

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11284195 A

(43) Date of publication of application: 15 . 10 . 99

(51) Int. CI

H01L 29/786 H01L 21/336 G02F 1/136 H01L 21/3205

(21) Application number: 10086292

(22) Date of filing: 31 . 03 . 98

(71) Applicant:

MITSUBISHI ELECTRIC

CORP ADVANCED DISPLAY INC

(72) Inventor:

SAKATA KAZUYUKI INOUE KAZUNORI TAKEGUCHI TORU NAKAMURA NOBUHIRO YAMADA MASARU

(54) THIN FILM TRANSISTOR AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME

(57) Abstract:

PROBLEM TO BE SOLVED: To directly provide low contact resistance with indium tin oxide, by forming an insulating film by means of covering a first electrode and a substrate, forming a second electrode constituted of a transparent film electrode on the insulating film and electrically connecting the second electrode and the first electrode through a contact hole.

SOLUTION: Pure aluminum or aluminum alloy is used and a first electrode being one of a gate, a source and a drain is formed on a transparent insulating substrate 1. Impurity constituted of one of N, O, Si and C is added to the upper layer of the first electrode. A second layer 2 to which impurity is added and a first layer 3 to which impurity is not added are formed. An insulating film 4 is formed by covering the first electrode and the transparent insulating substrate 1. The insulating film 4 is patterned, a contact hole 10 is formed and a second electrode and the first electrode, which are formed on the insulating film 4 through the contact hole 10, are electrically connected.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-284195

(43)公開日 平成11年(1999)10月15日

(51) Int.Cl. ⁶	FI	
H01L 29/786	H01L 29/78 616K	
21/336	G 0 2 F 1/136 5 0 0	
G O 2 F 1/136 5 0 0	H 0 1 L 21/88 M	
H 0 1 L 21/3205	29/78 6 1 6 U	
	6 1 6 V	
	審査請求 未請求 請求項の数6 OL (全 10 頁)	
(21)出願番号 特願平10-86292	(71) 出願人 000006013	
	三菱電機株式会社	
(22)出顧日 平成10年(1998) 3月31日	東京都千代田区丸の内二丁目2番3号	
	(71) 出願人 595059056	
	株式会社アドパンスト・ディスプレイ	
	熊本県菊池郡西合志町御代志997番地	
	(72)発明者 坂田 和之	
	東京都千代田区丸の内二丁目2番3号 三	
	菱電機株式会社内	
	(72)発明者 井上 和式	
	東京都千代田区丸の内二丁目2番3号 三	
	菱電機株式会社内	
	(74)代理人 弁理士 朝日奈 宗太 (外1名)	
	最終頁に続く	

(57)【要約】

【課題】 低抵抗なA1配線材料を用いて、生産コストの低下および生産性の向上を計ることができる高性能なTFTとその製造方法および液晶表示装置を提供する。

【解決手段】 本発明の薄膜トランジスタは、透明絶縁性基板上に形成された第1電極であるゲート、ソースおよびドレインと、該第1電極および前記透明絶縁性基板を覆って形成された絶縁膜と、前記絶縁膜上に形成された第2電極とを少なくとも含み、前記第1電極が純AlおよびAl合金のうちのいずれかからなる下層の第1層と、純AlおよびAl合金のうちのいずれかにN、O、SiおよびCのうちの少なくとも1つからなる不純物を添加されてなる第2層とからなり、前記第2電極が透明膜電極からなり、前記第2電極と前記第1電極の第2層とが電気的に接続されてなる。

【特許請求の範囲】

【請求項1】 (1)透明絶縁性基板上に、純AlおよびAl合金のいずれかを用いて、ゲート、ソースおよびドレインのうちの少なくとも1つである第1電極を形成する工程と、(2)N、O、SiおよびCのうちの少なくとも1つからなる不純物を前記第1電極の上層に添加し前記不純物を添加した第2層と前記不純物を添加しない第1層を形成する工程と、(3)前記第1電極および前記基板を覆って絶縁膜を成膜する工程と、(4)該絶縁膜にパターニングを施しコンタクトホールを形成する工程と、(5)前記絶縁膜上に透明膜電極からなる第2電極を形成して該第2電極と第1電極とを前記コンタクトホールを介して電気的に接続する工程とを少なくとも含む薄膜トランジスタの製法。

【請求項2】 透明絶縁性基板上に形成された第1電極であるゲート、ソースおよびドレインと、該第1電極および前記透明絶縁性基板を覆って形成された絶縁膜と、該絶縁膜上に形成された第2電極とを少なくとも含み、前記第1電極が純AlおよびAl合金のうちのいずれかからなる下層の第1層と、純AlおよびAl合金のうちのいずれかからなる下層の第1層と、純AlおよびAl合金のうち20のいずれかにN、O、SiおよびCのうちの少なくとも1つからなる不純物が添加されてなる第2層とからなり、前記第2電極が透明膜電極からなり、前記第2電極と前記第1電極の第2層とが電気的に接続されてなる薄膜トランジスタ。

【請求項3】 前記不純物が前記第1層と前記第2層との界面で連続分布してなる請求項2記載の薄膜トランジ・スタ。

【請求項4】 前記第1層と前記第2層とが同時エッチング可能な層である請求項2記載の薄膜トランジスタ。 【請求項5】 前記透明膜電極が酸化インジウム、酸化すず、酸化インジウムすずおよび酸化亜鉛のいずれかからなる請求項2記載の薄膜トランジスタ。

