ECON 21020, PSet 6: Solutions

Carlos Soto, University of Chicago

XX-XX-2024

(out of 38p) PART I: Heteroschedasticity and the Linear Probability Model

(out of 6p) Q1: Proof of Statements (a)-(g) in Claim 1

b)
$$E[D_i|x] = P(D_i = 1|x) = P(\beta_0 + \beta + 1x \ge u_i|x) = \beta_0 + \beta_1 x$$
 (2)

Since
$$u_i \sim U[0, 1] \text{ and } \beta_0 + \beta_1 x \in [0, 1]$$
 (3)

c)
$$\sigma^2(x) = E[D_i|x] - E[D_i|x]^2$$
 (4)

$$= (\beta_0 + \beta_1 x) - (\beta_0 + \beta_1 x)^2 \tag{5}$$

$$= \beta_0(1 - \beta_0) + \beta_1(1 - 2\beta_0)x - \beta_1^2 x^2 \tag{6}$$

(7)

d) let
$$\epsilon_i = D_i - E[D_i|x]$$
 (8)

then
$$\epsilon_i = D_i - \beta_0 - \beta_1 x_i$$
 (9)

and
$$D_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 (10)

$$E[\epsilon_i|x] = E[D_i - E[D_i|x]|x] \tag{12}$$

$$= E[D_i|x] - E[D_i|x] = 0 (13)$$

(14)

(11)

$$Var[\epsilon_i] = E[\epsilon_i^2] - E[\epsilon_i]^2 \tag{15}$$

$$= E[(D_i - E[D_i|x])^2|x]$$
(16)

By def. this is
$$= Var[D_i|x]$$
 (17)

(18)

e) let
$$E[\hat{\beta}_1] = E[\frac{\sum_{i=1}^n (x_i - \bar{x})(D_i - \bar{D})}{\sum_{i=1}^n (x_i - \bar{x})^2}]$$
 (19)

Focusing on numerator
$$=\sum_{i=1}^{n}(x_i-\bar{x})E[D_i-\bar{D}]$$
 (20)

$$= \sum_{i=1}^{n} (x_i - \bar{x})(\beta_0 + \beta_1 x_i - \beta_0 - \beta_1 \bar{x})$$
 (21)

$$= \sum_{i=1}^{n} (x_i - \bar{x})\beta_1(x_i - \bar{x})$$
 (22)

$$= \beta_1 \sum_{i=1}^{n} (x_i - \bar{x})^2 \tag{23}$$

Brining back the denominator we get
$$= \beta_1 \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
 (24)

$$= \beta_1 \tag{25}$$
 (26)

f) Since LR.5 fails because $Var[\epsilon_i|x] = \sigma^2(x)$ the OLS estimators are not BLUE, specifically because they don't have the minimum va (27)

(out of 5p) Q2: Deep dive into the Asymptotic Properties of FWLS Estimator

(out of 2p) Q2.a

$$E[D_i * | x] = w_i E[D_i | x] = \frac{1}{\sqrt{\sigma^2(x)(\beta_0 + \beta_1 x_1 + \beta_2 x_2)}} mm$$
(28)

(out of 3p) Q2.b

The only difference between $\hat{\beta}^{FWLS}$ and $\hat{\beta}^{WLS}$ is the use of the estimator $\hat{\sigma}^2$ instead of the true value of σ^2 . Since the estimator $\hat{\sigma}^2$ converges to the true value of σ^2 as the same size converges to infinity, therefore it makes sense that $\hat{\beta}^{FWLS}$ would converge to $\hat{\beta}^{WLS}$ and therefore as the same size converges to the mean of $\hat{\beta}^{FWLS}$ converges to the mean of $\hat{\beta}^{WLS}$ and variance of $\hat{\beta}^{FWLS}$.

([] out of 8p) Q3: Relationship b/w Structural and Reduced-form Parameters

Reduced-form Parameter	Sign	Reason for Sign
λ_0	+	Reason for the sign of Parameter 1
λ_1	-	Reason for the sign of Parameter 2
λ_2	+	Reason for the sign of Parameter 3
λ_3	-	Reason for the sign of Parameter 4
λ_4	+	Reason for the sign of Parameter 5
λ_5	-	Reason for the sign of Parameter 6
λ_6	+	Reason for the sign of Parameter 7
λ_7	+	Reason for the sign of Parameter 7

Table 1: The Reduced-form Parameters of the Labor Force Participation Decision of a Married Woman

([] out of 4p) Q4: A Linear-in-parameter Model for the LFP decision of a married female
([] out of 2p) Q4.a
$P(D_{i} = 1 z) = P(\lambda_{0} + \lambda_{1}e + \lambda_{2}x + \lambda_{3}x^{2} + \lambda_{4}k^{\geq 6} + \lambda_{5}k^{< 6} + \lambda_{6}a + \lambda_{7}m > u) = \lambda_{0} + \lambda_{1}e + \lambda_{2}x + \lambda_{3}x^{2} + \lambda_{4}k^{\geq 6} + \lambda_{5}k^{< 6} + \lambda_{6}a + \lambda_{7}m > u) $ (29)
([] out of 2p) Q4.b
Since both β_0 and $\alpha_{1,0}$ influence labor force participation but their effects cannot be measured independently of eachother, are they not spereately identified. This is because β_0 represents the baseline wage for women regarless of the eVars and $\alpha_{1,0}$ represents the baseline enjoyment level f leasure regarless of the eVars. Since there are no data points to find the change in participation from changes in β_0 or $\alpha_{1,0}$, they are not separately identified.
([] out of 2p) Q5: Estimate by OLS a LPM for a Married Female's LFP
Script and Output
Commentary
([] out of 7p) Q6: Estimate by FWLS a LPM for a Married Female's LFP
Script and Output
([] out of 2p) Q7: Verify FWLS Estimate
Script and Output
([] out of 2p) Q8: Compare OLS and FWLS Estimates
Script and Output
Commentary
([] out of 2n) Ou. Complete Statements
([] out of 2p) Q9: Complete Statements
Commentary

