

RECEIVED

JUN 01 2001

TECH CENTER 1600/2900

SEQUENCE LISTING

<110> Schweighoffer, Fabien
Bracco, Laurent
Tocque, Bruno

<120> Qualitative Differential Screening

<130> 50146/004002

<140> 09/623,828
<141> 2000-11-30

<150> PCT/FR99/00547
<151> 1999-03-11

<160> 16

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

a
<221> misc_feature
<222> 13-19, 23
<223> n = A,T,C or G

<400> 1
gagaagcggtt atnnnnnnna ggn

23

<210> 2
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic

<221> misc_feature
<222> 13-20
<223> n = A,T,C or G

<400> 2
gagaagcggtt atnnnnnnnn tccc

24

<210> 3
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> synthetic
 <221> misc_feature
 <222> (13)...(23)
 <223> n = A,T,C or G
 <400> 3
 gagaagcggtt atnnnnnnnn nnn 23

<210> 4
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> synthetic
 <221> misc_feature
 <222> (13)...(17)
 <223> n = A,T,C or G
 <400> 4
 gagaagcggtt atnnnnncca 20

<210> 5
 <211> 66
 <212> DNA
 <213> Homo sapiens

a
WT <400> 5
 ccacacctgg ccagtatgtg ctcactggct tgcagagtgg gcagccagcc taagcatttg 60
 cactgg 66

<210> 6
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> synthetic
 <400> 6
 gggacctgtt tgacatgaag ccc 23

<210> 7
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> synthetic
 <400> 7
 cagttccgc tccacagggtt gc 22

<210> 8
 <211> 96
 <212> DNA

<213> Homo sapiens

<400> 8

gtacgggaga gcacgaccac acctggccag tatgtgctca ctggcttgca gagtggcag 60
cctaaggatt tgctactggg ggaccctgag ggtgtg 96

<210> 9

<211> 441

<212> PRT

<213> Homo sapiens

<400> 9

Met Asn Lys Leu Ser Gly Gly Gly Arg Arg Thr Arg Val Glu Gly
1 5 10 15
Gly Gln Leu Gly Gly Glu Glu Trp Thr Arg His Gly Ser Phe Val Asn
20 25 30
Lys Pro Thr Arg Gly Trp Leu His Pro Asn Asp Lys Val Met Gly Pro
35 40 45
Gly Val Ser Tyr Leu Val Arg Tyr Met Gly Cys Val Glu Val Leu Gln
50 55 60
Ser Met Arg Ala Leu Asp Phe Asn Thr Arg Thr Gln Val Thr Arg Glu
65 70 75 80
Ala Ile Ser Leu Val Cys Glu Ala Val Pro Gly Ala Lys Gly Ala Thr
85 90 95
Arg Arg Arg Lys Pro Cys Ser Arg Pro Leu Ser Ser Ile Leu Gly Arg
100 105 110
Ser Asn Leu Lys Phe Ala Gly Met Pro Ile Thr Leu Thr Val Ser Thr
115 120 125
Ser Ser Leu Asn Leu Met Ala Ala Asp Cys Lys Gln Ile Ile Ala Asn
130 135 140
His His Met Gln Ser Ile Ser Phe Ala Ser Gly Gly Asp Pro Asp Thr
145 150 155 160
Ala Glu Tyr Val Ala Tyr Val Ala Lys Asp Pro Val Asn Gln Arg Ala
165 170 175
Cys His Ile Leu Glu Cys Pro Glu Gly Leu Ala Gln Asp Val Ile Ser
180 185 190
Thr Ile Gly Gln Ala Phe Glu Leu Arg Phe Lys Gln Tyr Leu Arg Asn
195 200 205
Pro Pro Lys Leu Val Thr Pro His Asp Arg Met Ala Gly Phe Asp Gly
210 215 220
Ser Ala Trp Asp Glu Glu Glu Pro Pro Asp His Gln Tyr Tyr
225 230 235 240
Asn Asp Phe Pro Gly Lys Glu Pro Pro Leu Gly Gly Val Val Asp Met
245 250 255
Arg Leu Arg Glu Gly Ala Ala Pro Gly Ala Ala Arg Pro Thr Ala Pro
260 265 270
Asn Ala Gln Thr Pro Ser His Leu Gly Ala Thr Leu Pro Val Gly Gln
275 280 285
Pro Val Gly Gly Asp Pro Glu Val Arg Lys Gln Met Pro Pro Pro Pro
290 295 300
Pro Cys Pro Gly Arg Glu Leu Phe Asp Asp Pro Ser Tyr Val Asn Val
305 310 315 320
Gln Asn Leu Asp Lys Ala Arg Gln Ala Val Gly Gly Ala Gly Pro Pro
325 330 335
Asn Pro Ala Ile Asn Gly Ser Ala Pro Arg Asp Leu Phe Asp Met Lys
340 345 350
Pro Phe Glu Asp Ala Leu Arg Val Pro Pro Pro Pro Gln Ser Val Ser
355 360 365

