TCC - CIÊNCIA DE DADOS E BIG DATA CATEGORIZAÇÃO DE PRODUTOS EM MARKETPLACES

1

ENTENDENDO O PROBLEMA

O intuito deste trabalho foi criar um modelo para categorizar produtos vendidos em marketplaces, com modelagem de algoritmos de *Machine Leaning* (ML) e, dessa forma, automatizar o processo de categorização de itens vendidos pela empresa *Olist Store*, sem depender de ações manuais.

ANÁLISE DE DADOS

Após o tratamento dos dados foi construída uma base balanceada e robusta com 2.035 produtos da categoria "cama, mesa e banho" e 2.027 produtos da categoria "beleza e saúde".

Atributo	categoria 0 cama_mesa_banho		categoria 1 beleza_saude	
	peso_kg	0,31	2,29	-0,07
comprimento cm	22,29	42,27	15,7	27,58
altura_cm	5,4	16,68	7,21	19,15
largura_cm	18,61	34,13	12,14	21,04
preco	29,3	134,1	26,21	142,57

COLETA DE DADOS

As informações de produtos vendidos na *Olist Store* foram coletadas da plataforma *Kaggle* (comunidade voltada para ciência de dados).

O conjunto de dados utilizados contém informações como, peso, dimensões e preço de produtos diversos, bem como sua categoria.

MODELAGEM DE ML

O *XGBoost* apresentou a melhor acurácia, seguido por Árvores de Decisão. A performance destes modelos foi acentuada com otimização Bayesiana. O melhor resultado obtido foi com o XGBoost ajustado.

Algoritmo	Classificador	Acurácia	Erro 11,15	
Árvores de Decisão	clf_dt=tree.DecisionTreeClassifier()	88,85		
Árvores de Decisão	dt_bayes_search.best_estimator_	89,13	10,87	
Regressão Logística	clf_lr = LogisticRegression()	80,44	19,56	
Naive Bayes	clf_nb = GaussianNB()	78,72	21,28	
XGBoost	clf_xgb = xgb.XGBClassifier()	92,72	7,28	
XGBoost	xgb_bayes_search.best_estimator_	92,75	7,25	

TRATAMENTO DE DADOS

Antes de iniciar a modelagem dos algoritmos de ML foi importante para obtenção de bons resultados:

- concatenar bases de dados;
- eliminar colunas insignificantes;
- eliminar produtos duplicados;
- eliminar dados faltantes:
- alterar unidades;
- renomear dados e colunas;
- remover outliers:
- redimensionar os dados.

AVALIAÇÃO DOS RESULTADOS

O modelo campeão deste projeto foi o XGBoost ajustado, que conseguiu prever corretamente a categoria de 93,52% dos produto da base de teste.

Isso representa uma boa acurácia.

- 0.0: 94% dos produtos de cama, mesa e banho foram previstos
- 0.1: 6% dos produtos de cama, mesa e banho foram previstos como de beleza e saúde.
- 1.1: 92% dos produtos de beleza e saúde foram previstos corretamente.
- 1.0: 8% dos produtos de beleza e saúde foram previstos como de cama, mesa e banho.