Introduction to Machine Learning Program Assignment #1

Problem: (70%)

For this assignment, you need to implement **ID3 algorithm** to construct a decision tree with C, C++, Java or python2/3, and use K-fold cross validation (K=5) to validate classification performance by outputting precision and recall for each class and total accuracy. **You CANNOT use packages to do the jobs for you.**

ID3 algorithm

Algorithm 4.1 Pseudocode description of the ID3 algorithm.

Require: set of descriptive features **d**

Require: set of training instances \mathcal{D}

- 1: **if** all the instances in \mathcal{D} have the same target level C **then**
 - 2: **return** a decision tree consisting of a leaf node with label *C*

- 3: **else if d** is empty **then**
- 4: **return** a decision tree consisting of a leaf node with the label of the majority target level in \mathcal{D}

- 5: **else if** \mathcal{D} is empty **then**
 - 6: **return** a decision tree consisting with the label of the majority target level of the dataset of the immediate parent node

- 7: **else**
 - 8: $\mathbf{d}[best] \leftarrow arg \max IG(d, \mathcal{D}) d \in \mathbf{d}$
- 10: partition \mathcal{D} using \mathbf{d} [best]
- 11: remove **d** [best] from **d**
- 12: **for** each partition \mathcal{D}_i of \mathcal{D} **do**
 - 13: grow a branch from $Node_{d[best]}$ by rerunning ID3 with $\mathcal{D} = \mathcal{D}_i$

K – Fold Cross Validation

From <u>wiki</u> - https://en.wikipedia.org/wiki/Cross-validation_(statistics)

After iteration i,

 $ACCURACY_i$, $PRECISION_i$, $RECALL_i$ will be obtained.

In this assignment, output the average accuracy, precision and recall:

$$ACCURACY_{avg} = \frac{\sum_{i=0}^{K-1} ACCURACY_i}{K}$$

$$PRECISION_{avg} = \frac{\sum_{i=0}^{K-1} PRECISION_i}{K} \qquad RECALL_{avg} = \frac{\sum_{i=0}^{K-1} RECALL_i}{K}$$

$$RECALL_{avg} = \frac{\sum_{i=0}^{K-1} RECALL_i}{K}$$

$ACCURACY_i$

 $PRECISION_i$

 $RECALL_i$

relevant elements

How many selected items are relevant?

How many relevant items are selected?

$$Accuracy = \frac{1}{TP + TN} = \frac{TP + TN}{TP + FP + FN + TN}$$

You should upload a single [student-id].ZIP file which contains a 'run.sh' shell script, source files, data and a report. The 'run.sh' should compile the source code (for C/C++ and java) and execute the program which output the results by a single './run.sh' command.

Note that, the instances of data must be randomly shuffled before constructing decision trees. The accuracy, precision and recall must be floating numbers within 0 and 1 and be arranged with the following format.

[Total accuracy]

[Precision of class 0] [Recall of class 0]

[Precision of class 1] [Recall of class 1]

[Precision of class 2] [Recall of class 2]

```
03:25:02
             ...Projects/tmp/test
total 8
drwxr-xr-x 3 toosyou
                         staff 102B 10 17 03:25 •
drwxr-xr-x 4 toosyou staff 136B 10 16 01:54 ...
             1 toosyou staff
                                  711B 10 17 03:24 0316313.zip
-rw-r--r--
 03:25:03 ...Projects/tmp/test
 unzip 0316313.zip && chmod +x 0316313/run.sh && ./0316313/run.sh
Archive:
           0316313.zip
   creating: 0316313/
 extracting: 0316313/data.csv
  inflating: 0316313/run.sh
 extracting: 0316313/sourcefiles.py
0.998
             [Total accuracy]
0.987 0.840 [Precision of class 0] [Recall of class 0]
0.809 0.892 [Precision of class 1] [Recall of class 1]
0.960 0.694 [Precision of class 2] [Recall of class 2]
```

第十二章、學習 Shell Scripts

Data:

https://archive.ics.uci.edu/ml/datasets/Iris

including 150 number of instances with 4 attributes.

