Problem

a) Var (Xij | μ , τ^2 , σ^2) is larger since Dj provides more information than μ , τ^2 .

b) $C_{\sigma v}(X_{i,j}, X_{i,j} | \theta_{j}, \sigma^{2}) = 0$ since they one independent. $C_{\sigma v}(X_{i,j}, X_{i,j} | \mu, \tau^{2}, \sigma^{2}) > 0$ since they are from the same distribution.

c) $Vor(X^{5}) = \sigma^{2}$

 $Von(X;j|\mu,\tau^2,\sigma^2) = \mathbb{E}[\sigma^2|\mu,\tau^2,\sigma^2] + Von(\theta;j|\mu,\tau^2,\sigma^2)$ $= \sigma^2 + \tau^2$

 $\begin{aligned} & \operatorname{Cov}(X_{i,j}, X_{i,j} | \mu, \tau^{2}, \sigma^{2}) = \mathbb{E}[X_{i,j}, X_{i,j} | \mu, \tau^{2}, \sigma^{2}] - [\mathbb{E}[X_{i,j} | \mu, \tau^{2}, \sigma^{2}]]^{2} \\ & = \mathbb{E}[\theta_{j}^{2} | \mu, \tau^{2}, \sigma^{2}] - [\mathbb{E}[\theta_{j} | \mu, \tau^{2}, \sigma^{2}]]^{2} \\ & = \mu^{2} + \tau^{2} - \mu^{2} = \tau^{2} \end{aligned}$

d) $\mu \rightarrow \hat{\theta}$ given $\hat{\theta}$. \hat{x} , \hat{o} are independent of μ

 $f(\mu \mid \vec{\theta}, \vec{\sigma}', \vec{\tau}', \vec{x}) \propto f(\vec{\sigma} \mid \mu, \vec{\tau}, \vec{\theta}, \vec{x}) \cdot f(\vec{x} \mid \mu, \vec{\tau}, \vec{\theta}) \cdot f(\mu \mid \vec{\tau}, \vec{\theta})$ $= f(\vec{\sigma}' \mid \vec{x}) \cdot f(\vec{x} \mid \vec{\theta}, \vec{\sigma}') \cdot f(\mu \mid \vec{\tau}, \vec{\theta})$

 $\infty f(\mu \mid \tau, \hat{\theta})$

a) likelihood = $\frac{n}{1}$ $p_i^*(1-p_i)^{1-\gamma_i} = \frac{n}{1}$ (0.8xi) γ_i^*

Problem 3