Image Geometric Transformation

Team - Wednesday

TODO

Practice presentation/demo

Add why this topic is important

Check breakdown from slides

Sub Topics

- 1. Scaling
- 2. Translation
- 3. Rotation
- 4. Perspective Transform
- 5. Affine Transformation

Scaling

Interpolation techniques:

- Nearest neighbor
- Linear
- Cubic
- Lanczos4

Nearest Neighbor

```
Sc = np.zeros(shape=(img.shape[0]*fy, img.shape[1]*fx))
for i in range(Sc.shape[0]):
    for j in range(Sc.shape[1]):
        Sc[i,j] = img[int((i+0.5)/fx), int((j+0.5)/fy)]
```

Translation


```
if ((0 <= (i-u) <= n_rows) and (0 <= (j-v) <= n_rows)):
    Tr[i,j] = I[i-u, j-v]
else:
    Tr[i,j] = 0</pre>
```

Rotation

Basic Rotation Matrix

 $M = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

- Scaled rotation about arbitrary center.
 - Scale allows for stretching along a particular component direction

$$\begin{array}{l} \alpha = scale \cdot \cos \theta, \\ \beta = scale \cdot \sin \theta \end{array} \left[\begin{array}{ccc} \alpha & \beta & (1-\alpha) \cdot center.x - \beta \cdot center.y \\ -\beta & \alpha & \beta \cdot center.x + (1-\alpha) \cdot center.y \end{array} \right]$$

Perspective Transform

Affine Transform

- Linear Transformation
- Parallel lines remain parallel
- Ratio of distance between points on a line are preserved
- Invertible

Identity (transform to original image)	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
Reflection	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
Scale	$egin{bmatrix} c_x = 2 & 0 & 0 \ 0 & c_y = 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$	

Goals

A simple GUI program that performs geometric transformations on a given image.

Implement nonlinear transformations ie swirl or blow up a section

Given a picture from a fisheye lens use warping to fix it

Project Organization

- 1. Report
- 2. FrontEnd GUI
- 3. Library Functions

Library Goals

• Implement <u>these</u> CV2 functions

Front end Goals

The Team

Delegation of Tasks

5	⊒ 🖶 🔁 150% → \$ % .000 123 → Arial → 10 →	B <i>I</i>	⊞ 55 - ≣ - 1÷	- P - GD + III P -	Σ-				
	A	В	С	D	Е	F	G		
1	Task Identifier	Due	Priority	Expected Hours	Person	Status	Done		
2	Library: Testing		Med	1	Jackson	In progress			
3	Library: Scaling		Low	1		In Progress			
4	Library: Translation		Low	1		In Progress			
5	Library: Rotation		Low	1		In Progress			
6	Library: Perspective Transform		Low	1		In Progress			
7	Library: Shearing		Low	1		In Progress			
8	Report: Introduction		Low	1		In Progress			
9	Report: Program Implementation		Low	3		In Progress			
0	Report: Conclusion		Low	3	}	In Progress			
1	Gui: Image Viewer		Med	3	}	In Progress			
2	Gui: Side Panel Tools		Med	3	3	In Progress			
13	Project Proposal: Introduction	04/02/2019	High	1	Raymond	In Progress			
4	Project Proposal: GUI mockups	04/02/2019	High	3	Raymond	In Progress			
5	Project Proposal: Notes	04/02/2019	High	3	Raymond	In Progress	-		
6									
7									
8									

Initial Assignments

Restrictions

Libraries we will use:

- Tkinter
 - o for GUI
- Opency
 - o for cv2.imread
- Numpy
 - for matrix operations such as multiply

Libraries we won't use:

 Everything not listed in Libraries we will use