【請求項6】 透明絶縁性基板上に形成された第1電極であるゲート、ソースおよびドレインと、該第1電極および前記透明絶縁性基板を覆って形成された絶縁膜と、該絶縁膜上に形成された第2電極とを少なくとも含み、前記第1電極が純AlおよびAl合金のうちのいずれかからなる下層の第1層と、純AlおよびAl合金のうちのいずれかにN、O、SiおよびCのうちの少なくとも1つからなる不純物を添加されてなる第2層とからなり、前記第2電極が透明膜電極からなり、前記第2電極と前記第1電極の第2層とが電気的に接続されてなる薄膜トランジスタが少なくとも含まれるTFTアレイ基板を少なくとも有する液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、薄膜トランジスタ (以下、TFTと称す)とその製造方法およびTFTを 用いた液晶表示装置に関する。

50

[0002]

【従来の技術】マトリックス型液晶表示装置は、通常半導体薄膜(以下、半導体膜と称す)などからなるTFTなどが設けられたTFTアレイ基板と対向基板との2枚の基板の間に液晶などの表示材料が挟持され、この表示材料に対して、画素ごとに選択的に電圧が印加されるようにして構成されている。対向基板上には、対向電極、カラーフィルタおよびブラックマトリックスなどが設けられている。このようなTFTアレイ基板を用いた液晶もの表示装置(Liquid Crystal Display、以下LCDと略記する)を以下TFT-LCDと称する。

【0003】TFTアレイ基板は、ガラスなどからなる 絶縁性基板上に各素子ごとにアレイ状にゲート電極、ソ ース電極、ドレイン電極および半導体膜からなるTFT ならびに画素電極が少なくとも設けられ、その他、配向 膜や必要に応じて蓄積容量などが設けられるとともに、 各画素どうしのあいだにはゲート配線やソース配線など の信号線がそれぞれ互いにかつ並行に複数本ずつ設けら れて表示領域が構成されている。さらに表示領域の外側 に、各信号線に対応してそれぞれ入力端子や、TFTを 駆動する駆動回路などが設けられている。

【0004】このようなTFTアレイ基板を用いた液晶装置を作製するにはガラス基板上にTFT、ゲート(ゲート電極とゲート配線とをあわせて単にゲートという)、ソース/ドレイン(ソース電極とソース配線をあわせて単にソースといい、また、ドレイン電極を単にドレインともいう。さらに、ソースおよびドレインをソース/ドレインと表わす)およびその他の共通配線をアレイ状に作製して、表示領域とするとともに、入力端子、予備配線および駆動回路などを表示領域の周辺に配置する。このときそれぞれの機能を発現させるために導電性薄膜(以下、導電膜と称す)や絶縁性薄膜(以下、絶縁膜と称す)を必要に応じて配設する。また、対向基板上には対向電極を設けるとともにカラーフィルタ、ブラックマトリックスを設ける。

【0005】TFTアレイ基板と対向基板とを作製した後、2枚の基板のあいだに液晶材料が注入されうるように所望の隙間を有する状態にして両基板をその周囲で貼り合わせた後、2枚の基板の隙間に液晶材料を注入してLCDを作製する。

【0006】LCDに用いられるTFTアレイ基板や対向基板には、薄膜技術を利用して種々の半導体装置などが設けられている。これらの半導体装置には、半導体膜や絶縁膜、導電膜が形成されており、層間の電気的接続をとるために層間絶縁膜や半導体膜を貫通するコンタクトホールがさらに形成されている。

【0007】TFT-LCDにおいては、大型化あるいは高精細化に伴い、ゲート配線やソース/ドレイン配線には信号の遅延を防止するために、純AIあるいはAIを主成分とする電気的に低抵抗な合金材料を用いること

20

30

3

が特性上およびプロセス上からは望ましいが、透明性の 画素電極となるITOなどからなる第2電極と、これら 純AIあるいはAI合金からなる第1電極とコンタクト させると、そのコンタクト抵抗は1E10~1E12Ω と非常に高く、良好なコンタクト特性をうることはでき

【0008】したがって、絶縁膜に開口したコンタクトホールを介して純AlまたはAl合金からなる第1電極と画素電極となるITOなどの透明性導電膜からなる第2電極とを直接コンタクト(接続)するようなTFTアレイ基板を実現することは不可能であった。

【0009】この問題を解決する方法として、従来では良好なコンタクトをうるために第1電極は、たとえば特開平4-253342、4-305627および8-18058号公報に見られるように、純AlまたはAl合金上にCr、Ti、Mo、Cu、Niなどを成膜する2層構造としていた。

[0010]

なかった。

【発明が解決しようとする課題】このように従来の製造方法においては、ITOなどからなる第2電極と純AIまたはAI合金からなる第1電極とのコンタクト抵抗が1×10E10~1×10E12Ωと非常に高く、良好なコンタクト抵抗がえられなかった。また、良好なコンタクト抵抗がえられなかった。また、良好なコンタクトをうるために第1電極を材料の異なる2層構造としたばあいは、同薬液および同時エッチングは不可能であり、2種類の薬液による2度のエッチング工程を必要とするため工程の複雑化を招いていた。本発明は、第2電極と第1電極とのコンタクト部において、良好なコンタクト抵抗をうるとともに、第1電極を同薬液による同時エッチング可能な2層構造とすることで、低抵抗なAI配線材料を用いて、かつ生産コストの低下および生産性の向上を計ることができる高性能なTFTとその製造方法および液晶表示装置を提供するものである。

[0011]

