

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : B01D 57/00, 53/32, 53/34 B01D 53/36, B01J 19/08 H05H 1/24, C10G 15/12	(11) International Publication Number : WO 94/03263	(43) International Publication Date : 17 February 1994 (17.02.94)
(21) International Application Number : PCT/GB93/01641	(22) International Filing Date: 4 August 1993 (04.08.93)	(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(23) Priority data: 9216599.1	(30) Priority date: 4 August 1992 (04.08.92)	Published <i>With international search report. With amended claims.</i>
(71) Applicant (<i>for all designated States except US</i>): PUBLIC HEALTH LABORATORY SERVICE BOARD (GB) GB; 6 Colindale Avenue, London NW9 SEQ (GB).	(72) Inventor; and (73) Inventor/Applicant (<i>for US only</i>): CLARKE, David, John ICB/GB; Fleetwood, Comedon Road, Porton, Salisbury, SP4 0JT (GB). HAYAT, Umar [GB/GB]; 1 Springfield Road, Birley, Huddersfield HD2 2AY (GB).	(74) Agent: CROPP, John, Anthony, David; Mathys & Squire, 10 Fleet Street, London EC4Y 1AY (GB).
(54) Title: IMPROVEMENTS IN THE CONVERSION OF CHEMICAL MOIETIES		(57) Abstract
A process for the conversion of a chemical moiety, which may be gaseous, liquid or a solid in fluidised form, in which the chemical moiety is reacted with a plasma or with a reagent generated by the interaction of plasma with another component, which may be a solid.		

ISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 94/03263
(11) International Publication Number:
(43) International Publication Date:

17 February 1994 (17.02.94)
B93/01641 (81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
3 (04.08.93)

) GB Published
With international search report.
With amended claims.

PUBLIC
ARD (GB/
Q (GB).

David, John
m, Salisbu-
1 Sprink-
GB).

& Squire,

ION OF CHEMICAL MOIETIES

icy, which may be gaseous, liquid or a solid in fluidised form, in which the agent generated by the interaction of plasma with another component, which

FOR THE PURPOSES OF INFORMATION ONLY
Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	France	MR	Mauritania
AU	Gabon	MW	Malawi
BB	United Kingdom	NE	Niger
BE	GB	NL	Nicaragua
BP	Guinea	NO	Norway
Burkina Faso	Greece	NZ	New Zealand
BG	GR	PL	Poland
Bulgaria	Hungary	PT	Portugal
BI	Ireland	RO	Romania
Bahrain	IP	RU	Russian Federation
BR	Italy	SD	Sudan
BY	Japan	SE	Sweden
Bolivia	AP	SI	Slovenia
CA	Democratic People's Republic	SK	Slovak Republic
CP	of Korea	SI	Senegal
CG	Kazakhstan	TD	Chad
Congo	VZ	TC	Togo
CH	Liechtenstein	UA	Ukraine
Switzerland	Sh. Lanka	US	United States of America
CI	Luxembourg	UZ	Uzbekistan
Cl	Cameroon	VN	Viet Nam
CF	Chile		
CM	CS		
CO	Czechoslovakia		
CR	Czech Republic		
CU	Denmark		
CV	DE		
CI	DK		
CI	DM		
CI	ES		
CI	FI		

- 1 -

IMPROVEMENTS IN THE CONVERSION OF CHEMICAL MOIETIES

This invention relates to improvements in or relating to processes for converting fluidised chemical moieties.

In general, reactions need energy to initiate the reaction. Where this activation energy is high, the reaction is commonly carried out at high temperature and/or pressure. We have now found a new method of supplying the energy which enables reactions to be carried out at lower pressures, e.g. atmospheric pressure or sub-atmospheric pressure and/or lower temperatures. The reactions therefore require less energy and are safer. The ability to carry out the reactions at lower temperatures and pressures also means that cheaper materials and simpler methods of construction can be used in the construction of the reaction vessels.

Alternatively improved results may be obtained at the higher temperature and/or pressure.

In accordance with the present invention, there is provided an improvement in processes for the conversion of a chemical moiety characterised in that the chemical moiety is in a fluid phase and said moiety is reacted with a plasma or with a reagent generated by the interaction of the plasma with another component. The process may involve the use of a catalyst.

It is to be understood that the term conversion, as used herein, relates to the conversion of a material to a desired product and not merely to surface modification. It is also to be understood that the invention relates to conversion of one chemical by treatment with a plasma which is not derived from the same molecule, and thus does not relate, for example, to plasma polymerisation.

