

Description:

This element models a CMOS NAND gate.

Form: cmosnand:<instance name> n1 n2 n3 n4 n5 <parameter list>

n1 is the high voltage source (Vdd) terminal,

n2 is the first input terminal,

n3 is the second input terminal,

n4 is the output terminal,

n5 is the ground or Vss terminal

Parameters:

Parameter	Туре	Default Value	Required
vtn: NMOS Threshold Voltage (V)	TR_DOUBLE	1	No
vtp: PMOS Threshold Voltage (V)	TR_DOUBLE	-1	No
un: Effective Mobility of Electrons in NMOS ((cm^2)/(V-sec))	TR_DOUBLE	500	No
up: Effective Mobility of Electrons in PMOS ((cm^2)/(V-sec))	TR_DOUBLE	200	No
en: Permittivity of the Gate Insultor in NMOS (F/cm)	TR_DOUBLE	34.515e-14	No
ep: Permittivity of the Gate Insultor in PMOS (F/cm)	TR_DOUBLE	34.515e-14	No
tox: Thickness of the Gate Insulator (cm)	TR_DOUBLE	2.0e-6	No
wn: Channel Width of NMOS (cm)	TR_DOUBLE	50e-6	No
In: Channel Length of NMOS (cm)	TR_DOUBLE	2.0e-6	No
wp: Channel Width of PMOS (cm)	TR_DOUBLE	50e-6	No
lp: Channel Length of PMOS (cm)	TR_DOUBLE	2.0e-6	No
td: Response Delay Time (sec)	TR_DOUBLE	0	No

Example:

cmosnand:nand1 1 2 3 4 0 td=0.1e-6

Notes:

This is an analog implementation of a digital NAND gate.

Known Bugs: No known bugs.

Model documentation:

$$\beta n = (un)(en)(wn)/(tox)(ln)$$

$$\beta p = (up)(ep)(wp)/(tox)(lp)$$

The operation of the CMOS NAND gate can be divided into five regions: V_{in} is considered to be the dominant input of V_{in1} and V_{in2}

$$\begin{aligned} & \underline{Region \ A:} \ 0 < Vin < V_{Tn} \\ & PMOS: \ nonsaturated; \ NMOS \ cutoff \\ & V_{out} = V_{DD} \\ & I_{DSn} = I_{DSp} = 0 \end{aligned}$$

Region B:
$$V_{Tn} < V_{in} < V_{DD}/2$$

$$I_{DSp} = -\beta p [(V_{DD} - Vin - |V_{Tp}|)(V_{DD} - Vout) - (0.5)(VDD - Vout)^2]$$

 $I_{DSn} = -I_{DSp}$

$$\begin{aligned} V_{out} &= (V_{in} - V_{Tp}) + sqrt[(V_{in} - V_{Tp})^2 - 2 V_{DD} (V_{in} - 0.5 V_{DD} - V_{Tp}) \\ &- (\beta n / \beta p) [(V_{in} - V_{Tp})^2] \end{aligned}$$

Region C:
$$Vin = V_{DD}/2$$

$$I_{DSp} = -0.5\beta p [(Vin - V_{DD} - |V_{Tp}|)^2]$$

$$I_{DSn} = -I_{DSp}$$

$$V_{in} - V_{Tn} < V_{out} < V_{in} - V_{Tp}$$

$\underline{Region\ D:}\ \ V_{DD}/2 < Vin < V_{DD} + V_{Tp}$

PMOS: saturated; NMOS nonsaturated

$$I_{DSp} = -0.5\beta p [(Vin - V_{DD} - |V_{Tp}|)^2]$$

$$I_{DSn} = -I_{DSp}$$

$$V_{out} = (V_{in} - V_{Tn}) + sqrt[(V_{in} - V_{Tn})^2 - (\beta p/\beta n) [(V_{in} - V_{DD} - V_{Tp})^2]$$

$$\underline{Region \ E:} \ Vin > V_{DD} + V_{Tp}$$

PMOS: cutoff; NMOS nonsaturated

$$V_{out} = Vss$$

References:

Weste and Eshraghian, *Principles of CMOS VLSI Design*, Addison-Wesley, 1994 G.M. Glasford, *Digital Electronic Circuits*, Prentice-Hall, 1988

Sample Netlist:

The following netlist plots the output voltage of the CMOS gate for an input voltage range of $0 \sim 5V$ for V_{in1} and constant $V_{in2} = 5V$.

* CMOS NAND Gate Test

.dc sweep="vsource:Vin2" start=0 stop=5 step=0.1

vsource:Vdd 1 0 vdc=5 vsource:Vin1 2 0 vdc=5 vsource:Vin2 3 0

cmosnand:nand 1 2 3 4 0 res:R 4 0 r=1000000

.out plot term 4 vt in "plot cmos nand in1 high.out"

.end

Validation:

The output graph from the above netlist is shown below:

Version: 2003.05.15

Credits:

Name Affiliation Mazen M Kharbutli NCSU

Date Links

mazen kharbutli@yahoo.com

April, 2003 http://www4.ncsu.edu/~mmkharbu