Fiche supplémentaire

I-Dans le tableau ci-dessous, pour chaque question **une seule** réponse est correcte.

Choisir la bonne réponse en justifiant chaque fois ta réponse.

N°	Questions	Réponses possibles			
		A	В	С	D
1)	Soit (C) le cercle de center O (0;0) et de rayon $R=2 \text{ et (C') le cercle de center A(5;}$ 0) et R'=3 donc l'affixe du center I de l'homothétie négative qui transforme (C) en (C') est $Z_I=$	-10	2	-15	Aucune de ces réponses
2)	Soit ABFE et EFCD sont deux carrés et soit R la rotation d'angle $\frac{\pi}{4}$, tel que RoRoRoR (C) = B alors RoR (C) =	В	A	E	Aucune de ces réponses
3)	Soit S la similitude de rapport $k > 1$ et d'angle α , et SoSoSoSoS est une homothétie positive donc $\alpha =$	$\frac{\pi}{4}$	$\frac{n\pi}{5}$, $n \in IN$	$\frac{2n\pi}{5}$, $n \in IN$	Aucune de ces réponses
4)	$z = -3i(\sin\alpha - i\cos\alpha)$ La forme exponentielle de z est:	$3e^{i(\pi+\alpha)}$	$3e^{i(\pi-\alpha)}$	$3e^{i\alpha}$	Aucune de ces réponses
5)	$g(x) = \sqrt{x} ; f(x) = \frac{4}{x^2} - 1.$ Le domaine de définition de gof est:	$[0;+\infty[$	[-2; 2]	[−2; 0[∪]0; 2]	Aucune de ces réponses
6)	Dans le plan complexe rapportes au system orthonormal direct $(O; u; v)$. Considérons le point A d'affixe $\frac{\sqrt{3}}{2} + \frac{1}{2}i$. L'affixe de point E telle que le triangle OAE est semi équilatéral tel que $(\overrightarrow{OE}; \overrightarrow{OA}) = \frac{\pi}{6}$ and $\hat{A} = 90^{\circ}$ is	$\frac{2\sqrt{3}}{3}$	$\frac{2\sqrt{3}}{3}i$	$\frac{3}{4} + \frac{\sqrt{3}}{4}i$	Aucune de ces réponses
7)	Si A, B, C, et D sont quatre points d'affixe $z_A = i$, $z_B = 1$, $z_C = 2 + 2i$, et $z_D = -1 - i$, donc	(AC) / /(BD)	$(AC) \perp (BD)$	A ∈ (BC)	Aucune de ces réponses
8)	$\lim_{x \to e} \left[\frac{\ln(\ln x)}{\ln x - 1} \right] =$	1	e	$\frac{1}{e}$	-е

II-

Le plan complexe est rapporté à un repère orthonormé $(0, \vec{u}, \vec{v})$ Soit A, B, et D les point d'affixes respective i, 2i et 1.

E est le point tel que le triangle ODE est isocèles de sommet D, et $(\vec{u}; \vec{DE}) = \frac{\pi}{6}$.

1)

- a) Ecrire $\frac{z_{\overrightarrow{DE}}}{z_{\overrightarrow{OD}}}$ sous la forme exponentielle puis le forme algébrique.
- **b**) Déduire que $z_E = \left(1 + \frac{\sqrt{3}}{2}\right) + \frac{1}{2}i$. Démontrer que $|z_E| = \sqrt{2 + \sqrt{3}}$.
- c) Utiliser le triangle ODE pour démontrer que $\arg(z_E) = \frac{\pi}{12}$, puis utiliser partie (b) pour calculer le valeur exact de $\cos\frac{\pi}{12}$ et $\sin\frac{\pi}{12}$.
- 2) z est l'affixe du point variable M et z' est celle de point M' tel que $z' = \frac{2z i}{iz + 1}$.
 - a) Résoudre l'équation z' = z.
 - b) Si z' est imaginaire pure, démontrer que z est imaginaire pure.
 - c) Si $z = e^{i\frac{\pi}{6}}$, écrire z' en forme exponentielle.

3)

- a) Démontrer que (z' + 2i)(z i) = 1.
- **b**) Déduire le valeur de BM' × AM et un mesure de $(\vec{u}; \overrightarrow{BM'}) + (\vec{u}; \overrightarrow{AM})$.
- c) Si BM' = AM, déterminer le nature du quadrilatère AMM'B.

III-

f est la fonction définie sur]- ∞ ; 1[par f(x) = $x + \ln |1 - x|$ et désignons par (C) sa courbe représentative dans un system orthonormal (O; \vec{i} ; \vec{j}).

1)

- a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$.
- **b**) Vérifier que la droite d'équation x = 1 est une asymptote à (C).

