Espacios vectoriales

Matemáticas para las ciencias aplicadas II

Aquino Chapa Armando Abraham y Merino Peña Kevin Ariel 23 de febrero de 2020

1. Escribe el vector cero en $M_{3x4}(\mathbb{R})$

Definición 1 (Matriz). Una **Matriz** es un arreglo rectangular de elementos de un campo $\mathbb{F}(\mathbb{R})$ de la forma

$$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

A los elementos $a_{i,j}$ con $1 \le j \le n$ y $1 \le i \le m$ se les llama entradas de la matriz, a las matrices las denotamos por \mathbb{A} (letras mayúsculas) y al conjunto de las matrices de mn se les denota por $M_{m \times n}(\mathbb{F})$

De esta manera tenemos que el vector cero de la matriz de 3 renglones por 4 columnas es aquella cuyas entradas (todas) son 0 i. e.

2. Sea V el conjunto de todas las funciones diferenciables definidas en \mathbb{R} . Muestre que V es un espacio vectorial con las operaciones usuales de suma y multiplicación por un escalar para funciones.

Veamos que la derivada cumple las siguientes propiedades

$$(f(x) + g(x))' = \lim_{h \to 0} \frac{f(x+h) + g(x+h) - (f(x) + g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x) + g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x) + g'(x)$$

Así hemos probado que la derivada abre sumas

$$(cf(x))' = \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$$
$$= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= cf'(x)$$

De esta manera queda conolidado que en la función derivada, los escalares son sacados de la función

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{c - c}{h}$$
$$= 0$$

Esto se vale para cualquier constante, en particular el 0

3. Prueba que el conjunto de las funciones pares en \mathbb{R} es un espacio vectorial con suma y multiplicación por escalar usuales para funciones. Recuerde que una función es par si $\forall x \in Dom(f)$ entonces f(-x) = f(x)

Si tenemos en cuenta que f(-t) + g(-t) = f(t) + g(t) y que si tenemos constantes siempre ocurre que cf(-t) = cf(t) entonces ya hemos probado las dos primeras condiciones y para hallar el neutro basta con usar el 0 del cambo (\mathbb{R}) para notar que también lo manda al 0 vector.

4. Sea V el conjunto de pares ordenados de números reales. Si (a_1, a_2) y (b_1, b_2) son elementos de V y $\alpha \in \mathbb{R}$, definamos la suma y multiplicación escalar de la siguiente manera:

(i)
$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$$

(ii)
$$\alpha(a_1, a_2) = (\alpha a_1, a_2)$$
.

¿Es V un espacio vectorial sobre \mathbb{R} con estas operaciones?

No puede ser un espacio vectorial porque si tenemos que

$$0(a_1, a_2) = (0, a_2)$$

para cumplir el cero vector, entonces se compliría para cualquier a_2 lo cual no es posible pues contradice la unicidad del cero.

5. Determinar cuales de los siguientes conjuntos son subespacios de \mathbb{R}^3 bajo las operaciones de suma y multiplicación por un escalar usual.

Definición 2. Sea \mathcal{U} un subconjunto de \mathcal{V} espacio vectorial sobre \mathbb{F} decimos que \mathcal{U} es un subespacio vectorial de \mathcal{V} si cumple lo siguiente

- I) $\vec{0} \in \mathcal{U}$
- II) $\forall \vec{u}, \vec{v} \in \mathcal{U} \implies \vec{u} + \vec{v} \in \mathcal{U}$
- III) Sea $\alpha \in \mathbb{F}, \vec{u} \in \mathcal{U} \implies \alpha \cdot \vec{u} \in \mathcal{U}$
 - a) $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 | a_1 = 3a_2 \text{ y } a_3 = -a_2 \}$

Veamos que W_1 contiene a $\vec{0}$ esto es que algún elemento en $W_1 = (0,0,0)$ por lo que

$$(0,0,0) = (a_1, a_2, a_3)$$
 Por $\vec{0} \in \mathbb{R}^3$
 $= (3a_2, a_2, -a_2)$ Por $a_1 = 3a_2$ y $a_3 = -a_2$
 $= (3(0), (0), -(0))$ Para cualquier a_2
 $= (0,0,0)$

