Today's outline - January 17, 2023

- Tensor products of vector spaces
- Multiple qubit systems
- Measurement of n-qubit systems
- Quantum key distribution revisited

Reading Assignment: Reiffel: 4.1-4.2 Wong: 4.2.4

Homework Assignment #01: Homework Assignment #02: due Thursday, January 19, 2023 due Thursday, January 26, 2023

Direct sum of vector spaces

Consider two classical state spaces, V and W with bases

$$A = \{ |\alpha_1\rangle, |\alpha_1\rangle, \dots, |\alpha_n\rangle \}, \qquad B = \{ |\beta_1\rangle, |\beta_1\rangle, \dots, |\beta_m\rangle \}$$

The combined state space of these two state spaces is obtained through a direct sum, $V \oplus W$ with basis

$$A \cup B = \{ |\alpha_1\rangle, |\alpha_1\rangle, \dots, |\alpha_n\rangle, |\beta_1\rangle, |\beta_1\rangle, \dots, |\beta_m\rangle \}$$

Every element $|x\rangle \in V \oplus W$ can be written as $|x\rangle = |v\rangle \oplus |w\rangle$, where $|v\rangle \in V$ and $|w\rangle \in W$

Addition and scalar multiplication are done on the component systems separately and then adding results and inner products are performed as

$$(\langle \mathbf{v}_2| \oplus \langle \mathbf{w}_2|) (|\mathbf{v}_1\rangle \oplus |\mathbf{w}_1\rangle) = \langle \mathbf{v}_2|\mathbf{v}_1\rangle + \langle \mathbf{w}_2|\mathbf{w}_1\rangle$$

Thus, for a system of n two-state objects, the dimension of the state space of the system is 2n, linear with the number of objects

Tensor product of vector spaces

Quantum systems, such as qubits combine as tensor products so for V and W with bases

$$A = \{ |\alpha_1\rangle, |\alpha_2\rangle, \dots, |\alpha_n\rangle\}, \qquad B = \{ |\beta_1\rangle, |\beta_2\rangle, \dots, |\beta_m\rangle\}$$

The tensor product $V \otimes W$ is an $n \times m$ -dimensional space consisting of elements $|\alpha_i\rangle \otimes |\beta_j\rangle$

Operations on such a vector space are now:

$$(|\mathbf{v}_{1}\rangle + |\mathbf{v}_{2}\rangle) \otimes |\mathbf{w}\rangle = |\mathbf{v}_{1}\rangle \otimes |\mathbf{w}\rangle + |\mathbf{v}_{2}\rangle \otimes |\mathbf{w}\rangle$$
$$|\mathbf{v}\rangle \otimes (|\mathbf{w}_{1}\rangle + |\mathbf{w}_{2}\rangle) = |\mathbf{v}\rangle \otimes |\mathbf{w}_{1}\rangle + |\mathbf{v}\rangle \otimes |\mathbf{w}_{2}\rangle$$
$$(a|\mathbf{v}\rangle) \otimes |\mathbf{w}\rangle = |\mathbf{v}\rangle \otimes (a|\mathbf{w}\rangle) = a(|\mathbf{v}\rangle \otimes |\mathbf{w}\rangle)$$

for $k = \min(n, m)$, all elements of $V \otimes W$ have the form

$$|v_1\rangle \otimes |w_1\rangle + |v_2\rangle \otimes |w_2\rangle + \cdots + |v_k\rangle \otimes |w_k\rangle, \quad v_i \in V, w_i \in W$$

The \otimes symbol will often be dropped with the understanding that the tensor product is always implied: $|v\rangle\otimes|w\rangle\rightarrow|v\rangle|w\rangle\rightarrow|vw\rangle$

More about tensor products

The inner product in $V \otimes W$ space is defined as

$$(\langle v_2|\otimes \langle w_2|)\cdot (|v_1\rangle\otimes |w_1\rangle)=\langle v_2|v_1\rangle\langle w_2|w_1\rangle$$

The tensor product of two unit vectors is also a unit vector, and given orthonormal bases $\{|\alpha_i\rangle\}$ and $\{|\beta_i\rangle\}$ for V and W, the basis $\{|\alpha_i\rangle\} \otimes \{|\beta_i\rangle\}$ for $V \otimes W$ is also orthonormal

