Company: Tehama Wireless

Test of: TW-222
To: FCC CFR 47 Part 15 Subpart C 15.247 & IC RSS-247 (DTS)

Report No.: TEHA07-U2 Rev A

RADIATED, CONDUCTED TEST REPORT

TEST REPORT

Test of: Tehama Wireless TW-222 to

To: FCC CFR 47 Part 15 Subpart C 15.247 IC RSS-247(DTS)

Test Report Serial No.: TEHA07-U2 Rev A

This report supersedes: NONE

Applicant: Tehama Wireless

2607 7th Street

Berkeley, California 94710

USA

Product Function: Wireless Reader

Issue Date: 22nd December 2016

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 3 of 76

Table of Contents

1.	ACCREDITATION, LISTINGS & RECOGNITION	4
	1.1. TESTING ACCREDITATION	4
	1.2. RECOGNITION	
	1.3. PRODUCT CERTIFICATION	6
	DOCUMENT HISTORY	
3.	TEST RESULT CERTIFICATE	8
4.	REFERENCES AND MEASUREMENT UNCERTAINTY	9
	4.1. Normative References	9
	4.2. Test and Uncertainty Procedure	10
5.	PRODUCT DETAILS AND TEST CONFIGURATIONS	11
	5.1. Technical Details	
	5.2. Scope Of Test Program	12
	5.3. Equipment Model(s) and Serial Number(s)	13
	5.4. Antenna Details	13
	5.5. Cabling and I/O Ports	13
	5.6. Test Configurations	13
	5.7. Equipment Modifications	14
	5.8. Deviations from the Test Standard	14
6.	TEST SUMMARY	15
7.	TEST EQUIPMENT CONFIGURATION(S)	
	7.1. Conducted	
	7.2. Radiated Emissions - 3m Chamber	18
	7.3. AC Mains Power Input/Output Ports	21
	MEASUREMENT AND PRESENTATION OF TEST DATA	
	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS	23
	MEASUREMENT AND PRESENTATION OF TEST DATA	23 23
	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power	23 23 25
	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions	23 23 25 28
	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions	23 25 28 28
	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions	23 25 28 28 28
	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions	23 25 28 28 28
	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions	23 25 28 28 28 28 30
	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2.3. TX Spurious & Restricted Band Emissions	23 25 28 28 28 30 34
	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. Radiated Emissions 9.3.2.3. TX Spurious & Restricted Band Emissions 9.3.3. Digital Emissions (0.03 - 1 GHz)	23 25 28 28 28 30 34 34
	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. Radiated Emissions 9.3.2.3. TX Spurious & Restricted Band Emissions 9.3.3. Digital Emissions (0.03 - 1 GHz) 9.4. Power Spectral Density	23 25 28 28 28 30 34 34 43
9.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. Radiated Emissions 9.3.2.3. TX Spurious & Restricted Band Emissions 9.3.3. Digital Emissions (0.03 - 1 GHz) 9.4. Power Spectral Density 9.5. AC Mains Power Input/Output Ports	23 25 28 28 28 30 34 34 43
9.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. Radiated Emissions 9.3.2. TX Spurious & Restricted Band Emissions 9.3.3. Digital Emissions (0.03 - 1 GHz) 9.4. Power Spectral Density 9.5. AC Mains Power Input/Output Ports APPENDIX - GRAPHICAL IMAGES	23 25 28 28 30 34 34 43 45
9.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. Radiated Emissions 9.3.2.3. TX Spurious & Restricted Band Emissions 9.3.2. Digital Emissions (0.03 - 1 GHz) 9.4. Power Spectral Density 9.5. AC Mains Power Input/Output Ports APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth	23 25 28 28 30 34 43 46 48 53
9.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. TX Spurious & Restricted Band Emissions 9.3.3. Digital Emissions (0.03 - 1 GHz). 9.4. Power Spectral Density 9.5. AC Mains Power Input/Output Ports APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Emissions	23 25 28 28 30 34 43 46 48 52
9.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. Radiated Emissions 9.3.2. TX Spurious & Restricted Band Emissions 9.3.3. Digital Emissions (0.03 - 1 GHz) 9.4. Power Spectral Density 9.5. AC Mains Power Input/Output Ports APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Emissions A.2.1. Conducted Emissions	2325282830344345535757
9.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. Radiated Emissions 9.3.3. Digital Emissions (0.03 - 1 GHz) 9.4. Power Spectral Density 9.5. AC Mains Power Input/Output Ports APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Emissions A.2.1. Conducted Emissions A.2.1. Conducted Emissions A.2.1. Conducted Spurious Emissions	232528283034434553575757
9.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. Radiated Emissions 9.3.2.3. TX Spurious & Restricted Band Emissions 9.3.3. Digital Emissions (0.03 - 1 GHz) 9.4. Power Spectral Density 9.5. AC Mains Power Input/Output Ports APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Emissions A.2.1. Conducted Emissions A.2.1. Conducted Spurious Emissions A.2.1.1. Conducted Spurious Emissions A.2.1.2. Conducted Band-Edge Emissions	23 25 28 28 30 34 43 46 48 57 57
9.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. Radiated Emissions 9.3.2. TX Spurious & Restricted Band Emissions 9.3.3. Digital Emissions (0.03 - 1 GHz) 9.4. Power Spectral Density 9.5. AC Mains Power Input/Output Ports APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Emissions A.2.1. Conducted Emissions A.2.1. Conducted Spurious Emissions A.2.1. Conducted Band-Edge Emissions A.2.1. Conducted Band-Edge Emissions A.2.2. Radiated Emissions	23 25 28 28 30 34 43 46 53 57 57 57
9.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. Radiated Emissions 9.3.2.3. TX Spurious & Restricted Band Emissions 9.3.3. Digital Emissions (0.03 - 1 GHz) 9.4. Power Spectral Density 9.5. AC Mains Power Input/Output Ports APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Emissions A.2.1. Conducted Emissions A.2.1. Conducted Spurious Emissions A.2.1. Conducted Band-Edge Emissions A.2.1. Radiated Emissions A.2.2. Radiated Emissions A.2.2. Radiated Emissions A.2.2. Radiated Emissions A.2.3. TX Spurious & Restricted Band Emissions	23 25 28 28 30 34 43 46 48 57 57 57 61 63
9.	MEASUREMENT AND PRESENTATION OF TEST DATA TEST RESULTS 9.1. 6 dB & 99% Bandwidth 9.2. Conducted Output Power 9.3. Emissions 9.3.1. Conducted Emissions 9.3.1.1. Conducted Spurious Emissions 9.3.1.2. Conducted Band-Edge Emissions 9.3.2. Radiated Emissions 9.3.2. Radiated Emissions 9.3.2. TX Spurious & Restricted Band Emissions 9.3.3. Digital Emissions (0.03 - 1 GHz) 9.4. Power Spectral Density 9.5. AC Mains Power Input/Output Ports APPENDIX - GRAPHICAL IMAGES A.1. 6 dB & 99% Bandwidth A.2. Emissions A.2.1. Conducted Emissions A.2.1. Conducted Spurious Emissions A.2.1. Conducted Band-Edge Emissions A.2.1. Conducted Band-Edge Emissions A.2.2. Radiated Emissions	23 25 28 28 34 34 43 43 46 57 57 57 57 61 63 63

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 4 of 76

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 4th day of February 2016.

