《微积分A1》第二讲

教师 杨利军

清华大学数学科学系

2019年09月18日

无理数的稠密性的另一证明

<u>命题</u>: 对∀a,b∈ IR, a < b, 存在无理数 ξ, 使得 a < ξ < b.

证明: 由有理数的稠密性知存在有理数 $r \in (a + \sqrt{2}, b + \sqrt{2})$.

故 $r-\sqrt{2}\in(a,b)$. 显然 $r-\sqrt{2}$ 是一个无理数. 证毕.

注: 上述证明是周三课后一位同学提供给我的. 谢谢!

有理数域不满足确界存在性条件

不难验证, 有理数集 Q 按通常的加法满足加法公理, 乘法满足乘法公理, 以及通常的大小关系满足序公理. 因此 Q 构成一个数域, 称作有理数域.

命题: 有理数域 Q 不满足确界存在性条件.

证明: 只要证 Q 的某个非空有上界子集不存在有理数上确界即可. 定义 $S = \{r \in Q, r > 0, r^2 < 2\}$. 假设 S 有上确界 b, 且 b 是有理数. 不难证明在有理数域内同样成立三分律, 即 $b^2 < 2$ 或 $b^2 > 2$ 或 $b^2 = 2$. 与证明 $\sqrt{2}$ 的存在性相同的方法可以证明, 在有理数域 Q 内, 前两个情况同样不可能发生.

证明续

例如证明情形 $b^2 < 2$ 不可能出现. 反证. 假设 $b^2 < 2$, 那么可取充分小的有理数 $\varepsilon > 0$, 使得 $(b+\varepsilon)^2 < 2$. 这与 b 是 S 的上确界的假设相矛盾. 故情形 $b^2 < 2$ 不可能出现. 类似可证情形 $b^2 > 2$ 也不可能出现. 故 $b^2 = 2$, 即 $b = \sqrt{2}$. 但已证 $\sqrt{2}$ 是无理数. 矛盾. 故 S 没有有理数的上确界. 从而有理数域不满足确界存在性条件. 证毕.

不等式的五个基本结论

根据实数的序公理, 不难得到如下关于不等式的五个基本结论

- (i) 三分律: 对于 $\forall a, b \in \mathbb{R}$, 或 a < b, 或 a = b, 或 a > b.
- (ii) 传递律: 若a < b 且b < c, 则a < c.
- (iii) 加法律: 若a < b 且 c < d, 则 a + c < b + d.
- (iv) 乘法律: 设 a < b. 若 p > 0, 则 ap < bp; 若 p < 0, 则 ap > bp.
- (v) 倒数律: 若0 < a < b, 则 $\frac{1}{a} > \frac{1}{b}$.

注意除了三分律之外, 在其它所有地方的严格不等号 < (或 >), 均可由相应的非严格不等号 < (或 >) 替换, 结论亦然成立。

三角不等式与逆三角不等式

Theorem

定理: 对于 $\forall a, b \in \mathbb{R}$, $|a| - |b| \le |a + b| \le |a| + |b|$.

注: 第二个不等式称作三角不等式, 第一个不等式称作逆三角不等式.

Proof.

<u>证明</u>: 由于 $\pm a \le |a|$, $\pm b \le |b|$, 故 $\pm (a+b) \le |a|+|b|$. 因此

$$|\mathbf{a} + \mathbf{b}| = \pm (\mathbf{a} + \mathbf{b}) \le |\mathbf{a}| + |\mathbf{b}|.$$

故三角不等式得证. 再根据三角不等式得 |a| = |a + b - b|

$$\leq |a+b|+|b|$$
. 由此即得逆三角不等式. 证毕.

例子

Example

例: 利用 $|\pi - 3.141| < 10^{-3}$, $|\sqrt{2} - 1.414| < 10^{-3}$, 我们可以得到关于数 $\pi + \sqrt{2}$ 的估计:

$$\left|\pi + \sqrt{2} - 4.555\right| = \left|(\pi - 3.141) + (\sqrt{2} - 1.414)\right|$$

$$\leq \left|\pi - 3.141\right| + \left|\sqrt{2} - 1.414\right| \leq 10^{-3} + 10^{-3} = 2 \times 10^{-3}.$$

算术几何平均不等式

Theorem

定理 (The arithmetic-geometric mean inequality): 对任意两个正数 a, b > 0, 成立 $\sqrt{ab} < \frac{a+b}{2}$, 且等号成立当且仅当 a = b.

