Family list
11 family members for:
JP2001250777
Derived from 9 applications.

- 1 Production method for semiconductor device Publication info: AU2231201 A 2001-07-09
- 2 Production method for semiconductor device Publication info: CN1437761 A 2003-08-20
- 3 Production method for semiconductor device Publication info: CN1722368 A 2006-01-18
- 4 METHOD FOR CREATING SEMICONDUCTOR DEVICE Publication Info: JP2001250777 A 2001-09-14
- 5 No English title available Publication info: TW473800 B - 2002-01-21
- 6 Production method for semiconductor device Publication info: US6787407 B2 2004-09-07 US2003143794 A1 2003-07-31
- 7 Method of manufacturing a semiconductor device Publication info: US6821827 B2 2004-11-23 US2001034088 A1 2001-10-25
- 8 Method of manufacturing a semiconductor device Publication info: US2005054181 A1 2005-03-10
- 9 PRODUCTION METHOD FOR SEMICONDUCTOR DEVICE Publication info: W00148797 A1 2001-07-05

Data supplied from the esp@cenet database - Worldwide

METHOD FOR CREATING SEMICONDUCTOR DEVICE

Patent number:

JP2001250777

Publication date:

2001-09-14

Inventor:

NAKAMURA OSAMU; KATSUMURA MANABU;

YAMAZAKI SHUNPEI

Applicant:

SEMICONDUCTOR ENERGY LAB

Classification:

- international:

G02F1/1368; G09F9/30; H01L21/20; H01L21/322; H01L21/336; H01L29/786; G02F1/13; G09F9/30; H01L21/02; H01L29/66; (IPC1-7): H01L21/20; G02F1/1368; G09F9/30; H01L21/322; H01L21/336;

H01L29/786

- european:

Application number: JP20000400307 20001228

Priority number(s): JP20000400307 20001228; JP19990375607 19991228

Report a data error here

Abstract of **JP2001250777**

PROBLEM TO BE SOLVED: To provide a method for creating a semiconductor device with improved gettering efficiency. SOLUTION: When phosphor is added into a poly-Si film crystallized by adding metal, and heat treatment is made for gettering, the shape of an island- shaped insulation film on the poly-Si film used when implanting phosphor is carefully designed, thus increasing the area of the boundary surface between a region where phosphor is added and a region where no phosphors are added, and improving gettering efficiency.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2001—250777

(P2001-250777A) (43)公開日 平成13年9月14日(2001.9.14)

識別記号	FΙ				テーマコート・	(参考)
	HOIL	21/20				
	G09F	9/30	338			
338	H01L	21/322		R		
	G02F	1/136	500			
	HOIL	29/78	627	Z		
審査	請求 未請求	請求項の数 9	OL	(全34頁)	最終頁に	に続く
	338	H01L G09F H01L G02F H01L	H01L 21/20 G09F 9/30 H01L 21/322 G02F 1/136 H01L 29/78	H01L 21/20 G09F 9/30 338 H01L 21/322 G02F 1/136 500 H01L 29/78 627	H01L 21/20 G09F 9/30 338 H01L 21/322 R G02F 1/136 500 H01L 29/78 627 Z	H01L 21/20 G09F 9/30 338 H01L 21/322 R G02F 1/136 500 H01L 29/78 627 Z

(21)出願番号	特願2000-400307(P2000-400307)	(71)出願人	000153878	
(22)出顧日	平成12年12月28日(2000.12.28)		株式会社半導体エネルギー研究所	
(22)山铁口	平成12年12月28日(2000.12.28)	(72)発明者	神奈川県厚木市長谷398番地 中村 理	
(31)優先権主張番号	杜節 並11 975.607	127元列目		
	特願平11-375607		神奈川県厚木市長谷398番地 株式会社半	
(32)優先日	平成11年12月28日(1999.12.28)		導体エネルギー研究所内	
(33)優先権主張国	日本 (JP)	(72)発明者	勝村 学 .	
			神奈川県厚木市長谷398番地 株式会社半	
			導体エネルギー研究所内	
		(72)発明者	山崎 舜平	
			神奈川県厚木市長谷398番地 株式会社半	
			導体エネルギー研究所内	

(54) 【発明の名称】半導体装置の作製方法

(57)【要約】

【課題】 ゲッタリング効率の良い半導体装置の作製方法を提供する。

【解決手段】 金属を添加して結晶化したpoly-Si膜中に、リンを添加し加熱処理をしてゲッタリングをする場合に、燐を打ち込む際に用いるpoly-Si膜上の島状絶縁膜の形状に工夫を施す。それにより、燐が添加された領域と添加されてない領域の境界面の面積を増大し、ゲッタリングの効率を高める。

【特許請求の範囲】

【請求項1】珪素を主成分とする非晶質構造を有する半 導体薄膜を形成する工程と、前記非晶質構造を有する半 導体薄膜に金属を添加する工程と、前記非晶質構造を有 する半導体薄膜を、第1の加熱処理により珪素を主成分 とする結晶質半導体薄膜を形成する工程と、島状の絶縁 膜を形成する工程と、前記島状の絶縁膜をマスクとし て、非金属元素または該非金属元素のイオンを前記結晶 質半導体薄膜に添加して、前記結晶質半導体薄膜に非金 属元素または該非金属元素のイオンが添加された領域を 10 形成する工程と、前記結晶質半導体薄膜に第2の加熱処 理をして、前記非金属元素または該非金属元素のイオン が添加された領域に前記金属をゲッタリングする工程と を有し、前記結晶質半導体薄膜の表面と平行な面に対す る前記島状の絶縁膜の形状が頂点の数 n (n>20) 個 を有する多角形であって、かつ該頂点のうち内角が18 0度以上である頂点の数m(m>8) 個を有する多角形 であることを特徴とする半導体装置の作製方法。

【請求項2】請求項1において、前記金属はニッケル (Ni)、コバルト(Co)、パラジウム(Pd)、白金(P t)、銅(Cu)であることを特徴とする半導体装置の作 製方法。

【請求項3】請求項1において、前記第1の加熱処理は 400℃以上700℃以下であることを特徴とする半導 体装置の作製方法。

【請求項4】請求項1において、前記非金属元素または 非金属元素イオンはボロン(B)、珪素(Si)、燐 (P)、ヒ素(As)、ヘリウム(He)、ネオン(N e)、アルゴン(Ar)、クリプトン(Kr)、キセノ 特徴とする半導体装置の作製方法。

【請求項5】請求項1において、前記第2の加熱処理は 400℃以上1000℃以下であることを特徴とする半 導体装置の作製方法。

【請求項6】珪素を主成分とする非晶質構造を有する半 導体薄膜を形成する工程と、前記非晶質構造を有する半 導体薄膜に金属を添加する工程と、前記非晶質構造を有 する半導体薄膜を、第1の加熱処理により珪素を主成分 とする結晶質半導体薄膜を形成する工程と、島状の絶縁 膜を形成する工程と、前記島状の絶縁膜をマスクとし て、非金属元素または該非金属元素のイオンを前記結晶 質半導体薄膜に添加して、前記結晶質半導体薄膜に非金 属元素または該非金属元素のイオンが添加された領域を 形成する工程と、前記結晶質半導体薄膜に第2の加熱処 理をして、前記非金属元素または該非金属元素のイオン が添加された領域に前記金属をゲッタリングする工程と を有することを特徴とする半導体装置の作製方法。

【請求項7】請求項6において、前記金属はニッケル (Ni)、コバルト(Co)、パラジウム(Pd)、白金(P t)、銅(Cu)であることを特徴とする半導体装置の作 製方法。

【請求項8】請求項6において、前記非金属元素または 非金属元素イオンはポロン(B)、珪素(Si)、燐 (P)、ヒ素(As)、ヘリウム(He)、ネオン(N e)、アルゴン(Ar)、クリプトン(Kr)、キセノ ン(Xe)から選ばれた1種または複数種であることを 特徴とする半導体装置の作製方法。

【請求項9】請求項8において、前記アルゴンは前記結 晶質半導体薄膜に90keVの加速電圧で、かつ2×10 1' / c m' のドーズ量で添加されることを特徴とする半 導体装置の作製方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は珪素を主成分とする 結晶質半導体薄膜を利用した半導体装置の作製方法に関 する技術である。特に、絶縁基板上に珪素を主成分とす る結晶質半導体薄膜を有する基板を利用した薄膜トラン ジスタ(以下、TFTと記す)の作製方法に関する。

【0002】本明細書において、半導体装置とは半導体 20 を利用して機能する装置全般を指すものであり、TFT の如き単体素子のみならず、演算処理装置、記憶処理装 置、電気光学装置などそれを搭載した電子デバイス等も 半導体装置の範疇に含まれる。

[0003]

【従来の技術】アクティブマトリクス型液晶表示装置 は、同一基板上に画素マトリクス回路とドライバー回路 とを設けたモノリシック型表示装置である。モノリシッ ク型表示装置は、薄膜トランジスタ(TFT)を用いる ことが主流である。薄膜トランジスタは、ガラス基板、 ン(Xe)から選ばれた1種または複数種であることを 30 石英基板などの絶縁基板に非晶質珪素膜(アモルファス シリコン膜)を形成し活性層としている。TFTを利用 して、メモリ回路やクロック発生回路等のロジック回路 を内臓したシステムオンパネルの開発も進められてい る。

> 【0004】このようなドライバー回路やロジック回路 は高速動作を行う必要があるので、石英基板、ガラス基 板上に活性層として非晶質珪素膜を成膜し、素子として 用いることは不適当である。そのため、現在では多結晶 質珪素膜を活性層としたTFTが製造されている。

【0005】石英基板、ガラス基板上に非晶質珪素膜を 成膜した後、結晶化により多結晶珪素膜を得る技術は幾 つか存在する。そのなかでも、素子を形成したときに優 れた素子の電気的特性が得られ、非晶質珪素膜の結晶化 を促進する触媒金属元素を添加し、加熱処理により結晶 化する技術が知られている。以下に、この技術をさらに 詳しく説明する。

【0006】石英基板、ガラス基板などの絶縁性の基板 上に、LPCVD装置やPECVD装置で、50nmか ら100nm程度の珪素を主成分とする非晶質構造を有 50 する半導体薄膜を形成する。前記非晶質構造を有する半

導体薄膜の表面や膜中に、金属を添加し加熱処理するこ とにより、前記非晶質構造を有する半導体薄膜を固相結 晶化する。前記非晶質構造を有する半導体薄膜が固相結 晶化することにより、珪素を主成分とする結晶質半導体 薄膜となる。前記金属の添加により固相結晶化が促進さ れることは、本発明者らにより確認されており、前記金 属は固相結晶化に際に、触媒として働くと言える。前記 金属を本明細書では触媒金属とする。

【0007】前記非晶質構造を有する半導体薄膜が、金 属を触媒として加熱処理により結晶化する現象は、Me tal Induced Lateral cryst allization (MILC) として多数報告され ている。代表的なものとして、ニッケル(Ni)、コバル ト(Co)、パラジウム(Pd)、白金(Pt)、銅(Cu)な どの遷移金属元素がある。触媒金属の存在により、触媒 金属を添加しない場合に比べて前記非晶質構造を有する 半導体薄膜が固相結晶化に要する温度や時間の点で有利 となる。実験によれば、Ni元素は、触媒金属として非 常に優れている。以下では、触媒金属としてNi元素を 用いたことを前提とする。

【0008】前記非晶質構造を有する半導体薄膜の固相 結晶化に要する加熱処理は、電気炉などにより400℃ ~ 7 0 0 ℃で数時間以上である。

【0009】本明細書では、珪素を主成分とする非晶質 構造を有する半導体薄膜とは、非晶質構造を有するSi Ge薄膜で、かつGeの成分比が50%未満のものなど も含む。

[0010]

【発明が解決しようとする課題】前記非晶質構造を有す ル(Ni)、コパルト(Co)、パラジウム(Pd)、白金 (Pt)、銅(Cu)など遷移金属元素が用いられる。一般 的によく知られているように、Niなどの金属は、結晶 質の珪素中に存在すると、深い準位を形成し素子の電気 特性や信頼性に悪影響を及ばす。よって、素子が形成さ れ素子として使用される領域(素子活性領域)から、N i 元素などの金属を除去する必要がある。前記結晶質半 導体薄膜も、触媒金属による素子特性への悪影響が懸念 される。

