MATH 313: LINEAR ALGEBRA HOMEWORK 3

MELVYN B. NATHANSON

(1) Determine if the following sequences of vectors $\mathbf{v}_1, \mathbf{v}_2$ are linearly dependent or linearly independent.

(a)

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

(b)

$$\mathbf{v}_1 = \begin{pmatrix} -4\\7 \end{pmatrix} \qquad \mathbf{v}_2 = \begin{pmatrix} -4\\7 \end{pmatrix}.$$

(2) Determine if the following sequences of vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent or linearly independent.

(a)

$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 10 \end{pmatrix}.$$

(b)

$$\mathbf{v}_1 = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix}.$$

(3) Consider the vectors

$$\mathbf{v}_1 = \begin{pmatrix} 2\\2\\1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -4\\-3\\-1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 6\\9\\8 \end{pmatrix}, \quad \mathbf{v}_4 = \begin{pmatrix} 10\\21\\9 \end{pmatrix}$$

in \mathbb{R}^3 . Compute scalars x_1, x_2, x_3, x_4 not all 0 such that

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + x_4\mathbf{v}_4 = \mathbf{0}.$$

(4) Find two distinct representations of the vector $\begin{pmatrix} 7 \\ -3 \\ 2 \end{pmatrix}$ as a linear combina-

tion of the vectors $\begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix}$.

- (5) Prove that the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent if and only if the set of vectors $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 \mathbf{v}_2\}$ is linearly independent
- (6) Let $\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2$ be three vectors in \mathbf{R}^n such that the two vectors $\mathbf{v}_1 \mathbf{v}_0$ and $\mathbf{v}_2 \mathbf{v}_0$ are linearly independent. Prove that the two vectors $\mathbf{v}_0 \mathbf{v}_1$ and $\mathbf{v}_2 \mathbf{v}_1$ are linearly independent.

Date: February 14, 2019.

(7) Let

$$\mathbf{w}_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 and $\mathbf{w}_2 = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$.

Let

$$\mathbf{v}_1 = 2\mathbf{w}_1 + 5\mathbf{w}_2, \quad \mathbf{v}_2 = 3\mathbf{w}_1 - \mathbf{w}_2, \quad \mathbf{v}_3 = \mathbf{w}_1 + 7\mathbf{w}_2.$$

Compute scalars x_1, x_2, x_3 such that

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}.$$

- (8) Let $V = \mathbb{R}^n$. Let W_1 and W_2 be subspaces of V. Prove that $W_1 \cap W_2$ is a subspace of V.
- (9) Let W_1 be the subspace of \mathbf{R}^2 generated by the vector $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and let W_2 be the subspace of \mathbf{R}^2 generated by the vector $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - (a) Compute $W_1 \cap W_2$.
 - (b) Prove that $W_1 \cup W_2$ is not a subspace of \mathbf{R}^2 .
- (10) For each of the following subspaces of \mathbb{R}^2 , construct a basis and determine the dimension.
 - (a) The subspace generated by the set

$$S = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}.$$

(b) The subspace generated by the set

$$S = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}.$$

(c) The subspace generated by the set

$$S = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}.$$

- (11) For each of the following subspaces of \mathbb{R}^3 , construct a basis and determine the dimension.
 - (a) The subspace generated by the set

$$S = \left\{ \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 5\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\0 \end{pmatrix} \right\}.$$

(b) The subspace generated by the set

$$S = \left\{ \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 5\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\3\\0 \end{pmatrix} \right\}.$$

(c) The subspace generated by the set

$$S = \left\{ \begin{pmatrix} 6\\9\\-3 \end{pmatrix}, \begin{pmatrix} -4\\-6\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}.$$

(12) Let \mathbf{v} be a nonzero vector in \mathbf{R}^n . Prove that $\{x\mathbf{v}:x\in\mathbf{R}\}$ is a one-dimensional subspace of \mathbf{R}^n .