Attribute Information:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm
- 5. class:
 - -- Iris Setosa
 - -- Iris Versicolour
 - -- Iris Virginica

Handling Continuous Descriptive Features

ID	STREAM	SLOPE	ELEVATION	VEGETATION	
1	false	steep	3,900	chapparal	
2	true	moderate	300	riparian	
3	true	steep	1,500	riparian	
4	false	steep	1,200	chapparal	
5	false	flat	4,450	conifer	
6	true	steep	5,000	conifer	
7	true	steep	3,000	chapparal	

ID	Stream	SLOPE	ELEVATION	VEGETATION		
2	true	moderate	300	riparian		
4	false	steep	1,200	chapparal ◀		
3	true	steep	1,500	riparian		
7	true	steep	3,000	chapparal		
1	false	steep	3,900	chapparal		
5	false	flat	4,450	conifer		
6	true	steep	5,000	conifer		

$$ullet$$
 the boundary between \mathbf{d}_2 and \mathbf{d}_4 is

• the boundary between
$$\mathbf{d}_4$$
 and \mathbf{d}_3 is

• the boundary between
$$\mathbf{d}_3$$
 and \mathbf{d}_7 is

• the boundary between
$$\mathbf{d}_1$$
 and \mathbf{d}_5 is

$$\frac{300 + 1,200}{2} = 750$$

$$\frac{1,200 + 1,500}{2} = 1,350$$

$$\frac{1,500 + 3,000}{2} = 2,250$$

$$\frac{3,900 + 4,450}{2} = 4,175$$

Split by Threshold	Part.	Instances	Partition Entropy	Rem.	Info. Gain
. 750	\mathcal{D}_1	\mathbf{d}_2	0.0	1.2507	0.0000
≥750	\mathcal{D}_2	\mathbf{d}_{4} , \mathbf{d}_{3} , \mathbf{d}_{7} , \mathbf{d}_{1} , \mathbf{d}_{5} , \mathbf{d}_{6}	d ₁ , d ₅ , d ₆ 1.4591		0.3060
>1.250	\mathcal{D}_3	\mathbf{d}_2 , \mathbf{d}_4	1.0	1.3728	0.1020
≥1,350	\mathcal{D}_4	\mathbf{d}_{3} , \mathbf{d}_{7} , \mathbf{d}_{1} , \mathbf{d}_{5} , \mathbf{d}_{6}	$\mathbf{d}_{1}, \mathbf{d}_{5}, \mathbf{d}_{6}$ 1.5219		0.1839
>2.250	\mathcal{D}_5	d ₂ , d ₄ , d ₃	0.9183	0.9650	0.5017
≥2,250	\mathcal{D}_6	\mathbf{d}_{7} , \mathbf{d}_{1} , \mathbf{d}_{5} , \mathbf{d}_{6}	d ₆ 1.0		0.5917
\A 17E	\mathcal{D}_7	\mathbf{d}_{2} , \mathbf{d}_{4} , \mathbf{d}_{3} , \mathbf{d}_{7} , \mathbf{d}_{1} 0.9710		0.6025	0.8631
≥4,175	\mathcal{D}_8	d ₅ , d ₆	0.6935		

Unlike categorical features,

continuous features can be used at multiple points

, although the threshold will be different.

Report: (10%)

The report should include the results, environment, using library and language, explain of your code and how to use it.

Accuracy, Precision and Recall: (20%)

We will test your source code and score base on your rank of following metrics:

$$1.5 \times Accuracy + \sum_{i=0}^{2} (Precision_i + Recall_i)$$

Environment:

Your program will be executed on the following environment:

- Ubuntu 16.04.3 LTS
- gcc 5.4.0
- openjdk 1.8.0_131
- python 2.7.12
- python 3.5.2

Bonus: (20%)

Implement Random Forest algorithm and make a 'RF.sh' shell script to output the result with the same format.