1. PCT on the front pages of pamphlets publishing international
2. SE OF INFORMATION ONLY

AF	Mauritania
GW	Malawi
HN	Niger
IL	Netherlands
NO	Norway
NZ	New Zealand
PL	Poland
PT	Portugal
RU	Russian Federation
SJ	Sudan
SE	Sweden
SI	Slovenia
SK	Slovak Republic
SN	Senegal
TD	Chad
TG	Togo
UA	Ukraine
US	United States of America
UZ	Uzbekistan
VN	Viet Nam
YU	Yugoslavia
ZA	Zambia

- 1 -
IE CONVERSION OF CHEMICAL MOIETIES
is to improvements in or relating to
ing fluidised chemical moieties.

need energy to initiate the reaction.
n energy is high, the reaction is
at high temperature and/or pressure.
new method of supplying the energy
ions to be carried out at lower
spheric pressure or sub-atmospheric
wer temperatures. The reactions
s energy and are safer. The ability
actions at lower temperatures and
that cheaper materials and simpler
on can be used in the construction of

d results may be obtained at the
1/or pressure.
present invention, there is provided
rocesses for the conversion of a
terised in that the chemical moiety
and said moiety is reacted with a
ent generated by the interaction of
r component. The process may involve

d that the term conversion, as used
he conversion of a material to a
t merely to surface modification. It
tood that the invention relates to
ical by treatment with a plasma which
he same molecule, and thus does not
o plasma polymerisation.

The moiety may be an element or a compound and may be gaseous or liquid or it may be a solid which is in fluidised form. Where the chemical moiety is a liquid, e.g. through which the plasma is bubbled, it may be provided as such or as an aerosol, in which case the carrier gas may be or comprises the gas that is excited to plasma.

In the embodiment where the moiety is reacted with a reagent generated by the action of the plasma on another component, the plasma may be directed, for example, onto the surface of a solid to produce reactive species which react with the moiety. The solid may be a catalyst, for example. Alternatively, the reactive species may be generated from the action of the plasma on a liquid.

Plasma is normally generated from a gas; however, a liquid may also be used. For example, water may be excited to form plasmas of hydrogen and oxygen.

Any suitable means may be employed for generating the plasma. For example, it may be generated by DC glow discharge, AC electric field, plasma torch and heat, all of which may be pulsed. The heat may be generated by laser.

Alternating currents for generating the AC plasmas are preferably those having a frequency of 1-10¹²Hz, more preferably 10³-10⁹Hz. It will be understood, however, that in some countries the frequencies that may be used are limited, e.g. because of the risk of interference with radio transmissions. For example, in Great Britain, a frequency of 13.56MHz is set aside by the Government for such experiments and will not therefore interfere with radio transmissions. Other frequencies can be used, provided that the Government is advised of the intention to use these frequencies.

- 2 -

in element or a compound and may be or it may be a solid which is in the chemical moiety is a liquid, the plasma is bubbled, it may be as an aerosol, in which case the comprises the gas that is excited to where the moiety is reacted with a the action of the plasma on another a may be directed, for example, onto id to produce reactive species which y. The solid may be a catalyst, for vely, the reactive species may be teration of the plasma on a liquid.

enerated from a gas; however, a liquid or example, water may be excited to oxygen and oxygen.

may be employed for generating the e, it may be generated by DC glow c field, plasma torch and heat, all of The heat may be generated by laser.

for generating the AC plasmas are ving a frequency of 1-10³Hz, more It will be understood, however, that e frequencies that may be used are e of the risk of interference with For example, in Great Britain, a is set aside by the Government for will not therefore interfere with Other frequencies can be used, arment is advised of the intention to

Frequencies of less than 1 Hz may also be used. However, such frequencies may give rise to alternating or periodic glow discharge rather than a continuous plasma. Such discharges are advantageous when the power input has to be minimised or to provide additional control of the reaction.

Plasma that is generated by alternating current at radio-frequency is normally generated from gases at sub-atmospheric pressure. Pressures of from 100 to 10⁻³ torr are suitable. However, the pressure used is dependent on the power loadings. Therefore, if a sufficiently high power loading is available, it is possible to excite gas to plasma at a pressure above 100 Torr, if desired.

However, plasmas generated by other means such as arc plasma or plasma torch are often generated at a variety of pressures ranging from sub- to super-atmospheric.

Where the reaction vessel is large, as in an industrial scale reaction, it is preferable to generate the plasma at lower frequencies such as 40kHz so as to reduce the likelihood of the plasma varying in intensity across the vessel. If higher frequencies are used, nodes and antinodes of plasma intensity may be created which may result in power loss and a reduction in the efficiency of the process.

A mixture of more than one plasma may be employed and where more than one gas or liquid is excited to plasma, this may be effected before or after mixing.

