Decomposition processes acetylene and ammonia

W. Dal'Maz Silva

17th May 2016

Table of Contents

- 1 Introduction
- 2 Residence time distribution
 - Background
 - Measurements
- 3 Acetylene decomposition
 - Atmospheric pressure
 - Pyrolysis mechanism
- 4 Ammonia decomposition
- 5 Ongoing studies
- 6 Conclusion

Table of Contents

- 1 Introduction
- 2 Residence time distribution
 - Background
 - Measurements
- 3 Acetylene decomposition
 - Atmospheric pressure
 - Pyrolysis mechanism
- 4 Ammonia decomposition
- 5 Ongoing studies
- 6 Conclusion

Pyrolysis

Thermochemical decomposition of organic material at high temperature in the absence of oxygen.

Heterogeneous processes

Adsorption, desorption, decomposition and recombination processes of molecules at solid surfaces.

Context

Decomposition of precursors – C_2H_2 and NH_3 – during carbonitriding treatment of low alloy steels.

Objective

Study precursors decomposition in order to control interstitial enrichment during steel carbonitriding.

Methods

Pyrolysis

Thermochemical decomposition of organic material at high temperature in the absence of oxygen.

Heterogeneous processes

Adsorption, desorption, decomposition and recombination processes of molecules at solid surfaces.

Context

Decomposition of precursors – C_2H_2 and NH_3 – during carbonitriding treatment of low alloy steels.

Objective

Study precursors decomposition in order to control interstitial enrichment during steel carbonitriding.

Methods

Pyrolysis

Thermochemical decomposition of organic material at high temperature in the absence of oxygen.

Heterogeneous processes

Adsorption, desorption, decomposition and recombination processes of molecules at solid surfaces.

Context

Decomposition of precursors – C_2H_2 and NH_3 – during carbonitriding treatment of low alloy steels.

Objective

Study precursors decomposition in order to control interstitial enrichment during steel carbonitriding.

Methods

Pyrolysis

Thermochemical decomposition of organic material at high temperature in the absence of oxygen.

Heterogeneous processes

Adsorption, desorption, decomposition and recombination processes of molecules at solid surfaces.

Context

Decomposition of precursors – C_2H_2 and NH_3 – during carbonitriding treatment of low alloy steels.

Objective

Study precursors decomposition in order to control interstitial enrichment during steel carbonitriding.

Methods

Pyrolysis

Thermochemical decomposition of organic material at high temperature in the absence of oxygen.

Heterogeneous processes

Adsorption, desorption, decomposition and recombination processes of molecules at solid surfaces.

Context

Decomposition of precursors – C_2H_2 and NH_3 – during carbonitriding treatment of low alloy steels.

Objective

Study precursors decomposition in order to control interstitial enrichment during steel carbonitriding.

Methods

Table of Contents

- 1 Introduction
- 2 Residence time distribution
 - Background
 - Measurements
- 3 Acetylene decomposition
 - Atmospheric pressure
 - Pyrolysis mechanism
- 4 Ammonia decomposition
- 5 Ongoing studies
- 6 Conclusion

Background

Purpose: reactor diagnosis/modelling

Reactor types: ideal vs. real

Concepts:

- residence time distribution (RTD)
- mixing behavior
- reactor model

Aim: conversion prediction

Measuring RTD:

- pulse of tracer
- step of tracer

Think!

Background

Purpose: reactor diagnosis/modelling

Reactor types: ideal vs. real

Concepts:

- residence time distribution (RTD)
- mixing behavior
- reactor model

Aim: conversion prediction

Measuring RTD:

- pulse of tracer
- step of tracer

Think!

Background

Purpose: reactor diagnosis/modelling

Reactor types: ideal vs. real

Concepts:

- residence time distribution (RTD)
- mixing behavior
- reactor model

Aim: conversion prediction

Measuring RTD:

- pulse of tracer
- step of tracer

Think!

