Работа 2.1.6

Эффект Джоуля-Томсона.

Панферов Андрей

Цель работы: определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b».

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

Теоретическаие сведения

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

Рис. 1: Схема установки для изучения эффекта Джоуля–Томсона.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рис. 1). Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля—Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ — его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно

 V_1, P_1, U_1 и V_2, P_2, U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1 V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2 V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то:

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегрупп ровывая члены, найдем:

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu (v_2^2 - v_1^2).$$
 (2)

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке суще- ственное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля—Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. Поэтому мы отложим на некоторое время обсуждение вопроса о правой части (2), а пока будем считать, что энтальпия газа не ме- няется.

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_n}.$$
 (3)

Отсюда видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,(4)$$

то есть газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые a)

$$\frac{\Delta T}{\Delta P} < 0,$$

(5)

то есть газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля—Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших a велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

Как следует из формул (1.35), (1.36), при температуре T_i коэффициент $\mu_{\rm Д-T}$ обращается в нуль. Используя связь между коэффициентами a и b и критической температурой (1.19), по формуле (1.36) найдем

$$T_{\text{инв}} = \frac{27}{4} T_{\text{кр}}.$$

(6)

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{Д-T}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{Д-T}} < 0$, газ нагревается).

Температура инверсии у всех газов лежит значительно выше критической. Для большинства газов $T_{\rm инв}/T_{\rm кp}=5-8$. Например, для гелия $T_{\rm инв}=46{\rm K}, T_{\rm kp}=5, 2{\rm K};$ для водорода $T_{\rm инв}=205{\rm K}, T_{\rm kp}=33{\rm K};$ для азота $T_{\rm инв}=604{\rm K}, T_{\rm kp}=126{\rm K};$ для воздуха $T_{\rm инв}=650{\rm K}, T_{\rm kp}=132, 6{\rm K};$ для углекислого газа $T_{\rm инв}=2050{\rm K}, T_{\rm kp}=304{\rm K}.$ Температура инверсии у гелия и водорода значительно ниже комнатной, поэтому при обычных температурах эти газы при расширении нагреваются. Температура инверсии остальных газов выше комнатной, и при нормальных условиях температура при расширении газа падает.

Сравнивая приведенные значения $T_{\text{инв}}$ и $T_{\text{кр}}$, можно убедиться в том, что предсказания, следующие из формулы Ван-дер-Ваальса, у реальных газов выполняются не очень хорошо. Правильно передавая качественную картину поведения реальных газов, формула Ван-дер-Ваальса не претендует на хорошее количественное описание этой картины.

При больших изменениях давления, например, при дросселировании от 200 до 1 атм (интегральный эффект Джоуля–Томсона), как это нередко бывает в промышленных установках, разложением (1.28) пользоваться нельзя и приходится прибегать к общему соотношению (1.26). При этом связь между температурой и давлением находится с помощью специальных диаграмм, например, кривых H = const, проведенных в координатах температура-давление или температура-энтропия. Такие диаграммы строятся по экспериментальным данным и широко используются в технике.

Вернемся к влиянию правой части уравнения (2) на изменение температуры расширяющегося газа. Для этого сравним изменение температуры, происходящее вследствие эффекта Джоуля—Томсона, с изменением температуры, возникающим из-за изменения кинетической энергии газа . Увеличение кинетической энергии газа вызывает заметное и приблизительно одинаковое понижение его температуры как у реальных, так и у идеальных газов. Поэтому при оценках нет смысла пользоваться сложными формулами для газа Ван-дер-Ваальса.

Заменяя в формуле (2) U через $C_V T$ и PV через RT, найдем

$$(R + C_V)(T_1 - T_2) = \mu(v_2^2 - v_1^2)/2,$$

(7)

или

$$\Delta T = \frac{\mu}{2C_n} (v_2^2 - v_1^2).$$

(8)

В условиях нашего опыта расход газа Q на выходе из пористой перегородки не превышает $10~{\rm cm}^3/{\rm c}$, а диаметр трубки равен $3~{\rm mm}$. Поэтому

$$v_2 \frac{4Q}{\pi d^2} \approx 140 \text{cm/c}.$$

(9)

Скорость v_1 газа у входа в пробку относится к скорости v_2 у выхода из нее как давление P_2 относится к P_1 . В нашей установке $P_1=4$ атм, а $P_2=1$ атм, поэтому

$$v_1 = \frac{P_2}{P_1} v_2 = 35 \text{cm/c.}$$
 (10)

Для углекислого газа $\mu=44$ г/моль, $C_p=40$ Дж/(моль · K); имеем

$$\Delta T = \frac{\mu}{2C_n} (v_2^2 - v_1^2) = 7 \cdot 10^{-4} \text{K}.$$
 (11)

Это изменение температуры ничтожно мало по сравнению с измеряемым эффектом (несколько градусов).

