Working with Real and Big Data BASH SCRIPT #2

NAME: VISHAL HASRAJANI (C0761544)

INTRODUCTION:

This BASH script is to create a file, testdata.dat, which contains climate data for a specific site over a number of years. My script, called testgen.sh, runs as follows:

\$./testgen.sh 218 1948 1997

where 218 represents the site location, 1948 the start year, and 1997 the final year.

DESCRIPTION:

For writing a Bash Script, we always start with #!/bin/bash.

Defining the text files to a particular variable:

temporary file definitions

BTstns="BTemperature_Stations.txt"

alldatafile="BIGDATA8zx2756.txt"

smalldatafile="distilled_datazx47432_\$1.dat"

locationsfile="locationszx646332.txt"

tempfile="tempfile.txt"

newfile1="testdata.dat"

First,in this script, we have to print the range of output that user is asking to print in the testdata.dat (example: 1948 to 1997).

For this reason I am using a For loop to display data that the user is asking.

Here \$1(first input) is location, \$2(second input) is the starting year and \$3(3rd input) is the ending year

Then same as in BASH #1 ,similarly, I extracted station IDs from BTemperature_Stations.txt.The actual data starts from the line 5 and ends at line 343.

So using For Loop, I scanned lines 5 to 343 to get the data from that file. For loop is shown below:

```
for x in \{5...343\}
do
        next=$(head -n $x $BTstns | tail -n 1) # read line x from
BTemperature Stations.txt
        line=($next)
        stationNUM=(${line[0]})  # station number
stationID=(${line[1]})  # station ID
        stationNAME=(${line[2]}) # station name
        nextfile=mm$stationID.txt
        newfile=$stationNAME
        echo "$newfile" >>$tempfile
        echo "$nextfile" >> $locationsfile # write the data file
name first
        y=$(cat $nextfile | tr "," "\n") # remove commas,
replace with newlines
        for z in $y
                                  # go through each token in
the file $x
        do
                echo $z >> $alldatafile
       done
done
```

Execution of For loop:

```
For x in 5,
next=$(head -n $x $BTstns | tail -n 1)
next= 5th line(data) from the BTemperature Stations.txt file.
i.e.
next=1 1100120 AGASSIZ
                            BC 1893 1 2012 12 49.25 -121.77 15 N
Now,
line=($next)
                (line is an array that takes the value inside the next variable)
stationNUM=(${line[0]}) (stationNUM=1)
stationID=(${line[1]} (stationID=1100120)
stationNAME=(${line[2]}) (stationNAME=AGASSIZ)
nextfile=mm$stationID.txt (nextfile=mm.1100120.txt)
 newfile=$stationNAME ( newfile=AGASSIZ)
echo "$newfile" >>$tempfile (Transfering station names to "tempfile.txt")
echo "$nextfile" >> $locationsfile (In first loop it will print
mm.1100120.txt to the locationszx646332.txt)
y=$(cat $nextfile | tr "," "\n")
        for z in $y
        do
                 echo $z >> $alldatafile
        done
done
```

As you can see in the screenshot below, the mm1100120.txt file consists of the data separated by the commas. In order to remove that we use **tr command** to replace commas by newlines.And after scanning all the data, that data is moved to "BIGDATA8zx2756.txt".

