Нормальная система уравнений

 $ec{y}(t)$ — вектор-столбец с элементами $y_i(t)$. $ec{f}(t;ec{y}(t))$ — вектор-столбец с элементами $f_i(t;y_1,...,y_n)$, определенными в $D\subset\mathbb{R}^{n+1}$.

$$\frac{d}{dt}\vec{y} = \vec{f}(t; \vec{y}(t)) \tag{1}$$

 $\vec{y_0}$ — вектор-столбец из \mathbb{R}^n Задача Коши — найти решение уравнения (1), удовлетворяющее условию

$$\vec{y}(t_0) = \vec{y}_0 \tag{2}$$

Теорема

Если $f_i(t;\vec{y})\in C(D)$ и $\frac{\partial f_i}{\partial y_j}\in C(D)$, (i,j=1,...,n), то для любой точки $(t_0;\vec{y}_0)\in D$ существует единственное непродолжаемое решение задачи Коши

$$\begin{cases} \vec{y}'(t) = f(t; \vec{y}) \\ \vec{y}(t_0) = \vec{y}_0 \end{cases}$$

Задача Коши

для уравнения высокого порядка

$$y^{(n)}(t) = f(t; y(t); y'(t); y''(t); ...; y^{(n-1)}(t))$$
(3)

Сведем к системе, положив

$$y_1 = y(t), y_2 = y'(t), ..., y_n = y^{(n-1)}(t)$$

Задача Коши — найти решение уравнения (3), удовлетворяющее условиям

$$y(t_0) = y_0; \ y'(t_0) = y_1; \ \dots \ y^{(n-1)}(t_0) = y_{n-1}$$
 (4)

Нормальная система линейных уравнений

A(t) — матрица $n \times n$ с элементами $a_{ij}(t)$ $\vec{f}(t)$ — вектор с элементами $f_i(t)$.

$$\frac{d}{dt}\vec{y} = A(t)\vec{y} + \vec{f}(t) \tag{5}$$

То есть для всех i = 1, ..., n

$$y_i'(t) = \sum_{j=1}^{n} a_{ij}(t)y_j(t) + f_i(t)$$

Теорема

Если все $a_{ij}(t)\in C(a;b)$ и $f_i(t)\in C(a;b)$, то для любой точки $t_0\in (a;b)$ и любого вектора $\vec{y}_0\in \mathbb{R}^n$ решение задачи Коши

$$\begin{cases} \frac{d}{dt}\vec{y} = A(t)\vec{y} + \vec{f}(t) \\ \vec{y}(t_0) = \vec{y}_0, \end{cases}$$

существует на всем (a;b) и единственно.

$$\vec{y}(t) = \vec{y}_0 + \int_{t_0}^t \left[A(\tau) \vec{y}(\tau) + \vec{f}(\tau) \right] d\tau$$

Введем оператор $Q: \varphi(t) \mapsto \psi(t)$, действующий по правилу

$$\vec{\psi}(t) = Q\vec{\varphi}(t) = \vec{y}_0 + \int_{t_0}^{t} \left[A(\tau)\vec{\varphi}(\tau) + \vec{f}(\tau) \right] d\tau$$

последовательные приближения

$$\begin{split} \vec{y}_0(t) &= \vec{y}_0,\\ \vec{y}_k(t) &= Q \vec{y}_{k-1}(t) = \vec{y}_0 + \int\limits_{t_0}^t \left[A(\tau) \vec{y}_{k-1}(\tau) + \vec{f}(\tau) \right] d\tau, \ k \in N\\ \vec{y}_k(t) &= \left[\vec{y}_k(t) - \vec{y}_{k-1}(t) \right] + \ldots + \left[\vec{y}_1(t) - \vec{y}_0(t) \right] + \vec{y}_0(t) = \sum\limits_{j=0}^k \vec{z}_j(t), \end{split}$$
 где $\vec{z}_0(t) = \vec{y}_0, \ \vec{z}_i(t) = \vec{y}_i(t) - \vec{y}_{i-1}(t), \ j \in \mathbb{N}$

