§6.1 Inverse Functions

In-class Activity 6.1

Dr. Jorge Basilio

gbasilio@pasadena.edu

Activity 1:

For the following functions: show that f(x) is one-to-one (hint: use the equivalent version). After this, find a formula for f^{-1} and determine the domain and range.

(a)
$$f(x) = x^3 + 5$$

(b)
$$f(x) = \frac{1}{x+2}$$

(c)
$$f(x) = \frac{x+3}{x-4}$$

(d)
$$f(x) = \frac{2x-5}{3x+7}$$

(e)
$$f(x) = \sqrt{3x - 8}$$

Activity 2:

Consider the function $f(x) = 3 - \sqrt{7 - 2x}$

- (a) Sketch the graph and explain why its one-to-one.
- (b) Use your graph to find the domain and the range of f(x).
- (c) Find a formula for $f^{-1}(x)$ and state its domain and range.
- (d) Sketch the graph of $f^{-1}(x)$ along with the graph of f(x).

Activity 3:

Consider the function $f(x) = 2x^2 - 12x + 23$.

- (a) Sketch the graph and explain why its **not** one-to-one.
- (b) Find the smallest possible value for a such that f(x) is one-to-one on $[a, \infty)$.
- (c) Sketch the graph of f on this restricted domain.
- (d) Find a formula for $f^{-1}(x)$ and state its domain and range.
- (e) Sketch the graph of $f^{-1}(x)$ along with the graph of f(x).

Activity 4:

Sove:

(a) If
$$f(0) = 4$$
 and $f'(0) = -2$, find $(f^{-1})'(4)$

(b) Given that
$$f(x) = \sqrt[3]{x} + 8$$
, compute: $(f^{-1})'(5)$

Activity 5:

Let's use the derivative formula for the inverse to find the derivatives of the inverse functions from Activity 1. Find $(f^{-1})'(x)$:

(a)
$$f(x) = x^3 + 5$$

(b)
$$f(x) = \frac{1}{x+2}$$

(c)
$$f(x) = \frac{x+3}{x-4}$$

(d)
$$f(x) = \frac{2x-5}{3x+7}$$

(e)
$$f(x) = \sqrt{3x - 8}$$

Activity 6:

Consider the function $f(x) = x^3 + 5x - 3$.

- (a) Use the ID Test to prove that f(x) is one-to-one on its entire domain.
- (b) By virtue of (a), we can construct the inverse function $f^{-1}(x)$. Without explicitly finding a formula for $f^{-1}(x)$, find the values of $f^{-1}(-9)$ and $f^{-1}(15)$. (Hint: use rational roots theorem)
- (c) Use your answers in (b) and the derivative formula for $f^{-1}(x)$ to find the values of $(f^{-1})'(-9)$ and $(f^{-1})'(15)$.

Activity 7:

Consider the function $f(x) = 2\cos(x) - 5x$.

- (a) Use the ID Test to prove that f(x) is one-to-one on its entire domain.
- (b) By virtue of (a), we can construct the inverse function $f^{-1}(x)$. Without explicitly finding a formula for $f^{-1}(x)$, find the values of $f^{-1}(5\pi/2)$ and $f^{-1}(-15\pi/2)$. (Hint: try $x=\frac{\pi}{2}k$ and look for k)
- (c) Use your answers in (b) and the derivative formula for $f^{-1}(x)$ to find the values of $(f^{-1})'(5\pi/2)$ and $(f^{-1})'(-15\pi/2)$.