testpapers.co.za

SENIOR PHASE

GRADE 9

NOVEMBER 2018

MATHEMATICS MARKING GUIDELINE

MARKS: 140

This marking guideline consists of 13 pages.

INSTRUCTIONS AND INFORMATION

- 1. Give full marks for answers only, unless stated otherwise.
- 2. Accept any alternate correct solutions that are not included in the marking guideline.
- 3. Underline errors committed by learners and apply Consistent Accuracy (CA).
- 4. THE FINAL MARK MUST BE CONVERTED TO 100.

	KEYS			
М	Method			
CA	Consistent Accuracy			
Α	Accuracy			
S	Statement			
SF	Substitution in Formula			
R	Reason			
S/R	Statement and Reason			

QUES	ΓΙΟΝ	1 [10 ma	rks]	
		_	-	
Ques.			Mark allocation	Total
1.1	С	√		(1)
1.2	Α	✓		(1)
1.3	В	√		(1)
1.4	Α	√		(1)
1.5	D	√		(1)
1.6	В	✓		(1)
1.7	С	✓		(1)
1.8	Α	√		(1)
1.9	С	√		(1)
1.10	D	✓		(1)
				[10]

QUEST	TON 2 [25]		
Ques.	Solution	Mark allocation	Total
2.1	1 042 000 000 = 1,042×10 ⁹ ✓ A	Answer: 1Mark	(1)
2.2.1	$3z^{2} - \left(4\frac{2}{3}z^{3} \div \frac{7z}{2}\right)$ $= 3z^{2} - \left(4\frac{2}{3}z^{3} \div \frac{7z}{2}\right) \checkmark \mathbf{M}$ $= 3z^{2} - \frac{4z^{2}}{3} \checkmark \mathbf{M}$	$\left(\frac{14z^3}{3} \times \frac{2}{7z}\right)$: 1 Mark $4z^2$	
		$\frac{4z^2}{3}$: 1 Mark	
	$=\frac{5z^2}{3}/\frac{5}{3}z^2$ CA	Answer: 1 Mark	(3)
2.2.2	$2(x-3)^2-3(x+1)(2x-5)$		
	$\sqrt{\mathbf{M}}$ $\sqrt{\mathbf{M}}$ $= 2(x^2 - 6x + 9) - 3(2x^2 - 3x - 5)$	(x^2-6x+9) : 1 Mark	
	$=2x^2-12x+18-6x^2+9x+15$	$(2x^2-3x-5)$: 1 Mark	
	$=-4x^2-3x+33$ CA	Answer: 1	
		Mark	(3)
2.2.3	$\left(\frac{2x^{-1}y}{3y^2}\right)^{-2}$ $=\left(\frac{2y}{3xy^2}\right)^{-2} \checkmark \mathbf{M}$	$\left(\frac{2y}{3xy^2}\right)^{-2}: 1 \text{ Mark}$ $\left(3xy^2\right)^2$	
	$= \left(\frac{3xy^2}{2y}\right)^2 \checkmark \mathbf{M}$ $= \frac{9x^2y^2}{2} \checkmark \mathbf{CA}$	$\left(\frac{3xy^2}{2y}\right)^2 : 1 \text{ Mark}$ Answer: 1 Mark	
	4 OR		
	$ \left(\frac{2x^{-1}y}{3y^{2}}\right)^{-2} \\ = \frac{2^{-2}x^{2}y^{-2}}{3^{-2}y^{-4}} \checkmark \mathbf{M} $	OR	
	$3^{-2}y^{-4}$ $= \frac{\frac{1}{4}x^{2}y^{2}}{\frac{1}{9}} \checkmark \mathbf{M}$ $= \frac{9}{4}x^{2}y^{2} \checkmark \mathbf{CA}$	$\frac{2^{-2}x^2y^{-2}}{3^{-2}y^{-4}} \colon 1 \text{ Mark}$	
		$\frac{\frac{1}{4}x^2y^2}{\frac{1}{9}}$: 1 Mark Answer: 1 Mark	
	OR		
		OR	

(EC/NOVEMBER 2018)

