

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Europäisches Patentamt

(10)

European Patent Office

Office européen des brevets

(11) Publication number:

0 186 118**B1**

(12)

EUROPEAN PATENT SPECIFICATION(45) Date of publication of patent specification: **09.05.90**(51) Int. Cl.⁵: **C 07 C 205/45,**(21) Application number: **85116162.0**

C 07 C 201/06, C 07 C 255/50,

(22) Date of filing: **18.12.85**

A 01 N 35/06, A 01 N 41/06,

A 01 N 41/10, C 07 C 205/49,

C 07 C 317/24, C 07 C 317/44

(14) Certain 2-(2'nitrobenzoyl)-1,3-cyclohexanediones.

(10) Priority: **20.12.84 US 683900**(71) Proprietor: **STAUFFER CHEMICAL COMPANY**
Westport Connecticut 06881 (US)(45) Date of publication of application:
02.07.86 Bulletin 86/27(72) Inventor: **Carter, Charles Garvie**
1240 Willard Street
San Francisco Calif. 94117 (US)(45) Publication of the grant of the patent:
09.05.90 Bulletin 90/19(74) Representative: **Kraus, Walter, Dr. et al**
Patentanwälte Kraus, Weisert & Partner
Thomas-Wimmer-Ring 15
D-8000 München 22 (DE)(14) Designated Contracting States:
AT BE CH DE FR GB IT LI NL SE(56) References cited:
EP-A-0 007 243
EP-A-0 017 195
EP-A-0 135 191
EP-A-0 137 963
EP-A-0 162 336
EP-A-0 186 117

**The file contains technical information
submitted after the application was filed and
not included in this specification**

EP 0 186 118
B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

EP 0 186 118 B1

Description**Background of the Invention**

5 Compounds having the structural formula

10

wherein X can be an alkyl, n can be 0, 1, or 2, and R₁ can be phenyl or substituted phenyl are described in Japanese Patent Application 84632—1974 as being intermediates for the preparation of herbicidal compounds of the formula

15

20

wherein R₁, X, and n are as defined above, and R₂ is alkyl, alkenyl, or alkynyl. Specifically taught herbicidal compounds of this latter group are those where n is 2, X is 5,5-dimethyl, R₂ is allyl and R₁ is phenyl, 4-chlorophenyl or 4-methoxyphenyl.

25

The precursor intermediates for these three specifically taught compounds have no or almost no herbicidal activity.

European Patent Application No. 83 102 599.4 was published October 5, 1983 and relates to certain novel 2-(2-substituted benzoyl)-cyclohexane-1,3-diones as herbicides. The compounds have the following structural formula

30

35

40

wherein R and R¹ are hydrogen or C₁—C₄ alkyl; R² is chlorine, bromine, or iodine; R³ is hydrogen or halogen; and R⁴ is hydrogen, chlorine, bromine, iodine, C₁—C₄ alkyl, C₁—C₄ alkoxy, nitro or trifluoromethyl.

Description of the Invention

This invention relates to 2-(2-nitrobenzoyl)-1,3-cyclohexanediones and their use as herbicides.

45

The compounds have a nitro substitution in the 2-position of the phenyl moiety of their compounds.

50

The nitro substitution imparts exceptional herbicidal activity to the compounds of this invention.

One embodiment of this invention is an herbicidal composition comprising an herbicidally active 2-(2-nitrobenzoyl)-1,3-cyclohexanedione and an inert carrier therefor. The 4-, 5- and 6-positions of the 1,3-cyclohexanedione moiety can be substituted, preferably with the groups hereinafter recited. More preferably, the 1,3-cyclohexanedione moiety has no substitution or the 4- or 6-positions are substituted with one or two methyl groups. The 3-, 4- and 5-positions of the benzoyl moiety can be substituted, preferably with the groups hereinafter recited.

Also embodied within the scope of this invention are novel compounds having the following structural formula

55

60

wherein

65 R¹ is hydrogen or C₁—C₄ alkyl, preferably C₁—C₂ alkyl, more preferably methyl, most preferably R¹ is

EP 0 186 118 B1

hydrogen or methyl;

R² is hydrogen; C₁—C₄ alkyl, preferably C₁—C₂ alkyl, more preferably methyl or

wherein

R^a is C₁—C₄ alkyl, most preferably R² is hydrogen or methyl; orR¹ and R² together are alkylene having 3 to 6 carbon atoms;R³ is hydrogen or C₁—C₄ alkyl, preferably C₁—C₂ alkyl, more preferably methyl; most preferably R³ is hydrogen or methyl;R⁴ is hydrogen or C₁—C₄ alkyl, preferably C₁—C₂ alkyl, more preferably methyl; most preferably R⁴ is hydrogen or methyl;R⁵ is hydrogen or C₁—C₄ alkyl, preferably C₁—C₂ alkyl, more preferably methyl; most preferably R⁵ is hydrogen or methyl;R⁶ is hydrogen or C₁—C₄ alkyl, preferably C₁—C₂ alkyl, more preferably methyl, most preferably R⁶ is hydrogen;R⁷ and R⁸ independently are (1) hydrogen; (2) halogen, preferably chlorine, fluorine or bromine; (3) C₁—C₄ alkyl, preferably methyl; (4) C₁—C₄ alkoxy, preferably methoxy; (5) OCF₃; (6) cyano; (7) nitro; (8) C₁—C₄ haloalkyl, more preferably trifluoromethyl; (9) R⁸SO_n—wherein n is the integer 0, 1 or 2, preferably 2; andR^b is(a) C₁—C₄ alkyl, preferably methyl;25 (b) C₁—C₄ alkyl substituted with halogen or cyano, preferably chloromethyl, trifluoromethyl or cyanomethyl;

(c) phenyl; or

(d) benzyl;

30 (10) —NR^cR^d wherein R^c and R^d independently are hydrogen or C₁—C₄ alkyl; (11) R^cC(O)—wherein R^c is C₁—C₄ alkyl or C₁—C₄ alkoxy; or (12) —SO₂NR^cR^d wherein R^c and R^d are as defined, with the proviso that R⁷ is not attached to the 6-position.Preferably, R⁷ is in the 3-position. Most preferably R⁷ is hydrogen or C₁—C₄ alkoxy and R⁸ is hydrogen, chlorine, bromine, fluorine, CF₃, or R^bSO₂ wherein R^b is C₁—C₄ alkyl, preferably methyl.The term "C₁—C₄ alkyl" includes methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl and t-butyl. The term "halogen" includes chlorine, bromine, iodine and fluorine. The terms "C₁—C₄ alkoxy" includes methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, isobutoxy and t-butoxy. The term "haloalkyl" includes the eight alkyl groups with one or more hydrogens replaced by chlorine, bromine, iodine or fluorine.

40 Salts of the above-described compounds (as defined hereinafter) are also the subject of the instant invention.

The compounds of this invention can have the following four structural formulae because of tautomerism:

65 wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are as defined above.

EP 0 186 118 B1

The circled proton on each of the four tautomers is reasonably labile. These protons are acidic and can be removed by any base to give a salt having an anion of the following four resonance forms:

25 wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are as defined above.

Examples of cations of these bases are inorganic cations such as alkali metals e.g. lithium, sodium, and potassium organic cations such as substituted ammonium, sulfonium or phosphonium wherein the substituent is an aliphatic or aromatic group.

30 The compounds of this invention and their salts are active herbicides of a general type. That is, they are herbicidally effective against a wide range of plant species. The method of controlling undesirable vegetation of the present invention comprises applying an herbicidally effective amount of the above-described compounds to the area where control is desired.

35 The compounds of the present invention can be prepared by the following two-step general method. The process proceeds via the production of an enol ester intermediate as shown in reaction (1). The final product is obtained by rearrangement of the enol ester as shown in reaction (2). The two reactions may be conducted as separate steps by isolation and recovery of the enol ester using conventional techniques prior to conducting step (2), or by addition of a cyanide source to the reaction medium after the formation of the enol ester, or in one step by inclusion of the cyanide source at the start of reaction (1).

50 wherein R¹ through R⁸ and moderate base are as defined and X is halogen, preferably chlorine, C₁—C₄ alkyl-C(O)—O—, C₁—C₄ alkoxy-C(O)—O— or

60 wherein R⁷ and R⁸ in this portion of the molecule are identical with those in the reactant shown above and the moderate base is as defined, preferably tri-C₁—C₆ alkylamine, pyridine, alkali metal carbonate or alkali metal phosphate.

65 Generally, in step (1) mole amounts of the dione and substituted benzoyl reactant are used, along with a mole amount or excess of the base. The two reactants are combined in an organic solvent such as methylene chloride, toluene, ethyl acetate or dimethylformamide. The base or benzoyl reactant preferably

EP 0 186 118 B1

are added to the reaction mixture with cooling. The mixture is stirred at 0°C—50°C until the reaction is substantially complete.

* = Cyanide source.

wherein the moderate base and R¹ through R⁸ are as defined above.

Generally, in step (2) a mole of the enol ester intermediate is reacted with 1 to 4 moles of the base, preferably about 2 moles of moderate base and from 0.01 mole to about 0.5 mole or higher, preferably around 0.1 mole of the cyanide source (e.g., potassium cyanide or acetone cyanohydrin). The mixture is stirred in a reaction pot until the rearrangement is substantially complete at a temperature below 50°C, preferably about 20°C to about 40°C, and the desired product is recovered by conventional techniques.

The term "cyanide source" refers to a substance or substances which under the rearrangement conditions consists of or generates hydrogen cyanide and/or cyanide anion.

The process is conducted in the presence of a catalytic amount of a source of cyanide anion and/or hydrogen cyanide, together with a molar excess, with respect to the enol ester, of a moderate base.

Preferred cyanide sources are alkali metal cyanides such as sodium and potassium cyanide; cyanohydrins of methyl alkyl ketones having from 1—4 carbon atoms in the alkyl groups, such as acetone or methyl isobutyl ketone cyanohydrins; cyanohydrins of benzaldehyde or of C₂—C₆ aliphatic aldehydes such as acetaldehyde, propionaldehyde, etc., cyanohydrins; zinc cyanide; tri(lower alkyl) silyl cyanides, notably trimethyl silyl cyanide; and hydrogen cyanide itself. Hydrogen cyanide is considered most advantageous as it produces relatively rapid reaction and is inexpensive. Among cyanohydrins the preferred cyanide source is acetone cyanohydrin.

The cyanide source is used in an amount up to about 50 mole percent based on the enol ester. It may be used in as little as about 1-mole percent to produce an acceptable rate of reaction at about 40°C on a small scale. Larger scale reactions give more reproducible results with slightly higher catalyst levels of about 2 mole percent. Generally about 1—10 mole % of the cyanide source is preferred.

The process is conducted with a molar excess, with respect to the enol ester, of a moderate base. By the term "moderate base" is meant a substance which acts as a base yet whose strength or activity as a base lies between that of strong bases such as hydroxides (which could cause hydrolysis of the enol ester) and that of weak bases such as bicarbonates (which would not function effectively). Moderate bases suitable for use in this embodiment include both organic bases such as tertiary amines and inorganic bases such as alkali metal carbonates and phosphates. Suitable tertiary amines include trialkylamines such as triethylamine, trialkanolamines such as triethanolamine, and pyridine. Suitable inorganic bases include potassium carbonate and trisodium phosphate.

The base is used in an amount of from about 1 to about 4 moles per mole of enol ester, preferably about 2 moles per mole.

When the cyanide source is an alkali metal cyanide, particularly potassium cyanide, a phase transfer catalyst may be included in the reaction. Particularly suitable phase transfer catalysts are the Crown ethers.

A number of different solvents may be usable in this process, depending on the nature of the acid chloride or the acylated product. A preferred solvent for this reaction is 1,2-dichloroethane. Other solvents which may be employed, depending on the reactants or products include toluene, acetonitrile, methylene chloride, ethyl acetate, dimethylformamide, and methyl isobutyl ketone (MIBK).

In general, depending on the nature of the reactants and the cyanide source, the rearrangement may be conducted at temperatures up to about 50°C.

The above described substituted benzoyl chlorides can be prepared from the corresponding substituted benzoic acids according to the teaching of *Reagents for Organic Synthesis*, Vol. I, L. F. Fieser and M. Fieser, pp. 767—769 (1967).

wherein R⁷ and R⁸ are as previously defined.

EP 0 186 118 B1

The substituted benzoic acids can be prepared by a wide variety of general methods according to the teaching of *The Chemistry of Carboxylic Acids and Esters*, S. Patai, editor, J. Wiley and Sons, New York, N.Y. (1969) and *Survey of Organic Synthesis*, C. A. Buehler and D. F. Pearson, J. Wiley and Sons, (1970).

5 The following are three representative examples of the methods described therein.

In reaction (a) the substituted benzonitrile is heated to reflux in aqueous sulfuric acid for several hours. The mixture is cooled and the reaction product is isolated by conventional techniques.

wherein R⁷ and R⁸ are as previously defined.

30 In reaction (b) the substituted acetophenone is heated to reflux for several hours in an aqueous hypochlorite solution. The mixture is cooled and the reaction product is isolated by conventional techniques.

wherein R⁷ and R⁸ are as previously defined.

45 In reaction (c) the substituted toluene is heated to reflux in an aqueous solution of potassium permanganate for several hours. The solution is then filtered and the reaction product is isolated by conventional techniques.

The following examples teach the synthesis of representative compounds of this invention.

45 Example 1
2-(2'-Nitrobenzoyl)-1,3-cyclohexanedione

55 2-Nitrobenzoyl chloride (5.0 g, 27 mmol) and cyclohexanedione (3.0 g, 27 mmol) were dissolved in methylene chloride. Triethylamine (4.9 ml, 35 mmol) was added dropwise and the resulting solution stirred for one hour. The solution was washed with 2 normal hydrochloric acid (2N HCl), water, 5% potassium carbonate solution and saturated sodium chloride solution, dried over anhydrous magnesium sulfate ($MgSO_4$) and concentrated under vacuum. The residue was dissolved in 20 ml acetonitrile. Triethylamine (1 equivalent) and potassium cyanide (40 mol %) were added and the solution stirred for one hour at room temperature. After dilution with ether, the solution was washed with 2N HCl and extracted with 5% potassium carbonate solution. The aqueous extract was acidified and ether was added. Filtration of the resulting mixture yielded 3.2 g of the desired compound (m.p. 132–135°C) which was identified by nuclear magnetic resonance spectroscopy, infrared spectroscopy and mass spectroscopy.

EP 0 186 118 B1**Example 2
2-(2'-Nitrobenzoyl)-5,5-dimethyl-1,3-cyclohexanedione**

15 Triethylamine (3.4 ml, 25 mmol) was added dropwise to a methylene chloride solution of 2-nitrobenzoyl chloride (3.5 g, 19 mmol) and 5,5-dimethylcyclohexanedione (2.4 g, 19 mmol). After stirring for one hour at room temperature an additional 3 equivalents of triethylamine and 0.4 ml acetone cyanohydrin were added. The solution was stirred for 2.5 hours, then washed with 2N HCl and extracted with 5% potassium carbonate solution. The basic extracts were acidified with 2N HCl and extracted with ether. The ether portion was washed with saturated sodium chloride solution, dried over anhydrous magnesium sulfate and concentrated under vacuum. The residue was recrystallized from ethyl acetate yielding 2.0 g of the desired compound (m.p. 130—133°C) which was identified as such by nuclear magnetic resonance spectroscopy, infrared spectroscopy and mass spectroscopy.

