Matemática Discreta l Clase 9 - Conteo (4° parte)

FAMAF / UNC

19 de abril de 2022

En álgebra elemental aprendemos las fórmulas

$$(a+b)^2 = a^2 + 2ab + b^2,$$
 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$

En álgebra elemental aprendemos las fórmulas

$$(a+b)^2 = a^2 + 2ab + b^2,$$
 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$

A veces nos piden desarrollar la formula para $(a+b)^4$ y potencias mayores de a+b.

En álgebra elemental aprendemos las fórmulas

$$(a+b)^2 = a^2 + 2ab + b^2,$$
 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$

A veces nos piden desarrollar la formula para $(a+b)^4$ y potencias mayores de a+b.

El resultado general que da una formula para $(a + b)^n$ es conocido como el teorema del binomio o binomio de Newton.

Teorema

Sea n un entero positivo. El coeficiente del termino $a^{n-r}b^r$ en el desarrollo de $(a+b)^n$ es el número binomial $\binom{n}{r}$.

Teorema

Sea n un entero positivo. El coeficiente del termino $a^{n-r}b^r$ en el desarrollo de $(a+b)^n$ es el número binomial $\binom{n}{r}$. Explícitamente, tenemos

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \cdots + \binom{n}{n}b^n.$$

Teorema

Sea n un entero positivo. El coeficiente del termino $a^{n-r}b^r$ en el desarrollo de $(a+b)^n$ es el número binomial $\binom{n}{r}$. Explícitamente, tenemos

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \cdots + \binom{n}{n}b^n.$$

Escrito de otra forma:

Si n > 0.

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i.$$

Clase 9 - Conteo 4

Los coeficientes binomiales que intervienen en la fórmula de $(a + b)^n$ forman una fila del triángulo de Pascal:

Los coeficientes binomiales que intervienen en la fórmula de $(a + b)^n$ forman una fila del triángulo de Pascal:

$$\binom{n}{0} \quad \binom{n}{1} \quad \binom{n}{2} \quad \cdots \quad \binom{n}{n-2} \quad \binom{n}{n-1} \quad \binom{n}{n}$$

Los coeficientes binomiales que intervienen en la fórmula de $(a + b)^n$ forman una fila del triángulo de Pascal:

$$\begin{pmatrix} n \\ 0 \end{pmatrix} \quad \begin{pmatrix} n \\ 1 \end{pmatrix} \quad \begin{pmatrix} n \\ 2 \end{pmatrix} \quad \cdots \quad \begin{pmatrix} n \\ n-2 \end{pmatrix} \quad \begin{pmatrix} n \\ n-1 \end{pmatrix} \quad \begin{pmatrix} n \\ n \end{pmatrix}$$

Ejemplo

$$(a+b)^4 = {4 \choose 0}a^4 + {4 \choose 1}a^3b + {4 \choose 2}a^2b^2 + {4 \choose 3}ab^3 + {4 \choose 4}b^4$$
$$= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.$$

Clase 9 - Conteo 4

Ejemplo

Probemos que

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n.$$

Clase 9 - Conteo 4

Ejemplo

Probemos que

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n.$$

Demostración.

Clase 9 - Conteo 4

Ejemplo

Probemos que

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n.$$

Demostración.

Observemos que $2^n = (1+1)^n$. Por el teorema del binomio sabemos que

$$(1+1)^{n} = \binom{n}{0} 1^{n} + \binom{n}{1} 1^{n-1} 1 + \binom{n}{2} 1^{n-2} 1^{2} + \dots + \binom{n}{n} 1^{n}$$
$$= \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}. \quad \Box$$

Clase 9 - Conteo 4

La fórmula

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n. \tag{*}$$

tiene una interpretación combinatoria: nos permite calcular nuevamente la cantidad de subconjuntos de un conjuntos de *n* elementos.

Clase 9 - Conteo 4

La fórmula

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n. \tag{*}$$

tiene una interpretación combinatoria: nos permite calcular nuevamente la cantidad de subconjuntos de un conjuntos de *n* elementos.

1. Es claro que la cantidad de subconjuntos de k elementos de un conjunto de n elementos es $\binom{n}{k}$.

Clase 9 - Conteo 4

La fórmula

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n. \tag{*}$$

tiene una interpretación combinatoria: nos permite calcular nuevamente la cantidad de subconjuntos de un conjuntos de *n* elementos.

- 1. Es claro que la cantidad de subconjuntos de k elementos de un conjunto de n elementos es $\binom{n}{k}$.
- 2. Los subconjuntos de un conjunto son los subconjuntos de 0 elementos, unión los subconjuntos de 1 elemento, unión los subconjuntos de 2 elementos, unión los subconjuntos de 3 elementos, etc.

La fórmula

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n. \tag{*}$$

tiene una interpretación combinatoria: nos permite calcular nuevamente la cantidad de subconjuntos de un conjuntos de *n* elementos.

- 1. Es claro que la cantidad de subconjuntos de k elementos de un conjunto de n elementos es $\binom{n}{k}$.
- 2. Los subconjuntos de un conjunto son los subconjuntos de 0 elementos, unión los subconjuntos de 1 elemento, unión los subconjuntos de 2 elementos, unión los subconjuntos de 3 elementos, etc.
- 3 . Por el principio de adición y la fórmula (*) obtenemos que la cantidad de subconjuntos de un conjuntos de n elementos es 2^n .

6 / 12

Clase 9 - Conteo 4 19/04/2022

Ejercicio

¿Cuántos números naturales existen menores que 10^5 , cuyos dígitos sean todos distintos?

