浙江工业大学 2024/2025 学年 第 一 学期试卷

课程_	大学物理实验 B、	С	_班级	
姓名_		_学号		_教师姓名

—、	选择题:	(每题 4 2	分,共	40分)

- 1、选出下列说法中的正确者(C)
- A、 随机误差是随机的, 所以它可以是任意值
- B、 只要观测的对象不变,同一个人用相同的仪器观测其随机误差是不变的
- C、 随机误差分布规律多属高斯分布,亦可能有泊松分布及其他分布
- D、 以上三种都不对
- 2、测量误差可分为系统误差和偶然误差,属于系统误差的有(C)
- A、 由于电表读数而产生的误差
- B、 由于多次测量结果的随机性而产生的误差
- C、 由于量具没有调整到理想状态,如没有调到垂直而引起的测量误差
- D、 以上答案都正确
- 3、若某待测物的标准长度为 2.36444cm, 若用精度为 0.02mm 的游标卡尺测量, 其值应为(C)
- A . 23.6mm
- B_s 23mm
- C 23.64mm
- D 23.644mm
- 4、两个直接测量量值为 0. 5136mm 和 10. 0mm, 它们的商的值为 (B)
- A . 0.05136
- B . 0.0514
- C . 0.051
- $D_{\lambda} = 0.1$

5、某测量 x 多次测量的平均值为 5.4250cm, 其总不确定度为 0.03cm, 则测量结果可以写做 (B)

- A $x=5.43\pm0.03$ cm
- B $x=5.42\pm0.03$ cm
- C = x=5.43+0.03cm
- D = x=5.42+0.03cm
- 6、随机误差的对称性是指绝对值相等的正负误差出现的概率(B)
- A、 不同
- B、相同
- C、不一定
- 7、某螺旋测微计的示值误差为±0.004mm,选出下列说法中的正确者: (A)
- A、 它的仪器误差±0.004 mm;
- B、 用它进行一次测量, 其随机误差为 0.004 mm;
- C、 用它测量时的相对误差为±0.004 mm。
- D、 以上答案都不正确。
- 8、在计算数据时,当有效数字位数确定以后,应将多余的数字舍去。设计算结果的有效数字取 4 位,则下列正确的取舍是(B)
- A \ 4.32749→4.328
- B \ 4.32750→4.328
- $C = 4.32851 \rightarrow 4.328$
- D \ 4.32850→4.329
- 9、测量误差可分为系统误差和偶然误差,属于系统误差的是(B)
- A、 由于多次测量结果的随机性而产生的误差;
- B、 由于实验所依据的理论和公式的近似性引起的测量误差;
- C、由于实验者在判断和估计读数上的变动性而产生的误差。
- 10、不确定度有效数字的取舍原则是(C)
- A、 尽量多
- B、 尽量少
- C、 保留 1 位 (最多两位)
- D、 与小数最多的值一致

