

Team

Dheeraj

Achintya

Yujata

Agenda

- Problem Statement
- Methodology
 - Infrastructure Setup
 - Dataset Selection
 - Data Split & Preparation
 - Exploratory Data Analysis
 - Model Pipeline & Training
 - Pipeline Working Demo
 - Model Performance Monitoring
 - Feature Modification Impact
- Conclusion
- Contributions

Problem Statement

Goal

- DoorDash seeks to enhance customer satisfaction by improving delivery time estimates
- Current inaccuracies cause frustration and resource waste
- This project deploys a machine learning pipeline to predict delivery times accurately and maintain consistency through continuous monitoring

Challenges

- Data Quality Issues
- Target Variable Calculation

Expected Outcomes

- Improved ETA Accuracy
- Improved Experience and Efficiency
- Model Deployment and Monitoring

Methodology

Infrastructure Setup

1. Cluster Setup - for executing AutoML & Workflows

Summary 1-4 Workers 32-128 GB Memory 4-16 Cores 1 Driver 32 GB Memory, 4 Cores Runtime 14.3.x-cpu-ml-scala2.12 r6id.xlarge 2-6 DBU/h

- DataBricks runtime 14.3 ML makes it possible to execute AutoML and WorkFlows
- Runtimes greater than 14.3 ML has Python version 3.11 with which Evidently AI is not compatible.

2. Unity Catalog - Delta Tables - Feature Store

- training_data, version $0 \rightarrow \text{raw training data}$
- training data, latest version → processed training data
- modeling_features (feature store) → final features for modeling
- inference data, version $0 \rightarrow \text{raw}$ inference data
- inference data, latest version \rightarrow processed inference data
- modeling_features_inference → final features for predicting during inference

Column Name	# Records	# Missing Records	Missing Records %	Data Type
market_id	186613	943	0.502783	float64
created_at	187556	0	0.000000	object
actual_delivery_time	187549	7	0.003732	object
store_id	187556	0	0.000000	int64
store_primary_category	182883	4673	2.491523	object
order_protocol	186598	958	0.510781	float64
total_items	187556	0	0.000000	int64
subtotal	187556	0	0.000000	int64
num_distinct_items	187556	0	0.000000	int64
min_item_price	187556	0	0.000000	int64
max_item_price	187556	0	0.000000	int64
total_onshift_dashers	172072	15484	8.255668	float64
total_busy_dashers	172072	15484	8.255668	float64
total_outstanding_orders	172072	15484	8.255668	float64
estimated_order_place_duration	187556	0	0.000000	int64
estimated_store_to_consumer_driving_duration	187047	509	0.271386	float64

• Data Source: <u>kaggle</u>

• **About**: DoorDash Deliveries

• **Duration**: 4 Months

• Features: 16

• **Rows**: ~190K

Data Preparation

Made a copy of the **inference data** and swapped 'total_items' and 'subtotal' to create **inference data swapped**.

Preprocessed and Engineered 95% of Original Dataset: 34% Reduction from 180K to 118K Records

Data Preprocessing

- Missing value treatment
 - Fills missing store_primary_category values based on the most common category per store_id
 - Fills missing market_id values based on the most common market id per store id
- Data sanity check
- Outlier removal('delivery_seconds', 'subtotal', 'max item price')
 - Using IQR approach
- Feature engineering
 - (month, dayofweek, hour, %_available_riders, delivery seconds)

