

# AULA 05 TRANSFORMAÇÕES GEOMÉTRICAS

PROF. DR. DENIS HENRIQUE PINHEIRO SALVADEO

#### **AULA ANTERIOR**

- Preenchimento de Polígonos
  - Questões relacionadas
  - Algoritmo Scan-line

#### Aula de Hoje

- Transformações Geométricas 2-D
- Matrizes de Transformação e Coordenadas Homogêneas
- Combinação de Transformações
- Transformação de Janela de Desenho para ViewPort

Transformações Geométricas 3-D

# Transformações Geométricas

- Operações matemáticas que permitem alterar uniformemente o aspecto de um desenho
  - Desenho sendo apresentado em diferentes orientações e escalas, por exemplo
  - Não afetam a sua estrutura
- Agem sobre as primitivas gráficas
  - Transformam as coordenadas dos pontos que as definem, obtendo um desenho transformado
  - Assume que são definidas com relação à origem do sistema de referência
- Transformação Inversa
  - Sempre possível retornar ao desenho original a partir de um transformado
- Principais transformações
  - Escala, Translação e Rotação

# Transformações Geométricas 2-D

# **TRANSLAÇÃO**

- É o deslocamento em linha reta de um objeto para uma outra posição
- Sejam T<sub>x</sub> e T<sub>y</sub> distâncias de translação nas direções x e y, respectivamente
  - Um vetor de translação ou deslocamento definido por  $\sqrt[7]{T_x}$ ,  $T_v$ ) é adicionado às coordenadas originais do desenho





http://upload.wikimedia.org/wikipedia/commons/5/59/Translation\_geometry.gif

# **TRANSLAÇÃO**

• Sejam as coordenadas originais (x,y) e as coordenadas resultantes da transformação (x',y'), temos:



#### **ESCALA**

- Altera o tamanho do objeto
- Sejam  $S_x$  e  $S_y$  fatores de escala referentes aos eixos x e y, respectivamente





http://upload.wikimedia.org/wikipedia/commons/thumb/6/63/Vector\_addition and scaling.svg/2000px-Vector addition and scaling.svg.png



#### **ESCALA**

 Sejam as coordenadas originais (x,y) e as coordenadas resultantes da transformação (x',y'), temos:



http://upload.wikimedia.org/wikipedia/commons/0/0f/CoordinateScaling.png

#### **ESCALA**

#### Alguns casos:

- |Sx|, |Sy| = 1 => não altera o tamanho
- |Sx|, |Sy| > 1 => Ampliação no eixo afetado
- |Sx|, |Sy| < 1 => Redução no eixo afetado
- Sx = Sy => produz transformação uniforme
- Sx < 0, Sy < 0 => Espelha a imagem em relação ao eixo não afetado

# ROTAÇÃO

- É o deslocamento de um objeto para uma outra posição em trajetória circular
  - Os pontos mantém a mesma distância da origem
  - O deslocamento angular θ é o único parâmetro da transformação
  - Sentido anti-horário





http://upload.wikimedia.org/wikipedia/commons/thumb/b/b1/Coordinate\_rotation.svg/2000px-Coordinate\_rotation.svg.png



# ROTAÇÃO

- As novas coordenadas são:
  - $x' = r * cos(\phi + \theta) = r*cos\phi cos\theta r*sen\phi sen\theta$
  - $y' = r * sen(\phi + \theta) = r * sen \phi cos \theta + r * cos \phi sen \theta$

- Como as coordenadas originais são x = r \* cosφ e y = r \* senφ, temos:
  - $x' = x^* \cos \theta y^* \sin \theta$
  - $y' = y*\cos\theta + x*\sin\theta$



Baseado em HEARN, D. Computer Graphics with OpenGL. 3rd ed. Upper Saddle River, NJ: Pearson Education, 2004. 857 p.