[0011]

【課題を解決するための手段】よって、素子活性領域か ら、電気特性に影響を及ばさない程度までに、Ni元素 などの金属を除去する必要がある。結晶質の珪素中の素 子活性領域中から、Ni元素などの金属を除去すること を、一般的にゲッタリングと言う。以下に、本発明者ら により確かめられているゲッタリングの方法を述べる。

【0012】前記結晶質半導体薄膜上に絶縁膜を形成す る。前記絶縁膜は、CVD装置やスパッタ装置により酸 化珪素膜または窒化珪素膜などを成膜する。次に、前記 絶縁膜を島状に形成する。半導体技術で一般的なフォト 50 れている。

リソグラフィとエッチングにより、前記絶縁膜の島状物 は形成できる。

【0013】前記絶縁膜をマスクとして、非金属元素ま たは該非金属元素のイオンを、前記結晶質半導体薄膜に 添加し、前記結晶質半導体薄膜に前記非金属元素または 該非金属元素イオンが添加された領域を形成する。つま り、前記結晶質半導体薄膜上に前記絶縁膜の島状物が存 在する領域は、前記非金属元素または該非金属元素イオ ンが添加されずに、前記の島状物が存在しない領域に添 加される。前記非金属元素または該非金属元素イオン は、気相からの熱拡散やイオン注入装置などにより添加 する。

【0014】前記非金属元素または該非金属元素イオン は、ポロン(B)、珪素(Si)、燐(P)、ヒ素(A s)、ヘリウム(He)、ネオン(Ne)、アルゴン (Ar)、Kr (クリプトン)、キセノン (Xe) から 選ばれた1種または複数種である。

【0015】単結晶珪素での遷移金属元素のゲッタリン グの機構や現象は盛んに研究されており、かなりの部分 20 が明らかになっている。多結晶珪素でのゲッタリングに ついては、詳しくわかっていないところもあるが、単結 晶珪素の場合を参考することができる。多結晶珪素にお いてもイオン打ち込み法(イオン注入法)により導入さ れる、ダメージは有効なゲッタリングとなる。イオン注 入より原子が跳ね飛ばされた跡は局部的に非晶質化し、 続く加熱処理によって非晶質部を再結晶化させる際に高 密度の結晶欠陥などが導入される。よって、ゲッタリン グの際にイオン注入により添加する前記非金属元素また は該非金属元素イオンには、イオン打ち込み可能であっ る半導体薄膜の結晶化を促進する触媒金属には、ニッケ 30 て、ゲッタリングする金属よりも拡散係数が小さく加熱 処理によっても素子活性領域までほとんど拡散しない か、電気的に不活性で素子特性に対して影響がなければ よい。

> 【0016】前記の条件に当たる元素には、B、Si、 P、As、He、Ne、Ar、Kr、Xeから選ばれた 1種または複数種がある。ただし、イオン種、ドーズ 量、加速エネルギの違いにより、粒界、微少双晶、積層 欠陥、転位ループ、転位網などのダメージが発生の様子 も違ってくると考えられる。また、燐(P)など、気相 40 から拡散した場合でも、結晶質珪素中に添加されるとミ スフィット転移を形成しゲッタリング源となる。燐 (P)を前記結晶質半導体薄膜に添加すると、前記触媒

金属のゲッタリングに有効であることは本発明者らによ って確認されている。

【0017】次に、前記結晶質半導体薄膜に400℃以 上1000℃以下の加熱処理をして、前記非金属元素ま たは該非金属元素のイオンが添加された領域に前記金属 をゲッタリングする。発明者らの実験により、特に燐 (P) は顕著なゲッタリング効果があることは確かめら

1 -1

【0018】一般的に、ゲッタリングは素子活性領域外 にゲッタリングするサイトを形成し、加熱処理によりゲ ッタリングサイトに金属を偏析することにより達成す る。前述の薄膜の作製を含む、半導体素子の形成技術で は、加熱処理は必須であるが、熱供給量=温度×時間は 小さいほど望ましい。熱供給量を小さくすれば、経済的 に有利となり、時間短縮ができる。それ以外にも、半導 体基板のそりや縮みの軽減、素子活性領域付近の余分な 応力発生などが防げる。また、ゲッタリング工程後、素 子活性領域中にゲッタリングできずに残留する金属も少 10 なければ少ないほどよい。

【0019】ガラス基板または石英基板10101上に 珪素を主成分とする非晶質構造を有する半導体薄膜10 102を形成する。前記非晶質構造を有する半導体薄膜 102に金属を添加する。前記金属にはニッケル(N i)、コバルト(Co)、パラジウム(Pd)、白金(P t)、銅(Cu)などが考えられるが、課題を解決する手 段の項ではNiとし、酢酸Ni塩溶液10103を塗布 するとする。

【0020】前記非晶質構造を有する半導体薄膜101 02を、前記金属を触媒として、400℃以上700℃ 以下の加熱処理により、固相結晶化し珪素を主成分とす る結晶質半導体薄膜を得る(図1(A))。Niは固相 結晶化を促進するのに非常に有効な金属であることが、 発明者らの実験により確認されている。

【0021】前記結晶質半導体薄膜上10107に絶縁 膜を成膜した後、絶縁膜を島状物10104に微細加工 する。前記絶縁膜の島状物10104をマスクとして、 非金属元素または該非金属元素のイオンを前記結晶質半 導体薄膜に添加する(図1 (B))。課題を解決するた 30 めの手段の項では、前記非金属元素として燐(P)を用 いたとする。

【0022】燐(P)以外にも、B、Si、As、H e、Ne、Ar、Kr、Xeなどがゲッタリングに有効 と考えられる。これらの元素は、イオン注入とそれに続 く加熱処理によりpoly-Si膜にダメージを導入で きること、ゲッタリングする金属よりも拡散しにくい か、不活性で素子特性に影響を及ぼさない元素である。 前記結晶質半導体薄膜に、非金属元素または該非金属元 形成する。前記結晶質半導体薄膜に、400℃以上10 00℃以下の加熱処理をして、前記非金属元素または該 非金属元素のイオンが添加された領域に前記金属をゲッ タリングする。(図1(C))図1(C)中において、 10110はNiが移動する方向である。

【0023】本発明の特徴の一つは、結晶質半導体薄膜 に非金属元素または該非金属元素のイオンを添加してゲ ッタリングサイトを形成するプロセスと、加熱処理する プロセスとを有しており、該加熱処理により結晶質半導 体薄膜に含まれる金属が移動してゲッタリングサイト

(非金属元素または該非金属元素のイオンが添加された 領域)に捕獲され、ゲッタリングサイト以外の結晶質半 導体薄膜から金属を除去または低減することである。

【0024】本発明の主たる構成は、前記結晶質半導体 薄膜10206の表面10203と平行な面に対する前 記島状の絶縁膜形状10301、10201が、頂点の 数n(n>20)個を有する多角形であって、かつ該頂 点のうち内角が180度以上である頂点の数m(m> 8) 個を有する多角形であることである。

【0025】以上により、前記非金属元素または該非金 属元素のイオンが添加された領域10106、1010 9と添加されない領域との境界面10108の面積を増 大させ、ゲッタリングの効率および効果のうち、少なく とも一つを改善する。

【0026】一般的に、ゲッタリングの進行は、金属の 素子活性領域中からの開放ステップ、拡散ステップ、ゲ ッタリングサイトにおける捕獲ステップよりなる。前記 境界面の面積を大きくし、前記金属の拡散現象を促進す るなどにより、ゲッタリングの効率もしくは効果を上げ ることをねらいとしている。

[0027]

【発明の実施の形態】石英基板10101に、LPCV D装置により、50nm程度の非晶質の珪素膜(a-S i 膜) 10102を成膜する。

【0028】酢酸Ni塩溶液10103をスピンコート 法により滴下する。酢酸Ni塩溶液のNi濃度は重量換 算で10ppmほどである。酢酸Ni塩溶液を滴下する 前に、酸素雰囲気中でUV光を照射することなどによ り、極薄の酸化珪素膜(SiO,膜)を形成し、a-S i膜表面にて酢酸Ni塩溶液を濡れやすくする必要があ る。

【0029】Niなどの金属の添加方法は、液相から添 加する以外に、イオンインプラント装置による方法や、 a-Si膜上に金属の蒸着膜を成膜する方法などがあ る。

【0030】石英基板(a-Si膜を有する)を、窒素 雰囲気中で600℃で数時間以上の加熱処理を行う。N i元素を添加することにより、Niを添加しない場合と 比較して、遙かに短い時間でa-Si膜全体が固相結晶 素のイオンが添加された領域10106、10109を 40 化することは確認されている。固相結晶化したことによ り多結晶質の珪素膜(poly-Si)となる。Niは a-Si膜中に初期核が発生する際にも、a-Si膜の 全体が結晶化する際にも関係することは、発明者らによ り確認されている。

> 【0031】触媒金属をa-Si膜に添加すると結晶化 が促進される現象は、MetalInduced La teral crystallization (MIL C) として多数報告されており、ニッケル(Ni)、コバ ルト(Co)、パラジウム(Pd)、白金(Pt)、銅(Cu) 50 などの遷移金属元素がある。発明者らの実験によりNi

元素は、触媒金属として非常に優れていることが判明し ている。

【0032】一般的によく知られているように、Niな どの金属は、結晶質の珪素中に存在すると、深い準位を 形成し素子の電気特性や信頼性に悪影響を及ばす。よっ て、素子が形成され素子として使用される領域(素子活 性領域)から、Niなどの金属を除去する必要がある。 触媒金属により結晶化したpoly-Si膜も、触媒金 属による素子特性への悪影響が懸念される。

【0033】よって、素子活性領域から、電気特性に影 10 響を及ばさない程度までに、Ni元素などの金属を除去 する必要がある。結晶質の珪素中の素子活性領域中か ら、Ni元素などの金属を除去することを、一般的にゲ ッタリングと言う。

【0034】前記のpoly-Si膜上に、150nm 程度の酸化珪素膜を成膜する。酸化珪素膜は、LTO

(low temparature oxide)膜で ある。成膜する絶縁膜は、酸化珪素膜の他に窒化珪素膜 などが考えられ、その成膜方法もPCVD装置、LPC VD装置、スパッタ装置などがある。

【0035】成膜したpoly-Si膜が島形状101 04になるように、フォトリソグラフィとエッチングに より微細加工する。poly-Si膜の表面10203 と平行な面10202で前記島状物を切り取ったときに できる断面形状10208を考える。本発明の主たる構 成は、その断面形状が、頂点の数n(n>20)個を有 する多角形であって、かつ、その頂点のうち内角が18 0度以上である頂点の数m(m>8) 個を有する多角形 とすることである。本実施形態1では、コッホ曲線を参 考に、島状物の断面形状を図2 (B) のようにした。コ 30 ニング社の#7059ガラスや#1737ガラスなどに ッホ曲線とは、フラクタル幾何で有名な図形である。

【0036】酸化珪素膜の島状物をマスクとして、プラ ズマドーピング装置により、燐(P)をpoly-Si 膜に添加する(図1(B))。イオン注入量1E15a toms/cm'、加速電圧10kVの条件である。酸化 珪素膜の膜厚を考慮して、酸化珪素膜の島状物1010 4をPイオンが突き抜けないような加速電圧、イオン注 入量とすべきである。燐(P)以外にも、B、Si、H e、As、Ne、Ar、Kr、Xeなどがゲッタリング に有効と考えられる。これらの元素は、イオン注入とそ 40 れに続く加熱処理によりpoly-Si膜にダメージを導 入できること、ゲッタリングする金属よりも拡散しにく いか、不活性で素子特性に影響を及ぼさない元素であ る。

【0037】プラズマドーピング装置は、LSI製造に 使用されるイオンインプラント装置と違い、イオンを打 ち込む際に質量分離する機構がない。そのために、イオ ンインプラント装置と比較して、打ち込み量や打ち込み 深さをコントロールする精度が劣るという面もある。た だし、大面積を効率よくイオン注入することができるた 50 2aは、SiH.を10SCCM、NH,を100SCCM、N.

