MEDIÇÃO DA ACELERAÇÃO DA GRAVIDADE COM UM PÊNDULO SIMPLES

O Relatório deste trabalho consiste no preenchimento dos espaços neste texto

1 - Fundamento Teórico

O pêndulo simples é constituído por um **corpo suspenso** num **fio** leve e inextensível. Quando é afastado da posição de equilíbrio e solto, o pêndulo oscila no plano vertical, em torno do ponto de fixação do fio, por acção da gravidade.

Na figura 1.1 a), o diagrama de corpo livre do corpo suspenso evidencia que o corpo está submetido a duas forças aplicadas no centro de massa: o peso, \vec{mg} , e a tensão do fio, \vec{T} .

Figura 1.1 – (a) Diagrama de corpo livre do corpo suspenso, considerado como um ponto material localizado no centro de massa. (b) Decomposição do vector $m\vec{a}$ nas componentes tangencial e normal, quando o pêndulo se afasta da posição de equilíbrio.

Sendo $\Sigma F_t = ma_t$ a componente tangencial da equação $\Sigma \vec{F} = m\vec{a}$, a figura 1.1 mostra que essa componente é:

$$-mg\sin\theta = m\frac{dv}{dt},\tag{1}$$

onde θ é o ângulo entre a vertical e o fio.

Uma vez que o corpo suspenso executa movimento de rotação em torno do ponto de fixação do fio, a velocidade instantânea do seu centro de massa, v, satisfaz:

$$v = \omega L \,, \tag{2}$$

onde L é o comprimento do pêndulo e $\omega = \frac{d\theta}{dt}$ é a velocidade angular do pêndulo.

Para o caso de a oscilação ter uma amplitude pequena, de forma que $\sin \theta \approx \theta$ (3), obtem-se, por substituição de (2) na equação (1):

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0. {4}$$

A equação (4), característica do movimento harmónico simples, é satisfeita por duas expressões particulares de θ :

$$\theta_1 = \sin \sqrt{\frac{g}{L}}t$$
 e $\theta_2 = \cos \sqrt{\frac{g}{L}}t$,

pelo que a solução geral da equação (4) é:

$$\theta = C_1 \sin\left(\sqrt{\frac{g}{L}}t\right) + C_2 \cos\left(\sqrt{\frac{g}{L}}t\right),\tag{5}$$

onde C_1 e C_2 são constantes de integração.

A expressão (5) evidencia que o ângulo θ é uma função *periódica* do tempo e que θ varia com a frequência natural $\omega_0 = \sqrt{g/L}$. Então, o período da oscilação é:

$$T_0 = 2\pi \sqrt{\frac{L}{g}}$$
 (6)

sendo, assim, uma função exclusiva do comprimento do pêndulo e da aceleração da gravidade no local. O conhecimento do período e do comprimento do pêndulo permite calcular o valor da aceleração da gravidade no laboratório através de (6), na medida em que sejam válidas as aproximações assumidas na dedução dessa expressão.

Se fôr necessária maior exactidão, devem utilizar-se expressões do período que têm em conta certos factores que não foram considerados na dedução de (6):

a) Quando não é válida a aproximação referida em (3), o período passa a depender da amplitude máxima, θ_0 , da oscilação, através da expressão:

$$T = T_0 \left[1 + \frac{1}{4} \sin^2 \left(\frac{\theta_0}{2} \right) + \frac{1}{4} \cdot \frac{3^2}{4^2} \sin^4 \left(\frac{\theta_0}{2} \right) + \dots \right].$$
 (7)

b) Tendo em conta a força de impulsão exercida pelo ar, o período do pêndulo passar a ter a expressão:

$$T = T_0 \left(1 + \frac{1}{2} \cdot \frac{\rho_{ar}}{\rho_{p\hat{e}ndulo}} \right)$$
 (8)

em que ρ é a densidade.

c) Se a massa do fio de suspensão, m_f , não fôr desprezável em relação à massa do corpo suspenso, m_c , vem:

$$T = T_0 \left(1 - \frac{m_f}{12m_c} \right). \tag{9}$$

d) Para pequenas oscilações, se fôr tido em conta o seu amortecimento, obtemse:

$$T = T_0 \left[1 - \left(\frac{T_0}{4\pi\tau} \right)^2 \right]^{-1/2},$$
 (10)

em que τ é o tempo necessário para que a amplitude se reduza a 1/e do seu valor inicial (tempo de relaxação).