Senior Director of Quality & Communications For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2017

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 5 of 76

To:

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	USA Federal Communications Commission (FCC)		-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB - Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 6 of 76

To:

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065;2012 Requirements for bodies certifying products, processes and services. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 4^{th} day of February 2016.

Senior Director of Quality & Communications

For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2017

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditat

United States of America – Telecommunication Certification Body (TCB)

Industry Canada - Certification Body, CAB Identifier - US0159

Europe - Notified Body (NB), NB Identifier - 2280

Japan – Recognized Certification Body (RCB), RCB Identifier - 210

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 7 of 76

2. **DOCUMENT HISTORY**

Document History							
Revision	Date	Comments					
Draft	14 th December 2016						
Rev A.	22 nd December 2016	Initial Release					

In the above table the latest report revision will replace all earlier versions.

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 8 of 76

To:

3. TEST RESULT CERTIFICATE

Manufacturer: Tehama Wireless

2607 7th Street

Berkeley

California 94710 USA

Tested By: MiCOM Labs, Inc.

575 Boulder Court

Pleasanton California 94566

USA

Model: TW-222 Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Type Of Equipment: Wireless Reader

S/N's: F3000011 F20014B2

Test Date(s): 8th – 12th December 2016

Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC CFR 47 Part 15 Subpart C 15.247 IC RSS-247(DTS)

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

ACCREDITED
TESTING CERT #2381.01

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 9 of 76

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
II	KDB 558074 D01 v03r05	8th April 2016	Guidance for performing compliance measurements on Digital Transmission Systems (DTS) operating under section 15.247.
III	A2LA	June 2015	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
V	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 22	2008	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15.247	2016	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	ICES-003	Issue 6 Jan 2016	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
Х	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
ΧI	RSS-247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 4	November 2014	General Requirements and Information for the Certification of Radiocommunication Equipment
XIII	KDB 644545 D03 v01	August 14th 2014	Guidance for IEEE 802.11ac New Rules
XIV	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 10 of 76

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

To:

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 11 of 76

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. <u>Technical Details</u>

Details	Description
Purpose:	Test of the Tehama Wireless TW-222-DCAP R200 to FCC CFR
	47 Part 15 Subpart C 15.247 & IC RSS-247(DTS).
	Radio Frequency Devices; Subpart C – Intentional Radiators
Applicant:	Tehama Wireless
	2607 7th Street
	Berkeley California 94710 USA
	Tehama Wireless Design Group
Laboratory performing the tests:	
	575 Boulder Court
Test was set reference number.	Pleasanton California 94566 USA
<u> </u>	TEHA07_DRAFT TW-222-DCAP R200 FCC IC DTS
Date EUT received:	
. , , , ,	FCC CFR 47 Part 15 Subpart C 15.247 IC RSS-247 (DTS)
Dates of test (from - to):	8 th – 12 th December 2016
No of Units Tested:	
	900 MHz Wireless reader
	Diversity DCAP/Repeater (3rd Gen.)
Model(s):	
Location for use:	
Declared Frequency Range(s):	
Primary function of equipment:	
Secondary function of equipment:	
Type of Modulation:	FSK and DTS
EUT Modes of Operation:	902 - 928 MHz: DTS
Transmit/Receive Operation:	Transceiver - Full Duplex
Rated Input Voltage and Current:	AC/ DC adaptor (adaptor sold with unit) 5Vdc
Operating Temperature Range:	Declared Range 0°C to 70°C
ITU Emission Designator:	Mode 3 DTS: 842KF1DFN
Equipment Dimensions:	130 mm Height: 35 mm Length: 150 mm
Weight:	0.25 kg
Hardware Rev:	Not Provided
Software Rev:	2.1

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 12 of 76

5.2. Scope Of Test Program

Tehama Wireless TW-222-DCAP R200

The scope of the test program was to test the Tehama Wireless TW-222-DCAP R200 wireless reader in DTS configurations in the frequency range 902 - 928 MHz; for compliance against the following specifications:

FCC CFR 47 Part 15 Subpart C 15.247 & IC RSS-247 (DTS)

Radio Frequency Devices; Subpart C – Intentional Radiators

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 13 of 76

5.3. Equipment Model(s) and Serial Number(s)

Model / Description	Serial no.	Hardware ver.	Software ver.
TW-222-DCAP R200	F3000011	Rev 2	None Provided
TW-222-DCAP R200	F20014B2	Rev 2	None Provided
Sunny Computer Tech	G160605028762	N/A	N/A

To:

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	NA	PCB trace	PCB	1.5	-	360	-	902 - 928
		antenna						

BF Gain - Beamforming Gain

Dir BW - Directional BeamWidth

X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
Ethernet	7 ft	1	Y	RJ45	Packet Data
dc Jack	75 in	1	N		

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational	Data Rate with Highest Power	Channel Frequency (MHz)					
Mode(s)	KBit/s	Low	Mid	High			
	902 - 928 MHz						
Mode 3 (DTS)	25	906	914.774	924.00			

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 14 of 76

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A Issue Date: 22nd December 2016

> Page: 15 of 76

6. TEST SUMMARY

List of Measurements

Test Header	Result	Data Link
6 dB & 99% Bandwidth	Complies	View Data
Conducted Output Power	Complies	View Data
Emissions	Complies	
(1) Conducted Emissions	Complies	
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	
(i) TX Spurious & Restricted Band Emissions	Complies	View Data
(3) Digital Emissions (0.03 - 1 GHz) – Class A	Complies	View Data
Power Spectral Density	Complies	View Data
AC Wireline Emissions	Complies	View Data

