Best Available Copy

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-174922

(43)Date of publication of application: 02.07.1999

(51)Int.Cl.

G03G 21/10

(21)Application number: 09-341204

(71)Applicant: CANON INC

(22)Date of filing:

11.12.1997

(72)Inventor: YOSHIKAWA TADANOBU

(54) IMAGE FORMING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an image forming device capable of assuring the excellent image, the high quality, supreme durability by preventing toner escaping, the toner sticking on the image carrier surface, abnormal sound, abnormal vibration, a blade turning up or the like.

SOLUTION: As for this image forming device provided with the cleaning device 2 equipped with the cleaning blade 3, a piezoelectric element (vibration imparting device) 15 for imparting the vibration on a cleaning blade 3. It is preferable that the vibration wave shape imparted on the cleaning blade 3 is the standing wave, provided with the frequency and the amplitude required for satisfying energy for bringing the cleaning work.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

20.03.2002

3537076 26.03.2004

4 BECOM

Copyright (C); 1998,2003 Japan Patent Office

Japanese Patent Laid-open No. HEI 11-174922 A

Publication date: July 2, 1999

Applicant: CANON INC

Title: IMAGE FORMING DEVICE

5

10

15

20

25

forming device according to the present invention. In Fig. 1, reference sign 1 denotes a photosensitive drum serving as an image carrier, which rotates in a direction of arrow A. A cleaning device 2 serving as a cleaning unit, and a pre-exposing light source 5, a primary charger 6, a developing device 7, and a transfer charger 8 which are various processing devices for electrophotographic recording are arranged around the photosensitive drum 1. In the cleaning device 2, a cleaning blade made from elastomer such as polyurethane rubber is pressed against the photosensitive drum 1 and brought in pressure-contact therewith by a pressurizing spring 4. [0039] Therefore, in this image forming device, after surface charge on the photosensitive drum is removed by the pre-exposing light source 5, the photosensitive drum 1 is evenly charged by the primary charger 6, so that light image exposure is performed on a light-exposing region 9. Thereby, an electrostatic latent image corresponding to the light image is formed on the photosensitive drum 1, and the electrostatic latent image is developed by the developing device 7 to be visualized as a toner image. Thereafter, the toner image formed on a surface of the photosensitive drum 1 is transferred on a transfer material 11 conveyed by a conveying unit 10 according to work of the

[0038] Fig. 1 is a schematic sectional view of a relevant part of an image

transfer charger 8, the transfer material 11 transferred with the toner image is

separated from the photosensitive drum 1 while carrying the toner image, and it is conveyed to a fusing unit 12 by the conveying unit 10. After the transfer material 11 conveyed to the fusing unit 12 is fused with the toner image, it is conveyed outside the device.

of the other hand, residual toner on the surface of the photosensitive drum 1 without being transferred to the transfer material 11 in a transfer portion reaches the cleaning device 2, where the residual toner is scraped from the surface of the photosensitive drum 1 on to a scooping sheet 13 by the cleaning blade 3 pressed by the pressurizing spring 4. Waste toner scraped on the scooping sheet 13 is conveyed to a waste toner container (not shown) by a waste toner conveying screw 14 provided in the cleaning device 2 to be collected therein.

[0041] Energy required for scraping residual toner on the surface of the photosensitive drum 1 in the cleaning device 2 is provided by elastic energy accumulated in an edge portion of the cleaning blade 3 when the edge portion of the cleaning blade 3 deforms following a rotational direction of the photosensitive drum 1 due to a frictional force between the edge portion and the surface of the photosensitive drum 1.

[0042] Accordingly, in order to make a cleaning ability in the cleaning device 2 appropriate, it is necessary to perform a selection about a shape of the cleaning blade 3, the material for the cleaning blade 3 (various physical properties such as Young's modulus, Poisson's ratio, and modulus (stress-strain curve)) and determine a pressing force (a load imparted by the pressurizing spring 4) of the cleaning blade 3 to the surface of the

25 photosensitive drum which is an image carrier.

15

20

[0043] By making the above conditions (in particular, the pressing force of the cleaning blade 3 to the surface of the photosensitive drum 1) appropriate,
Stick-Slip motion of the edge portion of the cleaning blade 3 that is the actual cleaning work described above can be performed. At that time, a vibrating state (amplitude and frequency) of the Stick-Slip motion is determined unambiguously according to the pressing force (frictional energy) of the edge portion of the cleaning blade 3 to the surface of the photosensitive drum 1.

Accordingly, if the pressing force is always constant, problems such as toner escaping, surface flaw on the photosensitive drum 1, the toner sticking on the surface of the photosensitive drum 1, abnormal sound, abnormal vibration, or a blade turning up do not occur, so that a stable cleaning work can be achieved.

[0073] As is clear from the above explanation, according to the present invention, since a device that applies vibrations to a cleaning blade or a device that detects a vibrating state of the cleaning blade is provided in an image forming device having a cleaning device with the cleaning blade. Accordingly, the image forming device can achieve excellent image, high quality, and supreme durability by solving problems such as toner escaping, the toner sticking on an image carrier surface, abnormal sound, abnormal vibration, or a blade turning up.

[Fig. 4] Fig. 4 is a diagram of a vibration waveform (time region) of Stick-Slip motion of a cleaning blade edge portion in each vibrating state.

