Sistemet e Bazës së të Dhënave

SQL DML: JOINS

Ramiz HOXHA ramiz.hoxha@ubt-uni.net 2020/2021

FAKULTETI: SHKENCAVE KOMPJUTERIKE DHE INXHINIERIS

Objektivat e ligjerates

- Në këtë ligjerata, do të mësojnë:
 - Komandat DML (Gjuhës për Manipulimi e të Dhënave)
 - Kujtim: nderlidhjen (ralacionet) e tabelave sipas produktit kartizian
 - nderlidhjen (relacionet) e tabelave sipas JOINs

Studenti				
Student_ID	Emri	Mbiemri	Gjinia	Qytet i
S100	Liberta	Buja	F	PZ
S101	Berat	Gashi	M	FR
S102	Edita	Syla	F	PZ
S103	Visar	Dema	M	GJK
S104	Kushtrim	Hoxha	М	PR
S105	Lenonora	Peci	F	PR
S106	Kushtrim	Hoxha	M	PR
S107	Lenonora	Peci	F	PR
S108	Besiana	Shkembi	F	PR
S109	Veton	Sopa	M	PZ
S110	Alketa	Jakupi	F	FR

Vlersimi				
Studenti	Lenda	Emertim	Nota	
S107	DBS	Dhjetë	10	
S100	CAO	Shtatë	7	
S102	CN	Tetë	8	
S103	DBS	Nëntë	9	
S106	DBS	Tetë	8	
S108	CS2	Tetë	8	
S100	CS2	Dhjetë	10	
S101	CN	Gjashtë	6	
S100	CN	Nëntë	9	
S102	CAO	Nëntë	9	

Lenda		
Kodi_		ECT
L	Emertimi	S
CAO	Arkitektura Kompjuterike dhe Organizimi	5
CN	Rrjetat Kompjuterike	5
CS2	Shkenca Kompjuterike 2 (POO)	7
DBS	Sistemi i Bazave te te Dhenave	6
DSA	Alogoritme dhe Struktura e te Dhenave	4
SD	Strukutura Diskrete 1	5

Lenda

Kodi_L

ECTS

Emertimi

Column Name | Condensed Type | Nullable

varchar(40)

numeric(18, 0)

