# Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai



# Präsenzübungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

#### Blatt 8 B

 $L\"{o}sungshinweise$ 

## Aufgabe 1: Wir betrachten die Funktion

$$f: (-\infty, 1) \longrightarrow \mathbb{R}, \quad x \longmapsto \frac{1}{\sqrt{1-x}}.$$

Unser Ziel ist es, die Potenzreihendarstellung von f um den Punkt 0 zu bestimmen. Konkret wollen wir zeigen, dass

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{4^n} {2n \choose n} x^n \qquad \text{für alle } x \in (-1, 1)$$
 (1)

gilt. Hierzu gehen wir wie folgt vor:

(a) Berechnen Sie mittels des Quotientenkriteriums den Konvergenzradius der folgenden Potenzreihe:

$$\sum_{n=0}^{\infty} \frac{1}{4^n} \binom{2n}{n} x^n$$

(b) Beweisen Sie mithilfe des Cauchy-Produkts für Reihen, dass für alle  $x \in (-1,1)$ 

$$\left(\sum_{n=0}^{\infty} \frac{1}{4^n} \binom{2n}{n} x^n\right)^2 = \frac{1}{1-x}.$$

**Hinweis:** Sie dürfen ohne Beweis verwenden, dass  $\sum_{k=0}^{n} {2k \choose k} {2(n-k) \choose n-k} = 4^n$  für alle  $n \in \mathbb{N}_0$  gilt.

(c) Folgern Sie die Gültigkeit von (1).

**Hinweis:** Untersuchen Sie die Fälle  $x \geq 0$  und x < 0 getrennt. Nutzen Sie im Fall x < 0 die Monotonie der Folge  $(\frac{1}{4^n}\binom{2n}{n})_{n \in \mathbb{N}_0}$  aus.

#### Lösung:

(a) Wir betrachten die durch  $a_n := \frac{1}{4^n} \binom{2n}{n} = \frac{(2n)!}{4^n (n!)^2}$  für  $n \in \mathbb{N}$  definierte Folge  $(a_n)_{n \in \mathbb{N}}$ . Für  $x \in \mathbb{R} \setminus \{0\}$  haben wir

$$\left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = |x| \frac{(2(n+1))!4^n(n!)^2}{4^{n+1}((n+1)!)^2(2n)!} = |x| \frac{(2n+1)(2n+2)}{4(n+1)^2} = |x| \frac{2+\frac{1}{n}}{2(1+\frac{1}{n})} \xrightarrow{n \to \infty} |x|,$$

womit uns das Quotientenkriterium liefert, dass die Reihe  $\sum_{n=0}^{\infty} \frac{1}{4^n} \binom{2n}{n} x^n$  für |x| < 1 konvergiert und für |x| > 1 divergiert. Folglich ist  $\rho = 1$  der Konvergenzradius der Reihe  $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} \frac{1}{4^n} \binom{2n}{n} x^n$ .

(b) Für  $x \in (-1,1)$  ist die Potenzreihe  $\sum_{n=0}^{\infty} a_n x^n$  absolut konvergent. Das Cauchy-Produkt dieser Reihe mit sich selbst ist also

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)^2 = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} (a_k x^k)(a_{n-k} x^{n-k})\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k a_{n-k}\right) x^n,$$

wobei nach der im Hinweis angegebenen Formel

$$\sum_{k=0}^{n} a_k a_{n-k} = \frac{1}{4^n} \sum_{k=0}^{n} {2k \choose k} {2(n-k) \choose n-k} = 1$$

für alle  $n \in \mathbb{N}_0$  gilt. Somit ist das oben berechnete Cauchy-Produkt nichts anderes als die geometrische Reihe, d. h.

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)^2 = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

(c) Wir zeigen zunächst, dass  $\sum_{n=0}^{\infty} a_n x^n \geq 0$  für alle  $x \in (-1,1)$  gilt. Für  $x \in [0,1)$  ist dies offensichtlich. Für  $x \in (-1,0)$  müssen wir hingegen genauer abschätzen, um  $\sum_{n=0}^{\infty} a_n x^n \geq 0$  zu beweisen (wobei der folgende Beweis auch im Fall  $x \geq 0$  funktioniert). Hierzu nutzen wir die (absolute) Konvergenz der Reihe aus, um diese gemäß<sup>1</sup>

$$\sum_{n=0}^{\infty} a_n x^n = \sum_{m=0}^{\infty} (a_{2m} x^{2m} + a_{2m+1} x^{2m+1}) = \sum_{m=0}^{\infty} (a_{2m} + x a_{2m+1}) x^{2m}$$

umschreiben zu können. Weil  $x^{2m} \geq 0$  für alle  $m \in \mathbb{N}_0$ , genügt es also zu zeigen, dass  $a_{2m} + xa_{2m+1} \geq a_{2m} - a_{2m+1} \geq 0$  für alle  $m \in \mathbb{N}_0$  gilt. Hierzu überlegen wir uns, dass die Folge  $(a_n)_{n \in \mathbb{N}}$  monoton fallend ist. In der Tat sehen wir wie in (a), dass

$$\frac{a_{n+1}}{a_n} = \frac{(2(n+1))!4^n(n!)^2}{4^{n+1}((n+1)!)^2(2n)!} = \frac{(2n+1)(2n+2)}{4(n+1)^2} = \frac{2n+1}{2n+2} \le 1$$

und somit  $a_{n+1} \leq a_n$  für alle  $n \in \mathbb{N}_0$  gilt.

