

موضوع سمينار:

کآربرد داده کاوی پروتئوم در دستهبندی سرطان و کشف زیستنشانگرها

> دانشجو رسول نوروزی استاد راهنما دکتر امیر البدوی

اهداف سمينار

- * شناخت انسان و بیماری سرطان از دیدگاه مولکولی
- ❖ آشنایی با علم پروتئومیکس: رویکردها و فن آوری ها
- * بررسی و مرور ادبیات داده کاوی پروتئوم و کاربرد آن در دسته بندی سرطان و کشف زیست نشانگرها
 - 💸 جمع بندی و نتیجه گیری

انسان از منظر زیست شناسی

از سلول تا دی ان ای و فرآیند ترجمه شدن

(وبسایت سازمان ملی ژنتیک انسانی آمریکا)

(وبسایت سازمان ملی ژنتیک انسانی آمریکا)

سرطان و اساس مولکولی آن

- سرطان یک بیماری ژنتیکی است که ۲۷۷ نوع بیماری را شامل می گردد.(پارسا, ۲۰۱۲)
- سرطان را با فعالیت نابجای پروتئینهای کنترلکننده چرخه سلول که موجب ازدیاد در تقسیم سلولی میشود تعریف کرد. .(Sosa et al., 2014)
 - انواع سرطان: كارسينوما، ساركوما، لنفاوى، سرطان خون
- از عوامل اساسی ایجاد سرطان می توانیم به: الکل، دخانیات، اضافهوزن و چاقی، مشکلات در سیستم ایمنی بدن،
 عفونت و ... اشاره کنیم.(Shukla et al., 2016)
 - · بهطورکلی جهش ژنتیکی در دو نوع از تنظیمکنندههای چرخه سلولی موجب توسعه سرطان میشود:
 - 1. تنظیم کنندههای مثبت (آنکو ژنها)oncogenes
- 2. تنظیم کنندههای منفی یا سرکوب کنندهها تومور Otto and Sicinski, 2017, Joerger and Fersht, 2016)

ضرورت پرداخت به سرطان

چرا سرطان؟

چرا از دیدگاه مولکولی؟

- با کمک از روشهای مختلف مولکولی قادر هستیم که قدرت بیان ژنها و پروتئینهای معیوب را تعیین نماییم
- پیدا کردن زیستنشانگرهای جدیدی مانند پروتئین که شاخص یک نوع سرطان هستند در تشخیص زودرس و معالجه بهموقع بیماری سرطان کمکهای شایان توجهی را مینماید که این امر با به کارگیری علوم رایانهای به خصوص داده کاوی ممکن می شود
- با تعیین شکل فضایی پروتئینهای معیوب می توان داروهای ضد سرطان جدیدی را ساخت که بتواند سلولهای در حال سرطانی شدن را مورد هدف قرار بدهند تا از تولید و رشد آنها به سلولهای سرطانی جلوگیری شود. (پارسا, ۲۰۱۲)

کاربرد پروتئین در سرطان شناسی

چرا پروتئین ها؟

- 1. سطح بیان mRNAمعمولاً بیانگر میزان دقیق پروتئین-های فعال در سلول نیست
- 2. توالی ژنها تغییرات پس از ترجمه اصلاحات پروتئینها را که ممکن است برای عملکرد درست پروتئینها ضروری باشد بیان نکند
- 3. مطالعات ژنتیک قادر به توصیف فرآیندهای پویای سلولی نیست.(Li et al., 2004)

چگونه پروتئین ها منجر به دسته بندی سرطان و کشف زیست نشانگرها می شوند؟

- تغییرات بالینی ممکن است در الگوی پروتئینی یک ارگان یا بافت بازتاب یابد؛ بنابراین امکانپذیر است که پروتئینهای موجود در یک نمونه خاص برای تشخیص بیماران سرطانی از غیر سرطانی استفاده شود.(Li et al., 2004)
- هدف اصلی و اساسی استخراج اطلاعاتی است که منجر به کشف الگوهایی برای دستهبندی سرطان و شناسایی زیستنشانگرهایی همچون پروتئینها که بهطور بالقوه ابزاری قدرتمند برای شناسایی، تشخیص و پیشگیری از بیماریها به خصوص سرطان است.
- به ابزار تحلیلی سطح بالا همچون داده کاوی برای نیل به این اهداف نیاز است.Thomas et al., 2006)

