

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY B.TECH CE SEMESTER - VII

SUBJECT: (CE - 714) IMAGE PROCESSING

CF-84 Wednesday Second Sessional Seat No Examination Day 36 Date

4/9/2019 Max Marks 1:45 pm to 3:00 pm Time

INSTRUCTIONS:

- 1. Figures to the right indicate maximum marks for that question.
- Jstudent.co The symbols used carry their usual meanings. Assume suitable data, if required & mention them clearly
- Draw neat sketches wherever necessary.

[12] (a) Prove that erosion and dilation are duals of each other with respect to set complementation and [2]

- [2] [1]
- (b) Explain image degradation/restoration process model.
- (c) Which factors arise Gaussian noise in an image? [1] [2]
- (d) Which type of noise is alleviated by mid-point filter? (e) Two finite sequences $x = \{x[0], x[1], x[2], x[3]\}$ and $h = \{h[0], h[1], h[2], h[3]\}$ have DFT's
- $X = DFT\{x\} = \{1, j, -1, -j\}$ and $H = DFT\{h\} = \{0, 1 + j, 1, 1 j\}$. computing x and h explicitly find $DFT\{y\}$ and y[0] where $y = x \spadesuit h$, Where \spadesuit denotes the
- (f) What is the ringing property of Ideal Low Pass Filters? Why is it not observed in Gaussian Low [2]
- (g) Consider a continuous function f(t) and corresponding sampled function $\tilde{f}(t)$. Prove that Fourier transform of the sampled function $\tilde{f}(t)$ is an *infinite*, periodic sequence of copies of the Fourier transform of a continuous function f(t).

Q.2 Answer the following questions (Any Two)

- [12] [4] 1. Find out the DFT for the sampled function $f(x) = \{j, 0, j, 1\}$ [2]
- 2. What is Temporal Aliasing? Also briefly describe "Wagon Wheel" effect. [6]
- Find out the convolution of two rectangular function f and g. Both are defined in the range 0 to 500. Show the calculation.

0 < x < 30020 f(x): elsewhere 0 0 < y < 40040

g(y): elsewhere

- 1. Discuss function reconstruction (recovery) from sampled data. Also prove that between sample points values of the reconstructed function are interpolations formed by the sum of (c) the sinc functions. [3]
 - 2. Give Details on the Laplacian in the frequency domain.

[12] Q.3 Attempt the following questions Apply alpha trimmed mean filter on fo'llowing 8-bit 256 levels 5* 5 image. The value of d is 6 [6] and Sxy is the set of coordinates in a rectangular window (neighborhood) of size 3*3. a)

nd S _{xy} is the set of coord	2	3	4	5
Row/Column 1 1 2 2 2 3 3 4 4	- 2	3	4	5
	1	6	8	10
		9	12	15
	8	12	16	20
	10	15	20	25

Find out the restored pixel value for the $\hat{f}(2,2)$, $\hat{f}(2,4)$, $\hat{f}(3,2)$, $\hat{f}(3,4)$, $\hat{f}(4,2)$, $\hat{f}(4,4)$.

Attempt the followir, g questions

[12]

[3]

[3]

[2]

[4]

- 0.3 Discuss with example, what you would expect the result to be in each of the following cases. a)
 - (1) The starting point of the hole filling algorithm is a point on the boundary of the object.

OR

- (2) The starting point in the hole filling algorithm is outside of the boundary.
- (a) What are the advantages of adaptive median filter over traditional median filter? b)
 - (b) Discuss the adaptive median filter algorithm in detail.