

Non-cyanobacterial diazotrophs dominate dinitrogen fixation in biological soil crusts at the early stage of crust formation.

Charles Pepe-Ranney 1, Chantal Koechli 1, Ruth Potrafka 2, Ferran Garcia-Pichel 2, Daniel H Buckley 1,*

 1 Cornell University, Department of Crop and Soil Sciences, Ithaca, NY, USA

Correspondence*:

Daniel H Buckley

Cornell University, Department of Crop and Soil Sciences, Ithaca, NY, USA,

ABSTRACT

Biological soil crusts (BSC) cover a vast global area and are key components of ecosystem productivity in arid soils. In particular, BSC contribute significantly to the nitrogen (N) budget in arid ecosystems

via N2-fixation. N2-fixation in mature crusts is largely attributed to heterocystous cyanobacteria,

however, early successional crusts are dominated by non-heterocystous cyanobacteria and this suggests

that microorganisms other than cyanobacteria mediate N2-fixation during the early stages of BSC

development. DNA stable isotope probing (DNA-SIP) with 15 N₂ revealed that *Clostridiaceae* and *Proteobacteria* are the most common microorganisms to assimilate 15 N in early successional 'light' crusts. 7

Incorporation of ¹⁵N₂by cyanobateria was not observed through cyanobacteria were dominant in the

crust sample. The maximum relative abundance of $^{15}N_2$ -assimilating taxa in the BSC was 0.00225% and 10

0.00127% for taxa that belong to *Clostridiaceae* and *Proteobacteria*, respectively. Their low abundance

in the BSC may explain why these heterotrophic diazotrophs have not previously been characterized in 12

BSC. Diazotrophs play a critical role in BSC formation and characterization of these organisms represents

a crucial step towards understanding how antropogenic change will effect the formation and ecological

function of BSC in arid ecosystems.

2 INTRODUCTION

Biological soil crusts (BSC) are specialized microbial mat communitites that form at the soil surface in

17 arid environmets and fill a variety of important ecological functions in arid ecosystems. BSC occupy plant

interspaces and cover a wide, global geographic range (Garcia-Pichel et al., 2003b). The ground cover 18

of BSC on the Colorado Plateau has been measured as high as 80% by remote sensing (Karnieli et al., 19

2003). The global biomass of BSC Cyanobacteria alone is estimated at 54 x 1012 g C (Garcia-Pichel 20

et al., 2003b). BSC play important roles in arid ecosystem productivity and are responsible for significant 21

nitrogen (N) flux (for review of BSC N-fixation see Belnap (2003)). For example, N-input via N-fixation 22

versus atmospheric depositon was predominant in five times as many BSC samples from North America, 23

Africa and Australia (Evans and Belnap, 1999). The presence of BSC is positively correlated with vascular 24

plant survival due in part to BSC ecosystem N contributions (for review of BSC-vascular plant interactions

see Belnap et al. (2003)). Climate change and disturbance alter BSC microbial community structure and

membership and therefore can alter diazotroph diversity and the BSC N-budget.

 $^{^2}$ Arizona State University, School of Life Sciences, Tempe, AZ 85287, USA.

28

29

30

31

33

34

35

36 37

38

39 40

41

42

43

45

46

47

48

49 50

51 52

53

54

55 56

57

58

59

60 61

62

63

65

66

67

68 69

70

71

72

73 74

75

77

78

BSC N-fixation rate studies (typically employing the acetylene reduction assay (ARA)) have explored BSC diazotroph activity across various ecological gradients. Reported BSC N-fixation rates vary significantly (Evans and Lange, 2001). The reasons for this variability are complex and likely include the spatial heterogeneity of BSC (Evans and Lange, 2001) and the impact of recent environmental conditions on N-fixation rates (see Belnap (2001) for discussion). Moreover, the ARA assay is subject to methodological artifacts that preclude cross-study and possibly intra-study but inter-environment type comparisons (see Belnap (2001) for review). Nonetheless, mature BSC N-fixation rate measurements have been higher than younger, developing BSC N-fixation rate measurements (Belnap, 2002; Yeager et al., 2004). This difference may be due to the proliferation of heterocystous Cyanobacteria in older mats and is consistent with the theory that heterocystous Cyanobacteria are the primary BSC diazotrophs. Alternatively, the N-fixation rate differences between young and old BSC might be attributable to methodological artifacts. For instance, Johnson et al. (2005) show that N-fixation rates peak at a lower depth in developing BSC as compared to mature BSC. When N-fixation is measured from intact cores of developing BSC the measurement may be artifactually low due to delayed acetylene/ethylene diffusion through the crust to and from the peak N-fixation rate depth in a typical ARA incubation timeframe. Diffusion would not be an issue when measuring N-fixation rates in mature crust as nitrogenase activity peaks near the surface. When total N-fixation rates were calculated by integrating rates over 1-3 mm depth slices along full BSC cores (thus mitigating ethene/acetylene flux limitations), N-fixation rate differences between developing and mature BSC were not statistically significant (Johnson et al., 2005).

Molecular studies of BSC microbial diversity include explorations of the BSC microbial community vertical profile (Garcia-Pichel et al., 2003a), BSC nifH gene content surveys (e.g. Yeager et al. (2004), Yeager et al. (2012), Yeager et al. (2006) and Steppe et al. (1996)), and next-generation-sequencing (NGS) enabled studies of BSC SSU rRNA gene content across wide geographic ranges (Garcia-Pichel et al., 2013; Steven et al., 2013). nifH surveys have been conducted across BSC development stages (Yeager et al., 2004), as well as across seasons, temperatures and precipitation gradients (Yeager et al., 2012). Mature, more fully developed BSC possess greater numbers of heterocystous Cyanobacteria (e.g. Nostoc, Syctonema) than developing BSC but both young and old BSC are dominated by non-heterocystous Cyanobacteria (Microcoleus vaginatus or M. steenstrupii) (Yeager et al., 2004; Garcia-Pichel et al., 2013). Young or recently disturbed BSC are often described as "light" in appearance relative to "dark" mature BSC (Belnap, 2002; Yeager et al., 2004). Heterocystous Cyanobacteria are the numerically dominant BSC diazotrophs in nifH clone libraries (Yeager et al., 2006, 2004, 2012) although an early survey of Colorado Plateau BSC nifH diversity recovered nifH genes related to Gammaproteobacteria as well as a clade that included nifH genes from the anaerobes Clostridium pssteurianum, Desulfovibrio gigas and Chromatium buderi, Specifically, Yeager et al. (2006)-in a study of overall BSC nifH diversitycategorized 89% of 693 nifH sequences derived from Colorado Plateau and New Mexico BSC samples as heterocystous cyanobacterial (non-cyanobacterial nifH sequences were largely attributed to alphaand beta-proteobacteria). The heterocystous cyanobacterial BSC diazotrophs fall into three genera, Scytonema, Spirirestis, and Nostoc (Yeager et al., 2006, 2012).

The influence of microbial community membership and structure on BSC N-fixation is an ongoing research question (Belnap, 2013). While the presence/abundance of heterocystous *Cyanobacteria* has been proposed as the mechanism behind increased N-fixation in mature BSC, it is unclear if mature BSC actually fix more N (see Johnson et al. (2005)). More studies are necessary to elucidate the microbial membership influence on BSC N-fixation and to determine if heterocystous *Cyanobacteria* are the only keystone diazotrophs. The first step in defining structure function relationships with respect to N-fixation is a full accounting of BSC diazotrophs. Towards this end we conducted ¹⁵N₂ DNA stable isotope probing (DNA-SIP) experiments with light, developing Colorado Plateau BSC. DNA-SIP with ¹⁵N₂ has not been attempted with BSC. DNA-SIP would provides an accounting of *active* diazotrophs whereas *nifH* clone libraries account for microbes with the genomic potential for N-fixation. Further, we track the distribution of putative diazotrophs uncovered in this study through collections of NGS SSU rRNA libraries from BSC microbial diversity surveys over a range of spatial scales and soil types (Garcia-Pichel et al., 2013; Steven et al., 2013).