# Matriz de Transformação

- Forma matricial de uma operação de transformação
- Para se calcular os pontos transformados de uma figura, basta multiplicar cada ponto (disposto em uma matriz coluna) por esta matriz
- Ex: Escala

$$x' = x * S_x$$
  
 $y' = y * S_y$ 

– Em forma matricial, temos:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} xS_x \\ yS_y \end{bmatrix} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Matriz de Escala

• E para a translação, será possível definirmos uma matriz de transformação 2x2?

#### COORDENADAS HOMOGÊNEAS

- Consiste em um método genérico para permitir todas as transformações
  - Consistência nos cálculos

- Tanto coordenadas, quando matrizes de transformação são expandidas para considerar uma dimensão adicional
  - Uma coordenada (x, y), será representada por  $(x_h, y_h, h)$  em coordenadas homogêneas, onde  $x = x_h/h$  e  $y = y_h/h$ .
    - Se h = 1 (caso padrão), temos (x, y, 1) em coordenada homogênea
  - Após os cálculos, a terceira coordenada é descartada

#### Matriz de Escala em Coordenadas Homogêneas

$$x' = x * S_x$$
$$y' = y * S_y$$
$$z' = 1$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} xS_x \\ yS_y \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Matriz de Escala

\*Onde a coordenada z' será descartada no ponto transformado

#### Matriz de Rotação em Coordenadas Homogêneas

$$x' = x*\cos\theta - y*\sin\theta$$
  
 $y' = y*\cos\theta + x*\sin\theta$   
 $z' = 1$ 

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Matriz de Rotação

\*Onde a coordenada z' será descartada no ponto transformado

#### Matriz de Translação em Coordenadas Homogêneas

$$x' = x + T_x$$
  
 $y' = y + T_y$   
 $z' = 1$ 

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x + T_x \\ y + T_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Matriz de Translação

\*Onde a coordenada z' será descartada no ponto transformado

# Outras Transformações 2-D

#### **ESPELHAMENTO**

- Também chamada de Reflexão
- O objeto resultante é um espelho do original
  - Corresponde a girar 180° o objeto com relação a algum eixo de reflexão



http://upload.wikimedia.org/wikipedia/commons/d/dd/Reflectional transformation.svg



http://upload.wikimedia.org/wikipedia/commons/b/b3/Symplan.png

#### **ESPELHAMENTO**

• No caso 2-D e com relação aos eixos  $O_x$  e  $O_y$ , pode ser obtida diretamente da Matriz de Escala

• Espelho com relação a 
$$O_x$$
 ( $S_y = -1$ )

$$E_{O_x} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

• Espelho com relação a  $O_y$  ( $S_x = -1$ )

$$E_{O_{y}} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Espelho com relação a  $O_x$  e  $O_y$  ( $S_x = S_y = -1$ )  $E_{O_{xy}} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 

#### **CISALHAMENTO**

 Distorce o formato do objeto, em geral, deslocando as coordenadas x ou y em função do eixo não selecionado

 $x' = x + Sh_x * y$ 

Ex: Com relação ao eixo x

$$z' = 1$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x + Sh_x y \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & Sh_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Matriz de Cisalhamento (Eixo x)



# Combinação de Transformações

Considere o seguinte:

1. Um ponto  $(x_1,y_1)$  sofre a transformação  $M_1$ , obtendo o ponto

$$(x_2,y_2)$$

$$\begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = M_1 \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

2. Em seguida, o ponto  $(x_2,y_2)$  sofre uma transformação  $M_2$ , obtendo o ponto  $(x_3,y_3)$ 

$$\begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix} = M_2 \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$$

 Existe uma matriz M<sub>3</sub> que aplicada sobre (x<sub>1</sub>,y<sub>1</sub>), resulta diretamente em (x<sub>3</sub>,y<sub>3</sub>)?