めに、TFT製造では多用されている。

【0038】燐(P)のイオン注入の後に、窒素雰囲気 中で600℃、5hr程度の加熱処理を行い(図1の (C))、poly-Si膜中の燐(P)が添加された 領域10106、10109に、結晶化の際に触媒金属 としたNiをゲッタリングする。燐(P)を添加するこ とにより、顕著なゲッタリングの効果あることは発明者 らによりすでに確認されている。ゲッタリングの際の加 熱処理は、400℃以上から1000℃以下とする。

【0039】酸化珪素膜の島状物の形を先のような複雑 な多角形10208とした理由は、poly-Si膜中 の燐(P)の添加領域と非添加領域とが接する面101 08の面積を増大するためである。添加領域と非添加領 域が接する面積を大きくし、前記金属の拡散現象を促進 するなどにより、ゲッタリングの効率もしくはその効果 を上げることをねらいとしている。

【0040】ゲッタリングにより、素子活性領域の被ゲ ッタリング金属の濃度を素子特性に影響を及ぼさない程 度にまで軽減する。

【0041】a-Si膜の固相結晶化とゲッタリングが 20 終了した後は、通常のTFTアレイ基板の作製を行い、 液晶デバイスや有機ELデバイスまで作製する。

[0042]

【実施例】[実施例1]本実施例では表示装置を作製する ための工程を示し、画素部の画素TFTおよび保持容量 と、表示領域の周辺に設けられる駆動回路のTFTを同 時に作製する方法について図4~図6を用い工程に従っ て詳細に説明する。

【0043】図4(A)において、基板101にはコー 代表されるパリウムホウケイ酸ガラスやアルミノホウケ イ酸ガラスなどのガラス基板の他に、ポリエチレンテレ フタレート (PET)、ポリエチレンナフタレート (P EN)、ポリエーテルサルフォン(PES)など光学的 異方性を有しないプラスチック基板を用いることができ る。ガラス基板を用いる場合には、ガラス歪み点よりも 10~20℃程度低い温度であらかじめ熱処理しておい ても良い。そして、基板101のTFTを形成する表面 に基板101からの不純物拡散を防ぐために、酸化シリ コン膜、窒化シリコン膜または酸化窒化シリコン膜など の絶縁膜から成る下地膜102を形成する。例えば、プ ラズマCVD法でSiH,、NH,、N,Oから作製され る酸化窒化シリコン膜102aを10~200nm (好ま しくは50~100nm)、同様にSiH₄、N₂Oから作 製される酸化窒化水素化シリコン膜102bを50~2 00nm (好ましくは100~150nm) の厚さに積層 形成する。

【0044】酸化窒化シリコン膜は平行平板型のプラズ マCVD法を用いて形成する。酸化窒化シリコン膜10

〇を20SCCMとして反応室に導入し、基板温度325 ℃、反応圧力40Pa、放電電力密度0.41W/cm³、放 電周波数60MHzとする。一方、酸化窒化水素化シリコ ン膜102bは、SiH、を5SCCM、N,Oを120SCC M、H₁を125SCCMとして反応室に導入し、基板温度4 00℃、反応圧力20Pa、放電電力密度0.41W/c m'、放電周波数60MHzとする。これらの膜は、基板温 度を変化させ、反応ガスの切り替えのみで連続して形成 することもできる。

【0045】上記条件にて作製される酸化窒化シリコン 10 膜102aは、密度が9.28×10¹¹/cm¹であり、フ ッ化水素アンモニウム(NH, HF,)を7.13%とフ ッ化アンモニウム (NH,F) を15.4%含む混合溶 液(ステラケミファ社製、商品名LAL500)の20 ℃におけるエッチング速度が約63nm/minと遅く、緻密 で硬い膜である。このような膜を下地膜に用いると、こ の上に形成する半導体膜にガラス基板からのアルカリ金 属元素が拡散するのを防ぐのに有効である。

【0046】次に、25~80nm(好ましくは30~ 60nm)の厚さで非晶質構造を有する半導体膜103 aを、プラズマCVD法やスパッタ法などの公知の方法 で形成する。例えば、プラズマCVD法で非晶質シリコ ン膜を55nmの厚さに形成する。非晶質構造を有する 半導体膜には、非晶質半導体膜や微結晶半導体膜があ り、非晶質シリコンゲルマニウム膜などの非晶質構造を 有する化合物半導体膜を適用しても良い。また、下地膜 102と非晶質半導体膜103aとは両者を連続形成す ることも可能である。例えば、前述のように酸化窒化シ リコン膜102aと酸化窒化水素化シリコン膜102b をプラズマCVD法で連続して成膜後、反応ガスをSi 30 H₁、N₁O、H₂からSiH₄とH₂或いはSiH₄のみに 切り替えれば、一旦大気雰囲気に晒すことなく連続形成 できる。その結果、酸化窒化水素化シリコン膜102b の表面の汚染を防ぐことが可能となり、作製するTFT の特性バラツキやしきい値電圧の変動を低減させること ができる。

【0047】本明細書の実施形態1と同様に、金属触媒 を用いた結晶化とその金属のゲッタリングを行う。ゲッ タリングの際に用いた酸化珪素膜の島状物は、ウエット エッチングにより取り除く。

【0048】そして、図4(C)に示すように結晶質半 導体膜103b上にフォトマスク1 (PM1)を用い、 フォトリソグラフィーの技術を用いてレジストパターン を形成し、ドライエッチングによって結晶質半導体膜を 島状に分割し、島状半導体膜104~108を形成す る。ドライエッチングにはCF、とO、の混合ガスを用い る。その後、プラズマCVD法またはスパッタ法により 50~100nmの厚さの酸化シリコン膜によるマスク 層194を形成する。

しきい値電圧(Vth)を制御する目的でp型を付与する 不純物元素を1×10''~5×10''atoms/cm'程度の 濃度で島状半導体膜の全面に添加しても良い。半導体に 対してp型を付与する不純物元素には、ホウ素(B)、 アルミニウム(Al)、ガリウム(Ga)など周期律表 第13族の元素が知られている。その方法として、イオ ン注入法やイオンドープ法を用いることができるが、大 面積基板を処理するにはイオンドープ法が適している。 イオンドープ法ではジボラン(B, H,)をソースガスと して用いホウ素(B)を添加する。このような不純物元 素の注入は必ずしも必要でなく省略しても差し支えない が、特にnチャネル型TFTのしきい値電圧を所定の範 囲内に収めるために好適に用いる手法である。

10

【0050】駆動回路のnチャネル型TFTのLDD領 域を形成するために、n型を付与する不純物元素を島状 半導体膜105、107に選択的に添加する。あらかじ めレジストマスク195a~195eを形成する。n型 を付与する不純物元素としては、リン(P)や砒素(A s)を用いれば良く、ここではリン(P)を添加すべ く、フォスフィン(PH」)を用いたイオンドープ法を 適用する。形成された不純物領域は低濃度n型不純物領 域196、197として、このリン (P) 濃度は2×1 0''~5×10''atoms/cm'の範囲とすれば良い。本 明細書中では、ここで形成された不純物領域196、1 97に含まれるn型を付与する不純物元素の濃度を(n -) と表す。また、不純物領域198は、画素マトリク ス回路の保持容量を形成するための半導体膜であり、こ の領域にも同じ濃度でリン(P)を添加する(図4 (D)).

【0051】その後、添加した不純物元素を活性化させ る処理を行う。活性化の処理は実施形態7で説明したレ ーザー光を用いた熱処理により行う。熱処理条件の一例 は、レーザーパルス発振周波数1kHzとし、レーザーエ ネルギー密度を100~300mJ/cm (代表的には15 0~25 OmJ/cm²)とする。そして線状ビームを基板全 面に渡って照射し、この時の線状ピームの重ね合わせ率 (オーバーラップ率)を80~99%(好ましくは、9 5~99%) として行う。

【0052】ゲート絶縁膜109はプラズマCVD法ま 40 たはスパッタ法を用い、膜厚を40~150nmとじて シリコンを含む絶縁膜で形成する。例えば、120nm の厚さで酸化窒化シリコン膜から形成すると良い。ま た、SiH,とN,OにO,を添加させて作製された酸化 窒化シリコン膜は、膜中の固定電荷密度が低減されてい るのでこの用途に対して好ましい材料となる。勿論、ゲ ート絶縁膜はこのような酸化窒化シリコン膜に限定され るものでなく、他のシリコンを含む絶縁膜を単層または 積層構造として用いても良い(図4(E))。

【0053】そして、図4(E)に示すように、ゲート 【0049】この状態で島状半導体膜に対し、TFTの 50 絶縁膜109上にゲート電極を形成するための耐熱性導

電層を形成する。耐熱性導電層は単層で形成しても良い が、必要に応じて二層あるいは三層といった複数の層か ら成る積層構造としても良い。このような耐熱性導電性 材料を用い、例えば、導電性の窒化物金属膜から成る導 電層(A) 110と金属膜から成る導電層(B) 111 とを積層した構造とすると良い。導電層(B)111は タンタル(Ta)、チタン(Ti)、モリプデン(M o)、タングステン(W)から選ばれた元素、または前 記元素を主成分とする合金か、前記元素を組み合わせた 合金膜(代表的にはMo-W合金膜、Mo-Ta合金 膜) で形成すれば良く、導電層 (A) 110は窒化タン タル(TaN)、窒化タングステン(WN)、窒化チタ ン (TiN) 膜、窒化モリブデン (MoN) などで形成 する。また、導電層(A) 1 1 0 はタングステンシリサ イド、チタンシリサイド、モリブデンシリサイドを適用 しても良い。導電層(B) 111は低抵抗化を図るため に含有する不純物濃度を低減させることが好ましく、特 に酸素濃度に関しては30ppm以下とすると良かっ た。例えば、タングステン(W)は酸素濃度を30pp m以下とすることで20μΩcm以下の比抵抗値を実現 20 することができる。

【0054】導電層(A)110は10~50nm(好 ましくは20~30nm) とし、導電層(B) 111は 200~400nm (好ましくは250~350nm) とすれば良い。Wをゲート電極とする場合には、Wをタ ーゲットとしたスパッタ法で、アルゴン(Ar)ガスと 窒素 (N2) ガスを導入して導電層 (A) 111を窒化 タングステン (WN) で50mmの厚さに形成し、導電層 (B) 1 1 0 をWで 2 5 0 nmの厚さに形成する。その他 の方法として、W膜は6フッ化タングステン (WF6) を用いて熱CVD法で形成することもできる。いずれに してもゲート電極として使用するためには低抵抗化を図 る必要があり、W膜の抵抗率は20μΩcm以下にする ことが望ましい。W膜は結晶粒を大きくすることで低抵 抗率化を図ることができるが、W中に酸素などの不純物 元素が多い場合には結晶化が阻害され高抵抗化する。こ のことより、スパッタ法による場合、純度99、999 9%のWターゲットを用い、さらに成膜時に気相中から の不純物の混入がないように十分配慮してW膜を形成す ることにより、抵抗率 9~20 $\mu\Omega$ c mを実現すること 40 ができる。

【0055】一方、導電層(A)110にTaN膜を、 導電層(B)111にTa膜を用いる場合には、同様に スパッタ法で形成することが可能である。TaN膜はTaをターゲットとしてスパッタガスにArと窒素との混合ガスを用いて形成し、Ta度はスパッタガスにArを用いる。また、これらのスパッタガス中に適量のXeや Krを加えておくと、形成する膜の内部応力を緩和して膜の剥離を防止することができる。 α 相のTa膜の抵抗率は $20\mu\Omega$ cm程度でありゲート電極に使用することが 50 できるが、 β 相のT a 膜の抵抗率は $180 \mu \Omega$ cm程度でありゲート電極とするには不向きである。T a N 膜は α 相に近い結晶構造を持つので、この上にT a 膜を形成すれば α 相のT a 膜が容易に得られた。尚、図示しないが、導電層(A) 110 の下に $2\sim20$ n m程度の厚さでリン(P)をドープしたシリコン膜を形成しておくことは有効である。これにより、その上に形成される導電膜の密着性向上と酸化防止を図ると同時に、導電層

