第 11 次作业(提交截止时间: 5 月 15 日上午 9:50)

- 1. 从一批次产品随机地取 100 个样品进行检测,发现 40 个不合格,求这批产品 合格率 p 的 95%置信的区间估计.
- 2. 设随机样本 X_1, \dots, X_n 来自具有概率密度函数为 $f(x) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & 其它 \end{cases}$ 的

分布,其中 $\theta>0$ 是未知参数, θ^* 为 θ 的极大似然估计量.

- (1) 当n=4时,一组样本观测值为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{5}$, 利用 Fisher 信息量和这组观测值给出 θ^* 的标准误差的估计.
- (2) 利用 θ^* 和(1)中样本观测值给出 θ 的满足95%置信要求的一个具体置信区间.
- 3. *假设总体服从 $N(\mu,\sigma^2)$,参数 μ 已知, σ^2 未知, X_1,\cdots,X_n 为其随机样本,常数 $0<\alpha<1$.
 - (1) 求 σ 的极大似然估计 σ *.
 - (2) 利用 Fisher 信息量给出 σ^* 的标准误差的估计.
 - (3) 利用 σ *给出 $\log \sigma$ 的 $1-\alpha$ 置信的区间估计.
- 4. 为提高某一化学生产过程的得率,试图采用一种新的催化剂. 为慎重起见,先进行试验. 采用原催化剂 20 次试验的得率均值为91.73,样本方差为3.89; 采用新催化剂 30 次试验的得率均值为93.75,样本方差为4.02. 假设两总体都服从正态分布,且两样本独立. 不假设两总体方差相等,求两总体均值差的95%置信的区间估计. (与作业10-9 作对比)
- 5. 李雷和韩梅梅开始约会,但是韩梅梅在任何约会中都可能迟到,迟到时间服从区间 $[0,\theta]$ 上的均匀分布,参数 θ 的先验分布是0到1小时之间的均匀分布,假设韩梅梅在第一次约会中迟到了x小时,那么李雷如何利用这个信息去更新 θ 的分布?
- 6. 考虑课上硬币的例子,计算硬币正面朝上的概率 θ 的后验众数估计(也称最大后验估计),并给出其当n=20,x=13时的具体值,所得结果在直观上是否

与极大似然的思想相符合?

- 7. *假设总体服从正态分布 $N(\mu,\sigma^2)$,参数 σ^2 已知, X_1,\cdots,X_n 为其随机样本, μ 的先验分布为 $N(\mu_0,\sigma_0^2)$, μ_0,σ_0^2 为已知常数.
 - (1) 求 μ 的最大后验(后验众数)估计.
 - (2) 求 μ 的后验均值估计.
- 8. 设随机变量 X 的分布列为 $P(X = k | \theta) = \theta(1-\theta)^k$ ($k = 0,1,2,\cdots$),参数 θ 的 先验分布是 (0,1) 上的均匀分布. 对 X 作三次独立观测,得到观测值分别为 $x_1 = 2$, $x_2 = 3$, $x_3 = 5$.
 - (1) 求 θ 的后验分布概率密度函数.
 - (2) 求 θ 的后验均值估计.
- 9. * (Bayes 区间估计) 假设总体服从 $N(\mu,\sigma^2)$,参数 σ^2 已知, X_1,\cdots,X_n 为其随机样本, $0<\alpha<1$ 为常数.
 - (1) 假设 μ 的先验分布为 $N(\mu_0,\sigma_0^2)$, μ_0,σ_0^2 为已知常数. 求a,b 使得在 μ 的后验分布下 $P(a<\mu< b)\geq 1-\alpha$,并选取a,b 使得区间长度最小(最大后验区间).
 - (2) $\phi \sigma_0 \to \infty$,给出(1)中估计区间(a,b)的极限情况,将其与经典方法所求置信区间相比较,并尝试给予直观解释.
 - (3) 如果假设 μ 的先验分布 $f(\mu) \propto 1$ (Bayes 假设),求 μ 的后验分布及 μ 的最大后验区间和等尾可信区间(可信度 $\geq 1-\alpha$). 将其与经典方法所求置信区间相比较,并尝试给予直观解释.
- 10. (计算机实验)作业 10-11 续.
 - (1) 利用作业 10-11 的结果给出 $\theta = e^{\mu}$ 的 95%置信的区间估计.
 - (2) 注意到 \overline{X} 是 μ 的极大似然估计,你还能据此给出其他建立置信区间的

方法吗?对于方法的合理性尝试进行简要说明.