

Herramienta de Machine Learning en Java Herramientas/librerías que pueden ayudar

Grandes conjuntos de datos

H2O:

- Es una plataforma machine Learning open-source desarrollada en Java que ofrece un gran conjunto de algoritmos de machine learning con alta capacidad de procesamiento (cluster)
- Gracias a su forma de comprimir y almacenar los datos, H2O es capaz de trabajar con millones de registros en un único ordenador (emplea todos sus cores) o en un cluster de muchos ordenadores

Instalación

H20

```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.preprocessing import LabelEncoder
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.tree import DecisionTreeClassifier
         from xgboost import XGBClassifier
         from sklearn.model selection import train test split
         from pandas.plotting import scatter matrix
         from sklearn.feature selection import VarianceThreshold
         from sklearn.metrics import accuracy score, auc, confusion matrix, f1 score, precision score, recall score, roc curve
         from sklearn.feature selection import SelectKBest
         from sklearn.model selection import GridSearchCV
         from sklearn.metrics import classification report
         from imblearn.over sampling import SMOTE
         from sklearn.model selection import cross val score
         !pip install h2o
In [33]:
         import h2o
         from h2o.estimators import H2ORandomForestEstimator
```

 Importar modelo (RandomForest) y levantar un cluster

 Borramos datos iniciales, cargamos datos y los pasamos a format H2O

datos.head()

1]: /	df_b	ank_h2o.head	4()														
	Çee	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome	У
Ī	58	management	married	tertiary	no	2143	yes	no	unknown	5	may	261	1	-1	0	unknows	00
	44	technician	single	secondary	no	29	yes	no	unknown	5	may	151	1	-1	0	unknown	no
	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	- 5	may	76	1	-1	0	unknows	no
	47	blue-collar	married	unknown	no	1506	yes	no	unknown	5	may	92	1	-1	0	unknown	no
	33	unknown	single	unknown	no	1	no	00	unknown	5	may	198	1	- 4	0	unknown	no
	35	management	married	tertiary	no	231	yes	no	unknown	5	may	139	1	-1	0	unknown	no
	28	management	single	tertiary	no	447	yes	yes	unknown	5	may	217	1	-1	0	unknows	no
	42	entrepreneur	dvorced	tertiary	yes	2	yes	no	unknown	- 6	may	380	1	-1	0	unknown	no
	58	retred	married	primary	no	121	yes	no	unknown	5	may	50	1	-1	0	unknows	no
	43	technician	single	secondary	no	593	yes	no	unknown	5	may	55	1	-1	0	unknows	no

datos.shape y col_names (no cols como en pandas)

```
In [14]: df_bank_h2o.shape
Out[14]: (45211, 17)
In [16]: df_bank_h2o.col_names
Out[16]: ['age',
           'marital',
           'education',
           'default',
           'balance'.
           'housing',
           'loan',
           'contact',
           day.
           'month',
           'duration',
           'campaign',
           'pdays',
           'previous',
           'poutcome',
```

datos.describe

```
In [18]: df_bank_h2o.describe()

Rows:45211
```

FIOWS	:45211	- 2
Cols	:17	D

	age	job	marital	education	default	balance	housing	loan	contact	day	month	dur
type	int	enum	enum	enum	enum	int	enum	enum	enum	int	enum	
mins	18.0					-8019.0				1.0		
mean	40.93621021432809					1362.272057685082				15.806418791886935		258.163079781
maxs	95.0					102127.0				31.0		4
sigma	10.61876204097539					3044.7658291685234				8.32247615304459		257.527812265
20105	0					3514				٥		
missing	0	0	0	0	0	0	0	0	0	0	0	
0	58.0	management	married	tertiary	no	2143.0	yes	no	unknown	5.0	may	
1	44.0	technician	single	secondary	no	29.0	yes	no	unknown	5.0	may	
2	33.0	entrepreneur	married	secondary	no	2.0	yes	yes	unknown	5.0	may	
3	47.0	blue-collar	married	unknown	no	1506.0	yes	no	unknown	5.0	may	
4	33.0	unknown	single	unknown	no	1.0	50	no	unknown	5.0	may	
5	35.0	management	married	tertiary	no	231.0	yes	no	smknown	5.0	may	
6	28.0	management.	single	tertiary	no	447.0	yes	yes	unknown	5.0	may	
7	42.0	entrepreneur	dvorced	tertiary	yes.	2.0	yes	no	unknown	5.0	may	

Contadores con .table()

```
In [19]: df_bank_h2o['marital'].table()
Out[19]:
            mantal Count
           distanced
            married 27214
             single 12790
          [3 rows x 2 columns]
```

.split_frame

Preparación de datos: .drop('y')

age	job	marital	education	default	balance	housing	loan	contact	day	mocrah	duration	campaign	pdays	previous	poutcome
58	management	married	tertiary	no	2143	yes	no	unknown	.5	may	261	1	-1	0	unknown
44	technician	single	secondary	no	29	yes	no	unknown	5	may	151	1	-1	0	unknown
33	entrepreneur	married	secondary	no	2	yes	yes	unknown	5	may	76	1	- 4	0	unknown
47	blue-collar	married	unknown	no	1506	yes	no	unknown	5	may	92	1	-1	0	unknown
33	unknown	single	unknown	no	1	00	no	unknown	5	may	198	1	-1	0	unknown
35	management	married	tertiary	no	231	yes	no	unknown	5	may	139	1	-1	0	unknown
28	management	single	tertiary	no	447	yes	yes	unknown	5	may	217	1	-1	0	unknown
42	entrepreneur	divorced	tertiary	yes	2	yes	no	unknown	5	may	380	1	-1	0	unknown
41	admin	dvorced	secondary	60	270	yes	no	unknown	5	may	222	1	-1	0	unknown
29	admin	single	secondary	no	390	yes	no	unknown	5	may	137	1	-1	0	unknows

