This Listing of Claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS

1. (Currently Amended) A compound of Formula I:

$$(Q)_{j}$$
 R^{1A}
 R^{2A}
 R^{2B}
 R^{2B}

wherein:

j is 0, 1 or 2; and

m is 0, 1, 2, 3 or 4; and

R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and

R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or

 R^{2A} and R^{2B} together with the carbon atom to which they are attached form a $C_{3\mbox{-}10}$ cycloalkyl group; and

one of Z and Y is NR^3 and the other of Z and Y is CHR^4 ;

wherein R^3 and R^4 are independently selected from the group consisting of hydrogen, acyl, thioacyl, and R^5 ; and

wherein R⁵ is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; -OR⁹; -SR⁹; -S(O)R⁹; -SO2R⁹; and -SO3R⁹;

wherein the R⁵ alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently selected from the

5

group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2R 14 R 15 ; -PR 13 R 14 R 15 -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A $^-$; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO₂-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein, and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl;

arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; arylalkyl; arboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -N⁺R⁹R¹⁺R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO

 $3R^{16}$; $-CO_2R^{16}$; $-CO_3R^9R^{10}$; $-SO_2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-PR^9R^{10}$; $-P^+R^9R^{10}R^{11}A^-$; $S^+R^9R^{10}A^-$; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylammoniumalkyl alkylaminoalkyl; aminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

one or more R^6 radicals are independently selected from the group consisting of R^5 , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R¹³; -SO3R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³ OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR 13R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)NR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R 15A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R⁶ alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN;

 $-OR^{16}; -NR^{9}R^{10}; -N^{+}R^{9}R^{10}R^{W}A^{-}; -N^{+}R^{9}R^{+}R^{+2}A^{-}; -SR^{16}; -S(O)R^{9}; -SO_{2}R^{9}; -SO_{3}R^{16}; -CO_{2}R^{16}; -CO_{3}R^{10}; -PO_{3}R^{10}; -PO_{3}R^{10}; -P^{10}R^{10}; -P^{10}R^{10}R^{10}; -P^{10}R^{10}R^{10}R^{10}; -P^{10}R^{10}R^{10}R^{10}R^{10}R^{10}; -P^{10}R$

wherein the R^6 quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³ OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -P¹³R¹⁴ -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴ A⁻; -N⁺R¹³R¹⁴R¹⁵A⁻; and carbohydrate residue; and

wherein the R^6 radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR¹³-; -P(O)R¹³-; -PR¹³R¹⁴, -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; wherein said phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -

 SR^9 ; $-S(O)R^9$; $-SO2R^9$; $-SO3R^9$; $-CO2R^9$; $-CONR^9R^{10}$; -SO2OM; $-SO2NR^9R^{10}$; $-PR^9R^{10}$

provided that at least one of the following conditions is satisfied:

- (a) the R⁵ moiety possesses an overall positive charge;
- (b) the R⁵ moiety comprises a quaternary ammonium group or a quaternary amine salt;
- (c) the R⁵ moiety comprises a phosphonic acid group or at least two carboxyl groups; or
- (d) the R⁵ moiety comprises a polyethylene glycol group having a molecular weight of at least 1000.
- 2. (Currently Amended) A compound of Claim 1 wherein R^5 is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2 NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 R 14 R 15 R 15 R 14 R 15 R 15 R 14 R 15 R 15

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -

 $S(O)R^7$; $-SO2R^7$; $-SO3R^7$; $-CO2R^7$; $-CONR^7R^8$; $-N^+R^7R^8R^9A$ -; $-P(O)R^7R^8$; $-PR^7R^8$; $-P^+R^7R^8R^9A$ -; and $-P(O)(OR^7)OR^8$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein , and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -SO2R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarborylalkyl; alkylaminocarborylalkyl; alkylaminocarborylalkyl; aminocarborylalkyl; alkylaminocarborylalkyl; carboxyalkylaminocarborylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

3. (Currently Amended) A compound of claim 2 wherein R⁵ is:

wherein

k is 0, 1, 2, 3 or 4; and

one or more R^{19} are independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}R^{15}$; -CO2R 13 ; -OM; -SO2OM; -SO2 NR $^{13}R^{14}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -NR $^{13}CO_2R^{14}$; -NR $^{13}CO_2R^{14}$; -OC(O)R 13 ; -OC(O)NR $^{13}R^{14}$; -NR $^{13}SO_2R^{14}$; -P(O)R $^{13}R^{14}$; -P(O)R $^{13}R^{14}$; -P $^{+}R^{13}R^{14}R^{15}A^{-}$; -P(OR 13)OR 14 ; -S $^{+}R^{13}R^{14}R^{15}A^{-}$; and

$$CO_2H$$
 CO_2H

$$O$$
 N
 CO_2H
 CO_2H

$$O$$
 $R = 1000 \text{ MW PEG}$

$$\begin{array}{c|c}
O \\
\parallel \\
S \\
O \\
CO_2H
\end{array}$$

$$\begin{array}{c|c}
O \\
\parallel \\
S \\
N \\
O \\
CO_2H
\end{array}$$
and

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2 -; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹; and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein ; and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -SO2R⁹; -SO2R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 ${\sf R}^{11}$ and ${\sf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R 13 , R 14 , and R 15 alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylammoniumalkyl alkylaminoalkyl; aminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; aminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+R ^9$ R $^{10}A^-$; -S-; -SO-; -SO₂-; -S $^+R ^9A^-$ -; -PR 9 -; -P $^+R ^9R ^{10}A^-$ -; -P(O)R 9 -; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

4. (original) A compound of claim 3 wherein R⁵ is:

$$\mathbb{R}^{19}$$
 IIA

wherein R¹⁹ is as defined in Claim 3.

į

5. (original) A compound of claim 3 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 3.

6. (original) A compound of claim 3 wherein:

R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen and alkyl.

- 7. (original) A compound of claim 3 wherein:

 R³ is selected from the group consisting of hydrogen and alkyl; and

 R⁴ is R⁵.
- 8. (Currently Amended) A compound of claim 3 wherein: R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R^4 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO 13 ; -SO 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 R 15

 $PR^{13}R^{14}$; $-P(O)R^{13}R^{14}$; $-P^+R^{13}R^{14}R^{15}A^-$; $-P(OR^{13})OR^{14}$; $-S^+R^{13}R^{14}A^-$; and $-N^+R^{13}R^{14}$ $R^{15}A^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(Θ)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -CO 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; carboxyalkylarylalkyl; alkylarylalkyl; carboxyalkylarylalkyl;

and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ $R^{10}A^{-}$; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of $R^{\underline{9}}$ and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

9. (Currently Amended) A compound of claim 3 wherein:

 R^3 is selected from the group consisting of hydrogen; $\$ alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and $-OR^9$;

wherein the R^3 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; \alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO 2 R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A $^-$; -P(OR 13)OR 14 ; -S $^+$ R 13 R 14 A $^-$; and -N $^+$ R 13 R 14 R 15 A $^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR\frac{7}{5}; -NR\frac{7}{7}R\frac{8}{5}; -SR\frac{7}{5}; -

 $S(O)R^7$; $-SO2R^7$; $-SO3R^7$; $-CO2R^7$; $-CONR^7R^8$; $-N^+R^7R^8R^9A$ -; $-P(O)R^7R^8$; $-PR^7R^8$; $-P^+R^7R^8R^9A$ -; and $-P(O)(OR^7)OR^8$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$; -PR 7 -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; carboxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or R 11 and R 12 together with the carbon atom to which they are attached form a cyclic ring;

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

and

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R ¹³, R ¹⁴, and R ¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarborylalkyl; alkylaminocarborylalkyl; alkylaminocarborylalkyl; alkylaminocarborylalkyl; arylaminocarborylalkyl; carboxyalkylaminocarborylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR ¹⁶; -NR ⁹R ¹⁰; -N ⁺R ⁹R ¹⁰R ^wA ⁻; -N ⁺R ⁹R ¹¹R ¹²A ⁻; -SR ¹⁶; -S(O)R ⁹; -SO2R ⁹; -SO3R ¹⁶; -CO2R ¹⁶; -CONR ⁹R ¹⁰; -SO2NR ⁹R ¹⁰; -PO(OR ¹⁶)OR ¹⁷; -PR ⁹R ¹⁰; -P ⁺R ⁹R ¹⁰R ¹¹A ⁻; -S ⁺R ⁹R ¹⁰A ⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoiumalkyl alkylaminoiumalkyl alkylaminoiumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^4 is R^5 .

