Traveling Salesperson Problem

KLASSEN P UND NP

- ,Rundreiseproblem':→ Graph (V,E)
- Rundreise durch Menge der Orte $V = \{1, ..., n\}$, die besucht werden müssen.
- Die jeweiligen Reisekosten der Wege $E = \{\{i, j\} | i, j \in V; i \neq j\}$ zwischen den Orten i und j betragen $c(i, j) \in \mathbb{N}$

Fragestellung: Welche Reiserouten sind aus Kostensicht am sinnvollsten?

Ausprägungen des TSP:

Kann mit dem begrenzten Budget
B eine komplette Rundreise
durchgeführt werden?

→ Ja/Nein

Entscheidungsproblem

 Was sind die niedrigsten Kosten, mit denen man noch eine Rundreise machen kann?

 $\rightarrow B_{min}$

Werteproblem

 Wie lautet die Route für die billigste Rundreise?

 \rightarrow Route: $\{i_k\}^n, k \in \{1, ..., n\}$

Optimierungsproblem

Entscheidungsproblem

 Marcel hat 100 €. Kann er an einer Rundreise teilnehmen?

Werteproblem

 Oliver will im Urlaub eine Rundreise machen. Wieviel € muss er dafür mindestens ansparen?

Optimierungsproblem

• Martin möchte bereits Zimmer buchen. Dafür braucht er die Reihenfolge, in der er die Städte auf seiner möglichst billigen Reise besuchen wird.

• Reduktion auf Entscheidungsproblem:

- Lösung eines der drei Probleme lässt sich auf Lösung für alle zugehörigen Problemtypen ausweiten
 - Optimierungsproblem lösbar
 - \rightarrow Berechnung von B_{min} für das Werteproblem als Summe der der optimalen Route zugeordneten Kanten c(i, j).
 - werteproblem lösbar
 - ⇒Entscheidungsproblem liefert Ja für alle $B > B_{min}$, Nein für alle $B < B_{min}$ ⇒Entferne nacheinander Kanten $\{i,j\} \in E$ aus dem Graph, überprüfe ob sich die Lösung des Werteproblems ändert. Behalte nur Kanten, bei denen dies der Fall ist, bis letztendlich nur die optimale Route übrig bleibt.
 - Entscheidungsproblem lösbar
 - \rightarrow Variiere B mit einem Suchalgorithmus. Das minimale B, für das das Problem noch Ja liefert, ist B_{min} für das Werteproblem.
- o Ist Entscheidungsproblem in polynomieller Zeit lösbar, sind Werte- und Optimierungsproblem ebenfalls polynomialbeschränkt.

Verwandte Probleme

Bin Packing Problem (BP)

- O Aufteilung von n Objekten mit individueller Größe a_i , $i \in \{1, ..., n\}$ auf k Behälter gleicher Größe b.
- o "Passen alle Objekte in die begrenzten Behälter rein?"

Knapsack Problem (KP)

- o Packen von n Objekten mit individuellem Nutzwert a_i sowie Gewicht g_i , $i \in \{1, ..., n\}$ auf einen Rucksack mit einer festen Gewichtsobergrenze G.
- o "Wieviel Nutzwert kann ich in den Rucksack packen?"

Cliquenproblem

- Eine Clique besteht aus k Knoten eines Graphen, in denen jeder Knoten über Kanten mit jedem anderen verbunden sind.
- o "Gibt es eine k-Clique?"

Verwandte Probleme

Ähnliche Problemstellung mit...

- o Entscheidungsproblem Gibt es eine Lösung zu diesem Wert?
- Werteproblem Suche maximalen/minimalen akzeptierten Wert
- Optimierungsproblem Wie sieht die bestmöglichste Lösung aus?

Aufwand jeweils nicht polynomialbeschränkt

- Lösungsversuche müssen jeweils alle möglichen Kombinationen durchgehen und untersuchen
- exponentieller Aufwand
- O Untersuchung eines speziellen Lösungsansatzes auf Korrektheit ist jedoch einfach, d.h. polynomiell möglich