וט	ODA	1702		יט.נאו	٠.													
110017	0,AGASSIZ	,BC,	station not	t joined, M	onthly mean	of homogeni	zed daily	mean temperatu	re		, °C,		ated to Dece					
110012	0,AGASSIZ	,BC,	station nor	n-jointe, M	oyenne mensu	elle des te	mpératures	homogénéisées	moyennes	quotidiennes	, °C, Mi	se à jour	jusqu à déce	mbre 2012				
Year,	Jan, ,	Feb, ,	Mar,,	Арг, ,		Jun, ,	Jul, ,		Sep,,	Oct,,	Nov,,		Annual, ,		Spring, ,	Summer, ,	Autumn	
Year,	Janv, ,	Fév, ,	Mars, ,	ΑVΓ, ,	Mai,,	Juin, ,	Juil, ,	Août, ,	Sept, ,	Oct, ,	Nov,,	Déc, ,	Annuel, ,	Hiver, ,	Printemp, ,	Eté,,	Automne	
1893,	1.4,a,	8,a,	5.9,a,	7.6,a,		14.1,a,	17.0,a,	18.1,a,	14.4,a,	9.1,a,	3.5,a,	3.2,a,	8.8,a,	-9999.9,M,	8.6,a,	16.4,a,		
1894,	1.8,a,	2.1,a,	4.4,a,	8.1,a,		15.3,a,	18.4,a,		14.0,a,	9.4,a,	6.7,a,	2.7,a,	9.6,a,	2.4,a,	8.4,a,	17.7,a,	10.0,a	
1895,	1.6,a,	5.6,a,	6.2,a,	9.1,a,	12.4,a,	16.1,a,	17.8,a,	17.1,a,	12.5,a,	12.5,a,	6.2,a,		-9999.9,M,	3.3,a,		17.0,a,		
1896,	1.5,a,	5.7,a,	6.1,a,	8.0,a,	12.1,a,	15.4,a,	19.6,a,	19.3,a,	13.9,a,	12.2,a,	.3,a,	4.5,a,	9.9,a,	-9999.9,M,		18.1,a,	8.8,a	
1897,	-9999.9,M,	4.9,a,	3.4,a,	12.2,a,	16.2,a,	14.7,a,	16.4,a,	20.5,a,	15.5,a,	11.0,a,	4.1,a,			-9999.9,M,		17.2,a,		
1898	2.4,a,	6.1,a,	6.1,a,	9.5,a,	16.5,a,	17.0,a,	19.0,a,	21.9,a,	16.2,a,	11.2,a,	5.0,a,	3.1,a,	11.2,a,	3.6,a,		19.3,a,	10.8,a	
899,	1.9,a,	2.3,a,	6.4,a,	9.8,a,		14.8,a,	18.6,a,		16.9,a,	11.8,a,	8.0,a,	3.7,a,	10.2,a,	2.4,a,		16.7,a,		
900,	6.2,a,	3.7,a,	11.7,a,	12.2,a,		-9999.9,M,	18.7,a,	16.2,a,	15.1,a,	11.4,a,	4.1,a,		-9999.9,M,	4.5,a,		-9999.9,M,	10.2,a	
901,	2.8,a,	3.4,a,	8.4,a,	8.0,a,	16.3,a,	15.4,a,	16.2,a,	1000 1000	13.8,a,	12.9,a,	6.8,a,	3.6,a,	10.5,a,	3.9,a,		16.7,a,		
902,		-9999.9,M,				-9999.9,M,	17.0,a,		14.7,a,	11.2,a,	4.1,a,			-9999.9,M,				
903,	3.8,a,	3.6,a,	4.4,a,	8.3,a,	12.1,a,	16.8,a,	16.5,a,	16.8,a,	13.5,a,	9.2,a,	4.4,a,	4.6,a,	9.5,a,	3.3,a,		16.7,a,	9.0,a	
904,	2.6,a,	2.1,a,	6.4,a,	12.3,a,	13.4,a,	14.0,a,	18.3,a,		14.4,a,	12.3,a,	8.3,a,	4.8,a,	10.6,a,	3.1,a,		16.7,a,		
905,	3.3,a,	3.0,a,	10.5,a,	12.5,a,	14.3,a,	15.1,a,	20.9,a,	17.1,a,	12.1,a,	7.3,a,	5.6,a,	4.5,a,	10.5,a,	3.7,a,		17.7,a,		
