Notes on filtrations for logics that contain **K5**

Daniel Rogozin

1 Preliminaries

Let $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$ be a Kripke model and Γ a set of formulas closed under subformulas. An equivalence relation \sim is set to have a finite index if the quotient set W/\sim is finite. The equivalence relation \sim_{Γ} induced by Γ is defined as

$$w \sim_{\Gamma} v \Leftrightarrow \forall \varphi \in \Gamma (\mathcal{M}, w \models \varphi \Leftrightarrow \mathcal{M}, v \models \varphi).$$

If Γ is finite, then \sim_{Γ} has a finite index. An equivalence relation \sim respects \sim_{Γ} , if $w \sim v$ implies $w \sim_{\Gamma} v$.

Definition 1. Let $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$ be a Kripke model and Γ be a Sub-closed set formulas. A Γ -filtration of \mathcal{M} is a model $\widehat{\mathcal{M}} = \langle \widehat{W}, \widehat{R_1}, \dots, \widehat{R_n}, \widehat{\vartheta} \rangle$ such that:

- 1. $\widehat{W} = W/\sim$, where \sim is an equivalence relation having a finite index that respects Γ
- 2. $\hat{\vartheta}(p) = \{ [x]_{\sim} \mid x \in W \& x \in \vartheta(p) \}$
- 3. For each $i \in I$ one has $\widehat{R}_i^{min} \subseteq \widehat{R}_i \subseteq \widehat{R}_i^{max}$. $\widehat{R}_{i,\sim}^{min}$ is the i-th minimal filtered relation on \widehat{W} defined as

$$\hat{x}\hat{R}_{i}^{min}\hat{y} \Leftrightarrow \exists x' \sim x \; \exists y' \sim y \; xR_i y$$

 $\widehat{R}_{\Gamma,i}^{max}$ is the i-th maximal filtered relation on \widehat{W} induced by Γ defined as

$$\hat{x}\hat{R}_{\Gamma,i}^{max}\hat{y} \Leftrightarrow \forall \Box_{i}\varphi \in \Gamma \left(\mathcal{M}, x \models \Box_{i}\varphi \Rightarrow \mathcal{M}, y \models \varphi\right)$$

If Φ is finite subset of Γ and $\sim = \sim_{\Phi}$, then $\widehat{\mathcal{M}}$ is a definable Γ -filtration of \mathcal{M} through Φ . If $\sim = \sim_{\Gamma}$, then such a filtration by means of the definiton above is called *strict*. A class of models \mathbb{M} admits strict filtrations for models (ASF), if for every Sub-closed set Γ and for every $\mathcal{M} \in \mathbb{M}$ there exists a Γ filtration of \mathcal{M} . A class of frames \mathbb{F} admits strict filtrations for frames, if for every Sub-closed set Γ and for every frame $\mathcal{F} \in \mathbb{F}$ and every model \mathcal{M} over \mathcal{F} there exists a Γ filtration of \mathcal{M} . If \mathcal{L} is canonical, then the ASF property for frames and ASF property for models are equivalent [1, Theorem 2.10].

Lemma 1. Let Γ be a finite set of formulas closed under subformulas and $\widehat{\mathcal{M}}$ a filtration of \mathcal{M} through Γ , then for each $x \in W$ and for each $\varphi \in \Gamma$ one has

$$\mathcal{M},x\models\varphi\Leftrightarrow\widehat{\mathcal{M}},\hat{x}\models\varphi$$

Definition 2. Let \mathbb{F} be a class of Kripke frames and Γ a finite set of formulas closed under subformulas. If for every model \mathcal{M} over $\mathcal{F} \in \mathbb{F}$ there exists a model that is a Γ -definable filtration of \mathcal{M} , then \mathbb{F} admits definable filtration. A class of models \mathbb{M} admits definable filtration if for every $\mathcal{M} \in \mathbb{M}$ there exists a model belonging to the same class that is a definable Γ -filtration of \mathcal{M} .

Lemma 2.

- 1. Let \mathcal{L} be a complete normal modal logic. If Frames(\mathcal{L}) admits filtration, then \mathcal{L} has the finite model property.
- 2. If the class of models $Mod(\mathcal{L})$ admits filtration, then \mathcal{L} has the finite model property and it is Kripke complete as well.

Definition 3. A first-order formula is called Horn if it has the following form:

$$\forall x_1, \dots, x_n (x_{i_1} R x_{j_1} \wedge \dots \wedge x_{i_s} R x_{j_s} \rightarrow x_k R x_l)$$

Definition 4. Let H be a Horn property and $\langle W, R \rangle$ a Kripke frame. A Horn closure of a binary relation R is the minimal relation R^H containing R and satisfying H.

