

ФГАОУ ВО «Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

ТЕОРИЯ АВТОМАТОВ

Практическое задание **№**1
Вариант 8

Лабушев Тимофей Группа Р3302

Цель работы

Практическое освоение методов взаимного преобразования автоматных моделей Мили и Мура. Проверка абстрактных автоматов Мили и Мура на эквивалентность.

Задание

- 1. В соответствии с выбранным номером варианта осуществить преобразование автомата Мили в автомат Мура.
- 2. Сформировать входное слово необходимой длины. Длина входного слова должна быть минимальна, но достаточна для осуществления всех имеющихся в графах автоматов переходов.
- 3. Используя сформированное входное слово, осуществить проверку исходного и полученного в результате преобразования автоматов на эквивалентность. В качестве исходного состояния выбрать состояние $_{1}$.
- 4. Далее осуществить преобразование полученного на предыдущем этапе автомата Мура в автомат Мили.
- 5. Сформировать входное слово необходимой длины. Длина входного слова должна быть минимальна, но достаточна для осуществления всех имеющихся в графах автоматов переходов.
- 6. Используя сформированное входное слово, осуществить проверку исходного и полученного в результате преобразования автоматов на эквивалентность. В качестве исходного состояния выбрать состояние a_1 .

Исходный автомат Мили

Входное слово

	z_1	z_2	z_1	z_2	z_1	z_2	z_1	z_1	z_2	z_1	z_2	z_2	z_2	
(a_1	a_1	a_5	a_3	a_3	a_2	a_3	a_2	a_5	a_4	a_1	a_5	a_4	a_2
ı	w_1	w_2	w_2	w_2	w_1	w_2	w_1	w_1	w_2	w_1	w_2	w_2	w_2	

Таблица 1: Поведение исходного автомата

Преобразование в автомат Мура

Поставим каждому состоянию автомата Мили в соответствие множество всевозможных пар a_sw_g , где a_s — функция δ от состояния и входного сигнала, w_g — функция λ от состояния и входного сигнала. Каждую полученную пару возьмем за состояние b_s преобразованного автомата.

$$a_1:a_1w_1=b_1$$

$$a_2:\begin{cases} a_2w_1=b_2\\ a_2w_2=b_3\\ a_3:a_3w_2=b_4\\ a_4:a_4w_2=b_5 \end{cases}$$

$$a_5: \begin{cases} a_5w_1 = b_6 \\ a_5w_2 = b_7 \end{cases}$$

Проверка на эквивалентность

Рассмотрим входное слово, использованное для исходного автомата:

z_1	z_2	z_1	z_2	z_1	z_2	z_1	z_1	z_2	z_1	z_2	z_2	z_2	
b_1	b_1	b_7	b_4	b_4	b_2	b_4	b_2	b_6	b_5	b_1	b_7	b_5	b_3
	w_1	w_2	w_2	w_2	w_1	w_2	w_1	w_1	w_2	w_1	w_2	w_2	w_2

Таблица 2: Поведение преобразованного автомата Мура

Сравнивая с таблицей 1, можно увидеть, что выходные слова w совпадают с задержкой на один такт, связанной с особенностью поведения автомата Мура, что позволяет утверждать об эквивалентности автоматов.

Обратное преобразование

При переходе от автомата Мура к автомату Мили множество состояний и функции переходов совпадают, а функции выхода изменяются путем перемещения выходных сигналов из вершин (состояний) в дуги (переходы):

Проверка на эквивалентность

Рассмотрим входное слово, использованное для исходного автомата:

z_1	z_2	z_1	z_2	z_1	z_2	z_1	z_1	z_2	z_1	z_2	z_2	z_2	
b_1	b_1	b_7	b_4	b_4	b_2	b_4	b_2	b_6	b_5	b_1	b_7	b_5	b_3
\overline{w}_1	w_2	w_2	w_2	w_1	w_2	w_1	w_1	w_2	w_1	w_2	w_2	w_2	

Таблица 3: Поведение преобразованного автомата Мили

Сравнивая с таблицей 1, можно увидеть, что выходные слова полностью совпадают, следовательно, автоматы эквивалентны. Такой же вывод можно сделать, рассмотрев таблицу 2 (с учетом задержки у автомата Мура).

Вывод

В ходе выполнения работы были изучены отличия автомата Мура от автомата Мили, а также способы преобразования автомата Мили в автомат Мура и наоборот. При проверке преобразованных автоматов на эквивалентность было замечено, что реакция на входное слово автомата Мура задерживается на один такт по сравнению с автоматом Мили.

Стоит отметь, что автомат Мили, полученный из автомата Мура, обладает большим количеством состояний по сравнению с исходным автоматом Мили, хотя и является эквивалентным ему по свойству транзитивности.