【課題を解決するための手段】本発明の請求項1にかかわる薄膜トランジスタの製法は、(1)透明絶縁性基板上に、純A1およびA1合金のいずれかを用いて、ゲート、ソースおよびドレインのうちの少なくとも1つである第1電極を形成する工程と、(2)N、O、SiおよびCのうちの少なくとも1つからなる不純物を前記第1電極の上層に添加し前記不純物を添加した第2層と前記不純物を添加しない第1層を形成する工程と、(3)前記第1電極および前記基板を覆って絶縁膜を成膜する工程と、(4)該絶縁膜にパターニングを施しコンタクトホールを形成する工程と、(5)前記絶縁膜上に透明膜電極からなる第2電極を形成して該第2電極と第1電極とを前記コンタクトホールを介して電気的に接続する工程とを少なくとも含むものである。

【0012】本発明の請求項2にかかわる薄膜トランジスタは、透明絶縁性基板上に形成された第1電極である 50

4

ゲート、ソースおよびドレインと、該第1電極および前記透明絶縁性基板を覆って形成された絶縁膜と、該絶縁膜上に形成された第2電極とを少なくとも含み、前記第1電極が純AlおよびAl合金のうちのいずれかからなる下層の第1層と、純AlおよびAl合金のうちのいずれかにN、O、SiおよびCのうちの少なくとも1つからなる不純物が添加されてなる第2層とからなり、前記第2電極が透明膜電極からなり、前記第2電極と前記第1電極の第2層とが電気的に接続されてなるものである。

【0013】本発明の請求項3にかかわる薄膜トランジスタは、前記不純物が前記第1層と前記第2層との界面で連続分布してなるものである。

【0014】本発明の請求項4にかかわる薄膜トランジスタは、前記第1層と前記第2層とが同時エッチング可能な層であるものである。

【0015】本発明の請求項5にかかわる薄膜トランジスタは、前記透明膜電極が酸化インジウム、酸化すず、酸化インジウムすずおよび酸化亜鉛のいずれかからなるものである。

【0016】本発明の請求項6にかかわる液晶表示装置は、透明絶縁性基板上に形成された第1電極であるゲート、ソースおよびドレインと、該第1電極および前記透明絶縁性基板を覆って形成された絶縁膜と、該絶縁膜上に形成された第2電極とを少なくとも含み、前記第1電極が純AlおよびAl合金のうちのいずれかからなる下層の第1層と、純AlおよびAl合金のうちのいずれかにN、O、SiおよびCのうちの少なくとも1つからなる不純物を添加されてなる第2層とからなり、前記第2電極が透明膜電極からなり、前記第2電極と前記第1電極の第2層とが電気的に接続されてなる薄膜トランジスタが少なくとも含まれるTFTアレイ基板を少なくとも有するものである。

【0017】前記第2層が、Ar+N₂の混合ガススパッタにより形成されてなるものである。

【0018】前記第2層が、 $Ar+N_2+CO_2$ および $Ar+N_2+CF_4$ のうちのいずれかの混合ガススパッタにより形成されてなるものである。

【0019】前記第2層が、少なくとも純A 1 およびA 1 合金のいずれかからなる第1層成膜後、N₂のイオンを注入することにより形成されてなるものである。

【0020】前記第2層が、前記(4)の工程後、N₂のイオンを注入することによりコンタクト部表面のみに形成されてなるものである。

【0021】前記第2層が、第1層形成後、窒化ガス雰囲気中でのアニールにより形成されてなるものである。

【0022】前記第2層が、前記(4)の工程後、窒化 ガス雰囲気中でのアニールによりコンタクト部表面のみ に形成されてなるものである。

【0023】前記第2層が、第1層形成後、N₂プラズ

マにより形成されてなるものである。

【0024】前記第2層が、前記(4)の工程後、N₂ プラズマによりコンタクト部表面のみに形成されてなる ものである。

【0025】前記第2層に対する不純物添加方法として Nの代わりにOを含むガス、Siを含むガスおよびCを 含むガスのうちのいずれかが用いられてなるものであ る。

【0026】前記第2層が、Ar+NH,の混合ガスス パッタにより形成されてなるものである。

【0027】前記第2層が、第1層形成後、該第1層を 形成した透明絶縁性基板をNH、OHに浸漬させ、その のちアニール処理を施すことにより形成されてなるもの

【0028】請求項1記載の工程(3)の絶縁膜形成工 程において、該絶縁膜を窒化シリコンとし、拡散により 純AlおよびAl合金のうちのいずれかからなる第1電 極表面にSiおよびNを不純物として有する第2層を形 成する。

【0029】前記絶縁膜の窒化シリコン膜をSiN、 H₂、NH₃およびN₂の混合ガスを用いた化学的気相成 長法を用いて成長することにより第1層の表面にSiお よびNを拡散させて第2層を形成する。

【0030】前記絶縁膜の窒化シリコンを少なくとも2 層構造とし、とくに初段の窒化シリコン膜をSiHu、 H₂、NH₃およびN₂+CF₄からなる混合ガスを用いた 化学的気相成長法にて形成する。

【0031】請求項1記載の工程(3)の絶縁膜形成工 程において、該絶縁膜をSiO2とし、拡散により純A 1およびA1合金のうちのいずれかからなる第1電極表 面にSiおよびOを不純物として有する第2層を形成す る。

【0032】請求項1記載の工程(5)の透明膜電極か らなる第2電極形成工程において、該第2電極を、少な くともArガスのみによるスパッタリング法にて形成し た第1層と、Ar+O₂の混合ガスによるスパッタリン グ法にて形成した第2層とから形成し、かつ該第2電極 の第1層と前記第1電極の第2層とで電気的に接続す る。

