

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Inventor: : **Shinji ENDOU**
Filed : **Concurrently herewith**
For : **DISPLAY PANEL DRIVER ...**
Serial No. : **Concurrently herewith**

August 25, 2003

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

PRIORITY CLAIM AND
SUBMISSION OF PRIORITY DOCUMENT

SIR:

Applicant hereby claims priority under 35 USC 119 from **Japanese patent** application number **2002-245483** filed **August 26, 2002**, a copy of which is enclosed.

Respectfully submitted,

Michael I. Markowitz
Reg. No. 30,659

Katten Muchin Zavis Rosenman
575 Madison Avenue
New York, NY 10022-2585
(212) 940-8800
Docket No.: NECW 20.584

日本国特許庁
JAPAN PATENT OFFICE

VS

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office

出願年月日

Date of Application:

2002年 8月26日

出願番号

Application Number:

特願2002-245483

[ST.10/C]:

[JP2002-245483]

出願人

Applicant(s):

山形日本電気株式会社

2003年 6月 2日

特許庁長官
Commissioner,
Japan Patent Office

太田信一郎

出証番号 出証特2003-3041986

【書類名】 特許願
 【整理番号】 00410193
 【あて先】 特許庁長官殿
 【国際特許分類】 H04N 5/202
 G09G 3/30

【発明者】

【住所又は居所】 山形県山形市北町四丁目12番12号
 山形日本電気株式会社内

【氏名】 遠藤 慎司

【特許出願人】

【識別番号】 390001915
 【氏名又は名称】 山形日本電気株式会社

【代理人】

【識別番号】 100082935

【弁理士】

【氏名又は名称】 京本 直樹
 【電話番号】 03-3454-1111

【選任した代理人】

【識別番号】 100082924

【弁理士】

【氏名又は名称】 福田 修一
 【電話番号】 03-3454-1111

【選任した代理人】

【識別番号】 100085268

【弁理士】

【氏名又は名称】 河合 信明
 【電話番号】 03-3454-1111

【手数料の表示】

【予納台帳番号】 021566

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9114205

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 表示パネルの駆動装置

【特許請求の範囲】

【請求項1】 赤、緑、青のデジタルデータを入力し各色の表示素子の発光特性の相違を赤用、緑用、青用のそれぞれm種類の階調電圧を用いて補正し表示パネルのデータ線の駆動電圧を生成して出力する駆動装置において、

高電圧側の第1の電源と低電圧側の第2の電源との間に複数の抵抗が直列に接続され前記抵抗の各接続点に対応して前記mよりも大きいn個の基準電圧端子が設けられた電圧発生手段と、

前記n個の基準電圧端子から入力する基準電圧の中からm種類の赤用階調電圧、m種類の緑用階調電圧、m種類の青用階調電圧をそれぞれ選択して出力する電圧選択手段とを備えることを特徴とする表示パネルの駆動装置。

【請求項2】 前記電圧発生手段に含まれる複数の抵抗が同一の抵抗値を有することを特徴とする請求項1に記載の表示パネルの駆動装置。

【請求項3】 前記電圧選択手段は、

第1の方向に設けられ前記電圧発生手段に接続されたn本の基準電圧入力線と、前記第1の方向と直交する第2の方向に設けられたm本の赤用階調電圧出力線、m本の緑用階調電圧出力線およびm本の青用階調電圧出力線と、前記第1の方向の配線と前記第2の方向の配線との交点に設けられ、それぞれの赤用階調電圧出力線に対しn本の基準電圧入力線のうちの1本と選択的に接続しそれぞれの緑用階調電圧出力線に対しn本の基準電圧入力線のうちの1本と選択的に接続しそれぞれの青用階調電圧出力線に対しn本の基準電圧入力線のうちの1本と選択的に接続する接続手段を備えることを特徴とする請求項1に記載の表示パネルの駆動装置。