While the process of the invention may be applied to conversions generally, and more particularly gaseous reactions, it is particularly useful for converting toxic gases, such as are present in internal combustion engine exhaust gases and gaseous industrial emissions, to non-toxic waste products. Either or both of the toxic gas and

than 1 Hz may also be used. However, give rise to alternating or periodic rather than a continuous plasma. Such aqueous when the power input has to be additional control of the reaction.

generated by alternating current at radio-frequencies from gases at sub-pressure pressures of from 100 to 10⁻¹ torr or, the pressure used is dependent on the frequency, if a sufficiently high therefore, it is possible to excite gas to above 100 torr, if desired.

generated by other means such as arc are often generated at a variety of frequencies as in an industrial vessel is large, as in an industrial preferable to generate the plasma at 40kHz so as to reduce the

intensity may be created which may and a reduction in the efficiency of one plasma may be employed and where frequencies are used, nodes and intensity may be created which may after mixing.

of the invention may be applied to Y, and more particularly gaseous particularly useful for converting toxic present in internal combustion engine non-toxic industrial emissions, to non-Either or both of the toxic gas and

the gas employed to convert it to a non-toxic product may be converted to plasma.

Internal combustion engine exhaust gases and other exhausts from hydrocarbon burning consist mainly of CO, NOx and gaseous hydrocarbons. The NOx can be detoxified by reaction with CO or unburned hydrocarbons to give N₂ and CO₂. Excess carbon monoxide and unburned hydrocarbon fuel are normally oxidised to CO₂ and water.

Examples of the detoxification of industrial gaseous emissions include the denaturing of NOx to water and nitrogen gas using hydrogen plasma, the dehalogenation of organic molecules using hydrogen plasma and the removal of odour from industrial emissions such as the emissions from fat rendering, glue and size manufacturing, tanning, fish meal processing, polyvinyl chloride and polyurethane manufacturing and cutting, food manufacturing, coffee roasting, manure processing and meat processing industries. Some of these detoxification reactions may require the presence of a catalyst.

Exhaust gases and gaseous industrial emissions commonly include fine particulate matter dispersed in the gas. The process of the present invention may be used to convert the particular moieties to more acceptable gaseous products, to soluble products which can then be removed from the gas e.g. by washing, or to liquids which can be separated from the gas. For example, carbonaceous material such as soot can be treated with an oxygen plasma to form carbon dioxide.

Some reactions have such a high energy of activation that they have to be carried out at very high temperature and/or be initiated by free radicals even in the presence of a catalyst. We have now found that if such reactions are carried out in the presence of plasma in accordance with

- 4 -
convert it to a non-toxic product may
ma.

engine exhaust gasses and other exhausts
rning consist mainly of CO, NO_x and
s. The NO_x can be detoxified by
unburned hydrocarbons to give N₂ and
monoxide and unburned hydrocarbon fuel
to CO₂ and water.

toxicification of industrial gaseous
he denaturing of NO_x to water and
ydrogen plasma, the dehalogenation of
ng hydrogen plasma and the removal of
emissions such as the emissions from
and size manufacturing, tanning, fish
oliv vinyl chloride and polyurethane
utting, food manufacturing, coffee
essing and meat processing industries.
ification reactions may require the
it.

aseous industrial emissions commonly
ate matter dispersed in the gas. The
t invention may be used to convert the
o more acceptable gaseous products, to
ch. can then be removed from the gas
o liquids which can be separated from
e, carbonaceous material such as soot
n oxygen plasma to form carbon

this invention, the need for high temperature or free radical initiators may be reduced or obviated. Alternatively, the results achieved using such high temperature and/or free radical initiators may be improved. Reactions which may be carried out in this manner include, but are not limited to, hydrogenations such as of olefins, acetylenes, aldehydes, ketones, acids, anhydrides, esters, nitro compounds, nitriles, oximes, carboxylic aromatic compounds, anilines, phenols and derivatives thereof, reductive alkylation, reductive amination, dehalogenation, hydrogenolysis, isomerization, disproportionation migration, decomposition, carbonylation, decarbonylation, selective oxidation, acetoxylation and gas purification.

Whilst the present invention has particular advantages when used with reactions which have previously required high temperature and/or free radical initiation, it may also be used for reactions which do not have such a high activation energy.

Many reactions are promoted by catalysts that become deactivated with the passage of time. As described in our co-pending application, entitled "Improvements in Processes Involving Catalyst", filed on the same day as the present application, such catalyst may be regenerated by contacting the surface of the catalyst with a gas in the form of a plasma. Processes may therefore be envisaged in which both the reactant mixture for a catalysed gaseous reaction and the catalyst regeneration employ plasma.

