

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Lineare Algebra I

Winter-Semester 2020/2021

Musterlösung zu Übungsblatt 0

02.11.20

Dieses Übungsblatt geht noch nicht in die Bewertung ein.

Aufgabe 1 (Aussagenlogik)

Wir definieren eine neue Art, zwei Aussagen zu kombinieren, durch die folgende Wahrheitstabelle:

$$\begin{array}{c|cccc} \mathcal{A} & \mathcal{B} & \mathcal{A} \mid \mathcal{B} \\ \hline w & w & f \\ w & f & w \\ f & w & w \\ f & f & w \end{array}$$

- a) Zeigen Sie, dass $\mathcal{A} \mid \mathcal{B}$ zu $\neg (\mathcal{A} \wedge \mathcal{B})$ äquivalent ist.
- b) Zeigen Sie, dass die Aussagen $\neg A$ und $A \mid A$ äquivalent sind.
- c) Stellen Sie, ähnlich wie in b), die Aussagen $\mathcal{A} \wedge \mathcal{B}$, $\mathcal{A} \vee \mathcal{B}$, $\mathcal{A} \implies \mathcal{B}$ und $\mathcal{A} \iff \mathcal{B}$ nur mithilfe des Symbols |, mit Klammern und mit \mathcal{A} und \mathcal{B} dar.

Lösung zu Aufgabe 1

a) Wir stellen eine Wahrheitstabelle für $\neg(A \land B)$ auf und erhalten

\mathcal{A}	\mathcal{B}	$\neg(\mathcal{A}\wedge\mathcal{B})$
w	W	f
W	f	W
\mathbf{f}	w	W
f	f	w

- . Diese entspricht der für $\mathcal{A} \mid \mathcal{B}$ gegebenen Wahrheitstabelle.
- b) $\mathcal{A} \mid \mathcal{A}$ gdw $\neg(\mathcal{A} \land \mathcal{A})$ nach Teilaufgabe a). Das ist gdw $\neg \mathcal{A}$.
- c) Wir stellen Wahrheitstabellen auf:

\mathcal{A}	\mathcal{B}	$ (A \mid B) (A \mid B)$
W	W	w
W	\mathbf{f}	f
f	w	f
f	f	f

Dies entspricht der Wahrheitstabelle von $\mathcal{A} \wedge \mathcal{B}$.

\mathcal{A}	\mathcal{B}	$\mid (\mathcal{A} \mid \mathcal{A}) \mid (\mathcal{B} \mid \mathcal{B})$
W	W	W
W	f	w
f	\mathbf{w}	w
f	\mathbf{f}	f

Dies entspricht der Wahrheitstabelle von $\mathcal{A} \vee \mathcal{B}$.

$$\begin{array}{c|c|c|c} \mathcal{A} & \mathcal{B} & \mathcal{A} \mid (\mathcal{B} \mid \mathcal{B}) \\ \hline w & w & w \\ w & f & f \\ f & w & w \\ f & f & w \end{array}$$

Dies entspricht der Wahrheitstabelle von $\mathcal{A} \implies \mathcal{B}$.

Weiterhin gilt
$$\mathcal{A} \iff \mathcal{B} \text{ gdw } (\mathcal{A} \implies \mathcal{B}) \land (\mathcal{B} \implies \mathcal{A}) \text{ gdw } (\mathcal{A} \mid (\mathcal{B} \mid \mathcal{B})) \land (\mathcal{B} \mid (\mathcal{A} \mid \mathcal{A}))$$
 gdw $((\mathcal{A} \mid (\mathcal{B} \mid \mathcal{B})) \mid (\mathcal{B} \mid (\mathcal{A} \mid \mathcal{A}))) \mid ((\mathcal{A} \mid (\mathcal{B} \mid \mathcal{B})) \mid (\mathcal{B} \mid (\mathcal{A} \mid \mathcal{A})))$.

