相似

Didnelpsun

目录

1	特征值与特征向量				
	1.1	代数余子式			
	1.2	特征值	直	. 1	
		1.2.1	对应特征向量	. 1	
		1.2.2	矩阵关系式	. 2	
	1.3	特征向量 2			
		1.3.1	实对称矩阵	. 2	
		1.3.2	可逆矩阵关系	. 3	
		1.3.3	抽象型	. 3	
	1.4	矩阵 .		. 3	
	1.5	行列式	戈值	. 3	
		1.5.1	特征方程	. 3	
		1.5.2	矩阵函数	. 4	
2	相似理论 4				
	2.1				
	2.2	反求参数			
			两个矩阵对比		
		2.2.2	单矩阵		
		2.2.3	抽象型		
	2.3	相似矩			
		2.3.1			
		2.3.2	正交相似		
	2.4	矩阵关			

特征值往往与前面的内容进行混合考察。

1 特征值与特征向量

首先根据 $|\lambda E - A| = 0$ 求出 λ ,然后把 λ 逐个带入 $(\lambda E - A)x = 0$,根据 齐次方程求解方法进行初等变换求出基础解系。这个基础解系就是当前特征值 的特征向量。

1.1 代数余子式

例题: 已知 A 是 3 阶方阵,特征值为 1, 2, 3, 求 |A| 的元素 a_{11}, a_{22}, a_{33} 的代数余子式 A_{11}, A_{22}, A_{33} 的和 $\sum_{i=1}^{3} A_{ii}$ 。

解:首先代数余子式的和 A_{11}^{-1} , A_{22} , A_{33} 一般在行列式展开定理中使用,但是这里给出的不是一行或一列的代数余子式,而是主对角线上的代数余子式,这就无法使用代数余子式来表达行列式的值了。

而另一个提到代数余子式的地方就是伴随矩阵 A^* ,所求的正好是伴随矩阵的迹 $tr(A^*) = A_{11} + A_{22} + A_{33}$ 。

又根据特征值性质,特征值的和为矩阵的迹,特征值的积为矩阵行列式的值, 所以 $tr(A^*) = A_{11} + A_{22} + A_{33} = \lambda_1^* + \lambda_2^* + \lambda_3^*$ $= \sum_{i=1}^3 \frac{|A|}{\lambda_i} = \sum_{i=1}^3 \frac{\lambda_1 \lambda_2 \lambda_3}{\lambda_i} = \lambda_2 \lambda_3 + \lambda_1 \lambda_3 + \lambda_1 \lambda_2 = 2 + 3 + 6 = 11$ 。

1.2 特征值

1.2.1 对应特征向量

通过相关式子将逆矩阵转换为原矩阵。同一个向量的逆矩阵的特征值是原矩阵的特征值的倒数。

例题: 已知
$$\overrightarrow{\alpha} = (a,1,1)^T$$
 是矩阵 $A = \begin{bmatrix} -1 & 2 & 2 \\ 2 & a & -2 \\ 2 & -2 & -1 \end{bmatrix}$ 的逆矩阵的特征向

= 则求 $\overrightarrow{\alpha}$ 在矩阵 A 中对应的特征值。

解: 由于 $\overrightarrow{\alpha}$ 是 A^{-1} 的特征向量,所以令此时的特征值为 λ_0 ,则定义 $\lambda_0 \overrightarrow{\alpha} = A^{-1} \overrightarrow{\alpha}$, $\lambda_0 A \overrightarrow{\alpha} = \overrightarrow{\alpha}$ 。

$$\mathbb{E} \lambda_0 \begin{bmatrix} -1 & 2 & 2 \\ 2 & a & -2 \\ 2 & -2 & -1 \end{bmatrix} \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}, \quad \mathbb{E} \lambda_0 \begin{bmatrix} -a & 2 & 2 \\ 2a & a & -2 \\ 2a & -2 & -1 \end{bmatrix} = \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}.$$

即根据矩阵代表的是方程组,得到 $\lambda_0(4-a) = a$, $\lambda_0(3a-2) = 1$, $\lambda_0(2a-3) = 0$

1.

又
$$\lambda_0 \neq 0$$
, $3a - 2 = 2a - 3$, $a = -1$, 则 $\lambda_0 = -\frac{1}{5}$ 。
所以矩阵 A 对应的特征值为 -5 。

1.2.2 矩阵关系式

例题: 已知 A 为 3 阶矩阵, $A^2 + A - 2E = 0$,|A| = -2,求其特征值。

解:需要求 A 特征值,但是 A 未知,特征向量也未知,如何求?

