## Imperial College London

Department of Mathematics

# Advanced Topics in Partial Differential Equations

Lecturer: Anna Kostianko

Transcribed by Harry Li

March 25, 2023

## Contents

| Chapter 2 | Sobolev spaces                                   | Page 2  |
|-----------|--------------------------------------------------|---------|
| 2.1       | Interpolation inequalities                       | 2       |
| 2.2       | Sobolev inequalities                             | 3       |
| 2.3       | Spaces with zero boundary traces                 | 5       |
| 2.4       | Poincaré's and Friedrich's inequalities          | 5       |
| 2.5       | Compactness                                      | 6       |
| 2.6       | Dual spaces                                      | 8       |
| Chapter 3 | Linear elliptic problems                         | Domo 10 |
|           | Linear elliptic problems                         | Page 10 |
| 3.1       | Dirichlet and Neumann problems for the Laplacian | 10      |
| 3.2       | More general problems via Lax-Milgram            | 14      |
| 3.3       | Introduction to spectral theory                  | 15      |
| 3 4       | Maximum principle                                | 20      |

## Chapter 2

## Sobolev spaces

## 2.1 Interpolation inequalities

Example 2.1

$$||u||_{L^2}^2 \le ||u||_{L^2} ||u'||_{L^2} \text{ for } u \in C^{\infty}(\mathbb{R})$$
 (2.1)

*Proof.* Idea: use that  $(u^2)' = 2uu'$  and Newton-Leibniz

$$u^{2}(x) = 2 \int_{-\infty}^{x} uu' \, dy = -2 \int_{x}^{\infty} uu' \, dy$$

$$= \int_{-\infty}^{x} uu' \, dy - \int_{x}^{\infty} uu' \, dy$$

$$\leq \int_{-\infty}^{x} |u||u'| \, dy + \int_{x}^{\infty} |u||u'| \, dy$$

$$= \int_{\mathbb{R}} |u||u'| \, dy$$
(Hölder's inequality)  $\leq ||u||_{L^{2}} ||u'||_{L^{2}}$ 

#### Question 1

Check that 2.1 is sharp. Namely, that 2.1 becomes equality for  $u(x) = e^{-|x|}$  (u(x) is an extremal function for 2.1). Also, 2.1 is shift and scaling invariant, i.e.  $u_{\alpha}(x+h) = e^{-\alpha|x+h|}$ ,  $h \in \mathbb{R}$ ,  $\alpha > 0$  -extremals.

Example 2.2 (Interpolation inequality)

$$||u||_{L^{p}} \le ||u||_{L^{p_{1}}}^{\theta} ||u||_{L^{p_{2}}}^{1-\theta} \tag{2.2}$$

Proof.

$$\int_{\mathbb{R}} |u|^p \, \mathrm{d}x = \int_{\mathbb{R}} |u|^{\theta p} |u|^{(1-\theta)p} \, \mathrm{d}x$$

We apply Hölder's inequality with exponents  $P = \frac{p_1}{\theta p}$  and  $Q = \frac{p_2}{(1-\theta)p}$  (Note  $\frac{1}{P} + \frac{1}{Q} = \frac{\theta p}{p_1} + \frac{(1-\theta)p}{p_2} = 1$ ). Then

$$\int_{\mathbb{R}} |u|^{\theta p} |u|^{(1-\theta)p} \, \mathrm{d}x \le \left( \int_{\mathbb{R}} |u|^{p_1} \, \mathrm{d}x \right)^{\frac{1}{p}} \left( \int_{\mathbb{R}} |u|^{p_2} \, \mathrm{d}x \right)^{\frac{1}{Q}}$$
$$= \|u\|_{L^{p_1}}^{\theta} \|u\|_{L^{p_2}}^{1-\theta}$$

## 2.2 Sobolev inequalities

Example 2.3 (Sobolev inequality 1D)

 $u \in C^{\infty}([0,1])$ , want to prove the embedding  $W^{1,1}([0,1]) \subset C([0,1])$ , i.e.

$$||u||_{\mathcal{C}([0,1])} \le ||u||_{L^1([0,1])} + ||u'||_{L^1([0,1])} \tag{2.3}$$

*Proof.* By the Newton-Leibniz formula,  $u(x) - u(y) = \int_y^x u'(s) ds$ . Also,

$$|u(x)| \le |u(y)| + \int_0^1 |u'(s)| \, \mathrm{d}s \quad \forall x, y \in [0, 1]$$

By integration over  $y \in [0, 1]$ ,

$$|u(x)| \le \int_0^1 |u(s)| \, \mathrm{d}s + \int_0^1 |u'(s)| \, \mathrm{d}s = ||u||_{W^{1,1}([0,1])}$$

Taking supremum with respect to  $x \in [0,1]$ , we obtain  $||u||_{C([0,1])} \leq ||u||_{W^{1,1}([0,1])}$ 

Example 2.4 (Sobolev inequality 2D)

$$u \in C^{\infty}([0,1]^2)$$
, i.e.  $\Omega = [0,1]^2$ , then  $W^{1,1}(\Omega) \subset L^2(\Omega) : ||u||_{L^2} \le ||u||_{W^{1,1}(\Omega)}$ 

*Proof.*  $\int_{\Omega} u^2(x_1, x_2) dx_1 dx_2$  should be estimated. From 2.3, we know that

$$|u(x_1, x_2)| \le \int_0^1 |u(s, x_2)| + |\partial_{x_1} u(s, x_2)| \, \mathrm{d}s := f(x_2)$$

$$|u(x_1, x_2)| \le \int_0^1 |u(x_1, s)| + |\partial_{x_2} u(x_1, s)| \, \mathrm{d}s := g(x_1)$$

Then

$$\begin{split} \int_{\Omega} u^2 \, \mathrm{d}x & \leq \int_0^1 g(x_1) f(x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2 \\ & = \int_0^1 f(x_2) \, \mathrm{d}x_2 \int_0^1 g(x_1) \, \mathrm{d}x_1 \\ & = \left( \int_{\Omega} |u(x_1, x_2)| + |\partial_{x_1} u(x_1, x_2)| \, \mathrm{d}x_1 \right) \left( \int_{\Omega} |u(x_1, x_2)| + |\partial_{x_2} u(x_1, x_2)| \, \mathrm{d}x_2 \right) \\ & \leq \|u\|_{W^{1,1}(\Omega)} \end{split}$$

#### Question 2: Sobolev inequality 3D

 $u \in C^{\infty}(\bar{\Omega}), \Omega = (0,1)^3$ . Prove that  $W^{1,1}(\Omega) \subset L^{\frac{3}{2}}(\Omega)$ , i.e.

$$\|u\|_{L^{\frac{3}{2}}(\Omega)} \le \|u\|_{W^{1,1}(\Omega)} \tag{2.4}$$

Hint: first, prove that

$$\int_{\Omega} f(x_1, x_2) g(x_2, x_3) h(x_1, x_3) \, \mathrm{d}x \le \|f\|_{L^2} \|g\|_{L^2} \|h\|_{L^2}$$

and use 2.3.

#### Example 2.5

 $u \in C^{\infty}(\bar{\Omega}), \Omega = (0,1)^3$ . Then

$$||u||_{L^{6}(\Omega)} \le C||u||_{W^{1,2}(\Omega)} \tag{2.5}$$

Proof.

$$\begin{split} \int_{\Omega} |u|^6 \, \mathrm{d}x &= \int_{\Omega} (|u|^4)^{\frac{3}{2}} \, \mathrm{d}x \\ &\leqslant C \left( \int_{\Omega} |u|^4 \, \mathrm{d}x + \int_{\Omega} u^3 |\nabla u| \, \mathrm{d}x \right)^{\frac{3}{2}} \\ &(\text{by (2.3)}) \quad \leqslant C \left( \int_{\Omega} |u|^4 \, \mathrm{d}x \right)^{\frac{3}{2}} + C \left( u^3 |\nabla u| \, \mathrm{d}x \right)^{\frac{3}{2}} \\ &\leqslant C \|u\|_{L^2}^{\frac{3}{2} \cdot \theta \cdot 4} \|u\|_{L^6}^{\frac{3}{2} \cdot (1-\theta) \cdot 4} + C \|u\|_{L^6}^{\frac{3}{2} \cdot 3} \|\nabla u\|_{L^2}^{\frac{3}{2}} \\ &\left( \theta = \frac{1}{4} \right) \quad = C \|u\|_{L^2}^{\frac{3}{2}} \|u\|_{L^6}^{\frac{9}{2}} + C \|u\|_{L^6}^{\frac{3}{2}} \|\nabla u\|_{L^2}^{\frac{3}{2}} \\ &\left( \text{Young's inequality with } p = \frac{4}{5} \text{ and } q = -4 \right) \quad \leqslant \varepsilon \|u\|_{L^6}^6 + C_\varepsilon (\|u\|_{L^2} + \|\nabla u\|_{L^2})^6 \end{split}$$

Setting for example,  $\varepsilon = \frac{1}{2}$ , we obtain

$$||u||_{L^6(\Omega)} \le C||u||_{W^{1,2}(\Omega)}$$

#### Theorem 2.1 Sobolev embeddings

- ②  $W^{k,p}(\Omega) \subset C^{\alpha}(\Omega)$  if  $\alpha < k \frac{n}{p}$ . If  $\alpha$  is not an integer, then the inequality is weak.

