inductive learning / transductive learning

the number of categories. We focus on the transductive learning setting in this work, *i.e.*, all features together with the randomly sampled labels are constructed as training set. Let $S = \{\mathbf{x}_i, y_i\}_{i=1}^{m+u}$ be the set of instances where m+u=n. Without loss of generality (w.l.o.g.), let $\{y_i\}_{i=1}^m$ be the selected labels, our task is to predict the labels of samples $\{\mathbf{x}_i\}_{i=m+1}^{m+u}$ by a learner (model) trained on $\{\mathbf{x}_i\}_{i=1}^{m+u} \bigcup \{y_i\}_{i=1}^m$. This setting is widely adopted in node classification task (Yang et al., 2016; Kipf & Welling, 2017) where the training and test nodes are determined by a random partition.

Assumptions

- 1: 2-norm of the node feature x is bounded $\|\mathbf{x}\|_2 \le c_X$
- 2: the parameters during learning process is bounded $\|W_h\| \le c_W$
- 3: activation function is α -Holder Smooth

Assumption 3.4. Assume that the activation function $\sigma(\cdot)$ is $\tilde{\alpha}$ -Hölder smooth. To be specific, let P>0 and $\tilde{\alpha}\in(0,1]$, for all $\mathbf{u},\mathbf{v}\in\mathbb{R}^d$,

$$\|\sigma'(\mathbf{u}) - \sigma'(\mathbf{v})\|_2 \le P\|\mathbf{u} - \mathbf{v}\|_2^{\tilde{\alpha}}.$$

Theorem 4.3

transductive generalization gap: $\varepsilon_{\text{gen}} = |R_m(w) - R_u(w)|$

$$R_m(w) = \frac{1}{m} \sum_{i=1}^m l(w; z_i)$$

$$R_{u}(w) = \frac{1}{u} \sum_{i=m+1}^{m+u} l(w; z_{i})$$

(a). If
$$\alpha \in (0, \frac{1}{2})$$
, we have

$$R_{u}(\mathbf{w}_{1}^{(T+1)}) - R_{m}(\mathbf{w}^{(T+1)})$$

$$= \mathcal{O}\left(L_{\mathcal{F}} \frac{(m+u)^{\frac{3}{2}}}{mu} \log^{\frac{1}{2}}(T) T^{\frac{1-2\alpha}{2}} \log\left(\frac{1}{\delta}\right)\right).$$

Theorem 4.3 shows that the transductive generalization gap depends on the training/test data size m/u, network architecture related Lipschitz continuity constant L_F and the number of iterations T

(b). If
$$\alpha = \frac{1}{2}$$
, we have

$$R_{u}(\mathbf{w}^{(T+1)}) - R_{m}(\mathbf{w}^{(T+1)})$$
$$= \mathcal{O}\left(L_{\mathcal{F}} \frac{(m+u)^{\frac{3}{2}}}{mu} \log(T) \log\left(\frac{1}{\delta}\right)\right).$$

(c). If
$$\alpha \in (\frac{1}{2}, 1]$$
, we have

$$R_{u}(\mathbf{w}^{(T+1)}) - R_{m}(\mathbf{w}^{(T+1)})$$
$$= \mathcal{O}\left(L_{\mathcal{F}}\frac{(m+u)^{\frac{3}{2}}}{mu}\log^{\frac{1}{2}}(T)\log\left(\frac{1}{\delta}\right)\right).$$

Proof Abstract

Step 1:From (El-Yaniv & Pechyony, 2007)

$$R_u(\mathbf{w}^{(T+1)}) \le R_m(\mathbf{w}^{(T+1)}) + \mathcal{R}_{m+u}(\mathbf{w}) + c_0 Q \sqrt{\min(m, u)} + \sqrt{\frac{SQ}{2}} \log \frac{2}{\delta}$$

Step 2:Bound the Transductive Rademacher Complexity

$$\mathcal{R}_{m+u}(\mathbf{w}) \leq 12 \frac{(m+u)^{\frac{3}{2}}}{mu} \sqrt{d} \int_0^{L_{\mathcal{F}}R} \sqrt{\log(3L_{\mathcal{F}}R/r)} \, \mathrm{d}r$$
$$\leq 12 \frac{(m+u)^{\frac{3}{2}}}{mu} \sqrt{d} \left(\sqrt{\log 3} + \frac{3}{2}\sqrt{\pi}\right) L_{\mathcal{F}}R.$$