# Combinação de Transformações

Substituindo (1) em (2), temos:

$$\begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix} = M_2 \begin{pmatrix} M_1 & x_1 \\ y_1 \\ 1 \end{bmatrix}$$

• Pela propriedade associativa, temos:

$$\begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix} = (M_2 M_1) \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

• Substituindo-se  $M_3 = M_2M_1$ , temos

$$\begin{bmatrix} x_3 \\ y_3 \\ z_3 \end{bmatrix} = M_3 \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

# Combinação de Transformações

#### Resumindo:

- Várias transformações podem ser combinadas em uma única matriz
- As matrizes devem ser multiplicadas na ordem oposta em que se deseja aplicar as transformações.
  - Relembre:  $M_3 = M_2 M_1$

#### Observações:

- Estamos assumindo o padrão de matriz coluna.
- Multiplicação de matrizes não tem propriedade comutativa
  - Portanto, a ordem das transformações importa!!!
  - Ex: Aplicar uma translação e depois uma rotação, não é o mesmo que aplicar uma rotação e depois uma translação.
- Isto nos permitirá obter outras transformações

# ESCALA EM RELAÇÃO A UM PONTO ARBITRÁRIO

#### Problema da Escala

Em geral, desloca o objeto (distancia ou aproxima da origem – ponto de referência)



# ESCALA EM RELAÇÃO A UM PONTO ARBITRÁRIO

 Mas e se quisermos obter um aumento ou redução do objeto com relação a um ponto arbitrário (por exemplo, centro do objeto)?

$$S_x = S_y = 2$$



# Escala em Relação a um Ponto Arbitrário

 Vejamos o que ocorre quando o centro do objeto é a Origem?

$$S_x = S_y = 2$$





Baseados em ROMERO, T. et al. Fundamentos de Computação Gráfica, LTC, 1987.

# ESCALA EM RELAÇÃO A UM PONTO ARBITRÁRIO

#### Solução:

- Seja o ponto (x<sub>F</sub>,y<sub>F</sub>) o nosso ponto de referência para a transformação
  - 1. Transladar o objeto de modo que  $(x_F, y_F)$  caia na origem  $(T_x = -x_F, T_y = -y_F)$
  - 2. Aplicar a escala deseja  $(S_x e S_v)$
  - 3. Transladar o objeto de modo que o ponto de referência retorna para a sua posição original  $(T_x = x_F, T_v = y_F)$

$$\begin{bmatrix} 1 & 0 & x_F \\ 0 & 1 & y_F \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_F \\ 0 & 1 & -y_F \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & x_F (1-S_x) \\ 0 & S_y & y_F (1-S_y) \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} S_x & 0 & x_F (1-S_x) \\ 0 & S_y & y_F (1-S_y) \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} S_x & 0 & x_F (1-S_x) \\ 0 & S_y & y_F (1-S_y) \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} S_x & 0 & x_F (1-S_x) \\ 0 & S_y & y_F (1-S_y) \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} S_x & 0 & x_F (1-S_x) \\ 0 & S_y & y_F (1-S_y) \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} S_x & 0 & x_F (1-S_x) \\ 0 & S_y & y_F (1-S_y) \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} S_x & 0 & x_F (1-S_x) \\ 0 & S_y & y_F (1-S_y) \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} S_x & 0 & x_F (1-S_x) \\ 0 & S_y & y_F (1-S_y) \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} S_x & 0 & x_F (1-S_x) \\ 0 & S_y & y_F (1-S_y) \\ 0 & 0 & 1 \end{bmatrix}$$

# ESCALA EM RELAÇÃO A UM PONTO ARBITRÁRIO



# ROTAÇÃO EM TORNO DE UM PONTO ARBITRÁRIO

- Até agora, sabemos a rotação com relação à origem
  - Desloca o objeto em trajetória (mantendo a distância da origem)



# ROTAÇÃO EM TORNO DE UM PONTO ARBITRÁRIO

 Mas e se quisermos obter uma rotação com relação a um ponto arbitrário (por exemplo, centro do objeto)?

$$\theta = 45^{\circ}$$



# Rotação em Torno de um Ponto Arbitrário

 Novamente, vejamos o que ocorre quando o centro do objeto é a Origem?

$$\theta = 45^{\circ}$$



Baseados em ROMERO, T. et al. Fundamentos de Computação Gráfica, LTC, 1987.

