User Documentation

MAXwel

MAX ii Workbench for Education and Learning

Michael Hohenstein

August 15, 2024

Contents

1	Har	dware		1
	1.1	Pinma	ap	1
		1.1.1	Power	2
		1.1.2	Clocks	
			LEDs	
		1.1.4	Buttons and Switches	
		1.1.5	Seven Segment Display	
		1.1.6	External pin header	9
			Programming header	
	1.2		opment	
			onents	
2	Soft	ware		7
	2.1	Install	ling the Toolchain	7
			Linux udev device rules	

1 Hardware

1.1 Pinmap

To access the onboard LEDs, buttons and switches, knowing the connected GPIO pin of the FPGA is necessary. An overview about the accessories placed on the board is depicted in Fig. 1.1. This picture also numbered all of them for later identification where the corresponding pinmap is given in the subsequent sections.

Figure 1.1: Floorplan of the MAXwel with labeled peripheral devices.

1.1.1 Power

The power supply is connected to the board via a barrel jack. A power button is placed next to the jack to turn the board on and off. To indicate the power state, a power LED is placed on the board that always lights when the board is powered.

1.1.2 Clocks

The board has two clock sources, a 50 MHz oscillator and a 14.7456 MHz oscillator. Both are connected to special GPIO pins that are dedicated for clock signals. These pins provide a low skew and jitter free clock signal and provide access to the internal global clock network of the FPGA.

Clock	FPGA Pin
$50\mathrm{MHz}$	PIN_12
$14.7456\mathrm{MHz}$	PIN_14

1.1.3 LEDs

The board has 16 LEDs, 8 green and 8 red, that can be controlled by the FPGA. To turn an LED on the corresponding pin has to be set to high.

LED number	LED Green FPGA Pin	LED Red FPGA Pin
1	PIN_86	PIN_18
2	PIN_88	PIN_17
3	PIN_90	PIN_16
4	PIN_92	PIN_15
5	PIN_96	PIN_8
6	PIN_98	PIN_7
7	PIN_100	PIN_6
8	PIN_2	PIN_5

1.1.4 Buttons and Switches

The board is equipped with 4 buttons and 8 switches. The buttons are debounced with a 8 kHz low pass filter and should drive the input pin to high when pressed.

Button number	FPGA Pin
1	PIN_3
2	PIN_4
3	PIN_19
4	PIN_20

The switches are also debounced with a 8 kHz low pass filter and should drive the input pin to high when the switch is in the upper position.

Switch number	FPGA Pin
1	PIN_85
2	PIN_87
3	PIN_89
4	PIN_91
5	PIN_95
6	PIN_97
7	PIN_99
8	PIN_1

1.1.5 Seven Segment Display

The MAXwel is equipped with a four digit seven segment display. The seven segment displays have a common anode: to turn on a segment the corresponding pin has to be set to high. The labels for the segments are depicted in Fig. 1.2.

Figure 1.2: Seven segment display with labeled segments.

Segment Name	Segment 1	Segment 2	Segment 3	Segment 4
A	PIN_	PIN_	PIN_	PIN_
В	PIN_	PIN_	PIN_	PIN_
$^{\mathrm{C}}$	PIN_	PIN_	PIN_	PIN_
D	PIN_	PIN_	PIN_	PIN_
\mathbf{E}	PIN_	$PIN_{_}$	PIN_	PIN_
\mathbf{F}	PIN_	$PIN_{_}$	PIN_	PIN_
G	PIN_	$PIN_{_}$	PIN_	PIN_
DP	PIN_	PIN_	PIN_	PIN

1.1.6 External pin header

The orientation of the external pin header is determined by the reference triangle. All Pins on the pin header are connected directly to the GPIO pins of the FPGA so take care when connecting external devices to the board. Do not exceed the voltage range of 0 V to 3.3 V and do not draw too much current from the pins. The pin header is depicted in Fig. 1.3.

Figure 1.3: External pin header with labeled pins.

1.1.7 Programming header

The programming header is used to program the FPGA with a JTAG programmer. The pinout of the programming header is depicted in Fig. 1.4. The TCK pin is connected to a $10 \,\mathrm{k}\Omega$ pull down resistor and the TDI, TMS and TDO pins are connected to a $10 \,\mathrm{k}\Omega$ pull up resistor.

Figure 1.4: Programming header with labeled pins.

1.2 Development

The hardware development was done using the KiCAD EDA software. There, the Circuit is first drawn as an abstract schematic diagram. Afterwards each component in the schematics needs a corresponding footprints assigned for the circuit board. These footprints are afterwards places on the circuit board editor and traces are routed between them, guided by the schematic diagram.

