DEVOIR À LA MAISON N°17

Problème 1 -

Définitions et notations

Dans tout le problème, p désigne un entier supérieur ou égal à 2.

Pour $M \in \mathcal{M}_p(\mathbb{R})$ et $(i,j) \in [1,p]^2$, on notera $c_{i,j}(M)$ le coefficient de M sur la $i^{\text{ème}}$ ligne et sur la $j^{\text{ème}}$ colonne.

On dira qu'une matrice $M \in \mathcal{M}_p(\mathbb{R})$ est *stochastique* si :

(i)
$$\forall (i, j) \in [1, p]^2, c_{i,j}(M) \ge 0.$$

$$(ii) \ \forall i \in [\![1,p]\!], \sum_{j=1}^p c_{i,j}(M) = 1.$$

On dira qu'une suite de matrices $(M_n)_{n\in\mathbb{N}}$ de $\mathcal{M}_p(\mathbb{R})$ converge vers $M\in\mathcal{M}_p(\mathbb{R})$ si pour tout $(i,j)\in [\![1,p]\!]^2$, la suite $(c_{i,j}(M_n))_{n\in\mathbb{N}}$ converge vers $c_{i,j}(M)$. Dans ce cas, on dira que M est la limite de (M_n) . Etant donnée une matrice $A\in\mathcal{M}_p(\mathbb{R})$, pour tout entier $n\in\mathbb{N}$, on note

$$C_n = \frac{1}{n+1} \sum_{k=0}^n A^k$$

On dit enfin qu'une matrice $A\in\mathcal{M}_p(\mathbb{R})$ est r-périodique où $r\in\mathbb{N}^*$ si $A^r=I_p.$

L'objectif du problème est d'étudier quelques propriétés des matrices stochastiques et notamment, la convergence de la suite $(C_n)_{n\in\mathbb{N}}$ lorsque A est stochastique et r-périodique.

Partie I – Etude d'exemples

1. Soit $\alpha \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, on pose

$$\gamma_n = \frac{1}{n+1} \sum_{k=0}^n \alpha^k$$

- **a.** Calculer γ_n pour tout $n \in \mathbb{N}$ en disinguant les cas $\alpha = 1$ et $\alpha \neq 1$.
- **b.** Etudier en fonction de α la convergence de la suite (γ_n) et, en cas ce convergence, préciser la limite de (γ_n) .
- 2. Premier exemple d'étude de (C_n).

On prend
$$p = 3$$
 et $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

- **a.** Calculer A^2 et A^3 . En déduire A^{3k} , A^{3k+1} et A^{3k+2} pour tout $k \in \mathbb{N}$.
- **b.** Calculer C_{3n} , C_{3n+1} et C_{3n+2} pour tout $n \in \mathbb{N}$. En déduire que la suite (C_n) converge et préciser sa limite C.
- **c.** On note ν l'endomorphisme de \mathbb{R}^3 canoniquement associé à \mathbb{C} . Montrer que ν est un projecteur de \mathbb{R}^3 et déterminer $\ker \nu$ et $\operatorname{Im} \nu$.

3. Deuxième exemple d'étude de (C_n) .

On prend
$$p = 2$$
 et $A = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

- $\textbf{a. Déterminer une matrice } P \in GL_2(\mathbb{R}) \text{ telle que } A = PDP^{-1} \text{ avec } D = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{6} \end{pmatrix}.$
- **b.** En déduire A^k pour tout $k \in \mathbb{N}$.
- **c.** Déterminer deux matrices $U,V\in\mathcal{M}_2(\mathbb{R})$ telles que pour tout $k\in\mathbb{N}$:

$$A^k = U + \left(-\frac{1}{6}\right)^k V$$

- **d.** Pour tout entier $n \in \mathbb{N}$, exprimer C_n en fonction de n, U et V.
- **e.** En déduire que la suite $(C_n)_{n\in\mathbb{N}}$ converge et préciser sa limite C.
- **f.** On note ν l'endomorphisme de \mathbb{R}^2 canoniquement associé à C. Montrer que ν est un projecteur de \mathbb{R}^2 et déterminer Ker ν et Im ν .

Partie II – Etude de $(C_n)_{n\in\mathbb{N}}$ lorsque A est r-périodique

Dans cette partie, r désigne un entier naturel non nul.

1. Soit $(\alpha_k)_{k\in\mathbb{N}}$ une suite r-périodique de réels, c'est-à-dire que pour tout $k\in\mathbb{N}$, $\alpha_{k+r}=\alpha_k$. On pose

$$\gamma = \frac{1}{r} \sum_{k=0}^{r-1} \alpha_k$$

Pour tout $n \in \mathbb{N}$, on pose

$$\gamma_n = \frac{1}{n+1} \sum_{k=0}^n \alpha_k$$

a. Prouver que pour tout $k \in \mathbb{N}$,

$$\gamma = \frac{1}{r} \sum_{l=0}^{r-1} \alpha_{k+l}$$

b. Montrer que la suite de terme général

$$\beta_n = (n+1)\gamma_n - (n+1)\gamma$$

est r-périodique. En déduire que $(\beta_n)_{n\in\mathbb{N}}$ est bornée.

