Reproduce 11.2

Preparation

 $(Y_1,...,Y_K)$ have a K-variate normal distribution with mean $\mu=(\mu_1,...,\mu_K)$ and covariance matrix $\Sigma=(\sigma_{jk})$. $Y=(Y_{obs},Y_{mis})$ where Y represents a random sample of size n on $(Y_1,...,Y_K)$, Y_{obs} is the observed values, and Y_{mis} the missing data.

Let $Y_{obs} = (y_{obs,1},...,y_{obs,n})$, where y_{obs,i} represents the set of variables observed for case i, i=1,...,n.

E-step

$$egin{aligned} y_{ij}^{(t)} &= egin{cases} y_{ij} & ,if \ y_{ij} \ is \ observed \ E[y_{ij},y_{obs,i}, heta^{(t)}] &= \mu_{mis} + \Sigma_{mis-obs,i}\Sigma_{obs-obs,i}^{-1}(y_{obs,i}-\mu_{obs}) & ,if \ y_{ij} \ is \ missing \ \end{cases} \ c_{jki}^{(t)} &= egin{cases} 0 & ,if \ y_{ij} \ is \ observed \ Cov(E_{ij},y_{obs,i}, heta^{(t)}) &= \Sigma_{mis-mis,i} - \Sigma_{mis-obs,i}\Sigma_{obs-obs,i}^{-1}\Sigma_{obs-mis,i} & ,if \ y_{ij} \ is \ missing \ \end{cases} \end{aligned}$$

where

$$egin{aligned} \Sigma_{mis-mis,i} &= (\sigma_{jk}) \;,\; j,k \in \{h|y_{ih} \; is \; missing\} \ \Sigma_{mis-obs,i} &= (\sigma_{jk}) \;,\; j \in \{h|y_{ih} \; is \; missing\} \;,\; k \in \{h|y_{ih} \; is \; observed\} \ \Sigma_{obs-obs,i} &= (\sigma_{jk}) \;,\; j,k \in \{h|y_{ih} \; is \; observed\} \end{aligned}$$

M-step

$$egin{aligned} \mu_j^{(t+1)} &= n^{-1} \sum_{i=1}^n y_{ij}^{(t)} \;\;, \quad j=1,...K \ \\ \sigma_{jk}^{(t+1)} &= n^{-1} \sum_{i=1}^n (y_{ij}^{(t)} - \mu_j^{(t+1)}) (y_{ik}^{(t)} - \mu_k^{(t+1)}) + c_{jki}^{(t)} \;\;, \quad j,k=1,...,K \end{aligned}$$

Implement

Since there is no certain missing pattern, it would be easier to deal with the dataset case by case. In the former sessions, I usually rearrange the dataset to get separate covariance matrices, but it seems too inconvenient in this implement. So I decided to directly retrieve the covariance matrices from the whole covariance matrix Σ .

Here's my implement of EM algorithm:

```
# y : the input dataset
# mu & sigma : the parameters
def EM(y,mu,sigma):
    r,c = y.shape
    if (mu.shape != (c,) or sigma.shape!=(c,c)):
        raise( NameError('the data and parameter not fit'))
    x = y.copy()
    Covmis = np.zeros([r,c,c])
    # E-step
    for i in range(r):
        # if ther is no missing in case i, then turn to case i+1
        if (np.all(np.isnan(x[i])==False)):continue;
        # store the index of missing values and observed values
        mis = np.where(np.isnan(x[i]))[0]
        obs = np.where(np.isnan(x[i])==False)[0]
        # retrive the covariance matrices (obs-obs , mis-mis , mis-obs)
        Smis = np.matrix(np.zeros([len(mis),len(mis)]))
        for j in range(len(mis)):
            for k in range(len(mis)):
                Smis[j,k] = sigma[mis[j],mis[k]]
        Sobs = np.matrix(np.zeros([len(obs),len(obs)]))
        for j in range(len(obs)):
            for k in range(len(obs)):
                Sobs[j,k] = sigma[obs[j],obs[k]]
        Smvo = np.matrix(np.zeros([len(mis),len(obs)]))
        for j in range(len(mis)):
            for k in range(len(obs)):
                Smvo[j,k] = sigma[mis[j],obs[k]]
        # calculate the Expectations
        x[i][mis] = mu[mis] +
                    np.array(Smvo*np.linalg.inv(Sobs)*
                             np.matrix(x[i][obs]-mu[obs]).transpose()
                             ).reshape(1,len(mis))
        tmp = Smis - Smvo*np.linalg.inv(Sobs)* Smvo.transpose()
        for j in range(len(mis)):
            for k in range(len(mis)):
                Covmis[i,mis[j],mis[k]] = tmp[j,k]
    # M-step
    re_mu = np.mean(x,axis=0)
    re_sigma = np.zeros([c,c])
    for j in range(c):
        for k in range(c):
            tmp = 0
            for i in range(r):
                tmp += (x[i,j]-re_mu[j])*(x[i,k]-re_mu[k]) + Covmis[i][j][k]
            re_sigma[j][k] = tmp/r
    return re_mu,re_sigma
```

