山西省2024年中考考前适应性训练试题

数学参考答案及评分标准

一、选择题

题号	1	2	3	4	5	6	7	8	9	10
选项	С	A	С	В	В	D	С	В	A	D

二、填空题

11. $2\sqrt{3}$ 12. (4,-1) 13. $4(1+x)^2 = 5.08$ 14. $\frac{1}{2}$ 15. $\frac{52}{15}$

三、解答题

17. 解:(1)如答图,AF即为所求.

2分 (2)RF=CF 3分

数学答案 第1页(共6页)

理由如下:由 (1) 中作图可知, $AF\perp BD$.
∴∠AFB = 90°. 4分
$\therefore \angle BAF + \angle ABF = 90^{\circ}.$
$\therefore \angle ABC = 90^{\circ} , \therefore \angle ABF + \angle CBE = 90^{\circ}.$
∴ ∠BAF = ∠CBE. 5分
$\therefore CE \perp BE$, $\therefore \angle BEC = 90^{\circ}$.
$\therefore \angle AFB = \angle BEC.$
在 $\triangle ABF$ 和 $\triangle BCE$ 中, $\left\{ \angle AFB = \angle BEC, \\ \angle BAF = \angle CBE, \right\}$
AB = BC,
∴ $\triangle ABF \cong \triangle BCE(AAS)$. 6分
∴ BF = CE. 7分
18. 解 :(1)设无人机喷洒农药时,平均每亩地的用药量为 x mL
根据题意,列方程为 $\frac{300}{x} = \frac{450}{x+10}$. 3分
解得 x = 20. 4分
经检验,x=20是原分式方程的根5分
答:无人机喷洒农药时,平均每亩地的用药量为20 mL. ····· 6分
(2)设采购A型号喷药无人机a台7分
根据题意,得 15 000 a + 20 000(20 - a) \leq 360 000.
解得 $a \ge 8$. 9分
答:最少需采购A型号喷药无人机8台
19. 解 :如答图,延长 FE 交 AB 于点 G, 1分 摄像头
根据题意可知四边形 $GBDE$ 是矩形, $\angle BAF = 70^{\circ}$, A
$\angle BAE = \angle BAF - \angle EAF = 30^{\circ},$
$\therefore BG = ED = 0.4.$
$\therefore AG = AB - BG = 1.3 - 0.4 = 0.9. \qquad 2 \text{ ft} \qquad B \qquad D$
在 Rt $\triangle AGE$ 中 , $\angle GAE = 30^{\circ}$, $\angle AGE = 90^{\circ}$,
$\therefore \tan 30^\circ = \frac{GE}{AG}.$ 3 \(\frac{\frac{1}{2}}{2}\)
∴ $GE \approx \frac{1.73}{3} \times 0.9 = 0.519$. 4/3
在Rt $\triangle AGF$ 中, $\angle GAF = 70^{\circ}$, $\angle AGF = 90^{\circ}$,
∴ $\tan 70^\circ = \frac{GF}{AG}$. 5 分
∴ $GF \approx 2.75 \times 0.9 = 2.475$. 6 分

数学答案 第2页(共6页)