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 16 of 76

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted

Conducted RF Emission Test Set-up(s)

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. 6 dB & 99% Bandwidth
- 2. Average Output Power
- 3. Conducted Spurious Emissions
- 5. Conducted Band-Edge Emissions
- 6. Power Spectral Density

Conducted Test Measurement Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	23 Oct 2017
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2017
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 17 of 76

To:

378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	4 Aug 2017
380	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC001	2 Jun 2017
390	USB Power Head 50MHz - 24GHz -60 to +20dBm	Agilent	U2002A	MY50000103	17 Oct 2017
398	Test Software	MiCOM	MiTest ATS	Version 4.1.0.76	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
435	USB Wideband Power Sensor	Boonton	55006	8730	31 Jul 2017
436	USB Wideband Power Sensor	Boonton	55006	8731	14 Sep 2017
441	USB Wideband Power Sensor	Boonton	55006	9179	25 Dec 2016
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	13 Aug 2017
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Nov 2017
RF#1 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#1 SMA SA #452	Precision SMA Male RG-402 cable	Fairview Microwave	Precision SMA Male RG 402 coax	None	2 Jun 2017
RF#1 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	2 Jun 2017
RF#1 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	2 Jun 2017
RF#1 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	2 Jun 2017
RF#1 SMA#4	EUT to Mitest box port 4	Flexco	SMA Cable port4	None	2 Jun 2017
RF#1 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 18 of 76

7.2. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below.

Radiated emissions below 1GHz. Radiated Emissions above 1GHz.

Radiated Emission Test Setup

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A Issue Date: 22nd December 2016

> Page: 19 of 76

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2017
330	Variac 0-280 Vac	Staco Energy Co	3PN1020B	0546	Cal when used
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	26 Sep 2017
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	15 Aug 2017
341	900MHz Notch Filter	EWT	EWT-14-0199	H1	16 Aug 2017
346	1.6 TO 10GHz High Pass Filter	EWT	EWT-57-0112	H1	16 Aug 2017
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	26 Oct 2017
393	DC - 1050 MHz Low Pass Filter	Microcircuits	VLFX-1050	N/A	16 Aug 2017
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	9 Jun 2017
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Jan 2017
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	9 Jun 2017
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0.109	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	31 May 2017

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A **Issue Date:** 22nd December 2016

Page: 20 of 76

To:

463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	31 May 2017
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	31 May 2017
465	Low Pass Filter DC- 1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	2 Jun 2017
466	Low Pass Filter DC- 1500 MHz	Mini-Circuits	NLP-1750+	VUU10401438	2 Jun 2017
467	2495 to 2650 MHz notch filter	MicroTronics	BRM50709	011	16 Aug 2017
468	Low pass filter	Mini Circuits	SLP-550	None	16 Aug 2017
469	Low pass filter	Mini Circuit	SLP-1000	None	16 Aug 2017
470	High Pass filter	Mini Circuits	SHP-700	None	16 Aug 2017
480	Cable - Bulkhead to Amp	SRC Haverhill	157-157- 3050360	480	2 Jun 2017
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-151- 3050787	481	2 Jun 2017
482	Cable - Amp to Antenna	SRC Haverhill	157-157- 3051574	482	2 Jun 2017
502	Test Software for Radiated Emissions	EMISoft	Vasona	Version 5 Build 59	Not Required
87	Uninterruptible Power Supply	Falcon Electric ED2000-1/2LC F3471 02/02		F3471 02/01	Cal when used
CC05	Confidence Check	MiCOM	CC05	None	26 Apr 2017

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 21 of 76

To:

7.3. AC Mains Power Input/Output Ports

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	7 Apr 2017
190	LISN (two-line V-network)	Rhode & Schwarz	ESH3Z5	836679/006	29 Oct 2017
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2017
307	BNC-CABLE	Megaphase	1689 1GVT4	15F50B002	6 Apr 2017
316	Dell desktop computer workstation with Vasona	Dell	Desktop	WS04	Not Required
351	Data Impedance Stabilization Network	Teseq	ISN T800	24809	30 Nov 2017
372	AC Variable PS	California Instruments	1251P	L06951	Cal when used
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	4 Aug 2017
388	LISN (3 Phase) 9kHz - 30MHz	Rohde & Schwarz	ESH2-Z5	892107/022	30 Oct 2017
496	MiTest Conducted Emissions test software.	MiCOM	Conducted Emissions Test Software Version 1.0.87	496	Not Required
ADAPT SMA#1	SMA Cable	Megaphase	SMA Cable #1	None	6 Apr 2017
CCEMC01	Confidence Check.	MiCOM	CCEMC01	None	6 Apr 2017

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 22 of 76

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 23 of 76

9. TEST RESULTS

9.1. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth						
Standard:	FCC CFR 47:15.247 & IC RSS- 247	Ambient Temp. (°C):	24.0 - 27.5			
	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (a)(2) & 5.2 Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 24 of 76

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	500KHz	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.5
Modulation:	DTS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured 6 dB Bandwidth (MHz)			6 dB Bandv	width (MUz)	Limit	Lowest	
Frequency		Por	t(s)		0 UB Balluv	width (Willz)	Lillin	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
906.0	0.842				0.842	0.842	≥500.0	-0.34
914.8	0.842				0.842	0.842	≥500.0	-0.34
924.0	<u>0.834</u>				0.834	0.834	≥500.0	-0.33

Test		Measured 99% E	Bandwidth (MHz	Maximum 99%		
Frequency		Port(s)				
MHz	а	b	С	d	Bandwidth (MHz)	
906.0	0.890				0.890	
914.8	0.890				0.890	
924.0	0.886				0.886	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 25 of 76

9.2. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power						
Standard:	FCC CFR 47:15.247 & IC RSS- 247	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:		Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (b) & (c) & 5.4 (4) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

To:

Test Procedure for Fundamental Emission Output Power Measurement In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = A + G + Y+ 10 log (1/x) dBm

A = Total Power [$10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$]

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:

- (3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (c) Operation with directional antenna gains greater than 6 dBi.
 - (1) Fixed point-to-point operation:
 - (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 26 of 76

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

- (i) Different information must be transmitted to each receiver.
- (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
 - (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
 - (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
- (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.
- (iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 27 of 76

