Module SAA

Sampling and Aliasing

Piet Sommen

C-to-D: Sample continuous-time signal

E.g.
$$x(t) = \cos(2\pi \cdot 400t)$$
 @ $f_s = 1/T_s = 2000$ [Samples/sec]

$$\Rightarrow x[n] = x(t)|_{t=nT_s} = \cos(2\pi \cdot 400 \cdot n \cdot \frac{1}{2000}) = \cos(0.4\pi n)$$

Result: Set of numbers x[n] @ inter sample distance $T_s[\sec]$

$$x[n] = x(t)|_{t=nT_s} = \cos(2\pi \cdot 2400 \cdot n \cdot \frac{1}{2000}) = \cos(2.4\pi n) = \cos(0.4\pi n)$$

$$= \cdots, \stackrel{\downarrow}{1}, 0.3, -0.8, -0.8, 0.3, \cdots$$

Continuous-time signal $x(t) = \cos(\omega \cdot t) = \cos(2\pi f \cdot t)$

Absolute frequency: $\omega = 2\pi f$ [rad/sec]; f [Hz]

"continuous-time domain"

Conversion to discrete-time @ $f_s=1/T_s$ [samples/sec] or [Hz]:

$$x[n] = x(t)|_{t=n \cdot T_s} = \cos(\omega \cdot n \cdot T_s) = \cos((\omega \cdot T_s) \cdot n) = \cos(\theta \cdot n)$$

Relative frequency: θ [rad] (dimensionless)

"discrete-time domain"

$$\theta = \omega \cdot T_s = 2\pi \left(\frac{f}{f_s}\right)$$

$$x(t) = \cos(2\pi \cdot 400t) = \frac{1}{2}e^{\mathbf{j}2\pi \cdot 400t} + \frac{1}{2}e^{-\mathbf{j}2\pi \cdot 400t}$$
 Sample @ f_s =2000[Hz]

$$x(t) = \cos(2\pi \cdot 2400t) = \frac{1}{2}e^{\mathbf{j}2\pi \cdot 2400t} + \frac{1}{2}e^{-\mathbf{j}2\pi \cdot 2400t}$$
 Sample @ f_s =2000[Hz]

$$\theta = 2\pi \frac{2400}{2000} = 2.4\pi \quad \Rightarrow \quad x[n] = \frac{1}{2} e^{\mathbf{j}_{0.4\pi n}} + \frac{1}{2} e^{-\mathbf{j}_{0.4\pi n}}$$

Reconstruction by D-to-C convertor ightarrow Select frequency $< rac{f_s}{2}$

Chirp

Explanation:

Conclusion:

No aliasing when input frequency $<rac{f_s}{2}$ (= in FI)

TU/e Technische Universitei Eindhoven University of Technolo

Which sample rate to reconstruct original continuous time signal?

Sampling Theorem

Continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(t)|_{t=n\cdot T_s}$, if samples are taken at a rate $f_s = 1/T_s$, that is greater than $2f_{max}$

If we don't sample fast enough \rightarrow Aliasing

$$\underbrace{\begin{array}{c} x[n] \\ \text{D-to-C} \\ \text{Convertor} \\ \\ f_s = 1/T_s \end{array}}_{x(t)} x(t) = x[n]|_{n=f_st} \text{ possible or correct?}$$

Only when mathematical expression of sinusoidal available:

For
$$\theta_0 (= 2\pi \frac{f_0}{f_s}) < \pi \Rightarrow$$
 Ideal D-to-C 'replaces' n by $f_s \cdot t$

$$x[n] = \cos(\theta_0 n) = \cos(2\pi \frac{f_0}{f_s} n)$$

$$\Rightarrow \quad \hat{x}(t) \quad = \quad x[n]|_{\boldsymbol{n=f_st}} = \cos(2\pi f_0 t)$$

What if
$$\theta_0 (=2\pi \frac{f_0}{f_s}) > \pi$$
? (\Leftrightarrow original frequency $f_0 > \frac{f_s}{2}$)

Ideal D-to-C converts to aliased frequency less than $rac{f_s}{2}$

How interpolate continuous-time function through samples x[n]?

In theory for sinusoidal use mathematical expression of samples

If original $\theta_0 > \pi$ $(f_0 > \frac{f_s}{2}) \Rightarrow$ convert to frequency $< \frac{f_s}{2}$

How interpolate continuous-time function through samples x[n]?

In practice: D-to-A convertor (= approximation)

Ideal

- Use values x[n] which are sampled @ $f_s=1/T_s$ [Hz]
- Generate each $n \cdot T_s$ a pulse $p(t-nT_s)$ with amplitude x[n]
- Add, possible overlapping, shifted pulses:

$$\hat{x}(t) = \sum_{n = -\infty}^{\infty} x[n]p(t - nT_s)$$

• Pulse p(t) has characteristic shape for each D-to-C convertor.

Zero Order Hold (ZOH) Interpolator

$$p(t) = \left\{ \begin{array}{ll} 1 & -\frac{1}{2}T_s < t \leq \frac{1}{2}T_s \\ 0 & \text{otherwise} \end{array} \right.$$

Linear Interpolation

$$p(t) = \left\{ \begin{array}{ll} 1 - \frac{|t|}{T_s} & -T_s < t \leq T_s \\ 0 & \text{otherwise} \end{array} \right.$$

Ideal Interpolation

$$p(t) = \frac{\sin(\frac{\pi}{T_s}t)}{\frac{\pi}{T_s}t} - \infty < t < \infty$$

D-to-C conversion: Reconstruction animations

- Sampling sinusoid: With $x(t) = A\cos(\omega t + \phi)$ and $T_s = 1/f_s$ $x[n] = x(t)|_{t=n \cdot T_s} = A\cos((\omega \cdot T_s) \cdot n + \phi) = A\cos(\theta \cdot n + \phi)$
 - Absolute frequency: $\omega = 2\pi f$ [rad/sec] (f [Hz])
 - Relative frequency: $\theta = \omega \cdot T_s = 2\pi (f/f_s)$ [rad] (dimensionless)
- Aliasing frequencies $\cos(\theta_0 n + \phi)$ with relative frequency θ_0 : $\Rightarrow (\theta_0 + 2\pi l)n + \phi$ or $(2\pi l \theta_0)n \phi$ with integer l
- Spectrum discrete-time signal: Fundamental Interval (FI) FI = $\{-\pi, \pi\} \simeq \{-\frac{f_s}{2}, \frac{f_s}{2}\}$, periodic with ∞ components
- Ideal reconstruction sinusoidal signal: Each discrete-time frequency θ mapped via $\omega = \theta \cdot f_s$ to continuous-time frequency. Take care of alias term by selecting one period \Rightarrow Choose one FI
- Sampling theorem: Continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(t)|_{t=n \cdot T_s}$, if samples are taken at a rate $f_s = 1/T_s$, that is greater than $2f_{max}$