

Institute of Informatics – Institute of Neuroinformatics

Lecture 08 Multiple View Geometry 2

Davide Scaramuzza

http://rpg.ifi.uzh.ch/

Lab Exercise 6 - Today afternoon

- > Room ETH HG E 1.1 from 13:15 to 15:00
- ➤ Work description: 8-point algorithm

30 student projects on Robotics, ML, and Perception

http://rpg.ifi.uzh.ch/student projects.php

Description: The goal of his thesis is to implement a Feature Detector (ex. Harris Fast, SUSAN, LoG, DoG), Descriptor (SURF, RRISK, BRIEF, ORB, FREAK) and Matcher/Tracker using the nVidia Cuda Framework for high-efficiency real-lime execution on a nVidia Jetson TX2 computer. Focus should be laid on exploiting new computational architectures arising from Machine Learning, such as fast

convolutions and GPU-aided computation

2-View Geometry: Recap

- Depth from stereo (i.e., stereo vision)
 - Assumptions: K, T and R are known.
 - Goal: Recover the 3D structure from images

2-view Structure From Motion:

- Assumptions: none (K, T, and R are unknown).
- **Goal**: Recover simultaneously 3D scene structure, camera poses (up to scale), and intrinsic parameters from two different views of the scene

Outline

- Two-View Structure from Motion
- Robust Structure from Motion

• **Problem formulation:** Given n point correspondences between two images, $\{p_1^i=(u_1^i,v_1^i),\ p_2^i=(u_2^i,v_2^i)\}$, simultaneously estimate the 3D points P^i , the camera relative-motion parameters (R,T), and the camera intrinsics K_1,K_2 that satisfy:

$$\begin{bmatrix}
\lambda_{1} \begin{bmatrix} u^{i}_{1} \\ v^{i}_{1} \\ 1 \end{bmatrix} = K_{1} [I|0] \cdot \begin{bmatrix} X^{i}_{w} \\ Y^{i}_{w} \\ Z^{i}_{w} \\ 1 \end{bmatrix} \\
\lambda_{2} \begin{bmatrix} u^{i}_{2} \\ v^{i}_{2} \\ 1 \end{bmatrix} = K_{2} [R|T] \cdot \begin{bmatrix} X^{i}_{w} \\ Y^{i}_{w} \\ Z^{i}_{w} \\ 1 \end{bmatrix}$$

 $_{6}$ C_{2}

- Two variants exist:
 - Calibrated camera(s) $\Rightarrow K_1$, K_2 are known
 - Uncalibrated camera(s) $\Rightarrow K_1$, K_2 are unknown

- Let's study the case in which the cameras are **calibrated**For convenience, let's use *normalized image coordinates* $\begin{vmatrix} u \\ \overline{v} \\ 1 \end{vmatrix} = K^{-1} \begin{vmatrix} u \\ v \\ 1 \end{vmatrix}$
- Thus, we want to find R, T, P^i that satisfy

$$\begin{bmatrix} \overline{u} \\ \overline{v} \\ 1 \end{bmatrix} = K^{-1} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

Scale Ambiguity

If we rescale the entire scene and camera views by a constant factor (i.e., similarity transformation), the projections (in pixels) of the scene points in both images remain exactly the same:

Scale Ambiguity

- In monocular vision, it is therefore **not possible** to recover the absolute scale of the scene!
 - Stereo vision?
- Thus, only 5 degrees of freedom are measurable:
 - 3 parameters to describe the rotation
 - 2 parameters for the **translation up to a scale** (we can only compute the direction of translation but not its length)

- How many knowns and unknowns?
 - -4n knowns:
 - n correspondences; each one (u^i_1, v^i_1) and (u^i_2, v^i_2) , $i = 1 \dots n$
 - -5+3n unknowns
 - 5 for the motion up to a scale (3 for rotation, 2 for translation)
 - 3n = number of coordinates of the n 3D points
- Does a solution exist?
 - If and only if the number of independent equations ≥ number of unknowns $\Rightarrow 4n \ge 5 + 3n \Rightarrow n \ge 5$
 - First attempt to identify the solutions by Kruppa in 1913 (see slide 17).

Cross Product (or Vector Product)

$$\vec{a} \times \vec{b} = \vec{c}$$

 Vector cross product takes two vectors and returns a third vector that is perpendicular to both inputs, with a direction given by the right-hand rule and a magnitude equal to the area of the parallelogram that the vectors span:

$$\vec{a} \cdot \vec{c} = 0$$

$$\vec{b} \cdot \vec{c} = 0$$

$$\|\vec{c}\| = \|\vec{a}\| \|\vec{b}\| \sin(\theta)$$

$$a \times b$$

$$\hat{n}$$

- So c is perpendicular to both a and b (which means that the dot product is 0)
- Also, recall that the cross product of two parallel vectors is 0
- The cross product between a and b can also be expressed in matrix form as the product between the skew-symmetric matrix of a and a vector b

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{vmatrix} \begin{vmatrix} b_x \\ b_y \\ b_z \end{vmatrix} = [\mathbf{a}]_{\times} \mathbf{b}$$

Can we solve the estimation of relative motion (R,T) independently of the estimation of the structure (3D points)?

