

Gianluca Dini

Dept. of Ingegneria dell'Informazione

University of Pisa

Email: gianluca.dini@.unipi.it

Version: 2024-04-22

Key Establishment

INTRODUCTION

On establishing a secret shared key

Session key $[\rightarrow]$

- K_{ab} is a long-term secret shared key
- K is temporary session (ephemeral) key

mag. '24

Session key

- Key freshness
 - Use a key for a limited amount of time and then update it
 - Session key or ephemeral key
- Advantages
 - Less damage if a key is exposed
 - Less cyphertext available for analytical attacks
 - An adversary must recover several keys if (s)he is interested in decrypting larger parts of plaintext

mag. '24 Key establishment 5

Session key transport and agreement

- One-pass Key transport
 - M1 A \rightarrow B: E(K_{ab}, K||t_a)
 - where t_a is a timestamp
 - Requires clock synchronization
- Key transport with challenge-response
 - M1 B \rightarrow A: n_b
 - M2 A → B: $E(K_{ab}, K||n_b)$
 - where n_b is a nonce, i.e., a fresh quantity never used before

Session key

Key agreement

- M1 B \rightarrow A: n_b
- M2 A \rightarrow B: E(K_{ab}, K'||n_a||n_b)
- M3 B \rightarrow A: E(K_{ab}, K'' | |n_a)
 - Where n_a and n_b are nonces and K = kdf(K', K'')
 - Examples of kdf():
 - $K = K' \oplus K''$
 - $-K = H(K' \mid |K'')$, with $H(\cdot)$ secure hash function

mag. '24 Key establishment 7

The n² Key Distribution Problem

- Consider a system
 - Composed of *n* users where each party securely communicates with everyone
 - Where each pair of users shares a long-term secret pairwise key
 - Key pre-distribution
 - Out-of-band transmission

The n² Key Distribution Problem

- Every user stores (n -1) keys
- There are $\binom{n}{2} = \frac{n \cdot (n-1)}{2}$ symmetric key pairs in the system which is in the order of n^2 .

mag. '24 Key establishment 12

The n² Key Distribution Problem

- Pros: Security
 - If a subject is compromised only its communications are compromised;
 - communications between two other subjects are not compromised
 - We cannot do any better!
- Cons: Poor scalability
 - The number of keys is quadratic in the number of subjects
 - A new member's joining/leaving affect all current members

The n² Key Distribution Problem

- Pre-distribution does not work for large dynamic networks
- Pre-distribution works for small networks where the number of users does not change frequently
 - E.g., branches of a company

mag. '24 Key establishment 14

Key Establishment

KEY ESTABLISHMENT USING SYMMETRIC-KEY TECHNIQUES

Key Distribution Center

 Each user shares a long-term secret key with KDC

- Key Encryption Key (KEK)
- Each KEK constitutes a secure channel
- KEKs are pre-distributed

mag. '24 Key establishment 16

Performance and security issues

- Performance
 - Better scalability than pairwise scheme
 - Each user stores 1 KEK; the overall number of KEKs is n
 - Upon member's joining/leaving → only 1 KEK must be established/removed
- Security
 - If a user is compromised, its communications are compromised
 - If KDC is compromised, all communications are compromised

Key Distribution Center

- KDC is a single point of failure
 - Performance
 - KDC must be available
 - · KDC must be efficient
 - Security
 - KDC knows all the keys
 - KDC can read all msg between Alice and Bob
 - KDC can impersonate any party
 - KDC must a trusted third party

mag. '24 Key establishment 18

Basic KE using KDC (1/2)

mag. '24 Key establishment 19

Basic KE using KDC (2/2)

mag. '24 Key establishment 20

Security issues

- Replay Attack
 - The adversary records the key establishment protocol
 - The adversary replays y_A and/or y_B
 - The adversary make users to use an old session key
 - An old session can be replied (the session has to be recorded)
 - A compromised session key can be reused
 - We need a freshness proof.
- Key Confirmation attack (see next slide)
 - MIM attack performed by a legitimate but malicious user
 - Messages must be self-explainable/-contained

Key confirmation attack

mag. '24 Key establishment 22

Key establishment techniques

USING ASYMMETRIC TECHNIQUES

mag. '24 Key establishment 23

Man-in-the-middle Attack

$$K_{AC} \equiv g^{a \cdot c} \mod p$$

$$K_{AC} \equiv g^{a \cdot c} \mod p$$

$$K_{BC} \equiv g^{b \cdot c} \mod p$$

$$K_{BC} \equiv g^{a \cdot c} \mod p$$

mag. '24 Key establishment 24

Certificate

- Certificate
 - Data structure that cryptographically links the identifier of a subject to the subject public key (and other stuff):

$$Cert_A = A$$
, $pubK_A$, L_A , $S_{CA}(A \mid \mid pubK_A \mid \mid L_A)$

- A: identifier; pubK_A: public key; L_A: validity interval; || concatenation operator
- Certification Authority (CA) is a TTP that attests the authenticity of a public key
- CA's signature indissolubly links identifier and public key (and other parameters)

Man-in-the-middle Attack

 $K_{AB} \equiv g^{a \cdot b} \mod p$ $K_{AB} \equiv g^{a \cdot b} \mod p$

mag. '24 Key establishment 26