0.1 Anforderungsanalyse

In der Analysephase der Systementwicklung werden die Kundenanforderungen zusammengetragen und untersucht. Dabei stellt die Anforderungsanalysephase den ersten Schritt zum Aufstellen der initialen Dokumente für den Prozess dar. In weiteren Iterationen liegen der Anforderungsanalyse zusätzlich zu der ursprünglichen Aufgabenstellung noch die Ergebnisse der Tests und die erkannten Analysefehler ebenfalls als Quelle vor.

Die Ermittelten Anforderungen werden untergliedert in funktionale und nicht-funktionale Anforderungen (kurz fa!s und nfa!s). Diese Unterteilung findet in der Arbeit in separaten Unterabschnitten statt, die sich nachfolgend anschließen. Die Identifikation der Stakeholder ist grundsätzlich der Anforderungsanalyse zugehörig, wird jedoch in einem gesonderten, sich der Anforderungsanalyse anschließenden, Unterkapitel behandelt, da es sich im Kontext des Konzeptionsteils dieser Arbeit um einen Kernabschnitt handelt.

Zur übersichtlichen Einordnung des jeweiligen Analyseschrittes wird die Grafik Analysephase eingeführt, an der sich die fogenden Kapitel entlangbewegen. Die Anforderungsanalyse kann auf der linken Seite der Grafik identifitziert werden und untergliedert sich in die bereits erwähnten drei Unterpunkte.

Die folgenden Abschnitte betrachten die Erstellung einer konkreten Anforderungsspezifikation, die zum Startbeginn des Entwicklungsprozesses vorliegen muss. In den Unterabschnitten zu den fa!s (fa!s) und nfa!s (nfa!s) werden die notwendigen Anforderungen für die Entwicklung der Laboranlage vorgestellt. Dabei sind die Hardwareanforderungen nur Beispielhaft aufgelistet, da die Systemhardware nur eine Untergeordnete Relevanz in dieser Arbeit hat. Alle nicht aufgeführten Anforderungen wurden ergänzend im Anhang beigefügt.

Aus der theoretischen Grundlagen bereits erkenntlich, bestehen Anforderungen aus Zielen, die im Rahmen der Entwicklung erreicht werden sollen. Dabei handelt es sich um einfachen Text, der nach Absprachen mit dem Kunden Dokumentiert wird. Konkret geht es im Fall dieser Arbeit um die definierten Aufgaben und Ziele, welche durch Professoren/innen und Laboringenieure/innen bzw. Mitarbeiter/innen des Fachbereiches augestellt wurden. Auch selbstauferlegte Aufgaben (Anforderungen des Systementwicklers) werden mit aufgeführt. Im ersten Schritt ist es notwendig die Menge aller Aufgaben zu konkretisieren, um überflüssige und irrelevante Lösungen diese betreffend zu vermeiden.

Ausgangspunkt für die Entwicklung des mehrachsigen Positioniersystems sind folgende Kernanforderungen bzw. Ziele. Es wird gefordert, eine Laboranlage zu entwickeln, die simple Transportgüter sicher von einer Aufnahmeposition zu einem Ablageort transportieren kann. Dies soll über zunächst zwei Achsen geschehen, die es ermöglichen Bewegungen in horizontale Richtung (X-Achse) und vertikale Richtung (Z-Achse) durchzuführen. Dabei ist es relavant, dass verschiedene Trajektorien von der Anlage gefahren werden können, welche durch den Nutzer programmatisch vorgegeben werden. Die Bewegung der Achsen erfolgt über zwei getrennt ansteuerbare Servomotoren, die über einen Servoregler mit einer Industriesteuerung verbunden sind. Die Steuerungskomponenten sind bereits vorhanden

