

이츠 유얼 턴

(Intel Edge Al Project)

5조

김승민

박민혁

유지승

조수환

목차

프로젝트 배경

비보호 표지판 개념 부족

https://youtube.com/clip/Ugk x0ahqr_4Z6RW-z0UgA0c0Tbt WTdCy6-II?si=n5W8m7_Y3Hjv wSfC

거리 판단 어려움

https://drive.google.com/file/d /1BhQf7ln-8ICOJVKWVK7IE-sEfj vs2L7Z/view?usp=sharing 사고의 심각도 증가

프로젝트 주제

"비보호 좌회전 보조 시스템"

프로젝트 목표 및 기대효과

적색신호 시 비보호 불가

적색신호에서 비보호 좌회전 시 경고

비보호 표지판 인식

비보호 좌회전이 가능한 사거리인지 확인

건너편 차량 거리 인식

비보호 좌회전 안전 거리인지 확인

비보호 사고량 감소 및 개념 확립

비보호 좌회전에 의한 사고량을 감소시키고 운전자에게 비보호 좌회전의 개념을 확립 시킴

팀구성 및 역할

프로젝트 아키텍처 & 플로우 차트

프로젝트 수행 일정

단계	세부 항목	6월										7월				
E 7 11	"II 0 T	18	19	20	21	22	23	24	25	26	27	28	29	30	1	2
요구사항 분석 및 설계	요구사항 정의 및 우선순위 결정															
#146 E 4 X E 1	시스템 아키텍처 설계															
데이터 수집 및 전처리	표지판 및 신호등 데이터 수집															
	데이터 어노테이션 수행															
	YOLO 또는 OTX를 사용한 표지판 및 신호등 인식 모델 개발															
모델 및 기능 개발	신호 인식 알고리즘 개발															
그글 옷 기용 게걸	OpenVINO를 사용한 차량 감지 모델 개발															
	Monodepth를 사용한 거리 측정 모델 개발															
	시스템 통합 및 테스트															
시스템 통합 및 테스트	버그 수정 및 성능 향상															
	시스템 테스트 및 보완															
	HUD 디스플레이 UI/UX 디자인															
HUD 디스플레이 구현	HUD 디스플레이 구현 및 테스트					一										
	버그 수정 및 성능 향상															
최종 검토 및 완료	시스템 최종 검토 및 문서화															

데이터 수집 및 전처리

1. 데이터 수집 Al 🥙 Hub

2. 데이터 추출 및 검수

• 라벨링 데이터를 통한 비보호 좌회전 표지판 포함 여부 확인

{"shape":"rectangle","color":"blue","kind":"normal","box":
[1153,666,1164,678],"text":"0","type":"instruction","class":"traffic_sign"}],"image":
{"filename":"i0088385.jpg","imsize":[1936,1464]}}

데이터 수집 및 전처리

3. 데이터 어노테이션 🕜

1차

→ 모델 복잡도 감소

계층적 접근 👃

2차

• 변경점: 먹통 신호등 제외 표지판 문구 제외 bbox 수정

AI 모델 학습

1차

Ultralytics 🥑

	mAP(50)	time elapsed	epoch	f-measure	Batch size	Learning rate
YOLOv8n	0.929	-	120	-	-1	-

OTX OpenVINO (Openvino Training eXtension)

	mAP(50)	time elapsed	epoch	f-measure	Batch size	Learning rate
MobileNew V2-ATSS	0.920	0:57:30	24	0.900	8	0.004
YOLOx-TIN Y	0.936	0:51:15	32	0.928	8	0.0002

AI 모델 학습

2차

Ultralytics 🥑

	mAP(50)	time elapsed	epoch	f-measure	Batch size	Learning rate
YOLOv8n	0.967	-	-	-	-1	-

OTX OpenVINO (Openvino Training eXtension)

	mAP(50)	time elapsed	epoch	f-measure	Batch size	Learning rate
SSD	0.926	1:57:44	63	0.908	8	0.01
YOLOx-TIN Y	0.948	4:10:19	11	0.924	8	0.0002

