Programação De Computadores

es

Professor: Yuri Frota

www.ic.uff.br/~yuri/prog.html

yuri@ic.uff.br

- 2400 AC: Ábaco

800000000

Primeira tentativa de se criar um artefato capaz de contar

- 2400 AC: Ábaco

Primeira tentativa de se criar um artefato capaz de contar

- 1642: Pascalina

200000000

Criada por Blaise Pascal, aos 19 anos Uma das primeiras máquinas mecânicas de calcular

- 2400 AC: Ábaco

Primeira tentativa de se criar um artefato capaz de contar

- 1642: Pascalina

200000000

Criada por Blaise Pascal, aos 19 anos Uma das primeiras máquinas mecânicas de calcular

- 1822: Primeiro computador mecânico

Projetado por Charles Babbage mas não terminado devido à falta de recursos Posteriormente, o seu projeto foi construído e exposto em um museu

- 2400 AC: Ábaco

Primeira tentativa de se criar um artefato capaz de contar

- 1642: Pascalina

Criada por Blaise Pascal, aos 19 anos Uma das primeiras máquinas mecânicas de calcular

- 1822: Primeiro computador mecânico
 Projetado por Charles Babbage mas não terminado devido à falta de recursos
 Posteriormente, o seu projeto foi construído e exposto em um museu

- 1938: Z1

200000000

O primeiro computador programável Muito foi perdido por causa da II Guerra Mundial

- 2400 AC: Ábaco

Primeira tentativa de se criar um artefato capaz de contar

- 1642: Pascalina

Criada por Blaise Pascal, aos 19 anos

Uma das primeiras máquinas mecânicas de calcular

- 1822: Primeiro computador mecânico

Projetado por Charles Babbage mas não terminado devido à falta de recursos Posteriormente, o seu projeto foi construído e exposto em um museu

- 1938: Z1

O primeiro computador programável Muito foi perdido por causa da II Guerra Mundial

- 1943: Colossus

200000000

Usado pelos britânicos para decodificar mensagens alemãs

- 2400 AC: Ábaco

Primeira tentativa de se criar um artefato capaz de contar

- 1642: Pascalina

Criada por Blaise Pascal, aos 19 anos

Uma das primeiras máquinas mecânicas de calcular

- 1822: Primeiro computador mecânico

Projetado por Charles Babbage mas não terminado devido à falta de recursos Posteriormente, o seu projeto foi construído e exposto em um museu

- 1938: Z1

O primeiro computador programável Muito foi perdido por causa da II Guerra Mundial

- 1943: Colossus

Usado pelos britânicos para decodificar mensagens alemãs

- 1946: ENIAC

Considerado o primeiro computador eletrônico de propósito geral

Construído na Universidade da Pensilvânia

Ocupava uma sala inteira

Pesava 30 toncia...

Consumia 200 kw de potência

- 1973: Alto

20000000

Primeiro computador pessoal

Construído pela Xerox, mas nunca produzido em massa Já tinha mouse, interface gráfica e sistema operacional

- 1973: Alto

200000000

Primeiro computador pessoal Construído pela Xerox, mas nunca produzido em massa Já tinha mouse, interface gráfica e sistema operacional

Mais tarde as características do Alto foram incorporadas no Macintosh

- 1973: Alto

Primeiro computador pessoal

Construído pela Xerox, mas nunca produzido em massa

Já tinha mouse, interface gráfica e sistema operacional

Mais tarde as características do Alto foram incorporadas no Macintosh

- Atualmente

-O que é um algoritmo ?

-O que é um algoritmo ?

-O que é um algoritmo ?

É uma <u>sequência finita de instruções</u> ou operações básicas, cuja execução em <u>tempo</u> <u>finito resolve um problema</u>.

ex: Receita de Bolo

- Primeiramente, misture os ingredientes secos.
- Após misturados, acrescente o óleo e o leite fervendo por cima.
- Misture até tornar a massa homogênea.
- 4 Por último, coloque os ovos.
- Misture.
- Os ingredientes desta receita devem ser apenas misturados, não leve à batedeira.

-O que é um algoritmo ?

200000000

É uma <u>sequência finita de instruções</u> ou operações básicas, cuja execução em <u>tempo</u> <u>finito resolve um problema</u>.

ex: Receita de Bolo, bula de remédio

-O que é um algoritmo ?

800000000

ex: Receita de Bolo, bula de remédio

Vamos escrever um algoritmo para sair da sala de aula do IC para as barcas:

-O que é um algoritmo ?

ex: Receita de Bolo, bula de remédio

Vamos escrever um algoritmo para sair da sala de aula do IC para as barcas:

- 1) Sair do prédio do IC
- 2) Andar até o ponto de ônibus
- 3) Pegar o ônibus 47 até a praia
- 4) Andar até as barcas

-O que é um algoritmo ?