und müssen verwendet werden. Konkret handelt es sich um den lmc!101 (Logic Motion Controller) von Schneider Electric, das lxm! 62 P Netzgerät (engl. Powersupply, ebenfalls von Schneider Electric) und den lxm! 62 D Doppelantrieb (engl. Double Drive). Zusätzlich soll eine PFC200 Steuerung von Wago zum einsatz kommen, mit der Betriebsströme gemessen und für die Weiterverarbeitung bereit gestellt werden können. Weiterhin sollen auch ausgewählte Prozessdaten aus dem Systemablauf für die externe Verarbeitung zur Verfügung gestellt werden. Es ist vorgegeben, dass diese Daten per opc! (opc!) ua! (ua!) Schnittstelle ausgelesen werden können. Kernziel bei der Entwicklung des Laborsystems ist es die Möglichkeit bereitzustellen, dass die Positioniereinheit von jedem Laborplatz programmiert und als Testsystem für den Lehrzweck eingesetzt werden kann. Für den Betrieb der Anlage sind zwei Betriebsmodi vorgesehen. Ersterer, der Automatikbetrieb soll einen Vollautomatischen Prozessablauf ermöglichen, bei welchem eine konkrete Positionieraufgabe zyklisch durchgeführt wird. Zweiterer, der Handbetrieb, nimmt manuelle Steuerbefehle vom Nutzer entgegen, bei welchen über Tastereingaben an der Laboranlage, Fahrbewegungen entlang der beiden Achsen durchgeführt werden können. Die Auswahl bzw. ein Wechsel zwischen den Betriebsmodi, ist über einen Wahltaster zu implementieren. Außerdem ist ein Schutz für die Anlage und deren Nutzer, sowie sich um das Positioniersystem befindende Personen zu implementieren Der Schutz ist manuell auslösbar über Not-Halt Taster an der Laboranlage und durch einen Lichtvorhang vor dem Fahrbereich der beiden Achsen. Abschließend wird gefordert, dass es zu einem späteren Zeitpunkt noch Möglich ist, das System um weitere Achsen und Peripheriegeräte wie bspw. Förderbänder zu erweitern.

0.1.1 Funktionale Anforderungen

Der erste Unterabschnitt der Anforderungsanalyse behandelt die Modellierung der funktionalen Anforderungen des Prozesses. Im Requierements Engineering beschreiben Funktionale Anforderungen gewünschte Funktionalitäten des Systems. Konkret steht im Mittelpunkt der Analyse, welche Fähigkeiten das System besitzen soll bzw. was es umgangssprachlich tun kann. Die Auflistung der Anforderungen ist eine Sammlung von systemspezifischen Daten, sowie eine grundlegende Beschreibung des Systemverhaltens.

Die Dokumentation der funktionalen Anforderungen erfolgt typischerweise in Tabellenform. Bereits in den Anforderungen wird ein Abnahmekriterium für diese formuliert, um bei der Inbetriebnahme des Systems die Erfüllung der Anforderung bestätigen oder wiederlegen zu können.

Die Nachfolgenden Tabellen zu den funktionalen Anforderungen sind wie folgt strukturiert. Im ersten Eintrag, der **Beschreibung**, wird zunächst in kurzer Textform die Anforderung an das System formuliert. Im nächsten Punkt, dem **Abnahmekriterium** findet eine Erklärung zur Überprüfung der Umsetzung behandelter Anforderung statt. Die Tabbellenzeile **Quelle** verweist auf einen oder mehrere Einträge in der Stakeholdertabelle, welche im ?? vorgestellt wird. Bei Nachfragen zu der jeweils behandelten funktionalen

Anforderunge ist die Tabelle zur Klärung durch den Prozessentwickler heranzuziehen. Der Eintrag Begründung enthält Informationen zur Relevanz der Anforderung, die in der Tabelle beschrieben wird. Dem PunktAbhängigkeit unterliegt eine besondere Wichtigkeit, da hier alle Anforderungen aufgelistet sind, die auf der in der Tabelle beschriebenen Anforderung basieren bzw. in direkter Abhängigkeit zu dieser stehen. Der letzte Eintrag, die Identifikationsnummer (kurz id!) dient zur späteren Referenzierung und leichterem Nachschlagen einer Anforderung. Sie ist hilfreich, um Mehrdeutigkeiten zu vermeiden und eine eindeutige Identifizierung sicherzustellen.

