PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12Q 1/68, C12P 19/34, C07H 21/02, 21/04

(11) International Publication Number: WO 98/03683

(43) International Publication Date: 29 January 1998 (29.01.98)

(21) International Application Number: PCT/US97/12606

(22) **raternational Filing Date: 18 July 1997 (18.07.97)

(30) Priority Data:

60/020,998 19 July 1996 (19.07.96) US

(71) Applicants (for all designated States except US): THE REGENTS OF THE UNIVERSITY OF MICHIGAN [US/US]; Technology Management Office, Wolverine Tower, Roon 2071, 3003 South State Street, Ann Arbor, MI 48109-1280 (US). BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIVERSITY [US/US]; East Lansing, MI 48824 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VENTA, Patrick, J. [US/US]; 9646 Rolling Green, Pinckney, MI 48169 (US), BREWER, George, J. [US/US]; 3820 Gensley, Ann Arbor, MI 48103 (US). YUZBASIYAN-GURKAN, Vilma [US/US]; 3101 Dexter Road, Ann Arbor, MI 48103 (US). SCHALL, William, D. [US/US]; 3150 S. Williamston, Williamston, MI 48895 (US).

(74) Agents: SMITH, DeAnn, F. et al.; Harness, Dickey & Pierce, P.L.C., P.O. Box 828, Bloomfield Hills, MI 48303 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: DNA ENCODING CANINE VON WILLEBRAND FACTOR AND METHODS OF USE

(57) Abstract

The complete sequence of the canine von Willebrand Factor cDNA and deduced amino acid sequence is provided. The mutation which causes von Willebrand's Disease in Scottish Terriers, a single base deletion in exon 4, has also been determined. Methods for detecting carriers of the defective vWF gene are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albenia	25	Spain	LS	Lexistic	81	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	8K	Slovakia
AT	Amstria	FR	Prance	w	Luxembourg	SN.	Scacgal
AU	Australia	GA	Gabou	LV	Latvia	SZ.	Sweetland
AZ	Az erbaija n	GB	United Kingdom	MC	Monaco	TD	Ched
BA	Bossia and Herzegovina	GE	Georgin	MD	Republic of Moldova	TG	Togo
11	Berbedos	GH	Chata	MG	Madagascar	TJ	Tajikistas
32	Belgium	GN	Guinea	MX	The former Yugoslav	TM	Turkmenisten
25	Burkina Paso	CR	Greece		Republic of Macedonia	18	Terkey
B G	Bulgaria	RU	Hungary	MI.		TT	Trinidad and To
N,	Benin	1E	ireland	MON	Mongolia	UA	Ukmine
32	Brazil	1L	israel	MCR	Markeit	UG	Uganda
BY	Belgrus	18	Iceland	MW	Molecri	US	United States of
CA	Canada	IT	Raly	MCX	Mexico	UZ	Usbekistas
C7F	Central African Republic	JP.	Japan	NE	Niger	VN	Vict Nam
œ	Congo	KE	Копуа	NL	Netherlands	YU	Yagoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
а	Côte d'Ivoire	KP	Domocratic People's	NZ.	New Zealand	2,,	- Canonina
CM	Carneroon		Republic of Korea	PL.	Poland		
CN	China	KIR	Republic of Korea	PT	Porregal		
CU	Caba	KZ	Kezekuten	RO	Romenia		
CZ	Czech Republic	ic	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechermerin	20	Sudan		
DK	Denmark	LK	Sri Lanka	88	Sweden		
20	Betania		1.8	•••	3 WOODEN		

DNA ENCODING CANINE VON WILLEBRAND FACTOR AND METHODS OF USE

FIELD OF THE INVENTION

This invention relates generally to canine von Willebrand factor (vWF), and 5 more particularly, to the gene encoding vWF as well as a genetic defect that causes canine von Willebrand's disease.

BIOLOGICAL DEPOSITS

SEQUENCE

ACCESSION NO

Canine von Willebrand Factor

10

20

BACKGROUND OF THE INVENTION

In both dogs and humans, von Willebrand's disease (vWD) is a bleeding disorder of variable severity that results from a quantitative or qualitative defect in von Willebrand factor (vWF) (Ginsburg, D. et al., Blood 79:2507-2519 (1992): Ruggeri, Z.M., et al., FASEB J 7:308-316 (1993); Dodds, W.J., Mod Vet Pract 681-686 (1984); Johnson, G.S. et al., JAVMA 176:1261-1263 (1988); Brooks, M., Probl In Vet Med 4:636-646 (1992)). This dotting factor has two known functions, stabilization of Factor VIII (hemophilic factor A) in the blood, and aiding the adhesion of platelets to the subendothelium, which allows them to provide hemostasis more effectively. If the factor is missing or defective, the patient, whether human or dog, may bleed severely.

The disease is the most common hereditary bleeding disorder in both species, and is genetically and clinically heterogenous. Three clinical types, called 1, 2, and 3 (formerly I, II, and III; see Sadler, J.E. et al., Blood 84:676-679 (1994) for nomenclature changes), have been described. Type 1 vWD is inherited in a dominant, incompletely penetrant fashion. Bleeding appears to be due to the reduced level of vWF rather than a qualitative difference. Although this is the most common form of vWD found in most mammals, and can cause serious bleeding problems, it is generally less severe than the other two types. In addition, a relatively inexpensive vasopressin analog (DDAVP) can help alleviate symptoms 30 (Kraus, K.H. et al., Vet Surg 18:103-109 (1989))

த் பெக்கப் பெரு essentativ பள்ள சுர்சம். என்ற பிரசாகம்: ublicima. au determineu u, spedalized tests (Ruggen, Z.M., et al., FASEB : 7.308-316 (1993); Brooks, M., *Probl In Vet Med* 4:636-646 (1992)). This type is also

- 2 -

inherited in a dominant fashion and has only rarely been described in dogs (Turrentine, M.A., et al., \ et Clin North Am Small Anim Pract 18:275 (1988)).

Type 3 vWD is the most severe form of the disease. It is inherited as an autosomal recessive trait, and affected individuals have no detectable vWF in their blood. Serious bleeding episodes require transfusions of blood or cryoprecipitate to supply the missing vWF. Heterozygous carriers have moderately reduced factor concentrations, but generally appear to have normal hemostasis.

Scottish terriers have Type 3 vWD (Dodds, W.J., *Mod Vet Pract* 681-686 (1984); Johnson, G.S. et al., *JAVMA* 176:1261-1263 (1988)). Homozygotes have no detectable vWF and have a severe bleeding disorder. Heterozygotes have reduced levels of the factor, and are clinically normal (Brooks, M. et al., *JAVMA* 200:1123-1127 (1992)). The prevalence of vWD among Scottish terriers including both heterozygotes and homozygotes has been variously estimated from 27-31% (Stokol, T. et al., *Res. Vet. Sci.* 59:152-155 (1995); Brooks, M., *Proc. 9th ACVIM Forum* 89-91 (1991)).

Currently, detection of affected and carrier Scottish terrier dogs is done by vWF antigen testing (Benson, R.E. et al., Am J Vet Res 44:399-403 (1983); Stokol, T. et al., Res. Vet. Sci. 59:152-155 (1995)) or by coagulation assays (Rosborough, T.K. et al., J. Lab. Clin. Med. 96:47-56 (1980); Read, M.S. et al., J. Lab. Clin. Med. 101:74-82 (1983)). These procedures yield variable results, as the protein-based tests can be influenced by such things as sample collection, sample handling, estrous, pregnancy, vaccination, age, and hypothyroidism (Strauss, H.S. et al., New Eng J Med 269:1251-1252 (1963); Bloom, A.L., Mayo Clin Proc 66:743-751 (1991); Stirling, Y. et al., Thromb Haemostasis 52:176-182 (1984); Mansell, P.D. et al., Br. Vet. J. 148:329-337 (1992); Avgeris, S. et al., JAVMA 196:921-924 (1990); Panciera, D.P. et al., JAVMA 205:1550-1553 (1994)). Thus, for example, a dog that tests within the normal range on one day, can test within the carrier range on another day. It is therefore difficult for breeders to use this information.

It would thus be desirable to provide the nucleic acid sequence encoding canine vWF. It would also be desirable to provide the genetic defect responsible for canine vWD. It would further be desirable to obtain the amino acid sequence of canine vWF. It would also be desirable to provide a method for detecting carriers of the defective vWF gene based on the nucleic acid sequence of the normal and defective vWF gene.

25

30

35

SUMMARY OF THE INVENTION

The present invention provides a novel purified and isolated nucleic acid sequence encoding canine vWF. A nucleic acid sequence containing the mutation that causes vWD in Scottish terriers, a single-base deletion in exon 4, is also provided. The nucleic acid sequences of the present invention may be used in methods for detecting carriers of the mutation that causes vWD. Such methods may be used by breeders to reduce the frequency of the disease-causing allele and the incidence of disease. In addition, the nucleic acid sequence of the canine vWF provided herein may be used to determine the genetic defect that causes vWD in other breeds as well as other species.

Additional objects, advantages, and features of the present invention will become apparent from the following description, taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The various advantages of the present invention will become apparent to one skilled in the art by reading the following specification and by referencing the following drawings in which:

Figures 1A-1C is the nucleic acid sequence of the canine von Willebrand factor of the present invention;

20 Figures 2A-2C is a comparison of the human and canine prepro-von Willebrand factor amino acid sequences;

Figure 3 provides nucleotide sequencing ladders for the von Willebrand's disease mutation region for normal (clear), carrier, and affected Scottish terriers, the sequences being obtained directly from PCR products derived from genomic DNAs in exon 4;

Figure 4 illustrates the results of a method of the present invention used to detect the Scottish terrier vWD mutation; and

Figure 5 shows the Scottish terrier pedigree, which in turn illustrates segregation of the mutant and normal vWF alleles.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The cDNA encoding canine von Willebrand Factor (vWF) has been sequenced and its sequence is set forth a Fig. 1. The control of the control of

pubsequently deduced and is set forth in Figures 2A-2C and SEQ ID NO. 2. The mutation of the normal vWF gene which causes von Willebrand's Disease (vWD).

- 4 -

a deletion at codon 88 of the normal gene resulting in a frameshift, is also provided. The nucleic acid sequences of the present invention may be used in methods for detecting homozygous and heterozygous carriers of the defective vWF gene.

In a preferred method of detecting the presence of the von Willebrand allele
in canines, DNA samples are first collected by relatively noninvasive techniques, *i.e.*,
DNA samples are obtained with minimal penetration into body tissues of the animals
to be tested. Common noninvasive tissue sample collection methods may be used
and include withdrawing buccal cells via cheek swabs and withdrawing blood
samples. Following isolation of the DNA by standard techniques, PCR is performed
on the DNA utilizing pre-designed primers that produce enzyme restriction sites on
those DNA samples that harbor the defective gene. Treatment of the amplified DNA
with appropriate restriction enzymes such as *Bsi*E I thus allows one to analyze for
the presence of the defective allele. One skilled in the art will appreciate that this
method may be applied not only to Scottish terriers, but to other breeds such as
Shetland sheepdogs and Dutch Kooikers.

Overall, the present invention provides breeders with an accurate, definitive test whereby the undesired vWD gene may be eliminated from breeding lines. The current tests used by breeders are protein-based, and as noted previously, the primary difficulty with this type of test is the variability of results due to a variety of factors. The ultimate result of such variability is that an inordinate number of animals fall into an ambiguous grouping whereby carriers and noncarriers cannot be reliably distinguished. The present invention obviates the inherent limitations of protein-based tests by detecting the genetic mutation which causes vWD. As described in Specific Example 1, the methods of the present invention provide an accurate test for distinguishing noncarriers, homozygous carriers and heterozygous carriers of the defective vWF gene.

20

It will be appreciated that because the vWF cDNA of the present invention is substantially homologous to vWF cDNA throughout the canine species, the nucleic acid sequences of the present invention may be used to detect DNA mutations in other breeds as well. In addition, the canine vWF sequence presented herein potentially in combination with the established human sequence (Genbank Accession No. X04385, Bonthron, D. et al., Nucleic Acids Res. 14:7125-7128 (1986); Mancuso, D.J. et al., Biochemistry 30:253-269 (1989); Meyer, D. et al., Throm Haemostasis 70:99-104 (1993)), may be used to facilitate sequencing of the vWF

- 5 -

gene and genetic defects causing vWD, in other mammalian species e.g., by using cross-species PCR methods known by those skilled in the art.

It is also within the contemplation of this invention that the isolated and purified nucleic acid sequences of the present invention be incorporated into an appropriate recombinant expression vector, e.g., viral or plasmid, which is capable of transforming an appropriate host cell, either eukaryotic (e.g., mammalian) or prokaryotic (e.g., E. coli). Such DNA may involve alternate nucleic acid forms, such as cDNA, gDNA, and DNA prepared by partial or total chemical synthesis. The DNA may also be accompanied by additional regulatory elements, such as promoters, operators and regulators, which are necessary and/or may enhance the expression of the vWF gene product. In this way, cells may be induced to over-express the vWF gene, thereby generating desired amounts of the target vWF protein. It is further contemplated that the canine vWF polypeptide sequence of the present invention may be utilized to manufacture canine vWF using standard synthetic methods. One skilled in the art will also note that the defective protein encoded by the defective vWF gene of the present invention may also be of use in formulating a complementary diagnostic test for canine vWD that may provide further data in establishing the presence of the defective allele. Thus, production of the defective vWF polypeptide, either through expression in transformed host cells as described above for the active vWF polypeptide or through chemical synthesis, is also contemplated by the present invention.

The term "gene" as to referred herein means a nucleic acid which encodes a protein product. The term "nucleic acid" refers to a linear array of nucleotides and nucleosides, such as genomic DNA, cDNA and DNA prepared by partial or total chemical synthesis from nucleotides. The term "encoding" means that the nucleic acid may be transcribed and translated into the desired polypeptide. "Polypeptide" refers to amino acid sequences which comprise both full-length proteins and fragments thereof. "Mutation" as referred to herein includes any alteration in a nucleic acid sequence including, but not limited to, deletions, substitutions and additions.

As referred to herein, the term "capable of hybridizing under high stringency conditions" means annealing a strand of DNA complementary to the DNA fundamentary to the conditions are under conditions as transported as

- 6 -

under either high or low stringency conditions would involve hybridizing a nucleic acid sequence (e.g., the complementary sequence to SEQ ID NO: 1 or portion thereof), with a second target nucleic acid sequence. "High stringency conditions" for the annealing process may involve, for example, high temperature and/or low salt content, which disfavor hydrogen bonding contacts among mismatched base pairs. "Low stringency conditions" would involve lower temperature, and/or lower salt concentration than that of high stringency conditions. Such conditions allow for two DNA strands to anneal if substantial, though not near complete complementarity exists between the two strands, as is the case among DNA strands that code for the same protein but differ in sequence due to the degeneracy of the genetic code. Appropriate stringency conditions which promote DNA hybridization, for example, 6X SSC at about 45 °C, followed by a wash of 2X SSC at 50 °C are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.31-6.3.6. For example, the salt concentration in the wash step can be selected from a low stringency of about 2X SSC at 50 °C to a high stringency of about 0.2X SSC at 50 °C. In addition, the temperature in the wash step can be increased from low stringency at room temperature, about 22 °C, to high stringency conditions, at about 65 °C. Other stringency parameters are described in Maniatis, T., et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor 20 Laboratory Press, Cold Spring NY, (1982), at pp. 387-389; see also Sambrook J. et al., Molecular Cloning: A Laboratory Manual, Second Edition, Volume 2, Cold Spring Harbor Laboratory Press, Cold Spring, NY at pp. 8.46-8.47 (1989).

SPECIFIC EXAMPLE 1 Materials And Methods

25

Isolation of RNA. The source of the RNA was a uterus from a Scottish Terrier affected with vWD (factor level < 0.1% and a clinical bleeder), that was surgically removed because of infection. Spleen tissue was obtained from a Doberman Pinscher affected with vWD that died from dilated cardiomyopathy (factor level 7% and a clinical bleeder). Total RNA was extracted from the tissues using Trizol (Life Technologies, Gaithersburg, MD). The integrity of the RNA was assessed by agarose gel electrophoresis.

