Campos

Definición. Un campo es un conjunto F con dos operaciones, llamadas suma y multiplicación, que satisfacen los siguientes llamados "axiomas de campo" (A), (M) y (D):

(A) Axiomas para la suma

- (A1) Si $x \in F$ y $y \in F$, entonces su suma $x + y \in F$.
- (A2) La suma es conmutativa: x + y = y + x para todos $x, y \in F$.
- (A3) La suma es asociativa: (x + y) + z = x + (y + z) para todos $x, y, z \in F$.
- (A4) F contiene un elemento 0 tal que 0 + x = x para todo $x \in F$.
- (A5) A cada $x \in F$ le corresponde un elemento $-x \in F$ tal que

$$x + (-x) = 0.$$

(M) Axiomas para la multiplicación

- (M1) Si $x \in F$ y $y \in F$, entonces su producto $xy \in F$.
- (M2) La multiplicación es conmutativa: xy = yx para todos $x, y \in F$.
- (M3) La multiplicación es asociativa: (xy)z = x(yz) para todos $x, y, z \in F$.
- (M4) F contiene un elemento $1 \neq 0$ tal que 1x = x para todo $x \in F$.
- (M5) Si $x \in F$ y $x \neq 0$, entonces existe un elemento $1/x \in F$ tal que

$$x \cdot (1/x) = 1.$$

(D) La ley distributiva

La ley distributiva

$$x(y+z) = xy + xz$$

se cumple para todos $x, y, z \in F$.

Referencia

Rudin, W., 1964, Principles of Mathematical Analysis, Ed. 3 Cap. 1, Pag. 5

Notas Zettelkasten

- \blacksquare Enlaces Entrada: -, -, -, -,
- \blacksquare Enlaces Salida: -, -, -, -,
- Inspirado En: -, -, -
- \blacksquare Creado A Partir De: -, -, -, -,