Optimization Design Homework 1

Andrés Ponce 彭思安 P76107116

March 4, 2022

1 Find the stationary points for the following functions. Also identify(for each stationary point), the local maximum, minimum, or neither (by using second order derivative or Hessian matrix.)

1.1 $f(x) = x^3 \exp(-x^2)$, for -2 < x < 2.

The stationary points are those where f'(x) = 0, so we first find the first derivative. By using the product rule,

$$f'(x) = 3x^{2} \exp(-x^{2}) - 2x^{4} \exp(-x^{2}) = -x^{2} \exp(-x^{2})(2x^{4} - 3x^{2})$$
(1.1)

which is zero at x = 0, and by solving $2x^4 - 3x^2$ we get the other roots $x = \pm \frac{\sqrt{3}}{\sqrt{2}}$. Theorem 2.2 gives the sufficient condition for a minimum or maximum point for single variables. We must find a point where $f^m(x^*) \neq 0$, so we find f''(x). We again use the product rule on Equation 1.1 and factor the result to obtain

$$f''(x) = -x \exp(-x^2)(4x^4 + 2x^2 - 6)$$
 (1.2)

where $f''(\frac{\sqrt{3}}{\sqrt{2}}) < 0$ and $f''(-\frac{\sqrt{3}}{\sqrt{2}}) > 0$ However, f''(0) = 0, so we find the third derivative by using the same procedure

$$f'''(x) = -x \exp(-x^2)(20x^3 + 6x + 8x^4 + 4x^2 - 12) - 6\exp(-x^2)$$
 (1.3)

where f'''(0) = 6, however since n = 3, 0 does not correspond to either a maximum nor minimum point. In the end, $-\frac{\sqrt{3}}{\sqrt{2}}$ is a minimum, 0 is neither, and $\frac{\sqrt{3}}{\sqrt{2}}$ is a maximum.

1.2 $f(x, y) = -x^2 - 3y^2 + 12xy$

For a multivariable equation, solving for x and y in the partial derivatives will give us the stationary points.

$$\frac{\partial f}{\partial x} = -2x + 12y \tag{1.4}$$

$$\frac{\partial f}{\partial y} = -6y + 12x\tag{1.5}$$

We first solve for y in Equation 1.5 and we get y=2x. Substituing for y in Equation 1.4, we get

$$-2x + 24x = 22x$$

$$22x = 0$$

which means x = 0. Substituting again x = 0 in Equation 1.5 we get -6y = 0 which means y = 0. The stationary point for f is (0,0).

To determine the nature of the stationary points, we have to find the Hessian matrix, which involves finding the second order partial derivatives.

$$\frac{\partial^2 f}{\partial^2 x} = -2 \quad \frac{\partial^2 f}{\partial^2 y} = -6 \tag{1.6}$$

$$\frac{\partial^2 f}{\partial v \partial x} = 12 \quad \frac{\partial^2 f}{\partial x \partial v} = 12 \tag{1.7}$$

and build the Hessian matrix

$$\mathbf{H} = \begin{bmatrix} -2 & 12 \\ 12 & -6 \end{bmatrix}$$

We can check for positive or negative definiteness by looking at the sign of $|\mathbf{H}_1|$ and $|\mathbf{H}_2|$. Here $|\mathbf{H}_1| = -2$ and $|\mathbf{H}_2| = (-6)(-2) - (12)(12) = -136$. Since both determinants are negative, we conclude (0,0) is neither a maximum nor minimum of f.

2 A QUADRATIC FUNCTION OF n VARIABLES HAS THE FOLLOWING STANDARD FORM

$$f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} / 2 + \mathbf{b}^T \mathbf{x} + c$$

, where ${\pmb x}$ is the vector containing the n variables. Vector ${\pmb b}(n\times 1)$ and symmetric matrix ${\pmb A}(n\times n)$ contain constant coefficients. For the following two quadratic functions $f_a({\pmb x})=x_1^2+2x_1x_2+3x_2^2$ and $f_b({\pmb x})=-x_1^2-x_2^2-x_3^2+2x_1x_2+6x_1x_3+4x_1-5x_3+7$, please

2.1 Rewrite these functions in the standard quadratic function form.