

Principal Components Analysis

January 10th, 2025

Anders Stockmarr
Section for Statistics and Data Analysis, DTU
anst@dtu.dk

DTU Compute

Department of Applied Mathematics and Computer Science

Programme

Monday: Statistical Inference, the t-test

Tuesday: Simple and Multiple Regression

Wednesday: ANOVA, ANCOVA, and Linear Models

Thursday: Categorical Data, Writing Statistical

Reports, Logistic regression

Friday: Repeated Measurements, Principal

Component Analysis

Contents:

- 1. Introduction.
- 2. Example: Wine data variable separation
- 3. Principal Components Analysis
- 4. PCA of the Wine Data
- 5. Diagnostics
- 6. Example: Jam
- 7. Example: Horse.

Introduction

PCA: Modeling Data

- In all previous parts of the course, data has been subdivided into two classes:
 - Response variables;
 - explanatory variables.
- The data were analyzed in order to identify impact of the explanatory variable on the response variables.
- What if the target of analysis isn't to identify effects;
- But to uncover the structure of a complicated set of data?

This is the essence of the use of

Principal Components Analysis - PCA

Main example: The Wine data

load("Data/Winedata.Rdata")

• A dataset consisting of n=178 Italian wines. Of these, 59 are Barolo wines, 71 are Grignolino wines, and 48 are Barbera wines. Two subelements: wines and vintages (Barolo, Grignolino or Barbera).

• 13 characteristics of the wines:

1) Alcohol

2) MalicAcid

3) Ash

4) Alkalinity of ash: AlcAsh 11) Color hue: Hue

5) Magnesium: Mg

6) Total Phenols: Phenols

7) Flavanoids: Flav

8) Nonflavanoid phenols: NonFlavPhenols

9) Proanthocyanins: Proa

10) Color intensity: Color

12) OD280/OD315 protein measurement: OD

13) Proline (amino acid): Proline

Variation of Vintages

The Wine Data

- What causes wines to be different?
- With the 13 characteristics, we can distinguish wines through differences in the characteristics. But are all 13 characteristics necessary? Some may be redundant.
- If we can identify scales (linear combinations of the characteristics) where the characteristics vary the most, we can also find a scale that differentiates optimally between the wines.

• The variance covariance matrix of the wine characteristics:

round	(var ((wines)	.diai	ts=2

round (var (wrne	s), argits-	٠٧)											
	Alcohol M	MalicAcid	Ash	AlcAsh	Mg	Phenols	Flav	${\tt NonFlavPhenols}$	Proa	Color	Hue	OD	Proline
Alcohol	0.66	0.09	0.05	-0.84	3.14	0.15	0.19	-0.02	0.06	1.03	-0.01	0.04	164.57
MalicAcid	0.09	1.25	0.05	1.08	-0.87	-0.23	-0.46	0.04	-0.14	0.64	-0.14	-0.29	-67.55
Ash	0.05	0.05	0.08	0.41	1.12	0.02	0.03	0.01	0.00	0.16	0.00	0.00	19.32
AlcAsh	-0.84	1.08	0.41	11.15	-3.97	-0.67	-1.17	0.15	-0.38	0.15	-0.21	-0.66	-463.36
Mg	3.14	-0.87	1.12	-3.97	203.99	1.92	2.79	-0.46	1.93	6.62	0.18	0.67	1769.16
Phenols	0.15	-0.23	0.02	-0.67	1.92	0.39	0.54	-0.04	0.22	-0.08	0.06	0.31	98.17
Flav	0.19	-0.46	0.03	-1.17	2.79	0.54	1.00	-0.07	0.37	-0.40	0.12	0.56	155.45
NonFlavPhenols	-0.02	0.04	0.01	0.15	-0.46	-0.04	-0.07	0.02	-0.03	0.04	-0.01	-0.04	-12.20
Proa	0.06	-0.14	0.00	-0.38	1.93	0.22	0.37	-0.03	0.33	-0.03	0.04	0.21	59.55
Color	1.03	0.64	0.16	0.15	6.62	-0.08	-0.40	0.04	-0.03	5.37	-0.28	-0.71	230.77
Hue	-0.01	-0.14	0.00	-0.21	0.18	0.06	0.12	-0.01	0.04	-0.28	0.05	0.09	17.00
OD	0.04	-0.29	0.00	-0.66	0.67	0.31	0.56	-0.04	0.21	-0.71	0.09	0.50	69.93
Proline	164.57	-67.55	19.32	-463.36	1769.16	98.17	155.45	-12.20	59.55	230.77	17.00	69.93	99166.72