Design of PCR primer sets. Primers were designed to a few regions of the gene, where sequences from two species were available (Lavergne, J.M. et al., Biochem Biophys Res Commun 194:1019-1024 (1993); Bakhshi, M.R. et al., Biochem Biophys Acta 1132:325-328 (1992)). These primers were designed using

rules for cross-species' amplifications (Venta et al., "Genes-Specific Universal Mammalian Sequence-Tagged Sites: Application To The Canine Genome" *Biochem Genet*. (1996) in press). Most of the primers had to be designed to other regions of the gene using the human sequence alone (Mancuso, D.J. et al., *Biochemistry* 30:253-269 (1991)). Good amplification conditions were determined by using human and canine genomic DNAs.

Reverse Transcriptase-PCR. Total RNA was reverse transcribed using random primers (Bergenhem, N.C.H. et al., PNAS (USA) 89:8789-8802 (1992)). The cDNA was amplified using the primer sets shown to work on canine genomic DNA.

DNA Sequence Analysis. Amplification products of the predicted sizes were isolated from agarose gels by adsorption onto silica gel particles using the manufacturer's method (Qiagen, Chatsworth, CA). Sequences were determined using ³²P-5′ end-labeled primers and a cycle sequencing kit (United States Biochemical Corp., Cleveland, OH). The sequences of the 5′ and 3′ untranslated regions were determined after amplification using Marathon™ RACE kits (Clontech, Palo Alto, CA). Sequences were aligned using the Eugene software analysis package (Lark Technologies, Houston, TX). The sequence of the canine intron four was determined from PCR-amplified genomic DNA.

Design of a Diagnostic Test. PCR mutagenesis was used to create diagnostic and control BsiE I and Sau96 I restriction enzyme sites for the test. Amplification conditions for the test are: 94°C, 1 min, 61°C, 1 min, and 72°C, 1 min, for 50 cycles using cheek swab DNA (Richards, B. et al., Human Molecular Genetics 2:159-163 (1992)).

Population Survey. DNA was collected from 87 Scottish terriers from 16 pedigrees. DNA was isolated either from blood using standard procedures (Sambrook, J. et al., Cold Harbor Spring Lab, Cold Harbor Spring NY, 2nd Edition, (1989)) or by cheek swab samples (Richards, B. et al., Human Molecular Genetics 2:159-163 (1992)). The genetic status of each animal in the survey was determined using the BsiE I test described above.

30

35

10

Results

Comparison of the canine and human sequences. The alignment of the canine and human prepro von Wilebrand Factor amine and action is assessed to the cures and the location is the acottish temer volt mutation is indicated by the Potential N-glycosylation sites are shown in hold type. The known and postulated integrin binding sites are boxed. Amino acid numbers are shown on the

right side of the figure. The human sequence is derived from Genbank accession number X04385 (Bonthron, D. et al., Nucleic Acids Res. 14:7125-7128 (1986)).

Overall, 85.1% sequence identity is seen between the prepro-vWF sequences. The pro-region is slightly less conserved than the mature protein (81.4% 5 vs. 87.5%). There were no other noteworthy percentage sequence identity differences seen in other regions of the gene, or between the known repeats contained within the gene (data not shown). Fourteen potential N-linked glycosylation sites are present in the canine sequence, all of which correspond to similar sites contained within the human sequence. The two integrin binding sites identified in the human vWF protein sequence (Lankhof, H. et al., Blood 86:1035-1042 (1995)) are conserved in the canine sequence as well (Figures 2A-2C). The 5' and 3' untranslated regions have diverged to a greater extent than the coding region (data not shown), comparable to that found between the human and bovine sequences derived for the 5' flanking region (Janel, N. et al., Gene 167:291-295 (1995)). Additional insights into the structure and function of the von Willebrand factor can be gained by comparison of the complete human sequence (Mancuso, D.J. et al., Biochemistry 30:253-269 (1989); Meyer, D. et al., Throm Haemostasis 70:99-104 (1993)) and the complete canine sequence reported here.

15

20

25

30

The sequence for most of exon 28 was determined (Mancuso, D.J. et al., Thromb Haemost 69:980 (1993); Porter, C.A. et al., Mol Phylogenet Evol 5:89-101 (1996)). All three sequences are in complete agreement, although two silent variants have been found in other breeds (Table 1, exon 28). Partial sequences of exons 40 and 41 (cDNA nucleotide numbers 6923 to 7155, from the initiation codon) were also determined as part of the development of a polymorphic simple tandem repeat genetic marker (Shibuya, H. et al., Anim Genet 24:122 (1994)). There is a single nucleotide sequence difference between this sequence ("T") and the sequence of the present invention, ("C") at nucleotide position 6928.

Scottish Terrier vWD mutation. Figure 3 shows nucleotide sequencing ladders for the von Willebrand's Disease mutation region for normal (clear), carrier, and affected Scottish terriers. The sequences were obtained directly from PCR products derived from genomic DNAs in exon 4. The arrowheads show the location of the C nucleotide that is deleted in the disease-causing allele. Note that in the carrier ladder each base above the point of the mutation has a doublet appearance, as predicted for deletion mutations. The factor levels reported for these animals 35 were: Normal, 54%; Carrier, 34%; Affected, <0.1%.

As a result of the deletion, a frameshift mutation at codon 88 leads to a new stop codon 103 bases downstream. The resulting severely truncated protein of 119 amino acids does not include any of the mature von Willebrand factor region. The identity of the base in the normal allele was determined from an unaffected dog.

Development of a diagnostic test. A PCR primer was designed to produce a BsiE I site in the mutant allele but not in the normal allele (Figure 4). The position of the deleted nucleotide is indicated by an asterisk. The altered nucleotides in each primer are underlined. The normal and mutant allele can also be distinguished using Sau96 I. The naturally occurring Sau96 I sites are shown by double underlines. The highly conserved donor and acceptor dinucleotide splice sequences are shown in bold type.

In order to ensure that the restriction enzyme cut the amplified DNA to completion, an internal control restriction site common to both alleles was designed into the non-diagnostic primer. The test was verified by digestion of the DNA from animals that were affected, obligate carriers, or normal (based on high factor levels [greater than 100% of normal] obtained from commonly used testing labs and reported to us by the owners, and also using breeds in which Type 3 vWD has not been observed). The expected results were obtained (e.g., Figure 5). Five vWD-affected animals from a colony founded from Scottish terriers (Brinkhous, K.M. et al., Ann. New York Acad. Sci. 370:191-203 (1981)) were also shown to be homozygous for this mutation. An additional unaffected animal from this same colony was found to be clear.

It would still be possible to misinterpret the results of the test if restriction enzyme digestion was not complete, and if the rates of cleavage of the cont778rol and diagnostic sites were vastly different. The rates of cleavage of the two Bs/E I sites were thus examined by partially digesting the PCR products and running them on capillary electrophoresis. The rates were found to be very nearly equal (the diagnostic site is cut 12% faster than the control site).

The mutagenesis primer was also designed to produce a Sau96 I site into the normal allele but not the mutant allele. This is the reverse relationship compared to the Bs/E I-dependent test, with respect to which allele is cut. Natural internal Sau96

TYMPE COMOUNES STENUOS DEMOTYPS SORES SERVED

5

examined (data not shown)

A possible mutation in the Doberman Pinscher gene. The complete Scottish termer sequence was compared to the complete Doberman Pinscher sequence. Several nucleotide differences were found and were compared to the nucleotides found in the same position in the human sequence as shown in Table 1 below. Most of these changes were silent. However, of three amino acid changes, one is relatively non-conservative (F905L) and is proposed to be the mutation that causes Doberman Pinscher vWD. Other data strongly suggest that the nucleotide interchange at the end of exon 43 causes a cryptic splice site to be activated reducing the amount of normally processed mRNA, with a concomitant decrease in the amount of vWF produced.

Mendelian inheritance. One test often used to verify the correct identification of a mutant allele is its inheritance according to Mendel's law of segregation. Three pedigrees were examined in which the normal and mutant alleles were segregating, as shown in Figure 5. Exon four of the vWF gene was PCR-amplified from genomic DNA. The PCR products were examined for the presence of the normal and mutant vWF alleles by agarose gel electrophoresis after digestion with BsiE I (see Figure 5). The affected animals are homozygous for the mutant allele (229 bp; lanes 3 and 5). The other animals in this pedigree are heterozygotes (251 bp and 229 bp; lanes 1, 2, 4, and 6), including the obligate carrier parents.

20

Table 1 - Differences Between Scottie And Doberman Protein And Nucleotide von Willebrand Factor Sequences With Comparison To The Human Sequences

				Amino Acid		Codon						
	Exon		Human	Scotte	Doberman	Human	Scottie	Doberman				
5	5° UT²	nuc - 353	N/A ⁴	N/A	N/A	N/A	A	G				
	4	85	S	S/F.Shrift ³	s	TCC	тсслтс_	TCC				
	5	173	M	R	к	ATG	AGG	AAG				
	11	422	s	τ	T	TCC	ACA	ACC				
	21	898	c	С	С	TGC	TGT	TGC				
10	21	905	F	F	Ĺ	тт	ттс	TTA				
	24	1041	s	s	S	TCA	TCA	TCG				
	24	1042	S	s	S	TCC	TCC	TCA				
	28	1333	D	D	E	GAC	GAC	GAG				
ļ	28	1349	Υ .	Y	Y	TAT	TAT	TAC*				
5	42	2381	Р	L	P	ccc	CTG	ccG				
	43	2479	s	s	S	TCG	TCG	TCA				
	45	2555	P	Р	P	ccc	ccc	ccG				
	47	2591	Ρ	P	P	ccc	сст	ccc				
	49	2672	D	D	D	GAT	GAT	GAC				
0	51	2744	E	Ε	E	GAG	GAG	GAA				

¹Amino acid residue position

Boxed residues show amino acid differences between breeds

The mature VWF protein begins in exon 18

The alleles, as typed by both the BsiE I and Sau96 I tests, showed no inconsistencies with Mendelian inheritance. One of these pedigrees included two affected animals, two phenotypically normal siblings, and the obligate carrier parents.

²Untranslated region

³Nucleotide position

⁴Not Applicable

²⁵ Frameshift mutation

^{*}This site has been shown to be polymorphic in some breeds

The two parents were found to be \$2466 and alleged and the correct subject of the nomozygous, a sine mutant alleged and the correct subject were sund to be heterozygotes.

- 12 -

Population survey for the mutation. Cheek swabs or blood samples were collected from 87 animals in order to determine the incidence of carriers in the U.S Scottish terrier population. Although we attempted to make the sample as random as possible, these dogs were found to come from 16 pedigrees, several of which are more distantly interconnected. This is due to some ascertainment bias, based on ownership (as opposed to phenotypic ascertainment bias). In these 87 animals four affected and 15 carrier animals were found.

Discussion

These results establish that the single base deletion found in exon four of the vWF gene causes vWD in the Scottish terrier breed. The protein produced from the mutant allele is extremely short and does not include any of the mature vWF protein. Four Scottish terriers known to be affected with the disease are homozygous for the mutation. Five other mixed-breed dogs descended from Scottish terriers, and affected with vWD, are also homozygous for the mutation. No normal animals are homozygous for the mutation. Unaffected obligate carriers are always heterozygous for the mutation.

The gene frequency, as determined from the population survey, appears to be around 0.13 resulting in a heterozygote frequency of about 23% and expected frequency of affected animals of about 2%. Although the sample size is relatively small and somewhat biased, these data are in general agreement with the protein-based surveys (Stokol, T. et al., Res Vet Sci 59:152-155 (1995); Brooks, M., Probl In Vet Med 4:636-646 (1992)), in that the allele frequency is substantial.

20

30

All data collected thus far indicate that this mutation accounts for essentially all of the von Wilebrand's disease found in Scottish terriers. This result is consistent with the results found for other genetic diseases, defined at the molecular level, in various domestic animals (Shuster, D.E. et al., PNAS (USA) 89:9225-9229 (1992); Rudolph, J.A. et al., Nat Genet 2:144-147 (1992); O'Brien, P.J. et al., JAVMA 203:842-851 (1993)). A likely explanation may be found in the pronounced founder effect that occurs in domestic animals, compared to most human and wild animal populations.

Published data using the protein-based factor assays have shown that, at least in several instances, obligate carriers have had factor levels that would lead to a diagnosis of "clear" of the disease allele. For example, in one study an obligate carrier had a factor level of 78% (Johnson, G.S. et al., *JAVMA* 176:1261-1263 (1980)). In another study, at least some of the obligate carriers had factor levels of

65% or greater (Brinkhous, K.M. et al., Ann. New York Acad. Sci. 370,191-203 (1981)). In addition, the number of animals that fall into an equivocal range can be substantial. In one study, 19% of Scottish terriers fell in this range (50-65% of the normal vWF antigen level) (Stokol, T. et al., Res Vet Sci 59:152-155 (1995)). Thus, although the protein-based tests have been useful, the certainty of the DNA-based test described herein should relieve the necessity of repeated testing and the variability associated with the protein-based assays.

The mutation is present in the pre-vWF part of the molecule. This part of the molecule is processed off prior to delivery of the mature protein into the plasma. This pre-portion of the molecule is important for the assembly of the mature vWF protein (Verwiej, L. et al., EBMO J 6:2885-2890 (1987); Wise, R.J. et al., Cell 52:229-236 (1988)). With the Scottish terrier frameshift vWD mutation, neither this pre-portion nor any of the mature factor is ever produced, in keeping with the fact that no factor has ever been detected in the blood of affected dogs.

15

The determination of the complete canine vWF cDNA sequence will have an impact upon the development of carrier tests for other breeds and other species as well. Currently, Shetland sheepdogs and Dutch Kooikers are known to have a significant amount of Type 3 vWD (Brooks, M. et al., JAVMA 200:1123-1127 (1992); Slappendel, R.J., Vet-Q 17:S21-S22 (1995)). Type 3 vWD has occasionally be seen in other breeds as well (e.g., Johnson, G.S. et al., JAVMA 176:1261-1263 (1980)). All Type 3 vWD mutations described in humans to date have been found within the vWF gene itself. The availability of the canine sequence will make it easier to find the mutations in these breeds. In addition, at least some Type 1 mutations have been found within the human vWF gene, and thus Type 1 mutations may also be 25 found within the vWF gene for breeds affected with that form of the disease. The availability of two divergent mammalian vWF cDNA sequences will also make it much easier to sequence the gene from other mammalian species using crossspecies PCR methods (e.g., Venta et al., Biochem. Genet. (1996) in press).

The test described herein for the detection of the mutation in Scottish terriers may be performed on small amounts of DNA from any tissue. The tissues that are the least invasive to obtain are blood and buccal cells. For maximum convenience, a cheek swab as a source of DNA is preferred

ni esobal indesatali. Iniciper #scribe: nere: incodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings, that various changes,

- 14 -

modifications and variations can be made therein without departing from the spirit and scope of the invention

All patents and other publications cited herein are expressly incorporated by reference.

- 15 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Venta, Patrick J

Yuzbasiyan-Gurkan, Vilma

Schall, William D

Brewer, George J

- (ii) TITLE OF INVENTION: DNA ENCODING CANINE VON WILLEBRAND FACTOR AND METHODS OF USE
- (111) NUMBER OF SEQUENCES: 2
- (1V) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Harness, Dickey & Pierce, P.L.C.
 - (B) STREET: 5445 Corporate Drive
 - (C) CITY: Troy
 - (D) STATE: Michigan
 - (E) COUNTRY: USA
 - (F) ZIP: 48098
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Smith, DeAnn F.
 - (C) REFERENCE/DOCKET NUMBER: 211501226PCA
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 248-641-1600
 - (B) TELEFAX: 248-641-0270 (C) TELEX: 287637
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8802 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (1x) FEATURE:

(A) NAME/KEY CDS

YAT .

TOURMATION BINTELLO
TOURCE SAILE
Standard non-THEF INFORMATIONX.

- 16 ·

(x) PUBLICATION INFORMATION: (A) AUTHORS: Venta, Patrick J Li, Jianping

Yuzbasıyan-Gurkan, Vilma
Schall, William D.
Brewer, George J.