	∴ $EF = GF - GE = 2.475 - 0.519 \approx 1.96 (m)$.	
	答:摄像头识别车牌的有效范围 $\it EF$ 的长为 $\it 1.96m$.	
20.	解:(1)5 30 15 33分	
	$(2)3 + 10 + 8 = 21(\begin{subarray}{c} \end{subarray}$	
	$800 \times \frac{21}{50} = 336().$ 4	
	答:该小区经常参加健身锻炼的约为336人5分	
	(3)小婷的判断不正确. 6分	
	理由如下(答案不唯一):	
	例如:年龄在35岁~50岁的人群中,经常了解健身知识的占比为 $\frac{12}{30}$ ×100% = 40%.	
	年龄在50岁以上的人群中,经常了解健身知识的占比为 $\frac{8}{15} \times 100\% \approx 53.3\%$.	
	因为40% < 53.3%, 所以小婷的判断不正确. 8分	
	年龄在35以下的人群中,经常参加健身锻炼的占比为 $\frac{3}{5}$ ×100% = 60%.	
	年龄在35岁~50岁的人群中,经常参加健身锻炼的占比为 $\frac{10}{30} \times 100\% \approx 33.3\%$.	
	因为33.3% < 60%, 所以小婷的判断不正确. 8分	
21.	解: (1)AC	
	(2)①设"二号"柳树的树高 y 与胸径 x 的一次函数为 y = kx + b(k ≠ 0),将表格中的数	
	据按 x 的值从小到大排序后,均分为两组代人 $y = kx + b$,得到	
	第一组: $4.5 = 14k + b$, $5.8 = 18k + b$, $7.55 = 25k + b$;	
	第二组: $9.3 = 32k + b$, $10.75 = 38k + b$, $12.3 = 45k + b$.	
	分别将两组中的三个式子相加,得到方程组 $\begin{cases} 17.85 = 57k + 3b, \\ 32.35 = 115k + 3b. \end{cases}$	
	解得 $\begin{cases} k = 0.25, \\ b = 1.2. \end{cases}$ 4分	
	从而得到"二号"柳树的树高 y 与胸径 x 的一次函数模型为 $y = 0.25x + 1.2$. ····· 5分	
	②将 $x = 50$ 代入 $y = 0.25x + 1.2$ 得 $y = 13.7$. 6分	
	∵ 13.7 < 14,	
	::"二号"柳树生长不良	
22.	解 :(1)证明:::四边形 ABCD 是矩形,	
	∴ $AD//BC$, $\angle B = \angle D = 90^{\circ}$	

数学答案 第3页(共6页)

由折叠的性质可知 $\angle AFE = \angle D = 90^{\circ}$, $\angle FHG = \angle B = 90^{\circ}$,
$\therefore \angle FHG = \angle AFE.$
∴ GK//FE. 2分
由折叠的性质可知 $\angle FAE = \angle DAE, \angle BFG = \angle AFG,$
$\therefore \angle FAE = \frac{1}{2} \angle DAF, \angle AFG = \frac{1}{2} \angle AFB.$
$\therefore AD/\!/BC$,
∴ $\angle DAF = \angle AFB$
$\therefore \angle FAE = \angle AFG.$
∴ GF//KE
:. 四边形 <i>EFGK</i> 是平行四边形 5分
(2)AG = DE.
理由如下: :: 四边形 ABCD 是矩形,
$\therefore AB/\!\!/CD$.
∴ ∠BAK = ∠AED.
由折叠的性质可知 $\angle AED = \angle AEF$, $DE = FE$.
∴ ∠BAK = ∠AEF. 8分
·:四边形 EFGK 是平行四边形,
∴ $GK = EF$, $GK//EF$
$\therefore \angle AKG = \angle AEF.$
$\therefore \angle BAK = \angle AKG.$
$\therefore AG = GK.$ 10分
$\therefore AG = DE$. 11分
$(3)\frac{2\sqrt{3}}{3}$. 13 $\frac{1}{3}$
23. 解 :(1)将 $y = 0$ 代入 $y = -\frac{3}{4}x^2 + \frac{9}{4}x + 3$ 得 $-\frac{3}{4}x^2 + \frac{9}{4}x + 3 = 0$,
解得 $x_1 = -1, x_2 = 4$.
\therefore 点 A 在点 B 的左侧,
∴ 点 <i>A</i> , <i>B</i> 的坐标分别为(-1,0),(4,0). ······ 2分
将 $x = 0$ 代入 $y = -\frac{3}{4}x^2 + \frac{9}{4}x + 3$ 得 $y = 3$. 3分
:. 点 C 的坐标为(0,3). ····· 4分

数学答案 第4页(共6页)