[0033]

【発明の実施の形態】以下、添付図面を参照しつつ、本 発明の実施の形態について詳細に説明する。

【0034】実施の形態1

図1、図2および図3は本発明に係わるTFTアレイ基 板のTFT部および端子部を製造工程順に示す工程断面 説明図である。図1、図2および図3において、21は TFT部であり、22は端子部であり、1は透明性絶縁 基板であり、2は第1電極(TFT部の第1電極はゲー ト電極)の第1層であり、3は第1電極の第2層であ り、4はゲート絶縁膜であり、5は半導体層 a - S i 膜 50

であり、6は半導体層n'a-Si膜であり、7は第1 電極 (TFT部の第1電極はソース/ドレイン電極)の 第1層であり、8は第1電極の第2層であり、9は層間 絶縁膜であり、10はコンタクトホールであり、11は 第2電極 (画素電極) である。TFT部21は、TFT アレイ基板上の互いに直交するゲート配線とソース配線 (共に図示せず) の交差部近傍に設けられ、液晶を駆動 するスイッチング素子を構成する部分であり、端子部 2 2はゲート配線を延在して表示パネルの外側に配置さ 10 れ、ゲート電極に外部から信号を入力するための部分で ある。

【0035】本実施の形態を製造の順にしたがって説明

する。透明性絶縁基板1上にスパッタリング法などを用 いて純AlまたはAl合金(第1電極材料)を成膜し、 フォトリソグラフィ法にてレジストパターニングを行っ た後で燐酸、硝酸および酢酸系のエッチング液を用いて エッチングし、ゲート配線(図示せず)およびゲート電 極(第1電極)ならびに端子部を形成する(図1の (a) 参照)。下層膜である第1電極(ゲート電極)の 第1層2と、上層膜である第1電極(ゲート電極)の第 20 2層3とについては、本発明の特徴であり形成方法の詳 細は後述する。つぎに化学的気相成長法(以下、CV D) などを用いて窒化シリコン (SiNx) または酸化 シリコン (SiO₂) からなるゲート絶縁膜4を厚さ約 4000Å、半導体層を成膜し、半導体層をパターニン グして半導体層a-Si膜5(厚さ約1500Å)、低 抵抗の半導体層n^{*}a-Si膜6(厚さ約300Å)を 順次形成する(図1の(b)参照)。

【0036】さらに、スパッタリング法を用いてふたた び第1電極材料である純AIまたはAI合金を約300 OÅ成膜し、パターニングを行ってトランジスタのチャ ネル部ならびにソース/ドレイン電極部を形成する。こ こで下層膜である第1電極(ソース/ドレイン電極)の 第1層7と上層膜である第1電極(ソース/ドレイン電 極) の第2層8の2層構成については本発明の特徴であ り、形成方法は後述する(図2の(a)参照)。

【0037】つぎに、層間絶縁膜9を形成したのち、パ ターニングを行いコンタクトホール10を形成する。コ ンタクトホールはゲート端子部およびTFTのドレイン 電極部に形成する。ここで、層間絶縁膜9はたとえばC VD法による窒化シリコン膜、またはアクリル系の透明 性樹脂などのいずれか一方、あるいは両方の組み合わせ で形成することができる(図2の(b)参照)。

【0038】最後に透明導電膜としてスパッタリング法 を用い I T O 膜(酸化インジウムすず)を厚さ約100 O Å成膜し、パターニングして画素電極(第2電極)1 1を形成してTFTアレイ基板をうる。画素電極11は 層間絶縁膜のコンタクトホール10を介して第1電極材 料からなるゲート電極、ソース/ドレイン電極のそれぞ れの上層膜すなわち、第1電極(ゲート電極)の第2層

3、第1電極 (ソース/ドレイン電極) の第2層8と電 気的に接続されている。

【0039】本実施の形態においては、スパッタリング 法を用いて第1電極材料の純AIまたはAI合金を用いてゲート電極および端子部を形成する際に、まず純Arガスを用いて第1電極の第1層2を約2000Åの厚さで成膜し、つぎに連続してAr+N₂混合ガスを用いて第1電極の第2層3を約250Å成膜した。この第2層目のAI膜は、N₂ガスによる反応性スパッタリングのため、窒素(N)元素が添加された膜が形成されている。ソース/ドレイン電極のばあいも同様の方法で、純AIまたはAI合金の下層膜である第2電極の第1層7(約2000Å)と、これに窒素(N)元素が添加された上層膜である第2電極の第2層8(約250Å)が形成される。

【0040】本実施の形態に適用した成膜条件を表1に示す。このようにして作製されたTFTアレイ基板のコンタクトホール10における純AlまたはAl合金からなる第1電極と、ITOなどの透明導電膜からなる第2電極とのコンタクト表面部の電気抵抗値(コンタクト抵 20抗値)は、最小値で約50μm□で約350Ωと低く良好な値を示した。

*【0041】また本TFTアレイ基板に250 $\mathbb{C}\times60$ 分の熱処理を行った後の同コンタクト抵抗値は約750 Ω 、さらに300 $\mathbb{C}\times60$ 分の熱処理を行った後も同コンタクト抵抗値は約800 Ω と、従来技術のばあいの1 E10 ~1 E12 Ω に比べると極めて低く、優れた耐熱性を有していた。

【0042】なお、表1における成膜条件のパラメータ値は、装置によってそれぞれ固有に最適化されるものであって、この値に限定されるものではない。ただし、パラメータ値に対するコンタクト抵抗値の傾向として、第2層の成膜圧力が高いほどコンタクト抵抗値は小さくなる傾向が見られた。