- To avoid scaling problems, we must scale the data to the same scale.
- The scale function in R subtracts the mean and divide by the sd:

$$X^{scaled} = \frac{X - mean(X)}{sd(X)}$$

```
round(var(scale(wines)), digits=2)
                                              Mg Phenols Flav NonFlavPhenols Proa Color
              Alcohol MalicAcid
                                 Ash AlcAsh
                                                                                           Hue
                                                                                                  OD Proline
Alcohol
                 1.00
                          0.09 0.21 -0.31 0.27
                                                    0.29 0.24
                                                                        -0.16 0.14 0.55 -0.07 0.07
                                                                                                       0.64
MalicAcid
                 0.09
                          1.00 0.16
                                     0.29 -0.05
                                                    -0.34 - 0.41
                                                                        0.29 -0.22 0.25 -0.56 -0.37
                                                                                                       -0.19
Ash
                 0.21
                          0.16 1.00
                                      0.44 0.29
                                                   0.13 0.12
                                                                        0.19 0.01 0.26 -0.07 0.00
                                                                                                       0.22
AlcAsh
                -0.31
                        0.29 0.44
                                      1.00 -0.08
                                                   -0.32 - 0.35
                                                                        0.36 -0.20 0.02 -0.27 -0.28
                                                                                                       -0.44
                                                                                                       0.39
                 0.27
                         -0.05 0.29 -0.08
                                                    0.21 0.20
                                                                        -0.26 0.24 0.20 0.06 0.07
Μa
                                            1.00
Phenols
                 0.29
                          -0.34 0.13 -0.32 0.21
                                                    1.00 0.86
                                                                        -0.45 0.61 -0.06 0.43 0.70
                                                                                                       0.50
Flav
                 0.24
                          -0.41 0.12 -0.35 0.20
                                                   0.86 1.00
                                                                        -0.54 0.65 -0.17 0.54 0.79
                                                                                                       0.49
NonFlavPhenols
                -0.16
                         0.29 0.19
                                      0.36 -0.26
                                                    -0.45 - 0.54
                                                                        1.00 -0.37 0.14 -0.26 -0.50
                                                                                                       -0.31
                 0.14
                         -0.22 0.01 -0.20
                                                                        -0.37 1.00 -0.03 0.30 0.52
                                                                                                       0.33
Proa
                                            0.24
                                                    0.61 0.65
                         0.25 0.26
Color
                 0.55
                                       0.02
                                             0.20
                                                    -0.06 - 0.17
                                                                        0.14 -0.03 1.00 -0.52 -0.43
                                                                                                       0.32
Hue
                -0.07
                         -0.56 -0.07 -0.27 0.06
                                                    0.43 0.54
                                                                        -0.26 0.30 -0.52 1.00 0.57
                                                                                                       0.24
OD
                 0.07
                          -0.37 0.00 -0.28 0.07
                                                    0.70 0.79
                                                                        -0.50 0.52 -0.43 0.57 1.00
                                                                                                       0.31
                 0.64
                         -0.19 0.22 -0.44 0.39
                                                    0.50 0.49
                                                                        -0.31 0.33 0.32 0.24 0.31
Proline
                                                                                                       1.00
```


Let us consider the correlation matrix:

```
X<-var(scale(wines))</pre>
```

The sum of the standardized variances:

```
sum(diag(X))
[1] 13
```

Of course - there are 13 variables.

