Probability Distributions of Continuous Random Variables by W H Laverty (modified)

Notes:

- The Total Area under the probability density curve is 1.
- The Area under the probability density curve is from a to b is P/a < X < b1.

Mean, Variance, and Standard Deviation of a Continuous Probability Distribution

- Describe the center and spread of a probability distribution
- The mean (denoted by greek letter μ (mu)), measures the centre of the distribution.
- The variance (σ^2) and the standard deviation (σ) measure the spread of the distribution.

 σ is the greek letter for s.

Mean of a Continuous Random Variable (uses calculus)

• The mean, μ , of a discrete random variable x

$$\mu = \int_{-\infty}^{\infty} x f(x) dx$$

Notes:

- The mean is a *weighted average* of the values of X.
- The mean is the *long-run average* value of the random variable.
- The mean is centre of gravity of the probability distribution of the random variable

Variance and Standard Deviation

<u>Variance of a Continuous Random Variable</u>: Variance, σ^2 , of a discrete random variable x

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

<u>Standard Deviation of a Discrete Random Variable</u>: The positive square root of the variance:

$$\sigma = \sqrt{\sigma^2}$$

Normal Probability Distributions

- The normal probability distribution is the most important distribution in all of statistics
- Many continuous random variables have normal or approximately normal distributions

Main characteristics of the Normal Distribution

- Bell Shaped, symmetric
- Points of inflection on the bell shaped curve are at $\mu-\sigma$ and $\mu+\sigma$. That is one standard deviation from the mean
- Area under the bell shaped curve between $\mu-\sigma$ and $\mu+\sigma$ is approximately 2/3.
- Area under the bell shaped curve between $\mu-2\sigma$ and $\mu+2\sigma$ is approximately 0.95.

- There are infinitely many normal probability distributions (differing in μ and $\sigma)$
- Area under the Normal distribution with mean μ and standard deviation σ can be converted to area under the **standard normal distribution**
- If X has a Normal distribution with mean μ and standard deviation σ than

$$z = \frac{X - \mu}{\sigma}$$

has a standard normal distribution.

Converting Area under the Normal distribution with mean μ and standard deviation σ

to

Area under the standard normal distribution

Perform the z-transformation $z = \frac{X - \mu}{\sigma}$ then $P\left[a \le X \le b\right]$ $= P\left[\frac{a - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \le \frac{b - \mu}{\sigma}\right]$ $= P\left[\frac{a - \mu}{\sigma} \le z \le \frac{b - \mu}{\sigma}\right]$ Area under the Normal distribution with mean μ and standard deviation σ Area under the standard normal distribution

Example 2

A bottling machine is adjusted to fill bottles with a mean of 32.0 oz of soda and standard deviation of 0.02. Assume the amount of fill is normally distributed and a bottle is selected at random:

- 1) Find the probability the bottle contains between 32.00 oz and 32.025 oz
- 2) Find the probability the bottle contains more than 31.97 oz

Solution part 1) When x = 32.00 $z = \frac{32.00 - \mu}{\sigma} = \frac{32.00 - 32}{0.02} = 0.00$ When x = 32.025

$$z = \frac{32.025 - \mu}{\sigma} = \frac{32.025 - 32}{0.02} = 1.25$$