【0043】また良好なコンタクト抵抗をうるための第 1電極の第 2層の膜厚は本実施の形態では 250 Åとしたが、これに限定されず $50\sim1000$ Åであればよい。これは 50 Å以下では ITO と AI 界面のOの拡散を抑制するのが難しいこと、また 1000 Å以上では電極全体の抵抗値が高くなり、AI を用いることによる配線の低抵抗化のメリットを享受できないためである。 さらに $100\sim500$ Åがより好ましい。

[0044]

〈 【表1】

表 1 スパッタ成膜条件

	第 1 層	第2層
成膜圧力(Pa)	0.27	0.2~0.68
流量 (sccm)	. 40	Ar: 20~80 N ₂ : 10~40
成膜パワー (KW)	10	1~10
成膜温度 (℃)	175	175
成膜膜厚 (人)	2000~3000	100~500

【0045】なお、本実施の形態では、スパッタリング 法を用いて第1電極材料の純AlまたはAl合金を用いてゲート電極および端子部ならびにソース/ドレイン電 極を形成する際に、まずArガスを用いて第1層目を成 膜し、続けてAr+N₂混合ガスを用いて第2層目を成 膜する2段階スパッタとしたが、初期のガスを純Arとし、徐々にN₂ガスの添加量を増加させていく連続スパッタリングで形成してもよい。このばあいはAl膜の上層部(第2電極とのコンタクト表面部)に向かうほど窒素(N)元素添加量が多くなる連続した組成プロファイルを有する膜となる。

【0046】また、第1電極材料の母体となるA1としては、純A1のほか、A1を主成分としてA1合金を用いることができる。A1合金に添加する元素は、ヒロック抑制や耐食性の向上といった点からCuやSi、あるいは希土類元素が望ましいが、A1の電気的低抵抗というメリットを活かすために、その添加量は比抵抗が10

μΩ・cmを超えない程度に抑えるのが好ましい。

【0047】ただし、本実施の形態のように、Ar+N 。混合ガススパッタリングによって膜の上層部が部分的 に窒化アルミニウム (AlNx) が形成された膜でキャ ッピングされた2層構造膜のばあいには、同時エッチン グが可能であり純A1を用いたばあいでもヒロックの発 生が防止でき、さらに耐食性も向上する効果を有する。 このためとくに耐ヒロック性に優れるAI合金を用いな くても極めて信頼性の高いTFTアレイを実現すること が可能であることも本実施の形態の大きな特長である。 【0048】以下、実施の形態2~10は、実施の形態 1において、第1電極材料のAI膜と第2電極材料のI TO膜との低コンタクト抵抗をうるための、第1電極A 1の第2層を形成する方法以外のプロセスならびにその 発明の効果はいずれも実施の形態1と同様である。した がって、第1電極Alの第2層目の形成方法の記述のみ にとどめる。

30

【0049】実施の形態2

図1、図2および図3のTFTアレイ製造プロセスにお いて、第1電極は、純AIまたはAI合金をスパッタリ ング法を用いて純Arガス中で成膜後、イオンドーピン グ法またはイオン注入法を用いて窒素(N)イオンを注 入してNを添加した第2層目すなわち、第1電極の第2 層3、および第2電極の第2層8を形成してからパター ニングを施して電極を形成する。なおドーズ量は5E1 6~1E17個/cm³とした。

【0050】また、イオン種をBイオン、Pイオンとし たばあいでも、Nイオンのばあいほど顕著ではないが同 様のコンタクト低減効果がえられる。

【0051】実施の形態3

図4は本実施の形態にかかわるTFT部および端子部の 構造を示す断面説明図である。図4において、12はゲ ート電極におけるコンタクト部の第2層であり、13は ソース/ドレイン電極におけるコンタクト部の第2層で あり、42および47は第1電極であり、その他の符号 は図1と共通である。図1のTFTアレイ製造プロセス において、純A1またはA1合金からなる第1電極を純 20 Arガスを用いたスパッタリング法により成膜後、パタ ーニングにより形成する。層間絶縁膜9を形成し、コン タクトホール10を開口した図1 (a) の後に、イオン ドーピング法を用いてNイオンを注入し、それぞれの第 1電極のコンタクト表面にNイオンを添加した第2層目 を形成する。したがって本実施の形態では図2に示すよ うに第1電極の第2層目すなわち、ゲート電極における コンタクト部の第2層12および、ソース/ドレイン電 極におけるコンタクト部の第2層13は第2電極ITO 膜からなる画素電極11と接続されるコンタクト部分の みに形成された構造となる。

【0052】実施の形態4

実施の形態2および実施の形態3のTFT製造プロセス において、純AIまたはAI合金からなる第1電極の第 2層目をイオンドーピングではなく、窒化ガス雰囲気中 で熱処理 (アニール) することにより形成した。

【0053】熱処理は温度300~450℃、時間30 ~90分の条件で行い、窒化ガスとして、N₂ガスまた はNH,ガスを用いた。これ以外にもメチルヒドラジ ン、ヒドラジンおよびエチルアニリンなどのガスを用い ることができ、このばあいは低温度かつ短時間の熱処理 で効率よくAINxが形成された第2層目を形成するこ とが可能である。