注: 记 $G(a,b) = \sqrt{ab}$, $A(a,b) = \frac{a+b}{2}$, 分别称 G(a,b) 和A(a,b) 为正数 a,b 的几何平均和算术平均. 因此定理可简言之为, 几何平均小于等于算术平均.

Proof.

八数证明: 由于 $0 \le (a - b)^2 = a^2 - 2ab + b^2$, 故 4ab $\le a^2 + 2ab + b^2 = (a + b)^2.$ 于是 $\sqrt{ab} \le \frac{a+b}{2}$. 显然等号成立,

当且仅当a=b. 命题得证.

图形证明

Fig. 1.9 A visual proof that $4ab \le (a+b)^2$, by comparing areas

例子

例:证明在给定周长的矩形中,正方形的面积最大.如图所示.

证明

Proof.

证明: 设矩形的长和宽分别为 L 和 W, 则其面积为 LW. 根据算术几何平均不等式可知 $\sqrt{LW} \leq \frac{L+W}{2}$, 或等价地

$$LW \le \left(\frac{L+W}{2}\right)^2.$$

注意上式右边是具有相同周长的正方形之面积. 命题得证.

算术平均与几何平均不等式之推广

$\mathsf{Theorem}$

<u>定理</u>: 对任意 n 个正数 a₁, a₂, · · · , a_n,

$$\sqrt[n]{a_1a_2\cdots a_n} \leq \frac{1}{n}(a_1+a_2+\cdots+a_n),$$

且等号成立, 当且仅当这 n 个数相等, $pa_1 = a_2 = \cdots = a_n$.

注: 同两个数的情形, 记 $G(a_1,a_2,\cdots,a_n)=\sqrt[n]{a_1a_2\cdots a_n}$, $A(a_1,a_2,\cdots,a_n)=\frac{1}{n}(a_1+a_2+\cdots+a_n)$, 它们分别称为正数 a_1,a_2,\cdots,a_n 的几何平均和算术平均. 因此定理可简言之为, 任意 n 个正数的几何平均小于等于其算术平均.

证明

<u>证明大意</u>:已证结论对n=2成立.以下证明当n=4时结论 成立.设a₁,a₂,a₃,a₄为四个正数,记

$$A_1 = \frac{a_1 + a_2}{2}, \quad A_2 = \frac{a_3 + a_4}{2}.$$

多次应用n=2 时的结论得

$$\sqrt{a_1a_2} \leq \mathsf{A}_1, \quad \sqrt{a_3a_4} \leq \mathsf{A}_2, \quad \sqrt{\mathsf{A}_1\mathsf{A}_2} \leq \frac{\mathsf{A}_1+\mathsf{A}_2}{2}.$$

于是

证明续一

$$\begin{split} \sqrt[4]{a_1a_2a_3a_4} &= \sqrt{\sqrt{a_1a_2}\sqrt{a_3a_4}} \leq \sqrt{A_1A_2} \leq \frac{A_1+A_2}{2} \\ &= \frac{\frac{a_1+a_2}{2} + \frac{a_3+a_4}{2}}{2} = \frac{a_1+a_2+a_3+a_4}{4}. \end{split}$$

等号成立, 当且仅当 $A_1 = A_2$ 且 $a_1 = a_2$, $a_3 = a_4$. 这等价于 $a_1 = a_2 = a_3 = a_4$. 因此 n = 4 时结论成立. 以下再证明 n = 3 时结论成立. 设 a_1, a_2, a_3 为三个正数. 记它们的算术平均值为

$$m = \frac{a_1 + a_2 + a_3}{3}.$$

证明续二

不难证明 m 也是四个数 a1, a2, a3, m 的算术平均值, 即

$$m=\frac{a_1+a_2+a_3+m}{4}.$$

现在对这四个数应用 n=4 时的结论得 $(a_1a_2a_3m)^{\frac{1}{4}} \le m$. 两边四次方得 $(a_1a_2a_3m) \le m^4$. 此即 $(a_1a_2a_3) \le m^3$. 亦即 $(a_1a_2a_3)^{\frac{1}{3}} \le m$. 这就证明了结论当 n=3 时成立. 其余情形的证明类似.

