags. Perform a seasonal differencing on the original time series (ARIMA(0,0,0)(0,1,0)12)

Sales for the period from 2009 to 2015: (ARIMA(0,0,0)(0,1,0)12)

Step 6: Check ACF and PACF for seasonally differenced data to explore remaining dependencies

```
acf_s1 = acf(total_data_women_linear_ts_sdiff1, lag.max =120, plot = FALSE)
pacf_s1 = pacf(total_data_women_linear_ts_sdiff1, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acf_s1, col = "#FF1493", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacf_s1, col = "#FF1493", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

eries total_data_women_linear_ts_eries total_data_women_linear_ts_

Step 7: Strong positive autocorrelation indicates need for either an AR component or a non-seasonal differencing. Perform a non-seasonal differencing on a seasonal differenced data.

```
par(mfrow = c(1, 1), bg = "white")
total_data_women_linear_ts_sdiff2 = diff(total_data_women_linear_ts_sdiff1, differences = 1)
plot(total_data_women_linear_ts_sdiff2, col = "#FF1493", main = "Sales for the period from 2009 to 2015
```

Sales for the period from 2009 to 2015: ARIMA(0,1,0)(0,1,0)12

Step 8: Check ACF and PACF to explore remaining dependencies

```
acf_s1d2 = acf(total_data_women_linear_ts_sdiff2, lag.max =120, plot = FALSE)
pacf_s1d2 = pacf(total_data_women_linear_ts_sdiff2, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acf_s1d2, col = "#FF1493", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacf_s1d2, col = "#FF1493", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

eries total_data_women_linear_ts_eries total_data_women_linear_ts_

Step 9: ACF and PACF shows that we need to use an AR(1) and an MA(1) term.

```
sales_women_arima = Arima(total_data_women_linear_ts, order = c(1,1,1), seasonal = c(0,1,0), include.dr
summary(sales_women_arima)
## Series: total_data_women_linear_ts
## ARIMA(1,1,1)(0,1,0)[12]
##
## Coefficients:
##
            ar1
                     ma1
                 -0.6129
##
         0.1486
## s.e.
        0.2892
                  0.2423
##
## sigma^2 estimated as 53488: log likelihood=-486.38
                AICc=979.11
## AIC=978.75
                               BIC=985.54
##
## Training set error measures:
##
                       ME
                               RMSE
                                         MAE
                                                    MPE
                                                            MAPE
                                                                       MASE
## Training set -11.48128 209.6105 145.7723 -0.6406699 4.285231 0.4334787
##
                       ACF1
```

Training set -0.01486991

Step 10: Forcasting the sales for women category for the next year

```
forecast_manual_arima_women = forecast(sales_women_arima, h = 12)
plot(forecast_manual_arima_women,col="#FF1493", xlab = "Year", ylab = "Sales(In ThousandDollars)")
```

Forecasts from ARIMA(1,1,1)(0,1,0)[12]

plot(sales_women_arima\$residuals)

Manual AARIMA model for men

Step 1: Plot the Sales Forecasting data

plot(total_data_men_linear_ts, col = "blue", main = "Sales for the period from 2009 to 2015: ARIMA(0,0,

Sales for the period from 2009 to 2015: ARIMA(0,0,0)

Step 2: Plotting ACF and PACF to get preliminary understanding of the process

```
acfm = acf(total_data_men_linear_ts, lag.max =120, plot = FALSE)
pacfm = pacf(total_data_men_linear_ts, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acfm, col = "blue", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacfm, col = "blue", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

Series total_data_men_linear_t: Series total_data_men_linear_t:

Step 3: The suspension bridge pattern in ACF suggests both nonstationarity and strong seasonality. Perform a non-seasonal difference to give an ARIMA(0,1,0) model.

```
par(mfrow = c(1, 1), bg = "white")
total_data_men_linear_ts_diff1 = diff(total_data_men_linear_ts, differences = 1)
plot(total_data_men_linear_ts_diff1, col = "blue", main = "Sales for the period from 2009 to 2015: ARIM
    sub = "Category: men's Clothing", xlab = "Year", ylab = "Sales(In ThousandDollars)")
```

Sales for the period from 2009 to 2015: ARIMA(0,1,0)

Step 4: Check ACF and PACF to explore remaining dependencies

```
acfm_1 = acf(total_data_men_linear_ts_diff1, lag.max =120, plot = FALSE)
pacfm_1 = pacf(total_data_men_linear_ts_diff1, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acfm_1, col = "blue", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacfm_1, col = "blue", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

