YINGJIE LI

https://lyj1201.github.io/yingjieli/ (435) 695-3478 \(\phi\) yingjie.li@utah.edu

EDUCATION & EMPLOYMENT

University of Utah
Ph.D. (candidacy), Computer Engineering (Advisor: Prof. Cunxi Yu)
Research interests: Hardware-software codesign, EDA, machine learning
Cornell University
M.Eng, Electrical and Computer Engineering
Huazhong University of Science and Technology
B.S., Electrical and Computer Engineering (Honor)

EMPLOYMENT

NVIDIA Research (upcoming)

Research Intern, ML/RL for EDADELL EMC, Shanghai, China

Hardware Engineer

AWARDS

American Physics Society DLS Best Poster Honorable Mention (2022)

DAC Young Student Fellow, 2020 (winning presentation), 2021, 2022

Outstanding Graduates, Huazhong University of Science and Technology, 2018

PUBLICATIONS

2023

- Yingjie Li*, Shanglin Zhou*, Cunxi Yu, and Caiwen Ding. *Physics-aware Roughness Optimization for Diffractive Optical Neural Networks*. DAC'2023.
- Nan Wu, Yingjie Li, Cong "Callie" Hao, Steve Dai, Cunxi Yu and Yuan Xie. Gamora: Graph Learning based Symbolic Reasoning for Large-Scale Boolean Networks. DAC'2023.
- Jiaqi Yin, **Yingjie Li**, Daniel Robinson, Cunxi Yu. *RESPECT: Reinforcement Learning based Edge Scheduling on Pipelined Coral Edge TPUs.* DAC'2023.
- Minhan Lou, **Yingjie Li**, Cunxi Yu, Berardi Sensale-Rodriguez, Weilu Gao. *Effects of interlayer Reflection and Interpixel Interaction in Diffractive Optical Neural Networks*. Optical Letter. Jan 2023.

2022

- Walter Lau Neto, **Yingjie Li**, Pierre-Emmanuel Gaillardon, and Cunxi Yu. FlowTune: End-to-end Automatic Logic Optimization Exploration via Domain-specific Multi-armed Bandits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD'22).
- Yingjie Li*, Ruiyang Chen*, Minhan Lou, Jichao Fan, Yingheng Tang, Berardi Sensale-Rodriguez, Cunxi Yu, Weilu Gao. *Physics-aware Complex-valued Adversarial Machine Learning in Reconfigurable Diffractive All-optical Neural Network.* Laser & Photonics Reviews. Vol 16, July 2022. (IF:13.2)

- Yingjie Li, Ruiyang Chen, Weilu Gao, and Cunxi Yu. *Physics-aware Differentiable Discrete Codesign for Diffractive Optical Neural Networks*. The International Conference on Computer-Aided Design (ICCAD'22).
- Yingjie Li, Minhan Lou, Ruiyang Chen, Jichao Fan, Berardi Sensale Rodriguez, Weilu Gao and Cunxi Yu. *LightRidge: An Agile Co-designing Framework for Diffractive Optical Neural Networks*. First Workshop on Open-Source Computer Architecture Research (OSCAR) held in conjunction with ISCA (ISCA'49), June 2022.
- Ruiyang Chen, Yingjie Li, Minhan Lou, Jichao Fan, Yingheng Tang, Berardi Sensale-Rodriguez, Cunxi Yu, Weilu Gao. Physics-aware Complex-valued Adversarial Machine Learning in Reconfigurable Diffractive All-optical Neural Network. Conference on Lasers and Electro-Optics (CLEO'22).
- Yingjie Li, Ruiyang Chen, Minhan Lou, Jichao Fan, Yingheng Tang, Berardi Sensale-Rodriguez, Cunxi Yu, Weilu Gao. *Invited: Physics-aware Adversarial Machine Learning: An Experimental Study in Diffractive Optical Neural Networks*. 3rd ROAD4NN Workshop @ Design Automation Conference (DAC'22). San Francisco, July 2022.
- Jiaqi Yin, **Yingjie Li**, Cunxi Yu. Combinatorial RL-based Scheduling for Pipelined Edge TPUs. TinyML Research Symposium 2022 (TinyML'22).