Ques.	Solution	Mark allocation	Total
	$\left(\frac{2x^{-1}y}{3y^2}\right)^{-2}$ $=\frac{1}{\left(\frac{2x^{-1}y}{3y^2}\right)^2} \checkmark \mathbf{M}$	$\frac{1}{\left(\frac{2x^{-1}y}{3y^2}\right)^2} \colon 1 \text{ Mark}$	
	$= \frac{1}{\frac{2^2 x^{-2} y^2}{3^2 y^4}} \checkmark M$	$\frac{1}{\frac{2^2 x^{-2} y^2}{3^2 y^4}}$: 1 Mark Answer: 1 Mark	
	$=\frac{9x^2y^2}{4}\checkmark CA$, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(3)
2.2.4	$= \frac{9x^{2}y^{2}}{4} \checkmark CA$ $\frac{\sqrt{169x^{6}} \times \left(\frac{y}{p^{99}q}\right)^{0}}{\sqrt[3]{x^{12}}}$	13x³ : 1 Mark x⁴ : 1 Mark Answer: 1 Mark	. , ,
	$= \frac{13x^3 \times 1}{x^4 \text{ M}}$ $= \frac{13}{4} \text{ A}$		
	x		(3)
2.3.1	$ax^{2} - 5ax + 6a$ $\checkmark \mathbf{M}$ $= a(x^{2} - 5x + 6)$ $\checkmark \mathbf{CA}$	$a(x^2-5x+6)$: 1 Mark (x-3): 1 Mark (x-2): 1 Mark	
	=a(x-3)(x-2)		(3)
2.3.2	$(2x-3y) + (3y-2x)x^{2}$ $= (2x-3y) - (2x-3y)x^{2}$	$(2x-3y)-(2x-3y)x^2$: 1 Mark	
	$= (2x-3y)(1-x^2) \mathbf{CA}$ $= (2x-3y)(1+x)(1-x) \mathbf{CA}$	$(2x-3y)(1-x^2)$: 1 Mark	
2.4.1	$\frac{x}{2} + \frac{2x+3}{3} = 1$	(2x-3y)(1+x)(1-x): 1 Mark × by LCM: 1 Mark Answer: 1 Mark	(3)
	$\therefore 6\left(\frac{x}{2}\right) + 6\left(\frac{2x+3}{3}\right) = 6(1)$, and an analysis of the state	
	$\therefore 3x + 4x + 6 = 6$ $\therefore 7x = 0$ $\therefore x = 0 \checkmark CA$		(2)

Ques.	Solution	Mark allocation	Total
2.4.2	$x^2 + x = 12$	(x+4)(x-3): 1 Mark	
	$\therefore x^2 + x - 12 = 0$	Both solutions: 1 Mark	
	$\therefore (x+4)(x-3) = 0 \checkmark \mathbf{M}$		
	√CA		
	$\therefore x = -4 \text{or} x = 3$		(2)
2.4.3	$5^{x+2} = \frac{1}{1}$	5 ⁻² : 1 Mark	
	$\frac{3}{25}$	Answer: 1 Mark	
	$5^{x} = \frac{1}{25}$ $\therefore 5^{x+2} = 5^{-2} $		
	$\therefore x + 2 = -2$		
	$\therefore x = -4\sqrt{\mathbf{CA}}$		(2)
			[25]

(EC/NOVEMBER 2018)

QUES	TION 3 [26]							
Ques.	Solution						Mark allocation	Total
3.1	Oolation						I War K anocation	Total
3.1.1							q = 17 and r = 25 : 1 Mark	
	Shape	1	2	3	4	 25		
	Number of rectangles	5	9	13	17	 101		
	q = 17 and $r = 25$							(1)
3.1.2	√A √A						4n: 1 Mark	(./
	$T_n = 4n + 1$						+1 : 1 Mark	(2)
3.1.3	$T_n = 4n + 1$							
	205 = 4n + 1						$T_n = 205 : 1 \text{ Mark}$	
	n = 51			/C \			Answer: 1 Mark	
	\therefore Shape number 51 has 205	rectar	ngles.	· CA				(2)
3.2.1	√A						n^2 : 1 Mark	
	$T_n = n^2 + 1$						+1 : 1 Mark	(2)
3.2.2	$T_n = n^2 + 1$						SF(n=10): 1 Mark	. ,
	$T_{10} = (10)^2 + 1$ \checkmark SF						Answer: 1 Mark	
	$T_n = (10)^2 + 1$ SF $T_n = 101$ CA							(2)
3.3.1	. 1						SF x = -2 : 1 Mark	
	$A = \frac{1}{2}x + 2$						Answer: 1 Mark	
	$A = \frac{1}{2}(-2) + 2$							
	$ \begin{array}{c} $							(2)
3.3.2							SF x = B : 1 Mark	
	$\frac{1}{2}(B) + 2 = 4$						Answer: 1 Mark	
	$\frac{1}{2}(B) + 2 = 4$ $B = 4$ CA							(2)