For quantum computing, the tensor product of n 2-dimensional vector spaces (2^n dimensional) is most relevant

Most vectors $|u\rangle \in V \otimes W$ cannot be written as the tensor product of $|v\rangle \in V$ and $|w\rangle \in W$ these are so-called entangled states and are of fundamental importance to quantum computing

For entangled states, it is meaningless to discuss the state of a single qubit that is part of the system

Standard basis for multiple qubit systems

For a system of n qubits, the standard basis of the combined space $V_{n-1} \otimes \cdots \otimes V_0$ is given by 2^n unit vectors:

$$\{|0\rangle_{n-1}\otimes\cdots\otimes|0\rangle_{1}\otimes|0\rangle_{0}, |0\rangle_{n-1}\otimes\cdots\otimes|0\rangle_{1}\otimes|1\rangle_{0}, |0\rangle_{n-1}\otimes\cdots\otimes|1\rangle_{1}\otimes|0\rangle_{0}, \dots \\ \dots, \{|1\rangle_{n-1}\otimes\cdots\otimes|1\rangle_{1}\otimes|0\rangle_{0}, |1\rangle_{n-1}\otimes\cdots\otimes|1\rangle_{1}\otimes|1\rangle_{0}\}$$

which uses the little endian notation

The state of a system with n qubits can be written in the explicit or more compact form

$$|b\rangle_{n-1}\cdots|b\rangle_1|b\rangle_0\equiv|b_{n-1}\cdots b_1b_0\rangle$$

 $\{|0\cdots 00\rangle, |0\cdots 01\rangle, \cdots |1\cdots 10\rangle, |1\cdots 11\rangle\}$

The 2^n standard basis vectors in the compact notation are thus

An even more compact form is to use the decimal value of the binary representation

$$\{|0\rangle, |1\rangle, \cdots, |2^n-2\rangle, |2^n-1\rangle\}$$

Multiple qubit examples

Given a 2 qubit state it is possible to represent it in the full, compact, or vector notations

$$\frac{1}{2}|00\rangle + \frac{i}{2}|01\rangle + \frac{1}{\sqrt{2}}|11\rangle = \frac{1}{2}|0\rangle + \frac{i}{2}|1\rangle + \frac{1}{\sqrt{2}}|3\rangle = \begin{pmatrix} \frac{1}{2} \\ \frac{i}{2} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\begin{split} \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) &= \frac{1}{2} \left[\left(|0\rangle + |1\rangle \right) \otimes \left(|0\rangle + |1\rangle \right) \right] \\ &= \frac{1}{2} \left[|00\rangle + |01\rangle + |10\rangle + |11\rangle \right] \end{split}$$

$$\begin{split} \left(\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle\right) \otimes \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle\right) &= \frac{1}{2}\left(|0\rangle + \sqrt{3}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle + i|1\rangle\right) \\ &= \frac{1}{2\sqrt{2}}\left(|00\rangle + i|01\rangle + \sqrt{3}|10\rangle + i\sqrt{3}|11\rangle\right) \end{split}$$

Conventional representation

Just as for a single qubit, the global phase is indeterminate and by convention, a quantum superposition is written

$$a_0|0\cdots 00\rangle + a_1|0\cdots 01\rangle + \cdots + a_{2^n-1}|1\cdots 11\rangle$$

with the first non-zero coefficient being real and non-negative to ensure a unique representation for each state

For an *n*-qubit system there are $2^n - 1$ unique complex coefficients for each vector. The space in which vectors which are multiples of each other are considered equivalent is called the complex projective space of dimension $2^n - 1$.

The expression $|v\rangle \sim |w\rangle$ means that the two vectors represent the same quantum state because they differ only by a global phase

A change in relative phase represents a different state

$$\begin{split} \frac{1}{\sqrt{2}}(e^{i\phi}|00\rangle + |11\rangle) & \sim \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ \frac{1}{\sqrt{2}}(e^{i\phi}|00\rangle + e^{i\phi}|11\rangle) & \sim \frac{1}{\sqrt{2}}e^{i\phi}(|00\rangle + |11\rangle) & \sim \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \end{split}$$

Alternate bases

aubit systems but occasionally an alternate basis is useful

 $|\Phi^-\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$

 $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

One of the more common bases for a 2-gubit system is the Bell basis: $|\Phi^{+}\rangle$, $|\Phi^{-}\rangle$, $|\Psi^{+}\rangle$, $|\Psi^{-}\rangle$

Generally, the standard basis is used for multiple

 $|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$ $|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$

$$|v
angle\otimes\left(e^{i\phi}|w
angle
ight)=e^{i\phi}\left(|v
angle\otimes|w
angle
ight)=\left(e^{i\phi}|v
angle
ight)\otimes|w
angle$$

A state might look different when it is represented in a different basis

qubits since global phase factors distribute over tensor products

$$\begin{split} \frac{1}{\sqrt{2}}\left(|0\rangle|0\rangle+|1\rangle|1\rangle\right) &= \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(|+\rangle+|-\rangle\right)\otimes\frac{1}{\sqrt{2}}\left(|+\rangle+|-\rangle\right)+\frac{1}{\sqrt{2}}\left(|+\rangle-|-\rangle\right)\otimes\frac{1}{\sqrt{2}}\left(|+\rangle-|-\rangle\right)\right] \\ &= \frac{1}{\sqrt{2}}\left(|+\rangle|+\rangle+|-\rangle|-\rangle\right) \end{split}$$

Just as for a single qubit, there is redundance in the 2^n -dimensional space generated by n

Entanglement

For an n qubit system, only a few of the 2^n possible states can be described as product states of individual qubit states

$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Therefore the vast majority of states in the system are so-called entangled states

$$|\Phi^{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

 $|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$

The Bell states are an example of entangled states of a 2-gubit system

$$|\Psi^-
angle=rac{1}{\sqrt{2}}(|01
angle-|10
angle)$$

For example, the $|\Phi^{+}\rangle$ Bell state cannot be described by the product below

$$\big(a_1|0\rangle_1+b_1|1\rangle_1\big)\otimes \big(a_2|0\rangle_2+b_2|1\rangle_2\big)=a_1a_2|00\rangle+a_1b_2|01\rangle+b_1a_2|10\rangle+b_1b_2|11\rangle$$

if $a_1b_2=0$, then either $a_1a_2=0$ or $b_1b_2=0$ and the same if $b_1a_2=0$

The two particles in a Bell state are said to be maximally entangled and are called an EPR pair

More about entanglement

Entanglement is determined with respect to a specific decomposition of the state space, if

$$|\psi\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle \in V, \qquad V = V_1 \otimes V_2 \otimes \cdots \otimes V_n$$

Then $|\psi
angle$ is separable (or unentangled) with respect to the specific decomposition defined by V_i

The default decomposition for an n-qubit system is the tensor product of the n two-dimensional vector spaces corresponding to the individual qubits: V_{n-1}, \ldots, V_0

Entanglement is not, however, dependent on basis, for example the Bell state is entangled in any of the three common 2-qubit bases

$$\begin{split} |\Phi^{+}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|++\rangle + |--\rangle) = \frac{1}{\sqrt{2}}(|i\,\bar{i}\,\rangle + |\bar{i}\,i\,\rangle) \\ |\Phi^{+}\rangle &= \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}(|i\,\rangle + |\bar{i}\,\rangle)(|i\,\rangle + |\bar{i}\,\rangle) + \frac{-i}{\sqrt{2}}\frac{-i}{\sqrt{2}}(|i\,\rangle - |\bar{i}\,\rangle)(|i\,\rangle - |\bar{i}\,\rangle)\right] \\ &= \frac{1}{\sqrt{8}}\left[|\underline{i}\rangle|\underline{t}\rangle + |i\,\rangle|\bar{i}\,\rangle + |\bar{i}\,\rangle|i\,\rangle + |\underline{i}\rangle|\underline{t}\rangle - |\underline{i}\rangle|\underline{t}\rangle + |i\,\rangle|\bar{i}\,\rangle + |\bar{i}\,\rangle|i\,\rangle - |\underline{j}\rangle|\underline{t}\rangle\right] \end{split}$$

Multiple meanings of entanglement

Since entanglement is not an intrinsic property of the state but depends on the particular decomposition, it is often convenient to use a decomposition into subsystems where the state is separable, Consider the 4-qubit state

$$\begin{aligned} |\psi\rangle &= \frac{1}{2} \left(|00\rangle + |11\rangle + |22\rangle + |33\rangle \right) = \frac{1}{2} \left(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle \right) \\ &= \frac{1}{2} \left(|0\rangle_3 |0\rangle_2 |0\rangle_1 |0\rangle_0 + |0\rangle_3 |1\rangle_2 |0\rangle_1 |1\rangle_0 + |1\rangle_3 |0\rangle_2 |1\rangle_1 |0\rangle_0 + |1\rangle_3 |1\rangle_2 |1\rangle_1 |1\rangle_0 \right) \\ &= \frac{1}{\sqrt{2}} \left(|0\rangle_3 |0\rangle_1 + |1\rangle_3 |1\rangle_1 \right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle_2 |0\rangle_0 + |1\rangle_2 |1\rangle_0 \right) \end{aligned}$$

Thus $|\psi\rangle$ is not entangled with respect to the system decomposition into a subsystem of qubits 1 & 3 and qubits 0 & 2 However, it can be shown that any other subsystem decomposition leaves $|\psi\rangle$ entangled

$$\begin{split} |\psi\rangle &\neq \frac{1}{\sqrt{2}} \left(|0\rangle_{3} |0\rangle_{2} + |1\rangle_{3} |1\rangle_{2} \right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle_{1} |0\rangle_{0} + |1\rangle_{1} |1\rangle_{0} \right) \\ &= \frac{1}{2} \left(|0\rangle_{3} |0\rangle_{2} |0\rangle_{1} |0\rangle_{0} + |0\rangle_{3} |0\rangle_{2} |1\rangle_{1} |1\rangle_{0} + |1\rangle_{3} |1\rangle_{2} |0\rangle_{1} |0\rangle_{0} + |1\rangle_{3} |1\rangle_{2} |1\rangle_{1} |1\rangle_{0} \right) \\ &= \frac{1}{2} \left(|0000\rangle + |0011\rangle + |1100\rangle + |1111\rangle \right) = \frac{1}{2} \left(|00\rangle + |03\rangle + |30\rangle + |33\rangle \right) \end{split}$$

Measuring multiple qubits

Suppose we have an *n*-qubit system with vector space V of dimensionality $N = 2^n$

A device that takes measurements on this system will have an associated direct sum decomposition into orthogonal subspaces given by $V = S_1 \oplus \cdots \oplus S_k$, $k \leq N$

where k is the maximum number of possible outcomes of the measurement of a state with this device

The polarization of a photon is a trivial example of this where the system is defined as n=1, N=2, and k=2, and the detector has an orthonormal basis $\{|v_1\rangle, |v_2\rangle\}$

Each of the orthonormal basis vectors, $|v_i\rangle$ generates a one-dimensional subspace, S_i consisting of $a|v_i\rangle$ and $V=S_1\oplus S_2$

When a measurement is made with the polarization detector, the qubit state will then lie entirely in one of the two subspaces, S_1 or S_2

Measurement formalism

Similarly, with an *n*-qubit system, when the device with the decomposition $V = S_1 \oplus \cdots \oplus S_k$, the state $|\psi\rangle$ is

$$|\psi\rangle = a_1|\psi_1\rangle \oplus \cdots \oplus a_i|\psi_i\rangle \oplus \cdots \oplus a_k|\psi_k\rangle, \qquad |\psi_i\rangle \in S_i, a_1 \geq 0, Im\{a_1\} \equiv 0$$

When the device interacts with the state $|\psi\rangle$, the state will end up in state $|\psi_i\rangle \in S_i$ with a probability of $|a_i|^2$

Suppose a device measured a single qubit in the Hadamard basis

$$\left\{ \left|+
ight
angle =rac{1}{\sqrt{2}}\left(\left|0
ight
angle +\left|1
ight
angle
ight) ,\left|-
ight
angle =rac{1}{\sqrt{2}}\left(\left|0
ight
angle -\left|1
ight
angle
ight)
ight\}$$

 $|+\rangle$ and $|-\rangle$ generate S_+ and S_- respectively

$$|\psi\rangle = a|0\rangle + b|1\rangle = \frac{a+b}{\sqrt{2}}|+\rangle + \frac{a-b}{\sqrt{2}}|-\rangle$$

$$|\psi\rangle$$
 is then measured as $|+\rangle$ with probability $\left|\frac{a+b}{\sqrt{2}}\right|^2$ and $|-\rangle$ with probability $\left|\frac{a-b}{\sqrt{2}}\right|^2$

