MODI - projekt 2, zadanie 11

Tomasz Indeka

1 Identyfikacja modeli statycznych

1.1 Dane statyczne

Dane pobrane z pliku w pierwszej kolumnie zawierały sygnał sterujący procesem, a w drugiej sygnał wyjściowy procesu. Poszczególne próbki zostały zapisane w kolejnych wierszach danych pliku. Dane te do dalszej analizy zostały podzielone na:

- dane statyczne pełny przekrój danych z pliku,
- dane uczące dane użyte do uczenia się charakterystyki procesu
- dane weryfikujące dane użyte do weryfikacji dokładności i użyteczności charakterystyki procesu

Podział na dane uczące i weryfikujące nastąpił na podstawie rozdzielenia próbek naprzemiennie pomiędzy te dwa zbiory. Dane podzielone na odpowiednie grupy prezentują się następująco:

Jak można zauważyć wybór co drugiej próbki jest w naszym przypadku całkiem dobry, ale mimo wszystko są fragmenty, na których widać znaczne różnice w gęstości wartości sterowania, np u=0 lub u=0.25. Najlepszy możliwy podział dzieliłby dane tak aby gęstości sterowań były

równomiernie rozłożone pomiędzy danymi uczącymi i weryfikującymi. Taki podział wymaga jednak bardziej złożonych algorytmów, dlatego też zostałem przy obecnym, który także jest dobry.

1.2 Modele statyczne

Postać ogólna modeli statycznych prezentuje się następująco:

$$\hat{y}(u) = a_0 + \sum_{i=1}^{N} a_i u^i$$

Warto przy okazji zauważyć, że model statyczny liniowy jest szczególnym przypadkiem modelu nieliniowego, a jego równanie przyjmuje postać:

$$\hat{y}(u) = a_0 + a_1 u$$

gdzie: N to stopień wielomianu aproksymującego.

Do wyznaczenia modeli statycznych posłużyłem się metodą najmniejszych kwadratów, której wzory prezentują się następująco:

$$M = \begin{bmatrix} 1 & u_1 & u_1^2 & \dots & u_1^N \\ 1 & u_2 & u_2^2 & \dots & u_2^N \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & u_{S-1} & u_{S-1}^2 & \dots & u_{S-1}^N \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{S-1} \end{bmatrix}, w = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_N \end{bmatrix},$$

$$Y = Mw$$

$$w = M \setminus Y$$

gdzie S jest równe ilości posiadanych próbek.

Obliczone w ten sposób przybliżenia kolejnymi stopniami wielomianu prezentują się następująco:

1.3 Błędy modeli

Błędy zostały policzone wykorzystując funkcję minimalizacji metody najmniejszych kwadratów:

$$E = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2 = ||\hat{Y} - Y||^2 = ||Mw - Y||^2$$

Powyższe równanie po wykorzystaniu kilku własności macierzy upraszcza się do równania:

$$E = (Mw - Y)^T (Mw - Y)$$

Błędy obliczone dla modeli statycznych wynosiły:

Stopień wielomianu	Błąd zbioru uczącego	Błąd zbioru weryfikującego
1	1024.4957	971.7558
2	323.6321	361.2063
3	23.3423	23.8581
4	23.2114	23.9906
5	22.5237	24.8852
6	21.5334	25.7430
7	21.5191	25.7094
8	21.4654	25.9333
9	21.1860	26.0411
10	20.8285	27.0203

Możemy zauważyć, że dla danych uczących błąd cały czas maleje wraz ze wzrostem stopnia wielomianu. Na początku znacznie, a następnie coraz wolniej. Dla danych weryfikujących do 3 stopnia wielomianu błąd maleje, a dla stopni wyższych zaczyna ponownie rosnąć, wyjątkiem jest stopień 7, gdzie błąd jest trochę niższy niż przy stopniu 6. Z tego powodu można jednoznacznie stwierdzić, że najlepszym przybliżeniem procesu jest wielomian 3 stopnia.

2 Identyfikacja modeli dynamicznych

2.1 Dane dynamiczne

Dane pobrane z plików w pierwszej kolumnie reprezentują sygnał sterujący procesem, a w drugiej sygnał wyjściowy. Poszczególne próbki zostały zapisane w kolejnych wierszach danych pliku. Dane prezentowały się następująco:

2.2 Modele dynamiczne

Modele dynamiczne również wyznaczyłem metodą najmniejszych kwadratów, posiłkując się tymi wzorami:

• Dla modelu bez rekurencji

$$\hat{y}(k) = \sum_{i=1}^{N} b_i u(k-i) + \sum_{i=1}^{N} a_i y(k-i)$$

• Dla modelu z rekurencją

$$\hat{y}(k) = \sum_{i=1}^{N} b_i u(k-i) + \sum_{i=1}^{N} a_i \hat{y}(k-i)$$

Do obliczeń użyłem wzorów delikatnie zmodyfikowanych od tych przy modelach statycznych:

$$M = \begin{bmatrix} u(N) & u(N-1) & \dots & u(1) & y(N) & y(N-1) & \dots & y(1) \\ u(N+1) & u(N) & \dots & u(2) & y(N+1) & y(N) & \dots & y(2) \\ \vdots & & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ u(S-1) & u(S-2) & \dots & u(S-N) & y(S-1) & y(S-2) & \dots & y(S-N) \end{bmatrix}, Y = \begin{bmatrix} y(N+1) \\ y(N+2) \\ \vdots \\ y(S) \end{bmatrix}, w = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \\ a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix},$$

$$Y = Mw$$
$$w = M \setminus Y$$

gdzie S jest równe ilości posiadanych próbek. Obliczone w ten sposób modele dynamiczne prezentują się następująco:

2.3 Błędy modeli dynamicznych

Błędy modeli dynamicznych zostały policzone identycznie jak w przypadku powyżej, korzystając z zależności:

$$E = \sum_{i=1}^{S} (\hat{y}_i - y_i)^2$$

Wyniki natomiast prezentowały się następująco:

	Bez rekurencji		Z rekurencją	
Stopień modelu	Błąd zbioru	Błąd zbioru	Błąd zbioru	Błąd zbioru
	uczącego	weryfikującego	uczącego	weryfikującego
1	238.6039	494.2916	68495	184180
2	235.9913	487.0843	67633	184234
3	217.5149	453.4271	60750	183998
4	189.1247	404.9478	51245	183796
5	168.3208	360.4068	42357	183694
6	159.2151	331.9554	37209	183659
7	149.8755	303.4480	33563	183647
8	144.5343	278.1275	32617	183641
9	142.9221	273.3430	32437	183651
10	139.6671	266.452	32277	183674

Na początku pragnę zaznaczyć, że nie jestem pewien poprawności obliczeń błędów, szczególnie tych rekurencyjnych, ponieważ są między nimi duże różnice. W tabeli możemy zauważyć, że zarówno dla danych uczących jak i weryfikujących błąd cały czas maleje wraz ze wzrostem stopnia modelu. Patrząc na te dane nie jestem w stanie wybrać najlepszego modelu, ponieważ modele cały czas się poprawiają i potrzebne jest więcej stopni swobody. Jeśli jednak stosować się do założenia zadania i ograniczyć stopień do 3 to ten stopień właśnie zostałby przeze mnie wybrany.