

第四章电动机

第4章 电动机

- 4.4 三相异步电动机转矩与机械特性
- 4.5 三相异步电动机的起动
- 4.6 三相异步电动机的调速
- 4.8 三相异步电动机的铭牌数据

1. 定子

铁心:由内周有槽

的硅钢片叠成。

机座:铸钢或铸铁

端盖: 固定、支撑、防护

2. 转子

铁心: 由外周有槽的硅钢片叠成。

(1) 鼠笼式转子

铁心槽内放铜条,端 部用短路环形成一体。 或铸铝形成转子绕组。

(2) 绕线式转子

同定子绕组一样,也分为 三相,并且接成星形。另一 端分别接滑环,可外接电阻

鼠笼式转子

铁心槽内放铜条,端 部用短路环形成一体。 或铸铝形成转子绕组。

绕线式转子

同定子绕组一样,也分为 三相,另一端分别接滑环, 可外接电阻。

鼠笼式电动机与绕线式电动机的的比较:

鼠笼式:

结构简单、价格低廉、工作可靠;不能人为改变电动机的机械特性。

绕线式:

结构复杂、价格较贵、维护工作量大; 转子外加电阻可人为改变电动机的机械特性。

机械转速

三相异步电动机的同步转速 (旋转磁场转速)

$$n_0 = \frac{60 f_1}{p} \quad (\mathbf{r}/\mathbf{min})$$

旋转磁场转速 n_0 与电源频率 f_1 和极对数p有关。

p	1	2	3	4	5	6
$n_0/(r/min)$	3000	1500	1000	750	600	500

电动机工作原理

$$n_0 = \frac{60 f_1}{p} (r/mir)$$

同步转速 n_0

起动时: n=0, s=1

额定运行时: $S = 0.01 \sim 0.09$

机械转速 //

转差率:
$$S = \frac{n_0 - n}{n_0}$$

例: 一台三相异步电动机,其额定转速 $n_N = 975$ r/min,电源频率 $f_1 = 50$ Hz。试求电动机的极对数和额定负载下的转差率。

解: 根据转子转速与旋转磁场同步转速关系可知:

 $n_0 = 1000 \text{ r/min}$,即 p = 3

$$S_N = \frac{n_0 - n_N}{n_0} \times 100\% = \frac{1000 - 975}{1000} \times 100\% = 2.5\%$$

转子转速亦可由转差率求得 $n = (1 - S)n_0$

三相异步电动机的电路分析

电动机每相等效电路

定子电路

- 定子绕组电阻 R_1
- •漏感 $L_{\sigma l}$
- 定子主感生电势 e_1

转子电路

- 转子绕组电阻 R_2
 - •漏感 L_{σ^2}
 - •转子主感生电势 e_2

电磁关系与变压器类似

定子相当于变压器一次 转子相当于变压器二次

但通常情况下

定子频率ƒ1≠转子频率ƒ2

转矩的分类:

电磁转矩T

· 载流导体 (转子) 在磁场中形成的 旋转力矩

损耗转矩T₀

主要是机械损耗转矩

负载转矩T2

• 转轴上的输出转 矩

空载时: $T = T_0$

有载时: $T = T_0 + T_2$

注: 若 $T_2 >> T_0$, 则 $T \approx T_2$

4.4.1 转矩公式

电磁转矩T

· 载流导体 (转子) 在磁场中形成的 旋转力矩

$$T = K_T \Phi I_2 cos \varphi_2$$

常数 $(不同于<math>K_T)$

$$T = \mathbf{K} \frac{\mathbf{s} \mathbf{R}_2}{\mathbf{R}_2^2 + (\mathbf{s} \mathbf{X}_{20})^2} \cdot \mathbf{U}_1^2$$