For this project some custom schematic symbols and footprints were used which are locates in the project directory. The fabrication process was finalised using the Fabrication Toolkit Plugin. Furthermore a Design Rule file from the circuit board manufacturer was placed in the project directory to make sure, the clearance between traces, vias an pads on the circuit board match the fabrication requirements.

The main directory of this project contains the shell-script *git_filters.sh* to install some git filters for this repository to provide better git integration for the KiCAD files.

1.3 Components

This is a list of all the components on the circuit boards, their datasheets and a reference for part ordering.

table 1.1 shows the components that were ordered with the circuit board which can be done by selecting the "PCB assembly" options when ordering the circuit board. For this project the PCB assembly was done by JLCPCB and all components were ordered from the same page but they are being supplied by LCSC. After uploading the Gerber files¹, the BOM² and the CPL³ files, the components can be selected from a table and added to or removed form the order. Components that were not identified directly can be selected form a list at this stage in the ordering process. All SMD components except the LEDs were ordered with the circuit board because they are too small for hand soldering (and it's not worth the time). The LEDs were ordered separately because they were not available at the time of ordering. Each THT component was removed from the order and soldered afterwards to keep the cost of the circuit board low.

Component	Datasheet / Information	LCSC Component Number	
MAX ii EPM240T100C5N	MAX ii Device Handbook,	C10041	
MAX II EI M2401100C5N	EPM240 Device page	C10041	
AMS1117-3.3	AMS1117 Datasheet	C6186	
50 MHz MHz Crystal Oszillator	Datasheet	C387308	
14.7456 MHz MHz Crystal Os-	Datasheet	C7431374	
zillator			
Capacitors and Resistors		The capacitors and resistors are	
		standard components and are	
		automatically added to the cat-	
		alog without any component	
		search involved.	

Table 1.1: All components ordered with the circuit board

All the other components were bought from another supplier and are listed in table 1.2. Some of these components were already available and were therefore not ordered. The source for them is still listed in the table.

¹The Gerber files contain the manufacturing floorplan for the circuit board

 $^{^2\}mathrm{BOM};$ Bill of Material, a list of all components on the circuit board

³CPL: Centroid Pick List, a list of all components and their positions on the circuit board

Component	Datasheet / Information	Component source	
100 μF Capacitors	5 mm Diameter, 11 mm height,	RS-Component Number: 228-	
	2 mm pitch	6650	
LEDs Red	SMD 0805	RS-Component Number: 692-	
		0941	
LEDs Green	SMD 0805	RS-Component Number: 692-	
		0947	
7-Segment Displays		TODO!	
Power Plug		TODO!	
5 V Power Supply		RS-Component Number: 121-	
		7115	
Programming Header	2.54 mm JTAG 10-pin	Private Inventory, Source	
Bush Buttons	$12\mathrm{mm} \times 12\mathrm{mm} \times 5\mathrm{mm}$	Private Inventory, Source	
Sliding Switch	SS12D10	Private Inventory, Source	
Programming Adapter	Altera USB Blaster	Private Inventory, Source	
Power LED	SMD 0805	Private Inventory	

Table 1.2: All the other components soldered afterwards $\,$

2 Software

2.1 Installing the Toolchain

In order to use the FPGA Chip, the Quartus Prime Lite Design-Software¹ needs to be installed. For users of an Arch based Linux Distribution there is already a package for this available in the AUR.

After downloading and starting the installation some additional parameters need to be specified. For Linux, [/opt] is the preferred installation directory. Furthermore it is important that the Device files for the MAX ii Chips is selected for installation. The rest of the installation process should be straight-forward.

2.1.1 Linux udev device rules

The JTAG Programming adapter, formally known as "USB Blaster", is regularly only available with read and write permissions for the root user. To make the device available for a user without higher privileges the file /etc/udev/rules.d/51-usbblaster.rules needs to created with the following content:

```
SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "6001", MODE = "0666" SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "6002", MODE = "0666" SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "6003", MODE = "0666" SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "6010", MODE = "0666" SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "6810", MODE = "0666" SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "6810", MODE = "0666" SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "0866", MODE = "0666" SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "0866", MODE = "0666" SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "0866", MODE = "0666" SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "0866", MODE = "0666" SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "0866", MODE = "0866" SUBSYSTEM == "usb", ATTR\{idVendor\} == "09fb", ATTR\{idProduct\} == "0866", MODE = "0
```

After rebooting the operating system the changes are available for the udev device daemon.

¹Not to mix up with Quartus Prime Pro!