All Kair Shortest Kath 1. Bellian-Food n times (3 adj. list representation) = O(n. mm) = O(nm) = O(nm) 2. Dijkstap $O(n \cdot n^2) = O(n^3)$ for dense $O(n \cdot n + m) \log n = O(n^2 + m \cdot n) \log n$ $= O(n^2 + m \cdot n) \log n = O(n^2 + m \cdot n) \log n$ - We will do 2 dynamic proj. about how with tight codes (small coeficients) on O(n3/ogn) and another goal create non matrix of shortest-path distances S(4,0) yeaph Representation (adj matrix) Naxa = (wij) of edge weights. Let di = weight of shortest path from i to i that uses at most m edges dij =

U

 $= \min \left\{ d_{ij}^{m-1}, \left\{ d_{ij}^{m-1}, \left\{ d_{ij}^{m-1}, \left\{ d_{ik}^{m-1}, \left[d_{ik}^{m-1}, \left[d_{ik}^{m-1},$ dij = min {dik + wkj } Ps endococle for relaxation step If dig 7 dikt Wkj

2

Similarity to Matrix Multiplication C= A:Bn nxn matrices

Lij = \(\sum_{1\k} R_{ik} \cdot b_{kj} \)

1\(\sum_{1\k} R_{ik} \cdot b_{kj} \) Compare with $d_{ij} = \min \left\{ d_{ij} + w_{kj} \right\}.$ Replace (; > diffin) buj - wuj met $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ V 6-1 D'W = W

 $\operatorname{Ruf} = W^{\eta - 1} \qquad \operatorname{n} \left(\Theta(n_3) \right) = \Theta(n_4^{\frac{1}{2}})$ $\operatorname{Ruf} = W + W^{\frac{1}{2}} + W^{\frac{1}{2}}$

 $D' = D'W = H^2$

.Floyd-Warshell Algorithm Dynamic Page but faster: O(23) Lij = wight of a shortest fath from i' to j'
with inturnediate vuties in { 5,2, ..., 26} (i) -> 0 -- 10 -> 0 -- 10 -> 0 -- 10 -> 0 Then $\delta(ij) = \epsilon_{ij}$ Cij = wij. c, = min { e, 1/2 } (1/4) + (K-1) } intermolection on \1, 2, .. , kell pseudo code for k ← 1 to n for i < 1 to n for j & 1 to m $c_{ij} = min\left(c_{ij}, p_{kik} + c_{kj}\right)$ O(n3).

U

ALL-TO- ALL SHORTEST PATHS

D^k[i,j] = the weight of a shortest

path jon v; to v; using

nodes from & v, , v₈,...v_k?

as intermediate vertices

in the path.

$$D^{(k)}[i,j] = \min \left[D^{(k-1)},j \right] = D^{(k-1)}[i,k] + D^{(k-1)}[k,j]$$

ALL-TO-ALL

	1	2	3	4	50
1	0	1	2	2	60
				2	
3	99	00	0	∞	1
4	••	<i>a</i> 0	2	•	œ
5	3	1	3	4	0
-(1)					

	_1	2	3	4	8
1	. 0	1	2	2	00
2	00	0	00	2	•6
3	∞	90	0	(90	1
4	00	M	2	0	00
5	3	1	3	3	0
D(2)					

(2.1,

D(3)

0	1	2	2	3
Œ	0	••	2	00
99	90	0	99	1
90	00	2	0	3
3	1.	3	3	0

D (4)

Ø	1	2	2	3
90	0	4	2.	5
00	00	0	••	1
60	••	2	0	3
3	1	3	3	© .

DS)

0	1	2	2	3
8	Ō	4	2	5
4	2	0	4	1
6	4	2	0	3
3	1	3	3	0

Transitive Closene $\zeta^* = (Y, E^*) \quad \exists$ $\zeta^* = ($

Solution

Adj Mat (9,1) mothing

In Ployd Warhol

Cij (1)

Chr (2)

Shortest paths prove Need to be proved

(5)