Original question: In which direction (scale) do wines data vary the most? Let us start by representing the data in a set of coordinates where no correlation is present, to get an overview not disturbed by correlations.

- No correlations means that X is represented by a diagonal matrix in these directions;
- in other words that the new coordinates T consists of eigenvectors for X; solution to the equation

$$Xv = \lambda v$$

Standard coordinates

13

Standard coordinates

• Eigenvectors in R:

```
T<-eigen(X)$vectors
```

The inverse of T is equal to the matrix transpose t(T):

```
Lambda<-t(T) %*%X%*%T
round (Lambda, digits=2)
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
0.00
                                             0.00
                                                 0.00
                                                       0.0
        2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
                                             0.00
[2,1 0.00
                                        0.00
                                                 0.00
                                                       0.0
[3,] 0.00 0.0 1.45 0.00 0.00 0.00 0.00 0.00
                                        0.00
                                             0.00
                                                 0.00
                                                       0.0
[4,] 0.00 0.0 0.00 0.92 0.00 0.00 0.00 0.00
                                        0.00
                                             0.00
                                                 0.00
                                                       0.0
        0.0 0.00 0.00 0.85 0.00 0.00 0.00 0.00
                                             0.00
[5,1 0.00
                                        0.00
                                                 0.00
                                                       0.0
[6,] 0.00 0.0 0.00 0.00 0.64 0.00 0.00 0.00
                                             0.00
                                        0.00
                                                 0.00
                                                       0.0
0.00
                                             0.00
                                                 0.00
                                                       0.0
[8,] 0.00
         0.0 0.00 0.00 0.00 0.00 0.00 0.35 0.00
                                             0.00
                                                 0.00
                                                       0.0
                                        0.00
[9,1 0.00
         0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.29
                                        0.00
                                             0.00
                                                 0.00
                                                       0.0
         0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
                                             0.00
[10,] 0.00
                                        0.25
                                                 0.00
                                                       0.0
[11,] 0.00
         0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
                                        0.00
                                             0.23 0.00
                                                       0.0
                                             0.00
0.00
                                                 0.17
                                                       0.0
0.00
                                             0.00
                                                 0.00
                                                       0.1
```



```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
0.0
0.0
[3,] 0.00 0.0 1.45 0.00 0.00 0.00 0.00 0.00
                            0.00 0.00
                                   0.00
                                       0.0
[4,] 0.00 0.0 0.00 0.92 0.00 0.00 0.00 0.00 0.00
                            0.00 0.00 0.00
                                       0.0
[5,] 0.00 0.0 0.00 0.00 0.85 0.00 0.00 0.00
                            0.00
                               0.00
                                   0.00
                                       0.0
[6,] 0.00 0.0 0.00 0.00 0.00 0.64 0.00 0.00 0.00
                            0.00 0.00 0.00
                                       0.0
[7,] 0.00 0.0 0.00 0.00 0.00 0.00 0.55 0.00 0.00
                            0.00 0.00 0.00
                                       0.0
[8,1 0.00 0.0 0.00 0.00 0.00 0.00 0.35 0.00
                            0.00 0.00 0.00
                                       0.0
0.00 0.00 0.00
                                       0.0
0.25 0.00 0.00
                                       0.0
0.0
0.00 0.00 0.17
                                       0.0
0.00 0.00 0.00
                                       0.1
```

- It turns out that this matrix **provides us with the answer to our problem**:
- Any (normed) linear combination of the 13 standardized characteristics will also be a (normed) linear combination of the 13 uncorrelated eigenvalues;
- A little consideration shows that because of this, the variance of any normed linear combination can never exceed the maximum variance of the eigenvectors – 4.71.
- The solution is thus **the first eigenvector**: **T**[,1].

