2018년 2학기 범주형자료분석

통계자료의 유형

양적자료 : 연속형 자료, 키, 몸무게, 소득, 강수량, 자녀의 수 등 # 질적자료 : 범주형 자료, 명목형(성별, 지역), 순서형(강의평가)

패키지 vcd의 데이터 프레임 Arthritis

```
str(Arthritis)
'data frame':
                   84 obs. of 5 variables:
$ ID
           : int 57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo", "Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex
            : Factor w/ 2 levels "Female", "Male": 2 2 2 2 2 2 2 2 2 2 ...
            : int 27 29 30 32 46 58 59 59 63 63 ...
$ Improved : Ord.factor w/ 3 levels "None" ("Some" \( \).: 2 1 1 3 3 3 1 3 1 1 ...
head(Arthritis, n=5)
 ID Treatment Sex Age Improved
1 57
      Treated Male 27
                            Some
2 46
      Treated Male 29
                            None
3 77
       Treated Male 30
                            None
       Treated Male 32
4 17
                          Marked
5 36
      Treated Male 46
                          Marked
# 범주형 변수: Treatment(Placebo, Treated), Sex(Male, Female), Improved(None, Some, Marked)
# 연속형 변수 : Age
# 설명변수 : Treatment, Sex. Age
# 반응변수 : Improved
```

분할표 작성

table(var1,var2,var3,.....) : N개의 범주형 변수로 N차원 분할표 작성
prop.table(table) : 상대도수 분할표(두 변수의 결합 분포) 작성
prop.table(table,margins) : margins로 정의된 방향으로 조건분포 작성

Improved 에 대한 분할표

소숫점 자리수 조정

Improved의 상대도수 분포표

> with(Arthritis, table(Improved))
Improved
None Some Marked
42 14 28

> options("digits")
\$'digits'
[1] 7
> options("digits"=2)

Treatment와 Improved의 2차원 분할표 및 상대도수 분포표

```
> my_table2 <- with(Arthritis, table(Treatment,Improved))</pre>
         Improved
Treatment None Some Marked
 Placebo
           29
                  7
 Treated
           13
                  7
                         21
> prop.table(my_table2)
        Improved
Treatment
                            Some
                                      Marked
 Placebo
           0.34523810 0.08333333 0.08333333
  Treated
           0.15476190 0.08333333 0.25000000
```

2차원 조건분포 분할표 작성

prop.table(table, margin)

table : 함수 table()로 작성된 분할표

margin : 조건변수 지정 | margin=1 : 행변수가 조건변수, margin=2 : 열 변수가 조건변수

행을 기준으로 다 더하면 1

> prop.table(my_table2, margin=1)

Improved

Treatment None Some Marked
Placebo 0.6744186 0.1627907 0.1627907
Treated 0.3170732 0.1707317 0.5121951

열을 기준으로 다 더하면 1

> prop.table(my_table2, margin=2)

Improved

Treatment None Some Marked
Placebo 0.6904762 0.5000000 0.2500000
Treated 0.3095238 0.5000000 0.7500000

범주형 데이터를 위한 그래프

분할표 : 자료의 특성을 정확하게 판단하기 어려움

자료의 특성 파악을 위해 적절한 그래프 이용이 필수

범주형 데이터에 적합한 그래프 : 막대그래프 / 파이그래프 / Mosaic plot(이변량 이상의 경우 적합)

막대그래프 작성을 위한 함수

graphics 패키지 : plot() : 요인을 자료로 입력

barplot() : 도수분포표를 자료 입력

ggplot2 패키지 : geom_bar() : 요인,도수분포표 모두 사용 가능

파이그래프 작성을 위한 함수

graphics 패키지 : pie() : 도수분포표 자료로 입력

ggplot2 패키지 : geom_bar() and coord_polar() : 굳이 중요한 그래프는 아님.

Mosaic plot 작성을 위한 함수

vcd 패키지에 있는 함수를 사용.

예제 데이터 state.region,미국 50개 주를 4개 지역 범주로 구분한 요인

> str(state_region)

Factor w/ 4 levels "Northeast", "South", ..: 2 4 4 2 4 4 1 2 2 2 ...

> head(state,region, n=5)

[1] South West West South West

Levels: Northeast South North Central West

막대그래프 그리기

만약 그래프를 90도 돌리고 싶다면?

> ggplot(data.frame(state.region), aes(x=state.region)) + coord_flip() + geom_bar()

도수분포표를 자료로 이용하는 경우

```
> counts <- table(state_region)
> counts
state_region
     Northeast
                      South
                               North Central
                                                   West
           9
                       16
                                     12
                                                     13
# base graphics 로 막대그래프 그리기
                                        # ggplot2 로 막대그래프 그리기
                                        # 데이터프레임으로 전환 후 작성.
                                        # geom_bar()의 디폴트 stat은 "count" 이다.
> barplot(counts, col="steelblue")
                                        # stat = "indentity" : 데이터를 있는 그대로 그려라.
                                        df_1 (- as.data,frame(counts)
                                        > ggplot(df_1, aes(x=state,region, y=Freq)) + geom_bar(stat="identity", fill="skyblue")
```

파이그래프

문자열 잇기

```
> # paste : 두 문자열을 이어라.
> x1 ⟨- paste("stat", 1:20)
> head(x1, n=10)
[1] "stat 1" "stat 2" "stat 3" "stat 4" "stat 5" "stat 6" "stat 7" "stat 8" "stat 9" "stat 10"
> # paste0 : 공백 없이 두 문자를 이어라.
> x2 ⟨- paste0("stat", 1:20)
> head(x2, n=10)
[1] "stat1" "stat2" "stat3" "stat4" "stat5" "stat6" "stat7" "stat8" "stat9" "stat10"
```

Fan Plot

이변량 범주형 자료를 위한 그래프

- # 막대그래프
- # 옆으로 쌓아올린 그래프
- # 옆으로 나란한 그래프
- # Mosaic 그래프
- # 두 개 이상의 범주형 변수 관계 탐색에 유용한 그래프

패키지 vcd 의 Arthritis

- > library(vcd)
- > my_table <- with(Arthritis, table(Treatment,Improved))</pre>
- > my_table

Improved

Treatment None Some Marked

Placebo 29 7 7 Treated 13 7 21

ggplot2 의 쌓아 올린 막대 그래프

옆으로 붙여 놓은 막대 그래프

base graphics barplot(t(my_table), beside=TRUE, legend.text=TRUE, ylim=c(0,35)) # ggplot2 # geom_bar()의 position 디폴트는 : stacked # dodge : 붙음 / dodge2 : 조금 떨어짐. > pp <- ggplot(Arthritis, aes(x=Treatment, fill=Improved))</pre> > pp + geom_bar(position="dodge2") 35 None 30 Some ☐ Marked 20 -25 Improved 20 count Some 5 Marked 10 0 Placebo Treated Placebo Treatment base graphics ggplot2

geom_bar() 에서 position = "fill" 지정

Mosaic Plot (분할표 입력)

Mosaic Plot (원자료 입력)

예제 데이터 Titanic

> str(Titanic)

'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...