No

Yes

Yes

char(5)

```
create database Ligi08
   use Ligi08
                                                                                   CREATE TABLE Vlersimi (
   create table Studenti(
                                                                                         Nota int.
          Student ID char(5),
                                                                                          Emertimi varchar(10),
          Emri varchar (20),
                                                                                         Studenti char(5),
          Mbiemri varchar (20),
                                                                                         Lenda char(5),
         Gjinia char(1),
                                                                                          FOREIGN KEY (Studenti) REFERENCES
         Qyteti varchar (10),
                                                                                                            Studenti(Student ID)
          Primary Key (Student_ID),
                                                                                                ON UPDATE CASCADE ON DELETE SET NULL,
          check (Gjinia IN ('M', 'F', 'N'))
                                                                                         FOREIGN KEY (Lenda) REFERENCES
          );
                                                                                                            Lenda(Kodi L)
                                                                                         ON UPDATE CASCADE ON DELETE SET NULL
   insert into Studenti values ('S100', 'Liberta', 'Buja', 'F', 'PZ');
   insert into Studenti values ('S101', 'Berat', 'Gashi', 'M', 'FR');
   insert into Studenti values ('S102', 'Edita', 'Syla', 'F', 'PZ')
                                                                                   Insert into Vlersimi (Studenti, Lenda, Emertimi, Nota) values
   insert into Studenti values ('S103','Visar','Dema', 'M','GJK')
                                                                                    ('S102','CAO','Nëntë',9)
   insert into Studenti values ('S104', 'Kushtrim', 'Hoxha', 'M', 'PR')
                                                                                   Insert into Vlersimi (Studenti, Lenda, Emertimi, Nota) values ('S100',
   insert into Studenti values ('S105', 'Lenonora', 'Peci', 'F', 'PR')
                                                                                    'CAO', 'Shtatë', 7)
   insert into Studenti values ('S106','Kushtrim','Hoxha','M','PR')
                                                                                   Insert into Vlersimi (Studenti, Lenda, Emertimi, Nota) values ('S102',
   insert into Studenti values ('S107','Lenonora','Peci','F','PR')
                                                                                    'CN', 'Tetë', 8)
   insert into Studenti values ('S108', 'Besiana', 'Shkembi', 'F', 'PR')
                                                                                   Insert into Vlersimi (Studenti, Lenda, Emertimi, Nota) values ('S103',
   insert into Studenti values ('S109','Veton','Sopa','M','PZ')
                                                                                    'DBS', 'Nëntë', 9)
   insert into Studenti values ('S110', 'Alketa', 'Jakupi', 'F', 'FR')
                                                                                   Insert into Vlersimi (Studenti, Lenda, Emertimi, Nota) values
                                                                                    ('S106','DBS','Tetë',8)
create table Lenda(
      Kodi L char(5) Primary Key ,
                                                                                   Insert into Vlersimi (Studenti, Lenda, Emertimi, Nota) values
                                                                                    ('S108', 'CS2', 'Tetë', 8)
      Emertimi varchar (40),
      ECTS numeric
                                                                                   Insert into Vlersimi (Studenti, Lenda, Emertimi, Nota) values ('S100',
      );
                                                                                    'CS2', 'Dhjetë', 10)
                                                                                   Insert into Vlersimi (Studenti, Lenda, Emertimi, Nota) values
                                                                                   ('S101','CN', 'Gjashtë',6)
insert into Lenda values ('DBS','Sistemi i Bazave te te Dhenave','6')
insert into Lenda values ('CS2', 'Shkenca Kompjuterike 2 (P00)', '7')
                                                                                   Insert into Vlersimi (Studenti, Lenda, Emertimi, Nota) values
insert into Lenda values ('DSA', 'Alogoritme dhe Struktura e te Dhenave', '4')
                                                                                   ('S100','CN','Nëntë',9)
insert into Lenda values ('CAO', 'Arkitektura Kompjuterike dhe Organizimi', '5')
                                                                                   Insert into Vlersimi (Studenti, Lenda, Emertimi, Nota) values
insert into Lenda values ('SD', 'Strukutura Diskrete 1', '5')
                                                                                   ('S107', 'DBS', 'Dhjetë', 10);
insert into Lenda values ('CN', 'Rrjetat Kompjuterike', '5')
```


Kujtojm: Llojet e deklaratave në SQL

- DDL: Gjuha e Definimit të të Dhënave (Data Definition Language)
- □ DML: Gjuha e Manipulimit të të Dhënave (Data Manipulation Language)
 - DRL: Gjuha për Nxjerrjen e te Dhënave (Data Retrieving Language)
- DCL: Gjuha e Kontrollit të të Dhënave (Data Control Language)
- ☐ TCL: Gjuha e Kontrollit të Transaksionit (Transaction Control Language)

Kujtojm: Llojet e deklaratave në SQL

- ☐ Gjuha e manipulimit të të dhënave (Data manipulation language-DML)
 - Përfshin komandat si:
 - o INSERT, UPDATE, DELETE dhe SELECT
- Sintaksa themelore e komandës INSERT duket kështu:
- INSERT INTO emri_tabelës VALUES (vlera 1, vlera 2,..., vlera n).

```
insert into Studenti values
('S110','Alketa','Jakupi','F','FR')
```

```
INSERT INTO TABLE (kolona1, kolona2,...)
SELECT
kolona1, kolona2,...
ROM
TABLA_TJETER
WHERE
kushtet
```

6

```
INSERT INTO shippers_tmp (shipperid,name,phone)
SELECT
shipperid, companyName, phone
FROM
shippers
```


