DAVID W. TAYLOR NAVAL SHIP ARGH AND DEVELOPMENT CENTER

Bothesda, Md. 20084

ADA 037312

STANDARDIZATION AND PRELIMINARY FUEL ECONOMY
TRIALS OF USS TARAWA (LHA 1)

by

Donald H. Drazin

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT —
RESEARCH AND DEVELOPMENT REPORT

mry 1977

Report 77-0008

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

MAJOR DINSRDC ORGANIZATIONAL COMPONENTS

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 3. RECIPIENT'S CATALOG NUMBER REPORT NUMBER 2. GOVT ACCESSION NO. DTNSRDC Report 77-0008 S. TYPE OF REPORT & PERIOD COVERED TITLE (and Subtitle) STANDARDIZATION AND PRELIMINARY FUEL ECONOMY TRIALS OF USS TARAWA (LHA 1) Final PERFORMING ORG. REPORT NUMBER S. CONTRACT OR GRANT NUMBER(s) AUTHOR(e) Donald H./Drazin PERFORMING ORGANIZATION NAME AND ADDRESS
David W. Taylor Naval Ship Research and 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Development Center Work Unit 1-1536-143 Bethesda, Maryland 20084 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Jan Naval Sea Systems Command NUMBER OF PAGES Washington, D.C. 20362 26 15. SECURITY CLASS. (of this report) 14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) UNCLASSIFIED DECLASSIFICATION DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Standardization Trials Preliminary Fuel Economy Trials LHA 1 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report contains the results of standardization trials conducted on USS TARAWA (LHA 1) at a heavy displacement of 39,400 tons salt water (40,030 metric tons), and a light displacement of 35,000 tons salt water (35,560 metric tons). Measurements were made to determine powering data throughout the speed range at both displacements. In addition, fuel economy trials were conducted at the heavy displacement, and preliminary (Continued on reverse side) data are included in this report.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

UNCLASSIFIED

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(Block 20 continued)

TARAWA obtained a speed of 24.70 knots at 175.0 RPM, 2,010,000 pound feet (2,730,000 newton metres) shaft torque, and 67,050 SHP (50,000 kilowatts) at heavy displacement. A speed of 25.42 knots was obtained at 174.7 RPM, 1,925,000 pound feet (2,610,000 newton metres) shaft torque, and 64,000 SHP (47,750 kilowatts) at the light displacement. Preliminary fuel economy data indicate a Specific Fuel Rate of .647 pounds per shaft horsepower hour (.394 grams per watt hour) at 68,293 SHP (50,926 kilowatts).

TABLE OF CONTENTS

	Page
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
TRIAL CONDITIONS	2
TRIAL PROCEDURES AND INSTRUMENTATION	5
PRESENTATION AND DISCUSSION OF TRIAL RESULTS	6
CONCLUSIONS	20
LIST OF FIGURES	
Figure 1 - Standardization Curves at Heavy and Light Displacements	13
Figure 2 - High Pressure Turbine First Stage Shell Pressure Curves at Heavy and Light Displacements	19
LIST OF TABLES	
Table 1 - Ship and Propeller Characteristics	3
Table 2 - Trial Conditions	4
Table 3 - Summary of Speed, RPM, and Powering Data at Heavy Displacement	7
Table 4 - Summary of Speed and Torque Data at Heavy Displacement.	9
Table 5 - Summary of Speed, RPM, and Powering Data at Light Displacement	11
Table 6 - Summary of Speed and Torque Data at Light Displacement.	12
Table 7 - Summary of RPM and High Pressure Turbine First Stage Shell Pressure Data at Heavy Displacement	14
Table 8 - Summary of RPM and High Pressure Turbine First Stage Shell Pressure Data at Light Displacement	16

LIST OF TABLES (Continued)

				Page
Table	9	-	Summary of Preliminary Fuel Economy Data (English Units)	17
Table	10	-	Summary of Preliminary Fuel Economy Data (Metric Units)	18

USS TARAWA (LHA 1)

ABSTRACT

This report contains the results of standardization trials conducted on USS TARAWA (LHA 1) at a heavy displacement of 39,400 tons salt water (40,030 metric tons), and a light displacement of 35,000 tons salt water (35,560 metric tons). Measurements were made to determine powering data throughout the speed range at both displacements. In addition, fuel economy trials were conducted at the heavy displacement, and preliminary data are included in this report.