- attr(*, "dimnames")=List of 4

..\$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"

..\$ Sex : chr [1:2] "Male" "Female"

..\$ Age : chr [1:2] "Child" "Adult"

..\$ Survived: chr [1:2] "No" "Yes "

반응변수 : Survived

설명변수 : Class, Sex, Age

생존에 큰 영향을 미친 변수는?

Titanic 의 Mosaic Plot

예제 데이터 : 부모와 어린 자녀의 안전벨트 착용 여부에 대한 조사 데이터

반응변수 : 아이의 안전벨트 착용 여부
설명변수 : 부모의 안전벨트 착용 여부
> belt 〈- matrix(c(58,8,2,16), nrow=2, ncol=2)
> dimnames(belt) 〈- list(parent=c("Yes","No"),child=c("Yes","No"))
> belt

belt 그래프 (base graphics)

belt 그래프 (ggplot2)

2차원 $i \times j$ 분할표의 구조 (관찰값 분할표)

			Y			# n_{ij} : i 번째 행, j 번째 열의 관찰값 빈도 수	
		1	2	 J			
15	1	n ₁₁	n_{12}	 n_{1J}	n_{1+}	# n_{i+} : i 번째 행의 빈도 수	
X	2	n_{21}	n_{22}	 n_{2J}	n_{2+}		
	:	3	:	 E	1	# n_{+j} : j 번째 열의 빈도 수	
	I	n_{I1}	n_{I2}	 n_{1J}	n_{I+}		
		n_{+1}	n_{+2}	 n_{+J}	n	# n : 총 빈도 수	

2×2 분할표의 연관성 측도 : Odds ratio

이항변수 : 두 개의 범주를 갖는 범주형 변수 # 두 이항변수의 연관성 측도 : 오즈비(Odds ratio) $odds = \frac{P(A)}{1 - P(A)}$

오즈(Odds) : 어떤 사건이 일어날 확률을 일어나지 않을 확률로 나눈 값

2×2 분할표에서의 오즈비(Odds ratio)

V	Υ		
^	Success	Failure	
1	n_{11}	n_{12}	
2	n_{21}	n_{22}	

X=1 인 경우, P(Y=Success) = π_1 # X=2 인 경우, P(Y=Success) = π_2

X=1 인 경우, Y의 Success odds : $odd1 = \frac{\pi_1}{1-\pi_1}$

X=2 인 경우, Y의 Success odds : $odd2 = \frac{\pi_2}{1-\pi_2}$

두 odds의 비율인 odds ratio : $\theta = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}$

오즈비의 특성

odds ratio :
$$\theta = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}$$

$0 < \theta < \infty$

두 변수 X, Y가 서로 독립이면, $\pi_1=\pi_2$ =〉 $\theta=1$

만일 $\theta>1$, $\pi_1>\pi_2$ 이면 X=1 에서의 성공 가능성이 더 높다.

만일 $\theta < 1$, $\pi_1 < \pi_2$ 이면 X=1 에서의 성공 가능성이 더 낮다.

odds raito θ 와 역수 $1/\theta$ 는 두 변수 사이의 같은 정도의 연관성을 보이나. 방향은 반대이다.

$\theta=0.5$: 첫 행의 odds가 둘째 행 odds의 0.5배 \Rightarrow 〉 둘째 행의 odds 가 첫 행 odds의 1/0.5 = 2배

Odds ratio θ 의 추정량

V	١	1
Х	Success	Failure
1	n_{11}	n_{12}
2	n_{21}	n_{22}

$$\hat{\theta} = \frac{p_1/1 - p_1}{p_2/1 - p_2} = \frac{n_{11}n_{22}}{n_{12}n_{21}} \text{,} \qquad p_1 = \frac{n_{11}}{n_{11} + n_{12}} \text{,} \qquad p_2 = \frac{n_{21}}{n_{21} + n_{22}}$$

Odds ratio 추정량 $\hat{\theta}$ 의 분포 : 오른쪽으로 심하게 치우쳐진 상태 ightarrow (0,1)의 구간과 (1, ∞)의 구간이 실질적으로 동일함.

효과적인 추론을 위해 추정량의 로그변환이 필요한 상황

로그 오즈비 추정량의 점근적인 분포 : $\log \hat{\theta} \approx N \left(\log \theta, \ \frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}} \right)$

$\log \theta$ 에 대한 $100 \times (1-\alpha)\%$ 의 신뢰구간 : $\log \hat{\theta} \pm z_{1-\alpha/2} SE(\log \hat{\theta})$

오즈비 θ 에 대한 신뢰구간 : $\log \theta$ 신뢰구간의 하한과 상한에 지수 역변환을 적용하여 계산

두 이항변수의 독립성 검정 $(H_0:\theta=1,\;H_1:\theta\neq 1)$ 에 사용

연습문제 : Aspirin 복용 여부가 Heart Attack 에 미치는 영향 분석

	group	Heart	Total	
١		Yes	No	Total
	Placebo	189	10845	11034
	Aspirin	104	10933	11037

Placebo 그룹의 odds : 189/10845 = 0.0174# Aspirin 그룹의 odds : 104/10933 = 0.0095# odds ratio 추정값 : 0.0174/0.0095 = 1.83

로그 odds ratio 의 95% 신뢰구간 : $0.605\pm1.96\times0.123=(0.365,0.846)$ # odds ratio 의 95% 신뢰구간 : $(\exp(0.365),\exp(0.846))=(1.44,2.33)$

패키지 vcd의 함수 oddsratio()

기본적인 사용법 : oddsratio(x, log=TRUE)

x : 2x2 행렬 혹은 table 객체

log=TRUE : 로그 오즈비 계산(디폴트) / log=FALSE : 오즈비 계산

두 이항변수의 독립성 검정 : oddsratio() 로 생성된 객체에 함수 summary() 또는 confint()를 적용

자료 입력

) library(vcd)

> aspirin (- matrix(c(189,104,10845,10933), nrow=2, ncol=2, dimnames=list(Group=c("Placebo","Aspirin"),HeartAttack=c("Yes","No")))

> aspirin

HeartAttack

Group Yes No Placebo 189 10845 Aspirin 104 10933

$\log \theta$ 의 추론

> my_odd1 <- oddsratio(aspirin)

> summary(my_odd1)

z test of coefficients:

Estimate Std. Error z value Pr(|z|)

Placebo: Aspirin/Yes: No 0.60544 0.12284 4.9286 8.282e-07 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1

Odds Ratio의 95% 신뢰구간

> my_odd2 <- oddsratio(aspirin,log=FALSE)

> confint(my_odd2)

2.5 % 97.5 %

Placebo: Aspirin/Yes: No 1,440042 2,33078

2차원 분할표에 대한 독립성 검정

두 범주형 변수의 독립성 검정

Pearson 카에제곱 검정 (대표본의 경우)

Fisher 의 정확검정 (소표본의 경우)

두 범주형 변수의 분포

결합분포 (Joint distribution) 2 \rightarrow $\pi_{ij} = P(X=i, Y=j)$ 1 π_{11} π_{12} ... π_{1J} X 2 π_{21} π_{22} \cdots π_{2J} π_{2+} : : # 한계분포 (Marginal distribution) π_{I1} π_{I2} $\cdots \pi_{1J}$ π_{I+} π_{+1} π_{+2} \cdots π_{+I}

독립성

사건의 독립성 : $P(A \cap B) = P(A) \times P(B)$

확률변수의 독립성 : $P(X=x,Y=y)=P(X=x)\times P(Y=y)$

두 범주형 변수 X와 Y의 독립성 : $\pi_{ij} = \pi_{i+} \times \pi_{+j}$ i=1,...,I, j=1,...,J,

Pearson 카이제곱 독립성 검정

H_0 : 두 범주형 변수는 서로 독립이다. H_1 : 두 범주형 변수는 서로 독립이 아니다.

