染色法和构造法在棋盘上的应用 广东北江中学 方奇

- 1 基本概念
- 2 棋盘的覆盖
 - (1) 同行覆盖
 - (2) 异性覆盖
 - (3) 小结
- 3 马的遍历
 - (1) 马的哈密尔顿链
 - (2) 马的哈密尔顿圈
- 4 其它问题
 - (1) Warm world
 - (2) 删除数字
- 5 结语

棋盘:

所谓 \mathbf{m} * \mathbf{n} 棋盘,指由 \mathbf{m} 行 \mathbf{n} 列方格构成的 \mathbf{m} * \mathbf{n} 矩形。每个方格成为棋盘的格,位于第 \mathbf{i} 行 \mathbf{j} 列的格记为 \mathbf{a} (\mathbf{i} , \mathbf{j})。当 \mathbf{i} + \mathbf{j} 为奇(偶)数时,称 \mathbf{a} _{ij} 为奇

染色法:

(偶) 格。

用不同颜色将棋盘格子进行染色,起到分类的效果。特别地, 类似国际象棋盘上的黑白二染色,我们称之为"自然染色"。

构造法:

直接列举出某种满足条件的数学对象或反例导致结论的肯定与否定,或间接构造某种对应关系,使问题根据需要进行转化的方法,称之为构造法。

棋盘的覆盖

指用若干图形去覆盖 m*n 的棋盘。覆盖的每个图形也由若干格子组成,称为覆盖形。约定任两个覆盖形互不重叠,任一覆盖形中任一格总与棋盘上某格重合。

按覆盖效果,可分为完全覆盖、饱和覆盖、无缝覆盖和互异覆盖。(只讨论)

完全覆盖: 各个覆盖形的总格子数等于棋盘的总格子数

按覆盖形分, 可分为同行覆盖和异型覆盖。

同形覆盖: 只有一种覆盖形; 异型覆盖: 有多种覆盖形

同形覆盖

例1 给出 m,n,k,试用若干 1*k 的矩形覆盖 m*n 的棋盘。 分析:

定理 1 m*n 棋盘存在 1*k 矩形的完全覆盖的充分必要条件是 k|m 或 k|n。

证明:

充分性是显然的。用构造法。当 $\mathbf{k}|\mathbf{n}$ 时,每一行用 \mathbf{n}/\mathbf{k} 个 $\mathbf{1*k}$ 的矩形恰好完全覆盖。 $\mathbf{K}|\mathbf{m}$ 情况类似。

必要性:

设 m=m1*k+r,0<r<k 设 n=n1*k+s,0<s<k

1 2 2 3 3 4 : : K 1	3 4 	K 1 2 : k-1	1 2 3 : K	2 3 4 : 1	3 4 		k 1 2 : k-1	 1 2 3 : k	2 3 4 : 1	3 4 		S S+1 : : S+k-
1 2 2 3 3 4 : : K 1	3 4 	K 1 2 : k-1	1 2 3 : K	2 3 4 : 1	3 4 		K 1 2 : k-1	 1 2 3 : k	2 3 4 : 1	3 4 		S S+1 : : S+k- 1
	: :	:	:	:	:	:	:	 :	:	:	:	:
1 2 2 3 3 4 : : R r+ 1	3 4 	K 1 2 : R+k -1	1 2 3 : r	2 3 4 :	3 4 		K 1 2 : r+k- 1	 1 2 3 : R	2 3 4 : r+ 1	3 4 		S S+1 : : r+s- 1

约定 r>=s

由上面的定理 1,可彻底解决 m*n 棋盘的 p*q 矩形完全覆盖问题 定理 2m*n 棋盘存在 p*q 矩形的完全覆盖充分必要条件是 m,n 满足下列条件之一:

- (i) $p|x \perp q|y$
- (ii) p|x,q|x,且存在自然数 a,b,使 y=ap+bq 其中 $\{x,y\}=\{m,n\}$

异型覆盖

例 2 设有 m*n 的棋盘,当 m*n 为奇数时,尝试删去一个格子,剩下部分用若干 1*2 的矩形覆盖;当 m*n 为偶数时,尝试删去两个格子,剩下部分用若干 1*2 的矩形覆盖。分析:

(1) 先来考虑 m*n 为奇数的情况

一方面,将棋盘自然染色。无论怎么放,一个 **1*2** 的矩形必盖住一个黑格和一个白格,而棋盘上的黑格比白格多 **1**,于是只能去掉一个黑格(即偶格)

另一方面,设去掉偶格为a(i,j),用构造法必能得到可行解

1) I与i同为奇数

2) I 与 j 同为偶数

1/	<u> 1 —, j</u>	1517) H) X	Χ		
				2		
	3					
				1		
				4		
					3 1	3 1

		2		
3			1	
5			1	
		4		

(2) 再考虑 m*n 为偶数的情况

类似地,由自然染色法得知,去掉的两格必定异色,即一个奇格,一个偶格(不然两种格子总数不等)

另一方面,用构造法,将用一些粗线将棋盘隔成宽为 1 的长条路线,使从任一格出发可以不重复地走遍棋盘并回到出发点。

针对染色法,上面的例子都是利用"各类颜色格子总数必须相等"这一条件推出矛盾,但又些时候,只考虑这个条件是不够充分的。

例3 **8*8** 棋盘剪去哪个方格才能用 **21** 个 **1*3** 的矩形覆盖? 分析:

蓝色: 21 个 白色: 22 个 黑色: 21 个

考虑到对称性、只有剪去 $a(3,3) \cdot a(3,6) \cdot a(6,3) \cdot a(6,7)$ 中的某一个才能满足题意。

小结

覆盖类问题其实是一个难度较大的课题,这里只讨论了一些简单的情况,以说明染色 法与构造法的应用

需要补充的是,染色法的种类形形色色、五花八门。考虑到可推广性和易操作性,本文只着重研究了"间隔染色法"(即自然染色法的推广)

马的遍历

马行走规则:从 **2*3** 的矩形一个角按对角线跳到另一个角上棋盘中马的遍历问题分两类

- (1) 马的哈密尔顿链
- (2) 马的哈密尔顿圈

马的哈氏链

通常有四种方法

- 1 贪心法——每一步跳向度最小的点
- 2 分治法——将棋盘分成几个小棋盘、分别找哈氏链、再连接起来
- **3** 镶边法——先在一个小棋盘中找到哈氏链,然后在棋盘四周镶边,已产生大棋盘的哈氏链。

按上述方法不难得到下面结论

n*n 棋盘存在哈氏链的充要条件是 n>3。

马的哈氏圈

例4 求 n*n 棋盘的哈氏圈

分析

将棋盘自然染色, 考察无解情况。

马 无 论 怎 么 走 , 都 必 须 按 黑 格 - 白 格 - 黑 格 - 白 格 如此循环。由于要回到起点(起点与终点同色),途经两种颜色的格子数必相等,可知 \mathbf{n} 为奇数时无解。

因为大小限制, n<6 时也无解 当 n>=6 且为偶数时, 用镶边法构造 假设(n-4)*(n-4)的棋盘已找到哈氏圈

1) n除以4余2时.

在内矩形四个角(A、E、I、M)上分别开口。

С							О	
		D			P			
	Α					Μ		
			В	N				
			F	J				
	Ε					I		
		Н			L			
G							K	

	1	1 6	1 9	2 6	7	4
L						
	2	2	2	5	1 8	2 7
	0	2 5			8	
ſ	1	2 6	1	8	3	6
	1 5 2 4	6	1 7			
ſ	2	2 1	3	1	2	9
	4	1	3 2	1	2 8	
ſ	3	1	2 3	3	3 3	1
	5	1 4	3	3 0	3	2
Ī	3 5 2 2	3	3	1	1	1 2 2 9
	2	1	4	1 3	0	9

