Edit Distance (Dasgupta et al., Seção 6.3)

- **Entrada:** Duas strings $x[1 \dots m]$ e $y[1 \dots n]$
- ▶ **Objetivo:** Transformar x em y com um mínimo de operações
- ► Operações: Inserir letra, Remover letra, Substituir letra.

Exemplo: ed(SNOWY,SUNNY)

- \triangleright SNOWY S_NOWY S_NOWY
- ► SUNNY SUNNY SUNNY

► Edit Distance = 3

1. Propriedade da Subestrutura Ótima

- Em linguagem popular, pergunta-se se "pedaços da solução ótima são soluções ótimas de pedaços do problema".
- ed(SNOWY,SUNNY) = ed(SNOW,SUNN) = 1+ed(SNO,SUNN) = 2+ed(SN,SUN) = 2+ed(S,SU) = 3
- ed(SNOWY,SUNNY) = ed(SNOW,SUNN) = 1+ed(SNO,SUN) = 2 + ed(SN,SU) = 3

2. Equação de Recorrência - Algoritmo recursivo simples

- ► Seja ed(i,j) = ed(x[1...i], y[1...j])► ed(0,j) = i; ed(i,0) = i
- ► Testar as 3 operações possíveis com relação às últimas letras
- ▶ Seja $dif_{i,j} = 1$ se $x_i \neq y_i$ e seja 0, caso contrário.

$$ed(i,j) = \min \Big\{ ed(i-1,j-1) + dif_{i,j}, \ ed(i,j-1) + 1, \ ed(i-1,j) + 1 \Big\},$$

Substituição

Inserção

Remoção

Edit-REC(x, y, i, j)

- 1 se (i = 0) então retorne j
- 2 se (j = 0) então retorne i
- 3 $a \leftarrow Edit-REC(x, y, i-1, j-1) + dif_{i,j}$
- 4 $b \leftarrow Edit-REC(x, y, i, j-1) + 1$
- 5 $c \leftarrow Edit-REC(x, y, i-1, j) + 1$
- 6 retorne $min\{a, b, c\}$

2. Equação de Recorrência - Algoritmo recursivo simples

Sobreposição de Subproblemas

- ▶ Chamada inicial: Edit REC(x, y, m, n)
- ► **Tempo**: Exponencial $\Omega(3^{\min\{m,n\}}) \Rightarrow \Omega(3^n)$ para m = n
- ▶ Indução: $T(m,n) \ge T(m-1,n) + T(m,n-1) + T(m-1,n-1) \ge 3 \cdot T(m-1,n-1) \ge 3 \cdot 3^{\min\{m,n\}-1} = 3^{\min\{m,n\}}$
- ▶ **Superposição**: A instância (m-1, n-1) é chamada por (m, n) e (m-1, n) e (m, n-1).

Edit-REC(x, y, i, j)

- 1 se (i = 0) então retorne j
- 2 se (j = 0) então retorne i
- 3 $a \leftarrow Edit-REC(x, y, i-1, j-1) + dif_{i,j}$
- 4 $b \leftarrow Edit-REC(x, y, i, j-1) + 1$
- 5 $c \leftarrow Edit-REC(x, y, i-1, j) + 1$
- 6 retorne $min\{a, b, c\}$

2b. Memoização (Alg. Recursivo + memória) - Top Down

```
Edit-memo(x, y, m, n, ed)
  1 para i \leftarrow 0 até m: ed[i, 0] \leftarrow i
  2 para j \leftarrow 0 até n: ed[0, j] \leftarrow j
  3 para i \leftarrow 1 até m:
           para i \leftarrow 1 até n:
                 ed[i, j] \leftarrow -1
    retorne Edit-REC-memo(x, y, m, n, ed)
Edit - REC - memo(x, y, i, i, ed)
  1 se (ed[i, j] > 0) então retorne ed[i, j]
  2 a \leftarrow Edit-REC-memo(x, y, i-1, j-1, ed) + dif_{i,j}
  3 b \leftarrow Edit-REC-memo(x, y, i, i-1, ed) + 1
  4 c \leftarrow Edit-REC-memo(x, y, i-1, j, ed) + 1
  5 \quad ed[i, j] \leftarrow \min\{a, b, c\}
  6 retorne ed[i,j]
```