Background

Purpose: reactor diagnosis/modelling

Reactor types: ideal vs. real

Concepts:

- residence time distribution (RTD)
- mixing behavior
- reactor model

Aim: conversion prediction

Measuring RTD:

- pulse of tracer
- step of tracer

Think!

Background

Purpose: reactor diagnosis/modelling

Reactor types: ideal vs. real

Concepts:

- residence time distribution (RTD)
- mixing behavior
- reactor model

Aim: conversion prediction

Measuring RTD:

- pulse of tracer
- step of tracer

Think!

Background

Purpose: reactor diagnosis/modelling

Reactor types: ideal vs. real

Concepts:

- residence time distribution (RTD)
- mixing behavior
- reactor model

Aim: conversion prediction

Measuring RTD:

- pulse of tracer
- step of tracer

Think!

Measurements

Method: tracer (CH_4) pulse in N_2

Detection: FID (by-passing the column)

Study parameters:

- total flow rate
- heated zone temperature
- loading (with or without sample)

Bodenstein number: 5 – 10

Mixing: complete micromixing

$$\uparrow \text{ flow rate} \qquad \qquad \Rightarrow \downarrow \tau \downarrow \sigma \\ \uparrow \text{ temperature} \qquad \qquad \Rightarrow \downarrow \tau \sim \sigma$$

Measurements

Method: tracer (CH_4) pulse in N_2

Detection: FID (by-passing the column)

Study parameters:

- total flow rate
- heated zone temperature
- loading (with or without sample)

Bodenstein number: 5 - 10

Mixing: complete micromixing

Measurements

Method: tracer (CH_4) pulse in N_2

Detection: FID (by-passing the column)

Study parameters:

- total flow rate
- heated zone temperature
- loading (with or without sample)

Bodenstein number: 5 – 10

Mixing: complete micromixing

Measurements

Method: tracer (CH₄) pulse in N_2

Detection: FID (by-passing the column)

Study parameters:

- total flow rate
- heated zone temperature
- loading (with or without sample)

Bodenstein number: 5 - 10

Mixing: complete micromixing

$$\uparrow \mbox{ flow rate } \qquad \Rightarrow \downarrow \tau \downarrow \sigma \\ \uparrow \mbox{ temperature } \qquad \Rightarrow \downarrow \tau \sim \sigma$$

Measurements

Method: tracer (CH₄) pulse in N_2

Detection: FID (by-passing the column)

Study parameters:

- total flow rate
- heated zone temperature
- loading (with or without sample)

Bodenstein number: 5 – 10

Mixing: complete micromixing

Measurements

Method: tracer (CH_4) pulse in N_2

Detection: FID (by-passing the column)

Study parameters:

- total flow rate
- heated zone temperature
- loading (with or without sample)

Bodenstein number: 5 - 10

Mixing: complete micromixing

$$\uparrow \mbox{ flow rate } \qquad \Rightarrow \downarrow \tau \downarrow \sigma \\ \uparrow \mbox{ temperature } \qquad \Rightarrow \downarrow \tau \sim \sigma$$

Measurements

Method: tracer (CH_4) pulse in N_2

Detection: FID (by-passing the column)

Study parameters:

- total flow rate
- heated zone temperature
- loading (with or without sample)

Bodenstein number: 5 – 10

Mixing: complete micromixing

$$\uparrow \text{ flow rate} \qquad \qquad \Rightarrow \downarrow \tau \downarrow \sigma \\ \uparrow \text{ temperature} \qquad \qquad \Rightarrow \downarrow \tau \sim \sigma$$

Measurements

Method: tracer (CH₄) pulse in N_2

Detection: FID (by-passing the column)

Study parameters:

- total flow rate
- heated zone temperature
- loading (with or without sample)

Bodenstein number: 5 – 10

Mixing: complete micromixing

$$\uparrow \text{ flow rate} \qquad \qquad \Rightarrow \downarrow \tau \downarrow \sigma \\ \uparrow \text{ temperature} \qquad \qquad \Rightarrow \downarrow \tau \sim \sigma$$

