杭州电子科技大学学生考试卷(A) 卷

考试课程	数据结构		考试日期	2015年6月	月17日	成 绩	
课程号	A101102D	教师号		任课教师	i姓名	僧德	文,彭伟民
考生姓名		学号(8 位)		年级		专 亚	

特别提醒:答案写在答题纸中,并请尽量写在一张纸中。

	判断题:	(每小颗2分,	# 20 公)
—.	开11内T分火:		***************************************

1.	数据元素是数据的最小单位。	()
2.	顺序存储结构的主要缺点是不利于插入或删除操作。	()
3.	任何一个递归过程都可以转换成非递归过程。	()
4.	将两个采用定长顺序存储表示的串联接成一个新串时一定会产生"截断"现象。	()
5.	从逻辑结构上看,n维数组的每个元素均属于n个向量。	()
6.	给定一棵树,可以找到唯一的一棵二叉树与之对应。	()
7.	有 e 条边的无向图, 在邻接表中有 e 个结点。	()
8.	散列函数越复杂越好,因为这样随机性好,冲突概率小。	()
9.	在初始数据表已经有序时,快速排序算法的时间复杂度为 $O(nlog_2n)$ 。	()
10.	直接选择排序算法在最好情况下的时间复杂度为O(N)。	()

二.选择题: (每小题 2 分,共 20 分)

- 1. 以下数据结构中,哪一个是线性结构()?
- A. 广义表 B. 二叉树 C. 稀疏矩阵 D. 串
- 2. 链表不具有的特点是()。
- A. 插入、删除不需要移动元素 B. 可随机访问任一元素
- C. 不必事先估计存储空间 D. 所需空间与线性长度成正比
- 3. 对于栈操作数据的原则是()。
- A. 先进先出 B. 后进先出 C. 后进后出 D. 不分顺序
- 4. 设有两个串 p 和 q, 其中 q 是 p 的子串, 求 q 在 p 中首次出现的位置的算法称为 ()。
- A. 求子串 B. 联接 C. 匹配 D. 求串长
- 5. 假设以行序为主序存储二维数组 A=array[1..100, 1..100],设每个数据元素占 2 个存储单元,基地址为 10,则 LOC[5,5]=()。
- A. 808 B. 818 C. 1010 D. 1020
- 6. 设树 T 的度为 4, 其中度为 1, 2, 3 和 4 的结点个数分别为 4, 2, 1, 1, 则 T 中的叶子数为 ()。
- A. 5 B. 6 C. 7 D. 8
- 7. 要连通具有 n 个顶点的有向图, 至少需要 () 条弧。
- A. n-l B. n C. n+l D. 2n
- 8. 对 N 个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为 ()。
- A. (N+1)/2 B. N/2 C. N D. [(1+N)*N]/2
- 9. 下列排序方法中,哪一个是稳定的排序方法? ()
- A. 直接选择排序 B. 二分法插入排序 C. 希尔排序 D. 快速排序
- 10. 在下列排序算法中,时间复杂度与初始排序无关的为()。

A. 直接插入排序 B. 气泡排序 C. 快速排序 D. 直接选择排序

三. 填空题: (每空 2 分, 共 20 分)

- 1. 下面程序段中带下划线的语句的执行次数的数量级是()。 i=1; while (i < n) i=i*2;
- 2. 在一个长度为 n 的顺序表中第 i 个元素(1<=i<=n)之前插入一个元素时,需向后移动(个元素。
- 3. 设循环队列用数组 A[1..M]表示,队首、队尾指针分别是 FRONT 和 TAIL,判定队满的条件为
- 4. 组成串的数据元素只能是()。
- 5. 己知广义表 LS=(a, (b, c, d), e),运用 head 和 tail 函数取出 LS 中原子 b 的运算是
- 6. 已知二叉树前序为 ABDEGCF,中序为 DBGEACF,则后序是()。
- 7. 具有 10 个顶点的无向图, 边的总数最多为()。
- 8. 高度为 5 (除叶子层之外)的三阶 B-树至少有 () 个结点。
- 9. 若不考虑基数排序,则在排序过程中,主要进行的基本操作是关键字的()和记录的移动。
- 10. 下面的关键码序列中哪一个是堆。()

①16, 72, 31, 23, 94, 53 ②94, 53, 31, 72, 16, 23 ③16, 53, 23, 94, 31, 72 ④16, 31, 23, 94, 53, 72 ⑤94, 31, 53, 23, 16, 72

四. 结构问答题: (每小题 6 分, 共 30 分)

- 1. 画出图 1 所示的树对应的二叉树。
- 2. 假设用于通讯的电文仅由 8 个字母组成,字母在电文中出现的频率分别为 0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.10。 试为这 8 个字母设计哈夫曼编码。
- 3. 请对图 2 的无向带权图,写出它的邻接矩阵,并按普里姆算法求其最小生成树。
- 4. 试列出图 3 中全部可能的拓扑有序序列。
- 5. 关键码序列(Q, H, C, Y, Q, A, M, S, R, D, F, X),选择第一个元素进行划分,写出其快速排序第一遍的排序过程。

五. 算法设计: (10分)

编写一函数,对栈 S 中的元素进行逆置(提示:借助数组 A[255])。

	,	,				1	1	
生姓名	学号(2	8 位)		年级		专业		
— ,	判断题(每题2分,	共 20	分)					
1.	2. 3. 4.		5.	6.	7.	8.	9.	10.
				0.	7.	0.	<u> </u>	10.
	选择题(每题2分,	共 20	分) ———					
1.	2. 3. 4.		5.	6.	7.	8.	9.	10.
三、	填空题(每空2分,	共 20	分)					
1.	2.		3.		4.		5.	
6.	7.		8.		9.		10.	
四、	问答题(每题6分,	共 30	分)					
1.								
1.								
2.								
3.								