Chińskie twierdzenie o resztach (z1)

Limit pamięci: 1024 MB Limit czasu: 1.00 s

Dane jest N zapytań, a każde z nich składa się z K par liczb p_i oraz a_i , gdzie p_i jest pierwsza. Twoim zadaniem jest znalezienie dla każdego zapytania takiej liczby A, że $0 \le A < p_1 \cdot p_2 \cdot \dots \cdot p_K$ oraz dla każdej pary liczb z zapytania zachodzi $A \mod p_i = a_i$.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita N, oznaczająca liczbę zapytań. W kolejnych wierszach znajdują się kolejne zapytania.

Każde zapytanie rozpoczyna się jednym wierszem z liczbą K, oznaczającą liczbę par liczb z zapytania. W kolejnych K wierszach znajdują się po dwie liczby całkowite p_i oraz a_i .

Wyjście

Dla każdego zapytania wypisz w osobnym wierszu szukaną liczbę A. Możesz założyć, że zawsze istnieje tylko jedna taka liczba.

Ograniczenia

 $1 \le N \le 10\,000$, $1 \le K \le 12$, $0 \le a_i < p_i < 40$, wartości p_i są liczbami pierwszymi.

Wejście	Wyjście 69
3	113
5 4	
7 6	
11 3	
4	
2 1	
3 2	
5 3	
7 1	

Łączenie zbiorów (z2)

Limit pamięci: 1024 MB Limit czasu: 2.00 s

Dane jest ukorzenione drzewo o N wierzchołkach. Wierzchołki te numerujemy liczbami naturalnymi od 1 do N, gdzie 1 jest korzeniem. Dodatkowo, każdy wierzchołek ma przypisany pewien kolor.

Definiujemy zbiór wierzchołka jako zbiór kolorów, które występują w jego poddrzewie.

Twoim zadaniem jest określenie dla każdego wierzchołka liczby różnych kolorów w jego zbiorze.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita N, oznaczająca liczbę wierzchołków w drzewie.

W drugim wierszu wejścia znajduje się N oddzielonych pojedynczymi odstępami liczb całkowitych c_1, c_2, \ldots, c_N , oznaczających kolory kolejnych wierzchołków.

W kolejnych N-1 wierszach znajdują się po dwie liczby całkowite a i b, oznaczające, że w drzewie istnieje krawędź między tymi wierzchołkami.

Wyjście

W pierwszym wierszu wyjścia powinno się znaleźć N oddzielonych pojedynczymi odstępami liczb, oznaczających liczby różnych kolorów w zbiorach kolejnych wierzchołków.

Ograniczenia

 $1 \le N \le 200\,000$, $1 \le a, b \le N$, $1 \le c_i \le 10^9$.

Wejście	Wyjście
5	3 1 2 1 1
2 3 2 2 1	
1 2	
1 3	
3 4	
3.5	

Spójne fragmenty (z3)

Limit pamięci: 1024 MB Limit czasu: 2.00 s

Mamy dany graf posiadający N wierzchołków, pomiędzy którymi pierwotnie nie ma żadnych krawędzi. Następnie, w M krokach dodano do niego po jednej krawędzi. Twoim zadaniem jest, po każdym dodaniu pojedynczej krawędzi, określić ile spójnych fragmentów ma graf oraz ile wierzchołków znajduje się w największym z nich.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite N oraz M, oznaczające kolejno liczbę wierzchołków oraz kolejno dodawanych krawędzi w grafie.

W kolejnych M wierszach podane są po dwie liczby całkowite a oraz b oznaczające numery wierzchołków, które właśnie zostały połączone krawędzią.

Wyjście

Na wyjściu wypisz M wierszy, a każdy z nich powinien zawierać dwie oddzielone pojedynczym odstępem liczby, oznaczające kolejno liczbę spójnych fragmentów grafu oraz rozmiar największego z nich.

Ograniczenia

 $1 \le N \le 100\,000$, $1 \le M \le 200\,000$, $1 \le a,b \le N$, $a \ne b$.

Wejście	Wyjście
5 3	4 2
1 2	3 3
1 3	2 3
4 5	

Współczynnik różnorodności (z4)

Limit pamięci: 1024 MB Limit czasu: 1.00 s

Mamy dany graf składający się z N wierzchołków, pomiędzy którymi pierwotnie nie ma żadnych krawędzi. Następnie, w M krokach dodano do niego po jednej krawędzi.

Twoim zadaniem jest, po każdym dodaniu pojedynczej krawędzi, określić *współczynnik różnorodności* spójnego fragmentu, który zawiera dodaną właśnie krawędź.

Współczynnik różnorodności definiujemy jako różnicę pomiędzy największym oraz najmniejszym numerem wierzchołka wewnątrz spójnej, pomnożoną razy liczbę jej krawędzi.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite N oraz M, oznaczające kolejno liczbę wierzchołków oraz kolejno dodawanych krawędzi w grafie.

W kolejnych M wierszach podane są po dwie liczby całkowite a oraz b oznaczające numery wierzchołków, które właśnie zostały połączone krawędzią.

Wyjście

Dla każdej nowo dodanej krawędzi na wyjściu wypisz jeden wiersz zawierający jedną liczbę, oznaczającą współczynnik różnorodności spójnego fragmentu zawierającego właśnie dodaną krawędź.

Ograniczenia

 $1 \le N \le 100\,000$, $1 \le M \le 200\,000$, $1 \le a, b \le N$, $a \ne b$.

Wejście	Wyjście	Wyjaśnienie
5 5	2	Po dodaniu ostatniej krawędzi cały graf
1 3	4	jest spójny, a jego liczba krawędzi wynosi
2 3	1	5, co oznacza, że współczynnik
4 5	6	różnorodności wynosi $(5-1) \cdot 5 = 20$.
1 2	20	
3 5		

Parzystość przedziału (z5)

Limit pamięci: 1024 MB Limit czasu: 1.00 s

Na osi OX zostały rozłożone w pewnych odległościach punkty o numerach $1, 2, \ldots, N$. Następnie dane jest M zdań postaci "parzystość odcinka od a do b jest równa p". Twoim zadaniem jest znaleźć największe takie w, że pierwsze w spośród podanych zdań może być prawdziwe.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita N, oznaczająca liczbę punktów na osi.

W drugim wierszu wejścia znajduje się jedna liczba całkowita M, oznaczająca liczbę zdań.

W kolejnych M wierszach znajdują się kolejne zdania. Każde z nich ma postać trzech liczb a b p, gdzie a i b to numery punktów, a p oznacza parzystość odległości między nimi.

Wyjście

W pierwszym i jedynym wierszu wyjścia powinna się znaleźć jedna liczba w, oznaczająca maksymalną liczbę początkowych zdań, które nie zawierają sprzeczności.

Ograniczenia

 $1 \le N \le 1000000, 0 \le M \le 300000, 1 \le a < b \le N, p \in \{0, 1\}.$

Przykład

5 7 1

Wejście	Wyjście	Wyjaśnienie
8	5	Jeżeli odległości pomiędzy kolejnymi
7		punktami będą wynosiły na przykład
1 3 0		3,1,3,4,2,4,5, to pierwsze 5 zdań będzie
3 4 1		poprawne.
4 6 0		Jednocześnie nie da się dobrać
3 6 1		odległości w taki sposób, żeby pierwsze 6
4 5 0		zdań było poprawne.
1 5 0		