Updating/Përditësimi i rreshtave të Tabelave

Përdorni komandës UPDATE për të modifikuar të dhënat në një tabelë.

```
Sintaksa për këtë komandë është si më poshtë:

UPDATE emriTabeles
SET kolona = shprehja [, kolona = shprehja]
[WHERE kushtet];
UPDATE tabela1
SET column1 = (SELECT shprehja1
FROM tabela2
WHERE kushtet)
[WHERE kushtet];
```

p.sh: të modefikoni **ECTS** për lënden **CS2** për këtë komandë është si më poshtë:

```
UPDATE LENDA
SET ECTS = 6
WHERE Kodi_L = 'CS2';
```

p.sh: të perditsoni e studentit me ID 'S108' noten nga 6 në 8 për lënden CS2:

```
UPDATE VLERSIMI
SET Nota = 8, Emertimi='Tetë'
WHERE Lenda = 'CN'AND Studenti='S101';
```


Deleting/Fshirja i rreshtave të Tabelave

- Eshtë e lehtë të fshish një rresht në tabele duke përdorur deklaratën DELETE.
 - Sintaksa është si më poshtë:

```
DELETE FROM emriTabeles
[WHERE kushtet];
```

 p.sh duam të i fshijëm të dhënat që i ndryshuam paraprakisht, të student me ID 'S101' dhe Lenda me kodin e lendes 'CN'

```
DELETE FROM VLERSIMI
WHERE Lenda = 'CN'AND Studenti='S101';
```


JOINING tabelat e Databazës Krijimi e lidhjeve përmes Çelësit të huaj

Studenti				
Student_ID	Emri	Mbiemri	Gjinia	Qyteti
S100	Liberta	Buja	F	PZ
S101	Berat	Gashi	M	FR
S102	Edita	Syla	F	PZ
S103	Visar	Dema	M	GJK
S104	Kushtrim	Hoxha	M	PR
S105	Lenonora	Peci	F	PR
S106	Kushtrim	Hoxha	М	PR
S107	Lenonora	Peci	F	PR
S108	Besiana	Shkembi	F	PR
S109	Veton	Sopa	М	PZ
S110	Alketa	Jakupi	F	FR

Çelsi primar

Lenda		
Kodi_L	Emertimi	ECTS
CAO	Arkitektura Kompjuterike dhe Organizimi	5
CN	Rrjetat Kompjuterike	5
CS2	Shkenca Kompjuterike 2 (POO)	7
DBS	Sistemi i Bazave te te Dhenave	6
DSA	Alogoritme dhe Struktura e te Dhenave	4
SD	Strukutura Diskrete 1	5

Produkti kartizian

/*Listo studentat e qyteti PR, duke shfaqur lendet te cilat e kan kaluar me sukses. Duke paraqitur noten e secilit.*/ SELECT S.Emri, S.Mbiemri, Emertimi AS Lenda, V.Nota, S.Qyteti

FROM Studenti S, Vlersimi V, Lenda L

WHERE s.Student_ID=v.Studenti AND l.Kodi_L=v.Lenda and S.Qyteti = 'PR'

> Lidhja ndermjet Studentit, vlersimit, dhe Lendes

Çelsi jashtëm

> Çelsi jashtëm

Vlersimi			
Studenti	Lenda	Emertim	Nota
S107	DBS	Dhjetë	10
\$100	CAO	Shtatë	7
S102	CN	Tetë	8
S103	DBS	Nëntë	9
S106	DBS	Tetë	8
S108	CS2	Tetë	8
S100	CS2	Dhjetë	10
S101	CN	Gjashtë	6
S100	CN	Nëntë	9
S102	CAO	Nëntë	9
			·

⊞ Kes	suits 🛅 Mes	sages			
	Emri	Mbiemri	Lenda	Nota	Qytet
1	Lenonora	Peci	Sistemi i Bazave te te Dhenave	10	PR
2	Kushtrim	Hoxha	Sistemi i Bazave te te Dhenave	8	PR
3	Besiana	Shkembi	Shkenca Kompjuterike 2 (POO)	8	PR

Ndërlidhja e Tabelave me JOINs

PJESA DYTË

Ramiz HOXHA

JOINING tabelat/relacionet e Bazës së të Dhvnave

- □ Lidhja mes relacioneve/JOIN është e rëndesishem që bënë dallimin në baza të të dhënave relacionale
 - Bashkimi (JOIN) kryhet kur dhëna janë marrur nga më shumë se një tabelë njëkohëtsisht.
 - Për t'i bashkuar tabelat, ju thjesht listoni tabelat me klauzolën FROM në deklaratën SELECT.
 - SMBDH do të krijojë produkt kartezian i çdo tabele në klauzolën FROM.
 - Përdorni klauzolë WHERE për të refernecuar atributet që përdoruren për lidhjen e tabelave
 - o klauzola WHERE nganjëherë quhet si **një kusht për bashkim** të tabelave.

