视听信息系统导论第四次作业

BobAnkh

December 2020

1. 线性对数几率回归中假设 $f(x)=w^Tx+b$,设计一种数据处理方案使得参数 b 可以不用出现

可以在向量 x 的末尾增加一个取值全为 1 的维度;或者也可以将所有的数据都减去某一个特定的数据,如 $x_k - x_0$ 。

2. 用牛顿法求解无约束优化问题, 目标函数为

$$f(x) = \log (e^x + e^{-x})$$

分别以初值 $x^{(0)}=1$ 和 $x^{(0)}=1.1$,写出前五步迭代过程,令迭代步长 =1.

目标函数为 $f(x) = \log(e^x + e^{-x})$, 则可以得到其一阶导和二阶导为:

$$f^{'}(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$f''(x) = \frac{4}{(e^x + e^{-x})^2}$$

由此进行迭代:

1.
$$x^{(0)} = 1$$
 时

$x^{(0)}$	1
$x^{(1)}$	-0.8134
$x^{(2)}$	0.4094
$x^{(3)}$	-0.04730
$x^{(4)}$	7.060e-5
$x^{(5)}$	-2.347e-13

$$2. x^{(0)} = 1.1$$
 时

$x^{(0)}$	1.1
$x^{(1)}$	-1.129
$x^{(2)}$	1.234
$x^{(3)}$	-1.695
$x^{(4)}$	5.715
$x^{(5)}$	-23021

3. 总变分 (total variation) 是视听处理领域一种经典的去除噪声的方法。

假设输入的被噪声污染的信号用列向量表示为 $x\in R^n$,用 x_i 表示 \mathbf{x}^* 的第 i 个元素。则去噪之后的信号 $x\in R^n$ 通过下面的无约束优化问题求得,其中 $\epsilon>0, \mu>0$ 是两个常数。

$$minimizef(x) = \|x - \hat{x}\|_2^2 + \mu \sum_{i=1}^{n-1} \sqrt{\epsilon^2 + (x_{i+1} - x_i)^2} - \epsilon)$$

- 1) 若采用梯度下降法求解该问题,写出下降方向 Δx 的数学表达式 (明确给出 Δx 每个元素的表达形式):
- 2) 若采用牛顿法求解该问题,写出计算下降方向 Δx 的线性方程组的数学表达式 (明确给出系数矩阵每个元素的表达形式);
 - 3) 分析求解问题 (2) 中的线性方程组的时间复杂度。
- (1) 在梯度下降法中, $\Delta x = -\nabla f(x)$, 故有:

$$\begin{split} \frac{\partial f}{\partial x_1} &= 2(x_1 - \hat{x_1}) + \mu \frac{x_1 - x_2}{\sqrt{\epsilon^2 + (x_2 - x_1)^2}} \\ \frac{\partial f}{\partial x_i} &= 2(x_i - \hat{x_i}) + \mu \frac{x_i - x_{i+1}}{\sqrt{\epsilon^2 + (x_{i+1} - x_i)^2}} + \mu \frac{x_i - x_{i-1}}{\sqrt{\epsilon^2 + (x_i - x_{i-1})^2}} \;, \quad for \; 1 < i < n \\ \frac{\partial f}{\partial x_n} &= 2(x_n - \hat{x_n}) + \mu \frac{x_n - x_{n-1}}{\sqrt{\epsilon^2 + (x_n - x_{n-1})^2}} \end{split}$$

(2) 在牛顿法中, $\nabla^2 f(x) \Delta x = -\nabla f(x)$,故 Δx 可通过解此方程求得。 $\nabla f(x)$ 上一问中已经计算过,本问中计算海森矩阵 $\nabla^2 f(x)$ 即可:

 $\nabla^2 f(x)$ 首行为 $\frac{\partial^2 f(x)}{\partial x_1 \partial x_i}$, 故可知该行第一个元素为 $2 + \mu \epsilon^2 (\epsilon^2 + (x_2 - x_1)^2)^{-\frac{3}{2}}$, 第二个元素为 $-\mu \epsilon^2 (\epsilon^2 + (x_2 - x_1)^2)^{-\frac{3}{2}}$, 其余元素为 0

