Compléments d'algèbre linéaire

Feuille d'exercices #04

⊗ Partie A – Calcul matriciel

Exercice 1 — Soit
$$A = \begin{bmatrix} 3 & 1 & -2 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$
.

Dans cet exercice, I désigne la matrice identité d'ordre 3 et 0_3 la matrice nulle d'ordre 3. On se propose de calculer les puissances de A de plusieurs manières.

1. Par diagonalisation

On pose
$$P = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
.

- a) Démontrer que P est inversible puis calculer $D = P^{-1}AP$ et enfin A^n .
- b) Justifier l'inversibilité de A et en déduire alors A^{-n} pour $n \in \mathbb{N}$.
- 2. Par la formule du binôme de Newton
 - a) Soit B = A 2I. Pour $n \in \mathbb{N}^*$, calculer B^n en fonction de B.
 - b) En déduire l'expression de A^n en fonction de n, A et I.
- 3. Par polynôme annulateur
 - a) Montrer que $A^2 3A + 2I = 0_3$.
 - b) Démontrer par récurrence qu'il existe deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que, pour tout entier n, $A^n = a_n A + b_n I$. Exprimer a_n et b_n en fonction de n et en déduire l'expression de A^n .
 - c) Justifier que *A* est inversible et donner son inverse.

Exercice 2 — Soient $(\alpha, \beta) \in \mathbb{C}^2$ et $A = (a_{i,j})$ la matrice de $\mathcal{M}_n(\mathbb{C})$ définie par :

$$a_{i,j} = \begin{cases} \alpha & \text{si } i \neq j \\ \beta & \text{si } i = j \end{cases}$$

- 1. Calculer A^m pour $m \in \mathbb{N}$.
- 2. Trouver une condition nécessaire et suffisante sur (α, β) pour que la matrice A soit inversible et donner alors son inverse.

Exercice 3 — Soient $n \in \mathbb{N}^*$ et $A, B, C \in \mathcal{M}_n(\mathbb{K})$. On pose :

$$M = \begin{bmatrix} I_n & A & C \\ 0 & I_n & B \\ 0 & 0 & I_n \end{bmatrix} \in \mathcal{M}_{3n}(\mathbb{K})$$

Montrer que M est inversible et calculer M^{-1} .

Exercice 4 — Soit *n* un entier naturel non nul.

- 1. Trouver les matrices $A \in \mathcal{M}_n(\mathbb{K})$ vérifiant pour tout $M \in \mathcal{M}_n(\mathbb{K})$, AM = MA.
- 2. a) On note $E_{i,j}$ les matrices constitutives de la base canonique de $\mathcal{M}_n(\mathbb{K})$. Déterminer la matrice $E_{a,b}E_{c,d}$, où $a,b,c,d \in [1,n]$.
 - b) Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note φ l'endomorphisme défini sur $\mathcal{M}_n(\mathbb{K})$ par $\varphi(M) = MA$. Montrer que $\text{Tr}(\varphi) = n \text{Tr}(A)$.

Exercice 5 — Déterminer le rang des matrices suivantes : $(\alpha \in \mathbb{C})$

$$A = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -3 & 4 \\ 1 & 4 & 3 \end{bmatrix}; B = \begin{bmatrix} \alpha & & & & & & \\ & \ddots & & \\ & & & \alpha \end{bmatrix}; C = \begin{bmatrix} 1^2 & 2^2 & \cdots & n^2 \\ 2^2 & 3^2 & \cdots & (n+1)^2 \\ \vdots & \vdots & & & \vdots \\ n^2 & (n+1)^2 & \cdots & (2n-1)^2 \end{bmatrix}$$

Exercice 6 — *Matrices de rang* 1

Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang 1.

- 1. Montrer qu'il existe $U, V \in \mathcal{M}_{n,1}(\mathbb{K})$ tels que $M = UV^{\top}$.
- 2. Calculer, pour tout $p \in \mathbb{N}$, M^p .
- 3. Montrer que $I_n + M$ est inversible si, et seulement si, $\text{Tr}(M) \neq -1$ et déterminer alors $(I_n + M)^{-1}$.

