

Certificate

Standard Reference Material® 1921a

Infrared Transmission Wavelength Standard

This Standard Reference Material (SRM) is intended primarily for use in calibrating the wavelength (wavenumber) scale of spectrophotometers in the infrared (IR) spectral region from 3.2 μ m to 18.5 μ m (540 cm⁻¹ to 3125 cm⁻¹). A unit of SRM 1921a consists of a matte finish polystyrene film approximately 38 μ m thick with a 25 mm diameter exposed area, centered 38 mm from the bottom of a cardboard holder, which is 5 cm × 11 cm × 0.2 cm in size.

Certified Wavelength (Wavenumber) Values: The spectral transmittance of a statistically representative group of the polystyrene film SRM specimens was measured under both vacuum and purge conditions. The positions of absorption bands in the range of $3.2~\mu m$ to $18.5~\mu m$ were obtained using both a centroid method as well as a band minimum determination method. Thirteen of the band locations were selected for certification based on experimental and statistical analysis results. The certified wavelength values and associated uncertainties of these bands are shown in Tables 1 and 3 for the centroid and band minimum methods, respectively. The corresponding wavenumber values and associated uncertainties of the bands are shown in Tables 2 and 4, respectively. See section entitled "Band Wavenumber and Wavelength Determination" for details. To aid the user in distinguishing among the bands during measurement, a spectrum is shown in Figure 1, with arrows identifying the certified bands. For band wavelength and wavenumber values measured in air or under purge conditions, see section entitled "Correction for Air/Nitrogen Purge".

The expanded uncertainty, U, is provided for each certified band wavelength and wavenumber. It is the product of the coverage factor, k = 4, and the combined standard uncertainty. The combined standard uncertainty is the root sum of squares of all the uncertainty components [1–3].

Expiration of Certification: The certification of SRM 1921a is valid, within the measurement uncertainty specified, until 31 December 2016, provided the SRM is handled and stored in accordance with the instructions given in this certificate (see "Storage and Handling" and "Instructions for Use"). The certification is nullified if the SRM is damaged, contaminated, otherwise modified.

Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Registration (see attached sheet or register online) will facilitate notification.

Storage and Handling: When not in use, SRM 1921a should be kept in its accompanying protective cover. For storage, it is advisable to keep the SRM in a desiccator cabinet. The SRM should always be handled with care; the exposed film surface should never be touched by fingers or any other objects. Dust may be removed by blowing with clean, dry air.

Overall direction and coordination of the technical measurements leading to certification were performed under the supervision of R.V. Datla and L.M. Hanssen of NIST Sensor Science Division.

Technical measurements leading to certification were performed by C. Zhu and L.M. Hanssen of NIST.

Statistical consultation was provided by J.J. Filliben of the NIST Statistical Engineering Division.

Support aspects involved in issuance of this SRM were coordinated through the NIST Office of Reference Materials.

Gerald T. Fraser, Chief Sensor Science Division

Gaithersburg, MD 20899
Certificate Issue Date: 31 July 2014
Certificate Revision History on Last Page

Robert L. Watters, Jr., Director Office of Reference Materials

SRM 1921a Page 1 of 7

Source of Material: The polystyrene film used for SRM 192la was taken from a single roll. It was manufactured by the Dow Chemical Company and donated by the Coblentz Society.

Measurement Conditions: The calibration measurements were made using a Bomem DA- $3.02^{(1)}$ Fourier transform spectrophotometer. The instrument room temperature was maintained at $22 \,^{\circ}\text{C} \pm 1 \,^{\circ}\text{C}$ and the humidity ranged from $30 \,^{\circ}$ to $50 \,^{\circ}$ during the measurements. Calibration measurements were made under vacuum level pressures of $50 \,^{\circ}\text{Pa}$ (0.4 Torr), as well as under a purge gas of clean air (with CO_2 and H_2O removed). Details of the measurement methodology can be found in reference 3.