Оценка в точке

Лемма.
$$||\vec{z}_j(t)|| \leq M_0 K^{(j-1)} \frac{(\sqrt{n}|t-t_0|)^j}{j!}$$
, $j \in \mathbb{N}$

$$||A(t)|| \leq K$$
, $||\vec{f}(t)|| \leq M$ на отрезке $[\alpha; \beta] \in (a; b)$

$$||\vec{z}_{1}(t)|| = ||\vec{y}_{1}(t)| - \vec{y}_{0}|| = ||\int_{t_{0}}^{t} \left[A(\tau)\vec{y}_{0} + \vec{f}(\tau) \right] d\tau|| \leq$$

$$\leq \sqrt{n} |\int_{t_{0}}^{t} \left(||A(\tau)|| \cdot ||\vec{y}_{0}|| + ||\vec{f}(\tau)|| \right) d\tau | \leq$$

$$\leq \sqrt{n} |\int_{t_{0}}^{t} \left(K \cdot ||\vec{y}_{0}|| + M \right) d\tau | \leq M_{0} \sqrt{n} |t - t_{0}|$$

$$||\vec{z}_{j+1}(t)|| = ||\vec{y}_{j+1}(t) - \vec{y}_{j}(t)|| \le$$

$$\le \sqrt{n} \Big| \int_{t_{0}}^{t} ||A(\tau)|| \cdot ||\vec{z}_{j}(\tau)|| d\tau \Big| \le$$

$$\le \sqrt{n}K \Big| \int_{t_{0}}^{t} M_{0}K^{j-1} \frac{(\sqrt{n}|t-t_{0}|)^{j}}{j!} d\tau \Big| \le$$

$$\le M_{0}K^{j} \frac{(\sqrt{n}|t-t_{0}|)^{j+1}}{(j+1)!}$$

Равномерная оценка

$$||\vec{z}_j(t)|| \leq M_0 K^{(j-1)} rac{(\sqrt{n}|t-t_0|)^j}{j!}$$
, $j \in \mathbb{N}$, поэтому $||\vec{z}_j(t)||_{C[lpha;eta]} \leq M_0 K^{(j-1)} rac{(\sqrt{n}|eta-lpha|)^j}{j!} = rac{M_0}{K} rac{B^j}{j!}$, $j \in \mathbb{N}$,

следовательно, ряд $\sum\limits_{i=0}^{+\infty} \vec{z}_j(t)$ сходится равномерно на [lpha;eta]

Свойства решений

Принцип суперпозиции

Если $\vec{y}_k(t)$ — решение системы $\frac{d}{dt}\vec{y}=A(t)\vec{y}+\vec{f}_k(t)$, то $\forall~c_k\in\mathbb{R}$ функция $\vec{y}(t)=\sum\limits_{k=1}^m c_k~\vec{y}_k(t)$ — решение системы $\frac{d}{dt}\vec{y}=A(t)\vec{y}+\vec{f}(t)$ с правой частью $\vec{f}(t)=\sum\limits_{k=1}^m c_k~\vec{f}_k(t)$.

Следствия

Однородная система = система однородных уравнений $(\vec{f}(t) = \vec{0})$

Если $\vec{y}_1(t)$ — решение системы с правой частью $\vec{f}_1(t)$, а $\vec{y}_0(t)$ — решение однородной системы, то $\vec{y}(t)=\vec{y}_1(t)+\vec{y}_0(t)$ — решение системы с правой частью $\vec{f}_1(t)$.

Если $\vec{y}_1(t)$ и $\vec{y}_2(t)$ — решения системы с одной и той же правой частью $\vec{f}(t)$, то $\vec{y}(t)=\vec{y}_2(t)-\vec{y}_1(t)$ — решение однородной системы.

Структура множества решений

$$\frac{d}{dt}\vec{y} = A(t)\vec{y} \tag{5_0}$$

Решения однородной системы образуют линейное пространство.

