НЕЗАВИСИМЫЙ МОСКОВСКИЙ УНИВЕРСИТЕТ

В. В. Прасолов

Задачи по топологии

Москва Издательство МЦНМО 2008 УДК 515.14 ББК 22.15 П70

Прасолов В.В.

П70 Задачи по топологии. — М.: МЦНМО, 2008. — 40 с.

ISBN 978-5-94057-349-4

В этой брошюре содержатся задачи к трехсеместровому курсу топологии, который неоднократно читался для студентов первого и второго курса НМУ.

В первом семестре обсуждаются топологические пространства, фундаментальная группа и накрытия, во втором семестре — СW-комплексы, многообразия, гомотопические группы и расслоения, в третьем — гомологии и когомологии.

ББК 22.15

ОГЛАВЛЕНИЕ

1.	Общая	и топология. Фундаментальная группа и накрытия	4
	1.1.	Топология \mathbb{R}^n . Планарные графы	4
	1.2.	Топологические пространства	6
	1.3.	Симплициальные и клеточные комплексы	8
	1.4.	Двумерные поверхности	9
	1.5.	Гомотопии	11
	1.6.	Векторные поля на плоскости	12
	1.7.	Векторные поля на двумерных поверхностях. Теорема	
		Уитни—Грауштейна	14
	1.8.	Фундаментальная группа	15
	1.9.	Накрывающие пространства	16
2.	Гомот	опические свойства клеточных комплексов	18
	2.1.	Гомотопии. CW -комплексы	18
	2.2.	Общее положение. <i>п</i> -связные пространства	19
	2.3.	Расслоения	20
	2.4.	Точная последовательность расслоения	21
	2.5.	Гомотопически простые пространства. H -пространства	22
	2.6.	Многообразия. Ориентируемость	23
	2.7.	Вложения и погружения. Теорема Сарда	24
	2.8.	Степень отображения. Индекс пересечения	25
	2.9.	Векторные поля. Конструкция Понтрягина	26
	2.10.	Теория Морса	27
3.	Гомол	огии и когомологии	29
	3.1.	Гомологии и когомологии с коэффициентами в поле	29
	3.2.	Точная последовательность пары	30
	3.3.	Клеточные гомологии	31
	3.4.	Универсальные коэффициенты	32
	3.5.	Фундаментальный класс. Двойственность Пуанкаре	32
	3.6.	Умножение в когомологиях	34
	3.7.	Двойственность Лефшеца и двойственность Александера	34
	3.8.	Теорема Кюннета	35
	3.9.	Теорема Лефшеца. Теорема Гуревича	36
	3.10.	Теорема Гуревича. Теория препятствий	37
Pe	Рекомендуемая литература 38		

ГЛАВА 1. ОБЩАЯ ТОПОЛОГИЯ. ФУНДАМЕНТАЛЬНАЯ ГРУППА И НАКРЫТИЯ

1.1. Топология \mathbb{R}^n . Планарные графы

- 1. Докажете, что определение непрерывности через открытые множества (прообраз открытого множества открыт) эквивалентно обычному ε - δ определению.
 - 2. Докажите, что линейно связное множество связно.

Пусть $A\subset\mathbb{R}^n$ — произвольное подмножество. Для произвольной точки $x\in\mathbb{R}^n$ величину $d(x,A)=\inf_{a\in A}\|x-a\|$ называют расстоянием от точки x до множества A.

- **3.** а) Докажите, что функция f(x) = d(x, A) непрерывна для любого полмножества $A \subset \mathbb{R}^n$.
- б) Докажите, что если множество A замкнуто, то функция f(x) = d(x,A) для всех $x \notin A$ принимает положительные значения.

Пусть $A,B\subset\mathbb{R}^n$ — произвольные подмножества. Величину $d(A,B)==\inf_{a\in A,b\in B}\|a-b\|$ называют paccmosnue M между множествами A и B.

4. Пусть $A \subset \mathbb{R}^n$ — замкнутое подмножество, $C \subset \mathbb{R}^n$ — компактное подмножество. Докажите, что существует такая точка $c_0 \in C$, что $d(A,C)=d(A,c_0)$, а если множество A тоже компактно, то существует ещё и такая точка $a_0 \in A$, что $d(A,C)=d(a_0,c_0)$.

Пусть $A\subset X\subset \mathbb{R}^n$. Точку $a\in A$ называют внутренней, если существует множество U, открытое в X, для которого $a\in U\subset A$. Точку $a\in A$ называют изолированной, если существует множество U, открытое в X, для которого $U\cap A=a$. Точку $x\in X$ называют граничной точкой A, если для любого множества U, открытого в X, $U\cap A\neq\varnothing$ и $U\cap (X-A)\neq\varnothing$. Внутренность множества A—это множество всех внутренних точек. Замыкание множества A—это объединение множества A и всех граничных точек.

5. Докажите, что: а) множество $A\subset X\subset \mathbb{R}^n$ замкнуто в X тогда и только тогда, когда оно содержит все граничные точки; б) внутренность множества A—это наибольшее открытое множество, содержащееся в A; в) замыкание A—это наименьшее замкнутое множество, содержащее A; г) множество всех граничных точек A—это разность замыкания и внутренности.

- **6.** (Кусочно-линейная теорема Жордана) Пусть C замкнутая несамопересекающаяся конечнозвенная ломаная на плоскости \mathbb{R}^2 . Докажите, что $\mathbb{R}^2 \setminus C$ состоит ровно из двух связных областей, причём границей каждой из них служит C.
- 7. Пусть a, b, c, d—точки замкнутой несамопересекающейся ломаной C, расположенные в указанном порядке. Предположим, что точки a и c соединены ломаной L_1 , а точки b и d соединены ломаной L_2 , причём обе эти ломаные лежат в одной и той же из двух областей, образованных ломаной C. Докажите, что ломаные L_1 и L_2 пересекаются в некоторой точке.

 $\Gamma pa\phi$ G — это множество точек, называемых вершинами, причём некоторые пары рёбер соединены рёбрами.

Количество рёбер, выходящих из вершины графа, называют *сте*-*пенью* вершины. В том случае, когда из любой вершины графа можно пройти по его рёбрам в любую другую вершину, граф называют *связ- ным.* Граф может иметь *петли* (рёбра, начало и конец которых совпадают) и *двойные рёбра* (несовпадающие рёбра, имеющие одну и ту же
пару вершин). Попарно различные вершины v_1, \ldots, v_n , соединённые
рёбрами $v_1v_2, v_2v_3, \ldots, v_nv_1$, называют *циклом*.

Граф G называют nланарным, если его можно расположить на плоскости так, чтобы его рёбра попарно не пересекались.

Пусть граф K_n состоит из n вершин, попарно соединённых рёбрами, а граф $K_{n,m}$ состоит из n+m вершин, разбитых на два подмножества из n вершин и из m вершин, причём рёбрами соединены все пары вершин из разных множеств.

- **8.** Докажите, что графы $K_{3,3}$ и K_5 непланарные.
- **9.** Пусть $G \longrightarrow depeed$, т. е. связный граф без циклов. Докажите, что v(G) = e(G) + 1, где $v(G) \longrightarrow$ число вершин, $e(G) \longrightarrow$ число рёбер графа G.
- 10. (Формула Эйлера) Пусть G планарный граф, состоящий из s компонент связности, среди которых нет изолированных вершин. Пусть, далее, v число вершин графа G, а e число его рёбер. Тогда для любого вложения графа G в плоскость число граней f одно и то же, а именно, f=1+s-v+e.
- 11. Докажите, что связный планарный граф (без петель и двойных рёбер) содержит вершину, степень которой не превосходит 5.
- **12.** Докажите, что вершины любого планарного графа (без петель и двойных рёбер) можно раскрасить в пять цветов так, что любые две вершины, соединённые ребром, будут разного цвета.

- 13. а) Пусть G планарный граф, все грани которого содержат чётное число рёбер. Докажите, что вершины этого графа можно раскрасить в два цвета.
- б) Пусть γ —гладкая замкнутая кривая, все самопересечения которой трансверсальны. Докажите, что γ разбивает плоскость на области, которые можно раскрасить в два цвета так, что области, граничащие по некоторой дуге, будут разного цвета.
- 14. Выведите из формулы Эйлера для планарных графов формулу Эйлера, связывающую число вершин, рёбер и граней выпуклого многогранника.
- 15. а) Пусть G планарный граф без изолированных вершин, v_i число его вершин, из которых выходит i рёбер, f_j число граней, ограниченных j рёбрами (с учетом их кратностей). Докажите, что тогда $\sum_i (4-i)v_i + \sum_j (4-j)f_j = 4(1+s) \geqslant 8$, где s число компонент связности графа G.
 - б) Докажите, что если все грани 4-угольные, то $3v_1 + 2v_2 + v_3 \ge 8$.
- в) Докажите, что если любая грань ограничена циклом, содержащим не менее n рёбер, то $e\leqslant \frac{n(v-2)}{n-2}.$
- **16.** Воспользовавшись задачей 15 в), получите ещё одно доказательство непланарности графов K_5 и $K_{3,3}$.

1.2. Топологические пространства

Топологическое пространство — это множество X, в котором выделена система подмножеств τ , обладающая следующими свойствами:

- 1) пустое множество и всё множество X принадлежат τ ;
- 2) пересечение конечного числа элементов τ принадлежит τ ;
- 3) объединение любого семейства элементов τ принадлежит τ .

Множества, принадлежащие τ , называют *открытыми*. Множества, дополнения которых открыты, называют *замкнутыми*.

Отображение топологических пространств называют *непрерывным*, если прообраз любого открытого множества открыт. Непрерывное отображение топологических пространств называют *гомеоморфизмом*, если оно взаимно однозначно и обратное отображение тоже непрерывно.

Любое подмножество A топологического пространства X само можно рассматривать как топологическое пространство, если считать, что множество $B \subset A$ открыто в A, если $B = B' \cap A$ для некоторого множества B', открытого в X.

Топологическое пространство X называют компактным, если из любого его покрытия открытыми множествами можно выбрать конечное подпокрытие.

- **17.** Докажите, что любое замкнутое подмножество компактного пространства компактно.
 - **18.** Введите «естественную» топологию на множестве матриц $n \times m$.
- **19.** Связно ли пространство $\mathrm{GL}(n)$, состоящее из невырожденных матриц?
- **20.** а) Докажите, что пространство SO(3), состоящее из ортогональных матриц порядка 3 с определителем 1, связно.
 - б) Докажите, что пространство SO(n) связно.
- **21.** Докажите, что пространство, состоящее из невырожденных матриц с положительным определителем, связно.
 - **22.** а) Докажите, что пространство $\mathrm{U}(n)$ унитарных матриц связно.
- б) Докажите, что пространство $\mathrm{SU}(n)$ унитарных матриц с определителем 1 связно.

Топологическое пространство X называют $xaycdop \phi oвым$, если для любых двух различных точек $x,y \in X$ найдутся непересекающиеся открытые множества, содержащие эти точки.

23. Приведите пример нехаусдорфова топологического пространства.

В метрическом пространстве X можно определить топологию следующим образом: множество $A\subset X$ открыто, если любая точка $a\in A$ содержится в A вместе с некоторым открытым шаром с центром a.

- **24.** Докажите, что топология, индуцированная метрикой, является хаусдорфовой.
- **25.** Докажите, что в хаусдорфовом пространстве X для любых двух различных точек x и y найдётся окрестность $U\ni x$, замыкание которой не содержит y.
- **26.** Пусть C компактное подмножество хаусдорфова пространства X и $x \in X \setminus C$. Докажите, что у точки x и у множества C есть непересекающиеся окрестности.
- **27.** Докажите, что у любых двух непересекающихся компактных подмножеств A и B хаусдорфова пространства X есть непересекающиеся окрестности.
- **28.** Пусть $f: X \to Y$ непрерывное взаимно однозначное отображение компактного пространства X на хаусдорфово пространство Y. Докажите, что f гомеоморфизм.
 - **29.** Докажите, что $D^n/\partial D^n \approx S^n$.