Lemma 3.
$$R^H = \bigcup_{n < \omega} R_n$$
 where

- 1. $R_0 = R$.
- 2. $R_{n+1} = R_n \cup \{(a,b) \in W \mid \exists \vec{c} \in W \ P(a,b,\vec{c})\}, \text{ where } P \text{ is a premise of } H.$

2 Filtrations for K5

E-closure (an Euclidean Horn closure of a binary relation) has the following equivalent definitions:

Lemma 4. Let $\mathcal{F} = \langle W, R \rangle$ be a Kripke frame. The following conditions are equivalent:

- 1. R^E is the smallest Euclidean relation containing R.
- 2. $R^E = \bigcup_{i < \omega} R_i$, where
 - $R_0 = R$
 - $R_{n+1} = R_n \cup (R_n^{-1} \circ R_n)$
- 3. xR^Ey iff there exists $n < \omega$ such that either xRy or $\exists z_1, \ldots, z_n$ with z_1Rx and $z_{n-1}Ry$ and for each $1 < i \le n$ one has either $z_{i-1}Rz_i$ or z_iRz_{i-1} .

4.
$$R^E = R \cup \bigcup_{i < \omega} (R^{-1} \circ (R \circ R^{-1})^n \circ R).$$

Proof.

- 1. (1) \Rightarrow (2) Let us show that if R^E is the smallest Euclidean relation containing R, then $R^E = \bigcup_{i < i} R_i$. There are two inclusions:
 - $R^E \subseteq \bigcup_{i < \omega} R_i$. Recall that R^E has the form (?):

$$R^E = \bigcap \{ R' \mid R \subseteq R', \forall a, b \in W \ R'(a, b) \Rightarrow \exists x \in W \ R'(x, a) \ \& \ R'(x, b) \}$$

- $\bigcup_{i<\omega} R_i \subseteq R^E$. Let us show that xR_ny for each $n<\omega$ implies xR^Ey by induction on n. If n=0, then xRy, thus, xR^Ey , since R is a subrelation of R^E . Suppose n=m+1 and $xR_{m+1}y$. Let us show that xR^Ey . From $xR_{m+1}y$, one has $(x,y)\in R^n\cup (R_n^{-1}\circ R_n)$. There are two cases:
 - $-xR^ny$, one needs to merely apply the IH.
 - $-xR_n^{-1}\circ R_ny$. Then $\exists z\in W\ xR_n^{-1}z\ \&\ zR_n$. That is, zR_nx and zR_ny for some z. R_n is already a subrelation of R^E . Thus, zR^Ex and zR^Ey . That implies xR^Ey .
- 2. (2) \Rightarrow (3) Let $(x,y) \in R_m$, let us the statement by induction on m.
 - (a) Suppose m = 0, then xRy, and the statement is shown putting n = 0.
 - (b) Suppose m=p+1 and $xR_{p+1}y$. Assume that either xRy or $\exists z_1,\ldots,z_p$ with z_1Rx and $z_{p-1}Ry$ and for each $1 < i \le p$ one has either $z_{i-1}Rz_i$ or z_iRz_{i-1} . $xR_{p+1}y$ implies $(x,y) \in R_p \cup (R_p^{-1} \circ R_p)$. If $(x,y) \in R_p$, then we merely apply the IH. Suppose $(x,y) \in R_p^{-1} \circ R_p$, then $(z,x) \in R_p$ and $(z,y) \in R_p$
- 3. (3) \Rightarrow (4) Suppose either xRy or there exist $n \geq 1$ and z_1, \ldots, z_n with z_1Rx and $z_{n-1}Ry$ and for each $1 < i \leq n$ one has either $z_{i-1}Rz_i$ or z_iRz_{i-1} . If xRy, then we are done. Otherwise there exists $n \geq 1$ with the condition above. Then $(x,y) \in R_{n+1}$ that follows from the condition.
- 4. $(4) \Rightarrow (1)$

Lemma 5. Let $\mathcal{F} = \langle W, R \rangle$ be a Kripke frame. Let us define $R^E = \bigcup_{i < \omega} R_i$ where:

1. $R_0 = R$

2. $R_{n+1} = R_n \cup (R_n^{-1} \circ R_n)$

Then R^E is Euclidean.

