PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-050097

(43) Date of publication of application: 18.02.2000

(51)Int.Cl.

1/60 HO4N **G06T** 1/00

1/46 HO4N HO4N 9/64

(21)Application number : 11-138543

(71)Applicant: CANON INC

(22)Date of filing:

19.05.1999

(72)Inventor: MATSUURA TAKAHIRO

MAKITA TAKESHI YAMADA OSAMU

(30)Priority

Priority number: 10144254

Priority date: 26.05.1998

Priority country: JP

(54) IMAGE PROCESSING METHOD AND DEVICE AND STORAGE MEDIUM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for paying attention to preferable color reproduction and correcting the image of certain input equipment to the image so as to approach gradation reproduction and the color reproduction realized by a silver film. SOLUTION: This image processing method holds the profile of input equipment and the profile of an output target film, prepares a table for bringing the color reproducibility of input image data close to the color reproducibility of the output target film based on the profile of the input equipment and the profile of the output

target film and performs the color correction to the input image data by using the prepared table.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-50097 (P2000-50097A)

(43)公開日 平成12年2月18日(2000.2.18)

(51) Int.Cl. ⁷)Int.Cl. ⁷		デーマコート*(参考)
H 0 4 N 1/60		H04N 1/	'40 D
G06T 1/00		9/	'64 Z
H 0 4 N 1/46		G06F 15/	66 310
9/64		H04N 1/	Z
		審査請求	未請求 請求項の数13 OL (全 21 頁)
(21)出願番号	特願平11-138543	(71)出願人 (000001007
		=	キヤノン株式会社
(22)出願日	平成11年5月19日(1999.5.19)		東京都大田区下丸子3丁目30番2号
		(72)発明者 相	松浦 貴洋
(31)優先権主張番号	特願平10-144254	3	東京都大田区下丸子3丁目30番2号キヤノ
(32)優先日	平成10年5月26日(1998.5.26)	;	ン株式会社内
(33)優先権主張国	日本(JP)	(72)発明者	等田 剛
]	東京都大田区下丸子3丁目30番2号キヤノ
			ン株式会社内
•		(72)発明者 (山田 修
		,	東京都大田区下丸子3丁目30番2号キヤノ
			ン株式会社内
		(74)代理人 1	100069877
		9	弁理士 丸島 ((後一)

(54) 【発明の名称】 画像処理方法、装置および記録媒体

(57)【要約】

【課題】 本発明は、好ましい色再現に注目し、ある入力機器の画像を、銀塩フィルムで実現している階調再現、色再現に近付くような画像に補正する方法を提供することを目的とする。

【解決手段】 入力機器のプロファイルおよび出力目標フィルムのプロファイルを保持し、前記入力機器のプロファイルおよび出力目標ファイルムのプロファイルに基づき、入力画像データの色再現性を出力目標フィルムの色再現性に近づけるためのテーブルを作成し、前記作成されたテーブルを用いて入力画像データに対して色補正を行うことを特徴とする画像処理方法。

【特許請求の範囲】

【請求項1】 入力機器のプロファイルおよび出力目標フィルムのプロファイルを保持し、

前記入力機器のプロファイルおよび出力目標ファイルム のプロファイルに基づき、入力画像データの色再現性を 出力目標フィルムの色再現性に近づけるためのテーブル を作成し、

前記作成されたテーブルを用いて入力画像データに対し て色補正を行うことを特徴とする画像処理方法。

【請求項2】 入力機器のプロファイルおよび出力目標 10 フィルムのプロファイルには、グレーチャートに対応するデータが記述されていることを特徴とする請求項1記載の画像処理方法。

【請求項3】 さらに、入力画像に付加されている情報に基づき前記入力機器のプロファイルを選択することを特徴とする請求項1記載の画像処理方法。

【請求項4】 前記テーブルは入力画像データの色成分毎に作成されることを特徴とする請求項1記載の画像処理方法。

【請求項5】 入力画像データの色再現性と出力目標フィルムの色再現性に基づき作成されたテーブルを用いて入力画像データに対して色補正を行い、

前記色補正が行われた画像データのハイライト部に対し てエッジ強調処理を行うことを特徴とする画像処理方 法。

【請求項6】 入力画像のハイライトポイントおよびシャドウポイントに基づき作成されたルックアップテーブルを用いてホワイトバランス補正を行い、該ホワイトバランス補正が行われた画像データに対して前記色補正を行うことを特徴とする請求項1記載の画像処理方法。

【請求項7】 入力画像より、入力機器の種類を判別し、その結果により前記色補正を行うか、行わないかを判定することを特徴とする請求項1記載の画像処理方法。

【請求項8】 入力機器の種類は、入力画像のヘッダ情報内に、IDとして記述されていることを特徴とする請求項7に記載の画像処理方法。

【請求項9】 入力機器の種類は、デジタルカメラ、フィルムスキャナ、フラットベットスキャナの各機種名であることを特徴とする請求項7に記載の画像処理方法。

【請求項10】 入力機器の種類がデジタルカメラのと きに前記色補正を行うことを特徴とする請求項9に記載 の画像処理方法。

【請求項11】 入力機器の種類がデジタルカメラであるときに、その機種名によって入力機器のプロファイルを自動的に選択することを特徴とする請求項10に記載の画像処理方法。

