

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Further Pure Mathematics F2 (WFM02/01)

Question Number	Scheme	Marks
1 1(a)	$\frac{2}{r(r+1)(r-1)} = \frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1}$	M1A1A1 (3)
1(b)	$r = 2 1 - \frac{2}{2} + \frac{1}{3}$ $r = 3 \frac{1}{2} - \frac{2}{3} + \frac{1}{4}$ $r = 4 \frac{1}{3} - \frac{2}{4} + \frac{1}{5}$	
	$r = 4 \frac{1}{3} - \frac{2}{4} + \frac{1}{5}$ $r = n - 1 \frac{1}{n - 2} - \frac{2}{n - 1} + \frac{1}{n}$	M1
	$r = n \qquad \frac{1}{n-1} - \frac{2}{n} + \frac{1}{n+1}$	M1
	$\sum_{r=2}^{n} \left(\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1} \right) = \left(1 - \frac{2}{2} + \frac{1}{2} + \frac{1}{n} - \frac{2}{n} + \frac{1}{n+1} \right)$	A1
	$\frac{1}{2} \sum_{r=1}^{n} \frac{2}{r(r+1)(r-1)} = \frac{1}{2} \times \left(\frac{1}{2} - \frac{1}{n} + \frac{1}{n+1}\right) = \frac{n^2 + n - 2}{4n(n+1)}$	dM1A1 (5)
(a) M1 A1A1 (b)	Attempt PFs by any valid method (by implication if 3 correct fractions seen) A1 any 2 fractions correct; A1 third fraction correct	
M1 M1	Method of differences with at least 3 terms at start and 2 at end OR 2 at start and 3 at end. Must start at 2 and end at n One M mark for the initial terms and a second for the final. Last lines may be missing $k/(n-1)$ and $c/(n-2)$ These 2 M marks may be implied by a correct extraction of terms. If starting from 1, M0M1 can be awarded. Extract the remaining terms. $1 - 2/2$ may be missing and $1/n - 2/n$ may be combined	
dM1	Include the 1/2 and attempt a common denominator of the required form. Deprevious M marks $\frac{n^2 + n - 2}{4n(n+1)}$	
A1		

Question Number	Scheme	Marks
1(a)	Special Case: $\frac{2}{r(r^2-1)} = \frac{2r}{r^2-1} - \frac{2}{r} \text{ seen, award M1A1A0}$ Award M1A0A0 provided of the form $\frac{2}{r(r^2-1)} = \frac{Ar}{r^2-1} - \frac{B}{r}$	
1(b)	Terms listed as described above – award M1M1. Further progress unlikely a terms needed to establish the cancellation.	s too many

Question Number	Scheme	Marks
2	$w = \frac{z+2}{z-i} z \neq i$	
	$z = \frac{2 + iw}{w - 1}$	M1
	$ z = 2 \Rightarrow \left \frac{2 + iw}{w - 1} \right = 2 \Rightarrow 2 + iw = 2 w - 1 $	
	w-1 2+iu-v =2 u+iv-1	M1 A1
	$ 2 + iu - v = 2 u + iv - 1 $ $(2 - v)^{2} + u^{2} = 4((u - 1)^{2} + v^{2})$ $3u^{2} + 3v^{2} - 8u + 4v = 0 \text{oe}$	M1 A1
	$3u^2 + 3v^2 - 8u + 4v = 0 \text{oe}$	
	$\left(u - \frac{4}{3}\right)^2 + \left(v + \frac{2}{3}\right)^2 = \frac{20}{9} \text{ or } u^2 + v^2 - \frac{8}{3}u + \frac{4}{3}v = 0$	dM1
	(i) centre is $\left(\frac{4}{3}, -\frac{2}{3}\right)$	A1
	(ii) radius is $\frac{2\sqrt{5}}{3}$ oe	A1 [8]
M1	Rearrange equation to $z =$	
M1	Change w to $u + iv$ and use $ z = 2$ Allow if a different pair of letters used.	
A1	Correct equation	
M1	Correct use of Pythagoras on either side. Allow with 2 or 4 (RHS)	
A1 dM1	Correct unsimplified equation Attempt the circle form. Coefficients for u^2 and v^2 must be 1. Depends on all	3 previous M
UIVII	marks	5 previous ivi
(i)A1	Correct centre given (no decimals) (Use of rounded decimals changes the va	lues)
(ii)A1	Correct radius given, any equivalent form (but no decimals) NB: These 2 A marks can only be awarded if the results have been deduced:	from a correct
ALT 1	circle equation.	
M1	Change w to $u + iv$ Allow a different pair of letters.	
M1	Rearrange equation to $z =$ and use $ z = 2$	
A1	Correct equation Then as above.	
ALT 2	Very rare but may be seen:	
	i maps to $\infty \Rightarrow \pm 2i$ map to a diameter of C	M1A1
	So $\frac{2i+2}{i}$ and $\frac{-2i+2}{-3i}$ are ends of a diameter	M2A1
	Calculate centre and radius	M1A1A1