- **c.** Etablir que $(\gamma_n)_{n\in\mathbb{N}}$ converge et préciser sa limite.
- **2.** Soit $A \in \mathcal{M}_p(\mathbb{R})$ une matrice r-périodique.
 - a. Montrer que pour tout couple $(i,j) \in [\![1,p]\!]^2$, la suite de terme général $\alpha_k = c_{i,j}(A^k)$ est r-périodique. En déduire que (C_n) converge vers

$$C = \frac{1}{r} \sum_{k=0}^{r-1} A^k$$

- **b.** Montrer que AC = CA = C.
- **c.** On note $\mathfrak u$ et $\mathfrak v$ les endomorphismes de $\mathbb R^p$ canoniquement associés à A et C. Montrer que

- (i) ν est un projecteur;
- (ii) Ker(v) = Im(u Id);
- (iii) Im(v) = Ker(u Id).

où Id désigne l'application identique de \mathbb{R}^p .

- **a.** Soit $(\alpha_k)_{k\in\mathbb{N}}$ une suite de réels r-périodique à partir d'un certain rang $m\in\mathbb{N}$, c'est-à-dire que pour tout $k\geqslant m$, $\alpha_{k+r}=\alpha_k$. On définit (γ_n) comme dans la question **II.1**. Prouver que la suite (γ_n) admet une limite que l'on précisera. Pour cela, on pourra considérer la suite de terme général $\alpha'_k=\alpha_{k+m}$ et lui associer une suite (γ'_n) comme à la question **II.1** puis montrer que la suite de terme général $\gamma'_n-\gamma_n$ converge vers 0.
 - **b.** Soit $A \in \mathcal{M}_p(\mathbb{R})$ une matrice r-périodique à partir d'un certain rang $\mathfrak{m} \in \mathbb{N}$, c'est-à-dire que $A^{\mathfrak{m}+r} = A^{\mathfrak{m}}$. Prouver que la suite $(C_\mathfrak{n})$ converge vers

$$C = \frac{1}{r} \sum_{k=m}^{m+r-1} A^k$$

- **c.** Soient u et v les endomorphismes de \mathbb{R}^p canoniquement associés à A et C. Montrer à nouveau que
 - (i) v est un projecteur ;
 - (ii) $\operatorname{Ker}(v) = \operatorname{Im}(u \operatorname{Id})$;
 - (iii) Im(v) = Ker(u Id).

Partie III - Etude de matrices stochastiques

On note \mathcal{S}_p l'ensemble des matrices stochastiques de $\mathcal{M}_p(\mathbb{R})$ et \mathcal{D}_p l'ensemble des matrices déterministes de $\mathcal{M}_p(\mathbb{R})$, c'est-à-dire des matrices stochastiques dont tous les coefficients sont égaux à 0 ou 1. Enfin, on note Δ_p l'ensemble des matrices déterministes et inversibles de $\mathcal{M}_p(\mathbb{R})$.

1. Matrices stochastiques.

- $\textbf{a.} \ \ \text{Soient} \ (\lambda,\mu) \in \mathbb{R}^2 \ \text{tel que} \ \lambda \geqslant 0, \\ \mu \geqslant 0 \ \text{et} \ \lambda + \mu = 1 \ \text{et} \ (M,N) \in \mathcal{S}_p^2. \ Montrer \ \text{que} \ \lambda M + \mu N \in \mathcal{S}_p.$
- **b.** Soit $(M, N) \in \mathcal{S}_p^2$. Montrer que $MN \in \mathcal{S}_p$.
- **c.** Soit $A \in \mathcal{S}_p$. Montrer que pour tout $n \in \mathbb{N}$, $C_n \in \mathcal{S}_p$. Que peut-on en déduire pour la limite C de (C_n) lorsqu'elle existe ?

2. Matrices déterministes.

- **a.** Montrer qu'une matrice $M \in \mathcal{M}_p(\mathbb{R})$ est déterministe *si et seulement si* tous ses coefficients sont égaux à 0 ou 1 et si chaque ligne de M contient exactement un coefficient égal à 1.
- **b.** En déduire que \mathcal{D}_p est un ensemble fini et préciser son cardinal.
- **c.** Soit $(M, N) \in \mathcal{D}_{\mathfrak{p}}^2$. Montrer que $MN \in \mathcal{D}_{\mathfrak{p}}$.
- **d.** Soit $A \in \mathcal{D}_p$. Montrer que A est r-périodique à partir d'un certain rang m. Montrer que si A est inversible, A est r-périodique.
- e. Soit $A \in \Delta_p$. Montrer que chaque colonne de A contient exactement un coefficient égal à 1. En déduire que $A^{-1} \in \Delta_p$.
- 3. Etude de la suite (C_n) associée à une matrice A déterministe.

Soit $A \in \mathcal{D}_p$. En utilisant les résultats de la partie II, montrer que (C_n) converge vers une matrice $C \in \mathcal{S}_p$ telle que $C^2 = C$.

4. Matrices stochastiques inversibles.

Soit $(X,Y) \in \mathcal{S}_p^2$ tel que $XY = I_p$. On se propose de montrer que $(X,Y) \in \Delta_p^2$.

- **a.** Justifier que X et Y sont inversibles.
- **b.** On pose pour $j \in [1, p]$

$$\mu_j = \max\{c_{i,j}(Y), 1\leqslant i \leqslant p\}$$

Prouver que $\mu_j=1$ pour tout $j\in [\![1,p]\!].$ On pourra calculer le coefficient $c_{jj}(XY).$

- $\textbf{c.} \ \ \text{En d\'eduire que } Y \in \Delta_p \ \text{puis que } X \in \Delta_p.$
- $\textbf{d.} \ \ \text{Plus généralement, soit } (U,V) \in \mathcal{S}^2_p \ \text{tel que } UV \in \Delta_p. \ \text{Montrer que } (U,V) \in \Delta^2_p.$