ECM404 – Estruturas de Dados e Técnicas de Programação

INSTITUTO MAUÁ DE TECNOLOGIA

Banco de dados

Definições

Conceitos Básicos

Conceitos básicos

Dados

São fatos conhecidos que podem ser armazenados e possuem um conhecimento implícito;

Banco de dados

É uma coleção de dados relacionados;

Sistema Gerenciador de Banco de Dados (SGBD) ou *Database Management System* (DBMS):

Software/pacote que facilita a criação/manutenção de um banco de dados computadorizado;

Sistema de banco de dados

É o software SGDB junto aos dados e aplicações.

Funcionalidade de um SGBD

Definir o banco de dados

Definir tipos de dados, estruturas e restrições;

Construir o banco de dados

Armazenar o banco de dados em um meio de armazenamento secundário;

Manipular o banco de dados

Realizar consultas, gerar relatórios, inserir, eliminar e modificar seu conteúdo;

Concorrência

Processamento concorrente e compartilhamento de recursos por um conjunto de usuários e programas, mantendo todos os dados válidos e consistentes.

Funcionalidade de um SGBD

Outras funcionalidades

Proteção ou segurança contra acessos não autorizados;

Apresentação e visualização dos dados;

Processamento ativo gerando ações internas sobre os dados.

Exemplo de um SGBD

Sistema de informação de uma universidade

Elementos de dados que podem ser armazenados:

- Estudantes;
- Cursos;
- Departamentos;
- Disciplinas;
- Professores.

Elementos de ligação (relacionamentos) que devem ser levados em conta:

- Um **Departamento** pode oferecer vários **Cursos** e um **Curso** deve estar ligado a um único **Departamento**;
- Um **Professor** pode lecionar diversas **Disciplinas** e uma **Disciplina** pode ser ministrada por vários **Professores**.

Quem usa um SGBD?

Administrador de banco de dados

Responsável por **autorizar acessos** ao banco de dados, **coordenar** e **monitorar** seu **uso**, **adquirir recursos** de *software* e *hardware*, **controlar** o **uso** e **monitorar** a eficiência de suas operações;

Projetista de banco de dados

Responsável pela definição do conteúdo, a estrutura, restrições, funções ou transações sobre o banco de dados. Comunicam-se com usuários finais para entender suas necessidades;

Usuários finais

Executam consultas e relatórios, bem como podem realizar operações atualizações no BD.

Modelo de dados de um SGBD

Definição

É um conjunto de conceitos que descreve a **estrutura** do banco de dados e certas **restrições** que o banco de dados deve obedecer;

Operações de um modelo de dados

São as operações para especificar como recuperar e atualizar dados no banco de dados, utilizando conceitos do modelo de dados. Incluem operações básicas e definidas pelos usuários.

Modelo relacional de dados

Modelo relacional

É o modelo de banco de dados mais utilizado atualmente;

Princípios

Os dados são organizados em tabelas: cada tabela representa uma entidade de dados do "negócio";

Cada coluna de uma tabela representa um atributo da entidade;

Cada linha representa uma instância de uma entidade – um registro daquela entidade;

Operações entre tabelas resultam em tabelas – conceitos de álgebra relacional e conjuntos;

A linguagem que se consagrou para manipular banco de dados relacionais é SQL – Structured Query Language.

Linguagem de um SGBD

DDL (Data Definition Language)

É uma linguagem ou notação utilizada para a criação de esquemas de BD, permitindo a geração de tabelas que são armazenadas em um dicionário de dados.

DML (Data Manipulation Language)

É a linguagem utilizada para acessar e manipular os dados organizados segundo algum modelo de dados. Podem ser classificadas em:

- **Procedimentais:** o usuário especifica os dados e como recuperar esses dados (funções e procedimentos + dados);
- Não procedimentais: o usuário especifica os dados sem especificar como recuperar esses dados (linguagens declarativas). É o caso de SQL (Structured Query Language).

Objetivos

Identificar, no domínio da aplicação, as entidades envolvidas, seus atributos, bem como relacionamentos existentes entre si, de modo independente de tecnologia;

É normalmente conduzida como parte das tarefas de engenharia de requisitos e de análise do sistema, em um processo de desenvolvimento de *software*;

Execução

Realizada com ferramentas gráficas/textuais:

- Diagramas de entidade-relacionamento DER (tradicional e mais utilizado);
- Diagramas de classe **UML** (sendo gradativamente adotado nas empresas);

Criação do banco de dados

Projeto conceitual

O projeto conceitual é normalmente realizado com o auxílio de um diagrama de entidaderelacionamento (DER);

Exemplo: sistema simplificado de ordens de compra.