JOINs

- Modeli relacional ju mundson të merrni të dhëna nga tabela të veçanta në relacione të reja.
- Relacionet bëhen të qarta kur manipulohen me të dhënat:
 - kur ato i kërkoni në bazën e të dhënave, jo kur e krijoni.
 - Mund të bashkoheni (JOIN) në çdo kolonë në tabela, për sa kohë që llojet e të dhënave përputhen dhe operacioni ka kuptim.
- □J0lNs i mirë
 - Kolonat e JOIN duhet të kenë lloje të përputhshëm të të dhënave.
 - Join column is usually key column Kolona e JOIN është zakonisht kolona Çelës:
- Ose Çelësi kryesor (PK) ose Çelësi i huaj (FK)
 - Nulls kurr nuk do te bashkohen (join).

Operatoret SQL të Bashkimit (JOINs)

- Operacionet SQL të bashkimit (JOIN's) përdoret për të kombinuar rreshtat nga dy ose më shumë tabelave, bazuar në kolonat lidhse mes atyre tabelave. Më që rast kthejn rreshta sipas një nga kushtet e mëposhtme:
 - Kanë vlera të përbashkëta në kolona të përbashkëta (bashkohet natyrshëm/natural join).
 - Arrin kushtet të caktuar të bashkimit (barazis ose pabarazis).
 - Kanë vlera të përbashkëta në kolona të përbashkëta ose nuk kanë vlera të përputhshme (bashkimi i jashtëm).
- ☐ Kemi 4 lloje themelore të operacionit JOIN:
 - (INNER) JOIN: Zgjidhni ose selektojn të dhënat që kanë përputhje të vlerave në të dy tabelat.
 - LEFT (OUTER) JOIN: Zgjidhni të dhënat nga tabela e parë (të majtës më së shumti) që përputhen me të dhënat e tabelës së djathtë.
 - RIGHT (OUTER) JOIN: Zgjidhni të dhënat nga tabela e dytë (djathtes më së shumti) që përputhen me të dhënat e tabelës së majtë.
 - FULL (OUTER) JOIN: Zgjedh të gjitha të dhënat që përputhen me cilendo nga të dhënat e tabelave e së majtës dhe e së djathtës.

© 2020 UBT

14

Lloje të ndryshem të JOIN-nëve

Llojet e 'JOIN' -neve

- □ INNER JOIN (d.m.th: **JOIN**)
 - Shembulli i mëparshëm është një bashkim i brendshëm (INNER JOIN)
- □ LEFT OUTER JOIN (d.m.th: *LEFT* JOIN)
- □ RIGHT OUTER JOIN (d.m.th: *RIGHT* JOIN)
- □ FULL OUTER JOIN (d.m.th: *FULL JOIN*)
 - tab1 tipi_join tab1 ON [kushti_join_]
 - kushtet e JOIN-it normalisht krahason dy kolona, të cilat duhet të jenë të të njëjtit lloj të të dhënave.
 - ✓ (numri = numri, string = string)
 - kryesisht 'Çelësi Primar' = 'Çelësi i Huaj