【請求項4】 前記接続手段は、第1の方向の配線と第2の方向の配線との交点に設けられ該配線間を接続するビアであることを特徴とする請求項3に記載の表示パネルの駆動装置。

【請求項5】 前記接続手段は、第1の方向の配線と第2の方向の配線との交点に設けられたスイッチと、それぞれの赤用階調電圧出力線に対し該赤用階調

電圧出力線に接続された n 個のスイッチのうち 1 個を選択して導通させ、それぞれの緑用階調電圧出力線に対し該緑用階調電圧出力線に接続された n 個のスイッチのうち 1 個を選択して導通させ、それぞれの青用階調電圧出力線に対し該青用階調電圧出力線に接続された n 個のスイッチのうち 1 個を選択して導通させるように制御するスイッチ制御回路とからなることを特徴とする請求項 3 に記載の表示パネルの駆動装置。

【請求項 6】 赤、緑、青のデジタルデータを入力し各色の表示素子の発光特性の相違を赤用、緑用、青用のそれぞれ m 種類の階調電圧を用いて補正し表示パネルのデータ線の駆動電圧を生成して出力する駆動装置において、

高電圧側の第 1 の電源と低電圧側の第 2 の電源との間に複数の抵抗が直列に接続され前記抵抗の各接続点に対応して前記 m よりも大きい n 個の基準電圧端子が設けられた電圧発生手段と、

前記 n 個の基準電圧端子から入力する基準電圧の中から m 種類の赤用階調電圧、 m 種類の緑用階調電圧、 m 種類の青用階調電圧をそれぞれ選択して出力する電圧選択手段と、

デジタル入力データに基づいて m 種類の前記赤用階調電圧からひとつを選択して出力する赤用デジタルアナログコンバータ、 m 種類の前記緑用階調電圧からひとつを選択して出力する緑用デジタルアナログコンバータおよび m 種類の前記青用階調電圧からひとつを選択して出力する青用デジタルアナログコンバータとを備えることを特徴とする表示パネルの駆動装置。

【請求項 7】 前記電圧選択手段は、前記赤用デジタルアナログコンバータ毎に対応して設けられ n 種類の基準電圧の中から選択された m 種類の赤用階調電圧を供給する赤用の電圧選択手段と、前記緑用デジタルアナログコンバータ毎に対応して設けられ前記 n 種類の基準電圧の中から選択された m 種類の緑用階調電圧を供給する緑用の電圧選択手段と、前記青用デジタルアナログコンバータ毎に対応して設けられ前記 n 種類の基準電圧の中から選択された m 種類の青用階調電圧を供給する青用の電圧選択手段とを有することを特徴とする請求項 6 に記載の表示パネルの駆動装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は表示パネルのデータ線を駆動する駆動装置に関し、特に、赤、緑、青の発光特性が異なる発光素子の特性を補正して表示させる駆動装置に関する。

【0002】

【従来の技術】

近年、自発光型の素子であるエレクトロルミネセンス（以下ELと略す）素子を用いたカラー表示装置が実用化されてきている。図9はEL表示装置のブロック図である。表示パネル1はデータ線2と走査線3との各交点に設けられた複数の画素4を含んで構成される。各画素4内にはEL素子9が含まれ、データ線2と走査線3で選択された画素内のEL素子9はデータ線2から供給される駆動電圧に従った強度で発光する。

【0003】

データ線駆動装置70は、赤の入力データDr、緑の入力データDg、青の入力データDbを入力し、データ線2に駆動電圧DV(1)～DV(k)を出力する。データ線駆動装置70は、データの入力および出力のタイミングを制御する駆動制御回路7と、各データ線へ出力する駆動電圧を生成する駆動電圧生成回路71とを備えている。走査線駆動装置6は走査線3のスキャンを制御する。なお、図9では説明の便宜のために入力データDr、Dg、Dbを4ビットのデータとしているが、6ビット、8ビットまたはそれ以外であってもよい。