Equipment Configuration for Average Output Power

Variant:	500KHz	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.5
Modulation:	DTS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated	Limit	Marain	
Frequency	Port(s)				Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
906.0	27.83				27.83	30.00	-2.17	10.00
914.8	27.67				27.67	30.00	-2.33	10.00
924.0	27.29				27.29	30.00	-2.71	10.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 28 of 76

9.3. Emissions

9.3.1. Conducted Emissions

9.3.1.1. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions					
Standard:	FCC CFR 47:15.247 & IC RSS- 247	Ambient Temp. (°C):	24.0 - 27.5		
	Max Unwanted Emission Levels		32 - 45		
Standard Section(s):	15.247 (d) & 5.5 Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References				

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 29 of 76

Equipment Configuration for Transmitter Conducted Spurious Emissions

To:

Variant:	500KHz	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.5
Modulation:	DTS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Transmitter Conducted Spurious Emissions (dBm)						
Frequency	Range	Po	rt a	Po	ort b	Po	ort c	Po	ort d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
906.0	30.0 - 10000.0	<u>-52.044</u>	-47.00						
914.8	30.0 - 10000.0	<u>-54.737</u>	-45.00						
924.0	30.0 - 10000.0	<u>-56.480</u>	-46.00						

Traceability to Industry Recognized Test Methodologies	3
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 30 of 76

9.3.1.2. Conducted Band-Edge Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions					
Standard:	FCC CFR 47:15.247 & IC RSS- 247	Ambient Temp. (°C):	24.0 - 27.5		
	Max Unwanted Emission Levels		32 - 45		
Standard Section(s):	5.247 (d) Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References				

To:

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 31 of 76

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	500KHz	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.5
Modulation:	DTS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel	906.0 MHz					
Frequency:	900.0 WII IZ					
Band-Edge	902.0 MHz					
Frequency:	902.0 IVII IZ					
Test Frequency	850.0 - 915.0 MHz	,				
Range:	000.0 - 910.0 WII 12	-				
	Band	-Edge Markers and	l Limit	Revise	ed Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-57.72</u>	-12.00	905.50			-3.500

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 32 of 76

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions					
Standard:	FCC CFR 47:15.247 & IC RSS- 247	CC CFR 47:15.247 & IC RSS- 47 Ambient Temp. (°C): 24.0 - 27.5			
	Max Unwanted Emission Levels				
Standard Section(s):	5.247 (d) Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References				

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 33 of 76

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	500KHz	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.5
Modulation:	DTS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel	924.0 MHz					
Frequency:	924.0 WII IZ					
Band-Edge	928.0 MHz					
rrequency:						
Test Frequency Range:	015 0 - 078 0 MHz	,				
Range:	913.0 - 910.0 WII 12	-				
	Band	-Edge Markers and	l Limit	Revise	ed Limit	Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-55.89</u>	-13.00	924.30			-3.700

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 34 of 76

9.3.2. Radiated Emissions

9.3.2.3. TX Spurious & Restricted Band Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions (Restricted Bands)				
Standard:	FCC CFR 47 Part 15 Subpart C 15.247 & IC RSS-247 (DTS)	Ambient Temp. (°C):	20.0 - 24.5	
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45	
Standard Section(s):	15.205, 15.209	Pressure (mBars):	999 - 1001	
Reference Document(s):	See Normative References			

Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands Peak emission: 74 dBuV/m Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Example

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \, dBmV/m$

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 35 of 76

To:

Frequency Band				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
2.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
2.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41				

- (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.
- (c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.
- (d) The following devices are exempt from the requirements of this section:
 - (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.
 - (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
 - (3) Cable locating equipment operated pursuant to §15.213.
 - (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.
 - (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
 - (6) Transmitters operating under the provisions of subparts D or F of this part.
 - (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 36 of 76

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 37 of 76

Equipment Configuration for TX Spurious & Restricted Band Emissions

To:

Antenna:	NA PCB trace antenna	Variant:	500KHz
Antenna Gain (dBi):	1.50	Modulation:	DTS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	906.00	Data Rate:	1.0 Mbit/s
Power Setting:	10	Tested By:	JMH

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1811.42	94.06	2.43	-13.61	82.88	Peak (NRB)	Vertical	101	1			Pass
#2	2718.73	59.09	2.81	-11.36	50.54	Max Peak	Vertical	196	179	74.0	-23.5	Pass
#3	2718.73	47.53	2.81	-11.36	38.98	Max Avg	Vertical	196	179	54.0	-15.0	Pass
#4	3623.83	61.82	3.15	-11.12	53.85	Max Peak	Vertical	176	159	74.0	-20.2	Pass
#5	3623.83	54.00	3.15	-11.12	46.03	Max Avg	Vertical	176	159	54.0	-8.0	Pass
Test Not	est Notes: EUT on 150cm table, powered by ac/dc PS.											

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 38 of 76

Equipment Configuration for TX Spurious & Restricted Band Emissions

To:

Antenna:	NA PCB trace antenna	Variant:	500KHz
Antenna Gain (dBi):	1.50	Modulation:	DTS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	914.774	Data Rate:	1.0 Mbit/s
Power Setting:	10	Tested By:	JMH

					1000.	00 - 10000.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1828.90	92.35	2.45	-13.54	81.26	Peak (NRB)	Vertical	101	1	-		Pass
#2	2744.86	58.02	2.84	-11.35	49.51	Max Peak	Vertical	127	269	74.0	-24.5	Pass
#3	2744.86	48.37	2.84	-11.35	39.86	Max Avg	Vertical	127	269	54.0	-14.1	Pass
#4	3658.59	57.91	3.17	-11.04	50.04	Max Peak	Vertical	193	87	74.0	-24.0	Pass
#5	3658.59	48.33	3.17	-11.04	40.46	Max Avg	Vertical	193	87	54.0	-13.5	Pass
Test No	est Notes: EUT on 150cm table, powered by ac/dc PS.											

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 39 of 76

Equipment Configuration for TX Spurious & Restricted Band Emissions

To:

Antenna:	NA PCB trace antenna	Variant:	500KHz
Antenna Gain (dBi):	1.50	Modulation:	DTS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	924.00	Data Rate:	1.0 Mbit/s
Power Setting:	10	Tested By:	JMH

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1847.42	90.40	2.46	-13.47	79.39	Peak (NRB)	Vertical	101	1			Pass
#2	2771.43	58.69	2.83	-11.33	50.19	Max Peak	Horizontal	155	190	74.0	-23.8	Pass
#3	2771.43	49.50	2.83	-11.33	41.00	Max Avg	Horizontal	155	190	54.0	-13.0	Pass
Test No	Test Notes: EUT on 150cm table, powered by ac/dc PS.											

