▶ (54) 명칭(Title)

ENCODING METHOD TO PROVIDE SEARCH REPRODUCTION PATH INFORMATION ITEMS TO BIT STREAM AND DEVICE THEREOF

▶ (19)(13) 구분

● JP A ► 국가별 특허문천코드

▶ (11) 공개번호(Pub.No.)/ 일자

2002112179 (2002.04.12)

▶ (21) 출원번호(Appl.No.)/ 일자

2001206041 (1996.09.27)

▶ (51) 국제특허분류(Int. Cl.)

H04N 5/91; G11B 20/10; G11B 20/12; G11B 27/00; G11B 27/10; H04N 5/85; H04N 5/92

▶ (51) IPC INDEX

1B

대표도

(Representative Drawing)

PROBLEM TO BE SOLVED: To provide an optical disk that is provided with cells, including one or more video object units, a video object including one or more cells and management information.

▶ (57) 요약(Abstract)

SOLUTION: The video object unit includes a navigation pack. The navigation pack includes 1st information denoting whether the video object unit, including the navigation pack is a final video object unit in a cell. The management information includes 2nd information, that includes position information of head and final video object units in a cell and information, that denotes whether the cell defined by information including the 2nd information exists, in an area where two video objects or more are interleaved. COPYRIGHT: (C)2002,JPO

▼ ... 서부항목 숨기기 설정

涨 아래항목중 불필요한 항목이 있으시면 "세부항목숨기기 설정"을 이용하시기 바랍니다

▶ (71) 출원인(Applicant)

MATSUSHITA ELECTRIC IND CO LTD

▶ (72) 발명자(Inventors)

MORI YOSHIHIRO

TSUGA KAZUHIRO

HASEBE TAKUMI

NAKAMURA KAZUHIKO

FUKUSHIMA YOSHIHISA

KOZUKA MASAYUKI

MATSUDA CHIEKO

YAMANE YASUHIKO

▶ (30) 우선권번호(Priorty No.)/ 일자

JP07276574 (1995.09.29)

JΡ

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-112179 (P2002-112179A)

(43)公開日 平成14年4月12日(2002.4.12)

(51) Int.Cl.7		識別記号		FΙ			รี	7]}*(参考)
H04N	5/91			G11E	20/10		3 2 1 Z	5 C O 5 2
G11B	20/10	3 2 1			20/12			5 C O 5 3
	20/12						103	5 D 0 4 4
		103			27/00		D	5 D 0 7 7
	27/00				27/10		Α	5 D 1 1 0
			審査請求	有 讃	求項の数11	OL	(全 60 頁)	最終頁に続く

(21)出願番号

特願2001-206041(P2001-206041)

(62)分割の表示

特願平9-514143の分割

(22)出願日

平成8年9月27日(1996.9.27)

(31) 優先権主張番号 特願平7-276574

(32)優先日

平成7年9月29日(1995.9.29)

(33)優先権主張国

日本(JP)

(71) 出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72) 発明者 森 美裕

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 津賀 一宏

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100062144

弁理士 青山 葆 (外1名)

最終頁に続く

(54) 【発明の名称】 複数のサーチ再生経路情報をビットストリームに付与するエンコード方法及びその装置

(57)【要約】

1以上のビデオオブジェクトユニット含むセ ルと、1以上のセルを含むビデオオブジェクトと、管理 情報を備えた光ディスクを提供する。

【解決手段】 ビデオオブジェクトユニットには、ナビ ゲーションパックが含まれる。ナビゲーションパックが 含まれるビデオオブジェクトユニットが、セル内の最終 ビデオオブジェクトユニットであるか否かを示す第1情 報をナビゲーションパックに含ませる。管理情報はセル の先頭及び最終ビデオオブジェクトユニットの位置情報 を含む第2情報と、第2情報を含む情報で定義されたセ ルが、2以上のビデオオブジェクトをインターリーブし た領域内に存在するか否かを示す情報を含む。

【特許請求の範囲】

【請求項1】 1以上のビデオオブジェクトユニット含むセルと、1以上のセルを含むビデオオブジェクトと、管理情報を備えた光ディスクであって、

前記ビデオオブジェクトユニットは、ナビゲーションパックを備え、

前記ナビゲーションパックは、前記ナビゲーションパックが含まれるビデオオブジェクトユニットが、前記ビデオオブジェクトユニットが含まれるセル内の最終ビデオオブジェクトユニットであるか否かを示す第1情報を含み、

前記管理情報は前記セルの先頭ビデオオブジェクトユニットの位置情報と、前記セルの最終ビデオオブジェクトユニットの位置情報を含む第2情報を含み、

前記管理情報は、さらに、前記第2情報を含む情報で定義されたセルが、2以上のビデオオブジェクトをインターリーブした領域内に存在するか否かを示す情報を含む光ディスク。

【請求項2】 前記ビデオオブジェクトユニットが前記セル内の最終ビデオオブジェクトユニットでない場合には、前記第1情報は前記第1ビデオオブジェクトユニットの次のビデオオブジェクトユニットの位置情報を含む請求項1記載の光ディスク。

【請求項3】 1以上のビデオオブジェクトユニット含むセルと、1以上のセルを含むビデオオブジェクトと、管理情報を備えた光ディスクであって、

前記ビデオオブジェクトユニットは、位置情報領域を含むナビゲーションパックを備え、

第1セルは第1ビデオオブジェクトユニットを含み、 前記第1ビデオオブジェクトユニットは第1ナビゲーションパックを含み、

前記第1ビデオオブジェクトユニットの次のビデオオブジェクトユニットである第2ビデオオブジェクトユニットが前記第1のセルに含まれる場合には、第1ナビゲーションパックの位置情報領域は前記第2ビデオオブジェクトユニットの位置情報を含み、

前記第2ビデオオブジェクトユニットが前記第1セルに含まれない場合には、前記第1ナビゲーションパックの位置情報領域は前記第2ビデオオブジェクトユニットが前記第1セルに含まれない事を示す情報を含み、

前記管理情報は前記セルの先頭ビデオオブジェクトユニットの位置情報と、前記セルの最終ビデオオブジェクトユニットの位置情報を含む第2情報を含み、

前記管理情報は、さらに、前記第2情報を含む情報で定義されたセルが、2以上のビデオオブジェクトをインターリーブした領域内に存在するか否かを示す情報を含む光ディスク。

【請求項4】 請求項1記載の光ディスクを再生する再生方法であって、

前記光ディスクより記録データを読み出すステップと、

前記読み出された記録データより前記第1情報を抽出するステップと、

前記抽出された第1情報を参照して前記ビデオオブジェクトが含まれる同一セル内に次のビデオオブジェクトユニットが存在するか否かを判断するステップとを含む、再生方法。

【請求項5】 請求項2記載の光ディスクを再生する再 生方法であって、

前記光ディスクより記録データを読み出すステップと、 前記読み出された記録データより前記第1情報を抽出す るステップと、

前記抽出された第1情報を参照して前記ビデオオブジェクトが含まれる同一セル内に次のビデオオブジェクトユニットが存在するか否かを判断するステップと、

前記ビデオオブジェクトが含まれる同一セル内に次のビデオオブジェクトユニットが存在すると判断した場合には、前記位置情報を用いて前記次のビデオオブジェクトユニットを読み出すステップとを含む、再生方法。

【請求項6】 請求項3記載の光ディスクを再生する再生方法であって、

前記光ディスクより記録データを読み出すステップと、 前記読み出された記録データより前記第1ナビゲーショ ンパックの位置情報領域に記録された情報を抽出するス テップと、

前記抽出された位置情報領域に記録された情報を参照して前記ビデオオブジェクトが含まれる同一セル内に次のビデオオブジェクトユニットが存在するか否かを判断するステップとを含む、再生方法。

【請求項7】請求項1~3のいずれか1項に記載された 光ディスクから情報を再生する再生方法。

【請求項8】 請求項1記載の光ディスクを再生する再生装置であって、

前記光ディスクより記録データを読み出す手段と、

前記読み出された記録データより前記第1情報を抽出する手段と、

前記抽出された第1情報を参照して前記ビデオオブジェクトが含まれる同一セル内に次のビデオオブジェクトユニットが存在するか否かを判断する手段とを含む、再生装置。

【請求項9】 請求項2記載の光ディスクを再生する再生装置であって、

前記光ディスクより記録データを読み出す手段と、

前記読み出された記録データより前記第1情報を抽出する手段と、

前記抽出された第1情報を参照して前記ビデオオブジェクトが含まれる同一セル内に次のビデオオブジェクトユニットが存在するか否かを判断する手段と、

前記ビデオオブジェクトが含まれる同一セル内に次のビデオオブジェクトユニットが存在すると判断した場合には、前記位置情報を用いて前記次のビデオオブジェクト

ユニットを読み出す手段とを含む、再生装置。

【請求項10】 請求項3記載の光ディスクを再生する 再生装置であって、

前記光ディスクより記録データを読み出す手段と、 前記読み出された記録データより前記第1ナビゲーションパックの位置情報領域に記録された情報を抽出する手段と、

前記抽出された位置情報領域に記録された情報を参照して前記ビデオオブジェクトが含まれる同一セル内に次のビデオオブジェクトユニットが存在するか否かを判断する手段とを含む、再生装置。

【請求項11】請求項1~3のいずれか1項に記載された光ディスクから情報を再生する再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、一連の関連付けられた内容を有する各タイトルを構成する動画像データ、オーディオデータ、副映像データの情報を搬送するビットストリームに様々な処理を施して、ユーザーの要望に応じた内容を有するタイトルを構成するべくビットストリームを生成し、その生成されたビットストリームを所定の記録媒体に効率的に記録する記録装置と記録媒体、及び再生する再生装置及びオーサリングシステムに用いられるビットストリームにサーチ情報を付与するエンコード方法及びその装置に関する。

[0002]

【従来の技術】近年、レーザーディスク(登録商標)やビデオCD等を利用したシステムに於いて、動画像、オーディオ、副映像などのマルチメディアデータをデジタル処理して、一連の関連付けられた内容を有するタイトルを構成するオーサリングシステムが実用化されている

【0003】特に、ビデオCDを用いたシステムに於いては、約600Mバイトの記憶容量を持ち本来ディジタルオーディオの記録用であったCD媒体上に、MPEGと呼ばれる高圧縮率の動画像圧縮手法により、動画像データの記録を実現している。カラオケをはじめ従来のレーザーディスクのタイトルがビデオCDに置き替わりつつある。

【0004】年々、各タイトルの内容及び再生品質に対するユーザーの要望は、より複雑及び高度になって来ている。このようなユーザーの要望に応えるには、従来より深い階層構造を有するビットストリームにて各タイトルを構成する必要がある。このようにより深い階層構造を有するビットストリームにより、構成されるマルチメディアデータのデータ量は、従来の十数倍以上になる。更に、タイトルの細部に対する内容を、きめこまかく編集する必要があり、それには、ビットストリームをより下位の階層データ単位でデータ処理及び制御する必要がある。

【0005】このように、多階層構造を有する大量のデジタルビットストリームを、各階層レベルで効率的な制御を可能とする、ビットストリーム構造及び、記録再生を含む高度なデジタル処理方法の確立が必要である。更に、このようなデジタル処理を行う装置、この装置でデジタル処理されたビットストリーム情報を効率的に記録保存し、記録された情報を迅速に再生することが可能な記録媒体も必要である。

【0006】このような状況に鑑みて、記録媒体に関して言えば、従来用いられている光ディスクの記憶容量を高める検討が盛んに行われている。光ディスクの記憶容量を高めるには光ビームのスポット径Dを小さくする必要があるが、レーザの波長をλ、対物レンズの開口数をNAとすると、前記スポット径Dは、λ/NAに比例し、λが小さくNAが大きいほど記憶容量を高めるのに好適である。

【0007】ところが、NAが大きいレンズを用いた場合、例えば米国特許5、235、581に記載の如く、チルトと呼ばれるディスク面と光ビームの光軸の相対的な傾きにより生じるコマ収差が大きくなり、これを防止するためには透明基板の厚さを薄くする必要がある。透明基板を薄くした場合は機械的強度が弱くなると言う問題がある。

【0008】また、データ処理に関しては、動画像、オーディオ、グラフィックスなどの信号データを記録再生する方式として従来のMPEG1より、大容量データを高速転送が可能なMPEG2が開発され、実用されている。MPEG2では、MPEG1と多少異なる圧縮方式、データ形式が採用されている。MPEG1とMPEG2の内容及びその違いについては、ISO11172、及びISO13818のMPEG規格書に詳述されているので説明を省く。

【0009】MPEG2に於いても、ビデオエンコードストリームの構造に付いては、規定しているが、システムストリームの階層構造及び下位の階層レベルの処理方法を明らかにしていない。

【0010】上述の如く、従来のオーサリングシステムに於いては、ユーザーの種々の要求を満たすに十分な情報を持った大量のデータストリームを処理することができない。さらに、処理技術が確立したとしても、大容量のデータストリームを効率的に記録、再生に十分用いることが出来る大容量記録媒体がないので、処理されたデータを有効に繰り返し利用することができない。

【0011】言い換えれば、タイトルより小さい単位で、ビットストリームを処理するには、記録媒体の大容量化、デジタル処理の高速化と言うハードウェア、及び洗練されたデータ構造を含む高度なデジタル処理方法の考案と言うソフトウェアに対する過大な要求を解消する必要があった。

【0012】本発明は、このように、ハードウェア及び

ソフトウェアに対して高度な要求を有する、タイトル以下の単位で、マルチメディアデータのビットストリームを制御して、よりユーザーの要望に合致した効果的なオーサリングシステムを提供することを目的とする。

【0013】更に、複数のタイトル間でデータを共有して光ディスクを効率的に使用するために、複数のタイトルを共通のシーンデータと、同一の時間軸上に配される複数のシーンを任意に選択して再生するマルチシーン制御が望ましい。複数のシーン、つまりマルチシーンデータを同一の時間軸上に配する為には、マルチシーンの各シーンデータを連続的に配列するために、選択した共通シーンと選択されたマルチシーンデータの間に、非選択のマルチシーンデータを挿入してビットストリームを生成することになる。

【0014】このようなマルチメディアデータを記録した媒体において、早送りや逆戻しなどの特殊再生(トリックプレイ)を行う場合には、ディスクなどのランダムアクセス可能な、記録媒体の特性を利用し、再生速度に応じて、スキップ先を計算あるいは、ビットストリーム中のスキップ用のデータに基づいて、離散的にビットストリームを再生し、高速再生を実現する事になる。

【0015】しかしながら、このような共通シーンとマ ルチシーンが存在するビットストリーム上で、早送りや 逆戻しなどの特殊再生 (トリックプレイ) を行う場合、 例えば、共通シーンから、マルチシーンの1つに分岐の 場合、連続して配置している分岐先データについては、 ビットレートから次のスキップ先の位置を計算すること ができるが、連続配置していない分岐先データについて は計算できない。また、スキップ先の位置情報を記録す る場合についても、1つの分岐先の記録では、他方への 分岐ができないため不十分である。また、全ての分岐先 の位置情報を記述しては、限られらた記録媒体のデータ 容量を効率的に使用できず、また共通シーンの利用が増 える度に、分岐先GOPの位置情報の記録が必要にな り、データ作成が複雑になり、現実的ではない。このよ うに。マルチシーンの1つに分岐する場合の早送りで、 データをたどることの実現が困難となる。

【0016】同様に、逆再生の場合も、マルチシーンから共通シーンへ結合する場合についても、再生データをたどることの実現が困難となる。

[0017]

【発明が解決しようとする課題】本発明に於いては、このようなマルチシーンデータに於いても、特殊再生を行うことのできるマルチメディア光ディスク並びにその再生装置、再生方法及び記録方式を提供することを目的とする。なお、本出願は日本国特許出願番号H7-276574(1995年9月29日出願)に基づいて出願されるものであって、該明細書による開示事項はすべて本発明の開示の一部となすものである。

[0018]

【課題を解決するための手段】少なくとも一つの情報層を有する光ディスクであって、前記情報層には、少なくとも動画像データを含むデータと、特殊再生時のモードに応じて次に再生すべきデータの位置情報を記述したトリックプレイ情報を有する再生制御情報とが、GOP単位でインターリーブ記録された複数のシステムストリーム、及び1つ以上のシステムストリームからなるプログラムチェーンにおけるシステムストリームの再生順序を表す複数のプログラムチェーン情報に記録され、少なチェーンによって共有され、前記プログラムチェーン情報には、システムストリームの再生順序に合わせ、それぞれのシステムストリームの先頭のデータの位置情報とが記がステムストリームの最後の再生制御情報の位置情報とが記述されたマルチメディア光ディスク。

[0019]

【発明の実施の形態】本発明をより詳細に説明するため に、添付の図面に従ってこれを説明する。

オーサリングシステムのデータ構造

先ず、図1を参照して、本発明に於ける記録装置、記録 媒体、再生装置および、それらの機能を含むオーサリン グシステムに於いて処理の対象されるマルチメディアデ ータのビットストリームの論理構造を説明する。ユーザ が内容を認識し、理解し、或いは楽しむことができる画 像及び音声情報を1タイトルとする。このタイトルと は、映画でいえば、最大では一本の映画の完全な内容 を、そして最小では、各シーンの内容を表す情報量に相 当する。

【0020】所定数のタイトル分の情報を含むビットストリームデータから、ビデオタイトルセットVTSが構成される。以降、簡便化の為に、ビデオタイトルセットをVTSと呼称する。VTSは、上述の各タイトルの中身自体を表す映像、オーディオなどの再生データと、それらを制御する制御データを含んでいる。

【0021】所定数のVTSから、オーサリングシステムに於けるービデオデータ単位であるビデオゾーンVZが形成される。以降、簡便化の為にビデオゾーンをVZと呼称する。一つのVZに、K+1個のVTS#0~VTS#K(Kは、0を含む正の整数)が直線的に連続して配列される。そしてその内一つ、好ましくは先頭のVTS#0が、各VTSに含まれるタイトルの中身情報を表すビデオマネージャとして用いられる。この様に構成された、所定数のVZから、オーサリングシステムに於ける、マルチメディアデータのビットストリームの最大管理単位であるマルチメディアビットストリームMBSが形成される。

<u>オーサリングエンコーダEC</u>

図2に、ユーザーの要望に応じた任意のシナリオに従い、オリジナルのマルチメディアビットストリームをエンコードして、新たなマルチメディアビットストリーム

MBSを生成する本発明に基づくオーサリングエンコーダECの一実施形態を示す。なお、オリジナルのマルチメディアビットストリームは、映像情報を運ぶビデオストリームSt1、キャプション等の補助映像情報を運ぶオーディオストリームSt3、及び音声情報を運ぶオーディオストリームSt5から構成されている。ビデオストリーム及びオーディオストリームは、所定の時間の間に対象から得られる画像及び音声の情報を含むストリームである。一方、サブピクチャストリームは一画面分、つまり瞬間の映像情報を含むストリームである。必要であれば、一画面分のサブピクチャをビデオメモリ等にキャプチャして、そのキャプチャされたサブピクチャ画面を継続的に表示することができる。

【0022】これらのマルチメディアソースデータSt 1、St3、及びSt5は、実況中継の場合には、ビデオカメラ等の手段から映像及び音声信号がリアルタイムで供給される。また、ビデオテープ等の記録媒体から再生された非リアルタイムな映像及び音声信号であったりする。尚、同図に於ては、簡便化のために、3種類のマルチメディアソースストリームとして、3種類以上で、それぞれが異なるタイトル内容を表すソースデータが入力されても良いことは言うまでもない。このような複数のタイトルの音声、映像、補助映像情報を有するマルチメディアソースデータを、マルチタイトルストリームと呼称する。

【0023】オーサリングエンコーダECは、編集情報作成部100、エンコードシステム制御部200、ビデオエンコーダ300、ビデオストリームバッファ400、サブピクチャエンコーダ500、サブピクチャストリームバッファ600、オーディオエンコーダ700、オーディオストリームバッファ800、システムエンコーダ900、ビデオゾーンフォーマッタ1300記録部1200、及び記録媒体Mから構成されている。

【0024】同図に於いて、本発明のエンコーダによってエンコードされたビットストリームは、一例として光ディスク媒体に記録される。

【0025】オーサリングエンコーダECは、オリジナルのマルチメディアタイトルの映像、サブピクチャ、及び音声に関するユーザの要望に応じてマルチメディアビットストリームMBSの該当部分の編集を指示するシナリオデータとして出力できる編集情報生成部100を備えている。編集情報作成部100は、好ましくは、ディスプレイ部、スピーカ部、キーボード、CPU、及びソースストリームバッファ部等で構成される。編集情報作成部100は、上述の外部マルチメディアストリーム源に接続されており、マルチメディアソースデータSt1、St3、及びSt5の供給を受ける。

【0026】ユーザーは、マルチメディアソースデータをディスプレイ部及びスピーカを用いて映像及び音声を再生し、タイトルの内容を認識することができる。更

に、ユーザは再生された内容を確認しながら、所望のシナリオに沿った内容の編集指示を、キーボード部を用いて入力する。編集指示内容とは、複数のタイトル内容を含む各ソースデータの全部或いは、其々に対して、所定時間毎に各ソースデータの内容を一つ以上選択し、それらの選択された内容を、所定の方法で接続再生するような情報を言う。

【0027】CPUは、キーボード入力に基づいて、マルチメディアソースデータのそれぞれのストリームSt1、St3、及びSt5の編集対象部分の位置、長さ、及び各編集部分間の時間的相互関係等の情報をコード化したシナリオデータSt7を生成する。

【0028】ソースストリームバッファは所定の容量を有し、マルチメディアソースデータの各ストリームSt1、St3、及びSt5を所定の時間Td遅延させた後に、出力する。

【0029】これは、ユーザーがシナリオデータSt7を作成するのと同時にエンコードを行う場合、つまり逐次エンコード処理の場合には、後述するようにシナリオデータSt7に基づいて、マルチメディアソースデータの編集処理内容を決定するのに若干の時間Tdを要するので、実際に編集エンコードを行う場合には、この時間Tdだけマルチメディアソースデータを遅延させて、編集エンコードと同期する必要があるからである。このような、逐次編集処理の場合、遅延時間Tdは、システム内の各要素間での同期調整に必要な程度であるので、通常ソースストリームバッファは半導体メモリ等の高速記録媒体で構成される。

【0030】しかしながら、タイトルの全体を通してシナリオデータSt7を完成させた後に、マルチメディアソースデータを一気にエンコードする、いわゆるバッチ編集時に於いては、遅延時間Tdは、一タイトル分或いはそれ以上の時間必要である。このような場合には、ソースストリームバッファは、ビデオテープ、磁気ディスク、光ディスク等の低速大容量記録媒体を利用して構成できる。つまり、ソースストリームバッファは遅延時間Td及び製造コストに応じて、適当な記憶媒体を用いて構成すれば良い。

【0031】エンコードシステム制御部200は、編集情報作成部100に接続されており、シナリオデータS t 7を編集情報作成部100から受け取る。エンコードシステム制御部200は、シナリオデータS t 7に含まれる編集対象部の時間的位置及び長さに関する情報に基づいて、マルチメディアソースデータの編集対象分をエンコードするためのそれぞれのエンコードパラメータデータ及びエンコード開始、終了のタイミング信号S t 9、S t 1、及びS t 13をそれぞれ生成する。なお、上述のように、各マルチメディアソースデータS t 1、S t 3、及びS t 5は、ソースストリームバッファによって、時間 T d 遅延して出力されるので、各タイミ

ングS t 9、S t 1 1、Q びS t 1 3 と同期している。 【0032】 つまり、信号S t 9 はビデオストリームS t 1からエンコード対象部分を抽出して、ビデオエンコード単位を生成するために、ビデオストリームS t 1をエンコードするタイミングを指示するビデオエンコード信号である。同様に、信号S t 1 1 は、サブピクチャストリームS t 3をエンコードするタイミングを指示するサブピクチャストリームエンコード信号である。また、信号S t 1 3 は、オーディオエンコード単位を生成するために、オーディオストリームS t 5をエンコードするタイミングを指示するオーディオエンコード信号である。

【0033】エンコードシステム制御部200は、更に、シナリオデータSt7に含まれるマルチメディアソースデータのそれぞれのストリームSt1、St3、及びSt5のエンコード対象部分間の時間的相互関係等の情報に基づいて、エンコードされたマルチメディアエンコードストリームを、所定の相互関係になるように配列するためのタイミング信号St21、St23、及びSt25を生成する。

【0034】エンコードシステム制御部200は、1ビデオゾーンVZ分の各タイトルのタイトル編集単位(VOB)の再生時間を示す再生時間情報ITおよびビデオ、オーディオ、サブピクチャのマルチメディアエンコードストリームを多重化(マルチプレクス)するシステムエンコードのためのエンコードパラメータを示すストリームエンコードデータSt33を生成する。

【0035】エンコードシステム制御部200は、所定の相互的時間関係にある各ストリームのタイトル編集単位(VOB)から、マルチメディアビットストリームMBSの各タイトルのタイトル編集単位(VOB)の接続または、各タイトル編集単位を重畳しているインターリープタイトル編集単位(VOB)を生成するための、各タイトル編集単位(VOB)をマルチメディアビットストリームMBSとして、フォーマットするためのフォーマットパラメータを規定する配列指示信号St39を生成する。

【0036】ビデオエンコーダ300は、編集情報作成部100のソースストリームバッファ及び、エンコードシステム制御部200に接続されており、ビデオストリームSt1とビデオエンコードのためのエンコードパラメータデータ及びエンコード開始終了のタイミング信号のSt9、例えば、エンコードの開始終了タイミングに受いたレート、エンコード開始終了時にエンコード条件、素材の種類として、NTSC信号またはPAL信号あるいはテレシネ素材であるかなどのパラメータがそれぞれ入力される。ビデオエンコーダ300は、ビデオエンコード信号St9に基づいて、ビデオストリームSt1の所定の部分をエンコードして、ビデオエンコードス

トリーム (Encoded video stream) S t 1 5を生成する。

【0037】同様に、サブピクチャエンコーダ500 は、編集情報作成部100のソースバッファ及び、エンコードシステム制御部200に接続されており、サブピクチャストリームSt3とサブピクチャストリームエンコード信号St11がそれぞれ入力される。サブピクチャエンコーダ500は、サブピクチャストリームエンコードのためのパラメータ信号St11に基づいて、サブピクチャストリームSt3の所定の部分をエンコードして、サブピクチャエンコードストリームSt17を生成する。

【0038】オーディオエンコーダ700は、編集情報作成部100のソースバッファ及び、エンコードシステム制御部200に接続されており、オーディオストリームS t 5とオーディオエンコード信号 S t 13がそれぞれ入力される。オーディオエンコーダ700は、オーディオエンコードのためのパラメータデータ及びエンコード開始終了タイミングの信号 S t 13に基づいて、オーディオストリーム S t 50の所定の部分をエンコードして、オーディオエンコードストリーム S t 50のを生成する。

【0039】ビデオストリームバッファ400は、ビデオエンコーダ300に接続されており、ビデオエンコーダ300から出力されるビデオエンコードストリームSt15を保存する。ビデオストリームバッファ400は更に、エンコードシステム制御部200に接続されて、タイミング信号St21の入力に基づいて、保存しているビデオエンコードストリームSt15を、調時ビデオエンコードストリームSt27として出力する。

【0040】同様に、サブピクチャストリームバッファ 600は、サブピクチャエンコーダ 500に接続されて おり、サブピクチャエンコーダ 500から出力されるサブピクチャエンコードストリーム St17を保存する。 サブピクチャストリームバッファ 600は更に、エンコードシステム制御部 200に接続されて、タイミング信号 St23の入力に基づいて、保存しているサブピクチャエンコードストリーム St29として出力する。

【0041】また、オーディオストリームバッファ800は、オーディオエンコーダ700に接続されており、オーディオエンコーダ700から出力されるオーディオエンコードストリームSt19を保存する。オーディオストリームバッファ800は更に、エンコードシステム制御部200に接続されて、タイミング信号St25の入力に基づいて、保存しているオーディオエンコードストリームSt19を、調時オーディオエンコードストリームSt31として出力する。

【0042】システムエンコーダ900は、ビデオストリームバッファ400、サブピクチャストリームバッフ

ア600、及びオーディオストリームバッファ800に接続されており、調時ビデオエンコードストリームSt27、調時サブピクチャエンコードストリームSt29、及び調時オーディオエンコードSt31が入力される。システムエンコーダ900は、またエンコードシステム制御部200に接続されており、ストリームエンコードデータSt33が入力される。

【0043】システムエンコーダ900は、システムエンコードのエンコードパラメータデータ及びエンコード開始終了タイミングの信号St33に基づいて、各調時ストリームSt27、St29、及びSt31に多重化処理を施して、タイトル編集単位(VOB)St35を生成する。