20

The following is a table of certain selected compounds that are preparable according to the procedure described hereto. Compound numbers are assigned to each compound and are used throughout the remainder of the application.

25

30

35

40

45

50

55

60

65

EP 0 186 118 B1

TABLE I

Comp. No.	R ¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	n _D ³⁰ or m.p.
1	CH ₃	H	H	H	H	H	H	H	viscous oil
2	CH ₃	CH ₃	H	H	CH ₃	H	H	H	viscous oil
3a)	H	H	H	H	H	H	H	H	132-135
4	CH ₃	CH ₃	H	H	H	H	H	H	viscous oil
5b)	H	H	CH ₃	CH ₃	H	H	H	H	130-133
6	CH ₃	H	H	H	CH ₃	H	H	H	viscous oil
7	CH ₃	CH ₃	H	H	H	H	H	CF ₃	52-61
8	H	H	H	H	H	H	H	CF ₃	88-94
9	H	H	CH ₃	CH ₃	H	H	H	CF ₃	89-97
10	CH ₃	CH ₃	H	H	H	H	3-CH ₃	H	119-122
11	CH ₃	CH ₃	H	H	H	H	3-Cl	H	72-79
12	CH ₃	CH ₃	H	H	H	H	H	Cl	118-121
13	CH ₃	CH ₃	H	H	H	H	5-Cl	H	118-120
14	CH ₃	CH ₃	H	H	H	H	5-F	H	130-133
15	CH ₃	CH ₃	H	H	H	H	3-CH ₃ O	H	139-142
16	CH ₃	CH ₃	CH ₃	H	H	H	H	CF ₃	viscous oil
17	CH ₃	CH ₃	H	H	H	H	H	NO ₂	viscous oil
18	CH ₃	CH ₃	H	H	H	H	H	Br	viscous oil
19	CH ₃	CH ₃	H	H	H	CH ₃	5-CH ₃	H	viscous oil
20	CH ₃	CH ₃	H	H	H	H	5-CH ₃	H	viscous oil
21	H	H	H	H	H	H	H	F	123-128
22	CH ₃	CH ₃	H	H	H	H	H	F	viscous oil
23	H	H	H	H	H	H	H	Cl	viscous oil
24	CH ₃	CH ₃	H	H	H	H	H	SO ₂ CH ₃	130-133
25	CH ₃	CH ₃	H	H	H	H	H	SO ₂ -n-C ₃ H ₇	viscous oil
26	H	H	H	H	H	H	H	SO ₂ CH ₃	157-159
27	H	H	H	H	H	H	H	SO ₂ -n-C ₃ H ₇	120-123
28	CH ₃	CH ₃	H	H	H	H	5-F	H	165-195

EP 0 186 118 B1

TABLE I
(continued)

Comp. No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	nD ³⁰ or m.p.
29	CH ₃	CH ₃	H	H	H	H	H	SO ₂ -C ₂ H ₅	oil
30	CH ₃	CH ₃	H	H	CH ₃	H	H	SO ₂ -CH ₃	gum
31	CH ₃	n-C ₄ H ₉	H	H	H	H	H	H	viscous oil
32	H	H	i-C ₄ H ₉	H	H	H	H	H	viscous oil
33	H	H	H	H	H	H	H	SO ₂ -C ₂ H ₅	viscous oil
34	H	H	H	H	H	H	H	CN	viscous oil
35	H	H	H	H	H	H	H	SO ₂ N(CH ₃) ₂	158-159
36	CH ₃	CH ₃	H	H	H	H	H	SO ₂ N(CH ₃) ₂	120-130
37	H	H	H	H	H	H	H	SO ₂ N(C ₂ H ₅) ₂	158-163
38	CH ₃	CH ₃	H	H	H	H	H	SO ₂ N(C ₂ H ₅) ₂	oil
39	CH ₃	CH ₃	H	H	H	H	H	SO ₂ -N n-C ₄ H ₉ CH ₃	oil
40	H	H	CH ₃	CH ₃	H	H	H	SO ₂ -N(C ₂ H ₅) ₂	oil
41	H	H	H	H	H	H	H	SC ₂ H ₅	oil
42	H	H	H	H	H	H	H	S(O)-n-C ₃ H ₇	oil
43	H	H	H	H	H	H	H	S-n-C ₃ H ₇	oil
44	CH ₃	CH ₃	H	H	CH ₃	H	H	S-n-C ₃ H ₇	oil
45	CH ₃	CH ₃	H	H	H	H	H	S-n-C ₃ H ₇	oil
46	CH ₃	CH ₃	H	H	CH ₃	H	H	S-C ₂ H ₅	oil
47	CH ₃	CH ₃	H	H	H	H	H	S-C ₂ H ₅	oil
48	H	H	H	H	H	H	H	S-CH ₃	94-97
49	CH ₃	CH ₃	H	H	CH ₃	H	H	CF ₃	oil
50	CH ₃	CH ₃	H	H	H	H	H	S-CH ₃	oil
51	c)	H	i-C ₃ H ₇	H	H	H	H	H	145-148
52	CH ₃	CH ₃	H	H	H	H	5-CH ₃ O Br	oil	
53	H	H	CH ₃	CH ₃	H	H	H	Cl	oil
54	H	H	H	H	H	H	3-CH ₃ O Cl	oil	
55	CH ₃	CH ₃	H	H	H	H	3-CH ₃ O Cl	oil	
56	CH ₃	CH ₃	H	H	CH ₃	H	H	CH ₃ S	oil
57	H	H	H	H	H	H	H	SO ₂ N n-C ₃ H ₇ H	120-125

EP 0 186 118 B1

TABLE I
(continued)

	Comp.								n_D^{30} or m.p.	
	No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	
5	58	H	H	CH ₃	CH ₃	H	H	H	CN	175-177
10	59	CH ₃	CH ₃	H	H	H	H	H	CN	151-153
	60	CH ₃	CH ₃	H	H	CH ₃	H	H	CN	oil
15	61	c)	H	H	H	H	H	H	H	oil
	62	d)	H	H	H	H	H	H	H	oil
	63	H	H	CH ₃	H	H	H	H	Cl	110-115
	64	H	H	CH ₃	H	H	H	H	SO ₂ -n-C ₃ H ₇	oil
20	65	d)	CH ₃	H	H	H	H	H	Cl	oil
	66	H	H	H	H	H	H	H	SO ₂ CHCl ₂	oil
25	67	CH ₃	CH ₃	H	H	H	H	H	SO ₂ CHCl ₂	oil
	68	H	H	H	H	H	H	c)	Br	oil
	69	H	H	H	H	H	H	H	SO ₂ CH ₂ Cl	oil
30	70	CH ₃	CH ₃	H	H	H	H	H	SO ₂ CH ₂ Cl	wax
	71	d)	CH ₃	H	H	H	H	H	H	oil
	72	H	H	H	H	H	H	C ₂ H ₅ O	Cl	oil
35	73	CH ₃	CH ₃	H	H	CH ₃	H	CH ₃ O	CF ₃	oil

a) Prepared in Example I. c) = C₂H₅OC(O)-

40 b) Prepared in Example II. d) = i-C₃H₇OC(O)-

Herbicidal Screening Tests

45 As previously mentioned, the herein described compounds produced in the above-described manner are phytotoxic compounds which are useful and valuable in controlling various plant species. Selected compounds of this invention were tested as herbicides in the following manner.

50 *Pre-Emergence Herbicide Test:* On the day preceding treatment, seeds of eight different weed species are planted in loamy sand soil in individual rows using one species per row across the width of a flat. The seeds used are green foxtail (FT) (*Setaria viridis*), watergrass (WG) (*Echinochloa crusgalli*), wild oat (WO) (*Avena fatua*), annual morningglory (AMG) (*Pomoea lacunosa*), velvetleaf (VL) (*Abutilon theophrasti*), Indian mustard (MD) (*Brassica juncea*), curly dock (CD) (*Rumex crispus*), and yellow nutsedge (YNG) (*Cyperus esculentus*). Ample seeds are planted to give about 20 to 40 seedlings per row, after emergence, depending upon the size of the plants.

55 Using an analytical balance, 600 milligrams (mg) of the compound to be tested are weighed out on a piece of glassine weighing paper. The paper and compound are placed in a 60 milliliter (ml) wide-mouth clear bottle and dissolved in 45 ml of acetone or substituted solvent. Eighteen ml of this solution are transferred to a 60 ml wide-mouth clear bottle and diluted with 22 ml of a water and acetone mixture (19:1) containing enough polyoxyethylene sorbitan monolaurate emulsifier to give a final solution of 0.5% (v/v). The solution is then sprayed on a seeded flat on a linear spray table calibrated to deliver 80 gallons per acre (748 L/ha). The application rate is 4 lb/acre (4.48 Kg/ha).

60 After treatment, the flats are placed in the greenhouse at a temperature of 70 to 80°F and watered by sprinkling. Two weeks after treatment, the degree of injury or control is determined by comparison with untreated check plants of the same age. The injury rating from 0 to 100% is recorded for each species as percent control with 0% representing no injury and 100% representing complete control.

65 The results of the tests are shown in the following Table II.

EP 0 186 118 B1

TABLE IIPre-Emergence Herbicidal Activity
Application Rate — 4.48 kg/ha

Cmpd.	No.	FT	WG	WD	AMG	VL	MD	CD	YNG
	1	100	100	85	30	100	100	90	90
10	2	100	100	100	50	100	100	95	95
	3	100	100	85	25	100	100	100	95
	4	100	100	100	20	100	85	95	90
15	5	100	100	45	25	100	100	90	90
	6	100	100	95	40	100	100	85	90
	9	100	100	90	90	100	100	80	90
20	10	100	90	20	10	100	70	100	90
	11	90	100	50	230	100	100	90	90
	12	100	100	95	80	100	100	90	90
	13	40	75	0	10	80	100	100	90
25	14	50	0	0	0	100	80	70	90
	15	65	95	20	15	100	80	90	85
	17	100	100	60	30	100	100	90	35
30	18	100	100	100	100	100	100	100	95
	19	100	100	0	50	100	100	100	95
	20	75	100	0	25	100	90	65	90
	21	100	100	100	80	100	100	90	95
35	22	100	100	100	80	100	100	95	95
	23	100	100	98	95	100	100	100	95
	25	100	100	80	100	100	100	80	-
40	26	100	100	75	100	100	100	80	-
	27	90	100	50	100	100	100	100	90
	28	75	50	50	0	100	100	90	65
	30	100	100	85	100	100	100	95	90
45	31	85	75	0	25	100	25	0	35
	32	83	85	35	20	95	100	75	50
	36	100	100	50	100	100	100	100	75
50	37	20	75	0	20	100	95	100	75
	38	85	95	40	60	100	100	75	85
	39	85	95	45	75	100	95	70	90
55	51	60	60	35	0	25	0	0	30
	52	75	75	0	50	90	75	40	0
	65	100	100	80	100	100	100	-	80

A blank (-) indicates that the weed was not tested.

60

Post-Emergence Herbicide Test: This test is conducted in an identical manner to the testing procedure for the pre-emergence herbicide test, except the seeds of the eight different weed species are planted 10–12 days before treatment. Also, watering of the treated flats is confined to the soil surface and not to the foliage of the sprouted plants.

EP 0 186 118 B1

The results of the post-emergence herbicide test are reported in Table III.

TABLE III

Post-Emergence Herbicidal Activity
Application Rate — 4.48 kg/ha

	Cmpd.	No.	FT	WG	WD	AMG	VL	MD	CD	YNG
10		1	95	75	85	70	100	90	85	40
		2	45	70	95	75	100	90	100	65
		3	100	80	100	90	-	100	100	80
15		4	100	80	100	100	-	100	85	75
		5	90	70	45	60	95	70	60	80
		6	95	75	80	70	100	90	90	65
20		9	100	90	90	100	100	100	95	85
		10	45	75	10	15	100	100	20	75
		11	100	70	60	75	100	100	100	45
25		12	100	75	100	100	100	100	90	90
		13	30	55	0	30	60	60	15	60
		14	20	65	0	40	70	60	40	25
30		15	20	75	30	20	100	70	60	40
		17	85	80	50	65	95	95	100	60
		18	100	95	100	100	100	100	100	75
		19	20	95	30	100	100	35	30	70
35		20	30	80	15	100	100	45	20	70
		21	100	80	100	55	100	90	100	80
		22	100	80	100	60	100	95	95	95
40		23	100	90	90	100	100	100	85	70
		25	70	75	50	85	90	85	60	75
		26	100	85	85	95	95	95	90	60
45		27	90	90	60	100	100	100	100	-
		28	15	45	20	50	75	80	15	30
		30	100	100	80	85	85	85	100	-
50		31	80	90	100	100	100	100	100	60
		32	75	85	85	75	75	90	95	50
		36	35	50	35	70	50	50	35	60
55		37	60	75	15	70	70	90	90	40
		38	95	90	65	70	90	90	100	50
		39	95	85	30	50	70	80	100	50
60		51	60	75	60	35	30	60	40	60
		52	60	75	25	100	100	100	100	75
		65	70	50	70	90	80	85	-	80

A blank (-) indicates the weed was not tested.

EP 0 186 118 B1

Pre-Emergence Multi-Weed Herbicide Test: Several compounds were evaluated at an application rate of 2, 1, 1/2 or 1/4 lb/acre (2.24, 1.12, 0.56 or 0.28 kg/ha) for pre-emergence activity against a larger number of weed species.

5 The process was generally similar to the pre-emergence herbicide test described above except that only 300, 150, 75 or 37.5 milligrams of test compound were weighed out and the application rate was 40 gallons per acre.

Redroot pigweed (PW) and curly dock (CD) were eliminated in this test and the following weed species were added:

10	Grasses:	downy brome annual ryegrass shattercane hemp sesbania sickpod cocklebur broadleaf signalgrass	<i>Bromus tectorum</i> <i>Lolium multiflorum</i> <i>Sorghum bicolor</i> <i>Sesbania exaltata</i> <i>Cassia obtusifolia</i> <i>Xanthium sp.</i> <i>Brachiaria platyphylla</i>	(DB) (ARG) (SHC) (SESB) (SP) (CB) (BSG)
15				

The results of the test are shown in Tables IV, V and VI.

20

TABLE IV
Pre-Emergence Multi-weed Herbicide Test

Application Rate - 2.24 kg/ha

25	Cmpd.	Application Rate - 2.24 kg/ha														
		No.	DB	FT	ARG	WG	SHC	WO	BSG	AMG	SESB	VL	SP	MD	YNG	CB
	7	100	100	100	100	100	100	100	100	100	100	100	100	100	95	100
30	8	100	100	100	100	100	100	100	100	100	100	100	100	100	95	-
	16 ^a	70	100	65	100	100	60	98	55	100	100	100	90	100	90	-
	24	100	100	100	100	100	100	100	100	100	100	100	100	100	100	-
35	29	100	100	100	100	100	100	100	100	100	100	100	30	100	95	80
	33	75	15	60	90	90	20	95	100	100	100	100	60	100	95	100
	53	100	100	100	100	100	90	100	100	100	100	100	100	100	95	100
	57	100	100	25	100	100	30	25	100	100	100	100	100	100	95	100
40	64 ^a	-	0	0	95	35	0	15	50	75	75	25	-	75	40	
	66 ^a	-	0	15	15	50	20	50	100	100	75	0	-	90	100	
	67 ^a	-	0	0	100	100	0	25	95	75	50	25	-	30	75	
45	69 ^a	-	30	0	100	100	0	70	100	100	100	35	-	95	100	
	70 ^a	-	100	10	100	100	25	65	100	100	100	0	-	95	100	

(-) = Not tested.

