1 Übung 03

1.1 H 3-1

Sei \mathcal{A} ein endlicher Automat mit n Zuständen und das Wort $w \in L(\mathcal{A})$ mit $|w| \geq n$, dann existiert ein erfolgreicher Run $u = q_0 \to q_1 \to \ldots \to q_n$ mit |u| = n + 1.

Da $|Q_{\mathcal{A}}| = n$ ist, muss innerhalb des Runs u ein Zustand q_i mehrfach vorkommen. Die wiederholgen Transitionen $q_i \to \ldots \to q_i$ aus u entsprechen dem Teilwort y der Dekomposition $w = xy^kz$.

Somit akzeptiert der Automat \mathcal{A} jedes Wort der Form $w = xy^kz$ für alle $k \geq 0$.

1.2 H 3-2

Sei $L = \{a^nb^n \mid n \in \mathbb{N}\}$ eine von einem endlichen Automaten erkennbare Sprache, dann exisitiert ein Automat \mathcal{A} mit $L = L(\mathcal{A})$. Für Wörter $w \in L(\mathcal{A})$ mit $|w| \geq m, m = |Q_{\mathcal{A}}|$ existiert eine Dekomposition w = xyz mit $y \neq \varepsilon$ und $xy^kz \in L(\mathcal{A}), k \geq 0$ nach Lemma 1.11.

Für n=1 ist w=ab und die möglichen Dekompositionen w=xaz oder w=xbz. Dann muss $w=xy^kz\in L(\mathcal{A})$ sein, für $k\geq 0$ und y=a oder y=b. Dies ist aber nicht der Fall, da entweder die Anzahl an a oder b für jedes $k\neq 1$ verschieden ist und somit $m\notin L$. \not

1.3 H 3-3

- a) $L(A) = \varepsilon \cup ab^* \cup bb^* \cup a \{a, b\}^* ab^*$
- b) Schritte zur Erstellung des normalisierten Automaten, nach Lemma 1.6, für die Sprache ${\cal L}$
 - Konstruktion des Initialzustandsnormalisierten Automaten A_i
 - Finalzustandsnormalisierung auf A_i

– Einfügen der Transition für die Symbole a,b von Initial- zu Finalzustand um Wörter der Länge 1 zu akzeptieren

Automat zu b)