ECE2800J

Programming and Introductory Data Structures

Function Call Mechanism

Learning Objectives:

Understand function call mechanism

Last time

- Recursion
- Function Pointers

Recursion

- Recursion is a nice way to solve problems
 - "Recursive" just means "refers to itself".
 - There is (at least) one "trivial" base or "stopping" case.
 - All other cases can be solved by first solving one smaller case, and then combining the solution with a simple step.
- Example: calculate factorial *n*!

```
int factorial (int n) {  n! = \begin{cases} 1 & n = 0 \\ n \cdot (n-1)! & n > 0 \end{cases}  // REQUIRES: n >= 0 // EFFECTS: computes n! if (n == 0) return 1; // base case else return n*factorial(n-1); // recursive step }
```

Function Pointers

The basic format

• How do you define a **variable** that points to a function that takes two integers, and returns an integer?

Here's how:int (*foo)(int, int);

• You read this from "inside out". In other words:

Outline

- Recursion
- Function Pointers
- Function Call Mechanism

How a function call really works

- When we call a function, the program does following steps:
- 1. Evaluate the actual arguments to the function (<u>order is not guaranteed</u>). Example: y = add(4-1, 5);
- 2. Create an "activation record" (sometimes called a "stack frame") to hold the function's formal parameters and local variables.
 - When call function int add(int a, int b), system creates an activation record:

 a, b (formal), result (local)

 a=3
- 3. Copy the actuals' values to the formals' storage space.
- 4. Evaluate the function in its local scope.
- 5. Replace the function call with the result. y=8
- 6. Destroy the activation record.

How a function call really works

- It is typical to have multiple function calls. How the activation records are maintained?
 - Answer: stored as a **stack**.
- Stack: a set of objects which is modified as **last in first out**. Example: a stack of plates in a cafeteria
 - Each time you clean a plate, you add it to the top of the stack
 - Each time a new plate is needed, the one at the top is taken **first**

How a function call really works

- When a function f() is called, its **activation record** is added to the "top" of the stack.
- When the function f() returns, its **activation record** is removed from the "top" of the stack.
- In the meantime, f() may have called other functions.
 - These functions create corresponding activation records.
 - These functions must return (and destroy their corresponding activation records) before f() can return.

Example

- When a function is called, its **activation record** is added to the "top" of the stack.
- When that function returns, its **activation record** is removed from the "top" of the stack.

• Note: "top" is placed in quotes, because in reality, stack of activation records grows **down** rather than **up**.

```
int plus one(int x) {
 return (x+1);
int plus two(int x) {
 return (1 + plus one(x));
int main() {
 int result = 0;
 result = plus two(0);
 cout << result;</pre>
 return 0;
```

Example

```
int plus one(int x) {
 return (x+1);
int plus two(int x) {
 return (1 + plus one(x));
int main() {
 int result = 0;
 result = plus two(0);
 cout << result;</pre>
 return 0;
```

Main starts out with an activation record with room only for the local "result":

main:

result: 0

```
int plus one(int x) {
                                         Then, main calls plus_two,
  return (x+1);
                                         passing the literal value "0":
                                         main:
int plus two(int x) {
                                            result: 0
  return (1 + plus_one(x));
                                         plus_two:
int main() {
                                            \mathbf{x} \colon \mathbf{0}
  int result = 0;
  result = plus two(0);
  cout << result;</pre>
  return 0;
```

```
int plus one(int x) {
                                             Which in turn calls plus_one:
  return (x+1);
                                            main:
int plus two(int x) {
                                               result: 0
  return (1 + plus_one(x));
                                            plus_two:
int main() {
                                               \mathbf{x} \colon \mathbf{0}
  int result = 0;
                                            plus_one:
  result = plus two(0);
                                               \mathbf{x} \colon \mathbf{0}
  cout << result;</pre>
  return 0;
```

```
int plus one(int x) {
                                      plus_one adds one to x,
  return (x+1);
                                      returning the value 1:
                                      main:
int plus two(int x) {
                                        result: 0
  return (1 + plus_one(x));
                                      plus_two:
int main() {
                                        x: 0
  int result = 0;
                                      plus_one:
  result = plus two(0);
                                        x: 0
  cout << result;</pre>
  return 0;
```

```
int plus one(int x) {
                                      plus_one's activation record
  return (x+1);
                                      is destroyed:
                                      main:
int plus two(int x) {
                                        result: 0
  return (1 + plus_one(x));
                                      plus_two:
int main() {
                                        x: 0
  int result = 0;
                                      plus_one:
  result = plus two(0);
                                        x: 0
  cout << result;</pre>
  return 0;
```

```
int plus one(int x) {
                                      plus_two adds one to the result,
  return (x+1);
                                      and returns the value 2:
                                      main:
int plus two(int x) {
                                        result: 2
  return (1 + plus one(x));
                                      plus_two:
int main() {
                                        x: 0
  int result = 0;
  result = plus two(0);
  cout << result;</pre>
  return 0;
```

```
int plus one(int x) {
                                     plus_two's activation record
  return (x+1);
                                     is destroyed:
                                     main:
int plus two(int x) {
                                       result: 2
  return (1 + plus one(x));
                                     plus_two:
int main() {
                                       x: 0
  int result = 0;
  result = plus two(0);
  cout << result;</pre>
  return 0;
```

Example

```
int plus one(int x) {
 return (x+1);
int plus two(int x) {
 return (1 + plus one(x));
int main() {
 int result = 0;
 result = plus two(0);
 cout << result;</pre>
 return 0;
```

main then prints the result:

2

main:

result: 2

Example: Some things to note

- Even though plus_one and plus_two both have formal parameters called "x", there is no problem.
 - These two x's are at different locations in memory.
 - plus one cannot see plus two's x.
 - Instead, the **value** of plus_two's x is passed to plus_one, and stored in plus_one's x.