(B) TITLE: Von Willebrand by Disease in the Scottish Terrier is Caused by a Single Base Deletion in
Exon Four of the von Willebrand Factor Gene
(C) JOURNAL: Journal of the American Veterinary Medicine Association

(G) DATE: 1996
(K) RELEVANT RESIDUES IN SEQ ID NO:1: FROM 1 TO 8802

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CATTAAAAGG TCCTGGCTGG GAGCTTTTTT TTGGGACCAG CACTCCATGT TCAAGGGCAA	60
ACAGGGGCCA ATTAGGATCA ATCTTTTTC TTTCTTTTTT TAAAAAAAAA AATTCTTCCC	120
ACTITGCACA CGGACAGTAG TACATACCAG TAGCTCTCTG CGAGGACGGT GATCACTAAT	180
CATTTCTCCT GCTTCGTGGC AG ATG AGT CCT ACC AGA CTT GTG AGG GTG CTG Met Ser Pro Thr Arg Leu Val Arg Val Leu 1 5 10	232
CTG GCT CTG GCC CTC ATC TTG CCA GGG AAA CTT TGT ACA AAA GGG ACT Leu Ala Leu Ala Leu Ile Leu Pro Gly Lys Leu Cys Thr Lys Gly Thr 15 20 25	280
GTT GGA AGG TCA TCG ATG GCC CGA TGT AGC CTT CTC GGA GGT GAC TTC Val Gly Arg Ser Ser Met Ala Arg Cys Ser Leu Leu Gly Gly Asp Phe 30 40	328
ATC AAC ACC TTT GAT GAG AGC ATG TAC AGC TTT GCG GGA GAT TGC AGT Ile Asn Thr Phe Asp Glu Ser Met Tyr Ser Phe Ala Gly Asp Cys Ser 45	376
TAC CTC CTG GCT GGG GAC TGC CAG GAA CAC TCC ATC TCA CTT ATC GGG Tyr Leu Leu Ala Gly Asp Cys Gln Glu His Ser Ile Ser Leu Ile Gly 60 65 70	424
GGT TTC CAA AAT GAC AAA AGA GTG AGC CTC TCC GTG TAT CTC GGA GAA Gly Phe Gln Asn Asp Lys Arg Val Ser Leu Ser Val Tyr Leu Gly Glu 75 80 85 90	472
TTT TTC GAC ATT CAT TTG TTT GTC AAT GGT ACC ATG CTG CAG GGG ACC Phe Phe Asp Ile His Leu Phe Val Asn Gly Thr Met Leu Gln Gly Thr 95 100 105	520
CAA AGC ATC TCC ATG CCC TAC GCC TCC AAT GGG CTG TAT CTA GAG GCC Gln Ser Ile Ser Met Pro Tyr Ala Ser Asn Gly Leu Tyr Leu Glu Ala 110	568
GAG GCT GGC TAC AAG CTG TCC AGT GAG GCC TAC GGC TTT GTG GCC Glu Ala Gly Tyr Tyr Lys Leu Ser Ser Glu Ala Tyr Gly Phe Val Ala 125	616
AGA ATT GAT GGC AAT GGC AAC TTT CAA GTC CTG TCA GAC AGA TAC Arg Ile Asp Gly Asn Gly Asn Phe Gln Val Leu Leu Ser Asp Arg Tyr 140 145	664
TTC AAC AAG ACC TGT GGG CTG TGT GGC AAC TTT AAT ATC TTT GCT GAG Phe Asn Lys Thr Cys Gly Leu Cys Gly Asn Phe Asn Ile Phe Ala Glu 155 160 165 170	712

- 17 -

												GAC Asp				760
												CGG Arg				808
												GAT Asp 215				856
												GCC Ala				904
												GTC Val				952
												TGC Cys				1000
												GGG Gly				1048
												TGC Cys 295				1096
												ACT Thr				1144
بالملح																
												GAT Asp				1192
Leu 315 TGC	His	Val GAG	Lys GGC	Glu CAG	Val 320 CTC	Cys CTG	Gln GAT	Glu GAA	Gln GGC	Cys 325 CAC	Val TGC		Gly GGA	Cys AGT	Ser 330 GCT	1192
Leu 315 TGC Cys	His CCC Pro	Val GAG Glu TCC	Lys GGC Gly TGT	Glu CAG Gln 335 GTG	Val 320 CTC Leu CAT	Cys CTG Leu GCT	GAT Asp GGG	Glu GAA Glu CAA	GGC Gly 340 CGG	Cys 325 CAC His	Val TGC Cys	Asp GTG	Gly GGA Gly GGC	Cys AGT Ser 345 GCC	Ser 330 GCT Ala	
Leu 315 TGC Cys GAG Glu	His CCC Pro TGT Cys	Val GAG Glu TCC Ser CAG	GGC Gly TGT Cys 350 GAC	CAG Gln 335 GTG Val	Val 320 CTC Leu CAT His	Cys CTG Leu GCT Ala ACC	Gln GAT Asp GGG Gly TGC	GAA Glu CAA Gln 355	Gln GGC Gly 340 CGG Arg	Cys 325 CAC His TAC Tyr	Val TGC Cys CCT Pro	Asp GTG Val	GGA Gly GGC Gly 360 CTG	Cys AGT Ser 345 GCC Ala	Ser 330 GCT Ala TCC Ser	1240
Leu 315 TGC Cys GAG Glu CTC Leu	His CCC Pro TGT Cys TTA Leu	CAG Gln 365	GGC Gly TGT Cys 350 GAC Asp	CAG Gln 335 GTG Val TGC Cys	Val 320 CTC Leu CAT His CAC His	Cys CTG Leu GCT Ala ACC Thr	GAT Aap GGG Gly TGC Cys 370 GGC	GAA Glu CAA Gln 355 ATT Ile	Gln GGC Gly 340 CGG Arg TGC Cys	Cys 325 CAC His TAC Tyr CGA Arg	TGC Cys CCT Pro AAT ABn	Asp GTG Val CCG Pro AGC Ser	GGA Gly GGC Gly 360 CTG Leu	Cys AGT Ser 345 GCC Ala TGG Trp	Ser 330 GCT Ala TCC Ser ATC Ile	1240
TGC Cys GAG Glu CTC Leu TGC Cys	His CCC Pro TGT Cys TTA Leu AGC Ser 380	Val GAG Glu TCC Ser CAG Gln 365 AAT ASn	GGC Gly TGT Cys 350 GAC Asp GAA Glu AGC	CAG Gln 335 GTG Val TGC Cys GAA Glu	Val 320 CTC Leu CAT His CAC His	CYB CTG Leu GCT Ala ACC Thr CCA Pro 385 AAC	GAT Asp GGG Gly TGC Cys 370 GGC Gly	GAA Glu CAA Gln 355 ATT Ile GAG Glu	Gln GGC Gly 340 CGG Arg TGC Cys TGT Cys	Cys 325 CAC His TAC Tyr CGA Arg CTG Leu	Val TGC Cys CCT Pro AAT ABn GTC Val 390 TTC	Asp GTG Val CCG Pro AGC Ser 375	GGA GGC GGC GGY 360 CTG Leu GGA GIY	Cys AGT Ser 345 GCC Ala TGG Trp CAG Gln	Ser 330 GCT Ala TCC Ser ATC Ile TCC Ser	12 4 0 12 8 8 1336
GAG Glu CTC Leu TGC Cys CAC His	His CCC Pro TGT Cys TTA Leu AGC Ser 380 TTC	Val GAG Glu TCC Ser CAG Gln 365 AAT ASN	GGC Gly TGT Cys 350 GAC Asp GAA Glu	Glu CAG Gln 335 GTG Val TGC Cys GAA Glu TTC Phe	Val 320 CTC Leu CAT His CAC His TGC Cys	CYS CTG Leu GCT Ala ACC Thr CCA Pro 385 AAC Asn	GAT Asp GGG Gly TGC Cys 370 GGC Gly AGG Arg	Glu GAA Glu CAA Gln 355 ATT Ile GAG Glu TAC Tyr	Gln GGC Gly 340 CGG Arg TGC Cys TGT Cys	Cys 325 CAC His TAC Tyr CGA Arg CTG Leu	TGC Cys CCT Pro AAT ASn GTC Val 390 TTC Phe	Asp GTG Val CCG Pro AGC Ser 375 ACA Thr	Gly GGA Gly GGC Gly 360 CTG Leu GGA Gly GGG	AGT Ser 345 GCC Ala TGG Trp CAG Gln	Ser 330 GCT Ala TCC Ser ATC Ile TCC Ser TGC Cys 410	1240 1288 1336 1384

- 18 -

TCG Ser	GTC Val	ACC Thr 445	GTC Val	CGC Arg	CTG Leu	CCT Pro	GGA Gly 450	CAT His	CAC His	AAC Asn	AGC Ser	CTT Leu 455	GTG Val	AAG Lys	CTG Leu	1576
												ATC Ile				1624
												ATG Met				1672
CGC Arg	CTC Leu	AGC Ser	TAC Tyr	GGG Gly 495	GAG Glu	GAC Asp	CTG Leu	CAG Gln	ATG Met 500	TAD QRA	TCG Ser	GAC Asp	GTC Val	CGG Arg 505	GGC Gly	1720
AGG Arg	CTA Leu	CTG Leu	GTG Val 510	ACG Thr	CTG Leu	TAC Tyr	CCC Pro	GCC Ala 515	TAC Tyr	GCG Ala	GGG Gly	AAG Lys	ACG Thr 520	TGC Cys	GGC Gly	1768
CGT A rg	GGC Gly	GGG Gly 525	AAC Asn	TAC Tyr	AAC Asn	GGC Gly	AAC Asn 530	CGG Arg	GGG Gly	GAC Asp	GAC As p	TTC Phe 535	GTG Val	ACG Thr	CCC Pro	1816
GCA Ala	GGC Gly 540	CTG Leu	GCG Ala	GAG Glu	CCC Pro	CTG Leu 545	GTG Val	GAG Glu	GAC Asp	TTC Phe	GGG Gly 550	AAC Asn	GCC Ala	TGG Trp	AAG Lys	1864
CTG Leu 555	CTC Leu	GGG Gly	GCC Ala	TGC Cys	GAG Glu 560	AAC Asn	CTG Leu	CAG Gln	AA G Lys	CAG Gln 565	CAC His	CGC Arg	GAT As p	CCC Pro	TGC Cys 570	1912
Ser	Leu	Asn	Pro	A rg 575	Gln	Ala	Arg	Phe	Ala 580	Glu	Glu	GCG Ala	Суб	Ala 585	Leu	1960
CTG Leu	ACG Thr	TCC Ser	TCG Ser 590	AAG Lys	TTC Phe	GAG Glu	CCC Pro	TGC Cys 595	CAC His	CGA Arg	GCG Ala	GTG Val	GGT Gly 600	CCT Pro	CAG Gln	2008
Pro	Tyr	Val 605	Gln	Asn	Cys	Leu	Tyr 610	Asp	Val	Сув	Ser	TGC Cys 615	Ser	Asp	Gly	2056
Arg	Asp 620	Сув	Leu	Сув	Ser	Ala 625	Val	Ala	na A	Tyr	Ala 630	GCA Ala	Ala	Val	Ala	2104
Arg 635	Arg	Gly	Val	His	Ile 640	Ala	Trp	Arg	Glu	Pro 645	Gly	TTC Phe	Сув	Ala	Leu 650	2152
Ser	Сув	Pro	Gln	Gly 655	Gln	Val	Tyr	Leu	Gln 660	Сув	Gly	ACC Thr	Pro	Сув 665	Asn	2200
Met	Thr	Cys	Leu 670	Ser	Leu	Ser	Tyr	Pro 675	Glu	Glu	Asp	TGC Cys	Asn 680	Glu	Val	2248
TGC Cys	TTG Leu	GAA Glu 685	AGC Ser	TGC Cys	TTC Phe	TCC Ser	CCC Pro 690	CCA Pro	GGG Gly	CTG Leu	TAC	CTG Leu 695	GAT QBA	GAG Glu	AGG Arg	2296
												TAT				

- 19 -

	Phe		CCC Pro													2392
			GGC Gly													2440
			AAC Asn 750													2488
			TCC Ser													2536
			AGG Arg													2584
			CAG Gln													2632
			ATG Met													2680
			TTC Phe 830													2728
			TGC Cys													2776
			GTG Val												:	2824
			TTC Phe		_								_		:	2872
			GTG Val												:	29 20
			GGG Gly 910													2968
			ACC Thr													3016
			TAA neA													3064
GTG	STA	GΑG	177	GGT	CAG ,	TAC	مشد	¥ free	<u></u>	: :	~~~	Δ1.	• • *	# / ∓ ¥		
			TGG Trp													÷.

- 20 -

ACA TAC CAG Thr Tyr Gln	GAG CAG GTG GIu Glu Gln Val G	IGT GGC CTG TGT Cys Gly Leu Cys 995	Gly Asn Phe A	AT GGC ATC 3208 sp Gly Ile
CAG AAC AAT Gln Asn Asn 100	Asp Phe Thr	AGC AGC AGC CTC Ser Ser Leu 1010	CAA ATA GAA G Gln Ile Glu G 1015	AA GAC CCT 3256 lu Asp Pro
GTG GAC TTT Val Asp Phe 1020	Gly Asn Ser	NGG AAA GTG AAC Nrp Lys Val Asn 1025	CCG CAG TGT G Pro Gln Cys A 1030	CC GAC ACC 3304 la Asp Thr
AAG AAA GTA Lys Lys Val 1035	CCA CTG GAC : Pro Leu Asp : 1040	TCA TCC CCT GCC Ser Ser Pro Ala	GTC TGC CAC A Val Cys His A 1045	AC AAC ATC 3352 sn Asn Ile 1050
ATG AAG CAG Met Lys Gln	ACG ATG GTG G Thr Met Val J 1055	GAT TCC TCC TGC Asp Ser Ser Cys 106	Arg Ile Leu T	CC AGT GAT 3400 hr Ser Asp 1065
ATT TTC CAG Ile Phe Gln	GAC TGC AAC A Asp Cys Asn A 1070	AGG CTG GTG GAC Arg Leu Val Asp 1075	Pro Glu Pro P	TC CTG GAC 3448 he Leu Asp 080
ATT TGC ATC Ile Cys Ile 108	Tyr Asp Thr (NGC TCC TGT GAG Nys Ser Cys Glu 1090	TCC ATT GGG G Ser Ile Gly A 1095	AC TGC ACC 3496 sp Cys Thr
TGC TTC TGT Cys Phe Cys 1100	Asp Thr Ile A	GCT GCT TAC GCC Lla Ala Tyr Ala .105	CAC GTC TGT G His Val Cys A 1110	CC CAG CAT 3544 la Gln His
GGC AAG GTG Gly Lys Val 1115	GTA GCC TGG A Val Ala Trp A 1120	AGG ACA GCC ACA Arg Thr Ala Thr	TTC TGT CCC C Phe Cys Pro G 1125	AG AAT TGC 3592 ln Asn Cys 1130
GAG GAG CGG Glu Glu Arg	AAT CTC CAC C Asn Leu His C 1135	GAG AAT GGG TAT Glu Asn Gly Tyr 114	Glu Cys Glu T	GG CGC TAT 3640 rp Arg Tyr 1145
AAC AGC TGT Asn Ser Cys	GCC CCT GCC 1 Ala Pro Ala 0 1150	CGT CCC ATC ACG Cys Pro Ile Thr 1155	Cys Gln His P	CC GAG CCA 3688 ro Glu Pro 160
CTG GCA TGC Leu Ala Cys 116	Pro Val Gln (NGT GTT GAA GGT Cys Val Glu Gly 1170	TGC CAT GCG C Cys His Ala H 1175	AC TGC CCT 3736 is Cys Pro
	Ile Leu Asp (IAG CTT TTG CAG Slu Leu Leu Gln 1185		
GAC TGT CCT Asp Cys Pro 1195	GTG TGT GAG (Val Cys Glu V 1200	FTG GCT GGT CGT /al Ala Gly Arg	CGC TTG GCC C Arg Leu Ala P 1205	CA GGA AAG 3832 ro Gly Lys 1210
AAA ATC ATC Lys Ile Ile	TTG AAC CCC I Leu Asn Pro 8 1215	AGT GAC CCT GAG Ser Asp Pro Glu 122	His Cys Gln I	TT TGT AAT 3880 le Cys Asn 1225
TGT GAT GGT Cys Asp Gly	GTC AAC TTC I	ACC TGT AAG GCC Thr Cys Lys Ala	TGC AGA GAA C Cys Arg Glu F	CC GGA AGT 3928 ro Gly Ser
	1230	1235	1	240