- $ightharpoonup ec{y}(t) \equiv ec{0}$ решение системы (5_0)
- lacktriangle Если $ec{y}_k(t)$ решения системы (5_0) , то для любого набора $c_k\in\mathbb{R}$ функция $ec{y}(t)=\sum\limits_{k=1}^m c_k\; ec{y}_k(t)$ решение системы (5_0)

Размерность и базис пространства решений

Линейная независимость функций

Oпределение. Функции $ec{arphi}_k(t)$, k=1,...,m, линейно независимы на (a;b), если

$$\sum_{k=1}^{m} c_k \ \vec{y}_k(t) \equiv \vec{0} \Leftrightarrow \forall \ k = 1, ..., m \ (c_k = 0)$$

Пример.
$$y_1(t) = t^2$$
, $y_2(t) = t \cdot |t|$ на $(-1;1)$

 \mathcal{N} емма. $\vec{y}_k(t), k = 1, ..., m, -$ решения системы (5_0) на (a;b). Если они линейно зависимы в точке $t_0 \in (a;b)$, то они линейно зависимы на (a;b).

Критерий линейной независимости

системы решений

Пусть $\vec{\varphi}_k(t)$, k=1,...,m, — решения системы (5_0) на (a;b). $\vec{\varphi}_k(t)$, k=1,...,m, линейно независимы на (a;b), если и только если $\exists \ t_0 \in (a;b)$ такая, что $\vec{\varphi}_k(t_0)$, k=1,...,m, линейно независимы

Teopema. Размерность пространства решений системы (5_0) равна n.

ФСР

Базис пространства решений системы (5_0) называется фундаментальной системой решений (5_0) (ФСР).

Критерий линейной независимости

системы решений

Пусть $\vec{\varphi}_k(t)$, k=1,...,n, — решения системы (5_0) на (a;b), $\Phi(t)$ — составленная из них матрица. Следующие утверждения равносильны:

- ightharpoons $ec{arphi}_k(t)$, k=1,...,n, линейно независимы
- $ightharpoonup \forall t \in (a;b) \det \Phi(t) \neq 0$
- $\exists t_0 \in (a;b) \mid \det \Phi(t_0) \neq 0$

Матрица $\Phi(t)$, столбцами которой являются векторы ФСР, называется фундаментальной матрицей решений системы.

 $\Phi(t)$ — фундаментальная матрица решений системы (5_0) , если и только если $\frac{d}{dt}\Phi(t)=A(t)\cdot\Phi(t)$ и $\exists\ t_0\in(a;b)\mid\det\Phi(t_0)
eq 0$

Общее решение линейной однородной системы

Любое решение системы (5_0) можно представить в виде

$$\vec{y}(t) = \Phi(t)\vec{c},$$

где $\Phi(t)$ — фундаментальная матрица решений системы (5_0) , а $ec{c} \in \mathbb{R}^n$

Решение задачи Коши

для линейной однородной системы

 $\forall \ t_0 \in (a;b)$, $\forall \ \vec{y_0} \in \mathbb{R}^n$ решение задачи Коши $\vec{y}(t_0) = \vec{y_0}$ для системы (5_0) можно представить в виде

$$\vec{y}(t) = \Phi(t)\Phi^{-1}(t_0)\vec{y}_0,$$

где $\Phi(t)$ — фундаментальная матрица системы (5_0)

Множество фундаментальных матриц

Пусть $\Phi(t)$ и $\Psi(t)$ - фундаментальные матрицы решений системы (5_0) . Тогда существует невырожденная числовая матрица B такая, что $\Psi(t)=\Phi(t)\cdot B$.

$$\Psi(t) = \Phi(t) \cdot \Phi^{-1}(t_0) \Psi(t_0)$$

Определитель Вронского системы вектор-функций

$$W(t) = \det \begin{bmatrix} \vec{\varphi}_1(t) & \vec{\varphi}_2(t) & \dots & \vec{\varphi}_n(t) \end{bmatrix}$$

Формула Лиувилля-Остроградского

Пусть $\vec{\varphi}_k(t)$, k=1,...,n, — решения системы (5_0) на (a;b), $\Phi(t)$ — составленная их них матрица.

