«TITLE»

Daniel Halmrast

March 22, 2018

PROBLEM 1

Show that hyperbolic space H^n is complete.

Proof. We will first show that H^n is homogeneous, and then appeal to the next problem to conclude H^n is complete.

To see that H^n is homogeneous, we consider two families of isometries. For simplicity, we will write points in H^n as (x,y) with $x \in \mathbb{R}^{n-1}$ the first n-1 coordinates, and $y \in \mathbb{R}$ the last coordinate. The first isometry we consider is

$$T_a: H^n \to H^n$$

 $(x,y) \mapsto (x+a,y)$

for any $a \in \mathbb{R}^{n-1}$. To see this is an isometry, we just need to compute dT_a and show it preserves the metric. So, let $v \in T_pH^n$ for some $p \in H^n$, $p = (x_p, y_p)$, and take $\gamma(t) = p + vt = (x_p + v_x t, y_p + v_y t)$ a curve in H^n . Note that $\gamma'(0) = v$. Now, we have that

$$dT_a(v) = dT_a(\gamma'(0))$$

$$= \partial_t T_a(\gamma(t))|_{t=0}$$

$$= \partial_t (x_p + v_x t + a, y_p + v_y t)|_{t=0}$$

$$= (v_x, v_y) = v$$

Thus, $dT_a(v) = v$. Furthermore, since the metric at (x + a, y) is the same as at (x, y) (since the scaling factor only depends on y) we have that for $u, v \in T_pM$,

$$g(u,v)_{(x,y)} = g(dT_a u, dT_a v)_{(x+a,y)}$$

and thus T_a is an isometry (I suppose you'd have to check that T_a is a diffeomorphism as well, but this is obvious. Clearly T_a is smooth, and it has a smooth inverse T_{-a}).

Secondly, we consider the isometry

$$M_{\alpha}: H^n \to H^n$$

 $(x,y) \mapsto (\alpha x, \alpha y)$

for $\alpha>0$. This maps H^n into H^n , since it keeps the y coordinate positive. Furthermore, it is a diffeomorphism (it is clearly smooth, and $M_{\frac{1}{\alpha}}$ acts as an inverse). I also claim it is an isometry. Again letting $\gamma=(x_p+v_x,y_p+v_y)$ for $(v_x,v_y)\in T_{(x,y)}H^n$ we note that

$$dM_{\alpha}(v) = dM_{\alpha}(\gamma'(0))$$

$$= \partial_t M_{\alpha}(\gamma(t))|_{t=0}$$

$$= \partial_t (\alpha(x_p + v_x), \alpha(y_p + v_y))|_{t=0}$$

$$= \alpha V$$

Finally, we compute the metric

$$g(u,v)(x,y) = g_{ab}u^a v^b$$
$$= \frac{1}{v^2} u_b v^b$$

$$g(dM_{\alpha}u, dM_{\alpha}v)_{(\alpha x, \alpha y)} = g_{ab}\alpha u^{a}\alpha v^{b}$$

$$= \frac{1}{(\alpha y)^{2}}\alpha^{2}u_{b}v^{b}$$

$$= \frac{1}{v^{2}}u_{b}v^{b}$$

Where $u_b = \eta_{ab}u^a$ and so u_bv^b is the standard inner product on \mathbb{R}^n . Thus, M_α is an isometry. I assert that the action of these two isometries is transitive. Indeed, given (x, y) and (x', y') in H^n , we construct the isometry as follows. First, apply T_{-x} to map (x, y) to (0, y). Then, apply $M_{\frac{y'}{x}}$ to map (0, y) to (0, y'). Finally, apply $T_{x'}$ to map (0, y') to (x', y').

Thus, for any two points (x, y) and (x', y') in H^n , there is an isometry connecting them. Thus, by the result of the next problem, H^n is complete.

PROBLEM 2

Show that a homogeneous space is complete.

Proof. Let M be a homogeneous manifold. We will show that M is geodesically complete.

Let ε be such that $B_{\varepsilon}(p) \subset M$ is a normal ball at $p \in M$. Since M is homogeneous, this implies that $B_{\varepsilon}(q)$ is a normal ball at $q \in M$ for any other q. To see this, we note that for ϕ the isometry sending p to q,

$$\phi \circ \exp_p \circ d\phi^{-1}$$

defines a diffeomorphism between $B_{\varepsilon}(0) \subset T_q M$ and the image $B_{\varepsilon}(q)$. This is well-defined, since ϕ is an isometry, so $||v|| = ||d\phi^{-1}v||$. Furthermore, we can see that $\exp_q = \phi \circ \exp_p \circ d\phi^{-1}$. Observe that $\gamma(t) = \exp_q(tv)$ is the unique geodesic through q with tangent vector v. However,

$$\tilde{\gamma}(t) = \phi \circ \exp_{n} \circ d\phi^{-1}(tv)$$

has the same properties. Namely $\tilde{\gamma}(0) = \phi(p) = q$, and $\tilde{\gamma}'(0) = d\phi(d\phi^{-1}(v)) = v$. Thus, $\tilde{\gamma}(t) = \gamma(t)$ for all $t \in [0, 1]$, and so \exp_q and $\phi \circ \exp_p \circ d\phi^{-1}$ agree at all points in the normal ball. Thus, $B_{\varepsilon}(q)$ is a normal ball, as desired.

Recall that in a normal ball at p, any geodesic going through p can be extended throughout the entire normal ball. This follows from the fact that if γ is a geodesic passing through p at some time t_p with $\gamma'(t_p) = v$, it is the unique geodesic (up to reparameterization) with $\gamma(t_p) = p$ and $\gamma'(t_p) = v$. Now, since radial geodesics through p are defined on the entire normal ball, the radial geodesic starting at p with tangent vector v is defined throughout the normal ball, and is an extension of γ . Thus, γ can be extended through the normal ball.

It follows immediately, then, that any geodesic γ (with unit speed, without loss of generality) defined on some interval (a,b) can be extended to a geodesic defined on $(a,b+\frac{\varepsilon}{2})$ by observing that γ passes through $\gamma(b-\frac{\varepsilon}{2})$, and since $\gamma(b-\frac{\varepsilon}{2})$ has a normal ball of radius ε around it, we know that γ can be extended through this normal ball to be defined on $(a,b-\frac{\varepsilon}{2}+\varepsilon)=(a,b+\frac{\varepsilon}{2})$.

Thus, it follows immediately that geodesics can be extended indefinitely (the symmetric argument works to show γ can be extended the other way) and thus M is geodesically complete. \square

PROBLEM 3