- 21 -

GTG GAG GAC ACG TCG GAG CCG CCC CTC CAT GAC TTC CAC TGC AGC AGG Val Glu Asp Thr Ser Glu Pro Pro Leu His Asp Phe His Cys Ser Arg 1260 1270	4024
CTT CTG GAC CTG GTT TTC CTG CTG GAT GGC TCC TCC AAG CTG TCT GAG Leu Leu Asp Leu Val Phe Leu Leu Asp Gly Ser Ser Lys Leu Ser Glu 1275 1280 1285 1290	4072
GAC GAG TTT GAA GTG CTG AAG GTC TTT GTG GTG GGT ATG ATG GAG CAT Asp Glu Phe Glu Val Leu Lys Val Phe Val Val Gly Met Met Glu His 1295 1300 1305	4 120
CTG CAC ATC TCC CAG AAG CGG ATC CGC GTG GCT GTG GTG GAG TAC CAC Leu His Ile Ser Gln Lys Arg Ile Arg Val Ala Val Val Glu Tyr His 1310 1315 1320	4168
GAC GGC TCC CAC GCC TAC ATC GAG CTC AAG GAC CGG AAG CGA CCC TCA Asp Gly Ser His Ala Tyr Ile Glu Leu Lys Asp Arg Lys Arg Pro Ser 1325 1330 1335	4216
GAG CTG CGG CGC ATC ACC AGC CAG GTG AAG TAC GCG GGC AGC GAG GTG Glu Leu Arg Arg Ile Thr Ser Gln Val Lys Tyr Ala Gly Ser Glu Val 1340 1350	4264
GCC TCC ACC AGT GAG GTC TTA AAG TAC ACG CTG TTC CAG ATC TTT GGC Ala Ser Thr Ser Glu Val Leu Lys Tyr Thr Leu Phe Gln Ile Phe Gly 1355	4312
AAG ATC GAC CGC CCG GAA GCG TCT CGC ATT GCC CTG CTC CTG ATG GCC Lys Ile Asp Arg Pro Glu Ala Ser Arg Ile Ala Leu Leu Leu Met Ala 1375 1380 1385	4360
AGC CAG GAG CCC TCA AGG CTG GCC CGG AAT TTG GTC CGC TAT GTG CAG Ser Gln Glu Pro Ser Arg Leu Ala Arg Asn Leu Val Arg Tyr Val Gln 1390 1395 1400	4408
GGC CTG AAG AAG AAA GTC ATT GTC ATC CCT GTG GGC ATC GGG CCC Gly Leu Lys Lys Lys Val Ile Val Ile Pro Val Gly Ile Gly Pro 1405 1410 1415	4456
CAC GCC AGC CTT AAG CAG ATC CAC CTC ATA GAG AAG CAG GCC CCT GAG His Ala Ser Leu Lys Gln Ile His Leu Ile Glu Lys Gln Ala Pro Glu 1420 1425 1430	4504
AAC AAG GCC TTT GTG TTC AGT GGT GTG GAT GAG TTG GAG CAG CGA AGG Asn Lys Ala Phe Val Phe Ser Gly Val Asp Glu Leu Glu Gln Arg Arg 1435 1440 1445 1450	4552
GAT GAG ATT ATC AAC TAC CTC TGT GAC CTT GCC CCC GAA GCA CCT GCC Asp Glu Ile Ile Asn Tyr Leu Cys Asp Leu Ala Pro Glu Ala Pro Ala 1455 1460 1465	4600
CCT ACT CAG CAC CCC CCA ATG GCC CAG GTC ACG GTG GGT TCG GAG CTG Pro Thr Gln His Pro Pro Met Ala Gln Val Thr Val Gly Ser Glu Leu	4648
1470 1475 1480	
	4696
TTG GGG GTT TCA TCT CCA GGA CCC AAA AGG AAC TCC ATG GTC CTG GAT Leu Gly Val Ser Ser Pro Gly Pro Lys Arg Asn Ser Met Val Leu Asp	4696

GGC CAG GAC Gly Gln Asp	AGG ATC C Arg Ile H 1535	AC GTC ACA	GTG CTG Val Leu 154	Gln Tyr	TCG TAC Ser Tyr	ATG GTG Met Val 1545	4840
ACC GTG GAG Thr Val Glu	TAC ACC T Tyr Thr P 1550	TC AGC GAG he Ser Glu	GCG CAG Ala Gln 1555	TCC AAG Ser Lys	GGC GAG Gly Glu 1560	Val Leu	4888
CAG CAG GTG Gln Gln Val 156	Arg Asp I	TC CGA TAC le Arg Tyr 157	Arg Gly	GGC AAC Gly Aan	AGG ACC Arg Thr 1575	AAC ACT Asn Thr	4936
GGA CTG GCC Gly Leu Ala 1580	CTG CAA T Leu Gln T	AC CTG TCC yr Leu Ser 1585	GAA CAC Glu His	AGC TTC Ser Phe 1590	Ser Val	AGC CAG Ser Gln	4984
GGG GAC CGG Gly Asp Arg 1595	Glu Gln V	TA CCT AAC al Pro Asn 600	CTG GTC Leu Val	TAC ATG Tyr Met 1605	GTC ACA Val Thr	GGA AAC Gly Asn 1610	5032
CCC GCT TCT Pro Ala Ser	GAT GAG A Asp Glu I 1615	TC AAG CGG le Lys Arg	ATG CCT Met Pro 1620	Gly Asp	ATC CAG Ile Gln	GTG GTG Val Val 1625	5080
CCC ATC GGG Pro Ile Gly	GTG GGT C Val Gly P 1630	CA CAT GCC ro His Ala	AAT GTG Asn Val 1635	CAG GAG Gln Glu	CTG GAG Leu Glu 1640	Lys Ile	5128
GGC TGG CCC Gly Trp Pro 164	Asn Ala P	CC ATC CTC ro Ile Leu 1650	Ile His	GAC TTT Asp Phe	GAG ATG Glu Met 1655	CTC CCT Leu Pro	5176
CGA GAG GCT Arg Glu Ala 1660	CCT GAT C	rg GTG CTA eu Val Leu 1665	CAG AGG Gln Arg	TGC TGC Cys Cys 1670	Ser Gly	GAG GGG Glu Gly	5224
CTG CAG ATC Leu Gln Ile 1675	Pro Thr L	TC TCC CCC eu Ser Pro 680	ACC CCA Thr Pro	GAT TGC Asp Cys 1685	AGC CAG Ser Gln	CCC CTG Pro Leu 1690	5272
GAT GTG GTC Asp Val Val	CTC CTC C Leu Leu L 1695	en Wab Gjà	TCT TCC Ser Ser 1700	Ser Ile	CCA GCT Pro Ala	TCT TAC Ser Tyr 1705	5320
TTT GAT GAA Phe Asp Glu	ATG AAG AG Met Lys So 1710	GC TTC ACC er Phe Thr	AAG GCT Lys Ala 1715	TTT ATT Phe Ile	TCA AGA Ser Arg 1720	Ala Asn	5368
ATA GGG CCC Ile Gly Pro 172	Arg Leu T	CT CAA GTG hr Gln Val 173	Ser Val	CTG CAA Leu Gln	TAT GGA Tyr Gly 1735	AGC ATC Ser Ile	5416
ACC ACT ATC Thr Thr Ile 1740	GAT GTG COAsp Val P	CT TGG AAT ro Trp Asn 1745	GTA GCC Val Ala	TAT GAG Tyr Glu 1750	Lys Val	CAT TTA His Leu	5464
CTG AGC CTT Leu Ser Leu 1755	AST WED P	TC ATG CAG eu Met Gln 760	CAG GAG Gln Glu	GGA GGC Gly Gly 1765	CCC AGC Pro Ser	GAA ATT Glu Ile 1770	5512
GGG GAT GCT Gly Asp Ala	TTG AGC T Leu Ser P 1775	TT GCC GTG he Ala Val	CGA TAT Arg Tyr 178	Val Thr	TCA GAA Ser Glu	GTC CAT Val His 1785	5560
GGT GCC AGG Gly Ala Arg	CCC GGA G Pro Gly A 1790	CC TCG AAA la Ser Lys	GCG GTG Ala Val 1795	GTT ATC Val Ile	CTA GTC Leu Val 1800	Thr Asp	5608

GT0 Va	C TC	C GT(r Va)	l Asp	TCA Ser	A GTO	G GAT	GC: Ala 181	ı Ala	A GCC A Ala	C GAG a Gli	G GCC	GC0 Ala 181	a Arg	A TC	C AAC r Asn	5656
CG/ Arg	A GT0 J Val 182	l Thi	A GTO r Val	TTC Phe	CCC Pro	182	e Gly	ATO	GGC Gly	G GAT	CGG Arg 183	Tyr	AG1	GA(G GCC	5704
CAC Glr 183	ı Let	AGC Set	AGC Ser	TTG Leu	GCA Ala 184	Gly	CCA Pro	AAC Lys	GCT Ala	GGC Gly 184	Ser	AAT Asn	ATC Met	GT/ Val	A AGG L Arg 1850	5752
CTC Leu	CAG Gln	G CGA Arg	ATT	GAA Glu 185	qzA	Leu	Pro	ACC Thr	GTG Val 186	Ala	ACC Thr	CTG Leu	GGA Gly	AAT Asr 186		5800
TTC Phe	TTC Phe	CAC His	Lys 187	Leu	TGC Cys	TCT	GGG Gly	TTI Phe 187	Asp	AGA Arg	GTT Val	TGC Cys	GTG Val 188	Asp	GAG Glu	5848
GAT As p	GGG Gly	AAT Asn 188	Glu	AAG Lys	AGG Arg	CCC Pro	GGG Gly 189	qeA	GTC Val	TGG Trp	ACC Thr	TTG Leu 189	Pro	GAC As p	CAG Gln	5896
TGC Cys	CAC His 190	Thr	GTG Val	ACT Thr	TGC Cys	CTG Leu 190	Pro	GAT As p	GGC Gly	CAG Gln	ACC Thr 1910	Leu	CTG Leu	AAG Lys	AGT Ser	5944
CAT His 191	Arg	GTC Val	AAC Asn	TGT Cys	GAC Asp 1920	Arg	GGG Gly	CCA Pro	AGG Arg	CCT Pro 192	TCG Ser	TGC Cy s	CCC Pro	TAA neA	GGC Gly 1930	5992
CAG Gln	CCC Pro	CCT Pro	CTC Leu	AGG Arg 1939	Val	GAG Glu	GAG Glu	ACC Thr	TGT Cys 1940	Gly	TGC Cys	CGC Arg	TGG Trp	ACC Thr 194	Cys	6040
CCC Pro	TGT Cys	GTG Val	TGC Cys 1950	Met	GGC Gly	AGC Ser	TCT Ser	ACC Thr 1955	Arg	CAC His	ATC Ile	GTG Val	ACC Thr 1960	Phe	GAT Asp	6088
GGG Gly	CAG Gln	AAT Asn 1965	Phe	AAG Lys	CTG Leu	ACT Thr	GGC Gly 1970	Ser	TGT Cys	TCG Ser	TAT Tyr	GTC Val 1975	Leu	TTT Phe	CAA Gln	6136
AAC Asn	AAG Lys 1980	Glu	CAG Gln	GAC Asp	CTG Leu	GAG Glu 1985	Val	ATT Ile	CTC Leu	CAG Gln	AAT Asn 1990	Gly	GCC Ala	TGC Cys	AGC Ser	6184
CCT Pro 1995	GIY	GCG Ala	AAG Lys	GAG Glu	ACC Thr 2000	Сув	ATG Met	AAA Lys	Ser	ATT Ile 2005	GAG Glu	GTG Val	AAG Lys	CAT His	GAC Asp 2010	6232
GGC Gly	CTC Leu	TCA Ser	Val	GAG Glu 2015	Leu	CAC His	AGT Ser	gac Asp	ATG Met 2020	Gln	ATG Met	ACA Thr	GTG Val	AAT Asn 2025	Gly	6280
AGA Arg	CTA Leu	GTC Val	TCC Ser 2030	Ile	CCA Pro	TAT Tyr	Val	GGT Gly 2035	Gly	GAC Asp	ATG Met	Glu	GTC Val 2040	Asn	GTT Val	6328
TAT	GGG	ACC	ĀTC	ATY;	TAT	GAG	٠,٠ ملك	A GA	TT	ይ <u>ታ</u> ር	~,-		1:	•		
The	AUA Thi 2060	Pne	Add Thr	Fro	Gln	AAC A sn 2065	neA	GAĞ Glu	TTC Phe	CAG Gln	CTG Leu 2070	CAG Gln	ctc Leu	AGC Ser	CCC Pro	9 424

AGG ACC TTT GCT Arg Thr Phe Ala 2075	TTCG AAG ACA Ser Lys Thr 2080	TAT GGT CTC Tyr Gly Leu	TGT GGG ATC TG Cys Gly Ile Cys 2085	GAT GAG 6 S Asp Glu 2090	6472
AAC GGA GCC AAT Asn Gly Ala Asr	GAC TTC ATT Asp Phe Ile 2095	CTG AGG GAT Leu Arg Asp 2100	GGG ACA GTC ACC Gly Thr Val Thi	ACA GAC 6 Thr Asp 2105	520
TGG AAG GCA CTC Trp Lys Ala Leu 211	ı Ile Gln Glu	TGG ACC GTA Trp Thr Val 2115	CAG CAG CTT GGG Gln Gln Leu Gly 212	Lys Thr	568
TCC CAG CCT GTC Ser Gln Pro Val 2125	CAT GAG GAG His Glu Glu	CAG TGT CCT Gln Cys Pro 2130	GTC TCC GAA TTC Val Ser Glu Phe 2135	TTC CAC 6	616
TGC CAG GTC CTC Cys Gln Val Leu 2140	CTC TCA GAA Leu Ser Glu 214	Leu Phe Ala	GAG TGC CAC AAC Glu Cys His Lys 2150	GTC CTC 6 Val Leu	664
GCT CCA GCC ACC Ala Pro Ala Thr 2155	TTT TAT GCC Phe Tyr Ala 2160	ATG TGC CAG Met Cys Gln	CCC GAC AGT TGC Pro Asp Ser Cys 2165	CAC CCG 6 His Pro 2170	712
AAG AAA GTG TGT Lys Lys Val Cys	GAG GCG ATT Glu Ala Ile 2175	GCC TTG TAT Ala Leu Tyr 2180	Ala His Leu Cys	CGG ACC 6 Arg Thr 2185	760
AAA GGG GTC TGT Lys Gly Val Cys 219	Val Asp Trp	AGG AGG GCC Arg Arg Ala 2195	AAT TTC TGT GCT Asn Phe Cys Ala 220	Met Ser	808
TGT CCA CCA TCC Cys Pro Pro Ser 2205	CTG GTG TAC Leu Val Tyr	AAC CAC TGT Asn His Cys 2210	GAG CAT GGC TGC Glu His Gly Cys 2215	CCT CGG 6 Pro Arg	856
CTC TGT GAA GGC Leu Cys Glu Gly 2220	AAT ACA AGC Asn Thr Ser 2225	Ser Cys Gly	GAC CAA CCC TCG Asp Gln Pro Ser 2230	GAA GGC 6 Glu Gly	904
TGC TTC TGC CCC Cys Phe Cys Pro 2235	CCA AAC CAA Pro Asn Gln 2240	Val Met Leu	GAA GGT AGC TGT Glu Gly Ser Cys 2245	Val Pro	952
GAG GAG GCC TGT			4243	2250	
Glu Glu Ala Cys	ACC CAG TGC Thr Gln Cys 2255	ATC AGC GAG Ile Ser Glu 2260	GAT GGA GTC CGG Asp Gly Val Arg	CAC CAG 7	000
TTC CTG GAA ACC Phe Leu Glu Thr 227	Thr Gln Cys 2255 TGG GTC CCA Trp Val Pro	Ile Ser Glu 2260	GAT GGA GTC CGG Asp Gly Val Arg	CAC CAG 70 His Gln 2265 TGC ACG 7 Cys Thr	000
TTC CTG GAA ACC Phe Leu Glu Thr	Thr Gln Cys 2255 TGG GTC CCA Trp Val Pro 0	Ile Ser Glu 2260 GCC CAC CAG Ala His Gln 2275 AAC TGT ACG	GAT GGA GTC CGG Asp Gly Val Arg CCT TGC CAG ATC Pro Cys Gln Ile 228	CAC CAG 70 His Gln 2265 TGC ACG 7 Cys Thr	
TTC CTG GAA ACC Phe Leu Glu Thr 227 TGC CTC AGT GGG Cys Leu Ser Gly	Thr Gln Cys 2255 TGG GTC CCA Trp Val Pro 0 CGG AAG GTC Arg Lys Val	Ile Ser Glu 2260 GCC CAC CAG Ala His Gln 2275 AAC TGT ACG Asn Cys Thr 2290 CCG TGT GAA Pro Cys Glu	GAT GGA GTC CGG Asp Gly Val Arg CCT TGC CAG ATC Pro Cys Gln Ile 228 TTG CAG CCC TGC Leu Gln Pro Cys 2295	CAC CAG His Gln 2265 TGC ACG Cys Thr 0 CCC ACA Pro Thr	048
TTC CTG GAA ACC Phe Leu Glu Thr 227 TGC CTC AGT GGG Cys Leu Ser Gly 2285 GCC AAA GCT CCC Ala Lys Ala Pro	Thr Gln Cys 2255 TGG GTC CCA Trp Val Pro 0 CGG AAG GTC Arg Lys Val ACC TGT GGC Thr Cys Gly 2305	Ile Ser Glu 2260 GCC CAC CAG Ala His Gln 2275 AAC TGT ACG ASN Cys Thr 2290 CCG TGT GAA Pro Cys Glu GAG TAC GAG	GAT GGA GTC CGG Asp Gly Val Arg CCT TGC CAG ATC Pro Cys Gln Ile 228 TTG CAG CCC TGC Leu Gln Pro Cys 2295 GTG GCC CGC CTC Val Ala Arg Leu 2310	CAC CAG His Gln 2265 TGC ACG Cys Thr CCC ACA Pro Thr CGC CAG Arg Gln	048