 $\# \ H_0: \pi_{ij} = \pi_{i\,+} \times \pi_{+\,j} \qquad \qquad H_1: \pi_{ij} \neq \pi_{i\,+} \times \pi_{+\,j}$

관찰 빈도수 : n_{ij}

귀무가설에서의 기대 빈도수 : $\mu_{ij} = n\pi_{ij}$

귀무가설이 사실인 경우 : $n_{ij} - \mu_{ij} \approx 0$

검정통계량 : $\chi^2 = \sum \frac{(n_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}}$ $\hat{\mu}_{ij} = n \times p_{i+} \times p_{+j} = \frac{n_{i+}n_{+j}}{n}$

귀무가설에서 검정통계량의 점근분포 : $\chi^2(df),\ df = (I-1)(J-1)$

카이제곱 분포를 사용하기 위해서는 대표본이 필수적 $ightarrow \mu_{ij} \geq 5$ 의 만족이 필요하다.

R에서의 Pearson 카이제곱 독립성 검정

chisq.test(x, y=NULL, simulate.p.value=FALSE)

x, y : 두 범주형 변수를 나타내는 벡터, 만일 x가 행렬 또는 table 객체이면 y는 무시됨.

simulate.p.value=FALSE : 검정통계량의 근사분포로 카이제곱 분포를 사용하여 p값 계산.

simulate.p.value=TRUE : 모의실험을 통하여 p값 계산. 소규모의 표본에 적합.

> aspirin

HeartAttack

Group Yes No

Placebo 189 10845

Aspirin 104 10933

Yate's continuity correction

2x2 분할표에서만 적용

이산형인 이항분포를 연속형인 카이제곱 분포로 근사할 때의 오류 감소 효과.

표본 수가 너무 작은 경우에는 생략(correct=FALSE).

> chisq.test(aspirin)

Pearson's Chi-squared test with Yates' continuity correction

data: aspirin

X-squared = 24.429, df = 1, p-value = 7.71e-07

vcd::Arthritis 의 Treatment 와 Improved 의 독립성 검정

분할표에 의한 카이제곱 검정

> library(vcd)

> my_table <- with(Arthritis, table(Treatment,Improved))</pre>

chisq.test(my_table)

Pearson's Chi-squared test

두 범주형 변수 입력에 의한 카이제곱 검정

with(Arthritis, chisq.test(Treatment, Improved))

Pearson's Chi-squared test

data: Treatment and Improved

X-squared = 13.055, df = 2, p-value = 0.001463

data: my_table

X-squared = 13.055, df = 2, p-value = 0.001463

Fisher 의 정확검정

Peason 카이제곱 검정은 표본크기가 충분히 큰 경우 적용 가능한 방법

표본크기가 작은 경우 근사분포를 사용하지 않는 방법이 필요

Fisher 의 찻잔

어떤 영국 부인이 milk tea를 만들 때 찻잔에 차를 먼저 붓고 우유를 나중에 부었는지 아니면 우유를 먼저 붓고 차를 나중에 부었는지 맛으로 구분할 수 있다고 주장하였다. 이 주장을 검정하기 위하여 두 가지 방법으로 각각 4잔의 차를 만들고 맛으로 보게하여 다음의 결과를 얻었다.

Cusas	Tru	합계	
Guess	Milk	tea	업계
Milk	3	1	n_{1+}
Tea	1	3	n_{2+}
합계	n_{+1}	n_{+2}	n

8잔 중 6잔을 올바르게 구분.

Fisher 의 찻잔

```
# Fisher 의 검정 절차
- 2x2 분할표의 행과 열의 합계는 모두 고정
- n_{11}만 결정되면 나머지 칸 모두 결정
- n_{11}만 결정되면 나머지 칸 모두 결정
- n_{11}이 까질 수 있는 값은 0,1,2,3,4 →) 각 값을 가질 확률은 초기하 분포로 결정
- n_{11}이 까질 수 있는 값은 0,1,2,3,4 →) 각 값을 가질 확률은 초기하 분포로 결정
- n_{11}이 까질 수 에너지 한 모저 들어간 n_{+1} 개의 잔을 선택하는 경우에 수에서, Milk guess n_{1+} 중 n_{11} 이 실제 Milk

따라서 Tea Guess n_{2+} 중 n_{+1} - n_{11} 이 실제 Milk 일 확률은 P(n_{11}) = \frac{\binom{n_{1+}}{n_{+1}}\binom{n_{2+}}{n_{+1}-n_{11}}}{\binom{n}{n_{+1}}}

# 부인의 주장을 검정하기 위한 가설
- H_0: 맛으로 구분할 수 없다. (\theta = 1)
- H_1: 맛으로 구분할 수 있다. (\theta > 1)

# 위 가설에 대한 p—값: 실험 결과 얻어진 n_{11} 의 값 보다 대립가설에서 설정된 방향으로 더 극단적인 값을 취하게 될 확률
초기하분포에서 계산 →〉 p—값: P(n_{11}=3) + P(n_{11}=4)
```