10. (Currently Amended) A compound of claim 3 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO₂R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl alkylaminoalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $N^+R^9R^{10}A$ -, and wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, - $S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and - $PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocyclyl; and wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

11. (Previously amended) A compound of claim 3 wherein:

 R^{19} is independently selected from the group consisting of -OR¹³, -NR¹³R¹⁴, -NR¹³C(O)R¹⁴, -OC(O)NR¹³R¹⁴, and -NR¹³SO₂R¹⁴, and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboalkoxyalkyl, and carboxyalkylheterocyclyl; and wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

12. (original) A compound of claim 10 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 10.

13. (original) A compound of claim 10 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 10.

14. (Currently Amended) A compound of claim 3 wherein R¹⁹ is selected from the group consisting of:

$$O \longrightarrow N \longrightarrow CO_2H$$

Samuel J. TREMONT *et al.*U.S. Patent Application Serial No. 09/912,233

$$N$$
 CO_2H
 CO_2H

$$O$$
 $R = 1000 \text{ MW PEG}$

15. (original) A compound of claim 3 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

16. (original) A compound of claim 3 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from alkyl.

17. (original) A compound of claim 3 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

- 18. (original)A compound of claim 3 wherein j is 1 or 2.
- 19. (original) A compound of claim 3 wherein j is 2.
- 20. (original) A compound of claim 3 wherein R^{1A} and R^{1B} are hydrogen.
- 21. (original) A compound of claim 3 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.

22. (original) A compound of claim 3 wherein R^{2A} and R^{2B} are independently selected from the group consisting C_{1-6} alkyl.

- 23. (original) A compound of claim 3 wherein R^{2A} and R^{2B} are the same alkyl.
- 24. (original) A compound of claim 3 wherein R^{2A} and R^{2B} are each n-butyl.
- 25. (original) A compound of claim 3 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 26. (original) A compound of claim 3 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 27. (original) A compound of claim 3 wherein j is 1 or 2; R^{1A} and R^{1B} are hydrogen; R^{2A} and R^{2B} are n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.
 - 28. (original) A compound of claim 3 wherein j is 1 or 2; R^{1A} and R^{1B} are hydrogen; one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

29. (Currently Amended) A compound of claim 1 corresponding to Formula IA:

$$(R^6)_m$$
 R^{1A}
 R^{1B}
 R^{2A}
 R^{2B}
 R^3
 R^4
 R^4
 R^3

wherein:

j is 0, 1 or 2; and

m is 0, 1, 2, 3 or 4; and

R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and

R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, and aralkyl; or

 R^{2A} and R^{2B} together with the carbon atom to which they are attached form a $C_{3\mbox{-}7}$ cycloalkyl group; and

R³ and R⁴ are independently selected from the group consisting of hydrogen, acyl, thioacyl, and R⁵; and

wherein R⁵ is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; -OR⁹; -SR⁹; -S(O)R⁹; -SO2R⁹; and -SO3R⁹;

wherein the R⁵ alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -

 $NR^{13}SO_{2}R^{14}; -NR^{13}SONR^{14}R^{15}; -NR^{13}SO_{2}NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^{+}R^{13}R^{14}R^{15}$ A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -PR 7 -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein ${\bf R}^7$ and ${\bf R}^8$ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein, and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -CO 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -N⁺R⁹R¹¹R⁺²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; carboxyalkylarylalkyl; alkylarylalkyl; carboxyalkylarylalkyl;

and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ $R^{10}A^{-}$; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

one or more R^6 radicals are independently selected from the group consisting of R^5 , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R¹³; -SO3R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³ OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR 13R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)NR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R 15A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^6 alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 -PR 9 R 10 ; -P $^+$ R 9 R 11 R 12 A $^-$; -S $^+$ R 9 R 10 A $^-$; and carbohydrate residue; and

wherein the R⁶ quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM;

-COR¹³; -P(O)R¹³R¹⁴; -P¹³R¹⁴ -PR¹³R¹⁴; P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A
-; -N⁺R¹³R¹⁴R¹⁵A⁻; and carbohydrate residue; and

wherein the R^6 radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR¹³-; -P(O)R¹³-; -PR¹³R¹⁴, -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; wherein said phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; -CONR⁹R¹⁰; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or

a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R³, R⁴ and R⁶ is R⁵; and

provided that the R^5 alkyl, cycloalkyl, aryl, heterocyclyl, and $-OR^9$ radicals are not substituted with $-O(CH_2)_{1-4}NR'R''R'''$ $-O(CH_2)_{1-4}N^+R'R''R'''A^-$ wherein R', R'' and R''' are independently selected from hydrogen and alkyl; and

provided that at least one of the following conditions is satisfied:

(a) the R⁵ moiety possesses an overall positive charge; and/or

(b) the R⁵ moiety comprises a quaternary ammonium group or a quaternary amine salt; and/or

- (c) the R⁵ moiety comprises at least two carboxy groups.
- 30. (Currently Amended) A compound of Claim 29 wherein R^5 is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2 NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 R 14 R 15 R 15 R 14 R 15 R 15 R 14 R 15 R 1

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A $^-$; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein, and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -SO2R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; arylalkyl; arboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylarminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylarminocarbonylalkyl; carboxyalkylarminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl;

Attorney Docket No. 161765.00195 (3356/01/US)

aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; $-OR^{16}$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-N^+R^9R^{11}R^{12}A^-$; $-SR^{16}$; $-SO(R^9)$; $-P(R^9)$; -P

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; arylalkyl; arylalkyl; alkylaminoalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ $R^{10}A^{-}$ -; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

31. (Currently Amended) A compound of claim 30 wherein R⁵ is:

wherein

k is 0, 1, 2, 3 or 4; and

one or more R^{19} are independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2 NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 R 14 R 15 R 15 R 15 R 14 R 15 R 15

Samuel J. TREMONT *et al.*U.S. Patent Application Serial No. 09/912,233

$$O$$
 N
 CO_2H
 CO_2H

Samuel J. TREMONT *et al.* U.S. Patent Application Serial No. 09/912,233

$$\begin{array}{c|c} O & O & O \\ S & O & S \\ O & CO_2H & N & O \\ CO_2H & CO_2H & and \end{array}$$

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO2R^7$; $-SO3R^7$; $-CO2R^7$; $-CONR^7R^8$; $-N^+R^7R^8R^9A$ -; $-P(O)R^7R^8$; $-PR^7R^8$; $-P^+R^7R^8R^9A$ -; and $-P(O)(OR^7)OR^8$; and

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2 -; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein, and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl;

arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -CO 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; arboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R⁺¹R⁺²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -

 $SO3R^{16}$; $-CO2R^{16}$; $-CONR^9R^{10}$; $-SO2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-PR^9R^{10}$; $-P^+R^9R^{10}R^{11}A^-$; $-S^+R^9R^{10}A^-$; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylammoniumalkyl alkylaminoalkyl; aminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; aminoalkyl; aminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

32. (original) A compound of claim 31 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 31.

33. (original) A compound of claim 31 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 31.

34. (original) A compound of claim 31 wherein:

R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen and alkyl.

35. (original) A compound of claim 31 wherein:

 R^3 is selected from the group consisting of hydrogen and alkyl; and R^4 is R^5 .

36. (Currently Amended) A compound of claim 31 wherein:

R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R⁴ alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO 2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -

 $OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SOR^{14}; -NR^{13}SO_2R^{14}; -NR^{13}SONR^{14}R^{15}; -NR^{13}SO_2NR^{14}R^{15}; -PR^{13}R^{14}R^{15}; -PR^{13}R^{14}R^{15}R^{15}, -P(O)R^{13}R^{14}; -P^{+}R^{13}R^{14}R^{15}A^{-}; -P(OR^{13})OR^{14}; -S^{+}R^{13}R^{14}A^{-}; \text{ and } -N^{+}R^{13}R^{14}R^{15}R^{15}, -P(OR^{13})OR^{14}R^{15}, -P(OR^{13})OR^{14}, -P(OR^{13})OR^{14}R^{15}, -P(OR^{13})OR^{14}, -P($

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy, alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A-; -P(O)R 7 R 8 ; -PR 7 R 8 ; -P $^+$ R 7 R 8 R 9 A-; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -SO2R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN, alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary

heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl alkylaminoalkyl; aminoalkyl; aminoalkyl; aminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ $R^{10}A^{-}$ -; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

37. (Currently Amended) A compound of claim 31 wherein:

R³ is selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R^3 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO 2 R 13 ; -SO 2 R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl;

heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-SO_2R^7$; $-SO_2R^7$; $-SO_2R^7$; $-SO_2R^7$; $-CO_2R^7$; $-CO_2R^7$; $-CO_2R^7$; $-N^+R^7R^8R^9A^-$; and $-P(O)(OR^7)OR^8$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; carboxyalkylarylalkyl; aminoalkyl; aminocarbonylalkyl; alkylarylalkyl; carboxyalkylarylarylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and R^4 is R^5 .

