II. Atividades iônicas

Potencial químico de um soluto em solução:

$$\mu = \mu^o + RT \ln a$$

 μ^{o} = potencial químico de uma solução hipotética 1 mol kg⁻¹ com íons comportando-se idealmente.

$$a = \gamma (b/b^{o})$$

 γ é o **coeficiente de atividade**, que tende a 1 quando b tende a zero.

$$\mu = \mu^{o} + RT \ln \left(\gamma \frac{b}{b^{o}} \right) = \mu^{o} + RT \ln \left(\frac{b}{b^{o}} \right) + RT \ln \gamma$$
$$= \mu^{ideal} + RT \ln \gamma$$

➤ Coeficientes de atividade médios

Energia livre de uma solução de um mol de eletrólito uniunivalente MX:

Solução ideal:
$$G_{\rm m}^{\rm ideal} = \sum n_{\rm i} \mu_{\rm i} = 1 \cdot \mu_{+}^{\rm ideal} + 1 \cdot \mu_{-}^{\rm ideal}$$

Solução real:
$$G_{\rm m}=1\cdot\mu_{\scriptscriptstyle +}+1\cdot\mu_{\scriptscriptstyle -}=\mu_{\scriptscriptstyle +}^{\rm \ ideal}+RT\ln\gamma_{\scriptscriptstyle +}+\mu_{\scriptscriptstyle -}^{\rm \ ideal}+RT\ln\gamma_{\scriptscriptstyle -}=G_{\rm m}^{\rm \ ideal}+RT\ln\gamma_{\scriptscriptstyle +}\gamma_{\scriptscriptstyle -}$$

Mesmo que se possa medir experimentalmente $G_{\rm m}-G_{\rm m}^{\rm ideal}$ (= $RT\ln\gamma_+\gamma_-$), não há modo experimental de separar o produto $\gamma_+\gamma_-\to$ Definimos que a responsabilidade pela não-idealidade é partilhada igualmente pelos dois íons, que ficariam então com um mesmo **coeficiente de atividade médio**:

$$\gamma_{\pm} = (\gamma_+ \gamma_-)^{1/2}$$

Nova definição dos potenciais químicos:

$$\mu_{+} = \mu_{+}^{ideal} + RT \ln \gamma_{\pm} e \ \mu_{-} = \mu_{-}^{ideal} + RT \ln \gamma_{\pm}$$
 Assim,
$$G_{m} = 1 \cdot \mu_{+} + 1 \cdot \mu_{-} = \ \mu_{+}^{ideal} + RT \ln \gamma_{\pm} + \mu_{-}^{ideal} + RT \ln \gamma_{\pm}$$

$$= G_{m}^{ideal} + RT \ln \gamma_{\pm} \gamma_{\pm} = G_{m}^{ideal} + RT \ln \gamma_{\pm}^{2}$$

$$= G_{m}^{ideal} + RT \ln \gamma_{+} \gamma_{-} \text{ (mesmo resultado anterior)}$$

É possível mostrar a validade do conceito para um eletrólito genérico M_pX_q , com a definição geral $\gamma_\pm=(\gamma_+^p\gamma_-^q)^{1/(p+q)}$. Neste caso,

$$\begin{split} G_{\rm m} &= p\mu_+ + q\mu_- = p(\mu_+^{\rm ideal} + RT \ln \gamma_\pm) + q(\mu_-^{\rm ideal} + RT \ln \gamma_\pm) \\ &= G_{\rm m}^{\rm ideal} + pRT \ln \gamma_\pm + qRT \ln \gamma_\pm = G_{\rm m}^{\rm ideal} + (p+q)RT \ln \gamma_\pm \\ \\ &\rightarrow \ln \gamma_\pm = \frac{G_m - G_m^{\rm ideal}}{RT(p+q)} \end{split}$$

➤ A lei limite de Debye-Hückel

Interações eletrostáticas são a fonte de não-idealidade das soluções de eletrólitos.

Modelo da organização de uma solução:

ightarrow A atmosfera iônica imediata em torno de um dado íon é um conjunto de contra-íons de carga oposta ightarrow energia potencial do íon é abaixada pela interação eletrostática ightarrow $G_{\rm m} - G_{\rm m}^{\rm ideal} < 0
ightarrow$ $\gamma_{\pm} < 1$.

$$\ln \gamma_{\pm} = \frac{G_m - G_m^{ideal}}{RT(p+q)}$$

Conforme o exposto na definição dos coeficientes de atividade médios, podemos calcular γ_{\pm} se tivermos a diferença de energia livre entre a situação real e a ideal:

$$\ln \gamma_{\pm} = \frac{G_m - G_m^{ideal}}{RT(p+q)}$$

A P e T constantes, $\Delta G = W_{\text{max extra}}$.