پروتئومیکس و رویکردهای آن

پروتئوم به سری کامل پروتئینهای بیانشده در یکلحظه خاص در یک سلول موردنظر اشاره دارد ، بااین حال امروزه سطح این تعریف، از سلول به بافت، اندام و ارگانیسم نیز تعمیم دادهشده است و علم بررسی پروتئوم را پروتئومیکس گویند. (شیردل ET / AL., 2013)

نمونه های مناسب برای پروتئومیکس

نمونه	مزایا	معایب
مایعات زیست پذیر(سروم، پلاسما، اوره و)	منبع غنی از زیستنشانگرها، سهولت در دستیابی	مجموعهای پیچیده از پروتئینها است ممکن است موجب عدم دقت در بیان پروتئینهای مقایسهای بین دو گروه شود، مقادیر زیاد پروتئینها در مایعات زیست پذیر (از قبیل آلبومین و هموگلوبین) ممکن است نقش پروتئینهای با میزان کم اما دخیل در سرطان را کمرنگ کند.
بافت	زیستنشانگرهای کشفشده بهطور واضح منشأ تومور می- باشند، بههیچعنوان نشانگرهای تومور در سلولهای تومور پنهان نمیشوند؛	روشی تهاجمی است، دسترسی به برخی از تومورها و بافتها محدود است، بافت تومور ترکیبی ناهمگون از سلولهای بدخیم همچنان که از بافتهای همبند، بافت چربی و سلولهای التهابی است.
سل لاین	میشود بهسادگی در آزمایشگاه کشت کرد، میتواند در مقدار بسیار زیاد در دسترس باشد ،	کمبود دسترسی به سللاینهای مناسب تومورها و بافتهای مخاطی به عنوان گروه کنترل در مطالعات، نبود تعامل بین سلولهای تومور با سلولهای استرومال و یا ایمنی که شرایط محیط تومور در بدن را مشخص می کند

فن آوری های پروتئومیکس

نمونه ای از داده های حاصل از طیف سنج جرمی

یس شدت M/Z و ماتریس بیان پروتئین(Dziuda, 2010)

	Class 1				Class 2		***	Class J				
m/z	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	***	***	***	***	***	Sample N-1	Sample N
500.0223	25.9588	26.6526	24.4485	29.7677	26.1579						24.4203	25.9005
500.4307	28.6677	29.4781	26.9261	33.0075	29.8984						27.7164	29.0940
500.8573	33.8643	35.1272	31.9417	38.9422	34.3449						31.4630	33.0437
501.2751	38.0995	40.2232	35.2459	43.2378	36.7521						33.3736	35.1533
501.6931	39.6762	42.3087	35.7506	44.4585	38.0613						34.1921	36.1327
502.1113	39.7707	42.6244	35.3323	44.2172	38.0231						34.1357	36.2976

15985.13	5.1260	4.9562	5.1565	4.4309	5.6946						4.5777	4.5680
15988.53	5.1059	4.9439	5.1494	4.4263	5.6690						4.5746	4.5636
15992.61	5.0613	4.9013	5.1072	4.4050	5.5761						4.5602	4.5554
15995.77	5.0525	4.8931	5.0944	4.4004	5.5560						4.5534	4.5514
15998.93	5.0297	4.8816	5.0752	4.3936	5.5237						4.5499	4.5437