【0004】

ところで、EL素子は赤、緑、青の発光特性が異なるため、バランスのとれたカラー表示を実現するためにはそれぞれの発光特性に合わせて駆動電圧を補正（ガンマ補正）する必要がある。図10は各色のガンマ補正特性の一例を示す図である。図10(a)は赤に対するガンマ補正特性を示す図であり、図10(b)は緑に対するガンマ補正特性を示す図であり、図10(c)は青に対するガンマ補正特性を示す図である。EL素子を用いた表示パネルでは、このように赤、緑、青の各色毎に異なる補正が必要であるため、赤用、緑用、青用にそれぞれ専用の階調電圧発生回路を設ける必要があった。

【0005】

図11は、従来の駆動電圧生成回路71のブロック図である。駆動電圧生成回路71は、赤用の電源V_rが供給され4ビットすなわち16種類の階調電圧V_r(0)～V_r(15)を発生して出力する赤用階調電圧発生回路72と、緑用の電源V_gが供給され16種類の階調電圧V_g(0)～V_g(15)を発生して出力する緑用階調電圧発生回路73と、青用の電源V_bが供給され16種類の階調電圧V_b(0)～V_b(15)を発生して出力する緑用階調電圧発生回路74とを備えている。赤用のデジタルアナログコンバータ(以下DACと略す)12は赤用の階調電圧V_r(0)～V_r(15)の中から4ビットの入力データD_rに対応する階調電圧に変換し、バッファ回路15を介してガンマ補正された電圧を駆動電圧としてデータ線2に出力する。緑用のDAC13は緑用の階調電圧V_g(0)～V_g(15)の中から4ビットの入力データD_gに対応する階調電圧に変換し、バッファ回路15を介してガンマ補正された電圧をデータ線2に出力する。同様に、青用のDAC14は青用の階調電圧V_b(0)～V_b(15)の中から4ビットの入力データD_bに対応する階調電圧に変換し、バッファ回路15を介してガンマ補正された電圧をデータ線2に出力する。

【0006】

階調電圧発生回路およびDACの詳細は、例えば特開2002-175060号公報に記載されている。図12の回路図に示すように、赤用の階調電圧発生回路72は赤用の電源V_rが供給する電圧を補正用に選定された値を持つ抵抗で分割することにより赤用の階調電圧V_r(0)～V_r(15)を生成し出力する。同様に、緑用の階調電圧発生回路73においても、緑用の電源V_gが供給する電圧を補正用に選定された値を持つ抵抗で分割することにより緑用の階調電圧V_g(0)～V_g(15)を生成し出力する。また、青用の階調電圧発生回路74においても、青用の電源V_bが供給する電圧を補正用に選定された値を持つ抵抗で分割することにより青用の階調電圧V_b(0)～V_b(15)を生成し出力する。図11の赤用のDAC12aは、それぞれのビットに対応するスイッチが設けられていて、4ビットの赤のデータ入力D_rに基づいてスイッチが開閉して階調電圧のうちのひとつを選択して出力する。例えばデータ入力D_rが(1000b

) すなわち (8 h) である場合には階調電圧 V_r (8) が選択されて出力される。緑用のD A C 1 3、青用のD A C 1 4についても同様に構成される。

【0007】

【発明が解決しようとする課題】

しかしながら、この第1の従来例では赤用、緑用、青用に専用の階調電圧発生回路を設ける必要があったため、赤、緑、青の電源がそれぞれ必要であり、赤用、緑用、青用のそれぞれ補正用に選定された値を持つ抵抗ストリングが必要であった。このため、データ線駆動装置70が小型化できず、また、消費電力も低減できないという問題点があった。

