Supplementary Table 1. Molecular components of the model

Reaction number	Abbreviat	ionProtein name/description	SwissProt ID/TrEMBL	Compound/EC number	pathway(s)
			entry		
v1	GK	Glucokinase	P35557	E.C.2.7.1.2	glycolysis
v1	GLC	Glucose		C00267	glycolysis
v1,v2	F6P	Fructose-6-phosphate		C00085	glycolysis
v1,v2,v5,v6,v23,v28,	ADP	Adenosine Diphosphate		C00008	glycolysis, TCA
v36,v40					cycle
v1,v2,v5,v6,v23,v28,	ATP	Adenosine Triphosphate		C00002	glycolysis, TCA
v36,v43					cycle
v2	PFK	6-phosphofructokinase	P17858	E.C.2.7.1.11	glycolysis
v2,v3 v3	FBP	Fructose-1,6-bisphosphate		C00354	glycolysis
v3	FBA	fructose-bisphosphate aldolase (B/C/A)	P05062/P09972/P04075	E.C.4.1.2.13	glycolysis
v3,v4	GAP	Glyceraldehyde 3-phosphate		C00118	glycolysis
v4	GAPD	glyceraldehyde 3-phosphate dehydrogenase	P04406	E.C.1.2.1.12	glycolysis
v4,v5	DPG	1,3-bisphospho-D-glycerate		C00236	glycolysis
v4,v7,v9,v12,v14,v18, v24,v31	NAD+	Nicotinamide Adenine Dinucleotides		C00003	glycolysis, TCA cycle.NADH shuttles, respiratory chain, pyruvate cycle
v4,v7,v9,v12,v14,v18, v24,v31	NADH	Nicotinamide Adenine Dinucleotides		C00004	glycolysis, TCA cycle.NADH shuttles, respiratory chain, pyruvate cycle

v5	PGP	bisphosphoglycerate phosphatase (1/2)	P18669/P15259	E.C.5.4.2.1/E.C.5.4.2.4	glycolysis
v5,v6	PEP	Phosphoenol Pyruvate		C00074	glycolysis
v6	PK	Pyruvate kinase	P30613	E.C.2.7.1.40	glycolysis
v6,v7,v8,v9,v20,v36,v4	4 PYR	Pyruvate		C00022	glycolysis, TCA
					cycle
v7	LDH	Lactate dehydrogenase	P00338/P07195	E.C.1.1.1.27	glycolysis
v7	LAC	Lactate		C00186	glycolysis
v8	PYC	Pyruvate Carrier	Q4Q5H1		metabolite
					transport
v9	PDC	Pyruvate Dehydrogenase Complex	P08559/P11177/P29803	E.C.1.2.4.1.	TCA cycle
v9	CO2	Carbon Dioxide		C00011	TCA cycle
v10,v11,v27,v29,v33	Cit	Citrate		C00158	TCA cycle,
					pyruvate cycle
v10,v15	CoA	Coenzyme A		C00010	TCA cycle
v10,v18,v21,v31,v32,v3	66OXA	Oxaloacetate		C000036	TCA
					cycle,NADH
					shuttles
v10,v27	CS	Citrate Synthase	O75390	E.C.2.3.3.1/E.C.2.3.3.3	J ,
					pyruvate cycle
v10,v27	Acetyl_CoA			C00024	TCA cycle
v11,v12,v29,v41,v42	IsoCit	Isocitrate		C00311	TCA cycle,
					pyruvate cycle
v11,v29	ACO	Aconitase	Q99798	E.C.4.2.1.3	TCA cycle,
					pyruvate cycle
v12	IDHa	Isocitrate Dehydrogenase (NAD+)	P50213/O43837/P51553	E.C.1.1.1.41	TCA cycle,
		(alpha/beta/gamma)			pyruvate cycle
v12,v14,v21,v30,v32	OG	Oxoglutarate		C00026	TCA
					cycle,NADH
					shuttles

v13	PiC	Phosphate Carrier	Q00325		metabolite transport
v13,v15,v28	Pi	Phosphate		C00009	metabolite
					transport
v14	OGDC	Oxoglutarate Dehydrogenase Complex	Q02218	E.C.1.2.4.2	TCA cycle
v14,v15	SCoA	Succinyl-CoA		C00091	TCA cycle
v15	SCS	Succinyl-CoA synthetase	P53597/Q96I99	E.C.6.2.1.4	TCA cycle
v15,v16	Suc	Succinate		C00042	TCA cycle
v15,v23	GDP	Guanosine Diphosphate		C00035	TCA cycle
v15,v23	GTP	Guanosine Triphosphate		C00044	TCA cycle
v16	SDH	Succinate Dehydrogenase	P21912/P31040	E.C.1.3.5.1	TCA
					cycle,respiratory
					chain
v16,v17	Fum	Fumarate		C00122	TCA
					cycle,respiratory
					chain
v16,v24,v25	Q	Ubiquinone		C00399	respiratory chain,
					NADH shuttles
v16,v24,v25	QH2	Ubiquinol		C00390	respiratory chain,
					NADH shuttles
v17	FM	Fumarase	P07954	E.C.4.2.1.2	TCA cycle,
					NADH shuttle
v17,v18,v19,v30,v31,	Mal	Malate		C00149	TCA cycle,
v33v39,v42,v44					NADH shuttle,
					pyruvate cycle
v18,v31	MDH	Malate Dehydrogenase(mitochondrion	P40926	E.C.1.1.1.37	TCA cycle,
		& cytosol)			NADH shuttles
v19	DIC	Dicarboxyrate Carrier			metabolite
					transport

v20	AlaTA	Alanine Transaminase	P24298	E.C.2.6.1.2	NADH shuttle
					(malate-aspartate
					shuttle)
v20	Ala	Alanine		C00041	TCA cycle
v20,v21	Glu	Glutamate		C00025	TCA cycle,
					NADH shuttles
v21,v22	Asp	Aspartate		C00049	TCA cycle
v21,v32	AspTA	Aspartate Transaminase	P00505	E.C.2.6.1.1	NADH shuttle
					(malate-aspartate
					shuttle)
v22	AGC	Aspartate/ Glutamate Carrier	Q59GB0		NADH shuttle
					(malate-aspartate
					shuttle)
v23	NDK	Nucleoside Diphosphate Kinase	O00746	E.C.2.7.4.6	TCA cycle
v24	Complex-I	NADH : Ubiquinone oxidoreductase		E.C.1.6.5.3	respiratory chain
v25	Complex-III	Ubiquinol: Cytochrome c	P08574	E.C.1.10.2.2	respiratory chain
		Oxidoreductase			
v25,v26	Cyt_c2+	Ferricytochrome c		C00125	respiratory chain
v25,v26	Cyt_c3+	Ferrocytochrome c		C00126	respiratory chain
v26	Complex-IV	Cytochrome c Oxidase	P14854/P00403/P10176	E.C.1.9.3.1	respiratory chain
			/P20674/P13073/P09669		
			/P24311/P00395/O14548		
			/P15954		
v26,v28	H2O	Water		C00001	
v28	Complex-V	ATPase complex		E.C.3.6.1.3/E.C.3.6.1.5	respiratory chain
v30	OGC	Oxoglutarate Carrier	Q02978		NADH shuttle
					(malate-aspartate
					shuttle),pyruvate
					cycle

v33	CIC	Citrate Carrier	P53007		metabolite
					transport
v34	ETF-QO	ETF:Q oxidoreductase	Q16134	E.C.1.5.5.1	NADH shuttle
					(glycerophosphate
					shuttle)
v34,v35	ETFox	Electron Transfer Flavoprotein (oxidised	l		NADH shuttle
		form)			(glycerophosphate
					shuttle)
v34,v35	ETFred	Electron Transfer Flavoprotein (reduced			NADH shuttle
		form)			(glycerophosphate
					shuttle)
v35	GSSGR	Glutathione reductase	P00390	E.C.1.8.1.7	glutathione
					pathway
v35,v37	FAD			C00016	NADH shuttle
					(glycerophosphate
					shuttle)
v35,v37	FADH2			C01352	NADH shuttle
					(glycerophosphate
					shuttle)
v36	PC	Pyruvate Carboxylase	P11498	E.C.6.4.1.1	TCA cycle,
					pyruvate cycle
v37	GUT2P	Glycerol-3-phosphate dehydrogenase	P43304	E.C.1.1.99.5	NADH shuttle
		(FAD dependent)			(glycerophosphate
					shuttle)
v37,v38	DHAP	Dihydroxyacetone-phosphate		C00111	NADH shuttle
					(glycerophosphate
					shuttle)

v37,v38	G3P	Glycerol-3-phosphate		C00093	NADH shuttle
					(glycerophosphate
					shuttle)
v38	G3PD	Glycerol-3-phosphate dehydrogenase	P21695	E.C.1.1.1.8	NADH shuttle
		(NAD+)			(glycerophosphate
					shuttle)
v39,v41,v44	NADP+			C00006	pyruvate cycle
v39,v41,v44	NADPH			C00005	pyruvate cycle
v39,v44	ME	Malate Dehydrogenase (oxaloacetate-	P48163/Q16798	E. C. 1.1.1.40	pyruvate cycle
		decarboxylating)(NADP+)			
v40,v43	AAC	ATP/ADP carrier	P12236		metabolite
					transport
v41	IDHc	cytosolic Isocitrate Dehydrogenase	P48735/O75874	E.C.1.1.1.42	pyruvate cycle
		(NADP+)			