【請求項12】 入力機器のプロファイルおよび出力目標フィルムのプロファイルを保持する保持手段と、

前記入力機器のプロファイルおよび出力目標ファイルム 50

2

のプロファイルに基づき、入力画像データの色再現性を 出力目標フィルムの色再現性に近づけるためのテーブル を作成する作成手段と、

前記作成されたテーブルを用いて入力画像データに対し て色補正を行う色補正手段とを有することを特徴とする 画像処理装置。

【請求項13】 画像処理プログラムを記録する記録媒体であって、

入力機器のプロファイルおよび出力目標フィルムのプロファイルを読み出す機能と、

前記入力機器のプロファイルおよび出力目標ファイルムのプロファイルに基づき、入力画像データの色再現性を出力目標フィルムの色再現性に近づけるためのテーブルを作成する機能と前記作成されたテーブルを用いて入力画像データに対して色補正を行う機能とを実現するプログラムを記録することを特徴とする記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、画像を補正する画像処理方法、装置および記録媒体に関する。

[0002]

【従来の技術】デジタルカメラから入力した画像の、ハイライト、シャドウ、コントラストやホワイトバランスを補正するアルゴリズムに関しては、これまでにいろいろな方法が提案されてきている。

[0003]

【発明が解決しようとする課題】しかし、物体の色を忠実に再現しているデジタルカメラでは、いくらハイライト、シャドウ、コントラストやホワイトバランスを調節 ひても、銀塩写真の画質に今一つ及ばない。

【0004】銀塩フィルムでは好ましい色再現を行っているからである。これは、特に肌色や空の青、草の緑など、いわゆる記憶色は必ずしも忠実に色を再現しているわけではなく、人間が好む色にシフトして色を再現しているものである。このような色のシフトを行うことにより、銀塩フィルムの画像が再現されている。

【0005】本発明は、好ましい色再現に注目し、ある 入力機器の画像を、銀塩フィルムで実現している階調再 現、色再現に近付くような画像に補正する方法を提供す ることを目的とする。

[0006]

【課題を解決するための手段】本発明は上述の目的を達成するために、本願第1の発明は、入力機器のプロファイルおよび出力目標フィルムのプロファイルを保持し、前記入力機器のプロファイルおよび出力目標ファイルムのプロファイルに基づき、入力画像データの色再現性を出力目標フィルムの色再現性に近づけるためのテーブルを作成し、前記作成されたテーブルを用いて入力画像データに対して色補正を行うことを特徴とする。

【0007】本願第2の発明は、入力画像データの色再

現性と出力目標フィルムの色再現性に基づき作成された テーブルを用いて入力画像データに対して色補正を行い、前記色補正が行われた画像データのハイライト部に 対してエッジ強調処理を行うことを特徴とする。

[8000]

【発明の実施の形態】 (第1の実施形態) 図1に本願実 施形態にかかる画像補正装置の主要部分の構成を示す。

【0009】図1に示される画像補正装置は、画像入力部(2)、画像出力部(3)、画像バッファ(4)、入力機器プロファイル保持部(5)、出力目標フィルムプロファイル保持部(6)、入力、出力機器選択部(7)、ルックアップテーブル作成部(8)、ルックアップテーブル保持部(9)、画像補正部(10)、エッジ強調処理部(12)、コピー用画像バッファ(13)から構成される。

【0010】画像入力部(2)は、入力画像(1)からデータ を読み込んで、画像バッファ(4)に書き込む。画像出力 部(3)は、画像バッファ(4)に格納されているデータを出 力画像(11)に書き込む。画像バッファ(4)は、画像デー タを保持している。入力機器プロファイル保持部(5) は、入力機器数種類のプロファイル、および現在選択中 の入力機器を保持している。出力目標フィルムプロファ イル保持部(6)は、出力フィルム数種類のプロファイ ル、および現在選択中の出力フィルムを保持している。 入力、出力機器選択部(7)は、入力機器を選択して入力 機器プロファイル保持部(5)に結果を格納するととも に、出力目標フィルムを選択して出力目標フィルムプロ ファイル保持部(6)に結果を格納する。ルックアップテ ーブル作成部(8)は、入力機器プロファイル保持部(5)と 出力目標フィルムプロファイル保持部(6)に格納されて いるデータを基に、ルックアップテーブルを作成し、ル 30 ックアップテーブル保持部(9)に格納する。ルックアッ プテーブル保持部(9)は、ルックアップテーブルを保持 する。画像補正部(10)は、ルックアップテーブル保持部 (9) に格納されているテーブルを基に画像バッファ(4) に 格納されている画像を補正する。エッジ強調処理部(12) は、ハイライト部のエッジ強調を行う。コピー用画像バ ッファ(13)は、エッジ強調処理をする際に画像バッファ の内容を一時的にコピーするのに用いる。

【0011】画像補正装置は、例えばパソコンなどに図1の各部の処理または制御を実現するためのプログラムを供給することにより実現することができる。その場合は、パソコンのCPUがプログラムの内容に基づき各処理または制御を実施することになる。

【0012】以下、発明の実施の形態を、具体例を用いて詳細に説明する。

【0013】図2に本実施形態における処理の流れを示す。

【0014】ステップS11において、画像入力部(2)から 入力画像(1)を読み込み、画像バッファ(4)に格納する。 【0015】ステップS12において、ルックアップテー ブル作成部(8)において、ルックアップテーブルを作成

する。ルックアップテーブル作成部(8)の動作の詳細は図5を用いて後述する。

【0016】ステップS13において、画像補正部(10) で、画像を補正する。画像補正部(10)の動作の詳細は図 7を用いて後述する。

【0017】ステップS14において、エッジ強調処理部 (12)で、ハイライト部のエッジ強調処理を行う。エッジ 強調処理部(12)の動作の詳細は図11を用いて後述する。

