YULE WANG

E-mail: yulewang@gatech.edu | Personal Webpage: yulewang97.github.io Address: 756 W Peachtree St NW, Atlanta, GA 30308, USA

EDUCATION

Georgia Institute of Technology, Atlanta, GA, USA.

Aug. 2022 – Present

Doctor of Philosophy - Machine Learning

• Ph.D. Advisor: Prof. Anqi Wu.

• Department: School of Computational Science and Engineering (CSE).

• Research Interests: Machine Learning; (Deep) Generative Models; Computational Neuroscience.

Shanghai Jiao Tong University, Shanghai, China.

Sep. 2019 – Jun. 2022

Master of Engineering - Computer Science and Engineering

• Research Topics: Data Mining; Recommender Systems.

Shanghai Jiao Tong University, Shanghai, China.

Sep. 2015 – Jun. 2019

Bachelor of Engineering - Software Engineering

• Research Topics: Deep Learning; Recommender Systems.

INDUSTRY EXPERIENCE

Research Scientist Intern at Meta

May. 2025 - Aug. 2025. New York City, U.S.

Org: CTRL-labs at Reality Labs, Intern Manager: Luke Boegner
Topic: Diffusion Models, Neural Biosignal Time-Series Data

• Leveraged DiT-based diffusion models to synthesize sEMG time-series data and developed complementary data augmentation methods, boosting the classification accuracy on imbalanced categories by 8.42% on downstream neural decoding tasks.

Computational Advertising Research Intern at Alibaba

Jun. 2021 – Sep. 2021. Beijing, China.

Intern Manager: Hongbo Deng

Topic: User Multi-Interest Modeling in E-commerce

• Enhanced the Click-Through Rate (CTR) prediction performance for Tmall's advertising system by incorporating task position features into the Multi-Interest Network with Dynamic Routing (MIND) model and implementing a gradient exploration strategy in the recall stage. This approach was successfully deployed in the online advertising system, achieving a 1.4% AUC gain in CTR prediction.

Natural Language Processing (NLP) Intern at TikTok

Sep. 2020 - Feb. 2021. Shanghai, China.

Topic: Semantic Role Labeling

• Enhanced the Q&A service by implementing Semantic Role Labeling (SRL) of user queries using ELECTRA, turning to a 2.71% increase in user satisfaction rate. Improved the performance of TikTok's smart dialog system by optimizing question recognition and classification accuracy at the main search entry using ALBERT, achieving a 0.56% increase in recall.

SELECTED RESEARCH PROJECTS

Uncovering Semantic Selectivity of Latent Groups in Higher Visual Cortex with Mutual Information-Guided Diffusion

[ICLR'26 Submission] First Author

• In this work, we investigate whether object-centered feature information in higher visual cortex population responses is organized into structured and interpretable representations. To address this question, we present MIG-Vis, a novel framework that first uses a variational autoencoder (VAE) to infer a group-wise disentangled neural latent subspace. Subsequently, we propose a Mutual Information (MI)—guided diffusion synthesis procedure to visualize and validate the specific visual-semantic features encoded by each neural latent group. The synthesized results on primate neural spiking datasets demonstrate that our method identifies latent groups with clear semantic selectivity to diverse visual features, including object pose, inter-category transformations, and intra-class content.

Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models

[NeurIPS'24 Poster] First Author

• Understanding the neural basis of animal behavior is a fundamental goal in neuroscience. Our proposed method, BeNeDiff, first identifies a disentangled neural subspace through a total-correlation-aware variational autoencoder (VAE). Next, we leverage conditional video diffusion models (VDMs) to synthesize behavioral videos that correspond to the activation within the neural trajectory of a specific latent factor. Notablly, we design a biologically-informed InfoNCE objective to guide the score update at each diffusion generation step. These synthesized video results provide scientific insights by illustrating that the neural dynamics of the latent factors exhibit specificity to the corresponding behaviors of interest.