In accordance with one aspect of such processes, the catalysed reaction may take place in one time period and the regeneration of the catalyst in a second, subsequent period. Two reactors may be employed in parallel, in one of which the reaction is taking place and in the other of which the regeneration is taking place. When the catalyst in the second reactor has been regenerated, the operations

such a high energy of activation that
ed out at very high temperature and/or
radicals even in the presence of a
now found that if such reactions are
resence of plasma in accordance with

- 5 -

need for high temperature or free radicals may be reduced or obviated. Results achieved using such high radical initiators may be improved. carried out in this manner include, hydrogenations such as of olefins, ketones, acids, anhydrides, esters, niles, oximes, carboxylic aromatic phenols and derivatives thereof, reductive amination, dehalogenation, merization, disproportionation on, carbonylation, decarbonylation, etoxylation and gas purification.

nition has particular advantages which have previously required high radical initiation, it may also be do not have such a high activation promoted by catalysts that become

ssage of time. As described in our entitled "Improvements in Processes Lled on the same day as the present yst may be regenerated by contacting catalyst with a gas in the form of a therefore be envisaged in which both or a catalysed gaseous reaction and on employ plasma.

le aspect of such processes, the take place in one time period and e catalyst in a second, subsequent may be employed in parallel, in one s taking place and in the other of is taking place. When the catalyst as been regenerated, the operations

- 6 -

in the two reactors may be reversed so that the reaction is effected over regenerated catalyst in the second reactor while the catalyst of the first reactor is regenerated. Of course, more than two reactors may be used with appropriate switching arrangements.

In some cases, the gas or gases required to regenerate the catalyst may already be included in, or readily generated from, the gaseous mixture which is to be treated in the presence of the catalyst. In such cases, a self-contained procedure can be envisaged where in one step the gaseous mixture is treated to convert to plasma the gaseous component, or at least one of the gaseous components, employed in the regeneration of the catalyst and in another step the same mixture is treated to convert to plasma at least one of the other gases of the mixture, being a gas involved in the reaction which is promoted by the catalyst. The first step may also involve a reaction to generate a required gas, e.g. the gas which is to be converted to plasma, where it is not already present as such in the reaction mixture.

An example of such a case is the detoxification of exhaust gas emissions from motor vehicles. For example, the catalyst employed in the catalytic converters fitted to motor vehicles for the detoxification of the exhaust gases tend to be deactivated with time due to poisoning by lead and/or phosphorus which are employed in additives for motor fuels.

Lead can be removed from the surface of the catalyst by the action of chlorine plasma which converts it to a soluble salt and phosphorus can be removed by the action of hydrogen plasma; the reactions proceeding according to the following equations:

- 6 -

may be reversed so that the reaction is terminated catalyst in the second reactor : the first reactor is regenerated. Of reactors may be used with appropriate ts.

is or gases required to regenerate the be included in, or readily generated mixture which is to be treated in the catalyst. In such cases, a self-contained usage where in one step the gaseous to convert to plasma the gaseous least one of the gaseous components, iteration of the catalyst and in another e is treated to convert to plasma at er gases of the mixture, being a gas ion which is promoted by the catalyst. also involve a reaction to generate a the gas which is to be converted to not already present as such in the

case is the detoxification of exhaust motor vehicles. For example, the catalytic converters fitted to ie detoxification of the exhaust gases d with time due to poisoning by lead ch are employed in additives for motor rom the surface of the catalyst by the lasma which converts it to a soluble can be removed by the action of reactions proceeding according to the

---> 2Cl (chlorine plasma)

In practice, a stoichiometric mixture of nitrogen and hydrogen is excited to plasma by any means in the presence

- 7 -

Thus, where halogenated compounds, for example CCl_4 and H_2 are present in the exhaust gases or can be generated from a gas or gases present in these gases, it will be appreciated that the regeneration of the catalyst may be achieved using the exhaust gas itself by treating it to convert one or both of the chlorine and hydrogen components thereof to plasma.

Catalytic converter systems for motor vehicles can therefore be designed wherein the catalyst is regenerated on board the vehicle, using the vehicle engine's exhaust emissions.

Where the plasma or plasmas employed for the catalyst regeneration do not interfere with the reaction which is being promoted by the catalyst, it may even be possible to effect the catalysed reaction and the regeneration of the catalyst simultaneously.

An example of an application of the present invention to an important industrial process is in the Haber process for the catalytically promoted synthesis of ammonia from nitrogen and hydrogen. The catalyst is usually trivalent iron. Known methods require that the reaction is carried out at high temperatures and pressures such as 670K and 150 to 350 atm. Where the reaction is carried out according to the present invention, lower temperatures and pressures can be used thus reducing the risk of explosion, the energy required to carry out the synthesis and its cost.

- 7 -

-----> PbCl₂
 -----> 2H (hydrogen plasma)
 -----> PH₃

systems for motor vehicles can interfere with the reaction which is herein the catalyst is regenerated using the vehicle engine's exhaust he chlorine and hydrogen components generation of the catalyst may be just gas itself by treating it to in these gases, it will be

lasmas employed for the catalyst with the reaction which is catalyst, it may even be possible to action and the regeneration of the reaction is carried out according to re the risk of explosion, the energy ie synthesis and its cost.

ometric mixture of nitrogen and plasma by any means in the presence

systems for motor vehicles can interfere with the reaction which is herein the catalyst is regenerated using the vehicle engine's exhaust he chlorine and hydrogen components generation of the catalyst may be just gas itself by treating it to in these gases, it will be

lasmas employed for the catalyst with the reaction which is catalyst, it may even be possible to action and the regeneration of the reaction is carried out according to re the risk of explosion, the energy ie synthesis and its cost.