- **30.** Докажите, что пространство $S^1 \times S^1$ гомеоморфно пространству, которое получается при следующем отождествлении точек сторон квадрата $0 \leqslant x,y \leqslant 1\colon (x,0) \sim (x,1)$ и $(0,y) \sim (1,y)$. (Это пространство называют *тором*.)
- **31.** а) Докажите, что $\{*\}*X \approx CX$ (здесь $\{*\}$ одноточечное пространство).
 - б) Докажите, что $S^0 * X \approx \Sigma X$.
 - **32.** Докажите, что $S^p * S^q \approx S^{p+q+1}$.
- Приведите пример связного, но не линейно связного пространства.
- **34.** Докажите, что пространство $\mathrm{GL}(3)$ состоит из двух связных компонент.

1.3. Симплициальные и клеточные комплексы

- **35.** Докажите, что следующие топологические пространства гомеоморфны:
 - (a) множество прямых в \mathbb{R}^{n+1} , проходящих через начало координат;
- (б) множество гиперплоскостей в \mathbb{R}^{n+1} , проходящих через начало координат;
- (в) сфера S^n , в которой отождествлена каждая пара диаметрально противоположных точек.
- (г) шар D^n , в котором отождествлена каждая пара диаметрально противоположных точек граничной сферы $S^{n-1}=\partial D^n$.
- **36.** Докажите, что следующие топологические пространства гомеоморфны:
- (a) множество комплексных прямых в \mathbb{C}^{n+1} , проходящих через начало координат:
- (б) сфера $S^{2n+1} \subset \mathbb{C}^{n+1}$, в которой отождествлены точки вида λx для всех $\lambda \in \mathbb{C}$, $|\lambda|=1$ (для каждой фиксированной точки $x \in S^{2n+1}$);
- (в) шар $D^{2n}\subset\mathbb{C}^n$, в котором отождествлены точки граничной сферы $S^{2n-1}=\partial D^{2n}$ вида λx для всех $\lambda\in\mathbb{C},\ |\lambda|=1$ (для каждой фиксированной точки $x\in S^{2n-1}$).

Пространство из задачи 35 называют вещественным проективным пространством и обозначают $\mathbb{R}P^n$. Пространство из задачи 36 называют комплексным проективным пространством и обозначают $\mathbb{C}P^n$.

- **37.** Докажите, что $\mathbb{R}P^1 \approx S^1$ и $\mathbb{C}P^1 \approx S^2$.
- **38.** Докажите, что прямое произведение окружности на отрезок не гомеоморфно листу Мёбиуса.
 - **39.** Докажите, что $CS^n \approx D^{n+1}$ и $\Sigma S^n \approx S^{n+1}$.

- **40.** Докажите, что сфера S^2 является CW-комплексом.
- **41.** Докажите, что тор T^2 является CW-комплексом.
- **42.** Докажите, что сфера S^n является CW-комплексом.
- **43.** Докажите, что вещественное проективное пространство $\mathbb{R}P^n$ является CW-комплексом.
- **44.** Докажите, что комплексное проективное пространство $\mathbb{C}P^n$ является CW-комплексом.
- **45.** Докажите, что любой конечный симплициальный комплекс размерности n вкладывается в \mathbb{R}^{2n+1} .
 - **46.** Докажите, что $\mathbb{R}^n \setminus \mathbb{R}^k \approx S^{n-k-1} \times \mathbb{R}^{k+1}$.
- 47. Докажите, что $S^{n+m-1}\setminus S^{n-1}\approx \mathbb{R}^n\times S^{m-1}$. (Предполагается, что сфера S^{n-1} расположена в S^{n+m-1} стандартно.)
- **48.** Пусть $S^p \vee S^q = (S^p \times \{*\}) \cup (\{*\} \times S^q) \subset S^p \times S^q$. Докажите, что $S^p \times S^q/S^p \vee S^q \approx S^{p+q}$.
- 49. Взяты два экземпляра полнотория $S^1 \times D^2$ и их границы склеены а) по тождественному гомеоморфизму; б) по гомеоморфизму границ, переводящему меридиан в параллель. Докажите, что в случае а) получается $S^1 \times S^2$, а в случае б) получается S^3 .
- **50.** Рассмотрим фактор пространства $M_2(\mathbb{C})$ по следующему отношению эквивалентности: $A \sim BAB^{-1}$ для произвольной невырожденной матрицы B. Хаусдорфово ли полученное пространство?
- **51.** а) Докажите, что CW-комплекс связен тогда и только тогда, когда связен его 1-мерный остов.
- б) Докажите, что CW-комплекс связен тогда и только тогда, когда он линейно связен.
 - **52.** Постройте расслоение $S^3 \to S^2$ со слоем S^1 .

1.4. Двумерные поверхности

53. Докажите, что если из проективной плоскости вырезать диск D^2 , то в результате получится лист Мёбиуса.

Пусть $M_1\#M_2$ — двумерная поверхность, которая получается из двумерных поверхностей M_1 и M_2 следующей операцией: из M_1 и из M_2 вырезается по диску D^2 и соответствующие точки их краёв склеиваются. Эту операцию называют связной суммой. Связную сумму n торов T^2 будем для краткости обозначать nT^2 , а связную сумму m проективных плоскостей P^2 будем обозначать mP^2 (обозначения nT^2 и mP^2 не стандартные).

54. Докажите, что если поверхность M_1 неориентируема, то поверхность $M_1\#M_2$ тоже неориентируема.

- **55.** Докажите, что $S^2\#2P^2\approx K^2$, т.е. сфера S^2 , из которой вырезаны два диска и вместо них вклеены два листа Мёбиуса, гомеоморфна бутылке Клейна.
 - **56.** Докажите, что $T^2 \# P^2 \approx P^2 \# P^2 \# P^2$.

Пусть M^2 — триангулированная замкнутая двумерная поверхность; v — число вершин триангуляции, e — число рёбер, f — число граней. Эйлеровой характеристикой поверхности M^2 называют число $\chi(M^2)=v-e+f$.

- **57.** Докажите, что $\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) 2$.
- **58.** Докажите, что $\chi(mT^2) = 2 2m$ и $\chi(nP^2) = 2 n$.
- **59.** Докажите, что замкнутая ориентируемая двумерная поверхность не может быть гомеоморфна замкнутой неориентируемой двумерной поверхности.
- **60.** Докажите, что эйлеровы характеристики двух гомеоморфных замкнутых двумерных поверхностей одинаковы. (Указание. Рассмотрите две триангуляции одной и той же поверхности и пошевелите одну из них так, чтобы рёбра этих двух триангуляций пересекались трансверсально.)
- **61.** Какой двумерной поверхности гомеоморфно факторпространство $S^1 \times S^1$ по следующему отношению эквивалентности: $(x, y) \sim (y, x)$?
 - **62.** Можно ли граф $K_{3,3}$ вложить в лист Мёбиуса?
 - **63.** Можно ли граф K_5 вложить в тор?
- **64.** Докажите, что поверхности nT^2 и mP^2 можно получить из 4n-угольника и 2m-угольника, отождествляя их стороны соответствующим образом.
- **65.** а) Докажите, что на поверхности nP^2 существует замкнутая кривая γ , после разрезания вдоль которой поверхность становится ориентируемой.
- б) Докажите, что если n чётно, то окрестность кривой γ гомеоморфна цилиндру, а если n нечётно—то листу Мёбиуса.
- **66.** Предположим, что на сфере с g ручками M^2 можно расположить p несамопересекающихся замкнутых кривых C_1, \ldots, C_p так, чтобы они попарно не пересекались и не разбивали M^2 (т. е. чтобы множество $M^2 \setminus (C_1 \cup \ldots \cup C_p)$ было связно), но любые p+1 такие кривые разбивают M^2 на части. Докажите, что p=g.
- **67.** Докажите, что на замкнутой неориентируемой поверхности nP^2 можно расположить n попарно не пересекающихся листов Мёбиуса, но нельзя расположить n+1 попарно непересекающихся листов Мёбиуса.
- **68.** Докажите, что граф K_6 можно расположить на проективной плоскости P^2 , а графы K_7 и $K_{4,4}$ можно расположить на торе.

- **69.** а) Докажите, что любой конечный граф G можно вложить в некоторую замкнутую ориентируемую двумерную поверхность M^2 .
- б) Докажите, что если граф G связен, а поверхность M^2 имеет минимальный род, то все области, на которые граф G разбивает M^2 , стягиваемы.
 - **70.** Можно ли граф $K_{3,3}$ вложить в тор?
 - **71.** Можно ли граф K_5 вложить в лист Мёбиуса?

1.5. Гомотопии

Непрерывные отображения $f_0, f_1 \colon X \to Y$ называют гомотопными, если существует такое непрерывное отображение $F \colon X \times [0,1] \to X$, что $F(x,0) = f_0(x)$ и $F(x,1) = f_1(x)$.

Топологические пространства X и Y называют гомотопически эквивалентными, если существуют такие отображения $f\colon X\to Y$ и $g\colon Y\to X$, что их композиции $f\circ g$ и $g\circ f$ гомотопны тождественным отображениям пространств X и Y.

- 72. а) Пусть $X = X_1 \cup \ldots \cup X_n$, причём множества X_1, \ldots, X_n замкнуты. Рассмотрим отображение $f \colon X \to Y$ и его ограничения $f_i = f|_{X_i}$. Докажите, что отображение f непрерывно тогда и только тогда, когда непрерывны все отображения f_i .
 - б) Докажите аналогичное утверждение для открытых множеств.

Замечание. Задача 72 а) нужна для проверки того, что гомотопность отображений—отношение эквивалентности.

Пусть X и Y — топологические пространства с отмеченными точками x_0 и y_0 . Их букетом называют пространство $X \sqcup Y/x_0 \sim y_0$ (пространства X и Y склеиваются по отмеченным точкам). Букет двух пространств обозначают $X \vee Y$.

- 73. Докажите, что пространства $S^1 \vee I^1$ и S^1 гомотопически эквивалентны.
- 74. Докажите, что пространства $\mathbb{R}^3 \setminus S^1$ и $S^2 \vee S^1$ гомотопически эквивалентны.
- **75.** Из сферы с g ручками выколота точка. Докажите, что полученное пространство гомотопически эквивалентно букету n окружностей и вычислите n.
- 76. Докажите, что если из пространства \mathbb{R}^3 выбросить n экземпляров S^1 (все окружности незаузленные и попарно не зацепленные), то полученное пространство будет гомотопически эквивалентно букету n экземпляров пространства $S^2 \vee S^1$.

77. Пусть L— две окружности в \mathbb{R}^3 , зацепленные наиболее простым способом. Докажите, что пространства $\mathbb{R}^3 \setminus L$ и $S^2 \vee T^2$ гомотопически эквивалентны.

Подпространство $A \subset X$ называют $pempaкmom\ X$, если существует непрерывное отображение $r\colon X \to A$, ограничение которого на A тождественно. Отображение r при этом называют pempakuueu.

- **78.** Докажите, что следующие утверждения эквивалентны (т. е. покажите, как они выводятся друг из друга):
- (a) Любое непрерывное отображение $f \colon D^n \to D^n$ имеет неподвижную точку.
 - (б) Не существует ретракции $r: D^n \to S^{n-1}$.
- (в) Пусть v(x) такое непрерывное векторное поле на D^n , что v(x)=x для всех $x\in S^{n-1}$. Тогда v(x)=0 для некоторой точки $x\in D^n$.
- **79.** Докажите, что A ретракт X тогда и только тогда, когда любое непрерывное отображение $f \colon A \to Y$ можно продолжить на всё X.
- 80. Докажите, что если любое непрерывное отображение пространства X в себя имеет неподвижную точку, то любое непрерывное отображение его ретракта A в себя тоже имеет неподвижную точку.
- **81.** Пусть S^{∞} множество точек $(x_1, x_2, \ldots) \in \mathbb{R}^{\infty}$, у которых лишь конечное число координат отлично от нуля и $\sum x_i^2 = 1$. Это множество является метрическим пространством, и на нём есть естественная топология. Докажите, что пространство S^{∞} стягиваемо.

