Big-O

O No

 \checkmark correct $2^{n+1}=2\cdot 2^n,$ that is, 2^n and 2^{n+1} have the same growth rate and hence $2^n=\Theta(2^{n+1}).$

TOTAL POINTS 7 1. Introduction and Learning Outcomes 1/1 point The goal of this assignment is to practice with big-O notation. Recall that we write f(n)=O(g(n)) to express the fact that f(n) grows no faster than g(n): there exist constants N and c>0 so that for all $n\geq N$, $f(n)\leq c\cdot g(n)$. Is it true that $\log_2 n = O(n^2)$? Yes O No ✓ Correct A logarithmic function grows slower than a polynomial function. 2. $n \log_2 n = O(n)$ 1 / 1 point O Yes No To compare these two functions, one first cancels n. What is left is $\log_2 n$ versus 1. Clearly, $\log_2 n$ grows faster than 1.3. $n^2 = O(n^3)$ 1 / 1 point Yes O No ✓ Correct n^a grows slower than n^b for constants a < b. 1/1 point 4. $n = O(\sqrt{n})$ O Yes No \checkmark Correct $\sqrt{n}=n^{1/2} \ {\rm grows \ slower \ than} \ n=n^1 \ {\rm as} \ 1/2 < 1.$ 5. $5^{\log_2 n} = O(n^2)$ 1/1 point O Yes No Recall that $a^{\log_b c} = c^{\log_b a}$ so $5^{\log_2 n} = n^{\log_2 5}$. This grows faster than n^2 since $\log_2 5 = 2.321\ldots > 2.$ 6. $n^5 = O(2^{3 \log_2 n})$ 1/1 point O Yes No \checkmark Correct $2^{3\log 2\,n} = (2^{\log 2\,n})^3 = n^3 \text{ and } n^3 \text{ grows slower than } n^5.$ 7. $2^n = O(2^{n+1})$ 1/1 point Yes