INSTRUCTIONS FOR USE

Calibration Measurements: Prior to calibration with SRM 1921a, the spectrophotometer should be set up under the following conditions:

- Step 1. Set the instrumental resolution to any value up to 2 cm⁻¹. A resolution of 4 cm⁻¹ can be used with Fourier transform spectrophotometers provided that Boxcar or no apodization is used in the Fourier transform processing [4,5]. Within these constraints, the most appropriate resolution for calibration is the one that is used for typical sample measurements.
- Step 2. Set the source aperture to provide sufficient signal for measurement, yet not greater than that required to maintain measurement resolution. The setting should not be so large that the wavenumber shift error becomes significant [6] or the detector becomes significantly non-linear [7,8].
- Step 3. Close and purge or evacuate the sample chamber for a time suitable for the instrument to reach pressure and temperature equilibrium.
- Step 4. Obtain at least six transmittance spectra of SRM 1921a for statistical evaluation.
- Step 5. Analyze the resulting spectra for band locations as described in the next section.
- Step 6. When appropriate, apply the results to correct the spectrometers wavelength/wavenumber scale as described in the last section.

Steps 3 to 5 should be repeated in sequence at least six times. The resulting transmittance spectra should be analyzed for band locations as described below.

Band Wavenumber and Wavelength Determination: Two methods have been used to obtain calibrated band locations: a centroid method with band fraction of 0.5 and a band minimum determination method. Both methods have been applied to spectra in wavenumbers. Wavelength values can be obtained from the wavenumber values through the relationship $\lambda v = 1$, where λ is the wavelength in cm. The user can select either Tables 1 and 2 if they apply the centroid (with band fraction of 0.5) method, or Tables 3 and 4 if they apply any method designed to obtain the band minimum.

Centroid Method

The original method used to determine the band wavenumber (ν) and wavelength (λ) values of SRM 1921a is the centroid (also known as the center of gravity) method [9,10]. This procedure is performed on the transmittance spectra using wavenumber values only. The wavenumber value is defined as the number of waves per unit length (cm). Refer to Figure 2 when using the following band determination procedure.

First, the bounds of an initial wavenumber range (v_{min} to v_{max}) enclosing the band are determined; they are the wavenumber values at which transmittance relative maxima occur on either side of the band. Next, the differences between the transmittance values at each bound and the transmittance at the band minimum,

$$\Delta T(\nu_{max}) \ = \ [T(\nu_{max}) \ - \ T(\nu_{band\ min})] \ and \ \Delta T(\nu_{min}) \ = \ [T(\nu_{min}) \ - \ T(\nu_{band\ min})],$$

are determined. Then half the value of the smaller of $\Delta T(\nu_{max})$ and $\Delta T(\nu_{min})$, $\Delta T_0/2$ is determined. The wavenumber range (ν_1 to ν_2) to be used in the centroid calculation is that between the wavenumber values where the transmittance values on either side of the band equal the minimum transmittance value plus $\Delta T_0/2$,

$$v_{1,2} = v, \ni T = T_{1/2} \equiv T(v_{band min}) + \Delta T_0 / 2$$

SRM 1921a Page 2 of 7

⁽¹⁾ Certain commercial equipment, instruments or materials are identified in this certificate to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

The specific data end points of the spectrum, $h = v_1$ and $k = v_2$ are selected so that $T_h \ge T_{1/2} > T_{h+1}$ and $T_{k-1} < T_{1/2} < T_k$ for adjacent points. The centroid equation for finite sums (below) effectively averages data at the ends, v_1 and v_2 , to reduce the error due to the finite data spacing. The formula used is

$$v_{Cen} = v_k + \Delta v \left\{ \frac{\sum_{i=h-1}^{k} (i-k + \frac{1}{2}) \left[\frac{(T_i + T_{i+1})}{2} - T_{1/2} \right]}{\sum_{i=h-1}^{k} \left[\frac{(T_i + T_{i+1})}{2} - T_{1/2} \right]} \right\}$$

where Δv is the frequency spacing.

Band Minimum Determination Method

A recently developed method was designed and applied to accurately determine the band minimum (or maximum) value to obtain calibration values for SRM 1921a. This method is called the *extrapolated centroid method* [11,12]. It entails the calculation of centroid values for a set of fractions (approaching zero fraction) of the band and extrapolating a curve fit through the set of values to a value for zero fraction that corresponds to the band minimum (or maximum). Results of any method designed to find the band minimum should produce essentially the same result and hence be directly comparable [5,13].