The next couple of slides prove that this is possible. Once R,T are known, the 3D points can be triangulated using the triangulation algorithms from Lecture 7 (slides 30-36)

Epipolar Geometry

$$\overline{p}_1 = \begin{bmatrix} \overline{u}_1 \\ \overline{v}_1 \\ 1 \end{bmatrix} \qquad \overline{p}_2 = \begin{bmatrix} \overline{u}_2 \\ \overline{v}_2 \\ 1 \end{bmatrix}$$

 p_1, p_2, T are coplanar:

$$p_{2}^{T} \cdot n = 0 \implies p_{2}^{T} \cdot (T \times p_{1}') = 0 \implies p_{2}^{T} \cdot (T \times (Rp_{1})) = 0$$

$$\implies p_{2}^{T} [T]_{\times} R p_{1} = 0$$

$$p_{2}^{T} [T]_{\times} R p_{1} = 0$$

$$epipolar constraint$$

 $E = [T]_{\times} R$ essential matrix

Epipolar Geometry

$$\overline{p}_{1} = \begin{bmatrix} \overline{u}_{1} \\ \overline{v}_{1} \\ 1 \end{bmatrix} \quad \overline{p}_{2} = \begin{bmatrix} \overline{u}_{2} \\ \overline{v}_{2} \\ 1 \end{bmatrix} \quad Normalized \ image \ coordinates$$

$$\overline{p}_{2}^{T}$$
 E \overline{p}_{1} = 0 Epipolar constraint or Longuet-Higgins equation (1981)

$$E = [T]_{*}R$$
 Essential matrix

• The Essential Matrix can be decomposed into R and T recalling that $E = [T]_{\times} R$ Four distinct solutions for R and T are possible.

H. Christopher Longuet-Higgins, *A computer algorithm for reconstructing a scene from two projections*, Nature, 1981, PDF.

Exercise

Compute the Essential matrix for the case of two rectified stereo images

Rectified case

$$\mathbf{R} = \mathbf{I}_{3\times 3}$$

$$\mathbf{T} = \begin{bmatrix} -b \\ 0 \\ 0 \end{bmatrix} \to [\mathbf{T}]_{\times} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & b \\ 0 & -b & 0 \end{bmatrix} \qquad \to E = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & b \\ 0 & -b & 0 \end{bmatrix}$$

How to compute the Essential Matrix?

Image 1 Image 2

- If we don't know R and T, can we estimate E from two images?
- > Yes, given at least 5 correspondences

How to compute the Essential Matrix?

- Kruppa showed in 1913 that 5 image correspondences is the minimal case and that there can be at up to 11 solutions.
- However, in 1988, Demazure showed that there are actually at most 10 distinct solutions.
- In 1996, Philipp proposed an iterative algorithm to find these solutions.
- Only in 2004, the first efficient and non iterative solution was proposed. It uses Groebner basis decomposition [Nister, CVPR'2004].
- The first popular solution uses 8 points and is called **the 8-point algorithm** or **Longuet-Higgins algorithm** (1981). Because of its ease of implementation, it is still used today (e.g., NASA rovers).

- H. Christopher Longuet-Higgins, *A computer algorithm for reconstructing a scene from two projections*, Nature, 1981, PDF.
- D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, PAMI, 2004, PDF

The 8-point algorithm

The Essential matrix E is defined by

$$\overline{p}_2^T E \overline{p}_1 = 0$$

• Each pair of point correspondences $\overline{\boldsymbol{p}}_I = (\overline{u}_1, \overline{v}_1, 1)^T$, $\overline{\boldsymbol{p}}_2 = (\overline{u}_2, \overline{v}_2, 1)^T$ provides a linear equation:

$$\overline{p}_2^T E \overline{p}_1 = 0$$

$$E = \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix}$$

$$\overline{u}_{2}\overline{u}_{1}e_{11} + \overline{u}_{2}\overline{v}_{1}e_{12} + \overline{u}_{2}e_{13} + \overline{v}_{2}\overline{u}_{1}e_{21} + \overline{v}_{2}\overline{v}_{1}e_{22} + \overline{v}_{2}e_{23} + \overline{u}_{1}e_{31} + \overline{v}_{1}e_{32} + e_{33} = 0$$

