# Item\_c

November 5, 2019

[1]: %pylab inline

Populating the interactive namespace from numpy and matplotlib

## 1 Grafico do item a

[2]: from Item\_a import main as plot\_a plot\_a()



## 2 Grafico do item b

[3]: from Item\_b import main as plot\_b
plot\_b()



## 2.1 Log-scaling

[6]: plot\_b(log\_scaling=True)



# 3 Grafico do item c

# [5]: plot\_b(lmbd=700e-9)



### 3.1 Log-scaling

### [7]: plot\_b(log\_scaling=True, lmbd=700e-9)



### 4 Discussao

#### 4.1 Diferencas

- 1. Comparando pela escala de cores hot, a figura de difração da luz violeta tem as maiores intensidades mais concentradas perto do centro do plano focal, em relação a luz vermelha, que se mostra mais delocalizada do centro.
- 2. Os graficos em escala logaritmica evidenciam os padroes de difracao, cujas figuras de maximos e minimos formam circumferencias de diametros menores para o menor comprimento de onda (violeta) e maiores para o maior comprimento (vermelha).

#### 4.2 Similaridades

 Em relacao a escala hot, observa-se que, para ambos comprimentos de onda, a intensidade luminosa na proximidade do centro da figura eh muito maior em relacao a regiao mais periferica.

2. Aplicando escala logaritmica, fica evidente que a figura de difracao de ambos comprimentos de onda apresentam as mesmas formas circulares concentricas de maximos e minimos.