Relatório Técnico: Detecção de Plásticos para Preservação da Vida Marinha

1. Descrição do Problema

Contextualização

A poluição plástica é uma ameaça significativa à vida marinha e ao meio ambiente em geral. Dados do Banco Mundial indicam que o Brasil é um dos maiores produtores de resíduos plásticos, ficando atrás apenas dos Estados Unidos, China e Índia. Com 11,3 milhões de toneladas de resíduos plásticos produzidos anualmente, mais de 10,3 milhões de toneladas são coletadas (91%), mas apenas 145 mil toneladas (1,28%) são efetivamente recicladas.

Justificativa

A poluição plástica causa impactos socioambientais diversos, incluindo a morte de animais marinhos, contaminação dos oceanos e prejuízos econômicos para comunidades costeiras. Portanto, é imperativo desenvolver soluções que possam ajudar na mitigação deste problema, utilizando tecnologias avançadas como Processamento de Dados e Inteligência Artificial (IA). A justificativa completa pode ser conferida no arquivo **Justificativa.pdf.**

Uma análise exploratória também foi elaborada para ilustrar o tema com dados.

Pode ser conferido no arquivo

GlobalSolution__EZTech_Analise_Exploratoria.ipynb.

2. Metodologia

Escolha da Solução

Para auxiliar na preservação da vida marinha, escolhemos desenvolver um sistema de detecção de plásticos utilizando técnicas de IA, com foco em sacolas plásticas, sacos de lixo e garrafas plásticas. A detecção automática de resíduos plásticos pode facilitar iniciativas de limpeza e reciclagem, além de monitorar áreas afetadas.

Tal solução se conectará com outras entregas, alimentando, por exemplo, sistema desenvolvido em Java e as aplicações mobile desenvolvidas em Javascript.

Ferramentas Utilizadas

- Linguagem de Programação: Python
- Bibliotecas:
 - matplotlib: para visualização de imagens
 - inference_sdk: para realizar inferências utilizando modelos de detecção de objetos
- Modelo de Detecção: Criamos um modelo para detecção de poluição plástica, utilizando ferramentas da Roboflow.

Procedimentos

- Processamento de Imagens: Implementamos uma função que carrega uma imagem, envia para o serviço de inferência e exibe os resultados.
- Análise dos Resultados: A função também extrai e imprime informações detalhadas sobre as previsões, incluindo classes detectadas e níveis de confiança.

3. Resultados Obtidos

Execução do Modelo

A execução do modelo resultou na detecção de vários objetos plásticos nas imagens fornecidas. A função *process_image* exibiu corretamente as imagens e

imprimiu as dimensões e previsões de detecção, incluindo classes de objetos plásticos e seus níveis de confiança.

Exemplos de Resultados

Imagem: garrafa1.jpg

o Dimensões: 1920x1080

o Detecções:

Classe: Garrafa Plástica, Confiança: 0.95
 Classe: Sacola Plástica, Confiança: 0.89

4. Conclusões

Impacto e Benefícios

A utilização de IA para detecção de plásticos mostrou-se eficaz, permitindo a identificação de resíduos em imagens. Essa tecnologia pode ser aplicada em diversas iniciativas de preservação ambiental, incluindo monitoramento de áreas costeiras e operações de limpeza.

Próximos Passos

- Aprimoramento do Modelo: Treinamento adicional com um conjunto de dados maior e mais diversificado.
- Integração com Sistemas de Limpeza: Desenvolvimento de sistemas automatizados que utilizam os dados de detecção para orientar operações de limpeza.
- Campanhas de Sensibilização: Utilização dos dados para sensibilizar a população sobre a importância da reciclagem e redução do uso de plásticos.