

CLASIFICACIÓN DE FRUTAS EN "SANAS" O "MAL ESTADO" MEDIANTE IMÁGENES USANDO CNN

Jorge Daniel Robles Ardila - 2210065 Diego Fabián Sepúlveda Durán - 2210063

Inteligencia Artificial 2 - B1

INDICE

- 1. OBJETIVO/ALCANCE
- 2. DATASET
- 3. METODOLOGIAS
- 4. RESULTADOS
- 5. CONCLUSIONES

OBJETIVO/ALCANCE

OBJETIVO/ALCANCE

Modelo CNN que clasifique correctamente el estado de las frutas mediante imágenes.

- Tipo de fruta
- Buen o Mal estado

DATASET

DATASET A UTILIZAR

ANTES

- 14 TiPoS DE FRUTAS (TOTAL: 28)
- 29.000 IMAGENES
- 5 GB

DESPUÉS

- 5 TiPoS DE FRUTAS (TOTAL: 10)
- 5.700 **IMAGENES**
- 2,00 GB

'Fruit and Vegetable Disease (Healthy vs Rotten)'

METODOLOGIAS Y MODELOS

• 2 BLOQUES
CONVOLUCIONALES

DNN:

- DOS CAPAS OCULTAS (128, 64)
- DROPOUT Y BATCH NORM.

2. RESNET50

- BLOQUES RESIDUALES
- ENTRADA: 7X7 MAXPOOLING

3. MOBILENET

- BLOQUES BOTTLENECK
- TRANSFORMACIONES LIGERAS

1. CNN

1. CNN

37/37 — 4s 115ms/step - fruit_output_accuracy: 0.9057 - loss: 0.6436 - state_output_accuracy:

0.8756

Test Loss: 0.6218699812889099
Fruit Loss: 0.9024179577827454
State Loss: 0.8842832446098328
Fruit Accuracy: 0.9024179577827454
State Accuracy: 0.8842832446098328
Classification Report - Fruits:

	precision	recall	f1-score	support
0	0.92	0.91	0.91	253
1	0.93	0.86	0.89	238
2	0.91	0.91	0.91	223
3	0.91	0.93	0.92	228
4	0.85	0.91	0.88	216
accuracy			0.90	1158
macro avg	0.90	0.90	0.90	1158
weighted avg	0.90	0.90	0.90	1158

Real: Apple - Rotten Predicted: Apple - Rotten

2. RESNET 50

Test Loss: 0.17893874645233154

Fruit Loss: 0.9818652868270874

State Loss: 0.957685649394989

Fruit Accuracy: 0.9024179577827454

State Accuracy: 0.8842832446098328

3. MOBILENET

3. MOBILENET

1000

Test Loss: 0.8957707285881042

Fruit Loss: 0.7832469940185547

State Loss: 0.8341968655586243

Fruit Accuracy: 0.9024179577827454

State Accuracy: 0.8842832446098328

ACCURACY

- FRUIT - STATE

TIEMPO ENTREN.

1. Modelo desde Cero:

- 431 seg
- Loss: 1.22
- Fruit Accuracy: 77.47 %
- State Accuracy: 73.73 %

2. Modelo ResNet50:

- 135 seg
- Loss: 0.2525
- Fruit Accuracy: 96.91 %
- State Accuracy: 95.25 %

3. Modelo MobileNetV2:

- 52 seg
- Loss: 0.8809
- Fruit Accuracy: 79.28 %
- State Accuracy: 83.59 %

CONCLUSIONES

CONCLUSIONES

1. Eficiencia del Modelo (MobileNetV2):

- 52 seg.
- Arquitectura ligera y optimizada para móviles.
- Precisión moderada (79.28 % frutas y 83.59 % estado)

2. Precisión y Robustez (ResNet50):

- Más preciso (96.91 % frutas, 95.25 % estado)
- Capacidad para aprender caract, profundas con bloques resid.
- 135 seg.

3. Limitaciones del Modelo desde Cero:

- Menor precisión (77.47 % frutas y 73.73 % estado)
- Mayor tiempo de entrenamiento (431 seg).
- Carece de optimizaciones y aprendizajes previos.

4. Elección del Modelo:

- Escenarios con precisión prioritaria, ResNet50
- Tiempo y recursos limitados, MobileNetV2.

MUCHAS GRACIAS

