Question I (1)

$$\widehat{H} = \begin{pmatrix} E_1 & \hbar\Omega_p \cos \omega_p t & 0\\ \hbar\Omega_p^* \cos \omega_p t & E_2 & \hbar\Omega_s \cos \omega_s t\\ 0 & \hbar\Omega_s^* \cos \omega_s t & E_3 \end{pmatrix}$$

Using RWA, $\Omega \cos \omega t \approx \frac{1}{2} \Omega e^{i\omega t}$. the matrix simplifies to

$$\widehat{H} = \begin{pmatrix} E_1 & \frac{1}{2}\hbar\Omega_p e^{i\omega_p t} & 0\\ \frac{1}{2}\hbar\Omega_p^* e^{-i\omega_p t} & E_2 & \frac{1}{2}\hbar\Omega_s e^{i\omega_s t}\\ 0 & \frac{1}{2}\hbar\Omega_s^* e^{-i\omega_s t} & E_3 \end{pmatrix}$$

Question I (2)

Using the time dependent Schrödinger equation,

$$i\hbar \begin{pmatrix} \dot{C}_1 \\ \dot{C}_2 \\ \dot{C}_3 \end{pmatrix} = \begin{pmatrix} E_1 & \frac{1}{2}\hbar\Omega_p e^{i\omega_p t} & 0 \\ \frac{1}{2}\hbar\Omega_p^* e^{-i\omega_p t} & E_2 & \frac{1}{2}\hbar\Omega_s e^{i\omega_s t} \\ 0 & \frac{1}{2}\hbar\Omega_s^* e^{-i\omega_s t} & E_3 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix}$$

$$\begin{split} \tilde{C}_1 &= C_1 e^{-i\omega_p t} \quad \Rightarrow \quad \dot{\tilde{C}}_1 = \left(\dot{C}_1 - i\omega_p C_1\right) e^{-i\omega_p t} \\ \tilde{C}_2 &= C_2 \qquad \Rightarrow \quad \dot{\tilde{C}}_2 = \dot{C}_2 \\ \tilde{C}_3 &= C_3 e^{i\omega_S t} \quad \Rightarrow \quad \dot{\tilde{C}}_3 = \left(\dot{C}_3 + i\omega_S C_3\right) e^{i\omega_S t} \end{split}$$

$$\begin{split} i\hbar\dot{\tilde{C}}_1 &= \left(E_1C_1 + \frac{1}{2}\hbar\;\Omega_p e^{i\omega_p t}C_2 + \hbar\omega_pC_1\right)e^{-i\omega_p t}\\ i\hbar\dot{\tilde{C}}_2 &= \frac{1}{2}C_1\hbar\Omega_p^* e^{-i\omega_p t} + C_2E_2 + \frac{1}{2}\hbar\Omega_s e^{i\omega_s t}\\ i\hbar\dot{\tilde{C}}_3 &= \left(\frac{1}{2}\hbar\Omega_s^* e^{-i\omega_s t}C_2 + C_3E_3 - \hbar\omega_sC_3\right)e^{i\omega_s t} \end{split}$$

$$f(\theta,\phi) = -\frac{2m}{\hbar^2 \kappa} \int_0^\infty r \sin \kappa r \, V(r) \, dr$$

$$= \frac{2mV_0}{\hbar^2 \kappa} \int_0^a r \sin \kappa r \, dr$$

$$= \frac{2mV_0}{\hbar^2 \kappa} \left(\left[-\frac{r}{\kappa} \cos \kappa r \right]_0^a + \int_0^a \frac{\cos \kappa r}{\kappa} \, dr \right)$$

$$= \frac{2mV_0}{\hbar^2 \kappa} \left(-\frac{a}{\kappa} \cos \kappa a + \left[\frac{\sin \kappa r}{\kappa^2} \right]_0^a \right)$$

$$= \frac{2mV_0}{\hbar^2 \kappa^2} \left(\frac{1}{\kappa} \sin \kappa r - a \cos \kappa a \right)$$

$$\frac{d\sigma}{d\Omega} = |f(\theta,\phi)|^2 = \frac{4m^2 V_0^2}{\hbar^4 \kappa^4} \left(\frac{1}{\kappa} \sin \kappa r - a \cos \kappa a \right)^2$$