Por otra parte comprobemos que la suma está dentro de W_1

Sean $\hat{u}=(a_1,a_2,a_3)$ y $\hat{v}(b_1,b_2,b_3)\in W_1$ la suma de vectores se realiza entrada a entrada por lo que

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (3a_2, a_2, -a_2) + (3b_2, b_2, -b_2)$$
$$= (3a_2 + 3b_2, a_2 + b_2, -a_2 - b_2)$$
$$= (3(a_2 + b_2), (a_2 + b_2), -(a_2 + b_2))$$

Y como $a_1 + b_2 \in \mathbb{R}^3$ entonces $\hat{u} + \hat{v} \in W_1$ por lo que cumple II)

Finalmente veamos que si $k \in R, \hat{u} \in W_1 \implies k\hat{u} \in W_1$

$$k(3a_2, a_2, -a_2) \in W_1$$

 $(3ka_2, ka_2, -ka_2) \in W_1$

Por lo tanto cumple *III*)

 $\therefore W_1$ es subespacio vectorial de \mathbb{R}^3

b) $W_2 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 | a_1 = a_3 + 2\}$

Veamos si $\hat{0} \in W_2$ si esto ocurriera entonces $(0,0,0) \in W_2$ l
 que significaría lo siguiente

$$(0,0,0) = (a_3 + 2, a_2, a_3)$$

$$0 = a_3 + 2$$

$$0 = a_2$$

$$0 = a_3$$

Podemos observar que en esta situación, $a_3=-2 \wedge a_3=0$ lo cual no es posible, dicha contradicción vino de suponer que $\hat{0} \in W_2$

Por que deben ser iguales entrada a entrada

$$\hat{0} \notin W_2$$

por lo que W_2 no es subespacio vectorial de \mathbb{R}^3

c) $W_3 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 | 2a_1 - 7a_2 + a_3 = 0 \}$

Notemos que en la declaración de los elementos de W_3 podemos deducir que

$$a_3 = 7a_2 - 2a_1$$

entonces $\hat{u} \in W_3 \implies \hat{u} = (a_1, a_2, 7a_2 - 2a_1)$

Veamos que para cumplir I) el vector cero debería estar en W_1 i.e.

$$(0,0,0) = (a_1, a_2, 7a_2 - 2a_1)$$

$$0 = a_1$$

$$0 = a_2$$

$$0 = 7a_2 - 2a_1$$

lo anterior se cumple si $a_2 = 0 = a_1$

 $\hat{0} \in W_3$

Ahora, sean $\hat{u}, \hat{v} \in W_3 \implies \hat{u} = (a_1, a_2, 7a_2 - 2a_1) \land \hat{v} = (b_1, b_2, 7b_1 - 2b_1)$ y probemos que $\hat{u} + \hat{v} \in W_3$

$$(a_1, a_2, 7a_2 - 2a_1) + (b_1, b_2, 7b_1 - 2b_1) = (a_1 + b_1, a_2 + b_2, 7a_2 + 7b_2 - 2a_1 - 2b_1)$$
$$= (a_1 + b_1, a_2 + b_2, 7(a_2 + b_2) - 2(a_1 + b_1))$$

y como $a_1 + b_1 \in R$ también se encontrarán dentro de W_3 por lo que la suma es cerrada en el conjunto W_3 Por último veamos que si $k \in \mathbb{R}, \hat{u} \in W_3 \implies k \cdot \hat{u} \in W_3$

$$k\hat{u} = k(a_1, a_2, 7a_2 - 2a_1)$$

$$k\hat{u} = (ka_1, ka_2, 7ka_2 - 2ka_1)$$

De lo anterior podemos concluir que cada uno de esos ka_1, ka_2 elementos estarán en \mathbb{R} por lo que $k\hat{u}$ resultarán también estar en W_3

