Содержание

1. Базис векторного пространства. Четыре эквивалентных пе-	
реформулировки определения базиса	
2. Конечномерные пространства. Всякое линейно независимое	
семейство	
конечномерного пространства можно дополнить до бази-	
са. Существование базиса конечномерного пространства.	
3. Всякое семейство образующих конечномерного пространства	
содержит базис. Существование базиса конечномерного	
пространства	(
4. Подпространства векторного пространства. Подпространство	
конечномерного пространства конечномерно	7
5. Теорема о мощности базиса конечномерного пространства.	
Размерность пространства	8
6. Координаты вектора в данном базисе. Матрица перехода	
от одного базиса к другомую. Преобразование координат	
при замене базиса. Матрица преобразования координат	(
7. Сумма и пересечение подпространств. Теорема о размерно-	
стях суммы и	
пересечения	11
8. Прямая сумма подпространств. Эквивалентные переформу-	
лировки понятия прямой суммый подпротранств	13
9. Построение кольца многочленов	15
10. Степень многочлена. Свойства степени. Область целостно-	
сти.	
Кольцо многочленов над областью целостности есть об-	
ласть целостности	17
11. Теорема о делении с остатком в кольце многочленов	19
12. Корни многочлена. Теорема Безу	20
13. Кратные корни многочлена. Теорема о числе корней мно-	
гочлена над полем	22
14. Функциональное и формальное равенство многочленов	24
15. Характеристика поля	25
16. Производная многочлена. Свойства производной. Много-	
члены с нулевой производной	26
17. Теорема о кратности	28
18. Интерполяционная задача. Существование и единственность	
решения	29
19. Интерполяционный метод Ньютона.	30
20. Интерполяционный метод Лагранжа	31

21.	Делимость и ассоциированность в кольце многочленов над	20
00	полем.	32
22.	Наибольший общий делитель в кольце многочленов над по-	
	лем.	20
00	Существование и линейное представление	33
23.	Взаимно простые многочлены. Свойства взаимно простых	
	многочленов. Если многочлен делит произведение двух	
	многочленов и взаимно прост с первым сомножителем,	~~
0.4	то он делит второй сомножитель.	35
24.	Неприводимые многочлены. Теорме о разложении много-	
	члена в произведение неприводимых (существование)	36
25.	Теорема о разложении многочлена в произведение непри-	
	водимых	
	(единственность).	38
26.	Алгебраически замкнутые поля. Эквивалентные перефор-	
	мулировки.	
	Алегбраическая замкнутость поля комплексных чисел. (б.д.)	39
27.	Үеприводимые многочлены над полем вещественных чи-	
	сел. Теорема о разложении многочлена с вещественными	
	коэффициентами в произведение неприводимых над \mathbb{R}	40
28.	Поле частных области целостности. Поле частных кольца	
	многочленов	
	(поле рациональных функций).	41
29.	Простейшие дроби. Разложение рациональной функции в	
	сумму многочлена и простейших дробей. (существование).	43
30.	Разложение рациональной функции в сумму многочлена и	
	простейших	
	дробей. (единственность)	46
31.	Факториальные кольца. Содержание многочлена над фак-	
	ториальным	
	кольцом. Содержание произведения многочленов	47
32.	Теорема Гаусса о факториальности кольца многочленов над	
	факториальным кольцом. Факториальность колец $K[x_1,, x_n]$	$[n], \mathbb{Z}[x_1, x_n]$
33.	Неприводимость над $\mathbb Q$ и над $\mathbb Z$. Методы доказательства	
	неприводимости многочленов с целыми коэффициентами	
	(редукция по одному или нескольким простым модулям).	50
34.	Критерий неприводимости Эйзенштейна	51
39.	Линейные отображения векторных пространств. Линейное	
	отображение	
	полностью задается своими значениями на базисных век-	
	торах	52

40. Сумма линейных отображений, умножение на скаляр. Про- странство линейных отображений	53
41. Матрица линейного отображения для данных базисов. Матрица суммы отображений. Изоморфизм пространства линейных отображений и	54
пространства матриц	55 55
43. Преобразование матрицы линейного отображения при за- мене базисов	56
44. Ядро и образ линейного отображения, их свойства. Критерий инъективности и сюръективности линейного отобра-	00
жения в терминах ядра и образа	57
45. Выбор базисов, для которых матрица линейного отображения имеет почти единичный вид. Следствие для матриц.	
Теорема о размерности ядра и образа.	58
46. Критерий изоморфности конечномерных пространств	59
47. Двойственное пространство. Двойственный базис. Изоморф- ность конечномерного пространства и его двойственного. Пример пространства не изоморфного своему двойствен-	
HOMY	61
49. Линейные операторы. Кольцо линейных операторов. Изо- морфность кольца линейных операторов и кольца матриц.	62
50. Многочлены от оператора. Коммутирование многочленов от одного оператора	63
51. Характеристический многочлен матрицы и оператора. Независимость характеристического многочлена оператора от	64
выбора базиса	04
Собственные числа как корни характеристического мно-	
гочлена	65
53. Теорема Гамильтона-Кэли	67
 Диагонализируемые операторы. Критерий диагонализиру- емости. 	
Примеры недиагонализируемых операторов	68
к случаю оператора с единственным собственным числом.	70
1. Базис векторного пространства. Четыре эквивалентных переформулир ки определения базиса.	OB-

Опр

V - в.п. над полем K

$$\{v_{\alpha}\}_{\alpha\in A}$$
 - лин. незав., если

$$0 = \sum c_{\alpha} v_{\alpha} \Rightarrow \text{ BCE } c_{\alpha} = 0$$

Опр

$$\{v_{\alpha}\}_{\alpha\in A}$$
 - сем-во образующих, если

$$\forall v \in V \quad v = \sum c_{\alpha} v_{\alpha}$$

Опр

Базис - лин. незав. сем-во образующих ($\overline{0} \not\in$ базису)

Опр

лин. независ. сем-во назыв. максимальным по включению, если при добавлении \forall нового вектора сем-во явл-ся $\Pi 3$

Опр

Сем-во образующих назыв. минимальным по включению, если при выбрасывании \forall вектора сем-во не является сем-вом образующих

Теорема (Равносильные утверждения)

1.

$$\{v_{\alpha}\}$$
 - базис V над полем К

2.

$$\{v_{\alpha}\}$$
 - макс. ЛНЗ сем-во

3.

$$\{v_{\alpha}\}$$
 - мин. семейство образующих

4. $\forall v \in V$ единственным образом представим в виде лин. комбинации векторов из $\{v_{\alpha}\}$

2. Конечномерные пространства. Всякое линейно независимое семейство конечномерного пространства можно дополнить до базиса. Существование базиса конечномерного пространства.

Опр

V - в.п. над полем $K,\ V$ называется конечномерным, если в V есть конечное сем-во образующих.

Теорема

Всякое линейно независимое сем-во конечномерного пространства можно дополнить до базиса.

Следствие

Во всяком конечномерном в.п. есть базис.

Док-во

Пустое сем-во ЛН Дополним до базиса

3. Всякое семейство образующих конечномерного пространства содержит базис. Существование базиса конечномерного пространства.

Теорема

V - конечномерное в.п. над K Всякое сем-во образующих содержит базис.

Док-во

$$\{u_1,...,u_k\}$$
 - сем-во если $\{u_1,...,u_k\}$ - ЛНЗ, то это базис иначе $\exists i:v_i$ - лин. комб. остальных $\Rightarrow \{u_1,...,u_{i-1},u_{i+1},...,u_k\}$ - сем-во образующих сем-во конечно \Rightarrow процесс оборвется \Rightarrow \Rightarrow получим ЛНЗ подсемейство, явл. образующим

Теорема

Во всяком конечномерном в.п. есть базис

Док-во

Пустое сем-во ЛНЗ Дополним до базиса 4. Подпространства векторного пространства. Подпространство конечномерного пространства конечномерно.

Опр

$$V$$
 - в.п над полем K
$$\varnothing \neq U \subseteq V \quad U$$
 - подпр-во V, если
$$U$$
 - само явл. в.п. над K

Предположение (1)

$$\varnothing \neq U \subseteq V \quad U$$
 - подпр-во $V \Leftrightarrow$

1.

$$\forall u_1, u_2 \in U \quad u_1 + u_2 \in U$$

2.

$$\forall u \in U \ \forall a \in K \quad au \in K$$

(Операции, которые должны быть определены в векторном пр-ве)

- \Rightarrow раз U в.п. над полем K, эти операции определены
- \leftarrow Операции определены, но в.п ли это? Надо проверить аксиомы в.п (комм., ассоц. сложения, $\exists \overline{0}$, обратного отно-но сложения, ассоц. умножения, $\exists 1$, две дистрибутивности)

Предположение (2)

$$V$$
 - конечномерное в.п над K

$$U \subseteq V \Rightarrow U$$
 - конечномерное

Док-во

$$\{ \} \subseteq U$$

Будем добавлять к этом сем-ву вектора с сохранением условия ЛН до тех пор, пока не получим семейство образующих U

В V есть конечное сем-во образующих

 $U\subseteq V$ не может быть больше, чем векторов в сем-ве образующих $V\Rightarrow$ процесс оборвется, и мы найдем конечный базис

5. Теорема о мощности базиса конечномерного пространства. Размерность пространства.

Теорема

V - конечномерное пространство

$$\{v_1,...,v_n\},\{u_1,...,u_m\}$$
 - базисы V над K $\Rightarrow n=m$

Док-во

$$u_1,...,u_m$$
 - лин.комб $v_1,...,v_n$ по т. о линейной зависимости лин. комбинаций $m\leqslant n$ и обратно $m\geqslant n\Rightarrow m=n$

Опр

Размерность конечномерного в.п - кол-во векторов в базисе

dimV

Если V не конечномерно, $dimV=\infty$

6. Координаты вектора в данном базисе. Матрица перехода от одного базиса к другомую. Преобразование координат при замене базиса. Матрица преобразования координат.