38. (Currently Amended) A compound of claim 31 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl alkylaminoalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $N^+R^9R^{10}A$ -, and wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, - $S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and - $PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocyclyl; and wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

39. (Previously amended) A compound of claim 31 wherein: $R^{19} \text{ is independently selected from the group consisting of -OR}^{13}, \text{-NR}^{13}R^{14}, \text{-NR}^{13}C(O)R^{14}, \text{-OC}(O)NR^{13}R^{14}, \text{ and -NR}^{13}SO_2R^{14}, \text{ and}$

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $N^+R^9R^{10}A$ -, and wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, - $S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and - $PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboalkoxyalkyl, and carboxyalkylheterocyclyl; and wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

40. (original) A compound of claim 38 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 38.

41. (original) A compound of claim 38 wherein R⁵ is:

Samuel J. TREMONT *et al.* U.S. Patent Application Serial No. 09/912,233

wherein R¹⁹ is as defined in Claim 38.

42. (Currently Amended) A compound of claim 31 wherein R¹⁹ is selected from the group consisting of:

$$O \longrightarrow O$$
 $O \longrightarrow N$ CO_2H

$$O$$
 N
 CO_2H
 CO_2H

$$\begin{array}{c|c} O & O & O \\ \parallel & S & \\ \hline O & \parallel & S \\ \hline O & CO_2H & M & O \\ \hline & CO_2H & CO_2H \\ \hline \end{array}$$

43. (original) A compound of claim 38 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

44. (original) A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from alkyl.

45. (original) A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

46. (original) A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is R⁵; and

 R^4 is selected from hydrogen and alkyl.

47. (original) A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

 R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is selected from from hydrogen and alkyl; and

 R^4 is R^5 .

- 48. (original) A compound of claim 38 wherein j is 1 or 2.
- 49. (original) A compound of claim 38 wherein j is 2.
- 50. (original) A compound of claim 38 wherein R^{1A} and R^{1B} are hydrogen.
- 51. (original) A compound of claim 38 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 52. (original) A compound of claim 38 wherein R^{2A} and R^{2B} are independently selected from the group consisting C_{1-6} alkyl.
 - 53. (original) A compound of claim 38 wherein R^{2A} and R^{2B} are the same alkyl.
 - 54. (original) A compound of claim 38 wherein R^{2A} and R^{2B} are each n-butyl.
- 55. (original) A compound of claim 38 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 56. (original) A compound of claim 38 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 57. (original) A compound of claim 38 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are n-butyl; and

one or more R⁶ are independently selected from methoxy and dimethylamino.

58. (original) A compound of claim 38 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

59. (original) A compound of claim 42 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

60. (original) A compound of claim 42 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from alkyl.

61. (original) A compound of claim 42 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

62. (original) A compound of claim 42 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is R⁵; and

R⁴ is selected from hydrogen and alkyl.

63. (original) A compound of claim 42 wherein:

j is 2;

Samuel J. TREMONT *et al.* U.S. Patent Application Serial No. 09/912,233

R^{1A} and R^{1B} are hydrogen;

 R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is selected from from hydrogen and alkyl; and

 R^4 is R^5 .

- 64. (original) A compound of claim 42 wherein j is 1 or 2.
- 65. (original) A compound of claim 42 wherein j is 2.
- 66. (original) A compound of claim 42 wherein R^{1A} and R^{1B} are hydrogen.
- 67. (original) A compound of claim 42 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 68. (original) A compound of claim 42 wherein R^{2A} and R^{2B} are independently selected from the group consisting C_{1-6} alkyl.
 - 69. (original) A compound of claim 42 wherein R^{2A} and R^{2B} are the same alkyl.
 - 70. (original) A compound of claim 42 wherein R^{2A} and R^{2B} are each n-butyl.
- 71. (original) A compound of claim 42 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 72. (original) A compound of claim 42 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 73. (original) A compound of claim 42 wherein j is 1 or 2;

 R^{1A} and R^{1B} are hydrogen; R^{2A} and R^{2B} are n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

74. (original) A compound of claim 42 wherein j is 1 or 2; $R^{1A} \text{ and } R^{1B} \text{ are hydrogen;}$ one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

75. (Currently Amended) A compound of claim 1 corresponding to Formula IB:

$$(R^6)_m$$
 R^{1A}
 R^{1B}
 R^{2A}
 R^{2B}
 R^4
 R^3
 R^4
 R^4

wherein:

j is 0, 1 or 2; and

m is 0, 1, 2, 3 or 4; and

R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and

R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, and aralkyl; or

 R^{2A} and R^{2B} together with the carbon atom to which they are attached form a C_{3-7} cycloalkyl group; and

R³ and R⁴ are independently selected from the group consisting of hydrogen, acyl, thioacyl and R⁵; and

wherein R⁵ is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; -OR⁹; -SR⁹; -S(O)R⁹; -SO2R⁹; and -SO3R⁹;

wherein the R^5 alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 CO)R 14 ; -NR 13 CO)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 C $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A $^-$; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$ -; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -PR 7 -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹; and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle;

wherein , and R^W is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; arylalkyl; arboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN, alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl;

guanidinyl; $-OR^{16}$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-N^+R^9R^{++}R^{+2}A^-$; $-SR^{16}$; $-S(O)R^9$; $-SO_2R^9$; $-SO_2R^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-PR^9R^{10}$; $-P^+R^9R^{10}R^{11}A^-$; $-S^+R^9R^{10}A^-$; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoiumalkyl alkylaminoiumalkyl alkylaminoiumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ $R^{10}A^{-}$ -; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

one or more R^6 radicals are independently selected from the group consisting of R^5 , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R¹³; -SO3R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³ OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR 13R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)NR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R 15A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^6 alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -N $^{+}$ R 9 R 14 R 12 A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO 2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -PR 9 R 10 ; -P $^{+}$ R 9 R 11 R 12 A $^{-}$; -S $^{+}$ R 9 R 10 A $^{-}$; and carbohydrate residue; and

wherein the R^6 quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³ OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -P¹³R¹⁴ --PR¹³R¹⁴; P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A --PR¹³R¹⁴R¹⁵A⁻; and carbohydrate residue; and

wherein the R^6 radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR¹³-; -P(O)R¹³-; -P(O)R¹³-; -PR¹³R¹⁴, -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; wherein said phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R ¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and

heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; -CONR⁹R¹⁰; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or

a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R³, R⁴ and R⁶ is R⁵; and

provided that the R⁵ alkyl, cycloalkyl, aryl, and heterocyclyl, and -OR⁹ radicals are not substituted with $\frac{O(CH_2)_{1.4}NR'R''R'''}{O(CH_2)_{1.4}N^+R'R''R'''A'}$ wherein R', R'' and R''' are independently selected from hydrogen and alkyl; and

provided that at least one of the following conditions is satisfied:

- (a) the R⁵ moiety possesses an overall positive charge;
- (b) the R⁵ moiety comprises a quaternary ammonium group or a quaternary amine salt; and
 - (c) the R⁵ moiety comprises at least two carboxy groups.
- 76. (Currently Amended) A compound of Claim 75 wherein R^5 is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2 NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 R 14 R 15 ; -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may be further substituted with one or more radicals selected from the

group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A $^-$; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene;

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl;

wherein R⁹; and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein, and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -CO 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -N⁺R⁹R⁺R⁺A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; carboxyalkylarinocarbonylalkyl; aminoalkyl; aminocarbonylalkyl; alkylarinocarbonylalkyl; carboxyalkylarinocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

77. (Currently Amended) A compound of claim 76 wherein R⁵ is:

wherein

k is 0, 1, 2, 3 or 4; and

one or more R^{19} are independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2 NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 R 14 R 15 R 15 R 14 R 15 R 15 R 14 R 15 R 14 R 15 R 15

$$O$$
 N
 CO_2H

$$O \longrightarrow O \longrightarrow O$$
 $O \longrightarrow O$ $O \longrightarrow O$

$$O$$
 N
 CO_2H
 CO_2H

$$\begin{array}{c|c} O & O & O \\ \parallel & S & \\ \hline O & N & CO_2H \\ \hline O & CO_2H \\ \hline \end{array}$$

wherein the R¹⁹alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals

optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO_2R^7$; $-SO_2R^7$; $-SO_2R^7$; $-SO_2R^7$; $-CO_2R^7$; -

wherein the R^{19} alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2 -; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein ${\bf R}^7$ and ${\bf R}^8$ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹; and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein , and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -SO2R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl;

alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylammoniumalkyl alkylaminoalkyl; aminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; aminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ $R^{10}A^{-}$ -; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

Attorney Docket No. 161765.00195 (3356/01/US)

wherein R^{16} and R^{17} are independently selected from the group consisting of $\underline{R^{9}}$ and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

78. (original) A compound of claim 77 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 77.

