3-2-2 신경망 모형

Artificial Neural Network 요약

- 인공 신경망(ANN) 모형은 인간의 뉴런을 모방하여 알고리즘으로 구현한 방법
 - 인간의 뉴런은 시냅스를 통하여 다른 여러 뉴런으로 부터 자극을 전달받고 이를 또다른 뉴런으로 전달시키는 과정을 거침
 - 。 이 인간의 뉴런을 "퍼셉트론"이라는 인공 뉴런을 구성
 - 이 퍼셉트론들이 여러 layer를 거치며 시냅스를 통한 자극의 전달과정을 모방한 것
 이 Neural Network
- Neural Network에서는 가장 중요한 구성 요소
 - inputs
 - weights
 - activation function
 - o bias(error) 등

• Neural Network의 과정을 간략하게 말하자면,

- input layer에서 inputs 값들이 여러 개의 퍼셉트론으로 이루어진 다층 퍼셉트론 층 (layer), 이를 은닉층(Hidden Layer)라고 하는 층을 거치며 Weigths와 error를 활성 화함수를 통해 조정하면서 학습을 진행해 출력층(Output layer)로 결과를 출력하는 과 정
- 이때, activation function(활성화 함수)
 - o sigmoid function / ReLU / leaky ReLU / ELU 등 여러가지 존재하지만,
- 1. 경사 소실(gradient vanishing) 문제
- 2. 중간에 Global minimum을 찾지 못하고, local minimum에서 학습을 멈추는 문제와 같은 이유로 ReLU관련 활성화 함수를 요즘은 많이 사용

다양한 활성화 함수

이름	수식	출력 범위	주요 특징
계단 함수	$f(x)=1$ if $x\geq 0$, else 0	{0, 1}	퍼셉트론 초기 모델에서 사용됨. 연속적이지 않아서 역전파 학습 불가
부호 함수	f(x)=1 if $x>0$, -1 if $x<0$, else 0	{-1, 0, 1}	방향만 제공함. 연속성이 없고 딥러닝에 비효율적
시그모이드	$\sigma(x)=rac{1}{1+e^{-x}}$	(0, 1)	출력이 확률처럼 해석됨. 그래디 언트 소실 문제 존재
ReLU	$f(x) = \max(0,x)$	[0, ∞)	계산 단순, 학습 빠름. 음수 입력 에서는 뉴런이 죽을 수 있음
Leaky ReLU	f(x)=x if $x>0$, else $0.01x$	(-∞, ∞)	ReLU 개선형. 음수도 약간 반응 하게 해 죽은 뉴런 문제 완화
ELU	$f(x)=x$ if $x\geq 0$, else $lpha(e^x-1)$	(-α, ∞)	음수도 자연스럽게 반영. 출력 평균이 0에 가까워 학습 안정
tanh	$f(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$	(-1, 1)	시그모이드보다 중심화된 출력. 그래디언트 소실 존재
softmax	$f(x_i) = rac{e^{x_i}}{\sum_j e^{x_j}}$	(0, 1), 합=1	출력층 전용. 벡터를 확률 분포 로 정규화함

딥러닝(Deep Learning) 개요

1. 딥러닝의 정의와 배경

- 정의: 여러 개의 은닉층(hidden layer)을 가진 인공신경망(Artificial Neural Network, ANN)을 기반으로 하는 학습 알고리즘
- **출발점**: 2006년 Hinton이 제안한 Deep Belief Network 이후, GPU의 발전과 대용 량 데이터의 등장으로 본격화 됨
- 기초 원리: 뉴런 간 가중치(weight)와 편향(bias)을 조정하여 입력 데이터로부터 출력 예측을 최적화 함

2. 딥러닝의 핵심 구조

- 층 구조:
 - 。 입력층(Input Layer): 데이터를 받아들이는 층
 - 은닉층(Hidden Layers): 특징을 추출하고 변환하는 층 (2개 이상일 때 '딥'이라 부름)
 - o 출력층(Output Layer): 최종 결과를 출력
- **활성화 함수**: ReLU, sigmoid, tanh 등은 비선형성을 부여해 복잡한 함수 근사를 가능하게 함
- 학습 방식: 오차역전파(Backpropagation) + 경사하강법(Gradient Descent)

3. 주요 딥러닝 모델 유형

- CNN(Convolutional Neural Network): 이미지 인식, 객체 탐지 등에 사용. 필터를 이용한 지역적 특징 학습에 탁월함.
- RNN(Recurrent Neural Network): 순차적 데이터(텍스트, 음성 등)에 적합. 시간 정보를 기억함. LSTM, GRU로 발전.
- GAN(Generative Adversarial Network): 생성자와 판별자의 경쟁을 통한 데이터 생성. 예술, 합성 이미지, 음성 생성 등에 활용.
- **Transformer**: 문맥 기반 자연어 처리의 혁신. BERT, GPT 시리즈로 이어지며 현재의 주류로 자리잡음.