 $\therefore W_3$ es un subespacio vectorial de \mathbb{R}^3

d) $W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 | a_1 - 4a_2 - a_3 = 0\}$ De la definición de los elementos de W_4 se sigue que si \hat{u} es un elemento de este conjunto, tendrá la forma $\hat{u} = (4a_2 + a_3, a_2, a_3)$ Comencemos averiguando si W_4 tiene elemento neutro, i. e.

$$(0,0,0)=(4a_2+a_3,a_2,a_3)$$

$$0=4a_2+a_3$$
 para ser iguales entrada a entrada
$$0=a_2$$

$$0=a_3$$

Lo anterior ocurre cuando $a_2=a_3=0$ por lo que $\hat{0}\in W_4$ y así cumple la condición I)

Siguiendo con la comprobación de sus propiedades como subespacio vectorial, tenemos que: Sean $\hat{u}, \hat{v} \in W_4 \implies \hat{u} + \hat{v} \in W_4$ i. e.

$$\begin{split} \hat{u} + \hat{v} &= (4a_2 + a_3, a_2, a_3) + (4b_2 + b_3, b_2, b_3) \\ &= (4a_2 + 4b_2 + b_3 + a_3, a_2 + b_2, a_3 + b_3) \\ &= (4(a_2 + b_2) + (b_3 + a_3), (a_2 + b_2), (a_3 + b_3)) \end{split} \quad \text{sumando entrada por entrada}$$
 asociatividad y distributividad en \mathbb{R}

y como $(a_2 + b_2) \in \mathbb{R}$ la suma de $\hat{u}, \hat{v} \in W_4$

Finalmente notemos que si $k \in \mathbb{R}, \hat{u} \in W_4 \implies k \cdot \hat{u} \in W_4$

$$k\hat{u} = k(4a_2 + a_3, a_2, a_3)$$

= $(4ka_2 + ka_3, ka_2, ka_3)$

por distributividad

y $ka_2, k_3 \in \mathbb{R}$ entonces $k \cdot \hat{u} \in W_4$

 $\therefore W_4$ es subespacio vectorial de \mathbb{R}^3

 $\bf 6$. En cada caso diga si los vectores son generados por el conjunto S

a)
$$(2,-1,1), S = \{(1,0,2), (-1,1,1)\}$$

Sea $\alpha_1, \alpha_2 \in \mathbb{R}$.

Entonces $(2, -1, 1) = \alpha_1(1, 0, 2) + \alpha_2(-1, 1, 1) = (\alpha_1, 0, 2\alpha_1) + (-\alpha_2, \alpha_2, \alpha_2) = \alpha_1 - \alpha_2, \alpha_2, 2\alpha_1 + \alpha_2$. Tenemos el siguiente sistema de ecuaciones:

$$\alpha_1 - \alpha_2 = 2$$
$$\alpha_2 = -1$$

$$2\alpha_1 + \alpha_2 = 1$$

Ahora:

$$\alpha_1 - (-1) = 2$$
$$\alpha_2 = -1$$
$$2\alpha_1 + \alpha_2 = 1$$

Al resolver el sistema, obtenemos:

$$\alpha_1 = 1$$

$$\alpha_2 = -1$$

$$1 = 1$$

Entonces:

$$1(1,0,2) + (-1)(-1,1,1) = (1,0,2) + (1,-1,-1) = (2,-1,1)$$

Cómo el sistema de ecuaciones si se satisface, el conjunto S SI genera al vector (2,-1,-1)

b)
$$(2, -1, 1, 3), S = \{(1, 0, 1, -1), (0, 1, 1, 1)\}$$

Sea $\alpha_1, \alpha_2 \in \mathbb{R}$.

Entonces: $(2, -1, 1, 3) = \alpha_1(1, 0, 1, -1) + \alpha_2(0, 1, 1, 1) = (\alpha_1, 0, \alpha_1, -\alpha_1) + (0, \alpha_2, \alpha_2, \alpha_2) = \alpha_1, \alpha_2, \alpha_1 + \alpha_2, -\alpha_1 + \alpha_2$.