#### Example 2.6

$$H^s(\mathbb{R}^n) \subset C(\mathbb{R}^n) \iff s > \frac{n}{2}$$

Proof.  $u(x) = \int_{\mathbb{R}^n} e^{i\xi x} \hat{u}(\xi) d\xi$ 

$$\begin{split} |u(x)| & \leqslant \int_{\mathbb{R}^n} |\hat{u}(\xi)| \,\mathrm{d}\xi \\ & = \int_{\mathbb{R}^n} \left(1 + |\xi|^2\right)^{-\frac{s}{2}} \left(1 + |\xi|^2\right)^{\frac{s}{2}} |\hat{u}(\xi)| \,\mathrm{d}\xi \\ & (\text{H\"{o}lder's inequality}) \quad \leqslant \left(\int_{\mathbb{R}^n} \frac{1}{(1 + |\xi|^2)^s} \,\mathrm{d}\xi\right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^n} \left(1 + |\xi|^2\right)^s |\hat{u}(\xi)|^2 \,\mathrm{d}\xi\right)^{\frac{1}{2}} \end{split}$$

 $\int_{\mathbb{R}^n} \frac{1}{(1+|\xi|^2)^s} \, \mathrm{d}\xi < \infty \iff s > \tfrac{n}{2}. \text{ Taking the supremum with respect to } x \in \mathbb{R}^n, \text{ we get}$ 

$$\|u\|_{C(\mathbb{R}^n)} \leq C_s \|u\|_{H^s(\mathbb{R}^n)}$$

#### Theorem 2.2 Interpolation inequalities

Let  $u \in W^{k_1,p_1}(\Omega) \cap W^{k_2,p_2}(\Omega), \theta \in [0,1], 1 \leq p_1, p_2 \leq \infty$  with  $k = \theta k_1 + (1-\theta)k_2, \frac{1}{p} = \frac{\theta}{p_1} + \frac{1-\theta}{p_2}$ . Then

$$||u||_{W^{k,p}} \le C||u||_{W^{k_1,p_1}}^{\theta} ||u||_{W^{k_2,p_2}}^{1-\theta}$$

#### Corollary 2.1 Particular cases

- 1.  $||u||_{H^1} \le ||u||_{L^2}^{\frac{1}{2}} ||u||_{H^2}^{\frac{1}{2}}$
- 2.  $||u||_{L^p} \le ||u||_{L^p}^{\theta} ||u||_{H^2}^{1-\theta}$

## 2.3 Spaces with zero boundary traces

#### Definition 2.1

$$W_0^{1,p}(\Omega) := \left\{ u \in W^{1,p}(\Omega), \, u|_{\partial\Omega} = 0 \right\}$$

An equivalent definition is that the Sobolev spaces  $W_0^{1,p}(\Omega)$  for  $1 \leq p < \infty$  are defined as the closure of the set of compactly supported test functions  $C_0^{\infty}(\Omega)$  with respect to the  $W^{1,p}(\Omega)$ -norm.

#### Lemma 2.1

These two definitions are equivalent.  $u \in \text{``closure''}: u = \lim_{n \to \infty} \varphi_n, \varphi_n \in C_0^\infty(\Omega) \implies \varphi_n|_{\partial\Omega} = 0$ . By continuity,  $u|_{\partial\Omega} = 0$ . The proof of the converse statement is more technical and is omitted.

## 2.4 Poincaré's and Friedrich's inequalities

#### Proposition 2.1 Friedrich's inequality

Let  $\Omega$  be a bounded domain and  $u \in W_0^{1,p}(\Omega)$ . Then

$$||u||_{L^p} \leqslant C||\nabla u||_{L^p} \tag{2.6}$$

*Proof.* It is enough to prove 2.6 for  $\varphi \in C_0^{\infty}(\Omega)$ . By the Newton-Leibniz formula,

$$u(x_1,x') - u(-L,x') = u(x_1,x') = \int_{-L}^{x_1} \partial_{x_1} u(s,x') \, \mathrm{d} s$$

$$\begin{split} |u(x_1,x')|^p & \leq \left(\int_{-L}^L |\partial_{x_1} u(s,x')| \, \mathrm{d}s\right)^p \\ \text{(H\"older's inequality)} & \leq C_L \int_{-L}^L |\partial_{x_1} u(s,x')|^p \, \mathrm{d}s \end{split}$$

Integration with respect to x' gives us

$$\int_{\mathbb{R}^{n-1}} |u(x_1,x')|^p \,\mathrm{d}x' \leq C_L \|\partial_{x_1} u\|_{L^p}^p$$

Finally, integrating over  $x_1 \in [-L, L]$ , we obtain

$$||u||_{I^p}^p \leq 2LC_L ||\partial_{x_1} u||_{I^p}^p$$

## **Corollary 2.2** Equivalent norm in $W_0^{1,p}(\Omega)$

Homogeneous norm:

$$||u||_{W_0^{1,p}(\Omega)} := ||\nabla u||_{L^p}$$

#### ♦ Note:- ♦

 $u|_{\partial\Omega}=0$  is important! Otherwise, 2.6 will fail for  $u\equiv c$ . Since  $\nabla u$  defines u up to a constant;  $u|_{\partial\Omega}=0$  removes this constant.

#### Proposition 2.2 Poincaré inequality

Let  $\Omega$  be a bounded domain with a smooth boundary and  $\langle u \rangle := \frac{1}{|\Omega|} \int_{\Omega} u(x) \, \mathrm{d}x = 0$ . Then

$$||u||_{L^p} \leq C||\nabla u||_{L^p}$$

## 2.5 Compactness

#### Definition 2.2: Sequential compactness

A metric space (X,d) is compact if any sequence  $\{x_n\}_{n=1}^{\infty}\subset X$  has a convergent sub-sequence, i.e. there exists  $\{x_{n_k}\}_{k=1}^{\infty}$ :  $\lim_{k\to\infty}x_{n_k}=x_0\in X$ .

#### Definition 2.3: Compact

A topological space X is compact if any covering of X by open sets has a finite sub-covering.

#### Note:

In metric spaces, compactness is equivalent to sequential compactness.

In general topological spaces, they are not related.

#### Theorem 2.3 Hausdorff

Let (X, d) be a metric space. Then X is compact  $\iff$  X is complete and totally bounded.

#### Definition 2.4: Totally bounded

X is totally bounded if  $\forall \varepsilon > 0, \exists$  covering of X by finitely many  $\varepsilon$ -balls, i.e.  $X = \bigcup_{k=1}^{N} B_{\varepsilon}(x_k), N = N(\varepsilon)$  and  $\{x_k\}$  is an  $\varepsilon$ -net in X.

### Why do we need compactness?

Let X be compact and  $f: X \to Y$  be continuous, then f(X) is compact in Y. How do we solve PDEs of the form (or more general equations)?

$$F(x) = 0 (2.7)$$

1. Construct approximate solutions

$$F(x_n) = g_n$$
, where  $\lim_{n \to \infty} g_n = 0$ 

- 2. Obtain a priori estimates, i.e. that  $\{x_n\}$  is bounded in a proper space
- 3. If  $\{x_n\}$  is pre-compact and F is continuous  $\implies x = \lim_{x \to \infty} x_{n_k}$  is a solution of 2.7.