- 8 -

of the catalyst to produce the ammonia. Alternatively, the admixture of hydrogen and nitrogen is excited prior to being passed over the catalyst. In this case, the catalyst will be located in a separate zone to that in which the gases are excited to plasma. The plasma is then brought into contact with the catalyst at the desired temperature and pressure. If desired, one only of the hydrogen and nitrogen is converted to plasma.

The cleavage of a carbon-carbon double bond by oxidation with ozone followed by hydrolysis to yield carbonyl compounds is an example of an application of the present invention where the moiety to be converted is a liquid. A plasma of oxygen is bubbled through a solution of the unsaturated organic compound in an inert solvent such as methanol, glacial acetic acid, ethyl acetate, hexane or chloroform at a temperature which is preferably in the region of -20°C but which may be at or above ambient temperature. The ozone is produced in the oxygen plasma.

The plasma may convert the chemical moiety to a reactive substance which then takes part in a further reaction. For example, aluminium hydride may be mixed with a catalyst poisoned with sulphur and phosphorus. The mixture is exposed to a plasma of an inert gas to decompose the aluminium hydride to aluminium and hydrogen species. These species then react with the sulphur and phosphorus poisons to form a mixture of products, namely aluminium sulphide, aluminium phosphide, hydrogen sulphide and phosphine.

Alternatively, the catalyst may be mixed with zinc oxide and exposed to a hydrogen plasma. Both reactive poisons, such as mercaptan and thiol compounds, and unreactive poisons, such as aromatic sulphur compounds can be removed from the catalyst surface by this means.

An example of the chemical moiety being converted to a

- 8 -

duce the ammonia. Alternatively, the carbon and nitrogen is excited prior to catalyst. In this case, the catalyst is separate zone to that in which the plasma. The plasma is then brought catalyst at the desired temperature desired, one only of the hydrogen and to plasma.

arbon-carbon double bond by oxidation by hydrolysis to yield carbonyl group of an application of the present moiety to be converted is a liquid. A bubbled through a solution of the compound in an inert solvent such as acetic acid, ethyl acetate, hexane or terature which is preferably in the which may be at or above ambient ne is produced in the oxygen plasma.

at the chemical moiety to a reactive takes part in a further reaction. For rphide may be mixed with a catalyst r and phosphorus. The mixture is of an inert gas to decompose the aluminium and hydrogen species. These the sulphur and phosphorus poisons products, namely aluminium sulphide, hydrogen sulphide and phosphine.

catalyst may be mixed with zinc oxide oxygen plasma. Both reactive poisons, and thiol compounds, and unreactive atic sulphur compounds can be removed face by this means.

chemical moiety being converted to a

- 9 -

reactive substance where the moiety is a liquid is where a catalyst poisoned with hydrocarbons and lead is suspended in or is in contact with dichlorine heptoxide. When the mixture is exposed to plasma of oxygen and/or inert gas, the oxygen and chlorine species formed will respectively oxidise the hydrocarbons and convert the lead to a washable lead salt.

- 9 -

are the moiety is a liquid is where a hydrocarbons and lead is suspended with dichlorine heptoxide. When the plasma of oxygen and/or inert gas, the species formed will respectively and convert the lead to a washable

CLAIMS

1. A process for the conversion of a chemical moiety characterised in that the chemical moiety is in a fluid phase and said moiety is reacted with a plasma or with a reagent generated by the interaction of plasma with another component.
2. A process according to Claim 1, wherein the moiety is in liquid form and the liquid is in the form of an aerosol.
3. A process according to Claim 1, wherein the chemical moiety is a fluidised finely divided solid.
4. A process according to Claim 5, wherein the moiety is in gaseous form and is also provided in the form of plasma.
5. A process according to any one of Claims 1 to 4, wherein the plasma is generated by an AC electric field, by DC glow discharge, by a laser or by plasma torch.
6. A process according to Claim 5, wherein the plasma is generated by an AC electric field and wherein the alternating current is supplied at from 10^3 Hz to 10^9 Hz.
7. A process according to Claim 5, wherein the plasma is generated by an AC electric field and wherein the alternating current is supplied at from 10^3 Hz to 10^9 Hz.
8. A process according to any one of Claims 1 to 7, wherein said another component is a solid.
9. A process according to Claims 8, wherein said another component is a catalyst.
10. A process as claimed in any one of Claims 1 to 9 comprising the detoxification of a gaseous industrial

- 10 -

- 10 -

the conversion of a chemical moiety if the chemical moiety is in a fluid it is reacted with a plasma or with a the interaction of plasma with another

ing to Claim 1, wherein the moiety is e liquid is in the form of an aerosol.

ing to Claim 1, wherein the chemical finely divided solid.

ing to Claim 5, wherein the moiety is s also provided in the form of plasma. :ding to any one of Claims 1 to 4, generated by an AC electric field, by a laser or by plasma torch.

ing to Claim 5, wherein the plasma is electric field and wherein the supplied at from 10³Hz to 10¹¹Hz.

ding to any one of Claims 1 to 7, component is a solid.

ing to Claims 8, wherein said another st.

laimed in any one of Claims 1 to 9 xification of a gaseous industrial

emission or internal combustion engine exhaust.

