8. Calculá el orden del número de asignaciones a la variable t de los siguientes algoritmos.

(a)
$$t := 1$$

 $\mathbf{do} \ t < \mathbf{n}$
 $t := t * 2$
 \mathbf{od}

(b)
$$t := n$$

 $\mathbf{do} \ t > 0$
 $t := t \ \mathbf{div} \ 2$
 \mathbf{od}

$$\begin{array}{ll} (\mathbf{c}) & \mbox{ for } i := 1 \mbox{ to n do} \\ & t := i \\ & \mbox{ do } t > 0 \\ & t := t \mbox{ div } 2 \\ & \mbox{ od} \end{array}$$

(d) for
$$i := 1$$
 to n do
$$t := i$$
do $t > 0$

$$t := t - 2$$
od

a) Pruebo valores de *n* para ver el comportamiento del ciclo:

n	1	2	3	4	5	6	 9	 17	
t	1	2	4	4	8	8	 16	 32	
ops	1	2	3	3	4	4	 5	 6	

Se puede ver que *t* toma valores de las potencias de 2 (1, 2, 4, 8, 16, 32, 64, 128, ...), donde *n* y *t* crecen de manera exponencial.

La relación entre ty ops es $t = 2^{ops-1}$, donde al despejar ops

$$2^{\text{ops-1}} = t \Rightarrow \log_2(t) = \text{ops} - 1 \Rightarrow \text{ops} = \log_2(t) + 1$$

: el orden de complejidad del algoritmo es *O(log(n))* ó *logarítmica*.

b) Veo el comportamiento del ciclo, dando valores a *n*:

n	1	2	3	4	5	6	7	8	9	 16
t	0	0	0	0	0	0	0	0	0	 0
ops	1	2	2	3	3	3	3	4	4	 5

Donde las iteraciones del ciclo aumentan en 1 a medida que n es una potencia de 2 (1, 2, 4, 8, 16, 32, 64, ...). Por tanto, puede definirse como $ops = log_2(n) + 1$, donde ops es el resultado ENTERO de dividir n entre dos. Sea C el algoritmo del enunciado, entonces:

ops(C) = ops(t := n) + ops(while t > 0 do t := t div 2 od) = 1 +
$$log_2(n)$$
 + 1

 \therefore el orden de complejidad del algoritmo es $O(\log(n))$ ó $\log(aritmica)$.

c)

ops(C) = ops(for i := 1 to
$$n$$
 do ... od)
= $\sum_{k=1}^{n}$ ops(t := 1; while $t > 0$ do t := t div 2 od)
= $\sum_{k=1}^{n}$ (ops(t := 1) + ops(while $t > 0$ do t := t div 2 od))
= $\sum_{k=1}^{n} (log_2(n) + 2)$
= $\sum_{k=1}^{n} log_2(n) + \sum_{k=1}^{n} 2$
= $n * log_2(2) + n * 2 = \mathbf{n}(log_2(\mathbf{n}) + 2)$

 \therefore el orden de complejidad del algoritmo es O(log(n)) o logarítmica.

d) Veo el comportamiento del ciclo, dando valores a i:

i	1	2	3	4	5	6	7	 9	 11
t	-1	0	-1	0	-1	0	-1	 -1	 -1
ops	1	1	2	2	3	3	4	 5	 6

Por tanto, puede definirse al ciclo como **ops** = $\frac{1}{2}$ *i*, donde *ops* es el resultado ENTERO pero REDONDEADO hacia arriba.

Sea Kel algoritmo del enunciado, entonces:

$$\begin{aligned} \operatorname{ops}(\mathbf{K}) &= \operatorname{ops}(\text{for i} := 1 \text{ to } n \text{ do ... od}) \\ &= \sum_{i=1}^{n} \operatorname{ops}(\mathbf{t} := \mathbf{i}; \text{ while } t > 0 \text{ do } \mathbf{t} := \mathbf{t} - 2 \text{ od}) \\ &= \sum_{k=1}^{n} \left(\operatorname{ops}(\mathbf{t} := 1) + \operatorname{ops}(\text{while } t > 0 \text{ do } \mathbf{t} := \mathbf{t} - 2 \text{ od}) \right) \\ &= \sum_{k=1}^{n} \left(1 + \frac{1}{2}i \right) \\ &= \sum_{k=1}^{n} 1 + \frac{1}{2} \sum_{k=1}^{n} i \\ &= n + \frac{1}{2} * \frac{n * (n+1)}{2} = \frac{1}{4} \mathbf{n}^2 + \frac{5}{4} \mathbf{n} \end{aligned}$$

 \therefore el orden de complejidad del algoritmo es $O(n^2)$ o *cuadrática*.