

Ву

Amritansh

Introduction

- Given an event, predict is category. Examples:
 - Who won a given ball game?
 - ► How should we file a given email?
 - What word sense was intended for a given occurrence of a word?
- Event = list of features. Examples:
 - Ball game: Which players were on offense?
 - ■Email: Who sent the email?
 - Disambiguation: What was the preceding word?

- Use a decision tree to predict categories for new events.
- Use training data to build the decision tree.

Decision Tree for PlayTennis

Word Sense Disambiguation

- Given an occurrence of a word, decide which sense, or meaning, was intended.
- Example: "run"
 - run1: move swiftly (I ran to the store.)
 - run2: operate (I run a store.)
 - run3: flow (Water runs from the spring.)
 - run4: length of torn stitches (Her stockings had a run.)
 - etc.

Word Sense Disambiguation

- Categories
 - Use word sense labels (run1, run2, etc.) to name the possible categories.
- Features
 - Features describe the context of the word we want to disambiguate.
 - Possible features include:
 - near(w): is the given word near an occurrence of word w?
 - pos: the word's part of speech
 - left(w): is the word immediately preceded by the word w?
 - etc.

7

Example decision tree:

(Note: Decision trees for WSD tend to be quite large)

WSD: Sample Training Data

	Word			
pos	near(race)	near(river)	near(stockings)	Sense
noun	no	no	no	run4
verb	no	no	no	run1
verb	no	yes	no	run3
noun	yes	yes	yes	run4
verb	no	no	yes	run1
verb	yes	yes	no	run2
verb	no	yes	yes	run3

Decision Tree for Conjunction

Outlook=Sunny \(\text{Wind=Weak} \)

Decision Tree for Disjunction

Outlook=Sunny \times Wind=Weak

Decision Tree for XOR

Outlook=Sunny XOR Wind=Weak

Decision Tree

decision trees represent disjunctions of conjunctions

When to consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data
- Missing attribute values
- Examples:
 - Medical diagnosis
 - Credit risk analysis
 - Object classification for robot manipulator (Tan 1993)

Top-Down Induction of Decision Trees ID3

- 1. A ← the "best" decision attribute for next *node*
- 2. Assign A as decision attribute for *node*
- 3. For each value of A create new descendant
- 4. Sort training examples to leaf node according to the attribute value of the branch
- 5. If all training examples are perfectly classified (same value of target attribute) stop, else iterate over new leaf nodes.

Which attribute is best?

Entropy

- S is a sample of training examples
- p₊ is the proportion of positive examples
- p_{_} is the proportion of negative examples
- Entropy measures the impurity of S
 Entropy(S) = -p₊ log₂ p₊ p₋ log₂ p₋

Entropy

 Entropy(S)= expected number of bits needed to encode class (+ or -) of randomly drawn members of S (under the optimal, shortest length-code)

Mhy5

- Information theory optimal length code assign
 log₂ p bits to messages having probability p.
- So the expected number of bits to encode (+ or -) of random member of S:

```
-p<sub>+</sub> log<sub>2</sub> p<sub>+</sub> - p<sub>-</sub> log<sub>2</sub> p<sub>-</sub>
```

Information Gain (S=E)

 Gain(S,A): expected reduction in entropy due to sorting S on attribute A

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in D_A} \frac{|S_v|}{|S|} Entropy(S_v)$$

Entropy([29+,35-]) = $-29/64 \log 2 \ 29/64 - 35/64 \log 2 \ 35/64$ = 0.99

Information Gain

[21+, 5-]

```
Entropy([21+,5-]) = 0.71
                                Entropy([18+,33-]) = 0.94
                                Entropy([11+,2-]) = 0.62
 Entropy([8+,30-]) = 0.74
                                Gain(S,A2)=Entropy(S)
 Gain(S,A_1)=Entropy(S)
                                    -51/64*Entropy([18+,33-])
     -26/64*Entropy([21+,5-])
                                    -13/64*Entropy([11+,2-])
     -38/64*Entropy([8+,30-])
                                   =0.12
    =0.27
[29+,35-] A<sub>1</sub>=?
                                         A_2 = ? [29+,35-]
                                              False
                                     True
                False
       True
```