Correction for Air/Nitrogen Purge: The NIST certification measurements were performed in vacuum. Hence, the wavelength values reported in Table 1 are vacuum values where the index of refraction, n, equals one. For instruments that operate under vacuum, calibration measurements of SRM 192la can be directly compared to values in Table 1. Also, for instruments that give vacuum wavenumber and wavelength values (such as Fourier transform infrared (FTIR) spectrometers which use helium-neon lasers for determination of the wavenumber scale) even when operated under air or purge gas, no corrections are necessary.

In all other cases when measurements of SRM 1921a are made under air, nitrogen, or other purge gas, the wavenumber and wavelength values need to be adjusted for the index of refraction of the gas ($n = 1.000\ 26$ for dry nitrogen gas at atmospheric pressure and $T = 298\ K$) [14,15]. Thus, for nitrogen purge, the measured wavenumber values should be divided by 1.000 26, and the wavelength values should be multiplied by 1.000 26 to compare to the certified values in Table 1.

Corrections to Instrument Wavenumber Scale: The resulting N ($N \ge 6$) values for each peak at wavenumber, v, should be averaged to obtain a single *band wavenumber value* (laboratory mean, \bar{y}_v), and the standard deviation of the values, s_v , should be calculated. In order to determine whether the laboratory measurements are biased relative to SRM 1921a, calculate the difference, δ_v , between the laboratory mean, \bar{y}_v , and the certified value, C_v , as follows:

$$\delta_{v} = \overline{\mathbf{v}}_{v} - C_{v}$$

A practical limit for evaluating consistency with the certified value is:

$$\delta_{\rm c} = (t_{N-1} \cdot 0.95) \, {\rm s_v} / \sqrt{N} + U$$

where t_{N-1} 0.95 is the critical value from the student's distribution with N-1 degrees of freedom for a two-sided 95 % confidence interval [16] and U [1,2] is the uncertainty from Table 2. For example, if N=6, then t_5 0.95 = 2.571. If $\delta_{\rm V} > |\delta_{\rm c}|$, then the difference is greater than can be explained by chance, and the wavenumber scale of the instrument should be corrected to the SRM. If this is the case, generally a linear least squares fit of $\delta_{\rm V}$ to $\rm V$ for the 13 peaks should provide a sufficient correction to the spectrophotometer scale. However, if $\delta_{\rm V} \le |\delta_{\rm c}|$, the wavenumber scale of the spectrophotometer is considered to be accurate and correction is not advised.

SRM 1921a Page 3 of 7

Table 1. Certified Band Centroid Wavelength Values (in Vacuum)

Expanded Uncertainty, U
(μm)
0.1119
0.0172
0.0012
0.0019
0.0073
0.0006
0.0007
0.0003
0.00009
0.00011
0.00008
0.00007
0.00008

Table 2. Certified Band Centroid Wavenumber Values (in Vacuum)

Band Wavenumber (cm ⁻¹)	Expanded Uncertainty, U (cm ⁻¹)
544.61	3.32
842.09	1.22
906.85	0.10
1028.34	0.21
1069.20	0.84
1154.62	0.08
1583.07	0.18
1601.37	0.08
2850.14	0.07
3001.41	0.10
3026.38	0.07
3060.03	0.06
3082.14	0.08

SRM 1921a Page 4 of 7

Table 3. Certified Band Minimum Wavelength Values (in Vacuum)

Band Wavelength	Expanded Uncertainty, U
(µm)	(µm)
18.5182	0.0596
11.8797	0.0090
11.0291	0.0030
9.7256	0.0044
9.3543	0.0105
8.6617	0.0009
6.3170	0.0008
6.2449	0.0003
3.50946	0.00011
3.33194	0.00033
3.30477	0.00020
3.26794	0.00019
3.24438	0.00023

Table 4. Certified Band Minimum Wavenumber Values (in Vacuum)

Band Wavenumber	Expanded Uncertainty, U
(cm ⁻¹)	(cm ⁻¹)
540.01	1.74
841.77	0.64
906.69	0.24
1028.21	0.47
1069.03	1.20
1154.51	0.11
1583.03	0.19
1601.31	0.06
2849.44	0.09
3001.25	0.30
3025.93	0.18
3060.03	0.18
3082.25	0.22

SRM 1921a Page 5 of 7

Figure 1. Spectrum of polystyrene film showing locations of certified absorption bands.

Figure 2. Diagram indicating parameters used in the band wavenumber determination method (see text for details).

