# Weekly Report

## LIU Honghao

### March 2021

## 1 Experiment

## 1.1 Hardware info

**CPU** information:

Name: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz

Thread Number: 64 Memory size: 512G

GPU info:

Name: Tesla V100-SXM2-32GB

Global memory: 32GB,Shared memory per block: 49KB

### 1.2 Results

Compared nonuniform Fourier transform between different methods. All methods are ran in 10 times and get the average values of time.

#### 1.2.1 Notations

N - number of uniformly distributed points

M - number of non-uniform points (not really non-uniformly distributed) Methods:

- 1 cufinufft, GPU version using global memory, using cufft for fast Fourier transform.
- 2 cufinufft, GPU version using shared memory, using cufft for fast Fourier transform.
- 3 finufft, CPU version with 64 threads (max threads) parallelized by openMP, using FFTW for fast Fourier transform.
- 4 finufft, CPU version with 32 threads (one thread per core) parallelized by openMP, using FFTW for fast Fourier transform.

Tol - tolerance, the maximum  $l^2$  error for one point (defined as equ. 1) can bear. C is the exactly correct value.  $c_r$  is the result calculated by NUFFT. Both C and  $c_r$  are complex numbers.

$$err = \frac{|C - c_r|}{\max\{|c_i|\}} \tag{1}$$

MemTrans - time for transferring data between host and to device.

Plan - plan time for some preparation operations like correction factor calculation, memory allocation for plan related information.

Exce - execution time for spreading, FFT and correction.

For direction, there are two types, inverse - from NUPTS to UPTS, forward - UPTS to NUPTS.

## 1.2.2 Statistics

For GPU version, when the input size is relative small, the plan step accounts for the major consumed time. Memory transferring between host and device costs most time as size is large. And method2 with shared memory is the fastest in all cases and methods. The speed up of GPU is more obvious - around 6 to 10 times faster - when the input size is over  $10^8$ . See table 1 3. However, the CPU version - finufft - can handle larger input size of M up to  $10^9$  which is 10 times larger than that of GPU, due to the large memory - 512GB. See table 2.

| N             | M (NUPTS)     | Method | MemTrans | (Plan+)Exec           | Total time |
|---------------|---------------|--------|----------|-----------------------|------------|
| 512*512       | 512*512       | 1      | 0.0012   | <b>0.0168</b> + 0.001 | 0.0195     |
|               |               | 2      | 0.001    | 0.0169 + 0.0007       | 0.0192     |
|               |               | 3      |          |                       | 0.0464     |
|               |               | 4      |          |                       | 0.0243     |
|               | 1024*1024     | 1      | 0.005    | <b>0.017</b> + 0.0037 | 0.0267     |
| 1024*1024     |               | 2      | 0.004    | <b>0.017</b> + 0.0026 | 0.025      |
| 1024 1024     |               | 3      |          |                       | 0.116      |
|               |               | 4      |          |                       | 0.063      |
|               | 10000 * 10000 | 1      | 0.277    | 0.0174 + 0.21         | 0.521      |
| 1024*1024     |               | 2      | 0.277    | 0.0173 + 0.159        | 0.47       |
|               |               | 3      |          |                       | 1.69       |
|               |               | 4      |          |                       | 2.07       |
|               | 10000 * 10000 | 1      | 0.45     | 0.0344 + 0.41         | 0.964      |
| 10000*10000   |               | 2      | 0.45     | 0.0332 + 0.29         | 0.844      |
| 10000,10000   |               | 3      |          |                       | 5.11       |
|               |               | 4      |          |                       | 4.9        |
| 10000 * 10000 | 10000 * 20000 | 1      | 0.753    | 0.646                 | 1.57       |
|               |               | 2      | 0.838    | 0.619                 | 1.34       |
|               |               | 3      |          |                       | 7.11       |
|               |               | 4      |          |                       | 7.43       |
| 10000 * 10000 | 10000 * 40000 | 1      | 1.33     | 1.37                  | 3.06       |
|               |               | 2      | 1.28     | 0.781                 | 2.41       |
|               |               | 3      |          |                       | 11         |
|               |               | 4      |          |                       | 12         |

Table 1: Running time with different methods and input size, precision: double, tolerance:  $10^{-6}$ , direction: inverse.

