KOMATSU Fld: January 26, 1999

Darryl Mexic 202-293-7060

1 of 1

Q53086

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1998年 1月27日

出 願 番 号 Application Number:

平成10年特許願第014467号

出 願 人 Applicant (s):

富士写真フイルム株式会社

1998年12月 4日

特許庁長官 Commissioner, Patent Office 得佐山建門

特平10-014467

【書類名】 特許願

【整理番号】 P23568J

【提出日】 平成10年 1月27日

【あて先】 特許庁長官 荒井 寿光 殿

【国際特許分類】 G01N 33/50

G01N 27/26

G01N 35/10

【発明の名称】 生化学分析装置

【請求項の数】 8

【発明者】

【住所又は居所】 神奈川県南足柄市竹松1250番地 富士機器工業株式

会社内

【氏名】 小松 明広

【特許出願人】

【識別番号】 000005201

【郵便番号】 250-01

【住所又は居所】 神奈川県南足柄市中沼210番地

【氏名又は名称】 富士写真フイルム株式会社

【代表者】 宗雪 雅幸

【代理人】

【識別番号】 100073184

【郵便番号】 222-00

【住所又は居所】 横浜市港北区新横浜3-18-20 BENEX S-

1 7階

【弁理士】

【氏名又は名称】 柳田 征史

【電話番号】 045-475-2623

【選任した代理人】

【識別番号】 100090468

特平10-014467

【郵便番号】 222-00

【住所又は居所】 横浜市港北区新横浜3-18-20 BENEX S

-1 7階

【弁理士】

【氏名又は名称】 佐久間 剛

【電話番号】 045-475-2623

【手数料の表示】

【予納台帳番号】 008969

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9001631

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】

生化学分析装置

【特許請求の範囲】

【請求項1】 試料液が点着された化学分析素子を用いて前記試料液中の所定の生化学物質の濃度を求める生化学分析装置において、

前記化学分析素子を収納し、該収納された化学分析素子を恒温保持する恒温器 と、

該恒温器内に設けられ、前記試料液に含まれる所定の生化学物質との化学反応により光学濃度変化を生じる試薬と該試料液との呈色反応を測定する呈色反応測定部と、

前記恒温器内に設けられ、前記試料液のイオン活量を測定するためのイオン活量測定部と、

前記恒温器内の前記化学分析素子を所定温度に温調する温調部とを備えたこと を特徴とする生化学分析装置。

【請求項2】 前記呈色反応を測定するための化学分析素子と前記イオン活量を測定するための化学分析素子とを混在させて収容する素子収容部と、

前記化学分析素子を前記素子収容部から前記恒温器内に搬送する搬送部とをさらに備えたことを特徴とする請求項1記載の生化学分析装置。

【請求項3】 前記化学分析素子がバーコードを備え、該バーコードを読み取ることにより前記化学分析素子の搬送方向を検出する検出部をさらに備えたことを特徴とする請求項1または2記載の生化学分析装置。

【請求項4】 前記試料液を受ける受け部を備え、該受け部内に希釈液を混入して前記受け部内の試料液を希釈する希釈ユニットをさらに備えたことを特徴とする請求項1から3のいずれか1項記載の生化学分析装置。

【請求項5】 試料液が点着された化学分析素子を用いて前記試料液中の所 定の生化学物質の濃度を求める生化学分析装置において、

前記化学分析素子を収納し、該収納された化学分析素子を恒温保持する恒温器 と、

該恒温器内に設けられ、前記試料液に含まれる所定の生化学物質との化学反応

により光学濃度変化を生じる試薬と該試料液との呈色反応を測定する呈色反応測 定部と、

前記恒温器内に設けられ、前記試料液のイオン活量を測定するためのイオン活量測定部と、

前記呈色反応測定部においては前記化学分析素子を前記呈色反応の測定に適した温度に温調し、前記イオン活量測定部においては前記化学分析素子を前記イオン活量の測定に適した温度に温調する温調部とを備えたことを特徴とする生化学分析装置。

【請求項6】 前記呈色反応を測定するための化学分析素子と前記イオン活量を測定するための化学分析素子とを混在させて収容する素子収容部と、

前記化学分析素子を前記素子収容部から前記恒温器内に搬送する搬送部とをさらに備えたことを特徴とする請求項5記載の生化学分析装置。

【請求項7】 前記化学分析素子がバーコードを備え、該バーコードを読み取ることにより前記化学分析素子の搬送方向を検出する検出部をさらに備えたことを特徴とする請求項5または6記載の生化学分析装置。

【請求項8】 前記試料液を受ける受け部を備え、該受け部内に希釈液を混入して前記受け部内の試料液を希釈する希釈ユニットをさらに備えたことを特徴とする請求項5から7のいずれか1項記載の生化学分析装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、血液、尿等の試料液が点着された化学分析素子を用いて、試料液中の所定の生化学物質の物質濃度を求める生化学分析装置に関するものである。

[0002]

【従来の技術】

従来より、試料液の小滴を点着供給するだけでこの試料液中に含まれている特定の化学成分または有形成分を定量分析することのできるドライタイプの化学分析素子が実用化されている。また、このような化学分析素子を用いて試料液中の化学成分等の定量的な分析を行うには、試料液を化学分析素子に点着させた後、

これをインキュベータ(恒温器)内で所定時間恒温保持(インキュベーション) して呈色反応(色素生成反応)させ、次いで試料液中の所定の生化学物質と化学 分析素子に含まれる試薬との組み合わせによりあらかじめ選定された波長を含む 測定用照射光をこの化学分析素子に照射してその光学濃度を測定し、この光学濃 度から、あらかじめ求めておいた光学濃度と所定の生化学物質の物質濃度との対 応を表わす検量線を用いて試料液中の所定の生化学物質の物質濃度を求めるよう に構成された生化学分析装置が用いられる。

[0003]

この生化学分析装置において、インキュベータに対して化学分析素子を順次搬送し、測定が行われた化学分析素子をインキュベータから取り出して廃却処分を行うものであるが、その搬送は、例えば、特開昭61-26864 号公報、米国特許第4,296,069 号明細書等に見られるように、円板型インキュベータに化学分析素子を外周側から搬入するとともに、測定の終了した化学分析素子は、インキュベータの内周側から外側に押し出すか、外周側から取り出すことによって搬出し、廃却するように設けられている。

[0004]

