Does Reducing Curricular Complexity Impact Student Success in Computer Science?

SIGCSE Technical Symposium 2025

Sumukhi Ganesan Khoury College of Computer Sciences Northeastern University ganesan.su@northeastern.edu

Catherine Gill
Center for Inclusive Computing
Northeastern University
c.gille@northeastern.edu

Albert Lionelle
Khoury College of Computer Sciences
Northeastern University
a.lionelle@northeastern.edu

Carla Brodley
Center for Inclusive Computing
Northeastern University
c.brodley@northeastern.edu

Northeastern University

Center for Inclusive Computing

Khoury College of

Computer Sciences

Curricular Redesign

2021: Colorado State University new BSCS curriculum

Reasons of the revamp:

- Course prerequisite overly complicated (2018)
 - · Advising / forcing when something is taken
 - Hidden prerequisite nightmare (e.g. 21 credit minor in CS was 40+ credits)
- Wanted to add
 - · More flexibility to students
 - Concentrations
 - · Additional courses

Q1: What did they do?

What are some metrics to help with comparison? (curricular complexity)

Q2: Did it hurt or help retention of students?

Q3: Did it attract more students from undecided?

Redesign Philosophy

Reduce Prerequisites to:

- Only what is needed for the majority of content
- Remove any prereq that is about 'when' not 'what'
- Make some prerequisites either/or for later courses

Pathway approach

- Try to let students progress even if stuck on topics
- All pathways required, but keep mostly independent
 - · Algorithms (math kept to this pathway)
 - Software Engineering
 - Systems

Add required ethics course (Gen Ed) Add optional CS 0 course (Gen Ed) Add additional upper division options Course Outcomes – Fixed Intentionally no change!

Overall Design

Core Requirement

CS Upper Division

Minimize Prerequisites

Technical Electives

Concentrations added – specific to primary research areas in the department

General, Al/ML, Cybersecurity, Education, Human Centered Computing, Software Engineering, Systems

CS Core

How did this change the general BSCS?

	Old Curriculum (2017)	# of Credits	New Curriculum (2021)	# of Credits	Change Summary?
Core Lower Division Courses	CS1, CS2, Discrete Math, Computer Org, Software Development	5 courses 20 credits	CS 1, CS 2, Discrete Math, Computer Org, Software Dev, Ethics (GE), Optional: CS 0 (GE)	6-7 courses 23-26 Credits 3-6 credits overlap with general university requirements (GE)	INCREASED+ 1-2 CS coursesOverlapped with GE* Improves transfers
Core Upper Division	Algorithms, Operating Sys, Security, Software Eng, 4 'pick list' CS courses	8 courses 28 credits	Algorithms, Operating Sys, Software Eng, 6 'pick list' CS courses	9 courses 31-32 credits	INCREASED+ 1 course+ added more flexibility
Math	Calc I, Calc II, Stats/Probability, Linear Algebra	4 courses 13-15 credits	Calc I, Stats/Probability, Linear Algebra	3 courses 11 credits	REDUCED Moved Calc II as optional!

Additional modifications to technical electives and natural science credits – in paper Calc II was moved to technical electives, but *required for AI concentration*

Dataset

Six years of student data

• Fall 2017 - Fall 2023

All students taking CS or math courses

• ~40,000 students

Students who majored in BSCS

- Old program (Fa17- Fa21) 1958
- New program (Fa21- Fa23) 1052

Majored in Undeclared Seeking CS (USCS)

- Old program (Fa17- Fa21) 307
- New program (Fa21- Fa23) 214

Measuring the Impact

Degree Changes

- Curricular Analytics for comparing changes
- Degree Structure Complexity
- Course Centrality

Attrition / Retention

- Declared CS but later left.
- Terminal courses
 - Last course taken before leaving
- Correlation between course complexity and attrition?

Attraction

- Undeclared Seeking Computer Science (USCS)
- Compared conversion rates USCS → CS Major

Measuring Degree Structure Changes

60% reduction in program structural complexity!

Complexity = 415 multiple blocking courses

Complexity = 164 minimal blocking courses

Terminal Courses?

Driven out by Math

Deciding after CS0

Did retention/attraction increase?

Program retention increased!

- 67% Old degree
- 98% New degree

Undeclared seeking CS increased attraction!

- 47% converted in old degree
- 69% converted in new degree

Overall numbers increasing

- Fall 2015, 725, 12% women (88)
- Fall 2023, 1022, 19% women (198)

Students still reporting similar job placements

Key Takeaways

- Reducing Complexity works
 - o 98% retention rate (up from 67%).
 - 69% Undeclared converted to CS (up from 47%).
- ✓ Flexibility does not compromise Rigor
 - Course outcomes & content remained unchanged.
 - Pathways model allow continued progress

- Math need not be a barrier
 - Math-heavy prerequisites were moved until later
 - CS 0 gave students a computer science focused entry point.
 - Fewer students left CS due to calculus requirements.
- ✓ Use Curricular Complexity tools
 - Identify easier, helping remove bottlenecks.

Northeastern University

Center for Inclusive Computing