When the number of non-uniform points up to  $5*10^8$ , the memory is insufficient for spreading in GPU version (may solved by Multi-GPUs with message passing if need to scale),  $5*10^9$  for CPU. Table 2 shows running time of larger input size executing in CPU.

| N           | M (NUPTS)  | Total time |
|-------------|------------|------------|
|             | $5*10^{8}$ | 13.1       |
| 10000*10000 | $7*10^{8}$ | 16.8       |
| 10000,10000 | $10^{9}$   | 22.8       |
|             | $5*10^9$   | error      |

Table 2: Running time with different input size, tolerance is  $10^{-6}$ .

| N             | M (NUPTS)     | Method | MemTrans | (Plan+)Exec            | Total time           |
|---------------|---------------|--------|----------|------------------------|----------------------|
| 512*512       | 512*512       | 1      | 0.0012   | <b>0.0179</b> + 0.0005 | 0.0201               |
|               |               | 2      | 0.001    | <b>0.0166</b> + 0.0004 | 0.0186               |
|               |               | 3      |          |                        | 0.0367               |
|               |               | 4      |          |                        | 0.0239               |
|               | 1024*1024     | 1      | 0.005    | <b>0.0167</b> + 0.002  | 0.0246               |
| 1024*1024     |               | 2      | 0.0047   | <b>0.0168</b> + 0.0016 | 0.0239               |
|               |               | 3      |          |                        | 0.101                |
|               |               | 4      |          |                        | 0.0637               |
|               | 10000 * 10000 | 1      | 0.13     | 0.017 + 0.0903         | 0.254                |
| 1024*1024     |               | 2      | 0.13     | 0.0182 + 0.0841        | $\boldsymbol{0.249}$ |
|               |               | 3      |          |                        | 1.87                 |
|               |               | 4      |          |                        | 2.42                 |
|               | 10000 * 10000 | 1      | 0.45     | 0.033 + 0.255          | 0.808                |
| 10000*10000   |               | 2      | 0.45     | 0.033 + 0.195          | 0.749                |
| 10000 10000   |               | 3      |          |                        | 4.78                 |
|               |               | 4      |          |                        | 4.56                 |
| 10000 * 10000 | 10000 * 20000 | 1      | 0.487    | 0.307                  | 0.96                 |
|               |               | 2      | 0.487    | 0.279                  | 0.931                |
|               |               | 3      |          |                        | 6.91                 |
|               |               | 4      |          |                        | 7.41                 |
| 10000 * 10000 | 10000 * 40000 | 1      | 0.645    | 0.498                  | 1.43                 |
|               |               | 2      | 0.645    | 0.449                  | 1.38                 |
|               |               | 3      |          |                        | 11.2                 |
|               |               | 4      |          |                        | 12.6                 |

Table 3: Running time with different methods and input size, the precision is double, tolerance is  $10^{-6}$ , direction is forward.

Regarding tolerance, both methods can achieve error just  $10^{-12}$  for each point in 2D cases. When the input sizes of N and M are  $10^8$  and precision is double, speed of GPU is around 6 to 10 times faster than that of CPU in different tolerance. See table 4.

| Tol              | Method | Direction | Total time |  | Tol              | Method | Direction | Total time |
|------------------|--------|-----------|------------|--|------------------|--------|-----------|------------|
| 10 <sup>-1</sup> | 1      | inverse   | 0.755      |  | $10^{-6}$        | 1      | forward   | 0.809      |
|                  | 2      |           | 0.75       |  |                  | 2      |           | 0.749      |
|                  | 3      |           | 4.66       |  |                  | 3      |           | 4.72       |
|                  | 4      |           | 4.15       |  |                  | 4      |           | 4.69       |
|                  | 1      |           | 0.777      |  | 10 <sup>-9</sup> | 1      | inverse   | 1.21       |
|                  | 2      | formend   | 0.743      |  |                  | 2      |           | 1          |
|                  | 3      | forward   | 4.24       |  |                  | 3      |           | 5.63       |
|                  | 4      |           | 3.84       |  |                  | 4      |           | 5.93       |
| 10-3             | 1      | inverse   | 0.799      |  |                  | 1      | forward   | 0.843      |
|                  | 2      |           | 0.766      |  |                  | 2      |           | 0.792      |
|                  | 3      |           | 4.7        |  |                  | 3      |           | 5.55       |
|                  | 4      |           | 4.32       |  |                  | 4      |           | 5.94       |
|                  | 1      |           | 0.786      |  | $10^{-12}$       | 1      | inverse   | 1.54       |
|                  | 2      | forward   | 0.744      |  |                  | 2      |           | 1.34       |
|                  | 3      |           | 4.29       |  |                  | 3      |           | 14.1       |
|                  | 4      |           | 3.9        |  |                  | 4      |           | 10.9       |
| 10 <sup>-6</sup> | 1      | inverse   | 0.963      |  |                  | 1      | forward   | 0.918      |
|                  | 2      |           | 0.843      |  |                  | 2      |           | 0.901      |
|                  | 3      |           | 5          |  |                  | 3      |           | 13.7       |
|                  | 4      |           | 4.8        |  |                  | 4      |           | 10.6       |

Table 4: Running time with different tolerance and methods, the input sizes for N and M are  $10^8$ , precision is double.



Figure 1: Running time with different tolerance.