T的大小与三个参数成正比

$$\Phi = \frac{U_1}{4.44 f_1 N_1}$$

$$I_2 = \frac{SE_{20}}{\sqrt{R_2^2 + (SX_{20})^2}}$$

$$\cos \varphi_2 = \frac{R_2}{\sqrt{R_2^2 + (SX_{20})^2}}$$

4.4.1 转矩公式

电磁转矩T

· 载流导体 (转子) 在磁场中形成的 旋转力矩

$$T = K \frac{\mathbf{S}R_2}{\mathbf{R}_2^2 + (\mathbf{S}X_{20})^2} \cdot U_1^2$$

- T 与定子每相绕组电压 U_1^2 成正比。 $U_1 \downarrow \to T \downarrow \downarrow$
- 转子电阻 R_2 的大小对 T 有影响。可通过改变 R_2 的方式改变转距。

(仅限绕线式异步电动机)

• 当 U_1 、 R_2 一定时,T是s的函数。

4.4.2 机械特性曲线

$$T = K \frac{\mathbf{S}R_2}{\mathbf{R}_2^2 + (\mathbf{S}X_{20})^2} \cdot U_1^2$$

- T 与定子每相绕组电压 U_1^2 成正比。 $U_1 \downarrow \to T \downarrow \downarrow$
- 转子电阻 R_2 的大小对 T 有影响。可通过改变 R_2 的方式改变转距。

(仅限绕线式异步电动机)

• 当 U_1 、 R_2 一定时, $T \in S$ 的函数。

$$T = K \frac{\mathbf{S}R_2}{\mathbf{R}_2^2 + (\mathbf{S}X_{20})^2} \cdot U_1^2$$

T_{st}: 启动转矩

$$S=1$$
时,

$$T_{\text{st}} = K \frac{R_2 U_1^2}{R_2^2 + X_{20}^2}$$

T_{max}: 最大转矩

$$S=S_{\mathrm{m}}=rac{R_{\mathrm{2}}}{X_{\mathrm{20}}}$$
时,

$$T_{\text{max}} = K \frac{U_1^2}{2X_{20}}$$

4.4.2 机械特性曲线

 T_N 在哪儿?

$T_{\rm N}$:额定转矩

在额定 U_N 下,以额定转速 n_N 运行、输出额定功率 P_{2N} 时,电动机转轴上输出的转矩。

4.4.2 机械特性曲线

转子转速 n↑ 过程中: 转差率 s↓,转矩 T 的变化则分为两个阶段。

第一阶段 • 转速**n**↑, 转矩**T**↑

第二阶段 • 转速**n**↑, 转矩**T**↓

电动机通常工作在②区,在这一区域,转速 n 与转矩 T 变化方向相反,有利于保持电动机工作稳定。

例如:

当转子轴端阻力 \uparrow 时,会导致**转速** \downarrow ,即**转差率 s** \uparrow ,根据转矩曲线,此时电磁转矩 T 会自动上升,从而**在较低的转速处**达成新的平衡。

4.4.2 机械特性曲线

 $T_{
m N}$:额定转矩

T_{max}: 最大转矩

T_{st}: 启动转矩

在额定 U_N 下,以额定转速 n_N 运行、输出额定功率 P_{2N} 时,电动机转轴上输出的转矩。

转子旋转 角速度

过载系数λ

 $(1.8 \sim 2.2)$

启动系数 $K_{\rm st}$

 $(1.0 \sim 2.2)$

$$T_{2N} = \frac{P_{2N}}{\omega} = \frac{P_{2N}}{2\pi f} = \frac{P_{2N}}{2\pi \frac{n_N}{60}}$$

$$T_{2N} = 9.55 \frac{P_{2N}}{n_N} \stackrel{\text{(单位: w)}}{\text{(单位: r/min)}}$$

