COMP 9602: Convex Optimization

Subgradient Methods

Dr. C. Wu

Department of Computer Science
The University of Hong Kong

Roadmap

Theory	convex set
	convex function
	standard forms of optimization problems, quasi-convex optimization
	linear program, integer linear program
	quadratic program
	geometric program
	semidefinite program
	vector optimization
	duality
Algorithm	unconstrained optimization
	equality constrained optimization
	interior-point method
	subgradient method
	localization methods
	decomposition methods
	and more

Subgradient

g is a **subgradient** of f (not necessarily convex) at x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

 g_2 , g_3 are subgradients at x_2 ; g_1 is a subgradient at x_1

(if $f(y) \le f(x) + g^T(y - x)$ for all y, then g is a supergradient)

Subgradient (cont'd)

g is a **subgradient** of f (not necessarily convex) at x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

- lacktriangle if f is convex and differentiable, abla f(x) is the unique subgradient of f at x
- for non-differentiable functions, lots of choices for g are possible
- subgradient is useful in
 - algorithms for nondifferentiable convex optimization
 - convex analysis, e.g., optimality conditions, duality for nondifferentiable problems

Subgradient (cont'd)

Example

 $f = \max\{f_1, f_2\}$, with f_1 , f_2 convex and differentiable

- $f_1(x_0) > f_2(x_0)$: unique subgradient $g = \nabla f_1(x_0)$
- $f_2(x_0) > f_1(x_0)$: unique subgradient $g = \nabla f_2(x_0)$
- $f_1(x_0) = f_2(x_0)$: subgradients form a line segment $[\nabla f_1(x_0), \nabla f_2(x_0)]$

Subdifferential

- ullet set of all subgradients of f at x is called the **subdifferential** of f at x, denoted $\partial f(x)$
- $\partial f(x)$ is a closed convex set (can be empty)

if f is convex,

- $\partial f(x)$ is nonempty, for $x \in \inf \mathbf{dom} f$
- $\partial f(x) = {\nabla f(x)}$, if f is differentiable at x
- if $\partial f(x) = \{g\}$, then f is differentiable at x and $g = \nabla f(x)$

Optimality condition for unconstrained problem

recall for f convex, differentiable,

$$f(x^*) = \inf_x f(x) \Longleftrightarrow 0 = \nabla f(x^*)$$

generalization to nondifferentiable convex f:

$$f(x^*) = \inf_x f(x) \Longleftrightarrow 0 \in \partial f(x^*)$$

Optimality condition for constrained problem

```
minimize f_0(x)
subject to f_i(x) \leq 0, i = 1, ..., m
```

we assume

- f_i convex, defined on \mathbf{R}^n (hence subdifferentiable)
- strict feasibility (Slater's condition)

 x^* is primal optimal (λ^* is dual optimal) iff

$$f_i(x^*) \le 0, \quad \lambda_i^* \ge 0$$

$$\lambda_i^{\star} f_i(x^{\star}) = 0$$

$$0 \in \partial f_0(x^*) + \sum_{i=1}^m \lambda_i^* \partial f_i(x^*)$$

generalizes KKT for nondifferentiable f_i

Subgradient method

- A simple algorithm to minimize non-differentiable convex functions
- Similar to gradient method, but
 - step length not chosen using line search
 - not a descent method: function value can increase
- As compared to interior point and Newton's method
 - can be slower
 - can be applied to a much wider variety of problems
 - for large-scale problem: memory requirement much smaller
 - for distributed solution design by combining with primal or dual decomposition

Subgradient method for unconstrained optimization

Give a starting point $x^{(1)} \in \mathbf{dom} f$

Repeat

- 1. Find a subgradient $g^{(k)}$ of f at $x^{(k)}$
- 2. Choose a step size α_k
- 3. Update $x^{(k+1)} = x^{(k)} \alpha_k g^{(k)}$