3 RESULTS

3.1 ORDINATION OF CSCL GRADIENT FRACTION SSU RRNA LIBRARIES

BSC were incubated for 4 days in the presence or absence of $^{15}N_2$ and DNA was extracted for DNA-SIP at 2 and 4 days. Fractionation of CsCl gradients permitted separation of DNA on the basis of buoyant density. Ordination of Bray-Curtis (Bray and Curtis, 1957) distances beteen SSU-rRNA amplicon 81 sequence collections from gradient fractions reveals that labeled gradient fraction (i.e. gradient fractions 82 of DNA from ¹⁵N₂ incubations) sequence collections diverge from control (i.e. DNA from incubations 83 without ¹⁵N₂) at the "heavy" of the CsCl gradients (Figure 2). Although the density position of gradient 84 fractions from different gradients do not match perfectly, fraction pairs from corresponding control versus 85 86 labeled gradients can be constructed by pairing control gradient fractions with their closest density 87 neighbors/fractions from corresponding labeled gradients. If a gradient fraction did not have a mate within a density difference of 0.003 g/mL it remained unpaired. Bray-Curtis distance between the fraction 88 pairs is positively correlated to the density of the labeled fraction (p-value: 0.00052, r²: 0.3315) (inset Figure 2). Additionally, differences among label/control groups with heavy fractions are statistically 89 90 significant by the Adonis test (p-value: 0.001, r²: 0.136) (Anderson, 2001). The first principal axis appears to be correlated with fraction density (Figure 2) and the Adonis test p-value for density versus pairwise 92 Bray-Curtis distances with all CsCl fraction libraries is 0.001 (r² 0.117).

3.2 IDENTITIES OF OTUS RESPONSIVE TO $^{15}\mathrm{N}_2$

A statistically significant increase in OTU abundance in heavy fractions of ¹⁵N₂ labeled samples relative 94 to corresponding gradient fractions from controls provides evidence for OTUs that have incorporated 95 ¹⁵N into their DNA. Specifically, we compared OTU proportion means between labeled and control 96 samples from heavy gradient fractions using statistics developed to find differentially expressed genes with 97 98 RNASeq data (CITE McMurdie and DESeq2). p-values were adjusted by the BH method CITE and we used a false discovery rate (FDR) cutoff of 0.10 (typical FDR threshold in gene expression data analysis, 99 CITE DESeq2) to reject the null hypothesis that labeled versus control proportion mean differences were 100 below a chosen threshold (see methods). With the above methods 38 OTUs had labeled versus control 101 102 proportion mean difference p-values below 0.10 for one or both incubation days. These OTUs likely to incorporated ^{15}N into DNA ($^{15}N_2$ "responders"). Of these 38, 26 are annotated as Firmicutes, 9 103 as Proteobacteria, 2 as Acidobacteria and 1 as Actinobacteria (Figure 3). If the OTUs are ranked by 104 descending, moderated proportion mean labeled:control ratios, the top 10 ratios (i.e. the 10 OTUs that 105 106 were most enriched in the labeled gradients considering only heavy fractions) are either Firmicutes (6 OTUs) or *Proteobacteria* (4 OTUs) (Figure 4). *Proteobacteria* OTU centroid sequences for the top 10 107 responders all share high identity (>98.48% identity, Table 1) with cultivars from genera known to possess 108 diazotrophs including Klebsiella, Shigella, Acinetobacter, and Ideonella. None of the Firmicutes OTUs 109 110 in the top 10 responders share greater than 97% sequence identity with sequences in the LTP database (release 115) (see Table 1).

3.3 COMPARISON OF SEQUENCE COLLECTIONS AT "STUDY"-LEVEL

3.3.1 Comparisons of OTU content: There were 3,079 OTUs (209,354 total sequences after quality control) in the DNA-SIP data, 3,203 OTUs (129,033 total sequences after quality control) in the Garcia-Pichel et al. (2013) study, and 2,481 OTUs (129,358 total sequences after quality control) in the Steven et al. (2013) study. Of the 4,340 OTU centroids established for this study (including sequences from Steven et al. (2013) and Garcia-Pichel et al. (2013)) 445 have matches in the Living Tree Project (LTP) (a collection of 16S gene sequences for all sequenced type strains (Yarza et al., 2008)) at greater or equal than 97% (LTP version 115). That is, 445 of 4,340 are closely related to cultivars. The DNA-SIP data set shares 56% OTUs with the Steven et al. (2013) data and 46% of OTUs with the Garcia-Pichel et al.

- 120 (2013) data (where total OTUs are from the combined data for each pairwise comparison). The Steven et al. (2013) and Garcia-Pichel et al. (2013) share 46% of OTUs.
- 122 3.3.2 Comparisons of Taxonomic Content: Cyanobacteria and Proteobacteria were the top two
- 123 phylum-level sequence annotations for all three studies but only the DNA-SIP data had more
- 124 Proteobacteria annotations than Cyanobacteria. Proteobacteria represented the 29.8% of sequence
- annotations in DNA-SIP data as opposed to 17.8% and 19.2% for the Garcia-Pichel et al. (2013) and
- 126 Steven et al. (2013) data, respectively. There is a stark contrast in the total percentage of sequences
- annotated as Firmicutes between the raw environmental samples and the DNA-SIP data. Firmicutes
- represent only 0.21% and 0.23% of total phylum level sequence annotations in the Steven et al. (2013)
- and Garcia-Pichel et al. (2013) studies, respectively (Figure 1). In the DNA-SIP sequence collection
- 130 *Firmicutes* make up 19% of phylum level sequence annotations. Also in sharp contrast for the DNA-
- 131 SIP versus environmental data is the number of putative heterocystous *Cyanobacteria* sequences. Only
- 132 0.29% of Cyanobacteria sequences in the DNA-SIP data are annotated as belonging to "Subsection IV"
- which is the heterocystous order of Cyanobacteria in the Silva taxonomic nomenclature (Pruesse et al.,
- 134 2007). In the Steven et al. (2013) and Garcia-Pichel et al. (2013) studies 15% and 23%, respectively, of
- 135 Cyanobacteria sequences are annotated as belonging to "Subsection IV".