10 【0018】ステップS15において、画像バッファ(4)の 内容を画像出力部(3)から出力画像(11)に書き込む。

【0019】図3に入力機器プロファイル保持部(5)で保持している入力機器プロファイルのデータ構成を示す。

【0020】入力機器プロファイルのデータ構成は、グレースケールの各パッチの番号と、それに対応する入力機器のRGB値との2次元データになっている。入力機器の種類が増えたときには、ここにそれに対応するグレースケールの各パッチのRGB値を測色し、追加すればよい。

【0021】また、ここでは現在選択中の機器の種類も保持される。これは、入力、出力機器選択部(7)で変更される。初期状態では、どれか1つが選択されている。

【0022】図4に、出力目標フィルムプロファイル保持部(6)で保持している出力目標フィルムプロファイルのデータ構成を示す。

【0023】出力目標フィルムプロファイルのデータ構成は、グレースケールの各パッチの番号と、それに対応する出力目標フィルムのRGB値との2次元データになっている。出力目標フィルムの種類が増えたときには、ここにそれに対応するグレースケールの各パッチのRGB値を測色し、追加すればよい。

【0024】また、ここでは現在選択中のフィルムの種類も保持される。これは、入力、出力機器選択部(7)で変更される。初期状態では、どれか1つが選択されている。

【0025】入力、出力機器選択部(7)での動作を図10に示す。

【0026】ステップS41において、入力機器名を選択し、結果を入力機器プロファイル保持部(5)に格納する。入力画像データに例えばICC準拠のプロファイルが付加されている場合は、プロファイルのヘッダ情報に基づき自動的に入力機器名を選択する。入力画像データにプロファイルが付加されていない場合は、パソコンのモニタ上に表示される本願の画像補正装置に特有のユーザインターフェイス上で指示されたユーザ指示に基づき入力機器名を選択する。

【0027】ステップS42において、出力フィルム名を選択し、結果を出力目標フィルムプロファイル保持部(6)に格納する。出力ファイル名は、本願の画像補正装置に特有のユーザインターフェイス上で指示されたユーザ指示に基づき出力機器名が選択される。

【0028】なお入力機器名および出力ファイルム名の 選択は、補正動作中は操作できないが、それ以外のとき はいつでも操作できる。

【0029】ルックアップテーブル作成部(8)での動作を図5に示す。これは、図2のステップS12を詳細に示したものである。

【0030】ステップS21において、入力、出力機器選択部(7)で選択された、入力機器プロファイル 、出力目標フィルムプロファイルに基づき、RGB各色成分に対する1次元ルックアップテーブルを作成する。本実施形態では、同じパッチに対応する、入力機器プロファイルのデータを出力目標フィルムプロファイルのデータに変換する図6に示されるようなルックアップテーブルを作成する。なお、プロファイル内にデータが格納されていない各点間は、直線で補間し変換データを作成する。両端の点では、それぞれ(255,255)、(0,0)と直線で補間する。本実施形態では補間処理として直線補間を用いているが、例えばスプライン曲線やベジュ曲線を用いた非線形補間処理を用いてもかまわない。

【0031】ステップS22において、作成されたルックアップテーブルをルックアップテーブル保持部(9)に格納する。

【0032】図7に画像補正部(10)での動作を示す。これは、図2のステップS13を詳細に示したものである。

【0033】ステップS31において、画像バッファ(4)から1画素ずつ読み込み、ルックアップテーブル保持部(9)に保持されているルックアップテーブルを参照して、画像を補正し、画像バッファ(4)に上書きする。

【0034】このように、本実施形態の画像補正は、出力目標フィルムの階調再現特性に応じて、階調再現性および色再現性を補正する。

【0035】本実施形態では、ルックアップテーブルの作成処理および画像補正処理の高速化をはかるために色成分毎にルックアップテーブルを用意している。しかも、階調性および色再現性の両方を良好に補正することができるルックアップテーブルを高速に作成できるようにグレースケールに関するデータをプロファイルに格納している。グレースケールを用いることにより、階調再現において重要であるグレーの階調を良好に再現できるとともに、カラーバランスの補正も行うことができる。【0036】図11にエッジ強調処理部(12)の動作を示す。これは、図2のステップS14を詳細に示したものである。

【0037】図2のステップS12で作成されたルックアップテーブルを用いてステップS13で画像を補正することにより、出力画像の色再現性を選択したファイルムの色再現性に近似することができる。しかしながら、一般的にステップS13の処理は各色成分の中間調部分のコントラストを良好にするために各色成分のハイライト部の階調性を犠牲にしている傾向がある。よって、エッジ強調

6

処理部ではハイライト部の階調性の不足を補う処理を行う。

【0038】まず、ステップS51において、画像バッファ(4)から1画素分のRGB輝度データを読み出す。

【0039】ステップS52において、読み出したRGB輝度データと閾値をRGBそれぞれについて比較する。その結果、RGB輝度データがすべて閾値よりも小さいか、画像の端の画素だった場合には、ステップS54に進む。それ以外のときには、ステップS53に進む。

【0040】ステップS53において、閾値以上の値を有する色成分データについて、3x3のエッジ強調フィルタを用いてフィルタ処理を行う。なお、閾値以下の色成分データに対してはフィルタ処理を行わない。

