HW6

Sam Olson

Q1

An ecologist takes data

$$(x_i, Y_i), i = 1, \ldots, n,$$

where $x_i > 0$ is the size of an area and Y_i is the number of moss plants. The data are modeled assuming x_1, \ldots, x_n are fixed; Y_1, \ldots, Y_n are independent; and:

$$Y_i \sim \text{Poisson}(\theta x_i)$$

with parameter θx_i . Suppose that:

$$\sum_{i=1}^{n} x_i = 5$$

is known. Find an exact form of the most powerful (MP) test of size $\alpha = 9e^{-10}$ for testing:

$$H_0: \theta = 2$$
 vs $H_1: \theta = 1$.

Answer

We begin by constructing the likelihood ratio test statistic. The likelihood function under a general θ is:

$$L(\theta) = \prod_{i=1}^{n} \frac{e^{-\theta x_i} (\theta x_i)^{Y_i}}{Y_i!}$$

The likelihood ratio for testing $H_0: \theta = 2$ vs $H_1: \theta = 1$ is:

$$\Lambda(\mathbf{Y}) = \frac{L(\theta = 1)}{L(\theta = 2)} = \frac{\prod_{i=1}^{n} e^{-x_i} x_i^{Y_i} / Y_i!}{\prod_{i=1}^{n} e^{-2x_i} (2x_i)^{Y_i} / Y_i!} = e^{\sum x_i} \cdot 2^{-\sum Y_i} = e^5 \cdot 2^{-T}$$

where $T = \sum_{i=1}^{n} Y_i$.

The Neyman-Pearson lemma tells us the most powerful test rejects H_0 when $\Lambda(\mathbf{Y})$ is large, which corresponds to small values of T (since Λ decreases as T increases).

Thus, the rejection region is of the form:

$$R = \{T \le c\}$$

for some critical value c.

Under $H_0: \theta = 2$, we have:

$$T \sim \text{Poisson}(2 \cdot \sum x_i) = \text{Poisson}(10)$$

We need to find c such that:

$$P_{H_0}(T \le c) \le \alpha = 9 \times 10^{-10}$$

Compute the Poisson CDF for $T \sim \text{Poisson}(10)$:

- $\begin{array}{ll} \bullet & P(T=0) = e^{-10} \approx 4.54 \times 10^{-5} \\ \bullet & P(T=1) = e^{-10} \cdot 10 \approx 4.54 \times 10^{-4} \\ \bullet & P(T \leq 1) = P(T=0) + P(T=1) \approx 4.99 \times 10^{-4} \end{array}$

Since $\alpha = 9 \times 10^{-10}$ is much smaller than $P(T \le 1)$, we see that only T = 0 satisfies:

$$P(T \le 0) = e^{-10} \approx 4.54 \times 10^{-5} < \alpha$$

The most powerful test of size $\leq \alpha$ is:

Reject
$$H_0$$
 if and only if $T=0$

The actual size of this test is $P_{H_0}(T=0) = e^{-10} \approx 4.54 \times 10^{-5}$, which is less than $\alpha = 9 \times 10^{-10}$.

To achieve exactly $\alpha = 9 \times 10^{-10}$, we would need to use a randomized test when T = 1:

- Reject with probability 1 if T=0
- Reject with probability γ if T=1
- Never reject if $T \geq 2$

Where γ solves:

$$P(T=0) + \gamma P(T=1) = \alpha e^{-10} + \gamma \cdot 10e^{-10} = 9e^{-10}\gamma = \frac{9e^{-10} - e^{-10}}{10e^{-10}} = 0.8$$

However, since the problem asks for an exact form and doesn't specify that the size must be exactly α , the non-randomized test that rejects only when T=0 is sufficient.

Conclusion

The most powerful test of size $\leq \alpha = 9 \times 10^{-10}$ is:

Reject
$$H_0$$
 if $T=0$

where $T = \sum_{i=1}^{n} Y_i$. This test has size $e^{-10} \approx 4.54 \times 10^{-5}$.