また、複数の化学分析素子を一つずつ収納する収納部を有する回転式のインキュベータの収納部に対して試料液を点着した化学分析素子を搬送手段によって直線的に搬送して挿入し、この収納部内で所定のインキュベーションを行い、収納部底部から化学分析素子の呈色反応を測定し、測定が完了した化学分析素子を搬送手段によってさらにインキュベータの中心方向に搬送して、インキュベータの中心部分に開口した廃却孔に落とし込んで廃却するようにした生化学分析装置も知られている(特開平6-66818 号公報)。

[0005]

一方、試料液に含まれる特定イオンのイオン活量を測定することができるイオン活量測定装置が例えば米国特許4,257,862 号、特公昭 58-4981号、特開昭 58-156848号、特開昭 58-211648号、特公平6-82113 号等に開示されている。このような、イオン活量測定装置に用いられる化学分析素子としては、特定イオンのイオン活量に対応する電位を発生するイオン選択電極からなる少なくとも1対のイ

オン選択電極対と、このイオン選択電極対の両電極間を連絡するように配された 多孔性ブリッジとを有するもので、特定イオンのイオン活量が既知である参照液 およびイオンのイオン活量が未知である試料液をイオン選択電極対の一方および 他方の電極にそれぞれ点着供給し、多孔性ブリッジの作用により両液の界面を接 触(液絡)させて電気的導通を成立させると両電極間には参照液と試料液との間 に存在するイオンのイオン活量の差に対応して電位差が生じるため、この電位差 を測定すれば予め求めておいた検量線(原理はネルンストの式による)に基づい て試料液中の特定イオンのイオン活量が求まるようになっている。

[0006]

このような化学分析素子を用いてイオン活量を測定する測定装置としては、参照液および試料液の点着供給と、電位差の測定とを行う機能を備えたアナライザーを使用することが好ましい。この種のアナライザーは、参照液および試料液の点着後、化学分析素子を電位差測定部へ送り、そこで電位測定用プローブを電極対の両電極にそれぞれ接触させて、電極間の電位差を測定するような構成になっている。

[0007]

【発明が解決しようとする課題】

上述したような試料液の分析を行う場合、生化学物質の物質濃度を求めると同時に、イオン活量を求める必要がある場合が生じる。しかしながら、従来の生化学分析装置においては、生化学物質の物質濃度を測定するための手段と、イオン活量を求めるための手段とはそれぞれ別個の装置に設けられているため、効率よく測定を行うことができなかった。また、生化学物質の物質濃度を求める場合とイオン活量を求める場合とでは、インキュベーション温度を異なるものとする必要が生じる場合があるため、同一のインキュベータ内に試料を保持することができず、その結果、それぞれ別個の装置により測定を行う必要があることから非常に効率が悪かった。

[0008]

本発明は上記事情に鑑み、試料液の生化学物質濃度の測定とイオン活量の測定とを効率よく行うことができる生化学分析装置を提供することを目的とするもの

である。

[0009]

【課題を解決するための手段】

本発明による第1の生化学分析装置は、試料液が点着された化学分析素子を用いて前記試料液中の所定の生化学物質の濃度を求める生化学分析装置において、

前記化学分析素子を収納し、該収納された化学分析素子を恒温保持する恒温器 と、

該恒温器内に設けられ、前記試料液に含まれる所定の生化学物質との化学反応 により光学濃度変化を生じる試薬と該試料液との呈色反応を測定する呈色反応測 定部と、

前記恒温器内に設けられ、前記試料液のイオン活量を測定するためのイオン活量測定部と、

前記恒温器内の前記化学分析素子を所定温度に温調する温調部とを備えたこと を特徴とするものである。

[0010]

ここで、本発明による第1の生化学分析装置においては、同一の温度にて呈色 反応の測定とイオン活量の測定とを行うことができる化学分析素子を用いるもの である。また、「所定温度」とは、化学分析素子の温度が呈色反応測定部および イオン活量測定部のいずれにおいても同一となる温度のことをいう。

[0011]

本発明による第2の生化学分析装置は、試料液が点着された化学分析素子を用いて前記試料液中の所定の生化学物質の濃度を求める生化学分析装置において、

前記化学分析素子を収納し、該収納された化学分析素子を恒温保持する恒温器 と、

該恒温器内に設けられ、前記試料液に含まれる所定の生化学物質との化学反応 により光学濃度変化を生じる試薬と該試料液との呈色反応を測定する呈色反応測 定部と、

前記恒温器内に設けられ、前記試料液のイオン活量を測定するためのイオン活量測定部と、

前記呈色反応測定部においては前記化学分析素子を前記呈色反応の測定に適した温度に温調し、前記イオン活量測定部においては前記化学分析素子を前記イオン活量の測定に適した温度に温調する温調部とを備えたことを特徴とするものである。

[0012]

なお、本発明による第1および第2の生化学分析装置においては、前記呈色反応を測定するための化学分析素子と前記イオン活量を測定するための化学分析素子とを混在させて収容する素子収容部と、

前記化学分析素子を前記素子収容部から前記恒温器内に搬送する搬送部とをさらに備えることが好ましい。

[0013]

また、前記化学分析素子がバーコードを備え、該バーコードを読み取ることにより前記化学分析素子の搬送方向を検出する検出部をさらに備えることが好ましい。

[0014]

ここで、イオン活量の測定においては、参照液と試料液とを化学分析素子上に 点着するものであるが、その点着位置が逆になるとイオン活量を正確に測定する ことができない。このため、バーコードにより化学分析素子の搬送方向を検出し 、逆であった場合にオペレータに何らかの方法(例えば警報を発する)により搬 送方向が逆である旨を知らしめるものである。なお、バーコードは化学分析素子 の搬送方向のみならず、検査項目などの特定にも用いられる。

[0015]

さらに、本発明による第1および第2の生化学分析装置においては、前記試料液を受ける受け部を備え、該受け部内に希釈液を混入して前記受け部内の試料液を希釈する希釈ユニットをさらに備えることが好ましい。

[0016]

【発明の効果】

本発明の第1の生化学分析装置によれば、同一の恒温器内に呈色反応測定部と イオン活量測定部とを設けたため、同一の装置において呈色反応およびイオン活 量の双方を効率よく測定することができる。

[0017]