【0044】ビデオゾーンフォーマッタ1300は、システムエンコーダ900に接続されて、タイトル編集単位St35を入力される。ビデオゾーンフォーマッタ1300は更に、エンコードシステム制御部200に接続されて、マルチメディアビットストリームMBSをフォーマットするためのフォーマットパラメータデータ及びフォーマット開始終タイミングの信号St39を入力される。ビデオゾーンフォーマッタ1300は、タイトル編集単位St39に基づいて、1ビデオゾーンVZ分のタイトル編集単位St35を、ユーザの要望シナリオに沿う順番に、並べ替えて、編集済みマルチメディアビットストリームSt43を生成する。

【0045】このユーザの要望シナリオの内容に編集された、マルチメディアビットストリームS t 43は、記録部1200に転送される。記録部1200は、編集マルチメディアビットストリームMBSを記録媒体Mに応じた形式のデータS t 43に加工して、記録媒体Mに記録する。この場合、マルチメディアビットストリームMBSには、予め、ビデオゾーンフォーマッタ1300によって生成された媒体上の物理アドレスを示すボリュームファイルストラクチャVFSが含まれる。

【0046】また、エンコードされたマルチメディアビットストリームSt35を、以下に述べるようなデコーダに直接出力して、編集されたタイトル内容を再生するようにしても良い。この場合は、マルチメディアビットストリームMBSには、ボリュームファイルストラクチャVFSは含まれないことは言うまでもない。

オーサリングデコーダDC

次に、図3を参照して、本発明にかかるオーサリングエンコーダECによって、編集されたマルチメディアビットストリームMBSをデコードして、ユーザの要望のシナリオに沿って各タイトルの内容を展開する、オーサリングデコーダDCの一実施形態について説明する。なお、本実施形態に於いては、記録媒体Mに記録されたオーサリングエンコーダECによってエンコードされたマルチメディアビットストリームSt45は、記録媒体Mに記録されている。

【0047】オーサリングデコーダDCは、マルチメディアビットストリーム再生部2000、シナリオ選択部2100、デコードシステム制御部2300、ストリームバッファ2400、システムデコーダ2500、ビデオバッファ2600、サブピクチャバッファ2700、オーディオバッファ2800、同期制御部2900、ビデオデコーダ3800、サブピクチャデコーダ3100、オーディオデコーダ3200、合成部3500、ビデオデータ出力端子3700から構成されている。

【0048】マルチメディアビットストリーム再生部2000は、記録媒体Mを駆動させる記録媒体駆動ユニット2004、記録媒体Mに記録されている情報を読み取り二値の読み取り信号St57を生成する読取ヘッドユニット2006、読み取り信号ST57に種々の処理を施して再生ビットストリームSt61を生成する信号処理部2008、及び機構制御部2002から構成される。機構制御部2002は、デコードシステム制御部2300に接続されて、マルチメディアビットストリーム再生指示信号St53を受けて、それぞれ記録媒体駆動ユニット(モータ)2004及び信号処理部2008をそれぞれ制御する再生制御信号St55及びSt59を生成する。

【0049】デコーダDCは、オーサリングエンコーダ ECで編集されたマルチメディアタイトルの映像、サブ ピクチャ、及び音声に関する、ユーザの所望の部分が再 生されるように、対応するシナリオを選択して再生する ように、オーサリングデコーダDCに指示を与えるシナリオデータとして出力できるシナリオ選択部2100を 備えている。

【0050】シナリオ選択部2100は、好ましくは、キーボード及びCPU等で構成される。ユーザーは、オーサリングエンコーダECで入力されたシナリオの内容に基づいて、所望のシナリオをキーボード部を操作して入力する。CPUは、キーボード入力に基づいて、選択されたシナリオを指示するシナリオ選択データSt51を生成する。シナリオ選択部2100は、例えば、赤外線通信装置等によって、デコードシステム制御部2300に接続されている。デコードシステム制御部2300は、St51に基づいてマルチメディアビットストリーム再生部200の動作を制御する再生指示信号St53を生成する。

【0051】ストリームバッファ2400は所定のバッファ容量を有し、マルチメディアビットストリーム再生部2000から入力される再生信号ビットストリームSt61を一時的に保存すると共に、及び各ストリームのアドレス情報及び同期初期値データを抽出してストリーム制御データSt63を生成する。ストリームバッファ2400は、デコードシステム制御部2300に接続されており、生成したストリーム制御データSt63をデ

コードシステム制御部2300に供給する。

【0052】同期制御部2900は、デコードシステム制御部2300に接続されて、同期制御データSt81に含まれる同期初期値データ(SCR)を受け取り、内部のシステムクロック(STC)セットし、リセットされたシステムクロックSt79をデコードシステム制御部2300に供給する。

【0053】デコードシステム制御部2300は、システムクロックSt79に基づいて、所定の間隔でストリーム読出信号St65を生成し、ストリームバッファ2400に入力する。

【0054】ストリームバッファ2400は、読出信号 St65に基づいて、再生ビットストリームSt61を 所定の間隔で出力する。

【0055】 デコードシステム制御部2300は、更に、シナリオ選択データSt51に基づき、選択されたシナリオに対応するビデオ、サブピクチャ、オーディオの各ストリームのIDを示すデコードストリーム指示信号St69を生成して、システムデコーダ2500に出力する。

【0056】システムデコーダ2500は、ストリームバッファ2400から入力されてくるビデオ、サブピクチャ、及びオーディオのストリームを、デコード指示信号St69の指示に基づいて、それぞれ、ビデオエンコードストリームSt71としてビデオバッファ2600に、サブピクチャエンコードストリームSt73としてサブピクチャバッファ2700に、及びオーディオエンコードストリームSt75としてオーディオバッファ2800に出力する。

【0057】システムデコーダ2500は、各ストリームSt67の各最小制御単位での再生開始時間 (PTS) 及びデコード開始時間 (DTS) を検出し、時間情報信号 St77を生成する。この時間情報信号 St77は、デコードシステム制御部2300を経由して、同期制御データSt81として同期制御部2900に入力される。

【0058】同期制御部2900は、同期制御データSt81として、各ストリームについて、それぞれがデコード後に所定の順番になるようなデコード開始タイミングを決定する。同期制御部2900は、このデコードタイミングに基づいて、ビデオストリームデコード開始信号St89を生成し、ビデオデコーダ3800に入力する。同様に、同期制御部2900は、サブピクチャデコード開始信号St91及びオーディオデコード開始信号t93を生成し、サブピクチャデコーダ3100及びオーディオデコーダ3200にそれぞれ入力する。

【0059】ビデオデコーダ3800は、ビデオストリームデコード開始信号St89に基づいて、ビデオ出力要求信号St84を生成して、ビデオバッファ2600に対して出力する。ビデオバッファ2600はビデオ出力要求信号St84を受けて、ビデオストリームSt8

3をビデオデコーダ3800に出力する。ビデオデコーダ3800は、ビデオストリームSt83に含まれる再生時間情報を検出し、再生時間に相当する量のビデオストリームSt83の入力を受けた時点で、ビデオ出力要求信号St84を無効にする。このようにして、所定再生時間に相当するビデオストリームがビデオデコーダ3800でデコードされて、再生されたビデオ信号St104が合成部3500に出力される。

【0060】同様に、サブピクチャデコーダ3100は、サブピクチャデコード開始信号St91に基づいて、サブピクチャ出力要求信号St86を生成し、サブピクチャバッファ2700に供給する。サブピクチャバッファ2700は、サブピクチャ出力要求信号St86を受けて、サブピクチャストリームSt85をサブピクチャデコーダ3100は、サブピクチャストリームSt85をデコーダ3100は、サブピクチャストリームSt85に含まれる再生時間情報に基づいて、所定の再生時間に相当する量のサブピクチャストリームSt85をデコードして、サブピクチャ信号St99を再生して、合成部3500に出力される。

【0061】合成部3500は、ビデオ信号St104 及びサブピクチャ信号St99を重畳させて、マルチピクチャビデオ信号St105を生成し、ビデオ出力端子3600に出力する。

【0062】オーディオデコーダ3200は、オーディオデコード開始信号St93に基づいて、オーディオ出力要求信号St88を生成し、オーディオバッファ2800は、オーディオ出力要求信号St88を受けて、オーディオストリームSt87をオーディオデコーダ3200に出力する。オーディオデコーダ3200は、オーディオストリームSt87に含まれる再生時間情報に基づいて、所定の再生時間に相当する量のオーディオストリームSt87をデコードして、オーディオ出力端子3700に出力する。

【0063】このようにして、ユーザのシナリオ選択に応答して、リアルタイムにユーザの要望するマルチメディアビットストリームMBSを再生する事ができる。つまり、ユーザが異なるシナリオを選択する度に、オーサリングデコーダDCはその選択されたシナリオに対応するマルチメディアビットストリームMBSを再生することによって、ユーザの要望するタイトル内容を再生することができる。

【0064】以上述べたように、本発明のオーサリングシステムに於いては、基本のタイトル内容に対して、各内容を表す最小編集単位の複数の分岐可能なサブストリームを所定の時間的相関関係に配列するべく、マルチメディアソースデータをリアルタイム或いは一括してエンコードして、複数の任意のシナリオに従うマルチメディアビットストリームを生成する事ができる。また、この

ようにエンコードされたマルチメディアビットストリームを、複数のシナリオの内の任意のシナリオに従って再生できる。そして、再生中であっても、選択したシナリオから別のシナリオを選択し(切り替えて)も、その新たな選択されたシナリオに応じた(動的に)マルチメディアビットストリームを再生できる。また、任意のシナリオに従ってタイトル内容を再生中に、更に、複数のシーンの内の任意のシーンを動的に選択して再生することができる。

【0065】このように、本発明に於けるオーサリングシステムに於いては、エンコードしてマルチメディアビットストリームMBSをリアルタイムに再生するだけでなく、繰り返し再生することができる。尚、オーサリングシステムの詳細に関しては、本特許出願と同一出願人による1996年9月27日付けの日本国特許出願に開示されている。

DVD

図4に、単一の記録面を有するDVDの一例を示す。本例に於けるDVD記録媒体RC1は、レーザー光線LSを照射し情報の書込及び読出を行う情報記録面RS1と、これを覆う保護層PL1からなる。更に、記録面RS1の裏側には、補強層BL1が設けられている。このように、保護層PL1側の面を表面SA、補強層BL1側の面を裏面SBとする。この媒体RC1のように、片面に単一の記録層RS1を有するDVD媒体を、片面一層ディスクと呼ぶ。

【0066】図5に、図4のC1部の詳細を示す。記録面RS1は、金属薄膜等の反射膜を付着した情報層4109によって形成されている。その上に、所定の厚さT1を有する第1の透明基板4108によって保護層PL1が形成される。所定の厚さT2を有する第二の透明基板4111によって補強層BL1が形成される。第一及び第二の透明基盤4108及び4111は、その間に設けられ接着層4110によって、互いに接着されている。

【0067】さらに、必要に応じて第2の透明基板4111の上にラベル印刷用の印刷層4112が設けられる。印刷層4112は補強層BL1の基板4111上の全領域ではなく、文字や絵の表示に必要な部分のみ印刷され、他の部分は透明基板4111を剥き出しにしてもよい。その場合、裏面SB側から見ると、印刷されていない部分では記録面RS1を形成する金属薄膜4109の反射する光が直接見えることになり、例えば、金属薄膜がアルミニウム薄膜である場合には背景が銀白色に見え、その上に印刷文字や図形が浮き上がって見える。印刷層4112は、補強層BL1の全面に設ける必要はなく、用途に応じて部分的に設けてもよい。

【0068】図6に、更に図5のC2部の詳細を示す。 光ビームLSが入射し情報が取り出される表面SAに於いて、第1の透明基板4108と情報層4109の接す る面は、成形技術により凹凸のピットが形成され、このピットの長さと間隔を変えることにより情報が記録される。つまり、情報層4109には第1の透明基板4108の凹凸のピット形状が転写される。このピットの長さや間隔はCDの場合に比べ短くなり、ピット列で形成する情報トラックもピッチも狭く構成されている。その結果、面記録密度が大幅に向上している。

【0069】また、第1の透明基板4108のピットが形成されていない表面SA側は、平坦な面となっている。第2の透明基板4111は、補強用であり、第1の透明基板4108と同じ材質で構成される両面が平坦な透明基板である。そして所定の厚さT1及びT2は、共に同じく、例えば0.6mmが好ましいが、それに限定されるものでは無い。

【0070】情報の取り出しは、CDの場合と同様に、 光ビームLSが照射されることにより光スポットの反射 率変化として取り出される。DVDシステムに於いて は、対物レンズの開口数NAを大きく、そして光ビーム の波長 λ 小さすることができるため、使用する光スポット トLsの直径を、CDでの光スポットの約1/1. 6に 絞り込むことができる。これは、CDシステムに比べ て、約1. 6 倍の解像度を有することを意味する。

【0071】 DVDからのデータ読み出しには、波長の短い650nmの赤色半導体レーザと対物レンズのNA(開口数)を0.6mmまで大きくした光学系とが用いれらる。これと透明基板の厚さTを0.6mmに薄くしたこととがあいまって、直径120mmの光ディスクの片面に記録できる情報容量が5Gバイトを越える。

【0072】DVDシステムは、上述のように、単一の記録面RS1を有する片側一層ディスクRC1に於いても、CDに比べて記録可能な情報量が10倍近いため、単位あたりのデータサイズが非常に大きい動画像を、その画質を損なわずに取り扱うことができる。その結果、従来のCDシステムでは、動画像の画質を犠牲にしても、再生時間が74分であるのに比べて、DVDでは、高画質動画像を2時間以上に渡って記録再生可能である。このようにDVDは、動画像の記録媒体に適しているという特徴がある。

【0073】図7及び図8に、上述の記録面RSを複数有するDVD記録媒体の例を示す。図7のDVD記録媒体RC2は、同一側、つまり表側SAに、二層に配された第一及び半透明の第二の記録面RS1及びRS2を有している。第一の記録面RS1及び第二の記録面RS2に対して、それぞれ異なる光ビームLS1及びLS2を用いることにより、同時に二面からの記録再生が可能ある。また、光ビームLS1或いはLS2の一方にて、両記録面RS1及びRS2に対応させても良い。このように構成されたDVD記録媒体を片面二層ディスクと呼ぶ。この例では、2枚の記録層RS1及びRS2を配したが、必要に応じて、2枚以上の記録層RSを配したD

V D記録媒体を構成できることは、言うまでもない。このようなディスクを、片面多層ディスクと呼ぶ。

【0074】一方、図8のDVD記録媒体RC3は、反対側、つまり表側SA側には第一の記録面RS1が、そして裏側SBには第二の記録面RS2、それぞ設けれている。これらの例に於いては、一枚のDVDに記録面を二層もうけた例を示したが、二層以上の多層の記録面を有するように構成できることは言うまでもない。図7の場合と同様に、光ビームLS1及びLS2を個別に設けても良いし、一つの光ビームで両方の記録面RS1及びRS2の記録再生に用いることもできる。このように構成されたDVD記録媒体を両面一層ディスクと呼ぶ。また、片面に2枚以上の記録層RSを配したDVD記録媒体を構成できることは、言うまでもない。このようなディスクを、両面多層ディスと呼ぶ。

【0075】図9及び図10に、DVD記録媒体RCの記録面RSを光ビームLSの照射側から見た平面図をそれぞれ示す。DVDには、内周から外周方向に向けて、情報を記録するトラックTRが螺旋状に連続して設けられている。トラックTRは、所定のデータ単位毎に、複数のセクターに分割されている。尚、図9では、見易くするために、トラック1周あたり3つ以上のセクターに分割されているように表されている。

【0076】通常、トラックTRは、図9に示すよう に、ディスクRCAの内周の端点IAから外周の端点O Aに向けて時計回り方向DrAに巻回されている。この ようなディスクRCAを時計回りディスク、そのトラッ クを時計回りトラックTRAと呼ぶ。また、用途によっ ては、図10に示すように、ディスクRCBの外周の端 点OBから内周の端点IBに向けて、時計周り方向Dr Bに、トラックTRBが巻回されている。この方向Dr Bは、内周から外周に向かって見れば、反時計周り方向 であるので、図9のディスクRCAと区別するために、 反時計回りディスクRCB及び反時計回りトラックTR Bと呼ぶ。上述のトラック巻回方向DrA及びDrB は、光ビームが記録再生の為にトラックをスキャンする 動き、つまりトラックパスである。トラック巻回方向D r Aの反対方向RdAが、ディスクRCAを回転させる 方向である。トラック巻回方向DrBの反対方向RdB が、ディスクRCBを回転させる方向である。

【0077】図11に、図7に示す片側二層ディスクRC2の一例であるディスクRC2の展開図を模式的に示す。下側の第一の記録面RS1は、図9に示すように時計回りトラックTRAが時計回り方向DrAに設けられている。上側の第二の記録面RS2には、図12に示すように反時計回りトラックTRBが反時計回り方向DrBに設けられている。この場合、上下側のトラック外周端部OB及びOAは、ディスクRC2のの中心線に平行な同一線上に位置している。上述のトラックTRの巻回方向DrA及びDrBは、共に、ディスクRCに対す

るデータの読み書きの方向でもある。この場合、上下のトラックの巻回方向は反対、つまり、上下の記録層のトラックパスDr A及びDr Bが対向している。

【0078】対向トラックパスタイプの片側二層ディス クRC2 oは、第一記録面RS1に対応してRdA方向 に回転されて、光ビームLSがトラックパスDェAに沿 って、第一記録面RS1のトラックをトレースして、外 周端部〇Aに到達した時点で、光ビームLSを第二の記 録面RS2の外周端部OBに焦点を結ぶように調節する ことで、光ビームLSは連続的に第二の記録面RS2の トラックをトレースすることができる。このようにし て、第一及び第二の記録面RS1及びRS2のトラック TRAとTRBとの物理的距離は、光ビームLSの焦点 を調整することで、瞬間的に解消できる。その結果、対 向トラックパスタイプの片側二層ディスクRCoに於い ては、上下二層上のトラックを一つの連続したトラック TRとして処理することが容易である。故に、図1を参 照して述べた、オーサリングシステムに於ける、マルチ メディアデータの最大管理単位であるマルチメディアビ ットストリームMBSを、一つの媒体RC2oの二層の 記録層RS1及びRS2に連続的に記録することができ

【0079】尚、記録面RS1及びRS2のトラックの 巻回方向を、本例で述べたのと反対に、つまり第一記録 面RS1に反時計回りトラックTRBを、第二記録面に 時計回りトラックTRAを設け場合は、ディスクの回転 方向をRdBに変えることを除けば、上述の例と同様 に、両記録面を一つの連続したトラックTRを有するも のとして用いる。よって、簡便化の為にそのような例に 付いての図示等の説明は省く。このように、DVDを構 成することによって、長大なタイトルのマルチメディア ビットストリームMBSを一枚の対向トラックパスタイ プ片面二層ディスクRC20に収録できる。このような DVD媒体を、片面二層対向トラックパス型ディスクと 呼ぶ。図12に、図7に示す片側二層ディスクRC2の 更なる例RC2pの展開図を模式に示す。第一及び第二 の記録面RS1及びRS2は、図9に示すように、共に 時計回りトラックTRAが設けられている。この場合、 片側二層ディスクRC2pは、RdA方向に回転され て、光ビームの移動方向はトラックの巻回方向と同じ、 つまり、上下の記録層のトラックパスが互いに平行であ る。この場合に於いても、好ましくは、上下側のトラッ ク外周端部OA及びOAは、ディスクRC2pの中心線 に平行な同一線上に位置している。それ故に、外周端部 OAに於いて、光ビームLSの焦点を調節することで、 図11で述べた媒体RC2oと同様に、第一記録面RS 1のトラックTRAの外周端部OAから第二記録面RS 2のトラックTRAの外周端部OAへ瞬間的に、アクセ ス先を変えることができる。

【0080】しかしながら、光ビームLSによって、第

二の記録面RS2のトラックTRAを時間的に連続してアクセスするには、媒体RC2pを逆(反RdA方向に)回転させれば良い。しかし、光りビームの位置に応じて、媒体の回転方向を変えるのは効率が良くないので、図中で矢印で示されているように、光ビームLSが第一記録面RS1のトラック外周端部OAに達した後に、光ビームを第二記録面RS2のトラック内周端部IAに、移動させることで、論理的に連続した一つのトラックとして用いることができ。また、必要であれば、上下の記録面のトラックを一つの連続したトラックとして扱わずに、それぞれ別のトラックとして、各トラックにマルチメディアビットストリームMBSを一タイトルづつ記録してもよい。このようなDVD媒体を、片面二層平行トラックパス型ディスクと呼ぶ。

【0081】尚、両記録面RS1及びRS2のトラックの巻回方向を本例で述べたのと反対に、つまり反時計回りトラックTRBを設けても、ディスクの回転方向をRdBにすることを除けば同様である。この片面二層平行トラックパス型ディスクは、百科事典のような頻繁にランダムアクセスが要求される複数のタイトルを一枚の媒体RC2pに収録する用途に適している。

【0082】図13に、図8に示す片面にそれぞれ一層 の記録面RS1及びRS2を有する両面一層型のDVD 媒体RC3の一例RC3sの展開図を示す。一方の記録 面RS1は、時計回りトラックTRAが設けられ、他方 の記録面RS2には、反時計回りトラックTRBが設け られている。この場合に於いても、好ましくは、両記録 面のトラック外周端部OA及びOBは、ディスクRC3 s の中心線に平行な同一線上に位置している。これらの 記録面RS1とRS2は、トラックの巻回方向は反対で あるが、トラックパスが互いに面対称の関係にある。こ のようなディスクRC3sを両面一層対称トラックパス 型ディスクと呼ぶ。この両面一層対称トラックパス型デ ィスクRC3sは、第一の記録媒体RS1に対応してR d A方向に回転される。その結果、反対側の第二の記録 媒体RS2のトラックパスは、そのトラック巻回方向D rBと反対の方向、つまりDrAである。この場合、連 続、非連続的に関わらず、本質的に二つの記録面RS1 及びRS2に同一の光ビームLSでアクセスする事は実 際的ではない。それ故に、表裏の記録面のそれぞれに、 マルチメディアビットストリームMSBを記録する。

【0083】図14に、図8に示す両面一層DVD媒体RC3の更なる例RC3aの展開図を示す。両記録面RS1及びRS2には、共に、図9に示すように時計回りトラックTRAが設けられている。この場合に於いても、好ましくは、両記録面側RS1及びRS2のトラック外周端部OA及びOAは、ディスクRC3aの中心線に平行な同一線上に位置している。但し、本例に於いては、先に述べた両面一層対象トラックパス型ディスクRC3sと違って、これらの記録面RS1とRS2上のト

ラックは非対称の関係にある。このようなディスクRC3aを両面一層非対象トラックパス型ディスクと呼ぶ。この両面一層非対象トラックパス型ディスクRC3sは、第一の記録媒体RS1に対応してRdA方向に回転される。その結果、反対側の第二の記録面RS2のトラックパスは、そのトラック巻回方向DrAと反対の方向、つまりDrB方向である。

【0084】故に、単一の光ビームLSを第一記録面RS1の内周から外周へ、そして第二記録面RS2の外周から内周へと、連続的に移動させれば記録面毎に異なる光ビーム源を用意しなくても、媒体PC3aを表裏反転させずに両面の記録再生が可能である。また、この両面一層非対象トラックパス型ディスクでは、両記録面RS1及びRS2のトラックパスが同一である。それ故に、媒体PC3aの表裏を反転することにより、記録面毎に異なる光ビーム源を用意しなくても、単一の光ビームLSで両面の記録再生が可能であり、その結果、装置を経済的に製造することができる。尚、両記録面RS1及びRS2に、トラックTRAの代わりにトラックTRBを設けても、本例と基本的に同様である。

【0085】上述の如く、記録面の多層化によって、記録容量の倍増化が容易なDVDシステムによって、1枚のディスク上に記録された複数の動画像データ、複数のオーディオデータ、複数のグラフィックスデータなどをユーザとの対話操作を通じて再生するマルチメディアの領域に於いてその真価を発揮する。つまり、従来ソフト提供者の夢であった、ひとつの映画を製作した映画の品質をそのまま記録で、多数の異なる言語圏及び多数の異なる世代に対して、一つの媒体により提供することを可能とする。

パレンタル

従来は、映画タイトルのソフト提供者は、同一のタイトルに関して、全世界の多数の言語、及び欧米各国で規制化されているパレンタルロックに対応した個別のパッケージとしてマルチレイティッドタイトル(Multi-rated title)を制作、供給、管理しないといけなかった。この手間は、たいへん大きなものであった。また、これは、高画質もさることながら、意図した通りに再生できることが重要である。このような願いの解決に一歩近づく記録媒体がDVDである。

マルチアングル

また、対話操作の典型的な例として、1つのシーンを再生中に、別の視点からのシーンに切替えるというマルチアングルという機能が要求されている。これは、例えば、野球のシーンであれば、バックネット側から見た投手、捕手、打者を中心としたアングル、バックネット側から見た内野を中心としたアングル、センター側から見た投手、捕手、打者を中心としたアングルなどいくつかのアングルの中から、ユーザが好きなものをあたかもカメラを切り替えているように、自由に選ぶというような

アプリケーションの要求がある。

【0086】DVDでは、このような要求に応えるべく動画像、オーディオ、グラフィックスなどの信号データを記録する方式としてビデオCDと同様のMPEGが使用されている。ビデオCDとDVDとでは、その容量と転送速度および再生装置内の信号処理性能の差から同じMPEG形式といっても、MPEG1とMPEG2という多少異なる圧縮方式、データ形式が採用されている。ただし、MPEG1とMPEG2の内容及びその違いについては、本発明の趣旨とは直接関係しないため説明を省略する(例えば、ISO11172、ISO13818のMPEG規格書参照)。

【0087】本発明に掛かるDVDシステムのデータ構造に付いて、図16、図17、図18、図19、及び図20を参照して、後で説明する。

<u>マルチシーン</u>

上述の、パレンタルロック再生及びマルチアングル再生の要求を満たすために、各要求通りの内容のタイトルを其々に用意していれば、ほんの一部分の異なるシーンデータを有する概ね同一内容のタイトルを要求数だけ用意して、記録媒体に記録しておかなければならない。これは、記録媒体の大部分の領域に同一のデータを繰り返し記録することになるので、記録媒体の記憶容量の利用効率を著しく疎外する。さらに、DVDの様な大容量の記録媒体をもってしても、全ての要求に対応するタイトルを記録することは不可能である。この様な問題は、基本的に記録媒体の容量を増やせれば解決するとも言えるが、システムリソースの有効利用の観点から非常に望ましくない。

【0088】DVDシステムに於いては、以下にその概略を説明するマルチシーン制御を用いて、多種のバリエーションを有するタイトルを最低必要限度のデータでもって構成し、記録媒体等のシステムリソースの有効活用を可能としている。つまり、様々なバリエーションを有するタイトルを、各タイトル間での共通のデータからなる基本シーン区間と、其々の要求に即した異なるシーン群からなるマルチシーン区間とで構成する。そして、再生時に、ユーザが各マルチシーン区間での特定のシーンを自由、且つ随時に選択できる様にしておく。なお、パレンタルロック再生及びマルチアングル再生を含むマルチシーン制御に関して、後で、図21を参照して説明する。

DVDシステムのデータ構造

図22に、本発明に掛かるDVDシステムに於ける、オーサリングデータのデータ構造を示す。DVDシステムでは、マルチメディアビットストリームMBSを記録する為に、リードイン領域LI、ボリューム領域VSと、リードアウト領域LOに3つに大別される記録領域を備える。

【0089】リードイン領域LIは、光ディスクの最内

周部に、例えば、図9及び図10で説明したディスクに 於いては、そのトラックの内周端部IA及びIBに位置 している。リードイン領域LIには、再生装置の読み出 し開始時の動作安定用のデータ等が記録される。

【0090】リードアウト領域LOは、光ディスクの最外周に、つまり図9及び図10で説明したトラックの外周端部OA及びOBに位置している。このリードアウト領域LOには、ボリューム領域VSが終了したことを示すデータ等が記録される。

【0091】ボリューム領域 V S は、リードイン領域 L I とリードアウト領域 L O の間に位置し、2048バイトの論理セクタ L S が、n+1 個(n は 0 を含む正の整数)一次元配列として記録される。各論理セクタ L S はセクタナンバー(# 0、# 1、# 2、# 2、# 7 で区別される。更に、ボリューム領域 V S は、# 8 は、# 1 は # 2 を含む # 7 での整数)から形成されるボリューム/ファイル管理領域 V F S と、# 8 に一から形成されるファイルデータ領域 V F D S に分別される。このファイルデータ領域 V F D S は、図1に示すマルチメディアビットストリーム V B S に相当する。