Table of Contents

- 1 Introduction
- 2 Residence time distribution
 - Background
 - Measurements
- 3 Acetylene decomposition
 - Atmospheric pressure
 - Pyrolysis mechanism
- 4 Ammonia decomposition
- 5 Ongoing studies
- 6 Conclusion

Atmospheric pressure

Input atmosphere: $N_2 - 0.02 C_2 H_2$

Temperature range: 823 K to 1223 K

Flow rates: $500 \,\mathrm{cm^3\,min^{-1}}$ and $1000 \,\mathrm{cm^3\,min^{-1}}$

Measured species: H₂, CH₄, C₂H₂ and C₂H₄

- Decomposition detectable above 873 K
- Most important light-weight hydrocarbon formed below 1100 K: C₂H₄
- At 1173 K: $x(C_2H_2)$ is $5 \times$ other hydrocarbons and only 50% of the released H atoms are on H_2 molecules
- C₂H₆ is not detected unless excess H₂ is added to the input atmosphere

Atmospheric pressure

Input atmosphere: $N_2 - 0.02 C_2 H_2$

Temperature range: 823 K to 1223 K

Flow rates: $500 \,\mathrm{cm^3 \,min^{-1}}$ and $1000 \,\mathrm{cm^3 \,min^{-1}}$

Measured species: H_2 , CH_4 , C_2H_2 and C_2H_4

- Decomposition detectable above 873 K
- Most important light-weight hydrocarbon formed below 1100 K: C₂H₄
- At 1173 K: $x(C_2H_2)$ is $5 \times$ other hydrocarbons and only 50% of the released H atoms are on H_2 molecules
- C₂H₆ is not detected unless excess H₂ is added to the input atmosphere

Atmospheric pressure

Input atmosphere: $N_2 - 0.02 C_2 H_2$

Temperature range: 823 K to 1223 K

Flow rates: $500 \,\mathrm{cm^3 \,min^{-1}}$ and $1000 \,\mathrm{cm^3 \,min^{-1}}$

Measured species: H_2 , CH_4 , C_2H_2 and C_2H_4

- Decomposition detectable above 873 K
- Most important light-weight hydrocarbon formed below 1100 K: C₂H₄
- At 1173 K: $x(C_2H_2)$ is $5 \times$ other hydrocarbons and only 50% of the released H atoms are on H_2 molecules
- C₂H₆ is not detected unless excess H₂ is added to the input atmosphere

Atmospheric pressure

Input atmosphere: $N_2 - 0.02 C_2 H_2$

Temperature range: 823 K to 1223 K

Flow rates: $500 \,\mathrm{cm^3\,min^{-1}}$ and $1000 \,\mathrm{cm^3\,min^{-1}}$

Measured species: H₂, CH₄, C₂H₂ and C₂H₄

- Decomposition detectable above 873 K
- Most important light-weight hydrocarbon formed below 1100 K: C₂H₄
- At 1173 K: $x(C_2H_2)$ is $5 \times$ other hydrocarbons and only 50% of the released H atoms are on H_2 molecules
- C₂H₆ is not detected unless excess H₂ is added to the input atmosphere

Atmospheric pressure

Input atmosphere: $N_2 - 0.02 C_2 H_2$

Temperature range: 823 K to 1223 K

Flow rates: $500 \,\mathrm{cm^3 \,min^{-1}}$ and $1000 \,\mathrm{cm^3 \,min^{-1}}$

Measured species: H_2 , CH_4 , C_2H_2 and C_2H_4

- Decomposition detectable above 873 K
- Most important light-weight hydrocarbon formed below 1100 K: C₂H₄
- At 1173 K: $x(C_2H_2)$ is $5 \times$ other hydrocarbons and only 50% of the released H atoms are on H_2 molecules
- C₂H₆ is not detected unless excess H₂ is added to the input atmosphere