R에서 Flsher 정확검정

```
# 초기하분포의 p값 계산-〉함수 dhyper() 사용
# m=4, n=4 의 바구니에서 k=4의 공을 꺼내는 경우, x = 3,4 의 확률을 계산
> dhyper(x=3,m=4,n=4,k=4) + dhyper(x=4,m=4,n=4,k=4)
[1] 0.2428571
```

fisher.test() 이용

```
# fisher.test(x, y=NULL, or=1, alternative="two.sided", conf.int=TRUE, simulate.p.value=FALSE)
# x : 요인 객체 혹은 행렬, table 객체
# y : 요인 객체, x가 행렬이면 무시
# simulate,p,value : 분할표가 2x2 보다 큰 경우, p값을 모의실험을 통해 계산할 것인지 여부
# 나머지 옵션은 2x2 분할표에서만 적용
# or=1 : 귀무가설에서 설정되는 Odds ratio 값
# alternative : 대립가설, 디폴트 값 외에 "less", "greater" 가능
# confint : Odds ratio에 대한 신뢰구간
> TeaTaste \(- \text{matrix}(c(3,1,1,3), \text{ nrow=2, ncol=2, dimnames=list(Guess=c("Milk","Tea"),Truth=c("Milk","Tea"))}\)
TeaTaste
     Truth
Guess Milk Tea
      3 1
 Milk
> fisher.test(TeaTaste, or=1, alternative="greater", conf.int=TRUE, simulate.p.value=FALSE)
        Fisher's Exact Test for Count Data
data: TeaTaste
p-value = 0.2429
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
0,3135693
sample estimates:
odds ratio
 6 408309
# odds ratio의 계산 방식이 앞에서 정의된 것과 다르다. (무시해도 됨.)
# p-값이 0.2429 로 계산되었다.
# 두 변수 Guess 와 Truth 사이의 통계적 양의 연관성을 확립할 수 없다.
# 비록 8 잔 중 6잔을 올바르게 구분하였으나 부인의 주장이 통계적으로는 입증되지 않았다.
```

직업 만족도와 수입의 연관성

데이터

Income	Satisfaction				
Income	veryD	LittleD	ModerateS	VeryS	
< 15k	1	3	10	6	
15 – 25k	2	3	10	7	
25 - 40k	1	6	14	12	
> 40k	0	1	9	11	

 \rightarrow Job \leftarrow matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), ncol=4,

dimnames=list(income=c("\(15\text{k","15-25\text{k","25-40\text{k","}}\), satisfaction=c("\(\text{VeryD","LittleD","LittleS","\(\text{veryS"}\))}

) Job

satisfaction

income VeryD LittleD LittleS veryS ⟨15k 1 3 10 6 15-25k 2 3 10 7 25-40k 6 14 12 1 }40k 0 1 9 11

> chisq.test(Job)

Pearson's Chi-squared test

data: Job

X-squared = 5,9655, df = 9, p-value = 0,7434

Warning message:

In chisq.test(Job) : 카이제곱 approximation은 정확하지 않을수도 있습니다.

주어진 분할표가 2X2를 초과. odds ratio 의 검정은 불가능

Pearson 카이제곱 검정과 Fisher의 정확검정으로 독립성여부 확인

두 변수의 범주 개수에 비하여 표본 수가 매우 적은 경우 카이제곱 검정에 문제가 발생 할 수 있다.

기대빈도수 확인

분할표의 전체 칸 중 50% 칸의 기대 빈도수가 5 미만 => 카이제곱 분포를 사용하는데 문제가 있음.

> job.t\$expected

satisfaction

 income
 VeryD
 LitleD
 LittleS
 veryS

 ⟨15k
 0.8333333 2,708333
 8,958333
 7,500

 15−25k
 0,9166667 2,979167
 9,854167
 8,250

 25−40k
 1,3750000 2,468750
 14,781250
 12,375

 ⟩40k
 0,8750000 2,843750
 9,406250
 7,875

대안 1 : p-값을 카이제곱 분포가 아닌 모의실험을 통해 계산

대안 2 : Fisher의 정확검정 적용

대안 3 : 두 범주형 변수의 범주 개수를 축소하여 카이제곱 검정 적용

대안1 : 모의실험에 의한 p-값 계산

모의실험에 의한 것이기 때문에 실행마다 p-값에 약간의 차이가 날 수 있다.

> chisq.test(Job,simulate.p.value=TRUE)

Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)

data: Job

X-squared = 5.9655, df = NA, p-value = 0.7521

대안2 : Fisher의 정확검정 적용

> fisher.test(Job, or=1, alternative="two.sided", conf.int=TRUE, simulate.p.value=FALSE)

Fisher's Exact Test for Count Data

data: Job p-value = 0.7827

alternative hypothesis: two.sided

대안 3 : 두 범주형 변수의 범주 개수를 축소하여 카이제곱 검정 적용

```
# 변수 Income 범주 2개로 축소
# <15k + 15-25k : <25k
# 25k-40K + >40k : >25k
# 변수 Satisfaction 범주 2개로 축소
# VervD + LittleD : D
# Moderates + VeryS : S
# 패키기 vcdExtra에 있는 함수 collapse.table() 사용
# 4X4 분할표를 2X2 분할표로 축소
> library(vcdExtra)
\rightarrow Job \leftarrow matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), ncol=4,
              dimnames=list(income=c("\(15k","15-25k","25-40k","\)40k"), satisfaction=c("\(VeryD","\)LittleD","\)LittleS",\)"veryS")))
> Job.r <- collapse.table(as.table(Job), income=c("(25k","(25k",")25k"), satisfaction=c("D","D","S","S"))
) Job.r
     satisfaction
income D S
 ⟨25k 9 33
 )25k 8 46
> chisq.test(Job.r)
         Pearson's Chi-squared test with Yates' continuity correction
data: Job.r
X-squared = 0.32791, df = 1, p-value = 0.5669
# 카이제곱 분포의 근사 부정확성 문제는 해결
# 범주의 개수 축소 : 몇 개의 범주를 결합시켜 새로운 범주를 만드는 작업
                  -> 범주의 특성을 그대로 유지할 수 있도록 하는 것이 중요
```

일반화 선형모형 (Generalized Linear Model)

통상적인 회귀모형

-> 반응변수 : 연속형(정규분포 가정)

-> 설명변수 : 연속형, 범주형 가능

일반화 선형모형

-> 반응변수 : 연속형 및 범주형 변수 등이 가능

-> 매우 포괄적인 선형모형

반응변수가 연속형이 아닌 예

-> 이항 변수(성공/실패), 다항 변수(상/중/하)

→ Count data(특정 도로 통과 차량 대수)

통상적인 선형회귀모형의 한계점

모형 : $Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_t X_{bi} + \epsilon_i$

반응변수 Y의 분포 : 정규분포

→ 정규분포가 아닌 경우의 예 : 특정 도로를 이용하는 자동차 대수(포아송 분포)

특정 실험의 성공/실패 여부(베르누이 분포)

반응변수와 설명변수의 관계 : 선형

-> 비선형 관계의 예 : 새로 출시된 제품의 판매량 추이

GLM 의 3가지 성분

Random Component

Systematic Component

Link Function

Y Link Function
Random component

 $\beta_0 + \beta_1 X_{1i} + \cdots + \beta_k X_{ki}$

Systematic Component

Random Component

반응변수 Y의 확률분포 규정

→ GLM에서 반응변수 Y의 분포는 Exponential family에 속해야 한다.