#### Theorem 2.4 Arzelà-Ascoli

Let  $\Omega \subset \mathbb{R}^n$  be a bounded domain. Then  $V \subset C(\bar{\Omega})$  is compact iff:

- 1. V is closed
- 2. V is bounded
- 3. V is equicontinuous = V has a common modulus of continuity

#### **Theorem 2.5** Arzelà-Ascoli for $L^p$

Let  $\Omega \subset \mathbb{R}^n$  be a bounded domain, (and  $\partial\Omega$  smooth, although not needed),  $K \subset L^p(\Omega), 1 \leq p < \infty$ . Then K is compact iff:

- 1. K is closed
- 2. K is bounded
- 3. K is equicontinuous in mean (possesses a joint modulus of continuity in  $L^p$ ).

#### Definition 2.5: Modulus of continuity

Let  $f \in L^p(\Omega)$ ,  $1 \le p < \infty$ ,  $\Omega \subset \mathbb{R}^n$  bounded ( $\partial \Omega$  smooth not needed).  $\omega : \mathbb{R}^+ \to \mathbb{R}^+$  such that  $\lim_{z \to 0} w(z) = 0$  is a modulus of continuity of f in  $L_p(\Omega)$  if

$$\int_{\Omega} |f(x+h) - f(x)|^p \, \mathrm{d}x \le \omega(|h|), \quad \forall h \in \mathbb{R}^n,$$

where we used the 0-extension of f outside of  $\Omega$ .

#### Corollary 2.3

Let  $K=B_1(0)\in W^{1,p}(\Omega); \Omega\subset \mathbb{R}^n$  is bounded,  $\partial\Omega$  is smooth,  $1\leq p<\infty$ . Then K is pre-compact in  $L^p(\Omega)$ .

*Proof.* We need to check equicontinuity, i.e. estimate  $\int_{\Omega} |f(x+h) - f(x)|^p dx$ .

$$f(x+h) - f(x) = h \int_0^1 \nabla f(x+sh) \, \mathrm{d}s$$

Taking modulus and p-th power of both sides, we get

$$|f(x+h) - f(x)|^p \le |h| \int_0^1 |\nabla f(x+sh)|^p \, \mathrm{d}s$$

Finally, we take an integral over  $x \in \Omega$ .

$$\int_{\Omega} |f(x+h) - f(x)|^p \, \mathrm{d}x \le |h| \int_0^1 \int_{\Omega} |\nabla f(x+sh)|^p \, \mathrm{d}x \, \mathrm{d}s$$
$$\le C|h|$$

 $\omega(z) = cz$  is a joint modulus of continuity.

#### Definition 2.6: Compact embedding

Let  $V \subset W$  be Banach spaces. Then the embedding is compact if the unit ball of V is pre-compact in W.

#### Note:-

We proved that  $W^{1,p}(\Omega) \subset L^p(\Omega)$  is a compact embedding.

#### Corollary 2.4

 $W^{1,p}(\Omega) \subset L^q(\Omega)$  is a compact embedding if  $q < q^*$ , where  $q^*$  is defined such that  $\frac{1}{q^*} = \frac{1}{p} - \frac{1}{n}$  and  $\Omega \subset \mathbb{R}^n$ ,  $\Omega$  is bounded,  $\partial \Omega$  is smooth.

*Proof.* Let us check equicontinuity.

$$||f(\cdot + h) - f(\cdot)||_{L^q} \le ||f(\cdot + h) - f(\cdot)||_{L^p}^{\theta} ||f(\cdot + h) - f(\cdot)||_{L^{q^*}}^{1-\theta}$$

since  $p < q < q^*$  and  $0 < \theta < 1$ .  $q^*$  is a critical exponent in Sobolev embeddings, indeed,  $W^{1,p}(\Omega) \subset L^q(\Omega) \implies 1 - \frac{n}{p} \ge -\frac{1}{q}$ . Then by corollary 2.3, we have

$$\begin{split} \|f(\cdot+h) - f(\cdot)\|_{L^{p}}^{\theta} \|f(\cdot+h) - f(\cdot)\|_{L^{q^{*}}}^{1-\theta} &\leq C|h|^{\theta} (2\|f\|_{L^{q^{*}}})^{1-\theta} \\ &\leq C_{1}|h|^{\theta} \|f\|_{W^{1,p}}^{1-\theta} \\ &\leq C_{1}|h|^{\theta} \end{split}$$

General fact:  $W^{s_1,p_1}(\Omega) \subset W^{s_2,p_2}(\Omega)$ , where  $\Omega$  is bounded,  $\partial\Omega$  is smooth. Embedding is compact  $\iff$  embedding is not critical.

## 2.6 Dual spaces

#### Definition 2.7: Dual space

 $W^{-s,p}(\Omega) := \left(W_0^{s,q}(\Omega)\right)^*$  is defined as the dual space to  $W_0^{s,q}(\Omega) =$ , i.e. the space of linear continuous functionals on  $W_0^{s,q}(\Omega)$ , where  $\frac{1}{p} + \frac{1}{q} = 1$ .

#### Definition 2.8

$$W^{-s,p}(\Omega) = \left\{ \text{completion of } L^p(\Omega) \text{ w.r.t } \|\ell\|_{W^{-s,p}} \coloneqq \sup_{\varphi \in \mathcal{D}} \frac{|(\ell,\varphi)|}{\|\varphi\|_{W_0^{s,q}}} \right\}$$

#### Definition 2.9

$$W^{-s,p}(\Omega) = \left\{\ell \in \mathcal{D}'(\Omega): \|\ell\|_{W^{-s,p}} \coloneqq \sup_{\varphi \in \mathcal{D}} \frac{|\langle \ell, \varphi \rangle|}{\|\varphi\|_{W_0^{s,q}}} \right\}$$

## **Proposition 2.3**

Definitions 2.7, 2.8 and 2.9 are equivalent.

#### Question 3

Suppose  $\delta(x) \in W^{-s,p}(\Omega), \Omega \subset \mathbb{R}^n$ . How are s,p and n related? We know that  $\delta(x)$  is well-defined on continuous functions, so we need  $W_0^{s,q}(\Omega) \subset C(\bar{\Omega})$ .

### Example 2.7

Consider the case where n=1 and p=2. By the Sobolev embedding theorem,  $W^{s,2}\subset C(\bar\Omega)$  if  $0< s-\frac12$ . Thus we have  $\delta(x)\in H^{-s}(\Omega)$  if  $s>\frac12$ .

## Chapter 3

## Linear elliptic problems

### 3.1 Dirichlet and Neumann problems for the Laplacian

Example 3.1 (Laplace equation with Dirichlet boundary conditions)

Let  $\Omega \in \mathbb{R}^n$  be a bounded domain with  $\partial \Omega$  smooth. Consider the Laplace equation with Dirichlet boundary conditions:

$$\begin{cases} \Delta u = f \\ u|_{\partial\Omega} = 0 \end{cases} \tag{3.1}$$

Typical questions:

- 1. In what space does the solution live?
- 2. In what sense is the equation understood (classical / weak)?
- 3. In what sense are the boundary / initial data understood?

In ODEs, we have local existence and uniqueness theorem (for Lipschitz non-linearities), but there is not an equivalent theorem for PDEs. Therefore, we must study particular examples.

#### Definition 3.1

 $u\in W^{1,2}_0(\Omega)$  is a weak solution of 3.1 if  $\forall \varphi\in C_0^\infty(\Omega),$ 

$$-\int_{\Omega} \nabla u(x) \nabla \varphi(x) \, \mathrm{d}x = \int_{\Omega} f(x) \varphi(x) \, \mathrm{d}x \tag{3.2}$$

Here, the boundary condition is incorporated into the choice of space  $W_0^{1,2}(\Omega) = [C_0^{\infty}(\Omega)]_{W^{1,2}(\Omega)}$  (the closure of  $C_0^{\infty}(\Omega)$  in the norm of  $W^{1,2}(\Omega)$ ).

3.2 came from the integration by parts formula. Indeed, if  $u \in C^2(\Omega) \cap C(\bar{\Omega})$ , then  $\Delta u = f$  is understood in a classical sense and

$$\int_{\Omega} \Delta u \varphi \, \mathrm{d}x = - \int_{\Omega} \nabla u \nabla \varphi \, \mathrm{d}x + \int_{\partial \Omega} \partial_n u \varphi \, \mathrm{d}s,$$

where the term  $\int_{\partial\Omega} \partial_n u \varphi \, ds = 0$  because  $\varphi|_{\partial\Omega} = 0$ .

#### Theorem 3.1

Let  $f \in H^{-1}(\Omega) := W^{-1,2}(\Omega)$ . Then 3.1 has a unique weak solution.

