Maths secrets behind Supervised Learning

Animated by: Yesmine Makkes

GDSC HICS ISI Ariana

Some notations:

m: number of training examples

x : feature (input) *

y: target / label (output)

Attributes				Decision
Length	Height	Width	Weight	Quality
4.7	1.8	1.7	1.7	high
4.5	1.4	1.8	0.9	high
4.7	1.8	1.9	1.3	high
4.5	1.8	1.7	1.3	medium
4.3	1.6	1.9	1.7	medium
4.3	1.4	1.7	0.9	low
4.5	1.6	1.9	0.9	very-low
4.5	1.4	1.8	1.3	very-low

Simple linear regression model

Simple linear regression model

"Cost" of using a given line

Find "best" line

Finding the max or min analytically

Algorithm:

while not converged
$$\frac{\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta}{d\theta}$$

Algorithm:

while not converged

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \frac{dg}{d\theta}$$

iteration t step size

when derivative is positive we want to decrease θ , when the derivative is negative we want to increase θ

Algorithm:

while not converged

θ1

$$\min_{\boldsymbol{\theta_0},\ \boldsymbol{\theta_1}} \sum_{i=1}^{m} (\mathbf{y_i} \text{-} [\ \boldsymbol{\theta_0} \text{+}\ \boldsymbol{\theta_1} \mathbf{x_i}])^2$$

45

$$h(x) = \theta_0 + \theta_1 x_i$$

$$\min_{\boldsymbol{\theta}_0, \ \boldsymbol{\theta}_1} \sum_{i=1}^{m} (\mathbf{y}_i - [\ \boldsymbol{\theta}_0 + \ \boldsymbol{\theta}_1 \mathbf{x}_i])^2$$

RSS(θ_0 , θ_1) is a function of 2 variables : θ_0 , θ_1

45

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

45

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

45

©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Contour plots

Gradient descent

Convergence criteria

For convex functions, optimum occurs when

$$\frac{dg(w)}{dw} = 0$$

In practice, stop when

Choosing the stepsize

Approach 2: Set gradient = 0

$$\nabla RSS(\theta_0, \theta_1) = \begin{bmatrix} -2\sum_{i=1}^{N} [y_i - (\theta_0 + \theta_1 x_i)] \\ -2\sum_{i=1}^{N} [y_i - (\theta_0 + \theta_1 x_i)] x_i \end{bmatrix}$$

Comparing the approaches

- For most ML problems, cannot solve gradient = 0
- Even if solving gradient = 0
 is feasible, gradient descent
 can be more efficient
- Gradient descent relies on choosing stepsize and convergence criteria

Thank you!