Tenemos el siguiente sistema de ecuaciones:

$$\alpha_1 = 2$$

$$\alpha_2 = -1$$

$$\alpha_1 + \alpha_2 = 1$$

$$-\alpha_1 + \alpha_2 = 3$$

Ahora:

$$\alpha_1 = 2$$
 $\alpha_2 = -1$
 $2 - 1 = 1$
 $-(-1) + 2 = 3$

Por último:

$$\alpha_1 = 2$$

$$\alpha_2 = -1$$

$$1 = 1$$

$$3 = 3$$

Al resolver el sistema de ecuaciones verificamos si el conjunto S genera al vector. Entonces:

$$2(1,0,1,-1) + (-1)(0,1,1,1) = (2,0,2,-2) + (0,-1,-1,-1) = (2,-1,-1,-3)$$

Como el producto de los escalares por los elementos del conjunto S no forman al vector, podemos concluir que S **NO** genera a (2, -1, 1, 3).

c)
$$2x^3 - x^2 + x + 3$$
, $S = \{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\}$

Sean α_1 , α_2 y α_3 elementos del campo, si suponemos que $2x^3 - x^2 + x + 3$ es generado por S implicará que existen dichos 3 elementos $\cdot \circ \cdot$

$$2x^3 - x^2 + x + 3 = \alpha_1(x^3 + x^2 + x + 1) + \alpha_2(x^2 + x + 1) + \alpha_3(x + 1)$$

$$\alpha_1 x^3 + \alpha_1 x^2 + \alpha_1 x + \alpha_1$$
$$\alpha_2 x^2 + \alpha_2 x + \alpha_2$$
$$\alpha_3 x + \alpha_3$$

Por lo que ocurre lo siguiente

$$2x^{3} - x^{2} + x + 3 = \alpha_{1}x^{3} + \alpha_{1}x^{2} + \alpha_{1}x + \alpha_{1} + \alpha_{2}x^{2} + \alpha_{2}x + \alpha_{2} + \alpha_{3}x + \alpha_{3}$$

$$2x^{3} - x^{2} + x + 3 = \alpha_{1}x^{3} + \alpha_{1}x^{2} + \alpha_{1}x + \alpha_{1} + \alpha_{2}x^{2} + \alpha_{2}x + \alpha_{2} + \alpha_{3}x + \alpha_{3}$$

$$= x^{3}(\alpha_{3}) + x^{2}(\alpha_{2} + \alpha_{1}) + x(\alpha_{3} + \alpha_{2} + \alpha_{1}) + \alpha_{1} + \alpha_{2} + \alpha_{3}$$

$$\alpha_{3} = 2$$

$$\alpha_{2} = -1 - \alpha_{1}$$

$$\alpha_{2} = -1 - 2$$

$$\alpha_{2} = -3$$

Ahora llegamos a una contradicción, puesto que el sistema de ecuaciones anterior implica que $\alpha_1 + \alpha_2 + \alpha_3 = 3 = 1$ por lo que el conjunto S no genera $2x^3 - x^2 + x + 3$

 $\begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}, S = \{ \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \}$

Recordemos que la suma de matrices se hace entrada por entrada eso es, si se van a sumar 2 matrices A+B se hace de la forma $a_{ij}+b_{ij}\forall i,j\in A,B$ de tal manera que existen $a_{ij}+b_{ij}\forall i,i\in A,B$ de tal manera que existen α,β,γ · ϑ ·

$$\begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix} = \alpha \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} + \beta \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + \gamma \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_{1,1} + \gamma_{1,1} & \beta_{1,2} + \gamma_{1,2} \\ -\alpha_{2,1} & \beta_{2,2} \end{pmatrix}$$

Notemos que

$$-\alpha_{2,1} = -3 \implies \alpha = 3$$

y luego

$$\beta_{2.2} = 4 \implies \beta = 4$$

y finalmente

$$\gamma = 2 - \beta_{1,2} \implies \gamma = 4$$

7. Determina cuando los siguientes conjuntos son linealmente dependientes o linealmente independientes.

$$\mathbf{a})\ \left\{\begin{pmatrix}1&-3\\-2&4\end{pmatrix},\begin{pmatrix}-2&6\\4&-8\end{pmatrix}\right\}\in M_{2x2}(\mathbb{R})$$

