武汉普赛斯电子 通信协议规范——LIV-4部分 (PSS_LIV-4)

PSS_LIV-4_TX_V0.0.01

声明: 本文件所有权和解释权归武汉普赛斯电子技术有限公司所有,未经武汉普赛斯电子技术有限公司书面许可,不得复制或向第三方公开。

版本历史记录:

版本	日期	AMD	修订者	说明
PSS_LIV-4_TX_V0.0.01	20150821	A	chengjie	初始版本

(A-添加, M-修改, D-删除)

目 录

目:	录	3
一、	协议说明	5
二、	float 型数据使用规则	6
三、	接口格式及说明	7
四、	LIV-4 具体指令	8
	4.0、指令总览	8
	4.1、用户开放指令	10
	*IDN?	10
	*RST	10
	Source:PDVrd <pdvrd></pdvrd>	10
	Source:Test Idp	10
	Configure:WaveLength <wavelength></wavelength>	10
	Configure: WaveLength?	
	Configure:LIVCurrent <curstart> <curstep> <curstop></curstop></curstep></curstart>	11
	Configure:LIVCurrent?	11
	Configure:LIVScanMode <scanmode></scanmode>	11
	Configure:LIVScanMode?	
	Source:Test LIV	11
	Source:DCCurrent < DCCurrent>	12
	Source:Test DC	12
	4.2 校准指令	13
	!Check:VrdSetDAC <k> </k>	13
	!Check:VrdSetDAC?	13
	!Check:LDCurSetDAC <k> </k>	13
	!Check:LDCurSetDAC?	13
	!Check:LDCurSampleR <k> </k>	13
	!Check:LDCurSampleR?	13
	!Check:LDVolR <k> </k>	14
	!Check:LDVolR?	14
	!Configure:PDCurRLevel <pdcurrlevel></pdcurrlevel>	14
	!Configure:PDCurRLevel?	14
	!Check:PDCurR <pdcurrlevel> <k> </k></pdcurrlevel>	14
	!Check:PDCurR? <pdcurrlevel></pdcurrlevel>	14
	!Configure:LDPowerRLevel <ldpowerrlevel></ldpowerrlevel>	14
	!Configure:LDPowerRLevel?	15
	!Check:LDPowerR <powerrlevel> <k> </k></powerrlevel>	
	!Check:LDPowerR? <powerrlevel></powerrlevel>	15
	!Check:PIN <wavelength> <k></k></wavelength>	

	!Check:PIN? <wavelength></wavelength>	
	4.3 调试指令	
	*help	
	*echo <switch> pss</switch>	16
	*Set:Idn <information> pss</information>	16
五、	上位机软件推荐流程	17

一、协议说明

- 该协议以《PSS 设备接口规范_RS232 连接部分 V1.2_20140120》为标准编写
- 上位机采用 VC 开发、下位机由 MCU 开发
- 本协议采用一对一通信
- 串口波特率: 115200、1个停止位、无校验位、8位数据位

二、float 型数据使用规则

本协议使用了 float 数据类型字节传输的方法。将 float 型数据转化为 4 个字节传输与将受到的 4 个字节转化为 float 型数据是一个可逆的过程。推荐方法如下:

```
首先定义一个联合体:
```

```
union C
{
   float DataFloat;
   unsigned char DataChar[4];
};
union C c;
设 c.DataFloat =123.4567。
直接将其发送:
for(i=0;i<4;i++)
   UartTx ( c. DataChar [i] );
}
或者直接将其接收:
for(i=0;i<4;i++)
   c. DataChar [i]= UartRx;
}
则 c.DataFloat =123.4567
```


三、接口格式及说明

命令格式参照 SCPI 指令格式, 具体的要求如下:

- 1、字符型传输,标准 ASCII 码;
- 2、字符不区分大小写;
- 3、指令采用树形结构,具体层次的大小由设备的实际情况确定;
- 4、指令层次之间以":"分隔开来,参数和指令之间是空格(推荐是一个空格,个数不限);
- 5、参数支持数字参数和布尔参数;
- 6、指令以"\n"(0x0A)作为结束符;
- 7、指令由层次命令、测试指令、通用命令组成;
- 8、指令中用"<>"括起来的参数可根据需要进行取值,具体取值范围参考协议中各命令。发送命令时,不要带<>。

四、LIV-4 具体指令

4.0、指令总览

PSS LIV-4 指令有:

编号	命令	说明
1	*IDN?	获取设备信息
2	<u>*RST</u>	设备复位
3	Source:PDVrd <pdvrd></pdvrd>	配置 PD 反偏电压,并输出
4	Source:Test Idp	测试 PD 暗电流
5	Configure: WaveLength < wavelength>	配置LIV测试波长
6	Configure: WaveLength?	查询 LIV 测试波长
7	Configure:LIVCurrent <curstart> <curstep> <curstop></curstop></curstep></curstart>	配置LIV扫描电流
8	Configure:LIVCurrent?	查询 LIV 扫描电流
9	Configure:LIVScanMode <scanmode></scanmode>	配置是连续模式还是脉冲模式
10	Configure:LIVScanMode?	查询当前 LIV 扫描电流模式
11	Source:Test LIV	LIV 扫描测试
12	Source:DCCurrent <dccurrent></dccurrent>	配置直流电流,并输出
13	Source:Test DC	直流测试
14	!Check: VrdSetDAC <k> </k>	配置 PD 反偏电压校准系数
15	!Check:VrdSetDAC?	查询 PD 反偏电压校准系数
16	!Check:LDCurSetDAC <k> </k>	配置电流设置值校准系数
17	!Check:LDCurSetDAC?	查询电流设置值校准系数
18	!Check:LDCurSampleR <k> </k>	配置电流采样值校准系数
19	!Check:LDCurSampleR?	查询电流采样值校准系数
20	!Check:LDVolR <k> </k>	配置电压校准系数
21	!Check:LDVolR?	查询电压校准系数
22	!Configure:PDCurRLevel <pdcurlevel></pdcurlevel>	配置背光电流档位
23	!Configure:PDCurRLevel?	查询背光电流档位

24	!Check:PDCurR <pdcurrlevel> <k> </k></pdcurrlevel>	配置背光电流校准系数
25	!Check:PDCurR? <pdcurrlevel></pdcurrlevel>	查询背光电流校准系数
26	!Configure:LDPowerRLevel <ldpowerrlevel></ldpowerrlevel>	配置光功率档位
27	!Configure:LDPowerRLevel?	查询光功率档位
28	!Check:LDPowerR <powerrlevel> <k> </k></powerrlevel>	配置光功率档位校准系数
29	!Check:LDPowerR? <powerrlevel></powerrlevel>	查询光功率档位校准系数
30	!Check:PIN <wavelength> <k></k></wavelength>	配置 PIN 管的响应系数
31	!Check:PIN? <wavelength></wavelength>	查询 PIN 管的响应系数
32	*help	查询设备的所有命令
33	*echo <switch> pss</switch>	设置回显开关
34	*Set:Idn <information> pss</information>	设置设备信息
35		

4.1、用户开放指令

*IDN?

说明:该命令用于获取设备相关信息,此命令返回的数据包括以下信息 公司名,产品名,产品 SN 号,软件版本 产品生产日期。

返回数据格式: Company, Product, SN, SoftWare Version Produce Date

如: PSS,LIV-4,14101001,V1.0.01 20140402

*RST

说明:该命令使设备复位,切掉所有电源和链接。

Source:PDVrd <PDVrd>

参数: (1) <PDVrd>指 PD 反偏电压,取值 0~5.0V,一位小数

(2) <PDVrd>取值 0 时断电;

说明: (1) 该命令用于配置 PD 反偏电压;

(2) 命令到后反偏电压立即输出。

Source: Test Idp

说明: (1) 该命令用于测试激光器内部 PD 的暗电流;

(3)命令一次,返回一次数据。

返回数据: Idp 单位 nA。

Configure: WaveLength < wavelength >

参数: <wavelength>取值范围 850,1270,1310,1330,1490,1550,1570。

说明:该命令用于配置 LIV 待测波长。

Configure: WaveLength?

说明:该命令用于查询当前 LIV 配置的测试波长。

返回数据: 850,1270,1310,1330,1490,1550,1570 其中一个。

Configure:LIVCurrent < curstart > < curstep > < curstop >

参数: <curstart>LIV 扫描测试电流起点,取值>=0,一位小数;

<curstep>LIV 扫描测试电流步进,取值 0.1~1.0mA,一位小数;

<curstop>LIV 扫描测试电流终点,取值<curstart>~100.0mA,一位小数;

说明:该命令用于配置 LIV 扫描电流。

Configure:LIVCurrent?

说明:该命令用于查询当前 LIV 扫描电流的配置。

返回数据: curstart curstep curstop。

Configure:LIVScanMode <ScanMode>

参数: <ScanMode>取值 Continue 或者 Pulse

说明:该命令用于配置 LIV 扫描电流是连续模式还是脉冲模式。

Configure:LIVScanMode?

说明: 该命令用于查询当前 LIV 扫描电流模式。

返回数据: Continue 或者 Pulse。

Source: Test LIV

说明:该命令用于启动 LIV 扫描测试。

返回数据: 因数据量太大, 返回数据结构发生变化, 如下:

D0	D1	D2	D3	D4	D5	D6	D7~Dn	Dn+1	Dn+2
Frame	不需	从机	Reserve	Address	Frame	Frame	采样样本	Verify	Frame

Begin	应答	数据	Byte		Lenth[1]	Lenth[0]			End
68	00	04	00	CardID	XX	XX	XXXX	XX	86

D5/D6: 数据长度=D5*256+D6.

