Slide 8

January 29, 2018 2:55 PM

Magnetically Coupled Circuits

Learning goals:

- · Understand the concept of mutual
- Analyze circuits with mutual inductance
- · Analyze circuits with ideal transformers

ELEC 202: Magnetically Coupled Circuits

Slide 8.1

Self-Inductance

Recall the way an inductor works:

- 1. A wire current *i* results in a magnetic field (Ampere's law).
- 2. For a coil, this results in a magnetic flux ϕ through the coil.
- 3. A voltage v is "induced" across the coil when ϕ changes (Faraday's Law): $\sqrt{\frac{d}{dt}} = \sqrt{\frac{d\theta}{dt}} \cdot \frac{dt}{dt}$

$$N = N \frac{d\theta}{dt} = N \cdot \frac{d\theta}{dt} \cdot \frac{d\theta}{dt}$$

N= number of coils

$$L = N \frac{d\rho}{dt}$$
 Self-inductance

Number of turns, N

ELEC 202: Magnetically Coupled Circuits

Mutual Inductance

The changing ϕ may also result from a nearby coil. Consider the induced voltages in the 2 coils (side 2 is OC so $i_2(t) \equiv 0$ A):

Mutual inductance M (in henrys) is the ability of one inductor to induce a voltage across a neighboring inductor.

ELEC 202: Magnetically Coupled Circuits

Slide 8.3

Mutual Inductance

Similarly, if
$$i_1(t) \equiv 0$$
 but $i_2(t)$ can change,
$$V_z = L_2 \quad \frac{\delta \cdot c}{\delta t}$$

$$V_1 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_2 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_3 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_4 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_5 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_6 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_7 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_8 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_9 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_1 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_2 = M_{21} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_3 = M_{22} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_4 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_7 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_8 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_9 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_1 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_1 = M_{12} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_2 = M_{21} \quad \frac{\delta \cdot c}{\delta t}$$

$$V_3 = M_{22} \quad \frac{\delta \cdot c}{\delta t}$$

ELEC 202: Magnetically Coupled Circuits

Dot Convention

M>0 but induced voltage polarity depends on physical coil windings. For convenience on schematics, the <u>dot convention</u> is employed to indicate polarity.

If a current <u>enters</u> the dotted terminal of one coil, the reference polarity of the mutual voltage in the second coil is <u>positive</u> at the dotted terminal of the second coil.

ELEC 202: Magnetically Coupled Circuits

Coupled Coils in Series

Calculate the total equivalent inductance including self and mutual inductances.

ELEC 202: Magnetically Coupled Circuits

Slide 8.7

Coupled Coils in Series

Calculate the total equivalent inductance including self and mutual inductances.

ELEC 202: Magnetically Coupled Circuits

Slide 8.8

ELEC 202: Magnetically Coupled Circuits

Slide 8.9

Energy in Coupled Circuits

The positive sign is selected for the mutual term if both currents enter or leave the dotted terminals of the coils; the negative sign is selected otherwise.

ELEC 202: Magnetically Coupled Circuits

ELEC 202: Magnetically Coupled Circuits

Slide 8.11

Linear Transformers

A transformer is generally a four-terminal device comprising two (or more) magnetically coupled coils.

Transformers can be very efficient at transferring power (efficiencies typically range from 95-99%).

- 1. Change AC voltage amplitudes to a useful value.
- 2. Electrically isolate two sides of a circuit (can reduce shock hazards).
- 3. Transform impedances to maximize power transfer.

ELEC 202: Magnetically Coupled Circuits

Application: Power Distribution

Transmitting power at higher voltages has two significant advantages, both due to the reduced current required for a given power:

- 1. Conductor size can be reduced leading to material resource savings.
- 2. Transmission I^2R losses are reduced.

ELEC 202: Magnetically Coupled Circuits

Slide 8.15

Ideal Transformer Polarity

Proper voltage polarity and current directions:

Use dot convention!

ELEC 202: Magnetically Coupled Circuits

Slide 8.16

Obtain V_1 and V_2 in the circuit. Find the complex power supplied by the

Solve for V, V2, I1, I2 V1= 63.09 \(28.65° \(\) V2 = 94.642 -151.4" V

ELEC 202: Magnetically Coupled Circuits

Slide 8.21

$$I_1 = 3.98 \angle 5.85^{\circ} A$$
 $I_2 = 2.59 \angle -174 | A$
 $I_3 = 1.91 \angle -1.24^{\circ} A$
 $I_6 = I_1 + I_3$
 $I_6 = 1.94 \angle -1.94 = 877 \angle 19.11^{\circ} VA$

Example: Ideal Xformer

Obtain I_1 , I_2 and V_0 in the circuit. Find the average power received by the 160 ohms resistor.

Use equivalent circuit to reflect the impressive from the circuit.

ELEC 202: Magnetically Coupled Circuits

$$\frac{V_{o}}{V_{1}} = -N_{1} \qquad \Rightarrow \qquad V_{o} = -N_{1} V_{1} = -60 \text{ V}$$

$$\frac{I_{o}}{I_{1}} = -\frac{I_{1}}{I_{1}} \qquad \Rightarrow \qquad I_{o} = -\frac{I_{1}}{I_{1}} = -1.2 \text{ A}$$

$$V_{L} = V_{0} - I_{0} \cdot I_{1} = -113.2 \text{ V}$$

$$V_{3} = -N_{2} V_{L} = 573.4 \text{ V}$$

$$I_{2} = \frac{V_{2}}{I_{0}0} = 0.36 \text{ A}$$

$$P = |I_{2}|^{2} \cdot P_{L} = 0.36^{2} \cdot I_{0}0 = 70.736 \text{ W}$$

ELEC 202: Magnetically Coupled Circuits

$$\frac{V_{1}}{V_{1}} = \frac{1}{h}$$

$$\frac{1}{2} = \frac{1}{h}$$

$$\frac{1}{$$