Опр

$$V$$
 - в.п. над полем K $n=dim V<\infty$ $v_1,...,v_n$ - базис V над K $v\in V$ \exists единственный набор $\alpha_1,...,\alpha_n\in K$ $v=\alpha_1v_1+...+\alpha_nv_n$ $\begin{pmatrix} \alpha_1\\ \vdots\\ \alpha_n \end{pmatrix}$ $\alpha_i \forall i$ - координаты вектора v в базисе $\{v_1,...,v_n\}$ $v=(\alpha_1,...,\alpha_n)$ $\begin{pmatrix} v_1\\ \vdots\\ v_n \end{pmatrix}$ Пусть $v_1,...,v_n$ - базис V $v'_1,...,v'_n$ - другой базис V $v'_i=c_{1i}v_1+...+c_{ni}v_n$ $c=\begin{pmatrix} c_{11}&c_{21}&...&c_{n1}\\ c_{12}&\ddots&&&\\ c_{1n}&c_{2n} \end{pmatrix}$ - матрица перехода от базиса $\begin{pmatrix} v'_1\\ \vdots\\ v'_n \end{pmatrix}=C\begin{pmatrix} v_1\\ \vdots\\ v_n \end{pmatrix}$ $\begin{pmatrix} v'_1\\ \vdots\\ v_n \end{pmatrix}=B\begin{pmatrix} v'_1\\ \vdots\\ v'_n \end{pmatrix}$ $v_i=b_{1i}v'_1+...b_{ni}v'_n$ $v_i=b_{1i}v'_1+...b_{ni}v'_n$ - матрица перехода от базиса $(v'_1,...,v'_n)$ $v_i=b_{1i}v'_1+...b_{ni}v'_n$ - матрица перехода от базиса $v'_1,...,v'_n$ - матрица перехода от базиса $v'_1,...,v'_n$

к базису
$$(v_1,...,v_n)$$
 $v=a_1v_1+...+a_nv_n$ $v=a_1'v_1'+...+a_n'v_n'$ C - матрица перехода от $(v_1,...,v_n)$ к $(v_1',...,v_n')$

$$C^T=egin{pmatrix} c_{11}&c_{1i}&&c_{1n}\\ &\ddots&&\\ &c_{n1}&&\ddots&c_{nn} \end{pmatrix}=D$$
 - матрица преобразования координат

Теорема (В указанных выше обозначениях)

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = D \begin{pmatrix} a_1' \\ \vdots \\ a_n' \end{pmatrix}$$

Док-во

$$v = (a'_1, ..., a'_n) \begin{pmatrix} v'_1 \\ \vdots \\ v'_n \end{pmatrix} = (a'_1, ..., a'_n) \cdot C \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$v = (a_1, ..., a_n) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

В силу единственности разложения по базису

$$(a_1, ..., a_n) = (a'_1, ..., a'_n) \cdot C$$

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = C^T \begin{pmatrix} a_1' \\ \vdots \\ a_n' \end{pmatrix}$$

7. Сумма и пересечение подпространств. Теорема о размерностях суммы и пересечения.

Теорема

1. Сумма является подпространством

$$\begin{array}{l} U_1 + \ldots + U_m \\ \\ 0 = 0 + \ldots + 0 \in U_1 + \ldots + U_m \Rightarrow \text{ cymma } \neq \varnothing \\ \\ \forall u, v \in U_1 + \ldots + U_m \\ \\ u = u_1 + u_2 + \ldots + u_m \\ \\ v = v_1 + v_2 + \ldots + v_m \\ \\ u + v = (u_1 + v_1) + (u_2 + v_2) + \ldots + (u_m + v_m) \in U_1 + \ldots + U_m \\ \\ \in U_1 \end{array}$$

умножение на скаляр аналогично

2. Пересечение является подпространством

$$\bigcap_{i=1}^{n} U_{i} \quad \ni u, v \quad a \in K$$

$$u + v \in U_{i} \qquad u + v \in \bigcap_{i=1}^{n} U_{i}$$

$$\forall i \quad u, v \in U_{i} \qquad au \in \bigcap_{i=1}^{n} U_{i}$$

$$au \in U_{i} \qquad au \in \bigcap_{i=1}^{n} U_{i}$$

не пусто, т.к.

$$0 \in \bigcap_{i=1}^{n} U_{i} \Rightarrow \bigcap_{i=1}^{n} U_{i} \subseteq V$$

$$\bigcap_{i=1}^{n} U_{i} \subseteq U_{1} \subseteq U_{1} + U_{2} \supseteq U_{2} \supset \bigcap_{i=1}^{n} U_{i}$$

Теорема

$$U_1,U_2\subseteq V$$
 U_1,U_2 - конечномерные
Тогда $U_1\cap U_2$ и U_1+U_2 - конечномерны
и $\dim(U_1\cap U_2)+\dim(U_1+U_2)=\dim(U_1)+\dim(U_2)$

Док-во

$$U_1\cap U_2\subseteq U_1$$
 - конечномерно
$$\Rightarrow U_1\cap U_2$$
 - конечномерно $w_1,...,w_r$ - базис $U_1\cap U_2$, ЛНЗ сем-во в U_1 Дополним до базиса U_1 $w_1,...,w_r,u_1,...,u_s$ - базис U_1 Аналогично $w_1,...,w_r$ дополним до базиса U_2 $w_1,...,w_r,v_1,...,v_t$ - базис U_2 Проверим, что $w_1,...,w_r,u_1,...,u_s,v_1,...,v_t$ - базис U_1+U_2

1. Семейство образующих

$$z \in U_1 + U_2 \quad z = z_1 + z_2 \qquad z_1 \in U_1 \ z_2 \in U_2$$

$$z_1 = a_1 w_1 + \ldots + a_r w_r + b_1 u_1 + \ldots + b_s u_s$$

$$z_2 = c_1 w_1 + \ldots + c_r w_r + d_1 v_1 + \ldots + d_t v_t$$

$$z = (a_1 + c_1) w_1 + \ldots + (a_r + c_r) w_r + b_1 u_1 + \ldots + b_s u_s + d_1 v_1 + \ldots + d_t v_t$$

$$\Rightarrow w_1, \ldots, w_r, u_1, \ldots, u_s, v_1, \ldots, v_t \text{ - сем-во образующих}$$

2. ЛНЗ

$$(*)0 = a_1w_1 + \dots + a_rw_r + b_1u_1 + \dots + b_su_s + c_1v_1 + \dots + c_tv_t$$

$$z = \underbrace{a_1w_1 + \dots + a_2w_2 + b_1u_1 + \dots + b_su_s}_{\in U_1} = \underbrace{-c_1v_1 - \dots - c_tv_t}_{\in U_2}$$

$$z \in U_1 \cap U_2 \Rightarrow z = d_1w_1 + \dots + d_rw_r =$$

$$= d_1w_1 + \dots + d_2w_2 + 0 \cdot u_1 + 0 \cdot u_2 + \dots + 0 \cdot U_s$$

В силу единственности разложения по базису U_1

$$b_1=b_2=...=b_s=0$$
 Из $(*)\Rightarrow a_1w_1+...+a_2w_r+c_1v_1+...+c_tv_t=0$ т.к. $w_1,...,w_r,v_1,...,v_t$ - базис U_2 , то
$$a_1=...=a_r=c_1=...=c_t=0$$
 $\Rightarrow w_1,...,w_r,u_1,...,u_s,v_1,...,v_t$ - ЛНЗ

8. Прямая сумма подпространств. Эквивалентные переформулировки понятия прямой суммый подпротранств.

Опр

$$V$$
 - в.п. над K
$$U_1,...,U_m\subseteq V$$

$$U_1+...+U_m$$
 назыв. прямой суммой, если любой $z\in U_1+...+U_m$ едиственным образом представим в виде суммы
$$z=u_1+u_2+...+u_m \qquad u_i\in U_i \quad i=1,...,m$$
 Обозначение: $U_1\bigoplus U_2\bigoplus ...\bigoplus U_m$

Замечание

Сумма
$$U_1+\ldots+U_m$$
 - прямая \Leftrightarrow
$$\Leftrightarrow 0=u_1+\ldots+u_m \quad u_i\in U_i$$

$$\Rightarrow u_1=\ldots=u_m=0$$

Док-во

$$\leftarrow z \in U_1 + ... + U_m$$

$$z = u_1 + ... + u_m$$

$$z = v_1 + ... + v_m$$

$$0 = z - z = (u_1 - v_1) + ... + (u_m - v_m)$$

$$\forall i \quad u_i - v_i = 0 \text{ T.e. } u_i = v_i$$

Предположение (1)

⇒ очевидно

Сумма
$$U_1 + U_2$$
 - прямая $\Leftrightarrow U_1 \cap U_2 = \{0\}$

Предположение (2)

Сумма $U_1 + U_2$ - прямая \Leftrightarrow объединение базисов U_1 и U_2 - есть базис $U_1 + U_2$

Предположение (3)

$$U_1+\ldots+U_m$$
- прямая
$$\Leftrightarrow$$

$$\Leftrightarrow \forall i=1,\ldots,m \quad U_i\cap (U_i+\ldots+U_{i-1}+U_{i+1}+\ldots+U_m)=\{0\}$$

Предположение (4)

Сумма
$$U_1 + ... + U_m$$
 - прямая \Leftrightarrow

 \Leftrightarrow объединение базисов $U_i \quad i=1,...,m$ - базис $U_1+...+U_m$

9. Построение кольца многочленов.