数列(sequences)

Definition

定义: 任意一个映射 $f: \mathbb{N} \to \mathbb{R}$ 均称作一个数列或序列, 其中 \mathbb{N} 代表自然数集. 通常称 $a_n = f(n)$ 为数列的一般项. 常用记号 $\{a_n\}$ 或 $\{a_n\}_{n\geq 1}$ 表示一个数列或序列. 有时也将各项列出 $\{a_1,a_2,a_3,\cdots,a_n,\cdots\}$, 其中 a_1 称为数列的第一项, a_2 称为第二项, a_n 称为第 n 项.

数列例子

Example

例一:
$$\{\frac{n}{n+1}\}_{n\geq 1}$$
, $a_n=\frac{n}{n+1}$, $\{\frac{1}{2},\frac{2}{3},\frac{3}{4},\cdots,\frac{n}{n+1},\cdots\}$.

Example

例二:
$$\{\cos\frac{n\pi}{6}\}_{n\geq 0}$$
, $a_n=\cos\frac{n\pi}{6}$, $\{1,\frac{\sqrt{3}}{2},\frac{1}{2},0,\cdots,\cos\frac{n\pi}{6},\cdots\}$.

Example

例三: Fibonacci 数列: $f_1 = 1$, $f_2 = 1$, $f_n = f_{n-1} + f_{n-2}$,

 $n \geq 3$. 数列的前几项为 $\{1,1,2,3,5,8,13,21,\cdots\}$.

数列的极限, 例子

考虑数列 $\{\frac{n}{n+1}\}_{n\geq 1}$. 一般项 $a_n=\frac{n}{n+1}$ 随着 n 的增加越来越接近数 1,因为 $1-a_n=1-\frac{n}{n+1}=\frac{1}{n+1}$. 两种方式图示如下.

数列极限的几何图示

数列极限的精确定义

Definition

 \underline{c} 义: 设 $\{a_n\}\subset \mathbb{R}$ 为一数列(或序列), 若存在 $L\in \mathbb{R}$, 使得对任意 $\varepsilon>0$. 存在正整数 N. 使得

$$|a_n-L|<\varepsilon,\quad \forall n>N,$$

则称序列 $\{a_n\}$ 收敛于 L,或序列 $\{a_n\}$ 有极限且极限值为 L.这 事记作 $a_n \to L$ $(n \to +\infty)$ 或 $\lim a_n = L$ 或 $\lim_{n \to +\infty} a_n = L$.

数列极限精确定义的几何意义

收敛数列的例子

定义:函数 [x] 称作取整函数,它的值定义为不大于x 的最大整数.例如

$$[1.5]=1$$
, $[2]=2$, $[-1.5]=-2$. 注意函数 $[x]$ 满足 $[x]\leq x<[x]+1$ 或 $x-1<[x]\leq x$.

例一: 证明
$$\lim_{n\to +\infty}\frac{1}{n}=0$$
. 证: 对任意 $\varepsilon>0$, 存在 $N=[\frac{1}{\varepsilon}]$, 当 $n>N$ 时, $|\frac{1}{n}-0|=\frac{1}{n}\leq \frac{1}{N+1}=\frac{1}{[\frac{1}{\varepsilon}]+1}<\frac{1}{\frac{1}{\varepsilon}}=\varepsilon$.

例二: 类似可证 $\lim_{n\to+\infty}\frac{n+1}{n}=1$. 因为对于任意 $\varepsilon>0$, 存在 $N=[\frac{1}{\varepsilon}]$, 当 n>N 时, $|\frac{n+1}{n}-1|=\frac{1}{n}<\varepsilon$.

例三:
$$\lim_{n\to+\infty}\frac{\sin n}{n}=0$$
,因为当 $n>N=[\frac{1}{\varepsilon}]$ 时, $|\frac{\sin n}{n}-0|$ $\leq \frac{1}{n}<\varepsilon$.

