Project 1

Ryan O'Dea

5/7/2021

We let T, our transition matrix be equal to

0	0	35	25	10	5	0	0
0.03	0	0	0	0	0	0	0
0	0.6	0	0	0	0	0	0
0	0	0.6	0	0	0	0	0
0	0	0	0.5	0	0	0	0
0	0	0	0	0.4	0	0	0
0	0	0	0	0	0.3	0	0
0	0	0	0	0	0	0.2	0

And we let the column vector of our fish population at time $v_0 =$

$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
1 0
0
0
0
0
0
0

By the given definition, $v_1 = Tv_0$ and subsequently $v_2 = Tv_1 \dots v_i = Tv_{i-1}$. By updating the vectors through matrix multiplication we eventually arrive at vectors (written in a singular matrix as to preserve space, where $col_1 = v_0, col_2 = v_1$ and so on.)

50000	0	0	31500	13500	2700	20385	17010	7047
0	1500	0	0	945	405	81	611.55	510.3
0	0	900	0	0	567	243	48.6	366.93
0	0	0	540	0	0	340.2	145.8	29.16
0	0	0	0	270	0	0	170.1	72.9
0	0	0	0	0	108	0	0	68.04
0	0	0	0	0	0	32.4	0	0
0	0	0	0	0	0	0	6.48	0

Relating back to our original matrix, T, we observe that the numbers along the diagonal are how many original fish remain over the 8 year period. For instance, the $T_{5,4}=0.5$ would indicate that only 50% of the original fish survived from the previous year. The pattern would be similar for all diagonal numbers. The integers across $T_{1,3:6}$ would indicate the rate at which fish are breeding and thus producing new fish. As a definition for the general term (T_{ij}) would show the age of the fish present in the lake at a given time. Relating back to $T_{,4}=v_3$ we would have 540 three year old fish and 31,500 one year old fish. Looking into the future, we can observe the $v_2=Tv_1=T^2v_0$ so it would follow that $v_{40}=T^{40}v_0$

Below we have the vectors (once again bound into a matrix to preserve space) for $col_1 = v_0$, $col_2 = v_{40}$, $col_3 = v_{50}$, $col_4 = v_{100}$, $col_5 = v_{250}$

50000	9593	8643	5125	1068
0	291	262	155	32
0	176	159	94	20
0	107	96	57	12
0	54	49	29	6
0	22	20	12	2
0	7	6	4	1
0	1	1	1	0

To simulate how small changes in entries in T effects prediction, we rerun the simulation and add +2.5% to the nonzero element in row three yielding:

ſ	0	0	35	25	10	5	0	0
١	0.03	0	0	0	0	0	0	0
-	0	0.625	0	0	0	0	0	0
1	0	0	0.6	0	0	0	0	0
1	0	0	0	0.5	0	0	0	0
1	0	0	0	0	0.4	0	0	0
1	0	0	0	0	0	0.3	0	0
1	0	0	0	0	0	0	0.2	0

50000	15468	15701	16888	21011
0	464	470	506	629
0	289	294	316	393
0	173	176	189	235
0	87	88	94	117
0	35	35	38	47
0	10	11	11	14
0	2	2	2	3

Let's do the same by subtracting 4% from the nonzero element in row seven yielding:

[0	0	35	25	10	5	0	0]
0.03	0	0	0	0	0	0	0
0	0.6	0	0	0	0	0	0
0	0	0.6	0	0	0	0	0
0	0	0	0.5	0	0	0	0
0	0	0	0	0.4	0	0	0
0	0	0	0	0	0.26	0	0
0	0	0	0	0	0	0.2	0

50000	9593	8643	5125	1068
0	291	262	155	32
0	176	159	94	20
0	107	96	57	12
0	54	49	29	6
0	22	20	12	2
0	6	5	3	1
0	1	1	1	0

Repeat by changing the nonzero element in row 2 with +4%

[0	0	35	25	10	5	0	0
0.07	0	0	0	0	0	0	0
0	0.6	0	0	0	0	0	0
0	0	0.6	0	0	0	0	0
0	0	0	0.5	0	0	0	0
0	0	0	0	0.4	0	0	0
0	0	0	0	0	0.3	0	0
0	0	0	0	0	0	0.2	0

50000	222440563	2464582907	405218800258125	1.80037486221461e + 30
0	12279659	135600070	22308480542878	9.91158611782225e + 28
0	5825896	64088704	10526969597362	4.67709926572088e + 28
0	2725186	30223549	4967485261063	2.2070390431328e + 28
0	1072281	11865773	1953390329752	8.67885032505252e + 27
0	341228	3741584	614513248251	2.7302622742096e + 27
0	79597	882857	144988740135	6.44180836756775e + 26
0	12453	138411	22805876043	1.01325784550568e + 26

Now let's combine all of these changes and observe the results:

0	0	35	25	10	5	0	0
0.07	0	0	0	0	0	0	0
0	0.625	0	0	0	0	0	0
0	0	0.6	0	0	0	0	0
0	0	0	0.5	0	0	0	0
0	0	0	0	0.4	0	0	0
0	0	0	0	0	0.26	0	0
0	0	0	0	0	0	0.2	0

5 0000	363486560	4552815082	1380966761390112	3.85302259893255e + 31
0	19816873	247403640	75100706686704	2.09537685036857e + 30
0	9681726	120335070	36465869161766	1.0174303865909e + 30
0	4472056	56063468	16998088582478	4.74262187119887e + 29
0	1737036	21736951	6602872576932	1.84226053772413e + 29
0	546629	6771463	2051897094725	5.72497488693552e + 28
0	109153	1368226	414467968936	1.15640371761672e + 28
0	16846	211818	64399693744	1.79680943790209e + 27

It appears that the earlier the inaccuracy, the worse the overall outcome accuracy compared to the original as we see the largest significant change when we add +4% survival rate on the first year of life among the fish population.