【0054】実施の形態5

実施の形態2および実施の形態3のTFT製造プロセス において、純AlまたはAl合金からなる第1電極の第 2層目をイオンドーピングではなく、N₂プラズマ処理 によって形成した。プラズマ処理条件は、PEあるいは RIEモードでPower500W、N₂ガス圧7~5 00Pa、処理時間は15~60秒とした。なお、本成 50 膜条件のパラメータ値も、処理する装置によってそれぞ れ固有に最適化されるものであって、この値に限定され るものではない。

【0055】実施の形態6

実施の形態2および実施の形態3のTFT製造プロセス において、純AlまたはAl合金からなる第1電極の第 2層目を、TFTアレイ基板をアンモニア水NH,OH に浸漬させて第1電極をNH、OHに浸すことにより形 成する。また、NH、OHに浸漬後、実施の形態4のご とく窒化ガス雰囲気中で熱処理を行ってもよい。

【0056】実施の形態7

実施の形態1に示すTFT製造プロセスにおいて、純A 1またはA1合金からなる第1電極の形成において、ま ず純Arガスを用いたスパッタリング法を用いて第1層 目を成膜し、つぎにAr+NH,混合ガスを用いた反応 性スパッタリングにより第2層を成膜した後で、パター ニングを行い、電極を形成した。

【0057】またこれ以外にも第2層目を成膜する際の 混合ガスとして、Ar+O2、Ar+N2+CO2、Ar +N₂CF₄を用いたばあいまたはこれらのガスにさらに SiHを添加したばあいにも低コンタクト抵抗効果が えられた。したがって、第2層目のAlにN、Oまたは N+C+O+Siが不純物として添加されたばあいでも 本発明の効果を充分にうることができる。

【0058】実施の形態8

実施の形態1に示すTFT製造プロセスにおいて、純A r ガスを用いたスパッタリング法により純AlまたはA 1合金からなる第1電極(ゲート電極、ソース/ドレイ ン電極)において、それぞれ第1電極上に形成するゲー ト絶縁膜および層間絶縁膜として、プラズマCVD法で SiH,+H2+NH3+N2混合ガスを用いて窒化シリコ ン膜を成膜し、界面拡散を利用してSiおよびN元素を 添加することにより第1電極の第2層目を形成した。

【0059】実施の形態9

図5は、本発明の実施の形態9にかかわるTFT部およ び端子部の断面説明図であり、14はゲート絶縁膜の第 1層であり、15はゲート絶縁膜の第2層であり、16 は層間絶縁膜の第1層であり、17は層間絶縁膜の第2 層であり、その他の符号は図1~図4と共通である。

【0060】実施の形態8において、純AlまたはAl 合金からなる第1電極上に形成する窒化シリコン膜を少 なくとも図5に示すごとく2層以上とし、とくに初期の 成膜を、プラズマCVD法でSiH,+H2+NH3+N2 混合ガスにさらにCF、を加えた混合ガスで行う。CF、 ガスを混ぜることによって、N元素リッチで化学的に不 安定な窒化シリコン膜としてゲート絶縁膜の第1層14 およびゲート絶縁膜の第2層16を形成することができ るので、SiおよびN元素が拡散し易く、効率よくSi およびN元素を添加した第1電極の第2層目を形成する ことが可能である。

20

30

40

【0061】実施の形態10

実施の形態8のTFTアレイ製造プロセスにおいて、ゲート絶縁膜および層間絶縁膜を酸化シリコンSiO₂とし、界面拡散によってSiおよびO元素を添加して第1電極の第2層目を形成しても同様のコンタクト抵抗低減効果をうることができる。

【0062】実施の形態11

図6は、本発明の実施の形態11にかかわるTFT部および端子部の断面説明図であり、18はITOからなる画素電極の第1層であり、19はITOからなる画素電極の第2層であり、その他の符号は図1~5と共通である。図1に示す実施の形態1のTFTアレイ製造プロセスにおいて、図1(c)のITO膜のような透明性導電酸化膜からなる第2電極である画素電極11を2層構造とし、画素電極の第1層18を純Arガスのみを用いたスパッタリング法で約500Å成膜し、その後、Ar+O2ガスを用いた従来の方法を用いて画素電極の第2層19を厚さ約500Å成膜した。

【0063】このように純A1またはA1合金からなる第1電極に接する初期のITO膜のO元素量を少なくしてやることによって、O元素拡散による第1電極界面でのA1xOy形成を抑制することができ、数100~数キロΩの低コンタクト抵抗値を実現することができる。【0064】なお、ITOなどからなる第2電極の第1層の膜厚は100~500Å程度が好ましい。これは、100Å未満であるとコンタクト低減効果は充分でなく、またO元素が少ないITO膜は比抵抗が高くかつ透過率も低いためあまり厚くするとTFTアレイにおける光の透過率が下がり、特性を劣化させてしまうからである。

【0065】なお、以上の実施の形態1~11では、第1電極材料として純A1またはA1合金、そして第2電極材料としてITO膜を用いたばあいについて説明してきたが、本発明にかかる効果はこれらの電極材料に限られることはなく、たとえば第1の電極材料としてTa、そして第2の電極材料としてIn₂O₃、SnO₂、ZnO₂などのうちのいずれかをベースとした他の透明性酸化導電膜を用いたばあいでも同様の効果を奏する。

【0066】実施の形態12

以上説明した実施の形態1から11のいずれかによって 形成したTFTアレイ基板を用い、これと対向電極やカ ラーフィルタなどを有する対向基板を貼り合わせ、さら に液晶材料を注入挟持してTFTアクティブマトリック ス型の液晶表示装置(TFT-LCD装置)をえた。す なわち本実施の形態によれば、TFTアレイ基板の配線 や電極に低抵抗配線であるAlが用いられ、またAl以 外を主成分とする別金属層を設けることなくITO透明 膜からなる画素電極がAlと直接コンタクトした構造を 有しているので、高開口率で高性能を有し、かつ従来装 置よりも生産性よく低コストで実施することができる優 れた液晶表示装置をうることができた。

