Informationssicherheit

2. Sicherheitsmodelle

Prof. Dr. Christoph Skornia christoph.skornia@oth-regensburg.de

Ziele von Sicherheitsmodellen

- Abstraktion
- Vereinfachung
- Rahmen für Implementierung

Komponenten

Subject:

Aktive Einheit, initiiert den Zugriff auf Objektressourcen z.B. handelnde Personen, Programme oder Prozesse

Objekt:

Soll geschützt werden, i.d.R. Information oder Ressource z.B. Drucker, Personaldaten, ...

Referenzmonitor:

- Konzeptuelles Modell
- Nicht unbedingt als physikalische Einheit im System vorhanden
- Aufgabe:
 - kontrolliert jeden Zugriffsversuch
 - ggf. auch loggen von Zugriffen in Log-Datei
 - Zwischen Prüfung und Ausführung ist keine Änderung der Berechtigungen möglich
 - Referenzmonitor muss vor Manipulation geschützt werden

Security Policy/Richtlinie:

- Definiert die Bedingungen, unter denen ein Subjekt auf ein Objekt zugreifen darf
- □ Definiert eine Beziehung zwischen Subjekten, Objekten und Zugriffsrechten
- ☐ Beschreibt die erwünschten, zulässigen Zustände

Discretionary Access Control (DAC)

- Benutzer-bestimmbare Zugriffskontrolle
- □ Eigentümer ist für den Schutz eines Objekts verantwortlich
- □ Rechte werden für einzelne Objekte vergeben
- Objektbezogene Sicherheitseigenschaften, aber keine systemweiten
- Problem:

meist keine Betrachtung von Abhängigkeiten z.B.: implizite Vergabe von Leserechten durch die Ausführung einer Aktion, die das Lesen ansonsten vertraulicher Information erlaubt

Bem: Standardbetriebssysteme wie Unix/Linux oder Windows unterstützen Discretionary Access Control

Mandatory Access Control (MAC)

- Systembestimmte (regelbasierte) Festlegung von Sicherheitseigenschaften
- Benutzerdefinierte Rechte werden durch systembestimmte überschrieben (dominiert)
- Betriebssysteme oder Anwendungen müssen spezielle Maßnahmen und Dienste bereitstellen, um MAC-Policies durchzusetzen

Modelle für MAC - Zugriffsmatrix (ZM)

Komponenten einer ZM

- \square (Dynamische) Menge von Objekten O_t
- \square (Dynamische) Menge von Subjekten S_t mit: $S_t \subseteq O_t$
- \square Menge von Rechten R
- \square Zugriffsmatrix $M_t: S_t \times O_t \to 2^R$ (Schutz-Zustand zur Zeit t)

S_t	Datei 1	Datei 2	Datei 3	Prozess 1	Prozess 2
Prozess 1	{read, write}		{read, write}		{send, receive}
Prozess 2				{send, receive}	
Prozess 3		{owner, execute}		{signal}	

Modelle für MAC - Zugriffsmatrix (ZM)

Vorteile:

- sehr einfach und intuitiv nutzbar
- relativ flexibel, feingranulare
 Subjekte/Objekte und Rechte
- einfach zu implementieren, z.B.Rechtelisten
- Grundlage der Zugriffskontrolle aller Standard-OS!

Nachteile:

- Fehlende Typisierungskonzepte (aber Gruppenbildung)
- keine Rechtevergabe an Klassen mit Rechte-Vererbung
- Skaliert schlecht:
 - in der Praxis: m\u00e4chtige dynamische Menge von Subjekten
 - aufwändige Rechtevergaben, bzw.
 - -Rücknahmen
 - wenig geeignet für größere Unternehmen, Web-Services ..

Modelle für MAC – Bell-La Padula-Modell

- ☐ Bislang keine Kontrolle von Informationsflüssen
- □ Lösung: Multi-levelSecurity (MLS),Labeling-Konzepte
- erstes formalisiertes Modell: BLP
 - Zugriffsoperationenread, write, exec, append, control
 - Systembestimmte Regeln:
 - no-read-up
 - no-write-down
 - strong tranquility
 (keine Änderung der Klassifikation zur Laufzeit)

Modelle für MAC – Bell-La Padula-Modell

- ☐ Grenzen von Bell-La Padula:
 - sukzessive H\u00f6herstufung von Information/Objekten
 - Blindes Schreiben möglich
 - Keine Integrität
- Fazit:
 - wichtiges Modell zur strukturieren Klassifizierung von Information
 - einfach zu Implementieren
 - "nur" Teil von umfassenderen Sicherheitsregularien

Modelle für MAC – Rollen basiertes Modell

RBAC-Modell (Role-based Access Control)

- Aufgabenorientierte Rechtevergabe durch Rollen
- Rolle: beschreibt bestimmte Aufgabe mit damit verbundenen Verantwortlichkeiten und Berechtigungen
- Nachbilden von Organisationsstrukturen:

Rechte und Verantwortlichkeiten sind häufig direkt aus den Organigrammen ableitbar

- Erfüllen der Prinzipien: need-to-know, separation-of-duty
- ☐ Weit verbreitet: u.a. integriert in gängige Systeme wie:
 - ERP (Enterprise ResourcePlanning)-Systeme (u.a. SAP)
 - CMS (Content-ManagementSysteme), ...

