

planetmath.org

Math for the people, by the people.

generalized matrix ring

Canonical name GeneralizedMatrixRing

Date of creation 2013-03-22 14:39:14 Last modified on 2013-03-22 14:39:14

Owner mclase (549) Last modified by mclase (549)

Numerical id 4

Author mclase (549) Entry type Definition Classification msc 16S50 Let I be an indexing set. A ring of $I \times I$ generalized matrices is a ring R with a decomposition (as an additive group)

$$R = \bigoplus_{i,j \in I} R_{ij},$$

such that $R_{ij}R_{kl} \subseteq R_{il}$ if j = k and $R_{ij}R_{kl} = 0$ if $j \neq k$.

If I is finite, then we usually replace it by its cardinal n and speak of a ring of $n \times n$ generalized matrices with components R_{ij} for $i \leq i, j \leq n$.

If we arrange the components R_{ij} as follows:

$$\begin{pmatrix} R_{11} & R_{12} & \dots & R_{1n} \\ R_{21} & R_{22} & \dots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ R_{n1} & R_{n2} & \dots & R_{nn} \end{pmatrix}$$

and we write elements of R in the same fashion, then the multiplication in R follows the same pattern as ordinary matrix multiplication.

Note that R_{ij} is an R_{ii} - R_{jj} -bimodule, and the multiplication of elements induces homomorphisms $R_{ij} \otimes_{R_{jj}} R_{jk} \to R_{ik}$ for all i, j, k.

Conversely, given a collection of rings R_i , and for each $i \neq j$ an R_i - R_j -bimodule R_{ij} , and for each i, j, k with $i \neq j$ and $j \neq k$ a homomorphism $R_{ij} \otimes_{R_j} R_{jk} \to R_{ik}$, we can construct a generalized matrix ring structure on

$$R = \bigoplus_{i,j} R_{ij},$$

where we take $R_{ii} = R_i$.