Supplementary Table 2. Reactions

Glycolysis:

	Reaction	Rate expression	Source
GK	$GLC+ATP \rightarrow F6P+ADP$	$V_1[ATP][GLC]$	[Nielsen, et al. 1998]
(v1)		$\overline{(K_{1GLC} + [GLC])(K_{1ATP} + [ATP])}$	
PFK	F6P+ATP → FBP+ADP	$V_2[F6P]^2[ATP]$	[Nielsen, et al. 1998]
(v2)		$(K_2(1+k_2(\frac{[ATP]}{[AMP]})^2)+[F6P]^2)(K_{2ATP}+[ATP])$	
FBA	FBP ↔ 2GAP	$v_{\rightarrow} = k_{3f}[FBP]$	[Nielsen, et al. 1998]
(v3)		$v_{\leftarrow} = k_{3b} [GAP]^2$	
GAPD	GAP+NAD → DPG+NADH	$V_4[GAP][NAD]$	[Nielsen, et al. 1998]
(v4)		$\overline{(K_{4GAP} + [GAP])(K_{4NAD} + [NAD])}$	
V5	DPG+ADP ↔ PEP+ATP	$v_{\rightarrow} = k_{5f}[DPG][ADP]$	[Nielsen, et al. 1998]
		$v_{\leftarrow} = k_{5b}[PEP][ATP]$	
V6	PEP+ADP → PYR+ATP	$V_6[PEP][ADP]$	[Nielsen, et al. 1998]
		$\overline{(K_{6PEP} + [PEP])(K_{6ADP} + [ADP])}$	
V7	PYR +NADH → LAC +NAD	$V_7[PYR]$	[Nielsen, et al. 1998]
		$\overline{(K_{7PYR} + [PYR])}$	

	Reaction	Rate expression	Source
PYC	$PYR_{IMS}+H_{MAT} \leftrightarrow$	V[E][PYR]	[Halestrap,
(v8)	PYR _{MAT} +H _{IMS}	$\overline{(K+[PYR])}$	1975]
PDC (v9)	Pyr+NAD++CoA → Acetyl-CoA +NADH+CO2	$\frac{K_{cf}[E][Pyc][CoA][NAD^{+}]}{denom}$ $denom = K_{mC}[Pyc][CoA] + K_{mB}[Pyc][NAD^{+}] + K_{mA}[CoA][NAD^{+}] + [Pyc][CoA][NAD^{+}] + \frac{K_{mA}K_{mP}K_{ib}K_{ic}[Acetyl - CoA][NADH]}{K_{mR}K_{ip}K_{iq}}$	[Yugi & Tomita, 2004] [Hamada et al., 1975]
		$+\frac{K_{mC}[Pyc][CoA][NADH]}{K_{ir}}+\frac{K_{mB}[Pyc][NAD^{+}][Acetyl-CoA]}{K_{iq}}+\frac{K_{mA}K_{mP}K_{ib}K_{ic}[Pyc][Acetyl-CoA][NADH]}{K_{mR}K_{ip}K_{ia}K_{iq}}$	

CS	OXA+Acetyl-CoA	V[Acetyl - CoA][OXA]	[Matsuoka &
(v10& v27)	↔ Cit+CoA	$\overline{[Acetyl-CoA][OXA] + K_a[OXA] + K_b[Acetyl-CoA] + K_{ia}K_b}$	Srere, 1973]
ACO (v11 & v29)	Cit ↔ IsoCit	$\frac{[E](K_{cf}K_p[Cit] - K_{cr}K_s[IsoCit])}{K_s[IsoCit] + K_p[Cit] + K_sK_p}$	[Yugi & Tomita, 2004] [Guarriero- bobyleva et al., 1978]
IDHa (v12)	IsoCit+NAD+ → OG+NADH	$\frac{K_{cf}[E]([IsoCit]^{2} + b[ADP][IsoCit])}{[IsoCit]^{2} + c[IsoCit] + d[ADP] + e[ADP][IsoCit] + f}$	[Yugi & Tomita, 2004] [Plaut et al., 1974]
PiC (v13)	$Pi_{IMS}+H^{+}_{IMS} \leftrightarrow$ $Pi_{MAT}+H^{+}_{MAT}$	$\frac{[Pi_{IMS}][H_{MAT}]}{\alpha K_{1Pi}K_{1H}}k_{cat}^{f}[PiC] - \frac{[Pi_{MAT}][H_{IMS}]}{\beta K_{2Pi}K_{2H}}k_{cat}^{r}[PiC]}{k_{cat}^{r}[PiC]} + \frac{[Pi_{IMS}]}{K_{1Pi}} + \frac{[Pi_{MAT}]}{K_{2Pi}} + \frac{[Pi_{IMS}][H_{MAT}]}{K_{2Pi}} + \frac{[Pi_{IMS}][H_{IMS}]}{\alpha K_{1Pi}K_{1H}} + \frac{[Pi_{MAT}][H_{IMS}]}{\beta K_{2Pi}K_{2H}} + \frac{[H_{MAT}][Pi_{MAT}]}{\gamma K_{1H}K_{2Pi}} + \frac{[Pi_{IMS}][H_{IMS}]}{\delta K_{1Pi}K_{2H}}$	[Yugi & Tomita, 2004] [Stappen & Kramer, 1994]
OGDC (v14)	OG+NAD ⁺ +CoA → SCoA+ NADH+CO ₂	$\frac{K_{cf}[E][OG][CoA][NAD^{+}]}{denom} \\ denom = K_{mC}[OG][CoA] + K_{mB}[OG][NAD^{+}] + K_{mA}[CoA][NAD^{+}] + [OG][CoA][NAD^{+}] + \frac{K_{mA}K_{mP}K_{ib}K_{ic}[SCoA][NADH]}{K_{mR}K_{ip}K_{iq}} \\ + \frac{K_{mC}[OG][CoA][NADH]}{K_{ir}} + \frac{K_{mB}[OG][NAD^{+}][SCoA]}{K_{iq}} + \frac{K_{mA}K_{mP}K_{ib}K_{ic}[OG][SCoA][NADH]}{K_{mR}K_{ip}K_{iq}} \\ + \frac{K_{mC}[OG][CoA][NADH]}{K_{ir}} + \frac{K_{mB}[OG][NAD^{+}][SCoA]}{K_{iq}} + \frac{K_{mA}K_{mP}K_{ib}K_{ic}[OG][SCoA][NADH]}{K_{mR}K_{ip}K_{iq}} \\ + \frac{K_{mC}[OG][CoA][NADH]}{K_{ir}} + \frac{K_{mB}[OG][NAD^{+}][SCoA]}{K_{iq}} + \frac{K_{mA}K_{mP}K_{ib}K_{ic}[OG][SCoA][NADH]}{K_{ip}K_{iq}} \\ + \frac{K_{mC}[OG][CoA][NADH]}{K_{ir}} + \frac{K_{mB}[OG][NAD^{+}][SCoA]}{K_{iq}} + \frac{K_{mB}K_{ip}K_{ip}K_{iq}}{K_{ip}K_{iq}} \\ + \frac{K_{mC}[OG][CoA][NADH]}{K_{ip}K_{iq}} + \frac{K_{mC}[OG][NAD^{+}][CoA][NAD^{+}]}{K_{ip}K_{ip}K_{iq}} \\ + \frac{K_{mC}[OG][CoA][NAD^{+}]}{K_{ip}K_{iq}} + \frac{K_{mC}[OG][NAD^{+}]}{K_{ip}K_{iq}} + \frac{K_{mC}[OG][NAD^{+}]}{K_{ip}K_{iq}} \\ + \frac{K_{mC}[OG][CoA][NAD^{+}]}{K_{ip}K_{iq}} + \frac{K_{mC}[OG][NAD^{+}]}{K_{ip}K_{iq}} + \frac{K_{mC}[OG][NAD^{+}]}{K_{ip}K_{iq}} + \frac{K_{mC}[OG][NAD^{+}]}{K_{ip}K_{iq}} + \frac{K_{mC}[OG][NAD^{+}]}{K_{ip}K_{iq}} + \frac{K_{mC}[OG][NAD^{+}]}{K_{ip}K_{iq}} + \frac{K_{mC}[OG][NAD^{+}]}{K_{iq}} + \frac{K_{mC}[OG][NAD^{+}]}{K_{iq}K_{iq}} + \frac{K_{mC}[OG][NAD^{+}]}{K_{iq}} + \frac{K_{mC}[OG][NAD^{+}]}{K_{iq}} + \frac{K_{iq}K_{iq}}{K_{iq}} + \frac{K_{iq}K_{$	[Yugi & Tomita, 2004] [Hamada et al., 1975]
SCS (v15)	SCoA+GDP+Pi ↔ Suc+CoA+GTP	$\frac{([GDP][SCoA][Pi] - \frac{[Suc][GTP][CoA]}{K_{eq}})\{K_{c1}[E] + K_{c2}[E](\frac{K_{mC}[Suc]}{K_{mC2}K_{ip}} + \frac{[Pi]}{K_{mC2}})\}}{denom}$	[Yugi & Tomita, 2004] [Cha & Parks Jr., 1964]

