

Université Hassan II- Casablanca
 Faculté des Sciences et Techniques de Mohammedia
 Département de Mathématiques

Année 2015/2016
 Parcours: MIP
 Module: M135

Partiel 1 d'analyse 3 (M 135)

Session Automne 2015- S3 (2 H)

Exercice 0.1

Soit $f(x,y) = x \cdot \arctan\left(\frac{y}{x}\right)^2$ si $x \neq 0$ et $f(0,y) = 0$ pour tout y de \mathbb{R} .

1. Établir que la fonction f est continue en tout point de \mathbb{R}^2 .
 (on rappelle que $-\frac{\pi}{2} \leq \arctan(t) \leq \frac{\pi}{2}$).
2. Calculer les dérivées partielles premières par rapport à x et par rapport à y en tout point (x,y) de \mathbb{R}^2 tel que $x \neq 0$.
3. Montrer que f admet des dérivées partielles premières par rapport à x et par rapport à y en tout point $(0,b)$, pour $b \in \mathbb{R}$ (distinguer les cas $b = 0$ et $b \neq 0$).
4. Étudier la continuité des fonctions dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.
5. La fonction f est-elle différentiable en $(0,0)$?

Exercice 0.2

1. Soit f la fonction de trois variables définie sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$ par $f(x,y) = \frac{xe^{-x}}{y} + \frac{y}{e} - \frac{5}{2e}$.
 Déterminer les points stationnaires (critiques) de f et leurs natures (maximum, minimum ou point selle).
2. Soient f et g deux fonctions de classe C^2 sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$ telles que:

$$f(x,y) = g\left(\frac{x}{y}, xy\right)$$

Exprimer les dérivées partielles premières de f par rapport à x et par rapport à y en fonction de celles de g .

Exercice 0.3

1. Représenter le domaine et calculer l'intégrale double $I = \iint_D \sqrt[3]{1-u-v} dudv$, où
 $D = \{(u,v) \in \mathbb{R}^2 : u \geq 0, v \geq 0, u+v \leq 1\}$.

2. En déduire la valeur de l'intégrale double $J = \iint_{\Delta} x^2 y^2 \sqrt[3]{1-x^3-y^3} dx dy$, où
 $\Delta = \{(x,y) \in \mathbb{R}^2 : x \geq 0, y \geq 0, x^3 + y^3 \leq 1\}$.

3. Représenter le domaine et calculer l'intégrale triple $K = \iiint_{\Omega} \sqrt{x^2+y^2} dx dy dz$, où Ω
est le domaine limité par les surfaces d'équations: $x^2 + y^2 = z^2$ et $x^2 + y^2 = 4 - z^2$.
(on admet que $\int r^2 \sqrt{4-r^2} = \frac{1}{4}r(r^2-2)\sqrt{4-r^2} + 2 \arcsin(\frac{r}{2})$).

Barème

Exo 1(8 points): Q1. 0.5+1- Q2. 1+1- Q3. 0.5+0.5+0.5- Q4. 1+1- Q5. 1.

Exo 2(6 points): Q1. 1.5+1.5- Q2. 1.5+1.5.

Exo 3(6 points): Q1. 0.5+1.5- Q2. 2- Q3. 0.5+1.5.

Exercice 0.4

Soit f une fonction numérique de deux variables de classe C^2 sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$ vérifiant l'équation aux dérivées partielles

$$x^2 \frac{\partial^2 f}{\partial x^2}(x,y) - y^2 \frac{\partial^2 f}{\partial y^2}(x,y) = 0. \quad (1)$$

On pose $u = xy$ et $v = x/y$ et $f(x,y) = g(u,v)$.

1. Donner une équation aux dérivées partielles (E') vérifiée par g .
2. Réduire (E') puis déterminer la fonction f solution de 1.