また、本発明の第2の生化学分析装置によれば、呈色反応測定部では、恒温器内の化学分析素子が光学濃度の測定に適した温度に温調され、イオン活量の測定部では、恒温器内の化学分析素子がイオン活量の測定に適した温度に温調される。このように、呈色反応の測定およびイオン活量の測定に応じて恒温器内の化学分析素子の温度を変化させてそれぞれの測定に適した温度となるように構成されているため、同一の装置において光学濃度の測定およびイオン活量の測定を効率よく行うことができる。

[0018]

さらに、本発明の第1および第2の生化学分析装置において、呈色反応を測定するための化学分析素子と、イオン活量を測定するための化学分析素子とを混在させて収容する素子収容部を設けることにより、単一の搬送部にて化学分析素子を恒温器内に搬送することができ、これにより装置の構成を簡易なものとすることができる。

[0019]

また、化学分析素子にバーコードを設け、このバーコードにより化学分析素子の搬送方向を検出することにより、バーコードの搬送方向が逆であった場合にその旨をオペレータに知らせることができ、これによりとくにイオン活量測定時における誤測定を防止することができる。

[0020]

さらに、本発明による生化学分析装置内に試料液を希釈する希釈ユニットを設けることにより、希釈された試料液をも直ちに分析することができることとなる

[0021]

【発明の実施の形態】

以下、図面に沿って本発明の実施形態を説明する。図1は本発明の実施形態による生化学分析装置の概略平面構成を示す図である。

[0022]

生化学分析装置10は、血液から血漿を分離する血液濾過ユニット9と、未使用 の化学分析スライド11を収容するスライド待機部12と、化学分析スライド11に血 漿(全血、血清、尿なども可能であるが、本実施形態では血漿についてのみ説明 する)の試料液を点着する点着部13と、化学分析スライド11を収容して所定時間 恒温保持するインキュベータ14とを備え、搬送手段15によってスライド待機部12 から順次化学分析スライド11を点着部13に搬送し、この点着部13に位置する化学 分析スライド11に対し、点着手段17(サンプラ)の点着用ノズル91の先端にノズ ルチップ25(図9参照)を装着してからノズルチップ25内にサンプル収容部16か ら試料液(血漿)を吸引してスライド11に所定量の点着を行った後、この点着さ れた化学分析スライド11を搬送手段15によってインキュベータ14の収納部55に挿 入し、このインキュベータ14で恒温保持した化学分析スライド11の呈色度合(反 射光学濃度)を測定手段18の測光ヘッド27で測定し、あるいは血漿のイオン活量 測定のための化学分析スライド11′を用いてアナライザ21によりイオン活量を測 定し、さらに、測定後の化学分析スライド11(または11′、以下11で代表させる)を搬送手段15によってインキュベータ14の中心側の廃却孔56に落下排出するも のである。なお、点着手段17には、ノズルチップ25による試料液の吸引吐出を行 うシリンジ手段19が付設され、使用後のノズルチップ25はインキュベータ14の近 傍に配設されたチップ抜取り部20で点着用ノズル91から外されて下方に落下廃却 される。

[0023]

ここで、血漿の呈色度合を測定するために使用される化学分析スライド11および血漿のイオン活性を測定するために使用される化学分析スライド11′の構成を図12に示す。図12に示すように、化学分析スライド11は矩形状のマウント内に試薬層が配設されてなり、マウントの表面に点着孔11aが形成されている。点着孔11aには後述するように血漿が点着される。一方、化学分析スライド11′は化学分析スライド11と略同一形状をなし、2箇所の液供給孔11c,11dが形成されている。液供給孔11cには後述するように血漿が点着され、液供給孔11dにはイオン活量が既知である参照液が点着される。また、化学分析スライド11′には、イ

オン活量を測定するためにアナライザ21の電極と電気的に接続される 3 対のイオン選択電極11e , 11f , 11g が形成されている。各イオン選択電極11e , 11f , 11g はそれぞれ $C1^-$, K^+ , Na^+ 用のイオン選択層を有するものとする。また、化学分析スライド11, 11' の裏面には検査項目などを特定するためのバーコードが取付けられている。

[0024]

各部の構造を説明すれば、まず血漿濾過ユニット9は、図2および図3に示すように、サンプル収容部16に収容される採血管7の開口部に取付けられるホルダ1と、ホルダ1に接続して血液から血漿を分離するための負圧を作用させる吸引手段2とからなる。ホルダ1はプラスチック製のホルダ本体1Aおよび蓋体1Bからなる。ホルダ本体1Aは、採血管内部に挿入される挿入部1aと、ガラス繊維からなるフィルタ3が挿入されるフィルタ保持部1bと、蓋体1Bと超音波溶接などにより接合されるフランジ部1cとからなる。蓋体1Bは、ホルダ本体1Aと接合されるフランジ部1dと、フィルタ3により濾過された血漿を保持するためのカップ1eと、カップ1eにフィルタ3からの血漿を供給するノズル状供給口1fとからなる。

[0025]

吸引手段2は、基台31に回転自在に支持される軸部材4に取付けられたアーム2aを備える。アーム2aの先端下方側には、ホルダ1の蓋体1Bと吸着する吸盤部2bが設けられ、この吸盤部2bは不図示のポンプと接続される負圧供給部2cと接続されている。また、負圧供給部2cにはポンプからの負圧を解放するための解放弁が設けられている。さらに吸盤部2b内には、カップ1eに供給される血漿の液面を検出して血漿がカップ1eから溢れることを防止するための液面検出センサ2dが設けられている。軸部材4の外周部分にはタイミングベルト5(図1参照)が巻き掛けられ、このタイミングベルト5が駆動モータ6のプーリー6aに対しても巻き掛けられ、駆動モータ6の正逆回転駆動によって軸部材4の往復回転駆動を行うように構成されている。

[0026]

また、図3に示すように、軸部材4は、基台31に設置された支持部材63に対して回転自在に取付けられている。支持部材63と基台31との間には、上下方向に送

りネジ64が回転自在に支承されている。送りネジ64の下端部はプーリー65が固着 されており、駆動モータ66の駆動プーリー67との間にタイミングベルト68が巻き 掛けられている。さらに、送りネジ64は軸部材4に取付けられた固定部材69を貫 通し、その貫通部分には送りネジ64に螺合するナット部材69aが設けられ、送り ネジ64の回転に応じて軸部材4が昇降作動するように構成されている。

[0027]

