Lectur 10

4.4 Cotongent Apoces & gradient:

Def: Let M be a romooth monifold, then the wtongert broadle space. $T_p^*M := (T_pM)^*$ (dual).

*Romanh. If dim M < 00 = dim (TpM) < 00 => TpM == Tp*M (not cononical).

A ~ TpM and TpM are constructed at p, we can construct the terror space:

Tr(TpM):= }t: TrMxrxTpMs ~~ RY

Def: Let $f \in C^{\infty}(M)$. Then at every point $p \in M$ we have a linear map $dp: \Phi_p C^{\infty}(M) \longrightarrow T_p^* M$ $f \mapsto d_p f$

defined by $X \in T_pM$: $(d_pf)(X) := X f$, colled the godient operator. Then d_pf is the godient of the function

f at the point p.

* Remak: defis a covector, not a vector.

* Romank: Let X be tangent to a level set

Nc(f) := 1 pem 1 f(p) = c/, that (dpf)(x) = 0

Godiert operator con be used in. Det: Let pe M mooth monifold, and (U,x) a clost, pell. Theo Then depat, depat, depat in collect T*M T*M T*M the chart induced covertor bosis at the point $p \in M$, $(dpn^2)((\frac{3}{3n^5})_p) = (\frac{3}{3n^5}(x^3)_p) = \frac{3b(x^3 \circ (x^2)^{\frac{1}{2}})(x(p))}{M \to R}$ where (2p)Rdn BR losis of TpM. lout $\chi^a \circ \chi^{-1} = \text{proj}_a : \mathbb{R}^n \to \mathbb{R}$., $\partial_b \text{proj}_e = S^a_b$. $\left(d_{p}x^{a}\right)\left(\left(\frac{\partial}{\partial x^{b}}\right)_{p}\right)=8^{a}b$, Thus, $d_{p}x^{a}$ is a linear independent ret in TPM, and therefore being a boxis, it is the dual bosis to (3) p 4.5 Push-formad & pull-book. Del: p. M. N be a smooth mop between smooth monifolds. Then, the push-found: & of the map of at PEM, in the linear map: PXP: TPM ~ TOPPH X + (X) co-Let \$000 f:N > R mooth.

J)

1x(X) f := X (f o f) MINIER € C (M)

* Remak: This is the only linear map that can be construted from ϕ, χ, f .

Remanh: Pxp is often walled the derivative of the Junction

* Lamak: The tonget vector Xy,p is pulled forward to the tangent section of the smooth were for at $\phi(P)$.

Lt f ∈ Co(N), | f*p(X71p) f = X71p(fo+)

= (fotog)(0) = (fo(pog))(0) = [Xpop, pop) f

NARMAN RAM

NARMANN

Thus: $X_{\text{dor}, \text{tr}} = \phi_{\text{tp}}(X_{\text{op}})$.

Def. Let & M - N mooth. Then, the pullbook. of the map of at p(p) is the linear map:

P: THIN ~ T * M

w +> p*p(w) * defined by:

4)

Again: O 1 0 an embedding. lout I po position in not an embedding, becoure so not a monifold.

Theorem (Whitney): Any smooth manifold from be;

2 dim M - 1

2 dim M - 1 Theorem (Stronger). Any smooth monifold M can be immersed into Rdim M - a (dim M), where a (m) is the number of oner in a lignory expansion of m. E_n : dim $M = 3 = 1.2^2 + 1.2^2$, $a(3) = 2 \Rightarrow dim M = 3$ con be immersed into It. 4.6 tonget bendles & rectors fields. So) for: PM Def: Let M be mooth manifold. Then, the tonight bundle is the set: TM:= UTpM (TpM ou disjoint poissuise). ond further un define the bundle projection: T: TM + M X p, p is the point for which X e TpM

So for (TM, TM) ma net bundle. We want to tern TM into a smooth manifold, construct a smooth other at TM from the other of M. The topology on TM is given os. Take (4, x & the set of chorts in M (diffeomorphism). Thinking THOSTORY EXPERTING TM-h(p,x)/JETPM, PEMY, We define the map: \widetilde{n}_{χ} : preim $(U_{\chi}) \rightarrow \mathbb{R}^{2n}$: A subset $A \subseteq TM$ in open iff: $(X_{\alpha}(p), X^{\alpha})$ A subset $A \subseteq TM$ is open iff: $(X_{\alpha}(p), X^{\alpha})$ is open in R2n Fwith the standard topology. Let An smooth otles in M. Take some (U,x) & chn and construct: (praint (N), 3) os: $X = X \left(\frac{\partial}{\partial x^{\alpha}} \right)_{\pi(X)}$ G: preim (U) - 3 (preim (U)) CR $\begin{array}{c} X \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{$ (preim (U), E) one the chorts of TM (whose one Co. That makes TM a mooth manifold and Therefore

(TM, TI, M) a mooth bundle.