TARAWA obtained a speed of 24.70 knots at 175.0 RPM, 2,010,000 pound feet (2,730,000 newton metres) shaft torque, and 67,050 SHP (50,000 kilowatts) at heavy displacement. A speed of 25.42 knots was obtained at 174.7 RPM, 1,925,000 pound feet (2,610,000 newton metres) shaft torque, and 64,000 SHP (47,750 kilowatts) at the light displacement. Preliminary fuel economy data indicate a Specific Fuel Rate of .647 pounds per shaft horsepower hour (.394 grams per watt hour) at 68,293 SHP (50,926 kilowatts).

ADMINISTRATIVE INFORMATION

The trials of USS TARAWA (LHA 1) reported herein were authorized by and conducted in accordance with Naval Sea Systems Command Trial Agenda Letter PMS 377/DJD, LHA 1 cl/3960, Ser 728 of 21 June 1976. The work was accomplished under David W. Taylor Naval Ship Research and Development Center Work Unit Number 1-1536-143.

INTRODUCTION

USS TARAWA (LHA 1) is the first of a new class of general purpose amphibious assault ships. The ship has a highly automated steam plant permitting a reduced crew. TARAWA was constructed by the Ingalls Shipbuilding Division of Litton Systems, Inc., Pascagoula, Mississippi.

Standardization trials were conducted at the measured mile course, San Clemente Island, California on 31 August and 1 September 1976. These trials were conducted by representatives from the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) with assistance from the ship's

force. The purpose of the standardization trials was to determine the relationship between ship speed, propeller shaft revolutions per minute and propeller shaft power.

The fuel economy trials were conducted in free route from 31 August through 3 September 1976 during transit to and from San Clemente Island, California and San Diego, California and while in the vicinity of San Clemente Island. These trials were conducted by Naval Ship Engineering Center personnel with assistance from the ship's force and DTNSRDC personnel.

TRIAL CONDITIONS

The principal ship and propeller characteristics are listed in Table 1. USS TARAWA was drydocked at Ingalls Shipbuilding, Pascagoula, Mississippi from 11 January to 18 January 1976 at which time the hull and propeller were cleaned. The standard Navy anticorrosive paint, with an overlay of vinyl antifouling paint, was applied to the hull.

Since the trials were not conducted until the latter part of August 1976, it was decided to have the ship's underwater hull cleaned in San Diego, California. This work was performed during the time period of 16 August through 25 August 1976. The hull was cleaned by contractor divers using the SCAMP system. The propellers and appendages were cleaned by hand. After this work was completed, DTNSRDC divers inspected and recorded the condition of the hull. This inspection indicated that the propellers had not been cleaned sufficiently, and the contractor had the propellers recleaned.

Trial conditions are listed in Table 2. The heavy standardization trials were conducted on 31 August 1976 at a displacement of 39,400 tons salt water (40,030 metric tons). Light standardization trials were conducted on 1 September 1976 at 35,000 tons salt water (35,560 metric tons) displacement. The weather conditions on both days were generally favorable.

TABLE 1 - SHIP AND PROPELLER CHARACTERISTICS

SHIP CHARACTERISTICS

Length Overall, LOA (extreme)	820 ft	(249.9 m)
Length between Perpendiculars, LBP	778 ft	(237.1 m)
Breadth, (extreme)	106.12 ft	(32.3 m)

PROPELLER CHARACTERISTICS

Number of Propellers	2	2
Propeller Diameter	16.5 ft	(5.0 m)
Propeller Pitch at 0.7 Radius	18.54 ft	(5.65 m)
Mean Width Ratio	2.49	2.49
Disc Area	214 ft ²	(19.9 m^2)
Projected Area	131 ft ²	(12.2 m^2)
Number of Blades	6	6
Material	Nickel-Aluminum-	Bronze
Manufacturer	Lips	Lips

Serial Number

Port - S/N 28232 Stbd - S/N 28231

Drawing Number

LHA1-203-4522379

TABLE 2 - TRIAL CONDITIONS

HEAVY DISPLACEMENT

Trial Date 31 AUG 1976

Displacement 39,400 tons salt water (40,030 metric tons)

Trim 4 inches by the stern (.1 metre by the stern)

Sea State 0-1 Beaufort Scale

Water Temperature 70°F (21.1°C)

Specific Gravity 1.0255

LIGHT DISPLACEMENT

Trial Date 1 SEP 1976

Displacement 35,000 tons salt water 35,560 metric tons)

Trim Even Keel

Sea State 0-1 Beaufort Scale

Water Temperature 70°F (21.1°C)

Specific Gravity 1.0255

Fuel economy trials were run at a heavy displacement of 39,400 tons salt water (40,030 metric tons) from 31 August through 3 September 1976. Sea conditions were favorable with low sea states and low wind velocities.