3.4 DISTRIBUTION OF BSC DIAZOTROPHS IN ENVIRONMENTAL SAMPLES

- 136 3.4.1 Clostridiacea: Five of the 6 Firmicutes in the top 10 responder OTUs (above) belong in
- 137 the Clostridiacea. We only observed one of these strongly responding Clostridiaceae in the data
- 138 presented by Garcia-Pichel et al. (2013), "OTU.108" (closest BLAST hit in LTP Release 115 -
- 139 Caloramotor proteoclasticus, BLAST %ID 96.94, Accession X90488). OTU.108 was found in two
- samples both characterized as "light" crust. One other *Clostridiaceae* OTU with a proportion mean ratio
- (labeled:control) p-value less than 0.10 but outside the top 10 responders was found in the Garcia-Pichel
- et al. (2013) data (a "light" crust sample). None of the strongly responding *Clostridiacea* were found in the
- sequences provided by Steven et al. (2013). *Clostridiaceae* ¹⁵N-responder OTU centroid 16S sequences
- are generally more closely related to environmental than cultivar 16S gene sequences.
- 145 3.4.2 Proteobacteria: One of the Proteobacteria OTUs in the 10 most strongly responding OTUs was
- 146 found in the Garcia-Pichel et al. (2013) sequences (closest BLAST hit in LTP Release 115, BLAST %ID
- 147 100, Accession ZD3440, Acinetobacter johnsonii). None of the strongly responding Protebacteria OTUs
- 148 were found in the Steven et al. (2013) sequences. There were 133 responder OTU-sample occurrences
- (responder OTU was found in a sample library) in the Steven et al. (2013) data. 83 were in "below crust"
- 150 samples, 50 in BSC samples.
- 151 3.4.3 Other taxa: Two ¹⁵N-responsive OTUs were found in an extensive number of environmental
- 152 samples (61 of 65 samples from the combined data sets of Garcia-Pichel et al. (2013) and Steven et al.
- 153 (2013)). Both OTUs were annotated as Acidobacteria but shared little sequence identity to any cultivar
- 154 SSU rRNA gene sequences in the LTP (Release 115), with best LTP BLAST hits of 81.91 and 81.32%
- identity. Additionally, the evidence for 15 N incorporation for each OTU was weak relative to other putative
- responders (adjusted p-values of 0.090 and 0.096). Of the remaining 36 stable isotope responder OTUs,
- only 14 were observed in the environmental data. Figure 6 summarizes the OTU-sample occurrences in
- both the Steven et al. (2013) and the Garcia-Pichel et al. (2013) data with occurrences distributed into the
- 159 most relevant sample classes of each study.

DISCUSSION

STUDY-LEVEL DIFFERENCES

- SIP places focus upon organisms based on isotope incorporation and has the ability to detect activity by
- low abundance members of the community. DNA from OTUs that incopororate ¹⁵N into their biomass 161
- moves towards the heavy end of the CsCl gradient and therefore OTUs in "labeled" DNA are enriched
- in the full data pool relative to bulk DNA. Phylum-level taxonomic annotations such as Firmicutes and 163
- Proteobacteria of ¹⁵N-responsive OTUs are enriched in the DNA-SIP data relative to environmental data 164
- 165 (Figure X).

174

175

176

4.2 ORDINATION OF CSCL GRADIENT FRACTION 16S RRNA GENE SEQUENCE COLLECTIONS

- The ordination of Bray-Curtis distances between CsCl gradient fraction 16S sequence collections show 166
- that control fractions differ from labeled fractions in the "heavy" range of the CsCl gradients (Figure 2). 167
- If each control fraction is paired to the labeled fraction from the same incubation day for which it is 168
- 169 closest in density, there is a positive and statistically significant correlation between Bray-Curtis distances
- 170 within fraction pairs and density of the pair (see inset Figure 2). Therefore, the "heavy" end of the control
- and labeled gradients differ and the OTUs enriched in the labeled fractions (relative to control) would 171
- have incorporated ¹⁵N into their DNA during the incubation timeframe. If the incubation timeframe is 172

BSC N-fixation has long been attributed to heterocystous Cyanobacteria and molecular microbial ecology surveys of BSC nifH gene content have been consistent with this hypothesis finding cyanobacterial nifH

types to be numerically dominant in *nifH* gene libraries (Yeager et al., 2006, 2004, 2012). Even poorly

appropriate, the ¹⁵N-incorporators would most likely have incorporated the ¹⁵N from atmospheric ¹⁵N₂.

BSC DIAZOTROPHS IDENTIFIED IN THE STUDY

- 177 developed BSC samples have yielded predominantly cyanobacterial nifH genes (Yeager et al., 2004). And, "sub-biocrust" samples have yielded entirely heterocystous cyanobacterial nifH genes (Yeager 178 et al., 2012). It is possible, however, that PCR-driven molecular surveys of nifH gene content have 179 been biased against non-heterocystous Cyanobacteria. In general the nifH PCR primers used by Yeager 180 et al. (2006, 2004, 2012) (19F and nifH3) for the first round of nested PCR have broad specificity and 181 display at least 86% in silico coverage for Proteobacteria, Cyanobacteria and "Cluster III" nifH reference 182 sequences (Gaby and Buckley, 2012). In the second round of the nested PCR protocol (Yeager et al., 183 184 2006, 2004, 2012), primer nifH11 is slightly biased against "Cluster III" (50% coverage) but biased in favor of Proteobacteria (79% in silico coverage against 67% for Cyanobacteria) and nifH22 matches 185 Proteobacteria, Cyanobacteria and "Cluster III" reference sequences poorly (16%, 23% and 21% in silico 186 coverage, respectively) (Gaby and Buckley, 2012). Unfortunately, it is difficult to assess or quantify this 187 bias (in either direction) without knowing the *nifH* gene content *de novo*. Another potential bias in favor of 188 189
 - Cyanobacteria in BSC nifH gene libraries is heterocysts (the specialized N-fixing cells along the trichome
- 190 of filamentous heterocystous Cyanobacteria such as Nostoc and Scytonema) may be overrepresented
- with respect to non-cyanobacterial diazotrophs because heterocysts make up a fraction cells along a 191
- trichome and even non-heterocyst cells in a trichome will possess the *nifH* gene. Polyploidy could further 192
- exacerbate this bias, as many Cyanobacteria are estimated to have multiple genome copies per cell (Griese 193 et al., 2011). Moreover, it should also be noted that nifH gene content is not directly extrapolable to 194
- the taxonomic relative abundances of nitrogenase proteins. Regardless, our results suggest that BSC N-195
- fixation may include a significant non-cyanobacterial component that requires further assessment across 196
- a more comprehensive sampling of BSC types. 197
- We did not observe evidence for N-fixation by heterocystous Cyanobacteria in the "light" crust samples 198 used in this study. One possible explanation for our results is that the "light", still developing BSC samples 199

used in this study possessed too few heterocystous *Cyanobacteria* to statistically evaluate their ¹⁵N-incorporation. Indeed, only 0.29% of sequences from this study's DNA-SIP 16S rRNA gene sequence libraries were from heterocystous *Cyanobacteria* (see results) as opposed to 15% and 23% of total sequences in the Steven et al. (2013) and Garcia-Pichel et al. (2013) data, respectively. It is difficult to compare relative abundance values from CsCl gradient fractions against environmental libraries, but, a three order of magnitude difference between the environmental libraries and the CsCl gradient fractions is stark. Nonetheless, we would still expect even low abundance diazotrophs to show evidence for ¹⁵N-incorporation, provided sequence counts were not too sparse in heavy fractions. The OTUs defined by selected heterocystous *Cyanobacteria* sequences presented in Yeager et al. (2006), however, all fall below the sparsity threshold used in our analysis (see methods, Figure 10). Given the sparsity of heterocystous *Cyanobacteria* sequences in the DNA-SIP data set, it is not possible to assess whether heterocystous *Cyanobacteria* incorporated ¹⁵N during the incubation. It should be noted that "light" and in particular "sub-biocrust" samples possess much less heterocystous *Cyanobacteria* in general (Figure 8) so the samples used in this study are not necessarily unrepresentative of typical poorly developed BSC simply because they are lacking heterocystous *Cyanobacteria*.

The OTUs that did appear to incorporate ¹⁵N during the incubation were predominantly *Proteobacteria* and *Firmicutes*. The *Proteobacteria* OTUs for which ¹⁵N-incorporation signal was strongest all shared high sequence identity (>=98.48% sequence identity) with 16S sequences from cultivars in genera with known diazotrophs (Table 1). The *Firmicutes* that displayed signal for ¹⁵N-incorporation (predominantly *Clostridiaceae*) were not closely related to any cultivars (Table 1, Figure 5). These BSC *Clostrodiaceae* diazotrophs represent a gap in culture collections. As culture-based ecophysiological studies have proven useful towards explaining ecological phenomena in BSC 16S rRNA gene sequence libraries (Garcia-Pichel et al., 2013), it would seem that these putative *Clostridiaceae* diazotrophs would be prime candidates for targeted culturing efforts. Assessing the physiological response of these diazotrophic *Clostridiaceae* to temperature would be useful for predicting how climate change will affect the BSC nitrogen budget.

