Mu A Integration Area Test 2010

Louisiana State Competition

1. Evaluate $\int_0^4 \sqrt{16-x^2} \, \mathrm{d}x$.

 \mathbf{A} . $\frac{\pi}{2}$

 \mathbf{B} . π

 \mathbf{C} . 2π

 \mathbf{D} . 4π

E. NOTA

2. Using four rectangles on a regular partition of [0,2], calculate the **lower sum** approximation of $\int_0^2 (x^2 + 1) \, \mathrm{d}x.$

A. 1

B. $\frac{14}{3}$ C. $\frac{9}{4}$ D. $\frac{15}{4}$

E. NOTA

3. If $\int_a^b f(x) = 0$, then which of the following must be true?

A. f(x) = 0

B. a = b **C.** f(-x) = -f(x)

D. At least one of the choices A, B, or C

E. NOTA

4. Evaluate $\int \frac{x+e^x}{xe^x} dx$.

A. $-e^{-x} - \frac{1}{x^2} + C$ **B**. $e^{-x} - \ln|x| + C$ **C**. $e^{-x} + \ln|x| + C$

D. $-e^{-x} + \ln|x| + C$

E. NOTA

5. Evaluate $\int \frac{2}{\sqrt{9-4x^2}} dx$.

A. $\sin^{-1}(\frac{2x}{3}) + C$ **B.** $\frac{1}{3}\sin^{-1}(\frac{2x}{3}) + C$ **C.** $\frac{1}{3}\tan^{-1}(\frac{2x}{3}) + C$

D. $\sec^{-1}(\frac{2x}{3}) + C$

E. NOTA

6. If f(x) is a continuous function such that $\int_{9}^{1} f(x) dx = -4$ and $\int_{1}^{6} f(x) dx = 12$, then evaluate $\int_{5}^{9} (3f(x) + 6) \, \mathrm{d}x.$

A. -12

B. 0

C. 48

D. 72

E. NOTA

7. Find the volume of a solid given that its base is an isosceles right triangle with legs of length four and cross sections perpendicular to one of its legs are semicircles.

A. $\pi/2$

 \mathbf{B} . π

C. $8\pi/3$

D. $16\pi/3$

E. NOTA

8. The velocity of a particle moving on a line at time t is $v(t) = 3t^{\frac{1}{2}} + 5t^{\frac{3}{2}}$ feet per second. How many feet did the particle travel from t = 1 to t = 9 seconds?

A. 536

B. 496

C. 492

D. 248

E. NOTA

9. What is the value of c guaranteed by the mean value theorem for integrals for the function $f(x) = \frac{6}{x^2}$ on the interval [1, 2]?

 $\mathbf{A}. \sqrt{2}$

B. $2\sqrt{2}$ **C.** $\frac{3}{2}$ **D.** $\frac{\sqrt{2}}{2}$

E. NOTA

10. A particle moves along the x-axis. Find the average value of the velocity on the closed interval [1,4] when $v(t) = 2t^3 - 4t^2 + 3t + 2$.

A. 22

B. 24

C. 33

D. 67

E. NOTA

11. If $F(x) = \int_0^{x^2} \frac{\tan(\pi t)}{(1+t)} dt$, find $F'(\frac{3}{2})$.

A. $\frac{12}{13}$ **B**. $\frac{8}{13}$ **C**. $\frac{4}{13}$

D. $\frac{3}{13}$

E. NOTA

12. What is the area of the region between the curves $y = 4\sin(\frac{x}{2})$ and $y = 2\sin x$ on the interval $[0, 2\pi]$?