# ROTAÇÃO EM TORNO DE UM PONTO ARBITRÁRIO

#### Solução:

- Seja o ponto (x<sub>R</sub>,y<sub>R</sub>) o nosso ponto de referência para a transformação
  - 1. Transladar o objeto de modo que  $(x_R, y_R)$  caia na origem  $(T_x = -x_R, T_y = -y_R)$
  - 2. Aplicar a rotação deseja (θ)

(Passo 2)

3. Transladar o objeto de modo que o ponto de referência retorna para a sua posição original  $(T_x = x_R, T_v = y_R)$ 

$$\begin{bmatrix} 1 & 0 & x_R \\ 0 & 1 & y_R \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_R \\ 0 & 1 & -y_R \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & x_R (1 - \cos \theta) + y_R \sin \theta \\ \sin \theta & \cos \theta & y_R (1 - \cos \theta) - x_R \sin \theta \\ 0 & 0 & 1 \end{bmatrix}$$
Matriz de Translação Matriz de Rotação Matriz de Rotação Matriz de Rotação em torno de um Ponto Arbitrário

(Passo 1)

(Passo 3)

#### ROTAÇÃO EM TORNO DE UM PONTO ARBITRÁRIO



# ESPELHAMENTO EM RELAÇÃO A UMA RETA QUALQUER

- Até agora, sabemos espelhar com relação aos eixos coordenados
  - Através de valores negativos para os fatores de escala Sx e Sy
- Mas e se desejamos fazer o espelhamento com relação a qualquer reta?

- Ideia
  - Fazer algo semelhante ao que foi realizado para a escala e rotação, mas agora considerando os eixos coordenados

#### ESPELHAMENTO EM RELAÇÃO A UMA RETA QUALQUER

#### Solução:

- Seja o segmento de reta AB definido pelos pontos (x<sub>A</sub>,y<sub>A</sub>) e (x<sub>B</sub>,y<sub>B</sub>) a nossa referência para a transformação
  - 1. Transladar o objeto de modo que um dos pontos A ou B caia na origem
    - Ex: Vamos assumir que A ficará na origem  $(T_x = -x_A, T_y = -y_A)$
  - 2. Rotacionar a figura de modo que a reta de simetria se torne paralela a um dos eixos coordenados
    - Ex: Vamos assumir a rotação deseja -θ
  - 3. Espelhar a figura em relação ao eixo coincidente com a reta de simetria.
    - Ex: Assumindo que coincide com o eixo Ox, usamos Sx = 1 e Sy = -1 na matriz de escala
  - 4. Rotacionar a figura de ângulo oposto ao realizado no passo (2)
    - Ex: Como em (2) usamos  $-\theta$ , agora usaremos  $\theta$
  - 5. Transladar o objeto com deslocamentos opostos aos realizados em (1), retornando o segmento de reta para a sua posição original
    - Ex: Como assumimos A no passo (1), agora usaremos  $(T_x = x_A, T_y = y_A)$
- $M = T(T_x = x_A, T_y = y_A)$ .  $R(\theta)$ . S(Sx = 1, Sy = -1).  $R(-\theta)$ .  $T(T_x = -x_A, T_y = -y_A)$

# ESPELHAMENTO EM RELAÇÃO A UMA RETA QUALQUER



# Observação Básica e Essencial!

Na origem do sistema de coordenadas (ou em seus eixos coordenados) as transformações funcionam como esperado...

# OBSERVAÇÃO BÁSICA E ESSENCIAL!

E sabemos as transformações básicas para trabalhar quando a origem ou os eixos coordenados são a referência...

# Observação Básica e Essencial!

Portanto, resolva o seu problema principal na origem (ou nos eixos coordenados) e depois retorne à posição ou ao eixo de referência original com as transformações inversas!