Step 3:Combine with (Li & Liu, 2021)

$$\|\mathbf{w}_{t+1}\| = \begin{cases} \mathcal{O}\left(\log^{\frac{1}{2}}(T)T^{(1-2\alpha)/2}\log\left(\frac{1}{\delta}\right)\right) & \text{if } \alpha \in (0,\frac{1}{2}), \\ \mathcal{O}\left(\log(T)\log\left(\frac{1}{\delta}\right)\right) & \text{if } \alpha = 1/2, \\ \mathcal{O}\left(\log^{\frac{1}{2}}(T)\log\left(\frac{1}{\delta}\right)\right) & \text{if } \alpha \in (\frac{1}{2},1]. \end{cases}$$

Definition of Transductive Rademacher Complexity

$$\hat{\mathcal{R}}_{S}(\mathcal{G}) = E_{\sigma} \left[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g(z_{i}) \right]$$
(2.1)

其中随机变量 $\sigma = (\sigma_1, ..., \sigma_m) \in U\{-1, 1\}^m$

2.2 Transductive Rademacher Complexity 2007

We adapt the inductive Rademacher complexity to our transductive setting but generalize it a bit to also include "neutral" Rademacher values.

Definition 1 (Transductive Rademacher complexity) Let $\mathcal{V} \subseteq \mathbb{R}^{m+u}$ and $p \in [0, 1/2]$. Let $\boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_{m+u})^T$ be a vector of i.i.d. random variables such that

$$\sigma_i \stackrel{\triangle}{=} \begin{cases} 1 & \text{with probability} \quad p; \\ -1 & \text{with probability} \quad p; \\ 0 & \text{with probability} \quad 1 - 2p. \end{cases}$$
 (1)

The transductive Rademacher complexity with parameter p is

$$R_{m+u}(\mathcal{V}, p) \stackrel{\triangle}{=} \left(\frac{1}{m} + \frac{1}{u}\right) \cdot \mathbf{E}_{\boldsymbol{\sigma}} \left\{ \sup_{\mathbf{v} \in \mathcal{V}} \boldsymbol{\sigma}^T \cdot \mathbf{v} \right\} .$$

Proof Abstract

Inequality 1
$$\mathcal{R}_{m+u}(\mathbf{w}) \leq \left(\frac{1}{m} + \frac{1}{u}\right) \mathbb{E}_{\epsilon} \left[\sup_{\mathbf{w} \in B_R} \sum_{i=1}^{m+u} \epsilon_i \ell(\mathbf{w}; z_i) \right]$$
 From (El-Yaniv & Pechyony, 2007)

$$+ \sum_{j=1}^{N} \mathbb{E}_{\epsilon} \left[\sup_{\mathbf{w} \in B_R} \left(\sum_{i=1}^{m+u} \epsilon_i(\ell(\mathbf{w}^j; z_i)[\mathbf{w}] - \ell(\mathbf{w}^{j-1}; z_i)[\mathbf{w}]) \right) \right]$$

$$+\mathbb{E}_{\epsilon}\left[\sum_{i=1}^{m+u}\epsilon_{i}\ell(\mathbf{w}^{(1)};z_{i})\right]$$

Inequality 3 (first item in inequality 2)

$$\mathbb{E}_{\boldsymbol{\epsilon}} \left[\sup_{\mathbf{w} \in B_R} \left(\sum_{i=1}^{m+u} \epsilon_i(\ell(\mathbf{w}; z_i) - \ell(\mathbf{w}^N; z_i)[\mathbf{w}]) \right) \right] \leq \left(\mathbb{E}_{\boldsymbol{\epsilon}} \left[\sum_{i=1}^{m+u} \epsilon_i^2 \right] \right)^{\frac{1}{2}} \left(\sup_{\mathbf{w} \in B_R} \sum_{i=1}^{m+u} (\ell(\mathbf{w}; z_i) - \ell(\mathbf{w}^N; z_i)[\mathbf{w}])^2 \right)^{\frac{1}{2}} \leq (m+u)\alpha_N$$