Опр

$$R$$
 - комм. Кольцо с 1
$$R[x] = \{(a_0, a_1, a_2...) : a_i \in R \quad i = 0, ... \text{ п.в } a_i = 0\}$$
 $(a_0, a_1, ...), \ (b_0, b_1, ...) \in R[x]$ $(a_0, a_1, ...) + (b_0, b_1, ...) = (a_0 + b_0, \ a_1 + b_1, ...)$ $\forall n > N \quad a_i = 0$ $\forall m > M \quad b_i = 0 \Rightarrow \forall i > \max(N, M) \quad a_i + b_i = 0$ $(a_0, a_1, ...) \cdot (b_0, b_1, ...) = (c_0, c_1, ...)$ $c_n = \sum_{i=0}^n a_i b_{n-i} = a_0 b_n + a_1 b_{n-1} + ... + a_n b_0$ $\forall n > N \quad a_n = 0$ $\forall m > M \quad b_m = 0$ $\forall k > N + M \quad c_k = \sum_{i=0}^k a_i b_{k-i} = \sum_{i=0}^N a_i b_{k-i} + \sum_{i=N+1}^k a_i b_{k-i} = 0$ $i \leqslant N \quad k-i \geqslant k-N > N+M-N=M$

Теорема

$$(R[x], +, \cdot)$$
 — комм. кольцо с 1

Опр

$$0=(0,0,\ldots)$$

$$1=(1,0,\ldots)$$

$$R[x]\supset\{(a,0,\ldots);\ a\in R\}\text{ - подкольцо изоморфное R}$$

$$(a,0,\ldots)+(b,0,\ldots)=(a+b,0,\ldots)$$

$$(a,0,\ldots)\cdot(b,0,\ldots)=(ab,0,\ldots)$$

Опр

$$(a,0,\ldots)=a \ (\text{обозначениe})$$

$$x=(0,1,0,\ldots)$$

$$x^i=(0,\ldots,0,\frac{1}{i},0,\ldots)$$

$$(a_0,a_1,\ldots,a_n,0,\ldots)=(a_0,0,\ldots)+(0,a_1,0,\ldots)+\ldots+(0,\ldots,a_n,0,\ldots)=$$

$$=a_0\cdot 1+a_1(0,1,\ldots)+\ldots+a_n(0,\ldots,1,\ldots)=$$

$$=a_0+a_1x+a_2x^2+\ldots+a_nx^n=\sum_{i=0}^n a_ix^i$$

10. Степень многочлена. Свойства степени. Область целостности. Кольцо многочленов над областью целостности есть область целостности.

Опр

$$f=a_0+a_1x+...+a_nx^n\in R[x]$$
 наиб. m, т.ч. $a_m \neq 0$ назыв. степенью f $\deg f-degree$
$$\deg 0=-\infty$$

Опр

ком. кольцо R с 1 назыв. областью целостности (или кольцом без делителей 0)

Если
$$\forall a,b \in R \quad (ab=0 \Rightarrow a=0 \text{ или } b=0)$$
 $\forall a,b \in R \ (a \neq 0 \quad b \neq 0 \Rightarrow ab \neq 0)$

$$\mathbb{Z}$$
 - о.ц. любое поле - о.ц $\mathbb{Z}_{/m}\mathbb{Z}$ - не о.ц. $[a][b]=[m]=[0]$

Теорема (Свойства степени)

1.

$$\deg(f+g)\leqslant \max(\deg f,\deg g)$$

Если $\deg f\neq g$, то $\deg(f,g)=\max(\deg f,\deg g)$

2.

$$\deg(fg)\leqslant \deg f+\deg g$$
 Если $R-$ о.ц, то $\deg(fg)=\deg f+\deg g$

Док-во

1)

$$N = \deg f$$
 $M = \deg g$

$$f = \sum_{i=0}^{N} a_i x^i \qquad g = \sum_{i=0}^{M} b_i x^i$$
 $\forall n > \max(N, M) \quad a_n + b_n = 0 \Rightarrow \deg(f + g) \leqslant \max(N, M)$ Равенства в общ. случае нет
$$\text{Если } N = M \quad a_N = -b_N \ \Rightarrow \ a_N + b_N = 0$$

$$\text{Если } N \neq M \quad \Box N < M$$

$$a_M + b_M = 0 + b_M = b_M \neq 0$$

$$2)$$

$$fg = \sum_{i=0} c_i x^i \quad c_i = 0 \text{ для всех } i > N + M$$

$$\deg(fg) \leqslant N + M = \deg f + \deg g$$

$$c_{N+M} = a_N b_M \quad \text{в общем случае:}$$
 Если R не о.п, $a_N \neq 0 \quad b_M \neq 0$ то $a_N \cdot b_M$ м.б = 0

Если R - о.ц, то $a_N \neq 0$ $b_M \neq 0 \Rightarrow c_{NM} \neq 0$

 $\Rightarrow \deg fq = \deg f + \deg q$

Следствие

2)

Если R - о.ц, то
$$R[x]$$
 — о.ц
$$f,g \in R[x] \quad f \neq 0 \quad g \neq 0$$

$$\deg f \geqslant 0 \quad \deg g \geqslant 0$$

$$\deg(fg) = \deg f + \deg g \geqslant 0 \Rightarrow \text{в fg есть хотя бы один ненулевой коэф.}$$

$$\Rightarrow fg \neq 0$$
 Если K - поле $K[x]$ - о.ц

Опр

$$R$$
 $R[x_1]$
$$R[x_1,x_2]=(R[x_1])[x_2]$$

$$R[x_1,...,x_n]=(R[x_1,...,x_{n-1}])[x_n]$$
 R - о.ц \Rightarrow $R[x_1,...,x_n]$ - о.ц

11. Теорема о делении с остатком в кольце многочленов.

Теорема

$$R$$
 - комм. к. с ед.
$$f,g \in R[x]$$
 $g = a_0 + a_1 x + ... + a_n x^n, a_n \in R^*$ обр. элем. $\Rightarrow \exists !$ мн-ны q и r такие, что
$$f = qg + r \quad \deg r < \deg g$$

Пример

В кольце
$$\mathbb{Z}[x]$$

$$x^2 + 1$$
 нельзя поделить на $2x + 1$

12. Корни многочлена. Теорема Безу.

Опр

$$R$$
 - ком. кольцо с 1 $R[x] \ni f \quad f = a_0 + a_1 x + ... + a_n x^n$ для данного мн-на опред. отображение $c \to a_0 + a_1 c + ... + a_n c^n = f(c)$ отобр. из R в R

Замечание

Разные мн-ны могут задавать одно и то же отображение

$$\mathbb{Z}_{/2}\mathbb{Z}$$
 $f = 0$ $0 \to 0$ $1 \to 0$
 $f = x^2 + x$ $0 \to 0$ $1 \to 0$

Опр

$$f \in R[x]$$
 c - корень f
Если $f(c) = 0$
 $(f+g)(c) = f(c) + g(c)$
 $(f \cdot q)(c) = f(c) \cdot q(c)$

Теорема (Безу)

$$f \in R[x]$$
 $c \in R$
 $\exists q \in R[x]$ $f = (x - c)q + f(c)$

Док-во

$$g=x-c$$
 по т. о делении с остатком
$$\exists q,r\in R[x]$$

$$f=(x-c)q+r$$

$$\deg r<\deg g=1$$

$$\deg r\leqslant 0\Rightarrow r\in R$$

$$f(c)=(c-c)\cdot q(c)+r=r$$

$$r=f(c)$$

Следствие

с - корень f
$$\Leftrightarrow$$
 $(x-c) \mid f$

Док-во

$$\Rightarrow f(x) = (x - c)q(x) + f(c) = (x - c)q(x)$$

$$\leftarrow f(x) = (x - c)q(x)$$

$$f(c) = (c - c)q(c) = 0$$

13. Кратные корни многочлена. Теорема о числе корней многочлена над

Опр

$$K$$
 - поле $K[x]$
$$f \in K[x]$$

$$a$$
 - корень f кратности k, если $(x-a)^k \mid f$ и $(x-a)^{k+1} \nmid f$
$$f(x) = (x-a)^k \cdot g(x) \quad (x-a) \nmid g$$

$$f(x) = (x-a)^k \cdot g(x) \quad g(a) \neq 0$$

Замечание

а - корень f_1 кратности k_1 а - корень f_2 кратности k_2 \Rightarrow а - корень $f_1 \cdot f_2$ кратности $k_1 + k_2$ $f_1(x) = (x - a)^{k_1} g_1(x) \quad g_1(a) \neq 0$ $f_2(x) = (x - a)^{k_2} g_2(x) \quad g_2(a) \neq 0$

$$f_1(x)f_2(x) = (x-a)^{k_1+k_2}g_1(x)g_2(x)$$

 $g_1(a)g_2(a) \neq 0$ поле K - о.ц.

Лемма

$$f,g,h\in K[x]$$
 $b\in K$ b - не корень h $f(x)=h(x)g(x)$ b - корень $f\Rightarrow b$ - корень g той же кратности

Теорема

$$K$$
 - поле, $f \in K[x]$ $f \neq 0$

 \Rightarrow число корней с учетом их кратности не превосходит $\deg f$

Замечание

Теор. не верна для $f \in R[x]$ (в случае произвольного комм. кольца R)

$$R = \mathbb{Z}_{/8}\mathbb{Z}$$

$$x^2 = [1] \in R[x]$$

корни 1, 3, 5, 7 $\deg f = 2$

Следствие

Если
$$f(a_1) = \dots = f(a_n) = 0$$

для попарно различных $a_1,...,a_n; \quad n > \deg f,$ то f = 0

14. Функциональное и формальное равенство многочленов.

Опр

$$f, g \in K[x] \quad |K| > \max(\deg f, \deg g)$$

если f и g совп. функционально, то f=g

Замечание

для беск. полей из функ. равенства мн-ов следует формальное

15. Характеристика поля.