The 8-point algorithm

For n points, we can write

$$\begin{bmatrix} \overline{u}_{2}^{1}\overline{u}_{1}^{1} & \overline{u}_{2}^{1}\overline{v}_{1}^{1} & \overline{u}_{2}^{1} & \overline{v}_{2}^{1}\overline{u}_{1}^{1} & \overline{v}_{2}^{1}\overline{v}_{1}^{1} & \overline{v}_{2}^{1} & \overline{u}_{1}^{1} & \overline{v}_{1}^{1} & 1 \\ \overline{u}_{2}^{2}\overline{u}_{1}^{2} & \overline{u}_{2}^{2}\overline{v}_{1}^{2} & \overline{u}_{2}^{2} & \overline{v}_{2}^{2}\overline{u}_{1}^{2} & \overline{v}_{2}^{2}\overline{v}_{1}^{2} & \overline{v}_{2}^{2} & \overline{u}_{1}^{2} & \overline{v}_{1}^{2} & 1 \\ \vdots & \vdots \\ \overline{u}_{2}^{n}\overline{u}_{1}^{n} & \overline{u}_{2}^{n}\overline{v}_{1}^{n} & \overline{u}_{2}^{n} & \overline{v}_{2}^{n}\overline{u}_{1}^{n} & \overline{v}_{2}^{n}\overline{v}_{1}^{n} & \overline{v}_{2}^{n}\overline{v}_{1}^{n} & \overline{v}_{2}^{n} & \overline{u}_{1}^{n} & \overline{v}_{1}^{n} & 1 \end{bmatrix} \begin{vmatrix} e_{11} \\ e_{12} \\ e_{13} \\ e_{21} \\ e_{22} \\ e_{23} \\ e_{31} \\ e_{32} \\ e_{33} \end{vmatrix}$$

$$= 0$$

$$Q \text{ (this matrix is known)}$$

The 8-point algorithm

$$\mathbf{Q} \cdot \overline{\mathbf{E}} = 0$$

Minimal solution

- $Q_{(n imes 9)}$ should have rank 8 to have a unique (up to a scale) non-trivial solution $ar{E}$
- Each point correspondence provides 1 independent equation
- Thus, 8 point correspondences are needed

Over-determined solution

- *n* > 8 points
- A solution is to minimize $||Q\bar{E}||^2$ subject to the constraint $||\bar{E}||^2 = 1$. The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix Q^TQ (because it is the unit vector x that minimizes $||Qx||^2 = x^TQ^TQx$).
- It can be solved through Singular Value Decomposition (SVD). Matlab instructions:

```
[U,S,V] = svd(Q);
Ev = V(:,9);
E = reshape(Ev,3,3)';
```

Degenerate Configurations

 The solution of the eight-point algorithm is degenerate when the 3D points are coplanar. Conversely, the five-point algorithm works also for coplanar points

8-point algorithm: Matlab code

• A few lines of code. Go to the exercise this afternoon to learn how to implement it ©

8-point algorithm: Matlab code

```
function E = calibrated eightpoint(p1, p2)
p1 = p1'; % 3xN vector; each column = [u;v;1]
p2 = p2'; % 3xN vector; each column = [u;v;1]
Q = [p1(:,1).*p2(:,1),...
   p1(:,2).*p2(:,1),...
  p1(:,3).*p2(:,1),...
  p1(:,1).*p2(:,2),...
  p1(:,2).*p2(:,2),...
  p1(:,3).*p2(:,2),...
  p1(:,1).*p2(:,3),...
  p1(:,2).*p2(:,3),...
   p1(:,3).*p2(:,3)];
[U,S,V] = svd(Q);
Eh = V(:,9);
E = reshape(Eh, 3, 3)';
```

Interpretation of the 8-point algorithm

The 8-point algorithm seeks to minimize the following algebraic error

$$\sum_{i=1}^{N} \left(\overline{p}^{i_{2}^{T}} \boldsymbol{E} \ \overline{p}^{i_{1}} \right)^{2}$$

Using the definition of dot product, it can be observed that

$$\overline{p}_{2}^{\mathsf{T}} \cdot E\overline{p}_{1} = \|\overline{p}_{2}\| \|E\overline{p}_{1}\| \cos(\theta)$$

We can see that this product depends on the angle θ between \overline{p}_1 and the normal $n = Ep_1$ to the epipolar plane. It is non zero when \overline{p}_1 , \overline{p}_2 , and T are not coplanar.

