Теорема 28. Пусть функции $y=\varphi_1(x), y=\varphi_2(x)$ линейно зависимы и дифференцируемы на отрезке [a;b]. Тогда $W(\varphi_1,\varphi_2)=0$ на этом отрезке.

<u>Доказательство.</u> Если эти функции линейно зависимы, то выполняется равенство $\varphi_2(x)=\lambda \varphi_1(x)$, $\lambda \neq 0$. Тогда $W(\varphi_1,\varphi_2)=\begin{vmatrix} \varphi_1 & \varphi_2 \\ \varphi_1' & \varphi_2' \end{vmatrix}=\begin{vmatrix} \varphi_1 & \lambda \varphi_1 \\ \varphi_1' & \lambda \varphi_1' \end{vmatrix}=0$.

3амечание. Теорема распространяется на случай n функций.

Теорема 29. Рассмотрим однородное линейное уравнение $y'' + a_1(x)y' + a_2(x)y = 0$. Пусть y_1, y_2 – решения этого уравнения на отрезке [a;b]. Пусть $x_0 \in (a;b)$ и $W(y_1,y_2)(x_0) \neq 0$. Тогда для любого x на отрезке [a;b] $W(y_1,y_2) \neq 0$.

Доказательство. Так как y_1, y_2 — решения, то подставим их и составим систему $\begin{cases} y_1'' + a_1y_1' + a_2y_1 = 0 | *y_2 \\ y_2'' + a_1y_2' + a_2y_2 = 0 | *y_1 \end{cases}$. Вычитаем второе из первого и получаем $y_1''y_2 - y_2''y_1 + a_1(y_1'y_2 - y_1y_2') = 0$. Но $(y_1'y_2 - y_1y_2')' = y_1''y_2 + y_1'y_2' - y_1'y_2' - y_1y_2'' = y_1''y_2 - y_1y_2''$ и $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1y_2' - y_1'y_2$. Тогда $-W'(y_1, y_2) - a_1W(y_1, y_2) = 0$. $\frac{W'}{W} = -a_1(x)$. Проинтегрировав, получаем $\ln |W| = -\int_{x_0}^x a_1 dx$. $W = W(x_0) * e^{-\int_{x_0}^x a_1 dx}$. По условию $W(x_0) \neq 0$. А значит и все выражение не обращается в ноль.

Замечание. Пусть y_1, y_2 – решения линейного однородного дифференциального уравнения на отрезке [a;b] такие, что в какой-то точке этого отрезка $W(y_1,y_0)(x_0)=0$. Тогда $W(y_1,y_2)(x)=0$ на всем отрезке [a;b].

Теорема 30. Пусть y_1, y_2 — линейно-независимые решения однородного линейного уравнения $y'' + a_1(x)y' + a_2y = 0$. Тогда $W(y_1, y_2) \neq 0$ на отрезке [a;b]. Без доказательства.

Теорема 31. Общее решение $y'' + a_1(x)y' + a_2(x)y = 0$ представимо в виде $y = c_1y_1(x) + c_2y_2(x)$, где $y_1(x), y_2(x)$ – линейно-независимые частные решения линейного однородного дифференциального уравнения.

Доказательство. Так как y_1 и y_2 – решения, то $y=c_1y_1+c_2y_2$ – тоже решение. Пусть есть некоторая задача Коши. $y(x_0)=y_0, y'(x_0)=y_0'$. Покажем, что существуют такие c_1,c_2 , что $y=c_1y_1+c_2y_2$ решают задачу Коши. $\{y(x_0)=c_1y_1(x_0)+c_2y_2(x_0)=y_0\}$ Следовательно, $W(y_1,y_2)(x_0)\neq 0$ – определитель системы. Следовательно, система имеет единственное решение c_1,c_2 .

Замечание. Теорема распространяется на случай линейного однородного уравнения n-го порядка. Пусть $y_1(x), \dots, y_n(x)$ – линейно-независимые частные решения уравнения $y^{(n)}(x) + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0$. Тогда $y = c_1y_1(x) + \dots + c_ny_n(x)$ является общим решением.

§5. Неоднородные линейные уравнения высших порядков

П.1. Структура решения

Не ограничивая общности, рассмотрим неоднородное уравнение второго порядка $y'' + a_1(x)y' + a_2(x)y = f(x)$ (далее - (*)).

Теорема 32. Общее решение (*) представляется как сумма общего решения однородного уравнения и частного решения неоднородного уравнения: $y(x) = c_1 y_1(x) + c_2 y_2(x) + y_4(x)$, где $c_1 y_1(x) + c_2 y_2(x) = \bar{y}$ – общее решение однородного уравнения, $y_4(x)$ – частное решение (*).

Доказательство. Просто возьмем и подставим y(x) в уравнение: $c_1y_1''+c_2y_2''+y_4''+a_1(x)(c_1y_1'+c_2y_2'+y_4')+a_2(x)(c_1y_1+c_2y_2+y_4)=c_1(y_1''+a_1(x)y_1'+a_2(x)y_1)+c_2(y_2''+a_1(x)y_2'+a_2(x)y_2)+y_4''+a_1(x)y_4'+a_2(x)y_4=f(x)$. Первые двое слагаемых равны нулю в силу того, что y_1,y_2 – частные решения однородного уравнения. Третье слагаемое является частным решением неоднородного уравнения. Получаем, что это выражение является решением уравнения (*). Теперь надо сделать, чтобы решалась задача Коши. Пусть $y(x_0)=y_0,\ y'(x_0)=y_0'$. Тогда $y(x_0)=c_1y_1(x_0)+c_2y_2(x_0)+y_4(x_0)=y_0,\ y'(x_0)=c_1y_1'(x_0)+c_2y_2'(x_0)+y_4(x_0)=y_0'$. Следовательно, $\begin{cases} c_1y_1(x_0)+c_2y_2(x_0)=y_0-y_4(x_0)\\ c_1y_1'(x_0)+c_2y_2'(x_0)=y_0'-y_4'(x_0) \end{cases}$. Выходит, что определитель этой системы $W(y_1,y_2)(x_0)$ построен на линейно-независимых решениях однородного уравнения и отличен от нуля. Тогда система имеет единственное решение c_1,c_2 .