Inequality 4 (second item in inequality 2 / single)

$$\mathbb{E}_{\epsilon} \left[\sup_{\mathbf{w} \in B_R} \left(\sum_{i=1}^{m+u} \epsilon_i(\ell(\mathbf{w}^j; z_i)[\mathbf{w}] - \ell(\mathbf{w}^{j-1}; z_i)[\mathbf{w}] \right) \right] \leq \sqrt{m+u} \sup_{\mathbf{w} \in B_R} d_{\mathcal{H}_S}(\mathbf{w}^j, \mathbf{w}^{j-1}) \sqrt{2 \log |T_j| |T_{j-1}|}.$$

inequality 5 (last item in inequality 2)

$$\mathbb{E}_{\epsilon} \left[\sum_{i=1}^{m+u} \epsilon_i \ell(\mathbf{w}^{(1)}; z_i) \right] \leq \left(\sum_{i=1}^{m+u} \ell^2(\mathbf{w}^{(1)}; z_i) \right)^{\frac{1}{2}} \leq b_{\ell} \sqrt{m+u}.$$

Proof Abstract

(item in inequality 4) inequality 6

$$\sup_{\mathbf{w}\in B_R} d_{\mathcal{H}_S}(\mathbf{w}^j, \mathbf{w}^{j-1}) \le 3\alpha_j$$

inequality 7 (sum of inequality 4)

Inequality 8

$$d_{\mathcal{H}_S} \le \left(\frac{1}{m+u} \sum_{i=1}^{m+u} \left[\max_{\mathbf{w}, \widetilde{\mathbf{w}} \in B_R, z \in \mathcal{Z}} \ell(\mathbf{w}; z_i) - \ell(\widetilde{\mathbf{w}}; z_i) \right]^2 \right)^{\frac{1}{2}} \le d_{\mathcal{H}_R}$$

Inequality 9

$$\log \mathcal{N}(r, \mathcal{H}_R, d_{\mathcal{H}_S}) \le d \log \left(\frac{3L_{\mathcal{F}}R}{r} \right)$$

Combine all above

Combine all above
$$\mathcal{R}_{m+u}(\mathbf{w}) \leq 12 \frac{(m+u)^{\frac{3}{2}}}{mu} \sqrt{d} \int_0^{L_{\mathcal{F}}R} \sqrt{\log\left(3L_{\mathcal{F}}R/r\right)} \, \mathrm{d}r$$
$$\leq 12 \frac{(m+u)^{\frac{3}{2}}}{mu} \sqrt{d} \left(\sqrt{\log 3} + \frac{3}{2}\sqrt{\pi}\right) L_{\mathcal{F}}R.$$

$$\mathbb{E}_{\epsilon} \left[\sup_{\mathbf{w} \in B_R} \sum_{i=1}^{m+u} \epsilon_i \ell(\mathbf{w}; z_i) \right] \\
= \mathbb{E}_{\epsilon} \left[\sup_{\mathbf{w} \in B_R} \left(\sum_{i=1}^{m+u} \left(\epsilon_i (\ell(\mathbf{w}; z_i) - \ell(\mathbf{w}^N; z_i)) [\mathbf{w}] + \sum_{j=1}^{N} \epsilon_i (\ell(\mathbf{w}^j; z_i) [\mathbf{w}] - \ell(\mathbf{w}^{j-1}; z_i) [\mathbf{w}]) + \epsilon_i \ell(\mathbf{w}^{(1)}; z_i) \right) \right) \right] \\
\leq \mathbb{E}_{\epsilon} \left[\sup_{\mathbf{w} \in B_R} \left(\sum_{i=1}^{m+u} \epsilon_i (\ell(\mathbf{w}; z_i) - \ell(\mathbf{w}^N; z_i) [\mathbf{w}]) \right) \right] + \sum_{j=1}^{N} \mathbb{E}_{\epsilon} \left[\sup_{\mathbf{w} \in B_R} \left(\sum_{i=1}^{m+u} \epsilon_i (\ell(\mathbf{w}^j; z_i) [\mathbf{w}] - \ell(\mathbf{w}^{j-1}; z_i) [\mathbf{w}]) \right) \right] \\
+ \mathbb{E}_{\epsilon} \left[\sum_{i=1}^{m+u} \epsilon_i \ell(\mathbf{w}^{(1)}; z_i) \right].$$

item1: max loss between Final parameter and arbitrary w

item2: max loss during the learning process(Stability)

