

Background Prerequisites

Programming

R / Python

Statistics, Calculus

Machine Learning / Deep Learning

Parallel Computing

Topics List

- 1. General Introduction to ML and DL, basic principles
- 2. Algorithms and Models
- 3. Convolutional Neural Networks
- 4. Generative Models
- 5. Recurrent Neural Networks
- 6. (brief) Reinforcement Learning

Course Plan until lunch

- 9:00-9:45 Introduction ML & DL, basic principles
- 9:45-10:00 Introduction to PyTorch
- 10:05-10:50 Hands-on 1: fully connected network
- 10:50-11:00 Recap hands-on
- 11:00-11:15 Coffee break
- 11:15-11:45 CNN theory
- 11:45-12:30 Hands-on 2: CNN
- 12:30-13:30 Lunch break

Course Plan After Lunch

- 12:30-13:30 Lunch break
- 13:30-13:45 Recap hands-on
- 13:45-14:30 Hands-on 3: CNN, Fine-tuning
- 14:30-14:45 Recap hands-on
- 14:45-15:00 Coffee break
- 15:00-15:45 VAE theory
- 15:45-16:30 Hands-on 4: VAE, 'demo' notebook
- 16:30-17:00 Questions & wrap-up

What is Machine Learning?

It is **NOT**:

Mimicking human intelligence

Robotics

Deep Learning

ML is the study of computer algorithms that can improve automatically through experience and by the use of data.^[1] It is seen as a part of artificial intelligence.

- wikipedia

Artificial Intelligence

Having computers to exert Intelligent behaviour

Artificial Intelligence

Having computers to exert Intelligent behaviour

Machine Learning

Perform tasks without Explicitly programmed from data

Artificial Intelligence

Having computers to exert Intelligent behaviour

Machine Learning

Perform tasks without Explicitly programmed from data

Deep Learning

Use (deep) neural networks

Artificial Intelligence

Having computers to exert Intelligent behaviour

Machine Learning

Perform tasks without Explicitly programmed from data

Deep Learning

Use (deep) neural networks

New Hampshire

What is a dog?

What is a **dog**?

Driven by Data

Categories of Machine Learning

Supervised

Learn from labels

Regression, Classification

Unsupervised

Detect patterns in the data

Clustering, Dimensionality reduction

Reinforcement

Learn from mistakes

Control, Gaming

Neural Networks

Use a (deep) neural network to approximate an unknown function

Neural Networks

Use a (deep) neural network to approximate an unknown function

Anatomy of Neural Networks

Binary Classification Task

Binary Classification Task

Binary Classification Task

Limitation of Linear Single-Layer Classifiers

XOR Problem

Possible solutions:

- Add more layers (deep learning)
- Map into another (higher dimensional) space

Kernel Trick

House price prediction

House price prediction

During the **optimization** process, The machine learns to **encode** a **representation** that maps the input to the output

A deep neural network **encodes** the **representation** in an increasingly abstract way

- Neural networks are made from neurons and edges
- A collection of neurons in a layer
- The output of previous layer is used as an input to the next layer
- The input layer is data input and the output is a prediction
- Anything in between is **hidden**
- Layers are represented as vectors
- Edges are usually represented as matrices The weights
- We train the weights

Universal Approximation Theorem

"Given a neural network with a **single hidden layer** of **sufficient size**, the network can Approximate any continuous function"

In other words:

- There exists a true function relating the inputs to the outputs
- A neural network can approximate this function to arbitrary precision given sufficient layer size
- The required layer size can be extremely large and grow rapidly with the dimensionality of the problem

Use **multiple hidden layers** — Encoding becomes increasingly more abstract

Estimate
$$\hat{y} = f_{NN}(x_1, x_2, \dots, x_n)$$

Loss

Ground Truth

Estimate
$$\hat{y} = f_{NN}(x_1, x_2, \dots, x_n)$$

$$L(y, \hat{y}) = L(W, b) = (y_i - \hat{y}_i)^2$$

Ground Truth

Loss

Estimate $\hat{y} = f_{NN}(x_1, x_2, \dots, x_n)$

$$L(y, \hat{y}) = L(W, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Ground Truth

Loss

Estimate $\hat{y} = f_{NN}(x_1, x_2, \dots, x_n)$

$$L(y, \hat{y}) = L(W, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Ground Truth $\mathbf{x} = (x_1, \dots, x_m), y$

Loss

Training a Neural Network

Training a Neural Network

$$L(y, \hat{y}) = L(W, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Training a Neural Network

Training a Neural Network

Overfitting

Do we want the lowest loss? Not Really

Overfitting

We have to combat overfitting

A few ways to do so is by:

- Simply stopping training earlier
- Dropout: deactivate a neuron and its connections for the forward propagation with a certain probability

Decay the value of your weights over time

Forwards Propagation

Backwards Propagation

- We need to compute the gradient for each layer
- Apply the chain rule
- This is backpropagation

Backwards Propagation

- We need to compute the gradient for each layer
- Apply the chain rule
- This is backpropagation

Backwards Propagation

- We need to compute the gradient for each layer
- Apply the chain rule
- This is backpropagation

$$\frac{\partial L(y, \hat{y})}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{a}_i} \frac{\partial \mathbf{a}_i}{\partial \mathbf{w}_{i,j}}$$

Backwards Propagation

- We need to compute the gradient for each layer
- Apply the chain rule
- This is backpropagation

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Many more! We can design our own!