25 Fig. 4

10

15

20

[Vibration waveform (time region) of Stick-Slip motion of cleaning blade edge portion in each vibrating state]

(b)

5 Amplitude (μm)

Time (m sec)

When pressing force (frictional force) is optimal

Maximum amplitude: about 0.3 μm

10 Vibration frequency: about 80 Hz to 120 Hz

DERWENT-ACC-NO:

1999-434069

DERWENT-WEEK:

200439

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE:

Remnant toner cleaning device for laser printer, copier - includes piezoelectric element which is provided for oscillating blade used for cleaning remnant toner on

surface of image carrier

INVENTOR: YOSHIKAWA, T

PATENT-ASSIGNEE: CANON KK[CANO]

PRIORITY-DATA: 1997JP-0341204 (December 11, 1997)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAG	ES MAIN-IPC
JP 3537076 B2	June 14, 2004	N/A	013	G03G 021/10
JP <u>11174922</u> A	July 2, 1999	N/A	012	G03G 021/10
US 6128461 A	October 3, 2000	N/A	000	G03G 021/00

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO	APPL-DATE
JP 3537076B2	N/A	1997JP-0341204	December 11, 1997
JP 3537076B2	Previous Publ.	JP <u>11174922</u>	· N/A
JP 11174922A	N/A	1997JP-0341204	December 11, 1997
US 6128461A	N/A	1998US-0207144	December 8, 1998

INT-CL (IPC): G03G021/00, G03G021/10

ABSTRACTED-PUB-NO: JP 11174922A

BASIC-ABSTRACT:

NOVELTY - A blade (3) is arranged so as to clean the toner remaining on the surface of the image carrier. A piezoelectric element (15) oscillates the cleaning blade.

USE - In laser printer, copier.

ADVANTAGE - Eliminates abnormal oscillation of blade and improves image quality. **DESCRIPTION** OF **DRAWING(S)** - The figure shows the sectional view of the image forming apparatus. (3) Blade; (15) Piezoelectric element.

ABSTRACTED-PUB-NO: US 6128461A

EQUIVALENT-ABSTRACTS:

NOVELTY - A blade (3) is arranged so as to clean the toner remaining on the

surface of the image carrier. A piezoelectric element (15) oscillates the cleaning blade.

USE - In laser printer, copier.

ADVANTAGE - Eliminates abnormal oscillation of blade and improves image quality. **DESCRIPTION** OF **DRAWING(S)** - The figure shows the sectional view of the image forming apparatus. (3) Blade; (15) Piezoelectric element.

CHOSEN-DRAWING: Dwg.2/10

TITLE-TERMS: REMNANT TONER CLEAN DEVICE LASER PRINT COPY PIEZOELECTRIC ELEMENT OSCILLATING BLADE CLEAN REMNANT TONER SURFACE IMAGE CARRY

DERWENT-CLASS: P84 S06 T04 V06

EPI-CODES: S06-A10A1; T04-G04; V06-M06D; V06-U04B;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1999-323398

(19)日本国特許庁 (J P) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開平11-174922

(43)公開日 平成11年(1999)7月2日

(51) Int Cl.* G03G 21/10 識別記号

FΙ G 0 3 G 21/00

318

審査請求 未請求 請求項の数18 OL (全 12 頁)

(21)出願番号

(22)出顧日

特願平9-341204

(71)出額人 000001007

キヤノン株式会社

平成9年(1997)12月11日

東京都大田区下丸子3丁目30番2号

(72)発明者 吉川 忠伸

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(74)代理人 弁理士 山下 亮一

(54) 【発明の名称】 画像形成装置

(57)【要約】

【目的】 トナー抜け、像担持体表面上へのトナー融 着、異音、異常振動、ブレードめくれ等の問題を解消し て高画像、高品質及び高耐久を保証することができる画 像形成装置を提供すること。

【構成】 クリーニングプレード3を有するクリーニン グ装置 2 を備えた画像形成装置において、前記クリーニ ングブレード3に振動を印加する圧電素子 (振動印加装 置) 15を設ける。

【特許請求の範囲】

【請求項1】 クリーニングブレードを有するクリーニング装置を備えた画像形成装置において、

前記クリーニングプレードに振動を印加する装置を設けたことを特徴とする画像形成装置。

【請求項2】 前記クリーニングブレードに印加する振動波形が定常波であることを特徴とする請求項1記載の画像形成装置。

【請求項3】 前記クリーニングブレードに印加する振動波形がクリーニング作用をもたらすエネルギーを満た 10 すのに必要な周波数及び振幅を持つことを特徴とする請求項2記載の画像形成装置。

【請求項4】 前記クリーニングブレードの印加振動の クリーニングブレードエッジ部に作用する方向が像担持 体の接平面内に限定されることを特徴とする請求項1, 2又は3記載の画像形成装置。

【請求項5】 前記クリーニングブレードの印加振動の クリーニングブレードエッジ部に作用する方向を像担持 体の接平面内に限定するために防振材等の補助部材によ り強制することを特徴とする請求項4記載の画像形成装 20 置

【請求項6】 前記クリーニングブレードに振動を印加する上で像担持体表面の状態によって印加する振動液形を変化させることを特徴とする請求項1~4又は5記載の画像形成装置。

【請求項7】 前記クリーニングブレードに振動を印加する上で像担持体上の画像機度或は残留トナー量を検知することによって印加する振動波形を変化させることを特徴とする請求項1~4又は5記載の画像形成装置。

【請求項8】 クリーニングブレードを有するクリーニ 30 ング装置を備えた画像形成装置において、

前記クリーニングプレードの振動状態を検知する装置を 設けたことを特徴とする画像形成装置。

【請求項9】 前記クリーニングブレードの振動状態を 検知することによって前記クリーニング装置のクリーニ ング状態を判断することを特徴とする請求項8記載の画 像形成装置。

【請求項10】 前記クリーニングプレードの振動状態を検知することによって前記クリーニング装置の使用に伴う故障を事前に察知することを特徴とする請求項8記 40載の画像形成装置。

【請求項11】 前記クリーニングプレードの振動状態を検知する上で振幅、振動数及びこれら2つの値から導き出される物理量を使用することを特徴とする請求項8 記載の画像形成装置。

【請求項12】 前記クリーニングブレードの振動状態を検知する上で振幅、振動教及びこれら2つの値から導き出される物理量を使用することによって前記クリーニング装置のクリーニング状態を判断することを特徴とする請求項8記載の画像形成装置。

