Categories for the Wonking

Mathematicians. 2nd ed.

Mac Lane. Springer.

Notes by @ naughie (Github)

https:// haughie. github. io/maclane_notes

§ 2.6. Comma Categories

Def.

C: category. be E: object

(b (C): category of objects under b with

objects: ⟨f.c⟩, where ce €:obj. and f:b→c in €.

o arrows: (f.c) - (f'.c'), where h: c-c' s.t f'= hof.

Objects: f

throws:

t

t

c

t

f

c

Exs.

@ *: 1-point see or & 5. (* 1 Set) = Set

Obj. * $\rightarrow \times$ (t. pair $(x \in X : X)$ of z.)

Arr. $(x : X) \rightarrow (x : X)$ (t. base point $z \in X$) map of z.

0 (ZJA6) = Abx

 \bigcirc Obj. $\mathbb{Z} \xrightarrow{f} G$ it. $(f(1), G) \cap \mathbb{Z}$. (base point f(1)).

Arr. $(q, G) \longrightarrow (q', G')$ it. base point $\mathbb{E}(\Re)$ group hom, $n \geq 1$.

Def.

E: cat. ae E: obj.

(Ela): category of objects onen a

 ϕ \star : 1-point set. \Rightarrow (Set \downarrow \star) \cong Set.

 $(f: \chi \rightarrow \chi)$ $(f: \chi \rightarrow \chi)$

ring how presoning angmentations as arrows.

Obj. R = 2 (4. augmentation 2041, Ith 3. (All 360).

An $(E,R) \rightarrow (E',R')$ (1. E = E' oh Ith Ith

Dot.
S:D ~ E: function. be E: obj.

(b (S): contegory of objects S-under b. with

Def.

T: E→ E: functor, a∈ E:obj.

(Tla): category of objects Town a with

obj. Te Am. Te \xrightarrow{Th} Te'

£x.

$$(x \cup U)$$
: map $x \xrightarrow{f} Uq$ as obj
 $qroup hom h: (f, q) \longrightarrow (f', q')$ s.c. $f' = ho f$ as an.

Obj. Te Am. Te
$$\xrightarrow{TE}$$
 Te'

Sd Sh Sd'

Am. Te \xrightarrow{TE} Te'

3 a composite

(TLS) 17 (618). (81a). (615). (Tla) n-A24cz" #3!

$$\emptyset$$
 (E(a)(d. $S=a:1 \rightarrow E:T=1_E:E \rightarrow E$ rutien.

EKS.

$$(C \downarrow C) = \emptyset$$

Am.
$$b \xrightarrow{f} a$$
 $b \xrightarrow{f} a$
 $b \xrightarrow{f} a$
 $b \xrightarrow{f} a$

Comma category" o Zaj o to *!

& do (nesp & ds) 17. anom a + b E. a = donf (nesp. b = cobf) 12 2 3 functor. (cf. § 2.5).

- (1) K: com. wing on x . (K (CRng) = CAlgk.
 - Obj. A : comining, f: K -> A : ring hom.

Am. (A.f) h (A.f'): ring hom s.t.

大の子 i.e. scalar 信 f. fr を保か ming hom h A か A' i.e., alg. hem. h:A A'.

- (2) ℓ : cat. $t \in \ell$: terminal $\Rightarrow (\ell) \geq \ell$.
 - Shell 122712 one and exactly one tate.

An. 6 h 6 s.z.

b h b t: torninal tors i, and agram 15 (1) \$1069 12 commutative.

(4) (S.A. Hug). T.S.D -> E: fundow & \$7.

T: T -> S: nat. transformation (#. T: D -> (TIS): funder s.t.

Pe = Qt = idp 1= 50 to 5 to 1. (P. Q; projs.)

 $\Leftrightarrow \forall d \in D, \exists \tau d : T d \longrightarrow S d s.t. \qquad T d \xrightarrow{\tau d} S d$

To The Sar

 $\tau: D \longrightarrow (\tau \downarrow S)$ s.t. $Pz = Qz = id_D$

€ & deD 124tl2. Td: Te - Sq (Je, g &D)

& d f d' 124th te Td Sq (∃kie →e', hiq → gr)

Te ↓ Q ↓ Sh

Te' To' Sq

s.t.

\$2.7. Graphs and Free Categories.

For the monoid onthing & Pentit.

X: set 615 & th I h & free manid F x 13.

- · Word X1 ... x (X; e X) e T () + + 5,
- · words on & to (juxtaposition) & to ze.
- · empty word & identity element 2 & 3

monord ont.

Th's equivalent to 条(午1)

It to The category E \$ 23.

Def. (§1.2)

G: (directed) graph x,t.

- @ O: set of objects (vertices)
- DA: set of amons (edges).

together wish functions

$$A \xrightarrow{\partial_0} O$$
, $\partial_0 f = don f$, $\partial_1 f = cod f$.

D: G - G': maphism of graphs &it.

- @ Do: 0 0'

- Grph: category of graphs.

Graphs (ilt. composite & identity b"tz".

diagram scheme +. precategory le & 15%.

Graphs obtained from categories

€: cat. 1= }+(2. U &: quagh €.

obj. · objects of &;

& an : amons of &

EROS. F: E → E', function 15.

graph morphism UF: UE - UE' 12 24 (to \$3.

.. U. Cat - Graph: forgetful function.

Categories obtained from graphs

O:set : fixed.

Dot.

O-graph 21t. graph where object set is D.

A morphism of O-graph &(+. O-graphs Poll or graph morphism or 22.

A. B: sets of anous (regarded as O-graphs) 2732.

 $A \times 0B := \{ \langle q, f \rangle \mid \partial_0 q = \partial_1 f, q \in A + C B \}$

(composable pairs of amons . =)

と戻める。

30<8.4>=30f. 31<9.6>= 81 9

2 d h, t. AxoB: O-graph (=7.53.

Xo 12 associative

 $(\bigcirc (A \times_0 B) \times_0 C \cong A \times_6 (B \times_0 C)$ $\cong \{ \langle h, g, f \rangle \mid \partial_0 h = \partial_1 g, \partial_0 g = \partial_2 f, h \in A, g \in B, f \in C \}$

任意のA:O-graphに対して、 Rom. OE to a Joseph 2 HT LZ113: arrows: O itself. © ∂0, ∂2 = id0 ; O == 0 -Б. С: cat. whose object set is 0 18. A: O-graph together with maphisms

 $C: A \times_0 A \longrightarrow A$ (composite)

(: O → A (:dontity)

S.C.

G: 0- graph 05 & = &(G) : cat & 1/43. 大雑花に言えば、Go composable pain f amous をすがと、繋げた"もの、 厳密に言えば

Thm. 2.1.

G = {A = 0}: small graph.

 $\Rightarrow \exists \ \ell = \ell_G : \text{small cat. } P: G \rightarrow UE : \text{morphism of graphs s.t.}$

V(B: cat., D: 6→UB: morphism of graphs),

F! D: E → B: fundor with (UD) · P = D.

"任意の graph morphism D:G-3UB を、 functor B: と --- B は 抗張 z"主る!")

排に、object set of B = O, D: O-graph morphism

 $\Rightarrow \tilde{D}|_{abi} = id$

P:G ~ UV 14. (G LU) or initial object 2"\$3.

in histage up to isomorphism.

Proof.