Met	Ala	Glu	Gln	Leu	Arg	Gly	Glu	Pro	Trp	Phe	His	Gly	Lys	Leu	Ser
370						375					380				
Arg	Arg	Glu	Ala	Glu	Ala	Leu	Leu	Gln	Leu	Asn	Gly	Asp	Phe	Leu	Val
385						390				395					400
Arg	Thr	Lys	Asp	His	Arg	Phe	Glu	Ser	Val	Ser	His	Leu	Ile	Ser	Tyr
						405			410						415
His	Met	Asp	Asn	His	Leu	Pro	Ile	Ile	Ser	Ala	Gly	Ser	Glu	Leu	Cys
						420			425						430
Leu	Gln	Gln	Pro	Val	Glu	Arg	Lys	Leu							
						435			440						

<210> 10
<211> 1326
<212> DNA
<213> *Homo sapiens*

<400>	10					
atgaacaacgc	tgagtggagg	cggcgccccgc	aggactcggg	tggaaaggggg	ccagcttggg	60
ggcgaggagt	ggacccgcca	cgggagctt	gtcaataaagc	ccacgcgggg	ctggctgcat	120
cccaacgaca	aagtcatggg	accgggggtt	tcctacttgg	ttcggtacat	gggttgtgt	180
gaggtcctcc	agtcaatgcg	tgccttggac	tcaacacacc	ggactcagg	caccagggag	240
gccatcagtc	tggtgtgtga	ggctgtgccc	ggtgctaagg	ggcgacaag	gaggagaaaag	300
ccctgttagcc	gcccgcctag	ctctatcctg	gggaggagata	acctgaaatt	tgctggaatg	360
ccaatcactc	tcaccgtctc	caccaggcagc	ctcaacacct	tggccgcaga	ctgcaaacag	420
atcatcgcca	accaccacat	gcaatctatc	tcatttgcatt	ccggcgggga	tccggacaca	480
gcccggatgt	tgccttatgt	tgccaaagac	cctgtgaatc	agagagctg	ccacattctg	540
gagtgtcccg	aagggcttgc	ccaggatgtc	atcagcacca	ttggccaggc	cttcgagg	600
cgcttcaaacc	aatacctcag	gaaccacccc	aaactggtca	cccctcatga	caggatggct	660
ggctttgatg	gctcagcatg	ggatgaggag	gaggaagagc	cacctgacca	tcagtaactat	720
aatgacttcc	cggggaaagga	accccccctt	gggggggggtgg	tagacatgag	gttctcgggaa	780
ggagccgctc	caggggctgc	tgcaccact	gcacccaaatg	cccagacccc	cagccactt	840
ggagctacat	tgcctgttag	acagcctgtt	gggggagatc	cagaagtccg	caaacagatg	900
ccaccccttccac	caccctgtcc	aggcagagag	ctttttgatg	atcccttctt	tgtcaacgt	960
cagaacctag	acaaggcccc	gcaaggcagt	gggttgtctg	ggccccccaa	tcttgctatc	1020
aatggcagt	caccccccgg	cctgtttgac	atgaaggcct	tcgaagatgc	tcttcgggt	1080
cctccacctc	cccagtcgg	gtccatggct	gagcagctcc	gaggggagcc	ctggttccat	1140
gggaagctga	gccggcggg	ggctgaggca	ctgtgtcagc	tcaatgggg	cttcttggtt	1200
cggactaagg	atcaccgcctt	tgaaagtgtc	agtccaccta	tcagctacca	catggacaat	1260
cacttggccca	tcatctctgc	ggcagcga	ctgtgtctac	agcaacctgt	ggagcggaaa	1320
ctgtgt						1326

```
<210> 11
<211> 19
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Synthetic

```
<400> 11  
tgcccaaatc aacaagagc  
  
<210> 12  
<211> 19  
<212> DNA  
<213> Artificial Sequence
```

19

<220>
<223> Synthetic

<400> 12
ccccctgacaa gcctgaata 19

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 13
atgtctcaga gcaaccggga gctg 24

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 14
gtggctccat tcaccgcggg gctg 24

a
cont.

<210> 15
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 15
tgccaagaag ggaaggagt 19

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 16
tgtcatgact ccagcaatag 20