		$denom = K_{ia}K_{mB}[pi] + K_{mB}[GDP][Pi] + K_{mA}[SCoA][Pi] + K_{mC}[GDP][SCoA] + [GDP][SCoA][Pi] + \frac{[GDP][SCoA][Pi]^{2}}{K_{mC2}}$	
		$K_{ia}K_{mp}K_{mc}[Suc] = K_{ia}K_{mp}K_{mc}[Suc][GTP] = K_{ia}K_{mp}K_{mc}[Suc][CoA] = K_{ia}K_{mp}K_{ia}[GTP][CoA]$	
		$ + \frac{K_{ia}K_{mB}K_{mC}[Suc]}{K_{ip}} + \frac{K_{ia}K_{mB}K_{mC}[Suc][GTP]}{K_{ip}K_{iq}} + \frac{K_{ia}K_{mB}K_{mC}[Suc][CoA]}{K_{ip}K_{ir}} + \frac{K_{ia}K_{mB}K_{ic}[GTP][CoA]}{K_{mQ}K_{ir}} $	
		$ + \frac{K_{ia}K_{mB}K_{mC}[Suc][GTP][CoA]}{K_{ip}K_{mQ}K_{ir}} + \frac{K_{ia}K_{mB}K_{mC}[Suc]^{2}[GTP][CoA]}{K_{ip}K_{mP2}K_{mQ}K_{ir}} + \frac{K_{ia}K_{mB}[Pi][GTP]}{K_{iq}} + \frac{K_{ia}K_{mB}[Pi][CoA]}{K_{ir}} $	
		$+\frac{K_{ia}K_{mB}[Pi][GTP][CoA]}{K_{mQ}K_{ir}} + \frac{K_{ia}K_{mB}[Pi][Suc][GTP][CoA]}{K_{mP2}K_{mQ}K_{ir}} + \frac{K_{mB}K_{mC}[GDP][Suc]}{K_{ip}} + \frac{K_{mA}K_{mC}[SCoA][Suc]}{K_{ip}}$	
		$K_{mQ}K_{ir}$ $K_{mP2}K_{mQ}K_{ir}$ K_{ip}	
		$K_{mC}[GDP][SCoA][Suc] K_{mC}[GDP][SCoA][Pi][Suc] K_{mA}[SCoA][Pi][GTP] K_{mB}[GDP][Pi][CoA]$	
		$+\frac{K_{mC}[GDP][SCoA][Suc]}{K_{ip}}+\frac{K_{mC}[GDP][SCoA][Pi][Suc]}{K_{mC2}K_{ip}}+\frac{K_{mA}[SCoA][Pi][GTP]}{K_{iq}}+\frac{K_{mB}[GDP][Pi][CoA]}{K_{ir}}$	
		$K_{mA}K_{mC}[SCoA][Suc][GTP] K_{mB}K_{mC}[GDP][Suc][CoA]$	
		$+ \frac{K_{mA}K_{mC}[SCoA][Suc][GTP]}{K_{ip}K_{iq}} + \frac{K_{mB}K_{mC}[GDP][Suc][CoA]}{K_{ip}K_{ir}}$ $K_{cf}K_{cr}[E]([Suc][Q] - \frac{[Fum][QH_{2}]}{K_{eq}})$	
SDH	Suc+Q ↔	$Fum[QH_2]$	[Yugi &
(v16)	Fum+QH ₂	$ \left \begin{array}{c} K_{cf} K_{cr}[E]([Suc][Q] - \frac{2}{K_{cr}}) \\ \end{array} \right $	Tomita, 2004]
		denom	[Grivennikov
			a et al., 1993]
		$denom = K_{cr}K_{mS2}[Suc] + K_{cr}K_{mS1}[Q] + \frac{K_{cf}K_{mP2}[Fum]}{K_{ea}} + \frac{K_{cf}K_{mP1}[QH_2]}{K_{ea}} + K_{cr}[Suc][Q] + \frac{K_{cf}K_{mP2}[Suc][Fum]}{K_{ea}K_{iS1}} + \frac{K_{cf}[Fum][QH_2]}{K_{ea}}$	
		$K_{cr}K_{m\varsigma_1}[Q][QH_2]$	
		$+ \frac{K_{cr}K_{mS1}[Q][QH_2]}{K_{iP2}}$	
FM	Fum ↔ Mal	$[E](K_{cf}K_{p}[Fum]-K_{cr}K_{s}[Mal])$	[Yugi &
(v17)		$\frac{\overline{K_s[Mal] + K_n[Fum] + K_sK_n}}{K_s[Mal] + K_s[Fum] + K_sK_n}$	Tomita, 2004]
			_
MDH	Mal+NAD ⁺ ↔ OXA+NADH	$\underbrace{[E](\frac{K_{cf}[Mal][NAD^+]}{K_{iS1}K_{mS2}} - \frac{K_{cr}[OXA][NADH]}{K_{mP1}K_{iP2}})}_{.}$	[Yugi & Tomita,
(v18 & v31)	OXATIVADII	$\frac{[E](\overline{K_{iS1}K_{mS2}} - \overline{K_{mP1}K_{iP2}})}{K_{mP1}K_{iP2}}$	2004]
V31)		denom	[Crow et al.,
		$ _{docum=1}, [Mal], _{MS1}[NAD^{+}], _{MP2}[OXA], _{NADH}, _{Mal}[NAD^{+}], _{MP2}[Mal][OXA], _{MS1}[NAD^{+}][NADH] $	1983]
		$denom = 1 + \frac{[Mal]}{K_{iS1}} + \frac{K_{mS1}[NAD^{+}]}{K_{iS1}K_{mS2}} + \frac{K_{mP2}[OXA]}{K_{mP1}K_{iP2}} + \frac{[NADH]}{K_{iP2}} + \frac{[Mal][NAD^{+}]}{K_{iS1}K_{mS2}} + \frac{K_{mP2}[Mal][OXA]}{K_{iS1}K_{mP1}K_{iP2}} + \frac{K_{mS1}[NAD^{+}][NADH]}{K_{iS1}K_{mS2}K_{iP2}}$	
		$[OXA][NADH]$ $[Mal][NAD^{+}][OXA]$ $[NAD^{+}][OXA][NADH]$	
		$ + \frac{[OXA][NADH]}{K_{mP1}K_{iP2}} + \frac{[Mal][NAD^{+}][OXA]}{K_{iS1}K_{mS2}K_{iP1}} + \frac{[NAD^{+}][OXA][NADH]}{K_{iS2}K_{mP1}K_{iP2}} $	