【請求項13】 前記クリーニングブレードの振動状態を検知する上で振幅、振動数及びこれら2つの値から導き出される物理量を使用することによって前記クリーニング装置の使用に伴う故障を事前に察知することを特徴とする請求項8記載の画像形成装置。

【請求項14】 前記クリーニングブレードの振動状態を検知する上で振幅、振動数及びこれら2つの値から導き出される物理量の関値を使用することを特徴とする請求項8記載の画像形成装置。

【請求項15】 前記クリーニングブレードの振動状態を検知する上で振幅、振動数及びこれら2つの値から導き出される物理量の閾値を使用することによって前記クリーニング装置のクリーニング状態を判断することを特徴とする請求項8記載の画像形成装置。

【請求項16】 前記クリーニングブレードの振動状態を検知する上で振幅、振動数及びこれら2つの値から導き出される物理量の閾値を使用するすることによっ て前記クリーニング装置の使用に伴う故障を事前に察知することを特徴とする請求項8記載の画像形成装置。

【請求項17】 前記クリーニング装置は、前記クリーニングプレードの振動状態を調整する機構を有することを特徴とする請求項8~15又は16記載の画像形成装

【請求項18】 前記クリーニング装置は前記クリーニングブレードの像担持体表面に対する圧接荷重量を調整する圧調整機構を有することを特徴とする請求項8~15又は16記載の画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、像担特体上に形成された潜像に現像剤を付着させて潜像を可視像化する電子写真方式や静電記録方式を用いた複写機やレーザービームプリンタ等の画像形成装置に関する。

[0002]

【従来の技術】画像形成装置においては、走行する像担持体表面上に形成された静電潜像が現像手段によって記像された静電潜像が現像手段によって記像された。このトナー像が転写材上に転写されないで像担持体表面にはないで像担持体表面にはかられては、一点を表してのが装置においては、残留トークングを関係しているが、ではカリーニングが上にが従来から広く使用されているが、これはクリーニングブレードを用いたクリーニングがしードの材質としての構造が単純で小型であり、コスト面からも有利でしている。当時では、一点を表している。当時では、一点を表している。当時では、一点を表している。

【0003】ところで、クリーニングブレードを有する 50 クリーニング装置では、走行する像担持体表面に対して カウンタ方向からクリーニングプレードを圧接させる方 式が主に採用されている。この方式におけるクリーニン グ作用メカニズムは、像担持体表面上の残留トナーを除 去するのに必要な力 (5~40gf/cm) でクリーニ ングブレードを像担持体表面に圧接させたときのクリー ニングブレードエッジ部と像担持体の当接部分で、先ず 当接部分に働く摩擦力により像担持体表面に密着したク リーニングブレードエッジ部が像担持体の進行方向に変 形 (ずり変形、圧縮変形) し、次に、その応力に伴うク リーニングブレードエッジ部に蓄積されたエネルギーが 10 復元力 (反発弾性力) として働き元の状態に戻るという 所謂Stick-Slip運動(図9の概念図参照)に よるものと考えられている。

【0004】以上のことから、クリーニングブレードを 用いたクリーニング装置において、そのクリーニング能 力はクリーニングブレードエッジ部に蓄積されるエネル ギーによる振動運動、つまり、クリーニングブレードエ ッジ部のStickーSlip運動の振幅及び振動数に より決定される。更に、理想的には、例えば円柱状の像 担持体(感光ドラム等)の場合においては、クリーニン 20 グブレードエッジ部の振動運動が円柱の接平面上に限定 されることが好ましい。

【0005】又、上記Stick-Slip運動の振幅 及び振動数の適正化は、クリーニングプレードエッジ部 と像担持体表面の当接部分の摩擦係数、クリーニングブ レードの形状、クリーニングブレードの材料物性(ヤン グ率、ポアソン比、モジュラス(応力-歪み曲線))等 を調整することによってなされる。

[0006]

【発明が解決しようとする課題】 斯かるクリーニング装 30 **置において、初期条件の下で上記のような適正化を図っ** たとしても、例えば像担持体表面の摩擦係数のアップ、 クリーニングブレードの加水分解による永久変形等によ ってクリーニングブレードのエッジ部のStick-S l i p運動の状態が変化し、様々な問題を発生する(図 10の概念図参照)。

【0007】第1に、像担持体表面に例えばトナー樹脂 等が付着することによって像担持体表面の摩擦係数がア ップするに従い、クリーニングブレードエッジ部と像担 持体との間 (当接部分) の摩擦力も当然大きくなる (見 40 掛け上の圧接力が大きくなる:図2の30参照)。このた め、Stick状態におけるクリーニングプレードエッ ジ部に蓄積されるエネルギーが大きくなり、Stick -Slip運動は振幅>適正値、振動数<適正値とな る。そして、この現象が進行すると、クリーニングブレ ードエッジ部分が像担持体表面上に追従することなく跳 ね上がり、トナーの摺り抜け、像担持体表面上のトナー の擦り付け (トナー融着、フィルミング) が起こり、更 には異音(ブレード鳴き)や異常振動(ビビリ)が発生 したり、同エッジ部が像担持体の回転方向に沿うように 50 ーニングプレードエッジ部のStick-Sli p運動

反転する所謂プレードめくれが発生する他、クリ ― ニン グブレードエッジ部や像担持体表面が破損(ブレー ドエ ッジ欠け、像担持体表面傷) する可能性がある。

【0008】上記問題を解決するために、従来はクリー ニングブレード先端と像担持体との当接部に黒鉛、 ボロ ンナイトライド、二硫化モリプデン、二硫化タン グステ ン、二酸化ケイ素等の無機物質やフッ素樹脂、シ リ コン 樹脂、ポリアミド(ナイロン樹脂)、ポリアセタール、 ポリエチレン、ポリイミド等の有機物質の固形粉末 (潤 滑材)を強布することによって摩擦力を軽減する手段が 講じられている。

