Jennifer Cafiero

CS 135 Homework 9

6 May 2015

I pledge my honor that I have abided by the Stevens Honor System.

Section 4.1

13.

a. 10

c. 0

e. 6

26. 16, 28, 40, 52, & 64

Section 4.2

22.

a. Sum = 1022

Product = 101220

b. Sum = 21210

Product = 111020122

26.

 $(644)_{10} = (10\ 1000\ 0100)_2$

a = 1010000100

i = 0 - 9

x = 1

i = 0. $a_0 = 0$, x = 1 and power $= 11^2 \mod 645 = 121$

i = 1. $a_1 = 0$, x = 1 and power = $121^2 \mod 645 = 451$

i = 2. $a_2 = 1$, $x = (1 * 451) \mod 645 = 451$ and power $= 451^2 \mod 645 = 226$

i = 3. $a_3 = 0$, x = 451 and power $= 226^2 \mod 645 = 121$

i = 4. $a_4 = 0$, x = 451 and power = $121^2 \mod 645 = 451$

i = 5. $a_5 = 0$, x = 451 and power $= 451^2 \mod 645 = 226$

i = 6. $a_6 = 0$, x = 451 and power $= 226^2 \mod 645 = 121$

i = 7. $a_7 = 1$, $x = (451 * 121) \mod 645 = 391$ and power = $121^2 \mod 645 = 451$

i = 8. $a_8 = 0$, x = 391 and power = $451^2 \mod 645 = 226$

i = 9. $a_9 = 1$, $x = (391 * 226) \mod 645 = 1$, x = 1

Section 4.4

1.
$$15 * 7 = 105 \equiv 1 \pmod{26}$$

6.

b.
$$89 = 2 * 34 + 21$$

 $34 = 1 * 21 + 13$
 $21 = 1 * 13 + 8$
 $13 = 1 * 8 + 5$
 $8 = 1 * 5 + 3$
 $5 = 1 * 3 + 2$
 $3 = 1* 2 + 1$
 $2 = 2 * 1$
Retrace:
 $1 = 1*3 + (-1) * 2 = (-1) * 5 + 2 * 3 = 2 * 8 + (-3) * 5 = (-3) * 13 + 5 * 8$
 $= 5 * 21 + (-8) * 12 = (-8) * 34 + 13*21 = 13 * 89 + (-34) * 34$
Answer: $-34 \equiv 55 \mod 89$

12.

a.
$$x = 52 \mod 89$$

20. All values of k that fit the following: $k = 53 \mod 60$, x = 60*k +53

34.
$$gcd(23, 41) = 1$$

 $23^{40} = 1 \mod 41$
 $23^{1002} = 23^{40^{25}} * 23^{2} = 1^{250} * 529 = 37 \mod 41$

Section 4.6 (Assume A = 0, B = 1, ... Z = 25)

1.

a. GR QRW SDVV JR

5.

a. SURRENDER NOW

- 26. SQUIRREL
- 30. First, Alice and Bob have to agree to use a prime number p(101) and a primitive root a(2) of p(101). Then, Alice has to choose a secret integer $k_1(7)$ and sends Bob $a^k_1 = 2^7 = 27 \pmod{101}$. Bob then has to choose his secret integer $k_2(9)$ and sends Alice $a^k_2 = 2^9 = 7 \pmod{101}$. Alice uses the 7 to compute $7^7 = 90 \pmod{101}$. Bob uses the 27 to compute $27^9 = 90 \pmod{101}$. Each key equals 90 so it's a success.