数据区返回的长度 =((uint) ((终点电流值-起点电流值) /电流步进) + 1) * 10。

采样样本顺序为:

P1、P2、P3、P4, V2、V1, **I2、I1**, Im2、Im1; 第一个点

P1、P2、P3、P4, V2、V1, **I2、I1**, Im2、Im1; 第二个点

.....; 第 n 个点

如第 n 个点: <u>0C623044 8205 F807 3D0E</u>

电压、电流、背光数据位,低位在前,高位在后:

V2/V1 为电压 mV, 0x0582 为 1410mV;

I2/I1 为驱动电流 mA, 放大 100 倍, 0x07F8 十进制为 2040, 电流值为 20.40mA;

Im2/Im1 为背光电流 uA, 放大 10 倍, 0x0E3D 为 3645, 背光电流值为 364.5uA;

功率数据位,采用 float 型数据传输:

P1/P2/P3/P4 为功率的 float 型数据存储的 4 个字节,单位 uW,0x0C 0x62 0x30 0x44 对应的功率值为 705.532uW。

完成数据返回任务后, LIV 自动进入待机状态, 关闭驱动电流。

Source: DCCurrent < DCCurrent>

参数: (1) <DCCurrent>指直流电流,取值 0~100.0mA,一位小数

(2) <DCCurrent>取值0时断电;

说明: (1) 该命令用于配置直流电流输出大小;

(2) 命令到后电流立即输出。

Source: Test DC

说明:(1)该命令用于读取直流测试值;

(2) 命令一次, 返回一次数据。

返回数据: (1) 顺序: 功率 电压 电流 背光;

(2) 单位: 功率 uW, 电压 mV, 电流 mA, 背光 uA。

4.2 校准指令

该指令不对用户开放!

!Check:VrdSetDAC <k>

参数: <k>校准系数的 k 值, 校准系数的 b 值。

说明:该命令用于配置 PD 反偏电压校准系数,校准时采用线性拟合 v=kx+b。

!Check:VrdSetDAC?

说明:该命令用于查询 PD 反偏电压校准系数。

返回数据:校准系数的 k, b 值。

!Check:LDCurSetDAC <k>

参数: <k>校准系数的 k 值, 校准系数的 b 值。

说明:该命令用于配置电流设置值校准系数,校准时采用线性拟合 y=kx+b。

!Check:LDCurSetDAC?

说明:该命令用于查询电流设置值校准系数。

返回数据:校准系数的 k, b 值。

!Check:LDCurSampleR <k>

参数: <k>校准系数的 k 值, 校准系数的 b 值。

说明:该命令用于配置电流采样值校准系数,校准时采用线性拟合 y=kx+b。

!Check:LDCurSampleR?

说明:该命令用于查询电流采样值校准系数。

返回数据:校准系数的 k, b 值。

!Check:LDVolR <k>

参数: <k>校准系数的 k 值, 校准系数的 b 值。

说明:该命令用于配置电压校准系数,校准时采用线性拟合 y=kx+b。

!Check:LDVolR?

说明:该命令用于查询电压校准系数。

返回数据:校准系数的 k, b 值。

!Configure:PDCurRLevel <pdcurRlevel>

参数: <pdcurRlevel>背光电流档位,取值 1~3。

说明:该命令用于配置背光电流档位。

!Configure:PDCurRLevel?

说明:该命令用于查询背光电流档位。

返回数据: 背光电流档位值。

!Check:PDCurR <pdcurRlevel> <k>

参数: <pdcurRlevel>背光电流档位,取 1~3; <k>校准系数的 k 值, 校准系数的 b 值。

说明:该命令用于配置背光电流校准系数,校准时采用线性拟合 y=kx+b。

!Check:PDCurR? <pdcurRlevel>

说明:该命令用于查询背光电流校准系数。

返回数据:校准系数的 k,b 值。

!Configure:LDPowerRLevel <ldpowerRlevel>

参数: <ldpowerRlevel>功率档位, 取值 1~5。

说明:该命令用于配置功率档位。

!Configure:LDPowerRLevel?

说明:该命令用于查询功率档位。

返回数据: 功率档位值。

!Check:LDPowerR <powerRlevel> <k>

参数: <powerRlevel>取值范围 1~5, <k>校准系数的 k 值, 校准系数的 b 值。

说明:该命令用于配置功率档位校准系数,校准时采用线性拟合 v=kx+b。

!Check:LDPowerR? <powerRlevel>

说明:该命令用于查询功率档位校准系数。

返回数据:校准系数的 k,b 值。

!Check:PIN <wavelength> <k>

参数: <wavelength>取值范围 850~1570, <k>PIN 管响应系数。

说明:该命令用于配置 PIN 管的响应系数。

!Check:PIN? <wavelength>

说明: <wavelength>取值范围 850~1570, 该命令用于查询 PIN 管响应系数。

返回数据:校准系数的 k 值。

4.3 调试指令

调试指令不对用户开放!

*help

说明: 该命令用于查询设备的所有命令。

*echo <switch> pss

参数: < switch>取值 On 或者 Off。 说明: 该命令用于设置回显开关。

*Set:Idn <Information> pss

参数: < Information>取值: Company, Product, SN, SoftWare Version_ProduceDate

如: PSS,APDBI,14101001,V1.0.01 20140402

说明: 该命令用于设置设备相关信息,此命令返回的数据包括以下信息 公司名,产品名,产品 SN 号,软件版本 产品生产日期。

五、上位机软件推荐流程

武汉普赛斯电子技术有限公司 研发部