В данной лабораторной работе исследуется коэффициент дифференциального эффекта Джоуля—Томсона для углекислого газа. По экспериментальным результатам оценивается коэффициент теплового расширения, постоянные в уравнении Ван-дер-Ваальса и температура инверсии углекислого газа. Начальная температура газа T_1 задается термостатом. Измерения проводятся при трех температурах: комнатной, 50С и 80С.

Экспериментальная установка. Схема установки для исследования эффекта Джоуля—Томсона в углекислом газе см. рис. 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со мно- жеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений ΔP 4 атм (расход газа составляет около 10 см 3 /с); при этом в результате эффекта Джоуля—Томсона создается достаточная разность температур.

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется

термометром $T_{\rm B}$, помещенным в термостате. Требуемая температура воды устанавливается и поддерживается во время эксперимента при помощи контактного термометра Tк.

Давление газа в трубке измеряется манометром M и регулируется вентилем B (при открывании вентиля B, то есть при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр M измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P1 - P2$.

Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь-константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

Результаты измерений и обработка данных:

Проведем измерения для трех различных температур. Результаты заанесем в *Табли*иу 1. Проведем пересчет точек, занесем результаты в *Таблицу* 1.

На одних осях построим три зависимости ΔT от ΔP для трех температур.

Найдем коэффициент Джоуля-Томпсона для трех температур:

T,C	22.1	45.2	60.2			
$\mu, K/M\Pi a$	10.9 ± 0.3	9.9 ± 0.2	7.65 ± 0.05			

Найдем коэффициенты а и b для температур 22.1 C и 45.2 C и для 45.2 C и 60.2 C попарно по формуле

$$\mu = \frac{\frac{2a}{RT} - b}{C_p} \tag{12}$$

Найдем $T_{\text{инв}}$ по формуле

$$T_{\text{\tiny MHB}} = \frac{2a}{Rb} \tag{13}$$

T,C	22.1 - 45.2	45.2 - 60.2
a,	0.47 ± 0.04	1.8 ± 0.1
$b, \cdot 10^{-6}$	82±5	$(42\pm3)\cdot10$
$T_{\text{инв}}, \text{K} \cdot 10^3$	1.4 ± 0.2	1.1 ± 0.2

Табличные значения коэффициентов:

$${
m a} = 0.136 \; {
m H} \cdot {
m m}^4, \, {
m b} = 36.51 \cdot 10^{-6} \; {
m m}^3, \, T_{
m ihb} = 897 \; {
m K}$$

Из фатального несовпадения результатов с теорией делаем вывод о полной неприменимости модели Ван-дер-Ваальса к данному случаю.

Вывод:

Проведя этот эксперимент, мы удостоверились в неприменимости модели Ван-дер-Ваальса в данной лабораторной работе. Полученные зависимости оказались линейны, как и предсказывала теория, но характеризующие коэффициенты этих зависимостей разительно отличаются от теоретических предсказаний.

Data: $\sigma p = 1, \, \sigma V = 0.01 \mathrm{mb}$

V, мВ	p	ΔP , к Π а	ΔT , C	V, мВ	p	ΔP , к Π а	$\Delta T, C$	V, мВ	p	ΔP , к Π а	ΔT , C
0.147	66	300	3.61	0.133	66	300	3.13	0.11	65	294	2.51
0.133	60	263	3.27	0.117	60	263	2.75	0.098	60	263	2.24
0.117	55	233	2.87	0.103	55	233	2.42	0.087	55	233	1.99
0.105	50	203	2.58	0.09	50	203	2.12	0.078	50	203	1.78
0.091	45	172	2.24	0.077	45	172	1.81	0.067	45	172	1.53
0.08	42	154	1.97	0.065	40	142	1.53	0.057	40	142	1.30
0.068	36	118	1.67	0.054	35	111	1.27	0.047	35	111	1.07
$\mathrm{T}=22.1~\mathrm{C}$			T = 45.2 C			$\mathrm{T}=60.2~\mathrm{C}$					