Simulation

I randomly generated 3 *C*-variate normal distribution parameters (μ, Σ) and 3 random samples of size *R* that has the distribution $N(\mu, \Sigma)$, the generated dataset stores in *ORIGIN* Y

```
np.random.seed(0)  # set it to 0 , 1 , 2 to get 3 different MU and SIGMA
R = 200 # sample size
C = 4  # number of random variables

# generate random mean MU and covariance matrix SIGMA
MU = np.random.randint(-4,4,size=C)

# generate a positive semidefinite matrix as covariance matrix
A = np.matrix(np.random.normal(0,1,size=[C,C]))
SIGMA = A*A.transpose()

# generate multivariate normal sample
ORIGIN_Y = np.random.multivariate_normal(MU,SIGMA,size=R)
```

Copy ORIGIN_Y into Y and randomly remove some values in Y at a certain missing rate.

```
# randomly remove some obsevations
missing_rate = 0.4
MISS = np.random.binomial(1,missing_rate,size=[R,C])
# minor fix for those entirely deleted obsevations so that evary case has observations
for i in range(100):
    if (np.all(MISS[i] == 1)):
        MISS[i,np.random.randint(0,C)] = 0
Y = ORIGIN_Y.copy()
Y[np.where(MISS==1)] = np.nan
```

Then, use complete cases to acquire starting point and run EM algorithm till convergence.

Results

Random seed	0	1	2
Real μ	(0.00,3.00,1.00,-4.00)	(1.00,-1.00,0.00,-4.00)	(-4.00,3.00,1.00,-4.00)
MLE μ (full Y)	(0.21,3.06,1.23,-3.97)	(1.32,-0.95,-0.01,-3.92)	(-3.98,3.20,0.79,-4.03)
EM MLE μ (Y)	(-0.03,3.07,1.20,-3.92)	(1.20,-1.07,-0.01,-3.85)	(-3.80,3.19,0.68,-4.03)
CC MLE μ (Y)	(0.33,3.24,1.19,-3.81)	(2.48,-1.24,-0.32,-3.89)	(-2.87,2.98,0.60,-4.24)

MLEs of μ and Σ that acquired by EM algorithm is much better than Complete-Case analysis, moreover, it is close to the MLEs calculated using the full generaterd data. The EM algorithm perform well in this circumstance.

	seed=0						seed=1					seed=2				
Cov_{real}	[10.42]	-0.00	4.70	4.17	$\lceil 7.4 \rceil$	18	0.75	2.04	2.45		T11.18	-0.45	3.45	-3.08		
	-0.00	1.10	-0.11	0.13	0.7	75	3.79	4.11	2.98		-0.45	3.75	-1.60	-0.03		
	4.70	-0.11	2.73	1.66	2.0)4	4.11	6.63	4.32		3.45	-1.60	6.81	-2.38		
	4.17	0.13	1.66	2.58			2.98	4.32	3.30		[-3.08]	-0.03	-2.38	2.03		
Cov_{full}	Γ 9.55	-0.12	4.22	3.74	Γ6.	67	0.49	1.67	2.06		「 9.95	-0.78	3.14	-2.63		
	-0.12	0.92	-0.18	0.13	0.4	19	3.53						-1.82	0.08		
	4.22	-0.18	2.53	1.33	1.6	57	4.04	6.97	4.47		3.14	-1.82	6.97	-2.48		
	3.74	0.13	1.33	2.53	2.0	06	2.79	4.47	3.26		$\begin{bmatrix} -0.78\\ 3.14\\ -2.63 \end{bmatrix}$	0.08	-2.48	1.97		
Cov_{EM}	Γ 9.90	-0.31	4.05	3.507	Γ6.	17	0.39	1.69	2.13		Г10.34	-0.77	2.72	-2.64		
	-0.31	0.94	-0.35	0.22	0.3	39	3.14	3.53	2.57		-0.77		-1.86	-0.15		
	4.05	$0.94 \\ -0.35 \\ 0.22$	2.46	1.13	1.0	39	3.53	6.80	4.61		2.72	-1.86	7.35	-2.64		
	3.50	0.22	1.13	2.43	$\lfloor 2.1$	13	2.57	4.61	3.53		[-2.64]	-0.15	-2.64	2.10		

	8.28	-0.42	3.69	3.10	$\lceil 4.39$	-0.83	0.14	1.03		-0.93	2.61	-2.61
Cov_{CC}	-0.42	1.00	-0.43	0.13	-0.83	4.15	4.71	2.97	-0.93	4.07	-3.15	0.54
	3.69	-0.43	2.50	1.05	0.14	4.71	7.07	4.49	2.61	-3.15	10.30	-3.74
	3.10	0.13	1.05	2.31	1.03	2.97	4.49	3.16	-2.61	0.54	-3.74	2.46