【0008】

これに対して、特開2001-92413号公報には、ビデオ信号にガンマ補正を直接施す第2の従来技術が開示されている。図13は、第2の従来技術のE-L表示装置のブロック図である。映像信号補正回路82は、赤、緑、青の入力データを入力し、補正メモリ83の補正データに基づいて信号を増幅または減衰するように補正処理する。例えば赤の入力データ D_r については増幅されるように補正処理され、補正された赤データ入力 $C D_r$ がデータ線駆動装置81に入力される。緑の入力データ D_g 、青の入力データ D_b についても同様に映像信号補正回路82で補正され、補正された緑データ入力 $C D_g$ および補正された青データ入力 $C D_b$ がデータ線駆動装置81に入力される。このように、赤、緑、青のそれぞれの入力データは映像信号補正回路82でガンマ補正の処理がなされてからデータ線駆動装置81に入力されるため、データ線駆動装置81内には1個の階調電圧発生回路を持つだけによく、部品点数の削減、消費電力の低減を行うことができる。

【0009】

しかしながら、この第2の従来技術では、映像信号補正回路82で信号を増幅する処理を行った場合には、実質的に階調電圧の数を増加させることになり、D A Cへのデジタル入力データがD A Cの変換可能なビット数を超てしまう。このような場合には入力データに対しては出力の階調電圧が飽和してしまうため、表示の色ムラが発生するという新たな問題点が生じる。

【0010】

本発明の主な目的は、1個の抵抗ストリングを用いて赤、緑、青のガンマ補正を行うことができる小型化及び低消費電力に適した階調電圧発生回路を備え、且つデジタルアナログ変換時に飽和が生じてしまうことのないデータ線の駆動回路を提供することにある。本発明の上記及びそれ以外の関連する目的と特徴は、添付図面に基づく説明で指摘した新規事項を読めば明確になるであろう。

【0011】

【課題を解決するための手段】

本発明の表示パネルの駆動装置は、赤、緑、青のデジタルデータを入力し各色の表示素子の発光特性の相違を赤用、緑用、青用のそれぞれm種類の階調電圧を用いて補正し表示パネルのデータ線の駆動電圧を生成して出力する駆動装置において、高電圧側の第1の電源と低電圧側の第2の電源との間に複数の抵抗が直列に接続され前記抵抗の各接続点に対応して前記mよりも大きいn個の基準電圧端子が設けられた電圧発生手段と、前記n個の基準電圧端子から入力する基準電圧の中からm種類の赤用階調電圧、m種類の緑用階調電圧、m種類の青用階調電圧をそれぞれ選択して出力する電圧選択手段とを備えて構成される。または、これに加えて、デジタル入力データに基づいてm種類の前記赤用階調電圧からひとつを選択して出力する赤用デジタルアナログコンバータ、m種類の前記緑用階調電圧からひとつを選択して出力する緑用デジタルアナログコンバータおよびm種類の前記青用階調電圧からひとつを選択して出力する青用デジタルアナログコンバータとを備えて構成しても良い。

【0012】

【発明の実施の形態】

以下、本発明の好ましい実施の形態について、添付図面を参照しながら詳細に説明する。なお、以下の説明は、本発明の好ましい実施の形態を示すものであり、本発明が以下の説明に限定されて解釈されるものではない。

【0013】

先ず本発明の一実施の形態について図1、図2、図3を用いて説明する。図1はEL表示装置のブロック図であり、第1の従来技術の図9に相当する。図1に

おいても図9と同様に、表示パネル1はデータ線2と走査線3との各交点に設けられた複数の画素4を含んで構成される。各画素4内にはEL素子9が含まれ、データ線2と走査線3で選択された画素内のEL素子9はデータ線2から供給される駆動電圧に従った強度で発光する。

【0014】

本発明の第1の実施の形態のデータ線駆動装置5は、赤の入力データDr、緑の入力データDg、青の入力データDbを入力し、データ線2に駆動電圧DV(1)～DV(k)を出力する。データ線駆動装置5は、データの入力および出力のタイミングを制御する駆動制御回路7と、各データ線へ出力する駆動電圧を生成する駆動電圧生成回路8とを備えている。走査線駆動装置6は走査線3のスキャンを制御する。なお、図1においても説明の便宜のために入力データDr、Dg、Dbを4ビットのデータとしたがこれに限定されるものではなく、6ビット、8ビットまたはそれ以外であっても良い。