そして、血液から血漿を分離する際には、サンプル収容部16に収容されている 採血管7にホルダ1を取付け、アーム2aを図1の実線で示す初期位置から仮想線 で示す位置に回転してアーム2aの吸盤部2bをホルダ1と対向させ、さらにアーム 2aを下降してホルダ1の蓋体1Bとアーム2aの吸盤部2bとを互いに当接させる。次 いで、不図示のポンプを駆動して、蓋体1Bと吸盤部2bとの間に形成された空間に 負圧を作用させる。これにより、採血管7内の全血が挿入部1aから吸い上げられ フィルタ3により濾過されてノズル供給口1fを介してカップ1eに血漿が供給され る。

[0028]

液面検出センサ2dは、カップ1eに供給される血漿の液面に光を照射し、その反射光を光学的に検出するセンサであり、血漿液面がカップ1eの高さと略同一となったときに最大信号値を出力するように設定される。したがって、液面検出センサ2dから最大信号値が出力されたときに負圧供給部2cの解放弁を解放して血液の吸引を停止する。その後、アーム2aを上昇して元の位置(図1の実線参照)に移動して濾過を終了する。

[0029]

次に、搬送手段15は、その断面正面構造を図5に示すように、インキュベータ14の中心に向けて直線状に延びる搬送台30が、その前後端の脚部30aが下方の平板状の基台31に設置され、搬送台30には略中央部にスライド待機部12が、それよりインキュベータ14側に点着部13が配設されている。

[0030]

スライド待機部12には、化学分析スライド11を保持するスライドガイド32が形成されており、このスライドガイド32に未使用の化学分析スライド11が通常複数

枚重ねられて保持される。スライドガイド32は、搬送台30の搬送面と同一高さに 最下端部の化学分析スライド11が位置するように、搬送台30の凹部に装着され、 最下端部の前面側には1枚の化学分析スライド11のみが通過し得る開口32aが形成されている。また、後面側には後述の挿入部材が挿通可能な開口が形成され、 底面には搬送台30に形成された後述のスリット30bに連通する溝32bが形成され ている。なお、このスライドガイド32には、化学分析スライド11を複数枚重ねて 収納したカートリッジをセットするようにしてもよい。

[0031]

スライド待機部12の前方の点着部13には、円形の開口33a が形成されたスライド押え33が設置され、このスライド押え33が搬送台30の上方に固着されたカバー34内に若干上下動可能に収容され、カバー34の上方に固着されたガラス板35にも点着用の開口35a が形成されている。また、点着部13には化学分析スライド11に設けられたバーコードを読み取るためのバーコードリーダー130 (図1参照)が取付けられている。このバーコードリーダー130 は、検査項目などを特定するため、および化学分析スライド11の搬送方向(前後、表裏)を検出するために設けられている。

[0032]

そして、化学分析スライド11の搬送は、搬送台30上に載置されたプレート状の 挿入部材36の前進移動によって行われる。すなわち、搬送台30の中央には前後方 向に延びるスリット30b が形成され、このスリット30b 上に挿入部材36がスライ ド可能に載置され、この挿入部材36の後端底部にスリット30b を通して下方から ブロック37が固定され、ブロック37がスリット30b に沿って前後方向に摺動自在 に設けられている。また、スライドガイド32によるスライド待機部12より後方の 位置における搬送台30の上には、挿入部材36を押える補助板38が配設され、補助 板38はカバー39内に若干上下動可能に保持されている。

[0033]

また、ブロック37の下部にはスライダ40が取付けられ、このスライダ40は搬送台30に沿って配設されたガイドロッド41によって前後方向に摺動自在に支持されている。さらに、スライダ40には搬送台30の前後に配設されたプーリー42,43 に

巻き掛けられたベルト44の一部が固着されている。そして、後方のプーリー43は 搬送モータ45によって回転駆動され、スライダ40と一体に移動するブロック37に よって挿入部材36が前後方向に移動操作され、その先端部によってスライドガイ ド32の下端部の化学分析スライド11の後端を押して、化学分析スライド11を直線 状に点着部13からインキュベータ14に搬送するものである。

[0034]

搬送モータ45の駆動によってスライドガイド32の下端の化学分析スライド11を 点着部13に搬送し、試料液が点着された化学分析スライド11をさらにインキュベ ータ14の収納部55に挿入し、さらに測定後の化学分析スライド11をインキュベー タ14の中心部の廃却孔56に搬送するように、この搬送モータ45の駆動制御が行わ れる。

[0035]

次に、インキュベータ14は、その断面正面構造を図6に示すように、円盤状の回転部材50が下部中心の回転筒51によってベアリング52を介して軸受部53に対して回転自在に支持され、この回転部材50の上に上位部材54が配設されている。上位部材54の底面は平坦であり、回転部材50の上面には円周上に所定間隔で複数(図1の場合6個)の凹部が形成されて両部材51,54間にスリット状空間による収納部55が形成され、この収納部55の底面の高さは搬送手段15の搬送台30の搬送面の高さと同一に設けられ、搬送台30の先端部分に接近して回転部材50の外周部分が位置している。

[0036]

また、回転筒51の内孔は測定後の化学分析スライド11の廃却孔56に形成され、この廃却孔56の径は化学分析スライド11が通過可能な寸法に設定され、また、回転部材50の中心部分には廃却孔56に連通する開口50aが形成されている。そして、収納部55の中心側部分は、収納部55と同一高さで中心側の開口50aに連通し、収納部55に位置する化学分析スライド11がそのまま中心側に移動すると廃却孔56に落下するように構成されている。

[0037]

上位部材54には図示しない加熱手段が配設され、その温度調整によって収納部

55内の化学分析スライド11を恒温保持する一方、上位部材54には収納部55に対応して化学分析スライド11のマウントを上から押えて試料液の蒸発防止を行う押え部材57が配設されている。上位部材54の上面にはカバー58が配設される一方、このインキュベータ14は上方および側方が上部カバー59によって覆われ、底部が下部カバー60で覆われて遮光が行われる。なお、加熱手段は、化学分析スライド11の呈色度合を測定する部分はインキュベータ14内の収納部55における化学分析スライド11を37±0.2℃に、イオン活量を測定する部分は30±1℃に加熱する。この加熱手段は測定方法が異なる部分を異なる温度で保持しなければならないが、本実施形態においては加熱手段を1つのみしか具備していないため、イオン活量を測定する部分は回転部材50および押え部材57′の形状を変えて温度が上がらないようにしている。詳細については後述する。

[0038]