Proof. Let $(x,y), (x,z) \in R^E$, one needs to show that $(y,z) \in R^E$. Clearly that $(x,y) \in R_i$ and $(x,z) \in R_j$ for some $i,j < \omega$. Thus, we need $(y,z) \in R_m$ for some m depending on i and j. Let us consider the following cases:

- 1. i = 0 and j = 0Suppose $(x, y), (x, z) \in R_0 = R$, then $(y, z) \in R^{-1} \circ R$. Thus, $(y, z) \in R_1$
- 2. i = 0 and j = k + 1Suppose $(x, y) \in R$ and $(x, z) \in R_{k+1} = R_k \cup (R_k^{-1} \circ R_k)$. Clearly that $(x, y) \in R_{k+1}$ as well. It is obviously that $(y, z) \in R_{k+2}$ since $(y, x) \in R_{k+1}^{-1}$ and $(x, z) \in R_{k+1}$.
- 3. The case with i = k + 1 and j = 0 is similar to the previous one.
- 4. Suppose i=m+1 and j=k+1. That is, $(x,y) \in R_{m+1}=R_m \cup (R_m^{-1} \circ R_m)$ and $(x,z) \in R_{k+1}=R_k \cup (R_k^{-1} \circ R_k)$. Consider the following four subcases:

(a) Suppose $(x,y) \in R_m$ and $(x,z) \in R_k$ and $m \le k$ without loss of generality. $m \le k$ implies $R_m \subseteq R_k$ and $(x,y) \in R_k$ in particular. Thus, $(y,z) \in R_k^{-1} \circ R_k$, so $(y,z) \in R_{k+1}$.

(b) The rest of the cases are similar to the first one.

Theorem 1. K45 admits strict filtrations.

Proof. Let $\mathcal{M}=\langle W,R,\vartheta\rangle$ be a transitive Euclidean model and $\overline{\mathcal{M}}=\langle \overline{W},\overline{R},\overline{\vartheta}\rangle$ its minimal filtration through Γ , where Γ is finite and Sub-closed. Let us put $\widehat{R}=\overline{R}^+\cup\overline{R}^E$. Let us show that $\overline{R}^+\cup\overline{R}^E\subseteq\overline{R}^{max}$.

That is, if $\mathcal{M}, y \models \varphi$ for $\Diamond \varphi \in \Gamma$ and $\hat{x}\hat{R}\hat{y}$, then $\mathcal{M}, x \models \Diamond \varphi$.

Let $\hat{x}\hat{R}\hat{y}$. Let us consider the case when $(\hat{x},\hat{y}) \in \overline{R}^E$

- 1. Suppose $(\hat{x}, \hat{y}) \in \overline{R}$, then $\mathcal{M}, x \models \Diamond \varphi$ holds trivially by the definition of the minimal filtration.
- 2. Suppose the statement holds \overline{R}_n and $(\hat{x}, \hat{y}) \in \overline{R}_{n+1} = \overline{R}_n \cup (\overline{R}_n^{-1} \circ \overline{R}_n)$. We consider the case of $(\hat{x}, \hat{y}) \in (\overline{R}_n^{-1} \circ \overline{R}_n)$.

Then there exists \hat{z} such that $(\hat{z}, \hat{x}), (\hat{z}, \hat{y}) \in \overline{R}_n$.

By IH, $\mathcal{M}, z \models \Diamond \varphi$.

 $(\hat{z}, \hat{y}) \in \overline{R}_n$ iff there are $\hat{u}_1, \dots, \hat{u}_n$ such that

$$\hat{z} \underset{\hat{R}}{\longleftarrow} \hat{u}_1 \xrightarrow{\hat{R}'} \hat{u}_2 \xrightarrow{\hat{R}'} \dots \xrightarrow{\hat{R}'} \hat{u}_{n-1} \xrightarrow{\hat{R}'} \hat{u}_n \xrightarrow{\hat{R}} \hat{y}$$

where \hat{R}' is either \hat{R} or \hat{R}^{-1} .

As it is known, $\Diamond \Diamond \varphi \rightarrow \Box \Diamond \varphi \in \mathbf{K}45$.

 $\hat{u_1}\hat{z}$, that is, $u_1'Rz'$ for some $u_1' \in \hat{u}_1$ and $z' \in \hat{z}$. That is, $\mathcal{M}, u_1' \models \Diamond \Diamond \varphi$, so $\mathcal{M}, u_1' \models \Diamond \varphi$ and $\overline{\mathcal{M}}, \hat{u}_1 \models \Diamond \varphi$.

We have $\hat{u}_1\hat{R}'\hat{u}_2$. Suppose $\mathcal{M}, u_1'' \models \Diamond \varphi$ and $u_1''Ru_2'$. We also have $\mathcal{M}, u_1'' \models \Box \Diamond \varphi$, thus, $\mathcal{M}, u_2' \models \Diamond \varphi$.

Suppose $\hat{u}_2 \hat{R} \hat{u}_1$ and $u'_2 R u''_1$, then $\mathcal{M}, u'_2 \models \Diamond \varphi$.

Similarly, we have $\mathcal{M}, u_i \models \Diamond \varphi$ iff $\mathcal{M}, u_{i+1} \models \Diamond \varphi$, whenever $\hat{u}_i R' \hat{u}_{i+1}$.