Question II (2)

The optical theorem is a general law of wave scattering theory, it relates the total crosssection to the imaginary part of the forward scattering amplitude. It has the formula

$$\sigma_{tot} = \frac{4\pi}{\kappa} Im[f(0)]$$

where f(0) is the scattering amplitude at $\theta = 0$. It is derived using the conservation of probabilities in the derivations of the partial wave analysis. It is applicable for both elastic & inelastic scattering.

Question II (3)

 $\sigma_{tot} = 0$, which cannot be true! The results don't make sense because the theorem is derived vigorously, but the Born approximation used here was only 1st order.

Question III (1)

The selection rules say $\Delta m = \pm 1,0$ and $\Delta l = \pm 1$. Since it iss in the ground state, we have n = 1, l = 0, m = 0. It can move to states like $|200\rangle, |210\rangle, |21 - 1\rangle, |211\rangle$. $\therefore l = 1, m = -1,0,1$.

Question III (2)

$$\begin{split} E(t) &= E_0 \delta(t) \hat{z} \quad \Rightarrow \quad V = E_0 z q \delta(t) \\ P_{n \leftarrow 1} &= \left| \left\langle \psi_n^0 \middle| \widehat{U}_l(t) \middle| \psi_1^0 \right\rangle \right|^2 \\ &= \frac{1}{\hbar^2} \left| \int_0^t \left\langle \psi_n^0 \middle| E_{oz\delta(t)q} \middle| \psi_1^0 \right\rangle e^{\frac{i(E_n^0 - E_1)t'}{\hbar}} dt' \right|^2 \\ &= \frac{|d_{n1}|^2}{\hbar^2} E_0^2 \left| \int_0^t \delta(t) e^{\frac{i(E_n^0 - E_1)t'}{\hbar}} dt' \right|^2 \\ &= \frac{|d_{n1}|^2}{\hbar^2} E_0^2 \end{split}$$

Question IV

Using the Gaussian wavefunction, $\left(\frac{2b}{\pi}\right)^{\frac{1}{4}}e^{-bx^2}$

$$\langle \widehat{H} \rangle = \frac{\hbar^2 b}{2m} + \sqrt{\frac{2b}{\pi}} \int_{-\infty}^{\infty} cx^4 e^{-2bx^2} dx$$

$$\sqrt{\frac{2b}{\pi}} \int_{-\infty}^{\infty} cx^4 e^{-2bx^2} dx = 2\sqrt{\frac{2bc^2}{\pi}} \left[\sqrt{\frac{\pi}{8b}} \left(\frac{1}{8b} \right)^2 \frac{4!}{2!} \right] = \frac{3c}{16b^2}$$

$$\left\langle \widehat{H} \right\rangle = \frac{\hbar^2 b}{2m} + \frac{3c}{16b^2}$$

$$\frac{d\langle \widehat{H} \rangle}{db} = \frac{\hbar^2}{2m} - \frac{3c}{8b^3} = 0, \qquad \Rightarrow \quad b = \left(\frac{3mc}{4\hbar^2}\right)^{\frac{1}{3}}$$

: the expected ground state energy,

$$\langle \widehat{H} \rangle = \frac{\hbar^2}{2m} \left(\frac{3mc}{4\hbar^2} \right)^{\frac{1}{3}} + \frac{3c}{16} \left(\frac{3mc}{4\hbar^2} \right)^{-\frac{2}{3}} = \frac{3}{4} \left(\frac{3\hbar^4c}{4m^2} \right)^{\frac{1}{3}}$$

Solutions provided by:

Prof Gong Jiang Bin (Q1-3)

D.J. Griffiths (Q4)

© 2012, NUS Physics Society.

3