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 40 of 76

Equipment Configuration for TX Spurious & Restricted Band Emissions(0.03 - 1 GHz)

To:

Antenna:	NA PCB trace antenna	Variant:	500KHz
Antenna Gain (dBi):	1.50	Modulation:	DTS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	906.00	Data Rate:	1.00 MBit/s
Power Setting:	10	Tested By:	JMH

Test Measurement Results

					30.	00 - 1000.00 MF	łz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	49.44	46.44	3.56	-22.83	27.17	MaxQP	Vertical	100	75	40.0	-12.8	Pass
#2	82.15	47.34	3.79	-23.66	27.47	MaxQP	Vertical	100	283	40.0	-12.5	Pass
#3	98.00	44.37	3.87	-21.84	26.40	MaxQP	Vertical	104	294	43.0	-16.6	Pass
#4	221.17	45.09	4.42	-19.74	29.77	MaxQP	Vertical	100	308	46.0	-16.2	Pass
#5	663.53	40.20	5.76	-10.66	35.30	MaxQP	Vertical	100	195	46.0	-10.7	Pass
#6	874.97	36.45	6.27	-8.09	34.63	MaxQP	Horizontal	100	188	46.0	-11.4	Pass
#7	906.17	57.48	6.34	-7.65	56.17	Fundamental	Horizontal	100	0			

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 41 of 76

Equipment Configuration for TX Spurious & Restricted Band Emissions(0.03 - 1 GHz)

To:

Antenna:	NA PCB trace antenna	Variant:	500KHz
Antenna Gain (dBi):	1.50	Modulation:	DTS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	914.774	Data Rate:	1.00 MBit/s
Power Setting:	10	Tested By:	JMH

Test Measurement Results

					30.	00 - 1000.00 MF	łz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	49.74	47.90	3.57	-23.14	28.33	MaxQP	Vertical	100	120	40.0	-11.7	Pass
#2	80.86	46.19	3.78	-23.66	26.31	MaxQP	Vertical	106	0	40.0	-13.7	Pass
#3	98.07	45.78	3.87	-21.84	27.81	MaxQP	Vertical	100	353	43.0	-15.2	Pass
#4	221.15	44.10	4.42	-19.74	28.78	MaxQP	Vertical	100	298	46.0	-17.2	Pass
#5	663.54	40.38	5.76	-10.66	35.48	MaxQP	Vertical	100	203	46.0	-10.5	Pass
#6	874.97	38.36	6.27	-8.09	36.54	MaxQP	Horizontal	101	239	46.0	-9.5	Pass
#7	914.85	55.60	6.39	-7.75	54.24	Fundamental	Horizontal	100	0			

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 42 of 76

Equipment Configuration for TX Spurious & Restricted Band Emissions(0.03 - 1 GHz)

To:

Antenna:	NA PCB trace antenna	Variant:	500KHz
Antenna Gain (dBi):	1.50	Modulation:	DTS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	924.00	Data Rate:	1.00 MBit/s
Power Setting:	10	Tested By:	JMH

Test Measurement Results

					30.	00 - 1000.00 MF	łz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	49.93	48.01	3.57	-23.14	28.44	MaxQP	Vertical	100	107	40.0	-11.6	Pass
#2	81.43	46.16	3.78	-23.66	26.28	MaxQP	Vertical	100	3	40.0	-13.7	Pass
#3	98.05	44.50	3.87	-21.84	26.53	MaxQP	Vertical	100	256	43.0	-16.5	Pass
#4	663.53	40.38	5.76	-10.66	35.48	MaxQP	Vertical	100	201	46.0	-10.5	Pass
#5	874.98	38.85	6.27	-8.09	37.03	MaxQP	Horizontal	100	256	46.0	-9.0	Pass
#6	883.96	32.40	6.29	-8.05	30.64	MaxQP	Horizontal	100	197	46.0	-15.4	Pass
#7	924.19	42.23	6.45	-7.66	41.02	Fundamental	Vertical	100	0			

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 43 of 76

9.3.3. <u>Digital Emissions (0.03 - 1 GHz)</u>

Rac	Radiated Test Conditions for Radiated Digital Emissions (0.03 – 1 GHz)						
Standard:	FCC CFR 47:15.247 & IC RSS- 247	Ambient Temp. (°C):	20.0 - 24.5				
	Digital Emissions						
Standard Section(s):	15.209	5.209 Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References						

Test Procedure for Radiated Digital Emissions (0.03 – 1 GHz)

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength

R = Measured Receiver Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dBmV; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are done as:

Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m48 dBmV/m = 250 mV/m

Limits for Radiated Digital Emissions (0.03 – 1 GHz)

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

F(8411-)	Field S	Measurement Distance (m)			
Frequency (MHz)	μV/m (microvolts/meter)	μV/m (microvolts/meter) dBμV/m (dB microvolts/meter)			

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 44 of 76

0.009-0.490	2400/F(kHz)		300
0.490-1.705	24000/F(kHz)		30
1.705-30.0	1.705-30.0 30		30
30-88	100**	40	3
88-216	150**	43.5	3
216-960	200**	46.0	3
Above 960	500	54.0	3

To:

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241. (b) In the emission table above, the tighter limit applies at the band edges. (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency. (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. (e) The provisions in §§15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part. (f) In accordance with §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in §15.109 that are applicable to the incorporated digital device. (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 45 of 76

Equipment Configuration for Digital Emissions (0.03 - 1 GHz)

To:

Antenna:	NA PCB trace antenna	Variant:	500KHz
Antenna Gain (dBi):	1.50	Modulation:	DTS
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	100
Channel Frequency (MHz):	906.00	Data Rate:	1.00 MBit/s
Power Setting:	10	Tested By:	JMH

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
<u>#1</u>	37.36	49.65	3.48	-15.17	37.96	MaxQP	Vertical	100	133	49.5	-11.5	Pass
<u>#2</u>	47.78	59.86	3.56	-22.34	41.08	MaxQP	Vertical	107	158	49.5	-7.9	Pass
<u>#3</u>	55.99	58.80	3.61	-24.13	38.28	MaxQP	Vertical	126	30	49.5	-11.2	Pass
<u>#4</u>	74.54	58.09	3.74	-23.18	38.65	MaxQP	Vertical	180	31	49.5	-10.9	Pass
<u>#5</u>	77.19	60.19	3.76	-23.26	40.69	MaxQP	Vertical	100	32	49.5	-8.8	Pass
<u>#6</u>	249.98	57.18	4.53	-19.05	42.66	MaxQP	Horizontal	100	165	57.0	-14.3	Pass
<u>#7</u>	720.01	47.19	5.91	-9.84	43.26	MaxQP	Vertical	184	180	57.0	-13.7	Pass
<u>#8</u>	#8 909.94 48.77 6.35 -7.65 47.47 Fundamental Horizontal 100 1											
Test No	tes: EUT on 1	50cm tab	le, power	ed by ac/	dc PS.ENI	ET connected to	hub outside	chambe	r.	•		