Extract R and T from E (this slide will not be asked at the exam)

- Singular Value Decomposition: $E = U \sum V^T$
- Enforcing rank-2 constraint: set smallest singular value of Σ to 0:

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \swarrow_3 \end{bmatrix} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\hat{T} = U \begin{bmatrix} 0 & \mp 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Sigma V^{T}$$

$$\hat{R} = U \begin{bmatrix} 0 & \mp 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} V^{T}$$

$$\hat{T} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & t_x \\ -t_y & t_x & 0 \end{bmatrix} \Rightarrow \hat{t} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

$$t = K_2 \hat{t}$$

$$R = K_2 \hat{R} K_1^{-1}$$

4 possible solutions of R and T

- Two variants exist:
 - Calibrated camera(s) $\Rightarrow K_1$, K_2 are known
 - Uses the Essential Matrix
 - Uncalibrated camera(s) $\Rightarrow K_1$, K_2 are unknown

The Fundamental Matrix

 Before, we assumed to know the camera intrinsic parameters and we used normalized image coordinates to get the epipolar constraint for calibrated cameras:

$$\begin{vmatrix} \overline{u}_{1}^{i} \\ \overline{v}_{1}^{i} \end{vmatrix} = K_{1}^{-1} \begin{vmatrix} u_{1}^{i} \\ v_{1}^{i} \end{vmatrix}$$

$$\begin{vmatrix} \overline{u}_{2}^{i} \\ \overline{v}_{2}^{i} \end{vmatrix} = K_{2}^{-1} \begin{vmatrix} u_{2}^{i} \\ v_{2}^{i} \end{vmatrix}$$

$$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$$

$$\overline{\mathbf{p}}_{2}^{T} \mathbf{E} \overline{\mathbf{p}}_{1} = 0$$

$$\begin{bmatrix} \overline{u}_2^i \\ \overline{v}_2^i \\ 1 \end{bmatrix}^{\mathrm{T}} \quad \begin{bmatrix} \overline{u}_1^i \\ \overline{v}_1^i \\ 1 \end{bmatrix} = 0$$

The Fundamental Matrix

 By substituting the definition of normalized coordinates into the epipolar constraint, we get the epipolar constraint for uncalibrated cameras:

$$\begin{bmatrix} u_2^i \\ v_2^i \\ 1 \end{bmatrix}^{\mathrm{T}} \mathbf{K}_2^{-\mathrm{T}} \mathbf{E} \mathbf{K}_1^{-1} \begin{bmatrix} u_1^i \\ v_1^i \\ 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} u_2^i \\ v_2^i \\ 1 \end{bmatrix}^T \begin{bmatrix} u_1^i \\ v_1^i \\ 1 \end{bmatrix} = 0$$
Fundamental Matrix

$$F = \mathbf{K}_{2}^{-T} \mathbf{E} \mathbf{K}_{1}^{-1}$$

$$E = [T]_{\times} R$$

$$\Rightarrow F = \mathbf{K}_{2}^{-T} [T]_{\times} R \mathbf{K}_{1}^{-1}$$

The 8-point Algorithm for the Fundamental Matrix

 The same 8-point algorithm to compute the essential matrix from a set of normalized image coordinates can also be used to determine the Fundamental matrix:

$$\begin{bmatrix} u_2^i \\ v_2^i \\ 1 \end{bmatrix}^{\mathrm{T}} \quad \begin{bmatrix} u_1^i \\ v_1^i \\ 1 \end{bmatrix} = 0$$

Advantage: we work directly in pixel coordinates

Problem with 8-point algorithm

Problem with 8-point algorithm

- Poor numerical conditioning, which makes results very sensitive to noise
- Can be fixed by rescaling the data: Normalized 8-point algorithm [Hartley, PAMI'97]

Normalized 8-point algorithm (1/3)

- This can be fixed using a normalized 8-point algorithm [Hartley'97], which
 estimates the Fundamental matrix on a set of Normalized correspondences (with
 better numerical properties) and then unnormalizes the result to obtain the
 fundamental matrix for the given (unnormalized) correspondences
- Idea: Transform image coordinates so that they are in the range $\sim [-1,1] \times [-1,1]$
- One way is to apply the following rescaling and shift

Hartley, In defense of the eight-point algorithm, PAMI'97, PDF

Normalized 8-point algorithm (2/3)

- In the original 1997 paper, Hartley proposed to rescale the two point sets such that the centroid of each set is 0 and the mean standard deviation $\sqrt{2}$, so that the "average" point is equal to $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ (in homogeneous coordinates).
- This can be done for every point as follows:

$$\widehat{p^i} = \frac{\sqrt{2}}{\sigma} (p^i - \mu)$$

where $\mu = (\mu_x, \mu_y) = \frac{1}{N} \sum_{i=1}^n p^i$ is the centroid and $\sigma = \frac{1}{N} \sum_{i=1}^n \|p^i - \mu\|^2$ is the mean standard deviation of the point set.