2)

- a) Calculer f '(x) et dresser le tableau de variations de f.
- **b**) Démontrer que f(x) = 0 admet seulement deux solution 0 et α tel que $-2.25 < \alpha < -2.51$.
- 3) Tracer (C).

4)

- a) Trouver le point d'intersection de (C) et la droite (d) d'équation y = x + 1.
- **b**) Résoudre graphiquement $0 \le f(x) \le x + 1$.
- 5) h est la fonction définie sur]0; $+\infty$ [par $h(x) = \frac{1+2\ln x}{2x}$.
 - **a)** Calculer $\lim_{x\to 0^+} h(x)$ et $\lim_{x\to +\infty} h(x)$.
 - **b)** Tracer le tableau de variations de h. Déduire que h(x) < 1.
 - c) Démontrer que $h(1-\alpha) = \frac{1}{2}$ et que $h'(1-\alpha) = \frac{1+\alpha}{2(1-\alpha)^2}$

IV-

Le plan complexe est rapporté au repère orthonormal direct (O, u ; v). Considère les points A et B d'affixe : $Z_A = 1$ and $Z_B = 1$ - 2i. A chaque point M, distinct de A, d'affixe Z, on associe le point M' d'affixe Z' tel que : $Z' = \frac{Z-1+2i}{Z-1}$ ($Z \neq 1$).

- 1) Trouver le forme exponentiel de Z' dans le cas où Z = 3, puis vérifier que $(Z')^{10}$ est imaginaire pure.
- 2) Soit Z = x + iy et Z' = x' + iy', où x, y, x', et y' sont des nombre réel.
 - a) Écrire x' et y' en termes de x et y.
 - b) Déterminer l'ensemble des points M tel que Z' est un nombre réel.

3)

a) Démontrer que
$$(\vec{u}, \vec{OM}') = (\vec{AM}, \vec{BM}) + 2k\pi$$

b) Déduire l'ensemble des points M où Z' est un nombre imaginaire pur.

4)

- a) Démontrer que (Z'-1)(Z-1)=2i.
- **b**) Déduire que, pour que le point M distinct de A, on a : $AM \times AM' = 2$
- c) Supposons que M varies sur le cercle de center A et de rayon 1. Démontrer que M' varies sur un cercle fixe à déterminer.

V-

Dans la figure adjacente : A

- ABC est un triangle rectangle isoscèles direct en A.
- $\bullet \quad AB = 1$
- I le milieu de [AC].
- EGB est un triangle rectangle isoscèles direct en G.
- (AE) coupe (IB) en G.

Soit S la similitude de centre B, et d'angle $\frac{\pi}{4}$ et de rapport $\frac{\sqrt{2}}{2}$.

- 1) Montrer que S(C) = A, et déterminer S(E).
- 2) Soit S' la similitude qui transforme A en C et C en B.
- 3) Montrer que le ratio de S' est de rapport $\sqrt{2}$, et d'angle $\frac{5\pi}{4}$.
- 4) Soit f = S'o S'.
 - a- Déterminer la nature, et le rapport de f, puis vérifier que l'angle de f est $\frac{\pi}{2}$ [2 π].
 - **b-** Montrer que tan $(\widehat{ABI}) = \frac{1}{2}$, déduire que GB = 2 GA.
 - c- Déterminer f (A), déduire que G est le centre de S'.
- 5) Le plan complexe est rapporté à un repère orthonormé direct $(A, \overrightarrow{AB}, \overrightarrow{AC})$.
 - a- Trouver la forme complexe de S'.
 - **b-** Déterminer l'affixe de G et celle de B' l'image de B par S'.

VI-

Le plan est muni du repère orthonormal (O, \vec{u}, \vec{v}) .

On considère le point A (3, 2).

Soit N (a, 0) et P (0, b) deux point telle que le triangle ANP est rectangle en A.

- 1) Soit E (3, 0) et F (0, 2).
 - Soit S la similitude directe de centre A qui transforme E en F.
 - Déterminer le rapport et l'angle de S.
- 2) Trouver l'image de (ON) par S, déduire que S (N) = P.
- 3) Soit M et M' les point d'affixe z et z' respective telle que S(M) = M'.

Démontrer que
$$z' = -\frac{3}{2}iz + \frac{13}{2}i$$

4) Démontrer que 3a + 2b = 13.

VII-

Soit f la fonction définie sur]0, $+\infty$ [par f(x) = f(x) = a(lnx)² + b lnx, où a et b sont deux paramètre réels, et désignons par (C) sa courbe représentative dans un repère orthonormal (O; \overrightarrow{i} , \overrightarrow{j}). (Unité 2cm).

Le tableau ci-dessous est celle de variation de la fonction f', la dérivée de f.