Ques.	Solution	Mark allocation	Total
3.4.1	Common difference = $-7 - (-10) = 3$	Explanation: 1 Mark	
	y-intercept = -1 Since $x = 0$	Answer: 1 Mark	
	y = 3x - 1	If ANSWER ONLY	
	y = 3x - 1	Full Marks	
	OR		
	$m = \frac{y_2 - y_1}{y_2 - y_1}$	OR	
	$m = \frac{y_2 - y_1}{x_2 - x_1}$	m = 3: 1 Mark	
	$m = \frac{-7 - (-10)}{-2 - (-3)}$	Answer: 1 Mark	
	-2-(-3)		
	$m=3$ \checkmark A	If ANSWER ONLY Full Marks	
	m=3	Full Marks	
	$y = 3x - 1 \checkmark \mathbf{A}$		(2)
3.4.2	$y = 3x - 1 \ 8 = 3q - 1$ SF	SF both values: 1 Mark	
	$ _{8=3q-1}$ \checkmark SF	Answer: 1 Mark	
	q=3 CA		(2)
3.5.1	n_ n+2	Answer: 1 Mark	
3.3.1	y = -x + 3 $0 = -x + 3$	Allswel. I Walk	
	$\begin{cases} 0 - x + 3 \\ x = 3 \checkmark \mathbf{A} \end{cases}$		(1)
2.5.2		. 2	/
3.5.2	↑Y	y = -x + 3	
	5	x – int ercept: 1 Mark	
	A 3	y – int ercept : 1 Mark	
	4	Straight Line: 1Mark	
	3 (0;3) ✓ A		
	v=-x+3		
	1 A		
	(3;0)		
	$\begin{bmatrix} -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & X \end{bmatrix}$		
	-1		
	-2		
	-3		
	-4		
	-5		
			(3)
			(3)

Ques.	Solution	Mark allocation	Total
3.6.1	Monday to Tuesday ✓ ▲ OR	Answer: 1 Mark	
	Saturday to Sunday ✓ A		(1)
3.6.2	15 packets of sweets sold ✓A OR	Answer: 1 Mark	
	10 packets of sweets sold ✓A		(1)
3.6.3	Thursday to Saturday ✓A	Answer: 1 Mark	(1)
3.6.4	The decrease varied. ✓ A	Answer: 1 Mark	(1)
3.6.5	The sales were constant. ✓ A OR No increase or decrease in the sales. ✓ A	Answer: 1 Mark	(1)
	The moreage of degreese in the saids.		[26]
OHES	TION 4 [12]		
Ques.		Mark allocation	Total
4.1	$SI = P.i.n$ \checkmark M $720 = 1800.i.5$ \checkmark SF $i = \frac{720}{1800 \times 5}$ $r = \frac{720}{1800 \times 5} \times 100$	Formula: 1 Mark Substitution: 1 Mark Answer: 1 Mark	
	r = 8% √CA		(3)
4.2	Let the breadth of the original playground $= x$ \therefore The length of the original playground $= x+1$ \therefore The perimeter of the original playground $= 2(x+1+x)$	2(x+1+x): 1 Mark $4x+2$: 1 Mark	
	$=4x+2\checkmark M$ The length of the new playground = x+4 The breadth of the new playground = x-1	2(x+4+x-1): 1 Mark	
	The perimeter of the new playground = $2(x+4+x-1)$ \checkmark \mathbf{M} = $4x+6\checkmark$ \mathbf{M} The difference in perimeter = $4x+6-(4x+2)$	4x+6: 1 Mark Answer: 1 Mark	
	= 4meters		(5)
4.3	Total distance travelled = $210km$ Total time travelled = $2,5hours$ \checkmark M	Distance & Time: 1 M	lark
	Average Speed = $\frac{Dis \tan ce}{Time}$	Formula: 1 Mark	
	$= \frac{210km}{2,5hours} \checkmark SF$ $= 84km/h \checkmark CA$	Substitution: 1 Mark Answer: 1 Mark	(4)
	= 64km/n		(4) [12]

