Homework 1

ECE4530J - Decision Making in Smart Cities Summer 2022

* Name: Huang Yucheng ID: 519021910885

Problem 1

- a) What is a mapping? What is a function?
- b) What is asymptotic convergence?

Answer:

a) Suppose there is a rule f for two non-empty sets X and Y, so that for each element x in X, according to the rule f, there is a unique element y corresponding to it in Y, then f is called from X to Y mapping.

Although in most cases the words function and map are used interchangeably, in some parts of mathematics the emphasis is different.

First, "map" is a generic word, the word "function" is used to map to \mathbb{R} or \mathbb{C} . So mapping to \mathbb{R}^n for example would not be called a function.

b) If there is a 1D LTI system

$$x[t+1] = ax[t] + bu[t].$$

and given initial condition x[0], select u[t] for $t = 0, 1, 2, \ldots$ such that

$$\lim_{t \to \infty} x[t] = 0$$

. It is called asymptotic convergence. That is to say, in the case of gradually increasing time, the data gradually tends to 0 and the change range is smaller and smaller.

Problem 2

Consider a one-dimensional linear time-invariant system

$$\dot{x} = ax + bu.$$

- a. What is the system state? What is the system state space?
- b. What is the control input?
- c. Given the initial condition $x(0) = x_0$ and a linear controller $\mu(x) = -kx$, find x(t).
- d. When does the feedback-controlled system in c) converge?

Answer:

a. System state is variable x.

System state space is domain \mathbb{R}

b. Control input is variable u.

c. Since it is a CT system. We have

$$\frac{d}{dt}x(t) = ax(t) + bu(t)$$

and linear controller $\mu(x) = -kx$. So that we have

$$\frac{d}{dt}x(t) = ax(t) - bkx(t)$$

CT:
$$\dot{x}(t) = ax(t) - bkx(t) = (a - bk)x(t)$$

 $x(t) = x(0)e^{(a-bk)t} = x_0e^{(a-bk)t}, \quad t > 0$

d. the system is convergent if and only if

$$\operatorname{Re}(a+bk) < 0.$$

Problem 3

Consider an n-dimensional linear time-invariant system

$$\dot{x} = Ax + Bu$$
.

- a. What is the state space?
- b. Suppose that $u \in \mathbb{R}^2$. What are the dimensions of matrices A and B?
- c. Discretize the system into discrete time with step size δ . You need to express $x((k+1)\delta)$ in terms of $A, B, \delta, x(k\delta), u(k\delta)$. To make the notation easier to read, you can use x[k+1] instead of $x((k+1)\delta)$ to denote the discrete-time state and express x[k+1] in terms of x[k]; note that you still need to consider the impact of δ .
- d. Suppose that we use a linear controller $\mu(x) = -Kx$. Write the difference equation for the discretized system; i.e., write how to obtain x[k+1] from x[k]. Find x[k] in terms of A, B, K and the initial condition $x[0] = x_0 \in \mathbb{R}^n$.
- e. Suppose that $u \in \mathbb{R}^n$. What are the domain and the range for μ ? Hint: the range will depend on the rank of K.

Answer:

- a. State space is \mathbb{R}^n since it is an *n*-dimensional LTI system.
- b. dim $A = n \times n$ and dim $B = n \times 2$
- c. We have

$$x[k+1] = Ax[k] + Bu[k]$$

we use the δ notation here, it can be expressed as

$$x((k+1)\delta) = x(k\delta) + (Ax(k\delta) + Bu(k\delta))\delta$$

= $(1 + A\delta)x(k\delta) + B\delta u(k\delta).$

d. Since we have $\mu(x) = -Kx$, we can express the former equation as

$$x[k+1] = (1 + A\delta)x[k] - KB\delta x[k]$$
$$= (1 + A\delta - KB\delta)x[k]$$

The solution can be given by induction:

$$x[k] = (1 + A\delta - KB\delta)^k x_0, \quad k = 0, 1, 2, \dots$$

e. Since $u \in \mathbb{R}^n$ the dimension of K is $n \times n$, the domain and range is both \mathbb{R}^n