This would be place to mention that C. pasteuranium was firs known diazotroph, isolated from soil by Wintogradsky. Also the place to mention cyanobacterial compatible solutes and their dynamics in relation to wetting of dry soil. This relates to spore formes with a boom-bust ecology.

Although too undersampled in the environmental data sets to reach statistical conclusions, ¹⁵N-responsive OTUs were found more often in below crust samples (as opposed to BSC samples) in the Steven et al. (2013) data and in "light" BSC samples in the Garcia-Pichel et al. (2013) data (Figure 6). This result generates some hypotheses that are counter to prior discussions regarding BSC diazotroph temporal dynamics (keeping in mind this phenomenon has not been evaluated statistically). Specifically, the transition of BSC from a light colored, developing crust to a dark, mature crust may not mark the *emergence* of diazotrophs in BSC but rather the *transition* of the diazotroph community from heterotroph dominance to cyanobacterial. Additionally, the soil beneath BSC may contribute significantly to the N budget in arid ecosystems.

4.4 SEQUENCING DEPTH

Rarefaction curves of all samples from Steven et al. (2013) and Garcia-Pichel et al. (2013) are still sharply increasing especially for "below crust" samples (Figure 9). Parametric richness estimates of BSC diversity indicate the Steven et al. (2013) and Garcia-Pichel et al. (2013) sequencing efforts recovered on average 40.5% (sd. 9.99%) and 45.5% (sd. 11.6%) of existing 16S OTUs from samples (inset Figure 9), respectively. Further, the Steven et al. (2013) and Garcia-Pichel et al. (2013) sequence collections only share 57.6% of total OTUs found in at least one of the studies. In fact, this study shares more OTUs with Steven et al. (2013), 62.4% of OTUs in the combined data, than the Steven et al. (2013) study shares with Garcia-Pichel et al. (2013). Therefore, is not alarming that few of the ¹⁵N-responsive OTUS were

- found by Garcia-Pichel et al. (2013) and Steven et al. (2013), it is important to point out that even next-246
- 247 generation sequencing efforts of BSC 16S rRNA genes have only shallowly sampled the full diversity of
- 248 BSC microbes.

CONCLUSION 4.5

Heterocystous Cyanobacteria are key contributors to the BSC N-budget, but, the putative diazotrophs 249 250 elucidated in this study and in Steppe et al. (1996) in addition to the N-fixation rate data presented by 251 (Johnson et al., 2005) suggest there may be significant non-cyanobacterial BSC diazotrophs specifically within the Clostrideaceae and Proteobacteria. It seems clear that heterocystous Cyanobacteria increase 252 253 in abundance with BSC age (Yeager et al., 2004). It is less clear if this transition marks the emergence of diazotrophy versus a re-structuring of the BSC diazotroph community from one dominated by *Firmicutes* 254 and Proteobacteria to one predominantly heterocystous Cyanobacteria. DNA-SIP is a valuable tool in 255 256 the molecular microbial ecologist's toolbox for identifying members of microbial community functional guilds (Neufeld et al., 2007). PCR-based surveys of diagnostic marker genes and DNA-SIP are both used 257 258 to connect microbial phylogenetic types to microbial activities, but they occupy a non-overlapping set of strengths and weaknesses. Combined these tools can powerfully reveal connections between ecosystem 259 260 membership/structure and function. Here we supplement previous surveys of BSC nifH diversity, a diagnostic marker PCR-driven approach, with $^{15}N_2$ DNA-SIP, and, while we do not confirm previous 261 results, we expand knowledge of BSC diazotroph diversity. Predicting BSC N-fixation with respect to 262 climate change, althered precipitation regimes and physical disturbance requires a careful accounting of 263 264 diazotrophs including non-cyanobacterial types.

MATERIALS AND METHODS

BSC SAMPLING AND INCUBATION CONDITIONS

- Light crust samples (37.5 cm², average mass 35 g) were incubated in sealed chambers under controlled 265 atmosphere and in the light for 4 days. Crusts were dry prior to time zero and were wetted at initiation of 266
- experiment. Treatments included control air (unenriched headspace) and enriched air (>98% atom $^{15}N_2$) 267
- headspace. Samples were taken at 2 days and 4 days incubation. Acetylene reduction rates were measured 268
- daily. DNA was extracted from 1 g of crust. Samples were taken from Green Butte, Arizona as previously 269
- described (site CP3, Beraldi-Campesi et al. (2009)). All samples were from light crusts as described by 270
- 271 Johnson et al. (2005).

5.2 DNA EXTRACTION

- 272 DNA from each sample was extracted using a MoBio PowerSoil DNA Isolation Kit (following
- manufacturers protocol, but substituting a 2 minute bead beating for the vortexing step), and then gel 273
- purified. Extracts were quantified using PicoGreen nucleic acid quantification dyes (Molecular Probes).

5.3 DNA-SIP

- 275 Gradient density centrifugation of DNA was undertaken in 4.7 mL polyallomer centrifuge tubes in a
- TLA-110 fixed angle rotor (both Beckman Coulter) in CsCl gradients with an average density of 1.725 276
- g/mL. Average density for all prepared gradients was checked with an AR200 refractometer before runs. 277
- Between 2.5-5 μ g of DNA extract was added to the CsCl solution, and gradients were run under conditions 278
- of 20C for 67 hours at 55,000 rpm (Lueders et al., 2004) CITE. Centrifuged gradients were fractionated 279
- 280
- from bottom to top in 36 equal fractions of 100 μ L, using a by syringe pump as described Manefield et
- 281 al. (2002). The density of each fraction was determined using using an AR200 refractometer modified to

accomidate 5ul samples CITE. DNA in each fraction was desalted through four washes with 300 μ L TE per fraction.

5.4 PCR, LIBRARY NORMALIZATION AND DNA SEQUENCING

Barcoded PCR of bacterial and archaeal 16S rRNA genes, in preparation for 454 Pyrosequencing, was 284 285 carried out using primer set 515F/806R (Walters et al., 2011) (primers purchased from Integrated DNA Technologies). The primer 806R contained an 8 bp barcode sequence, a "TC" linker, and a Roche 454 286 B sequencing adaptor, while the primer 515F contained the Roche 454 A sequencing adapter. Each 25 287 μ L reaction contained 1x PCR Gold Buffer (Roche), 2.5 mM MgCl₂, 200 μ M of each of the four dNTPs 288 (Promega), 0.5 mg/mL BSA (New England Biolabs), 0.3 μM of each primers, 1.25 U of Amplitaq Gold 289 (Roche), and 8 μ L of template. Template for each sample was added at normalized amounts in an attempt 290 291 to prevent chimera formation, and each sample was amplified in triplicate. Thermal cycling occurred with an initial denaturation step of 5 minutes at 95C, followed by 40 cycles of amplification (20s at 292 95C, 20s at 53C, 30s at 72C), and a final extension step of 5 min at 72C. Triplicate amplicons were 293 pooled and purified using Agencourt AMPure PCR purification beads, following manufacturers protocol. 294 Once cleaned, amplicons were quantified using PicoGreen nucleic acid quantification dyes (Molecular 295 296 Probes) and pooled together in equimolar amounts. Samples were sent to the Environmental Genomics Core Facility at the University of South Carolina (now Selah Genomics) to be run on a Roche FLX 454 297 298 pyrosequencing machine.