## Transformação de Janela de Desenho para ViewPort

 Podemos criar uma matriz para realizar o mapeamento das coordenadas de mundo (real e infinita) para as coordenadas de tela (inteira e limitada)

#### Ideia:

Basear-se no que já conhecemos até aqui



## Transformação de Janela de Desenho para ViewPort

## Solução:

- Sejam os pontos  $(x_D 1, y_D 1)$  e  $(x_D 2, y_D 2)$  as coordenadas da janela de desenho mínima e máxima, respectivamente.
- De maneira semelhante ( $x_v1,y_v1$ ) e ( $x_v2,y_v2$ ) definem a
   Viewport
  - 1. Transladar o objeto de modo que  $(x_D 1, y_D 1)$  caia na origem  $(T_x = -x_D 1, T_y = -y_D 1)$
  - 2. Aplicar a escala deseja ( $S_x$  = fator\_vis\_x e  $S_y$  =fator\_vis\_y) para a janela tornar-se do tamanho da Viewport

fator\_vis\_x = 
$$(x_v^2 - x_v^1) / (x_d^2 - x_d^1)$$
  
fator\_vis\_y=  $(y_v^2 - y_v^1) / (y_d^2 - y_d^1)$ 

3. Transladar o objeto de modo que a Viewport fique na sua posição correta na tela  $(T_x = x_V 1, T_v = y_V 1)$ 

## Transformação de Janela de Desenho para ViewPort

$$\begin{bmatrix} 1 & 0 & x_V 1 \\ 0 & 1 & y_V 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_V 2 - x_V 1 & 0 & 0 \\ x_D 2 - x_D 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_D 1 \\ 0 & 1 & -y_D 1 \\ 0 & 0 & 1 \end{bmatrix}$$
Matriz de Translação (Passo 2)
$$\begin{bmatrix} 1 & 0 & -x_D 1 \\ 0 & 1 & -y_D 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{x_{V} 2 - x_{V} 1}{x_{D} 2 - x_{D} 1} & 0 & -x_{D} 1 \left( \frac{x_{V} 2 - x_{V} 1}{x_{D} 2 - x_{D} 1} \right) + x_{V} 1 \\ 0 & \frac{y_{V} 2 - y_{V} 1}{y_{D} 2 - y_{D} 1} & -y_{D} 1 \left( \frac{y_{V} 2 - y_{V} 1}{y_{D} 2 - y_{D} 1} \right) + x_{V} 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Matriz Mapeamento (Window-to-Viewport)

# Transformações 3-D

- Podemos estender os conceitos vistos para 2-D para o 3-D
- Em coordenadas homogêneas:
  - Um ponto P de coordenadas (x, y, z), será representado por (x, y, z,
     1)
  - A matriz de transformação será de tamanho 4 x 4
- Utilizaremos a Regra da Mão Direita para definir o sistema de coordenadas
  - O eixo Z está apontado (cresce) para a direção do observador



Modificado de http://upload.wikimedia.org/wikipedia/commons/f/fb/Spherical\_coordinates.svg

## Matriz de Escala 3-D



$$x' = x * S_x$$
  
 $y' = y * S_y$   
 $z' = z * S_z$ 

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} xS_x \\ yS_y \\ zS_z \\ 1 \end{bmatrix} = \begin{bmatrix} Sx & 0 & 0 & 0 \\ 0 & Sy & 0 & 0 \\ 0 & 0 & Sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
Matriz de Escala 3-D

Modificado de http://upload.wikimedia.org/wikipedia/commons/9/91/Pyramid.svg

\*Onde a coordenada w será descartada no ponto transformado

# Matriz de Escala 3-D com um Ponto Fixo $(x_F, y_F, z_F)$

$$x' = x * S_x + (1 - S_x)x_F$$
  
 $y' = y * S_y + (1 - S_y)y_F$   
 $z' = z * S_z + (1 - S_z)z_F$ 

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} xS_x + (1-S_x)x_F \\ yS_y + (1-S_y)y_F \\ zS_z + (1-S_z)z_F \\ 1 \end{bmatrix} = \begin{bmatrix} Sx & 0 & 0 & (1-S_x)x_F \\ 0 & Sy & 0 & (1-S_y)y_F \\ 0 & 0 & Sz & (1-S_z)z_F \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Matriz de Escala 3-D com relação a um Ponto Fixo

