

Insights from SplitMNIST

CS 5100 project presentation

Khoury College of Computer Science, Northeastern University

Saurabh Shetty

shetty.sau@northeastern.edu

Siddharth Mittal

mittal.sid@northeaster<u>h</u>.edu

TABLE OF CONTENTS

The Continual Learning Problem

Approaches
To Continual
Learning

Experiments & Results

04

Conclusion

VS

Continual Learning

Continual Learning

Continual learning is a set of approaches to train machine learning models incrementally, using data samples only once as they arrive.

Continual Learning Desiderata

- Higher and **realistic time-scale** where data (and tasks) become available only during time.
- No access to previously encountered data.
- Constant computational and memory resources (efficiency)
- Incremental development of ever more complex knowledge and skills (scalability)
- Efficiency + Scalability = Sustainability

Continual Learning

examples

A Possible Categorization

Experience content type

	New Instances (NI)	New Classes (NC)	New Instances and Classes (NIC)
Multi-Task	-	Task Incremental	-
Single-Incremental-Task	Domain-Incremental	Class-Incremental	Data-Incremental
Multiple-Incremental-Task	?	?	?

Our Dataset & Scenario

Mnist Dataset

Split Mnist Benchmark

Possible 4-way Categorization

Continual Learning Baselines

Common Baselines / Control Algorithms

- Naive / Finetuning (just continuing backprop)
- **Ensemble**: one model for each experience
- Cumulative: for every experience, accumulate all data and re-train from scratch.

GDUMB: Replay based approach

Greedy Sampler and Dumb Learner

- Interesting paper that sparked strong discussions in the CL community
- Note that there's no knowledge transfer in this strategy (quite dumb indeed!)
- Despite its simplicity, It was shown to work better than some existing and more complex strategies, questioning the utility of some benchmarks/metrics in our field

Learning Without Forgetting (LWF)

Key Aspects

- Straightforward application of **Knowledge Distillation**
- Originally designed for Task-Incremental settings can be easily extended to others
- Efficient single-head implementations exist
- Easy to implement and commonly used

Copy Weights with Re-Init (CWR)

Key Aspects

- Developed for the fully connected linear classifier (may be extended to multiple layers)
- Dual memory system approach: one for better plasticity, one for memory consolidation
- Very simple and efficient, yet effective solution agnostic to the experience content (NI, NC, NIC) and specific scenario

Algorithm 1 CWR* pseudocode: $\bar{\Theta}$ are the class-shared parameters of the representation layers; the notation cw[j]/tw[j] is used to denote the groups of consolidated / temporary weights corresponding to class j. Note that this version continues to work under NC, which is seen here a special case of NIC; in fact, since in NC the classes in the current batch were never encountered before, the step at line 7 loads 0 values for classes in B_i because cw_j were initialized to 0 and in the consolidation step (line 13) $wpast_j$ values are always 0.

```
procedure CWR*
         cw = 0
         past = 0
 4:
         init \bar{\Theta} random or from pre-trained model (e.g. on ImageNet)
 5:
         for each training batch B_i:
            expand output layer with neurons for the new classes in B_i
            never seen before
                        cw[j],
                                  if class j in B_i
            train the model with SGD on the s_i classes of B_i:
              if B_i = B_1 learn both \bar{\Theta} and tw
10:
              else learn tw while keeping \bar{\Theta} fixed
11.
            for each class j in B_i:
              wpast_j = \sqrt{rac{past_j}{cur_j}}, where cur_j is the number of patterns
12:
              of class j in B_i
              cw[j] = \frac{cw[j] \cdot wpast_j + (tw[j] - avg(tw))}{wpast_i + 1}
13:
14:
              past_i = past_i + cur_i
            test the model by using \bar{\Theta} and cw
15:
```

Results (Accuracy Matrix)

CWR

Results (Accuracy)

Naive

LWF

Top Accuracy Matrix 0.999054 0.10591 0.98286 0.340353 0.996265 0.0416259 0.995468 0 0.000979432 0.00106724 0.293051 Exp 0 Exp 2 Exp 4 Testing Experiences

Cumulative

GDumb

CWR

Accuracy metrics

$$\textbf{Backward Transfer} = \frac{\sum_{i>j}^{N} \mathcal{R}_{i,j}}{\frac{N(N-1)}{2}}$$

Forward Transfer
$$=rac{\sum_{i < j}^{N} \mathcal{R}_{i,j}}{rac{N(N-1)}{2}}$$

In-Domain Accuracy
$$= \frac{\sum_{i=1}^{N} \mathcal{R}_{i,i}}{N}$$

Results (Radar Graph)

Future Works

Key Aspects

- Experiment with hybrid models like AR1
- Benchmark on complex datasets like CLEAR (Continual LEArning on Real-World Imagery) dataset
- Explore implementation in robot vision related tasks.
 I.e. ego-centric video datasets