Sistema ideal: íons sem carga. Sistema real: íons com carga \rightarrow $G_{\rm m}-G_{\rm m}^{\rm ideal}$ corresponde ao **trabalho de se carregar eletricamente os íons reversivelmente**.

Considerando a carga inicialmente diluída no espaço vazio, o trabalho para se transportar uma carga dq de um ponto com potencial elétrico nulo a um ponto com potencial ϕ é d $w = \phi dq$.

Potencial elétrico na superfície de uma esfera de raio R carregada com carga Q: $\phi = \frac{Q}{4\pi\varepsilon_0 R}$

Potencial modificado pela presença da atmosfera iônica da solução (*C* reúne várias constantes fundamentais):

$$\phi_{atmos} = -\frac{QI^{1/2}}{C}$$
 $\rightarrow dw = -\frac{QI^{1/2}}{C}dq$

I é a força iônica da solução, que representa uma "concentração de carga" da solução: $I = \frac{1}{2} \sum_{i} z_i^2 (b_i/b^o)$

Trabalho para se carregar completamente um cátion de carga z_+e :

$$w_{+} = \int dw_{+} = -\frac{I^{1/2}}{C} \int_{0}^{z_{+}e} Q dq = -\frac{I^{1/2}}{C} \left(\frac{1}{2}Q^{2}\Big|_{0}^{z_{+}e}\right) = -\frac{z_{+}^{2}e^{2}I^{1/2}}{2C} = -\frac{z_{+}^{2}I^{1/2}}{C'}$$

Para carregar um mol de cátions e ânions: $W_+ = w_+ N_A$ e $W_- = w_- N_A$

Para carregar um mol de um eletrólito com fórmula M_pX_q:

$$W = pW_{+} + qW_{-} = -p\frac{z_{+}^{2}I^{1/2}}{C'}N_{A} + \left(-q\frac{z_{-}^{2}I^{1/2}}{C'}N_{A}\right) = -\left(pz_{+}^{2} + qz_{-}^{2}\right)\frac{I^{1/2}}{C''}$$
Cálculo de y:

$$\ln \gamma_{\pm} = \frac{G_m - G_m^{ideal}}{RT(p+q)} = \frac{W_{\text{max},extra}}{RT(p+q)} = \frac{-(pz_{+}^2 + qz_{-}^2)(I^{1/2}/C'')}{RT(p+q)}$$

$$\rightarrow \ln \gamma_{\pm} = -\frac{(pz_{+}^2 + qz_{-}^2)}{(p+q)} \frac{1}{C''RT} I^{1/2}$$

Obtém-se daí a lei limite de Debye-Hückel:

$$\log \gamma_{\pm} = -|z_{+}z_{-}|AI^{1/2} \qquad I = \frac{1}{2} \sum_{i} z_{i}^{2} (b_{i}/b^{o})$$

Fator mais importante para a força iônica é o número de carga do íon z_i . A lei é estritamente obedecida para b tendendo a zero.

Constante *A* (0,509 para água a 25°C) depende da permissividade elétrica do solvente.

Exemplo: Estimar coeficiente de atividade médio em uma solução 0,0050 mol kg⁻¹ de KCl(aq) a 25°C

$$z_{+} = 1 \text{ e } z_{-} = -1 \rightarrow I = \frac{1}{2}(1^{2} \cdot 0,0050 + (-1)^{2} \cdot 0,0050) = 0,0050$$

$$\rightarrow \log \gamma_{\pm} = -|1(-1)| \cdot 0,509 \cdot (0,0050)^{1/2} = -0,0360$$

$$\rightarrow \gamma_{+} = 0,920$$

Relação geral $I \times b$

	Х-	X ²⁻	X ³ -	X ⁴⁻
M^+	1	3	6	10
M^{2+}	3	4	15	12
M^{3+}	6	15	9	42
M^{4+}	10	12	42	16

Por exemplo, a força iônica de uma solução de $\rm M_2X_3$ com molalidade b, na qual os íons são $\rm M^{3+}$ e $\rm X^{2-}$, é $\rm 15\it b/b^o$

Comparação de valores experimentais de log γ_{\pm} com previsão teórica de Debye-Hückel (retas):

ightarrow Lei é válida até $\pm 0,01$ mol kg⁻¹ para NaCl e $\pm 0,0004$ mol kg⁻¹ para MgSO $_4$.