Опр

$$K$$
 - поле $1 \in K$

$$n \cdot 1 = \underbrace{1 + \ldots + 1}_{n}$$

Если $n\cdot 1\neq 0$ для всех $n\geqslant 1,$ то говорят, что поле K имеет x-ку 0 char K=0

Если $\exists n\geqslant 1 \quad n\!\cdot\! 1=0,$ то наименьшее такое положительное n называют x-кой K

Примеры

char
$$\mathbb{Q} = 0$$
, char $\mathbb{R} = 0$, char $\mathbb{C} = 0$
р - простое $char(\mathbb{Z}/_p\mathbb{Z})$

Теорема

Характеристика поля либо 0, либо простое число

Док-во

- 1) He $\exists n \geqslant 1 \quad n \cdot 1 = 0 \quad \Rightarrow \quad char K = 0$
- 2) $n \cdot 1 = 0$ возьмем наим. n и покажем, что n простое

$$\square$$
 n - сост. $n = ab$ $1 < a, b < n$ $0 = \underbrace{1 + \dots + 1}_{n} = \underbrace{(1 + \dots + 1)}_{a} \underbrace{(1 + \dots + 1)}_{b}$ $\Rightarrow \underbrace{1 + \dots + 1}_{a} = 0$ или $\underbrace{1 + \dots + 1}_{b} = 0$

противоречие с $\min n$

$$\Rightarrow n$$
 не сост.; $1 \neq 0 \Rightarrow n \neq 1$

 $\Rightarrow n$ - простое

16. Производная многочлена. Свойства производной. Многочлены с нулевой производной.

Опр

$$K$$
 - поле
$$f(x) \in K[x]$$

$$f(x) = \sum_{k=0}^{n} a_k x^k$$

$$f'(x) = \sum_{k=1}^{n} (ka_k) x^{k-1}$$

$$k \cdot a_k = \underbrace{a_k \cdot \ldots \cdot a_k}_{k}$$

Теорема (Свойства)

1.

$$(f+g)' = f' + g'$$

2.

$$c \in K \quad (c \cdot f') = cf'$$

3.

$$(f \cdot g)' = f'g + g'f$$

$$f = x^n g = x^m$$
$$(x^{n+m})' = (n+m)x^{n+m-1}$$
$$(x^n)'x^m + x^n(x^m)' = nx^{n-1} \cdot x^m + mx^n \cdot x^{m-1} = (n+m)x^{n+m-1}$$

(b)

$$f = x^n \quad g = \sum_{k=0}^m a_k x^k$$

$$(f \cdot g)' = (\sum_{k=0}^{m} a_k x^n x^k)' = \sum_{k=0}^{m} a_k (x^n \cdot x^k)' =$$

$$= \sum_{k=0}^{m} a_k ((x^n)' \cdot x^k + x^n (kx^{k-1})) =$$

$$(x^n)' \sum_{k=0}^{m} a_k x^k + x^n (\sum_{k=0}^{m} k a_k x^k) = f'g + fg'$$

(c)

f,g - произвольные

$$f = \sum_{k=0}^{n} b_k x^k$$

$$(fg)' = \sum_{k=0}^{n} b_k (x^k g)' = (\sum_{k=0}^{n} b_k \cdot k x^{k-1} \cdot g) + (\sum_{k=0}^{n} b_k x^k \cdot g') =$$

$$= f'g + fg'$$

(d) Ф-ла Лейбница

$$(f \cdot g)^{(k)} = \sum_{i=0}^{k} C_k^i f^{(i)} g^{(k-i)}$$

(e) Если char
$$K=0 \Rightarrow f'=0 \Leftrightarrow f \in K$$

Если char $K=p>0$ то $f'=0 \Leftrightarrow f \in K[x^p]$
(т.е $f=a_0+a_px^p+\ldots+a_{kp}x^{kp})$

17. Теорема о кратности

Теорема

K - поле
$$charK=0$$

$$f\in K[x]\quad a \text{ - корень f кр. l }\geqslant 1$$
 тогда а - корень f' кр $l-1$

Замечание

Если char
$$\mathbf{K}=p>0,$$
 то теор. не верна

$$\mathbb{Z}_{/p}\mathbb{Z}$$
 $f=x^{2p+1}$ О - корень кр. р
$$f'=(2p+1)x^{2p}+px^{p-1}=x^{2p}$$
 О - корень кр. 2p

18. Интерполяционная задача. Существование и единственность решения. для интерпол. задачи

Док-во

1) ед

$$f,h$$
 - решают одну и интер. задачу
$$\deg f, \deg h < n$$
 $\forall i=1,...,n \quad f(a_i)=h(a_i)=y_i \qquad f(a_i)-h(a_i)=0$ $f-h$ имеет $\geqslant n$ корней, а степ. $< n$ $f-h=0 \Rightarrow f=h$

(теорема о числе корней мн-на)

2) существование

1 сл
$$f(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$$

 $c_0 + c_1 a_i + \dots + c_{n-1} a_i^{n-1} = y_i$
 $\begin{pmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ \vdots & & & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{pmatrix} \begin{pmatrix} c_0 \\ \vdots \\ c_{n-1} \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$
 $A \begin{pmatrix} c_0 \\ \vdots \\ c_{n-1} \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$
 $\det A = \prod_{j>i} (a_j - a_i) \neq 0$
 $A \cdot \text{ ofd}$.
 $\begin{pmatrix} c_0 \\ \vdots \\ c_{n-1} \end{pmatrix} = A^{-1} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$

19. Интерполяционный метод Ньютона.

Опр

 f_{i-1} - интерпол. мн-ен степени $\leqslant i-1$

и решающий интерпол. задачу для первых і точек

20. Интерполяционный метод Лагранжа.

Опр

$$\begin{array}{c|c|c|c|c} x & a_1 & a_{j-1} & a_j & a_{j_i} & a_n \\ \hline f(x) & 0 & 0 & 1 & 0 & 0 \\ \hline \\ L_j(x) = a_j(x-a_1)...(x-a_{j-1})(x-a_{j+1})...(x-a_n) \\ \\ L_j(a_j) = 1 \\ \\ L_j(x) = \frac{(x-a_1) \cdot ... \cdot (x-a_{j-1})(x-a_{j+1}) \cdot ... \cdot (x-a_n)}{(a_j-a_1) \cdot ... \cdot (a_j-a_{j-1})(a_j-a_{j+1}) \cdot ... \cdot (a_j-a_n)} \\ \\ L_j(x) = \frac{(x-a_1) \cdot ... \cdot (x-a_{j-1})(x-a_{j+1}) \cdot ... \cdot (x-a_n)}{(a_j-a_j) \cdot ... \cdot (a_j-a_{j-1})(a_j-a_{j+1}) \cdot ... \cdot (a_j-a_n)} \\ \\ L_j(x) - \text{ интерп. мн-ен Лагранжа} \\ \\ L_j(a) = \begin{cases} 1, & i=j & \deg L_j(x) = n-1 \\ 0, & i \neq j & \deg f \leqslant n-1 \end{cases} \\ \\ \frac{x}{f(x)} & y_1 & y_n \end{cases} \\ \\ f(x) = \sum_{j=1}^n y_j L_j(x) & f(a_i) = \sum_{j=1}^n y_j L_j(a_j) = y_i L_i(a_i) = y_i \end{cases}$$

Мн-ен Лагранжа исп. в алг. быстрого умножения $\forall \mathcal{E}>0\quad \exists$ алг. умн., который для n-разрядных чисел требует $O(n^{1+\mathcal{E}})$ поразрядных операций

21. Делимость и ассоциированность в кольце многочленов над полем.

Опр

$$K$$
 - поле, $K[x]$
$$f,g\in K[x]$$
 ассоциирован, если
$$f\mid g$$
 и $g\mid f$
$$f\sim g\quad : f$$
 и g ассоц.
$$0\sim 0$$

0 с другими не ассоц.

$$f
eq 0$$
 $g
eq 0$ $f
eg g
eg f$ $deg f
eg deg g
eg deg f$ $\Rightarrow deg f = deg g$ $f
eg c
eg$

Следствие

$$f \sim q \Leftrightarrow \exists c \in K^* \quad f = cq$$

Если $f \neq 0$, то в классе ассоц. с f мн-нов всегда можно выбрать мн-ен со старшим коэф 1.

Мн-ен со старшим коэф. 1 назыв. унитарным, приведенным

Замечание

$$f \mid g \quad f \sim f_1 \quad g \sim g_1$$

$$\Rightarrow f_1 \mid g_1$$

$$g = f \cdot h$$

$$cg = f(ch)$$

$$g = (cf)(c^{-1}h)$$

22. Наибольший общий делитель в кольце многочленов над полем. Существование и линейное представление.

Опр

$$K$$
 - поле, $K[x]$ $f_1,...,f_n \in K[x]$ g - НОД $f_1,...,f_n$, если $g \mid f_1,...,g \mid f_n$ и $\forall h \quad (h \mid f_1,...,h \mid f_n) \Rightarrow h \mid g$

Замечание

НОД опред. не однозначно, а с точностью до ассоц.

$$HOД(0,...,0) = 0$$

Если хотя бы один $f_1...f_n \neq 0$, то в классе ассоц. с НОД можно выбрать приведенный

Теорема

$$\forall f_1, ..., f_n \in K[x]$$

Существует $g = \text{HOД}(f_1,...,f_n)$ и он допускает лин. предствление $g = f_1h_1 + ... + f_nh_n$ для нек. $h_1...h_n \in K[x]$

Док-во

1)

$$f_1 = f_2 = \dots = f_n = 0$$
 НОД $(0, \dots, 0) = 0$

Положим $h_1 = ... = h_n = 1$

$$\exists i \quad f_i \neq 0$$

$$I = \{f_1 h_1 + \ldots + f_n h_n : h_1 \ldots h_n \in K[x]\}$$

$$I \neq \{0\} \qquad 0 \neq f_i \in I$$

g - мн-ен наим. степени в $I\setminus\{0\}$ Утверждается, что $g-\mathrm{HOД}(f_1,...,f_n)$

$$f_j = g \cdot u_j + r_j$$
 $r_j = 0$ или $r_j = -g \cdot u_j + f_i = \deg r_j < \deg g$ $= -h_1 u_j f_1 - h_2 u_j f_2 + (-h_j u_j + 1) f_i - \dots$ $g = h_1 f_1 + \dots + h_n f_n$ $r_j \in I$

Т.к.

$$\deg r_j < \deg g$$
 а степень g наим в $I\setminus\{0\}$ то $r_j=0$
$$f_j=gu_j\quad g\mid f_j\quad j=1,...,n$$
 $h\mid f_i,...,h\mid f_n$
$$g=f_1h_1+...+f_nh_n\stackrel{.}{:}h\Rightarrow h\mid g$$
 ...