	-	S	U	N	N	Υ
-	0	1	2	3	4	5
S	1	0	1	2	3	4
N	2	1	1	1	2	3
0	3	2	2	2	2	3
W	4	3	3	3	3	3
Υ	5	4	4	4	4	3

Edit-Distance-PD(x, y, m, n)

```
1 Criar matriz ed[0...m, 0...n]

2 para i \leftarrow 0 até m: ed[i,0] \leftarrow i

3 para j \leftarrow 0 até n: ed[0,j] \leftarrow j

4 para i \leftarrow 1 até m:

5 para j \leftarrow 1 até n:

6 ed[i,j] \leftarrow \min\{ed[i-1,j-1] + dif_{i,j}, ed[i,j-1] + 1, ed[i-1,j] + 1\}

7 retorne ed[m,n]
```

4D + 4B + 4B + B + 900

	-	S	U	N	N	Υ
-	0	1	2	3	4	5
S	1	0	1	2	3	4
N	2	1	1	1	2	3
0	3	2	2	2	2	3
W	4	3	3	3	3	3
Υ	5	4	4	4	4	3

Todas as soluções ótimas possíveis:

► SNOWY

► SUNNY

- $\mathsf{S} = \mathsf{N} \; \mathsf{O} \; \mathsf{W} \; \mathsf{Y}$
- SUN_NY

- S = N O W Y
- $\mathsf{S}\;\mathsf{U}\;\mathsf{N}\;\;\mathsf{N}\;\mathsf{_}\;\mathsf{Y}$

	-	S	U	N	N	Υ
-	0	1	2	3	4	5
S	1	0	1	2	3	4
N	2	1	1	1	2	3
0	3	2	2	2	2	3
W	4	3	3	3	3	3
Υ	5	4	4	4	4	3

Todas as soluções ótimas possíveis:

► SNOWY

- $\mathsf{S} = \mathsf{N} \; \mathsf{O} \; \mathsf{W} \; \mathsf{Y}$
- ► SUNN Y

 SUN_NY

- S = N O W Y
- $\mathsf{S}\;\mathsf{U}\;\mathsf{N}\;\;\mathsf{N}\;\mathsf{_}\;\mathsf{Y}$

	-	S	U	N	N	Υ
-	0	1	2	3	4	5
S	1	0	1	2	3	4
N	2	1	1	1	2	3
0	3	2	2	2	2	3
W	4	3	3	3	3	3
Υ	5	4	4	4	4	3

Todas as soluções ótimas possíveis:

► SNOWY

 $\mathsf{S} = \mathsf{N} \; \mathsf{O} \; \mathsf{W} \; \mathsf{Y}$

SUNN Y

 SUN_NY

- S = N O W Y
- $SUNN_{Y}$

	-	S	U	N	N	Y
-	0	1	2	3	4	5
S	1	√0	←1	←2	← 3	←4
N	2	†1	<u> </u>	_1	← <u>\</u> 2	← 3
0	3	^ 2	↑ 2	↑₹ 2	_ 2	← <u>√</u> 3
W	4	^ 3	↑ 3	↑ 3	↑ <u>√</u> 3	_ 3
Υ	5	<u></u>	↑ <u>√</u> 4	↑ 4	↑ 4	₹3

Todas as soluções ótimas possíveis:

► SNOWY

 $\mathsf{S} = \mathsf{N} \; \mathsf{O} \; \mathsf{W} \; \mathsf{Y}$

- ► SUNNY
- $SUN_N Y$

 $\mathsf{S}\;\mathsf{U}\;\mathsf{N}\;\;\mathsf{N}\;\mathsf{_}\;\mathsf{Y}$

	-	S	U	N	N	Y
-	0	1	2	3	4	5
S	1	√0	←1	←2	← 3	←4
N	2	†1	<u> </u>	<u> </u>	← <u>\</u> 2	← 3
0	3	^ 2	↑ 2	↑₹\2	^2	← <u></u> √3
W	4	^ 3	↑ 3	↑ 3	↑ ₹\3	_ 3
Υ	5	<u></u>	↑ <u>√</u> 4	↑ 4	↑ <u>√</u> 4	₹3

Todas as soluções ótimas possíveis:

► SNOWY

S = N O W Y

 $\mathsf{S} = \mathsf{N} \; \mathsf{O} \; \mathsf{W} \; \mathsf{Y}$

► SUNN Y

 SUN_NY

 $\mathsf{S}\;\mathsf{U}\;\mathsf{N}\;\;\mathsf{N}\;\mathsf{_}\;\mathsf{Y}$

	-	S	U	N	N	Υ
-	0	1	2	3	4	5
S	1	√0	←1	←2	← 3	←4
N	2	†1	<u></u>	<u> </u>	← <u>\</u> 2	← 3
0	3	^ 2	↑ 2	↑ 2	₹2	← <u></u> √3
W	4	 3	↑ 3	↑ 3	↑ <u>√</u> 3	\ 3
Υ	5	<u></u> †4	↑ <u>√</u> 4	↑ 4	↑ <u>√</u> 4	₹3

Todas as soluções ótimas possíveis:

► SNOWY

 $\mathsf{S} = \mathsf{N} \; \mathsf{O} \; \mathsf{W} \; \mathsf{Y}$

► SUNN Y

 SUN_NY

 $S\ U\ N\ N\ _\ Y$

4. Algoritmo p/ obter uma Solução Ótima (Bottom-up)

Edit-Distance-PD(x, y, m, n)

```
1 Criar matriz ed[0...m, 0...n]
    para i \leftarrow 0 até m: ed[i,0] \leftarrow i; R[i,0] \leftarrow "\uparrow"
    para j \leftarrow 0 até n: ed[0,j] \leftarrow j; R[0,j] \leftarrow "\leftarrow"
     para i \leftarrow 1 até m:
 5
          para i \leftarrow 1 até n:
 6
                se (ed[i-1, j-1] + dif_{i,i} < 1 + min\{ed[i, j-1], ed[i-1, j]\}) então
 7
                      ed[i,j] \leftarrow ed[i-1,j-1] + dif_{i,j}; \quad R[i,j] \leftarrow \text{``}
                senão se (ed[i, j-1] \le ed[i-1, j]) então
 8
                       ed[i,j] \leftarrow ed[i,j-1]+1; \quad R[i,j] \leftarrow \leftarrow
 9
10
                senão
                       ed[i, j] \leftarrow ed[i-1, j] + 1; \quad R[i, j] \leftarrow "\uparrow"
11
     retorne ed[m, n] e R
```

Tempo $\Theta(m \cdot n)$

4b. Algoritmo p/ escrever a Solução Ótima (recursivo)

Print-Opt
$$(x, y, i, j, R)$$

1 se $i = 0$ e $j = 0$ então retorne

2 se $R[i,j] = \text{``K''}$ então

3 Print-Opt $(x, y, i - 1, j - 1, R)$; print $\begin{bmatrix} x_i \\ y_j \end{bmatrix}$

4 se $R[i,j] = \text{``K''}$ então

5 Print-Opt $(x, y, i, j - 1, R)$; print $\begin{bmatrix} - \\ y_j \end{bmatrix}$

6 se $R[i,j] = \text{``f''}$ então

7 Print-Opt $(x, y, i - 1, j, R)$; print $\begin{bmatrix} x_i \\ - \end{bmatrix}$

Tempo $\Theta(m + n)$

4b. Algoritmo p/ escrever a Solução Ótima (não-recursivo)

```
Print-OPT(x, y, m, n, R)
```

Tempo $\Theta(m+n)$

```
1 Sol_1 \leftarrow \emptyset; Sol_2 \leftarrow \emptyset; k \leftarrow m+n; i \leftarrow m; j \leftarrow n
 2 enquanto (i > 0) ou (j > 0) faça
 3
          se R[i,j] = " então
 4
               Sol_1[k] \leftarrow x_i; Sol_2[k] \leftarrow y_i
               k \leftarrow k-1; i \leftarrow i-1; j \leftarrow j-1
 5
 6
          senão se R[i,j] = "\leftarrow" então
               Sol_1[k] \leftarrow "_"; Sol_2[k] \leftarrow v_i
 8
               k \leftarrow k-1; j \leftarrow j-1
 9
          senão
               Sol_1[k] \leftarrow x_i; Sol_2[k] \leftarrow "_"
10
               k \leftarrow k - 1: i \leftarrow i - 1
11
12 print Sol_1[k+1...m+n]; print Sol_2[k+1...m+n]
```