Lemma 1: Let $f: \mathbb{R}^d \to [0, \infty]$ be a non-negative measurable function and $E \subset \mathbb{R}^d$ a set with measure 0. Then we have that

$$\int_{E} f(x) \, dx = 0.$$

Proof: Since m(E) = 0, we have that $f\chi_E$ is zero almost everywhere, and thus by [1], we see

$$\int_{E} f(x) dx = \int f(x) \chi_{E}(x) dx = \int |f(x) \chi_{E}(x)| dx = 0.$$

Lemma 2: Fix a measurable function $f: \mathbb{R}^d \to \mathbb{R}$ and $\varepsilon > 0$. Define a collection of disjoint non-negative intervals $\{I_k\}_{k \in \mathbb{N}_0}$ where $\sup I_k \leq \inf I_{k+1}$, and denote $n_k := \inf I_k$ and $n'_k := \sup I_k$. Also define $P_k := f^{-1}(I_k)$ and $P := \bigcup_{k \in \mathbb{N}_0} P_k$. If $\{m(P_k)\}_{k \in \mathbb{N}_0}$ is a monotone sequence, then we have that $\sum_{k \in \mathbb{N}_0} n_k m(P_k) < \infty$ if and only if f is integrable on P.

Proof: Assume the former. Since the P_k are disjoint, we can see that

$$\int_{P} f(x) dx = \sum_{k \in \mathbb{N}_{0}} \int_{P_{k}} f(x) dx \le \sum_{k \in \mathbb{N}_{0}} n_{k} m(P_{k}) < \infty,$$

showing that f is integrable over P. Conversely, assume f is integrable over P. In the case where $m(P_k)$ is non-decreasing, we have that

$$\infty > \int_{P} f(x) \, dx \ge \sum_{k \in \mathbb{N}_{0}} n'_{k} m(P_{k}) \ge \sum_{k \in \mathbb{N}} n'_{k} m(P_{k}) \ge \sum_{k \in \mathbb{N}} n_{k-1} m(P_{k-1}) = \sum_{k \in \mathbb{N}_{0}} n'_{k} m(P_{k}) \ge \sum_{k \in \mathbb{N}_{0}} n'_{k} m(P_{k})$$

and thus

$$2\sum_{k\in\mathbb{N}_0}(2^k\varepsilon)m(E_k)=\sum_{k\in\mathbb{N}_0}(2^{k+1}\varepsilon)m(E_k)<\infty,$$

completing the proof

1, 2) Define the functions f_a and F_a on \mathbb{R}^d as

$$f_a := \begin{cases} |x|^{-a} & |x| \le 1\\ 0 & \text{otherwise} \end{cases}$$
 and $F_a := \frac{1}{1+|x|^a}$,

then f_a is integrable if and only if 0 < a < d, and f_a is integrable if and only if a > d. Proof: We have that both f_a and F_a are non-negative and measurable, thus by additivity and Lemma 1,

$$\int f_a = \int_{\mathbb{R}^d \setminus \{0\}} f_a + \int_{\{0\}} f_a = \int_{\mathbb{R}^d \setminus \{0\}} f_a + 0 = \int_{\mathbb{R}^d \setminus \{0\}} f_a,$$

and similarly $\int F_a = \int_{\mathbb{R}^d \setminus \{0\}} F_a$. Thus, it suffices to show that these functions are integrable outside any open ball centered at the origin.

We first consider f_a and assume $a \neq 0$. Fix $\varepsilon > 0$, and for integers $k \geq 0$, define the collection of sets

$$I_k = \left\{ x \in \mathbb{R}^d : 2^k \varepsilon \le f_a(x) < 2^{k+1} \varepsilon \right\}.$$

Solving for |x|, we see that

$$I_k = \left\{ x : (2^{k+1}\varepsilon)^{-1/a} < |x| \le (2^k\varepsilon)^{-1/a} \right\},\,$$

and denoting $A = \{x : 1 < |x| \le 2^{1/|a|}\}$, we have by relative-dilation invariance that

$$m(I_k) = (2^{k+1}\varepsilon)^{-d/a} m(A),$$

thus

$$\sum_{k \in \mathbb{N}_0} (2^{k+1}\varepsilon) m(I_k) = \sum_{k \in \mathbb{N}_0} (2^{k+1}\varepsilon)^{-(d/a)+1} m(A) = \frac{m(A)\varepsilon^{1-(d/a)}}{2} \sum_{k \in \mathbb{N}} (2^k)^{1-(d/a)},$$

but the rightmost series only converges when 0 < a < d. Thus, by **Lemma 2**, we have that $\int_{|x| \ge \varepsilon} f_a(x) dx$ is bounded by the sum, and thus is integrable when 0 < a < d. Conversely, suppose f_a is integrable, then again by **Lemma 2**,

$$\sum_{k \in \mathbb{N}_0} (2^k \varepsilon) m(I_k) = \frac{1}{2} \sum_{k \in \mathbb{N}_0} (2^{k+1} \varepsilon) m(I_k) = \frac{m(A) \varepsilon^{1 - (d/a)}}{4} \sum_{k \in \mathbb{N}} (2^k)^{1 - (d/a)} < \infty,$$

which we previously established to be true only when 0 < a < d, thus the case for f_a has been proven.