23. Взаимно простые многочлены. Свойства взаимно простых многочленов. Если многочлен делит произведение двух многочленов и взаимно прост с первым сомножителем, то он делит второй сомножитель.

Опр

$$f_1,...,f_n \in K[x]$$
 назыв. взаимно простыми, если НОД $(f_1,...,f_n) \sim 1$

Теорема (Свойства)

- 1. Если $g \sim \text{HOД}(f_1,...,f_n)$ (не все $f_i=0$) $\text{то } \frac{f_1}{a},...,\frac{f_n}{a} \text{ взаимно просты}$
- 2. $f_1, ... f_n$ вз. просты $\Leftrightarrow 1$ допускает лин. представление $1 = h_1 f_1 + ... + h_n f_n \qquad h_i, ..., h_n \in K[x]$

Док-во

См. док-ва для Z (Спасибо, Всемирнов)

Теорема

$$f \mid gh$$
 и f и g - вз. просты $\Rightarrow f \mid h$

Док-во

$$\exists u, v \in K[x]$$

$$fu + gv = 1$$

$$fuh + ghv = h \implies h \vdots f$$

$$\vdots f$$

24. Неприводимые многочлены. Теорме о разложении многочлена в произведение неприводимых (существование).

Опр

$$K[x] = \{0\} \cup K^* \cup \{\text{мн-ны ст} \geqslant 1\}$$

$$f \in K[x] \setminus K \text{ назыв сост, если} \quad (\text{или приводимым})$$

$$f = gh \quad 1 \leqslant \deg g, \deg h < \deg f$$
 в противном случае f - назыв. неприводимым
$$f$$
 - неприводим, если $(f = gh \Rightarrow \deg h = 0 \text{ или } \deg g = 0)$

Опр

f - неприв. \Leftrightarrow все делители f - это константы и мн-ны $\sim f$

Примеры

$$x-a$$
 неприводим при любом a x^2+1 неприводим в $\mathbb{R}[x]$ x^2+1 в $\mathbb{C}[x]$ приводим $x^2+1=(x+i)(x-i)$ В $\mathbb{R}[x]$ $(x^2+1)(x^2+2)$ - приводим, но корней нет Если gf $\deg f\geqslant 2$ есть корень в K , то f - приводим в $K[x]$ $f=(x-a)q$ (по т. Безу)

Обратное неверно. Но для мн-нов степени 2 и 3 неприводимость в K[x] равносильна отсутствию корней в K

Теорема

$$f \in K[x]$$
 f - неприводим $f \mid q_1 \cdot \ldots \cdot q_n \Rightarrow \exists i : f \mid q_i$

Теорема (Основная теорема арифметики в кольце многочленов.)

Всякий ненулевой $f \in K[x]$ может быть представлен в виде

$$c \cdot \prod_{i=1}^{n} g_i$$

 $c \in K^*$, а все g_i - приведенные неприводимые мн-ны. Причем такое произведение ед. с точностью до порядка сомножителей.

Замечание

Для
$$f = c \in K^*$$
 $n = 0$

Лемма (1)

Всякий $f \deg f \geqslant 1$ делится хотя бы на один неприводимый.

Док-во

f - непр - все доказано Если приводим, то $f = f_1 \cdot g_1$ $1 \leqslant \deg f_1 < \deg f$ Если f_1 неприв, то делитель найден Если приводим $f_1 = f_2 g_2$ $q \leqslant \deg f_2 \leqslant \deg f_1$ $\deg f > \deg f_1 > \dots$ процесс оборвется \Rightarrow Найдем неприв. делитель f

Док-во (Существование)

Инд. по $\deg f$ 1)

$$\deg f = 0 \quad f = c \in K^* \quad f = c \cdot (\prod_{i=1}^{0} g_i)$$

инд. преход $\deg f > 0$

по лемме \exists неприв. $g_1 \quad g_1 \mid f$

не умоляя общности g_1 - приведенный (с коэф. 1)

$$f = g_1 f_1 \quad \deg f_1 < \deg f - \deg g_1 < \deg f$$

По инд. предп.

$$f_1 = c \prod_{i=2}^n g_i \quad g_i$$
 - прив. неприв.

$$f = f_1 g_1 = c \prod_{i=1}^n g_i$$

25. Теорема о разложении многочлена в произведение неприводимых (единственность).

Док-во

(*)
$$f = c \prod_{i=1}^{n} g_i = \widetilde{c} \prod_{i=1}^{m} \widetilde{g}_i$$

 $\Rightarrow n=m$ $c=\widetilde{c}$ иначе перенумеруем сомнож. $g_i=\widetilde{g}_i$

Не умоляя общ. $n \leqslant m$

Инд. по n

$$n = 0$$
 $c = \widetilde{c} \prod_{i=1}^{n} \widetilde{g}_i$

$$\Rightarrow m = 0 \quad \tilde{c} = c$$

Инд. переход

$$g_n \mid \widetilde{c} \prod_{i=1}^m \widetilde{g}_i \Rightarrow \exists i \quad g_n \mid \widetilde{g}_i$$

$$\tilde{c} \neq 0$$

Не умоляя общности i=m (иначе перенумеруем)

$$q_n \mid \widetilde{q_m} \Rightarrow q_n = \widetilde{q_m}$$

В (*) сократим на g_n

$$c\prod_{i=1}^{n-1}g_i=\widetilde{c}\prod_{i=1}^{m-1}\widetilde{g}_i\quad n-1\leqslant m-1$$

По инд. предп. $n-1=m-1 \quad (\Rightarrow n=m)$

 $c = \widetilde{c}$ (после перенумерования)

$$g_i = \widetilde{g}_i \quad i = 1, ..., n - 1$$

$$g_n = \widetilde{g_n}$$

26. Алгебраически замкнутые поля. Эквивалентные переформулировки. Алегбраическая замкнутость поля комплексных чисел. (б.д.)

Теорема

$$\supset K$$
 - поле, рассмотрим $K[x]$

Следующие условия равносильны

- 1. Все неприводимые в K[x] это в точности линейные мн-ны
- 2. Всякий мн-н $f \in K[x], \deg f > 0$ расскладывается в произведение лин. множителей
- 3. Всякий $f \in K[x], \deg f > 0$ делится на линейный
- 4. Всякий $f \in K[x], \deg > 0$ имеет в K хотя бы 1 корень
- 5. Всякий $f \in K[x], \deg f > 0$ имеет в K в точности $n = \deg f$ корней с учетом кратности

Опр

Если для K — K[x] выполнено любое из равносильных усл., то K назыв. алгебр. замкн.

Примеры

 \mathbb{R}, \mathbb{Q} не алг. замкнуты Любое конечное поле не алг. замкнуто

$$|F| = q \quad \deg f = n > q$$

Теорема (б.д.)

$$\mathbb{C}$$
 - алг. замк.

Следствие

$$f \in \mathbb{C}[x] \quad \deg f > 0$$

$$f = c \prod_{i=1}^{k} (x - a_i)^{d_i} \qquad a_i, c \in \mathbb{C}$$

27. Yеприводимые многочлены над полем вещественных чисел. Теорема о разложении многочлена с вещественными коэффициентами в произведение неприводимых над \mathbb{R} .

Опр

Неприводимы:

$$x-c, \quad c\in \mathbb{R}$$

$$x^2+ax+b \quad a^2-4b<0 \quad a,b\in \mathbb{R} \mbox{ (нет корней)}$$

Теорема

Всякий неприв. в R[x] ассоциирован с лин. или квадратичным с отр. дискр.

Следствие

$$f \in \mathbb{R}[x]$$
 $f \neq 0$
$$f = c \prod_{i=1}^{m} (x - c_i)^{d_i} \prod_{j=1}^{k} (x^2 + a_j x + b_j)^{l_j} \quad a_j^2 - 4b_j < 0$$

Лемма

$$f\in\mathbb{R}[x]\subseteq\mathbb{C}[x]$$
 Если $z\in\mathbb{C}$ - корень f , то \overline{z} - корень f

Док-во

$$f = a_0 + a_1 x + \dots + a_n x^n$$

$$a_0 + a_1 z + \dots + a_n z^n = 0$$

$$\overline{a_0 + a_1 z + \dots + a_n z^n} = \overline{0} = 0 \text{ (сопряжение)}$$

$$\overline{a_0} + \overline{a_1 z} + \dots + \overline{a_n} (\overline{z})^n$$

$$a_0 + a_1 \overline{z} + \dots + a_n (\overline{z})^m = f(\overline{z})$$

28. Поле частных области целостности. Поле частных кольца многочленов (поле рациональных функций).

Опр

R - комм. кольцо с 1, о.ц. Хотим построить поле K, содержащее подкольцо изоморфное R, состоящее из "дробей"

$$X = R \times (R \setminus \{0\}) = \{(a, b) : a \in R, b \in R, b \neq 0\}$$

На X введем отношение эквив.

$$(a,b) \sim (c,d)$$
 если $ad = bc$

 \sim - отношение эквив.

$$(a,b) \sim (a,b)$$

$$(a,b) \sim (c,d) \Rightarrow (c,d) \sim (a,b)$$

$$(a,b) \sim (c,d) (c,d) \sim (e,f)$$
 \Rightarrow $(a,b) \sim (e,f)$

$$\frac{a}{b} = [(a,b)]$$
 - класс эквив.