Me Exercice 7 — Matrices à diagonale dominante

Soit $A = (a_{i,j})_{1 \le i,j \le n}$ une matrice de $\mathcal{M}_n(\mathbb{C})$ telle que pour tout $i \in [1,n]$,

$$|a_{i,i}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{i,j}|$$

Soit $X \in \mathcal{M}_{n,1}(\mathbb{K})$ tel que AX = 0. En raisonnant sur l'une des coordonnées de X de plus grand module, montrer par l'absurde que X = 0. Qu'en déduire?

⊗ Partie B – Espaces vectoriels

Exercice 8 — Montrer que la famille $(X^k(1-X)^{n-k})_{0 \le k \le n}$ est une base de $\mathbb{K}_n[X]$.

Exercice 9 — Soient $p \in \mathbb{N}^*$ et E l'ensemble des suites complexes p-périodiques.

- 1. Montrer que E est un \mathbb{C} -e.v. de dimension finie et préciser celle-ci.
- 2. Déterminer une base de *E* formée de suites géométriques.

Exercice 10 — Soit $n \in \mathbb{N}$. On cherche à montrer que la famille $((X + k)^n)_{0 \le k \le n}$ est libre. On introduit pour cela $\lambda_0, \dots, \lambda_n \in \mathbb{R}$ tels que $\sum_{k=0}^n \lambda_k (X + k)^n = 0$.

- 1. Montrer que pour tout $p \in [0, n]$, $\sum_{k=0}^{n} \lambda_k (X+k)^p = 0$ et $\sum_{k=0}^{n} \lambda_k k^p = 0$.
- 2. Conclure à l'aide des polynômes de Lagrange.

Exercice 11 — Montrer que les familles suivantes sont libres dans $\mathbb{R}^{\mathbb{R}}$:

$$\mathscr{F} = (x \mapsto \cos(nx))_{n \in \mathbb{N}} \; ; \quad \mathscr{G} = \left(x \mapsto \cos^n(x)\right)_{n \in \mathbb{N}} \; ; \quad \mathscr{H} = \left(x \mapsto \mathrm{e}^{\alpha_n x}\right)_{n \in \mathbb{N}}$$

où les α_n sont des nombres complexes deux à deux distincts.

Exercice 12 — Soient $E = \mathbb{R}_{n+1}[X]$, $k \le n$, $a, b \in \mathbb{R}$ distincts. On note φ l'application définie sur E par :

$$\varphi(P) = \left(P(a), P'(a), \dots, P^{(k)}(a), P(b), \dots, P^{(n-k)}(b)\right)$$

- 1. Montrer que φ est un isomorphisme de E dans \mathbb{R}^{n+2} .
- 2. En déduire l'existence et l'unicité d'une base $\mathscr{B} = (Q_i)_{0 \le i \le n+1}$ de E telle que, pour tout $P \in E$, $P = \sum_{i=0}^k P^{(i)}(a)Q_i + \sum_{i=0}^{n-k} P^{(i)}(b)Q_{i+k+1}$.

Exercice 13 — On note $E = \mathscr{C}^{\infty}([-1,1],\mathbb{R})$, $E^* = \mathscr{L}(E,\mathbb{R})$ ainsi que pour tout $n \in \mathbb{N}$, ψ_n l'application définie sur E par $\psi_n(f) = f^{(n)}(0)$. Montrer que $(\psi_n)_{n \in \mathbb{N}}$ est une famille libre de E^* .

Exercice 14 — Soit
$$\mathcal{H} = \left\{ y \in \mathcal{C}(\mathbb{R}, \mathbb{R}) \mid \int_0^1 y(t) dt = \frac{y(0) + y(1)}{2} \right\}.$$

Montrer que $\mathcal H$ est un hyperplan de $\mathscr C(\mathbb R,\mathbb R)$ et en donner un supplémentaire.