(A) 110または導電層 (B) 111が微量に含有するアルカリ金属元素がゲート絶縁膜109に拡散するのを防ぐことができる。いずれにしても、導電層 (B) 111は抵抗率を $10\sim50\mu\Omega$ cmの範囲ですることが好ましい。

【0056】次に、フォトマスク2 (PM2) を用い、フォトリソグラフィーの技術を使用してレジストマスク112~117を形成し、導電層 (A) 110と導電層 (B) 111とを一括でエッチングしてゲート電極118~122と容量配線123を形成する。ゲート電極118~122と容量配線123は、導電層 (A) から成る118a~122aと、導電層 (B) から成る118b~122bとが一体として形成される(図5(A))。

【0057】導電層(A) および導電層(B) をエッチ ングする方法は実施者が適宜選択すれば良いが、前述の ようにWを主成分とする材料で形成されている場合に は、高速でかつ精度良くエッチングを実施するために高 密度プラズマを用いたドライエッチング法を適用するこ とが望ましい。高密度プラズマを得る手法の一つとし て、誘導結合プラズマ(Inductively Coupled Plasma: ICP) エッチング装置を用いると良い。ICPエッチ ング装置を用いたWのエッチング法は、エッチングガス にCF₁とC₁,の2種のガスを反応室に導入し、圧力 0.5~1.5Pa (好ましくは1Pa) とし、誘導結 合部に200~1000Wの高周波(13.56MH z) 電力を印加する。この時、基板が置かれたステージ には20Wの高周波電力が印加され、自己バイアスで負 電位に帯電することにより、正イオンが加速されて異方 性のエッチングを行うことができる。ICPエッチング 装置を使用することにより、Wなどの硬い金属膜も2~ 5 mm/秒のエッチング速度を得ることができる。また、 残渣を残すことなくエッチングするためには、10~2 0%程度の割合でエッチング時間を増しオーバーエッチ ングをすると良い。しかし、この時に下地とのエッチン グの選択比に注意する必要がある。例えば、W膜に対す る酸化窒化シリコン膜(ゲート絶縁膜109)の選択比 は2.5~3であるので、このようなオーバーエッチン グ処理により、酸化窒化シリコン膜が露出した面は20 ~50m程度エッチングされて実質的に薄くなる。

【0058】そして、画素TFTのnチャネル型TFTにLDD領域を形成するために、n型を付与する不純物

١.

14

元素添加の工程(n-F-プ工程)を行う。ゲート電極 $118\sim122$ をマスクとして自己整合的にn型を付与する不純物元素をイオンドープ法で添加した。n型を付与する不純物元素として添加するリン (P) の濃度は $1\times10^{16}\sim5\times10^{19}$ atoms/ cm^3 の濃度範囲で添加する。このようにして、図 5 (B) に示すように島状半導体膜に低濃度n型不純物領域 $124\sim129$ を形成する。

【0059】次に、n チャネル型TFTに対して、ソース領域またはドレイン領域として機能する高濃度 n 型不 10 純物領域の形成を行う (n+ドープ工程)。まず、フォトマスク3 (PM3) を用い、レジストのマスク130~134を形成し、n 型を付与する不純物元素を添加して高濃度 n 型不純物領域 135~140 を形成する。n 型を付与する不純物元素にはリン (P) を用い、その濃度が $1\times10^{10}~1\times10^{11}$ atoms/cm³ の濃度範囲となるようにフォスフィン (PH_1) を用いたイオンドープ法で行う (図5(C))。

【0060】そして、pチャネル型TFTを形成する島 状半導体膜104、106にソース領域およびドレイン 20 領域とする高濃度p型不純物領域144、145を形成 する。ここでは、ゲート電極118、120をマスクと してp型を付与する不純物元素を添加し、自己整合的に 高濃度p型不純物領域を形成する。このときnチャネル 型TFTを形成する島状半導体膜105、107、10 8は、フォトマスク4(PM4)を用いてレジストマス ク141~143を形成し全面を被覆しておく。高濃度 p型不純物領域144、145はジボラン(B, H₆)を 用いたイオンドープ法で形成する。この領域のボロン

(B) 濃度は3×10¹⁰~3×10¹¹ atoms/cm³となる 30 ようにする(図5(D))。

【0061】この高濃度p型不純物領域144、145には、前工程においてリン(P)が添加されていて、高濃度p型不純物領域144a、145aには1×10¹¹~1×10¹¹atoms/cm¹の濃度で、高濃度p型不純物領域144b、145bには1×10¹¹~5×10¹¹atoms/cm¹の濃度で含有しているが、この工程で添加するポロン(B)の濃度を1.5から3倍とすることにより、pチャネル型TFTのソース領域およびドレイン領域として機能する上で何ら問題は生じない。

【0062】その後、図6(A)に示すように、ゲート電極およびゲート絶縁膜上から保護絶縁膜146を形成する。保護絶縁膜は酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、またはこれらを組み合わせた積層膜で形成すれば良い。いずれにしても保護絶縁膜146 は無機絶縁物材料から形成する。保護絶縁膜146の膜厚は100~200nmとする。ここで、酸化シリコン膜を用いる場合には、プラズマCVD法で、TEOS

(Tetraethyl OrthoSilicate) とO₂とを混合し、反 テン)等を使用することができる。例えば、基板に塗布 応圧力4 OPa、基板温度300~400℃とし、高周波 50 後、熱重合するタイプのポリイミドを用いる場合には、

(13.56MHz) 電力密度 0.5~0.8 W/cm²で放電させて形成する。酸化窒化シリコン膜を用いる場合には、プラズマCVD法でSiH,、N,O、NH,から作製される酸化窒化シリコン膜、またはSiH,、N,Oから作製される酸化窒化シリコン膜で形成すれば良い。この場合の作製条件は反応圧力 20~20 OPa、基板温度300~400℃とし、高周波(60MHz)電力密度0.1~1.0 W/cm²で形成することができる。また、SiH,、N,O、H,から作製される酸化窒化水素化シリコン膜を適用しても良い。窒化シリコン膜も同様にプラズマCVD法でSiH,、NH,から作製することが可能である。

【0063】その後、それぞれの濃度で添加された n型または p型を付与する不純物元素を活性化する工程を行う。この工程はファーネスアニール炉を用いる熱アニール法で行うこともできるが、レーザー光を用いた熱処理方法で活性化させても良い。この場合の熱処理条件は前述のものと同様なものとする。一方、熱アニール法で行う場合には酸素濃度が1ppm以下、好ましくは0.1ppm以下の窒素雰囲気中で400~700℃、代表的には500~600℃で行うものであり、本実施例では550℃で4時間の熱処理を行った。また、基板101に耐熱温度が低いプラスチック基板を用いる場合には、本発明のレーザー光を用いた熱処理方法を適用することが好ましい(図6(B))。

【0064】熱処理を行った後、さらに、3~100%の水素を含む雰囲気中で、300~450℃で1~12時間の熱処理を行い、島状半導体膜を水素化する工程を行った。この工程は熱的に励起された水素により島状半導体膜にある1016~1018/cm3のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。

【0065】本発明のレーザー光を用いた熱処理方法とプラズマ水素化処理を組み合わせて行う場合には図3で示す構成の装置で行うことができる。具体的には、処理室818でレーザー光を用いた熱処理を行い、その後搬送手段820により基板を処理室816に移動してプラズマ水素化の処理を行う。処理室816には水素ガスま40たはアンモニアガス等を導入するようにしておけばプラズマ水素化を容易に行うことができる。このように、基板を装置内に保持し、大気に晒すことなく連続処理することで基板表面の汚染を防止でき、また、スループットを向上させることができる。

【0066】そして、有機絶縁物材料からなる層間絶縁膜147を1.0~2.0μmの平均厚を有して形成する。有機樹脂材料としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、BCB(ベンゾシクロブテン)等を使用することができる。例えば、基板に塗布後、熱重合するタイプのポリイミドを用いる場合には、

クリーンオープンで300℃で焼成して形成する。ま た、アクリルを用いる場合には、2液性のものを用い、 主材と硬化剤を混合した後、スピナーを用いて基板全面 に塗布した後、ホットプレートで80℃で60秒の予備 加熱を行い、さらにクリーンオープンで250℃で60 分焼成して形成することができる。

【0067】このように、層間絶縁膜を有機絶縁物材料 で形成することにより、表面を良好に平坦化させること ができる。また、有機樹脂材料は一般に誘電率が低いの で、寄生容量を低減するできる。しかし、吸湿性があり 10 保護膜としては適さないので、本実施例のように、保護 絶縁膜146として形成した酸化シリコン膜、酸化窒化 シリコン膜、窒化シリコン膜などと組み合わせて用いる 必要がある。

【0068】その後、フォトマスク5 (PM5) を用 い、所定のパターンのレジストマスクを形成し、それぞ れの島状半導体膜に形成されたソース領域またはドレイ ン領域に達するコンタクトホールを形成する。コンタク トホールの形成はドライエッチング法により行う。この 場合、エッチングガスにCF,、O,、Heの混合ガスを 20 用い有機樹脂材料から成る層間絶縁膜をまずエッチング し、その後、続いてエッチングガスをCF,、O,として 保護絶縁膜146をエッチングする。さらに、島状半導 体膜との選択比を高めるために、エッチングガスをCH F,に切り替えてゲート絶縁膜をエッチングすることに より、良好にコンタクトホールを形成することができ る。

【0069】そして、導電性の金属膜をスパッタ法や真 空蒸着法で形成し、フォトマスク6 (PM6) によりレ 一ス配線148~152とドレイン配線153~157 を形成する。ここで、ドレイン配線157は画素電極と して機能するものである。図示していないが、本実施例 ではこの電極を、Ti膜を50~150nmの厚さで形成 し、島状半導体膜のソースまたはドレイン領域を形成す る半導体膜とコンタクトを形成し、そのTi膜上に重ね てアルミニウム(Al)を300~400mmの厚さで形 成して配線とする。

【0070】この状態で水素化処理を行うとTFTの特 性向上に対して好ましい結果が得られる。例えば、3~ 40 100%の水素を含む雰囲気中で、300~450℃で 1~12時間の熱処理を行うと良く、あるいはプラズマ 水素化法を用いても同様の効果が得られる。また、この ような熱処理により保護絶縁膜146や、下地膜102 にに存在する水素を島状半導体膜104~108に拡散 させ水素化をすることもできる。いずれにしても、島状 半導体膜 1 0 4~ 1 0 8 中の欠陥密度を 1 016/cm 以下 とすることが望ましく、そのために水素を0.01~ O. latomic%程度付与すれば良い(図6(C))。

【0071】こうして7枚のフォトマスクにより、同一 50 図である。図中に示すA-A'断面が図6 (C) に示す

の基板上に、駆動回路のTFTと画素部の画素TFTと を有した基板を完成させることができる。駆動回路には 第1のpチャネル型TFT200、第1のnチャネル型 TFT201、第2のpチャネル型TFT202、第2 のnチャネル型TFT203、画素部には画素TFT2 04、保持容量205が形成されている。本明細書では 便宜上このような基板をアクティブマトリクス基板と呼 ぶ。