\*Onde a coordenada w será descartada no ponto transformado

# Matriz de Translação 3-D



Modificado de http://upload.wikimedia.org/wikipedia/commons/9/91/Pyramid.svg http://upload.wikimedia.org/wikipedia/commons/f/fb/Spherical\_coordinates.svg

\*Onde a coordenada w será descartada no ponto transformado

# Matriz de Rotação 3-D ( $R_7$ )

Modificado de http://upload.wikimedia.org/wikipedia/commons/f /fb/Spherical\_coordinates.svg



$$x' = x*\cos\theta - y*\sin\theta$$
  
 $y' = y*\cos\theta + x*\sin\theta$   
 $z' = z$ 

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matriz de Rotação 3-D em torno de 
$$O_z$$

## – Mas e para Rx e Ry?

Fazer permuta cíclica: x->y->z->x

# Matriz de Rotação 3-D (R<sub>x</sub>)

#### Modificado de http://upload.wikimedia.org/wikipedia/commons/f /fb/Spherical\_coordinates.svg



$$y' = y*\cos\theta - z*\sin\theta$$
$$z' = z*\cos\theta + y*\sin\theta$$
$$x' = x$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} x \\ y\cos\theta - z\sin\theta \\ y\sin\theta + z\cos\theta \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Matriz de Rotação 3-D em torno de  $O_x$  $(R_x)$ 

# Matriz de Rotação 3-D $(R_y)$

#### Modificado de http://upload.wikimedia.org/wikipedia/commons/f /fb/Spherical\_coordinates.svg



$$z' = z*\cos\theta - x*\sin\theta$$
  
 $x' = x*\cos\theta + z*\sin\theta$   
 $y' = y$ 

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} x\cos\theta + z\sin\theta \\ y \\ z\cos\theta - x\sin\theta \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
Matriz de Rotação 3-D em torno de O<sub>y</sub>

- Seguindo o que foi feito para o espelhamento 2-D em reta arbritrária, temos:
- Solução:
  - Seja o segmento de reta AB definido pelos pontos (x<sub>A</sub>,y<sub>A</sub>,z<sub>A</sub>) e (x<sub>B</sub>,y<sub>B</sub>,z<sub>B</sub>) a nossa referência para a transformação
    - 1. Transladar o objeto de modo que um dos pontos A ou B caia na origem
      - Ex: Vamos assumir que A ficará na origem  $(T_x = -x_A, T_y = -y_A, T_z = -z_A)$
    - 2. Rotacionar em torno do eixo x (eixo de rotação vai para o plano xz)
      - Ex: Vamos assumir a rotação α
    - 3. Rotacionar em torno do eixo y, coincidindo o eixo de rotação com o eixo O<sub>x</sub>
      - Ex: Vamos assumir a rotação β
    - 4. Rotacionar em torno do eixo z, com o ângulo desejado
      - Ex: Vamos assumir a rotação desejada θ
    - 5. Rotacionar em torno do eixo y, com o ângulo oposto do realizado no passo (3)
      - Ex: Como em (3) usamos β, agora usaremos -β
    - 6. Rotacionar em torno do eixo x, com o ângulo oposto do realizado no passo (2)
      - Ex: Como em (2) usamos α, agora usaremos -α
    - 7. Transladar o objeto com deslocamentos opostos aos realizados em (1), retornando o segmento de reta para a sua posição original
      - Ex: Como assumimos A no passo (1), agora usaremos  $(T_x = x_A, T_v = y_A, T_z = z_A)$



$$M = T(T_x = x_A, T_y = y_A, T_z = z_A) \cdot R_x(-\alpha) \cdot R_y(-\beta) \cdot R_z(\theta) \cdot R_y(\beta) \cdot R_x(\alpha) \cdot T(T_x = -x_A, T_y = -y_A, T_z = -z_A)$$

Como calcular senos e cossenos de α e β?