Если
$$W(t) = \det \Phi(t)$$
, то

$$\frac{d}{dt}W(t) = \operatorname{tr} A(t) \cdot W(t)$$

$$\frac{d}{dt}W(t) = \frac{d}{dt}\begin{vmatrix} y_{11} & y_{12} & \dots & y_{1n} \\ y_{21} & y_{22} & \dots & y_{2n} \\ \dots & \dots & \dots & \dots \\ y_{n1} & y_{n2} & \dots & y_{nn} \end{vmatrix} =$$

$$= \begin{vmatrix} y'_{11} & y'_{12} & \dots & y'_{1n} \\ y_{21} & y_{22} & \dots & y_{2n} \\ \dots & \dots & \dots & \dots \\ y_{n1} & y_{n2} & \dots & y_{nn} \end{vmatrix} + \begin{vmatrix} y_{11} & y_{12} & \dots & y_{1n} \\ y'_{21} & y'_{22} & \dots & y'_{2n} \\ \dots & \dots & \dots & \dots \\ y_{n1} & y_{n2} & \dots & y_{nn} \end{vmatrix} + \dots$$

$$\dots + \begin{vmatrix} y_{11} & y_{12} & \dots & y_{1n} \\ y_{21} & y_{22} & \dots & y_{2n} \\ \dots & \dots & \dots & \dots \\ y'_{n1} & y'_{n2} & \dots & y'_{nn} \end{vmatrix}$$

$$\begin{vmatrix} y'_{11} & y'_{12} & \cdots & y'_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ y_{n1} & y_{n2} & \cdots & y_{nn} \end{vmatrix} =$$

$$= \begin{vmatrix} \sum_{l=1}^{n} a_{1l} y_{l1} & \sum_{l=1}^{n} a_{1l} y_{l2} & \dots & \sum_{l=1}^{n} a_{1l} y_{ln} \\ y_{21} & y_{22} & \dots & y_{2n} \\ \dots & \dots & \dots & \dots \\ y_{n1} & y_{n2} & \dots & y_{nn} \end{vmatrix} =$$

Следствие. В условиях предыдущей теоремы

$$W(t) = W(t_0) \exp(\int_{t_0}^{t} \operatorname{tr} A(\tau) d\tau)$$

Общее решение неоднородной линейной системы

Пусть $\vec{y}_*(t)$ — некоторое решение системы (5). Тогда любое решение системы (5) можно представить в виде

$$\vec{y}(t) = \Phi(t)\vec{c} + \vec{y}_*(t),$$

где $\Phi(t)$ — фундаментальная матрица системы (5_0) , а $\vec{c} \in \mathbb{R}^n$.

Общее решение задачи Коши для неоднородной линейной системы

orall $t_0\in(a;b)$, orall $ec{y}_0\in\mathbb{R}^n$ решение задачи Коши $ec{y}(t_0)=ec{y}_0$ для системы (5) можно представить в виде

$$\vec{y}(t) = \Phi(t)\Phi^{-1}(t_0)\vec{y}_0 + \vec{y}_*(t),$$

где $\Phi(t)$ — фундаментальная матрица системы (5_0) , а $\vec{y}_*(t)$ — решение системы (5) такое, что $\vec{y}_*(t_0)=\vec{0}$

Общее решение задачи Коши для неоднородной линейной системы

orall $t_0\in(a;b)$, orall $ec{y}_0\in\mathbb{R}^n$ решение задачи Коши $ec{y}(t_0)=ec{y}_0$ для системы (5) можно представить в виде

$$\vec{y}(t) = \Phi(t)\Phi^{-1}(t_0)\vec{y}_0 + \vec{y}_*(t),$$

где $\Phi(t)$ — фундаментальная матрица системы (5_0) , а $\vec{y}_*(t)$ — решение системы (5) такое, что $\vec{y}_*(t_0)=\vec{0}$

