Instituto Superior de Engenharia de Lisboa Modelação e Simulação de Sistemas Naturais Relatório do Trabalho Final

A Sustentabilidade de Recursos Renováveis

Shun Wang nº45410 - João Cunha nº45412 - Arman Freitas nº45414 Grupo 02 Docentes: Arnaldo Abrantes Paulo Vieira

7 de Janeiro de 2019

Conteúdo

1	Introdução	4
2	Simulador de Ecossistema usando o AnyLogic	5
3	Processing - Simulador/Jogo de Ecossistema	9
	3.1 Terreno	9
	3.2 Boids/Agentes Autónomos	12
	3.2.1 Presas	12
	3.2.2 Predadores	14
	3.2.3 Outros Animais	15
	3.3 Ecossistema	16
4	Diagrama UML	17
5	Conclusão	18

Lista de Figuras

1	Encomenda de Barcos	5
2	Barcos no hangar	5
3	Barcos a Pescar	6
4	Peixes no mar	6
5	AnyLogic - Barcos e Mar	7
6	Encomenda de Barcos	8
7	Densidade	8
8	Textura da relva	10
9	Textura da terra	10
10	Textura da árvore	10
11	Textura de espinhos	11
12	Presa	12
13	Presa inteligente	12
14	Presa de grupo	13
15	Presa inteligente	14
16	Eagle Predator	14
17	Abutre	15
18	Ecossistema	16
19	Diagrama UML	17

1 Introdução

O seguinte trabalho tem como alvo de estudo a sustentabilidade do ambiente, tal como sabemos os recursos que chamamos de renováveis conseguem ser repostos até a um certo ritmo, se este ritmo for ultrapassado os recursos começam a escassear e podem desaparecer por completo do nosso planeta.

Este ritmo pode se aplicar tanto a recursos como aos animais existentes num ecossistema, quando existe muita caça a algum tipo de animal e este não tem habilidade de se reproduzir à mesma velocidade que são caçado começam a ficar em vias de extinção e se mesmo assim não forem impostas leis para a proteção do animal corremos o risco de perder para sempre uma espécie de animal.

A primeira parte do é pedido trabalho é criar no Anylogic um sistema de *stocks e flows* que simule um ecossistema sustentável entre pesca e a quantidade de peixe existente no mar, obtendo o máximo lucro possível.

Na segunda parte do trabalho foi pedido para fazer um ecossistema no *Processing* baseado em matéria lecionada das aulas, *boids* e células, em que os *boids* representam os animais e as células o terreno onde os animais vivem. O objetivo seria criar um sistema sustentável de presas e predadores em que nenhuma espécie se extingue.

2 Simulador de Ecossistema usando o AnyLogic

Com o objetivo de otimizar o projeto em questão, utilizando as várias regras do formulário, primeiramente foi alterado a quantidade de produção dos barcos, desta forma, apenas são encomendados 20 barcos novos.

Figura 1: Encomenda de Barcos

Tendo em conta que os barcos não são destruídos ou perdidos em alto mar, não é preciso a reposição dos mesmos. Este exercício foi realizado de modo a obter o máximo lucro possível, por isso algumas variáveis foram evitadas.

Figura 2: Barcos no hangar

Como podemos ver na imagem, inicialmente estão 3 barcos no hangar pois esse é o número inicial de barcos. Durante os primeiros 20 anos, o *harbor* tem sempre um barco que simboliza a sua construção. Após um ano, o barco está finalizado e pronto para ir para o alto mar, mas como outro barco é encomendado, assim que um sai, outro começa logo a ser construido. Por isso durante os primeiros 20 anos, 19 barcos são construidos, e 22 barcos vão para alto mar.

Observa-se na imagem a quantidade de barcos em alto mar ao longo do tempo:

Figura 3: Barcos a Pescar

Reparando que quando se aproxima do fim, apenas 21 barcos vão para alto mar, pois os peixes começam a ser poucos para a quantidade de barcos, por isso um dos barcos fica no hangar de maneira a otimizar as despesas e os ganhos, e após vários anos, o barco no hangar volta a ir para alto mar pois a quantidade de peixe disponível aumenta.

Figura 4: Peixes no mar

Podemos ver agora o desenvolvimento do exercício, de salientar que a produção de barcos novos está diretamente dependente da quantidade de peixe no mar e que apenas 1 barco é encomendado por ano.

Figura 5: AnyLogic - Barcos e Mar

Como podemos ver na figura 5, as encomendas de barcos novos ("Orders") está diretamente relacionado com a quantidade de peixe no oceano, ou seja, enquanto o valor for acima de 2172 toneladas, o hangar recebe um barco novo, caso contrário, não recebe. Esta informação é enviada para "OperatingCosts" (figura 6), que calcula o preço de produção de cada barco e a despesa de cada barco no hangar ou em alto mar. Não foi possível encontrar o problema pois apesar do harbor só receber os valores 0 e 1, ele acaba sempre por ficar com valores decimais, o que adiciona uma imprecisão ao trabalho.

Figura 6: Encomenda de Barcos

Com o objetivo de lucrar o máximo possível, o valor da densidade não foi alterado pois maximiza o número de peixes no mar, que por sua vez maximiza as pescas.

Figura 7: Densidade

3 Processing - Simulador/Jogo de Ecossistema

O objetivo desta parte do projeto era criar e simular um ecossistema baseado em presas e predadores, usando os conhecimentos adquiridos ao longo do semestre, nomeadamente a implementação de modelos baseados em agentes (as presas e os predadores) e de autómatos celulares (o terreno onde evoluem os agentes).

