Фамилия Ил	RN	4. После k итераций внешнего цикла алгоритма Флойда элемент $a[i,j]$ матрицы расстояний содержит:	
1. Выберите все истинные утверждения относительно элементов двоичной кучи $h[0\dots n-1]$, в корне которой находится минимум (считайте, что i и j таковы, что все рассматриваемые элементы существуют).		\Box кратчайшую длину пути от вершины i до вершины j кратчайшую длину пути, состоящего не более чем из k ребер от вершины i до вершины j	
$ \Box h[0] \le h[i] \qquad \Box h[0] \le h[n - 1] $ $ \Box h[i] \le h[i + 1] \qquad \Box h[i] \le h[2i - 1] $ $ \Box h[i] \le h[(i - 1) \text{ div } 2] \qquad \Box h[(i - 1) \text{ div } 2] $	$ \begin{array}{ccc} -1] & \square & h[i] \leq h[n-1] \\ +1] & \square & h[i] \leq h[2i+2] \\ 72] \leq h[i] & \square & h[i] \neq h[i] \text{ mpg } i \neq i \end{array} $	$\hfill \square$ кратчайшую длину пути, проходящего через вершины с номерами не более $k,$ от вершины i до вершины j	
2. Условие оптимальности для префиксов в задаче о кратчайшем пути в ациклическом графе означает (выберите истинные утверждения):		5. После k итераций внешнего цикла алгоритма Форда-Беллмана элемент $d[i]$ массива расстояний содержит:	
		 кратчайшую длину пути до вершины i кратчайшую длину пути, состоящего не более чем из k ребер, до вершины i кратчайшую длину пути, проходящего через вершины с номерами не более k, до вершины i 	
v , то путь $s\leadsto v\leadsto u$ является оптимальным путем от s до u \Box Если префикс $s\leadsto v$ пути $s\leadsto v\leadsto u$ является оптимальным путем от s		$\hfill \square$ число не превыщающее кратчайшую длину пути, состоящего не более чем из k ребер, до вершины i	
до v , и фрагмент $v \leadsto u$ является оптимальным путем от v до u , то путь $s \leadsto v \leadsto u$ является оптимальным путем от s до u		6. За какое время можно построить дерево отрезков для заданного массива?	
3. Заполните таблицу параметров различных алгоритмов на графах. В графе SS отметьте, верно ли, что алгоритм предназначен для нахождения путей от одной вершины до всех, в графе W+ — требуется ли для корректности работы алгоритма неторицательность весов ребер, в графе T — оцените асимптотически время работы (V — число вершин в графе, E — число ребер).		□ $O(n^2)$ □ $O(n\log n)$ □ $O(n)$ □ $O(\log n)$ □ $O(1)$ 7. Выберите истинные утверждения про дерево Фенвика. □ Дерево Фенвика можно построить за $O(n)$. □ Построение дерева Фенвика требует увеличения размера массива до степени двойки.	
Алгоритм	SS W+ T	\square Дерево Фенвика требует $O(1)$ дополнительной памяти. \square Дерево Фенвика можно построить для операции «минимум».	

□ Дерево Фенвика можно построить для операции «хог».

□ Дерево Фенвика можно построить для операции «умножение перестано-

BOK».

		10. Постройте дерево Фенвика для операции сложения и набора чисел			
	Декартово дерево для пар чисел (x_i, y_i) является двоичным деревом поиска	$\{21, 153, 7, 100, 9, 42, 256, 17, 194, 14\}$			
Ι	по ключу x_i .				
	В декартовом дереве для пар чисел (x_i, y_i) соблюдается порядок кучи по				
F	ключу y_i .				
	\square В декартовом дереве для пар чисел (x_i,y_i) не может быть двух вершин с				
	одинаковым ключом y_i .				
	\square Декартово дерево требует $O(1)$ дополнительной памяти.				
	\square Высота декартова дерева с n вершинами — $O(\log n)$.				
	\square Декартово дерево для n пар чисел (x_i, y_i) можно построить за $O(n)$.				
	\square Декартово дерево для n пар чисел (i,y_i) можно построить за $O(n)$.				
	\square Декартово дерево однозначно задается набором пар ключей (x_i,y_i) .				
	\square Можно объединять два произвольных декартовых дерева за $O(\log n)$.				
	□ Можно объединять два произвольных декартовых дерева за время, про-				
	порциональное сумме их размеров.				
_	Можно делать операцию split по приоритетам за $O(\log n)$.				
	В декартовом дереве по неявному ключу вместо ключей используются при-				
C	оритеты.				
9. Постр	ройте дерево отрезков для операции минимум и набора чисел:				
$\{21, 153, 7, 100, 9, 42, 256, 17, 194, 14\}$ 11. Π ocr		11. Постройте skip-list для набора чисел: $\{21, 153, 7, 100, 9, 42, 256, 17, 194, 14\}$			