79. (original) A compound of claim 77 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 77.

80. (original) A compound of claim 77 wherein:

R³ is R^{5;} and

R⁴ is selected from the group consisting of hydrogen and alkyl.

- 81. (original) A compound of claim 77 wherein: R^3 is selected from the group consisting of hydrogen and alkyl; and R^4 is R^5 .
- 82. (Currently Amended) A compound of claim 77 wherein: R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R^4 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO 2 R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A $^-$; -P(OR 13)OR 14 ; -S $^+$ R 13 R 14 A $^-$; and -N $^+$ R 13 R 14 R 15 A $^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁴ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy, alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of

the R⁴ radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -CO 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; aminocarbonylalkyl; alkylarylalkyl; alkylarylalkyli; alkylarylalkyli; alkylarylalkyli; alkylarylalkyli; alkylarylalkyli; alkylarylalkyli

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarborylalkyl; alkylaminocarborylalkyl; alkylaminocarborylalkyl; aminocarborylalkyl; alkylaminocarborylalkyl; carboxyalkylaminocarborylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -N⁺R⁹R¹¹R¹²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ $R^{10}A^{-}$ -; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

83. (Currently Amended) A compound of claim 77 wherein:

R³ is selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R^3 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO 2 R 13 ; -SO 3 R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A $^-$; -P(OR 13)OR 14 ; -S $^+$ R 13 R 14 A $^-$; and -N $^+$ R 13 R 14 R 15 A $^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A-; -P(O)R 7 R 8 ; -PR 7 R 8 ; -P $^+$ R 7 R 8 R 9 A-; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; carboxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

R¹¹ and R¹² together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylammoniumalkyl alkylaminoalkyl; aminoalkyl; aminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heter

guanidinyl; $-OR^{16}$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-N^+R^9R^{14}R^{12}A^-$; $-SR^{16}$; $-S(O)R^9$; $-SO_2R^9$; $-SO_2R^9R^{10}$; $-SO_2R^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-PR^9R^{10}$; $-P^+R^9R^{10}R^{11}A^-$; $-S^+R^9R^{10}A^-$; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarborylalkyl; alkylaminocarborylalkyl; alkylaminocarborylalkyl; alkylaminocarborylalkyl; carboxyalkylaminocarborylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ R¹⁰ A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹ A⁻-; -PR⁹-; -P⁺R⁹ R¹⁰ A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^4 is R^5 .

84. (Currently Amended) A compound of claim 77 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR $^{13}R^{14}$, - NR $^{13}C(0)R^{14}$, -OC(O)NR $^{13}R^{14}$, and -NR $^{13}SO_2R^{14}$, and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl alkylaminoalkyl,

wherein alkyl optionally has one or more carbons replaced by O or N⁺R⁹R¹⁰A-, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocyclyl; and wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

85. (Previously amended) A compound of claim 77 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $N^+R^9R^{10}A$ -, and wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, - $S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and - $PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocyclyl; and wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

86. (original) A compound of claim 84 wherein R⁵ is:

$$\mathbb{R}^{19}$$
 IIA

wherein R¹⁹ is as defined in Claim 84.

87. (original) A compound of claim 84 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 84.

88. (Currently Amended) A compound of claim 77 wherein R¹⁹ is selected from the group consisting of:

$$O$$
 N
 CO_2H
 CO_2H

Samuel J. TREMONT *et al*. U.S. Patent Application Serial No. 09/912,233

$$O$$
 S
 O
 CO_2H
 O
 CO_2H
 O

89. (original) A compound of claim 84 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

90. (original) A compound of claim 84 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from alkyl.

91. (original) A compound of claim 84 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

92. (original) A compound of claim 84 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is R⁵; and

R⁴ is selected from hydrogen and alkyl.

93. (original) A compound of claim 84 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is selected from from hydrogen and alkyl; and

 R^4 is R^5 .

- 94. (original) A compound of claim 84 wherein j is 1 or 2.
- 95. (original) A compound of claim 84 wherein j is 2.
- 96. (original) A compound of claim 84 wherein R^{1A} and R^{1B} are hydrogen.
- 97. (original) A compound of claim 84 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 98. (original) A compound of claim 84 wherein R^{2A} and R^{2B} are independently selected from the group consisting C_{1-6} alkyl.
 - 99. (original) A compound of claim 84 wherein R^{2A} and R^{2B} are the same alkyl.
 - 100. (original) A compound of claim 84 wherein R^{2A} and R^{2B} are each n-butyl.

- 101. (original) A compound of claim 84 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 102. (original) A compound of claim 84 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 103. (original) A compound of claim 84 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are n-butyl; and

one or more R^6 are independently selected from methoxy and dimethylamino.

104. (original) A compound of claim 84 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

105. (original) A compound of claim 88 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

106. (original) A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from alkyl.

107. (original) A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

108. (original) A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is R⁵; and

R⁴ is selected from hydrogen and alkyl.

109. (original) A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

 R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is selected from from hydrogen and alkyl; and

 R^4 is R^5 .

- 110. (original) A compound of claim 88 wherein j is 1 or 2.
- 111. (original) A compound of claim 88 wherein j is 2.
- 112. (original) A compound of claim 88 wherein R^{1A} and R^{1B} are hydrogen.
- 113. (original) A compound of claim 88 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.

- 114. (original) A compound of claim 88 wherein R^{2A} and R^{2B} are independently selected from the group consisting $C_{1\text{-}6}$ alkyl.
 - 115. (original) A compound of claim 88 wherein R^{2A} and R^{2B} are the same alkyl.
 - 116. (original) A compound of claim 88 wherein R^{2A} and R^{2B} are each n-butyl.
- 117. (original) A compound of claim 88 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 118. (original) A compound of claim 88 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 119. (original) A compound of claim 88 wherein j is 1 or 2;

 R^{1A} and R^{1B} are hydrogen;

 R^{2A} and R^{2B} are n-butyl; and
 - one or more $\boldsymbol{R}^{\boldsymbol{6}}$ are independently selected from methoxy and dimethylamino.
 - 120. (original) A compound of claim 88 wherein j is 1 or 2; R^{1A} and R^{1B} are hydrogen; one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.
 - 121. (Currently Amended) A compound of Formula III:

Ш

$$R^{21}$$
 R^{20}
 R^{20}
 R^{20}

wherein:

 R^{2C} and R^{2D} are independently selected from $C_{1\text{-}6}$ alkyl; and

R²⁰ is selected from the group consisting of halogen and R²³;

R²¹ is selected from the group consisting of hydroxy, alkoxy, and R²³; and

wherein R^{23} is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR polyether; -OC2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A $^-$; and -N $^+$ R 13 R 14 R 15 A $^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{23} aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{23} aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein, and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -SO 9 ; -CO 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -N⁺R⁹R⁺⁺R⁺²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; carboxyalkylarylalkyl; aminoalkyl; aminocarbonylalkyl; alkylarylalkyl; carboxyalkylarylarylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

R²² is unsubstituted phenyl or R²³; or

Attorney Docket No. 161765.00195 (3356/01/US)

a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R^{20} , R^{21} and R^{22} is R^{23} .

122. (Currently Amended) A compound of Claim 121 wherein R²³ is:

wherein

p is 1, 2, 3 or 4; and

one or more R^{24} are independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2 NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴ A⁻: -N⁺R¹³R¹⁴R¹⁵A⁻: and

$$O$$
 N
 CO_2H
 CO_2H

$$CO_2H$$
 N
 CO_2H

$$O$$
 O O Cl -+NEt₃

$$O$$
 N
 CO_2H
 CO_2H

$$\begin{array}{c|c}
O & O & O \\
\parallel & S & O \\
O & O & O \\
\hline
O & O & O \\
O & O & O \\
\hline
O & O & O \\
O & O & O \\
\hline
O & O & O \\
O & O & O \\
\hline
O & O & O \\
O & O & O \\
\hline
O & O & O \\
O & O & O \\
\hline
O & O & O \\
O & O & O \\
\hline
O & O & O \\
O & O & O \\
\hline
O & O & O \\
O & O & O \\
\hline
O & O & O \\
\hline$$

wherein the R^{24} alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO2R^7$; $-SO3R^7$; $-CO2R^7$; $-CONR^7R^8$; $-N^+R^7R^8R^9A$ -; $-P(O)R^7R^8$; $-PR^7R^8$; $-PR^7R^8R^9A$ -; and $-P(O)(OR^7)OR^8$; and

wherein the R^{24} alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2 -; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein , and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary

heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminoalkyl; aminoalkyl; aminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R⁺⁺R⁺²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarminoalkyl; alkylarminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹

 $R^{10}A^{-}$; -S-; -SO-; -SO₂-; -S⁺ $R^{9}A^{-}$ -; -P R^{9} -; -P⁺ $R^{9}R^{10}A^{-}$ -; -P(O) R^{9} -; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

123. (original) A compound of claim 122 wherein R²³ is:

$$\mathbb{R}^{24}$$
 IVA

wherein R²⁴ is as defined in Claim 122.