Series total_data_men_linear_ts_c Series total_data_men_linear_ts_c

Step 5: The differenced series looks stationary but has strong seasonal lags. Perform a seasonal differencing on the original time series (ARIMA(0,0,0)(0,1,0)12)

Sales for the period from 2009 to 2015: (ARIMA(0,0,0)(0,1,0)12)

Step 6: Check ACF and PACF for seasonally differenced data to explore remaining dependencies

```
acfm_s1 = acf(total_data_men_linear_ts_sdiff1, lag.max =120, plot = FALSE)
pacfm_s1 = pacf(total_data_men_linear_ts_sdiff1, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acfm_s1, col = "blue", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacfm_s1, col = "blue", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

Series total_data_men_linear_ts_sSeries total_data_men_linear_ts_s

Step 7: Strong positive autocorrelation indicates need for either an AR component or a non-seasonal differencing. Perform a non-seasonal differencing on a seasonal differenced data.

```
par(mfrow = c(1, 1), bg = "white")
total_data_men_linear_ts_sdiff2 = diff(total_data_men_linear_ts_sdiff1, differences = 1)
plot(total_data_men_linear_ts_sdiff2, col = "blue", main = "Sales for the period from 2009 to 2015: ARI
```

Sales for the period from 2009 to 2015: ARIMA(0,1,0)(0,1,0)12

Step 8: Check ACF and PACF to explore remaining dependencies

```
acfm_s1d2 = acf(total_data_men_linear_ts_sdiff2, lag.max =120, plot = FALSE)
pacfm_s1d2 = pacf(total_data_men_linear_ts_sdiff2, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acfm_s1d2, col = "blue", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacfm_s1d2, col = "blue", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

Series total_data_men_linear_ts_sSeries total_data_men_linear_ts_s

Step 9: ACF and PACF shows that we need to use an AR(1) and an MA(1) and a negative seasonal term.

```
sales_men_arima = Arima(total_data_men_linear_ts, order = c(1,1,1), seasonal = c(0,1,1), include.drift
summary(sales_men_arima)
## Series: total_data_men_linear_ts
## ARIMA(1,1,1)(0,1,1)[12]
##
## Coefficients:
##
            ar1
                     ma1
                             sma1
##
         0.0262
                -0.6637
                          -0.4641
        0.1997
                  0.1720
                           0.1641
## s.e.
## sigma^2 estimated as 1378: log likelihood=-357.55
## AIC=723.1
               AICc=723.7
                            BIC=732.15
##
## Training set error measures:
                               RMSE
                                         MAE
                                                     MPE
                                                             MAPE
                                                                       MASE
##
## Training set -0.4057578 33.39886 23.62888 -0.1121924 3.445873 0.6277785
## Training set -0.01114166
```

Step 10: Forcasting the sales for men category for the next year

```
forecast_manual_arima_men = forecast(sales_men_arima, h = 12)
plot(forecast_manual_arima_men,col="blue", xlab = "Year", ylab = "Sales(In ThousandDollars)")
```

Forecasts from ARIMA(1,1,1)(0,1,1)[12]

plot(sales_men_arima\$residuals)

Manual AARIMA model for others

Step 1: Plot the Sales Forecasting data

plot(total_data_others_linear_ts, col = "green", main = "Sales for the period from 2009 to 2015: ARIMA(

Sales for the period from 2009 to 2015: ARIMA(0,0,0)

Step 2: Plotting ACF and PACF to get preliminary understanding of the process

```
acfo = acf(total_data_others_linear_ts, lag.max =120, plot = FALSE)
pacfo = pacf(total_data_others_linear_ts, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acf, col = "green", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacf, col = "green", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

Series total_data_women_linear_ Series total_data_women_linear_

Step 3: The suspension bridge pattern in ACF suggests both nonstationarity and strong seasonality. Perform a non-seasonal difference to give an ARIMA(0,1,0) model.

```
par(mfrow = c(1, 1), bg = "white")
total_data_others_linear_ts_diff1 = diff(total_data_others_linear_ts, differences = 1)
plot(total_data_others_linear_ts_diff1, col = "green", main = "Sales for the period from 2009 to 2015:
    sub = "Category: others' Clothing", xlab = "Year", ylab = "Sales(In ThousandDollars)")
```

Sales for the period from 2009 to 2015: ARIMA(0,1,0)

Step 4: Check ACF and PACF to explore remaining dependencies

```
acfo_1 = acf(total_data_others_linear_ts_diff1, lag.max =120, plot = FALSE)
pacfo_1 = pacf(total_data_others_linear_ts_diff1, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acfo_1, col = "green", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacfo_1, col = "green", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

