Penguat Sinyal Kecil BJT

Tujuan

Mahasiswa dapat :

- 1) Memahami jenis-jenis rangkaian penguat
- 2) Menggambar rangkaian ekuivalen ac rangkaian BJT
- 3) Menghitung penguatan tegangan
- 4) Menghitung impedansi rangkaian penguat

Konfigurasi BJT Amplifier

- Common-emitter (CE) amplifier
- Common-collector (CC) amplifier
- Common-base (CB) amplifier

Penguat BJT

Penguat Common Emitter

Penguat Common Base

 Penguat Common Collector (Emitter Follower)

Common-emitter (CE) amplifier.

- Midrange voltage dan current gain.
- High power gain
- Midrange input impedance
- Midrange output impedance

Common-collector (CC) amplifier.

Common-base (CB) amplifier.

- Midrange voltage gain
- Low input impedance
- High output impedance

Rangkaian Ekivalen ac dan DC

Langkah-langkah penerapan super posisi pada rangkaian-rangkaian transistor:

- Kurangilah sumber ac menjadi nol; Open semua kapasitor.
 Rangkaian yang tinggal disebut <u>rangkaian ekivalen DC.</u>
 Rangkaian ekivalen DC digunakan untuk menghitung semua arus dan tegangan DC yang kita inginkan.
- 2. Kurangilah sumber DC menjadi nol;. Hubung-singkatkan semua kapasitor bypass dan kapasitor copling.
 - Rangkaian yang tinggal disebut <u>rangkaian</u> <u>ekivalen ac</u>. Rangkaian ini adalah rangkaian yang digunakan untuk menghitung arus dan tegangan ac.
- 3. Arus keseluruhan disetiap cabang pada rangkaian itu adalah jumlah arus DC dan arus AC yang mengalir pada cabang tersebut.
 - Tegangan keseluruhan melintas setiap cabang adalah jumlah tegangan DC dan tegangan ac melintas tegangan tersebut.

Penguat Common Emitter

Rangkaian penguat Common Emitter

Rangkaian Ekivalen DC

Rangkaian Ekivalen ac

Rangkaian ekivalen ac Common emitter

Impedansi Input dan output

Impedansi masuk ac ditetapkan sebagai berikut :

$$Zin = \frac{Vin}{i_{in}}$$

Impedansi yang dipandang langsung ke arah basis $\mathbf{Z}_{\text{in (basis)}}$, di berikan oleh :

$$Zin(base) = \frac{Vin}{i_b}$$

Menurut hukum ohm $V_{in}=i_e\,r_e'$

Karena
$$i_e \cong i_c = \beta i_b$$

persamaan ini menjadi $V_{in}\cong \beta i_b r'_e$

Maka **Z**_{in (basis)} disederhanakan menjadi

$$Z_{in\,(basis)} \cong \frac{\beta i_b r'_e}{i_b} = \beta r'_e$$

Penguat emiter di tanahkan memiliki impedansi input

$$Z_{in} = R_1 ||R_2||\beta r'_{\epsilon}$$

Impedansi output

RESISTANSI AC DIODE EMITER

Bila sinyalnya kecil, puncak A dan B dekat dengan Q, dan operasinya mendekati linier. Dengan kata lain, busur dari A ke B hampir berupa garis lurus. Oleh karena itu perubahan pada arus dan tegangan hampir seimbang. Artinya, sepanjang menyangkut sinyal AC, dioda tampak seperti resistansi yang diberikan oleh

$$\mathbf{r'}_{e} = \frac{\Delta V_{BE}}{\Delta I_{E}}$$

Dimana r'_{e} = resistansi emiter AC

 ΔV_{BF} = perubahan kecil pada tegangan basis emiter

 ΔI_F = perubahan yang sesuai pada arus emiter

Karena perubahan pada V_{BE} dan I_{E} ekivalen dengan tegangan dan arus AC. Sehingga sering ditulis sebagai :

$$re' = \frac{V_{BE}}{I_E}$$

Dimana r'_{e} = resistansi emiter ac v_{BE} = tegangan ac melintas basis emiter I_{E} = arus ac yang melalui emiter