É uma <u>sequência finita de instruções</u> ou operações básicas, cuja execução em <u>tempo</u> <u>finito resolve um problema</u>.

ex: Receita de Bolo, bula de remédio

Vamos escrever um algoritmo para sair da sala de aula do IC para as barcas:

- 1) Sair do prédio do IC
- 2) Andar até o ponto de ônibus
- 3) Pegar o ônibus 47 até a praia
- 4) Andar até as barcas

- Sair como?

- pelas escadas ?
- pelo elevador?
- pular pela janela?

Mas todo passo deve ser detalhado o suficiente para não restar dúvidas!

-O que é um Programa ?

-O que é um Programa ?

800000000

É simplesmente um algoritmo escrito numa linguagem que o computador possa entender (nada mais que uma tradução)

-O que é um Programa?

800000000

É simplesmente um algoritmo escrito numa linguagem que o computador possa entender (nada mais que uma tradução)

O desafio não é saber programar, e sim saber elaborar algoritmos. Sabendo isso, é fácil programar em qualquer linguagem. (foco do curso em lógica)

O que é linguagem de programação?

Sepondoo

- É uma linguagem que serve para traduzir o algoritmo para informações que o computador entende.

- O que é linguagem de programação?
 - É uma linguagem que serve para traduzir o algoritmo para informações que o computador entende.
- O que o computador entende:

800000000

- Operações no computador são grupos de bits 0 ou 1 (ligado ou desligado)

- O que é linguagem de programação ?
 - É uma linguagem que serve para traduzir o algoritmo para informações que o computador entende.
- O que o computador entende:
 - Operações no computador são grupos de bits 0 ou 1 (ligado ou desligado)
- Microprocessador
 - Move o conteúdo de grupos de bits
 - Soma pares de grupos de bits
 - Subtrai um grupo de bits de outro
 - Compara pares de grupos de bits

- ...

- O que é linguagem de programação ?
 - É uma linguagem que serve para traduzir o algoritmo para informações que o computador entende.
- O que o computador entende:
 - Operações no computador são grupos de bits 0 ou 1 (ligado ou desligado)
- Microprocessador
 - Move o conteúdo de grupos de bits
 - Soma pares de grupos de bits
 - Subtrai um grupo de bits de outro
 - Compara pares de grupos de bits

- ...

"There are only 10 different kinds of people in the world: those who know binary and those who don't."

1234 = 10011010010

"texto" = 01000001

= 0011010001101...

- Roteiro de Programação

Os conceitos de periféricos <u>de entrada, saída e armazenamento</u> estão presentes no nosso dia a dia.

Entrada	Saída	Armazenamento

Entrada	Saída	Armazenamento
Teclado		
Mouse		
Webcam		
Scanner		
Microfone		
Joystick		
TouchScreen		

Entrada	Saída	Armazenamento
Teclado	Monitor	
Mouse	Impressora	
Webcam	Caixa de Som	
Scanner		
Microfone		
Joystick		
TouchScreen		

Entrada	Saída	Armazenamento
Teclado	Monitor	HD
Mouse	Impressora	Memória RAM
Webcam	Caixa de Som	CD, DVD, Blue Ray
Scanner		Disquetes
Microfone		Fita Magnética
Joystick		Cartão Perfurado
TouchScreen		

Entrada	Saída	Armazenamento
Teclado	Monitor	HD
Mouse	Impressora	Memória RAM
Webcam	Caixa de Som	CD, DVD, Blue Ray
Scanner		Disquetes
Microfone		Fita Magnética
Joystick		Cartão Perfurado
TouchScreen		

Bessesse

Seja o seguinte algoritmo:

- 1) Leia A
- 2) Leia B
- 3) S = A + B
- 4) Leia C
- 5) S = S + C
- 6) Escreve S
- O que ele faz ?

Seja o seguinte algoritmo:

- 1) Leia A
- 2) Leia B
- 3) S = A + B
- 4) Leia C
- 5) S = S + C
- 6) Escreve S

20000000

- O que ele faz ? Soma 3 números
- O que seria caracterizado como ENTRADA?

armazenamento

Seja o seguinte algoritmo:

- 1) Leia A
- 2) Leia B
- 3) S = A + B
- 4) Leia C
- 5) S = S + C
- 6) Escreve S

800000000

- O que ele faz ? Soma 3 números
- O que seria caracterizado como ENTRADA?
- O que seria caracterizado como SAIDA?

armazenamento

Seja o seguinte algoritmo:

- 1) Leia A
- 2) Leia B
- 3) S = A + B
- 4) Leia C
- 5) S = S + C
- 6) Escreve S

800000000

- O que ele faz ? Soma 3 números
- O que seria caracterizado como ENTRADA?
- O que seria caracterizado como SAIDA?
- O que seria caracterizado como ARMAZENAMENTO ?

armazenamento

Seja o seguinte algoritmo:

- 1) Leia A
- 2) Leia B
- 3) S = A + B
- 4) Leia C
- S = S + C
- 6) Escreve S

800000000

- O que ele faz ? Soma 3 números
- O que seria caracterizado como ENTRADA?
- O que seria caracterizado como SAIDA?
- O que seria caracterizado como ARMAZENAMENTO?
- O que seria caracterizado como PROCESSAMENTO?