- 25 -

PCT/US97/12606

ACC Thr	CTC Leu	ACC Thi	AAT Asn 235	Pro	GGC Gly	GAC Glu	TGC Cys	AGA Arg 235	Pro	AAC Asr	TTC Phe	ACC Thi	TG: Cys 236	s Ala	TGC Cys	7288
AGG Arg	AAG Lys	GA1 Asp 236	Glu	TGC Cys	AGA Arg	CGG Arg	GAG Glu 237	Ser	CCG Pro	CCC Pro	TCT Ser	TG1 Cys	Pro	C CCC	G CAC His	7336
CGG Arg	ACG Thr 238	Pro	GCC Ala	CTI Leu	CGG Arg	Lys 238	Thr	CAG Gln	TGC Cys	TGT Cys	GAT Asp 239	Glu	TAT	GAC Glu	TGT Cys	7384
GCA Ala 239	Cys	AAC Asn	TGT Cys	GTC Val	AAC Asn 240	Ser	ACG Thr	GTG Val	AGC Ser	TGC Cys 240	Pro	CTI Leu	GGG Gly	TAC	CTG Leu 2410	7432
GCC Ala	TCG Ser	GCT Ala	GTC Val	ACC Thr 241	Asn	GA C Asp	TGT Cys	GGC Gly	TGC Cys 242	ACC Thr 0	ACA Thr	ACA Thr	ACC Thr	TGC Cys 242	Phe	7480
CCT Pro	GAC Asp	AAG Lys	GTG Val 243	Cys	GTC Val	CAC His	CGA A rg	GGC Gly 243	Thr	ATC Ile	TAC Tyr	CCT Pro	GTG Val 244	Gly	CAG Gln	7 528
TTC Phe	TGG Trp	GAG Glu 244	Glu	GCC Ala	TGT Cys	GAC Asp	GTG Val 2450	Cys	ACC Thr	TGC Cys	ACG Thr	GAC Asp 245	Leu	GAG Glu	GAC Asp	7576
TCT Ser	GTG Val 2460	Met	GGC Gly	CTG Leu	CGT Ar g	GTG Val 2469	Ala	CAG Gln	TGC Cys	TCC Ser	CAG Gln 2470	Lys	CCC Pro	TGT Cys	GAG Glu	762 4
GAC Asp 2475	Asn	TGC Cys	CTG Leu	TCA Ser	GGC Gly 2480	Phe	ACT Thr	TAT Tyr	GTC Val	CTT Leu 2485	His	GAA Glu	GGC Gly	GAG Glu	TGC Cys 2490	7672
TGT Cys	GGA Gly	AGG Arg	TGT Cys	CTG Leu 2495	Pro	TCT Ser	GCC Ala	TGT Cys	GAG Glu 2500		GTC Val	ACT Thr	GGT Gly	TCA Ser 250	Pro	7720
CGG Arg	GGC Gly	GAC Asp	GCC Ala 2510	Gln	TCT Ser	CAC His	TGG Trp	AAG Lys 2515	nzA	GTT Val	GGC Gly	TCT Ser	CAC His 2520	Trp	GCC Ala	7768
TCC Ser	CCT Pro	GAC Asp 2525	Asn	CCC Pro	TGC Cys	CTC Leu	ATC 11e 2530	Asn	GAG Glu	TGT Cys	GTC Val	CGA Arg 2539	Val	AAG Lys	GAA Glu	7816
GAG Glu	GTC Val 2540	Phe	GTG Val	CAA Gln	Gln	AGG Arg 2545	As n	GTC Val	TCC Ser	TGC Cys	CCC Pro 2550	Gln	CTG Leu	AAT Asn	GTC Val	7864
CCC Pro 2555	Thr	TGC Cys	CCC Pro	Thr	GGC Gly 2560	Phe	CAG Gln	CTG Leu	AGC Ser	ТСТ Сув 2565	Lys	ACC Thr	TCA Ser	GAG Glu	TGT Cys 2570	7912
TGT Cys	CCC Pro	ACC Thr	Сув	CAC His 2575	Сув	GAG Glu	CCC Pro	CTG Leu	GAG Glu 2580	Ala	TGC Cys	TTG Leu	CTC Leu	AAT Asn 2585	Gly	7960
ACC .	AΤΥ	ATT	GGG	درد؛	969	מממ	ست لا	~~ .	A ~	¥ man	2.5 **	رمثت	~;·	* · · ·	·	
	,	TU	ACC	(TT) 5	200	(37%)	GGA	GTC	ATC	īÇī	GGA	777	AAG	ت نت ت	CAL	5.4
2.1	<u> </u>	~ y =>	LILL	* Cl +	PIO	AGT	GT.	vaı	i.e	>€T	GIY	rne	Lys	Leu	Glu	

TO ACCOME COUNTY AND STORED AND THE AMOUNT OF SAME COUNTY AND COUN

- 26 -

GGC	AGG Arg 262	Lys	ACC Thr	ACC Thr	TGT Cys	GAG Glu 262	Ala	. TG C Cys	CCC Pro	CTG Leu	GGT Gly 263	Tyr	AA G Lys	GAA Glu	GA G Glu	8104
AAG Lys 263	Asn	CAA Gln	GGT Gly	GAA Glu	TGC Cys 264	Сув	GGG Gly	AGA Arg	TGT Cys	CTG Leu 264	Pro	ATA Ile	GCT Ala	TGC Cys	ACC Thr 2650	8152
ATT Ile	CAG Gln	CTA Leu	AGA Arg	GGA Gly 265	Gly	CAG Gln	ATC Ile	ATG Met	ACA Thr 266	Leu	AAG Lys	CGT Arg	GAT Asp	GAG Glu 266	Thr	8200
ATC Ile	CAG Gln	GAT Asp	GGC Gly 2670	Cys	GAC Asp	AGT Ser	CAC His	TTC Phe 267	Cys	AAG Lys	GTC Val	AAT Asn	GAA Glu 268	Arg	GGA Gly	8248
GAG Glu	TAC Tyr	ATC Ile 2685	Trp	GAG Glu	AAG Lys	AGA Arg	GTC Val 269	Thr	GGT Gly	TGC Cys	CCA Pro	CCT Pro 2695	Phe	GAT As p	GAA Glu	8296
CAC His	AAG Lys 2700	Cys	CTG Leu	GCT Ala	GAG Glu	GGA Gly 270	Gly	AAA Lys	ATC Ile	ATG Met	AAA Lys 271	ATT Ile	CCA Pro	GGC Gly	ACC Thr	8344
ТGC Сув 2715	Сув	GAC Asp	ACA Thr	TGT Cys	GAG Glu 2720	Glu	CCA Pro	GAA Glu	TGC Cys	AAG Lys 2729	Asp	ATC Ile	ATT Ile	GCC Ala	AA G Lys 2730	8392
CTG Leu	CAG Gln	CGT Arg	GTC Val	AAA Lys 2735	Val	GGA Gly	GAC Asp	TGT Cys	AAG Lys 2740	Ser	GAA Glu	GAG Glu	GAA Glu	GTG Val 2745	Asp	8440
ATT Ile	CAT His	TAC Tyr	TGT Cys 2750	Glu	GGT Gly	AAA Lys	TGT Cys	GCC Ala 2759	Ser	AAA Lys	GCC Ala	GTG Val	TAC Tyr 2760	Ser	ATC Ile	8488
CAC His	ATG Met	GAG Glu 2765	Asp	GTG Val	CAG Gln	GAC Asp	CAG Gln 2770	Сув	TCC Ser	TGC Cys	TGC Cys	TCG Ser 2775	Pro	ACC Thr	CAG Gln	8536
Inr	GAG Glu 2780	Pro	ATG Met	CAG Gln	GTG Val	GCC Ala 2785	Leu	C GC A rg	TGC Cys	ACC Thr	AAT Asn 2790	GGC Gly	TCC Ser	CTC Leu	ATC Ile	8584
TAC Tyr 2795	H18	GAG Glu	ATC Ile	CTC Leu	AAT Asn 2800	Ala	ATC Ile	GAA Glu	TGC Cys	AGG Arg 2805	Сув	TCC Ser	CCC Pro	AGG Arg	AA G Lys 2810	8632
TGC . Cys	AGC Ser	AAG Lys	TGAG	GCC#	CTG	ccro	GATG	C 17	CTGT	regec	TGO	CTTA	.ccc			8681
GACCTCACTG GACTGGCCAG AGTGCTGCTC AGTCCTCCTC CTGCTCTGCT													8741			
CTTGTGCTTC CTGATCCCAC AATAAAGGTC AATCTTTCAC CTTGAAAAAA AAAAAAAAAA												8801				
A																8802

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 2813 amino acids

 (B) TYPE: amino acid

 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

- 27 -

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ser Pro Thr Arg Leu Val Arg Val Leu Leu Ala Leu Ala Leu Ile 1 10 15 Leu Pro Gly Lys Leu Cys Thr Lys Gly Thr Val Gly Arg Ser Ser Met 20 25 30 Ala Arg Cys Ser Leu Leu Gly Gly Asp Phe Ile Asn Thr Phe Asp Glu 35 40 45 Ser Met Tyr Ser Phe Ala Gly Asp Cys Ser Tyr Leu Leu Ala Gly Asp 50 60 Cys Gln Glu His Ser Ile Ser Leu Ile Gly Gly Phe Gln Asn Asp Lys 65 70 75 80 Arg Val Ser Leu Ser Val Tyr Leu Gly Glu Phe Phe Asp Ile His Leu Phe Val Asn Gly Thr Met Leu Gln Gly Thr Gln Ser Ile Ser Met Pro Tyr Ala Ser Asn Gly Leu Tyr Leu Glu Ala Glu Ala Gly Tyr Tyr Lys 115 120 125 Leu Ser Ser Glu Ala Tyr Gly Phe Val Ala Arg Ile Asp Gly Asn Gly 130 140 Asn Phe Gln Val Leu Leu Ser Asp Arg Tyr Phe Asn Lys Thr Cys Gly 145 Leu Cys Gly Asn Phe Asn Ile Phe Ala Glu Asp Asp Phe Lys Thr Gln Glu Gly Thr Leu Thr Ser Asp Pro Tyr Asp Phe Ala Asn Ser Trp Ala 180 185 190 Leu Ser Ser Gly Glu Gln Arg Cys Lys Arg Val Ser Pro Pro Ser Ser 195 200 205 Pro Cys Asn Val Ser Ser Asp Glu Val Gln Gln Val Leu Trp Glu Gln Cys Gln Leu Leu Lys Ser Ala Ser Val Phe Ala Arg Cys His Pro Leu Val Asp Pro Glu Pro Phe Val Ala Leu Cys Glu Arg Thr Leu Cys Thr Cys Val Gln Gly Met Glu Cys Pro Cys Ala Val Leu Leu Glu Tyr Ala 260 265 270 Arg Ala Cys Ala Gln Gln Gly Ile Val Leu Tyr Gly Trp Thr Asp His 275 280 285 Ser Val Cys Arg Pro Ala Cys Pro Ala Gly Met Glu Tyr Lys Glu Cys 290 295 300 Val Ser Pro Cys Thr Arg Thr Cys Gln Ser Leu His Val Lys Glu Val 305

γεω Ασγ Glu dig Him Cym va. 113 Ser Aid Giu Cys Ser Cys Val His 340 345

Ala	Gly	Gln 355	Arg	Tyr	Pro	Pro	Gly 360	Ala	Ser	Leu	Leu	Gln 365	Asp	Cys	His
Thr	Cys 370	Ile	Cys	Arg	Asn	Ser 375	Leu	Trp	Ile	Cys	Ser 380	Asn	Glu	Glu	Cys
Pro 385	Gly	Glu	Cys	Leu	Val 390	Thr	Gly	Gln	Ser	His 395	Phe	Lys	Ser	Phe	Asp 400
Asn	Arg	Tyr	Phe	Thr 405	Phe	Ser	Gly	Val	Сув 410	His	Tyr	Leu	Leu	Ala 415	Glr
Asp	Cys	Gln	Asp 420	His	Thr	Phe	Ser	Val 425	Val	Ile	Glu	Thr	Val 430	Gln	Суз
Ala	Asp	Asp 435	Leu	qeA	Ala	Val	Cys 440	Thr	Arg	Ser	Val	Thr 445	Val	Arg	Leu
Pro	Gly 450	His	His	Asn	Ser	Leu 455	Val	Lys	Leu	Lys	Asn 460	Gly	Gly	Gly	Va]
Ser 465	Met	Asp	Gly	Gln	Asp 470	Ile	Gln	Ile	Pro	Leu 475	Leu	Gln	Gly	Asp	Leu 480
Arg	Ile	Gln	His	Thr 485	Val	Met	Ala	Ser	Val 490	Arg	Leu	Ser	Tyr	Gly 495	Glu
Asp	Leu	Gln	Met 500	qzA	Ser	Asp	Val	Arg 505	Gly	Arg	Leu	Leu	Val 510	Thr	Leu
Tyr	Pro	Ala 515	Tyr	Ala	Gly	Lys	Thr 520	Сув	Gly	Arg	Gly	Gly 525	Asn	Tyr	Asn
Gly	Asn 530	Arg	Gly	Asp	Asp	Phe 535	Val	Thr	Pro	Ala	Gly 540	Leu	Ala	Glu	Pro
Leu 545	Val	Glu	Asp	Phe	Gly 550	Asn	Ala	Trp	Lys	Leu 555	Leu	Gly	Ala	Суѕ	Glu 560
naA	Leu	Gln	Lys	Gln 565	Kis	Arg	qeA	Pro	Cys 570	Ser	Leu	Asn	Pro	Arg 575	@ln
Ala	Arg	Phe	Ala 580	Glu	Glu	Ala	Cys	Ala 585	Leu	Leu	Thr	Ser	Ser 590	Lys	Phe
Glu	Pro	Cys 595	His	Arg	Ala	Val	Gly 600	Pro	Gln	Pro	Tyr	Val 605	Gln	Asn	Сує
Leu	Tyr 610	qaA	Val	Сув	Ser	Сув 615	Ser	Asp	Gly	Arg	Asp 620	Сув	Leu	аүЭ	Ser
Ala 625	Val	Ala	Asn	тут	Ala 630	Ala	Ala	Val	Ala	Arg 635	Arg	Gly	Val	His	11e
Ala	Trp	Arg	Glu	Pro 645	Gly	Phe	Сув	Ala	Leu 650	Ser	Сув	Pro	Gln	Gly 655	Glı
Val	Tyr	Leu	Gln 660	Сув	Gly	Thr	Pro	Сув 665	Asn	Met	Thr	Сув	Leu 670	Ser	Lei
		675					680					685		Сув	
Ser	Pro	Pro	Gly	Leu	Tyr	Leu 695	qaA	Glu	Arg	Gly	Asp		Val	Pro	Ly

