Álgebra Relacional

Prof. Fábio Procópio

Tecnologia em Sistemas para Internet – Banco de Dados

Relembrando...

- Na <u>aula passada</u>, vimos que **Normalização de Dados** é um conjunto de passos aplicados na execução de um projeto de BD;
- Nós vimos também os conceitos de:
 - 1. Dependências funcionais
 - 2. Primeira Forma Normal (1FN)
 - 3. Segunda Forma Normal (2FN)
 - 4. Terceira Forma Normal (3FN)

Introdução

- A Álgebra Relacional é uma coleção de operadores que utilizam uma ou mais relações como entrada e, como resultado, retorna outra relação;
- ► É uma linguagem de consulta formal, porém procedimental
 - ▶ Procedimental significa que o usuário informa as instruções a serem executadas pelo sistema e este realiza uma sequência de operações no banco de dados para gerar o resultado desejado
- Divide-se em 2 grupos
 - Operadores tradicionais: união, intersecção, diferença e produto cartesiano
 - Operadores relacionais: restrição (seleção), projeção, junção e divisão

União: ∪

- → A operação de união entre duas relações R1 e R2, R1 u R2, produz uma nova relação contendo todas as tuplas existentes em R1 e em R2;
- Exemplo:

GRUPO 1		
Matrícula	Nome	Curso
1111	Marina	1
2222	Camila	1
3333	Beatriz	2
4444	Heitor	3
5555	Henrique	3
6666	Rafael	2

GRUPO 2		
Matrícula	Nome	Curso
7777	Amanda	1
8888	Sophia	1
9999	Bianca	2
1010	Gabriel	2
4444	Heitor	3
5555	Henrique	3

 $(GRUPO\ 1) \cup (GRUPO\ 2)$

Matrícula	Nome	Curso
1111	Marina	1
2222	Camila	1
3333	Beatriz	2
4444	Heitor	3
5555	Henrique	3
6666	Rafael	2
7777	Amanda	1
8888	Sophia	1
9999	Bianca	2
1010	Gabriel	2

Intersecção: ∩

- → A operação de intersecção entre duas relações R1 e R2, R1 n R2, produz uma nova relação contendo as tuplas existentes nas relações R1 e R2;
- Exemplo:

GRUPO 1		
Matrícula	Nome	Curso
1111	Marina	1
2222	Camila	1
3333	Beatriz	2
4444	Heitor	3
5555	Henrique	3
6666	Rafael	2

GRUPO 2		
Matrícula	Nome	Curso
7777	Amanda	1
8888	Sophia	1
9999	Bianca	2
1010	Gabriel	2
4444	Heitor	3
5555	Henrique	3

 $(GRUPO\ 1) \cap (GRUPO\ 2)$

Matrícula	Nome	Curso
4444	Heitor	3
5555	Henrique	3

Diferença: -

- → A diferença entre duas relações R1 e R2, R1 R2, produz uma nova relação com as tuplas que existem em R1 mas que não existem em R2;
- Exemplo:

GRUPO 1		
Matrícula	Nome	Curso
1111	Marina	1
2222	Camila	1
3333	Beatriz	2
4444	Heitor	3
5555	Henrique	3
6666	Rafael	2

GRUPO 2		
Matrícula	Nome	Curso
7777	Amanda	1
8888	Sophia	1
9999	Bianca	2
1010	Gabriel	2
4444	Heitor	3
5555	Henrique	3

 $(GRUPO\ 1) - (GRUPO\ 2)$

Matrícula	Nome	Curso
1111	Marina	1
2222	Camila	1
3333	Beatriz	2
6666	Rafael	2

Produto Cartesiano: X

O produto cartesiano entre as relações R1 X R2, R1 X R2, produz uma nova relação contendo todos os atributos de R1 e de R2, combinando cada tupla de R1 com cada tupla de R2;

■ Exemplo:

GRUPO 1		
Matrícula	Nome	Curso
1111	Marina	1
2222	Camila	1
3333	Beatriz	2
4444	Heitor	3
5555	Henrique	3
6666	Rafael	2

(GRUPO 1) **X** (CURSO)

CURSO		
Curso	NomeCurso	
1	Arquitetura	
2	Eng. da Computação	
3	Eng. de Telecomunicações	

Matrícula Nome NomeCurso Curso 1111 Marina 1 Arquitetura 1111 Marina 2 Eng. da Computação 1111 Marina 3 Eng. de Telecomunicações 2222 Camila 1 Arquitetura 2 Eng. da Computação 2222 Camila 2222 Camila 3 Eng. de Telecomunicações 1 Arquitetura 3333 Beatriz 2 Eng. da Computação 3333 Beatriz 3 Eng. de Telecomunicações 3333 Beatriz 4444 Heitor 1 Arquitetura 2 Eng. da Computação 4444 Heitor 4444 Heitor 3 Eng. de Telecomunicações 5555 Henrique 1 Arquitetura 5555 Henrique 2 Eng. da Computação 5555 Henrique 3 Eng. de Telecomunicações 6666 Rafael 1 Arquitetura 6666 Rafael 2 Eng. da Computação 6666 Rafael 3 Eng. de Telecomunicações