(a) = Tested at 0.28 kg/ha.

50

55

60

65

EP 0 186 118 B1

TABLE V
Pre-Emergence Multi-weed Herbicide Test

Application Rate - 1.12 kg/ha																
Cmpd.		No.	DB	FT	ARG	WG	SHC	WO	BSG	AMG	SESB	VL	SP	MD	YNG	CB
10	34	90	85	30	95	-	45	98	75	100	100	100	40	100	50	-
	35	100	85	70	100	-	90	100	100	100	100	100	40	100	75	-
	40	100	100	20	100	-	70	100	98	98	100	100	20	100	50	-
	41	100	100	80	100	-	60	100	100	100	100	100	25	100	95	-
15	42	50	60	40	85	-	30	100	100	100	100	100	100	100	90	-
	43	90	95	60	100	-	30	98	100	98	100	100	45	100	95	-
	44	60	100	20	100	-	60	100	100	90	100	100	20	100	80	-
	45	95	100	35	100	-	60	90	100	100	100	100	0	100	90	-
20	46	100	100	90	100	-	95	100	100	100	100	100	40	100	95	-
	47	100	100	100	100	-	98	100	100	98	100	100	30	100	95	-
	48	100	100	100	100	-	100	100	100	100	100	100	90	100	100	-
	49	100	100	100	100	-	100	100	100	100	100	100	90	100	-	-
25	50	100	100	100	100	100	85	100	100	100	100	100	90	100	98	-
	54	100	100	85	100	100	15	100	25	100	100	100	65	100	95	100
	55	85	100	35	100	98	15	100	15	100	100	100	65	100	95	-
	56	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
30	58	98	100	40	95	40	20	95	100	100	100	100	85	100	100	95
	59	100	100	100	100	100	90	100	100	100	100	100	100	100	85	80
	60	100	100	100	100	100	100	100	100	100	100	100	75	100	85	80

(-) = Not tested.

TABLE VI
Pre-Emergence Multi-weed Herbicide Test

Application Rate - 0.56 kg/ha																
Cmpd.		No.	DB	FT	ARG	WG	SHC	WO	BSG	AMG	SESB	VL	SP	MD	YNG	CB
45	61	-	100	65	100	65	20	80	20	40	80	10	-	20	0	
	62	-	50	35	70	50	0	0	0	25	50	0	-	0	0	
	63	100	100	100	100	100	95	100	90	95	100	75	100	100	100	85
	68	-	0	20	0	0	0	0	60	100	100	90	-	75	75	
50	71	-	50	40	50	75	40	35	75	50	70	0	-	75	75	
	72	-	35	60	100	85	50	100	25	65	100	35	-	100	35	
	73	-	90	70	100	95	25	0	70	100	100	0	-	50	25	

(-) = Not tested.

60 **Post-Emergence Multi-Weed Herbicide Test:** This test is conducted in an identical manner to the testing procedure for the post-emergence herbicide test, except the seeds of the eight weed species used in the pre-emergence multi-weed herbicide test were used and the seeds were planted 10—12 days before treatment. Also, watering of the treated flats is confined to the soil surface and not to the foliage of the sprouted plants.

65 The results of the post-emergence multi-weed herbicide test are reported in Tables VII, VIII and IX.

EP 0 186 118 B1**TABLE VII**
Post-Emergence Multi-Weed Herbicidal Activity
Application Rate — 2.24 kg/ha

Cmpd.	No.	DB	FT	ARG	WG	SBC	WO	BSG	AMG	SESB	VL	SP	MD	YNG	CB
	7	100	100	100	100	80	90	10	95	100	100	55	100	45	100
	16a	100	85	35	100	100	100	100	100	100	100	100	100	85	70
	24	100	100	100	100	100	100	100	100	100	100	100	100	100	-
	29	100	100	60	100	90	100	100	100	100	100	100	100	100	-
	33	90	98	85	100	100	80	100	100	100	100	90	100	90	100
	53	100	100	60	100	100	100	100	100	100	100	100	100	100	-
	57	25	40	10	100	10	0	10	100	95	100	35	100	-	100
	64a	-	0	0	90	0	0	85	40	100	80	50	-	35	100
	66a	-	0	0	65	0	0	70	75	80	75	0	-	25	75
	67a	-	0	0	75	35	0	40	70	80	60	0	-	0	100
	69a	-	0	0	80	35	0	100	90	100	100	40	-	35	100
	70a	-	100	0	100	70	90	90	100	100	100	30	-	25	100

(-) = Not tested.

(a) = Tested at 0.28 kg/ha.

TABLE VIII**Post-Emergence Multi-weed Herbicide Test****Application Rate — 1.12 kg/ha**

Cmpd.	No.	DB	FT	ARG	WG	SBC	WO	BSG	AMG	SESB	VL	SP	MD	YNG	CB
	34	90	85	30	95	-	45	98	75	100	100	40	100	50	-
	35	100	85	70	100	-	90	100	100	100	100	40	100	75	-
	40	75	100	5	100	-	50	75	100	100	100	40	100	30	-
	41-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	42	40	100	35	100	-	50	80	100	100	100	80	100	70	-
	43	60	70	20	100	-	55	60	100	100	100	95	100	70	-
	44	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	45	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	46	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	47	90	100	35	100	-	75	90	100	100	100	25	100	45	-
	48	80	100	60	100	-	60	80	100	100	100	85	100	60	-
	49	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	50	90	80	60	95	80	90	100	100	100	100	65	100	80	-
	54	35	50	30	100	30	15	90	100	100	100	100	100	95	-
	55	100	100	20	100	90	20	100	90	100	100	100	100	-	-
	56	75	90	75	95	90	25	100	100	100	100	90	100	90	100
	58	70	100	40	100	95	30	95	100	95	100	95	100	95	85
	59	90	100	95	100	100	50	100	100	100	100	95	100	100	95
	60	95	100	100	100	100	75	95	100	100	100	95	100	100	100

(-) = Not tested.

EP 0 186 118 B1

TABLE IXPost-Emergence Multi-weed Herbicide Test

5	Application Rate - 0.56 kg/ha														
	Cmpd.	No.	DB	FT	ARG	WG	SHC	WO	BSG	AMG	SESB	VL	SP	MD	YNG
10	61	-	40	0	50	35	0	40	75	95	100	0	-	25	50
10	62	-	35	0	20	0	0	20	35	60	100	0	-	0	100
10	63	100	100	85	98	85	100	100	100	100	100	100	85	85	95
15	68	-	30	40	85	0	25	60	80	95	100	95	-	0	80
15	71	-	50	0	80	65	0	75	100	80	100	50	-	25	100
15	72	-	90	70	80	50	50	75	85	100	100	90	-	100	100
15	73	-	100	15	100	75	75	85	100	100	90	60	-	80	100

20 (-) = Not tested.

The compounds of the present invention are useful as herbicides and can be applied in a variety of ways at various concentrations. In practice, the compounds herein defined are formulated into herbicidal compositions, by admixture, in herbicidally effective amounts, with the adjuvants and carriers normally employed for facilitating the dispersion of active ingredients for agricultural applications, recognizing the fact that the formulation and mode of application of a toxicant may affect the activity of the materials in a given application. Thus, these active herbicide compounds may be formulated as granules of relatively large particle size, as wettable powders, as emulsifiable concentrates, as powdery dusts, as solutions or as any of several other known types of formulations, depending upon the desired mode of application. Preferred formulations for pre-emergence herbicidal applications are wettable powders, emulsifiable concentrates and granules. These formulations may contain as little as about 0.5% to as much as about 95% or more by weight of active ingredient. A herbicidally effective amount depends upon the nature of the seeds or plants to be controlled and the rate of application varies from about 0.05 to approximately 25 pounds per acre, preferably from about 0.1 to about 10 pounds per acre.

25 Wettable powders are in the form of finely divided particles which disperse readily in water or other dispersants. The wettable powder is ultimately applied to the soil either as a dry dust or as a dispersion in water or other liquid. Typical carriers for wettable powders include fuller's earth, kaolin clays, silicas and other readily wet organic or inorganic diluents. Wettable powders normally are prepared to contain about 5% to about 95% of the active ingredient and usually also contain a small amount of wetting, dispersing, or emulsifying agent to facilitate wetting and dispersion.

30 Emulsifiable concentrates are homogeneous liquid compositions which are dispersible in water or other dispersant, and may consist entirely of the active compound with a liquid or solid emulsifying agent, or may also contain a liquid carrier, such as xylene, heavy aromatic naphthal, isophorone and other non-volatile organic solvents. For herbicidal application, these concentrates are dispersed in water or other liquid carrier and normally applied as a spray to the area to be treated. The percentage by weight of the essential active ingredient may vary according to the manner in which the composition is to be applied, but in general comprises about 0.5% to 95% of active ingredient by weight of the herbicidal composition.

35 Granular formulations wherein the toxicant is carried on relatively coarse particles, are usually applied without dilution to the area in which suppression of vegetation is desired. Typical carriers for granular formulations include sand, fuller's earth, bentonite clays, vermiculite, perlite and other organic or inorganic materials which absorb or which may be coated with the toxicant. Granular formulations normally are prepared to contain about 5% to about 25% of active ingredients which may include surface-active agents such as heavy aromatic naphthas, kerosene or other petroleum fractions, or vegetable oils; and/or stickers such as destrins, glue or synthetic resins.

40 Typical wetting, dispersing or emulsifying agents used in agricultural formulations include, for example, the alkyl and alkylaryl sulfonates and sulfates and their sodium salts; polyhydric alcohols; and other types of surface-active agents, many of which are available in commerce. The surface-active agent, when used, normally comprises from 0.1% to 15% by weight of the herbicidal composition.

45 Dusts, which are free-flowing admixtures of the active ingredient with finely divided solids such as talc, clays, flours and other organic and inorganic solids which act as dispersants and carriers for the toxicant, are useful formulations for soil-incorporating application.

50 Pastes, which are homogeneous suspensions of a finely divided solid toxicant in a liquid carrier such as water or oil, are employed for specific purposes. These formulations normally contain about 5% to about 95% of active ingredient by weight, and may also contain small amounts of a wetting, dispersing or emulsifying agent to facilitate dispersion. For application, the pastes are normally diluted and applied as a spray to the area to be affected.

EP 0 186 118 B1

Other useful formulations for herbicidal applications include simple solutions of the active ingredient in a dispersant in which it is completely soluble at the desired concentration, such as acetone, alkylated naphthalenes, xylene and other organic solvents. Pressurized sprays, typically aerosols, wherein the active ingredient is dispersed in finely-divided form as a result of vaporization of a low boiling dispersant solvent carrier, such as the Freons, may also be used.

The phytotoxic compositions of this invention are applied to the plants in the conventional manner. Thus, the dust and liquid compositions can be applied to the plant by the use of power-dusters, boom and hand sprayers and spray dusters. The compositions can also be applied from airplanes as a dust or a spray because they are effective in very low dosages. In order to modify or control growth of germinating seeds or emerging seedlings, as a typical example, the dust and liquid compositions are applied to the soil according to conventional methods and are distributed in the soil to a depth of at least 1/2 inch below the soil surface. It is not necessary that the phytotoxic compositions be admixed with the soil particles since these compositions can also be applied merely by spraying or sprinkling the surface of the soil. The phytotoxic compositions of this invention can also be applied by addition to irrigation water supplied to the field to be treated. This method of application permits the penetration of the compositions into the soil as the water is absorbed therein. Dust compositions, granular compositions or liquid formulations applied to the surface of the soil can be distributed below the surface of the soil by conventional means such as discing, dragging or mixing operations.

20 EMULSIFIABLE CONCENTRATE FORMULATIONS

	<u>General Formula with Ranges</u>	<u>Specific Formula</u>	
	Herbicidal compound	5—55 herbicidal compound	54
	surfactant(s)	5—25 proprietary blend of oil-	
25	solvent(s)	20—90 soluble sulfonates	
		— polyoxyethylene ethers	10
		100% polar solvent	27
		petroleum hydrocarbon	9
30			100%

WETTABLE POWDER FORMULATIONS

35	herbicidal compound	3—90 herbicidal compound	80
	wetting agent	0.5—2 sodium dialkyl naphthalene	
	dispersing agent	1—8 sulfonate	0.5
	diluent(s)	8.5—87 sodium lignosulfonate	7
		— attapulgite clay	12.5
40		100%	100%

EXTRUDED GRANULAR FORMULATIONS

45	herbicidal compound	1—20 herbicidal compound	10
	binding agent	0—10 lignin sulfonate	5
	diluent(s)	70—99 calcium carbonate	85
		100%	100%

50 FLOWABLE FORMULATIONS

	herbicidal compound	20—70 herbicidal compound	45
	surfactant(s)	1—10 polyoxyethylene ether	5
	suspending agent(s)	0.05—1 attagel	0.05
55	antifreeze agent	1—10 propylene glycol	10
	antimicrobial agent	1—10 BIT	0.03
	antifoam agent	0.1—1 silicone defoamer	0.02
	solvent	7.95—77.85 water	39.9
60		100%	100%

The phytotoxic compositions of this invention can also contain other additaments, for example, fertilizers and other herbicides, pesticides and the like, used as adjuvant or in combination with any of the above-described adjuvants. Other phytotoxic compounds useful in combination with the above-described compounds include, for example, anilides such as 2-benzothiazole-2-yloxy-N-methyl acetanilide, 2-chloro-2',6'-dimethyl-N-(n-propylethyl) acetanilide, 2-chloro-2',6'-diethyl-N-(butoxymethyl) acetanilide; 2,4-

EP 0 186 118 B1

dichlorophenoxyacetic acids, 2,4,5-trichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid and the salts, esters and amides thereof; triazine derivatives, such as 2,4-bis(3-methoxypropylamino)-6-methyl-thio-s-triazine, 2-chloro-4-ethylamino-6-isopropylamino-s-triazine, and 2-ethylamino-4-isopropyl-amino-6-methyl-mercaptop-s-triazine; urea derivatives, such as 3-(3,5-dichlorophenyl)-1,1-dimethylurea and 3-(p-chlorophenyl)-1,1-dimethylurea; and acetamides such as N,N-diallyl- α -chloroacetamide, and the like; benzole acids such as 3-amino-2,5-dichlorobenzoic acid; thiocarbamates such as S-(1,1-dimethylbenzyl)piperidene-1-carbothioate, 3-(4-chlorophenyl)-methyl diethylcarbothioate, ethyl-1-hexahydro-1,4-azepine-1-carbothioate, S-ethyl-hexahydro-1H-azepine-1-carbothioate, S-propyl N,N-dipropylthiocarbamate, S-ethyl N,N-dipropylthiocarbamate, S-ethyl cyclohexylethylthiocarbamate and the like; anilines such as 4-(methylsulfonyl)-2,6-dinitro-N,N-substituted aniline, 4-trifluoromethyl-2,6-dinitro-N,N-dipropyl aniline, 4-trifluoromethyl-2,6-dinitro-N-ethyl-N-butyl aniline, 2-[4-(2,4-dichlorophenoxy)phenoxy]propanoic acid, 2-[1-(ethoxyimino)butyl]-5-[2-ethylthio]propyl]-3-hydroxy-2-cyclohexene-1-one, (\pm)-butyl-2[4-[(5-trifluoromethyl)-2-pyridinyl]oxy]phenoxy]propane, sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate, 3-isopropyl-1H-2,1,3-benzothiadiazine-4(3H)-one-2,2-dioxide, and 4-amino-6-tert-butyl-3(methylthio)-as-triazin-5(4H)-one or 4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one and S-(O,O-diisopropyl)-benzene sulfonamide. Fertilizers useful in combination with the active ingredients include, for example, ammonium nitrate, urea and superphosphate. Other useful additaments include materials in which plant organisms take root and grow such as compost, manure, humus, sand, and the like.