906,	3.8,a,	6.8,a,	6.8,a,	11.5,a,	12.9,a,	15.1,a,	21.0,a,	17.8,a,	12.6,a,	10.5,a,	4.4,a,	3.5,a,	10.6,a,	5.θ,a,		18.0,a,	9.2,a	
907,	-4.7,a,	2.4,a,	4.0,a,	9.3,a,	14.2,a,	15.2,a,	18.3,a,		14.1,a,	11.9,a,	9.3,a,	3.3,a,	9.4,a,	.4,a,		16.3,a,		
908,	3.7,a,	3.7,a,	6.0,a,	10.6,a,	11.9,a,	17.3,a,	18.9,a,	17.2,a,	12.0,a,	9.3,a,	7.7,a,	3.3,a,	10.1,a,	3.6,a,		17.8,a,		
909,	-3.0,a,	2.4,a,	7.1,a,	8.8,a,	11.7,a,	15.1,a,	16.7,a,	16.5,a,	14.3,a,	9.8,a,	5.2,a,	.4,a,	8.8,a,	.9,a,		16.1,a,	9.8,a	
910,	3.0,a,	1.4,a,	9.0,a,	10.4,a,		17.1,a,	19.3,a,	15.7,a,	15.1,a,	10.5,a,	7.4,a,	3.9,a,	10.6,a,	1.6,a,		17.4,a,	0.00000000	
911,	-2.1,a,	1.6,a,	5.5,a,	8.4,a,	12.1,a,	15.1,a,	19.1,a,	17.0,a,	14.1,a,	10.8,a,	3.6,a,	4.1,a,	9.1,a,	1.1,a,		17.1,a,	9.5,a	
912,	1.6,a,	5.6,a,	6.0,a,	8.2,a,	14.6,a,	16.1,a,	16.6,a,		14.0,a,	9.3,a,	5.9,a,	4.0,a,	9.9,a,	3.8,a,		16.4,a,		
913,	-1.6,a,	1.3,a,	4.7,a,	11.1,a,	11.7,a,	15.0,a,	17.2,a,	18.2,a,	14.0,a,	9.2,a,	6.7,a,	4.4,a,	9.3,a,	1.2,a,		16.8,a,	10.0,a	
914,	3.3,a,	4.2,a,	7.5,a,	11.2,a,	13.9,a,	14.5,a,	17.1,a,	17.6,a,	12.9,a,	10.7,a,	6.1,a,	1.5,a,	10.0,a,	4.0,a,		16.4,a,	9.9,a	
915,	2.7,a,	4.9,a,	9.1,a,	10.3,a,		15.6,a,	17.4,a,		14.2,a,	9.4,a,	4.3,a,	3.3,a,	10.3,a,	3.0,a,		17.4,a,		
916,	-5.5,a,	2.3,a,	5.1,a,	9.6,a,	11.9,a,	16.1,a,	16.4,a,	18.3,a,	15.1,a,	9.6,a,	4.1,a,	.0,a,	8.6,a,	.0,a,		16.9,a,	9.6,a	
917,	.3,a,	.3,a,	3.9,a,	7.2,a,	12.4,a,	14.0,a,	17.4,a,		15.1,a,	9.6,a,	7.6,a,	2.3,a,	9.1,a,	.2,a,		16.6,a,		
918,	2.9,a,	2.4,a,	4.7,a,	10.0,a,	11.9,a,	16.8,a,	18.1,a,		19.2,a,	11.3,a,	6.1,a,	3.7,a,	10.3,a,	2.5,a,		17.3,a,		
919,	3.6,a,	2.8,a,	6.1,a,	10.3,a,	11.7,a,	14.7,a,	18.3,a,	18.0,a,	16.4,a,	8.0,a,	5.1,a,	1.5,a,	9.7,a,	3.4,a,		17.0,a,	9.8,a	
920,	2.4,a,	4.4,a,	6.4,a,	8.9,a,	12.8,a,	16.0,a,	19.5,a,		14.1,a,	8.7,a,	8.3,a,	4.0,a,	10.4,a,	2.8,a,		18.3,a,		
921,	2.7,a,	4.4,a,	6.3,a,	10.0,a,	12.7,a,	15.5,a,	17.3,a,		12.2,a,	11.4,a,	4.2,a,	1.1,a,	9.6,a,	3.7,a,		16.8,a,		
922,	.0,a,	3,a,	4.2,a,	8.3,a,	12.9,a,	16.8,a,	18.2,a,	17.8,a,	15.2,a,	12.3,a,	5.6,a,	9,a,	9.2,a,	.3,a,		17.6,a,	11.0,a	