5.5 DATA ANALYSIS

299 Sequence quality control Sequences were initially screened by maximum expected errors at a specific read length threshold (Edgar, 2013) which has been shown to be as effective as denoising 454 300 reads with respect to removing pyrosequencing errors. Specifically, reads were first truncated to 230 301 nucleotides (nt) (all reads shorter than 230 nt were discarded) and any read that exceeded a maximum 302 expected error threshold of 1.0 was removed. After truncation and max expected error trimming, 91% of 303 304 original reads remained. The first 30 nt representing the forward primer and barcode on high quality, truncated reads were trimmed. Remaining reads were taxonomically annotated using the "UClust' 305 taxonomic annotation framework in the QIIME software package (Caporaso et al., 2010; Edgar, 2010) 306 with cluster seeds from Silva SSU rRNA database (Pruesse et al., 2007) 97% sequence identity OTUs as 307 reference (release 111Ref). Reads annotated as "Chloroplast", "Eukaryota", "Archaea", "Unassigned" or 308 "mitochondria" were culled from the dataset. Finally, reads were aligned to the Silva reference alignment 309 provided by the Mothur software package (Schloss et al., 2009) using the Mothur NAST aligner (DeSantis 310 et al., 2006). All reads that did not appear to align to the expected amplicon region of the SSU rRNA gene 311 were discarded. Quality control parameters removed 34716 of 258763 raw reads. 312

Sequence clustering Sequences were distributed into OTUs using the UParse methodology 313 5.5.2 (Edgar, 2013). Specifically, cluster seeds were identified using USearch with a collection of non-redundant 314 reads sorted by count as input. The sequence identity threshold for establishing a new OTU centroid 315 316 was 97%. After initial cluster centroid selection, select 16S rRNA gene sequences trimmed to the same alignment positions as the other centroids from Yeager et al. (2006) were added to the centroid collection. 317 Specifically, Yeager et al. (2006) Colorado Plateau or Moab, Utah sequences were added which included 318 the 16S sequences for Calothrix MCC-3A (accession DQ531700.1), Nostoc commune MCT-1 (accession 319 DQ531903), Nostoc commune MFG-1 (accession DQ531699.1), Scytonema hyalinum DC-A (accession 320 DQ531701.1), Scytonema hyalinum FGP-7A (accession DQ531697.1), Spirirestis rafaelensis LQ-10 321 (accession DQ531696.1). Centroid sequences that matched selected Yeager et al. (2006) sequences with 322 greater than to 97% sequence identity were subsequently removed from the centroid collection. With 323 USearch/UParse, potential chimeras are identified during OTU centroid selection and are not allowed to become cluster centroids effectively removing chimeras from the read pool. All quality controlled reads 325 were then mapped to cluster centroids at an identity threshold of 97% again using USearch. 95.6% of 326

- 327 quality controlled reads could be mapped to centroids. Unmapped reads do not count towards sample
- 328 counts and are essentially removed from downstream analyses. The USearch software version for cluster
- 329 generation was 7.0.1090.
- 330 5.5.3 Merging data from this study, Garcia-Pichel et al. (2013), and Steven et al. (2013) As only
- 331 sequences without corresponding quality scores were publicly available from Garcia-Pichel et al. (2013)
- and Steven et al. (2013), these data sets were only quality screened by determining if they covered the
- 333 expected region of the 16S gene (described above). All data (this study, Garcia-Pichel et al. (2013)
- and Steven et al. (2013)) were included as input to USearch for OTU centroid selection and subsequent
- 335 mapping to OTU centroids.
- 336 5.5.4 Phylogenetic tree The alignment for the "Clostridiaceae" phylogeny was created using SSU-
- 337 Align which is based on Infernal (Nawrocki and Eddy, 2013; Nawrocki et al., 2009). Columns in
- 338 the alignment that were not included in the SSU-Align covariance models or were aligned with poor
- 339 confidence (less than 95% of characters in a position had posterior probability alignment scores of
- 340 at least 95%) were masked for phylogenetic reconstruction. Additionally, the alignment was trimmed
- 341 to coordinates such that all sequences in the alignment began and ended at the same positions. The
- 342 "Clostridiaceae" tree included all top BLAST hits (parameters below) for ¹⁵N Clostridiaceae responders
- 343 in the Living Tree Project database (Yarza et al., 2008) in addition to BLAST hits within a sequence
- 344 identity threshold of 97% to ¹⁵N responders from the Silva SSURef_NR SSU rRNA database (Pruesse
- et al., 2007). Only one SSURef_NR115 hit per study per OTU ("study" was determined by "title" field)
- 346 was selected for the tree. FastTree (Price et al., 2010) was used to build the tree and support values are
- 347 SH-like scores reported by FastTree.
- 348 Placement of short sequences into backbone phylogeny Short sequences were mapped to the reference
- backbone using pplacer (Matsen et al., 2010) (default parameters). pplacer finds the edge placements that
- 350 maximize phylogenetic likelihood. Prior to being mapped to the reference tree, short sequences were
- 351 aligned to the reference alignment using Infernal (Nawrocki et al., 2009) against the same SSU-Align
- 352 covariance model used to align reference sequences.
- 353 5.5.5 BLAST searches BLAST searches were done with the "blastn" program from BLAST+ toolkit
- 354 (Camacho et al., 2009) version 2.2.29+. Default parameters were always employed and the BioPython
- 355 (Cock et al., 2009) BLAST+ wrapper was used to invoke the blastn program. Pandas (McKinney, 2012)
- and dplyr (Wickham and Francois, 2014) were used to parse and munge BLAST output tables.
- 357 5.5.6 Identifying OTUs that incorporated ¹⁵N into their DNA SIP is a culture-independent approach
- 358 towards defining identity-function connections in microbial communities (Buckley, 2011; Neufeld et al.,
- 359 2007). Microbes incubated in the presence of ¹³C or ¹⁵N labeled substrates can incorporate the stable
- 360 heavy isotope into biomass if they participate in the substrate's transformation. Stable isotope labeled
- 361 nucleic acids can then be separated from unlabeled by buoyant density in a CsCl gradient. As the buoyant
- nucleic acids can then be separated from unabored by buoyant density in a eser gradient. As the buoyant
- 362 density of a macromolecule is dependent on many factors in addition to stable isotope incorporation
- 363 (e.g. GC-content in nucleic acids (Youngblut and Buckley, 2014)), labeled nucleic acids from one
- 364 microbial population may have the same buoyant density of unlabeled nucleic acids from another (i.e.
- 365 each population's nucleic acids would be found at the same point along a density gradient although
- 366 only one population's nucleic acids are labeled). Therefore it is imperative to compare density gradients
- 367 with nucleic acids from heavy stable isotope incubations to gradients from "control" incubations where
- 368 everything mimics the experimental conditions except that unlabeled substrates are used (and all DNA
- would be unlabeled). By contrasting "heavy" density gradient fractions in experimental density gradients
- 370 (hereafter referred to as "labeled" gradients) against heavy fractions in control gradients, the identities of
- 371 microbes with labeled nucleic acids can be determined