15

TABLE 8.1

SQL JOIN EXPRESSION STYLES

JOIN CLASSIFICATION	JOIN TYPE	SQL SYNTAX EXAMPLE	DESCRIPTION
CROSS	CROSS JOIN	SELECT * FROM T1, T2	Returns the Cartesian product of T1 and T2 (old style)
		SELECT * FROM T1 CROSS JOIN T2	Returns the Cartesian product of T1 and T2
INNER	Old-style JOIN	SELECT * FROM T1, T2 WHERE T1.C1=T2.C1	Returns only the rows that meet the join condition in the WHERE clause (old style); only rows with matching values are selected
	NATURAL JOIN	SELECT * FROM T1 NATURAL JOIN T2	Returns only the rows with matching values in the matching columns; the matching columns must have the same names and similar data types
	JOIN USING	SELECT * FROM T1 JOIN T2 USING (C1)	Returns only the rows with matching values in the columns indicated in the USING clause
	JOIN ON	SELECT * FROM T1 JOIN T2 ON T1.C1=T2.C1	Returns only the rows that meet the join condition indicated in the ON clause
OUTER	LEFT JOIN	SELECT * FROM T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C1	Returns rows with matching values and includes all rows from the left table (T1) with unmatched values
	RIGHT JOIN	SELECT * FROM T1 RIGHT OUTER JOIN T2 ON T1.C1=T2.C1	Returns rows with matching values and includes all rows from the right table (T2) with unmatched values
	FULL JOIN	SELECT * FROM T1 FULL OUTER JOIN T2 ON T1.C1=T2.C1	Returns rows with matching values and includes all rows from both tables (T1 and T2) with unmatched values

Ramiz HOXHA © 2020 UBT 16

INNER JOIN (JOIN i thjeshtë)

SQL Server INNERJOIN kthehen të gjitha rreshtat nga tabelat të shumta ku kusht i **JOIN** është plotësuar.

Sintaksa për INNER JOIN në SQL Server (krijoj-SQL) është:

S_ID	Supplier Name
1000	IBM
1010	Hewlett Packard
1020	Microsoft
1030	NVIDIA

O_ID	Suppliers_ID	Order Date
5000	1000	2003-05-12
5010	1010	2003-05-13
5030	1030	2003-05-14
5040	1000	2003-06-14

INNER JOIN

Select S.S_ID, S.[Supplier
Name], 0.0_ID
From Suppliers S
Inner Join Orders 0
On S.S_ID =
0.Suppliers_ID;

Rezultati: INNER JOIN

S_ID	Supplier Name	O_ID
1000	IBM	5000
1010	Hewlett Packard	5010
1030	NVIDIA	5030
1000	IBM	5040

/*Në raportin tuaj të shfaqeni të gjithë studentet <u>që kanë kaluar</u> lëndët përkatse. Në këtë raport të shaqet emri, mbiemri, lëndën dhe notën për secilin student.*/

Select s.Emri, s.Mbiemri, l.Emertimi, v.Nota

From Studenti S INNER JOIN Vlersimi V
 on s.Student_ID=v.Studenti
 INNER JOIN Lenda l
 on l.Kodi_L=v.Lenda

order by v.Nota desc

	Emri	Mbiemri	Emertimi	Nota
1	Lenonora	Peci	Sistemi i Bazave te te Dhenave	10
2	Liberta	Buja	Shkenca Kompjuterike 2 (POO)	10
3	Liberta	Buja	Rrjetat Kompjuterike	9
4	Edita	Syla	Arkitektura Kompjuterike dhe Organizimi	9
5	Visar	Dema	Sistemi i Bazave te te Dhenave	9
6	Kushtrim	Hoxha	Sistemi i Bazave te te Dhenave	8
7	Besiana	Shkembi	Shkenca Kompjuterike 2 (POO)	8
8	Edita	Syla	Rrjetat Kompjuterike	8
9	Liberta	Buja	Arkitektura Kompjuterike dhe Organizimi	7
10	Berat	Gashi	Rrjetat Kompjuterike	6

LEFT OUTER JOIN

- □ SQL Server LEFT OUTER JOIN ose LEFT JOIN kthehen të gjitha rreshtat nga tabelat të shumta ku kusht i **JOIN** është plotësuar.
- Sintaksa për LEFT OUTER JOIN në SQL Server (krijoj-SQL) është:

```
SELECT t1.kolona, t2.kolona
FROM tabela1 t1 LEFT JOIN
tabela t2
ON t1.PRIMARYKEY = t2.FOREIGNKEY
```

S_ID	Supplier Name
1000	IBM
1010	Hewlett Packard
1020	Microsoft
1030	NVIDIA

O_ID	Suppliers_ID	Order Date
5000	1000	2003-05-12
5010	1010	2003-05-13
5030	1030	2003-05-14
5040	1000	2003-06-14