Version	# Outliers	% Outliers
Raw	42463	22.640171
Processed	19364	16.362745

Data Type	Missing Records %	# Missing Records	# Records	Column Name
int64	0.0	0	118342	order_id
int64	0.0	0	118342	market_id
datetime64[ns]	0.0	0	118342	created_at
object	0.0	0	118342	actual_delivery_time
int64	0.0	0	118342	store_id
object	0.0	0	118342	store_primary_category
float64	0.0	0	118342	order_protocol
int64	0.0	0	118342	total_items
int64	0.0	0	118342	subtotal
int64	0.0	0	118342	num_distinct_items
int64	0.0	0	118342	min_item_price
int64	0.0	0	118342	max_item_price
float64	0.0	0	118342	total_onshift_dashers
float64	0.0	0	118342	total_busy_dashers
float64	0.0	0	118342	total_outstanding_orders
int64	0.0	0	118342	estimated_order_place_duration
float64	0.0	0	118342	estimated_store_to_consumer_driving_duration
int64	0.0	0	118342	month
int64	0.0	0	118342	dayofweek
int64	0.0	0	118342	hour
float64	0.0	0	118342	%_available_riders
float64	0.0	0	118342	delivery_seconds

Delivery Seconds: Strongly Affected by Driving Duration and Outstanding Orders

Correlation Matrix:

The total_onshift_dashers, total_busy_dashers, and total_outstanding_orders are highly correlated, while estimated_order_place_duration is negatively correlated with order_protocol. Other features have weak correlations

Deriving "delivery_seconds": It is the time from order creation to delivery, excluding the estimated time to place the order

• Correlation with Delivery Seconds :

Delivery time is strongly influenced by driving duration and outstanding orders, while features like minimum item price and order protocol have little impact. Faster deliveries are observed during certain hours and when more riders are available

Peak Times and Delivery Challenges: A Weekday and Hourly Analysis

The *lowest average delivery times occur on Wednesdays* (2233 seconds), while the *highest are on Saturdays* (2547 seconds). The significant increase in orders and possible traffic congestion on Saturdays leads to longer delivery times, *despite more riders being available*

Average delivery times spike significantly at hour 14 (2758 seconds) and decrease sharply by hour 19 (2056 seconds), with available rider percentages fluctuating, suggesting peak demand or rider scarcity during certain hours

Distribution of Stores by Category and Service Attributes

Number of Stores

- American, Mexican, Japanese, and Sandwiches have 500+ stores
- German, Singaporean, Austrian, and Polish have < 100 stores
 Average Delivery Seconds
- Range: Delivery times generally fall between 33 to 50 minutes
 - Higher Times: Southern, Mediterranean, and Thai
 - Lower Times: Alcohol-plus-food, Brazilian, and Indian

- Alcohol-plus-food, Ethiopian, and Moroccan have the *highest* average item prices, all over 1400, with Alcohol-plus-food
 exceeding 1800
- Korean, French, Lebanese, and Japanese fall within the 800 to 1200 price range, indicating a *moderate pricing strategy*
- Bubble Tea, Fast Food, and Convenience Store have the *lowest* average item prices, all under 400, focusing on affordability

Pipeline 1: Training Pipeline

- training_data **version 0** is the input for "Data_Procproessing" and it writes back the processed data to training_data as a new version
- Saved **standard scaler** and **one hot encoder** fitted during training as **pickle files** to use them during inference. This is identified by the '**training_flag**' parameter

AutoML & Metric Used

Training dataset: mlops_project.modeling_features

Target column: delivery_seconds

Evaluation metric: val_root_mean_squared_error

Timeout: 60 minutes

Run Name	Created	Dataset	Duration	Source	Models	test_mean_absol	test_root_mean
delicate-smelt-365		dataset (b66600c2) Test_ , data +2	2.6min	■ Notebo	% sklearn	554.2652747	706.4405467
grandiose-jay-345		dataset (b66600c2) Test_ , data +2	2.1min		% sklearn	555.3832982	707.5719259
selective-seal-776		dataset (b66600c2) Test_ , data +2	2.4min	27	% sklearn	556.0013963	708.4737390
bouncy-skink-529	○ 1 day ago	dataset (b66600c2) Test_ , data +2	2.3min	-	% sklearn	556.1831547	708.5582089