Atmospheric pressure

Input atmosphere: $N_2 - 0.02 C_2 H_2$

Temperature range: 823 K to 1223 K

Flow rates: $500 \,\mathrm{cm^3 \,min^{-1}}$ and $1000 \,\mathrm{cm^3 \,min^{-1}}$

Measured species: H_2 , CH_4 , C_2H_2 and C_2H_4

- Decomposition detectable above 873 K
- Most important light-weight hydrocarbon formed below 1100 K: C₂H₄
- At 1173 K: $x(C_2H_2)$ is $5 \times$ other hydrocarbons and only 50% of the released H atoms are on H_2 molecules
- C₂H₆ is not detected unless excess H₂ is added to the input atmosphere

Atmospheric pressure

Input atmosphere: $N_2 - 0.02 C_2 H_2$

Temperature range: 823 K to 1223 K

Flow rates: $500 \,\mathrm{cm^3\,min^{-1}}$ and $1000 \,\mathrm{cm^3\,min^{-1}}$

Measured species: H₂, CH₄, C₂H₂ and C₂H₄

- Decomposition detectable above 873 K
- Most important light-weight hydrocarbon formed below 1100 K: C₂H₄
- At 1173 K: $x(C_2H_2)$ is $5 \times$ other hydrocarbons and only 50% of the released H atoms are on H_2 molecules
- C₂H₆ is not detected unless excess H₂ is added to the input atmosphere

Atmospheric pressure

Input atmosphere: $N_2 - 0.02 C_2 H_2$

Temperature range: 823 K to 1223 K

Flow rates: $500 \,\mathrm{cm^3 \,min^{-1}}$ and $1000 \,\mathrm{cm^3 \,min^{-1}}$

Measured species: H_2 , CH_4 , C_2H_2 and C_2H_4

- Decomposition detectable above 873 K
- Most important light-weight hydrocarbon formed below 1100 K: C₂H₄
- At 1173 K: $x(C_2H_2)$ is $5 \times$ other hydrocarbons and only 50% of the released H atoms are on H_2 molecules
- C₂H₆ is not detected unless excess H₂ is added to the input atmosphere

Atmospheric pressure: mass balance

From the previous results one may establish a mole balance for carbon and hydrogen.

Since both TCD and FID detectors were used, total and hydrocarbon H-atoms can be quantified.

An increasing ratio C/H with respect to the temperature is observed for the missing atoms: C-C bonds are prevalent over C-H bonds in the undetected species.

Atmospheric pressure: mass balance

From the previous results one may establish a mole balance for carbon and hydrogen.

Since both TCD and FID detectors were used, total and hydrocarbon H-atoms can be quantified.

An increasing ratio C/H with respect to the temperature is observed for the missing atoms: C-C bonds are prevalent over C-H bonds in the undetected species.

Atmospheric pressure: mass balance

From the previous results one may establish a mole balance for carbon and hydrogen.

Since both TCD and FID detectors were used, total and hydrocarbon H-atoms can be quantified.

An increasing ratio C/H with respect to the temperature is observed for the missing atoms: C-C bonds are prevalent over C-H bonds in the undetected species.

Atmospheric pressure: mass balance

From the previous results one may establish a mole balance for carbon and hydrogen.

Since both TCD and FID detectors were used, total and hydrocarbon H-atoms can be quantified.

An increasing ratio C/H with respect to the temperature is observed for the missing atoms: C-C bonds are prevalent over C-H bonds in the undetected species.

Atmospheric pressure: mass balance

From the previous results one may establish a mole balance for carbon and hydrogen.

Since both TCD and FID detectors were used, total and hydrocarbon H-atoms can be quantified.

An increasing ratio C/H with respect to the temperature is observed for the missing atoms: C-C bonds are prevalent over C-H bonds in the undetected species.

Given the boundary and initial conditions, C/H ratio seems independent of the flow rate: the quantity is governed by the high temperature zone in the reactor.

