$$\frac{E \times 16}{}$$
: $P(A \cap B) = P(A) \times P(B)$
= 0,3 × 0,5 = 0,15

$$P(AUB) = P(A) + P(B) - P(ANB)$$

= 0,3 + 0,5 - 0,15 = 0,65

Ex 17:

P(ANB) = 0 =>
$$P(AUB) = P(A) + P(B)$$

incompostibles $\frac{1}{2} = \frac{1}{3} + \alpha$

$$\Rightarrow \ \ \, \forall = \frac{1}{2} - \frac{1}{3} = \frac{3 - 7}{6} = \frac{1}{6}$$

$$P(A) \times P(B) = \frac{1}{3} \times \frac{1}{6} = \frac{1}{18} \neq 0$$

A et B ne sont pas indépendents

b)
$$P(A \cap B) = P(A) \times P(B) = \frac{\alpha}{3}$$

$$\frac{1}{2} = \frac{1}{3} + \sqrt{-\frac{3}{3}}$$

$$\Delta - \frac{\lambda}{3} = \frac{1}{2} - \frac{1}{3}$$

$$\frac{2}{3}\lambda = \frac{1}{6}$$
 = $\frac{1}{6} \times \frac{3}{2} = \frac{3}{12} = \frac{1}{4}$

$$P(AUB) = P(B) = 7 \quad \chi = \frac{1}{2}$$

$$P(A) = \frac{8}{32} = \frac{1}{4} = P(B)$$

$$P(c) = \frac{4}{32} = \frac{1}{8}$$

$$P(A \cap C) = \frac{1}{32}$$
 $P(A) \times P(C) = \frac{1}{4} \times \frac{1}{8} = \frac{1}{32}$

donc A et C sont indépendants.

$$P(B \land C) = \frac{1}{32}$$
 $P(B) \times P(C) = \frac{1}{4} \times \frac{1}{8} = \frac{1}{32}$

Lorc B et C sont Indépendants.

$$\frac{E \times 1B}{9}$$
:

 $\frac{1}{9}$
 $\frac{1$

b)
$$P(AUB) = P(A) + P(B) - P(ANB)$$

= $0.03 + 0.07 - 0.0021$
= 0.0979