【0009】しかし、装置の使用に伴ってクリーニング プレードエッジ部分から潤滑材が無くなって再び摩擦力 が増加するため、クリーニングブレードエッジ部分と像 担持体間の摩擦力軽減の抜本的な解決策とはならない。 又、潤滑材をクリーニングブレードエッジ部分に 定常的 に供給する様々な装置が考案されているものの、 クリー ニング装置の構成が複雑となり、コストの大幅な アップ となるために実用化には至っていない。

【0010】更には、従来、像担持体である感光、ドラム にはポリカーボネートをパインダー樹脂とした表面層で 構成されたOPC(有機物半導体)感光ドラムが「広く用 いられているが、前記問題を解決するために、〇 PC感 光ドラム表面上にポリカーポネートのバインダー樹脂中 にテフロン樹脂を適量(3~40wt%)分散させた保 護層 (OCL) を設ける場合がある。この保護層 (OC L) を最表面層とした感光ドラムを用いるとともに、ト ナー中にチタン酸ストロンチウム、酸化セリウム、 アル ミナ、ジルコニア等の表面が疎水化処理された 1 μ m以 下の無機微粒子を添加することにより、クリーニングブ レードエッジ部と像担持体間の当接部にこれらの無機微 粒子が蓄積され、OCL表面を研磨することによ つてO CL中に含まれたテフロン樹脂が当接部に供給されて潤 滑効果を促す。

【0011】ところが、トナー消費量の極端に少ない画 像を連続して大量にコピーするような場合には、 コピー 枚数の増加に伴ってクリーニングブレードエッジ部と像 担持体の当接部分に前記研磨効果をもたらす無機微粒子 が極端に少なくなり、やはり異常振動、プレードめくれ 等の問題が発生する場合がある。

【0012】又、クリーニングブレードと像担持体間の 摩擦力の軽減を図る方法として、像担持体との当接面に ナイロン樹脂層を配設したクリーニングブレード(以 下、ナイロンコートブレードと称す)を用いる方法があ る。このナイロンコートプレードを用いた場合には、そ のエッジ部と像担持体間の摩擦力は十分に軽減可能であ

【0013】しかし、ナイロン樹脂はポリウレタ ンとは 異なりエラストマーとしての性質を持たないため、クリ

30

による残留トナーのクリーニング作用は見られず、残留トナーを塞ぎ止め、掻き落とす作用をしているものと考えられる。そのため、クリーニングプレードの像担持体表面に対する圧接力をポリウレタンの場合よりも可成り高くする(ポリウレタンの約2倍)必要があり、結果としてクリーニングブレードによる像担持体表面の削れ量が増加したり、傷を付けたりする等、像担持体の寿命が低下するという問題が生じる。

【0014】第2に、例えばクリーニングブレードの加水分解等による永久変形が生じた場合、クリーニングブレードの像担持体表面に対する圧接力が低下し、クリーニングブレードのエッジ部と像担持体表面との間(当接部分)の摩擦力が小さくなる(図2の①参照)。このためStick状態におけるクリーニングブレードエッジ部に蓄積されるエネルギーが小さくなり、StickーSlip運動は振幅<適正値、振動数>適正値となる。そして、この現象が進行すると、クリーニングブレードエッジ部分は像担持体表面上で追従して運動(振動)しなくなり、残留トナーを完全に除去することが不可能となる。更には、トナーの摺り抜けが発生したり、クリーなくなり、残留トナーを完全に除去することが不可能となる。更には、トナーの摺り抜けが発生したり、クリーコングブレードエッジ部に蓄積されたトナーが固まって像表面に傷を付けたりする可能性がある。

【0015】上記問題を解決するためには、高温多湿下におけるクリーニングブレードの永久変形試験からクリーニングブレードの使用期間を限定し、使用期間に達するとその都度クリーニングブレードを交換する必要があった。

【0016】しかし、上記の場合、実際には未だ使用に耐え得るクリーニングプレードでさえも交換されており、結果としてランニングコストのアップを招いていた。又、このときクリーニングブレードのみを交換した場合、新しいクリーニングブレードと継続使用中の像担持体の接触部分の馴染みが悪く、トナー抜け、像担持体表面傷或はブレードめくれ等の様々な問題を誘発する可能性があった。

【0017】以上のように、クリーニングブレードエッジ部と像担持体表面の接触部の摩擦力(クリーニングブレードエッジ部の像担持体表面への圧接力)を利用したStick-Slip運動は耐久性において非常に不安定であり、クリーニングブレード及び像担持体が破損す 40 る可能性が高い等の問題があった。

【0018】本発明は上記問題に鑑みてなされたもので、その目的とする処は、トナー抜け、像担持体表面上へのトナー融着、異音、異常振動、ブレードめくれ等の問題を解消して高画像、高品質及び高耐久を保証することができる画像形成装置を提供することにある。

[0019]

【課題を解決するための手段】上記目的を達成するため、請求項1記載の発明は、クリーニングブレードを有するクリーニング装置を備えた画像形成装置において、

前記クリーニングブレードに振動を印加する装置を設けたことを特徴とする。

【0020】請求項2記載の発明は、請求項1記載の発明において、前記クリーニングブレードに印加する振動 被形が定常波であることを特徴とする。

【0021】請求項3記載の発明は、請求項2記載の発明において、前記クリーニングブレードに印加する振動 波形がクリーニング作用をもたらすエネルギーを満たす のに必要な周波数及び振幅を持つことを特徴とする。

【0022】請求項4記載の発明は、請求項1, 2又は3記載の発明において、前記クリーニングブレードの印加振動のクリーニングブレードエッジ部に作用する方向が像担持体の接平面内に限定されることを特徴とする。

【0023】請求項5記載の発明は、請求項4記載の発明において、前記クリーニングブレードの印加振動のクリーニングブレードエッジ部に作用する方向を像担持体の接平面内に限定するために防振材等の補助部材により強制することを特徴とする。

【0024】請求項6記載の発明は、請求項1~4又は5記載の発明において、前記クリーニングブレードに振動を印加する上で像担持体表面の状態によって印加する振動波形を変化させることを特徴とする。

