Writing Portfolio I

David Jackson

 $Math\ 3120$

Southern Utah University

Fall 2022

Proof Count: 18

Theorem 1.1. If x is an even integer, then x^2 is even.

Proof. Let x is even thus x=2k such that $k \in \mathbb{Z}$ then it follows that $x^2=(2k)^2$ then $x^2=4k^2$ then $x^2=2(2k^2)$ and $2k^2\in \mathbb{Z}$ so $2(2k^2)=2(a)$ where $a\in \mathbb{Z}$ so if follows that $x^2=2(i)$ so x^2 is even. \square

Theorem 1.2. If x is an odd integer, then x^3 is odd.

Proof. Let if x is odd then x = 2k + 1 such that $k \in \mathbb{Z}$ then it follows that $x^3 = (2k + 1)^3$ then $x^3 = 8k^3 + 12k^2 + 6k + 1$, $2(4k^3 + 6k^2 + 3k) + 1$ where $4k^3 + 6k^2 + 3k \in \mathbb{Z}$ so $2(4k^3 + 6k^2 + 3k) + 1 = 2(a) + 1$ where $a \in \mathbb{Z}$ so if follows that $x^3 = 2(a) + 1$ so x^3 is odd. □

Theorem 1.4. Suppose $x, y \in \mathbb{Z}$. If x and y are odd, then xy is odd.

Proof. Let x=2k+1 if x is odd, same for y without loss of generality so it follows that xy=(2k+1)(2l+1) then xy=4kl+2k+2l+1 so xy=2(2kl2+k+l)+1 and $2kl+k+l\in\mathbb{Z}$ so 2kl+k+l=a such that $a\in\mathbb{Z}$ so it follows that xy=2(a)+1 so xy is odd.

Theorem 1.5. Suppose $x, y \in \mathbb{Z}$. If x is even, then xy is even.

Proof. Let x=2k if x is even, same for y without loss of generality so it follows that xy=(2k)(2l) then xy=4kl so xy=2(2kl) and $2kl \in \mathbb{Z}$ so 2kl=a such that $a \in \mathbb{Z}$ so it follows that xy=2(a) so xy is even.

Theorem 1.7. Suppose $a, b \in \mathbb{Z}$. If $a \mid b$, then $a^2 \mid b^2$.

Proof. Let if $a, b \in \mathbb{Z}$ then $a^2, b^2 \in \mathbb{Z}$ Let b = a * k such that $k \in \mathbb{Z}$ then is follows that $b^2 = a^2 * k^2$ since $b^2/a^2 = k^2$ and $k^2 \in \mathbb{Z}$ than a^2 must divide b^2 therefor if $a \mid b$ then $a^2 \mid b^2$.

Theorem 1.16. If two integers have the same parity, then their sum is even.

Proof. Let if integers a and b have the same parity, both are even or odd. Let a=2k or a=2l+1 same for b without loss of generality. Then it follows that a+b=4kl or a+b=2k+2l+2 such that $k,l\in\mathbb{Z}$ then a+b=2(2kl) and a+b=2(k+l+1) and $(2kl),(k+l+1)\in\mathbb{Z}$ then 2kl=p and k+l+1=q such that $p,q\in\mathbb{Z}$ it follows that a+b=2(p) and a+b=2(q) and 2 times and integer is even, it is shown that a+b is even when a and b, have the same parity.

Theorem 1.17. If two integers have opposite parity, then their product is even.

Proof. Let if two integers, a and b, have opposite parity, one is even and one is odd. Let a=2k and b=2l+1 same for b without loss of generality. Then it follows that and ab=4kl+2k such that $k,l\in\mathbb{Z}$ then ab=2(2kl+k) where $(2kl+k)\in\mathbb{Z}$ then 2kl+k=p and such that $p\in\mathbb{Z}$ it follows that ab=2(p) and 2 times and integer is even, so it is shown that ab is even when a and b, have the opposite parity.

Theorem 1.20. If a is an integer and $a^2 \mid a$, then $a \in \{-1, 0, 1\}$.

Proof. Let if $a^2 \mid a$ then $a = a^2k$ so $a/a^2 = k$ if a = 0 then $0 = 0^2k$, 0 = 0. if $a \neq 0$ then 1 = ak so 1 = ak, than only a = 1, -1 and k = 1, -1 are solutions so the only solutions are $\{-1, 0, 1\}$. It is shown that if a is an integer and a^2/a , then $a \in \{-1, 0, 1\}$. Counterexample if a is an integer and a = 2 then $a^2 = 4$ and a = 2 and a = 2 then a = 4 and a = 4 and

Theorem 1.22. Every odd integer is a difference of two squares.

Proof. Let an odd integer a is odd if a=2k+1 such that $k \in \mathbb{Z}$ and the difference of squares is (x-y)(x+y) so if it is true that for every odd integer is a difference of two squares then let a=(x-y)(x+y) and let x=k+1 and y=k then a=(k+1-k)(k+1+k), a=(1)(2k+1) so a=2k+1 then it is shown that every odd integer is a difference of two squares.