关于数列极限定义的注记

回忆极限 $\lim_{n\to +\infty}a_n=L$ 的定义. 对任意 $\varepsilon>0$,存在正整数 N,使得 $|a_n-L|<\varepsilon$, $\forall n>N$.

 \underline{i} 一. 不等式 $|a_n-L|<\varepsilon$ 可以用 $|a_n-L|< M\varepsilon$ 代替, 其中 M 为任意一个事先给定的正常数, 与 ε 和 n 无关.

注二. 上述定义所涉及的严格不等号, 可以部分地或全部地改为相应的非严格不等号. 例如, 极限 $\lim_{n\to +\infty} a_n = L$ 也可如下定义: 任给 $\varepsilon>0$, 存在正整数 N, 使得 $|a_n-L|\leq M\varepsilon$, $\forall n\geq N$, 其中 M>0 为正常数, 与 n 无关. 参见课本习题1.2题1(p. 7).

发散数列

Definition

定义:设 $\{a_n\}$ 为一数列.若对任意 $a \in \mathbb{R}$,数列 $\{a_n\}$ 均不以a为极限,即 $a_n \to a$ 不成立,则称数列 $\{a_n\}$ 发散或无极限.更确切地说,若对任意 $a \in \mathbb{R}$,存在 $\varepsilon_0 > 0$,使得对任意正整数N,存在 $n_0 \geq N$, $|a_{n_0} - a| \geq \varepsilon_0$,则称数列 $\{a_n\}$ 发散或无极限.

Example

<u>例</u>: 易证(i) 序列 {1 - (-1)ⁿ} 发散; (ii) 序列 {n} 发散; (iii) 序列 {sin n} 发散. (思考如何证明?).

收敛数列的例子, 例一

Example

例一:证明 $\lim_{n\to+\infty} \sqrt[n]{n} = 1$.

证明:记
$$a_n = \sqrt[n]{n} - 1$$
,则 $\sqrt[n]{n} = 1 + a_n$.于是

$$n = (1+a_n)^n = 1 + na_n + \frac{1}{2}n(n-1)a_n^2 + \dots > \frac{1}{2}n(n-1)a_n^2$$

这表明 $a_n \to 0$. 故 $\sqrt[n]{n} \to 1$. 证毕.

例二

<u>例二</u>:设 $\lim a_n = A$,证明

- (i) $\lim e^{a_n} = e^A$;
- (ii) 设 $a_n > 0$ 且 A > 0,则 $\lim \ln a_n = \ln A$.
- (iii) $\lim \frac{\ln n}{n} = 0$.
- 证(i). 对任意 $\varepsilon > 0$,

$$\begin{split} |e^{a_n} - e^A| < \varepsilon &\iff |e^{a_n - A} - 1| < \varepsilon e^{-A} \\ &\iff -\varepsilon e^{-A} < e^{a_n - A} - 1 < \varepsilon e^{-A} \\ &\iff 1 - \varepsilon e^{-A} < e^{a_n - A} < 1 + \varepsilon e^{-A} \end{split}$$

例二,续一

$$\iff \ln(1-\varepsilon e^{-A}) < a_n - A < \ln(1+\varepsilon e^{-A}).$$

这里不妨取 $\varepsilon > 0$ 充分小, 使得 $1 - \varepsilon e^{-A} > 0$. 记

$$\delta \stackrel{\triangle}{=} \min \Big\{ |\ln \left(1 - \varepsilon \mathrm{e}^{-\mathrm{A}}\right)|, \ln \left(1 + \varepsilon \mathrm{e}^{-\mathrm{A}}\right) \Big\},$$

由假设 $a_n \to A$ 知, 对 $\delta > 0$, 存在正整数 N, 使得 $|a_n - A| < \delta$,

 $\forall n \geq N$. 于是当 $n \geq N$ 时, $|e^{a_n} - e^A| < \varepsilon$. 结论(i)得证.

