Relation d'Euler	F+S=A+2	F: nombre de faces S : nombre de sommets A : nombre d'arêtes
Somme des angles internes d'un polygone régulier	$S_i = (n-2) imes 180^\circ$	n: nombre de côté
Théorème de Pythagore	$H^2 = C_1^2 + C_2^2$	Hypoténuse: H Cathète: C_1 e C_2
Distance entre deux points	$\overline{AB} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$	ex: $A(8,2)$ e $B(4,-1)$ $\overline{AB} = \sqrt{(8-4)^2 + (2+1)^2} \Leftrightarrow$ $\overline{AB} = \sqrt{16+9} \Leftrightarrow \overline{AB} = 5$
Point milieu	$Migg(rac{x_1+x_2}{2},rac{y_1+y_2}{2}igg)$	ex: $A(2,6)$ e $B(4,-2)$ $M\left(rac{2+4}{2},rac{6-2}{2} ight)\Leftrightarrow M(3,2)$
Équations d'une droite	Équation réduite Pente: m , Ordonnée à l'origine: b	y = mx + b
	Eq. Vectorielle Vecteur directeur: $\overrightarrow{u}(u_1,u_2,u_3)$ Point de la droite (x_0,y_0,z_0)	$(x,y,z)=(x_0,y_0,z_0)+k(u_1,u_2,u_3), k\in \mathbb{R}$
	Eq. cartésienne Vecteur directeur: $\overrightarrow{u}(u_1,u_2,u_3)$ Point de la droite (x_0,y_0,z_0)	$rac{x-x_0}{u_1} = rac{y-y_0}{u_2} = rac{z-z_0}{u_3}$
	Eq. paramétrique	$egin{cases} x=x_0+Ku_1\ y=y_0+Ku_2\ z=z_0+Ku_3 \end{cases}$
Équations d'un plan	Équations cartésiennes Vecteur normal: $\overrightarrow{u}(n_1,n_2,n_3)$ Point du plan (x_0,y_0,z_0)	$n_1(x-x_0)+n_2(y-y_0)+n_3(z-z_0)=0$
Equations d'un plan	Eq. réduite vecteur normal: $\overrightarrow{u}(n_1,n_2,n_3)$	$n_1x+n_2y+n_3z+d=0$
Equation de la Circonférence	centre (x_0,y_0) et rayon r	$(x-x_0)^2+(y-y_0)^2=r^2$
Equation de la Surface sphérique	centre (x_0,y_0,z_0) et rayon r	$(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2$
Equation de l'ellipse	centre (h,k) et demi axe a e b	$\left(rac{x-h}{a} ight)^2+\left(rac{y-k}{b} ight)^2=1$