	0		Class	Į.			Cla	ss 2	***		Class J	
	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	***	***	***	***	***	Sample $N-1$	Sample N
Variable 1	50.6083	45.8562	56.6637	66.0191	48.7441						20.3157	22.0191
Variable 2	81.3635	80.8688	86.9904	99.9598	80.8768						35.7969	48.9452
Variable 3	30.7451	21.9715	28.7226	25.6417	25.2696						16.3164	15.8974
Variable 4	25.2859	24.6415	32.1971	30.4539	23.9356						32.3733	65.2203
Variable 5	75.9739	99.6320	95.6099	73.0236	50.5500						86.1237	94.3348
Variable 6	31.3223	61.3896	40.8125	30.7833	25.0216						43.7728	47.9578

Variable p-3	26.2785	36.7642	30.6385	30.8155	24.0845						40.8044	43.6642
Variable p-2	17.9427	1 9.6682	20.0322	20.0845	16.7964						34.6466	40.4123
Variable p-1	19.5918	20.5732	22.3328	22.2665	18.7692						19.7486	25.0679
Variable p	75.2334	90.1458	89.2247	75.6991	75.5829						87.5451	74.6747

این طیف نمایش دهنده سه دسته سرطان خوشخیم، سرطان بدخیم و سالم را نشان می دهد.(Li et al., 2004)

آنالیز دادههای طیفسنج جرمی

جريان أناليز دادههاي حاصل از طيف سنج جرمي (Swan, Mobasheri et al. 2013)

داده کاوی پروتئوم: مدل های دسته بندی

مقایسه مدلهای دستهبند(Swan et al., 2013)

مدل	مزایا و معایب	سرعت یادگیری	سهولت تفسیر پذیری
بیز ساده	مزایا: قابلیت ساده و سریع در بکارگیری، مناسب برای مجموعه داده های با داده های گم شده، معایب: فرض مستقل بودن ویژگی ها از هم	١	۴
درخت تصمیم	خروجی این الگوریتم به سادگی قابل تفسیر است اما بستگی به نوع الگوریتم مورد استفاده و پیچیدگی درخت ساخته شده دارد، همچنان مناسب برای مجموعه داده ها با داده گم شده	۲	١
جنگل تصادفی	روشی کارآمد برای مجموعه داده های بزرگ اگرچه در مقابل outlierها حساس نیست	۴	٣
بردارهای ماشین پشتیبان	استفاده از کرنل برای فراگیری توابع پیچیده، با این وجود بسیار کند بوده و چندین پارامتر نیز توسط کاربر باید تعریف شود	۵	۵
شبکه های عصبی مصنوعی	نتایج خروجی قابلیت خواندن ندارد و آموزش مدل ممکن است بسیار آهسته صورت گیرد.	۵	۵

داده کاوی پروتئوم: نمونه برداری و ارزیابی عملکرد

نمونهای از منحنی ROC)ROC) انمونهای از منحنی

هدف پژوهش و مجموعه دادهها	روشهای شناسایی، دادهکاوی و ارزیابی	دقت عملکرد دستهبند و زیستنشانگرهای شناساییشده	مرجع
دسته بندی و کشف زیست نشانگرهای سرطان سینه با داده های بزاق دهان، ۱۴۱ نمونه بیمار و ۱۱ نمونه سالم، آنالیز داده ها ESI-MS	استفاده از مدل SVM برای دسته بندی و انتخاب ویژگی	دقت دسته بند بالا ۹۰٪ و کشف هشت زیست نشانگر	(Sinues et al., 2015)
هدف دسته بندی سرطان لوزالمعده ۸۰ نمونه سرطان لوزالمعده در مقابل ۱۰۱ نمونه سالم،	روش ترکیبی لوجستیک درخت برای مدل سازی، الگوریتم RELIEF برای انتخاب ویژگی، استفاده از روش -TOP HAT برای کاهش خط مبنا، استفاده از رویکرد یکی بیرون برای اعتبار سنجی	دقت عملکرد دسته بند: ۷۴۰۰۳۳۱٪	(Htike and Win, 2015)
دسته بندی و کشف زیست نشانگرهای سرطان تخمدان، ۳۷ بیمار بیماران مبتلا به سرطان تخمدان پاپیلری سروز و ۳۵ نمونه کنترلی	شناسایی با نرم افزار mzMine (v0.60)، SVMs با روش های مرتبط انتخاب ویژگی، CV,52-20-split validation	بهترین دقت ۸۳٪ با استفاده از SVM و LOO-CV، رسیدن به دقت ۹۷.۲٪ با ترکیب مدل SVM و انتخاب ویژگی بر مبنای SVM، شناسایی ۳۸ زیست نشانگر با چهار رویکرد متفاوت	Guan et al., 2009)
دسته بندی سرطان بدخیم، خوشخیم و سالم در سرطان تخمدان، ۴۴ سرطان بدخیم، ۶۱ سرطان خوشخیم و ۳۴ نمونه سالم	دسته بندی بر اساس درخت-رگرسیون (CART)، اعتبار سنجی 10-FOLD، برای دسته بندی موجک استفاده از نرم افزار Ciphergen Systems، نرم افزار الگوهای زیست نشانگر (BPS)	۸۵٪ دقت دسته بندی	(Vlahou et al., 2003)