Ordem de Compra				
Numero:	1			
Data:	17/5/2012			
Condicoes:	45 dias			
Cod.Fornecedor	: F2			
	# Cod.Produto	Preço	Qtde	Subtotal
	1 P8	R\$ 7,00	10	R\$ 70,00
	2 P11	R\$ 2,00	5	R\$ 10,00
	3 P8	R\$ 7,00	3	R\$ 21,00
	4			
	5			
			Total:	R\$ 101,00

Definições

Entidade: Algum "objeto" real que foi abstraído no sistema.

Conjunto de entidades: Categoria ou agrupamento de entidades com características similares e são descritas por um tipo de entidade – imaginar como sendo um conjunto matemático contendo entidades particulares.

Definições

Atributo: Representa uma propriedades de uma entidade;. Por exemplo, os funcionários do slide anterior possuem os atributos: Identificação, Nome e Salário;

Podem ser simples ou atômicos (do exemplo acima) ou ainda compostos ou multivalorados.

Exemplo de atributo multi-valorado (endereço de uma empresa):

Definições

Atributo chave: É o atributo que permite diferenciar as entidades de um tipo entidade entre si. Por exemplo, o CPF de uma pessoa;

Relacionamento: Representa uma associação existente (de acordo com o domínio em estudo) entre conjuntos de entidades.

Relacionamentos do mesmo tipo são agrupados em um tipo de relacionamento, que mapeia entidades de um conjunto com entidades de um outro conjunto:

Definições

Cardinalidade do relacionamento: Indica o grau de associação entre duas ou mais tipos de entidades. Alguns exemplos:

Instruções para Manipulação de Banco de dados Linguagem SQL

SQL

Structured Query Language

- Linguagem de manipulação de banco de dados;
- Não procedural: pois baseia-se na descrição "do que obter" ao invés de "como obter".
- As operações são realizadas sobre tabelas e as repostas obtidas são tabelas →
 álgebra relacional.
- Padrão internacional
- SQL2 ou SQL-92 (ISO 9075): maior revisão do padrão, amplamente suportado pelos bancos de dados;
- SQL3 ou SQL-99: adições de expressões regulares, consultas recursivas e características orientadas a objetos;
- Recentemente: SQL-2003 e SQL-2006 extensões XML.

Principais comandos de SQL

Manipulação de dados (DML)

SELECT: recupera dados de um banco de dados;

INSERT: adiciona novas linhas ao banco de dados;

DELETE: remove linhas de dados de um banco de dados;

UPDATE: modifica dados existentes em um banco de dados.

Definição de dados (DDL)

CREATE TABLE: adiciona nova tabela ao banco de dados;

DROP TABLE: remove uma tabela do banco de dados;

ALTER TABLE: altera a estrutura de uma tabela;

CREATE VIEW: adiciona uma *view* ao banco de dados;

DROP VIEW: remove uma *view* do banco de dados;

Principais comandos de SQL

Definição de dados (DDL) [continuação]

CREATE SCHEMA: adiciona um *schema* ao banco de dados;

DROP SCHEMA: remove um *schema* do banco de dados;

CREATE DOMAIN: cria um novo domínio no banco de dados;

DROP DOMAIN: remove um domínio do banco de dados;

ALTER DOMAIN: altera um domínio do banco de dados.

Controle de acesso

GRANT: Concede privilégios de uso ao um usuário;

REVOKE: Remove privilégios de uso ao um usuário.

Controle de transações

COMMIT: termina a transação atual;

ROLLBACK: aborta a transação atual.

DB Browser for SQLite

DB Browser for SQLite

DB Browser for SQLite

Modificações no banco de dados

Inserção de dados

A operação de inserção de dados é realizada em SQL pelo comando **INSERT INTO**;

Sintaxe:

```
INSERT INTO tabela
(campok, campoj,..., campom)
VALUES
(valork, valorj, ..., valorm);
```

```
INSERT INTO tabela
VALUES (valor1, valor2, ..., valorn);
```

Na segunda forma, preenche-se obrigatoriamente os valores de todos os campos na ordem que foram criados na tabela!

Na criação da tabela, em campos que se deseja um valor padrão utiliza-se a palavra **DEFAULT** como valor.

Modificações no banco de dados

Exemplos de INSERT INTO

Exemplo 1: INSERT INTO. Inserir dados de novos Pokémons.

```
INSERT INTO pokédex
VALUES (1, 'Bulbasaur', 'Grass', 'Poison', 45, 49, 49, 45);
```

```
INSERT INTO pokédex
(idPokémon, Nome, Tipo1, Tipo2, HP, Ataque, Defesa, Velocidade)
VALUES
('2', 'Ivysaur', 'Grass', 'Poison', '60', '62', '63', '60');
```

Verificar mensagem de erro!!