证(ii). 设 $\varepsilon > 0$, $|\ln a_n - \ln A| < \varepsilon$, 即

$$\left|\ln \frac{\mathbf{a_n}}{\mathbf{A}}\right| < \varepsilon \quad \Longleftrightarrow \quad -\varepsilon < \ln \frac{\mathbf{a_n}}{\mathbf{A}} < \varepsilon$$

ロ ト 4 回 ト 4 差 ト 4 差 ト 9 9 9 0 0

例二,续二

$$\iff \ e^{-\varepsilon} < \frac{a_n}{\mathsf{A}} < e^{\varepsilon} \iff \mathsf{A}e^{-\varepsilon} < a_n < \mathsf{A}e^{\varepsilon}$$

$$\iff \mathsf{A}(e^{-\varepsilon} - 1) < a_n - \mathsf{A} < \mathsf{A}(e^{\varepsilon} - 1) \quad (*)$$

记 $\delta \stackrel{\triangle}{=} \min\{A(1-e^{-\varepsilon}), A(e^{\varepsilon}-1)\}$. 由假设 $a_n \to A$ 可知, 对于 $\delta > 0$, 存在正整数 N, 使得 $|a_n - A| < \delta$, $\forall n \geq N$. 于是式(*) 中的不等式成立. 由上述等价关系知 $|\ln a_n - \ln A| < \varepsilon$, $\forall n \geq N$. 此即 $\lim \ln a_n = \ln A$. 结论(ii) 得证.

证(iii): 已证 lim ∜n = 1. 记 a_n = ∜n, A = 1, 则 a_n → A. 由结论(ii) 知 lim lna_n = ln A = ln 1 = 0, 即 lim $\frac{\ln n}{n}$ = 0. (iii)得证.

极限的唯一性

命题: 如果序列 {a_n} 有极限, 则极限值唯一.

证明: 设序列 $\{a_n\}$ 有两个极限值 A_1 和 A_2 , $A_1 \neq A_2$. 取 $0 < \varepsilon$ $< \frac{1}{2}|A_1 - A_2|$, 根据极限定义可知, 存在正整数 N, 使得对任意 $n \geq N$, $|a_n - A_1| < \varepsilon$ 且 $|a_n - A_2| < \varepsilon$. 于是 $|A_1 - A_2| = |A_1 - a_N + a_N - A_2| \leq |A_1 - a_N| + |a_N - A_2|$ $< 2\varepsilon < 2 \cdot \frac{1}{2}|A_1 - A_2| = |A_1 - A_2|$.

矛盾. 命题得证.

收敛序列的有界性

 $\frac{\hat{\sigma}$ 题: 若序列 $\{a_n\}$ 收敛, 则序列 $\{a_n\}$ 有界, 即存在正常数 M>0, 使得 $|a_n|\leq M$, $\forall n\geq 1$.

证明: 设序列 $\{a_n\}$ 收敛于 A. 根据极限定义可知, 对于 $\varepsilon=1$, 存在正整数 N, 使得对任意 n>N,

$$|\mathsf{a}_\mathsf{n} - \mathsf{A}| < 1 \quad \text{\mathfrak{P}} \quad -1 + \mathsf{A} < \mathsf{a}_\mathsf{n} < \mathsf{A} + 1.$$

由此得 $|a_n| < 1 + |A|$, $\forall n > N$. 于是 $|a_n| \le M$, $\forall n \ge 1$, 其中 $M = \max\{|a_1|, |a_2|, \dots, |a_N|, 1 + |A|\}$. 证毕.

子序列(subsequences)

Definition

定义: 设 $\{a_n\}_{n\geq 1}$ 为一序列, 若映射 $\phi: \mathbb{N} \to \mathbb{N}$ 满足 $\phi(\mathbf{k}) < \phi(\mathbf{k}+1)$, $\forall \mathbf{k} \geq 1$, 则称序列 $\{a_{\phi(\mathbf{k})}\}$ 为 $\{a_n\}$ 的一个子序列.

Example

例: (i) $\phi(\mathbf{k}) = 2\mathbf{k}$, $\{a_{2\mathbf{k}}\}$ 为序列 $\{a_n\}$ 的一个子序列.