372

373

374

375 376

377

378

379

380

381

382

383 384

385

386

387

388

389

390

391

392

393

394

395

396 397

398

399

We used an RNA-Seq differential expression statistical framework (Love et al., 2014) to find OTUs enriched in heavy fractions of labeled gradients relative to corresponding density fractions in control gradients (for review of RNA-Seq differential expression statistics applied to microbiome OTU count data see McMurdie and Holmes (2014)). We use the term differential abundance (coined by McMurdie and Holmes (2014)) to denote OTUs that have different proportion means across sample classes (in this case the only sample class is labeled/control). CsCl gradient fractions were categorized as "heavy" or "light". The heavy category denotes fractions with density values above 1.725 g/mL. Since we are only interested in enriched OTUs (labeled versus control), we used a one-sided z-test for differential abundance (the null hypothesis is the labeled:control proportion mean ratio for an OTU is less than a selected threshold). Pvalues were corrected with the Benjamini and Hochberg method (Benjamini and Hochberg, 1995). We selected a log₂ fold change null threshold of 0.25 (or a labeled:control proportion mean ratio of 1.19). DESeq2 was used to calculate the moderated log₂ fold change of labeled:control proportion mean ratios and corresponding standard errors. Mean ratio moderation allows for reliable ratio ranking such that high variance and likely statistically insignificant mean ratios are appropriately shrunk and subsequently ranked lower than they would be as raw ratios. To summarize, OTUs with high moderated labeled:control proportion mean ratios have higher proportion means in heavy fractions of labeled gradients relative to heavy fractions of control gradients, and therefore have likely incorporated ¹⁵N into their DNA during the incubation.

Although DNA-SIP is a powerful technique, analysis of DNA-SIP data is not without ambiguities. One limitation is the discrete, selected boundary in the form of a adjusted p-value threshold (or false discovery rate) that marks which OTUs we consider to be enriched in the heavy fractions of labeled CsCl gradients (and thus have likely incorporated ¹⁵N into their DNA during the incubation). In reality the metric we use to quantify the magnitude of an OTU's response to a stable isotope is continuous, and there is only an artificial boundary between which OTUs appear to have "responded" and which OTUs have unknown response. For this reason, we have presented all the OTUs that satisfy our "response" criteria but focused on the most strongly responding OTUs. As with any hypothesis-based statistical test, care should be taken when interpreting the significance of results where p-values are near the selected threshold for rejecting the null hypothesis.

- 400 5.5.7 Ordination Principal coordinate ordinations depict the relationship between samples at each time point (day 2 and 4). Bray-Curtis distances were used as the sample distance metric for ordination. The 401 Phyloseq (McMurdie and Holmes, 2014) wrapper for Vegan (Oksanen et al., 2013) (both R packages) was 402 403 used to compute sample values along principal coordinate axes. GGplot2 (Wickham, 2009) was used to display sample points along the first and second principal axes. 404
- 405 5.5.8 Differential abundance in environmental samples Significance of OTU proportion mean differences with mean annual temperature (for Garcia-Pichel et al. (2013) data) and sample type ("BSC" 406 or "below crust" Steven et al. (2013) data) was determined using the DESeq2 framework (McMurdie and 407 Holmes, 2014; Love et al., 2014). A sparsity threshold of 0.40 was set to screen out sparse OTUs. No 408 p-value correction was done for differential abundance in environmental samples as only six OTUs were 409 considered for any test.
- 410

RICHNESS ANALYSES

- Rarefaction curves were created using bioinformatics modules in the PyCogent Python package (Knight 411
- et al., 2007). Parametric richness estimates were made with CatchAll using only the best model for total
- OTU estimates (Bunge, 2010).

REFERENCES

- Marti J. Anderson. A new method for non-parametric multivariate analysis of variance. *Austral Ecology*, 26(1):32–46, Feb 2001. doi: 10.1111/j.1442-9993.2001.01070.pp.x. URL http://dx.doi.org/
- 416 10.1111/j.1442-9993.2001.01070.pp.x.
- J. Belnap. Factors Influencing Nitrogen Fixation and Nitrogen Release in Biological Soil Crusts. In
 Biological Soil Crusts: Structure Function, and Management, pages 241–261. Springer Science +
 Business Media, 2001. doi: 10.1007/978-3-642-56475-8_19. URL http://dx.doi.org/10.
 1007/978-3-642-56475-8_19.
- J. Belnap. Factors Influencing Nitrogen Fixation and Nitrogen Release in Biological Soil Crusts. In Jayne Belnap and OttoL. Lange, editors, *Biological Soil Crusts: Structure, Function, and Management*, volume 150 of *Ecological Studies*, pages 241–261. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-43757-4. doi: 10.1007/978-3-642-56475-8_19. URL http://dx.doi.org/10.1007/978-3-642-56475-8_19.
- J. Belnap, R. Prasse, and K.T. Harper. Influence of Biological Soil Crusts on Soil Environments and Vascular Plants. In Jayne Belnap and OttoL. Lange, editors, *Biological Soil Crusts: Structure, Function, and Management*, volume 150 of *Ecological Studies*, pages 281–300. Springer Berlin Heidelberg, 2003.
 ISBN 978-3-540-43757-4. doi: 10.1007/978-3-642-56475-8_21. URL http://dx.doi.org/10.1007/978-3-642-56475-8_21.
- Jayne Belnap. Nitrogen fixation in biological soil crusts from southeast Utah USA. *Biology and Fertility of Soils*, 35(2):128–135, Apr 2002. doi: 10.1007/s00374-002-0452-x. URL http://dx.doi.org/10.1007/s00374-002-0452-x.
- 434 Jayne Belnap. Some Like It Hot, Some Not. Science, 340(6140):1533-1534, 2013. doi: 10.1126/science.
 435 1240318. URL http://www.sciencemag.org/content/340/6140/1533.short.
- 436 Yoav Benjamini and Yosef Hochberg. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B (Methodological)*, 57 (1):289–300, 1995. ISSN 00359246. doi: 10.2307/2346101. URL http://dx.doi.org/10.2307/2346101.
- H. Beraldi-Campesi, H. E. Hartnett, A. Anbar, G. W. Gordon, and F. Garcia-Pichel. Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land. *Geobiology*, 7(3):348–359, jun 2009. doi: 10.1111/j.1472-4669.
 2009.00204.x. URL http://dx.doi.org/10.1111/j.1472-4669.2009.00204.x.
- J. Roger Bray and J. T. Curtis. An Ordination of the Upland Forest Communities of Southern Wisconsin.
 Ecological Monographs, 27(4):325, Oct 1957. doi: 10.2307/1942268. URL http://dx.doi.org/10.2307/1942268.
- Daniel H. Buckley. Stable Isotope Probing Techniques Using 15N. In *Stable Isotope Probing and Related Technologies*, pages 129–147. American Society of Microbiology, jan 2011. doi: 10.1128/9781555816896.ch7. URL http://dx.doi.org/10.1128/9781555816896.ch7.
- John Bunge. Estimating the Number of Species with Catchall. In *Biocomputing 2011*, pages 121–130. WORLD SCIENTIFIC, nov 2010. doi: 10.1142/9789814335058_0014. URL http://dx.doi. org/10.1142/9789814335058_0014.
- 453 C Camacho, G Coulouris, V Avagyan, N Ma, J Papadopoulos, K Bealer, and TL Madden. BLAST+: architecture and applications. 10:421, Dec 2009.
- JG Caporaso, J Kuczynski, J Stombaugh, K Bittinger, FD Bushman, EK Costello, N Fierer, AG Pea, JK Goodrich, JI Gordon, GA Huttley, ST Kelley, D Knights, JE Koenig, RE Ley, CA Lozupone,
- 457 D McDonald, BD Muegge, M Pirrung, J Reeder, JR Sevinsky, PJ Turnbaugh, WA Walters, J Widmann,
- T Yatsunenko, J Zaneveld, and R Knight. QIIME allows analysis of high-throughput community sequencing data. 7:335–6, 2010.
- PJ Cock, T Antao, JT Chang, BA Chapman, CJ Cox, A Dalke, I Friedberg, T Hamelryck, F Kauff,
 B Wilczynski, and Hoon MJ de. Biopython: freely available Python tools for computational molecular
- biology and bioinformatics. 25:1422–3, 2009.