• This transformation can be expressed in matrix form using homogeneous coordinates:

$$\widehat{p}^{i} = \begin{bmatrix} \frac{\sqrt{2}}{\sigma} & 0 & -\frac{\sqrt{2}}{\sigma} \mu_{x} \\ 0 & \frac{\sqrt{2}}{\sigma} & -\frac{\sqrt{2}}{\sigma} \mu_{y} \\ 0 & 0 & 1 \end{bmatrix} p^{i}$$

Normalized 8-point algorithm (3/3)

The Normalized 8-point algorithm can be summarized in three steps:

- **1. Normalize** point correspondences: $\widehat{p_1} = B_1 p_1$, $\widehat{p_2} = B_2 p_2$
- 2. Estimate **normalized** \widehat{F} with 8-p. algorithm using normalized coordinates \widehat{p}_1 , \widehat{p}_2
- 3. Compute **unnormalized** F from \hat{F} : $F = B_2^T \hat{F} B_1$

Can R, T, K_1 , K_2 be extracted from F?

- In general no: infinite solutions exist
- However, if the coordinates of the principal points of each camera are known and the two cameras have the same focal length f in pixels, then R, T, f can determined uniquely

Comparison between Normalized and non-normalized algorithm

	8-point	Normalized 8-point	Nonlinear refinement
Avg. Ep. Line Distance 1	2.33 pixels	0.92 pixel	0.86 pixel
Avg. Ep. Line Distance 2	2.18 pixels	0.85 pixel	0.80 pixel

39

Error Measures

- The quality of the estimated Essential matrix can be measured using different error metrics.
- The first one is the algebraic error that is defined directly by the Epipolar Constraint:

$$err = \sum_{i=1}^{N} (\overline{p}^{i}{}_{2}^{T} \boldsymbol{E} \ \overline{p}^{i}{}_{1})^{2}$$
 Remember Slide 24 for the geometrical interpretation of this error What is the drawback with this error measure?

- This error will exactly be 0 if E is computed from just 8 points (because in this case a non-overdetermined solution exists). For more than 8 points, it may not be 0 (due to image noise or outliers (overdetermined system)).
- There are alternative error functions that can be used to measure the quality of the estimated Fundamental matrix: the **Directional Error**, the **Epipolar Line Distance**, or the **Reprojection Error**.

Directional Error

- > Sum of squared cosines of the angle from the epipolar plane: err = $\sum_{i} (\cos(\theta_i))^2$
- From slide 24, we obtain: $cos(\theta) = \frac{\boldsymbol{p}^T_2 \cdot \boldsymbol{E} \boldsymbol{p}_1}{\|\boldsymbol{p}_2\| \|\boldsymbol{E} \boldsymbol{p}_1\|}$

Epipolar Line Distance

> Sum of **Squared Epipolar-Line-to-point Distances**

$$err = \sum_{i=1}^{N} d^{2}(p_{1}^{i}, l_{1}^{i}) + d^{2}(p_{2}^{i}, l_{2}^{i})$$

Cheaper than reprojection error because does not require point triangulation

Reprojection Error

Sum of the Squared Reprojection Errors

$$err = \sum_{i=1}^{N} \|p_1^i - \pi_1(P^i)\|^2 + \|p_2^i - \pi_2(P^i, R, T)\|^2$$

- Computation is expensive because requires point triangulation
- However it is the most popular because more accurate

Outline

- Two-View Structure from Motion
- Robust Structure from Motion

Robust Estimation

- > Matched points are usually contaminated by **outliers** (i.e., wrong image matches)
- > Causes of outliers are:
 - changes in view point (including scale) and illumination
 - image noise
 - occlusions
 - blur
- > For the camera motion to be estimated accurately, outliers must be removed
- > This is the task of **Robust Estimation**

Robust Estimation

- > Matched points are usually contaminated by **outliers** (i.e., wrong image matches)
- > Causes of outliers are:
 - changes in view point (including scale) and illumination
 - image noise
 - occlusions
 - blur
- > For the camera motion to be estimated accurately, outliers must be removed
- > This is the task of **Robust Estimation**

Influence of Outliers on Motion Estimation

Outliers can be removed using RANSAC [Fishler & Bolles, 1981]

5 deg

400 m

RANSAC (RAndom SAmple Consensus)

- RANSAC is the standard method for model fitting in the presence of outliers (very noisy points or wrong data)
- It can be applied to all sorts of problems where the goal is to **estimate the parameters of a model from the data** (e.g., camera calibration, Structure from Motion, DLT, PnP, P3P, Homography, etc.)
- Let's review RANSAC for line fitting and see how we can use it to do Structure from Motion

• Select sample of 2 points at random

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat

- Select sample of 2 points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat

Select the set with the maximum number of inliers obtained within \boldsymbol{k}

How many iterations does RANSAC need?

- Ideally: check all possible combinations of **2** points in a dataset of **N** points.
- Number of all pairwise combinations: N(N-1)/2
 - \Rightarrow computationally unfeasible if **N** is too large.

example: 1000 points \Rightarrow need to check all 1000*999/2 \cong **500'000** possibilities!