$$=9550 \frac{P_{2N}}{n_N} \stackrel{\text{(单位: kw)}}{\text{(单位: r/min)}}$$

$$\lambda = \frac{T_{\text{max}}}{T_{\text{N}}}$$

$$K_{\rm st} = \frac{T_{\rm st}}{T_{\rm N}}$$

 $T_{\rm N}$:额定转矩

$$T_{2N} = 9550 \frac{P_{2N}}{n_N}$$

 T_{\max} : 最大转矩 $T_{\max} = \lambda T_{2N}$

$$T_{\max} = \lambda T_{2N}$$

T_{st}: 启动转矩

$$T_{st} = K_{st}T_{2N}$$

三相异步电动机

功率 45 kW 转速 1480r/min

 T_{max}/T_{N} 2.2 T_{st}/T_{N} 1.9

$$T_{2N} = 9550 \frac{P_{2N}}{n_N}$$

= $9550 \frac{45}{1480} = 290.4 \ N \cdot m$

$$T_{\text{max}} = 2.2 * T_{2N} = 638.9 \ N \cdot m$$

$$T_{st} = 1.9 * T_{2N} = 551.8 \ N \cdot m$$

机械特性曲线

(1) U_1 对机械特性的影响

(1) U_1 对机械特性的影响

$$T_{max} = K \frac{U_1^2}{2X_{20}}$$

$$E: s_m = \frac{R_2}{X_{20}}$$

$$T_{st} = K \frac{R_2 U_1^2}{R_2^2 + X_{20}^2}$$

$$T_{st} = K \frac{T_{max}}{T_{st}} \downarrow \downarrow$$

结论:

①
$$\left. egin{array}{c} T_{max} \\ T_{st} \end{array} \right\} \propto U_{I}^{2} \; ;$$
② S_{m} 与 U_{1} 无关

(2) R_2 变化对机械特性的影响

(2) R2变化对机械特性的影响

$$T_{max} = K \frac{U_1^2}{2X_{20}}$$

$$E: s_m = \frac{R_2}{X_{20}}$$

$$T_{max}$$

$$T_{st} = K \frac{R_2 U_1^2}{R_2^2 + X_{20}^2}$$

$$S_m$$

结论: ① R_2 变化时: S_m 变化, T_{max} 不变

② 当 R₂适当增加时: T_{st}↑

(2) R2变化对机械特性的影响

$$T_{max} = K \frac{U_1^2}{2X_{20}}$$

$$E: s_m = \frac{R_2}{X_{20}}$$

$$T_{st} = K \frac{R_2 U_1^2}{R_2^2 + X_{20}^2}$$

结论: ① R_2 变化时: S_m 变化, T_{max} 不变

② 当 R₂适当增加时: T_{st}↑

例: 一台Y225M-4型的三相异步电动机,定子绕组Δ型联结,其额定数据为:

 P_{2N} =45kW, n_N =1480r/min, U_N =380V, η_N =92.3%, $\cos \varphi_N$ =0.88, I_{st}/I_N =7.0,

$$T_{\rm st} / T_{\rm N} = 1.9$$
, $T_{\rm max} / T_{\rm N} = 2.2$

- 求: 1) 额定电流 I_N 2) 额定转差率 s_N

- 效率: $\eta_{\rm N} = P_{\rm 2N} / P_{\rm 1N}$
- 3) 额定转矩 T_N 最大转矩 T_{max} 和起动转矩 T_{st} 。
 - 解: 1) 求额定电流 🖊

输入电功率: $P_{1N} = \sqrt{3}I_N U_N \cos \varphi_N$

得:
$$I_{N} = \frac{P_{2N} \times 10^{3}}{\sqrt{3}U_{N} \cos \varphi_{N} \eta_{N}}$$

$$= \frac{45 \times 10^{3}}{\sqrt{3} \times 380 \times 0.88 \times 0.923} = 84.2 \text{ A}$$

例: 一台Y225M-4型的三相异步电动机,定子绕组 Δ 型联结,其额定数据为:

 P_{2N} =45kW, n_{N} =1480r/min, U_{N} =380V, η_{N} =92.3%, $\cos \varphi_{N}$ =0.88, I_{st}/I_{N} =7.0, T_{st}/T_{N} =1.9, T_{max}/T_{N} =2.2

