

Linear Equations in Two Variables Ex 13.3 Q17

Answer:

We are given,

$$2x + 3y = 12$$

We get,

$$y = \frac{12 - 2x}{3}$$

Now, substituting x = 0 in $y = \frac{12 - 2x}{3}$, we get

$$y = 4$$

Substituting x = 6 in $y = \frac{12 - 2x}{3}$, we get

$$y = 0$$

Thus, we have the following table exhibiting the abscissa and ordinates of points on the line represented by the given equation

x	0	6
y	4	0

Plotting A(0,4) and E(6,0) on the graph and by joining the points , we obtain the graph of equation

$$2x + 3y = 12.$$

We are given,

$$x-y=1$$

We get,

$$y = x - 1$$

Now, substituting $\,x=0\,$ in ${m y}={m x}-1,$ we get

$$y = -$$

Substituting x = -1 in y = x - 1,we get

$$y = -2$$

Thus, we have the following table exhibiting the abscissa and ordinates of points on the line represented by the given equation

х	0	-1
y	-1	-2

Plotting D(0,1) and E(-1,0) on the graph and by joining the points , we obtain the graph of equation x-y=1.

By the intersection of lines formed by 2x+3y=12 and x-y=1 on the graph, triangle ABC is formed on y axis.

AC at y axis is the base of triangle ABC having AC = 5 units on y axis.

Draw FE perpendicular from F on \emph{y} axis.

FE parallel to x axis is the height of triangle ABC having FE = 3 units on x axis. Therefore,

Area of triangle ABC, say A is given by

$$A = \frac{1}{2} \text{ (Base} \times \text{Height)}$$

$$= \frac{1}{2} \text{ (AC} \times \text{FE)}$$

$$= \frac{1}{2} \text{ (5} \times \text{3)}$$

$$= \frac{15}{2} \text{ sq. units}$$

********** END ********