Faster-RCNN

Tan Wentao

2018年3月23日

1 train-frcnn

1.1 introdution

This file is training the faster RCNN. It will load the config params firstly, then initialize the network params used by the command line params. You must choose pascal_voc or simple, then you will get all images. Using get_anchor_gt() to get the anchors. Then it defines the network architecture. The network includes base_networks (Resnet, VGG, Inception), rpn and classifier. Train the network and calculate the loss in the end.

1.2 functions

• sys.setrecursionlimit

It can change the maximum recurion depth.

• OptionParse

You can create an instance of OptionParser, populate it with options, and parser the command line.

- (1)path: Path to training data.
- (2) parser: Parser to use one of simple or pascal_voc.
- (3)num_rois: Number of ROIs per iteration which be randomly selected.
- (4)horizontal_flips: Augment with horizontal flips in training.
- (5) vertical_filps: Augment with vertical flips in testing.
- (6)rot_90: Augment with 90 degree rotations in training.
- (7)num_epoch: Number of epochs.
- (8)config_filename: Location to store all the metadata related to the training to be used when testing.
- (9)output_weight_path: Output path for weights.
- (10)input_weight_path: Input path for weights. If not specified, will try to load default weights provided by keras.

2 test-frcnn

3 measure-map

4 keras-frcnn

4.1 config

- \bullet verbose
- use_horizontal_flips

 Augment with horizontal flips in training.
- use_vertical_flips

 Augment with vertical flips in training.
- anchor_box_scales

 Set a list with multi-scales of anchor.
- anchor_box_ratios

 Set a list with multi-ratios(height : width) of a anchor.
- im_size
 Set the image size.
- \bullet img_channel_mean
- img_scaling_factor
- num_rois
- \bullet rpn_stride
- balanced_classes
- std_scaling
- classifier_regr_std

- rpn_min_overlap
- rpn_max_overlap
- classifier_min_overlap
- classifier_max_overlap
- class_mapping
- $\bullet \ \ image_dim_ordering$
- model_path

4.2 data-augment

• copy

copy(x) will return a shallow copy of x. deepcopy(x) will return a deep copy of x. In case of shallow copy, a reference of object is copied in other object. It means that any changes made to a copy of object do reflect in the original object. In case of deep copy, a copy of object is copied in other object. It means that any changes made to a copy of object do not reflect in the original object.

• augment

Using three methods to enhance the image data. There are 1.use_horizontal_flips, 2.use_vertical_filps and 3. rot_90. The function will return the augment images and original images.

4.3 data-generators

• get_img_output_length

It calculate the size of the image after four convlutions. The kernel size is [7,3,1,1], padding size is 6 and stride is 2. Then can calculate the output size.

$$output_size = \frac{input_size - kernel_size + stride}{stride}$$
 (1)

• area

Input is a box A, then will return the area of A.

• union

Inputs are two boxs A and B. A(or B) is [x_A_min, y_A_min, x_A_max, y_A_max]

$$\begin{cases} x_min = min(x_A_min, x_B_min) \\ y_min = min(y_A_min, y_B_min) \\ x_max = max(x_A_max, x_B_max) \\ y_max = max(y_A_max, y_B_max) \end{cases}$$

$$(2)$$

According to the above formula, then

$$\begin{cases} w = x \text{-}max - x \text{-}min \\ h = y \text{-}max - y \text{-}min \end{cases}$$
(3)

So it will return quadruples [x, y, w, h]. It represents the largest region after the merge.

• intersection

Input are two boxs A and B. A(or B) is [x_A_min, y_A_max, y_A_max]

$$\begin{cases} x_min = max(x_A_min, x_B_min) \\ y_min = max(y_A_min, y_B_min) \\ x_max = min(x_A_max, x_B_max) \\ y_max = min(y_A_max, y_B_max) \end{cases}$$

$$(4)$$

According to the above formula. Then

$$\begin{cases} w = x \text{-}max - x \text{-}min \\ h = y \text{-}max - y \text{-}min \end{cases}$$
(5)

So it will return quadruples [x, y, w, h]. It represents the intersection region.

• get_new_img_size

The size of original image is adjusted according to the length of the minimum side of the input.

$$\begin{cases} \frac{width}{height} = \frac{new_width}{new_height} \\ new_width = img_min_size & if \quad width < height \\ new_heighte = img_min_size & if \quad width > height \end{cases}$$

- SimpleSelector
- SimpleSelector::skip_sample_for_balanced_class
- calc_rpn
- threadsafe_iter

- \bullet threadsafe_generator
- \bullet get_anchor_gt

•

4.4 FixBatchNormalization

4.5 losses

- rpn_loss_regr
- \bullet rpn_loss_cls
- class_loss_regr
- class_loss_cls

4.6 pascal-voc-parse

4.7 resnet

This is the model of resnet50. Reference: [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)

- identity_block
- identity_block_td
- conv_block
- conv_block_td
- nn_base
- classifier_layers
- rpn
- classifier

4.8 roi-helpers

4.9 RoiPoolingConv

4.10 simple-parser

5 requirements

• h5py

- Keras==2.0.3
- numpy
- opency-python
- sklearn