Continuidade de Funções de Várias Variáveis

Luis Alberto D'Afonseca

Cálculo de Funções de Várias Variáveis - I

Conteúdo

Continuidade

Valor Extremo de Função Contínua

Lista Minima

Definição

Uma função f(x, y) é contínua no ponto (x_0, y_0) , se

- 1. f é definida em (x_0, y_0)
- 2. $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ existe
- 3. $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$

Uma função é contínua se for contínua em todos os pontos do seu domínio

Limite de Função Contínua

Se f(x, y) é contínua em (x_0, y_0) , então

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

Combinações Algébricas

Combinações algébricas de funções contínuas são funções contínuas, exceto por divisões por zero, raízes de números negativos, ...

Aplicação direta das propriedades de limites

Exemplos de funções contínuas no plano

1.
$$f(x, y) = x$$

2.
$$f(x, y) = y$$

3.
$$f(x, y) = xy$$

- 4. $f(x, y) = x^n$ para n inteiro positivo
- 5. $f(x, y) = y^n$ para n inteiro positivo

Mostre que

$$f(x,y) = egin{cases} rac{2xy}{x^2 + y^2}, & (x,y)
eq (0,0) \ 0, & (x,y) = (0,0) \end{cases}$$

é contínua em todos os pontos, exceto na origem

Exemplo 2 – Solução

Consideramos primeiro o caso $(x, y) \neq (0, 0)$

 $2xy\,$ é uma função contínua no plano

$$x^2 + y^2$$
 é uma função contínua no plano

então
$$\frac{2xy}{x^2 + y^2}$$
 é contínua para todo $(x, y) \neq (0, 0)$

Exemplo 2 – Solução

Em
$$(x, y) = (0, 0)$$
 temos que aplicar a definição

- 1. f é definida em (0,0)
- 2. $\lim_{(x,y)\to(0,0)} f(x,y)$ existe
- 3. $\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0)$

A condição 1 vale, pois f(0,0) = 0

Verificando a condição 2, percebemos que o limite não existe

Se fizermos y = mx, para $m \neq 0$ e $x \neq 0$, temos

$$f(x,y)\bigg|_{y=mx} = \frac{2xy}{x^2 + y^2}\bigg|_{y=mx} = \frac{2mx^2}{x^2 + m^2x^2} = \frac{2mx^2}{(1+m^2)x^2} = \frac{2m}{1+m^2}$$

Para cada valor de m, a função f se aproxima da origem com um valor diferente.

Portanto, o limite não existe e a função não é contínua na origem

Continuidade de Compostas

```
Se f(x,y) é contínua em (x_0,y_0) e g é uma função, de uma variável, contínua em z_0=f(x_0,y_0) então a função composta h=g\circ f definida como h(x,y)=g\big(f(x,y)\big) é contínua em (x_0,y_0)
```

Mostre que

$$f(x, y) = \cos\left(\frac{xy}{x^2 + 1}\right)$$

é contínua em todos os pontos do plano

Exemplo 3 – Solução

Primeiro reconhecemos que temos a composição de funções $f = g \circ h$, com

$$h(x, y) = \frac{xy}{x^2 + 1}$$
 e $g(t) = \cos(t)$

isso é,

$$f(x, y) = g(h(x, y)) = \cos\left(\frac{xy}{x^2 + 1}\right)$$

Exemplo 3 – Solução

h é uma combinação algébrica de funções contínuas e nunca teremos uma divisão por zero, portanto, h é contínua em todo o plano

gé uma função contínua em toda a reta real, portanto, qualquer que seja o ponto $(x_0,\,y_0)$ a função g será contínua em $h(x_0,\,y_0)$

Pelo teorema da continuidade da composta, f é contínua em todo o plano

Conteúdo

Continuidade

Valor Extremo de Função Contínua

Lista Mínima

Teorema do Valor Extremo

Se $f: \mathbb{R}^n \to \mathbb{R}$ é uma função contínua em uma região R, fechada e limitada (compacta),

a função assume um máximo e um mínimo absolutos em ${\cal R}$

Conteúdo

Continuidade

Valor Extremo de Função Contínua

Lista Mínima

Lista Mínima

Cálculo Vol. 2 do Thomas 12ª ed. – Seção 14.2

- 1. Estudar o texto da seção
- 2. Resolver os exercícios: 31-33, 36-37, 60

Atenção: A prova é baseada no livro, não nas apresentações