 $K=X_{/\sim}$ На K введем структуру поля

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \qquad b \neq 0 \quad d \neq 0 \Rightarrow bd \neq 0 \quad (ac, bd) \in X$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad (ad + bc, bd) \in X$$

Корректность опредения (независимость от выбора представителя в классе)

$$\frac{a}{b} = \frac{a_1}{b_1} \qquad \frac{c}{d} = \frac{c_1}{d_1} \qquad ab_1 = ba_1$$

$$(ac, bd) \sim (a_1c_1, b_1d_1) \qquad acb_1d_1 = bda_1c_1$$

$$(ad + bc, bd) \sim (a_1d_1 + b_1c_1, b_1d_1)$$

$$adb_1d_1 + bcb_1d_1 = bda_1d_1 + bdb_1c_1$$

$$+ ab_1 = ba_1 \mid \cdot dd_1$$

$$+ cd_1 = dc_1 \mid \cdot bb_1$$

Теорема

 $K, +, \cdot$ - поле

Опр

Поле K назыв. полем частных кольца R

Примеры

 $\mathbb Q$ - поле частных $\mathbb Z$

K[x] - о.ц

Поле частных K[x] обознач. K(x) и назыв. полем рац. дробей или полем рац. функций

Рац. функ. не есть функции в смысле отобр.

29. Простейшие дроби. Разложение рациональной функции в сумму многочлена и простейших дробей. (существование).

Опр

$$K(x)$$
 K - поле
$$0 \neq \frac{f}{g} \in K(x) \qquad f,g \in K[x]$$

$$\frac{f}{g}$$
 - правильная, если $\deg f < \deg g$

Лемма (1)

$$rac{f}{g}; \quad rac{f_1}{g_1}$$
 - прав. дроби $\Rightarrow rac{f}{g} \cdot rac{f_1}{g_1}; \quad rac{f}{g} + rac{f_1}{g_1}$ - прав. дроби

Док-во

$$\deg(f \cdot f_1) = \deg f + \deg f_1 < \deg g + \deg g_1 = \deg(g \cdot g_1)$$

$$\frac{f}{g} + \frac{f_1}{g_1} = \frac{fg_1 + gf_1}{gg_1}$$

$$\deg(fg_1 + gf_1) \leqslant \max\{\deg(fg_1), \deg(gf_1)\} < \deg(gg_1)$$

$$\deg(fg_1) = \deg f + \deg g_1 < \deg g + \deg g_1 = \deg(gg_1)$$

$$\deg(gf_1) = \deg g + \deg f_1 < \deg g + \deg g_1 = \deg(gg_1)$$

Опр

Правильная дробь $\frac{f}{g}$ называется примарной, если $g=q^a,\quad q$ - неприв. многочлен

$$\frac{f}{g} = \frac{f}{q^a} \qquad \deg f < a \deg q$$

Опр

Дробь назыв. простейшей, если она имеет вид

$$\dfrac{f}{q^a}$$
 q - неприв $a\geqslant 1$ $\deg f<\deg q$

Теорема

$$\frac{f}{g} \in K(x)$$
 тогда $\frac{f}{g}$

единственным образом (с точностью до порядка слагаемых) представима в виде суммы многочлена и простейших дробей

Лемма (2)

$$\dfrac{f}{q}\in K(x)$$
 — Тогда $\dfrac{f}{q}=h+\dfrac{f_1}{q},\quad h\in K(x),\quad \dfrac{f_1}{q}$ - прав дробь

Док-во

Делим с остатком:
$$f = gh + f_1$$
, $\deg f_1 < \deg g$

$$\frac{f}{g} = h + \frac{f_1}{g}$$
 $\frac{f_1}{g}$ - прав. дробь

$\underline{\text{Лемма}}$ (3)

$$\frac{f}{g}$$
 - прав. дробь, $g = g_1 \cdot g_2$, НОД $(g_1, g_2) = 1$

Тогда
$$\frac{f}{g}=rac{f_1}{g_1}+rac{f_2}{g_2}, \qquad rac{f_1}{g_1},rac{f_2}{g_2}$$
 - прав. дроби

Док-во

По теореме о линейном представлении НОД в K[x]

$$\exists u_1, u_2 \in K[x]$$
 $g_1u_2 + g_2u_1 = 1 \mid \cdot f$ $g_1(u_2f) + g_2(u_1f) = f$ $g_2(u_1f) = f - g_1(u_2f)$ $u_1f = g_1h_1 + f_1$ (делим с остатком)

$$f=g_1(u_2f)+g_2(u_1f)=g_1(u_2f)+g_2(g_1h_1+f_1)=g_1\underbrace{(u_2f+g_2h_1)}_{=f_2}+g_2f_1=g_1f_2+g_2f_1$$
 - надо убедиться, что правильное $g_1f_2=f-g_2f_1$ $\deg g_1+\deg f_2\leqslant \max\{\deg f;\deg g_2+\deg f_1\}<\deg g_1+\deg g_2$ $\deg f_2<\deg g_2$ $\frac{f}{g}=\frac{f_2}{g_2}+\frac{f_1}{g_1}$

30. Разложение рациональной функции в сумму многочлена и простейших дробей. (единственность).

Док-во

Не умоляя общности можно считать, что в обоих разложениях одни и те же неприводимые

$$\frac{f}{g} = h + \sum_{i=1}^{k} \sum_{j=1}^{a_i} \frac{f_{ij}}{q_i^j}, \deg f_{ij} < \deg q_i = \widetilde{h} + \sum_{i=1}^{k} \sum_{j=1}^{a_i} \frac{\widetilde{f_{ij}}}{q_i^j}, \deg \widetilde{f_{ij}} < \deg q_i$$

Не умоляя общности a_i одни и те же в обеих суммах.

$$h - \widetilde{h} \qquad \sum_{i=1}^{h} \sum_{j=1}^{a_i} \frac{f_{ij} - \widetilde{f_{ij}}}{q_i^j} = 0 \quad (*)$$

Положим не все
$$f_{ij}-\widetilde{f_{ij}}=0 \ \Rightarrow \ \exists i,j \ : \ f_{ij}-\widetilde{f_{ij}} \neq 0$$

Для такого i выберем наибольшее ј из возможных. В (*) наиб. степени q_i в дроби с ненулевым числителем равна q_i^j

Домножим (*) на общее кратное знаменателей НОК = $q_i^j \cdot$ () - произв. ост q в каких-то степенях

$$q_i(...) + q_i(...) + (f_{ij} - \widetilde{f_{ij}} = 0 \Rightarrow$$

$$\deg(f_{ij} - \widetilde{f_{ij}}) \leqslant \max(\deg f_{ij}, \deg \widetilde{f_{ij}}) < \deg q_i$$

$$f_{ij} - \widetilde{f_{ij}} = 0?! \Rightarrow \text{B} (*) \text{Bce } f_{ij} = \widetilde{f_{ij}}, \quad h = \widetilde{h}$$

31. Факториальные кольца. Содержание многочлена над факториальным кольцом. Содержание произведения многочленов.

Опр

$$a \notin \{0\} \cup R^*$$

назыв неприводимым, если

$$a=bc\Rightarrow b\in R^*$$
 и $c\sim a$

или
$$c \in R^*$$
 и $b \sim a$

(все делители а есть либо обр. элем R либо ассоц. с а)

Опр

О.ц. R называется факториальным кольцом, если в нем справедлива тма об однозначном разложении на множ., а именно, всякий ненулевой необр. элемен R есть произведение неприводимых элементов, причем это разложение ед. с точностью до порядка сомножителей и ассоциированности

$$a=p_1\cdot\ldots\cdot p_n=q_1\cdot\ldots\cdot q_m$$
 q_i,p_i - неприв $\Rightarrow n=m$ и \exists биекция σ на $\{1,\ldots,n\}$ $p_i=q_{\sigma(i)}$ $\mathbb{Z},K[x]$ - факт. кольца

В факториальных кольцах можно определить НОД

$$a=\mathcal{E}_1\prod_{i=1}^kq_i^{k_i}$$
 $b=p_1\prod_{i=1}^nq_i^{l1}$ $\mathcal{E}_1,p_1\in R^*$ q_i - попарно ассоц. неприв $\mathrm{HOД}(a,b)=\prod_{i=1}^nq_i^{\min(k_i,l_i)}$ $ab=\mathcal{E}_1p_1\prod_{i=1}^nq_i^{(k_i+l_i)}$

Опр

Содержание многочлена f

$$cont(f) = HOД(a_1, a_2, ..., a_n)$$

Опр

$$f \in R[x]$$
называется примитивным, если $\mathrm{cont}(f) \sim 1$

В факториальном кольце \forall многочлен $f \in R[x]$ можно записать как $f(x) = \mathrm{cont}(f) \cdot f_1$ - примитивный

Лемма (Гаусса)

$$cont(f) = cont(f) \cdot cont(g)$$

32. Теорема Гаусса о факториальности кольца многочленов над факториальным кольцом. Факториальность колец $K[x_1,...,x_n],\mathbb{Z}[x_1,...,x_n]$

Теорема

R - факториальное кольцо $\Rightarrow R[x]$ - факториальное

Лемма (Гаусса)

 $f,g \in R[x]$ f,g - примитивны $\Rightarrow f \cdot g$ - примитивный

Следствие

$$\mathbb{Z}[x_1,...,x_n],K[x_1,...,x_n]$$
 - факториальны

33. Неприводимость над \mathbb{Q} и над \mathbb{Z} . Методы доказательства неприводимости многочленов с целыми коэффициентами (редукция по одному или нескольким простым модулям).

$$f \in \mathbb{Q}[x]$$

Хотим доказать, что f неприв над $\mathbb Q$

Не умоляя общности $f \in \mathbb{Z}[x]$ (можно домножить на знаменатель) $\operatorname{cont}(f) = 1$ коэфф. в совокупности вз. просты

Идея:

$$f = a_0 + \dots + a_n x^n$$

$$p$$
 - простое $p \nmid a_n$

$$\mathbb{Z}[x] \to \mathbb{Z}_{/p}\mathbb{Z}[x]$$

каждый коэфф. заменяем на соотв. вычет

$$f \to \overline{f} = [a_0] + \dots + [a_n] \cdot x^n$$

Если
$$p \nmid a_n \quad \deg(\overline{f}) = \deg f$$

Если f приводим над \mathbb{Q} , то по т. Гаусса

$$f = gh \quad g, h \in \mathbb{Z}[x]$$

$$\deg g, \deg h < \deg f$$

$$\overline{f} = \overline{g} \cdot \overline{h}$$

Если p не делит страш. коэфф f, то $p \nmid$ страш. коэфф. g и h

$$\deg \overline{g} = \deg g$$
 и $\deg \overline{h} = \deg h$

Тогда приводимость f влечет приводимость \overline{f}

Предположение

Если
$$p \nmid a_n$$
 $f = a_0 + \dots + a_n x^n$ cont $f = 1$

и \overline{f} - неприводим над $\mathbb{Z}_{/p}\mathbb{Z}$, то f неприводим над $\mathbb{Z}(\Rightarrow$ и над $\mathbb{Q})$

34. Критерий неприводимости Эйзенштейна.