124. (original) A compound of claim 122 wherein R²³ is:

wherein R²⁴ is as defined in Claim 122.

125. (Currently Amended) A compound of claim 122 wherein:

 R^{24} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl alkylaminoalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $N^+R^9R^{10}A$ -, and wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, - $S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and - $PO(OR^{16})OR^{17}$, and

wherein R⁹ and R¹⁰ are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboalkoxyalkyl, and carboxyalkylheterocyclyl; and wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

126. (original) A compound of claim 125 wherein R²³ is:

wherein R²⁴ is as defined in Claim 125.

127. (original) A compound of claim 125 wherein R²³ is:

wherein R²⁴ is as defined in Claim 125.

128. (Currently Amended) A compound of claim 122 wherein R²⁴ is selected from the group consisting of:

$$\begin{array}{c|c}
O & O & O \\
\parallel & S & O \\
N & \parallel & N & CO_2H \\
O & CO_2H & CO_2H & and
\end{array}$$

129. (original) A compound of claim 122 wherein:

 $\boldsymbol{R^{\text{2C}}}$ and $\boldsymbol{R^{\text{2D}}}$ are independently selected from ethyl and n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

130. (original) A compound of claim 122 wherein:

R^{2C} and R^{2D} are n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

131. (original) A compound of claim 122 wherein:

one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

- 132. (original) A compound of claim 122 wherein R^{2C} and R^{2D} are the same alkyl.
- 133. (original) A compound of claim 122 wherein R^{2C} and R^{2D} are each n-butyl.
- 134. (original) A compound of claim 122 wherein one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl.
 - 135. (original) A compound of claim 125 wherein:

R^{2C} and R^{2D} are independently selected from ethyl and n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

136. (original) A compound of claim 125 wherein:

R^{2C} and R^{2D} are n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

137. (original) A compound of claim 125 wherein:

one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

- 138. (original) A compound of claim 125 wherein R^{2C} and R^{2D} are the same alkyl.
- 139. (original) A compound of claim 125 wherein R^{2C} and R^{2D} are each n-butyl.
- 140. (original) A compound of claim 125 wherein one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl.
 - 141. (Currently Amended) A compound of Formula V:

$$R^{26}$$
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{27}
 R^{26}
 R^{27}
 R^{27}
 R^{27}
 R^{27}

wherein:

 R^{2E} and R^{2F} are independently selected from $C_{1\text{-}6}$ alkyl; and

 R^{25} and R^{26} are independently selected from the group consisting of hydrogen, alkoxy, and R^{28} ;

wherein R^{28} is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{28} aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{28} aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein, and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylarinoalkyl; aminoalkyl; aminocarbonylalkyl; alkylarinocarbonylalkyl; carboxyalkylarinocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -N⁺R⁹R⁺⁺R⁺²A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

Attorney Docket No. 161765.00195 (3356/01/US)

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminoalkyl; aminoalkyl; aminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^{27} is unsubstituted phenyl or R^{28} ; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R^{25} , R^{26} and R^{27} is R^{28} .

142. (Currently Amended) A compound of Claim 141 wherein R²⁸ is:

wherein

r is 1, 2, 3 or 4; and

one or more R^{29} are independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2 NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴ A⁻; -N⁺R¹³R¹⁴R¹⁵A⁻; and

$$O$$
 O O CI -+NEt₃

$$O$$
 N
 CO_2H
 CO_2H

$$\begin{array}{c|c}
O & O & O \\
\parallel & S & O \\
\hline
N & N & CO_2H \\
O & CO_2H \\
\hline
CO_2H & and
\end{array}$$

wherein the R²⁹alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the R^{29} alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2 -; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, and R¹⁰ are independently selected from R^w and carboxyalkylheterocycle; wherein, and R^w is are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R¹¹ and R¹² are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR⁹; -NR⁹R¹⁰; -SR⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; and -CONR⁹R¹⁰; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; carboxyalkylaminocarbonylalkyl;

and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -N $^{+}$ R 9 R $^{1+}$ R 12 A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -PR 9 R 10 ; -P $^{+}$ R 9 R 10 R 11 A $^{-}$; -S $^{+}$ R 9 R 10 A $^{-}$; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; carboxyalkylarylalkyl; aminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ $R^{10}A^{-}$ -; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M: and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

143. (original) A compound of claim 142 wherein R²⁸ is:

Attorney Docket No. 161765.00195 (3356/01/US)

wherein R²⁹ is as defined in Claim 142.

(original) A compound of claim 142 wherein R²⁸ is: 144.

wherein R²⁹ is as defined in Claim 142.

(Currently Amended) A compound of claim 142 wherein: 145.

R²⁹ is independently selected from the group consisting of -OR¹³, -NR¹³R¹⁴, - $NR^{13}C(O)R^{14}$, $-OC(O)NR^{13}R^{14}$, and $-NR^{13}SO_2R^{14}$, and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl alkylaminoalkyl,

wherein alkyl optionally has one or more carbons replaced by O or N⁺R⁹R¹⁰A-, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, - $S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and - $PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboalkoxyalkyl, and carboxyalkylheterocyclyl; and wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

146. (original) A compound of claim 145 wherein R²⁸ is:

wherein R²⁹ is as defined in Claim 145.

147. (original) A compound of claim 145 wherein R²⁸ is:

Page 115 of 188

wherein R²⁹ is as defined in Claim 145.

148. (Currently Amended) A compound of claim 142 wherein R²⁹ is selected from the group consisting of:

$$O$$
 N
 CO_2H
 CO_2H

$$\begin{array}{c|c} O & O & O \\ \parallel & S & \\ \hline N & \parallel & N & CO_2H \\ \hline O & CO_2H & \\ \hline & CO_2H & \\ \hline \end{array}$$

- 149. (original) A compound of claim 142 wherein:
- R^{2E} and R^{2F} are independently selected from ethyl and n-butyl; and
- R²⁵ and R²⁶ are independently selected from hydrogen and methoxy.
- 150. (original) A compound of claim 142 wherein:
- R^{2E} and R^{2F} are n-butyl; and
- R²⁵ and R²⁶ are independently selected from hydrogen and methoxy.
- 151. (original) A compound of claim 142 wherein:

one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; and

- R²⁵ and R²⁶ are independently selected from hydrogen and methoxy.
- 152. (original) A compound of claim 142 wherein R^{2E} and R^{2F} are the same alkyl.
- 153. (original) A compound of claim 142 wherein R^{2E} and R^{2F} are each n-butyl.
- 154. (original) A compound of claim 142 wherein one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl.
 - 155. (original) A compound of claim 145 wherein:

R^{2E} and R^{2F} are independently selected from ethyl and n-butyl; and

- R²⁵ and R²⁶ are independently selected from hydrogen and methoxy.
- 156. (original) A compound of claim 145 wherein:

R^{2E} and R^{2F} are n-butyl; and

- R^{25} and R^{26} are independently selected from hydrogen and methoxy.
- 157. (original) A compound of claim 145 wherein:

one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; and

R²⁵ and R²⁶ are independently selected from hydrogen and methoxy.

- 158. (original) A compound of claim 145 wherein R^{2E} and R^{2F} are the same alkyl.
- 159. (original) A compound of claim 145 wherein R^{2E} and R^{2F} are each n-butyl.
- 160. (original) A compound of claim 145 wherein one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl.
- 161. (original) A compound of claim 142 wherein: one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; R^{25} and R^{26} are hydrogen; and R^{27} is:

wherein r is 1 and R²⁹ is as defined in claim 142.

162. (original) A compound of claim 142 wherein: one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; and R^{25} and R^{26} are methoxy; and R^{27} is:

wherein r is 1 and R²⁹ is as defined in claim 142.

