Oscilations Simple Harmonic Motion	Wave Equation	Charge is Quantized $q = ne, n = \pm 1, \pm 2, \pm 3$	1V/m ; $1eV = e(1V) =$	
$T = \frac{1}{f}$	$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$	$e = 1.602 \times 10^{-19} C$	$(1.60 \times 10^{-19} C)(1J/C) =$	$C = \frac{\varepsilon_0 A}{d}$: placas paralelas
J	Interference of Waves	Electric Fields	$1.60 \times 10^{-19} J$	$C = 2\pi\varepsilon_0 \frac{L}{\ln(\frac{b}{a})}$: cilindros
$x(t) = x_m \cos(\omega t + \phi)$	$y'(x,t) = y_1(x,t) + y_2(x,t)$	$\vec{E} = \frac{\vec{F}}{q_0} (N/C)$	Work done by Applied Force	(a)
$\omega = \frac{2\pi}{T} = 2\pi f$	y'(x,t) =	due to a Point	$\Delta K = K_f - K_i = W_{appF} + W_{efF}$ $W_{appF} = W_{appF} + W_{efF}$	$C = 4\pi\varepsilon_0 \frac{ab}{b-a} : \text{esferas}$
$v(t) = -\omega x_m \sin(\omega t + \phi)$	$\left[2y_m\cos\left(\frac{1}{2}\phi\right)\right]\sin\left(kx-\omega t+\frac{1}{2}\phi\right)$	$\vec{E} = \frac{1}{4\pi \varepsilon_0} \frac{ q }{r^2} \hat{r}$	$W_{appF} = -W_{efF}$ if stationary before and after move $K_f = K_i = 0$	$C = 4\pi\varepsilon_0 R$: esfera isolada Capacitors
$a(t) = -\omega^2 x_m \cos(\omega t + \phi)$	StandingWavesResonance		$\Delta U = U_f - U_i = W_{appF}$	
$> F = ma = m(-\omega^2 x)$	$y'(x,t) = [2y_m \sin(kx)]\cos(\omega t)$	$\vec{E} = \frac{\vec{F_0}}{q_0} = \frac{\vec{F_{01}}}{q_0} + \frac{\vec{F_{02}}}{q_0} + \dots =$	$\Delta U = U_f - U_i = W_{appF}$	$C_{eq} = \sum_{j=1}^{n} (C_j)$: in paralel, mesmo V separa q
$> F = -kx = -(m\omega^2)x$	$f = \frac{v}{\lambda} = n \frac{v}{2L} \text{ n=1,2,3}$ Waves 2	$\vec{E}_1 + \vec{E}_2 + \dots$	Equipotential Surfaces	= / \ \(\bar{\chi}\)
$\omega = \sqrt{\frac{k}{m}}$	Speed of Sound	due to Electric Dipole	$V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}$	$\frac{1}{C_{eq}} = \sum_{j=1}^{n} \left(\frac{1}{C_j}\right)$: in series,
` _	$v = \sqrt{\frac{B}{\rho}}$	$\vec{p} = qd$ if $z >> d$		mesmo q separa V
$T = 2\pi \sqrt{\frac{m}{k}}$		$E = \frac{1}{2\pi\varepsilon_0} \frac{p}{z^3}$	$V = -\int_{i}^{f} \vec{E} \cdot d\vec{s} \text{se} V_{i} = 0$	Energy Stored Electric Field
k: constante da mola	v: som no ar a 20 o C é 343 m/s Traveling Sound Waves	$2\pi\epsilon_0 z^3$ Dipole in eletric field	ex:infinity	$U = \frac{q^2}{2C} = \frac{1}{2}CV^2$
Energy in SHM	$s(x,t) = s_m \cos(kx - \omega t)$	$\vec{\tau} = \vec{p} \times \vec{E}$	Potential due to Point Charge	$u = \frac{1}{2} \varepsilon_0 E^2$: energy density
$U\left(t\right) = \frac{1}{2}kx^2$	$\Delta p(x,t) = \Delta p_m sin(kx - \omega t)$	$U = -\vec{p} \cdot \vec{E}$ $U = -\vec{p} \cdot \vec{E}$	$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$	Capacitor with a Dieletric
$K(t) = \frac{1}{2}mv^2$	$\Delta p = (v\rho\omega)s_m$	Gauss's Law	Potential due to GroupOfPoint-	If dieletric replace ε with $k\varepsilon$, k