Atkins e de Paula, 7ª edição, exercício 10.9 (a):

Calcule as massas de (a) $\text{Ca}(\text{NO}_3)_2$ e, separadamente, de (b) NaCl, quando o sal é adicionado a uma solução de KNO $_3$ (aq) 0,150 molal (mol kg $^{-1}$), contendo 500 g do solvente, para elevar a força iônica a 0,250.

Atkins e de Paula, 7ª edição, exercício 10.12 (a):

Estime o coeficiente médio de atividade iônica, e a atividade de uma solução que é 0,010 molal de CaCl₂(aq) e 0,030 molal de NaF(aq).

Influência da força iônica na solubilidade de um sal:

A solubilidade do AgCl em água a 25°C é de 1,274×10⁻⁵ mol kg⁻¹. Calcular ΔG° para a reação AgCl(s) \rightarrow Ag⁺(aq) + Cl⁻(aq) e a solubilidade do AgCl em 0,020 mol kg⁻¹ de K₂SO₄(aq).

Constante de equilíbrio:

$$K = a(Ag^+)a(Cl^-) = \gamma_{\pm} \left(\frac{b(Ag^+)}{b^o}\right) \gamma_{\pm} \left(\frac{b(Cl^-)}{b^o}\right) = \gamma_{\pm}^2 \left(\frac{sol.}{b^o}\right)^2$$

sol. = concentração de equilíbrio do AgCl (solubilidade)

Força iônica: I = b (da tabela $I \times b$) $\rightarrow I = 1,274 \times 10^{-5}$

$$\rightarrow \ \log \gamma_{\pm} = -|1(-1)| \cdot 0,509 (1,274 \times 10^{-5})^{1/2} = -1,82 \times 10^{-3} \rightarrow \gamma_{\pm} = 0,996$$

$$K = 0.996^{2}(1.274 \times 10^{-5})^{2} = 1.61 \times 10^{-10}$$

$$\rightarrow \Delta G^{o} = -RT \ln K = -8.314 \cdot 298 \cdot \ln(1.61 \times 10^{-10}) = 55.9 \text{ kJ mol}^{-1}$$

Em mistura com $K_2SO_4(aq)$, a força iônica aumenta $\rightarrow \gamma_{\pm}$ baixa $\rightarrow sol$. aumenta para se ajustar ao valor de K, que é constante.

Nova I:
$$I = \frac{1}{2} \left(z_K^2 \left(\frac{b_K}{b^{\theta}} \right) + z_{SO_4}^2 \left(\frac{b_{SO_4}}{b^{\theta}} \right) + z_{Ag}^2 \left(\frac{b_{Ag}}{b^{\theta}} \right) + z_{Cl}^2 \left(\frac{b_{Cl}}{b^{\theta}} \right) \right)$$
$$= I_{K_2SO_4} + I_{AgC1}$$

Concentração do K_2SO_4 é muito maior que a do $AgCl \rightarrow$ força iônica dos sais misturados é devida praticamente ao K_2SO_4 .

$$\rightarrow$$
 Nova $I = \frac{1}{2}(1^2 \cdot (2 \cdot 0.020) + (-2)^2 \cdot 0.020) = 0.060$

$$\rightarrow$$
 log $\gamma_{\pm} = -|1(-1)| \cdot 0.509(0.060)^{1/2} = -0.12 \rightarrow \gamma_{\pm} = 0.76$

Solubilidade:
$$K = \gamma_{\pm}^2 \left(\frac{sol.}{b^o} \right)^2 \rightarrow sol. = (K^{1/2}/\gamma_{\pm})b^o = 1,7 \times 10^{-5}$$

$$\rightarrow$$
 sol. = 1,7×10⁻⁵ mol kg⁻¹ (mais solúvel agora)

➤ Lei de Debye-Hückel generalizada

Para forças iônicas elevadas, coeficientes de atividade médios podem ser estimados pela lei de Debye-Hückel generalizada (na versão para cálculo de γ para um íon individual):

$$\log \gamma_{\pm,i} = -\frac{z_i^2 A I^{1/2}}{1 + a_i B I^{1/2}}$$

$$B = 3,281 \times 10^{-3} \text{ pm}^{-1}$$

a = raio efetivo do íon hidratado

	Raio iônico (pm)	a (pm)
F-	136	350
I-	216	300

Lei generalizada é válida até no máximo 0,1 mol kg⁻¹