42. Ориентация многообразий. Понятия: одинаково ориентирующие параметризации, ориентация окрестностей, согласованные ориентации окрестностей, ориентированное многообразие, ориентируемое многообразие. Возможное количество ориентаций связного многообразия

Одинаково ориентирующие параметризации

Две параметризации φ и ψ стандартной окрестности U многообразия M называются согласованными (или одинаково ориентирующими), если для перехода $L:\Pi\to\Pi$ между ними якобиан $\det L'>0$ на всей области Π . Если $\det L'<0$, параметризации называются противоположно ориентирующими.

Смысл:

Знак якобиана перехода между параметризациями определяет, сохраняют ли они "направление" на многообразии. Положительный якобиан означает, что параметризации согласованы и задают одинаковую локальную ориентацию. Это важно для корректного определения глобальной ориентации.

Ориентация окрестностей

Ориентация окрестности U — это выбор класса эквивалентности параметризаций, для которых переходы имеют положительный якобиан. Параметризации этого класса называются положительно ориентирующими, а остальные — отрицательно ориентирующими.

Смысл:

Ориентация окрестности позволяет локально определить "направление" на многообразии. Например, на плоскости можно выбрать ориентацию "против часовой стрелки". Это необходимо для согласованного определения интегралов и дифференциальных форм.

Согласованные ориентации окрестностей

Две ориентированные окрестности U и V называются согласованными, если либо их пересечение пусто, либо для любых положительно ориентирующих параметризаций φ (для U) и ψ (для V) переход L между ними имеет $\det L'>0$ в области пересечения.

Смысл:

Согласованность гарантирует, что ориентации разных окрестностей не противоречат друг другу. Это позволяет "склеить" локальные ориентации в единую глобальную структуру, что важно для работы с целым многообразием.

Ориентированное многообразие

Многообразие M называется ориентированным, если существует набор попарно согласованных ориентаций всех его стандартных окрестностей. Такой набор называется ориентацией многообразия.

Смысл:

Ориентированное многообразие имеет единое глобальное "направление". Примеры: сфера, тор. Неориентируемые многообразия (например, лист Мёбиуса) не допускают такой структуры. Ориентация критична для многих теорем анализа и топологии.

Ориентируемое многообразие

Многообразие M называется ориентируемым, если существует хотя бы одна его ориентация (т.е. если его можно превратить в ориентированное многообразие выбором подходящих локальных ориентаций).

Смысл:

Ориентируемость — это свойство многообразия "допускать" согласованную ориентацию. Например, все поверхности без "перекрутов" (как сфера) ориентируемы, а лист Мёбиуса — нет. Это фундаментальное топологическое свойство.

Количество ориентаций связного многообразия

Если многообразие M связно и ориентируемо, то оно имеет ровно две ориентации: исходную и противоположную (где во всех окрестностях выбран "обратный" класс параметризаций).

Смысл:

Связность означает, что многообразие "цельное", и выбор ориентации в одной точке однозначно распространяется на всё многообразие. Противоположная ориентация

соответствует "зеркальному отражению". Например, у окружности есть только две ориентации: по и против часовой стрелки.

43. Понятие направления, лемма о существовании направлений

Кривая как одномерное многообразие

При k=1 гладкое многообразие M в \mathbb{R}^n называется кривой. Это означает, что локально кривая устроена как интервал числовой прямой.

Смысл:

Кривая - это одномерный геометрический объект, который в каждой своей точке выглядит как прямая линия (аналог того, как поверхность выглядит как плоскость). Примеры: прямая, окружность, спираль в пространстве.

Параметрическое задание кривой

Кривая Γ задаётся параметризацией $\gamma \in C^{(1)}((a,b) o \mathbb{R}^n)$, где:

- 1. γ инъективна (кроме, возможно, концов для замкнутых кривых)
- 2. γ регулярна ($\gamma'(t) \neq 0$ для всех t)
- 3. $\Gamma = \gamma((a,b))$

Смысл:

Кривую можно представить как траекторию движущейся точки, где параметр t - это время, а $\gamma(t)$ - положение точки в момент t. Условия гарантируют, что кривая не имеет "острых углов" и самопересечений.

Касательное пространство к кривой

Для кривой Γ в точке $x^0=\gamma(t_0)$ касательное пространство:

$$T_{x^0}\Gamma=\{\lambda\gamma'(t_0)|\lambda\in\mathbb{R}\}$$

Касательное пространство - это прямая линия, которая наилучшим образом приближает кривую в данной точке. Оно состоит из всех возможных касательных векторов в этой точке, а единичные векторы из этого пространства задают направления на кривой.

Направления на кривой (связь с исходным билетом)

Формальное определение:

Направление на Γ - это непрерывное отображение $\tau:\Gamma\to\mathbb{R}^n$, такое что:

- 1. $au(x) \in T_x \Gamma$ (касательный вектор)
- 2. | au(x)| = 1 (единичная длина)

Смысл:

Направление - это способ задать ориентацию кривой, то есть указать "положительное" направление движения вдоль неё. На связной кривой таких направлений ровно два (вперёд/ назад), что соответствует двум возможным ориентациям.