Question Number	Scheme	Marks
3(a)	$y = r \sin \theta = \sin \theta + \sin \theta \cos \theta$ OR $r \sin \theta = \sin \theta + \frac{1}{2} \sin 2\theta$	B1
	$\frac{dy}{d\theta} = \cos\theta - \sin^2\theta + \cos^2\theta \qquad OR \frac{dy}{d\theta} = \cos\theta + \cos 2\theta$ $0 = \cos\theta + 2\cos^2\theta - 1 = (2\cos\theta - 1)(\cos\theta + 1)$	M1
	$\cos \theta = \frac{1}{2} \left(\cos \theta = -1 \text{ outside range for } \theta \right) \theta = \frac{\pi}{3}$	M1
	$A ext{ is } \left(1\frac{1}{2}, \frac{\pi}{3}\right)$	A1 (4)
3(b)	Area = $\frac{1}{2} \int_0^{\frac{\pi}{3}} (1 + \cos \theta)^2 d\theta$	B1
	$= \frac{1}{2} \int \left(1 + 2\cos\theta + \frac{1}{2} (\cos 2\theta + 1) \right) d\theta$	M1A1
	$= \frac{1}{2} \left[\frac{3}{2} \theta + 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]_0^{\frac{\pi}{3}}$	dM1A1
	$=\frac{\pi}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{16} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16}$	A1 (6)
(a)		[10]
B1	Use of $r \sin \theta$ Award if not seen explicitly but a correct result following use	of double angle
M1	formula is seen. Differentiate $r \sin \theta$ or $r \cos \theta$	
M1	Set $\frac{d(r \sin \theta)}{d\theta} = 0$ and solve the resulting equation. Only the solution used n	eed be shown.
A1	Correct coordinates of A	
(b)B1	Use of Area = $\frac{1}{2}\int r^2 d\theta$ with $r = 1 + \cos\theta$, limits not needed.	
M1	Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and change	$e \cos^2 \theta$ to an
	expression in $\cos 2\theta$ using $\cos^2 \theta = \frac{1}{2} (\pm \cos 2\theta \pm 1)$	
A1	Correct integrand; limits not needed. $\frac{1}{2}$ may be missing.	
dM1	Attempt to integrate all terms. $\cos 2\theta \rightarrow \pm \frac{1}{k} \sin 2\theta \ k = \pm 1 \text{ or } \pm 2 \text{ Limits not needed.}$	
A 1	Depends on the previous M mark	
A1 A1	Correct integration and correct limits seen Substitute correct limits and obtain the correct answer in the required form.	