*Proof.* Application of Riesz representation theorem

 $[u,u] := \int_{\Omega} \nabla u \nabla u \, dx$  is an equivalent norm on  $W_0^{1,2}(\Omega)$  (due to Friedrich's inequality). Then 3.2 can be rewritten as

$$[u,\varphi] = \int_{\Omega} f(x) \varphi(x) \, \mathrm{d}x \coloneqq \ell(\varphi)$$

Claim:  $\ell$  is a linear continuous functional on  $W_0^{1,2}(\Omega)$  (the integral should be understood as duality if we take  $f \in H^{-1}(\Omega)$  and if  $f \in L^2(\Omega)$ , this is a standard Lebesgue integral). Linearity of  $\ell$  is obvious.  $\ell$  is continuous as it is bounded:

$$|\ell(\varphi)| \le ||f||_{H^{-1}} ||\varphi||_{H^1}$$

But we obtained that 3.2 holds only for  $\varphi \in C_0^{\infty}(\Omega)$ , not for  $\varphi \in W_0^{1,2}(\Omega)$ . However,  $W_0^{1,2}(\Omega) = [C_0^{\infty}(\Omega)]_{W^{1,2}}$ . Then approximation arguments give that  $\forall \varphi \in H$ ,

$$[u, \varphi] = \ell(\varphi) \tag{3.3}$$

Then by Riesz representation theorem, there exists a unique  $u \in W_0^{1,2}(\Omega)$  which satisfies 3.3.

#### Example 3.2 (Laplace equation with Neumann boundary conditions)

Let  $\Omega \in \mathbb{R}^n$  be a bounded domain with  $\partial \Omega$  smooth. Consider the Laplace equation with Neumann boundary conditions:

$$\begin{cases} \Delta u = f \\ \partial_n u|_{\partial\Omega} = 0 \end{cases} \tag{3.4}$$

We cannot consider  $\varphi \in C_0^{\infty}(\Omega)$  as test functions, because the information about boundary conditions will be lost. Similarly, considering

$$\varphi \in W^{1,2}_n(\Omega) \coloneqq \{u \in W^{1,2}(\Omega) \colon \ \partial_n u|_{\partial\Omega} = 0\}$$

will not work as well, since  $\partial_n u|_{\partial\Omega}$  is not defined for  $u \in W^{1,2}(\Omega)$  (since by theorem 2.1,  $C^{\infty}(\Omega) \not\subset W^{1,2}(\Omega)$ ). Instead, let us take  $\varphi \in C^{\infty}(\bar{\Omega})$  as a test function and assume that u is a classical solution. Then

$$\int_{\Omega} f \varphi \, \mathrm{d}x = \int_{\Omega} \Delta u \varphi \, \mathrm{d}x$$

$$= -\int_{\Omega} \nabla u \nabla \varphi \, \mathrm{d}x + \int_{\partial \Omega} \partial_n u \varphi \, \mathrm{d}s$$

$$= -\int_{\Omega} \nabla u \nabla \varphi \, \mathrm{d}x,$$

as  $\int_{\partial\Omega} \partial_n u \varphi \, dx = 0$  due to the boundary conditions. If we take  $\varphi(x) = 1$  as a test function, then we get

$$\int_{\Omega} f \cdot 1 \, \mathrm{d}x = -\int_{\Omega} \nabla u \nabla 1 \, \mathrm{d}x$$
$$= 0$$

Hence  $\langle f \rangle = \frac{1}{|\Omega|} \int_{\Omega} f(x) dx = 0$  is a necessary condition for solvability.

Let us notice that all solutions of this problem differs from each other by a constant. Thus, a natural assumption to single out the solution is  $\langle u \rangle = 0$ .

#### Definition 3.2

 $u \in W^{1,2}(\Omega) \cap \{\langle u \rangle = 0\}$  is a weak solution of 3.4 if  $\forall \varphi \in C^{\infty}(\bar{\Omega})$ , we have:

$$\int_{\Omega} \nabla u \nabla \varphi \, \mathrm{d}x = -\int_{\Omega} f \varphi \, \mathrm{d}x \tag{3.5}$$

#### Note:-

The boundary conditions are now not in the definition of the space, but in 3.5.

#### Theorem 3.2

Let  $f \in L^2(\Omega) \cap \{\langle f \rangle = 0\}$ . Then 3.4 has a unique weak solution.

*Proof.* The proof is analogous to the problem with Dirichlet boundary conditions, but instead of applying Friedrich's inequality, we should apply Poincaré's inequality and use density of  $C^{\infty}(\Omega) \in W^{1,2}(\Omega)$ .

#### Example 3.3 (Non-homogeneous Neumann boundary conditions)

Let  $\Omega \in \mathbb{R}^n$  be a bounded domain with  $\partial \Omega$  smooth. Consider the Laplace equation with non-homogeneous Neumann boundary conditions:

$$\begin{cases} \Delta u = f \\ \partial_n u|_{\partial\Omega} = g \end{cases} \tag{3.6}$$

#### Definition 3.3

 $u \in W^{1,2}(\Omega) \cap \{\langle u \rangle = 0\}$  is a weak solution of 3.6 if  $\forall \varphi \in C^{\infty}(\bar{\Omega})$ , we have:

$$\int_{\Omega} \nabla u \nabla \varphi \, dx = -\int_{\Omega} f \varphi \, dx + \int_{\partial \Omega} g \varphi \, ds \tag{3.7}$$

Note that if  $\varphi \equiv 1$ , then a necessary condition for solvability is

$$-\int_{\Omega} f \, \mathrm{d}x + \int_{\partial \Omega} g \, \mathrm{d}s = 0$$

#### Theorem 3.3

Let  $f \in L^2(\Omega), g \in W^{-\frac{1}{2},2}(\partial\Omega)$  be such that  $\int_{\Omega} f \, \mathrm{d}x = \int_{\partial\Omega} g \, \mathrm{d}s$ . Then 3.6 has a unique weak solution.

*Proof.*  $[u,u] := \int_{\Omega} \nabla u \nabla u ds$  is an equivalent norm on  $u \in W^{1,2}(\Omega) \cap \{\langle u \rangle = 0\}$  due to the Poincaré inequality. Then 3.7 can be rewritten as

$$[u,\varphi] = \ell(\varphi) \coloneqq -\int_{\Omega} f\varphi \, \mathrm{d}x + \int_{\partial\Omega} g\varphi \, \mathrm{d}s$$

We claim that  $\ell$  is a linear continuous functional on  $W^{1,2}(\Omega) \cap \{\langle u \rangle = 0\}$ . Indeed, linearity is obvious. To show  $\ell$  is continuous, we have

$$\left|-\int_{\Omega} f\varphi \,\mathrm{d}x + \int_{\partial\Omega} g\varphi \,\mathrm{d}s\right| \leq \|f\|_{L^{2}} \|\varphi\|_{L^{2}} + \|g\|_{H^{-\frac{1}{2}}(\partial\Omega)} \|\varphi\|_{H^{\frac{1}{2}}(\partial\Omega)}$$

(By the trace theorem and Poincaré's inequality)  $\leq \|f\|_{L^2} \|\varphi\|_{W^{1,2}(\Omega)} + \|g\|_{H^{-\frac{1}{2}}(\partial\Omega)} \|\varphi\|_{W^{1,2}(\Omega)}$ 

Then by Riesz representation theorem, there exists a unique  $u \in W^{1,2}(\Omega) \cap \{\langle u \rangle = 0\}$  that is a weak solution of 3.6.

#### Example 3.4 (Non-homogeneous Dirichlet boundary conditions)

Let  $\Omega \in \mathbb{R}^n$  be a bounded domain with  $\partial \Omega$  smooth. Consider the Laplace equation with non-homogeneous Dirichlet boundary conditions:

$$\begin{cases} \Delta u = 0 \\ u|_{\partial\Omega} = g \end{cases} \tag{3.8}$$

Let us take  $g \in W^{\frac{1}{2},2}(\partial\Omega)$ . Then there exists  $v \in W^{1,2}(\Omega)$  such that  $v|_{\partial\Omega} = g$  (by the trace theorem). We

look for the solution of 3.8 in the form u = v + w, where  $w \in W_0^{1,2}(\Omega)$ .

#### Definition 3.4

u=v+w is a weak solution of 3.8 if  $v|_{\partial\Omega}=g$ , where  $g\in W^{\frac{1}{2},2}(\partial\Omega), w\in W^{1,2}_0(\Omega)$  and  $\forall\varphi\in C^{\infty}(\bar{\Omega})$ , we have

$$\int_{\Omega} \nabla (v + w) \nabla \varphi \, \mathrm{d}x = 0 \tag{3.9}$$

#### Theorem 3.4

Let  $g \in W^{\frac{1}{2},2}(\partial\Omega)$ . Then 3.8 has a unique weak solution.