[8+, 30-]

[18+, 33-]

[11+, 2-]

Training Examples

Da	ау	Outlook	Temp.	Humidity	Wind	Play Tennis
	01	Sunny	Hot	High	Weak	No
)2	Sunny	Hot	High	Strong	No
)3	Overcast	Hot	High	Weak	Yes
) 4	Rain	Mild	High	Weak	Yes
	D 5	Rain	Cool	Normal	Weak	Yes
	06	Rain	Cool	Normal	Strong	No
) 7	Overcast	Cool	Normal	Weak	Yes
	D8	Sunny	Mild	High	Weak	No
	09	Sunny	Cold	Normal	Weak	Yes
D	10	Rain	Mild	Normal	Strong	Yes
D)11	Sunny	Mild	Normal	Strong	Yes
D)12	Overcast	Mild	High	Strong	Yes
D)13	Overcast	Hot	Normal	Weak	Yes
D)14	Rain	Mild	High	Strong	No

Selecting the Next Attribute

Selecting the Next Attribute

Selecting the Next Attribute

The information gain values for the 4 attributes are:

- Gain(S,Outlook) = 0.247
- Gain(S,Humidity) =0.151
- Gain(S, Wind) = 0.048
- Gain(S,Temperature) = 0.029

where S denotes the collection of training examples

ID3 Algorithm

ID3 Algorithm

Occam's Razor

"If two theories explain the facts equally weel, then the simpler theory is to be preferred"

Arguments in favor:

- Fewer short hypotheses than long hypotheses
- A short hypothesis that fits the data is unlikely to be a coincidence
- A long hypothesis that fits the data might be a coincidence

Arguments opposed:

There are many ways to define small sets of hypotheses

Overfitting

One of the biggest problems with decision trees is Overfitting

Avoid Overfitting

- Stop growing when split not statistically significant
- Grow full tree, then post-prune

Select "best" tree:

- measure performance over training data
- measure performance over separate validation data set
- min(| tree | + | misclassifications(tree) |)

Effect of Reduced Error Pruning

Converting a Tree to Rules


```
R₁: If (Outlook=Sunny) ∧ (Humidity=High) Then PlayTennis=No
```

R₂: If (Outlook=Sunny) \(\text{(Humidity=Normal) Then PlayTennis=Yes} \)

R₃: If (Outlook=Overcast) Then PlayTennis=Yes

R₄: If (Outlook=Rain) \(\text{ (Wind=Strong) Then PlayTennis=No} \)

R₅: If (Outlook=Rain) ∧ (Wind=Weak) Then PlayTennis=Yes

Continuous Valued Attributes

Create a discrete attribute to test continuous

- Temperature = 24.5°C
- Temperature > 20.0°C) = {true, false}

Where to set the threshold?

Temperature	15°C	18ºC	19ºC	22ºC	24ºC	27ºC
PlayTennis	No	No	Yes	Yes	Yes	No

Random forest classifier, an extension to bagging which uses de-correlated trees.

To say it in simple words: Random forest builds multiple decision trees and merges them together to get a more accurate and stable prediction

Training Data

Create bootstrap samples from the training data

Construct a decision tree

At each node in choosing the split feature choose only among *m*<*M* features

Create decision tree from each bootstrap sample

Unknown Attribute Values

What if some examples have missing values of A? Use training example anyway sort through tree

- If node n tests A, assign most common value of A among other examples sorted to node n.
- Assign most common value of A among other examples with same target value
- Assign probability p_i to each possible value v_i of A
 - Assign fraction p_i of example to each descendant in tree

Classify new examples in the same fashion

Cross-Validation

- Estimate the accuracy of an hypothesis induced by a supervised learning algorithm
- Predict the accuracy of an hypothesis over future unseen instances
- Select the optimal hypothesis from a given set of alternative hypotheses
 - Pruning decision trees
 - Model selection
 - Feature selection
- Combining multiple classifiers (boosting)