Protocolos de Acesso a Recursos

Fundamentos dos Sistemas de Tempo Real Rômulo Silva de Oliveira eBook Kindle, 2018

www.romulosilvadeoliveira.eng.br/livrotemporeal Outubro/2018

(1) Desliga Preempção

- Desliga a preempção antes de acessar qualquer recurso
- Todas as seções críticas executam de forma não preemptiva
- Tempo máximo de bloqueio Bi da tarefa Ti
 - Dado pela duração da maior seção crítica de qualquer tarefa com prioridade mais baixa do que Ti

(1) Desliga Preempção

- Forma mais simples de resolver o problema
- Inversão de prioridade descontrolada não acontece
- Deadlock não acontece
- Qualquer tarefa pode ser bloqueada no máximo uma vez
- Obviamente só funciona em monoprocessador
- Qualquer tarefa pode ser bloqueada por qualquer tarefa de prioridade mais baixa
 - Mesmo que elas n\u00e3o compartilhem recursos entre si
- Solução razoável quando todas as seções críticas forem pequenas
- Corresponde ao "Desabilita Interrupções" de sistemas pequenos

(2) Herança de Prioridade

- Cada tarefa possui uma prioridade nominal fixa
 - Dada por RM, DM, etc
- Cada job possui uma prioridade efetiva
 - A prioridade efetiva varia ao longo do tempo
 - A prioridade efetiva é usada para decidir quem executa a seguir
- Inicialmente, a prioridade efetiva do job é igual à prioridade nominal da sua tarefa
- A prioridade efetiva pode mudar em decorrência da alocação de recursos pelo job em questão

(2) Herança de Prioridade: Regras

- Regra de alocação: Quando um Job J requer (LOCK) um recurso R no instante t:
 - Se R está livre, R é alocado para J até que J libere o recurso (UNLOCK)
 - Se R está ocupado, J bloqueia
- Regra da Herança de Prioridade:
 - Seja Jx o job que detém o recurso R solicitado por J
 - Job Jx herda a prioridade efetiva de J
 - Job Jx executa com a prioridade efetiva de J até liberar R
 - Quando liberar R, Jx retorna para a prioridade efetiva que tinha em t
 - Herança de prioridade é transitiva

- Inversão de prioridades descontrolada é evitada
- T3 termina a seção crítica mais cedo
- T1 sofre bloqueio direto de T3
- T2 sofre <u>bloqueio por herança</u> de T3

• Sem herança e com herança de prioridades

Grafo descrevendo sistema com 4 tarefas e 3 recursos.

- Bloqueio direto de τ2 sobre τ1 por Z
- Bloqueio transitivo de τ 3 sobre τ 1 via τ 2(Y)
- Bloqueio transitivo de $\tau 4$ sobre $\tau 1$ via $\tau 3(X)$ e $\tau 2(Y)$

Suponha τ4 executa Lock(Z) em t

Executando e usando o recurso X

Executando e usando o recurso Y

Executando e usando o recurso Z

Executando sem usar recurso

(2) Herança de Prioridade

- Impede a inversão de prioridade descontrolada
- Uma tarefa pode ser bloqueada diretamente por outra tarefa de mais baixa prioridade somente uma vez
 - Isto pode acontecer para cada seção crítica usada
- Cada uma das tarefas de mais baixa prioridade é capaz de bloquear a tarefa de mais alta prioridade
 - Por no máximo uma vez
- Tipos de bloqueio
 - Direto (τ 2 bloqueia τ 1)
 - Transitivo (τ 3 bloqueia τ 2 que por sua vez está bloqueando τ 1)
 - Por herança de prioridade

(2) Herança de Prioridade

- Não impede o deadlock por si só
 - Mecanismo adicional é necessário
- Não minimiza tempo de bloqueio no pior caso
- Determinação do B para o pior caso pode ficar complexo
 - se os padrões de uso dos recursos forem complexos

- Estende a herança de prioridade para
 - Eliminar a possibilidade de deadlock
 - Reduzir o tempo de bloqueio no pior caso
- Assume que é sabido antes da execução quais recursos cada tarefa usa
- Priority Ceiling = Teto de prioridade
- O teto de prioridade de um recurso Ri corresponde a mais alta prioridade entre todas as tarefas que usam Ri
 - Denotado por Πi
- Uma prioridade imaginária mais baixa que todas as prioridades do sistema será denotada por Ω
- O teto de prioridade do sistema $\Pi_i(t)$ corresponde ao maior teto de prioridade entre todos os recursos que se encontram alocados no instante t, desconsiderando-se aqueles alo cado s por tissemes de Tempo Real 26

- Cada tarefa possui uma prioridade nominal fixa
 - Dada por RM, DM, etc
- Cada job possui uma prioridade efetiva
 - A prioridade efetiva varia ao longo do tempo
 - A prioridade efetiva é usada para decidir quem executa a seguir
- Inicialmente, a prioridade efetiva do job é igual à prioridade nominal da sua tarefa
- A prioridade efetiva pode mudar em decorrência da alocação de recursos pelo job em questão
- As prioridades efetivas dos jobs são usadas para fins de escalonamento
 - Executa o job não bloqueado com a prioridade efetiva mais alta