A. 12

B. $12\sqrt{2}$

C. 12π

D. $6\sqrt{3}$

E. NOTA

13. Solve for a: $\int_1^4 (4ax^2 + 2x + 3a) dx = \int_{-2}^1 (2ax^2 - 3ax + 2) dx$

A. $\frac{3}{19}$ **B**. $\frac{5}{41}$ **C**. $-\frac{6}{55}$ **D**. $-\frac{7}{65}$ **E**. NOTA

14. What is the area of the region bounded by $f(x) = 10 - 2^x$ and g(x) = 10 on the interval [0, 3]?

A. $7 \ln 2$

B. $\frac{8}{\ln 2}$ **C.** $8 \ln 2$ **D.** $\frac{7}{\ln 2}$

E. NOTA

15. Which of the following are antiderivatives of $\frac{\ln^2 x}{x}$?

I. $\frac{\ln^3 x}{3}$ II. $\frac{\ln^3 x}{3} + 6$ III. $\frac{2 \ln x - \ln^2 x}{x^2}$

A. I only **B**. III only

C. I and II only

D. I and III only

E. NOTA

16. The region in the first quadrant bounded by the axes and the graphs of $\sqrt{x} + \sqrt{y} = 4$ and x = 4 is revolved about the x-axis. Find the volume of the solid generated (to the nearest hundredth).

A. 764.04

B. 243.20

C. 92.15

D. 33.51

E. NOTA

17. If $\int_1^{12} |cx - 6| dx = \frac{73}{3}$ where $1 < \frac{6}{c} < 12$, find c.

A. $\frac{10}{2}$

B. $\frac{4}{3}$ C. $\frac{3}{2}$ D. $\frac{2}{3}$

E. NOTA

18. Find the general solution for the differential equation $(3x^2+9)\frac{dy}{dx}=xy$

A. $y = C(3x^2 + 9)^{\frac{1}{6}}$ **B.** $y = C(x^2 + 3)^{\frac{1}{2}}$ **C.** $y = C(x^2 + 3)^{\frac{1}{3}}$

D. $y = C(x^2 + 3)^{\frac{1}{6}}$ **E**. NOTA

19. Evaluate: $\int_1^e \left[\frac{1}{x} - \frac{1}{x} \cdot \ln(\frac{1}{x})\right] dx$

A. $-\frac{1}{2}$ **B**. 0 **C**. $\frac{1}{2}$ **D**. $\frac{3}{2}$

E. NOTA

20. Solve the differential equation, $x^2y' - x = 1$, satisfying the condition y(1) = 2.

A. $y = 2 - \ln(x)$ **B.** $y = 2 - \ln(x^2)$ **C.** $y = 3 - \frac{1}{x} + \ln(x)$

D. $y = 3 + \frac{1}{x} + \ln(x)$ **E**. NOTA

21. Semi-circular cross sections parallel to the y-axis are taken around the graph of $y = 3x^2 - 6x$ on the interval [2,4]. Find the volume of the surface formed.

A. $\frac{186\pi}{5}$ **B**. $\frac{744\pi}{5}$ **C**. $\frac{1488\pi}{5}$ **D**. $\frac{372\pi}{5}$ **E**. NOTA

22. If f(x) is a continuous function such that $\int_1^9 f(x) dx = 12$ and $\int_1^6 f(x) dx = 15$, then evaluate $\int_6^9 4(f(x) + 2) dx$.

A. -12

B. -6

C. 6

D. 12

E. NOTA

23. A particle moves along the x-axis so that its acceleration at any time t is given by a(t) = 6t - 18. At time t=0, the velocity of the particle is 24. At t=1, its position is 20. What is the total distance traveled by the particle from t = 0 to t = 4?

A. 4

B. 16

C. 20

D. 24

E. NOTA

- 24. For a certain curve, $\frac{dy}{dx} = \sqrt{3 + xy + 3x + y}$. The curve passes through the points (-1, 1) and (8, b). Find the value of b.
 - **A**. 8
- **B**. 22
- **C**. 118
- **D**. 121
- E. NOTA
- 25. Evaluate the indefinite integral: $\int \frac{2x}{x^2+6x+10}\,\mathrm{d}x$
 - **A**. $\ln|x^2 + 6x + 10| + C$
- **B**. $2 \ln |x^2 + 6x + 10| + \arctan(x+3) + C$
- C. $\ln|x^2+6x+10|+6\arctan(x+3)+C$ D. $\ln|x^2+6x+10|-6\arctan(x+3)+C$
- E. NOTA

- 26. $F(x) = \int_0^{2\sin(x)} \sqrt{1+t^3} dt$. Find $F'(\pi)$.
 - **A**. -6
- **B**. -2
- **C**. 3
- **D**. 6
- \mathbf{E} . NOTA

Tiebreaker: The area enclosed by the graphs of $y = x^2 - 4x$ and y = x + 6 is rotated about the line x = 8. Find the volume of the solid formed.