⊗ Partie C – Applications linéaires, représentation matricielle

Exercice 15 — Soient $E = \mathbb{R}^3$ et f l'application définie sur \mathbb{R}^3 par :

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f(x, y, z) = (4x + y - z, 2x + 3y - z, 2x + y + z)$$

- 1. Montrer que $f \in \mathcal{L}(\mathbb{R}^3)$ puis construire sa matrice représentative dans la base canonique.
- 2. Trouver deux réels distincts λ et μ tels que $f \lambda id_E$ et $f \mu id_E$ ne soient pas des automorphismes.
- 3. Montrer que $E = \text{Ker}(f \lambda id_E) \oplus \text{Ker}(f \mu id_E)$.
- 4. Donner la matrice représentative de f dans une base adaptée.

Exercice 16 — *Matrice de Vandermonde*

Soient $n \in \mathbb{N}^*$ et $a_1, \dots, a_n \in \mathbb{C}^n$ distincts. On considère la matrice :

$$V = \begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{bmatrix}$$

Montrer que la matrice V est inversible :

- 1. en s'intéressant au nombre de racines d'un certain polynôme lors de la résolution de l'équation VX = 0;
- 2. en construisant la matrice de passage de la famille des polynômes interpolateurs de Lagrange vers la base canonique.

Exercice 17 —

1. Soient $\lambda_1, ..., \lambda_p \in \mathbb{K}$ distincts et $f \in \mathcal{L}(E)$. Montrer que :

$$\sum_{i=1}^{p} \operatorname{Ker}(f - \lambda_{i} \operatorname{id}_{E}) = \bigoplus_{i=1}^{p} \operatorname{Ker}(f - \lambda_{i} \operatorname{id}_{E})$$

2. Montrer que $(n \mapsto \lambda_1^n, ..., n \mapsto \lambda_p^n)$ est libre si, et seulement si les λ_i sont tous non nuls et distincts.

Exercice 18 — Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{C})$ vérifiant $A^2 = 0$ et $A \neq 0$.

Montrer que A est semblable à $\begin{bmatrix} 0 & I_r \\ 0 & 0 \end{bmatrix}$ où $r = \operatorname{rg}(A)$.

Exercice 19 — Soit $n \ge 2$. On considère l'application ϕ définie sur $\mathbb{R}_n[X]$ par $\phi(P) = P(X+1) + P(X-1) - 2P(X)$.

- 1. Montrer que l'application ϕ est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Déterminer son noyau et son image.

Exercice 20 — Soient $E = \mathbb{C}[X]$ et φ et ψ les endomorphismes de E définis par :

$$\forall P \in \mathbb{C}[X], \quad \varphi(P) = XP \quad \text{ et } \quad \psi(P) = P'$$

- 1. Déterminer le noyau et l'image de φ et de ψ .
- 2. Déterminer le noyau de ψ^n où $n \in \mathbb{N}^*$ et l'image de $\psi \alpha \operatorname{id}_E$ où $\alpha \in \mathbb{C}^*$.

Exercice 21 — Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{C}$. On note ϕ l'endomorphisme de $\mathbb{C}_n[X]$ défini par $\phi(P) = P(X + a)$. On note T la matrice de coefficients $t_{i,j} = \binom{j}{i}$.

Écrire la matrice de ϕ dans la base canonique de $\mathbb{C}_n[X]$; en déduire l'inverse de T.

Exercice 22 — Soient \mathcal{B} l'ensemble des suites complexes bornées et l'application $\phi: (u_n)_{n\in\mathbb{N}} \mapsto (v_n)_{n\in\mathbb{N}} \mapsto (v_n)_{n\in\mathbb{N}}$ définie sur \mathcal{B} , où pour tout $n\in\mathbb{N}$, $v_n=u_{n+1}-u_n$.

- 1. Montrer que ϕ est un endomorphisme de \mathcal{B} .
- 2. Déterminer le noyau et l'image de ϕ .

Exercice 23 — Soit E un \mathbb{R} -espace vectoriel de dimension 3. On suppose qu'il existe $u \in \mathcal{L}(E)$ vérifiant $u^2 = -\mathrm{id}_E$.