Finally, we have $\hat{u}_n \hat{R} \hat{x}$. Thus, $u'_n R x'$ for some $u'_n \in \hat{u}_n$ and $x' \in \hat{x}$. $\mathcal{M}, u'_n \models \Diamond \varphi$, so $\mathcal{M}, u'_n \models \Box \Diamond \varphi$. Then $\mathcal{M}, x' \models \Diamond \varphi$.

Theorem 2. K5 does not admit strict filtrations.

Proof. Let us consider a K5 model whose Euclidean closure of the minimal filtration does not give us a filtration.

Let us consider a frame called \mathcal{F}_{bad} . We define this frame with the following graph:

Let us define a valuation ϑ such that $\vartheta(p) = \{w_5\}$ and $\vartheta(q) = \{w_1\}$. Let us consider a minimal filtration of \mathcal{M}_{bad} through the Sub-closure of $\Gamma = \{\neg p, \neg \diamondsuit p\}$.

Clearly that $w_2 \sim_{\Gamma} w_3$, since $\neg p$ and $\neg \diamondsuit p$ are true both at w_2 and w_3 . Moreover, $R_{min} \cup (R_{min}^{-1} \circ R_{min})$ is not a subset of R_{max} since $(\hat{w_1}, \hat{w_5}) \in (R_{min}^{-1} \circ R_{min})$, but $\Diamond p$ is not true at w_5 .

Let us also note that strict filtrations of this model is not Euclidean. Suppose by contrary that $\widehat{R}^{\mathcal{E}}$ is a strict filtraction of that model. So $R_{min}^{E} \subseteq \widehat{R}^{\mathcal{E}}$, since R_{min}^{E} is the minimal Euclidean relation containing R_{min} . On the other hand, $R_{min}^{E} \nsubseteq R_{max}$, so is not $\hat{R}^{\mathcal{E}}$.

$\mathbf{3}$ i,j-Euclideaness

Let R be a binary relation on $W \neq \emptyset$, then the i, j-Euclidean closure of R (where i, $j < \omega$), denoted as $R^{E_{i,j}}$, is a binary relation defined recursively as follows:

1. $R_0 = R$

2.
$$R_{n+1} = R_n \cup (((R_n)^{-1})^i \circ R_n^j)$$

3.
$$R^{E_{i,j}} = \bigcup_{k < \omega} R_k$$

Proposition 1. If R be a binary relation on $W \neq \emptyset$, $R^{E_{i,j}}$ is i, j-Euclidean.

 $\textit{Proof.} \ \ \text{By induction. Let} \ (x,y_1), (y_1,y_2), (y_2,y_3), \ldots, (y_{i-1},y_i), (x,z_1), (z_1,z_2), (z_2,z_3), \ldots, (z_{j-1},z_j) \in \mathbb{R}^{n-1}$ $R^{E_{i,j}}$. That is, each of these pairs belong to some R_k and every $k < \omega$ for every pair is its own. If k=0 for each pair, then $(y_i,z_j) \in R_1$. If some those k is non-zero, then we take the greatest amongst them, say e and all given pairs will be elements of R_{e+1} .

Theorem 3. $\mathbf{K5}^{i,j} = \mathbf{K} \oplus \Diamond^i p \rightarrow \Box^j \Diamond p$ admits definable filtrations.

Proof. Let $\mathcal{M} = \langle W, R, \vartheta \rangle$ and Γ a finite Sub-closed of formulas. We extend Γ as

$$\Delta = \Gamma \cup \operatorname{Sub}\{\Diamond^i \psi \mid \Box \psi \in \Gamma\} \cup \operatorname{Sub}\{\Box^j \Diamond \psi \mid \Diamond \psi \in \Gamma\}$$

Let $(\hat{x}, \hat{y}) \in R^{E_{i,j}}$, $\mathcal{M}, x \models \Box \psi$ for $\Box \psi$ in Δ . If n = 0, then the statement is obvious. Suppose n=1. Then $(\hat{x},\hat{y}) \in R_{min} \cup (((R_{min})^{-1})^i \circ R_{min}^j)$. Consider the second alternative. Then there exists \hat{z} such that $(\hat{x},\hat{z}) \in ((R_{min})^{-1})^i$ and $(\hat{z},\hat{y}) \in R_{min}^j$.

That is, there are
$$\hat{x_1}, \hat{x_2}, \dots, \hat{x_i}$$
 and $\hat{y_1}, \hat{y_2}, \dots, \hat{y_j}$ such that
$$\hat{z} \xrightarrow{R_{min}} \hat{x_1} \xrightarrow{R_{min}} \hat{x_2} \xrightarrow{R_{min}} \hat{x_2} \xrightarrow{R_{min}} \hat{x_i} \xrightarrow{R_{min}} \hat{x}$$

$$\hat{z} \xrightarrow{R_{min}} \hat{y_1} \xrightarrow{R_{min}} \hat{y_2} \xrightarrow{R_{min}} \dots \xrightarrow{R_{min}} \hat{y_j} \xrightarrow{R_{min}} \hat{y}$$

???

