CROSECTOSES

METEOROLOGICAL DATA REPORT

NIKE-HYD/3 STV (SR-043) (22 November 1966)

BY

H. M. RICHART

ATMOSPHER SCIENCES LABORATORY
WHITE SANDS 1 SILE RANGE, NEW MEXICO

ECOM

HEITED STATES BBY E SCHOOLS COMMAND

METEOROLOGICAL DATA REPORT

NIKE-HYDAC STV (SR-043) (22 November 1966)

By

H. M. Richar

DR-137

December 1966

DA Task IV650212A127-02

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

Distribution of this document is unlimited.

ABSTRACT

Meteorological data gathered for the launching of Nike-Hydac STV (SR-043) are presented for the Ballistic Systems Division, U. S. Air Force, Avco Corporation, and for ballistic studies. The data appear, along with calculated ballistic data, in tabular form.

CONTENTS

		PAGE
ABSTRAC	T ************************************	iii
INTRODU	CTION	1
DISCUSS	ION	1
TABLES		
I.	Theoretical Rocket Performance Values	2
II.	Ballistic Factors	3
III.	Anemometer-Wind Speed and Direction	4
IV.	Pilot-Balloon-Measured Wind Data	5
٧.	Rawinson& Massured Wind Data	7
VI.	Computer-Calculated Upper Air Data (Release Time: 0545 MST)	8
VII.	Computer-Calculated Upper Air Data (Release Time: 0845 MST)	15
VIII.	Impact Prediction Data	23

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Blank-PGA that have Been Removes

> BEST AVAILABLE COPY

INTRODUCTION

Nike-Hydac STV (SR-043) was launched from Launch Complex 33, L-314, White Sands Hissile Range (MSMR), New Mexico, at 0962 hours MST, 22 November 1966.

Meteorological data used in conjunction with theoretical calculations to predict rocket impact were collected by the Meteorological Support Division, Atmospheric Sciences Laboratory (ASL), MSMR, New Mexico. The Ballistics Meteorologist for this firing was H. M. Richart, assisted by SFC Leon H. Allen, U. S. Army.

DISCUSSION

Nind data for the first 216 feet above the surface were obtained from a system composed of 5 Aerovanes mounted on a 200-foot tower and cabled to 5 component wind indicators.

From 216 to 4000 feet above the surface, wind data were obtained from double-theodolite-observed Balloon ascents.

Temperature, pressure, and humidity data, along with upper wind data from 4,000 to 76,000 feet above the surface, were obtained from standard rawinsonde observations.

Mean wind component values in each ballistic zone were determined from vertical cross sections by the equal-area method.

Theoretical rocket performance values and ballistic factors as a function of altitude were provided by ASL, and are the basis for data appearing in Table IX.

CORTOLIS DISPLACEMENT WEST 4.9 MAIN. SECONDSTAGE IGNITION ALITITIDE 36,673 Feet NGL TEAK TIME 236.2 Seconds PEAK ALITITIDE 718,586 Feet NGL UNIT WIND EFFECT CROSS 2.577 MAIGE/MPH TOMER TILT REFECT CROSS 2.573 MAIGE/MPH TOMER TILT REFECT NAILGE/MPH	PAYTOAD		233	Pounds
VDSTAGE IGNITION ALITITIOR \$6,673 TIME 236.2 ALITITIOE 718,586 ALITITIOE 718,586 WIND EFFECT CROSS 2.573 R THE EFFECT CROSS 2.573 R THE EFFECT 14.08	CORTOLIS DISPLACIMENT	WEST	6.4	Miles
ALTITUDE S6.673 TIME 236.2 ALTITUDE 718,586 ALMIND EFFECT CROSS 2.573 R THE EFFECT CROSS 2.573 R THE EFFECT CROSS 2.573		SPELL	20.3	ဥမာဝဝမဒ
TIME 236.2 ALTITUDE 716,586 HEAD/TAIL 2.577 WIND EFFECT CROSS 2.573 R TILT EFFECT 14.08	SECOND-STAGE LUNTITION	ALTITUDE	36,673	Feet MSL
ALTITUDE 718,586 HEAD/TAIL 2.577 WIND EFFECT CROSS 2.573 R TILT EFFECT 14.08		TIME	236.2	Seconds
HEAD/TAIL 2.577 CROSS 2.573	PEAK	ALTITUDE	718,586	Feet MSL
CROSS 2.573		HEAD/TAIL	2.577	Miles/ATH
14.08	UNIT WIND EFFECT	CROSS	2.573	HIJ 66/NPH
14.08		·		MJ. De / WH
	TOWER TILL BEFEGT		14.08	MI os Degree

TABLE I. THEORETICAL ROCKET PERFORMANCE VALUES NIKE-HYDAG STV (SR-043)

ABOVE GEOUND	1000- 1400	1400- 2000	2000- 2500	2500- 2000	3000- 3500	\$500- 4000	4000- 4263	4263. 9000	9000-12000	15000-21000	21000-25000	
BALLISTIC FACTORS	.0000	.1482	.1028	.0671	.0544	.0315	.0835	.0681	.0727	, 0503	.0432	
LAYERS IN FEET ABOVE GROUND	00- 23	11- 60	60- 108	108- 148	148- 134	184- 216	216- 300	300- 400	400- 600	008 -009	800-1000	

.0043 .00126 .0003 .0013 .0013 .0000

-.0967

.0041

-.0104

-.0072

.,0124

41000-46000 46000-51000 51000-51000 56000-61000 61000-56000 66000-73497

.0203

Ballistic Factors

LAZERS IN FEET ABOVE GROUND

Ballistic Factors

.0057

26000-32647 32647-34000

.0299

.0703

36000-36000

1:

3

3 = 128 Fe
* *
m=
2 = 35 Neet 2 = 86 Neet
S. S
3 3
-4 ∞
Numberat
Aeroyene
20
corresponding
Heights
*

9			MEAN W.	HEAN WIND CONFONENTS IN KILES PER HOUR	PONTENTS	IN KIL	es per	KOOK		
VANE NO. *	0645	1 0645 MST	1 18m 2240	rst Kst	3 0745 NGT	Z TSX	TSM OGSO	TSE TEST	8 0825 MST	ZST.
	N-S	R-X	S-X	不留	S-N	李舜	5-X	K-A	5-%	7-19
ط	1:58	1.08	2.08	90.0	2.08	0°0.	4.58	1.08	2.08	1,01
œ	8	ы ъ	10	80 80	0,	0.5R	ы 0,	0.0	0.%	٥ ٥ ٠
M	O, ₹	6 6	0.7	2.0	7.0	2.3	***	20 · · ·	0.	0
<i>a</i>			0,	a a	о. С.	0.0	7.0	**	0.	0.0
w	2.5	3.3	2.0	4.0	4.0	0.0	4.0	1.0	4.0	0.58

V 0 5 7			MEAN W	TATO CONT	CHENTS	Mean wind contonents in acies for hour	ES FACE.	HOUR		
VANE No. *	6 0838 MST	6 MST	TSN 3880	XGT	SAS NST	MGT	e coco			
	N-9	不同	N-8	N-N	N-S	N-8	?	A-8	2. X	74-83
e-f	3.08	1.,0W	4.08	1,08	0.0	2.0%	0.0	0,0		
W	0,	% Ö	0.4	0.0	0.0	0	0.0	2.0W		
en.	₽	0	0,4	1.08	1.08	0.0	2.58	*		
a	√	7.0	0.4	0	1.0	0.0	, es	0		
เก	0,	0.0	0, s	0,0	0.0	1.0%	2.0	2, OH		

ANTACACTURE WIND SPEED AND DIRECTION NIKE-HYDAC STV (SR-043) TABLE III.

