Descente de gradient stochastique

KOUOMEGNE T. Bertrand , SOMAVO Gloria

Master ESA

27 Janvier 2023

- Présentation de la descente de gradient stochatique
 - Principe
 - Choix du taux d'apprentissage
 - Algorithme
- Ascente de gradient et maximum de vraissemblance
 - Fonction de vraisemblance
 - Cas pratique
 - Algorithme d'optimisation numerique
- 3 Présentation de l'algorithme d'ascente de gradient stochastique pour déterminer les paramêtres d'un modèle de regression logistique avec python
- 4 Avantages et Inconvénients

- Présentation de la descente de gradient stochatique
 - Principe
 - Choix du taux d'apprentissage
 - Algorithme
- Ascente de gradient et maximum de vraissemblance
- 3 Présentation de l'algorithme d'ascente de gradient stochastique pour déterminer les paramêtres d'un modèle de regression logistique avec python
- 4 Avantages et Inconvénients

Définition

Descente de gradient sctochastique : c'est un algorithme d'optimisation numérique utilisé pour trouver les paramètres optimaux d'un modèle d'économétrie ou de machine learning. Il s'agit d'une variante de la descente de gradiant classique.

Historique

Principe

C'est un algorithme d'optimisation qui utilise la dérivée partielle d'une fonction objective pour déterminer la direction dans laquelle les paramètres du modèle doivent être mis à jour afin de réduire la valeur de la fonction objective.

En d'autres termes, il consiste à mettre à jour les paramètres en utilisant une petite quantité (appelée taux d'apprentissage) de la dérivée partielle (gradient) de la fonction objective par rapport aux paramètres.

Propriétés de la fonction objective

- La fonction objective doit être différentiable en tout point de son ensemble de définition.
- La fonction objective doit avoir un minimum global (convexe ou quasi-convexe).

Explications graphique

$$x_1 = x - \alpha f'(x)$$

Choix du taux d'apprentissage

Beaucoup trop grand

Descente de gradient classique **Initialisation**

• Paramètre initial : θ_0

• Taux d'apprentissage : α

Nombre d'itérations : p

Règle de passage

• Détermination du gradiant de l'échantillon au point θ_0 noté $G_n(\theta_0; x_n)$

• Actualiser la valeur de θ_0 par l'équation :

$$\theta_1 = \theta_0 - \alpha G_n(\theta_0; x_n)$$

• Recommencer en prenant comme valeur initiale le point θ_1

Critère d'arrêt

L'algorithme s'arrête au bout du nombre d'itérations que vous désirez

Descente de gradient stochatique **Initialisation**

• Paramètre initial : θ_0

• Taux d'apprentissage : α

Nombre d'époque : epoch

Règle de passage

• Détermination du gradient individuel au point θ_0 noté $G_i(\theta_0;x_i)$, l'individu k est tiré au hazard

• Actualiser la valeur de θ_0 par l'équation :

$$\theta_1 = \theta_0 - \alpha G_i(\theta_0; x_i)$$

• Recommencer en prenant comme valeur initiale le point θ_1

 Après avoir parcouru l'ensemble de l'échantillon, correspondant à une époque, recommencer

Critère d'arrêt

L'algorithme s'arrête au bout du nombre d'époques que vous désirez

Descente de gradiant classique

=> itération 2

.

ep 2

1 époque = 1 itération

Descente de gradiant stochastique

ep 2

ep m itération 1

1 époque = n itérations

- 1 Présentation de la descente de gradient stochatique
- Ascente de gradient et maximum de vraissemblance
 - Fonction de vraisemblance
 - Cas pratique
 - Algorithme d'optimisation numerique
- 3 Présentation de l'algorithme d'ascente de gradient stochastique pour déterminer les paramêtres d'un modèle de regression logistique avec python
- 4 Avantages et Inconvénients

Fonction de vraisemblance

 C'est la probabilité jointe d'apparition des données en fonction des paramètres de la loi statistique choisie.

$$L_n(\theta; x_1, ..., x_n) = P_{\theta}(X_1 = x_1, ..., X_n = x_n)$$
 avec $X_i \sim \mathcal{D}(\theta)$

- Vraisemblance conditionnelle $L_n(\theta; y|x) = P_{\theta}(Y = y|x)$ avec $Y|X \sim \mathcal{D}(\theta)$
- La méthode du maximum de vraisemblance permet d'estimer les paramètres d'une loi statistique;
- Elle permet aussi d'estimer les paramètres d'un modèle de regression.

Cas continue

Vraissemblance

- $\bullet L_i(\theta;x_i)=f_\theta(x_i)$
- $L_n(\theta; x) = \prod_{i=1}^n f_{\theta}(x_i)$

Estimateurs de MLE

- $\hat{\theta} = \underset{\text{ou}}{\operatorname{argmax}} L_n(\theta; x_1, x_2, ..., x_n)$
- $\hat{\theta} = \operatorname{argmaxIn}(\theta; x_1, x_2, ..., x_n)$

/ Gradient

•
$$g_n(\theta; x) = \frac{\partial ln(L(\theta; x))}{\partial \theta}$$

Hessienne

•
$$H_n(\theta; x) = \frac{\partial^2 \ln(L(\theta; x))}{\partial \theta \ \partial \theta^T}$$

Conditions

- FOC : $g_n(\hat{\theta}; x) = 0$
- SOC : La hessienne $H_n(\hat{\theta}; x)$ est définit négative

Cas discret

Vraissemblance

- $L_i(\theta; x_i) = P_{\theta}(X = x_i)$
- $L_n(\theta; x) = \prod_{i=1}^n P_{\theta}(x_i)$