- (ii) $\phi(\mathbf{k}) = 2\mathbf{k} + 1$, $\{a_{2\mathbf{k}+1}\}$ 为序列 $\{a_n\}$ 的一个子序列.
- (iii) $\phi(\mathbf{k}) = 3\mathbf{k}$, $\{a_{3\mathbf{k}}\}$ 为序列 $\{a_{n}\}$ 的一个子序列.
- (iv) $\phi(\mathbf{k}) = \mathbf{k}$, 序列 $\{a_n\}$ 为其自身的一个子序列.

 \underline{i} : 序列 $\{a_n\}_{n\geq 1}$ 的子列 $\{a_{\phi(k)}\}$ 也常常记作 $\{a_{n_k}\}$, 其中 $n_k=\phi(k)$ 满足

 $n_1 < n_2 < n_3 < \cdots$ 为严格递增的正整数序列.

子序列的收敛性

Theorem

定理: 收敛序列的每个子序列均收敛, 且收敛于原序列的极限.

Proof.

证明: 设序列 $\{a_n\}$ 收敛于 a_n 设 $\{a_{\phi(k)}\}$ 为其任意一个子序列. 依极限定义可知, 对于任意 $\varepsilon > 0$, 存在正整数 N, 使得对任意 n > N, $|a_n - a| < \varepsilon$. 由于映射 $\phi(\cdot)$ 满足 $\phi(k) < \phi(k+1)$, 故 $\phi(k) \ge k$, $\forall k \ge 1$. 于是 $|a_{\phi(k)} - a| < \varepsilon$, $\forall k > N$. 因为 $\phi(k) \ge k$ o o0. 这就证明了子序列也收敛于 o2. 证毕.

例子

Example

例:证明序列 $\{(-1)^n\}_{n>1}$ 发散.

证明: 反证. 假设序列 {(-1)ⁿ} 收敛,则根据上述定理可知它的每个子序列均收敛于同一个极限值. 但是这个序列的偶脚标和奇脚标子序列

$$\{(-1)^{2n}\} = \{1, 1, 1, \cdots\},$$

$$\{(-1)^{2n-1}\} = \{-1, -1, -1, \cdots\}$$

分别收敛于两个不同的极限值1 和-1. 矛盾. 故序列 $\{(-1)^n\}$ 发散. 证毕.

收敛序列的保序性

Theorem

定理: 设 $a_n \rightarrow a$ 且 $b_n \rightarrow b$.

- (1) 若 a < b, 则存在正整数 N, 使得 $a_n < b_n$, $\forall n > N$.
- (2) 若存在正整数 n_0 , 使得 $a_n \le b_n$, $\forall n \ge n_0$, 则 $a \le b$.

 \underline{i} : 结论(2) 不能推广如下: 若 $a_n < b_n$, $\forall n \ge n_0$, 且 $a_n \to a$, $b_n \to b$, 则 a < b. 例如序列 $\{\frac{1}{n^2}\}$ 和 $\{\frac{1}{n}\}$ 均收敛, 且满足 $\frac{1}{n^2} < \frac{1}{n}$, $\forall n \ge 2$. 但它们有相同的极限零.

证明

 \overline{u} 明: (1) 由假设 $a_n \to a$ 且 $b_n \to b$ 可知, 对于任意 $\varepsilon > 0$, 存在正整数 N, 使得当 n > N 时,

$$|a_n-a|<\varepsilon\quad \hbox{\it $\mathbb L$}\quad |b_n-b|<\varepsilon,$$

$$\mathbb{P} \quad -\varepsilon + a < a_n < a + \varepsilon \quad \mathbb{L} \quad -\varepsilon + b < b_n < b + \varepsilon.$$

由于 a < b, 故可取 $\varepsilon = \frac{1}{2}(b-a) > 0$, 则

$$a_n < a + \frac{1}{2}(b-a) = \frac{1}{2}(a+b), \ b_n > -\frac{1}{2}(b-a) + b = \frac{1}{2}(a+b),$$

 $\operatorname{PL}(a_n < \frac{1}{2}(a+b) < b_n, \, \forall n > N. 结论(1)$ 得证.

证明续

证(2). 反证. 假设 a>b. 由结论(1)知存在正整数 N, 使得 $a_n>b_n$, $\forall n>N$. 此与假设 $a_n\le b_n$, $\forall n>n_0$ 相矛盾. 证 毕.