DIC	$Mal_{IMS} + Pi_{MAT} \leftrightarrow Mal_{MAT} + Pi_{IMS}$	$\frac{[\mathit{Mal}_{\mathit{IMS}}][\mathit{Pi}_{\mathit{MAT}}]}{\alpha K_{\mathit{1Mal}} K_{\mathit{1Pi}}} k_{\mathit{cat}}^{\mathit{f}}[\mathit{DIC}] - \frac{[\mathit{Mal}_{\mathit{MAT}}][\mathit{Pi}_{\mathit{IMS}}]}{\beta K_{\mathit{2Mal}} K_{\mathit{2Pi}}} k_{\mathit{cat}}^{\mathit{r}}[\mathit{DIC}]$	[Yugi & Tomita,
(v19)	TOTAL VIANT	$\frac{\alpha K_{1Mal}K_{1Pi}}{\beta K_{2Mal}K_{2Pi}} = \frac{\beta K_{2Mal}K_{2Pi}}{\beta K_{2Mal}K_{2Pi}}$	2004]
		$\overline{1 + \frac{[Mal_{IMS}]}{K_{1Mal}} + \frac{[Pi_{MAT}]}{K_{1Pi}} + \frac{[Mal_{MAT}]}{K_{2Mal}} + \frac{[Pi_{IMS}]}{K_{2Pi}} + \frac{[Mal_{IMS}][Pi_{MAT}]}{\alpha K_{1Mal}K_{1Pi}} + \frac{[Mal_{MAT}][Pi_{IMS}]}{\beta K_{2Mal}K_{2Pi}} + \frac{[Pi_{MAT}][Mal_{MAT}]}{\gamma K_{1Pi}K_{2Mal}} + \frac{[[Mal_{IMS}][Pi_{IMS}]}{\delta K_{1Mal}K_{2Pi}}$	[Indiveri et al., 1993]
AlaTA (v20)	Ala+OG ↔ Glu+Pyr	$\frac{K_{cf}K_{cr}[E]([Ala][OG] - \frac{[Glu][Pyr]}{K_{eq}})}{denom} \\ denom = K_{cr}K_{mS2}[Ala] + K_{cr}K_{mS1}[OG] + \frac{K_{cf}K_{mP2}[Glu]}{K_{eq}} + \frac{K_{cf}K_{mP1}[Pyr]}{K_{eq}} + K_{cr}[Ala][OG] + \frac{K_{cf}K_{mP2}[Ala][Glu]}{K_{eq}K_{iS1}} + \frac{K_{cf}[Glu][Pyr]}{K_{eq}}$	[Yugi & Tomita, 2004] [De Rosa et al., 1979]
		$K_{eq} \qquad K_{eq} \qquad K$	
AspTA (v21 & v32)	Asp+OG ↔ OXA+Glu	$\frac{K_{cf}K_{cr}[E]([Asp][OG] - \frac{[OXA][Glu]}{K_{eq}})}{denom} \\ denom = K_{cr}K_{mS2}[Asp] + K_{cr}K_{mS1}[OG] + \frac{K_{cf}K_{mP2}[OXA]}{K_{eq}} + \frac{K_{cf}K_{mP1}[Glu]}{K_{eq}} + K_{cr}[Asp][OG] + \frac{K_{cf}K_{mP2}[Asp][OXA]}{K_{eq}K_{iS1}} + \frac{K_{cf}[OXA][Glu]}{K_{eq}} \\ + \frac{K_{cr}K_{mS1}[OG][Glu]}{K_{iP2}} \\$	[Yugi & Tomita, 2004] [Velick & Vavra, 1962] [Henson & Cleland, 1964]
AGC (v22)	$\begin{array}{c} Asp_{IMS} + Glu_{MAT} \leftrightarrow \\ Asp_{MAT} + Glu_{IMS} \end{array}$	$\frac{[Asp_{IMS}][Glu_{MAT}]}{\alpha K_{1Asp}K_{1Glu}}k_{cat}^{f}[AGC] - \frac{[Asp_{MAT}][Glu_{IMS}]}{\beta K_{2Asp}K_{2Glu}}k_{cat}^{r}[AGC]$ $1 + \frac{[Asp_{IMS}]}{K_{1Asp}} + \frac{[Glu_{MAT}]}{K_{1Glu}} + \frac{[Asp_{MAT}]}{K_{2Asp}} + \frac{[Glu_{IMS}]}{K_{2Glu}} + \frac{[Asp_{IMS}][Glu_{MAT}]}{\alpha K_{1Asp}K_{1Glu}} + \frac{[Asp_{MAT}][Glu_{IMS}]}{\beta K_{2Asp}K_{2Glu}} + \frac{[Glu_{MAT}][Asp_{MAT}]}{\gamma K_{1Glu}K_{2Asp}} + \frac{[[Asp_{IMS}][Glu_{IMS}]}{\delta K_{1Asp}K_{2Glu}}$	[Yugi & Tomita, 2004] [Sluse et al., 1991]
NDK (v23)	ATP + GDP ↔ ADP + GTP	$\frac{K_{cf}K_{cr}[E]([ATP][GDP] - \frac{[ADP][GTP]}{K_{eq}})}{denom} \\ denom = K_{cr}K_{mS2}[ATP] + K_{cr}K_{mS1}[GDP] + \frac{K_{cf}K_{mP2}[ADP]}{K_{eq}} + \frac{K_{cf}K_{mP1}[GTP]}{K_{eq}} + K_{cr}[ATP][GDP] + \frac{K_{cf}K_{mP2}[ATP][ADP]}{K_{eq}} + \frac{K_{cf}[ADP][GTP]}{K_{eq}} \\ + \frac{K_{cr}K_{mS1}[GDP][GTP]}{K_{iP2}} \\$	[Yugi & Tomita, 2004] [Garces & Cleland, 1969]
I (v24)	$NADH+Q+5H^{+}_{MAT}$ $\leftrightarrow NAD^{+}+QH_{2}+$ $4H^{+}_{IMS}$	$\frac{K_{iP2}}{K_{cf}K_{cr}[E]([NADH][Q] - \frac{[NAD^+][QH_2]}{K_{eq}})}{denom}$	[Yugi & Tomita, 2004] [Fato et al., 1996]