Ejercicio

¿Cuántos números naturales existen menores que 10^5 , cuyos dígitos sean todos distintos?

Solución.

Ejercicio

¿Cuántos números naturales existen menores que 10⁵, cuyos dígitos sean todos distintos?

Solución.

Los números naturales menores de 10^5 son todos aquellos que tienen como máximo 5 dígitos.

Ejercicio

 $\dot{\epsilon}$ Cuántos números naturales existen menores que 10^5 , cuyos dígitos sean todos distintos?

Solución.

Los números naturales menores de 10^5 son todos aquellos que tienen como máximo 5 dígitos.

- 1. 1 dígito ightarrow 9 posibilidades,
- 2. 2 dígitos \rightarrow 9 \times 9 posibilidades (81),
- 3. 3 dígitos \rightarrow 9 \times 9 \times 8 posibilidades (648),
- 4. 4 dígitos \rightarrow 9 \times 9 \times 8 \times 7 posibilidades (4536),
- 5. 5 dígitos \rightarrow 9 \times 9 \times 8 \times 7 \times 6 posibilidades (27216),

Total:
$$9 + 81 + 648 + 4536 + 27216 = 32490$$
.

Extrayendo 5 cartas de una baraja de 40 cartas ¿cuántos resultados diferentes pueden obtenerse? (no importa el orden)

Extrayendo 5 cartas de una baraja de 40 cartas ¿cuántos resultados diferentes pueden obtenerse? (no importa el orden)

Solución.

Extrayendo 5 cartas de una baraja de 40 cartas ¿cuántos resultados diferentes pueden obtenerse? (no importa el orden)

Solución.

Las cuarenta caretas son diferentes y no nos importa el orden en que recibimos las cartas.

El problema es entonces elegir 5 entre 40, por lo tanto la respuesta es

$$\binom{40}{5}$$
.

¿De cuántas formas diferentes pueden repartirse 5 bolas blancas, 3 rojas y 2 negras en 10 urnas distintas (etiquetadas) de forma que cada urna contenga una bola?

¿De cuántas formas diferentes pueden repartirse 5 bolas blancas, 3 rojas y 2 negras en 10 urnas distintas (etiquetadas) de forma que cada urna contenga una bola?

Solución.

Primero nos preguntamos ¿de cuántas forma puedo poner las 5 bolas blancas en las 10 urnas?

Este problema es equivalente a elegir 5 urnas entre 10 (las urnas donde pondremos las bolas blancas) y sabemos que las posibilidades son $\binom{10}{5}$.

Ahora quedan 5 lugares y queremos ver de cuántas formas ponemos 3 bolas rojas en 5 urnas y la respuesta es $\binom{5}{3}$

Finalmente, hay dos lugares para las dos bolas negras y hay una sola forma de ponerlas.

El resultado es entonces

$$\binom{10}{5}\binom{5}{3} = \frac{10!}{5!5!} \frac{5!}{2!3!} = \frac{10!}{5!2!3!}.$$

Clase 9 - Conteo 4

Un ascensor de un centro comercial parte del sótano con 5 pasajeros y se detiene en 7 pisos. ¿De cuántas maneras distintas pueden descender los pasajeros? ¿Y con la condición de que dos pasajeros no bajen en el mismo piso?

Un ascensor de un centro comercial parte del sótano con 5 pasajeros y se detiene en 7 pisos. ¿De cuántas maneras distintas pueden descender los pasajeros? ¿Y con la condición de que dos pasajeros no bajen en el mismo piso?

Solución.

Un ascensor de un centro comercial parte del sótano con 5 pasajeros y se detiene en 7 pisos. ¿De cuántas maneras distintas pueden descender los pasajeros? ¿Y con la condición de que dos pasajeros no bajen en el mismo piso?

Solución.

Hagamos un poco de abstracción del problema y pensemos las posibilidades que tiene 5 personas para ubicarse en 7 lugares: la primera persona tiene 7 posibilidades, la segunda también y así sucesivamente, luego el total de posibilidades es

$$7 \times 7 \times 7 \times 7 \times 7 = 7^5.$$

Si no estás convencido del razonamiento, lo podemos ver de la siguiente manera: supongamos que tenemos 5 posiciones (que representan los 5 pasajeros) y en cada posición podemos poner un número del 1 al 7 (el piso en que baja), entonces la pregunta se reduce a ¿cuántos números de 5 dígitos se pueden formar con los dígitos del 1 al 7?

Si no estás convencido del razonamiento, lo podemos ver de la siguiente manera: supongamos que tenemos 5 posiciones (que representan los 5 pasajeros) y en cada posición podemos poner un número del 1 al 7 (el piso en que baja), entonces la pregunta se reduce a ¿cuántos números de 5 dígitos se pueden formar con los dígitos del 1 al 7?

Claramente, la respuesta es también 7⁵.

Si no estás convencido del razonamiento, lo podemos ver de la siguiente manera: supongamos que tenemos 5 posiciones (que representan los 5 pasajeros) y en cada posición podemos poner un número del 1 al 7 (el piso en que baja), entonces la pregunta se reduce a ¿cuántos números de 5 dígitos se pueden formar con los dígitos del 1 al 7?

Claramente, la respuesta es también 7⁵.

Para la segunda pregunta, simplemente hay que modificar la pregunta anterior ¿cuántos números de 5 dígitos con todos los dígitos diferentes se pueden formar con los dígitos del 1 al 7?

La respuesta es:

$$7 \times 6 \times 5 \times 4 \times 3 = \frac{7!}{(7-5)!} = \frac{7!}{2!}.$$