さらに、回転部材50の化学分析スライド11を収納する各収納部55の底面中央には測光用の開口55a が形成され、この開口55a を通して図1に示す位置に配設された測光ヘッド27による化学分析スライド11の反射光学濃度の測定が行われる。また、収納部55のうち一つの収納部55b には、後述するイオン活量測定のための3対の電極用孔55c,55d,55f(図1参照)が形成されており、イオン活量測定のための化学分析スライド11'はこの収納部55bに収容される。

[0039]

ここで、インキュベータ14の回転駆動は、回転部材50を支持する回転筒51の外 周部分に不図示のタイミングベルトが巻き掛けられ、このタイミングベルトが駆 動モータの駆動プーリー(共に不図示)に対しても巻き掛けられ、駆動モータの 正逆回転駆動によって回転部材50の往復回転駆動を行うように構成されている。 そして、インキュベータ14の回転操作は、インキュベータ14の所定回転位置の下 方に配設された測光ヘッド27に対して、まず、白色基準板の濃度を検出し、続い て黒色基準板の濃度を検出して校正を行った後に、順次収納部55に挿入されてい る化学分析スライド11の呈色反応の光学濃度の測定を行い、この一連の測定の後 、逆回転して基準位置に復帰し、次のスライド11またはスライド11′の測定を行 うように、所定角度範囲内で往復回転駆動を行うように制御するものである。一 方、イオン活量を測定する場合は、収納部55b に化学分析スライド11'を収容した後、アナライザ21に対応する位置に収納部55b を回転させてイオン活量の測定を行い、この測定の後、逆回転して基準位置に復帰し、次のスライド11'またはスライド11の測定を行うように、所定角度範囲で往復回転駆動を行うように制御するものである。

[0040]

さらに、インキュベータ14の下方には測定後の化学分析スライド11を回収する回収箱70が配設されている。この回収箱70は、回転筒51の中心の廃却孔56の下方に臨んで収容室71が形成され、この回収箱70は他の各種機器の配置との関係からその収容室71はインキュベータ14の中心点に対して片方に広く形成されている。また、収容室71の角部には、後述の点着手段17における試料液毎に交換するノズルチップ25が落下される傾斜部72が形成されている。この傾斜部72は、ノズルチップ25が落下されるチップ抜取り部20の下方に位置し、その底面が落下してくるノズルチップ25を倒して収容室71の中心側に案内するように、収容室71側が低くなるような斜面(20~45°)に形成されている。

[0041]

また、収容室71の底部には廃却孔56の中心から、収容室71の広くなっている部分とは反対側にずれた位置に突起73が立設されている。この突起73は先端が球状もしくは針状に形成され、廃却孔56から落下してくる化学分析スライド11に接触してその落下方向を変更して分散させる機能を有している。

[0042]

また、図1に示すように、回転部材50の正面側下方には、イオン活量を測定するためのアナライザ21が配設されている。このアナライザ21は、例えば米国特許第4,257,862号、特公昭58-4981号、特開昭58-156848号、特開昭58-211648号、特公平6-82113号等に開示されているものであり、その構成を図7および図7のI-I線断面図である図8に示す。図7および図8に示すように、アナライザ21の表面には3対の貫通孔110,111,112が形成されており、各貫通孔110,111,112には、3対の電位測定用プローブ113,114,115が図8の上下方向に移動可能に配設されている。なお、各プローブ113,114,115の構成は同一

であるため、図8を参照してプローブ113で代表させて説明する。

[0043]

図8に示すように電位測定用プローブ113 は、基部150 に立設された固定部材 120 に昇降自在に案内される案内部材121 に固定されており、またアナライザ21 の測定部122 と電気的に接続されている。案内部材121 には化学分析スライド11 ′を押え部材57′とともに保持するための保持部材123 が設けられている。押え 部材57′は前述した押え部材57とは異なり、スライド11′との接触を少なくする ため、また参照液および試料液のスライド11′からの盛り上がりと接触しないよ うにするために、スライド11′側に凹とされている。また、案内部材121 は不図 示のバネにより図8の下方に付勢されている。案内部材121 の側方には駆動モー タ124 が設けられており、駆動モータ124 の回転軸にはカム部材125 が取付けら れている。このカム部材125 は案内部材121 の側部に設けられた当接部126 と対 向するように設けられる。そして、駆動モータ124 が回転するとカム部材125 が 図8の実線で示す位置から仮想線で示す位置に移動し、これによりカム部材125 が当接部126 に当接して案内部材121 、すなわちプローブ113 および保持部材12 3 が上方へ移動する。カム部材125 が当接部126 に当接していないときには、電 位測定用プローブ113 , 114 , 115 の先端はアナライザ21の表面あるいは表面か ら内側に位置しているが、カム部材125 が当接部126 に当接すると、電位測定用 プローブ113,114,115 の先端は、アナライザ21の表面から若干突出し、これ により、プローブ113 , 114 , 115 が化学分析スライド11′のイオン選択電極対 11e , 11f , 11g と電気的に接続する。

[0044]

そして、血漿供給孔11c に血漿が、参照液供給孔11d に参照液が点着された化学分析スライド11′を収納部55b に収納して回転部材50を回転してアナライザ21と収納部55b とを対向させ、化学分析スライド11′の下方から、3対の電極用孔55c,55d,55f を介して電位測定用プローブ113,114,115 および保持部材123 を上昇させる。この収容部55b の切欠の大きさは保持部材123 が侵入する形状、大きさであると同時に、回転部材50から化学分析スライド11′への熱の伝達を最小限にして、化学分析スライド11′が上述した温度となるように形成されて

いる。これにより、化学分析スライド11'は保持部材123と押え部材57'との間に保持される。この際、化学分析スライド11'のイオン選択電極対11e,11f,11gの間にそれぞれ参照液と試料液との間のC1-,K+,Na+の各イオン活量の差に対応する電位差が発生するため、電位測定用プローブ113,114,115により各イオン選択電極対11e,11f,11gから生ずる電位差を測定すれば血漿中の各イオン活量が測定できる。このようにして測定されたイオン活量は、液晶パネルなどの表示部において表示されたり、記録紙に記録されたりする。

[0045]