163-166 (Canceled)

167. (Currently Amended) A compound of Formula VII: elaim 164

$$\begin{array}{c|c}
 & R^{1C} \\
 & R^{1D} \\
 & R^{2G} \\
 & R^{2H}
\end{array}$$

$$\begin{array}{c|c}
 & VII
\end{array}$$

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and

R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or

 R^{2G} and R^{2H} together with the carbon atom to which they are attached form a C_{3-10} cycloalkyl group; and

one of E and F is NR³⁰ and the other of E and F is CHR³¹;

R³⁰ is R³²; and

R³¹ is selected from the group consisting of hydrogen and alkyl;

wherein the R³¹ alkyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR

13 OR 14; -NR 13 NR 14 R¹⁵; -CO2R 13; -OM; -SO2OM; -SO2NR 13 R¹⁴; -C(O)NR 13 R¹⁴; -C(O)NR 13 R¹⁴; -C(O)NR 13 R¹⁴; -NR 13 C(O)R 14; -NR 13 C(O)R 14 R¹⁵; -NR 13 CO2R 14; -OC(O)R 13;
C(O)OM; -COR 13; -NR 13 SOR 14; -NR 13 SO2R 14; -NR 13 SONR 14 R 15; -NR 13 SO2NR 14 R 15; -PR 13 R 14; -P(O)R 13 R 14; -P R 13 R 14 R 15 A -; -P(OR 13)OR 14; -S R 13 R 14 A -; and -N R 13 R 14 R 15 A -; and wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³¹ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7; -NR 7 R 8; -SR 7; -S(O)R 7; -SO2R 7; -SO3R 7; -CO2R 7; -CONR 7 R 8; -N R 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8 R 9 A -; -P(O)R 7 R 8; -PR 7 R 8 R 9 A -; -P

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³¹ radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N[±]R⁷R⁸A⁻-; -SO-; -SO₂-; -S[±]R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P[±]R⁷R⁸A⁻-; or phenylene; and

wherein R^{7} and R^{8} are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; carboxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or 11 and 12 together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; aminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoalkyl; alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN, alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CO2R¹⁶; -CO2R¹⁶; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -PR⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A⁻; -S⁺R⁹R¹⁰A⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoalkyl; alkylaminoalkyl; aminoalkyl; aminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N[±]R⁹R¹⁰A⁻-; -S-; -SO₂-; -S[±]R⁹A⁻-; -PR⁹-; -P[±]R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

R³² is phenyl substituted with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

 $-(C=O)_s$ -alkyl-;

 $-(C=O)_s$ -alkyl-NH-;

 $-(C=O)_s$ -alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond;

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides;

s and t are independently 0 or 1; and

one or more R³⁴ radicals are independently selected from the group consisting of R³², hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R¹³; -SO3R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³

OR $\frac{14}{:}$ -NR $\frac{13}{NR}$ $\frac{14}{R}$ $\frac{15}{:}$ -CO2R $\frac{13}{:}$ -OM; -SO2OM; -SO2NR $\frac{13}{R}$ $\frac{14}{:}$ -NR $\frac{14}{C}$ (O) R $\frac{13}{:}$ -C(O) NR $\frac{13}{R}$ $\frac{14}{:}$ -C(O) OM; -COR $\frac{13}{:}$ -OR $\frac{18}{:}$ -S(O) nNR $\frac{13}{R}$ $\frac{14}{:}$ -NR $\frac{13}{R}$ $\frac{18}{:}$ -NR $\frac{18}{OR}$ $\frac{14}{:}$ -N $\frac{13}{R}$ $\frac{14}{:}$ -N $\frac{15}{A}$ $\frac{15}{:}$ -PR $\frac{13}{R}$ $\frac{14}{:}$ -P $\frac{13}{R}$ $\frac{14}{R}$ $\frac{15}{A}$ -; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R³⁴ alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; -OR¹⁶; -NR⁹R¹⁰; -N[±]R⁹R¹⁰R^wA[±]; -SR¹⁶; -S(O)R⁹; -SO₂R⁹; -SO₃R¹⁶; -CO₂R¹⁶; -CO₂R¹⁶; -CO₂R¹⁶; -CO₂R¹⁶; -CO₂R¹⁶; -P[±]R⁹R¹⁰; -P[±]R⁹R¹¹R¹²A[±]; -S[±]R⁹R¹⁰A[±]; and carbohydrate residue; and

wherein the R^{34} quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR $\frac{13}{2}$; -NR $\frac{13}{2}$ R $\frac{14}{2}$; -SR $\frac{13}{2}$; -S(O)R $\frac{13}{2}$; -SO2R $\frac{13}{2}$; -SO3R $\frac{13}{2}$; -NR $\frac{13}{2}$ OR $\frac{14}{2}$; -NR $\frac{13}{2}$ NR $\frac{14}{2}$ R $\frac{15}{2}$; -CO2R $\frac{13}{2}$; OM; -SO2OM; -SO2OM; -SO2NR $\frac{13}{2}$ R $\frac{14}{2}$; -C(O)OM; -COR $\frac{13}{2}$; -P(O)R $\frac{13}{2}$ R $\frac{14}{2}$; -PR $\frac{13}{2}$ R $\frac{14}{2}$ R $\frac{15}{2}$ A $\frac{15}{2}$; and carbohydrate residue; and

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR 13 -; -N $^+$ R 13 R 14 A-; -S-; -SO-; -SO2-; -S $^+$ R 13 A-; -PR 13 -; -P(O)R 13 -; -PR 13 R 14 : -P $^+$ R 13 R 14 A-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; or polyalkyl; wherein said phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+$ R 9 R 10 A-; -S-; -SO-; -SO2-; -S $^+$ R 9 A-; -PR 9 -; -P $^+$ R 9 R 10 A-; or -P(O)R 9 -; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; -CONR⁹R¹⁰; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -PR⁹R¹⁰; -PR⁹R¹⁰; -PR⁹R¹⁰; -PR¹⁰R¹⁰; -PR¹⁰R¹⁰;

a pharmaceutically acceptable salt or solvate thereof.

168-187 (Canceled)

188. (original) A compound of claim-185 corresponding to Formula VIIA:

$$(R^{34})_{l}$$

$$R^{1C}$$

$$R^{2G}$$

$$R^{2H}$$

$$R^{30}$$

$$R^{30}$$

$$VIIA$$

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and

R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl,

cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or

R^{2G} and R^{2H} together with the carbon atom to which they are attached form a C₃₋₇ cycloalkyl group; and

 R^{30} is R^{32} ; and

R³¹ is selected from the group consisting of hydrogen and alkyl;

wherein the R³¹ alkyl radical is independently substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO 2R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -NR¹³CO)R¹⁴; -NR¹³CO)R¹

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³¹ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl;

heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^{\frac{7}{2}}$; $-NR^{\frac{7}{2}}R^{\frac{8}{2}}$; $-SR^{\frac{7}{2}}$; $-SO_{2}R^{\frac{7}{2}}$; $-SO_{2}R^{\frac{7}{2}}$; $-SO_{2}R^{\frac{7}{2}}$; $-CO_{2}R^{\frac{7}{2}}$;

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{30} and R^{31} radicals optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^{+}$ R 7 R 8 A $^{-}$ -; -S-; -SO-; -SO2-; -S $^{+}$ R 7 A $^{-}$ -; -PR 7 -; -P(O)R 7 -; -P $^{+}$ R 7 R 8 A $^{-}$ -; or phenylene; and

wherein R^{7} and R^{8} are independently selected from the group consisting of hydrogen; and alkyl; and

and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO $_2$ R 9 ; -SO $_3$ R 9 ; -CO $_2$ R 9 ; and -CONR 9 R 10 ; or $_1$ 1 and $_2$ 1 together with the carbon atom to which they are attached form a cyclic ring;

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylarylalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoalkyl; alkylaminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclyl; quaternary heterocyclyl; carboxy; carboxyalkyl;

guanidinyl; $-OR^{16}$; $-NR^{9}R^{10}$; $-N^{+}R^{9}R^{10}R^{W}A$; $-SR^{16}$; $-S(O)R^{9}$; $-SO_{2}R^{9}$; $-SO_{2}R^{9}$; $-SO_{2}R^{16}$; $-CO_{2}R^{16}$; $-CO_{2}R^{16}$; $-P^{+}R^{9}R^{10}$; $-P^{+}R^{9}R^{10}R^{11}A^{-}$; $-S^{+}R^{9}R^{10}A^{-}$; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R 13 , R 14 , and R 15 alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoalkyl; alkylaminoalkyl; aminoalkyl; aminoalkyl; aminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+$ R 9 R 10 A $^-$ -; -S-; -SO-; -SO₂-; -S $^+$ R 9 A $^-$ -; -PR 9 -; -P $^+$ R 9 R 10 A $^-$ -; -P(O)R 9 -; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein $R^{\underline{16}}$ and $R^{\underline{17}}$ are independently selected from the group consisting of $R^{\underline{9}}$ and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

R³² is phenyl substituted with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

 $-(C=O)_s$ -alkyl-;

-(C=O)s-alkyl-NH-;

 $-(C=O)_s$ -alkyl-O-;

