

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

Espacio para la etiqueta identificativa con el código personal del **estudiante**.

Examen

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura de la cual estás matriculado.
- Debes pegar una sola etiqueta de estudiante en el espacio de esta hoja destinado a ello.
- No se puede añadir hojas adicionales.
- No se puede realizar las pruebas a lápiz o rotulador.
- Tiempo total 2 horas
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuál o cuáles pueden consultar?: No se puede concultar ningún material.
- Valor de cada pregunta: Problema 1: 30%; problema 2: 20%; problema 3: 20%; problema 4: 20%; problema 5: 10%.
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de este examen

Enunciados

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

Problema 1

- a) Formalizad las siguientes frases usando la lógica de enunciados. Usad los átomos propuestos.
 - 1) Si no hago ejercicio y no quemo calorías, no pierdo peso y me deprimo. $\neg E^{\uparrow} Q \rightarrow \neg P^{\uparrow} D$
 - 2) Solo pierdo peso si hago ejercicio y quemo calorías.

 $P \rightarrow E^{\prime}Q$

- 3) Es necesario hacer ejercicio o quemar calorías para comer chocolate. $C \rightarrow E^{\vee}Q$
- 4) Siempre que como chocolate, no pierdo peso y me deprimo cuando no hago ejercicio. C→(¬E→¬P^D)

Átomos:

- E: Hacer ejercicio
- Q: Quemar calorías
- P: Perder peso
- D: Deprimirse
- C: Comer chocolate
- b) Formalizad las siguientes frases usando la lógica de predicados. Usad los predicados propuestos
 - 1) Hay músicos que tocan todos los instrumentos musicales. $\exists x [M(x) \land \forall y (I(y) \rightarrow T(x,y))]$
 - 2) No hay ningún músico que no toque algún instrumento musical de cuerda. $\neg \exists x [M(x) \land \neg \exists y (I(y) \land C(y) \land T(x,y))]$
 - 3) No existe un instrumento musical de cuerda, o viento o percusión que no toque algún músico. $\neg \exists x [I(x)^{\land}(C(x)^{\lor}V(x)^{\lor}P(x))^{\land} \neg \exists y (M(y)^{\land}T(y,x))]$
 - 4) El piano es un instrumento musical de cuerda que tocan todos los músicos. $I(a)^{\wedge}C(a)^{\wedge}\forall x[M(x)\rightarrow T(x,a)]$

Dominio: un conjunto no vacío Predicados:

- M(x): x es músico
- C(x): x es de cuerda
- V(x): x es de viento
- P(x): x es de percusión
- I(x): x es un instrumento musical
- T(x,y): x toca y

Constantes:

• a: piano

Problema 2

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

Demostrad, usando la deducción natural, que el siguiente razonamiento es correcto. Usad solo las 9 reglas básicas (no deben usarse ni reglas derivadas ni equivalentes deductivos).

$$A^{\vee}B,\,A{\rightarrow}C,\,\neg D\rightarrow \neg B \ \, \therefore \ \ \, C^{\vee}D$$

(1)	A [∨] B			Р
(2)	A→C			Р
(3)	$\neg D \rightarrow \neg B$			Р
(4)		Α		Н
(5)		C C ^v D		E→2,4
(6)		$C^{V}D$		l [∨] 5
(7)		В		Н
(8)			¬D	Н
(9)			¬B	E→ 3, 8
(10			В	It 7
(11		¬¬D		I¬ 8, 9, 10
)				0, 0, 10
(12		D		E¬ 11
)				
(13		C _A D		I ^v 12
)	- V-			
(14	C _A D			E ^v 1, 6, 13
1 /	I	I		

Problema 3

Indicad aplicando resolución si el siguiente razonamiento es válido. Indicad también si las premisas son consistentes.

$$(A^{\vee}B)^{\wedge}\neg C, \ \neg C \to D^{\wedge}\neg A, \quad B \!\!\to\!\! (\ A^{\vee}E) \ . . \quad E$$

Búsqueda de las FNC:

 $\frac{1a \text{ Premisa:}}{(A^{V}B)^{\Lambda} C}$ $FNC((A^{V}B)^{\Lambda} C) = (A^{V}B)^{\Lambda} C$

2a Premisa: $¬C → D^¬A$

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

$$C \lor (D^{\neg}A)$$

 $(C \lor D)^{\wedge}(C^{\vee}\neg A)$
 $FNC(\neg C \rightarrow D^{\wedge}\neg A) = (C \lor D)^{\wedge}(C^{\vee}\neg A)$