(2)方法一:设直线
$$BC$$
 的函数表达式为 $y = kx + b(k \neq 0)$,将点 $B(4,0)$, $C(0,3)$ 代人

得
$$\begin{cases} 4k+b=0, \\ b=3. \end{cases}$$
 5分

解得
$$\begin{cases} k = -\frac{3}{4}, \\ b = 3. \end{cases}$$

::点P的横坐标为m,

∴点
$$P$$
的坐标为 $\left(m, -\frac{3}{4}m^2 + \frac{9}{4}m + 3\right)$.

$$\therefore y = -\frac{3}{4}x^2 + \frac{9}{4}x + 3 = -\frac{3}{4}\left(x - \frac{3}{2}\right)^2 + \frac{75}{16},$$

∴二次函数
$$y = -\frac{3}{4}x^2 + \frac{9}{4}x + 3$$
 的对称轴是直线 $x = \frac{3}{2}$.

 $\therefore PF = EF$,

:.点
$$F$$
为直线 $x = \frac{3}{2}$ 与直线 $y = -\frac{3}{4}x + 3$ 的交点. 7分

将
$$x = \frac{3}{2}$$
代入 $y = -\frac{3}{4}x + 3$ 得 $y = -\frac{3}{4} \times \frac{3}{2} + 3 = \frac{15}{8}$.

$$\therefore F\left(\frac{3}{2}, \frac{15}{8}\right) \qquad \qquad \qquad 8 \,$$

:: PF//x轴,

$$\therefore -\frac{3}{4}m^2 + \frac{9}{4}m + 3 = \frac{15}{8}.$$
 9 \(\frac{1}{2}\)

解得
$$m_1 = \frac{3 + \sqrt{15}}{2}$$
 (舍), $m_2 = \frac{3 - \sqrt{15}}{2}$.

$$\therefore m$$
的值为 $\frac{3-\sqrt{15}}{2}$. 10分

方法二:设直线 BC 的函数表达式为 $y = kx + b(k \neq 0)$,将点 B(4,0), C(0,3)代入得

$$\begin{cases} 4k+b=0, \\ b=3 \end{cases}$$
 5 \(\frac{1}{2}\)

解得
$$\begin{cases} k = -\frac{3}{4}, \\ h = 3. \end{cases}$$

::点P的横坐标为m,

∴点
$$P$$
的坐标为 $\left(m, -\frac{3}{4}m^2 + \frac{9}{4}m + 3\right)$

:: PE//x轴,交BC于点F,与抛物线另一个交点为E,

∴ 点
$$F$$
 , E 的 纵坐标为 $-\frac{3}{4}m^2 + \frac{9}{4}m + 3$.

在
$$y = -\frac{3}{4}x + 3$$
中, 当 $y = -\frac{3}{4}m^2 + \frac{9}{4}m + 3$ 时,解得 $x = m^2 - 3m$.

$$\therefore F\left(m^2 - 3m, -\frac{3}{4}m^2 + \frac{9}{4}m + 3\right). \qquad 7 \, \text{f}$$

$$y = -\frac{3}{4}x^2 + \frac{9}{4}x + 3 = -\frac{3}{4}\left(x - \frac{3}{2}\right)^2 + \frac{75}{16},$$

∴二次函数
$$y = -\frac{3}{4}x^2 + \frac{9}{4}x + 3$$
 的对称轴是直线 $x = \frac{3}{2}$

∴ 点
$$E\left(3-m, -\frac{3}{4}m^2 + \frac{9}{4}m + 3\right)$$
. 8分

::点P在第二象限,

$$\therefore PF = m^2 - 3m - m = m^2 - 4m, EF = 3 - m - (m^2 - 3m) = -m^2 + 2m + 3.$$

$$PF = EF$$
.

解得
$$m_1 = \frac{3 + \sqrt{15}}{2}$$
 (舍), $m_2 = \frac{3 - \sqrt{15}}{2}$.

$$\therefore m$$
 的值为 $\frac{3-\sqrt{15}}{2}$. 10 分

(3)点
$$D$$
的坐标为 $\left(0, -\frac{16}{3}\right)$ 或 $(0, -2)$. 12分