1 Conditional Probability

- 1. Consider a random experiment with a probability space $(\Omega, \mathcal{F}, \mathsf{P})$
 - suppose we have partial information about the outcome of the experiment, specifically that $\omega \in A$ for some $A \in \mathcal{F}$
 - how does this information affect the probabilities of the events of interest?
 - can we derive a new probability space to represent the updated experiment?
 - how does the original probability space influence our new model?
- 2. (Definition) Let $A \in \mathcal{F}$ and P(A) > 0. Then, the conditional probability of $B \in \mathcal{F}$ given the occurrence of A is defined as

$$\mathsf{P}(B|A) = \mathsf{P}_A(B) = \frac{\mathsf{P}(BA)}{\mathsf{P}(A)}$$

- P(B|A) is called the conditional probability of B given A
- P(B|A) is undefined if the conditioning event has zero probability
- 3. $(\Omega, \mathcal{F}, P_A)$ is a valid probability space (suited for the derived experiment)!
 - $P_A(\cdot)$ is non-negative
 - $P_A(\Omega) = P_A(A) = 1$
 - P_A is countably additive as P is countably additive
- 4. Example: You toss a coin first. If the outcome is heads, you toss a four-sided die. If the outcome is tails, you toss a six-sided die. A probability space for the problem is $(\Omega = \{H1, H2, H3, H4, T1, T2, T3, T4, T5, T6\}, \mathcal{F} = 2^{\Omega}, \mathsf{P}).$
 - what is the conditional probability that the outcome is H4, given that the first flip lands on head?
- 5. Multiplication Rule:
 - Let $A_1, A_2 \in \mathcal{F}$ and $P(A_1) > 0$. Then,

$$\mathsf{P}(A_1A_2) = \mathsf{P}(A_1A_2) \frac{\mathsf{P}(A_1)}{\mathsf{P}(A_1)} = \frac{\mathsf{P}(A_1A_2)}{\mathsf{P}(A_1)} \mathsf{P}(A_1) = \mathsf{P}(A_2|A_1) \mathsf{P}(A_1)$$

• If $A_1, A_2, \dots, A_n \in \mathcal{F}$ and $\mathsf{P}(A_1) > 0, \mathsf{P}(A_1 A_2) > 0, \dots, \mathsf{P}(A_1 A_2 A_{n-1}) > 0$, then,

$$P(A_1 A_2 \dots A_n) = P(A_1)P(A_2 | A_1) \dots P(A_n | A_1 A_2 \dots A_{n-1}) = \prod_{i=1}^n P(A_i | A_1 \dots A_{i-1})$$

- multiplication rule permits us to describe the probability of events in terms of the probability of conditioning events!
- Example: What is the probability that the outcome of the experiment is H4 (assuming a fair coin and a fair die)? (Hint: $\frac{1}{9}$.)

6. Total Probability Theorem:

• For events A and B such that 0 < P(A) < 1,

$$\begin{aligned} \mathsf{P}(B) &=& \mathsf{P}(B\cap\Omega) = \mathsf{P}(B\cap(A\cup A^c) \\ &=& \mathsf{P}((BA)\cup(BA^c)) = \mathsf{P}(BA) + \mathsf{P}(BA^c) \\ &=& \mathsf{P}(A)\mathsf{P}(B|A) + \mathsf{P}(A^c)\mathsf{P}(B|A^c) \end{aligned}$$

• Let $\{A_i\}_{i=1}^n$ be a partition of Ω , i.e., $\{A_i\}_{i=1}^n$ are mutually exclusive and $\bigcup_{i=1}^n A_i = \Omega$. Further, suppose that $\mathsf{P}(A_i) > 0$ for all i. Then for $B \in \mathcal{F}$,

$$\mathsf{P}(B) = \sum_{i=1}^{n} \mathsf{P}(A_i) \; \mathsf{P}(B|A_i)$$

- Extend the results for a countably infinite partition.
- Example: What is the probability that the outcome of the second throw is 4? (Hint: $\frac{5}{24}$.)