The combination of the scaled data that varies the most:

```
round(T[,1],digits=2)
[1] -0.14  0.25  0.00  0.24 -0.14 -0.39 -0.42  0.30 -0.31  0.09 -0.30
[12] -0.38 -0.29
```

Thus the most varying combination of the scaled data is

```
-0.14*Alcohol+0.25*MalicAcid+0*Ash+0.24*AlcAsh-0.14*Mg-0.39*Phenols-0.42*PhenolsFlav+0.30*NonFlavPhenols-0.31*Proa+0.09*Color-0.30*Hue-0.38*OD-0.29*Proline
```

Where the $\,^\sim$ versions are the scaled variables, with the mean subtracted and divided by the standard deviation.

• This is the scale that we want to look at, when we want to maximize the separation of wines.


```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[2,] 0.00 2.5 0.00 0.00 0.00 0.00 0.00 0.00
                            0.00 0.00
                                      0.0
[3,] 0.00 0.0 1.45 0.00 0.00 0.00 0.00 0.00
                                      0.0
                            0.00 0.00
[4,] 0.00 0.0 0.00 0.92 0.00 0.00 0.00 0.00
                            0.00 0.00
                                  0.00
                                      0.0
[5,] 0.00 0.0 0.00 0.00 0.85 0.00 0.00 0.00 0.00
                            0.00 0.00 0.00
                                      0.0
[6,] 0.00 0.0 0.00 0.00 0.00 <mark>0.64</mark> 0.00 0.00 0.00
                            0.00 0.00 0.00
                                      0.0
0.00 0.00
                                  0.00
                                      0.0
[8,1 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.35 0.00
                                      0.0
                            0.00 0.00
                                  0.00
0.0
0.0
0.00 0.23 0.00
                                      0.0
0.00 0.00
                                      0.0
0.1
```

• Further conclusions:

- The scale, uncorrelated with the first eigenvector, that varies the most, is exactly the 2^{nd} eigenvector T[,2], with variance 2.5. And so on...
- The total variation after the coordinate shift is unchanged:

```
sum(diag(Lambda))
[1] 13
```

• Also note that the contribution from the 13th eigenvector is only 0.1/13, 0.7%

Percentage Variance Unexplained

Eigenvectors	% variance explained
1	36
2	55
3	67
4	74
5	80
6	85
7	89
8	92
9	94
10	96
11	98
12	99
13	100

Principal Component Analysis

- PCA is a method to handle many variables, which are mutually correlated.
- PCA seeks to identify underlying dimensions in a data material, and to estimate the relationship between these.
- PCA may be used as a data reducing method, often in relation to multiple regression.
- PCA reduces the number of explanatory variables to a lesser number of "principal komponents", with (we hope) nearly as much of the variation as the inital variables.

What PCA does is essentially the contents of the preceding slides!

• The eigenvectors on the previous slides are **exactly** the Principal Components.

Identification of Lower- Dimensional Spaces

Figure 3.10 Data swarm (quasi-planar)

Figure 3.11 Data swarm with 2 PCs

The First Principal Component - PC1

We look for the direction that **explains as much as possible of the variation in the data**. We assume here 3 variables and n=28:

$$p_1 = t_{11}X_1 + t_{21}X_2 + t_{31}X_3,$$

where $\sum_{j=1}^{3} t_{1j}^{2} = 1$.

- p are the "scores";
- t are the "loadings".

The Second Principal Component - PC2

We consider the plane perpendicular to **PC1**, and find the linear combination the explans the 2nd most variation:

$$p_2 = t_{12}X_1 + t_{22}X_2 + t_{32}X_3,$$

where
$$\sum_{j=1}^{3} t_{2j}^2 = 1$$

PC1 og PC2 and are orthogonal.