923,	2.4,a,	.9,a,	6.0,a,	11.6,a,		17.1,a,	19.1,a,		16.4,a,	12.9,a,	7.8,a,	2.6,a,	10.7,a,	.8,a,		18.4,a,		
924,	2.1, ,	5.9,	6.1, ,	8.8, ,		15.2,	17.5, ,		14.9,	10.1, ,	5.2, ,	.1, ,	9.9,	3.5,a,		16.6,	10.1,	
925,	2.9, ,	6.2, ,	6.3, ,	10.8, ,		16.4,	18.9,		15.5,	9.3, ,	5.8, ,	6.7, ,		3.1, ,		17.6,		
926,	3.8, ,	5.7,	10.2, ,	13.1,		17.0,	18.9,	18.2, ,	14.1,	12.2, ,	7.8,	2.2, ,	11.4, ,	5.4, ,		18.0, ,	11.4,	
927,	.6, ,	4.0, ,	5.4,			17.2,	19.1,	19.0, ,	14.7,	10.3, ,	4.4,	4, ,	9.5,	2.3, ,		18.4, ,	9.8,	
928,	2.5, ,	5.3,	8.0, ,			15.6,	18.9,	18.0, ,	14.7,	10.2, ,	6.7,	3.2, ,	10.7,	2.5, ,	11.1,	17.5,	10.5,	
929,	-1.4,	.6,	6.5, ,	8.1,		15.7,	17.9, ,		16.8,	12.3, ,	5.9,	2.0, ,	9.6,	.8, ,	9.4,	17.1,		
930,	-3.6,	4.7,	7.4,	11.4, ,		15.5, ,	18.2, ,		15.5,	9.6, ,	5.9, ,	4.4, ,		1.0, ,		17.1, ,		
931,	6.2, ,	5.4,	7.4, ,			15.8, ,	19.0,		14.4,	11.0, ,	4.1,	2.5, ,	10.8,	5.3, ,		17.5, ,		
932,	.9, ,	2.5,	6.4,	10.7, ,	13.2,	16.5, ,	15.9, ,	17.0, ,	15.3,	11.3, ,	7.5,	1.2, ,	9.9,	2.0, ,	10.1, ,	16.8, ,	11.4,	
933,	2.1, ,	4,	6.0,	9.4,		14.5, ,	17.0,	19.7,	13.3, ,	10.5, ,	7.6,	1.8, ,		1.0, ,		17.1, ,		
934,	4.7, ,	7.5,	9.3,	13.6, ,		16.0, ,	16.9, ,		14.1,	12.1,	8.1,	3.4, ,		4.7, ,		17.1, ,		
935,	-1.2, ,	6.3,	4.4,	9.3, ,		15.1,	17.6,		16.8,	9.7,	4.7, ,	6.3, ,	10.0,	2.8, ,	8.9,	16.8, ,		
936,	3.5,	-3.3, ,	4.4, ,			16.8, ,	17.0, ,		14.5,	12.3, ,	6.7,	3.9, ,		2.2, ,	9.8,	17.3, ,		
930, 937,	-4.1, ,	-3.3, , .2, ,	8.3,	7.8, ,		16.6,	17.1, ,		15.9,	12.8, ,	6.5,	2.9, ,		.0, ,		17.1,		
937,			7.1,						17.2,	12.8, ,	5.7,	3.1,		3.3, ,		17.1, ,		
	3.0, ,	4.0, ,				16.3, ,	19.3, ,	10.0, ,		10.8, ,	8.7,			2.9, ,		17.5, ,		
939,	4.3, ,	1.3, ,	7.0, ,			14.1, ,	17.7, ,		15.8, ,			6.7, ,						
	4.5, ,	5.2, ,	8.6, ,	11.7, ,	C 2010 1041 KI	16.6, ,	17.6, ,		18.0, ,	12.4, ,	4.5, ,	5.2, ,		5.5, ,		17.6, ,		
941,	5.1, ,	7.8, ,	10.9, ,			16.0, ,	20.4, ,		13.8, ,		7.5, ,	4.4, ,		6.0, ,		18.2, ,		
1942,	4.3, ,	5.3, ,	6.8, ,			15.6, ,	20.0, ,		16.0, ,		5.8, ,	3.6, ,	11.1, ,	4.7, ,		18.6, ,	11.2,	
1943.	-3.1	6.2	5.2	11.1, ,	11.8, ,	15.8	18.0	16.9	17.1	11.4	7.7	4.2	10.2	2.2.	9.4.	16.9	12.1,	