【0041】ステップS54において、処理されたRGB輝度データをコピー用画像バッファ(13)に書き込む。エッジ強調処理をしなかった場合はステップS51で読み込まれたRGB輝度データがそのままコピー用画像バッファ(13)に書き込まれる。

【0042】ステップS55において、全画素終了したかどうかを判定する。もし全画素終了していれば、ステップS56に進む。全画素終了していなければ、ステップS41に進む。

【0043】ステップS56において、コピー用画像バッファ(13)の内容を画像バッファ(4)にすべてコピーする

【0044】なお、ステップS52で用いる閾値は各色成分に対して同一の閾値を用いても構わないし、各色成分に対して独立に閾値を設定しても構わない。

【0045】本実施形態によれば、ある入力機器の画像を、あるフィルムの階調再現に近づけることが可能になる。たとえば図8に示すような入力機器の階調特性を、図9に示すような銀塩フィルムの階調特性に変換するルックアップテーブルを作成して、ある入力機器の画像をある銀塩フィルムで再現される画像に近づけることができる。こうすることで、良好な階調再現および好ましい色再現を簡単に実現することができる。好ましい色再現を実現することは、デジタルカメラなどの入力機器から入力した画像の画質を向上させるための1つの手段として、非常に有効であると考えられる。

【0046】また、複数の出力目標ファイルムプロファイルを保持しているので、様々なファイルムの特性に簡単に合わせることができる。よって、ユーザの好みのフィルムの階調再現および色再現を実現することができる。

【0047】また、入力機器の種類は1種類ではないし、好ましい色再現の色のシフトの仕方もいろいろな方法がある。そこで本実施形態では、入力機器プロファイルと出力目標フィルムプロファイルを別々に持つことにより、これら様々な入力機器と出力目標フィルムの組み合わせに対応できるようになっている。さらに、入力機

器の種類、出力目標フィルムが増えたときでも、その対象機器、またはフィルムのプロファイルを追加するだけで、簡単に対応することができる。

【0048】また、好ましい色再現に注目し、ある入力機器の画像を、銀塩フィルムで実現している階調再現、 色再現に近付くような画像に補正するとともに、さらに エッジ強調処理を行いハイライト部の階調性を良好する ことにより高品質の出力画像を得ることができる。

【0049】(第2の実施形態)本実施形態では、第1の実施形態で説明した画像補正に加え、入力画像のヒストグラムに基づき作成されたルックアップテーブルを用いた画像補正を行う。

【0050】以下、図面を用いて本実施形態を説明する。なお、第1の実施形態と同じ構成、処理は詳細な説明を割愛する。

【0051】図12に本願実施形態にかかる画像補正装置の主要部分の構成を示す。

【0052】図12に示される画像補正装置は、画像入力部(2)、画像出力部(3)、画像バッファ(4)、入力機器プロファイル保持部(5)、出力目標フィルムプロファイル保持部(6)、入力、出力機器選択部(7)、ルックアップテーブル作成部(8)、ルックアップテーブル保持部(9)、画像補正部(10)、エッジ強調処理部(12)、コピー用画像バッファ(13)、ヒストグラム作成部(14)、ヒストグラム保持部(15)から構成される。

【0053】画像入力部(2)は、入力画像(1)から データを読み込んで、画像バッファ(4)に書き込む。 画像出力部(3)は、画像バッファ(4)に格納されて いるデータを出力画像(11)に書き込む。画像バッフ ァ(4)は、画像データを保持している。入力機器プロ ファイル保持部(5)は、入力機器数種類のプロファイ ルおよび現在選択中の入力機器を保持している。出力目 標フィルムプロファイル保持部(6)は、出力フィルム 数種類のプロファイル、および現在選択中の出力フィル ムを保持している。入力、出力機器選択部 (7) は、入 力機器を選択して入力機器プロファイル保持部 (5) に 結果を格納するとともに、出力目標フィルムを選択して 出力目標フィルムプロファイル保持部(6)に結果を格 納する。ルックアップテーブル作成部(8)は、ヒスト グラム保持部(15)に格納されているヒストグラムを もとに、補正に必要なパラメータを算出し、ルックアッ プテーブルを作成、結果をルックアップテーブル保持部 (9) に格納するとともに、入力機器プロファイル保持 部(5)と出力目標フィルムプロファイル保持部(6) に格納されているデータを基に、ルックアップテーブル を作成し、ルックアップテーブル保持部(9)に格納す る。ルックアップテーブル保持部(9)は、ルックアッ プテーブルを保持する。画像補正部 (10) は、ルック アップテーブル保持部(9)に格納されている2種類の 50 8

テーブルをもとにルックアップテーブルを合成し、画像バッファ(4)に格納されている画像を補正する。エッジ強調処理部(12)は、ハイライト部のエッジ強調を行う。コピー用画像バッファ(13)は、エッジ強調処理をする際に画像バッファの内容を一時的にコピーするのに用いる。ヒストグラム作成部(14)は、画像バッファ(4)に格納されている画像データをもとに、ヒストグラムを作成し、結果をヒストグラム保持部(15)に格納する。ヒストグラム保持部(15)は、画像データ全体のヒストグラムを保持している。

【0054】画像補正装置は、例えばパソコンなどに図12の各部の処理または制御を実現するためのプログラムを供給することにより実現することができる。その場合は、パソコンのCPUがプログラムの内容に基づき各処理または制御を実施することになる。

