SOME DISCRETE DISTRIBUTIONS

Name	Parameters	Genesis / Usage	$p(x) = \mathbb{P}[X = x]$ and non-zero range	$\mathbb{E}[X]$	Var(X)	Comments
Uniform (discrete)	$k\in\mathbb{N}$	Set of k equally likely outcomes.	p(x) = 1/k $x = 1,, k$	$\frac{k+1}{2}$	$\frac{k^2-1}{12}$	Fair dice roll with $k = 6$.
Bernoulli trial	$\theta \in [0,1]$	Experiment with two outcomes; typically, success $= 1$, fail $= 0$.	$p(x) = \theta^x (1 - \theta)^{1-x}$ $x = 0, 1$	θ	$\theta(1-\theta)$	
Binomial	$n \in \mathbb{N}$ $\theta \in [0, 1]$	Number of successes in n i.i.d. Bernoulli trials.	$ p(x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n-x} $ $ x = 0, 1, 2,, n $	$n\theta$	$n\theta(1-\theta)$	Often written $Bin(n, \theta)$. $Bin(1, \theta) \sim Bernoulli(\theta)$
Geometric	$\theta \in (0,1]$	Number of failed i.i.d. Bernoulli trials before the first success.	$p(x) = \theta(1 - \theta)^{x}$ $x = 0, 1, 2, \dots$	$\frac{\theta}{1-\theta}$	$\frac{\theta^2}{(1-\theta)^2}$	Alternative parametrisations: swap θ and $1 - \theta$, or $X' = X + 1$ to include the final trial.
Negative Binomial	$k \in \mathbb{N}$ $\theta \in (0, 1]$	Number of failed i.i.d. Bernoulli trials before the k^{th} success.	$p(x) = {x+k-1 \choose x} \theta^k (1-\theta)^x$ $x = 0, 1, 2, \dots$	$\frac{k(1-\theta)}{\theta}$	$\frac{k(1-\theta)}{\theta^2}$	Many alternative parametrisations. $\operatorname{NegBin}(1, \theta) \sim \operatorname{Geometric}(\theta)$.
Hypergeometric	$N \in \mathbb{N}$ $k \in \{0, \dots, N\}$ $n \in \{0, \dots, n\}$	Number of special objects in a random sample of n objects, from a population of N objects with k special objects.	$p(x) = {k \choose x} {N-k \choose n-x} / {N \choose n}$ $x = 0,, n$	$\frac{nk}{N}$	$n\frac{N-n}{N-1}\frac{k}{N} \times \left(1 - \frac{k}{N}\right)$	
Poisson	$\lambda \in (0, \infty)$	Counting events occurring uniformly at random within space or time.	$p(x) = \frac{e^{-\lambda}\lambda^x}{x!}$ $x = 0, 1, 2, \dots$	λ	λ	