PCA of the Wines Data

```
wines.PC<- PCA(scale(wines))</pre>
names(wines.PC)
[1] "scores"
                   "loadings"
                                   "var"
                                                   "totalvar"
[5] "centered.data"
summary(wines.PC)
PCA model of a mean-centered matrix of 178 by 13
Number of PCs to cover 90 percent of the variance: 8
           Var Cumul. var.
PC 1 36.198848
                  36.19885
PC 2 19.207490 55.40634
PC 3 11.123631 66.52997
PC 4 7.069030 73.59900
PC 5 6.563294 80.16229
      1.930019 96.16972
PC 10
```

Lets take a look at the components

PCA of the Wines Data – the Loadings

The loadings are the coordinates of the principal components:

```
> head(wines.PC$loadings,n=3)
                  PC 1
                           PC 2
                                       PC 3
                                                   PC 4
                                                               PC 5
                                                                        PC 6
Alcohol
         -0.144329395 0.4836515 -0.20738262 0.0178563 -0.26566365 0.2135386
MalicAcid 0.245187580 0.2249309 0.08901289 -0.5368903 0.03521363 0.5368138
Ash
           0.002051061 0.3160688 0.62622390 0.2141756 -0.14302547 0.1544747
                                         PC 9
                                                    PC 10
                                                                PC 11
Alcohol
         -0.05639636 0.39613926 -0.50861912 0.21160473 0.22591696 -0.26628645
MalicAcid 0.42052391 0.06582674 0.07528304 -0.30907994 -0.07648554 0.12169604
                     -0.17026002 0.30769445 -0.02712539 0.49869142 -0.04962237
Ash
Alcohol
           0.01496997
MalicAcid
           0.02596375
> head(T,n=
                        [,2]
                                    [,3]
                                               [,4]
                                                           [,5]
                                                                     [,6]
                                                                                 [,7]
[1,] -0.144329395 -0.4836515 -0.20738262 -0.0178563 0.26566365 0.2135386
[2,] 0.245187580 -0.2249309 0.08901289 0.5368903 -0.03521363 0.5368138 -0.42052391
[3,] 0.002051061 -0.3160688 0.62622390 -0.2141756 0.14302547 0.15
                        [,9]
                                   [,10]
                                               [,11]
[1,] 0.39613926 0.50861912 0.21160473 -0.22591696 -0.26628645/ -0.01496997
[2,] 0.06582674 -0.07528304 -0.30907994 0.07648554 0.12169604
[3,] -0.17026002 -0.30769445 -0.02712539 -0.49869142 -0.04962237
```

The principal components are only identified up to a sign change.

PCA of the Wines Data – the Scores

• The **scores** are the *new coordinates* of the (scaled) wines data *relative to the principal components*:

```
head(wines.PC$scores,n=3)
                                                  PC 6
      PC 1
               PC 2
                        PC 3
                                PC 4
                                         PC 5
                                                           PC 7
[1,] -3.307421 1.4394023 -0.1652728 0.2150246 0.6910933 0.2232504 0.59474883
[2,] -2.203250 -0.3324551 -2.0207571 0.2905387 -0.2569299 0.9245123 0.05362434
[3,] -2.509661 1.0282507 0.9800541 -0.7228632 -0.2503270 -0.5477310 0.42301218
       PC 8
                PC 9
                       PC 10
                                PC 11
                                           PC 12
                                                      PC 13
[1,] -0.06495586 -0.6396384 1.0180840 0.4502932 0.5392891439\sqrt{-0.066052305}
[2,] -1.02153432 0.3079780 0.1592521 0.1422560 0.387145649\oint 0.003626273
[3,] 0.34324787 1.1745213 0.1130420 0.2858665 0.0005819316 0.021655423
> head(scale(wines)%*%T,n=3)
      [,1]
                      [,3]
              [,2]
                              [,4]
                                      [,5]
                                              [,6]
                                                       [,7]
[1,] -3.307421 -1.4394023 -0.1652728 -0.2150246 -0.6910933 0.2232504 -0.59474883
[2,] -2.203250 0.3324551 -2.0207571 -0.2905387 0.2569299 0.9245123 -0.05362434
[3,] -2.509661 -1.0282507 0.9800541 0.7228632 0.2503270 -0.5477310 -0.42301218
       [,8]
               [,9]
                      \lceil ,10 \rceil
                               \lceil ,11 \rceil
                                         [,12]
                                                  \lceil ,13 \rceil
[1,] -0.06495586 0.6396384 1.0180840 -0.4502932 0.5392891439 \sqrt{0.066052305}
[2,] -1.02153432 -0.3079780 0.1592521 -0.1422560 0.387145649\oint -0.003626273
[3,] 0.34324787 -1.1745213 0.1130420 -0.2858665 0.0005819316\-0.021655423
```