2. 2

Theorem 2.7. The number $\sqrt{5}$ is irrational, that is, $\sqrt{5} \notin Q$

Proof. Let $\sqrt{5}$ be rational then 5 = p/q such that p, q are co-prime numbers or have no common factors other than 1. Then $\sqrt{5} = p/q$, $5 = p^2/q^2$, $5q^2 = p^2$ then it follows that p^2 is divisible by 5 and p is divisible by 5 as well under Euclid's lemma, that is p*p is divisible by 5 then p or p must be divisible by 5 or in other words p is divisible by 5. This is because if integers a, or b are divisible by p and p is prime then a/p or b/p then ab/p. So p = 5k then $p^2 = 25k^2$ substitute that in gives $5q^2 = 25k^2$, $q^2 = 5k^2$ this implies that q is divisible by 5 by Euclid's lemma. Hence, it means that p and q have a common factor of 5 contradicts p, q are co-prime numbers or have no common factors other than 1 so the $\sqrt{5}$ must be irrational.

Theorem 3.12. If $a, b, c, d \in \mathbb{R}$ such that $c, d \in [a, b]$, then $(c, d) \subseteq [a, b]$.

Proof. If a and b are a closed interval and c and d are an open interval that is an element of the closed interval a and b then by the nested interval theorem $c, d \subseteq [a, b]$

Theorem 4.3. If $m, n \in \mathbb{Z}$, then $\{k \in \mathbb{Z} : mn \mid k\} \subseteq \{k \in Z : m \mid k\} \cap \{k \in \mathbb{Z} : n \mid k\}$.

Proof. Let $a \in \{k \in \mathbb{Z} : mn \mid k\}$ such that $a \in \mathbb{Q}$ then a = k/mn, anm = k than (an)m = k, an = k/m then $an \in \{k \in \mathbb{Z} : m \mid k\}$ and (am)n = k, am = k/n then $am \in \{k \in \mathbb{Z} : n \mid k\}$ since $mn \mid k$ implies $n \mid k$ and $m \mid k$ thus $m, n \in \mathbb{Z}$, then $\{k \in \mathbb{Z} : mn \mid k\} \subseteq \{k \in \mathbb{Z} : m \mid k\} \cap \{k \in \mathbb{Z} : n \mid k\}$

Theorem 5.12. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Proof. Let $x \in A$ then $x \notin B$ or C this implies that $x \in A \setminus B$ and $x \in A \setminus C$ thus $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Theorem 6.1. $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

Proof. Let the ordered pair $(x,y) \in (A \cup B) \times C$ then $x \in (A \cup B)$ and $y \in C$ since $x \in (A \cup B)$ it must be that $x \in A$ or $x \in b$ or both. this implies that $x \in (A \times C)$ or $x \in (B \times C)$ thus $(A \cup B) \times C = (A \times C) \cup (B \times C)$. Also the Cartesian product is distributive so this is true by definition.

Theorem 7.4. Let X be a set. If $A, B \in P(X)$, then $A \setminus B \in P(X)$.

Proof. if X is a set then P(X) is the power set of X if A, B are elements of the power set than $A \subseteq X$ and $B \subseteq X$. Let $n \in A$ then $n \notin B$ but if $n \in A$ then $n \in X$ and $n \in P(X)$ so $n \in A \setminus B$ and $A \setminus B \in P(X)$ thus $A, B \in P(X)$, then $A \setminus B \in P(X)$.

Theorem 9.6. $p \lor (q \lor r) = (p \lor q) \lor r$ and $p \land (q \land r) = (p \land q) \land r$.

Proof. The table below shows that $p \lor (q \lor r) = (p \lor q) \lor r$.

p	q	r	$(q\vee r)$	$\left \; (p \vee q) \; \right $	$p \vee (q \vee r)$	$(p \vee q) \vee r$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т
F	F	Т	Т	Т	Т	Т
F	F	F	F	F	F	F

As we can see from the truth table $p \lor (q \lor r) = (p \lor q) \lor r$

Theorem 9.6. $p \lor (q \lor r) = (p \lor q) \lor r$ and $p \land (q \land r) = (p \land q) \land r$.

Proof. The table below shows that $p \wedge (q \wedge r) = (p \wedge q) \wedge r$.

p	q	r	$q \wedge r$	$(p \land q)$	$p \wedge (q \wedge r)$	$(p \wedge q) \wedge r$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	F	F
Т	F	Т	F	F	F	F
Т	F	F	F	F	F	F
F	Т	Т	Т	F	F	F
F	Т	F	F	F	F	F
F	F	Т	F	F	F	F
F	F	F	F	F	F	F

As we can see from the truth table $p \wedge (q \wedge r) = (p \wedge q) \wedge r$.

Theorem 5.6. $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$.

Proof. Let $x \in B$ then $x \in (B \cup C)$ then $x \in A \cup (B \cup C)$ and if $x \in B$ then $x \in (A \cup B) \cup C$ thus $A \cup (B \cup C) = (A \cup B) \cup C$

Let $y \in A, B, C$ then $y \in (B \cap C)$ and $y \in A \cap (B \cap C)$ and if $y \in A, B, C$ then $y \in (A \cap B)$ and $y \in (A \cap B) \cap C$ thus $A \cap (B \cap C) = (A \cap B) \cap C$.

FIGURE 5.6.1. Venn Diagram