Ala Gln Cys Pro Cys Tyr Tyr Asp Gly Glu Ile Phe Gln Pro Glu Asp 705 710 715 720 Ile Phe Ser Asp His His Thr Met Cys Tyr Cys Glu Asp Gly Phe Met 725 730 735 His Cys Thr Thr Ser Gly Gly Leu Gly Ser Leu Leu Pro Asn Pro Val Leu Ser Ser Pro Arg Cys His Arg Ser Lys Arg Ser Leu Ser Cys Arg Pro Pro Met Val Lys Leu Val Cys Pro Ala Asp Asn Pro Arg Ala Glu Gly Leu Glu Cys Ala Lys Thr Cys Gln Asn Tyr Asp Leu Gln Cys Met 785 790 795 800 Ser Thr Gly Cys Val Ser Gly Cys Leu Cys Pro Gln Gly Met Val Arg His Glu Asn Arg Cys Val Ala Leu Glu Arg Cys Pro Cys Phe His Gln Gly Gln Glu Tyr Ala Pro Gly Glu Thr Val Lys Ile Asp Cys Asn Thr Cys Val Cys Arg Asp Arg Lys Trp Thr Cys Thr Asp His Val Cys Asp Ala Thr Cys Ser Ala Ile Gly Met Ala His Tyr Leu Thr Phe Asp Gly Leu Lys Tyr Leu Phe Pro Gly Glu Cys Gln Tyr Val Leu Val Gln Asp 890 Tyr Cys Gly Ser Asn Pro Gly Thr Leu Arg Ile Leu Val Gly Asn Glu Gly Cys Ser Tyr Pro Ser Val Lys Cys Lys Lys Arg Val Thr Ile Leu Val Glu Gly Glu Ile Glu Leu Phe Asp Gly Glu Val Asn Val Lys Lys Pro Met Lys Asp Glu Thr His Phe Glu Val Val Glu Ser Gly Gln Tyr Val Ile Leu Leu Leu Gly Lys Ala Leu Ser Val Val Trp Asp His Arg Leu Ser Ile Ser Val Thr Leu Lys Arg Thr Tyr Gln Glu Gln Val Cys Gly Leu Cys Gly Asn Phe Asp Gly Ile Gln Asn Asn Asp Phe Thr 1000 Ser Ser Ser Leu Gln Ile Glu Glu Asp Pro Val Asp Phe Gly Asn Ser 1015

The time of the the garage to the t

4 -

~16. . a

- 30 -

Asp Ser Ser Cys Arg Ile Leu Thr Ser Asp Ile Phe Gln Asp Cys Asn 1060 1065 1070

Arg Leu Val Asp Pro Glu Pro Phe Leu Asp Ile Cys Ile Tyr Asp Thr 1075 1080 1085

Cys Ser Cys Glu Ser Ile Gly Asp Cys Thr Cys Phe Cys Asp Thr Ile 1090 1095 1100

Ala Ala Tyr Ala His Val Cys Ala Gln His Gly Lys Val Val Ala Trp 1105 1110 1115 1120

Arg Thr Ala Thr Phe Cys Pro Gln Asn Cys Glu Glu Arg Asn Leu His 1125 1130 1135

Glu Asn Gly Tyr Glu Cys Glu Trp Arg Tyr Asn Ser Cys Ala Pro Ala 1140 1145

Cys Pro Ile Thr Cys Gln His Pro Glu Pro Leu Ala Cys Pro Val Gln 1155 1160 1165

Cys Val Glu Gly Cys His Ala His Cys Pro Pro Gly Lys Ile Leu Asp 1170 1175 1180

Glu Leu Leu Gln Thr Cys Ile Asp Pro Glu Asp Cys Pro Val Cys Glu 1185 1190 1195 1200

Val Ala Gly Arg Arg Leu Ala Pro Gly Lys Lys Ile Ile Leu Asn Pro 1205 1210 1215

Ser Asp Pro Glu His Cys Gln Ile Cys Asn Cys Asp Gly Val Asn Phe 1220 1225 1230

Thr Cys Lys Ala Cys Arg Glu Pro Gly Ser Val Val Pro Pro Thr 1235 1240 1245

Asp Gly Pro Ile Gly Ser Thr Thr Ser Tyr Val Glu Asp Thr Ser Glu 1250 1255 1260

Pro Pro Leu His Asp Phe His Cys Ser Arg Leu Leu Asp Leu Val Phe 1265 1270 1275 1280

Leu Leu Asp Gly Ser Ser Lys Leu Ser Glu Asp Glu Phe Glu Val Leu 1285 1290 1295

Lys Val Phe Val Val Gly Met Met Glu His Leu His Ile Ser Gln Lys 1300 1305 1310

Arg Ile Arg Val Ala Val Val Glu Tyr His Asp Gly Ser His Ala Tyr 1315 1320 1325

Ile Glu Leu Lys Asp Arg Lys Arg Pro Ser Glu Leu Arg Arg Ile Thr 1330 1335 1340

Ser Gln Val Lys Tyr Ala Gly Ser Glu Val Ala Ser Thr Ser Glu Val 1345 1350 1355 1360

Leu Lys Tyr Thr Leu Phe Gln Ile Phe Gly Lys Ile Asp Arg Pro Glu 1365

Ala Ser Arg Ile Ala Leu Leu Leu Met Ala Ser Gln Glu Pro Ser Arg 1380 1385 1390

Leu Ala Arg Asn Leu Val Arg Tyr Val Gln Gly Leu Lys Lys Lys 1395 1400 1405

- 31 -

Val Ile Val Ile Pro Val Gly Ile Gly Pro His Ala Ser Leu Lys Gln 1410 1415 1420

Ile His Leu Ile Glu Lys Gln Ala Pro Glu Asn Lys Ala Phe Val Phe 1425 1430 1435 1440

Ser Gly Val Asp Glu Leu Glu Gln Arg Arg Asp Glu Ile Ile Asn Tyr 1445 1450 1455

Leu Cys Asp Leu Ala Pro Glu Ala Pro Ala Pro Thr Gln His Pro Pro 1460 1465 1470

Met Ala Gln Val Thr Val Gly Ser Glu Leu Leu Gly Val Ser Ser Pro 1475 1480 1485

Gly Pro Lys Arg Asn Ser Met Val Leu Asp Val Val Phe Val Leu Glu 1490 1495 1500

Gly Ser Asp Lys Ile Gly Glu Ala Asn Phe Asn Lys Ser Arg Glu Phe 1505 1510 1515 1520

Met Glu Glu Val Ile Gln Arg Met Asp Val Gly Gln Asp Arg Ile His 1525 1530 1535

Val Thr Val Leu Gln Tyr Ser Tyr Met Val Thr Val Glu Tyr Thr Phe 1540 1545 1550

Ser Glu Ala Gln Ser Lys Gly Glu Val Leu Gln Gln Val Arg Asp Ile 1555 1560 1565

Arg Tyr Arg Gly Gly Asn arg Thr Asn Thr Gly Leu Ala Leu Gln Tyr 1570 1580

Leu Ser Glu His Ser Phe Ser Val Ser Gln Gly Asp Arg Glu Gln Val 1585 1590 1595 1600

Pro Asn Leu Val Tyr Met Val Thr Gly Asn Pro Ala Ser Asp Glu Ile 1605 1610 1615

Lys Arg Met Pro Gly Asp Ile Gln Val Val Pro Ile Gly Val Gly Pro 1620 1625 1630

His Ala Asn Val Glu Leu Glu Lys Ile Gly Trp Pro Asn Ala Pro 1635 1640 1645

Ile Leu Ile His Asp Phe Glu Met Leu Pro Arg Glu Ala Pro Asp Leu 1650 1655 1660

Val Leu Gln Arg Cys Cys Ser Gly Glu Gly Leu Gln Ile Pro Thr Leu 1665 1670 1675 1680

Ser Pro Thr Pro Asp Cys Ser Gln Pro Leu Asp Val Val Leu Leu Leu 1685 1690 1695

Asp Gly Ser Ser Ser Ile Pro Ala Ser Tyr Phe Asp Glu Met Lys Ser 1700 1705 1710

Phe Thr Lys Ala Phe Ile Ser Arg Ala Asn Ile Gly Pro Arg Leu Thr 1715 1720 1725

Gln Val Ser Val Leu Gln Tvr Glv Ser Tle Thr Thr Tle hor val ho

C. 1

- 32 -

- Met Gln Glu Gly Gly Pro Ser Glu Ile Gly Asp Ala Leu Ser Phe 1765 1770 1775
- Ala Val Arg Tyr Val Thr Ser Glu Val His Gly Ala Arg Pro Gly Ala 1780 1785 1790
- Ser Lys Ala Val Val Ile Leu Val Thr Asp Val Ser Val Asp Ser Val 1795 1800 1805
- Asp Ala Ala Ala Glu Ala Ala Arg Ser Asn Arg Val Thr Val Phe Pro 1810 1815 1820
- Ile Gly Ile Gly Asp Arg Tyr Ser Glu Ala Gln Leu Ser Ser Leu Ala 1825 1830 1835 1840
- Gly Pro Lys Ala Gly Ser Asn Met Val Arg Leu Gln Arg Ile Glu Asp 1845 1850 1855
- Leu Pro Thr Val Ala Thr Leu Gly Asn Ser Phe Phe His Lys Leu Cys 1860 1865 1870
- Ser Gly Phe Asp Arg Val Cys Val Asp Glu Asp Gly Asn Glu Lys Arg 1875 1880 1885
- Pro Gly Asp Val Trp Thr Leu Pro Asp Gln Cys His Thr Val Thr Cys 1890 1895 1900
- Leu Pro Asp Gly Gln Thr Leu Leu Lys Ser His Arg Val Asn Cys Asp 1905 1910 1915 1920
- Arg Gly Pro Arg Pro Ser Cys Pro Asn Gly Gln Pro Pro Leu Arg Val 1925 1930 1935
- Glu Glu Thr Cys Gly Cys Arg Trp Thr Cys Pro Cys Val Cys Met Gly 1940 1945 1950
- Ser Ser Thr Arg His Ile Val Thr Phe Asp Gly Gln Asn Phe Lys Leu 1955 1960 1965
- Thr Gly Ser Cys Ser Tyr Val Leu Phe Gln Asn Lys Glu Gln Asp Leu 1970 1975 1980
- Glu Val Ile Leu Gln Asn Gly Ala Cys Ser Pro Gly Ala Lys Glu Thr 1985 1990 1995 2000
- Cys Met Lys Ser Ile Glu Val Lys His Asp Gly Leu Ser Val Glu Leu 2005 2010 2015
- His Ser Asp Met Gln Met Thr Val Asn Gly Arg Leu Val Ser Ile Pro 2020 2025 2030
- Tyr Val Gly Gly Asp Met Glu Val Asn Val Tyr Gly Thr Ile Met Tyr 2035 2040 2045
- Glu Val Arg Phe Asn His Leu Gly His Ile Phe Thr Phe Thr Pro Gln 2050 2055 2060
- Asn Asn Glu Phe Gln Leu Gln Leu Ser Pro Arg Thr Phe Ala Ser Lys 2065 2070 2075 2080
- Thr Tyr Gly Leu Cys Gly Ile Cys Asp Glu Asn Gly Ala Asn Asp Phe 2085 2090 2095
- Ile Leu Arg Asp Gly Thr Val Thr Thr Asp Trp Lys Ala Leu Ile Gln 2100 2105 2110

- Glu Trp Thr Val Gln Gln Leu Gly Lys Thr Ser Gln Pro Val His Glu 2115 2120 2125
- Glu Gln Cys Pro Val Ser Glu Phe Phe His Cys Gln Val Led Leu Ser 2130 2135 2140
- Glu Leu Phe Ala Glu Cys His Lys Val Leu Ala Pro Ala Thr Phe Tyr 2145 2150 2155 2160
- Ala Met Cys Gln Pro Asp Ser Cys His Pro Lys Lys Val Cys Glu Ala 2165 2170 2175
- Ile Ala Leu Tyr Ala His Leu Cys Arg Thr Lys Gly Val Cys Val Asp 2180 2185 2190
- Trp Arg Arg Ala Asn Phe Cys Ala Met Ser Cys Pro Pro Ser Leu Val 2195 2200 2205
- Tyr Asn His Cys Glu His Gly Cys Pro Arg Leu Cys Glu Gly Asn Thr 2210 2215 2220
- Ser Ser Cys Gly Asp Gln Pro Ser Glu Gly Cys Phe Cys Pro Pro Asn 2225 2230 2235 2240
- Gln Val Met Leu Glu Gly Ser Cys Val Pro Glu Glu Ala Cys Thr Gln 2245 2250 2255
- Cys Ile Ser Glu Asp Gly Val Arg His Gln Phe Leu Glu Thr Trp Val 2260 2265 2270
- Pro Ala His Gln Pro Cys Gln Ile Cys Thr Cys Leu Ser Gly Arg Lys 2275 2280 2285
- Val Asn Cys Thr Leu Gln Pro Cys Pro Thr Ala Lys Ala Pro Thr Cys 2290 2295 2300
- Gly Pro Cys Glu Val Ala Arg Leu Arg Gln Asn Ala Val Gln Cys Cys 2305 2310 2315 2320
- Pro Glu Tyr Glu Cys Val Cys Asp Leu Val Ser Cys Asp Leu Pro Pro 2325 2330 2335
- Val Pro Pro Cys Glu Asp Gly Leu Gln Met Thr Leu Thr Asn Pro Gly 2340 2345 2350
- Glu Cys Arg Pro Asn Phe Thr Cys Ala Cys Arg Lys Asp Glu Cys Arg 2355 2360 2365
- Arg Glu Ser Pro Pro Ser Cys Pro Pro His Arg Thr Pro Ala Leu Arg 2370 2375 2380
- Lys Thr Gln Cys Cys Asp Glu Tyr Glu Cys Ala Cys Asn Cys Val Asn 2385 2390 2395 2400
- Ser Thr Val Ser Cys Pro Leu Gly Tyr Leu Ala Ser Ala Val Thr Asn 2405 2410 2415
- Asp Cys Gly Cys Thr Thr Thr Thr Cys Phe Pro Asp Lys Val Cys Val 2420 2425 2430

. 4 E C

His Ard Gly Thr Ile Tvr Pro Val Gly Glo phe Tro Gly G' e'

.41.