딥러닝의 주요 종류

1. 입력 데이터 형태에 따른 분류

- CNN (Convolutional Neural Network)
 - 。 이미지, 영상과 같이 공간적 특성이 있는 2D 또는 3D 데이터에 최적화
 - o 합성곱 층(conv layer), 풀링 층(pooling) 사용
 - 。 대표 응용: 이미지 분류, 객체 검출, 얼굴 인식
- RNN (Recurrent Neural Network)
 - 텍스트, 음성, 시계열 데이터처럼 순차적인 입력에 적합
 - 시점 간 정보를 순환 구조로 기억
 - 。 대표 응용: 번역, 음성 인식, 시계열 예측
- Transformer
 - 。 RNN의 단점을 해결한 구조로, 전체 시퀀스를 한 번에 처리함
 - 。 Self-Attention 메커니즘 사용
 - 대표 응용: 챗봇, 번역, 문서 요약 등 자연어 처리 전반

2. 학습 목적에 따른 분류

- Discriminative Models (판별 모델)
 - 。 입력을 주어진 범주로 분류하거나 값을 예측함
 - 。 예시: CNN 기반 이미지 분류기, RNN 기반 감성 분석기
- Generative Models (생성 모델)
 - 새로운 데이터를 만들어냄. 분포를 학습하여 샘플 생성 가능
 - 。 예시:
 - GAN (Generative Adversarial Network): 진짜 같은 이미지 생성
 - VAE (Variational Autoencoder): 잠재 공간에서 샘플 생성
 - **Diffusion Model**: 고품질 이미지 생성 (ex. DALL·E, Stable Diffusion)

3. 학습 방식에 따른 분류

• 지도학습(Supervised Learning)

- 。 라벨이 있는 데이터로 학습
- 。 예시: 이미지에 개/고양이 라벨 붙여 학습하는 CNN

• 비지도학습(Unsupervised Learning)

- 。 라벨 없이 데이터 구조를 파악
- 。 예시: Autoencoder, 클러스터링

• 강화학습(Reinforcement Learning)

- 보상을 극대화하는 방향으로 에이전트를 학습시킴
- 딥러닝과 결합해 '딥 강화학습'이 등장함 (예: 알파고, DQN(Deep Q-Network))

기타 중요 구조들

- Autoencoder
 - 。 입력을 압축하고 복원함. 차원 축소, 노이즈 제거에 활용
- Capsule Network
 - 。 CNN의 공간적 표현 한계를 보완하려는 구조. 아직 연구 중
- Residual Network (ResNet)
 - ∘ 깊은 네트워크에서 기울기 소실 방지 위해 skip connection 사용

실습

nnet 패키지를 이용해 Iris 데이터셋을 분류하는 신경망 모델을 학습하는 예제

신경망 라이브러리 install.packages("nnet") library(nnet)

신경망 모형 생성

nn.iris \leftarrow nnet(Species \sim ., data=iris, size=2, rang=0.1, decay=5e-4, maxit=2 00)

- Species를 목표 변수로 하고, 나머지 4개의 꽃 특성 변수들이 입력은 나층 1층에 뉴런 2개(size=2)를 사용하며,
- L2 정규화(decay)와 학습 반복 제한(maxit=200) 도 포함
 - L2 정규화(L2 Regularization)는 모델 학습 과정에서 과적합(overfitting)을 방지하기 위해 사용되는 기법 중 하나
 - L2 정규화는 모델의 가중치(weight)가 너무 커지지 않도록 제약을 주어 모델을 더일반화하는 데 도움을 줌
 - 손실 함수(loss function)에 가중치의 제곱합을 추가하는 방식으로 작동하여 모델이 너무 복잡해지는 것을 방지하고, 가중치가 지나치게 커지는 것을 억제하여 과적합을 줄이는 효과
- 멀티클래스 분류(Multiclass classification) 문제로 매우 전형적인 예제

주요 파라미터 설명

• Species~.

Species 를 예측하는 모델을 만들되, 입력 변수는 iris 데이터셋의 나머지 모든 열(.)로 설정

data=iris

기본 내장된 iris 데이터셋을 사용

• size=2:

은닉층에 뉴런 2개를 사용

• rang=0.1:

가중치 초기값 범위 설정 (-0.1 ~ 0.1 사이)

• decay=5e-4

가중치 감소(=L2 정규화). 과적합 방지용

decay=5e-4 는 L2 정규화의 강도를 나타내며, 가중치의 제곱합에 **0.0005**를 곱한 값을 손실 함수에 추가하여 모델의 과적합을 방지하는 역할

• maxit=200 :

최대 학습 반복 횟수를 200으로 설정

종료