Comando SELECT

Retorna dados de uma tabela, por meio de uma consulta ("queries");

Permite executar consultas que resultam em seleção de: campos, registros, agrupamento de tabelas;

Opcionalmente podem envolver comandos aritméticos e agregação para campos calculados;

Sintaxe:

```
SELECT [ DISTINCT ] colunas
FROM tabelas
WHERE < condições de busca >
     [ GROUP BY coluna [ HAVING < condição_busca >]]
     [ ORDER BY < lista_colunas >];
```


Exemplos de SELECT

<u>Exemplo 02:</u> Seleção sem critérios. "Selecionar todos os registros da Pokédex":

```
SELECT * FROM pokédex;
```

O **símbolo** '*' indica no comando que se deseja recuperar todas as colunas da tabela original na tabela resultado.

Exemplos de SELECT

Exemplo 03: Seleção de um conjunto específico de colunas. "Selecionar o id e o nome de todos os Pokémons":

SELECT idPokémon, Nome **FROM** pokédex;

Os nomes das colunas são separados por vírgulas; O resultado será uma tabela com os dados referentes apenas às colunas selecionadas, na ordem em que foram especificadas.

Exemplos de SELECT

Exemplo 04: Seleção de um conjunto específico de colunas, renomeando-as. "Selecionar o número, nome e tipos de todos os Pokémons":

```
SELECT
idPokémon AS Número,
Nome,
Tipo1,
Tipo2
FROM pokédex;
```

O operador de renomeação de campo é o operador AS.

Exemplos de SELECT

Exemplo 05: Seleção de um conjunto distinto (sem repetição) de valores. "Selecionar sem repetir os tipos de Pokémons":

SELECT DISTINCT Tipo1 **FROM** pokédex;

Mesmo que existam vários Pokémons associados a um mesmo tipo, o resultado apresentará apenas tipos distintos de Pokémons.

Exemplos de SELECT

Exemplo 06: Seleção com restrição. "Listar o nome e o HP dos Pokémons com HP maior que 100":

```
SELECT Nome, HP FROM pokédex WHERE HP > 100;
```

A cláusula **WHERE** introduz uma restrição na consulta: apenas as linhas que atendem a condição de **WHERE** serão selecionadas;

Exemplos de SELECT

Exemplo 07: Seleção com restrição. "Listar o nome e o tipo dos Pokémons onde o Tipo1 é igual a Grass":

```
SELECT Nome, Tipo1
FROM pokédex
WHERE Tipo1 = 'Grass';
```

Constantes de cadeias de caracteres são delimitadas por aspas simples.

Exemplos de SELECT

Exemplo 08: Seleção com restrições. "Listar o nome e os tipos dos Pokémons onde o Tipo1 ou Tipo2 é igual a Fire":

```
SELECT Nome, Tipo1, Tipo2
FROM pokédex
WHERE (Tipo1 = 'Fire') OR (Tipo2 = 'Fire');
```

Quando se tem expressões complexas é interessante agrupá-las com parênteses.

Resumo dos operadores condicionais e operadores lógicos

Símbolo	Descrição	
=	Igual	
!=	Diferente de	
<>	Diferente de	
<	Menor que	
>	Maior que	
<=	Menor ou igual a	
>=	Maior ou igual a	
AND	E lógico	
OR	Ou lógico	
NOT	Negação lógica	

Exemplos de SELECT

Exemplo 09: Cláusula BETWEEN. "Listar o nome e o ataque dos Pokémons com Ataque entre 50 e 75":

SELECT Nome, Ataque **FROM** pokédex **WHERE** Ataque **BETWEEN** 50 **AND** 75;

A cláusula **BETWEEN** permite indicar um intervalo sobre o qual se deseja testar a pertinência de um valor; O intervalo é indicado por um valor menor, seguido de **AND** e pelo valor maior.

Exemplos de SELECT

Exemplo 10: Testando valores nulos. "Listar o nome e o tipos de todos os Pokémon sem Tipo2 cadastrado":

```
SELECT Nome, Tipo1, Tipo2
FROM pokédex
WHERE Tipo2 IS NULL;
```

A constante **NULL** representa um valor não existente, isto é um campo não preenchido; O teste de **nulidade** é realizado com o operador **IS**.