【0015】

本発明では、第1の従来技術のデータ線駆動装置70に代えてデータ線駆動装置5が用いられ、駆動電圧生成回路71に代えて駆動電圧生成回路8が用いられる。図2は、駆動電圧生成回路8の一実施例である駆動電圧生成回路8aのブロック図である。第1の従来技術の駆動電圧生成回路71においては赤用、緑用、青用の3種の階調電圧発生回路を備えていたが、本発明の駆動装置の駆動電圧生成回路8aにおいては階調電圧発生回路11のみを備え、階調電圧発生回路11から4ビットずなわち16種類の赤用の階調電圧Vr(0)～Vr(15)と、16種類の緑用の階調電圧Vg(0)～Vg(15)と、16種類の青用の階調電圧Vb(0)～Vb(15)とを発生する。

【0016】

赤用のD A C 12は赤用の階調電圧Vr(0)～Vr(15)の中から4ビットの入力データDrに対応する階調電圧に変換し、バッファ回路15を介してガンマ補正された駆動電圧としてデータ線2に出力する。緑用のD A C 13は緑用の階調電圧Vg(0)～Vg(15)の中から4ビットの入力データDgに対応する階調電圧に変換し、バッファ回路15を介してガンマ補正された駆動電圧と

してデータ線2に出力する。同様に、青用のD A C 1 4は青用の階調電圧V b (0)～V b (15)の中から4ビットの入力データD bに対応する階調電圧に変換し、バッファ回路15を介してガンマ補正された駆動電圧としてデータ線2に出力する。

【0017】

図3は、階調電圧発生回路11の回路図である。階調電圧発生回路11は電圧発生手段21と、電圧選択手段22とを備えて構成される。電圧発生手段21は、高電圧側の第1の電源である電源V cと低電圧側の第2の電源である接地との間に複数の抵抗が直列に接続され、抵抗の各接続点に対応して赤、緑、青の階調電圧の種類m(図3ではm=16)よりも大きいn(図3ではn=40)個の基準電圧端子が設けられている。各抵抗の抵抗値を同一に設定することにより、接続電位のV(0)から電源V cの電位V(39)まで等しい電圧間隔の40個の基準電圧を基準電圧端子から出力する。電圧選択手段22は、40個の基準電圧端子から入力する基準電圧V(0)～V(39)の中から16種類の赤用階調電圧V r(0)～V r(15)、16種類の緑用階調電圧V g(0)～V g(15)、16種類の青用階調電圧V b(0)～V b(15)をそれぞれ選択して出力する。例えば、図3に示すように、赤用の階調電圧V r(0)として基準電圧V(5)を選択し、階調電圧V r(1)として基準電圧V(9)を選択し、階調電圧V r(2)として基準電圧V(13)を選択し、階調電圧V r(3)として基準電圧V(17)を選択し、階調電圧V r(4)として基準電圧V(21)を選択し、階調電圧V r(5)として基準電圧V(25)を選択し、階調電圧V r(6)として基準電圧V(29)を選択し、階調電圧V r(7)として基準電圧V(30)を選択し、階調電圧V r(8)として基準電圧V(31)を選択し、階調電圧V r(9)として基準電圧V(32)を選択し、階調電圧V r(10)として基準電圧V(33)を選択し、階調電圧V r(11)として基準電圧V(34)を選択し、階調電圧V r(12)として基準電圧V(35)を選択し、階調電圧V r(13)として基準電圧V(36)を選択し、階調電圧V r(14)として基準電圧V(37)を選択し、階調電圧V r(15)として基準電圧V(38)を選択して16種類の赤用階調電圧V r(0)～V r(15)を出力する。