- 1. Montrer que pour tout $x \neq 0_E$, la famille (x, u(x)) est libre.
- 2. Aboutir à une contradiction. La conclusion tient-elle si E est un \mathbb{C} -e.v.?

Exercice 24 — Soient E un \mathbb{K} -espace vectoriel et $f, g \in \mathcal{L}(E)$.

- 1. Montrer que $\operatorname{Ker}(f) \subset \operatorname{Ker}(g \circ f)$ et $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$.
- 2. Interpréter en termes de noyau et d'image l'égalité $g \circ f = 0_{\mathcal{L}(E)}$.

- 3. Montrer que $f(\operatorname{Ker}(g \circ f)) = \operatorname{Ker} g \cap \operatorname{Im} f$.
- 4. On suppose que $g \circ f = f \circ g$. Montrer que Ker f et Im f sont stables par g.

Exercice 25 — Soient E un \mathbb{K} -e.v. et $f, g \in \mathcal{L}(E)$.

- 1. Montrer que : $\operatorname{Ker}(g \circ f) = \operatorname{Ker} f \iff \operatorname{Ker} g \cap \operatorname{Im} f = \{0_E\}$
- 2. Montrer que : $\operatorname{Im}(g \circ f) = \operatorname{Im} g \iff \operatorname{Ker} g + \operatorname{Im} f = E$

Exercice 26 — Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$.

On suppose Ker(f) de dimension finie.

- 1. Montrer que si un sous-espace vectoriel F de E est de dimension finie, alors $f^{-1}(F)$ est de dimension finie.
- 2. Prouver que $\text{Ker}(f^n)$ est de dimension finie, pour tout $n \in \mathbb{N}$.

Exercice 27 — Factorisation

Soient E, F et G trois \mathbb{K} -espaces vectoriels de dimension finie.

1. On considère deux applications $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(E,G)$. Montrer que :

$$\exists h \in \mathcal{L}(F,G)$$
 tel que $g = h \circ f$ si, et seulement si, $\operatorname{Ker}(f) \subset \operatorname{Ker}(g)$

2. On considère n+1 formes linéaires ϕ_1, \dots, ϕ_n et φ sur E. Montrer que :

$$\bigcap_{i=1}^{n} \operatorname{Ker}(\phi_{i}) \subset \operatorname{Ker}(\varphi) \quad \Longleftrightarrow \quad \exists (\lambda_{1}, \dots, \lambda_{n}) \in \mathbb{K}^{n}, \ \varphi = \sum_{i=1}^{n} \lambda_{i} \phi_{i}$$

Exercice 28 — Endomorphismes nilpotents

Soit E un \mathbb{K} -e.v. de dimension n. On suppose que $f \in \mathcal{L}(E)$ est nilpotente, d'ordre de nilpotence p, c'est-à-dire que : $f^p = \tilde{0}$ et $f^{p-1} \neq \tilde{0}$.

- 1. Montrer qu'il existe $x_0 \in E$ tel que $\mathscr{F} = (x_0, f(x_0), ..., f^{p-1}(x_0))$ est libre. En déduire que $p \le n$.
- 2. Soit \mathcal{B} une base de E obtenue en complétant la famille \mathcal{F} . Quelle est la forme de la matrice de f dans cette base?
- 3. Que peut-on dire de la suite $(rg(f^k))_{k \in \mathbb{N}}$?
- 4. On suppose que p = n et soit $g \in \mathcal{L}(E)$ vérifiant $f \circ g = g \circ f$. Montrer que $g \in \text{Vect}\left(\text{id}_E, f, \dots, f^{n-1}\right)$.

Exercice 29 — On note \mathscr{F} l'ensemble de endomorphismes φ de $\mathscr{M}_n(\mathbb{R})$ vérifiant :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \quad \varphi(M^\top) = \varphi(M)^\top$$

Montrer que ${\mathcal F}$ est un espace vectoriel et déterminer sa dimension.

Exercice 30 — Soit $A \in \mathcal{M}_n(\mathbb{K})$ de rang r. Montrer que $\{M \in \mathcal{M}_n(\mathbb{K}) \mid AM = 0_{\mathcal{M}_n(\mathbb{K})}\}$ est un espace vectoriel et préciser sa dimension.