Val Ala Gln Cys Ser Gln Lys Pro Cys Glu Asp Asn Cys Leu Ser Gly 2470 2475 2480

Phe Thr Tyr Val Leu His Glu Gly Glu Cys Cys Gly Arg Cys Leu Pro 2485 2490 2495

Ser Ala Cys Glu Val Val Thr Gly Ser Pro Arg Gly Asp Ala Gln Ser 2500 2505 2510

His Trp Lys Asn Val Gly Ser His Trp Ala Ser Pro Asp Asn Pro Cys 2515 2520 2525

Leu Ile Asn Glu Cys Val Arg Val Lys Glu Glu Val Phe Val Gln Gln 2530 2540

Arg Asn Val Ser Cys Pro Gln Leu Asn Val Pro Thr Cys Pro Thr Gly 2545 2550 2560

Phe Gln Leu Ser Cys Lys Thr Ser Glu Cys Cys Pro Thr Cys His Cys 2575

Glu Pro Leu Glu Ala Cys Leu Leu Asn Gly Thr Ile Ile Gly Pro Gly 2580 2585 2590

Lys Ser Leu Met Ile Asp Val Cys Thr Thr Cys Arg Cys Thr Val Pro 2595 2600 2605

Val Gly Val Ile Ser Gly Phe Lys Leu Glu Gly Arg Lys Thr Thr Cys 2610 2615 2620

Glu Ala Cys Pro Leu Gly Tyr Lys Glu Glu Lys Asn Gln Gly Glu Cys 2625 2630 2635 2640

Cys Gly Arg Cys Leu Pro Ile Ala Cys Thr Ile Gln Leu Arg Gly Gly 2645 2650 2655

Gln Ile Met Thr Leu Lys Arg Asp Glu Thr Ile Gln Asp Gly Cys Asp 2660 2665 2670

Ser His Phe Cys Lys Val Asn Glu Arg Gly Glu Tyr Ile Trp Glu Lys 2675 2680 2685

Arg Val Thr Gly Cys Pro Pro Phe Asp Glu His Lys Cys Leu Ala Glu 2690 2695 270G

Gly Gly Lys Ile Met Lys Ile Pro Gly Thr Cys Cys Asp Thr Cys Glu 2705 2710 2715 2720

Glu Pro Glu Cys Lys Asp Ile Ile Ala Lys Leu Gln Arg Val Lys Val 2725 2730 2735

Gly Asp Cys Lys Ser Glu Glu Glu Val Asp Ile His Tyr Cys Glu Gly 2740 2745 2750

Lys Cys Ala Ser Lys Ala Val Tyr Ser Ile His Met Glu Asp Val Gln 2755 2760 2765

Asp Gln Cys Ser Cys Cys Ser Pro Thr Gln Thr Glu Pro Met Gln Val 2770 2780

Ala Leu Arg Cys Thr Asn Gly Ser Leu Ile Tyr His Glu Ile Leu Asn 2785 2790 2795 2800

Ala Ile Glu Cys Arg Cys Ser Pro Arg Lys Cys Ser Lys 2805 2810

WE CLAIM:

- 1 An isolated nucleic acid comprising a nucleotide sequence encoding canine von Willebrand Factor polypeptide.
- 2. The isolated nucleic acid of Claim 1, wherein the nucleotide sequence 5 is capable of hybridizing under high stringency conditions to SEQ ID NO. 1.
 - The isolated nucleic acid of Claim 1, wherein the nucleotide sequence encodes the Scottish terrier von Willebrand Factor polypeptide.
 - 4. The isolated nucleic acid of Claim 2, wherein the nucleotide sequence encodes the Scottish terrier von Willebrand Factor polypeptide.
- 10 5. A vector comprising the nucleic acid of Claim 1.
 - 6. A vector comprising the nucleic acid of Claim 2.
 - 7. A cell comprising the vector of Claim 5.
 - 8. A cell comprising the vector of Claim 6.
- An isolated nucleic acid comprising a nucleotide sequence encoding
 defective canine von Willebrand Factor polypeptide.
 - 10. The isolated nucleic acid of Claim 9, wherein the nucleotide sequence is capable of hybridizing under high stringency conditions to the complement of SEQ ID NO. 1 having a base deletion at codon 88.
 - 11. A vector comprising the nucleic acid of Claim 9.
- 20 12. A vector comprising the nucleic acid of Claim 10.

an Amprising the vector land

14 A cell comprising the vector of Claim 12.

10

15

- 15. An isolated oligonucleotide sequence consisting of contiguous nucleic acids of the nucleotide sequence of SEQ ID NO. 1 and capable of specifically hybridizing with the canine von Willebrand Factor gene.
- 16. An isolated oligonucleotide sequence consisting of contiguous nucleic acids of the nucleotide sequence that is complementary to the sequence of SEQ ID NO. 1 and capable of specifically hybridizing with the canine von Willebrand Factor gene.
 - 17. A method of detecting a canine von Willebrand Factor gene in a sample comprising the steps of:
 - a) contacting the sample with a oligonucleotide comprising contiguous nucleic acids of the nucleotide sequence of SEQ ID NO. 1 and capable of specifically hybridizing with the canine von Willebrand Factor gene, under conditions favorable for hybridization of the oligonucleotide to any complementary sequences of nucleic acid in the sample; and
 - b) detecting hybridization, thereby detecting a canine von Willebrand Factor gene.
 - 18. The method of Claim 17, further comprising the step of:
- c) quantifying hybridization of the oligonucleotide to complementary sequence.
 - 19. The method of Claim 17, wherein in SEQ ID NO. 1 there is a base deletion at codon 88.
 - 20. An assay kit for screening for a canine von Willebrand Factor gene comprising:
- an oligonucleotide comprising contiguous nucleic acids of the nucleotide sequence of SEQ ID NO. 1 and capable of hybridizing with the canine von Willebrand Factor gene;
 - b) reagents for hybridization of the oligonucleotide to a complementary nucleic acid sequence; and
- 30 c) container means for a)-b).

PCT/US97/12606

5

10

20

25

- 21. A method of detecting a canine von Willebrand Factor gene in a sample comprising the steps of.
 - a) contacting the sample with an oligonucleotide comprising contiguous nucleic acids of the nucleotide sequence that is complementary to the sequence of SEQ ID NO. 1 and capable of specifically hybridizing to the complementary nucleotide sequence, under conditions favorable for hybridization of the oligonucleotide to any complementary sequences of nucleic acid in the sample; and
- b) detecting hybridization, thereby detecting a canine von Willebrand Factor gene.
 - 22. The method of Claim 21, further comprising the step of.
 - c) quantifying hybridization of the oligonucleotide to complementary sequences.
- 15 23. The method of Claim 21, wherein in SEQ ID NO. 1 there is a base deletion at codon 88.
 - 24. An assay kit for screening for a canine von Willebrand Factor gene comprising:
 - an oligonucleotide comprising contiguous acids from the nucleotide sequence that is complementary to the sequence of SEQ ID NO. 1 and capable of specifically hybridizing to the complementary nucleotide sequence;
 - b) reagents for hybridization of the oligonucleotide to a complementary nucleic acid sequence; and
 - c) container means for a)-b).
 - 25. The assay kit of Claim 24, wherein in SEQ ID NO. 1 there is a base deletion at codon 88.

5

10

- 26. A method for detecting a mutated canine von Willebrand Factor gene in a canine DNA sample comprising the steps of:
 - amplifying the DNA sample by polymerase chain reaction to produce polymerase chain reaction products, wherein the polymerase chain reaction uses primers that produce a restriction site in a mutant allele but not in a normal allele;
 - digesting the polymerase chain reaction products with a restriction enzyme specific to the restriction site of the restriction site primer to produce DNA fragments; and
 - c) detecting the DNA fragments, thereby detecting a mutated canine von Willebrand Factor gene.
 - 27. The method of Claim 26, wherein the primers are those of Figure 4.
- 28. The method of Claim 26, wherein the DNA fragments are detected by gel electrophoresis.
- 15 29. The method of Claim 27, wherein the restriction enzyme is Bs/EI.
 - 30. The method of Claim 27, wherein the restriction enzyme is Sau96 I.
 - 31. An oligonucleotide probe capable of detecting a mutation associated with canine von Willebrand's disease, wherein the mutation is a base deletion at codon 88 of the canine von Willebrand Factor gene.

FIGURE 1A

1	CATTAANAGG	TCCTGGCTGG	GAGCTITIT	TTGGGACCAG	CACTCCATGT	TURAGGGCAR
61	ACAGGGGCCA	ATTAGGATCA	ATCTTTTTTC	TITCTTTTT	TAAAAAAAAA	AATTOTTOOC
121	ACTITICACA	CGGACAGTAG	TACATACCAG	TAGCTCTCTG	CGAGGACGGT	GATCACTAAT
181	CATTTCTCCT	GCTTCGTGGC	AGATGAGTCC	TACCAGACTT	GTGAGGGTGC	TGCTGGCTCT
241	GGCCCTCATC	TTGCCAGGGA	AACTITGIAC	AAAAGGGACT	GTTGGAAGGT	CATCGATGGC
				CAACACCTTT		
				GGACTGCCAG		
				CCTCTCCGTG		
				GCAGGGGACC		
				GGCTGGCTAC		
				TGGCAACTTT		
				CAACTTTAAT		
721	CAAGACTCAA	GAAGGGACGT	TGACTTCGGA	CCCCTATGAC	TTTGCCAACT	CCTGGGCCCT
				GTCCCCTCCC		
841	CTCTGATGAA	GTGCAGCAGG	TCCTGTGGGA	GCAGTGCCAG	CTCCTGAAGA	GTGCCTCGGT
901	GTTTGCCCGC	TGCCACCCGC	TGGTGGACCC	TGAGCCTTTT	GTCGCCCTGT	GTGAAAGGAC
961	TCTGTGCACC	TGTGTCCAGG	GGATGGAGTG	CCCTTGTGCG	GTCCTCCTGG	AGTACGCCCG
1021	GCCTGTGCC	CAGCAGGGGA	TIGICTIGIA	CGGCTGGACC	GACCACAGCG	TCTGCCGACC
1081	AGCATGCCCT	GCTGGCATGG	AGTACAAGGA	GTGCGTGTCC	CCTTGCACCA	GAACTTGCCA
1141	GAGCCTTCAT	GTCAAAGAAG	TGTGTCAGGA	GCAATGTGTA	GATGGCTGCA	GCTGCCCCGA
1201	GGGCCAGCTC	CTGGATGAAG	GCCACTGCGT	GGGAAGTGCT	GAGTGTTCCT	GTGTGCATGC
1261	TGGGCAACGG	TACCCTCCGG	GCGCCTCCCT	CTTACAGGAC	TGCCACACCT	GCATTTGCCG
1321	AAATAGCCTG	TGGATCTGCA	GCAATGAAGA	ATGCCCAGGC	GAGTGTCTGG	TCACAGGACA
1381	GTCCCACTTC	AAGAGCTTCG	ACAACAGGTA	CTTCACCTTC	AGTGGGGTCT	GCCACTACCT
1441	GCTGGCCCAG	GACTGCCAGG	ACCACACATT	CTCTGTTGTC	ATAGAGACTG	TCCAGTGTGC
1501	CGATGACCTG	GATGCTGTCT	GCACCCGCTC	GGTCACCGTC	CCCCTCCCTG	GACATCACAA
1561	CAGCCTTGTG	AAGCTGAAGA	ATGGGGGAGG	AGTCTCCATG	GATGGCCAGG	ATATCCAGAT
				GCACACCGTG		
1681	CTACGGGGAG	GACCTGCAGA	TGGATTCGGA	CGTCCGGGC	AGGCTACTGG	TGACGCTGTA
_				TGGCGGGAAC		
				GCCCCTGGTG		
				GAAGCAGCAC		
				GTGCGCGCTG		
				CTACGTGCAG		
				CAGCGCCGTG		
				GGAGCCGGGC		
				CCCCTGCAAC		
				CTTGGANAGC		
				CAAGGCTCAG		
				AGACCATCAC		
				CCTGGGAAGC		
				GAGCCTGTCC		
				TGAAGGACTG		
				CIGIGICICC		
2641	CATOGTCCGG	CATGAAAACA	CGTGTGTGCC	GCTOGAAAGA	TGTCCTGCT	TCCACCAAGG
2701	CCAAGAGTAC	GCCCCAGGAG	ANACCETERS	AATTGACTGC	AACACTTGTG	TCTGTCGGGA
2761	CCGGAAGTGG	ACCTGCACAG	ACCATGTOTE	TEATGCCACT	TECTETECE	TOGGCATGGC
2821	GCACTACCTC	ACCTTOGACG	GACTCAAGTA	CCIGITOCCT	GGGGAGTGCC	AGTATGTTCT
2881	GGTGCAGGAT	TACTGCGGCA	GTAACCCTCC	GACCTTACGG	ATCCTGGTGG	GGAACGAGGG
2941	GTGCAGCTAC	CCCTCAGTGA	AATGCAAGAA	GOGGGTCACC	ATCCTGGTGG	AAGGAGGAGA
1001	GATTGAACTG	TTTGATGGGG	AGGTGAATGT	GAAGAAACCC	ATGAAGGATG	AGACTCACT
				TETTS ETGCTO		
				CTGAAGCGG		
		,				

FIGURE 1B

3181	TGGCCTGTGT	GGGAATTTTG	ATGGCATCCA	GAACAATGAT	TTCACCAGCA	GCAGCCTCCA
	AATAGAAGAA					
	CACCAAGAAA					
	GACGATGGTG					
	GCTGGTGGAC					
	CATTGGGGAC					
3541	GCATGGCAAG	GTGGTAGCCT	GGAGGACAGC	CACATTCTGT	CCCCAGAATT	GCGAGGAGCG
3601	GAATCTCCAC	GAGAATGGGT	ATGAGTGTGA	GTGGCGCTAT	AACAGCTGTG	CCCCTGCCTG
3661	TCCCATCACG	TGCCAGCACC	CCGAGCCACT	GGCATGCCCT	GTACAGTGTG	TTGAAGGTTG
3721	CCATGCGCAC	TGCCCTCCAG	GGAAAATCCT	GGATGAGCTT	TTGCAGACCT	GCATCGACCC
	TGAAGACTGT					
3841	CTTGAACCCC	AGTGACCCTG	AGCACTGCCA	AATTTGTAAT	TGTGATGGTG	TCAACTTCAC
3901	CTGTAAGGCC	TGCAGAGAAC	CCGGAAGTGT	TGTGGTGCCC	CCCACAGATG	GCCCCATTGG
3961	CTCTACCACC	TCGTATGTGG	AGGACACGTC	GGAGCCGCCC	CTCCATGACT	TCCACTGCAG
4021	CAGGCTTCTG	GACCTGGTTT	TCCTGCTGGA	TEGCTCCTCC	AAGCTGTCTG	AGGACGAGTT
4081	TGAAGTGCTG	AAGGTCTTTG	TGGTGGGTAT	GATGGAGCAT	CTGCACATCT	CCCAGAAGCG
4141	GATCCGCGTG	GCTGTGGTGG	AGTACCACGA	CGGCTCCCAC	GCCTACATCG	AGCTCAAGGA
4201	CCGGAAGCGA	CCCTCAGAGC	TGCGGCGCAT	CACCAGCCAG	GTGAAGTACG	CGGGCAGCGA
4261	GGTGGCCTCC	ACCAGTGAGG	TCTTAAAGTA	CACGCTGTTC	CAGATCTTTG	GCAAGATCGA
4321	CCGCCCGGAA	GCGTCTCGCA	TTGCCCTGCT	CCTGATGGCC	AGCCAGGAGC	CCTCAAGGCT
4381	GGCCCGGAAT	TTGGTCCGCT	ATGTGCAGGG	CCTGAAGAAG	AAGAAAGTCA	TTGTCATCCC
4441	TGTGGGCATC	GGGCCCCACG	CCAGCCTTAA	GCAGATCCAC	CTCATAGAGA	AGCAGGCCCC
	TGAGAACAAG					
4561	TATCAACTAC	CTCTGTGACC	TTGCCCCCGA	AGCACCTGCC	CCTACTCAGC	ACCCCCAAT
4621	GGCCCAGGTC	ACGGTGGGTT	CGGAGCTGTT	GGGGGTTTCA	TCTCCAGGAC	CCALALGGAA
4681	CTCCATGGTC	CTGGATGTGG	TGTTTGTCCT	GGAAGGGTCA	GACAAAATTG	GTGAGGCCAA
	CTTTAACAAA					
	CAGGATCCAC					
	CGAGGCGCAG					
	CAACAGGACC					
4981	CCAGGGGGAC	CGGGAGCAGG	TACCTAACCT	GGTCTACATG	GTCACAGGAA	ACCCCGCTTC
5041	TGATGAGATC	AAGCGGATGC	CTGGAGACAT	CCAGGTGGTG	CCCATCGGGG	TGGGTCCACA
5101	TGCCAATGTG	CAGGAGCTGG	AGAAGATTGG	CTGGCCCAAT	GCCCCCATCC	TCATCCATGA
5161	CTTTGAGATG	CTCCCTCGAG	AGGCTCCTGA	TCTGGTGCTA	CAGAGGTGCT	GCTCTGGAGA
5221	GGGGCTGCAG	ATCCCCACCC	TCTCCCCCAC	CCCAGATTGC	AGCCAGCCCC	TGGATGTGGT
5281	CCTCCTCCTG	GATGGCTCTT	CCAGCATTCC	AGCTTCTTAC	TTTGATGAAA	TGAAGAGCTT
5341	CACCAAGGCT	TTTATTTCAA	GAGCTAATAT	AGGGCCCCGG	CTCACTCAAG	TETCEGTECT
5401	GCAATATGGA	AGCATCACCA	CTATCGATGT	GCCTTGGAAT	GTAGCCTATG	AGARAGTCCA
5461	TTTACTGAGC	CTTGTGGACC	TCATGCAGCA	GGAGGGAGGC	CCCAGCGAAA	TTGGGGATGC
5521	TTTGAGCTTT	GCCGTGCGAT	ATGTCACCTC	AGAAGTCCAT	GGTGCCAGGC	CCGGAGCCTC
5581	GAAAGCGGTG	GTTATCCTAG	TCACAGATGT	CTCCGTGGAT	TCAGTGGATG	CTGCAGCCGA
5641	GCCCCCCAGA	TCCAACCGAG	TGACAGTGTT	CCCCATTGGA	ATCGGGGATC	GGTACAGTGA
5701	GGCCCAGCTG	AGCAGCTTGG	CAGGCCCAAA	GGCTGGCTCC	ARTATGGTAA	GCTCCAGCG
5761	AATTGAAGAC	CTCCCCACCG	TGGCCACCCT	GGGAAATTCC	TTCTTCCACA	AGCTGTGCTC
5821	TGGGTTTGAT	AGAGTTTGCG	TOGATGAGGA.	TGGGAATGAG	AAGAGGCCCG	GGGATGTCTG
5881	GACCTTGCCA	GACCAGTGCC	ACACAGTGAC	TIGCCTGCCA	GATGGCCAGA	CCLICATER
5941	GAGTCATCGG	GTCAACTGTG	ACCOGGGGCC	AAGGCCTTCG	TGCCCCAATG	GCCAGCCCCC
6001	TCTCAGGGTA	GAGGAGACCT	GTOGCTGCCG	CTGGACCTCT	CCCTGTGTGT	GCATGCCCAC
6061	CTCTACCCGG	CACATCUTGA	CCTTTGATGG	GCAGAATTTY	AAGCTGACTG	GCAGCTGTTC
6121	GTATGTCCTA	TTTCAAACA	AGGAGCAGGA	CCTGGAGGTG	ATTOTOCAGA	ATGGTGCCTG
6181	CAGCCCTGGG	GCGAAGGAGA	CCTGCATGAA	ATCCATTGAG	GTGAAGCATG	ACCCCCTCTC
6241	AGTTGAGCTC	CACAGTGACA	TGCAGATGAC	ACTGARTGGG	AGACTACTO	CCATCCCATA
6301	TGTGGGTGGA	GACATGGAAG	TCAATGTTTA	TGGGACCATC	ATGTATGAGG	TCAGATTCAR
6361	CCATCTTGGC	CACATCTTCA	CATTCACCCC	CCARARCART	GAGTTCCAGC	TGCAGCTCAG

