HỘI TOÁN HỌC VIỆT NAM

BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỂ THI OLYMPIC TOÁN SINH VIÊN LẦN THỨ XVIII (2010)

Đề thi môn : Đại số

Thời gian làm bài: 180 phút

Câu 1.Cho A, B là các ma trận vuông cấp 2010 với hệ số thực sao cho det $A = \det (A+B) = \det (A+2B) = ... = \det (A+2010B) = 0$.

- (i) Chứng minh rằng det (xA + yB) = 0 với mọi $x, y \in \mathbb{R}$.
- (ii) Tìm ví dụ chứng tỏ kết luận trên không còn đúng nếu chỉ có det $A = \det (A+B) = \det (A+2B) = ... = \det (A+2009B) = 0$.

Câu 2.Cho $\{u_n\}$, $\{v_n\}$, $\{w_n\}$ là các dãy số được xác định bởi : $u_0 = v_0 = u_0 = 1$ và $\forall n \in \mathbb{N}$,

$$\begin{cases} u_{n+1} = -u_n - 7v_n + 5w_n, \\ v_{n+1} = -2u_n - 8v_n + 6w_n, \\ w_{n+1} = -4u_n - 16v_n + 12w_n. \end{cases}$$

Chứng minh rằng $v_n - 2$ là số nguyên chia hết cho 2^n .

Câu 3.

(i) Chứng minh rằng ứng với mỗi số n nguyên dương, biểu thức $x^n + y^n + z^n$ có thể biểu diễn dưới dạng đa thức $P_n(s,p,q)$ bậc không quá n của các biến

$$s = x + y + z$$
, $p = xy + yz + zx$, $q = xyz$

(ii) Hãy tìm tổng các hệ số của đa thức $P_{2010}(s, p, q)$

Câu 4. Xác định các đa thức thực P(x) thỏa mãn điều kiện

$$P(x)P(x^2) = P(x^3 + 2x), \forall x \in \mathbb{R}.$$

Câu 5.Chọn một trong hai câu sau:

5a. Cho A là ma trận thực vuông, cấp $n \ge 2$, có tổng các phần tử trên đường chéo bằng 10 và rank A = 1. Tìm đa thức đặc trưng và đa thức tối thiểu của A (đa thức tối thiểu của A là đa thức $p(t) \ne 0$ có bậc nhỏ nhất, với hệ số thực và hệ số của lũy thừa bậc cao nhất bằng 1, sao cho p(A) = 0).

5b. Cho A, B, C là các ma trận thực ,vuông cấp n ,trong đó A khả nghịch và đồng thời giao hoán với B và C .Giả sử C(A+B)=B .Chứng minh rằng B và C giao hoán với nhau.

Ghi chú: Cán bộ coi thi không giải thích gì thêm.

HỘI TOÁN HỌC VIỆT NAM

BỘ GIÁO DỰC VÀ ĐÀO TẠO

ĐỂ THI OLYMPIC TOÁN SINH VIÊN LẦN THỨ XVIII (2010)

Đề thị môn : Giải tích

Thời gian làm bài: 180 phút

Câu 1.Cho hàm số $f(x) = \ln(x+1)$.

a) Chứng minh rằng với mọi x > 0, tồn tại duy nhất số thực c thỏa mãn điều kiện f(x) = xf'(c) mà ta kí hiệu là c(x).

b) Tim $\lim_{x\to 0^+} \frac{c(x)}{x}$.

Câu 2.Cho dãy số $\{x_n\}$ được xác định bởi:

$$x_1 = 1$$
, $x_{n+1} = x_n (1 + x_n^{2010})$, $n \ge 1$.

Tìm

$$\lim_{n \to \infty} \left(\frac{x_1^{2010}}{x_2} + \frac{x_2^{2010}}{x_3} + \dots + \frac{x_n^{2010}}{x_{n+1}} \right)$$

Câu 3.Cho $a \in \mathbb{R}$ và hàm số f(x) khả vi trên $[0,\infty)$ thỏa mãn các điều kiện $f(0) \ge 0$ và $f'(x) + af(x) \ge 0$, $\forall x \in [0,\infty)$. Chứng minh rằng $f(x) \ge 0$, $\forall x \ge 0$.

Câu 4. Cho hàm f(x) khả vi liên tục trên [0,1]. Giả sử rằng

$$\int_{0}^{1} f(x)dx = \int_{0}^{1} x f(x)dx = 1.$$

Chứng minh rằng tồn tại $c \in (0,1)$ sao cho f'(c) = 6.

Câu 5. Cho đa thức P(x) bậc n với hệ số thực sao cho $P(-1) \neq 0$ và $-\frac{P'(-1)}{P(-1)} \leq \frac{n}{2}$.

Chứng minh rằng P(x) có ít nhất một nghiệm x_0 với $|x_0| \ge 1$.

Câu 6. Chọn một trong hai câu sau:

6a. Tìm tất cả các hàm số dương f(x) khả vi liên tục trên [0,1] thỏa mãn các điều kiện f(1) = ef(0) và

$$\int_{0}^{1} \left(\frac{f'(x)}{f(x)} \right)^{2} dx \le 1.$$

6b. Tìm tất cả các hàm f(x) liên tục trên \mathbb{R} và thỏa mãn các điều kiện f(1) = 2010, $f(x+y) = 2010^x f(y) + 2010^y f(x)$, $\forall x, y \in \mathbb{R}$.

Ghi chú: Cán bộ coi thi không giải thích gì thêm.