【0072】駆動回路の第1のpチャネル型TFT20 0には、島状半導体膜104にチャネル形成領域20 6、高濃度p型不純物領域から成るソース領域207 a、207b、ドレイン領域208a, 208bを有し たシングルドレインの構造を有している。第1のnチャ ネル型TFT201には、島状半導体膜105にチャネ ル形成領域209、ゲート電極119と重なるLDD領 域210、ソース領域212、ドレイン領域211を有 している。このLDD領域において、ゲート電極119 と重なるLDD領域をLovとするとそのチャネル長方向 の長さは $0.5\sim3.0\mu m$ 、好ましくは $1.0\sim2.$ Oμmとした。nチャネル型TFTにおけるLDD領域 の長さをこのようにすることにより、ドレイン領域近傍 に発生する高電界を緩和して、ホットキャリアの発生を 防ぎ、TFTの劣化を防止することができる。駆動回路 の第2のpチャネル型TFT202は同様に、島状半導 体膜106にチャネル形成領域213、高濃度p型不純 物領域から成るソース領域214a、214b、ドレイ ン領域215a,215bを有したシングルドレインの 構造を有している。第2のnチャネル型TFT203に は、島状半導体膜107にチャネル形成領域216、ゲ ジストマスクパターンを形成し、エッチングによってソ 30 ート電極121と一部が重なるLDD領域217、21 8、ソース領域220、ドレイン領域219が形成され ている。このTFTのゲート電極と重なるLovの長さも $0.5 \sim 3.0 \mu m$ 、好ましくは $1.0 \sim 2.0 \mu m$ と した。また、ゲート電極と重ならないLDD領域をLof 「として、このチャネル長方向の長さは0.5~4.0 μ m、好ましくは1.0~2.0 μ mとした。画素TF T204には、島状半導体膜108にチャネル形成領域 221、222、LDD領域223~225、ソースま たはドレイン領域226~228を有している。LDD 領域(Loff)のチャネル長方向の長さは0.5~4. $0 \mu m$ 、好ましくは1. $5 \sim 2$. $5 \mu m$ である。さら に、容量配線123と、ゲート絶縁膜と同じ材料から成 る絶縁膜と、画素TFT204のドレイン領域228に 接続する半導体膜229とから保持容量205が形成さ れている。図6(C)では画素TFT204をダブルゲ ート構造としたが、シングルゲート構造でも良いし、複 数のゲート電極を設けたマルチゲート構造としても差し 支えない。

【0073】図16は画素部のほぼ一画素分を示す上面

画素部の断面図に対応している。画素TFT204のゲ ート電極122は、図示されていないゲート絶縁膜を介 してその下の島状半導体膜108と交差している。ま た、ゲート電極122はA1やCuなどの材料を用いて 形成される低抵抗導電性材料から成るゲート配線900 と島状半導体膜108の外側でコンタクトホールを介さ ず接触している。図示はしていないが、島状半導体膜 1 08には、ソース領域、ドレイン領域、LDD領域が形 成されている。また、256はソース配線152とソー ス領域226とのコンタクト部、257はドレイン配線 157とドレイン領域228とのコンタクト部である。 保持容量205は、画素TFT204のドレイン領域2 28から延在する半導体膜229とゲート絶縁膜を介し て容量配線123が重なる領域で形成されている。この 構成におて半導体膜229には価電子制御を目的とした 不純物元素は添加されていない。

【0074】以上の様な構成は、画素TFTおよび駆動回路が要求する仕様に応じて各回路を構成するTFTの構造を最適化し、半導体装置の動作性能と信頼性を向上させることを可能としている。さらにゲート電極を、耐 20熱性を有する導電性材料で形成することによりLDD領域やソース領域およびドレイン領域の活性化を容易としている。このようなTFTを設けたアクティブマトリクス基板を作製するために、本発明のレーザー光を用いた熱処理方法及びレーザー装置を適用すると特性の良いTFTを作製することが可能で、また、生産性の向上を達成することができる。このようなアクティブマトリクス基板を用いて液晶表示装置やEL表示装置を作製することができる。

【0075】[実施例2]実施例1ではTFTのゲート電 30極の材料にWやTaなどの耐熱性導電性材料を用いる例を示した。このような材料を用いる理由は、ゲート電極形成後に価電子制御を目的として半導体膜に添加した不純物元素を主として、400~700℃の熱アニールによって活性化させること、エレクトロマイグレーションの防止、耐腐蝕性の向上など複数の要因に起因している。しかしながら、このような耐熱性導電性材料は面積抵抗で10Ω程度あり、画面サイズが4インチクラスかそれ以上の液晶表示装置やEL表示装置には適していない。ゲート電極に接続するゲート配線を同じ材料で形成 40すると、基板面上における引回し長さが必然的に大きくなり、配線抵抗の影響による遅延時間を無視することができなくなるためである。

【0076】例えば、画素密度がVGAの場合、480本のゲート配線と640本のソース配線が形成され、XGAの場合には768本のゲート配線と1024本のソース配線が形成される。表示領域の画面サイズは、13インチクラスの場合対角線の長さは340mmとなり、18インチクラスの場合には460mmとなる。本実施例ではこのような液晶表示装置を実現する手段として、

ゲート配線をAlや銅(Cu)などの低抵抗導電性材料で形成する方法について図7を用いて説明する。

【0077】まず、実施例1と同様にして図4(A)~図5(D)に示す工程を行う。そして、価電子制御を目的としてそれぞれの島状半導体膜に添加された不純物元素を活性化する処理を行う。この活性化の処理はレーザー光を用いた熱処理方法を用いることが最も好ましい。さらに、 $3\sim100$ %の水素を含む雰囲気中で、 $300\sim450$ ℃で $1\sim12$ 時間の熱処理を行い、島状半導体膜を水素化する処理を行う。この工程は熱的に励起された水素により半導体膜のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い(図7(A))。

【0078】活性化および水素化の処理が終了したら、ゲート配線を低抵抗導電性材料で形成する。この低抵抗導電性層はAlやCuを主成分とする導電層(D)で形成する。例えば、Tiを0.1~2重量%含むAl膜を導電層(D)として全面に形成する(図示せず)。導電層(D)145は200~400nm(好ましくは250~350nm)とすれば良い。そして、フォトマスクを用いて所定のレジストパターンを形成し、エッチング処理して、ゲート配線163、164と容量配線165を形成する。エッチング処理はリン酸系のエッチング溶液によるウエットエッチングで導電層(D)を除去することにより、下地との選択加工性を保ってゲート配線を形成することができる。そして保護絶縁膜146を形成する(図7(B))。

【0079】その後、実施例1と同様にして有機絶縁物 材料から成る層間絶縁膜147、ソース配線148~1 51、167、ドレイン配線153~156、168を 形成してアクティブマトリクス基板を完成させることが できる。図8(A)、(B)はこの状態の上面図を示 し、図8(A)のB-B'断面および図8(B)のC-C'断面は図7(C)のA-A'およびC-C'に対応し ている。図8(A)、(B)ではゲート絶縁膜、保護絶 縁膜、層間絶縁膜を省略して示しているが、島状半導体 膜104、105、108の図示されていないソースお よびドレイン領域にソース配線148、149、167 とドレイン配線153、154、168がコンタクトホ ールを介して接続している。また、図8(A)のD-D'断面および図8(B)のE-E'断面を図9(A)と (B) にそれぞれ示す。ゲート配線163はゲート電極 118、119と、またゲート配線164はゲート電極 122と島状半導体膜104、105、108の外側で 重なるように形成され、導電層(C)と導電層(D)が 接触して電気的に導通している。このようにゲート配線 低抵抗導電性材料で形成することにより、配線抵抗を十 分低減できる。従って、画素部(画面サイズ)が4イン 50 チクラス以上の液晶表示装置やEL表示装置に適用する

ことができる。

【0080】[実施例3]実施例1で作製したアクティブ マトリクス基板はそのまま反射型の液晶表示装置に適用 することができる。一方、透過型の液晶表示装置とする 場合には画素部の各画素に設ける画素電極を透明電極で 形成すれば良い。本実施例では透過型の液晶表示装置に 対応するアクティブマトリクス基板の作製方法について 図10を用いて説明する。

【0081】アクティブマトリクス基板は実施例1と同 様に作製する。図11(A)では、ソース配線とドレイ 10 ン配線は導電性の金属膜をスパッタ法や真空蒸着法で形 成する。これは、Ti膜を50~150nmの厚さで形成 し、島状半導体膜のソースまたはドレイン領域を形成す る半導体膜とコンタクトを形成し、そのTi膜上に重ね てアルミニウム(Al)を300~400mmの厚さで形 成し、さらにTi膜または窒化チタン(TiN)膜を1 00~200mの厚さで形成して3層構造とした。その 後、透明導電膜を全面に形成し、フォトマスクを用いた パターニング処理およびエッチング処理により画素電極 171を形成する。画素電極171は、層間絶縁膜14 20 7上に形成され、画素TFT204のドレイン配線16 9と重なる部分を設け、接続構造を形成している。

【0082】図11(B)では最初に層間絶縁膜147 上に透明導電膜を形成し、パターニング処理およびエッ チング処理をして画素電極171を形成した後、ドレイ ン配線169を画素電極171と重なる部分を設けて形 成した例である。ドレイン配線169はTi膜を50~ 150nmの厚さで形成し、島状半導体膜のソースまたは ドレイン領域を形成する半導体膜とコンタクトを形成 し、そのTi膜上に重ねてアルミニウム(A1)を30 30 ○~400mの厚さで形成して設ける。この構成にする と、画素電極171はドレイン配線169を形成するT i膜のみと接触することになる。その結果、透明導電膜 材料とAlとが反応するのを防止できる。

【0083】透明導電膜の材料は、酸化インジウム(I n_1O_1) や酸化インジウム酸化スズ合金($I_{n_1}O_1$ -S nO₁; ITO) などをスパッタ法や真空蒸着法などを 用いて形成して用いることができる。このような材料の エッチング処理は塩酸系の溶液により行う。しかし、特 にITOのエッチングは残渣が発生しやすいので、エッ 40 チング加工性を改善するために酸化インジウム酸化亜鉛 合金(In,O,-ZnO)を用いても良い。酸化インジ ウム酸化亜鉛合金は表面平滑性に優れ、ITOに対して 熱安定性にも優れているので、ドレイン配線169の端 面で接触するAlとの腐蝕反応を防止できる。同様に、 酸化亜鉛(ZnO)も適した材料であり、さらに可視光 の透過率や導電率を高めるためにガリウム(Ga)を添 加した酸化亜鉛(ZnO:Ga)などを用いることがで きる。

対応したアクティブマトリクス基板を完成させることが できる。本実施例では、実施例1と同様な工程として説 明したが、このような構成は実施例2で示すアクティブ マトリクス基板に適用することができる。

【0085】[実施例4]本実施例では実施例1で作製し たアクティブマトリクス基板から、アクティブマトリク ス型液晶表示装置を作製する工程を説明する。まず、図 12(A)に示すように、図6(C)の状態のアクティ ブマトリクス基板に柱状スペーサから成るスペーサを形 成する。スペーサは数μmの粒子を散布して設ける方法 でも良いが、ここでは基板全面に樹脂膜を形成した後こ れをパターニングして形成する方法を採用する。このよ うなスペーサの材料に限定はないが、例えば、JSR社 製のNN700を用い、スピナーで塗布した後、露光と 現像処理によって所定のパターンに形成する。さらにク リーンオープンなどで150~200℃で加熱して硬化 させる。このようにして作製されるスペーサは露光と現 像処理の条件によって形状を異ならせることができる が、好ましくは、柱状スペーサ173の形状は柱状で頂 部が平坦な形状となるようにすると、対向側の基板を合 わせたときに液晶表示パネルとしての機械的な強度を確 保することができる。形状は円錐状、角錐状など特別の 限定はないが、例えば円錐状としたときに具体的には、 その高さを1.2~5 μ mとし、平均半径を5~7 μ m、平均半径と底部の半径との比を1対1.5程度とす る。このとき断面から見たテーパー角は±15°以下と すると良い。

いが、好ましくは、図12(A)で示すように、画素部 においてはドレイン配線161(画素電極)のコンタク ト部235と重ねてその部分を覆うように柱状スペーサ 168を形成すると良い。コンタクト部235は平坦性 が損なわれこの部分では液晶がうまく配向しなくなるの で、このようにしてコンタクト部235にスペーサ用の 樹脂を充填する形で柱状スペーサ168を形成すること でディスクリネーションなどを防止することができる。 【0087】その後、配向膜174を形成する。通常液 晶表示素子の配向膜にはポリイミド樹脂を用る。配向膜 を形成した後、ラビング処理を施して液晶分子がある― 定のプレチルト角を持って配向するようにした。画素部 に設けた柱状スペーサ173の端部からラビング方向に 対してラビングされない領域が2μm以下となるように した。また、ラビング処理では静電気の発生がしばしば 問題となるが、駆動回路のTFT上にもスペーサ172

