The next six questions pertain to the situation described below.

An infinite straight wire carries a current I that varies with time as shown above. It increases from 0 at t=0 to a maximum value $I_1=4.4$ A at $t=t_1=18$ s, remains constant at this value until $t=t_2$ when it decreases linearly to a value $I_4=-4.4$ A at $t=t_4=30$ s, passing through zero at $t=t_3=26.5$ s. A conducting loop with sides W=21 cm and L=61 cm is fixed in the x-y plane at a distance d=40 cm from the wire as shown.

1) What is the magnitude of the magnetic flux Φ through the loop at time $t = t_1 = 18$ s?

2) What is ε_1 , the induced emf in the loop at time t = 9 s? Define the emf to be positive if the induced current in the loop is clockwise and negative if the current is counter-clockwise.

V-9.5094082440005 × 10°9 V
$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}{\partial t} = -\frac{\partial \Phi}{\partial t}$$

$$E = -\frac{\partial \Phi}$$

3) What is ε_2 , the induced emf in the loop at time t = 20 s? Define the emf to be positive if the induced current in the loop is clockwise and negative if the current is counter-clockwise.

- 4) What is the direction of the induced current in the loop at time $t = t_3 = 26.5$ seconds?
 - There is no induced current at t = t₃
 - ✓ Clockwise
 - 3. Counterclockwise

5) What is ε_4 , the induced emf in the loop at time t = 28.25 s? Define the emf to be positive if the induced current in the loop is clockwise and negative if the current is counter-clockwise.

The next seven questions pertain to the situation described below.

A conducting wire formed in the shape of a right triangle with base b = 30 cm and height h = 52 cm and having resistance $R = 1.7 \Omega$, rotates uniformly around the y-axis in the direction indicated by the arrow (clockwise as viewed from above (loooking down in the negative y-direction)). The triangle makes one complete rotation in time t = T = 1.6 seconds. A constant magnetic field B = 1.2 T pointing in the positive z-direction (out of the screen) exists in the region where the wire is rotating.

7) What is ω , the angular frequency of rotation?

radians/second
$$\omega = \frac{2\pi}{T} = \frac{2\pi}{1.6 \text{ s}}$$

$$\sqrt{3.9269875 \text{ radians/second}}$$

8) What is I_{max}, the magnitude of the maximum induced current in the loop?

Area =
$$\frac{1}{2}6h$$

= $\frac{1}{2}(.3)(.52)$
= .078

So maximum
$$\mathcal{E} = \omega BA$$
and $I_{max} = \frac{\omega BA}{R}$

$$I_{max} = (3.93)(1.2)(.078)$$

9)At time t = 0, the wire is positioned as shown. What is the magnitude of the magnetic flux Φ_1 at time $t = t_1 = 0.6$ s?

10) What is I_1 , the induced current in the loop at time t = 0.6 s? I_1 is defined to be positive if it flows in the negative y-direction in the segment of length h.

11)Which of the following statements about Φ_o , the magnitude of the flux through the loop at time $t=t_o=0.4$ s, and I_o , the magnitude of the current through the loop at time $t=t_o=0.4$ s, is true? Φ_{max} and I_{max} are defined to be the maximum values these quantites achieve during the complete rotation.

12) Suppose the frequency of rotation is now doubled. How do Φ_{max} , the maximum value of the flux through the loop, and I_{max}, the maximum value of the induced current in the loop change?

- 1. $\,\Phi_{max}$ doubles and I_{max} remains the same
- 2. Both Φ_{max} and I_{max} remain the same
- 3. Φ_{max} and I_{max} both double
- 4. $\sqrt{\Phi_{\text{max}}}$ remains the same and I_{max} doubles

EBA ne: ther B or A changes, so same

max

BA I max = WBA

R So if w doubles then

I doubles