- 1) Démontrer que a = 1 et b = 2.
- 2) Calculer $\lim_{x \to +\infty} f(x)$, $\lim_{x \to +\infty} \frac{f(x)}{x}$ et $\lim_{x \to 0^+} f(x)$. Interpréter les résultats graphiquement.
- 3) Déterminer les abscisses des points d'intersection de (C) avec l'axe des abscisses.
- 4) a) Calculer f '(x) puis dresser le tableau de variations de f.
 - b) Démontrer que (C) admet un point d'inflexion I et écrire une équation de la tangent (d) à (C) en I.
- 5) Tracer (d) et (C).

VIII-

Dans le plan orienté direct. On considère le carré direct ABCD, inscrit dans le cercle (Ω) de centre O et rayon 2.

В

Α

0

С

Soit I, et J les milieux respective de [AB], et [AD].

Soit S la similitude qui transforme A en B et J en O.

Indication:

- Dans un cercle, l'angle au centre mesure le double d'un angle inscrit interceptant le même arc.
- Dans un cercle, deux angles inscrits interceptant le même arc sont égaux

1)

- a- Déterminer le rapport et un angle de S.
- b- Démontrer que S(O) = C.
- c- Déduire que D est le centre de S.
- 2) (CI) coupe (Ω) en E, et soit H le projeté orthogonal de B sur (AE
 - a- Démontrer que E est le milieu de [AH].
 - b- Déduire que $\overrightarrow{EA}.\overrightarrow{EB} = -EA^2$.
 - c- Montrer d'autre part que $\overrightarrow{EA}.\overrightarrow{EB} = -\frac{\sqrt{2}}{2}EA.EB$.

Déterminer le rapport de S', et démontrer qu'un angle de S' est $\frac{3\pi}{4}$.

- 4) Soit F le troisième sommet de triangle rectangle isocèle direct FBD en B.
 - a- Déterminer S'oS (A), puis déterminer la nature et les caractéristique de S'oS.
 - b- Démontrer que S'oS (D) = F, puis déduire S'(D).
- 5) Le plan est muni du repère orthonormal (B, \vec{u}, \vec{v}) telle que O (2, 0) et A (2, 2).
 - a- Déterminer la forme complexe de S et de S', déduire l'affixe de E.
 - b- Déterminer l'affixe de B' l'image de B par S.

IX-

On considère la suite (U_n) définie par $\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \sqrt{\frac{{U_n}^2 + 1}{2}} \end{cases} \text{, pour tous } n \in \mathbb{N}.$

1)

- a- Montrer par récurrence que $0 < U_n < 1$.
- b- Montrer que la suite (U_n) est croissante.
- c- En déduire que et convergente et calculer sa limite.
- 2) On considère la suite $V_n = U_n^{\ 2} 1$.
 - a- Montrer que (V_n) est une suite géométrique, dont le rapport commun et le premier terme sont à déterminer
 - b- Calculer V_n et U_n en fonction de n.
 - c- Retrouver la limite de U_n.

X-

Partie A

Soit la fonction g définie sur \mathbb{R} par $g(x) = 1 - e^{2x} - 2xe^{2x}$.

- 1) Calculer $\lim_{x\to\infty} g(x)$ et $\lim_{x\to\infty} g(x)$.
- 2) Calculer g'(x) et dresser le tableau de variations de la fonction g.
- 3) Calculer g(0) et en déduire le signe de g(x) pour tout x de \mathbb{R} .

Partie B

On considère la fonction f définie sur \mathbb{R} par $f(x) = x + 3 - xe^{2x}$. On désigne par (C) la courbe représentative de f dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- a) Calculer lim_{x→∞} f(x) et lim_{x→∞} [f(x)-x-3]. En déduire que la courbe (C) admet au voisinage de -∞ une asymptote (Δ) que l'on déterminera l'équation.
 - **b)** Etudier la position relative de (C) et (Δ).
 - c) Calculer $\lim_{x\to +\infty} f(x)$ et donner la valeur de f(1) à 10 $^{-1}$ près.
- 2) Vérifier que pour tout x de \mathbb{R} , f'(x) = g(x), et dresser le tableau de variation de la fonction f.
- 3) Démontrer que la courbe (C) admet un point d'inflexion I que l'on déterminera les coordonnées.
- 4) Vérifier que (C) coupe l'axe des abscisses en deux points d'abscisses respectives α et β tels que $-3.5 < \alpha < -3$ et $0.5 < \beta < 1$.
- 5) Tracer (Δ) et (C).
- 7) Soit la fonction h définie sur \mathbb{R}^* par $h(x) = \frac{1 + 3x e^{\frac{2}{x}}}{x}$.
 - a) Vérifier que pout tout x de \mathbb{R}^* , $h(x) = f(\frac{1}{x})$.
 - b) Dresser le tableau de variation de la fonction h.