Метод вариации постоянных

Ищем решение в виде $\vec{y}_*(t) = \Phi(t) \vec{c}(t)$

$$\frac{d}{dt}\vec{c}(t) = \Phi^{-1}(t)\vec{f}(t)$$

$$\vec{c}(t) = \int_{1}^{t} \Phi^{-1}(\tau) \vec{f}(\tau) d\tau$$

$$\vec{y}_*(t) = \Phi(t) \int_0^t \Phi^{-1}(\tau) \vec{f}(\tau) d\tau$$

Итоги

Если все $a_{ij}(t)\in C(a;b)$ и $f_i(t)\in C(a;b)$, то $\forall\ t_0\in (a;b)$ и $\forall\ \vec{y_0}\in\mathbb{R}^n$ решение задачи Коши

$$\begin{cases} \frac{d}{dt}\vec{y} = \underline{A(t)\vec{y} + \vec{f}(t)} \end{cases} \tag{a.6}$$

определено $\forall \ t \in (a;b)$, единственно и представимо в виде

$$\vec{y}(t) = \underbrace{\Phi(t)\Phi^{-1}(t_0)\vec{y_0}}_{\bullet} + \Phi(t) \int_{t_0}^{\bullet} \Phi^{-1}(\tau)\vec{f}(\tau) d\tau,$$

где $\Phi(t)$ — фундаментальная матрица соответствующей однородной системы

Линейные однородные системы с постоянными коэффициентами

$$\frac{d}{dt}\vec{y} = A\vec{y}, \quad A \equiv const \tag{6}$$

 $orall \ t_0 \in \mathbb{R} \ orall \ ec{y}_0 \in \mathbb{R}^n$ задача Коши $ec{y}(t_0) = \underline{ec{y}_0}$ для системы (6) имеет единственное решение, которое определено в любой точке $t \in \mathbb{R}$ и бесконечно дифференцируемо.

Матричная экспонента

Определение. Матричной экспонентой $\exp(At)$ называется решение задачи Коши

Теорема. Матричная экспонента представима в виде ряда

$$\exp(At) = \left(\sum_{k=0}^{+\infty} \frac{t^k}{k!} A^k\right) = \int A^k dt$$

равномерно сходящегося на любом отрезке $[a;\ b].$

Доказательство.

$$\Phi(t) = \Phi(0) + \int_{0}^{t} A\Phi(\tau) d\tau = E + A \int_{0}^{t} \Phi(\tau) d\tau$$

$$\Phi^{[0]}(t) = E;$$

$$\Phi^{[k+1]}(t) = E + A \int_{0}^{t} \Phi^{[k]}(\tau) d\tau \qquad \Phi^{(1)}(\tau) = E + A \int_{0}^{t} E$$

$$\begin{split} &\Phi^{[1]}(t) = E + At, \\ &\Phi^{[2]}(t) = E + At + A^2 \frac{t^2}{2}, \dots \\ &\Phi^{[k]}(t) = \sum_{l=0}^k A^l \frac{t^l}{l!} = P_{\text{LC}}(A). \end{split}$$

$$\begin{array}{lll}
x + x = 0 & y = x & {\binom{x}{y}} = {\binom{x}{x}} & \frac{1}{4!} {\binom{x}{y}} = {\binom{$$

Своиства матричной экспоненты

1.
$$A \cdot e^{At} = e^{At} \cdot A$$
 $A \cdot S_n(t) = S_n(t) \cdot A$
 $A \cdot S_n(t) = S_n(t) \cdot A$

2.
$$\det(e^{At}) = e^{\operatorname{tr} A \cdot t}$$
 $t \geq h \cdot n = 2$
 $t = 2$
 $t = 4$
 t