首先要求特征值,就要首先设出特征方程: $A\xi = \lambda \xi, \xi \neq 0$ 。

又
$$A^2 + A - 2E = 0$$
,所以代入方程: $(A^2 + A - 2E)\xi = (\lambda^2 + \lambda - 2)\xi = 0$ 。
 :: $\xi \neq 0$, $\lambda^2 + \lambda - 2 = 0$,解得 $\lambda = -2$ 或 $\lambda = 1$ 。

但是不知道这个特征值各是几重,只知道存在这两种特征值。

又
$$|A| = \lambda_1 \lambda_2 \lambda_3 = -2$$
,所以 $\lambda_1 = -2$, $\lambda_2 = \lambda_3 = 1$ 。

1.3 特征向量

1.3.1 实对称矩阵

使用实对称矩阵性质,给出其他特征向量和特征值,即实对称矩阵的不同特征值的特征向量相互正交($B^TA=0$)。

例题: 已知 A 为三阶实对称矩阵,特征值为 1,3-2,其中 $\alpha_1=(1,2,-2)^T$, $\alpha_2=(4,-1,a)^T$ 分别属于特征值 $\lambda=1$, $\lambda=3$ 的特征向量。求 A 属于特征值 $\lambda=-2$ 的特征向量。

解: 令 A 属于特征值 $\lambda = -2$ 的特征向量为 $(x_1, x_2, x_3)^T$ 。

根据实对称矩阵的正交性质。

$$\alpha_1^T\alpha_2 = 4 - 2 - 2a = 0$$
, $\alpha_2^T\alpha_3 = 4x_1 - x_2 + ax_3 = 0$, $\alpha_3^T\alpha_1 = x_1 + 2x_2 - 2x_3 = 0$ 。 $a = 1$, $4x_1 - x_2 + x_3 = 0$, $x_1 + 2x_2 - 2x_3 = 0$,解得基础解系 $(0, 1, 1)^T$, $\alpha_3 = (0, k, k)^T$ $(k \neq 0)$ 。

1.3.2 可逆矩阵关系

使用可逆矩阵相似对角化的性质。若 $A \sim B$,则 $P^{-1}AP = B$ 。B 为纯量阵。且 B 的迹为 A 的特征值。P 为特征向量。

例题: 已知
$$P^{-1}AP=\begin{bmatrix}1\\&1\\&&-1\end{bmatrix}$$
, $P=(\alpha_1,\alpha_2,\alpha_3)$ 可逆,求 A 关于特

征值 $\lambda = 1$ 的特征向量。

解:根据 $P^{-1}AP = \Lambda$,所以 P 为特征向量,1,1,-1 为特征值。

所以 A 关于 $\lambda = 1$ 的特征向量为 α_1 或 α_2 。而某一特征值的全部特征向量构成特征向量子空间,所以 $\lambda = 1$ 的特征向量为 $k_1\alpha_1 + k_2\alpha_2$ 。

1.3.3 抽象型

题目只会给对应的式子,来求对应的特征向量。需要记住特征值的关系式然 后与给出的式子上靠拢,不会很复杂。

例题:已知 A 为三阶矩阵,且矩阵 A 各行元素之和均为 5,则求 A 必然存在的特征向量。

解:由于是抽象型,所以没有实际的数据,就不能求出固定的特征值, $\lambda \xi = A \xi$ 。 又矩阵 A 各行元素之和均为 5,所以转换为方程组:

$$\begin{cases} A_{11} + A_{12} + A_{13} = 5 \\ A_{21} + A_{22} + A_{23} = 5 \end{cases}$$
,转为矩阵:
$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} + A_{32} + A_{33} = 5 \end{cases}$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
即 $\xi = (1, 1, 1)^T$ 。

1.4 矩阵

即根据 $A = P\Lambda P^{-1}$ 的特征向量矩阵和特征值矩阵来反求矩阵。

1.5 行列式值

一般会给出特征值,求A的行列式值。

1.5.1 特征方程

题目要求 |f(A) - E| 的形式,即求 f(A) 的特征值。

例题: 设 A 为三阶矩阵,已知 -3E+A 不可逆,|2E+A|=0,(E-A)x=0 有非零解,求 $|A^*-E|$ 。

解: 前三个条件都是为了指明 |-3E+A|=|3E-A|=0,|-2E-A|=0,|E-A|=0,即得到 A 的三个特征值 $\lambda_1=3$ 、 $\lambda_2=-2$ 、 $\lambda_3=1$ 。