Atmospheric pressure: mass balance

From the previous results one may establish a mole balance for carbon and hydrogen.

Since both TCD and FID detectors were used, total and hydrocarbon H-atoms can be quantified.

An increasing ratio C/H with respect to the temperature is observed for the missing atoms: C-C bonds are prevalent over C-H bonds in the undetected species.

Given the boundary and initial conditions, C/H ratio seems independent of the flow rate: the quantity is governed by the high temperature zone in the reactor.

Atmospheric pressure: carburizing

Input atmosphere: $N_2 - 0.01 C_2 H_2$

Temperature: 1173 K

Flow rate: $500 \, \text{cm}^3 \, \text{min}^{-1}$

- Metallic sample does not interfere in the order of magnitude of the observed hydrocarbons
- Good agreement between simulation and mass intake for a constant concentration boundary condition
- Even partial pressures below 5 mbar are enough for surface saturation

Atmospheric pressure: carburizing

Input atmosphere: $N_2 - 0.01 C_2 H_2$

Temperature: 1173 K

Flow rate: $500 \, \text{cm}^3 \, \text{min}^{-1}$

- Metallic sample does not interfere in the order of magnitude of the observed hydrocarbons
- Good agreement between simulation and mass intake for a constant concentration boundary condition
- Even partial pressures below 5 mbar are enough for surface saturation

Atmospheric pressure: carburizing

Input atmosphere: $N_2 - 0.01 C_2 H_2$

Temperature: 1173 K

Flow rate: 500 cm³ min⁻¹

- Metallic sample does not interfere in the order of magnitude of the observed hydrocarbons
- Good agreement between simulation and mass intake for a constant concentration boundary condition
- Even partial pressures below 5 mbar are enough for surface saturation

Atmospheric pressure: carburizing

Input atmosphere: $N_2 - 0.01 C_2 H_2$

Temperature: 1173 K

Flow rate: $500 \, \text{cm}^3 \, \text{min}^{-1}$

- Metallic sample does not interfere in the order of magnitude of the observed hydrocarbons
- Good agreement between simulation and mass intake for a constant concentration boundary condition
- Even partial pressures below 5 mbar are enough for surface saturation

Atmospheric pressure: carburizing

Input atmosphere: $N_2 - 0.01 C_2 H_2$

Temperature: 1173 K

Flow rate: $500 \, \text{cm}^3 \, \text{min}^{-1}$

- Metallic sample does not interfere in the order of magnitude of the observed hydrocarbons
- Good agreement between simulation and mass intake for a constant concentration boundary condition
- Even partial pressures below 5 mbar are enough for surface saturation

Atmospheric pressure: carburizing

Input atmosphere: $N_2 - 0.01 C_2 H_2$

Temperature: 1173 K

Flow rate: $500 \, \text{cm}^3 \, \text{min}^{-1}$

- Metallic sample does not interfere in the order of magnitude of the observed hydrocarbons
- Good agreement between simulation and mass intake for a constant concentration boundary condition
- Even partial pressures below 5 mbar are enough for surface saturation

Atmospheric pressure: RTD application

Using global rate parameters k=1.5 and n=2.7 for acetylene pyrolysis¹ coupled to experimental RTD functions with maximum mixedness model

$$\frac{\mathrm{d}c_i}{\mathrm{d}t} = -\left[kc_i^n + (c_i - c_{i,0})\frac{E(t_{max} - t)}{1 - F(t_{max} - t)}\right]$$

the following predictions are made (given in mole fractions):

Flow $(cm^3 min^{-1})$	Measured $ imes 10^3$	Simulated $ imes 10^3$	Ratio
250	3.67	3.01	0.82
500	4.25	4.18	0.98
1000	6.96	5.54	0.80

¹Norinaga et al. Carbon 44 (2006) 1790-1800.