Example: Using Pointers

```
void add one(int *x) {
  *x = *x + 1;
int main() {
  int foo = 2;
  int *bar = &foo;
  add one (bar);
  return 0;
```

Activation record of main:


```
Example: Using Pointers
void add one(int *x) {
  *x = *x + 1;
int main() {
  int foo = 2;
  int *bar = &foo;
  add one(bar);
  return 0;
```

Main calls add_one, creating an activation record for add_one

main:

add_one:


```
Example: Using Pointers
void add one(int *x) {
  *x = *x + 1;
int main() {
  int foo = 2;
  int *bar = &foo;
  add one(bar);
  return 0;
```

Copy the value of bar to add_one's formal parameter x.

main:

foo: 2
bar: add_one:

x:

Both x and bar point to foo.

Example: Using Pointers

```
void add one(int *x) {
  *x = *x + 1;
int main() {
  int foo = 2;
  int *bar = &foo;
  add one (bar);
  return 0;
```

add_one adds 1 to the object pointed to by x.

main:

Example: Using Pointers

```
void add one(int *x) {
  *x = *x + 1;
int main() {
  int foo = 2;
  int *bar = &foo;
  add one (bar);
  return 0;
```

add_one's activation record is destroyed.

main:

Example: Recursion

main x:

• Suppose we call our function as follows:

```
void main()
1. {
2. int x;
3. x = factorial(3);
4. }
```

```
int factorial (int n) {
1. if (n == 0) return 1;
2. else return n*factorial(n-1);
}
```

Example: Recursion

- main() calls factorial with an argument 3.
- We evaluate the actual argument, create an activation record, and copy the actual value to the formal.

```
main
x:

factorial
n: 3
RA: main line #3
```

```
RA = "Return Address"
```

```
int factorial (int n) {
1. if (n == 0) return 1;
2. else return n*factorial(n-1);
}
```

Example: Recursion

- Now we evaluate the body of factorial:
 - n is not zero, so we evaluate the **else** arm of the if statement:

return 3 * factorial(2)

 So, factorial must call factorial. We will create a **new** activation record for a **new** instance of factorial.

```
main
x:

factorial
n: 3
RA: main line #3

factorial
n: 2
RA: factorial line #2
```

```
int factorial (int n) {
1. if (n == 0) return 1;
2. else return n*factorial(n-1);
}
```

Example: Recursion

 Again, n is not zero, so we evaluate the else arm again:

```
return 2 * factorial(1)
```

 This creates a new activation record for factorial

```
int factorial (int n) {
1. if (n == 0) return 1;
2. else return n*factorial(n-1);
}
```

```
main
factorial
 n: 3
 RA: main line #3
factorial
 RA: factorial line #2
factorial
 RA: factorial line #2
```

Example: Recursion

• And again, we evaluate the **else** arm:

return 1*factorial(0)

 This creates a new activation record for factorial

```
int factorial (int n) {
1. if (n == 0) return 1;
2. else return n*factorial(n-1);
}
```

```
main
factorial
 n: 3
 RA: main line #3
factorial
 RA: factorial line #2
factorial
 RA: factorial line #2
factorial
 n: 0
```

RA: factorial line #2

Example: Recursion

- In evaluating factorial(0), n is zero, so we evaluate the **if** arm rather than **else** arm.
- Return the value "1"
- Popping the most recent activation record off the stack.

```
int factorial (int n) {
1. if (n == 0) return 1;
2. else return n*factorial(n-1);
}
```

```
main
factorial
 n: 3
 RA: main line #3
factorial
 RA: factorial line #2
factorial
 RA: factorial line #2
factorial
 n: 0
     factorial line
```

Example: Recursion

- In factorial(1), we called factorial(0) as follows: return 1 * factorial(0)
- Now we know the value of factorial(0), so we complete factorial(1):

```
return 1 * 1 => return 1;
from factorial(1)
```

 This pops another activation record off the stack

```
main
factorial
 n: 3
 RA: main line #3
factorial
 n: 2
 RA: factorial line #2
factorial
    factorial line #2
```

Example: Recursion

from factorial(2)

• Now it allows us to complete evaluating factorial(2):

```
return 2 * factorial(1) =>
return 2 * 1 =>
return 2
```

• Now pop off another activation record.

```
main
x:

factorial
n: 3
RA: main line #3

factorial
n: 2
RA: factorial line #2
```

Example: Recursion

• Now we can complete evaluating factorial(3):

```
return 3 * factorial(2) =>
return 3 * 2 =>
return 6
```

• That is the correct answer.

Don't forget that last pop!

Which Statements Are True?

Select all the correct answers.

- A. The number of recursive calls of factorial can be as high as we want.
- **B.** The number of calls of factorial could be just 1.
- C. We can change the function factorial so that the number of calls of factorial could be **reduced by** 1 in general case.
- **D.** None of the above.

```
int factorial (int n) {
  if (n == 0) return 1;
  else return n*factorial(n-1);
}
```


Exercise: Fibonacci

- The Fibonacci Sequence is the series of numbers:
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
- The next number is found by adding up the two numbers before it
- Write a recursive function to calculate the n-th Fibonacci number.
- int fib(int n);