FIGURE 1C

6421	CCCCAGGACC	TTTGCTTCGA	AGACATATGG	TCTCTGTGGG	ATCTGTGATG	AGAACGGAGC
			ATGGGACAGT			
			GGAAGACATC			
			AGGTCCTCCT			
			ATGCCATGTG			
			ATGCCCACCT			
			CTATGTCATG			
6841	GCATGGCTGC	CCTCGGCTCT	GTGAAGGCAA	TACAAGCTCC	TGTGGGGACC	AACCCTCGGA
			ACCAAGTCAT			
			AGGATGGAGT			
7021	AGCCCACCAG	CCTTGCCAGA	TCTGCACGTG	CCTCAGTGGG	CGGAAGGTCA	ACTGTACGTT
			AAGCTCCCAC			
			GCCCGGAGTA			
7201	CCTGCCCCCG	GTGCCTCCCT	GCGAAGATGG	CCTCCAGATG	ACCCTGACCA	ATCCTGGCGA
			GTGCCTGCAG			
			CGCCGGCCCT			
7381	GTGTGCATGC	AACTGTGTCA	ACTCCACGGT	GAGCTGCCCG	CTTGGGTACC	TGGCCTCGGC
			GCACCACAAC			
7501	CCGAGGCACC	ATCTACCCTG	TGGGCCAGTT	CTGGGAGGAG	GCCTGTGACG	TGTGCACCTG
7561	CACGGACTTG	GAGGACTCTG	TGATGGGCCT	GCGTGTGGCC	CAGTGCTCCC	AGAAGCCCTG
7621	TGAGGACAAC	TGCCTGTCAG	GCTTCACTTA	TGTCCTTCAT	GAAGGCGAGT	GCTGTGGAAG
7681	GTGTCTGCCA	TCTGCCTGTG	AGGTGGTCAC	TGGTTCACCA	CGGGGCGACG	CCCAGTCTCA
7741	CTGGAAGAAT	GTTGGCTCTC	ACTGGGCCTC	CCCTGACAAC	CCCTGCCTCA	TCAATGAGTG
7801	TGTCCGAGTG	AAGGAAGAGG	TCTTTGTGCA	ACAGAGGAAT	GTCTCCTGCC	CCCAGCTGAA
7861	TGTCCCCACC	TGCCCCACGG	GCTTCCAGCT	GAGCTGTAAG	ACCTCAGAGT	GTTGTCCCAC
7921	CTGTCACTGC	GAGCCCCTGG	AGGCCTGCTT	GCTCAATGGT	ACCATCATTG	GGCCGGGAA
7981	AAGTCTGATG	ATTGATGTGT	GTACAACCTG	CCGCTGCACC	CTCCCCCTCC	GAGTCATCTC
8041	TGGATTCAAG	CTGGAGGGCA	GGAAGACCAC	CTGTGAGGCA	TGCCCCCTGG	GTTATAAGGA
			GCTGTGGGAG			
8161	AAGAGGAGGA	CAGATCATGA	CACTGAAGCG	TGATGAGACT	ATCCAGGATG	GCTGTGACAG
8221	TCACTTCTGC	AAGGTCAATG	AAAGAGGAGA	GTACATCTGG	GAGAAGAGAG	TCACGGGTTG
8281	CCCACCTTTC	GATGAACACA	AGTGTCTGGC	TGAGGGAGGA	AAAATCATGA	AAATTCCAGG
8341	CACCTGCTGT	GACACATGTG	AGGAGCCAGA	ATGCAAGGAT	ATCATTGCCA	AGCTGCAGCG
8401	TGTCAAAGTG	GGAGACTGTA	AGTCTGAAGA	GGAAGTGGAC	ATTCATTACT	GTGAGGGTAA
			ACTCCATCCA			
			AGCCCATGCA			
			ATGCCATCGA			
			CTACTGTCGC			
			CAGTCCTCCT			CCTGATCCCA
8761	CAATAAAGGT	CANTCTTTCA	CCTTGAAAAA	XXXXXXXXX	AX.	

Human Dog	MIPARFAGVLLALALILPGTLCAEGTRGRSSTARCSLFGSDFVNTFDGSMYSFAGYCSYL-S-T-LVRKTKVML-GIED	60
Human Dog	LaggcofrsfsiigdfongkryslsvylgeffdihlfvngtvtogdorysmpyaskglylDEH-I-LGD	120
Human Dog	ETEAGYYKLSGEAYGFVARIDGSGNFQVLLSDRYFNXTCGLCGNFNIFAEDDFMTQEGTL -ASN	180
Human Dog	TSDPYDFANSWALSSGEQWCERASPPSSSCNIESGEMQKGLWEQCQLLKSTSVFARCHPL	240
Human Dog	VDPEPFVALCEKTLCECAGGLECACPALLEYARTCAQEGMVLYGWTDHSACSPVCPAGME	300
Human Dog	YRQCVSPCARTCQSLHINEMCQERCVDGCSCPEGQLLDEGLCVESTECPCVHSGKRYPPG -KETVK-VQHG-ASA-Q	360
Human Dog	TSLSRDCNTCICRNSQWICSNEECPGECLVTGQSHFKSFDNRYFIFSGICQYLLARDCQD ALQHL	420
Human Dog	#SFSIVIETVQCADDRDAVCTRSVTVRLPGLPMSLVKLKHGAGVA: DGQDVQLPLLKGDL-TVL	480
Human Dog	RIOHTVTASVRLSYGEDLOMDWDGRGRLLVKLSPVYAGKTCGLCGNYNGNQGDDFLTPSG	540
Human Dog	LAEPRVEDFGNAWKLHGDCQDLQKQHSDPCALNPRNTRFSEEACAVLTSPTFEACHRAVSL	600
Human Dog	PLPYLRNCRYDVCSCSDGRECLCGALASYAAACAGRGVRVAWREPGRCELNCPKGQVYLQ -QVQLDS-V-NV-RKIF-A-SQ	660
Human Dog	CGTPCNLTCRSLSYPDEECNEACLEGCFCPPGLYMDERGDCVPKAQCPCYYDGEIFQPED	720
Human Dog	IFSDHHTMCYCEDGFMHCTMSGVPGSLLPDAVLSSPLSHRSKRSLSCRPPMVKLVCPADN	780
Human Dog	LRAEGLECTKTCONYDLECMSHGCVSGCLCPPGHVRHENRCVALERCPCFHQGKEYAPGE PQTQQQ	840
Human Dog	TVKIGCNTCVCRDREGECTDHVCDATCSTIGMAHYLTFDGLKYLFPGECQYVLVQDYCGS	900
Human Dog	NPGTFRILVGNKGCSHPSVKCKKRVTILVEGGEIELFDGEVNVKRPHGDETHFEVVESGR	960
Human Dog	YIILLLGKALSVVNDRHLSISVVLKQTYQEKVCGLCGNFDGIQMADLTSSNLQVEEDPVD -VFFFFFFF	1020
Human Dog	FGNSHKVSSQCADTRKVPLDSSPATCHNNIHKQTMVDSSCRILTSDVFQDCNKLVDPEPY	1080

FIGURE 2A

Human Dog	LDVCIYDTCSCESIGDCACFCDTIAAYAHVCAQHGKVVTWRTATLCPQSCEERNLRENGY	114
Human Dog	ECEWRYNSCAPACQVTCQHPEPLACPVQCVEGCHAHCPPGKILDELLQTCVDPEDCPVCE	1200
Human Dog	VAGRRFASGKKVTLNPSDPEHCQICHCDVVNLTCEACQEPGGLVVPPTDAPVSPTTLYVEL-PIINGFKRSVG-IGSS	1260
Human Dog	DISEPPLHDFYCSRLLDLVFLLDGSSRLSEAEFEVLKAFVVDHMERLFISOKWVRVAVVE	1320
Human Dog	YHDGSHAYIGLKDRKRPSELRRIASQVKYAGSQVASTSEVLKYTLFQIFSKIDRPEASRI	1380
Human Dog	ALLLMASQEPQRMSRNFVRYVQGLKKKKVIVIPVGIGPHANLKQIRLIEKQAPENKAFVL	1440
Нижал Dog	SSVDELEQQRDEIVSYLCDLAFEAPPPTLPPHHAQVTVGPGLLGVSTLGPKRNSMVLDVA -GRINAQH-PSESPV	1500
Human Dog	FVLEGSDKIGEADFNRSKEFMEEVIORMDVGODSINVTVLOYSYMVTVEYPFSEAOSKGD	1560
Human Dog	ILORVREIRYOGGNRTNTGLALRYLSDMSFLVSOGDREOAPNLVYHVTGNPASDEIKRLP VQDRQESV	1620
Human Dog	GDIOVVPIGVGPNANVOELERIGWPNAPILIODFETLPREAPDLVLQRCCSGEGLCIPTL	1680
Human Dog	SPAPDCSQPLDVILLLDGSSSFPASYFDEMKSFAKAFISKANIGPRLTQVSVLQYGSITT	1740
Human Dog	IDVPHNVVPEKAHLLSLVDVMOREGGPSQIGDALGFAVRYLTSEMHGARPGASKAVVILV	1800
Human Dog	TDVSVDSVDAADAARSNRVTVFPIGIGDRYDAAQLRILAGPAGDSNVVKLQRIEDLPTN:	1860
Human Dog	VTLGNSFLHKLCSGFVRICHDEDGNEKRPGDVWTLPDQCHTVTCQPDGQTLLKTHRVNCD	1920
Human Dog	RGLRPSCPNSQSPVKVEETCGCRWTCPCVCTGSSTRHIVTFDGQNFKLTGSCEYVLFQNK	1980
Human Dog	EQDLEVILHNGACSPGARQGCMKSIEVKHSALSVELHSDHEVTVNGRLVEVPYVGGNNEV	2040
Human Dog	NVYGAIMHEVRFNHLGHIFTFTPQNNEFOLOLSPKTFASKTYGLCGICDENGANDFMLRD	2100
Human Dog	GTVTTDWKTLVQEWTVQRPGQTCQPILEEQCLVPDSSHCQVLLLPLFAECHKVLAPATFY	2160

IGURE 25

Human Dog	AICQQDSCHQEQVCEVIASYAHLCRTNGVCVDWRTPDFCAMSCPPSLVYNHCEHGCPRHC -MPPKKALKRANL-	2220
Human Dog	DGNVSSCGDHPSEGCFCPPDKVMLEGSCVPEEACTQCIGEDGVQHQFLEAWVPDHQPCQI ETQNQSRTA	2280
Human Dog	CTCLSGRKVNCTTOPCPTAKAPTCGLCEVARLRQNADQCCPEYECVCDPVSCDLPPVPHC	2340
Human Dog	ERGLOPTLTNPGECRPNFTCACRKEECKRVSPPSCPPHRLPTLRKTQCCDEYECACNCVN-DR-ET-A	2400
Human Dog	STVSCPLGYLASTATNDCGCTTTTCLPDKVCVHRSTIYPVGQFWEEGCDVCTCTDHEDAV	2460
Human Dog	MGLRVAQCSQKPCEDSCRSGFTYVLHEGECCGRCLPSACEVVTGSFRGDSQSSWXSVGSQ	2520
Human Dog	WAS PENPOLINECVRVKEEVFIQQRNVSCPQLEVPVCPSGFQLSCKTSACCPSCRCERME	2580
Human Dog	ACHINGTVIGPGKTVAIDVCTTCRCMVQVGVISGFKLECRKTTCNPCPLGYKEENHTGEC	2640
Human Dog	CGRCLPTACTIOLRGGQIMTLKRDETLQDGCDTHFCKVNERGEYFWEKRVTGCPPFDEHK	2700
Human Dog	CLAEGGKIMKIPGTCCDTCEEPECNDITARLOYVKVGSCKSEVEVDIHYCOGKCASKANY	2760
Euman Dog	SIDINDVQDQCSCCSPTRTEPMQVALHCTMGSVVYHEVLNAMECKCSPRKCSK	2673

FIGURE 2C

8/9

FIGURE 4

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12606

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :C12Q 1/68; C12P 19/34; C07H 21/02, 21/04 US CL :435/6, 91.2; 536/23.1, 24.3, 24.33 According to International Patent Classification (IPC) or to both antional classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system follow	ed by classification symbols)				
U.S. : 435/6, 91.2; 536/23.1, 24.3, 24.33					
Documentation searched other than minimum documentation to the	e extent that such documents are included	in the fields searched			
Electronic data base consulted during the international search (see Please See Extra Sheet.	name of data base and, where practicable	c, search terms used)			
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category® Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.			
Y SHIBUYA, H. et al. A polymorphic an intron of the canine von Willebrand April 1994, Volume 25, Number 2, p.	(AGGAAT) _a tandem repeat in factor gene. Animal Genetics.	15-22, 24-26, 28, 31			
ripid 1994, Volume 29, Humbel 2, μ	ago 122, sac citure occument.	1-14, 23, 27, 29			
Purther documents are listed in the continuation of Box (See patent family anaex.				
* Special congress of cited documents: "I" later document published after the interestional filing data or priority data and not in conflict with the application but ested to understand to be of particular relevances.					
"E" certier decement published on or ofter the interestent filing data. "L" decement which may threw doubt on princips claim(s) or which is said to establish the publishing data of marker citation or other.					
openial reseas (an openifical) "Y" domainest of particular relovance, the claimed invention council be considered to inventive an inventive step when the document is "O" domainest referring to an oral disclosure, use, orbibition or other combined with one or user other reads document, and accommend to					
being obvious to a purson skilled in the art "P" decement published prior to the interactional filing date but later then "A" decement member of the same potent family the priority date element					
Date of the actual completion of the international search Date of mailing of the international search report					
28 AUGUST 1997 1 4 NOV 1997					
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT DIANNE REES DIANNE REES					
Washington, D.C. 20231 Precipile No. (202) 205-2220	Pacsimile No. (703) 305-3230 Telephone No. (703) 308-0196				
Porms PCT/ISA/210 (eccoed shoot)(July 1992)+					

INTERNATIONAL SEARCH REPORT

International application No PCT/US97/12606

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, BIOSIS, BIOTECHABS, RIOTECHDS, CABA, DGENE, DRUGU, EMBASE, MEDLINE, EUROPATFULL, JAPIO, WPIDS, USPATFULL, GENBANK

search terms: von Willebrand, sequence, clone, cloning, probes, primers, hybridization, detection, nucleic acids, mutations, caaine, dogs, Scottish termers, primers in Figure 4.