Pyrolysis mechanism

Kinetic mechanism:

- Norinaga et al. J. Anal. Appl. Pyrolysis 86 (2009) 148-160
- 241 species (nodes)
- 902 reactions
- 1933 undirected edges

- Simplification using DRG method
- System conditioning through interaction ordering
- Maximum mixedness solution of complete and simplified systems

Degree
229 210 153 112 95 87 82 56 51

Pyrolysis mechanism

Kinetic mechanism:

- Norinaga et al. J. Anal. Appl. Pyrolysis 86 (2009) 148-160
- 241 species (nodes)
- 902 reactions
- 1933 undirected edges

- Simplification using DRG method
- System conditioning through interaction ordering
- Maximum mixedness solution of complete and simplified systems

Species	Degree
н	229
H ₂	210
C ₂ H ₂	153
CH ₃	112
CH ₄	95
C ₂ H ₃	87
C ₂ H ₄	82
C ₆ H ₆	56
C ₆ H ₅	51
C ₄ H ₄	46

Pyrolysis mechanism

Kinetic mechanism:

- Norinaga et al. J. Anal. Appl. Pyrolysis 86 (2009) 148-160
- 241 species (nodes)
- 902 reactions
- 1933 undirected edges

- Simplification using DRG method
- System conditioning through interaction ordering
- Maximum mixedness solution of complete and simplified systems

Species	Degree
н	229
H ₂	210
C ₂ H ₂	153
CH ₃	112
CH ₄	95
C ₂ H ₃	87
C ₂ H ₄	82
C ₆ H ₆	56
C ₆ H ₅	51
C_4H_4	46

Pyrolysis mechanism

Kinetic mechanism:

- Norinaga et al. J. Anal. Appl. Pyrolysis 86 (2009) 148-160
- 241 species (nodes)
- 902 reactions
- 1933 undirected edges

- Simplification using DRG method
- System conditioning through interaction ordering
- Maximum mixedness solution of complete and simplified systems

Species	Degree
H H2 C2H2 CH3 CH4 C2H3 C2H4 C6H6 C6H5 C4H4	229 210 153 112 95 87 82 56 51

Pyrolysis mechanism

Kinetic mechanism:

- Norinaga et al. J. Anal. Appl. Pyrolysis 86 (2009) 148-160
- 241 species (nodes)
- 902 reactions
- 1933 undirected edges

- Simplification using DRG method
- System conditioning through interaction ordering
- Maximum mixedness solution of complete and simplified systems

Species	Degree
Н	229
H ₂	210
C ₂ H ₂	153
CH ₃	112
CH4	95
C ₂ H ₃	87
C ₂ H ₄	82
C6H6	56
C ₆ H ₅	51
C ₄ H ₄	46

Pyrolysis mechanism

Kinetic mechanism:

- Norinaga et al. J. Anal. Appl. Pyrolysis 86 (2009) 148-160
- 241 species (nodes)
- 902 reactions
- 1933 undirected edges

- Simplification using DRG method
- System conditioning through interaction ordering
- Maximum mixedness solution of complete and simplified systems

Species	Degree
Н	229
H ₂	210
C ₂ H ₂ CH ₃	153 112
CH ₄	95
C2H3	87
C ₂ H ₄	82
C ₆ H ₆	56
C ₆ H ₅	51
C ₄ H ₄	46

Pyrolysis mechanism

Kinetic mechanism:

- Norinaga et al. J. Anal. Appl. Pyrolysis 86 (2009) 148-160
- 241 species (nodes)
- 902 reactions
- 1933 undirected edges

- Simplification using DRG method
- System conditioning through interaction ordering
- Maximum mixedness solution of complete and simplified systems

Species	Degree
н	229
H ₂	210
C ₂ H ₂	153
CH3	112
CH4	95
C ₂ H ₃	87
C ₂ H ₄	82
C ₆ H ₆	56
C ₆ H ₅	51
C ₄ H ₄	46

Pyrolysis mechanism

Kinetic mechanism:

- Norinaga et al. J. Anal. Appl. Pyrolysis 86 (2009) 148-160
- 241 species (nodes)
- 902 reactions
- 1933 undirected edges

- Simplification using DRG method
- System conditioning through interaction ordering
- Maximum mixedness solution of complete and simplified systems

Species	Degree
н	229
H ₂	210
C ₂ H ₂	153
CH ₃	112
CH4	95
C ₂ H ₃	87
C ₂ H ₄	82
C ₆ H ₆	56
C ₆ H ₅	51
C ₄ H ₄	46

Table of Contents

- 1 Introduction
- 2 Residence time distribution
 - Background
 - Measurements
- 3 Acetylene decomposition
 - Atmospheric pressure
 - Pyrolysis mechanism
- 4 Ammonia decomposition
- 5 Ongoing studies
- 6 Conclusion

Pressure: 1 bar

Temperature range: 773 K to 1223 K

Flow rate: $415 \,\mathrm{cm^3\,min^{-1}}$

Atmosphere: $0.24 N_2 - 0.72 H_2 - 0.04 NH_3$

- Decomposition break-through above 950 K
- Less than 10% of initial ammonia is reminiscent at carbonitriding temperatures

Pressure: 1 bar

Temperature range: 773 K to 1223 K

Flow rate: $415 \,\mathrm{cm}^3 \,\mathrm{min}^{-1}$

Atmosphere: $0.24 N_2 - 0.72 H_2 - 0.04 NH_3$

- Decomposition break-through above 950 K
- Less than 10% of initial ammonia is reminiscent at carbonitriding temperatures

Pressure: 1 bar

Temperature range: 773 K to 1223 K

Flow rate: $415 \,\mathrm{cm}^3 \,\mathrm{min}^{-1}$

Atmosphere: $0.24 N_2 - 0.72 H_2 - 0.04 NH_3$

- Decomposition break-through above 950 K
- Less than 10% of initial ammonia is reminiscent at carbonitriding temperatures

Pressure: 1 bar

Temperature range: 773 K to 1223 K

Flow rate: $415 \,\mathrm{cm}^3 \,\mathrm{min}^{-1}$

Atmosphere: $0.24 \, N_2 - 0.72 \, H_2 - 0.04 \, NH_3$

- Decomposition break-through above 950 K
- Less than 10% of initial ammonia is reminiscent at carbonitriding temperatures

Pressure: 1 bar

Temperature range: 773 K to 1223 K

Flow rate: $415 \,\mathrm{cm}^3 \,\mathrm{min}^{-1}$

Atmosphere: $0.24 N_2 - 0.72 H_2 - 0.04 NH_3$

- Decomposition break-through above 950 K
- Less than 10% of initial ammonia is reminiscent at carbonitriding temperatures

Pressure: 1 bar

Temperature range: 773 K to 1223 K

Flow rate: $415 \,\mathrm{cm}^3 \,\mathrm{min}^{-1}$

Atmosphere: $0.24 N_2 - 0.72 H_2 - 0.04 NH_3$

- Decomposition break-through above 950 K
- Less than 10% of initial ammonia is reminiscent at carbonitriding temperatures

Table of Contents

- 1 Introduction
- 2 Residence time distribution
 - Background
 - Measurements
- 3 Acetylene decomposition
 - Atmospheric pressure
 - Pyrolysis mechanism
- 4 Ammonia decomposition
- 5 Ongoing studies
- 6 Conclusion

Low pressure admission control for gas chromatography currently operating above 30 mbar.

Reliable measurements of C_2H_2 and NH_3 decomposition are currently being held.

Semi-automate system simplification routine for CFD simulations is under improvement.

Development of graph approach (pre-conditioning) to reduce stiffness of kinetic Jacobian.

Low pressure admission control for gas chromatography currently operating above 30 mbar.

Reliable measurements of C_2H_2 and NH_3 decomposition are currently being held.

Semi-automate system simplification routine for CFD simulations is under improvement.