([] out of 21p) PART II: Three Distributions derived from the tribution	Normal Dis-
([] out of 5p) Q10: The Normal Distribution	
a) $Y \sim N(a + b\mu, b^2\sigma^2)$	(30)
b) $Y \sim N(\frac{\mu}{a}, \frac{\sigma^2}{a^2})$	(31)
c) $Y \sim N(a + b\mu_1 + c\mu_2, b^2\sigma^2 + c^2\sigma^2 + 2bc\sigma_{1,2})$	(32)
d) $Y \sim N(\mu, \frac{\sigma^2}{n})$	(33)
e) $Y \sim N(0, 1)$	(34)
	(35)
([] out of 4p) Q11: Distributions Derived from the Normal Distribution	
a) $Y \sim \sigma_2 \chi_1^2$	(36)
b) $Y \sim \sigma_1^2 \chi_1^2 + \sigma_2^2 \chi_1^2$	(37)
c) $Y \sim t_q d$) $Y \sim F_{(1,1)}$	(38)
([] out of 4p) Q12: The Standardized Sample Average for a Normal RS Hast Distribution We know $\frac{\bar{X} - \mu}{\sqrt{\frac{S^2}{n}}} \sim N(0, 1)$ and $\frac{S^2}{\sigma^2}$ has chi - squared distribution with n - 1 degrees of freedom and since \bar{X} and	dS^2 and independent, $rac{ar{X}}{A}$
V ···	(39)
([] out of 1p) Q13: Support of the Chi-squared Distribution	
Script and output	
Commentary	
([] out of 1p) Q14: Practice with lower.tail argument	
Script and output	
Commentary	
([] out of 4p) Q15: Student's t Distribution Converges to Standard Normal	
Script and output	
Commentary	

(] out of 2p) Q16 Rel	ationship between F and Student t Distributio	ns
Script and output		
Commentary		
-		
([] out of 41p) PA	RT III: Hypothesis Testing in the MLI	RM
([] out of 0p) Q17: Lo	ad data and estimate log wage model	
Script and output		
-		
([] out of 12p) Q18: H	$H_0: \beta_{\texttt{exper}} = 0 \ \mathbf{versus} \ H_0: \beta_{\texttt{exper}} \neq 0$	
([] out of 1p) Q18.a		
We test that the percer experience is zero.	ntage change in hourly wage caused by an extra	ra year of labor market
([] out of 3p) Q18.b		
-		
([] out of 1p) Q18.c		
Script and output		
-		
([] out of 1p) Q18.d		
Script and output		
-		
([] out of 2p) Q18.e Critic	al Value Approach	
Script and Output		
-		
([] out of 2p) Q18.f P-valu	e Approach	
Script and Output		
_		

([] out of 2p) Q19: Definition of critical value and p-value	
([] out of 1p) Q19.a	
([] out of 1p) Q19.b	
([] out of 2p) Q20: Test $H_0: \beta_{\tt exper} = 0.007 \ {\tt versus} \ H_0: \beta_{\tt exper} \neq 0.007 \ {\tt with}$	PV Approach
([] out of 1p) Q20.a	
Script and output	
([] out of 1p) Q20.b	
Script and output	
([] out of 6p) Q21: Use car::linearHypothesis() to test simple linear	hypotheses
([] out of 4p) Q21.a Test $H_0: \beta_{\texttt{exper}} = 0$ versus $H_0: \beta_{\texttt{exper}} \neq 0$	
([] out of 2p) Q21.a.i Use Syntax A of Function car::linearHypothesis()	
Script and output	
Commentary	
([] out of 2p) Q21.a.ii Syntax B of function car::linearHypothesis()	
Script and output	
Commentary	
([] out of 2p) Q21.b Test $H_0: \beta_{\texttt{exper}} = 0.007$ versus $H_0: \beta_{\texttt{exper}} \neq 0.007$	
Script and output	
([] out of 8p) Q22 Test One-sided Hypothesis $H_0: \beta_{\tt exper} \leq 0$ versus $H_1:$ ([] out of 1p) Q22.a	: $\beta_{\texttt{exper}} > 0$

([] out of 2p) Q22.b	
([] out of 3p) Q22.c	
Script and output	
Commentary	
-	
([] out of 2p) Q22.d	
Script and output	
Commentary	
-	
([] out of 11p) Q23 Te	est $H_0: \beta_{\texttt{exper}} = \beta_{\texttt{tenure}} \ \mathbf{versus} \ H_1: \beta_{\texttt{exper}} \neq \beta_{\texttt{tenure}}$
([] out of 1p) Q23.a Interp	pretation of the Hypothesis
([] out of 2p) Q23.b Run (the test using car::linearHypothesis()
Script and output	
Commentary	
([] out of 4p) Q23.c Run t	he test using the Reparametrization Approach
Script and output	
Commentary	
([] out of 4p) Q23.d Run (the test using the Model Reformulation Approach
Script and output	
Commentary	