SOME CONTINUOUS DISTRIBUTIONS

Name	Parameters	Genesis / Usage	$f(x) = \mathbf{p.d.f.}$ and non-zero range	$\mathbb{E}[X]$	Var(X)	Comments
Uniform (continuous)	$\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$	The uniform distribution for a continuous interval.	$f(x) = \frac{1}{\beta - \alpha}$ $x \in (\alpha, \beta)$	$\frac{\alpha+\beta}{2}$	$\frac{(\beta - \alpha)^2}{12}$	
Normal	$\mu \in \mathbb{R}$ $\sigma \in (0, \infty)$	Empirically and theoretically (via CLT) a good model in many situations.	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $x \in \mathbb{R}$	μ	σ^2	Often written $N(\mu, \sigma^2)$. Alternative parameter: $\tau = \frac{1}{g^2}$. $a N(\mu, \sigma^2) + b \sim N(a\mu + b, a^2\sigma^2)$
Exponential	$\lambda \in (0, \infty)$	Inter-arrival times of random events.	$f(x) = \lambda e^{-\lambda x}$ $x \in (0, \infty)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	Often written $\text{Exp}(\lambda)$. Alternative parameter: $\theta = \frac{1}{\lambda}$.
Gamma	$\alpha \in (0, \infty)$ $\beta \in (0, \infty)$	Lifetimes of ageing items, multi- inter-arrival times.	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$ $x \in (0, \infty)$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	Often written $\Gamma(\alpha, \beta)$. Alternative parameter: $\theta = \frac{1}{\beta}$. Gamma $(1, \lambda) \sim \text{Exp}(\lambda)$
Beta	$\alpha \in (0, \infty)$ $\beta \in (0, \infty)$	Quantities constrained to be within intervals.	$f(x) = \frac{1}{\mathcal{B}(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$ $x \in [0,1]$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$	$Beta(1,1) \sim Uniform(0,1)$
Cauchy	$a \in \mathbb{R}$ $b \in (0, \infty)$	Heavy tailed, pathological examples.	$f(x) = \frac{1}{\pi b} \frac{b^2}{(x-a)^2 + b^2}$ $x \in \mathbb{R}$	undefined	undefined	
Pareto	$\alpha \in (0, \infty)$ $\beta \in (0, \infty)$	Heavy tailed quantities.	$f(x) = \frac{\alpha \beta^{\alpha}}{x^{\alpha+1}}$ $x \in (\beta, \infty)$	$\begin{vmatrix} \frac{\alpha\beta}{\alpha-1} \\ \text{if } \alpha > 1 \end{vmatrix}$	$\frac{\alpha^2 \beta}{(\alpha - 1)^2 (\alpha - 2)}$ if $\alpha > 2$	Sometimes written $\operatorname{Pareto}(\beta, \alpha)$. $\log\left(\frac{\operatorname{Pareto}(\alpha, \beta)}{\beta}\right) \sim \operatorname{Exp}(\alpha)$
Weibull	$k \in (0, \infty)$ $\beta \in (0, \infty)$	Lifetimes, extreme values.	$f(x) = \beta k x^{k-1} e^{-\beta x^k}$ $x \in (0, \infty)$	$\frac{\Gamma(1+1/k)}{\beta^{1/k}}$	$\frac{\Gamma(1+\frac{2}{k})+\Gamma(1+\frac{1}{k})^2}{\beta^{2/k}}$	Alternative parameter: $\lambda = \beta^{-1/k}$ $\beta \text{ Weibull}(k, \beta)^k \sim \text{Exp}(1)$
Log-Normal	$\mu \in \mathbb{R}$ $\sigma \in (0, \infty)$	Quantities related to exponential growth.	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\log x - \mu)^2}{\sqrt{2}\sigma}\right)$ $x \in (0, \infty)$	$e^{\mu + \frac{1}{2}\sigma^2}$	$(e^{\sigma^2} - 1) \times e^{2\mu + \sigma^2}$	Often written $LogN(\mu, \sigma^2)$. $log(LogN(\mu, \sigma^2)) \sim N(\mu, \sigma^2)$
Chi-squared	$n \in \mathbb{N}$	Statistical testing.	$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2 - 1} e^{-x/2}$ $x \in (0, \infty)$	n	2n	Often written χ_n^2 . $X_n^2 \sim \text{Gamma}(n/2, 1/2)$ $X_i \sim N(0, 1) \text{ i.i.d. } \Rightarrow \sum_{i=1}^n X_i^2 \sim \chi_n^2$
Student t	$n \in \mathbb{N}$	Statistical testing.	$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$ $x \in \mathbb{R}$	0 if n > 1	$\frac{n}{n-2}$ if $n > 2$	Often written t_n . Can allow $n \in (0, \infty)$. $t_1 \equiv \text{Cauchy}(0, 1)$
Inverse Gamma	$\alpha \in (0, \infty)$ $\beta \in (0, \infty)$	Quantities related to the Gamma distribution.	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha - 1} \exp(-\beta/x)$ $x \in (0, \infty)$	$\frac{\beta}{\alpha - 1} \text{ if } \alpha > 1$	$ \frac{\beta^2}{(\alpha-1)^2(\alpha-2)} $ if $\alpha > 2$	Often written $IGamma(\alpha, \beta)$. $IGamma(\alpha, \beta) \sim \frac{1}{Gamma(\alpha, \beta)}$