Aufgabe 2 (Operationen auf Mengen)

Es seien A, B, C, D beliebige Mengen und I eine nichtleere Menge. Weiterhin sei für jedes $i \in I$ die Menge M_i eine Teilmenge von D. Zeigen Sie:

- a) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$. Bemerkung: Dies lässt sich auch aus den De Morgan'schen Gesetzen ableiten.
- b) $A \times \bigcap_{i \in I} M_i = \bigcap_{i \in I} (A \times M_i)$.
- c) $\bigcup_{i \in I} \mathcal{P}(M_i) \subseteq \mathcal{P}(\bigcup_{i \in I} M_i)$.
- d) Gilt in c) auch die umgekehrte Inklusion ("⊇")? Belegen Sie Ihre Behauptung.

Lösung zu Aufgabe 2

- a) Es gilt $x \in A \setminus (B \cup C)$ gdw $x \in A \land \neg (x \in B \lor x \in C)$ gdw $x \in A \land (x \notin B \land x \notin C)$ gdw $x \in A \land x \notin B) \land (x \in A \land x \notin C)$ gdw $x \in (A \setminus B) \cap (A \setminus C)$. Hier haben wir die de-morgansche Regel in der Logik angewandt, die sich durch Wahrheitstafeln beweisen lässt.
- b) Es gilt: $(x, y) \in A \times \bigcap_i M_i$ gdw $x \in A \land \forall i \in I : y \in M_i$ gdw $\forall i \in I : (x \in A \land y \in M_i)$ gdw $(x, y) \in \bigcap_i (A \times M_i)$.
- c) Es gilt: $A \in \mathcal{P}(M_i)$ gdw $\exists i \in I : A \in \mathcal{P}(M_i)$ gdw $\exists i \in I : A \subseteq M_i$ dann $\exists i \in I : A \subseteq \bigcup_i M_i$ gdw $A \in \mathcal{P}(\bigcup_i M_i)$.
- d) Definiere $D = \{1, 2\}, M_1 = \{1\}, M_2 = \{2\}$. Dann ist $\{1, 2\} \in \mathcal{P}(M_1 \cup M_2)$ aber $\{1, 2\} \notin \mathcal{P}(M_1) \cup \mathcal{P}(M_2)$.

Aufgabe 3 (Injektive und bijektive Abbildungen)

Entscheiden Sie für die Abbildungen

$$f_1: \mathbb{Z} \to \mathbb{Z}$$
 $f_2: \mathbb{Z} \to \mathbb{Z}$ $f_3: \mathbb{N} \to \mathbb{Z}$ $z \mapsto \left\lfloor \frac{z}{2} \right\rfloor$ $z \mapsto \left\lfloor \frac{z}{2}, z \text{ gerade} \right\rfloor$

jeweils, ob sie injektiv, surjektiv und/oder bijektiv sind.

Dabei definiert $\lfloor x \rfloor$ für $x \in \mathbb{R}$ die größte Zahl $z \in \mathbb{Z}$, die $z \leq x$ erfüllt. Beachten Sie, dass die natürlichen Zahlen \mathbb{N} (zumindest in dieser Vorlesung) nicht die 0 enthalten.

Lösung zu Aufgabe 3

• f_1 ist nicht surjektiv, denn die ungeraden ganzen Zahlen sind offenbar nicht im Bild von f_1 enthalten. Damit ist f_1 auch nicht bijektiv.

 f_1 ist aber injektiv. Falls nämlich $f_1(z) = f_1(z')$ für zwei Zahlen $z, z' \in \mathbb{Z}$ gilt, so gilt 2z = 2z'. Das ist äquivalent zu z = z'. Damit gibt es keine zwei verschiedenen Zahlen, die auf dasselbe Element im Bild abgebildet werden.

• f_2 ist surjektiv, denn für jedes $z \in \mathbb{Z}$ gilt $f_2(2z) = z$, also liegt z im Bild von f_2 .

 f_2 ist nicht injektiv, denn es gilt z.B. $f_2(0) = 0 = f_2(1)$. Damit ist f_2 auch nicht bijektiv. Alternativ kann man auch sehen, dass $f_2 \circ f_1 = \mathrm{id}_{\mathbb{Z}}$ bijektiv ist. Daraus folgt nach der Vorlesung, dass f_1 injektiv und f_2 surjektiv sein muss. (Mehr lässt sich damit aber nicht beweisen.)