【0086】柱状スペーサの配置は任意に決定すれば良

【0088】対向側の対向基板175には、遮光膜17 6、透明導電膜177および配向膜178を形成する。 遮光膜176はTi、Cr、Alなどを150~300 【0084】このようにして、透過型の液晶表示装置に 50 nmの厚さで形成する。そして、画素部と駆動回路が形成

を形成しておくと、スペーサとしての本来の役割と、静

電気からTFTを保護する効果を得ることができる。

されたアクティブマトリクス基板と対向基板とをシール 剤179で貼り合わせる。シール剤179にはフィラー 180が混入されていて、このフィラー180とスペー サ172、173によって均一な間隔を持って2枚の基 板が貼り合わせられる。その後、両基板の間に液晶材料 606を注入し、封止剤(図示せず)によって完全に封 止する。液晶材料には公知の液晶材料を用いれば良い。 このようにして図12(B)に示すアクティブマトリク ス型の液晶表示装置が完成する。

【0089】図12ではスペーサ172を駆動回路のT 10 FT上の全面に形成する例を示したが、図13に示すよ うにこのスペーサを複数個に分割してスペーサ172a ~172eとして形成しても良い。駆動回路が形成され ている部分に設けるスペーサは、このように少なくとも 駆動回路のソース配線およびドレイン配線を覆うように 形成すれば良い。このような構成とすることによって、 駆動回路の各TFTは、保護絶縁膜146と層間絶縁膜 147とスペーサ172またはスペーサ172a~17 2 e によって完全に覆われ保護されることになる。

【0090】図14はスペーサとシール剤を形成したア 20 クティブマトリクス基板の上面図を示し、画素部および 駆動回路部とスペーサおよびシール剤の位置関係を示す 上面図である。画素部188の周辺に駆動回路として走 査信号側駆動回路185と画像信号側駆動回路186が 設けられている。さらに、その他CPUやメモリなどの 信号処理回路187も付加されていても良い。そして、 これらの駆動回路は接続配線183によって外部入出力 端子182と接続されている。画素部188では走査信 号側駆動回路185から延在するゲート配線群189と 画像信号駆動側回路186から延在するソース配線群1 90がマトリクス状に交差して画素を形成し、各画素に はそれぞれ画素TFT204と保持容量205が設けら れている。

【0091】画素部において設けられる柱状スペーサ1 73は、すべての画素に対して設けても良いが、マトリ クス状に配列した画素の数個から数十個おきに設けても 良い。即ち、画素部を構成する画素の全数に対するスペ 一サの数の割合は20~100%とすると良い。また、 駆動回路部に設けるスペーサ172、172、17 2''はその全面を覆うように設けても良いし、図13で 40 示したように各TFTのソースおよびドレイン配線の位 置にあわせて複数個に分割して設けても良い。シール剤 179は、基板101上の画素部188および走査信号 側駆動回路185、画像信号側駆動回路186、その他 の信号処理回路187の外側であって、外部入出力端子 182よりも内側に形成する。

【0092】このようなアクティブマトリクス型液晶表 示装置の構成を図15の斜視図を用いて説明する。図1 5においてアクティブマトリクス基板は、ガラス基板1

回路185と、画像信号側駆動回路186とその他の信 号処理回路187とで構成される。画素部188には画 素TFT204と保持容量205が設けられ、画素部の 周辺に設けられる駆動回路はCMOS回路を基本として 構成されている。走査信号側駆動回路185と、画像信 号側駆動回路186はそれぞれゲート配線122とソー ス配線152で画素TFT204に接続している。ま た、フレキシブルプリント配線板(Flexible Printed C ircuit: FPC) 191が外部入力端子182に接続し ていて画像信号などを入力するのに用いる。そして接続 配線183でそれぞれの駆動回路に接続している。ま た、対向基板175には図示していないが、遮光膜や透 明電極が設けられている。

【0093】このような構成の液晶表示装置は、実施例 1~3で示すアクティブマトリクス基板を用いて形成す ることができる。実施例1、及び実施例2で示すアクテ ィブマトリクス基板を用いれば反射型の液晶表示装置が 得られ、実施例3で示すアクティブマトリクス基板を用 いると透過型の液晶表示装置を得ることができる。

【0094】[実施例5]本実施例では、実施例1ののア クティブマトリクス基板を用いてエレクトロルミネッセ ンス(EL:Electro Luminescence)材料を用いた自発 光型の表示パネル (以下、EL表示装置と記す) を作製 する例について説明する。尚、ルミネッセンスには蛍光 と燐光による発光が含まれるが、本明細書においていう エレクトロルミネッセンスには、そのどちらか一方、又 はその両者による発光を含んでいる。図17 (A) は本 発明を用いたEL表示パネルの上面図である。図17

(A) において、10は基板、11は画素部、12はソ 30 一ス側駆動回路、13はゲート側駆動回路であり、それ ぞれの駆動回路は配線14~16を経てFPC17に至 り、外部機器へと接続される。

【0095】図17 (B) は図17 (A) のA-A'断 面を表す図であり、このとき少なくとも画素部上、好ま しくは駆動回路及び画素部上に対向板80を設ける。対 向板80はシール材19でTFTとEL材料を用いた発 光層が形成されているアクティブマトリクス基板と貼り 合わされている。シール剤19にはフィラー(図示せ ず)が混入されていて、このフィラーによりほぼ均一な 間隔を持って2枚の基板が貼り合わせられている。さら に、シール材19の外側とFPC17の上面及び周辺は 封止剤81で密封する構造とする。封止剤81はシリコ ーン樹脂、エポキシ樹脂、フェノール樹脂、プチルゴム などの材料を用いる。

【0096】このように、シール剤19によりアクティ プマトリクス基板10と対向基板80とが貼り合わされ ると、その間には空間が形成される。その空間には充填 剤83が充填される。この充填剤83は対向板80を接 着する効果も合わせ持つ。充填剤83はPVC (ポリビ 01上に形成された、画素部188と、走査信号側駆動 50 ニルクロライド)、エポキシ樹脂、シリコーン樹脂、P

VB (ポリビニルブチラル) またはEVA (エチレンビ ニルアセテート)などを用いることができる。また、発 光層は水分をはじめ湿気に弱く劣化しやすいので、この 充填剤83の内部に酸化パリウムなどの乾燥剤を混入さ せておくと吸湿効果を保持できるので望ましい。また、 発光層上に窒化シリコン膜や酸化窒化シリコン膜などで 形成するパッシベーション膜82を形成し、充填剤83 に含まれるアルカリ元素などによる腐蝕を防ぐ構造とし ていある。

【0097】対向板80にはガラス板、アルミニウム 板、ステンレス板、FRP (Fiberglass-Reinforced Pl astics) 板、PVF (ポリピニルフルオライド) フィル ム、マイラーフィルム(デュポン社の商品名)、ポリエ ステルフィルム、アクリルフィルムまたはアクリル板な どを用いることができる。また、数十μmのアルミニウ ム箔をPVFフィルムやマイラーフィルムで挟んだ構造 のシートを用い、耐湿性を高めることもできる。このよ うにして、EL素子は密閉された状態となり外気から遮 断されている。

【0098】また、図17(B)において基板10、下 20 地膜21の上に駆動回路用TFT(但し、ここではnチ ヤネル型TFTとpチャネル型TFTを組み合わせたC MOS回路を図示している。)22及び画素部用TFT 23 (但し、ここではEL素子への電流を制御するTF Tだけ図示している。)が形成されている。これらのT FTの内特にnチャネル型TFTにははホットキャリア 効果によるオン電流の低下や、Vihシフトやバイアスス トレスによる特性低下を防ぐため、本実施形態で示す構 成のLDD領域が設けられている。

(C) に示すpチャネル型TFT200、202とnチ ヤネル型TFT201、203を用いれば良い。また、 画素部用TFT23には図6(B)に示す画素TFT2 04またはそれと同様な構造を有するpチャネル型TF Tを用いれば良い。

【0100】図6(C)または図7(C)の状態のアク ティブマトリクス基板からEL表示装置を作製するに は、ソース配線、ドレイン配線上に樹脂材料でなる層間 絶縁膜(平坦化膜) 26を形成し、その上に画素部用T FT23のドレインと電気的に接続する透明導電膜でな 40 る画素電極27を形成する。透明導電膜には酸化インジ ウムと酸化スズとの化合物(ITOと呼ばれる)または 酸化インジウムと酸化亜鉛との化合物を用いることがで きる。そして、画素電極27を形成したら、絶縁膜28 を形成し、画素電極27上に開口部を形成する。

【0101】次に、発光層29を形成する。発光層29 は公知のEL材料(正孔注入層、正孔輸送層、発光層、 電子輸送層または電子注入層)を自由に組み合わせて積 **層構造または単層構造とすれば良い。どのような構造と**

は低分子系材料と高分子系(ポリマー系)材料がある。 低分子系材料を用いる場合は蒸着法を用いるが、高分子 系材料を用いる場合には、スピンコート法、印刷法また はインクジェット法等の簡易な方法を用いることが可能 である。

【0102】発光層はシャドーマスクを用いて蒸着法、 またはインクジェット法、ディスペンサー法などで形成 する。いずれにしても、画素毎に波長の異なる発光が可 能な発光層(赤色発光層、緑色発光層及び青色発光層) 10 を形成することで、カラー表示が可能となる。その他に も、色変換層(CCM)とカラーフィルターを組み合わ せた方式、白色発光層とカラーフィルターを組み合わせ た方式があるがいずれの方法を用いても良い。勿論、単 色発光のEL表示装置とすることもできる。

【0103】発光層29を形成したら、その上に陰極3 0を形成する。陰極30と発光層29の界面に存在する 水分や酸素は極力排除しておくことが望ましい。従っ て、真空中で発光層29と陰極30を連続して形成する か、発光層29を不活性雰囲気で形成し、大気解放しな いで真空中で陰極30を形成するといった工夫が必要で ある。本実施例ではマルチチャンパー方式(クラスター ツール方式)の成膜装置を用いることで上述のような成 膜を可能とする。

【0104】なお、本実施例では陰極30として、Li F(フッ化リチウム)膜とAI(アルミニウム)膜の積 層構造を用いる。具体的には発光層29上に蒸着法で1 nm厚のLiF(フッ化リチウム)膜を形成し、その上に 300m厚のアルミニウム膜を形成する。勿論、公知の 陰極材料であるMgAg電極を用いても良い。そして陰 【0099】例えば、駆動回路用TFT22とし、図6 30 極30は31で示される領域において配線16に接続さ れる。配線16は陰極30に所定の電圧を与えるための 電源供給線であり、異方性導電性ペースト材料32を介 してFPC17に接続される。FPC17上にはさらに 樹脂層80が形成され、この部分の接着強度を高めてい る。

> 【0105】31に示された領域において陰極30と配 線16とを電気的に接続するために、層間絶縁膜26及 び絶縁膜28にコンタクトホールを形成する必要があ る。これらは層間絶縁膜26のエッチング時(画素電極 用コンタクトホールの形成時)や絶縁膜28のエッチン グ時(発光層形成前の開口部の形成時)に形成しておけ ば良い。また、絶縁膜28をエッチングする際に、層間 絶縁膜26まで一括でエッチングしても良い。この場 合、層間絶縁膜26と絶縁膜28が同じ樹脂材料であれ ば、コンタクトホールの形状を良好なものとすることが できる。

「【0106】また、配線16はシーリル19と基板10 との間を隙間(但し封止剤81で塞がれている。)を通 ってFPC17に電気的に接続される。なお、ここでは ·するかは公知の技術を用いれば良い。また、EL材料に 50 配線16について説明したが、他の配線14、15も同

