

합성곱 신경망(CNN)

아꿈사 최종현

CNN(Convolutional Neural Network)의 역사

CNN은 1989년 LeCun이 발표한 논문 "Backpropagation applied to handwritten zip code recognition"에서 처음 소개됨

2003년 Behnke의 논문 "Hierarchical Neural Networks for Image Interpretation"

을 통해 일반화 됨

Simard의 논문 "Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis"에서 단순화

CNN의 구조

✓ 합성곱 계층(Convolutional layer) 과 풀링 계층(pooling layer)이 추가됨

기존 MLNN(Multi-Layer NN)의 문제점

- ✓ 변수의 개수(Weight, Bias)
- ✓ 네트워크 크기
- ✓ 학습 시간

글자의 크기, 회전, 변형에 영향을 받음

→ 글자의 형상은 고려하지 않고, raw data를 직접 처리하기 때문에 많은 양의 학습 데이터가 필요하고, 따라서 학습 시간이 길어 집

합성곱 계층(Convolutional layer)

- ✓ 이미지 데이터는 세로·가로·채널(색상) 으로 구성된 데이터
- ✓ MNIST 데이터는 원래 (1, 28, 28)인 3차원 데이터 → Affine계층에 입력 시 784(=28 × 28)개의 1차원으로 입력
- ✓ 합성곱 계층의 입출력 데이터를 특징 맵(Feature Map)이라고 함
- ✓ 합성곱 계층에서 입력 데이터를 3차원으로 입력 받으며, 출력 또한 3차원으로 출력→ 형상을 유지

합성곱 계층 - 연산

- ✓ 합성곱 계층에서 연산 수행 → 필터(커널) 연산
- ✓ 데이터와 필터의 형상을 (높이height, 너비width)로 표기
- ✓ 윈도우window 를 일정 간격(Stride)으로 이동하며 계산

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	* 2 0 1 0 1 2	15 16 +	3 —	18 19
3 0 1 2 2 3 0 1 입력 데이터	1 0 2 필터	6 15	편향	<u>9 18 </u> 출력 데이터

1	2	3	0			1		1		
0	1	2	3		2	0	1		15	
		1	-	*	0	1	2		10	
3	0	1	2		1	0	2			
2	3	0	1					J		

단일 곱셈-누산(FMA, Fused Multiply-Add) 1 * 2 + 2 * 0 + 3 * 1 + 0 * 0 + 1 * 1 + 2 * 2 + 3 * 1 + 0 * 0 + 1 * 2 = 15

1	2	3	0			
0	1	2	3		2	
		-	0	*	0	
3	0	1	2		1	Ī
2	3	0	1			L

1	2	3	0	
0	1	2	3	
3	0	1	2	(*)
2	3	0	1	

	2	0	1		
		U	7	15	16
(*)	0	1	2	 10	10
	U	1		6	
	1	0	2	0	
	т	0	-		

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

합성곱 계층 - 패딩

- ✓ 합성곱 연산을 수행하기 전, 입력데이터 주변을 특정값으로 채우는 것을 **패딩**Padding이라고 함
- ✓ 패딩은 출력데이터의 공간적 크기(Spatial size)를 조절하기 위해 사용
- ✓ 패딩은 hyperparameter로 어떤 값으로 채울지 결정할 수 있음 → 보통 zero-padding을 주로 사용 <u>Padding을 사용하는 이유는?</u>

Padding을 사용하지 않을 경우, 데이터의 Spatial 크기는 Conv 레이어를 지날때 마다 작아지게 되고, 가장자리의 정보들이 사라지게 된다.

합성곱 계층 - 스트라이드

- ✓ 필터를 적용하는 위치의 간격을 **스트라이드**stride라고
- ✓ 스트라이드는 출력 데이터의 크기를 조절하기 위해 사용

Stride 값은 어떤것이 좋을까?

 $\stackrel{}{\longrightarrow}$ 보통 1과 같이 작은 값이 더 잘 작동한다. 또한, strid가 1일 경우 데이터의 spatial 크기는 Pooling

계층에서만 조절하게 할 수 있다

Î	2	3	.0	1	2	3
0	1	2	3	0	1	2
3	0	1	2	3	0	1
2	3	0	1	2	3	0
1	2	3	0	1	2	3
0	1	2	3	0	1	2
3	0	1	2	3	0	1

스트라이드 : 2

	-					
1	2	3	0	1	2	3
0	1	2	3	0	1	2
3	0	1	2	3	0	1
2	3	0	1	2	3	0
1	2	3	0	1	2	3
0	1	2	3	0	1	2
3	0	1	2	3	0	1

합성곱 계층 - 출력크기 계산

$$(OH, OW) = \left(\frac{H + 2P - FH}{S} + 1, \frac{W + 2P - FW}{S} + 1\right)$$

(H, W): 입력크기
(FH, FW): 필터크기
(OH, OW): 출력크기
P: 패딩
S: 스트라이드

패딩(P): 1, 스트라이드(S): 1

7	12	10	2
4	15	16	10
10	6	15	6
8	10	4	3

$$(OH, OW) = \left(\frac{4+2*1-3}{1}+1, \frac{4+2*1-3}{1}+1\right) = (4,4)$$

합성곱 계층 - 3차원 데이터의 연산

합성곱 계층 - 3차원 데이터의 연산

합성곱 계층 - 배치 처리

- ✓ 데이터의 차원을 늘려 4차원 데이터로 저장
- ✓ (데이터 수, 채널 수, 높이, 너비)로 저장

(N,C,H,W) * (N,FN,C,FH,FW) \longrightarrow (N,FN,OH,OW) + (FN,1,1) \longrightarrow (N,FN,OH,OW)

풀링 계층 (Pooling Layer)

- ✓ 데이터의 공간적 크기Spatial size를 축소하는데 사용
- ✓ (보통)풀링의 윈도우 크기와 스트라이드는 같은 값으로 설정 (e.g 윈도우: 3X3, 스트라이드: 3)

합성곱 계층(Conv Layer)에서도 Padding과 Stride를 통해 출력 데이터의 크기를 조절할 수 있는데?

