Soit l'ensemble d'entraînement suivant :

\mathbf{x}_t	y_t
[1, 3, 5]	1
[5, 5, 3]	1
[4, 4, 0]	0
[1, 2, 4]	0
[2, 2, 2]	0
[8, 0, 0]	0
[1, 1, 1]	0
[2, 5, 5]	1
[3, 3, 3]	1
[0, 0, 9]	1

Soit une entrée de test $\mathbf{x} = [4.2, 2.1, 3.7]$.

1. Donnez la classe de \mathbf{x} qui serait prédite par l'algorithme des k plus proches voisins basé sur la distance Euclidienne $d_1(\mathbf{x}, \mathbf{x}') = \sqrt{\sum_i (x_i - x_i')^2}$, et ce pour k = 1, k = 3 et k = 5.

Solution: les distances Euclidiennes sont :

\mathbf{x}_t	y_t	$d_1(\mathbf{x}_t, [4.2, 2.1, 3.7])$
[1, 3, 5]	1	3.569
[5, 5, 3]	1	3.089
[4, 4, 0]	0	4.164
[1, 2, 4]	0	3.216
[2, 2, 2]	0	2.782
[8, 0, 0]	0	5.704
[1,1,1]	0	4.329
[2, 5, 5]	1	3.865
[3, 3, 3]	1	1.655
[0, 0, 9]	1	7.081

Le plus proche voisin est [3, 3, 3], dont la classe est 1. La prédiciton est donc 1.

Les 3 plus proches voisins sont [3,3,3], [2,2,2] et [5,5,3], dont les classes sont 1, 0 et 1 respectivement. La classe majoritaire est 1. La prédiction est donc 1.

Les 5 plus proches voisins sont [3,3,3], [2,2,2], [5,5,3], [1,2,4] et [1,3,5], dont les classes sont 1, 0, 1, 0 et 1 respectivement. La classe majoritaire est 1. La prédiction est donc 1.

2. Donnez également les prédictions pour $k=1,\ k=3$ et k=5, mais pour la distance de Manhattan $d_2(\mathbf{x},\mathbf{x}')=\sum_i |x_i-x_i'|$.

Solution : les distances de Manhattan sont :

\mathbf{x}_t	y_t	$d_2(\mathbf{x}_t, [4.2, 2.1, 3.7])$
[1, 3, 5]	1	5.4
[5, 5, 3]	1	4.4
[4, 4, 0]	0	5.8
[1, 2, 4]	0	3.6
[2, 2, 2]	0	4
[8, 0, 0]	0	9.6
[1, 1, 1]	0	7
[2, 5, 5]	1	6.4
[3, 3, 3]	1	2.8
[0, 0, 9]	1	11.6

Le plus proche voisin est [3, 3, 3], dont la classe est 1. La prédiciton est donc 1.

Les 3 plus proches voisins sont [3,3,3], [1,2,4] et [2,2,2], dont les classes sont 1, 0 et 0 respectivement. La classe majoritaire est 0. La prédiction est donc 0.

Les 5 plus proches voisins sont [3,3,3], [1,2,4], [2,2,2], [5,5,3] et [1,3,5], dont les classes sont 1, 0, 0, 1 et 1 respectivement. La classe majoritaire est 1. La prédiction est donc 1.

Soit la fonction:

$$g(\mathbf{x}) = \frac{x_1 + x_2^2 - \log(x_3)}{\exp(x_2) + x_4}$$

Calculez toutes les dérivées partielles, c'est-à-dire :

1. $\frac{\partial g(\mathbf{x})}{\partial x_1}$

Solution:

$$\frac{\partial g(\mathbf{x})}{\partial x_1} = \frac{1}{\exp(x_2) + x_4} \left(\frac{\partial x_1 + x_2^2 - \log(x_3)}{\partial x_1} \right)$$
$$= \frac{1}{\exp(x_2) + x_4}$$

2. $\frac{\partial g(\mathbf{x})}{\partial x_2}$ Solution:

$$\frac{\partial g(\mathbf{x})}{\partial x_2} = \frac{\frac{\partial x_1 + x_2^2 - \log(x_3)}{\partial x_2} (\exp(x_2) + x_4) - (x_1 + x_2^2 - \log(x_3)) \frac{\partial \exp(x_2) + x_4}{\partial x_2}}{(\exp(x_2) + x_4)^2}$$

$$= \frac{2x_2(\exp(x_2) + x_4) - (x_1 + x_2^2 - \log(x_3)) \exp(x_2)}{(\exp(x_2) + x_4)^2}$$

3. $\frac{\partial g(\mathbf{x})}{\partial x_3}$ Solution:

$$\frac{\partial g(\mathbf{x})}{\partial x_3} = \frac{1}{\exp(x_2) + x_4} \left(\frac{\partial x_1 + x_2^2 - \log(x_3)}{\partial x_3} \right)$$
$$= \frac{1}{\exp(x_2) + x_4} \left(\frac{-1}{x_3} \right)$$
$$= \frac{-1}{x_3(\exp(x_2) + x_4)}$$

4. $\frac{\partial g(\mathbf{x})}{\partial x_4}$ Solution:

$$\frac{\partial g(\mathbf{x})}{\partial x_4} = (x_1 + x_2^2 - \log(x_3)) \left(\frac{\partial \frac{1}{\exp(x_2) + x_4}}{\partial x_4} \right)
= (x_1 + x_2^2 - \log(x_3)) \frac{-1}{(\exp(x_2) + x_4)^2} \left(\frac{\partial \exp(x_2) + x_4}{\partial x_4} \right)
= (x_1 + x_2^2 - \log(x_3)) \frac{-1}{(\exp(x_2) + x_4)^2}
= \frac{-x_1 - x_2^2 + \log(x_3)}{(\exp(x_2) + x_4)^2}$$