			MELAN WIND		COMPONENTS	Ä	MILBO PAR	HOUR		
MATERIA AN FEBT ABOVE	064	1 0648 MST	672	2 6725 MBT	0748	3 0748 NBT	0400	4 0400 nst	0018	S MgT
GNOCALO	N=8	B-W	N=3	B.W	N-B	₩=Œ	8N	B=W	N.G	W-M
216-300	0'0	2.0W	1,08	1.0W	4.08	0.8W	Za .	113 NO. 1	. G	1,01
300- 100	ZE O	3.0	3.0	1.0	0.4	8.0	0.0	9,4	6	1.0
100- 600	Ng.O	0.0	3.0	eres eres	-3. m)	1.0	4.98	## ##	7.0	8,0
600- 800	0.58	.	۵, <u>۱</u>	90 90	ر د د	ud) Ca	***	1.51	**	0 .0
800-1000	4	20.8	1.0N	0.	0,	MES.	1.0	0.2	160	0.0
1000-1100	0.8	0.	1.08	0'6	0,5	**	2 .0	12	245 145	, w
1400-2000	M2)	10.8	0,	6	**	10		0 °	0,8	*
2000-2500	63 65	64 64	0,0	11.0		**0	4.0	113) 60	0.8	0.6
2500-300	7.8	13,0	7.0	0.81	***	##\$ 0=4 0=1	0.	10.8	0,8	***
3000-3500	100 OR	0,8	7.50	0.5	799	4.	7.0	3,6	3 .9	18.0
3506-4000	10.0	14 · 4	0.0	15.0	11.0	14.0	0.0	1500 1500 1000 1000	13. A	100 175 e-16

TABLE IV. PILOT-BALLOON-HEAGURED NIND BATA NIKE-HYDAC STV (OR-043)

iri sagar i			HEAN	OD CIATION	HONEN T	HEAN WIND COMPONENTS IN MILKS FER HOUR	LIKS FIER	NOOR		
FEET ABOVE	6 0825 MST	6 MST	7 0835 MST	, MST	8 0845 MST	8 MST	OVOZ NST	Mar		MEST
T NO CWA	S~N	M-3	8-8	M-I	8-N	本· 组	5°-X	HN	57-X	Z.
216-330	4.08	0.08	₹.08	0.01	1.58.	AS.0	3.08	1.58		
300- 1000	6.5	1.08	5.0	1.08	0.4	0.58	نة بر	1.8		
1000- 600	7.5	1.0	0.0	2.5	0.4	. . .	4.5	20.		
900° 800	3.8	5.0	ъ 0	2.0	19	3.0	3.0	۲. چ		
800-1000	5.5	0.5W	જ.⊀	2.0	. Ce	8.0	1.5	0.		
ocht-coot	3.0	3.0	3.5	ν, ο	0.0	2.0	1.0	1.0W		
27,00-2000	0.4	4.0	3.5	X.5K	2.08	5.0k	1.0N	7.0		
2000-2500	0.4	7.5	3.5	7.5	х. S	c.	3.0	11.0		
25003000	s.s	11,5	8. S	11.0	0.4	18.8	0 %	13.6		
3000-3500	8.0	14.5	ري دي	74.0	. 7.0	13.5	3.03	17.8		
3500-4000	ۍ در	15.6	7.0	17.0	8.5	16.5	10.0	18.0		

TABLE IV. PILOT-BALLOON-MEASURED WIND DATA (Conc) NIKE-HYDAG STV (SR-043)

LAYERS IN	ï	*	*			
ABOVIE	0545 MST	MST	0845 MST	MST		
GROUMD	N-3	E-W	S-N	平田	5° N	*
4000- 4263	7.58	12.0H	7.58	12.04		
4263- \$010	6.5	18.0	10.0	17.5		
0000:1-0006	9.0	25.0	12.0	21.0		
15000-21000	12.0	21.0	12.0	21.5		_
21000-26000	15.0	41.5	15.5	42.5		
26000-32647	17.5	48.0	20.0	54.3		
32647-34000	27.5	47.5	21.0	58.3		
34000-36000	0.0	60.0	11.5	66.0		
36000-41000	0.0	64.0	0.0	61.0		
41.000-46900	10.08	57.0	10.00	58.0		
00015-00094	0.0	57.0	0.0	49.0		
21000-56000	7.58	43.3	6.58	37.5		
26030~61000	0.0	29.0	0.0	17.0		
00099-00019	4.0N	11.5	0.0	10.0		
66000-73497	9.08	1.5	8.9 9.	3.08		
73497-76000	2, 5N	7.0	2,08	2.0K		-

TABLE V. RAWINGONDR-MKASURED WIND DATA NIKK-HYDAC STV (SR-043)

UPPER AIM DATA OS42003409 WHITE SANDS SITE TABLE VI

STATION ALTHURE 2989.0 FEET MSL 22 NOV. 66 0545 HRS MST ASCENSION NO. 922

INDEX QF RFRACTION	.00020	.00028	.00026	.0003	.00024	.00024	.00023	.00023	.00022	.00022	.00022	.00021	.00021	.00020	1.000206	.00020	.00019	.00019	.00019	.00018	.0000	.00018	.00017	.1000.	.00017	.00016	.00016	.00016	.00016	.00015
SPEED	•	•	3	•	•	•	•	•	•	•	•	•	•		15.1	\$	•	-	3.	4	'n	÷	÷	ė	-	6	6	6		•
WIND DAT DIRECTION DEGREESITN)		•	•	36,	.00	83.	36.	49.	45.	43.	42.	43.	45.	40.	~ •	48.	48.	40.	50.	5.5	3. \$.	56.	£ 4	8	\$	34.	30	300	2	÷
SPEEU OF SOUND KNOTS	9.7.4	₹ ₹	61.	₹	62.	61,	9	<u>5</u> 6.	57.	50.	34.	53.	<u></u> \$1.	50.	\$ C.	. ~ 4	40.	44	. n.	* ~ *	, I,	\$ 0.	\$0.	39.	37.	36.	34.	32.	31.	30.
DENSITY S GM/CUBIC METER	1108.3	106.	. K. YO	020.	003.	88.	74.	၁	4.7	33.	20.	07.	95.	25	70.	57.	\$ 55	33.	7.7	90	58.		98	30.	* * *	5		13.	03.	91.
REL.HOM. PERCENT	93.6		;	<u>~</u>	÷	ş	ů.	Ġ.	Ċ.	÷	ō.	Š	ċ	÷	29.0	ċ	ċ	ċ		_	င်	æ	,	≎	8	္		٠ د د	6	
MPERATURE DEWPOINT S CENTIGRADE	1.8	•	•	•	•	•	•	•	•	•	•	6	ငံ	11.	-12.2	13.	e G	\$	15.	16.	÷ 	æ	;		25.	'n	26.	26.	27.	ĉ
TEMP AIR Degrees	2 • E	•		5	Ω,	4	•	•	•	ċ	•	•	•	•	4.6	•	ŧ	•	•	•	•	٠	•	4	•	Ġ.	•	\$	•	11.
PRESSURE MILLIBARS	•	Ç.	44.	€ ≅ •	ب دي:	18.	63 C-3	ë C	74.	¢0.	46.	بر (با	2.	• •	64564	£.	٠ 8 9	ۍ چ			÷	ر د ح		• • •	73.	52.	51.	, O	90	20.
GFUMETRIC ALTITUDE MSL FEET	3989.0	000	500.	.000	500.	000	500.	000	500.	.000	500.	.000	9500	0000	500.	1000	1 200.	2000.	2500.	3000	3500.	4000	4500.	5000.	5500.	60009	6500.	70007	7500.	800G.