様にしてシーリング材18の下を通ってFPC17に電 気的に接続される。

【0107】ここで画素部のさらに詳細な断面構造を図 18に、上面構造を図19(A)に、回路図を図19 (B) に示す。図18 (A) において、基板2401上 に設けられたスイッチング用TFT2402は実施例1 の図6(C)の画素TFT204と同じ構造で形成され る。ダブルゲート構造とすることで実質的に二つのTF Tが直列された構造となり、オフ電流値を低減すること ができるという利点がある。なお、本実施例ではダブル 10 ゲート構造としているがトリプルゲート構造やそれ以上 のゲート本数を持つマルチゲート構造でも良い。

【0108】また、電流制御用TFT2403は図6 (C)で示すnチャネル型TFT201を用いて形成す る。このとき、スイッチング用TFT2402のドレイ ン線35は配線36によって電流制御用TFTのゲート 電極37に電気的に接続されている。また、38で示さ れる配線は、スイッチング用TFT2402のゲート電 極39a、39bを電気的に接続するゲート線である。

【0109】このとき、電流制御用TFT2403が本 20 発明の構造であることは非常に重要な意味を持つ。電流 制御用TFTはEL素子を流れる電流量を制御するため の素子であるため、多くの電流が流れ、熱による劣化や ホットキャリアによる劣化の危険性が高い素子でもあ る。そのため、電流制御用TFTにゲート電極と一部が 重なるLDD領域を設けることでTFTの劣化を防ぎ、 動作の安定性を高めることができる。

【0110】また、本実施例では電流制御用TFT24 03をシングルゲート構造で図示しているが、複数のT FTを直列につなげたマルチゲート構造としても良い。 さらに、複数のTFTを並列につなげて実質的にチャネ ル形成領域を複数に分割し、熱の放射を高い効率で行え るようにした構造としても良い。このような構造は熱に よる劣化対策として有効である。

【0111】また、図19 (A) に示すように、電流制 御用TFT2403のゲート電極37となる配線は24 04で示される領域で、電流制御用TFT2403のド レイン線40と絶縁膜を介して重なる。このとき、24 0 4 で示される領域ではコンデンサが形成される。この コンデンサ2404は電流制御用TFT2403のゲー 40 トにかかる電圧を保持するためのコンデンサとして機能 する。なお、ドレイン線40は電流供給線(電源線)2 501に接続され、常に一定の電圧が加えられている。

【0 1 1 2 】スイッチング用TFT2402及び電流制 御用TFT2403の上には第1パッシベーション膜4 1が設けられ、その上に樹脂絶縁膜でなる平坦化膜42 が形成される。平坦化膜42を用いてTFTによる段差 を平坦化することは非常に重要である。後に形成される 発光層は非常に薄いため、段差が存在することによって 発光不良を起こす場合がある。従って、発光層をできる 50 だけ平坦面に形成しうるように画素電極を形成する前に 平坦化しておくことが望ましい。

【0113】また、43は反射性の高い導電膜でなる画 素電極(EL素子の陰極)であり、電流制御用TFT2 403のドレインに電気的に接続される。画素電極43 としてはアルミニウム合金膜、銅合金膜または銀合金膜 など低抵抗な導電膜またはそれらの積層膜を用いること が好ましい。勿論、他の導電膜との積層構造としても良 い。また、絶縁膜(好ましくは樹脂)で形成されたバン ク44a、44bにより形成された溝(画素に相当する) の中に発光層44が形成される。なお、ここでは一画素 しか図示していないが、R (赤)、G (緑)、B (青) の各色に対応した発光層を作り分けても良い。発光層と する有機ΕL材料としてはπ共役ポリマー系材料を用い る。代表的なポリマー系材料としては、ポリパラフェニ レンビニレン(PPV)系、ポリビニルカルバゾール (PVK) 系、ポリフルオレン系などが挙げられる。 尚、PPV系有機EL材料としては様々な型のものがあ るが、例えば「H. Shenk, H. Becker, O. Gelsen, E. Kluge, W. Kreuder, and H. Spreitzer, "Polymers for Light Emi tting Diodes", Euro Display, Proceedings, 1999, p. 33-37」や特開平10-92576号公報に記載されたよう

【0114】具体的な発光層としては、赤色に発光する 発光層にはシアノポリフェニレンビニレン、緑色に発光 する発光層にはポリフェニレンビニレン、青色に発光す る発光層にはポリフェニレンビニレン若しくはポリアル キルフェニレンを用いれば良い。膜厚は30~150nm (好ましくは40~100nm)とすれば良い。但し、以 上の例は発光層として用いることのできる有機EL材料 の一例であって、これに限定する必要はまったくない。 発光層、電荷輸送層または電荷注入層を自由に組み合わ せて発光層(発光及びそのためのキャリアの移動を行わ せるための層)を形成すれば良い。例えば、本実施例で はポリマー系材料を発光層として用いる例を示したが、 低分子系有機EL材料を用いても良い。また、電荷輸送 層や電荷注入層として炭化珪素等の無機材料を用いるこ とも可能である。これらの有機EL材料や無機材料は公 知の材料を用いることができる。

な材料を用いれば良い。

【0115】本実施例では発光層45の上にPEDOT (ポリチオフェン)またはPANi(ポリアニリン)で なる正孔注入層46を設けた積層構造の発光層としてい る。そして、正孔注入層46の上には透明導電膜でなる 陽極47が設けられる。本実施例の場合、発光層45で 生成された光は上面側に向かって(TFTの上方に向か) って)放射されるため、陽極は透光性でなければならな い。透明導電膜としては酸化インジウムと酸化スズとの 化合物や酸化インジウムと酸化亜鉛との化合物を用いる ことができるが、耐熱性の低い発光層や正孔注入層を形 成した後で形成するため、可能な限り低温で成膜できる

ものが好ましい。

【0116】陽極47まで形成された時点で自発光素子 2405が完成する。なお、ここでいうEL素子240 5は、画素電極(陰極)43、発光層45、正孔注入層 46及び陽極47で形成されたコンデンサを指す。図1 9 (A) に示すように画素電極 4 3 は画素の面積にほぼ 一致するため、画素全体がEL素子として機能する。従 って、発光の利用効率が非常に高く、明るい画像表示が 可能となる。

【0117】ところで、本実施例では、陽極47の上に 10 さらに第2パッシベーション膜48を設けている。第2 パッシベーション膜48としては窒化珪素膜または窒化 酸化珪素膜が好ましい。この目的は、外部とEL素子と を遮断することであり、有機EL材料の酸化による劣化 を防ぐ意味と、有機EL材料からの脱ガスを抑える意味 との両方を併せ持つ。これによりEL表示装置の信頼性 が髙められる。

【0118】以上のように本願発明のEL表示パネルは 図19のような構造の画素からなる画素部を有し、オフ 電流値の十分に低いスイッチング用TFTと、ホットキ 20 ャリア注入に強い電流制御用TFTとを有する。従っ て、高い信頼性を有し、且つ、良好な画像表示が可能な EL表示パネルが得られる。

【0119】図18(B)は発光層の構造を反転させた 例を示す。電流制御用TFT2601は図6(B)のp チャネル型TFT200を用いて形成される。作製プロ セスは実施例1を参照すれば良い。本実施例では、画素 電極(陽極)50として透明導電膜を用いる。具体的に は酸化インジウムと酸化亜鉛との化合物でなる導電膜を なる導電膜を用いても良い。

【0120】そして、絶縁膜でなるバンク51a、51b が形成された後、溶液塗布によりポリビニルカルバゾー ルでなる発光層52が形成される。その上にはカリウム アセチルアセトネート(acacKと表記される)でな る電子注入層53、アルミニウム合金でなる陰極54が 形成される。この場合、陰極54がパッシベーション膜 としても機能する。こうしてEL素子2602が形成さ れる。本実施例の場合、発光層53で発生した光は、矢 って放射される。本実施例のような構造とする場合、電 流制御用TFT2601はpチャネル型TFTで形成す ることが好ましい。

【0121】尚、本実施例の構成は、実施例1~2のT FTの構成を自由に組み合わせて実施することが可能で ある。また、実施例8の電子機器の表示部として本実施 例のEL表示パネルを用いることは有効である。

【0122】[実施例6]本実施例では、図19 (B) に 示した回路図とは異なる構造の画素とした場合の例につ いて図20に示す。なお、本実施例において、2701 50 はスイッチング用TFT2702のソース配線、270 3はスイッチング用TFT2702のゲート配線、27 04は電流制御用TFT、2705はコンデンサ、27 06、2708は電流供給線、2707はEL素子とす る。

【0123】図20(A)は、二つの画素間で電流供給 線2706を共通とした場合の例である。即ち、二つの 画素が電流供給線2706を中心に線対称となるように 形成されている点に特徴がある。この場合、電源供給線 の本数を減らすことができるため、画素部をさらに高精 細化することができる。

【0124】また、図20(B)は、電流供給線270 8をゲート配線2703と平行に設けた場合の例であ る。尚、図20(B)では電流供給線2708とゲート 配線2703とが重ならないように設けた構造となって いるが、両者が異なる層に形成される配線であれば、絶 縁膜を介して重なるように設けることもできる。この場 合、電源供給線2708とゲート配線2703とで専有 面積を共有させることができるため、画素部をさらに高 精細化することができる。

【0125】また、図20(C)は、図20(B)の構 造と同様に電流供給線2708をゲート配線2703と 平行に設け、さらに、二つの画素を電流供給線2708 を中心に線対称となるように形成する点に特徴がある。 また、電流供給線2708をゲート配線2703のいず れか一方と重なるように設けることも有効である。この 場合、電源供給線の本数を減らすことができるため、画 素部をさらに高精細化することができる。図20

(A)、図20(B)では電流制御用TFT2403の 用いる。勿論、酸化インジウムと酸化スズとの化合物で 30 ゲートにかかる電圧を保持するためにコンデンサ240 4を設ける構造としているが、コンデンサ2404を省 略することも可能である。

【0126】電流制御用TFT2403として図18

(A)に示すような本願発明のnチャネル型TFTを用 いているため、ゲート絶縁膜を介してゲート電極(と重 なるように設けられたLDD領域を有している。この重 なり合った領域には一般的にゲート容量と呼ばれる寄生 容量が形成されるが、本実施例ではこの寄生容量をコン デンサ2404の代わりとして積極的に用いる点に特徴 ・印で示されるようにTFTが形成された基板の方に向か 40 がある。この寄生容量のキャパシタンスは上記ゲート電 極とLDD領域とが重なり合った面積で変化するため、 その重なり合った領域に含まれるLDD領域の長さによ って決まる。また、図20(A)、(B)、(C)の構 造においても同様にコンデンサ2705を省略すること は可能である。

> 【0127】尚、本実施例の構成は、実施例1~2のT FTの構成を自由に組み合わせて実施することが可能で ある。また、実施例8の電子機器の表示部として本実施 例のEL表示パネルを用いることは有効である。

【0128】[実施例7]本実施例では、本発明のTFT

回路によるアクティブマトリクス型液晶表示装置を組み 込んだ半導体装置について図21、図22、図23で説 明する。

【0129】このような半導体装置には、携帯情報端末 (電子手帳、モバイルコンピュータ、携帯電話等)、ビ デオカメラ、スチルカメラ、パーソナルコンピュータ、 テレビ等が挙げられる。それらの一例を図21と図22 に示す。

【0130】図21(A)は携帯電話であり、本体90 装置9004、操作スイッチ9005、アンテナ900 6から構成されている。本願発明は音声出力部900 2、音声入力部9003、及びアクティブマトリクス基 板を備えた表示装置9004に適用することができる。

【0131】図21(B)はピデオカメラであり、本体 9101、表示装置9102、音声入力部9103、操 作スイッチ9104、バッテリー9105、受像部91 06から成っている。本願発明は及びアクティブマトリ クス基板を備えた表示装置9102、受像部9106に 適用することができる。

【0132】図21 (C) はモバイルコンピュータ或い は携帯型情報端末であり、本体9201、カメラ部92・ 02、受像部9203、操作スイッチ9204、表示装 置9205で構成されている。本願発明は受像部920 3、及びアクティブマトリクス基板を備えた表示装置9 205に適用することができる。