• The stability of brain-computer interfaces (BCIs) across sessions is a critical concern. While raw neural recordings typically exhibit high variability and low signal-to-noise ratios, the spatio-temporal structure of latent neural trajectories exhibits robustness across sessions. In light of this, we propose ERDiff, a domain adaptation method that leverages the expressive power of diffusion models to capture the spatio-temporal structure of latent trajectories in the source domain (BCI's training session). During the alignment phase, guided by the well-trained diffusion model, ERDiff employs a maximum likelihood alignment (MLA) approach to precisely recover these structures in the target domain (BCI's incoming session).

SELECTED PUBLICATIONS AND PREPRINTS

(The full publication list can be found in this link):

Core Machine Learning and Neural Time-Series Analysis:

- Yule Wang, Joseph Yu, Chengrui Li, Weihan Li, Anqi Wu. "Uncovering Semantic Selectivity of Latent Groups in Higher Visual Cortex with Mutual Information-Guided Diffusion". *Arxiv Preprint*, 2025.
- Weihan Li, Yule Wang, Chengrui Li, Anqi Wu. "Learning Time-Varying Multi-Region Communications via Scalable Markovian Gaussian Processes". In *International Conference on Machine Learning (ICML)*, 2025. [Oral]
- Yule Wang, Chengrui Li, Weihan Li, Anqi Wu. "Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models". In *Neural Information Processing Systems (NeurIPS)*, 2024.
- Chengrui Li, **Yule Wang**, Weihan Li, Anqi Wu. "Forward χ^2 Divergence Based Variational Importance Sampling". In *International Conference on Learning Representations (ICLR)*, 2024. [Spotlight]
- Yule Wang, Zijing Wu, Chengrui Li, Anqi Wu. "Extraction and Recovery of Spatio-Temporal Structure in Latent Dynamics Alignment with Diffusion Models". Neural Information Processing Systems (NeurIPS), 2023. [Spotlight]
- Weihan Li, Chengrui Li, **Yule Wang**, Anqi Wu. "Multi-Region Markovian Gaussian Process: An Efficient Method to Discover Directional Communications Across Multiple Brain Regions". *International Conference on Machine Learning (ICML)*, 2024.

Information Retrieval:

- Yule Wang, Xin Xin, Yue Ding, Dong Wang. "ICPE: An Item Cluster-Wise Pareto-Efficient Framework for Recommendation Debiasing". In *Transactions on Knowledge and Data Engineering (TKDE)*, 2024.
- Yule Wang, Qiang Luo, Yue Ding, Dong Wang, Hongbo Deng. "DemiNet: Dependency-Aware Multi-Interest Network with Self-Supervised Graph Learning for Click-Through Rate Prediction". *Arxiv Preprint*, 2022.
- Yunzhe Li, Bo Chen, Xin Xin, Yule Wang, Yuxiang Shi, Ruiming Tang, Dong Wang. "Extracting Attentive Social Temporal Excitation for Sequential Recommendation". In ACM International Conference on Information and Knowledge Management (CIKM), 2021.
- Bo Chen, Yue Ding, Xin Xin, **Yule Wang**, Dong Wang. "AIRec: Attentive intersection model for tag-aware recommendation". In *Neurocomputing*, 2021.

SOFTWARE DEVELOPMENT PROJECT

SOPTOP: WiFi-Streaming Intelligent Classroom System

Feb. 2019 – Sep. 2019. Shanghai, China.

Develop a commercial multi-media streaming system for smart teaching using FFmpeg and Kubernetes. Enable mutual transmission
of 1080P, 25FPS live streams between the server and student clients with a delay of less than 200ms. Successfully launch the system
on Android and iOS app markets.

TECHNICAL SKILLS

Programming Languages: C++, Python, Java, Matlab, Latex **Deep Learning Frameworks**: Pytorch (Lightning), Tensorflow

TEACHING AND ACADEMIC SERVICES

Teaching Experience:

- Head TA for GaTech CSE 8803: Machine Learning for Neural/Behavioral Data. Fall 2025
- TA for GaTech ECE 6254: Statistical Machine Learning. Spring 2024

Conference Program Committee: AAAI 2024/25.

Conference Reviewer: NeurIPS 2023/24/25; ICML 2023/24/25; ICLR 2024/25/26; AISTATS 2024/25; COSYNE 2026.