TRIAL PROCEDURES AND INSTRUMENTATION

The heavy displacement standardization trials consisted of eight spots at various approach speeds in order to define the standardization curve. Six spots were used to describe the light displacement curve. Some spots consisted of the mean of means of three passes across the measured course. When the speed across the measured course did not vary much between two successive passes, the spot at that speed consisted of the average of those two passes.

The quantities measured during the trials were propeller shaft torque, propeller shaft RPM, elapsed time over the measured course, and high pressure turbine first stage shell pressure. Propeller shaft torque was measured on each shaft with a DTNSRDC magnetic micrometer in conjunction with a clamp-on torsionmeter husk. Interrupter rings on the torsionmeter husks were electrically connected to a standardization panel for measuring propeller shaft revolutions. In addition, propeller shaft RPM was recorded by means of a clamp-on ring with magnetic inserts mounted on the ring. An electrical signal was generated by a magnetic probe in proximity to the ring. Elapsed time was read from the standardization panel with accurate electronic clocks. The elapsed time was determined by observers located on the ship at various locations. They would start and stop these clocks as the ship crossed the beginning and the end of the measured course. The high pressure turbine first stage shell pressure data were obtained from ship's electrical signals which were digitally recorded while conducting a run. These signals were calibrated prior to sea trials.

Propeller shaft torque, RPM, and fuel rate data were collected for fuel economy trials. These runs consisted of steaming on a straight course for about two hours at various steady operating conditions.

PRESENTATION AND DISCUSSION OF TRIAL RESULTS

Standardization trial results at heavy displacement are summarized in Tables 3 and 4. Light displacement results are tabulated in Tables 5 and 6. Both heavy and light displacement data are presented as curves in Figure 1. The speed data are based on the International Nautical Mile, 6076.1 feet (1852 metres). The data presented are for observed conditions and have not been corrected for wind effects or reduced to standard conditions of sea water temperature and density.

TARAWA obtained a top speed of 24.70 knots at an average RPM of 175.0; a total shaft torque of 2,010,000 pound feet (2,730,000 newton metres), and a total power of 67,050 SHP (50,000 kilowatts) at the heavy displacement. A top speed of 25.42 knots at an average RPM of 174.7 was achieved at the light displacement. A total shaft torque of 1,925,000 pound feet (2,610,000 newton metres) and a total power of 64,000 SHP (47,750 kilowatts) were developed at the light displacement.

As can be observed in Figure 1, the data spot at the light displacement condition of 20.40 knots does not fall on the curve determined by the other data spots. This problem was observed while analyzing data during the trials. Due to other ship commitments, there was no time available to make additional passes across the measured course to more closely define this area of the standardization curve.

Tables 7 and 8 are a tabulation of high pressure turbine first stage shell pressure data at heavy and light displacements, respectively, while Figure 2 presents this data graphically.

Tables 9 and 10 are preliminary fuel economy data in English and metric units, respectively. These data are to be considered preliminary as the final data will be published in a separate report by the Naval Ship Engineering Center, Philadelphia Division.

