Passo (KOWALTOWSKI, 83): determinar para uma dada gramática G, três relações auxiliares sobre $T \cup N$, indicadas por $< \cdot , = e \cdot >$. Estas relações devem permitir a identificação do redutendo de α . Assim, se $\alpha = Y_1 Y_2 ... Y_n$, e o redutendo de α é $Y_k Y_{k+1} ... Y_m$, $1 \le k \le m \le n$, então devemos ter:

$$Y_i <^{\cdot} Y_{i+1}$$
 ou $Y_i = Y_{i+1}$ para $i=1,...k-2$,
 $Y_{k-1} <^{\cdot} Y_k$ (se $k>1$),
 $Y_i = Y_{i+1}$ para $i=k,...m-1$

 $Y_m = Y_{m+1} \qquad \text{(se m<n)},$

parte que deve ser reduzida é a parte Y_k ... Y_m que está mais à esquerda com

$$Y_{k-1} < Y_k = Y_{k+1} = ... = Y_m > Y_{m+1}$$

Caso k = 1 ou m = n, então Y_{k-1} ou Y_{m+1} não existem.

Definição das Relações < ,= e ->

- 1. Dizemos que X < Y se existe uma forma sentencial direita α=βΧΥγw tal que Yγ é um redutendo de α.
- 2. Dizemos que X = Y se existe uma forma sentencial direita $\alpha = \beta \gamma X Y \delta w$ tal que $\gamma X Y \delta$ é um redutendo de α .
- 3. Dizemos que X > Y se existe uma forma sentencial direita α = $\beta\gamma$ XYw tal que γ X é um redutendo de α . Note-se que neste caso Y é um símbolos terminal.

 $\beta, \gamma, \delta \in V^*$ e $w \in V_T^*$

- Uma gramática *G* é chamada de <u>precedência</u> simples se (KOWALTOWSKI, 83):
- 1. As relações <- , = e -> são disjuntas, isto é, não existe nenhum par de símbolos que pertence a mais de uma destas relações;
- 2. G não possui duas produções da forma A::=γ e B::=γ Toda gramática dePrecedência Simples é <u>não ambígua</u>.
- O redutendo de uma forma sentencial direita de uma gramática de precedência simples é dado pela parte mais à esquerda da forma, tal que os seus símbolos consecutivos estão em =, e é delimitado por pares < e > (exceto nas extremidades da forma).

Forma Prática para calcular as Relações < · ,= e ·> Proposição:

- 1. X < Y se e somente se $X(=)\psi_P^+Y$.
- 2. X = Y se e somente se existe uma produção em P da forma A::=αXYβ
- 3. X > Y se e somente se $Y \in V$ e $X(\psi U^+)^T(=)\psi_P^*Y$.

S::=aSb / A

A ::=BC/c

B ::=(

C := A)

	Ψ_{P}	Ψ_P^+	Ψυ	Ψυ ⁺
S	aA	aABc(bA	bACc)
Α	Вс	Bc(Сс	Cc)
В	((((
С	Α	ABc())

Passo	Forma Sentencial	Redutendo	Redu- ção p/
1	a<·a<·(·>c) b b	(В
2	a<·a<·B<·c·>) b b	С	Α
3	a<·a<·B<·A=)·>b b	Aa	С
4	a<·a<·B=C·>b b	ВС	А
5	a<·a<·A·>b b	Α	S
6	a<·a=·S=b·>b	aSb	S
7	a=S=b	aSb	S
8	S		

A figura anterior mostra todas as reduções baseadas nas relações calculadas na matriz. Para ver as árvores da cadeia aa(c)bb veja a página 29 do KOWALTOWSKI (83).

Exercício: Seja G de expressões:

E:=E+T/T

T:=T*F/F

F:=a/b/(E)

Mostre que esta <u>não é de precedência simples</u> (verifique onde há <u>conflito de relações</u>...)