32K×8 CMOS SRAM (Common I/O)

FEATURES

- Organization: 32,768 words × 8 bits
- · High speed
 - 10/12/15/20/25/35 ns address access time
 - 3/3/4/5/6/8 ns output enable access time
- Low power consumption
 - 660 mW max (10 ns cycle) - Active:
 - Standby: 11 mW max, CMOS I/O
 - 2.75 mW max, CMOS I/O, L version
 - Very low DC component in active power

256×128×8

ARRAY

(262, 144)

- イԴ -

COLUMN DECODER

• 2.0V data retention (L version)

- Equal access and cycle times
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ inputs
- TTL-compatible, three-state I/O
- · 28-pin JEDEC standard packages
 - 300 mil PDIP and SOJ Socket compatible with 7C512 and 7C1024
 - 330 mil SOIC
 - 8×13.4 TSOP

PIN ARRANGEMENT

- ESD protection > 2000 volts
- Latch-up current > 200 mA

LOGIC BLOCK DIAGRAM

DIP, SOJ, SOIC Vcc -GND -INPUT BUFFER

SENSE AMP

CONTROL

CIRCUIT

□ A0 AS7C256-02

SELECTION GUIDE

ROW DECODER

A6

		7C256-10	7C256-12	7C256-15	7C256-20	7C256-25	7C256-35	Unit
Maximum Address Access Time	10	12	15	20	25	35	ns	
Maximum Output Enable Access Time		3	3	4	5	6	8	ns
Maximum Operating Current		120	115	110	100	90	80	mA
Maximum CMOS Standby Current		2.0	2.0	2.0	2.0	2.0	2.0	mA
Maximum CMOS Standby Current	L	0.5	0.5	0.5	0.5	0.5	0.5	mA

I/O7

I/O0

WE

AS7C256-01

ALLIANCE SEMICONDUCTOR

FUNCTIONAL DESCRIPTION

The AS7C256 is a high performance CMOS 262,144-bit Static Random Access Memory (SRAM) organized as $32,768 \text{ words} \times 8 \text{ bits}$. It is designed for memory applications where fast data access, low power, and simple interfacing are desired.

Equal address access and cycle times (t_{AA} , t_{RC} , t_{WC}) of 10/12/15/20/25/35 ns with output enable access times (t_{OE}) of 3/3/4/5/6/8 ns are ideal for high performance applications. A chip enable (\overline{CE}) input permits easy memory expansion with multiple-bank memory organizations.

When $\overline{\text{CE}}$ is HIGH the device enters standby mode. The standard AS7C256 is guaranteed not to exceed 11 mW power consumption in standby mode; the L version is guaranteed not to exceed 2.75 mW, and typically requires only 500 μ W. The L version also offers 2.0V data retention, with maximum power consumption in this mode of 300 μ W.

A write cycle is accomplished by asserting chip enable (\overline{CE}) and write enable (\overline{WE}) LOW. Data on the input pins I/O0-I/O7 is written on the rising edge of \overline{WE} (write cycle 1) or \overline{CE} (write cycle 2). To avoid bus contention, external devices should drive I/O pins only after outputs have been disabled with output enable (\overline{OE}) or write enable (\overline{WE}) .

A read cycle is accomplished by asserting chip enable (\overline{CE}) and output enable (\overline{OE}) LOW, with write enable (\overline{WE}) HIGH. The chip drives I/O pins with the data word referenced by the input address. When chip enable or output enable is HIGH, or write enable is LOW, output drivers stay in high-impedance mode.

All chip inputs and outputs are TTL-compatible, and operation is from a single 5V supply. The AS7C256 is packaged in all high volume industry standard packages.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Voltage on Any Pin Relative to GND	V _t	-0.5	+7.0	V
Power Dissipation	P_{D}	_	1.0	W
Storage Temperature (Plastic)	T _{stg}	-55	+150	°C
Temperature Under Bias	T _{bias}	-10	+85	°C
DC Output Current	I _{out}	_	20	mA

NOTE: Stresses greater than those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

TRUTH TABLE

CE	$\overline{ m WE}$	ŌĒ	Data	Mode
Н	X	X	High Z	Standby (I_{SB}, I_{SB1})
L	Н	Н	High Z	Output Disable
L	Н	L	D _{out}	Read
L	L	X	D _{in}	Write

Key: X = Don't Care, L = LOW, H = HIGH

RECOMMENDED OPERATING CONDITIONS

 $(T_a = 0^{\circ}C \text{ to } +70^{\circ}C)$

Parameter	Symbol	Min	Тур	Max	Unit
Complex Welters	V _{CC}	4.5	5.0	5.5	V
Supply Voltage	GND	0.0	0.0	0.0	V
In most Violance	V _{IH}	2.2	-	$V_{CC}+1$	V
Input Voltage	$\overline{V_{IL}}$	-0.5*	_	0.8	V

^{*} $V_{\rm IL}$ min = -3.0V for pulse width less than $t_{\rm RC}/2$.