4 The case of 2-transitivity

Let us define the logic \mathcal{L} as $\mathbf{K} \oplus \Diamond \Diamond \Diamond p \to \Diamond p$. Let R be a binary relation, the \mathcal{L} -closure of R is defined (denoted as $R^{\mathfrak{D}}$) as the following union:

$$R^{\diamondsuit} = R \cup R^3 \cup R^5 \cup \cdots \cup R^{2k+1} \cup \cdots$$

Theorem 4. \mathcal{L} does not admit strict filtrations.

Proof. Consider the following frame $\mathcal{F} = \langle W, R \rangle$:

Clearly that \mathcal{F} is an \mathcal{L} -frame. We define the valuation ϑ as follows:

$$\vartheta(p) = \{x\}
\vartheta(q) = \{y, y_1\}
\vartheta(r) = \{z\}$$

Let us put $\Gamma = \operatorname{Sub}\{p, q, \diamond r\}$. We factorise W through \sim_{Γ} and consider a model $\widehat{\mathcal{M}} = \langle W/\sim_{\Gamma}, \widehat{R}, \widehat{\vartheta} \rangle$, where $\widehat{R} = (\widehat{R}_{min})^{\diamondsuit}$. We have $(\widehat{x}, \widehat{z}) \in \widehat{R} \circ \widehat{R} \circ \widehat{R}$, but $\diamond r$ is not true at x.

5 Finite "canonical" models

Let \mathcal{L} be a normal modal logic, $\mathcal{M}_{\mathcal{L}}$ its canonical model, and Γ a finite Sub-closed set of formulas. Let us put $\Gamma' = \operatorname{Sub}(\varphi) \cup \{\neg \psi \mid \psi \in \operatorname{Sub}(\varphi)\}.$

A subset $\Delta \subseteq' \Gamma$ is a *finite* \mathcal{L} -consistent set if $\neg \bigwedge \Delta \notin \mathcal{L}$. A subset Δ is maximal, if (the following are obviously equivalent):

- 1. Δ is maximal amongst finite \mathcal{L} -consistent sets,
- 2. For each $\psi \in \text{Sub}(\varphi)$ either $\psi \in \Delta$ or $\neg \psi \in \Delta$.

Every finite \mathcal{L} -theory is clearly can be extended to some maximal one. It is the finite version of Lindenbaum's lemma.

Definition 5. Let \mathcal{L} be a modal logic and Γ be a finite Sub-closed set of formulas. A finite "canonical" model is a triple $\mathcal{M}^{\Gamma}_{\mathcal{L}} = \langle W^{\Gamma}_{\mathcal{L}}, R^{\Gamma}_{\mathcal{L}}, \vartheta^{\Gamma}_{\mathcal{L}} \rangle$, where

- 1. $W_{\mathcal{L}}^{\Gamma}$ is the set all maximal theories that extend finite \mathcal{L} -theories
- 2. $R_{\mathcal{L}}^{\Gamma}$ is a relation such that $\langle W_{\mathcal{L}}^{\Gamma}, R_{\mathcal{L}}^{\Gamma} \rangle$ is an \mathcal{L} -frame and

$$\forall \Box \psi \in \operatorname{Sub}(\varphi) \ \forall \Delta_1 \in W_{\mathcal{L}}^{\Gamma} \ (\Box \psi \in \Delta_1 \Leftrightarrow \forall \Delta_2 \in R_{\mathcal{L}}^{\Gamma}(\Delta_1) \ \psi \in \Delta_2)$$

3. $\vartheta_{\mathcal{L}}^{\Gamma}(p) = \{ \Delta \in W_{\mathcal{L}}^{\varphi} \mid p \in \Delta \} \text{ for every variable } p \in \Gamma.$

Lemma 6. Let \mathcal{L} be a modal logic and $\varphi \notin \mathcal{L}$, then $\mathcal{M}_{\mathcal{L}}^{Sub(\varphi)} \not\models \varphi$.

Lemma 7. Let \mathcal{L} be a modal logic and Γ a finite Sub-closed set of formulas, then if \mathcal{L} admits strict filtrations, then there exists a finite "canonical" model $\mathcal{M}_{\mathcal{L}}^{\Gamma}$ such that $\mathcal{M}_{\mathcal{L}}^{\Gamma} \models \mathcal{L}$.

Proof. (\Rightarrow) Let Γ be a finite Sub-closed of formulas. \mathcal{L} admits strict filtrations, so the filtration of the canonical model $\mathcal{M}_{\mathcal{L}}$ through Γ is also an \mathcal{L} -model. The underlying set of $\mathcal{M}_{\mathcal{L}}/\sim_{\Gamma}$ consists of maximal \mathcal{L} theories up to Γ -equivalence and this quotient set is finite.