[0025] 請求項7記載の発明は、請求項1~4又は5記載の発明において、前記クリーニングプレードに振動を印加する上で像担持体上の画像濃度或は残留トナー量を検知することによって印加する振動波形を変化させることを特徴とする。

【0026】請求項8記載の発明は、クリーニングブレードを有するクリーニング装置を備えた画像形成装置において、前記クリーニングブレードの振動状態を検知する装置を設けたことを特徴とする。

【0027】請求項9記載の発明は、請求項8記載の発明において、前記クリーニングブレードの振動状態を検知することによって前記クリーニング装置のクリーニング状態を判断することを特徴とする。

【0028】請求項10記載の発明は、請求項8記載の発明において、前記クリーニングブレードの振動状態を検知することによって前記クリーニング装置の使用に伴う故障を事前に祭知することを特徴とする。

【0029】請求項11記載の発明は、請求項8記載の発明において、前記クリーニングブレードの振動状態を検知する上で振幅、振動数及びこれら2つの値から導き出される物理量を使用することを特徴とする。

【0030】請求項12記載の発明は、請求項8記載の発明において、前記クリーニングブレードの振動状態を検知する上で振幅、振動数及びこれら2つの値から導き出される物理量を使用することによって前記クリーニング装置のクリーニング状態を判断することを特徴とする。

【0031】請求項13記載の発明は、請求項8記載の

発明において、前記クリーニングブレードの振動状態を 検知する上で振幅、振動数及びこれら2つの値から導き 出される物理量を使用することによって前記クリーニン グ装置の使用に伴う故障を事前に察知することを特徴と

【0032】請求項14記載の発明は、請求項8記載の 発明において、前記クリーニングブレードの振動状態を 検知する上で振幅、振動数及びこれら2つの値から導き 出される物理量の閾値を使用することを特徴とする。

【0033】請求項15記載の発明は、請求項8記載の 10 発明において、前記クリーニングプレードの振動状態を 検知する上で振幅、振動教及びこれら2つの値から導き 出される物理量の閾値を使用することによって前記クリ ーニング装置のクリーニング状態を判断することを特徴 とする。

【0034】請求項16記載の発明は、請求項8記載の 発明において、前記クリーニングブレードの振動状態を 検知する上で振幅、振動数及びこれら2つの値から導き 出される物理量の閾値を使用するすることによって前記 クリーニング装置の使用に伴う故障を事前に察知するこ とを特徴とする。

【0035】請求項17記載の発明は、請求項8~15 又は16記載の発明において、前記クリーニング装置 は、前記クリーニングブレードの振動状態を調整する機 構を有することを特徴とする。

【0036】請求項18記載の発明は、請求項8~15 又は16記載の発明において、前記クリーニング装置は 前記クリーニングブレードの像担持体表面に対する圧接 荷重量を調整する圧調整機構を有することを特徴とす る。

[0037]

【発明の実施の形態】以下に本発明の実施の形態を添付 図面に基づいて説明する。

【0038】図1は本発明に係る画像形成装置要部の概 略断面図であり、同図において、1は図示矢印A方向に 回転する像担持体としての感光ドラムであり、該感光ド ラム1の周囲には、クリーニング手段としてのクリーニ ング装置 2、電子写真記録用の各種プロセス機器として の前露光光源5、一次帯電器6、現像器7及び転写帯電 器8が配設されている。尚、クリーニング装置2におい 40 ては、ポリウレタンゴム等のエラストマーから成るクリ ーニングプレード3が加圧バネ4によって押圧されて感 光ドラム1に圧接されている。

【0039】而して、本画像形成装置においては、前露 光光源5によって感光ドラム1の表面電荷が除電された 後、一次帯電器6によって感光ドラム1が一様に帯電さ れ、光露光領域9で光像露光が行われる。すると、感光 ドラム1上には光像に対応する静電潜像が形成され、こ の静電潜像は現像器7によって現像されてトナー像とし て顕画化される。その後、感光ドラム1表面上に形成さ 50 を、従来のクリーニングブレードエッジ部の感光ドラム

れたトナー像は、搬送手段10によって搬送される転写 材11上に転写帯電器8の作用によって転写され、トナ 一像の転写を受けた転写材11はトナー像を担持 したま ま感光ドラム1か6分離され、搬送手段10によって定 着手段12に搬送される。そして、定着手段12に搬送 された転写材11は、トナー像の定着を受けた後に装置 外に搬送される。

【0040】一方、転写部位において転写材11に転写 されないで感光ドラム1表面に残る残留トナーは、クリ ーニング装置 2 に至り、加圧パネ4により押圧されたク リーニングプレード3によって感光ドラム1表面からス クイシート13上に掻き落とされる。 そして、クリーニ ングプレード3によって掻き落とされた廃トナーは、ク リーニング装置2内に設けられた廃トナー搬送スクリュ - 14によって不図示の廃トナー容器へと撥送されて回 収される。

【0041】ところで、当該クリーニング装置2におい て感光ドラム1表面上の残留トナーを掻き落とすために 必要とされるエネルギーは、クリーニングブレー ド3の エッジ部が感光ドラム1 表面との摩擦力によって感光ド ラム1の回転方向に追従して変形するときにクリーニン グブレード3のエッジ部に蓄積される弾性エネルギーに゛ よって与えられる。

【0042】従って、当該クリーニング装置2における クリーニング能力の適正化を図る上では、クリーニング プレード3の形状、クリーニングプレード3の材質(ヤ ング率、ポアソン比、モジュラス(応力-歪み曲線)等 の諸物性) の選択を行うとともに、像担持体である感光 ドラム1表面へのクリーニングブレード3の押圧力(加 30 圧パネ4による荷重)を決定する必要がある。