DC OPERATING CHARACTERISTICS¹

 $(V_{CC} = 5V\pm10\%, GND = 0V, T_a = 0^{\circ}C \text{ to } +70^{\circ}C)$

				-1	0	-3	12	-]	15	-2	20	-2	25	-3	35	
Parameter	Symbol	Test Conditions	M	1in	Max	Min	Max	Unit								
Input Leakage Current	I _{LI}	$V_{CC} = Max$, $V_{in} = GND \text{ to } V_{CC}$		_	1	_	1	_	1	ı	1	-	1	_	1	μА
Output Leakage Current	$ I_{LO} $	$\overline{\text{CE}} = \text{V}_{\text{IH}}, \text{V}_{\text{CC}} = \text{Max},$ $\text{V}_{\text{out}} = \text{GND to V}_{\text{CC}}$		_	1	_	1	_	1	ı	1	ı	1	_	1	μΑ
Operating Power	т	$\overline{\text{CE}} = V_{\text{IL}}, f = f_{\text{max}},$		_	120	-	115	_	110	1	100	1	90	-	80	mA
Supply Current	I_{CC}	$I_{out} = 0 \text{ mA}$, .	_	115	-	110	-	105	-	95	-	85	-	75	mA
	т	CE V f f		_	45	_	40	-	30	_	30	_	25	_	25	mA
Standby	I_{SB}	$\overline{\text{CE}} = V_{\text{IH}}, f = f_{\text{max}}$, .	_	40	_	35	-	25	_	25	_	20	_	20	mA
Power Supply Current		$\overline{\text{CE}} > V_{\text{CC}} - 0.2V, f = 0,$		_	2.0	_	2.0	-	2.0	_	2.0	_	2.0	_	2.0	mA
Current	I_{SB1}	$V_{\text{in}} \le 0.2 \text{V or} $ $V_{\text{in}} \ge V_{\text{CC}} - 0.2 \text{V} $ L	, .	_	0.5	_	0.5	_	0.5	ı	0.5	-	0.5	_	0.5	mA
Output Voltage	V_{OL}	$I_{OL} = 8 \text{ mA}, V_{CC} = \text{Min}$		_	0.4	-	0.4	_	0.4	ı	0.4	ı	0.4	-	0.4	V
Output Voltage	V _{OH}	$I_{OH} = -4 \text{ mA}, V_{CC} = \text{Min}$	2	2.4	_	2.4	_	2.4	_	2.4	_	2.4	_	2.4	-	V

CAPACITANCE²

 $(f = 1 \text{ MHz}, T_a = \text{Room Temperature}, V_{CC} = 5V)$

Parameter	Symbol	Signals	Test Conditions	Max	Unit
Input Capacitance	C _{IN}	$A, \overline{CE}, \overline{WE}, \overline{OE}$	$V_{in} = 0V$	5	pF
I/O Capacitance	$C_{I/O}$	I/O	$V_{in} = V_{out} = 0V$	7	pF

