Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux **2002 Mini-test 2**

Lundi le 25 novembre 2002; Durée: 10h30 à 11h20 Aucune documentation permise; aucune calculatrice permise.

Problème 1 (1 point sur 5)

Lequel **ou** lesquels des énoncés suivants sont vrais? (Il est aussi possible qu'aucun énoncé ne soit vrai...)

a)
$$R=2$$

$$C=2 \qquad y(t) = \frac{1}{4}e^{-t/2}U(t)$$

$$VRAI \quad \text{ou} \quad FAUX$$

b)
$$V_{in}(t) \longrightarrow H(j\omega) = \frac{1}{1 + 4j\omega - 2\omega^2}$$

$$V_{R=1} = \frac{1}{1 + 4j\omega - 2\omega^2}$$

$$\sin(t) \quad \stackrel{+}{\underbrace{\int_{j_{\omega}}^{j_{\omega}}}} \quad y(t) \quad \Longrightarrow \quad y(t) = \frac{1}{\sqrt{17}} \sin\left(t + \tan^{-1}\frac{1}{4}\right)$$

VRAI ou FAUX

Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux **2002 Mini-test 3**

Problème 2 (1 point sur 5)

Lequel **ou** lesquels des énoncés suivants sont vrais? (Il est aussi possible qu'aucun énoncé ne soit vrai...)

Supposons que $f(t) \Leftrightarrow F(\omega)$ et $g(t) \Leftrightarrow G(\omega)$

a)
$$f(t) * \delta(t - t_0) = f(t - t_0)$$

VRAI ou FAUX

b)
$$f(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$
 est une fonction périodique

VRAI ou FAUX

c)
$$\{f * g\}(t) \Leftrightarrow F(\omega)G(\omega)$$

VRAI ou FAUX

d) Pour un système causal où l'entrée a un spectre $X(\omega)$ et la sortie a un spectre $Y(\omega)$,

$$X(\omega) = 0 \ \forall |\omega| > \omega_0 \implies Y(\omega) = 0 \ \forall |\omega| > \omega_0$$

VRAI ou FAUX

Université Laval Professeur: Leslie A. Rusch

GEL19962: Analyse des signaux **2002 Mini-test 3**

Problème 3 (3 points sur 5)

Trouvez la convolution.

Fonction	Transformée de Fourier
f(t)	$F(\omega)$
F(t)	$2\pi f(-\omega)$
f(t+a)	$e^{ja\omega}F(\omega)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$e^{jbt}f(t)$	$F(\omega - b)$
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$
$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$
$\operatorname{Rect}(t/\tau)^1$	$ au \operatorname{Sa}(\omega au/2)$
$\operatorname{Tri}(t/\tau)$ 2	$ au \operatorname{Sa}^2(\omega au/2)$
$\delta(t)$	1
1	2πδ(ω)
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
U(t)	$1/j\omega + \pi\delta(\omega)$
Sgn(t)	$2/j\omega$
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$
$e^{-eta t} \mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$

Rect $\left(\frac{t-t_0}{\tau}\right)$ est un rectangle de hauteur un, centré sur $t=t_0$, et de longueur τ .

Tri $\left(\frac{t-t_0}{\tau}\right)$ est un triangle de hauteur un centré sur $t=t_0$, avec un base de longueur 2τ .