*Proof.* We can rearrange 3.9 to get

$$\ell(\varphi) := -[v, \varphi] = \int_{\Omega} \nabla w \nabla \varphi \, \mathrm{d}x = [w, \varphi],$$

and the functional  $\ell$  can be shown to be linear and continuous. By the Riesz representation theorem, there exists a unique  $w \in W^{1,2}(\Omega)$  such that 3.9 is satisfied. Note that this w depends on the choice of v. But u = v + w does not depend on the choice of v. Indeed, let  $u_1$  and  $u_2$  be two solutions of 3.8. Then  $u = u_1 - u_2$  solves

$$\begin{cases} \Delta u = 0 \\ u|_{\partial\Omega} = 0 \end{cases}$$

We have previously shown that the weak solution of this problem is unique. Therefore,  $u_1 = u_2$ .

#### Note:-

There is no universal choice of the space of test functions. Even for Dirichlet and Neumann boundary conditions, we need to consider different spaces.  $\varphi \in C_0^{\infty}(\Omega)$  corresponds to the standard theory of distributions, while  $\varphi \in C^{\infty}(\bar{\Omega})$  corresponds to "non-standard" distributions.

#### Example 3.5

Let  $\Omega \in \mathbb{R}^n$  be a bounded domain with  $\partial \Omega$  smooth. Consider

$$\begin{cases} \sum_{i,j} \partial_{x_i} (a_{ij}(x) \partial_{x_j} u) = g \\ u|_{\partial \Omega} = 0 \end{cases}$$
 (3.10)

Where we make the following assumptions on the matrix  $a(x) := \{a_{ij}(x)\}_{i,j}$ :

1. a(x) is a symmetric matrix for every x:

$$a_{ij}(x) = a_{ji}(x)$$

2. a(x) is uniformly elliptic. That is, for all  $\xi \in \mathbb{R}^n$ , there exists  $\mu, M > 0$  which are independent of x such that

$$\mu|\xi^2| \le \sum_{i,j} a_{ij} \xi_i \xi_j \le M|\xi^2|$$

#### Definition 3.5

 $u \in W^{1,2}(\Omega)$  is a weak solution to 3.10  $\iff \forall \varphi \in C_0^{\infty}(\Omega)$ , we have

$$\sum_{i,j} \int_{\Omega} a_{ij} \partial_{x_j} u \partial_{x_i} \varphi \, \mathrm{d}x = -\int_{\Omega} g \varphi \, \mathrm{d}x$$

#### Theorem 3.5

Let a(x) be symmetric and uniformly elliptic. Then 3.10 has a unique weak solution.

*Proof.* Let us denote

$$[u,\varphi]_a = \int_{\Omega} \sum_{i,j} a_{ij}(x) \partial_{x_j} u(x) \partial_{x_i} \varphi(x) dx.$$

Then since a(x) is symmetric, the bilinear form  $[u,v]_a$  is also symmetric, i.e.  $[u,v]_a=[v,u]_a$ . Since a(x) is uniformly elliptic, there exist  $\mu,M>0$  such that

$$\mu[u,u] \leq [u,u]_a \leq M[u,u].$$

Therefore,  $\left(W_0^{1,2}(\Omega), [\cdot, \cdot]_a\right)$  is a Hilbert space with the norm equivalent to the standard  $W_0^{1,2}(\Omega)$  norm. By the Riesz representation theorem, there exists a unique weak solution to 3.10.

### 3.2 More general problems via Lax-Milgram

By the Riesz representation theorem, for any linear continuous functional,  $\ell$  on a Hilbert space H, there exists a unique  $x \in H$  such that  $\forall \varphi \in H$ , we have  $(x, \varphi) = \ell(\varphi)$ .

If we want a(x,y) to be an equivalent inner product on H, then a(x,y) must be symmetric.

We now consider the case where a(x, y) is not assumed to be symmetric.

#### Definition 3.6: Bilinear form

A bilinear form  $a(\cdot,\cdot): H \times H \to \mathbb{R}$  is bounded if

$$|a(x,y)| \le C||x||||y||$$

#### Definition 3.7: Coercive

A bilinear form  $a(\cdot, \cdot)$  is coercive if  $\exists \alpha > 0$  such that  $a(x, x) \ge \alpha ||x||^2$ .

#### Theorem 3.6

Let a(x,y) be a bounded and coercive bilinear form on H. Then any linear continuous functional  $\ell \colon H \to \mathbb{R}$  can be represented in the form

$$a(x, y) = \ell(\varphi), \quad \forall \varphi \in H.$$
 (3.11)

i.e.  $\forall \ell \in H^*$ , there exists a unique  $x = x(\ell) \in H$  such that 3.11 is satisfied.

#### Example 3.6

Let  $\Omega \in \mathbb{R}^n$  be a bounded domain with  $\partial \Omega$  smooth. Consider the problem

$$\begin{cases} \sum_{i,j} \partial_{x_i} (a_{ij}(x) \partial_{x_j} u) + \sum_i b_i(x) \partial_{x_i} u = g(x) \\ u|_{\partial\Omega} = 0 \end{cases}$$
 (3.12)

#### Definition 3.8

 $u \in W_0^{1,2}(\Omega)$  is a weak solution of 3.12 if  $\forall \varphi \in C_0^{\infty}(\Omega)$ , we have

$$A(u,\varphi) \coloneqq \sum_{i,j} \int_{\Omega} a_{ij} \partial_{x_j} u \partial_{x_i} \varphi \, \mathrm{d}x - \sum_i \int_{\Omega} b_i(x) \partial_{x_i} u \varphi \, \mathrm{d}x = \ell(\varphi) \coloneqq - \int_{\Omega} g(x) \varphi(x) \, \mathrm{d}x$$

#### Theorem 3.7

Let  $\{a_{ij}\}\in L^{\infty}(\Omega)$  be a uniformly elliptic matrix,  $b_i(x)$  be a smooth divergent free vector field and  $g(x)\in H^{-1}(\Omega)$ . Then 3.12 has a unique weak solution.

*Proof.* We use the Lax-Milgram theorem. We know that  $\ell(\varphi)$  is a linear continuous functional on  $W_0^{1,2}(\Omega)$ . Furthermore,  $A(u,\varphi)$  is bilinear and bounded. Indeed, by Friedrich's inequality, we have

$$|A(u,\varphi)| \leq C_1 \|\nabla u\|_{L^2} \|\nabla \varphi\|_{L^2} + C_2 \|\nabla u\|_{L^2} \|\varphi\|_{L^2} \leq C \|u\|_{W^{1,2}_o(\Omega)} \|\varphi\|_{W^{1,2}_o(\Omega)}$$

 $A(u, \varphi)$  is coercive since

$$A(u, u) = \sum_{i,j} \int_{\Omega} a_{ij} \partial_{x_j} u \, \partial_{x_i} u \, dx - \sum_i \int_{\Omega} b_i(x) \partial_{x_i}(u) u \, dx$$

$$\geqslant \alpha \|\nabla u\|_{L^2}^2 - \frac{1}{2} \int_{\Omega} \sum_i b_i(x) \partial_{x_i}(u^2) \, dx$$

$$= \alpha \|\nabla u\|_{L^2}^2 + \frac{1}{2} \int_{\Omega} \operatorname{div} b \cdot u^2(x) \, dx$$

$$= \alpha \|\nabla u\|_{L^2}^2$$

By the Lax-Milgram theorem, there exists a unique weak solution of 3.12.

## 3.3 Introduction to spectral theory

H is a Hilbert space.  $\mathcal{L}(H)$  is a space of linear continuous operators.

#### Lemma 3.1

A is continuous  $\iff$  A is bounded, i.e.

$$||A|| \coloneqq \sup_{x \in H} \frac{||Ax||}{||x||} < \infty$$

#### Lemma 3.2

 $(\mathcal{L}(H), \|\cdot\|)$  is a Banach space.

#### Definition 3.9: Invertible operator

A is invertible  $\iff \exists A^{-1} \in \mathcal{L}(H)$  such that

$$AA^{-1} = A^{-1}A = I (3.13)$$

#### Definition 3.10: Spectrum

 $\lambda \in \sigma(A)$  (the spectrum of A)  $\iff \lambda I - A$  is not invertible.