STATION ALTIFUDE 3989.0 PHET MSL 22 NUV. 66 0545 HRS MST ASCENSION NO. 922

UPPER ALR DATA U542U0.4909 WHITE SANDS SITE TABLE VI (Cone)

WSTM SITE COURDINATES E 488,580 FEET N 185,045 FEET

GEUMETRIC ALTITUDE MSL FEET	PRESSURF MILLIRARS	TEME AIR Degrees	TEMPERATURE R DEMPOINT EES CENTIGRADE	REL.HUM. PERCENT	DENSITY GM/CUBIC METER	SPEED OF SOUND KNOTS	¥IND DA DIRECTION DEGREES(TN)	SPEED KNOTS	INDEX OF REFRACTION
8 500.	ر ن ن	•	-		78.	30	ي. د.	ن. •	.0001
19000.0		12	-32.6	17.0	667.7	628.7	25.2.0	21.8	1.000191
9 500	89.	13.	3.	.	57.	2.7.	\$0.	•	.0001
0000	79.	4	4	. -	46.	26.	40.	\$.0001
0500	70.	15.	5	~	36.	443	↑ 1	*	.0001
1000.	€ C.	17.	÷		36.	23.	90	.	.0001
1500.	5.1.	18,		~	10.	22.	50 50 •	5	.000 î
2000.	4.2.4	19.	8	~	ري د.	20.	34.	င်	.00013
2500.	٠ د:	ċ	6	,-	37.	19,	32.	0	.0001
3000.	?4 •	23.	6	:	87.	18.	35.	-	.00013
3500.	16.	2.	0	-	77.	17.	39.	-	.0001
4000	ر م. د م.	22.	;	-	67.	16.	44.	+	.00012
4500.	.66	ري دي		÷	£.	23.	48.	÷	.0001
5000	90.	4.	3	÷	47.	13.	%		1000.
5 500.	æ ∵.	25.	2	30	38	12.	54.	2	.0001
0000	74.	26.	3.	3	29.	11.	53.	6	1000.
6500.	67.	27.	•	æ	50.	20,	ж ы	:	.0001
7000	53.	ө	4	6	-4-1	.60	30	÷	.000 L
7500.	52.	6	Š	0	03.	07.	5%	÷	.0001
8000	44.	٠0×	ຮ	3	95.	90	51,	-	.0001
8500.	37.	2	9	4	870	30	40		.0001
•0006	30.	ري د	ģ	÷	79.	0.2.0	48.	÷	.0001
9500°	22.	4.	•	ŝ	71.	01.	47.	ċ	.0001
.0000	15.	ಕಾ	-47,1	-	63.	99.	46.	•	.00010
0.200	α Ω	37.	~	÷	56.	98.	46.	ô	.0001
10001		8	8	;	48.	900	40.	9	000010
1500.	95.	٠ ټ	8	3	* 7.4	93.	47.	:	00000
20003	в9.	-	6		33.	93.	49.	ż	.0000
2500.	82.	2	0	30	26.	.16	5.	•	.0000
3000	76.	е П		-	19.	06	53.	-	0000

AT LEAST UNE ASSUMED RELATIVE HUMIDITY VALUE MAS USED IN THE INTERPOLATION. *

d to 1 Hd Was Will Supplement

an establishments on an a con-

STATION ALTITUDE 3989.0 FEET MSL 22 NOV. 65 0545 HRS MST ASCENSION NO. 922

UPPER AIR DATA 0542003909 WHITE SANDS SIVE TABLE VI (CORE)

HSTA SITE COURDINATES

Property of the control of the party of the

INDEX , OF OF FRACTION	00000	.0000	#0000°	.0000	.03000	90000	00000	.0000	00000	-00000	.0000	10000	.0000	.0000	.0000	.0000	•00000	.0000	.0000	.0000	.0000	.0000	.00000	.0000	.0000	.0000	.0000	.0000	.00000	.0000
TA SPEED KNOTS	3. S.	'n	~	•	ë	ë		***	ຸ	•		;	÷	÷	÷	÷	.	8	ņ	-	6	•	•	<u>.</u>	<u>.</u>	•	ڻ	0	30	•
MIND CA DIRECTION DEGREES(IN)	•	58	90.	62.	63.	63.	263.5	63.	62.	62.	63.	65.	67.	70.	730	76.	78.	80.	80.	79.	77.	74.	70.	66.	2.3	57.	5.	34.	34,	\$2 4
SPEED OF SOUND KNOTS	588.2	8 \$	84.	82.	81.	79.	77.	73.	73.	25	50.	899		669	65	• 49	64.	63.	63.	62.	62	62.	62.	61.	17.	50.	60 \$	60	59.	3. 0.
DENSITY S GM/CUBIC NETER	2	S.	98•	. I'd	84.	78.	-	65.	59.	33.	47	41.	346	27.	20.	13,	90	•66	92.	85.	4.0	72.	66.	5.6	53.	* ~ *	42.	36.	30.	25.
REL.HUM. Percent		4.6	1.4*	æ	4• æ	. 5	18.20	5.0		*	~	•	•		-0.	C	\circ	Ď			-O- **					-0°			-0·	
ERA TURE Denpgint Gentigrade	3.	ท่	:	55	-	64.	-66.6	69	2	75.	79.	•			•								ŏ				°			
TEMP AIR Degrees	4.5	46.		œ.	0	ä	-53.2	٨.	÷	~	å	ò	-	61,	\$	62.	63	63	63.	4.	64.	4	4.	u)	ខ	£5.	•	÷	•	66.
PRESSURE MILLIBARS	70.	Š	57.	٠٢٠	450	40	234.6	29.	÷ €3	18.	<u>.</u>	ج م	03.	58.	. 45	80°	n 4.	80.	75.	71.	67.	63.	59.	5°	51.	47.	43.	40.	36.	(1) (1)
OMETRIC TITUDE	00.	30.	00	00	000	00	500	.000	500.	000	500.	.000	500.	.000	500°	.000	500.	.000	500.	.000	500.	.000	500.	.000	500.	.000	500.	.000	500.	00

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE MAS USED IN THE INTERPOLATION. ¥