2 - Procedimento experimental

- **2.1 -** Construa o pêndulo utilizando o fio mais curto. Determine cuidadosamente o comprimento, L, do pêndulo.
- **2.2** Desloque o pêndulo da posição de equilíbrio e meça o tempo necessário para realizar 10 oscilações. Repita esta medida 5 vezes. Determine o valor médio do período do pêndulo, T, e o respectivo erro estatístico, ΔT , tomando para este último a média do módulo dos desvios: $\Delta T = \frac{1}{n} \Sigma |T_i T|$.

Repita as instruções 2.1 e 2.2, utilizando os restantes fios.

2.1 - Determinação do comprimento de cada pêndulo

Definição rigorosa do comprimento do pêndulo, L: O comprimento do pêndulo , L, é a
distância do
até ao
uic uc

Comprimentos medidos directamente, usados para a determinação de L:

Comprim	entos mediaos airec	ctamente, usados para a determinação de L:	
Símbolo	Nome	Definição	
		(explicando como foi feita a medida)	
l_f	Comprimento do fio	Distância do ponto de fixação do fio no suporte até ao ponto de fixação do fio à argola do corpo, medida com o corpo pendente na vertical.	

Desenho do pêndulo mostrando o feitio do corpo suspenso e assinalando o comprimento do pêndulo, L, e ainda os comprimentos medidos directamente (l_f , etc) designados pelos símbolos da lista anterior:

Tabela 2.1.1 – Comprimentos medidos directamente (comprimentos l_f , etc designados pelos símbolos da lista anterior):

peros simboros da fista anterior).				
	l_f $\pm \Delta l_f$	±Δ	±Δ	±Δ
	m	m	m	m
1º pênd.	±			
2° pênd.	±			
3° pênd.	±	±	±	±
4º pênd.	±			
5° pênd.	±			

Justificação do valor atribuído a Δl_f :
O erro de <u>leitura</u> na medição de l_f foi
O erro <u>total</u> na medição de l_f foi $\Delta l_{\mathrm{f}} = \dots m$ porque
Justificação do valor atribuído a $\Delta \dots$:
O erro de <u>leitura</u> na medição de foi m porque o instrumento usado nesta medida foi
uma com a qual podíamos medir a distância mínima de m.
O erro total na medição de foi Δ = m porque m
Justificação do valor atribuído a $\Delta \dots$:
O erro de <u>leitura</u> na medição de foi m porque o instrumento usado nesta medida foi
uma com a qual podíamos medir a distância mínima de m.
O erro total na medição de foi Δ = m porque m
Expressão do comprimento do pêndulo, L , em função dos comprimentos directamente medidos (l_f , etc): $L =$

dos comprimentos directamente medidos (Δl_f , etc):

 $\Delta L =$

Expressão do erro ΔL que afecta o comprimento do pêndulo, em função dos erros

Tabela 2.1.2 - Comprimento medido para cada pêndulo:

	L	ΔL
	m	m
1º pêndulo		
2º pêndulo		
3º pêndulo		
4º pêndulo		
5° pêndulo		

2.2 – Determinação do período de cada pêndulo

Tabela 2.2 – Tempos medidos para 10 períodos (10 T_i) e para o período (T) de cada pêndulo:

	1º pênd.	2º pênd.	3° pênd.	4º pênd.	5° pênd.
S					
S					
S					
S					
S					
S					
S					
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	S S S S S	S S S S S S	S S S S S S S S S S S S S S S S S S S	S S S S S S S S S S

3 - Cálculo da aceleração da gravidade no Laboratório

- 3.1 Determine a relação experimental entre $4\pi^2L$ e T^2 , através da equação da recta que melhor se ajusta aos valores encontrados para estas grandezas. Disponha os resultados num gráfico.
- 3.2 Relacione a expressão calculada em 3.1 com a expressão teórica (6), para determinar o valor $\mathbf{g} \pm \Delta \mathbf{g}$ da aceleração da gravidade no Laboratório.
- 3.3 Atribua aos fios dos 5 pêndulos a mesma massa, m_f , do fio mais comprido e utilize as expressões teóricas (9) e (6) para calcular $\mathbf{g} \pm \Delta \mathbf{g}$. Compare com o resultado obtido em 3.2. Daí, conclua se teria valido a pena não desprezar a massa dos vários fios pendulares para obter um valor de \mathbf{g} mais exacto.