Теорема

$$f\in\mathbb{Z}[x]$$
 $f=a_0+a_1x+...+a_nx^n$ $\mathrm{cont}(f)=1$ p - простое Ec ли $*p\nmid a_n$ $*p\mid a_i$ $i=0,...,n-1,$ то f неприводим над $\mathbb{Z}(\Rightarrow$ и над $\mathbb{Q})$ $*p^2\nmid a_0$

Док-во

$$\exists \ f = gh \qquad g,h \in \mathbb{Z}[x] \qquad \deg g, \deg h < n$$

$$\overline{f} = \overline{g} \cdot \overline{h}$$

$$\overline{f} = [a_n]x^n$$

$$\overline{g} \sim x^m \quad \overline{h} \sim x^{n-m} \quad 0 < m < n$$

$$g = b_m x^m + \ldots + b_0 \qquad b_m \not \mid p, \quad b_{m-1}, \ldots, b_0 \vdots p$$

$$h = c_{n-m} x^{n-m} + \ldots + c_0$$

$$c_{n-m} \not \mid p \qquad c_{n-m}, \ldots, c_0 \vdots p$$
 по усл. $a_0 = b_0 \cdot c_0$ - противоречие
$$f_p = c_p \cdot c_0$$
 противоречие

39. Линейные отображения векторных пространств. Линейное отображение полностью задается своими значениями на базисных векторах.

Опр

$$K$$
 - поле V - в.п. над К $f:U \to V$ f - линейное, если $\forall u_1, u_2 \in U$ $\forall \alpha_1, \alpha_2 \in K$ 1.
$$f(\alpha u_1 + \alpha u_2) = \alpha_1 f(u_1) + \alpha_2 f(u_2)$$
 2. (a)
$$\forall u_1, u_2 \in U \qquad f(u_1 + u_2) = f(u_1) + f(u_2)$$
 (b)
$$\forall u \in U \quad \forall \alpha \in K \quad f(\alpha u) = \alpha f(u)$$

лин. отобр = гомеоморфизм вект пр-в

Теорема (св-ва)

$$f$$
 - лин. отобр. $f(0_u) = 0_v$ $f(-u) = -f(u)$

Пример

$$K[x] o K[x]$$
 $f o f'$ U - в.п $\{u_i\}_{i \in I}$ - базис U Достаточно хадать лин. отобр. на базисных векторах

$$f$$
 - лин. отобр $f:U o V$ $u\in U$ $u=\sum lpha_i u_i$ $f(u)=f(\sum lpha_i u_i)=f(\sum_{lpha_i
eq 0}lpha_i u_i)=\sum_{lpha_i
eq 0}lpha_i f(u_i)$

40. Сумма линейных отображений, умножение на скаляр. Пространство линейных отображений.

41. Матрица линейного отображения для данных базисов. Матрица суммы отображений. Изоморфизм пространства линейных отображений и пространства матриц.

$$\dim U = m < \infty \qquad \dim V = n < \infty$$

$$u_1, ..., u_m - \text{базис } U; \quad v_1, ..., v_n - \text{базис } V$$

$$f(u_i) = \sum_{i=1}^n a_{ij} v_i$$

$$\alpha : U \to V - \text{лин. отобр.}$$

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & \ddots \\ a_{nm} \end{pmatrix}$$

$$- \text{коэфф разложения } f(u_i) \text{ по базису } \{v_1, ..., v_n\}$$

$$A - \text{матрица лин. отобр в базисах } \{u_1, ..., u_m\}, \{v_1, ..., v_n\}$$

$$A = [f]\{u_j\}$$

$$\{v_j\}$$

$$\{v_j\}$$

$$f(u) = c_1 f(u_1) + ... + c_m f(u_m) = \sum_{j=1}^m c_j f(u_j) =$$

$$= \sum_{j=1}^m c_j \sum_{i=1}^n a_{ij} v_i = \sum_{i=1}^n (\sum_{j=1}^m c_j a_{ij}) v_i$$

$$\text{где } u = c_1 u_1 + ... + c_m u_m$$

$$\begin{pmatrix} c_1 \\ ... \\ c_m \end{pmatrix} = [u]_{\{u_i\}} \qquad [v]_{\{v_i\}} = A \cdot [u]_{u_i}$$

$$[f + g]_{\{u_j\}} = [f]_{\{u_j\}} + [g]_{\{u_j\}}$$

$$\{v_i\} \qquad \{v_i\}$$

$$\{v_i\} \qquad \{v_i\}$$

$$u, v \text{ назыв. изоморфными, если } \exists f : U \to V \quad 1) f - \text{лин.}$$

$$2) f - \text{ биекция}$$

42. Композиция линейных отображений. Матрица композиции.

Опр

43. Преобразование матрицы линейного отображения при замене базисов.

Опр

$$f:U o V$$
 - лин $u_1,...,u_m$ - базисы U $v_1,...,v_n$ - базисы V $v_1',...,v_n'$ - базисы V $A=[f]_{\{u_i\}}$ $A'=[f]_{\{u_i'\}}$ $\{v_j\}$

C - матрица замены координат при переходе от $\{u_i\}$ к $\{u_i'\}$ D - матрица замены координат при переходе от $\{v_j\}$ к $\{v_j'\}$ i - ый столбец C - это коорд. u_i' в базисе $u_1,...,u_m$ i - ый столбец D - это коорд. v_j' в базисе $v_1,...,v_k$

$$[u]_{\{u_i\}} = C[u]_{\{u_i'\}},$$
 аналогично для D

Теорема

$$A' = D^{-1}AC$$

44. Ядро и образ линейного отображения, их свойства. Критерий инъективности и сюръективности линейного отображения в терминах ядра и образа.

Опр

$$f:U o V$$
 f - лин.
$$f(U)=\{v\in V\mid \exists u\in U:v=f(u)\}=Imf \ (\text{образ f})$$
 $f^{-1}(\{0_v\})=\{u\in U:f(u)=0_v\}=\ker f \ (\text{ядро f})$

Предположение

$$Im f \subseteq V$$
; $\ker f \subseteq U$

Предположение

- а) лин. отобр. $f:U\to V$ сюръективно $\Leftrightarrow Imf=V$
- б) инъективно $\Leftrightarrow \ker f = \{0_u\}$

45. Выбор базисов, для которых матрица линейного отображения имеет почти единичный вид. Следствие для матриц. Теорема о размерности ядра и образа.

Теорема

U,V - конечномерные; $f:U\to V$ - лин. Тогда \exists базисы пр-в U и V, в которых матрица $\mathbf f$ - почти единичная

$$\begin{bmatrix} f \\ \{u_i\} \\ \{v_j\} \end{bmatrix} = \begin{pmatrix} E_2 & 0 \\ 0 & 0 \end{pmatrix}$$

Следствие (1)

 $A \in M(n,m,K)$ Тогда \exists обрат. матрицы $C \in M(m,n,K)$ и

$$D \in M(n, m, K)$$
, такие, что $D^{-1}AC = \begin{pmatrix} E_2 & 0 \\ 0 & 0 \end{pmatrix}$

Следствие (2)

 $\dim U < \infty$; V - произв.

$$f: U \to V$$

Тогда $\dim U = \dim \ker f + \dim Im f$

46. Критерий изоморфности конечномерных пространств

Опр

$$U,V$$
изоморфны, есди \exists биект.
лин. отображение (изоморфизм) $f:U\to V$
$$U\cong V$$

Теорема

$$U,V$$
 - конечномерные в.п. над K
$$U\cong V \Leftrightarrow \dim U = \dim V$$

Док-во

$$\Rightarrow f:U \to V, \quad f$$
 - биекция, лин. f - инъект. $\Rightarrow \ker f = \{0\}$ f - сюръект. $\Rightarrow Imf = V$ $\dim V = \dim Imf = \dim U - \dim \ker f = \dim U - 0 = \dim U$ $\leftarrow \dim U = \dim V = n$ $u_1, ..., u_n$ - базис U $v_1, ..., v_n$ - базис V Любой $u \in U$ единственным образом раскладывается в сумму $u = \alpha_1 u_1 + ... \alpha_n u_n \quad \alpha_i \in K$ $f(u) = \alpha_1 v_1 + ... + \alpha_n v_n$ $\widetilde{u} = \widetilde{\alpha_1} u_1 + ... + \widetilde{\alpha_n} u_n$ $u + \widetilde{u} = (\alpha_1 + \widetilde{\alpha}) u_1 + ... + (\alpha_n + \widetilde{\alpha_n}) u_n$ $f(\widetilde{u}) = \widetilde{\alpha_1} v_1 + ... + \widetilde{\alpha_n} v_n$ $f(u + \widetilde{u}) = (\alpha_1 + \widetilde{\alpha_1}) v_1 + ... + (\alpha_n + \widetilde{\alpha_n}) v_n$ $f(u + \widetilde{u}) = f(u) + f(\widetilde{u})$ Аналогично $f(\alpha u) = \alpha f(u)$ Значит f - лин. отобр т.к. $v_1, ..., v_2$ - сем-во образующих $\Rightarrow f$ - сюръект.

$$v \in V$$
 $v = \alpha_1 v_1 + ... + \alpha_n v_n$ $u = \alpha_1 u_1 + ... + \alpha_n u_n$ $f(u) = v$ т.к. $v_1, ..., v_n$ - ЛНЗ, то f - инъект. достаточно проверить, что $\ker f = \{0\}$ $u = \alpha_1 u_1 + ... + \alpha_n u_n$ $0 = f(u) = \alpha_1 v_1 + ... + \alpha_n v_n \Rightarrow \alpha_1, ..., \alpha_n = 0, u = 0 \Rightarrow \ker f = \{0\}$ $\Rightarrow f$ - изоморфизм

47. Двойственное пространство. Двойственный базис. Изоморфность конечномерного пространства и его двойственного. Пример пространства не изоморфного своему двойственному.