Question Number	Scheme	Marks
	Alternative for (b) using integration by parts (Very rare but may be seen)	
	Area = $\frac{1}{2} \int_0^{\frac{\pi}{3}} (1 + \cos \theta)^2 d\theta$	B1
	$= \frac{1}{2} \left[\int (1 + 2\cos\theta) d\theta + \int \cos^2\theta d\theta \right]$	
	$= \frac{1}{2} \left[\int (1 + 2\cos\theta) d\theta + \cos\theta\sin\theta + \int \sin^2\theta d\theta \right]$	M1A1
	$= \frac{1}{2} \left[\theta + 2\sin\theta + \sin\theta\cos\theta + \int \left(1 - \cos^2\theta \right) d\theta \right]_0^{\frac{\pi}{3}}$	
	$= \frac{1}{2} \left[\theta + 2\sin\theta + \frac{1}{2} \left(\sin\theta\cos\theta + \theta \right) \right]_0^{\frac{\pi}{3}}$	dM1A1
	$=\frac{\pi}{4} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{16} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16}$	A1
B1	Use of Area = $\frac{1}{2}\int r^2 d\theta$ with $r = 1 + \cos\theta$, limits not needed.	
M1	M1 Attempt $(1 + \cos \theta)^2$ (minimum accepted is $(1 + k \cos \theta + \cos^2 \theta)$) and attempt first stage of $\int \cos^2 \theta d\theta$ by parts. Reach $\int \cos^2 \theta d\theta = \cos \theta \sin \theta \pm \int \sin^2 \theta d\theta$ Limits not needed	
1711		
A1	Correct so far. Limits not needed.	
dM1	Attempt to integrate all terms. $\int (1+2\cos\theta)d\theta$ and attempt to complete $\int \cos^2\theta d\theta$ using	
A1A1	Pythagoras identity. Limits not needed. Depends on the previous M mark As main scheme	

Question Number	Scheme	Marks
4 (a)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{4}{y} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - 3$	M1
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -\frac{4}{y^2} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 + \frac{8}{y} \times \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \times \frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1A1
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -\frac{4}{y^2} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 + \frac{8}{y} \left(\frac{4}{y} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - 3\right) \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)$	
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = \frac{28}{y^2} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 - \frac{24}{y} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) *$	A1* (5)
ALT	$\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + y\frac{\mathrm{d}^3y}{\mathrm{d}x^3} - 8\frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1A1A1
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = \frac{1}{y} \left(7 \frac{\mathrm{d}y}{\mathrm{d}x} \right) \left(\frac{4}{y} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)^2 - 3 \right) - \frac{3}{y} \frac{\mathrm{d}y}{\mathrm{d}x}$	M1
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = \frac{28}{y^2} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 - \frac{24}{y} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) *$	A1* (5)
4(b)	At $x = 0$ $\frac{d^2 y}{dx^2} = \frac{4}{8} (1)^2 - 3 = -\frac{5}{2}$ oe	B1
	$\frac{d^3 y}{dx^3} = \frac{28}{64} \times 1^3 - \frac{24}{8} \times 1 = -\frac{41}{16}$	M1
	$y = 8 + x - \frac{5}{2} \times \frac{x^2}{2!} - \frac{41}{16} \times \frac{x^3}{3!} + \dots$ $y = 8 + x - \frac{5}{4}x^2 - \frac{41}{96}x^3 + \dots$	M1
	$y = 8 + x - \frac{5}{4}x^2 - \frac{41}{96}x^3 + \dots$	A1 (4) [9]

Question Number	Scheme	Marks
5(a) M1	Divide through by y No need to re-arrange the equation until later	
M1	Attempt the differentiation using product rule and chain rule and obtain $\frac{d^3y}{dx^3}$	=
A1A1	A1 Either RHS term correct A1 Second RHS term correct and no extras	
A1*	Eliminate $\frac{d^2y}{dx^2}$ and obtain the given result	
ALT		
M1	Re-arrange the equation (Will probably be seen later in work)	
M1	Attempt the differentiation using product rule and chain rule	
A1A1	A1 Two terms correct A1 All correct and no extras	
A1*	Eliminate $\frac{d^2y}{dx^2}$ and obtain the correct result	
5(b)B1	Correct value for $\frac{d^2y}{dx^2}$	
M1	Use the <i>given</i> expression from (a) to obtain a value for $\frac{d^3y}{dx^3}$ Award if correct	t value seen.
M1	Taylor's series formed using their values for the derivatives (2! or 2, 3! or 6)	
A1	Correct series, must start (or end) $y =$ Correct terms must be seen, order more than the context of the c	nay be different.

