CMSC 141 AUTOMATA AND LANGUAGE THEORY TURING MACHINES

Mark Froilan B. Tandoc

October 24, 2014

FORMAL DEFINITION OF A TURING MACHINE

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, \sqcup, q_{accept}, \text{ where:}$

- \blacksquare Q is the set of states,
- Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times L, R$ is the transition function,
- $q_0 \in Q$ is the start state,
- □ is the blank symbol
- $q_{accept} \in Q$ is the accept state

FORMAL DEFINITION OF A TURING MACHINE

- The heart of the definition of a Turing machine is the transition function δ because it tells us how the machine gets from one step to the next
- The formal descriptions of Turing machines are rarely used because they tend to be very big

EXAMPLE

Turing machine that tests membership in the language $\{w\#w\mid w\in\{0,1\}^*\}$

EXAMPLE

Turing Machines and Languages

The set of strings that a Turing machine M accepts is **the language of** M, or **the language** recognized by M, denoted by L(M).

These languages are called **Turing-recognizable** or **recursively enumerable** languages

TURING MACHINES AND LANGUAGES

- There are three possible outcomes for a TM, accept, reject, or loop (does not halt)
- A string can be rejected by entering the rejecting state or by looping
- Its difficult to say when a machine is looping or merely taking long time to compute
- Turing machines that halt on all inputs, those that never loop, are preferred and are called deciders

TURING MACHINES AND LANGUAGES

Languages are called **Turing-decidable** or simply **decidable** if some Turing machine decides it

Variants of Turing Machines

- Instead of left or right step for the head, we add a **stay** option
- The tape can extend infinitely both ways
- Multitape Turing machines
 - Simple multiple tapes
 - Multiple tapes with multiple independent heads
 - 2-dimensional tapes that can also add *up* and *down* steps for the head
- Allow non-determinism

None of these "extensions" add real power. They only simplify the programming process.

ANOTHER EXAMPLE

The successor function - Given the binary alphabet $\Sigma = \{0,1\}$ and any non-empty input string x over Σ representing a binary number, compute for f(x) = x + 1

Algorithm:

- Move to the right-most bit
- Flip 1's to 0's and move to the left. Repeat this step until we reach a 0 or a blank
- Replace the 0 or the blank with a 1
- Move to the left-most bit.

10111

10111

10110

10000

REFERENCES

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org
- Various online LATEX and Beamer tutorials