READ CYCLE 3, 9

 $(V_{CC} = 5V \pm 10\%, GND = 0V, T_a = 0^{\circ}C \text{ to } +70^{\circ}C)$

		-1	10	-1	12	-1	15	-2	20	-2	25	-3	35		
Parameter	Symbol	Min	Max	Unit	Notes										
Read Cycle Time	t _{RC}	10	_	12	-	15	-	20	-	25	-	35	_	ns	
Address Access Time	t_{AA}	-	10	-	12	_	15	_	20	ı	25	_	35	ns	3
Chip Enable (CE) Access Time	t_{ACE}	_	10	_	12	_	15	_	20	-	25	_	35	ns	3
Output Enable (OE) Access Time	t_{OE}	-	3	-	3	_	4	-	5	ı	6	-	8	ns	
Output Hold from Address Change	t _{OH}	2	-	3	-	3	-	3	-	3	-	3	-	ns	5
CE LOW to Output in Low Z	t_{CLZ}	3	-	3	-	3	-	3	-	3	-	3	-	ns	4, 5
CE HIGH to Output in High Z	t_{CHZ}	_	3	-	3	_	4	_	5	ı	6	_	8	ns	4, 5
OE LOW to Output in Low Z	t_{OLZ}	0	-	0	-	0	-	0	-	0	-	0	-	ns	4, 5
OE HIGH to Output in High Z	t_{OHZ}	_	3	-	3	_	4	_	5	ı	6	_	8	ns	4, 5
Power Up Time	t_{PU}	0	-	0	_	0	_	0	-	0	-	0	_	ns	4, 5
Power Down Time	t _{PD}	_	10	_	12	_	15	_	20	_	25	_	35	ns	4, 5

TIMING WAVEFORM OF READ CYCLE 1^{3, 6, 7, 9}

(Address Controlled)

TIMING WAVEFORM OF READ CYCLE 2^{3, 6, 8, 9}

 $(\overline{CE} \text{ Controlled})$

WRITE CYCLE 11

 $(V_{CC} = 5V \pm 10\%, GND = 0V, T_a = 0^{\circ}C \text{ to } +70^{\circ}C)$

		-]	10	-]	12	-]	15	-2	20	-2	25	-:	55		
Parameter	Symbol	Min	Max	Unit	Notes										
Write Cycle Time	t _{WC}	10	-	12	-	15	-	20	-	20	-	30	_	ns	
Chip Enable to Write End	t_{CW}	9	_	10	_	12	_	12	_	15	_	20	_	ns	
Address Setup to Write End	t_{AW}	9	-	10	-	12	-	12	-	15	-	20	_	ns	
Address Setup Time	t_{AS}	0	_	0	-	0	-	0	-	0	-	0	_	ns	
Write Pulse Width	t_{WP}	7	_	8	-	9	-	12	-	15	-	17	_	ns	
Address Hold From End of Write	t_{AH}	0	_	0	_	0	_	0	_	0	_	0	_	ns	
Data Valid to Write End	t_{DW}	6	-	6	-	8	-	10	-	10	-	15	-	ns	
Data Hold Time	t _{DH}	0	_	0	_	0	_	0	-	0	_	0	_	ns	4, 5
Write Enable to Output in High Z	t_{WZ}	-	5	_	5	_	5	_	5	-	5	-	5	ns	4, 5
Output Active from Write End	t _{OW}	3	_	3	-	3	-	3	-	3	_	3	_	ns	4, 5

TIMING WAVEFORM OF WRITE CYCLE 1 10, 11

 $(\overline{WE}\ Controlled)$

TIMING WAVEFORM OF WRITE CYCLE 2 10, 11

(CE Controlled)

DATA RETENTION CHARACTERISTICS

(L Version Only)

Parameter	Symbol	Test Conditions	Min	Max	Unit
V _{CC} for Data Retention	V_{DR}	_	2.0	-	V
Data Retention Current	I_{CCDR}	$V_{CC} = 2.0V$	_	150	μΑ
Chip Enable to Data Retention Time	t _{CDR}	$\overline{CE} \ge V_{CC} - 0.2V$	0	-	ns
Operation Recovery Time	t_{R}	$V_{in} \ge V_{CC} - 0.2V \text{ or}$ $V_{in} \le 0.2V$	t _{RC}	-	ns
Input Leakage Current	I _{LI}	- III — *	_	1	μΑ

DATA RETENTION WAVEFORM

(L Version Only)

AC TEST CONDITIONS

- Output load: see Figure B, except for t_{CLZ} and t_{CHZ} see Figure C.
- Input pulse level: GND to 3.0V. See Figure A.
- Input rise and fall times: 5 ns. See Figure A.
- Input and output timing reference levels: 1.5V.

