

MARKSCHEME

May 2013

MATHEMATICS DISCRETE MATHEMATICS

Higher Level

Paper 3

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

(a) using the Euclidean Algorithm, $332 = 3 \times 99 + 35$ $99 = 2 \times 35 + 29$ $35 = 1 \times 29 + 6$ $29 = 4 \times 6 + 5$ $6 = 1 \times 5 + 1$ hence 332 and 99 have a gcd of 1	MI AI AI AI AG	
Note: For both (a) and (b) accept layout in tabular form, especially the brack method of keeping track of the linear combinations as the method proceeds.	I	
		[4 marks]
(b) (i) working backwards,	(M1)	
6-5=1 6-(29-4×6)=1 or $5\times6-29=1$	AI	
$5 \times (35 - 29) - 29 = 1$ or $5 \times 35 - 6 \times 29 = 1$	A1	
$5 \times 35 - 6 \times (99 - 2 \times 35) = 1$ or $17 \times 35 - 6 \times 99 = 1$		
$17 \times (332 - 3 \times 99) - 6 \times 99 = 1$ or $17 \times 332 - 57 \times 99 = 1$	A1	
a solution to the Diophantine equation is therefore		
x = 17, y = 57	(A1)	
the general solution is $x = 17 + 99N$, $y = 57 + 332N$	AlAl	
$x = 17 \pm 991$ V, $y = 37 \pm 3321$ V		
Note: If part (a) is wrong it is inappropriate to give <i>FT</i> in (b) as numbers will contradict, however the <i>M1</i> can be given.	the	
(ii) it follows from previous work that		
$17 \times 332 = 1 + 99 \times 57$	(M1)	
$\equiv 1 \pmod{57}$	(A1)	
z = 332 is a solution to the given congruence the general solution is $332 + 57N$ so the smallest solution is 47	(A1) A1	
the general solution is 332 + 3/11 so the smallest solution is 4/	AI	[11 marks]
	Total	! [15 marks]

1.

2.	(a)	(i)	there is an Eulerian trail because there are only 2 vertices of odd degree there is no Eulerian circuit because not all vertices have even degree	R1 R1	
		(ii)	eg GBAGFBCFECDE	A2	[4 marks]
	(b)	(i) Not	2 A, G A(0), G(2), B-3, F-8 3 A, G, B A(0), G(2), B(3), F-7, C-10 4 A, G, B, F A(0), G(2), B(3), F(7), C-9, E-12 5 A, G, B, F, C A(0), G(2), B(3), F(7), C(9), E-10, D-15 6 A, G, B, F, C, E A(0), G(2), B(3), F(7), C(9), E(10), D-14 7 A, G, B, F, C, E, D A(0), G(2), B(3), F(7), C(9), E(10), D(14) te: In both (i) and (ii) accept the tabular method including back tracking or labels by the vertices on a graph.	AI AI AI AI	
		(ii)	intermediate ones are not shown. minimum weight path is ABFCED minimum weight is 14	A1 A1	
		Not			

[8 marks]

Total [12 marks]

as decimal numbers,

$$(3n+3)^2 = n^3 + 3n^2 + 3n + 1$$

any valid method of solution giving $n = 8$

M1A1 (M1)A1

Note: Attempt to change at least one side into an equation in n gains the M1.

[4 marks]

(b) **METHOD 1**

-9-

converting to base 7, $27 = (36)_7$ Multiplying base 7 numbers

 $\begin{array}{c} 36 \\ \times 36 \\ 1440 \\ \underline{321} \\ 2061 \\ \end{array}$ the required equation is

 $36^2 = 2061$

Note: Allow *M1* for showing the method of converting a number to base 7 regardless of what number they convert.

[6 marks]

Total [10 marks]

evaluating the adjacency matrix to the fifth power 4. (a) number of walks =14

(M1)A2

[3 marks]

number of edges in G = 5(b)

A1

number of edges in $G' = \binom{5}{2} - 5$

(M1)

=5

A1

Note: Allow listing of edges in G' or drawing graphs.

[3 marks]

(i) the adjacency matrix of G' is (c)

	В	D	A	С	Е
В	0	1	0	1	1
D	1	0	0	0	0
Α	0	0	0	1	0
С	1	0	1	0	1
Е	1	0	0	1	0

A4

Note: Award A3 for one error, A2 for two errors, A1 for three errors and A0 for more than three errors.

it follows that G and G' are isomorphic because the adjacency (ii) matrices of G and G' are identical

R1

Note: Or equivalent comprehensive explanation.

[5 marks]

let H have e edges (d)

M1

number of edges in $H' = {6 \choose 2} - e = 15 - e$

A1

for an isomorphism to exist, these must be equal:

M1

 $e = 15 - e \Rightarrow e = 7.5$

A1AG

which is impossible so no isomorphism

[4 marks]

Total [15 marks]

5. using Fermat's little theorem,

$$k^p \equiv k \pmod{p}$$
 (M1) therefore,

$$\sum_{k=1}^{p} k^{p} \equiv \sum_{k=1}^{p} k \pmod{p}$$
M1

$$\equiv \frac{p(p+1)}{2} \pmod{p}$$

$$\equiv 0 \pmod{p}$$
 AG

since
$$\frac{(p+1)}{2}$$
 is an integer (so that the right-hand side is a multiple of p) $R1$

[4 marks]

using the alternative form of Fermat's little theorem, (b)

$$k^{p-1} \equiv 1 \pmod{p}, 1 \le k \le p-1$$

$$k^{p-1} \equiv 0 \pmod{p}, k = p$$

therefore,

$$\sum_{k=1}^{p} k^{p-1} \equiv \sum_{k=1}^{p-1} 1 \ (+0) \pmod{p}$$
 M1

$$\equiv p - 1 \pmod{p}$$
(so $n = p - 1$)
$$A1$$

Note: Allow first A1 even if qualification on k is not given.

[4 marks]

Total [8 marks]