Preparación de datos: .col_names

```
In [46]: df_bank_train_h2o.drop('y').col_names
Out[46]: [ age ,
           'job',
           'marital',
          'education',
           'default',
          'balance',
           'housing',
           'loam',
           "contact",
           'day',
           'month',
           'duration',
           'campaign',
           'pdays',
           'previous',
           'poutcome']
```

Preparacion de datos: y

Modelos

```
In [35]: model_h2o = H2ORandomForestEstimator(ntrees=10,
                                             max_depthu5,
                                             min_rowl=10,
                                             calibrate_model=True,
                                             calibration_frame=df_bank_test_h2o,
                                             binomial_double_trees=True)
In [45]: df_bank_train_h2o['y'].asfactor()
Out[45]:
          no
```

Modelo y validación

Modelo y validación

RMSE: 0.2672699554491151 LogLoss: 0.24150543139577066

AUCPR: 0.8939062495083637 AUCPR: 0.5586624659180423 Gini: 0.7878124990167275

Mean Per-Class Error: 0.19078149158071428

```
In [47]: model_h2o.train(x*df_bank_train_h2o.drop('y').col_names,
                         YE'Y'
                         training frame of bank train h2o,
                         validation frame of bank test h2o)
          drf Model Build progress:
                                                                                                 (done) 100%
Out[47]:
          Model Details
          ...........
          H20RandomForestEstimator: Distributed Random Forest
          Model Key: DRF_model_python_1675340086299_1
          Model Summery:
            number_of_trees number_of_internal_trees model_size_in_bytes min_depth max_depth mean_depth min_leaves max_leaves mean_leaves
                                                                         500
                                                            2513.0
                                                                                   5.0
                       10.0
                                            20.0
                                                                                              5.0
                                                                                                        26.0
                                                                                                                   32.0
                                                                                                                              29.65
          ModelMetricsBinomial: drf
          ** Reported on train data. **
          MSE: 0.07143322908577195
```

Matriz de confusion y métricas

	no	yes	Error		Rate	
no	28354.0	3277.0	0.1036	(3277.0/3	1631.0)	
yes	1173.0	3047,0	0.278	(1173.0	4220.0)	
Total	29527.0	6324.0	0.1241	(4450.0/3	5851,0)	
Assim	um Metrics	: Maxima	im metr	ics at their re	spective thre	sholds
			metric	threshold	value	idx
			max f1	0.1924772	0.5779590	231.0
			max f2	0.1330235	0.6755505	264.0
		max f0	point5	0.4030910	0.5611235	137.0
		так ао	ouracy	0.4138724	0.9004491	132.0
		max pre	roision	1.0	1.0	0.0
		mao	recell	0.0064442	1.0	397.0
		max spe	oficity	1.0	1.0	0.0
	ma	x absolut	e_moo	0.1840600	0.5230680	235.0
mai	kmin_per_	class_ac	ouracy	0.1113503	0.8246445	278.0
			market i	0.1000000	0.0050005	221.0
max o	nean_per_	Class_ec	curacy	0.1000303	0.0232925	201.0

Confusion Matrix (Act Pred) for max f1 (§) threshold =

Ensemble Voting

Ensemble models

Se tratan de métodos combinados que utilizan múltiples algoritmos de machine learning para obtener un mejor rendimiento predictivo.

 Voting: permite entrenar varios modelos con los mismos datos. Cada modelo tiene asociado un voto. La predicción final se obtiene como la más vota

 Stacking: se trata de apilar modelos, es decir, usar la salida de un modelo como entrada de otro.

Ensemble Models: Bagging

Ensemble models

 Bagging: es un meta-algoritmo que consigue combinaciones de modelos a través de una familia inicial, provocando un menos overfitting y varianza. Consigue que los errores se compensen entre sí, entrenando cada modelo con subconjuntos del dataset original. El resultado es una combinación.

Ejemplo: Random Forest (bagging de decission tree)

Ensemble Models: Boosting

Ensemble methods

- Boosting: en este caso, cada modelo intenta arreglar los errores de los modelos anteriores. Tras la primera clasificación, se dará más peso a las muestras mal clasificadas. En el caso de regresión se da más peso al error cuadrático medio para el siguiente modelo.
- Ejemplos: Xgboost, CatBoost, Lightgbm, AdaBoost

Intentar aplicar un modelo boosting a uno de los modelos realizados anteriormente (ejemplo Clasificación)

Ensemble Models: XGBoost

```
In [36]: model2 = XGBClassifier().fit(X train, y train)
         y pred = model2.predict(*X test)
         C:\Python38\lib\site-packages\xgboost\sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and
         will be removed in a future release. To remove this warning, do the following: 1) Pass option use label encoder=False when cons
         tructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num class - 1].
           warnings.warn(label encoder deprecation msg, UserWarning)
         [16:08:52] WARNING: C:/Users/Administrator/workspace/xgboost-win64 release 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.
         0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly se
         t eval metric if you'd like to restore the old behavior.
In [37]: saca metricas(y test, y pred)
         matriz de confusión
         [[7692 293]
          [ 544 514]]
         accuracy
         0.9074422205020458
         precision
         0.6369268897149938
         recall
         0.48582230623818523
         f1
```

Ensemble Models: XGBoost

- Ventajas:
 - Mejor precisión
- Inconvenientes:
 - No explicables
 - Mayor complejidad computacional