		$denom = K_{cr}K_{mS2}[NADH] + K_{cr}K_{mS1}[Q] + \frac{K_{cf}K_{mP2}[NAD^{+}]}{K_{eq}} + \frac{K_{cf}K_{mP1}[QH_{2}]}{K_{eq}} + K_{cr}[NADH][Q] + \frac{K_{cf}K_{mP2}[NADH][NAD^{+}]}{K_{eq}K_{iS1}}$	
		$+\frac{K_{cf}[NAD^{+}][QH_{2}]}{K_{eq}} + \frac{K_{cr}K_{mS1}[Q][QH_{2}]}{K_{iP2}}$	
III (v25)	QH ₂ +2cyt c^{3+} + 2H ⁺ _{MAT} \leftrightarrow Q + 2cyt c^{2+} +4H ⁺ _{IMS}	$\frac{K_{cf}[E][QH_{2}][cytc^{3+}]}{[Q](K_{mA}K_{q2}K_{b2}+K_{mA}K_{q2}[cytc^{3+}]+\frac{K_{cf}}{k_{8}}K_{q1}[QH_{2}]K_{b1}+\frac{K_{cf}}{k_{8}}K_{q1}[QH_{2}][cytc^{3+}])+K_{mA}[cytc^{3+}]+K_{mB}[QH_{2}]+[QH_{2}][cytc^{3+}]}$	[Yugi & Tomita, 2004] [Kubota et al., 1992]
IV (v26)	$ 4cyt c2++O2+ 8H+MAT \lor 4cyt c3+ +2H2O+4H+IMS $	$\frac{K_{cf}[E][cytc^{2+}]}{K_s + [cytc^{2+}]}$	[Yugi & Tomita, 2004] [Malmstrom & Andreasson, 1985]
V (v28)	ADP+Pi+3H $^{+}_{IMS}$ ↔ ATP+H $_{2}$ O+3H $^{+}_{MAT}$	$\frac{K_{cf}[E]\{\frac{[ADP][Pi]}{K_{d}K_{p}}klt_{f}(\frac{H_{IMS}}{H_{MAT}})^{-3(\beta-ax)}(\frac{[H_{IMS}^{+}]}{K_{hx}(\frac{H_{IMS}}{H_{MAT}})^{ax}})^{3} - \frac{[ATP]}{K_{t}}klt_{r}(\frac{H_{IMS}}{H_{MAT}})^{3(1-\beta-ay)}(\frac{[H_{MAT}^{+}]}{K_{hy}(\frac{H_{IMS}}{H_{MAT}})^{-ay}})^{3}\}}{(1 + \frac{[H_{IMS}^{+}]}{K_{hx}(\frac{H_{IMS}}{H_{MAT}})^{ax}} + \frac{[H_{MAT}^{+}]}{K_{hy}(\frac{H_{IMS}}{H_{MAT}})^{-ay}})^{3}(3 + \frac{[ADP][Pi]}{K_{d}K_{p}} + \frac{[ATP]}{K_{t}})}{K_{t}}$	[Yugi & Tomita, 2004] [Kholodenko, 1993]
OGC (v30)	$OG_{IMS} + Mal_{MAT} \leftrightarrow OG_{MAT} + Mal_{IMS}$	$\frac{[OG_{IMS}][Mal_{MAT}]}{\alpha K_{1OG}K_{1Mal}} k_{cat}^{f}[OGC] - \frac{[OG_{MAT}][Mal_{IMS}]}{\beta K_{2OG}K_{2Mal}} k_{cat}^{r}[OGC] - \frac{[OG_{IMS}][Mal_{IMS}]}{\beta K$	[Yugi & Tomita, 2004] [Indiveri et al., 1991]
CIC (v33 & v42)	$\begin{array}{c} Cit_{IMS} + Mal_{MAT} \; \leftrightarrow \\ Cit_{MAT} + Mal_{IMS} \\ IsoCit_{IMS} + Mal_{MAT} \\ \leftrightarrow IsoCit_{MAT} + \\ Mal_{IMS} \end{array}$	$\frac{[Cit_{IMS}][Mal_{MAT}]}{\alpha K_{1Cit}K_{1Mal}} k_{cat}^{f}[CIC] - \frac{[Cit_{MAT}][Mal_{IMS}]}{\beta K_{2Cit}K_{2Mal}} k_{cat}^{r}[CIC]}{1 + \frac{[Cit_{IMS}]}{K_{1Cit}} + \frac{[Mal_{MAT}]}{K_{2Cit}} + \frac{[Cit_{MAT}]}{K_{2Cit}} + \frac{[Cit_{IMS}][Mal_{MAT}]}{\alpha K_{1Cit}K_{1Mal}} + \frac{[Cit_{MAT}][Mal_{IMS}]}{\beta K_{2Cit}K_{2Mal}} + \frac{[Mal_{MAT}][Cit_{MAT}]}{\gamma K_{1Mal}K_{2Cit}} + \frac{[Cit_{IMS}][Mal_{IMS}]}{\delta K_{1Cit}K_{2Mal}}$	[Yugi & Tomita, 2004] [Bisaccia et al., 1993]
ETF-QO (v34)	ETFred +Q ↔ ETFox + QH2	$\frac{K_{cf}K_{cr}[E]([ETF_{red}][Q] - \frac{[ETF_{ox}][QH_{2}]}{K_{eq}})}{denom}$ $denom = K_{cr}K_{mS2}[ETF_{red}] + K_{cr}K_{mS1}[Q] + \frac{K_{cf}K_{mP2}[ETF_{ox}]}{K_{eq}} + \frac{K_{cf}K_{mP1}[QH_{2}]}{K_{eq}} + K_{cr}[ETF_{red}][Q] + \frac{K_{cf}K_{mP2}[ETF_{red}][ETF_{ox}]}{K_{eq}K_{iS1}}$ $+ \frac{K_{cf}[ETF_{ox}][QH_{2}]}{K_{eq}} + \frac{K_{cr}K_{mS1}[Q][QH_{2}]}{K_{iP2}}$	[Yugi & Tomita, 2004] [Beckmann and Frerman, 1985]

PC (v36)	FAD + ETF _{red} ↔ FADH2 +ETF _{ox} Pyr+ATP+CO2 ↔ OXA+ADP+Pi	$\frac{\left[E\right](\frac{K_{cf}[FAD][ETF_{red}]}{K_{iS1}K_{mS2}} - \frac{K_{cr}[FADH2][ETF_{ox}]}{K_{mP1}K_{iP2}})}{denom} \\ denom = 1 + \frac{\left[FAD\right]}{K_{iS1}} + \frac{K_{mS1}[ETF_{red}]}{K_{iS1}K_{mS2}} + \frac{K_{mP2}[FADH2]}{K_{mP1}K_{iP2}} + \frac{\left[ETF_{ox}\right]}{K_{iP2}} + \frac{\left[FAD\right][ETF_{red}]}{K_{iS1}K_{mS2}} + \frac{K_{mP2}[FADH2]}{K_{iS1}K_{mP1}K_{iP2}} \\ + \frac{K_{mS1}[ETF_{red}][ETF_{ox}]}{K_{iS1}K_{mS2}K_{iP2}} + \frac{\left[FADH2\right][ETF_{ox}]}{K_{mP1}K_{iP2}} + \frac{\left[FADH2\right][FADH2]}{K_{iS1}K_{mS2}K_{iP1}} + \frac{\left[ETF_{red}\right][FADH2][ETF_{ox}]}{K_{iS2}K_{mP1}K_{iP2}} \\ - \frac{K_{cf}K_{cr}[PC]([ATP][CO_{2}][Pyr] - \frac{\left[Pi\right][ADP][OXA]}{K_{eq}}}{denom} \\ denom = (K_{ia}K_{mb}K_{cr}[Pyr] + K_{mc}K_{cr}[ATP][CO_{2}] + K_{mA}K_{cr}[CO_{2}][Pyr] + K_{mb}K_{cr}[ATP][Pyr] + K_{cr}[ATP][CO_{2}][Pyr] \\ + \frac{K_{ip}K_{mQ}K_{cf}[OXA]}{K_{eq}} + \frac{K_{mQ}K_{cf}[Pi][OXA]}{K_{eq}} + \frac{K_{mp}K_{cf}[ADP][OXA]}{K_{eq}} + \frac{K_{iq}K_{mp}K_{cf}[CO_{2}][OXA]}{K_{ip}} + \frac{K_{iq}K_{mp}K_{cf}[CO_{2}][Pyr][Pi][OXA]}{K_{ip}} + \frac{K_{iq}K_{mp}K_{cf}[CO_{2}][Pyr][Pi][ADP]}{K_{ip}} + \frac{K_{mA}K_{cr}[CO_{2}][Pyr][Pi][ADP]}{K_{ip}} + \frac{K_{mA}K_{cr}[CO_{2}][Pyr][Pi]}{K_{ip}} + \frac{K_{mA}K_{cr}[CO_{2}][Pyr][Pi]}{K_{ip}} + \frac{K_{mA}K_{cr}[CO_{2}][Pyr][Pi][ADP]}{K_{ip}} + \frac{K_{mA}K_{cr}[CO_{2}][Pyr][Pi]}{K_{ip}} + \frac{K_{mA}K_{cr}[CO_{2}][Pyr]}{K_{ip}} + \frac{K_{mA}K_{cr}[CO_{2}][Pyr]}{K_{i$	[Yugi & Tomita, 2004] [McKean et al., 1979] [Yugi & Tomita, 2004] [Barden et al., 1972]
		$oxed{K_{ib}K_{eq}}$ $oxed{K_{ib}K_{eq}}$	
v37 & v38	$G3P + FAD \leftrightarrow$ DHAP + FADH2 $NADH + DHAP \leftrightarrow$ NAD + G3P	$\frac{V[E][G3P]}{K + [G3P]}$	[Påhlman et al., 2002]
ME (v39 & v44)	Mal +NADP ↔ PYR +NADPH	$\frac{K_{cat}[E][Mal][NADP]}{(K_{Mal} + [Mal])(K_{NADP} + [NADP]}$	[Swierczynsk i, 1980]

$1 + \frac{k_{f0}(\frac{H_{IMS}}{H_{MAT}})^{\frac{FT}{F}C_f} normalize}{k_{f0}(\frac{H_{IMS}}{H_{MAT}})^{\frac{FT}{F}C_f} normalize} (1 + \frac{Kd_2}{[ATP_{MAT}]})$ $\frac{k_{f0}(\frac{H_{IMS}}{H_{MAT}})^{\frac{FT}{F}C_f} normalize[AAC][ADP_{IMS}]}{k_{f0}(\frac{H_{IMS}}{H_{MAT}})^{\frac{FT}{F}C_f} normalize} (1 + \frac{Kd_2}{[ADP_{MAT}]})$ $v_{\leftarrow} = \frac{K_{f0}(\frac{H_{IMS}}{H_{MAT}})^{\frac{FT}{F}C_f} normalize}{k_{f0}(\frac{H_{IMS}}{H_{MAT}})^{\frac{FT}{F}C_f} normalize} (1 + \frac{Kd_2}{[ADP_{MAT}]})$ $1 + \frac{Kd_1}{k_{f0}(\frac{H_{IMS}}{H_{MAT}})^{\frac{FT}{F}C_f} normalize} (1 + \frac{Kd_2}{[ADP_{MAT}]})$	
$1 + \frac{H_{MAT}}{k_{r0}(\frac{H_{IMS}}{H_{MAT}})^{(\frac{RT}{F})C_{rf}}} \frac{(1 + \frac{Ku_2}{[ADP_{MAT}]})}{normalize}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[Yugi & Tomita, 2004] [Londesborou gh & Dalziel, 1970]

