Ejercicios Módulo 11

En los ejercicios 1 a 4 determine cuáles de las siguientes transformaciones $T: \mathbb{R}^2 \to \mathbb{R}$ son lineales.

$$1. T(x, y) = 3x + y.$$

2.
$$T(x, y) = x^2 - y$$
.

3.
$$T(x, y) = y$$
.

4.
$$T(x, y) = 2$$
.

En los ejercicios 5 a 8 determine cuáles de las siguientes transformaciones $T: \mathbb{R}^2 \to \mathbb{R}^2$ son lineales.

5.
$$T(x, y) = (x, 0)$$
.

6.
$$T(x, y) = (1, y)$$
.

7.
$$T(x, y) = (x^2, y^2)$$
.

8.
$$T(x, y) = (xy, x + y)$$
.

En los ejercicios 9 a 11 determine cuáles de las siguientes transformaciones $T: \mathbb{P}_2 \to \mathbb{P}_3$ son lineales.

9.
$$T(a_0 + a_1x + a_2x^2) = a_0 + a_1x^2 + a_2x^3$$
.

10.
$$T(a_0 + a_1x + a_2x^2) = (a_0 + a_1)x - (2a_1 + a_2)x^3$$
.

11.
$$T(a_0 + a_1x + a_2x^2) = a_1a_2 + 3a_0a_2x^2 - x^3$$
.

Determine si las transformaciones dadas en los ejercicios 12 a 20 son lineales.

12.
$$T: M_{22} \to \mathbb{R}$$
 dada por $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$.

13.
$$T: M_{22} \to \mathbb{R}$$
 dada por $T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a+b+c+d$.

14.
$$T: M_{nn} \to \mathbb{R}$$
 dada por $T(A) = a_{11} + a_{22} + ... + a_{nn}$.

15.
$$T: M_{nn} \to \mathbb{R}$$
 dada por $T(A) = a_{11} \ a_{22} \dots a_{nn}$.

16.
$$T: M_m \to \mathbb{R}$$
 dada por $T(A) = \det A$.

17.
$$T: \mathbb{R}^n \to \mathbb{R}$$
 dada por $T(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n$, con $a_1, a_2, ..., a_n$ constantes dadas.

Capítulo 3: Transformaciones lineales

19.
$$T: C[0, 1] \to \mathbb{R}$$
 dada por $T(f(x)) = f(x) + 1$.

20.
$$T: C[0, 1] \to \mathbb{R}$$
 dada por $T(f) = f(1)$.

En los ejercicios 21 y 22 se describe geométricamente una transformación $T: \mathbb{R}^2 \to \mathbb{R}^2$. Defina analíticamente la transformación $T: \mathbb{R}^2 \to \mathbb{R}^2$. mación y muestre que es lineal.

21.

22.

- Sea B una matriz cuadrada de orden n. Considere la transformación $T: M_{n \times n} \to M_{n \times n}$ dada por T(A) = AB BA23. (B es una matriz fija de orden n). Demuestre que T es una transformación lineal.
- Si $T:V\to W$ es una transformación lineal, demuestre que αT también es una transformación lineal de V en W. 24.
- Sean T_1 y T_2 transformaciones lineales de $\mathbb{R}^n \to \mathbb{R}^m$ dadas por T_1 (\mathbf{x}) = Ax y T_2 (\mathbf{x}) = $B\mathbf{x}$. Determine: 25.
 - $(T_1+T_2)(\mathbf{x}).$ a.
 - $(T_1 \circ T_2)(\mathbf{x}).$

26. Sean T_1 y T_2 transformaciones lineales de \mathbb{R}^3 en \mathbb{R}^2 dadas por:

$$T_{1}\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - y + z \\ x + y \end{bmatrix} \qquad \qquad y \qquad T_{2}\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -x + y \\ 2x - y - z \end{bmatrix}.$$

Calcule $T_1 + T_2$, $4T_1$.

27. Sean
$$T_1: \mathbb{R}^3 \to \mathbb{R}^2$$
 tal que $T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - y + z \\ x + 2z \end{bmatrix}$ y $T_2: \mathbb{R}^2 \to \mathbb{R}^3$ tal que $T_2\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + y \\ x - 4y \\ x - y \end{bmatrix}$.

Determine $(T_1 \circ T_2)$ y $(T_2 \circ T_1)$.