МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Фундаментальная информатика» І семестр Задание 3 «Вещественный тип. Приближенные вычисления. Табулирование функций»

Группа	М8О-109Б-22
Студент	Яшин В.А.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Москва, 2022

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п

равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью є * 10^k, где є - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k — экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное є и обеспечивать корректные размеры генерируемой таблицы.

Вариант 18:

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float $_{1.19*10^{-7}}$, double $_{-2.20*10^{-16}}$, long double $_{-1.08*10^{-19}}$.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать просто деля 1 на 2.

Для каждой N+1 строки нужно просуммировать і членов формулы Тейлора, пока $|A_1-A_2| > \varepsilon$. Для этого просто ищем каждый новый член из формулы Тэйлора и суммируем с результатом

Использованные в программе переменные

Название переменной	Тип переменной	Смысл переменной
n	Int	Количество разбиений
		отрезка
Iter	Int	Сколько рядов Тейлора
Ans	Double	Сумма ряда Тейлора
Func	Double	Значение функции
Add	Double	Член ряда Тейлора
L	Double	Левая граница отрезка
R	Double	Правая граница отрезка
X	Double	Просто икс

Исходный код программы:

```
#include <stdio.h>
#include inits.h>
#include <math.h>
int main()
  int n, iter;
  double ans, func, add, 1 = 0.1, r = 0.6, x = 0.1;
  long double eps = 1.01;
  while (2.01 + \text{eps} / 2.01 > 2.01) {
     eps = 2.01;
  printf("Machine eps double = %.16Le\n", eps);
  printf("Write n: \n");
  scanf("%d", &n);
  printf("n = \%d, \n", n);
  printf("Table znacheniy Teylor and stand f(x) = ((1+x^2)/2) * arctg(x) - (x/2)");
printf("
   n'');
  printf("| x |
                                        f(x)
                                                   |count iter |\n");
                       sum
printf("
  for (int i = 1; i \le n; i++) {
     add = 1;
     iter = 1;
     func = ((1+pow(x, 2))/2)*atan(x)-(x/2);
     ans = 0;
     while (fabs(add) \geq eps && iter \leq 100) {
        add = (pow(-1, iter + 1)*(pow(x, 2*iter + 1)/(4*pow(iter, 2) - 1)));
```

Входные данные

Единственная строка содержит два целых числа N (0≤N≤100) – число разбиений отрезка на равные части

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем N+1 строку.

В каждой строке должно быть значение x, для которого вычисляется функция, число A_1 — значение, вычисленное с помощью формулы Тейлора, A_2 — значение, вычисленное с помощью встроенных функций языка, i — количество итерация, требуемых для вычисления, и Δ — разница значений A_1 и A_2 по модулю. A_1 , A_2 и Δ должны быть выведены с точностью K знаков после запятой.

Протокол исполнения и тесты Тест **№**1

```
Ввод:

4
Вывод:

Machine eps double = 2.1684043449710089e-19
Write n:

4
n = 4,

Table znacheniy Teylor and stand f(x) = \frac{((1+x^2)/2)^* \operatorname{arctg}(x) - (x/2)}{|x| | |sum| | |f(x)| | |count | |}
```

0.100 0.000332669508036787 0.000332669508036829	9	
0.225 0.003759242995824197 0.003759242995824100	13	
0.350 0.013958742380800748 0.013958742380800637	18	
0.475 0.034250683662220727 0.034250683662220838	25	
——— Тест № 2		
Ввод:		
10		
Вывод:		
achine eps double = 2.1684043449710089e-19		
Write n:		
10		
n = 10,		
Table znacheniy Teylor and stand $f(x) = ((1+x^2)/2)*arctg(x)-(x/2)$		
x sum f(x) count iter		
0.100 0.000332669508036787 0.000332669508036829	9	_ -
0.150 .001119985715355432 0.001119985715355473	11	_ -
0.200 0.002645691121937910 0.002645691121938007	12	 -
0.250 0.005144914786146426 0.005144914786146565	14	 -

0.300 0.008843952990437165 0.008843952990437581	16	
0.350 0.013958742380800748 0.013958742380800637	18	_ -
0.400 0.020693698725171350 0.020693698725171600	20	 -
0.450 0.029240923087430648 0.029240923087430593	23	 -
0.500 0.039779755625503954 0.039779755625503815	26	 -
0.550 0.052476641116769418 0.052476641116769362	30	I

Тест №3

Ввод:

20

Вывод:

Machine eps double = 2.1684043449710089e-19

Write n:

20

n = 20,

Table znacheniy Teylor and stand $f(x) = ((1+x^2)/2)*arctg(x)-(x/2)$

x	sum	I	f(x)	count iter		
0.100 0).00033260	695080)36787	0.000332669508036829	9	1
0.125 0	0.00064902	206682	277656	0.000649020668277295	10	I
0.150 0).00111998	357153	355432	0.001119985715355473	11	

0.175 0.001775657493734206 0.001775657493734303	12	
0.200 0.002645691121937910 0.002645691121938007	12	_
0.225 0.003759242995824197 0.003759242995824100	13	_
0.250 0.005144914786146426 0.005144914786146579	14	_
0.275 0.006830702802833155 0.006830702802833044	15	_
0.300 0.008843952990437165 0.008843952990437581	16	_
0.325 0.011211321712560451 0.011211321712560784	17	_
0.350 0.013958742380800748 0.013958742380800637	18	_
0.375 0.017111397888685431 0.017111397888685709	19	_
0.400 0.020693698725171350 0.020693698725171655	20	_
0.425 0.024729266567194541 0.024729266567194486	22	_
0.450 0.029240923087430648 0.029240923087430620	23	_
0.475 0.034250683662220727 0.034250683662220865	25	_
0.500 0.039779755625503954 0.039779755625503843	26	_
0.525 0.045848540687078998 0.045848540687079165	28	_
0.550 0.052476641116769418 0.052476641116769474	30	_

Тест №4

Ввод:

2

Вывод:

Machine eps double = 2.1684043449710089e-19

Write n:

2

n=2

Table znacheniy Teylor and stand $f(x) = ((1+x^2)/2)*arctg(x)-(x/2)$

 $x \mid sum \mid f(x) \mid count iter \mid$

| 0.350 | 0.013958742380800748 | 0.013958742380800637 | 18

Вывод

В работе описано определение машинного эпсилон, приведены его значения для разных переменных языка Си, описана формула Тейлора и составлен алгоритм реализации вычисления значения функции с заданной точностью для заданного числа точек на отрезке. На основе алгоритма составлена программа на языке Си, проведено её тестирование на различных тестах, составлен протокол исполнения программы. В целом, работа понравилась. Приятно применять знания из других областей для решения какой-либо задачи по программированию.

Список литературы

- Машинный ноль URL: https://ru.wikipedia.org/wiki/ HYPERLINK "https://ru.wikipedia.org/wiki/Mашинный ноль "Машинный ноль Ряд Тейлора URL: https://ru.wikipedia.org/wiki/ HYPERLINK "https://ru.wikipedia.org/wiki/Ряд Тейлора" Ряд Тейлора