$E = U + K = \frac{1}{2}kx_m^2$	Intensity and Sound Level	Eletric FLux	Charges Superposition principle,	dieletric constant
Damped SHM	$> I = \frac{P}{A}$	$\Phi = \oint \vec{E} \cdot d\vec{A}$	the sum of the values, un-	$\varepsilon_0 \oint k\vec{E} \cdot d\vec{A} = q$: GaussLaw w/
b: damping constante	$I = \frac{1}{2}\rho\nu\omega^2 s_m^2$	Gauss's Law	like electric fields that	Dialetric Current And Resistance
$F_d = -\hat{b}v$	distance $I = \frac{P_s}{4\pi r^2}$	$\varepsilon_0 \Phi = q_{enc}$ σ : charge per unit area	was a sum of vectors $V = \sum_{i=1}^{n} (V_i) = 1 \sum_{i=1}^{n} (q_i)$	Electric Current
$x(t) = x_m e^{-\frac{Ut}{2m}} \cos(\omega' t + \phi)$	decibel $\beta = (10dB)log(\frac{I}{I_0})$	$E = \frac{\sigma}{\varepsilon_0}$ ChargedIsolConducEx-	$V = \sum_{i=1}^{n} (V_i) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \left(\frac{q_i}{r_i}\right)$	$i = \frac{dq}{dt}$ 1ampere(1A)=1 coulomb
$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$		ternEF	Potential due to Electric Dipole $\vec{p} = qd$	per second(1C/s)
if b small $\omega' \approx \omega$	$I_0 = 10^{-12} W/m^2$ SourcesMusic	λ : linear charge density	if $r \gg d$	Current Density
$E(t) \approx \frac{1}{2}kx_m^2 e^{-\frac{bt}{m}}$	dois lados $f = \frac{v}{\lambda} = \frac{nv}{2L}$	$E = \frac{\lambda}{2\pi\varepsilon_0 r}$ Cylindrical Line	$V = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2}$	$i = \int \vec{J} \cdot d\vec{A}$
Waves $\frac{L(t)}{2} \sim \frac{2}{2} \kappa x_m c^{-m}$	um lado $f = \frac{v}{\lambda} = \frac{nv}{4L}$	$E = \frac{\sigma}{2\varepsilon_0}$ Planar Non-conducting	Potential due to Continous Dis-	$\vec{J} = (ne)\vec{v_e} : \vec{v_e} \text{ drift speed}$
Transverse Waves	Beats	Sheet	tribution	Resistance and Resistivity
Luz vacuo: <i>c</i> = 299792458m/s k: numero de onda	$f_{beat} = f_1 - f_2$	$E = \frac{\sigma}{\varepsilon_0}$ Planar Two Conducting	$> V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r} = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda dx}{r}$	$R = \frac{V}{i} : 1 \text{ ohm } (1\Omega) = 1 \text{ volt per}$
λ : comprimento de onda	Doppler Effect Detector: aprox + , afast -	Plates	Calculating field from potential	ampere = 1 V/A
$y(x,t) = y_m \sin(kx - \omega t)$	Source: aprox - , afast +	Spherical Shell	$>E_S=-\frac{\partial V}{\partial c}$	$ \rho = \frac{1}{\sigma} = \frac{\vec{E}}{\vec{r}} : \rho $ Resistivity, σ
$k = \frac{2\pi}{\lambda}$	$f' = \frac{\nu \pm \nu_{\tilde{D}}}{\nu \pm \nu_{S}}$	$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} : r \ge raioShell$	$> E_x = -\frac{\partial V}{\partial x}$; $E_y = -\frac{\partial V}{\partial y}$; $E_z =$	conductivity
$>\omega=\frac{2\pi}{T}$	SupersonicSpeedShockWave	E = 0 : r < raioShell		$R = \rho \frac{L}{A}$
