定理(演绎定理):对PC中任意公式集合 Γ 公式 $A, B, \Gamma \cup \{A\} \vdash B$ 当目仅当 $\Gamma \vdash A \rightarrow B$

证明: 充分性) 已知 $\Gamma \vdash A \rightarrow B$ 往证 $\Gamma; A \vdash B$ 有演绎过程 $A_1, A_2, \cdots, A_m (= A \rightarrow B)$ 在此序列中加上公式

必要性) 已知 Γ ; $A \vdash B$ 往证 $\Gamma \vdash A \to B$

对 Γ ; $A \vdash B$ 的演绎序列的长度1用归纳法。

A, B 得到一个以 $\Gamma; A$ 为前提对 B 的演绎过程。

当1=1时。序列中只有 B 。或者 B 为公理或者为假设中的元素 $B \in \Gamma$; A从而(1) B为公理。(2) $B \in \Gamma$ (3) B = A

对(1)有 $B, B \rightarrow (A \rightarrow B), A \rightarrow B$ 构成了一个证明,从而 $\Gamma \vdash A \rightarrow B$

对(2)有 $B, B \rightarrow (A \rightarrow B), A \rightarrow B$ 构成了一个以 Γ 为前提对 $A \rightarrow B$

的演绎过程,从而 $\Gamma \vdash A \rightarrow B$

对(3)由A = B知 $\vdash A \rightarrow B$ 从而 $\Gamma \vdash A \rightarrow B$.

假设当演绎序列的长度比1小时结论成立。长度为1时,演绎序列为

 $A_1, A_2, \cdots, A_l (= B)$ 观察 B。 如果 B 为公理或者为假设中的元素,可仿照 1=1时的情形证明结论成立。如果 $B=A_j$ 则由于 $\Gamma;A\vdash A_j$ 由于 j< l 知 $\Gamma \vdash A \rightarrow A_j$ 即 $\Gamma \vdash A \rightarrow B$ 。 如果 B 为 $A_j, A_k(j, k < l)$ 用分离规则导出。不妨设 $A_k = A_j \rightarrow B$ 由于 $\Gamma; A \vdash A_j, \Gamma; A \vdash A_j \rightarrow B$ 有 $\Gamma \vdash A \rightarrow A_j$

 $\Gamma \vdash A \rightarrow (A_j \rightarrow B)$ 此两序列加上公式 $(A \rightarrow (A_j \rightarrow B)) \rightarrow ((A \rightarrow A_j) \rightarrow (A \rightarrow B))$