3.
$$e^{A(t+s)} = e^{At} \cdot e^{As}$$

Доказательство.

$$Y(t) = e^{A(t+s)} \qquad \text{Y(t)} = e^{At} \qquad \text{Y(t)} = A e^{A(t+s)} = A \text{Y(t)}$$

$$Z(t) = e^{At} \cdot e^{As} \qquad \text{Z(t)} = e^{At} \cdot e^{As} \qquad \text{Z(t)} = A e^{At} \cdot e^{As} = A \text{Z(t)}$$

Следствие.
$$(e^{At})^{-1}=e^{-At}$$
 ()=-t) e^{At} $A(-t)=e^{-t}$ $e^{A(-t)}=e^{-t}$ $e^{A(-t)}=e^{-t}$ $e^{A(-t)}=e^{-t}$ $e^{A(-t)}=e^{-t}$

Если все $f_i(t)\in C(a;b)$, то $\forall\ t_0\in (a;b)$ и $\forall\ \vec{y_0}\in \mathbb{R}^n$ решение задачи Коши

$$\begin{cases} \frac{d}{dt}\vec{y} = A\vec{y} + \vec{f}(t) \\ \vec{y}(t_0) = \vec{y}_0 \end{cases}$$

определено $\forall t \in (a;b)$, единственно и представимо в виде

$$\vec{y}(t) = e^{At} e^{-At_0} \vec{y_0} + e^{At} \int_{t_0}^t e^{-A\tau} \vec{f}(\tau) d\tau =$$

$$e^{A(t-t_0)} \vec{y_0} + \int_{t_0}^t e^{A(t-\tau)} \cdot \vec{f}(\tau) d\tau$$

4.
$$e^{(A+B)t} = e^{At} \cdot e^{Bt} \Leftrightarrow AB = BA$$

Доказательство.

$$AB = BA \Rightarrow e^{(A+B)t} = e^{At} \cdot e^{Bt}$$

$$Y(t) = e^{(A+B)}t$$

$$Y(t) = e^{(A+B)}t;$$

 $Z(t) = e^{At} \cdot e^{Bt}$

$$e^{(A+B)t} = e^{At} \cdot e^{Bt} \Rightarrow AB = BA$$

$$e^{(A+B)} = E + (A+B)E + (A+B)EE + (A+B)EE$$

A=
$$\begin{bmatrix} 0 & 2 \end{bmatrix}$$
 $e^{At} = \begin{bmatrix} e^{t} & 0 \\ 0 & e^{2t} \end{bmatrix}$ $B = \begin{bmatrix} 0 & 0 \end{bmatrix}$ $B^{2} = 0$

A+13= $\begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix}$ $e^{Bt} = E+Bt = \begin{bmatrix} 0 & t \\ 0 & 1 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
 $e^{A+B} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$

5.
$$A = diag\{A_1; A_2\} \Rightarrow e^{At} = diag\{e^{A_1t}; e^{A_2t}\}$$

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{pmatrix} \Rightarrow \begin{pmatrix} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

В частности, если
$$\mathbf{A}=egin{pmatrix} \lambda_1 & 0 \\ \hline \lambda_2 & \\ 0 & \lambda_n \end{pmatrix}$$
 то $\exp(\mathbf{A}t)=egin{pmatrix} e^{\lambda_1 t} & 0 \\ \hline e^{\lambda_2 t} & \\ 0 & e^{\lambda_n t} \end{pmatrix}$.

6.
$$A = TDT^{-1} \Rightarrow e^{At} = Te^{Dt}T^{-1}$$
 $A = TDT^{-1} \Rightarrow e^{At} = Te^{Dt}T^{-1}$
 $A = TDT^{-1} \Rightarrow e^{At} \Rightarrow e^$

2/161=70est.7-1=ta777e2t7=AZ Cf. A= (3 1) 7= (3 1) 7= (8 -1/2) Te = (e la e (2+5)t) = (e la e la t).