AS7C256-08

Figure B: Output Load AS7C256-09

Thevenin Equivalent:

Figure C: Output Load for t_{CLZ} , t_{CHZ} AS7C256-10

NOTES

- 1. During V_{CC} power-up, a pull-up resistor to V_{CC} on \overline{CE} is required to meet I_{SB} specification.
- 2. This parameter is sampled and not 100% tested.
- 3. For test conditions, see AC Test Conditions, Figures A, B, C.
- 4. t_{CLZ} and t_{CHZ} are specified with CL = 5pF as in Figure C. Transition is measured ±500mV from steady-state voltage.
- 5. This parameter is guaranteed but not tested.
- 6. WE is HIGH for read cycle.
- 7. $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are LOW for read cycle.
- 8. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.
- 9. All read cycle timings are referenced from the last valid address to the first transitioning address.
- 10. $\overline{\text{CE}}$ or $\overline{\text{WE}}$ must be HIGH during address transitions.
- 11. All write cycle timings are referenced from the last valid address to the first transitioning address.

TYPICAL DC AND AC CHARACTERISTICS

ORDERING CODES

Package / Access Time	10 ns	12 ns	15 ns	20 ns	25 ns	35 ns
Plastic DIP, 300 mil	AS7C256-10PC	AS7C256-12PC	AS7C256-15PC	AS7C256-20PC	AS7C256-25PC	AS7C256-35PC
	AS7C256L-10PC	AS7C256L-12PC	AS7C256L-15PC	AS7C256L-20PC	AS7C256L-25PC	AS7C256L-35PC
Plastic SOJ, 300 mil	AS7C256-10JC	AS7C256-12JC	AS7C256-15JC	AS7C256-20JC	AS7C256-25JC	AS7C256-35JC
	AS7C256L-10JC	AS7C256L-12JC	AS7C256L-15JC	AS7C256L-20JC	AS7C256L-25JC	AS7C256L-35JC
Plastic SOIC, 330 mil	AS7C256-10SC	AS7C256-12SC	AS7C256-15SC	AS7C256-20SC	AS7C256-25SC	AS7C256-35SC
	AS7C256L-10SC	AS7C256L-12SC	AS7C256L-15SC	AS7C256L-20SC	AS7C256L-25SC	AS7C256L-35SC
TSOP 8×13.4	AS7C256-10TC	AS7C256-12TC	AS7C256-15TC	AS7C256-20TC	AS7C256-25TC	AS7C256-35TC
	AS7C256L-10TC	AS7C256L-12TC	AS7C256L-15TC	AS7C256L-20TC	AS7C256L-25TC	AS7C256L-35TC

PART NUMBERING SYSTEM

AS7C	256	X		-XX	X		С
SRAM Prefix	Device Number	Blank L	= Standard Power = Low Power	Access Time	Package:	P = PDIP 300 mil J = SOJ 300 mil S = SOIC 330 mil T = TSOP 8×14	Commercial Temperature Range, 0°C to 70 °C

REPRESENTATIVES, DISTRIBUTORS, AND SALES OFFICES

DOMESTIC REPS

ALABAMA

(205) 772-8883

ARIZONA

Competitive Technology (602) 265-9224

ARKANSAS

Southern States Marketing (214) 238-7500

CALIFORNIA

North: Brooks Technical (415) 960-3880 LA Area: Competitive Tech. (714) 450-0170 San Diego: ATS (619) 634-1488