求 $|A^* - E|$ 即求 A^* 的特征值,然后再乘起来,即得到行列式的值。

又
$$A^{-1} = \frac{A^*}{|A|}$$
,所以 $A^* = \frac{|A|}{A}$ 。

|A| 等于特征值的乘积 -6,对应的特征值即为 $\mu_1 = \frac{-6}{3} = -2$, $\mu_2 = \frac{-6}{-2} = 3$, $\mu_3 = \frac{-6}{1} = -6$ 。

对应 $A^* - E$ 的特征值为 -3, 2, -6, 所以最后的行列式值为 42。

1.5.2 矩阵函数

题目要求 |f(A)| 的形式,即求 f(A) 的特征值,然后求其乘积就是矩阵方程的行列式值。

2 相似理论

 $P^{-1}AP = \Lambda$, P 为特征向量组, Λ 为特征值矩阵。

2.1 判断相似对角化

可以使用相似对角化的四个条件,但是最基本的使用还是 A 有 n 个无关的特征向量 ε 。

判断以下条件即可相似对角化:

- 1. 实对称矩阵,即所有元素关于主对角线对称。
- 2. 特征值都是实单根, 即 n 个不同特征值, 不存在重根。
- 3. 特征值存在 t 重根,相同特征值对应 t 个线性无关的特征向量。(如果小于 n 则不相似)
- 一般都是第三种情况,判断存在重根后要使用 $[\lambda E A]$,然后计算 r(E A),然后 s 自由变量值即无关特征向量值 = n r,如果 s = t 则可以相似对角化,如果 s < t 则不可以。

2.2 反求参数

常用方法:

- 若 $A \sim B$,则 |A| = |B|,r(A) = r(B),tr(A) = tr(B), $\lambda_A = \lambda_B$,通过等式计算参数。
- $\Xi \xi \neq A$ 属于特征值 λ 的特征向量,则有 $A\xi = \lambda \xi$,建立若干等式或方程组来计算参数。
- 若 λ 是 A 的特征值,则与 $|\lambda E A| = 0$,通过该等式计算参数。

2.2.1 两个矩阵对比

两个矩阵相似的前提是可以相似对角化,如果存在 n 重根而没有 n 个线性无关的特征向量则必然不相似。

例题: 已知
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$$
, $B = \begin{pmatrix} 2 \\ y \\ -1 \end{pmatrix}$, 且 $A \sim B$, 求参数。

首先可以利用迹相等,则 2+0+x=2+y-1,行列式值相等,则 -2=-2y,解得 x=0, y=1。

2.2.2 单矩阵

- 1. 利用 $|\lambda E A| = 0$ 求出特征值。判断得到 n 阶矩阵有 m 个不同特征值。 $(m \le n)$
- 2. 利用 $[\lambda E A]$ 计算秩。利用 s = n r (自由变量的个数 = 未知数个数-矩阵秩) 公式反解出秩 r,并以此解出未知数。

例题: 已知矩阵
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 0 & 2 & a \\ 0 & 0 & 3 \end{bmatrix}$$
 和对角矩阵相似,求 a 。

解:由于 A 是对角矩阵,所以特征值为其迹 $\lambda=(3,2,3)$ 。特征值有二重根。已知 $A\sim\Lambda$, $\lambda=3$ 有两个线性无关的特征向量。即 (3E-A)x=0 有两个线性无关的解(自由变量)。即 r(3E-A)=1。

$$3E - A = \begin{bmatrix} 0 & -1 & -2 \\ 0 & 1 & -a \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & -2 \\ 0 & 0 & -a - 2 \\ 0 & 0 & 0 \end{bmatrix}, \therefore a = -2.$$

2.2.3 抽象型

首先要计算其特征值,再根据特征值反代特征方程,根据向量的构成判定秩的大小。

例题: 已知
$$A = \begin{pmatrix} 0 & 0 & 1 \\ x & 1 & y \\ 1 & 0 & 0 \end{pmatrix}$$
 相似于对角矩阵,求 xy 关系式。

解:已知相似,即 $P^{-1}AP = \Lambda$,则需要求 A 的特征值和特征向量。

根据特征关系式
$$|E\lambda - A| = 0$$
,即 $\begin{vmatrix} \lambda & 0 & -1 \\ -x & \lambda - 1 & -y \\ -1 & 0 & \lambda \end{vmatrix} = (\lambda - 1)(\lambda^2 - 1) =$

 $(\lambda - 1)^2(\lambda + 1) = 0$,即有特征值 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 1$ 。

此时有二重特征值,所以应该有两个线性无关的特征向量,即对于 (E-A)x=0 有两个线性无关的解向量,所以该矩阵的秩为 3-2=1。

$$E - A = \begin{pmatrix} 1 & 0 & -1 \\ -x & 1 & -y \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & -x - y \\ 0 & 0 & 0 \end{pmatrix}$$
所以当 $r(E - A) = 1$ 时 $x + y = 0$.