Exemplos de SELECT

Exemplo 11: Testando valores não nulos. "Listar o nome e o tipos de todos os Pokémon com Tipo2 cadastrado":

```
SELECT Nome, Tipo1, Tipo2
FROM pokédex
WHERE Tipo2 IS NOT NULL;
```

A constante **NULL** representa um valor não existente, isto é um campo não preenchido; O teste de **não nulidade** é realizado com o operador

IS NOT.

Exemplos de SELECT

Exemplo 12: Testando a pertinência de um conjunto. "Listar o nome e Tipo1 dos Pokémons cujo Tipo1 seja Electric ou Ground":

```
SELECT Nome, Tipo1
FROM pokédex
WHERE Tipo1 IN ('Electric', 'Ground');
```

O operador **IN** testa os valores do campo com o conjunto apresentado entre parênteses à sua direita; Serão selecionadas as linhas cujos valores de campo estejam dentro do conjunto testado.

Exemplos de SELECT

Exemplo 13: Busca aproximada de cadeia de caracteres. "Listar o nome dos Pokémons cujo nome se inicia por 'a', independente da caixa ('A')":

```
SELECT Nome
FROM pokédex
WHERE Nome LIKE 'a%';
```

O operador **LIKE** executa um "casamento de padrão", procurando determinar se uma cadeia atende ao padrão fornecido;

O símbolo de padrão '%' é substituído por zero ou mais caracteres – **ANSI SQL**.

Exemplos de SELECT

Exemplo 14: Busca aproximada de cadeia de caracteres. "Listar o nome e o HP de todos os Pokémons cujos HP estejam na faixa de 40 a 49":

```
SELECT Nome, HP
FROM pokédex
WHERE HP LIKE '4_';
```

O símbolo de padrão '_' é substituído por <u>um e único</u> caractere em seu lugar - **ANSI SQL**.

Exemplos de SELECT

Exemplo 15: Campos calculados. "Listar o nome, ataque e defesa dos Pokémons que possuem a média entre o ataque e defesa maior que 80":

SELECT Nome, Ataque, Defesa, (Ataque+Defesa)/2 **AS** Média **FROM** pokédex **WHERE** (Ataque+Defesa)/2 > 80;

Pode-se especificar como uma coluna de resultado uma expressão envolvendo constantes e/ou outros nomes de colunas.

Algo estranho acontece... verifique os resultados.

Resumo dos operadores aritméticos

Símbolo	Descrição
+	Soma
-	Subtração
*	Multiplicação
/	Divisão
%	Resto da divisão

Concatenar strings:

- Em geral, no SQL utilize a função CONCAT;
- No SQLite utilize o operador | ...

SELECT (idPokémon | | ' - ' | | Nome) AS Nome from pokédex;

Exemplos de SELECT

Exemplo 16: Subconsultas com lime. "Listar o nome e o HP dos Pokémons do Electric cujo HP é maior que o HP de algum Promon do tipo Grass":

```
SELECT Nome, HP
FROM pokéde
WHERE Tipo Leectric' AN
HP > SOME(SELECT HP FROM pokédex WHERE Tipo1 = 'Grass');
```

O operador **SOME** é um operador **lógico** que retorna verdadeiro se o critério for verdadeiro para pelo menos um elemento testado.

Exemplos de SELECT

Exemplo 17: Subconsultas com Al Distar o nome e o HP dos Pokémons do tipo Mai cujo HP é maior que o HP de todos os Pokémons do tipo Grass":

```
SELECT Nome, HP
FROM pokéd x
WHERE Tip
HP > ALL(SELECT HP FROM pokédex WHERE Tipo1 = 'Grass');
```

O operador **ALL** é um operador **lógico** que retorna verdadeiro se o critério for verdadeiro para todos os elementos testados.

Exemplos de SELECT

Exemplo 18: Operações com conjuntos. "Listar os nome e o Tipo1 dos Pokémons cujo nome tenha 4 letras, iniciado por 'A', ou o Tipo1 seja Water":

```
SELECT Nome, Tipo1
FROM pokédex
WHERE Nome LIKE 'A___'
UNION
SELECT Nome, Tipo1
FROM pokédex
WHERE Tipo1 = 'Water';
```

UNION é um operador **de conjunto** que retorna a união do resultado de duas consultas ou mais.

Exemplos de SELECT

Exemplo 19: Agrupamento de resultados. "Listar a velocidade média dos Pokémons, agrupando-os por Tipo1 ordenando-os de forma decrescente":

SELECT Tipo1, AVG(Velocidade) **AS** 'Velocidade Média' **FROM** pokédex **GROUP BY** Tipo1

ORDER BY AVG(Velocidade) **DESC**;

A cláusula **GROUP BY**, que agrupa as linhas resultantes de acordo com valores de uma determinada coluna, permite a criação de linhas de sumários de dados;

AVG calcula a média em uma coluna.