Question Number	Scheme	Marks
5 NB	Question states "Use algebra" so purely graphical solutions (using calculator?) score 0/7. A sketch and some algebra to find intersection points can score.	
	$2x^{2} + x - 3 \ge 0$ $2x^{2} + x - 3 = 3(1 - x) \Rightarrow 2x^{2} + 4x - 6 = 0$	M1
	$2x^{2} + 4x - 6 \Rightarrow x^{2} + 2x - 3 = (x+3)(x-1) = 0$ $x = -3, 1$	A1
	$2x^{2} + x - 3 \le 0$ $-2x^{2} - x + 3 = 3(1 - x) \Rightarrow 2x^{2} - 2x = 0$	M1
	2x(x-1)=0, x=0,1	A1
	x < -3 0 < x < 1 x > 1	dM1A1A1 [7]
M1 A1 M1 A1 dM1	The first 4 marks can be awarded with any inequality sign or = Assume $2x^2 + x - 3 \ge 0$ and obtain a 3TQ Correct CVs obtained from a correct equation. Assume $2x^2 + x - 3 \le 0$ and obtain a 2 or 3TQ Correct CVs obtained from a correct equation. Form 3 distinct inequalities with their 3 CVs. Can have $<$ or \le , $>$ or \ge . Must have scored both previous M marks. Accept $x < -3$ $0 < x$ $x \ne 1$ All 3 correct CVs used correctly Inequalities fully correct. "and" between the inequalities is acceptable. If \bigcirc is used, award A0 here. Fully correct set language accepted.	
ALT	Squaring both sides $(2x^2 + x - 3)^2 > 9(1 - x)^2$	
	$4x^{4} + 4x^{3} - 20x^{2} + 12x > 0$ $x(x+3)(x-1)(x-1) > 0$ $CVs: x = 0, -3, 1$ Then as main scheme	M1A1 M1 A1
M1 A1 M1 A1	These 4 marks can be awarded with any inequality sign or = Square both sides and collect terms to obtain a quartic with 4 or 5 terms Correct quartic Factorise their quartic 3 correct CVs	

Question Number	Scheme	Marks
6(a)	$m^2 - 6m + 8 = 0$	
	(m-2)(m-4)=0, m=2,4	M1
	$(CF =) Ae^{2x} + Be^{4x}$	A1
	$PI: y = \lambda x^2 + \mu x + \nu$	B1
	$y' = 2\lambda x + \mu y'' = 2\lambda$	
	$2\lambda - 6(2\lambda x + \mu) + 8(\lambda x^2 + \mu x + \nu) = 2x^2 + x$	M1
	$\lambda = \frac{1}{4}, -12\lambda + 8\mu = 1, 2\lambda - 6\mu + 8\nu = 0$	M1
	$\lambda = \frac{1}{4}, \ \mu = \frac{1}{2}, \ \nu = \frac{5}{16}$	A1A1
	$y = Ae^{2x} + Be^{4x} + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{5}{16}$	A1ft (8)
(a)M1	Form aux equation and attempt to solve (any valid method). Equation need not CF is correct or complete solution $(m = 2, 4)$ is shown	ot be shown if
A1	Correct CF $y =$ not needed.	
B1 M1	Correct form for PI Their PI (minimum 2 terms) differentiated twice and substituted in the equation	on
M1	Coefficients equated	ion
A1	Any 2 values correct	
A1	All 3 values correct	1 1
A1ft	A complete solution, follow through their CF and PI. All 3 M marks must ha Must start $y =$	ve been earned.
6(b)	$y = Ae^{2x} + Be^{4x} + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{5}{16}$	
	$1 = A + B + \frac{5}{16}$	M1
	$\frac{dy}{dx} = 2Ae^{2x} + 4Be^{4x} + \frac{1}{2}x + \frac{1}{2} \qquad 0 = 2A + 4B + \frac{1}{2}$	M1
	$A = \frac{13}{8}$ $B = -\frac{15}{16}$ oe	dM1A1
	$y = \frac{13}{8}e^{2x} - \frac{15}{16}e^{4x} + \frac{1}{4}x^2 + \frac{1}{2}x + \frac{5}{16}$ oe	A1ft (5)
(b)		[13]
M1	Substitute $y = 1$ and $x = 0$ in their complete solution from (a)	
M1	Differentiate and substitute $\frac{dy}{dx} = 0$, $x = 0$	
dM1	Solve the 2 equations to $A = \dots$ or $B = \dots$ Depends on the two previous M man	:ks
A1	Both values correct	
A1ft	Particular solution, follow through their general solution and A and B. Must s	start $y = \dots$