It is readily checked that the quotient model $\mathcal{M}_{\mathcal{L}}/\sim_{\Gamma}$ satisfies Definition 5.

The converse implication does not have to true generally. GL might be an example of a logic that has the "finite canonical" model property with no filtrations.

6 Fusion stuff

Definition 6. Let \mathcal{L}_1 and \mathcal{L}_2 be modal logics, then the fusion $\mathcal{L}_1 * \mathcal{L}_2$ is the minimal bimodal logic that contains \mathcal{L}_1 and \mathcal{L}_2 [2].

Lemma 8.

- Let Γ be a finite and Sub-closed set of formulas and $\mathcal{M} = \langle W, R, \vartheta \rangle$. Consider $\Gamma' = \mathbb{C}$ $\Gamma \cup \{ \Diamond \Box \psi \mid \Box \psi \in \Gamma \}$. Let Δ be any finite and Sub-closed extension of Γ' . Then a model $\widehat{M} = \langle W/\sim_{\Delta}, (R_{\Delta}^{min})^{E}, \widehat{\vartheta} \rangle \text{ is a filtration of } \mathcal{M} \text{ through } \Delta.$
- The same for $\mathbf{K} \oplus \Diamond \Diamond \Diamond p \rightarrow \Diamond p$

Proof. Recall that $(R_{\Delta}^{min})^{E}$ is defined inductively as:

- 1. $R^0_{\Delta} = R^{min}_{\Delta}$
- 2. $R_{\Lambda}^{n+1} = R_{\Lambda}^{n} \cup (R_{\Lambda}^{n-1} \circ R_{\Lambda}^{n})$
- 3. $(R_{\Lambda}^{min})^E = \bigcup_{k < \omega} R_{\Lambda}^k$

If R^{min}_{Δ} is already a subrelation of R^{max} , so the base case is self-evident. Suppose the statement holds for R^n_{Δ} , $(\hat{x}, \hat{y}) \in R^{n+1}_{\Delta}$, that is, there exists \hat{z} such that (\hat{z}, \hat{x}) , $(\hat{z}, \hat{y}) \in R^{n+1}_{\Delta}$ R^n_{Λ} . Let $\mathcal{M}, x \models \Box \psi$ (for $\Box \psi \in \Gamma$).

We rewrite $(\hat{z}, \hat{x}) \in R_{\Delta}^n$ as the following sausage (for some $\widehat{u_1}, \widehat{u_2}, \dots, \widehat{u_{n-1}}, \widehat{u_n}$):

$$\hat{z} \overset{R_{\Delta}^{min}}{\lessdot} \widehat{u_1} \xrightarrow{R'} \widehat{u_2} \xrightarrow{R'} \dots \xrightarrow{R'} \widehat{u_{n-1}} \xrightarrow{R'} \widehat{u_n} \xrightarrow{R_{\Delta}^{min}} \hat{x}$$

where R' is either R_{Λ}^{min} or its converse. We have $\mathcal{M}, z \models \Box \psi$, since $\mathcal{M}, x \models \Box \psi$ implies $\mathcal{M}, u_n \models \Diamond \Box \psi$. After that we apply the following property of **K**5-models:

For each $a, b \in M_i$ such that aR_ib we have $\mathcal{M}_i, a \models \Diamond \Box p_{\psi}$ iff $\mathcal{M}_i, b \models \Diamond \Box p_{\psi}$

Note that we always stay within Δ since $\Gamma' \subseteq \Delta$. Finally, we conclude $\mathcal{M}, x \models \psi$ from IH and $\mathcal{M}, z \models \Box \psi$.

The second item is shown similarly.

Theorem 5.

- 1. K5 * K5 admits definable filtrations.
- 2. $\mathbf{K}5 * \cdots * \mathbf{K}5$ admits definable filtrations.
- 3. If \mathcal{L} admits strict filtrations, then $\mathbf{K}5 * \mathcal{L}$ admits definable filtrations

- 4. If $\mathcal{L}_1, \ldots, \mathcal{L}_n$ admit strict filtrations, then $\mathbf{K}_5 * \cdots * \cdots * \mathbf{K}_5 * \mathcal{L}_1 * \cdots * \mathcal{L}_n$
- 5. Let $\mathcal{L} = \mathbf{K} \oplus \Diamond \Diamond \Diamond p \rightarrow \Diamond p$ (here and below), then $\mathcal{L} * \mathcal{L}$ admits definable filtrations.
- 6. Let $\mathcal{L} = \mathbf{K} \oplus \Diamond \Diamond \Diamond p \rightarrow \Diamond p$ and \mathcal{L}_1 a logic that admits strict filtrations, then $\mathcal{L} * \mathcal{L}_1$

Proof.