Conv 레이어에서는 출력 데이터의 Spatial 크기를 입력데이터의 크기를 그대로 유지하고,

Pooling 계층에서만 Spatial 크기를 조절할 수 있도록 한다.

풀링 계층 - 특징

- ✓ 학습해야 할 매개변수가 없다 → **최대값** or **평균값**을 취하기 때문에
- ✓ 채널 수가 변하지 않는다 → 입력 데이터의 채널 수를 그대로 출력 데이터로
- ✓ 입력의 변화에 영향을 적게 받는다(강건하다)

Conv Layer 구현 – im2col

- ✓ im2col 함수를 통해 입력데이터를 필터링(가중치 계산)하기 쉽도록 전개 → Caffe, Chainer등에서 제공
- ✓ Numpy 에서 for문 사용 방지
- ✓ im2col을 적용하여 3차원의 데이터를 2차원으로 변환

Conv Layer 구현 – im2col

Conv Layer 구현 - im2col


```
예제 x1 = np.random.rand(1, 3, 7, 7)

col1 = im2col(x1, 5, 5, stride = 1, pad = 0)

print(col1.shape) # (9, 75)
#결과
(9, 75)
```


- N = 1, C = 3, H = 7, W = 7
- filter_h, filter_w = 5,
- : h,_out_w = 3.3: True
- col.shape = (1,3,5,5,3)
- Slicing & indexing x[start : stop : step] x = [0,1,2,3,4,5,6,7,8,9] x[1:7:2] = [1,3,5]

transpose(0, 4, 5, 1, 2,
형상 (N,C,FH,FW,OH,OW))
인덱스 (0, 1, 2, 3, 4, 5)

→ col.shape = (1, 3, 3, 3,

5, 5)

```
def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
   다수의 이미지를 입력받아 2차원 배열로 변환한다(평탄화)
   Parameters
   :param input_data: (데이터 수, 채널 수, 높이, 너비) 입력 데이터
   :param filter_h: 필터의 높이 ,:param filter_w: 필터의 너비
   :param stride: 스트라이드 . :param pad: - 패딩(padding)
   :return: col: 2차원 배열
   N, C, H, W = input_data.shape
   out h = (H + 2*pad - filter h)//stride + 1
   out w = (W + 2*pad - filter w)//stride + 1
   img = np.pad(input\_data, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant')
   col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))
   for y in range(filter_h):
       y_max = y + stride * out_h
       for x in range(filter_w):
          x max = x + stride * out w
           col[:, :, y, x, :, :] = img[:, :, y:y max:stride, x:x max:stride]
   col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N * out h * out w, -1)
   return col
```

Pool Layer 구현

- ✓ 풀링 계층 또한 im2col 함수를 통해 입력데이터를 전개
- ✓ Conv Layer와는 달리 채널 쪽이 독립적 → 채널마다 독립적으로 전개

CNN 구현 테스트

✓ 'train_convent.py' 예제 소스코드 확인

```
network = SimpleConvNet(input_dim=(1,28,28),
	conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
	hidden_size=100, output_size=10, weight_init_std=0.01)
```

trainer = Trainer(network, x_train, t_train, x_test, t_test, epochs=max_epochs, mini_batch_size=100, optimizer='Adam', optimizer_param={'Ir': 0.001}, evaluate_sample_num_per_epoch=1000)

CNN 시각화

- ✓ 앞의 'train_convent.py' 예제 에서 필터의 형상 = (30, 1, 5, 5)
- ✓ 필터의 크기가 5×5 며, 채널이 1개 → 회색조 이미지로 시각화 할 수 있음
- ✓ 'visualize_filter.py' 소스코드 확인 → ConV계층에서의 가중치(필터) 시각화
- ✓ 학습 후 필터는 흰색에서 검은색으로 변화하는 필터와 Blob(국소적으로 덩어리진 영역) 등으로 변화

CNN 시각화

Conv 1st Layer (31, 1, 28,

CNN 시각화 - 층 깊이에 따른 정보

- ✓ 계층이 깊어질 수록 추출되는 정보는 더 추상화 됨
- ✓ 처음 층에는 단순한 에지 → 텍스처 → 사물의 일부

Deep neural networks learn hierarchical feature representations hidden layer 1 hidden layer 2 hidden layer 3 input layer output layer

CNN 종류 - LeNet

- ✓ 손글씨 숫자를 인식하는 네트워크, 1998년에 제안
- ✓ 합성곱 계층과 풀링 계층(단순 서브샘플링)으로 이루어짐
- ✓ 활성화 함수로 Sigmoid 함수 사용

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

CNN 종류 - AlexNet

- ✓ 2012년 ImageNet ILSVRC에서 1위
- ✓ 활성화 함수로 ReLu 사용
- ✓ LRN(Local Response Normalization) : 국소적 정규화 계층 사용
- ✓ 드롭아웃(Dropout) 사용

CNN 종류 - GoogLeNet

✓ 2014년 ImageNet ILSVRC에서 1위

✓ "Inception Module" 개념을 도입하여 네트워크의 파라미터 수를 대폭 줄임 → 9개의 Inception Module

- Convolution
- Pooling
- Softmax
- Concat/Normalize

(b) Inception module with dimension reductions

THANK YOU