- 11 -

11. A process according to any one of Claims 1 to 9, wherein the reaction is carried out in the presence of a catalyst.

12. A process according to Claim 11, wherein the catalyst is located in a zone remote from that in which the plasma is generated.

13. A process according to any one of Claims 1 to 12, wherein the reaction of the chemical moiety with the plasma generates a reactive species which takes part in a second reaction.

14. A process according to any one of Claims 1 to 13, wherein the conversion is carried out as a continuous, semi-continuous or batch process.

- 11 -
justion engine exhaust.

g to any one of Claims 1 to 9,
carried out in the presence of a

to Claim 11, wherein the catalyst
ote from that in which the plasma

to any one of Claims 1 to 12,
he chemical moiety with the plasma
ies which takes part in a second

to any one of Claims 1 to 13,
is carried out as a continuous,
process.

AMENDED CLAIMS
[received by the International Bureau on 24 January 1994 (24.01.94);
original claims 1-14 amended; new claims 15-25 added (3 pages)]

1. A process for the conversion of a chemical moiety characterised in that the chemical moiety is in a fluid phase and said moiety is reacted with a plasma, or with a reagent generated by the interaction of plasma with another component, said conversion being effected in the presence of a catalyst, said catalyst being regenerated by in situ treatment with plasma.
2. A process according to Claim 1, wherein the conversion of the chemical moiety and the catalyst regeneration are carried out simultaneously.
3. A process according to Claim 1 or 2, wherein the moiety is in liquid form and the liquid is in the form of an aerosol.
4. A process according to Claim 1 or 2, wherein the chemical moiety is a fluidised finely divided solid.
5. A process according to Claim 1 or 2, wherein the moiety is in gaseous form and is also provided in the form of plasma.
6. A process according to any one of Claims 1 to 5, wherein the plasma is generated by an AC electric field, by DC glow discharge, by a laser or by plasma torch.
7. A process according to Claim 6, wherein the plasma is generated by an AC electric field and wherein the alternating current is supplied at from 10^3 Hz to 10^8 Hz.
8. A process according to Claim 6, wherein the plasma is generated by an AC electric field and wherein the alternating current is supplied at from 10^8 Hz to 10^{12} Hz.
9. A process according to any one of Claims 1 to 8, wherein said another component is a solid.

AMENDED CLAIMS
International Bureau on 24 January 1994 (24.01.94);
extended; new claims 15-25 added (3 pages)]

10. A process according to Claim 9, wherein said another component is the catalyst.

11. A process as claimed in any one of Claims 1 to 10 comprising the detoxification of a gaseous industrial emission or internal combustion engine exhaust interaction of plasma with another component, said presence of a catalyst, said catalyst being regenerated.

12. A process according to any one of Claims 1 to 11, wherein the catalyst is located in a zone remote from that in which the plasma is generated.

13. A process according to any one of Claims 1 to 12, wherein the reaction of the chemical moiety with the plasma generates a reactive species which takes part in a second reaction.

14. A process according to any one of Claims 1 to 13, wherein the conversion is carried out as a continuous, semi-continuous or batch process.

15. A process for the detoxification of gaseous industrial emissions or internal combustion engine exhaust characterised in that the emission or exhaust is in a fluid phase and is reacted with a plasma, or with a reagent generated by the interaction of plasma with another component, in the presence of a metallic catalyst.

16. A process according to Claim 15, wherein the emission or exhaust is in liquid form and the liquid is in the form of an aerosol.

17. A process according to Claim 15, wherein the emission or exhaust is a fluidised finely divided solid.

18. A process according to Claim 15, wherein the emission or exhaust is in gaseous form and is also provided in the form of plasma.

19. A process according to any one of Claims 1 to 8, wherein said another component

, wherein said another component is the catalyst.

5, wherein said another component is the catalyst.
e of Claims 1 to 10 comprising the detoxification
internal combustion engine exhaust.

of Claims 1 to 11, wherein the catalyst is located
1 the plasma is generated.

one of Claims 1 to 12, wherein the reaction of the
generates a reactive species which takes part in a

one of Claims 1 to 13, wherein the conversion is
ntinuous or batch process.

ition of gaseous industrial emissions or internal
ised in that the emission or exhaust is in a fluid
or with a reagent generated by the interaction of
the presence of a metallic catalyst.

15, wherein the emission or exhaust is in liquid
f an aerosol.