[0067]

【発明の効果】本発明の請求項1にかかわる薄膜トラン ジスタの製法は、(1)透明絶縁性基板上に、純A 1 お よびAI合金のいずれかを用いて、ゲート、ソースおよ びドレインのうちの少なくとも1つである第1電極を形 成する工程と、(2) N、O、SiおよびCのうちの少 なくとも1つからなる不純物を前記第1電極の上層に添 加し前記不純物を添加した第2層と前記不純物を添加し ない第1層を形成する工程と、(3)前記第1電極およ び前記基板を覆って絶縁膜を成膜する工程と、(4)該 絶縁膜にパターニングを施しコンタクトホールを形成す る工程と、(5)前記絶縁膜上に透明膜電極からなる第 2電極を形成して該第2電極と第1電極とを前記コンタ クトホールを介して電気的に接続する工程とを少なくと も含むものであるので、ITOなどと直接的に低コンタ クト抵抗が実現できる薄膜トランジスタを容易にうると いう効果を奏する。

【0068】本発明の請求項2にかかわる薄膜トランジスタは、透明絶縁性基板上に形成された第1電極であるゲート、ソースおよびドレインと、該第1電極および前記透明絶縁性基板を覆って形成された絶縁膜と、該絶縁膜上に形成された第2電極とを少なくとも含み、前記第1電極が純AlおよびAl合金のうちのいずれかからなる下層の第1層と、純AlおよびAl合金のうちのいずれかにN、O、SiおよびCのうちの少なくとも1つからなる不純物が添加されてなる第2層とからなり、前記第2電極が透明膜電極からなり、前記第2電極と前記第1電極の第2層とが電気的に接続されてなるものであるので、ITOなどと直接的に低コンタクト抵抗が実現できる薄膜トランジスタをうるという効果を奏する。

【0069】本発明の請求項3にかかわる薄膜トランジスタは、前記不純物が前記第1層と前記第2層との界面で連続分布してなるものであるので、ITOなどと直接的に低コンタクト抵抗が実現できる薄膜トランジスタをうるという効果を奏する。

【0070】本発明の請求項4にかかわる薄膜トランジスタは、前記第1層と前記第2層とが同時エッチング可能な層であるものであるので、ITOなどと直接的に低コンタクト抵抗が実現できる薄膜トランジスタをうるという効果を奏する。AIのみを用いることができパターニング時のエッチングが1回で済むために、成膜(配線材料種類の低減)ならびにエッチング工程の簡略化(→生産性向上/コスト低減)という効果を奏する。

【0071】本発明の請求項5にかかわる薄膜トランジスタは、前記透明膜電極が酸化インジウム、酸化すず、酸化インジウムすずおよび酸化亜鉛のいずれかからなるものであるので、ITOなどと直接的に低コンタクト抵抗が実現できる薄膜トランジスタを容易にうるという効果を奏する。

【0072】本発明の請求項6にかかわる液晶表示装置 は、透明絶縁性基板上に形成された第1電極であるゲー ト、ソースおよびドレインと、該第1電極および前記透 明絶縁性基板を覆って形成された絶縁膜と、該絶縁膜上 に形成された第2電極とを少なくとも含み、前記第1電 極が純AlおよびAl合金のうちのいずれかからなる下 層の第1層と、純AlおよびAl合金のうちのいずれか にN、O、SiおよびCのうちの少なくとも1つからな る不純物を添加されてなる第2層とからなり、前記第2 電極が透明膜電極からなり、前記第2電極と前記第1電 10 極の第2層とが電気的に接続されてなる薄膜トランジス タが少なくとも含まれるTFTアレイ基板を少なくとも 有するものであるので、ITOなどと直接的に低コンタ クト抵抗が実現できる薄膜トランジスタを用いて高開口 率で高性能な表示特性を有し、かつ従来装置よりも生産 性よく低コストで実現することができる優れた液晶表示 装置をうるという効果を奏する。

【0073】前記第2層が、Ar+N₂の混合ガススパッタにより形成されてなるものであるので、ITO/Alの低コンタクトを実現できる薄膜トランジスタをうる効果を奏する。また、さらに、同一スパッタ装置を用いて同一プロセス中にガス種を変化させるだけで本発明の2層構造電極を形成することができるので、工程が簡略化され、生産性が向上するという効果を奏する。

【0074】前記第2層が、Ar+N₂+CO₂およびAr+N₂+CF₄のうちのいずれかの混合ガススパッタにより形成されてなるものであるので、ITO/Alの低コンタクトを実現できる薄膜トランジスタをうる効果を奏する。また、さらに、同一スパッタ装置を用いて同一プロセス中にガス種を変化させるだけで本発明の2層構造電極を形成することができるので、工程が簡略化され、生産性が向上するという効果を奏する。

【0075】前記第2層が、少なくとも純A1およびA1合金のいずれかからなる第1層成膜後、N₂のイオンを注入することにより形成されてなるものであるので、ITO/A1の低コンタクトを実現できる薄膜トランジスタをうる効果を奏する。

【0076】前記第2層が、前記(4)の工程後、N₂のイオンを注入することによりコンタクト部表面のみに形成されてなるものであるので、ITO/Alの低コンタクトを実現できる薄膜トランジスタをうる効果を奏する。