STATION ALTITUDE 2989.0 FEFT MSL 22 NOV. 66 0545 HRS MST ASCENSION NO. 922

WHITE SANDS SITE UPPER AIR DATA TABLE VI (Cont) 0542003909

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

3

INDEX	NEFRACTION	1.000049	.0000	000	0000	.00004	.00004	0000	.0000	.0000	.00003	.00003	.00003	.00003	.0000	.0000	.0000	.0000	.0000	.00003	.00003	.00003	.0000	.00002	.0000	.00002	0000	.00002	0000	00000	0000
< 4	KNOTS	é	ð	8	0	•	щ.	4	~	*	ä	;	•	6			•	ê	÷	'n	•	4	ŝ	÷	*	_		'n	S	0	C . 0
3	DEGREES(TN)	S S	56.	56.	S	57.	58	50	51.	54,	56.	57.	58.	58.	57.	56.	55.	53.	50 °	57.	54.	52.	51.	51.	54.	56.	59.	5.1.	2		•
EED	KNOTS	50	5.8	58.	58	57.	56.	3,40	33	56.	56.	56.	56.	82	55.	SS	55.	54.	33	56.	57.	58.	59.	39.	50.	50.	59.	57.0	56.	55.	553.9
SITY	METER	20.	14.	60	04.	000	96.	192.3	86.	81.	77.	72.	68.	64.	60.	56.	52.	6.04	45.	41.	37.	33.	29,	25.	22.	61	17.	**	12.	9	•
RFL.HUM.	ر لا نا	-()·	-0. **	-()· **	☆★ *() —	¥. *O-	-0-	-O- **	** ,0-	₩* *O-	*** *O;	-C. **	-0. **	** °C-	-O- **	-0, **	-0· **	-()-	₩₩ .0-	-0· **	-0· **	-O-	-0- **	-O. **	-0. **	** 0-	** 01	**· *O-	** · O =	-0-	-0- **
TURE	ADE	•0	ċ	•0	•	°0	• •	•0	•	°	•	•	•	ပ်	ó	•0	ô	ċ	°	ċ	ő	•	ċ	o	o	•	•	ċ	•	•	•
)- 2	DEGREES	6	-67.1	۲- •	۲.	æ	Ċ,	-7C.2	φ.	œ	æ	φ.	69	6	6	ς.	Š	ô	ъ С	6	œ.	۰	÷	÷	Š	•	•	~	•		_
PRESSURF	MILLIBARS	30	27.	ري ري	<u>.</u>	-	14.	112.0	ر ر	ت	03.	C .	œ.	÷	(L)	,	Ġ	9	4	è	. ن	œ	ŝ.	•	<i>ر</i> .	;	6	~	ιν •	64.2	· N
Œ ►	L FEF	8 500.	9000.	9500.	.0000	20 20 0°C	10001	1 500	2000°	2500.	•	3500.	4000	4500.	5000.	5500.	5000.	5500.	7000	7 500	3000	3500.	0006	500.	0000	500.	.0001	1200*	2000	500.	.0008

AT LEAST UNE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. ¥

The state of the s

The contract of the second sec

THE PROPERTY OF THE PARTY OF TH

会のは知さい

i,

STATION ALTITUDE 3989.0 FEET MSL 22 NOV. 66 0545 HRS MST ASCENSION NO. 922

UPPER AIR DATA 0542003909 WHITE SANDS SITE TABLE VI (CORE)

MSTA SITE COCRDINATES

INDEX OF REFRACTION	000	\$0000°	-00005	.00002	.00002	.0000	.0000	00000	.00001	10000	10000	0000	10000	0000	10000	0000	10000	0001	1000	.00001	.0000	0001	.0000.	.0000	1000	.00003	1.000012	003	င	001
SPEED KNOTS	17.1		0	~	•	'n		4	N	ċ	•		-6	•	,●	9.9	•	•	•	•	•	•	•	•	•	•	•	•	th •	•
WIND DAT DERECTION DEGREESCTNA	263.6	4.0	40.	.52	78.	80.	81.	80.	78.	77.	75.	73.	71.	69.	66.	62.	59.	59.	59.	96.	45.	Š	3	;	-	4	56.	40.	Š	13.
SOUND KNOTS	556.7	90	60.	•	19	. 99	99	565.4	94.	O	64.	65.	Ð	. 69	69	69	. 69	20.	20.	5	70.	70.	20.	71.	71.	71.	71.	~	720	~
DENSITY S GM/CUBIC NETER	104.0	90		Š	٠ ا	* 83	\$	•	٠ د	•	· 6	9	•	2	0	æ	÷	ŝ	er)	ċ	•	6		• 9	10	9	2	-	6	48.7
E N	*	* *	*	¥	*	¥	*	*	*	*	*	*	*	*	*	*	* *	*	*	*	*	#	*	¥	*	*	*	*	*	*
REL.		0	ခု	0	c I	0	0-	-0-	°	o I	Ŏ.	0-	2-	0	0	0	C	Ŷ		0-	01			0-	-0-	0-	-0	0	0	0
TURE REL. WPOINT PERC TIGRADE		•	0.	•	•	•		•	•	•	•	•	•	0-	•	•	•	•	0-	•	0-	0-	<u>0</u>	0.	•	1	0-	•	•	1
TEMPERATURE REL. AIR DEWPOINT PERC EGREES CENTIGRADE	68.8	66.0	5.7 00	65.4 0.	65.1 0.	1.4 0.	1.9 0.	2.3 0.	62.8 0.	3.2	3.2 0.	2.0 0.	60.8	59.6 00	9.2 0.	9.1 0.	9.0	8.8	8.7 00	g.6 0.	8.5 00	8.4 00	8.2 0. :-0	8.1 0°0	8.0	- 0 6.1	7.8 00	7.6 0	57.5	7.4 0.
TEMPERATURE REL. AIR DE WPOINT PERC GREES CENTIGRADE	68.8	a.5 ~66.0 G.	8.1 -65.7 00	6.6 -65.4 0.	5.2 -65.1 0.	4.9 -61.4 0.	2.6 -61.9 O.	1.3 -62.3 0.	0.162.8 0.	8.8 -63.2 0.	7.7 -63.2 0.	6.5 -62.0 0.	5.460.8 0.	4.3 -59.6 00	3.2 -59.2 0.	2.2 -59.1 0.	1.2 -59.0 0.	0.258.8 0.	9.3 -58.7 0.	8*3 158.6 O.	7.4 -58.5 00	6.5 -58.4 00	5.7 -58.2 0. :-0	4.8 -58.1 00	4.0 -58.0 0.	3.2 -57.9 0	057.8 00	1.6 -57.6 0	0.9 -57.5 0.	C.2 -57.4 O

** AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITUDE 3989.C FEET MSL 22 NOV. 66 0545 HRS 4ST ASCENSION NO. 922

UPPER AIR DATA 0542003909 WHITE SANDS SITE TABLE VI (Cont)

WSTM SITE COORDINATES E 488,580 FEET N 185,645 FEET

THE STATE OF THE S

INDEX OF Refraction	0000	00	0000	100	0000	000	.00000	000000	00000	.00000	.00000	.00000	1.000008	.00000	.00000	.00000	.00000	00000	.00000	.00000	00000	.0000	00000	00000	.00000	00000	.00000	00000		0000n°
SPEED KNOTS	3.9	•	•	•	•	•	B • .3		•	•	•	Ġ	10.8	ô	•	•	Ġ	•	.	•	+	ŝ	Š	'n	4	÷	'n	÷	17.7	•
WIND DAT DIRECTION DEGREES(TN)	9	000	12.	31.	47.	25.	96	ဒ္ဓ	77.	74.	69	64.	259.9	59.	80°	09	63.	65	68.	70.	72.	74.	81.	88.	95.	98.	93°	89.	85.	83.
SOUND KNOTS	72.	72.	72.	72.	72°	73.	73.	73.	73.	73.	73.	74.	574.3	74.	74.	740	75.	75.	75.	76.	76.	76.	76.	77.	77.	77.	78.	78.	78.	79.
DENSITY S GM/CUBIC METER			•	•	9	•	-	÷	φ.	æ		•	35.4	4.	•	?	2	-	5	6	29.1	8		.	•	Š	Š	4	4	9
H N H N H	# #	¥	*	* *	*	¥	☆	¥	¥	*	¥	*	*	*	₩ ¥	# #	*	#	¥	¥	*	*	*	*	*	*	*	*	*	*
REL.HUM. Percent	****0-	+* •0-	*	** •0-	-()° **	** •0-		** •()-	•	+* *0-	** •0-	** *0-	** •0-	-0. ##	•	•	-0- **	-0.	•	-0·	** •0-	** ·0-	•	** •0-	-C. **	-0- **	+* 0-	-0.	** 0-	**
REL.HUM INT PERCENT ADE	C0. **	* •0-	* •0-	* •0-	•0-	•	•0-		.0-	•	!	•	00- **	0-	•0-	•0-	•	•0-	•0-	•	•	•	•0-	•	•	•	•	•	•	•
REL.HUM PERCENT E	7.3	7.1 00. *	* 0 0 0 0 2	* ·0 - 0 6 · 9	6.7 00.	6.6 0.	6.4 00.	6.3 00	6.2 00.	- 0 0.9	5.9 0.	5.7 0.	•	5.5 00.	5.3 C0.	5.2 C0.	5.0 0.	4.8 00.	4.6 00.	4.3	4.1 0.	3.9	3.6	3.4 0.	•1 0•	2.9 0.	2.6	2.4	2.2	°
TEMPERATURE REL.HUM AIR DEWPOINT PERCENT EGREES CENTIGRADE	9.4 -57.3	8.7 -57.1 00. *	8.1 -57.0 00. *	7.4 -56.9 00. *	6.8 -56.7 00.	6.1 -56.6 0.	5.5 -56.4 00.	4.9 -56.3 00	4.3 -56.2 Q0.	3,8 -56.0 0	3.2 -55.9 0	2.7 -55.7 0	55.6 0.	1.6 -55.5 00.	1.1 -55.3 C0.	0.6 -55.2 C0.	0.1 -55.0 0.	9.7 -54.8 00.	9.2 -54.6 00.	8.8 -54.3 C.	8.3 -54.1 0.	7.9 -53.9 0	7.5 -53.6 C0.	•1 -53.4 0•	6.7 -53.1 0.	6.3 -52.9 0.	5.9 -52.6 0.	.6 -52.4 0.	.2 -52.2 C.	.9 -51.9 0.

