AUTHOR INDEX

Aizenman, M. 9,97,98,100,116 Batty, C.J.K. 72	Oxley, J.G. 255 Papanicolaou, G.C. 337,342,343
Bollman, M.W. 72 Bollobás, B. 245,345	Renyi, A. 102,177,178,371 Rudin, W. 33,372
Branvall, G. 9 Breiman, L. 103	Russo, L. 3,5,9,52,65,69,77,78, 81,100,121,122,123,
Broadbent, S.R. 1,2,46,66 Cox. J.T. Preface,9,339	126,128,168,200,207, 208,230,250,383
Delyon, F. 97,98,100,116 Doyle, P. 353,368	Sands, M. 336,352,367 Schulman, L.S. 382
Dunford, N. 241,248,373,379 Durrett, R. Preface,9,386	Schwartz, J.T. 241,248,373,379 Seymour, P.D. 3,52,126,128,207,
Essam, J.W. 2,3,4,5,6,16,36, 46,58,59,62,198,	230,342,376 Shank, H. 336
238,239,244,255,	Slepian, P. 336,352,353
380,384,409 Feynman, R.P. 336,352,367	Smythe, R.T. 126,178,201,227, 339,366
Fisher, M.E. 2,36,37,256 Fortuin, C.M. 8,72	Snell, J.L. 353,368 Souillard, B. 84,97,98,99,100,
Freedman, D. 102 Frisch, H.L. 3	116,239,251,253 Stauffer, D. 2,5,198,227,239,
Fröhlich, J. 9 Ginibre, J. 72	335 Straley, J.P. 342,362
Golden, K. 337,342,343 Griffeath, D. 8,367,383	Sykes, M.F. 3,4,6,16,46,58,59, 62,238,239,244,380,
Grimmett, G.R. Preface,238, 239,253,339,	384,409 Tempel'man 241,248,373,379
384 Hammersley,J.M. Preface,1,2,3,	Van den Berg, J. 53,383 Varadhan, S.R.S. 337
37,46,66,72, 92,255,260,	Vasil'ev, N.B. 383 Walters, P. 194,373
375 Harris, T.E. 2,3,31,37,128,	Welsh, D.J.A. Preface,2,3,52, 126,128,207,230,
168,194,241, 373,375	255,342,376 Whitney, H. 29,375,386
Helms, L.L. 353 Higuchi, Y. 8,255,256	Wierman, J.C. 2,4,56,62,126, 178,201,227,238,
Hille, E. 22,138,254 Kasteleyn, P.W. 8,72	239,339,366 Wright, A.L. 9
Keane, M. 383 Kesten, H. 4,31,84,168,169,	
182,183,185,190, 191,339,346,347,	
349,394 Kirkpatrick, S. 335	
Kotani, S. Preface,168 Kunz, H. 84,99,238,251,253	
Leighton, R.B. 336,352,367 Liggett, T.M. 367	
McDiarmid, C. 260 Milton, G.W. 337	
Nerode, A. 336 Newman, C.M. 9,382,386	
Newman, M.H.A. 22,33,34,47, 138,364,389, 394,398,399	

SUBJECT INDEX

adjacent 1,10	i-crossing 46
Alexander's separation lemma	incident 10
394,398	increasing 69
axis of symmetry 31,49	interior of an edge 10
j j	,
Bernoulli percolation 40	Jordan curve theorem 386
blocked 1,40	or dan to short sin
bond 1,10,40	Kagomé lattice 37,271
bond-percolation 4,40,255	Kirchhoff's law 336,352,364,365
boundary 29	KITCHIOTT 3 Tun 330,332,304,300
boundary 23	λ-parameter probability measure 44
contoned quadratic lattice	λ-parameter probability measure 44 last edge of a corridor 296
centered quadratic lattice	
20,24,53	left most crossing 224,228
central vertex 22	loop-removal 11
circuit 29	lowest crossing 76,169,182
close-packing 17	matables as a second at 16 10
cluster 27	matching pair of graphs 16,18
component 27	maximum principle 353
Condition A 48	Menger's theorem 345
B 49	minimal 263
C 121	mosaic 16
D 263	
E 285	neighbor 10
conducting path 337,353	
connected to s in R 209	occupancy configuration 24
contracting an edge 258	occupied 40
covering graph 36	occupied cluster 27
corridor 296	occupied component 27
coupling 70	occupied connection 205,222,229
critical probability 2,3,7,52	occupied crossing 47
critical surface 51	occupied path 25
crosscut 47,75,224,278,303	Ohm's law 336,352
crossing 46	open 1,41
crossing probability 46,47	•
current 352	parallel resistances 367,372,378
	passable 1,40
decoration of a face 53,273,	path 1,11
275	path with possible double points 11
decreasing 69	percolation probability 41
deleting an edge 258	percolative region 46
Dirichlet's principle 368	perimeter 17
diced lattice 16,66,272,275	periodic graph 10,12
dual graph 37,361	periodic probability measure 44
37,301	pigeon hole principle 159
edge 1,10	pivotal site 74,181,203,288
exterior boundary 387	planar graph 17,21,129
exterior boundary 307	planar modification 21
face 17	potential 336,352
first edge of a corridor 296	power law 5,198,239,384
FKG inequality 72	precede 35,403
hovegonel lattice 15 27 20	modistance 225 251 252 255
hexagonal lattice 15,37,39,	resistance 335,351,353,355
58,275	RSW theorem 126,168,175,195,208,
honeycomb lattice 15,37	383
horizontal crossing 47	Russo's formula 74,77,168,181,
	203,204,277,288

scaling law 11,21 self-avoiding self-matching 19,54 series (resistances in) 367,378 short circuit 354,355 shortcut of one edge shortcut of two edges simple quadratic lattice 12,38 site 10 site-percolation 4,40,255 star-triangle transformation 59 strongly minimal 297 Sykes-Essam relation 238,243