Yказание. Докажите, что тождественное отображение гомотопно отображению $(x_1, x_2, \ldots) \mapsto (0, x_1, x_2, \ldots)$.

- **82.** Докажите, что отображения $f,g\colon \mathrm{GL}(n,\mathbb{R})\times\mathrm{GL}(n,\mathbb{R})\to\mathrm{GL}(2n,\mathbb{R}),$ заданные формулами $f(A,B)=\begin{pmatrix}A&0\\0&B\end{pmatrix}$ и $g(A,B)=\begin{pmatrix}AB&0\\0&1_n\end{pmatrix}$, гомотопны.
- 83. Докажите, что пространства $\Sigma(S^1 \times S^1)$ и $S^2 \vee S^2 \vee S^3$ гомотопически эквивалентны.

1.6. Векторные поля на плоскости

84. Рассмотрим на комплексной плоскости векторное поле $v(z)==rac{z^n}{|z|^{n-1}}$ при $z \neq 0, \, v(0)=0.$ Найдите индексы особых точек таких векторных полей для всех целых n и нарисуйте их траектории для n=-1, $n=\pm 2$ и n=3.

Пусть v — векторное поле на плоскости, γ — замкнутая несамопересекающаяся кривая на плоскости, не проходящая через особые точки

этого векторного поля. Иndeкcom кривой γ относительно векторного поля v называют число оборотов вектора v(x) при обходе кривой γ . Обороты вектора считаются положительными, если их направление совпадает с направлением обхода кривой.

- **85.** Докажите, что индекс кривой γ равен сумме индексов особых точек, заключенных внутри ее.
- 86. Пусть на замкнутой несамопересекающейся кривой заданы векторные поля v и w, причем в любой точке X векторы v(X) и w(X) не противоположны по направлению. Докажите, что тогда индексы кривой γ относительно этих векторных полей равны.
- 87. С помощью задачи 86 докажите, что любой многочлен $P(z) = z^n + a_1 z^{n-1} + \ldots + a_n$ с комплексными коэффициентами имеет по крайней мере один комплексный корень.
- **88.** Назовем векторное поле v четным, если v(x) = v(-x), и нечетным, если v(x) = -v(-x). Докажите, что индекс точки O для четного поля четен, а для нечетного поля нечетен.
- 89. Пусть на граничных окружностях кольца задано векторное поле так, что векторы касаются граничных окружностей и на одной окружности направлены в одну сторону, а на другой в другую (противоположную). Продолжите это векторное поле на всё кольцо так, чтобы оно не имело особых точек.
- **90.** Докажите, что векторное поле без особых точек, заданное на граничных окружностях кольца, можно продолжить на все кольцо тогда и только тогда, когда индексы граничных окружностей равны.
- 91. Пусть замкнутая самопересекающаяся кривая разбивает плоскость на несколько областей. В каждой области можно выбрать некоторую точку O и сопоставить области число оборотов вектора \overrightarrow{OX} при обходе кривой. Докажите, что если две области имеют общую границу, то соответствующие им числа отличаются на 1.
- **92.** Предположим, что интегральные траектории векторного поля v на плоскости касаются некоторой окружности C в i точках внутренним образом и в e точках внешним образом, причём внутри C расположена единственная особая точка. Докажите, что индекс этой особой точки равен 1+(i-e)/2.
- 93. Пусть f— гладкая функция на плоскости. Докажите, что индекс изолированной особой точки векторного поля $v=\operatorname{grad} f$ а) может принимать значения $1,\,0,\,-1,\,-2,\,\dots$ и б)* не может принимать других значений.

1.7. Векторные поля на двумерных поверхностях. Теорема Уитни—Грауштейна

- 94. Постройте на торе векторное поле без особых точек.
- 95. Постройте на бутылке Клейна векторное поле без особых точек.
- 96. Постройте на сфере векторное поле с одной особой точкой.
- **97.** Постройте на проективной плоскости векторное поле с одной особой точкой.
- **98.** Постройте на сфере с двумя ручками векторное поле с одной особой точкой.
- **99.** Рассмотрим 4g-угольник и на нём векторное поле, траектории которого параллельные прямые. Из 4g-угольника можно склеить сферу с g ручками и получить на ней векторное поле. Опишите, как выглядят особые точки этого векторного поля.

* * *

- **100.** На сфере $S^2 \subset \mathbb{R}^3$ задано непрерывное поле векторов единичной длины, не обязательно касающихся этой сферы. Докажите, что хотя бы один из этих векторов ортогонален сфере.
- **101.** Пусть $f: S^2 \to S^2$ непрерывное отображение. Докажите, что существует точка $x \in S^2$, для которой $f(x) = \pm x$.
- **102.** Докажите, что любое непрерывное отображение $f\colon \mathbb{R}P^2 \to \mathbb{R}P^2$ имеет неподвижную точку.

* * *

Назовём $cmeneub \omega$ гладкой кривой $\gamma\colon S^1\to\mathbb{R}^2$ степень отображения $S^1\to S^1$, заданного формулой $\varphi\mapsto \frac{v}{|v|}$, где $v=\frac{d\gamma}{d\varphi}$ — вектор скорости кривой (гладкость кривой означает, что отображение γ дифференцируемо и вектор скорости нигде не обращается в нуль). Говоря неформально, степень — это число оборотов вектора скорости при обходе вдоль кривой.

 ${f 103.}$ Для каждого целого числа n нарисуйте кривую, имеющую степень n.

Будем говорить, что гладкие замкнутые кривые γ_0 и γ_1 регулярно гомотопны, если существует семейство гладких замкнутых кривых γ_t , непрерывно зависящее от $t \in [0,1]$.

Назовём простой петлёй часть ω кривой γ , обладающую следующими свойствами: 1) ω начинается и кончается в точке самопересечения кривой γ ; 2) ω не имеет самопересечений (но она может пересекать другие части кривой γ).

- **104.** а) Докажите, что любая гладкая кривая регулярно гомотопна гладкой кривой с конечным числом точек самопересечения.
- б) Докажите, что любая гладкая кривая с конечным (ненулевым) числом точек самопересечения имеет простую петлю.
- 105. Докажите, что для простой петли ω кривой γ существует регулярная гомотопия, при которой изменяется только ω , причём после гомотопии мы получаем новую простую петлю ω' , которая не пересекает γ .
- 106. Покажите, что применяя конструкцию из задачи 105, в конце концов мы можем получить окружность с маленькими петельками— внешними и внутренними. Покажите, что эти петельки можно менять местами, протаскивая одну петельку через другую.
- **107.** Постройте регулярную гомотопию, которая уничтожает пару петелек, одна из которых внутренняя, а другая внешняя.
- **108.** Докажите, что кривые γ_0 и γ_1 регулярно гомотопны тогда и только тогда, когда их степени равны (Уитни—Грауштейн).
- **109.** Докажите, что на сфере есть только два класса регулярно гомотопных кривых. (На сфере можно уничтожить пару внутренних петелек.)

1.8. Фундаментальная группа

Фундаментальная группа топологического пространства X с отмеченной точкой $x_0 \in X$ — это множество гомотопических классов петель с началом и концом в точке x_0 (петля — это непрерывное отображение $f \colon [0,1] \to X$, для которого f(0) = f(1)). Групповая операция на этом множестве — последовательный обход двух петель. Фундаментальная группа обозначается $\pi_1(X,x_0)$.

- **110.** Докажите, что фундаментальная группа букета n окружностей изоморфна свободной группе c n образующими.
- **111.** Докажите, что группа $\pi_1(nT^2)$ порождена образующими $a_1,b_1,\ldots,a_n,b_n,$ связанными единственным соотношением $\prod_{i=1}^n(a_ib_ia_i^{-1}b_i^{-1})=1.$
- **112.** Докажите, что группа $\pi_1(nP^2)$ порождена образующими a_1, \ldots, a_n , связанными единственным соотношением $a_1^2 \ldots a_n^2 = 1$.
 - **113.** а) Докажите, что если $G = \pi_1(nT^2)$, то $G/G' \cong \mathbb{Z}^{2n}$.
 - б) Докажите, что если $G = \pi_1(nP^2)$, то $G/G' \cong \mathbb{Z}^{n-1} \oplus \mathbb{Z}_2$.
 - **114.** Докажите, что $\pi_1(S^n) = 0$ при $n \ge 2$.
 - **115.** Докажите, что $\pi_1(\mathbb{C}P^n) = 0$.

- **116.** Докажите, что фундаментальная группа поверхности nT^2 , из которой вырезано $k\geqslant 1$ дисков, является свободной группой ранга 2n+k-1.
- 117. Докажите, что фундаментальная группа поверхности nP^2 , из которой вырезано $k\geqslant 1$ дисков, является свободной группой ранга n+k-1.
 - **118.** Вычислите фундаментальную группу $\mathbb{R}P^n$ для всех $n \ge 1$.
- **119.** Пусть X лист Мёбиуса, A его край. Докажите с помощью фундаментальной группы, что A не является ретрактом X.
- **120.** Докажите с помощью фундаментальной группы, что край ручки (тора с вырезанным диском) не является ретрактом ручки.
- **121.** Пусть M_g^3 многообразие единичных касательных векторов к сфере с g ручками. Докажите, что группа $\pi_1(M_g^3)$ порождена образующими $a_1,\ldots,a_g,b_1,\ldots,b_g,c$, которые связаны следующими соотношениями: $a_ic=ca_i,\ b_ic=cb_i$ и $\prod_{i=1}^g (a_ib_ia_i^{-1}b_i^{-1})=c^{2-2g}$.

1.9. Накрывающие пространства

Harpыmue — это такое сюръективное отображение $p\colon \tilde{X}\to X$ линейно связных топологических пространств, что у каждой точки $x\in X$ есть окрестность $U\ni x$, прообраз которой гомеоморфен $U\times D$, где D — некоторое дискретное множество, причём ограничение отображения p на этот прообраз представляет собой естественную проекцию произведения $U\times D$ на первый множитель.

Пусть $p: \tilde{X} \to X$ — накрытие, а $\gamma: [0,1] \to X$ — некоторый путь в X с началом в точке $x_0 = \gamma(0)$. Тогда для любой точки $\tilde{x}_0 \in p^{-1}(x_0)$ существует единственный путь $\tilde{\gamma}$ в \tilde{X} с началом в точке \tilde{x}_0 , для которого $p\tilde{\gamma} = \gamma$. Этот путь называют nodnsmuem пути γ .

Накрытие называют *регулярным*, если все поднятия (с разными началами) любой петли одновременно либо замкнуты (т.е. являются петлями), либо незамкнуты.

Накрытие называют ynusepcanьным, если в пространстве \tilde{X} любая петля стягиваема.

Гомеоморфизм $f\colon \tilde{X} \to \tilde{X}$ называют автоморфизмом накрытия $p\colon \tilde{X} \to X$, если $p(f(\tilde{x})) = p(\tilde{x})$ для всех $\tilde{x} \in \tilde{X}$.