【0133】図21 (D) はヘッドマウントディスプレ イであり、本体9301、表示装置9302、アーム部 9303で構成される。本願発明は表示装置9302に 適用することができる。また、表示されていないが、そ 30 【0142】また、図23(D)は、図23(C)中に の他の駆動回路に使用することもできる。

【0134】図21 (E) はテレビであり、本体940 1、スピーカー9402、表示装置9403、受信装置 9404、増幅装置9405等で構成される。実施例5 で示す液晶表示装置や、実施例6または7で示すEL表 示装置は表示装置9403に適用することができる。

【0135】図21 (F) は携帯書籍であり、本体95 01、表示装置9502、9503、記憶媒体950 4、操作スイッチ9505、アンテナ9506から構成 されており、ミニディスク(MD)やDVDに記憶され 40 たデータや、アンテナで受信したデータを表示するもの である。表示装置9502、9503は直視型の表示装 置であり、本発明はこの適用することができる。

【0136】図22(A)はパーソナルコンピュータで あり、本体9601、画像入力部9602、表示装置9 603、キーボード9604で構成される。

【0137】図22(B)はプログラムを記録した記録 媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであ り、本体9701、表示装置9702、スピーカ部97

される。なお、この装置は記録媒体としてDVD(Di gtial Versatile Disc)、CD等 を用い、音楽鑑賞や映画鑑賞やゲームやインターネット を行うことができる。

【0138】図22 (C) はデジタルカメラであり、本 体9801、表示装置9802、接眼部9803、操作 スイッチ9804、受像部(図示しない)で構成され る。

【0139】図23(A)はフロント型プロジェクター 01、音声出力部9002、音声入力部9003、表示 10 であり、表示装置3601、スクリーン3602で構成 される。本発明は表示装置やその他の駆動回路に適用す ることができる。

> 【0140】図23 (B) はリア型プロジェクターであ り、本体3701、投射装置3702、ミラー370 3、スクリーン3704で構成される。本発明は表示装 置やその他の駆動回路に適用することができる。

> 【0141】なお、図23 (C) は、図23 (A) 及び 図23 (B) 中における投射装置3601、3702の 構造の一例を示した図である。投射装置3601、37 02は、光源光学系3801、ミラー3802、380 4~3806、ダイクロイックミラー3803、プリズ ム3807、液晶表示装置3808、位相差板380 9、投射光学系3810で構成される。投射光学系38 10は、投射レンズを含む光学系で構成される。本実施 例は三板式の例を示したが、特に限定されず、例えば単 板式であってもよい。また、図23 (C) 中において矢 印で示した光路に実施者が適宜、光学レンズや、偏光機 能を有するフィルムや、位相差を調節するためのフィル ム、IRフィルム等の光学系を設けてもよい。

> おける光源光学系3801の構造の一例を示した図であ る。本実施例では、光源光学系3801は、リフレクタ -3811、光源3812、レンズアレイ3813、3 814、偏光変換素子3815、集光レンズ3816で 構成される。なお、図23(D)に示した光源光学系は 一例であって特に限定されない。例えば、光源光学系に 実施者が適宜、光学レンズや、偏光機能を有するフィル ムや、位相差を調節するフィルム、IRフィルム等の光 学系を設けてもよい。

【0143】また、本発明はその他にも、イメージセン サやEL型表示素子に適用することも可能である。この ように、本願発明の適用範囲はきわめて広く、あらゆる 分野の電子機器に適用することが可能である。

【0144】[実施例8]本発明の有効性を確認するた め、非金属元素(B、Si、P、As、He、Ne、A r、Kr、Xeから選ばれた1種または複数種)のう ち、アルゴン(Ar)を用い、以下の実験を行った。

【0145】半導体膜は50mmの非晶質シリコン膜に1 Oppmの酢酸ニッケル含有水溶液を塗布した後、500 03、記録媒体9704、操作スイッチ9705で構成 50 ℃にて1時間の脱水素処理と、550℃にて4時間の加

熱処理により結晶化させた結晶質半導体膜を用いた。こ の結晶化半導体膜をパターニングした後、90nmの酸 化珪素膜を形成した。そして、ゲッタリングサイトにリ ンをイオンドープ法で注入した試料、リンを注入した後 にアルゴンを注入した試料、アルゴンのみを注入した試 料をそれぞれ作製し、これらを比較評価した。この時、 リンの注入条件は、水素で希釈された5%のPH、を用 い、加速電圧80keV、ドーズ量1.5×10'' /cm と した。注入に要する時間は約8分であり、結晶質半導体 膜には平均濃度で2×10¹⁰/cm¹のリンを注入すること ができる。一方、アルゴンは90keVの加速電圧で、2 ×10¹⁵ または4×10¹⁵/cm²のドーズ量で注入した。 アルゴンは99.999%以上のものを用い、注入に 要する時間は1~2分でよかった。

31

【0146】ゲッタリングは窒素雰囲気中、550℃に て4時間の加熱処理をもって行った。ゲッタリング後、 酸化珪素膜を除去した後、FPMで処理した。ゲッタリ ングの効果は、結晶質半導体膜の被ゲッタリング領域に おけるエッチピットの数により確認した。即ち、添加し たニッケルの大部分はニッケルシリサイドとして結晶質 20 半導体膜に残存するが、これはFPM(フッ酸、過酸化 水素水、純水の混合液)によりエッチングされることが 知られている。従って、被ゲッタリング領域をFPMで 処理してエッチピットの有無を確認することにより、ゲ ッタリングの効果を確認することができる。この場合、 エッチピットの数が少ない程、ゲッタリングの効果が高 いことを意味する。図25にエッチピットが形成された 試料の簡略図を示す。なお、図25中、ドープ領域10 401とはアルゴンまたはリンが添加された領域を示し ている。ゲッタリングされた領域(被ゲッタリング領 域)10402に存在するエッチピット10403の数 を光学顕微鏡で見ながらカウントしてエッチピット密度 を得た。

【0147】図24にその結果を示す。図24におい て、Pと示した試料は、リンのみを添加した試料であ り、この試料のリンの注入条件は、水素で希釈された5 %のPH, を用い、加速電圧8 0 keV、ドーズ量1. 5× 10¹³/cm²とした。また、図24において、P+Ar (1min)と示した試料は、リンとアルゴンとを添加 した試料であり、この試料のリンの注入条件は、水素で 40 希釈された5%のPH,を用い、加速電圧80keV、ドー ズ量1. 5×10¹⁵/cm²とし、アルゴンの注入条件は、 9 0 keVの加速電圧で、2×1 0¹⁵/cm²のドーズ量と し、アルゴンの注入に要する時間を1分とした。また、 図24において、P+Ar(2min)と示した試料 は、リンとアルゴンとを添加した試料であり、この試料 のリンの注入条件は、水素で希釈された5%のPH,を 用い、加速電圧80keV、ドーズ量1.5×10'*/cm' とし、アルゴンの注入条件は、90keVの加速電圧で、 4×10¹⁵/cm²のドーズ量とし、アルゴンの注入に要す 50 【図12】 アクティブマトリクス型液晶表示装置の作

る時間を2分としたものである。また、図24におい て、Arと示した試料は、アルゴンのみを添加した試料 であり、この試料のアルゴンの注入条件は、9 OkeVの 加速電圧で、2×10¹⁵/cm²のドーズ量とした。

【0148】図24の実験結果より、リンのみを添加し た試料が3. 5×10^{-3} 個/ μ m のエッチピット密度で あるのに対し、アルゴンを添加してゲッタリングした試 料はエッチピットの数は5×10⁻¹個/μm 以下であ り、その数が極端に減少していることが解る。この結果 は、アルゴンを注入することによりゲッタリングの効果 が極端に高められることを意味し、本発明の非金属元素 (B. Si. P. As. He. Ne. Ar. Kr. Xe から選ばれた1種または複数種)を用いたゲッタリング が極めて有効であることを示している。

[0149]

【発明の効果】本発明により、珪素を主成分とする結晶 質半導体薄膜に含まれる金属をゲッタリングする際の、 ゲッタリングの効率および効果のうち少なくともひとつ を改善する。本明細書において、ゲッタリングの効率を 改善するとは、素子活性領域に含まれる金属の量を軽減 するための熱供給量(=温度×時間)を少なくすること とする。また、本明細書のおいて、ゲッタリングの効果 を改善するとは、熱供給量が同じであっても、素子活性 領域の被ゲッタリング金属の残留量をより少なくするこ ととする。

[0150]

【図面の簡単な説明】

【図1】本発明の半導体薄膜の結晶化とゲッタリングの 模式図。

【図2】本発明のゲッタリングの際に形成する、半導体 薄膜と酸化珪素膜の島状物の模式図。

【図3】本発明のゲッタリングの際に形成する、半導体 薄膜と酸化珪素膜の島状物の模式図。

【図4】 画素TFT、駆動回路のTFTの作製工程を 示す断面図。

画素TFT、駆動回路のTFTの作製工程を 【図5】 示す断面図。

【図6】 画素TFT、駆動回路のTFTの作製工程を 示す断面図。

【図7】 画素TFT、駆動回路のTFTの作製工程を 示す断面図。

【図8】 駆動回路のTFTと画素TFTの構造を示す 上面図。

【図9】 駆動回路のTFTと画素TFTの構造を示す 断面図。

【図10】 画素TFT、駆動回路のTFTの作製工程 を示す断面図。

【図11】 画素TFT、駆動回路のTFTの作製工程 を示す断面図。

製工程を示す断面図。

【図13】 アクティブマトリクス型液晶表示装置の構成を示す断面図。

【図14】 液晶表示装置の入力端子、配線、回路配置、スペーサ、シール剤の配置を説明する上面図。

【図15】 液晶表示装置の構成を説明する斜視図。

【図16】 画素部の画素を示す上面図。

【図17】 EL表示装置の構造を示す上面図及び断面図。

【図18】 EL表示装置の画素部の断面図。

【図19】 EL表示装置の画素部の上面図と回路図。

【図20】 EL表示装置の画素部の回路図の例。

【図21】 半導体装置の一例を示す図。

【図22】 半導体装置の一例を示す図。

【図23】 プロジェクターの一例を示す図。

【図24】 ゲッタリング後のFPM処理により観察されるエッチピット密度(個 $/\mu m^2$)を示すグラフ。

【図25】 ゲッタリング後のFPM処理により観察されるエッチピットを示す簡略図。

【符号の説明】

10101…絶縁膜基板。ガラス基板、石英基板など。

10102…珪素を主成分とする非晶質構造を有する半 導体薄膜

10103…酢酸Ni水溶液

10104…島状の絶縁膜

10106…非金属元素または該非金属元素のイオンが添加された領域

10107…珪素を主成分とする結晶質半導体薄膜

10108…非金属元素または非金属元素のイオンが添加された領域と添加されない領域との境界面。

10109…非金属元素または該非金属元素のイオンが添加された領域

10110…Niが移動する方向

10201…島状の絶縁膜

10 10202…珪素を主成分とする結晶質半導体薄膜の表面と平行な面

10203…珪素を主成分とする結晶質半導体薄膜の表面

10204…非金属元素または該非金属元素のイオンが添加された領域

10205…非金属元素または該非金属元素のイオンが添加された領域

10206…珪素を主成分とする結晶質半導体薄膜

10207…絶縁膜基板。ガラス基板、石英基板など。

20 10208…珪素を主成分とする結晶質半導体薄膜の表面と平行な面に対する島状の絶縁膜の形状。

10301…島状の絶縁膜

10302…珪素を主成分とする結晶質半導体薄膜

10303…絶縁膜基板。ガラス基板、石英基板など。

[図14]

[図9]

[図5]

[図7]

[図8]

[図10]

【図13】

【図12】

【図15】

[図16]

【図25】

【図17】

[図18]

【図19】

[図21]

[図23]

(D)

(34)

特開2001-250777

フロントページの続き

H 0 1 L 21/336

(51) Int. Cl. 7

識別記号

FI H 0 1 L 29/78

テーマコード(参考)

627G