

Handelsbankens Microsoftdag 2021

October, 2021

Using Azure
Machine Learning
SDK to run heavy
scripts on the cloud

Daniel Labbe

Daniel Labbe

Sr. Customer Engineer, Data & Al domain @ Microsoft Master Student @ The University of Edinburgh

Teacher Assistant @ Udemy

Data Scientist

- 23+ years of experience in data related roles
- Azure Data Scientist Associate, Azure Al Engineer Associate
- 8+ years dealing with Data Science
- 15,000+ questions answered in courses (400,000+ students)
- Presented workshops in Data Science, Python, ML & Al
- Engaged in StackOverflow and Kaggle

Session Objectives

Discuss the flexibility of Azure Machine Learning

Discuss the convenience of local SDKs

Motivations

Heavy workloads might not be suited for your local Infrastructure

- Time consuming
- Tech dependent new tech demands new hardware
- Demands upfront investments
- Limits the capacity of experimentation

Azure Machine Learning workspace is virtually free*

- Adjacent resources have costs
- Storage Account, Key
 Vault, Apps Insights have
 marginal costs
- Computes can be expensive, but pay as you go

Azure Machine Learning can handle more than ML Workloads

- AML is flexible to different maturity level
- AML can handle well hybrid architectures for on-prem/on-cloud environments
- AML can run scripts, not only training scripts

Solution Overview

- Provision cloud resources using code (infra-as-code)
- Run previously created scripts on remote computes
- Turn off or auto scale the compute resources

Monte Carlo Simulations

Monte Carlo simulations are used to model the probability of different outcomes in a process that cannot easily be predicted due to the intervention of random variables. It is a technique used to understand the impact of risk and uncertainty in prediction and forecasting models.

Monte Carlo Simulations

Pythonic implementation

Meaning that inside the "previously created script" to run, there will be no parallelization in the demo

Sales Rep Commission

The demo considered a simplistic use case of the Monte Carlo simulations focusing on the execution, not on the implementation

Statistical Output Interpretation

In this example, the uncertainty experimented is the number of sales to compute commissions, expecting a normally distributed outcome with the range of +/- 2 std covering 95% of the possibilities

Demo

Using a local Jupyter instance to start a set of Monte Carlo simulations on Azure via AML SDK

Benchmark

Scalling from 10¹ to 10⁶ simulations in different compute sizes and prices for a parallelized implementation in R

Compute Sizes and Prices

Tim ings

Cost per Execution

Takeaways & Resources

Monte Carlo Simulation with Python - Practical Business Python (pbpython.com)

<u>Azure Machine Learning SDK for Python - Azure Machine Learning Python | Microsoft Docs</u>

<u>Pricing - Azure Machine Learning | Microsoft</u> Azure

github.com/dlabbe1005/MCSimulationsOnAML

Thank you!