Лемма о существовании двух направлений

На связной гладкой кривой Γ , заданной параметризацией $\gamma \in C^{(1)}((a,b) \to \mathbb{R}^n)$, существует ровно два направления:

$$au_{\pm} = \pm rac{\gamma'}{|\gamma'|} \circ \gamma^{-1}.$$

Для замкнутого пути γ значение $\gamma^{-1}(\gamma(a))$ может соответствовать любой граничной точке.

Смысл:

Лемма утверждает, что на связной кривой есть только два возможных направления: "вперёд" (au_+) и "назад" (au_-), определяемые производной параметризации. Это следует из того, что касательный вектор можно нормировать двумя способами, а связность гарантирует отсутствие "переключений" между ними.

44. Сторона поверхности, лемма о существовании стороны

Определение двусторонней поверхности

Связная поверхность S в \mathbb{R}^n называется *двусторонней*, если существует непрерывное отображение $N:S \to \mathbb{R}^n$ (называемое *стороной*), такое что для всех $x \in S$:

- N(x) ортогонален касательному пространству $T_x S$ (т.е. $N(x) \perp T_x S$),
- |N(x)| = 1 (нормаль единичной длины).

Смысл:

Двусторонняя поверхность — это такая поверхность, на которой можно глобально (по всей поверхности) задать непрерывное поле единичных нормалей. Пример — сфера или плоскость, где нормаль можно согласованно выбрать "наружу" или "внутрь". Это отличает их от односторонних поверхностей (как лента Мёбиуса), где такое поле непрерывно задать нельзя.

Лемма о связи двусторонности и ориентируемости

Для связной поверхности S следующие условия эквивалентны:

- S двусторонняя,
- S ориентируема.

При этом S имеет ровно две стороны, задаваемые формулой:

$$N_{\pm}=\pmrac{N_{arphi}}{|N_{arphi}|}\circarphi^{-1},$$

где N_{arphi} — нормаль, построенная по параметризации arphi.

Смысл:

Ориентируемость означает, что можно согласованно выбрать "положительное" направление в касательных пространствах по всей поверхности. Лемма утверждает, что это возможно тогда и только тогда, когда поверхность двусторонняя. Две стороны соответствуют двум возможным глобальным выборам нормалей (например, "вверх" и "вниз" для плоскости). Доказательство опирается на согласование параметризаций и свойство непрерывности нормали.

Построение нормали и согласование параметризаций

Если φ — положительно ориентированная параметризация окрестности $U\subset S$, то нормаль N_{φ} вычисляется через частные производные φ :

$$N_{arphi} = \det egin{pmatrix} e_1 & \cdots & e_n \ rac{\partial arphi}{\partial u_1} & \cdots & rac{\partial arphi}{\partial u_{n-1}} \end{pmatrix}$$

(формально — как векторное произведение базисных векторов). При замене параметризации $\psi=\varphi\circ L$ с $\det L'>0$, нормали N_φ и N_ψ совпадают.

Смысл:

Нормаль строится локально через параметризацию, а её глобальная корректность обеспечивается условием $\det L'>0$ (сохранение ориентации). Это гарантирует, что выбор "положительной" нормали не зависит от выбора координат. Например, для сферы можно использовать географические координаты, и если менять их с сохранением ориентации, направление нормали останется согласованным.

45. Теорема о крае многообразия и его ориентации. Понятие ориентации края, согласованной с ориентацией многообразия. Пример согласованных ориентаций на поверхности и ограничивающей кривой.

Теорема о крае многообразия

Если M-k-мерное многообразие класса $C^{(r)}$, то его край ∂M является (k-1)-мерным многообразием класса $C^{(r)}$ без края. Если M ориентируемо, то ∂M также ориентируемо.

Смысл:

Край многообразия наследует его гладкость и теряет одну размерность. Ориентация многообразия автоматически задаёт согласованную ориентацию края. Это важно для интегральных теорем (например, Стокса), где ориентация края влияет на знак результата.

$$\Pi_{k-1} = (-1,1)^{k-1}$$

это открытый (k-1)-мерный куб в пространстве параметров $\tilde{u}=(u_2,\ldots,u_k)$, используемый для параметризации края ∂M .

Понятие ориентации края, согласованной с ориентацией многообразия

Ориентация края ∂M , заданная формулой $ilde{arphi}_x(ilde{u})=arphi_x(0, ilde{u})$ (где $arphi_x$ — параметризация M и $ilde{u}\in\Pi_{k-1}$), называется индуцированной или согласованной с ориентацией M.

Смысл:

При переходе от многообразия к краю "отбрасывается" первая координата параметризации. Для согласованности нужно, чтобы матрица Якоби перехода между параметризациями сохраняла положительный определитель. Это гарантирует, что ориентация края согласована с "направлением наружу" от многообразия.

