1) Допирателна към окръжност

Определение. Права, която има само една обща точка с окръжност, се нарича **допирателна** към окръжността.

Общата им точка се нарича допирна точка.

Нека окръжността е зададена с нормалното си уравнение $(x-\alpha)^2 + (y-\beta)^2 = R^2$, където (α,β) е центърът, а R е радиусът на окръжността.

Може да се докаже следната

Теорема. Правата $t: (x_0 - \alpha)(x - \alpha) + (y_0 - \beta)(y - \beta) = R^2$ е допирателна към окръжността $k: (x - \alpha)^2 + (y - \beta)^2 = R^2$ в точката $M_0(x_0, y_0)$.

1. Да се намери уравнението на допирателната към окръжността с уравнение $x^2+y^2-4x-6y+11\frac{3}{4}=0 \text{ в точката } M(1,\,2\frac{1}{2})\,.$

Решение. Записваме уравнението на окръжността в нормален вид $x^2-4x+4+y^2-6y+9-13+11\frac{3}{4}=0\,,\;\;(x-2)^2+(y-3)^2=\frac{5}{4}\,.$

Координатите на центъра на окръжността са (2,3) и радиусът е $R=\frac{\sqrt{5}}{2}$. Уравнението на допирателната в точката $M(1,\,2\frac{1}{2})$ е:

$$t: (1-2)(x-2)+(2\frac{1}{2}-3)(y-3)=\frac{5}{4}$$
 или $t: 4x+2y-9=0$.

- 2. Да се намери допирателната към дадената окръжност в дадената точка.
 - a) $x^2 + y^2 = 8$, (2, 2);
 - 6) $(x-1)^2 + (y-1)^2 = 8$, (3, 3);
 - B) $(x+2)^2 + (y-7)^2 = 10.(1.8)$:
 - r) $x^2 + y^2 8x + 16y + 60 = 0$, (2, -12).
- **3.** Да се намерят допирателните към окръжността $(x+7)^2 + (y-1)^2 = 50$, спуснати от точка A(-22,-4), външна за окръжността и да се намерят допирните точки.

Решение.

Нека точка $M(x_0,y_0)$ е някоя от търсените допирни точки, тогава уравнението на допирателната в M е $(x_0+7)(x+7)+(y_0-1)(y-1)=50$.

Точката A(-22, -4) лежи на допирателната $\Rightarrow (x_0 + 7)(-22 + 7) + (y_0 - 1)(-4 - 1) = 50$.

M е точка от окръжността $\Rightarrow (x_0 + 7)^2 + (y_0 - 1)^2 = 50$.

Последните две равенства образуват система, чиито решения са координатите на допирните точки: $(x_0,y_0)=(-12,6)$ и $(x_0,y_0)=(-8,-6)$.

Допирателната в (-12, 6) е (-12+7)(x+7)+(6-1)(y-1)=50, x-y+18=0.

Допирателната в (-8, -6) е (-8+7)(x+7)+(-6-1)(y-1)=50, x+7y+50=0.

Модул III. Практическа математика

- Да се намерят допирателните към дадената окръжност, спуснати от точка A, външна за окръжността и да се намерят допирните точки.
 - a) $(x+2)^2 + (y+10)^2 = 25$, A(-3,-3);
 - 6) $x^2 + y^2 2x + 16y + 25 = 0$, A(-3, -16);
 - B) $(x-6)^2 + (y-3)^2 = 37$, A(13,-2).
- 5. Да се намери пресечната точка на допирателните към дадената окръжност в дадените точки.
 - a) $(x-1)^2 + (y+3)^2 = 20, (5, -1), (-1, 1);$
 - 6) $x^2 + y^2 2x 16y + 40 = 0.$ (-3. 5). (4. 4):
 - B) $x^2 + y^2 10y = 0.(-3, 9), (-4, 2)$:
 - $(x-2)^2 + (y-5)^2 = 20 \cdot (4, 9) \cdot (-2, 3).$
- Намерете общите уравнения на допирателните към окръжността $x^2 + y^2 = 13$, успоредни на правата 2x-3y+5=0.

Решение. Нека точка $M(x_0, y_0)$ е една от допирните точки на търсените допирателни към окръжността. Уравнението на допирателната в точката $M(x_0, y_0)$ е $x_0x + y_0y = 13$. Тази права е успоредна на правата 2x - 3y + 5 = 0 \Rightarrow коефициентите пред x и y са пропорционални:

$$\frac{x_0}{2} = \frac{y_0}{-3}$$
, откъдето $y_0 = -\frac{3x_0}{2}$.

 $M(x_0, y_0)$ е точка от окръжността $x^2 + y^2 = 13$ \Rightarrow $x_0^2 + y_0^2 = 13$, $x_0^2 + \frac{9}{4}x_0^2 = 13$, $x_0 = \pm 2$

 $\Rightarrow y_0 = \mp 3$, допирните точки са $M_1(2,-3)$, $M_2(-2,3)$.

Допирателната в $M_1(2,-3)$ е 2x-3y-13=0.

Допирателната в $M_2(-2,3)$ е 2x-3y+13=0.

- 7. Намерете общите уравнения на допирателните към дадената окръжност, успоредни на дадената права.
 - a) $x^2 + y^2 = 50$, 5x + 5y 12 = 0;
 - б) $(x+3)^2 + v^2 = 9$. v = 4:
 - B) $x^2 + y^2 + 10x 2y 46 = 0$, x + y 3 = 0.
- **8.** Правата 3x y 10 = 0 е допирателна към окръжността $x^2 + y^2 = 10$ в точката (3, -1):
- \boxtimes **A)** (-3,-1)
- **Б)** (-3,1)
- **B)** (3,-1)
- **Г)** (3,1)
- **9.** Уравнението на допирателната към окръжността $x^2 + y^2 = 29$ в точка (2,5) е:
- **A)** 2x+5y-29=0 **B)** 2x-5y+29=0 **B)** 2x+5y+29=0 **C)** 2x-5y-29=0

- **10.** Уравненията на правите, допирателни към окръжността $x^2 + y^2 = 9$ през външната точка (-6, -3), ca:
- \boxtimes **A)** y = -6 u 4x 3y + 15 = 0

b) v = -3 и 6x + 3v + 9 = 0

B) y = -9 и 6x + 3y - 9 = 0

 Γ) y = -3 id 4x - 3y + 15 = 0