- **122.** Постройте универсальное накрытие тора T^2 .
- 123. Постройте универсальное накрытие букета двух окружностей.
- **124.** Постройте универсальное накрытие букета n окружностей для любого натурального $n\geqslant 2.$

- **125.** Постройте универсальное накрытие букета $S^1 \vee S^2$.
- 126. Приведите пример нерегулярного накрытия букета двух окружностей.
- **127.** Постройте универсальное накрытие сферы с g ручками, где $g\geqslant 2.$
- **128.** Пусть одна двумерная поверхность *n*-листно накрывает другую. Как связаны их эйлеровы характеристики?
- **129.** Докажите, что любую неориентируемую поверхность можно двулистно накрыть ориентируемой поверхностью.
- **130.** Докажите, что сферу с g_1 ручками можно накрыть сферой с g_2 ручками $(g_1,g_2\geqslant 2)$ тогда и только тогда, когда g_2-1 делится на g_1-1 .
- **131.** Докажите, что любой автоморфизм накрытия полностью задаётся образом одной точки при этом автоморфизме.
- **132.** а) Докажите, что накрытие $p: \tilde{X} \to X$ регулярно тогда и только тогда, когда группа $\mathrm{Aut}(p)$ транзитивно действует на слое $p^{-1}(x_0)$, т. е. переводит любой элемент слоя в любой другой элемент того же слоя.
- б) Докажите, что для регулярного накрытия $p\colon \tilde{X} \to X$ группа $\mathrm{Aut}(p)$ изоморфна $\pi_1(X,x_0)/p_*\pi_1(\tilde{X},\tilde{x}_0)$.
 - **133.** Докажите, что любая подгруппа свободной группы G свободна.
- Если G свободная группа с n образующими, то говорят, что G свободная группа ранга n. Для ранга свободной группы используется обозначение $\operatorname{rk} G$.
- **134.** Докажите, что если H подгруппа свободной группы G и индекс $[G:H]=k<\infty$, то $\mathrm{rk}\, H=(\mathrm{rk}\, G-1)k+1.$
- **135.** Докажите, что свободная группа ранга 2 содержит в качестве подгруппы свободную группу любого ранга n (в том числе и ранга ∞).

ГЛАВА 2. ГОМОТОПИЧЕСКИЕ СВОЙСТВА КЛЕТОЧНЫХ КОМПЛЕКСОВ

2.1. Гомотопии. CW-комплексы

Гомотопическая группа $\pi_n(X,x_0)$ — это множество классов гомотопически эквивалентных отображений $S^n \to X$, переводящих отмеченную точку $s_0 \in S^n$ в отмеченную точку $x_0 \in X$ (имеется в виду гомотопия в классе отображений, переводящих отмеченную точку в отмеченную точку). Групповая операция на этом множестве задаётся следующим образом. На сфере выбираем экватор, проходящий через отмеченную точку, и стягиваем его. В результате получаем букет двух сфер. Чтобы получить произведение двух отображений, нужно первую сферу отобразить посредством первого отображения, а вторую — посредством второго.

- **136.** Докажите, что любое непрерывное отображение $S^n \to S^m$, где n < m, гомотопно постоянному отображению.
 - **137.** Докажите, что $S^p \times S^q / S^p \vee S^q \approx S^{p+q}$.
 - **138.** Докажите, что $S^p \times S^q \setminus \text{point} \sim S^p \vee S^q \ (p, q \geqslant 1)$.
- **139.** Докажите, что любое компактное подмножество CW-комплекса пересекает лишь конечное число открытых клеток.
- **140.** Докажите, что если $Y\subset X$ стягиваемый подкомплекс, то $X/Y\sim X.$
- **141.** Пусть Y подкомплекс CW-комплекса X. Докажите, что $X/Y \sim X \cup CY$, где CY конус над Y.
- **142.** Докажите, что отображение $f_0 \colon (D^n, \partial D^n, s_0) \to (X, A, a_0)$ гомотопно (в классе отображений троек) постоянному отображению тогда и только тогда, когда существует гомотопия $f_t \colon (D^n, \partial D^n, s_0) \to (X, A, a_0)$, для которой $f_1(D^n) \subset A$ и $f_t(x)$ не зависит от t для $x \in \partial D^n$, т. е. гомотопия неподвижна на $S^{n-1} = \partial D^n$.
 - 143. Докажите, что гомотопическая последовательность пары

$$\dots \to \pi_n(A) \to \pi_n(X) \to \pi_n(X,A) \to \pi_{n-1}(A) \to \dots$$

точна.

- **144.** Докажите, что $\pi_n(CX, X, x_0) \cong \pi_{n-1}(X, x_0)$ при $n \geqslant 1$.
- **145.** Пусть S^{∞} множество точек $(x_1, x_2, \ldots) \in \mathbb{R}^{\infty}$, у которых лишь конечное число координат отлично от нуля и $\sum x_i^2 = 1$. Это множество

является метрическим пространством, и на нём есть естественная топология. Докажите, что пространство S^{∞} стягиваемо.

 $\mathit{Указаниe}$. Докажите, что тождественное отображение гомотопно отображению $(x_1, x_2, \ldots) \mapsto (0, x_1, x_2, \ldots)$.

146. Пусть A и B — связные CW-комплексы с отмеченными точками a_0 и b_0 . Докажите, что $A*B\sim \Sigma(A\wedge B)$, где $A\wedge B=A\times B/A\vee B$ и $A\vee B=(\{a_0\}\times B)\cup (A\times \{b_0\}).$

2.2. Общее положение. n-связные пространства

Про точки x_1, \ldots, x_k в пространстве \mathbb{R}^n говорят, что они находятся в общем положении, если любые m+1 из этих точек не лежат в одном (m-1)-мерном аффинном подпространстве при $m \leq n$.

- **147.** Докажите, что для любого k в пространстве \mathbb{R}^n можно выбрать k точек общего положения.
- **148.** Выберем попарно различные числа t_1, \ldots, t_k и рассмотрим в \mathbb{R}^n точки $(t_i, t_i^2, t_i^3, \ldots, t_i^n)$, где $i = 1, \ldots, k$. Докажите, что эти точки являются точками общего положения.
- **149.** Вершины двух симплексов, p-мерного и q-мерного, являются точками общего положения в n-мерном пространстве. Каково должно быть n (при данных p и q), чтобы симплексы обязательно не пересекались?
- **150.** Точка A и вершины двух симплексов, p-мерного и q-мерного, являются точками общего положения в n-мерном пространстве. Каково должно быть n (при данных p и q), чтобы любая прямая, проходящая через точку A, не пересекала одновременно оба симплекса?

* * *

Топологическое пространство X называют n-связным, если оно линейно связно и $\pi_1(X) = 0, \ldots, \pi_n(X) = 0$.

- **151.** Докажите, что n-связный CW-комплекс гомотопически эквивалентен CW-комплексу, у которого есть ровно одна вершина и нет k-мерных клеток, где $1 \le k \le n$.
- **152.** Докажите, что CW-комплекс X с одной вершиной, не имеющий k-мерных клеток, где $1 \le k \le n$, n-связен.
 - **153.** Докажите, что n-мерный n-связный CW-комплекс стягиваем.

В задачах 154—156 предполагается, что X-n-связный CW-комплекс, Y-m-связный CW-комплекс (оба комплекса конечномерные).

- **154.** Докажите, что ΣX (n+1)-связный комплекс.
- **155.** Докажите, что $X \wedge Y$ (n+m+1)-связный комплекс;

156. Докажите, что $X * Y \longrightarrow (n+m+2)$ -связный комплекс.

Для топологического пространства X можно определить его n-ю симметрическую степень $SP^n(X)$ следующим образом. На пространстве $X^n = X \times \ldots \times X$ действует группа S_n :

$$\sigma(x_1,\ldots,x_n)=(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Фактор пространства X^n по этому действию — это и есть $\mathrm{SP}^n(X)$.

- **157.** Докажите, что $SP^n(\mathbb{C}P^1) \approx \mathbb{C}P^n$.
- **158.** Докажите, что $SP^n(\mathbb{R}P^2) \approx \mathbb{R}P^{2n}$.

2.3. Расслоения

Локально тривиальное расслоение — это такое отображение $p\colon E\to B$, что у любой точки $x\in B$ есть окрестность U, прообраз которой гомеоморфен $U\times F$ (здесь F — некоторое фиксированное пространство, называемое *слоем* расслоения), причём ограничение p на этот прообраз представляет собой проекцию на первый множитель.

- **159.** Рассмотрим в пространстве \mathbb{C}^2 с координатами z и w сферу S^3 , заданную уравнением $|z|^2+|w|^2=1$. На S^3 действует группа $S^1=\{e^{i\alpha}\}$ (обе координаты z и w умножаются на $e^{i\alpha}$). Факторпространство по этому действию гомеоморфно проективному пространству $\mathbb{C}P^1$ с однородными координатами (z:w). Докажите, что проекция $p\colon S^3\to S^3/S^1\approx \mathbb{C}P^1$ является локально тривиальным расслоением $(paccnoenue\ Xon\phi a)$.
- **160.** Представим S^3 как $\mathbb{R}^3 \cup \infty$. а) Нарисуйте в \mathbb{R}^3 прообразы двух точек S^2 при отображении p. б) Нарисуйте прообразы сразу нескольких точек (в качестве одного из прообразов удобно использовать $\mathbb{R}^2 \cup \infty$).
- **161.** Пусть $p\colon S^3\to \mathbb{C}P^1$ расслоение Хопфа. Докажите, что $D^4\cup_p \mathbb{C}P^1=\mathbb{C}P^2$ (здесь подразумевается, что $S^3=\partial D^4$).
- **162.** Докажите, что не существует ретракции $r: \mathbb{C}P^2 \to \mathbb{C}P^1$. (Здесь подразумевается, что $\mathbb{C}P^1$ вложено в $\mathbb{C}P^2$ естественным образом.)
 - **163.** Постройте многомерное расслоение Хопфа $p\colon S^{2n+1} \to \mathbb{C}P^n$.
 - 164. Постройте кватернионное расслоение Хопфа.
- **165.** а) Разобьём S^2 на две полусферы. Докажите, что их прообразы при расслоении Хопфа два полнотория $S^1 \times D^2$.
- б) Исходя из этого, опишите, как склеить сферу S^3 из двух полноторий.
 - 166. Склейте сферу S^{p+q+1} из $S^p \times D^{q+1}$ и $D^{p+1} \times S^q$.

В задачах 167—172 постройте указанные локально тривиальные расслоения и укажите их слои.

167. SO(n)
$$\to S^{n-1}$$
.

168.
$$U(n) \to S^{2n-1}$$
.

169.
$$U(n) \to S^1$$
.

Пусть $V_{k,n}$ — многообразие Штифеля k-мерных реперов в \mathbb{R}^n , $G_{k,n}$ — многообразие Грассмана k-мерных подпространств в \mathbb{R}^n .

170.
$$O(n) \rightarrow V_{k,n}$$
.

171.
$$V_{k+1,n} \to V_{k,n}$$

172.
$$V_{k,n} \to G_{k,n}$$
.

2.4. Точная последовательность расслоения

- **173.** Докажите, что $\pi_n(S^1) = 0$ при $n \ge 2$.
- **174.** а) Докажите, что $\pi_2(S^2) = \mathbb{Z}$.
- б) Докажите, что $\pi_n(S^2) \cong \pi_n(S^3)$ при $n \geqslant 3$.
- **175.** Дано расслоение $E \to B$ со слоем F. Докажите, что если пространство E стягиваемо, то $\pi_n(B) \cong \pi_{n-1}(F)$.
- **176.** Постройте расслоение $S^\infty \to \mathbb{C}P^\infty$ со слоем S^1 и докажите, что $\pi_2(\mathbb{C}P^\infty)=\mathbb{Z}$ и $\pi_n(\mathbb{C}P^\infty)=0$ при $n\neq 2$.
- 177. Пусть X пространство единичных касательных векторов к Y сфере с g ручками. Постройте расслоение $X \to Y$ со слоем S^1 и попытайтесь вычислить $\pi_1(X)$ с помощью точной последовательности этого расслоения.
- **178.** Пусть задана коммутативная диаграмма абелевых групп с точными строками:

$$A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \xrightarrow{\alpha_{3}} A_{4} \xrightarrow{\alpha_{4}} A_{5}$$

$$\downarrow \varphi_{1} \qquad \downarrow \varphi_{2} \qquad \downarrow \varphi_{3} \qquad \downarrow \varphi_{4} \qquad \downarrow \varphi_{5}$$

$$B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3} \xrightarrow{\beta_{3}} B_{4} \xrightarrow{\beta_{4}} B_{5}$$

Предположим, что $\varphi_1,\,\varphi_2,\,\varphi_4,\,\varphi_5$ — изоморфизмы. Докажите, что тогда φ_3 тоже изоморфизм.