Пример согласованных ориентаций

Пусть $G\subset \mathbb{R}^2$ — область с гладкой границей S. Если G ориентирована естественным образом (якобиан > 0), то согласованная ориентация S задаётся касательным вектором τ , при котором G остаётся слева при обходе границы. Нормаль $\mathcal N$ направлена наружу.

Смысл:

Для поверхности в \mathbb{R}^3 внешняя нормаль \mathcal{N} определяет ориентацию края через векторное произведение. В 2D это соответствует правилу "обход против часовой стрелки". Пример иллюстрирует, как ориентация края связана с направлением нормали и выбором параметризации.

46. Полилинейные формы, кососимметрические формы - определения и элементарные свойства, внешнее произведение форм

Полилинейные формы

Определение полилинейной формы

Пусть X,Y — векторные пространства над полем $K,p\in\mathbb{N}$. Отображение $F:X^p\to Y$ называется p-линейным, если оно линейно по каждому аргументу. Если Y=K, то F называется p-формой на X. Множество всех p-форм обозначается $\mathcal{F}_p(X)$. При p=0 под 0 -формами понимаются элементы Y.

Разложение по базису

Если $\dim X = n$ и e^1, \dots, e^n — базис X, то для $F \in \mathcal{F}_p(X)$:

$$F = \sum_{i_1,\ldots,i_p=1}^n a_{i_1,\ldots,i_p} \pi_{i_1} \otimes \ldots \otimes \pi_{i_p},$$

где π_i — проектор на i-ю координату, а коэффициенты $a_{i_1,\ldots,i_p}=F(e^{i_1},\ldots,e^{i_p}).$

Смысл

Полилинейные формы обобщают линейные отображения на случай нескольких аргументов. Они позволяют выражать многомерные линейные зависимости, например, объёмы или детерминанты. Коэффициенты a_{i_1,\ldots,i_p} зависят от выбора базиса и полностью определяют форму.

Кососимметрические формы

Определение кососимметричности

Форма $F \in \mathcal{F}_p(X)$ называется кососимметрической, если для любых двух аргументов:

$$F(x^1,\ldots,x^i,\ldots,x^j,\ldots,x^p) = -F(x^1,\ldots,x^j,\ldots,x^i,\ldots,x^p).$$

Множество таких форм обозначается $\mathcal{E}_p(X)$. При p>n все формы нулевые.

Базис в $\mathcal{E}_p(X)$

Для $p \leq n$ форма F раскладывается как:

$$F = \sum_{1 \leq i_1 < \ldots < i_p \leq n} a_{i_1,\ldots,i_p} \pi_{i_1} \wedge \ldots \wedge \pi_{i_p},$$

где \wedge — внешнее произведение, а $\pi_{i_1} \wedge \ldots \wedge \pi_{i_p}$ вычисляется через определитель матрицы из координат векторов.

Смысл

Кососимметрические формы "чувствуют" ориентацию и линейную зависимость векторов. Например, если два вектора совпадают, форма обращается в ноль. Они тесно связаны с определителями и используются в интегрировании (дифференциальные формы).

Внешнее произведение форм

Определение внешнего произведения

Для $F\in\mathcal{E}_p(X)$ и $G\in\mathcal{E}_q(X)$ их внешнее произведение $F\wedge G\in\mathcal{E}_{p+q}(X)$ определяется на базисных формах как:

$$(\pi_{i_1}\wedge\ldots\wedge\pi_{i_p})\wedge(\pi_{j_1}\wedge\ldots\wedge\pi_{j_q})=\pi_{i_1}\wedge\ldots\wedge\pi_{i_p}\wedge\pi_{j_1}\wedge\ldots\wedge\pi_{j_q},$$

а затем продолжается по линейности.

Формула для коэффициентов

Если F и G заданы в виде (12.19), то:

$$F\wedge G=\sum_{1\leq i(j)_1<\ldots< i(j)_p\leq n}a_{i_1,\ldots,i_p}b_{j_1,\ldots,j_q}\pi_{i_1}\wedge\ldots\wedge\pi_{i_p}\wedge\pi_{j_1}\wedge\ldots\wedge\pi_{j_q}.$$

Смысл

Внешнее произведение комбинирует формы, увеличивая их степень. Оно аналогично векторному произведению, но для многомерных объектов. Например, в геометрии с его помощью строят формы для вычисления гиперобъёмов.

47. Дифференциальные формы; координатное представление дифференциальных форм. Внешнее дифференциальных форм

Определение дифференциальной формы

Пусть $G\subset\mathbb{R}^n$, $p\in\mathbb{N}$. Дифференциальной формой порядка p (или p-формой) в множестве G называется функция $\omega:G imes(\mathbb{R}^n)^p\to\mathbb{R}$, такая что для всех $x\in G$ выполняется $\omega(x;\cdot)\in\mathcal{E}_p(\mathbb{R}^n)$. 0-формой называется функция, заданная на G.

$$\omega(x; dx^1, \ldots, dx^p) = \sum_{1 \leq i_1 < \ldots < i_p \leq n} a_{i_1 \ldots i_p}(x) \, dx_{i_1} \wedge \ldots \wedge dx_{i_p},$$

где $a_{i_1\dots i_n}:G o\mathbb{R}$ — коэффициенты формы.