LEFT OUTER JOIN

Select S.S_ID, S.[Supplier
Name], 0.0_ID
From Suppliers S
LEFT OUTER Join Orders 0
On S.S_ID =
0.Suppliers_ID;

S_ID	Supplier Name	O_ID
1000	IBM	5000
1000	IBM	5040
1010	Hewlett Packard	5010
1020	Microsoft	NULL

5030

NVIDIA

Rezultati: LEFT OUTER JOIN

shembull: LEFT OUTER JOIN

/*Në raportin tuaj të shfaqeni të gjithe **studentet** që <u>nuk kanë kaluar ndonjë lëndë</u>.Në këtë raport të shfaqet emri, mbiemri, lënda dhe nota për të e verifikuar secilin student.*/

⊞ Re	Results Messages					
Emri Mbiemri Emertimi Nota						
1	Alketa	Jakupi	NULL	NULL		
2	Antigona	Peci	NULL	NULL		
3	Kushtrim	Kollari	NULL	NULL		
4	Veton	Sopa	NULL	NULL		

20

RIGHT OUTER JOIN

- □ SQL Server RIGHT OUTER JOIN ose RIGHT JOIN kthehen të gjitha rreshtat nga tabelat të shumta ku kusht i **JOIN** është plotësuar.
- Sintaksa për RIGHT OUTER JOIN në SQL Server (krijoj-SQL) është:

```
SELECT t1.kolona, t2.kolona
FROM tabela1 t1 RIGHT JOIN
tabela t2
ON t1.PRIMARYKEY = t2.FOREIGNKEY
```

S_ID	Supplier Name
1000	IBM
1010	Hewlett Packard
1020	Microsoft
1030	NVIDIA

O_ID	Suppliers_ID	Order Date
5000	1000	2003-05-12
5010	1010	2003-05-13
5030	1030	2003-05-14
5040	1000	2003-06-14

RIGHT OUTER JOIN

S_ID	Supplier Name	O_ID
1000	IBM	5000
1010	Hewlett Packard	5010
1030	NVIDIA	5030
1000	IBM	5040

Rezultati: RIGHT OUTER JOIN

shembull: RIGHT OUTER JOIN

/*Në **raportin** tuaj të <u>shfaqeni Lëndët</u>, ku nuk ka kaluar **ndonjë** student. Në këtë raport të shaqet

lënda, dhe ECTS për të e verifikuar secilin Lëndë.*/

⊞ Re	esults	Messa Messa	ages		
	Stu	denti	Lenda	Emertimi	ECTS
1	NU	LL	NULL	Alogoritme dhe Struktura e te Dhenave	4
2	NU	LL	NULL	Strukutura Diskrete 1	5

FULL OUTER JOIN

- □ SQL Server FULL OUTER JOIN ose FULL JOIN kthehen të gjitha rreshtat nga tabelat të shumta ku kusht i **JOIN** është plotësuar.
- Sintaksa për FULL OUTER JOIN në SQL Server (krijoj-SQL) është:

```
SELECT t1.kolona, t2.kolona
FROM tabela1 t1 FULL JOIN
tabela t2
ON t1.PRIMARYKEY = t2.FOREIGNKEY
```

S_ID	Supplier Name
1000	IBM
1010	Hewlett Packard
1020	Microsoft
1030	NVIDIA

O_ID	Suppliers_ID	Order Date
5000	1000	2003-05-12
5010	1010	2003-05-13
5030	1030	2003-05-14
5040	1000	2003-06-14

23

FULL OUTER JOIN

Select S.S_ID, S.[Supplier
Name], 0.0_ID
From Suppliers S
FULL OUTER JOIN Orders 0
On S.S_ID =
0.Suppliers_ID;

Rezultati: FULL OUTER JOIN

S_ID	Supplier Name	O_ID
1000	IBM	5000
1000	IBM	5040
1010	Hewlett Packard	5010
1020	Microsoft	NULL
1030	NVIDIA	5030

shembull: FULL OUTER JOIN

/*Në *raportin* tuaj të *verifikon* cilit **student** nuk ka kaluar ndonjë **lënd**, po ashtu në të njëjton *raport* të *shfaqeni* Lëndët në të cilat kalushmeria ka qenë zero. Në raport të shaqet *emrin*, *mbiemrin e studentit* dhe *lënda*, *dhe ECTS*.*/