20 Claims for the Contracting States: BE CH DE FR GB IT LI NL SE

25 1. A compound of the formula

30 wherein

35 R¹ is hydrogen or C₁—C₄ alkyl;
R² is hydrogen, C₁—C₄ alkyl or40 wherein R^a is C₁—C₄ alkyl; or

R¹ and R² together are alkylene having 3 to 6 carbon atoms;
 R³ is hydrogen or C₁—C₄ alkyl;
 R⁴ is hydrogen or C₁—C₄ alkyl;
 R⁵ is hydrogen or C₁—C₄ alkyl;
 R⁶ is hydrogen or C₁—C₄ alkyl; and
 R⁷ and R⁸ independently are (1) hydrogen; (2) halogen; (3) C₁—C₄ alkyl; (4) C₁—C₄ alkoxy; (5) OCF₃; (6) cyano; (7) nitro; (8) C₁—C₄ haloalkyl; (9) R^bSO_n—wherein n is the integer 0, 1 or 2; and R^b is (a) C₁—C₄ alkyl; (b) C₁—C₄ alkyl substituted with halogen or cyano; (c) phenyl; or (d) benzyl; (10) —NR^cR^d wherein R^c and R^d independently are hydrogen or C₁—C₄ alkyl; (11) R^eC(O)—wherein R^e is C₁—C₄ alkyl or C₁—C₄ alkoxy; or (12) SO₂NR^cR^d wherein R^c and R^d are as defined, with the proviso that R⁷ is not attached to the 6-position.

50 2. The compounds of Claim 1 wherein R¹ is hydrogen or methyl; R² is hydrogen or methyl; R³ is hydrogen or methyl; R⁴ is hydrogen or methyl; R⁵ is hydrogen or methyl; R⁶ is hydrogen or methyl; R⁷ and R⁸ independently are (1) hydrogen; (3) C₁—C₄ alkyl; (4) C₁—C₄ alkoxy; (5) OCF₃; (6) cyano; (7) nitro; (8) C₁—C₄ haloalkyl; (9) R^bSO_n—wherein n is the integer 0, 1 or 2; and R^b is (a) C₁—C₄ alkyl; (b) C₁—C₄ alkyl substituted with halogen or cyano; (c) phenyl; or (d) benzyl; (10) —NR^cR^d wherein R^c and R^d independently are hydrogen or C₁—C₄ alkyl; (11) R^eC(O)—wherein R^e is C₁—C₄ alkyl or C₁—C₄ alkoxy; or (12) SO₂NR^cR^d wherein R^c and R^d are as defined.

55 3. The compound of Claim 2 wherein R⁷ and R⁸ are independently are hydrogen; chlorine; fluorine; bromine; methyl; methoxy; OCF₃; cyano; nitro; trifluoromethyl; R^bSO_n—wherein n is the integer 2 and R^b is methyl, chloromethyl, trifluoromethyl, cyanomethyl, ethyl, or n-propyl; —NR^cR^d wherein R^c and R^d independently are hydrogen or C₁—C₄ alkyl; R^eC(O)—where R^e is C₁—C₄ alkyl or C₁—C₄ alkoxy or SO₂NR^cR^d wherein R^c and R^d are as defined and R⁷ is in the 3-position.

60 4. The compound of Claim 2 wherein R⁷ is hydrogen and R⁸ is hydrogen, chlorine, bromine, fluorine, CF₃ or R^bSO₂ wherein R^b is C₁—C₄ alkyl or C₁—C₄ haloalkyl.

65 5. The compound of Claim 2 wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is

EP 0 186 118 B1

hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is hydrogen.

6. The compound of Claim 2 wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is methyl; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is hydrogen.

5 7. The compound of Claim 2 wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is trifluoromethyl.

8. The compound of Claim 2 wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is trifluoromethyl.

9. The compound of Claim 2 wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is chlorine.

10 10. The compound of Claim 2 wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is fluorine.

11. The compound of Claim 2 wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is chlorine.

15 12. The compound of Claim 2 wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is CH₃SO₂⁻.

13. The compound of Claim 2 wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is n-C₃H₅SO₂.

14. The compound of Claim 2 wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is CH₃SO₂.

20 15. The compound of Claim 2 wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is C₂H₅SO₂.

16. The compounds of Claim 2 wherein R⁷ is hydrogen.

17. The compounds of Claim 3 wherein R⁷ is hydrogen.

18. The compound of Claim 2 wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is cyano.

19. The compound of Claim 1 wherein R¹ and R² are hydrogen or both methyl.

20. The compound of Claim 19 wherein R⁸ is —SO₂CH₃.

21. The compound of Claim 19 wherein R⁸ is —SO₂CH₂Cl.

22. The compound of Claim 1 wherein R⁸ is CF₃.

23. The compound of Claim 1 wherein R⁸ is —SO₂CH₃.

24. The compound of Claim 1 wherein R⁸ is chlorine.

25. The compound of Claim 1 wherein R⁸ is —SO₂CH₂Cl.

26. The compound of Claim 1 wherein R⁸ is —SO₂n-C₃H₇.

27. The method of controlling undesirable vegetation comprising applying to the area where control is desired, an herbicidally effective amount of a compound described in Claims 1—26.

28. An herbicidal composition comprising an herbicidally active 2-(2-nitrobenzoyl)-1,3-cyclohexanedione and an inert carrier therefor.

29. The herbicidal composition of Claim 28 wherein the 2-(2-nitrobenzoyl)-1,3-cyclohexanedione is a compound of Claims 1—26.

30. The method of controlling undesirable vegetation comprising applying to the area where control is desired, an herbicidal composition comprising an herbicidally active 2-(2-nitrobenzoyl)-1,3-cyclohexanedione and an inert carrier therefor.

31. The method of Claim 30 wherein the 2-(2-nitrobenzoyl)-1,3-cyclohexanedione has a C₁—C₄ alkylsulfonyl or C₁—C₄ haloalkylsulfonyl substitution on the phenyl ring.

45 32. The method of Claim 31 wherein said alkylsulfonyl or haloalkylsulfonyl substitution is at the 4-position of the phenyl ring.

33. The herbicidal composition of Claim 28 wherein the 2-(2-nitrobenzoyl)-1,3-cyclohexanedione has a C₁—C₄ alkylsulfonyl or C₁—C₄ haloalkylsulfonyl substitution on the phenyl ring.

34. The herbicidal composition of Claim 33 wherein said alkylsulfonyl or haloalkylsulfonyl substitution is at the 4-position of the phenyl ring.

50 35. The method of Claim 30 wherein the 2-(2-nitrobenzoyl)-1,3-cyclohexanedione has a C₁—C₄ haloalkyl substitution on the phenyl ring.

36. The method of Claim 30 wherein said haloalkyl substitution is at the 4-position on the phenyl ring.

37. The herbicidal composition of Claim 28 wherein the 2-(2-nitrobenzoyl)-1,3-cyclohexanedione has a C₁—C₄ haloalkyl substitution on the phenyl ring.

55 38. The herbicidal composition of Claim 37 wherein said haloalkyl substitution is at the 4-position of the phenyl ring.

39. The herbicidal composition of Claim 37 wherein said haloalkyl is CF₃.

40. The method of Claim 35 wherein said haloalkyl is CF₃.

41. The method of Claim 27 wherein R¹ and R² are hydrogen or both methyl.

60 42. The method of Claim 41 wherein R⁸ is —SO₂CH₃, —SO₂CH₂Cl, CF₃, —SO₂CH₃, chlorine, —SO₂CH₂Cl or —SO₂n-C₃H₇.

43. The composition of matter of Claim 28 wherein R¹ and R² are hydrogen or both methyl.

44. The composition of matter of Claim 43 wherein R⁸ is —SO₂CH₃, —SO₂CH₂Cl, CF₃, —SO₂CH₃, chlorine, —SO₂CH₂Cl or —SO₂n-C₃H₇.

EP 0 186 118 B1

45. A process for preparing a compound of the formula

5

10

wherein

R¹ is hydrogen or C₁—C₄ alkyl;
R² is hydrogen, C₁—C₄ alkyl or

wherein R^a is C₁—C₄ alkyl; or

R¹ and R² together are alkylene having 3 to 6 carbon atoms;

R³ is hydrogen or C₁—C₄ alkyl;

R⁴ is hydrogen or C₁—C₄ alkyl;

R⁵ is hydrogen or C₁—C₄ alkyl;

R⁶ is hydrogen or C₁—C₄ alkyl; and

R⁷ and R⁸ independently are (1) hydrogen; (2) halogen; (3) C₁—C₄ alkyl; (4) C₁—C₄ alkoxy; (5) OCF₃; (6) cyano; (7) nitro; (8) C₁—C₄ haloalkyl; (9) R^bSO_n—wherein n is the integer 0, 1 or 2; and R^b is (a) C₁—C₄ alkyl; (b) C₁—C₄ alkyl substituted with halogen or cyano; (c) phenyl; or (d) benzyl; (10)—NR^cR^d wherein R^c and R^d independently are hydrogen or C₁—C₄ alkyl; (11) R^eC(O)—wherein R^e is C₁—C₄ alkyl or C₁—C₄ alkoxy; or (12) SO₂NR^cR^d wherein R^c and R^d are as defined, with the proviso that R⁷ is not attached to the 6-position

30 comprising

(a) reacting a dione of the formula

35

40

wherein R¹ through R⁶ are as defined with a substituted benzoyl reactant of the formula

45

50

wherein R⁷ and R⁸ are as defined and X is halogen, C₁—C₄ alkyl-C(O)—O—, C₁—C₄ alkoxy-C(O)—O— or

55

60

wherein R⁷ and R⁸ in this portion of the molecule are identical with those in the reactant shown above with at least a mole of a moderate base to form an enol ester of the formula

65

EP 0 186 118 B1

5

10 .wherein R¹ through R⁸ are as defined and in step (2) reacting a mole of the enol ester intermediate with 1 to 4 moles of a moderate base, and from 0.01 mole to about 0.5 mole or higher of a cyanide source to form a compound of the formula

15

20

wherein R¹ through R⁸ are as defined above.

25 46. The process of Claim 45 wherein X is halogen, the moderate base is tri-C₁—C₆ alkylamine, pyridine, alkali metal carbonate or alkali metal phosphate and the cyanide source alkali metal cyanide, cyanohydrins of methyl C₁—C₄ alkyl ketones, cyanohydrins of benzaldehyde or C₂—C₆ aliphatic aldehydes; cyanohydrins, zinc cyanide; tri(lower alkyl) silyl cyanides or hydrogen cyanide.

30 47. The process of Claim 46 wherein X is chlorine, the moderate base is tri-C₁—C₆ alkylamine, pyridine, sodium carbonate or sodium phosphate and the cyanide source is potassium cyanide, acetone cyanohydrin or hydrogen cyanide.

Claims for the Contracting State: AT

35

1. A process for preparing a compound of the formula

40

45

wherein

R¹ is hydrogen or C₁—C₄ alkyl;
R² is hydrogen, C₁—C₄ alkyl or

50

wherein R^a is C₁—C₄ alkyl; or

55 R¹ and R² together are alkylene having 3 to 6 carbon atoms;
R³ is hydrogen or C₁—C₄ alkyl;
R⁴ is hydrogen or C₁—C₄ alkyl;
R⁵ is hydrogen or C₁—C₄ alkyl;
R⁶ is hydrogen or C₁—C₄ alkyl; and
60 R⁷ and R⁸ independently are (1) hydrogen; (2) halogen; (3) C₁—C₄ alkyl; (4) C₁—C₄ alkoxy; (5) OCF₃; (6) cyano; (7) nitro; (8) C₁—C₄ haloalkyl; (9) R^bSO_n—wherein n is the integer 0, 1 or 2; and R^b is (a) C₁—C₄ alkyl; (b) C₁—C₄ alkyl substituted with halogen or cyano; (c) phenyl; or (d) benzyl; (10) —NR^cR^d wherein R^c and R^d independently are hydrogen or C₁—C₄ alkyl; (11) R^eC(O)—wherein R^e is C₁—C₄ alkyl or C₁—C₄ alkoxy; or (12) SO₂NR^cR^d wherein R^c and R^d are as defined, with the proviso that R⁷ is not attached to the 6-position comprising

EP 0 186 118 B1

(a) reacting a dione of the formula

5

10

wherein R¹ through R⁶ are as defined with a substituted benzoyl reactant of the formula

15

20

wherein R⁷ and R⁸ are as defined and X is halogen, C₁-C₄ alkyl-C(O)-O-, C₁-C₄ alkoxy-C(O)-O- or

25

30

wherein R⁷ and R⁸ in this portion of the molecule are identical with those in the reactant shown above with at least a mole of a moderate base to form an enol ester of the formula

35

40

wherein R¹ through R⁸ are as defined and in step (2) reacting a mole of the enol ester intermediate with 1 to 4 moles of a moderate base, and from 0.01 mole to about 0.5 mole or higher of a cyanide source to form a compound of the formula

50

55

wherein R¹ through R⁸ are as defined above.

2. The process of Claim 1 wherein X is halogen, the moderate base is tri-C₁-C₆ alkylamine, pyridine, alkali metal carbonate or alkali metal phosphate and the cyanide source alkali metal cyanide, cyanohydrins of methyl C₁-C₄ alkyl ketones, cyanohydrins of benzaldehyde or C₂-C₆ aliphatic aldehydes; cyanohydrins, zinc cyanide; tri(lower alkyl) silyl cyanides or hydrogen cyanide.

3. The process of Claim 2 wherein X is chlorine, the moderate base is tri-C₁-C₆ alkylamine, pyridine, sodium carbonate or sodium phosphate and the cyanide source is potassium cyanide, acetone cyanohydrin or hydrogen cyanide.

4. The process of Claim 1 characterized in that a compound wherein R¹ is hydrogen or methyl; R² is hydrogen or methyl; R³ is hydrogen or methyl; R⁴ is hydrogen or methyl; R⁵ is hydrogen or methyl; R⁶ is

EP 0 186 118 B1

hydrogen or methyl; R⁷ and R⁸ independently are (1) hydrogen; (2) halogen; (3) C₁—C₄ alkyl; (4) C₁—C₄ alkoxy; (5) OCF₃; (6) cyano; (7) nitro; (8) C₁—C₄ haloalkyl; (9) R^bSO_n—wherein n is the integer 0, 1 or 2; and R^b is (a) C₁—C₄ alkyl; (b) C₁—C₄ alkyl substituted with halogen or cyano; (c) phenyl; or (d) benzyl; (10) —NR^cR^d wherein R^c and R^d independently are hydrogen or C₁—C₄ alkyl; (11) R^eC(O)—wherein R^e is C₁—C₄ alkyl or C₁—C₄ alkoxy; or (12) SO₂NR^cR^d wherein R^c and R^d are as defined is prepared.

