Vectors in R² Work

(1) Let
$$\overline{u} = <1,1>, \overline{v} = <-2,6>, \overline{w} = <4,2>$$

- (1a) Find $\frac{}{u} \frac{}{v}$
- (1b) Find $3(\overline{u} \overline{v})$
- (1c) Find $\frac{}{u} + \frac{}{w}$
- (1d) Find $\frac{-1}{2}(\overline{u} + \overline{w})$
- (1e) Find $3(\overline{u} \overline{v}) \frac{1}{2}(\overline{u} + \overline{w})$

0 1 1		70		101
Calcul	us d	z PI	nysics	<i>S 101</i>

Name:

Vectors in R² Work

- (2) Let A(2,5), B(1,6) and C(1,1)
- (2a) Sketch $\triangle ABC$
- (2b) Find the components of \overline{AB} and \overline{AC}
- (2c) Find the dot product $\overline{AB} \bullet \overline{AC}$
- (2d) Find m∠BAC in degrees using the dot product
- (2e) Find area of $\triangle ABC$ using $\angle BAC$

Vectors in \Re^2 Work

- (3) A tractor pulls a log 2500 feet and the tension in the cable connecting the tractor and log is 3600 pounds. Find the work done by the tractor if the force is 35° above the horizontal.
- (3a) Draw a free body diagram with the log dragged along a horizontal surface.
- (3b) Express \overline{F} in polar form.
- (3c) Express d in polar form.
- (3d) Find the dot product $\overline{F} \bullet \overline{d}$ using the polar form vectors.
- (3e) What is the work done and what are the units?

Vectors in \Re^2 Work

- (4) A car pulls a trailer 200 meters and the tension in the cable connecting the tractor and log is 600 newtons. Find the work done by the car if the force is $\frac{\pi}{6}$ above the horizontal.
- (4a) Draw a free body diagram with the trailer pulled along a horizontal road.
- (4b) Express \overline{F} in Cartesian form.
- (4c) Express \overline{d} in Cartesian form.
- (4d) Find the dot product $\overline{F} \bullet \overline{d}$ using the Cartesian form vectors.
- (4e) What is the work done and what are the units?

Vectors in R² Work

- (5) Let $W = \overline{F} \bullet \overline{s}$.
- (5a) Find $\frac{dW}{dt}$ using the product rule of differentiation in terms of any \overline{F} and \overline{s} .
- (5b) Given a specific \overline{F} = <2t, t²> newtons and a specific \overline{s} = <3, $\frac{t}{2}$ > meters, find W(t).

Vectors in \Re^2 Work

- (5c) Calculate W(t) when t = 1 sec.
- (5d) Calculate $\frac{dW}{dt}$ when t = 1 sec.

$egin{array}{c} Vectors \ in \ \mathscr{R}^2 \ Work \end{array}$

(5e) What is the physical significance of W(t)? What is the physical significance of $\frac{dW}{dt}$?

Vectors in \Re^2 Work

- (6) Let $W = \int \overline{F} \cdot d\overline{s}$ Let $\overline{F} = 6x\overline{i} 2y\overline{j}$ pounds

 Let $d\overline{s} = dx\overline{i} + dy\overline{j}$ feet
- (6a) Find $\overline{F} \bullet d\overline{s}$.
- (6b) Find $\int \overline{F} \bullet d\overline{s}$.

$egin{array}{c} Vectors\ in\ \mathscr{R}^2 \ Work \end{array}$

- (6c) Calculate $\int \overline{F} \cdot d\overline{s}$ in the x direction as x varies from 0 to 5ft.
- (6d) Calculate $\int \overline{F} \cdot d\overline{s}$ in the y direction as y varies from 0 to 5ft.

$\overline{Vectors\ in\ \mathcal{R}^2} \ Work$

(6e) How is this process for calculating W different than that of question (5)? Which is preferable when \overline{F} is not a constant? Why?

$egin{array}{c} Vectors \ in \ \mathscr{R}^2 \ Work \end{array}$

Teacher lectures based on Larson PreCalculus © 1994 section 11.1 (Vectors in \Re^2) and section 11.2 (Dot Product)