УДК 622.276.5+622.297.5(072.8)

ГИДРОДИНАМИКА СИСТЕМЫ ТЕРМАЛЬНЫХ СКВАЖИН В ГЕТЕРОГЕННОМ ОГРАНИЧЕННОМ ПЛАСТЕ

HYDRODYNAMICS OF THE THERMAL WELL SYSTEM IN A HETEROGENEOUS CONFINED FORMATION

Шарнов Александр Иванович

кандидат технических наук, доцент, доцент кафедры машин и оборудования нефтяных и газовых промыслов Армавирского механико-технологического института (филиал), Кубанский государственный технологический университет a.i.sharnov@mail.ru

Аннотация. Исследована гидродинамика циркуляционной тепловой системы, состоящей из двух скважин эксплуатационной и нагнетательной в условиях конечного гетерогенного пласта. Получены аналитические зависимости для определения полей давления, дебитов скважин, скоростей фильтрации, утечек теплоносителя из системы.

Ключевые слова: фильтрация, жидкость, ограниченный, пласт, гетерогенный, скважина, дебит, гидродинамика, система, циркуляция.

Sharnov Alexander Ivanovich

Candidate of Technical Sciences,
Associate Professor of the Department of
Machinery and Equipment of
Oil and Gas Fields,
Armavir Institute of Mechanics and
Technology (Branch),
Kuban State University Technology
a.i.sharnov@mail.ru

Annotation. The hydrodynamics of a circulating heat system consisting of two wells, the production and injection wells, under conditions of a finite heterogeneous formation is studied. Analytical dependences for determining pressure fields, well flow rates, filtration rates, and coolant leaks from the system are obtained.

Keywords: filtration, liquid, limited, formation, heterogeneous, well, flow rate, hydrodynamics, system, circulation.

ассмотрим задачу нестационарной фильтрации теплоносителя для системы, состоящей из двух скважин, в ограниченной области гетерогенного пласта с расходом Q. на внешней границе.

Решение задачи в аналогичной постановке для неограниченного гетерогенного пласта представлено автором в работе [1]. В данном случае в постановке задачи условие на бесконечности заменится условием на внешней границе:

$$\left. \frac{\partial \mathbf{P}}{\partial \mathbf{r}} \right|_{\mathbf{r} = \mathbf{b}} = \mathbf{0} \tag{1}$$

Введя безразмерные переменные и новую неизвестную функцию $u = \frac{P - P_{\Pi\Pi}}{P_{\Im}}$ ($P_{\Im} = P_{\Pi\Pi}$, $u_{\Im} = 0$) и

применив преобразование Лапласа по переменной F_{o} получим краевую задачу для изображения в виде:

$$\frac{\partial^2 \bar{\mathbf{u}}}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}} \frac{\partial \mathbf{u}}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}^2} \frac{\partial^2 \bar{\mathbf{u}}}{\partial \mathbf{\theta}^2} - \delta^2 \bar{\mathbf{u}} = 0, \quad 1 \le \mathbf{r} \le \mathbf{b};$$
 (2)

$$\bar{\mathbf{u}}\big|_{\mathbf{r}=1} = \frac{\mathbf{u}_3}{\sigma(1+\xi\sigma)},\tag{3}$$

$$\frac{\partial \bar{\mathbf{u}}}{\partial \mathbf{r}}\bigg|_{\mathbf{r}=\mathbf{b}} = \mathbf{0} \tag{4}$$

$$\lim_{r_1 \to 0} r_1 \cdot \frac{\partial \bar{u}}{\partial r_1} = -\frac{\bar{q}}{\sigma (1 + \xi \sigma)}, \quad \bar{q} = \frac{Q\mu}{2\pi \pi_0 h P_{nn}}. \tag{5}$$

Используя теорему сложения для функций Бесселя, фундаментальное решение уравнения (2) с учетом условия (5) представим в виде:

$$V = \begin{cases} \frac{\bar{q}}{\sigma(1+\xi\sigma)} \sum_{k=0}^{\infty} \epsilon_k I_k(r\bar{\delta}) K_k(R\bar{\delta}) cosk\theta, & r \leq R; \\ \frac{\bar{q}}{\sigma(1+\xi\sigma)} \sum_{k=0}^{\infty} \epsilon_k I_k(R\bar{\delta}) K_k(r\bar{\delta}) cosk\thetao & r > R, \end{cases}$$
(6)

где $\epsilon_k = \begin{cases} 1, & k = 0; \\ 2, & k \neq 0 \end{cases}$, $I_k(x)$, $K_k(x)$ — модифицированные функции Бесселя I и II рода соответственно.

