SK015 Chemistry Semester 1 Session 2023/2024 2 hours SK015 Kimia Semester 1 Sesi 2023/2024 2 jam

STRIVE FOR EXCELLENT

CHEMISTRY

2 hours

DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO

INSTRUCTIONS TO CANDIDATE:

This question paper consists of 6 questions.

Answer all questions.

Maximum marks awarded are shown in brackets at the end of each question or section.

The use of electronic calculator is permitted.

1 (a) An element **X** contains two isotopes. **TABLE 1** shows percentage of the relative abundances of each isotope.

TABLE 1

Isotopic mass (amu)	6	7
Relative abundance (%)	4.85	95.15

- (i) Calculate relative atomic mass of element X.
- (ii) Predict the element X.

[4 marks]

(b) Compound Y has a mass of 31.64 g. Analysis of Y shows that it contains7.85 g potassium, 10.98 g manganese and oxygen. Determine the empirical formula of Y.

[4 marks]

- (c) 1 liter solution containing 292 g of magnesium nitrate, Mg(NO₃)₂ with a density of 1.18 g mL⁻¹. Calculate the
 - (i) molality
 - (ii) percent by mass

of Mg(NO₃)₂ in the solution.

[6 marks]

(d) Sodium bicarbonate, NaHCO₃ reacts with citric acid, H₃C₆H₅O₇ as follows:

$$3NaHCO_3 + H_3C_6H_5O_7 \rightarrow 3CO_2 + 3H_2O + Na_3C_6H_5O_7$$

In an experiment, 1.0 g of sodium bicarbonate and 1.0 g of citric acid are allowed to react.

- (i) Calculate the mass of carbon dioxide formed.
- (ii) Determine the mass of excess reactant remain after the reaction is completed.

[7 marks]

2 (a) The Brackett series of hydrogen emission spectrum is shown below.

- (i) State the electron transition that produces line **A**.
- (ii) Determine the wavelength of line **A**.
- (iii) Illustrate the electronic transition of lines **A**, **B**, **C** and **D** on the energy level diagram of the hydrogen atom.

[6 marks]

- (b) Chromium is the fourth element in the first row of d block of the Periodic Table.
 - (i) Write the expected configuration of chromium according to aufbau principle and the actual configuration of chromium.
 - (ii) Give reason(s) for the anomaly in (b)(i).
 - (iii) Give one set of four quantum numbers for an electron in the highest energy level in chromium atom.

[4 marks]

3	(a)	By using Lewis structure and valence shell electron pair repulsion (VSEPR)	
		theory, explain the difference in the bond angles between PCI_3 and H_2O	
		compounds.	

[4 marks]

- (b) The cyanate ion is an ambidentate ligand, forming complexes with a metal ion has chemical formula written as OCN⁻ or NCO⁻.
 - (i) Illustrate possible resonance structures for the cyanate ion
 - (ii) Determine the most plausible Lewis structure of cyanate ion. Explain your answer.

[6 marks]

(c) The Lewis structure of ethyne, C₂H₂ is shown below:

$$H-C\equiv C-H$$

(i) Predict the type of hybridization of C atom in this molecule.

[2 marks]

(ii) Illustrate the hybridization process of the central atom and the overlapping of orbitals showing all the σ and π bonds formed in the ethyne.

[5 marks]

- 4 (a) A gaseous sample contains 0.35 moles of argon at a temperature of 13°C and a pressure of 568 torr.
 - (i) If it is heated to 56°C and a pressure of 897 torr, calculate the change in volume that occurs.
 - (ii) Explain how argon can deviate from ideal behaviour at low temperature.

[4 marks]

(b) **FIGURE 1** below shows the vapor pressure for three different liquid which are diethyl ether, ethanol and water.

FIGURE 1

Identify the most volatile liquid and explain your answer in terms of intermolecular forces.

[2 mark]

(c) Unknown X is a compound where its solid state is denser than its liquid state. The triple point and critical point of unknown X is given in the following TABLE 1

	Pressure (atm)	Temperature (°C)
Triple point	5.1	-57
Critical point	73	31

TABLE 1

- (i) Sketch a label phase diagram of **unknown X** by using the information given.
- (ii) Explain why there is a difference in the slope of the equilibrium line of solid-liquid in the phase diagram of water.

[3 marks]

The equilibrium between nitrogen dioxide (dark brown) and dinitrogen tetraoxide (colourless) is represented by the equation below:

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$
 $\Delta H = -58.84 \text{ kJ}$

(a) At 100°C, the value of K_c is 5.0. Calculate K_p for the above reaction.

[2 marks]

(b) If initially 1 mole of NO_2 is filled into a 1L vessel, determine the concentration of N_2O_4 at equilibrium.

[3 marks]

(c) Sketch a graph showing how the concentrations of the **reactant** and **product** of the above reaction vary during the course of the reaction.

[2 marks]

(d) Explain how the temperature can cause the colour changes from colourless to dark brown.

[2 marks]

- 6 (a) Pyridine, C₅H₅N, is a weak base which is used to make many different products such as medicine, vitamins and food flavorings.
 - (i) Calculate the pH 0.60 M pyridine. $K_b C_5 H_5 N = 1.7 \times 10^{-9}$

[4 marks]

(ii) Pyridine reacts with HCl to form pyridinium chloride salt, C₅H₆NCl. Explain qualitatively the classification of the salt formed.

[4 marks]

(b) For a titration between 25.00 mL of 0.1 M ethanoic acid, CH₃COOH with 0.30 M potassium hydroxide, KOH, sketch the titration curve of pH against volume of titrant and show the equivalence point and buffer region (if any).

[3 marks]

(c) Predict whether the precipitate will form when 0.5 M CaCl₂ is dissolved in 0.1 M NaF.

$$K_{sp}$$
 of $CaF_2 = 3.9 \times 10^{-11}$

[3 marks]