【0055】以下、発明の実施の形態を、具体例を用いて詳細に説明する。

【0056】<本実施形態における画像処理>図13に 本実施形態における処理の流れを示す。

【0057】ステップS201において、画像入力部 (2)から入力画像(1)を読み込み、画像バッファ (4)に格納する。

【0058】ステップS202において、ヒストグラム作成部(14)で、画像バッファ(4)に格納されている画像データをもとにヒストグラムを作成し、結果をヒストグラム保持部(15)に格納する。ヒストグラム作成部(14)の動作の詳細は図14を用いて後述する。

【0059】ステップS203において、ルックアップ テーブル作成部(8)において、ルックアップテーブル を作成する。ルックアップテーブル作成部(8)の動作 の詳細は図16を用いて後述する。

【0060】ステップS4において、画像補正部(10)で、画像を補正する。画像補正部(10)の動作の詳細は図18を用いて後述する。

【0061】ステップS5において、エッジ強調処理部 (12) で、第1の実施形態と同様の方法により、ハイライト部のエッジ強調処理を行う。

【0062】ステップS206において、画像バッファ (4)の内容を画像出力部(3)から出力画像(11) 40 に書き込む。

【0063】 <ヒストグラム作成処理>ヒストグラム作成部 (14) での動作を図14に示す。これは、図13 のステップS202を詳細に示したものである。

【0064】ステップS211において、画像バッファ(4)から画像データを1画素分ずつ取り出す。画像データはRGB各色の輝度(R、G、B)が格納されている

【0065】ステップS212において、画像データの RGB値から以下の式に従って当該画素の輝度Lを求め z

【0066】 L= (3*R+6*G+1*B) / 10 【0067】ステップS213において、ヒストグラム 保持部に格納されているヒストグラムを更新する。ヒストグラム保持部には、上記計算した輝度 LのヒストグラムHistL、およびRGB各色の累積輝度値を当該画素の輝度 L別に格納するHistR、HistG、HistBを保持している。初期状態はすべて0である。ヒストグラムの更新は下記の式に従う。

[0068] HistR[L] = HistR[L] + R HistG[L] = HistG[L] + G HistB[L] = HistB[L] + B HistL[L] = HistL[L] + 1

【0069】ステップS214において、全画素終了したかどうかを調べる。終了していれば、終了。いなければ、ステップS211に進む。

【0070】作成したヒストグラムHistLの例を図 15に示す。

【0071】 <ルックアップテーブル作成処理>ルックアップテーブル作成部(8)での動作を図16に示す。これは、図13のステップS203を詳細に示したもの 20である。

【0072】ステップS221において、ヒストグラム 保持部(15)に格納されているヒストグラムHist Lから、画像の最大輝度を求める。図15に示したヒス トグラムにおいては、最大輝度は252になる。

【0073】ステップS222において、S221で求めた最大輝度と、255から所定量(図15においては、、(所定量)=10である)を引き算していって、最大輝度の方が大きくなった時の輝度(LH'、つまりこの例の場合では、255、245、235、…を値を下げていって、その都度最大輝度と比較する。図15においては、LH'=245になる)を求め、所定の割合の画素(図15においては、総画素数の1%)を含む領域を求める。その領域の最小輝度をハイライトポイント(LH、図15においては、LH=234)とする。そして、以下の式に従って領域内(輝度がLH以上LH'以下の領域)のRGBの平均輝度(RH、GH、BH)を算出する。

[0074]

【外1】

$$RH = \sum_{m=LH}^{LH} HistR [m] / \sum_{m=LH}^{LH} HistL [m]$$

$$GH = \sum_{m=LH}^{LH} HistG [m] / \sum_{m=LH}^{LH} HistL [m]$$

$$BH = \sum_{m=LH}^{LH} HistB [m] / \sum_{m=LH}^{LH} HistL [m]$$

【0075】ステップS223において、ヒストグラム 保持部(4)に格納されているヒストグラムHistL から、画像の最小輝度を求める。図15に示したヒスト グラムにおいては、最小輝度は5になる。

【0076】ステップS24において、S223で求めた最小輝度と、0から所定量(図15においては、(所定量)=10である)を足し算していって、最小輝度の方が小さくなったときの輝度(LS'、図15においては、LS'=10)を求め、所定の割合の画素(図15においては、総画素数の1%)を含む領域を求める。その領域の最大輝度をシャドウポイント(LS、図15においては、LS=22)とする。そして、以下の式に従って領域内(輝度はLS'以上LS以下の領域)のRGBの平均輝度(RS、GS、BS)を算出する。

10

[0077]

【外2】

$$RS = \sum_{m=LS}^{LS} HistR [m] / \sum_{m=LS}^{LS} HistL [m]$$

$$GS = \sum_{m=LS}^{LS} HistG [m] / \sum_{m=LS}^{LS} HistL [m]$$

$$BS = \sum_{m=LS}^{LS} HistB [m] / \sum_{m=LS}^{LS} HistL [m]$$

【0078】ステップS225において、求めたRH、GH、BH、RS、GS、BSからRGBそれぞれのルックアップテーブルLUTR、LUTG、LUTBを作成する。作成したルックアップテーブルの例を図17(a)に示し、詳細を後述する。そして、結果をルックアップテーブル保持部(9)に格納する。

【0079】ステップS226において、入力、出力機器選択部(7)で選択された、入力機器プロファイル、出力目標フィルムプロファイルに基づき、第1の実施形態と同様な方法を用いて、RGB各色成分に対する1次元ルックアップテーブルLUTRDD、LUTGDD、LUTBDDを作成する。作成したルックアップテーブルの例を図17(b)に示し、詳細を後述する。