TABLE 3 - SUMMARY OF SPEED, RPM, AND POWERING DATA AT HEAVY DISPLACEMENT

	SHID		SHAFT RPM			POWER (SHP	_	POWER	ER (KILOWATTS)	TTS)
AVG	SPEED (KNOTS)	STBD	PORT SHAFT	AVG	STBD SHAFT	PORT	TOTAL	STBD SHAFT	PORT SHAFT	TOTAL
	11.81	80.1	78.6	79.4	2,990 2,940	2,800	5,790	2,220	2,090	4,310
AVG	11.94			79.5			5,750			4,250
	14.72 14.93 14.54	99.9 99.5 99.6	99.3 99.4 9.4	99.6 99.4 99.5	5,730 5,610 5,830	5,730 5,730 5,810	11,460	4,280 4,190 4,340	4,270	8,550 8,460 8,680
AVG	14.78			99.5			11,450			8,550
	17.83	120.0	1.9.1	119.6	10,060	9,910	19,970	7,500	7,390	14,890
AVG	17.70			119.4			19,950			14,900
	19.60 19.86 19.63	134.0 134.8 134.1	133.7 134.6 135.4	133.8 134.7 134.8	14,250 14,250 14,140	14,330 14,540 15,070	28,580 28,790 29,210	10,630 10,630 10,540	10,680 10,840 11,240	21,310 21,470 21,780
AVG	19.74			134.5			28,850			21,500
	21.72 21.47	149.8	149.1	149.4	20,130	20,240	40,370	15,010	15,090	30,100
AVG	21.60			149.2			40,600			30,300
	22.64 22.98	159.7	158.9	159.3	25,000 24,790	25,030 25,120	50,030	18,640	18,670	37,310 37,210
AVG	22.81			159.4			49,950			37,250

TABLE 3 (Continued)

TTS)	45,480 45,440 45,420	45,450	49,900 49,760 50,630	20,000
ER (KILOWATTS) PORT SHAFT TO	23,030 23,040 23,010		25,130 25,120 25,430	
POWER STBD SHAFT	22,450 22,400 22,410		24,770 24,640 25,200	
) TOTAL	60,990 60,940 60,910	60,950	66,920 66,730 67,890	67,050
POWER (SHP) PORT SHAFT	30,880 30,900 30,860		33,700 33,680 34,100	
STBD	30,110 30,040 30,050		33,220 33,050 33,790	
AVG	169.8 169.8 169.6	169.8	175.0 174.4 176.0	175.0
SHAFT RPM PORT SHAFT	170.0 170.0 169.8		175.1 174.7 176.0	
STBD	169.7 169.5 169.4		174.9 174.2 176.0	
SHIP'S SPEED (KNOTS)	23.99 24.34 23.83	24.12	24.92 24.44 25.01	24.70
AVG		AVG		AVG

The average power data are rounded off to the nearest 50 SHP and 50 kilowatts.

TABLE 4 - SUMMARY OF SPEED AND TORQUE DATA AT HEAVY DISPLACEMENT

× 10-5	TOTAL	5.19	5.10	8.20	8.20	11.89	11.90	15.20 15.21 15.44	15.25	19.24	19.40	22.36	22.30
SHAFT TORQUE (NEWTON METRES) \times 10 ⁻⁵	PORT SHAFT	2.54		4.10	\ .	5.92		7.63 7.69 7.93		9.67		11.22	
SHAFT TORQUE	STBD SHAFT	2.65		4.09	<u>.</u>	5.97		7.57 7.52 7.51		9.57		11.14	
× 10 ⁻⁵	TOTAL	3.83	3.80	5.99	6.05	8.77	8.80	11.21	11.25	14.19	14.30	16.49	16.45
SHAFT TORQUE (LB FT) \times 10^{-5}	PORT SHAFT	1.87		3.03	5	4.37		5.63 5.67 5.85		7.13		8.27	
SHAFT	STBD SHAFT	1.96		3.01		4.40		5.58 5.55 5.54		7.06		8.22	
SHIP'S	SPEED (KNOTS)	11.81	11.94	14.72 14.93 14.54	14.78	17.83 17.56	17.70	19.60 19.86 19.63	19.74	21.72	21.60	22.64 22.98	22.81
	AVG		AVG		AVG		AVG		AVG		AVG		AVG

TABLE 4 (Continued)

s) × 10 ⁻⁵	TOTAL	25.56	25.57	25.55	27.22	27.46	27.30
(NEWTON METRES) \times 10 ⁻⁵	PORT SHAFT	12.93	12.94		13.70	13.79	
AFT TORQUE	STBD SHAFT	12.63	.63		13.52	.67	
S	SS	12	12		13	13	
× 10 ⁻⁵	TOTAL	18.86	18.86	18.85	20.08	20.26	20.10
SHAFT TORQUE (LB FT) \times 10^{-5}	PORT SHAFT	9.54	9.54		10.11	10.18	
SHAFT	STB0 SHAFT	9.32	9.32		9.96	10.08	
SHIP'S	SPEED (KNOTS)	23.99	23.83	24.12	24.92	25.01	24.70
	AVG			AVG			AVG

The average torque data are rounded off to the nearest $5 \times 10^{+3}$ lb ft and $5 \times 10^{+3}$ newton metres.

