

Indian Association for the Cultivation of Science

(Deemed to be University under the *de novo* category)
Integrated Bachelors-Masters program

End-Semester (Sem-II) Examination-Spring 2021

Subject: Linear Algebra & Multivariable Calculus Subject Code: MCS 1201A Full marks: 50 Time allotted: 3 hrs

Question number 1 is **compulsory**. Answer any **five** from the rest.

- 1. Let $T, S : V \to V$ be linear transformations from a finite dimensional real vector space V to V. Then **prove** or **disprove** the following:
 - (i) $T \circ S$ is a linear transformation from V to V.
 - (ii) $T \circ S S \circ T$ is a linear transformation from V to V.
 - (iii) Range of $T \circ S$ is always equal to range of $S \circ T$.
 - (iv) Range of $T \circ S$ =Range of T if S is injective.
 - (v) If Range of $T \circ S$ =Range of T then S is injective.

(1+1+2+3+3)

2. Consider the following subsets of \mathbb{R}^3 .

$$V_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0\}, V_2 = \{(x, y, z) \in \mathbb{R}^3 : x - y = 0\}.$$

Prove that V_1 , V_2 are vector subspaces of \mathbb{R}^3 and $V_1 \cup V_2$ is not a vector subspace of \mathbb{R}^3 . Describe the vector subspaces $V_1 \oplus V_2$ and $V_1 \cap V_2$.

(2+2+2)

3. Let $T: V \to V$ be a linear transformation on a finite dimensional real vector space V. Then prove that Null $(T) \cap \text{Range } (T) = \{0\}$ if and only if Range $(T) = \text{Range } (T^2)$.

Hint: To prove the only if part, first show Null (T) = Null (T^2) and then argue by contradiction.

(2+4)

Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be defined as: $T(x_1, x_2, x_3, x_4) = (0, x_1, x_2, x_3)$. Then answer the following **Questions 4 and 5**

- 4.(i). What are the matrices of the linear transformation T, $T \circ T$, $T \circ T \circ T$ and $T \circ T \circ T \circ T$ with respect to the standard basis $\mathcal{B} = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}.$
- 4.(ii). What are the rank and nullity of the linear operators T, T^2 , T^3 and T^4 .

(4+2)

5. Find all the eigenvalues and eigenvectors corresponding to the linear operators T, T^2 , T^3 and T^4 .

(6)

6. Let $T:V\to V$ be an injective linear operator on a finite dimensional real vector space of dimension n. Prove that T^{-1} is a well-defined linear map on V. Also show that the matrix of the linear transformation

$$[T \circ T^{-1}]_{\mathcal{B}} = [T^{-1} \circ T]_{\mathcal{B}} = \text{Identity}_{n \times n}$$

with respect to any basis \mathcal{B} of V.

(6)

7. Let f(x) = |x-1| + |x-2| in the interval [0,3]. Let

$$g(x) = \begin{cases} f'(x) & x \in [0,3] \setminus \{1,2\} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that that the Riemann integration, i.e., $\int_0^3 g'(x) = 0$.

(6)