TRIGONOMETRY Chapter 09

APLICACIONES GRÁFICAS DE LOS TRIÁNGULOS RECTÁNGULOS NOTABLES

@ SACO OLIVEROS

HELICO - MOTIVACIÓN

NO ERES LO QUE LOGRAS ... ERES LO QUE SUPERAS.

HELICO THEORY

APLICACIONES GRÁFICAS DE LOS TRIÁNGULOS RECTÁNGULOS NOTABLES

HELICO THEORY

Para calcular RT:

senα	cosα	tanα	cotα	secα	cscα
CO	<u>CA</u>	СО	CA	Н	Н
H	Н	CA	CO	CA	CO

Resumiendo:

RT A	30°	60°	37°	53°	45°
sen	$\frac{1}{2}$ $\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	3 5	4 5	$\frac{1}{\sqrt{2}}$
cos	$\frac{\sqrt{3}}{2}$	1 2	4 5	3 5	$\frac{1}{\sqrt{2}}$
tan	$\begin{array}{c c} \hline 2 \\ \hline 1 \\ \hline \sqrt{3} \\ \end{array}$	$\sqrt{3}$	$\frac{3}{4}$	$\frac{4}{3}$	1
cot	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	$\frac{4}{3}$	3 4 5	1
sec	$\frac{2}{\sqrt{3}}$	2	$\frac{5}{4}$	$\frac{\overline{3}}{3}$	$\sqrt{2}$
csc	2	$\frac{2}{\sqrt{3}}$	5 3	$\frac{5}{4}$	$\sqrt{2}$

De los triángulos mostrados, efectúe F = a + b + m

RESOLUCIÓN

En \triangle ABC (Notable de 37° y 53°):

$$5k = 20 \implies k = 4$$

Luego:
$$a = 4k = 4(4) \implies a = 16$$

$$b = 3k = 3(4) \implies b = 12$$

En \triangle MNO (Notable de 45°):

$$m\sqrt{2} = 8\sqrt{2} \implies m = 8$$

Luego:
$$F = a + b + m$$

$$F = 16 + 12 + 8$$

$$\cdot \cdot F = 36$$

Calcule E = a + b + c en los siguientes triángulos :

RESOLUCIÓN

En ABC (Notable de 30° y 60°):

$$\mathbf{b}\sqrt{3} = 3\sqrt{3} \implies \mathbf{b} = \mathbf{3}$$

Luego:
$$a = 2b = 2(3) \implies a = 6$$

En \(\Delta MNO \) (Notable de 45°):

$$\mathbf{c}\sqrt{2}' = 7\sqrt{2}' \implies \mathbf{c} = 7$$

Luego:
$$E = a + b + c$$

$$E = 6 + 3 + 7$$

$$\cdot \cdot E = 16$$

La imagen muestra la ruta que debe tomar Juan para visitar a sus compañeros Thomas y María.- Si Juan solo cuenta con tiempo suficiente para visitar a uno de ellos... ¿A quién visitará Juan y por qué?

RESOLUCIÓN

En \(\Delta ABC \) (Notable de 30° y 60°):

$$a\sqrt{3} = 2\sqrt{3} \text{ km}$$
 \Rightarrow $a = 2 \text{ km}$

$$BC = 2km$$

Luego:

$$AC = 2a = 2(2 \text{ km}) \implies AC = 4 \text{ km}$$

Juan visitará a María porque ella está más cerca de él.

Del gráfico, calcule n²

RESOLUCIÓN

En ABC (Notable de 45°):

$$BC = 6 \implies AC = 6\sqrt{2}$$

$$\mathbf{n}=6\sqrt{2}$$

Calculamos n^2 :

$$n^2 = (6\sqrt{2})^2 = (6)^2 (\sqrt{2})^2$$

$$n^2 = 36(2)$$
 $\therefore n^2 = 72$

Del gráfico, calcule el valor de x.

RESOLUCIÓN

En ABC (Notable de 30° y 60°):

$$5\sqrt{3} = k\sqrt{3} \qquad \qquad k = 5$$

Luego:
$$3x + 1 = 2k$$

$$3x + 1 = 2(5)$$

$$3x + 1 = 10$$

$$3x = 9$$

$$x = 3$$

Emma Damaris todos los días recorre el trayecto de su casa a la panadería para comprar el pan para su desayuno, tal como se muestra en la figura. Según las características de la figura, determine el recorrido de Emma

cuando vuelve a casa con el pan, si el recorrido solo es posible si se pasa

RESOLUCIÓN

Según gráfico: 5k = 50 m

k = 10 m

Luego:

Recorrido de regreso = 6k + 50 m

Recorrido de regreso = 6(10 m) + 50 m

Recorrido de regreso = 60 m + 50 m

∴ Recorrido de regreso = 110 m

Se realiza un concurso trigonométrico entre los estudiantes del primer año de secundaria, quienes para llegar al último nivel conocido como "Heroico", deben resolver la siguiente consigna : " Encuentre el área de la figura que se muestra ". - ¿Cuál es su respuesta?.

RESOLUCIÓN

Según gráfico: 5k = 50 u

$$k = 10 u$$

Luego: S \triangle ABC = $\frac{AC.BH}{2}$

S
$$\triangle$$
 ABC = $\frac{7k \cdot 4k}{2}$ = 14 (10 u)(10 u).

∴ S
$$\triangle$$
 ABC = 1400 u^2