极限的四则运算

Theorem

<u>定理</u>: 设两个数列 $\{a_n\}$ 和 $\{b_n\}$ 均收敛, 且 $a_n \rightarrow a$, $b_n \rightarrow b$,

则这两个数列的和 $\{a_n+b_n\}$, 差 $\{a_n-b_n\}$, 乘积 $\{a_nb_n\}$, 以及

商 $\frac{a_n}{b_n}$ (补充假设 b \neq 0) 均收敛, 并且

- (i) $a_n \pm b_n \rightarrow a \pm b$;
- (ii) $ca_n \rightarrow ca$;
- (iii) $a_nb_n \rightarrow ab$;
- (iv) 设 b eq 0, 则 $\frac{a_n}{b_n} o \frac{a}{b}$.

证明

 $\overline{\iota\iota\eta}$: 结论(i)和(ii)的证明容易. 略去. 证(iii). 要证 $a_nb_n\to ab$, 即要证对 $\forall \varepsilon>0$, \exists 正整数 N, 使得 $|a_nb_n-ab|<\varepsilon$, $\forall n>N$. 由于

$$|a_n b_n - ab| = \frac{|a_n b_n - ab_n + ab_n - ab|}{|a_n b_n - ab_n + ab_n - ab|}$$

$$\leq |a_n - a||b_n| + |a||b_n - b|.$$

由于收敛序列有界, 故存在 M>0, 使得 $|b_n|\leq M$, $\forall n\geq 1$. 再根据假设 $a_n\to a$, $b_n\to b$ 可知对于任意 $\varepsilon>0$, 存在正整数 N, 使得 $|a_n-a|<\varepsilon$ 且 $|b_n-b|<\varepsilon$, $\forall n>N$. 于是

证明续一

$$\begin{split} |a_nb_n-ab| &\leq |a_n-a||b_n|+|a||b_n-b| \\ &\leq \varepsilon M+|a|\varepsilon=(M+|a|)\varepsilon, \quad \forall n>N. \end{split}$$

(iii)得证. 证(iv). 要证 $rac{a_n}{b_n}
ightarrow rac{a}{b}$, 即要证对任意arepsilon > 0, 存在正整

数 N, 使得

$$\left| \frac{\mathbf{a}_{\mathsf{n}}}{\mathbf{b}_{\mathsf{n}}} - \frac{\mathbf{a}}{\mathbf{b}} \right| < \varepsilon, \quad \forall \mathsf{n} > \mathsf{N}.$$

由于

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| = \left|\frac{a_nb - ab_n}{b_nb}\right| = \frac{1}{|bb_n|}|a_nb - ab + ab - ab_n|$$

证明续二

$$\leq \frac{1}{|bb_n|} \Big(|b||a_n-a|+|a||b-b_n|\Big).$$

$$-\frac{|b|}{2} + b < b_n < \frac{|b|}{2} + b \quad \Rightarrow \quad |b_n| \geq \frac{|b|}{2}.$$

再由假设 $a_n \rightarrow a$, $b_n \rightarrow b$ 可知, 对任意 $\varepsilon > 0$, 存在正整数 N_2 , 使得

$$|a_n - a| < \varepsilon$$
 A $|b_n - b| < \varepsilon$, $\forall n > N_2$.

证明续三

于是对 $\forall n > \max\{N_1, N_2\}$,

$$\begin{split} \left|\frac{a_n}{b_n} - \frac{a}{b}\right| &\leq \frac{1}{|bb_n|} \Big(|b||a_n - a| + |a||b - b_n|\Big) \\ &\leq \frac{2}{|b|^2} (|b|\varepsilon + |a|\varepsilon) = M\varepsilon, \end{split}$$

其中 M =
$$\frac{2}{|\mathbf{b}|^2}(|\mathbf{b}| + |\mathbf{a}|)$$
. 结论(iv)得证.