Die Nachfolgenden Tabellen folgen dem beschriebenen Muster und beinhalten alle funktionalen Anforderungen des mehrachsigen Positioniersystems. Die Anforderungen an die Hardware des Systems sind nur Beispielhaft am Ende des Unterabschnittes erwähnt. Alle nicht erwähnten Anforderungen können im Anhang nachgeschlagen werden.

Beschreibung	Das Positioniersystem soll über einen dedizierten Einschalter unter Spannung gesetzt werden können.
Abnahmekriterium	Test des gekennzeichneten Einschalters unter Prüfung der Systemspannung nach Betätigung des Schalters.
Quelle	Laborpersonal siehe Stakeholderliste
Begründung	Es wird verlangt, bei Nichtnutzung des Systems dieses zu deaktivieren um das Gefahrenrisiko zu minimieren.
Abhängigkeit	 Die Positioniereinheit kann erst nach dem Einschalten genutzt werden (Auswahl des Betriebsmodus). Es sind Schutzmaßnahmen für Anwender und Anlage umzusetzen, um das Gefahrenrisiko zu minimieren.
Identifikationsnummer	1.1.1

Tabelle 1: Funktionale Anforderung - Ein-Schalter

Beschreibung	Über einen Wahlschalter soll der Betriebsmodus des mehrachsigen Positioniersystems vorgegeben werden können.
Abnahmekriterium	Auswahl des Betriebsmodus wird über die jeweilige Indikatorenleuchte bestätigt. Der ausgewählte Betriebsmodus kann genutzt werden.
Quelle	Prozessentwickler siehe Stakeholderliste
Begründung	Es ist hilfreich die Auswahl zwischen dem Normalbetrieb (Automatikbetrieb) und dem Handbetrieb zu haben, um das System besser Testen und kalibrieren zu können.
Abhängigkeit	 Abarbeitung der Schritte des Automatikbetriebs Laboranlage befindet sich in Bereitschaft für Eingaben im Handmodus
Identifikationsnummer	1.1.2

Tabelle 2: Funktionale Anforderung - Wahlschalter Betriebsmodus

Beschreibung	Das Positioniersystem soll zwei bewegbare Achsen besitzen, die sich getrennt Steuerbar horizontal und vertikal auf ihrem jeweiligen Profil bewegen können.
Abnahmekriterium	Die beiden Achsen bewegen sich bei Tastereingaben im Handmodus und vollautomatisch im Automatikmodus.
Quelle	Lehrpersonal siehe Stakeholderliste
Begründung	Um Positionieraufgaben durchführen zu können, müssen Achsen zum einsatz kommen, auf denen bzw. durch welche Bewegungen durchgeführt werden können.
Abhängigkeit	 Fahren von Trajektorievorgaben Joggen der beiden Achsen durch Nutzereingaben
Identifikationsnummer	1.1.3

Tabelle 3: Funktionale Anforderung - Positionieren auf zwei Achsen

Beschreibung	Bewegungen auf den zwei Achsen sollen gebremst werden können.
Abnahmekriterium	Sowohl ein Erreichen von Endlagepositionen, sowie Start- und Zielpositionen, die Nichtbetätigung von Bewegungstastern im Handmodus und das Auslösen des Not-Halts führen zu einem Bremsen und abschließendem Halten der Achsbewegungen.
Quelle	Lehrpersonal siehe Stakeholderliste
Begründung	Bewegungen entlang der Achsen müssen auch wieder gestoppt werden können, um Beschädigungen der Anlage oder Verletzungen von Menschen zu verhindern.
Abhängigkeit	 Verhindern des Runterfallens des beweglichen Schlittens auf der vertikalen Achse (Z-Achse) Einhalten der Sicherheit für Leib und Leben
Identifikationsnummer	1.1.4