7. Bayes' theorem

• Let $\{A_i\}_{i=1}^n$ be a partition of Ω . Further, suppose that $\mathsf{P}(A_i) > 0$ for all i. Then for $B \in \mathcal{F}$ such that $\mathsf{P}(B) > 0$,

$$\mathsf{P}(A_i|B) = \frac{\mathsf{P}(A_iB)}{\mathsf{P}(B)} = \frac{\mathsf{P}(A_i) \; \mathsf{P}(B|A_i)}{\mathsf{P}(B)} = \frac{\mathsf{P}(A_i) \; \mathsf{P}(B|A_i)}{\sum_i \mathsf{P}(A_i) \; \mathsf{P}(B|A_i)}$$

- Bayes' theorem allows us to identify cause given the effect!
- Example: Given that the outcome of the second throw is 4, what is the probability that the outcome of the first toss is a H? (Hint: $\frac{3}{5}$.)
- Example (false-positive puzzle): A laboratory test is 95% effective in detecting a disease, when it is present. The test also yields a false-positive result for 1% of healthy persons. If 0.5% of the population actually has the disease, what is the probability that a person has the disease given that the test result is positive? (Hint: Answer is 32.3%)
- Example: Review Monty-Hall problem.

2 Independence

1. Definition: Two events A and B are said to be independent if

$$P(AB) = P(A) P(B)$$

If in addition, P(A) > 0, then independence is equivalent to the condition

$$P(B|A) = P(B)$$

If A and B are independent, we denote it as $A \perp B$

- 2. A and B are said to be dependent, if they are not independent.
- 3. Independence is a symmetric relation
 - if $A \perp B$, then $B \perp A$; also, $A \perp B^c$
- 4. If $A \cap B = \phi$, then A and B are dependent (!)
- 5. Example: Consider two tosses of a coin. Let $\Omega = \{HH, HT, TH, TT\}$, $\mathcal{F} = 2^{\Omega}$. Assume that all elementary outcomes have equal probability of $\frac{1}{4}$. Define $A = \{HH, HT\}$, $B = \{HH, TH\}$ and $C = \{HT, TH\}$. Identify independent events among A, B and C.
- 6. The description of a probability space is easier with the notion of independence.
 - Let \mathcal{F} be the sigma-algebra generated by events A and B.
 - We will need P(AB), $P(A^cB)$, $P(AB^c)$ and $P(A^cB^c)$ to describe the probability measure
 - However, with independence assumption, we will only need $\mathsf{P}(A)$ and $\mathsf{P}(B)$ to describe the probability measure!
- 7. Definition: The events $A_1, A_2, \cdots A_n$ are said to be (mutually) independent if

$$\mathsf{P}\left(\bigcap_{i\in S}A_i\right) = \prod_{i\in S}\mathsf{P}(A_i)$$

for every subset S of $\{1, 2, \dots, n\}$.

- mutual independence implies pairwise independence, but pairwise independence does not imply mutual independence!
- Example: In the previous experiment, the events A, B and C are pair-wise independent, but they are not mutually independent.
- Example: Consider three tosses of a coin. Assume that all elementary outcomes are equally likely. Define $A = \{HHH, HTH, HHT, HTT\}, B = \{HHH, HHT, THH, THT\}$ and , $C = \{HHH, HTH, THH, TTH\}$. Show that A, B and C are mutually independent.

- 8. The definition of mutual independence can be extended to an infinite collection of events as well!
- 9. The definition of independence can be extended to conditional probabilities as well. For example, events A and B are said to be conditionally independent given C (assuming P(C) > 0), if

$$P(AB|C) = P(A|C) P(B|C)$$

If in addition, P(A|C) > 0, then conditional independence is equivalent to

$$P(B|AC) = P(B|C)$$

In this case, A and B are said to be independent given C.

- 10. Example: Consider two tosses of a coin. Let $\Omega = \{HH, HT, TH, TT\}$, and $\mathcal{F} = 2^{\Omega}$. Assume that all elementary outcomes have equal probability of $\frac{1}{4}$. Define $A = \{HH, HT\}$, $B = \{HH, TH\}$ and $C = \{HT, TH\}$. Verify that A and B are not conditionally independent given C.
- 11. Example: Consider n independent tosses of a coin with bias p.
 - The probability of an all head sequence is ____
 - The probability of an all tail sequence is ____
 - The probability of first head and remaining tails is _____
 - The probability of one head and n-1 tails is _____
 - The probability of one sequence with k head and n-k tails is _____
 - The probability of k head and n-k tails is _____
- 12. Example: Show that if A_1, A_2, \dots, A_n are independent, then

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = 1 - \prod_{i=1}^{n} (1 - P(A_{i}))$$

13. Example: Determine the probability of a path connecting nodes A and B in the given graph. Edge weights represent the probability of the corresponding link existing. Assume that link existences are independent events.

