

SIAE - Année 4

COURS « ETUDE et CONCEPTION AVION »

A - ETUDE OPERATIONNELLE

ETUDE du modèle A 350-900

Caractéristiques avions (kg)

	Version 1	Version 2	Version 3		
MTOW	268 000	275 000	272 000		
MLW	205 000	207 000	207 000		
MZFW	192 000	195 700	194 000		
OEW	135 000				
Fuel capacity	110 400 (0,800 kg/l)				

MACH de vol: 0.85

Mission - Carburant

Consommation étape : Voir courbes de consommation page 2

Dégagement 200 NM : 3600 kg Attente dégagement 30mn: 2300 kg Réserve de route : 5% consommation

Roulage: 300 kg

Aménagement intérieur : 315 sièges (2 classes)

Un passager adulte avec 1 bagage intercontinental = 100 kg

ITEM		DESIGNATION		PASSENGER SEATS (315 TOTAL)
G	(GALLEY	(12)	48 BUSINESS CLASS (6-ABREAS
L		LAVATORY	(9)	267 ECONOMY CLASS (9-ABREA
Α		ATTENDANT :	SEAT (8)	
S		STOWAGE	(1)	SEAT PITCHES: ECONOMY 32 in. BUSINESS 60 in.

1 - Tracer la courbe de charge offerte (C/O) en fonction de la distance air.

2 – Etude sur le réseau suivant (aller-retour):

(Différents vols seront affectés à chaque groupe)

Groupe	AIRPORT 1	ALTITUDE	IATA	ICAO	AIRPORT 2	ALTITUDE	IATA	ICAO	GCD	Time
		(ft)/Lpiste (m)				(ft)/Lpiste (m)			(NM)	(hour)
1	BEIJING	116/3800	PEK	ZBAA	PARIS	392/4200	CDG	LFPG	4434	10.06
2	HONG KONG	28/3800	HKG	VHHH	FRANCFORT	364/4000	FRA	EDDF	4950	11.15
3	TIANJIN	10/3200	TSN	ZBTJ	TOULOUSE	499/3000	TLS	LFBO	4759	10.50
4	BEIJING	116/3800	PEK	ZBAA	JOHANNESBURG	5558/4415	JNB	FAJS	6316	14.17
5	SHANGHAI	3/4000	PVG	ZSPD	NAIROBI	5536/4100	NBO	HKJK	4950	11.46
6	BEIJING	116/3800	PEK	ZBAA	MEXICO	7316/3950	MEX	MMMX	6725	15.12
7	SHANGHAI	3/4000	PVG	ZSPD	NEW YORK Kennedy	13/4450	JFK	KJFK	6423	14.32
8	BEIJING	116/3800	PEK	ZBAA	AMMAN	2395/3660	AMM	OJAI	3826	08.45
9	BEIJING	116/3800	PEK	ZBAA	DUBAI	62/4000	DXB	OMDB	3162	07.17
10	SHANGHAI	3/4000	PVG	ZSPD	SANAA	7216/3250	SAH	OYSN	4305	09.49

Calculs:

- Masses maximales décollage
- Charge: Peut on emporter le nombre maximum de passagers?
- Carburant.....

Courbes Longueurs de piste : (ISA et ISA +15°C)

IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT

3 – Etude comparative avec l'A 330/200 et le B 787–9:

Caractéristiques générales (kg)

	A 330/200	В 787-9
MTOW	238 000	252 650
MLW	182 000	192 800
MZFW	168 000	181 450
OEW	118 200	128 000
Fuel capacity	111270 (0,800 g/l)	104000 (0,800 kg/l)

Aménagement intérieur A 330/200: 246 sièges (2 classes)

Aménagement intérieur B 787-9: 280 sièges (3 classes)

Courbe Payload/Range A 330/200 – Mach de vol = 0.82

PAYLOAD RANGE A 330/200

Consommation A 330/200 – Mach de vol = 0.82

PAYLOAD RANGE B787

Courbes Longueurs de piste : (ISA et ISA +15°C)

3.1 – Qu'apporte l'A350-900 par rapport à l'A330/200 ?

