

UNIVERSIDADE FEDERAL DO ABC

CENTRO DE MATEMÁTICA, COMPUTAÇÃO E COGNIÇÃO

Prof. Monael Pinheiro Ribeiro Profa. Fernanda Yamada

CONVERSOR DE TEMPERATURAS

ConvTemperatura.[c | cpp | java | cs]

O que é temperatura? Como medi-la? São perguntas que frequentemente nos deparamos e nos geram duvidas quando associadas a conceitos próprios como o uso de diferentes escalas. Podemos definir temperatura como a simples movimentação dos átomos existentes em um corpo, e que estão sempre em constante vibração, ação que é conhecida como agitação molecular. O nível da temperatura é proporcional a agitação dos átomos, ou seja, quanto maior a movimentação maior será a temperatura e quanto menor é essa agitação, menor será a temperatura.

O Termômetro é o principal instrumento para a medição de temperatura e é feito de maneira que o líquido que se encontra em seu interior se expanda devido à alta temperatura e quando se encontra a uma baixa temperatura ele se contraia no tubo, criando um movimento de subir e descer conforme a variação de temperatura. Quando um termômetro inicia seu funcionamento devemos observar que ao expandir ou contrair, podemos ver o líquido que encontra em seu interior através do tubo graduado a sua temperatura, nas diferentes escalas termométricas existentes na marcação do termômetro.

Faça um programa que receba uma temperatura em graus Celsius e escreva suas respectivas conversões em Kelvin, graus Fahrenheit, graus Rakine, graus Réaumur, graus Rømer e graus Delisle. Utilize as seguintes relações para as conversões:

Kelvin	Fahrenheit	Rankine
$K = {}^{\circ}\text{C} + 273.15$	$^{\circ}F = ^{\circ}C \times \frac{9}{5} + 32$	${}^{\circ}Ra = ({}^{\circ}C + 273.15) \times \frac{9}{5}$

Réaumur	Rømer	Deslile
${}^{\circ}R\acute{\mathrm{e}} = {}^{\circ}\mathrm{C} imes rac{4}{5}$	$^{\circ}R\emptyset = ^{\circ}C \times \frac{21}{40} + 7.5$	$^{\circ}D = (100 - ^{\circ}C) \times \frac{3}{2}$

Entrada

A entrada é composta de apenas uma linha contendo um número real de dupla precisão, representando uma temperatura T, -1000.00 ≤ T ≤ 1000.00, em graus Celsius.

Saída

A saída é composta por seis linhas contendo em cada linha um número real com a temperatura T informada na entrada convertida em Kelvin, graus Fahrenheit, graus Rakine, graus Réaumur, graus Rømer e graus Delisle. A saída deve seguir essa ordem de escalas e ser apresentada com precisão de uma casa decimal. Ao final da saída, pule uma linha.

Exemplos

Saída
280.1
44.6
504.3
5.6
11.2
139.5

Saída
322.1
120.2
579.9
39.2
33.2
76.5

Entrada	Saída
-273.15	0.0
	-459.7
	0.0
	-218.5
	-135.9
	559.7

Entrada	Saída
212.00	485.1
	413.6
	873.3
	169.6
	118.8
	-168.0

Entrada	Saída
100.00	373.1
	212.0
	671.7
	80.0
	60.0
	0.0