We now turn our attention to F_a . Let g(x) = x/(1+x) and define h(x) = g(x+r) where $r = \varepsilon/(1-\varepsilon)$. We can see that $h(0) = \varepsilon$ and that $h(x) \to 1$ as $x \to \infty$. Fix $0 < \varepsilon < 1$ and define for each $k \in \mathbb{N}_0$ the set

$$J_k = \left\{ x \in \mathbb{R}^d : h(k)\varepsilon \le F_a(x) < h(k+1)\varepsilon \right\}$$

3) Since $\eta_1(x) = \min\{f(x), \eta(x)\}$, we have for fixed $x \in \mathbb{R}^d$ that $\eta_1(x) = f(x)$ or $\eta_1(x) = \eta(x)$. By assumption g is non-negative, and so in the case where $\eta_1(x) = \eta(x)$, we have that $\eta_2(x) = \eta(x) - \eta_1(x) = \eta(x) - \eta(x) = 0 \le g(x)$, thus showing that

 $\eta_2(x) \leq g(x)$. Otherwise, $\eta_1(x) = f(x)$. We have $\eta \leq f + g$ by definition, thus $\eta - f \leq g$, which implies $\eta_2(x) = \eta(x) - \eta_1(x) = \eta(x) - f(x) \leq g(x)$ and $\eta_2(x) \leq g(x)$.

4) Let $\{E_k\}_{k\in\mathbb{N}}$ be a collection of measurable sets in \mathbb{R}^d where $\sum_{k\in\mathbb{N}} m(E_k) < \infty$ and define the set E as

$$E = \left\{ x \in \mathbb{R}^d : x \in E_k \text{ for infinitely many } k \right\},\,$$

then m(E) = 0.

Proof: If a point x belongs to infinitely many E_k , then $\chi_{E_k}(x) = 1$ for infinitely many k, and thus $\sum_{k \in \mathbb{N}} \chi_{E_k}(x) = \infty$. Conversely, if $\sum_{k \in \mathbb{N}} \chi_{E_k}(x) = \infty$, then $\chi_{E_k}(x) = 1$ for infinitely many k, thus x is contained in infinitely many E_k . By assumption, $\sum_{k \in \mathbb{N}} m(E_k) < \infty$, thus we have

$$\sum_{k\in\mathbb{N}} m(E_k) = \sum_{k\in\mathbb{N}} \int \chi_{E_k} < \infty,$$

and thus by Corollary 1.10 we have shown that $\sum_{k\in\mathbb{N}}\chi_{E_k}<\infty$ for almost all x, proving m(E)=0.

5) Fix $\varepsilon > 0$, then the function $f: \mathbb{R}^d \to \mathbb{R}$, defined as

$$f(x) = \begin{cases} \frac{1}{|x|^{d+1}} & x \neq 0\\ 0 & \text{otherwise} \end{cases}$$

is integrable over all $x \in \mathbb{R}^d$ where $|x| \ge \varepsilon$. We also have that

$$\int_{|x| \ge \varepsilon} f(x) \, dx \le \frac{C}{\varepsilon}$$

for some constant C.

Proof: For integers $k \geq 0$, define the collection of disjoint sets

$$A_k = \left\{ x \in \mathbb{R}^d : 2^k \varepsilon \le |x| < 2^{k+1} \varepsilon \right\},\,$$

and let $g: \mathbb{R}^d \to \mathbb{R}$ be a function defined as

$$g(x) = \sum_{k \in \mathbb{N}_0} \frac{1}{(2^k \varepsilon)^{d+1}} \chi_{A_k}(x).$$

If $|x| \geq \varepsilon$, then x is contained in A_k for some k, thus $|x| \geq 2^k \varepsilon$ and

$$g(x) = \frac{1}{(2^k \varepsilon)^{d+1}} \chi_{A_k}(x) = \frac{1}{(2^k \varepsilon)^{d+1}} \ge \frac{1}{|x|^{d+1}} = f(x),$$

showing that $f(x) \leq g(x)$. By monotonicity, we have $\int_{|x| \geq \varepsilon} f \leq \int_{|x| \geq \varepsilon} g$. It now suffices to show $\int_{|x| > \varepsilon} g < \infty$.

Denote $A = \{x \in \mathbb{R}^d : 1 \le |x| < 2\}$, we have that $A_k = 2^k \varepsilon A$, and thus by relativedilation invarance we have $m(A_k) = (2^k \varepsilon)^d m(A)$. By **Corollary 10**, we have

$$\int_{|x| \ge \varepsilon} g(x) \, dx = \int_{|x| \ge \varepsilon} \sum_{k \in \mathbb{N}_0} \frac{1}{\left(2^k \varepsilon\right)^{d+1}} \chi_{A_k}(x) \, dx = \sum_{k \in \mathbb{N}_0} \int_{|x| \ge \varepsilon} \frac{1}{\left(2^k \varepsilon\right)^{d+1}} \chi_{A_k}(x) \, dx$$

$$= \sum_{k \in \mathbb{N}_0} \frac{m(A_k)}{(2^k \varepsilon)^{d+1}} = m(A) \sum_{k \in \mathbb{N}_0} \frac{\left(2^k \varepsilon\right)^d}{\left(2^k \varepsilon\right)^{d+1}} = m(A) \sum_{k \in \mathbb{N}_0} \frac{1}{2^k \varepsilon} = \frac{2m(A)}{\varepsilon},$$

and since m(A) is finite, we have shown that $\int_{|x|\geq \varepsilon} g = C/\varepsilon < \infty$ where C = 2m(A), thus completing the proof.

References

[1] https://proofwiki.org/wiki/Measurable_Function_Zero_A.E._iff_ Absolute_Value_has_Zero_Integral. Accessed on 10/30/24.