Series total_data_others_linear_ts_Series total_data_others_linear_ts_

Step 5: The differenced series looks stationary but has strong seasonal lags. Perform a seasonal differencing on the original time series (ARIMA(0,0,0)(0,1,0)12)

```
par(mfrow = c(1, 1), bg = "white")
total_data_others_linear_ts_sdiff1 = diff(total_data_others_linear_ts, lag = 12, differences = 1)
plot(total_data_others_linear_ts_sdiff1, col = "green", main = "Sales for the period from 2009 to 2015:
    xlab = "Year", ylab = "Sales(In ThousandDollars)")
```

Sales for the period from 2009 to 2015: (ARIMA(0,0,0)(0,1,0)12)

Step 6: Check ACF and PACF for seasonally differenced data to explore remaining dependencies

```
acfo_s1 = acf(total_data_others_linear_ts_sdiff1, lag.max =120, plot = FALSE)
pacfo_s1 = pacf(total_data_others_linear_ts_sdiff1, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acfo_s1, col = "green", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacfo_s1, col = "green", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

series total_data_others_linear_ts_series total_dat

Step 7: Strong positive autocorrelation indicates need for either an AR component or a non-seasonal differencing. Perform a non-seasonal differencing on a seasonal differenced data.

```
par(mfrow = c(1, 1), bg = "white")
total_data_others_linear_ts_sdiff2 = diff(total_data_others_linear_ts_sdiff1, differences = 1)
plot(total_data_others_linear_ts_sdiff2, col = "green", main = "Sales for the period from 2009 to 2015:
```

Sales for the period from 2009 to 2015: ARIMA(0,1,0)(0,1,0)12

Step 8: Check ACF and PACF to explore remaining dependencies

```
acfo_s1d2 = acf(total_data_others_linear_ts_sdiff2, lag.max =120, plot = FALSE)
pacfo_s1d2 = pacf(total_data_others_linear_ts_sdiff2, lag.max =120, plot = FALSE)
par(mfrow = c(1, 2), bg = "white")
plot(acfo_s1d2, col = "green", sub = "Series Growth", xlab = "Lag", ylab = "ACF")
plot(pacfo_s1d2, col = "green", sub = "Series Growth", xlab = "Lag", ylab = "PACF")
```

series total_data_others_linear_ts_series total_dat

Step 9: ACF and PACF shows that we need to use an AR(1) and an MA(1) term and a positive seasonal term.

```
sales_others_arima = Arima(total_data_others_linear_ts, order = c(1,1,1), seasonal = c(1,1,0), include.
summary(sales_others_arima)
## Series: total_data_others_linear_ts
## ARIMA(1,1,1)(1,1,0)[12]
##
## Coefficients:
##
            ar1
                     ma1
                             sar1
##
         0.3513
                -1.0000
                          -0.4053
        0.1208
                  0.0552
                           0.1195
## s.e.
## sigma^2 estimated as 6696: log likelihood=-415.09
## AIC=838.17
                AICc=838.78
                              BIC=847.23
##
## Training set error measures:
                      ME
                             RMSE
                                        MAE
                                                  MPE
                                                                   MASE
##
                                                         MAPE
## Training set 6.403103 73.62628 48.23506 0.4268211 3.85797 0.5803683
## Training set 0.002272278
```

Step 10: Forcasting the sales for others category for the next year

```
forecast_manual_arima_others = forecast(sales_others_arima, h = 12)
plot(forecast_manual_arima_others,col="green", xlab = "Year", ylab = "Sales(In ThousandDollars)")
```

Forecasts from ARIMA(1,1,1)(1,1,0)[12]

Writing the results into the excel sheet

```
template = read.csv("template.csv", header = TRUE)

women_results = data.frame(forecast_manual_arima_women$lower[,1])
colnames(women_results) = c("target")
men_results = data.frame(forecast_manual_arima_men$upper[,1])
colnames(men_results) = c("target")
others_results = data.frame(forecast_manual_arima_others$lower[,1])
colnames(others_results) = c("target")
results = bind_rows(women_results,men_results,others_results)

## Warning in bind_rows_(x, .id): Vectorizing 'ts' elements may not preserve
## their attributes

## Warning in bind_rows_(x, .id): Vectorizing 'ts' elements may not preserve
## their attributes

## Warning in bind_rows_(x, .id): Vectorizing 'ts' elements may not preserve
```

their attributes

```
test_result = cbind(template$Year,template$Month, template$ProductCategory, results)
colnames(test_result) = c("Year","Month","ProductCategory","target")
write.csv(x = test_result, file = "prediction.csv", row.names = FALSE)
```