- 1. Para cada uma das alíneas seguintes, verifique se a função dada é uma transformação linear. Em caso afirmativo, determine o seu núcleo e contradomínio e, para cada um desses conjuntos, indique uma base e respectivas dimensões.
 - a) $T: \mathbb{R}^3 \to \mathbb{R}^3 \text{ com } T(x, y, z) = (xy, yz, z).$
 - b) $T: \mathbb{R}^3 \to \mathbb{R}^2 \text{ com } T(x, y, z) = (3x 2z, y + z).$
- 2. Para cada uma das transformações lineares abaixo definidas, obtenha a respectiva lei de transformação.
 - a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ com T(1,0,0) = (2,1), T(0,1,0) = (1,3) e T(0,0,1) = (0,1).
 - b) $T: \mathbb{R}^2 \to \mathbb{R}^3$ com T(2,1) = (7,2,1) e T(-1,1) = (3,1,4).
 - c) $T: \mathbb{R}^3 \to \mathbb{R}^3$ com $T(0,1,2) = (3,3,5), T(1,2,2) = (1,1,-1) \in T(1,1,1) = (0,1,-1).$
- 3. Seja a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ com T(x,y,z) = (x-z,y-z,-x-y+2z) e a matriz $S = \begin{bmatrix} 1 & -3 & 1 \\ -1 & 6 & 2 \\ 1 & 0 & 4 \end{bmatrix}$.
 - a) Determine o núcleo e o contradomínio de T.
 - b) Será T invertível? Justifique.
 - c) Defina a transformação linear S representada pela matriz S em relação à base canónica de \mathbb{R}^3 .
 - d) Determine a transformação linear *TS* e represente-a matricialmente.
- 4. Seja a transformação linear $T: R^3 \to R^2$, definida pelas imagens $T(\vec{i}) = (0,0), T(\vec{j}) = (1,1)$ e $T(\vec{k}) = (1,-1)$.
 - a) Obtenha a representação matricial para T.
 - b) Calcule o valor de $T(4\vec{i} \vec{j} \vec{k})$, bem como a nulidade e a ordem de T.