RUMUS UNTUK r'_e

Karena r'_e adalah perbandingan dari perubahan V_{BE} terhadap perubahan I_E , nilainya tergantung dari letak titik Q:

$$re' = rac{25 \ mV}{I_E}$$

BETA AC

Beta ac (ditulis β_{ac} atau β saja) adalah besaran sinyal kecil yang tergantung dari letak titik Q. Pada gambar, β ditetapkan sebagai

$$\beta = \frac{\Delta I_C}{\Delta I_B}$$

Atau, karena arus bolak-balik sama dengan perubahan arus total, maka

$$\beta = \frac{i_C}{i_b}$$

PENGUATAN TEGANGAN (VOLTAGE GAIN)

Penguatan tegangan sebuah penguat adalah perbandingan tegangan output ac dengan tegangan input ac. Persamaannya adalah sebagai berikut :

$$A = \frac{Vout}{Vin}$$

Rangkaian ekivalen ac untuk penguat emiter-ditanahkan

Arus kolektor ac mengalir melalui tahanan kolektor, menghasilkan tegangan keluaran sebesar

$$Vout = -ic.rL = -\beta ib.rL$$
 $rL = Rc$

Jika tegangan input adalah:

$$Vin = \beta re'$$
. ib

Bati tegangan dapat juga dicari dengan menggunakan persamaan sebagai berikut

$$A = \frac{Vout}{Vin} = \frac{-\beta \ ib \ .rL}{\beta re'.ib} = -\frac{rL}{re'}$$

Contoh 1

- a. Gambar Rangkaian ekivalen DC dan ac
- b. Gambarkan garis beban dan titik kerja
- c. Hitung penguatan tegangan dan besar tegangan output

PENGUAT TERBENAM (SWAMPED AMPLIFIER)

Arus kolektor ac mengalir melalui tahanan kolektor, menghasilkan tegangan keluaran sebesar

$$Vout = -ic.rL = -\beta ib.rL$$
 $rL = Rc$

Jika tegangan input adalah:

$$Vin = \beta(re' + re)$$
. ib

Bati tegangan dapat juga dicari dengan menggunakan persamaan sebagai berikut

$$A = \frac{Vout}{Vin} = \frac{-\beta \ ib \ .rL}{\beta (re' + re) \ .ib} = -\frac{rL}{re' + re}$$

Emitter follower dan Rangkaian ekivalen ac

$$A_v = \frac{v_{out}}{v_{in}} = \frac{ie.r_L}{ib.\beta r'_e + ier_L} = \frac{r_L}{r'_e + r_L}$$

$$\cong 1 \ (r_E \gg r'_e)$$

$$Zin(base) = \frac{Vin}{ib} = \frac{ib. \beta re' + ib. \beta r_L}{ib}$$

 $\cong \beta(rL + re')$

$$Zin = R1//R2//Zin(base)$$

$$Zout = rL$$

Common Base Amplifier

Emitter bias

Voltage-divider bias

Common-base Rangkaian equivalent ac

$$r_{\rm L} = RL \parallel RC$$

$$A_v = \frac{v_{\text{out}}}{v_{\text{in}}} = \frac{-i_c r_c}{-i_e r'_e} \cong \frac{r_L}{r'_e}$$

$$Z_{\text{in}} = r'_e \parallel R_E \cong r'_e$$

$$Z_{\text{out}} = R_C \parallel \frac{1}{h_{ob}} \cong R_C$$

Contoh2

Tentukan gain dan impedansi dari rangkaian berikut ini

$$I_{E} = \frac{-0.7V - (-V_{EE})}{R_{E}} = \frac{-0.7V + 5V}{13k\Omega} = 330.8\mu\text{A}$$

$$r'_{e} = \frac{25\text{mV}}{I_{E}} = \frac{25\text{mV}}{330.8\mu\text{A}} = 75.58\Omega$$

$$Z_{\rm in} \cong r_e' = 75.58\Omega$$

 $Z_{\rm out} \cong R_C = 10 \text{k}\Omega$

$$r_C = R_C \parallel R_L = 10K \parallel 5.1 \text{k}\Omega$$

= 3.377k\Omega
 $A_v = \frac{r_C}{r'_e} = \frac{3.377 \text{k}\Omega}{75.58\Omega} = 44.69$

TAHAPAN KASKADE

- Menggunakan lebih dari satu penguat BJT dengan tujuan untuk memperbesar tegangan
- Keluaran Transistor tingkat 1 kan menjadi input pada transistor tingkat 2

Penguatan Kaskade

Contoh 3