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. # #

Harrish Statement

こうからてるお果たいではして、おないをかないまって、

. Thistory

TO PROBE SERVICE AND SERVICE S

STATION ALTITUDE 3989.0 FEET MSL 22 NOV. 66 0545 HRS MST ASCENSION NO. 922

UPPER AIR DATA 0542003909 WHITE SANDS SITE TABLE VI (Conc)

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

GEOMETRIC ALTITUDE	PRESSURE	TEMI	TEMPERATURE DEMPOTAT	REL.HUM.	30	SPEED OF	ONIA	į	
MSL FEET	MILL IBARS	0.5	CENTIGRADE		METER	KNOTS	DEGREES (TN)	KNOTS	REFRACTION
93500.0	14.5	-51.7	•	+* 0-		579.5	α	1.5.7	O C C C C
0.00076	14.2	-51.4	•	+****	2				
94500.0	13.9	-	ຍ	+* .0-			278.0		• •
0.00056	•	-51.0	•0	-0-	•	80	2) 1 - 4	
95500.0	•	-50.7	•	** 0:	3	80.	200	. ~	
0.00096	•	150.5	°	-0. **	0	81	. 0		
96500.0	12.6	•	•	** *0-	0			•	
97000.0	•	•	•	++ 0-	6	8 1 8	4 .	• 4	
97500.0	•	1-69-7	.	++ •0-	00	000			•
	£	-45.5			30	, C	•	•	
98500•0	•		•			000			•
0.00066	11.2	-49.C	•	++ •0-	~	200			
0.00566	•	-48.8	•			83.			• :
0.000001 4	10.7	-48.5	.		9	83			•
100500.0	•	-48.3	•0		•	8			•
101000.0	10.2	-48.1	•0		3	48			• •
101500.0	•	-47.8	·• ©	** • Ŭ-	15.5	48			• (

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

MSL	MST	
FEET	HRS	
3989.0	0845	er.
ALTITUDE	99	IN NO. 923
STATION	22 NOV.	ASCENSION NO.

糖

UPPER AIR DATA 0542003910 WHITE SANDS SITE TAULE VII

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

The state of the s

INDEX OF REFRACTION	.00026	1.000266	.00026	.00025	.00024	.00024	.00023	6003	.00022	.00022	.00021	.00021	.00021	0200	.00020	.00020	61000	.00019	.00019	.00019	.00018	.00018	.00017	.00017	.00017	.00016	.00016	.00016	.00016	\$1000°
TA SPEED KNOTS	-	0.0	•	•	7	•	•	ä	3.	'n	Š	ř	8	89.9	ä	2	ě	+	'n	;	+	;	+	ij,	'n	;	સં	•	ŝ	4
WIND DA DIRECTION DEGREES(TN)		59.	36.	14.	91.	68.	50.	50	49.	45.	43.	42.	0	238.5	37。	35.	36,	37.	39.	43.	++	47.	50.	250	53.	53.	52.	49.	47.	46.
SPEED OF SOUND KNOTS	58.	658.0	60.	61.	61.	61.	60.	59.	58.	56.	55.	54.	52.	51.	50.	48.	47.	45.	44.	2	47.	41.	40.	38.	37.		34.	32.	31.	29.
DENSITY S GM/CUBIC METER	074.	1074.7	049.	025.	.700	88.	73.	59.	45.	32.	19.	06.	93.	80.	68.	55.	43.	32.	20.	90	96,	82.	69	57.	46.	35.	25.	14.	90	94.
RELATIVE HUMIDITY PERCENT	2	41.8	Ş	9	0	æ	6	9	•	Š	Ś	+	4	4	3.	ë.	3	Š	6	?	0	6	&	ġ	6	ċ	=	2	ë.	+
ERATURE DEWPOINT CENTIGRADE	1-0-				-2.1	•	•			0.8-			ļ	-12.6	•	Š	ŝ	5	ŝ	•		•	3		in .			•	~	
TEMPEI AIR DEGREES CI	•		6	4	4	ŝ	*	6	è	0	•	•	•	•	•	Ý		•	6	•			•	•			0		-10.6	-
PRESSURE MILLIBARS	•	880.9	Š	6	4	6	4	0	ī,	-	-	4.	0	-	4	-	6	•	*	2	0	8	7	Š	4	ις. •	2	ĭ	-	•
GEOMETRIC ALTITUDE MSL FEET	989.	4000	500	.000	500.	•000	500	.000	500.	.000	500	9000	500.	0000	0500.	1000.	500°	20002	2500.	3000	3500.	4000+	4500.	5000.	5500.	6000	6500.	7000.	7500.	8000°

Child Bullion bear

が、物で

The state of the s

A CONTRACTOR STANDARD BOND OF THE PARTY OF T

The saddition

STATION ALTITUDE 3989.0 FEET MSL 22 NOV. 66 0845 HRS MST ASCENSION NO. 923

UPPER AIR DATA 0542003910 WHITE SANDS SITE TABLE VII (CONT)

MSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

Index Of Refraction	1.000189	+1000	.00014	.00014	.00014	.0001	.00013	.00013	.00013	.00013	.00012	.00012	.00012	.00012	.00011	.00011	11000	.00011	.00013	.00010	.000010	.00010	.0000	.00010	.000010	60000	60000	.0000	60000
SPEED KNOTS	23.8	-	6	ö	ä	N	+	'n	ņ	-	•	-	;	7	-	'n	-		9	å		'n	ğ	5	'n				-
WIND DAT DIRECTION DEGREES(TN)	246.9	•	4	46.	43.	9	36.	34.	34.	35.	40.	44.	49.	53.	54.	SS.	54.	53.	51.	48.	47.	45.	44.	43	43.	44.	45.	46.	46.
SPEED OF SOUND KNOTS	628.1	28.	27.	25.	24.	23.	21.	20.	13.	18.	17.	97	15.	14.	12.	11.	.60	08.	90	05.	40	02.	01.	.66	98.	96°	94.	93.	91.
DENSITY S GM/CUBIC METER	683. 663. 8.8	55.	45.	35.	25.	•	90	96.	87.	77.	66.	55°	46.	37.	28.	19,	11.	02.	94.	86.	78.	70.	620	55.	47.	60,	32.	25.	18.
RELATIVE HUMIDITY PERCENT	24.8	8	8	œ	8	œ	æ	8	&	æ	æ	æ	æ	6	œ.	ċ	ċ	:	-	5	ë	ě	4	\$	4	2		6	7
MPERATURE DEWPOINT S CENTIGRADE	-29.1	2	3.		Š	•	•	2	8	6	•	•	ċ	1:	•	ë	ä	4	-45.2	•	•	•	•	6	ċ	2	M	55.	7
TEMP AIR Degrees	-13.1	i	•	4	•		8	φ.	0	-	_	Š	3	4	Š	è	-	6	•	•	2	3.	4	เก	•	8	6	-	•
PRESSURE MILLIBARS	510.6 500.6	90.	80.	71.	61.	52.	43.	34.	25.	17.	08.	000	91.	83.	75.	67.	59.	52.	44.	37.	30.	23.	16.	10°	03.	96	89.	83.	76.
GEOMETRIC ALTITUDE MSL FEET	18500.0	9500,	0000	3500.	1000.	1500.	2000.	2500.	3000.	23500.	4000	4500	5000	5500.	0009	6500	7000	7500.	8000	8500°	9000	9500.	0000	5000	1000	1500.	2000.	2500.	3000°

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *

STATION ALTITUDE 3989,0 FEET MSL 22 NOV. 66 0845 HRS MST ASCENSION NO. 923

UPPER AIR DATA 0542003910 WHITE SANDS SITE TABLE VII (Cont)

WSTM SITE COORDINATES E 488,980 FEET N 185,045 FEET

INDEX	REFRACTION	.0000	.00000	.0000	90000	.0000	.0000	.0000	1.000081	.0000	.00007	, 0000 ¢	.0000	-00000	.0000	.0000	.0000	,0000	• 00000	•00000	• 00000	90000	• 00000	.00000	.0000	.00000	.0000	.0000	.0000	. 60003	0 20 20
ii ii	KNITS	•	-	2	.	6	:	Š	63.6	÷	÷	÷	æ	æ	•	*		2	÷	ກໍ	*	;	ë	ë	Ę,		*	-	~	÷	ń
AU UNIN	S	47.	48.	48.	49	40.	20.	52.	253.1	52.	57.	59.	61.	64.	66.	69	70.	72.	70.	68.	99	49	÷	57.	34.	23	53.	53.	52.	52	53.
SPEED OF	KNOTS	83.	87.	86.	84.	82.	80.	78.	577.3	75.	73.	71.	20.	68.	67.	\$6.	66.	65.	63	64.	64.	64.	65.	64.	64.	63.	62.	62.	61.	61.	•09
DENSITY	METER	11.	04.	97.	90.	84.	77.	710	365.4	59.	53°	47.	41.	34.	28,	20.	13.	90	00	93.	86.	78.	71.	65.	S.O.	53.	47.	42.	36.	31.	26.
RELATIVE	ERCENT	6.8	4	Ġ.	_	9	6	•	4.9.5		Ġ.	** *0-	-0-	*	-0-	-0-	** *0-	** *0-	-0-	** °0-	** *0-	** * 0 -	** *0-	** •0-	•	•	** •0-	-0-	** *0-	** *0-	* * * 5)
ERATURE	7116	6	61.	63,	Š	68	ċ	٠,	-76.1	6	Š		0			•		•	•		ô		ċ	ဝံ	•0				ဝ		
TEMP	DEGREES	•	•	ģ	8		•	2.	-53.5	4	٠, رو،	•	8	6	å	-	-	2	•	•	ن. •	•	•	•		•	•	*	•	•	3,
PRESSURE	MILLIBARS	70.	64.	30	520	46.	41.	35.	230 . 4	25.	20.	15.	.60	04.	00	95.	90.	85.	81.	76.	72.	68.	64.	60 •	56.	52.	48	45.	41.	38.	34.
ـ ننا	L FEE	3500.	4000	45 10.	5000	5500°	6000	6500.	37000.0	7500.	8000.	8500.	39000°	9500	.0000	6500.	1000.	1500.	2000.	2500.	3000.	3500.	4000	4500.	5000.	5500.	.0009	6500.	000	500°	000

AT LEAST UNE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPRITATION.

UPPER AIR DATA 0542003910 WHITE SANDS SITE TABLE VII (Cont)

STATION ALTITUDE 3989.0 FEET MSL 22 NOV. 66 0845 HRS MSI ASCENSION NO. 923

ESTR SITE COOKDENATI

INDEX OF REFRACTION
SPEED
DIRECTION SPEED DEGREES(TN) KNOTS
SPEED OF SOUND KNOTS
CONSTITUTE OF CONTRACTOR OF CO
RELATIVE HUMIDITY PERCENT
NTADE
TEMF AIR Degrees
PRESSURE TEMPERATURE AIR DEWPOI MILLIBARS DEGREES CENTIGR
GEOMETRIC ALTITUDE MSL FEET

N N N N N N N N N N N N N N N N N N N	REFRACTION	000,	.0000	40000	.0000	40000	.0000	.0000	.00004	*0000*	.0000	4.000034	.00003	*0000°	.00003	.00003	.0000	.00003	.00003	.00003	.0000	.00003	.00002	.00002	- 00002	.00002	.00003	.0000	.0000	.0000	.00002
T E	KNOTS	83	•	-	Ň	Į.	ö	3	•		;		ż	ċ	•	*	6	C.		47		•	~	;	ž	Ë	÷,		٠, •	*	1.6.0
	DEGREES (TN)	30	56.	57.	58	60.	62.	44.	66.	68.	68.		69	63.	60.	57.	34.	52.	30.	\$6.	<u>:</u>	53	ž	60.	es.	\$60	72.	74.	69	63.	•
TEED POINT	KNOTS	60.	30	59.	58.	57.	56.	35 35	33	S.	33.	15 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*	34	\$	53.	<u> </u>	*. *.	53	3. 3.	57.	50.	61.	6.3	69	62.	61.	60.	59.	£	50.
Z٦	METER	20.	۳. چ	11.	06.	01.	97.	93.	88.	#3.	79.	デ・ヤル で	70.	600	62.	58.	S S	 	47.	42.	36.	33,	5.	25.	25.	19.	17.	*	2.	000	90
L & 1	PERCENT				-0-	• • • • • • • • • • • • • • • • • • • •	-0-		** *0-			-0-	** 0-	** **			** 0,					-0-			** *01		** •0		** *0:		** *0
. 2	EES CENTIGRADE	•0	•	•	•0	•	0	· 0	.	ဒ်	•	•	•	o	• •	•	• •	ċ	•	•	•	• •	ö	•	•	•	•	• •	•	.	•0
	DEGREES	-66.1	ģ	•			69	.69	6	ċ	•	6.69-	•	•	•		77.	71.	-	ě.	8	•	Š	142	4	3	•	÷	•	-	9
PRESSURE	MILL IBARS	31.	28.	24.	21.	18,	15.	13,	·	07.	0%	02	9.		÷	2	÷	÷	Š	3		Ġ,	~	ŝ	3	~	6	8.	•	*	LC:
GEUMEI KIC	MSL FEET	48500.0	.0006	9500.	.0000	0500,	10001	1500.	2000.	2500.	3000.	23500.0	54000.	4500.	5000.	5500.	6000	6500.	7000	7500.	8000	8500.	9000°	9500.	0000	0200	100	1500.	2000-	2500.	300

