FYP

Johns Noble January 2025

Contents

	Introduction	3
	1.1 Cauchy Transform	3
	1.2 Orthogonal Polynomials	3
	Log and Stieltjes Transform 2.1 Transforms across Intervals	3
3	Polynomial Transforms	4

1 Introduction

1.1 Cauchy Transform

$$C_{\Gamma}f(z) := \frac{1}{2\pi i} \int_{\Gamma} \frac{f(t)}{t - z} dt \tag{1}$$

This is analytic for $z \notin \Gamma$. Define Hilbert Transform to be the limits from the right and the left.

1.2 Orthogonal Polynomials

Family	Notation	Interval	w(x)
Legendre	$P_n(x)$	[-1,1]	1
Chebyshev (1st)	$T_n(x)$	[-1,1]	$(1-x^2)^{-1/2}$
Chebyshev (2nd)	$U_n(x)$	[-1,1]	$(1-x^2)^{1/2}$
Ultraspherical	$C_n^{(\lambda)}(x), \ \lambda > -\frac{1}{2}$	[-1,1]	$(1-x^2)^{\lambda-1/2}$
Jacobi	$P_n^{(\alpha,\beta)}(x), \ \alpha,\beta > -1$	[-1,1]	$(1-x)^{\alpha}(1-x)^{\beta}$

2 Log and Stieltjes Transform

In this section we will consider approaches to compute these weakly singular integrals

$$\int_{A} log||z - t||f(t)dt \qquad \int_{A} \nabla log||z - t||f(t)dt$$

$$\mathcal{S}_{A}f(z) := \int_{A} \frac{f(t)}{z - t}dt \tag{2}$$

$$\mathcal{L}_A f(z) := \int_A \log(z - t) f(t) dt \tag{3}$$

Depending on the type of area which A is we can begin by approximating f using orthogonal polynomials.

2.1 Transforms across Intervals

We will try to formulate recurrence relations for these transforms across interval [-1, 1]. We are looking for looking for $S_{[-1,1]}f(z)$. Decomposing $f(z) \approx \Sigma_k f_k P_k(z)$ and writing $S_k(z) := S_{[-1,1]}P_k(z)$ lets us write:

$$S_{[-1,1]}f(z) \approx \Sigma_k f_k S_k(z)$$

This motivates finding fast methods to compute $S_k(z)$. Log kernels are approached similarly letting $L_k(z) := \mathcal{L}_{[-1,1]} P_k(z)$ and looking for recurrence relations.

Stieltjes

Recall recurrence relation of Legendre Polynomials:

$$xP_k(x) = \frac{k}{2k+1}P_{k-1}(x) + \frac{k+1}{2k+1}P_{k+1}(x)$$
(4)

Formulate three-term recurrence for their Stieltjes transforms.

$$zS_{k}(z) = \int_{-1}^{1} \frac{zP_{k}(t)}{z-t} dt$$

$$= \int_{-1}^{1} \frac{z-t}{z-t} P_{k}(t) dt + \int_{-1}^{1} \frac{tP_{k}(t)}{z-t} dt$$

$$= \int_{-1}^{1} P_{k}(t) dt + \frac{k}{2k+1} \int_{-1}^{1} \frac{P_{k-1}(t)}{z-t} dt + \frac{k+1}{2k+1} \int_{-1}^{1} \frac{P_{k+1}(t)}{z-t} dt \qquad (5)$$

$$= 2\delta_{k0} + \frac{k}{2k+1} S_{k-1}(z) + \frac{k+1}{2k+1} S_{k+1}(z)$$

$$S_{0}(z) = \int_{-1}^{1} \frac{dt}{z-t} = \log(z+1) - \log(z-1)$$

Log

We can begin by connecting log kernel to the Stieltjes kernel. To do this we define:

$$S_k^{(\lambda)}(z) := \int_{-1}^1 \frac{C_k^{(\lambda)}(t)}{z-t} dt$$

We let $F(x) = \int_{-1}^{1} f(s)ds$ and apply integration by parts on log transform:

$$\int_{-1}^{1} f(t)log(z-t)dt = \left[-F(t)log(z-t)\right]_{-1}^{1} - \int_{-1}^{1} \frac{F(t)}{z-t}dt$$

$$= log(z+1) \int_{-1}^{1} f(t)dt - \int_{-1}^{1} \frac{F(t)}{z-t}dt$$
(6)

3 Polynomial Transforms

We can begin to consider taking these transforms across different geometries. Currently we have a way to find these transforms across [-1,1] but we will be trying to use this to solve other geometries. The first type of geometry we should consider is one where we apply adegree d polynomial transform to the interval:

$$p:[-1,1]\to\Gamma$$

We will show why the solution to a cauchy transform across this interval is as follows:

$$C_{\Gamma}f(z) = \sum_{j=0}^{d} C_{[-1,1]}[f \circ p](p_j^{-1}(z))$$
 (7)

Where $p_j^{-1}(z)$ are the d pre-images of p. In order to solve this we will use plemelj. There are 3 properties that need to hold for a function $\psi:\Gamma\to\mathbb{C}$ to be a cauchy transform:

$$\lim_{z \to \infty} = 0$$

$$\psi^{+}(z) - \psi^{-}(z) = f(z)$$

$$\psi \text{ analytic on } \Gamma$$
(8)

Checking (8).1 we get that $p_j^{-1}(z) = \infty \implies z \to \infty$

$$\lim_{z \to \infty} C_{\Gamma} f(z) = \sum_{j=1}^{d} \lim_{z \to \infty} C_{[-1,1]}(f \circ p)(p_{j}^{-1}(z))$$

$$= \sum_{j=1}^{d} C_{[-1,1]}(f \circ p)(\lim_{z \to \infty} p_{j}^{-1}(z))$$

$$= \sum_{j=1}^{d} 0 = 0$$
(9)

Checking (8).2 we need an expression for ψ^+ and ψ^- . Let us begin by saying that we are looking for cauchy transform of point s which happens to lie on Γ . This means that there is a unique root of $t_k:=p_k^{-1}(s)\in[-1,1]$. TODO: Show that $\lim_{z\to s^+}p_k^{-1}(s)=\lim_{z\to p^{-1}(s)^+}$. Taking limits of ψ^+,ψ^- gives us:

$$\psi^{+}(s) = \lim_{z \to s} C_{[-1,1]}(f \circ p)(p_k^{-1}(z))$$

$$+ \sum_{j \neq k} C_{[-1,1]}(f \circ p)(p_j^{-1}(s))$$

$$= C_{[-1,1]}^{+}(f \circ p)(p_k^{-1}(z))$$

$$+ \sum_{j \neq k} C_{[-1,1]}(f \circ p)(p_j^{-1}(s))$$
(10)

We can do a similar thing with ψ^- and putting everything together:

$$\psi^{+}(s) - \psi^{-}(s) = C_{[-1,1]}^{+}(f \circ p)(p_{k}^{-1}(s)) - C_{[-1,1]}^{-}(f \circ p)(p_{k}^{-1}(s))$$

$$= (f \circ p)(p_{k}^{-1}(s)) = f(s)$$
(11)

In the case where $z \notin \psi, \psi^+ = \psi^-$ which is expected since the area in between is analytic

TODO show that condition (8).3 holds