TABLE 5 - SUMMARY OF SPEED, RPM, AND POWERING DATA AT LIGHT DISPLACEMENT

ITS) TOTAL	4,140	4,100	8,390	8,300	13,820	14,200	21,220	21,100	21,200	32,330	32,550	47,240	47,750
R (KILOWATTS) PORT SHAFT T	2,060 2,010		4,200		6,730		10,740	10,670		16,400		23,330	
POWER STBD SHAFT	2,080		4,190		7,090		10,480	10,430		15,930		23,910	
TOTAL	5,550	2,500	11,240	11,150	18,530	19,050	28,460	28,290	28,450	43,370	43,650	63,360	64,000
OWER (SHP) PORT SHAFT	2,770 2,700		5,630 5,840		9,030		14,410	14,310		22,000		31,290	
STB0 SHAFT	2,780		5,610 5,180		9,500		14,050	13,980		21,370 21,960		32,070 33,080	
AVG	79.9	8.62	100.5	9.001	119.5	120.1	135.8	135.2	135.4	155.2	155.6	174.1	174.7
SHAFT RPM PORT SHAFT	79.6		100.6		119.2		136.1	135.5		155.6		173.4	
STBD SHAFT	80.2		100.4		119.8		135.4	134.9		154.7		174.8	
SHIP'S SPEED (KNOTS)	12.36	12.34	15.40	15.52	18.56 18.36	18.46	20.57	20.41	20.40	23.20	23.22	25.37 25.48	25.42
AVG		AVG		AVG		AVG			AVG		AVG		AVG

The average power data are rounded off to the nearest 50 SHP and 50 kilowatts.

TABLE 6 - SUMMARY OF SPEED AND TORQUE DATA AT LIGHT DISPLACEMENT

(NEWTON METRES) × 10 ⁻⁵	TOTAL	4.95	4.90	7.97	7.90	11.04	11.30	14.93	14.90	14.95	19.90	20.00	25.91 26.27	26.10
	PORT SHAFT	2.48		3.99		5.39		7.54	7.52		10.06		12.85	
SHAFT TORQUE	STBD SHAFT	2.47		3.98		5.65 5.69		7.39	7.38		9.84		13.06	
	AL	65 60	09	88 75	90	14 50	30	100	66	00	89 79	75	11 37	25
FT) x 10 ⁻⁵								==	10.	=	14.	14.	19.	19.
SHAFT TORQUE (LB	PORT	1.83		2.94		3.98		5.56	5.55		7.43		9.48	
SHAFT	STBD SHAFT	1.82		2.94		4.16		5.45	5.44		7.25		9.63	
SHIP'S	SPEED (KNOTS)	12.36	12.34	15.40	15.52	18.56	18.46	20.57	20.41	20.40	23.20	23.22	25.37 25.48	25.42
	AVG		AVG		AVG		AVG			AVG		AVG		AVG

The average shaft torque data are rounded off to the nearest $5 \times 10^{+3}$ lb ft and $5 \times 10^{+3}$ newton metres.

Figure 1 - Standardization Curves at Heavy and Light Displacements

TABLE 7 - SUMMARY OF RPM AND HIGH PRESSURE TURBINE FIRST STAGE SHELL PRESSURE DATA AT HEAVY DISPLACEMENT

IST STAGE SHELL PRESSURE PASCALS x 10-5 STBD	1.72	3.45	3.45 5.86 5.86	5.86 8.62 8.90	8.70 11.72 12.07	11.90 15.51 15.51	15.51
1ST STAGE S PASCA STBD	2.07	3.45 3.45 3.45	3.45 6.20 6.20	6.20 8.62 8.62 8.62	8.62 11.86 12.07	11.96 15.51 15.51	15.51
L PRESSURE PORT	25 25 25	50 50 50	50 85 85	85 125 130	126 170 175	172 225 225	225
1ST STAGE SHELL PRESSURE PSIG STBD PORT	30 30	50 50 50	20 80 80	90 125 125	125 172 175	174 225 225	225
AVG SHAFT RPM	79.4 79.6 79.5	99.6 99.4 99.5	99.5 119.6 119.2	119.4 133.8 134.7 134.8	134.5 149.4 149.1	149.2 159.3 159.6	159.4
	AVG		AVG	AVG	AVG	AVG	AVG