• f_3 ist injektiv. Angenommen, es gilt $f_3(z) = f_3(z')$. Da gerade Zahlen auf positive Zahlen und ungerade Zahlen auf nichtpositive Zahlen abgebildet werden, müssen z und z' also entweder beide gerade oder beide ungerade sein. Damit gilt $\frac{z}{2} = \frac{z'}{2}$ oder $\frac{1-z}{2} = \frac{1-z'}{2}$. In beiden Fällen folgt daraus z = z'.

 f_3 ist auch surjektiv. Für eine positive Zahl $z \in \mathbb{Z}$ gilt $f_3(2z) = z$, denn 2z ist eine gerade natürliche Zahl. Für eine nichtpositive Zahl $z \in \mathbb{Z}$ gilt $f_3(1-2z) = z$, und 1-2z ist tatsächlich eine natürliche ungerade Zahl, denn $z \leq 0 \implies 1-2z \geq 1$. In beiden Fällen ist z im Bild von f_3 enthalten, somit ist f_3 surjektiv.

Als injektive und surjektive Funktion ist f_3 auch bijektiv.

Aufgabe 4 (Satz von Beatty)

Es seien $a, b \in \mathbb{R} \setminus \mathbb{Q}$ mit a, b > 0 und $\frac{1}{a} + \frac{1}{b} = 1$. Außerdem seien die folgenden Mengen definiert:

$$A \coloneqq \{ \lfloor a \cdot n \rfloor \mid n \in \mathbb{N} \}, \qquad B \coloneqq \{ \lfloor b \cdot m \rfloor \mid m \in \mathbb{N} \}.$$

Beachten Sie dabei auch die Definitionen aus Aufgabe 3. Beweisen Sie die folgenden Aussagen:

- a) Für alle $n, m \in \mathbb{N}$ gilt $\lfloor a \cdot n \rfloor < a \cdot n < \lfloor a \cdot n \rfloor + 1$ und $\lfloor b \cdot m \rfloor < b \cdot m < \lfloor b \cdot m \rfloor + 1$. (*Hinweis*: Kann $a \cdot n$ oder $b \cdot m$ eine ganze Zahl sein?)
- b) Es gibt keine Zahlen $n, m \in \mathbb{N}$, sodass $|a \cdot n| = |b \cdot m|$ gilt.

- c) Es gilt $A \cap B = \emptyset$.
- d) Es gilt $A \cup B = \mathbb{N}$.

Hinweis: Was wäre, wenn es Zahlen $z, m, n \in \mathbb{N}$ gäbe,

die $\lfloor a(n-1) \rfloor < z < z+1 \le \lfloor an \rfloor$ und $\lfloor b(m-1) \rfloor < z < z+1 \le \lfloor bm \rfloor$ erfüllen würden?

Lösung zu Aufgabe 4

a) Nach der Definition (siehe Aufgabe 3) ist $z = \lfloor a \cdot n \rfloor$ die größte ganze Zahl mit $z \leq a \cdot n$. Das bedeutet jede ganze Zahl z' > z kann nicht $z' \leq a \cdot n$ erfüllen. Daher gilt $z' > a \cdot n$. Das gilt insbesondere für z' = z + 1

Damit ist $\lfloor a \cdot n \rfloor \leq a \cdot n < \lfloor a \cdot n \rfloor + 1$ gezeigt. Wir müssen also nur noch $\lfloor a \cdot n \rfloor \neq a \cdot n$ zeigen. Dazu führen wir einen Widerspruchsbeweis: Angenommen es gälte $z = \lfloor a \cdot n \rfloor = a \cdot n$. Also wäre $a \cdot n$ genzzehlig. Wegen a > 0 und n > 0 gilt $z = a \cdot n > 0$. Damit wäre $a = \frac{n}{2}$ der

wäre $a \cdot n$ ganzzahlig. Wegen a > 0 und n > 0 gilt $z = a \cdot n > 0$. Damit wäre $a = \frac{n}{z}$ der Quotient zweier ganzer Zahlen, also $a \in \mathbb{Q}$, im Widerspruch zur Aufgabenstellung.