5. The process of Claim 1 characterized in that a compound wherein R⁷ and R⁸ independently are hydrogen; chlorine; fluorine; bromine; methyl; methoxy; OCF₃; cyano; nitro; trifluoromethyl; R^bSO_n—wherein n is the integer 2 and R^b is methyl, chloromethyl, trifluoromethyl, cyanomethyl, ethyl, or n-propyl; —NR^cR^d wherein R^c and R^d independently are hydrogen or C₁—C₄ alkyl; R^eC(O)—where R^e is C₁—C₄ alkyl or C₁—C₄ alkoxy or SO₂NR^cR^d wherein R^c and R^d are as defined and R⁷ is in the 3-position is prepared.

10. The process of Claim 1 characterized in that a compound wherein R⁷ is hydrogen and R⁸ is hydrogen, chlorine, bromine, fluorine, CF₃ or R^bSO₂ wherein R^b is C₁—C₄ alkyl or C₁—C₄ haloalkyl is prepared.

15. The process of Claim 1 characterized in that a compound wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is hydrogen is prepared.

18. The process of Claim 1 characterized in that a compound wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is methyl; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is hydrogen is prepared.

19. The process of Claim 1 characterized in that a compound wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is trifluoromethyl is prepared.

20. The process of Claim 1 characterized in that a compound wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is trifluoromethyl is prepared.

11. The process of Claim 1 characterized in that a compound wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is chlorine is prepared.

12. The process of Claim 1 characterized in that a compound wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is fluorine is prepared.

13. The process of Claim 1 characterized in that a compound wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is chlorine is prepared.

14. The process of Claim 1 characterized in that a compound wherein R¹ is methyl; R² is methyl; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is CH₃SO₂— is prepared.

15. The process of Claim 1 characterized in that a compound wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is n-C₃H₇SO₂ is prepared.

16. The process of Claim 1 characterized in that a compound wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is CH₃SO₂ is prepared.

17. The process of Claim 1 characterized in that a compound wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen; and R⁸ is C₂H₅SO₂ is prepared.

18. The process of Claim 1 characterized in that a compound wherein R⁷ is hydrogen is prepared.

19. The process of Claim 5 characterized in that a compound wherein R⁷ is hydrogen is prepared.

20. The process of Claim 1 characterized in that a compound wherein R¹ is hydrogen; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen; R⁷ is hydrogen and R⁸ is cyano is prepared.

21. The process of Claim 1 characterized in that a compound wherein R¹ and R² are hydrogen or both methyl is prepared.

22. The process of Claim 21 characterized in that a compound wherein R⁸ is —SO₂CH₃ is prepared.

23. The process of Claim 21 characterized in that a compound wherein R⁸ is —SO₂CH₂Cl is prepared.

24. The process of Claim 1 characterized in that a compound wherein R⁸ is CF₃ is prepared.

25. The process of Claim 1 characterized in that a compound wherein R⁸ is —SO₂CH₃ is prepared.

26. The process of Claim 1 characterized in that a compound wherein R⁸ is chlorine is prepared.

27. The process of Claim 1 characterized in that a compound wherein R⁸ is —SO₂CH₂Cl is prepared.

28. The process of Claim 1 characterized in that a compound wherein R⁸ is —SO₂-n-C₃H₇ is prepared.

29. The method of controlling undesirable vegetation comprising applying to the area where control is desired, a herbicidally effective amount of a compound described in Claims 1—28.

30. A process for preparing a herbicidal composition comprising mixing a herbicidally active 2-(2-nitrobenzoyl)-1,3-cyclohexanedione and an inert carrier therefor.

31. The process of Claim 30 wherein the 2-(2-nitrobenzoyl)-1,3-cyclohexanedione is a compound as prepared according to Claims 1 to 28.

32. The method of controlling undesirable vegetation comprising applying to the area where control is desired, a herbicidal composition comprising a herbicidally active 2-(2-nitrobenzoyl)-1,3-cyclohexanedione and an inert carrier therefor.

33. The method of Claim 32 wherein the 2-(2-nitrobenzoyl)-1,3-cyclohexanedione has a C₁—C₄ alkylsulfonyl or C₁—C₄ haloalkylsulfonyl substitution on the phenyl ring.

34. The method of Claim 33 wherein said alkylsulfonyl or haloalkylsulfonyl substitution is at the 4-

EP 0 186 118 B1

position of the phenyl ring.

35. The process of Claim 30 wherein the 2-(2-nitrobenzoyl)-1,3-cyclohexanedione has a C₁—C₄ alkylsulfonyl or C₁—C₄ haloalkylsulfonyl substitution on the phenyl ring.

5 36. The process of Claim 35 wherein said alkylsulfonyl or haloalkylsulfonyl substitution is at the 4-position of the phenyl ring.

37. The method of Claim 32 wherein the 2-(2-nitrobenzoyl)-1,3-cyclohexanedione has a C₁—C₄ haloalkyl substitution on the phenyl ring.

38. The method of Claim 32 wherein said haloalkyl substitution is at the 4-position on the phenyl ring.

10 39. The process of Claim 30 wherein the 2-(2-nitrobenzoyl)-1,3-cyclohexanedione has a C₁—C₄ haloalkyl substitution on the phenyl ring.

40. The process of Claim 39 wherein said haloalkyl substitution is at the 4-position of the phenyl ring.

41. The process of Claim 39 wherein said haloalkyl is CF₃.

42. The method of Claim 37 wherein said haloalkyl is CF₃.

43. The method of Claim 29 wherein R¹ and R² are hydrogen or both methyl.

15 44. The method of Claim 43 wherein R⁸ is —SO₂CH₃, —SO₂CH₂Cl, CF₃, —SO₂CH₃, chlorine, —SO₂CH₂Cl or —SO₂-n-C₃H₇.

45. The process of Claim 30 wherein R¹ and R² are hydrogen or both methyl.

46. The process of Claim 45 wherein R⁸ is —SO₂CH₃, —SO₂CH₂Cl, CF₃, —SO₂CH₃, chlorine, —SO₂CH₂Cl or —SO₂-n-C₃H₇.

20

Patentansprüche für die Vertragsstaaten: BE CH DE FR GB IT LI NL SE

1. Verbindung der Formel

25

35 worin

R¹ Wasserstoff oder C₁—C₄-Alkyl bedeutet,

R² Wasserstoff, C₁—C₄-Alkyl oder

40

bedeutet, worin R^a C₁—C₄-Alkyl bedeutet, oder worin

R¹ und R² zusammen Alkylen mit 3 bis 6 Kohlenstoffatomen bedeuten,

45 R³ Wasserstoff oder C₁—C₄-Alkyl bedeutet,

R⁴ Wasserstoff oder C₁—C₄-Alkyl bedeutet,

R⁵ Wasserstoff oder C₁—C₄-Alkyl bedeutet,

R⁶ Wasserstoff oder C₁—C₄-Alkyl bedeutet und

R⁷ und R⁸ unabhängig (1) Wasserstoff, (2) Halogen, (3) C₁—C₄-Alkyl, (4) C₁—C₄-Alkoxy, (5) OCF₃, (6) Cyano, (7) Nitro, (8) C₁—C₄-Haloalkyl, (9) R^bSO_n—, worin n eine ganze Zahl von 0, 1 oder 2 ist und R^b für (a) C₁—C₄-Alkyl, (b) C₁—C₄-Alkyl, substituiert mit Halogen oder Cyano, (c) Phenyl oder (d) Benzyl steht, (10) —NR^cR^d, worin R^c und R^d unabhängig Wasserstoff oder C₁—C₄-Alkyl bedeuten, (11) R^eC(O)—, worin R^e C₁—C₄-Alkyl oder C₁—C₄-Alkoxy bedeutet, oder (12) SO₂NR^cR^d, worin R^c und R^d die gegebenen Definitionen besitzen, bedeuten, mit der Maßgabe, daß R⁷ nicht an die 6-Stellung gebunden ist.

55 2. Verbindungen nach Anspruch 1, worin R¹ Wasserstoff oder Methyl, R² Wasserstoff oder Methyl, R³ Wasserstoff oder Methyl, R⁴ Wasserstoff oder Methyl, R⁵ Wasserstoff oder Methyl, R⁶ Wasserstoff oder Methyl, R⁷ und R⁸ unabhängig (1) Wasserstoff, (2) Halogen, (3) C₁—C₄-Alkyl, (4) C₁—C₄-Alkoxy, (5) OCF₃, (6) Cyano, (7) Nitro, (8) C₁—C₄-Haloalkyl, (9) R^bSO_n—, worin n eine ganze Zahl von 0, 1 oder 2 ist und R^b für (a) C₁—C₄-Alkyl, (b) C₁—C₄-Alkyl, substituiert mit Halogen oder Cyano, (c) Phenyl oder (d) Benzyl bedeutet, (10) —NR^cR^d, worin R^c und R^d unabhängig Wasserstoff oder C₁—C₄-Alkyl bedeuten, (11) R^eC(O)—, worin R^e C₁—C₄-Alkyl oder C₁—C₄-Alkoxy bedeutet, oder (12) SO₂NR^cR^d, worin R^c und R^d die gegebenen Definitionen besitzen, bedeuten.

60 3. Verbindung nach Anspruch 2, worin R⁷ und R⁸ unabhängig Wasserstoff, Chlor, Fluor, Brom, Methyl, Methoxy, OCF₃, Cyano, Nitro, Trifluormethyl, R^bSO_n—, worin n eine ganze Zahl von 2 ist und R^b Methyl, Chlormethyl, Trifluormethyl, Cyanomethyl, Ethyl oder n-Propyl bedeutet, —NR^cR^d, worin R^c und R^d unabhängig Wasserstoff oder C₁—C₄-Alkyl bedeuten, R^eC(O)—, worin R^e C₁—C₄-Alkyl oder C₁—C₄-Alkoxy

EP 0 186 118 B1

- bedeutet, oder $\text{SO}_2\text{NR}^c\text{R}^d$, worin R^c und R^d die gegebenen Definitionen besitzen, bedeuten und R^7 in 3-Stellung vorliegt.
4. Verbindung nach Anspruch 2, worin R^7 Wasserstoff und R^8 Wasserstoff, Chlor, Brom, Fluor, CF_3 oder R^8SO_2 , worin R^8 C_1-C_4 -Alkyl oder C_1-C_4 -Haloalkyl bedeutet, bedeuten.
 5. Verbindung nach Anspruch 2, worin R^1 Methyl, R^2 Methyl, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und R^8 Wasserstoff bedeuten.
 6. Verbindung nach Anspruch 2, worin R^1 Methyl, R^2 Methyl, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Methyl, R^6 Wasserstoff, R^7 Wasserstoff und R^8 Wasserstoff bedeuten.
 7. Verbindung nach Anspruch 2, worin R^1 Methyl, R^2 Methyl, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und R^8 Trifluormethyl bedeuten.
 8. Verbindung nach Anspruch 2, worin R^1 Wasserstoff, R^2 Wasserstoff, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und R^8 Trifluormethyl bedeuten.
 9. Verbindung nach Anspruch 2, worin R^1 Methyl, R^2 Methyl, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und R^8 Chlor bedeuten.
 10. Verbindung nach Anspruch 2, worin R^1 Methyl, R^2 Methyl, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und R^8 Fluor bedeuten.
 11. Verbindung nach Anspruch 2, worin R^1 Wasserstoff, R^2 Wasserstoff, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und R^8 Chlor bedeuten.
 12. Verbindung nach Anspruch 2, worin R^1 Methyl, R^2 Methyl, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und $\text{R}^8 \text{CH}_3\text{SO}_2-$ bedeuten.
 13. Verbindung nach Anspruch 2, worin R^1 Wasserstoff, R^2 Wasserstoff, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und $\text{R}^8 \text{n-C}_3\text{H}_7\text{SO}_2-$ bedeuten.
 14. Verbindung nach Anspruch 2, worin R^1 Wasserstoff, R^2 Wasserstoff, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und $\text{R}^8 \text{CH}_3\text{SO}_2-$ bedeuten.
 15. Verbindung nach Anspruch 2, worin R^1 Wasserstoff, R^2 Wasserstoff, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und $\text{R}^8 \text{C}_2\text{H}_5\text{SO}_2-$ bedeuten.
 16. Verbindung nach Anspruch 2, worin R^7 Wasserstoff bedeutet.
 17. Verbindung nach Anspruch 3, worin R^7 Wasserstoff, bedeutet.
 18. Verbindung nach Anspruch 2, worin R^1 Wasserstoff, R^2 Wasserstoff, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und R^8 Cyanogen bedeuten.
 19. Verbindung nach Anspruch 1, worin R^1 und R^2 Wasserstoff oder beide Methyl bedeuten.
 20. Verbindung nach Anspruch 19, worin $\text{R}^8-\text{SO}_2\text{CH}_3$ bedeutet.
 21. Verbindung nach Anspruch 19, worin $\text{R}^8-\text{SO}_2\text{CH}_2\text{Cl}$ bedeutet.
 22. Verbindung nach Anspruch 1, worin R^8-CF_3 bedeutet.
 23. Verbindung nach Anspruch 1, worin $\text{R}^8-\text{SO}_2\text{CH}_3$ bedeutet.
 24. Verbindung nach Anspruch 1, worin R^8 Chlor bedeuten.
 25. Verbindung nach Anspruch 1, worin $\text{R}^8-\text{SO}_2\text{CH}_2\text{Cl}$ bedeutet.
 26. Verbindung nach Anspruch 1, worin $\text{R}^8-\text{SO}_2\text{n-C}_3\text{H}_7$ bedeuten.
 27. Verfahren zur Kontrolle unerwünschter Vegetation, dadurch gekennzeichnet, daß man auf die Fläche, wo eine Kontrolle erfolgen soll, eine herbizid wirksame Menge einer Verbindung nach einem der Ansprüche 1 bis 26 anwendet.
 28. Herbizide Zubereitung, dadurch gekennzeichnet, daß sie ein herbizid aktives 2-(2-Nitrobenzoyl)-1,3-cyclohexandion und einen inerten Träger dafür enthält.
 29. Herbizide Zubereitung nach Anspruch 28, dadurch gekennzeichnet, daß das 2-(2-Nitrobenzoyl)-1,3-cyclohexandion eine Verbindung nach einem der Ansprüche 1 bis 26 ist.
 30. Verfahren zur Kontrolle unerwünschter Vegetation, dadurch gekennzeichnet, daß man auf die Fläche, wo eine Kontrolle erfolgen soll, ein herbizides Mittel anwendet, welches ein herbizid aktives 2-(2-Nitrobenzoyl)-1,3-cyclohexandion und einen inerten Träger dafür enthält.
 31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß das 2-(2-Nitrobenzoyl)-1,3-cyclohexandion eine C_1-C_4 -Alkylsulfonyl- oder C_1-C_4 -Haloalkylsulfonyl-Substitution an dem Phenylring aufweist.
 32. Verfahren nach Anspruch 31, dadurch gekennzeichnet, daß die Alkylsulfonyl- oder Haloalkylsulfonyl-Substitution in der 4-Stellung des Phenylrings vorhanden ist.
 33. Herbizide Zubereitung nach Anspruch 28, dadurch gekennzeichnet, daß das 2-(2-Nitrobenzoyl)-1,3-cyclohexandion eine C_1-C_4 -Alkylsulfonyl- oder C_1-C_4 -Haloalkylsulfonyl-Substitution an dem Phenylring aufweist.
 34. Herbizide Zubereitung nach Anspruch 33, dadurch gekennzeichnet, daß die Alkylsulfonyl- oder Haloalkylsulfonyl-Substitution an der 4-Stellung des Phenylrings vorhanden ist.
 35. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß das 2-(2-Nitrobenzoyl)-1,3-cyclohexandion eine C_1-C_4 -Haloalkyl-Substitution am Phenylring aufweist.
 36. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß die Haloalkyl-Substitution in der 4-Stellung des Phenylrings vorhanden ist.
 37. Herbizide Zubereitung nach Anspruch 28, dadurch gekennzeichnet, daß das 2-(2-Nitrobenzoyl)-1,3-cyclohexandion eine C_1-C_4 -Haloalkyl-Substitution an dem Phenylring aufweist.
 38. Herbizide Zubereitung nach Anspruch 37, dadurch gekennzeichnet, daß die Haloalkyl-Substitution

EP 0 186 118 B1

in der 4-Stellung des Phenylrings vorhanden ist.