Q2

Problem 8.19:

The random variable X has pdf:

$$f(x) = e^{-x}, \quad x > 0.$$

One observation is obtained on the random variable:

$$Y = X^{\theta}$$
.

and a test of:

$$H_0: \theta = 1$$
 versus $H_1: \theta = 2$

needs to be constructed.

Find the UMP level $\alpha = 0.10$ test and compute the Type II Error probability.

Hint

Show that the form of the MP test involves rejecting H_0 if:

$$e^{y-\sqrt{y}}/\sqrt{y} > k$$

for some k > 1.

(Skip the part involving $\alpha = 0.1$ or the Type II error part.)

Answer

Under the transformation $Y = X^{\theta}$, the inverse is $X = Y^{1/\theta}$, and the Jacobian is:

$$\frac{dx}{dy} = \frac{1}{\theta} y^{(1/\theta) - 1}.$$

Thus, the pdf of Y is:

$$f_Y(y|\theta) = f_X(y^{1/\theta}) \cdot \left| \frac{dx}{dy} \right| = e^{-y^{1/\theta}} \cdot \frac{1}{\theta} y^{(1/\theta)-1}, \quad y > 0.$$

The Neyman-Pearson lemma states that the most powerful (MP) test rejects H_0 for large values of the likelihood ratio:

$$\Lambda(y) = \frac{f_Y(y|2)}{f_Y(y|1)}.$$

Substituting the pdfs:

$$\Lambda(y) = \frac{\frac{1}{2}y^{-1/2}e^{-y^{1/2}}}{e^{-y}} = \frac{1}{2}y^{-1/2}e^{y-\sqrt{y}}.$$

The rejection region is of the form:

$$\Lambda(y) > k \implies \frac{e^{y-\sqrt{y}}}{\sqrt{y}} > 2k = k'.$$

Let $g(y) = \frac{e^{y-\sqrt{y}}}{\sqrt{y}}$. To determine the shape of g(y), compute its logarithmic derivative:

$$\frac{d}{dy}\ln g(y) = \frac{d}{dy}\left(y - \sqrt{y} - \frac{1}{2}\ln y\right) = 1 - \frac{1}{2\sqrt{y}} - \frac{1}{2y}.$$

- For $y \to 0^+$: The derivative $\approx -\frac{1}{2y} \to -\infty$ (decreasing).
- For $y \to \infty$: The derivative ≈ 1 (increasing).
- Critical point: Setting the derivative to zero:

$$1 - \frac{1}{2\sqrt{y}} - \frac{1}{2y} = 0 \implies y = 1.$$

At y = 1, g(y) has a minimum (verified by second derivative or numerical check).

- g(y) is decreasing for y < 1 and increasing for y > 1.
- Thus, $\Lambda(y) > k'$ corresponds to:

$$Y \leq c_0$$
 or $Y \geq c_1$,

where $c_0 < 1 < c_1$.

The UMP level- α test rejects H_0 if:

$$Y \le c_0$$
 or $Y \ge c_1$,

where c_0, c_1 are chosen such that:

$$P_{H_0}(Y < c_0) + P_{H_0}(Y > c_1) = \alpha.$$

Under H_0 ($\theta = 1$), $Y = X \sim \text{Exp}(1)$, so:

$$P_{H_0}(Y \le c_0) = 1 - e^{-c_0}, \quad P_{H_0}(Y \ge c_1) = e^{-c_1}.$$

Conclusion

The UMP test for $H_0: \theta = 1$ vs $H_1: \theta = 2$ rejects H_0 if:

$$Y \le c_0$$
 or $Y \ge c_1$,

where c_0, c_1 satisfy:

$$(1 - e^{-c_0}) + e^{-c_1} = \alpha.$$

Note: The exact values of c_0 , c_1 and the Type II error probability require solving the above equation numerically (not requested here). The key insight is the non-monotonicity of the likelihood ratio, leading to a two-sided rejection region.

Problem 8.20, Casella and Berger (2nd Edition).