Question Number	Scheme	Marks
7(a)	$\left(\cos\theta + i\sin\theta\right)^4 = \cos 4\theta + i\sin 4\theta$	
	$\cos^{4}\theta + 4\cos^{3}\theta(\sin\theta) + \frac{4\times3}{2!}\cos^{2}\theta(\sin\theta)^{2} + \frac{4\times3\times2}{3!}\cos\theta(\sin\theta)^{3} + (\sin\theta)^{4}$	M1
	$= \cos^4 \theta + 4i\cos^3 \theta \sin \theta + i^2 6\cos^2 \theta \sin^2 \theta + 4i^3 \cos \theta \sin^3 \theta + i^4 \sin^4 \theta$	A1
	$\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$	M1
	$\sin 4\theta = 4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta$	A1
	$\tan 4\theta = \frac{\sin 4\theta}{\cos 4\theta} = \frac{4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta}{\cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta}$	
	$\tan 4\theta = \frac{\sin 4\theta}{\cos 4\theta} = \frac{4 \tan \theta - 4 \tan^3 \theta}{1 - 6 \tan^2 \theta + \tan^4 \theta}$	M1A1* (6)
7(b)	$x = \tan \theta \qquad \frac{2 \tan \theta - 2 \tan^3 \theta}{1 - 6 \tan^2 \theta + \tan^4 \theta} = \frac{1}{2} \tan 4\theta = 1$	
	$\tan 4\theta = 2$	M1
	$x = \tan \theta = 0.284, 1.79$	A1A1 (3) [9]
(a) M1 A1 M1 A1	Correct use of de Moivre and attempt the complete expansion Correct expansion. Coefficients to be single numbers but powers of i may still be present. Equate the real and imaginary parts Correct expressions for $\cos 4\theta$ and $\sin 4\theta$ Use $\tan 4\theta = \frac{\sin 4\theta}{\cos 4\theta}$ and divide numerator and denominator by $\cos^4 \theta$ Only tangents now.	
A1*	Correct given answer, no errors seen.	
(b) M1	Substitute $x = \tan \theta$ and re-arrange to $\tan 4\theta = \pm 2$ or $\pm \frac{1}{2}$	
A1A1	A1 for either solution; A2 for both. Deduct one mark only for failing to round either or both to 3 sf (One correct answer but not rounded scores A0A0; two correct answers neither rounded scores A1A0; two correct answers, only one rounded, scores A1A0)	

Question Number	Scheme	Marks
	Alternative for first 4 marks of 7(a): $\sin 4\theta = \frac{1}{2i} \left(z^4 - z^{-4} \right) = \frac{1}{2i} \left(\left(\cos \theta - i \sin \theta \right)^4 - \left(\cos \theta + i \sin \theta \right)^{-4} \right)$ $= \frac{1}{2i} \left(\cos^4 \theta + 4i \cos^3 \theta \sin \theta - 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta + \sin^4 \theta \right)$ $- \frac{1}{2i} \left(-\cos^4 \theta + 4i \cos^3 \theta \sin \theta + 6 \cos^2 \theta \sin^2 \theta - 4i \cos \theta \sin^3 \theta - \sin^4 \theta \right)$ $= 4 \cos^3 \theta \sin \theta - 4 \cos \theta \sin^3 \theta$ Similar work leads to $\cos 4\theta = \cos^4 \theta - 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta$ Remaining 2 marks as main scheme	M1 M1 A1 A1
M1 A1 M1 A1	For the expression derived from de Moivre for either $\sin 4\theta$ or $\cos 4\theta$ Both shown and correct Attempt the binomial expansion for either, reaching a simplified expression Both simplified expressions correct	