- Etude du Payload/Range
- Consommation....

3.2 - B 787-9:

- Commentaires en fonction des données dont vous disposez.

B – CONCEPTS TECHNIQUES

Etude d'un nouvel avion pour réaliser une mission équivalente à celle de l'avion de référence

Aircraft Design: A Conceptual Approach, 5th ed. - Daniel P. Raymer

Nous souhaitons créer un nouvel avion similaire à l'avion de référence.

Les éléments de spécifications que nous garderons :

o Configuration classique et bi-moteur – Voir annexe 2

o Mach de vol : voir tableau ci-dessous

o Altitude de vol: 11000 m

o Nombre de passagers : voir tableau ci-dessous

o Rayon d'action : voir tableau ci-dessous

O Distance au décollage : 3800 m à l'altitude 116 ft

o Distance à l'atterrissage : 3500 mo Vitesse d'approche : 140 kts

			Nombre de pax					
Rayon d'action	Mach de	275	300	325	350	375		
(NM)	croisière							
7500	0.8	Groupe 1	Groupe 2	Groupe 3	Groupe 4	Groupe 5		
8000	0.8	Groupe 6	Groupe 7	Groupe 8	Groupe 9	Groupe 10		
7500	0.85	Groupe 11	Groupe 12	Groupe 13	Groupe 14	Groupe 15		
8000	0.85	Groupe 16	Groupe 17	Groupe 18	Groupe 19	Groupe 20		

NOTA: pour la conversion des unités, voir annexe 11.

Travail à réaliser

- 1 <u>Première estimation de la masse</u> (voir page 21 à 34 de la 3^{ème} partie du cours, intitulée « Concept Technique ») Voir annexe 3
- 2 <u>Choix d'un profil aérodynamique</u> (voir page 40 à 44 de la 3^{ème} partie du cours, intitulée « Concept Technique » : indiquer quel type de profil serait le mieux adapté à votre avion et définissez l'épaisseur relative Voir annexe 4
- 3 <u>Analyse préliminaire de la voilure</u> (voir page 45 à 57 de la 3^{ème} partie du cours, intitulée « Concept Technique ») Voir annexe 5

Déterminer l'allongement, la flèche du bord d'attaque, l'effilement (inverse du « taper ratio »), et la flèche au quart de corde, le vrillage, le calage, la position de l'aile et son dièdre. Attention, il n'est pas encore possible de déterminer la longueur de la corde aérodynamique moyenne ni la surface de référence (voir plus bas).

- 4 <u>Estimation du ratio poussée/poids</u> (voir page 64 à 66 de la 3^{ème} partie du cours, intitulée « Concept Technique ») Voir annexe 7
- 5 <u>Estimation de la charge alaire</u> (voir page 68 à 72 de la 3^{ème} partie du cours, intitulée « Concept Technique ») Voir annexe 8

- 6 <u>Deuxième estimation de la masse</u> (voir page 73 à 74 de la 3^{ème} partie du cours, intitulée « Concept Technique ») Voir annexe 9
- 7 <u>Estimation de la longueur et du diamètre du fuselage</u> (voir page 77 à 95 de la 3^{ème} partie du cours, intitulée « Concept Technique ») Voir annexe 10

8 – Premier dessin de la voilure

A partir des résultats précédents (§3), de la charge alaire (§5) et de la deuxième estimation de la masse (§6), déterminer la surface de référence de la voilure, son envergure, la longueur de la corde à l'emplanture et au saumon, la longueur de la corde aérodynamique moyenne et son positionnement par rapport à l'aile.

Positionner la voilure par rapport au fuselage (il n'est pas encore possible de tenir compte de la stabilité longitudinale de l'avion pour un positionnement précis, choisir la position que vous préférez).

9 – <u>Choix et dessin d'un empennage</u> (voir page 103 à 112 de la 3^{ème} partie du cours, intitulée « Concept Technique ») – Voir annexe 6

Choisir un empennage, définir les volumes d'empennage (horizontal et vertical), l'allongement, l'effilement et la flèche du bord d'attaque. En considérant que l'empennage est accroché à l'arrière du fuselage, calculer la surface des empennages, leurs envergures, leurs cordes à l'emplanture et au saumon.

10 – Comparer l'avion que vous avez défini avec l'avion de référence. Qu'en pensez-vous ?

ANNEXE 1 - B 777 - 200: Moteurs ROLLS ROYCE

Caractéristiques avions (kg)

	Version Base	Version HGW
MTOW	242 600	286900
MLW	201 800	206350
MZFW	190 500	195000
OEW	133 350	135600
Fuel capacity	94 200 (0,785 g/l)	137460 (0,785 g/l)

MACH de vol: 0.84

B 777/200 ROLLS ROYCE

305 sièges (3 classes)

Source: BOEING 2008

ANNEXE 2 : configuration de l'avion

ANNEXE 3: Premier calcul de masse

Définition de la masse à vide

$$\frac{M_{\textit{Vide}}}{M_0} = A W_0^C \text{ et pour un avion de transport} : \frac{M_{\textit{Vide}}}{M_0} = 0.97 M_0^{-0.06} \text{ (M_0 en kg)}$$

Détermination du TSFC

Table 3.3 Specific Fuel Consumption, C

Typical jet SFCs: 1/hr {mg/Ns}	Cruise	Loiter
Pure turbojet	0.9 {25.5}	0.8 {22.7}
Low-bypass turbofan	0.8 {22.7}	0.7 {19.8}
High-bypass turbofan	0.5 {14.1}	0.4 {11.3}

Etude de cas

Définition du ratio (L/D)

Fig. 3.6 Wetted area ratios.

ANNEXE 4 : Profil aérodynamique

Choix d'une famille de profils aérodynamiques

Fig. 4.6 Typical airfoils.

Choix d'une épaisseur relative pour le profil (t_{max}/c)

15

ANNEXE 5 : Géométrie de l'aile

Allongement A

	Equivalent aspect ratio $= aM_{max}^{C}$			
Jet aircraft	a	C		
Jet trainer	4.737	-0.979		
Jet fighter (dogfighter)	5.416	-0.622		
Jet fighter (other)	4.110	-0.622		
Military cargo/bomber	5.570	-1.075		
Jet transport	7.50 to 10	0		

Flèche du bord d'attaque Λ_{LE}

Effilement λ

Fig. 4.16 Wing sweep A.

L'effilement dépend de la flèche de la « quarter chord line » ($\Lambda_{C/4}$). La flèche du bord d'attaque (Λ_{LE}) a été définie à la page précédente. La formule ci-dessus exprime la relation géométrique entre $\Lambda_{C/4}$ et Λ_{LE} en fonction de l'effilement λ et l'allongement A. On connaît donc Λ_{LE} et A. Il faut déterminer $\Lambda_{C/4}$ et λ grâce à cette formule et au graphique ci-dessous. Pour une aile vrillée (« twisted »), il faut considérer la ligne en pointillée représentée ci-dessous.

Choix d'un vrillage

Entre 1° et 5°. En phase de conception initiale, 3° est un bon point de départ.

Choix d'un calage de l'aile

En phase de conception initiale, 1° est convenable.

Choix d'un dièdre et d'une position verticale

Table 4.2 Dihedral Guidelines

	Wing position			
	Low	Mid	High	
Unswept (civil)	5 to 7	2 to 4	0 to 2	
Subsonic swept wing	3 to 7	-2 to 2	-5 to -2	
Supersonic swept wing	0 to 5	-5 to 0	-5 to 0	

Choix d'une extrémité de voilure

Voir support de cours.

ANNEXE 6 - Choix d'un empennage

Forme générale

Voir support de cours

Positionnement

Positionnement de l'empennage à l'arrière de l'aile

Fig. 4.33 Aft tail positioning.

Définition des volumes empennages

Table 6.4 Tail Volume Coefficient

	Typical values		
	Horizontal C _{HT}	Vertical c _{VT}	
Sailplane	0.50	0.02	
Homebuilt	0.50	0.04	
General aviation—single engine	0.70	0.04	
General aviation—twin engine	0.80	0.07	
Agricultural	0.50	0.04	
Twin turboprop	0.90	0.08	
Flying boat	0.70	0.06	
Jet trainer	0.70	0.06	
Jet fighter	0.40	0.07-0.12*	
Military cargo/bomber	1.00	0.08	
Jet transport	1.00	0.09	

^{*}Long fuselage with high wing loading needs larger value.

Allongement (A) et effilement (λ) des empennages

Table 4.3 Tail Aspect Ratio and Taper Ratio

	Horiz	ontal tail	Vertic	al tail
	A	λ	A	λ
Fighter	3-4	0.2-0.4	0.6-1.4	0.2-0.4
Sailplane	6-10	0.3-0.5	1.5-2.0	0.4-0.6
Others	3-5	0.3-0.6	1.3-2.0	0.3-0.6
T-tail	-	-	0.7-1.2	0.6-1.0

ANNEXE 7 – Estimation du rapport poussée/poids (T/W)

Utiliser au choix, l'une des 3 méthodes suivantes.

Méthode 1

Table 5.1 Thrust-to-Weight Ratio (T/W)*

Aircraft type	Typical installed T/W
Jet trainer	0.4
Jet fighter (dogfighter)	0.9
Jet fighter (other)	0.6
Military cargo/bomber	0.25
Jet transport (higher value for fewer engines)	0.25-0.4

^{*}In mks units, the thrust force is found as T/W times mass times g = 9.807.

Méthode 2

Table 5.3 I/W_0 vs M_{max}

$T/W_0 = \alpha M_{\text{max}}^C$	a	C
Jet trainer	0.488	0.728
Jet fighter (dogfighter)	0.648	0.594
Jet fighter (other)	0.514	0.141
Military cargo/bomber	0.244	0.341
Jet transport	0.267	0.363

Méthode 3 – Meilleure efficacité en croisière

En croisière non accélérée et en palier, on a :

$$\left(\frac{T}{W}\right)_{croisière} = \frac{1}{\left(L/D\right)_{croisière}}$$

On peut définir $(L/D)_{croisière}$ à partir de l'annexe 2 par exemple mais après, il faut ramener ce ratio aux conditions au sol grâce à la relation :

$$\left(\frac{T_{\max}}{W}\right)_{d\acute{e}collage} = \left(\frac{T}{W}\right)_{croisi\grave{e}re} \left(\frac{W_{croisi\grave{e}re}}{W_{d\acute{e}collage}}\right) \left(\frac{T_{\max{croisi\grave{e}re}}}{T_{croisi\grave{e}re}}\right) \left(\frac{T_{\max{d\acute{e}collage}}}{T_{\max{croisi\grave{e}re}}}\right)$$

Le rapport des masses est donné par le calcul de la mission.

Le rapport de la poussée maximale en croisière sur la poussée en croisière est défini par la manette des gaz. On estime que la poussée en croisière est égale à 85% de la poussée maximale en croisière.

Le dernier rapport est donné par la figure ci-dessous en fonction de l'altitude de croisière.

ANNEXE 8 – Estimation de la charge alaire (W/S)

Pour ces calculs, se reporter au support de cours.