 $\nabla^2 f(x)$ 中间第 i 行 (1 < i < n) 为 $\frac{\partial^2 f(x)}{\partial x_i \partial x_j} (1 \le j \le n)$,故可知对于这第 i 行,第 i-1 个元素为 $-\mu \epsilon^2 (\epsilon^2 + (x_i - x_{i-1})^2)^{-\frac{3}{2}}$,第 i 个元素为 $2 + \mu \epsilon^2 (\epsilon^2 + (x_{i+1} - x_i)^2)^{-\frac{3}{2}} + \mu \epsilon^2 (\epsilon^2 + (x_i - x_{i-1})^2)^{-\frac{3}{2}}$,第 i+1 个元素为 $-\mu \epsilon^2 (\epsilon^2 + (x_{i+1} - x_i)^2)^{-\frac{3}{2}}$,其余元素为 0

 $\begin{array}{l} \nabla^2 f(x) \ \hbox{最后一行} \ (\text{即第 n 行}) \ \hbox{为} \ \frac{\partial^2 f(x)}{\partial x_1 \partial x_i}, \ \hbox{故可知该行第 n-1 个元素为} \ -\mu \epsilon^2 (\epsilon^2 + (x_n - x_{n-1})^2)^{-\frac{3}{2}}, \ \hbox{第 n 个元素为} \ 2 + \mu \epsilon^2 (\epsilon^2 + (x_n - x_{n-1})^2)^{-\frac{3}{2}}, \ \hbox{其余元素为} \ 0 \end{array}$

(3) 由 (2) 中分析过程可知,对于本问题中的海森矩阵,除首尾两行各 2 个元素非 0 外,每行只有两个元素非 0,故可直接使用高斯消元法求解,时间复杂度是 O(n)级别的。

4. x 为二维非负向量, 证明:

双曲集合 $\{x \in R^2_+ | x_1 x_2 \ge 1\}$ 是凸集合

假设 (x_1, x_2) 和 (y_1, y_2) 都属于该双曲集合,那么对于 $\theta \in [0, 1]$,有:

$$z_1 = \theta x_1 + (1 - \theta)y_1$$
, $z_2 = \theta x_2 + (1 - \theta)y_2$

若 $x_1 \geq y_1$ 且 $x_2 \geq y_2$,那么显然有 $z_1 \geq y_1$, $z_2 \geq y_2$,则可得 $z_1 z_2 \geq y_1 y_2 \geq 1$ 若 $y_1 \geq x_1$ 且 $y_2 \geq x_2$,那么显然有 $z_1 \geq x_1$, $z_2 \geq x_2$,则可得 $z_1 z_2 \geq x_1 x_2 \geq 1$ 而另外的两种情况必然会有 $(y_1 - x_1)(y_2 - x_2) < 0$,则可求得:

$$\begin{split} z_1 z_2 &= (\theta x_1 + (1-\theta)y_1)(\theta x_2 + (1-\theta)y_2) \\ &= \theta^2 x_1 x_2 + (1-\theta)^2 y_1 y_2 + \theta (1-\theta)(y_1 x_2 + x_1 y_2) \\ &= \theta x_1 x_2 + (1-\theta)y_1 y_2 - \theta (1-\theta)(y_1 - x_1)(y_2 - x_2) \\ &\geq 1 \end{split}$$

综上, 可以证明该双曲集合是凸集合。

5. 已知 R^{m+n} 上的两个凸集合 S_1 和 S_2

证明它们的部分和集合 S 也是凸集合: $S=\{(x,y_1+y_2)|x\in R^m,y_1,y_2\in R^n,(x,y_1)\in S_1,(x,y_2)\in S_2\}$

取 $(\bar{x}, \bar{y_1}) \in S_1$, $(\bar{x}, \bar{y_2}) \in S_2$, $(\hat{x}, \hat{y_1}) \in S_1$, $(\hat{x}, \hat{y_2}) \in S_2$, 则 $(\bar{x}, \bar{y_1} + \bar{y_2}) \in S$, $(\hat{x}, \hat{y_1} + \hat{y_2}) \in S$

