PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ Escuela de Posgrado

ANÁLISIS REAL 1

Hoja de ejercicios No 6 2020-2

- 1. Sea $f: R^n \to R$ una función tal que $f(t\mathbf{x}) = |t| f(\mathbf{x})$ para $\mathbf{x} \in R^n$ y $t \in R$. Si f es diferenciable en el origen demuestre que $f(\mathbf{x}) = 0$ para todo $\mathbf{x} \in R^n$.
- 2. Dada una transformación lineal $T:R^n\to R^n$, defina la función $f:R^n\to R$ dada por $f(\mathbf{x})=< T\mathbf{x},\mathbf{x}>$. Determine $gradf(\mathbf{x})$
- 3. Demuestre que todo todo funcional $f: \mathbb{R}^n \to \mathbb{R}$ es diferenciable y $df(\mathbf{x})(v) = f(v)$, para cualquier $\mathbf{x}, v \in \mathbb{R}^n$.
- 4. Sea $g:R^2\to R$ una función dos veces diferenciable. ges solución de

$$\frac{\partial^2 g}{\partial x^2} = \frac{\partial^2 g}{\partial y^2}$$

si y solamente si existen dos funciones $\varphi:R\to R,\, \psi:R\to R,$ dos veces diferenciable tales que

$$g(x,y) = \varphi(x+y) + \psi(x-y)$$

5. Sea $U \subset \mathbb{R}^n$. Si la función difernciable $f: U \to \mathbb{R}$ cumple con la condición de Lipschitz $|f(\mathbf{x}) - f(\mathbf{y})| \le c ||\mathbf{x} - \mathbf{y}||$, demuestre que

$$|df(x)v| \le c||v||$$

San Miguel, 12 de octubre del 2020