References to Reactions

- [Barden et al., 1972] Barden, R. E., Fung, C. H., Utter, M. F., and Scrutton, M. C. (1972). Pyruvate carboxylase from chicken liver. J. Biol. Chem., 247(4):1323--33.
- [Beckmann & Frerman, 1985] Beckmann, J. D. and Frerman, F. E. (1985). Reaction of electron-transfer flavoprotein with electron-transfer flavoprotein-ubiquinone oxidoreductase. Biochemistry, 24(15):3922--5.
- [Cha & Parks Jr., 1964] Sungman Cha and R. E. Parks, Jr. (1964) Succinic Thiokinase. II. KINETIC STUDIES: INITIAL VELOCITY, PRODUCT INHIBITION, AND EFFECT OF ARSENATE. Biol. Chem. 1964 239: 1968-1977.
- [Bisaccia et al., 1993] Bisaccia, F., De Palma, A., Dierks, T., Kramer, R., and Palmieri, F. (1993). Reaction mechanism of the reconstituted tricarboxylate carrier from rat liver mitochondria. Biochim. Biophys. Acta, 1142(1-2):139--45.
- [Crow et al., 1983] Crow, K. E., Braggins, T. J., and Hardman, M. J. (1983). Human liver cytosolic malate dehydrogenase: purification, kinetic properties, and role in ethanol metabolism. Arch. Biochem. Biophys., 225(2):621--9.
- [De Rosa et al., 1979] De Rosa, G., Burk, T. L., and Swick, R. W. (1979). Isolation and characterization of mitochondrial alanine aminotransferase from porcine tissue. Biochim. Biophys. Acta, 567(1):116--24.
- [Fato et al., 1996] Fato, R., Estornell, E., Di Bernardo, S., Pallotti, F., Parenti Castelli, G., and Lenaz, G. (1996). Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. Biochemistry, 35(8):2705--16.
- [Garces & Cleland, 1969] Garces, E. and Cleland, W. W. (1969). Kinetic studies of yeast nucleoside diphosphate kinase. Biochemistry, 8(2):633--40.
- [Grivennikova et al., 1993] Grivennikova, V. G., Gavrikova, E. V., Timoshin, A. A., and Vinogradov, A. D. (1993). Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. new assay system and overall properties of the reaction. Biochim. Biophys. Acta, 1140(3):282--92.
- [Guarriero-bobyleva et al., 1978] Guarriero-Bobyleva, V., Masini, A., Volpi-Becchi, M. A., and Cennamo, C. (1978). Kinetic studies of cytoplasmic and mitochondrial aconitate hydratases from rat liver. Ital. J. Biochem., 27(5):287--99.
- [Halestrap, 1975] Halestrap A.P.(1975) The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem J. 1975 Apr;148(1):85-96.
- [Hamada et al., 1975] Hamada M, Koike K, Nakaula Y, Hiraoka T & Koike M (1975) A kinetic study of the alpha-keto acid dehydrogenase complexes from pig heart mitochondria. J Biochem (Tokyo) 77, 1047–1056.
- [Henson & Cleland, 1964] Henson, C. P. and Cleland, W. W. (1964). Kinetic studies of glutamic oxaloacetic transaminase isozymes. Biochemistry, 3(3):338-45.
- [Indiveri et al., 1991] Indiveri, C., Dierks, T., Kramer, R., and Palmieri, F. (1991a). Reaction mechanism of the reconstituted oxoglutarate carrier from bovine heart mitochondria. Eur. J. Biochem., 198(2):339--47.

- [Kholodenko, 1993] Kholodenko, B. N. (1993). Kinetic models of coupling between H and Na -translocation and ATP synthesis/hydrolysis by FoF1 -ATPases: Can a cell utilize both $\Delta\mu_{H^+}$ and $\Delta\mu_{Na^+}$ for ATP synthesis in vivo conditions using the same enzyme? J. Bioenerg. Biomembr., 25(3):285--95.
- [Kramer & Klingenberg, 1982] Kramer, R. and Klingenberg, M. (1982). Electrophoretic control of reconstituted adenine nucleotide translocation. Biochemistry, 21(5):1082--9.
- [Kubota et al., 1992] Kubota, T., Yoshikawa, S., and Matsubara, H. (1992). Kinetic mechanism of beef heart ubiquinol:cytochrome c oxidoreducase. J. Biochem. (Tokyo), 111(1):91--8.
- [Londesborough & Dalziel, 1970] Londesborough, J. C. and Dalziel, K. (1970). Kinetic studies of NADPdependent isocitrate dehydrogenase form beef heart mitochondria. In Sund, H., editor, Pyridine Nucleotide Dependent Dehydrogenases, pages 315--24. Springer-Verlag, New York.
- [Malmstrom & Andreasson, 1985] Malmstrom, B. G. and Andreasson, L. E. (1985). The steady-state rate equation for cytochrome c oxidase based on a minimal kinetic scheme. J. Inorg. Biochem., 23(3-4):233--42.
- [Matsuoka & Srere, 1973] Matsuoka Y, Srere PA.(1973) Kinetic Studies of Citrate Synthase from Rat Kidney and Rat Brain J. Biol. Chem. 1973 248: 8022-8030.
- [McKean et al., 1979] McKean, M. C., Frerman, F. E., and Mielke, D. M. (1979). General acyl-CoA dehydrogenase frome pig liver. J. Biol. Chem., 254(8):2730--5.
- [Nielsen, et al. 1998] K. Nielsen, P.G. Sørensen, F. Hynne and H.G. Busse ``Sustained oscillations in Glycolysis: An experimental and theoretical study of chaotic and complex periodic behavior and of quenching of simple oscillations" Biophysical Chemistry 72 (1998) 49-62.
- [Påhlman et al., 2002] Påhlman, I.-L., Larsson, C., Avéret, N., Bunoust, O., Boubeker, S., Gustafsson, L., and Rigoulet, M. (2002) Kinetic regulation of the mitochondrial glycerol-3-phosphate dehydrogenase by the external NADH dehydrogenase in Saccharomyces cerevisiae. J. Biol. Chem. 277, 27991–27995.
- [Plaut et al., 1974] Plaut, G. W. E., Schramm, V. L., and Aogaichi, T. (1974). Action of magnesium ion on diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. J. Biol. Chem., 249(6):1848--56.
- [Sluse et al., 1991] Sluse, F. E., Evens, A., Dierks, T., Duyckaerts, C., Sluse-Goffart, C. M., and Kramer, R. (1991). Kinetic study of the aspartate / glutamate carrier in intact rat heart mitochondria and comparison with a reconstituted system. Biochim. Biophys. Acta, 1058(3):329--38.
- [Stappen & Kramer, 1994] Stappen, R. and Kramer, R. (1994). Kinetic mechanism of phosphate/phosphate and phosphate/OH antiports catalyzed by reconstituted phosphate carrier from beef heart mitochondria. J. Biol. Chem., 269(15):11240--6.
- [Swierczynski, 1980] Swierczynski J. (1980) Purification and some properties of extramitochondrial malic enzyme from rat skeletal muscle Biochim. Biophys. Acta 616 (1980) 10-21
- [Velick & Vavra, 1962] Velick, S. F. and Vavra, J. (1962). A kinetic and equilibrium analysis of the glutamic oxaloacetate transaminase mechanism. J. Biol. Chem., 237(7):2109--22.

[Yugi & Tomita, 2004] Yugi, K. and Tomita, M.A (2004) general computational model of mitochondrial metabolism in a whole organelle scale. Bioinformatics 2004 Jul 22; 20: 1795-1796.

