Examen pour le cours de M. Prandi

Il faudra envoyer votre copie à dario.prandi@centralesupelec.fr avant le

mercredi 30 juin à 23h59 (heure Béninoise)

Le travail doit être mené individuellement. La copie doit être rédigé dans une calligraphie compréhensible, et bien numérisé.

1 Exercices du cours

- 1. Est-ce que l'espace des fonctions uniformément continues et bornés, avec la norme $\|\cdot\|_{\infty}$ est complet ? Le prouver ou donner un contre-exemple.
- 2. Soit $u(x) = e^{|x|}$. Montrer que $T_u \in \mathcal{D}'(\mathbb{R})$ mais que $T_u \notin \mathcal{S}'(\mathbb{R})$. Qu'est-ce qu'on peux en dire par rapport à $\mathcal{E}'(\mathbb{R})$?
- 3. Soit $\varphi \in \mathcal{S}(\mathbb{R})$ et posons $\varphi_n(x) := \varphi(x/n), n \in \mathbb{N}$. Montrer que $\{\varphi_n\}_n$ est une suite de $\mathcal{S}(\mathbb{R})$ qui n'est pas convergente.
- 4. Montrer que si P(D) est un opérateur différentiel dont le symbole principale ne s'annule pas sauf pour $\xi = 0$, alors P(D) est elliptique.

2 Convolutions

Definition 1. Soit $\Omega \subset \mathbb{R}^d$. Une suite $\{u_k\}_k \subset L^1_{loc}(\Omega)$ est dite "à forme de δ " pour $a \in \Omega$, si

- 1. $u_k(x) \ge 0$ pour tout $x \in \Omega$ et $k \in \mathbb{N}$;
- 2. $\int_{\Omega} u_k(x) dx = 1$ pour tout $k \in \mathbb{N}$;
- 3. pour tout voisinages $U \subset \Omega$ de a on a

$$\lim_{k \to +\infty} \int_{\Omega \setminus U} u_k(x) \, dx = 0.$$

On vous demande de:

- 1. Montrer que toute approximation de l'identité est une suite à forme de δ dans l'origine.
- 2. Montrer que la suite $u_k : \mathbb{R}^d \to \mathbb{R}$ définie par

$$u_k(x) := \begin{cases} c_k (1 - |x|^2)^k & \text{si } |x| \le 1, \\ 0 & \text{sinon,} \end{cases}$$
 (1)

est à forme de δ en 0 pour une choix approprié des constants $c_k > 0$.

- 3. Soit $\Omega \subset \mathbb{R}^d$ un ensemble compact. Soit $\{v_k\}_k \subset C^0(\Omega)$ une suite à forme de δ en $a \in \Omega$. Montrer que pour tout $f \in C^0(\Omega)$ on a que $v_k \star f \to f(a)$, uniformement sur Ω , quand $k \to +\infty$.
- 4. Supposons que une fonction $\varphi : \mathbb{R}^d \to \mathbb{R}$ est polynomiale dans la boule $B_R = \{x \in \mathbb{R}^d \mid |x| \leq R\}$, et $\varphi(x) = 0$ si |x| > R. Montrer que si $\psi \in L^1(\mathbb{R}^d)$ est telle que supp $\psi \subset B_r$, 0 < r < R, alors supp $(\varphi \star \psi) \subset B_{R+r}$ et que $\varphi \star \psi$ est polynomiale sur B_{R-r} .

3 Espaces de Sobolev

Notre but est de prouver le résultat suivant.

Proposition 1. Soit $\Omega = (0,1) \subset \mathbb{R}$ et considérons $u \in W^{1,p}(I)$, $p \in [1,+\infty)$. Alors, u' = 0 presque partout sur $E = \{x \in I \mid u(x) = 0\}$.

Soit $G \in C^1(\mathbb{R})$ telle que, pour une constante C > 0 et pour tout $t \in \mathbb{R}$ on a

$$|G(t)| \le 1, \qquad |G'(t)| \le C.$$

De plus, on suppose que G(t) = 1 si $t \ge 1$, G(t) = -1 si $t \le -1$ et G(t) = t si $|t| \le 1/2$. Posons,

$$v_n(x) := \frac{1}{n}G(nu(x)), \quad \forall x \in I.$$

- 1. Vérifier que $||v_n||_{\infty} \to 0$ pour $n \to +\infty$.
- 2. Montrer que $v_n \in W^{1,p}(I)$ et calculer v'_n .
- 3. En déduire que $|v'_n|$ est borné par une fonction de $L^p(I)$ qui ne dépend pas de n.
- 4. Montrer que $v'_n(x) \to f(x)$ p.p. sur I, pour $n \to +\infty$, et identifier f. (On suggère de considérer les cas $x \in E$ et $x \notin E$ séparément).
- 5. Déduire que $v'_n \to f$ en $L^p(I)$.
- 6. Prouver que f = 0 p.p. sur I et en tirer que u' = 0 p.p. sur E.

4 Solution fondamentale

Considérons l'equation de la chaleur sur \mathbb{R}^d :

$$\partial_t u = \Delta u, \qquad u|t=0=u_0.$$

Dans cet exercice on va déterminer le noyau de la chaleur, c'est-à-dire, la solution fondamentale de l'opérateur $\partial_t - \Delta$ sur $\mathcal{D}(\mathbb{R} \times \mathbb{R}^d)$

1. Montrer que, si u_0 est assez régulier qu'on veut, pour tout t > 0 on a

$$u(t,x) = (k_t \star u_0)(x), \qquad k_t(x) = (4\pi t)^{-d/2} e^{-\frac{|x|^2}{4t}}.$$

2. Posons $k: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ définie par

$$k(t,x) := \begin{cases} k_t(x) & \text{si t} > 0, \\ 0 & \text{sinon.} \end{cases}$$
 (2)

Justifier que $T_k \in \mathcal{D}'(\mathbb{R} \times \mathbb{R}^d)$.

- 3. Pour $\varepsilon > 0$ soit $K_{\varepsilon}(t,\varepsilon) = k(t,x)$ si $t > \varepsilon$ et $K_{\varepsilon}(t,x) = 0$ sinon. Montrer que $T_{K_{\varepsilon}} \to T_k$ en $\mathcal{D}'(\mathbb{R} \times \mathbb{R}^d)$ pour $\varepsilon \downarrow 0$.
- 4. En utilisant une intégration par parties et le fait que k(t,x)=k(t,-x), montrer que

$$\langle (\partial_t - \Delta) T_{K_{\varepsilon}}, \varphi \rangle = [k(\varepsilon, \cdot) \star \varphi(\varepsilon, \cdot)] (0), \quad \forall \varphi \in \mathcal{D}(\mathbb{R} \times \mathbb{R}^d).$$

Ici la convolution est seulement par rapport à $x \in \mathbb{R}^d$.

- 5. En déduire que $(\partial_t \Delta)T_{K_{\varepsilon}} \to \delta_0$ dans $\mathcal{D}'(\mathbb{R} \times \mathbb{R}^d)$.
- 6. Conclure que $(\partial_t \Delta)k = \delta_0$.