Let X be a random variable whose pmf under H_0 and H_1 is given by:

\overline{x}	1	2	3	4	5	6	7
$\frac{f(x H_0)}{f(x H_1)}$							

Use the Neyman–Pearson Lemma to find the most powerful test for H_0 versus H_1 with size:

$$\alpha = 0.04$$
.

Compute the probability of Type II Error for this test.

Hint:

It holds that:

$$\frac{f(x|H_1)}{f(x|H_0)} = 7 - x + \frac{79}{94}I(x=7)$$

over the support x = 1, 2, ..., 7, where $I(\cdot)$ denotes the indicator function.

Answer

The likelihood ratio (LR) is given by:

$$\Lambda(x) = \frac{f(x|H_1)}{f(x|H_0)} = 7 - x + \frac{79}{94}I(x=7),$$

where $I(\cdot)$ is the indicator function.

- 1. For $x=1,\ldots,6$, the LR simplifies to $\Lambda(x)=7-x$. 2. For x=7, $\Lambda(7)=\frac{79}{94}\approx0.84$.

The LR is decreasing in x, so the MP test rejects H_0 for the smallest values of x (where the LR is largest). We order the support points by decreasing LR and compute cumulative probabilities under H_0 :

\overline{x}	LR $\Lambda(x)$	$f(x H_0)$	Cumulative P_{H_0}	
1	6.00	0.01	0.01	
2	5.00	0.01	0.02	
3	4.00	0.01	0.03	
4	3.00	0.01	0.04	
5	2.00	0.01	0.05	
6	1.00	0.01	0.06	
7	0.84	0.94	1.00	

- To achieve $\alpha=0.04$, we include the smallest x values until the cumulative probability under H_0 reaches α
- The rejection region is:

$$R = \{1, 2, 3, 4\},\$$

since $P_{H_0}(X \in R) = 0.04$.

The Type II error probability β is the probability of not rejecting H_0 when H_1 is true:

$$\beta = P_{H_1}(X \notin R) = P_{H_1}(X = 5, 6, 7).$$

Substituting the pmf under H_1 :

$$\beta = f(5|H_1) + f(6|H_1) + f(7|H_1) = 0.02 + 0.01 + 0.79 = 0.82.$$

Conclusion

• Most Powerful Test: Reject H_0 if $X \in \{1, 2, 3, 4\}$.

• Type II Error Probability: $\beta = 0.82$.

• Size: $P_{H_0}(X \in R) = 0.04$ (exactly α).

• Power: $1 - \beta = 0.18$.

$\mathbf{Q4}$

Recall Method I for finding Uniformly Most Powerful (UMP) tests:

To find a UMP size α test for $H_0: \theta \in \Theta_0$ vs $H_1: \theta \notin \Theta_0$, suppose we can fix $\theta_0 \in \Theta_0$ suitably and then use the Neyman-Pearson lemma to find an MP size α test $\varphi(\tilde{X})$ for:

$$H_0: \theta = \theta_0 \quad \text{vs} \quad H_1: \theta = \theta_1,$$

where:

a)

 $\varphi(\tilde{X})$ does not depend on $\theta_1 \notin \Theta_0$, and

Answer

Condition a) requires that the MP test $\varphi(\tilde{X})$ derived for $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ does not depend on the specific alternative $\theta_1 \notin \Theta_0$.

- 1. Universal Form: The test $\varphi(\tilde{X})$ has the same rejection region for all $\theta_1 \notin \Theta_0$. This typically arises when the likelihood ratio has a monotone structure (e.g., monotone likelihood ratio property).
- 2. Consistency: The test is not tailored to a single alternative but is valid for the entire alternative space $\theta \notin \Theta_0$.