دسته بندی نمونه های پروستات از ۱۹ بیمار با متاستاز استخوان و ۱۹ بیمار فاقد آن	استفاده از نرم افزار mascot و استفاده از C.SVM با استفاده از اعتبار سنجی یکی-بیرون	۸۵٪ دقت و پیدا کردن چند زیست نشانگر	(Le et al., 2005)
دسته بندی سرطان پروستات و کنترل، ۹۷ نمونه کنترلی، ۹۲ نمونه سرطان خوشخیم، ۱۹۷ سرطان پروستات	داده تست شامل: ۱۵ کنترل، ۱۵ خوشخیم و ۳۰ پروستات. شناسایی موجک با نرم افزار Ciphergen موجک تا با الگوریتم SELDI software، موجک تا با الگوریتم peakminer، استفاده از درخت تصمیم.	۹۰٪ از داده های تست به درستی دسته بندی شدند.	(Adam et al., 2002)
شناسایی زیست نشانگر برای سرطان پروستات، ۱۷۹ سرطان ادرنوکازسینوما و ۷۴ سرطان خوشخیم	پیش پردازش: گروه بندی، تصحیح خط مبنا و نرمال سازی با استفاده از نرم افزار TOFWorks	دقت ۸۷.۹٪، ۲۶ موجک به عنوان زیست نشانگرهای محتمل شناسایی شد.	(Oh et al., 2009)
شناسایی زیست نشانگرهای سرطان سر و گردن، پنج مجموعه از چهار نمونه به همراه نمونه کنترل برای هر مجموعه	استفاده از نرم افزارهای ProteinPilot و iTRQ. و iTRQ. استفاده از مدل بیز ساده و اعتبار سنجی 3-FOLD	سه تا از زیست نشانگرها شناخته شد.	(Ralhan et al., 2008)

توسعه پنل برای شناسایی زیست نشانگرهای سرطان سینه، ۴۰ نمونه پلاسما خون از سرطان سینه و ۴۰ نمونه از سالمPanel (منظور تعدادی از	شناسایی پروتئین تا به صورت بدون برچسب گذاری با کمک نرم افزار Eli Lilly، استفاده از مدل شبکه های عصبی مصنوعی	۸۵٪ دقت در داده های تست، دوتا از بهترین پنج پنل پروتئین شناخته شد که شامل هفت پروتئین شد.	(Zhang and Chen, 2009)
پروتئین ها که با هم کار می کنند و ظاهر می شوند)	السر عي		
کشف زیست نشانگرها، ۶۵ نمونه از بیماران مبتلا به سرطان سینه، سپس نمونه گیری مجدد از آنها بعد از مصرف چهار هفته ای docetaxel 75 mg/m2	استفاده از نرم افزار SpecAlign برای کاهش خط مبنا، همگام سازی موجک، استفاده از مدل AdBoost برای دسته بندی و FOLD برای CV	۶ زیست نشانگر شناخته شد	(Ushijima et al., 2007)
شناسایی زیست نشانگرها، ۱۳۲ بیمار با سرطان لنفوم B-Cell و ۷۵ نمونه کنترلی، داده های آنالیز شده -SELDI TOF-MS از سروم خون	استفاده از درخت تصمیم برای مدل سازی و استفاده از نرم افزار Ciphergen برای پیش پردازش داده ها	نه موجک به عنوان زیست نشانگر بالقوه انتخاب در نظر گرفته شد، چهار موجک برای پیش بینی پاسخ بیماران به درمان های استاندارد، حساسیت ۹۴٪، ویژگی ۹۴٪ در در ۸۵ نمونه از مجموعه تست، ۹۴٪ حساسیت و ۹۲٪ ویژگی با ۶۶٪ نمونه تست. نمونه تست.	(Zhang et al., 2007)