Vitesse de décrochage

Distance au décollage

Distance atterrissage

Croisière et rayon d'action

Etude de cas

ANNEXE 9 – 2^{ème} calcul de la masse

Calcul de la masse à vide

$$\frac{M_{Vide}}{M_0} = a + bW_0^{C_1}A^{C_2}\left(\frac{T}{W_0}\right)^{C_3}\left(\frac{W_0}{S}\right)^{C_4}M_{\text{max}}^{C_5}$$

Table 6.1 Empty Weight Fraction vs W_0 , A, T/W_0 , W_0/S , and M_{max}

$W_{e}/W_{0} = [a+b \ W_{0}^{C1}A^{C2}(I/W_{0})^{C3}(W_{0}/S)^{C4} \ M_{max}^{C5}]K_{vs}$								
fps units	a	В	Cl	C2	C3	C4	C5	
Jet trainer	0	4.28	-0.10	0.10	0.20	-0.24	0.11	
Jet fighter	-0.02	2.16	-0.10	0.20	0.04	-0.10	0.08	
Military cargo/bomber	0.07	1.71	-0.10	0.10	0.06	-0.10	0.05	
Jet transport	0.32	0.66	-0.13	0.30	0.06	-0.05	0.05	

 K_{vs} = variable sweep constant = 1.04 if variable sweep and 1.00 if fixed sweep

Estimation de (L/D) en croisière

Ce ratio peut maintenant être calculé à partir de la relation :

$$\frac{L}{D} = \frac{1}{\frac{qC_{D0}}{W/S} + \frac{W}{S} \frac{1}{q\pi Ae}}$$

ANNEXE 10 - Estimation de la longueur et du diamètre du fuselage

Méthode 1

A partir de W_0 (en lb), il est possible d'estimer la longueur du fuselage (en ft) en utilisant les relations cidessous :

Table 6.3 Fuselage Length vs W_0 (lb or $\{kg\}$)

Length = aW_0^C (ft or $\{m\}$)	а	C
Sailplane—unpowered	0.86 {0.383}	0.48
Sailplane—powered	0.71 {0.316}	0.48
Homebuilt—metal/wood	3.68 {1.35}	0.23
Homebuilt—composite	3.50 {1.28}	0.23
General aviation—single engine	4.37 {1.6}	0.23
General aviation—twin engine	0.86 {0.366}	0.42
Agricultural aircraft	4.04 {1.48}	0.23
Twin turboprop	0.37 {0.169}	0.51
Flying boat	1.05 {0.439}	0.40
Jet trainer	0.79 {0.333}	0.41
Jet fighter	0.93 {0.389}	0.39
Military cargo/bomber	0.23 {0.104}	0.50
Jet transport	0.67 {0.287}	0.43

Pour le diamètre, on peut utiliser la notion d'allongement du fuselage (rapport entre la longueur et le diamètre). Il est en général de l'ordre de 8 à 13.

Méthode 2

Comme présenté dans le cours, il est possible de déterminer ces éléments en définissant une distribution des passagers dans la cabine (nombre de siège de front x nombre de rangées).

ANNEXE 11 - Conversion des unités

Nous comptons:

- 1 lb = 4.4482 N
- 1 ft = 0.3048 m
- g = 9.81 m/s
 1 NM = 1852 m
- 1 kt = 1 NM/h

Relation entre la charge alaire en lb/ft² et celle en kg/m² :

$$\left(\frac{W(lb)}{S(ft^2)}\right) = \frac{9.81*0,3048^2}{4.4482} \left(\frac{M(kg)}{S(m^2)}\right)$$

Relation entre le ratio poussée-poids en lb/lb et celle en N/kg

$$\left(\frac{T(lb)}{W(lb)}\right) = \left(\frac{T(N)}{W(N)}\right) = \frac{1}{9.81} \left(\frac{T(N)}{M(kg)}\right)$$

Relation entre la masse exprimée en lb et celle en kg

$$W(lb) = \frac{9.81}{4.4482} M(kg)$$