Question Number	Scheme	Marks
8(a)	$v = y^{-2} \qquad \frac{\mathrm{d}v}{\mathrm{d}y} = -2y^{-3}$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}v} \times \frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{y^3}{2} \frac{\mathrm{d}v}{\mathrm{d}x}$	M1A1
	$-\frac{y^3}{2}\frac{dv}{dx} + 6xy = 3xe^{x^2}y^3$	
	$\frac{1}{2}\frac{dv}{dx} - \frac{6xy}{y^3} = -3xe^{x^2}$	
	$\frac{\mathrm{d}v}{\mathrm{d}x} - 12vx = -6x\mathrm{e}^{x^2}$	dM1A1* (5)
ALT 1	$y = v^{-\frac{1}{2}}$ $\frac{dy}{dv} = -\frac{1}{2}v^{-\frac{3}{2}}$	B1
	$\frac{dy}{dr} = \frac{dy}{dv} \times \frac{dv}{dr} = -\frac{1}{2}v^{-\frac{3}{2}}\frac{dv}{dr}$	M1A1
	$-\frac{1}{2}v^{-\frac{3}{2}}\frac{dv}{dx} + 6xv^{-\frac{1}{2}} = 3xe^{x^2}v^{-\frac{3}{2}}$	dM1
	$-\frac{1}{2}\frac{\mathrm{d}v}{\mathrm{d}x} + 6xv = 3x\mathrm{e}^{x^2}$	
	$\frac{\mathrm{d}v}{\mathrm{d}x} - 12vx = -6x\mathrm{e}^{x^2}$	A1* (5)
ALT 2	$v = y^{-2} \qquad \frac{\mathrm{d}v}{\mathrm{d}y} = -2y^{-3}$	B1
	$\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}y} \times \frac{\mathrm{d}y}{\mathrm{d}x} = -2y^{-3} \frac{\mathrm{d}y}{\mathrm{d}x}$ $-2y^{-3} \frac{\mathrm{d}y}{\mathrm{d}x} - 12y^{-2}x = -6xe^{x^2}$	M1A1
	$-2y^{-3}\frac{dy}{dx} - 12y^{-2}x = -6xe^{x^2}$	dM1
	$\frac{\mathrm{d}y}{\mathrm{d}x} + 6xy = 3x\mathrm{e}^{x^2}y^3 \qquad x > 0$	A1* (5)
8(a)	All Methods:	
B1	Correct derivative	
M1	Attempt $\frac{dy}{dx}$ or $\frac{dv}{dx}$ using the chain rule	
A1 dM1	Correct derivative Substitute in equation (I) to obtain an equation in v and x only OR in equation (II) to obtain an equation in x and y only (ALT 2)	
A1*	Correct completion with no errors seen	

Question Number	Scheme	Marks
8(b)	IF: $e^{\int -12x dx} = e^{-6x^2}$	M1A1
	$ve^{-6x^2} = \int -6xe^{x^2} \times (e^{-6x^2}) dx = \int -6xe^{-5x^2} dx$	dM1
	$ve^{-6x^2} = \frac{6}{10}e^{-5x^2} (+c)$	A1
	$v(=y^{-2}) = \frac{6}{10}e^{x^2} + ce^{6x^2}$	ddM1
	$ve^{-6x^{2}} = \int -6xe^{x^{2}} \times (e^{-6x^{2}}) dx = \int -6xe^{-5x^{2}} dx$ $ve^{-6x^{2}} = \frac{6}{10}e^{-5x^{2}} (+c)$ $v(=y^{-2}) = \frac{6}{10}e^{x^{2}} + ce^{6x^{2}}$ $y^{2} = \frac{1}{\frac{6}{10}e^{x^{2}} + ce^{6x^{2}}} \text{ oe } \text{ eg } y^{2} = \frac{10}{6e^{x^{2}} + ke^{6x^{2}}}$	A1 (6)
(b)		[11]
M1	IF of form $e^{\int \pm 12x dx}$ and attempt the integration.	
A1	Correct IF	
dM1 A1	Multiply through by their IF and integrate the LHS. Depends on first M mark of (b) Correct integration of the complete equation with or without constant	
ddM1	Include the constant and multiply through by e^{6x^2} Depends on both previous M marks of (b)	
A1	Any equivalent to that shown. (No need to change letter used for constant wh	