کشف زیست نشانگرهای سرطان معده، ۷۹ نمونه از بیماران مبتلا به سرطان معده و ۳۳ نمونه از افراد فاقد سرطان که ۱۰ نفر از آنها دارای التهاب معده بودند.	استفاده از مدل دسته بند مبتنی بر SVM و برای وارسی اعتبار از الگوریتم 10-FOLD	۹ نشانگر یافت شده با ۸۹٪ دقت در عملکرد	(Cohen et al., 2011)
شناسایی زیست نشانگرها که موجب متاستاز استخوانی در سرطان سینه می شود، نمونه از ۱۱۱ زن مبتلا به سرطان سینه به دو گروه تقسیم شده که گروه اول شامل ۴۱ نفر متاستاز استخوان و ۳۶ نفر دیگر فاقد آن، گروه دیگر شامل ۱۷ نفر متاستاز استخون و ۱۷ نفر دیگر فاقد آن	استفاده از جنگل تصادفی برای مدل دسته بند، ساخت درخت ۱۰۰۰ مرتبه تکرار شده و هر بار در هر گره سه ویژگی مورد آزمایش قرار می گرفت	شناسایی ۱۳ زیست نشانگر، قدرت دسته بند با حساسیت ۹۱٪ و ویژگی ۹۳٪	(Washam et al., 2013)

داده ها در دسترس برای پژوهش

```
❖ پایگاه داده مرجع پروتئین انسانی(http://www.hprd.org/
```

```
♦ مركز ملى اطلاعات زيست فن آورى (https://www.ncbi.nlm.nih.gov/
```

♦ بانکداده پروتئین (http://www.rcsb.org/pdb/home/home.do)

♦ بانکداده شناسایی پروتئینها (https://www.ebi.ac.uk)