【0043】そして、上記条件(特に感光ドラム1表面 へのクリーニングブレード3の押圧力)の適正化を図る ことにより、前述した実際のクリーニング作用であるク リーニングプレード3のエッジ部のStickーSli p運動が円滑に行われるようになる。このとき、Sti ck-Slip運動の振動状態(振幅及び周波数)は、 クリーニングブレード3のエッジ部の感光ドラム1表面 に対する押圧力(摩擦エネルギー)で一義的に決定され る。従って、押圧力が常時一定であるならば、トナー抜 け、感光ドラム1の表面傷、感光ドラム1表面上へのト ナーの融着、異音、異常振動、クリーニングブレード3 のめくれ等の問題が生じず、安定したクリーニング作用 が得られるものと考えられる。

【0044】しかし、実際のクリーニング装置において は、前述のように画像形成装置の長期使用に伴いクリー ニングブレードエッジ部の感光ドラム表面に対する押圧 力が変化し、上記のような問題が発生する。

【0045】従って、クリーニング作用をもたらすクリ ーニングプレードエッジ部のStickーSlip運動 表面に対する押圧力(摩擦エネルギー)を利用するので なく、クリーニング作用に最適な振動をクリーニングブ レードに印加することによって、これらの問題を解決す ることができるものと考えた。

【0046】 < 実施の形態1>図2に本発明の実施の形 施1に係る画像形成装置要部の概念断面図であり、本図 においては図1に示したと同一要素には同一符号を付し ており、以下、それらについての説明は省略する。

【0047】本実施の形態に係る画像形成装置において は、クリーニングブレード3の取付板金位置に振動印加 10 装置として圧電素子15を設けており、この圧電素子1 5によってクリーニングブレード3のエッジ部にクリー ニング作用をなさしめるに必要な振動を供給するように

【0048】このとき、クリーニングブレード3の感光 ドラム1表面への押圧力は、従来の摩擦エネルギーを利 用する場合の約70%であった。これは、クリーニング 作用をもたらすのに必要なエネルギーをクリーニングブ レード3のエッジ部と感光ドラム1表面間の摩擦力で供 給する必要がなくなったためであり、押圧力はクリーニ 20 ングブレード3のエッジ部全体が感光ドラム1の長手方 向に接触するのに必要な分だけで良いためである。尚、 供給する振動の周波教及び振幅は、従来のクリーニング 装置におけるクリーニングプレードエッジ部の振動エネ ルギーとほぼ同じになるように調整した。

【0049】而して、本実施の形態によれば、従来のク リーニング装置で発生したクリーニングプレードの押圧 力の変化によるさまざまな問題が解消されただけでな く、押圧力の設定位置を下げることが可能となったた め、感光ドラム1及びクリーニングブレード3の使用有 30 効期間を約2倍まで延ばすことが可能になった。

【0050】<実施の形態2>次に、本発明の実施の形 態2について説明する。

【0051】図2で説明したクリーニング装置2だけで も十分な効果があるが、実際のクリーニング作用におい ては、そのStick-Slip運動は円柱状感光ドラ ムのの母線を接線とする接平面内で行われるのが理想で あり、感光ドラムの法線軸方向の振動エネルギーは小さ い方が良いことが分かっている。

[0052] 従って、本実施の形態では、図3に示すよ 40 うにクリーニングプレード3の取付位置に防振材16を 追加した。この防振材16の効果によってクリーニング ブレード3のエッジ部の感光ドラム1の法線方向の振動 を防ぐことができ、感光ドラム1表面へのダメージを軽 減して該感光ドラム1の使用有効期間を更に延ばすこと ができた。

【0053】<実施の形態3>次に、本発明の実施の形 熊3について説明する。

【0054】本実施の形態においては、前記実施の形態 に係るクリーニング装置 2 においてクリーニングブレー 50 ングブレードの押圧力 (クリーニングブレードエッジ部

ド3及び感光ドラム1の使用有効期間の更なる延命を達 成するため、画像形成の有無、画像濃度(転写後 の 残留 トナー量) によってクリーニングブレード3に印力でする 振動を制御した。

10

【0055】つまり、画像形成時以外ではクリーニング ブレード3のへの振動の印加を行わず、又、画像形成時 においても画像濃度の高低(残留トナー総量の多少) を 画像濃度読み取りセンサ等で検知し、クリーニング ブレ ード3への印加振動を変化させた。

【0056】而して、本実施の形態によれば、振動印加 量制御によって感光ドラム1表面へのダメージは 更 に軽 減し、長期に亘って高画質な画像を得ることが可能ととな った。

【0057】<実施の形態4>次に、本発明の実施の形 態4について説明する。

【0058】図4に実際のクリーニング装置におけるク リーニングブレードエッジ部のStick-Slip連 動の振動状態(時間領域)を示す。クリーニング ブ レー ドエッジ部の振動測定にはレーザードップラー振動計を 用い、感光ドラムのおよそ法線方向よりクリーニングブ レードエッジ部 (照射領域φ50μm以下) にレーザー を照射し、感光ドラム表面へのクリーニングプレー ドの 押圧力(広義には摩擦力)を適正範囲及び高低変化とさせ て測定を行った。

【0059】ここで、図4に示した振動状態(時間領 域) は、クリーニングプレードエッジ部のStick-Slip運動の感光ドラム法線軸方向(レーザー 入射方 向)成分である。

【0060】図4(b) は感光ドラム表面へのク リーニ ングブレードの押圧力が適正範囲内であるときの ク リー ニングブレードエッジ部のStick-Slip 運動の 振動状態 (時間領域) である。このときの最大振 幅は約 0.3μm、周波数は約80Hz、約120Hzの2種 類が観察された。

【0061】図4 (a) は感光ドラム表面へのク リーニ ングブレードの押圧力(クリーニングブレードエ ッ ジ部 と感光ドラム間の摩擦力) が適正範囲内よりも低いとき のクリーニングブレードエッジ部のStick — Sli p運動の振動状態(時間領域)である。このとき の最大 振幅は約0.7μm、周波数は約120Hzと観察さ れ、押圧力が適正範囲内にある場合と比較して最 大振幅 は2倍以上、約120Hzのパワースペクトル強度も数 倍となった。