Modelle für MAC – Rollen basiertes Modell

Komponenten eines (einfachen) RBAC-Modells

- \square Menge von Subjekten = Benutzer
- Menge von Rollen Role, Rolle
 - $r \in \text{Role}$
- Menge von Zugriffsrechten P(permission) für Objekte
- Zwei Abbildungen:
 - Benutzer-Rollenzuordnung
 - $s_r: S \to 2^{Role}$
 - Rechte-Rollenzuordnung

$$p_r: \text{Role} \to 2^P$$

- \square Sitzung: session $\subseteq S \times 2^{Role}$,
 - $(s, RL) \in session$, dann ist RL die

Menge der aktiven Rollen des

Benutzers s, $RL \subseteq s_r(s)$

 \square $R_i \in session(s)$, falls

$$(s, RL) \in session \land R_i \in RL$$

D.h. s agiert in Rolle R_i , falls s Mitglied in der Rolle R_i ist u. diese Rolle in einer Sitzung aktiviert hat

Modelle für MAC – Rollen basiertes Modell

Zusammenhang zwischen den einzelnen Komponenten

Rollenhierarchien

Ziel: Vereinfachung von Verwaltungsaufgaben

Nachbilden hierarchischer Organisationsstrukturen

Plan:

□ Definition einer partiellen Ordnung ≤auf Rollen:

 $R_i, R_j \in \text{Role}$: falls $R_j \leq R_i$, so besitzt R_i alle Rechte von R_j

und ggf. noch zusätzliche Rechte

■ Beispiel: Software-Entwickler ≤ Projekt-Leiter:

Rechte des Entwicklers: r,w,x auf Projekt-Dateien

Rechte des Leiters: r,w,x auf Projekt-Dateien und

r,w,x auf Projekt-Budget-Dateien, etc.

 \square Vererbung der Rollenmitgliedschaft: falls $R_j \leq R_i$, dann gilt:

$$\forall s \in S : R_i \in s_r(s) \Longrightarrow R_j \in s_r(s)$$

Rollenhierarchien Beispiel: Krankenhaus

Rollen und deren Berechtigungen im Krankenhausszenario:

Ärzte

- ganze Patientenakte im
 Behandlungszusammenhang
 (außer besonders sensible Daten),
 (lesend, schreibend)
- abteilungsinterne Daten aller Aufenthalte

Pflegekräfte

Zugriff auf Krankenakte; Umfang durch Abteilungsleiter festgelegt

Auszubildende

- erforderlicher Umfang durch verantwortlich Lehrenden festgelegt(im Rahmen seiner eigenen Befugnisse).
- Verwaltungsmitarbeiter
 - Stammdaten, (lesend, schreibend)
 - abrechnungsrelevante Daten (u. U. auch besonders sensible!).

Rollenhierarchien Beispiel: Krankenhaus

Eigenschaften die ein RBAC-System zusätzlich garantieren muss!

- Ein Subjekt darf nur in solchen
 Rollen aktiv sein, in denen es
 Mitglied ist
- Ein Subjekt besitzt nur die Rechte seiner aktiven Rollen

Aufgabentrennung

Statische Aufgabentrennung

- Wechselseitiger Ausschluss von Rollenmitgliedschaften
- \blacksquare $R_1 =$ Kassenprüfer von Filiale $_A$
- \blacksquare $R_2 = \text{Kassierer in Filiale}_A$
- Es gibt kein Subjekt welches in beiden Rollen Mitglied ist

Dynamische Aufgabentrennung

- Wechselseitiger Ausschluss von Rollenaktivitäten
- \blacksquare $R_3 = Kundenbetreuer$
- \blacksquare $R_4 = \text{Kontoinhaber}$
- Es gibt kein Subjekt welches in diesen beiden Rollen gleichzeitig aktiv sein kann.

- Rollenkonzepte sind sehr flexibel verwendbar, skalieren gut
- Modellierung zusätzlicher Zugriffsbeschränkungen durch Relationen auf Rollen möglich
- Direktes Nachbilden bekannter Organisations-und
 Rechtestrukturen in Unternehmen: gute Basis für ID-Mgmt
- intuitive und relativ einfache Abbildung der Rollen auf
 Geschäftsprozesse (Workflows): Need-to-know-Rechtvergabe
- □ Konsequenz: einfache und effiziente Rechte-Verwaltung automatischer Rechteentzug bei Mitgliedschafts-Ende

Weitere Entwicklung:

- ☐ Administrationvon RBAC-Systeme
- Modellierung von kontextabhängigen Rechten
- RBAC Policy Engineering
- RBAC und Workflows
- Delegationskonzepte
- □ Integration von RBAC in Betriebssysteme
- Kontrolle von Informationsflüssen in RBAC

Weitere Modelle:

- ☐ Conflict of Interest Modelle (Chinese-Wall-Modell)
 - Idee: Zugriff auf Information h\u00e4ngt davon ab, ob zugreifende
 Subjekte in Klassen mit kollidierenden Interessen enthalten sind (z.B. Banken, Autohersteller, \u00f6lfirmen...)
- Non-Interference Modelle
 - Idee: Effekte von Aktionen sind nur für berechtigte sichtbar
- Fragen der Zukunft?
 - Vertrauensbasierte Modelle
 - Identitätsbasiert
 - Verhaltensbasiert
 - Kontext-abhängige Modelle

Fortsetzung folgt