- TZ Jr DeSantis, P Hugenholtz, K Keller, EL Brodie, N Larsen, YM Piceno, R Phan, and GL Andersen.

 NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. 34:W394–9,
 2006.
- 466 RC Edgar. Search and clustering orders of magnitude faster than BLAST. 26:2460–1, 2010.
- 467 RC Edgar. UPARSE: highly accurate OTU sequences from microbial amplicon reads. 10:996–8, 2013.
- 468 R. D. Evans and J. Belnap. Long-Term Consequences of Disturbance on Nitrogen Dynamics in an Arid
 469 Ecosystem. Ecology, 80(1):150–160, Jan 1999. doi: 10.1890/0012-9658(1999)080[0150:ltcodo]2.
 470 0.co;2. URL http://dx.doi.org/10.1890/0012-9658(1999)080[0150:LTCODO]2.
 471 0.CO; 2.
- R. D. Evans and O. L. Lange. Biological Soil Crusts and Ecosystem Nitrogen and Carbon Dynamics. In *Biological Soil Crusts: Structure Function, and Management*, pages 263–279. Springer Science + Business Media, 2001. doi: 10.1007/978-3-642-56475-8_20. URL http://dx.doi.org/10.1007/978-3-642-56475-8_20.
- John Christian Gaby and Daniel H. Buckley. A Comprehensive Evaluation of {PCR} Primers to Amplify the {nifH} Gene of Nitrogenase. {PLoS} {ONE}, 7(7):e42149, jul 2012. doi: 10.1371/journal.pone. 0042149. URL http://dx.doi.org/10.1371/journal.pone.0042149.
- F. Garcia-Pichel, S. L. Johnson, D. Youngkin, and J. Belnap. Small-Scale Vertical Distribution of Bacterial Biomass and Diversity in Biological Soil Crusts from Arid Lands in the Colorado Plateau. *Microbial Ecology*, 46(3):312–321, Nov 2003a. doi: 10.1007/s00248-003-1004-0. URL http://dx.doi.org/10.1007/s00248-003-1004-0.
- F. Garcia-Pichel, V. Loza, Y. Marusenko, P. Mateo, and R. M. Potrafka. Temperature Drives the Continental-Scale Distribution of Key Microbes in Topsoil Communities. *Science*, 340(6140): 1574–1577, Jun 2013. doi: 10.1126/science.1236404. URL http://dx.doi.org/10.1126/science.1236404.
- Ferran Garcia-Pichel, Jayne Belnap, Susanne Neuer, and Ferdinand Schanz. Estimates of global cyanobacterial biomass and its distribution. *Algological Studies*, 109(1):213–227, 2003b.
- Marco Griese, Christian Lange, and Jrg Soppa. Ploidy in cyanobacteria. FEMS Microbiology Letters, 323
 (2):124–131, sep 2011. doi: 10.1111/j.1574-6968.2011.02368.x. URL http://dx.doi.org/10.1111/j.1574-6968.2011.02368.x.
- 492 SL Johnson, CR Budinoff, J Belnap, and F Garcia-Pichel. Relevance of ammonium oxidation within biological soil crust communities. 7:1–12, 2005.
- 494 A. Karnieli, R.F. Kokaly, N.E. West, and R.N. Clark. Remote Sensing of Biological Soil Crusts. In Jayne Belnap and OttoL. Lange, editors, *Biological Soil Crusts: Structure, Function, and Management*, volume 150 of *Ecological Studies*, pages 431–455. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-43757-4. doi: 10.1007/978-3-642-56475-8_31. URL http://dx.doi.org/10.1007/978-3-642-56475-8_31.
- Rob Knight, Peter Maxwell, Amanda Birmingham, Jason Carnes, J Gregory Caporaso, Brett C Easton, Michael Eaton, Michael Eaton, Michael Lindsay, Zongzhi Liu, Catherine Lozupone, Daniel McDonald, Michael Robeson, Raymond Sammut, Sandra Smit, Matthew J Wakefield, Jeremy Widmann, Shandy Wikman, Stephanie Wilson, Hua Ying, and Gavin A Huttley. {PyCogent}: a toolkit for making sense from sequence. *Genome Biol*, 8(8):R171, 2007. doi: 10.1186/gb-2007-8-8-r171. URL http://dx.doi.org/10.1186/gb-2007-8-8-r171.
- 505 M. I. Love, W. Huber, and S. Anders. Moderated estimation of fold change and dispersion for {RNA}506 Seq data with {DESeq}2. Technical report, feb 2014. URL http://dx.doi.org/10.1101/
 507 002832.
- Frederick A Matsen, Robin B Kodner, and E Virginia Armbrust. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. *BMC Bioinformatics*, 11(1):538, 2010. doi: 10.1186/1471-2105-11-538. URL http://dx.doi.org/10.1186/1471-2105-11-538.
- Wes McKinney. pandas: Python Data Analysis Library. Online, 2012. URL http://pandas. 513 pydata.org/.
- 514 PJ McMurdie and S Holmes. Waste not, want not: why rarefying microbiome data is inadmissible. 10: 61003531, 2014.

- 516 EP Nawrocki and SR Eddy. Infernal 1.1: 100-fold faster RNA homology searches. 29:2933–5, Nov 2013.
- 517 EP Nawrocki, DL Kolbe, and SR Eddy. Infernal 1.0: inference of RNA alignments. 25:1335–7, May 518 2009.
- 519 JD Neufeld, J Vohra, MG Dumont, T Lueders, M Manefield, MW Friedrich, and JC Murrell. DNA stable-isotope probing. 2:860–6, 2007.
- Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B. O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, and Helene Wagner. *vegan: Community Ecology Package*, 2013. URL http://CRAN.R-project.org/package=vegan. R package version 2.0-10.
- 525 MN Price, PS Dehal, and AP Arkin. FastTree 2–approximately maximum-likelihood trees for large alignments. 5:e9490, Mar 2010.
- E Pruesse, C Quast, K Knittel, BM Fuchs, W Ludwig, J Peplies, and FO Glckner. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. 35:7188–96, 2007.
- PD Schloss, SL Westcott, T Ryabin, JR Hall, M Hartmann, EB Hollister, RA Lesniewski, BB Oakley, DH Parks, CJ Robinson, JW Sahl, B Stres, GG Thallinger, Horn DJ Van, and CF Weber. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. 75:7537–41, 2009.
- T.F. Steppe, J.B. Olson, H.W. Paerl, R.W. Litaker, and J. Belnap. Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiology Ecology, 21(3):149–156, Nov 1996. doi: 10.1111/j.1574-6941.1996.tb00342.x. URL http://dx.doi.org/10.1111/j.1574-6941.1996.tb00342.x.
- Blaire Steven, La Verne Gallegos-Graves, Jayne Belnap, and Cheryl R. Kuske. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. *FEMS Microbiol Ecol*, 86(1):101–113, May 2013. doi: 10.1111/1574-6941.12143. URL http://dx.doi.org/10.1111/1574-6941.12143.
- WA Walters, JG Caporaso, CL Lauber, D Berg-Lyons, N Fierer, and R Knight. PrimerProspector: de novo
 design and taxonomic analysis of barcoded polymerase chain reaction primers. 27:1159–61, Apr 2011.
- Hadley Wickham. *ggplot2: elegant graphics for data analysis*. Springer New York, 2009. ISBN 978-0-387-98140-6. URL http://had.co.nz/ggplot2/book.
- Hadley Wickham and Romain Francois. *dplyr: dplyr: a grammar of data manipulation*, 2014. URL http://CRAN.R-project.org/package=dplyr. R package version 0.2.
- Pablo Yarza, Michael Richter, Jörg Peplies, Jean Euzeby, Rudolf Amann, Karl-Heinz Schleifer, Wolfgang Ludwig, Frank Oliver Glöckner, and Ramon Rosselló-Móra. The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. *Systematic and Applied Microbiology*, 31(4):241–250, Sep 2008. doi: 10.1016/j.syapm.2008.07.001. URL http://dx.doi.org/10. 1016/j.syapm.2008.07.001.
- Chris M. Yeager, Jennifer L. Kornosky, Rachael E. Morgan, Elizabeth C. Cain, Ferran Garcia-Pichel, David C. Housman, Jayne Belnap, and Cheryl R. Kuske. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau USA. *FEMS Microbiology Ecology*, 60(1):85–97, 2006. doi: 10.1111/j.1574-6941.2006.00265. x. URL http://dx.doi.org/10.1111/j.1574-6941.2006.00265.x.
- Chris M. Yeager, Cheryl R. Kuske, Travis D. Carney, Shannon L. Johnson, Lawrence O. Ticknor, and Jayne Belnap. Response of Biological Soil Crust Diazotrophs to Season Altered Summer Precipitation, and Year-Round Increased Temperature in an Arid Grassland of the Colorado Plateau, USA. Front.
 Microbio., 3, 2012. doi: 10.3389/fmicb.2012.00358. URL http://dx.doi.org/10.3389/fmicb.2012.00358.
- 563 CM Yeager, JL Kornosky, DC Housman, EE Grote, J Belnap, and CR Kuske. Diazotrophic community 564 structure and function in two successional stages of biological soil crusts from the Colorado Plateau 565 and Chihuahuan Desert. 70:973–83, 2004.
- ND Youngblut and DH Buckley. Intra-genomic variation in G+C content and its implications for DNA stable isotope probing (DNA-SIP). Aug 2014.