179. Докажите, что если в задаче 178 диаграмма коммутативна с точностью до знака (т. е. выполняются не соотношения вида fg=uv, а соотношения вида $fg=\pm uv$), то утверждение всё равно остаётся верным.

- **180.** В задаче 178 есть 8 предположений: φ_1 , φ_2 , φ_4 , φ_5 —эпиморфизмы, φ_1 , φ_2 , φ_4 , φ_5 мономорфизмы. Для доказательства того, что φ_3 —эпиморфизм (мономорфизм), используются лишь 3 из них. Какие именно?
- **181.** Пусть $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ точная последовательность абелевых групп. Докажите, что следующие условия эквивалентны:
 - (а) эта последовательность имеет вид

$$0 \to A \xrightarrow{i} A \oplus C \xrightarrow{p} C \to 0$$
,

где i — естественное вложение, p — естественная проекция;

- (б) гомоморфизм φ имеет левый обратный, т. е. существует гомоморфизм $\Phi \colon B \to A$, для которого $\Phi \varphi = \mathrm{Id}_A$;
- (в) гомоморфизм ψ имеет правый обратный, т. е. существует гомоморфизм $\Psi\colon C\to B$, для которого $\psi\Psi=\mathrm{Id}_C$.
- **182.** Дано расслоение $p \colon E \to B$ со слоем F. Докажите, что если существует сечение $s \colon B \to E$ (т. е. $p \circ s = \operatorname{Id}_B$ тождественное отображение B), то $\pi_n(E) \cong \pi_n(F) \oplus \pi_n(B)$.
- **183.** Дано расслоение $p \colon E \to B$ со слоем F. Докажите, что если существует ретракция $r \colon E \to F$, то $\pi_n(E) \cong \pi_n(F) \oplus \pi_n(B)$.
- **184.** Дано расслоение $p \colon E \to B$ со слоем F. Докажите, что если слой F стягиваем в пространстве E, то $\pi_n(B) \cong \pi_n(E) \oplus \pi_{n-1}(F)$.

2.5. Гомотопически простые пространства. H-пространства

185. Пусть X - CW-комплекс, X^n — его n-мерный остов. Докажите, что вложение $i\colon X^n \to X$ индуцирует изоморфизм $i_*\colon \pi_k(X^n,x_0) \to \pi_k(X,x_0)$ при k < n и эпиморфизм при k = n.

Если каждый элемент группы $\pi_1(X, x_0)$ индуцирует тождественный автоморфизм группы $\pi_n(X, x_0)$, то пространство X называют гомотопически n-простым.

186. Докажите, что пространство гомотопически 1-просто тогда и только тогда, когда его фундаментальная группа коммутативна.

При решении задач 187 и 188 можно считать известным, что $\pi_n(S^n)=\mathbb{Z}$ при всех $n\in\mathbb{N}.$

- **187.** Докажите, что при $n \geqslant 2$ группа $\pi_n(S^n \vee S^1, x_0)$ является свободной абелевой группой с бесконечным (счётным) набором образующих.
- **188.** Докажите, что пространство $S^n \vee S^1$ не является гомотопически n-простым.

Топологическое пространство X с отмеченной точкой $x_0 \in X$ называют Н-пространством, если задано непрерывное отображение $\mu \colon X \times X \to X$, для которого отображения $x \mapsto \mu(x, x_0)$ и $x \mapsto$ $\mapsto \mu(x_0, x)$ гомотопны тождественному отображению (предполагается, что $\mu(x_0, x_0) = x_0$). Отображение μ называют при этом умножением.

- **189.** Докажите, что пространства $\mathbb{C}P^{\infty}$ и $\mathbb{R}P^{\infty}$ являются H-пространствами.
- **190.** Докажите, что любое пространство петель является H-пространством.
 - **191.** Докажите, что сфера S^7 является H-пространством.
- **192.** Докажите, что если X H-пространство с отмеченной точкой x_0 , то группа $\pi_1(X, x_0)$ абелева.
- **193.** Докажите, что любое H-пространство X гомотопически просто (т. е. гомотопически n-просто для любого натурального n).

2.6. Многообразия. Ориентируемость

- 194. Докажите, что на следующих топологических пространствах можно ввести структуру гладкого многообразия: a) S^n : б) $\mathbb{R}P^n$: в) $\mathbb{C}P^n$: Γ) T^n (n-мерный тор).
- 195. Докажите, что структуру гладкого многообразия можно ввести на пространстве $G_{k,n}$ k-мерных подпространств в n-мерном пространстве и на пространстве $G_{k,n}^+$ ориентированных k-мерных подпространств в n-мерном пространстве.
- **196.** Пусть $(x_0: x_1: \ldots: x_n)$ однородные координаты на $\mathbb{R}P^n$. Как связаны координаты одного и того же векторного поля в карте x_1/x_0 , $x_2/x_0, \ldots, x_n/x_0$ и в карте $x_0/x_1, x_2/x_1, \ldots, x_n/x_1$?
 - **197.** Докажите, что $G_{k,n} \approx G_{n-k,n}$.
- **198.** Докажите, что многообразие TS^n касательных векторов к сфере гомеоморфно подмножеству в комплексном пространстве \mathbb{C}^{n+1} , заданному уравнением $z_1^2+\ldots+z_{n+1}^2=1.$ 199. Докажите, что $G_{2,4}^+\approx S^2\times S^2.$
- **200.** Докажите, что квадрика в $\mathbb{C}P^{n-1}$, заданная уравнением $z_1^2+\dots$ $\ldots + z_n^2 = 0$, диффеоморфна $G_{2,n}^+$. Более того, при этом диффеоморфизме комплексное сопряжение соответствует изменению ориентации плоскости.
 - 201. Докажите, что любое односвязное многообразие ориентируемо.
- 202. Докажите, что любое неориентируемое многообразие можно двулистно накрыть ориентируемым многообразием.
 - **203.** Ориентируемы ли следующие многообразия: а) $\mathbb{R}P^n$; б) $\mathbb{C}P^n$?

- **204.** Докажите, что многообразие $G_{k,n}^+$ всегда ориентируемо.
- **205.** Докажите, что вещественное многообразие Грассмана $G_{k,n}$ ориентируемо тогда и только тогда, когда n чётно. (Одно из возможных доказательств состоит в том, чтобы рассмотреть транзитивное действие группы $\mathrm{SO}(n)$ на $G_{k,n}$ со стационарной подгруппой $(\mathrm{O}(k) \times \mathrm{O}(n-k)) \cap \mathrm{SO}(n)$ и попытаться разнести ориентацию с помощью этого действия).

2.7. Вложения и погружения. Теорема Сарда

- **206.** Пусть $f: M^n \to \mathbb{R}^N$ погружение. Докажите, что если N > 2n, то композиция отображения f и проекции на почти любую гиперплоскость $\mathbb{R}^{N-1} \subset \mathbb{R}^N$ является погружением.
- **207.** Пусть M^n компактное многообразие и $f\colon M^n\to\mathbb{R}^N$ вложение. Докажите, что если N>2n+1, то композиция отображения f и проекции на почти любую гиперплоскость $\mathbb{R}^{N-1}\subset\mathbb{R}^N$ является вложением.
- **208.** Рассмотрим в пространстве матриц $M_{n,m}$ подмножество $M_{n,m,k}$, состоящее из всех матриц ранга k. Докажите, что если $k \leqslant \min(m,n)$, то $M_{n,m,k}$ многообразие размерности k(m+n-k).
- **209.** Пусть $U \subset \mathbb{R}^m$ открытое множество, $f \colon U \to \mathbb{R}^n$ гладкое отображение. Докажите, что если $n \geqslant 2m$, то для почти всех линейных отображений $A \colon \mathbb{R}^m \to \mathbb{R}^n$ отображение $g \colon U \to \mathbb{R}^n$, заданное формулой g(x) = f(x) + Ax, является погружением.
- **210.** Докажите, что если M^n компактное многообразие с непустым краем W^{n-1} , то не существует гладкой ретракции $r\colon M^n \to W^{n-1}$.

Yказание. Пусть $a \in W^{n-1}$ — регулярное значение. Тогда $r^{-1}(a)$ — одномерное компактное подмногообразие, край которого лежит в W^{n-1} .

211. Пусть M^n — многообразие без края (не обязательно компактное), $f\colon M^n\to N^{n+1}$ — такое вложение, что $f(M^n)$ — замкнутое множество. Докажите, что если многообразие N^{n+1} односвязно, то многообразие M^n ориентируемо.

Yказания. 1) Если при обходе вдоль кривой γ ориентация многообразия $M^n \subset N^{n+1}$ изменяется, то существует кривая $\tilde{\gamma}$ в N^{n+1} , трансверсально пересекающая M^n ровно в одной точке.

- 2) В случае односвязного многообразия N^{n+1} существует гладкое отображение $g\colon D^2\to N^{n+1},$ ограничение которого на ∂D^2 совпадает с $\tilde{\gamma}.$
- 3) В общем положении пересечение $f(M^n), g(D^2)$ и $\tilde{\gamma}$ состоит из чётного числа точек.

- **212.** Докажите, что проективную плоскость $\mathbb{R}P^2$ нельзя вложить в \mathbb{R}^3 .
 - **213.** Постройте погружение проективной плоскости $\mathbb{R}P^2$ в \mathbb{R}^3 .

2.8. Степень отображения. Индекс пересечения

- **214.** Пусть M^2 сфера с g ручками, где $g\geqslant 1$. Докажите, что степень любого гладкого отображения $f\colon S^2\to M^2$ равна нулю.
 - **215.** Докажите, что $\deg(fg) = (\deg f)(\deg g)$.
- **216.** Пусть P(z) многочлен степени n. Докажите, что отображение $\mathbb{C} \to \mathbb{C}$, заданное формулой $z \mapsto P(z)$, продолжается до гладкого отображения $\mathbb{C}P^1 \to \mathbb{C}P^1$. Вычислите степень этого отображения.
- **217.** Сопоставим отображению $f\colon S^n\to S^n$ отображение $\Sigma f\colon \Sigma S^n\to \Sigma S^n$, отображая $S^n\times\{t\}$ в $S^n\times\{t\}$ посредством f для всех t. Докажите, что $\deg f=\deg \Sigma f$.
- **218.** Вычислите индекс пересечения по модулю 2 $\mathbb{R}P^n$ и $\mathbb{R}P^m$ в $\mathbb{R}P^{n+m}$.
- **219.** Вычислите целочисленный индекс пересечения $\mathbb{C}P^n$ и $\mathbb{C}P^m$ в $\mathbb{C}P^{n+m}$.
- **220.** Пусть $\lambda(M^p,N^q)$ целочисленный индекс пересечения двух ориентированных подмногообразий в ориентированном (p+q)-мерном многообразии. Докажите, что $\lambda(M^p,N^q)=(-1)^{pq}\lambda(N^q,M^p)$.
- **221.** Докажите, что следующие определения $\kappa o \circ \phi \phi$ ициента зацепления 1 k двух ориентированных замкнутых непересекающихся кривых c_1 и c_2 в \mathbb{R}^3 (или в S^3) эквивалентны с точностью до знака.
- а) Рассмотрим проекцию данных кривых на плоскость в общем положении и будем учитывать только те перекрёстки, на которых кривая c_1 проходит под кривой c_2 . Каждому перекрёстку соответствует число $\varepsilon_i = \pm 1$ (рис. 2.1). Коэффициент зацепления $\mathrm{lk}(c_1, c_2)$ —это сумма всех чисел ε_i .