Замечание. Теорема распространяется на случай линейного неоднородного уравнения порядка n.

П.2. Метод вариации произвольных постоянных

Не ограничивая общности, рассмотрим неоднородное уравнение второго порядка $y''+a_1(x)y'+a_2(x)y=f(x)$. Пусть $\bar{y}=c_1y_1+c_2y_2$ – общее решение однородного уравнения. Частное решение неоднородного уравнения можно искать в виде $y=c_1(x)y_1+c_2(x)y_2$ (y_1,y_2 – линейно-независимые решения однородного уравнения). $y'=c_1'y_1+c_1y_1'+c_2'y_2+c_2y_2'$. Потребуем $c_1'y_1+c_2'y_2=0$. Тогда получим $y'=c_1y_1'+c_2y_2'$. $y''=c_1'y_1'+c_1y_1''+c_2'y_2'+c_2y_2''$. Подставим y'',y' в уравнение. Получаем $c_1'y_1'+c_1y_1''+c_2'y_2'+c_2y_2''+a_1(x)(c_1y_1'+c_2y_2')+a_2(x)(c_1y_1+c_2y_2)=f(x)$. Выражаем в виде $c_1(y_1''+a_1(x)y_1'+a_2(x)y_1)+c_2(y_2''+a_1(x)y_2'+a_2(x)y_2)+c_1'y_1'+c_2'y_2'=f(x)$. Первое и второе слагаемые равны нулю, так что получаем $c_1'y_1'+c_2'y_2'=f(x)$. Составим систему $\begin{cases} c_1'y_1+c_2'y_2=0\\ c_1'y_1'+c_2'y_2'=f(x) \end{cases}$ определитель которой $W(y_1,y_2)$ в каждой точке x отличен от нуля. Значит, система имеет единственное решение $c_1'(x),c_2'(x)$. После этого интегрируем и получаем $c_1(x),c_2(x)$.

§6. Линейные уравнения высших порядков с постоянными коэффициентами

Рассмотрим неоднородное уравнение $y^{(n)}+a_1y^{(n-1)}+\cdots+a_{n-1}y'+a_ny=f(x)$, где a_1,\ldots,a_n – константы. Если f(x)=0, то уравнение однородное.

П.1. Однородные уравнения второго порядка

Рассмотрим однородное уравнение y''+py'+qy=0, где p,q – константы. Будем решение уравнения в виде $y=e^{kx}$, где k – константа. Тогда $y'=ke^{kx},y''=k^2e^{kx}$. После подстановки в уравнение получим $k^2e^{kx}+pke^{kx}+qe^{kx}=0$. Сократив, получим $k^2+p+q=0$ – характеристическое уравнение дифференциального уравнения. Если k – корень этого уравнения, тогда $y=e^{kx}$ – решение дифференциального. Отдельные случаи:

- 1) $k_1 \neq k_2$ различные действительные корни. Пусть $y_1 = e^{k_1 x}$, $y_2 = e^{k_2 x}$. Тогда, если они линейно-зависимы, то $y_2 = \lambda y_1$, $\lambda = \frac{y_2}{y_1} = \frac{e^{k_2 x}}{e^{k_1 x}} = e^{x(k_2 k_1)}$, чего не может быть в силе того, что $k_1 \neq k_2$. Следовательно y_1, y_2 линейно-независимы. Тогда общее решение будет выглядеть в виде $y = c_1 e^{k_1 x} + c_2 e^{k_2 x}$.
- 2) $k_1=k_2$ действительные корни второй кратности. Пусть $y_1=e^{k_1x},y_2=e^{k_2x}$. Они линейно-зависимы. Покажем, что $y_2=xe^{k_1x}$. Будем искать второе линейно-независимое решение в виде $y_2=U(x)e^{k_1x}$. $y_2'=U'(x)e^{k_1x}+k_1U(x)e^{k_1x},y_2''=U''(x)e^{k_1x}+U'(x)k_1e^{k_1x}+k_1^2U(x)e^{k_1x}$. Подставим эти два выражения в уравнение: $U''(x)e^{k_1x}+2k_1U'(x)e^{k_1x}+k_1^2U(x)e^{k_1x}+pU'(x)e^{k_1x}+pU'(x)e^{k_1x}+pU'(x)e^{k_1x}+qU(x)e^{k_1x}+qU(x)e^{k_1x}=0$. После сокращения получим $U''(x)+(2k_1+p)U'(x)+(k_1^2+pk_1+q)U(x)=0$. Второе и третье слагаемые равны нулю, так как k_1 корень второй кратности. Значит, $D=0, k_1=\frac{-p\pm\sqrt{D}}{2}=-\frac{p}{2}$. Выходит, уравнение преобразуется к виду U''(x)=0. Следовательно, После двойного интегрирования, U(x)=A(x)+B. Так как нам нужно любое частное решение, то можно положить B=0, A=1, U(x)=x. Тогда $y_2=xe^{k_1x}$ линейно-независимое решение с e^{k_1x} . Общее решение: $y=c_1e^{k_1x}+c_2xe^{k_1x}$.
 - 3) k_1, k_2 комплексные сопряженные корни.