

WHAT IS CLAIMED IS:

- 1 1. A clock recovery circuit comprising:
 - 2 a phase detector circuit coupled to generate a difference signal indicating a
 - 3 phase difference between an incoming data stream and a delayed clock
 - 4 signal;
 - 5 an oscillator circuit responsive to a control signal derived from the difference
 - 6 signal to generate an output clock signal variable according to the
 - 7 control signal; and
 - 8 a clock delay circuit coupled to receive a delay control signal derived from the
 - 9 difference signal and to receive the output clock signal, the clock delay
 - 10 circuit coupled to provide as the delayed clock signal the output clock
 - 11 signal delayed according to the delay control signal.
- 1 2. The clock recovery circuit as recited in claim 1 further comprising a loop filter circuit coupled to receive the difference signal and supply a filtered output as the control signal;
- 1 3. The clock recovery circuit as recited in claim 1 wherein the control signal for the oscillator circuit is used as the delay control signal.
- 1 4. The clock recovery circuit as recited in claim 2 further comprising a delay control filter circuit coupled to receive the difference signal and generate the delay control signal based thereon.
- 1 5. The clock recovery circuit as recited in claim 1 wherein the clock delay circuit is a voltage controlled delay circuit.
- 1 6. The clock recovery circuit as recited in claim 1 wherein the clock delay circuit comprises multiple stages.
- 1 7. The clock recovery circuit as recited in claim 6 wherein a delay period from one stage to a next stage in the clock delay circuit is less than one period of the output clock.

1 8. The clock recovery circuit as recited in claim 7 further comprising:
2 a plurality of serially coupled registers, including at least a first and a last
3 register and wherein the first register is coupled to receive data
4 synchronized to the delayed clock and is further coupled to receive a
5 clock from the clock delay circuit that is less delayed than the delayed
6 clock signal;

7 and wherein the last register is coupled to the output clock and to receive data
8 from a previous one of the plurality of serially coupled registers,
9 thereby providing out of the last register data retimed to the output
10 clock.

*JMP 1201
6/15/2001*

1 9. The clock recovery circuit as recited in claim 8 further comprising at
2 least one intermediate register serially coupled between the first and last register, each
3 of the plurality of registers receiving a successively less delayed clock.

1 10. The clock recovery circuit as recited in claim 1 further comprising a
2 data recovery circuit.

1 11. The clock recovery circuit as recited in claim 1 wherein the oscillator
2 circuit is a voltage controlled oscillator.

1 12. The clock recovery circuit as recited in claim 1 further comprising
2 means for retiming the incoming data signal from the delayed clock signal to the
3 output clock signal.

1 13. The clock recovery circuit as recited in claim 1 further comprising:
2 a first in first out (FIFO) memory coupled to write data into the FIFO memory
3 with the delayed clock signal and to read data out of the FIFO memory
4 with the output clock signal, thereby retiming data to the output clock
5 signal.

1 14. The clock recovery circuit as recited in claim 1 having a closed loop
2 response without an explicit zero.

1 15. A method of recovering a clock signal from an input data stream
2 comprising:
3 determining a phase difference between the input data stream and a delayed
4 clock signal and generating a difference signal indicative thereof;
5 generating a control signal from the difference signal to control an oscillator;
6 generating in the oscillator an output clock signal that varies according to the
7 control signal; and
8 receiving the output clock signal in a delay circuit and generating the delayed
9 clock signal from the output clock signal according to a delay control
10 signal derived from the difference signal.

1 16. The method as recited in claim 15 further comprising using the control
2 signal for the oscillator as the delay control signal.

1 17. The method as recited in claim 15 as recited in claim 15 further
2 comprising generating the delay control signal in a delay filter circuit separate from
3 the control signal.

1 18. The method as recited in claim 15 further comprising providing input
2 data from the input data stream that is synchronized to the delayed clock signal and
3 retiming the input data from the delayed clock signal to the output clock signal.

1 19. The method as recited in claim 18 further comprising generating the
2 delayed clock signal in a plurality of stages in the delay circuit and wherein a delay
3 period from one stage to a next stage in the delay circuit is less than one period of the
4 output clock.

1 20. The method as recited in claim 19 wherein retiming the input data
2 further comprises:
3 providing data synchronized to the delayed clock signal to a first register of a
4 plurality of successively coupled registers;
5 clocking the first register with a clock signal from the delay circuit that is less
6 delayed than the delayed clock signal;

7 supplying a last register of the successively coupled registers with data from a
8 previous register of the successively coupled registers; and
9 clocking a last register of the plurality of successively coupled registers with
10 the output clock to thereby retime data from the delayed clock signal to
11 the output clock signal.

1 21. The method as recited in claim 20 wherein the previous register is the
2 first register.

1 22. The method as recited in claim 18 further comprising:
2 writing data synchronized to the delayed clock signal into a memory;
3 reading data from the memory with the output clock to thereby retime data
4 from the delayed clock signal to the output clock signal.

1 23. The method as recited in claim 22 wherein the memory is a first in first
2 out memory.

1 24. An apparatus comprising:
2 means for detecting a phase difference between an incoming data stream and a
3 delayed clock signal and generating a difference signal indicative
4 thereof;
5 means for generating a control signal according to the difference signal;
6 means for generating a clock signal that varies according to the control signal;
7 and
8 means for generating a delayed clock signal from the clock signal according to
9 a delay control signal derived from the difference signal.

1 25. The apparatus as recited in claim 24 further comprising means for
2 retiming data from the delayed clock signal to the clock signal.