-(C=O)s-alkyl-(C=O)t; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1; and

one or more R³⁴ radicals are independently selected from the group consisting of R³², hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R¹³; -SO3R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR 13R¹⁴; -NR¹³NR¹⁴R¹⁵; -OR¹⁸; -OR¹⁸; -S(O)nNR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R 15A⁻; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R³⁴ alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; $\underline{OR^{16}}; -NR^{9}\underline{R^{10}}; -N^{+}\underline{R^{9}}\underline{R^{10}}\underline{R^{w}}\underline{A^{-}}; -SR^{16}; -S(O)R^{9}; -SO_{2}R^{9}; -SO_{3}R^{16}; -CO_{2}R^{16}; -CONR^{9}\underline{R^{10}}; -P^{+}\underline{R^{9}}\underline{R^{10}}\underline{R^{10}}; -P^{+}\underline{R^{9}}\underline{R^{10}}\underline{R^{10}}\underline{R^{10}}, -P^{+}\underline{R^{9}}\underline{R^{10}}\underline{R^{10}}\underline{R^{10}}, -P^{+}\underline{R^{9}}\underline{R^{10}}\underline{R^{10}}\underline{R^{10}}, -P^{+}\underline{R^{9}}\underline{R^{10}}\underline{R^{10}}\underline{R^{10}}, -P^{+}\underline{R^{9}}\underline{R^{10}}\underline{R^{10}}\underline{R^{10}}, -P^{+}\underline{R^{9}}\underline{R^{10}}\underline{R^{10}}\underline{R^{10}}, -P^{+}\underline{R^{9}}\underline{R^{10}}\underline{R^{10}}\underline{R^{10}}, -P^{+}\underline{R^{9}}\underline{R^{10}}\underline{R^{10}}, -P^{+}\underline{R^{10}}\underline{R^{10}}, -P^{+}\underline{R^{$

wherein the R^{34} quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -PR 13 R 14 ; -PR 13 R 14 R 15 A $^{-1}$; and carbohydrate residue; and

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR 13 -; -N $^+$ R 13 R 14 A-; -S-; -SO-; -SO2-; -S $^+$ R 13 A-; -PR 13 -; -P(O)R 13 -; -PR 13 R 14 : -P $^+$ R 13 R 14 A-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypether; or polyalkyl; wherein said phenylene; amino acid residue;

VIIB

peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+$ R 9 R 10 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 9 A $^-$ -; -PR 9 -; -P $^+$ R 9 R 10 A $^-$ -; or -P(O)R 9 -; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R^{18} alkyl; alkenyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -SO2R⁹; -SO2R⁹; -SO2R⁹; -CO2R⁹; -CONR⁹R¹⁰; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -PR⁹R¹⁰; -PR⁹R¹⁰; -PR⁹R¹⁰; -PR⁹R¹⁰; -PO(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or a pharmaceutically acceptable salt or solvate thereof.

189-204 (Canceled).

205. (Currently Amended) A compound of claim 163 corresponding to Formula VIIB:

$$(R^{34})_{l}$$
 R^{1C}
 R^{1D}
 R^{2G}
 R^{2H}
 R^{30}

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

 R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and

R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or

 R^{2G} and R^{2H} together with the carbon atom to which they are attached form a C_{3-7} cycloalkyl group; and

R³⁰ and R³¹ are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, -OR⁹, and R³²;

wherein the R^{30} and R^{31} alkyl; cycloalkyl; aryl; heterocyclyl radicals are independently substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}R^{15}$; -CO2R 13 ; -OM; -SO2OM; -SO2NR $^{13}R^{14}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -NR $^{13}C(O)R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}C(O)R^{14}$; -NR $^{13}SO_2R^{14}$; -OC(O)R 13 ; -OC(O)NR $^{13}R^{14}$; -NR $^{13}SOR^{14}$; -NR $^{13}R^{14}R^{15}$, -P(O)R $^{13}R^{14}$; -P+R $^{13}R^{14}R^{15}A^-$; -P(OR $^{13}C(O)R^{14}$; -S+R $^{13}R^{14}A^-$; and -N+R $^{13}R^{14}R^{15}A^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{30} and R^{31} radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of

the R^{30} and R^{31} radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R $^{7}R^{8}A^{-}$; -S-; -SO-; -SO2-; -S $^{+}R^{7}A^{-}$; -PR 7 -; -P(O)R 7 -; -P $^{+}R^{7}R^{8}A^{-}$ -; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl alkylaminoalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\sf R}^{11}$ and ${\sf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarmoniumalkyl alkylaminoalkyl; aminoalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary

heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl alkylaminoalkyl; aminoalkyl; aminoalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR ¹⁶; -NR ⁹R ¹⁰; -N ⁺R ⁹R ¹⁰R ^wA ⁻; -N ⁺R ⁹R ¹¹R ¹²A ⁻; -SR ¹⁶; -S(O)R ⁹; -SO2R ⁹; -SO3R ¹⁶; -CO2R ¹⁶; -CONR ⁹R ¹⁰; -SO2NR ⁹R ¹⁰; -PO(OR ¹⁶)OR ¹⁷; -PR ⁹R ¹⁰; -P ⁺R ⁹R ¹⁰R ¹¹A ⁻; -S ⁺R ⁹R ¹⁰A ⁻; and carbohydrate residue;

wherein R¹³, R¹⁴, and R¹⁵ alkyl, polyether, aryl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, quaternary heterocyclyalkyl, alkylheterocyclyalkyl, and alkylaminoalkyl optionally may be substituted with N⁺R⁹R¹¹R¹²A⁻; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminoalkyl; alkylaminoalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹ R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

R³² is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R³³ or -O-X-R³³ and wherein:

X is selected from the group consisting of:

-(C=O)s-alkyl-NH-;

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

s and t are independently 0 or 1; and

one or more R³⁴ radicals are independently selected from the group consisting of R³², hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R¹³; -SO3R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)nNR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -PCO)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^{34} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 -PR 9 R 10 ; -P $^+$ R 9 R 11 R 12 A $^-$; -S $^+$ R 9 R 10 A $^-$; and carbohydrate residue; and

wherein the R^{34} quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM;

-COR¹³; -P(O)R¹³R¹⁴; -P¹³R¹⁴ -PR¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; -N⁺R¹³R¹⁴R¹⁵A⁻; and carbohydrate residue; and

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR¹³-; -P(O)R¹³-; -PR¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; wherein said phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CO₂R⁹; -CONR⁹R¹⁰; -SO₂OM; -SO₂NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R³⁰, R³¹ and R³⁴ is R³².

206. (original) A compound of Claim 205 wherein R^{32} is phenyl substituted with - N(H)-X- R^{33} or -O-X- R^{33} wherein:

X is selected from the group consisting of:

Samuel J. TREMONT *et al.*U.S. Patent Application Serial No. 09/912,233

 R_{33} is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

207. (original) A compound of Claim 206 wherein R³² is phenyl substituted at the para-position with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

R³³ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

208. (original) A compound of Claim 206 wherein R^{32} is phenyl substituted at the meta-position with -N(H)-X- R^{33} or -O-X- R^{33} wherein:

X is selected from the group consisting of:

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

209. (original) A compound of claim 206 wherein:

 R^{30} is R^{32} ; and

R³¹ is selected from the group consisting of hydrogen and alkyl.

210. (original) A compound of claim 206 wherein:

 R^{30} is selected from the group consisting of hydrogen and alkyl; and R^{31} is R^{32} .

211. (Currently Amended) A compound of claim 206 wherein R³² is phenyl substituted with a radical selected from the group consisting of:

212. (original) A compound of claim 206 wherein:

i is 2;

 R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen and alkyl.

213. (original) A compound of claim 206 wherein:

i is 2;

 R^{1C} and R^{1D} are hydrogen; and

R^{2G} and R^{2H} are independently selected from alkyl.

214. (original) A compound of claim 206 wherein:

i is 2;

R^{1C} and R^{1D} are hydrogen; and

 R^{2G} and R^{2H} are independently selected from ethyl, propyl and butyl.

215. (original) A compound of claim 206 wherein i is 1 or 2.

- 216. (original) A compound of claim 206 wherein i is 2.
- 217. (original) A compound of claim 206 wherein R^{1C} and R^{1D} are hydrogen.
- 218. (original) A compound of claim 206 wherein R^{2G} and R^{2H} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 219. (original) A compound of claim 206 wherein R^{2G} and R^{2H} are independently selected from the group consisting C_{1-6} alkyl.
 - 220. (original) A compound of claim 206 wherein R^{2G} and R^{2H} are the same alkyl.
 - 221. (original) A compound of claim 206 wherein R^{2G} and R^{2H} are each n-butyl.
- 222. (original) A compound of claim 206 wherein one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl.
- 223. (original) A compound of claim 206 wherein one or more R³⁴ are independently selected from methoxy and dimethylamino.
 - 224. (original) A compound of claim 206 wherein

i is 1 or 2;

R^{1C} and R^{1D} are hydrogen:

R^{2G} and R^{2H} are n-butyl; and

one or more R³⁴ are independently selected from methoxy and dimethylamino.

