Raport z realizacji zadania rekrutacyjnego Stanowisko: Banking Champions – Big Data

Autor: Damian Koss

1. Opis zadania

Celem zadania było stworzenie modelu modelu uczenia maszynowego przewidującego poważne zaległości w spłacie z wykorzystaniem ogólnodostępnego zbioru danych Home Credit z platformy Kaggle.

2. Wybór modelu

Analizę przeprowadziłem z wykorzystaniem metody uczenia maszynowego jaką jest **las losowy (random forest).** Jest to często stosowane podejście w przypadku gdy nie chcemy niepotrzebnie komplikować analizy, a zaprezentować jedynie wstępne wyniki. Z uwagi na ograniczony czas na wykonanie zadanie i chęć zaprezentowania ogólnego podejścia do zagadnienia wydaje się to optymalnym wyborem.

3. Użyte dane

Opisywany model zbudowany został jedynie na podstawie danych zawartych w plikach application_{train|test}.csv . Analiza z wykorzystaniem wszystkich danych dostępnych w ramach konkursu wymagałaby dogłębnego zbadania zagadnienia co z całą pewnością pozwoliłoby na osiągnięcie lepszych rezultatów ale również znacząco wydłużyło czas analizy. Wykorzystanie podstawowego zbioru pozwala natomiast w przystępny sposób zaprezentować ogólne podejście do omawianego problemu.

4. Opis środowiska

Analiza przeprowadzona została w **Pythonie 3** z wykorzystaniem narzędzia **jupyter notebook**. Całość możliwa jest do odtworzenia za pomocą pliku **Risk_estimation.ipynb**

5. Szczegóły implementacji

Analiza podzielona została na kilka podmodułów:

5.1 Wczytanie danych (Reading data)

Dane wczytane zostały z wykorzystaniem biblioteki **pandas** z dwóch plików application_train.csv oraz application_train.csv. Zbiór treningowy zawiera 307511 obserwacji natomiast testowy 48744. W obu tych zbiorach każda obserwacja składa się z 121 zmiennych, a w zbiorze treningowych dodana jest kolumna TARGET określająca czy w przypadku danego kredytu wystąpiły poważne zaległości w spłacie. Warto zwrócić uwagę na rozkład zmiennej objaśnianej. Na podstawie poniższego histogramu widzimy, że zaległości w spłacie obserwowane są stosunkowo rzadko.

5.2 Analiza braków w danych (Missing values)

W trakcie analizy widzimy, że aż 67 z 122 kolumn zawiera pewne braki w danych. Natomiast dokładny rozkład tego jaką część wszystkich obserwacji w danej kolumnie stanowią braki w danych przedstawia poniższy histogram.

Możemy wyróżnić tutaj dwie grupy: kolumny dla których braki danych są nieznaczne i stanowią poniżej 40-50% oraz te gdzie brakuje ponad połowy obserwacji. W trakcie analizy zdecydowałem się na użycie jedynie zmiennych objaśniających dla których braki w danych stanowią **mniej niż 50%.** Nie znamy szczegółów odnośnie sposobu zbierania danych przez co użycie danych dla których obserwujemy tak duże braki może negatywnie wpłynąć na zdolności generalizacyjne i odzwierciedlać jedynie zależności w danej próbie, a nie dla ogółu.

5.3 Transformacja zmiennych (Encoding Categorical Variables)

Przed przystąpieniem do zastosowaniem metod uczenia maszynowego należy dokonać transformacji zmiennych jakościowych. Dla zmiennych w przypadku, których obserwujemy jedynie dwie różne wartości, zastosowałem transformację określaną jako

label encoding czyli zamiana na zmienną binarną. Natomiast dla zmiennych przyjmujących więcej niż dwie wartości zastosowałem transformację one-hot encoding czyli stworzenie oddzielnej zmiennej binarnej dla każdej z wartości. W przypadku zastosowania podejścia polegającego na przypisaniu kolejnych liczb całkowitych do danych wartości występuje problem kolejności tego przypisania, co może z kolei prowadzić do błędnego określenia zależności przez dany algorytm uczenia maszynowego.

5.4 Analiza danych (Data Exploration)

W tym punkcie sprawdziłem jedynie rozkład tych zmiennych objaśniających, których wartości są łatwe do zinterpretowania. W trakcie analizy odkryłem pewną anomalię występująca dla zmiennej **DAYS_EMPLOYED**, która to przyjmuje wartość 365243 dla 55374 obserwacji. Jest to z całą pewnością pewien błąd w danych gdyż wartości powinny być wyrążone w liczbach ujemnych określających liczbę dni. Pozostawienie tych błędówi znacznie wpływa na rozkład zmiennej (poniższy histogram) i może prowadzić do błędnego działania modelu.

Wszystkie wartości zamieniłem na braki w danych oraz dodałem nową zmienną określająca czy dla danej obserwacji wystąpiła przedstawiona anomalia, gdyż to także może stanowić pewną informację w kontekście przyszłej estymacji modelu. Rozkład zmiennej po opisanej zmianie:

5.5 Uzupełnienie braków w danych i normalizacja zmiennych (Filling missing values and normalization)

Braki w danych uzupełnione zostały przez **medianę obserwacji** z danej kolumny. Natomiast aby zapewnić jednakowy wpływ każdej z zmiennych objaśniających na działanie modelu wszystkie zmienne przeskalowane zostały na wartości z zakresu [0,1].

5.5 Budowa modelu lasu losowego (Random Forest)

W trakcie analizy eksperymentalnie dobrałem wartości następnych parametrów

- liczba drzew użyta do budowy lasu
 Zgodnie z literaturą przedmiotu parametr ustawiłem na wartość odpowiadającą
 pierwiastkowi kwadratowemu z liczby obserwacji użytych do uczenia modelu, co odpowiada wartości 554
- liczba obserwacji losowana do budowy każdego z drzew
 Idea lasu losowego polega na budowie możliwie różnych drzew co możemy
 zapewnić między innymi przez użycie jedynie cześci obserwacji w trakcie budowy
 każdego z drzew. Najlepsze rezultaty osiągamy w przypadku wyboru około połowy
 obserwacji, a dokładnie 138500.
- maksymalna głębokość każdego z budowanych drzew
 Każde z drzew wchodzących w las losowy powinno być możliwe proste, a jednocześnie opisywać kluczowe zależności widoczne w danych. Parametr ustawiłem na wartość 100, co przy wszystkich 187 atrybutach stanowi ponad połowę.

6. Wyniki i wnioski

Opisany model pozwolił na osiągnięcie wyniku na poziomie **0,71** co biorąc pod uwagę wynik wygrywający konkurs (0,80) stanowi dobrą podstawę do dalszego rozszerzenia analizy. Przyszłe prace powinny skupiać na poniższych aspektach:

- użycie wszystkich dostępnych danych
- dokładniejsze zbadanie zależności występujących w danych i wykorzystanie techniki zwanej jako Feature Engineering czyli wprowadzenie nowych zmiennych uzyskanych na podstawie surowych danych
- zastosowanie efektywniejszych metod uczenia maszynowego ze szczególnym uwzględnieniem wzmacniania gradientowego (Gradient Boosting)

Jednak ze względu na poglądowy charakter przeprowadzanej analizy otrzymany wynik traktuje jako satysfakcjonujący.

Name	Submitted	Wait time	Execution time	Score
esult.csv	an hour ago	0 seconds	0 seconds	0.71151