SRM 1921a Page 6 of 7

REFERENCES

- [1] JCGM 100:2008; Evaluation of Measurement Data Guide to the Expression of in Measurement (GUM 1995 with Minor Corrections); Joint Committee for Guides in Metrology (2008); available at http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed Jul 2014); see also Taylor, B.N.; Kuyatt, C.E.; Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical Note 1297; U.S. Government Printing Office: Washington, DC (1994); available at http://www.nist.gov/physlab/pubs/index.cfm (accessed Jul 2014).
- [2] Taylor, B.N.; Kuyatt, C.E.; Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Tech. Note 1297, U.S. Government Printing Office: Washington, DC (1994).
- [3] Gupta, D.; Wang, L.; Hanssen, L.M.; Hsia, J.J.; Datla, R.V.; Standard Reference Materials: Polystyrene Films for Calibrating the Wavelength Scale of Infrared Spectrophotometers SRM 1921; NIST Special Publication, pp. 260–122 (1995).
- [4] Zhu, C.; Hanssen, L.M.; Comparison and Development of Absorption Peak Determination Algorithms for Wavelength Standards; Proc. SPIE, Vol. 4103, pp. 62–68 (2000).
- [5] Hanssen, L.; Zhu, C.; Methods for Evaluation of Transmittance Minima in Wavenumber Standards Spectra: A Comparison and Analysis; J. Vibrational Spec. (2002).
- [6] Griffiths, P.R.; DeHaseth, J.A.; Fourier Transform Infrared Spectrometry; Chapter 1, p. 34, John Wiley & Sons: New York (1986).
- [7] ASTM E 1421-91; Standard Practice for Describing and Measuring Performance of Fourier Transform Infrared FT-IR Spectrometers: Level Zero and Level One Tests; Annu. Book of ASTM Standards, Vol. 14.01 (1991).
- [8] Hirschfeld, T.; Fourier Transform Infrared Spectroscopy; Chapter 6, Ferraro, J.R.; Basile, L.J.; Eds., Applications to Chemical Systems, Vol. 2, Academic Press, New York (1979).
- [9] Cameron, D.G.; Kauppienen, J.K.; Moffatt, D.J.; Mantsch, H.H.; Appl. Spectrosc., Vol. 36, p. 245 (1982).
- [10] Griffiths, P.R.; DeHaseth, J.A.; Fourier Transform Infrared Spectrometry; Chapter 6, p. 235, John Wiley & Sons: New York (1986).
- [11] Zhu, C.J.; Hanssen, L.M.; Studies of a Polystyrene Standard Reference Material (SRM 1921), in Fourier Transform Spectroscopy: 11th International Conference; J. A. de Haseth, Ed., pp. 415–418, The American Institute of Physics, New York (1998).
- [12] Zhu, C.J.; Hanssen, L.M.; Absorption Line Evaluation Methods for Wavelength Standards; Proc. SPIE Vol. 3425, pp. 111–118 (1998).
- [13] Hanssen, L.M.; Zhu, C.; *Wavenumber Standards for Mid-Infrared Spectrometry*; Handbook of Vibrational Spectroscopy, Chalmers, J.M.; Griffiths, P.R.; Eds, John Wiley & Sons Ltd.: Vol. 1, pp. 881–890 (2002).
- [14] Edlen, B.; The Refractive Index of Air; Metrologia, Vol. 2, p. 12 (1966).
- [15] Smith, F.G., Ed.; *Atmospheric Propagation of Radiation*; Chapter 1, p. 88, SPIE Optical Engineering Press: Bellingham, Washington (1966).
- [16] Becker, D. et. al.; Use of NIST Standard Reference Materials for Decisions of Performance of Analytical Chemical Methods and Laboratories; NIST Special Publication 829 (1992).

Certificate Revision History: 31 July 2014 (Extension of certification period; editorial changes); 09 November 2006 (Update of expiration date and editorial changes); 15 June 2004 (This revision adds a date for NIST Spec. Publ. 260-122); 19 December 2002 (Update of expiration date and additional certification values, measurement information, and instructions for use); 24 March 1998 (Original certificate date).

Users of this SRM should ensure that the certificate in their possession is current. This can be accomplished by contacting the SRM Program at: telephone (301) 975-6776; fax (301) 926-4751; e-mail srminfo@nist.gov; or via the Internet http://www.nist.gov/srm.

SRM 1921a Page 7 of 7