12. За какое время возможно решение динамической задачи выбора минимума на отрезке (RMQ)? Выберите варианты, для которых вам известен алгоритм с временем предподготовки P(n) и временем обработки запроса на изменение элемента или получения минимума на отрезке Q(n). Для каждого из отмеченных вариантов укажите с помощью какой структуры данных эта оценка достигается и какое количество дополнительной памяти M(n) — необходимо.

 $\square P(n) = O(1), Q(n) = O(n)$

 $M(n) = \underline{\hspace{1cm}}$

 $\square P(n) = O(n), Q(n) = O(\log n)$

M(n) =

 $\Box P(n) = O(n^2), Q(n) = O(1)$

M(n) =

 $\square P(n) = O(n \log n), Q(n) = O(\log n)$

M(n) =

 $\square P(n) = O(n \log n), Q(n) = O(1)$

M(n) =

 \square P(n) = O(n), Q(n) = O(1)

M(n) = _____

13. За какое время возможно решение статической задачи выбора минимума на отрезке (RMQ)? Выберите варианты, для которых вам известен алгоритм с временем предподготовки P(n) и временем обработки запроса получения минимума на отрезке Q(n). Для каждого из отмеченных вариантов укажите с помощью какой структуры данных эта оценка достигается и какое количество дополнительной памяти M(n) — необходимо.

 $\square P(n) = O(1), Q(n) = O(n)$

M(n) =

 $\square P(n) = O(n), Q(n) = O(\log n)$

M(n) =

 $\Box P(n) = O(n^2), Q(n) = O(1)$

 $M(n) = \underline{\hspace{1cm}}$

 $\square P(n) = O(n \log n), Q(n) = O(\log n)$

 $M(n) = \underline{\hspace{1cm}}$

 $\square P(n) = O(n \log n), Q(n) = O(1)$

M(n) =

 \square P(n) = O(n), Q(n) = O(1)

M(n) =

14. За какое время возможно выполнение m запросов о наименьшем общем предке (LCA) в дереве с n вершинами в режиме offline (Все запросы известны заранее)? Выберите варианты, для которых вам известен алгоритм с временем работы P(n), укажите исползуемые структуры данных и алгоритм.

 $\square P(n) = O(nm)$

 $\square P(n) = O(m \log n)$

 $\Box P(n) = O(m \log *n)$

 $\Box P(n) = O(m+n)$

 $\square P(n) = O(1)$

15. За какое время возможно решение задачи нахождения наименьшего общего предка в дереве в режиме online (LCA)? Выберите варианты, для которых вам известен алгоритм с временем предподготовки P(n) и временем обработки запроса Q(n). Для каждого из отмеченных вариантов укажите необходимое количество дополнительной памяти M(n) для известного вам метода.