Do we really need to check all possibilities or can we stop RANSAC after some iterations?
 Checking a subset of combinations is enough if we have a rough estimate of the percentage of inliers in our dataset

This can be done in a probabilistic way

How many iterations does RANSAC need?

- \mathbf{w} := number of inliers/N
 - **N** := total number of data points
 - \Rightarrow **W**: fraction of inliers in the dataset \Rightarrow **W** = P(selecting an inlier-point out of the dataset)
- Assumption: the 2 points necessary to estimate a line are selected independently
 - $\Rightarrow w^2 = P(both selected points are inliers)$
 - \Rightarrow **1-w**² = P(at least one of these two points is an outlier)
- Let **k** := no. RANSAC iterations executed so far
- \Rightarrow $(1-w^2)^k = P(RANSAC \text{ never selected two points that are both inliers})$
- Let **p** := P(probability of success)
- \Rightarrow **1-p** = $(1-w^2)^k$ and therefore :

$$k = \frac{\log(1-p)}{\log(1-w^2)}$$

How many iterations does RANSAC need?

• The number of iterations $m{k}$ is

$$k = \frac{\log(1-p)}{\log(1-w^2)}$$

- \Rightarrow knowing the fraction of inliers w, after k RANSAC iterations we will have a probability p of finding a set of points free of outliers
- Example: if we want a probability of success p=99% and we know that $w=50\% \Rightarrow k=16$ iterations
 - these are significantly fewer than the number of all possible combinations!
 - Notice: number of points does not influence minimum number of iterations k, only w does!
- In practice we only need a rough estimate of W. More advanced variants of RANSAC estimate the fraction of inliers and adaptively update it at every iteration (how?)

RANSAC applied to Line Fitting

- 1. Initial: let A be a set of N points
- 2. repeat
- 3. Randomly select a sample of 2 points from A
- 4. Fit a line through the 2 points
- 5. Compute the distances of all other points to this line
- 6. Construct the inlier set (i.e. count the number of points whose distance < d)
- 7. Store these inliers
- 8. until maximum number of iterations k reached
- 9. The set with the maximum number of inliers is chosen as a solution to the problem

RANSAC applied to general model fitting

- 1. Initial: let A be a set of N points
- 2. repeat
- 3. Randomly select a sample of s points from A
- 4. **Fit a model** from the s points
- 5. Compute the **distances** of all other points from this model
- 6. Construct the inlier set (i.e. count the number of points whose distance < d)
- 7. Store these inliers
- 8. until maximum number of iterations k reached
- 9. The set with the maximum number of inliers is chosen as a solution to the problem

$$k = \frac{\log(1-p)}{\log(1-w^s)}$$

The Three Key Ingredients of RANSAC

In order to implement RANSAC for Structure From Motion (SFM), we need three key ingredients:

- 1. What's the **model** in SFM?
- 2. What's the **minimum number of points** to estimate the model?
- 3. How do we compute the distance of a point from the model? In other words, can we define a **distance metric** that measures how well a point fits the model?

Answers

- 1. What's the model in SFM?
 - The Essential Matrix (for calibrated cameras) or the Fundamental Matrix (for uncalibrated cameras)
 - Alternatively, R and T
- 2. What's the **minimum number of points** to estimate the model?
 - 1. We know that 5 points is the theoretical minimum number of points
 - 2. However, if we use the 8-point algorithm, then 8 is the minimum
- 3. How do we compute the **distance** of a point from the model?
 - 1. Algebraic error $(\bar{p}_2^{\mathsf{T}} E \bar{p}_1 = 0 \text{ or } p_2^{\mathsf{T}} F p_1 = 0)$ (Slide 40)
 - 2. Directional error (Slide 41)
 - 3. Epipolar line distance (Slide 42)
 - 4. Reprojection error (Slide 43)

• Let's consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by arrows

Image 1 Image 2

- Let's consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by arrows
- For convenience, we overlay the features of the second image on the first image and use arrows to denote the motion vectors of the features

Image 1

- Let's consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by arrows
- For convenience, we overlay the features of the second image on the first image and use arrows to denote the *motion vectors* of the features

1. Randomly select 8 point correspondences

Image 1

- Let's consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by arrows
- For convenience, we overlay the features of the second image on the first image and use arrows to denote the *motion vectors* of the features

- 1. Randomly select 8 point correspondences
- 2. Fit the model to all other points and count the inliers

Image 1

- Let's consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by arrows
- For convenience, we overlay the features of the second image on the first image and use arrows to denote the *motion vectors* of the features

- 1. Randomly select 8 point correspondences
- 2. Fit the model to all other points and count the inliers
- 3. Repeat from 1

Image 1

- Let's consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by arrows
- For convenience, we overlay the features of the second image on the first image and use arrows to denote the motion vectors of the features

