

Addressing & the network layer

What is in an address?

- http://www.it.uu.se/katalog/lln
- 018-471 27 81
- 130.238.14.76
- bazinga.it.uu.se
- 10:dd:b1:9c:ca:e0
- Iln@it.uu.se
- ITC 19219

Which of these addresses and identifiers have a hierarchical structure?

Structured address spaces: IP

Structured address spaces: FQDN

Flat address spaces: MAC address

10:dd:b1:9c:ca:e0

Vendor identifier

NIC-specific code

Give an example when it is better to use flat address spaces rather than hierarchical.

Key problems in naming systems

- Bootstrapping
 - What is my name?
 - What are everyone elses name?
- Relay point
 - Who takes care of what I don't know of?
- Searching
 - How do I locate other nodes?

Translation mechanisms

- Domain name system
- ARP/RARP

•

En titt i nätverkslagret

Addressering i IP

- IP address:
 32-bits identifierare för dator, router - interface
- interface: förbindelse mellan dator/router och den fysiska länken
 - Routrar har typiskt flera interface
 - En dator kan ha flera interface

Sändning av datagram

- Hur avgör man om man har direktkontakt med mottagaren?
- Hur går uppslagningen av länklageraddresser egentligen till?
- Hur vet man vilken som är den närmaste routern?

IP Addressering

· IP address:

- Nätverksidentifierare
- Ändnodsidentifierare
- Vad är ett nätverk?

(från IP:s perspektiv)

- Interface som har samma nätverksidentifierare
- Noderna kan prata med varandra utan att gå via en router

(Gamla) addressklasser i IP

klass

32 bitar

00010000 00000000

Minimal konfiguration

- Manuellt eller med hjälp av DHCP
 - IP address
 - Nätmask
 - Identifierar n\u00e4tverksdelen av addressen
 - IP-addressen till närmaste router
 - (DNS-server)

Hur datagrammen hittar fram routingtabell vid A

IP datagram:

misc	source	dest	
fields	IP addr	IP addr	data

 Datagrammet ändras (nästan) inte längs vägen

Routing & forwarding

- Varje router har en forwardingtabell
 - Identifierar nätverk och ändnoder med längsta möjliga prefix
 - Håller reda på nästa nod längs vägen, kostnaden samt interface
- En router vidarebefodrar datagram genom att kolla i forwardingtabellen
- Routing är processen som bygger upp forwardingtabellerna i routrarna

Intra-AS and Inter-AS routing

Problems

- Routers dont tell each other about other routers!
- Routers tell each other about networks!

Routing in the Internet

- The Global Internet consists of Autonomous Systems (AS) interconnected with each other:
 - Stub AS: small corporation: one connection to other AS's
 - Multihomed AS: large corporation (no transit): multiple connections to other AS's
 - Transit AS: provider, hooking many AS's together
- Two-level routing:
 - Intra-AS: administrator responsible for choice of routing algorithm within network
 - Inter-AS: unique standard for inter-AS routing: BGP

Datagram i IP version 4

_____ 32 bitar _____

ver	head. Ien	type of service		length
16-bit identifier		flgs fragment offset		
	e to ve	upper layer	Internet checksum	
	32 bit source IP address			
32 bit destination IP address				
Options (if any)				
data (variable length, typically a TCP or UDP segment)				

Fragmentering

Om ett fragment tappas bort kan inte datagrammet återmonteras

Fragmentering

•	32 bitar			
	ver head.	type of service		length
		lentifier	flgs	fragment offset
	time to live	upper layer		Internet checksum
	32 bit source IP address			
	32 bit destination IP address			
	Options (if any)			
	data (variable length, typically a TCP or UDP segment)			

Leverans av datagram

4	Header length	TOS	Length	
	Identifier		Flags Fragment offset	
	0	Upper layer protocol	UDP segment length	
Source IP address				
Destination IP address				
Source port		Destination port		
UDP segment length		UDP checksum		
		Mes	sage	

Psuedo

Internet Control Message Protocol (ICMP)

- Felmeddelanden
 - Destination unknown/unreachable
 - Protocol unreachable
 - Port unreachable
 - TTL expired
 - Bad header
- Frågor
 - Echo request
 - Router discovery (endast de första nio)

Applikationer som använder ICMP

- ping kolla om en dator är kontaktbar
 - ICMP echo request/reply
 - Kan även spåra rutten till ändnoden
- traceroute visar rutten till en ändnod
 - Sänd paket med felaktigt portnummer till mottagaren
 - Öka TTL inkrementellt
 - Ta emot 'TTL expired'-meddelanden från routrar
 - Ta emot 'port saknas'-meddelande från mottagaren
- pathchar vidareutveckling av traceroute
 - Visar även länkegenskaper längs vägen

Några säkerhetsluckor

- Det är ENKELT att förfalska IP-datagram
 - Förfalskad avsändaraddress kan dölja spår
- Ping:a en broadcastaddress
 - Dubbelt så roligt om man dessutom sätter källaddressen till broadcast-addressen
- Ingen kryptering
- Source routing

IPv4 vs IPv6

- 32-bit addresses
- IPSec optional
- No flow identifier
- Fragmentation in routers
- Header checksum
- IP options
- Might be 576 bytes
- Uni-, Broad-, Multicast
- NAT a requirement
- ARP/RARP

- 128-bit addresses
- IPSec mandatory
- Flow identifier for QoS
- Fragmentation in end hosts
- No header checksum
- Extension headers
- Might be 1280 bytes
- Uni-, Multi, Anycast
- No need for NAT
- Neighbour discovery, ICMPv6

The IPv4 Header

The IPv6 Header

IPv6 addresses

- 64 bits for location
 - Specifies the location in the network
 - Can change if the node is moving
 - Used for forwarding
- 64 bits for identification
 - Specifies the interface on the Internet
 - Does not change when node is moving
 - Can be IPv4 address, EUI-64, EUI-48, ...
 - Used for process multiplexing
- Multicast addresses an exception!
- No need for netmask or subnet identifier
 - Simplifies automatic configuration without DHCP
- Cryptographically protected addresses (RFC3972)

Domännamn

 Består av delar som är separerade med punkter. Delen längst till höger anger toppdomänen.

Exempel på toppdomäner:

.com

.org

.se

.no

DNS = Domain Name System

Domain Name Space

En frågas innehåll

- Domännamn
- Klass, tex IN för ett domännamn på Internet
- Typ, tex A för en IP-adress
 NS för ett domännamn på en server

Hur går en uppslagning till?

Fördelar och begränsningar

 Ändras en adress behöver den endast uppdateras på ett ställe...

... men en ändring är inte omedelbart synlig överallt

Network address translation (NAT)