2021

- Yingjie Li, Minhan Lou, Ruiyang Chen, Jichao Fan, Berardi Sensale Rodriguez, Weilu Gao and Cunxi Yu. LightRidge: End-to-end Photonic Compiler Framework for Diffractive Optical Neural Networks. 2nd ROAD4NN Workshop @ Design Automation Conference (DAC'21 ROAD4NN). San Francisco, December 2021.
- Yingjie Li, Cunxi Yu. Late Breaking Results: Physical Adversarial Attacks of Diffractive Deep Neural Networks. IEEE/ACM 58th Design Automation Conference (DAC'21).
- Yingjie Li, Ruiyang Chen, Berardi Sensale Rodriguez, Weilu Gao, and Cunxi Yu. *Multi-task Learning in Diffractive Deep Neural Networks via Hardware-software Co-design*. Spinger Nature Scientific Reports, 11, 11013 (2021).
- Walter Lau Neto, Matheus Trevisan Moreira, **Yingjie Li**, Luca Amaru, Cunxi Yu, and Pierre-Emmanuel Gaillardon. *SLAP: A Supervised Learning Approach for Priority Cuts Technology Mapping*. IEEE/ACM 58th Design Automation Conference (DAC'21).

PROJECTS

• Algorithmic Discovery via Reinforcement Learning for Synthesis and Verification A series of research works performed on leveraging machine learning techniques in improving and discovery novel algorithms and design flows for synthesis and verification, such as (1) domain-specific multi-armed bandits in optimizing synthesis flows as permutation testing problem, which outperforms state-of-the-art baselines at post-routing stages; (2) reinforcement learning based imitation learning to discover novel scheduling algorithm at polynomial time complexity but achieve near-optimal solutions (e.g., ILP); (3) explainable supervised learning based technology mapping algorithm that outperforms ABC technology mapper; (4) DAG-aware synthesis orchestration that explores novel DAG-aware synthesis algorithm design concept to improve both quality-of-results and runtime.

Publications: DAC'21, TCAD'22, TinyML'22, DAC'23 (under review)

• LightRidge: End-to-end photonic compiler framework for optical neural networks

This work is the first effort in building modern Physics Compiler, specifically, a *photonic compiler* framework to deal with fundamental optical physics and emerging optical computing system emulations(https:

//ycunxi.github.io/lightbridge/index.html). It features with a) heterogeneous HPC accelerated physics engines, b) highly versatile and flexible optical physics modelling, c) user-friendly front-end APIs, d) and backend hardware deployment supports. This enables a complete full-stack design and exploration from ML algorithms, to hardware-software codesign and multi-task learning (MTL), finally to the hardware and device level.

Publications: Nature Scientific Report 2021, ROAD4DNN@DAC21, OSCAR@ISCA22, ASPLOS'23 (under review)

• Agile Device-to-System Co-Optimization for Optical Neural Networks This work realizes quantization with arbitrary digits in Hardware-Software Codesign in Optical Neural Networks. Exploring the best algorithm for Gumbel-Softmax with LightRidge, we can train the model with quantization for the hardware to close the gap between simulation and experiments.

Publication: ICCAD'22, DAC'23 (under review)

• Physical Adversarial Attacks of Diffractive Deep Neural Networks To study vulnerability and robustness of optical neural networks, we develop the first adversarial attack formulations over optical physical meanings, and provide a comprehensive analysis of adversarial robustness of D2NNs under practical adversarial threats over optical domains. This is also the first work on analyzing adversarial robustness of complex-valued neural networks.

Publications: DAC'21, ROAD4NN@DAC'22, LPR'July 2022.

SERVICES

Reviewer: DAC 2021, ICCAD 2022, DATE 2023, DAC 2023.

Journal Review:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)

Light: Science & Applications - Nature (LSA)

TEACHING EXPERIENCE

ECE/CS 3700 - Digital System Design, Teaching Assistant, Fall'22, Fall'21

SKILLS

Programming skills: Python, BASH, LATEX, C/C++

Platforms: Linux (RHEL, Ubuntu)