Image 1

- Let's consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by arrows
- For convenience, we overlay the features of the second image on the first image and use arrows to denote the *motion vectors* of the features

1. Randomly select 8 point correspondences

Image 1

- Let's consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by arrows
- For convenience, we overlay the features of the second image on the first image and use arrows to denote the motion vectors of the features

- 1. Randomly select 8 point correspondences
- 2. Fit the model to all other points and count the inliers

Image 1

- Let's consider the following image pair and its image correspondences (e.g., Harris, SIFT, etc.), denoted by arrows
- For convenience, we overlay the features of the second image on the first image and use arrows to denote the *motion vectors* of the features

- 1. Randomly select 8 point correspondences
- 2. Fit the model to all other points and count the inliers
- 3. Repeat from 1 for k times

$$k = \frac{\log(1-p)}{\log(1-(1-\varepsilon)^8)}$$

Image 1

RANSAC iterations k vs. s

k is exponential in the number of points s necessary to estimate the model:

8-point RANSAC

- **Assuming**
 - p = 99%.
 - ε = 50% (fraction of outliers)
 - s = 8 points (8-point algorithm)

5-point RANSAC

- **Assuming**
 - p = 99%,
 - ε = 50% (fraction of outliers)
 - s = 5 points (5-point algorithm of David Nister (2004))

$$k = \frac{\log(1-p)}{\log(1-(1-\varepsilon)^s)} = 145 \text{ iterations}$$

2-point RANSAC (e.g., line fitting)

- **Assuming**
 - p = 99%,
 - ε = 50% (fraction of outliers)
 - **s** = 2 points

$$k = \frac{\log(1-p)}{\log(1-(1-\varepsilon)^s)} = 16 \text{ iterations}$$

RANSAC iterations k vs. ε

 $m{k}$ is increases exponentially with the fraction of outliers $m{arepsilon}$

RANSAC iterations

- As observed, $m{k}$ is exponential in the number of points $m{s}$ necessary to estimate the model
- The **8-point algorithm** is extremely simple and was very successful; however, it requires more than **1177 iterations**
- Because of this, there has been a large interest by the research community in using smaller motion parameterizations (i.e., smaller s)
- The first efficient solution to the minimal-case solution (5-point algorithm) took almost a century (Kruppa 1913 → Nister 2004)
- The **5-point RANSAC** (Nister 2004) only requires **145 iterations**; however:
 - The 5-point algorithm can return up to 10 solutions of E (worst case scenario)
 - The 8-point algorithm only returns a unique solution of E

Can we use less than 5 points?

Yes, if you use motion constraints!

Planar motion is described by three parameters: ϑ , φ , ρ

$$R = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad T = \begin{bmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ 0 \end{bmatrix}$$

$$E = [T]_{\times} R$$
 Essential matrix

$$\overline{p}_{2}^{T} E \overline{p}_{1} = 0$$
 Epipolar constraint

Planar motion is described by three parameters: ϑ , φ , ρ

$$R = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad T = \begin{bmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ 0 \end{bmatrix}$$

$$[T]_{\times} = \begin{bmatrix} 0 & 0 & \rho \sin \varphi \\ 0 & 0 & -\rho \cos \varphi \\ -\rho \sin \varphi & \rho \cos \varphi & 0 \end{bmatrix}$$

$$E = [T]_{\times} R = \begin{bmatrix} 0 & 0 & \rho \sin \varphi \\ 0 & 0 & -\rho \cos \varphi \\ -\rho \sin \varphi & \rho \cos \varphi & 0 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Planar motion is described by three parameters: ϑ , φ , ρ

$$R = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad T = \begin{bmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ 0 \end{bmatrix}$$

$$[T]_{\times} = \begin{bmatrix} 0 & 0 & \rho \sin \varphi \\ 0 & 0 & -\rho \cos \varphi \\ -\rho \sin \varphi & \rho \cos \varphi & 0 \end{bmatrix}$$

$$E = [T]_{\times} R = \begin{bmatrix} 0 & 0 & \rho \sin(\varphi) \\ 0 & 0 & -\rho \cos(\varphi) \\ -\rho \sin(\varphi - \theta) & \rho \cos(\varphi - \theta) & 0 \end{bmatrix}$$

Planar motion is described by three parameters: ϑ , φ , ρ

$$R = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad T = \begin{bmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ 0 \end{bmatrix}$$

Observe that E has 2DoF (θ , ϕ , because ρ is the scale factor); thus, 2 correspondences are sufficient to estimate θ and ϕ ["2-Point RANSAC", Ortin, 2001]

$$E = [T]_{\times} R = \begin{bmatrix} 0 & 0 & \rho \sin(\varphi) \\ 0 & 0 & -\rho \cos(\varphi) \\ -\rho \sin(\varphi - \theta) & \rho \cos(\varphi - \theta) & 0 \end{bmatrix}$$

Can we use less than 2 point correspondences?