item3: model performance under the initialiazation parameter

$$\mathbb{E}_{\epsilon} \left[\sup_{\mathbf{w} \in B_R} \left(\sum_{i=1}^{m+u} \epsilon_i(\ell(\mathbf{w}; z_i) - \ell(\mathbf{w}^N; z_i)[\mathbf{w}]) \right) \right]$$

$$\leq \left(\mathbb{E}_{\epsilon}\left[\sum_{i=1}^{m+u} \epsilon_i^2\right]\right)^{\frac{1}{2}} \left(\sup_{\mathbf{w} \in B_R} \sum_{i=1}^{m+u} (\ell(\mathbf{w}; z_i) - \ell(\mathbf{w}^N; z_i)[\mathbf{w}])^2\right)^{\frac{1}{2}} \leq (m+u)\alpha_N.$$

Step1:Cauchy-Schwarz inequality

$$\sqrt{\left(\sum_{i=1}^n a_i b_i\right)^2} \le \sqrt{\sum_{i=1}^n a_i^2} \cdot \sqrt{\sum_{i=1}^n b_i^2}$$

Step2:
$$\sum_{i=1}^{m+u} (l(w,z_i) - l(w^N,z_i)[w])^2 = (m+u)d_{H_S}^2$$

$$\varepsilon_i^2 \equiv 1$$
 $item1 = \sqrt{m+u}$

$$E_{\varepsilon} \leq (m+n)d_{H_{S}}$$

$$\mathbb{E}_{\boldsymbol{\epsilon}} \left[\sup_{\mathbf{w} \in B_R} \left(\sum_{i=1}^{m+u} \epsilon_i(\ell(\mathbf{w}^j; z_i)[\mathbf{w}] - \ell(\mathbf{w}^{j-1}; z_i)[\mathbf{w}]) \right) \right] \leq \sqrt{m+u} \sup_{\mathbf{w} \in B_R} d_{\mathcal{H}_S}(\mathbf{w}^j, \mathbf{w}^{j-1}) \sqrt{2 \log |T_j| |T_{j-1}|}.$$

Theorem 3.7 (Massart's lemma) Let $A \subseteq \mathbb{R}^m$ be a finite set, with $r = \max_{\mathbf{x} \in A} \|\mathbf{x}\|_2$, then the following holds:

$$\mathbb{E}_{\sigma} \left[\frac{1}{m} \sup_{\mathbf{x} \in \mathcal{A}} \sum_{i=1}^{m} \sigma_i x_i \right] \le \frac{r\sqrt{2\log|\mathcal{A}|}}{m}, \tag{3.20}$$

where $\sigma_i s$ are independent uniform random variables taking values in $\{-1,+1\}$ and x_1,\ldots,x_m are the components of vector \mathbf{x} .

x in Theorem 3.7 equals to the difference of I in ineaulity 4 r means max[the measure of x], Here we also have denoted the measure of diff I

$$\sum_{i=1}^{m+u} (l(w,z_i) - l(w^N,z_i)[w])^2 = (m+u)d_{H_S}^2$$

 $|T_j|T_{j-1}|$ provides a upper bound of the number to cover the set of w(BR)

Inequality 4/6/7

$$\sup_{\mathbf{w}\in B_R} d_{\mathcal{H}_S}(\mathbf{w}^j, \mathbf{w}^{j-1})$$

By the Minkowski inequality

$$= \sup_{\mathbf{w} \in B_R} \left(\frac{1}{m+u} \sum_{i=1}^{m+u} \left[\ell(\mathbf{w}^j; z_i) [\mathbf{w}] - \ell(\mathbf{w}; z) + \ell(\mathbf{w}; z) - \ell(\mathbf{w}^{j-1}; z_i) [\mathbf{w}] \right]^2 \right)^{\frac{1}{2}}$$

$$\leq \sup_{\mathbf{w} \in B_R} \left(\frac{1}{m+u} \sum_{i=1}^{m+u} \left[\ell(\mathbf{w}^j; z_i) [\mathbf{w}] - \ell(\mathbf{w}; z) \right]^2 \right)^{\frac{1}{2}} + \sup_{\mathbf{w} \in B_R} \left(\frac{1}{m+u} \sum_{i=1}^{m+u} \left[\ell(\mathbf{w}; z) - \ell(\mathbf{w}^{j-1}; z_i) [\mathbf{w}] \right]^2 \right)^{\frac{1}{2}}$$