For example, for exponential families with monotone likelihood ratios, the MP test rejects for large values of a sufficient statistic, regardless of θ_1 .

b)

 $\max_{\theta \in \Theta_0} E_{\theta} \varphi(\tilde{X}) = \alpha.$

Answer

Condition b) ensures that the test $\varphi(\tilde{X})$ has size exactly α over the composite null $H_0: \theta \in \Theta_0$:

$$\max_{\theta \in \Theta_0} E_{\theta} \varphi(\tilde{X}) = \alpha.$$

- 1. Calibration: The test is not conservative; the worst-case Type I error rate is exactly α .
- 2. Sufficiency: The size condition for the simple null $(\theta = \theta_0)$ extends to the composite null because θ_0 is chosen to maximize $E_{\theta}\varphi(\tilde{X})$ over Θ_0 .

For many exponential families, the power function is monotone in θ , so the maximum Type I error occurs at the boundary of Θ_0 .

Extra

Show that if a) and b) both hold, then $\varphi(\tilde{X})$ must be a UMP size α test for $H_0: \theta \in \Theta_0$ vs $H_1: \theta \notin \Theta_0$.

Hint:

From b), the size of the test rule $\varphi(\tilde{X})$ is correct. So, by definition of a UMP test, it is necessary to prove that if $\bar{\varphi}(\tilde{X})$ is any other test of $H_0: \theta \in \Theta_0$ vs $H_1: \theta \notin \Theta_0$ with size:

$$\max_{\theta \in \Theta_0} E_{\theta} \bar{\varphi}(\tilde{X}) \le \alpha,$$

then $\varphi(\tilde{X})$ has more power over the parameter subspace of H_1 than $\bar{\varphi}(\tilde{X})$, i.e.,

$$E_{\theta}\varphi(\tilde{X}) \geq E_{\theta}\bar{\varphi}(\tilde{X})$$
 for any $\theta \notin \Theta_0$.

In other words, pick/fix some $\theta_1 \notin \Theta_0$ and argue that:

$$E_{\theta_1}\varphi(\tilde{X}) \geq E_{\theta_1}\bar{\varphi}(\tilde{X})$$

must hold. The way to do this is to take the test $\bar{\varphi}(\tilde{X})$ and apply it to testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$.

Answer

Assume a) and b) hold. We show $\varphi(\tilde{X})$ is UMP for $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \notin \Theta_0$. Consider testing:

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta = \theta_1$.

By the NP lemma, $\varphi(\tilde{X})$ is MP at size α for this test.

Let $\bar{\varphi}(\tilde{X})$ be another test with:

$$\sup_{\theta \in \Theta_0} E_{\theta} \bar{\varphi}(\tilde{X}) \le \alpha.$$

In particular, $E_{\theta_0}\bar{\varphi}(\tilde{X}) \leq \alpha$.

Since $\varphi(\tilde{X})$ is MP for $\theta = \theta_0$ vs. $\theta = \theta_1$, it satisfies:

$$E_{\theta_1}\varphi(\tilde{X}) \geq E_{\theta_1}\bar{\varphi}(\tilde{X}).$$

By a), $\varphi(\tilde{X})$ does not depend on θ_1 . Thus, the inequality holds for all $\theta_1 \notin \Theta_0$, proving $\varphi(\tilde{X})$ is UMP.

Under conditions a) and b): 1. $\varphi(\tilde{X})$ is UMP for $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \notin \Theta_0$. 2. Size Control: $\max_{\theta \in \Theta_0} E_{\theta} \varphi(\tilde{X}) = \alpha$. 3. Power Dominance: For all $\theta \notin \Theta_0$, $\varphi(\tilde{X})$ has higher power than any other size- α test.

$\mathbf{Q5}$

Problem 8.23, Casella and Berger (2nd Edition).

Suppose X is one observation from a population with $\mathrm{Beta}(\theta,1)$ pdf.

a)

For testing:

$$H_0: \theta \le 1$$
 versus $H_1: \theta > 1$,

find the size and sketch the power function of the test that rejects H_0 if:

$$X>\frac{1}{2}.$$

b)

Find the most powerful level- α test of:

$$H_0: \theta = 1$$
 versus $H_1: \theta = 2$.

c)

Is there a UMP test of:

$$H_0: \theta \le 1$$
 versus $H_1: \theta > 1$?

If so, find it. If not, prove so.