SELF JOINS (relacione rekursive)

- □ Ne duam listën e punonjësve dhe emrin menaxherve të tyre. Menaxheri mund të jetë çelësi i huaj në tabelën e menaxherit, por duhet të jetë çelësi i 'huaj' në tabelën e punonjësve në këtë rast
 - SQL na lejon ta bëni këtë duke i dhënë alias:

SELECT Emp.Name, Manager.Name FROM Employees **E**, Employees **Manager** WHERE E.Mgr = Manager.EmpNbr Employees (physical table)

EmpNbr	Name	Title	Mgr
105	Mary Smith	Analyst	104
109	Jill Jones	Sr Analyst	107
104	Sally Silver	Manager	111
107	Pat Brown	Manager	111
111	Eileen Howe	President	

Emp (alias/virtual)

EmpNbr	Name	Title	Mgr
105	Mary Smith	Analyst	104
109	Jill Jones	Sr Analyst	107
104	Sally Silver	Manager	111
107	Pat Brown	Manager	111
111	Eileen Howe	President	

25

(Implicit syntax)
SELECT Emp.Name, Manager.Name
FROM Employees AS Emp INNER JOIN Employees AS Manager

ON Emp.Mgr = Manager.EmpNbr

Manager (alias/virtual)

The state of the second				
EmpNbr	Name	Title	Mgr	
105	Mary Smith	Analyst	104	
109	Jill Jones	Sr Analyst	107	
104	Sally Silver	Manager	111	
107	Pat Brown	Manager	111	
111	Eileen Howe	President		

	LJOINS		
LEFT INCLUSIVE	RIGHT INCLUSIVE		
SELECT [Select List] SELECT [Select List]			
FROM TableA A	FROM TableA A		
LEFT OUTER JOIN TableB B	RIGHT OUTER JOIN TableB B		
ON A.Key= B.Key	ON A.Key= B.Key		
LEFT EXCLUSIVE	RIGHT EXCLUSIVE		
SELECT [Select List]	SELECT [Select List]		
FROM TableA A	FROM TableA A		
LEFT OUTER JOIN TableB B	LEFT OUTER JOIN TableB B		
ON A.Key= B.Key	ON A.Key= B.Key		
WHERE B.Key IS NULL	WHERE A.Key IS NULL		
FULL OUTER INCLUSIVE	FULL OUTER EXCLUSIVE		
SELECT [Select List]	SELECT [Select List]		
FROM TableA A	FROM TableA A		
FULL OUTER JOIN TableB B	FULL OUTER JOIN TableB B		
ON A.Key = B.Key	ON A.Key = B.Key		
	WHERE A.Key IS NULL OR B.Key IS NUL		
energy (INNER JOIN		
	[Select List]		
FROM	TableA A		

INNER JOIN TableB B ON A.Key = B.Key

Table A = Employees (EmployeeID, LastName, ...) ^ Table B = Orders (OrderID, EmployeeID, ...)

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key

All employees and all orders

SELECT Employees.LastName, Orders.OrderlD

FROM Employees

FULL JOIN Orders

ON Employees. EmployeeID=Orders. EmployeeID

SELECT <select_list> FROM TableA A LEFT JOIN TableB B ON A.Key = B.Key WHERE B.Key IS NULL

Employees who have not registered any orders.

SELECT Employees.LastName, Orders.OrderlD

FROM Employees

LEFT JOIN Orders

ON Employees. EmployeeID=Orders. EmployeeID

WHERE Orders. OrderID IS NULL

SELECT <select_list> FROM TableA A RIGHT JOIN TableB B ON A.Key = B.Key WHERE A.Key IS NULL

Orders that were not registered by any employee.

SELECT Employees.LastName, Orders.OrderlD

FROM Employees

RIGHT JOIN Orders

ON Employees. EmployeeID=Orders. EmployeeID

WHERE Employees. EmployeeID IS NULL

Table A = Employees (EmployeeID, LastName, ...) ^ Table B = Orders (OrderID, EmployeeID, ...)

