T.D. V - Estimation

I - Construction d'estimateurs

Solution de l'exercice 1.

1. TODO

2.

3. En utilisant la variance empirique, $\overline{X}_n - \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ est un estimateur sans biais de $p - p(1-p) = p^2$ De plus, comme $X_i(\Omega) = \{0,1\}$, alors $X_i^2 = X_i$ et

$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i^2 - 2X_i X_n + \overline{X}_n^2 \right)
= \frac{1}{n-1} \sum_{i=1}^{n} X_i - \frac{2}{n-1} \overline{X}_n \sum_{i=1}^{n} X_i + \frac{n}{n-1} \overline{X}_n^2
= \frac{n}{n-1} \overline{X}_n - \frac{2n}{n-1} \overline{X}_n^2 + \frac{n}{n-1} \overline{X}_n^2
= \frac{n}{n-1} \overline{X}_n - \frac{n}{n-1} \overline{X}_n^2.$$

2º méthode. En utlisant la question précédente, \overline{X}_n^2 est un estimateur sans biais de $\frac{p(1+(n-1)p)}{n}$. $\frac{n}{n-1}\overline{X}_n^2$ est un estimateur sans biais de $\frac{p}{n-1}-p^2$. $\frac{n}{n-1}\overline{X}_n-\frac{n}{n-1}\overline{X}_n^2$ est un estimateur sans biais de p^2 .

II - Comparaison d'estimateurs

Solution de l'exercice 6.

1. TODO

2. $\mathbf{E}[Y_n] = \sum_{i=1}^n \alpha_i \theta$. Ainsi, Y_n est un estimateur sans biais si et seulement si $\sum_{i=1}^n \alpha_i = 1$.

3. En utilisant la bilinéarité de la covariance,

$$\operatorname{Cov}\left(\overline{X}_{n}, Y_{n}\right) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \alpha_{i} \underbrace{\mathbf{V}\left(X_{i}\right)}_{=1}, \text{ d'après l'indépendance}$$

$$= \frac{1}{n}.$$

Ainsi, d'après la positivité de la variance,

$$0 \leqslant \mathbf{V}\left(\overline{X}_{n} - Y_{n}\right) = \mathbf{V}\left(\overline{X}_{n}\right) + \mathbf{V}\left(Y_{n}\right) - 2\operatorname{Cov}\left(\overline{X}_{n}, Y_{n}\right)$$
$$= \frac{1}{n} + \mathbf{V}\left(Y_{n}\right) - 2\frac{1}{n} = \mathbf{V}\left(Y_{n}\right) - \mathbf{V}\left(\overline{X}_{n}\right).$$

Ainsi, $\mathbf{V}\left(\overline{X}_n\right) \leqslant \mathbf{V}\left(Y_n\right)$ avec égalité si et seulement si $\mathbf{V}\left(\overline{X}_n - Y_n\right) = 0$, i.e. $\overline{X}_n - Y_n = c$ presque sûrement. Comme $\mathbf{E}\left[\overline{X}_n\right] = \mathbf{E}\left[Y_n\right] = \theta$, alors c = 0 et $\overline{X}_n = Y_n$ presque sûrement.