5, wherein the emission or exhaust is a fluidised

5, wherein the emission or exhaust is in gaseous
m of plasma.

19. A process according to any one of Claims 15 to 19, wherein the plasma is generated by an AC electric field, by DC glow discharge, by a laser or by plasma torch.

20. A process according to Claim 19, wherein the plasma is generated by an AC electric field and wherein the alternating current is supplied at from 10³Hz to 10⁶Hz.

21. A process according to Claim 19, wherein the plasma is generated by an AC electric field and wherein the alternating current is supplied at from 10⁹Hz to 10¹²Hz.

22. A process according to any one of Claims 15 to 21, wherein said another component is a solid.

23. A process according to Claim 22, wherein said another component is the catalyst.

24. A process according to any one of Claims 15 to 23, wherein the reaction of the emission or exhaust with the plasma generates a reactive species which takes part in a second reaction.

25. A process according to any one of Claims 15 to 24, wherein the conversion is carried out as a continuous, semi-continuous or batch process.

INTERNATIONAL SEARCH REPORT

PCT/GB 93/01641

		International Application No.	
		IPC 53/00, B 01 D 53/32, B 01 D 53/34, B 01 D 53/36,	
I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all)		According to International Patent Classification (IPC) or to both National Classification and IPC	
IPC : B 01 J 19/08, H 05 H 1/24, C 10 G 15/12		IPC 5 : B 01 D 53/00, B 01 D 53/32, B 01 D 53/34, B 01 D 53/36,	
II. FIELDS SEARCHED		Minimum Documentation Searched	
Classification System Classification Symbols		Classification System Classification Symbols	
IPC 5 B 01 D, B 01 J, H 05 H, C 10 G, B 29 C, C 08 J, C 23 C, A 61 L		IPC 5 B 01 D, B 01 J, H 05 H, C 10 G, B 29 C, C 08 J, C 23 C, A 61 L	
Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched			
III. DOCUMENTS CONSIDERED TO BE RELEVANT*			
Category *		Citation of Document, with Reference, where Appropriate, of the relevant passages. #	
X	US, A, 5 026 949 (AMOURoux) 25 June 1991. (25.06.91), claims.	1, 2, 8, 9, 11- 14	Referent to Claim No. 14
X	US, A, 5 015 349 (SUIB) 14 May 1991 (14.05.91), claims.	1, 4, 7, 11, 12	
X	US, A, 4 941 965 (AMOURoux) 17 July 1990 (17.07.90), claims.	1, 2, 8, 9, 11	
X	EP, A1, 0 366 876 (MITSUBISHI JUKOGYO KABUSHIKI KAISHA) 09 May 1990 (09.05.90), claims.	1, 4, 5, 10	
X	US, A, 3 419 597	1, 4, 11	
IV. CERTIFICATION			
Date of Actual Completion of the International Search		Date of Mailing of the International Search Report	
11 October 1993		22. 11. 93	
International Searching Authority		Signature of Authorized Officer	
EUROPEAN PATENT OFFICE		BECKER e. b.	

Form PCT/ISA/20 (Second sheet) (January 1985)

- 14 -
- any one of Claims 15 to 19, wherein the plasma is supplied at from 10³Hz to 10⁹Hz, by DC glow discharge, by a laser or by plasma field, by AC alternating current is supplied at from 10³Hz to 10⁹Hz.
- Claim 19, wherein the plasma is generated by an AC alternating current is supplied at from 10³Hz to 10⁹Hz.
- any one of Claims 15 to 21, wherein said another claim 22, wherein said another component is the catalyst.
- any one of Claims 15 to 23, wherein the reaction of the plasma generates a reactive species which takes part in any one of Claims 15 to 24, wherein the conversion is semi-continuous or batch process.

- any one of Claims 15 to 23, wherein the reaction of the plasma generates a reactive species which takes part in any one of Claims 15 to 24, wherein the conversion is semi-continuous or batch process.
- any one of Claims 15 to 24, wherein the conversion is semi-continuous or batch process.
- any one of Claims 15 to 24, wherein the conversion is semi-continuous or batch process.

- * Special categories of cited document: #
- A* document defining the general state of the art which is not considered to be of particular relevance
- E* document not published on or after the international filing date
- T* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- U* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when an earlier publication is combined with an or more other such documents, such combination being obvious to a person skilled in the art.
- P* document published before the international filing date but later than the priority date claimed

IV. CERTIFICATION

Date of Mailing of the International Search Report

22. 11. 93

Signature of Authorized Officer

BECKER e. b.

AL SEARCH REPORT

PCT/GB 93/01641

International Application No.

Classification symbols, indicate all:

International Classification and IPC
32, B 01 D 53/34, B 01 D 53/36,
4, C 10 G 15/12

Document Searched:

Classification Symbols

H, C 10 G, B 29 C, C 08 J, C 23 C,
H, C 10 G 15/12

than Main Name Documentation
name are included in the fields Searched

Appropriate, of the referent passages is

Referent to Claim No. 11

ne 1991.