Определяя функцию W по методу разделения переменных, имеем (u = V + W):

$$u = \begin{cases} \frac{\bar{q}}{\sigma(1+\xi\sigma)} \sum_{k=0}^{\infty} \left[\epsilon_{k} I_{k}(r\delta) K_{k}(R\delta) + a_{k} I_{k}(r\delta) + c_{k} K_{k}(r\delta) \right] \cos k\theta, & r \leq R; \\ \frac{\bar{q}}{\sigma(1+\xi\sigma)} \sum_{k=0}^{\infty} \left[\epsilon_{k} I_{k}(R\delta) K_{k}(r\delta) + a_{k} I_{k}(r\delta) + c_{k} K_{k}(r\delta) \right] \cos k\theta o & r > R, \end{cases}$$

$$(7)$$

Удовлетворяя решение (7) условиям (3) (4) ,получим систему уравнений для определения коэффициентов a_k и c_k

$$\begin{cases} \varepsilon_{\mathbf{k}} I_{\mathbf{k}}(\delta) K_{\mathbf{k}}(R\delta) + a_{\mathbf{k}} I_{\mathbf{k}}(\delta) + c_{\mathbf{k}} K_{\mathbf{k}}(\delta) = 0, \\ \varepsilon_{\mathbf{k}} I_{\mathbf{k}}(R\delta) K_{\mathbf{k}}'(b\delta) + a_{\mathbf{k}} I_{\mathbf{k}}'(b\delta) + c_{\mathbf{k}} K_{\mathbf{k}}'(b\delta) = 0. \end{cases}$$
(8)

Определив а_к и с_к из (8), получим:

$$u = \begin{cases} \frac{\bar{q}}{\sigma(1+\xi\sigma)} \sum_{k=0}^{\infty} \frac{\epsilon_k A_k (r\delta, \delta) B_k (R\delta, b\delta)}{B_k (\delta, b\delta)} cosk\theta, & r \leq R; \\ \frac{\bar{q}}{\sigma(1+\xi\sigma)} \sum_{k=0}^{\infty} \frac{\epsilon_k A_k (R\delta, \delta) (r\delta, b\delta)}{B_k (\delta, b\delta)} cosk\theta, & r > R, \end{cases}$$
(9)

 $A_k(\alpha,\beta) = I_k(\alpha)K_k(\beta) - K_k(\alpha)I_k(\beta)$ где $B_{k}(\alpha,\beta) = I_{k}(\alpha)K_{k}(\beta) - K_{k}(\alpha)I_{k}(\beta)$

Так как подынтегральная функция интеграла Фурье-Меллина от изображения (10) однозначна относительно 6, используя для определения оригинала теорему разложения, будем иметь

$$\begin{split} u_{i} &= \begin{cases} \frac{\bar{q}}{2} lnc_{1} + \pi^{2} \sum_{k=0}^{\infty} \sum_{m=1}^{\infty} \epsilon_{k} D_{k,m} \Phi_{i} \left(\lambda_{k,m}^{2} Fo \right) cosk\theta, & 1 \leq r < R, \\ \frac{\bar{q}}{2} lnc_{2} + \pi^{2} \sum_{k=0}^{\infty} \sum_{m=1}^{\infty} \epsilon_{k} E_{k,m} \Phi_{i} \left(\lambda_{k,m}^{2} Fo \right) cosk\theta, & R \leq r \leq b, \end{cases} \\ D_{k,m} &= L_{k,m} \cdot F_{k,m}(r) \cdot M_{k,m}(R), \\ E_{k,m} &= L_{k,m} \cdot F_{k,m}(R) \cdot M_{k,m}(r), \\ L_{k,m} &= \frac{J_{k} \left(\lambda_{k,m} \right) J_{k}^{'} \left(b, \lambda_{k,m} \right)}{\left[J_{k}^{'} \left(b, \lambda_{k,m} \right) J_{k}^{'} \left(b, \lambda_{k,m} \right) \left(1 - \frac{k^{2}}{b^{2} \lambda_{k,m}^{2}} \right) \right]} \cdot \\ F_{k,m}(\alpha) &= J_{k} \left(\alpha \lambda_{k,m} \right) Y_{k} \left(\alpha \lambda_{k,m} \right) - J_{k} \left(\lambda_{k,m} \right) Y_{k} \left(b \lambda_{k,m} \right), \\ M_{k,m}(\alpha) &= J_{k}^{'} \left(b \lambda_{k,m} \right) Y_{k} \left(\alpha \lambda_{k,m} \right) - J_{k} \left(\alpha \lambda_{k,m} \right) Y_{k} \left(b \lambda_{k,m} \right), \\ c_{1} &= \frac{r^{2} f \left(\frac{R}{rb^{2}} \right) f \left(\frac{1}{rR} \right)}{f \left(\frac{rR}{b^{2}} \right) f \left(\frac{1}{rR} \right)}, \quad c_{2} &= \frac{R^{2} f \left(\frac{r}{Rb^{2}} \right) f \left(\frac{1}{rR} \right)}{f \left(\frac{rR}{b^{2}} \right) f \left(\frac{R}{r} \right)}; \\ f(\alpha) &= 1 + 2\alpha \cos\theta + \alpha^{2}, \end{cases}$$

$$\Phi_1\!\!\left(\!\lambda_{k,m}^2,\!Fo\right)\!\!=\!\frac{exp\!\left(\!-\frac{\lambda_{k,m}^2\!Fo}{1\!+\!\xi\lambda_{k,m}^2}\!\right)}{1\!+\!\xi\lambda_{k,m}^2},$$

$$\Phi_2\left(\lambda_{k,m}^2, Fo\right) = exp\left(-\frac{\lambda_{k,m}^2 Fo}{1 + \xi \lambda_{k,m}^2}\right),$$