$$= \sup_{\mathbf{w} \in B_R} d_{\mathcal{H}_S}(\mathbf{w}^j, \mathbf{w}) + \sup_{\mathbf{w} \in B_R} d_{\mathcal{H}_S}(\mathbf{w}, \mathbf{w}^{j-1}) \leq \alpha_j + \alpha_{j-1} = 3\alpha_j.$$
(20)

where ϵ_i is the standard Rademacher random variable. Now we give an upper bound of the Transductive Rademacher Complexity by Dudley's integral technique. Denote by $d_{\mathcal{H}_S}(\mathbf{w}, \widetilde{\mathbf{w}}) = \left(\frac{1}{m+u} \sum_{i=1}^{m+u} \left[\ell(\mathbf{w}; z_i) - \ell(\widetilde{\mathbf{w}}; z_i)\right]^2\right)^{\frac{1}{2}}$. For $j \in \mathbb{N}$, let $\underline{\alpha_j} = 2^{-j}M$ with $M = \sup_{\mathbf{w} \in B_R} d_{\mathcal{H}_S}(\mathbf{w}, \mathbf{w}^{(1)})$. Denote by T_j the minimal $\underline{\alpha_j}$ -cover of B_R and $\ell(\mathbf{w}^j; z)[\mathbf{w}]$ the element in T_j that covers $\ell(\mathbf{w}; z)$. Specifically, since $\{\ell(\mathbf{w}^{(1)}; z)\}$ is a M-cover of B_R , we set $\ell(\mathbf{w}^0; z)[\mathbf{w}] = \ell(\mathbf{w}^{(1)}; z)$

$$\begin{split} \sum_{j=1}^{N} \sqrt{m+u} \cdot 3a_{j} \cdot \sqrt{2\log \left|T_{j}\right|} & \leq 6\sqrt{m+u} \sum_{j=1}^{N} a_{j} \cdot \sqrt{\log \left|T_{j}\right|} \\ \alpha_{j} &= 2\left(\alpha_{j} - \alpha_{j+1}\right) & = 12\sqrt{m+u} \sum_{j=1}^{N} (\alpha_{j} - \alpha_{j+1}) \sqrt{\log \left|T_{j}\right|} \\ &= 12\sqrt{m+u} \sum_{j=1}^{N} (\alpha_{j} - \alpha_{j+1}) \sqrt{\log \mathcal{N}(\alpha_{j}, \mathcal{H}_{R}, d_{\mathcal{H}_{S}})} \\ &\leq 12\sqrt{m+u} \int_{\alpha_{N+1}}^{\alpha_{0}} \sqrt{\log \mathcal{N}(\alpha_{j}, \mathcal{H}_{R}, d_{\mathcal{H}_{S}})} \, \mathrm{d}\alpha \leq 12\sqrt{m+u} \int_{\alpha_{N+1}}^{\infty} \sqrt{\log \mathcal{N}(\alpha_{j}, \mathcal{H}_{R}, d_{\mathcal{H}_{S}})} \, \mathrm{d}\alpha \end{split}$$

$$\mathbb{E}_{\epsilon} \left[\sum_{i=1}^{m+u} \epsilon_i \ell(\mathbf{w}^{(1)}; z_i) \right] \leq \left(\sum_{i=1}^{m+u} \ell^2(\mathbf{w}^{(1)}; z_i) \right)^{\frac{1}{2}} \leq b_{\ell} \sqrt{m+u}.$$

Khintchine-Kahane inequality When p = 2

Let $\{\varepsilon_n\}_{n=1}^N$ be i.i.d. random variables with $P(\varepsilon_n=\pm 1)=\frac{1}{2}$ for $n=1,\ldots,N$, i.e., a sequence with Rademacher distribution. Let $0< p<\infty$ and let $x_1,\ldots,x_N\in\mathbb{C}$. Then

$$A_p \Biggl(\sum_{n=1}^N |x_n|^2\Biggr)^{1/2} \leq \Biggl(\mathrm{E} \left|\sum_{n=1}^N arepsilon_n x_n
ight|^p\Biggr)^{1/p} \leq B_p \Biggl(\sum_{n=1}^N |x_n|^2\Biggr)^{1/2}$$