Supplementary Table 3. Kinetic Parameters

v1-3	$V_1 = 0.50 mM / s$; $K_{1GLC} = 0.1 mM$; $K_{1ATP} = 0.063 mM$
v2-4	$V_2 = 1.5 mM / s$; $K_2 = 0.0016 mM^2$; $k_2 = 0.017$; $K_{2ATP} = 0.01 mM$
v3-2	$k_{3f} = 1/s$; $k_{3b} = 50mM/s$
v4-3	$V_4 = 20mM / s$; $K_{4GAP} = 1mM$; $K_{4NAD} = 1mM$
v5-2	$k_{5f} = 1mM / s$; $k_{5b} = 0.5mM / s$
v6-3	$V_6 = 10mM / s$; $K_{6PEP} = 0.2mM$; $K_{6ADP} = 0.3mM$
v7-2	$V_7 = 2.0 mM / s$; $K_{7PYR} = 0.3 mM$
PYC (v8-10)	$\alpha = 1.0$; $\beta = 1.0$; $\gamma = 1.0$; $\delta = 1.0$; $K_{1PYR} = 6.1e - 4$; $K_{1H} = 5.9e - 4$; $K_{2PYR} = 4.1e - 4$; $K_{2H} = 2.6e - 4$; $k_{cat}^f = 0.84$; $k_{cat}^r = 0.78$
PDC	$K_{cf} = 856$; $K_{mA} = 25e - 6$; $K_{mB} = 13e - 6$; $K_{mC} = 50e - 6$; $K_{mP} = 5.9e - 7$; $K_{mR} = 6.9e - 7$; $K_{ia} = 5.5e - 4$; $K_{ib} = 3.0e - 4$; $K_{ic} = 1.8e - 4$;
(v9-12)	$K_{ip} = 6.0e - 5$; $K_{iq} = 35e - 6$; $K_{ir} = 36e - 6$
CS	$k1 = 6.8e10$; $k_1 = 8.1e8$; $k2 = 3.0e10$; $k_2 = 7.2e8$; $k3 = 6.2e10$; $k_3 = 5.1e8$; $k4 = 1.2e10$; $k_4 = 4.0e8$; $k5 = 1.4e9$; $k_5 = 2.4e8$;
(v10-16)	<i>k</i> 6 = 4.1 <i>e</i> 10; <i>k</i> _6 = 1.1 <i>e</i> 8; <i>k</i> 7 = 5 <i>e</i> 10; <i>k</i> _7 = 9.8 <i>e</i> 8; <i>k</i> 8 = 5.3 <i>e</i> 10; <i>k</i> _8 = 7.7 <i>e</i> 8
ACO (v11-4)	$K_{cf} = 20.47$; $K_{cr} = 31.44$; $K_{s} = 0.50e - 3$; $K_{p} = 0.11e - 3$
IDHa (v12-6)	$K_{cf} = 105$; $b = 29.6$; $c = 0.00023$; $d = 7.8e - 05$; $e = 0.00064$; $f = 0.00036$
PiC (v13-10)	$\alpha = 1.0$; $\beta = 1.0$; $\gamma = 1.0$; $\delta = 1.0$; $K_{1Pi} = 0.87$; $K_{1H} = 1.86e - 8$; $K_{2Pi} = 32.84e - 9$; $K_{2H} = 11.12e - 3$; $k_{cat}^f = 37.9$; $k_{cat}^r = 37.0$
OGDC	$K_{cf} = 177$; $K_{mA} = 0.22e - 3$; $K_{mB} = 0.025e - 3$; $K_{mC} = 0.05e - 3$; $K_{mP} = 3e - 4$; $K_{mR} = 6e - 4$; $K_{ia} = 7.2e - 4$; $K_{ib} = 7.4e - 4$; $K_{ic} = 1e - 4$;
(v14-12)	$K_{ip} = 1.1e - 6$; $K_{iq} = 81e - 6$; $K_{ir} = 25e - 6$
SCS	$K_{eq} = 8.375$; $K_{mA} = 5e - 6$; $K_{mB} = 3.5e - 5$; $K_{mC} = 4.5e - 4$; $K_{mP} = 6e - 4$; $K_{mQ} = 7.5e - 6$; $K_{mC2} = 4.5e - 4$; $K_{mP2} = 6e - 4$; $K_{ia} = 4e - 4$;
(v15-16)	$K_{ib} = 2e - 5$; $K_{ic} = 3e - 5$; $K_{ip} = 7e - 2$; $K_{iq} = 5e - 6$; $K_{ir} = 6.7e - 6$; $K_{c1} = 100$; $K_{c2} = 100$
SDH (vv16-9)	$K_{cf} = 69.3$; $K_{cr} = 1.73$; $K_{eq} = 0.037$; $K_{mS1} = 30e - 6$; $K_{mS2} = 69e - 6$; $K_{mP1} = 0.3e - 6$; $K_{mP2} = 1.5e - 6$; $K_{iS1} = 4.1e - 6$; $K_{iP2} = 5.6e - 6$
FM (v17-4)	$K_{cf} = 800$; $K_{cr} = 900$; $K_{s} = 0.50e - 5$; $K_{p} = 2.5e - 5$
MDH	$K_{cf} = 0.390$; $K_{cr} = 0.040$; $K_{mS1} = 72e - 6$; $K_{mS2} = 110e - 6$; $K_{mP1} = 1600e - 6$; $K_{mP2} = 170e - 6$; $K_{iS1} = 11e - 6$; $K_{iS2} = 100e - 6$;
(v18&v32- 10)	$K_{iP1} = 7100e - 6$; $K_{iP2} = 1900e - 6$
DIC (v19-10)	$\alpha = 1.0$; $\beta = 1.0$; $\delta = 1.0$; $K_{1Mal} = 0.20e - 3$; $K_{1Pi} = 0.72e - 3$; $K_{2Mal} = 90.e - 4$; $K_{2Pi} = 7.6e - 4$; $k_{cat}^f = 2.7$; $k_{cat}^r = 4.1$
AlaTA (v20-9)	$K_{cf} = 337$; $K_{cr} = 0.15$; $K_{eq} = 0.69$; $K_{mS1} = 2e - 3$; $K_{mS2} = 0.4e - 3$; $K_{mP1} = 32e - 3$; $K_{mP2} = 0.4e - 3$; $K_{iS1} = 8.7e - 3$; $K_{iP2} = 12e - 3$
AspTA (v21-9)	$K_{cf} = 300$; $K_{cr} = 1000$; $K_{eq} = 6.2$; $K_{mS1} = 0.9e - 3$; $K_{mS2} = 0.1e - 3$; $K_{mP1} = 0.04e - 3$; $K_{mP2} = 4e - 3$; $K_{iS1} = 2e - 3$; $K_{iP2} = 8.3e - 3$

