Name:	(please print)
Signature:	

ENGR 065 Circuit Theory– Midterm Exam March 11, 2020

Keep this exam closed and face up until you are told to begin.

- 1. This exam is a closed-books, closed-notes exam. Calculators are allowed.
- 2. The multiple-choice questions, including the bonus question, are to be answered on your scantrons while the free response questions are to be completed on these pages.
- 3. Submit these pages with your scantrons.
- 4. You have 75 minutes to work on this exam.

Problems	Scores
Multiple Choices (80 pts)	
Free Response Problem 1 (10 pts)	
Free Response Problem 2 (10 pts)	
Bonus Question (10 pts)	
Total	

Choose one answer from each problem. Each problem has 5 points.

1) The equivalent resistance seen by the terminals ${\bf a}$ and ${\bf b}$ is

Α. 4 Ω

Β. 6 Ω

C. 8 Ω

D. 10Ω

2) The power associated with 10 Ω resistor is

A. 25 W

B. - 25 W

C. 250 W

D. - 250 W

3) The power associated with 5Ω resistor is

A. 20 W

B. - 20 W

C. 125 W

D. - 125 W

4) The power associated with 10 V voltage source is

E. 50 W

F. - 50 W

G. 70 W

H. - 70 W

5) The current i_x is

A. 2 A

B. - 2 A

6) The voltage v_x is

B. 10 V

C. 15 V

D. 20 V

Questions 7-10 are to be answered based on the following circuit:

7) The node voltage equation at node a in the circuit is

A.
$$\frac{V_1 + 256}{150} + \frac{V_1 - V_2}{100} + \frac{V_1}{200} + \frac{V_1 - V_3}{300} = 0$$
B.
$$\frac{V_1 - 256}{150} + \frac{V_1 - V_2}{100} + \frac{V_1}{200} + \frac{V_1 - V_3}{300} = 0$$
C.
$$\frac{V_1 - 256}{150} + \frac{V_1 + V_2}{100} + \frac{V_1}{200} + \frac{V_1 - V_3}{300} = 0$$
D.
$$\frac{V_1 - 256}{150} + \frac{V_1 - V_2}{100} + \frac{V_1}{200} + \frac{V_1 + V_3}{300} = 0$$

8) The node voltage equation at node b in the circuit is

A.
$$\frac{V_2 - V_1}{100} - 50i_{\Delta} + \frac{V_2 - V_3}{250} = 0$$

B.
$$\frac{V_2 - V_1}{100} + 50i_{\Delta} + \frac{V_2 - V_3}{250} = 0$$

B.
$$\frac{v_2 - v_1}{100} + 50i_{\Delta} + \frac{v_2 - v_3}{250} = 0$$
C.
$$\frac{v_2 - v_1}{100} - 50i_{\Delta} + \frac{v_3 - v_2}{250} = 0$$
D.
$$\frac{v_2 + v_1}{100} + 50i_{\Delta} + \frac{v_2 - v_3}{250} = 0$$

D.
$$\frac{V_2 + V_1}{100} + 50i_{\Delta} + \frac{V_2 - V_3}{250} = 0$$

9) The node voltage equation at node c in the circuit is

A.
$$\frac{V_3 - V_2}{250} + \frac{V_3}{400} + \frac{V_3 - V_1}{300} = 0$$

A.
$$\frac{V_3 - V_2}{250} + \frac{V_3}{400} + \frac{V_3 - V_1}{300} = 0$$
B.
$$\frac{V_3 - V_2}{250} + \frac{V_3}{400} + \frac{V_3 - V_1}{300} + 128 = 0$$

C.
$$V_3 = 128 \text{ V}$$

C.
$$V_3 = 128 \text{ V}$$

D. $V_3 = -128 \text{ V}$

10) The i_{Δ} in the circuit is equal to

A.
$$\frac{V_3 - V_1}{300}$$

B.
$$\frac{V_1 - V_3}{200}$$

C.
$$\frac{V_2 - V_1}{200}$$

D.
$$\frac{V_3 + V_1}{300}$$

Questions 11 -13 are to be answered based on the following circuit.

11) The mesh-current equation of mesh a in the circuit is

A.
$$5i_a - 3i_b + 10 = 0$$

B. $5i_a - 3 + 40 = 0$

B.
$$5i_a - 3 + 40 = 0$$

C.
$$5i_a - 3i_b + 50 = 0$$

D. $5i_a - 3i_b + 60 = 0$

$$D. 5i_a - 3i_b + 60 = 0$$

12) The mesh-current equation of mesh **b** in the circuit is

A.
$$3i_a - 19i_b - 6i_c = 0$$

B.
$$-3i_a + 19i_b + 6i_c = 0$$

C.
$$\frac{-3i_a + 19i_b - 6i_c = 0}{D. -3i_a - 19i_b - 6i_c = 0}$$

D.
$$-3i_a - 19i_b - 6i_c = 0$$

13) The mesh-current equation of mesh \mathbf{c} in the circuit is

A.
$$10i_c - 6i_b - 50 = 0$$

B.
$$10i_c + 6i_b + 50 = 0$$

C.
$$i_c = -5 \, A$$

D.
$$i_c = 5 A$$

14) The Thévenin equivalent resistance at the terminals **a and b** in the circuit below is

D.
$$50 \Omega$$

15) The Thévenin equivalent voltage V_{Th} at the terminals a and b in the circuit below is

$$V_{Th}$$
 R_{Th}
 V_{Th}
 V_{Th}

16) The maximum power transferred to the R_L in the circuit below is

A. 2.5 W

2. Free Response Questions (10 points/each)

1) Using the source transformation to find the voltage v_0 in the circuit below

d.
$$v_0 = 3 \times 2.5 = 7.5 V$$
 (+1)

2) Using the superposition principle method to find the voltage v_0 in the following circuit

1) When the 15 V voltage source is applied to the circuit

$$5+5=10~\Omega$$

$$\frac{10\times10}{10+10} = 5 \Omega$$

$$V = \frac{15 \times 5}{5 + 10} = 5 V$$

$$V_o' = \frac{5 \times 5}{5 + 5} = 2.5 V \ (+2)$$

When the 3 A current source is applied to the circuit

$$\frac{10\times10}{10+10} = 5 \Omega$$

$$5+5=10~\Omega$$

$$i = \frac{3 \times 10}{5 + 10} = 2 A$$

$$v_0'' = 10 V$$
 (+2)

(+2)

$$v_0 = v_0' + v_0'' = 2.5 + 10 = 12.5 V \text{ (+2)}$$

Bonus question (10 pts)

1 What is the value of R shown in the circuit below such that there is no voltage between the terminals **a** and **b** for any value of v_s ?

- $A.~50~k\Omega$
- B. $54 \text{ k}\Omega$
- C. $75 \text{ k}\Omega$
- D. $150 \text{ k}\Omega$

$$R = 50 \times \frac{9}{6} = 75 \ k\Omega$$