1

Assignment 3 9th Class Stats

Gunjit Mittal (AI21BTECH11011)

Download all python codes from

https://github.com/GunjitMittal/Assignment3/tree/main/Assignment3/codes

Download all latex codes from

https://github.com/GunjitMittal/Assignment3/tree/main/Assignment3

1 QUESTION

Three coins were tossed 30 times simultaneously. Each time the number of heads occurring was noted down as follows:

0	1	2	2	1	2	3	1	3	0
1	3	1	1	2	2	0	1	2	1
3	0	0	1	1	2	3	2	2	0
				TABLE	E 1.1				

Prepare a frequency distribution table for the data given above.

2 SOLUTION

Solution: Counting, we can see that in 30 throws we got 6 throws with no heads, 10 throws with 1 head, 9 throws with 2 heads and 5 throws with 3 heads

No. of Heads	Frequency
0	6
1	10
2	9
3	5
Total	30
	TABLE 2.1

Let the random variable $X \in \{0, 1, 2, 3\}$ denote the number of heads in the coin-tossing experiment. Now,

$$\Pr(X = i) = \frac{n(X = i)}{\sum_{i=0}^{3} n(X = i)}$$
 (2.1)

where $i \in \{0, 1, 2, 3\}$ and n(X = i) is the frequency of getting i heads. Also,

Number of times 3 coins were tossed = 30 (2.2)

$$\implies \sum_{i=0}^{3} n(X=i) = 30 \tag{2.3}$$

We have,

$$\Pr(X=0) = \frac{6}{30} = 0.20 \tag{2.4}$$

$$\Pr(X=1) = \frac{10}{30} = 0.33 \tag{2.5}$$

$$\Pr(X=2) = \frac{9}{30} = 0.30 \tag{2.6}$$

$$\Pr(X=3) = \frac{5}{30} = 0.17 \tag{2.7}$$

Now considering fair coins: Let probability of

Fig. 2.1. Plot of PMF using above data

getting a head be a success and equal to p and probability of getting a tail be a failure and equal to q where p + q = 1. We can express this as a binomial distribution

$$\sum_{i=0}^{n} \Pr(X=i) = \sum_{i=0}^{n} {^{n}C_{i}(\mathbf{p})^{i} (1-\mathbf{p})^{n-i}}$$
 (2.8)

where n = 3 for 3 coins. Therefore,

$$\Pr(X = i) = {}^{3}C_{i}(\mathbf{p})^{i}(\mathbf{q})^{3-i}$$
 (2.9)

For fair coins,

$$p = \frac{1}{2} (2.10)$$

$$\therefore q = \frac{1}{2} \tag{2.11}$$

Therefore,

$$\Pr(X=0) = {}^{3}C_{0} \left(\frac{1}{2}\right)^{0} \left(\frac{1}{2}\right)^{3} = \frac{1}{8} \qquad (2.12)$$

$$\Pr(X=1) = {}^{3}C_{1} \left(\frac{1}{2}\right)^{1} \left(\frac{1}{2}\right)^{2} = \frac{3}{8} \qquad (2.13)$$

$$\Pr(X=2) = {}^{3}C_{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{1} = \frac{3}{8} \qquad (2.14)$$

$$\Pr(X=3) = {}^{3}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{0} = \frac{1}{8} \qquad (2.15)$$

Fig. 2.2. Comparison of theoretical and practical PMF plots