【0080】ステップS227において、作成されたルックアップテーブルをルックアップテーブル保持部(9)に格納する。

【0081】図17(a)に示すルックアップテーブル LUTR、LUTG、LUTBは、コントラスト、およ び色かぶりの補正を行うためのものである。ここでは、 G、B、Rの順にハイライトのガンマを立たせている。 このように、Rに対してG及びBを強めることで、例え ば青っぽく色かぶりしている画像の色かぶりを補正する ことが出来る。同時に、コントラストの補正もできる。 【0082】一方、図17(b)に示すルックアップテーブルは、同じパッチに対応する入力機器プロファイル のデータが出力目標フィルムプロファイルデータにされ ているデータに変換されるようなルックアップテーブル である。なお、プロファイル内にデータが格納されてい ない各点間は、直線で補間し変換データを作成する。両 端の点では、それぞれ(255,255)、(0,0)

7.

と直線で補間する。本実施形態では補間処理として直線 補間を用いているが、例えばスプライン曲線やベジュ曲 線を用いた非線形補間処理を用いてもかまわない。

【0083】 < 画像補正処理 > 図18に画像補正部(10)での動作を示す。これは、図13のステップS204を詳細に示したものである。

【0084】ステップS231において、ルックアップ テーブル保持部(9)に格納されている2つのルックア ップテーブルを下記の式に基づいて合成し、あらたなル ックアップテーブルを作成する。

[0085] LUTTmpR [i] = LUTRDD [L UTR [i]]

LUTTmpG [i] = LUTGDD [LUTG [i]]

LUTTmpB[i] = LUTBDD [LUTB
[i]]

ただし、上記の式においてiは、O以上最大輝度以下の値である。

【0086】ステップS232において、画像バッファ(4)に格納されている画像データを1画素分取り出す。画像データはRGB各色の輝度(R、G、B)が格納されている。

【0087】ステップS233において、合成したルックアップテーブルLUTRTmp、LUTGTmp、LUTBTmp、に基づいて、画像バッファ(4)から取り出した画像データを補正する。結果は元の場所に上書きする。

[0088]R = LUTTmpR[R]

G = LUTTmpG[G]

B = LUTTmpB[B]

【0089】ステップS234において、全画素終了したかどうかを調べる。全画素終了していれば終了。終了していなければ、ステップS232に進む。

【0090】このように、本実施形態の画像補正は、画像ごとに最適なホワイトバランス補正、コントラスト補正を行うとともに、出力目標フィルムの階調再現特性に応じて、階調再現性および色再現性を補正する。

【0091】本実施形態では、ルックアップテーブルの作成処理および画像補正処理の高速化をはかるために色成分毎にルックアップテーブルを用意している。しかも、階調性および色再現性の両方を良好に補正することができるルックアップテーブルを高速に作成できるようにグレースケールに関するデータをプロファイルに格納している。グレースケールを用いることにより、階調再現において重要であるグレーの階調を良好に再現できるとともに、カラーバランスの補正も行うことができる。

【0092】なお、本実施形態においては、輝度データは0から255のデジタル値で実施しているが、これ以外、例えばデータの最大値は255に限定されるものではなく、さらに輝度のみならず網点濃度などでも良い。

12

【0093】また、ステップS212において、輝度値をR:G:B=3:6:1の重みで加重平均して計算しているが、これ以外の重みで計算してもいいし、RGBの最大値と最小値の平均値で求めてもよい。

【0094】 (第3の実施形態) 本実施形態は、入力機器がデジタルカメラであるか否かに応じて画像補正処理の内容を切り換えるものである。

【0095】実施形態2で説明した、ヒストグラムに基づく色かぶり/コントラスト補正は入力画像の色分布に基づく処理であるので、入力機器にかかわらず良好な処理結果を得ることができる。一方、実施形態1および実施形態2で説明したデジタル現像補正は、任意のフィルムの階調特性に出力画像の階調特性を合わせる処理であるので、入力画像が該フィルムの階調特性を有している場合は出力画像の画質を低下させる可能性がある。つまり、銀塩写真をスキャナで読取り得られた画像やフィルムスキャナで読取り得られた画像に対してはデジタル現像を行わない方がいい可能性がある。

【0096】よって、本実施形態では、入力機器がデジタルカメラである場合は実施形態2と同様の処理を行い、入力機器がデジタルカメラでない場合は上記2つの補正のうちの色かぶり/コントラスト補正のみを行う。

【0097】なお、上記各実施形態と同じ構成、処理は 詳細な説明を割愛する。

【0098】画像補正装置は、例えばパソコンなどに図19の各部の処理または制御を実現するためのプログラムを供給することにより実現することができる。その場合は、パソコンのCPUがプログラムの内容に基づき各処理または制御を実施することになる。

50 【0099】以下、発明の実施の形態を、具体例を用いて詳細に説明する。

【0100】図20に本実施形態における処理の流れを示す。

【0101】ステップS301において、画像入力部(2)から入力画像(1)の画像データ、及び画像ヘッダを読み込み、画像バッファ(4)に格納する。

【0102】ステップS302において、画像判定部 (16)で、画像の種類を判定する。具体的には、画像 の入力機器がデジタルカメラか、それ以外の機器かを画像ヘッダに記述されているIDで判定する。