SOME CONJUGATE PAIRS

Model family	Prior family	Data	Posterior parameters
Bernoulli $(\theta)^{\otimes n}$	$\theta \sim \mathrm{Beta}(a,b)$	$x \in \{0,1\}^n$	$a^* = a + \sum_{i=1}^{n} x_i$ $b^* = b + n - \sum_{i=1}^{n} x_i$
$\operatorname{Bin}(m_1, \theta) \otimes \ldots \otimes \operatorname{Bin}(m_n, \theta)$ with $m_1, \ldots m_n \in \mathbb{N}$ fixed	$\theta \sim \mathrm{Beta}(a,b)$	$x \in \{0, 1, \dots, \}^n$ where $x_i \in \{0, \dots, m_i\}$	$a^* = a + \sum_{1}^{n} x_i b^* = b + \sum_{1}^{n} m_i - \sum_{1}^{n} x_i$
Geometric $(\theta)^{\otimes n}$	$\theta \sim \mathrm{Beta}(a,b)$	$x \in \{0, 1, \dots, \}^n$	$a^* = a + n$ $b^* = b + \sum_{i=1}^{n} x_i$
$\operatorname{Poisson}(\theta)^{\otimes n}$	$\theta \sim \text{Gamma}(a, b)$	$x \in \{0, 1, \dots, \}^n$	$a^* = a + \sum_{i=1}^{n} x_i$ $b^* = b + n$
$\mathrm{Exp}(\lambda)^{\otimes n}$	$\lambda \sim \text{Gamma}(a, b)$	$x \in (0, \infty)^n$	$a^* = a + n$ $b^* = b + \sum_{i=1}^{n} x_i$
Weibull $(k, \theta)^{\otimes n}$ with $k \in (0, \infty)$ fixed	$\theta \sim \text{Gamma}(a, b)$	$x \in (0, \infty)^n$	$a^* = a + n$ $b^* = b + \sum_{i=1}^{n} x_i^k$
$ N(\theta, \sigma^2)^{\otimes n} $ with $\sigma \in (0, \infty)$ fixed	$\theta \sim N(u, s^2)$	$x \in \mathbb{R}^n$	$u^* = \left(\frac{1}{\sigma^2} \sum_{1}^{n} x_i + \frac{u}{s^2}\right) / \left(\frac{n}{\sigma^2} + \frac{1}{s^2}\right)$ $(s^*)^2 = 1 / \left(\frac{n}{\sigma^2} + \frac{1}{s^2}\right)$
$ \begin{array}{ c c } N(\theta,\frac{1}{\tau})^{\otimes n} \\ \text{with } \tau \in (0,\infty) \text{ fixed} \end{array} $	$\theta \sim N(u, \frac{1}{t})$	$x \in \mathbb{R}^n$	$u^* = (\tau \sum_{i=1}^{n} x_i + ut) / (\tau n + t)$ $\frac{1}{t^*} = 1 / (\tau n + t)$
$ \begin{array}{ c c } N(\mu,\frac{1}{\tau})^{\otimes n} \\ \text{with } \mu \in \mathbb{R} \text{ fixed} \end{array} $	$ au \sim \operatorname{Gamma}(a,b)$	$x \in \mathbb{R}^n$	$a^* = a + \frac{n}{2}$ $b^* = b + \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2$
$\mathrm{N}(\mu,rac{1}{ au})^{\otimes n}$	$(\mu, \tau) \sim \text{NGamma}(m, p, a, b)$	$x \in \mathbb{R}^n$	$m^* = \frac{n\bar{x} + mp}{n+p}$ $p^* = n + p$ $a^* = a + \frac{n}{2}$ $b^* = b + \frac{n}{2} \left(s^2 + \frac{p}{n+p} (\bar{x} - m)^2 \right)$ where $\bar{x} = \frac{1}{n} \sum_{1}^{n} x_i$ and $s^2 = \frac{1}{n} \sum_{1}^{n} (x_i - \bar{x})^2$

See the sheet on conditional probability for the Normal-Gamma distribution.

For all other distributions, see the reference sheets of discrete and continuous distributions.

CONDITIONAL PROBABILITY AND RELATED FORMULAE

We say that a random variable X is **discrete** if there exists a countable set $A \subseteq \mathbb{R}^d$ such that $\mathbb{P}[X \in A] = 1$. In this case the function $p_X(x) = \mathbb{P}[X = x]$, defined for $x \in \mathbb{R}^d$, is known as the **probability mass function** of X. The **range** of X is the set $R_X = \{x \in \mathbb{R}^d : \mathbb{P}[X = x] > 0\}$.

We say that a random variable X is **continuous** if there exists a function $f_X : \mathbb{R}^d \to [0, \infty)$ such that $\mathbb{P}[X \in A] = \int_A f_X(x) dx$ for all $A \subseteq \mathbb{R}^d$. In this case f_X is known as the **probability density function** of X. The **range** of X is the set $R_X = \{x \in \mathbb{R}^d : f_X(x) > 0\}$.