次に、サンプル収容部16は、その断面正面構造を図9に示すように、参照液用チップ保持部16a、電解質検体用チップ保持部16b、希釈液収容管16c、希釈液用チップ保持部16d、希釈カップ16e、混合カップ16f、採血管保持部16g および検体用チップ保持部16h とが形成されており、参照液用チップ保持部16a、電解質検体用チップ保持部16b、希釈液用チップ保持部16d、および検体用チップ保持部16hには、それぞれ参照液用チップ25a、電解質検体用チップ25b、希釈液用チップ25d および検体用チップ25h が保持される。また、参照液用チップ保持部16a、電解質検体用チップ25h が保持される。また、参照液用チップ保持部16a、電解質検体用チップ16b、希釈液収容管16c、希釈液用チップ保持部16d、希釈カップ16e、混合カップ16f、採血管保持部16g および検体用チップ保持部16d、希釈カップ16e、混合カップ16f、採血管保持部16g および検体用チップ保持部16h は、図1に示すように後述する点着手段17の点着アーム88の旋回に伴う点着用ノズル91a,91bの旋回軌跡上に位置するように設定されている。なお、サンプル収容部16は全体として消耗品であり、サンプル収容部16の全体が本実施形態による生化学分析装置に対して交換可能とされているものである。

[0046]

次に、点着手段17は、その断面正面構造を図10に示すように、基台31に設置された支持部材80に対して不図示のベアリングを介してフランジ部材83が回転自在に取付けられている。フランジ部材83の外周側の両側にはそれぞれガイドロッド84,84 が立設され、この両側のガイドロッド84,84 の上端部分は連結部材85に固着されて、両ガイドロッド84,84 が上下方向に平行に配設されている。また、連結部材85の回転中心部分には上下方向に送りネジ86が配設され、送りネジ86の上端は連結部材85に回転自在に支承され、下端部はフランジ部材83の中心部分に回

転自在に支承され、さらに先端部分はフランジ部材83から突出してプーリー87が 固着されている。さらに、両側のガイドロッド84,84 によって昇降移動自在に点 着アーム88の基端部が支持され、その支持部分の点着アーム88にはガイドロッド 84,84 が嵌挿されるスリーブ89が介装されている。また、送りネジ86は点着アーム88を貫通し、その貫通部分には送りネジ86に螺合するナット部材90が設けられ、送りネジ86の回転に応じて点着アーム88が昇降作動するように構成されている

[0047]

そして、図10のA方向矢視拡大図である図11にも示すように、点着アーム88の 先端部分には、上下方向に貫通して試料液の吸引吐出を行う2つの点着用ノズル 91a,91bが配設されている。この点着用ノズル91a,91bは軸部分が点着アーム88に摺動自在に嵌挿され、スプリング92a,92bによって下方に付勢されている。なお点着用ノズル91aは検体用および電解質検体用であり、点着用ノズル91bは希釈液用および参照液用のものである。また、点着用ノズル91a,91bの先端には上述したようなピペット状のノズルチップ25a,25b,25d,25h(以下25で代表させる)が着脱自在に装着されるものであって、未使用のノズルチップ25はサンプル収容部16にセットされており、これを点着アーム88の下降移動によって点着用ノズル91a,91bの先端に嵌合保持し、使用後は、チップ抜取り部20の係合溝20aにノズルチップ25の上端を係合した状態での点着アーム88の上動で嵌合を外し、チップ抜取り部20の開口20bから下方の回収箱70に落下させて廃却するものである。

[0048]

点着アーム88の旋回動作は、フランジ部材83の外周部分にタイミングベルト94が係合され、このタイミングベルト94が旋回用モータの駆動プーリーに巻き掛けられ(不図示)、この旋回用モータの正逆回転の駆動制御によって所定位置に旋回移動される。また、点着アーム88の昇降移動すなわち送りネジ86の回転駆動は、下端部のプーリー87と昇降用モータの駆動プーリーとの間にタイミングベルト99が巻き掛けられ、この昇降用モータの正逆回転の駆動制御により所定高さに移動される。

[0049]

次に、ノズルチップ25内への試料液の吸引と吐出を行う機構は、点着用ノズル91a,91b の中心部には先端部に開口するエア通路101a,101bが形成され、このエア通路101a,101bの上端部分にはエアパイプ110a,110bが接続される。このエアパイプ110a,110bの他端は、シリンジ手段19のシリンジ102 の右端部分(図1参照)に接続される。シリンジ102 は注射器状のエアポンプであり、シリンジ102 の操作によって吸引吐出を行うように構成されている。なお、点着用ノズル91a,91b の吸引流路の切換は、シリンジ手段19に設けられた不図示の電磁弁を切り換えることにより行う。

[0050]

そして、点着手段17により、ノズルチップ25先端が希釈液収容管16c あるいは血漿濾過ユニット9のカップ1e内の希釈液あるいは血漿に浸漬された状態でシリンジ102 のピストンを下降作動して吸引を行い、点着部13に回動して化学分析スライド11に所定量の点着を行うものである。

[0051]

次いで、本実施形態の動作について説明する。

[0052]

図13から図18は本実施形態の動作を説明するためのフローチャートである。まず、図1に示すように、分析を行う前に、スライド待機部12に化学分析スライド11,11′をセットするとともに、消耗品であるサンプル収容部16をセットし、その後分析処理をスタートする。この際、サンプル収容部16の参照液用チップ保持部16a、電解質検体用チップ16b、希釈液収容管16c、希釈液用チップ保持部16d、採血管保持部16g および検体用チップ保持部16h には、それぞれ参照液用チップ25a、電解質検体用チップ25b、希釈液、希釈液用チップ25d、分析するための血液を有する採血管7および検体用チップ25h が保持される。

[0053]

まず、ステップS1において、生化学分析装置を初期化し、ステップS2において血液濾過ユニット9により、採血管7内の全血を濾過して血漿成分を得る。 この血液濾過ユニット9において行われる処理のフローチャートを図14に示す。 まず、ステップS21において、液面検出センサ2dの汚れをチェックするとともに、カップ1eの高さ位置に基準板をセットして液面検出センサ2dのゲインの設定を行う。次いで、ステップS22において、アーム2aの吸盤部2bをホルダ1と対向する位置(図1の仮想線参照)に回転し、さらにアーム2aを下降してホルダ1の蓋体1Bとアーム2aの吸盤部2bとを互いに当接させる。そして、ステップS23において、不図示のポンプを駆動して、蓋体1Bと吸盤部2bとの間に形成された空間に負圧を作用させる。これにより、フィルタ3により血液が濾過されてノズル供給口1fを介してカップ1eに血漿が供給される。この際、ポンプの圧力をチェックして、リークや血液のヘマト量を検出するようにしてもよい。