Смысл:

Дифференциальная форма — это обобщение понятия функции и её дифференциала. Она позволяет работать с многомерными интегралами и векторными полями, например, в физике (потоки, работа). Формы порядка p "измеряют" p-мерные объёмы или проекции.

Координатное представление дифференциальных форм

В координатах форма ω раскладывается по базису внешней алгебры $dx_{i_1}\wedge\ldots\wedge dx_{i_p}$, где $1\leq i_1<\ldots< i_p\leq n$. Коэффициенты $a_{i_1\ldots i_p}(x)$ зависят от точки $x\in G$.

$$\omega = \sum_I a_I(x) \, dx^I, \quad$$
 где $I = (i_1, \dots, i_p).$

Смысл:

Такое представление позволяет удобно вычислять операции с формами (сложение, умножение, дифференцирование). Оно аналогично разложению вектора по базису, но для "многомерных объектов". Например, 1-форма в \mathbb{R}^3 — это линейная комбинация dx, dy, dz.

Внешнее дифференцирование

Оператор внешнего дифференцирования $d:\Omega_p^{(r)}(G) o \Omega_{p+1}^{(r-1)}(G)$ задаётся для 0-формы $\omega=f$ как:

$$df = \sum_{i=1}^n rac{\partial f}{\partial x_i} dx_i,$$

а для p-формы $\omega = \sum a_I dx^I$:

$$d\omega = \sum da_I \wedge dx^I.$$

- Линейность: $d(\omega + \lambda) = d\omega + d\lambda$.
- Правило Лейбница: $d(\omega \wedge \lambda) = d\omega \wedge \lambda + (-1)^p \omega \wedge d\lambda$.
- $d^2 = 0$ (для форм класса $C^{(2)}$).

Смысл:

Внешний дифференциал обобщает градиент, ротор и дивергенцию. Например, в \mathbb{R}^3 , d переводит 0-форму (функцию) в 1-форму (градиент), а 1-форму — в 2-форму (ротор). Свойство

 $d^2=0$ отражает замкнутость таких операций (например, $\mathrm{rot}(\mathrm{grad})=0$).

Гладкость форм

Форма ω называется r-гладкой (класса $C^{(r)}$), если все её коэффициенты $a_I(x)$ являются r-гладкими функциями. Множество таких форм обозначается $\Omega_p^{(r)}(G)$.

Смысл:

Гладкость гарантирует, что с формой можно корректно выполнять дифференциальные операции (например, внешнее дифференцирование). Это важно для приложений в теории поля и дифференциальной геометрии.

Теорема о свойствах внешнего дифференцирования

- Линейность: d линейный оператор.
- Антикоммутативность: $d(\omega \wedge \lambda) = d\omega \wedge \lambda + (-1)^p \omega \wedge d\lambda$.
- Нильпотентность: $d^2 \omega = 0$.

$$d^2\omega = d\left(\sum da_I\wedge dx^I
ight) = \sum d^2a_I\wedge dx^I - da_I\wedge d(dx^I) = 0.$$

Смысл:

Эти свойства аналогичны правилам работы с дифференциалами в матанализе. Нильпотентность $d^2=0$ лежит в основе теории когомологий, которая изучает "дыры" в многообразиях.

48. Перенос дифференциальных форм. Теорема о свойствах переноса форм

Определение переноса дифференциальных форм

Формальное определение:

Пусть G — открытое множество в \mathbb{R}^n , U — открытое множество в \mathbb{R}^m , $p\in\mathbb{Z}_+$, $\omega\in\Omega_p(G)$, $T\in C^{(1)}(U\to G)$. Перенесённая форма $T^{\emptyset}\omega$ определяется равенством:

$$(T^\omega)(u;du^1,\ldots,du^p)=\omega(T(u);T'(u)du^1,\ldots,T'(u)du^p),$$

где $u\in U$, $du^1,\dots,du^p\in\mathbb{R}^m$. Отображение T^{\emptyset} называется переносом форм или заменой переменных.

Смысл:

Перенос форм позволяет "перетянуть" дифференциальную форму из пространства G в пространство U с помощью отображения T. Это аналогично замене переменных в интеграле, где форма адаптируется к новым координатам через производную T'. Например, при переходе от декартовых к полярным координатам.

