Robótica Móvil un enfoque probabilístico

SLAM basado en grafos

Ignacio Mas

SLAM basado en grafos

- Las poses del robot se conectan por restricciones a medida que se mueve
- Las restricciones tienen incertezas

SLAM basado en grafos

 Al observar áreas ya visitadas se generan restricciones entre poses no sucesivas

Ejemplo: Mapa de odometría

Ejemplo: Cierre de lazos

¿Cómo corregir la trayectoria?

Imaginarlo como un sistema de masa-resorte

SLAM basado en grafos

- Usar un grafo para representar el problema
- Cada nodo en el grafo corresponde a una pose del robot durante el mapeo
- Cada arco entre dos nodos corresponde a una restricción espacial entre ellos
- SLAM basado en grafos: Armar el grafo y encontrar la configuración de nodos que minimiza el error introducido por las restricciones

- Cada nodo en el grafo corresponde a una pose del robot
- Un arco entre dos nodos representa una restricción espacial entre nodos

KUKA Halle 22, cortesía de P. Pfaff

- Cada nodo en el grafo corresponde a una pose del robot
- Un arco entre dos nodos representa una restricción espacial entre nodos

KUKA Halle 22, cortesía de P. Pfaff

 Una vez armado el grafo, determinamos el mapa más probable corrigiendo los nodos

 Una vez armado el grafo, determinamos el mapa más probable corrigiendo los nodos

... así:

 Una vez armado el grafo, determinamos el mapa más probable corrigiendo los nodos

... así:

 Después, podemos armar el mapa basado en las poses conocidas

Estructura completa de GraphSLAM

- Interacción de front-end y back-end
- Un mapa consistente ayuda a determinar nuevas restricciones al reducir el espacio de búsqueda
- Iteración construcción-optimización

Conceptos de cuadrados mínimos

- Método para calcular soluciones para sistemas sobredeterminados
- "Más ecuaciones que incógnitas"
- Minimiza la suma de los errores al cuadrado del sistema
- Método estándar para muchos problemas de ingeniería

Problema

- Dado un sistema descripto por un conjunto de n funciones de observación $\{f_i(\mathbf{x})\}_{i=1:n}$
- Sea
 - X el vector de estados
 - \mathbf{z}_i la medición del estado \mathbf{x}
 - $\widehat{\mathbf{z}}_i = f_i(\mathbf{x})$ la función que mapea \mathbf{X} a la medición esperada $\widehat{\mathbf{z}}_i$
- Dadas n mediciones ruidosas $\mathbf{z}_{1:n}$ del estado \mathbf{x}
- Objetivo: Estimar el estado x que mejor explica las mediciones $z_{1:n}$

Explicación gráfica

estado (desconocido) mediciones esperadas

mediciones reales

Función de Error

 El error e_i es la diferencia entre la medición esperada y la actual

$$\mathbf{e}_i(\mathbf{x}) = \mathbf{z}_i - f_i(\mathbf{x})$$

- Suponemos que el error tiene media cero y está distribuida normalmente
- ullet Error Gaussiano con matriz de información $oldsymbol{\Omega}_i$
- El error cuadrado de una medición depende sólo del estado y es un escalar

$$e_i(\mathbf{x}) = \mathbf{e}_i(\mathbf{x})^T \mathbf{\Omega}_i \mathbf{e}_i(\mathbf{x})$$

Cuadrados mínimos para SLAM

- Sistema sobre-determinado para estimar las poses del robot dadas las observaciones
- "Más observaciones que estados"
- Minimiza la suma de los errores al cuadrado

Nuestro interés: Aplicación a SLAM

El Grafo

- Consiste en n nodos $\mathbf{x} = \mathbf{x}_{1:n}$
- Cada \mathbf{x}_i es una transformación 2D o 3D (la pose del robot en el tiempo t_i)
- Una restricción/arco existe entre los nodos \mathbf{x}_i y \mathbf{x}_j si...

Crear un arco si... (1)

- ...el robot se mueve de \mathbf{x}_i a \mathbf{x}_{i+1}
- el arco corresponde a la odometría

Este arco representa la medición de **odometría**

$$[x_{(i+1)} - g(u, x_i)]^T R^{-1} [x_{(i+1)} - g(u, x_i)]$$

Crear un arco si... (2)

- …el robot observa la misma región del entorno desde \mathbf{x}_i y desde \mathbf{x}_j
- Construir una **medición virtual** de la posición de \mathbf{x}_i vista desde \mathbf{x}_i

Medición desde \mathbf{x}_i

Medición desde \mathbf{x}_{i}

Crear un arco si... (2)

- …el robot observa la misma región del entorno desde \mathbf{x}_i y desde \mathbf{x}_j
- Construir una **medición virtual** de la posición de \mathbf{x}_i vista desde \mathbf{x}_i

El arco representa la posición de x_j vista desde x_i basada en la **observación**

Grafo de pose

Grafo de pose

Objetivo:
$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{ij} \mathbf{e}_{ij}^T \Omega_{ij} \mathbf{e}_{ij}$$

Gauss-Newton: Procedimiento de minimización del error global

- Definir la función de error
- Linealizar la función de error
- Calcular su derivada
- Igualar la derivada a cero
- Resolver el sistema lineal
- Iterar hasta lograr convergencia

Sparse Pose Adjustment

Ejemplo: Campus Univ. de Freiburg

Existen variantes para 3D

- Grafo altamente conectado
- Estimación inicial mala
- 2200 nodos
- 8600 restricciones

Hanover2: SLAM con Mapa 3D

Univ de Freiburg: Mapa con Scan Matching

Univ de Freiburg: Mapa

Ejemplo: Estacionamiento en Stanford

 Tarea: llegar a un lugar determinado para estacionar en la terraza del garaje.

Ejemplo: Estacionamiento en Stanford

Mapa 3D del estacionamiento de Stanford

41

Estacionamiento autónomo

SLAM con grafos con más sensores

SLAM con grafos es flexible en cuanto al agregado de información adicional (GPS, IMU, info de calles, ...)

Resumen

- El back-end del problema de SLAM puede resolverse de manera efectiva con minimización de error de Gauss-Newton
- Las funciones de error calculan las discrepancias entre el estado y las observaciones
- Es actualmente una de las soluciones del estado del arte para SLAM