Esfuerzo y deformación

Física General III (FIS 130)

José Miguel Pinto jose.pinto@usm.cl

Esfuerzo y deformación

Módulo de elasticidad =
$$\frac{\text{esfuerzo}}{\text{deformación}}$$

Esfuerzo de tensión

$$Y = \frac{F_{\perp}/A}{\Delta l/l_0}$$

Esfuerzo de compresión

Material	Módulo de Young, Y (Pa)
Aluminio	7.0×10^{10}
Latón	9.0×10^{10}
Cobre	11×10^{10}
Cristal corona (óptico)	6.0×10^{10}
Hierro	21×10^{10}
Plomo	1.6×10^{10}
Níquel	21×10^{10}
Acero	20×10^{10}

$$Y = \frac{F_{\perp}/A}{\Delta l/l_0}$$

Esfuerzo de tensión y de compresión

Las partes superior e inferior de una viga en I se ensanchan para minimizar los esfuerzos de compresión y de tensión.

La viga puede ser angosta cerca de su línea central, la cual no está bajo compresión ni bajo tensión.

Esfuerzo de volumen

Módulo de Volumen

$$B = -\frac{\Delta p}{\Delta V/V_0}$$

Esfuerzo de volumen

Material	Módulo de volumen, B (Pa)
Aluminio	7.5×10^{10}
Latón	6.0×10^{10}
Cobre	14×10^{10}
Cristal corona (óptico)	5.0×10^{10}
Hierro	16×10^{10}
Plomo	4.1×10^{10}
Níquel	17×10^{10}
Acero	16×10^{10}

Compresibilidades de líquidos

Compresibilidad,	k
------------------	---

	F		
Líquido	Pa ⁻¹	atm ⁻¹	
Disulfuro de carbono	93×10^{-11}	94×10^{-6}	
Alcohol etílico	110×10^{-11}	111×10^{-6}	
Glicerina	21×10^{-11}	21×10^{-6}	
Mercurio	3.7×10^{-11}	3.8×10^{-6}	
Agua	45.8×10^{-11}	46.4×10^{-6}	

Esfuerzo de corte

Material	Módulo de corte, S (Pa)
Aluminio	2.5×10^{10}
Latón	3.5×10^{10}
Cobre	4.4×10^{10}
Cristal corona (óptico)	2.5×10^{10}
Hierro	7.7×10^{10}
Plomo	0.6×10^{10}
Níquel	7.8×10^{10}
Acero	7.5×10^{10}

Módulo de Corte

$$S = \frac{F_{\parallel}/A}{x/h}$$

Elasticidad y plasticidad