Estimateurs de MLE

- $\hat{\theta} = \operatorname{argmax} L_n(\theta; x_1, x_2, ..., x_n)$ ou
- $\hat{\theta} = \operatorname{argmaxIn}(\theta; x_1, x_2, ..., x_n)$

Gradient

•
$$g_n(\theta; x) = \frac{\partial ln(L(\theta; x))}{\partial \theta}$$

Hessienne

•
$$H_n(\theta; x) = \frac{\partial^2 \ln(L(\theta; x))}{\partial \theta \partial \theta^T}$$

Conditions

- FOC : $g_n(\hat{\theta};x)=0$
- SOC : La hessienne $H_n(\hat{\theta}; x)$ est définit négative

Cas pratique

Exemple1: Considérons un échantillon de $X=(X_1,X_2,...,X_n)$ de variables aléatoires indépendantes et identiquement distribué suivant une loi normale standard $N(\mu,\sigma^2)$ de

densité :
$$f_x(x;\theta) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 avec $\theta = (\mu, \sigma^2)$

Vraisemblance

$$L(\theta;x) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

- Log- Vraisemblance $I_n(\theta;x) = \sum_{i=1}^n In(L(\theta;x_i)) = -\frac{n}{2}In(\sigma^2) \frac{n}{2}In(2\pi) \frac{n}{2\sigma^2}\sum_{i=1}^n (x_i \mu)^2$
- $\begin{array}{l} \bullet \quad \mathsf{Gradient} \\ \frac{\partial \mathit{In}(\mathsf{L}\ (\theta;x))}{\partial \theta} = \left(\frac{\partial \mathit{In}(\mathsf{L}\ (\theta;x))}{\partial \mu} \right) = \left(\begin{array}{c} \frac{n}{\sigma^2} \sum_{i=1}^n (x_i \hat{\mu}) \\ \frac{n}{\sigma^2} \sum_{i=1}^n (x_i \hat{\mu}) \end{array} \right) \\ \frac{n}{2\hat{\sigma}^2} + \frac{n}{2\hat{\sigma}^4} \sum_{i=1}^n (x_i \hat{\mu})^2 \end{array} \right)$
- Estimateur du Maximum de vraisemblance $\frac{\partial ln(L\ (\theta;x))}{\partial \theta} = 0 \rightarrow \hat{\theta} = \begin{pmatrix} \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \\ \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \hat{\mu})^2 \end{pmatrix}$

Cas pratique

Exemple2 : Considérons une variable dichotomique Y_i prenant deux valeurs 0 ou 1, telle que :

$$y_i = 1$$
 avec $P(Y_i = 1|x_i)$ et $y_i = 0$ avec $1 - P(Y_i = 1|x_i)$
 $P(Y_i = 1|x_i) = \wedge (x_i / \theta)) = \frac{e^{x_i / \theta}}{1 + e^{x_i / \theta}}$

Vraisemblance

$$L_{i}(\theta; y_{i}) = \wedge (x_{i}^{T}\theta)^{y_{i}} (1 - \wedge (x_{i}^{T}\theta))^{1-y_{i}}$$

$$L_{n}(\theta; y) = \prod_{i=1}^{n} \wedge (x_{i}^{T}\theta)^{y_{i}} (1 - \wedge (x_{i}^{T}\theta))^{1-y_{i}}$$

Log- Vraisemblance

$$\ell_n(\theta; y|x) = \ln(L(\theta; y|x)) = \sum_{i=1}^n y_i \ln(\wedge(x_i^T \theta)) + \sum_{i=1}^n (1 - y_i) \ln(\wedge(1 - x_i^T \theta))$$

- Gradient $\frac{\partial \ln(L(\theta;y|x))}{\partial \theta} = \sum_{i=1}^{n} (y_i \wedge(\theta;x_i))x_i$
- Estimateur du Maximum de vraisemblance $\frac{\partial ln(\mathbf{L}(\theta;\mathbf{y}|\mathbf{x}))}{\partial \theta} = 0 \rightarrow \sum_{i=1}^{n} (y_i \frac{e^{x_i/\theta}}{1 + x_i/\theta}) x_i = 0 \text{ (impossible!!!)}$

Lien avec l'ascente de gradient stochastique

- Algorithme d'ascent de gradient stochastique $\theta_j := \theta_j + \alpha g_i(\theta_j; y|x_{ij}) = \theta_j \alpha (y_i \wedge (x_i t \theta))x_{ij}$
- Algorithme de Gauss Newton $\theta_j = \theta_j H_n^{-1}(\theta_k; x) g_n(\theta_k; x)$

- Présentation de la descente de gradient stochatique
- 2 Ascente de gradient et maximum de vraissemblance
- 3 Présentation de l'algorithme d'ascente de gradient stochastique pour déterminer les paramêtres d'un modèle de regression logistique avec python
- 4 Avantages et Inconvénients

- Présentation de la descente de gradient stochatique
- Ascente de gradient et maximum de vraissemblance
- 3 Présentation de l'algorithme d'ascente de gradient stochastique pour déterminer les paramêtres d'un modèle de regression logistique avec python
- 4 Avantages et Inconvénients

Avantages et Inconvénients

Avantages

- Convergence en moins d'une époque pour un echantillon large;
- l'algorithme converge presque surement vers un maximum global.
- Facilement implémentable sur les logiciels .

Inconvénients

- Faible vitesse de convergence;
- Un taux d'apprentissage trop élevé risque de conduire à la non convergence de l'algorithme;
- Un taux d'apprentissage trop faible augmente la durée de convergence.

Bibliographie

- Maximum Likelihood, Logistic Regression, and Stochastic Gradient Training Charles Elkan
- Introduction au Machine Learning Chloé-Agathe Azencott
- Chapter 2 : Maximum Likelihood Estimation Advanced Econometrics
 Master ESA M. Christophe Hurlin
- @deepmaths