Свойства переноса форм

- 1. Линейность: $T^{\emptyset}(\alpha\omega+\beta\lambda)=\alpha T^{\emptyset}\omega+\beta T^{\emptyset}\lambda$.
- 2. Умножение на функцию: $T^{\emptyset}(f\omega)=(f\circ T)T^{\emptyset}\omega$ для $f\in C^{(r)}(G)$.
- 3. Внешнее произведение: $T^{\emptyset}(\omega \wedge \lambda) = T^{\emptyset}\omega \wedge T^{\emptyset}\lambda.$
- 4. Дифференциал: $T^{\emptyset}d\omega=dT^{\emptyset}\omega$ при r>1.
- 5. Явная формула: Для $\omega = \sum a_{i_1,\ldots,i_p} dx_{i_1} \wedge \ldots \wedge dx_{i_p}$,

$$T^{arphi}\omega = \sum (a_{i_1,\ldots,i_p}\circ T)\cdot \det\left(rac{\partial T_{i_k}}{\partial u_{j_l}}
ight)du_{j_1}\wedge\ldots\wedge du_{j_p}.$$

6. Композиция: $(T\circ S)^\omega=S^(T^{\varnothing}\omega)$.

Смысл:

Эти свойства показывают, что перенос форм согласован с базовыми операциями (линейностью, произведением, дифференцированием). Например, пункт 4 означает, что дифференцирование и перенос коммутируют, а пункт 5 обобщает правило замены переменных в интеграле через якобиан. Это удобно для вычислений в новых координатах.

49 Поверхностный интеграл второго рода. Выражением поверхностного интеграла второго рода через поверхностный интеграл первого рода. Выражения для интеграла 2го рода в случае размерностей многообразия 1 и 2. Примеры. Лемма Пуанкаре в общем случае (без док-ва)

Определение интеграла второго рода

Пусть G открыто в \mathbb{R}^n , $M\subset G$ — ориентированное k-мерное многообразие класса $\mathbb{M}^{(1)}_{k,n}$, $\omega\in\Omega_k(G)$ — дифференциальная форма степени $k,E\in\mathbb{A}_M$ — малое измеримое множество. Тогда интеграл второго рода определяется как:

$$\int_E \omega = \int_{arphi^{-1}(E)} arphi^* \omega \, d\mu_k,$$

где φ — положительно ориентирующая параметризация стандартной окрестности U, содержащей E, а $\varphi^*\omega$ — pullback формы ω .

Смысл:

Интеграл второго рода обобщает понятие криволинейного и поверхностного интеграла для дифференциальных форм. Он позволяет вычислять "поток" формы через многообразие, используя локальные параметризации. Для малых множеств интеграл сводится к обычному крайнему интегралу от pullback формы.

Связь с интегралом первого рода

Для малого множества E и формы $\omega = \sum a_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}$ интеграл второго рода выражается через интеграл первого рода:

$$\int_E \omega = \int_E \left\langle a, rac{\det arphi'}{\sqrt{\mathcal{D}_arphi}} \circ arphi^{-1}
ight
angle d\mu_M,$$

где $\mathcal{D}_{arphi} = \sum (\det arphi'_{j_1 \dots j_k})^2$ — грамиан параметризации.

Смысл:

Эта формула позволяет перейти от абстрактного интеграла от формы к интегралу от функции по мере на многообразии. Множитель $\frac{\det \varphi'}{\sqrt{\mathcal{D}_{\varphi}}}$ учитывает искажение объема и ориентацию при параметризации. Это ключ к практическим вычислениям, например, в задачах физики.

Примеры для размерностей 1 и 2:

- Для k=1 (кривая): $\int_E \omega = \int_E \langle a, au
 angle d\mu_1$, где au единичный касательный вектор.
- Для k=2, n=3 (поверхность):

$$\int_S \omega = \int_S \langle F, N
angle d\mu_S, \quad F = (P, Q, R), \, N$$
 — единичная нормаль.

Теорема Пуанкаре (без доказательства):

Если G — звездная область в \mathbb{R}^n и ω — замкнутая форма ($d\omega=0$), то ω точна ($\exists \eta:\omega=d\eta$). Для форм класса C^r первообразная также C^r .

Смысл:

В размерности 2 интеграл сводится к потоку векторного поля через поверхность. Лемма Пуанкаре гарантирует существование потенциала для замкнутых форм в "хороших" областях, что важно для теории поля (например, в электродинамике).

50. Общая формула Стокса. Частные случаи и следствия общей формулы Стокса: формула Ньютона-Лейбница для криволинейных интегралов, формула Грина, классическая формула Стокса, формула Гаусса-Остроградского

Общая формула Стокса для многообразий

Пусть $M\in \mathbb{M}_{k-1}^{(2)}$ — компактное ориентированное многообразие, G — открытое множество в \mathbb{R}^n , $M\subset G$, $\omega\in \Omega_{k-1}^{(1)}(G)$. Тогда:

$$\int_M d\omega = \int_{\partial M} \omega.$$

Смысл:

Эта теорема обобщает идею связи интеграла по области с интегралом по её границе. Она показывает, что дифференцирование формы ω внутри M соответствует интегрированию самой формы по границе ∂M . Формула универсальна и применяется в многомерном анализе, например, для расчётов потоков и циркуляции полей.

