MOBILE PHONES PRICE RANGE CLASSIFICATION

Martyna Leśniak Urszula Szczęsna

DATA

Dane pochodzą z kaggle : https://www.kaggle.com/datasets/ahmedghonem01/phones-price-classification

20 kolumn danych numerycznych z parametrami telefonów

target to price_range o wartościa z zakresu 0-3

Dane zostały podzielone na dane treningowe, testowe i treningowe (80/10/10)

Data	columns (total	21 columns):	
#	Column	Non-Null Count	Dtype
0	battery_power	1600 non-null	int64
1	blue	1600 non-null	int64
2	clock_speed	1600 non-null	float64
3	dual_sim	1600 non-null	int64
4	fc	1600 non-null	int64
5	four_g	1600 non-null	int64
6	int_memory	1600 non-null	int64
7	m_dep	1600 non-null	float64
8	mobile_wt	1600 non-null	int64
9	n_cores	1600 non-null	int64
10	pc	1600 non-null	int64
11	px_height	1600 non-null	int64
12	px_width	1600 non-null	int64
13	ram	1600 non-null	int64
14	sc_h	1600 non-null	int64
15	sc_w	1600 non-null	int64
16	talk_time	1600 non-null	int64
17	three_g	1600 non-null	int64
18	touch_screen	1600 non-null	int64
19	wifi	1600 non-null	int64
20	price_range	1600 non-null	int64
dtype	es: float64(2),	int64(19)	

EDA

Rozkład klas jest równomierny -> główna metryka accuracy roztrzał liczbowy pomiędzy różnymi parametrami jest duży

korelacja pomiędzy większąścią parametrów jest znikoma

Parametry o największej korelacji ze zmienną celu: ram, battery power, i pixel resolution

battery_power -		0.0	0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	0.1	0.0	-0.0	-0.0	0.2
blue - (0.0		0.0	0.0	0.0	0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	0.0	-0.0	0.0	0.0	-0.0	0.0	-0.0	0.0
clock_speed - (0.0	0.0		-0.0	-0.0	-0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.0	0.0	-0.0	-0.0
dual_sim(0.0	0.0	-0.0		-0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0	0.0
fc - 0	0.0	0.0	-0.0	-0.0		-0.0	-0.0	-0.0	0.0	-0.0	0.6	-0.0	-0.0	0.0	-0.0	-0.0	-0.0	0.0	-0.0	0.0	0.0
four_g -(0.0	0.0	-0.0	0.0	-0.0		0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0	0.0	0.0	0.0	-0.0	0.6	0.0	-0.0	0.0
int_memory(0.0	0.0	0.0	-0.0	-0.0	0.0		0.0	-0.0	-0.0	-0.0	0.0	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	0.0	0.0
m_dep - 0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	0.0		0.0	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	0.0	-0.0	-0.0	-0.0	0.0
mobile_wt - 0	0.0	-0.0	0.0	-0.0	0.0	-0.0	-0.0	0.0		-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0
n_cores(0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0		-0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	0.0	-0.0	0.0
pc - 0	0.0	-0.0	-0.0	-0.0	0.6	-0.0	-0.0	0.0	0.0	-0.0		-0.0	0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	0.0	0.0
px_height - (0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0	0.0	0.0	-0.0	-0.0		0.5	-0.0	0.1	0.0	-0.0	-0.0	0.0	0.1	0.1
px_width(0.0	-0.0	-0.0	0.0	-0.0	0.0	-0.0	0.0	0.0	0.0	0.0	0.5		0.0	0.0	0.0	0.0	0.0	-0.0	0.0	0.2
ram(0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0	-0.0	0.0	0.0	-0.0	0.0		0.0	0.0	0.0	0.0	-0.0	0.0	0.9
sc_h(0.0	-0.0	-0.0	-0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	0.0	0.1	0.0	0.0		0.5	-0.0	0.0	-0.0	0.0	0.0
sc_w(0.0	0.0	-0.0	-0.0	-0.0	0.0	0.0	-0.0	-0.0	0.0	-0.0	0.0	0.0	0.0	0.5		-0.0	0.0	0.0	0.0	0.0
talk_time - (0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0	0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0		-0.0	0.0	-0.0	0.0
three_g -(0.0	-0.0	-0.0	-0.0	0.0	0.6	-0.0	-0.0	0.0	-0.0	-0.0	-0.0	0.0	0.0	0.0	0.0	-0.0		0.0	0.0	0.0
touch_screen(0.0	0.0	0.0	-0.0	-0.0	0.0	-0.0	-0.0	-0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	0.0	0.0	0.0		0.0	-0.0
wifi(0.0	-0.0	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	0.0	0.1	0.0	0.0	0.0	0.0	-0.0	0.0	0.0		0.0
price_range - (0.2	0.0	-0.0	0.0	0.0	0.0	0.0	0.0	-0.0	0.0	0.0	0.1	0.2	0.9	0.0	0.0	0.0	0.0	-0.0	0.0	
	battery_power -	- plue -	clock_speed -	dual_sim -	fc -	four_g -	int_memory -	- deb -	mobile_wt -	n_cores -	- od	px_height -	px_width -	ram -	sc_h -	- M_SC_W	talk_time -	three_g -	touch_screen -	wifi -	price_range -

r 1.00

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

- -1.00

FEATURE ENGINEERING AND SIMPLE MODELS

Ze względu na duży roztrzał liczbowy parametrów użyłyśmy skalowania (MinMax Scaler)

Pierwsze użyte modele:

- Decission Tree
- K- Nearest Neighbors
- Logistic RegressionSupported Vector Machine
- Gaussian Naive Bayes

LOGISTIC REGRESSION

Ze względu na bardzo dobry wynik tego modelu postanowiłyśmy go dalej ewaluować.

Za pomocą Grid Search znalazłyśmy najlepsze hiperparametry.

Classification	Report: precision	recall	f1-score	support
0	1.00	0.97	0.98	94
1	0.96	1.00	0.98	98
2	0.99	0.97	0.98	99
3	0.98	0.99	0.99	109
accuracy			0.98	400
macro avg	0.98	0.98	0.98	400
weighted avg	0.98	0.98	0.98	400

FEATURE SELECTION

Zastanowiło nas czemu model KNN ma tak słaby wynik.

Za pomocą SelectKBest wybrałyśmy kombinację kolumn z najwyższym accuracy.

Wybrane kolumny:

- ram
- battery power
- px width
- px height

STACKED CLASSIFIER

Wybrałyśmy proste modele, które dawały najlepsze wyniki.

Stacked Classifier składa się z:
• K- Nearest Neighbors

- SVM
- Decision Tree
- Logistic Regression finalny estymator

Classification Report:									
	precision	recall	f1-score	support					
0	1.00	0.99	0.99	94					
1	0.95	1.00	0.98	98					
2	0.98	0.94	0.96	99					
3	0.98	0.98	0.98	109					
accuracy			0.98	400					
macro avg	0.98	0.98	0.98	400					
weighted avg	0.98	0.98	0.98	400					

MODELS COMPARISON

Walidacja krzyżowa

Średnia z accuracy: 0.9715 Logistic Regression, 0.9385 Stacked Classifier

XAI

Jak model podejmuje decyzje?

Które zmiennie mają największy wpływ?

Wykorzystane metody:

- model_parts
- permutationo_importance

Permutation Importances

Permutation Importances