3a Premisa:

 $B\rightarrow (A^{V}E)$ $\neg B^{V}(A^{V}E)$ $\neg B^{V}A^{V}E$

 $FNC(B\rightarrow (A^{\vee}E)) = \neg B^{\vee} A^{\vee}E$

Negación de la conclusión conclusión

E

negación

٦Ĕ

FNC(¬ E)= ¬E

El conjunto de cláusulas es (en negrita el conjunto de soporte): $\{A^{\vee}B, \neg C, C^{\vee}D, C^{\vee}\neg A, \neg B^{\vee}A^{\vee}E, \neg E\}$

Como que el literal $\neg D$ no aparece, podemos eliminar la cláusula C $^{\lor}$ D por la regla del literal puro y nos queda:

$$\{A^{\vee}B, \neg C, C^{\vee}\neg A, \neg B^{\vee} A^{\vee}E, \neg E\}$$

Cláusulas troncales	Cláusulas laterales
¬E	¬B° A°E
¬B ^v A	A ^v B
Α	C [∨] ¬A
С	¬C
•	

Llegamos a contradicción, el razonamiento es válido.

Comprobemos la consistencia de las premisas:

Conjunto de cláusulas sin el conjunto de soporte: $\{A^{\vee}B, \neg C, C^{\vee}D, C^{\vee}\neg A, \neg B^{\vee}A^{\vee}E\}$

Como el literal ¬D no aparece, podemos eliminar la cláusula C V D por la regla del literal puro:

 $\{A^{\vee}B,\,\neg C,\,C^{\vee}\neg A,\,\neg B^{\vee}\,A^{\vee}E\}$

Como el literal ¬E no aparece, podemos eliminar la cláusula ¬B^{*} A^{*}E por la regla del literal puro:

 $\{A^{\vee}B, \neg C, C^{\vee}\neg A\}$

Como que el literal ¬B no aparece, podemos eliminar la cláusula A'B por la regla del literal puro:

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

```
\{\neg C, C^{\vee} \neg A\}
```

Como que el literal A no aparece, podemos eliminar la cláusula C^Y¬A por la regla del literal puro

{¬C }

con lo que no llegamos a contradicción.

Las premisas son consistentes.

Problema 4

El siguiente razonamiento es válido. Demuéstralo, usando el método de resolución.

```
\forall x \forall y [\neg (R(x) \rightarrow \neg S(x,y))]
 \forall x \exists y \ [ \ P(x) \rightarrow Q(x,y) \ ]  
 \exists x \forall y \ [ \ R(x) \land Q(x,y) \rightarrow \neg S(x,y) \ ]  
\therefore \exists x [\neg P(x)]
FNS - \forall x \forall y [\neg (R(x) \rightarrow \neg S(x,y))]
 \forall x \forall y [\neg (\neg R(x) ^{\vee} \neg S(x,y))]
 \forall x \forall y [R(x) ^ S(x,y)]
FNS[\forall x \forall y [\neg (R(x) \rightarrow \neg S(x,y))] = \forall x \forall y [R(x) \land S(x,y)]
Cláusulas: R(x), S(x,y)
FNS - \forall x \exists y [P(x) \rightarrow Q(x,y)]
 \forall x \exists y [\neg P(x) \ \ Q(x,y)]
\forall x [\neg P(x) \ \ Q(x,f(x))]
FNS[\forall x \exists y [P(x) \rightarrow Q(x,y)]] = \forall x [\neg P(x) \lor Q(x,f(x))]
Cláusulas: \neg P(x) \lor Q(x,f(x))
FNS - \exists x \forall y [R(x) \land Q(x,y) \rightarrow \neg S(x,y)]
\exists x \, \forall y \, [\neg ( \, \mathsf{R}(x) \, ^ \land \, \mathsf{Q}(x,y)) \, ^{\lor} \neg \mathsf{S}(x,y) \, ] \\ \exists x \, \forall y \, [\neg \, \mathsf{R}(x) \, ^ \backprime \neg \mathsf{Q}(x,y) \, ^{\lor} \neg \mathsf{S}(x,y) \, ] \\ \forall y \, [\neg \, \mathsf{R}(a) \, ^ \backprime \neg \mathsf{Q}(a,y) \, ^{\lor} \neg \mathsf{S}(a,y) \, ]
FNS [\exists x \forall y [R(x) \land Q(x,y) \rightarrow \neg S(x,y)]] = \forall y [\neg R(a) \lor \neg Q(a,y) \lor \neg S(a,y)]
Cláusulas: \neg R(a) \quad \neg Q(a,y) \quad \neg S(a,y)
FNS - \neg [\exists x [\neg P(x)]]
 \forall x [\neg \neg P(x)]
```


Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

 $\forall x [P(x)]$

FNS
$$\neg$$
[$\exists x [\neg P(x)]] = \forall x [P(x)]$

Cláusulas: P(x)

Conjunto de cláusulas: { R(x), S(x,y), $\neg P(x) \ ^{\vee} Q(x,f(x))$, $\neg R(a) \ ^{\vee} \neg Q(a,y) \ ^{\vee} \neg S(a,y)$, P(x) } Conjunto de soporte: { P(x) }

Cláusulas troncales	Cláusulas laterales	Sustituciones
P(x)	$\neg P(x) ^{\vee} Q(x,f(x))$	
Q(x,f(x)),	$\neg R(a) \neg Q(a,y) \neg S(a,y)$	Sustituimos x por a
Q(a,f(a)),	$\neg R(a) \lor \neg Q(a,f(a)) \lor \neg S(a,f(a))$	Sustituimos y por f(a)
¬ R(a) [∨] ¬S(a,f(a))	R(x)	Sustituimos x por a
	R(a)	
¬S(a,f(a))	S(x,y)	Sustituimos x por a
	S(a,f(a))	Sustituimos y por f(a)

Queda demostrado que el razonamiento es válido.

Problema 5

¿Cuáles de las siguientes interpretaciones es un contraejemplo del razonamiento? Razona tu respuesta.

$$\neg \exists x [P(x) \land \neg D(x)], \forall x \exists y [S(x,y) \rightarrow \neg P(x)] \therefore \exists x \forall y [S(x,y) \rightarrow \neg D(x)]$$

- a) $< \{1\}, \{P(1)=V, D(1)=F, S(1,1)=V\} >$
- b) $< \{1\}, \{P(1)=F, D(1)=V, S(1,1)=V\} >$
- c) $< \{1, 2\}, \{P(1)=F, P(2)=V, D(1)=F, D(2)=V, S(1,1)=V, S(1,2)=V, S(2,1)=V, S(2,2)=V\} >$
- d) $< \{1, 2\}, \{P(1)=V, P(2)=V, D(1)=V, D(2)=V, S(1,1)=V, S(1,2)=F, S(2,1)=F, S(2,2)=F\} > 0$

Con dominio {1}

Premisa 1:

$$\neg \exists x [P(x) \land \neg D(x)] = \forall x [\neg P(x) \lor D(x)] = \neg P(1) \lor D(1)$$

Premisa 2:

$$\forall x \exists y [S(x,y) \rightarrow \neg P(x)] = S(1,1) \rightarrow \neg P(1)$$

Conclusión:

$$\exists x \, \forall y \, [S(x,y) \rightarrow \neg D(x)] = S(1,1) \rightarrow \neg D(1)]$$

	P(1)	D(1)	S(1,1)	Prem 1	Prem 2	Conclusió
a)	V	F	V	F	F	V
b)	F	V	V	V	V	F

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

Con dominio {1,2}

Premisa 1:

$$\neg \exists x [P(x) \land \neg D(x)] = \forall x [\neg P(x) \lor D(x)] = [\neg P(1) \lor D(1)] \land [\neg P(2) \lor D(2)]$$

Premisa 2:

$$\forall x \exists y \ [S(x,y) \to \neg P(x)] \ = [(S(1,1) \to \neg P(1)) \ ^{\vee} (S(1,2) \to \neg P(1)) \] \ ^{\wedge} \ [(S(2,1) \to \neg P(2)) \ ^{\vee} (S(2,2) \to \neg P(2)) \]$$

Conclusión:

$$\exists x \, \forall y \, [S(x,y) \, \to \, \neg D(x)] \ = [(S(1,1) \, \to \, \neg D(1)) \, \, ^{\wedge} (S(1,2) \, \to \, \neg D(1))] \, ^{\vee} [(S(2,1) \, \to \, \neg D(2)) \, \, ^{\wedge} (S(2,2) \, \to \, \neg D(2))]$$

	P(1	P(2	D(1)	D(2)	S(1,1)	S(1,2)	S(2,1)	S(2,2)	Pr1	Pr2	О
))									
<u>ဂ</u>	F	٧	F	V	V	V	V	V	٧	F	<
d)	V	٧	V	V	V	F	F	F	٧	٧	V

Sólo la interpretación b) es un contraejemplo.

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	22/06/2010	09:00