Exponential family : 정규분포, 포아송분포, 이항분포, 감마분포 등등

Systematic Component

반응변수에 대한 설명변수의 영향력을 표현

 \rightarrow 설명변수 (x_1, \dots, x_n) 의 선형결합(Linear Predictor)

 $- \rangle \ \eta = \beta_0 + \beta_1 x_1 + \, \cdots \, + \beta_p x_p$

Link Function

Random 성분과 Systematic 성분의 연결

-〉 반응변수 Y의 평군 $E(Y)=\mu$ 가 설명변수의 선형결합 η 와 어떻게 연결되어 있는지를 규정하는 함수

 $-\rangle g(\mu) = \eta$

반응변수의 분포에 따라 대표적으로 사용되는 link function이 존재

(1) 정규분포 : Identity link, $\mu=\eta$

(2) 포아송분포 : Log link, $\log(\mu) = \eta$

(3) 이항분포 : Logit link, $\log(\frac{\mu}{1-\mu}) = \eta$

이항 반응변수에 대한 선형회귀모형

이항 반응변수 : 두 가지 범주만을 갖는 변수. 일반적으로 1 혹은 0의 값을 부여한다.

이항 반응변수의 분포 : Bernoulli 분포

 $-\rangle$ $P(Y=y) = \pi^y (1-\pi)^{1-y}$, y=0,1

이항 반응변수의 평균과 분산

 $-\rangle$ $E(Y) = \sum y \times P(Y=y) = P(Y=1) = \pi$

-> $Var(Y) = E(Y^2) - (E(Y))^2 = \pi(1-\pi)$

이항 반응변수에 대한 선형회귀모형설정 1

```
# Classical Linear Regression Model : GLM with identity link  - \rangle \ Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_{pi} X_{pi} + \epsilon_i \sim N(\mu, \sigma^2)   - \rangle \ Y_i = 0, 1 \ - \rangle \ \text{오차항의 가정을 만족시킬 수 없음.}  # Random Component 와 Systematic Component의 범위가 다름  - \rangle \ E(Y_i) = P(Y_i = 1) = \pi_i, \quad 0 \leq \pi_i \leq 1   - \rangle \ E(Y_i) = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_{pi} X_{pi} \ \text{의 범위는 } (-\infty, \infty)  = \rangle 이항반응변수에 대해서는 Classical Linear Regression model을 적용시킬 수 없다.
```

예제 데이터 Mroz

```
# carData::mroz : 결호한 미국 백인 여성의 직업참여 여부 부석
# 반응변수 : Ifp(labor-force participation) : yes or no
# 설명변수 : k5 : 5세 이하 자녀 수
          k618: 6~18세 자녀 수
          age : 부인의 나이
          wc : 부인 대학 교육 여부 (yes or no)
          hc : 남편 대학 교육 여부 (yes or no)
          lwa : 부인 기대 소득의 로그값 (직업이 없는 경우, 다른 변수를 이용한 예측 값)
          inc : 부인 소득을 제외한 가계 소득
) library(carData)
> str(Mroz)
'data.frame': 753 obs. of 8 variables:
$ Ifp: Factor w/ 2 levels "no", "yes": 2 2 2 2 2 2 2 2 2 2 ...
$ k5 : int 1 0 1 0 1 0 0 0 0 0 ...
$ k618: int 0233202022
$ age : int 32 30 35 34 31 54 37 54 48 39 ...
$ wc : Factor w/ 2 levels "no", "yes": 1 1 1 1 2 1 2 1 1 1 ...
$ hc : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
$ lwg : num 1.2102 0.3285 1.5141 0.0921 1.5243 ...
$ inc : num 10.9 19.5 12 6.8 20.1 ...
> summary(Mroz)
 lfp
            k5
                           k618
                                         age
                                                     wc
                                                              hc
                                                                          lwa
no :325 Min. :0.0000 Min. :0.000 Min. :30.00 no :541 no :458 Min. :-2.0541 Min. :-0.029
yes:428 1st Qu.:0,0000 1st Qu.:0,000 1st Qu.:36,00 yes:212 yes:295 1st Qu.: 0,8181 1st Qu.:13,025
         Median :0 0000 Median :1 000 Median :43 00
                                                                      Median: 1,0684 Median: 17,700
         Mean :0.2377 Mean :1.353 Mean :42.54
                                                                      Mean : 1.0971 Mean :20.129
         3rd Qu.:0.0000 3rd Qu.:2.000 3rd Qu.:49.00
                                                                     3rd Qu.: 1,3997 3rd Qu.:24,466
         Max. :3.0000 Max. :8.000 Max. :60.00
                                                                     Max. : 3.2189 Max. :96.000
```

예제 데이터 Mroz의 선형회귀모형 추정 및 검정

```
# 데이터 확인
> mroz <- mutate(Mroz, Ifp=as.numeric(Ifp)-1)
                                               # Mroz 데이터를 통한 선형회귀모형 적용
> head(mroz, n=3)
                                               # 먼저 k5만 설명변수로 사용
 Ifp k5 k618 age wc hc
                        lwg inc
                                               # 추정대상은 Ifp가 yes일 확률
1 1 1 0 32 no no 1 2101647 10 91
                                               # 변수 Ifp는 factor with 2 levels(no.yes)
2 1 0 2 30 no no 0,3285041 19.50
                                               # 함수 lm()에서는 반응변수는 반드시 숫자형
3 1 1 3 35 no no 1.5141279 12.04
                                               # 변수 lfp를 숫자형으로 변환 no->0, yes->1
# 회귀모형 : E(Y) = p(Y=1) = \beta_0 + \beta_1 X_1
> summary(fit)
Call:
Im(formula = Ifp \sim k5, data = mroz)
Residuals:
  Min
          1Q Median
                       3Q
                             Max
-0.6165 -0.6165 0.3835 0.3835 0.7879
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
# 결정계수가 0.04 로 매우 낮다.
         k5
                                                             # 회귀계수는 유의하다.
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4845 on 751 degrees of freedom
Multiple R-squared: 0.04569, Adjusted R-squared: 0.04442
F-statistic: 35.96 on 1 and 751 DF, p-value: 3.136e-09
```

추정된 회귀직선 및 반응변수의 관찰값

```
# 관찰값의 개수는 753개이다. 점이 7개만 찍힌 것이 아니라 겹쳐있는 것이다.
# 겹쳐있는 점을 흐트리기: geom_jitter(), 점의 위치에 random noise를 추가

> ggplot(data=mroz, aes(x=k5, y=lfp)) +
geom_jitter(height=0.01, width=0.1) + geom_smooth(method="lm", se=FALSE)
```

추정된 회귀모형의 문제점

```
# 5세 이하 자녀의 수(k5)가 증가함에 따라 부인이 직업을 가질 확률을 감소
# k5=4 인 경우, 확률값이 음수로 추정된다. -〉회귀모형의 적합성에 중대한 문제
# k5=4 인 경우의 적합값 예측 (95% 예측 구간 포함)
> predict(fit, newdata=data.frame(k5=c(4)), interval="confidence", level=0.95)
fit lwr upr
1 -0.1923117 -0.4437612 0.05913788
```

모든 설명변수 포함된 회귀모형 적합

```
⟩ fit ⟨- Im(Ifp~., data=mroz)
> summary(fit)
Call:
Im(formula = Ifp \sim ., data = mroz)
Residuals:
         1Q Median
                      30
                            Max
-0,9268 -0,4632 0,1684 0,3906 0,9602
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.143548 0.127053 9.001 \( 2e-16 \)***
k5
        k618
         -0.011215 0.013963 -0.803 0.422109
         -0.012741 0.002538 -5.021 6.45e-07 ***
age
         wcyes
         0.018951 0.042533 0.446 0.656044
hcyes
         lwg
        inc
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.459 on 745 degrees of freedom
Multiple R-squared: 0.1503, Adjusted R-squared: 0.1423
F-statistic: 18,83 on 7 and 745 DF, p-value: \( 2,2e-16
# 설정된 회귀모형은 유의적. 그러나 지나치게 낮은 설명력(0.14) 이다.
-〉 잘못 설정된 회귀모형의 함수 형태가 원인일 가능성이 높다.
```

이항 반응변수에 대한 선형회귀모형설정 2

일반화 선형모형(GLM) 적용

→ Random component : 반응변수 Y의 분포

Bernoulli 분포는 Exponential family에 속한다.