armaze namento

Periféricos

Seja o seguinte algoritmo:

- 1) Leia A
- 2) Leia B
- 3) S = A + B
- 4) Leia C
- 5) S = S + C
- 6) Escreve S

20000000

- O que ele faz ? Soma 3 números
- O que seria caracterizado como ENTRADA?
- O que seria caracterizado como SAIDA?
- O que seria caracterizado como ARMAZENAMENTO?
- O que seria caracterizado como PROCESSAMENTO?

armazenamento

Vamos abordar alguns problemas sob um olhar algorítmico:

Dados três botijões com capacidades para 3,5 e 8 litros. Sabendo que o maior deles está cheio, construir um algoritmo que seja capaz de dividir o conteúdo em duas partes iguais.

В3	B5	B8	Ação
0	0	8	
000			

Vamos abordar alguns problemas sob um olhar algorítmico:

Dados três botijões com capacidades para 3,5 e 8 litros. Sabendo que o maior deles está cheio, construir um algoritmo que seja capaz de dividir o conteúdo em duas partes iguais.

В3	B5	B8	Ação
0	0	8	B8->B5
000			

Vamos abordar alguns problemas sob um olhar algorítmico:

Dados três botijões com capacidades para 3,5 e 8 litros. Sabendo que o maior deles está cheio, construir um algoritmo que seja capaz de dividir o conteúdo em duas partes iguais.

В3	B5	B8	Ação
0	0	8	B8->B5
0	5	3	
700			

Vamos abordar alguns problemas sob um olhar algorítmico:

Dados três botijões com capacidades para 3,5 e 8 litros. Sabendo que o maior deles está cheio, construir um algoritmo que seja capaz de dividir o conteúdo em duas partes iguais.

В3	B5	B8	Ação
0	0	8	B8->B5
0	5	3	B5->B3
3	2	3	
000			

Vamos abordar alguns problemas sob um olhar algorítmico:

Dados três botijões com capacidades para 3,5 e 8 litros. Sabendo que o maior deles está cheio, construir um algoritmo que seja capaz de dividir o conteúdo em duas partes iguais.

Uma ação válida é jogar uma de um botijão para outro até encher

В3	B5	B8	Ação
0	0	8	B8->B5
0	5	3	B5->B3
3	2	3	B3->B8
0	2	6	

20000000

Vamos abordar alguns problemas sob um olhar algorítmico:

Dados três botijões com capacidades para 3,5 e 8 litros. Sabendo que o maior deles está cheio, construir um algoritmo que seja capaz de dividir o conteúdo em duas partes iguais.

Uma ação válida é jogar uma de um botijão para outro até encher

В3	B5	B8	Ação
0	0	8	B8->B5
0	5	3	B5->B3
3	2	3	B3->B8
0	2	6	B5->B3
2	0	6	

20000000

Vamos abordar alguns problemas sob um olhar algorítmico:

Dados três botijões com capacidades para 3,5 e 8 litros. Sabendo que o maior deles está cheio, construir um algoritmo que seja capaz de dividir o conteúdo em duas partes iguais.

Uma ação válida é jogar uma de um botijão para outro até encher

В3	B5	В8	Ação
0	0	8	B8->B5
0	5	3	B5->B3
3	2	3	B3->B8
0	2	6	B5->B3
2	0	6	B8->B5
2	5	1	

20000000

Vamos abordar alguns problemas sob um olhar algorítmico:

Dados três botijões com capacidades para 3,5 e 8 litros. Sabendo que o maior deles está cheio, construir um algoritmo que seja capaz de dividir o conteúdo em duas partes iguais.

В3	B5	B8	Ação
0	0	8	B8->B5
0	5	3	B5->B3
3	2	3	B3->B8
0	2	6	B5->B3
2	0	6	B8->B5
2	5	1	B5->B3
3	4	1	
000			

Vamos abordar alguns problemas sob um olhar algorítmico:

Dados três botijões com capacidades para 3,5 e 8 litros. Sabendo que o maior deles está cheio, construir um algoritmo que seja capaz de dividir o conteúdo em duas partes iguais.

В3	B5	B8	Ação
0	0	8	B8->B5
0	5	3	B5->B3
3	2	3	B3->B8
0	2	6	B5->B3
2	0	6	B8->B5
2	5	1	B5->B3
3	4	1	B3->B8
0	4	4	-
000			

Vamos abordar alguns problemas sob um olhar algorítmico:

Torre de Hanoi: Dados 3 torres (A,B e C) com 3 discos (1,2 e 3) de diferentes tamanhos

colocados na torre A. Mova os 3 dias para a torre C (movendo um disco por vez) e não podemos colocar um disco maior sobre

um disco menor (senão quebra)

1 2		
3		
а	b	С

A	В	С	Ação
1,2,3	-	-	

Até a próxima

Slides baseados no curso de Vanessa Braganholo