Until stopping criteria is satisfied

- $x^{(k)}$ is the kth iterate
- $ullet g^{(k)}$ is **any** subgradient of f at $x^{(k)}$
- $\alpha_k > 0$ is the kth step size not a descent method, so we keep track of best point so far

$$f_{\text{best}}^{(k)} = \min_{i=1,\dots,k} f(x^{(i)})$$

Step size

☐ Step size rules (step sizes are fixed before algorithm execution)

- constant step size: $\alpha_k = \alpha$ (constant)
- constant step length: $\alpha_k = \gamma/\|g^{(k)}\|_2$ (so $\|x^{(k+1)} x^{(k)}\|_2 = \gamma$)
- square summable but not summable: step sizes satisfy

$$\sum_{k=1}^{\infty} \alpha_k^2 < \infty, \qquad \sum_{k=1}^{\infty} \alpha_k = \infty$$

e.g.
$$\alpha_k = a/(b+k)$$
, where $a > 0$ and $b \ge 0$

nonsummable diminishing: step sizes satisfy

$$\lim_{k \to \infty} \alpha_k = 0, \qquad \sum_{k=1}^{\infty} \alpha_k = \infty$$
 e.g. $\alpha_k = a/\sqrt{k}$, where $a > 0$

Convergence

assumptions

- $f^* = \inf_x f(x) > -\infty$, with $f(x^*) = f^*$
- $||g||_2 \le G$ for all $g \in \partial f$
- $R \ge ||x^{(1)} x^*||_2$

$$f_{\text{best}}^{(k)} - f^* \le \frac{R^2 + G^2 \sum_{i=1}^k \alpha_i^2}{2 \sum_{i=1}^k \alpha_i}$$

- convergence results: define $ar{f} = \lim_{k \to \infty} f_{\mathrm{best}}^{(k)}$
 - constant step size: $\bar{f} f^* \leq G^2 \alpha/2$, i.e., converges to $G^2 \alpha/2$ -suboptimal (converges to f^* if f differentiable, α small enough)
 - constant step length: $\bar{f} f^* \leq G\gamma/2$, i.e., converges to $G\gamma/2$ -suboptimal
 - ullet square summable step size rule: $ar f=f^\star$, i.e., converges to optimality
 - ullet none summable diminishing step size rule: $ar f=f^\star$, i.e., converges to optimality

Stopping criteria

Stopping criteria

$$f_{\text{best}}^{(k)} - f^* \le \frac{R^2 + G^2 \sum_{i=1}^k \alpha_i^2}{2 \sum_{i=1}^k \alpha_i} \le \epsilon$$

• terminating when $\frac{R^2+G^2\sum_{i=1}^k\alpha_i^2}{2\sum_{i=1}^k\alpha_i}\leq\epsilon$ can be very very slow

Example

piece-wise linear minimization

minimize
$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

to find a subgradient of f: find index j for which $a_j^T x + b_j = \max_{i=1,...,m} (a_i^T x + b_i)$ and take $g = a_j$

subgradient method: $x^{(k+1)} = x^{(k)} - \alpha_k a_j$

Example

minimize $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$

problem instance with n=20 variables, m=100 terms

constant step length $\gamma = 0.05, 0.01, 0.005$

diminishing step rule $\alpha_k=0.1/\sqrt{k}$ square summable step size rule

$$lpha_k = 1/k$$
 10^0
 10^{-1}
 10^{-2}
 10^{-3}
 0
 100
 1000
 1500
 2000
 2500
 3000
 2500

Subgradient method for constrained problems

constrained optimization problem

minimize
$$f(x)$$
 subject to $x \in \mathcal{C}$,

where $f: \mathbf{R}^n \to \mathbf{R}$, $\mathcal{C} \subseteq \mathbf{R}^n$ are convex

Projected subgradient method

- projected subgradient method for primal problem
- projected subgradient method for dual problem

Subgradient method for constrained optimization

solves constrained optimization problem

minimize
$$f(x)$$
 subject to $x \in \mathcal{C}$,

where $f: \mathbf{R}^n \to \mathbf{R}$, $\mathcal{C} \subseteq \mathbf{R}^n$ are convex

projected subgradient method is given by

$$x^{(k+1)} = P(x^{(k)} - \alpha_k g^{(k)}),$$

P is (Euclidean) projection on \mathcal{C} , and $g^{(k)} \in \partial f(x^{(k)})$

Give a starting point $x^{(1)} \in \mathbf{dom} f$

Repeat

- 1. Find a subgradient $g^{(k)}$ of f at $x^{(k)}$
- 2. Choose a step size α_k
- 3. Update $x^{(k+1)} = P(x^{(k)} \alpha_k g^{(k)})$, where

P is (Euclidean) projection on C

Until stopping criteria is satisfied

Projection

- \square Projection: $s = argmin_{s \in C} \parallel x s \parallel_2$
- Example: linear equality constrained problem

minimize
$$f(x)$$
 subject to $Ax = b$

projection of z onto $\{x \mid Ax = b\}$ is

$$P(z) = z - A^{T} (AA^{T})^{-1} (Az - b)$$
$$= (I - A^{T} (AA^{T})^{-1} A)z + A^{T} (AA^{T})^{-1} b)$$

projected subgradient update is

$$x^{(k+1)} = P(x^{(k)} - \alpha_k g^{(k)})$$
$$= x^{(k)} - \alpha_k (I - A^T (AA^T)^{-1} A) g^{(k)}$$

Convergence

same convergence results:

- for constant step size, converges to neighborhood of optimal (for f differentiable and α small enough, converges)
- for diminishing nonsummable step sizes, converges

key idea: projection does not increase distance to x^*

Example

Linear equality constrained problem

minimize
$$||x||_1$$
 subject to $Ax = b$

subgradient of objective is $g = \mathbf{sign}(x)$

projected subgradient update is
$$x^{(k+1)} = x^{(k)} - \alpha_k (I - A^T (AA^T)^{-1}A) \operatorname{sign}(x^{(k)})$$

problem instance with n=1000, m=50,

step size $\alpha_k = 0.1/k$

(convex) primal: (Slater's condition holds)

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

solve dual problem

maximize
$$g(\lambda)$$
 subject to $\lambda \succeq 0$

via projected subgradient method:

$$\lambda^{(k+1)} = (\lambda^{(k)} - \alpha_k h^{(k)})_+ \qquad h^{(k)} \in \partial(-g)(\lambda^{(k)})$$

$$g(\lambda) = \inf_{x} (f_0(x) + \lambda_1 f_1(x) + \ldots + \lambda_m f_m(x))$$

$$-g(\lambda) = \sup_{x} (-f_0(x) - \lambda_1 f_1(x) - \dots - \lambda_m f_m(x))$$

denote, for $\lambda \succeq 0$,

$$x^*(\lambda) = \operatorname*{argmin}_{z} \left(f_0(z) + \lambda_1 f_1(z) + \dots + \lambda_m f_m(z) \right)$$

so
$$-g(\lambda) = -f_0(x^*(\lambda)) - \lambda_1 f_1(x^*(\lambda)) - \cdots - \lambda_m f_m(x^*(\lambda))$$

a subgradient of -g at λ is given by $h_i = -f_i(x^*(\lambda))$

projected subgradient method for dual:

$$x^{(k)} = x^*(\lambda^{(k)}), \qquad \lambda_i^{(k+1)} = \left(\lambda_i^{(k)} + \alpha_k f_i(x^{(k)})\right)_+$$

Give a starting point $\lambda^{(1)} \succeq 0$

Repeat

1.
$$x^{(k)} = \operatorname{argmin}_z(f_0(z) + \lambda_1^{(k)} f_1(z) + \dots + \lambda_m^{(k)} f_m(z))$$

2. Choose a step size α_k

3. Update
$$\lambda_i^{(k+1)} = \left(\lambda_i^{(k)} + \alpha_k f_i(x^{(k)})\right)_+$$

Until stopping criteria is satisfied

interpretation:

- λ_i is price for 'resource' $f_i(x)$
- ullet price update $\lambda_i^{(k+1)} = \left(\lambda_i^{(k)} + lpha_k f_i(x^{(k)})
 ight)_+$
 - increase price λ_i if resource i is over-utilized (i.e., $f_i(x) > 0$)
 - decrease price λ_i if resource i is under-utilized (i.e., $f_i(x) < 0$)
 - but never let prices get negative

convergence:

- primal iterates $x^{(k)}$ are not feasible, but become feasible in limit (sometimes can find feasible, suboptimal $\tilde{x}^{(k)}$ from $x^{(k)}$)
- ullet dual function values $g(\lambda^{(k)})$ converge to $f^\star = f_0(x^\star)$

Example

minimize strictly convex quadratic $(P \succ 0)$ over unit box:

minimize
$$(1/2)x^TPx - q^Tx$$

subject to $x_i^2 \le 1, \quad i = 1, \dots, n$

•
$$L(x,\lambda) = (1/2)x^T(P + \mathbf{diag}(2\lambda))x - q^Tx - \mathbf{1}^T\lambda$$

•
$$x^*(\lambda) = (P + \mathbf{diag}(2\lambda))^{-1}q$$

projected subgradient for dual:

$$x^{(k)} = (P + \mathbf{diag}(2\lambda^{(k)}))^{-1}q, \quad \lambda_i^{(k+1)} = \left(\lambda_i^{(k)} + \alpha_k((x_i^{(k)})^2 - 1)\right)_+$$

Example

problem instance with n=50, fixed step size $\alpha=0.1$, $f^\star\approx-5.3$; $\tilde{x}^{(k)}$ is a nearby feasible point for $x^{(k)}$

Subgradient method for constrained optimization

constrained optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m,$

where $f_i: \mathbf{R}^n \to \mathbf{R}$ are convex

same update $x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$, but we have

$$g^{(k)} \in \begin{cases} \partial f_0(x) & f_i(x) \le 0, \quad i = 1, \dots, m, \\ \partial f_j(x) & f_j(x) > 0 \end{cases}$$

- if the current point is feasible, use the subgradient of objective function
- otherwise, use the subgradient of any violated constraint

Convergence

assumptions:

- there exists an optimal x^* ; Slater's condition holds
- $||g^{(k)}||_2 \le G$; $||x^{(1)} x^*||_2 \le R$

typical result: for $\alpha_k > 0$, $\alpha_k \to 0$, $\sum_{i=1}^{\infty} \alpha_i = \infty$, we have $f_{\text{best}}^{(k)} \to f^*$

define $f_{\text{best}}^{(k)} = \min\{f_0(x^{(i)}) \mid x^{(i)} \text{ feasible}, i = 1, \dots, k\}$

Example

Inequality form LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, ..., m$,

LP with n=20 variables, m=200 inequalities, $f^* \approx -3.4$; $\alpha_k = 1/k$ for optimality step, Polyak's step size for feasibility step

Polyak's step size:

$$\alpha_k = \frac{f(x^{(k)}) - f^*}{\|g^{(k)}\|_2^2}$$

can also use with estimated f*

Reference

Subgradient method:

subgradients_notes.pdf (reference 5 on Moodle)
subgrad_method_notes.pdf (reference 6 on Moodle)
N.Z. Shor, Minimization Methods for Non-differentiable Functions,
Springer-Verlag, 1985
Chapter 7.5, Dimitri P. Bertsekas, Nonlinear Programming (3rd edition), Athena Scientific, 2016

Acknowledgement

Some materials are extracted from the slides created by Prof. Stephen Boyd for EE364b at Standard University