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 46 of 76

9.4. Power Spectral Density

	Conducted Test Conditions for Power Spectral Density						
Standard:	FCC CFR 47:15.247 & IC RSS- 247	Ambient Temp. (°C):	24.0 - 27.5				
	Power Spectral Density						
Standard Section(s):	15.247 (e) & 5.2	5.247 (e) & 5.2 Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References						

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)] x = Duty Cycle

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A Issue Date: 22nd December 2016

> Page: 47 of 76

Equipment Configuration for Power Spectral Density - Average

Variant:	500KHz	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.5
Modulation:	DTS	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurem	Test Measurement Results							
Test	N		Spectral Densit	Amplitude Summation +	Limit	Margin		
Frequency		Port(s) (dBm/3KHz)			DCCF (+0.04 dB)		J	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB	
906.0	<u>6.959</u>				<u>7.003</u>	8.0	-1.0	
914.8	<u>7.373</u>				<u>7.417</u>	8.0	-0.6	
924.0	<u>7.182</u>				7.226	8.0	-0.8	

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 48 of 76

To:

9.5. AC Mains Power Input/Output Ports

Scope

This test assesses the ability of the EUT to limit its internal noise from being present on the AC mains power input/output ports.

Test Method

The test method shall be in accordance with PART 15.207 and the Artificial Mains Networks (AMNs) shall be connected to the AC mains power source.

The measurement frequency range extends from 150 kHz to 30 MHz. When the EUT is a transmitter operating at frequencies below 30 MHz, then the exclusion band for transmitters applies for measurements in the transmit mode of operation.

Test Procedure

The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 49 of 76

Limits

The equipment shall meet the class B limits given in PART 15.207. Alternatively, for equipment intended to be used in telecommunication centres only, the class A limits given in PART 15.207 may be used.

Class B Emissions

Frequency of Emission (MHz)	Conducted Limit (dBμV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency

Class A Emissions

Frequency of Emission (MHz)	Conducted Limit (dBμV)		
	Quasi-peak	Average	
0.15-0.5	79	66	
0.5-30	73	60	

Traceability

All conducted emission measurements are traceable to national standards. The uncertainty of measurement at a confidence level of not less than 95 %, with a coverage factor of k=2, in the range 9 kHz – 30 MHz (Average & Quasi-peak) is ±2.64 dB.

Laboratory Measurement Uncertainty	
Measurement uncertainty	±2.64 dB

Method

Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 50 of 76

AC/DC PS Powered 110V 60 Hz

Model Number	TW-222	Engineer	SB	
Variant	AC Wireline 110VAC, 60Hz	Temp (°C)	17	
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum.(%)	45	
Power Setting	15	Press. (mBars)	1007	
Antenna	Integral			
Test Notes 1	AC/DC powered: Sunny Computer Tech			
Test Notes 2	Class B Limits FCC 110VAC, 60Hz			

To:

Num	Frequency MHz	Raw dBµV	Cable Loss dB	Factor dB	Total Correction dBµV	Corrected Value dBµV	Measurement Type	Line	Limit dBµV/m	Margin dB	Pass /Fail
1	0.494	29.79	0.08	9.93	10.01	39.80	Max Avg	Live	46.2	-6.4	Pass
2	0.494	39.16	0.08	9.93	10.01	49.17	Max Qp	Live	56.2	-7.0	Pass
3	0.498	29.29	0.09	9.92	10.01	39.30	Max Avg	Live	46.1	-6.8	Pass
4	0.498	39.07	0.09	9.92	10.01	49.08	Max Qp	Live	56.1	-7.0	Pass
5	0.489	23.71	0.08	9.93	10.01	33.72	Max Avg	Neutral	46.3	-12.6	Pass
6	0.489	33.01	0.08	9.93	10.01	43.02	Max Qp	Neutral	56.3	-13.3	Pass
7	0.432	28.03	0.05	9.93	9.98	38.01	Max Avg	Live	47.9	-9.9	Pass
8	0.432	37.23	0.05	9.93	9.98	47.21	Max Qp	Live	57.9	-10.7	Pass
9	0.736	21.96	0.12	9.93	10.05	32.01	Max Avg	Live	46.0	-14.0	Pass
10	0.736	32.22	0.12	9.93	10.05	42.27	Max Qp	Live	56.0	-13.7	Pass

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 51 of 76

To:

11	1.133	19.85	0.09	9.94	10.03	29.88	Max Avg	Live	46.0	-16.1	Pass
12	1.133	31.56	0.09	9.94	10.03	41.59	Max Qp	Live	56.0	-14.4	Pass
13	0.973	21.86	0.08	9.93	10.01	31.87	Max Avg	Live	46.0	-14.1	Pass
14	0.973	31.35	0.08	9.93	10.01	41.36	Max Qp	Live	56.0	-14.6	Pass
15	3.408	19.01	0.24	10.02	10.26	29.27	Max Avg	Live	46.0	-16.7	Pass
16	3.408	29.29	0.24	10.02	10.26	39.55	Max Qp	Live	56.0	-16.5	Pass
17	0.524	37.87	0.09	9.92	10.01	47.88	Peak (scan)	Live			
18	0.498	36.75	0.09	9.92	10.01	46.76	Peak (scan)	Neutral			
19	0.424	38.67	0.05	9.93	9.98	48.65	Peak (scan)	Live			
20	0.751	36.01	0.12	9.93	10.05	46.06	Peak (scan)	Live			
21	1.121	35.95	0.09	9.94	10.03	45.98	Peak (scan)	Live			
22	0.977	36.46	0.07	9.93	10.00	46.46	Peak (scan)				
23	3.397	34.61	0.24	10.02	10.26	44.87	Peak (scan)				

