3. feladatsor: Számelmélet

Lineáris kongruenciák megoldása

- 1. Oldjuk meg az alábbi kongruenciákat:
 - a) $21x \equiv 14 \mod 35$; b) $172x \equiv 6 \mod 62$; c) $3x \equiv 8 \mod 13$; d) $12x \equiv 9 \mod 18$;
 - e) $26x \equiv 12 \mod 22$; f) $20x \equiv 19 \mod 22$; g) $16x \equiv 36 \mod 28$; h) $126x \equiv 46 \mod 99$.
- 2. Az alábbi példákban döntsük el a két kongruenciáról, hogy ekvivalensek-e, illetve, hogy milyen irányú implikáció áll fenn közöttük, ha valamelyik következik másikból. Bizonyítsuk is állításunkat:
 - a) $44x \equiv 100 \mod 80$ és $11x \equiv 25 \mod 20$
 - b $12x \equiv 72 \mod 18$ és $3x \equiv 18 \mod 9$
 - c) $39x \equiv 78 \mod 26$ és $-x \equiv -2 \mod 2$
 - d) $14x \equiv 91 \mod 21$ és $2x \equiv 13 \mod 21$
 - e) $12x \equiv 92 \mod 8$ és $72x \equiv 552 \mod 16$
 - f) $5x \equiv 17 \mod 4$ és $-40x \equiv 136 \mod 16$
 - g) $21x \equiv 84 \mod 20$ és $x \equiv 4 \mod 20$
 - h) $26x \equiv 78 \mod 22$ és $x \equiv 3 \mod 11$

Kétvált. lin. diofantikus egyenletek megoldása lineáris kongruenciák segítségével

- 3. Keressük meg a következő egyenletek egész megoldásait kongruenciák felhasználásával.
 - a) 27x + 49y = 3;
- b) 33x + 23y = 2;
- c) 33x + 23y = 3.

További feladatok

4. Egy n egész számra $n^{100} \mod 73 = 57$ és $n^{101} \mod 73 = 11$. Mennyi $n \mod 73$?