

Analyse Numérique

Série d'exercices N°2 Interpolation et approximation polynomiale

Niveau : 3^{ème} année Année universitaire : 2023-2024

Exercice 1 On considère les points (-2,4); (0,0);(1,0) et (2,4). Parmi les polynômes suivants, lequel est le polynôme d'interpolation P aux quatre points donnés précédement et justifier votre réponse.

(1)
$$P_1(X) = X^4 + \frac{2}{3}X^3 + 3X^2 + \frac{8}{3}X$$

(2)
$$P_2(X) = \frac{4}{3}X^2 - \frac{4}{3}$$

(3)
$$P_3(X) = \frac{1}{3}X^3 + X^2 - \frac{4}{3}X$$

(4)
$$P_4(X) = \frac{1}{6}X^4 + X^3 + \frac{2}{3}X^2 + X$$

Exercice 2 (Examen Mai 2019)

Partie I: Interpolation polynomial

- (a) Justifier l'existence d'un unique polynôme $P_2 \in \mathbb{R}_2[X]$ interpolant les points (-2, 16), (0, -4) et (2, 8).
- (b) Déterminer l'expression du polynôme P_2 par une méthode (vue en cours) de votre choix

Partie II : Approximation au sens des moindres carrées

Dans l'objectif d'étudier le chemin de freinage d'un véhicule, correspondant à la distance parcourue en mètres (m) du début du freinage jusqu'à l'arrêt total du véhicule, en fonction de la vitesse en Kilomètres par heure (Km/h) de ce dernier, 12 expériences indépendantes ont été réalisées. Les résultats obtenus sont présentés dans le tableau ci-dessous. On note par $X = (x_i)_{1 \le i \le 12}$ et $Y = (y_i)_{1 \le i \le 12}$, où x_i , et y_i , désignent, respectivement, la vitesse du véhicule et le chemin de freinage associés à l'éxpérience i.

i	1	2	3	4	5	6	7	8	9	10	11	12
x_i	40	50	60	70	80	90	100	110	120	130	140	150
y_i	9	11	20	27	39	45	58	78	79	93	108	12

(a) Déterminer les coefficients $Z = \begin{pmatrix} a \\ b \end{pmatrix}$ de la droite f(t, Z) = a + bt, qui ajuste au mieux les points $(x_i; y_i)_{1 \le i \le 12}$ au sens des moindres carrées. On donne les valeurs des sommes

suivantes:

$$\sum_{i=1}^{12} x_i = 1140; \ \sum_{i=1}^{12} x_i^2 = 122600; \ \sum_{i=1}^{12} y_i = 691; \ \sum_{i=1}^{12} x_i y_i = 80840$$

(b) Rouler à une vitesse de 105Km/h, le conducteur de ce véhicule pourrait-il éviter un obstacle survenant à une distance de 60m? Justifir votre réponse.

Exercice 3

- (1) Construire le polynôme P d'interpolation de Lagrange aux points (-1, e); (0, 1) et (1, e).
- (2) Sans faire de calcul, donner l'expression du polynôme de Lagrange Q qui interpole les trois points (-1,-1); (0,0) et (1,-1).
- (3) Trouver le polynôme de l'espace vectoriel $Vect(1, X, X^2)$ qui interpole les trois points (-1, -1); (0, 0) et (1, -1).

Exercice 4:

Soit la fontion définie sur \mathbb{R} par :

$$f(x) = \cos\left(\frac{\pi}{4}x\right).$$

- 1. Déterminer l'expression du polynôme de Newton interpolant les points $M_0(0, f(0)), M_1(1, f(1))$ et $M_2(2, f(2))$.
- 2. Calculer la valeur approchée de f au point $x = \frac{1}{2}$, puis déterminer l'erreur d'interpolation en ce point.
- 3. Donner une majoration de l'erreur d'interpolation sur [0,2]. Conclure.
- 4. En ajoutant un point supplémentaire $M_3(3, f(3))$, déduire l'expression du nouveau polynôme qui interpole les points M_0, M_1, M_2 et M_3 .