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *

STATION ALTITUDE 3989.0 FEET MSL 22 NOV. 66 0845 HRS MST ASCENSION NO. 923

UPPER AIR DATA OS42003910 WHITE SANDS SITE TABLE VII (CORE)

WSTM SITE COORDINATES E 468,580 FEET N 185,045 FEET

INDEX OF REFRACTION	20000	2000	20000	00005	0000	00000	.0000	.0000	.0000	.0000	10000	.00001	000	10000		1.000018	.0000	.00001	.0000	.00001	.00001	.00000	.00001	.00001	.0000	.00001	0000	.00001	1000
TA SPEED KNOTS	•	-	ņ	'n		•	•	å.	.	•	ů.	ä	ė:		•	4 4	•			•		•		•	•	٠	3	•	
WIND DA DIRECTION DEGREES(TN)	64.	67.	<u>:</u>	79.	77.	78.	78.	77.	10.	22	69	6.3	74.			0.0	21.	ņ	•	~	ŝ	20	-	8			77.6	*	•
SPEED OF SOUND KNOTS	\$60	561.	562.	563.	364.	869.	563.	\$63	362	565	363	566.	560	0000	2 4	0 40 6 40 6 40 6 40 6 40 6 40 6 40 6 40	560	569.	569.	569.	\$ 70.	370.	570.	\$70.	\$71.	571.	571.	571.	571.
DENSITY GM/CUBIC METER	•	000		:	ż	ċ	5	į	\$?	ċ		*	<u>.</u>	• c	0.80	á	*		•	0		;	'n	÷	8	*	ċ	÷
RELATIVE HUMIDITY PERCENT	** *0-		** 0 -	** *0-	-0-	•••	** *0-	· 0 ·	• • • • • •	** *0-	-0-	-0-	** •0-	•		3 3	-0-	** "0-	-0-	** *0-	** *0-	* * * O í	** *0-		** · Q · ·	-0-	** 0-	** *0-	** *0-
EMPERATURE Dempoint ES centigrade	0.	• 0	•	•	•	•	•	• •	•	°.	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•
1 J																													
TEMPER AIR DEGREES C		-65.2		•		-63.5	5	*		9	•	_	m.	9	•	9.65-		_		•	•	9	Į,	8.	8	8	-57.8	-	-
TE AIR EGRE	1.7 -65.	0.1 -65.	8.7 -64.	7.2 -63.	5.8 -63.	4.5 -63.	3.1 -63.	1.8 -64.	0.664.	9.3 -63.	8-162.	7.0 -61.	5.8 -60.3	4.860.	. KG	, 50 10 10 10 10 10 10 10 10 10 10 10 10 10	0.7 -59.	9.7 -59.	8.8 -59.	7.9 -59.	7.0 -58.	6.158.6	5.3 .33.3	4.4 -58.	3.6 -58.	2.858.	2.0 -57.	1.3 -57.	0.6 -57.

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

是一种主题的

1

STATION ALTITUDE 3989.0 FEET MSL. 22 NOV. 66 0845 HRS MST ASCENSION NO. 923

UPPER AIR DATA 0542003910 WHITE SANDS SITE TABLE VII (CORE)

NATA SITE CODECISATION AND PROPERTY OF STREET STREE

INDEX OF REFRACT TON	1.000011	10000	.0000	.0000	00000	.0000	.00000	00000	. 0000	. 00000	.0000	.0000	.0000	00000	.00000	.00000	.0000	.00000	00000°	.00000	.0000	.00000	.0000	.00000	.0000	0	.00000	.00000	• 0000
SPEED KNOTS	44	0 8	9.8					•						3	•				•		•	•		÷	•		•	•	•
MIND DAT DIRECTION DEGREES(TN)	Ø 0 Ø 0		6	;	*	+	÷	*	22.	59.	60.	67.	Z.	81.	\$0.	86	10.	23.	35.	38.	41.	4.4.	29.	7	66	10,	21.	32.	*
SOUND KNOTS	572-1	72.	72.	72.	73.	73.	73.	73.	74.	74.	74.	74.	74.	75.	75.	75.	75.	76.	76.	76.	76.	76.	77.	77.	77.	78.	78.	78.	79.
DENSITY S GM/CUBIC METER	48.2	• •		3.	2		•	ċ	8		•	8	š	•	ë	2	-	•	0	6	8	ထ	-	\$	•	Š	4		9
RELATIVE HUMIDITY PERCENT	• • • • • • • • • • • • • • • • • • • •		-	-0-	** *0~	** **	-0-	** •0-	* * * O ·	* * * 0 !	• • • • • • • • • • • • • • • • • • • •	** • 0 -	** *0-	•• •0-	** •0-	** *0-	** 0	** *0-	-0-	** *0-	** *0	-0-	-0-	-0, **	** *0-	** *0-	** *0-	-0-	** *0-
EMPERATURE Dempoint Es centigrade	•	• •	•	•	• •	•0	•0	ó	•	•	•	•	•	ó	o	· 0	•	•	•0	•	•	•	•0	•	o	•	•0	ó	•0
TEMP AIR Degrees	-57.3	2 7	ç	•	\$	-56.3	•	•	'n	5.	Š.	ŝ	'n,	•	4	÷	-54.5	-54.3	4	-54.0	•	8	æ	-53.3	9	-52.8	8		-
PRESSURE MILLIBARS	29.8	• •	7.	~	•	S.	Ę,	4	*	ъ.	2	2	;	Ę	•	0	ç	9	9.	8	ش	-	•	•	•	•	•	15,3	ę,
GEOMETRIC ALTITUDE MSL FEET	78500.0	9560.	0000	0500.	-4	1500.	20	2	830	0.00388 %	す	4500°	S	5500.	60000	6500.	87000.0	7500.	8000°	850	9000	9500.	.0000	500.	10001	91500.0	2000-	in	30

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *

; ;	FEEB MSL	HRS MST	
1	3989.0	0845	3
	ON ALLIIODE	V. 66	SION NO. 923
1	SIALION	22 NOV	ASCENSION

¥	NO FEET	4
COOR	488,56	185,04
SITE	m	z
ESTR		

INDEX	REFRACT ION	•	.000	.0000	0000	• 0000	90	.0000	000	,0000	.000	.0000	.0000	• 0000	.0000	1.00000	00000	• 0000	.000	Ò	0000	0000	00000	0000	.0000	000.	0000	0000	000	.0000	0
A 2000	KNOTS	•			÷	•		ä	•	•	3				•	3.4		•	•	•	•		•		•	4.6	3				
CHIMO	S	7	0	6	8	•	•	ij	'n	.	6	÷	•	6	•	~	Š	49.	•	22.	12.	03.	93.	90.	89.	89.	88.				
SPEED OF	3 Z	~	80.	80.	80.	81.	81.	82.	82.	82.	83.	83.	84.	85.	87.	588.5	89.	91.	92.	92.	92.	93.	93.	94.	45	94.	594.5	94.	94.	Ŏ	94.
DENSITY	METER	a.	2	-	<u>.</u>	ċ	ċ	6	6	å	.	*	-	÷	•	16.2	'n	Š	+	4	*	6	m	щ •	6	2		2	-	. i	•
RELATIVE	ERCENT		** *0-	-0-	** °0-	** *0-	** *0	** ·0-	** .0-	** *0-	** *0-	** *0-	-0-	** *0-	** *0-	** *0-	-0-	** *0-	** *0-	-0-	-0-	** *0-	** 0-	** • 0	** *0-	-0.	-0-	** .0-	-0-	-0-	• • • • • • • • • • • • • • • • • • • •
TEMPERATURE SELECTEL	CENTIGRADE		•					•			.					•		•		•			•		•				•		
TEMP	DEGREES	•			•		•		•		•	•		•	•	7-44-7		•	•	-41.7	-			•	e	-39.9	•		-40.2		•
PRESSURE	MILLIBARS	14.6	4.	•	3.	3.	•	•	•	Š		-	-	.	÷	10.5	å	ċ	3		3		•	•		•		8.1	•	7.8	7.6
EDMETRIC	FEE	500.	•	•		•						•			.00000	100500.0	01000.		•	02500.	03000.		04000.	04500.	5000.	05500.	000090	06500	07000.	07500.	8000

