Can machine learning models help us read CTG results?

CAPSTONE THREE PRESENTATION

BY MORGAN SNELLGROVE

Did you know...

Every day, 800
women die from
preventable causes
related to
pregnancy and
childbirth around
the world.

In 2021, 5 million deaths in children under the age of 5 was recorded, mostly from preventable and treatable causes.

United Nations World Health Goals

Reduce maternal mortality Reduce newborn and under-5 mortality

Cardiotocography

Simple

Cost Effective Improve Pregnancy Outcomes

Human Error in CTG Interpretation

Some measurements can't be quickly calculated

- High variability between interpretations
- Inaccurate interpretations lead to negative outcomes.

Negative Outcomes

- C-sections
- Metabolic acidosis (build up of acid in the body)
- Preterm delivery
- Low birthweight
- poor health metrics
- ► A stay in NICU

Computerized Analysis of CTG Results

Can a computer accurately classify fetal health?

Studies show promising results!

2016 Study by Ignatov

- Goal: Evaluate the effectiveness of Computerized CTG compared to conventional CTG
- ► Sample size: N =720 women in active labor
- 360 women randomly assigned to computerized CTG, remaining giving conventional CTG
- All newborns from both groups were assessed in the same way.

Their Conclusion:

The incidence of adverse perinatal outcomes was lower among women who were monitored by computerized CTG.

This ML project

Can we build a machine learning model to predict fetal health?

Our Data:

- ▶ 2126 examples of CTG readings.
- ► Features extracted from CTG outputs and labeled by professionals
- ▶ 3 Categories:
 - 1. Normal
 - 2. Suspect
 - 3. Pathological

Our Goals:

Greater than 80% accuracy

Class 3 recall greater than 90%

Identify most important features

Our Features

- ▶ We have 22 columns
- ▶ First 11 columns are measurements taken from the CTG
- ▶ They deal with:
 - 1. Baseline Rate
 - 2. Variability
 - 3. Accelerations
 - 4. Decelerations

An example of a CTG printout

Baseline Rate

The average fetal heart rate

Normal is between 110 to 160 bmp

Variability

Fluctuations in fetal heart rate

Normal is between 5 to 25 bmp

Measured from peak to following trough

Accelerations

Short increases of FHR above the baseline

Above the baseline by >15 bpm for > 15 sec

A sign of good fetal health

Decelerations

Short decreases of FHR below the baseline

Below the baseline by 15 bpm for 15 sec

Many different types

Histogram of Fetal Heart Rate

- Remaining feature columns extracted from a histogram of FHR
- Measures things like:
 - ▶ Mean
 - Median
 - Mode
 - Number of Peaks
 - Width
 - Max
 - Min

Positive Correlation with Target

- Prolonged deceleration
- Abnormal short-term variability
- Percentage of time with abnormal long-term variability

Negative Correlation with Target

- Accelerations
- Uterine Contractions
- Mean Value of Long-Term Variability

Early Models

Dummy Model for Baseline

- Just predict the most common class every time
- ► Accuracy 78%
- ► Class 3 Recall of 0

First Real Models

▶ Decision Trees

Accuracy: 89%

Class 3 Recall: 77%

Random Forest

Accuracy: 93%

Class 3 Recall: 89%

Best Multiclass Model Gradient Boosting Classifier

Accuracy of 94% Over 20% increase!

Class 3 Recall of 93%

Assessing the Models

- ▶ All the models struggled the most with class 2 Suspect.
- Would combining Classes 2 and 3 into one category help?
- ▶ New Categories:
 - ▶ 1 = Suspect or Pathological
 - ▶ 0 = Normal

Best Binary Model

Gradient Boosting Classifier

Accuracy of 96%

Class 1 Recall of 88%

Which is Better?

- Suspect Category is hard to pick out
- Worse Case: Pathological Classified as Normal
- ▶ The Multiclass Model misclassified:
 - 2 Pathological as Normal
 - ▶ 19 Suspect as Normal
- ▶ The Binary Model misclassified 14 cases as Normal
 - ▶ We don't know if these were Suspect or Pathological

Keep all three classes

Machine Learning has a lot to offer in this area!

- With the aid of computerized CTG we could:
 - Reduce the under-5 mortality rate
 - Improve decision making strategies for labor and delivery
 - 3. Enable medical professionals to help more patients
 - 4. Decrease the occurrences of negative outcomes for newborns

Conclusion

Questions and Continued Study

- Since we are questioning the labels, it would be interesting to do a clustering analysis of the data without the labels.
- It would be very helpful to have the negative outcomes for each birth.
- How many of the Suspect cases were healthy babies?
- ► How many of these healthy class 2's did the model misclassify? In the end, who was right?
- We need more studies with larger sample sizes.