Формула Грина

Пусть D — ограниченная область в \mathbb{R}^2 с гладкой границей ∂D , G открыто в \mathbb{R}^2 , $\overline{D}\subset G$, $P,Q\in C^{(1)}(G)$. Тогда:

$$\iint_D (Q_x'-P_y')\,dx\,dy = \int_{\partial D} P\,dx + Q\,dy.$$

Это двумерный случай формулы Стокса, связывающий двойной интеграл по области с криволинейным интегралом по её границе. Используется, например, для вычисления работы векторного поля вдоль контура или площади фигуры через граничный интеграл.

Классическая формула Стокса

Пусть S — компактная ориентированная поверхность класса $C^{(2)}$ в \mathbb{R}^3 с краем ∂S , G открыто в \mathbb{R}^3 , $S\subset G$, $P,Q,R\in C^{(1)}(G)$. Тогда:

$$\iint_S (R_y'-Q_z')dy\wedge dz + (P_z'-R_x')dz\wedge dx + (Q_x'-P_y')dx\wedge dy = \int_{\partial S} P\,dx + Q\,dy + R\,dz.$$

Смысл:

Это трёхмерный аналог формулы Грина. Она связывает поток ротора векторного поля через поверхность с циркуляцией поля по её границе. Применяется в физике для расчётов электромагнитных полей и гидродинамики.

Формула Гаусса-Остроградского

Пусть V- ограниченная область в \mathbb{R}^3 с гладкой границей ∂V , G открыто в \mathbb{R}^3 , $V\subset G$, $P,Q,R\in C^{(1)}(G)$. Тогда:

$$\iiint_V (P'_x + Q'_y + R'_z) \, dx \, dy \, dz = \iint_{\partial V} P \, dy \wedge dz + Q \, dz \wedge dx + R \, dx \wedge dy.$$

Смысл:

Эта формула связывает тройной интеграл дивергенции поля по объёму с потоком поля через границу этого объёма. Она широко используется в теории поля для расчётов, например, потока тепла или заряда через замкнутую поверхность.

51: Неравенства Минковского и Гёльдера, существенный супремум, пространства $L_p(X,\mu)$

Теорема (Неравенство Гёльдера):

Пусть (X,\mathbb{A},μ) — пространство с мерой, $E\in\mathbb{A}$, функции f и g измеримы на E, существует $\int_E fg\ d\mu,\,1< p<+\infty,\,rac{1}{p}+rac{1}{q}=1.$ Тогда:

$$\left|\int_E fg\,d\mu
ight| \leq \left(\int_E |f|^p\,d\mu
ight)^{1/p} \left(\int_E |g|^q\,d\mu
ight)^{1/q}.$$

Смысл:

Неравенство Гёльдера обобщает идею "взвешенного среднего" для интегралов. Оно связывает интеграл произведения двух функций с произведениями их норм в L_p и L_q . Это ключевой инструмент для доказательства сходимости и ограниченности в функциональных пространствах, например, при изучении рядов Фурье или операторов.

Неравенство Минковского для интегралов

Теорема (Неравенство Минковского):

Пусть (X,\mathbb{A},μ) — пространство с мерой, $E\in\mathbb{A}$, функции f и g измеримы, конечны почти везде на $E,1\leq p<+\infty$. Тогда:

$$\left(\int_E |f+g|^p\,d\mu
ight)^{1/p} \leq \left(\int_E |f|^p\,d\mu
ight)^{1/p} + \left(\int_E |g|^p\,d\mu
ight)^{1/p}.$$

Смысл:

Это аналог неравенства треугольника для норм в L_p . Оно показывает, что норма суммы не превосходит суммы норм, что важно для доказательства линейности и метрических свойств пространств L_p . Доказательство часто опирается на неравенство Гёльдера.

Существенный супремум функции

Определение:

Для измеримой функции $f:E o\overline{\mathbb{R}}$ на пространстве с мерой (X,\mathbb{A},μ) существенный супремум — это:

$$\operatorname{ess\,sup}_{x\in E}f(x)=\inf\{A\in\mathbb{R}:f(x)\leq A$$
 почти везде на $E\}.$

(Если таких A нет, полагаем $+\infty$.)

Существенный супремум игнорирует "выбросы" функции на множествах нулевой меры. Например, для функции, равной 1 на рациональных числах и 0 на иррациональных, $\operatorname{ess\,sup}=0$, так как рациональные числа имеют меру Лебега ноль. Это понятие критично для определения нормы в L_∞ .

Пространства $L_p(X,\mu)$

Определение:

Для $1 \leq p < +\infty$:

$$L_p(E,\mu) = \left\{ f:$$
 н.в. $E o \mathbb{R}$ измеримы, $\int_E |f|^p \, d\mu < +\infty
ight\}.$

Для $p=+\infty$:

$$L_{\infty}(E,\mu)=\{f:$$
 н.в. $E o\mathbb{R}$ измеримы, $\operatorname{ess\,sup}|f|<+\infty\}$.

Норма:
$$\|f\|_p = \left(\int_E |f|^p\,d\mu\right)^{1/p}$$
 (для $L_\infty - \operatorname{ess\,sup}|f|$).

