

Преподаватель: Градов В. М.

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>
Лабораторная работа № 1
Дисциплина: Моделирование
Тема: Программная реализация приближенного метода и численных
алгоритмов первого и второго порядков точности при решении задачи
Коши для ОДУ
Студент: Платонова О. С.
Группа: ИУ7-65Б
Оценка(баллы)

Цель работы: получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге-Кутта).

Входные данные:

ОДУ, не имеющие аналитического решения

$$u^{I}(x) = x^2 + u^2,$$

$$u(0) = 0$$

Выходные данные:

Таблица, содержащая значения аргумента с заданным шагом в интервале $[0, x_{max}]$ и результат расчета функции u(x) в приближениях Пикара (от 1-го до 4-го), а также численными методами.

Метод Пикара.

Метод приближенных решений. Идея метода сводится к процедуре последовательных приближений для решения интегрального уравнения, к которому приводится исходное дифференциальное уравнение.

Так, если поставлена задача Коши

$$u^{I}(x) = \varphi(x, u(x)),$$

$$x_{0} \leq x \leq x_{1},$$

$$u(x_{0}) = u_{0},$$
(1)

то процедура приближений метода Пикара будет выполняться согласно следующей схеме:

$$y_s(x) = u_0 + \int_{x_0}^{x} \varphi(t, y_{s-1}(t)) dt$$
 (2)

где $y_0(t) = u_0$, i – номер итерации.

Для $u^I(x) = x^2 + u^2$, u(0) = 0 приближения будет выглядеть следующим образом:

$$y^{(1)} = \frac{x^3}{3}$$

$$y^{(2)} = \frac{x^3}{3} + \frac{x^7}{63}$$

$$y^{(3)} = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$

$$y^{(4)} = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{13x^{15}}{218295} + \frac{82x^{19}}{37328445} + \frac{662x^{23}}{10438212015} + \frac{4x^{27}}{3341878155} + \frac{x^{31}}{109876902975}$$

Метод Эйлера.

Простейший численный метод для решения систем ОДУ. Является методом первого порядка точности.

Приближенное решение рассчитывается по следующей формуле:

$$y_{n+1} = y_n + h f(x_n, y_n), \epsilon \partial e$$
 (3)
 $f(x_n, y_n) = x^2 + u^2.$

Метод Рунге-Кутта 2-го порядка точности.

Решение дифференциального уравнения, используя формулу Тейлора, можно представить в следующем виде:

$$u_{n+1} = u_n + h_n u^I + \frac{1}{2} h_n^2 u_n^{II} + \dots$$
 (4)

В результате подстановок и преобразований, итоговая формула примет вид:

$$y_{n+1} = y_n + h\{(1-\alpha)\varphi(x_n, y_n) + \alpha\varphi[x_n + \frac{1}{2}h_n, y_n + \frac{h_n}{2\alpha}\varphi^I(x_n, y_n)]\}$$
 (5)

Параметры α принимают равными $\frac{1}{2}$ или 1.

Листинг

Пикар

```
double y1(const double x)
  return (pow(x, 3) / 3);
}
double y2(const double x)
{
  return (y1(x) + pow(x, 7) / 63);
}
double y3(const double x)
{
  return (y2(x) + 2 * pow(x, 11) / 2079 + pow(x, 15) / 59535);
}
double y4(const double x)
{
  return (y2(x) + 2 * pow(x, 11) / 2079 + 13 * pow(x, 15) / 218295 + 82 * pow(x, 19) / 37328445
       + 662 * pow(x, 23) / 10438212015 + 4 * pow(x, 27) / 3341878155 + pow(x, 31) / 109876902975);
}
void Picard(const int n, const double *x, yPicard yp)
{
  for (int i = 0; i < n; i++) {
    yp.y1[i] = y1(x[i]);
    yp.y2[i] = y2(x[i]);
    yp.y3[i] = y3(x[i]);
    yp.y4[i] = y4(x[i]);
  }
}
Эйлер
double f(const double x, const double y)
{
  return (x * x + y * y);
}
void Euler(const int n, const double h, double *x, double *y)
{
  y[0] = 0;
  for (int i = 0; i < n - 1; i++) {
    y[i + 1] = y[i] + h * f(x[i], y[i]);
  }
}
```

Рунге-Кутта

```
void RungeKutta(const int n, const double h, double *x, double *y)
{
   y[0] = 0;

   double alpha = 0.5;
   double k1 = 0, k2 = 0;

   for (int i = 0; i < n - 1; i++) {
       k1 = f(x[i], y[i]);
       k2 = f(x[i] + h / (2 * alpha), y[i] + h / (2 * alpha) * k1);

   y[i + 1] = y[i] + h * ((1 - alpha) * k1 + alpha * k2);
   }
}</pre>
```

Результат

На рисунке 1 приведены результаты работы каждого метода.

Шаг h = 10^{-6} , x принимает значения от 0 до 2.5. Значение α в методе Рунге-Кутта равно 0.5.

