Introduction à la statistique bivariée avec R

Claude Grasland

2023-09-16

Table des matières

À propos de ce document

Ce document est une introduction aux méthodes statistiques d'analyse bivariée et aux représentations graphiques avec le logicielR

Il est basé sur R version 4.3.1 (2023-06-16).

Ce document est régulièrement corrigé et mis à jour. La version de référence est disponible en ligne à l'adresse :

— https://github.com/ClaudeGrasland/bivaR2023

Le code source est disponible sur GitHub.

Pour toute suggestion ou correction, il est possible de me contacter par mail

Remerciements

Ce document est rédigé en quarto à partir du modèle proposé par Julien Barnier dans son Introduction à R et au Tidyverse

Licence

Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International.

Figure 0.1 – Licence Creative Commons

Première partie

Introduction

Deuxième partie

Introduction à R

1 Premier pas

— **Mise en place** : Télécharger le dossier exo1 et décompressez le sur votre ordinateur. Placez le dossier exo1 comme sous-dossier de votre dossier de cours. Puis ouvrez le programme R exo1.R

1.1 Opérations arithmétiques

Nous allons commencer par passer quelques commandes arithmétiques simples. Il suffit de les taper dans la console de R pour qu'elles s'executent automatiquement.

8 Premier pas

```
8+2
#> [1] 10
8-2
#> [1] 6
8*2
#> [1] 16
#> [1] 4
8**2
#> [1] 64
8**(1/2)
#> [1] 2.828427
log(10)
#> [1] 2.302585
log10(10)
#> [1] 1
sqrt(10)
#> [1] 3.162278
sin(pi)
#> [1] 0.000000000000001224647
cos(pi)
#> [1] -1
tan(pi)
#> [1] -0.0000000000000001224647
```

1.2 Les objets de base : valeur, vecteur, matrice

Les objets élémentéires de R apparaissent dans la fenêtre environnement sous la rubrique Values

1.2.1 Eléments

Un élément est unique et constitue la brique de base de tous les objets suivants. On peut aussi l'interpréter comme un vecteur de longueur 1 ou une matrice de dimension 1x1.

```
x<-8
y<-2
x+y
#> [1] 10
x*y
#> [1] 16
x**y
#> [1] 64
```

Les éléments se combinent différemment selon leur type. Par exemple, des éléments de type caractère (character) peuvent être assemblés avec l'instruction paste() ou découpez avec l'instruction substr() :

```
x<-"Bonjour"
y<- "tout le monde"
z<- "!"
paste(x,y,z)
#> [1] "Bonjour tout le monde !"
substr(x,1,3)
#> [1] "Bon"
```

Quant aux éléments logiques (logical) nous verrons qu'ils peuvent se combiner avec des opérateurs comme & quii signifie ET ou bien | qui signifie OU.

```
x<-TRUE
y<-FALSE
x & y
#> [1] FALSE
x | y
#> [1] TRUE
```

1.2.2 vecteurs (vectors)

Un vecteur est un ensemble d'éléments **de même type** que l'on a concaténés à l'aide de l'instruction c(). On peut ensuite les aditionner, les multiplier ou les combiner avec des éléments.

```
x <- c(1,2,4,8,16)
y <- 4
x+y
#> [1] 5 6 8 12 20
x*y
#> [1] 4 8 16 32 64
x**y
#> [1] 1 16 256 4096 65536
```