Рис. 2.1. Коэффициент зацепления

- б) Натянем на кривую c_1 ориентированную поверхность C_1 (это означает, что краем ориентированной поверхности C_1 служит ориентированная кривая c_1). Коэффициент зацепления $lk(c_1, c_2)$ это индекс пересечения поверхности C_1 и кривой c_2 в \mathbb{R}^3 .
- в) Рассмотрим диск D^4 , краем которого служит данная сфера S^3 . Натянем в D^4 на кривые c_1 и c_2 (ориентированные) поверхности C_1 и C_2 . Коэффициент зацепления $\operatorname{lk}(c_1,c_2)$ это индекс пересечения поверхностей C_1 и C_2 в D^4 .
- г) Рассмотрим отображение $T^2=c_1\times c_2\to S^2$, которое сопоставляет паре (x,y), где $x\in c_1$ и $y\in c_2$, точку $\dfrac{\overrightarrow{xy}}{|\overrightarrow{xy}|}\in S^2$. Коэффициент зацепления $\mathrm{lk}(c_1,c_2)$ —это степень этого отображения.

2.9. Векторные поля. Конструкция Понтрягина

- **222.** Дана триангуляция замкнутого многообразия M^n . Постройте на M^n векторное поле так, чтобы каждому k-мерному симплексу триангуляции соответствовала бы особая точка индекса $(-1)^k$ (симплексы и особые точки должны находиться во взаимно однозначном соответствии.)
- **223.** Докажите, что если M^n замкнутое многообразие с нулевой эйлеровой характеристикой, то на M^n существует векторное поле без особых точек.
- **224.** Докажите, что сумма индексов особых точек векторного поля на замкнутом многообразии нечётной размерности равна нулю.
- **225.** Докажите, что если на замкнутом многообразии существует поле направлений (т. е. в каждой точке задана прямая из касательного пространства), то на нём существует и векторное поле без особых точек.

Гладкое замкнутое подмногообразие (не обязательно связное) $M^k \subset \mathbb{R}^{n+k}$ называют *оснащённым*, если в каждой точке $x \in M^k$ задан ортонормированный набор векторов $v_1(x), \ldots, v_n(x)$, ортогональных $T_x M^k$; при этом каждый вектор $v_i(x)$ гладко зависит от x. Пустое множество мы считаем оснащённым многообразием любой размерности k.

Два оснащённых многообразия M_0^k и M_1^k называют *оснащённо ко-бордантными*, если в \mathbb{R}^{n+k+1} существует подмногообразие W^{k+1} , обладающее следующими свойствами:

- W^{k+1} расположено в полосе $0 \le x_{n+k+1} \le 1$;
- край W^{k+1} состоит из M_0^k и M_1^k , причём эти многообразия расположены, соответственно, на гиперплоскостях $x_{n+k+1} = 0$ и $x_{n+k+1} = 1$;

- ullet и м W^{k+1} подходит к этим гиперплоскостям ортогонально;
- на W^{k+1} задано гладкое семейство ортонормированных наборов векторов, продолжающее те семейства, которые заданы на M_0^k и M_1^k .

Множество классов оснащённо кобордантных многообразий размерности k в \mathbb{R}^{n+k} обозначают $\Omega^k_{\mathrm{fr}}(n+k)$.

- **226.** Задайте на множестве $\Omega^k_{\mathrm{fr}}(n+k)$ структуру абелевой группы (несвязное объединение).
 - **227.** а) Докажите, что $\Omega^0_{\mathrm{fr}}(n)\cong\pi_n(S^n)$ при $n\geqslant 1$ (Хопф).
- б) Докажите, что $\Omega^k_{\mathrm{fr}}(n+k)\cong \pi_{n+k}(S^n)$ при $k\geqslant 0$ и $n\geqslant 1$ (Понтрягин).
- **228.** Опишите оснащённое многообразие в $\Omega^1_{\mathrm{fr}}(3)$, соответствующее расслоению Хопфа $p\colon S^3\to S^2$.

2.10. Теория Морса

- **229.** Пусть $U \subset \mathbb{R}^n$ открытое множество и $f: U \to \mathbb{R}$ гладкая функция. Докажите, что для почти всех линейных функций $A: \mathbb{R}^n \to \mathbb{R}$ функция f+A имеет только невырожденные критические точки.
- **230.** Пусть многообразие M^n вложено в \mathbb{R}^m . Фиксируем точку $a\!\in\!\mathbb{R}^m$ и положим $f(x)=\|x-a\|^2$ для $x\in M^n$.
- а) Докажите, что точка $x\in M^n$ является критической точкой функции f тогда и только тогда, когда вектор $\xi=x-a$ ортогонален пространству T_xM^n .
- б) Докажите, что для почти всех $a \in \mathbb{R}^m$ функция $f(x) = \|x a\|^2$ является функцией Морса.

Пусть f — гладкая функция на многообразии M^n . Если на M^n задана риманова метрика, то по функции f можно построить $\mathit{градиент-ное}$ векторное none $\mathsf{grad}\, f$, которое характеризуется следующим свойством: для любого гладкого векторного поля v на многообразии M^n выполняется равенство $(\mathsf{grad}\, f, v) = v(f)$, где v(f) — производная функции f по направлению векторного поля v.

- **231.** Докажите, что особые точки векторного поля $\operatorname{grad} f$ соответствуют критическим точкам функции f, причём невырожденные особые точки соответствуют невырожденным критическим точкам.
- **232.** Докажите, что для любой римановой метрики индекс невырожденной особой точки x_0 векторного поля grad f равен $(-1)^i$, где i— индекс критической точки x_0 функции f.

- **233.** Пусть f функция Морса на замкнутом многообразии M^n . Докажите, что альтернированная сумма $\sum_{i=1}^n (-1)^i c_i$, где c_i количество критических точек индекса i, не зависит от выбора функции f.
- **234.** Предположим, что на замкнутом многообразии M^n существует функция Морса f, имеющая ровно две невырожденные критические точки. Докажите, что тогда многообразие M^n гомеоморфно S^n .
- **235.** Постройте функцию Морса на n-мерном торе и укажите её критические точки.
- **236.** Постройте функцию Морса на S^n а) с двумя критическими точками; б) с 2n+2 критическими точками (по две точки каждого индекса от 0 до n).
 - **237.** Постройте функцию Морса на $\mathbb{R}P^n$.
 - **238.** Постройте функцию Морса на $\mathbb{C}P^n$.

ГЛАВА 3. ГОМОЛОГИИ И КОГОМОЛОГИИ

3.1. Гомологии и когомологии с коэффициентами в поле

Во всех этих задачах имеются в виду симплициальные гомологии и когомологии, если не оговорено противное.

- **239.** Вычислите гомологии симплициального комплекса, состоящего из n изолированных точек.
- **240.** Пусть K связный симплициальный комплекс. Докажите, что $H_0(K;F)=F$.
 - **241.** а) Вычислите гомологии *п*-мерного симплекса.
 - б) Вычислите гомологии границы *п*-мерного симплекса.
 - 242. Вычислите сингулярные гомологии точки.

Цепным отображением цепных комплексов C_* и C'_* называют семейство гомоморфизмов $\varphi_k: C_k \to C'_k$, удовлетворяющих соотношениям $\partial'_k \varphi_k = \varphi_{k-1} \partial_k$. Цепное отображение $\varphi_k: C_k \to C'_k$ индуцирует семейство гомоморфизмов $\varphi_*: H_k(C_*) \to H_k(C'_*)$. При этом $(\varphi \psi)_* = \varphi_* \psi_*$.

243. Докажите, что симплициальное отображение $f: K \to L$ индуцирует цепное отображение $f_k: C_k(K) \to C_k(L)$, которое определяется следующим образом:

$$f_k([a_0,\ldots,a_k]) = \ = egin{cases} [f(a_0),\ldots,f(a_k)], & ext{если } f(a_i)
et f(a_j) & ext{при } i
et j; \ 0, & ext{если } f(a_i) = f(a_j) & ext{для некоторого } i
et j. \end{cases}$$

Если для цепных отображений $f,g\colon C\to C'$ существует семейство гомоморфизмов $D_k\colon C_k\to C'_{k+1}$, удовлетворяющих соотношениям $\partial_{k+1}D_k+D_{k-1}\partial_k=g_k-f_k$, то такое семейство D называют цепной гомотопией, связывающей f и g.

- **244.** Докажите, что если цепные отображения $f,g\colon C\to C'$ цепно гомотопны, то $f_*=g_*.$
- **245.** Докажите, что гомотопные отображения индуцируют одинаковые отображения сингулярных гомологий.

Пусть K — конечный симплициальный комплекс размерности n. Его эйлеровой характеристикой называют число $\chi(K)=a_0-a_1+a_2-\ldots+(-1)^na_n$, где a_i — количество i-мерных симплексов в K.

- **246.** Пусть $b_k = \dim H_k(K;F)$. Докажите, что $\chi(K) = b_0 b_1 + b_2 \ldots + (-1)^n b_n$.
- **247.** Вычислите группы гомологий: а) S^2 ; б) T^2 ; в) $\mathbb{R}P^2$; г) всех замкнутых двумерных поверхностей. (Зависит ли ответ от характеристики поля?)
- **248.** Вычислите группы гомологий цепного комплекса $V \xrightarrow{A} V \xrightarrow{A} V$, где A—линейный оператор, для которого $A^2 = 0$.

* * *

- **249.** Пусть K связный симплициальный комплекс. Докажите, что $H^0(K;F)=F$.
- **250.** а) Докажите, что если $A\colon U\to V$ и $B\colon V\to W$ линейные отображения, для которых BA=0, то $\operatorname{Ker} A^*/\operatorname{Im} B^*$ двойственное пространство для $\operatorname{Ker} B/\operatorname{Im} A$.
- б) Докажите, что $H^k(K;F)$ двойственное пространство для $H_k(K;F)$.

3.2. Точная последовательность пары

251. Для сингулярных гомологий докажите, что

$$H_k(X,Y) \cong H_k(X \cup CY,CY),$$

где CY — конус над Y.

252. Для сингулярных гомологий докажите, что

$$H_k(X,Y) \cong H_k(X \cup CY)$$

при $k \geqslant 2$.

- **253.** Вычислите сингулярные гомологии пары (D^n, S^{n-1}) и сингулярные гомологии S^n , рассмотрев точную последовательность пары (D^n, S^{n-1}) .
 - **254.** Выразите гомологии букета $X \vee Y$ через гомологии X и Y.
 - **255.** Вычислите гомологии пары $(S^p \times S^q, S^p \vee S^q)$.
 - **256.** Вычислите гомологии $S^p \times S^q$.

Точная последовательность Майера—Вьеториса для симплициальных гомологий

257. Пусть K — симплициальный комплекс, K_0 и K_1 — такие его подкомплексы, что $K=K_0\cup K_1$. Положим $L=K_0\cap K_1$.

а) Докажите, что имеет место короткая точная последовательность

$$0 \to C_*(L) \xrightarrow{(j_0,-j_1)} C_*(K_0) \oplus C_*(K_1) \xrightarrow{(i_0,i_1)} C_*(K) \to 0,$$

где $j_a \colon L \to K_a$ и $i_a \colon K_a \to K$ — естественные вложения.

б) Докажите, что имеет место точная последовательность

$$\dots \to H_k(L) \to H_k(K_0) \oplus H_k(K_1) \to H_k(K) \to H_{k-1}(L) \to \dots$$

(последовательность Майера—Вьеториса).