Tabelle 4: Funktionale Anforderung - Bremsen der Achsbewegungen

Beschreibung	Die Geschwindigkeit, mit der die Positioniereinheit Bewegungen durchführt, soll reguliert werden können.
Abnahmekriterium	Das Einstellen von Geschwindigkeiten über ein Potentiometer an der Schaltschrankfront führt zur Änderung der Fahrgeschwindigkeit der Achsen.
Quelle	Prozessentwickler siehe Stakeholderliste
Begründung	Das Regulieren der Fahrgeschwindigkeit erleichtert auf der einen Seite die Identifikation von Fehlern (langsames Fahren), auf der anderen Seite kann die Dauer von Positionieraufgaben verringert werden (schnelleres Fahren).
Abhängigkeit	 Positionieren auf Zwei Achsen Verringerung der Beschleunigung und Fahrgeschwindigkeit in Endlagennähe
Identifikationsnummer	1.1.5

Tabelle 5: Funktionale Anforderung - Regulierung der Fahrgeschwindigkeit

Beschreibung	Durch einen Schwenkbaren Greifarm soll es möglich sein zu transportierende Objekte aufzunehmen und wieder abzulegen.
Abnahmekriterium	Transportobjekt befindet sich in Obhut des Systems und kann bewegt werden.
Quelle	Prozessentwickler siehe Stakeholderliste
Begründung	Das Ausführen von Positionieraufgaben wird erst dann ein praxisnahes Beispiel, wenn auch typische Anwendungen aus der Praxis durchgeführt werden (z. B. Transportaufgaben in Hochregallagern).
Abhängigkeit	• Bestückung und Abtransport von Auf- und Ablag- epositionen mit Transportobjekten (Erweiterung - z. B. Förderbänder)
Identifikationsnummer	1.1.6

Tabelle 6: Funktionale Anforderung - Greifen von Transportobjekten

Beschreibung	Über Tastereingaben soll es möglich sein die beiden Achsen im Handmodus zu bewegen (joggen) und die Greifaktionen manuell zu auszulösen (triggern).
Abnahmekriterium	Tasteingaben auf dem Vierwegeschalter führen im Handbetrieb zu Achsbewegungen. Durch die Betätigung der vorgesehenen Taster schwenkt der Greifarm um 180° werden und der Greifer wird geöffnet bzw. geschlossen.
Quelle	Lehrpersonal siehe Stakeholderliste
Begründung	Es sind Taster an unter anderem der Schaltschrankfront erforderlich, um das mehrachsige Positioniersystem im Handmodus nutzen zu können.
Abhängigkeit	
Identifikationsnummer	1.1.7

Tabelle 7: Funktionale Anforderung - Tastersteuerung im Handmodus

0.1.2 Nicht-funktionale Anforderungen

Dieses Unterkapitel behandelt die Modellierung der nicht-funktionalen Anforderungen in der Anforderungsanalyse. Nicht-funktionale Anforderungen sind Forderungen an die Qualität in welcher Funktionalitäten zu erbringen sind. Auch Randbedingungen für das System bzw. den Prozess werden mit bei den nicht-funktionalen Anforderungen berücksichtigt. Die Qualitätsanforderungen gliedern sich in Zeitanforderungen, Sicherheit für Leib und Leben und Zuverlässigkeit, sowie Verfügbarkeit. Bei Zeitanforderungen handelt es sich meist um Reaktionszeiten eines Systems. Dabei wird unterschieden zwischen harten und weichen Zeitanforderungen. Der Verstoß gegen harte Zeitanforderungen kann mitunter sehr gravierend sein, wohingegen das Nichteinhalten von weichen Zeitanforderungen meist nur als Störfaktor gesehen werden kann. Zeitanforderungen finden sich im Entwicklungsprozess überwiegend in der Beschreibung von Systemprozessen oder in Aktivitäten des Zustandsdiagrammes wieder.