例一: 求极限

$$\lim_{n\to+\infty}\frac{n^2-n+1}{2n^2+3n+2}.$$

解: 由于

$$\frac{n^2 - n + 1}{2n^2 + 3n + 2} = \frac{1 - \frac{1}{n} + \frac{1}{n^2}}{2 + \frac{3}{n} + \frac{2}{n^2}},$$

故

$$\begin{split} \lim \frac{n^2 - n + 1}{2n^2 + 3n + 2} &= \lim \frac{1 - \frac{1}{n} + \frac{1}{n^2}}{2 + \frac{3}{n} + \frac{2}{n^2}} = \frac{\lim \left(1 - \frac{1}{n} + \frac{1}{n^2}\right)}{\lim \left(2 + \frac{3}{n} + \frac{2}{n^2}\right)} \\ &= \frac{\lim 1 - \lim \frac{1}{n} + \lim \frac{1}{n^2}}{\lim 2 + \lim \frac{2}{n} + \lim \frac{2}{n^2}} = \frac{1 - 0 + 0}{2 + 0 + 0} = \frac{1}{2}. \quad \# \end{split}$$

两边夹法则(Sandwich theorem, 三明治定理)

$\mathsf{Theorem}$

<u>定理</u>: 设三个序列 $\{a_n\}$, $\{b_n\}$ 和 $\{c_n\}$ 满足 $a_n \leq b_n \leq c_n$,

 $\forall n \geq n_0$, 其中 n_0 为某个正整数. 若极限 $\lim a_n$ 和 $\lim c_n$ 均存在且极限值相等, 记作 a_n 则极限 $\lim b_n$ 也存在且等于 a_n

例: 设 a > 0, 证明 lim √a = 1.

 \underline{ii} : (i) 设 $a \ge 1$, 则 $1 \le \sqrt[n]{a} \le \sqrt[n]{n}$, $\forall n \ge a$. 已证 $\sqrt[n]{n} \to 1$. 于 是根据 Sandwich 定理知 $\sqrt[n]{a} \to 1$.

(ii) 设 0 < a < 1, 则 $b = \frac{1}{a} > 1$. 于是 $\sqrt[n]{a} = \frac{1}{\sqrt[n]{b}} \rightarrow \frac{1}{1} = 1$. 证 毕.

证明

<u>证明</u>: 由假设 $a_n \le b_n \le c_n$, $\forall n \ge n_0$ 可知

$$a_n-a\leq b_n-a\leq c_n-a,\quad \forall n\geq n_0.$$

由此可知 $|\mathbf{b}_{\mathsf{n}} - \mathbf{a}| \leq \max\{|\mathbf{a}_{\mathsf{n}} - \mathbf{a}|, |\mathbf{c}_{\mathsf{n}} - \mathbf{a}|\}$. 由假设 $\lim \mathbf{a}_{\mathsf{n}} = \mathbf{a}$ 且 $\lim \mathbf{c}_{\mathsf{n}} = \mathbf{a}$ 可知, 对任意 $\varepsilon > 0$,存在正整数 N ,使得 $\forall \mathsf{n} > \mathsf{N}$

$$|a_n - a| < \varepsilon$$
 A $|c_n - a| < \varepsilon$.

于是对于 $\forall n > \max\{N, n_0\}$,

$$|b_n-a|\leq \max\{|a_n-a|,|c_n-a|\}<\varepsilon.$$

此即 $\lim b_n = a$. 证毕.

例子

例: 设 a_1, a_2, \cdots, a_m 为 m 个非负实数, 证明

$$\lim_{\substack{n\to+\infty}} \left(a_1^n+a_2^n+\cdots+a_m^n\right)^{\frac{1}{n}} = \max\{a_1,a_2,\cdots,a_m\}.$$

 $\underline{\underline{i}}$: 记 $a \stackrel{\triangle}{=} \max\{a_1, a_2, \dots, a_m\}$,则

$$a=(a^n)^{\frac{1}{n}}\leq \left(a_1^n+a_2^n+\cdots+a_m^n\right)^{\frac{1}{n}}\leq (ma^n)^{\frac{1}{n}}=m^{\frac{1}{n}}a\to a.$$

根据 Sandwich 定理可知命题得证.

作业

课本习题1.2 (pp.7-8):

1(1)(3)(4)(5)(6), 2, 4, 5, 6(1)(3)(4), 7.

课本习题1.3 (pp.13-14):

1, 4(2)(4)(6)(8)(10)(12), 5, 6.