где $\lambda_{k,m}$ – корни трансцендентного уравнения

$$J_{k}(\lambda)Y_{k}^{'}(\lambda b) - Y_{k}^{'}(\lambda)J_{k}^{'}(\lambda b) = 0, \tag{11}$$

 $J_{k}(x)$, $Y_{k}\left(x\right) -$ функции Бесселя I и II рода соответственно.

Первые корни уравнения (2) приведены в таблице:

R	α_1	α_2	α_3	α4	α_5
3·10 ³	1,75·10 ⁻⁴	1,36·10 ^{−3}	2,42·10 ⁻³	3,48·10 ⁻³	4,5·10 ⁻³
2,5·10 ³	2,12·10 ⁻⁴	1,63·10 ⁻³	2,91·10 ⁻³	4,18·10 ⁻³	5,44·10 ⁻³

Определим дебит эксплуатационной скважины циркуляционной тепловой системы. Используя введенные ранее безразмерные переменные, будем иметь:

$$Q_{3} = \frac{2hk_{0}P_{3}}{\mu} \int_{0}^{\pi} \frac{\partial u_{1}}{\partial r} \bigg|_{r=1} d\theta$$

Дифференцируя (9) при r = 1, получим

$$\frac{\partial u_1}{\partial r}\bigg|_{r=1} = \frac{q}{\sigma(1+\xi\sigma)} \sum_{k=0}^{\infty} \varepsilon_k \frac{B_k(R\delta,b\delta)}{B_k(\delta,b\delta)} cosk\theta. \tag{12}$$

Из (12), выполнив обратное преобразование, получим формулу для утечек в условиях конечного пласта в горизонтальном направлении.

$$\delta_{y} = \pi \sum_{m=1}^{\infty} L_{0,m} M_{0,m}(R) \frac{exp\left(-\frac{\lambda_{0,m}^{2} Fo}{1 + \xi \lambda_{0,m}^{2}}\right)}{1 + \xi \lambda_{0,m}^{2}}$$
(13)

где
$$\delta_y = \frac{Q_H - Q_{\vartheta}}{Q_H}$$
.

Из полученных формул при $\xi = 0$ следуют формулы, описывающие гидродинамику циркуляционной тепловой системы, образованных в пористых пластах, полученные автором ранее [2].

На рисунках 1, 2 представлено изменение утечек теплоносителя из циркуляционной тепловой системы в зависимости от времени закачки, коллекторских свойств пород и геометрических параметров системы.

Рисунок 1 — Изменение утечек теплоносителя из циркуляционной тепловой системы в зависимости от времени закачки

Рисунок 2 – Изменение утечек теплоносителя из циркуляционной тепловой системы в зависимости от геометрии системы

Литература:

- 1. Шарнов А.И. Гидродинамика системы термальных скважин в гетерогенном неограниченном пласте // Булатовские чтения : материалы IV Международной научно-практической конференции (31 марта 2020 г.) : в 7 т. : сборник статей / Под общ. ред. д-ра техн. наук, проф. О.В. Савенок. Разработка нефтяных и газовых месторождений. Краснодар : Издательский Дом Юг. 2020. Т. 2. С. 424–429.
- 2. Шарнов А.И. Фильтрация к скважине в гетерогенном пласте двойной пористости // Булатовские чтения : материалы II Международной научно-практической конференции (31 марта 2018 г.) : в 7 т. : сборник статей / Под общ. ред. д-ра техн. наук, проф. О.В. Савенок Разработка нефтяных и газовых месторождений. Краснодар : Издательский Дом Юг. 2018. Т. 2. Ч. 2. С. 222—231.

References:

- 1. Sharnov A.I. Hydrodynamics of thermal well system in heterogeneous unconfined reservoir // Bulatov readings: proceedings of IV International Scientific-Practical Conference (March 31, 2020): in 7 vol. Collection of articles / Under general ed. of Doctor of Technical Sciences, professor O.V. Savenok. Development of oil and gas fields. Krasnodar: Publishing House South. 2020. Vol. 2. P. 424–429.
- 2. Sharnov A.I. Filtration to the well in a heterogeneous layer of double porosity // Bulatov Readings: Proceedings of II International Scientific and Practical Conference (March 31, 2018): in 7 vol. Collection of articles / Under general ed. of Doctor of Technical Sciences, professor O.V. Savenok Development of oil and gas fields. Krasnodar: Publishing House South. 2018. Vol. 2. Part 2. P. 222–231.