After replacing "," with "\n" ("BIGDATA8zx2756.txt" file)

Similarly For Loop will execute for other lines in "BTemperature_Stations.txt".

After execution of the FOR LOOP:

"tempfile.txt"

"locationszx646332.txt"

"BIGDATA8zx2756.txt"

After execution of the for loop now we have all the data, locations and names of the particular location in order.

Continuing further

```
cat $alldatafile | grep -A 17 $a >> $smalldatafile
For the first loop(example : $a=1948)
```

cat sends data from the "BIGDATA8zx2756.txt" to STDOUT grep -A 17 searches for 17 lines after \$a(i.e the input year from user (e.g. 1948)

Piping is used to get the data from STDOUT and then search for 17 lines after a particular year entered by the user.

Then that data is sent to "distilled_datazx47432_\$1.dat"

.

.

"distilled_datazx47432_\$1.dat"

THEN

```
head -n $1 $tempfile | tail -n 1 >>$newfile1
```

"\$1"(example user enters 200)

head -n \$1 \$tempfile will display 200 names to STDOUT from

"tempfile.txt".----->piped to tail -n 1

So it will print the 200th name in the "testdata.dat"

--->

cat \$smalldatafile | grep -A \$NUMCONTEXTLINES -m \$1 \$a | tail -n
\$NCLPLUSONE >> \$newfile1

Here,

NUMCONTEXTLINES=1
NCLPLUSONE=NUMCONTEXTLINES+1

cat \$smalldatafile will send data from "distilled_datazx47432_\$1.dat" to the STDOUT

grep -A 1 -m \$1 \$a will search for 1 line at the 200th position of that particular year entered by the user

tail -n 2

This will display last 2 line to the STDOUT (i.e **year and temperature**) and then we are printing that to "testdata.dat"

```
echo "-9999" >> $newfile1
echo "-9999" >> $newfile1
echo "-9999" >> $newfile1
```

This will add -9999 (3 times at the end of the testdata.dat)

```
rm $alldatafile; rm $smalldatafile; rm $locationsfile; rm $tempfile
```

rm will remove all temporary files created.

Suppose user entered(1948 1997) So the for loop executes from 1948 till 1997.

OUTPUT:

CONCLUSION:

BASH SCRIPT#2 is helpful in printing out data of differrent years of a particular location It will be easy for users to use this script instead of searching manually each and every file.

APPENDIX:

```
#!/bin/bash
NUMCONTEXTLINES=1 # works up to 17
let NCLPLUSONE=NUMCONTEXTLINES+1
# temporary file definitionsBTstns="BTemperature Stations.txt"
alldatafile="BIGDATA8zx2756.txt"
smalldatafile="distilled datazx47432 $1.dat"
locationsfile="locationszx646332.txt"
tempfile="tempfile.txt"
newfile1="testdata.dat"
# extract station IDs from BTemperature Stations.txt
for((a=$2;a<=$3;a++))
do
# scan lines from line 5 to 343
for x in \{5...343\}
do
       next=$(head -n $x $BTstns | tail -n 1) # read line x from
BTemperature Stations.txt
       line=($next)
       stationNUM=(${line[0]}) # station number
       stationID=(${line[1]}) # station ID
        stationNAME=(${line[2]})
                                     # station name
       nextfile=mm$stationID.txt
       newfile=$stationNAME
       echo "$newfile" >>$tempfile
       echo "$nextfile" >> $locationsfile # write the data file
name first
       y=$(cat $nextfile | tr "," "\n") # remove commas,
replace with newlines
       for z in $y
                                      # go through each token in
the file $x
        do
               echo $z >> $alldatafile
       done
done
```

```
# scan for a particular year; there should be as many of a given year
# as there are geographical locations
yearsearch=$2 # year provided as argument

cat $alldatafile | grep -A 17 $a >> $smalldatafile
head -n $1 $tempfile | tail -n 1 >>$newfile1

# extract year's info for location specified in $2

cat $smalldatafile | grep -A $NUMCONTEXTLINES -m $1 $a | tail -n
$NCLPLUSONE >> $newfile1 # send the target year's temp data to
STDOUT
rm $alldatafile; rm $smalldatafile; rm $locationsfile;rm $tempfile;

done

echo "-9999" >> $newfile1
echo "-9999" >> $newfile1
echo "-9999" >> $newfile1
echo "-9999" >> $newfile1
```