形"的回路在A、B上

- 1 将 C 与 D 所在的外回路与"内矩对接,变成 A-C-...-D-B。
 - 2 将 G 与 H 所在的外回路与"内矩形"的回路在 E、F 上对接, 变成 E-G-. . . -H-F。
 - 3 将 K 与 L 所在的外回路与"内矩形"的回路在 I、J 上对接,变成 I-K-...-L-J。
- 4 将 O 与 P 所在的外回路与"内矩形"的回路在 $M \cdot N$ 上对接,变成 M-O-. . . -P-N 。
- { 在这里,要注意一个问题,就是作为基础矩形的"内矩形"的回路,首先要满足: A的下一步到 B,E的下一步到 F,I的下一步到 J,M的下一步到 N。只有这样,构造成的新矩形才能继续作为"内矩形"按上述规则向外扩展。现给出满足要求的基础矩形的一组解 (N=6) }
- 2) n 除以 $4 \div 0$ 时 在内矩形四个角($A \cdot E \cdot I \cdot M$)上分别开口。

			С					0			
					D	P					
		Α							M		
				В			N				
				F			J				
		Е							Ι		
			Н					L			
	G									K	

1	54	47	38	49	52	31	26
46	39	2	53	32	27	22	51
55	64	37	48	3	50	25	30
40	45	56	33	28	23	4	21
63	36	61	44	57	20	29	24
60	41	34	15	12	5	8	19
35	62	43	58	17	10	13	6
42	59	16	11	14	7	18	9

- 1 将 $C \subseteq D$ 所在的外回路与"内矩形"的回路在 $A \setminus B$ 上对接,变成 $A \cdot C \cdot \ldots \cdot D \cdot B \circ$
- 2 将 G 与 H 所在的外回路与"内矩形"的回路在 E、F 上对接, 变成 E-G-...-H-F。
- 3 将 K 与 L 所在的外回路与"内矩形"的回路在 I、J 上对接,变成 I-K-...-L-J。
- 4 将 O 与 P 所在的外回路与"内矩形"的回路在 $M \setminus N$ 上对接,变成 M-O-. . . -P-N。

一个猜想:

m*n(m<=n)棋盘不存在哈氏圈的充要条件是: m.n 满足下列条件之一

- (1) m,n 都是奇数
- (2) m=1,2 或 4
- (3) $m=3 \pm n=4,6,8$

其它应用

例5 蠕虫世界 (Uva)

蠕虫在一张 N*N 的网上爬行。每个网格上有一个数字,蠕虫不能经过相同的数字两次。开始的时候,蠕虫任意选择一个格子作为起始点。它爬行只能沿水平或竖直方向,且不能超出网外。蠕虫如何移动才能到达尽可能多的网格呢?下面是一个样例。

6	8	18	15	24	20	2	20
6	2	15	2	17	15	3	7
0	11	18	16	20	15	1	11
6	2	6	13	3	17	20	16
5	12	7	2	3	5	18	23
7	13	3	2	2	11	4	23
16	23	10	2	4	12	5	20
17	12	10	1	13	12	6	20

分析:

采用"染色法"贪心出一个上界。

- 1 自然染色
- 2 设 Tfree, Tblack, Twhite 分别记录三类格子数量 对每一种数字(1.2.3.....)分析
 - 1) 只存在标有该数字的白色格子, Twhite←Twhite+1
 - 2) 只存在标有该数字的黑色格子. Tblack←Tblack+1
 - 3) 存在标有该数字的黑白两色格子, Tfree←Tfree+1
- 3 估价上界

$$L \max = \begin{cases} (Twhite + Tfree) * 2 + 1 & (Twhite + Tfree < Tblack) \\ Tblack + Twhite + Tfree & (Twhite + Tfree $\geq Tblack) \end{cases}$$$

(假设Twhite<=Tbalck,否则交换即可)

结语

存在性问题——〉染色法 可行性问题——〉构造法

在以棋盘为模型的问题中,综合运用这两种方法,双管齐下,往往能收到事半功倍的效果!

谢谢