6 FIGURES AND LONG TABLES

Figure 1. Distribution of sequences into top 9 phyla (phyla ranked by sum of all sequence annotations).

Figure 2. Ordination of Bray-Curtis sample pairwise distances for each incubation time. Point area is proportional to the density of the CsCl gradient fraction for each sequence library, and color/shape reflects control (red triangles) or labeled (blue circles) treatment. Inset shows Bray-Curtis distances for paired control versus labeled CsCl gradient fractions (i.e. fractions from the same incubation day and same density) against the density of the pair (p-value: $4.526e^{-5}$, r^2 : 0.434).

Table 1.15N responders BLAST against Living Tree Project

OTU ID	Species Name	BLAST percent identity	accession
OTU.108	Caloramator proteoclasticus	96.94	X90488
OTU.14	Pantoea rwandensis Pantoea rodasii Kluyvera intermedia Kluyvera cryocrescens Klebsiella variicola Klebsiella pneumoniae subsp. rhinoscleromatis Klebsiella pneumoniae subsp. pneumoniae Erwinia aphidicola	99.49 99.49 99.49 99.49 99.49 99.49	JF295055 JF295053 AF310217 AF310218 AJ783916 Y17657 X87276 FN547376
	Enterobacter soli Enterobacter ludwigii Enterobacter kobei Enterobacter hormaechei Enterobacter cloacae subsp. dissolvens Enterobacter cancerogenus Enterobacter asburiae Enterobacter amnigenus Enterobacter aerogenes Buttiauxella warmboldiae Buttiauxella noackiae Buttiauxella izardii Buttiauxella agrestis	99.49 99.49 99.49 99.49 99.49 99.49 99.49 99.49 99.49 99.49 99.49	GU814270 AJ853891 AJ508301 AJ508302 Z96079 Z96078 AB004744 AB004749 AB004750 AJ233406 AJ233405 AJ233404 AJ233400
OTU.1673	Clostridium drakei Clostridium carboxidivorans	95.9 95.9	Y18813 FR733710
OTU.327	Clostridium hydrogeniformans Clostridium amylolyticum	94.92 94.92	DQ196623 EU037903
OTU.330	Clostridium lundense	96.94	AY858804
OTU.342	Acinetobacter johnsonii	100.0	Z93440
OTU.4037	Fonticella tunisiensis	93.85	HE604099
OTU.54	Shigella sonnei Shigella flexneri Escherichia fergusonii Escherichia coli	100.0 100.0 100.0 100.0	FR870445 X96963 AF530475 X80725
OTU.57	Fonticella tunisiensis Caloramator proteoclasticus	93.88 93.88	HE604099 X90488
OTU.586	Vitreoscilla filiformis Ottowia pentelensis Ideonella dechloratans Diaphorobacter nitroreducens Comamonas terrigena	98.48 98.48 98.48 98.48 98.48	HM037993 EU518930 X72724 AB064317 AF078772

Figure 3. Moderated log₂ of proportion mean ratios for labeled versus control gradients (heavy fractions only, densities ¿1.725 g/mL). All OTUs found in at least 62.5% of heavy fractions at a specific incubation day are shown. Red color denotes a proportion mean ratio that has a corresponding adjusted p-value below a false discovery rate of 10% (the null model is that the proportion mean is ratio is below 0.25). The horizontal line is the proportion mean threshold for the null model, 0.25. The inset figure summarizes the taxonomy of OTUs that with proportion mean ratio p-vaules under 0.10 for at least one time point.

Figure 4. Relative abundance values in heavy fractions (density greater or equal to 1.725 g/mL) for the top 10 15 N "responders" (putative diazotrophs, see results for selection criteria of top 10) at each incubation day. See Table 1 for BLAST results of top 10 responders against the LTP database (release 115). Point area is proportional to CsCl gradient fraction density, and color signifies control (red) or labeled (blue) treatment.

Figure 5. See methods for selection criteria for sequences in backbone tree. Edge width is proportional to number of short putative *Clostridiaceae* diazotroph sequences placed at that position. Placement of short sequences can be spread across multiple edges Matsen et al. (2010). Reference sequences from cultivars have boxes at tips and full species names. Tips with only accession annotations are from environmental reference sequences.

Figure 6. Counts of "responder" OTU occurrences in samples from Steven et al. (2013) and Garcia-Pichel et al. (2013). Steven et al. (2013) collected BSC samples (25 samples total) and samples from soil beneath BSC (17 samples total, "below" column in figure). Garcia-Pichel et al. (2013) collected samples from "dark" (9 samples total) and "light" (12 samples total) crusts in addition to "lichen" (2 samples total) dominated crusts.

Figure 7. Relative abundance of selected heterocystous cyanobacterial OTUs with centroids from sequences described in Yeager et al. (2006) (see methods for selection criteria) in Steven et al. (2013) data set.

Figure 8. Relative abundance of selected heterocystous cyanobacterial OTUs with centroids from sequences described in Yeager et al. (2006) (see methods for selection criteria) in Steven et al. (2013) data set.

Figure 9. Rarefaction curves for all samples presented by Garcia-Pichel et al. (2013) and Steven et al. (2013). Inset is boxplot of estimated sampling effort for all samples in Garcia-Pichel et al. (2013) and Steven et al. (2013) (number of observed OTUs divided by number of CatchAll Bunge (2010) estimated total OTUs)

Figure 10. Relative abundance of selected heterocystous cyanobacterial OTUs with centroids from sequences described in Yeager et al. (2006) (see methods for selection criteria) in Steven et al. (2013) data set. Horizontal line is the sparsity threshold for independent OTU filtering prior to adjusting p-values when identifying OTUS enriched in labeled gradients (heavy fractions).