Смысл:

Пространства L_p — это множества функций с конечной "энергией" (интегралом от p-й степени). Они являются полными нормированными пространствами (банаховыми), что позволяет применять методы функционального анализа. Примеры: L_2 для рядов Фурье, L_∞ для ограниченных функций.

52: Вложения пространств Лебега $L_p(X,\mu)$ и пространств ℓ_p . Несравнимость пространств L_p

Вложение пространств Лебега при конечной мере

Если $\mu E<+\infty$, $1\leq p< q\leq +\infty$, то $L_q(E,\mu)\subset L_p(E,\mu)$, и для любой $f\in L_q(E,\mu)$ выполняется:

$$\|f\|_{L_p(E,\mu)} \leq (\mu E)^{1/p-1/q} \|f\|_{L_q(E,\mu)}.$$

При конечной мере "более строгие" пространства L_q (с большим q) вкладываются в "более широкие" L_p . Это означает, что функции с конечной нормой в L_q автоматически принадлежат L_p , а неравенство оценивает их норму через меру множества E. Например, на отрезке $\left[a,b\right]$ любая функция из L_2 лежит и в L_1 .

Пространства ℓ_p последовательностей

Для последовательностей $x = \{x_k\}_{k=1}^{\infty}$ норма задаётся как:

$$\|x\|_p = egin{cases} (\sum_{k=1}^\infty |x_k|^p)^{1/p}\,, & 1 \leq p < +\infty, \ \sup_{k \in \mathbb{N}} |x_k|, & p = +\infty. \end{cases}$$

Пространство ℓ_p состоит из всех последовательностей с конечной нормой $\|x\|_p$.

Смысл:

Пространства ℓ_p — это дискретные аналоги L_p , где вместо интегралов используются суммы. Они важны в анализе рядов, численных методах и теории операторов. Например, ℓ_2 — это пространство квадратично суммируемых последовательностей, используемое в гильбертовых пространствах.

Несравнимость пространств L_p при бесконечной мере

Замечание (Контрпример для $\mu E = +\infty$):

Пусть $E=(0,+\infty)$, μ — мера Лебега. Тогда:

- $egin{aligned} ullet & f_1(x) = rac{1}{x+1} \in L_2(E) \setminus L_1(E), \ ullet & f_2(x) = rac{1}{\sqrt{x}} \chi_{(0,1)}(x) \in L_1(E) \setminus L_2(E). \end{aligned}$

Смысл:

При бесконечной мере вложения $L_q \subset L_p$ могут не работать: существуют функции, принадлежащие "более узкому" L_q , но не лежащие в "широком" L_p , и наоборот. Это показывает, что свойства L_p -пространств существенно зависят от меры множества E. Например, на всей прямой $\mathbb R$ нет общего включения между L_1 и L_2 .

53. Полнота пространства C(K)

Определение пространства C(K)

Пространство C(K) — это множество всех непрерывных вещественных (или комплексных) функций, определённых на компакте K, с нормой $\|f\| = \sup_{x \in K} |f(x)|$.

Смысл:

Это пространство состоит из функций, которые не имеют разрывов на компактном множестве K (например, на отрезке [a,b]). Норма здесь — это максимальное значение функции на K. Такие пространства важны в анализе, так как компактность K гарантирует, что непрерывные функции на нём обладают полезными свойствами, например, ограниченностью.

Критерий полноты нормированного пространства

Нормированное пространство X полно (т.е. является банаховым), если любая фундаментальная последовательность $\{x_n\}$ в X сходится к элементу $x \in X$.

Смысл:

Полнота означает, что в пространстве "хватает" элементов — если последовательность функций $\{f_n\}$ сходится "в себе" (т.е. $\|f_n-f_m\|\to 0$), то её предел тоже лежит в C(K). Это позволяет работать с пределами, не выходя за рамки пространства, что критично для многих теорем анализа.

Teopeма о полноте C(K)

Пространство C(K) с нормой $\|f\| = \sup_{x \in K} |f(x)|$ является полным (банаховым).

Смысл:

Любая последовательность непрерывных функций, которая равномерно сходится на компакте K, имеет пределом тоже непрерывную функцию. Это следует из теоремы о равномерной сходимости: если $f_n \to f$ равномерно, то f непрерывна. Таким образом, C(K) "замкнуто" относительно пределов, что делает его удобным для изучения.

54. Критерий полноты нормированного пространства

Определение полного нормированного пространства (банахово пространство)

Нормированное пространство $(X,\|\cdot\|)$ называется полным, если любая фундаментальная последовательность в X сходится к элементу этого пространства. Полное нормированное пространство также называют банаховым.

Смысл:

Полнота означает, что в пространстве "нет дыр" — любая последовательность, которая "хочет" сходиться (фундаментальная), действительно имеет предел внутри этого пространства. Это важно для анализа, так как гарантирует, что предельные переходы не выводят нас за рамки рассматриваемого пространства. Пример — пространство непрерывных функций C[a,b] с нормой максимума полно, а пространство многочленов на отрезке — нет.

