

Darshan Institute of Engineering & Technology

B.Tech. | Sem-4 | Winter-2024

4

3

4

3

Course Code : 2101HS402 Date : 14-11-2024

Course Name : Probability & Statistics Duration : 150 Minutes

Total Marks : 70

Instructions:

1. Attempt all the questions.

2. Figures to the right indicates maximum marks.

3. Make suitable assumptions wherever necessary.

Q.1 (A) Probability distribution of a random variable X is given below.

Find E(X), V(X), $\sigma(X)$, E(3X + 2), V(3X + 2).

Х	1	2	3	4
P(X = x)	0.1	0.2	0.5	0.2

(B) If A and B are independent events, with $P(A) = \frac{3}{8}$, $P(B) = \frac{7}{8}$. Find $P(A \cup B)$, P(A/B) and P(B/A).

DR

If $P(x) = \frac{2x+1}{48}$, x = 1, 2, 3, 4, 5, 6. Verify whether P(x) is probability function or not.

- (C) I. There are three boxes. Box I contain 10 light bulbs of which 4 are defective. Box 7 II contain 6 light bulbs of which 1 is defective. Box III contain 8 light bulbs of which 3 are defective. A box is chosen and a bulb is drawn. Find the probability that the bulb is non-defective.
 - II. From pack of 52 cards 3 cards are drawn at random. Find the probability that
 - a) none is pictured
 - b) all three will be aces or all three kings

OR

The probability density function of a continuous random variable X is given by

$$f(x) = \begin{cases} ax & ; 0 \le x < 1 \\ a & ; 1 \le x < 2 \\ 3a - ax ; 2 \le x < 3 \\ 0 & ; otherwise \end{cases}$$

Find the value of a and also find c.d.f of X.

- Q.2 (A) Define Poisson Distribution. Also write properties of it.
 - **(B)** Find the binomial distribution for n = 4 and p = 0.3.

OR

Find the probability that in five tosses of a fair die 3 will appear twice.

4

3

7

- (C) A sample of 100 dry battery cell tested & found that average life is 12 hours & standard deviation 3 hours. Assuming data to be normally distributed what % of battery cells are expected to have life
 - (a) more than 15 hrs.?
 - (b) less than 6 hrs.?
 - (c) between 10 & 14 hrs.?

$$[P(z = 1) = 0.3413 ; P(z = 2) = 0.4772 ; P(z = 0.67) = 0.2486]$$

OR

In a large corporate computer network, user log-on to the system can be modeled as a Poisson process with a mean of 25 log-on per hours.

- (a) What is the probability that there are no log-on in an interval of six min.?
- (b) What is the probability that time until next log-on is between 2 & 3 min.?
- **Q.3** (A) Find μ'_2 for the data: 6.48, 6.51, 6.47, 6.48, 6.52, 6.50, 6.46 about a=6.5.
 - **(B)** Write formula to find out Mean deviation.

OR

Explain Kurtosis in detail.

(C) Find Mean Median and Mode for following data.

 Marks
 0-10
 10-20
 20-30
 30-40
 40-50

 No. of students
 5
 10
 40
 20
 25

OR

Find the standard deviation and variance for the following distribution:

х	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50	50 – 60	60 – 70
f	6	14	10	8	1	3	8

Q.4 (A) Obtain the lines of regression for the following data:

betain the lines of regression for the following data.							
Sales (No. of tablets)	190	240	250	300	310	335	300
Advertising expense (Rs.)	5	10	12	20	20	30	30

(Detailed table is not required.)

(B) A manufacturer claimed that at least 95% of the equipment which he supplied to a factory conformed to specification. An examination of a sample of 200 pieces of equipment revealed that 18 were faulty. Test this claim at 5% level of significance. ($Z_{0.05} = -1.645$)

OR

The mean IQ of a sample of 1600 children was 99. Is it likely that this was a random sample from a population with mean IQ 100 and SD 15? ($|Z_{0.05}| = 1.96$)

(C) For 10 randomly selected observations, the following data were recorded.

Observation Number	1	2	3	4	5	6	7	8	9	10
Overtime Hours (x)	1	1	2	2	3	3	4	5	6	7
Additional units (y)	2	7	7	10	8	12	10	14	11	14

Determine the coefficient of regression using the non-linear $y = a + b_1x + b_2x^2$

Fit a curve of the form $y = a e^{bx}$ to the following data by the method of list squares:

х	1	2	3	4	
У	1.65	2.70	4.50	7.35	

Q.5 (A) Two types of batteries are tested for their length of life and the following data are obtained:

	No. of samples	Mean life in hours	Variance
Type A	9	600	121
Type B	8	640	144

Is there a significant difference in the two means? ($|T_{0.05,15}| = 2.1314$)

(B) A machine is designed to produce insulting washers for electrical devices of average thickness of $0.025~\rm cm$. A random sample of 10 washers was found to have an average thickness of $0.024~\rm cm$ wih S.D. of $0.002~\rm cm$. Test the significance of the deviation. ($|t_{0.05,9}| = 2.2622$)

OR

Suppose that a die is tossed 120 times and the recorded data is as follows:

Face Observed(x)	1	2	3	4	5	6
Frequency	20	22	17	18	19	24

Test the hypothesis that the die is unbiased at $\alpha = 0.05$. ($\chi^2_{0.05.5} = 11.070$)

(C) Test the hypothesis at 5% level of significance that the presence or absence of hypertension is independent of smoking habits from the following data of 180 persons. ($\chi^2_{0.05.2} = 5.991$)

	Non smokers	Moderate smokers	Heavy smokers
HT	21	36	30
No HT	48	26	19

7

OR

Two random samples gave the following data:

·	_		
Sample no.	Size	Mean	Variance
I	16	9.6	40
II	25	16.5	42

Can we conclude that the two samples have been drawn from the same normal population? ($F_{0.05}(24,15) = 2.29$; $|t_{0.05,39}| = 2.0227$)