- 求: 1) 额定电流 I_N 2) 额定转差率 s_N
 - 3) 额定转矩 T_{N} 最大转矩 T_{max} 和起动转矩 T_{st} 。

求额定转差率SN

由 $n_{
m N}$ =1480r/min,可知p=2 (四极电动机) $n_{
m o}=1500$ r/min

$$s_N = \frac{n_0 - n_N}{n_0} = \frac{1500 - 1480}{1500} = 0.013$$

例: 一台Y225M-4型的三相异步电动机,定子绕组Δ型联结,其额定数据为:

 P_{2N} =45kW, n_{N} =1480r/min, U_{N} =380V, η_{N} =92.3%, $\cos \varphi_{N}$ =0.88, I_{st}/I_{N} =7.0, T_{st}/T_{N} =1.9, T_{max}/T_{N} =2.2

- 求: 1) 额定电流 I_N 2) 额定转差率 s_N
 - 3) 额定转矩 T_{N} 最大转矩 T_{max} 和起动转矩 T_{st} 。

求额定转矩 T_N 最大转矩 T_{max} 和起动转矩 T_{st}

$$T_{\rm N} = 9550 \frac{P_{\rm 2N}}{n_{\rm N}} = 9550 \times \frac{45}{1480} = 290.4 \,\mathrm{N} \cdot \mathrm{m}$$

$$T_{\rm max} = (\frac{T_{\rm max}}{T_{\rm N}}) T_{\rm N} = 2.2 \times 290.4 = 638.9 \,\mathrm{N} \cdot \mathrm{m}$$

$$T_{\rm st} = (\frac{T_{\rm st}}{T_{\rm N}}) T_{\rm N} = 1.9 \times 290.4 = 551.8 \,\mathrm{N} \cdot \mathrm{m}$$

4.5 三相异步电动机的起动

好的起动性能

实际的起动特性

影响

起动电流小

起动转矩大

起动电流大:

$$I_{st} = (5\sim7) I_N$$

起动转矩小

$$T_{st} = (1.6 \sim 2.2) T_N$$

频繁起动时造成热量积 累,易使电动机过热。

大电流使电网电压降低, 影响其他负载工作。

4.5 三相异步电动机的起动

5.5 三相异步电动机的起动

降压起动

Y-∆换接起动

$$\frac{I_{IY}}{I_{I\Delta}} = \frac{1}{3}$$

∴降压起动时的电流 为直接起动时的 $\frac{1}{3}$

起动时

$$I_{lY} = I_{pY}$$

$$= \frac{U_l}{\sqrt{3} |Z|}$$

运行时

$$I_{l\Delta} = \sqrt{3} I_{p\Delta}$$
$$= \sqrt{3} \frac{U_l}{|Z|}$$

降压起动

Y-∆换接起动

$$\frac{I_{IY}}{I_{I\Delta}} = \frac{1}{3}$$

: 降压起动时的电流

为直接起动时的 $\frac{1}{3}$

$$\frac{T_{stY}}{T_{st\Delta}} = \frac{1}{3}$$

: 降压起动时的转矩

为直接起动时的

起动时

负载电压 $U_{pY} = \frac{U_l}{\sqrt{3}}$

运行时

$$U_{p \wedge} = U_{l}$$

$$: T_{\rm st} \propto U^2 \qquad U_{pY} = \frac{1}{\sqrt{3}}$$

降压起动

Y-∆换接起动

$$\frac{I_{IY}}{I_{I\Delta}} = \frac{1}{3}$$

: 降压起动时的电流

为直接起动时的

$$\frac{T_{stY}}{T_{st\Delta}} = \frac{1}{3}$$

: 降压起动时的转矩

为直接起动时的

起动时

运行时

Y - △ 换接起动:

起动电流、起动转矩都下降到正常值的1/3

注意:

- (a) 该方法仅适用于正常运行为三角形联结的电机。
- (b) Y △ 换接起动适合于空载或轻载起动的场合

自耦降压起动

设自耦变压器 的变比为 k

自耦降压起动

$$I_1 = \frac{1}{k}I_2 = \frac{1}{k}\frac{U_2}{|Z|} = \frac{1}{k}\frac{\frac{U_1}{k}}{|Z|} = \frac{1}{k^2}\frac{U_1}{|Z|}$$

