IIC3793 Audición por Computador Departamento de Ciencias de la Computación Escuela de Ingeniería Profesor: Patricio de la Cuadra

Email: pcuadra@uc.cl

Ayudante: Christian Escobar Email: cmescobar@uc.cl

¿Cómo percibimos el mundo a través del sonido? ¿qué información podemos extraer del sonido? ¿podemos crear máquinas con este tipo de habilidades? En este curso se abordarán los principales fundamentos en el campo de la audición por computador con un énfasis especial en señales musicales, incluyendo tópicos como análisis y procesamiento de señales de audio, clasificación de audio, reconocimiento de patrones, codificación perceptual de audio, entre otros. Al finalizar el curso, el alumno estará capacitado para realizar investigación en el tema de audición través del computador.

INFORMACION ADMINISTRATIVA

Horario: M-J:2 (10-11:20) Sala: Virtual Zoom vía Canvas

Atención alumnos: pedir cita por email a <u>pcuadra@uc.cl</u> o cmescobar@uc.cl

OBJETIVOS

Al finalizar el curso el alumno será capaz de:

- Convertir señales de audio digital entre su representación temporal y frecuencial ajustando los parámetros según la aplicación deseada.
- Descomponer e interpretar señales temporales reales como suma de sinusoides.
- Extraer descriptores temporales y frecuenciales de señales de audio controlando su resolución.
- Detectar información de altura de señal musical simple: melodías y acordes.
- Detectar información temporal de señal musical simple: seguimiento de tempo (beat tracking), alineamiento (DTW)
- Seccionar o segmentar una señal de audio según el criterio requerido (ej. ataques, cambios de alturas, cambios en intensidad, timbre, vocales, etc).
- Clasificar señales de audio según sus contenidos de información

CONTENIDOS

- 1. Fundamentos de música acústica y teoría musical.
- 2. Representación de señales en tiempo y en frecuencia.
- 3. Características de bajo nivel
- 4. Detección de transientes (onset detection)

- 5. Audición humana.
- 6. Periodicidad en el sonido y la música, pitch tracking
- 7. Armonía: alineamiento, reconocimiento de acordes y tonalidades
- 8. Estructura: análisis de forma y segmentación
- 9. Clasificación de sonidos: identificadores de artista e instrumento
- 10. Análisis y clasificación de voz.
- 11. Análisis de tempo y beat tracking

METODOLOGÍA

- Seminario de discusión de tópicos, con participación activa de los estudiantes.
- Clases expositivas con participación activa de los estudiantes.
- Talleres prácticos en Python o MATLAB

EVALUACIÓN

- Talleres desarrollar en clases y Tareas (40%)
- Exposiciones orales sobre la literatura relacionada con el proyecto final de cada alumno (20%)
- Proyecto final (30%)
- Participación en clases (10%)
- Asistencia mínima obligatoria: 80%, menor asistencia penalizará la nota final

PROYECTO FINAL

El proyecto final consiste en un trabajo original a desarrollar por los alumnos relacionado con el tema de la audición por computador. En él deben redactar un articulo, que incluya introducción, marco teórico, descripción de lo realizado, discusión, conclusiones y bibliografía. Además, usualmente también consistirá de software desarrollado por los alumnos. Idealmente, el artículo deberá ser escrito en formato de conferencia (por ejemplo ISMIR o ICMC) y ojalá en inglés para los alumnos de postgrado si desean enviar su artículo a alguna conferencia. Los proyectos serán presentados al curso para su evaluación final.

CALENDARIO TENTATIVO 2019

Martes	CONTENIDO	Jueves	CONTENIDO	ACTIVIDADES
11/08		13/08		
18/08	Introducción	20/08	Sonido, ondas, sinusoides	Taller Problema invertido
25/08	Revisión Taller	27/08	Síntesis/análisis ventanas	Taller Síntesis, sinusoides
01/09	Revisión Taller	03/09	Descriptores temporales	Taller Descriptores temporales
08/09	Revisión Taller	10/09	Descriptores frecuenciales, Cromagrama, subbands, mfcc	Taller Descriptores frecuenciales
15/09	Revisión Taller	17/09	FERIADO	

22/09	FERIADO	24/09	FERIADO	
29/09	PROYECTO 1	01/10	Pitch, Alturas,	Taller detección de
			Escalas	alturas
06/10	Revisión Taller	08/10	Armonía	Taller detección de
				acordes
13/10	Revisión Taller	15/10	Segmentación	Taller
				Segmentación
20/10	Revisión Taller	22/10	Clasificación 1	Taller Clasificación
27/10	Revisión Taller	29/10	Separación de	Taller Separación
			fuentes	Fuentes
03/11	Revisión Taller	05/11	PROYECTO 2	
10/11	PROYECTO 2	12/11	Voz	Taller Voz
17/11	Revisión Taller	19/11	Beat-Tempo	Taller beat-tempo
24/11	Revisión Taller	26/11	Preguntas	
			proyectos	

Este calendario es tentativo y puede sufrir modificaciones durante el transcurso del semestre. Las fechas de las exposiciones orales sobre la literatura serán asignadas a comienzos de semestre y debidamente notificadas.

BIBLIOGRAFÍA

- Lerch, A. "An Introduction to Audio Content Analysis". John Wiley & Sons (2012)
- Li, T., Ogihara, M. and Tzanetakis, G. "Music Data Mining". CRC Press (2012)
- Klapuri, A. and Davy, M. (Eds.) "Signal Processing Methods for Music Transcription". Springer (2006)
- Müller, M. "Information Retrieval for Music and Motion". Springer (2007)
- Beauchamp, J.W. (editor) Analysis, Synthesis, and Perception of Musical Sounds, New York, Springer, 2007.
- Bregman, A. Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA, MIT Press, 1994.
- Wang, D., Brown, J. (editors). Computational Auditory Scene Analysis: Principles, Algorithms and Applications. Willey-IEEE Press, 2006.
- Puckette, M. The Theory and Technique of Electronic Music, Singapour, World Scientific, 2007.
- Smith, J.O. "Mathematics of the Discrete Fourier Transform (DFT)". 2nd Edition, W3K Publishing (2007)
- Smith, J.O. Introduction to Digital Filters with Audio Applications. W3K Publishing, 2007.
- Tempelaard, S. Signal Processing, Speech and Music (Studies on New Music Research), Swets & Zeitlinger, 1996.