【0077】前記第2層が、第1層形成後、窒化ガス雰囲気中でのアニールにより形成されてなるものであるので、ITO/AIの低コンタクトを実現できる薄膜トランジスタをうる効果を奏する。

【0078】前記第2層が、前記(4)の工程後、窒化 ガス雰囲気中でのアニールによりコンタクト部表面のみ に形成されてなるものであるので、ITO/AIの低コ ンタクトを実現できる薄膜トランジスタをうる効果を奏 50 する。

【0079】前記第2層が、第1層形成後、N₁プラズマにより形成されてなるものであるので、ITO/Alの低コンタクトを実現できる薄膜トランジスタをうる効果を奏する。

【0080】前記第2層が、前記(4)の工程後、N2プラズマによりコンタクト部表面のみに形成されてなるものであるので、ITO/Alの低コンタクトを実現できる薄膜トランジスタをうる効果を奏する。

【0081】前記第2層に対する不純物添加方法として Nの代わりにOを含むガス、Siを含むガスおよびCを 含むガスのうちのいずれかが用いられてなるものである ので、ITO/Alの低コンタクトを実現できる薄膜ト ランジスタをうる効果を奏する。

【0082】前記第2層が、Ar+NH₃の混合ガススパッタにより形成されてなるものであるので、ITO/Alの低コンタクトを実現できる薄膜トランジスタをうる効果を奏する。また、さらに、同一スパッタ装置を用いて同一プロセス中にガス種を変化させるだけで本発明の2層構造電極を形成することができるので、工程が簡略化され、生産性が向上するという効果を奏する。

【0083】前記第2層が、第1層形成後、該第1層を 形成した透明絶縁性基板をNH,OHに浸漬させ、その のちアニール処理を施すことにより形成されてなるもの であるので、ITO/Alの低コンタクトを実現できる 薄膜トランジスタをうる効果を奏する。また、さらに、 同一スパッタ装置を用いて同一プロセス中にガス種を変 化させるだけで本発明の2層構造電極を形成することが できるので、工程が簡略化され、生産性が向上するとい う効果を奏する。

【0084】請求項1記載の工程(3)の絶縁膜形成工程において、該絶縁膜を窒化シリコンとし、拡散により純AIおよびAI合金のうちのいずれかからなる第1電極表面にSiおよびNを不純物として有する第2層を形成するので、ITO/AIの低コンタクトを実現できる薄膜トランジスタをうる効果を奏する。

【0085】前記絶縁膜の窒化シリコン膜をSiN、H₂、NH,およびN₂の混合ガスを用いた化学的気相成長法を用いて成長することにより第1層の表面にSiおよびNを拡散させて第2層を形成するので、ITO/Alの低コンタクトを実現できる薄膜トランジスタをうる効果を奏する。

【0086】前記絶縁膜の窒化シリコンを少なくとも2層構造とし、とくに初段の窒化シリコン膜をSiH、H2、NH3およびN2+CF4からなる混合ガスを用いた化学的気相成長法にて形成するので、ITO/AIの低コンタクトを実現できる薄膜トランジスタをうる効果を奏する。

【0087】請求項1記載の工程(3)の絶縁膜形成工程において、該絶縁膜をSiO₂とし、拡散により純A

1およびA1合金のうちのいずれかからなる第1電極表 面にSiおよびOを不純物として有する第2層を形成す るので、ITO/AIの低コンタクトを実現できる薄膜 トランジスタをうる効果を奏する。

【0088】請求項1記載の工程(5)の透明膜電極か らなる第2電極形成工程において、該第2電極を、少な くともArガスのみによるスパッタリング法にて形成し た第1層と、Ar+O₂の混合ガスによるスパッタリン グ法にて形成した第2層とから形成し、かつ該第2電極 の第1層と前記第1電極の第2層とで電気的に接続する ので、ITO/AIの低コンタクトを実現できる薄膜ト ランジスタをうる効果を奏する。

【図面の簡単な説明】

【図1】 本発明の実施の形態1にかかわるTFT部お よび端子部の構造を示す断面説明図である。

【図2】 本発明の実施の形態1にかかわるTFT部お よび端子部の構造を示す断面説明図である。

【図3】 本発明の実施の形態1にかかわるTFT部お*

*よび端子部の構造を示す断面説明図である。

本発明の実施の形態3にかかわるTFT部お よび端子部の構造を示す端面説明図である。

本発明の実施の形態9にかかわるTFTの構 造を示す断面説明図である。

本発明の実施の形態11にかかわるTFTの 【図6】 構造を示す断面説明図である。

【符号の説明】

1 透明性絶縁基板、2、7 第1電極の第1層、3、 8 第1電極の第2層、4 ゲート絶縁膜、5 半導体 層a-si膜、6 半導体層n⁺a-Si膜、9 層間 絶縁膜、10 コンタクトホール、11 画素電極、1 2 ゲート電極におけるコンタクト部の第2層、13 ソース/ドレイン電極におけるコンタクト部の第2層、 14 ゲート絶縁膜の第1層、15 ゲート絶縁膜の第 2層、16 層間絶縁膜の第1層、17 層間絶縁膜の 第2層、18 画素電極の第1層、19 画素電極の第 2層、42 第1電極。

21

【図2】

フロントページの続き

(72)発明者 竹口 徹 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 中村 伸宏

熊本県菊池郡西合志町御代志997番地 株式会社アドバンスト・ディスプレイ内

(72)発明者 山田 勝

熊本県菊池郡西合志町御代志997番地 株 式会社アドバンスト・ディスプレイ内