Test Notes: EUT powered by Sunny Computer Tech G160605028762 at 110V 60 Hz

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 52 of 76

A. APPENDIX - GRAPHICAL IMAGES

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Span 2.000 MHz

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 53 of 76

A.1. 6 dB & 99% Bandwidth

To:

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1: 905.505 MHz: 21.705 dBm M2: 905.786 MHz: 28.193 dBm Delta1: 842 KHz: 1.574 dB T1: 905.481 MHz: 19.015 dBm T2: 906.371 MHz: 19.529 dBm OBW: 890 KHz	Measured 6 dB Bandwidth: 0.842 MHz Limit: ≥500.0 kHz Margin: -0.34 MHz

Step 200 KHz

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 54 of 76

6 dB & 99% BANDWIDTH

Variant: 500KHz, Channel: 914.77 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 914.283 MHz: 21.832 dBm	Measured 6 dB Bandwidth: 0.842 MHz
Sweep Count = 0	M2 : 914.784 MHz : 28.053 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 30	Delta1: 842 KHz: 0.525 dB	Margin: -0.34 MHz
Trace Mode = MAX HOLD	T1: 914.255 MHz: 18.844 dBm	
	T2: 915.145 MHz: 19.566 dBm	
	OBW: 890 KHz	

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 55 of 76

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = MAX HOLD	M1: 914.284 MHz: 23.375 dBm M2: 914.821 MHz: 29.413 dBm Delta1: 838 KHz: 1.001 dB T1: 914.252 MHz: 19.686 dBm T2: 915.146 MHz: 20.870 dBm OBW: 894 KHz	Channel Frequency: 914.78 MHz

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 56 of 76

To:

6 dB & 99% BANDWIDTH

Variant: 500KHz, Channel: 924.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
I	M1: 923.513 MHz: 21.756 dBm M2: 923.762 MHz: 27.766 dBm Delta1: 834 KHz: 1.066 dB T1: 923.485 MHz: 18.832 dBm T2: 924.371 MHz: 19.086 dBm OBW: 886 KHz	Measured 6 dB Bandwidth: 0.834 MHz Limit: ≥500.0 kHz Margin: -0.33 MHz

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 57 of 76

A.2. Emissions

A.2.1. Conducted Emissions

A.2.1.1. Conducted Spurious Emissions

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 889.138 MHz: -17.111 dBm	Limit: -47.00 dBm
Sweep Count = 0	M2: 1808.216 MHz: -52.044 dBm	Margin: -5.04 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 58 of 76

To:

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 909.118 MHz: -15.920 dBm	Limit: -45.00 dBm
Sweep Count = 0	M2: 1828.196 MHz: -54.737 dBm	Margin: -9.74 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 59 of 76

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 909.118 MHz: -15.866 dBm	Channel Frequency: 914.78 MHz
Sweep Count = 0	M2: 1828.196 MHz: -53.286 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 60 of 76

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 909.118 MHz: -16.271 dBm	Limit: -46.00 dBm
Sweep Count = 0	M2 : 1848.176 MHz : -56.480 dBm	Margin: -10.48 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 61 of 76

A.2.1.2. Conducted Band-Edge Emissions

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 902.000 MHz: -57.724 dBm	Channel Frequency: 906.00 MHz
Sweep Count = 0	M2: 905.491 MHz: -24.190 dBm	
RF Atten (dB) = 20	M3: 906.142 MHz: 18.079 dBm	
Trace Mode = VIEW		

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 62 of 76

CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Variant: 500KHz, Channel: 924.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 923.964 MHz: 17.600 dBm	Channel Frequency: 924.00 MHz
Sweep Count = 0	M2 : 924.343 MHz : -4.995 dBm	
RF Atten (dB) = 20	M3: 928.000 MHz: -55.886 dBm	
Trace Mode = VIEW		

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 63 of 76

A.2.2. Radiated Emissions

A.2.2.3. TX Spurious & Restricted Band Emissions

MITEST.

TX SPURIOUS & RESTRICTED BAND EMISSIONS

Variant: 500KHz, Test Freq: 906.00 MHz, Antenna: NA PCB trace antenna, Power Setting: 10, Duty Cycle (%): 100

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1811.42	94.06	2.43	-13.61	82.88	Peak (NRB)	Vertical	101	1		I	Pass
2	2718.73	59.09	2.81	-11.36	50.54	Max Peak	Vertical	196	179	74.0	-23.5	Pass
3	2718.73	47.53	2.81	-11.36	38.98	Max Avg	Vertical	196	179	54.0	-15.0	Pass
4	3623.83	61.82	3.15	-11.12	53.85	Max Peak	Vertical	176	159	74.0	-20.2	Pass
5	3623.83	54.00	3.15	-11.12	46.03	Max Avg	Vertical	176	159	54.0	-8.0	Pass

Test Notes: EUT on 150cm table, powered by ac/dc PS.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 64 of 76

TX SPURIOUS & RESTRICTED BAND EMISSIONS

Variant: 500KHz, Test Freq: 915.00 MHz, Antenna: NA PCB trace antenna, Power Setting: 10, Duty Cycle (%): 100

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1828.90	92.35	2.45	-13.54	81.26	Peak (NRB)	Vertical	101	1		-	Pass
2	2744.86	58.02	2.84	-11.35	49.51	Max Peak	Vertical	127	269	74.0	-24.5	Pass
3	2744.86	48.37	2.84	-11.35	39.86	Max Avg	Vertical	127	269	54.0	-14.1	Pass
4	3658.59	57.91	3.17	-11.04	50.04	Max Peak	Vertical	193	87	74.0	-24.0	Pass
5	3658.59	48.33	3.17	-11.04	40.46	Max Avg	Vertical	193	87	54.0	-13.5	Pass

Test Notes: EUT on 150cm table, powered by ac/dc PS.