AGC (v22-10)	$\alpha = 1.0$; $\beta = 1.0$; $\gamma = 1.0$; $\delta = 1.0$; $K_{1Asp} = 80e - 6$; $K_{1Glu} = 3.2e - 3$; $K_{2Asp} = 180e - 6$; $K_{2Glu} = 2.8e - 3$; $K_{cat} = 10.0$; $K_{cat} = 10.0$
NDK (v23-9)	$K_{mS1} = 0.31e - 3M$; $K_{mS2} = 0.043e - 3M$; $K_{mP1} = 0.050e - 3M$; $K_{mP2} = 0.25e - 3M$; $K_{iS1} = 0.21e - 3M$; $K_{iP2} = 0.35e - 3M$; $K_{eq} = 1.28$;
ī	$K_{cf} = 6883$; $K_{cr} = 5950$
(v24-9)	$K_{cf} = 498$; $K_{cr} = 229$; $K_{eq} = 407.9$; $K_{mS1} = 9.2e - 6$; $K_{mS2} = 2.6e - 4$; $K_{mP1} = 9.9e - 6$; $K_{mP2} = 5.9e - 5$; $K_{iS1} = 2.1e - 8$; $K_{iP2} = 9.8e - 8$
III (v25-8)	$K_{cf} = 426.8$; $K_{mA} = 2.8e - 5$; $K_{mB} = 3.0e - 6$; $K_{b1} = 5.4e - 6$; $K_{b2} = 5.7e - 6$; $K_{q1} = 2.8e - 6$; $K_{q2} = 1.9e - 6$; $K_{8} = 622.1$
IV (v26-2)	$K_{cf} = 93.5$; $K_s = 110e - 6$
V (v28-12)	$K_{cf} = 14.5$; $K_d = 2.67e - 7$; $K_p = 9.02e - 5$; $K_t = 4.33e - 5$; $K_{hx} = 1.3e - 4$; $K_{hy} = 1.6e - 4$; $klt_f = 1.35e + 8$; $klt_r = 0.00018$; $ax = 0.1$; $ay = 0.6$; $\beta = 0.3$; $T = 310$
OGC (v30-10)	$K_{iS1} = 0.3e - 3M$; $K_{iS2} = 0.7e - 3M$; $K_{iP1} = 1.4e - 3M$; $K_{iP2} = 0.17e - 3M$; $K_{cf} = 3.675$; $K_{cr} = 4.83$; $\alpha = 1.0$; $\beta = 1.0$; $\beta = 1.0$; $\delta = 1.0$
CIC (v33- 10)	$K_{iS1} = 0.13e - 3M \; ; \; K_{iS2} = 0.44e - 3M \; ; \; K_{iP1} = 0.33e - 3M \; ; \; K_{iP2} = 4.18e - 5M \; ; \; K_{cf} = 5.6 \; ; \; K_{cr} = 3.5 \; ; \\ \alpha = 1.0 \; ; \; \beta = 1.0 \; ; \; \delta = 1.0 $
ETF-QO	$K_{mS1} = 0.31e - 6M$; $K_{mS2} = 0.39e - 6M$; $K_{mP1} = 0.32e - 6M$; $K_{mP2} = 4.2e - 9M$; $K_{iS1} = 0.31e - 6M$; $K_{iP2} = 0.3e - 6M$; $K_{eq} = 0.66$; $K_{eq} = 78$;
(v34-9)	$K_{cr} = 101$
V35 (11)	$K_{mS1} = 39e - 6M$; $K_{mS2} = 0.12e - 6M$; $K_{mP1} = 1.08e - 6M$; $K_{mP2} = 2.42e - 5M$; $K_{iS1} = 76e - 6M$; $K_{iS2} = 0.24e - 6M$; $K_{iP1} = 7.53e - 5M$;
	$K_{iP2} = 1.19e - 5M$; $K_{eq} = 8.99$; $K_{cf} = 2.18$; $K_{cr} = 0.30$
PC (v36-15)	$K_{cf} = 200$; $K_{eq} = 9.0$; $K_{ia} = 0.15e - 3$; $K_{ib} = 1.6e - 3$; $K_{ic} = 0.13e - 3$; $K_{ip} = 7.9e - 3$; $K_{iq} = 0.19e - 3$; $K_{ir} = 0.24e - 3$;
(\v30-13)	$K_{mA} = 0.11e - 3$; $K_{mB} = 1.63e - 3$; $K_{mC} = 0.37e - 3$; $K_{mP} = 16e - 3$; $K_{mQ} = 0.24e - 3$; $K_{mR} = 0.051e - 3$
V37 (2)	V = 0.0399e - 6M / s; $K = 34.0e - 6M$
ME (v39- 3)	$K_{cat} = 0.333$; $K_{Mal} = 0.125e - 3$; $K_{NADP} = 11e - 3$
$\begin{array}{c} AAC \rightarrow \\ (v40-10) \end{array}$	$k_{f0} = 1.0$; $k_{r0} = 1.0$; normalize = 2.21; $Kd_1 = 5.9e - 4$; $Kd_2 = 5.9e - 4$; $C_f = 10.2$; $C_r = -10.2$; $T = 310$; $R = 8.3145$; $F = 96485$
IDHc (41.12)	$\phi_0 = 5.1e - 2$; $\phi_1 = 9.5e - 8$; $\phi_2 = 0.96e - 6$; $\phi_{12} = 9e - 8$; $\phi_0 = 6.6e - 2$; $\phi_1 = 0.37e - 6$; $\phi_2 = 29e - 6$; $\phi_3 = 2.5e - 4$; $\phi_{12} = 6e - 12$;
(v41-12)	$\phi_{13} = 1.3e - 10$; $\phi_{23} = 9.4e - 8$; $\phi_{123} = 4.6e - 14$
AAC←	$k_{f0} = 0.9$; $k_{r0} = 0.9$; normalize = 2.21; $Kd_1 = 5.9e - 4$; $Kd_2 = 5.9e - 4$; $C_f = 3.3$; $C_r = -3.34$; $T = 310$; $R = 8.3145$; $F = 96485$
(v43-10)	

Table 4. Initialisation conditions

```
 [ATP\_cyt]_0 = 4.49064mM/l; [ADP\_cyt]_0 = 0.108367mM/l; [NADH\_cyt]_0 = 0.616118mM/l; [NAD^+]_0 = 3.62057mM/l; \\ [GLC]_0 = 0.0112817mM/l; [F6P]_0 = 0.65939mM/l; [FBP]_0 = 0.00770135mM/l; [GAP]_0 = 0.00190919mM/l; \\ [DPG]_0 = 0.299109mM/l; [PEP]_0 = 0.0021125mM/l; [PYP\_cyt]_0 = 0.00422702mM/l; [AMP]_0 = 0.00261149mM/l; \\ [Pyr]_0 = 0.1025mM/l; [H_{MAT}]_0 = 1.0e - 5mM/l; [ATP_{MAT}]_0 = 4.5mM/l; [ADP_{MAT}]_0 = 0.45mM/l; [GTP]_0 = 4.5mM/l; \\ [GDP]_0 = 0.45mM/l; [CO_2]_0 = 1.63mM/l; [Pi]_0 = 4.0mM/l; [OXA]_0 = 4.0e - 3mM/l; [CoA]_0 = 0.272mM/l; [NAD^+]_0 = 0.17mM/l; \\ [NADH]_0 = 0.072mM/l; [Acetyl\_CoA]_0 = 0.03mM/l; [Cit]_0 = 0.42mM/l; [IsoCit]_0 = 0.42mM/l; [OG]_0 = 0.021mM/l; \\ [NADP^+]_0 = 0.17mM/l; [NADPH]_0 = 0.072mM/l; [Asp]_0 = 1.14mM/l; [Glu]_0 = 3.03mM/l; [Ala]_0 = 3.44mM/l; \\ [SCOA]_0 = 0.2941mM/l; [Suc]_0 = 2.95mM/l; [Fum]_0 = 0.065mM/l; [Mal]_0 = 0.5mM/l; [PC]_0 = 3.8617e - 4mM/l; \\ [PDC]_0 = 3.8617e - 4mM/l; [CS]_0 = 3.8617e - 4mM/l; [MDH]_0 = 3.8617e - 4mM/l; [FM]_0 = 3.8617e - 4mM/l; \\ [SCS]_0 = 3.8617e - 4mM/l; [IDHa]_0 = 3.8617e - 4mM/l; [IDHb]_0 = 3.8617e - 4mM/l; [Cytc^{2+}]_0 = 0.1025mM/l; \\ [H_{MS}]_0 = 0.001mM/l; [Q]_0 = 0.26mM/l; [QH_2]_0 = 0.028mM/l; [Cytc^{3+}]_0 = 0.003mM/l; [Cytc^{2+}]_0 = 0.11mM/l; \\ [PYC_{IM}]_0 = 0.33211mM/l; [Complex\_III_M]_0 = 0.33211mM/l; [Complex\_III_M]_0 = 0.99632mM/l; \\ [Complex\_IV_{IM}]_0 = 2.3248mM/l; [Complex\_V_{IM}]_0 = 0.2989mM/l \\ [Complex\_IV_{IM}]_0 = 2.3248mM/l; [Complex\_V_{IM}]_0 = 0.2989mM/l \\ [Complex\_IV_{IM}]_0 = 0.33211mM/l; [Complex\_V_{IM}]_0 = 0.2989mM/l \\ [Complex\_IV_{IM}]_0 = 0.3248mM/l; [Complex\_IV_{IM}]_0 = 0.2989mM/l \\ [Complex\_IV_{IM}]_0 = 0.3248mM/l; [Complex\_IV_{IM}]_0 = 0.2989mM/l \\ [Complex\_IV_{IM}]_0 = 0.2048mM/l \\ [Complex\_IV_{IM}]_0 = 0.2048mM/l \\ [Complex\_IV_{IM}]_0
```

Core model of GSIS

1) The sensitivity and correlation analysis for initial state

2) The sensitivity and correlation analysis for parameters along TCA cycle

3) The sensitivity and correlation analysis for parameters along NADH: malate-aspartate shuttle

4) The sensitivity and correlation analysis for parameters along NADH: Glycerophosphate shuttle

5) The sensitivity and correlation analysis for parameters along Pyruvate cycle-1

6) The sensitivity and correlation analysis for parameters along Pyruvate cycle-2