【0092】ボリューム/ファイル管理領域VFSは、ボリューム領域VSのデータをファイルとして管理する為のファイルシステムであり、ディスク全体の管理に必要なデータの収納に必要なセクタ数m(mはnより小さい自然数)の論理セクタLS#0からLS#mによって形成されている。このボリューム/ファイル管理領域VFSには、例えば、ISO9660、及びISO13346などの規格に従って、ファイルデータ領域FDS内のファイルの情報が記録される。

【0093】ファイルデータ領域FDSは、n-m個の 論理セクタ $LS\#m+1\sim LS\#n$ から構成されており、それぞれ、論理セクタの整数倍($2048\times I$ 、 I は所定の整数)のサイズを有するビデオマネージャVM G と、及びk 個のビデオタイトルセット $VTS\#1\sim V$ TS#k (k は、100 より小さい自然数)を含む。

【0094】ビデオマネージャVMGは、ディスク全体のタイトル管理情報を表す情報を保持すると共に、ボリューム全体の再生制御の設定/変更を行うためのメニューであるボリュームメニューを表す情報を有する。ビデオタイトルセットVTS#k 'は、単にビデオファイルとも呼び、動画、オーディオ、静止画などのデータからなるタイトルを表す。

【0095】図16は、図22のビデオタイトルセット VTSの内部構造を示す。ビデオタイトルセットVTS は、ディスク全体の管理情報を表すVTS情報(VTS I)と、マルチメディアビットストリームのシステムス トリームであるVTSタイトル用VOBS(VTSTT_VOB S)に大別される。先ず、以下にVTS情報について説 明した後に、VTSタイトル用VOBSについて説明す る。

【0096】VTS情報は、主に、VTSI管理テーブル (VTSI_MAT) 及びVTSPGC情報テーブル (VTS_PGCIT) を含む。

【0097】VTSI管理テーブルは、ビデオタイトルセットVTSの内部構成及び、ビデオタイトルセットVTS中に含まれる選択可能なオーディオストリームの数、サブピクチャの数およびビデオタイトルセットVTSの格納場所等が記述される。

【0098】VTSPGC情報管理テーブルは、再生順を制御するプログラムチェーン(PGC)を表すi個(iは自然数)のPGC情報VTS_PGCI#1~VTS_PGCI#1を記録したテーブルである。各エントリーのPGC情報VTS_PGCI#Iは、プログラムチェーンを表す情報であり、j個(jは自然数)のセル再生情報C_PBI#1~C_PBI#jから成る。各セル再生情報C_PBI#jは、セルの再生順序や再生に関する制御情報を含む。

【0099】また、プログラムチェーンPGCとは、タ イトルのストーリーを記述する概念であり、セル(後 述)の再生順を記述することでタイトルを形成する。上 記VTS情報は、例えば、メニューに関する情報の場合 には、再生開始時に再生装置内のバッファに格納され、 再生の途中でリモコンの「メニュー」キーが押下された 時点で再生装置により参照され、例えば#1のトップメ ニューが表示される。階層メニューの場合は、例えば、 プログラムチェーン情報VTS_PGCI#1が「メニュー」キー 押下により表示されるメインメニューであり、#2から #9がリモコンの「テンキー」の数字に対応するサブメ ニュー、#10以降がさらに下位層のサブメニューとい うように構成される。また例えば、#1が「メニュー」 キー押下により表示されるトップメニュー、#2以降が 「テン」キーの数字に対応して再生される音声ガイダン スというように構成される。

【0100】メニュー自体は、このテーブルに指定される複数のプログラムチェーンで表されるので、階層メニューであろうが、音声ガイダンスを含むメニューであろうが、任意の形態のメニューを構成することを可能にしている。また例えば、映画の場合には、再生開始時に再生装置内のバッファに格納され、PGC内に記述しているセル再生順序を再生装置が参照し、システムストリームを再生する。

【0101】ここで言うセルとは、システムストリームの全部または一部であり、再生時のアクセスポイントとして使用される。たとえば、映画の場合は、タイトルを途中で区切っているチャプターとして使用する事ができる。

【0102】尚、エントリーされたPGC情報C_PBI#jの各々は、セル再生処理情報及び、セル情報テーブルを含む。再生処理情報は、再生時間、繰り返し回数などのセルの再生に必要な処理情報から構成される。ブロック

モード (CBM)、セルブロックタイプ (CBT)、シームレス再生フラグ (SPF)、インターリーブブロック配置フラグ (IAF)、STC再設定フラグ (STCDF)、セル再生時間 (C_PBTM)、シームレスアングル切替フラグ (SACF)、セル先頭VOBU開始アドレス (C_FVOBU_SA)、及びセル終端VOBU開始アドレス (C_LVOBU_SA)から成る。

【0103】ここで言う、シームレス再生とは、DVDシステムに於いて、映像、音声、副映像等のマルチメディアデータを、各データ及び情報を中断する事無く再生することであり、詳しくは、図23及び図24参照して後で説明する。

【0104】ブロックモードCBMは複数のセルが1つの機能ブロックを構成しているか否かを示し、機能ブロックを構成する各セルのセル再生情報は、連続的にPGC情報内に配置され、その先頭に配置されるセル再生情報のCBMには、"ブロックの先頭セル"を示す値、その最後に配置されるセル再生情報のCBMには、"ブロックの最後のセル"を示す値、その間に配置されるセル再生情報のCBMには"ブロック内のセル"を示す値を示す。セルブロックタイプCBTは、ブロックモードCBMで示したブロックの種類を示すものである。例えばマルチアングル機能を設定する場合には、各アングルの再生に対応するセル情報を、前述したような機能ブロックとして設定し、さらにそのブロックの種類として、各セルのセル再生情報のCBTに"アングル"を示す値を設定する。

【0105】シームレス再生フラグSPFは、該セルが前に再生されるセルまたはセルブロックとシームレスに接続して再生するか否かを示すフラグであり、前セルまたは前セルブロックとシームレスに接続して再生する場合には、該セルのセル再生情報のSPFにはフラグ値1を設定する。そうでない場合には、フラグ値0を設定する。【0106】インターリーブアロケーションフラグIAFは、該セルがインターリーブ領域に配置されているか否かを示すフラグであり、インターリーブ領域に配置されている場合には、該セルのインターリーブアロケーションフラグIAFにはフラグ値1を設定する。そうでない場合には、フラグ値0を設定する。

【0107】STC再設定フラグSTCDFは、同期をとる際に使用するSTCをセルの再生時に再設定する必要があるかないかの情報であり、再設定が必要な場合にはフラグ値1を設定する。そうでない場合には、フラグ値0を設定する。

【0108】シームレスアングルチェンジフラグSACFは、該セルがアングル区間に属しかつ、シームレスに切替える場合、該セルのシームレスアングルチェンジフラグSACFにはフラグ値1を設定する。そうでない場合には、フラグ値0を設定する。

【0109】セル再生時間(C_PBTM)はセルの再生時間

をビデオのフレーム数精度で示している。

【0110】C_LVOBU_SAは、セル終端VOBU開始アドレスを示し、その値はVTSタイトル用VOBS(VTSTT_VOBS)の先頭セルの論理セクタからの距離をセクタ数で示している。C_FVOBU_SAはセル先頭VOBU開始アドレスを示し、VTSタイトル用VOBS(VTSTT_VOBS)の先頭セルの論理セクタから距離をセクタ数で示している。

【0111】次に、VTSタイトル用VOBS、つまり、1マルチメディアシステムストリームデータVTSTT_VOBSに付いて説明する。システムストリームデータVTSTT_VOBSは、ビデオオブジェクトVOBと呼ばれるi個(iは自然数)のシステムストリームSSからなる。各ビデオオブジェクトVOB#1は、少なくとも1つのビデオデータで構成され、場合によっては最大8つのオーディオデータ、最大32の副映像データまでがインターリーブされて構成される。

【0112】各ビデオオブジェクトVOBは、q個(qは自然数)のセル $C#1\sim C#q$ から成る。各セルCは、r個(rは自然数)のビデオオブジェクトユニット $VOBU#1\sim VOBU#r$ から形成される。

【0113】各VOBUは、ビデオエンコードのリフレ ッシュ周期であるGOPの複数個及び、それに相当する 時間のオーディオおよびサブピクチャからなる。また、 各VOBUの先頭には、該VOBUの管理情報であるナ ブパックNVを含む。ナブパックNVの構成について は、図19を参照して後述する。図17に、図25を参 照して後述するエンコーダ E Cによってエンコードされ たシステムストリームSt35(図25)、つまりビデ オゾーンVZ(図22)の内部構造を示す。同図に於い て、ビデオエンコードストリームSt15は、ビデオエ ンコーダ300によってエンコードされた、圧縮された 一次元のビデオデータ列である。オーディオエンコード ストリームSt19も、同様に、オーディオエンコーダ 700によってエンコードされた、ステレオの左右の各 データが圧縮、及び統合された一次元のオーディオデー タ列である。また、オーディオデータとしてサラウンド 等のマルチチャネルでもよい。

【0114】システムストリームS t 35は、図22で説明した、2048バイトの容量を有する論理セクタL S # nに相当するバイト数を有するパックが一次元に配列された構造を有している。システムストリームS t 35の先頭、つまりVOBUの先頭には、ナビゲーションパックNVと呼ばれる、システムストリーム内のデータ配列等の管理情報を記録した、ストリーム管理パックが配置される。

【0115】ビデオエンコードストリームSt15及びオーディオエンコードストリームSt19は、それぞれ、システムストリームのパックに対応するバイト数毎にパケット化される。これらパケットは、図中で、V

1、V2、V3、V4、・・、及びA1、A2、・・と表現されている。これらパケットは、ビデオ、オーディオ各データ伸長用のデコーダの処理時間及びデコーダのバッファサイズを考慮して適切な順番に図中のシステムストリームSt35としてインターリーブされ、パケットの配列をなす。例えば、本例ではV1、V2、A1、V3、V4、A2の順番に配列されている。

【0116】図17では、一つの動画像データと一つのオーディオデータがインターリーブされた例を示している。しかし、DVDシステムに於いては、記録再生容量が大幅に拡大され、高速の記録再生が実現され、信号処理用LSIの性能向上が図られた結果、一つの動画像データに複数のオーディオデータや複数のグラフィックスデータである副映像データが、一つのMPEGシステムストリームとしてインターリーブされた形態で記録され、再生時に複数のオーディオデータや複数の副映像データから選択的な再生を行うことが可能となる。図18に、このようなDVDシステムで利用されるシステムストリームの構造を表す。

【0117】図18に於いても、図17と同様に、パケット化されたビデオエンコードストリームSt15は、V1、V2、V3、V4、・・・と表されている。但し、この例では、オーディオエンコードストリームSt19は、一つでは無く、St19A、St19B、QびSt19Cと3列のオーディオデータ列がソースとして入力されている。更に、副画像データ列であるサブピクチャエンコードストリームSt17も、Qt17Bと二列のデータがソースとして入力されている。これら、合計6列の圧縮データ列が、一つのシステムストリームQt35にインターリーブされる。

【0118】ビデオデータはMPEG方式で符号化されており、GOPという単位が圧縮の単位になっており、GOP単位は、標準的にはNTSCの場合、15フレームで1GOPを構成するが、そのフレーム数は可変になっている。インターリーブされたデータ相互の関連などの情報をもつ管理用のデータを表すストリーム管理パウも、ビデオデータを基準とするGOPを単位とする間隔で、インターリーブされる事になり、GOPを構成するフレーム数が変われば、その間隔も変動する事になる。DVDでは、その間隔を再生時間長で、0.4秒51.0秒の範囲内として、その境界はGOP単位としている。もし、連続する複数のGOPの再生時間が1秒以下であれば、その複数GOPのビデオデータに対して、管理用のデータパックが1つのストリーム中にインターリーブされる事になる。

【0119】DVDではこのような、管理用データパックをナブパックNVと呼び、このナブパックNVから、次のナブパックNV直前のパックまでをビデオオブジェクトユニット(以下VOBUと呼ぶ)と呼び、一般的に1つのシーンと定義できる1つの連続した再生単位をビ

デオオブジェクトと呼び(以下VOBと呼ぶ)、1つ以上のVOBUから構成される事になる。また、VOBが複数集まったデータの集合をVOBセット(以下VOBSと呼ぶ)と呼ぶ。これらは、DVDに於いて初めて採用されたデータ形式である。このように複数のデータ列がインターリーブされる場合、インターリーブされたデータ相互の関連を示す管理用のデータを表すナビゲーションパックNVも、所定のパック数単位と呼ばれる単位でインターリーブされる必要がある。GOPは、通常12から15フレームの再生時間に相当する約0.5秒のビデオデータをまとめた単位であり、この時間の再生に要するデータパケット数に一つのストリーム管理パケットがインターリーブされると考えられる。

【0120】図19は、システムストリームを構成する、インターリーブされたビデオデータ、オーディオデータ、副映像データのパックに含まれるストリーム管理情報を示す説明図である。同図のようにシステムストリーム中の各データは、MPEG2に準拠するパケット化およびパック化された形式で記録される。ビデオ、オーディオ、及び副画像データ共、パケットの構造は、基本的に同じである。 DVDシステムに於いては、1パックは、前述の如く2048バイトの容量を有し、PESパケットと呼ばれる1パケットを含み、パックヘッダPKH、パケットへッダPTH、及びデータ領域から成る。

【0121】パックヘッダPKH中には、そのパックが 図26におけるストリームバッファ2400からシステ ムデコーダ2500に転送されるべき時刻、つまりAV 同期再生のための基準時刻情報、を示すSCR(System Clock Reference) が記録されている。MPEGに於い ては、このSCRをデコーダ全体の基準クロックとする こと、を想定しているが、DVDなどのディスクメディ アの場合には、個々のプレーヤに於いて閉じた時刻管理 で良い為、別途にデコーダ全体の時刻の基準となるクロ ックを設けている。また、パケットヘッダPTH中に は、そのパケットに含まれるビデオデータ或はオーディ オデータがデコードされた後に再生出力として出力され るべき時刻を示すPTSや、ビデオストリームがデコー ドされるべき時刻を示すDTSなどが記録されているP TSおよびDTSは、パケット内にデコード単位である アクセスユニットの先頭がある場合に置かれ、PTSは アクセスユニットの表示開始時刻を示し、DTSはアク セスユニットのデコード開始時刻を示している。また、 PTSとDTSが同時刻の場合、DTSは省略される。 【0122】更に、パケットヘッダPTHには、ビデオ データ列を表すビデオパケットであるか、プライベート パケットであるか、MPEGオーディオパケットである かを示す8ビット長のフィールドであるストリームID が含まれている。

【0123】ここで、プライベートパケットとは、MP

EG2の規格上その内容を自由に定義してよいデータであり、本実施形態では、プライベートパケット1を使用してオーディオデータ(MPEGオーディオ以外)および副映像データを搬送し、プライベートパケット2を使用してPCIパケットおよびDSIパケットを搬送している。

【0124】プライベートパケット1およびプライベートパケット2はパケットヘッダ、プライベートデータ領域およびデータ領域からなる。プライベートデータ領域には、記録されているデータがオーディオデータであるか副映像データであるかを示す、8 ビット長のフィールドを有するサブストリームIDが含まれる。プライベートパケット2で定義されるオーディオデータは、リニアPCM方式、A C-3 方式それぞれについて # 0-# 7まで最大8種類が設定可能である。また副映像データは、# 0-# 31までの最大32種類が設定可能である。

【0125】データ領域は、ビデオデータの場合はMPEG2形式の圧縮データ、オーディオデータの場合はリニアPCM方式、AC-3方式又はMPEG方式のデータ、副映像データの場合はランレングス符号化により圧縮されたグラフィックスデータなどが記録されるフィールドである。

【0126】また、MPEG2ビデオデータは、その圧 縮方法として、固定ビットレート方式(以下「CBR」 とも記す) と可変ビットレート方式(以下「VBR」と も記す)が存在する。固定ビットレート方式とは、ビデ オストリームが一定レートで連続してビデオバッファへ 入力される方式である。これに対して、可変ビットレー ト方式とは、ビデオストリームが間欠して(断続的に) ビデオバッファへ入力される方式であり、これにより不 要な符号量の発生を抑えることが可能である。DVDで は、固定ビットレート方式および可変ビットレート方式 とも使用が可能である。MPEGでは、動画像データ は、可変長符号化方式で圧縮されるために、GOPのデ ータ量が一定でない。さらに、動画像とオーディオのデ コード時間が異なり、光ディスクから読み出した動画像 データとオーディオデータの時間関係とデコーダから出 力される動画像データとオーディオデータの時間関係が 一致しなくなる。このため、動画像とオーディオの時間 的な同期をとる方法を、図26を参照して、後程、詳述 するが、一先ず、簡便のため固定ビットレート方式を基 に説明をする。

【0127】図20に、ナブパックNVの構造を示す。 ナブパックNVは、PCIパケットとDSIパケットからなり、先頭にパックヘッダPKHを設けている。PKHには、前述したとおり、そのパックが図26におけるストリームバッファ2400からシステムデコーダ2500に転送されるべき時刻、つまりAV同期再生のための基準時刻情報、を示すSCRが記録されている。 【0128】PCIパケットは、PCI情報(PCI_GI)と非シームレスマルチアングル情報(NSML_AGLI)を有している。

【0129】PCI情報(PCI_GI)には、該VOBUに含まれるビデオデータの先頭ビデオフレーム表示時刻 (VOBU_S_PTM)及び最終ビデオフレーム表示時刻 (VOBU_E_PTM)をシステムクロック精度(90KHz)で記述する。

【O130】 非シームレスマルチアングル情報(NSML_AGLI)には、アングルを切り替えた場合の読み出し開始アドレスをVOB先頭からのセクタ数として記述する。この場合、アングル数は9以下であるため、領域として9アングル分のアドレス記述領域(NSML_AGL_C1_DSTA~NSML_AGL_C9_DSTA)を有す。DSIパケットにはDSI情報(DSI_GI)、シームレス再生情報(SML_PBI)およびシームレスマルチアングル再生情報(SML_AGLI)を有している。

【0131】DSI情報(DSI_GI)として該VOBU内の最終パックアドレス(VOBU_EA)をVOBU先頭からのセクタ数として記述する。

【0132】シームレス再生に関しては後述するが、分岐あるいは結合するタイトルをシームレスに再生するために、連続読み出し単位をILVU(Interleaved Unit)として、システムストリームレベルでインターリーブ(多重化)する必要がある。複数のシステムストリームがILVUを最小単位としてインターリーブ処理されている区間をインターリーブブロックと定義する。

【0133】このようにILVUを最小単位としてインターリーブされたストリームをシームレスに再生するために、シームレス再生情報(SML_PBI)を記述する。シームレス再生情報(SML_PBI)には、該VOBUがインターリーブブロックかどうかを示すインターリーブユニットフラグ(ILWI flag)を記述する。このフラグはインターリーブ領域に(後述)に存在するかを示すものであり、インターリーブ領域に存在する場合"1"を設定する。そうでない場合には、フラグ値0を設定する。

【0134】また、該VOBUがインターリーブ領域に存在する場合、該VOBUがILVUの最終VOBUかを示すユニットエンドフラグ(UNIT END Flag)を記述する。ILVUは、連続読み出し単位であるので、現在読み出しているVOBUが、ILVUの最後のVOBUであれば"1"を設定する。そうでない場合には、フラグ値0を設定する。

【0135】該VOBUがインターリーブ領域に存在する場合、該VOBUが属するILVUの最終パックのアドレスを示すILVU最終パックアドレス(ILW_EA)を記述する。ここでアドレスとして、該VOBUのNVからのセクタ数で記述する。

【0136】また、該VOBUがインターリーブ領域に存在する場合、次のILVUの開始アドレス(NT_ILWU_

SA) を記述する。ここでアドレスとして、該VOBUのNVからのセクタ数で記述する。

【0137】また、2つのシステムストリームをシームレスに接続する場合に於いて、特に接続前と接続後のオーディオが連続していない場合(異なるオーディオの場合等)、接続後のビデオとオーディオの同期をとるためにオーディオを一時停止(ポーズ)する必要がある。例えば、NTSCの場合、ビデオのフレーム周期は約33.3 3msecであり、オーディオAC3のフレーム周期は32msecである。

【0138】このためにオーディオを停止する時間および期間情報を示すオーディオ再生停止時刻1(VOBU_A_S TP_PTM1)、オーディオ再生停止時刻2(VOBU_A_STP_PT M2)、オーディオ再生停止期間1(VOB_A_GAP_LEN1)、オーディオ再生停止期間2(VOB_A_GAP_LEN2)を記述する。この時間情報はシステムクロック精度(90KH z)で記述される。

【O139】また、シームレスマルチアングル再生情報(SML_AGLI)として、アングルを切り替えた場合の読み出し開始アドレスを記述する。このフィールドはシームレスマルチアングルの場合に有効なフィールドである。このアドレスは該VOBUのNVからのセクタ数で記述される。また、アングル数は9以下であるため、領域として9アングル分のアドレス記述領域:(SML_AGL_C1_DS TA ~ SML_AGL_C9_DSTA)を有す。

DVDエンコーダ

図25に、本発明に掛かるマルチメディアビットストリームオーサリングシステムを上述のDVDシステムに適用した場合の、オーサリングエンコーダECDの一実施形態を示す。DVDシステムに適用したオーサリングエンコーダECD(以降、DVDエンコーダECに、非常に類似した構成になっている。DVDオーサリングエンコーダECDは、基本的には、オーサリングエンコーダECDは、基本的には、オーサリングエンコーダアファ1000とフォーマッタ1300が、VOBバッファ1000とフォーマッタ1100にとって変わられた構造を有している。言うまでもなく、本発明のエンコーダによってエンコードされたビットストリームは、DVD媒体Mに記録される。以下に、DVDオーサリングエンコーダECDの動作をオーサリングエンコーダECと比較しながら説明する。

【0140】DVDオーサリングエンコーダECDに於いても、オーサリングエンコーダECと同様に、編集情報作成部100から入力されたユーザーの編集指示内容を表すシナリオデータSt7に基づいて、エンコードシステム制御部200が、各制御信号St9、St11、St21、St23、St25、St33、St21、St23、St25、St33、St20、St39を生成して、ビデオエンコーダ300、サプピクチャエンコーダ500、及びオーディオエンコーダ700を制御する。尚、DVDシステムに於ける編集

指示内容とは、図25を参照して説明したオーサリングシステムに於ける編集指示内容と同様に、複数のタイトル内容を含む各ソースデータの全部或いは、其々に対して、所定時間毎に各ソースデータの内容を一つ以上選択し、それらの選択された内容を、所定の方法で接続再生するような情報を含無と共に、更に、以下の情報を含む。つまり、マルチタイトルソースストリームを、所定時間単位毎に分割した編集単位に含まれるストリーム数、各ストリーム内のオーディオ数やサブピクチャ数及びその表示期間等のデータ、パレンタルあるいはマルチアングルなど複数ストリームから選択するか否か、設定されたマルチアングル区間でのシーン間の切り替え接続方法などの情報を含む。

【0141】尚、DVDシステムに於いては、シナリオデータSt7には、メディアソースストリームをエンコードするために必要な、VOB単位での制御内容、つまり、マルチアングルであるかどうか、パレンタル制御を可能とするマルチレイティッドタイトルの生成であるか、後述するマルチアングルやパレンタル制御の場合のインターリーブとディスク容量を考慮した各ストリームのエンコード時のビットレート、各制御の開始時間と終了時間、前後のストリームとシームレス接続するか否かの内容が含まれる。エンコードシステム制御部200は、シナリオデータSt7から情報を抽出して、エンコード制御に必要な、エンコード情報テーブル及びエンコードパラメータを生成する。エンコード情報テーブル及びエンコードパラメータについては、後程、図27、図28、及び図29を参照して詳述する。

【0142】システムストリームエンコードパラメータデータ及びシステムエンコード開始終了タイミングの信号St33には上述の情報をDVDシステムに適用してVOB生成情報を含む。VOB生成情報として、前後の接続条件、オーディオ数、オーディオのエンコード情報、オーディオID、サブピクチャ数、サブピクチャID、ビデオ表示を開始する時刻情報(VPTS)、オーディオ再生を開始する時刻情報(APTS)等がある。更に、マルチメディア尾ビットストリームMBSのフォーマットパラメータデータ及びフォーマット開始終了タイミングの信号St39は、再生制御情報及びインターリーブ情報を含む。

【0143】ビデオエンコーダ300は、ビデオエンコードのためのエンコードパラメータ信号及びエンコード開始終了タイミングの信号St9に基づいて、ビデオストリームSt1の所定の部分をエンコードして、ISO13818に規定されるMPEG2ビデオ規格に準ずるエレメンタリーストリームを生成する。そして、このエレメンタリーストリームをビデオエンコードストリームSt15として、ビデオストリームバッファ400に出力する。ここで、ビデオエンコーダ300に於いてISO13818に規定されるMPEG2ビデオ規格に準ず

るエレメンタリストリームを生成するが、ビデオエンコードパラメータデータを含む信号St9に基に、エンコードパラメータとして、エンコード開始終了タイミング、ビットレート、エンコード開始終了時にエンコード条件、素材の種類として、NTSC信号またはPAL信号あるいはテレシネ素材であるかなどのパラメータ及びオープンGOP或いはクローズドGOPのエンコードモードの設定がエンコードパラメータとしてそれぞれ入力される。

【 O 1 4 4】 M P E G 2 の符号化方式は、基本的にフレーム間の相関を利用する符号化である。つまり、符号化対象フレームの前後のフレームを参照して符号化を行う。しかし、エラー伝播およびストリーム途中からのアクセス性の面で、他のフレームを参照しない(イントラフレーム)フレームを挿入する。このイントラフレームを少なくとも1フレームを有する符号化処理単位をGOPと呼ぶ。

【0145】このGOPに於いて、完全に該GOP内で符号化が閉じているGOPがクローズドGOPであり、前のGOP内のフレームを参照するフレームが該GOP内に存在する場合、該GOPをオープンGOPと呼ぶ。【0146】従って、クローズドGOPを再生する場合は、該GOPのみで再生できるが、オープンGOPを再生する場合は、一般的に1つ前のGOPが必要である。【0147】また、GOPの単位は、アクセス単位とて使用する場合が多い。例えば、タイトルの途中からの再生する場合の再生開始点、映像の切り替わり点、あるいは早送りなどの特殊再生時には、GOP内のフレーム内符号化フレームであるいフレームのみをGOP単位で再生する事により、高速再生を実現する。

【0148】サブピクチャエンコーダ500は、サブピクチャストリームエンコード信号St11に基づいて、サブピクチャストリームSt3の所定の部分をエンコードして、ビットマップデータの可変長符号化データを生成する。そして、この可変長符号化データをサブピクチャエンコードストリームSt17として、サブピクチャストリームバッファ600に出力する。

【0149】オーディオエンコーダ700は、オーディオエンコード信号St13に基づいて、オーディオストリームSt5の所定の部分をエンコードして、オーディオエンコードデータを生成する。このオーディオエンコードデータとしては、ISO11172に規定されるMPEG1オーディオ規格及びISO13818に規定されるMPEG2オーディオ規格に基づくデータ、また、AC-3オーディオデータ、及びPCM(LPCM)データ等がある。これらのオーディオデータをエンコードする方法及び装置は公知である。

【0150】ビデオストリームバッファ400は、ビデオエンコーダ300に接続されており、ビデオエンコーダ300から出力されるビデオエンコードストリームS

t 15を保存する。ビデオストリームバッファ400は 更に、エンコードシステム制御部200に接続されて、 タイミング信号St21の入力に基づいて、保存してい るビデオエンコードストリームSt15を、調時ビデオ エンコードストリームSt27として出力する。

【0151】同様に、サブピクチャストリームバッファ 600は、サブピクチャエンコーダ 500に接続されて おり、サブピクチャエンコーダ 500から出力されるサブピクチャエンコードストリーム 17 を保存する。 サブピクチャストリームバッファ 17 を保存する。 サブピクチャストリームバッファ 17 を保存する。 サブピクチャストリームバッファ 17 を 17 を

【0152】また、オーディオストリームバッファ800は、オーディオエンコーダ700に接続されており、オーディオエンコーダ700から出力されるオーディオエンコードストリームSt19を保存する。オーディオストリームバッファ800は更に、エンコードシステム制御部200に接続されて、タイミング信号St25の入力に基づいて、保存しているオーディオエンコードストリームSt19を、調時オーディオエンコードストリームSt31として出力する。

【0153】システムエンコーダ900は、ビデオストリームバッファ400、サブピクチャストリームバッファ600、及びオーディオストリームバッファ800に接続されており、調時ビデオエンコードストリームSt27、調時サブピクチャエンコードストリームSt29、及び調時オーディオエンコードSt31が入力される。システムエンコーダ900は、またエンコードシステム制御部200に接続されており、システムエンコードのためのエンコードパラメータデータを含むSt33が入力される。

【0154】システムエンコーダ900は、エンコードパラメータデータ及びエンコード開始終了タイミング信号St33に基づいて、各調時ストリームSt27、St29、及びSt31に多重化(マルチプレクス)処理を施して、最小タイトル編集単位(VOBs)St35を生成する。

【0155】 VOBバッファ1000はシステムエンコーダ900に於いて生成されたVOBを一時格納するバッファ領域であり、フォーマッタ1100では、St39に従ってVOBバッファ1100から調時必要なVOBを読み出し1ビデオゾーンVZを生成する。また、同フォーマッタ1100に於いてはファイルシステム(VFS)を付加してSt43を生成する。

【0156】このユーザの要望シナリオの内容に編集された、ストリームS t 43は、記録部1200に転送される。記録部1200は、編集マルチメディアビットストリームMBSを記録媒体Mに応じた形式のデータS t

43に加工して、記録媒体Mに記録する。 DVDデコーダ

次に、図26を参照して、本発明に掛かるマルチメディアビットストリームオーサリングシステムを上述のDVDシステムに適用した場合の、オーサリングデコーダDCの一実施形態を示す。DVDシステムに適用したオーサリングエンコーダDCD(以降、DVDデコーダと呼称する)は、本発明にかかるDVDエンコーダECDによって、編集されたマルチメディアビットストリームMBSをデコードして、ユーザの要望のシナリオに沿って各タイトルの内容を展開する。なお、本実施形態に於いては、DVDエンコーダECDによってエンコードされたマルチメディアビットストリームSt45は、記録媒体Mに記録されている。

【0157】DVDオーサリングデコーダDCDの基本的な構成は図3に示すオーサリングデコーダDCと同一であり、ビデオデコーダ3800がビデオデコーダ3801と合成部3500の間にリオーダバッファ3300と切替器3400が挿入されている。なお、切替器3400は同期制御部2900に接続されて、切替指示信号St103の入力を受けている。

【0158】DVDオーサリングデコーダDCDは、マルチメディアビットストリーム再生部2000、シナリオ選択部2100、デコードシステム制御部2300、ストリームバッファ2400、システムデコーダ2500、ビデオバッファ2600、サブピクチャバッファ2700、オーディオバッファ2800、同期制御部2900、ビデオデコーダ3801、リオーダバッファ3300、サブピクチャデコーダ3100、オーディオデコーダ3200、セレクタ3400、合成部3500、ビデオデータ出力端子3600、及びオーディオデータ出力端子3700から構成されている。

【0159】マルチメディアビットストリーム再生部2000は、記録媒体Mを駆動させる記録媒体駆動ユニット2004、記録媒体Mに記録されている情報を読み取り二値の読み取り信号S t 5 7 を生成する読取ヘッドユニット2006、読み取り信号S T 5 7 に種々の処理を施して再生ビットストリームS t 6 1 を生成する信号処理部2008、及び機構制御部2002から構成される。機構制御部2002は、デコードシステム制御部2300に接続されて、マルチメディアビットストリーム再生指示信号S t 5 3 を受けて、それぞれ記録媒体駆動ユニット(モータ)2004及び信号処理部2008をそれぞれ制御する再生制御信号S t 5 5 及びS t 5 9 を生成する。

【0160】デコーダDCは、オーサリングエンコーダ ECで編集されたマルチメディアタイトルの映像、サブ ピクチャ、及び音声に関する、ユーザの所望の部分が再 生されるように、対応するシナリオを選択して再生する ように、オーサリングデコーダDCに指示を与えるシナリオデータとして出力できるシナリオ選択部2100を備えている。

【0161】シナリオ選択部2100は、好ましくは、キーボード及びCPU等で構成される。ユーザーは、オーサリングエンコーダECで入力されたシナリオの内容に基づいて、所望のシナリオをキーボード部を操作して入力する。CPUは、キーボード入力に基づいて、選択されたシナリオを指示するシナリオ選択データSt51を生成する。シナリオ選択部2100は、例えば、赤外線通信装置等によって、デコードシステム制御部2300に接続されて、生成したシナリオ選択信号St51をデコードシステム制御部2300に入力する。

【0162】ストリームバッファ2400は所定のバッファ容量を有し、マルチメディアビットストリーム再生部2000から入力される再生信号ビットストリームSt61を一時的に保存すると共に、ボリュームファイルストラクチャVFS、各パックに存在する同期初期値データ(SCR)、及びナブパックNV存在するVOBU制御情報(DSI)を抽出してストリーム制御データSt63を生成する。

【0163】デコードシステム制御部2300は、デコードシステム制御部2300で生成されたシナリオ選択データSt51に基づいてマルチメディアビットストリーム再生部2000動作を制御する再生指示信号St53を生成する。デコードシステム制御部2300は、更に、シナリオデータSt53からユーザの再生指示情報を抽出して、デコード制御に必要な、デコード情報テーブルを生成する。デコード情報テーブルについては、後程、図45、及び図46を参照して詳述する。更に、デコードシステム制御部2300は、ストリーム再生データSt63中のファイルデータ領域FDS情報から、ビデオマネージャVMG、VTS情報VTSI、PGC情報C_PBI#j、セル再生時間(C_PBTM)等の光ディスクMに記録されたタイトル情報を抽出してタイトル情報St200を生成する。

【0164】ここで、ストリーム制御データS t 63は 図19におけるパック単位に生成される。ストリームバッファ2400は、デコードシステム制御部2300に 接続されており、生成したストリーム制御データS t 63をデコードシステム制御部2300に供給する。

【0165】同期制御部2900は、デコードシステム制御部2300に接続されて、同期再生データSt81に含まれる同期初期値データ (SCR) を受け取り、内部のシステムクロック (STC) セットし、リセットされたシステムクロックSt79をデコードシステム制御部2300に供給する。

【0166】デコードシステム制御部2300は、システムクロックSt79に基づいて、所定の間隔でストリーム読出信号St65を生成し、ストリームバッファ2

400に入力する。この場合の読み出し単位はパックである。

【0167】ここでストリーム読み出し信号S t 65の生成方法について説明する。デコードシステム制御部2300では、ストリームバッファ2400から抽出したストリーム制御データ中のSCRと、同期制御部2900からのシステムクロックS t 79を比較し、S t 63中のSCRよりもシステムクロックS t 79が大きくなった時点で読み出し要求信号S t 65を生成する。このような制御をパック単位に行うことで、パック転送を制御する。デコードシステム制御部2300は、更に、シナリオ選択データS t 51に基づき、選択されたシナリオに対応するビデオ、サブピクチャ、オーディオの各ストリームのIDを示すデコードストリーム指示信号S t 69を生成して、システムデコーダ2500に出力する。

【0168】タイトル中に、例えば日本語、英語、フラ ンス語等、言語別のオーディオ等の複数のオーディオデ ータ、及び、日本語字幕、英語字幕、フランス語字幕 等、言語別の字幕等の複数のサブピクチャデータが存在 する場合、それぞれにIDが付与されている。つまり、 図19を参照して説明したように、ビデオデータ及び、 MPEGオーディオデータには、ストリームIDが付与 され、サブピクチャデータ、AC3方式のオーディオデ ータ、リニアPCM及びナブパックNV情報には、サブ ストリームIDが付与されている。ユーザはIDを意識 することはないが、どの言語のオーディオあるいは字幕 を選択するかをシナリオ選択部2100で選択する。英 語のオーディオを選択すれば、シナリオ選択データSt 51として英語のオーディオに対応するIDがデーコー ドシステム制御部2300に搬送される。さらに、デコ ードシステム制御部2300はシステムデコーダ250 0にその I Dを S t 6 9上に搬送して渡す。

【0169】システムデコーダ2500は、ストリームバッファ2400から入力されてくるビデオ、サブピクチャ、及びオーディオのストリームを、デコード指示信号St69の指示に基づいて、それぞれ、ビデオエンコードストリームSt71としてビデオバッファ2600に、サブピクチャエンコードストリームSt73としてサブピクチャバッファ2700に、及びオーディオエンコードストリームSt75としてオーディオバッファ2800に出力する。つまり、システムデコーダ2500は、シナリオ選択部2100より入力される、ストリームのIDと、ストリームバッファ2400から転送されるパックのIDが一致した場合にそれぞれのバッファ(ビデオバッファ2600、サブピクチャバッファ2700、オーディオバッファ2800)に該パックを転送する。

【0170】システムデコーダ2500は、各ストリームSt67の各最小制御単位での再生開始時間(PTS)

及び再生終了時間 (DTS) を検出し、時間情報信号 S t 7 7 を生成する。この時間情報信号 S t 7 7 は、デコードシステム制御部 2 3 0 0 を経由して、 S t 8 1 として同期制御部 2 9 0 0 に入力される。

【0172】ビデオデコーダ3801は、ビデオストリームデコード開始信号St89に基づいて、ビデオ出力要求信号St84を生成して、ビデオバッファ2600に対して出力する。ビデオバッファ2600はビデオ出力要求信号St84を受けて、ビデオストリームSt83をビデオデコーダ3801に出力する。ビデオデコーダ3801は、ビデオストリームSt83に含まれる再生時間情報を検出し、再生時間に相当する量のビデオストリームSt83の入力を受けた時点で、ビデオ出力要求信号St84を無効にする。このようにして、所定再生時間に相当するビデオストリームがビデオデコーダ3801でデコードされて、再生されたビデオ信号St95がリオーダーバッファ3300と切替器3400に出力される。

【0173】ビデオエンコードストリームは、フレーム間相関を利用した符号化であるため、フレーム単位でみた場合、表示順と符号化ストリーム順が一致していない。従って、デコード順に表示できるわけではない。そのため、デコードを終了したフレームを一時リオーダバッファ3300に格納する。同期制御部2900に於いて表示順になるようにSt103を制御しビデオデコーダ3801の出力St95と、リオーダバッファSt97の出力を切り替え、合成部3500に出力する。

【0174】同様に、サブピクチャデコーダ3100は、サブピクチャデコード開始信号St91に基づいて、サブピクチャ出力要求信号St86を生成し、サブピクチャバッファ2700に供給する。サブピクチャバッファ2700は、ビデオ出力要求信号St84を受けて、サブピクチャストリームSt85をサブピクチャデコーダ3100に出力する。サブピクチャデコーダ3100は、サブピクチャストリームSt85に含まれる再生時間情報に基づいて、所定の再生時間に相当する量のサブピクチャストリームSt85をデコードして、サブピクチャ信号St99を再生して、合成部3500に出力する。

【0175】合成部3500は、セレクタ3400の出力及びサブピクチャ信号St99を重畳させて、映像信号St105を生成し、ビデオ出力端子3600に出力する。

【0176】オーディオデコーダ3200は、オーディオデコード開始信号St93に基づいて、オーディオ出力要求信号St88を生成し、オーディオバッファ2800は、オーディオ出力要求信号St88を受けて、オーディオストリームSt87をオーディオデコーダ3200に出力する。オーディオデコーダ3200は、オーディオストリームSt87に含まれる再生時間情報に基づいて、所定の再生時間に相当する量のオーディオストリームSt87をデコードして、オーディオ出力端子3700に出力する。

【0177】このようにして、ユーザのシナリオ選択に応答して、リアルタイムにユーザの要望するマルチメディアビットストリームMBSを再生する事ができる。つまり、ユーザが異なるシナリオを選択する度に、オーサリングデコーダDCDはその選択されたシナリオに対応するマルチメディアビットストリームMBSを再生することによって、ユーザの要望するタイトル内容を再生することができる。

【0178】尚、デコードシステム制御部2300は、前述の赤外線通信装置等を経由して、シナリオ選択部2100にタイトル情報信号St200を供給してもよい。シナリオ選択部2100は、タイトル情報信号St200に含まれるストリーム再生データSt63中のファイルデータ領域FDS情報から、光ディスクMに記録されたタイトル情報を抽出して、内蔵ディスプレイに表示することにより、インタラクティブなユーザによるシナリオ選択を可能とする。

【0179】また、上述の例では、ストリームバッファ2400、ビデオバッファ2600、サブピクチャバッファ2700、及びオーディオバッファ2800、及びリオーダバッファ3300は、機能的に異なるので、それぞれ別のバッファとして表されている。しかし、これらのバッファに於いて要求される読込み及び読み出し速度の数倍の動作速度を有するバッファメモリを時分割で使用することにより、一つのバッファメモリをこれら個別のバッファとして機能させることができる。

マルチシーン

図21を用いて、本発明に於けるマルチシーン制御の概念を説明する。既に、上述したように、各タイトル間での共通のデータからなる基本シーン区間と、其々の要求に即した異なるシーン群からなるマルチシーン区間とで構成される。同図に於いて、シーン1、シーン5、及びシーン8が共通シーンである。共通シーン1とシーン5の間のアングルシーン及び、共通シーン5とシーン8の間のパレンタルシーンがマルチシーン区間である。マル

チアングル区間に於いては、異なるアングル、つまりアングル1、アングル2、及びアングル3、から撮影されたシーンの何れかを、再生中に動的に選択再生できる。パレンタル区間に於いては、異なる内容のデータに対応するシーン6及びシーン7の何れかをあらかじめ静的に選択再生できる。

【0180】このようなマルチシーン区間のどのシーンを選択して再生するかというシナリオ内容を、ユーザはシナリオ選択部2100にて入力してシナリオ選択データSt51として生成する。図中に於いて、シナリオ1では、任意のアングルシーンを自由に選択し、パレンタル区間では予め選択したシーン6を再生することを表している。同様に、シナリオ2では、アングル区間では、自由にシーンを選択でき、パレンタル区間では、シーン7が予め選択されていることを表している。

【0181】以下に、図21で示したマルチシーンをD VDのデータ構造を用いた場合の、PGC情報VTS_PGCI について、図30、及び図31を参照して説明する。

【0182】図30には、図21に示したユーザ指示のシナリオを図16のDVDデータ構造内のビデオタイトルセットの内部構造を表すVTSIデータ構造で記述した場合について示す。図において、図21のシナリオ1、シナリオ2は、図16のVTSI中のプログラムチェーン情報VTS_PGCI#1とVTS_PGCI#1として記述される。すなわち、シナリオ1を記述するVTS_PGCI#1は、シーン1に相当するセル再生情報C_PBI#1、マルチアングルセルブロック内のセル再生情報C_PBI#2、セル再生情報C_PBI#3、セル再生情報C_PBI#5、シーン6に相当するセル再生情報C_PBI#5、シーン6に相当するC_PBI#7からなる。

【0183】また、シナリオ2を記述するVTS_PGC#2は、シーン1に相当するセル再生情報C_PBI#1、マルチアングルシーンに相当するマルチアングルセルブロック内のセル再生情報C_PBI#2、セル再生情報C_PBI#4、シーン5に相当するセル再生情報C_PBI#5、シーン7に相当するセル再生情報C_PBI#5、シーン7に相当するセル再生情報C_PBI#6、シーン8に相当するC_PBI#7からなる。DVDデータ構造では、シナリオの1つの再生制御の単位であるシーンをセルというDVDデータ構造上の単位に置き換えて記述し、ユーザの指示するシナリオをDVD上で実現している。

【0184】図31には、図21に示したユーザ指示のシナリオを図16のDVDデータ構造内のビデオタイトルセット用のマルチメディアビットストリームであるVOBデータ構造VTSTT_VOBSで記述した場合について示す。

【0185】図において、図21のシナリオ1とシナリ

オ2の2つのシナリオは、1つのタイトル用VOBデータを共通に使用する事になる。各シナリオで共有する単独のシーンはシーン1に相当するVOB#1、シーン5に相当するVOB#5、シーン8に相当するVOB#8は、単独のVOBとして、インターリーブブロックではない部分、すなわち連続ブロックに配置される。

【0186】シナリオ1とシナリオ2で共有するマルチアングルシーンにおいて、それぞれアングル1はVOB#2、アングル2はVOB#3、アングル3はVOB#4で構成、つまり1アングルを1VOBで構成し、さらに各アングル間の切り替えと各アングルのシームレス再生のために、インターリーブブロックとする。

【0187】また、シナリオ1とシナリオ2で固有なシーンであるシーン6とシーン7は、各シーンのシームレス再生はもちろんの事、前後の共通シーンとシームレスに接続再生するために、インターリーブブロックとする。

【0188】以上のように、図21で示したユーザ指示のシナリオは、DVDデータ構造において、図30に示すビデオタイトルセットの再生制御情報と図31に示すタイトル再生用VOBデータ構造で実現できる。

シームレス

上述のDVDシステムのデータ構造に関連して述べたシームレス再生について説明する。シームレス再生とは、共通シーン区間同士で、共通シーン区間とマルチシーン区間とで、及びマルチシーン区間同士で、映像、音声、副映像等のマルチメディアデータを、接続して再生する際に、各データ及び情報を中断する事無く再生することである。このデータ及び情報再生の中断の要因としては、ハードウェアに関連するものとして、デコーダに於いて、ソースデータ入力される速度と、入力されたソースデータをデコードする速度のバランスがくずれる、いわゆるデコーダのアンダーフローと呼ばれるものがある。

【0189】更に、再生されるデータの特質に関するものとして、再生データが音声のように、その内容或いは情報をユーザが理解する為には、一定時間単位以上の連続再生を要求されるデータの再生に関して、その要求される連続再生時間を確保出来ない場合に情報の連続性が失われるものがある。このような情報の連続性を確保して再生する事を連続情報再生と、更にシームレス情報再生と呼ぶ。また、情報の連続性を確保出来ない再生を非連続情報再生と呼び、更に非シームレス情報再生と呼ぶ。尚、言うまでまでもなく連続情報再生と非連続情報再生は、それぞれシームレス及び非シームレス再生である。

【0190】上述の如く、シームレス再生には、バッファのアンダーフロー等によって物理的にデータ再生に空白あるいは中断の発生を防ぐシームレスデータ再生と、データ再生自体には中断は無いものの、ユーザーが再生

データから情報を認識する際に情報の中断を感じるのを 防ぐシームレス情報再生と定義する。

<u>シームレスの詳細</u>

なお、このようにシームレス再生を可能にする具体的な 方法については、図23及び図24を参照して後で詳し く説明する。

<u>インターリーブ</u>

上述のDVDデータのシステムストリームをオーサリングエンコーダECを用いて、DVD媒体上の映画のようなタイトルを記録する。しかし、同一の映画を複数の異なる文化圏或いは国に於いても利用できるような形態で提供するには、台詞を各国の言語毎に記録するのは当然として、さらに各文化圏の倫理的要求に応じて内容を編集して記録する必要がある。このような場合、元のタイトルから編集された複数のタイトルを1枚の媒体に記録するには、DVDという大容量システムに於いてさえも、ビットレートを落とさなければならず、高画質の分を複数のタイトルで共有し、異なる部分のみをそれでより、ビットレートをおとさず、1枚の光ディスクに、国別あるいは文化圏別の複数のタイトルを記録する事ができる。

【0191】1枚の光ディスクに記録されるタイトルは、図21に示したように、パレンタルロック制御やマルチアングル制御を可能にするために、共通部分(シーン)と非共通部分(シーン)のを有するマルチシーン区間を有する。パレンタルロック制御の場合は、一つのタイトル中に、性的シーン、暴力的シーン等の子供に相応しくない所謂成人向けシーンが含まれている場合、このタイトルは共通のシーンと、成人向けシーンと、未成年向けシーンから構成される。このようなタイトルストリームは、成人向けシーンと非成人向けシーンを、共通シーン間に、設けたマルチシーン区間として配置して実現する。

【0192】また、マルチアングル制御を通常の単一アングルタイトル内に実現する場合には、それぞれ所定のカメラアングルで対象物を撮影して得られる複数のマルチメディアシーンをマルチシーン区間として、共通シーン間に配置する事で実現する。ここで、各シーンは異なるアングルで撮影されたシーンの例を上げている、同一のアングルであるが、異なる時間に撮影されたシーンであっても良いし、またコンピュータグラフィックス等のデータであっても良い。

【0193】複数のタイトルでデータを共有すると、必然的に、データの共有部分から非共有部分への光ビームLSを移動させるために、光学ピックアップを光ディスク(RC1)上の異なる位置に移動することになる。この移動に要する時間が原因となって音や映像を途切れずに再生する事、すなわちシームレス再生が困難であると

いう問題が生じる。このような問題点を解決するするには、理論的には最悪のアクセス時間に相当する時間分のトラックバッファ(ストリームバッファ2400)を備えれば良い。一般に、光ディスクに記録されているデータは、光ピックアップにより読み取られ、所定の信号処理が施された後、データとしてトラックバッファに一旦蓄積される。蓄積されたデータは、その後デコードされて、ビデオデータあるいはオーディオデータとして再生される。

インターリーブの定義

前述のような、あるシーンをカットする事や、複数のシーンから選択を可能にするには、記録媒体のトラック上に、各シーンに属するデータ単位で、互いに連続した配置で記録されるため、共通シーンデータと選択シーンデータとの間に非選択シーンのデータが割り込んで記録される事態が必然的におこる。このような場合、記録されている順序にデータを読むと、選択したシーンのデータにアクセスしてデコードする前に、非選択シーンのデータにアクセスせざるを得ないので、選択したシーンへのシームレス接続が困難である。しかしながら、DVDシステムに於いては、その記録媒体に対する優れたランダムアクセス性能を活かして、このような複数シーン間でのシームレス接続が可能である。

【0194】つまり、各シーンに属するデータを、所定のデータ量を有する複数の単位に分割し、これらの異なるシーンの属する複数の分割データ単位を、互いに所定の順番に配置することで、ジャンプ性能範囲に配置する事で、それぞれ選択されたシーンの属するデータを分割単位毎に、断続的にアクセスしてデコードすることによって、その選択されたシーンをデータが途切れる事なく再生する事ができる。つまり、シームレスデータ再生が保証される。

インターリーブブロック、ユニット構造

図24及び図57を参照して、シームレスデータ再生を可能にするインターリーブ方式を説明する。図24では、1つのVOB (VOB-A) から複数のVOB (VOB-B) へ分岐再生し、その後1つのVOB (VOB-E) に結合する場合を示している。図57では、これらのデータをディスク上のトラックTRに実際に配置した場合を示している。

【0195】図57に於ける、VOB-AとVOB-Eは再生の開始点と終了点が単独なビデオオブジェクトであり、原則として連続領域に配置する。また、図24に示すように、VOB-B、VOB-C、VOB-Dについては、再生の開始点、終了点を一致させて、インターリーブ処理を行う。そして、そのインターリーブ処理された領域をディスク上の連続領域にインターリーブ領域として配置する。さらに、上記連続領域とインターリーブ領域を再生の順番に、つまりトラックパスDrの方向に、配置している。複数のVOB、すなわちVOBSを

トラックTR上に配置した図を図57に示す。図57では、データが連続的に配置されたデータ領域をブロックとし、そのブロックは、前述の開始点と終了点が単独で完結しているVOBを連続して配置している連続ブロック、開始点と終了点を一致させて、その複数のVOBをインターリーブしたインターリーブブロックの2種類である。それらのブロックが再生順に、図58に示すように、ブロック1、ブロック2、ブロック3、・・・、ブロック7と配置されている構造をもつ。

【0196】図58に於いて、VTSTT_VOBSは、ブロック1、2、3、4、5、6、及び7から構成されている。ブロック1には、VOB1が単独で配置されている。同様に、ブロック2、3、5、及び7には、それぞれ、VOB2、3、6、及び10が単独で配置されている。つまり、これらのブロック2、3、5、及び7は、連続ブロックである。

【0197】一方、ブロック4には、VOB4とVOB5がインターリーブされて配置されている。同様に、ブロック6には、VOB7、VOB8、及びVOB9の三つのVOBがインターリーブされて配置されている。つまり、これらのブロック4及び6は、インターリーブブロックである。

【0198】図59に連続ブロック内のデータ構造を示 す。同図に於いて、VOBSにVOB-i、VOB-i が連続ブロックとして、配置されている。連続ブロック 内のVOB-i及びVOB-jは、図16を参照して説 明したように、更に論理的な再生単位であるセルに分割 されている。図ではVOB-i及びVOB-jのそれぞ れが、3つのセルCELL#1、CELL#2、CEL L#3で構成されている事を示している。セルは1つ以 上のVOBUで構成されており、VOBUの単位で、そ の境界が定義されている。セルはDVDの再生制御情報 であるプログラムチェーン(以下PGCと呼ぶ)には、 図16に示すように、その位置情報が記述される。つま り、セル開始のVOBUと終了のVOBUのアドレスが 記述されている。図59に明示されるように、連続ブロ ックは、連続的に再生されるように、VOBもその中で 定義されるセルも連続領域に記録される。そのため、連 続ブロックの再生は問題はない。

【0199】次に、図60にインターリーブブロック内のデータ構造を示す。インターリーブブロックでは、各VOBがインターリーブユニットILVU単位に分割され、各VOBに属するインターリーブユニットが交互に配置される。そして、そのインターリーブユニットとは独立して、セル境界が定義される。同図に於いて、VOBーは四つのインターリーブユニットILVUk1、ILVUk2、ILVUk3、及びILVUk4に分割されると共に、二つのセルCELL#1k、及びCELL#2kが定義されている。同様に、VOBーmはILVUm1、ILVUm2、ILVUm3、及びILVU

m4に分割されると共に、二つのセルCELL#1m、 及びCELL#2mが定義されている。つまり、インタ ーリーブユニットILVUには、ビデオデータとオーディオデータが含まれている。

【0200】図60の例では、二つの異なるVOB-kとVOB-mの各インターリーブユニットILVUk1、ILVUk2、ILVUk3、及びILVUk4とILVUm1、ILVUm2、ILVUm3、及びILVUm3、及びILVUm4がインターリーブブロック内に交互に配置されている。二つのVOBの各インターリーブユニットILVUを、このような配列にインターリーブする事で、単独のシーンから複数のシーンの1つへ分岐、さらにそれらの複数シーンの1つから単独のシーンへのシームレスな再生が実現できる。このようにインターリーブすることで、多くの場合の分岐結合のあるシーンのシームレス再生可能な接続を行う事ができる。

マルチシーン

ここで、本発明に基づく、マルチシーン制御の概念を説明すると共にマルチシーン区間に付いて説明する。

【0201】異なるアングルで撮影されたシーンから構成される例が挙げている。しかし、マルチシーンの各シーンは、同一のアングルであるが、異なる時間に撮影されたシーンであっても良いし、またコンピュータグラフィックス等のデータであっても良い。言い換えれば、マルチアングルシーン区間は、マルチシーン区間である。パレンタル

図15を参照して、パレンタルロックおよびディレクターズカットなどの複数タイトルの概念を説明する。

【0202】図15にパレンタルロックに基づくマルチレイティッドタイトルストリームの一例を示す。一つのタイトル中に、性的シーン、暴力的シーン等の子供に相応しくない所謂成人向けシーンが含まれている場合、このタイトルは共通のシステムストリームSSa、SSb、及びSSeと、成人向けシーンを含む成人向けシステムストリームSScと、未成年向けシーンのみを含む非成人向けシステムストリームSSdから構成される。このようなタイトルストリームは、成人向けシステムストリームSScと非成人向けシステムストリームSScとが成人向けシステムストリームSScとが成人向けシステムストリームSScとが表していまり、共通システムストリームSSbとSSeの間に、設けたマルチシーン区間にマルチシーンシステムストリームとして配置する。

【0203】上述の用に構成されたタイトルストリームのプログラムチェーンPGCに記述されるシステムストリームと各タイトルとの関係を説明する。成人向タイトルのプログラムチェーンPGC1には、共通のシステムストリームSSc及び、共通システムストリームSScがに共通のシステムストリームSScがに共通のシステムストリームSSa、SSb、未成年向けシステムストリームSSd及び、共通シト、未成年向けシステムストリームSSd及び、共通シ

ステムストリームSSeが順番に記述される。

【0204】このように、成人向けシステムストリーム SScと未成年向けシステムストリームSSdをマルチ シーンとして配列することにより、各PGCの記述に基 づき、上述のデコーディング方法で、共通のシステムス トリームSSa及びSSbを再生したのち、マルチシー ン区間で成人向けSScを選択して再生し、更に、共通 のシステムストリームSSeを再生することで、成人向 けの内容を有するタイトルを再生できる。また、一方、 マルチシーン区間で、未成年向けシステムストリームS Sdを選択して再生することで、成人向けシーンを含ま ない、未成年向けのタイトルを再生することができる。 このように、タイトルストリームに、複数の代替えシー ンからなるマルチシーン区間を用意しておき、事前に該 マルチ区間のシーンのうちで再生するシーンを選択して おき、その選択内容に従って、基本的に同一のタイトル シーンから異なるシーンを有する複数のタイトルを生成 する方法を、パレンタルロックという。

【0205】なお、パレンタルロックは、未成年保護と言う観点からの要求に基づいて、パレンタルロックと呼ばれるが、システムストリーム処理の観点は、上述の如く、マルチシーン区間での特定のシーンをユーザが予め選択することにより、静的に異なるタイトルストリーム生成する技術である。一方、マルチアングルは、タイトル再生中に、ユーザが随時且つ自由に、マルチシーン区間のシーンを選択することにより、同一のタイトルの内容を動的に変化させる技術である。

【0206】また、パレンタルロック技術を用いて、い わゆるディレクターズカットと呼ばれるタイトルストリ ーム編集も可能である。ディレクターズカットとは、映 画等で再生時間の長いタイトルを、飛行機内で供さる場 合には、劇場での再生と異なり、飛行時間によっては、 タイトルを最後まで再生できない。このような事態にさ けて、予めタイトル制作責任者、つまりディレクターの 判断で、タイトル再生時間短縮の為に、カットしても良 いシーンを定めておき、そのようなカットシーンを含む システムストリームと、シーンカットされていないシス テムストリームをマルチシーン区間に配置しておくこと によって、制作者の意志に沿っシーンカット編集が可能 となる。このようなパレンタル制御では、システムスト リームからシステムストリームへのつなぎ目に於いて、 再生画像をなめらかに矛盾なくつなぐ事、すなわちビデ オ、オーディオなどバッファがアンダーフローしないシ ームレスデータ再生と再生映像、再生オーディオが視聴 覚上、不自然でなくまた中断する事なく再生するシーム レス情報再生が必要になる。

マルチアングル

図33を参照して、本発明に於けるマルチアングル制御の概念を説明する。通常、マルチメディアタイトルは、対象物を時間Tの経過と共に録音及び撮影(以降、単に

撮影と言う)して得られる。#SC1、#SM1、#SM2、#SM3、及び#SC3の各ブロックは、それぞれ所定のカメラアングルで対象物を撮影して得られる撮影単位時間T1、T2、及びT3に得られるマルチメディアシーンを代表している。シーン#SM1、#SM2、及び#SM3は、撮影単位時間T2にそれぞれ異なる複数(第一、第二、及び第三)のカメラアングルで撮影されたシーンであり、以降、第一、第二、及び第三マルチアングルシーンと呼ぶ。

【0207】ここでは、マルチシーンが、異なるアングルで撮影されたシーンから構成される例が挙げられている。しかし、マルチシーンの各シーンは、同一のアングルであるが、異なる時間に撮影されたシーンであっても良いし、またコンピュータグラフィックス等のデータであっても良い。言い換えれば、マルチアングルシーン区間は、マルチシーン区間であり、その区間のデータは、実際に異なるカメラアングルで得られたシーンデータに限るものでは無く、その表示時間が同一の期間にある複数のシーンを選択的に再生できるようなデータから成る区間である。

【0208】シーン#SC1と#SC3は、それぞれ、撮影単位時間T1及びT3に、つまりマルチアングルシーンの前後に、同一の基本のカメラアングルで撮影されたシーンあり、以降、基本アングルシーンと呼ぶ。通常、マルチアングルの内一つは、基本カメラアングルと同一である。

【0209】これらのアングルシーンの関係を分かりやすくするために、野球の中継放送を例に説明する。基本アングルシーン#SС1及び#SС3は、センター側から見た投手、捕手、打者を中心とした基本カメラアングルにて撮影されたものである。第一マルチアングルシーン#SM1は、バックネット側から見た投手、捕手、打者を中心とした第一マルチカメラアングルにて撮影されたものである。第二マルチアングルシーン#SM2は、センター側から見た投手、捕手、打者を中心とした第二マルチカメラアングル、つまり基本カメラアングルにて撮影されたものである。この意味で、第二マルチアングルシーン#SM2は、撮影単位時間T2に於ける基本アングルシーン#SM2は、撮影単位時間T2に於ける基本アングルシーン#SM2は、撮影単位時間T2に於ける基本アングルシーン#SC2である。第三マルチアングルシーン#SM3は、バックネット側から見た内野を中心とした第三マルチカメラアングルにて撮影されたものである。

【0210】マルチアングルシーン#SM1、#SM2、及び#SM3は、撮影単位時間T2に関して、表示時間が重複しており、この期間をマルチアングル区間と呼ぶ。視聴者は、マルチアングル区間に於いて、このマルチアングルシーン#SM1、#SM2、及び#SM3を自由に選択することによって、基本アングルシーンから、好みのアングルシーン映像をあたかもカメラを切り替えているように楽しむことができる。なお、図中で

は、基本アングルシーン#SC1及び#SC3と、各マルチアングルシーン#SM1、#SM2、及び#SM3間に、時間的ギャップがあるように見えるが、これはマルチアングルシーンのどれを選択するかによって、再生されるシーンの経路がどのようになるかを分かりやすく、矢印を用いて示すためであって、実際には時間的ギャップが無いことは言うまでもない。

【0211】図23に、本発明に基づくシステムストリ ームのマルチアングル制御を、データの接続の観点から 説明する。基本アングルシーン#SCに対応するマルチ メディアデータを、基本アングルデータBAとし、撮影 単位時間T1及びT3に於ける基本アングルデータBA をそれぞれ B A 1 及び B A 3 とする。 マルチアングルシ ーン# S M 1 、# S M 2 、及び# S M 3 に対応するマル チアングルデータを、それぞれ、第一、第二、及び第三 マルチアングルデータMA1、MA2、及びMA3と表 している。先に、図33を参照して、説明したように、 マルチアングルシーンデータMA1、MA2、及びMA 3の何れかを選択することによって、好みのアングルシ ーン映像を切り替えて楽しむことができる。また、同様 に、基本アングルシーンデータBA1及びBA3と、各 マルチアングルシーンデータMA1、MA2、及びMA 3との間には、時間的ギャップは無い。

【0212】しかしながら、MPEGシステムストリームの場合、各マルチアングルデータMA1、MA2、及びMA3の内の任意のデータと、先行基本アングルデータBA1からの接続と、または後続基本アングルデータBA3への接続時は、接続されるアングルデータの内容によっては、再生されるデータ間で、再生情報に不連続が生じて、一本のタイトルとして自然に再生できない場合がある。つまり、この場合、シームレスデータ再生であるが、非シームレス情報再生である。

【0213】以下に、図23をDVDシステムに於けるマルチシーン区間内での、複数のシーンを選択的に再生して、前後のシーンに接続するシームレス情報再生であるマルチアングル切替について説明する。

【0214】アングルシーン映像の切り替え、つまりマルチアングルシーンデータMA1、MA2、及びMA3の内一つを選択することが、先行する基本アングルデータBA1の再生終了前までに完了されてなけらばならない。例えば、アングルシーンデータBA1の再生中に別のマルチアングルシーンデータMA2に切り替えることは、非常に困難である。これは、マルチメディアデータは、可変長符号化方式のMPEGのデータ構造を有るので、切り替え先のデータの途中で、データの切れ目を見つけるのが困難であり、また、符号化処理にフレーム間相関を利用しているためアングルの切換時に映像が乱れる可能性がある。MPEGに於いては、少なくとも1フレームのリフレッシュフレームを有する処理単位としてGOPが定義されている。このGOPという処理単位

に於いては他のGOPに属するフレームを参照しないクローズドな処理が可能である。

【0215】言い換えれば、再生がマルチアングル区間に達する前には、遅くとも、先行基本アングルデータBA1の再生が終わった時点で、任意のマルチアングルデータ、例えばMA3、を選択すれば、この選択されたマルチアングルデータはシームレスに再生できる。しかし、マルチアングルデータの再生の途中に、他のマルチアングルシーンデータをシームレスに再生することは非常に困難である。このため、マルチアングル期間中には、カメラを切り替えるような自由な視点を得ることは困難である。

フローチャート:エンコーダ

図27を参照して前述の、シナリオデータS t 7に基づいてエンコードシステム制御部200が生成するエンコード情報テーブルについて説明する。エンコード情報テーブルはシーンの分岐点・結合点を区切りとしたシーン区間に対応し、複数のVOBが含まれるVOBセットデータ列と各シーン毎に対応するVOBデータ列からなる。図27に示されているVOBセットデータ列は、後に詳述する。

【0216】図34のステップ#100で、ユーザが指示するタイトル内容に基づき、DVDのマルチメディアストリーム生成のためにエンコードシステム制御部200内で作成するエンコード情報テーブルである。ユーザ指示のシナリオでは、共通なシーンから複数のシーンへの分岐点、あるいは共通なシーンへの結合点がある。その分岐点・結合点を区切りとしたシーン区間に相当するVwOBをVOBセットとし、VOBセットをエンコードするために作成するデータをVOBセットデータ列では、マルチシーン区間を含む場合、示されているタイトル数をVOBセットデータ列のタイトル数(TITLE_NO)に示す。

【0217】図27のVOBセットデータ構造は、VOBセットデータ列の1つのVOBセットをエンコードするためのデータの内容を示す。VOBセットデータ構造は、VOBセット番号(VOBS_NO)、VOBセット内のVOB番号(VOB_NO)、先行VOBシームレス接続フラグ(VOB_Fsb)、後続VOBシームレス接続フラグ(VOB_Fsb)、後続VOBシームレス接続フラグ(VOB_Fsf)、マルチシーンフラグ(VOB_Fp)、インターリーブフラグ(VOB_Fi)、マルチアングル(VOB_Fm)、マルチアングルシームレス切り替えフラグ(VOB_FsV)、インターリーブVOBの最大ビットレート(ILV_BR)、インターリーブVOBの分割数(ILV_DIV)、最小インターリーブユニット再生時間(ILV_MT)からなる。

【O218】VOBセット番号VOBS_NOは、例えばタイトルシナリオ再生順を目安につけるVOBセットを識別するための番号である。

【0219】VOBセット内のVOB番号VOB_NOは、例えばタイトルシナリオ再生順を目安に、タイトルシナリ

オ全体にわたって、VOBを識別するための番号である。

【0220】先行VOBシームレス接続フラグVOB_Fsb は、シナリオ再生で先行のVOBとシームレスに接続す るか否かを示すフラグである。

【0221】後続VOBシームレス接続フラグVOB_Fsfは、シナリオ再生で後続のVOBとシームレスに接続するか否かを示すフラグである。マルチシーンフラグVOB_Fpは、VOBセットが複数のVOBで構成しているか否かを示すフラグである。

【0222】インターリーブフラグ VOB_Fi は、VOBセット内のVOBがインターリーブ配置するか否かを示すフラグである。

【0223】マルチアングルフラグVOB_Fmは、VOBセットがマルチアングルであるか否かを示すフラグである。

【0224】マルチアングルシームレス切り替えフラグ VOB_FsVは、マルチアングル内の切り替えがシームレス であるか否かを示すフラグである。

【0225】インターリーブVOB最大ビットレートIL V_BRは、インターリーブするVOBの最大ビットレート の値を示す。

【0226】インターリーブVOB分割数ILV_DIVは、 インターリーブするVOBのインターリーブユニット数 を示す。

【0227】最小インターリーブユニット再生時間ILWI _MTは、インターリーブブロック再生時に、トラックバッファのアンダーフローしない最小のインターリーブユニットに於いて、そのVOBのビットレートがILV_BRの時に再生できる時間を示す。

【0228】図28を参照して前述の、シナリオデータ St7に基づいてエンコードシステム制御部200が生 成するVOB毎に対応するエンコード情報テーブルにつ いて説明する。このエンコード情報テーブルを基に、ビ デオエンコーダ300、サブピクチャエンコーダ50 0、オーディオエンコーダ700、システムエンコーダ 900へ、後述する各VOBに対応するエンコードパラ メータデータを生成する。図28に示されているVOB データ列は、図34のステップ#100で、ユーザが指 示するタイトル内容に基づき、DVDのマルチメディア ストリーム生成のためにエンコードシステム制御内で作 成するVOB毎のエンコード情報テーブルである。1つ のエンコード単位をVOBとし、そのVOBをエンコー ドするために作成するデータをVOBデータ列としてい る。例えば、3つのアングルシーンで構成されるVOB セットは、3つのVOBから構成される事になる。図2 8のVOBデータ構造はVOBデータ列の1つのVOB をエンコードするためのデータの内容を示す。

【O 2 2 9】 V O B データ構造は、ビデオ素材の開始時刻 (VOB_VST) 、ビデオ素材の終了時刻 (VOB_VEND) 、

ビデオ素材の種類(VOB_V_KIND)、ビデオのエンコード ビットレート(V_BR)、オーディオ素材の開始時刻(VOB_AST)、オーディオ素材の終了時刻(VOB_AEND)、オーディオエンコード方式(VOB_A_KIND)、オーディオの ビットレート(A_BR)からなる。

【0230】ビデオ素材の開始時刻VOB_VSTは、ビデオ素材の時刻に対応するビデオエンコードの開始時刻である。

【0231】ビデオ素材の終了時刻VOB_VENDは、ビデオ素材の時刻に対応するビデオエンコードの終了時刻である。

【0232】ビデオ素材の種類VOB_V_KINDは、エンコード素材がNTSC形式かPAL形式のいづれかであるか、またはビデオ素材がテレシネ変換処理された素材であるか否かを示すものである。

【0233】ビデオのビットレートV_BRは、ビデオのエンコードビットレートである。オーディオ素材の開始時刻VOB_ASTは、オーディオ素材の時刻に対応するオーディオエンコード開始時刻である。

【0234】オーディオ素材の終了時刻VOB_AENDは、オーディオ素材の時刻に対応するオーディオエンコード終了時刻である。

【 O 2 3 5】オーディオエンコード方式VOB_A_KINDは、 オーディオのエンコード方式を示すものであり、エンコ ード方式には A C - 3 方式、M P E G 方式、リニア P C M方式などがある。

【0236】オーディオのビットレートA_BRは、オーディオのエンコードビットレートである。

【0237】図29に、VOBをエンコードするための ビデオ、オーディオ、システムの各エンコーダ300、 500、及び900へのエンコードパラメータを示す。 エンコードパラメータは、VOB番号(VOB_NO)、ビデ オエンコード開始時刻 (V_STTM) 、ビデオエンコード終 了時刻 (V ENDTM) 、エンコードモード (V_ENCMD) 、ビ デオエンコードビットレート (V_RATE) 、ビデオエンコ ード最大ビットレート (V_MRATE)、GOP構造固定フ ラグ (GOP_FXflag) 、ビデオエンコードGOP構造(GO PST)、ビデオエンコード初期データ (V_INTST)、ビデ オエンコード終了データ(V_ENDST)、オーディオエン コード開始時刻(A_STTM)、オーディオエンコード終了 時刻 (A_ENDTM) 、オーディオエンコードビットレート (A_RATE)、オーディオエンコード方式(A_ENCMD)、 オーディオ開始時ギャップ(A_STGAP)、オーディオ終 了時ギャップ (A_ENDGAP) 、先行 V O B 番号 (B_VOB_N 0) 、後続 V O B 番号 (F_VOB_NO) からなる。

【0238】VOB番号VOB_NOは、例えばタイトルシナリオ再生順を目安に、タイトルシナリオ全体にわたって番号づける、VOBを識別するための番号である。

【0239】ビデオエンコード開始時刻V_STTMは、ビデオ素材上のビデオエンコード開始時刻である。

【0240】ビデオエンコード終了時刻V_STTMは、ビデオ素材上のビデオエンコード終了時刻である。

【0241】エンコードモードV_ENCMDは、ビデオ素材がテレシネ変換された素材の場合には、効率よいエンコードができるようにビデオエンコード時に逆テレシネ変換処理を行うか否かなどを設定するためのエンコードモードである。

【0242】ビデオエンコードビットレートV_RATEは、 ビデオエンコード時の平均ビットレートである。

【0243】ビデオエンコード最大ビットレートはV_MR ATEは、ビデオエンコード時の最大ビットレートである。

【0244】GOP構造固定フラグGOP_FXflagは、ビデオエンコード時に途中で、GOP構造を変えることなくエンコードを行うか否かを示すものである。マルチアングルシーン中にシームレスに切り替え可能にする場合に有効なパラメータである。

【0245】ビデオエンコードGOP構造GOPSTは、エンコード時のGOP構造データである。

【0246】ビデオエンコード初期データV_INSTは、ビデオエンコード開始時のVBVバッファ(復号バッファ)の初期値などを設定する、先行のビデオエンコードストリームとシームレス再生する場合に有効なパラメータである。ビデオエンコード終了時のVBVバッファ(復号バッファ)の終了値などを設定する。後続のビデオエンコードストリームとシームレス再生する場合に有効なパラメータである。オーディオエンコーダ開始時刻A_STTMは、オーディオ素材上のオーディオエンコード開始時刻である。

【0247】オーディオエンコーダ終了時刻A_ENDTMは、オーディオ素材上のオーディオエンコード終了時刻である。

【0248】オーディオエンコードビットレートA_RATE は、オーディオエンコード時のビットレートである。

【0249】オーディオエンコード方式A_ENCMDは、オーディオのエンコード方式であり、AC-3方式、MPEG方式、リニアPCM方式などがある。

【0250】オーディオ開始時ギャップA_STGAPは、VOB開始時のビデオとオーディオの開始のずれ時間である。先行のシステムエンコードストリームとシームレス再生する場合に有効なパラメータである。

【0251】オーディオ終了時ギャップA_ENDGAPは、VOB終了時のビデオとオーディオの終了のずれ時間である。後続のシステムエンコードストリームとシームレス再生する場合に有効なパラメータである。

【 O 2 5 2 】 先行 V O B 番号 B_V O B_N O は、シームレス接続の先行 V O B が存在する場合にその V O B 番号を示すものである。

【0253】後続VOB番号F_VOB_NOは、シームレス接

続の後続VOBが存在する場合にそのVOB番号を示す ものである。

【0254】図34に示すフローチャートを参照しながら、本発明に係るDVDエンコーダECDの動作を説明する。なお、同図に於いて二重線で囲まれたブロックはそれぞれサブルーチンを示す。本実施形態は、DVDシステムについて説明するが、言うまでなくオーサリングエンコーダECについても同様に構成することができる。

【0255】ステップ#100に於いて、ユーザーは、編集情報作成部100でマルチメディアソースデータSt1、St2、及びSt3の内容を確認しながら、所望のシナリオに添った内容の編集指示を入力する。

【0256】ステップ#200で、編集情報作成部100はユーザの編集指示に応じて、上述の編集指示情報を含むシナリオデータSt7を生成する。

【0257】ステップ#200で、シナリオデータSt7の生成時に、ユーザの編集指示内容の内、インターリーブする事を想定しているマルチアングル、パレンタルのマルチシーン区間でのインターリーブ時の編集指示は、以下の条件を満たすように入力する。

【0258】まず画質的に十分な画質が得られるような VOBの最大ビットレートを決定し、さらにDVDエン コードデータの再生装置として想定するDVDデコーダ DCDのトラックバッファ量及びジャンプ性能、ジャン プ時間とジャンプ距離の値を決定する。上記値をもと に、式3、式4より、最小インターリーブユニットの再 生時間を得る。

【0259】次に、マルチシーン区間に含まれる各シーンの再生時間をもとに式5及び式6が満たされるかどうか検証する。満たされなければ後続シーン一部シーンをマルチシーン区間の各シーン接続するなどの処理を行い式5及び式6を満たすようにユーザは指示の変更入力する。

【0260】さらに、マルチアングルの編集指示の場合、シームレス切り替え時には式7を満たすと同時に、アングルの各シーンの再生時間、オーディオは同一とする編集指示を入力する。また非シームレス切り替え時には式8を満たすようにユーザは編集指示を入力する。

【0261】ステップ#300で、エンコードシステム制御部200は、シナリオデータSt7に基づいて、先ず、対象シーンを先行シーンに対して、シームレスに接続するのか否かを判断する。シームレス接続とは、先行シーン区間が複数のシーンからなるマルチシーン区間である場合に、その先行マルチシーン区間に含まれる全シーンの内の任意の1シーンを、現時点の接続対象である共通シーンとシームレスに接続する。同様に、現時点の接続対象シーンがマルチシーン区間である場合には、マルチシーン区間の任意の1シーンを接続出来ると言うことを意味する。ステップ#300で、NO、つまり、非

シームレス接続と判断された場合にはステップ#400 へ進む。ステップ#400で、エンコードシステム制御部200は、対象シーンが先行シーンとシームレス接続されることを示す、先行シーンシームレス接続フラグVO B_Fsbをリセットして、ステップ#600に進む。

【0262】一方、ステップ#300で、YES、つまり先行シートとシームレス接続すると判断された時には、ステップ#500に進む。

【0263】ステップ#500で、先行シーンシームレス接続フラグVOB_Fsbをセットして、ステップ#600 に進む。

【0264】ステップ#600で、エンコードシステム 制御部200は、シナリオデータSt7に基づいて、対象シーンを後続するシーンとシームレス接続するのか否かを判断する。ステップ#600で、NO、つまり非シームレス接続と判断された場合にはステップ#700へ進む。

【0265】ステップ#700で、エンコードシステム 制御部200は、シーンを後続シーンとシームレス接続 することを示す、後続シーンシームレス接続フラグVOB_ Fsfをリセットして、ステップ#900に進む。

【0266】一方、ステップ#600で、YES、つまり後続シートとシームレス接続すると判断された時には、ステップ#800に進む。

【0267】ステップ#800で、エンコードシステム 制御部200は、後続シーンシームレス接続フラグVOB_ Fsfをセットして、ステップ#900に進む。

【0268】ステップ#900で、エンコードシステム制御部200は、シナリオデータSt7に基づいて、接続対象のシーンが一つ以上、つまり、マルチシーンであるか否かを判断する。マルチシーンには、マルチシーンで構成できる複数の再生経路の内、1つの再生経路のみを再生するパレンタル制御と再生経路がマルチシーン区間の間、切り替え可能なマルチアングル制御がある。

【0269】シナリオステップ#900で、NO、つまり非マルチシーン接続であると判断されて時は、ステップ#1000に進む。

【0270】ステップ#1000で、マルチシーン接続であることを示すマルチシーンフラグVOB_Fpをリセットして、エンコードパラメータ生成ステップ#1800に進む。ステップ#1800の動作については、あとで述べる。

【0271】一方、ステップ#900で、YES、つまりマルチシーン接続と判断された時には、ステップ#1100に進む。

【0272】ステップ#1100で、マルチシーンフラグVOB_Fpをセットして、マルチアングル接続かどうかを 判断するステップ#1200に進む。

【0273】ステップ#1200で、マルチシーン区間中の複数シーン間での切り替えをするかどうか、すなわ

ち、マルチアングルの区間であるか否かを判断する。ステップ#1200で、NO、つまり、マルチシーン区間の途中で切り替えずに、1つの再生経路のみを再生するパレンタル制御と判断された時には、ステップ#1300に進む。

【0274】ステップ#1300で、接続対象シーンがマルチアングルであること示すマルチアングルフラグVOB_Fmをリセットしてステップ#1302に進む。ステップ#1302で、先行シーンシームレス接続フラグVOB_Fsb及び後続シーンシームレス接続フラグVOB_Fsfの何れかがセットされているか否かを判断する。ステップ#1300で、YES、つまり接続対象シーンは先行あるいは後続のシーンの何れかあるいは、両方とシームレス接続すると判断された時には、ステップ#1304に進む。

【0275】ステップ#1304では、対象シーンのエンコードデータであるVOBをインターリープすることを示すインターリーブフラグVOB_Fiをセットして、ステップ#1800に進む。

【0276】一方、ステップ#1302で、NO、つまり、対象シーンは先行シーン及び後続シーンの何れともシームレス接続しない場合には、ステップ#1306に 進む。

【0277】ステップ#1306でインターリーブフラッグ VOB_Fi をリセットしてステップ#1800に進む。【0278】一方、ステップ#1200で、YES、つまりマルチアングルであると判断された場合には、ステップ#1400に進む。

【0279】ステップ#1400では、マルチアングルフラッグ VOB_Fm 及びインターリーブフラッグ VOB_Fi をセットした後ステップ#1500に進む。

【0280】ステップ#1500で、エンコードシステム制御部200はシナリオデータSt7に基づいて、マルチアングルシーン区間で、つまりVOBよりも小さな再生単位で、映像やオーディオを途切れることなく、いわゆるシームレスに切替られるのかを判断する。ステップ#1500で、NO、つまり、非シームレス切替と判断された時には、ステップ#1600に進む。ステップ#1600で、対象シーンがシームレス切替であることを示すシームレス切替フラッグ VOB_FsV をリセットして、ステップ#1800に進む。

【0281】一方、ステップ#1500、YES、つま りシームレス切替と判断された時には、ステップ#17 00に進む。

【0282】ステップ#1700で、シームレス切替フラッグVOB_FsVをセットしてステップ#1800に進む。このように、本発明では、編集意思を反映したシナリオデータSt7から、編集情報が上述の各フラグのセット状態として検出されて後に、ステップ#1800に進む。

【0283】ステップ#1800で、上述の如く各フラグのセット状態として検出されたユーザの編集意思に基づいて、ソースストリームをエンコードするための、それぞれ図27及び図28に示されるVOBセット単位及びVOB単位毎のエンコード情報テーブルへの情報付加と、図29に示されるVOBデータ単位でのエンコードパラメータを作成する。次に、ステップ#1900に進む。このエンコードパラメータ作成ステップの詳細については、図35、図36、図37、図38を参照して後で説明する。

【0284】ステップ#1900で、ステップ#1800で作成してエンコードパラメータに基づいて、ビデオデータ及びオーディオデータのエンコードを行った後にステップ#2000に進む。尚、サブピクチャデータは、本来必要に応じて、ビデオ再生中に、随時挿入して利用する目的から、前後のシーン等との連続性は本来不要である。更に、サプピクチャは、およそ、1画面分の映像情報であるので、時間軸上に延在するビデオデータ及びオーディオデータと異なり、表示上は静止の場合が多く、常に連続して再生されるものではない。よって、シームレス及び非シームレスと言う連続再生に関する本実施形態に於いては、簡便化のために、サブピクチャデータのエンコードについては説明を省く。

【0285】ステップ#2000では、VOBセットの数だけステップ#300からステップ#1900までの各ステップから構成されるループをまわし、図16のタイトルの各VOBの再生順などの再生情報を自身のデータ構造にもつ、プログラムチェーン (VTS_PGC#I) 情報をフォーマットし、マルチルチシーン区間のVOBをインターリーブ配置を作成し、そしてシステムエンコードするために必要なVOBセットデータ列及びVOBデータ列を完成させる。次に、ステップ#2100に進む。

【0286】ステップ#2100で、ステップ#200 Oまでのループの結果として得られる全VOBセット数 VOBS_NUMを得て、VOBセットデータ列に追加し、さら にシナリオデータSt7に於いて、シナリオ再生経路の 数をタイトル数とした場合の、タイトル数TITLE_NOを設 定して、エンコード情報テーブルとしてのVOBセット データ列を完成した後、ステップ#2200に進む。

【0287】ステップ#2200で、ステップ#1900でエンコードしたビデオエンコードストリーム、オーディオエンコードストリーム、図29のエンコードパラメータに基づいて、図16のVTSTT_VOBS内のVOB(VOB#i)データを作成するためのシステムエンコードを行う。次に、ステップ#2300に進む。

【0288】ステップ#2300で、図16のVTS情報、VTSIに含まれるVTSI管理テーブル(VTSI_MAT)、VTSPGC情報テーブル(VTSPGCIT) 及び、VOBデータの再生順を制御するプログラムチェーン情報(VTS_PGCI#I)のデータ作成及びマルチシーン 区間に含めれるVOBのインターリーブ配置などの処理 を含むフォーマットを行う。

【0289】このフォーマットステップの詳細については、図40、図41、図42、図43、図44を参照して後で説明する。

【0290】図35、図36、及び図37を参照して、図34に示すフローチャートのステップ#1800のエンコードパラメータ生成サブルーチンに於ける、マルチアングル制御時のエンコードパラメータ生成の動作を説明する。

【0291】先ず、図35を参照して、図34のステップ#1500で、NOと判断された時、つまり各フラグはそれぞれ $VOB_Fsb=1$ または $VOB_Fsf=1$ 、 $VOB_Fp=1$ 、 $VOB_Fi=1$ 、 $VOB_Fi=1$ 、 $VOB_Fi=1$ 0。 $VOB_Fi=1$ 0 $VOB_Fi=1$ 0

【0292】ステップ#1812では、シナリオデータ St7に含まれているシナリオ再生順を抽出し、VOBセット番号 $VOBS_NO$ を設定し、さらにVOBセット内の 1つ以上のVOBに対して、VOB番号 VOB_NO を設定する。

【0293】ステップ#1814では、シナリオデータ St7より、インターリーブVOBの最大ビットレート ILV_BR を抽出、インターリーブフラグ $VOB_Fi=1$ に基づき、エンコードパラメータのビデオエンコード最大ビットレート V_MRATE に設定。

【0294】ステップ#1816では、シナリオデータ St7より、最小インターリーブユニット再生時間ILWU MTを抽出。

【0295】ステップ#1818では、マルチアングルフラグ $VOB_{pp=1}$ に基づき、ビデオエンコードGOP構造GOPSTON=15、M=3の値とGOP構造固定フラグGOPFXflag="1"に設定。

【0296】ステップ#1820は、VOBデータ設定の共通のルーチンである。

【0297】図36に、ステップ#1820のVOBデータ共通設定ルーチンを示す。以下の動作フローで、図27、図28に示すエンコード情報テーブル、図29に示すエンコードパラメータを作成する。

【0298】ステップ#1822では、シナリオデータSt7より、各VOBのビデオ素材の開始時刻VOB_VST、終了時刻VOB_VENDを抽出し、ビデオエンコード開始時刻V_STTMとエンコード終了時刻V_ENDTMをビデオエンコードのパラメータとする。

【0299】ステップ#1824では、シナリオデータ St7より、各VOBのオーディオ素材の開始時刻VOB_ ASTを抽出し、オーディオエンコード開始時刻A_STTMを オーディオエンコードのパラメータとする。

【0300】ステップ#1826では、シナリオデータSt7より、各VOBのオーディオ素材の終了時刻VOB_AENDを抽出し、VOB_AENDを超えない時刻で、オーディオエンコード方式できめられるオーディオアクセスユニット(以下AAUと記述する)単位の時刻を、オーディオエンコードのパラメータである、エンコード終了時刻A_ENDTMとする。

【0301】ステップ#1828は、ビデオエンコード 開始時刻V_STTMとオーディオエンコード開始時刻A_STTM の差より、オーディオ開始時ギャップA_STGAPをシステ ムエンコードのパラメータとする。

【0302】ステップ#1830では、ビデオエンコード終了時刻V_ENDTMとオーディオエンコード終了時刻A_E NDTMの差より、オーディオ終了時ギャップA_ENDGAPをシステムエンコードのパラメータとする。

【0303】ステップ#1832では、シナリオデータSt7より、ビデオのビットレートV_BRを抽出し、ビデオエンコードの平均ビットレートとして、ビデオエンコードビットレートV_RATEをビデオエンコードのパラメータとする。ステップ#1834では、シナリオデータSt7より、オーディオのビットレートA_BRを抽出し、オーディオエンコードビットレートA_RATEをオーディオエンコードのパラメータとする。

【0304】ステップ#1836では、シナリオデータSt7より、ビデオ素材の種類VOB_V_KINDを抽出し、フィルム素材、すなわちテレシネ変換された素材であれば、ビデオエンコードモードV_ENCMDに逆テレシネ変換を設定し、ビデオエンコードのパラメータとする。

【0305】ステップ#1838では、シナリオデータ S t 7より、オーディオのエンコード方式 VOB_A_L KINDを 抽出し、オーディオエンコードモードA_ENCMDにエンコード方式を設定し、オーディオエンコードのパラメータ とする。ステップ#1840では、ビデオエンコード初期データ V_L INSTのVBVバッファ初期値が、ビデオエンコード終了データ V_L ENDSTのVBVバッファ終了値以下の値になるように設定し、ビデオエンコードのパラメータとする。

【0306】ステップ#1842では、先行VOBシームレス接続フラグVOB_Fsb=1に基づき、先行接続のVOB番号VOB_NOに設定し、システムエンコードのパラメータとする。

【0307】ステップ#1844では、後続VOBシームレス接続フラグVOB_Fsf=1に基づき、後続接続のVOB番号VOB_NOを後続接続のVOB番号F_VOB_NOに設定し、システムエンコードのパラメータとする。

【0308】以上のように、マルチアングルのVOBセットであり、非シームレスマルチアングル切り替えの制御の場合のエンコード情報テーブル及びエンコードパラメータが生成できる。

【0309】次に、図37を参照して、図34に於い

て、ステップ# 1500で、Yes と判断された時、つまり各フラグはそれぞれ $VOB_Fsb=1$ または $VOB_Fsf=1$ 、 $VOB_Fp=1$ 、 $VOB_Fsf=1$ 、 $VOB_Fp=1$ 、 $VOB_FsV=1$ である場合の、マルチアングル制御時のシームレス切り替えストリームのエンコードパラメータ生成動作を説明する。

【0310】以下の動作で、図27、図28に示すエンコード情報テーブル、及び図29に示すエンコードパラメータを作成する。

【0311】ステップ#1850では、シナリオデータ St7に含まれているシナリオ再生順を抽出し、VOB セット番号 VOB_NO を設定し、さらにVOBセット内の 1つ以上のVOBに対して、VOB番号 VOB_NO を設定する。

【0312】ステップ#1852では、シナリオデータ St7より、インターリーブVOBの最大ビットレート い LV_{BR} を抽出、インターリーブフラグ $VOB_Fi=1$ に基づき、ビデオエンコード最大ビットレート V_{RATE} に設定。

【 O 3 1 3】ステップ# 1 8 5 4 では、シナリオデータ S t 7 より、最小インターリーブユニット再生時間ILWU _MTを抽出する。

【0314】ステップ#1856では、マルチアングルフラグ $VOB_{pp=1}$ に基づき、ビデオエンコードGOP構造GOPSTON=15、M=3の値と<math>GOP構造固定フラグGOPFXflag="1"に設定。

【0315】ステップ#1858では、シームレス切り 替えフラグVOB_FsV=1に基づいて、ビデオエンコードG OP構造GOPSTにクローズドGOPを設定、ビデオエン コードのパラメータとする。

【0316】ステップ#1860は、VOBデータ設定の共通のルーチンである。この共通のルーチンは図35に示しているルーチンであり、既に説明しているので省略する。

【0317】以上のようにマルチアングルのVOBセットで、シームレス切り替え制御の場合のエンコードパラメータが生成できる。

【0318】次に、図38を参照して、図34に於いて、ステップ#1200で、NOと判断され、ステップ1304でYESと判断された時、つまり各フラグはそれぞれ $VOB_Fsb=1$ または $VOB_Fsf=1$ 、 $VOB_Fp=1$ 、 VOB_F i=1、 $VOB_Fn=0$ である場合の、パレンタル制御時のエンコードパラメータ生成動作を説明する。以下の動作で、図27、図28に示すエンコード情報テーブル、及び図29に示すエンコードパラメータを作成する。

【0319】ステップ#1870では、シナリオデータSt7に含まれているシナリオ再生順を抽出し、VOBセット番号VOBS_NOを設定し、さらにVOBセット内の1つ以上のVOBに対して、VOB番号VOB_NOを設定する。

【0320】ステップ#1872では、シナリオデータ

S t 7より、インターリーブVOBの最大ビットレート ILV_BRを抽出、インターリーブフラグVOB_Fi=1 に基づ き、ビデオエンコード最大ビットレートV_RATEに設定す る。

【0321】ステップ#1874では、シナリオデータ St7より、V0Bインターリーブユニット分割数ILV_ DIVを抽出する。

【0322】ステップ#1876は、VOBデータ設定の共通のルーチンである。この共通のルーチンは図35に示しているルーチンであり、既に説明しているので省略する。

【0323】以上のようにマルチシーンのVOBセットで、パレンタル制御の場合のエンコードパラメータが生成できる。

【0324】次に、図39を参照して、図34に於いて、ステップ#900で、NOと判断された時、つまり各フラグはそれぞれVOB_Fp=0である場合の、すなわち単一シーンのエンコードパラメータ生成動作を説明する。以下の動作で、図27、図28に示すエンコード情報テーブル、及び図29に示すエンコードパラメータを作成する。

【0325】ステップ#1880では、シナリオデータSt7に含まれているシナリオ再生順を抽出し、VOBセット番号VOBS_NOを設定し、さらにVOBセット内の1つ以上のVOBに対して、VOB番号VOB_NOを設定する。

【0326】ステップ#1882では、シナリオデータ St7 より、インターリーブVOB の最大ビットレート ILV_BR を抽出、インターリーブフラグ $VOB_Fi=1$ に基づき、ビデオエンコード最大ビットレート V_ARATE に設定する。

【0327】ステップ#1884は、VOBデータ設定の共通のルーチンである。この共通のルーチンは図35に示しているルーチンであり、既に説明しているので省略する。

【0328】上記ようなエンコード情報テーブル作成、エンコードパラメータ作成フローによって、DVDのビデオ、オーディオ、システムエンコード、DVDのフォーマッタのためのエンコードパラメータは生成できる。フォーマッタフロー

図40、図41、図42、図43及び図44に、図34 に示すステップ#2300のDVDマルチメディアスト リーム生成のフォーマッタサブルーチンに於ける動作に ついて説明する。

【0329】図40に示すフローチャートを参照しなが 5、本発明に係るDVDエンコーダECDのフォーマッ タ1100の動作を説明する。なお、同図に於いて二重 線で囲まれたブロックはそれぞれサブルーチンを示す。

【0330】ステップ#2310では、VOBセットデータ列のタイトル数TITLE_NUMに基づき、VTSI内の

ビデオタイトルセット管理テーブルVTSI_MATにTITLE_NU M数分のVTSI_PGCIを設定する。

【0331】ステップ#2312では、VOBセットデータ内のマルチシーンフラグVOB_Fpに基づいて、マルチシーンであるか否かを判断する。ステップ#2112で NO、つまり、マルチシーンではないと判断された場合にはステップ#2114に進む。

【0332】ステップ#2314では、単一のVOBの 図25のオーサリグエンコーダにおけるフォーマッタ1 100の動作のサブルーチンを示す。このサブルーチン については、後述する。

【0333】ステップ#2312に於いて、YES、つまり、マルチシーンであると判断された場合にはステップ#2316に進む。

【0334】ステップ#2316では、VOBセットデータ内のインターリーブフラグ VOB_F iに基づいて、インターリーブするか否かを判断する。ステップ#2316でNO、つまり、インターリーブしないと判断された場合には、ステップ#2314に進む。

【0335】ステップ2318では、VOBセットデータ内のマルチアングルフラグVOB_Fmに基づいて、マルチアングルであるか否かを判断する。ステップ#2318でNO、つまり、マルチアングルでなないと判断された場合には、すなわちパレンタル制御のサブルーチンであるステップ#2320では、パレンタル制御のVOBセットでのフォーマッタ動作のサブルーチンを示す。このサブルーチンは図43に示し、後で詳細に説明する。

【0336】ステップ#2320に於いて、YES、つまりマルチアングルである判断された場合にはステップ#2322に進む。

【0337】ステップ#2322では、マルチアングルシームレス切り替えフラグVOB_FsVに基づいて、シームレス切り替えか否かを判断する。ステップ#2322で、NO、つまりマルチアングルが非シームレス切り替え制御であると判断された場合には、ステップ#2326に進む。

【0338】ステップ#2326では、非シームレス切り替え制御のマルチアングルの場合の図25のオーサリングエンコードのフォーマッタ1100の動作のサブルーチンを示す。図41を用いて、後で詳細に説明する。【0339】ステップ#2322に於いて、YES、つまりシームレス切り替え制御のマルチアングルであると判断された場合には、ステップ#2324に進む。

【0340】ステップ#2324では、シームレス切り替え制御のマルチアングルのフォーマッタ1100の動作のサブルーチンを示す。図42を用いて、後で詳細に説明する。

【0341】ステップ2328では、先のフローで設定しているセル再生情報CPBIをVTSIのCPBI情

報として記録する。

【0342】ステップ#2330では、フォーマッタフローがVOBセットデータ列のVOBセット数VOBS_NUMで示した分のVOBセットの処理が終了したかどうか判断する。ステップ#2130に於いて、NO、つまり全てのVOBセットの処理が終了していなければ、ステップ#2112に進む。

【0343】ステップ#2130に於いて、YES、つまり全てのVOBセットの処理が終了していれば、処理を終了する。

【0344】次に図41を用いて、図40のステップ#2322に於いて、NO、つまりマルチアングルが非シームレス切り替え制御であると判断された場合のサブルーチンステップ#2326のサブルーチンについて説明する。以下に示す動作フローにより、マルチメディアストリームのインターリーブ配置と図16でしめすセル再生情報(C_PBI#i)の内容及び図20に示すナブパックNV内の情報を、生成されたDVDのマルチメディアストリームに記録する。

【0345】ステップ#2340では、マルチシーン区間がマルチアングル制御を行う事を示す $VOB_Fm=1$ の情報に基づいて、各シーンに対応するVOBの制御情報を記述するセル(図16の $C_PBI#i$)のセルブロックモード(図16中のCBM)に、例えば、図23に示すMA1のセルのCBM="セルブロック先頭=01b"、<math>MA2のセルのCBM="セルブロックの内=10b"、<math>MA3のセルのCBM="セルブロックの最後=11b"を記録する。

【0346】ステップ#2342では、マルチシーン区間がマルチアングル制御を行う事を示す $VOB_Fm=1$ の情報に基づいて、各シーンに対応するVOBの制御情報を記述するセル(図16の $C_PBI#i$)のセルブロックタイプ(図16中のCBT)に"アングル"示す値="01b"を記録する。

【0347】ステップ#2344では、シームレス接続を行う事を示すVOB_Fsb=1の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16のC_PBI#i)のシームレス再生フラグ(図16中のSPF)に"1"を記録する。

【0348】ステップ#2346では、シームレス接続を行う事を示すVOB_Fsb=1の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16のC_PBI#i)のSTC用設定フラグ(図16中のSTCDF)に"1"を記録する。

【0349】ステップ#2348では、インターリーブ要である事を示す $VOB_FsV=1$ の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図160 C_PBI#i)のインターリーブブロック配置フラグ(図16 中のIAF)に"1"を記録する。

【0350】ステップ#2350では、図25のシステ

ムエンコーダ900より得られるタイトル編集単位(以下、VOBと記述する)より、ナブパックNVの位置情報(VOB先頭からの相対セクタ数)を検出し、図35のステップ#1816で得たフォーマッタのパラメータである最小インターリーブユニットの再生時間ILWLMTのデータに基づいて、ナブパックNVを検出して、VOBUの位置情報(VOBの先頭からのセクタ数など)を得てVOBU単位に、分割する。例えば、前述の例では、最小インターリーブユニット再生時間は2秒、VOBU1つの再生時間0.5秒であるので、4つVOBU毎にインターリーブユニットとして分割する。この分割処理は、各マルチシーンに相当するVOBに対して行う。

【0351】ステップ#2352では、ステップ#2140で記録した各シーンに対応するVOBの制御情報として、記述したセルブロックモード(図16中のCBM)記述順("セルブロック先頭"、"セルブロックの内"、"セルブロックの最後"とした記述順)に従い、例えば、図23に示すMA1のセル、MA2のセル、MA3のセルの順に、ステップ#2350で得られた各VOBのインターリーブユニットを配置して、図57または図58で示すようなインターリーブブロックを形成し、VTSTT VOBデータに加える。

【0352】ステップ#2354では、ステップ#23 50で得られたVOBUの位置情報をもとに、各VOB UのナブパックNVのVOBU最終パックアドレス(図 20のCOBU_EA) にVOBU先頭からの相対セクタ数を 記録する。ステップ#2356では、ステップ#235 2で得られるVTSTT_VOBSデータをもとに、各セルの先頭 のVOBUのナブパックNVのアドレス、最後のVOB UのナブパックNVのアドレスとして、VTSTT_VOBSの先 頭からのセクタ数をセル先頭VOBUアドレスC_FVOBU_ SAとセル終端VOBUアドレスC_LVOBU_SAを記録する。 【0353】ステップ#2358では、それぞれのVO BUのナブパックNVの非シームレスアングル情報(図 20のNSM_AGLI) に、そのVOBUの再生開始時刻に近 い、すべてのアングルシーンのVOBUに含まれるナブ パックNVの位置情報(図50)として、ステップ#2 352で形成されたインターリーブブロックのデータ内 での相対セクタ数を、アングル#iVOBU開始アドレ ス(図20のNSML_AGL_C1_DSTA ~ NSML_AGL_C9_DSTA) に記録する。

【0354】ステップ#2160では、ステップ#2350で得られたVOBUに於いて、マルチシーン区間の各シーンの最後VOBUであれば、そのVOBUのナブパックNVの非シームレスアングル情報(図20の NSM_ACL_1)のアングル#iVOBU開始アドレス(図20の $NSML_ACL_C1_DSTA ~ NSML_AGL_C9_DSTA)に"<math>7FFFFFFFF$

【0355】以上のステップにより、マルチシーン区間

の非シームレス切り替えマルチアングル制御に相当する インターリーブブロックとそのマルチシーンに相当する 再生制御情報であるセル内の制御情報がフォーマットさ れる。

【0356】次に図42を用いて、図40のステップ#2322に於いて、YES、つまりマルチアングルがシームレス切り替え制御であると判断された場合のサブルーチンステップ#2324について説明する。以下に示す動作フローにより、マルチメディアストリームのインターリーブ配置と図16でしめすセル再生情報(C_PBI#i)の内容及び図20に示すナブパックNV内の情報を、生成されたDVDのマルチメディアストリームに記録する。ステップ#2370では、マルチシーン区間がマルチアングル制御を行う事を示すVOB_Fm=1の情報に基づいて、各シーンに対応するVOBの制御情報を記述するセル(図16のC_PBI#i)のセルブロックモード

(図16中のCBM) に、例えば、図23に示すMA1のセルのCBM= "セルブロック先頭=01b"、MA2のセルのCBM= "セルブロックの内=10b"、MA3のセルのCBM= "セルブロックの最後=11b"を記録する。

【0357】ステップ#2372では、マルチシーン区間がマルチアングル制御を行う事を示す $VOB_Fm=1$ の情報に基づいて、各シーンに対応するVOBの制御情報を記述するセル(図16の $C_PBI#i$)のセルブロックタイプ(図16中のCBT)に"アングル"示す値="01b"を記録する。

【0358】ステップ#2374では、シームレス接続を行う事を示すVOB_Fsb=1の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16のC_PBI#i)のシームレス再生フラグ(図16中のSPF)に"1"を記録する。

【0359】ステップ#2376では、シームレス接続を行う事を示すVOB_Fsb=1の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16のC_PBI#i)のSTC用設定フラグ(図16中のSTCDF)に"1"を記録する。

【0360】ステップ#2378では、インターリーブ要である事を示す $VOB_FsV=1$ の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16の $C_PBI\#i$)のインターリーブブロック配置フラグ(図16中のIAF)に"1"を記録する。

【0361】ステップ#2380では、図25のシステムエンコーダ900より得られるタイトル編集単位(以下、VOBと記述する)より、ナブパックNVの位置情報(VOB先頭からの相対セクタ数)を検出し、図36のステップ#1854で得たフォーマッタのパラメータである最小インターリーブユニットの再生時間ILWU_MTのデータに基づいて、ナブパックNVを検出して、VOBUの位置情報(VOBの先頭からのセクタ数など)を

得てVOBU単位に、分割する。例えば、前述の例では、最小インターリーブユニット再生時間は2秒、VOBU1つの再生時間0.5秒であるので、4つVOBU単位毎にインターリーブユニットとして分割する。この分割処理は、各マルチシーンに相当するVOBに対して行う。

【0362】ステップ#2382では、ステップ#2160で記録した各シーンに対応するVOBの制御情報として、記述したセルブロックモード(図16中のCBM)記述順("セルブロック先頭"、"セルブロックの内"、"セルブロックの最後"とした記述順)に従い、例えば、図23に示すMA1のセル、MA2のセル、MA3のセルの順に、ステップ#1852で得られた各VOBのインターリーブユニットを配置して、図57または図58で示すようなインターリーブブロックを形成し、VTSTT_VOBSデータに加える。

【0363】ステップ#2384では、ステップ#2360で得られたVOBUの位置情報をもとに、各VOBUのナブパックNVのVOBU最終パックアドレス(図20のCOBU_EA)にVOBU先頭からの相対セクタ数を記録する。ステップ#2386では、ステップ#2382で得られるVTSTT_VOBSデータをもとに、各セルの先頭のVOBUのナブパックNVのアドレス、最後のVOBUのナブパックNVのアドレスとして、VTSTT_VOBSの先頭からのセクタ数をセル先頭VOBUアドレスC_FVOBU_SAとセル終端VOBUアドレスC_LVOBU_SAを記録する。

【0364】ステップ#2388では、ステップ#2370で得たインターリーブユニットのデータに基づいて、そのインターリーブユニットを構成するそれぞれVOBUのナブパックNVのインターリーブユニット最終パックアドレス(ILVU最終パックアドレス)(図20のILWLEA)に、インターリーブユニットの最後のパックまでの相対セクタ数を記録する。

【0365】ステップ#2390では、それぞれのVOBUのナブパックNVのシームレスアングル情報(図20のSML_AGLI)に、そのVOBUの再生終了時刻に続く開始時刻をもつ、すべてのアングルシーンのVOBUに含まれるナブパックNVの位置情報(図50)として、ステップ#2382で形成されたインターリーブブロックのデータ内での相対セクタ数を、アングル#iVOBU開始アドレス(図20のSML_AGL_C1_DSTA~SML_AGL_C9_DSTA)に記録する。

【0366】ステップ#2392では、ステップ#2382で配置されたインターリーブユニットがマルチシーン区間の各シーンの最後のインターリーブユニットであれば、そのインターリーブユニットに含まれるVOBUのナブパックNVのシームレスアングル情報(図20の SML_AGLI)のアングル# i VOBU開始アドレス(図20のSML_AGL_C1_DSTA ~ SML_AGL_C9_DSTA)に "FFFFFFFFF"を記録する。

【0367】以上のステップにより、マルチシーン区間のシームレス切り替えマルチアングル制御に相当するインターリーブブロックとそのマルチシーンに相当する再生制御情報であるセル内の制御情報がフォーマットされた事になる。

【0368】次に図43を用いて、図40のステップ#2318に於いて、NO、つまりマルチアングルではなく、パレンタル制御であると判断された場合のサブルーチンステップ#2320について説明する。

【0369】以下に示す動作フローにより、マルチメディアストリームのインターリーブ配置と図16でしめすセル再生情報(C_PBI#i)の内容及び図20に示すナブパックNV内の情報を、生成されたDVDのマルチメディアストリームに記録する。

【0370】ステップ#2402では、マルチシーン区間がマルチアングル制御を行なわない事を示す $VOB_Fm=0$ の情報に基づいて、各シーンに対応するVOBの制御情報を記述するセル(図16の $C_PBI#i$)のセルブロックモード(図16中のCBM)に"00b"を記録する。

【0371】ステップ#2404では、シームレス接続を行う事を示す $VOB_Fsb=1$ の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16の $C_PBI#i$)のシームレス再生フラグ(図16中のSPF)に"1"を記録する。

【0372】ステップ#2406では、シームレス接続を行う事を示す $VOB_Fsb=1$ の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16の $C_PBI#i$)のSTC再設定フラグ(図16中のSTCDF)に"1"を記録する。

【0373】ステップ#2408では、インターリーブ要である事を示す $VOB_FsV=1$ の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図160 C_PBI#i)のインターリーブブロック配置フラグ(図16 中のIAF)に"1"を記録する。

【0374】ステップ#2410では、図25のシステムエンコーダ900より得られるタイトル編集単位(以下、VOBと記述する)より、ナブパックNVの位置情報(VOB先頭からの相対セクタ数)を検出し、図38のステップ#1874で得たフォーマッタのパラメータであるVOBインターリーブ分割数ILV_DIVのデータに基づいて、ナブパックNVを検出して、VOBUの位置情報(VOBの先頭からのセクタ数など)を得て、VOBU単位に、VOBを設定された分割数のインターリーブユニットに分割する。ステップ#2412では、ステップ#2410で得られたインターリーブユニットを交互に配置する。例えばVOB番号の昇順に、配置し、図57または図58で示すようなインターリーブブロックを形成し、VTSTT_VOBSに加える。

【0375】ステップ#2414では、ステップ#21

86で得られたVOBUの位置情報をもとに、各VOBUのナブパックNVのVOBU最終パックアドレス(図20のCOBU_EA)にVOBU先頭からの相対セクタ数を記録する。ステップ#2416では、ステップ#2412で得られるVTSTT_VOBSデータをもとに、各セルの先頭のVOBUのナブパックNVのアドレス、最後のVOBUのナブパックNVのアドレスとして、VTSTT_VOBSの先頭からのセクタ数をセル先頭VOBUアドレスC_FVOBU_SAとセル終端VOBUアドレスC_LVOBU_SAを記録する。

【0376】ステップ#2418では、ステップ#24 12で得た配置されたインターリーブユニットのデータ に基づいて、そのインターリーブユニットを構成するそ れぞれVOBUのナブパックNVのインターリーブユニ ット最終パックアドレス(ILVU最終パックアドレ ス) (図20のILVU_EA) に、インターリーブユニット の最後のパックまでの相対セクタ数を記録する。ステッ プ#2420では、インターリーブユニットILVUに 含まれるVOBUのナブパックNVに、次のILVUの 位置情報として、ステップ#2412で形成されたイン ターリーブブロックのデータ内での相対セクタ数を、次 インターリーブユニット先頭アドレスNT_ILVU_SAを記録 する。ステップ#2422では、インターリーブユニッ トILVUに含まれるVOBUのナブパックNVにIL VUフラグILWUflagに"1"を記録する。ステップ#2 424では、インターリーブユニットILVU内の最後 のVOBUのナブパックNVのUnitENDフラグUn itENDflagに"1"を記録する。

【0377】ステップ#2426では、各VOBの最後のインターリーブユニット ILVU内のVOBUのナブパックNVの次インターリーブユニット先頭アドレス NT_{LVU_SAC} "FFFFFFFF"を記録する。

【0378】以上のステップにより、マルチシーン区間のパレンタル制御に相当するインターリーブブロックとそのマルチシーンに相当するセル再生制御情報であるセル内の制御情報がフォーマットされる。

【0379】次に図44を用いて、図40のステップ#2312及びステップ#2316に於いて、NO、つまりマルチシーンではなく、単一シーンであると判断された場合のサブルーチンステップ#2314について説明する。以下に示す動作フローにより、マルチメディアストリームのインターリーブ配置と図16でしめすセル再生情報(C_PBI #i)の内容及び図20に示すナブパックNV内の情報を、生成されたDVDのマルチメディアストリームに記録する。

【0380】ステップ# 2430では、マルチシーン区間ではなく、単一シーン区間である事を示す $VOB_{pp}=0$ の情報に基づいて、各シーンに対応するVOBの制御情報を記述するセル(図16の C_{pb} I#i)のセルブロックモード(図16中のCBM)に非セルブロックである事を示す"00b"を記録する。ステップ# 2432で

は、インターリーブ不要である事を示すVOB_FsV=0の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16のC_PBI#i)のインターリーブブロック配置フラグ(図16中のIAF)に"0"を記録する。

【0381】ステップ#2434では、図25のシステムエンコーダ900より得られるタイトル編集単位(以下、VOBと記述する)より、ナブパックNVの位置情報(VOB先頭からの相対セクタ数)を検出し、VOBU単位に配置し、マルチメディア緒ストリームのビデオなどのストリームデータであるVTSTT_VOBに加える。

【0382】ステップ#2436では、ステップ#2434で得られたVOBUの位置情報をもとに、各VOBUのナブパックNVのVOBU最終パックアドレス(図20のCOBU_EA)にVOBU先頭からの相対セクタ数を記録する。ステップ#2434で得られるVTSTT_VOBSデータに基づいて、各セルの先頭のVOBUのナブパックNVのアドレス、及び最後のVOBUのナブパックNVのアドレスを抽出する。更に、VTSTT_VOBSの先頭からのセクタ数をセル先頭VOBUアドレスC_FVOBU_SAとして、VTSTT_VOBSの終端からのセクタ数をセル終端VOBUアドレスC_LVOBU_SAとして記録する。

【0383】ステップ#2440では、図34のステップ#300またはステップ#600で、判断された状態、すなわち前後のシーンとシームレス接続を示すVOB_Fsb=1であるか否かを判断する。ステップ#2440でYESと判断された場合、ステップ#2442に進む。【0384】ステップ#2442では、シームレス接続を行う事を示すVOB_Fsb=1の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16のC_PBI#i)のシームレス再生フラグ(図16中のSPF)に"1"を記録する。

【0385】ステップ#2444では、シームレス接続を行う事を示す $VOB_Fsb=1$ の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16の $C_PBI#i$)のSTC再設定フラグ(図16中のSTCDF)に"1"を記録する。

【0386】ステップ#2440でNOと判断された場合、すなわち、前シーンとはシームレス接続しない場合には、ステップ#2446に進む。

【0387】ステップ#2446では、シームレス接続を行う事を示す $VOB_Fsb=0$ の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16の $C_PBI#i$)のシームレス再生フラグ(図16中のSPF)に"0"を記録する。

【0388】ステップ#2448では、シームレス接続を行う事を示すVOB_Fsb=0の情報に基づいて、シーンに対応するVOBの制御情報を記述するセル(図16のC_PBI#i)のSTC再設定フラグ(図16中のSTCDF)に

"0"を記録する。

【0389】以上に示す動作フローにより、単一シーン区間に相当するマルチメディアストリームの配置と図16でしめすセル再生情報(C_PBI#i)の内容及び図20に示すナブパックNV内の情報を、生成されたDVDのマルチメディアストリーム上に記録される。

デコーダのフローチャート

ディスクからストリームバッファ転送フロー

以下に、図45および図46を参照して、シナリオ選択データSt51に基づいてデコードシステム制御部2300が生成するデコード情報テーブルについて説明する。デコード情報テーブルは、図45に示すデコードシステムテーブルと、図46に示すデコードテーブルから構成される。

【0390】図45に示すようにデコードシステムテーブルは、シナリオ情報レジスタ部とセル情報レジスタ部 からなる。シナリオ情報レジスタ部は、シナリオ選択データSt51に含まれるユーザの選択した、タイトル番号等の再生シナリオ情報を抽出して記録する。セル情報レジスタ部は、シナリオ情報レジスタ部は抽出されたユーザの選択したシナリオ情報に基いてプログラムチェーンを構成する各セル情報を再生に必要な情報を抽出して記録する。

【0391】更に、シナリオ情報レジスタ部は、アングル番号レジスタANGLE_NO_reg、VTS番号レジスタVTS_NO_reg、PGC番号レジスタVTS_PGCI_NO_reg、オーディオIDレジスタAUDIO_ID_reg、副映像IDレジスタSP_ID_reg、及びSCR_用バッファレジスタSCR_bufferを含む。

【0392】アングル番号レジスタANGLE_NO_regは、再生するPGCにマルチアングルが存在する場合、どのアングルを再生するかの情報を記録する。VTS番号レジスタVTS_NO_regは、ディスク上に存在する複数のVTSのうち、次に再生するVTSの番号を記録する。PGC番号レジスタVTS_PGCI_NO_regは、パレンタル等の用途でVTS中存在する複数のPGCのうち、どのPGCを再生するかを指示する情報を記録する。

【0393】オーディオIDレジスタAUDIO_ID_regは、VTS中存在する複数のオーディオストリームの、どれを再生するかを指示する情報を記録する。副映像IDレジスタSP_ID_regは、VTS中に複数の副映像ストリームが存在する場合は、どの副映像ストリームを再生するか指示する情報を記録する。SCR用バッファSCR_bufferは、図19に示すように、パックヘッダに記述されるSCRを一時記憶するバッファである。この一時記憶されたSCRは、図26を参照して説明したように、ストリーム再生データSt63としてデコードシステム制御部2300に出力される。

【0394】セル情報レジスタ部は、セルブロックモードレジスタCBM_reg、セルブロックタイプレジスタCBT_r

eg、シームレス再生フラグレジスタSPB_reg、インターリーブアロケーションフラグレジスタIAF_reg、STC再設定フラグレジスタSTCDF_reg、シームレスアングル切り替えフラグレジスタSACF_reg、セル最初のVOBU開始アドレスレジスタC_FVOBU_SA_reg、セル最後のVOBU開始アドレスレジスタC_LVOBU_SA_regを含む。

【0395】セルブロックモードレジスタCBM_regは複数のセルが1つの機能ブロックを構成しているか否かを示し、構成していない場合は値として"N_BLOCK"を記録する。また、セルが1つの機能ブロックを構成している場合、その機能ブロックの先頭のセルの場合"F_CELL"を、最後のセルの場合"L_CELL"を、その間のセルの場合"BLOCK"を値として記録する。

【0396】セルブロックタイプレジスタCBT_regは、セルブロックモードレジスタCBM_regで示したブロックの種類を記録するレジスタであり、マルチアングルの場合"A_BLOCK"を、マルチアングルでない場合"N_BLOCK"を記録する。

【0397】シームレス再生フラグレジスタSPF_reg は、該セルが前に再生されるセルまたはセルブロックとシームレスに接続して再生するか否かを示す情報を記録する。前セルまたは前セルブロックとシームレスに接続して再生する場合には、値として"SML"を、シームレス接続でない場合は値として"NSML"を記録する。

【0398】インターリーブアロケーションフラグレジスタIAF_regは、該セルがインターリーブ領域に配置されているか否かの情報を記録する。インターリーブ領域に配置されている場合には値として"ILVB"を、インターリーブ領域に配置されていない場合は"N_ILVB"を記録する。

【0399】STC再設定フラグレジスタSTCDF_regは、同期をとる際に使用するSTCをセルの再生時に再設定する必要があるかないかの情報を記録する。再設定が必要な場合には値として"STC_RESET"を、再設定が不要な場合には値として、"STC_NRESET"を記録する。【0400】シームレスアングルチェンジフラグレジスタSACF_regは、該セルがアングル区間に属しかつ、シームレスに切替えるかどうかを示す情報を記録する。アングル区間でかつシームレスに切替える場合には値として

【0401】セル最初のVOBU開始アドレスレジスタ C_FVOBU_SA_regは、セル先頭VOBU開始アドレスを記録する。その値はVTSタイトル用VOBS(VTSTT_VOBS)の先頭セルの論理セクタからの距離をセクタ数で示し、該セクタ数を記録する。

"SML"を、そうでない場合は "NSML"を記録する。

【0402】セル最後のVOBU開始アドレスレジスタ C_LVOBU_SA_regは、セル最終VOBU開始アドレスを記録する。その値は、VTSタイトル用VOBS(VTSTT_ VOBS)の先頭セルの論理セクタから距離をセクタ数で示し、該セクタ数を記録する。 【0403】次に、図46のデコードテーブルについて 説明する。同図に示すようにデコードテーブルは、非シ ームレスマルチアングル情報レジスタ部、シームレスマ ルチアングル情報レジスタ部、VOBU情報レジスタ 部、シームレス再生レジスタ部からなる。

【 O 4 O 4】 非シームレスマルチアングル情報レジスタ 部は、NSML_AGL_C1_DSTA_reg~NSML_AGL_C9_DSTA_regを 含む。

【 O 4 O 5 】 NSML_AGL_C1_DSTA_reg~NSML_AGL_C9_DSTA_regには、図 2 Oに示す P C I パケット中のNSML_AGL_C 1_DSTA~NSML_AGL_C9_DSTAを記録する。

【 O 4 O 6 】シームレスマルチアングル情報レジスタ部は、SML_AGL_C1_DSTA_reg~SML_AGL_C9_DSTA_regを含む。

【 O 4 O 7 】 SML_AGL_C1_DSTA_reg~SML_AGL_C9_DSTA_regには、図 2 Oに示すDSIパケット中のSML_AGL_C1_DSTA~SML_AGL_C9_DSTAを記録する。

【 O 4 O 8 】 V O B U 情報レジスタ部は、 V O B U 最終 アドレスレジスタ V O B U_EA_regを含む。

【0409】VOBU情報レジスタVOBU_EA_regには、図20に示すDSIパケット中のVOBU_EAを記録する。

【0410】シームレス再生レジスタ部は、インターリーブユニットフラグレジスタILVU_flag_reg、ユニットエンドフラグレジスタUNIT_END_flag_reg、ILVU最終パックアドレスレジスタILVU_EA_reg、次のインターリーブユニット開始アドレスNT_ILVU_SA_reg、VOB内先頭ビデオフレーム表示開始時刻レジスタVOB_V_SPTM_reg、VOB内最終ビデオフレーム表示終了時刻レジスタVOB_V_EPTM_reg、オーディオ再生停止時刻1レジスタVOB_A_GAP_PTM1_reg、オーディオ再生停止時刻2レジスタVOB_A_GAP_PTM2_reg、オーディオ再生停止期間1レジスタVOB_A_GAP_LEN1、オーディオ再生停止期間2レジスタVOB_A_GAP_LEN1、オーディオ再生停止期間2レジスタVOB_A_GAP_LEN2を含む。

【0411】インターリーブユニットフラグレジスタIL WU_flag_regは V O B Uが、インターリーブ領域に存在するかを示すものであり、インターリーブ領域に存在する場合"ILWU"を、インターリーブ領域に存在しない場合"N_ILWU"を記録する。

【O412】ユニットエンドフラグレジスタUNIT_END_f lag_regは、VOBUがインターリーブ領域に存在する場合、該VOBUがILVUの最終VOBUかを示す情報を記録する。ILVUは、連続読み出し単位であるので、現在読み出しているVOBUが、ILVUの最後のVOBUでなければ"N_END"を記録する。

【O413】ILVU最終パックアドレスレジスタILWU _EA_regは、VOBUがインターリーブ領域に存在する 場合、該VOBUが属するILVUの最終パックのアド レスを記録する。ここでアドレスは、該VOBUのNV からのセクタ数である。

【O414】次のILVU開始アドレスレジスタNT_ILV U_SA_regは、VOBUがインターリーブ領域に存在する 場合、次のILVUの開始アドレスを記録する。ここで アドレスは、該VOBUのNVからのセクタ数である。

【 O 4 1 5】 V O B 内先頭ビデオフレーム表示開始時刻 レジスタ V O B_V_SPTM_regは、 V O B の先頭ビデオフ レームの表示を開始する時刻を記録する。

【0416】VOB内最終ビデオフレーム表示終了時刻 レジスタVOB_V_EPTM_regは、VOBの最終ビデオフ レームの表示が終了する時刻を記録する。

【O417】オーディオ再生停止時刻1レジスタVOB _A_GAP_PTM1_regは、オーディオ再生を停止させる時間 を、オーディオ再生停止期間1レジスタVOB_A_GAP_L EN1_regはオーディオ再生を停止させる期間を記録す る。

【O418】オーディオ再生停止時刻2レジスタVOB _A_GAP_PTM2_regおよび、オーディオ再生停止期間2レ ジスタVOB_A_GAP_LEN2に関しても同様である。

【0419】次に図47示すDVDデコーダフローを参照しながら、図26にブロック図を示した本発明に係るDVDデコーダDCDの動作を説明する。

【 0 4 2 0】ステップ# 3 1 0 2 0 2 はディスクが挿入 されたかを評価するステップであり、ディスクがセット されればステップ# 3 1 0 2 0 4 へ進む。

【0421】ステップ#310204に於いて、図22 のボリュームファイル情報VFSを読み出した後に、ステップ#310206に進む。

【0422】ステップ#310206では、図22に示すビデオマネージャVMGを読み出し、再生するVTSを抽出して、ステップ#310208に進む。

【0423】ステップ#310208では、VTSの管理 テーブルVTSIより、ビデオタイトルセットメニューアド レス情報VTSM_C_ADTを抽出して、ステップ#31021 0に進む。

【0424】ステップ#310210では、VTSM_C_ADT 情報に基づき、ビデオタイトルセットメニューVTSM_V OBSをディスクから読み出し、タイトル選択メニューを表示する。このメニューに従ってユーザーはタイトルを選択する。この場合、タイトルだけではなく、オーディオ番号、副映像番号、マルチアングルを含むタイトルであれば、アングル番号を入力する。ユーザーの入力が終われば、次のステップ#310214へ進む。

【0425】ステップ#310214で、ユーザーの選択したタイトル番号に対応するVTS_PGCI#Jを管理テーブルより抽出した後に、ステップ#310216で、PGCの再生を開始する。PGCの再生が終了すれば、デコード処理は終了する。以降、別のタイトルを再生する場合

は、シナリオ選択部でユーザーのキー入力があればステ

ップ#310210のタイトルメニュー表示に戻る等の制御で実現できる。

【0427】次に、図48を参照して、先に述べたステップ#310216のPGCの再生について、更に詳しく説明する。PGC再生ステップ#310216は、図示の如く、ステップ#31030、#31032、#31034、及び#31035よりなる。

【0428】ステップ#31030では、図45に示したデコードシステムテーブルの設定を行う。アングル番号レジスタANGLE_NO_reg、VTS番号レジスタVTS_NO_reg、PGC番号レジスタPGC_NO_reg、オーディオIDレジスタAUDIO_ID_reg、副映像IDレジスタSP_ID_regは、シナリオ選択部2100でのユーザー操作によって設定する。

【 O 4 2 9】ユーザーがタイトルを選択することで、再生する P G C が一意に決まると、該当するセル情報(C_P BI)を抽出し、セル情報レジスタに設定する。設定するレジスタは、CBM_reg、 CBT_reg、 SPF_reg、 IAF_reg、 STCDF_reg、 SACF_reg、 C_FVOBU_SA_reg、 C_LVOB U_SA_regである。

【0430】デコードシステムテーブルの設定後、ステップ#31032のストリームバッファへのデータ転送処理と、ステップ#31034のストリームバッファ内のデータデコード処理を並列に起動する。

【0431】ここで、ステップ#31032のストリームバッファへのデータ転送処理は、図26に於いて、ディスクMからストリームバッファ2400へのデータ転送に関するものである。すなわち、ユーザーの選択したタイトル情報、およびストリーム中に記述されている再生制御情報(ナブパックNV)に従って、必要なデータをディスクMから読み出し、ストリームバッファ2400に転送する処理である。

【0432】一方、ステップ#31034は、図26に 於いて、ストリームバッファ2400内のデータをデコ ードし、ビデオ出力3600およびオーディオ出力37 00へ出力する処理を行う部分である。すなわち、スト リームバッファ2400に蓄えられたデータをデコード して再生する処理である。

【0433】このステップ#31032と、ステップ#31034は並列に動作する。ステップ#31032について以下、更に詳しく説明する。

【0434】ステップ#31032の処理はセル単位であり、1つのセルの処理が終了すると次のステップ#31035でPGCの処理が終了したかを評価する。PGCの処理が終了していなければ、ステップ#31030で次のセルに対応するデコードシステムテーブルの設定を行う。この処理をPGCが終了するまで行う。

<u>ストリームバッファからのデコードフロー</u>

次に図49を参照して、図48に示したステップ#31 034のストリームバッファ内のデコード処理について

説明する。ステップ#31034は、図示の如くステッ プ#31110、ステップ#31112、ステップ#3 1114、ステップ#31116からなる。ステップ# 31110は、図26に示すストリームバッファ240 0からシステムデコーダ2500へのパック単位でのデ ータ転送を行い、ステップ#31112へ進む。ステッ プ#31112は、ストリームバッファ2400から転 送されるパックデータを各バッファ、すなわち、ビデオ バッファ2600、サブピクチャバッファ2700、オ ーディオバッファ2800へのデータ転送を行う。ステ ップ#31112では、ユーザの選択したオーディオお よび副映像のID、すなわち図45に示すシナリオ情報 レジスタに含まれるオーディオ I D レジスタAUDIO_ID_r eg、副映像 I DレジスタSP_ID_regと、図19に示すパ ケットヘッダ中の、ストリーム I Dおよびサブストリー ムIDを比較して、一致するパケットをそれぞれのバッ ファ(ビデオバッファ2600、オーディオバッファ2 700、サブピクチャバッファ2800)へ振り分け、 ステップ#31114へ進む。

【0435】ステップ#31114は、各デコーダ(ビデオデコーダ、サブピクチャデコーダ、オーディオデコーダ)のデコードタイミングを制御する、つまり、各デコーダ間の同期処理を行い、ステップ#31116へ進む。ステップ#31114の各デコーダの同期処理の詳細は後述する。

【0436】ステップ#31116は、各エレメンタリのデコード処理を行う。つまり、ビデオデコーダはビデオバッファからデータを読み出しデコード処理を行う。サブピクチャデコーダも同様に、サブピクチャバッファからデータを読み出しデコード処理を行う。オーディオデコーダも同様にオーディオデコーダバッファからデータを読み出しデコード処理を行う。デコード処理が終われば、ステップ#31034を終了する。

【0437】次に、図50を参照して、先に述べたステップ#31114について更に詳しく説明する。

【0438】ステップ#31114は、図示の如く、ステップ#31120、ステップ#31122、ステップ #31124からなる。

【0439】ステップ#31120は、先行するセルと該セルがシームレス接続かを評価するステップであり、シームレス接続であればステップ#31122へ進み、そうでなければステップ#31124へ進む。

【0440】ステップ#31122は、シームレス用の同期処理を行う。

【0441】一方、ステップ#31124は、非シームレス用の同期処理を行う。

特殊再生

図21に示すようなマルチシーン区間を記録媒体M上に、図58に示すようなインターリーブブロックに配置した場合の早送りや逆再生など、いわゆる特殊再生(ト

リックプレイ)を行なうことを考える。

【0442】図51を参照して、MPEG方式に於けるビットストリームを特殊再生する場合について説明する。同図において、枠Vの各が、GOP一つに対応している。早送りでは、矢印TRFにて示されるように、ビットストリーム中のすべてのGOPデータを再生するのではなく、ビットストリーム中の再生開始位置のGOPから、通常再生方向へ、所定の間隔でGOPデータを離散的に選択して再生する。尚、この間隔は、一定であっても良いし、GOP選択する都度変化してもよい。逆方向再生では、矢印TRBにて示されるように、GOPを通常の再生方向と逆の方向にたどって再生する。

【0443】このような離散的にGOPを選択するために、選択再生するすべてのGOPの位置情報をあらかじめシステムのメモリにもつ方法と、選択再生時に次に選択すべきGOPの位置情報を逐次決定する方法がある。前者の方法は、システムのメモリ容量に負担がかかり、現実的ではない。逐次本発明は、後者の逐次決定する方法を改良するものである。また、後者の逐次決定する方法には、ビットストリームのレートなどにより、次の選択再生のGOPの位置を決める方法とビットストリーム中に、映像やオーディオデータに加え、再生速度に応じた次のGOPの位置情報を記録しておき、その情報から位置情報を抽出する方法がある。

【0444】また、このように離散的に選択されたGOPについて、各GOPを構成する全てのフレームを再生するのでは、GOP内のIフレームまたはPフレームを所定数を選択して再生するのである。このように、特殊再生を行なうには、通常、ビットストリームを構成するデータの中の一部のみを復号化して表示する。

【0445】しかし、図21、図30、図31に示すような、マルチシーン区間のように、複数のストリームデータの共有を許すと、特殊再生がうまくできないという問題が生じる。

【0446】先ず、共通シーンから、マルチシーンの1つに分岐する場合、逐次決定する方法において、連続して配置している分岐先データはビットレートから次のGOPの位置を計算することができるが、連続配置していない分岐先データについては計算できない。また、あらかじめ次の選択再生するGOPの位置情報もどちらか一方の分岐先の記録では、他方への分岐ができないため不十分である。また、全ての分岐先のGOPの位置情報を記述しては、データ容量の効率的に使用できず、また共通シーンの利用が増える度に、分岐先GOPの位置情報の記録が必要になり、データ作成が複雑になり、現実的ではない。

【0447】このように。マルチシーンの1つに分岐する場合の早送りで、データをたどることの実現が困難となる。

【0448】同様に、逆再生の場合も、マルチシーンか

ら共通シーンへ結合する場合、データをたどることの実 現が困難となる。

【0449】更に、図57のように、パレンタル制御あるいはマルチアングルのマルチシーンと共通シーン間のシームレス再生のために、VOB-BとVOB-CとVOB-Dをインターリーブしている場合、前述の逐次決定する方法において、スキップ先のGOPの位置情報の計算はさらに困難になり、分岐や結合時での早送り、逆再生の実現は、インターリーブのない場合と同様に困難である。本発明は、図21、図30、図31に示すような、複数のプログラムチェーンを構成するセルがVOBを共有した場合でも、また、システムストリーム内を分割して複数のVOBをインターリーブユニットILVU単位でインターリーブした場合でも、特殊再生を行うことのできるマルチメディア光ディスク並びにその再生装置、再生方法及び記録方式を提供することを目的とする。

【0450】本発明では、DVDシステムに於いても、 共通のVOBを使用し、複数のプログラムチェーンを構成した場合においても、早送り、逆戻しなどの特殊再生 が可能であり、かつデータ作成も容易なデータ構造を提供するものである。

【0451】データ構造の特徴としては、セルの先頭アドレスと共に、終端アドレスをも事で、逆再生時にも対応可能なセル情報をもち、さらに、特殊再生をすばやく行うためのスキップ先のアドレスの記録は、セル内のアドレスあるいは、セル境界を超える事を示す情報(例えばDVDで相対アドレスとして、存在し得ないアドレス値)として、他のセルとは独立な構造になっている。そのため、そのセルが、他のプログラムチェーンでの使用する場合でも、データ作成が容易である。以下、図を用いて、本発明の第1の実施例について、説明する。第1の実施形態では、特殊再生をすばやく行うためのスキップ先のアドレスが、セル境界を超える場合には、セル境界を超えた事を示す特殊データを示した場合のものである。

【0452】まず、図32を参照して、本発明に係るビットストリームデータの早送り再生及び逆戻し再生に、再生速度に応じた次のGOPをもつVOBUのセクタにすばやく移動するための、相対セクタ情報を説明する。本発明における、前述の相対セクタ情報は、ナブパックNV内にVOBUサーチ情報VOBU_SRIとして記録される。なお、同ビットストリームのデータ構造は、既に、図22及び図16を用いて説明済みであり、さらにビットストリーム中のナブパックNVに関しても、図20と図32を用いて説明済みであるので、此処ではVOBUサーチ情報に関してのみ説明する。

【0453】VOBUサーチ情報VOBU_SRIは、順方法、 すなわち早送り操作の時に使用するサーチ情報(FWDI n、FWDI Next)と、逆戻し操作の時に使用するサーチ情 報 (BWDI n、 BWDI Prev) を含む。

【0454】FWDI、BWDIの後の数字nは、該ナブパックNVを含むVOBUからの相対再生時間を表し、その再生時間は0.5秒×nに対応する。例えば、FWDI 120は、通常再生で60秒後に再生するVOBUの相対セクタアドレスを示す。FWDI Nextは、次のVOBUの相対セクタアドレスを記述し、BWDI Prev は、前のVOBUの相対セクタアドレスを記述している。

【0455】VOBUサーチ情報VOBU_SRIであるFWDI 1~240、FWDI Next、BWDI 1~240、BWDI Prevには、そのナブパックNVを含むセル以外の位置情報は記録しない。すなわち、セル内のナブパックNVのFWDI,BWDIを記録する場合、その記録しようとするナブパックNVからの相対再生時間のデータがセルを超えるFWDI,BWDIには、接続している他のセルのVOBUの相対アドレスを記述するのではなく、セルを境界を超えた事を示す値、例えば"3FFFFFFFh"を記録する。このようにして、所定の間隔でVOBUを間引いて再生する、いわゆる高速再生を可能とするアドレスを指定できる。

【0456】次に、本発明に関わるDVDデコーダDCDのデコードシステム制御部2300による再生、DVDディスク及びPGCの再生について、図47、図52を参照して説明する。

【0457】図47に、DVDディスクの再生について示す。DVDディスク挿入から、再生するタイトル情報VTSを抽出し、さらにユーザが指示するタイトルの再生情報VTS—PGC#iを抽出し、そのプログラムチェーン情報VTS—PGC#iを抽出し、そのプログラムチェーン情報VTS—PGC#iを抽出し、そのプログラムチェーン情報VTS—i000年 では、i100年 でにしてあるのでここでは省略する。図i100年 では、ステップ#i310214で得られたプログラムチェーン情報にしたがって、再生している時に、ユーザの指示により、特殊再生(早送り、逆戻し)の行われた場合のデコードシステム制御部i300の処理について示す。

【0458】図において、ステップ#331202では、プログラムチェーン情報VTS_PGC#i基づいて、再生しているタイトルVOBデータVTSTT_VOB中の、現在再生中のデータとして、ストリームバッファ2400から、VOBUのナブパックNVデータのDSIパックデータからVOBUサーチ情報VOBU_SRIを読み出す。

【0459】ステップ#331203では、デコードシステム制御部2300によって、このときの再生モード、すなわち通常再生か否か、または早送り時、逆戻り時の再生速度に応じて、VOBUサーチ情報VOBU_SRIの値を、次に再生すべきデータであるVOBUのナブパックNVのアドレスAdsiとする。図32を参照して説明したように、例えば、再生モードが通常再生であれ

ば、図32に示すの次のDSIアドレスを示すFWDI Nex tをアドレスAdsiの値とする。また、早送り、逆再生等の特殊再生時であれば、再生速度に応じてVOBUサーチ情報の他の位置情報(FWDI1~240、BWDI1~240)の其々の値をアドレスAdsi値とする。

【0460】ステップ#331204では、ステップ#331203で得たアドレスAdsiの値に基づいて、次に再生すべきデータが有効か否かについて判断される。その為に、Adsiの値としては使用する記録媒体Mのボリューム領域VS上で許される最大アドレス値より大きい値が用いられる。本例においては、一例として、片面一層ディスクが記録媒体Mとして用いられる場合を想定して、値3FFFFFFFhが採用されている。同ステップにおいて、YES"であれば、再生するべきデータが同一セル内、すなわち C_PBI に記述しているセル範囲内にもう無いものと判断して、ステップ#331206へ進む。一方、"NO"であれば、まだ再生すべきデータが残っているものと判断して、ステップ#331205へ進む。

【0461】ステップ#331205では、アドレスAdsiが示すナブパックNVにアクセスして、そのナブパックNVに続くVOBUを読み出すように再生部200を制御する。そして、読出されたデータはストリームバッファ2400に転送される。尚、早送り、逆再生等の特殊再生時であれば、ストリームバッファ2400にデータが転送された時点で、既にストリームバッファ2400に記憶されている現在再生中のVOBU中で、特殊再生時に表示しないデータを破棄し、システムデコーダ2500以降での処理を中断する。こうすることによって、高速再生時に表示すべきフレームのみのデータが、システムデコーダ2500以降に供給され、スムーズな高速再生が実現できる。

【0462】ステップ#331206では、再生モードが順方向かどうかを評価し、順方向であれば、ステップ#331207に進む。一方、逆方向であればステップ#331210へ進む。

【0463】ステップ#331207では、図47で示したステップ#310214で抽出された VTS_PG C#iから、つまり現在アクセスして再生中のセルを示す <math>PGC情報 C_PBI #jの再生セル順を示す j パラメータを 1 だけインクリメントして、つまり j+1 とする。

【0464】ステップ#331208では、ステップ#310214で抽出されているプログラムチェーン情報 V T S_PG C I とステップ#331207で得られた再生セル順jにもとづいて、順方向再生すべきセルの有無が判断される。

【0465】つまり、ステップ#331207でインクリメントされた再生セル順であるパラメータjで規定されるセル再生情報 $C_PBI#j$ がプログラムチェーン情報 VTS_PGCI 中に記載されていて再生すべき次

のセルの有無が判断される。

【0466】ステップ#331207で得られた再生セル順を示す jパラメータに基づき、プログラムチェーン情報 $VTS_PGC#i$ に次のセル再生情報 C_PBI がなければ、終了する。

【0467】ステップ#331207の結果、セルが続けば、すなわちステップ#331207で得られたセル再生順jで示すセル再生情報 C_PBI #j+1があれば、ステップ#331209へ進む。

【0468】ステップ#331209では、プログラムチェーン情報VTS__PGCI#iのセル再生制御情報C__PBIからj番目のセルの開始VOBUアドレスC__FVOBU__SAを読み出して、その値をアドレスAdsiとし、前述のステップ#331205に進む。

【0469】ステップ#331210では、逆方向再生であるので、図47で示したステップ#310214で抽出された $VTS_PGC#i$ から、つまり現在アクセスして再生中のセルを示すPCG情報 C_PBI #jの再生セル順を示すjパラメータを1だけデクリメントして、つまりj-1とする。

【0470】ステップ#331211では、ステップ#310214で抽出されているプログラムチェーン情報 VTS_PGCI#iにもとづいて、逆再生すべき次のセルの有無が判断されれる。つまり、ステップ#331210でのデクリメントされたjで規定されるセル再生情報C_PBI#jがプログラムチェーン情報VTS_PGCI中に記載されていれば、逆再生対象セルがあると判断して次のステップ#331211に進む。一方、セル再生情報C_PBI#jがプログラムチェーン情報VTS_PGCI中に記載されていなければ、逆再生対象セルは無い、すなわちPGC先頭のセルが既に逆再生した、つまりVTS_PGC#iの逆再生は完了したと判断して、処理を終了する。

【0471】ステップ#331212では、プログラムチェーン情報 $VTS_PGCI#i$ のセル再生制御情報 C_PBI から j 番目のセル再生情報 C_PBI からのセル開始 VOBU アドレス C_LVOBU_SA を読み出し、これをアドレス Adsi とし、前述のステップ#331205 に進む。

【0472】以上のような各ステップの処理により、デコードシステム制御部2300は、1つのプログラムチェーンの再生を行なう。

【0473】以上のような処理により、例えば、図30に示すような複数のプログラムチェーンが共通シーンをもっている場合のそれぞれのプログラムチェーンの特殊再生を含む再生が実現できる。

【0474】図53及び図54を参照して、本発明に基づいて、共通シーンとマルチシーンのある複数のプログラムチェーンにおいて、特殊再生した場合の各セルのVOBUの再生の実例について簡単に説明する。

【0475】同図において、左枠体は、図30及び図31に示す、プログラムチェーンVTS_PGCI#1、 VTS_PGCI#2の共通セル、すなわちセル再生情報C_PBI#5に相当するVOB#5である。

【 O 4 7 6 】 上枠体は、プログラムチェーンVTS_PGC#1 の C __ P B I # 6 に相当する V O B # 6 である。

【 O 4 7 7 】 下枠体は、プログラムチェーンVTS_PGC#2 の C __ P B I # 6 に相当する V O B # 6 である。

【0478】右枠体は、プログラムチェーンVTS_PGCI#1、VTS_PGCI#2の共通セル、すなわちセル再生情報C_PBI#7に相当するVOB#8である。

【0479】図において、経路Aは、プログラムチェーンVTS_PGCI#1のC_PBI#5~7を示し、 経路Bは、プログラムチェーンVTS_PGCI#2の C_PBI#5~7を示す。本図では、それぞれ1VO Bに1セルが対応している。

【0480】図において、DSIと書かれた部分はDSIパック情報を含むナブパックNVを示し、VOBUサーチ情報が記述されている。以下、本図の説明においては、DSIパックと呼び説明する。Vはビデオパックで、複数のビデオパックによりVOBUが構成される。図において、VOBUはDSIパックから、次のDSIパック直前のパックまでである。図53、図54では、2つのビデオパックにより1VOBUを構成するとしている。Aはオーディオパックで、1VOBUに相当する長さのオーディオデータが複数のオーディオパックに分割して記録されている。図53、図54、図55では1つのオーディオパックで1VOBU相当としている。SPは副映像パックで副映像データが含まれている。

【0481】図53は、1つおきにVOBU相当データ を再生し、早送りをする場合のを示す。2つのVTS_ PGCの共通のVOB (VOB#5)を使用するC_P BI#5の最初のDSIパックのVOBUサーチ情報か ら、次のDSIパックのアドレスを得て、最初のVOB Uを所定量だけ再生した後、次のDSIパック(C_P BI#5の3番目のDSI)を含むVOBUを再生す る。このDSIパックのVOBUサーチ情報から次のD SIパックのアドレスを読むと"3FFFFFFh" になっているため、経路AのVTS_PGC#1を再生中であれ ば、そのプログラムチェーン情報から、VTS_PGC#1のC __PBI#6(VOB#6)の最初のDSIパックのア ドレスを得て、C_PBI#5 (VOB#5) の3番目 のDSIパックを含むVOBUのビデオパックを所定量 再生した後、C_PBI#6 (VOB#6) の最初のD SIパックを読む。このようにして、プログラムチェー ンをたどりながら特殊再生を行う。

【0482】ビデオパックをどのように再生するか、すなわち、GOP内のIフレームだけを再生するのかまた

はPフレームも再生するのかという事や、セル間を移動 した最初のビデオデータの再生は何番目のVOBUから 行なうかは、特殊再生の速度などにより異なる。

【 O 4 8 3 】 図 5 4 は、 2 つの V T S __ P G C の共通の V O B (V O B # 8) を使用する C __ P B I # 7 の最後 から、 通常速度で逆方向に再生する場合の特殊再生の例である。

【O484】まず、C_PBI#7(VOB#8)の最 後のDSIパックのVOBUサーチ情報を読み、1つ前 のDSIパックのアドレスを得て、最後のDSIパック を含むVOBUのビデオパックを所定量再生し、1つ前 のDSIパックを読む。同様に、その前のDSIパック のアドレスを得て、VOBUを再生する。これを続け、 C PBI#7 (VOB#8) 4の先頭のDSIパック のVOBUサーチ情報から、1つ前のDSIパックのV OBUサーチ情報を読むと、アドレスが"3FFFF FFh"であり、経路Cを再生中であれば、プログラム チェーン情報VTS_PGC#1から、C_PBI#6の最後の DSIパケットを含むナブパックNVのアドレス、すな わちセル再生情報 C _ P B I 内のセル終了 V O B U アド レスC LVOBU SAを得て、C_PBI#6の最後のDSI パックを含むVOBUのビデオパックを所定量再生す る。このようにして、逆方向再生をプログラムチェーン を逆にたどりながら行う。

【0485】以上のように、複数のプログラムチェーンで、共通シーンをもつ場合の、特殊再生について、説明した。セル間のシームレス再生に対応するために、インターリーブされたセルに対しても、インターリーブブロックはVOBU単位であり、各VOBUのナブパックNVにVOBUサーチ情報(VOBU_SRI)を記録する事で、VOBUサーチ情報内に記録される相対アドレス情報は、連続的に配置されたセルより移動の大きいものとなるが、連続ブロック内のセルと同様な方法で、複数のプログラムチェーンで共有されたセルの特殊再生が順方向、逆方向ともにできる。

【0486】次に本発明の実施形態におけるデータ構造の作成方法について、説明する。基本的は、図34~図44に示すエンコードフローに従い生成する。

【0487】図34~図44のエンコードフローの中で、本発明では、図57、図58、図59、図60に示したフォーマットフローの一部が異なる。それぞれ、VOBUのナブパックNVにVOBUの最終位置VOBU_EAなどの記録に加えて、図32に示した本発明の特徴であるVOBUサーチ情報の記録を加える事になる。以下、それぞれのフォーマットフローについて、異なる部分のみを説明する。

【0488】図41に示すマルチアングル非シームレス 切り替えフォーマッタフローでは、ステップ#2350で得られたVOBU情報。ステップ#2352で得られた $VTSTT_VOBSデータに基づき、ステップ#<math>2$ 356でのセル開始VOBUアドレスC_FVOBU_SAとセル終端VOBUアドレスC_LVOBU_SAを記録すると共に、図32に示したVOBUサーチ情報VOBU_SRIに対応するVOBUのナブパックNVアドレスを記録する。各FWDIn及びBWDInの記録において、VOBUサーチ情報VOBU_SRIが、セルを超える場合には、"3FFFFFFFh"を記録する。

【0489】図42で示す、マルチアングルシームレス切り替えフォーマッタでは、マルチアングル非シームレス切り替えフォーマッタフローと同様に、ステップ#2380で得られたVOBU情報。ステップ#2382で得られたVOBU情報。ステップ#2382で得られたVOBU所始VOBU7ドレスC_FVOBU_SAとセル終端VOBU7ドレスC_LVOBU_SAを記録すると共に、図32に示したVOBU7・サーチ情報VOBU7・アドレスを記録する。各FWDI n及びBWDI nの記録において、VOBU7・ディーチ情報VOBU8、セルを超える場合には、"3FFFFFFFFF8)を記録する。

【0490】図43で示すパレンタル制御のマルチシーンのフォーマッタフローでは、前述と同様に、ステップ#2410で得られたVOBU情報。ステップ#2412で得られたVTSTT_VOBSデータに基づき、ステップ#2316でのセル開始VOBUアドレスC_FVOBU_SAとセル終端VOBUアドレスC_LVOBU_SAを記録すると共に、図32に示したVOBUサーチ情報VOBU_SRIに対応するVOBUのナブパックNVアドレスを記録する。各FWDIn及びBWDInの記録において、VOBUサーチ情報VOBU_SRIが、セルを超える場合には、"3FFFFFFFh"を記録する。

【0491】図44で示す単シーンのフォーマッタフローでは、前述と同様に、テップ#2434で得られたVOBU情報に基づき、ステップ#2438でのセル開始VOBUアドレスC_FVOBU_SAとセル終端VOBUアドレスC_LVOBU_SAを記録すると共に、図32に示したVOBUサーチ情報VOBU_SRIに対応するVOBUのナブパックNVアドレスを記録する。各FWDIn及びBWDInの記録において、VOBUサーチ情報VOBU_SRIが、セルを超える場合には、"3FFFFFFFh"を記録する。

【0492】以上のような方法で、本発明の第1の実施 形態のデータ構造を作成する事ができる。

【0493】次に、本発明の実施形態2について説明する。

【0494】第1の実施形態では、特殊再生をすばやく行うためのスキップ先のアドレスが、セル境界を超える場合には、セル境界を超えた事を示す特殊なデータを示したものであったが、第2の実施形態は、特殊再生をすばやく行うためのスキップ先のアドレスが、セル境界を超えないアドレスに制限するものである。

【0495】実施形態2は、実施形態1とほぼ同じであ

るので、以下異なる部分のみを説明する。

【0496】実施形態2による光ディスクの論理構造が実施形態1の場合と異なる点は、ナブパックNVのDSIパックアドレス情報に記述されるトリックプレイ情報であるVOBUサーチ情報VOBU_SRIの記録に関する部分である。

【0497】実施形態2において、ナブパックNVのVOBUサーチ情報VOBU_SRIは、そのナブパックNVが属しているセル以外を示すアドレスを記録しないという点に関しては実施形態1と同じである。異なる点は、セルの両端のVOBUを除いたVOBUのナブパックNVのVOBUサーチ情報VOBU_SRIが、特殊再生において、次に再生すべきVOBUがセル境界を越える場合、セルの両端のVOBUのナブパックNVのアドレスを記述する事である。

【 O 4 9 8 】 すなわち、逆方向の再生に関連した「BWD Prev」、「BWD60」、「BWD20」、「BWD19」、「BWD 2」、「BWD1 」などがセル境界を越える場合、セルの先頭のVOBUのナブパックNVのアドレスを記述する。また、順方向の再生に関連した「FWD NT」、「FWD6 0」、「FWD20」、「FWD19」、「FWD2」、「FWD1」などがセル境界を越える場合、セルの最後のVOBUのナブパックNVのアドレスを記述する。

【0499】セルの先頭のVOBUのナブパックNVでは、逆方向の再生に関連した「BWDPrev」、「BWD6 0」、「BWD20」、「BWD19」、「BWD2」、「BWD1」などがアドレスは「0」なり、セルの最後のVOBUのナブパックNVのVOBUサーチ情報には、順方向の再生に関連した「FWD Next」、「FWD60」、「FWD20」、「FWD19」、「FWD2」、「FWD19」、「FWD2」、「FWD19」、「FWD2」、「FWD3。

【0500】以上のように、セル内のVOBUのナブパックNVのVOBUサーチ情報VOBU_SRIには、そのセル以外のアドレスは記録されない。そのため、他のプログラムチェーンで、さらにそのセルを使用する場合において、セルを構成するVOBデータの変更をする必要はなく、データ作成が容易である。

【0501】第2の実施形態における再生装置は第1の 実施形態と同様であるので、説明を省略する。

【0502】次にデコードシステム制御部の処理フローを、図56に示す。図において、図52で示した第1の 実施形態とほぼ同様である。異なっている点について、 以下説明する。

【0503】第1の実施形態である図52のステップ#331204で、アドレスが「3FFFFFFFh」であるかを評価している点が、図56では、アドレスが「0」であるかを評価する点が異なる。その他のステップの内容は図52と同様である。すなわち、図に示すフローにおいて、セル境界を超えるか否かを判断するものとして、VOBUサーチ情報から抽出される次のスキッ

プ先のアドレス情報であるAdsi情報が、第1の実施 形態では「3FFFFFFh」であったが、第2の実施 形態では「0」となっている点が異なるのである。ま た、早送り時には、セル終端のVOBUのナブパックN Vが、逆戻し時には、セル先頭のVOBUのナブパック NVが必ずに読み出される点が異なる。

【0504】この差によって、プログラムチェーンVTS_PGCI#iの再生処理が異なることはない。しかし、実際に出力されるデータは異なるので、以下、図を用いて、特殊再生時のプログラムチェーンの再生方法を説明する。第1の実施形態における特殊再生時のプログラムチェーンの再生方法を示す図53に対応するところの第2の実施形態の図は、図55である。

【0505】図55において、図52と同様に、左枠体は、図30及び図31に示す、プログラムチェーンVTS_PGCI#1、VTS_PGCI#2の共通セル、すなわちセル再生情報C_PBI#5に相当するVOB#5である。上枠体は、プログラムチェーンVTS_PGC#1のC_PBI#6に相当するVOB#6である。

【 O 5 O 6 】下枠体は、プログラムチェーンVTS_PGC#2 の C__ P B I # 6 に相当する V O B # 6 である。

【0507】右枠体は、プログラムチェーンVTS_PGCI#1、VTS_PGCI#2の共通セル、すなわちセル再生情報C_PBI#7に相当するVOB#8である。

【 0 5 0 8 】図において、経路 A は、プログラムチェーン V T S __ P G C I # 1 の C __ P B I # 5 ~ 7 を示し、 経路 B は、プログラムチェーン V T S __ P G C I # 2 の C __ P B I # 5 ~ 7 を示す。本図では、それぞれ 1 V O B に 1 セルが対応している。

【0509】図において、DSIと書かれた部分はDSIパック情報を含むナブパックNVを示し、VOBUサーチ情報が記述されている。以下、本図の説明においては、DSIパックと呼び説明する。また、VOBUの構成は図52と同様である。

【0510】図55において、図52と異なる点は、経路A及び経路Bの再生において、必ずセル終端のVOB UのナブパックNVを抽出し、再生する点が異なる。

【0511】また、VOBUをどのように再生するか、また、セルを移動した後の最初のビデオデータの再生はそのセルの何番目のDSIから行なうかは、特殊再生の速度などにより異なる事は第1の実施形態と同様である。

【0512】第2の実施形態の逆戻り再生においても、 同様であり、逆戻り再生の速度が変化しても、再生時に おいて必ずセルの先頭のVOBUのナブパックNVを抽 出する事になる。

【0513】以上のように、複数のプログラムチェーンで、共通シーンをもつ場合の、特殊再生について、説明した。また、第2の実施形態においても、第1の実施形

態と同様に、セル間のシームレス再生に対応するために、インターリーブされたセルに対しても、インターリーブブロックはVOBU単位であり、各VOBUのナブパックNVにVOBUサーチ情報(VOBU_SRI)を記録する事で、VOBUサーチ情報内に記録される相対アドレス情報は、連続的に配置されたセルより移動の大きいものとなるが、連続ブロック内のセルと同様な方法で、複数のプログラムチェーンで共有されたセルの特殊再生が順方向、逆方向ともにできる。

【0514】次に本発明の第2の実施形態におけるデータ構造の作成方法について、説明する。

【0515】基本的は、第1の実施形態と同様に、図34~図44に示すエンコードフローに従い、図34~図44のエンコードフローの中で、図41、図42、図43、図44に示したフォーマットフローの一部が異なる。それぞれ、VOBUのナブパックNVにVOBUの最終位置VOBU_EAなどの記録に加えて、図32に示した本発明の特徴であるVOBUサーチ情報の記録を加える事になる。以下、それぞれのフォーマットフローについて、異なる部分のみを説明する。

【0516】図41に示すマルチアングル非シームレス切り替えフォーマッタフローでは、ステップ#2350で得られたVOBU情報、ステップ#2352で得られたVTSTT__VOBSデータに基づき、ステップ#2356でのセル開始VOBUアドレスC_FVOBU_SAとセル終端VOBUアドレスC_LVOBU_SAを記録すると共に、図32に示したVOBUサーチ情報VOBU_SRIに対応するVOBUのナブパックNVアドレスを記録する。各FWDIn及びBWDInの記録において、VOBUサーチ情報VOBU_SRIが、セルを超える場合には、セルの両端に位置するVOBUのアドレスを記録し、セルの両端のVOBUには"0"を記録する。

【0517】また、図42で示す、マルチアングルシームレス切り替えフォーマッタでは、マルチアングル非シームレス切り替えフォーマッタフローと同様に、ステップ#2382で得られたVOBU情報。ステップ#2382で得られたVTSTT_VOBSデータに基づき、ステップ#2386でのセル開始VOBUアドレスC_FVOBU_SAを記録すると共に、図32に示したVOBUサーチ情報VOBU_SRIに対応するVOBUのナブパックNVアドレスを記録する。各FWDIn及びBWDInの記録において、VOBUサーチ情報VOBU_SRIが、セルを超える場合には、セルの両端に位置するVOBUのアドレスを記録し、セルの両端に位置するVOBUには"O"を記録する。

【0518】図43で示すパレンタル制御のマルチシーンのフォーマッタフローでは、前述と同様に、ステップ#2410で得られたVOBU情報。ステップ#2412で得られたVTSTT_VOBSデータに基づき、ステップ#2316でのセル開始VOBUアドレスC_FVOB

 U_SA とセル終端 $V \cap B \cup T$ ドレス C_LVOBU_SA を記録すると共に、図32に示した $V \cap B \cup T$ 情報 $VOBU_SRI$ が応する $V \cap B \cup T$ がいする $V \cap B \cup T$ がいする $V \cap B \cup T$ がいます。 各FWDI n及びBWDI nの記録において、 $V \cap B \cup T$ 一チ情報 $VOBU_SRI$ が、セルを超える場合には、セルの両端に位置する $V \cap B \cup T$ が、セルを記録し、セルの両端の $V \cap B \cup T$ が、を記録する。

【0519】図44で示す単シーンのフォーマッタフローでは、前述と同様に、テップ#2434で得られたVOBU情報に基づき、ステップ#2438でのセル開始VOBUアドレスC_LVOBU_SAを記録すると共に、図32に示したVOBUサーチ情報VOBU_SRIに対応するVOBUのナブパックNVアドレスを記録する。各FWDI n及びBWDI nの記録において、VOBUサーチ情報VOBU_SRIが、セルを超える場合には、セルの両端に位置するVOBUのアドレスを記録し、セルの両端のVOBUには"0"を記録する。

【0520】以上のような方法で、本発明の第2の実施 形態のデータ構造を作成する事ができる。

【0521】本発明において、前述したように複数のプログラムチェーンをパレンタル制御のタイトルに適用、すなわち1つのプログラムチェーンVTS_PGC#1を大人用PGC、他のプログラムチェーンVTS_PGC#2を子供用PGCとする事で、それぞれのプログラムチェーンにおいて、特殊再生が実現できる。また、マルチアングルシーンがあるプログラムチェーンにおいて、DVDでは、1つのアングルは1つのセルから構成されている事から、1つのアングル内での特殊再生は実現可能である。また、特殊再生時に、共通セルから、マルチアングルの1つのセルに移動する場合には、タイトル再生時にデフォルト、あるいはユーザが設定するアングル番号に相当するセルに移動することにより、実現でき、マルチアングルセルから、共通セルへの移動時は、パレンタル制御時と同様な制御を行う事で実現できる。

【0522】また、上記各実施形態では、システムストリーム中にインターリーブされるデータサーチ情報が圧縮単位であるGOP毎にインターリーブされる場合を説明したが、データサーチ情報パケットがインターリーブされる単位はGOPに限らない。

【0523】また、上記各実施形態ではDVDの読み出し専用ディスクにより説明を行ったが書換可能なディスクであっても効果は同様である。

【0524】さらに、メニューの概念は広くユーザに選択を求める手段であり、リモコンのテンキーによる選択に何ら限定されるものではない。例えば、マウス操作であっても、音声による指示であってもよい。

【0525】本発明のシステムストリームはMPEG規格に準拠しているが、将来規格が拡張されたり、新たな規格のものが使用されても、複数のデータがインターリ

ーブされ、時系列的に再生されるものであれば同様に適用できる。また、インターリーブされる圧縮動画像データの数は1つであるとして説明を進めたが本質的に制限されるものではない。また、トリックプレイ情報はデータサーチ情報に記述され、システムストリームにインターリーブされているものとして、説明を進めたが、再生されるビデオデータ、オーディオデータに付随した情報として記述されていればよく、必ずしもシステムストリームにインターリーブされている必要はない。例えば、セルの先頭に、セルに含まれるすべてのトリックプレイ情報が記述されていても、すべてのセルのトリックプレイ情報が同じ領域に記述されていても、その情報が必要となるときは、これまで説明をしてきた場合と変わらず、効果も変わらない。

【0526】同様に、プログラムチェーン情報が記述される位置は、実際に再生されるデータと分離して読み出せれば良く、本実施形態に示した位置に記述されなくともよい。

【0527】また、上記各実施形態では、セルの先頭のデータはデータサーチ情報を含むパケットであることを前提としたが、必ずしも先頭である必要はなく、関連するビデオデータ、オーディオデータ、副映像データが識別可能であれば、データサーチ情報、ビデオデータ、オーディオデータ、副映像データ、それぞれの記録の順序は問わない。

【0528】また、特殊再生時のセル内の再生及びセル間の再生においては、上記各実施形態に説明した方法以外の方法もあるが、セル間の再生はトリックプレイ情報に記述されている位置情報を用い、セルの端部の検出にアドレス「3FFFFFFh」あるいはアドレス「0」あるいは、その他の「セル外」を示すことが検出できる値を用い、セル間の再生においては、プログラムチェーン情報を用いるものであればよい。

【0529】複数のプログラムチェーンでセルを共有した場合でも、任意のプログラムチェーンにおいて、高速の早送り、通常速度及び高速の逆戻しの特殊再生をスムーズに行う事が可能であるという効果がある。

[0530]

【発明の効果】以上のように、本発明にかかるビットストリームのインターリーブで媒体に記録再生する方法及びその装置は、様々な情報を搬送するビットストリームから構成されるタイトルをユーザーの要望に応じて編集して新たなタイトルを構成することができるオーサリングシステムに用いるのに適しており、更に言えば、近年開発されたデジタルビデオディスクシステム、いわゆるDVDシステムに適している。

【図面の簡単な説明】

【図1】マルチメディアビットストリームのデータ構造 を示す図である。

【図2】オーサリングエンコーダを示す図である。

- 【図3】オーサリングデコーダを示す図である。
- 【図4】単一の記録面を有するDVD記録媒体の断面を示す図である。
- 【図5】図4の拡大の断面を示す図である。
- 【図6】図5の拡大の断面を示す図である。
- 【図7】複数の記録面(片面2層型)を有するDVD記録媒体の断面を示す図である。
- 【図8】複数の記録面(両面1層型)を有するDVD記録媒体の断面を示す図である。
- 【図9】 DVD記録媒体の平面図である。
- 【図10】DVD記録媒体の平面図である。
- 【図11】片面2層型DVD記録媒体の展開図である。
- 【図12】片面2層型DVD記録媒体の展開図である。
- 【図13】両面一層型DVD記録媒体の展開図である。
- 【図14】両面一層型DVD記録媒体の展開図である。
- 【図15】マルチレイティッドタイトルストリームの一 例を示す図である。
- 【図16】VTSのデータ構造を示す図である。
- 【図17】システムストリームのデータ構造を示す図で ある。
- 【図18】システムストリームのデータ構造を示す図である。
- 【図19】システムストリームのパックデータ構造を示す図である。
- 【図20】ナブパックNVのデータ構造を示す図である。
- 【図21】DVDマルチシーンのシナリオ例を示す図である。
- 【図22】 DVDのデータ構造を示す図である。
- 【図23】マルチアングル制御のシステムストリームの 接続を示す図である。
- 【図24】マルチシーンに対応するVOBの例を示す図である。
- 【図25】DVDオーサリングエンコーダを示す図であ る。
- 【図26】DVDオーサリングデコーダを示す図である。
- 【図27】VOBセットデータ列を示す図である。
- 【図28】 VOBデータ列を示す図である。
- 【図29】エンコードパラメータを示す図である。
- 【図30】DVDマルチシーンのプログラムチェーン構成例を示す図である。
- 【図31】DVDマルチシーンのVOB構成例を示す図である。
- 【図32】ナブパックNVのサーチ情報のデータ構造を示す図である。
- 【図33】マルチアングル制御の概念を示す図である。
- 【図34】エンコード制御フローチャートを示す図である。
- 【図35】非シームレス切り替えマルチアングルのエン

- コードパラメータ生成フローチャートを示す図である。
- 【図36】エンコードパラメータ生成の共通フローチャ ートを示す図である。
- 【図37】シームレス切り替えマルチアングルのエンコードパラメータ生成フローチャートを示す図である。
- 【図38】パレンタル制御のエンコードパラメータ生成フローチャートを示す図である。
- 【図39】単一シーンのエンコードパラメータ生成フローチャートを示す図である。
- 【図40】フォーマッタ動作フローチャートを示す図である。
- 【図41】 非シームレス切り替えマルチアングルのフォーマッタ動作サブルーチンフローチャートを示す図である。
- 【図42】シームレス切り替えマルチアングルのフォーマッタ動作サブルーチンフローチャートを示す図である。
- 【図43】パレンタル制御のフォーマッタ動作サブルー チンフローチャートを示す図である。
- 【図44】単一シーンのフォーマッタ動作サブルーチンフローチャートを示す図である。
- 【図45】デコードシステムテーブルを示す図である。
- 【図46】デコードテーブルを示す図である。
- 【図47】デコーダのフローチャートを示す図である。
- 【図48】PGC再生のフローチャートを示す図である。
- 【図49】ストリームバッファ内のデータデコード処理 フローチャートを示す図である。
- 【図50】各デコーダの同期処理フローチャートを示す 図である。
- 【図51】サーチ方法の例を示す図である。
- 【図52】サーチ動作のフローチャートを示す図である。
- 【図53】複数の再生経路がある場合のサーチ方法の例 を示す図である。
- 【図54】複数の再生経路がある場合の逆サーチ方法の 例を示す図である。
- 【図 5 5】複数の再生経路がある場合のサーチ方法の例を示す図である。
- 【図 5 6】サーチ動作のフローチャートを示す図である。
- 【図 5 7】インターリーブブロック構成例を示す図である。
- 【図58】VTSのVOBブロック構成例を示す図である。
- 【図59】連続ブロック内のデータ構造を示す図である。
- 【図60】インターリーブブロック内のデータ構造を示す図である。

【符号の説明】

【図2】

【図3】

【図10】

[図18]

【図25】

VOB-D

【図31】

【図26】

【図27】

【図28】

【図39】

【図29】

【図33】

【図49】

【図30】

【図51】

[図34]

【図45】

シナリオ情報 レジスタ	レジスタ名 アングル番号 (ANGLE NO reg) VTS番号 (VTS NO reg) PGC番号 (VTS PGCI NO reg) オーディオID (AUDIO ID reg) 副映像ID (SP_ID_reg) SCR用バッファ (SCR buffer)	·			
	レジスタ名	值			
	セルブロックモード (CBM_reg)	N BLOCK: Not a Cell in the block			
		F_CELL: First Cell in the block			
		BLOCK: Cell in the block			
14	·	L_CELL: Last Cell in the block			
セル情報レジスタ	セルブロックタイプ (CBT_reg)	N BLOCK: Not a part of in the block			
		A_BLOCK: Angle block			
	シームレス再生フラグ (SPF_reg)	SML: A Cell shall be presented seamlessly			
		NSML: A Cell shall not be presented seamlessly			
	インターリーブアロケーションフラグ (IAF_reg)	N_ILVB: Exist in the Contiguous block			
		ILVB: Exist in the Interleaved block			
	STC再設定フラグ (STCDF_reg)	STC_NRESET: STC reset is not necessary			
		STC_RESET: STC reset is necessary			
	シームレスアングル切替えフラグ (SACF_reg)	SML: A Cell shall be presented seamlessly			
		NSML: A Cell shall not be presented seamlessly			
l .	セル最初のVOBU開始アドレス (C_FOVOBU_SA				
	セル最後のVOBU開始アドレス (C_LOVOBU_SA				

[図41]

【図42】

【図43】

【図44】

【図46】

[図57]

[図59]

テーマコート*(参考)

[図60]

FΙ

フロントページの続き

(51) Int.Cl.	7 識別記号
G 1 1 B	27/10
H 0 4 N	5/85
	5/92
(72)発明者	長谷部 巧
(14)元明1	大阪府門真市大字門真1006番地 松下電器
	在業株式会社内
(72) 9¥00±x	
(72)発明者	中村和彦
	大阪府門真市大字門真1006番地 松下電器
	産業株式会社内
(72)発明者	福島 能久
	大阪府門真市大字門真1006番地 松下電器
	産業株式会社内
(72)発明者	小塚 雅之
	大阪府門真市大字門真1006番地 松下電器
	産業株式会社内

H 0 4 N	5/91				B N				
	5/92				H				
(72)発明者				字門真	[1006	番地	松下電器		
		株式会			•				
(72)発明者	山根	靖彦	F						
	大阪府門真市大字門真1006番地						松下電器		
産業株式会社内									
F ターム(参	考)	5C052	AA02	AC08	CC11	DD04	FB05		
		5C053	FA14	FA23	GA11	GB37	HA30		
			JA16						
		5D044	AB05	AB07	BC03	CC06	DE14		
			DE24	DE38	DE53	FG19	FG24		
		5D077	AA23	BAO4	CA02	DC08	EA31		
			EA33	EA34					

5D110 AA15 AA27 AA29 DA17 DA18 DB03 DC06 DE01