39. Herbizide Zubereitung nach Anspruch 37, dadurch gekennzeichnet, daß das Haloalkyl CF_3 ist.

40. Verfahren nach Anspruch 35, dadurch gekennzeichnet, daß das Haloalkyl CF_3 ist.

5 41. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß R^1 und R^2 Wasserstoff oder beide Methyl bedeuten.

42. Verfahren nach Anspruch 41, dadurch gekennzeichnet, daß $\text{R}^8 = \text{SO}_2\text{CH}_3$, $-\text{SO}_2\text{CH}_2\text{Cl}$, CF_3 , $-\text{SO}_2\text{CH}_3$, Chlor, $-\text{SO}_2\text{CH}_2\text{Cl}$ oder $-\text{SO}_2\text{n-C}_3\text{H}_7$ bedeutet.

10 43. Zubereitung nach Anspruch 28, dadurch gekennzeichnet, daß R^1 und R^2 Wasserstoff oder beide Methyl bedeuten.

44. Zubereitung nach Anspruch 43, dadurch gekennzeichnet, daß $\text{R}^8 = \text{SO}_2\text{CH}_3$, $-\text{SO}_2\text{CH}_2\text{Cl}$, CF_3 , $-\text{SO}_2\text{CH}_3$, Chlor, $-\text{SO}_2\text{CH}_2\text{Cl}$ oder $-\text{SO}_2\text{n-C}_3\text{H}_7$ bedeutet.

45. Verfahren zur Herstellung einer Verbindung der Formel

worin

R^1 Wasserstoff oder $\text{C}_1\text{--C}_4\text{-Alkyl}$ bedeutet,

25 R^2 Wasserstoff, $\text{C}_1\text{--C}_4\text{-Alkyl}$ oder

30 bedeutet, worin R^a $\text{C}_1\text{--C}_4\text{-Alkyl}$ bedeutet, oder worin

R^1 und R^2 zusammen Alkylen mit 3 bis 6 Kohlenstoffatomen bedeuten,

R^3 Wasserstoff oder $\text{C}_1\text{--C}_4\text{-Alkyl}$ bedeutet,

R^4 Wasserstoff oder $\text{C}_1\text{--C}_4\text{-Alkyl}$ bedeutet,

R^5 Wasserstoff oder $\text{C}_1\text{--C}_4\text{-Alkyl}$ bedeutet,

35 R^6 Wasserstoff oder $\text{C}_1\text{--C}_4\text{-Alkyl}$ bedeutet und

R^7 und R^8 unabhängig (1) Wasserstoff, (2) Halogen, (3) $\text{C}_1\text{--C}_4\text{-Alkyl}$, (4) $\text{C}_1\text{--C}_4\text{-Alkoxy}$, (5) OCF_3 , (6) Cyano, (7) Nitro, (8) $\text{C}_1\text{--C}_4\text{-Haloalkyl}$, (9) R^bSO_n^- , worin n eine ganze Zahl von 0, 1 oder 2 ist und R^b für (a)

40 C₁—C₄-Alkyl, (b) C₁—C₄-Alkyl, substituiert mit Halogen oder Cyano, (c) Phenyl oder (d) Benzyl steht, (10) $-\text{NR}^c\text{R}^d$, worin R^c und R^d unabhängig Wasserstoff oder C₁—C₄-Alkyl bedeuten, (11) $\text{R}^e\text{C(O)}-$, worin R^e C₁—C₄-Alkyl oder C₁—C₄-Alkoxy bedeutet, oder (12) $\text{SO}_2\text{NR}^c\text{R}^d$, worin R^c und R^d die gegebenen Definitionen besitzen, bedeuten, mit der Maßgabe, daß R⁷ nicht an die 6-Stellung gebunden ist, dadurch

gekennzeichnet, daß man

(a) ein Dion der Formel

45 55 worin R¹ bis R⁶ die gegebenen Definitionen besitzen, mit einem substituierten Benzoyl-Reaktionsteilnehmer der Formel

60 65 worin R⁷ und R⁸ die gegebenen Definitionen besitzen und X Halogen, C₁—C₄-Alkyl-C(O)—O—, C₁—C₄-Alkoxy-C(O)—O— oder

EP 0 186 118 B1

5

10

bedeutet, worin R⁷ und R⁸ in diesem Teil des Moleküls identisch sind mit denen in dem obigen Reaktionsteilnehmer, mit mindestens 1 Mol einer milden Base unter Bildung eines Enolesters der Formel

15

20

umsetzt, worin R¹ bis R⁸ die oben gegebenen Definitionen besitzen, und in der Stufe (2) 1 Mol des Enolester-Zwischenprodukts mit 1 bis 4 Mol einer milden Base und von 0,01 Mol bis etwa 0,5 Mol oder mehr einer Cyanidquelle unter Bildung einer Verbindung der Formel

25

30

umsetzt, worin R¹ bis R⁸ die oben gegebenen Definitionen besitzen.

46. Verfahren nach Anspruch 45, dadurch gekennzeichnet, daß X Halogen bedeutet, die milde Base Tri-C₁-C₆-alkylamin, Pyridin, ein Alkalimetallcarbonat oder Alkalimetallphosphat bedeutet und die Cyanidquelle ein Alkalimetallcyanid, Cyanohydrine von Methyl-C₁-C₄-alkylketonen, Cyanohydrine von Benzaldehyd oder C₂-C₅-aliphatischen-Aldehyden, Cyanohydrine, Zinkcyanid, Tri-(niedrigalkyl)silylcyanide oder Cyanwasserstoff ist.

47. Verfahren nach Anspruch 46, dadurch gekennzeichnet, daß X Chlor bedeutet, die milde Base Tri-C₁-C₆-alkylamin, Pyridin, Natriumcarbonat oder Natriumphosphat ist und die Cyanidquelle Kaliumcyanid, Acetoncyanohydrin oder Cyanwasserstoff ist.

Patentansprüche für den Vertragsstaat: AT

45

1. Verfahren zur Herstellung einer Verbindung der Formel

50

55

worin
R¹ Wasserstoff oder C₁-C₄-Alkyl bedeutet,
R² Wasserstoff, C₁-C₄-Alkyl oder

60

bedeutet, worin R⁸ C₁-C₄-Alkyl bedeutet, oder worin
R¹ und R² zusammen Alkylen mit 3 bis 6 Kohlenstoffatomen bedeuten,
R³ Wasserstoff oder C₁-C₄-Alkyl bedeutet,
R⁴ Wasserstoff oder C₁-C₄-Alkyl bedeutet,

EP 0 186 118 B1

R⁵ Wasserstoff oder C₁—C₄-Alkyl bedeutet,

R⁶ Wasserstoff oder C₁—C₄-Alkyl bedeutet,

R⁷ und R⁸ unabhängig (1) Wasserstoff, (2) Halogen, (3) C₁—C₄-Alkyl, (4) C₁—C₄-Alkoxy, (5) OCF₃, (6) Cyano, (7) Nitro, (8) C₁—C₄-Haloalkyl, (9) R^bSO_n—, worin n eine ganze Zahl von 0, 1 oder 2 ist und R^b für (a) C₁—C₄-Alkyl, (b) C₁—C₄-Alkyl, substituiert mit Halogen oder Cyano, (c) Phenyl oder (d) Benzyl steht, (10) —NR^cR^d, worin R^c und R^d unabhängig Wasserstoff oder C₁—C₄-Alkyl bedeuten, (11) R^eC(O)—, worin R^e C₁—C₄-Alkyl oder C₁—C₄-Alkoxy bedeutet, oder (12) SO₂NR^cR^d, worin R^c und R^d die gegebenen Definitionen besitzen, bedeuten, mit der Maßgabe, daß R⁷ nicht an die 6-Stellung gebunden ist, dadurch gekennzeichnet, daß man

(a) ein Dion der Formel

15

20

worin R¹ bis R⁸ die gegebenen Definitionen besitzen, mit einem substituierten Benzoyl-Reaktionsteilnehmer der Formel

25

30

worin R⁷ und R⁸ die gegebenen Definitionen besitzen und X Halogen, C₁—C₄-Alkyl-C(O)—O—, C₁—C₄-Alkoxy-C(O)—O— oder

35

40

bedeutet, worin R⁷ und R⁸ in diesem Teil des Moleküls identisch sind mit denen in dem obigen Reaktionsteilnehmer, mit mindestens 1 Mol einer milden Base unter Bildung eines Enolesters der Formel

45

50

55

umsetzt, worin R¹ bis R⁸ die oben gegebenen Definitionen besitzen, und in der Stufe (2) 1 Mol des Enolester-Zwischenprodukts mit 1 bis 4 Mol einer milden Base und von 0,01 Mol bis etwa 0,5 Mol oder mehr einer Cyanidquelle unter Bildung einer Verbindung der Formel

60

65

EP 0 186 118 B1

umsetzt, worin R¹ bis R⁸ die oben gegebenen Definitionen besitzen.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß X Halogen bedeutet, die milde Base Tri-C₁—C₆-alkylamin, Pyridin, ein Alkalimetallcarbonat oder Alkalimetallphosphat ist und die Cyanidquelle ein Alkalimetallcyanid, Cyanohdyrine von Methyl-C₁—C₄-alkylketonen, Cyanohydride von Benzaldehyd oder C₂—C₆-aliphatischen-Aldehyden, Cyanohydride, Zinkcyanid, Tri-(niedrigalkyl)-silylcyanide oder Cyanwasserstoff ist.

5 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß X Chlor bedeutet, die milde Base Tri-C₁—C₆-alkylamin, Pyridin, Natriumcarbonat oder Natriumphosphat ist und die Cyanidquelle Kaliumcyanid, Acetonycyanhydrin oder Cyanwasserstoff ist.

10 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Wasserstoff oder Methyl, R² Wasserstoff oder Methyl, R³ Wasserstoff oder Methyl, R⁴ Wasserstoff oder Methyl, R⁵ Wasserstoff oder Methyl, R⁶ Wasserstoff oder Methyl, R⁷ und R⁸ unabhängig (1) Wasserstoff, (2) Halogen, (3) C₁—C₄-Alkyl, (4) C₁—C₄-Alkoxy, (5) OCF₃, (6) Cyano, (7) Nitro, (8) C₁—C₄-Haloalkyl, (9) R^bSO_n—, worin n eine ganze Zahl von 0, 1 oder 2 ist und R^b (a) C₁—C₄-Alkyl, (b) C₁—C₄-Alkyl, substituiert mit Halogen oder Cyano, (c) Phenyl oder (d) Benzyl bedeutet, (10) —NR^cR^d, worin R^c und R^d unabhängig Wasserstoff oder C₁—C₄-Alkyl bedeuten, (11) R^eC(O)—, worin R^e C₁—C₄-Alkyl oder C₁—C₄-Alkoxy bedeutet, oder (12) SO₂NR^cR^d, worin R^c und R^d die gegebenen Definitionen besitzen, bedeuten.

15 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R⁷ und R⁸ unabhängig Wasserstoff, Chlor, Fluor, Brom, Methyl, Methoxy, OCF₃, Cyano, Nitro, Trifluormethyl, R^bSO_n—, worin n eine ganze Zahl von 2 ist und R^b Methyl, Chlormethyl, Trifluormethyl, Cyanomethyl, Ethyl oder n-Propyl bedeutet, —NR^cR^d, worin R^c und R^d unabhängig Wasserstoff oder C₁—C₄-Alkyl bedeuten, R^eC(O)—, worin R^e C₁—C₄-Alkyl oder C₁—C₄-Alkoxy bedeutet, oder SO₂NR^cR^d, worin R^c und R^d die oben gegebenen Definitionen besitzen, bedeuten und R⁷ in der 3-Stellung vorhanden ist.

20 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R⁷ Wasserstoff und R⁸ Wasserstoff, Chlor, Brom, Fluor, CF₃ oder R^bSO₂ bedeuten, worin R^b C₁—C₄-Alkyl oder C₁—C₄-Haloalkyl bedeutet.

25 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Methyl, R² Methyl, R³ Wasserstoff, R⁴ Wasserstoff, R⁵ Wasserstoff, R⁶ Wasserstoff, R⁷ Wasserstoff und R⁸ Wasserstoff bedeuten.

30 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Methyl, R² Methyl, R³ Wasserstoff, R⁴ Wasserstoff, R⁵ Methyl, R⁶ Wasserstoff, R⁷ Wasserstoff und R⁸ Wasserstoff bedeuten.

35 9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Methyl, R² Methyl, R³ Wasserstoff, R⁴ Wasserstoff, R⁵ Wasserstoff, R⁶ Wasserstoff, R⁷ Wasserstoff, und R⁸ Trifluormethyl bedeuten.

40 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Wasserstoff, R² Wasserstoff, R³ Wasserstoff, R⁴ Wasserstoff, R⁵ Wasserstoff, R⁶ Wasserstoff, R⁷ Wasserstoff und R⁸ Trifluormethyl bedeuten.

45 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Methyl, R² Methyl, R³ Wasserstoff, R⁴ Wasserstoff, R⁵ Wasserstoff, R⁶ Wasserstoff, R⁷ Wasserstoff und R⁸ Chlor bedeuten.

50 12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Methyl, R² Methyl, R³ Wasserstoff, R⁴ Wasserstoff, R⁵ Wasserstoff, R⁶ Wasserstoff, R⁷ Wasserstoff und R⁸ Fluor bedeuten.

55 13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Wasserstoff, R² Wasserstoff, R³ Wasserstoff, R⁴ Wasserstoff, R⁵ Wasserstoff, R⁶ Wasserstoff, R⁷ Wasserstoff und R⁸ Chlor bedeuten.

60 14. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Methyl, R² Methyl, R³ Wasserstoff, R⁴ Wasserstoff, R⁵ Wasserstoff, R⁶ Wasserstoff, R⁷ Wasserstoff und R⁸ CH₃SO₂— bedeuten.

65 15. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Wasserstoff, R² Wasserstoff, R³ Wasserstoff, R⁴ Wasserstoff, R⁵ Wasserstoff, R⁶ Wasserstoff, R⁷ Wasserstoff und R⁸ C₃H₅SO₂ bedeuten.

70 16. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Wasserstoff, R² Wasserstoff, R³ Wasserstoff, R⁴ Wasserstoff, R⁵ Wasserstoff, R⁶ Wasserstoff, R⁷ Wasserstoff und R⁸ CH₃SO₂ bedeuten.

75 17. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R¹ Wasserstoff, R² Wasserstoff, R³ Wasserstoff, R⁴ Wasserstoff, R⁵ Wasserstoff, R⁶ Wasserstoff, R⁷ Wasserstoff und R⁸ C₂H₅SO₂ bedeuten.

80 18. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R⁷ Wasserstoff bedeutet.

