Nome: Deivis Felipe Guerreiro Fagundes Prova 1

1) A.

Passos:

estado = [e,e,e,e]

estado = [d,e,d,e], oper(levaOvelha, [e,L,e,R], [d,L,d,R])

estado = [e,e,d,e], oper(volta, [d,L,O,R], [e,L,O,R])

estado = [d,e,d,d], oper(levaRepolho, [e,L,O,e], [d,L,O,d])

estado = [e,e,e,d], oper(trazOvelha, [d,L,d,R], [e,L,e,R])

estado = [d,d,e,d], oper(levaLobo, [e,e,O,R], [d,d,O,R])

estado = [e,d,e,d], oper(volta, [d,L,O,R], [e,L,O,R])

estado = [d,d,d,d], oper(levaOvelha, [e,L,e,R], [d,L,d,R])

B.Profundidade

estados possíveis

A = [e,e,e,e], B = [d,e,d,e], C = [e,e,d,e], D = [d,d,d,e], E=[d,e,d,d], F=[e,d,e,e], G=[d,d,e,d], H=[e,d,e,d], I=[e,e,e,d], J=[d,d,d,d]

Pilha	Abertos
A	
В	A
C	AB
DE	ABC
FE	ABCD
GE	ABCDF
HIE	ABCDFG
JIE	ABCDFGH
IE	ABCDFGHJ

B.Largura

estados possíveis

A = [e,e,e,e], B = [d,e,d,e], C = [e,e,d,e], D = [d,d,d,e], E=[d,e,d,d], F=[e,d,e,e], G=[d,d,e,d], H=[e,d,e,d], I=[e,e,e,d], J=[d,d,d,d]

Pilha	Abertos
A	
В	A
C	AB
DE	ABC
EF	ABCD
FI	ABCDE
IG	ABCDEF
G	ABCDEFI
H	ABCDEFIG
J	ABCDEFIGH
	ABCDEFIGHJ

C.Profundidade e, e, e, e d, e, e, e d, d, e, e $\mathsf{d},\,\mathsf{e},\,\mathsf{d},\,\mathsf{e}$ d, e, e, d e, e, d, e d, d, d, e d, e, d, d e, d, d, e e, d, e, e d, d, e, d e, d, e, d e, e, e, d d, d, d, d

2) Grafo

A.Profundidade

Abertos
A
AD
ADJ

A.Largura

Pilha	Abertos
A	
BD	A
DEF	AB
EFJ	ABD
Destino encontrado não precisa mais	ABD
continuar	

B.Profundidade

3) Grafo

A.Profundidade

Pilha	Abertos
A	
DCB	A
GFCB	AD
HFCB	ADG
FCB	ADGH

A.Largura

Pilha	Abertos
A	
BCD	A
CDEF	AB
DEF	ABC
EFG	ABCD
FGH	ABCDE
Destino encontrado não precisa mais continuar	

A. Guloso

Pilha	Abertos
A B	A
F D	AB ABF
G	ABFD
Destino encontrado não precisa mais continuar	ABFDG

B. Árvore Gulosa

- C. O guloso pode ter um resultado pior, pois no caso acima podemos ver que quando apareceu dois 4, ele optou por ir para o primeiro inserido, nessa caso levando ele para uma posição pior do que a que ele estava.
- 4) A. Para esse caso a busca gulosa pela heurística é melhor, pois deixa o próximo estado cada vez mais próximo de chegar ao estado final, considerando a heurística.

Como podemos ver na imagem de cima, temos um estado que tem 4 possíveis ações, uma delas sendo o resultado final do jogo, se usarmos a busca gulosa pela melhor escolha considerando que cada ação tem custo 1, ele irá escolher a primeira solução, e ficará mais longe da solução do problema, porém se usarmos a busca gulosa pela melhor escolha considerando as estimativas heurísticas, ele iria escolher a ação certa e iria encontrar a solução, pois é a que tem a melhor heurística.

5) Vendo a imagem abaixo podemos notar que o número de nós abertos com o algoritmo com poda foi quase metade comparado com o sem poda, mostrando que o algoritmo com poda pode ter uma eficiência muito boa.

Quantidade de nos: 325

Num Palitos	Jogada	Jogador
10	1	MAX
	1	MIN
	3	MAX
	1	MIN
	3	MAX
1	0	MIN

Quantidade de nos com Poda: 179

Num Palitos	Jogada	Jogador
10	1	MAX
9	1	MIN
	3	MAX
	1	MIN
	3	MAX
	0	MIN