【0062】クリーニングブレードのエッジ部の振動状 態がこのようなときには、前述のようにトナーの 摺り抜 けが発生したり、クリーニングブレードエッジ部に蓄積 されたトナーが固まって感光ドラム表面に傷を付 けたり すると考えられる。

【0063】図4 (c) は感光ドラム表面へのク リーニ

と感光ドラム間の摩擦力)が適正範囲内よりも高いときのクリーニングブレードエッジ部のStickーSlip運動の振動状態(時間領域)である。このときの最大振幅は約1.0μm、周波数は約80Hzと観察され、押圧力が適正範囲内にある場合と比較して最大振幅は3倍以上、約80Hzのパワースペクトル強度も数倍となった。

【0064】クリーニングブレードのエッジ部の振動状態がこのようなときには、前述のように感光ドラム表面上へのトナーの擦り付け(トナー融着、フィルミング)、異音(ブレード鳴き)、ブレードめくれ、クリーニングブレードエッジ部や感光ドラム表面の破損(ブレードエッジ欠け、感光ドラム表面傷)が発生すると考えられる。

【0065】以上の測定結果から考えて、クリーニングブレードエッジ部の振動状態においては、最大振幅、周波数のパワースペクトル共に小さい方が良好なクリーニング状態であることが分かり、又、最大振幅、周波数それぞれに関値を有することが分かった。つまり、円滑なクリーニング作用がなされる場合のクリーニングブレードエッジ部のStickーSlip運動は、円柱状感光ドラムにおいてその母線を接線とする接平面内で行われるのが理想であり、今回の測定方向(感光ドラム法線軸方向)に働くクリーニングブレードエッジ部の振動エネルギーが小さいときに良好なクリーニング状態であることが判明した。

【0066】又、クリーニングプレードエッジ部の振動状態を測定し、振幅、周波数のそれぞれについて閾値と比較することで図4に示した3種類の振動状態のどの状態であるかを知ることができることが分かった。つまり、感光ドラム表面へのクリーニングプレードの押圧力(クリーニングプレードエッジ部と感光ドラム間の摩擦力)が適正値に対して大きいか、小さいかが分かり、更には、その振動状態が継続した場合に発生すると予想される問題を事前に知ることができる。

【0067】従って、クリーニングブレードエッジ部の振動状態を検知することにより、画像形成装置の使用に伴って生じるクリーニングブレードの像担持体表面に対する圧接荷重の変化を起因とするトナー抜け、像担持体表面傷、像担持体表面上のトナー融着、異音、異常振動、ブレードめくれ等の問題を前もって予知し、圧接荷重を調整することによって未然に問題を防ぐことができる自動診断システムになると考えられる。

【0068】図5にこの自動診断システム法の一例である画像形成装置の概念断面図を示す。尚、図5においては、図1に示したと同一要素には同一符号を付しており、以下、それらについての説明は省略する。

【0069】本画像形成装置においては、クリーニング ブレード3の板金部にクリーニングブレード3のエッジ 部の振動状態を検知する振動検知センサ17を設け、こ 50

の振動検知センサ16で検知した信号は演算器19に送られ、前述したクリーニングブレード3のエッジ部の振動状態が判別される。そして、クリーニングブレード3の感光ドラム1に対する押圧力が適正値に比べて高いか低いかを判断し、圧調整油圧ポンプ18を調整することにより良好なクリーニング作用を行う押圧力に設定する

12

【0070】図6及び図7に演算器18におけるクリーニングブレード3のエッジ部の振動状態を判断する2種10 類の方法の概念図をそれぞれ示す。

【0071】以上説明したクリーニング装置2を有する画像形成装置について高温・高湿環境と低温・低湿環境の2種類の特殊環境下でクリーニング装置2に起因の画像不良が発生するまでの使用時間を従来の画像形成装置におけるそれと比較した。その比較検討結果を図8に示す。

【0072】本実験の結果より本発明のクリーニング装置2を有する画像形成装置は従来の画像形成装置と比較して、有効使用時間は高温・高湿環境下では約2倍、低温・低湿環境下では約1.35倍と格段の良化が見られた。

[0073]

【発明の効果】以上の説明で明らかなように、本発明によれば、クリーニングブレードを有するクリーニング装置を備えた画像形成装置において、前記クリーニングブレードに振動を印加する装置又はクリーニングブレードの振動状態を検知する装置を設けたため、トナー抜け、像担持体表面へのトナー融着、異音、異常振動、 ブレードめくれ等の問題を解消して高画質、高品質及び高耐久を実現することができるという効果が得られる。

【図面の簡単な説明】

【図1】従来の画像形成装置要部の断面図である。

【図2】本発明の実施の形態1に係る画像形成装置の断 面図である。

【図3】本発明の実施の形態2に係る画像形成装置の断面図である。

【図4】各振動状態におけるクリーニングブレー ドエッジ部のStick-Slip運動の振動波形(時間領域)を示す図である。

) 【図5】本発明の実施の形態4に係る画像形成装置の断 面図である。

【図6】クリーニング自動診断法(タイプ**①**)の 概念図 である。

【図7】クリーニング自動診断法(タイプ②)の概念図である。

【図8】本発明に係る画像形成装置と従来の画像形成装置の安定使用時間の比較図である。

【図9】クリーニング装置におけるクリーニング作用メカニズムを説明するための概念図である。

【図10】 クリーニングブレードエッジ部のSt ick

13

-51 i	p運動の状態変化及び発生すると懸念される問	*	9		光露光領域
	概念図である。		10	i	搬送手段
【符号の			1 1		転写材
1	感光ドラム(像担持体)		1 2	!	定着手段
2	クリーニング装置		1 3	1	スクイシート
3	クリーニングプレード		1 4		廃トナー搬送スクリュー
4	加圧パネ		1 5	,	振動印加装置(圧電素子)
5	前露光		16	i	防振材(補助部材)
6	一次带電器		1 7	•	振動検知センサ
7	現像器	10	18	}	圧調整油圧ポンプ
8		*	19)	演算器