In other words,  $\lambda \notin \sigma(A)$ , ( $\lambda$  is in the resolvent set) iff the equation  $\lambda u - Au = f$  has a unique solution for all  $f \in H$ .

#### Note:-

If dim  $H = n < \infty$ , then  $\mathcal{L}(H) = M(n \times n)$   $(n \times n)$  matrices) and

1. All linear operators are continuous,

2. All  $\lambda \in \sigma(A)$  correspond to eigenvalues

$$A\rho_{\lambda} = \lambda \rho_{\lambda} \implies \sigma(A) = \sigma_p(A)$$
 (point spectrum).

- 3.  $\lambda \in \sigma(A) \iff \det(\lambda I A) = 0$
- 4. Only one of two equalities from 3.13 holding is enough.

All of the statements may fail when  $\dim H = \infty$ .

#### Example 3.7

Let  $H = \ell_2$ , the space of square summable sequences. Let  $T_r, T_l \in \mathcal{L}(H)$  denote the right and left shift operators, respectively;

$$T_r(x_1, x_2, x_3, \dots) = (0, x_1, x_2, x_3, \dots)$$
  
 $T_l(x_1, x_2, x_3, \dots) = (x_2, x_3, \dots)$ 

Then  $T_l \circ T_r = I$ , but  $T_r \circ T_l(x) = (0, x_2, x_3, ...)$ . Hence  $T_r$  has a left inverse, but not a right inverse.  $\ker(T_r) = \{0\}$ , i.e. it is injective (no eigenvalues), but the range of  $T_r \neq H$ , since  $T_r(x) \perp e_1$  for any  $x \in H$ . So  $T_r$  is not invertible since  $T_r(H)$  is a proper closed subspace of H. Therefore, a new type of spectrum appeared - the residual spectrum  $\sigma_R(A)$ , which is impossible in finite-dimensional spaces. Also, the determinant does not exist in infinite-dimensional spaces. Indeed, if it existed, then

$$1 = \det(T_l \circ T_r) = \det(T_l) \det(T_r),$$

which implies that both  $T_l$  and  $T_r$  are invertible, but this is not true.

#### Definition 3.11: Approximate point spectrum

 $\lambda \in \sigma_{\mathrm{app}}(A)$  (approximate point spectrum)  $\iff \exists x_n \in H, \|x_n\| = 1$  and  $\lim_{n \to \infty} (Ax_n - \lambda x_n) = 0$ . It can be proved that  $\lambda \in \sigma_{\mathrm{app}}(A) \iff$  the image of  $(\lambda I - H)$  is not closed.

#### Example 3.8

$$H = L^2(0, 1), Af(x) := xf(x).$$

$$\lambda u - Au = f \iff (\lambda - x)u(x) = f(x),$$

then  $u(x) = \frac{f(x)}{\lambda - x}$  and  $(A - \lambda I)$  is not invertible  $\iff \lambda \in [0, 1]$ . Hence,  $\sigma(A) = [0, 1]$ . We can check that Range $(\lambda I - A)$  is not closed if  $\lambda \in [0, 1]$ .

The next theorem shows that these are all the possible obstacles to invert the operator.

#### **Theorem 3.8** Weyl's theorem

$$A \in \mathcal{L}(H)$$
. Then  $\sigma(A) = \sigma_p(A) \cup \sigma_{app}(A) \cup \sigma_R(A)$ .

#### Definition 3.12: Resolvent

 $R_A(\lambda) := (\lambda I - A)^{-1}$  is called the resolvent of  $A \in \mathcal{L}(H)$ .

More standard facts:

1. If  $|\lambda| > ||A||$ , then  $\lambda \in \sigma(A)$ . Indeed,

$$\frac{1}{\lambda - A} = \frac{1}{\lambda} \frac{1}{1 - \frac{A}{\lambda}} = \frac{1}{\lambda} \sum_{n=0}^{\infty} \left(\frac{A}{n}\right)^n$$

is an absolutely convergent series if  $|\lambda| > ||A||$ .

2. Resolvent identity:

$$R_A(\lambda) - R_A(\mu) = -(\lambda - \mu)R_A(\lambda)R_A(\mu), \tag{3.14}$$

which follows from

$$\frac{1}{\lambda-x}-\frac{1}{\lambda-\mu}=(\mu-\lambda)\frac{1}{\lambda-x}\frac{1}{\mu-x},$$

where we substitute in x = A. From 3.14, by taking the limit as  $\mu \to \lambda$ , we get

$$\frac{d}{d\lambda}R_A(\lambda) = -R_A(\lambda)^2.$$

Hence  $R_A(\lambda)$  is an analytic function of  $\lambda$ .

3. By Liouville's theorem applied to  $R_A(\lambda)$ ,  $\sigma(A) \neq \emptyset$ 

#### Definition 3.13: Compact operator

 $A \in \mathcal{L}(H)$  is compact  $\iff AB_1(0)$  is a precompact set in H.

#### Definition 3.14: Adjoint operator

Let  $A \in \mathcal{L}(H)$ . The adjoint operator  $A^* \in \mathcal{L}(H)$  is defined via  $(Ax, y) = (x, A^*y)$ ,  $\forall x, y \in H$ . It exists due to Riesz representation theorem. In the finite dimensional case, the adjoint operator coincides with the transpose operator.

#### Definition 3.15: Self-adjoint operator

 $A \in \mathcal{L}(H)$  is self-adjoint if  $A = A^*$ 

#### Definition 3.16: Fredholm

 $A \in \mathcal{L}(H)$  is Fredholm if  $\operatorname{Range}(A)$  and  $\operatorname{Range}(A^*)$  are closed and  $\ker(A)$  and  $\ker(A^*)$  are both finite dimensional.

Then the index of A is defined by

$$ind(A) := dim ker(A) - dim ker(A^*)$$

#### **Theorem 3.9** Key theorem of Fredholm operators theorem

 $\operatorname{ind}(A)$  is a topological invariant. Namely, if  $A(t), t \in [0,1]$  is a continuous curve of Fredholm operators, then

$$ind(A(0)) = ind(A(1)).$$

#### Definition 3.17: Essential spectrum

 $\lambda \in \sigma_{\text{ess}}(A)$  if  $\lambda I - A$  is not Fredholm.

Properties:

1. K is compact  $\iff K^*$  is compact.

- 2.  $A \in \mathcal{L}(H)$ , K compact  $\implies$  AK and KA are compact.
- 3. A is Fredholm  $\iff A^*$  is Fredholm.
- 4. Fredholm alternative: Let A be Fredholm. Then:

$$H = \operatorname{Range}(A) \oplus \ker(A^*)$$
  
 $H = \operatorname{Range}(A^*) \oplus \ker(A)$ 

- 5. A is Fredholm  $\iff$  it is invertible by modulus of compact operators, i.e.  $\exists B: AB = I + K_1, BA = I + K_2$ , with  $K_1, K_2$  compact.
- 6. Let K be a compact operator. Then  $\sigma_{\rm ess}(K)=0$  and for any  $\varepsilon>0$ ,  $\sigma(K)\setminus B_{\varepsilon}(0)$  consists of finitely many eigenvalues of finite multiplicity.
- 7. If  $A = A^*$ , then  $\sigma(A)$  is real and  $\sigma_R(A) = \emptyset$ .

Thus, the simplest case is the case of positive, compact and self-adjoint operators.

#### Theorem 3.10 Hilbert-Schmidt

Let  $A \in \mathcal{L}(H)$  be a compact, self-adjoint and positive  $((Ax, x) > 0 \text{ if } x \neq 0)$  operator. Then there exists a sequence of non-zero real eigenvalues  $\lambda_i \in \sigma_p(A)$  such that  $|\lambda_i|$  is monotonically non-increasing

$$\lambda_1 \geqslant \lambda_2 \geqslant \lambda_3 \geqslant \dots$$

and the corresponding eigenvectors  $\{e_n\}_{n=1}^{\infty}(Ae_n=\lambda e_n)$  form the orthonormal basis in H. Moreover, any  $x\in H$  can be written as

$$x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n,$$

and A can be written as

$$Ax = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n.$$

#### **Applications**

#### **Example 3.9** (Spectrum of the Laplacian with Dirichlet boundary conditions)

Let  $\Omega \in \mathbb{R}^n$  be a bounded domain with  $\partial\Omega$  smooth. Consider the Laplace equation with Dirichlet boundary conditions:

$$\begin{cases} -\Delta u = f, & f \in L^2(\Omega) \\ u|_{\partial\Omega} = 0 \end{cases}$$

 $-\Delta$  is not a bounded operator in  $H := L^2(\Omega)$ , so we cannot apply directly apply the Hilbert-Schmidt theorem.

