Heuristics for Planning with Penalties and Rewards Using Compiled Knowledge

Blai Bonet Universidad Simón Bolívar Caracas, Venezuela Héctor Geffner ICREA & Univ. Pompeu Fabra Barcelona, Spain

Motivation

• Planning is a form of general problem solving

$$Problem \implies Language \implies \boxed{Planner} \implies Solution$$

- Idea: problems described at high-level and solved automatically
- Goal: facilitate modeling with small penalty in performance

Planning and General Problem Solving: How general?

For which class of problems planner should work?

- Classical planning focuses on problems that map into state models
 - a state space S
 - an initial state $s_0 \in S$
 - goal states $S_G \subseteq S$
 - actions A(s) applicable in each s
 - a successor state function f(a,s), $a \in A(s)$
 - action costs c(a, s) = 1
- ullet The **solution** of this model is an applicable action sequence that maps s_0 into a goal state
- A solution is optimal if it minimizes the sum of action costs

Variety of Models in Planning

- Other forms of planning work over different models; e.g. conformant planning works over models given by
 - a state space S
 - an initial set of states $S_0 \in S$
 - goal states $S_G \subseteq S$
 - actions A(s) applicable in each s
 - a set of possible succesor states F(a,s), $a \in A(s)$
 - action costs c(a, s) = 1
- If model extended with sensors, we get model for contingent planning,
- If uncertainty quantified with probabilities, we get MDPs and POMDPs

A more precise definition of Planning

- Planning is about development of solvers for certain classes of models
- The models expressed in compact form over planning languages
- ullet For example, in **Strips**, a 'classical planning problem' expressed as tuple $\langle F,O,I,G \rangle$ where
 - -F stands for set of all **fluents** or **atoms** (boolean vars)
 - O stands for set of all actions
 - $-I \subseteq F$ stands for **initial situation**
 - $-G \subseteq F$ stands for **goal situation**

and each action a represented by

- -- Add list $Add(a) \subseteq F$
- -- **Delete** list $Del(a) \subseteq F$
- -- Precondition list $Pre(a) \subseteq F$

From Language to Model: Semantics of Strips

Strips problem $P = \langle F, O, I, G \rangle$ represents state model $\mathcal{S}(P)$

- the states $s \in S$ are collections of atoms
- the initial state s_0 is I
- ullet the goal states $s \in S_G$ are such that $G \subseteq s$
- the actions in s are the $a \in O$ s.t. $Pre(a) \subseteq s$
- ullet the state that results from doing a in s is s'=s-Del(a)+Add(a)
- ullet action costs c(a,s) are all 1

The (optimal) solution of planning problem P is the (optimal) solution of State Model $\mathcal{S}(P)$

Progress in Classical Planning

- large problems solved fast
- empirical methodology
 - standard PDDL language (richer than Strips)
 - planners and benchmarks available
 - focus on performance, planning competitions, . . .
- novel ideas and formulations
 - e.g., extraction and use of **heuristics** h(s) for guiding **search**

Our goal in this work

Extend classical planning methods to richer cost model

$$c(a,s) = \left\{ \begin{array}{ll} c & \text{uniform costs} \\ c(a) & \text{action-dependent costs} \\ c(s) & \text{state-dependent costs} \end{array} \right.$$

- We want to be able to plan with state-dependent costs which may be positive (penalties) or negative (rewards)
- ullet For this, we will a define a richer cost model and heuristic h_c^+

Planning with Penalties and Rewards: Example

- Elevator Problem with 10 floors, 5 positions, 1 elevator.
- No hard goals: penalties and rewards associated with positions
- Question: How to model and solve these problems effectively?

Some Results using New Heuristic h_c^+

Elevator instance n-m-k has n floors, m positions, and k elevators

			Solved with h_c^+		Solved blind	
Problem	Length	Optimal Cost	Time	Nodes	Time	Nodes
4-4-2	12	- 9	0.35	1,382	4.19	29,247
6-6-2	23	-14	21.44	24,386	2,965.90	6,229,815
6-6-3	23	-14	133.48	76,128		
10-5-1	11	-3	0.39	238	161.85	445,956
10-5-2	32	-5	330.72	189,131		

- What is the **cost model**, and how **heuristic** h_c^+ defined, computed, and used in the search?
- Heuristic h_c^+ not only must estimate cost to goal, but **must select the** goals too!

Where is the KR?