COLORADO

Technology Sales (303) 792-8835

CONNECTICUT

Kitchen & Kutchin Inc. (203) 239-0212

DELAWARE

Vantage Sales (609) 424-6777

FLORIDA

Micro-Electronic Comp. Deerfield Beach (305) 426-8944 Tampa (813) 393-5011

GEORGIA

Concord Component (404) 416-9597

HAWAII

Brooks Technical (415) 960-3880

IDAHO ES/Chase (503) 684-8500

IL LINOIS North: El-Mech (312) 794-9100 South: CenTech (314) 291-4230

INDIANA

CC Electro Sales (317) 921-5000

KANSAS

CenTech (816) 358-8100 KENTUCKY CC Electro Sales

(317) 921-5000

LOUISIANA Southern States Marketing North: (214) 238-7500

South: (713) 868-5180

Kitchen & Kutchin Inc. (617) 229-2660

MARYLAND

Chesapeake Technology (301) 236-0530

MASSACHUSETTS Kitchen & Kutchin Inc. (617) 229-2660

MICHIGAN Enco Group (810) 338-8600

MINNESOTA D. A. Case Associates (612) 831-6777

MISSOURI East: CenTech (314) 291-4230

West: CenTech

(816) 358-8100 MISSISSIPPI Concord Component (205) 772-8883

MONTANA

ES/Chase (503) 684-8500 NEBRASKA CenTech

(816) 358-8100 NEVADA

North: Brooks Technical (415) 960-3880 South: Competitive Tech. (602) 265-9224

NEW HAMPSHIRE Kitchen & Kutchin Inc. (617) 229-2660

NEW JERSEY

North: ERA Associates (800) 645-5500 South: Vantage Sales (609) 424-6777

NEW MEXICO

Competitive Technology (602) 265-9224

NEW YORK

NYC: ERA Associates (516) 543-0510 Upstate: Tri-Tech Rochester (716) 385-6500

Birmingham (607) 722-3580

Fishkill (914) 897-5611

NORTH CAROLINA

Concord Component (919) 846-3441 NORTH DAKOTA

D. A. Case Associates (612) 831-6777

Midwest Marketing Assoc. Lyndhurst: (216) 381-8575 Dayton: (513) 433-2511

OKLAHOMA

Southern States Marketing (214) 238-7500

OREGON ES/Chase (503) 684-8500

PENNSYLVANIA

East: Vantage Sales (609) 424-6777 West: Midwest Marketing (216) 381-8575

RHODE ISLAND

Kitchen & Kutchin Inc. (617) 229-2660

SOUTH CAROLINA Concord Component (919) 846-3441

SOUTH DAKOTA D. A. Case Associates (612) 831-6777

TENNESSEE

Concord Component (205) 772-8883

TEXAS

Southern States Marketing Austin: (512) 835-5822 Dallas: (214) 238-7500 Houston: (713) 868-5180

Charles Fields & Assoc. (801) 299-8228

VERMONT Kitchen & Kutchin Inc. (617) 229-2660

VIRGINIA

Chesapeake Technology (301) 236-0530

WASHINGTON

ES/Chase (206) 823-9535

WEST VIRGINIA

Chesapeake Technology (301) 236-0530

WISCONSIN

D. A. Case Associates (612) 831-6777

WYOMING

Technology Sales (303) 777-9726

INTERNATIONAL

AUSTRALIA

NJS Technology Pty Ltd. Mularave, Victoria +61-3-562-1244 **R&D Electronics** Dingley, Victoria

+61-3-558-0444

CANADA

Tech Trek Ltd. Mississauga: (905) 238-0366 Montreal: (514) 337-7540

Ottawa: (613) 599-8787

Vancouver: (604) 276-8735

Calgary: (403) 291-6866

EUROPE Britcomp Sales Surrey, England

+44-1932 347077 +44-1932 346256 Munich, Germany +49-894488496

Athismons, France +33-1-69387678

HONG KONG Eastele Technology +85-2-798-8860

INDIA

Priya Electronics, Inc. San Jose, CA USA (408) 954-1866

ISRAFI Eldis Technology +972-9-562-666

JAPAN

Actes Engineering +81-3-3769-3029 Rohm Co. Ltd. Kyoto

+81-75-311-2121 KOREA

FM Korea +822-575-9720 Woo Young Tech +822-369-7099

MALAYSIA,

SINGAPORE Technology Distr. Pte Ltd. +65-299-7811

PUERTO RICO

Micro-Electronic Comp. (809) 746-9897

TAIWAN

Asian Specific Tech. +886-2-521-2363 Puteam International +886-2-729-0373

DISTRIBUTORS

All-American Locations Nationwide Headquarters: (305) 621-8282 Axis Components Sunnyvale, CA (408) 522-9595 Axis Components Irvine, CA (714) 459-5510 Future Electronics Locations Worldwide Headquarters: (514) 594-7710 Interface Electronics

Hopkinton, MA

(800) 632-7792

(508) 435-0100

SALES OFFICES **HEADQUARTERS**

Alliance Semiconductor San Jose, CA (408) 383-4900

NORTHEAST AREA

Alliance Semiconductor Boston, MA (617) 239-8127

TECHNICAL CENTER

TAIWAN Alliance Semiconductor +886-2-723-9944

Alliance Semiconductor reserves the right to make changes in this data sheet at any time to improve design and supply the best product possible. Alliance Semiconductor cannot assume responsibility for circuits shown or represent that they are free from patent infringement. Alliance products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of Alliance. The Alliance logo is a trademark of Alliance Semiconductor Corporation. All other trademarks are property of their respective holders.

ALLIANCE SEMICONDUCTOR

3099 North First Street San Jose, CA 95134 (408) 383-4900 Fax (408) 383-4999