Combine inquality 1/2/3/4/5/6/7:

$$\mathcal{R}_{m+u}(\mathbf{w}) \le b_{\ell} \frac{(m+u)^{\frac{3}{2}}}{mu} + 12 \frac{(m+u)^{\frac{3}{2}}}{mu} \int_0^{\infty} \sqrt{\log \mathcal{N}(r, \mathcal{H}_R, d_{\mathcal{H}_S})} \, \mathrm{d}r$$

Propose a new measure of space H_R

$$d_{H_R}(\ell(\mathbf{w}; \cdot), \ell(\widetilde{\mathbf{w}}; \cdot)) = \max_{z \in \mathcal{Z}} |\ell(\mathbf{w}; z) - \ell(\widetilde{\mathbf{w}}; z)|$$

$$d_{\mathcal{H}_S}(\mathbf{w}, \widetilde{\mathbf{w}}) = \left(\frac{1}{m+u} \sum_{i=1}^{m+u} \left[\ell(\mathbf{w}; z_i) - \ell(\widetilde{\mathbf{w}}; z_i)\right]^2\right)^{\frac{1}{2}}$$

$$d_{\mathcal{H}_S} \le \left(\frac{1}{m+u} \sum_{i=1}^{m+u} \left[\max_{\mathbf{w}, \widetilde{\mathbf{w}} \in B_R, z \in \mathcal{Z}} \ell(\mathbf{w}; z_i) - \ell(\widetilde{\mathbf{w}}; z_i)\right]^2\right)^{\frac{1}{2}} \le d_{\mathcal{H}_R}$$

By the definition of covering number, we have $\mathcal{N}(r, \mathcal{H}_R, d_{\mathcal{H}_S}) \leq \mathcal{N}(r, \mathcal{H}_R, d_{\mathcal{H}_R})$

如果一个较小的度量空间可以被较大的度量空间覆盖,那么较小空间的覆盖数不会超过较大空间的覆盖数

Lipschitz contiguity of loss function

$$d_{\mathcal{H}_R} = \max_{z \in \mathcal{Z}} |\ell(\mathbf{w}; z) - \ell(\widetilde{\mathbf{w}}; z)| \le L_{\mathcal{F}} ||\mathbf{w} - \widetilde{\mathbf{w}}||_2.$$

measure base on 2-norm

$$\mathcal{N}(r, \mathcal{H}_R, d_{\mathcal{H}_R}) \leq \mathcal{N}\left(\frac{r}{L_F}, B_R, d_2\right).$$

 $\log \mathcal{N}(r, B_R, d_2) \le d \log(3R/r)$ From (Pisier, 1989)

$$\log N(r, H_R, d_{H_S}) \le \log N(r, H_R, d_{H_R}) \le \log N\left(\frac{r}{L_F}, B_R, d_2\right) \le d \log\left(\frac{3L_F R}{r}\right)$$

$$\int_0^\infty \sqrt{\log \mathcal{N}(r, \mathcal{H}_R, d_{\mathcal{H}_S})} dr = \int_0^{L_{\mathcal{F}}R} \sqrt{\log \mathcal{N}(r, \mathcal{H}_R, d_{\mathcal{H}_S})} dr.$$

Calculation

$$R_u(\mathbf{w}^{(T+1)}) \le R_m(\mathbf{w}^{(T+1)}) + \mathcal{R}_{m+u}(\mathbf{w}) + c_0 Q \sqrt{\min(m, u)} + \sqrt{\frac{SQ}{2}} \log \frac{2}{\delta}$$

$$\mathcal{R}_{m+u}(\mathbf{w}) \le b_{\ell} \frac{(m+u)^{\frac{3}{2}}}{mu} + 12 \frac{(m+u)^{\frac{3}{2}}}{mu} \int_0^{\infty} \sqrt{\log \mathcal{N}(r, \mathcal{H}_R, d_{\mathcal{H}_S})} \, dr$$

Combining Eq. (23), Eq. (24), and Eq. (25) yields

$$\mathcal{R}_{m+u}(\mathbf{w}) \leq 12 \frac{(m+u)^{\frac{3}{2}}}{mu} \sqrt{d} \int_{0}^{L_{\mathcal{F}}R} \sqrt{\log(3L_{\mathcal{F}}R/r)} \, \mathrm{d}r$$

$$\leq 12 \frac{(m+u)^{\frac{3}{2}}}{mu} \sqrt{d} \left(\sqrt{\log 3} + \frac{3}{2}\sqrt{\pi}\right) L_{\mathcal{F}}R.$$
(26)

$$R_{m+u}(w) \le b_l \frac{(m+u)^{\frac{3}{2}}}{mu} + 12 \frac{(m+u)^{\frac{3}{2}}}{mu} \cdot \sqrt{d} \cdot \frac{3\sqrt{\pi}}{2} \cdot L_F R$$