• Note the same sign changes

PCA of the Wines data - var, totalvar and centered.data

```
wines.PC$var
    PC 1    PC 2    PC 3    PC 4    PC 5    PC 6    PC 7    PC 8
4.7058503 2.4969737 1.4460720 0.9189739 0.8532282 0.6416570 0.5510283 0.3484974
    PC 9    PC 10    PC 11    PC 12    PC 13
0.2888799 0.2509025 0.2257886 0.1687702 0.1033779

wines.PC$totalvar
[1] 13
wines.PC$centered.data
[1] TRUE
```

We recognize the eigenvalues of the matrix Λ , and the sum of these. Lastly an indicator that we have 'done the right thing' (in this case).

Selecting the Number of Principal **Components – the Skree Plot**

plot(1:13, wines.PC\$var, xlab="PC", ylab="var")

- Rules of thumb:
- You select a number of principal components where the 'elbow' of the graph is.
- You usually (but not always) only select principal components with a variance greater than 1 – if the value is lower, the PC explain less than one average ordinary observation.
- You fix the amount of total variation that you need explained t.ex. 80%.

The Score plot

scoreplot(wines.PC, col = vintages, pch= as.numeric(vintages), lwd=2)
legend("bottomright", levels(vintages), col=1:3, pch=1:3)

The Loading plot

loadingplot(wines.PC, show.names= TRUE)

Higher Order Loading Plots

```
par(mfrow=c(1,2))
loadingplot(wines.PC, pc=c(1,3), show.names= TRUE)
loadingplot(wines.PC, pc=c(2,3), show.names= TRUE)
```


The Biplot

biplot(wines.PC, score.col = vintages, show.names = "loadings")
legend("bottomright", levels(vintages), col=1:3, pch=1:3)

Alternative Biplot

ggbiplot(prcomp(scale(wines)), groups=vintages, ellipse=T)

Diagnostic Plots – Residuals and Leverage

Diagnostic Plots

Plotting distances for 3 principal components, leverage (left) and residual (right):

wines.PCA<- princomp(wines, cor = TRUE)</pre>

res<-pcaDiagplot(wines, wines.PCA, a=3) Orthogonal distance OD S Score distance 0 0 50 100 150 50 100 150 Object number Object number

Diagnostic Plots

```
par(mfrow=c(1,1))
plot(res$SDist, res$ODist, type="n")
text(res$SDist, res$ODist, labels=as.character(1:178))
```


No points have high leverage and also high residual

Application Areas for PCR

Areas with complex, correlated data structures:

- Quantitative Finance;
- Neuroscience
- Spectroscopy(UV-VIS, x-ray, IR, NIR, NMR etc.)
- Questionaires
- Image data
- Etc.