→ Systematic component : 설명변수의 선형결합

$$\eta_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_p X_{pi}$$

-〉Link Function : $E(Y_i)$ 와 η_i 의 관계 설정

 $g(\pi_i)=\eta_i$ 를 설정하는 함수 g 선택. 단, $0\leq g^{-1}(\eta_i)=\pi_i\leq 1$ 를 만족

(1) Logit Link : $\log(\frac{\pi}{1-\pi}) = \eta$

(2) Probit Link : $\Phi^{-1}(\pi) = \eta$, Φ^{-1} 는 누적정규분포의 역함수

Link Function 1 : Logit link

성공확률 :
$$P(Y=1) = \pi$$

$$\mbox{\# Odds : } \Omega = \frac{P(\mathit{Y}\!=\!1)}{1\!-\!P(\mathit{Y}\!=\!1)} \, \mbox{,} \quad 0 \leq \log \Omega \, \leq \, \infty$$

Logit Fuction :
$$\log \Omega = \log \left[\frac{P(Y=1)}{1 - P(Y=1)} \right]$$
, $-\infty \leq \log \Omega \leq \infty$

Logit Link Function에 의한 GLM : Logistic Regression :
$$\log\left[\frac{P(Y=1)}{1-P(Y=1)}\right]=\beta_0+\beta_1X_1+\cdots+\beta_pX_p$$

Logistic Regression

이항 반응변수에 logit link function을 적용시킨 GLM

$$-\rangle \log \left[\frac{P(Y=1)}{1 - P(Y=1)} \right] = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

회귀식 : P(Y=1)에 관하여 정리

$$-\rangle P(Y=1) = \frac{e^{(\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p)}}{1 + e^{(\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p)}}$$

Logistic 회귀식의 특성 : 절편의 효과

$$P(Y=1) = \frac{e^{(\beta_0 + \beta_1 X)}}{1 + e^{(\beta_0 + \beta_1 X)}}$$

eta_0 가 증가함에 따라 왼쪽으로 이동

→〉고정된 X 수준에서 확률 증가

Logistic 회귀식의 특성 : 기울기의 효과

$$P(Y=1) = \frac{e^{(\beta_0 + \beta_1 X)}}{1 + e^{(\beta_0 + \beta_1 X)}}$$

β_1 가 증가함에 따라 기울기 증가

Link Function 2 : Probit link

성공확률 : $P(Y=1)=\pi$

Probit Fuction : $\Phi^{-1}(\pi)$, 단, $\Phi(x)$ 는 누적 표준정규분포 함수

Probit Link Function에 의한 GLM : $\varPhi^{-1}(\pi)=\beta_0+\beta_1X_1+\,\cdots\,+\beta_pX_p$

Probit 모형식 : $P(Y=1)=\pi$ 에 관하여 정리

 $P(Y=1) = \Phi(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)$

Probit 모형식의 특성

$P(Y=1) = \Phi(\beta_0 + \beta_1 X_1)$

Logit 모형식의 특성과 동일

Link Function의 선택: Logit vs Probit

$\pi pprox 0$ 또는 $\pi pprox 1$ 영역을 제외하면 거의 비슷한 형태

Probit 모형이 더 앞서 도입되었으나 최근에는 Logit 모형이 더 선호된다.

Logit 모형의 장점 : 해석상의 편리함. Odds 활용 가능

 Φ 에 비해 수학적 처리가 단순하다.

Logistic 회귀모형의 추정 및 해석

- # 로지스틱 회귀 모형 : $\log(\frac{P(Y=1)}{1-P(Y=1)})=\beta_0+\beta_1X_1+\cdots+\beta_pX_p$
- # 모수 $\beta_0, \beta_1, \dots, \beta_p$ 추정 : Maximum Likelihood Estimation (MLE)
- 정규분포의 경우와는 다르게 정확한 $\hat{\beta}$ 을 구할 수 없음.
- 비선형 정규방정식 → 반복 계산에 의한 추정

모수 추정에 실패하는 경우

- # 설정된 모형이 적절하다면 몇 번의 반복만으로도 모수 추정 가능
- # 반복 계산 수렴 기준을 충족시키지 못해 추정에 실패하는 경우 발생 가능
- 관측값의 크기가 충분히 크지 않았을 때
- 독립변수의 측정 척도가 매우 다를 때
- 성공 혹은 실패 중 한 범주의 발생 빈도가 매우 낮을 때

Logistic 회귀모형 추정을 위한 R 함수

- # GLM을 위한 R 함수 : glm()
- # 이항 반응변수인 경우 함수 alm()의 일반적인 사용법
- glm(fomular, family=binomail, data, ...)
- fomular : 숫자형 벡터 혹은 요인 (첫 번째 범주가 "실패", 두 번째 범주가 "성공"으로 처리됨.)
- family : 반응변수의 분포 및 link function
 - 이항 반응변수 : binomial
 - link function : 디폴트는 logit (생략됨,)
 - probit을 원하는 경우: family=binomial(link= "probit")

예 : 부인 직업 참여 여부 결정에 대한 로지스틱 회귀모형 분석

"no" : 첫 번째 범주. "실패" 로 인식

> library(carData) > with(Mroz, table(lfp))

"yes": 두 번째 범주. "성공"으로 인식

1fp no yes

-> 함수 glm(): "성공" 확률 P(lfp= "yes") 추정

추정 결과 확인

- ⟩ fit1 ⟨- glm(lfp~., family=binomial, Mroz)
- > summary(fit1)

Call:

 $glm(formula = lfp \sim ... family = binomial, data = Mroz)$

Deviance Residuals:

Min 1Q Median 30 Max -2.1062 -1.0900 0.5978 0.9709 2.1893

Coefficients:

Estimate Std. Error z value Pr(|z|)

(Intercept) 3.182140 0.644375 4.938 7.88e-07 *** k5 -0.064571 0.068001 -0.950 0.342337 k618

age wcyes hcyes 0.111734 0.206040 0.542 0.587618 lwg

inc

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1029.75 on 752 degrees of freedom Residual deviance: 905,27 on 745 degrees of freedom