Seja o vetor do eixo de rotação V

$$V = B - A = (x_B - x_A, y_B - y_A, z_B - z_A)$$

• Seja **u** o eixo de rotação unitário

$$\mathbf{u} = \mathbf{V} / |\mathbf{V}| = (a, b, c)$$
 $\mathbf{a} = (\mathbf{x}_{B} - \mathbf{x}_{A}) / |\mathbf{V}|$ 
 $\mathbf{b} = (\mathbf{y}_{B} - \mathbf{y}_{A}) / |\mathbf{V}|$ 
 $\mathbf{c} = (\mathbf{z}_{B} - \mathbf{z}_{A}) / |\mathbf{V}|$ 
 $|\mathbf{V}| = \operatorname{sqrt}(\mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2)$ 



Baseado em HEARN, D. Computer Graphics with OpenGL. 3rd ed. Upper Saddle River, NJ: Pearson Education, 2004. 857 p.

Considere o resultado após a translação

Seja o u'(0, b, c) a projeção de u no plano yz
 |u'| = sqrt(b^2 + c^2) = d



sen 
$$\alpha = b / d$$

$$\cos \alpha = c / d$$

Baseado em ROMERO, T. et al. Fundamentos de Computação Gráfica, LTC, 1987. HEARN, D. Computer Graphics with OpenGL. 3rd ed. Upper Saddle River, NJ: Pearson Education, 2004. 857 p.

- Considere o resultado após a rotação ao redor de X
  - Lembrar que u' será rotacionado para ficar sobre O<sub>z</sub>
- Seja o u"(a, 0, d) obtido a partir da rotação de u ao redor de x



$$|\mathbf{u''}| = \operatorname{sqrt}(a^2 + d^2)$$
  
=  $\operatorname{sqrt}(a^2 + \operatorname{sqrt}(b^2 + c^2)^2)$   
=  $\operatorname{sqrt}(a^2 + b^2 + c^2)$   
=  $|\mathbf{u}| = 1$ 

sen 
$$\beta$$
 = a /  $|\mathbf{u''}|$  = a cos  $\beta$  = d /  $|\mathbf{u''}|$  = d

Baseado em ROMERO, T. et al. Fundamentos de Computação Gráfica, LTC, 1987. HEARN, D. Computer Graphics with OpenGL. 3rd ed. Upper Saddle River, NJ: Pearson Education, 2004. 857 p.

### **ESPELHAMENTO**

• Como definido anteriormente, o espelhamento consiste em uma rotação de 180° ao redor de um eixo qualquer.

- Desta forma, podemos obter a sua matriz de transformação a partir da Rotação 3-D em torno de eixo arbitrário
- Basta usar  $\theta = 180^\circ$  na expressão anterior, obtendo:

$$M = T(T_x = x_A, T_y = y_A, T_z = z_A) \cdot R_x(\alpha) \cdot R_y(\beta) \cdot R_z(180^\circ) \cdot R_y(-\beta) \cdot R_x(-\alpha) \cdot T(T_x = -x_A, T_y = -y_A, T_z = -z_A)$$

## **EXERCÍCIO**

 Considere um polígono com os seguintes vértices: V1(1,4); V2(3,7); V3(4,5); V4(6,9); V5(7,4); V6(4,1). Desejamos transladar a figura de tal forma que o vértice V1 fique no ponto (5,5), depois aumentar a figura em 40% em relação ao ponto E (6,8) e em seguida rotacioná-lo de 30° em torno do ponto R (8,10). Qual seria a transformação composta, neste caso? Quais seriam as novas coordenadas dos vértices? Faça o desenho inicial e final.

