Вопрос 43. Поверхностные интегралы первого рода. Определение, свойства, вычисление. Геометрический и физический смысл.

Пусть имеется кусочно-гладкая поверхность τ и на ней задано скалярное поле f(x,y,z)

- 1) Разобьём поверхность на n частей. $\triangle S_i$ площадь этой части; λ_i диаметр этой части.
- 2) В каждой из частей выберем по точке M_i
- 3) Составим интегральную сумму

$$\sum_{i} f(M_i) * \triangle S_i$$

4) Берём предел интегральных сумм при условии $\lambda_i \to 0$ Предел этих интегральных сумм называется **поверхностным интегралом первого рода** при условии, что предел не зависит от разбиения и выбора точек. **Обозначение:**

$$\iint_{\mathcal{T}} f(x, y, z) \, dS$$

Свойства:

- 1) Геометрический смысл - $\iint_{\tau} dS = S_{\tau}$ - площадь поверхности интегрирования.
- 2) Линейность
- 3) Аддитивность
- 4) **Физический смысл** если f(x,y,z) плотность, то $\iint_{\tau} f(x,y,z) \, dS$ масса поверхности.

Вычисление поверхности интеграла

1) В явном виде
$$z=z(x,y)$$

$$\iint_{\tau} f(x,y,z) \, dS = \iint_{D} f(x,y,z(x,y)) * \sqrt{1+z_{x}'^{2}+z_{y}'^{2}} \, dx dy$$

2) Поверхность задана параметрически $\overrightarrow{r'}(M) = (x(u,v),y(u,v),z(u,v))$ $\iint_{\mathcal{T}} f(x,y,z) \, dS = \iint_{\mathcal{D}} f(x(u,v),y(u,v),z(u,v)) * |\overrightarrow{r_u} \times \overrightarrow{r_v}| \, du dv$, где \mathcal{D} - проекция точки на плоскость \mathcal{U} .