QUEST	FION 5 [19]		
Ques.	Solution	Mark allocation	Tot
5.1			
5.1.1	\checkmark A \checkmark R $x = 85^{\circ}$ (Alternate \angle 's; AC//HF)	Answer: 1 Mark Reason: 1 Mark	(2)
5.1.2	$y = 95^{\circ}$ (Co-interior \angle 's = 180°; BF//CD)	Answer: 1 Mark Reason: 1 Mark	(2)
5.2			
5.2.1	$\angle Q_1 = 55^{\circ} \left(\text{Corresponding } \angle 's; \text{ MN//QP} \right)^{\checkmark} \text{S/R}$ $55^{\circ} + 2x - 5^{\circ} + 3x + 40^{\circ} = 180^{\circ} \left(3 \angle 's \text{ of } \Delta PQO = 180^{\circ} \right)^{\prime}$	Statement and reason: 1 Mark Statement: 1 Mark Reason: 1 Mark Answer: 1 Mark	
	$5x + 90^{\circ} = 180^{\circ}$ $x = 18^{\circ}$ CA		(4)
5.2.2	$\angle MON = 2x - 5^{\circ}$ $= 2(18^{\circ}) - 5^{\circ} \mathbf{M}$	Substitution/Method:1 Mark Answer: 1 Mark	(-7)
	= 31 ℃CA		(2)
5.3.1	$\angle ADB + \angle ABD = 110^{\circ} [3 \angle \text{'s of } \triangle ABD = 180^{\circ}]^{\checkmark} \text{S/R}$ But $\angle ADB = \angle ABD[\triangle ADB \text{ is isosceles with } AD = AB]^{\checkmark} \text{S/R}$ $\therefore \angle ADB = 55^{\circ} \checkmark \text{A}$	Statement and reason:1 Mark Statement and reason:1 Mark Answer: 1 Mark	
	ZADB – 33 * A		(3)
5.3.2	✓S $\angle BDC = 55^{\circ}$ [Diagonal of rhombus ABCD bisect ∠'s] ∴ $\angle ADC = 110^{\circ}$ ✓A	Statement :1 Mark Reason:1 Mark Answer: 1 Mark	
	OR ✓S ✓R	OR	
	$\angle DAE + \angle ADC = 180^{\circ} [\text{Co-interior } \angle \text{'s} = 180^{\circ}; \text{DC}//\text{AE}]$ $\therefore 70^{\circ} + \angle ADC = 180^{\circ} [\text{Co-interior } \angle \text{'s} = 180^{\circ}; \text{DC}//\text{AE}]$ $\therefore \angle ADC = 110^{\circ} \triangle$	Statement :1 Mark Reason:1 Mark Answer: 1 Mark	(3)
5.3.3	\checkmark S \checkmark DBE = 125°[Exterior ∠ of ΔABD]	Statement :1 Mark Reason:1 Mark	(2)
5.3.4	The opposite side of a rhombus are parallel. ✓ R OR	Reason:1 Mark	
	_{DC//AE} √R		(1)
			[19]

QUESTION 6 [12]				
Ques.	Solution	Mark allocation	Total	
6.1	In ΔPMN and ΔNOP: 1. ∠MPN=∠PNO [Alternate ∠'s; MP //NO] ✓ S/R 2. ∠MNP=∠NPO [Alternate ∠'s; MN //PO] ✓ S/R 3. PN=PN [Common] ✓ S/R ∴ ΔPMN ≡ ΔNOP[∠∠S] ✓ S/R ∴ PM = NO ✓ 2/P	Statement and reason: 1 Mark Statement and reason: 1 Mark Statement and reason: 1 Mark Statement and reason: 1 Mark Statement and reason: 1 Mark	(5)	
	∴ PM = <i>NO</i> ∕S/R		(3)	
6.2.1	In $\triangle DBE$ and $\triangle FCE$: 1. $\angle E_1 = \angle E_3$ [Vertically Opposite \angle 's] \checkmark S/R 2. $\angle D_1 = \angle F$ [Alternate \angle 's; AB//CF] \checkmark S/R 3. $\angle B = \angle C_2$ [Alternate \angle 's; AB//CF] \checkmark S/R $\therefore \triangle DBE$ Ill $\triangle FCE$ [$\angle \angle \angle$] \checkmark S/R Note: The learner can use any 2 pairs of equal angles in his/her proof and then simply state that the last pair of corresponding angles are equal because the sum of 3	Statement and reason: 1 Mark Statement and reason: 1 Mark Statement and reason: 1 Mark Statement and reason: 1 Mark		
	angles of a triangle is equal to 180°.		(4)	
6.2.2	$\frac{DB}{FC} = \frac{BE}{CE} [\Delta DBE \parallel 1 \Delta FCE] \checkmark S/R$ $\frac{DB}{5} = \frac{8}{10} \checkmark SF$ $DB = 4cm \checkmark CA$	Statement and reason: 1 Mark Substitution: 1 Mark Answer: 1 Mark	(3)	
		1	[12]	