【0103】図19に本願実施形態にかかる画像補正装置の主要部分の構成を示す。

【0104】図19に示される画像補正装置は、画像入力部(2)、画像出力部(3)、画像バッファ(4)、入力機器プロファイル保持部(5)、出力目標フィルムプロファイル保持部(6)、出力機器選択部(7)、ルックアップテーブル作成部(8)、ルックアップテーブル保持部(9)、画像補正部(10)、エッジ強調処理部(12)、コピー用画像バッファ(13)、ヒストグラム作成部(14)、ヒストグラム保持部(15)、画

1.3

像判定部(16)から構成される。

【0105】画像入力部(2)は、入力画像(1)から データを読み込んで、画像バッファ(4)に書き込む。 画像出力部(3)は、画像バッファ(4)に格納されて いるデータを出力画像(11)に書き込む。画像バッフ ァ(4)は、画像データを保持している。入力機器プロ ファイル保持部(5)は、入力機器数種類のプロファイ ル、および現在選択中の入力機器を保持している。出力 目標フィルムプロファイル保持部(6)は、出力フィル ム数種類のプロファイル、および現在選択中の出力フィ ルムを保持している。出力機器選択部(7)は、出力目 標フィルムを選択して出力目標フィルムプロファイル保 持部(6)に結果を格納する。ルックアップテーブル作 成部(8)は、ヒストグラム保持部(15)に格納され ているヒストグラムをもとに、補正に必要なパラメータ を算出し、ルックアップテーブルを作成、結果をルック アップテーブル保持部(9)に格納する。さらに、入力 機器がデジタルカメラのときには、入力機器プロファイ ル保持部(5)と出力目標プロファイル保持部(6)に 格納されているデータを基に、ルックアップテーブルを 作成し、先に作成したルックアップテーブルと合成して ルックアップテーブル保持部(9)に格納する。ルック アップテーブル保持部(9)は、ルックアップテーブル を保持する。画像補正部(10)は、ルックアップテー ブル保持部(9)に格納されているルックアップテーブ ルをもとに、画像バッファ(4)に格納されている画像 を補正する。エッジ強調処理部(12)は、ハイライト 部のエッジ強調を行う。コピー用画像バッファ(13) は、エッジ強調処理をする際に画像バッファの内容を一 時的にコピーするのに用いる。ヒストグラム作成部(1 4) は、画像バッファ(4) に格納されている画像デー タをもとに、ヒストグラムを作成し、結果をヒストグラ ム保持部(15)に格納する。ヒストグラム保持部(1 5) は、画像データ全体のヒストグラムを保持してい る。画像判定部(16)は、画像の種類を判定する。

【0106】図21に画像バッファ(4)に格納されている画像データ、および画像ヘッダの内容を示す。

【0107】画像ヘッダには、入力機器のIDが格納されている。このIDを見ることによって、入力機器を判定する。入力機器には、デジタルカメラやフィルムスキャナ、フラットベットスキャナなどの種類がある。画像データは、各画素RGBの値を保持している。更に、画像ヘッダの入力機器のIDにより入力機器プロファイルを自動選択する。

【0108】入力機器がデジタルカメラのときは、ステップS303に進み、入力機器がデジタルカメラ以外のときはステップS308に進む。

【0109】ステップS303において、ヒストグラム 作成部(14)で、画像バッファ(4)に格納されてい る画像データをもとにヒストグラムを作成し、結果をヒ 50 14

ストグラム保持部 (15) に格納する。

【0110】ステップS304において、ルックアップ テーブル作成部(8)で、ルックアップテーブルを作成 する。

【0111】ステップS305において、画像補正部(10)で、画像を補正する。

【0112】ステップS306において、エッジ強調処理部(12)で、ハイライト部のエッジ強調処理を行う。

【0113】上記ステップS303~S306の処理は 実施形態2で説明した図13のステップS202~S2 05の処理と同じである。

【0114】ステップS307において、画像バッファ(4)の内容を画像出力部(3)から出力画像(11)に書き込む。

【0115】ステップS308において、ヒストグラム作成部(14)で、画像バッファ(4)に格納されている画像データをもとにヒストグラムを作成し、結果をヒストグラム保持部(15)に格納する。このステップの動作は、ステップS303と同様の動作である。

【0116】ステップS309において、ルックアップ テーブル作成部(9)で、ルックアップテーブルを作成 する。

【0117】入力機器がデジタルカメラ以外の場合の、ルックアップテーブル作成部(8)の動作を図22を用いて説明する。ステップS351ーS355の処理は、実施形態2で説明した図16のステップS221~S225の処理と同じである。

【0118】ステップS310において、画像補正部 (10)で、画像を補正する。このステップの動作は、 ステップS305と同様の動作である。

【0119】<選択プロファイルの変更処理>出力機器 選択部(7)での動作を図23に示す。

【0120】ステップS361において、出力フィルム名を選択し、結果を出力目標フィルムプロファイル保持部(6)に格納する。出力フィルム名は、本願の画像補正装置に特有のユーザインターフェイス上で指示されたユーザ指示に基づき出力機器名が選択される。

【0121】なお出力フィルム名の選択は、補正動作中は操作できないが、それ以外のときはいつでも操作できる。

【0122】なお、本実施形態では、画像データのヘッダ部の入力機器のIDに基づき入力機器を自動選択したが、ユーザがマニュアルで指示できるようにしても構わない。

【0123】(他の実施形態)本発明は前述した実施形態の機能を実現する様に各種のデバイスを動作させる様に該各種デバイスと接続された装置あるいはシステム内のコンピュータに、前記実施形態機能を実現するためのソフトウエアのプログラムコードを供給し、そのシステ