Exercice 31 — Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u, v \in \mathcal{L}(E)$.

1. Établir l'encadrement :

$$\left| \operatorname{rg}(u) - \operatorname{rg}(v) \right| \le \operatorname{rg}(u+v) \le \operatorname{rg}(u) + \operatorname{rg}(v)$$

2. Justifier également l'inégalité $rg(u \circ v) \leq min(rg(u), rg(v))$.

Exercice 32 — Soient E un \mathbb{K} -espace vectoriel de dimension finie et $u, v \in \mathcal{L}(E)$.

1. En considérant la restriction de u à Im(v), démontrer que :

$$rg(v) = rg(u \circ v) + dim(Ker(u) \cap Im(v))$$

2. En déduire que dim $\operatorname{Ker}(u \circ v) \leq \dim \operatorname{Ker}(u) + \dim \operatorname{Ker}(v)$.

Exercice 33 — Soit E un espace de dimension finie 2p avec $p \ge 1$ et $\varphi \in \mathcal{L}(E)$. Montrer qu'il y a équivalence entre les propriétés :

(i)
$$\varphi^2 = 0$$
 et $rg(\varphi) = p$ (ii) $Im(\varphi) = Ker(\varphi)$

(iii) $\exists A \in \mathrm{GL}_p(\mathbb{K})$ telle que $\begin{bmatrix} 0 & A \\ 0 & 0 \end{bmatrix}$ soit la matrice de φ dans une certaine base.

Exercice 34 — Soient $E = \mathcal{C}([0,1],\mathbb{R})$ et $g \in E$. On suppose que pour tout $f \in E$,

$$\int_0^1 f(t) dt = 0 \implies \int_0^1 f(t)g(t) dt = 0$$

Montrer que g est constante.

Exercice 35 — Noyaux itérés d'un endomorphisme

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie n > 0.

- 1. Montrer que la suite $(\text{Ker}(u^p))_{p \in \mathbb{N}}$ est croissante au sens de l'inclusion.
- 2. Montrer qu'il existe un plus petit entier r tel que $Ker(u^r) = Ker(u^{r+1})$ puis que pour tout $p \ge r$, $Ker(u^p) = Ker(u^{p+1})$.
- 3. Montrer que $E = \text{Im}(u^r) \oplus \text{Ker}(u^r)$.
- 4. a) Montrer que les sous-espaces $Im(u^r)$ et $Ker(u^r)$ sont stables par u.
 - b) En déduire l'existence d'une base de E dans laquelle la matrice de u est de la forme $\begin{bmatrix} G & 0 \\ 0 & N \end{bmatrix}$ où G est inversible et N nilpotente.
- 5. Soient $p \in \mathbb{N}^*$ et F_n un supplémentaire de $\operatorname{Ker}(u^p)$ dans $\operatorname{Ker}(u^{p+1})$.
 - a) On note v la restriction de u à F_p . Montrer que v est injective.
 - b) Prouver que $\operatorname{Im}(v) \subset \operatorname{Ker}(u^p)$ puis que $\operatorname{Im}(v) \oplus \operatorname{Ker}(u^{p-1}) \subset \operatorname{Ker}(u^p)$.
 - c) En déduire que $\left[\dim(\operatorname{Ker}(u^{p+1})) \dim(\operatorname{Ker}(u^p))\right]_{p \in \mathbb{N}}$ est décroissante.

