Corrigé du CC1

Exercice 1.

- Si x < -1, f(x) = -(x+1) (x-2) = -2x + 1.
- Si $-1 \le x \le 2$, f(x) = (x+1) (x-2) = 3.
- Si 2 < x, f(x) = (x+1) + (x-2) = 2x 1.
- b) La valeur absolue d'un nombre réel étant toujours positive ou nulle, on a $\forall x \in \mathbb{R}$, $f(x) \ge 0$. Donc f est minorée.

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2x - 1 = +\infty \text{ donc } f \text{ n'est pas major\'ee.}$

c) On a f(-2) = f(3) = 5 et la courbe représentative de f tracée en a) permet de voir que f(x) < 5 si et seulement si -2 < x < 3. L'ensembles des réels x tels que |x+1| + |x-2| < 5 est]-2,3[.

Exercice 2. On notera D_u l'ensemble de définition d'une fonction u.

a) Etant donné un nombre réel $x, \sqrt{x+1}$ est défini si et seulement si $x+1 \geq 0$, donc $D_f = [-1, +\infty[$.

 $1/x^2$ est défini si et seulement si $x \neq 0$ donc $D_g = \mathbb{R}^*$.

b) Etant donné $x \in \mathbb{R}$, $g \circ f(x)$ est défini si et seulement si $x \in D_f$ et $f(x) \in D_g$, c'est-à-dire si et seulement si $x \in [-1, +\infty[$ et $\sqrt{x+1} \neq 0$. Donc $D_{g \circ f} =]-1, +\infty[$.

$$g \circ f(x) = g(f(x)) = \frac{1}{f(x)^2} - 1 = \frac{1}{x+1} - 1 = -\frac{x}{x+1}.$$

c) $D_{f \circ g}$ est l'ensemble des réels x tels que $x \in D_g$ et $g(x) \in D_f$, c'est-à-dire tels que $x \in \mathbb{R}^*$ et $\frac{1}{x^2} - 1 \ge -1$. La seconde condition étant satisfaite pour tout $x \in \mathbb{R}^*$ (puisque $1/x^2 \ge 0$), $D_{f \circ g} = \mathbb{R}^*$.

$$f \circ g(x) = f(g(x)) = \sqrt{g(x) + 1} = \sqrt{\frac{1}{x^2}} = \frac{1}{|x|}.$$

Exercice 3. a) On a, pour x > 0,

$$f(x) = \frac{-x^4 - x^3 + 2x}{x^4 + x^2 - x} = \frac{x^4(-1 - \frac{1}{x} + \frac{2}{x^3})}{x^4(1 + \frac{1}{x^2} - \frac{1}{x^3})} = \frac{-1 - \frac{1}{x} + \frac{2}{x^3}}{1 + \frac{1}{x^2} - \frac{1}{x^3}}.$$

Lorsque x tend vers $+\infty$, le numérateur a pour limite -1 et le dénominateur a pour limite 1. D'où $\lim_{x\to +\infty} f(x) = -1$.

b) f n'est pas définie en 1; pour $x \in \mathbb{R} \setminus \{1\}$,

$$f(x) = \frac{x-1}{x^2 - 1} = \frac{x-1}{(x-1)(x+1)} = \frac{1}{x+1}.$$

Donc $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2}$.

c) f n'est pas définie en 0; lorsque x tend vers 0, le numérateur et le dénominateure tendent vers 0 : on a une forme indéterminée, qu'on va résoudre en transformant l'expression de f(x). Pour $x \in \mathbb{R} \setminus \{0\}$,

$$f(x) = \frac{(\sqrt{x+1} - \sqrt{1-x})(\sqrt{x+1} + \sqrt{1-x})}{x(\sqrt{x+1} + \sqrt{1-x})} = \frac{(x+1) - (1-x)}{x(\sqrt{x-1} + \sqrt{1-x})} = \frac{2}{\sqrt{x-1} + \sqrt{1-x}},$$

après simplification par x. Lorsque x tend vers 0, $\sqrt{x+1}$ et $\sqrt{1-x}$ tendent tous les deux vers 1. On en déduit $\lim_{x\to 0} f(x) = \frac{2}{1+1} = 1$.

Exercice 4. On va utiliser la 2π -périodicité des fonctions sin et cos, qui implique $\sin(t + 2\pi n) = \sin t$ et $\cos(t + 2\pi n) = \cos t$ pour tout réel t et tout entier n. On a

$$\forall x \in \mathbb{R}, \ u(x+24\pi) = (\sin(x+24\pi))^2 + \sin(\frac{x+24\pi}{3}) + \cos(\frac{x+24\pi}{4})$$

$$= (\sin(x+24\pi))^2 + \sin(\frac{x}{3}+8\pi) + \cos(\frac{x}{4}+6\pi)$$

$$= (\sin x)^2 + \sin(\frac{x}{3}) + \cos(\frac{x}{4})$$

$$= u(x),$$

Ainsi la fonction u est périodique et a pour période 24π .

Exercice 5. a) Pour tout $y \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi ; k \in \mathbb{Z}\},$

$$1 + (\tan y)^2 = 1 + \frac{(\sin y)^2}{(\cos y)^2} = \frac{(\cos y)^2 + (\sin y)^2}{(\cos y)^2} = \frac{1}{(\cos y)^2},$$

où on utilise la propriété : $(\cos y)^2 + (\sin y)^2 = 1$ pour tout réel y.

b) D'après a), pour tout $y \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi ; k \in \mathbb{Z}\},\$

(*)
$$(\cos y)^2 = \frac{1}{1 + (\tan y)^2}.$$

En posant $y = \arctan(x)$ (alors $y \in]-\pi/2, \pi/2[)$ dans (*), on obtient

$$(\cos(\arctan(x)))^2 = \frac{1}{1 + (\tan(\arctan(x)))^2} = \frac{1}{1 + x^2}.$$

De plus, comme $\arctan(x) \in]-\pi/2,\pi/2[,\cos(\arctan(x))>0.$ Donc

$$\cos(\arctan(x)) = \sqrt{\frac{1}{1+x^2}} = \frac{1}{\sqrt{1+x^2}}.$$