$3.1 - \underline{Determinação da relação experimental entre <math>4\pi^2 L e T^2$

Expressão do erro $\Delta(4\pi^2L)$ em função de ΔL , calculada através da propagação de erros:

$$\Delta(4\pi^2L) =$$

Expressão do erro $\Delta(T^2)$ em função de ΔT , calculada através da propagação de erros:

$$\Delta(T^2) =$$

Tabela 3.1 – Valores de $4\pi^2$ L e T²:

	$y = 4\pi^2 L$ m	$\Delta(4\pi^2L)$ m	$x = \mathbf{T^2}$ s^2	$\Delta(\mathbf{T}^2)$ s^2
1º pênd.				
2º pênd.				
3° pênd.				
4º pênd.				
5° pênd.				

Cálculo da equação da recta y = ax + b que melhor se ajusta aos pontos experimentais (x, y), usando o método dos desvios quadráticos mínimos:

$$a = \frac{n\sum(x_i y_i) - \sum(x_i)\sum(y_i)}{n\sum(x_i)^2 - (\sum x_i)^2} , \qquad b = \frac{\sum(y_i) - a\sum(x_i)}{n}$$

e sendo os erros estatísticos associados aos parâmetros $a \in b$:

$$\Delta a = \sqrt{\frac{n}{(n-2)} \cdot \frac{\sum (y_i - ax_i - b)^2}{n \sum (x_i^2) - (\sum x_i)^2}} , \qquad \Delta b = \Delta a \sqrt{\frac{\sum (x_i)^2}{n}}$$

Resultados obtidos:

$$a \pm \Delta a = (\dots \pm \dots)$$

$$b \pm \Delta b = (\dots \pm \dots \pm \dots)$$

Relação experimental entre $4\pi^2 L$ e T^2 , em unidades do Sistema Internacional:

$$4\pi^2 L = \dots \qquad T^2 + \dots$$

Gráfico 3.1 - Valores experimentais obtidos para $4\pi^2L$ (em ordenadas) em função dos valores experimentais obtidos para T^2 (em abcissas). Neste gráfico é traçada a recta que foi obtida pelo método dos desvios quadráticos mínimos. Este gráfico deve ser inserido como página 6A.

3.2 - Resultado obtido para a aceleração da gravidade no Laboratório:

Significado físico do parâmetro a, justificado por comparação da relação teórica (6) com a relação experimental entre $4\pi^2L$ e T^2 :

Discussão do valor obtido para o parâmetro b, comparando o valor teórico de b na relação (6) com o resultado experimental $b \pm \Delta b$:

Resultado da nossa experiência:

Aceleração da gravidade medida no Laboratório, com base no significado físico de *a* deduzido acima, foi:

$$g = (\ldots \pm \ldots)$$

(este resultado final deve apresentar apenas os algarismos e as casas decimais significativas)

3.3 – Influência da massa do fio na medida da aceleração da gravidade

Designe a massa do fio pendular por m_f e a massa do corpo suspenso por m_c . Atribua aos 5 fios pendulares a mesma massa, m_f , medida para o fio mais longo.

Massas medidas:

$$m_f = (\dots \pm \dots)$$

$$m_c = (\dots \pm \dots)$$

Expressão de g, em função de m_f , m_c e do parâmetro $a = \frac{4\pi^2 L}{T^2}$, calculada através das expressões teóricas (6) e (9):

$$g =$$

Expressão do erro Δg , em função dos erros Δm_f , Δm_c e Δa , calculada através da propagação de erros:

$$\Delta g =$$

Aceleração da gravidade no Laboratório, calculada para uma massa dos fios pendulares superior à real –visto ter-se admitindo que os 5 fios tinham a massa do fio mais longo – e utilizando o valor $a \pm \Delta a = (\dots \pm \dots \pm \dots)$...:

$$g = (\dots \pm \dots) \dots$$

Conclusão acerca da utilidade de ter em conta a massa dos fios pendulares na medição que realizou, com base na comparação entre os resultados obtidos para g em 3.3 e em 3.2:

4 - Conclusões

4.1 - Compare o resultado obtido em 3.2, com o valor:

$$g = (9,8010814 \pm 0,0000001) \text{ m.s}^{-2}$$

obtido experimentalmente para a aceleração da gravidade em Lisboa, ao nível do mar. Diga se há <u>concordância</u> ou <u>discrepância</u> entre os dois resultados, justificando.

- 4.2 Discuta o resultado 3.2 obtido na experiência que realizou.
- **4.3 -** Apresente sugestões de soluções <u>concretas</u> para a realização desta experiência com melhores resultados.

4.1 – Comparação com o resultado de outra experiencia:
4.2 – <u>Discussão do resultado da nossa experiência</u> :
4.3 – <u>Sugestões</u> :
Data//
N° Nome Assinatura
Nº Nome Assinatura
N° Nome Assinatura