Example: Jam

- Results from a taste survey for jam. 12 observations of raspberry jam, where berries are picked at four locations C1, C2, C3, C4, and harvested at three time points H1, H2, H3.
- A response variable Y is an averaged preference score from 0 to 9, given by 114 repræsentative consumers.
- Explanatory variables are twelve sensoric variables, where trained sensoric panel members have evaluated these:

1) REDNESS	Redness	7) SOURNESS	Sourness
2) COLOUR	Colour intensity	8) BITTERNE	Bitterness
3) SHININES	Shininess	9) OFF.FLAV	Off-flavour
4) R.SMELL	Raspberry smell	10) JUICINES	Juiciness
5) R.FLAV	Raspberry taste	11) THICKNES	Thickness
6) SWEETNES	Sweetness	12) CHEW:RES	Chewing resistance

Performing PCA

```
jam<-read.table("Data/Jam.txt", header=TRUE, quote="\"")
# first column is names, last column is outcome:
pca.1<- PCA(scale(jam[ ,-c(1,14)]))
summary(pca.1)</pre>
```

PCA model of a mean-centered matrix of 12 by 12 Number of PCs to cover 90 percent of the variance: 3

```
Var Cumul. var.

PC 1 43.11404052 43.11404

PC 2 28.45577680 71.56982

PC 3 20.92326359 92.49308

PC 4 3.41038319 95.90346

PC 5 1.92478143 97.82825

PC 10 0.05286637 99.99396

>
```


Example: Jam - Skree Plot

plot(1:length(pca.1\$var), pca.1\$var, type="b")

• We choose 3 principal components

Example: Jam – Loading plot

loadingplot(pca.1, show.names= TRUE)

Example: Jam – Loading plot

```
par(mfrow=c(1,2)) loadingplot(pca.1, pc=c(1,3), show.names= TRUE); loadingplot(pca.1, pc=c(2,3), show.names= TRUE) par(mfrow=c(1,1))
```


Example: Jam - Loadings. Labelling the PCs

>loadings(pca.1)

Loadings:

	PC 1	L PC 2	PC 3
REDNESS	0.154	-0.492	-0.104
COLOUR	0.204	-0.472	-0.029
SHININES	0.349	-0.180	0.246
R.SMELL	0.383	0.221	0.154
R.FLAV	0.382	0.253	-0.015
SWEETNES	-0.059	-0.058	-0.599
SOURNESS	0.385	0.024	0.239
BITTERNE	-0.188	-0.260	0.459
OFF.FLAV	-0.364	-0.245	-0.093
JUICINES	0.353	-0.190	-0.195
THICKNES	-0.189	0.409	0.176
CHEW.RES	-0.201	-0.234	0.446

```
PC1: Raspberry Feeling
PC2: Looks and
consistency
PC3: Taste experience;
sweetness (-) /
bitterness (+)/ chewing
```

resistance (+)

PCR – Principal Component Regression Linear Regression of Response on PCs

- We wish to regress the Response variable Y, the averaged preference score, on scores of Raspberry feeling, Looks and Consistency, and Taste Experience
- We will skip the selection procedure for number of PCAs. In PCR, the selection of the number of PCs needs to involve the response through cross-validation. We will stick to 3 PCs.

PCR – Principal Component Regression Linear Regression of Response on PCs

- We use the three PCS as explanatory variables in a multiple regression model, with Y as response.
- We thus consider the following model:

$$Y_i = \beta_0 + \beta_1 \cdot PC1_i + \beta_2 \cdot PC2_i + \beta_3 \cdot PC3_i + \varepsilon_i$$

where Y_i is the preference, and $PC1_i$, $PC2_i$ and $PC3_i$ are the principal component scores: our new, known and labeled explanatory variables. Finally, we have $\varepsilon_i \sim N(0, \sigma^2)$.

PCR - Principal Component Regression Linear Regression of Response on PCs

Leaving out an outlier:

```
scores<-pca.1$scores
analysis<-lm(jam$PREFEREN[-12] ~
    ., as.data.frame(scores[-12 ,1:3]))

par(mfrow=c(2,2))
plot(analysis,which=1:4)
par(mfrow=c(1,1))</pre>
```