Let us consider the inverse operator  $A = (-\Delta)^{-1}$  constructed via weak solutions, namely  $u = (-\Delta)^{-1} f = Af$  solves  $[u, \varphi] = (f, \varphi)$ . That is,  $\forall \varphi \in C_0^{\infty}(\Omega)$  (or  $H_0^1$ ) and  $u \in H_0^1(\Omega)$ , we have

$$\int_{\Omega} \nabla u \nabla \varphi \, \mathrm{d}x = \int_{\Omega} f \varphi \, \mathrm{d}x$$

1. A is a bounded operator from H to  $H_0^1(\Omega)$ . Indeed, let  $\varphi = u$ . Then

$$\begin{aligned} \|u\|_{H_0^1}^2 &= (f, u) \\ &\leq \|f\|_{L^2} \|u\|_{L^2} \\ &\leq C \|f\|_{L^2} \|u\|_{H_0^1} \end{aligned}$$

Hence

$$||u||_{H_0^1} \le C||f||_{L^2} \implies \frac{||Af||_{H_0^1}}{||f||_{L^2}} \le C$$

- 2. A is compact since the embedding  $H_0^1 \subset H$  is compact.
- 3. A is self-adjoint. Let  $f, g \in L^2(\Omega)$ ,  $u = (-\Delta)^{-1} f$ ,  $v = (-\Delta)^{-1} g$ . Take  $\varphi = v$  in variational formulation for u, and  $\varphi = u$  in variational formulation for v:

$$[u,v] = (f,v)$$

$$[u,v] = (g,u)$$

$$\implies (f,v) = (g,u) \implies (f,Ag) = (g,A^*f) \implies A = A^*$$

4. A is positive.

$$0 < [u, u] = (f, u) = (f, Af)$$

By the Hilbert-Schmidt theorem, there exists a complete orthonormal system  $\{e_n\}$  of eigenvectors of A with  $Ae_n = \lambda e_n$ .

 $e_n$  by definition solves  $\lambda_n[e_n, \varphi_n] = (e_n, \varphi)$ . Indeed, for  $u_n = Ae_n$ , we have  $[u_n, \varphi] = (e_n, \varphi)$ . Since  $u_n = \lambda_n e_n$ , this implies that

$$[e_n, \varphi] = \lambda_n^{-1}(e_n, \varphi). \tag{3.15}$$

Hence  $e_n$  is a weak solution of

$$\begin{cases} -\Delta e_n = \lambda_n^{-1} e_n \\ e_n|_{\partial\Omega} = 0 \end{cases}$$

Consider the minimisation problem:

$$\min_{u \in H_0^1(\Omega)} \|\nabla u\|_{L^2}^2$$

under the constraint  $||u||_{L^2}^2 = 1$ . Let  $u_n$  be a minimising sequence with  $||u_n||_{L^2}^2 = 1$  and  $||\nabla u_n||_{L^2}^2 \to \lambda_0$ . We want to prove that  $\lambda_0$  is the minimum of u. We need to prove the existence of the minimiser and to find  $\lambda_0$ .

- 1.  $u_n$  is bounded in  $H_0^1(\Omega)$ .  $H_0^1(\Omega) \in L^2(\Omega)$  is compactly embedded, so it converges strongly to  $u_0$  in  $L^2(\Omega)$ . Also, since  $\nabla u$  is bounded, by Banach-Alaoglu theorem and reflexivity,  $u_n \to u_0$  weakly in  $H_0^1$  (up to a subsequence) and  $\|\nabla u_0\|_{L^2} \leq \lim_{n \to \infty} \inf \|\nabla u_n\|_{L^2} = \lambda_0$ . Since  $\lambda_0$  is an infimum, then  $\|\nabla u_0\|_{L^2} = \lambda_0$ . Thus  $u_0$  is a minimiser.
- 2. Let use the Euler-Lagrange method.

$$L_{\lambda}(u) = \|\nabla u\|_{L^{2}}^{2} + \lambda \|u\|_{L^{2}}$$

Let  $\varphi$  be an arbitrary (smooth) function and define  $R_{\varphi}(\varepsilon) := L_{\lambda}(u + \varepsilon \varphi), \varepsilon \in \mathbb{R}$ . Then the necessary condition for u to be a minimum of L is

$$\frac{d}{d\varepsilon} \left. R_{\varphi}(\varepsilon) \right|_{\varepsilon=0} = 0, \qquad \forall \varphi.$$

$$\begin{split} L_{\lambda}(u + \varepsilon \varphi) &= \|\nabla (u + \varepsilon \varphi)\|_{L^{2}}^{2} + \lambda \|u + \varepsilon \varphi\|_{L^{2}}^{2} \\ &= \|\nabla u\|_{L^{2}}^{2} + 2\varepsilon (\nabla u, \nabla \varphi) + \varepsilon^{2} \|\nabla \varphi\|_{L^{2}}^{2} + \lambda \|u\|_{L^{2}}^{2} + 2\varepsilon \lambda(u, \varphi) + \varepsilon^{2} \|\varphi\|_{L^{2}}^{2} \end{split}$$

Hence u is a minimiser of L if  $\forall \varphi \in H_0^1$ , we have

$$(\nabla u, \nabla \varphi) + \lambda(u, \varphi) = 0.$$

Comparing this equality with 3.15, we see that  $u=u_0$  is the eigenvector of  $(-\Delta)^{-1}$  and  $\lambda^{-1}$  is the corresponding eigenvalue (in this notation,  $-\lambda > 0$ ). Equivalently,  $u_0$  is the eigenvector of  $-\Delta$  and  $-\lambda$  is the corresponding eigenvalue. From the Hilbert-Schmidt theorem, we know that

$$-\frac{1}{\lambda_1} \geqslant -\frac{1}{\lambda_2} \geqslant -\frac{1}{\lambda_3} \geqslant \dots -\frac{1}{\lambda_i},\tag{3.16}$$

where  $\lambda_i$  are eigenvalues of  $(-\Delta)^{-1}$ . Taking  $\varphi = u$ , we get  $\|\nabla u\|_{L^2}^2 + \lambda \|u\|_{L^2}^2 = 0$ , and if  $u = e_1$ , then

$$\|\nabla e_1\|_{L^2}^2 - \lambda_1 \|e_1\|_{L^2}^2 = 0$$

and for any other u,

$$\|\nabla u\|_{L^2}^2 - \lambda_1 \|u\|_{L^2}^2 > 0$$

Hence for all  $u \in H_0^1(\Omega)$ ,

$$\|u\|_{L^2}^2 \leqslant \frac{1}{\lambda_1} \|\nabla u\|_{L^2}^2.$$

## 3.4 Maximum principle

#### Theorem 3.11 Classical maximum principle

Let  $u \in C^2(\Omega) \cap C(\bar{\Omega})$ , where  $\Omega \subset \mathbb{R}^n$  is a bounded domain, and  $\nabla u = 0$ . Then

$$\max_{x \in \partial \Omega} u(x) \ge u(x) \ge \min_{x \in \partial \Omega} u(x)$$

In other words, the maximum and minimum of a harmonic function is attained on the boundary.

Proof. Let us prove the max-inequality. Let  $v = u + \varepsilon e^{x_1}$ . Then  $\nabla v = \varepsilon e^{x_1}$ ,  $\varepsilon > 0$ . Assume that the maximum is attained in the interior point  $x_0 \in \Omega$ . Then  $\nabla u(x_0) = 0$ , and the matrix of second derivatives must be non-positive. In particular,  $\operatorname{tr}(D^2u(x_0)) = \Delta v(x_0) \leq 0$ , which implies that  $\varepsilon e^{x_1} < 0$ , a contradiction. Therefore, the maximum v is attained on the boundary. Taking the limit as  $\varepsilon \to 0$ , the same is true for u (but due to the limit, the inequalities become non-strict). The proof is analogous for the min-inequality.

This formulation does not exclude that the maximum u may be attained inside  $\Omega$ . However, the strong-maximum principle claims that if the maximum or minimum of u is attained inside  $\Omega$ , then u is constant.