85 19. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R⁷ Wasserstoff bedeutet.

90 20. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin

EP 0 186 118 B1

R^1 Wasserstoff, R^2 Wasserstoff, R^3 Wasserstoff, R^4 Wasserstoff, R^5 Wasserstoff, R^6 Wasserstoff, R^7 Wasserstoff und R^8 Cyano bedeuten.

- 5 21. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R^1 und R^2 Wasserstoff oder beide Methyl bedeuten.
- 5 22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R^8 $-SO_2CH_3$ bedeutet.
- 10 23. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R^8 $-SO_2CH_2Cl$ bedeutet.
- 10 24. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R^8 CF_3 bedeutet.
- 15 25. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R^8 $-SO_2CH_3$ bedeutet.
- 15 26. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R^8 Chlor bedeutet.
- 15 27. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R^8 $-SO_2CH_2Cl$ bedeutet.
- 20 28. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Verbindung hergestellt wird, worin R^8 $-SO_2-n-C_3H_7$ bedeutet.
- 20 29. Verfahren zur Kontrolle unerwünschter Vegetation, dadurch gekennzeichnet, daß man auf die Fläche, wo eine Kontrolle erfolgen soll, eine herbizid wirksame Menge einer Verbindung nach einem der Ansprüche 1 bis 28 anwendet.
- 25 30. Verfahren zur Herstellung einer herbiziden Zubereitung, dadurch gekennzeichnet, daß man ein herbizid aktives 2-(2-Nitrobenzoyl)-1,3-cyclohexandion und einen inerten Träger dafür vermischt.
- 25 31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß das 2-(2-Nitrobenzoyl)-1,3-cyclohexandion eine Verbindung ist, hergestellt gemäß den Ansprüchen 1 bis 28.
- 30 32. Verfahren zur Kontrolle unerwünschter Vegetation, dadurch gekennzeichnet, daß man auf die Fläche, wo eine Kontrolle erfolgen soll, ein herbizides Mittel anwendet, welches ein herbizid aktives 2-(2-Nitrobenzoyl)-1,3-cyclohexandion und einen inerten Träger dafür enthält.
- 30 33. Verfahren nach Anspruch 32, dadurch gekennzeichnet, daß das 2-(2-Nitrobenzoyl)-1,3-cyclohexandion eine C_1-C_4 -Alkylsulfonyl- oder C_1-C_4 -Haloalkylsulfonyl-Substitution an dem Phenylring aufweist.
- 35 34. Verfahren nach Anspruch 33, dadurch gekennzeichnet, daß die Haloalkylsulfonyl-Substitution in der 4-Stellung des Phenylrings vorhanden ist.
- 35 35. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß das 2-(2-Nitrobenzoyl)-1,3-cyclohexandion eine C_1-C_4 -Alkylsulfonyl- oder C_1-C_4 -Haloalkylsulfonyl-Substitution am Phenylring aufweist.
- 40 36. Verfahren nach Anspruch 35, dadurch gekennzeichnet, daß die Alkylsulfonyl- oder Haloalkylsulfonyl-Substitution in der 4-Stellung des Phenylrings vorhanden ist.
- 40 37. Verfahren nach Anspruch 32, dadurch gekennzeichnet, daß das 2-(2-Nitrobenzoyl)-1,3-cyclohexandion eine C_1-C_4 -Haloalkyl-Substitution an dem Phenylring aufweist.
- 45 38. Verfahren nach Anspruch 32, dadurch gekennzeichnet, daß die Haloalkyl-Substitution in der 4-Stellung des Phenylrings vorhanden ist.
- 45 39. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß das 2-(2-Nitrobenzoyl)-1,3-cyclohexandion eine C_1-C_4 -Haloalkyl-Substitution an dem Phenylring aufweist.
- 50 40. Verfahren nach Anspruch 39, dadurch gekennzeichnet, daß die Haloalkyl-Substitution in der 4-Stellung des Phenylrings vorhanden ist.
- 50 41. Verfahren nach Anspruch 39, dadurch gekennzeichnet, daß das Haloalkyl CF_3 ist.
- 50 42. Verfahren nach Anspruch 37, dadurch gekennzeichnet, daß das Haloalkyl CF_3 ist.
- 50 43. Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß R^1 und R^2 Wasserstoff oder beide Methyl bedeuten.
- 55 44. Verfahren nach Anspruch 43, dadurch gekennzeichnet, daß R^8 $-SO_2CH_3$, $-SO_2CH_2Cl$, CF_3 , $-SO_2CH_3$, Chlor, $-SO_2CH_2Cl$ oder $-SO_2-n-C_3H_7$ bedeutet.
- 55 45. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß R^1 und R^2 Wasserstoff oder beide Methyl bedeuten.
- 55 46. Verfahren nach Anspruch 43, dadurch gekennzeichnet, daß R^8 $-SO_2CH_3$, $-SO_2CH_2Cl$, CF_3 , $-SO_2CH_3$, Chlor, $-SO_2CH_2Cl$ oder $-SO_2-n-C_3H_7$ bedeutet.

60

65

EP 0 186 118 B1

Revendications pour les Etats contractants: BE CH DE FR GB IT LI NL SE

1. Un composé de formule:

5

10

dans laquelle:

15 R¹ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;
 R² est un atome d'hydrogène ou un radical alkyle en C₁ à C₄ ou un groupe R^a—O—C(O)— dans lequel
 R^a est un radical alkyle en C₁ à C₄; ou

20 R¹ et R², pris ensemble, forment un groupe alkylène présentant de 3 à 6 atomes de carbone;
 R³ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

25 R⁴ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

R⁵ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

30 R⁶ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄; et

R⁷ et R⁸, indépendamment l'un de l'autre, consistent en:

(1) un atome d'hydrogène;

25 (2) un atome d'halogène;

(3) un radical alkyle en C₁ à C₄;

(4) un radical alkoxy en C₁ à C₄;

(5) un groupe —OCF₃;

(6) un groupe cyano;

30 (7) un groupe nitro;

(8) un groupe haloalkyle en C₁ à C₄;

(9) un groupe R^bSO_n— dans lequel n est un nombre entier égal à 0, 1 ou 2 et R^b est:

(a) un radical alkyle en C₁ à C₄,

(b) un radical alkyle en C₁ à C₄, substitué par un atome d'halogène ou un groupe cyano;

(c) un groupe phényle; ou

(d) un groupe benzyle;

35 (10) un groupe —NR^cR^d dans lequel R^c et R^d, indépendamment l'un de l'autre, consistent en un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

(11) un groupe R^cC(O)— dans lequel R^c est un radical alkyle en C₁ à C₄ ou alkoxy en C₁ à C₄; ou

40 (12) un groupe SO₂NR^cR^d dans lequel R^c et R^d sont tels que définis,
 à condition que R⁷ ne soit pas lié en position 6.

2. Les composés selon la revendication 1, dans lesquels R¹ est un atome d'hydrogène ou un radical méthyle; R² est un atome d'hydrogène ou un radical méthyle; R³ est un atome d'hydrogène ou un radical méthyle; R⁴ est un atome d'hydrogène ou un radical méthyle; R⁵ est un atome d'hydrogène ou un radical méthyle; R⁶ est un atome d'hydrogène ou un radical méthyle; R⁷ et R⁸, indépendamment l'un de l'autre, consistent en (1) un atome d'hydrogène; (2) un atome d'halogène; (3) un radical alkyle en C₁ à C₄; (4) un radical alkoxy en C₁ à C₄; (5) un groupe OCF₃; (6) un groupe cyano; (7) un groupe nitro; (8) un radical haloalkyle en C₁ à C₄; (9) un groupe R^bSO_n— dans lequel n est un nombre entier égal à 0, 1 ou 2, et R^b est (a)

45 un radical alkyle en C₁ à C₄; (b) un radical alkyle en C₁ à C₄, substitué par halogène ou cyano; (c) un groupe phényle; ou (d) un groupe benzyle; (10) un groupe —NR^cR^d dans lequel R^c et R^d indépendamment l'un de l'autre consistent en un atome d'hydrogène ou un radical alkyle en C₁ à C₄; (11) un groupe R^cC(O)— dans lequel R^c est un radical alkyle en C₁ à C₄ ou alkoxy en C₁ à C₄; ou (12) un groupe SO₂NR^cR^d dans lequel R^c et R^d sont tels que définis.

50 3. Le composé selon la revendication 2, dans lequel R⁷ et R⁸ sont, indépendamment l'un de l'autre, un atome d'hydrogène, de chlore, de fluor, de brome, ou un groupe méthyle, méthoxy, OCF₃, cyano, nitro, trifluorométhyle; un groupe R^bSO_n— dans lequel n est un nombre entier égal à 2 et R^b est un radical méthyle, chlorométhyle, trifluorométhyle, cyanométhyle, éthyle ou n-propyle; un groupe —NR^cR^d dans lequel R^c et R^d, indépendamment l'un de l'autre, consistent en un atome d'hydrogène ou un radical alkyle en C₁ à C₄; un groupe R^cC(O)— dans lequel R^c est un radical alkyle en C₁ à C₄ ou alkoxy en C₁ à C₄, ou un groupe SO₂NR^cR^d dans lequel R^c et R^d sont tels que définis ci-dessus et R⁷ est en position 3.

55 4. Le composé selon la revendication 2, dans lequel R⁷ est un atome d'hydrogène et R⁸ est un atome d'hydrogène, de chlore, de brome, de fluor, un groupe CF₃ ou R^bSO₂ dans lequel R^b est un radical alkyle en C₁ à C₄ ou haloalkyle en C₁ à C₄.

60 5. Le composé selon la revendication 2, dans lequel R¹ est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est

EP 0 186 118 B1

un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un atome d'hydrogène.

6. Le composé selon la revendication 2, dans lequel R¹ est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un radical méthyle; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un atome d'hydrogène.

5 7. Le composé selon la revendication 2, dans lequel R¹ est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un radical trifluorométhyle.

10 8. Le composé selon la revendication 2, dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un radical trifluorométhyle.

9. Le composé selon la revendication 2, dans lequel R¹ est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un atome de chlore.

15 10. Le composé selon la revendication 2, dans lequel R¹ est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un atome de fluor.

11. Le composé selon la revendication 2, dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un atome de chlore.

20 12. Le composé selon la revendication 2, dans lequel R¹ est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un groupe CH₃SO₂—.

13. Le composé selon la revendication 2, dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un groupe n-C₃H₇SO₂.

14. Le composé selon la revendication 2, dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un groupe CH₃SO₂.

30 15. Le composé selon la revendication 2, dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un groupe C₂H₅SO₂.

16. Les composés selon la revendication 2, dans lequel R⁷ est un atome d'hydrogène.

17. Les composés selon la revendication 3, dans lequel R⁷ est un atome d'hydrogène.

35 18. Le composé selon la revendication 2, dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un groupe cyano.

19. Le composé selon la revendication 1, dans lequel R¹ et R² sont des atomes d'hydrogène ou tous les deux des radicaux méthyles.

20. Le composé selon la revendication 19, dans lequel R⁸ est un groupe —SO₂CH₃.

21. Le composé selon la revendication 19, dans lequel R⁸ est le groupe —SO₂CH₂Cl.

22. Le composé selon la revendication 1, dans lequel R⁸ est le groupe CF₃.

23. Le composé selon la revendication 1, dans lequel R⁸ est le groupe —SO₂CH₃.

24. Le composé selon la revendication 1, dans lequel R⁸ est un atome de chlore.

25. Le composé selon la revendication 1, dans lequel R⁸ est le groupe —SO₂CH₂Cl.

45 26. Le composé selon la revendication 1, dans lequel R⁸ est le groupe —SO₂-n-C₃H₇.

27. Procédé pour contrôler la végétation indésirable, consistant à appliquer aux zones où l'on souhaite effectuer le contrôle une quantité efficace du point de vue herbicide d'un composé selon l'une quelconque des revendications 1 à 26.

28. Une composition herbicide comprenant une quantité active du point de vue herbicide de 2-(2-nitrobenzoyl)-1,3-cyclohexanedione et un support ou véhicule inerte pour ce composé.

50 29. La composition herbicide selon la revendication 28, dans laquelle la 2-(2-nitrobenzoyl)-1,3-cyclohexanedione est un composé selon les revendications 1 à 26.

30. Le procédé pour contrôler la végétation indésirable, consistant à appliquer aux zones où le contrôle est souhaité une composition herbicide comprenant une 2-(2-nitrobenzoyl)-1,3-cyclohexanedione active du point de vue herbicide et un support ou véhicule inerte pour ce composé.

31. Le procédé selon la revendication 30, dans lequel la 2-(2-nitrobenzoyl)-1,3-cyclohexanedione présente un substituant alkyl(C₁—C₄)-sulfonyle ou haloalkyl(C₁—C₄)-sulfonyle sur le noyau phényle.

32. Le procédé selon la revendication 31, dans lequel le substituant alkylsulfonyle ou haloalkylsulfonyle est en position 4 du noyau phényle.

33. La composition herbicide selon la revendication 28, dans lequel la 2-(2-nitrobenzoyl)-1,3-cyclohexanedione présente un substituant alkyl(C₁—C₄)-sulfonyle ou haloalkyl(C₁—C₄)-sulfonyle sur le noyau phényle.

34. La composition herbicide selon la revendication 33, dans lequel le substituant alkylsulfonyle ou haloalkylsulfonyle est en position 4 du noyau phényle.

60 35. Le procédé selon la revendication 30, dans lequel la 2-(2-nitrobenzoyl)-1,3-cyclohexanedione

EP 0 186 118 B1

présente un substituant haloalkyle en C₁ à C₄ sur le noyau phényle.

36. Le procédé selon la revendication 30, dans lequel le substituant haloalkyle est en position 4 du noyau phényle.

5 37. La composition herbicide selon la revendication 28, dans laquelle la 2-(2-nitrobenzoyl)-1,3-cyclohexanedione présente un substituant haloalkyle en C₁ à C₄ sur le noyau phényle.

38. La composition herbicide selon la revendication 37, dans laquelle le substituant haloalkyle est en position 4 du noyau phényle.

39. La composition herbicide selon la revendication 37, dans laquelle le radical haloalkyle est CF₃.

10 40. Le procédé selon la revendication 35, dans lequel le radical haloalkyle est CF₃.

41. Le procédé selon la revendication 27, dans lequel R¹ et R² sont des atomes d'hydrogène ou tous les deux des radicaux méthyles.

42. Le procédé selon la revendication 41, dans lequel R⁸ est —SO₂CH₃, —SO₂CH₂Cl, CF₃, —SO₂CH₃, un atome de chlore, —SO₂CH₂Cl ou —SO₂n-C₃H₇.

15 43. La composition selon la revendication 28, dans lequel R¹ et R² sont de l'hydrogène ou tous deux un radical méthyle.

44. La composition selon la revendication 43, dans lequel R⁸ est —SO₂CH₃, —SO₂CH₂Cl, CF₃, —SO₂CH₃, un atome de chlore, —SO₂CH₂Cl ou —SO₂n-C₃H₇.