运行时

$$I_1' = \frac{U_1}{|Z|}$$

: 降压起动时的电流为直接起动时的 $\frac{1}{k^2}$

自耦降压起动

设自耦变压器 的变比为 k

自耦降压起动

$$\boldsymbol{U}_2 = \frac{\boldsymbol{U}_1}{\boldsymbol{k}} \quad :: \boldsymbol{T}_{\mathrm{st}} \propto \boldsymbol{U}^2$$

运行时

∴降压起动时的转矩 为直接起动时的 $\frac{1}{k^2}$

自耦降压起动

设自耦变压器 的变比为 k

自耦降压起动

运行时

自耦减压起动:

起动电流、起动转矩都下降到正常值的1/k²

注意:

该方法适用于容量较大的或正常运行时联成 Y 形的鼠笼式异步电动机 (不能采用Y - Δ起动)

转子串电阻起动

(1) 转子电路串电阻起动

起动时将适当的R串入转子电路中,起动后将R短路。

- •减小起动电流
- 增大起动转矩

$$T_{\rm st} = K \frac{R_2 U_1^2}{R_2^2 + X_{20}^2}$$

例: 一台Y225M-4型的三相异步电动机,定子绕组 Δ 型联结,其额定数据为: P_{2N} =45kW, n_N =1480r/min, U_N =380V, η_N =92.3%, $\cos \varphi_N$ =0.88, $I_{\rm st}$ / I_N =7.0, $I_{\rm st}$ / I_N =1.9, $I_{\rm max}$ / I_N =2.2

- 求: 1) 额定电流 I_N 2) 额定转差率 s_N
 - 3) 额定转矩 T_{N} 最大转矩 T_{max} 和起动转矩 T_{st} 。
 - **解**: 1) 额定电流 I_N =84.2 A
 - 2) 额定转差率 s_N=0.013

3) 额定转矩
$$T_{\rm N}$$
 $T_{\rm N}=290.4~{
m N\cdot m}$ 最大转矩 T_{max} $T_{max}=638.9~{
m N\cdot m}$ 起动转矩 T_{st} $T_{\rm st}=551.8~{
m N\cdot m}$

例:在上例中:如果负载转矩为 510.2N•m,

(1) 试问: 在 $U=U_N$ 时, 电动机能否起动?

在
$$U=U_N$$
时, $T_{st}=551.8$ N·m >510.2 N.m 能起动

试问: $\Delta U = 0.9U_N$ 时,电动机能否起动? **不能起动**

$$T_{st} \propto U^2$$

$$T_{\rm st} = 0.9^2 \times 551.8 = 447 \, \text{N} \cdot \text{m} < 510.2 \, \text{N} \cdot \text{m}$$

(2)试问: 采用 $Y-\Delta$ 换接起动时, 求起动电流和起动转矩

$$I_{\text{st}} = 7I_{\text{N}} = 7 \times 84.2 = 589.4 \text{ A}$$

$$I_{\text{stY}} = \frac{1}{3}I_{\text{st}\Delta} = \frac{1}{3} \times 598.4 = 196.5 \text{ A}$$

$$T_{\text{stY}} = \frac{1}{3} T_{\text{st}\Delta} = \frac{1}{3} \times 551.8 = 183.9 \,\text{N} \cdot \text{m}$$

(3)试问: 采用 $Y-\Delta$ 换接起动,当负载转矩为额定转矩的80%和 50%时,电动机能否起动?