 $\square P(n) = O(1), Q(n) = O(n)$

M(n) =

 $\square P(n) = O(n), Q(n) = O(\log n)$

M(n) =

 $\Box P(n) = O(n^2), Q(n) = O(1)$

M(n) =

 $\square P(n) = O(n \log n), Q(n) = O(\log n)$

 $M(n) = \underline{\hspace{1cm}}$

 $\square P(n) = O(n \log n), Q(n) = O(1)$

 $M(n) = \underline{\hspace{1cm}}$

 $\square P(n) = O(n), Q(n) = O(1)$

 $M(n) = \underline{\hspace{1cm}}$

16. За какое время возможно реализации структуры данных для системы непересе-	19. Выберите истинные утверждения.
кающихся множеств? Выберите варианты, для которых вам известен алгоритм с	$\hfill \square$ Алгоритм Ахо-Корасик позволяет найти количество вхождений строк S_i в
указанным временем работы для m операций get и n операций union $(m \ge n)$, и	текст T за время $O(\sum S_i + T)$.
укажите используемые структуры данных.	\square Алгоритм Ахо-Корасик позволяет найти все вхождения строк S_i в текст T за время $O(\sum S_i + T)$.
$\square \ O(m+n^2)$	\square Алгоритм Ахо-Корасик позволяет найти наибольшую общую подстроку двух строк с длинами n и m за $O(n+m)$.
$\Box O(m + n \log n)$	\square Алгоритм Ахо-Корасик позволяет найти наибольший префикс строки S входящий в строку T за $O(S + T)$.
$\square \ O(m \log n)$	Плубина вершины в которую указывает суффиксная ссылка, построенная алгоритмом Ахо-Корасик для одной строки, совпадают с префикс функ-
$\square \ O(m \log^* n)$	цией для этой строки.
$\square \ O(m + n \log^* n)$	Суффиксные ссылки, построенные алгоритмом Ахо-Корасик для одной строки, совпадают с Z -функцией для этой строки.
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	20. Пусть $Z[i]$ - Z -функция, а π - префикс функция. Выберите истинные утверждения
	\square Для строки S и любого $i < j$ верно, что $Z[i] \leq Z[j].$
17. D. C	\square Для строки S и любого $i < j$ верно, что $Z[i] \geq Z[j].$
17. Выберите истинные утверждения.	\square Для строки S и любого $i < j$ верно, что $\pi[i] \le \pi[j]$.
□ Если объекты равны, то хеши могут быть равны.	\square Для строки S и любого $i < j$ верно, что $\pi[i] \ge \pi[j]$.
□ Если объекты равны, то хеши могут быть не равны.	\square Для строки S и любого i верно, что $\pi[i] \leq Z[i].$
□ Если хеши равны, то объекты могут быть равны.	\square Для строки S и любого i верно, что $\pi[i] \geq Z[i].$
□ Если хеши равны, то объекты могут быть не равны.	\square Для строки S и любого i верно, что $Z[i] \leq i$.
□ Если объекты не равны, то хеши всегда не равны.	\square Для строки S и любого i верно, что $Z[i] \geq i$.
□ Если хеши не равны, то объекты всегда не равны.	\square Для строки S и любого i верно, что $\pi[i] \leq i$.
h(x)=1 является корректной хеш-функцией.	\square Для строки S и любого i верно, что $\pi[i] \geq i$.
$\Box h(x) = \mathrm{rand}\{0,1\}$ является корректной хеш-функцией.	\square Для строки S и любого i верно, что $Z[i] \leq Z[Z[i]].$
18. Для хеширования строки $s,$ состоящей из маленьких латинских букв, была при-	\square Для строки S и любого i верно, что $Z[i] \geq Z[Z[i]].$
	\square Для строки S и любого i верно, что $Z[i] \leq Z[\pi[i]].$
менена формула $\sum_{i=1}^{n} (s_i - {\bf a}) p^{n-i}$. Приведите пример двух различных строк, име-	\square Для строки S и любого i верно, что $Z[i] \geq Z[\pi[i]].$
i=1 ЮЩИХ ОДИНАКОВЫЙ ХЕШ.	\square Для строки S и любого i верно, что $\pi[i] \leq \pi[\pi[i]].$
	\square Для строки S и любого i верно, что $\pi[i] \geq \pi[\pi[i]].$
	\square Z -функция позволяет найти наибольшую общую подстроку двух строк S
	и T за $O(S + T).$
	\square Z-функция позволяет найти все вхождения строки S в текст T за $O(S + T).$
	\square Z -функцию для строки S можно вычислить за $O(S)$.
	21. Подстроку длины m можно найти в строке длины n за время:
	$\square \ O(m^2n) \square \ O(mn^2) \square \ O(nn) \square \ O(m+n) \square \ O(n/m)$

28. Укажите, для каких из приведенных задач вы знаете алгоритм решения за полиномиальное время. Укажите его асимптотику.

