JESTC Student ID	UOG Student ID	Course Title	Lecturer
------------------	----------------	--------------	----------

······Within······the······answer······invalid······sealing······line······

UOG-UESTC Joint School of

University of Electronic Science and Technology of China

Digital Signal Processing — Spring 2018

Final Exam

10:00-12:00, 4th July, 2018

Notice: Please make sure that both your UESTC and UoG Student IDs are written on the top of every sheet. This examination is open-book and the use of electronic materials or a cell phone is not permitted. All scratch paper must be adequately labeled. Unless indicated otherwise, answers must be derived or explained clearly. Please write within the space given below on the answer sheets.

All questions are compulsory. There are 6 questions and a maximum of 100 marks in total.

The following table is for grader only:

Question	1	2	3	4	5	6	Total	Grader
Score								

Score

Question1 (20 points, 5 points for each subproblem)

Please sketch the waveform of the following discrete sequences

(1)
$$f_1[k] = u[-k] - u[-k+1]$$

(2)
$$f_2[k] = \sum_{p=0}^{\infty} \delta[k-p]$$

(3)
$$f_3[k] = \sin(\pi k/2) - \sin[\pi(k-1)/2]$$

(4)
$$f_4[k] = \{0.5, 1.5, 2, -2, 0, 1\}$$

UESTC Student ID	UOG Student ID	Course Title	Lecturer
	······Within······the······answer······invali	d·····sealing······line······	

Question2 (20 points)

(1) The following continuous signal

$$x_a(t) = 4\sin(20\pi t) - 5\cos(24\pi t) + 3\sin(120\pi t) + 2\cos(176\pi t)$$

is sampled with the frequency of $F_s = 50$ Hz, thus yielding the discrete sequence x[n]. Please give the expressions of x[n] and its DTFT, i.e., $X(e^{j\omega})$. (10 points)

(2) Please give the result of the following expression. (10 points)

$$\sum_{n=-\infty}^{\infty} \frac{\sin(\pi n/4)\sin(\pi n/6)}{10\pi^2 n^2}$$

······Within······the······answer······invalid······sealing······line

Score

Question3 (15 points)

Given the following z-transform pair

$$h[n] = A_1 \alpha_1^n u[n] + A_2 \alpha_2^n u[n] \longleftrightarrow H(z) = \frac{1}{1 - 0.25z^{-2}}.$$

Please determine the values of A_1 , A_2 , a_1 and a_2 .

Score

Question4 (15 points)

Figure 1 displays the waveform of $H(e^{j\omega})$, which is the DTFT of the discrete sequence h[n].

Figure 1

- (1) Determine the expression of h[n];
- (2) Construct 3 sequences, i.e., h₁[n], h₂[n], and h₃[n], as follows

$$h_1[n] = (-j)^n h[n], \quad h_2[n] = (j)^n h[n], \quad h_3[n] = [(1+j)/\sqrt{2}]^n h[n]$$

Please sketch the DTFTs of them.

(3) Let h[n] be the impulse response of a discrete LTI system. Assume that the input signal is

$$x[n] = \frac{\sin(0.5\pi n)}{\pi n}$$

Please determine the output signal, which is denoted as y[n].

UESTC Student ID	UOG Student ID	Course Title	Lecturer_	
·······Within·······the······answer······invalid······sealing······line······				

Score

Question5 (15 points)

The difference equation of a discrete-time LTI system is given as

$$y[n]-0.4y[n-1]-0.45y[n-2] = x[n-1]-0.2x[n-2]$$

- (1) Determine the transfer function H(z) of the system;
- (2) Sketch the flow graph of the direct form-II IIR implementation of the system;
- (3) How many delay elements and arithmetic elements are required for the above implementation?

Score

Question6 (15 points)

Please design a causal bandpass FIR digital filter using windowing method, with the following specifications:

center frequency 4kHz

passband edges 2.5 kHz and 5.5 kHz stopband edges 0.5 kHz and 7.5 kHz

stopband attenuation 40 dB (passband ripple can be ignored)

sampling frequency 20kHz

Please give the expression of h[n] in your design.

Type of Window	Main lobe width	Relative sidelobe Minimum stopband level attenuation		Transition bandwidth	
Rectangular	$4\pi/(2M+1)$	13.3dB	20.9dB	0.92π/M	
Hann	8π/(2M+1)	31.5dB	43.9dB	3.11π/M	
Hamming	8π/(2M+1)	42.7dB	54.5dB	3.32π/M	
Blackman	12π/(2M+1)	58.1dB	75.3dB	5.56π/M	

Hann: $w[n] = 0.5 + 0.5\cos[2\pi n/(2M+1)], -M \le n \le M$

Hamming: $w[n] = 0.54 + 0.46\cos[2\pi n/(2M+1)], -M \le n \le M$

 $Balckman: \quad w[n] = 0.42 + 0.5 cos[2\pi n/(2M+1)] + 0.08 cos[4\pi n/(2M+1)], \text{- } M \leq n \leq M$