QUESTION 7 [13]

Ques.	Solution	Mark allocation	Total
7.1.1	Total Surface Area of pipe closed $= 2\pi r^{2} + 2\pi r \times h$ $= 2\pi (18)^{2} + 2\pi (18) \times 120$ $= 15607, 4323cm^{2}$ SF	Substitution: 1 Mark 25000,79434 <i>cm</i> ² :1 Mark 2513,274123 <i>cm</i> ² :1 Mark Answer: 1 Mark	
	Total Surface Area of circular ends = $2\pi r^2$ = $2\pi (15)^2$ = $1413,716694cm^2 \checkmark \mathbf{A}$ Total Surface Area of pipe open both sides = $15607,4323cm^2 - 1413,716694cm^2$		
	$=14193,72cm^2$ CA		(4)

Ques.	Solution	Mark allocation	Total
7.1.2	Total Volume of pipe closed	Substitution: 1 Mark	
	$=\pi r^2 \times h$	122145,1224 <i>cm</i> ³ : 1 Mark	
	$=\pi(18)^2 \times 120 \ \checkmark SF$	84823,00165 <i>cm</i> ³ : 1 Mark	
	$=122145,1224cm^3$ CA	Answer: 1 Mark	
	Total Volume of hole $= \pi r^2 \times h$ $= \pi (15)^2 \times 120$ $= 84823,00165cm^3 \checkmark \mathbf{A}$		
	Total Volume of pipe (open on both sides)		
	$= 122145, 1224cm^3 - 84823, 00165cm^3$		
	$=37322,12cm^3 \checkmark CA$		(4)
7.2	FC = $\sqrt{5^2 - 4^2}$ [Theorem of Pythagoras] FC = $3cm \checkmark \mathbf{A}$ Area of $\triangle ABC = \frac{1}{2} \times 6cm \times 4cm$ = $12cm^2 \checkmark \mathbf{CA}$	FC = 3cm : 1 Mark $12cm^2 : 1 \text{ Mark}$ $36 cm^2 : 1 \text{ Mark}$ $28,27433388 \text{ cm}^2 : 1 \text{ Mark}$ Answer: 1 Mark	
	Area of square ACDE = $6cm \times 6cm$ = $36 cm^2 \checkmark CA$		
	Area of Circle = $\pi \times (3cm)^2$ = 28,27433388 cm ² \checkmark CA		
	Area of ALL the shaded sections		
	$= 12 \text{ cm}^2 + (36cm^2 - 28,27433388cm^2)$		
	$= 19,73 \text{ cm}^2 \checkmark \text{CA}$		(5)
			[13]

QUESTION 9 [13]			
Ques.	Solution	Mark allocation	Total
9.1.1	a = 19 ✓ A b = 90 ∕ A	Value of a: 1 Mark Value of b and c: 1 Mark	
	b = 90 A $c = 61$		(2)
9.1.2 a)		Numerator: 1 Mark	
,	$P(Girl) = \frac{150}{250} / \frac{3}{5} \checkmark A$	Denominator: 1 Mark	(2)
9.1.2 b)	76 / 38 ✓ A	Numerator: 1 Mark	
	P(A boy owning a cell phone) = $\frac{76}{250} / \frac{38}{125} \checkmark \mathbf{A}$	Denominator: 1 Mark	(2)
9.1.2 c)	61 ✓ Δ	Answer: 1 Mark	
	$P(A \text{ learner with no cell phone}) = \frac{61}{250} \checkmark A$		(2)
9.2.1	The mean tends to be shifted upwards if there are	Statement: 1 Mark	
	extreme values. √S	Reason: 1 Mark	
	In this case, there are a few higher salaries, so the mean is shifted upwards, R while the median shows	Reason: 1 Mark	
	that half of the salaries will be below R5 225. ✓ R	Accept any other logical explanation.	(3)
		•	(0)
9.2.2		The median: 1 Mark	
	The median is generally a better indicator of the real situation when the data is not evenly spread out.	Reason: 1 Mark	
		Accept any other logical	(2)
		explanation.	(2) [13]
			[13]
		TOTAL:	140