对于 $\theta \in [0,1]$,有 $\theta(\bar{x},\bar{y_1}+\bar{y_2})+(1-\theta)(\hat{x},\hat{y_1}+\hat{y_2})=(\theta\bar{x}+(1-\theta)\hat{x}\,,\,(\theta\bar{y_1}+(1-\theta)\hat{y_1})+(\theta\bar{y_2}+(1-\theta)\hat{y_2}))$ 而已知 S_1 和 S_2 都是凸集,故有 $(\theta\bar{x}+(1-\theta)\hat{x},\theta\bar{y_1}+(1-\theta)\hat{y_1})\in S_1$, $(\theta\bar{x}+(1-\theta)\hat{x},\theta\bar{y_2}+(1-\theta)\hat{y_2})\in S_2$ 所以可以得到 $(\theta\bar{x}+(1-\theta)\hat{x}\,,\,(\theta\bar{y_1}+(1-\theta)\hat{y_1})+(\theta\bar{y_2}+(1-\theta)\hat{y_2}))\in S$,由此得证。

6. 连续函数 $f: \mathbb{R}^n \to \mathbb{R}$

证明 f 为凸函数当且仅当对任意 $x,y\in R^n$,下式成立: $\int_0^1 f(x+\lambda(y-x))\mathrm{d}\lambda \leq \frac{f(x)+f(y)}{2}$ 先证 f 为凸函数时,该式成立:

根据 Jensen's 不等式,对于 $\forall \lambda \in [0,1]$ 有

$$f(\lambda y + (1-\lambda)x) \leq \lambda f(y) + (1-\lambda)f(x)$$

两边在 [0,1] 上积分可得:

$$\int_0^1 f(\lambda y + (1-\lambda)x) d\lambda \leq \int_0^1 (\lambda f(y) + (1-\lambda)f(x)) d\lambda = \frac{f(x) + f(y)}{2}$$

此即 $\int_0^1 f(x+\lambda(y-x))d\lambda \leq \frac{f(x)+f(y)}{2}$

再证 f 不是凸函数时,该式一定不成立:

若 f 不是凸函数,则 Jensen's 不等式不成立,即 $\exists x,y,\lambda_0\in(0,1)$,使得 $f(\lambda_0x+(1-\lambda_0)y)>\lambda_0f(x)+(1-\lambda_0)f(y)$

考虑连续函数 $F(\lambda)=f(\lambda x+(1-\lambda)y)-\lambda f(x)-(1-\lambda)f(y)$,显然仅当 $\lambda=0$ 或 $\lambda=1$ 时, $F(\lambda)=0$,对于 λ_0 ,有 $F(\lambda_0)>0$

若记 α , β 分别为 λ_0 左侧和右侧最近的零点,则在区间 (α,β) 上,有

$$f(\lambda x + (1-\lambda)y) > \lambda f(x) + (1-\lambda)f(y)$$

令 $u = \alpha x + (1 - \alpha)y$, $v = \beta x + (1 - \beta)y$, 则对于 $\lambda \in (0, 1)$ 有

$$f(\lambda u + (1 - \lambda)v) > \lambda f(u) + (1 - \lambda)f(v)$$

两边在 [0,1] 上积分可得:

$$\int_0^1 f(v+\lambda(u-v))d\lambda > \int_0^1 (f(v)+\lambda(f(u)-f(v)))d\lambda = \frac{f(u)+f(v)}{2}$$

这与题设条件相矛盾, 由此可以说明在 f 不是凸函数时, 该式一定不成立。

综上可知, 当且仅当 f 为凸函数是, 该式成立。

7. 两个元素取值为正数的向量 x, y 满足:

 $x,y \in R_{++}^n$, 其相对熵定义如下,其中 x_k, y_k 分别是向量 x,y 的第 k 个元素,log 表示自然对数:

$$\sum_{k=1}^{n} x_k \log(\frac{x_k}{y_k})$$

- 1) 证明相对熵是变量 x,y 的凸函数;
- 2) 假设 y 是一个给定的常数向量, 定义如下的等式约束优化问题, 其中 $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$:

$$minimize \ \sum_{k=1}^n x_k \log(\frac{x_k}{y_k})$$

 $subject\ to\ Ax = b$

$$\sum_{k=1}^{n} x_k = 1$$

证明该优化问题的对偶问题是如下形式,其中 a_k 是矩阵 A 的第 k 列:

$$minimize \ b^T z + \log \sum_{k=1}^n y_k e^{-a_k^T z}$$

1. 先证明相对熵是 x 的凸函数。记相对熵为 $f(x,y) = \sum_{k=1}^n x_k \log \frac{x_k}{y_k}$

令 $g(x)=x\log\frac{x}{y}$,其中 y 此时是常数参量,则有 $g^{''}(x)=\frac{1}{x}$,显然在 x>0 时,g(x) 是凸函数 对于 $\forall \theta \in [0,1]$ 有

$$\begin{split} \theta f(x_1,y) + (1-\theta) f(x_2,y) &= \theta \sum_{k=1}^n x_{1k} \log \frac{x_{1k}}{y_k} + (1-\theta) \sum_{k=1}^n x_{2k} \log \frac{x_{2k}}{y_k} \\ &= \sum_{k=1}^n (\theta x_{1k} \log \frac{x_{1k}}{y_k} + (1-\theta) x_{2k} \log \frac{x_{2k}}{y_k}) \\ &\geq \sum_{k=1}^n [\theta x_{1k} + (1-\theta) x_{2k}] \log \frac{[\theta x_{1k} + (1-\theta) x_{2k}]}{y_k} \\ &= f(\theta x_1 + (1-\theta) x_2, y) \end{split}$$

由此可说明 f(x,y) 是 x 的凸函数。

接下来证明相对熵是 y 的凸函数。此时可以将相对熵写作如下形式:

$$f(x,y) = \sum_{k=1}^n x_k \log \frac{x_k}{y_k} = \sum_{k=1}^n x_k \log x_k - \sum_{k=1}^n x_k \log y_k$$

令 $h(y)=-x\log y$,其中 x 此时是常数参量,则有 $h^{''}(y)=\frac{1}{y^2}$,显然在 y>0 时,h(x) 是凸函数 对于 $\forall \theta \in [0,1]$ 有

$$\begin{split} \theta f(x,y_1) + (1-\theta) f(x,y_2) &= \sum_{k=1}^n (x_k \log x_k - \theta x_k \log y_{1k} - (1-\theta) x_k \log y_{2k}) \\ &\geq \sum_{k=1}^n (x_k \log x_k - x_k \log (\theta y_{1k} + (1-\theta) y_{2k})) \\ &= f(x,\theta y_1 + (1-\theta) y_2) \end{split}$$

由此可说明 f(x,y) 是 y 的凸函数。

2. 对于等式约束优化问题,有 $L(x,\lambda,\mu) = \sum_{k=1}^n x_k \log \frac{x_k}{y_k} + \lambda^T (Ax - b) + \mu(\sum_{k=1}^n x_k - 1)$ 令 $\frac{\partial L}{\partial x_k} = 0$, $\frac{\partial L}{\partial \lambda} = 0$, $\frac{\partial L}{\partial \mu} = 0$, 则有

$$\log \frac{x_k}{y_k} = -1 - \mu - \lambda^T a_k \tag{1}$$

$$Ax - b = 0 (2)$$

$$\sum_{k=1}^{n} x_k - 1 = 0 \tag{3}$$

将 (1)(2)(3) 三式代入 $L(x,\lambda,\mu)$ 可得原问题的对偶形式:

$$\min_x \sum_{k=1}^n x_k \log \frac{x_k}{y_k} \iff \max_{\lambda,\mu} g(\lambda,\mu)$$

其中, $g(\lambda, \mu)$ 满足:

$$\begin{split} g(\lambda,\mu) &= L(x,\lambda,\mu) = \sum_{k=1}^n x_k (-1 - \mu - \lambda^T a_k) \\ &= -\sum_{k=1}^n x_k a_K^T \lambda - (1+\mu) \\ &= -(AX)^T \lambda - (1+\mu) \end{split}$$

又由 (1) 知: $x_k = y_k e^{-1-\mu-\lambda^T a_k}$,由此可得 $\mu+1 = \log \sum_{k=1}^n y_k e^{-a_K^T \lambda}$

故
$$g(\lambda,\mu) = -b^T \lambda - \log \sum_{k=1}^n y_k e^{-a_K^T \lambda}$$

由此可得,原问题等价于 $\min_{\lambda}(-b^T\lambda-\log\sum_{k=1}^ny_ke^{-a_K^T\lambda})$,此即 $\min_{\lambda}(b^T\lambda+\log\sum_{k=1}^ny_ke^{-a_K^T\lambda})$,证毕。