3.1 Terreno

De modo a construir o terreno, foi utilizada a Regra da Maioria.

Esta regra permite-nos ter um terreno sempre diferente. Utilizamos a mesma pois queremos ter sempre resultados diferentes no nosso simulador e, não só referente a uma configuração de terreno.

Assim, ao a configuração do terreno ser sempre diferente, serão colocados objetos em sítios diferentes, dando uma maior credibilidade ao simulador.

Passando então à explicação desta mesma regra, é uma regra simples que se baseia no uso de autómatos celulares.

Para a configuração das células deste autómato celular estar nos requisitos da regra da maioria, cada celula possuí as seguintes três sub regras:

- 1. Se a maioria das células vizinhas estar no estado 0, então, a célula muda para o estado 0.
- 2. Pelo contrário, se a maioria das células vizinhas estar no estado 1, então a célula muda para o estado 1.
- 3. Por fim, se a quantidade de células vizinhas com ambos os estados for igual então, a célula mantém o seu estado inicial.

Passamos agora à explicação de cada tipo de célula presente no autómato celular correspondente ao terreno.

O terreno é gerado com quatro diferentes de textura, cada uma corresponde a um objeto e, tem a sua funcionalidade no simulador.

Primeiramente a relva, este objeto pode ser "ingerido" por alguns dos animais presentes no meio. Quando a relva é "comida" por algum dos animais, esta desaparece, ficando apenas terra.

A relva está presente com a seguinte textura:

Figura 8: Textura da relva

a terra, à medida do tempo vai crescendo relva até se formar a relva outra vez. Esta está presente com a seguinte textura:

Figura 9: Textura da terra

As árvores são outro elemento presente no terreno. Este, desde o início ao fim, não desaparece, permanecendo até ao final da simulação.

Estas têm uso apenas para os pássaros, que permanecem nelas de modo a ganhar energia. Esta está presente com o seguinte aspeto:

Figura 10: Textura da árvore

Por fim, os espinhos presentes no jogo têm o intuito de tirar energia de animais terrestres. O mesmo tem a seguinte textura:

Figura 11: Textura de espinhos

3.2 Boids/Agentes Autónomos

Numa fase inicial foi adicionado imagens aos *boids* e para ter uma melhor perceção do ecossistema e torna-lo mais intuitivo, estas imagens foram inspiradas no videojogo Pokemon, que tem milhares de pokemons diferentes em aspeto, poder, habilidade.

3.2.1 Presas

Presa normal, *Prey*, é um agente que vagueia pelo terreno e come a relva, sem nenhuma condição adicional. Foi usado a seguinte imagem para representar a presa normal.

Figura 12: Presa

Presa inteligente, *CleverPrey*, é um agente que vagueia pelo terreno e come a relva mas tenta evitar os obstáculos. Foi usado a seguinte imagem para representar a presa inteligente.

Figura 13: Presa inteligente

Presa em grupo, *FlockPrey*, são agentes que comutam entre si, o grupo segue a mesma direção pelo terreno e comem a relva que aprece. Foi usado a seguinte imagem para representar a presa uma presa do grupo.

Figura 14: Presa de grupo

3.2.2 Predadores

Predador, *Predator*, é um agente que vagueia pelo terreno enquanto a sua energia for maior que 50 e tenta caçar as presas quando tem menos de 50 de energia, este predador não evita os obstáculos. Foi usado a seguinte imagem para representar o predador.

Figura 15: Presa inteligente

Predador Águia, EaglePredator, é o agente que está no topo da cadeia alimentar, este vagueia pelo terreno mas se encontrar uma árvore ele para e fica a descansar diminuindo o metabolismo perdendo assim menos energia por unidade de tempo, quando essa energia fica a menos de 50, este muda de comportamento para caçar a presa mais próxima. Este predador tem uma vantagem sobre os outros porque voa, logo não perde mais energia por passar num obstáculo. Foi usado a seguinte imagem para representar o predador.

Figura 16: Eagle Predator

3.2.3 Outros Animais

Abutre, Abutre, é um agente que só caça animais mortos e ficam nas árvores enquanto não houver, foi adicionado para o utilizador uma interação com o sistema: pôr armadilhas para matar animais, esses animais mortos são caçados pelos abutres. Abutres não podem ser caçados por nenhum animal e só podem caçar as presas mortas. Foi usado a seguinte imagem para representar o predador.

Figura 17: Abutre

3.3 Ecossistema

Com a junção do terreno e os boids obtemos o seguinte ecossistema:

Figura 18: Ecossistema

Para a melhor perceção da vida dos animais fizemos um extra que é o $Health\ Bar$ que indica a energia restante dos animais.

4 Diagrama UML

Figura 19: Diagrama UML

5 Conclusão

Com a realização deste trabalho conseguimos perceber melhor até que ponto podemos explorar um determinado ecossistema e que criar um sistema sustentável é complicado porque existe muitas variáveis pequenas ou grandes que tem um impacto no ecossistema todo.

Na realização da simulação de ecossistemas no *Processing*, encontramos várias dificuldades, nomeadamente a quantidade de processador que ocupava quando o número de *boids* ou células eram grandes que podiam ser melhorados se o código que fizemos fosse mais otimizado, outro problema foi o tempo que houve para fazer o trabalho, tínhamos planos para fazer mais mas devido ao tempo não conseguimos concretizar tudo o que tinhamos planeado.