Exploratory Data Analysis & Visualization Spatial Data / Maps

Ben Winjum

Best statistical graphic ever!

Best statistical graphic ever! (Is it?)

Napoleon's Russian Campaign

Values + Location

Maps heat map

https://www.nytimes.com/2018/04/05/learning/whats-going-on-in-this-graph-april-10-2018.html

John Snow

Dr. Snow was an intern physician when a cholera epidemic broke out in London in the 1830's.

The germ theory of disease did not exist yet.

Prevailing opinion: cholera was somehow transmitted by bad air, or a "miasma," that emanated from the sick and from garbage.

John Snow

Dr. Snow was an intern physician when a cholera epidemic broke out in London in the 1830's.

The germ theory of disease did not exist yet.

Prevailing opinion: cholera was somehow transmitted by bad air, or a "miasma," that emanated from the sick and from garbage.

Physicians of the time gave treatments like:

- Arsenic and strychnine
- Tobacco enemas
- Wrap them in flannel soaked in turpentine
- Bleed them with leeches
- Blister them with nitric acid
- Fire cannons every hour to disperse the bad air!

Spatial Analysis

- Not just making maps, but adding values
- Geospatial discovery of knowledge
 - Where are the measurements taken?
 - Hot spots, clusters, patterns
 - Are there interactions with neighboring places?
 - Are there spatial correlations? Is there evidence of disparities?
- Geospatial inference
 - If we want to improve sales, where should we focus our attention?
 - If we want to address inequities in urban environments, where should we focus our attention?

Anscombe's quartet Ш I۷ Ш 10 Х Х y_2 7 8.04 10.0 10.0 9.14 10.0 7.46 8.0 6.58 6.95 8.0 8.14 8.0 6.77 8.0 5.76 8.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 13.0 10 12 14 16 10 12 14 16 8.81 9.0 9.0 8.77 9.0 7.11 8.0 8.84 X_1 \mathbf{x}_2 8.33 11.0 11.0 9.26 11.0 7.81 8.0 8.47 14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04 6.0 6.13 6.0 7.24 6.0 6.08 8.0 5.25 10 10 4.26 4.0 5.39 4.0 4.0 3.10 19.0 12.50 У3 λ_4 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89 10 12 14 16 10 12 14 16 18 x_3 X_4

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Exploratory Spatial Analysis

- Spatial data, just like general data, can be discrete vs continuous and numerical vs categorical
- And like with histograms, your level of detail matters
- As does the way that you divide space!

Exploratory Spatial Analysis

- Discovering interesting spatial patterns
- Treats location, distance, and spatial interactions as essential
- We do this with specific data structures
 - Geographic features are abstracted into points, lines, and polygons
 - Special software has been written to deal with these things
 - Geographic Information Systems, Spatial Databases
- Point-wise data
 - City, lot address, arrest locations, profitability of McDonald's stores, home sales
- Surface data
 - Air pollution, cellular data service strength
- Lattice data
 - Measured within polygons, like population quantified by census tract

Map

- A map visualizes data with a spatial distribution
- Map design:
 - Need a model for the Earth a coordinate system
 - Latitude and longitude
 - Scale
 - Length on map vs length in reality
 - Projection -> go from 3D to 2D
 - You can't keep everything
 - Angles, distances, areas, direction
 - What you want to analyze informs which quantity you preserve
 - Colors and symbols
 - Beware the constraints of perception!

Time to make some maps!