45. Un procédé de préparation d'un composé de formule:

20

dans laquelle:

R¹ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

30 R² est un atome d'hydrogène ou un radical alkyle en C₁ à C₄ ou un groupe R^a—O—C(O)— dans lequel R^a est un radical alkyle en C₁ à C₄; ou

R¹ et R², pris ensemble, forment un groupe alkylène présentant de 3 à 6 atomes de carbone;

R³ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

R⁴ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

35 R⁵ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

R⁶ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄; et

R⁷ et R⁸, indépendamment l'un de l'autre, consistent en:

(1) un atome d'hydrogène;

(2) un atome d'halogène;

40 (3) un radical alkyle en C₁ à C₄;

(4) un radical alkoxy en C₁ à C₄;

(5) un groupe —OCF₃;

(6) un groupe cyano;

(7) un groupe nitro;

45 (8) un groupe haloalkyle en C₁ à C₄;

(9) un groupe R^bSO_n— dans lequel n est un nombre entier égal à 0, 1 ou 2 et R^b est:

(a) un radical alkyle en C₁ à C₄,

(b) un radical alkyle en C₁ à C₄, substitué par un atome d'halogène ou un groupe cyano;

(c) un groupe phényle; ou

50 (d) un groupe benzyle;

(10) un groupe —NR^cR^d dans lequel R^c et R^d, indépendamment l'un de l'autre, consistent en un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

(11) un groupe R^cC(O)— dans lequel R^c est un radical alkyle en C₁ à C₄ ou alkoxy en C₁ à C₄; ou

(12) un groupe SO₂NR^cR^d dans lequel R^c et R^d sont tels que définis,

55 à condition que R⁷ ne soit pas lié en position 6, consistant:

(a) faire réagir une dione de formule:

60

65

EP 0 186 118 B1

dans laquelle R¹ à R⁶ sont tels que définis ci-dessus, avec un réactif benzoyle substitué de formule:

5

- 10 dans laquelle R⁷ et R⁸ sont tels que définis ci-dessus et X est un atome d'halogène ou un groupe alkyl(C₁—C₄)—C(O)—O—, alcoxy(C₁—C₄)—C(O)—O— ou

15

- 20 dans laquelle R⁷ et R⁸ de cette partie de la molécule sont identiques à ceux du réactif précité, avec au moins une mole d'une base modérée pour former un ester énolique de formule:

25

- 30 dans laquelle R¹ à R⁶ sont tels que définis ci-dessus, et, b) dans l'étape (2) à faire réagir une mole de l'ester énolique intermédiaire avec une 1 à 4 moles d'une base modérée et de 0,01 mole à environ 0,5 mole ou davantage d'une source de cyanure pour former un composé de formule:

35

40

dans laquelle R¹ à R⁶ sont tels que définis ci-dessus.

- 45 46. Le procédé selon la revendication 45, dans lequel X est un atome d'halogène, la base modérée consiste en tri-alkyl-(C₁—C₆)amine, une pyridine, un carbonate de métal alcalin ou un phosphate de métal alcalin et la source de cyanure est un cyanure de métal alcalin, des cyanohydrines de méthyl-alkyl-(C₁—C₄)-cétones, des cyanohydrines de benzaldéhyde ou d'aldéhydes aliphatisques en C₂ à C₅, des cyanohydrines, le cyanure de zinc, les cyanures de tri(alkyl-inférieur)silyle ou l'acide cyanhydrique.

- 50 47. Le procédé selon la revendication 46, dans lequel X est un atome de chlore, la base modérée consiste en tri-alkyl-(C₁—C₆)amine, pyridine, carbonate de sodium ou phosphate de sodium et la source de cyanure est le cyanure de potassium, l'acétone cyanohydrine ou l'acide cyanhydrique.

Revendications pour l'Etat contractant: AT

- 55 1. Un procédé de préparation d'un composé de formule:

60

65

EP 0 186 118 B1

dans laquelle:

R¹ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

R² est un atome d'hydrogène ou un radical alkyle en C₁ à C₄ ou un groupe R^a—O—C(O)— dans lequel

R^a est un radical alkyle en C₁ à C₄; ou

5 R¹ et R², pris ensemble, forment un groupe alkylène présentant de 3 à 6 atomes de carbone;

R³ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

R⁴ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

R⁵ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

10 R⁶ est un atome d'hydrogène ou un radical alkyle en C₁ à C₄; et

R⁷ et R⁸, indépendamment l'un de l'autre, consistent en:

(1) un atome d'hydrogène;

(2) un atome d'halogène;

(3) un radical alkyle en C₁ à C₄;

(4) un radical alkoxy en C₁ à C₄;

15 (5) un groupe —OCF₃;

(6) un groupe cyano;

(7) un groupe nitro;

(8) un groupe haloalkyle en C₁ à C₄;

(9) un groupe R^bSO_n— dans lequel n est un nombre entier égal à 0, 1 ou 2 et R^b est:

20 (a) un radical alkyle en C₁ à C₄,

(b) un radical alkyle en C₁ à C₄, substitué par un atome d'halogène ou un groupe cyano;

(c) un groupe phényle; ou

(d) un groupe benzyle;

25 (10) un groupe —NR^cR^d dans lequel R^c et R^d, indépendamment l'un de l'autre, consistent en un atome d'hydrogène ou un radical alkyle en C₁ à C₄;

(11) un groupe R^eC(O)— dans lequel R^e est un radical alkyle en C₁ à C₄ ou alkoxy en C₁ à C₄; ou

(12) un groupe SO₂NR^fR^g dans lequel R^f et R^g sont tels que définis,

à condition que R⁷ ne soit pas lié en position 6, consistant:

(a) à faire réagir une dione de formule:

30

35

40

dans laquelle R¹ à R⁶ sont tels que définis ci-dessus, avec un réactif benzoyle substitué de formule:

45

50

dans laquelle R⁷ et R⁸ sont tels que définis ci-dessus et X est un atome d'halogène ou un groupe alkyl(C₁—C₄)—C(O)—O—, alkoxy(C₁—C₄)—C(O)—O— ou

55

60

dans laquelle R⁷ et R⁸ de cette partie de la molécule sont identiques à ceux du réactif précédent, avec au moins une mole d'une base modérée pour former un ester énolique de formule:

65

EP 0 186 118 B1

10 dans laquelle R¹ à R⁸ sont tels que définis ci-dessus, et, b) dans l'étape (2) à faire réagir une mole de l'ester
énonlique intermédiaire avec une 1 à 4 moles d'une base modérée et de 0,01 mole à environ 0,5 mole ou
 davantage d'une source de cyanure pour former un composé de formule:

dans laquelle R¹ à R⁸ sont tels que définis ci-dessus.

25 2. Le procédé selon la revendication 45, dans lequel X est un atome d'halogène, la base modérée
consiste en tri-alkyl-(C₁-C₆)amine, une pyridine, un carbonate de métal alcalin ou un phosphate de métal
alcalin et la source de cyanure est un cyanure de métal alcalin, des cyanohydrines de méthyl-alkyl-(C₁-C₄)-
cétones, des cyanohydrines de benzaldéhyde ou d'aldéhydes aliphatiques en C₂ à C₅, des cyanohydrines, le
cyanure de zinc, les cyanures de tri(alkyl-inférieur)silyle ou l'acide cyanhydrique.

30 3. Le procédé selon la revendication 46, dans lequel X est un atome de chlore, la base modérée
consiste en tri-alkyl-(C₁-C₆)amine, pyridine, carbonate de sodium ou phosphate de sodium et la source de
cyanure est le cyanure de potassium, l'acétone cyanohydrine ou l'acide cyanhydrique.

35 4. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹
est un atome d'hydrogène ou un radical méthyle; R² est un atome d'hydrogène ou un radical méthyle; R³
est un atome d'hydrogène ou un radical méthyle; R⁴ est un atome d'hydrogène ou un radical méthyle; R⁵
est un atome d'hydrogène ou un radical méthyle; R⁶ est un atome d'hydrogène ou un radical méthyle; R⁷ et
R⁸, indépendamment l'un de l'autre, consistent en (1) un atome d'hydrogène; (2) un atome d'halogène; (3)
un radical alkyle en C₁ à C₄; (4) un radical alkoxy en C₁ à C₄; (5) un groupe OCF₃; (6) un groupe cyano; (7) un
groupe nitro; (8) un radical haloalkyle en C₁ à C₄; (9) un groupe R^bSO_n— dans lequel n est un nombre entier
égal à 0, 1 ou 2, et R^b est (a) un radical alkyle en C₁ à C₄; (b) un radical alkyle en C₁ à C₄ substitué par
halogène ou cyano; (c) un groupe phényle; ou (d) un groupe benzyle; (10) un groupe —NR^cR^d dans lequel
40 R^c et R^d indépendamment l'un de l'autre consistent en un atome d'hydrogène ou un radical alkyle en C₁ à
C₄; (11) un groupe R^cC(O)— dans lequel R^c est un radical alkyle en C₁ à C₄ ou alkoxy en C₁ à C₄; ou (12) un
groupe SO₂NR^cR^d dans lequel R^c et R^d sont tels que définis.

45 5. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R⁷ et
R⁸ sont, indépendamment l'un de l'autre, un atome d'hydrogène, de chlore, de fluor, de brome, ou un
groupe méthyle, méthoxy, OCF₃, cyano, nitro, trifluorométhyle; un groupe R^bSO_n— dans lequel n est un
nombre entier égal à 2 et R^b est un radical méthyle, chlorométhyle, trifluorométhyle, cyanométhyle, éthyle
ou n-propyle; un groupe —NR^cR^d dans lequel R^c et R^d, indépendamment l'un de l'autre, consistent en un
atome d'hydrogène ou un radical alkyle en C₁ à C₄; un groupe R^cC(O)— dans lequel R^c est un radical alkyle
50 en C₁ à C₄ ou alkoxy en C₁ à C₄, ou un groupe SO₂NR^cR^d dans lequel R^c et R^d sont tels que définis ci-dessus
et R⁷ est en position 3.

55 6. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R⁷
est un atome d'hydrogène et R⁸ est un atome d'hydrogène, de chlore, de brome, de fluor, un groupe CF₃ ou
R^bSO₂ dans lequel R^b est un radical alkyle en C₁ à C₄ ou haloalkyle en C₁ à C₄.

7. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹
55 est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome
d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et
R⁸ est un atome d'hydrogène.

60 8. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹
est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome
d'hydrogène; R⁵ est un radical méthyle; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et
R⁸ est un atome d'hydrogène.

65 9. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹
est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome
d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et
R⁸ est un radical trifluorométhyle.

EP 0 186 118 B1

10. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un radical trifluorométhyle.
- 5 11. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹ est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un atome de chlore.
- 10 12. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹ est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un atome de fluor.
- 15 13. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un atome de chlore.
- 20 14. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹ est un radical méthyle; R² est un radical méthyle; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un groupe CH₃SO₂.
- 25 15. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un groupe n-C₃H₇SO₂.
- 30 16. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un groupe CH₃SO₂.
- 35 17. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un groupe C₂H₅SO₂.
- 40 18. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R⁷ est un atome d'hydrogène.
- 35 19. Le procédé selon la revendication 5, caractérisé en ce que l'on prépare un composé dans lequel R⁷ est un atome d'hydrogène.
- 45 20. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹ est un atome d'hydrogène; R² est un atome d'hydrogène; R³ est un atome d'hydrogène; R⁴ est un atome d'hydrogène; R⁵ est un atome d'hydrogène; R⁶ est un atome d'hydrogène; R⁷ est un atome d'hydrogène; et R⁸ est un groupe cyano.
- 50 21. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R¹ et R² sont des atomes d'hydrogène ou tous les deux des radicaux méthyles.
- 45 22. Le procédé selon la revendication 21, caractérisé en ce que l'on prépare un composé dans lequel R⁸ est un groupe —SO₂CH₃.
- 55 23. Le procédé selon la revendication 21, caractérisé en ce que l'on prépare un composé dans lequel R⁸ est le groupe —SO₂CH₂Cl.
- 60 24. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R⁸ est le groupe CF₃.
- 50 25. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé 1, dans lequel R⁸ est le groupe —SO₂CH₃.
- 65 26. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R⁸ est un atome de chlore.
- 55 27. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R⁸ est le groupe —SO₂CH₂Cl.
- 60 28. Le procédé selon la revendication 1, caractérisé en ce que l'on prépare un composé dans lequel R⁸ est le groupe —SO₂-n-C₃H₇.
- 65 29. Procédé pour contrôler la végétation indésirable, consistant à appliquer aux zones où l'on souhaite effectuer le contrôle une quantité efficace du point de vue herbicide d'un composé selon l'une quelconque des revendications 1 à 28.
- 60 30. Une procédé de préparation d'une composition herbicide comprenant une quantité active du point de vue herbicide de 2-(2-nitrobenzoyl)-1,3-cyclohexanedione et un support ou véhicule inert pour ce composé.
- 65 31. Le procédé selon la revendication 30, dans lequel la 2-(2-nitrobenzoyl)-1,3-cyclohexanedione est un composé selon les revendications 1 à 28.
- 65 32. Le procédé pour contrôler la végétation indésirable, consistant à appliquer aux zones où le contrôle

EP 0 186 118 B1

est souhaité une composition herbicide comprenant une 2-(2-nitrobenzoyl)-1,3-cyclohexanedione active du point de vue herbicide et un support ou véhicule inerte pour ce composé.

33. Le procédé selon la revendication 32, dans lequel la 2-(2-nitrobenzoyl)-1,3-cyclohexanedione présente un substituant alkyl(C₁—C₄)-sulfonyle ou haloalkyl(C₁—C₄)-sulfonyle sur le noyau phényle.

5 34. Le procédé selon la revendication 33, dans lequel le substituant alkylsulfonyle ou haloalkylsulfonyle est en position 4 du noyau phényle.

35. La composition herbicide selon la revendication 30, dans lequel la 2-(2-nitrobenzoyl)-1,3-cyclohexanedione présente un substituant alkyl(C₁—C₄)-sulfonyle ou haloalkyl(C₁—C₄)-sulfonyle sur le noyau phényle.

10 36. La composition herbicide selon la revendication 35, dans lequel le substituant alkylsulfonyle ou haloalkylsulfonyle est en position 4 du noyau phényle.

37. Le procédé selon la revendication 32, dans lequel la 2-(2-nitrobenzoyl)-1,3-cyclohexanedione présente un substituant haloalkyle en C₁ à C₄ sur le noyau phényle.

15 38. Le procédé selon la revendication 32, dans lequel le substituant haloalkyle est en position 4 du noyau phényle.

39. La composition herbicide selon la revendication 30, dans laquelle la 2-(2-nitrobenzoyl)-1,3-cyclohexanedione présente un substituant haloalkyle en C₁ à C₄ sur le noyau phényle.

40. La composition herbicide selon la revendication 39, dans laquelle le substituant haloalkyle est en position 4 du noyau phényle.

20 41. La composition herbicide selon la revendication 39, dans laquelle le radical haloalkyle est CF₃.

42. Le procédé selon la revendication 37, dans lequel le radical haloalkyle est CF₃.

43. Le procédé selon la revendication 29, dans lequel R¹ et R² sont des atomes d'hydrogène ou tous les deux des radicaux méthyles.

44. Le procédé selon la revendication 43, dans lequel R⁸ est —SO₂CH₃, —SO₂CH₂Cl, CF₃, —SO₂CH₃, un atome de chlore, —SO₂CH₂Cl ou —SO₃-n-C₃H₇.

25 45. La composition selon la revendication 30, dans lequel R¹ et R² sont de l'hydrogène ou tous deux un radical méthyle.

46. La composition selon la revendication 45, dans lequel R⁸ est —SO₂CH₃, —SO₂CH₂Cl, CF₃, —SO₂CH₃, un atome de chlore, —SO₂CH₂Cl ou —SO₃-n-C₃H₇.

30

35

40

45

50

55

60

65