Commonly used loss functions

Regression

- Mean Squared Error (MSE)
- Mean Squared Log Error
- Mean Absolute Error

Binary Classification

- Binary cross-entropy
- Hinge Loss

Multi-Class Classification

- Multi-class cross-entropy
- Kullback-Leibler Divergence

Cross-entropy loss outputs a log probability

Optimizers

In what way should we change the weights?

Optimizers

In what way should we change the weights?

General Workflow of ML

You need to know your data and your models well.

Artificial Intelligence still heavily relies on human intelligence

Imbalanced Training set

Data Normalization

A process to transform the input **data** in a **well-behaved** form

Dataset Splitting

70% 20% 10%

Network Evaluation

0.4

0.2

Workflow

DL Frameworks

In DL you need to

- Define neurons and layers
- Define loss function
- Calculate losses
- Calculate gradient
- Propagate backward
- Update weights
- Existing frameworks exist:
 - TensorFlow (Keras)
 - Torch
 - Jax
 - MXNet

Open Datasets

+ New Dataset

Datasets

Find and use datasets or complete tasks. Learn more.

Processed, balanced, well-behaved and labelled datasets

tensorflow.org/datasets

kaggle.com/datasets

topepo.github.io/caret/data-sets.html

github.com/awesomedata/awesome-pu blic-datasets

Take Home Messages

Machine Learning

New paradigm of programming, driven by data An optimization process

Deep Learning

A subfield of ML Relies on deep neural networks Learns to encode the input data using many layers of concept hierarchies

Take Home Messages

In a neuron:

- ... the main job is to calculate a weighted average
- ... the decision is made through the activation function

In a neural network:

- ... losses are calculated using the loss function
- ... losses are calculated by comparing the labels and the prediction
- ... predictions are made through forward propagation
- ... weights are updated through the backward propagation process
- ... optimizers are used to decide the weights updating strategies

In a deep learning workflow:

- ... the heavy lifting is mostly done by DL frameworks
- ... open datasets are crucial for benchmarking and bootstrapping DNNs

Live Demo

https://playground.tensorflow.org/

Three Levels of Abstraction

- 1. **Tensor:** imperative ndarray, possible to run on GPU/TPU
- 2. (node) **Variable:** Node in the built computational graph; data, gradient storage
- 3. **(**NN) **Module:** A neural network layer, store the state and the weights of the neural network

Three Levels of Abstraction

1. **Tensor:** imperative ndarray, possible to run on GPU

2. (node) **Variable:** Node in the built computational graph; data, gradient storage

3. **(NN) Module:** A neural network layer, store the state and the weights of the neural network

Pytorch will helps us with:

Defining a dataset Automatic Gradient Computation

Scheduling

Optimization

Defining Neural Networks

Distributing

https://pytorch.org/docs/stable/

General Structure for training Neural Networks

data loader

model

optimizer

loss function

General Structure for training Neural Networks

data loader

model

optimizer

loss function

For every datapoint, y in data_loader

General Structure for training Neural Networks

data loader

model

optimizer

loss function

For every datapoint, y in data_loader

optimizer.zero_grad()

```
data loader

model

optimizer

loss function

For every datapoint, y in data_loader

optimizer.zero_grad()

prediction = model(datapoint)
```

```
data loader
model
optimizer
loss function
For every datapoint, y in data_loader
      optimizer.zero_grad()
      prediction = model(datapoint)
      loss = loss_function(prediction, y)
```

```
data loader
model
optimizer
loss function
For every datapoint, y in data_loader
      optimizer.zero_grad()
      prediction = model(datapoint)
      loss = loss_function(prediction, y)
      loss.backward()
```

```
data loader
model
optimizer
loss function
For every datapoint, y in data loader
      optimizer.zero_grad()
      prediction = model(datapoint)
      loss = loss_function(prediction, y)
      loss.backward()
      optimizer.step()
```

```
data loader
model
optimizer
loss function
For every datapoint, y in data_loader
      optimizer.zero_grad()
      prediction = model(datapoint)
      loss = loss_function(prediction, y)
      loss.backward()
      optimizer.step()
```

```
data loader
model
optimizer
loss function
For every datapoint, y in data_loader
      optimizer.zero grad()
      prediction = model(datapoint)
      loss = loss function(prediction, y)
      loss.backward()
      optimizer.step()
```

```
for batch_idx, (data, target) in enumerate(train_loader):
    data, target = data.to(device), target.to(device)

    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
```

```
data loader
model
optimizer
loss function
For every datapoint, y in data_loader
      optimizer.zero grad()
      prediction = model(datapoint)
      loss = loss function(prediction, y)
      loss.backward()
      optimizer.step()
```

```
for batch_idx, (data, target) in enumerate(train_loader):
    data, target = data.to(device), target.to(device)

    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
```

$$\mathbf{w}_{j+1} = \mathbf{w}_j - \alpha \nabla L(\mathbf{w}_j, b)$$

Data:

$$d_1 = [0.9, -0.2], y = 0$$

$$d_2 = [0.75, 0.6], y = 1$$

Data:

$$d_1 = [0.9, -0.2], y = 0$$

$$d_2 = [0.75, 0.6], y = 1$$

Data:

$$d_1 = [0.9, -0.2], y = 0$$

$$d_2 = [0.75, 0.6], y = 1$$

Learning rate = 0.01

Optimizer = Stochastic Gradient Descent

Loss = Binary Cross Entropy

Data:

$$d_1 = [0.9, -0.2], y = 0$$

$$d_2 = [0.75, 0.6], y = 1$$

Learning rate = 0.01

Optimizer = Stochastic Gradient Descent

Loss = Binary Cross Entropy

$$ext{Loss} = -\sum_{i=1}^{ ext{output}} y_i \cdot \log \, \hat{y}_i$$