TABLE 7 (Continued)

L PRESSURE x 10-5	PORT	20.00	20.00	20.00	20.00	22.75	22.75	22.75	22.75
1ST STAGE SHELL PRESSURE PASCALS x 10-5	STBD	20.00	20.00	20.00	20.00	22.55	22.55	22.75	22.60
PRESSURE	PORT	290	290	290	290	330	330	330	330
SHELL									
1ST STAGE	STBD	290	290	290	290	327	327	330	328
AVG	RPM	169.8	169.8	9.691	169.8	175.0	174.4	176.0	175.0
					AVG				AVG

TABLE 8 - SUMMARY OF RPM AND HIGH PRESSURE TURBINE FIRST STAGE SHELL PRESSURE DATA AT LIGHT DISPLACEMENT

PRESSURE 10-5 PORT	1.38	3.10	5.17	8.62 8.41 8.62	8.52 13.10 13.10	13.10 19.10 20.68	19.89
1ST STAGE SHELL PASCALS x STBD	1.72	3.45 3.45 3.45	5.52	5.69 8.27 8.27 8.27	8.27 12.76 13.24	13.00 21.37 22.06	21.72
SHELL PRESSURE PSIG PORT	20 20 20	44 4 85 8	75 82	78 125 122 125	124 190 190	190 277 300	288
1ST STAGE SHEL PSIG STBD	25 25 25 25	2000	88	82 120 120	120 185 192	188 310 320	315
AVG SHAFT RPM	79.9	100.5	119.5	120.1 135.8 135.4 135.2	135.4 155.2 156.0	155.6 174.1 175.3	174.7
	AvG	AVG		AVG	AVG	AVG	AVG

TABLE 9 - SUMMARY OF PRELIMINARY FUEL ECONOMY DATA (ENGLISH UNITS)

SPECIFIC FIIFI RATE	LB/SHP-HR		1.407	.832	.731	. 699		1.117	.872	.663	199.	.659	.647	.640	.653		3.526		.926
	AVG		87.8	118.8	134.5	140.6		103.6	118.7	145.0	153.8	164.9	176.2	175.8	166.0		73.1		109.0
SHAFT RPM	PORT		87.0	118.2	134.5	140.0		104.7	119.2	145.2	153.7	164.4	176.6	175.1	165.8		73.1		108.8
	STBD	Z	88.5	119.4	134.5	7.141		102.5	118.2	144.9	154.0	165.4	175.8	176.6	1.991		73.1	Z	109.2
_	TOTAL	OPERATION N	7,721	19,447	28,569	32,299	OPERATION	12,813	19,435	36,497	44,440	55,232	68,293	65,392	53,449	OPERATION	4,010	OPERATIO	14,864
POWER (SHP)	PORT	LER AHEAD	3,727	9,493	14,379	16,163		6,654	9,887	18,371	22,386	27,585	34,635	32,094	26,693		2,022	ER ASTERN	7,456 7,408
4	STBD	SINGLE BOILER AHEAD	3,994	9,954	14,190	16,136	TWO BOILER AHEAD	6,159	9,548	18,126	22,054	27,647	33,658	33,298	26,756	TWO BOILER ASTERN	1,988	SINGLE BOILER ASTERN OPERATION	7,456
IN RATE (OUR)	TOTAL		10,864	15,209	20,877	77,580		14,308	16,945	24,184	29,388	36,412	44,180	41,844	34,887		14,138	S	13,766
FUEL CONSUMPTION RATE (POUNDS PER HOUR)	PORT		1	16,176	20,877	086,22		7,495	8,760	12,001	13,836	16,825	21,311	20,422	17,292		7,234		13,766
FUEL (POI	STBD		10,864	602,61	:	:		6,813	8,185	12,183	15,552	19,587	22,869	21,422	17,594		6,904		1
BOILER	LINE		STBD	PORT	PORT	PORI		STBD &	∞5	STBD & PORT	∞5	∞5	∞5	حة	∞5		STBD & PORT		PORT

TABLE 10 - SUMMARY OF PRELIMINARY FUEL ECONOMY DATA (METRIC UNITS)