Measurement in a 2-qubit system

Consider a 2-qubit system with a measuring device that uses the standard basis and associated decomposition $V = S_1 \oplus S_2$ such that

$$\textit{S}_1 = |0\rangle_1 \otimes \textit{V}_2, \hspace{0.2cm} \text{span}(\textit{S}_1) = \{|00\rangle, |01\rangle\} \hspace{1cm} \textit{S}_2 = |1\rangle_1 \otimes \textit{V}_2, \hspace{0.2cm} \text{span}(\textit{S}_2) = \{|10\rangle, |11\rangle\}$$

This device is used to measure an arbitrary 2-qubit state $|\psi\rangle$ with normalization factors

$$|\psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle = c_1|\psi_1\rangle + c_2|\psi_1\rangle$$
 $|\psi_1\rangle = \frac{1}{c_1} \left(a_{00}|00\rangle + a_{01}|01\rangle\right) \in S_1 \qquad |\psi_2\rangle = \frac{1}{c_2} \left(a_{10}|10\rangle + a_{11}|11\rangle\right) \in S_2$
 $c_1 = \sqrt{|a_{00}|^2 + |a_{01}|^2}, \qquad c_2 = \sqrt{|a_{10}|^2 + |a_{11}|^2}$

Measurement with this device will give $|\psi_{\mathbf{1}}\rangle$ with probability

and $|\psi_2\rangle$ with probability

$$|c_1|^2 = |a_{00}|^2 + |a_{01}|^2$$

 $|c_2|^2 = |a_{10}|^2 + |a_{11}|^2$

Measurement in the Hadamard basis

A device that measured the first qubit of a 2-qubit system with respect to the Hadamard basis $\{|+\rangle, |-\rangle\}$ has an associated decomposition $V = S_1' \oplus S_2'$ such that

$$S_1' = |+\rangle \otimes V_2, \quad \mathsf{span}(S_1') = \{|+\rangle |0\rangle, |+\rangle |1\rangle \} \qquad S_2' = |-\rangle \otimes V_2, \quad \mathsf{span}(S_2') = \{|-\rangle |0\rangle, |-\rangle |1\rangle \}$$

This device is used to measure an arbitrary 2-qubit state $|\psi\rangle$ with normalization factors

$$\begin{split} |\psi\rangle &= a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle = c_1'|\psi_1'\rangle + c_2'|\psi_1'\rangle \\ |\psi_1'\rangle &= \frac{1}{c_1'} \left(\frac{a_{00} + a_{10}}{\sqrt{2}} |+\rangle |0\rangle + \frac{a_{01} + a_{11}}{\sqrt{2}} |+\rangle |1\rangle \right) \quad |\psi_2'\rangle = \frac{1}{c_2'} \left(\frac{a_{00} - a_{10}}{\sqrt{2}} |-\rangle |0\rangle + \frac{a_{01} - a_{11}}{\sqrt{2}} |-\rangle |1\rangle \right) \\ c_1' &= c_2' = \sqrt{|a_{00}|^2 + |a_{01}|^2 + |a_{10}|^2 + |a_{11}|^2}/2 \end{split}$$

Measurement with this device will give $|\psi_1'\rangle$ and $|\psi_2'\rangle$ with equal probabilities

A special case is
$$|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
 with $a_{00} = a_{11} = \frac{1}{\sqrt{2}}$ and $a_{10} = a_{01} = 0$

Quantum key distribution with entangled states

The Ekert91 protocol uses entangled states to transmit keys

A series of qubits are created in the entangled state $|\Phi^+
angle=rac{1}{\sqrt{2}}(|00
angle+|11
angle)$

Alice gets the first qubit of the pair and Bob gets the second

Each of them measures their qubit using either the standard basis, $\{|0\rangle, |1\rangle\}$, or the Hadamard basis, $\{|+\rangle, |-\rangle\}$, chosen randomly and independently

They compare their bases and discard those bits where they differ. Why?

If Alice obtains $|0\rangle$ using the standard basis, then they know the entire entangled state becomes $|00\rangle$ and Bob will also measure $|0\rangle$ in the standard basis

If Bob uses the Hadamard basis, he will get $|0\rangle$ and $|1\rangle$ with equal probability so the differing bases must be discarded

Since there is no exchange of quantum states in this protocol Eve has a much harder time gathering any information about the key