Sean $\alpha_1, \alpha_2, \in \mathbb{R}$. Entonces:

$$\alpha_1 \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix} + \alpha_2 \begin{pmatrix} -2 & 6 \\ 4 & -8 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Ahora

$$\begin{pmatrix} \alpha_1 & -3\alpha_1 \\ -2\alpha_1 & 4\alpha_1 \end{pmatrix} + \begin{pmatrix} -2\alpha_2 & 6\alpha_2 \\ 4\alpha_2 & -8\alpha_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Sumamos cada elemento de las matrices al correspondiente reglón y columna:

$$\begin{pmatrix} \alpha_1 - 2\alpha_2 & -3\alpha_1 + 6\alpha_2 \\ -2\alpha_1 + 4\alpha_2 & 4\alpha_1 - 8\alpha_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Tenemos el siguiente sistema de ecuaciones:

$$\alpha_1 - 2\alpha_2 = 0$$
$$-3\alpha_1 + 6\alpha_2 = 0$$
$$-2\alpha_1 + 4\alpha_2 = 0$$
$$4\alpha_1 - 8\alpha_2 = 0$$

Multiplicamos dos veces el renglón 3 y lo sumamos al renglón 4. También multiplicamos dos veces el renglón 1 y lo sumamos al renglón 3.

$$\alpha_1 - 2\alpha_2 = 0$$
$$-3\alpha_1 + 6\alpha_2 = 0$$
$$0\alpha_1 + 0\alpha_2 = 0$$
$$0\alpha_1 + 0\alpha_2 = 0$$

Por último multiplicamos tres veces el renglón 1 y lo sumamos al renglón 2:

$$\alpha_1 - 2\alpha_2 = 0$$
$$0\alpha_1 + 0\alpha_2 = 0$$

Entonces $\alpha_1 = 2\alpha_2$.

Esto indica que α_1 depende de α_2 . Por lo tanto, el conjunto $\begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix}$, $\begin{pmatrix} -2 & 6 \\ 4 & -8 \end{pmatrix} \in M_{2x2}$ es **linealmente dependiente**.

$$\mathbf{b}) \left\{ \begin{pmatrix} 1 & -2 \\ -1 & 4 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 2 & -4 \end{pmatrix} \right\} \in M_{2x2}(\mathbb{R})$$

Sean $\alpha_1, \alpha_2, \in \mathbb{R}$. Entonces:

$$\alpha_1\begin{pmatrix}1&-2\\-1&4\end{pmatrix}+\alpha_2\begin{pmatrix}-1&1\\2&-4\end{pmatrix}=\begin{pmatrix}0&0\\0&0\end{pmatrix}$$

Ahora:

$$\begin{pmatrix} \alpha_1 & -2\alpha_1 \\ -\alpha_1 & 4\alpha_1 \end{pmatrix} + \begin{pmatrix} -\alpha_2 & \alpha_2 \\ 2\alpha_2 & -4\alpha_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Sumamos cada elemento de las matrices al correspondiente reglón y columna:

$$\begin{pmatrix} \alpha_1 - \alpha_2 & -2\alpha_1 + \alpha_2 \\ -\alpha_1 + 2\alpha_2 & 4\alpha_1 - 4\alpha_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Tenemos el siguiente sistema de ecuaciones:

$$\alpha_1 - \alpha_2 = 0$$
$$-2\alpha_1 + \alpha_2 = 0$$
$$-\alpha_1 + 2\alpha_2 = 0$$
$$4\alpha_1 - 4\alpha_2 = 0$$

Multiplicamos cuatro veces el renglón 1 y lo restamos al renglón 4. También sumamos el renglón 1 al renglón 2:

$$\alpha_1 - \alpha_2 = 0$$
$$-2\alpha_1 + \alpha_2 = 0$$
$$0\alpha_1 + \alpha_2 = 0$$
$$0\alpha_1 + 0\alpha_2 = 0$$

Tenemos que $\alpha_2 = 0$, Entonces lo sustituimos en las demás ecuaciones:

$$\alpha_1 - 0 = 0$$
$$-2\alpha_1 + 0 = 0$$

Es claro notar que $\alpha_1 = 0$ y $\alpha_2 = 0$.