Задача	Время работы алгоритма
Поиск максимального паросочетания в двудоль-	
ном графе	
Поиск максимального паросочетания в произ-	
вольном графе	
Поиск паросочетания минимального веса в дву-	
дольном графе (задача о назначениях)	
Поиск паросочетания минимального веса в произ-	
вольном графе	
Поиск минимального вершинного покрытия в	
двудольном графе	
Поиск минимального вершинного покрытия в	
произвольном графе	
Поиск максимального потока	
Поиск потока минимальной стоимости	

- 29. Выберите истинные утверждения.
 - $\hfill \square$ Минимальный поток из s в t в сети G равен максимальному s-t разрезу.
 - \square В сети G существует единственный максимальный поток тогда и только тогда, когда в ней существует единственный минимальный разрез.
 - □ Алгоритм Форда-Фалкерсона работает за полиномиальное время от количества ребер.
 - □ Максимальный поток в сети с целыми пропускными способностями всегда целый.
 - $\hfill \square$ Любой поток можно разложить в сумму потоков вдоль путей из истока в сток.
 - \square Любой поток из s в t в сети G не больше любого s-t разреза в сети G.
 - □ Поток является максимальным тогда и только тогда когда в остаточной сети нет пиклов.
 - □ Поток имеет величину 0 тогда и только тогда, когда поток по каждому ребру равен 0.
 - □ Поток по ребру равен потоку по обратному ребру.
 - Поток f является максимальным, если на любом пути из s в t в G найдется насыщенное ребро.
 - Поток f является максимальным, если на любом пути из s в t в G_f найдется насыщенное ребро.

- 30. Выберите верные утверждения:
 - □ При анализе игры на ациклическом графе используется поиск в глубину.
 □ При анализе игры на ациклическом графе используется поиск в ширину.
 - □ При анализе игры на графе с циклами используется поиск в глубину.
 - □ При анализе игры на графе с циклами используется поиск в ширину.
 - □ Все позиции в игре на ациклическом графе являются либо выигрышными, либо проигрышными.
 - □ Все позиции в игре на графе с циклами являются либо выигрышными, либо проигрышными.
 - □ Если позиция в игре на графе является ничейной то она лежит на цикле.
 - □ Если позиция в игре на графе лежит на цикле, то она является ничейной.
 - □ Позиции в игре на графе является ничейной тогда и только тогда, когда она лежит на цикле.
- 31. Выберите верные утверждения:
 - \square Сумма игр на графах, содержащих m и n позиций, соответственно, является игрой, содержащей m+n позиций.
 - \square Сумма игр на графах, содержащих m и n позиций, соответственно, является игрой, содержащей mn позиций.
 - □ Две игры на графе являются эквивалентными по Гранди, если они имеют одинаковый исход.
 - □ Две игры на графе являются эквивалентными по Гранди, если они имеют одинаковый исход при суммировании с любой игрой.
 - □ Две игры на графе являются эквивалентными по Гранди, если они имеют одинаковый исход при суммировании с ничейной игрой.
 - □ Любая игра на ациклическом графе эквивалентна игре ним.
 - □ Любая игра на графе эквивалентна игре ним.
 - □ Любая игра на графе, которая не является ничейной, эквивалентна игре ним.
 - \Box Функция Гранди позиции u в игре на графе равна сумме функций Гранди позиций, в которые из нее возможен ход.
 - \square Функция Гранди позиции u в игре на графе равна минимуму из функций Гранди позиций, в которые из нее возможен ход.
 - $\hfill \Box$ Функция Гранди позиции uв игре на графе равна максимуму из функций Гранди позиций, в которые из нее возможен ход.
 - \Box Функция Гранди позиции u в игре на графе равна максимуму из функций Гранди позиций, в которые из нее возможен ход, плюс один.
 - Функция Гранди позиции u в игре на графе равна минимальному целому неотрицательному числу, не встречающемуся среди функций Гранди позиций, в которые из нее есть ход.