- **258.** С помощью точной последовательности Майера—Вьеториса вычислите гомологии тора T^2 .
- **259.** Пусть K симплициальный комплекс, ΣK надстройка над K. Докажите, что для любого $k\geqslant 1$ имеется изоморфизм $H_k(\Sigma K)\cong \cong \tilde{H}_{k-1}(K)$.
- **260.** а) С помощью точной последовательности Майера—Вьеториса вычислите гомологии дополнения узла в S^3 (ответ не зависит от выбора узла).
- б) Вычислите гомологии дополнения зацепления в S^3 , состоящего из n связных компонент (ответ зависит только от n).
- **261.** Покажите, что для сингулярных гомологий (и произвольных пространств) теорема о точной последовательности Майера—Вьеториса, вообще говоря, неверна.

3.3. Клеточные гомологии

- **262.** Вычислите гомологии $\mathbb{C}P^n$ (в том числе и $\mathbb{C}P^\infty$) с коэффициентами в \mathbb{Z} .
- **263.** Вычислите гомологии $\mathbb{R}P^n$ (в том числе и $\mathbb{R}P^\infty$) а) с коэффициентами в \mathbb{Z}_2 ; б) с коэффициентами в \mathbb{Z} .
- **264.** Вычислите гомологии n-мерного тора T^n с коэффициентами в \mathbb{Z} .
- **265.** Вычислите гомологии с коэффициентами в \mathbb{Z} а) замкнутых ориентируемых двумерных поверхностей; б) замкнутых неориентируемых двумерных поверхностей.
- **266.** Пусть X CW-комплекс, $H_1(X)$ группа гомологий с коэффициентами в $\mathbb Z$. Докажите, что $H_1(X)=\pi_1(X)/[\pi_1(X),\pi_1(X)]$.
- **267.** Приведите пример нестягиваемого 2-мерного CW-комплекса, который имеет такие же гомологии, как у точки. (Указание. В качестве одномерного остова возьмите $S^1\vee S^1$ и приклейте к нему две двумерные клетки по словам a^5b^{-3} и $b^3(ab)^{-2}$.)

Пусть p и q — взаимно простые натуральные числа, причём $p\geqslant 3$. Зададим на единичной сфере $S^3\subset\mathbb{C}^2$ действие образующей группы \mathbb{Z}_p следующим образом:

$$(z, w) \mapsto (\exp(2\pi i/p)z, \exp(2\pi iq/p)w).$$

Фактор сферы S^3 по такому действию группы \mathbb{Z}_p называют линзовым пространством и обозначают L(p,q).

- **268.** Вычислите гомологии L(p,q) с коэффициентами в \mathbb{Z} .
- **269.** Будем рассматривать S^{∞} как подмножество \mathbb{C}^{∞} , состоящее из точек (z_1, z_2, \ldots) , для которых $\sum |z_i|^2 = 1$. Введём на S^{∞} следующее отношение эквивалентности: $(z_1, z_2, \ldots) \sim (\varepsilon z_1, \varepsilon z_2, \ldots)$, где $\varepsilon = \exp(2\pi i/m)$. Пространство $L_m^{\infty} = S^{\infty}/\sim$ называют бесконечномерным линзовым пространством. Вычислите гомологии пространства L_m^{∞} с коэффициентами \mathbb{Z} .
- **270.** Вычислите гомологии комплексного многообразия Грассмана $G_{n,\infty}^{\mathbb{C}}$ (состоящего из комплексных n-мерных подпространств в \mathbb{C}^{∞}) с коэффициентами в \mathbb{Z} .
- **271.** Вычислите гомологии вещественного многообразия Грассмана $G_{n,\infty}^{\mathbb{R}}$ (состоящего из вещественных n-мерных подпространств в \mathbb{R}^{∞}) с коэффициентами в \mathbb{Z}_2 .
- **272.** Вычислите гомологии вещественного многообразия Грассмана $G_{2,4}$ а) с коэффициентами в \mathbb{Z}_2 ; б) с коэффициентами в \mathbb{Z} .

3.4. Универсальные коэффициенты

- **273.** Вычислите группы когомологий двумерных поверхностей с коэффициентами \mathbb{Z} .
- **274.** Вычислите группы когомологий двумерных поверхностей с коэффициентами $\mathbb{Z}_p,\ p \neq 2.$
 - **275.** Докажите, что группа $H^1(X; \mathbb{Z})$ не имеет кручения.
- **276.** Пусть $H_i(X;\mathbb{Z})=\mathbb{Z}^{n_i}\oplus T_i$ и $H^i(X;\mathbb{Z})=\mathbb{Z}^{m_i}\oplus T^i$, где T_i и T^i конечные группы. Докажите, что $m_i=n_i$ и $T^i\cong T_{i-1}$.
- **277.** Вычислите группы гомологий и когомологий линзы L(p,q) с коэффициентами \mathbb{Z}_p .

3.5. Фундаментальный класс. Двойственность Пуанкаре

278. Пусть i_* : $H_n(\partial W^{n+1}) \to H_n(W^{n+1})$ — гомоморфизм, индуцированный естественным включением. Тогда если многообразие W^{n+1} ори-

ентируемо, а его край ∂W^{n+1} связен, то $i_*=0$ для коэффициентов \mathbb{Z} и \mathbb{Z}_2 , а если оно неориентируемо, то $i_*=0$ для коэффициентов \mathbb{Z}_2 .

- **279.** Докажите, что если $f: \partial W^{n+1} \to M^n$ ограничение некоторого непрерывного отображения $F: W^{n+1} \to M^n$, причём многообразие W^{n+1} ориентируемо, а его край ∂W^{n+1} связен, то $\deg f = 0$.
- **280.** Пусть M^n замкнутое ориентируемое многообразие, $H_k(M^n)\cong \mathbb{Z}^{a_k}\oplus T_k$ и $H^k(M^n)\cong \mathbb{Z}^{b_k}\oplus T^k$, где T_k и T^k кручения. Докажите, что $a_k=a_{n-k},\,b_k=b_{n-k},\,T_k\cong T_{n-k-1},\,T^k\cong T^{n-k+1}$ и $T^1=0$.
- **281.** а) Докажите, что если M^n замкнутое многообразие, а R аддитивная группа коммутативного ассоциативного кольца с единицей, то

$$H^n(M^n;R)\cong egin{cases} R &$$
для ориентируемого $M^n; \\ R/2R &$ для неориентируемого $M^n. \end{cases}$

- б) Докажите, что если M^n —замкнутое ориентируемое многообразие, то группа $H_{n-1}(M^n;\mathbb{Z})$ не имеет кручения, а если M^n —замкнутое неориентируемое многообразие, то подгруппа кручения в $H_{n-1}(M^n;\mathbb{Z})$ изоморфна \mathbb{Z}_2 .
- **282.** Докажите, что $H_k(M^n \setminus \text{Int } D^n) \cong H_k(M^n)$ при $1 \leqslant k \leqslant n-2$. (Здесь D^n шар, расположенный в некоторой карте.)
- **283.** Докажите, что если M^n замкнутое ориентируемое многообразие, то утверждение задачи 282 остаётся верным и при k=n-1. Существенна ли здесь замкнутость многообразия M^n ? А его ориентируемость?
- **284.** Пусть M^n замкнутое ориентируемое многообразие, причём его надстройка ΣM^n гомеоморфна замкнутому ориентируемому многообразию. Докажите, что M^n гомологическая сфера, т. е. $H_k(M^n)\cong H_k(S^n)$ для всех k.
- **285.** а) Отображение $f \colon M_1^n \to M_2^n$ замкнутых ориентируемых многообразий имеет степень 1. Докажите, что это отображение индуцирует эпиморфизм фундаментальных групп. (Указание. Рассмотрите накрытие $\tilde{M}_2^n \to M_2^n$, соответствующее подгруппе $f_*\pi_1(M_1^n)$, и постройте поднятие отображения f в это накрытие. Отдельно разберите случаи, когда накрытие имеет конечное и бесконечное число листов.)
- б) Докажите, что отображение степени 1 сферы с g ручками на сферу с h ручками существует тогда и только тогда, когда $g\geqslant h$.

Будем называть гомологический класс α над \mathbb{Z} примитивным, если $\alpha \neq m\beta$, где $m \in \mathbb{N}$, m > 1, и β — некоторый гомологический класс над \mathbb{Z} . Отметим, что если $m\alpha = 0$, то $\alpha = (m+1)\alpha$, поэтому элемент конечного порядка не может быть примитивным.

- **286.** Предположим, что замкнутая несамопересекающаяся кривая f реализует гомологический класс $\alpha \in H_1(M^2)$, где M^2 —замкнутое ориентируемое многообразие. Докажите, что тогда либо $\alpha = 0$, либо α примитивный гомологический класс.
- **287.** Докажите, что любой примитивный гомологический класс замкнутого ориентируемого многообразия M^2 реализуется замкнутой несамопересекающейся кривой.

3.6. Умножение в когомологиях

- **288.** Докажите, что если m>n, то любое непрерывное отображение $f\colon \mathbb{R}P^m\to\mathbb{R}P^n$ индуцирует нулевое отображение $f^*\colon H^k(\mathbb{R}P^n;\mathbb{Z}_2)\to H^k(\mathbb{R}P^m;\mathbb{Z}_2)$ для всех $k\geqslant 1$.
- **289.** Докажите, что если m>n, то любое непрерывное отображение $f\colon \mathbb{R}P^m\to \mathbb{R}P^n$ индуцирует нулевое отображение $f_*\colon H_k(\mathbb{R}P^m;\mathbb{Z}_2)\to H_k(\mathbb{R}P^n;\mathbb{Z}_2)$ для всех $k\geqslant 1$.
- **290.** Докажите, что если m > n, то любое непрерывное отображение $f: \mathbb{R}P^m \to \mathbb{R}P^n$ индуцирует нулевое отображение $f_*: \pi_1(\mathbb{R}P^m) \to \pi_1(\mathbb{R}P^n)$.
- **291.** Докажите, что клеточные цепные комплексы для тора T^2 и для пространства $S^1 \vee S^1 \vee S^2$ изоморфны, но кольца когомологий этих пространств не изоморфны.
- **292.** Докажите, что кольца когомологий пространств $\mathbb{R}P^3$ и $\mathbb{R}P^2 \vee S^3$ с коэффициентами \mathbb{Z} изоморфны, а с коэффициентами \mathbb{Z}_2 не изоморфны.
- **293.** Докажите, что степень отображения $f\colon \mathbb{C}P^n \to \mathbb{C}P^n$ равна $\lambda^n,$ где $\lambda \in \mathbb{Z}.$
- **294.** Докажите, что при чётном n не существует диффеоморфизма $f \colon \mathbb{C}P^n \to \mathbb{C}P^n$, обращающего ориентацию.
- **295.** Докажите, что при нечётном n существует диффеоморфизм $f \colon \mathbb{C}P^n \to \mathbb{C}P^n$, обращающий ориентацию.
- **296.** Докажите, что если M^{4k+2} замкнутое ориентируемое многообразие, то $\dim H_{2k+1}(M^{4k+2};\mathbb{R})$ чётное число.

3.7. Двойственность Лефшеца и двойственность Александера

297. Предположим, что в сферу S^n , $n \geqslant 3$, вложено m попарно непересекающихся сфер S^{n-2} . Пусть X — их дополнение. Вычислите гомологии X.