Cómo ambos valen 0, podemos concluir que el conjunto $\begin{pmatrix} 1 & -2 \\ -1 & 4 \end{pmatrix}$, $\begin{pmatrix} -1 & 1 \\ 2 & -4 \end{pmatrix} \in M_{2x2}(\mathbb{R})$ es **linealmente independiente**. **c)** $\{x^3+2x^2,-x^2+3x+1,x^3-x^2+2x-1\} \in P_3(\mathbb{R})$

Sean $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$.

Tenemos que:
$$0x^3 + 0x^2 + 0x + d = \alpha_1(x^3 + 2x^2) + \alpha_2(-x^2 + 3x + 1) + \alpha_3(x^3 - x^2 + 2x - 1)$$

$$x^3 + 0x^2 + 0x + 0 = (\alpha_1 + \alpha_3)x^3 + (2\alpha_1 - \alpha_2 - \alpha_3)x^2 + (3\alpha_2 + 2\alpha_3)x + (\alpha_2 - \alpha_3).$$

Obtenemos el siguiente sistema de ecuaciones:

$$\alpha_1 + 0\alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 - \alpha_2 - \alpha_3 = 0$$

$$0\alpha_1 + 3\alpha_2 + 2\alpha_3 = 0$$

$$0\alpha_1 + \alpha_2 - \alpha_3 = 0$$

Ahora multiplicamos -3 veces el renglón 4 y le sumamos el renglón 1:

$$\alpha_1 + 0\alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 - \alpha_2 - \alpha_3 = 0$$

$$0\alpha_1 + 3\alpha_2 + 2\alpha_3 = 0$$

$$0\alpha_1 + 0\alpha_2 + 5\alpha_3 = 0$$

Podemos obtener que $\alpha_3 = 0$. Entonces sustituimos este valor en las ecuaciones.

$$\alpha_1 + 0\alpha_2 + 0 = 0$$
$$2\alpha_1 - \alpha_2 - 0 = 0$$
$$0\alpha_1 + 3\alpha_2 + 0 = 0$$
$$\alpha_3 = 0$$

De lo anterior deducimos que $\alpha_1 = 0$, por tanto:

$$0 - \alpha_2 - 0 = 0$$
$$0 + 3\alpha_2 + 0 = 0$$
$$\alpha_3 = 0$$

Entonces $\alpha_1 = 0$, $\alpha_2 = 0$, $\alpha_3 = 0$. Podemos que concluir que el conjunto $\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\} \in P_3(\mathbb{R})$ es linealmente independiente.

d)
$$\{(1,-1,2),(1,-2,1),(1,1,4)\} \in \mathbb{R}^3$$

Sean
$$\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$$
. Entonces: $\alpha_1(1, -1, 2) + \alpha_2(1, -2, 1) + \alpha_3(1, 1, 4) = (0, 0, 0)$. Ahora:

 $(\alpha_1, -\alpha_1, 2\alpha_1) + (\alpha_2, -2\alpha_2, \alpha_2) + (\alpha_3, \alpha_3, 4\alpha_3) = (0, 0, 0)$. Ordenamos los escalares:

$$(\alpha_1 + \alpha_2 + \alpha_3, -\alpha_1 - 2\alpha_2 + \alpha_3, 2\alpha_1 + \alpha_2 + 4\alpha_3) = (0, 0, 0)$$

Obtenemos el siguiente sistema de ecuaciones:

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$
$$-\alpha_1 - 2\alpha_2 + \alpha_3 = 0$$
$$2\alpha_1 + \alpha_2 + 4\alpha_3 = 0$$

Multiplicamos dos veces el renglón 1 y lo sumamos a "menos.el renglón 3. También sumamos el renglón 1 al renglón 2.