Development of graph approach (pre-conditioning) to reduce stiffness of kinetic Jacobian.

Low pressure admission control for gas chromatography currently operating above 30 mbar.

Reliable measurements of C_2H_2 and NH_3 decomposition are currently being held.

Semi-automate system simplification routine for CFD simulations is under improvement.

Development of graph approach (pre-conditioning) to reduce stiffness of kinetic Jacobian.

Low pressure admission control for gas chromatography currently operating above 30 mbar.

Reliable measurements of C_2H_2 and NH_3 decomposition are currently being held.

Semi-automate system simplification routine for CFD simulations is under improvement.

Development of graph approach (pre-conditioning) to reduce stiffness of kinetic Jacobian.

Low pressure admission control for gas chromatography currently operating above 30 mbar.

Reliable measurements of $\mathsf{C}_2\mathsf{H}_2$ and NH_3 decomposition are currently being held.

Semi-automate system simplification routine for CFD simulations is under improvement.

Development of graph approach (pre-conditioning) to reduce stiffness of kinetic Jacobian.

Table of Contents

- 1 Introduction
- 2 Residence time distribution
 - Background
 - Measurements
- 3 Acetylene decomposition
 - Atmospheric pressure
 - Pyrolysis mechanism
- 4 Ammonia decomposition
- 5 Ongoing studies
- 6 Conclusion

Decomposition of C_2H_2 leads to the formation of CH_4 , C_2H_4 and H_2 ; C_2H_6 is observed under excess H_2 .

Undetected species: C/H-ratio larger than unity, i.e. unsaturated character at intermediate levels (1-3) and the formation of soot (above 3).

System characterization (RTD) allowed the estimation of acetylene decomposition by using global rate parameters.

Graph analyses seem coherent with literature $results^2$ and allow the simplification of system kinetics for CFD simulations.

²F. Graf, PhD Thesis

Decomposition of C_2H_2 leads to the formation of CH_4 , C_2H_4 and H_2 ; C_2H_6 is observed under excess H_2 .

Undetected species: C/H-ratio larger than unity, i.e. unsaturated character at intermediate levels (1-3) and the formation of soot (above 3).

System characterization (RTD) allowed the estimation of acetylene decomposition by using global rate parameters.

Graph analyses seem coherent with literature $results^2$ and allow the simplification of system kinetics for CFD simulations.

²F. Graf, PhD Thesis

Decomposition of C_2H_2 leads to the formation of CH_4 , C_2H_4 and H_2 ; C_2H_6 is observed under excess H_2 .

Undetected species: C/H-ratio larger than unity, i.e. unsaturated character at intermediate levels (1-3) and the formation of soot (above 3).

System characterization (RTD) allowed the estimation of acetylene decomposition by using global rate parameters.

Graph analyses seem coherent with literature $results^2$ and allow the simplification of system kinetics for CFD simulations.

²F. Graf, PhD Thesis

Decomposition of C_2H_2 leads to the formation of CH_4 , C_2H_4 and H_2 ; C_2H_6 is observed under excess H_2 .

Undetected species: C/H-ratio larger than unity, i.e. unsaturated character at intermediate levels (1-3) and the formation of soot (above 3).

System characterization (RTD) allowed the estimation of acetylene decomposition by using global rate parameters.

Graph analyses seem coherent with literature results² and allow the simplification of system kinetics for CFD simulations.

²F. Graf, PhD Thesis

Decomposition of C_2H_2 leads to the formation of CH_4 , C_2H_4 and H_2 ; C_2H_6 is observed under excess H_2 .

Undetected species: C/H-ratio larger than unity, i.e. unsaturated character at intermediate levels (1-3) and the formation of soot (above 3).

System characterization (RTD) allowed the estimation of acetylene decomposition by using global rate parameters.

Graph analyses seem coherent with literature $results^2$ and allow the simplification of system kinetics for CFD simulations.

²F. Graf, PhD Thesis

Thanks for your attention!