AI 모델 선정

2차 YOLOv8n (Ultralytics)

성능은 괜찮았으나 OpenVINO IR 변환 한계

1차 **YOLOX-TINY** (OTX)

최종 모델 선정

- → OpenVINO™ POT을 사용한 최적화 → 정밀도 FP16으로 압축

신호 인식 기능 구현

1. 신호등 객체 인식 후 crop

신호등 객체를 인식한 후에 인식한 부분을 crop

2. Crop한 이미지 밝기 비교

Crop한 신호등의 이미지를 세로로 4등분 한 뒤, 각 부분의 밝기를 OpenCV를 통해 HSV 채널의 V 채널 비교

3. 신호등의 신호 인식

밝기 비교 시 좌측부터 순서대로 적색, 노랑, 좌회전, 직진 신호로 인식

반대 차선 차량 인식 기능

1. 자동차 객체 인식

자동차 객체는 openvino의 pre-trained모델인 vehicle-detection-0200 모델로 객체를 인식

2. 반대 차선 차량 인식

세로 기준선(ROI)을 정하여 반대 차선의 차량만을 인식

3. 차량과의 거리 예측

반대 차선 차량 인식 후, monodepth를 통해 가장 가까운 차량과의 거리를 예측

vehicle-detection-0200

midasnet

시스템 통합

라즈베리파이4

3가지 모델 + UI = 복잡도 증가

UI 개발

초기 화면

적신호 & 비보호

좌회전 방향 지시등(수동)

청신호 & 비보호 안전

적신호

청신호 & 비보호 위험

최종 산출물

영상 시연

60s 블랙박스 영상

https://drive.google.com/file/d/1JzR93dkp6ezo4Ju7_oKH5yElvd1v96eJ/view?usp=sharing

추론 시간

단순 시스템 통합: 88s → 멀티 스레딩 + 프레임 스킵 + 조건: 7s

영상 시연

스마트폰 촬영 영상

https://drive.google.com/file/d/1ArsRoBI_FmBZMeaw8Fm_bGmmvZrCDYon/view?usp=sharing

도로 주행 시연

https://drive.google.com/file/d/1MWdfSU4MujOpsdhpAt0jAr01xW5BI7Bd/view?usp=sharing

아쉬운 점

온디바이스 실행

라즈베리파이의 성능 제한 서버-클라이언트 구조로 변경

> 신호등 및 표지판 인식 모델의 성능

실제 환경에서의 신호등 및 표지판 인식 모델 성능 감소 차량 인식 알고리즘

주정차 차량 인식 측정 거리와 실제 거리의 차이

UI

UI가 직관적이지 않고 시각적으로 부족

보완점

온디바이스 실행

모델 수를 줄여 기능을 간소화 하드웨어 업그레이드.

신호등 및 표지판 인식 모델의 성능

다양한 환경에서 수집된 더 많은 데이 터로 모델을 재학습.

차량 인식 알고리즘

별도의 센서를 추가로 사용해 차량과 거리 관련 기능을 보완.

UI

다양한 상황에서 UI의 가독성과 사용 성을 테스트하여 개선점을 도출.

느낀점

김승민

여러 모델을 사용하여 학습하는과정에서 모델별 성능 차이가 다르기때문에 상황별 로 변경해가며 최적화하는 작업을 하며 기술을 익히는 도움이 됨

유지승

OpenCV를 이용한 영상처리, 잘되진 않았지만 포트 포워딩 등의 기술을 활용 해보면서 새로운 기술을 배우는 좋은 계기가 되었음

박민혁

데이터를 직접 수집하고, 팀원들이 각기 다른 모델을 구축하여 서로 비교할 수 있었던 경험을 할 수 있었음

조수환

많은 기능을 통합 하는 과정에서 멀티 스레딩과 같은 기술을 사용해 성능을 높이는 경험은 많은 도움이 됨

QnA