Yes, if we exploit wheeled vehicles with non-holonomic constraints

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

Example of Ackerman steering principle

Locally-planar circular motion

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

Example of Ackerman steering principle

Locally-planar circular motion

$$\varphi = \theta/2 => only \ 1 \ DoF(\theta);$$

thus, only 1 point correspondence is needed

This is the smallest parameterization possible and results in the most efficient algorithm for removing outliers

$$R = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad T = \begin{bmatrix} \rho \cos \frac{\theta}{2} \\ \rho \sin \frac{\theta}{2} \\ 0 \end{bmatrix}$$

$$E = [T]_{x} R$$
 Essential matrix

$$\overline{p}_{2}^{T} E \overline{p}_{1} = 0$$
 Epipolar constraint

$$R = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad T = \begin{bmatrix} \rho \cos \frac{\theta}{2} \\ \rho \sin \frac{\theta}{2} \\ 0 \end{bmatrix}$$

$$E = [T]_{\times} R = \begin{bmatrix} 0 & 0 & \rho \sin \frac{\theta}{2} \\ 0 & 0 & -\rho \cos \frac{\theta}{2} \\ -\rho \sin \frac{\theta}{2} & \rho \cos \frac{\theta}{2} & 0 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \rho \sin \frac{\theta}{2} \\ 0 & 0 & \rho \cos \frac{\theta}{2} \\ \rho \sin \frac{\theta}{2} & -\rho \cos \frac{\theta}{2} & 0 \end{bmatrix}$$

$$R = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad T = \begin{bmatrix} \rho \cos \frac{\theta}{2} \\ \rho \sin \frac{\theta}{2} \\ 0 \end{bmatrix}$$

Let's compute the Epipolar Geometry
$$E = \rho \begin{bmatrix} 0 & 0 & \sin \frac{\theta}{2} \\ 0 & 0 & \cos \frac{\theta}{2} \end{bmatrix}$$

$$p_2^T E p_1 = 0 \implies \sin \left(\frac{\theta}{2}\right) \cdot (u_2 + u_1) + \cos \left(\frac{\theta}{2}\right) \cdot (v_2 - v_1) = 0$$

$$\begin{bmatrix} 0 & 0 & \sin \frac{\theta}{2} \\ 0 & 0 & \cos \frac{\theta}{2} \end{bmatrix}$$

$$\theta = -2 \tan^{-1} \left(\frac{v_2 - v_1}{u_2 + u_1} \right)$$

1-Point RANSAC algorithm

Only 1 iteration!

The most efficient algorithm for removing outliers, up to 1000 Hz

1-Point RANSAC is ONLY used to find the inliers.

Motion is then estimated from them in 6DOF

86

Comparison of RANSAC algorithms

$$N = \frac{\log(1-p)}{\log(1-(1-\varepsilon)^s)}$$
 where we typically use $p = 99\%$

	8-Point RANSAC	5-Point RANSAC	2-Point RANSAC	1-Point RANSAC
	[Longuet-Higgins'81]	[Nister'04]	[Ortin'01]	[Scaramuzza'11]
Numb. of iterations	> 1177	>145	>16	=1

Visual Odometry with 1-Point RANSAC

Work in different environments

Urban

Things to remember

SFM from 2 view

- Calibrated and uncalibrated case
- Proof of Epipolar Constraint
- 8-point algorithm and algebraic error
- Normalized 8-point algorithm
- Algebraic, directional, Epipolar line distance, Reprojection error
- RANSAC and its application to SFM
- 8 vs 5 vs 1 point RANSAC, pros and cons

Readings:

- Ch. 14.2 of Corke book
- CH. 7.2 of Szeliski book

Understanding Check

Are you able to answer the following questions?

- What's the minimum number of correspondences required for calibrated SFM and why?
- Are you able to derive the epipolar constraint?
- Are you able to define the essential matrix?
- Are you able to derive the 8-point algorithm?
- How many rotation-translation combinations can the essential matrix be decomposed into?
- Are you able to provide a geometrical interpretation of the epipolar constraint?
- Are you able to describe the relation between the essential and the fundamental matrix?
- Why is it important to normalize the point coordinates in the 8-point algorithm?
- Describe one or more possible ways to achieve this normalization.
- Are you able to describe the normalized 8-point algorithm?
- Are you able to provide quality metrics for the essential matrix estimation?
- Why do we need RANSAC?
- What is the theoretical maximum number of combinations to explore?
- After how many iterations can RANSAC be stopped to guarantee a given success probability?
- What is the trend of RANSAC vs. iterations, vs. the fraction of outliers, vs. the number of points to estimate the model?
- How do we apply RANSAC to the 8-point algorithm, DLT, P3P?
- How can we reduce the number of RANSAC iterations for the SFM problem?