EE101 Tutorial-5 (11 Sep 2014)

Use Norton's theorem to find the current through R₃, X₃ branch in the circuit shown below. Q1.

- Q2. For the transistor amplifier circuit with collector-emitter feedback biasing shown in Figure 1, find the value of
 - a. I_B
 - b. V_C
 - c. V_E
 - d. V_{CE}

(Assume that $V_{BE} = 0.7 V$ in forward biased condition)

Figure 1

- Q3. In Figure 2, the transistor is in active region with the quiescent C-E voltage $V_{CEQ} = 4 V$. Assume that $V_{BE} = 0.7 V, V_T = 26 mV, BJT$ output resistance r_o is very high $(> 100 \text{ k}\Omega)$, and all capacitors are short-circuited at applied signal frequency. Find the value of
 - a. R_1

 - d. A_v , if a load $R_L = 2 k\Omega$ is
 - connected across A-B. e. $A_{v_s} = \frac{v_o}{v_s}$, if $R_L = 2 k\Omega$ is connected across A-B and assuming that applied voltage source has a resistance of $R_s = 0.5 k\Omega$.