PCR - Principal Component Regression Linear Regression of Response on PCs

Model Reduction:

```
drop1(analysis, test="F")
Single term deletions
Model:
jam$PREFEREN[-12] ~ `PC 1` + `PC 2` + `PC 3`
      Df Sum of Sq RSS AIC F value Pr(>F)
                  1.093 - 17.396
<none>
`PC 1` 1 0.5154 1.609 -15.148 3.2998
                                         0.1121
`PC 2` 1 31.1115 32.205 17.816 199.2083 2.126e-06 ***
`PC 3` 1 15.7846 16.878 10.709 101.0694 2.066e-05 ***
analysis<-lm(jam$PREFEREN ~ . , as.data.frame(scores[,2:3]))</pre>
drop1(analysis, test="F")
Single term deletions
Model:
jam$PREFEREN ~ `PC 2` + `PC 3`
      Df Sum of Sq RSS AIC F value Pr(>F)
<none>
                  5.148 -4.1546
`PC 3` 1 17.879 23.028 11.8215 31.255 0.0003383 ***
```

PCR - Principal Component Regression Linear Regression of Response on PCs


```
> summary(analysis)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0166667 0.2183356 22.976864 2.662062e-09

`PC 2` -0.8962075 0.1234079 -7.262157 4.753719e-05

`PC 3` -0.8045862 0.1439174 -5.590609 3.383175e-04
```

- Looks and Consistency and Taste Experience has an impact on the preference, while Raspberry Feeling does not;
- PC2: Evaluators appreciate Redness and Colour, but not Thickness of berries.
- PC3: Evaluators appreciate Sweetness, but not Bitterness and Chewing Resistance.

Example: Image Analysis

Horse Analysis

```
horse <- readJPEG("Data/horse.jpg")</pre>
ncol(horse)
[1] 480
nrow(horse)
[1] 341
#480*341 pixels - 480*341*3=491.040 numbers
# array with 3 layers:
str(horse)
 num [1:341, 1:480, 1:3] 0.796 0.796 0.796 0.796 ...
```

• Why 3 layers? RGB-coding; Red-Green-Blue.

PCA Example: Image compression

Color pictures are coded with an intensity of Red, Green and Blue:

Horse Analysis

```
str(horse)
num [1:341, 1:480, 1:3] 0.796 0.796 0.796 0.796 0.796 ...
red <- horse[,,1]
green<- horse[,,2]</pre>
blue <- horse[,,3]</pre>
Running PCA on red, green and blue
(with prcomp() for compatibility):
horse.red.pca <- prcomp(red, center = FALSE)</pre>
horse.green.pca<- prcomp(green, center = FALSE)
horse.blue.pca <- prcomp(blue, center = FALSE)
Gather PCA objects in one list:
```

rgb.pca <- list(horse.red.pca, horse.green.pca, horse.blue.pca)

Horse Analysis

Indexing after the amount of principal components (max is the number of rows in the picture – 341):

```
>index<-c(3,6,9,12,15,18,50,100)
```

The function below reconstructs the picture from the first i principal components;

'x' are the principal components, 'rotation' are the loadings (se ?prcomp), such that what is returned is the inversion from scores to standard coordinates (scores%*%T-1) which constitute the reconstruction. If T is all the PCs, the originale picture is obtained.

```
my.reconstruct<-function(j) {</pre>
  return( j$x[,1:i] %*% t(j$rotation[,1:i]))
```

Create picture based on the first *i* principal components:

```
for (i in index) {
 pca.picture <- sapply(rgb.pca,my.reconstruct,simplify = 'array')</pre>
 writeJPEG(pca.picture,
   paste("picture/horse compressed ",i," components.jpg", sep =""))
52
```

Horse Analysis - Results

6 PCs

3 PCs

12 PCs

15PCs

9 PCs

18PCs

50PCs

100PCs

Original

DTU Compute, Technical University of Denmark

Horse Analysis – Conclusion

- Further immediate use of PCs above 100 does not change the picture quality. It is hard to tell the difference to the original with 341 components...
- The compression rate for the picture with 100 PCs is 58% (ratio of bit sizes).
- One can use the picture with 100PCs, and save 58% storage.