浙江大学 2019-2020 学年春夏学期

《微积分(甲)II》课程期末考试试卷(A卷)

(10分) 把 z 看成自变量为 r, θ 的函数试料方程 $\frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 0$, $(x, y) \neq (0, 0)$ 变换为极坐 $4 : dz = \frac{\partial z}{\partial r} dr + \frac{\partial z}{\partial \theta} do = \frac{\partial z}{\partial r} \cdot \frac{x dx + y dy}{r} + \frac{\partial z}{\partial 0} \cdot \frac{x dy - y dx}{x^2 + y^2}$ $= \frac{1}{r} \left(x \frac{\partial z}{\partial r} - \frac{y \frac{\partial z}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \right) dx + \frac{1}{r} \left(y \frac{\partial z}{\partial r} + \frac{z}{r} \frac{\partial z}{\partial \theta} \right) dy$ $\frac{\partial z}{\partial y} = \frac{1}{r} \left(x \frac{\partial z}{\partial r} - \frac{y \frac{\partial z}{\partial \theta}}{r \frac{\partial \theta}{\partial \theta}} \right)$ $\frac{\partial z}{\partial y} = \frac{1}{r} \left(y \frac{\partial z}{\partial r} + \frac{x}{r} \frac{\partial z}{\partial \theta} \right)$ $\frac{\partial z}{\partial y} + y \frac{\partial z}{\partial y} = \frac{1}{r} \left((x^2 + y^2) \frac{\partial z}{\partial r} \right) = \frac{\partial z}{\partial y} = 0$

1. (7分) 设 $\alpha \in (-1,0)$, 试求幂级数 $\sum_{n=1}^{+\infty} (-1)^n \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{(2^n+3^n)n!} x^n$ 的收敛半径.

4: $\lim_{n\to\infty} \left| \frac{\partial_n}{\partial_{n+1}} \right| = \lim_{n\to\infty} \frac{(2^{n+1}+3^{n+1})(n+1)}{(2^n+3^n)(\alpha-n)} = 3 \cdot \lim_{n\to\infty} \frac{((\frac{2}{3})^{n+1})(n+1)}{((\frac{2}{3})^n+1)(n-\alpha)} = 3$ $\therefore R = 3$

2. (8分) 试格函数
$$f(x) = \arctan x, x \in (-1,1)$$
 展开成幂级数 $\sum_{n=0}^{\infty} a_n x^n$.

(4)
$$f'(x) = \frac{1}{1+x^2} = \sum_{n\geq 0} (-1)^n x^{2n} - f(0) = 0$$

$$f(x) = f(0) + \int_0^X f(x) dx = \sum_{n\geq 0} \frac{(-1)^n}{2n+1} x^{2n+1}$$

$$3 \in (-1, 1)$$

得分 二. 以下各題必须写出解題过程。

3. (10分) 设 $f(x,y) = x^{\frac{3}{2}}y^{\frac{1}{2}}$, 试求 f 在点 (0,0) 处沿方向 $\overline{l} = (\cos\alpha,\sin\alpha)$ (其中 $\alpha \in [0,2\pi)$)的方向导数 $\frac{\partial f}{\partial \overline{l}}(0,0)$;并问当 $\sin\alpha$ 取何值时,该方向导数 $\frac{\partial f}{\partial \overline{l}}(0,0)$ 取到最大值? $\omega_{f}^{2}: f_{g}(0,0) = \lim_{\rho \to 0} \frac{f(\rho \omega_{0}, \rho \sin_{0}) - f(\omega_{0})}{\rho} = \lim_{\rho \to 0} \frac{\rho \omega_{0}^{2} \sin_{0}}{\rho}$ = $c_{3}^{\frac{1}{2}}$ o sin $\frac{1}{3}$ = $((1-sin^{2}0) sin 0)^{\frac{1}{3}}$ $f_1(0,0)$ 及 $f_2(0,0)$ 及 $f_3(0,0)$ 及 $f_4(0,0)$ 利用傳里叶级数的理论证明: $\forall x \in (0,2\pi), \sum_{k=0}^{+\infty} \frac{\sin(kx)}{k} = \frac{\pi-x}{2}$. 4. 32 , 26 (0,22) 2 /3 an = + 5 = 1 = x con x dx メーガー× オイ C-1 conx dx=。 $b_{\eta} = \frac{1}{4} \int_{0}^{2\pi} \frac{1-x}{2} \sin x \, dx = \frac{1}{2\pi} \int_{0}^{\pi} x \cos x \, dx = \frac{1}{4\pi} \int_{0}^{\pi} x \sin x \, dx = \frac{1}{4\pi} \int_{$ $\therefore \frac{\lambda - \lambda}{2} = \sum_{n=1}^{\infty} \frac{\sinh \chi}{n}, \chi_{\epsilon}(0, 2\lambda) = \frac{1}{n}$ 4. (10分) 设 $f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$ 试求 $\frac{\partial f}{\partial x}(x,y), \frac{\partial^2 f}{\partial x \partial y}(0,0)$. f(x,0) = 0 ... f'(0,0) = 0(x,y) = (0, 0) ng $\frac{\chi}{\partial x} = \frac{y^3(x^2+y^2) - xy^3(2x)}{(x^2+y^2)^2} = \frac{y^3(y^2-x^2)}{(x^2+y^2)^2}$ $\frac{df}{dx} = \begin{cases} \frac{y^{3}(y^{2}-x^{2})}{(x^{-1}y^{2})^{2}}, & (3,y) \neq (0,0) \\ (x,y) = (0,0) \end{cases}$ x 2 (0, y) = y .: 34 (0) 1