$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$
$$0\alpha_1 - \alpha_2 + 2\alpha_3 = 0$$
$$0\alpha_1 + \alpha_2 - 2\alpha_3 = 0$$

Ahora al renglón 3 le sumamos el renglón 2. Y al renglón 1 le sumamos el renglón 2.

$$\alpha_1 + 0\alpha_2 + 3\alpha_3 = 0$$
 $0\alpha_1 - \alpha_2 + 2\alpha_3 = 0$
 $0\alpha_1 + 0\alpha_2 - 0\alpha_3 = 0$

Entonces nos queda el siguiente sistema.

$$\alpha_1 + 3\alpha_3 = 0$$
$$-\alpha_2 + 2\alpha_3 = 0$$

De esto podemos deducir que $\alpha_1 = -3\alpha_3$, $\alpha_2 = 2\alpha_3$ y $\alpha_3 = \frac{\alpha_2}{2}$.

Entonces podemos concluir que el conjunto $\{(1,-1,2),(1,-2,1),(1,1,4)\}\in\mathbb{R}^3$ es linealmente dependiente.

$$e$$
){ $(1, -1, 2), (2, 0, 1), (-1, 2, -1)$ } $\in \mathbb{R}^3$

Sean
$$\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$$
. $\alpha_1(1, -1, 2) + \alpha_2(2, 0, 1) + \alpha_3(-1, 2, -1) = (0, 0, 0)$. Ahora:

$$(\alpha_1, -\alpha_1, 2\alpha_1) + (2\alpha_2, 0\alpha_2, \alpha_2) + (-\alpha_3, 2\alpha_3, -\alpha_3) = (0, 0, 0)$$
. Ordenamos los escalares:

$$(\alpha_1 + 2\alpha_2 - \alpha_3, -\alpha_1 + 0\alpha_2 + 2\alpha_3, 2\alpha_1 + \alpha_2 - \alpha_3) = (0, 0, 0)$$

Obtenemos el siguiente sistema de ecuaciones:

$$\alpha_1 + 2\alpha_2 - \alpha_3 = 0$$
$$-\alpha_1 + 0\alpha_2 + 2\alpha_3 = 0$$
$$2\alpha_1 + \alpha_2 - \alpha_3 = 0$$

Primero multiplicamos dos veces el renglón 1 y lo restamos al renglón 3. Luego sumamos el renglón 2 al renglón 1.

$$0\alpha_1 + 2\alpha_2 + \alpha_3 = 0$$

-\alpha_1 + 0\alpha_2 + 2\alpha_3 = 0
$$0\alpha_1 + 3\alpha_2 - \alpha_3 = 0$$

Ahora al renglón 3 le sumamos el renglón 1:

$$0\alpha_1 + 2\alpha_2 + \alpha_3 = 0$$

-\alpha_1 + 0\alpha_2 + 2\alpha_3 = 0
$$0\alpha_1 + 5\alpha_2 - 0\alpha_3 = 0$$

De lo anterior obtenemos que $\alpha_2 = 0$ y sustituimos en las demás ecuaciones.

$$0 + \alpha_3 = 0$$
$$-\alpha_1 + 2\alpha_3 = 0$$
$$\alpha_2 = 0$$

Es fácilmente apreciar que $\alpha_1=0,\,\alpha_2=0$ y $\alpha_3=0$

Por lo tanto, podemos concluir que el conjunto $(1,-1,2),(2,0,1),(-1,2,-1)\in\mathbb{R}^3$ es linealmente independiente

Recuerde que
$$P_n(\mathbb{R}) = \{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n | a_k \in \mathbb{R} \, \forall k = 0, 1, 2, \dots n \}$$

8. ¿Cuáles de los siguientes conjuntos son bases para \mathbb{R}^3 ?

- a) $\{(1,0,-1),(2,5,1),(0,-4,3)\}$
- b) $\{(2,-4,1),(0,3,-1),(6,0,-1)\}$
- c) $\{(1,2,-1),(1,0,2),(2,1,1)\}$