ムあるいは装置のコンピュータ (CPUあるいはMPU) を格納されたプログラムに従って前記各種デバイスを動作させることによって実施したものも本発明の範疇に含まれる。

【0124】またこの場合、前記ソフトウエアのプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコード自体、及びそのプログラムコードをコンピュータに供給するための手段、例えばかかるプログラムコードを格納した記憶媒体は本発明を構成する。

【0125】かかるプログラムコードを格納する記憶媒体としては例えばフロッピーディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることが出来る。

【0126】またコンピュータが供給されたプログラムコードを実行することにより、前述の実施形態の機能が実現されるだけではなく、そのプログラムコードがコンピュータにおいて稼働しているOS(オペレーティングシステム)、あるいは他のアプリケーションソフト等と共同して前述の実施形態の機能が実現される場合にもかかるプログラムコードは本発明の実施形態に含まれることは言うまでもない。

【0127】さらに、供給されたプログラムコードが、コンピュータの機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに格納された後そのプログラムコードの指示に基づいてその機能拡張ボードや機能格納ユニットに備わるCPU等が実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も本発明に含まれることは言 30 うまでもない。

[0128]

【発明の効果】本発明によれば、好ましい色再現に注目 し、ある入力機器の画像を銀塩フィルムで実現している 階調再現、色再現に近付くような画像に補正することが できる。

【0129】また、好ましい色再現に注目し、ある入力機器の画像を銀塩フィルムで実現している階調再現、色再現に近付くような画像に補正するとともに、さらにエッジ強調処理を行いハイライト部の階調性を良好するこ

16

とにより高品質の出力画像を得ることができる。

【図面の簡単な説明】

【図1】本願第1の実施形態の画像補正装置の構成を示す図

【図2】本願第1の実施形態の処理の流れを示す図

【図3】入力機器プロファイル保持部(5)で保持しているデータを示す図

【図4】出力目標フィルムプロファイル保持部(6)で保持しているデータを示す図

【図5】ルックアップテーブル作成部(8)での動作を示す図

【図6】ルックアップテーブル保持部(9)で保持されているルックアップテーブルの例を示す図

【図7】本願第1の実施形態における画像補正部(10)での動作を示す図

【図8】入力機器のプロファイルの例を示す図

【図9】出力フィルムのプロファイルの例を示す図

【図10】入力、出力機器選択部(7)での動作を示す図

【図11】エッジ強調処理部(12)での動作を示す図

(回12)本願第2の実施形態の画像補正装置の構成を示す図

【図13】本願第2の実施形態の処理の流れを示す図

【図14】ヒストグラム作成部(14)での動作を示す 図

【図15】作成したヒストグラムの例を示す図

【図16】ルックアップテーブル作成部(8)での動作 を示す図

【図17】ルックアップテーブル保持部(9)で保持されているルックアップテーブルの例を示す図

【図18】本願第2の実施形態における画像補正部(10)での動作を示す図

【図19】本願第3の実施形態の画像補正装置の構成を 示す図

【図20】本願第3の実施形態の処理の流れを示す図

【図21】画像バッファ(4)で格納されている画像データ、画像ヘッダの例を示す図

【図22】入力機器がデジタルカメラ以外の場合のルックアップテーブル作成部(8)での動作を示す図

【図23】出力機器(7)での動作を示す図

【図1】

(11)

【図3】

入力器器種類		輝度					
		パッチ1	パッチ2	パッチ3	パッチ4		
	R成分	##	##	##	##	##	
入力機器A	G成分	##	##	##	##	##	
	B成分	##	##	##	##	##	
入力機器B	R成分	##	##	##	##	##	
	G成分	##	##	##	##	##	
	B成分	##	##	##	##	##	
7 (4 4)	R成分	##	##	##	##	##	
	G成分	##	##	##	##	##	
	B成分	##	##	##	##	##	

型在選択中の入力機器

【図4】

出力目数フィルム種類		郑 建					
		パッチ1	パッチ2	パッチ3	パッチ4		
	R成分	##	##	##	##	##	
ヺィル ム A	G.EE-ST	##	##	##	##	##	
	B成分	##	##	##	##	##	
	R成分	##	##	##	##	##	
$r \sim 0.0$	G obs	##	##	##	##	##	
	B成分	##	##	##	##	##	
フィルムC	R成分	## -	##	##	##	##	
	G成分	##	##	##	##	##	
	B成分	##	##	##	##	##	

【図8】 【図5】 S21. 入力機器プロファイル保持部(5)と、 出力目標フィルムプロファイル保持部(6)に保持されている プロファイルデータを基に、ルックアップテーブルを作成する。 S22. 結果をルックアップテーブル保持部(9) に格納する。 曾 0 パッチ番号 【図9】 【図6】 バッチ1の輝皮 (B)-パッチ1の輝度 (R)-パッチ1の輝度 (G)ー 沒 出力フィルムの国像の算度 日 パッチ1の輝度 (R, G, B)

入力模器の関係の策定

【図10】

【図15】

###	
 入力模器ID	
固像ヘッダ	

【図21】

画衆	R值	G値	B値
IMG [0]	##	##	##
IMG [1]	##	##	##
IMG [2]	##	##	##
IMG [3]	##	##	##
IMG [4]	##	##	##
IMG [6]	##	##	##
1MG [6]	##	##	##
IMG [7]	##	##	##
:			
IMG [n]	##	##	##
:			
per l	m A		

画像データ

【図17】

(15)

【図12】

(16)

【図13】

【図23】

【図19】

【図22】