225. (original) A compound of claim 206 wherein i is 1 or 2;

 R^{1C} and R^{1D} are hydrogen; one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl; and one or more R^{34} are independently selected from methoxy and dimethylamino.

226. (Previously amended) A compound of Formula VIII:

$$R^{36}$$
 R^{35}
 R^{37}
VIII

wherein:

 R^{2I} and R^{2J} are independently selected from $C_{1\text{-}6}$ alkyl; and

R³⁵ is selected from the group consisting of halogen and R³⁸;

R³⁶ is selected from the group consisting of hydroxy, alkoxy, and R³⁸;

wherein R³⁸ is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R³⁹ or -O-X-R³⁹ and wherein:

X is selected from the group consisting of:

-(C=O)_u-alkyl-;

-(C=O)_u-alkyl-NH-;

-(C=O)_u-alkyl-O-;

-(C=O)_u-alkyl-(C=O)_v; and

a covalent bond; and

R³⁹ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and u and v are independently 0 or 1; and

Samuel J. TREMONT *et al.*U.S. Patent Application Serial No. 09/912,233

 R^{37} is unsubstituted phenyl or R^{38} ; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R^{35} , R^{36} and R^{37} is R^{38} .

227. (original) A compound of Claim 226 wherein R^{38} is phenyl substituted with - N(H)-X- R^{39} or -O-X- R^{39} wherein:

X is selected from the group consisting of:

R³⁹ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

u and v are independently 0 or 1.

228. (original) A compound of Claim 227 wherein R³⁸ is phenyl substituted at the para-position with -N(H)-X-R³⁹ or -O-X-R³⁹ wherein:

X is selected from the group consisting of:

R³⁹ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

u and v are independently 0 or 1.

Samuel J. TREMONT *et al.*U.S. Patent Application Serial No. 09/912,233

229. (original) A compound of Claim 227 wherein R³⁸ is phenyl substituted at the meta-position with -N(H)-X-R³⁹ or -O-X-R³⁹ wherein:

X is selected from the group consisting of:

-(C=O)_u-alkyl-NH-;

-(C=O)_u-alkyl-O-;

-(C=O) $_u$ -alkyl-(C=O) $_v$; and

a covalent bond; and

R³⁹ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

u and v are independently 0 or 1.

230. (Currently Amended) A compound of claim 227 wherein R³⁸ is phenyl substituted with a radical selected from the group consisting of:

231. (original) A compound of claim 227 wherein:

R²¹ and R^{2J} are independently selected from ethyl and n-butyl;

R³⁵ is chloro; and

R³⁶ is selected from the group consisting of hydroxy and methoxy.

232. (original) A compound of claim 227 wherein:

R^{2I} and R^{2J} are n-butyl;

R³⁵ is chloro; and

R³⁶ is selected from the group consisting of hydroxy and methoxy.

233. (original) A compound of claim 227 wherein:

one of R^{2I} and R^{2J} is ethyl and the other of R^{2I} and R^{2J} is n-butyl;

R³⁵ is chloro; and

R³⁶ is selected from the group consisting of hydroxy and methoxy.

234. (original) A compound of claim 227 wherein R^{2I} and R^{2J} are the same alkyl.

- 235. (original) A compound of claim 227 wherein R²¹ and R^{2J} are each n-butyl.
- 236. (original) A compound of claim 227 wherein one of R^{2l} and R^{2l} is ethyl and the other of R^{2l} and R^{2l} is n-butyl.
 - 237. (Currently Amended) A compound of Formula IX:

wherein:

R^{2K} and R^{2L} are independently selected from C₁₋₆ alkyl; and

 R^{40} and R^{41} are independently selected from the group consisting of hydrogen, alkoxy, and R^{43} ;

wherein R⁴³ is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R⁴⁴ or -O-X-R⁴⁴ and wherein:

X is selected from the group consisting of:

-(C=O)_a-alkyl-;

-(C=O)a-alkyl-NH-;

-(C=O)_a-alkyl-O-;

-(C=O)a-alkyl-(C=O)b; and

a covalent bond; and

a and b are independently 0 or 1; and

R⁴⁴ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

Samuel J. TREMONT *et al*. U.S. Patent Application Serial No. 09/912,233

 R^{42} is unsubstituted phenyl or R^{43} ; or a pharmaceutically acceptable salt or solvate thereof; provided that at least one of R^{40} , R^{41} and R^{42} is R^{43} .

238. (original) A compound of Claim 237 wherein R^{43} is phenyl substituted with - N(H)-X- R^{44} or -O-X- R^{44} wherein:

X is selected from the group consisting of:

 R^{44} is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

a and b are independently 0 or 1.

239. (original) A compound of Claim 238 wherein R⁴³ is phenyl substituted at the para-position with -N(H)-X-R⁴⁴ or -O-X-R⁴⁴ wherein:

X is selected from the group consisting of:

 $\ensuremath{R^{44}}$ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

a and b are independently 0 or 1.

240. (original) A compound of Claim 238 wherein R⁴³ is phenyl substituted at the meta-position with -N(H)-X-R⁴⁴ or -O-X-R⁴⁴ wherein:

X is selected from the group consisting of:

-(C=O)
$$_a$$
-alkyl-;

a covalent bond; and

R⁴⁴ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

a and b are independently 0 or 1.

241. (Currently Amended) A compound of claim 238 wherein R⁴³ is phenyl substituted with a radical selected from the group consisting of:

Page 159 of 188

242. (original) A compound of claim 238 wherein:

 R^{2K} and R^{2L} are independently selected from ethyl and n-butyl; and R^{40} and R^{41} are independently selected from hydrogen and methoxy.

243. (original) A compound of claim 238 wherein:

R^{2K} and R^{2L} are n-butyl; and

R⁴⁰ and R⁴¹ are independently selected from hydrogen and methoxy.

- 244. (original) A compound of claim 238 wherein: one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl; and R^{40} and R^{41} are independently selected from hydrogen and methoxy.
- 245. (original) A compound of claim 238 wherein R^{2K} and R^{2L} are the same alkyl.
- 246. (original) A compound of claim 238 wherein R^{2K} and R^{2L} are each n-butyl.

- 247. (original) A compound of claim 238 wherein one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl.
 - 248. (original) A compound of claim 238 wherein: one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl; and R^{40} and R^{41} are hydrogen.
 - 249. (original) A compound of claim 238 wherein: one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl; and R^{40} and R^{41} are methoxy.
- 250. (Previously amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula I according to any one of claims 1 to 120, or a pharmaceutically acceptable salt or solvate thereof.
- 251. (Previously amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula III according to any one of claims 121 to 140, or a pharmaceutically acceptable salt or solvate thereof.
- 252. (Previously amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula V according to any one of claims 141 to 162, or a pharmaceutically acceptable salt or solvate thereof.
- 253. (Currently Amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a

compound of Formula VII according to any one of claims 163-167, 188, and 205 to 225, or a pharmaceutically acceptable salt or solvate thereof.

- 254. (Previously amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula VIII according to any one of claims 226 to 236, or a pharmaceutically acceptable salt or solvate thereof.
- 255. (Currently Amended) A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula IX according to any one of claims 237 to 250 249, or a pharmaceutically acceptable salt or solvate thereof.
- 256. (Currently Amended) The method of claim 251 <u>250</u> wherein the hyperlipidemic condition is atherosclerosis.
- 257. (Previously amended) A pharmaceutical composition comprising a compound of Formula I according to any one of claims 1 to 120 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
- 258. (Previously amended) A pharmaceutical composition comprising a compound of Formula III according to any one of claims 121 to 140 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
- 259. (Previously amended) A pharmaceutical composition comprising a compound of Formula V according to any one of claims 141 to 162 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.

- 260. (Previously amended) A pharmaceutical composition comprising a compound of Formula VII according to any one of claims 163-167, 188, and 205 to 225 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
- 261. (Previously amended) A pharmaceutical composition comprising a compound of Formula VIII according to any one of claims 226 to 236 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
- 262. (Currently Amended) A pharmaceutical composition comprising a compound of Formula IX according to any one of claims 237 to 250 249 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier.
- 263. (New) A compound of claim 205 wherein at least one of R³⁰, R³¹, and R³⁴ is phenyl substituted with a radical selected from the group consisting of:

264. (New) A compound of claim 226 wherein at least one of R³⁰, R³¹, and R³⁴ is phenyl substituted with a radical selected from the group consisting of:

265. (New) A compound of claim 237 wherein at least one of R^{30} , R^{31} , and R^{34} is phenyl substituted with a radical selected from the group consisting of: