Sales Forecast

Elizabeth Sebastian

Contents

1 Introduction/ Background

4 Different Models

Problem Statement

5 Evaluate & compare different Models

3 EDA

6 Conclusion

Background

Sales forecasting is essentially involves predicting your future sales/profit, based on the sales that your dealership has on order. The purpose of this is to give you an insight into your margins so that you are able to manage your business more efficiently. This estimation certainly helps different companies to increase their revenues.

Problem Statement

The main objective is to estimate or predict the total sales of Walmart retail goods at stores in various locations for the next 28-days. The prediction is based on 5 years of historical daily total sales data. This project intended to evaluate and compare a number of statistical forecasting algorithms on the given data. SMAPE (symmetric mean absolute percentage error) is used to quantify the accuracy of all forecasts and to compare different forecasting algorithms. A lower SMAPE means higher accuracy.

Data

Total Sales

- 1941 days columns/features,
 ~5 years of data
- Christmas the sales greatly fall less than 50
- Demand is growing every year

Total sales every year

Huge number of sales happening during the weekends.

Since 2012, August rates the highest sales about 1.2M products July either ranks 2nd or 3rd on total sales. At 2016, the sales numbers have increased almost 20%.

EDA

Sales on Snap days are high than Non-Snap days.

Temporal_train_test_split

Models using SKtime

Naive/ Seasonal Naive

Exponential Smoothing

Auto ETS

Auto Arima

XGBoost

LightGBM

Ensemble

BATS/TBATS

Theta

FB Prophet

Random Forest

Naive Model

- Predicting the last value
- SMAPE Loss = 0.173581

Seasonal Last Seasonal Naive Model

- Predicting the last season
- SMAPE Loss = 0.087535

Exponential Smoothing

- Uses Exponential Window Function
- SMAPE Loss = 0.08931

AUTO ETS

- Automated Exponential Smoothing
- Automatic Model Selection
- SMAPE Loss = 0.081176

Auto ARIMA

- Autoregressive Integrated Moving Average
- SMAPE Loss = 0.571929

BATS

- Exponential smoothing state space model with Box-Cox transformation,
 ARMA errors, Trend and Seasonal components
- Fit the best performing model
- SMAPE Loss = 0.070344

TBATS

- Exponential smoothing state space model with Trigonometric seasonality,
 Box-Cox transformation, ARMA errors, Trend and Seasonal components
- Automatically fit the best performing model
- SMAPE Loss = 0.072434

ThetaForecaster

- Equivalent to simple exponential smoothing (SES) with drift.
- SMAPE Loss = 0.080372

Prophet

- The best performing model
- Tried with 2 different API(SKtime, FBprophet)
- Both the API produced similar result.
- SMAPE Loss = 0.031872

Random Forest

- Construct a multitude of decision trees and output mean prediction of individual trees
- SMAPE Loss = 0.060069

XGBRegressor

- Extreme Gradient Boosting
- SMAPE Loss = 0.067767

LGBM Regressor

- Light Gradient Boosting Machine
- Similar to XG Boost
- SMAPE Loss = 0.060069

SKtime Ensembler

- Ensemble multiple forecasting algorithms
- SMAPE Loss = 0.063478

Compare Different Models

Model vs SMAPE Losss

Conclusion

- Successfully predict the total sales of Walmart retail goods at stores in various locations for the next 28-days.
- Evaluated and compared a number of statistical forecasting algorithms on the given data.