Revision of Dataframe

Dataframe from the Previous model

```
import pandas as pd
In [1]:
        import numpy as np
        from sklearn.preprocessing import LabelEncoder
         df = pd.read csv('df.csv')
         print("df.shape",df.shape)
         item_count = df["target"].value_counts()
         print("Number of each species in dataframe:\n",item_count)
        df.shape (3607, 1505)
        Number of each species in dataframe:
         A luchuensis
                                    318
                                   235
        A trinidadensis
        A indologenus
                                   232
        A welwitschiae
                                   223
        A_sclerotiicarbonarius
                                   220
        A_homomorphus
                                   192
        A ibericus
                                   160
        A japonicus
                                   141
        A_saccharolyticus
                                   140
        A_niger
                                   140
        A vadensis
                                   137
        A costaricaensis
                                   130
        A heteromorphus
                                   130
        A carbonarius
                                   120
        A brasiliensis
                                   120
        A aculeatinus
                                   120
        A sclerotioniger
                                   119
        A_ellipticus
                                   110
        A_eucalypticola
                                   110
        A aculeatus
                                   100
        A floridensis
                                    90
        A_tubingensis
                                    90
        A neoniger
                                    80
        A_brunneoviolaceus
                                    80
        A uvarum
                                    70
        Name: target, dtype: int64
```

Create New Dataframe

```
In [2]:

"""

Creating individual dataframe of 'A_costaricaensis' , 'A_neoniger' , 'A_tubingensis',

"""

df_class6 = df[df['target'] == 'A_costaricaensis']

df_class16 = df[df['target'] == 'A_neoniger']

df_class22 = df[df['target'] == 'A_tubingensis']

df_class17 = df[df['target'] == 'A_niger']

df_class25 = df[df['target'] == 'A_welwitschiae']
```

```
0.00
Select 80 data randomly from each dataframe of 'A_costaricaensis' , 'A_neoniger' and
Select 140 data randomly from each dataframe of 'A_niger' and 'A_welwitschiae'
(the number 80,140 based on the minimum of data in each group)
df_class6_rd = df_class6.sample(n = 80)
df class16 rd = df class16.sample(n = 80)
df_{class22_rd} = df_{class22.sample(n = 80)}
df_class17_rd = df_class17.sample(n = 140)
df class25 rd = df class25.sample(n = 140)
0.00
Selecting all data from the dataframe in which 'target' is not
'A_costaricaensis','A_neoniger','A_tubingensis', 'A_niger' and 'A_welwitschiae'
target_cut = ['A_costaricaensis','A_neoniger','A_tubingensis','A_niger','A_welwitschia
df_cut = df.loc[~df['target'].isin(target_cut)]
print("df after cut 5 species out.shape",df_cut.shape)
0.00
Concatenate dataframe (samples randomly) of
'A_costaricaensis','A_neoniger','A_tubingensis','A_niger','A_welwitschiae'
list_5 = [df_class6_rd,df_class16_rd,df_class22_rd,df_class17_rd,df_class25_rd]
df_com5 = pd.concat(list_5, axis=0, ignore_index=True)
print("\nShape of combined 5 species dataframe :",df_com5.shape)
item_counts_5 = df_com5["target"].value_counts()
print("Number of each species :\n",item_counts_5)
0.00
Renamed A_costaricaensis and A_neoniger in combined dataframe as A_tubingensis
and renamed A_welwitschiae as A_niger
since A costaricaensis and A neoniger are synnonyms of A tubingensis
and A_welwitschiae is a synnonyms of A_niger
(Bian et al. 2022)
df_com5_rename = df_com5.replace({'A_costaricaensis':'A_tubingensis',
                                   'A_neoniger':'A_tubingensis',
                                   'A_welwitschiae':'A_niger'})
print("\nShape of renamed dataframe :",df_com5_rename.shape)
print
item counts = df com5 rename["target"].value counts()
print("Number of each species :\n",item_counts)
Combine dataframe of cut dataframe and renamed dataframe
list_2 = [df_cut,df_com5_rename]
df_all = pd.concat(list_2, axis=0, ignore_index=True)
df_all.to_csv('dataframe.csv', index=False) # Save to csv file
print("\nSave file as: dataframe.csv")
print("Shape of dataframe :",df_all.shape)
print("Number of each species in dataframe:\n",df_all["target"].value_counts())
```

```
df after cut 5 species out.shape (2944, 1505)
Shape of combined 5 species dataframe: (520, 1505)
Number of each species :
A niger
                     140
A_welwitschiae
                    140
A costaricaensis
                     80
A neoniger
                     80
A_tubingensis
                     80
Name: target, dtype: int64
Shape of renamed dataframe: (520, 1505)
Number of each species :
A_niger
A_tubingensis
                 240
Name: target, dtype: int64
Save file as: dataframe.csv
Shape of dataframe: (3464, 1505)
Number of each species in dataframe:
A luchuensis
                           318
                          280
A_niger
A tubingensis
                          240
A_trinidadensis
                          235
A_indologenus
                          232
A sclerotiicarbonarius
                          220
A homomorphus
                          192
A ibericus
                          160
A_japonicus
                          141
A_saccharolyticus
                          140
A vadensis
                          137
A heteromorphus
                          130
A aculeatinus
                          120
A_brasiliensis
                          120
A carbonarius
                          120
A sclerotioniger
                          119
A_ellipticus
                          110
A_eucalypticola
                          110
A aculeatus
                          100
A floridensis
                           90
A brunneoviolaceus
                           80
A uvarum
                           70
Name: target, dtype: int64
```