#### Maximum principle for weak solutions

#### Chain rule in Sobolev spaces

For smooth functions f and u, we know that

$$\nabla f(u(x)) = f'(u(x))\nabla u \tag{3.17}$$

Let  $f \in C^1(\Omega)$  and  $\nabla f$  be bounded, and  $u \in W^{1,p}(\Omega)$ . Then the LHS and RHS of 3.17 are well-defined and by approximation ( $\Omega$  is regular enough to have density of  $C^{\infty}(\Omega) \in W^{1,p}(\Omega)$ ), 3.17 holds for such functions. However, we want 3.17 to be satisfied for any globally Lipschitz continuous function  $f \in W^{1,\infty}(\Omega)$ . We know that Lipschitz functions are differentiable almost everywhere, so f'(z) is well-defined. But what is f'(u(x))? The set  $K := \{z \in \mathbb{R} : f'(z) \text{ does not exist}\}$  has zero measure, but  $u^{-1}(K) = V$  may have positive measure, implying f'(u(x)) is not defined.

#### Lemma 3.3

Let  $u \in W^{1,p}(\Omega)$ ,  $K \subset \mathbb{R}$  with meas(K) = 0 and  $v = u^{-1}(K)$ . Then  $\nabla u(x) = 0$  a.e. on V (without proof).

Then  $f'(u(x))\nabla u$  is well-defined.

#### Theorem 3.12

Let  $u \in W^{1,p}(\Omega)$  and f be globally Lipschitz. Then  $f(u) \in W^{1,p}(\Omega)$  and 3.17 holds.

*Proof.* We will present the proof only for the case where

$$f(z) = \begin{cases} z, & z > 0 \\ 0, & z \le 0, \end{cases}$$

which is crucial for the maximum principle. We denote

$$u_+(x) = \max\{u(x), 0\}.$$

We expect that  $\nabla u_+ = \begin{cases} \nabla u, & u > 0 \\ 0, & u \leq 0 \end{cases}$ .

Such  $\nabla u_+ \in W^{1,p}(\Omega)$ , so we only need to check the integration by parts formula.

$$\int_{\Omega} u_{+}(x) \operatorname{div} \varphi(x) \, \mathrm{d}x = \int_{x: u > 0} \nabla u(x) \varphi(x) \, \mathrm{d}x \qquad \forall \varphi \in C_{0}^{\infty}. \tag{3.18}$$

To do this, we introduce the following  $C^1$ -approximations of f such that:

1.  $f_{\varepsilon}'$  are uniformly bounded

2. 
$$f_{\varepsilon} = f$$
 if  $x \notin (0, \varepsilon)$ 

Then

$$\int_{\Omega} f_{\varepsilon}(u(x)) \mathrm{div} \varphi(x) \, \mathrm{d}x = -\int_{\Omega} f_{\varepsilon}'(u(x)) \nabla u(x) \varphi(x) \, \mathrm{d}x \qquad \forall \varphi \in C_0^{\infty}.$$

Obviously the LHS of the above equality tends to the LHS of the classical formula 3.18. We need to check the convergence of the RHS.

$$\left| \int_{\Omega} (f_{\varepsilon}' \nabla u - f \nabla u) \varphi \, \mathrm{d}x \right| \le \int_{0 < u(x) < \varepsilon} C(1 + |f_{\varepsilon}'(u(x))|) |\nabla u| \, \mathrm{d}x$$

$$\le C_1 \int_{0 < u(x) < \varepsilon} |\nabla u| \, \mathrm{d}x$$

Let  $K_{\varepsilon} := \{x \colon 0 < u(x) < \varepsilon\}$ . Then  $K_{\varepsilon}$  are nested and  $\bigcap_{n=1}^{\infty} K_{\frac{1}{n}} = \emptyset$  by  $\sigma$ -additivity of the Lebesgue measure. Then  $\operatorname{meas}(K_{\varepsilon}) \to 0$  as  $\varepsilon \to 0$ . By absolute continuity of the Lebesgue integral,

$$\int_{0 < u(x) < \varepsilon} |\nabla u(x)| \, \mathrm{d}x \to 0 \text{ as } \varepsilon \to 0$$

and the integration by parts formula 3.18 is proved. Thus,  $u_+ \in W^{1,p}(\Omega)$  and indeed

$$\nabla u_+ = \begin{cases} \nabla u, & u > 0 \\ 0, & u \le 0 \end{cases}$$

#### Corollary 3.3

Let  $u_{-}(x) = -\min\{u(x), 0\}$ . Then  $u \in W^{1,p}(\Omega)$  and  $\nabla u_{-}(x) = \begin{cases} -\nabla u, & u < 0 \\ 0, & u \ge 0 \end{cases}$ . Then  $|u(x)| = u_{+}(x) + u_{-}(x)$  is also in  $W^{1,p}(\Omega)$ .

#### Corollary 3.2

 $\nabla u(x) = 0$  a.e. on the set K where u(x) = 0.

*Proof.* Indeed,  $u = u_+ + u_-, \nabla u = \nabla u_+ - \nabla u_-, \text{ and }$ 

$$\begin{split} \int_{\Omega} u \mathrm{div} \varphi \, \mathrm{d}x &= -\int_{\Omega} \nabla u \varphi \, \mathrm{d}x \\ \int_{\Omega} u_{+} \mathrm{div} \varphi - \int_{\Omega} u_{-} \mathrm{div} \varphi &= -\int_{u>0} \nabla u \varphi \, \mathrm{d}x - \int_{u=0} \nabla u \varphi \, \mathrm{d}x - \int_{u<0} \nabla u \varphi \, \mathrm{d}x \end{split}$$

Hence

$$\int_{u=0} \nabla u \varphi \, \mathrm{d}x = 0 \qquad \forall \varphi \in C_0^\infty \implies \nabla u(x) = 0 \text{ a.e. on } u(x) = 0.$$

21

#### Corollary 3.3

 $\nabla u_+ \cdot \nabla u_- = 0$  a.e. (because the supports of  $u_+$  and  $u_-$  are disjoint).

$$\|\nabla u\|_{L^{p}}^{p} = \|\nabla u_{+}\|_{L^{p}}^{p} + \|\nabla u_{-}\|_{L^{p}}^{p} = \|\nabla |u|\|_{L^{p}}$$

$$\|u\|_{L^{p}}^{p} = \|u_{+}\|_{L^{p}}^{p} + \|u_{-}\|_{L^{p}}^{p} = \||u|\|_{L^{p}}$$

We return to the maximum principle.

#### **Proposition 3.1**

Let  $u_1, u_2 \in W^{1,2}(\Omega)$  be weak solutions of  $\begin{cases} -\Delta u_1 = f_1 \\ u_1|_{\partial\Omega} = u_1^0 \end{cases}$  and  $\begin{cases} -\Delta u_2 = f_2 \\ u_2|_{\partial\Omega} = u_2^0 \end{cases}$ , and let  $u_1^0 \le u_2^0$  a.e. and  $f_1 \le f_2$  in distributions. Then  $u_1(x) \le u_2(x)$  a.e. in  $\Omega$ .

*Proof.* Let  $v = u_1 - u_2$ . It satisfies

$$\begin{cases} -\Delta v = 0 \\ v|_{\partial\Omega} = v_0 \end{cases}, \text{ where } f = f_1 - f_2 \le 0 \text{ and } v_0 = u_1^0 - u_2^0 \le 0.$$

It is sufficient to prove that  $v_+(x) = 0$  a.e. We multiply the equation with the test function  $\varphi = v_+(x) \in H^1_0(\Omega)$ .

$$(\nabla v, \nabla v_+) = (\nabla v_+ - \nabla v_-, \nabla v_+)$$
$$= \|\nabla v_+\|_{L^2}^2$$
$$= (f, v_+) \le 0$$

Hence  $\|\nabla v_+\|_{L^2}^2 = 0$ , and by Friedrich's inequality, this implies that  $v_+ = 0$  a.e.

#### Note:-

 $\ell \in D'(\Omega)$  is non-negative if and only if  $\langle l, \varphi \rangle \ge 0 \quad \forall \varphi \in D(\Omega), \varphi \ge 0$ .

#### Corollary 3.4

The classical maximum principle follows from proposition 3.1 by taking  $f = f_1 = 0$ ,  $u_1 = u$  and  $u_2 = \max_{x \in \partial \Omega} u(x) = \text{const.}$ 

#### Note:-

From our exposition, it looks like  $u_+, u_-$  approach is more general than the classical one. This is not true! It does not cover general operators  $L = \sum_{i,j} a_{ij}(x) \partial_{x_i} \partial_{x_j} + \sum_i b_i(x) \partial_{x_i} + c(x)$ , but the classical theory does.