

 \equiv

IMPRIMER 🖨

1

Solutions acido-basiques

A) Je sais donner la définition du pH

- Le caractère **acido-basique** d'une solution est dû à la présence d'ions oxonium H_3O^+ .
- relations entre le pH et la concentration en H_3O^+ : $pH = -\log{[H_3O^+]}$ et $[H_3O^+] = 10^{-pH}$ avec
 - $[H_3O^+]$ la concentration en ions oxonium en mol.L⁻¹
 - *pH* sans unité
- Plus le pH est grand, plus la concentration en ions oxonium est faible.
- ullet À l'inverse, plus le pH est faible, plus la concentration en ions oxonium est élevée.
- On peut **mesurer** le pH:
 - avec du papier pH (précision de une unité de pH);
 - avec un pH-mètre (précision de 0,1 unité de pH).

B) Je sais donner la définition du produit ionique de l'eau

• relation entre le produit ionique de l'eau, la concentration en HO^- et la concentration en H_3O^+ :

$$K_e = [H_3O^+] \times [HO^-]$$
 avec

- $[H_3O^+]$ la concentration en ions oxonium en mol.L⁻¹
- $[HO^-]$ la concentration en ions hydroxyde en mol.L⁻¹
- $lacksquare K_e$ le produit ionique de l'eau sans unité
- On note $pK_e = -\log(K_e)$. À 25 °C, $pK_e = 14$.

2

Théorie de Brönsted sur les acides et bases

A) Je connais les caractéristiques d'un acide et d'une base

- Un **acide** est une espèce chimique susceptible de **céder** un proton H^+ .
- La **demi-équation** correspondante s'écrit $AH \leftrightarrow A^- + H^+$.
- Une **base** est une espèce chimique susceptible de **capter** un proton H^+ .
- La **demi-équation** correspondante s'écrit $B+H^+\leftrightarrow BH^+$.

B) Je connais les caractéristiques des couples acide-base

- Un couple acide/base est l'ensemble d'un acide et d'une base qui possède la même demi-équation.
- On note le couple AH/A^- .
- L'acide AH et la base A^- sont alors dits **conjugués**.
 - ex. : le couple NH_4^+/NH_3 est composé de l'acide NH_4^+ et de la base NH_3 .

C) Je connais la mise en place d'une réaction acido-basique

- Une **réaction acido-basique** est une réaction entre deux couples acide-base, A_1H/A_1^- et A_2H/A_2^- .
- C'est la **combinaison** des deux demi-équations :
 - $lacksquare A_1H \leftrightarrow A_1^- + H^+$;
 - $\quad \blacksquare \quad A_2^- + H^+ \leftrightarrow A_2 H.$
- lacksquare Cette réaction s'écrit $A_1H+A_2^- o A_2H+A_1^-$.
- Attention, l'eau H_2O peut se comporter à la fois comme un **acide**, dans le couple H_2O/HO^- , ou comme une **base**, dans le couple H_3O^+/H_2O .

3

Acides et bases forts et faibles, constante d'acidité

A) Je sais définir les acides et bases forts

- Un acide AH est **fort** s'il réagit **totalement** avec l'eau suivant la réaction :
 - $AH + H_2O \rightarrow A^- + H_3O^+$
 - ex.: *HCl*
- lacktriangle Une base B est **forte** si elle réagit **totalement** avec l'eau suivant la réaction :
 - $lacksquare B + H_2O
 ightarrow BH^+ + HO^-$
 - ex.: *NaOH*
- La réaction acido-basique entre un acide fort et une base forte d'un autre couple est **quasi-totale**.
 - lacksquare ex. : $NaOH + HCl
 ightarrow H_2O + Na^+ + Cl^-$

B) Je sais définir les acides et bases faibles

- lacktriangle Un acide AH est **faible** s'il réagit **partiellement** avec l'eau suivant la réaction :
 - $AH + H_2O \leftrightarrow A^- + H_3O^+$
 - ex.: NH_4^+
- Une base B est **faible** si elle réagit **partiellement** avec l'eau suivant la réaction :
 - $B + H_2O \leftrightarrow BH^+ + HO^-$
 - ex.: NH_3

C) Je sais définir la constante d'acidité

• relation entre la constante d'acidité, la concentration en acide, la concentration en base et la concentration en ion

oxonium :
$$K_a = rac{[H_3O^+] imes[A^-]}{[AH]}$$
 avec

- [AH] la concentration en acide en mol.L⁻¹
- $[A^-]$ la concentration en base en mol.L⁻¹
- $lacksquare [HO^-]$ la concentration en ions hydroxyde en mol.L $^{ extsf{-}1}$
- K_a la constante d'acidité sans unité
- On note $pK_a = -\log(K_a)$.
- On dit qu'une espèce A est prédominante par rapport à une espèce B si [A] > [B].
- relation entre la constante d'acidité, la concentration en acide, la concentration en base et le pH :

$$pH = pK_a + \log(rac{[A^-]}{[AH]})$$
 avec

- $\lceil AH \rceil$ la concentration en acide en mol.L $^{-1}$
- $[A^-]$ la concentration en base en mol.L⁻¹
- *pH* sans unité
- pK_a sans unité

4

Titrage acido-basique

A) Je connais le déroulement d'un titrage

- Doser ou titrer une espèce chimique en solution consiste à déterminer sa concentration dans la solution.
- Lors d'un titrage on introduit progressivement une espèce B titrante dans la solution A à titrer.
- L'équivalence se produit lorsque les espèces A et B sont présentes dans des proportions **stœchiométriques**
- lacksquare On a alors $C_A imes V_A = C_B imes V_{BE}$ avec
 - C_A la concentration en A en mol.L⁻¹
 - V_A le volume de la solution titrée en L
 - C_B la concentration en B en mol.L⁻¹
 - ullet V_{BE} le volume de la solution titrante ajoutée à l'équivalence en L

B) Je sais les différentes méthodes pour exploiter un graphe pH/volume

- Trois méthodes sont principalement utilisées pour exploiter un **graphe pH/volume** :
 - la méthode des tangentes parallèles
 - la méthode de la dérivée
 - la méthode colorimétrique
- Ces méthodes visent à déterminer le point d'équivalence et donc le **volume** à l'équivalence.