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL
OR B.Key IS NULL

Employees who have not registered any orders and orders that have not been registered by any employee.

SELECT Employees.LastName, Orders.OrderlD

FROM Employees

FULL OUTER JOIN Orders

ON Employees. EmployeeID=Orders. EmployeeID

WHERE (Employees.EmployeeID IS NULL) OR

(Orders.OrderID IS NULL)

All possible combinations between employees and orders
(Cartesian product)

SELECT Employees.LastName, Orders.OrderID

FROM Employees

CROSS JOIN Orders

https://way2tutorial.com/sql/sql_join_types_visual_venn_diagram.php

https://www.oracletutorial.com/oracle-basics/oracle-joins/

28

Referenca

Kapitulli 7 & Kapitulli 8: Database Systems: Design, Implementation, and Management, 12th Edition Carlos Coronel and Steven Morris.

Kapitulli 3: Database System Concepts, 7thED – Abraham Silberschatz, Henry F. Korth, S. Sudarshan

29

https://www.techonthenet.com/sql/update.php https://www.zentut.com/sql-tutorial/sql-update/

DDL: shembull 2

Shembull: Baza e të Dhënave Relacionale

Kosumatori					
kosumatori_ID	emri	mbiemri	rruga	kodi_postar	qyteti
1	Rron	Berisha	27 Deshmoret 1912	10000	PR
2	Edona	Gashi	76 Hasan Mekuli	50000	GJK
7	Alton	Krasniqi	125 Skenderbeu	20000	PZ
26	Reneta	Musa	82 Bujaria	30000	PJ
8	Erlis	Sopa	67 Bajrush Doda	10000	PR
9	Antoneta	Gerxhaliu	10 Hasan Prishtina	10000	PR

Furnizuesi		
Furnizuesi_ID	emri_kompanis	qyteti
A50	comtrada	PR
X88	alltech	GJK
X90A	hitech	PJ

Produkti				
nr_serik	emri_brandit	tipi	çmimi	viti_prodhimit
G62-465DX	HP	laptop	630.59	2014
23-g040xt	HP	All-in One	890.99	2016
W88401231AX	apple	laptop	1360.89	2016
266-SKX-X1	Lenovo	laptop	1170.96	2017

Urdhresa					
urdhresa_ID	kosumatori_ID	nr_serik	data	sasia	statusi
100	1	G62-465DX	14.07.2017	1	dorëzuar
200	7	23-g040xt	19.10.2017	2	hapur
300	1	W88401231AX	20.10.2017	1	dorëzuar
400	9	266-SKX-X1	2.11.2017	3	hapur

skemat e relacionineve përkatëse janë si më poshtë:

Kosumatori (kosumatori_ID, emir, mbiemri, rruga, kodi_postar, qyteti)
Produkti (nr_serik, emir_brandit, tipi, çmimi, viti_prodhimit)
Urdhresa (urdhresa_ID, kosumatori_ID(FK), nr_serik(FK), data, sasia, statusi)
Furnizuesi (furnizues_ID, emir_kompanis, qyteti)

Hadlanaaa

Dëfinimet e tabelave

```
--Krijon Bazen e te Dhenave
create database L DDL1718
create table Kosumatori
   kosumator_ID int Primary key,
   emri varchar(50) not null,
   mbiemri varchar(50),
   rruga varchar(100),
   kodi_postar varchar(10),
   qyteti char(5)
create table Produkti
   nr_serik varchar (20),
   emri brandit varchar(50) not null,
   tipi varchar(20),
   çmimi decimal,
   viti_prodhimit date,
   primary key(nr_serik)
```

```
create table urdhresa
   urdhresa ID int primary key,
   kosumatori int.
   produkti varchar(20),
   date urdhreses date,
   sasia decimal(4, 2),
   statusi varchar(10),
   foreign key(kosumatori) references
       Kosumatori(kosumator ID)
   ON Update cascade On Delete set null,
   foreign key(produkti) references
           Produkti(nr serik)
   ON UPDATE CASCADE,
```