Эффективная реализация сопрограмм в управляемой среде исполнения

Евгений Пантелеев

Новосибирский государственный университет

Научный руководитель: Бульонков Михаил Алексеевич, канд. физ-мат наук ИСИ СО РАН

> Новосибирск 2021г.

Сопрограммы

- Сопрограмма (англ. coroutine) программный модуль, организованный для обеспечения взаимодействия с другими модулями по принципу кооперативной многозадачности.
- Сопрограммы способны приостанавливать свое выполнение, сохраняя контекст (программный стек и регистры), и передавать управление другой.

- Обработка множества независимых событий.
- ▶ Организация асинхронного ввода/вывода.

Ключевые отличия от потоков ОС

- Переключение контекста сопрограммы требует меньше накладных расходов, чем потока.
- Как правило меньший размер стека, а значит, потребление памяти так же меньше.

Поддержка в языках программирования

В языке Java сопрограммы не реализованы.

Project Loom Fibers and Continuations

- ▶ Project Loom проект на базе OpenJDK, целью которого является разработка сопрограмм для языка Java.
- На данный момент уже доступна ранняя версия проекта.

Цели и задачи

Цель: реализация прототипа сопрограмм в Java.

Поставленные задачи:

- Разработать тесты для сравнения производительности потоков и сопрограмм.
- Реализовать переключение сопрограмм.
- Реализовать трассировку ссылок объектов на стеках сопрограмм для сборки мусора.
- Сравнить производительность сопрограмм и потоков.

Работа проводится на базе Huawei JDK.

Тесты производительности

Был создан набор тестов производительности сопрограмм для языков Go, Java (с "Loom Project").

Тесты создавались для измерения 2 параметров.

- Скорость переключения контекста.
- Потребление памяти.

Репозиторий с тестами: https://github.com/minium2/coroutines-benchmark

Переключение сопрограмм

Подходы к реализации:

- OpenJDK(Проект "Loom"): копирование стека сопрограммы при переключении.
- Go и HuaweiJDK: изменение указателя стека.

Трассировка стеков

- Для работы сборщика мусора необходимо хранить адрес начала и конца стека каждой сопрограммы.
- При сборке мусора сканируются все стеки сопрограмм для поиска корневого множества живых объектов.

Результаты: скорости переключения сопрограмм в управляемых средах

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ, HuaweiJDK Каждое значение усреднено по 100 измерениям.

Шт.		исло переключений, тыс./сек.	
штт.	HuaweiJDK	OpenJDK("Loom Project")	Go
100	1 246 ± 13	1900 \pm 20	$\textit{18187} \pm \textit{219}$
1 000	1199 \pm 12	1 775 ± 20	$\textit{17934} \pm \textit{332}$
5 000	1075 \pm 59	1 703 ± 30	$\textit{12892} \pm \textit{339}$
10 000	1016 ± 10	1924 \pm 235	8 307 ± 80
20 000	916 ± 8	1 863 ± 217	7 045 ± 72
30 000	858 ± 4	1772 \pm 182	6 391 ± 94
40 000	790 ± 8	1 606 \pm 194	5 790 ± 67
50 000	756 ± 8	1 503 ± 157	5 292 ± 122

Причина худшего результата

- ▶ Причина неэффективного переключения сопрограмм использование медленной функции для переключения контекста.
- ► Сейчас применяется getcontext/setcontext из glibc, потому что их проще использовать.

Функции для переключения	Число переключений, дол. ед.
Из библиотеки Си tbox	7.8
Boost.Context	2.2
getcontext/setcontext us glibc	1

Результаты: скорости переключения сопрограмм в управляемых средах с новыми функциями переключения контекста

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ, HuaweiJDK Каждое значение усреднено по 100 измерениям. Для измерения используется только одно ядро ЦП.

Шт.	Число переключений, тыс./сек.		
шп.	getcontext/setcontext	Новые функции	
100	1 246 \pm 13	5 599 ± 73	
1 000	1 199 \pm 12	5 375 ± 77	
5 000	1075 \pm 59	3 510 ± 75	
10 000	1016 \pm 10	3 076 ± 58	
20 000	916 ± 8	2472 ± 39	
30 000	858 ± 4	2 106 ± 38	
40 000	790 ± 8	1856 \pm 36	
50 000	756 ± 8	1673 \pm 28	

Результаты: скорости переключения потоков и сопрограмм

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ, HuaweiJDK Каждое значение усреднено по 100 измерениям. Для измерения используется только одно ядро ЦП.

Шт.	Число переключений, тыс./сек.		
ШП.	Сопрограммы	Потоки	
100	$\it 5599\pm73$	2306 ± 50	
1 000	$ extit{5375} \pm extit{77}$	2300 ± 27	
5 000	3510 ± 75	1 554 ± 37	
10 000	3 076 ± 58	1016 \pm 29	
20 000	$\textit{2472} \pm \textit{39}$	753 ± 28	
30 000	2 106 \pm 38	556 ± 16	
40 000	1 856 \pm 36	436 ± 12	
50 000	1 673 \pm 28	361 ± 8	

Результаты: потребление памяти

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ

Шт.	Резидентная память		
шт.	HuaweiJDK	OpenJDK	Go
100	18 Mб	130 Мб	3,04 Мб
1000	23 Мб	161 Mб	3,105 Mб
5000	30 Мб	187 Мб	3,156 Мб
10000	35 Mб	193 Мб	3,308 Мб
20000	40 Mб	196 Mб	3,320 Мб
30000	45 Mб	197 Mб	3,350 Мб
40000	49 Mб	200 Мб	3,390 Мб
50000	55 Mб	202 Мб	3,407 Мб

Результаты: потребление памяти

Ubuntu, Intel Core i7-8700, 31 Γ6 O3У, HuaweiJDK

Шт.	Размер физической памяти		
шт.	Сопрограммы	Потоки	
100	18 Мб	34 Mб	
1000	23 Мб	35 Мб	
5000	30 Мб	37 Mб	
10000	35 Мб	40 Mб	
20000	40 Мб	49 Mб	
30000	45 Мб	56 Мб	
40000	49 Мб	63 Mб	
50000	55 Мб	72 Mб	

План дальнейших работ

- ► Поддержка synchronized блоков.
- Переключение сопрограммы при вызове ввода вывода.

Выводы

- Создан набор тестов для сравнения производительности потоков и сопрограмм.
- Реализовано переключение контекста сопрограмм.
- Разработана трассировка ссылок объектов на стеках сопрограмм.
- Проведено сравнение результаты тестов производительности.