【0018】

このように、40個の基準電圧端子から入力する基準電圧 $V(0) \sim V(39)$ の中から16種類の赤用階調電圧 $V_r(0) \sim V_r(15)$ 、16種類の緑用階調電圧 $V_g(0) \sim V_g(15)$ 、16種類の青用階調電圧 $V_b(0) \sim V_b(15)$ をそれぞれ選択して出力することにより、図4のガンマ補正特性に示すように、39個の抵抗を含む1個の抵抗ストリングと電源 V_c だけを用いて図10(a)の赤に対するガンマ補正特性、図10(b)の緑に対するガンマ補正特性および図10(c)の青に対するガンマ補正特性のすべてを実現することができる。すなわち、第1の従来技術では16個の抵抗を含む抵抗ストリングと専用の電源を赤、緑、青のそれぞれに対して持たなければならなかったのに対して、本発明は、ストリング数、電源数を削減できるので図9～12の第1の従来技術と比較して小型化及び低消費電力化に適しており、また、赤、緑、青のそれぞれの階調電圧の数はそれぞれ16個であり図13の第2の従来技術のように階調電圧の数が増えてしまうことがないので、デジタルアナログ変換時に飽和が生じて色ムラを発生させることがない。

【0019】

図3における電圧選択手段22の一実施例を図5に示す。電圧選択手段22は、第1の方向に設けられ電圧発生手段21の基準電圧出力端子に接続されたn(図5では $n=40$)本の基準電圧入力線31と、第1の方向と直交する第2の方向に設けられたm(図5では $m=16$)本の赤用階調電圧出力線32、m本の緑用階調電圧出力線33およびm本の青用階調電圧出力線34とを備えている。また、電圧選択手段22は、第1の方向の配線と前記第2の方向の配線との交点に設けられ、それぞれの赤用階調電圧出力線32に対し基準電圧入力線31のうちの1本と選択的に接続し、それぞれの緑用階調電圧出力線33に対し基準電圧入力線31のうちの1本と選択的に接続し、それぞれの青用階調電圧出力線34に対し基準電圧入力線31のうちの1本と選択的に接続する接続手段35を備えている。第1の方向の配線と第2の方向の配線との交点に設けたビアを接続手段35として用いることにより電圧選択手段を一層小型化できる。図5では、赤用の階調電圧 $V_r(15)$ として基準電圧 $V(38)$ を出力し、赤用の階調電圧 V_r

(0) として基準電圧 $V(5)$ を出力するように構成されている。

【0020】

このようにして発生した赤用の階調電圧 $V_r(0) \sim V_r(15)$ は赤用の DAC 12 に供給され、緑用の階調電圧 $V_g(0) \sim V_g(15)$ は緑用の DAC 13 に供給され、青用の階調電圧 $V_b(0) \sim V_b(15)$ は青用の DAC 14 に供給され、それぞれの DAC に入力されるデジタル入力データに基づいてデジタルアナログ変換してえられた駆動電圧がバッファ回路 15 を介してデータ線 2 に出力される。すでに DAC の一例を図 12 の DAC 12a に示したが、DAC は図 6 の DAC 12b に示すようにして構成しても良い。すなわち、DAC 12b は、入力データ D_r により 1 本の出力線のみが選択されるデコーダ 41 と、選択された出力線により階調電圧 $V_r(0) \sim V_r(15)$ の中の 1 種類を選ぶセレクタ 42 とを備え、入力データ D_r に対応する階調電圧として変換出力する。

【0021】

図 7 は、電圧選択手段 22 の他の実施例の回路図である。電圧選択手段 22 は、スイッチがマトリクス状に設けられたスイッチマトリクス 51 と、スイッチマトリクス 51 の開閉を制御するスイッチ制御回路 52 とからなっている。スイッチマトリクス 51 は、第 1 の方向の配線である基準電圧入力線 31 と、第 2 の方向の配線である赤用階調電圧出力線 32、緑用階調電圧出力線 33 および青用階調電圧出力線 34 との交点に設けられたスイッチ S を有している。スイッチ制御回路 52 は、それぞれの赤用階調電圧出力線 32 に対しこれに接続された n (図 7 では $n = 40$) 個のスイッチのうち 1 個をスイッチ制御信号 $S_r(0) \sim S_r(15)$ により選択して導通させ、同様にそれぞれの緑用階調電圧出力線に対しこれに接続された 40 個のスイッチのうち 1 個をスイッチ制御信号 $S_g(0) \sim S_g(15)$ により選択して導通させ、またそれぞれの青用階調電圧出力線に対しこれに接続された 40 個のスイッチのうち 1 個をスイッチ制御信号 $S_b(0) \sim S_b(15)$ により選択して導通させるように制御する。