SPECIFIC FUEL RATE	GRAM/W-HR		.856	.631	905.	.444	.425		679.	.530	.403	.402	.401	.394	.389	.397		.214		. 563
	AVG		87.5	108.6	118.8	134.5	140.6		103.6	118.7	145.0	153.8	164.9	176.2	175.8	166.0		73.1		109.0
SHAFT RPM	PORT		87.0	108.4	118.2	134.5	140.0		104.7	119.2	145.2	153.7	164.4	176.6	175.1	165.8		73.1		108.8
	STBD	NC	88.5	108.9	119.4	134.5	141.2		102.5	118.2	144.9	154.0	165.4	175.8	176.6	1.991	7	73.1	NO	109.2
115)	TOTAL	D OPERATION	5.758	10.936	14.502	21.304	24.085	OPERATION	9.555	14.493	27.216	33.139	41.186	50.926	48.763	39.857	OPERATION	2.990	IN OPERATI	11.084
POWER (MEGAWATTS)	PORT	SINGLE BOILER AHEAD OPERATION	2.779	5.444	6/0./	10.722	12.053	TWO BOILER AHEAD	4.962	7.373	13.699	16.693	20.570	25.827	23.932	19.905	TWO BOILER ASTERN	1.508	SINGLE BOILER ASTERN OPERATION	5.524
POWE	STBD	SINGLE BC	2.978	5.492	7.423	10.581	12.033	TW0 B011				16.446					TWO BOIL	1.482	SINGLE BO	5.560
N RATE HOUR)	TOTAL		4.928	6.839	7.337	9.470	10.242		6.490	7.686	10.970	13.330	16.516	20.040	18.980	15.824		6.413		6.244
FUEL CONSUMPTION (MEGAGRAMS PER H	PORT		;	1	7.337	9.470	10.242		3.400	3.973	5.444	6.276	7.632	9.666	9.263	7.844		3.282		6.244
FUEL C	STBD		4.928	6.839	:	;	:		3.090	3.713	5.526	7.054	8.884	10.373	9.717	7.981		3.131		:
BOILER	LINE		STBD	STBD	PORT	PORT	PORT		∞5	∞5	∞5	STBD & PORT	∘ 5	∞5	∞5	∞5		STBD & PORT		PORT

Figure 2 - High Pressure Turbine First Stage Shell Pressure Curves at Heavy and Light Displacements

CONCLUSIONS

With the exception of the data spot at 20.40 knots for the light displacement condition, the standardization data collected from trials on USS TARAWA (LHA 1) are considered to be good. The data are considered to be representative of, and applicable to, LHA 1 Class ships.

INITIAL DISTRIBUTION

Copies

- 2 CNO, OP 372D
- 1 CINCLANTFLT
- CINCPACFLT 1 .
- 2 COMNAVSURFLANT
- 2 COMNAVSURFPAC
- 4 NAVSEA
 - 2 SEA 09G32 2 PMS 377
- NAVSEC 6144 11
- 1 SUPSHIP PASCA/LHA-2-5
- USS TARAWA (LHA 1) 1
- 12 DDC

CENTER DISTRIBUTION

Copies	Code	
1	15 1502	W.E. Cummins V.J. Monacella
1	152 1524	R. Wermter W.C. Lin
1	1536	R.J. Stenson
1	154	W.B. Morgan
30	5214.1	Reports Distribution
1	5221	Library (C)
1	5222	Library (A)

DINSROC ISSUES THREE TYPES OF REPORTS

- (1) DINSRDC REPORTS, A FORMAL SERIES PUBLISHING INFORMATION OF PERMANENT TECHNICAL VALUE, DESIGNATED BY A SERIAL REPORT NUMBER.
- (2) DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, RECORDING INFORMA-HIGH OF A PRELIMINARY OR TEMPORARY NATURE, OR OF LIMITED INTEREST OR SECREPHANCE, CARRYING A DEPARTMENTAL ALPHANUMERIC IDENTIFICATION
- (3) TECHNICAL MEMORANDA, AN INFORMAL SERIES, USUALLY INTERNAL WORKING PAPERS OR DIRECT REPORTS TO SPONSORS, NUMBERED AS TM SERIES REPORTS; NOT FOR GENERAL DISTRIBUTION.