AIC: 921.27

Number of Fisher Scoring iterations: 4

- # p-값을 정규분포에서 계산
- # 2장에서는 카이제곱 분포에서 계산
- # $Z \sim N(0,1)$, $Z^2 \sim \chi^2$
- # 변수 wcyes와 hcyes는 가변수
- # Number of Fisher Scoring iterations: 4 -> 반복 계산 횟수

모형에서 비유의적인 변수(k618,hc) 제거

```
\rangle fit2 \langle -glm(lfp\sim,-k618-hc, family=binomial, Mroz)
> summary(fit2)
Call:
glm(formula = lfp \sim k5 + age + wc + lwg + inc, family = binomial,
   data = Mroz
Deviance Residuals:
   Min
             10 Median
                               3Q
-2.0428 -1.0853 0.6015 0.9697 2.1801
Coefficients:
           Estimate Std. Error z value Pr(|z|)
                    0.54290 5.345 9.03e-08 ***
(Intercept) 2,90193
                      0.19320 -7.411 1.25e-13 ***
k5
           -1.43180
           -0.05853
                       0.01142 -5.127 2.94e-07 ***
age
            0.87237
                     0.20639 4.227 2.37e-05 ***
wcyes
           0.61568 0.15014 4.101 4.12e-05 ***
lwa
                      0.00780 -4.317 1.58e-05 ***
inc
           -0.03367
Signif, codes: 0 '*** 0,001 '** 0,01 '* 0,05 '.' 0,1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 906,46 on 747 degrees of freedom
AIC: 918.46
Number of Fisher Scoring iterations: 3
```

추정된 로지스틱 회귀곡선

직업참여 확률, P(lfp = yes)의 추정

```
# 함수 predict()에 의한 확률 추정
- predict(object, newdata=, type= "response" )
- object : 함수 glm()으로 생성된 객체
- newdata = : 새로운 섦여변수 값으로 구성된 데이터 프레임. 생략 시 기존 자료에 대한 확률 추정
- type= "response" : 반응변수의 scale로 추정 -> P(lfp=yes)의 추정
```

새로운 설명변수 값에 대한 직업 참여 확률 추정

```
# k5, k618, lwg, inc : 평균값
                                    age: 30~60
                                                           wc, hc : 4가지 조합
# new data 만들기
> library(tidyverse)
> df1 <- summarize(Mroz,k5=mean(k5),k618=mean(k618),lwg=mean(lwg),inc=mean(inc))
# 예측
> prob_1 <- predict(fit1,newdata=cbind(df1,wc="no",hc="no"),type="response")</pre>
                                                                                    0.75
> prob_2 (- predict(fit1,newdata=cbind(df1,wc="no",hc="yes"),type="response")
                                                                                                                 WC & HC
                                                                                                                 - no & no
prob_3 \( - \text{predict(fit1,newdata=cbind(df1,wc="yes",hc="no"),type="response")}
                                                                                   2 0.50
                                                                                                                  no & ves
> prob_4 \( - \) predict(fit1,newdata=cbind(df1,wc="yes",hc="yes"),type="response")
                                                                                                                   yes & no
# 그래프 그리기
> ggplot(data=df_2) +
 geom_line(mapping=aes(x=age,y=p1,col="no & no"),size=2) +
 geom_line(mapping=aes(x=age,y=p2,col="no & yes"),size=2) +
 geom_line(mapping=aes(x=age,y=p3,col="yes & no"),size=2) +
 geom_line(mapping=aes(x=age,y=p4,col="yes & yes"),size=2) + ylim(0,1) + labs(y="Prob",col="WC & HC")
```

새로운 설명변수 값에 대한 직업 참여 확률 추정

```
wc, hc: 4가지 조합
# k5, k618, age, lwg : 평균값
                                           inc: 0~100
# new data 만들기
\(\rightarrow\) df3 \(\rightarrow\) summarize(Mroz.k5=mean(k5).k618=mean(k618).age=mean(age).lwg=mean(lwg))
df3 (- cbind(df3,inc=0:100)
# 예측
                                                                                                  0.75
> prob_1 <- predict(fit1,newdata=cbind(df3,wc="no",hc="no"),type="response")</pre>
                                                                                                                                    WC & HC
prob_2 \( - \text{predict(fit1,newdata=cbind(df3,wc="no",hc="yes"),type="response")} \)
                                                                                                                                     no & yes
> prob_3 <- predict(fit1,newdata=cbind(df3,wc="yes",hc="no"),type="response")</pre>
                                                                                                                                    yes & no
> prob_4 <- predict(fit1,newdata=cbind(df3,wc="yes",hc="yes"),type="response")

    \( \) df 4 \( \) tibble(age=0:100, p1=prob 1, p2=prob 2, p3=prob 3, p4=prob 4 \)

                                                                                                  0.25
# 그래프 그리기
) ggplot(data=df 4) +
  geom_line(mapping=aes(x=age,y=p1,col="no & no"),size=2) +
  geom line(mapping=aes(x=age,y=p2,col="no & yes"),size=2) +
  geom_line(mapping=aes(x=age,y=p3,col="yes & no"),size=2) +
  geom_line(mapping=aes(x=age,y=p4,col="yes & yes"),size=2) + ylim(0,1) + labs(y="Prob",col="WC & HC")
```

새로운 설명변수 값에 대한 직업 참여 확률 추정

새로운 설명변수 값에 대한 직업 참여 확률 추정

설명변수의 효과분석

선형회귀모형 : 다른 설명변수들의 수준을 고정시킨 상태에서 X_j 를 한 단위 증가시키면 E(Y)는 β_j 만큼 변화 # 로지스틱 회귀모형 : 비선형 모형이기 때문에 선형회귀모형의 방식으로분 효과분석 불가능 대안 1) 확률의 부분변화 대안 2) 확률의 이산변화 대안 3) Odds ratios

Odds ratio에 의한 설명변수 효과 분석

로지스틱 회귀모형 : log(odds)에 대한 모형

→
$$\log(\frac{P(Y=1)}{1-P(Y=1)}) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Odds에 대한 모형

설명변수 X의 수준을 δ 만큼 변화시켰을 때 odds

$$- \rangle \ \Omega(x, X_i + \delta) = e^{\beta_0} e^{\beta_1 X_1} \cdots e^{\beta_j (X_j + \delta)} \cdots e^{\beta_p X_p}$$

설명변수 X_i 의 수준을 δ 만큼 변화시켰을 때 odds의 변화 : Odds ratio

$$\dfrac{\Omega(x+X_j+\delta)}{\Omega(x)}=e^{eta_j\delta}$$
 : 변수 X_j 의 효과

예 : Odds ratio에 의한 설명변수의 효과분석

로지스틱 회귀모형 및 회귀계수

∫ fit1 ⟨− glm(lfp~., family=binomial, data=mroz)

> coef(fit1)