【0022】

電圧選択手段 22 を図 7 のようにスイッチマトリクスを用いて構成することにより、外部からスイッチ設定信号 SETS を制御してスイッチを開閉させてガン

マ補正特性を変更したり微調整したりすることが可能となる。例えば、ELパネル毎の製造要因による赤、緑、青の発光特性のばらつきに対して、ELパネル毎にスイッチを制御して適正な発光特性のガンマ補正を行うことが可能となり、発光特性のばらつきを改善できる。また、屋外で使用する場合と屋内で使用する場合とで外光の影響を考慮してスイッチを制御することにより、ELパネルの表示の輝度を見やすく最適なものに調整することができる。

【0023】

図8は、駆動電圧生成回路の他の実施例のブロック図を示す。図8の駆動電圧生成回路8bでは、赤用の電圧選択手段62が赤用DAC12毎に対応して設けられ、緑用の電圧選択手段63が緑用DAC13毎に対応して設けられ、青用の電圧選択手段64が青用DAC14毎に対応して設けられる。それぞれの赤用の電圧選択手段62は、電圧発生手段21から供給されるn(図8ではn=40)種類の基準電圧V(0)～V(39)の中からm(図8ではm=16)種類の赤用階調電圧を選択して対応する赤用DAC12に供給する。同様に、それぞれの緑用の電圧選択手段63は、電圧発生手段21から供給される基準電圧V(0)～V(39)の中から16種類の緑用階調電圧を選択して対応する緑用DAC13に供給する。また、それぞれの青用の電圧選択手段64は、電圧発生手段21から供給される基準電圧V(0)～V(39)の中から16種類の青用階調電圧を選択して対応する青用DAC14に供給する。

【0024】

図2の駆動電圧生成回路8aにおいては、16種類の赤用階調電圧V_r(0)～V_r(15)、16種類の緑用階調電圧V_g(0)～V_g(15)、16種類の青用階調電圧V_b(0)～V_b(15)を赤用DAC12、緑用DAC13又は青用DAC14に供給するために計48本の配線が駆動電圧生成回路8aの内部を横断する。これに対して図8の駆動電圧生成回路8bでは、基準電圧V(0)～V(39)を供給する40本の配線だけが駆動電圧生成回路8bの内部を横断することになり、配線本数を削減して駆動電圧生成回路を小型化することが可能となる。各色の入力データが4ビットの場合で説明したが、特に入力データが8ビットの場合には階調電圧は各色256種類ずつとなるので、図2の駆動電圧

生成回路8aでは計768本の配線が生じるのに対して、図8の駆動電圧生成回路8bで例えば500種類の基準電圧を用いたとしても差し引きで268本の配線を削減することができるので小型化の効果は大きい。

【0025】

【発明の効果】

以上に説明したように、本発明のデータ線駆動装置では、 n 個の基準電圧端子を有する1個の抵抗ストリングで発生した n 種類の基準電圧の中から n よりも小さい m 種類の赤用階調電圧、 m 種類の緑用階調電圧、 m 種類の青用階調電圧をそれぞれ選択して出力することにより、1個の抵抗ストリングと高電位と低電位の1対の電源だけを用いて赤に対するガンマ補正特性、緑に対するガンマ補正特性および青に対するガンマ補正特性のすべてを実現することができる。これにより、第1の従来技術では抵抗ストリングと専用の電源を赤、緑、青のそれぞれに対して持たなければならなかったのに対して、本発明のデータ線駆動装置では、ストリング数、電源数を削減できるので、第1の従来技術と比較して小型化及び低消費電力化が可能となる。また、第2の従来技術のように階調電圧の数が増えてしまうことがないので、デジタルアナログ変換時に飽和が生じて色ムラを発生させることができなくRGBのバランスの良い画像を提供することができる。