Result

Lemma 43 in (Li & Liu, 2021), Page 32

$$\|\mathbf{w}_{t+1}\| = \begin{cases} \mathcal{O}\left(\log^{\frac{1}{2}}(T)T^{(1-2\alpha)/2}\log\left(\frac{1}{\delta}\right)\right) & \text{if } \alpha \in (0,\frac{1}{2}), \\ \mathcal{O}\left(\log(T)\log\left(\frac{1}{\delta}\right)\right) & \text{if } \alpha = 1/2, \\ \mathcal{O}\left(\log^{\frac{1}{2}}(T)\log\left(\frac{1}{\delta}\right)\right) & \text{if } \alpha \in (\frac{1}{2},1]. \end{cases}$$

(a). If
$$\alpha \in (0, \frac{1}{2})$$
, we have

$$R_{u}(\mathbf{w}_{1}^{(T+1)}) - R_{m}(\mathbf{w}^{(T+1)})$$

$$= \mathcal{O}\left(L_{\mathcal{F}} \frac{(m+u)^{\frac{3}{2}}}{mu} \log^{\frac{1}{2}}(T) T^{\frac{1-2\alpha}{2}} \log\left(\frac{1}{\delta}\right)\right)$$

Conclusion:

Generalization gap depends on

Data size

Lipschitz constant(Network Architecture)

Iteritions

Remainings

Q1:From (El-Yaniv & Pechyony, 2007)

$$R_{u}(\mathbf{w}^{(T+1)}) \leq R_{m}(\mathbf{w}^{(T+1)}) + \mathcal{R}_{m+u}(\mathbf{w}) + c_{0}Q\sqrt{\min(m, u)} + \sqrt{\frac{SQ}{2}}\log\frac{2}{\delta}$$

$$\mathcal{R}_{m+u}(\mathbf{w}) \leq \left(\frac{1}{m} + \frac{1}{u}\right)\mathbb{E}_{\epsilon}\left[\sup_{\mathbf{w}\in B_{R}}\sum_{i=1}^{m+u}\epsilon_{i}\ell(\mathbf{w}; z_{i})\right]$$

Q2:From (Pisier, 1989)

$$\log \mathcal{N}\left(r, B_R, d_2\right) \le d \log(3R/r)$$

Q3:From (Li & Liu, 2021)

$$\|\mathbf{w}_{t+1}\| = \begin{cases} \mathcal{O}\left(\log^{\frac{1}{2}}(T)T^{(1-2\alpha)/2}\log\left(\frac{1}{\delta}\right)\right) & \text{if } \alpha \in (0, \frac{1}{2}), \\ \mathcal{O}\left(\log(T)\log\left(\frac{1}{\delta}\right)\right) & \text{if } \alpha = 1/2, \\ \mathcal{O}\left(\log^{\frac{1}{2}}(T)\log\left(\frac{1}{\delta}\right)\right) & \text{if } \alpha \in (\frac{1}{2}, 1]. \end{cases}$$

Theorem 4.5

Our second main result is high probability bounds of the gradients on training and test data.

Theorem 4.5. Suppose Assumptions 3.1, 3.2, 3.4, 3.6, and 3.8 hold. Suppose that the learning rate $\{\eta_t\}$ satisfies $\eta_t = \frac{1}{t+t_0}$ such that $t_0 \ge \max\{(2P)^{1/\alpha}, 1\}$. For any $\delta \in (0, 1)$, with probability $1 - \delta$,

(a). If
$$\alpha \in (0, \frac{1}{2})$$
, we have
$$\left\| \nabla R_m(\mathbf{w}^{(T+1)}) - \nabla R_u(\mathbf{w}^{(T+1)}) \right\|_2$$
$$= \mathcal{O}\left(\frac{(m+u)^{\frac{3}{2}}}{mu} \log^{\frac{1}{2}}(T) T^{\frac{1-2\alpha}{2}} \log\left(\frac{1}{\delta}\right) \right).$$