Count no. of member in each set & Print class mapping encoder

```
In [3]: cols =[x for x in df.columns if x not in ['target']]
    rowused = []
    for i in range (len(df)):
        if i % 10 == 0:
            rowused.append('test')

        elif i % 10 == 1:
            rowused.append('validate')

        else:
```

Count test_set:	
A_luchuensis	32
A_trinidadensis	24
A_indologenus	23
A_sclerotiicarbonarius	22
A welwitschiae	22
A homomorphus	20
A ibericus	16
A saccharolyticus	14
A_japonicus	14
A_niger	14
A_costaricaensis	13
A_vadensis	13
A_heteromorphus	13
A_carbonarius	12
A_brasiliensis	12
A_sclerotioniger	12
A_aculeatinus	12
A_ellipticus	11
 A_eucalypticola	11
A_aculeatus	10
A_floridensis	9
A_tubingensis	9
A_cubingensis A_neoniger	8
A_brunneoviolaceus	8
A_uvarum	7
Name: target, dtype: int6	4
Count validate_set:	
A_luchuensis	32
A_trinidadensis	24
A_indologenus	23
A_sclerotiicarbonarius	22
A_welwitschiae	22
A_homomorphus	19
A_ibericus	16
_ A_saccharolyticus	14
A vadensis	14
_ A_japonicus	14
A_niger	14
A costaricaensis	13
A_heteromorphus	13
A carbonarius	12
_	
A_brasiliensis	12
A_sclerotioniger	12
A_aculeatinus	12
A_ellipticus	11
A_eucalypticola	11
A_aculeatus	10
A_floridensis	9
A_tubingensis	9
A_neoniger	8
A_brunneoviolaceus	8
A_uvarum	7
Name: target, dtype: int6	.a
car gee, acype. Inco	• т
Count train_set:	
A_luchuensis	254
A_fucindensis A_trinidadensis	
	187
A_indologenus	186

file:///C:/Users/005297/Downloads/1_New DataFrame_JupyterNotebook (1).html

A_welwitschiae	179
A_sclerotiicarbonariu	ıs 176
A_homomorphus	153
A_ibericus	128
A_japonicus	113
A_saccharolyticus	112
A_niger	112
A_vadensis	110
A_costaricaensis	104
A_heteromorphus	104
A_carbonarius	96
A_brasiliensis	96
A_aculeatinus	96
A_sclerotioniger	95
A_ellipticus	88
A_eucalypticola	88
A_aculeatus	80
A_floridensis	72
A_tubingensis	72
A_neoniger	64
A_brunneoviolaceus	64
A_uvarum	56
Name: target, dtype:	int64

Mapping of Label Encoded Classes:

{'A_aculeatinus': 0, 'A_aculeatus': 1, 'A_brasiliensis': 2, 'A_brunneoviolaceus': 3, 'A_carbonarius': 4, 'A_costaricaensis': 5, 'A_ellipticus': 6, 'A_eucalypticola': 7, 'A_floridensis': 8, 'A_heteromorphus': 9, 'A_homomorphus': 10, 'A_ibericus': 11, 'A_i ndologenus': 12, 'A_japonicus': 13, 'A_luchuensis': 14, 'A_neoniger': 15, 'A_niger': 16, 'A_saccharolyticus': 17, 'A_sclerotiicarbonarius': 18, 'A_sclerotioniger': 19, 'A_trinidadensis': 20, 'A_tubingensis': 21, 'A_uvarum': 22, 'A_vadensis': 23, 'A_welwit schiae': 24}