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. 辛辛

FEET MSL HRS MST	
DE 3989.0	923
N ALTIFUDE . 66	ASCENSION NO.
STATION 22 NOV.	ASCENS

UPPER AIR DATA 0542003910 WHITE SANDS SITE TABLE VII (Cont)

SHT SITE COCKDOMS 下部時代できる。 Bet in ではなる。 Bet in をはる。 Bet in はる。 Bet in をはる。 Bet in はる。 Bet in はる。 Bet in

GEDMETRIC ALTITUDE MSL FEET	PRESSURE MILLIBARS	TEMI AIR DEGREES	TEMPERATURE R DEWPOINT EES CENTIGRADE	RELATIVE HUMIDSTY PERCENT	DENSITY GM/CUBIC METER	SPEED O	DIRECTION SPEEDEGREES(TN) KNOT	SPEED KNOTS	INDEX OF REFRACTION
108500.0 109000.0 109500.0 110000.0	4	140.8 140.9 140.9	000000	000000	10000000000000000000000000000000000000	2000 00 00 00 00 00 00 00 00 00 00 00 00	-		000000000000000000000000000000000000000

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *

	RELEASE TIME	S TIME	SIDC	OND-STAC	SECOND-STAGE IMPACT DISPLACEMENT IN MILES DUE IN WIND	DISPLAC	EMENT IN	MILES DA	CTA CAL SEC	Ę.	AZI.	THEORE	THEORETICAL IMPAGE	MPACZ
	G. T.		11-2	11-216 FT	216-4	216-4000 FT	7 -0007	4000-76000 FT	OL.	TOTAL	CDEC.		TACH LAUNCHER (TIN MITTER)	HER G)
-	RAWIN-										(6333)			
1	SONDE	PIBAL	N-S	E-W	N-S	A. El	N-S	≯ -8	N~3	E-W		PLANCE	S-X	¥-≅
·	0545	0645	1.48	2.0E	2.68	10.1W	2.28	18.0%	6.28	26.1W	351,3	74.0	73.1N	11.2W
	0545	0725	1.68	1.8E	3.58	7.7W	2.28	18.0%	7.38	23.9W	352.9	72.6	72.0	9.0
	0545	0745	4.38	0.3E	80°9	4.9W	2.28	18.0W	12.58	22.6W	353.4	67.2	86.8	7.7
	0545	0800	5.58	36·0	2.58	3.0W	2.28	18.0%	10.28	20.1W	355.7	69.3	69.1	5.2
	0545	0815	3.38	1.0%	7.18	3.0W	2.28	18.0%	12.68	22.0W	353.9	67.1	66.7	7.1
	0545	0825	3.48	1,2W	6.98	2.7W	2.28	18.0W	12.58	21.9W	384.0	67.2	8.99	7.0
	0545	0835	4.18	0.7E	80°9	1.34	2.23	18.0%	12.38	18.6W	356.8	67.1	67.0	3.7
23	0545	0845	0.38	1.7W	3.78	1.4W	2.28	19.0W	6.28	21.1W	355.1	73.4	73.1	6.2
	0845	0905	1.08	0,6W	2,78	2.1W	2.28	19.5W	5.98	22.2W	354.3	73.8	73.4	7.3

	AZIMUTH MILES FROM LAUNCHER	MX.LES	FROM L	AUNCHER
	REES!)	RANGE	N-8	REKEL RANGE N-8 E-W
VAC CRASCAC (76 NOTHERNETS) CNIGHAS GARCHITI	7 7 7 10	,	70.20	200
			SET NO. 17	20.67
	oro.e		79.3X	14.98
	357.5		86.69	3.1%
AR TRACK	340.9		79.5N	79.5N 27.4W
ACT	0.8.0 1.5		1.4N	0.5%
ACTUAL BOOSTER IMPACT	∀ /x	٧/x	۲\x	٧/ ٧

TABLE IX. IMPACT PREDICTION DATA (Cont) NIKE-HYDAC STV (SR-043)

UNCLASSIFIED

Security Classification

POCUMENT (Security alocalifection of title, body at abstract and im	CONTROL DATA - R&D desired executation must be externed a	Ogn the everell report le classified)
:. ORIGINATING ACTIVITY (Corporate author)	2e. R	EPORT SECURITY C LASSIFICATION
U. S. Army Electronics Command	l t	INCLASSIFIED
Ft. Monmouth, New Jersey	26. 6	ROUP
3. REPORT TITLE		
METEOROLOGICAL DATA REPORT, NIKE-HI	TDAC STV (SR-043)	-
4. DESCRIPTIVE KOTES (Type of report and inchesive dense)		•
S- AUTHOR(3) (Last some, first name, halffel)		
Richart, H. H.		
S. REPORT DAYE	70. TOTAL NO. OF PAGES	78. HO. OF MEPS
December 1966	23	None
SA CONTRACT OR BRANT NO.	Se. ORIGINATOR'S REPORT	HUMBER(8)
A PROJECT NO.	PR-137	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
a. DA Task IV650212A127-02	SE. OTHER REPORT HERD	(Any other reading that may be additioned
4		west a superior
18. AVRILADILITY/LINITATION NOTICES	A CONTRACTOR OF THE PARTY OF TH	the state of the s
Distribution of this document is un	limited.	
11. SUPPLEMENTARY NOTES	12. SPONSORMS MILITARY	ACTINITY
·	U. S. Army Electi	ronics Command .
,	Atmospheric Scien	
	White Sands Hiss:	lle Range, New Mexico
13. ABSTRACT		
		.,

Meteorological data gathered for the launching of Nike-Hydac STV (SR-043) are presented for the Ballistic Systems Division, U. S. Air Force, Avco Corporation and for ballistic studies. The data appear, along with calculated ballistic data, in tabular form.

DD .5084 1473

UNCLASSIFIED

UNCLASSIFIED

Security Classification

A	KEY WORDS		LIN	KA	LIN	K B	LIN	KC
1	AND THE PROPERTY OF THE PROPER	[ROLE	₩T	ROLE	WT	ROLE	₩T
1								
	1. Ballistics	- 1			1		į Š	
1	2. Meteorology	- [
ş- 5	3. Wind	į			1			
:	•	I						
-		i						
į		I				•		
1								
			i		Ì			
		1			}			
-								

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantes, Department of Defence activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLAREFICATION: Enter the overall security classification of the ropert. Indicate whether "Restricted Data" is included. Marking in to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without cleralities-tion, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(3): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count abould follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- Sa. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 3b, 3c, & 3d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(5): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(8): If the report has been savigned any other report numbers (either by the originator or by the sponeor), also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
 - "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (E) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is continual.

UNCLASSIFIED