If X and Y are discrete, and $p_X \propto p_Y$, then $X \stackrel{\text{d}}{=} Y$. If X and Y are continuous, and $f_X \propto f_Y$, then $X \stackrel{\text{d}}{=} Y$.

If X is a random variable and $\mathbb{P}[X \in A] > 0$ then the **conditional distribution** of $X|_{\{X \in A\}}$ satisfies $\mathbb{P}[X|_{\{X \in A\}} \in A] = 1$ and

$$\mathbb{P}[X|_{\{X \in A\}} \in B] = \frac{\mathbb{P}[X \in B]}{\mathbb{P}[X \in A]}$$

for all $B \subseteq A$.

If X and Y are random variables, with $A \subseteq R_X$, $B \subseteq R_Y$ and $\mathbb{P}[X \in A] > 0$, then

$$\mathbb{P}[Y|_{\{X \in A\}} \in B] = \frac{\mathbb{P}[X \in A, Y \in B]}{\mathbb{P}[X \in A]}.$$

If (Y,Z) and random variables and $\mathbb{P}[Y=y]=0$ then it is sometimes possible to define the conditional distribution of $Z|_{\{Y=y\}}$ via taking the limit $\mathbb{P}\left[Z|_{\{|Y-y|\leq\epsilon\}}\in A\right]\to \mathbb{P}[Z|_{\{Y=y\}}\in A]$ as $\epsilon\to 0$.

Let (Y, Z) be a pair of continuous random variables. If the conditional distribution of $Z|_{\{Y=y\}}$ exists then it is given by

$$f_{Z|_{\{Y=y\}}}(z) = \frac{f_{Y,Z}(y,z)}{f_Y(y)}.$$

For a discrete or continuous random variable X, the **likelihood function** of X is

$$L_X(x) = \begin{cases} \mathbb{P}[X = x] & \text{if } X \text{ is discrete,} \\ f_X(X) & \text{if } X \text{ is continuous.} \end{cases}$$

The general formula for **completing the square** as a function of $\theta \in \mathbb{R}$ is $A\theta^2 - 2\theta B + C = A\left(\theta - \frac{B}{A}\right)^2 + C - \frac{B^2}{A}$

The sample-mean-variance identity states $\sum_{1}^{n}(x_i - \mu)^2 = ns^2 + n(\bar{x} - \mu)^2$ where $\bar{x} = \frac{1}{n}\sum_{1}^{n}x_i$ and $s^2 = \frac{1}{n}\sum_{1}^{n}(x_i - \bar{x})^2$.

The Beta and Gamma functions are given by

$$\mathcal{B}(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx, \qquad \Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

They are related by $\mathcal{B}(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. For $n \in \mathbb{N}$, $(n-1)! = \Gamma(n)$.

The **Normal-Gamma distribution** has p.d.f. given by

$$f_{\text{NGamma}(m,p,a,b)}(\mu,\tau) = f_{\text{N}(m,\frac{1}{p\tau})}(\mu) f_{\text{Gamma}(a,b)}(\tau)$$
$$\propto \tau^{a-\frac{1}{2}} \exp\left(-\frac{p\tau}{2}(\mu-m)^2 - b\tau\right).$$

for $\mu \in \mathbb{R}$ and $\tau > 0$, and zero otherwise. The parameters are $m \in \mathbb{R}$, $p \in (0, \infty)$, $a \in (0, \infty)$ and $b \in (0, \infty)$. If $(U, T) \sim \operatorname{NGamma}(m, p, a, b)$ then $T \sim \operatorname{Gamma}(a, b)$ and $U|_{\{T=\tau\}} \sim \operatorname{N}(m, \frac{1}{p\lambda})$.

BAYESIAN MODELS AND RELATED FORMULAE

The **Bayesian model** associated to the model family $(M_{\theta})_{\theta \in \Pi}$ and prior p.d.f. $f_{\Theta}(\theta)$ is the random variable $(X, \Theta) \in \mathbb{R}^n \times \mathbb{R}^d$ with distribution given by

$$\mathbb{P}[X \in B, \Theta \in A] = \int_{A} \mathbb{P}[M_{\theta} \in B] f_{\Theta}(\theta) d\theta.$$

The model family satisfies $X|_{\{\Theta=\theta\}} \stackrel{\mathrm{d}}{=} M_{\theta}$.