(http://proteopedia.org) Proteopedia http://proteopedia.org) Proteopedia

(/<u>http://www</u>.uniprot.org) UniProt ❖

1	Α	В	C	D	E		F	G	H	1
1	Gene	Protein	Protein description	Peptide	charge	1	A1	A2	A9	B2
2 :	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	GWMNDPNGLWYDEK		2	63976296	24769764	40046584	5498
3	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	GWM[+16]NDPNGLW		2	6197049	2523306	12923109	104
4	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	VFWYEPSQK		2	8723820	8625410	7146495	496
5	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	WIMTAAK		2	1086354	1498491	6836681	602
6	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	WIM[+16]TAAK		2	177862	12706056	851060	777
7	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	IEIYSSDDLK		2	190592160	118888592	136130736	1684
8	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	IEIYSSDDLKSWK		3	742601	1987192	2445724	477
9	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	SSMSLVRK		2	210993	484660	3281242	2 54
10	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	KFSLNTEYQANPETELIN		3	8995346	22224170	23039502	563
11 :	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	FSLNTEYQANPETELINI		3	41705792	41687748	46593780	4379
12	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	AEPILNISNAGPWSR		2	5289871	6530384	16779556	239
13	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	GLEDPEEYLR		2	522095232	784777280	649137216	56294
14	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	MGFEVSASSFFLDR		2	4875871	5925656	7153578	575
15	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	MGFEVSASSFFLDR		3	75067	1966584	2582508	198
16	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	M[+16]GFEVSASSFFLD		2	1367760	1	1	Ĺ
17	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	M[+16]GFEVSASSFFLD		3	3904164	9913573	19360182	628
18	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	MGFEVSASSFFLDRGN:		3	1511042	5894734	4381281	235
19	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	ENPYFTNR		2	247100000	292735456	193823904	7914
20 5	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	MSVNNQPFK		2	4375857	81305216	2918126	2939
21	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	M[+16]SVNNQPFK		2	4616198	5216906	1125524	1895
22	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	MSVNNQPFKSENDLSY		3	3358167	3965633	3892572	429
23	SUC2	P00724	Invertase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=SUC2 PE=1 SV=1	SENDLSYYK		2	153155616	173682416	130623936	6286
24	SUC2 Total						1274133118	1607309228	1311073297	92276
25	AKAP13	Q12802	A-kinase anchor protein 13 OS=Homo sapiens GN=AKAP13 PE=1 SV=2	STPSLPC[+57]M[+16]\		3	383171360	396120864	449970880	10815
26	AKAP13	Q12802	A-kinase anchor protein 13 OS=Homo sapiens GN=AKAP13 PE=1 SV=2	SVSIQNITGVGNDENM		3	25716	45718	14628	3 2
27	AKAP13 To	tal					383197076	396166582	449985508	10818
28	ECD	095905	Protein ecdysoneless homolog OS=Homo sapiens GN=ECD PE=1 SV=1	EEKEQNYDLTEVSESM[4	29705026	8415698	4520073	747
29	ECD Total						29705026	8415698	4520073	747
	Dat	Patient	ID ®							

نمونهای از دادههای آزمایشگاه پروتئومیکس دانشگاه کالیفرنیا جنوبی

نتیجه گیری و جمع بندی

- پروتئین ها هم عامل بیماری و هم عامل درمانی می توانند باشند.
- شناسایی، توصیف و کمیت شماری پروتئینها برای مقایسه و دستهبندی دو دستهبیمار و دسته کنترل جهت دستهبندی سرطانها و کشف زیستنشانگرها استفاده می کند.
- باوجوداینکه بافتها اطلاعات ارزشمندی را در خود دارند اما به دلیل مشکلات نمونهبرداری و تهاجمی بودن آنها توصیه نمی-شود ولی در مقابل مایعات زیست پذیر هم به دلیل گردش در بدن اطلاعات متنوعی در خود دارند و بهخصوص نمونههای ادرار به دلیل غیرتهاجمی بودن نمونههای مناسب برای پروتئومیکس است
 - طیفسنج جرمی به دلیل سهولت و توان بالا در آنالیز حجم عظیمی از پروتئینها نسبت به روشها دیگر بیشتر موردتوجه محققین قرار گرفته است و نکته مهم دیگر اینکه غیر جانبدارانه است.
 - لزوم استفاده از انتخاب ویژگی برای کشف زیست نشانگرها و کاهش ابعاد داده و به تبع آن افزایش دقت.
 - به دلیل دشواری در نمونه گیری دادههای پزشکی تعداد سطرهای دادهها بسیار کم است و نیاز به روشهای پیچیده نمونه-برداری جهت داده تست و داده آزمایش برای ساخت و ارزیابی مدل داریم
- پرکاربردترین مدل دستهبند الگوریتم بردار ماشینهای پشتیبان و درخت تصمیم است به دلیل قدرت و دقت بالای دستهبندی

چالش ها و فرصت ها

- می توان از روش دسته بندی مبتنی بر قاعده که در بررسی و تحلیل ریزآرایهها در بیوانفورماتیک استفاده می شود بهره برد.
 - همچنان بحث پیشپردازش و کاهش ابعاد در پروتئومیکس جدی است. ضرورت پرداختن به الگوریتم های نوین و مناسب حس می شود.
- همچنین جای خالی ارتباط سایر بیماریها بهطور مثال چاقی و یا دیابت با یک سرطان خاص یا مجموعهای از سرطان-ها با رویکردهای پروتئومیکس بهشدت احساس میشود.

با سپاس از توجه شما