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 65 of 76

To:

TX SPURIOUS & RESTRICTED BAND EMISSIONS

Variant: 500KHz, Test Freq: 924.00 MHz, Antenna: NA PCB trace antenna, Power Setting: 10, Duty Cycle (%): 100

	1000.00 - 10000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1847.42	90.40	2.46	-13.47	79.39	Peak (NRB)	Vertical	101	1			Pass
2	2771.43	58.69	2.83	-11.33	50.19	Max Peak	Horizontal	155	190	74.0	-23.8	Pass
3	2771.43	49.50	2.83	-11.33	41.00	Max Avg	Horizontal	155	190	54.0	-13.0	Pass

Test Notes: EUT on 150cm table, powered by ac/dc PS.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 66 of 76

A.2.3. Digital Emissions (0.03 - 1 GHz)

DIGITAL EMISSIONS (0.03 - 1 GHz)

Variant: 500KHz, Test Freq: 906.00 MHz, Antenna: NA PCB trace antenna, Power Setting: 10, Duty Cycle (%): 100

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	49.44	46.44	3.56	-22.83	27.17	MaxQP	Vertical	100	75	40.0	-12.8	Pass
2	82.15	47.34	3.79	-23.66	27.47	MaxQP	Vertical	100	283	40.0	-12.5	Pass
3	98.00	44.37	3.87	-21.84	26.40	MaxQP	Vertical	104	294	43.0	-16.6	Pass
4	221.17	45.09	4.42	-19.74	29.77	MaxQP	Vertical	100	308	46.0	-16.2	Pass
5	663.53	40.20	5.76	-10.66	35.30	MaxQP	Vertical	100	195	46.0	-10.7	Pass
6	874.97	36.45	6.27	-8.09	34.63	MaxQP	Horizontal	100	188	46.0	-11.4	Pass
7	906.17	57.48	6.34	-7.65	56.17	Fundamental	Horizontal	100	0		-	

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 67 of 76

To:

DIGITAL EMISSIONS (0.03 - 1 GHz)

Variant: 500KHz, Test Freq: 914.774 MHz, Antenna: NA PCB trace antenna, Power Setting: 10, Duty Cycle (%): 100

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	49.74	47.90	3.57	-23.14	28.33	MaxQP	Vertical	100	120	40.0	-11.7	Pass
2	80.86	46.19	3.78	-23.66	26.31	MaxQP	Vertical	106	0	40.0	-13.7	Pass
3	98.07	45.78	3.87	-21.84	27.81	MaxQP	Vertical	100	353	43.0	-15.2	Pass
4	221.15	44.10	4.42	-19.74	28.78	MaxQP	Vertical	100	298	46.0	-17.2	Pass
5	663.54	40.38	5.76	-10.66	35.48	MaxQP	Vertical	100	203	46.0	-10.5	Pass
6	874.97	38.36	6.27	-8.09	36.54	MaxQP	Horizontal	101	239	46.0	-9.5	Pass
7	914.85	55.60	6.39	-7.75	54.24	Fundamental	Horizontal	100	0			

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 68 of 76

To:

DIGITAL EMISSIONS (0.03 - 1 GHz)

Variant: 500KHz, Test Freq: 924.00 MHz, Antenna: NA PCB trace antenna, Power Setting: 10, Duty Cycle (%): 100

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	49.93	48.01	3.57	-23.14	28.44	MaxQP	Vertical	100	107	40.0	-11.6	Pass
2	81.43	46.16	3.78	-23.66	26.28	MaxQP	Vertical	100	3	40.0	-13.7	Pass
3	98.05	44.50	3.87	-21.84	26.53	MaxQP	Vertical	100	256	43.0	-16.5	Pass
4	663.53	40.38	5.76	-10.66	35.48	MaxQP	Vertical	100	201	46.0	-10.5	Pass
5	874.98	38.85	6.27	-8.09	37.03	MaxQP	Horizontal	100	256	46.0	-9.0	Pass
6	883.96	32.40	6.29	-8.05	30.64	MaxQP	Horizontal	100	197	46.0	-15.4	Pass
7	924.19	42.23	6.45	-7.66	41.02	Fundamental	Vertical	100	0			

Test Notes: EUT on 150cm table, powered by ac/dc PS. ENET not connected. 900 MHz notch placed in front of amp to prevent overload from fundamental.

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 69 of 76

To:

DIGITAL EMISSIONS (0.03 - 1 GHz)

Variant: 500KHz, Test Freq: 906.00 MHz, Antenna: NA PCB trace antenna, Power Setting: 10, Duty Cycle (%): 100

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	37.36	49.65	3.48	-15.17	37.96	MaxQP	Vertical	100	133	49.5	-11.5	Pass
2	47.78	59.86	3.56	-22.34	41.08	MaxQP	Vertical	107	158	49.5	- 7.9	Pass
3	55.99	58.80	3.61	-24.13	38.28	MaxQP	Vertical	126	30	49.5	-11.2	Pass
4	74.54	58.09	3.74	-23.18	38.65	MaxQP	Vertical	180	31	49.5	-10.9	Pass
5	77.19	60.19	3.76	-23.26	40.69	MaxQP	Vertical	100	32	49.5	-8.8	Pass
6	249.98	57.18	4.53	-19.05	42.66	MaxQP	Horizontal	100	165	57.0	-14.3	Pass
7	720.01	47.19	5.91	-9.84	43.26	MaxQP	Vertical	184	180	57.0	-13.7	Pass
8	909.94	48.77	6.35	-7.65	47.47	Fundamental	Horizontal	100	1			

Test Notes: EUT on 150cm table, powered by ac/dc PS. Shielded. ENET is connected.

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 70 of 76

A.3. Power Spectral Density

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 906.224 MHz : 6.959 dBm	Limit: ≤ 8.000 dBm

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 71 of 76

To:

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 906.200 MHz: 6.959 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 906.200 MHz : 7.003 dBm	Margin: -1.0 dB
RF Atten (dB) = 30	Duty Cycle Correction Factor: +0.04 dB	
Trace Mode = VIEW		

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 72 of 76

To:

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 914.974 MHz: 7.373 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = VIEW		

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 73 of 76

To:

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 915.000 MHz: 7.373 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 915.000 MHz : 7.417 dBm	Margin: -0.6 dB
RF Atten (dB) = 30	Duty Cycle Correction Factor: +0.04 dB	
Trace Mode = VIEW		

To: FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A lssue Date: 22nd December 2016

Page: 74 of 76

POWER SPECTRAL DENSITY - AVERAGE

Variant: 500KHz, Channel: 924.00 MHz, Chain a, Temp: 20, Voltage: 5 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVERAGE	M1: 923.866 MHz: 7.182 dBm	Limit: ≤ 8.000 dBm	
Sweep Count = 0			
RF Atten (dB) = 30			
Trace Mode = CLR/WRITE			

FCC CFR 47 Part 15.247 & IC RSS-247 (DTS)

Serial #: TEHA07-U2 Rev A
Issue Date: 22nd December 2016

Page: 75 of 76

To:

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 923.900 MHz: 7.182 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 923.900 MHz : 7.226 dBm	Margin: -0.8 dB
RF Atten (dB) = 30	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = CLR/WRITE		

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com