X	Пикар 1	Пикар 2	Пикар 3	Пикар 4	Эйлер	Рунге-Кутта
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1000	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
0.1500	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011
0.2000	0.0027	0.0027	0.0027	0.0027	0.0027	0.0027
0.2500	0.0052	0.0052	0.0052	0.0052	0.0052	0.0052
0.3000	0.0090	0.0090	0.0090	0.0090	0.0090	0.0090
0.3500	0.0143	0.0143	0.0143	0.0143	0.0143	0.0143
0.4000	0.0213	0.0214	0.0214	0.0214	0.0214	0.0214
0.4500	0.0304	0.0304	0.0304	0.0304	0.0304	0.0304
0.5000	0.0417	0.0418	0.0418	0.0418	0.0418	0.0418
0.5500	0.0555	0.0557	0.0557	0.0557	0.0557	0.0557
0.6000	0.0720	0.0724	0.0724	0.0724	0.0724	0.0724
0.6500	0.0915	0.0923	0.0923	0.0923	0.0923	0.0923
0.7000	0.1143	0.1156	0.1157	0.1157	0.1157	0.1157
0.7500	0.1406	0.1427	0.1428	0.1428	0.1428	0.1428
0.8000	0.1707	0.1740	0.1741	0.1741	0.1741	0.1741
0.8500	0.2047	0.2098	0.2100	0.2100	0.2100	0.2100
0.9000	0.2430	0.2506	0.2509	0.2509	0.2509	0.2509
0.9500	0.2858	0.2969	0.2974	0.2975	0.2975	0.2975
1.0000	0.3333	0.3492	0.3502	0.3502	0.3502	0.3502
1.0500	0.3859	0.4082	0.4099	0.4100	0.4100	0.4100
1.1000	0.4437	0.4746	0.4774	0.4776	0.4776	0.4776
1.1500	0.5070	0.5492	0.5538	0.5542	0.5542	0.5542
1.2000	0.5760	0.6329	0.6403	0.6410	0.6411	0.6411
1.2500	0.6510	0.7267	0.7384	0.7398	0.7399	0.7399
1.3000	0.7323	0.8319	0.8500	0.8526	0.8529	0.8529
1.3500	0.8201	0.9498	0.9775	0.9820	0.9827	0.9827
1.4000	0.9147	1.0820	1.1236	1.1317	1.1331	1.1331
1.4500	1.0162	1.2301	1.2919	1.3060	1.3090	1.3090
1.5000	1.1250	1.3962	1.4868	1.5111	1.5174	1.5174
1.5500	1.2413	1.5825	1.7138	1.7552	1.7683	1.7683
1.6000	1.3653	1.7914	1.9800	2.0495	2.0764	2.0764
1.6500	1.4974	2.0259	2.2940	2.4093	2.4651	2.4651
1.7000	1.6377	2.2890	2.6668	2.8565	2.9728	2.9728
1.7500	1.7865	2.5843	3.1121	3.4216	3.6683	3.6683
1.8000	1.9440	2.9158	3.6474	4.1486	4.6881	4.6881
1.8500	2.1105	3.2878	4.2944	5.1012	6.3464	6.3465
1.9000	2.2863	3.7052	5.0808	6.3722	9.5668	9.5670
1.9500	2.4716	4.1734	6.0412	8.0986	18.7462	18.7473
2.0000	2.6667	4.6984	7.2190	10.4839	317.145	
2.0500	2.8717	5.2868	8.6690	13.8330	inf	
2.1000	3.0870	5.9459	10.4598	18.6053	inf	inf
2.1500	3.3128	6.6836	12.6773	25.4973	inf	inf
2.2000	3.5493	7.5086	15.4289	35.5701	inf	inf
2.2500	3.7969	8.4307	18.8490	50.4473	inf	inf
2.3000	4.0557	9.4602	23.1048	72.6205	inf	inf
2.3500	4.3260	10.6085	28.4045	105.923		inf
2.4000	4.6080	11.8881	35.0067	156.267		inf
2.4500	4.9020	13.3125	43.2317 53.4756	232.771		inf
2.3000	5.2083	14.8965	7 33.4730	349.51	53 inf	inf

Рисунок 1. Результат работы программы.

Ответы на вопросы.

1. Укажите интервалы значений аргумента, в которых можно считать решением

заданного уравнения каждое из первых 4-х приближений Пикара. Точность

результата оценивать до второй цифры после запятой. Объяснить свой ответ.

Пикар 1-го приближения: [0, 0.65]

Пикар 2-го приближения: [0, 1.05]

Пикар 3-го приближения: [0, 1.35]

Для оценки интервала, где метод Пикара 4-го приближения можно считать

решением, необходимы приближения более высокого, 5-го порядка.

Интервал, на котором решения і и (і + 1) приближения совпадают (с точностью

до второго знака после запятой) является интервалом, где будет лежать решение

і-го приближения.

2. Пояснить, каким образом можно доказать правильность полученного

результата при фиксированном значении аргумента в численных методах.

Поскольку точность результата в численных методах зависит от шага h, следует

вычислять значения с малым шагом (h->0). Как только будет достигнут шаг, при

котором изменения результата незначительны, полученный результат следует

считать верным.

3. Каково значение функции при x = 2, т.е. привести значение u(2).

317