Критерий полноты через абсолютную сходимость ряда

Нормированное пространство X полно тогда и только тогда, когда любой абсолютно сходящийся ряд в X сходится, то есть:

$$\sum_{n=1}^{\infty}\|x_n\|<+\infty\implies \sum_{n=1}^{\infty}x_n$$
 сходится в $X.$

Смысл:

Этот критерий связывает полноту со сходимостью рядов. Если сумма норм членов ряда конечна (ряд "абсолютно сходится"), то сам ряд должен сходиться к элементу пространства. Это удобный инструмент для проверки полноты, так как позволяет работать с рядами вместо последовательностей. Например, в пространстве ℓ^1 (пространство абсолютно суммируемых последовательностей) этот критерий выполняется.

Связь полноты и замкнутости вложенных шаров

Теорема (о вложенных шарах):

Нормированное пространство X полно тогда и только тогда, когда для любой последовательности замкнутых вложенных шаров $\overline{B}(x_n,r_n)$ с $r_n\to 0$ существует точка $x\in X$, принадлежащая всем шарам.

Эта теорема аналогична принципу вложенных отрезков в вещественных числах. Если шары "стягиваются" (их радиусы стремятся к нулю) и вложены друг в друга, то их пересечение не пусто — есть общая точка. Это ещё один способ проверить полноту, показывающий, что пространство "не имеет пустот". Например, в \mathbb{R}^n это выполняется, а в пространстве рациональных чисел — нет.

55 Полнота пространств $L^p(X,\mu)$ при $p\in [1,+\infty]$

Определение пространства $L^p(X,\mu)$

Пусть (X,\mathcal{A},μ) — пространство с мерой, $p\in[1,+\infty]$. Пространство $L^p(X,\mu)$ состоит из измеримых функций $f:X\to\mathbb{R}$ (или \mathbb{C}), для которых конечна норма:

- при $p < +\infty$: $\|f\|_p = \left(\int_X |f|^p \, d\mu\right)^{1/p}$,
- при $p=+\infty$: $\|f\|_{\infty}=\mathrm{ess\ sup}_{x\in X}|f(x)|.$

Смысл:

Пространства L^p — это функциональные пространства, где "размер" функции измеряется интегралом её степени p. Они обобщают понятие \mathbb{R}^n на бесконечномерный случай, позволяя работать с функциями, для которых интеграл $|f|^p$ конечен.

Критерий полноты пространства ${\cal L}^p$

Пространство $L^p(X,\mu)$ полно при $p\in [1,+\infty]$, то есть любая фундаментальная последовательность $\{f_n\}\subset L^p$ сходится к некоторой функции $f\in L^p$ по норме $\|\cdot\|_p$.

Смысл:

Полнота означает, что если последовательность функций $\{f_n\}$ "сходится сама к себе" (фундаментальна), то её предел тоже лежит в L^p . Это аналог полноты \mathbb{R}^n , но для интегральных норм. Без полноты многие методы анализа (например, предельные переходы) были бы неприменимы.

Теорема Рисса-Фишера

Любое нормированное пространство $L^p(X,\mu)$ при $p\in [1,+\infty]$ является банаховым (полным). В частности, если $\{f_n\}$ — фундаментальна в L^p , то существует $f\in L^p$, такая что $\|f_n-f\|_p\to 0$.

Смысл:

Эта теорема — основа для анализа в L^p . Она гарантирует, что пределы "хороших" последовательностей не выходят за рамки пространства. Например, в матфизике это позволяет корректно решать уравнения, используя приближения. Для p=2 (гильбертов случай) это особенно важно в квантовой механике.

56

57

58 Теорема о непрерывности сдвига

1) Формулировка теоремы

Функция $S_h(f)(x)=f(x+h)$ называется сдвигом функции f на величину h. Если f непрерывна в точке a, то $S_h(f)$ непрерывна в точке a-h.

Смысл:

Эта теорема показывает, как сдвиг аргумента влияет на непрерывность функции. Если исходная функция гладкая в некоторой точке, то её "сдвинутая" версия сохранит это свойство, но уже в другой точке. Это полезно, например, при анализе сигналов или волн, где сдвиги часто встречаются.

2) Связь с исходной функцией

Для любого h и непрерывной f выполняется: $\lim_{h\to 0} S_h(f)(x) = f(x)$.

Смысл:

При малых сдвигах значение функции почти не меняется, что согласуется с интуицией о непрерывности. Это свойство используется в численных методах и физике, где важно учитывать малые изменения параметров.

3) Область применения

Теорема применяется в анализе Фурье, теории вероятностей (стационарные процессы) и дифференциальных уравнениях.

Смысл:

Сдвиги функций — это базовый инструмент в математике. Например, в обработке сигналов они помогают изучать задержки, а в физике — описывать движение волн. Теорема гарантирует, что такие операции не нарушают "гладкость" исходных данных.