The distribution of X is known as the **sampling distribution**, given by

$$\mathbb{P}[X = x] = \int_{\mathbb{R}^d} \mathbb{P}[M_{\theta} = x] f_{\Theta}(\theta) d\theta \qquad \text{if } (M_{\theta}) \text{ is a discrete family,}$$

$$f_X(x) = \int_{\mathbb{R}^d} f_{M_{\theta}}(x) f_{\Theta}(\theta) d\theta. \qquad \text{if } (M_{\theta}) \text{ is a continuous family.}$$
(*)

The distribution of $\Theta|_{\{X=x\}}$ is known as the **posterior distribution** given the data x. Bayes rule states that

$$f_{\Theta|_{\{X=x\}}}(\theta) = \frac{1}{Z} L_{M_{\theta}}(x) f_{\Theta}(\theta)$$

where $L_{M_{\theta}}$ is the likelihood function of M_{θ} ; the p.d.f. in the absolutely continuous case and the p.m.f. in the discrete case. The normalizing constant Z is given by $Z = \int_{\Pi} L_{M_{\theta}}(x) f_{\Theta}(\theta) d\theta$, which is equal to $\mathbb{P}[X = x]$ in the discrete case and equal to $f_X(x)$ is the continuous case.

The **predictive distribution** is given by replacing f_{Θ} in (\star) with $f_{\Theta|_{\{X=x\}}}$.

If θ is a real valued parameter and $X \sim M_{\theta}$, where M_{θ} models one or more items of i.i.d. real valued data, then the **reference prior** Θ associated to the model family (M_{θ}) has density function given by

$$f_{\Theta}(\theta) \propto \mathbb{E}\left[\left(\frac{d}{d\theta}\log(L_{M_{\theta}}(X))\right)^{2}\right]^{1/2} \propto \mathbb{E}\left[-\frac{d^{2}}{d\theta^{2}}\log(L_{M_{\theta}}(X))\right]^{1/2}.$$

Consider a Bayesian model with unknown parameter θ and data x. Let H_0 be the hypothesis that $\theta \in \Pi_0$, and H_1 be the hypothesis that $\theta \in \Pi_1$, where Π_0 and Π_1 partition the parameter space Π . The **prior and posterior odds ratios** of H_0 against H_1 are

$$\frac{\mathbb{P}[\Theta \in \Pi_0]}{\mathbb{P}[\Theta \in \Pi_1]} \quad \text{and} \quad \frac{\mathbb{P}[\Theta|_{\{X=x\}} \in \Pi_0]}{\mathbb{P}[\Theta|_{\{X=x\}} \in \Pi_1]}.$$

The **Bayes factor** is $B = \frac{\text{posterior odds}}{\text{prior odds}}$. The following table provides a rough guide to interpreting the Bayes factor.

Bayes factor	Interpretation: evidence in favour of H_0 over H_1
1 to 3.2	Indecisive / not worth more than a bare mention
3.2 to 10	Substantial
10 to 100	Strong
above 100	Decisive

A high posterior density region is a subset $\Pi_0 \subseteq \Pi$ that is chosen to minimize the size of Π_0 and maximize $\mathbb{P}[\Theta|_{\{X=x\}} \in \Pi_0]$.

If $\Theta|_{\{X=x\}}$ has a distribution with a single peak then it is common to choose an **equally tailed** HPD region of the form $\Pi_0 = [a, b]$ where

$$\mathbb{P}\left[\Theta|_{\{X=x\}} < a\right] = \mathbb{P}\left[\Theta|_{\{X=x\}} > b\right] = \frac{1-p}{2}$$

and some value is picked for $p \in (0,1)$.

If $Z \sim N(0,1)$ then $\mathbb{P}[Z \ge 1.645] \approx 0.05$, $\mathbb{P}[Z \ge 1.96] \approx 0.025$ and $\mathbb{P}[Z \ge 2.58] \approx 0.005$.

SOME USEFUL ALGORITHMS

The **Metropolis-Hastings** algorithm for simulating (approximate) samples from the distribution of Y is as follows. The key ingredient of the algorithm is a joint distribution (Y,Q), where $Q|_{\{Y=y\}}$ and $Y|_{\{Q=y\}}$ are both well defined for all $y \in R_Y$, both with the same range as Y.