Exercice 36 — Formes linéaires sur $\mathcal{M}_n(\mathbb{K})$

- 1. a) Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Montrer que si Tr(AM) = Tr(BM) pour toute matrice $M \in \mathcal{M}_n(\mathbb{K})$, alors A = B.
 - b) En déduire que pour toute forme linéaire φ de $\mathcal{M}_n(\mathbb{K})$, il existe une unique matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que :

$$\forall M \in \mathcal{M}_n(\mathbb{K}), \quad \varphi(M) = \text{Tr}(AM)$$

2. En déduire que tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ contient au moins une matrice inversible.

⊗ Partie D – Projecteurs et symétries vectoriels

Exercice 37 — Soient f et g les endomorphismes de \mathbb{R}^3 canoniquement associés aux matrices :

$$M = \frac{1}{4} \begin{bmatrix} 4 & 2 & 4 \\ 0 & 2 & -4 \\ 0 & -1 & 2 \end{bmatrix} \quad \text{et} \quad N = \begin{bmatrix} 3 & 4 & 4 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{bmatrix}$$

Montrer que f est une projection vectorielle et g une symétrie vectorielle; déterminer leurs caractéristiques géométriques.

Exercice 38 — On se place dans \mathbb{R}^3 muni de la base canonique (e_1, e_2, e_3) . On considère le plan \mathscr{P} et la droite \mathscr{D} d'équations respectives :

$$\mathscr{P}: x+y+z=0$$
 et $\mathscr{D}: \begin{cases} x-y+z=0\\ x+y+2z=0 \end{cases}$

- 1. Déterminer la matrice dans la base canonique de la projection p sur le plan $\mathcal P$ parallèlement à la droite $\mathcal D$.
- 2. Faire de même avec la symétrie s par rapport à $\mathcal P$ parallèlement à $\mathcal D$.

Exercice 39 — Soient E un \mathbb{K} -e.v. et p, q deux projecteurs de E vérifiant $p \circ q = 0$. On pose $r = p + q - q \circ p$.

- 1. Montrer que *r* est un projecteur.
- 2. Montrer que Ker $r = \text{Ker } p \cap \text{Ker } q$.
- 3. Montrer que $\operatorname{Im} r = \operatorname{Im} p \oplus \operatorname{Im} q$.

Exercice 40 — Soient $f, g \in \mathcal{L}(E)$ vérifiant $f^2 = f$ et $g \circ f = 0$. Montrer à l'aide de la propriété $E = \text{Ker}(f) \oplus \text{Im}(f)$ que Im(f + g) = Im(f) + Im(g).

Exercice 41 — Soient E et F deux espaces vectoriels, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, E)$. On suppose que $f = f \circ g \circ f$ et $g = g \circ f \circ g$. Montrer que $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(g)$.

Exercice 42 — Soient E un espace vectoriel de dimension n, f et g deux endomorphismes de E tels que $f + g = \mathrm{id}_E$ et $\mathrm{rg}(f) + \mathrm{rg}(g) \le n$.

- 1. Montrer que Ker(g) = Im(f).
- 2. Que peut-on en déduire concernant $g \circ f$?
- 3. Montrer que f et g sont des projecteurs.

Exercice 43 — Soit E un \mathbb{K} -espace vectoriel de dimension finie. On considère r projecteurs p_1, \ldots, p_r tels que $p_1 + \cdots + p_r = \mathrm{id}_E$.

- 1. Montrer, à l'aide de la trace, que $\dim(E) = \dim(\operatorname{Im}(p_1)) + \cdots + \dim(\operatorname{Im}(p_r))$.
- 2. En déduire que $E = \text{Im}(p_1) \oplus \cdots \oplus \text{Im}(p_r)$.
- 3. Montrer que pour tout $i \neq j$, $p_i \circ p_j = 0$.

Exercice 44 — *Sous-groupes finis de* GL(E)

Soient E un \mathbb{K} -e.v. et (G, \circ) un sous-groupe fini de $\mathrm{GL}(E)$, de cardinal noté n.

On pose
$$p = \frac{1}{n} \sum_{g \in G} g$$
.

- 1. Montrer que pour tout $g \in G$, $g \circ p = p \circ g = p$.
- 2. Montrer que p est un projecteur dont l'image est $\{x \in E \mid \forall g \in G, g(x) = x\}$.
- 3. Montrer que $\sum_{g \in G} \text{Tr}(g)$ est un entier multiple de n.

Exercice 45 — Soient E un espace vectoriel et u un endomorphisme de E. Donner une condition nécessaire et suffisante sur u pour qu'il existe un projecteur p vérifiant $u = p \circ u - u \circ p$.