1. Let Γ be a finite Sub-closed set of bimodal formulas, $\mathcal{F} = \langle W, R_1, R_2 \rangle$ a **K**5 * **K**5-frame, and ϑ a valuation on \mathcal{F} . Denote $\langle \mathcal{F}, \vartheta \rangle$ as \mathcal{M} .

We introduce the set of fresh variables $V = \{p_{\psi} | \psi \in \Gamma\}$ and define a new model $\mathcal{M}' = \langle \mathcal{F}, \vartheta' \rangle$ as follows:

For all
$$\psi \in \Gamma$$
, $\mathcal{M}, x \models \psi \Leftrightarrow \mathcal{M}', x \models \psi \Leftrightarrow \mathcal{M}', x \models p_{\psi}$.

Consider these modifications of Γ and V:

$$\Gamma' = \Gamma \cup \{ \diamondsuit_1 \square_1 \psi \mid \square_1 \psi \in \Gamma \} \cup \{ \diamondsuit_2 \square_2 \psi \mid \square_2 \psi \in \Gamma \}$$
$$\Delta = V \cup \text{Sub}(\{ \diamondsuit \square p_{\psi} \mid \square_i \psi \in \Gamma, in = 1, 2 \})$$

Let us define an equivalence relation \sim_{Δ} induced by Δ .

Consider $\mathcal{M}_i = \langle W, R_i, \vartheta' \rangle$, a reduct of \mathcal{M}' , we have:

- (a) $\mathcal{M}_i, x \models \Box p_{\psi} \text{ iff } \mathcal{M}, x \models \Box_i \psi$
- (b) $\mathcal{M}_i, x \models \Diamond \Box p_{\psi} \text{ iff } \mathcal{M}, x \models \Diamond_i \Box_i \psi$

So $\sim = \sim_{\Gamma'}$ by the construction. Let us put $\widehat{W} = W / \sim_{\Gamma'}$. Lemma 8 implies the following claim:

Claim 1. Let $\widehat{R}_i = (R_{\Delta}^{min})^E$ and $\widehat{\vartheta(p)} = \{[x]_{\sim_i} \mid \mathcal{M}_i, x \models p\}$ for $p \in \Delta_1$, define $\widehat{\mathcal{M}}_i = \widehat{W}, \widehat{R}_i, \widehat{\vartheta}$. Then $\widehat{\mathcal{M}}_i \models \mathbf{K}_5$ and $\widehat{\mathcal{M}}_i$ is a filtration of \mathcal{M}_i through Δ .

Finally, we consider a model $\widehat{\mathcal{M}} = \langle \widehat{W}, \widehat{R}_1, \widehat{R}_2, \vartheta \rangle$, where $\widehat{R_{\Gamma'}}_i = R_{i\Gamma'}^{min^E}$ and $\vartheta(p)$ is defined as usual for $p \in \Gamma$. $\widehat{\mathcal{M}}$ is a filtration of \mathcal{M} through Γ' .

Let $\hat{x}\widehat{R_{\Gamma'}}_i\hat{y}$ and $\mathcal{M}, x \models \Box_i\psi$ for $\Box_i\psi \in \Gamma$. Then $\mathcal{M}_i, x \models \Box p_{\psi}$, so $\widehat{\mathcal{M}}_i, \hat{x} \models \Box p_{\psi}$. By the claim above, $\widehat{\mathcal{M}}_i$ is a filtration of \mathcal{M}_i through Δ , so $\mathcal{M}_i, y \models p_{\psi}$. Then $\mathcal{M}, y \models \psi$.

- 2. Likewise
- 3. The argument is the same as in the proof of the first item, except for **Claim** 1 that has the following formulation: Let $\widehat{R}_1 = (R_{\Delta}^{min})^E$ and $\widehat{R}_2 = (R_{\Delta}^{min})^{\mathcal{L}_1}$ Define a valuation as usual as $\widehat{\vartheta(p)} = \{[x]_{\sim_i} \mid \mathcal{M}_i, x \models p\}$ for $p \in \Delta_1$, define $\widehat{\mathcal{M}}_1 = \langle \widehat{W}, \widehat{R}_1, \widehat{\vartheta} \rangle$ and $\widehat{\mathcal{M}}_2 = \langle \widehat{W}, \widehat{R}_2, \widehat{\vartheta} \rangle$. Then $\widehat{\mathcal{M}}_1 \models \mathbf{K}_5$ and $\widehat{\mathcal{M}}_1 \models \mathbf{L}$ and $\widehat{\mathcal{M}}_i$ is a filtration of \mathcal{M}_i through Δ .
- 4. Likewise
- 5. The argument is similar to the proof of first item, but filtrations are slightly different. Let $\mathcal{M} = \langle W, R_1, R_2, \vartheta \rangle$ be a $\mathcal{L} * \mathcal{L}$ model and Γ a Sub-closed set of formulas. As above, we define a set V and a model \mathcal{M}' . Define extensions of Γ and V:

$$\Gamma' = \Gamma \cup \{ \diamondsuit_1 \diamondsuit_1 \psi \mid \diamondsuit_1 \psi \in \Gamma \} \cup \{ \diamondsuit_2 \diamondsuit_2 \psi \mid \diamondsuit_2 \psi \in \Gamma \}$$
$$\Delta = V \cup \text{Sub}(\{ \diamondsuit \diamondsuit_{\mathcal{D}_{\psi}} \mid \diamondsuit \psi \in \Gamma, i = 1, 2 \})$$

As above $\sim_{\Delta} = \Gamma'$ and $\widehat{\mathcal{M}'} = \langle W/\sim_{\Delta}, \widehat{R_i}, \widehat{\vartheta} \rangle$ are filtrations of reducts of \mathcal{M}' through Δ . Then $\widehat{\mathcal{M}} = \langle W/\sim_{\Delta}, \widehat{R_1}, \widehat{R_2}, \widehat{\vartheta} \rangle$ is a required filtration of the original \mathcal{M} .

6. Extend Γ with $\{ \diamondsuit_i \diamondsuit_i \psi \mid \diamondsuit_i \psi \in \Gamma, i = 1, 2 \}$ and V with $\{ \diamondsuit \diamondsuit p_{\psi} \mid \diamondsuit_i \psi, i = 1, 2 \}$

Theorem 6. Let \mathcal{L}_1 and \mathcal{L}_2 be modal logics that admit definable filtrations. If $\operatorname{Mod}(\mathcal{L}_1)$ and $\operatorname{Mod}(\mathcal{L}_2)$ admit definable filtrations, so does $\operatorname{Mod}(\mathcal{L}_1 * \mathcal{L}_2)$.

Proof. Let $\mathcal{M} = \langle W, R_1, R_2, \vartheta \rangle$ be an $\mathcal{L}_1 * \mathcal{L}_2$. We define a notation $\nabla = \{\neg \diamondsuit, \diamondsuit \neg, \diamondsuit\}$. Both logics admit definable filtrations, so for every finite Sub-closed set Γ and for every \mathfrak{M} , an \mathcal{L}_1 -model (or an \mathcal{L}_2 one) there exists there exists Δ , a extension of Γ having the form:

$$\Delta_1 = \Gamma \cup \operatorname{Sub}\{\nabla_1 \nabla_2 \dots \nabla_n \diamondsuit \psi \mid \diamondsuit \psi \in \Gamma\} \text{ (for } \mathcal{L}_1)$$

$$\Delta_2 = \Gamma \cup \operatorname{Sub}\{\nabla_1 \nabla_2 \dots \nabla_k \diamondsuit \psi \mid \diamondsuit \psi \in \Gamma\} \text{ (for } \mathcal{L}_2)$$

such that $\widehat{\mathfrak{M}} = \langle W/\sim_{\Delta_i}, \widehat{R}, \vartheta \rangle$ is a filtration of \mathfrak{M} through the corresponding Δ_i .

Let V be a set of fresh variables indexed over Γ as in the proof for a fusion of **K5** with something else. Let \mathcal{M}' be a model defined as previously. We extend V and Γ in the following way:

$$\Gamma' = \Gamma \cup \operatorname{Sub}\{\nabla_{11}\nabla_{21}\dots\nabla_{n1}\diamondsuit_1\psi \mid \diamondsuit_1\psi \in \Gamma\} \cup \operatorname{Sub}\{\nabla_{12}\nabla_{22}\dots\nabla_{n2}\diamondsuit_2\psi \mid \diamondsuit_2\psi \in \Gamma\}$$

$$\Delta = V \cup \operatorname{Sub}\{\nabla_1\nabla_2\dots\nabla_n\diamondsuit p_\psi \mid \nabla_{n+11}\psi \in \Gamma'\} \cup \operatorname{Sub}\{\nabla_1\nabla_2\dots\nabla_k\diamondsuit p_\psi \mid \diamondsuit_2\psi \in \Gamma\}.$$

By the construction, $\sim_{\Gamma'} = \sim_{\Delta}$. So we have filtrations for the corresponding reducts of \mathcal{M}' through Δ as well as for the original \mathcal{M} .

References

- [1] Stanislav Kikot, Ilya Shapirovsky, and Evgeny Zolin. Completeness of logics with the transitive closure modality and related logics. arXiv preprint arXiv:2011.02205, 2020.
- [2] Agi Kurucz. Combining modal logics. Studies in Logic and Practical Reasoning, 3:869–924, 2007.