Assignment 02: Building a Custom CNN for Animal Image Classification

Objective:

Design, train, and evaluate a **custom Convolutional Neural Network (CNN)** from scratch to classify animal images.

Tasks:

1. Data Preprocessing:

- Load the animal image dataset.
- Perform the following preprocessing steps:
 - Resize all images to 128x128.
 - Normalize pixel values to the range [0, 1].
- Split the dataset into train, validation, and test sets:
 - 70% for training
 - 15% for validation
 - 15% for testing

2. Build a Custom CNN:

- Design a CNN with the following components:
 - Input Layer: Accepts 128x128x3 images.
 - Convolutional Layers:
 - Use at least 3 convolutional layers with ReLU activation.
 - Include MaxPooling after each convolution.
 - Fully Connected Layers:
 - Add 1 hidden dense layer with 128 neurons and ReLU activation.
 - Add an output layer with softmax activation for classification.
 - Use **Dropout** to reduce overfitting.

3. Model Training:

- Compile the model using:
 - **Loss**: categorical_crossentropy
 - Optimizer: Adam
 - Metrics: accuracy

- Train the model for **15 epochs** using the training set.
- Use the validation set to monitor overfitting.

4. Model Evaluation:

- Evaluate the trained CNN on the test set.
- Report the following metrics:
 - Accuracy
 - Precision, Recall, and F1-Score (classification report)

5. Visualizations:

- Plot the **training and validation accuracy/loss** over epochs.
- Display the Confusion Matrix for test set predictions.

6. **Bonus Task** (Optional):

 Compare the performance of your custom CNN with a pre-trained model like MobileNetV2 or ResNet50.

Submission Requirements:

- Submit a Jupyter Notebook containing:
 - Well-documented code for each step.
 - Output metrics and visualizations.
 - A short conclusion discussing the model's performance.