- **298.** Пусть $M^{n-1} \subset S^n$ замкнутое подмногообразие. Докажите, что M^{n-1} ориентируемо и $S^n \setminus M^{n-1}$ состоит из двух связных компонент.
 - **299.** а) Докажите, что $\mathbb{R}P^2$ нельзя вложить в \mathbb{R}^3 .
 - б) Докажите, что $\mathbb{R}P^2$ можно вложить в \mathbb{R}^4 .
 - **300.** Вычислите индекс самопересечения диагонали в $S^n \times S^n$.
 - **301.** Докажите, что если M^{2n} замкнутое многообразие, то

$$\chi(M^{2n}) \equiv \dim H_n(M^{2n}; \mathbb{Z}_2) \pmod{2}.$$

- **302.** Докажите, что если замкнутое многообразие M^m является краем компактного многообразия W^{m+1} , то $\chi(M^m)$ чётное число.
- ${f 303.}$ Докажите, что многообразия ${\Bbb R} P^{2n}$ и ${\Bbb C} P^{2n}$ не являются краями компактных многообразий.
- **304.** Докажите, что многообразия $\mathbb{R}P^{2n+1}$ и $\mathbb{C}P^{2n+1}$ являются краями компактных многообразий.
- **305.** а) Докажите, что пересечение циклов задает квадратичную форму на $H_n(M^{2n})/T_n$, где T_n подгруппа кручения, и форму на $H_n(M^{2n};\mathbb{R})$.
- б) Докажите, что при чётных n эта форма (ϕ орма пересечения) симметрическая, а при нечётных n кососимметрическая.
 - в) Докажите, что форма пересечения невырожденная.
- г) Докажите, что при изменении ориентации многообразия форма пересечения меняет знак.

Пусть $\sigma(M^{4n})$ — сигнатура (индекс) формы пересечения замкнутого ориентируемого многообразия M^{4n} .

- **306.** Пусть M_1^{4n} и M_2^{4n} замкнутые ориентируемые многообразия. Докажите, что $\sigma(M_1^{4n}\#M_2^{4n})=\sigma(M_1^{4n})+\sigma(M_2^{4n}).$
- **307.** Пусть M^{4k} замкнутое ориентируемое многообразие, которое является краем компактного ориентируемого многообразия W^{4k+1} . Докажите, что тогда $\sigma(M^{4k}) = 0$.

3.8. Теорема Кюннета

- **308.** Докажите, что произведение двух замкнутых многообразий ориентируемо тогда и только тогда, когда оба эти многообразия ориентируемы.
- **309.** Докажите, что сфера S^n не является произведением двух многообразий положительной размерности.
- **310.** Пусть K и L конечные симплициальные комплексы. Докажите, что $\chi(K \times L) = \chi(K)\chi(L)$.

- **311.** Пусть n>m>1. Докажите, что все гомотопические группы пространств $S^n\times \mathbb{R} P^m$ и $S^m\times \mathbb{R} P^n$ изоморфны, а группы гомологий у них разные.
- **312.** Докажите, что все гомотопические группы пространств $S^2 \times \mathbb{R}P^\infty$ и $\mathbb{R}P^2$ изоморфны, а группы гомологий у них разные.

* * *

- **313.** а) Пусть $K=\bigcup_{i=1}^n L_i$, где L_i —стягиваемые подкомплексы. Докажите, что для любых n элементов $\alpha_i\in H^{p_i}(K),\ p_i>0$, произведение $\alpha_1\cup\ldots\cup\alpha_n$ равно нулю.
- б) Докажите, что когомологическое умножение в ΣK тривиально, т. е. сир-произведение любых двух когомологических классов положительной размерности равно нулю.
- **314.** а) Докажите, что $\mathbb{R}P^n$ и $\mathbb{C}P^n$ нельзя представить в виде объединения n стягиваемых подкомплексов.
- б) Представьте $\mathbb{R}P^n$ и $\mathbb{C}P^n$ в виде объединения n+1 стягиваемых подкомплексов.

3.9. Теорема Лефшеца. Теорема Гуревича

- **315.** а) Пусть отображение $f\colon S^n\to S^n$ таково, что $\deg f\neq (-1)^{n+1}$. Докажите, что отображение f имеет неподвижную точку.
- б) Докажите, что на сфере S^{2n} не существует непрерывного векторного поля без особых точек.
- **316.** Докажите, что любое отображение $f\colon \mathbb{R}P^{2n} \to \mathbb{R}P^{2n}$ имеет неподвижную точку.
- **317.** Пусть $f\colon \mathbb{C}P^n \to \mathbb{C}P^n$ непрерывное отображение. Докажите, что число Лефшеца отображения f равно $1+\lambda+\lambda^2+\ldots+\lambda^n$, где $\lambda\in\mathbb{Z}$.
- **318.** Докажите, что если n чётно, то любое непрерывное отображение $f\colon \mathbb{C}P^n \to \mathbb{C}P^n$ имеет неподвижную точку.
- **319.** Пусть K конечный симплициальный комплекс, $f\colon K\to K$ непрерывное отображение, p простое число, $f^p=\underbrace{f\circ\ldots\circ f}_p$. Докажи-
- те, что $\Lambda(f^p) \equiv \Lambda(f) \pmod p$. (Здесь $\Lambda(f)$ число Лефшеца.)
- **320.** а) Докажите, что надстройка над ацикличным *CW*-комплексом стягиваема.
- б) Приведите пример нестягиваемого пространства, надстройка над которым стягиваема.

3.10. Теорема Гуревича. Теория препятствий

- **321.** Докажите, что замкнутое односвязное трёхмерное многообразие M^3 гомотопически эквивалентно S^3 .
- **322.** Пусть M^n $(n\geqslant 3)$ замкнутое многообразие размерности n, причём $\pi_k(M^n)=0$ при $k\leqslant n/2$. Докажите, что M^n гомотопически эквивалентно сфере S^n .
- ${f 323.}$ а) Докажите, что надстройка над ацикличным CW-комплексом стягиваема.
- б) Приведите пример нестягиваемого пространства, надстройка над которым стягиваема.
- **324.** Докажите, что для любого n-мерного CW-комплекса K (с отмеченной вершиной) и любого (n-1)-связного пространства X (с отмеченной точкой x_0) имеет место взаимно однозначное соответствие $[K,X] \longleftrightarrow H^n(K;\pi_n(X))$.
- **325.** Докажите, что если K n-мерный CW-комплекс, то любой элемент группы $H^n(K;\mathbb{Z})$ можно представить в виде $f^*\alpha$, где α образующая группы $H^n(S^n;\mathbb{Z})$ и $f:K\to S^n$ некоторое отображение.
 - **326.** а) Докажите, что $\mathbb{R}P^{\infty}$ пространство типа $K(\mathbb{Z}_2,1)$.
 - б) Докажите, что $\mathbb{C}P^{\infty}$ пространство типа $K(\mathbb{Z},2)$.
- **327.** а) Пусть X_n множество всех точек \mathbb{C}^n с попарно различными координатами. Докажите, что X_n пространство типа $K(P_n,1)$. (Возникающую здесь группу P_n называют *группой крашеных кос* из n нитей.)
- б) Пусть Y_n фактор X_n по действию группы S_n (перестановки координат). Тогда Y_n пространство типа $K(B_n,1)$. (Возникающую здесь группу B_n называют *группой кос* из n нитей.
- **328.** Будем рассматривать S^{∞} как подмножество \mathbb{C}^{∞} , состоящее из точек (z_1, z_2, \ldots) , для которых $\sum |z_i|^2 = 1$. Введём на S^{∞} следующее отношение эквивалентности: $(z_1, z_2, \ldots) \sim (\varepsilon z_1, \varepsilon z_2, \ldots)$, где $\varepsilon = \exp(2\pi i/m)$. Докажите, что $L_m^{\infty} = S^{\infty}/\sim$ —пространство типа $K(\mathbb{Z}_m, 1)$.
 - 329. Докажите, что

$$H_n(L_m^\infty) = \begin{cases} \mathbb{Z}_m & \text{для нечётных } n; \\ 0 & \text{для чётных } n > 0. \end{cases}$$

- **330.** Пусть M^3 трёхмерное многообразие с бесконечной фундаментальной группой, причём $\pi_2(M^3)=0$. Докажите, что M^3 пространство типа $K(\pi,1)$.
- **331.** Пусть X конечномерный CW-комплекс типа $K(\pi,1)$. Докажите, что группа π не содержит элементов конечного порядка.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Ботт Р., *Ту Л. В.* Дифференциальные формы в алгебраической топологии. М.: Наука, 1989.

Васильев В. А. Введение в топологию. М.: Фазис, 1997.

Вик Дж. У. Теория гомологий. М.: МЦНМО, 2005.

Милнор Дж. Теория Морса. М.: Мир, 1965.

Прасолов В. В. Наглядная топология. М.: МЦНМО, 2006.

Прасолов В. В. Элементы комбинаторной и дифференциальной топологии. М.: МЦНМО, 2004.

Прасолов В. В. Элементы теории гомологий. М.: МЦНМО, 2006.

Свитцер Р. М. Алгебраическая топология— гомотопии и гомологии. М.: Наука, 1985.

Спеньер Э. Алгебраическая топология. М.: Мир, 1971.

Фоменко А. Т., Фукс Д. Б. Курс гомотопической топологии. М.: Наука, 1989.

Ху Сы-цзян. Теория гомотопий. М.: Мир, 1964.

Виктор Васильевич Прасолов Задачи по топологии

Подписано в печать 05.12.2007 г. Формат $60\times 90^{-1}/16$. Бумага офсетная. Печать офсетная. Печ. л. 2.5. Тираж 1000 экз. Заказ N°

Издательство Московского центра непрерывного математического образования 119002, Москва, Большой Власьевский пер., 11. Тел. (495) 241-74-83.

ДРУГИЕ МАТЕРИАЛЫ КУРСОВ НЕЗАВИСИМОГО МОСКОВСКОГО УНИВЕРСИТЕТА

Хованский А.Г. Комплексный анализ. — М: МЦНМО, 2004. — 48 с.

В этой брошюре содержатся задачи к начальному полугодовому курсу комплексного анализа, который читался для второкурсников весной 2003 года в НМУ.

Вот некоторые из тем, которые обсуждались в курсе: формула Стокса в ослабленных предположениях гладкости, содержащая как частный случай теорему Коши; геометрия преобразования инверсии и геометрия Лобачевского, связь этих геометрий с ТФКП; теорема Римана вместе с теоремой о продолжаемости отображения Римана до границы; римановы поверхности аналитических функций; принцип симметрии Римана—Шварца и теорема Пикара.

Львовский С.М. Лекции по комплексному анализу. — М: МЦНМО, 2004. — 136 с.

Эта брошюра представляет собой расширенный вариант курса лекций, прочитанного автором на втором курсе Независимого московского университета в весеннем семестре 2002 года. Помимо традиционного материала, приведены сведения о компактных римановых поверхностях; обсуждаются такие результаты, как теорема Римана—Роха и (отчасти) теорема Абеля, а в первом нетривиальном случае (для эллиптических кривых) приводятся и доказательства.

Парамонова И. М., Шейнман О. К. Задачи семинара «Алгебры Ли и их приложения». — М: МЦНМО, 2004. — 48 с.

В сборнике, в форме задач, дается последовательное изложение основ теории алгебр Ли, включая нильпотентные, разрешимые и полупростые алгебры Ли, классификацию конечных систем корней, универсальные обертывающие алгебры, элементы теории когомологий алгебр Ли, введение в аффинные алгебры Каца—Муди, элементы теории представлений включая формулу характеров Вейля—Каца, некоторые приложения к интегрируемым системам и тождествам Макдональда. Предполагается знание математики в объеме первых трех семестров математических факультетов.

Шейнман О.К. Основы теории представлений. — М: МЦНМО, 2004.-64 с.

Книга представляет собой семестровый вводный курс теории представлений конечных и важнейших компактных групп. Предназначается для студентов математических и физических специальностей, начиная со второго курса.

ГОТОВЯТСЯ К ИЗДАНИЮ

Пирковский А.Ю. Спектральная теория и функциональные исчисления для линейных операторов.

Скопенков А.Б. Алгебраическая топология с элементарной точки зрения.