(Intercept) k5 k618 age wcyes hcyes lwg inc 3.18214046 -1.46291304 -0.06457068 -0.06287055 0.80727378 0.11173357 0.60469312 -0.03444643

log(Odds)에 대한 모형 : 지수 변환으로 Odds에 대한 모형으로 변환

각 설명변수의 Odds ratio 계산

> exp(coef(fit1))

(Intercept) k5 k618 age wcyes hcyes lwg inc 24,0982799 0,2315607 0,9374698 0,9390650 2,2417880 1,1182149 1,8306903 0,9661401

Odds ratio에 대한 대략적인 해석

- 공통 가정 : 다른 설명변수의 수준은 고정

- 1보다 작은 값 : 해당 설명변수를 1단위 증가 시켰을 때 부인이 직업을 가질 odds 감소

- 1보다 큰 값 : 해당 설명변수를 1단위 증가 시켰을 때 부인이 직업을 가질 odds 증가

- odds 증감은 확률의 증감을 의미

각 설명변수 odds ratio 값에 대한 구체적인 해석

- 다른 설명변수의 수준을 고정시켰을 때

- k5를 한 단위 증가시키면 직업에 참여할 odds ratio는

 $\exp(\hat{\beta}_1) = \exp(-1.4629) = 0.232$ 배 감소

 $100 \times (0.232 - 1) = -76.8$, 즉 76.8% 감소

- k5를 두 단위 증가시키면 직업에 참여할 odds ratio는

 $\exp(\hat{\beta}_1 \times 2) = \exp(-1.4629 \times 2) = 0.0536$ 배 감소

 $100 \times (0.0536 - 1) = -94.6$, 즉 94.6% 감소

각 설명변수의 Odds ratio 계산

> exp(coef(fit1))

(Intercept) k5 k618 age wcyes hcyes lwg inc 24,0982799 0,2315607 0,9374698 0,9390650 2,2417880 1,1182149 1,8306903 0,9661401

- 다른 설명변수의 수준을 고정시켰을 때

- lwg를 한 단위 증가시키면 직업에 참여할 odds ratio는

 $\exp(\hat{\beta}_6) = \exp(0.6047) = 1.831$ 배 증가

100 × (1.831 − 1) = 83.1, 즉 83.1% 증가

- lwg를 두 단위 증가시키면 직업에 참여할 odds ratio는

 $\exp(\hat{\beta}_6 \times 2) = \exp(0.6047 \times 2) = 3.35$ 배 증가

100 × (3.35 - 1) = 235.1, 즉 235.1% 증가

- 부인 학력수준(wc)이 대졸인 경우와 고졸 이하의 경우와 비교하여 직업에 참여할 odds ratio는 2.242배 증가

 $100 \times (2.242 - 1) = 124.2$, 즉 124.2% 증가

각 설명변수의 Odds ratio에 대한 95% 신뢰구간

```
> exp(confint(fit1))
                                 # 신뢰구간에 1이 포함되어 있는 변수
Waiting for profiling to be done...
                                     - 비유의적 변수
             25%
                      97.5 %
                                     - summary(fit1) 결과와 비교
(Intercept) 6,9377228 87,0347916
k5
          0.1555331 0.3370675
                                 # profile likelihood 방식에 의한 신뢰구간 계산 :
          0.8200446 1.0710837
k618
                                     - Wald 검정 방식에 의한 교재 표2,12의 결과와는 약간 다름
          0.9154832 0.9625829
age
                                     - 신뢰구간이 odds ratio 점추정값에 대하여 좌우대칭이 아님.
          1,4347543 3,5387571
wcyes
          0,7467654 1,6766380
hcyes
                                     "가설검정" 에서 신뢰구간에 대한 추가 설명 예정
lwg
          1,3689201 2,4768235
inc
         0.9502809 0.9814042
```

Probit 모형

```
# Probit 모형 : \Phi^{-1}[P(Y=1)] = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p 함수 \Phi(x)는 누적 표준정규분포 # 추정된 probit 모형 : P(Y=1) = \Phi(\beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p)
```

예 : 직업 참여자료에 대한 Probit 모형 적합

```
    \( \rightarrow \text{glm(lfp~., family=binomial(link="probit"), data=Mroz)} \)

> summary(fit,p)
Call:
glm(formula = lfp \sim ... family = binomial(link = "probit"), data = Mroz)
Deviance Residuals:
  Min
          1Q Median
                         3Q
                                Max
-2.1359 -1.1024 0.5967 0.9746 2.2236
Coefficients:
          Estimate Std. Error z value Pr(|z|)
(Intercept) 1.918418 0.382356 5.017 5.24e-07 ***
k5
         k618
         -0.038595 0.040950 -0.942 0.345942
         age
          wcyes
          0.057172  0.124207  0.460  0.645306
hcves
lwg
         inc
Signif, codes: 0 '*** 0,001 '** 0,01 '* 0,05 '. 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
  Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 905,39 on 745 degrees of freedom
AIC: 921,39
Number of Fisher Scoring iterations: 4
```

회귀모형의 회귀계수 추정값 비교 (logit vs probit)

```
> cbind(logit=round(coef(fit1),3),probit=(round(coef(fit.p),3)))
             logit probit
(Intercept) 3.182 1.918
k5
            -1.463 - 0.875
k618
            -0.065 -0.039
age
            -0.063 -0.038
             0.807 0.488
wcyes
hcyes
             0,112 0,057
             0.605 0.366
lwg
inc
           -0.034 -0.021
```

기존 자료에 대한 직업 참여 확률 추정 비교 (logit vs probit)

cbind(logit=fit1\$fitted_values,probit=fit,p\$fitted_values)[1:10,] logit probit

1 0.5158291 0.5206967

2 0,6668165 0,6650898

3 0.4565831 0.4643790

4 0,6620169 0,6593693

5 0.6632299 0.6653360

6 0.5959744 0.5958797

7 0.9242061 0.9354251

8 0.6586118 0.6573715

9 0.4738387 0.4785964

10 0.7483850 0.7471961

거의 동일한 결과

회귀계수의 차이는 모형의 다름으로 인한 것

probit 모형의 단점 : 개별 설명변수의 효과분석에서 로지스틱 회귀모형과는 다르게 odds

ratio에 의한 분석 불가능 -> 상당한 불편함을 초래

적용분야

[적용 분야] 로지스틱 회귀분석의 주요 목적 : 판별분석과 거의 동일

- 반응변수의 구분을 설명할 수 있는 모형 추정 : 두 가지 명목형 범주의 차이를 설명할 수 있는 비선형 모형 추정
- 각 범주에 속할 확률 추정 : 추정된 모형을 근거로 주어진 설명변수 수준에서 각 범주에 속할 확률 추정
- 범주에 대한 분류 : 추정된 확률을 근거로 각 관찰값의 범주를 예측

[적용 예]

- 중소기업의 부실 여부 예측
- 신상품 구매의사 성향 예측
- 특정 질환 판정 예측
- 보험 부당 청구 탐지