1,2,8,
9,11-
14

91

1,4,7,
11,12

ly 1990

1,2,8,
9,11

91

1,4,5,
10

GYO KABUSHIKI
990

1,4,11

Later document published after the International filing date
or priority date and not in conflict with the application but
which is understood to contradict the principle or theory underlying the
invention
or
document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step
or
document of particular relevance; the claimed invention
cannot be considered to involve an inventive step although the
document is combined with one or more other documents
which combination gives birth to a patentable
invention
or
document member of the same patent family

Date of filing of this International Search Report

22.11.93

Signature of Authorized Officer
BECKER e.h.

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)			
Category	Character of Document, "with indication where a reference to the relevant passage is	Reference to Claim No.	
X	(BEGLEY) 31 December 1968 (31.12.68), claims. ---	-13	1,2
X	DE, A1, 3 206 785 (VILLAMOSIPARI KUTATO INTE-ZET) 28 October 1982 (28.10.82), the whole document. ---		1,3
X	US, A, 4 469 508 (AMOUROUX) 04 September 1984 (04.09.84), claims. ---		1,3

ANHANG

International Application No PCT/GB 93/01641

zu internationalen Recherchen-
bericht über die Internationale
Patentanmeldung Nr. _____

ANNEX

zur internationalen Recherchen-
bericht über die internationale
Patentanmeldung Nr.

RELEVANT (CONTINUED FROM THE SECOND SHEET)		Indication, where appropriate, of the relevant passage Referable Claim No.
31 December 1968	-13	
785	[PARI KUTATO INTE- -October 1982), document. --	1, 2
508) 04 September 1984	1, 3

ANNEXE

au rapport de recherche international relatif à la demande de brevet international n°

In dieser Anhang sind die Mitglieider der Patentfamilien der in obenge nannten internationellen Recherchebericht citemten Patentdokumente angegeben. Diese Angaben dienen nur zur Orientierung und erfolgen ohne Gewähr.

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The Office is in no way liable for these particulars which are given merely for the purpose of information.

La présente annexe indique les membres de la famille de brevets relatifs aux documents de brevets cités dans le rapport de recherche international visé ci-dessus. Les renseignements fournis sont, hormis autre indication, et n'engagent pas la responsabilité de l'Office.

In Recherchebericht angeführtes Patentkennzeichen Patient document cited In search report		Datum der Veröffentlichung Publication date	Mitglied(er) der Patentfamilie Member(s) of family	Datum der Veröffentlichung Publication date
Document de brevet cité dans le rapport de recherche		Date de publication	Membre(s) de la famille de brevets	Date de publication
US A 5026949	25-06-91	AT E AU A1 4552789 AU B2 627244 CA A1 2035619 DE CO 6892132 DE T2 68922132 EP A1 370910 EP B1 370910 ES T3 2034717 FR A1 269354 FR B1 269354 NO A0 894672 NO A0 894672 NZ A	78287 78287 627244 2035619 6892132 68922132 370910 370910 2034717 269354 269354 894672 894672 23496	15-06-92 15-06-92 20-08-92 20-08-92 20-08-92 04-03-93 30-05-93 15-07-92 01-04-93 25-05-93 25-01-93 25-01-93 25-05-93 25-05-93 26-03-92
US A 5015349	14-05-91	keine - none - rien		
US A 4941965	17-07-90	DE CO EP A1 EP B1 FR A1 FR B1 JP A2 NO AO NO B NO C	3861352 292391 2615523 1198095 882229 882229 172059 172059	07-02-91 02-01-91 02-01-91 02-01-91 01-06-90 21-06-89 20-05-88 20-05-88 20-02-93 02-06-93
EP A1 3668876		JP A2 EP A2 EP B2 GB A0 GB A0 GB A0	2006182 353335 353335 883041 883041 883041	10-01-90 20-09-90 14-11-90 06-07-89 05-04-89 13-04-88
US A 3419597	31-12-68	keine - none - rien		
DE A1 3206785	28-10-82	CA A1 CH A DE C2 HU B SE A SE B SE C SE D US A	1168357 658414 3206785 186389 B2C010 440946 440946 4388706 4509434	30-04-85 14-11-89 23-04-87 28-08-84 28-08-82 26-08-85 14-06-87 27-03-84 09-04-85
US A 4469503	04-09-84	CA A1 DE CO EP A1 EP B1 ES A5 ES A5 ES A5 FR A1 JP A2 JP B4 NO B NO C	1207129 3562499 936352 936352 521914 521914 8402069 2526141 5B195780 3013512 831486 137553	08-07-86 17-04-84 09-11-83 16-01-84 08-02-84 01-04-84 04-11-83 26-02-88 15-11-83 21-02-91 31-10-83 06-04-88