- We show how to construct a **circuit** whose input is a state s, and whose output, computed in **linear time**, is $h_c^+(s)$ for **any** s
- For this, the **heuristic** $h_c^+(s)$ is formulated as **rank** $r(T(P) \wedge I(s))$ of propositional theory $T(P) \wedge I(s)$ obtained from problem P and state s

$$r(T) = \min_{M \models T} r(M) \quad \text{and} \quad r(M) = \sum_{L \in M} r(L)$$

- Rank $r(T(P) \wedge I(s))$ intractable in general but computable in linear time if T(P) compiled into d-DNNF (Darwiche)
- ullet The **circuit** is the compiled T(P) formula; the compilation may take exponential time and space, but not necessarily so (like OBDDs)

Our plan for (the rest!) of the talk

- 1. Define the **cost model** for planning problems P
- 2. Define the **heuristic** h_c^+ as relaxation of model
- 3. Define encoding T(P) such that $h_c^+(s) = r(T(P) \wedge I(s))$
 - T(P) defined in terms of 'strong completion' of a Logic Program P'; so $h_c^+(s)$ can also be thought as rank of best answer set of P'
- 4. Define heuristic search **algorithm** (Dijkstra, A*, IDA*, etc don't work with **negative** heuristics and costs!)
- 5. Present experimental results

Planning Model

ullet A problem P expressed in planning language extended with positive action cost c(a) and positive or negative fluent costs c(p)

• Cost of a plan π for P given by cost of the actions in π and the atoms $F(\pi)$ made true by π (at any time)

$$c(\pi) \stackrel{\text{def}}{=} \sum_{a \in \pi} c(a) + \sum_{p \in F(\pi)} c(p)$$

• Cost of problem P is

$$c^*(P) = \min_{\pi} c(\pi)$$

Heuristic h_c^+

• Heuristic $h_c^+(P)$ defined in terms of the delete-relaxation P^+ :

$$h_c^+(P) \stackrel{\text{def}}{=} c^*(P^+)$$

ullet Heuristic h_c^+ is **informative** and **admissible** (under certain conditions)

• For the classical cost function c(action)=1 and c(fluents)=0, h_c^+ is the well known delete-relaxation heuristic, approximated by tractable heuristics in planners such as HSP and FF

Modeling

The model is simple but flexible, and can represent . . .

- **Terminal Costs:** an atom p can be rewarded or penalized if true at the end of the plan, by means of new atom p' initialized to false, and conditional effect $p \rightarrow p'$ for action End.
- Goals: not strictly required; can be modeled as a sufficiently high terminal reward
- Conditional Preferences: in terms of conditional effects
- Rewards on Conjunctions: in terms of atoms and actions . . .

Not so simple to represent repeated costs or rewards, penalties on sets of atoms (would need ramifications), partial preferences, . . .

Heuristics, Ranks and d-DNNF Compilation

Claim: If $h_c^+(s) = r(T(P) \wedge I(s))$ where I(s) is a set of literals and

$$r(T) = \min_{M \models T} r(M) \quad \text{and} \quad r(M) = \sum_{L \in M} r(L)$$

then $h_c^+(s)$ computable in linear linear for any s if T(P) in d-DNNF.

This follows from two results by **Darwiche and Marquis** about d-DNNF:

- 1. Ranks: If T in d-DNNF then r(T) computable in linear time
- 2. Conjoining: If T in d-DNNF and I is a set of literals, then $T \wedge I$ can be brought into d-DNNF in linear-time too

Stratified Encodings

Plans for a Strips problem $P = \langle F, I, O, G \rangle$ with horizon n can be obtained from **models** of propositional theory $T_n(P)$ (Kautz and Selman):

- 1. Actions: For $i=0,1,\ldots,n-1$ and all a $a_i\supset p_i$ for $p\in Pre(a)$ $C_i\wedge a_i\supset L_{i+1}$ for each effect $a:C\to L$
- 2. Frame: For $i=0,\ldots,n-1$ and all p $p_i \wedge (\bigwedge_{a:C \to \neg p} (\neg a_i \vee \neg C_i)) \supset p_{i+1} \neg p_i \wedge (\bigwedge_{a:C \to p} (\neg a_i \vee \neg C_i)) \supset \neg p_{i+1}$
- 3. Seriality, Init, Goals, . . .

Heuristic h_c^+ could be defined from suitable rank of theory $T_n(P^+)$, where P is the delete-relaxation, yet . . .

- how to define the **horizon** n and deal with large n?
- how to define ranking so that $h_c^+(s) = r(T_n(P^+) \wedge I(s))$?

Logic Program Encodings: Implicit Stratification

• Normal Actions: For each positive (conditional) effect $a:C\to p$ of action a with precond Pre(a) add

$$p \leftarrow C, Pre(a), a$$

• Set Actions: Add set(p) actions, which are true in I(s) iff $p \in s$:

$$p \leftarrow set(p)$$

Let T(P) be resulting **logic program**, and $\operatorname{wffc}(T(P))$ be the formula that picks up the models of T(P) where fluents are **well-supported**:

Theorem: For any s, $h_c^+(s) = r(\text{wffc}(T(P)) \wedge I(s))$, where r is the literal ranking function s.t r(l) = c(l) for positive literals l and r(l) = 0 otherwise.

