Structural and activity investigation into Al³⁺, La³⁺ and Ce³⁺ addition to the phosphomolybdate heteropolyanion for isobutane selective oxidation (2011)

$$M_x H_{3-3x} [PMo_{12}O_{40}]$$

M = Al, La or Ce

H = heteropolyanion (?)

 $0 \le x \le 1$ (x is a continuous variable)

Methods

- XRD x-ray diffraction
- Adsorption isotherm

Results

- Additions
 - Al $^{3+}$ addition \rightarrow causes primitive cubic phase
 - La³⁺ and Ce³⁺ addition \rightarrow reduces surface area of PMo structure
- Selective oxidation of isobutane → temperature-programmed experiments yields:
 - methacrolein
 - lactone
 - acetic acid (<u>not</u> with Al compounds)
 - propene (<u>only</u> with Al compounds)
 - carbon dioxide
 - water
- Preferential formation of propene (over acetic acid) in Al³⁺ addition may be attributed to:
 - smaller cation size
 - primitive cubic structure
- *Product formation* achieved via two distinct reaction processes:
 - Category 1 → associated with surface formation of isobutane, with reaction rate governed by 'bulk migration' of charged particles
 - Category 2 → concerned with 'deep penetration' within the bulk of the substrate,
 and subsequent *desorbing* (?) in a series of bell-shaped humps

- Product categorisation
 - Methacrolein → forms via both Category 1 & 2
 - All other products → forms via Category 2 only
- Kinetic analysis of activation barriers

Product	Category 1	Category 2
Methacrolein	$(67 \pm 2) \text{ to} > 350 \text{ kJ mol}^{-1}$	
Lactone	N/A	
Acetic acid	N/A	
Propene	N/A	
Carbon dioxide	N/A	
Water	N/A	

Summary

Metal cation addition to PMo anion results in:

- Increased thermal stability
- Decreased deactivation (increased activation?)
- Keggin structure remains intact (according to IR spectroscopy)

Questions:

- 1. Definitions:
 - a. Heteropolyanion
 - b. Desorb
 - c. Primitive cubic phase
 - d. Keggin structure
- 2. Atomic structures:
 - a. Aluminium → period 3 metal smaller cation sizes (?)
 - b. Lanthanum and cesium → period 8 lanthanide elements
- 3. Quantum mechanical analysis (?)

- 4. Structural analysis:
 - a. Use of other spectroscopic methods such as NMR or Raman
 - b. Relevance of AFM?
- 5. Particle size considerations and possible alternative methods:
 - a. Laser diffraction
 - b. Dynamic light scattering
 - c. Automated imaging (dynamic and static)
 - d. Resonant mass measurement
 - e. Spatial filter velocimetry