Let y_0 be a point within R_Y . Then, given y_m we define y_{m+1} as follows.

- 1. Generate a proposal point \tilde{y} from the distribution of $Q|_{\{Y=y_m\}}$.
- 2. Calculate the value of $\alpha = \min \left\{ 1, \frac{f_{Q|_{\{Y=\tilde{y}\}}}(y_m)f_Y(\tilde{y})}{f_{Q|_{\{Y=y_m\}}}(\tilde{y})f_Y(y_m)} \right\}.$
- 3. Then, set $y_{m+1} = \begin{cases} \tilde{y} & \text{with probability } \alpha, \\ y_m & \text{with probability } 1 \alpha. \end{cases}$

For sufficiently large m, the distribution of y_m is approximately that of Y.

The distribution $Q|_{\{Y=y\}}$ is called the *proposal* distribution, based on its role in steps 1 and 2. The two cases in step 3 are usually referred to as acceptance (when $y_{m+1} = \tilde{y}$) and rejection (when $y_{m+1} = y_m$).

The **Metropolis** algorithm is the special case

$$f_{Q|_{\{Y=y\}}}(\tilde{y}) = f_{Q|_{\{Y=\tilde{y}\}}}(y),$$
 (†)

in which case step 2 simplifies to $\alpha = \min \{1, \frac{f_Y(\tilde{y})}{f_Y(y_m)}\}.$

The **random walk Metropolis** algorithm is the choice Q = Y + Z, where Z is independent of Y and Q and satisfies $f_Z(z) = f_Z(-z)$ for all $z \in R_Z$. In this case $Q|_{\{Y=y\}} \stackrel{d}{=} y + Z$ which implies (\dagger) . A common choice is $Z \sim N(0, \sigma^2)$.

The **random walk MCMC algorithm** is obtained by applying the random walk Metroplis algorithm to find the posterior distribution of a Bayesian model. The algorithm is as follows. We start with a (discrete or continuous) Bayesian model (X,Θ) , where the parameter space is $\Pi = \mathbb{R}^d$. We want to obtain samples of $\Theta|_{\{X=x\}}$ and we know the p.d.f. $f_{\Theta|_{\{X=x\}}}$.

Choose an initial point $y_0 \in \Pi$. Choose a continuous distribution for Z satisfying $f_Z(z) = f_Z(-z)$ for all $z \in \mathbb{R}$. A common choice is $Z \sim N(0, \sigma^2)$.

Then, given y_m , we define y_{m+1} as follows.

- 1. Sample z from Z and set $\tilde{y} = y_m + z$.
- 2. Calculate $\alpha = \min \left(1, \frac{f_{\Theta|_{\{X=x\}}}(\tilde{y})}{f_{\Theta|_{\{X=x\}}}(y_m)} \right)$.
- 3. Then, set $y_{m+1} = \begin{cases} \tilde{y} & \text{with probability } \alpha, \\ y_m & \text{with probability } 1 \alpha. \end{cases}$

The **Gibbs sampler** for $\theta = (\theta_1, \dots, \theta_d)$ is as follows. We first choose an initial point $y_0 = (\theta_1^{(0)}, \dots, \theta_d^{(0)}) \in \Pi$. Then, for each $i = 1, \dots, d$, sample \tilde{y} from $\Theta_{-i}|_{\{X=x\}}$ and set

$$y_{m+1} = (\theta_1^{(m)}, \dots, \theta_{i-1}^{(m)}, \tilde{y}, \theta_{i+1}^{(m)}, \dots, \theta_d^{(m)}).$$

Note that we increment the value of m each time that we increment i. When reach i = d, return to i = 1 and repeat. For sufficiently large m, the distribution of y_m is approximately that of $\Theta|_{\{X=x\}}$.

The distributions of $\Theta_i|_{\{\Theta_{-i}=\theta_{-i}, X=x\}}$, for $i=1,\ldots,d$, are known as the **full** conditional distributions of Θ . They satisfy

$$f_{\Theta_i|_{\{\Theta_{-i}=\theta_{-i}, X=x\}}}(\theta_i) \propto f_{\Theta|_{\{X=x\}}}(\theta)$$

Here \propto treats θ_{-i} and x as constants, and the only variable is θ_i .