二、填空题: (共7题,每空1分,共20分)
11、本学期实验课学习并掌握了很多物理量的测量,如长度、质量、密度,再写出三个你测量过的物理量、、。
(参考:长度、质量、时间、热量、温度、湿度、压强、压力、电流、电压、电阻、磁感应强度、发光强度、折射率、电子电荷、普朗克常量等常用物理量)
12、写出三个本学期实验课中你所掌握的实验测量方法、
(参考:比较法、转换法、放大法、模拟法、补偿法、平衡法、干涉法、衍射法,光杠杆)
13、本学期实验课学习使用了很多实验仪器,如磁电式电流表、电压表、检流计等,再写出三个你所使用过的测量仪器、、、、。
(参考:长度测量仪器、计时仪器、测温仪器、变阻器、电表、交/直流电桥、通用示波器、低频信号
发生器、分光仪、光谱仪、常用电源和光源)
14、本学期实验课学习了很多实验操作技术,如水平调节,再写出三个你所掌握的实验操作技术、。
(参考:零位调整、水平/铅直调整、光路的共轴调整、消视差调整、逐次逼近调整、根据给定的电路图正确接线、简单的电路故障检查与排除)
15、示波器是一种常用的电学仪器,在普通的Y-T 模式下,X 轴代表 <u>时间(或周期)</u> 、Y 轴代表 <u>电压(或 信号大小)</u> ,在 X-Y 模式下观测的图形通常叫 <u>李萨如图</u> 。
16、在光的干涉实验中,经常观测到的干涉条纹是 <u>明暗相间(或平行线、或同心圆)</u> 形状(分布),其相邻条纹对应的光程差为 <u>1/2</u> 波长。
17、从右图磁电式电表的表盘数据你能判断出该电表的精度等级是 0.5
用,该电表是 (直流、交流) <u>直流</u> 电表。
三、 计算题(每题10分,共30分)
18、使用一把最小刻度为毫米的刻度尺来测量一个物体的长度。以下是五次测量的结果(单位:厘米):
12.34、12.36、12.35、12.33、12.34,
(1) 请计算这五次测量结果的平均值。(2) 求出这五次测量的标准差。 (3) 忽略仪器误差,用不确定度的形式写出测量结果的最终表达式。
(3) 忍畸权益庆差,用小幅足良的形式与击侧重结未的取终衣及式。 解: (1) 五次测量结果的平均值为: (12.34+12.36+12.35+12.33+12.34)/5=12.344 厘米 (4 分)
(2) 五次测量的标准差为:
$S = \sqrt{\frac{(12.34 - 12.344)^2 + (12.36 - 12.344)^2 + (12.35 - 12.344)^2 + (12.33 - 12.344)^2 + (12.34 - 12.344)^2}{5 - 1}} = 0.0114cm (4\%)$
7 5-1 (3) 12.34±0.01 厘米 或12.344±0.011 厘米 或12.344±0.012 厘米 (2分)

- 19、使用分度值为 0.02mm 的游标卡尺对某物体进行五次独立测量,得到的测量结果(单位: mm)的平均值为 25.052 mm, 五次测量的标准差为 0.021mm,
 - (1)计算总的不确定度; (2)写出测量结果的表达式。
 - (1) 总不确定度 $\Delta = \sqrt{0.02^2 + 0.021^2}$ (3分)

=0.029mm或 0.03 mm (3)

- (2) 25.05±0.03 mm 或 25.052±0.029 mm (4分)
- 20、在大学物理实验中,通过测量得到了一组数据,表示某物体在不同时间下的位移。数据如下表所示:

时间 t(s)	0	1	2	3	4	5
位移 S(m)	0.0	2.1	4.3	6.4	8.6	10.7

- (1)请根据上表数据,依照等精度作图原则在坐标纸上绘制出位移-时间(S-t)图,t为横坐标。
- (2)通过绘制的 S-t 图, 计算物体的平均速度(即 S-t 图的斜率)。请给出计算过程和结果, 结果保留两位小数。
 - (1) (5分) 坐标轴数据按表中数据等精度标在坐标周上,

y 轴没小数或小数位数不对的 扣 1 分,数据点没标在直线上的口 1 分。

(2) (5分)

在图上选取距离较远的两个点,不用测量点,计算斜率。用测量点的扣 1 分。如在图上选取 y 轴为整的 2.0 和 10.0,找到对应到 x 轴的数据,

如用(0.9, 2)和(4.7, 10)带入斜率计算公式,算出 $V=2.15\,m/s$,具体数值在 $2.15\,$ 附近即可。主要考查作图,不用计算不确定度。

四、讨论题(10分)

- 21、大学物理实验课是同学们接受系统实验方法和实验技能训练的开端,在实验中培养良好的实验习惯和安全意识,为以后的专业实验和科研实验做好训练,请就以下两个方面进行简单探讨。
- (1)在实验室安全方面,需要注意些什么? (2)在实验室开展实验时,你养成了哪些良好的实验习惯? 答案 略。