Folglich ist  $\sum_{n=0}^{\infty} a_n x^n \ge 0$  für alle  $x \in (-1,1)$ , weshalb sich die Gültigkeit von (1) durch Anwenden der Quadratwurzel auf die in (b) bewiesene Identität ergibt.

#### **Aufgabe 2:** Es sei $U \subseteq \mathbb{R}$ . Wir nennen

• eine Funktion  $f: U \to \mathbb{R}$  beschränkt, falls es eine reelle Zahl  $M \ge 0$  gibt, sodass  $|f(x)| \le M$  für alle  $x \in U$  gilt.

Ist  $\sum_{n=1}^{\infty} a_n$  eine konvergente Reihe reeller Zahlen, dann ist definitionsgemäß die Folge  $(s_k)_{k \in \mathbb{N}_0}$  ihrer Partialsummen  $s_k := \sum_{n=0}^k a_n$  konvergent. Insbesondere konvergiert die Teilfolge  $(s_{2\ell+1})_{\ell \in \mathbb{N}_0}$  gegen den gleichen Grenzwert, wobei  $s_{2\ell+1} = \sum_{n=0}^{2\ell+1} a_n = \sum_{m=0}^{\ell} (a_{2m} + a_{2m+1})$  für alle  $\ell \in \mathbb{N}_0$ . Weil dies gerade die Folge der Partialsummen der Reihe  $\sum_{m=0}^{\infty} (a_{2m} + a_{2m+1})$  ist, sehen wir, dass auch die Reihe  $\sum_{m=0}^{\infty} (a_{2m} + a_{2m+1})$  konvergiert und dass  $\sum_{m=0}^{\infty} (a_{2m} + a_{2m+1}) = \sum_{n=0}^{\infty} a_n$  gilt.

• eine Folge  $(f_n)_{n\in\mathbb{N}}$  von Funktionen  $f_n: U \to \mathbb{R}$  gleichmäßig beschränkt, falls es eine reelle Zahl  $M \geq 0$  gibt, sodass  $|f_n(x)| \leq M$  für alle  $x \in U$  und alle  $n \in \mathbb{N}$  gilt.

Es sei nun  $(f_n)_{n\in\mathbb{N}}$  eine Folge von beschränkten Funktionen  $f_n:U\to\mathbb{R}$ , die gleichmäßig gegen eine Funktion  $f:U\to\mathbb{R}$  konvergiert. Zeigen Sie, dass die Grenzfunktion f beschränkt und die Folge  $(f_n)_{n\in\mathbb{N}}$  gleichmäßig beschränkt sind.

## Lösung:

(i) Wir zeigen zunächst, dass f beschränkt sein muss. Hierzu gehen wir wie folgt vor. Da  $(f_n)_{n\in\mathbb{N}}$  gleichmäßig auf U gegen f konvergiert, finden wir zu  $\varepsilon=1$  ein  $N\in\mathbb{N}$  mit der Eigenschaft, dass  $|f(x)-f_n(x)|<1$  für alle  $x\in U$  und für alle  $n\in\mathbb{N}$  mit  $n\geq N$  gilt; insbesondere haben wir also  $|f(x)-f_N(x)|<1$  für alle  $x\in U$ . Da  $f_N$  nach Voraussetzung beschränkt ist, gibt es eine reelle Zahl  $M\geq 0$ , sodass  $|f_N(x)|\leq M$  für alle  $x\in U$  gilt. Mit der Dreiecksungleichung ergibt sich deshalb, dass

$$|f(x)| \le |(f(x) - f_N(x)) + f_N(x)| \le |f(x) - f_N(x)| + |f_N(x)| < 1 + M$$

für alle  $x \in U$ . Folglich ist f auf U beschränkt.

(ii) Da f nach (i) beschränkt ist, gibt es eine reelle Zahl  $M \geq 0$  (nämlich 1+M in der Notation von (i), was wir der Einfachheit halber hier zu M umbenennen), sodass  $|f(x)| \leq M$  für alle  $x \in U$  gilt. Wie in (i) finden wir wegen der gleichmäßigen Konvergenz der Folge  $(f_n)_{n \in \mathbb{N}}$  gegen f ein  $N \in \mathbb{N}$ , sodass  $|f(x) - f_n(x)| < 1$  für alle  $x \in U$  und alle  $n \in \mathbb{N}$  mit  $n \geq N$  erfüllt ist. Für jedes  $n \in \mathbb{N}$  mit  $n \geq N$  erhalten wir wieder mit der Dreiecksungleichung, dass

$$|f_n(x)| = |(f_n(x) - f(x)) + f(x)| \le |f_n(x) - f(x)| + |f(x)| \le 1 + M$$

für alle  $x \in U$  gilt. Für n = 1, ..., N - 1 gibt es, da die Funktion  $f_n$  nach Voraussetzung beschränkt ist, eine reelle Zahl  $M_n \ge 0$ , sodass  $|f_n(x)| \le M_n$  für alle  $x \in U$ . Wir setzen nun

$$\tilde{M} := \max\{M_1, \dots, M_{N-1}, M+1\}.$$

Dann gilt  $|f_n(x)| \leq \tilde{M}$  für alle  $x \in U$  und jedes  $n \in \mathbb{N}$ , d. h. die Folge  $(f_n)_{n \in \mathbb{N}}$  ist gleichmäßig beschränkt.