```
# Load libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Load dataset

url = "https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv"
df = pd.read_csv(url)

Show first few rows
df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0 1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	ıl.
	1 2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2 3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3 4	1	1	Futrelle, Mrs. Jacques Heath (Lilv Mav Peel)	female	35.0	1	0	113803	53.1000	C123	S	

Next steps: (Generate code with df)

View recommended plots

New interactive sheet

1. Survival Count

```
sns.countplot(x='Survived', data=df)
plt.title("Survival Count (0 = No, 1 = Yes)")
plt.show()
```


2. Age Distribution

```
sns.histplot(df['Age'].dropna(), kde=True)
plt.title("Age Distribution")
plt.show()
```


3. Box Plot of Fare by Class

sns.boxplot(x='Pclass', y='Fare', data=df)
plt.title("Fare Distribution by Passenger Class")
plt.show()

4. Heatmap of Correlations

```
plt.figure(figsize=(8,6))

# Select only numeric columns for correlation
numeric_df = df.select_dtypes(include='number')

# Plot heatmap
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
```


5.Line Chart: Age vs Number of Deaths (Male vs Female)

```
# Filter only deaths
deaths = df[df['Survived'] == 0]
# Remove rows with missing age
deaths = deaths.dropna(subset=['Age'])
# Round age to group better (optional)
deaths['Age'] = deaths['Age'].round()
# Group by Age and Sex, and count
death_counts = deaths.groupby(['Age', 'Sex']).size().unstack(fill_value=0)
# Plotting
plt.figure(figsize=(12, 6))
plt.plot(death_counts.index, death_counts['male'], label='Male', color='blue')
plt.plot(death_counts.index, death_counts['female'], label='Female', color='red')
plt.title("Line Chart: Age vs Number of Deaths (Male vs Female)")
plt.xlabel("Age")
plt.ylabel("Number of Deaths")
plt.legend()
plt.grid(True)
plt.show()
```


7.Scatter Plot - Age vs Fare (colored by survival)

```
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df, x='Age', y='Fare', hue='Survived', palette='Set1')
plt.title("Scatter Plot: Age vs Fare (Colored by Survival)")
plt.xlabel("Age")
plt.ylabel("Fare")
plt.show()
```