解:
$$T_{\text{stY}} = \frac{1}{3} T_{\text{st}} = \frac{1}{3} \times 551.8 = 183.9 \,\text{N} \cdot \text{m}$$

在80%额定负载时

不能起动

$$\frac{T_{\text{stY}}}{T_{\text{N}} \times 80\%} = \frac{183.9}{290.4 \times 80\%} = \frac{183.9}{232.3} < 1$$

在50%额定负载时 可以起动

$$\frac{T_{\text{stY}}}{T_{\text{N}} \times 50\%} = \frac{183.9}{290.4 \times 50\%} = \frac{183.9}{145.2} > 1$$

例:上例中,若电动机采用自耦变压器降压起动,设起动时加到电动机上的电压为额定电压的64%,求这时的线路起动电流 I_{st} '和电动机的起动转矩 T_{st} '。

解: 已知起动电流 $I_{\text{st}} = 7I_{\text{N}} = 589.4 \, \text{A}$ $T_{\text{St}} = 1.9 \times 290.4 = 551.8 \, \text{N} \cdot \text{m}$

变压器的变比为 $k = U_N / 0.64 U_N = 1 / 0.64$

$$I'_{\text{St}} = \frac{1}{k^2} I_{\text{St}} = 0.64^2 I_{\text{St}} = 0.64^2 \times 589.4 = 241.4A$$

$$T'_{\text{st}} = \frac{1}{k^2} T_{\text{st}} = 0.64^2 \times 551.8 = 226 \,\text{N} \cdot \text{m}$$

4.6 三相异步电动机的调速

在负载不变的前提下,人为改变电动机的转速

$$n = (1 - s) n_0 = (1 - s) \frac{60 f_1}{p}$$

调速方法:

- 1. 改变磁极对数 p
- 2. 改变电源频率 f_1 (变频调速)
- 3. 改变转差率 5

4.8 三相异步电动机的铭牌数据

三相异步电动机 型 号 Y132S - 6 功 率 3 kW 频 率 50Hz 电 压 380 V 电 流 7.2 A 联 结 Y 转 速 960r/min 功率因数 0.76 绝缘等级 B

- 1. 型号 Y132S 6 $2p = 6 \rightarrow n_0 = 1 \ 000 \ \text{r/min}$
- 2. 额定功率 P_{2N} 机座中 机座' 磁极数 $P_{2N} = 3 \text{ kW} \rightarrow \text{轴上输出机械功率的额定值}$
- 3. 额定电压 $U_{\rm N}$ $U_{\rm N}=380~{\rm V}$ \rightarrow 定子三相绕组应施加的线电压

三相异步电动机

型 号 Y132S - 6 功 率 3 kW 频 率 50Hz 电 压 380 V 电 流 7.2 A 联 结 Y 转 速 960r/min 功率因数 0.76 绝缘等级 B

4. 额定电流 $I_{\rm N}$

 $I_N = 7.2A$ — 定子三相绕组的额定线电流

5. 联结方式

通常三相异步电动机3kW以下者,联结成星形,4kW以上者,联结成三角形。

6. 额定转速 $n_{\rm N}$

电机在额定电压、额定负载下运行时的转子转速。

三相异步电动机

型 号 Y132S - 6 功 率 3 kW 频 率 50Hz 电 压 380 V 电 流 7.2 A 联 结 Y 转 速 960r/min 功率因数 0.76 绝缘等级 B

7. 额定功率因数(定子电路) $\lambda_N = \cos \varphi_N$

$$P_{1N} = \sqrt{3} U_N I_N \cos \varphi_N$$

$$P_{2N} = \eta_N P_{1N} = \sqrt{3} U_N I_N \cos \varphi_N \eta_N$$

8. 绝缘等级

指电机绝缘材料能够承受的极限温度等级,分为A、E、B、F、H五级, A级最低(105°C), H级最高(180°C)。

三相异步电动机的联接方式

三相异步电动机

型号 Y132S - 6 功 率 3 kW 频 率 50Hz

电压 380 V 电 流 7.2 A 联 结 Y

转 速 960r/min 功率因数 0.76 绝缘等级 B

定子三相绕组的联接方法

小 结

• 基本概念

转差率s、转子转速n、转矩、机械特性(额定状态、临界状态、 启动状态)、铭牌信息、电动机的启动、电动机的调速

• 基本计算

转差率s、转速、额定转矩、启动转矩、最大转矩