【図面の簡単な説明】

【図1】

本発明のデータ線駆動装置を含むEL表示装置のブロック図である。

【図2】

本発明の一実施の形態のデータ線駆動装置における駆動電圧生成回路の一実施例のブロック図である。

【図3】

駆動電圧生成回路内の階調電圧発生回路の回路図である。

【図4】

本発明の駆動回路における階調電圧発生回路のガンマ補正特性を示す図である

【図5】

電圧選択手段の一実施例の構成を示す図である。

【図6】

DACの一実施例の回路図である。

【図7】

電圧選択手段の他の実施例の回路図である。

【図8】

駆動電圧生成回路の他の実施例のブロック図を示す。

【図9】

EL表示装置のブロック図である。

【図10】

(a) は赤に対するガンマ補正特性を示す図であり、(b) は緑に対するガンマ補正特性を示す図であり、(c) は青に対するガンマ補正特性を示す図である。

【図11】

第1の従来技術における駆動電圧生成回路のブロック図である。

【図12】

第1の従来技術における階調電圧発生回路およびDACの回路図である。

【図13】

第2の従来技術のEL表示装置のブロック図である。

【符号の説明】

- 1 表示パネル
- 2 データ線
- 3 走査線
- 4 画素
- 5 データ線駆動装置
- 6 走査線駆動装置
- 7 駆動制御回路
- 8, 8a, 8b 駆動電圧生成回路
- 9 EL素子

1 1 階調電圧発生回路

1 2, 1 2 a, 1 2 b, 1 3, 1 4 DAC

1 5 バッファ回路

2 1 電圧発生手段

2 2, 6 2, 6 3, 6 4 電圧選択手段

3 1 基準電圧入力線

3 2, 3 3, 3 4 階調電圧出力線

3 5 接続手段

4 1 デコーダ

4 2 セレクタ

5 1 スイッチマトリクス

5 2 スイッチ制御回路

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

72

【図13】

【書類名】 要約書

【要約】

【課題】 従来は赤、緑、青のそれぞれに対して必要であったガンマ補正用の抵抗ストリング及び電源を1個に低減し、駆動装置を小型化・低消費電力化する。

【解決手段】 本発明のデータ線駆動装置では、n個の基準電圧端子を有する1個の抵抗ストリングを含む電圧発生手段21で発生したn種類の基準電圧の中から電圧選択手段22によりm種類の赤用階調電圧 $V_r(0) \sim V_r(15)$ 、m種類の緑用階調電圧 $V_g(0) \sim V_g(15)$ 、m種類の青用階調電圧 $V_b(0) \sim V_b(15)$ をそれぞれ選択して出力することにより、1個の抵抗ストリングと1対の電源だけを用いて赤に対するガンマ補正特性、緑に対するガンマ補正特性および青に対するガンマ補正特性のすべてを実現することができる。

【選択図】 図3

認定・付加情報

特許出願の番号	特願2002-245483
受付番号	50201261751
書類名	特許願
担当官	第一担当上席 0090
作成日	平成14年 8月27日

<認定情報・付加情報>

【提出日】 平成14年 8月26日

次頁無

出願人履歴情報

識別番号 [390001915]

1. 変更年月日 1990年10月 3日

[変更理由] 新規登録

住 所 山形県山形市北町4丁目12番12号
氏 名 山形日本電気株式会社

2. 変更年月日 2003年 2月 21日

[変更理由] 住所変更

住 所 山形県鶴岡市宝田一丁目11番73号
氏 名 山形日本電気株式会社