Main Theorem

If the theory $\operatorname{wffc}(T(P))$ is compiled into d-DNNF, then the value $h_c^+(s)$ can be computed for any state s and cost function c in linear time.

Some remarks:

- ullet The compilation of $\operatorname{wffc}(T(P))$ may take exponential time and space, although this is not necessarily so (like OBDDs)
- ullet The search for plans requires computing $h_c^+(s)$ at many states; effort of compilation amortized throughout these intractable calls
- Similar ideas can be used for deriving the heuristic values $h_c^+(g)$ for any subgoal g for guiding a regression search.
- ullet Last, admissible approximations of h_c^+ can be obtained by 'relaxing' the problem (e.g., removing non-rewarding atoms) . . .

From Heuristic to Search

- A* does not work due to negative edge costs and heuristics
- However, since heuristic is monotone, only need to change termination condition
- In addition, due to semantics of model, nodes in search graph must keep track of penalties and rewards collected

Empirical Results: Compilation Serialized Logistics

	backw	ard theory	forward theory		
Problem	Time	Nodes	Time	Nodes	
4-0	0.34	1,163	1.66	64,623	
•••	••••	••••	• • • •	••••	
6-2	0.21	1,163	1.64	63,507	
6-3	0.32	1,163	1.65	64,951	
7-0	1.26	3,833	145.83	3,272,308	
7-1	1.38	3,837	142.82	3,211,456	
8-0	1.30	3,833	263.20	3,268,023	
8-1	1.37	3,837	263.19	3,270,570	
9-0	1.98	3,854	147.82	3,199,190	
9-1	1.27	3,833	138.81	3,130,689	
10-0	6.86	13,153			
10-1	6.87	13,090			

- These are first 18 logistic problems from 2nd IPC (serialized)
- ullet d-DNNF compiler due to Darwiche (c2d) and Completion ${
 m wffc}(T)$ obtained following Lin and Zhao, IJCAI-03.

Runtime Serialized Logistics

		h^2 backward			h_c^+ with mutex backward			
Problem	$c^*(P)$	$h^2(P)$	Time	Nodes	$h_c^+(P)$	Time	Nodes	
4-0	20	12	0.23	4,295	19	0.02	40	
•••	• •	• •	••••	• • • •	• •	••••	•••	
6-2	25	10	25.49	301,054	23	0.89	517	
6-3	24	12	7.87	99,827	21	0.84	727	
7-0	36	12			33	97.41	4,973	
7-1	44	12			39	4,157.70	175,886	
8-0	31	12			29	11.64	591	
8-1	44	12			41	283.32	12,913	
9-0	36	12			33	65.81	3,083	
9-1	30	12			29	1.54	81	
10-0	?	12			41			
10-1	42	12			39	5,699.2	20,220	

- ullet Heuristic h^2 planner corresponds basically to 'serial' Graphplan
- \bullet Heuristic h_c^+ with mutex, adds $h_c^+(g)=\infty$ when g mutex

Elevator

Elevator instance n-m-k has n floors, m positions, and k elevators

			Solved with h_c^+		Solved blind	
Problem	Length	Optimal Cost	Time	Nodes	Time	Nodes
4-4-2	12	- 9	0.35	1,382	4.19	29,247
6-6-2	23	-14	21.44	24,386	2,965.90	6,229,815
6-6-3	23	-14	133.48	76,128		
10-5-1	11	-3	0.39	238	161.85	445,956
10-5-2	32	-5	330.72	189,131		

- Theory $\operatorname{wffc}(T(P))$ does not actually compile for **Elevator**
- ullet Heuristic above is **admissible approximation** that results from 'relaxing' atom inside(e) from P

Blocks

- Block World instances do not compile as well as Logistics
- We could only compile first 8 instances from the 2nd IPC
- ullet These are very small instances having at most 6 blocks, where h_c^+ does not pay off (for classical planning)

Wrap up

In this work we have combined ideas from a number of areas, such as search, planning, knowledge compilation, and answer set programming to define and compute an heuristic for optimal planning with penalities and rewards

- Some theories compile well, others do not; in certain cases, admissible and informed approximations obtained from 'relaxing' certain atoms
- Correspondence between heuristic and rank of preferred models or answer sets suggests possible use of Weighted SAT or ASP solvers
- Compilation-based approach, however, yields *circuit* or *evaluation network* that maps **situations** into **appraisals** in linear-time; a role similar to **emotions** . . .