Double-click (or enter) to edit

import the library

```
import pandas as pd
```

import numpy as np

get under standing about data set

there are 9 variable in data set

- 1. Brand-manufacturing companey
- 2. model-model of car
- 3. year- year of manaufecturing
- 4. selling_price-selling price of car
- 5. km_driven-total km to driven
- 6. fuel-type of fule used in car
- 7. Seller_type-type of seller
- 8. Transmission-type of transmission of car
- 9. Owner-whether current Owner is first owner repurchased

×

✓ 0s completed at 7:16 PM

_ read the data trame

df=pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Car%20Price.csv')

df.head()

	Brand	Model	Year	Selling_Price	KM_Driven	Fuel	Seller_Type	Transmission	Owner
0	Maruti	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner
1	Maruti	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner
2	Hyundai	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner
3	Datsun	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner
4	Honda	Honda Amaze VX i-DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4340 entries, 0 to 4339
Data columns (total 9 columns):

	00-0		
#	Column	Non-Null Count	Dtype
0	Brand	4340 non-null	object
1	Model	4340 non-null	object
2	Year	4340 non-null	int64
3	Selling_Price	4340 non-null	int64
4	KM_Driven	4340 non-null	int64
5	Fuel	4340 non-null	object
6	Seller_Type	4340 non-null	object
7	Transmission	4340 non-null	object
8	Owner	4340 non-null	object

dtypes: int64(3), object(6)
memory usage: 305.3+ KB

df.describe()

	Year	Selling_Price	KM_Driven
count	4340.000000	4.340000e+03	4340.000000
mean	2013.090783	5.041273e+05	66215.777419
std	4.215344	5.785487e+05	46644.102194
min	1992.000000	2.000000e+04	1.000000
25%	2011.000000	2.087498e+05	35000.000000
50%	2014.000000	3.500000e+05	60000.000000
75%	2016.000000	6.000000e+05	90000.000000
max	2020.000000	8.900000e+06	806599.000000

get categories and counts categories variable

df[['Brand']].value_counts()

Brand	
Maruti	1280
Hyundai	821
Mahindra	365
Tata	361
Honda	252
Ford	238
Toyota	206
Chevrolet	188
Renault	146
Volkswagen	107
Skoda	68
Nissan	64

Audi	60
BMW	39
Fiat	37
Datsun	37
Mercedes-Ben:	z 35
Mitsubishi	6
Jaguar	6
Land	5
Ambassador	4
Volvo	4
Јеер	3
OpelCorsa	2
MG	2
Isuzu	1
Force	1
Daewoo	1
Kia	1
dtype: int64	
df[['Fuel']].value	e_counts()
Fuel	
	2153
	2123
CNG	40
LPG	23
Electric	1
dtype: int64	=
deype: inco-	
df[['Seller_Type']]].value_counts()
Seller_Type	
Individual	3244
Dealer	994
Trustmark Dea	aler 102
dtype: int64	
• •	
<pre>df[['Transmission</pre>	']].value_counts(

```
Transmission
     Manual
                      3892
     Automatic
                      448
     dtype: int64
df[['Owner']].value_counts()
     Owner
     First Owner
                              2832
     Second Owner
                              1106
     Third Owner
                               304
     Fourth & Above Owner
                                81
     Test Drive Car
                                17
     dtype: int64
```

get columns names

get incoding the categorical feature

```
df.replace({'Fuel':{'Petrol':0,'Diesel':1,'CNG':2,'LPG':3,'Electric':4}},inplace=True)
```

```
df.replace({'Seller_Type':{'Individual':0,'Dealer':1,'Trustmark Dealer':2}},inplace=True)

df.replace({'Transmission':{'Manual':0,'Automatic':1}},inplace=True)

df.replace({'Owner':{'First Owner':0,'Second Owner':1,'Third Owner':2,'Fourth & Above Owner':3,'Test Drive Car':4}},inplace
```

define y(dependent or target variable) and x(independent or feature or attribute variable)

```
y=df['Selling_Price']
y.shape
     (4340,)
У
              60000
             135000
     2
             600000
             250000
             450000
     4335
             409999
     4336
             409999
     4337
             110000
     4338
             865000
     4339
             225000
     Name: Selling_Price, Length: 4340, dtype: int64
x= df[['Year','KM_Driven','Fuel','Seller_Type','Transmission','Owner']]
```

x.shape

(4340, 6)

Х

	Year	KM_Driven	Fuel	Seller_Type	Transmission	Owner
0	2007	70000	0	0	0	0
1	2007	50000	0	0	0	0
2	2012	100000	1	0	0	0
3	2017	46000	0	0	0	0
4	2014	141000	1	0	0	1
4335	2014	80000	1	0	0	1
4336	2014	80000	1	0	0	1
4337	2009	83000	0	0	0	1
4338	2016	90000	1	0	0	0
4339	2016	40000	0	0	0	0

4340 rows × 6 columns

get train test split

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=2529)

x_train.shape,x_test.shape,y_train.shape,y_test.shape

((3038, 6), (1302, 6), (3038,), (1302,))
```

get model train

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
    LinearRegression()
```

get model predication

```
y_pred
array([502458.82786413, 646333.17428704, 521962.74075836, ...,
620183.32683781, 315403.8278857 , 731862.54196037])
```

get model evaluation

get visualization of actual vs predicted

```
import matplotlib.pyplot as plt
plt.scatter(y_test,y_pred)
plt.xlabel("Actual Prices")
plt.ylabel("Pridicated Prices")
plt.title("Actual Price vs Pridicated Price")
plt.show()
```


get feture predicated

df_new=df.sample(1)

df_new

Brand		Model	Year	Selling_Price	KM_Driven	Fuel	Seller_Type	Transmission	Owner	10+
	3003 Hyundai	Hyundai Grand i10 Sportz	2015	425000	12000	0	0	0	0	

 ${\sf df_new.shape}$

(1, 9)

x_new=df_new.drop(['Brand','Model','Selling_Price'],axis=1)

y_pred_new=lr.predict(x_new)

y_pred_new

array([389450.42583054])