$f = \frac{1}{T} = \frac{\omega}{2\pi}$	$sin\theta = \frac{vt}{v_s t} = \frac{v}{v_s}$	Sphere	$-\frac{\partial V}{\partial z}$	· A
$v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f$	Electric Charge	$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{R^3} r$	$> E = -\frac{\Delta V}{\Delta s}$	$p - p_0 = p_0 \alpha (T - T_0)$ Power Potencia
$V - \frac{1}{k} - \frac{1}{T} - \lambda J$ EnergPow Wave String	Coulomb's Law	Electric Potential	ElectricPotentialEnergy System-	P = iV: rate eletrical energy transfer
$ > dK = \frac{1}{2}dm u^2 $	$> i = \frac{dq}{dt}$	$V = -\frac{W}{q}$	PointCharges	$P = i^2 R = \frac{V^2}{R}$: resistive dissipa-
$P_{avg} = \frac{1}{2}\mu v\omega^2 y_m^2$	$\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}$	$V = \frac{q}{q_0} = \frac{U}{q_0}$ (volt=joule per	$U = W = q_2 V = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$	tion $R = R$. Tesistive dissipation
$1 avg - \frac{1}{2} \mu v \omega y_m$	$k = \frac{1}{4\pi\varepsilon_0}^{r^2} = 8.99 \times 10^9 N \cdot m^2 / C^2$	coulomb) $q_0 = q_0$ (voite-joure per	Capacitance	1 volt-ampere $1V \cdot A =$
		Units	q = CV 1 farad (1 F) = 1 coulomb per volt (1 C/V)	$(1\frac{J}{C})(1\frac{C}{s}) = 1\frac{J}{s} = 1W \text{ 1 watt}$
	$\varepsilon_0 = 8.85 \times 10^{-12} C^2 / N \cdot m^2$	$1N/C = \left(1\frac{N}{C}\right)\left(\frac{1V\cdot C}{1J}\right)\left(\frac{1J}{1N\cdot m}\right) =$	ionio per voit (1 C/ v)	
		(C / (1) / (11N·m1)		

$P = \frac{W}{\Delta t}$ Circuitos Eletricos	CMag devido CorrenteRectili- nea Regra mao direita: polegar	$B = \frac{\mu_0 i}{2\pi R}$ long straight wire , R distancia	RL Circuits $i = \frac{\xi}{R} \left(1 - e^{-\frac{t}{\tau_L}} \right) \text{ rise of current}$	Electromagnetic Waves $E = E_m sin(kx - \omega t) \text{ electric}$
Amperimetro serie, Voltimetro paralelo	corrente eletrica, dedos dobram	$B = \frac{\mu_0 t}{4\pi R}$ semi-infinite straight	\	field $B = B_m sin(kx - \omega t)$ magnetic
Resistencias	no sentido de B ; Pontos(sairPag, cima) sao dados pela ponta dos	wire $B = \frac{\mu_0 i \phi}{4\pi R} \text{ center of circular arc,}$	$i = \frac{\xi}{R} e^{-\frac{1}{\tau_L}} = i_0 e^{-\frac{1}{\tau_L}}$ decay of	field
$R_{eq} = \sum_{j=1}^{n} (R_j)$: in series,	dedos, do lado q aparecem pri-	ϕ arc angle	current $\tau_L = \frac{L}{R}$ time constant	$c = \frac{E}{B} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 3.0 \times 10^8 \text{m/s}$
mesmo i separa V	meiro dps de dar volta fio, outro	$B = \frac{\mu_0 i}{2R}$ full circle	EnergyStored MagField	wave speed vacuum Energy Transport
$\frac{1}{R_{eq}} = \sum_{j=1}^{n} \left(\frac{1}{R_j}\right)$: in paralel,	lado cruz(entrarPag, baixo) ; Fio empurrado po lado do campo	Force between parallel wires	$U_B = \frac{1}{2}Li^2$ magnetic energy	$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$ Poyting vector
mesmo V separa i Circuitos RC	contario ao q esta a receber	$F_{ba} = i_b L B_a \sin(90^\circ) = \frac{\mu_0 L i_a i_b}{2\pi d}$	EnergyDensity MagField	$I = \frac{1}{cu_0} E_{rms}^2$ intesidade da onda
Reistencia Capacitor em serie	CMag Exerc Forca Corrent	L length, d distance, mesmo	$u_B = \frac{B^2}{2\mu_0}$ magEnergy density	7.0
$RC = \tau$: constante de tempo capacitiva	$F_B = q(\vec{v} \times \vec{B}) nAL$ n numero de cargas, A area, L comprimento	sentido atrai Amperes Law	Mutual Induction	$I = \frac{power}{area} = \frac{P_s}{4\pi r^2}$ onda todos os lado intensidade
$q = C\xi \left(1 - e^{-\frac{t}{RC}}\right) : \text{carga}$	$\vec{F} = i\vec{L} \times \vec{B}$ força sobre um fio	$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{envolvida} \text{ mao aber-}$	$\xi_2 = -M \frac{di_1}{dt}$	Radiation Pressure
\ , /	retilineo	ta dedos ao longo do loop, pra	$\xi_1 = -M \frac{di_2}{dt}$	$p_r = \frac{1}{c}$ total absorption
$i = \left(\frac{\xi}{R}\right)e^{-\frac{t}{RC}}$: carga	$\vec{F} = i \int_a^b d\vec{L} \times \vec{B}$ força sobre um	frente do polegar positivo, atras negativo	M medida em henries, induc- tancia mutua	$p_r = \frac{2i}{c}$ total reflection
$q = q_0 e^{-\frac{t}{RC}}$: descarga	fio CMag Exerc MomentForca	$B = \frac{\mu_0 i}{2\pi r}$ ouside straight wire	Corrente Alternada	vezes A area para dar a forca feita pela onda
$i = -\left(\frac{q_0}{RC}\right)e^{-\frac{t}{RC}}$: descarga	Espira	7	Potencia $i_{rms} = \frac{i}{\sqrt{2}}$ corrente rms	Polarization
Campo Magnetico	$\tau = iABsin(\theta)$, A area, N num espiras, θ angl normalA e B	$B = \left(\frac{\mu_0 t}{2\pi R^2}\right) r \text{ inside striagh wire}$	12	$i = \frac{1}{2}i_0$ passar por filtro pola-
$\vec{F_B} = q(\vec{v} \times \vec{B})$	(max qd espira paralelo campo)	Solenoid and Toroids $B = \mu_0 in$ idela solenoid, n num	$V_{rms} = \frac{V}{\sqrt{2}}$ tensao rms	rizador $i = i_0 cos^2 \theta$ bater no filtro a um
$F_B = q vBsen(\phi)$	$\vec{\tau} = Ni\vec{A} \times \vec{B}$, A intensidade	turns	$\xi_{rms} = \frac{\xi}{\sqrt{2}}$ forca eletomotriz	angulo Interferencia Difracao
Regra mao direita(pistola): polegar F_B , indicador v, palma	area, sentido normalDeA Regra mao direita espiras (achar	$B = \frac{\mu_0 i N}{2\pi} \frac{1}{r} \text{ toroid, r dist centro}$	rms $P_{med} = i_{rms}^2 R = \xi_{rms} i_{rms} cos(\phi)$	Interferencia
В	sentido de A): Dedos curvam	CurrCarryingCoil as magDipole	potencia media	$\delta = r_2 - r_1 = dsin\theta$ diferenca caminho ondas, d separacao
Unidade campo magnetico: Test-	sentido da corrente, polegar sentido de A	$\vec{B}(z) = \frac{\mu_0}{2\pi} \frac{\mu}{z^3} z$ dist centro bob	Transformadores	fendas, θ angulo normal do
$la(T) = T = \frac{Wb}{m^2} = \frac{N}{C \cdot (m/s)} = \frac{N}{A \cdot m}$	Momento Dipolar Magnetico	Induction Inductance Faraday Law of Induction	$V_s = V_p \frac{N_s}{N_p}$ transformação	ecra/linha q parte na normal ate ao ponto
(Wb é weber) (Unidade cgs é um gauss(G) 1T=10 ⁴ G)	$\vec{\mu} = Ni\vec{A}$	$\Phi_B = \int \vec{B} \cdot d\vec{A}$ magnetic flux pela	tensao $I_s = I_p \frac{N_p}{N_s}$ transformação cor-	$\delta = dsin\theta_{brilhante} = m\lambda \text{ m mul}$
ForcaParticCarregMovCircular	$\vec{\tau} = \vec{\mu} \times \vec{B}$ momento de Forca	area Å	$r_s = r_p \frac{1}{N_s}$ transformação corrente	tiplo do comprimento de onda
$ q vB = \frac{mv^2}{r}$	$U(\theta) = -\vec{\mu} \times \vec{B}$ energia potencial	$\Phi_B = BA$ B prependicular A	$R_{eq} = \left(\frac{N_p}{N_s}\right)^2 R_s$	$\delta = dsin\theta_{escura} = \left(m + \frac{1}{2}\right)\lambda \text{ m}$
$r = \frac{mv}{ q B}$	magentica CMag Prodz por Dipolo	$\xi = -N \frac{d\Phi_b}{dt}$ faraday law, N num de espiras	$N_{eq} = N_s N_s$ MaxwellEquations	multiple de meio $y = Ltan\theta \approx Lsin\theta$ L distancia
$\omega = \frac{v}{r} = \frac{ q B}{m}$	$\vec{B}(z) \cong \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{z^3}$	Inducted Eletric Fields	$\Phi_B = \oint \vec{B} \cdot d\vec{A} = 0$ gauss mag	ecra de visualizacao, L»d d» λ
$f = \frac{1}{T} = \frac{\omega}{2\pi} = \frac{ q B}{2\pi m}$	$com \mu_0 = 4\pi \times 10^{-7} T \cdot m/A$	$\xi = \oint \vec{E} \cdot d\vec{s}$	field ; $\oint \vec{B} \cdot d\vec{s} = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$	$y_{brilhante} = \frac{\lambda L}{d} m \text{ distVert bril}$
$M = T = 2\pi = 2\pi m$ $MovParticCarregCampoElecMag$	MagneticFields dueTo Currents	$\oint \vec{E} \cdot d\vec{s} = -N \frac{d\Phi_b}{dt}$	maxwell law infuction ;	hantes $y_{escura} = \frac{\lambda L}{d} \left(m + \frac{1}{2} \right)$ distVert
$> \vec{F} = q\vec{E} + q(\vec{v} \times \vec{B})$	Permeability con-	Inductance	$\oint \vec{B} \cdot d\vec{s} = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt} + \mu_0 i_{enc}$	escura $-\frac{1}{d}(m+\frac{1}{2})$ dist vert
SelectorVelocidade	stant(constante magnetica): $\mu_0 = 4\pi \times 10^{-7} \ T \cdot m/A \approx$	$L = \frac{N\Phi_B}{i} \left(T m^2 / A \right) \text{inductance}$	ampere-maxwell law	Difração $asin\theta = m\lambda$ minimos, a largura
$>$ Se $F_B = F_E : v = \frac{E}{B}$ mov reto	$\mu_0 = 4\pi \times 10^{-1} \cdot m/A \approx 1.26 \times 10^{-6} T \cdot m/A$	$\frac{L}{l} = \mu_0 n^2 A$ inductance of Sole-	Electrons	$\theta_{min} = \frac{\lambda}{a}$
	$d\vec{B} = \frac{\mu_0}{4\pi} \frac{i d\vec{s} \times \hat{r}}{r^2} ds = dL (compri-$	noid, A area, l lenght, n num turns	$\mu_s = -\frac{e}{m}\vec{S}$ spin angular momen-	Difracao Circular
	mento) $4\pi r^2$	$\xi_L = -L \frac{dt}{dt}$ self-induced eletro-	tum, S spin ;; $e = 1.60 \times 10^{-19} C$	$\theta = 1,22 \frac{\lambda}{d}$ d diametro
		motriz	$; m = 9.11 \times 10^{-31} kg ; \dots$	