The τ vs π argument is really long and interesting

It is mostly a notational argument

Malcolm Ramsay

June 19, 2018

Why use τ when there is π

Theorem

au is great when dealing with circles

1. Fourier transforms

$$\hat{f}(\zeta) = \int_{-\infty}^{+\infty} f(x)e^{-2\pi ix\zeta}dx \tag{1}$$

University of Sydney 2

Why use τ when there is π

Theorem

au is great when dealing with circles

1. Fourier transforms

$$\hat{f}(\zeta) = \int_{-\infty}^{+\infty} f(x)e^{-2\pi ix\zeta}dx \tag{1}$$

2. A simple pendulum

$$T \approx 2\pi \sqrt{\frac{L}{g}} \tag{2}$$

University of Sydney

An excuse to write equations

1. Highlight what LATEXis best at

University of Sydney 3