(図1)

[図2]

【図4】
【多級動状態におけるグリーニングブレードエッジ部のStick-Slip運動の振動抜形(時面領域)】

[図5]

【図6】

【クリーニング自動計断法】

(タイプの)

- ① 《 振動センサヒよりクリーニングブレードエッジ部の振動情知 >
- ② 《 遊動センサからクリーニングブレードエッジ部の監路の協考を検算者に達信 》
- (事) 本 (資源において (総務施定時の単圧信号) (リファレンス時の単圧信号))
 の単位時間あたりの時間限分位を一定個金ずつ組み加算平均する >
- ② < ③の時間接分値の加算平均値について、クリーニングは最が良好であるときのしき い値と比較。
- ◎ < ④でしきい個よりも極が大きい場合のみ、禁圧ポンプを加圧圧力的に助かす >
- ② < 消息①~②の条件を行い、特別被分値の加算平均値が貧回のものより小さくなっている場合には再度減能ポンプを加圧力両に動かし、特徴被分値の加算平均値が貧弱のものより大きくなっている場合には加圧ボンブを減圧力両に動かす >
- ① < 特両被分割の返算平均値がし合い値以下になるまで①~⑤の動作を繰り返す >

【図7】

【クリーニング自動品が法】

(タイプ(2))

- ① < 仮角センサによりクリーニングプレードエッジ部の征載検知 >
- ② < 転換センサからクリーニングプレードエッジ部の影響の信号を検算器に送信 >
- ① 《 資本部において一定時間内の(製造制定等の電圧信号のAC 成分の最大的) モビックアップ >
- ② く (紙数御定枠の電圧包号のAC 成分の最大値)をクリーニング状態が良好であると きのしきい値と比較し、しきい値よりも値が大きい場合のみ⑤以下の動作を行う >
- ⑤ < 起動調査時の地圧反射をFFFが着し、クリーニング作用に関与する用波数 は 機 別)のパワースペタトル独皮について一定回数加度平均を行う >
- ③ < ⑤において方出したパワースペクトル強度の一定回数加算平均で、しらい値より大 さい値を示す両数数が3種間のうちどちらであるかを判済(クリーニングプレード の押託力の施額を約30 >
- ① 🛪 ⑥における判別にしたがって特圧ポンプを興勢 >
- ① < 再度①~②の動作を行う >
- ④ < (協議整定枠の電圧信号のAC成分の最大値)がクリーニング状態が急好であるときのしまい値よりも小さくなるまで位圧ポンプの開整を繰り返す >

【図8】

【本発明のグリーニング装置を有する関係事項装置と発承の関係形成装置の身体時間比較】 表現を実施なグレーニング設置と回答する記念不会が発生するまでの発音である。

で (英型 英型表) 理論下

	160476	2005	200年日	4003	5000 P	BOOM	70000 27	
HE district	0	0	0	×	. #	×		3837
ATT.	-8-	0	×	×	×	×	×	261
DEC.	-5-		×	×	×	×	×	2071
1000	- ŏ-	0	6	-	0	0	×	0.07
A RIVERS	- 6 -	-	0	8	0		3	54710
18 18 18	- ŏ	0	0	0	0	0	0	7112-1-1

従来後の平均券合時間 対係体 本盤明後の平均券会時間 幹時間

本質引張の十四分取時間

0(低温, 低阻度)运动下

13	77	T 400 MAN	500 M	8000M/RE	TO SERVICE	8006480	100 PM	
77 W-15-75		0 1		× .	#	×	N.	DEAL TE
17 11 11	-6	10	_0_	1 0	×	×	H	650
	0		0	* _	×	1	, N	知過程
	-6	0	_0	0	0	Ħ	×	740 Miles
S S S S S S S S S S S S S S S S S S S	-0	0		0	0			648PM
a tale	-0	0	0	0	0	0		8088914

元末後の平均寿命時間 **102時**

【図9】

② 変形したプレードエッジがプレード(弾性体)のもつ 反発弾性力により復元(Stip状態)

【図10】

(問題点)・ゾアード島体設整 ・ゾアード島体設整 (ガマードが合れ、ゾアード時中、街メジ、キバ、 トナー製造など) (クリーニング変数) 圧抜力が強すぎるためブレードエッジのStick-Silp認動が定律でなくなる - 異年抵勤, 奥か (上下田島) 田僚力が強すぎるためプレードエッジが採む上がの砲光ドラム校園上で上下仮動する → クリーニング能力に関係を表現する → クリーニング能力に関係を表現すす ③ 感光ドラム表面に対するゴム ブレードの圧接力が適正値よがも 氏位力が強いことで生じる ゴムブレード 先端はなの上下版物 アノードエッジのケジーニング配数 大きいの場合 現光ドラム協行力の 格光ドラム表面 ◎ 感光ドラム表面に対するゴム ブレードの圧接力が適正の場合 (上下姫島) ブレードエッジの上下街路が132んどない (グリーニング版製) グワードエッジのStick-Slin消費が協正 ゴムブレード ノフードドグララグラーニング競技 品先ドラム語行方向 (クリーニング版数) 圧使力が観いためプレードエッジのStick-Sip 運動がいさい - クリーニング能力大句 欧光ドラム教団 (上下版制) 圧扱力が観いたのプレードエッジが感光ドウム 安団上で上下版動する → クリーニング能力に 聴影響を及ぼす (問題点) ・ケリーニング能力の大切 (トナー抜け、例スジ、・ス、トナー勤者など) ◎ 概光ドラム接面に対するゴム ブレードの圧接力が適正値よりも ゴイントード インードメッジのクリーニング開発 圧使力が取いこと による上下値動 A STATE OF THE STA 小さいの猫合 日光ドラム時行方向

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.