2.3 相似矩阵

2.3.1 抽象型

例题: 设 A 是三阶矩阵, $\alpha_1, \alpha_2, \alpha_3$ 是三维线性无关的列向量,且 $A\alpha_1 = \alpha_2 + \alpha_3$, $A\alpha_2 = \alpha_1 + \alpha_3$, $A\alpha_3 = \alpha_1 + \alpha_2$,求 A 相似的矩阵。

解: $A \sim \Lambda$, 则 $P^{-1}AP = \Lambda$ 。

$$A(\alpha_1, \alpha_2, \alpha_3) = (\alpha_2 + \alpha_3, \alpha_1 + \alpha_3, \alpha_1 + \alpha_2) = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

又 $\alpha_1, \alpha_2, \alpha_3$ 是三维线性无关的列向量, $\therefore |\alpha_1, \alpha_2, \alpha_3| \neq 0$,所以 P 可逆。 $\therefore AP = PB, \ P^{-1}AP = B, \ A \sim B$ 。

2.3.2 正交相似

一般会给出特征值(全部)和对应的特征向量(部分)。

 $Q^{-1}AQ = P$ 。其中 Q 为特征向量矩阵,一般都是正交的,而 P 为对应的特 征值矩阵。

首先要利用不同特征值的特征向量正交的性质,把所有的特征向量都求出 来。

然后矩阵 Q 就是所有特征向量的拼合。如果要求原矩阵 A,则利用 $A\xi = \lambda \xi$, 推出 AQ = PQ,从而 $A = PQQ^{-1}$ 。

如果 $\alpha_1 = (1, 0, -1)^T$ 和 $\alpha_2 = (0, 1, 1)^T$ 是矩阵 A 属于特征值 $\lambda = 3$ 自 求Q。

解: 首先由正交矩阵就可以知道各特征值正交。令 $\alpha_3=(x_1,x_2,x_3)^T$ 。对应 的 $\lambda_3 = 6$ 。

 $\alpha_3^T \alpha_1 = x_1 - x_3 = 0$, $\alpha_3^T \alpha_2 = x_2 + x_3 = 0$,求 λ_3 的特征值,则不如令 $x_3 = 1$, 则解得 $\alpha_3 = (1, -1, 1)^T$

这样 $Q = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$,还需要将 Q 正交单位化。可知 α_3 根据正交规

 $(\frac{1}{2}, 1, \frac{1}{2})^T$.

量后对整个 Q 进行单位化: $\gamma_1 = \frac{1}{\sqrt{2}}(1,0,-1)^T$, $\gamma_2 = \frac{1}{\sqrt{6}}(1,2,1)^T$, $\gamma_3 =$ $\frac{1}{\sqrt{2}}(1,-1,1)^T$.

2.4 矩阵关系式

若有可逆矩阵 P,使得 $P^{-1}AP = \Lambda$,则: P 即是 A 特征向量的拼合。

- $A = P\Lambda P^{-1}$.
- $A^k = P\Lambda^k P^{-1}$

•
$$f(A) = Pf(\Lambda)P^{-1}$$

例题: 已知
$$A = \begin{pmatrix} 2 & x & 1 \\ 0 & 3 & 0 \\ 3 & -6 & 0 \end{pmatrix}$$
 相似于对角矩阵,求 A^{100} 。

$$|\lambda E - A\lambda| = \begin{vmatrix} \lambda - 2 & -x & -1 \\ 0 & \lambda - 3 & 0 \\ -3 & 6 & \lambda \end{vmatrix} = (\lambda - 3)^2 (\lambda + 1) = 0. \quad \lambda_1 = \lambda_2 = 3,$$

 $\lambda_3 = -1$

所以对于 $\lambda_1 = \lambda_2 = 3$ 时,需要 s = 2,从而 r(A) = 1,对应成比例。

代入 3:
$$(3E - A)x = 0$$
,
$$\begin{pmatrix} 1 & -x & -1 \\ 0 & 0 & 0 \\ -3 & 6 & 3 \end{pmatrix} = 0$$
, 所以 $\frac{-1}{3} = \frac{-x}{6}$, $x = 2$ 。 解得 $\xi_1 = (1,0,1)^T$, $\xi_2 = (2,1,0)^T$, $\xi_3 = (1,0,-3)^T$ 。

令
$$P = (\xi_1, \xi_2, \xi_3)$$
,所以 $A = P\Lambda P^{-1}$, $A^{100} = P\Lambda^{100}P^{-1}$ 。