Seleção: σ

- Como o seu nome sugere, esta operação seleciona as tuplas (linhas) de uma relação a partir de uma determinada condição especificada;
- Exemplo:

GRUPO 1			
Matrícula	Nome	Curso	
1111	Marina	1	
2222	Camila	1	
3333	Beatriz	2	
4444	Heitor	3	
5555	Henrique	3	
6666	Rafael	2	

 $\sigma_{curso=3}(GRUPO\ 1)$

Matrícula	Nome	Curso
4444	Heitor	3
5555	Henrique	3

Projeção: π

- Utilizada quando não existe a necessidade de se obter todos os atributos da relação
 - A projeção extrai apenas alguns atributos de uma relação
- Exemplo:

GRUPO 1			
Matrícula	Nome	Curso	
1111	Marina	1	
2222	Camila	1	
3333	Beatriz	2	
4444	Heitor	3	
5555	Henrique	3	
6666	Rafael	2	

 $\pi_{nome,curso}(GRUPO\ 1)$

Nome	Curso
Marina	1
Camila	1
Beatriz	2
Heitor	3
Henrique	3
Rafael	2

Junção: |X|

- O resultado de uma junção é uma relação com todas as combinações das tuplas da relação R1 e da relação R2, R1 | X | R2, nas quais os atributos em comum são iguais;
- Exemplo:

Curso

GRUPO 1			
Matrícula	Nome	Curso	
1111	Marina	1	
2222	Camila	1	
3333	Beatriz	2	
4444	Heitor	3	
5555	Henrique	3	
6666	Rafael	2	

CURSO

2 Eng. da Computação

1 Arguitetura

NomeCurso

3 Eng. de Telecomunicações

Matrícula	Nome	NomeCurso
1111	Marina	Arquitetura
2222	Camila	Arquitetura
3333	Beatriz	Eng. da Computação
4444	Heitor	Eng. de Telecomunicações
5555	Henrique	Eng. de Telecomunicações
6666	Rafael	Eng. da Computação

Divisão: ÷

- A operação de divisão entre duas relações R1 e R2, R1÷R2, produz a projeção dos elementos da relação R1 que se relacionam com todos os elementos da relação R2;
- Exemplo:

$\overline{}$			
CURSO	_TURNO	TUF	RNO
Curso	Turno	Turno	Desc
1	M	M	Manhã
2	M	Т	Tarde
2	Т	N	Noite
3	М		
3	Т		
_			

Na relação CURSO_TURNO, o curso 3 é ofertado em todos os turnos da relação TURNO (M, T e N).

Renomeação: ho

- Permite redefinir o nome de uma relação em um determinado contexto;
 - É útil para auto-relacionamentos quando é necessário fazer a junção de uma tabela com ela mesma e, nesse caso, cada versão da tabela precisa receber um nome diferente da outra
- Exemplo:

GRUPO 1			
Matrícula	Nome	Curso	
1111	Marina	1	
2222	Camila	1	
3333	Beatriz	2	
4444	Heitor	3	
5555	Henrique	3	
6666	Rafael	2	

 $\rho_{GRUPO\ 1}(ALUNOS)$

ALUNOS			
Matrícula	Nome	Curso	
1111	Marina	1	
2222	Camila	1	
3333	Beatriz	2	
4444	Heitor	3	
5555	Henrique	3	
6666	Rafael	2	

Atribuição: ←

- Permite que o conteúdo de uma relação seja atribuído a uma variável especial;
- Exemplo:

CURSO_TURNO		TUF	RNO
Curso	Turno	Turno	Desc
1	М	M	Manhã
2	М	Т	Tarde
2	Т	N	Noite
3	М		

Ν

Principais Referências

- 1) DATE, C. J. Introdução a sistemas de bancos de dados. Ed. Elsevier Brasil, 2004.
- 2) SPACEPROGRAMMER. **Aprendendo as principais operações de Álgebra Relacional**. Disponível em: http://spaceprogrammer.com/bd/aprendendo-as-principais-operacoes-da-algebra-relacional/. Acessado em: 21 jan. 2019.
- 3) MACORATTI.NET. **SQL Álgebra Relacional Operações Fundamentais Conceitos básicos**. Disponível em: http://www.macoratti.net/13/06/sql_arcb.htm. Acessado em: 21 jan. 2019.
- 4) DEVMEDIA. **Álgebra Relacional**. Disponível em: https://www.devmedia.com.br/algebra-relacional/9229. Acessado em: 21 jan. 2019.