[0054]

次のステップS24においては、カップ1eに所定量の血漿が供給されたことを液面検出センサ2dにより検出してポンプの駆動を停止する。この際、液面検出センサ2dに代えて、一定の吸引時間が経過した後にポンプの駆動を停止してもよい。次いで、ステップS25において、負圧供給部2cの解放弁を解放して減圧を終了し、ステップS26において、アーム2aを上昇して蓋体1Bと吸盤部2bとの当接を解除するとともに、アーム2aを元の位置(図1の実線参照)に戻して処理を終了する

[0.055]

図13に戻り、ステップS3において、搬送手段15によりスライド待機部12からスライド11を点着部13に搬送する。点着部13においてはバーコードリーダー130によりスライド11に設けられたバーコードが読み取られ、スライド11の検査項目などを検出する。読み取られた検査項目がイオン活量測定の場合は後述するBに進み、希釈依頼項目の場合は後述するA1に進む。読み取られた検査項目が呈色度合の測定の場合は次のステップS4において、点着アーム88をサンプル収容部16に移動して検体用チップ25hを点着用ノズル91aに装着する。ステップS5においては、カップ1eに供給された検体(血漿)の液面検出が行われ、液面位置および必要な血漿がカップ1eに供給されているか否かを確認する。そして、ステップS6において点着アーム88を下降してカップ1eから検体用チップ25hに検体を吸引し、ステップS7において検体を吸引した検体用チップ25hを点着部13に移

動して、スライド11の点着孔11a に検体を点着する。この際、圧力変化を監視して所定値と比較することによりチップ25h の詰まりを検出するようにしてもよい

[0056]

そして、ステップS 8において、検体が点着されたスライド11がインキュベータ14に挿入される。インキュベータ14は呈色度合の測定のために、内部温度が37±0.2℃に設定されている。この際、スライド11がインキュベータ14に確実に挿入されたか否かを検出してもよい。連続して処理する場合は、ステップS13において、別なスライド11を点着部13に搬送し、さらにバーコードを読み取ってステップS 6からステップS 8の処理を行う。この際、読み取られた検査項目がイオン活量測定の場合は、ステップS14において後述するように検体用チップ25h を廃却して後述するBに進み、希釈依頼項目の場合は後述するA 2 に進む。

[0057]

スライド11がインキュベータ14に挿入されると、インキュベータ14の収納部55を回転して、挿入されたスライド11を順次測光ヘッド27と対向する位置に移動する。そして次のステップS9において、測光ヘッド27によるスライド11の反射光学濃度の測定が行われる。測定終了後、スライド11をインキュベータ14に挿入する搬送手段15によって測定後の化学分析スライド11をインキュベータ14の中心側に押し出して廃却する。そしてステップS11において測定結果を出力し、さらにステップS12において使用済みの検体用チップ25hをチップ抜取り部20で点着用ノズル91aから外して下方に落下廃却し、処理を終了する。

[0058]

次いで、検査項目が希釈依頼項目の場合について図15および図16に示すフローチャートを参照して説明する。この希釈依頼項目は、例えば血液の濃度が濃すぎて正確な検査を行うことができないような場合に行われるものである。まず、ステップS31において、図13のステップS4と同様に、点着アーム88をサンプル収容部16に移動して検体用チップ25hを点着用ノズル91aに装着する。ステップS32においては、カップ1eに供給された検体(血漿)の液面検出が行われ、液面位置および必要な血漿がカップ1eに供給されているか否かを確認する。なお、図13

におけるA2はステップS33からの処理が行われることとなる。そして、ステップS33において点着アーム88を下降してカップ1eから検体用チップ25h に検体を吸引する。この際、圧力変化を監視して所定値と比較することによりチップ25h の詰まりを検出するようにしてもよい。

[0059]

次のステップS34においては、吸引した検体を検体用チップ25h から混合カップ16f に分注する。検体の分注後、ステップS35において、使用済みの検体用チップ25h をチップ抜取り部20で点着用ノズル91a から外して下方に落下廃却する。次いで、ステップS36において、点着アーム88をサンプル収容部16に移動して希釈液用チップ25d を点着用ノズル91b に装着する。ステップS37においては、希釈液収容管16c に供給された希釈液の液面検出が行われ、液面位置および必要な希釈液が希釈液収容管16c に供給されているか否かを確認する。そして、ステップS38において点着アーム88を下降して希釈液収容管16c から希釈液用チップ25d に希釈液を吸引する。この際、圧力変化を監視して所定値と比較することによりチップ25d の詰まりを検出するようにしてもよい。

[0060]

次のステップS39においては、吸引した希釈液を希釈液用チップ25d から混合カップ16f に吐出する。そして、ステップS40において希釈液用チップ25d を混合カップ16f 内に挿入して吸引と吐出とを繰り返して攪拌を行う。攪拌を行った後、ステップS41において希釈した検体を検体用チップ25h に吸引し、ステップS42において希釈した検体を吸引した点着アーム88を点着部13に移動して、スライド11の点着孔11a に検体を点着する。この際、圧力変化を監視して所定値と比較することによりチップ25d の詰まりを検出するようにしてもよい。また、連続して処理する場合は、ステップS43においてスライド搬送およびバーコードの読取りを行ってステップS41およびステップS42の処理を行う。

[0061]

そして、ステップS45からステップS49において、図13のフローチャートのステップSステップS8からステップS12と同様に、測光、スライド廃却、結果出力およびチップ廃却を行って処理を終了する。

[0062]

次いで、検査項目がイオン活量の測定の場合について図17および図18に示すフローチャートを参照して説明する。なお、イオン活量の測定の場合は、図13のステップS3において搬送されるスライドは、イオン活量測定用の化学分析スライド11'である。まず、ステップS51において、図13のステップS4と同様に、点着アーム88をサンプル収容部16に移動して電解質検体用チップ25bを点着用ノズル91aに装着する。ステップS52においては、カップ1eに供給された検体(血漿)の液面検出が行われ、液面位置および必要な血漿がカップ1eに供給されているか否かを確認する。そして、ステップS53において点着アーム88を下降してカップ1eから電解質検体用チップ25bに検体を吸引する。この際、圧力変化を監視して所定値と比較することによりチップ25bの詰まりを検出するようにしてもよい

[0063]