Insgesamt haben wir also $\lfloor a\cdot n\rfloor < a\cdot n < \lfloor a\cdot n\rfloor + 1$ gezeigt. Analog zeigt man $\lfloor b\cdot m\rfloor < a\cdot n < \lfloor b\cdot m\rfloor + 1$.

Anmerkung: $\lfloor a\cdot 0\rfloor = a\cdot 0 = 0$ ist eine ganze Zahl, das widerspricht jedoch nicht der eben bewiesenen Aussage, da wir $0 \notin \mathbb{N}$ definiert haben.

b) Wir führen einen Widerspruchsbeweis: Angenommen, $n,m\in\mathbb{N}$ wären Zahlen, sodass $z=|a\cdot n|=|b\cdot m|$ gälte.

Nach Teilaufgabe a) gälte dann

$$z < an < z + 1$$
 $\Longrightarrow z \frac{1}{a} < n < (z + 1) \frac{1}{a},$
$$z < bm < z + 1$$
 $\Longrightarrow z \frac{1}{b} < m < (z + 1) \frac{1}{b}.$

Addiert man beide Ungleichungen miteinander, so würde daraus

$$z\left(\frac{1}{a} + \frac{1}{b}\right) < m + n < (z+1)\left(\frac{1}{a} + \frac{1}{b}\right)$$

folgen, also z < m+n < z+1. Damit wäre m+n eine ganze Zahl, die zwischen der ganzen Zahl z und ihrem Nachfolger z+1 läge. Da es eine solche Zahl nicht gibt, muss unsere ursprüngliche Annahme $|a \cdot n| = |b \cdot m|$ falsch sein.

- c) Angenommen, es gälte $A \cap B \neq \emptyset$. Also gäbe es ein Element z, das sowohl in A als auch in B läge. Dieses könnte man sowohl als $z = \lfloor a \cdot n \rfloor$ als auch als $z = \lfloor b \cdot m \rfloor$ für geeignete $m, n \in \mathbb{N}$ darstellen, im Widerspruch zu Teilaufgabe b).
- d) Wegen a, b > 0 gilt

$$0 = \lfloor 0a \rfloor \le \lfloor a \rfloor \le \lfloor 2a \rfloor \le \lfloor 3a \rfloor \le \dots$$

$$0 = |0a| \le |b| \le |2b| \le |3b| \le \dots$$

Gäbe es nun ein $z \in \mathbb{N}$ das nicht in $A \cup B$ enthalten ist, so müssten beide Folgen diese Zahl z überspringen, also gäbe es $m, n \in \mathbb{N}$ mit

$$|a(n-1)| < z < |an|$$
 und $|b(m-1)| < z < |bm|$

Da z und $\lfloor an \rfloor$ ganze Zahlen sind, müsste also auch $z+1 \leq \lfloor an \rfloor$ und $z+1 \leq \lfloor bm \rfloor$ gelten. Aus Teilaufgabe a) würde dann auch

$$a(n-1) < z < z+1 < an$$
 und $b(m-1) < z < z+1 < bm$
 $\implies n-1 < z\frac{1}{a} < (z+1)\frac{1}{a} < n$ und $m-1 < z\frac{1}{b} < (z+1)\frac{1}{b} < m$

folgen. Addiert man diese Ungleichungen, so erhielte man

$$n + m - 2 < z < z + 1 < n + m$$

was zum Widerspruch führt, da zwischen den ganzen Zahlen n+m-2 und n+m nicht noch zwei andere ganze Zahlen z und z+1 liegen. Daher muss unsere Annahme falsch sein und $A\cup B=\mathbb{N}$ gelten.