Anforderungen bezüglich Zuverlässigkeit und Verfügbarkeit treten in der Modellierung in den Knoten des Verteilungsdiagrammes oder fließen in die Systembeschreibung ein. In die Klasse der Anforderungen bezüglich Sicherheit für Leib und Leben fällt die Risikovermeidung von Schäden an Menschen, Produkten und die Umwelt.

Abschließend werden die Randbedingungen das System betreffend als Sonderklasse der

nicht-funktionalen Anforderungen betrachtet. Man unterteilt diese in zwei Kategorien. Es wird unterschieden zwischen Bedingungen, die sich auf das System und Bedingungen, die sich auf den Entwicklungsprozess auswirken.

Erstere sind Technologievorgaben, physikalische Anforderungen, Umweltanforderungen und Vorgaben für die Einbettung und Verteilung des Systems. Sowohl Technologievorgaben, als auch Vorgaben an die Einbettung und Verteilung fließen direkt in die Modellierung ein. So weren bspw. Nachbarsysteme im Kontextdiagramm und Forderungen nach bestimmter Hardware im Verteilungsdiagramm aufgeführt. Zu den physikalischen Anforderungen zählen z. B. Aussagen über das Gehäuse bzw. die Räumlichkeit, in die das Produkt am ende der Entwicklung passen muss. Unter Umweltanforderungen versteht man bspw. klimatische Bedingungen, unter denen das System arbeiten muss.

Randbedingungen für den (Entwicklungs-) Prozess basieren auf Vorschriften und Traditionen. Dabei meinen Traditionen Vorschriften, die sich aus bereits früheren Entwicklungen einer Firma ergeben haben.

Zuletzt soll an dieser Stelle noch eine entscheidende Problematik, die durch die Modellierung nicht-funktionaler Anforderungen auftritt, erwähnung finden. Es besteht die Möglichkeit, dass nicht- funktionale Anforderungen entgegensätzliche Dinge verlangen. Um diese Problematik zu beseitigen oder zumindest zu minimieren, hat sich in der Praxis die Vergabe von Prioritäten bewährt. So kann in Tabellenform eine Prioritätsreihenfolge erstellt werden. Diese hilft dem Entwickler zu entscheiden, wie er sich beim Auftreten eines Konfliktes verhält.

Da nun auch die theoretische Grundlage zu den nicht-funktionalen Anforderungen ausreichend beleuchtet ist, folgt die tabellarische Auflistung aller nicht-funktionalen Anforderungen des mehrachsigen Positioniersystems. Dazu wird die selbe Form wie auch schon bei den funktionalen Anforderungen genutzt. Wie auch schon im vorherigen Unterkapitel angewendet, werden die Anforderungen den Hardwareprozess betreffend nur Beispielhaft erwähnt.

Beschreibung	Die Gefahr, dass ein Anwender oder eine sich in Anlagennähe befindene Person durch die Bewegung der Positioniereinheit verletzt wird, soll bestmöglich minimiert werden. Dazu sind Not-Halt Taster vorgesehen, die durch den Anwender betätigt werden können. Zusätzlich ist ein Lichtvorhang verbaut, der die Anlage stoppen soll, falls eine Person durch diesen in den Gefahrenbereich eindringt.
Abnahmekriterium	Durch die Simulation einer Notsituation in Form des Auslösens eines Not-Halt Tasters oder eines Lichtvorhangs muss die Laboranlage unverzüglich Bremsen und in einen haltenden Zustand übergehen, bis die Gefahrensituation behoben ist.
Quelle	Anwender siehe Stakeholderliste
Begründung	Sicherheit für den Anwender und sich in der Nähe der Anlage befindende Personen.
Abhängigkeit	Erfordert einen Eingriff in den Funktionsablauf des Positioniersystems.
Identifikationsnummer	2.1.1

Tabelle 8: Qualitätsanforderung zu Sicherheit für Leib und Leben