Опр

$$V$$
 - в.п. над K
$$V^* = L(V,K)$$
 - двойственное пр-во к V (пр-во линейных отображений из V в K) элементы V^* - лин. функционалы V (лин. отобр)

Пример

$$V_{\mathbb{R}} = C([0;1] \to \mathbb{R})$$
$$f \to \int_0^1 f(x) dx$$
$$a \in [0;1] \quad f \to f(a)$$

Опр

$$e_1,...,e_n$$
 - базис V
$$c_1,...,c_n$$
 - двойственнй базис V , если
$$f(e_i,c_j)=\begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases}$$

Теорема

$$\dim V = n < \infty \Rightarrow V^* \cong V$$

Док-во

$$v_1,...,v_n$$
 - базис V

49. Линейные операторы. Кольцо линейных операторов. Изоморфность кольца линейных операторов и кольца матриц.

Теорема

$$(End(V),\cdot,+)$$
 - кольцо

50. Многочлены от оператора. Коммутирование многочленов от одного оператора.

Опр

$$V$$
 - в.п. над K $\varphi \in End(V)$ $h=a_0+a_1t+....a_mt^m \in K[t]$ $h(\varphi)=a_0id+a_1\varphi+...+a_m\varphi^m \in End(V)$ Умножение = композиция операторов $A \in M_n(K)$ $h(A)=a_0E+a_1A+...+a_mA^m$ - мн-н от матрицы $(hq)(\varphi)=h(\varphi)\cdot q(\varphi)$

51. Характеристический многочлен матрицы и оператора. Независимость характеристического многочлена оператора от выбора базиса.

Опр

$$A \in M_n(K)$$

Характеристический многочлен А

$$\det(A - tE) = \mathcal{X}_A(t)$$

$$\begin{vmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & \ddots & & & & \\ \vdots & & \ddots & & & \\ a_{n1} & & & a_{nn} - t \end{vmatrix} = (-1)^n t^n + (-1)^{n-1} (a_{11} + \dots + a_{nn}) t^{n-1} + \dots + \det A$$

$$V$$
 - в.п. $\dim V=n<\infty$ $v_1,...,v_n$ - базис V $f\in \mathrm{End}\;(V)$ $A=[f]_{\{v_i\}}$ - матрица оператора в базисе $v_1,...,v_n$ $\mathcal{X}_f(t)=\mathcal{X}_A(t)$

Лемма

Характеристический многочлен f не зависит от выбора базиса в V

Док-во

$$v_1,...,v_n$$
 - базисы V — матрица преобр. координат при переходе от $\{v_i\}\{v_i'\}$ $A=[f]_{\{v_i\}}$ $A'=[f]_{\{v_i'\}}$ $A'=C'AC$ (A и A' сократимы при помощи C) $?\mathcal{X}_{A'}(t)=\mathcal{X}_{A}(t)$ $\mathcal{X}_{A'}(t)=\det(C^{-1}AC-tE)=\det(C^{-1}AC-C^{-1}(tE)C)=$ $=\det(C^{-1}(A-tE)C)=\det(C^{-1})\cdot\det(A-tE)\cdot\det(C)=$ $=\det(A-tE)=\mathcal{X}_{A}(t)$

52. Собственные числа и собственные векторы оператора и матрицы. Собственные числа как корни характеристического многочлена

Опр

$$f\in \mathrm{End}(V)$$
 $\lambda\in K$ λ - собственное число f , если $\exists v\neq 0;$ $v\in V: f(v)=\lambda\cdot v$ Если λ - собс. число f $v\in V$ $f(v)=\lambda v$, то v - собс вектор

Опр

$$\lambda$$
 - с.ч. $f \Rightarrow V_{\lambda} = \{v : f(v) = \lambda v\}$

Поэтому удобно 0 считать с.в.

Опр

$$A \in M_n(K)$$

$$\lambda$$
 - с.ч A , если $\exists v
eq egin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in K^n : A_n = \lambda_n$

Теорема

$$A \in M_n(K)$$

$$\lambda \in K$$
 - с.ч. $A \Leftrightarrow \lambda$ - корень $\mathcal{X}_A(t)$

Док-во

$$\exists v \neq 0 \quad Av = \lambda v$$

$$(A - \lambda E) v = 0$$

Рассмотрим коэф. столбца V как неизвестные

$$\lambda$$
 - с.ч. $A\Leftrightarrow (A-\lambda E)v=0$ - имеет нетривиальный ранг $\Leftrightarrow \det(A-\lambda E)=0 \Leftrightarrow \mathcal{X}_A(\lambda)=0 \Leftrightarrow \lambda$ - корень $\mathcal{X}_A(t)$

Следствие

$$\dim V = n < \infty \quad f \in \operatorname{End}(V)$$

$$\lambda \in K$$
 - с.ч. $f \Leftrightarrow \lambda$ - корень $\mathcal{X}_f(t)$

Док-во

Фиксируем базис $v_1, ..., v_n$

$$f o [f]=A$$
 $v o egin{pmatrix} a_1\ dots\ a_n \end{pmatrix}=[v]$ $\Leftrightarrow v$ - с.в. f , отвеч. λ $egin{pmatrix} a_1\ dots\ a_n \end{pmatrix}$ - с.в. A , отвеч. A

53. Теорема Гамильтона-Кэли.

Теорема

$$A \in M_n(K)$$
 $\mathcal{X}_A(A) = O_{M_n(K)}$

54. Диагонализируемые операторы. Критерий диагонализируемости. Примеры недиагонализируемых операторов

Опр

$$V$$
 - в.п. над $K - \dim V = n < \infty$
$$\varphi \in \operatorname{End}(V)$$

 φ - диагонализируем, если \exists базис V, в котором матрица φ - диагональна

Теорема

$$V$$
 - в.п. $\dim V = n < \infty$ $\varphi \in \operatorname{End}(V)$

 φ - диагонализируем $\Leftrightarrow \exists$ базис V, состоящий из собс. векторов φ

Док-во

$$\Rightarrow v_1, \dots, v_n \text{ - базис}$$

$$[\varphi]_{\{v_i\}} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

$$\varphi(v_i) = \lambda_i v_i \quad v_i \neq 0 \Rightarrow v_i \text{ - с.в.}$$

$$\Leftarrow v_1, \dots, v_m \text{ - базис из с. в. } \varphi$$

$$\varphi(v_i) = \lambda_i v_i \quad \lambda \in K$$

$$\varphi(v_i) = 0 \cdot v_1 + \dots + 0 \cdot v_{i-1} + \lambda_i v_i + 0 \cdot v_{i+1} + \dots$$

$$[\varphi]_{\{v_i\}} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & & \lambda_n \end{pmatrix}$$

Пример

$$V=\mathbb{C}^2$$
 $arphi(x)=A\cdot x$ $A=egin{pmatrix} 0&1\0&0 \end{pmatrix}$ $\mathcal{X}_{arphi}(t)=\mathcal{X}_A(t)=t^2$ с.ч $\lambda=0$ $Ax=0$

 $\operatorname{rk} A = 1$ 2 перем \Rightarrow пр-во решений одномерно

 \Rightarrow все с.в. лежат в одномерном пр-ве \Rightarrow непорожд \mathbb{C}^2

⇒ не диагонализ.

Пример

$$V = K[x]_n = \{ f \in K[x]; \deg f \leqslant n \}$$

$$\operatorname{Char} K = 0$$

$$\varphi = \frac{\partial}{\partial x} \qquad \varphi(f) = f'$$

c.ч.
$$\lambda = 0$$

с.в. пр. : константы

$$\dim V = n+1 \quad (n\geqslant 1\Rightarrow \varphi$$
 - не диагонализ)

58. Жорданова форма оператора. Жорданов базис. Формулировка теоремы о жордановой форме оператора. Сведение к случаю оператора с единственным собственным числом.

Опр

$$\lambda \in K$$

$$\mathfrak{J}(\lambda) = \begin{pmatrix} \lambda & & 0 \\ 1 & \ddots & \\ & \ddots & \ddots \\ 0 & & 1 & \lambda \end{pmatrix}$$
 - жордан. клетка размера n отвечающей λ

A - жорд. матрица, если A - блочно диаг, а диг. блоки - жорд. клетки

$$\mathfrak{J}_1 = (\lambda)$$
 $\mathfrak{J}_2 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$

$$A = \begin{pmatrix} \mathfrak{J}_{m1}(\lambda_1) & & 0 \\ & \mathfrak{J}_{m2}(\lambda_2) & & \\ & & \ddots & \\ 0 & & \mathfrak{J}_{mk}(\lambda_k) \end{pmatrix}$$

Теорема (1)

$$K$$
 - алг. замк. V , $\dim V = n < \infty$ $\varphi \in \operatorname{End}(V)$

Тогда \exists базис пр-ва V, в котором матрица φ является жордановой матрицей. Причем клетки опред. однозначно с точностью до перестановки диаг. блоков