Exercice 1 Soit n > 0 un entier, et $r \leq n$. On note V_r le sous-espace de $M_n(\mathbb{R})$ formé des matrices de rang exactement r.

- 1. Montrer que l'ensemble des matrices de rang $\geq r$ est un ouvert de $M_n(\mathbb{R})$.
- 2. Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_n(\mathbb{R})$, avec $A \in GL_r(\mathbb{R})$. Montrer que M est de rang r si et seulement si on a $D = CA^{-1}B$.
- 3. En déduire que V_r est une sous-variété \mathcal{C}^{∞} de $\mathrm{M}_n(\mathbb{R})$ dont on donnera la dimension.
- 4. Montrer que si 0 < r < n l'ensemble des matrices de rang $\leq r$ n'est pas une sous-variété.

Exercice 2 Soit E et F deux evn de dimension finie, et $f: E \to F$ une fonction \mathcal{C}^k . Montrer que $\Gamma = \{(x, f(x)), x \in E\}$ est une sous-variété \mathcal{C}^k de $E \times F$.

Exercice 3 Montrer que les projecteurs de $M_2(\mathbb{R})$ de rang exactement 1 forment une sous-variété \mathcal{C}^{∞} de $M_2(\mathbb{R})$ dont on donnera la dimension.

Exercice 4 Soit E et F deux evn de dimension finie, U un ouvert de E, f une fonction \mathcal{C}^k de U dans F. On suppose que f est une immersion en tout point, que f est injective et que f est propre (c'est-à-dire que l'image réciproque d'un compact est compact). Montrer que f(U) est une sous-variété \mathcal{C}^k de F.

Le résultat reste-t-il vrai si on ne suppose pas f propre?

Exercice 5 Soit E, F, G trois evn de dimension finie, U un ouvert de E et V un ouvert de F. Soit $f: U \times V \to G$ une application C^k , et soit $(x_0, y_0) \in U \times V$ tel que $f(x_0, y_0) = 0$ et $d_F f_{(x_0, y_0)}$ est injective. Montrer que les conclusions du théorème des fonctions implicites sont vraies pour f.

Indication: on pourra montrer qu'il existe un sous-espace vectoriel \tilde{G} de G, une fonction C^k $\tilde{f}: U' \times V' \to \tilde{G}$, où U' est un voisinage de x_0 et V' un voisinage de y_0 , telle que f(x,y) = 0 si et seulement si $\tilde{f}(x,y) = 0$ pour les $(x,y) \in U' \times V'$, et telle que $d_F \tilde{f}_{(x_0,y_0)}$ est inversible.

Exercice 6 Soit U le plan privé de l'origine et

$$f(x,y) = (x^2 - y^2, 2xy)$$

Montrer que f est un difféomorphisme local au voisinage de tout point de U, mais n'est pas un difféomorphisme global.

Expliciter des ouverts U et W, "aussi grands que possible", tels que $f:U\to W$ soit un difféomorphisme global.

Exercice 7 Soit la fonction définie sur $\mathbb R$ suivante :

$$f(x) = x + x^2 \sin(\frac{\pi}{x})$$
 si $x \neq 0, f(0) = 0$.

Montrer que f est dérivable sur \mathbb{R} , que $f'(0) \neq 0$, mais que f n'est inversible sur aucun voisinage de 0. Pourquoi le théorème d'inversion locale ne s'applique-t-il pas ici?

Exercice 8 On considère le système d'équations suivant, pour un paramètre réel t:

$$x = \frac{1}{2}\sin(x+y) + t$$
, $y = \frac{1}{2}\cos(x-y) - t - \frac{1}{2}$

aux inconnues x et y.

- (i) Montrer que ce système admet une unique solution (x(t), y(t)) et que ces fonctions de t sont indéfiniment dérivables sur \mathbb{R} .
- (ii) Donner un développement limité à l'ordre deux de x(t) et y(t) au point x = y = 0.
- (iii) Généralisation : Soit $f:(x,\lambda)\mapsto f(x,\lambda)$ une application de classe \mathcal{C}^1 de $\mathbb{R}^n\times\mathbb{R}^p$ dans \mathbb{R}^n . On suppose qu'il existe k tel que, pour tous x,λ

$$||\partial_1 f(x,y)|| \le k < 1.$$

Montrer que l'équation $f(x,\lambda) = x$ admet pour chaque λ une unique solution $x = g(\lambda)$, et que l'application $\lambda \mapsto g(\lambda)$ est de classe \mathcal{C}^1 sur \mathbb{R}^p . Calculer dg_{λ} .