EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a

Anul şcolar 2016 - 2017

Matematică

BAREM DE EVALUARE ȘI DE NOTARE

Model

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al II-lea și SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	11	5p
2.	9	5p
3.	99	5p
4.	60	5p
5.	30	5p
6.	15	5p

SUBIECTUL al II-lea (30 de puncte)

	(** *** ***	,
1.	Desenează cubul	4p
	Notează cubul	1p
2.	$m_g = \sqrt{ab} = \sqrt{3^2(6-2)} =$	3 p
	$=\sqrt{3^2\cdot 4}=6$	2p
3.	$\frac{x}{5} = \frac{y}{4} = \frac{x+y}{5+4} = \frac{54}{9} = 6 \Rightarrow x = 30$	3 p
	y = 24	2p
4.	a) Reprezentarea unui punct care aparține graficului funcției f	2p
	Reprezentarea altui punct care aparține graficului funcției f	2p
	Trasarea graficului funcției f	1p
	b) $OM = 2$, unde M este punctul de intersecție a graficului funcției f cu axa Ox	1p
	ON = 4, unde N este punctul de intersecție a graficului funcției f cu axa Oy	1p
	Cum ΔMON este dreptunghic în O , obținem $MN = 2\sqrt{5}$, deci lungimea medianei corespunzătoare ipotenuzei este egală cu $\sqrt{5}$	3 p
5.	$(x-2)^2 - 2(x-2) + 1 = (x-3)^2$	2p
	$x^2 - 9 = (x - 3)(x + 3)$	2p
	$E(x) = \frac{(x-3)^2}{(x-3)(x+3)} \cdot \frac{x+3}{x-3} = 1$, pentru orice x număr real, $x \neq -3$ și $x \neq 3$	1р

SUBIECTUL al III-lea (30 de puncte)

1.	$\mathbf{a)} \ \mathcal{A}_{ABCD} = \frac{(AB + CD) \cdot AD}{2} =$	2p
	$= \frac{(100+60)\cdot 40\sqrt{3}}{2} = 3200\sqrt{3} \text{ m}^2$	3p

	b) $CM = 40\sqrt{3}$ m, unde $M \in (AB)$ astfel încât $CM \perp AB$	1p
	$MB = 40 \mathrm{m}$ şi, cum ΔBCM este dreptunghic, obţinem $BC = 80 \mathrm{m}$ şi $m (\triangleleft BCM) = 30^{\circ}$	3p
	$m(\prec BCD) = m(\prec BCM) + m(\prec MCD) = 30^{\circ} + 90^{\circ} = 120^{\circ}$	1p
	c) $ABCD$ trapez $\Rightarrow m(\angle ABC) = 180^{\circ} - m(\angle BCD) = 180^{\circ} - 120^{\circ} = 60^{\circ}$	1p
	$\mathcal{A}_{\Delta CEB} = \frac{1}{2} \cdot \mathcal{A}_{ABCD} \Rightarrow \frac{EB \cdot 40\sqrt{3}}{2} = 1600\sqrt{3}$, de unde obținem $EB = 80$ m	2p
	Cum $EB = BC$ și $m(\angle EBC) = 60^{\circ} \Rightarrow \triangle CEB$ este echilateral	2p
2.	a) $A_{\text{bazei}} = \pi \cdot OA^2 =$	2p
	$=\pi\cdot 3^2 = 9\pi\mathrm{cm}^2$	3 p
	b) $AV = \sqrt{3^2 + 4^2} = 5 \text{ cm}$	2p
	$\mathcal{A}_{\text{lateral}\check{a}} = \pi \cdot 3 \cdot 5 = 15 \pi \text{cm}^2$	3p
	c) $ON \perp (VBC)$, $N \in (VBC)$ și $BC \subset (VBC) \Rightarrow BC \perp ON$	1p
	$BC \perp VO$, $ON \cap VO = \{O\} \Rightarrow BC \perp (VON) \Rightarrow BC \perp VN$ şi, pentru $\{M\} = VN \cap BC$, obţinem că punctul M este mijlocul segmentului BC	1p
	$VM = \frac{\sqrt{82}}{2}$ cm, $OM = \frac{3\sqrt{2}}{2}$ cm și ON este înălțime în ΔVOM dreptunghic în O , deci	3n
	$ON = \frac{VO \cdot OM}{VM} = \frac{12}{\sqrt{41}} = \frac{12\sqrt{41}}{41} \text{ cm}$	3p