The Spread of epidemics

Author: Marcin Jędrzejczyk

Supervisor: Dr hab. inż. Jarosław Wąs

Epidemic

"A widespread occurrence of an infectious disease in a community at a particular time."[Oxford Dictionary Online]

Examples:

- 1346-1353 -,,Black death"(bubonic plague) in Europe
- 1918-1919 "Spanish Flu"

World War 1 casualities -22 - 24 million

Spanish Flu casualities -40-50 million (current estimates say 50-100 million)

Reasons for epidemics simulations

- To better understand how epidemic behave in time
- To predict how quickly it spreads depending on many factors (recovery rate, vaccination rate, virulence of epidemic, movement factor)
- To picture how vaccination affect disease spreading and confirms that herd immunity is important

Models

- SIR
- SIS
- SEIR
- SEIRS

- S suspectible
- I infected
- R recovered
- \bullet E exposed

$$I_{ij}^{t} = (1 - \epsilon) \cdot I_{ij}^{t-1} + v \cdot S_{ij}^{t-1} \cdot I_{ij}^{t-1} + S_{ij}^{t-1} \cdot \sum_{\alpha, \beta \in V^*} \frac{N_{i+\alpha, j+\beta}}{N_{ij}} \cdot \mu_{\alpha\beta}^{i,j} \cdot I_{i+\alpha, j+\beta}^{t-1}$$

$$S_{ij}^{t} = S_{ij}^{t-1} - \omega \cdot S_{ij}^{t-1} - v \cdot S_{ij}^{t-1} \cdot I_{ij}^{t-1} - S_{ij}^{t-1} \cdot \sum_{\alpha,\beta \in V^*} \frac{N_{i+\alpha,j+\beta}}{N_{ij}} \cdot \mu_{\alpha\beta}^{i,j} \cdot I_{i+\alpha,j+\beta}^{t-1}$$

$$R_{ij}^{t} = R_{ij}^{t-1} + \epsilon \cdot I_{ij}^{t-1} + \omega \cdot S_{ij}^{t-1}$$

where:

$$\mu_{\alpha\beta}^{(i,j)} = c_{\alpha\beta}^{(i,j)} \cdot m_{\alpha\beta}^{(i,j)} \cdot v$$

Program

New cell parameters:

connection factor

cell population

movement factor

Generate chart

0,5 1,1 1,7 2,3 2,9 3,5 4,1 4,7

New cell parameters:

connection factor

0.6

cell population

100

movement factor

0.6

THANK YOU FOR YOUR ATTENTION