

Coordinación Matemáticas I Primer Semestre 2015 Solución Taller 3

Semana 3: 23-27 de Marzo

Ejercicio 1

a) Si $\tan(\alpha) = \frac{7}{24}$. Encuentre el valor de la expresión $P = \frac{5\sin(\alpha) + 7\cos(\alpha)}{6\cos(\alpha) - 3\sin(\alpha)}$

b) Si $\cot(\alpha)=a,$ con $a\neq 0.$ Determine el valor de $P=\sec^2(\alpha)-2(a+\frac{1}{a})+\csc^2(\alpha)$ en términos de a.

Solución

a) $\tan(\alpha) = \frac{7}{24}$ entonces $\sin(\alpha) = \frac{7}{24}\cos(\alpha)$ reemplazando obtenemos $P = \frac{5\sin(\alpha) + 7\cos(\alpha)}{6\cos(\alpha) - 3\sin(\alpha)} = \frac{5\frac{7}{24}\cos(\alpha) + 7\cos(\alpha)}{6\cos(\alpha) - 3\frac{7}{24}\cos(\alpha)} = \frac{(\frac{35}{24} + 7)\cos(\alpha)}{(6 - \frac{21}{24})\cos(\alpha)} = \frac{\frac{35}{24} + 7}{6 - \frac{21}{24}} = \frac{203}{123}$

b) Si $\cot(\alpha) = a$ entonces $\tan(\alpha) = \frac{1}{a} \wedge \sec^2(\alpha) = 1 + \frac{1}{a^2} \wedge \csc^2(\alpha) = a^2$ por lo tanto $P = \sec^2(\alpha) - 2(a + \frac{1}{a}) + \csc^2(\alpha) = \frac{(1+a^2)(1-a)^2}{a^2}$

Ejercicio 2

a) Demuestre que en un triángulo ABC. Se cumple que $c = b\cos(\alpha) + a\cos(\beta)$

b) Demuestre las siguientes identidades:

(i)
$$\frac{\tan(\alpha) - \sin(\alpha)}{\sin^3(\alpha)} = \frac{1}{2}\sec(\alpha)\sec^2(\frac{\alpha}{2})$$
 para $\alpha \in \mathbb{R} - \{k\pi, \frac{\pi}{2} + n\pi, \pi + 2m\pi/k, n, m \in \mathbb{Z}\}$

(ii)
$$4\cos^2(\frac{\alpha}{2})\cot(\alpha) = \frac{\sin(2\alpha)}{1-\cos(\alpha)}$$
 para $\alpha \in \mathbb{R} - \{n\pi, 2k\pi/n, k \in \mathbb{Z}\}$

a) Por teorema del coseno se tiene que

$$a^{2} = b^{2} + c^{2} - 2cb\cos(\alpha) \wedge b^{2} = a^{2} + c^{2} - 2ac\cos(\beta)$$

reemplazando a^2 de la primera igualdad en la segunda, se obtiene que $c = b\cos(\alpha) + a\cos(\beta)$

b) (i)
$$\frac{\tan(\alpha) - \sin(\alpha)}{\sin^3(\alpha)} = \frac{\sin(\alpha)(1 - \cos(\alpha))}{\cos(\alpha)\sin^3(\alpha)} = \frac{1 - \cos(\alpha)}{\cos(\alpha)(1 - \cos^2(\alpha))} = \frac{1}{\cos(\alpha)(1 + \cos(\alpha))} = \frac{1}{\cos(\alpha)} \frac{1}{1 + \cos(\alpha)} = \frac{1}{2}\sec(\alpha)\sec^2(\frac{\alpha}{2})$$

(ii)
$$4\cos^2(\frac{\alpha}{2})\cot(\alpha) = 2(1+\cos(\alpha))\frac{\cos(\alpha)}{\sin(\alpha)}\left(\frac{1-\cos(\alpha)}{1-\cos(\alpha)}\right) = \frac{2\sin(\alpha)\cos(\alpha)}{1-\cos(\alpha)} = \frac{\sin(2\alpha)}{1-\cos(\alpha)}$$

Ejercicio 3

- a) Sea $f:A\to\mathbb{R}$ tal que $f(x)=\sqrt{\frac{1-x}{x+2}}$. Determine el conjunto $A\subset\mathbb{R}$ de manera que f sea función.
- b) Sea $g:A\to\mathbb{R}_0^+$ tal que $g(x)=\sqrt{x+3}-5$. Determine el conjunto $A\subset\mathbb{R}$ de manera que g sea función.
- a) $A=\{x\in\mathbb{R}/f(x)\in\mathbb{R}\}=\{x\in\mathbb{R}/\frac{1-x}{x+2}\geq 0\}$ resolviendo la desigualdad se tiene que A=]-2,1[
- b) $A = \{x \in \mathbb{R}/g(x) \in \mathbb{R}_0^+\} = \{x \in \mathbb{R}/\sqrt{x+3} 5 \ge 0\}$ Resolviendo la desigualdad se tiene que $A = [22, +\infty[$

Ejercicio 4

Dados los conjuntos $A = \{x \in \mathbb{R}/\sqrt{14 - x} < x + 6\}, B = \{x \in \mathbb{R}/|\frac{x+2}{3-x}| > 4\}$

- a) Determine cotas superiores e inferiores de los conjuntos A y B
- b) Detemine, en caso que existan, supremo e ínfimo de A y B
- c) Determine, en caso de existir, máximo y mínimo de cada conjunto

$$A =]-2,14] y B =]2,3[\cup]3,\frac{14}{3}[$$

- a) Cotas superiores A es el conjunto $[14, +\infty[$ y las cotas superiores de B es $[\frac{14}{3}, +\infty[$ El conjunto de cotas inferiores de A es $]-\infty, -2]$ y las cotas inferiores de B es $]-\infty, 2]$
- b) sup(A) = 14, $sup(B) = \frac{14}{3}$, inf(A) = -2, inf(B) = 2
- c) El máximo de A es 14 ya que $14 \in A$ y ademas $14 \ge a, \forall a \in A$ y mínimo de A no existe No existe $x \in B$ tal que $x \le b, \forall b \in B$ y no existe $x \ge b, \forall b \in B$ por lo tanto B no tiene mínimo y tampoco tiene máximo