- Chosen **RMSE** as the evaluation metric, as it quantifies the average error in delivery time predictions. This directly reflects how closely the model's ETA aligns with actual delivery times, providing a clear measure of potential delays if implemented in production
- AutoML implemented approximately 250 different models from LightGBM, XGBoost, RandomForest, SGD and Decision Trees. However, LightGBM outperformed other models, with a test RMSE of 12 minutes (approx)

```
LGBMRegressor(colsample_bytree=0.409575686295452,
lambda_l1=141.10516620147297,
lambda_l2=23.859424872327192,
learning_rate=0.026481749683722605,
max_bin=267, max_depth=12, min_child_samples=55,
n_estimators=1504, num_leaves=187,
random_state=211830047,
```

subsample=0.5008734724835469)

Model Fine Tuning & Deployment

- Created a hyperparameter grid around the hyperparameters given by AutoML for LightGBM
- Performed Random search reducing RMSE from 12 minutes to 11 minutes
- Logged this model on MLFlow and registered it as part of deployment

Pipeline 2: Inference Pipeline

- Loading the pickle files for standard scaler and one hot encoder fitted during training to transform data during inference
- Loads the deployed model and perform batch inference, logs the performance metrics on MLFlow and Data Drift on Evidently

Model Performance Monitoring

We observe an **increase** in RMSE/MAE by **4 seconds** during inference with the same model and data, but with columns swapped

Data Drift: Inference Set 1

Dataset Drift

Dataset Drift is detected. Dataset drift detection threshold is 0.011363636363636364

88

Columns

1

Drifted Columns

0.0114

Share of Drifted Columns

Drift in column 'prediction'

Data drift detected. Drift detection method: Wasserstein distance (normed). Drift score: 0.374

- Covariate shift **identified** in 'max_item_price'
- Prior probability drift **identified** with a drift score of **0.374**

Data Drift: Inference Set 2

Dataset Drift

Dataset Drift is detected. Dataset drift detection threshold is 0.011363636363636364

88 Columns

Drifted Columns

0.0341

Share of Drifted Columns

Drift in column 'prediction'

Data drift detected. Drift detection method: Wasserstein distance (normed). Drift score: 0.399

- Covariate shift **identified** in 3 columns: columns that were swapped ('total items', 'subtotal') and 'max item price'
- Prior probability drift **identified** with a drift score of **0.399** (greater than the score observed with inference set 1)

Conclusion

1

Project Achievements:

- Successfully deployed a machine learning pipeline to predict DoorDash delivery times accurately
- Improved ETA accuracy, enhancing customer satisfaction and operational efficiency
- Implemented robust data preprocessing, reducing the dataset by 34% while maintaining quality

2

Model Performance:

- Utilized AutoML to test ~250 models, with LightGBM emerging as the best performer
- Fine-tuned the model, reducing RMSE from 12 minutes to 11 minutes
- Achieved RMSE of 569.65 seconds (~9.5 minutes) on the first inference set

Data Insights:

- Identified key factors influencing delivery times: driving duration and outstanding orders
- Discovered patterns in delivery times across weekdays and hours, informing resource allocation
- Analyzed store categories and service attributes, revealing trends in delivery times and pricing

4

Monitoring and Drift Detection:

- Implemented continuous monitoring of model performance and data drift
- Detected covariate shift in 'max_item_price' and prior probability drift in both inference sets
- Observed slight performance degradation when feature values were swapped

5

Infrastructure and Pipeline:

- Successfully set up Databricks environment with Unity Catalog and Delta Tables
- Developed separate training and inference pipelines for maintainability and scalability

Future Directions:

- Further optimize the model based on drift insights
- Expand the feature set to capture more nuanced factors affecting delivery times
- Implement real-time monitoring and retraining strategies to maintain model accuracy

21

Contributions

- Achintya: Auto ML, Inference Pipeline
- **Dheeraj**: Training Pipeline, Model Deployment and Monitoring
- Yujata: EDA, Inference Pipeline