Thomson's principle 368 triangular lattice 14,19,24, 39,53,56,58,255,270,280,381 triangulated graphs 52

up-triangle 59,60

vacant 40
vacant connection 76,182,191,
284
vacant crossing 47
vacant path 25
vertex 10

vertex 10 vertical crossing 47

Whitney's theorem 29,366,367, 375,386

INDEX OF SYMBOLS

General notation.

delici di liotationi.	
A := B	means that A is defined by B
Ä	interior of A. When A is a subset of \mathbb{R}^d this has the usual meaning. When A is an edge of a graph or an arc in \mathbb{R}^d we also use A to denote A minuts its endpoints.
Fr(A)	Topological boundary of A
Ā	closure of A. If A is a Jordan curve in the plane we also use \overline{A} to denote A \cup int(A).
A 6	boundary on a graph of a set A in the graph (see p.29).
∂ _{ext} A	exterior boundary on a graph of a set A in the graph (see p.387).
#A	number of vertices in A (on rare occasions #A denotes the number of edges in A).
A∖B	the set of points in A but outside B.
ξ _i	i-th coordinate vector
ōʻ	zero vector
ī	vector of all ones
p ₁ >> p ₂	$p_1(i) > p_2(i)$, $1 \le i \le d$, for two dvectors p_1 and p_2 .
[a(1),b(1)]××[a(d),b(d)] = $\Pi[a(i),b(i)]$	Cartesian product of the intervals [a(i),b(i)], i.e., $\{x \in \mathbb{R}^d : a(i) \le x(i) \le b(i), 1 \le i \le d\}$.
$\{a\} \times [b(1),b(2)]$	the vertical line segment $\{x \in \mathbb{R}^2: x(1) = a, b(1) \le x(2) \le b(2)\}.$ [b(1),b(2)] $\times \{a\}$ denotes a horizontal line segment.
a^b	min(a,b) for real numbers a, b
a∨b	max(a,b) for real numbers a, b
[a]	largest integer <u><</u> a
[a]	smallest integer <u>></u> a
vĢw	v and w are adjacent vertices on ${\tt G}$
///	denotes the end of a Comment, Remark, or Problem.

Probability notation.

I[E]	indicator function of the event E	Ξ.
P{E}	probability of E	

P{E F}	conditional probability of E, given F (for an event F)
P{E \mathcal{F}}	conditional probability of E, given ${\mathfrak F}$ (for a ${\sigma}$ -field ${\mathfrak F}$).
E{X}	expectation of the random variable X with respect to P (subscripts on E correspond to the same subscripts on P).
E{X;F}	<pre>E{XI[F]} = integral of X over F with respect to the probability measure</pre>
E{X F}	conditional expectation of X given F (for an event F)
E{X \$}	conditional expectation of X given ${\mathfrak F}$ (for a σ -field ${\mathfrak F}$).

Special symbols.

We list here the numbers of the pages where some symbols which are used in the same meaning throughout the book are defined.

$v_1 \ v_2 \ v_2 \ 10$ $r_1 \ v_2 \ r_2 \ 35$ $< r, t, s > 301$ $a(n, l) \ 84$ $A_n^0, A_n^1 \ 7, 335$ $a(n, l) \ 101$ $a(n, $	G _{pl} 21 G* _{pl} 21 G(ω; occupied) 244 G*(ω; vacant) 244 (G,G*) 18 I(v,e) 352 J [±] (r) 34 K 279 K _l , K _r , K* 305 L ₁ 133 L(a) 148 p _H 2,52 p _R 7 p̂ _R 338 p _S 3,52 p _T 3,52 p _T 1,44 P _λ 44 r* 279,282 R(e) 339 S(v,M) 101,201 S ₂ ,S ₂ 92,347
G _d 38	
g ^c 258 g ^d 258 g* 18	S ₀ ,S ₁ 92,347 R _n 7,336 ℝ 35

\$ 51
$$T(\overline{n};i) 82$$
\$ 14
\$\tau 40\$
\$\tau_{1},...,\tau_{\lambda}\$ 44
\$\times(e,v) 351\$
\$\times(e) 41
\$\times(v) 48
\$\times_{p\lambda} 27
\$\times_{h}(r),\tau_{\lambda}(r) 143
\$\text{Y}(r) 133
\$\text{Y}(a) = Y(a,r) 148
\$\text{Z}(\lambda),\text{Z}^*(\lambda) 211
\$\tau 29
\$\times_{ext} 387
\$\times_{f} 353
\$\times(p) 243
\$\times 101,201\$
\$\times(a) 148
\$\text{e}(p) = \theta(p,v) 2,46
\$\times = \times(d) 83
\$\times 83,127,262
\$\times_{3} 170
\$\times_{4} 172
\$\times_{5}^{-\lambda} 262
\$\times_{9} 279
\$\times 83,170
\$\times(n;i,p) = \times(n;i,p,\varphi) 48
\$\times^*(n;i,p) = \times(n;i,p,\varphi) 48
\$\times^*(n;i,p) = \times^*(n;i,p,\varphi) 82
\$\tau^*(n;i,p) 82
\$\tau^*(n;i,p) 83
\$\times_{0}((n,n),1,p) 3
\$\times 24,40,41
\$\times 44\$