

Reg. No.: 22BAI1266

Final Assessment Test (FAT) - November/December 2023

Programme	B.Tech.	Semester	FALL SEMESTER 2023 - 24 BCSE304L	
Course Title	THEORY OF COMPUTATION	Course Code		
Faculty Name	n e n u m	Slot	G1+TG1	
	Prof. Benil T	Class Nbr	CH2023240100678	
Time	3 Hours	Max. Marks	100	

Part A (10 X 10 Marks)

Answer all questions

01. a) Consider the following automata. Use the extended transition function, to check whether the [10] string w₁=00100 and w₂=0001 is accepted or not. (5 marks)

b) If D = { Q_D , Σ , δ_D , q_0 , F_D } is the DFA constructed from NFA N = { Q_N , Σ , δ_N , q_0 , F_N } by the subset construction, prove that L(D) = L(N). (5 marks)

a) Co	nstruct	an equ	iivalen	t DFA for the automaton given below (6 marks)	[10]
	State	a	ь	3		
	→1	-	-	2,4		
1	2	11-	-	3		

1			2,4
2	-	-	3
3	-	3	6
4	4	5	-
5	-	-	6
* 6	-	-	-

b) Consider the regular expression R = 0(10)*1. Show that this regular expression is also defined by a finite automaton (4 marks)

03. a) Find the Regular expression for the set of all strings denoted by R⁽¹²⁾ from the DFA [10]

State	а	b
*1	3	2
2	1	3
* 3	2	2

04. a) Show that, the grammar $G=\{(S,A,B), (a,b), (S \rightarrow aB \mid bA, A \rightarrow a \mid aS \mid bAA, B \rightarrow b \mid bS \mid bAA, B \rightarrow b \mid$ [10] aBB),S} is ambiguous or not? . (5 marks)

b) For the string " aaabbabbba " find Left most Derivation and Right most Derivation. (5 marks)

- 05. a) Construct the PDA accepting the language L={(ab)ⁿ | n>=1} by empty stack (6 marks)

 [10]
 b) Construct Non Deterministic Finite Automata for the given Regular expression using
 - b) Construct Non Deterministic Finite Automata for the given Regular expression using Thompson Rule (4 Marks)
 - i) a.(a+b)* ab
 - ii) (a.b)*
- 06. Convert the following CFG into CNF (10 marks)

[10]

- $S \rightarrow A \mid AB0 \mid A1A$
- $A \rightarrow A0 \mid \epsilon$
- $B \rightarrow B1 \mid BC$
- $C \rightarrow CB \mid CA \mid 1B$
- 07. Prove that the language L={ aⁿ bⁿ cⁿ / n>1} is not Context Free Language (10 marks)

[10]

08. Design a Turing Machine for the computable function given below (10 marks)

[10]

$$f(m,n) = \begin{cases} m-n & if \ m > n \\ 0 & otherwise \end{cases}$$

- 09. Let L₁ be a Context Free Language and L₂ be a Regular Language. Is L₁ U L₂ context free? [10]

 Justify? (10 marks)
- 10. Consider the TM M and w=01, where M=($\{q1, q2, q3\}, \{0,1\}, \{0,1,B\}, \delta, q1, B, \{q3\}$) and δ is [10] given by

q _i	$\delta(q_i, 0)$	$\delta(q_i, 1)$	$\delta(q_i, B)$
→q ₁	(q ₂ , 1, R) (q ₃ , 0, L)	(q ₂ , 0, L) (q ₁ , 0, R)	(q ₂ , 1, L) (q ₂ , 0, R)
*q ₃	-	-	-

Reduce the above problem to PCP and find whether that PCP has a solution or not? (10 marks)