次のステップS54においては、シリンジ手段19の電磁弁を切り換えて、点着用ノズル91b 側に圧力の流路を切り換える。そして、ステップS55において、点着アーム88をサンプル収容部16に移動して参照液用チップ25a を点着用ノズル91b に装着する。ステップS56においては、参照液カップ16e に供給された参照液の液面検出が行われ、液面位置および必要な参照液が参照液カップ16e に供給されているか否かを確認する。そして、ステップS57において点着アーム88を下降して参照液カップ16e から参照液用チップ25a に参照液を吸引する。この際、圧力変化を監視して所定値と比較することによりチップ25a の詰まりを検出するようにしてもよい。

[0064]

次いで、ステップS58において、シリンジ手段19の電磁弁により点着用ノズル91a 側に圧力の流路を切り換え、ステップS59において電解質検体用チップ25bに吸引した検体をスライド11'の液供給孔11cに点着する。さらに、ステップS60において、シリンジ手段19の電磁弁により点着用ノズル91b 側に圧力の流路を切り換え、ステップS61において参照液用チップ25a に吸引した参照液をスライド11'の液供給孔11d に点着する。

[0065]

そして、ステップS62において、検体および参照液が点着されたスライド11′がインキュベータ14の収納部55b に挿入される。インキュベータ14の収納部55b はイオン活量の測定のために、内部温度が30±1℃に設定されている。この際、スライド11′がインキュベータ14の収納部55b に確実に挿入されたか否かを検出してもよい。スライド11′がインキュベータ14に挿入されると、インキュベータ14の収納部55 を回転して、収納部55b に挿入されたスライド11′をアナライザ21と対向する位置に移動する。そして次のステップS63において、アナライザ21によるイオン活量の測定が行われる。測定終了後、ステップS64において、スライド11′をインキュベータ14に挿入する搬送手段15によって測定後の化学分析スライド11′をインキュベータ14に挿入する搬送手段15によって測定後の化学分析スライド11′をインキュベータ14に挿入する搬送手段15によって測定後の化学分析スライド11′をインキュベータ14に挿入する搬送手段15によって測定後の化学分析スライド11′をインキュベータ14の中心側に押し出して廃却する。そしてステップS65において測定結果を出力し、さらにステップS66において使用済みの参照液用チップ25a および電解質検体用チップ25b をチップ抜取り部20で点着用ノズル91a、91b から外して下方に落下廃却し、処理を終了する。

[0066]

このように、本実施形態では、試料液の呈色度合の測定時には、インキュベータ14内の温度を呈色度合の測定に適した温度に温調し、イオン活量の測定時には、インキュベータ14内の温度をイオン活量の測定に適した温度に温調するようにしたため、呈色度合の測定およびイオン活量の測定に応じてインキュベータ14内の温度を変化させることができ、これにより、同一の装置において呈色度合の測定およびイオン活量の測定を効率よく行うことができる。

[0067]

なお、上記実施形態におけるインキュベータ14の化学分析スライド11の収納部 55の設置数は任意である。また、血液濾過ユニット9も任意の位置に設けてもよい。

[0068]

また、上記実施形態においては、インキュベータ14内の呈色反応を測定する部分およびイオン活量を測定する部分とにおいて温度を異なるものとしているが、 化学分析スライドによっては同一の温度でも呈色反応およびイオン活量の双方を 測定可能なものが存在するため、インキュベータ14内の温度を一定に保持するようにしてもよい。

【図面の簡単な説明】

【図1】

本発明の一実施形態の生化学分析装置の要部機構の概略平面図

【図2】

血漿濾過ユニットの構成を示す図

【図3】

血漿濾過ユニットの構成を示す図

【図4】

血液の濾過状態を説明するための図

【図5】

搬送手段の部分の断面正面図

【図6】

インキュベータの部分の断面正面図

【図7】

アナライザの構成を示す図

【図8】

図7のI-I線断面図

【図9】

サンプル収容部の構成を示す図

【図10】

点着手段の部分の断面正面図

【図11】

図11の矢印A方向拡大図

【図12】

化学分析スライドの構成を示す図

【図13】

呈色度合の測定処理を示すフローチャート

【図14】

血液濾過ユニットにおける処理を示すフローチャート 【図15】

希釈動作を行う処理を示すフローチャート(その1)

【図16】

希釈動作を行う処理を示すフローチャート (その2)

【図17】

イオン活量測定処理を示すフローチャート (その1)

【図18】

イオン活量測定処理を示すフローチャート(その2)

【符号の説明】

- 9 血液濾過ユニット
- 10 生化学分析装置
- 11, 11' 化学分析スライド
- 13 点着部
- 14 インキュベータ
- 15 搬送手段
- 16 サンプル収容部
- 17 点着手段
- 21 アナライザ
- 25 ノズルチップ

【書類名】

図面

【図1】

[図2]

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【書類名】

要約書

【要約】

【課題】 血液等の試料液の成分を分析する生化学分析装置において、生化学物質の光学濃度とイオン活量の測定を効率よく行う。

【解決手段】 化学分析スライド11を恒温保持するインキュベータ14内に、試料液中の生化学物質の光学濃度を測定する測光ヘッド27と、試料液中のイオン活量を測定するアナライザ21を設ける。光学濃度測定部ではインキュベータ14内の化学分析スライド11が光学濃度の測定に適した温度に温調され、イオン活量の測定部ではインキュベータ14内の化学分析スライド11′がイオン活量の測定に適した温度に温調される。

【選択図】

図 1

特平10-014467

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【手数料の表示】

【納付金額】

0円

【特許出願人】

【識別番号】

000005201

【住所又は居所】

神奈川県南足柄市中沼210番地

【氏名又は名称】

富士写真フイルム株式会社

【代理人】

申請人

【識別番号】

100073184

【住所又は居所】

神奈川県横浜市港北区新横浜3-18-20 BE

NEX S-1 7階 柳田国際特許事務所

【氏名又は名称】

柳田 征史

【選任した代理人】

【識別番号】

100090468

【住所又は居所】

神奈川県横浜市港北区新横浜3-18-20 BE

NEX S-1 7階 柳田国際特許事務所

【氏名又は名称】

佐久間 剛

特平10-014467

出願人履歴情報

識別番号

[000005201]

1. 変更年月日 1990年 8月14日

[変更理由] 新規登録

住 所 神奈川県南足柄市中沼210番地

氏 名 富士写真フイルム株式会社