(3) Teto de prioridade: Regra de Alocação

- Regra de Alocação
- Um job J requer um recurso R no instante t
- Se R está alocado para outro job
 - O pedido é negado e J fica bloqueado
- Se R está livre
 - O pedido será aceito se a prioridade efetiva de J for maior que o teto de prioridade do sistema Π j, o qual desconsidera os recursos que Jalocou
 - Caso contrário, o pedido é negado e J fica bloqueado

(3) Teto de prioridade: Regra de Herança

- Regra de herança de prioridade
- Quando o job J tenta alocar o recurso R e fica bloqueado
 - o job Jx que detém o recurso R herda a prioridade efetiva de J
- Jx mantém esta prioridade até o momento que libera o recurso R
 - Neste instante ele retorna para sua prioridade efetiva anterior
- A herança de prioridade é transitiva

• Tetos de prioridade:

Prioridade

Nível de

$$-\Pi(X)=3, \Pi(Y)=2, \Pi(Z)=1$$

Inicialmente chega τ4 X está livre e Π 4(1)=Ω chega τ3 e preempta τ4

tarefa T3 chama LOCK(Y) no instante 2

recurso Y está livre mas $\Pi 3(2) = 3$

a tarefa τ3 bloqueia e a tarefa τ4 herda sua ridade.

L=LOCK Executando e usando o recurso Y

Executando e usando o recurso Z U=UNLOCK

Executando sem usar recurso

• Tetos de prioridade:

- Inicialmente é necessário computar o teto de prioridade de cada recurso.

$$-\Pi(X)=3, \Pi(Y)=2, \Pi(Z)=1$$

Lembre-se que neste exemplo número menor indica prioridade mais alta, e τ1 é a tarefa de mais alta prioridade.

- Impossível ocorrer deadlock
 - T1:[X,1[Y,1]]
 - T2:[Y,1[X,1]]
 - $-\Pi(X)=1,\Pi(Y)=1$

- Herança de Prioridade
 - Guloso
 - Se recurso estiver livre, o mesmo é alocado
- Teto de Prioridade
 - Conservador
 - Mesmo um recurso livre pode n\u00e3o ser alocado
 - Isto é feito para prevenir um comportamento pior mais adiante
- Semelhante aos protocolos para evitar deadlock
 - Algoritmo do banqueiro

(3) Priority Ceiling: Tipos de Bloqueios

- Bloqueio pode ocorrer de três formas
- Bloqueio direto
 - Recurso está ocupado
- Bloqueio por herança de prioridade
 - Bloqueado por tarefa que herdou prioridade mais alta de outra tarefa
- Bloqueio por teto
 - Recurso está livre, mas teto do sistema é mais alto, alocação é negada
- Determinação do B é simplificada pois:
 - Um job pode ser bloqueado por no máximo a duração de <u>uma seção crítica</u>

- Uma tarefa Ti pode ser bloqueada apenas uma vez por uma mesma tarefa de prioridade mais baixa Tx
 - Ao liberar o recurso a primeira vez, Tx não executa mais e não aloca novamente até o final de Ti
- Não é possível uma tarefa Ti ser bloqueada por Tx e Ty, se Tx e Ty tiverem prioridade mais baixa do que Ti
 - Após o primeiro bloqueio, a regra do teto impede um segundo bloqueio
- Uma tarefa Ti pode ser bloqueada no máximo pela duração de uma única seção crítica
 - Não importa quantas tarefas compartilham recursos com a tarefa Ti
 - Vale a seção crítica mais externa, quando aninhadas

$\tau 1$

- Bloqueio direto de τ 2 por 2 ut
- Bloqueio direto de 73 por 5 ut
- Bloqueio por teto de 73 por 5 ut
- Somente um dos dois é possível

$\tau 2$

- Bloqueio por teto de τ3 por 5 ut
- Bloqueio por herança de 73 por 5 ut
- Somente um dos dois é possível

Não sofre bloqueio por definição

Resumo – Tempo Máximo de bloqueio

- Desliga Preempção
 - Tempo máximo de bloqueio Bi da tarefa Ti
 - Dado pela duração da maior seção crítica de qualquer tarefa com prioridade mais baixa do que Ti
- Teto de prioridade
 - Tempo máximo de bloqueio Bi da tarefa Ti
 - Busque tarefas menos prioritárias que usam mutex com teto igual ou mais alto

- A determinação de B3, B2 e B1 pode ser resumida desta forma:
 - Busque tarefas menos prioritárias que usam mutex com teto igual ou mais alto
- τ3: nenhuma tarefa com prioridade mais baixa

$$- B3 = 0$$

 \bullet $\tau 2$:

$$-\tau 3$$
 usa [Y,5]

$$\Pi y=1$$
 ok 5

$$- B2 = 5$$

 \bullet $\tau 1$:

$$- \tau 3$$
 usa [Y,5]

$$\Pi y=1$$
 ok

$$-\tau 2$$
 usa [X,2]

$$\Pi x=1$$
 ok 2

$$- B1 = 5$$

• Exemplo mais complexo

• τ5: nenhuma tarefa com prioridade mais baixa

$$- B5 = 0$$

- $\tau 4$: $\tau 5$ usa [Z,6] $\Pi z=1$ ok 6 - B4=6
- $\tau 3$: $\tau 5$ usa [Z,6] $\Pi z=1$ ok 6 - B3 = 6