DESC = Decrescente e ASC = Crescente

Exemplos de SELECT

Exemplo 20: Agrupamento de resultados. "Listar o maior e o menor HP dos Pokémons, por Tipo1":

```
SELECT
Tipo1,
MIN(HP) AS 'HP Mínimo',
MAX(HP) AS 'HP Máximo'
FROM pokédex
GROUP BY Tipo1;
```

MIN retorna o menor valor de um atributo; MAX retorna o maior valor de um atributo; SUM retorna a soma de um atributo; AVG retorna a média de um atributo..

Exemplos de SELECT

Exemplo 21: Agrupamento de resultados. "Listar o ataque médio dos Pokémons, por tipo, para aqueles tipos que possuem um ataque médio superior a 70":

SELECT Tipo1, AVG(Ataque) AS 'Ataque Médio'
FROM pokédex
GROUP BY Tipo1
HAVING AVG(Ataque) > 70;

A cláusula **HAVING** é utilizada para **filtrar grupos calculados** a partir de **funções especificas** (funções agregadas) ou da condição de busca com a cláusula **GROUP BY**.

Exemplos de SELECT

Exemplo 22: Funções agregadas. "Quantos Pokémons existem de cada tipo?":

```
SELECT Tipo1, COUNT(*) AS Quantidade
FROM pokédex
GROUP BY Tipo1;
```

COUNT(*) calcula e retorna a quantidade de *tuplas* (linhas) em uma tabela.

Exemplos de SELECT

Exemplo 23: Funções agregadas. "Qual são os Pokémons com a major defesa?":

SELECT Nome, Defesa
FROM pokédex
WHERE Defesa = (SELECT MAX(Defesa) FROM pokédex);

Pode-se comparar imediatamente o valor resultante de uma subconsulta que calcula como resultado um único valor.

Exemplos de INSERT INTO

Exemplo 24: INSERT INTO. "Criar uma nova tabela e copiar os nomes e tipos dos Pokémons com um comando SELECT".

```
CREATE TABLE pokédex_simplificada
        nome VARCHAR(40) NOT NULL,
        Tipo_principal VARCHAR(20) NOT NULL,
        Tipo_secundário VARCHAR(20),
        HP INT
INSERT INTO pokédex_simplificada
 SELECT Nome, Tipo1, Tipo2, HP FROM pokédex;
SELECT * FROM pokédex_simplificada;
```


Eliminação de dados

A operação de eliminação de dados é realizada em SQL pelo comando **DELETE FROM**;

Sintaxe:

```
DELETE [FROM] {nome_tabela | nome_view} [WHERE condições]
```

Nota: Se a cláusula **WHERE** for omitida, todos os dados da tabela serão apagados!

Exemplos de DELETE

Exemplo 25: DELETE. "Eliminar todos os Pokémons do Tipo Bug":

```
DELETE FROM pokédex_simplificada

WHERE (Tipo_principal = 'Bug') OR (Tipo_secundário = 'Bug');
```


Alteração de dados

A operação de alteração de dados é realizada em SQL pelo comando **UPDATE**;

Sintaxe:

```
UPDATE {nome_tabela | nome_view}
SET nome_coluna1 = {expressão1 | NULL | (comando_select)}
  [, nome_coluna2 = ...]
[WHERE condições_busca]
```


Exemplos de UPDATE

Exemplo 26: UPDATE. "Blastoise ataca Squirtle":

```
SELECT * FROM pokédex_simplificada
WHERE Nome IN ('Squirtle', 'Blastoise');
UPDATE pokédex_simplificada
SET HP = HP - (
(SELECT Ataque FROM pokédex WHERE Nome = 'Blastoise')
(SELECT Defesa FROM pokédex WHERE Nome = 'Squirtle')
WHERE nome = 'Squirtle';
SELECT * FROM pokédex_simplificada
WHERE Nome IN ('Squirtle', 'Blastoise');
```


Exemplos de UPDATE

Exemplo 27: UPDATE em várias colunas. "Atualizar o Tipo1 do Pokémon de "Fire" para "Fogo" e adicionar o código "(E)" ao atributo Nome para indicar que a entidade foi alterada":

```
UPDATE pokédex_simplificada
SET

Tipo_principal = 'Fogo',
Nome = (Nome | | ' (E)')
WHERE Tipo_principal = 'Fire';

SELECT * FROM pokédex_simplificada;
```


Exemplo 28: DROP TABLE. "Apagar a Pokedéx simplificada".

DROP TABLE pokédex_simplificada;

