

CONTENIDOS

- 1. INTRODUCCIÓN
 - a. PROBLEMÁTICAS
 - b. EXPLICACIÓN GENERAL
- 2. ESPACIOS DE COLOR
 - a. Munsell
 - b. Hunter
 - c. CIE
 - d. RGB
 - e. YIQ
 - f. CMYK
 - g. YCbCr
 - h. HSL
- 3. APLICACIONES
- 4. CONCLUSIONES
- 5. BIBLIOGRAFÍA

INTRODUCCIÓN

Problemáticas de color

Cambios de color entre lo que vemos en un dispositivo, lo que imprimimos, etc..

¿Qué es un espacio de color?

El espacio de color es una organización específica de colores. Es una lista estándar de colores codificados.

ESPACIOS DE COLOR(MODELOS MÁS USADOS) **RGB CMYK**

Espacio de color Munsell

- Formado por tres dimensiones de color
- Más fisiológica y psicológica
- Autodefine su tono, brillo y croma

Espacio de color Hunter

- Teoría de los colores opuestos de Hering
- Color sólido Hunter Lab:
 - Luminosidad(L)
 - o a(rojo-verde)
 - b(amarillo-azul)

ESPACIOS DE COLOR CIE

CIE xyY

Espacio de color CIE XYZ

 Se utiliza como estándar para definir los colores percibidos por el ser humano, se basa en colores primarios imaginarios con caracterización espectral(X,Y y Z)

Espacio de color CIE xyY

 Este espacio solo sirve para mostrar cómo el ser humano percibe los colores pero no para especificar colores de los objetos.

Espacio de color CIÉ L*a*b*

Dos parâmetros de estos miden dos estímulos de color(a* y b*) mientras que el tercer parâmetro mide la diferencia cromática entre estos dos estímulos(L*).

Espacio de color CIE L*C*H°

 En este espacio de color, L* indica luminosidad, C* representa croma o saturación, y h* es el ángulo de matiz.

Espacio de color RGB

- Modelo basado en "síntesis aditiva", al superponer todos los colores, obtenemos el blanco.
- Color sólido RGB:
 - Red(R)
 - Green(G)
 - o Blue(B)

Espacio de color YIQ

- Modelo utilizado para la televisión en Estados Unidos
- Color sólido YIQ:
 - Luminancia(Y)
 - Matiz(l)
 - Saturación(Q)

Espacio de color CMY

- La mezcla de colores CMY ideales es sustractiva, puesto que la mezcla de cian, magenta y amarillo resulta en color negro.
- Color sólido CMY:
 - Cian(C)
 - Magenta(M)
 - Amarillo(Y)

Espacio de color YCbCr

- Y representa la componente de luma y las señales Cb y Cr son los componentes de crominancia diferencia de azul y diferencia de rojo, respectivamente.
- Se usa para separar una señal luminosa "Y" que puede almacenarse con alta resolución, y dos componentes croma (Cb y Cb) que pueden ser de ancho de banda reducido

Espacio de color HSL

- El espacio de color alternativo de más relevancia para el procesamiento de imágenes
- Color sólido HSL:
 - Tono(H)
 - Saturación(S)
 - Luminosidad(L)

APLICACIONES

- 1. Patrimonios arquitectónicos
- 2. Artes plásticas
- 3. Control de calidad de alimentos
- 4. Aplicaciones a la enología
- 5. Reconocimiento facial
- **6.** Detección de objetos.
- 7. Otras aplicaciones.

Patrimonios arquitectónicos

- Evaluación de técnicas de limpieza y desalineación en la catedral de Segovia, España.
- Variación del color del soporte cerámico tratado con pintura antigraffiti.
- Hidrofugante de menor variación cromática produce en la cerámica porosa cara vista

TIPO DE HIDROFUGANTE QUE PRODUCE MENOR VARIACIÓN NEGATIVA					
VALORES HISTOGRAMA	RANGO DE VALORES TOTAL	RANGO DE VALORES			
LUMINOSIDAD	129,16 - 225,65	< 169,14	169,15 - 197,70	> 197,70	
ROJO	165,53 - 235,55	< 197,53	197,54 - 224,45	> 224,46	
VERDE	124,63 - 225,57	<167,95	167,96 - 198,14	> 198,15	
AZUL	49,96 - 199,44	< 96,81	96,82 - 147,82	> 147,83	
TIPO HIDROFUGANTE		H2	Н1	нз	

Artes plásticas

- Importancia del estudio de color antes de la realización de una restauración:
 - Pintura de laSanta Dominica del siglo XVIII

Ecce Homo

Control de alimentos y enología

El color de los alimentos un criterio de calidad medible

El color en los alimentos: Determinación de color en mieles

Aplicación del sistema CIELab a los vinos tintos. Correlación con algunos parámetros tradicionales

Función discriminante	1	2
L* (luminosidad)	-2,53	2,73
C* (Saturación)	-2,96	-6,60
H* (Tono)	-1,58	1,32
a*	5,18	6,73
b*	1,07	-0,12
I.C.	-3,06	1,47
Matiz (420/520)	3,26	-0,24
Ant. Totales (mg/L)	0,14	-0,07
% Color copigmentado	0,06	0,13
% color ant. libres	-0,30	0,77
% color polimérico	0.27	-0.87

Reconocimiento facial y detección de objetos

- Aplicación de los diferentes espacios de color para detección y seguimiento de caras
- Detección de obejtos por segmentación multinivel combinada de espacios de color

espacio de color	% aciertos	
RGB	75%	
YES	95%	
YIQ	80%	
YUV	81%	
YCbCr	79%	

Figure 7: a) Detección de contornos de imagen segmentada RGB, b) Detección de contornos de imagen segmentada por combinación RGB-HSV.

Bibliografía

Toda la información ha sido obtenida de los siguientes enlaces:

- https://www.blogdelfotografo.com/espacio-color/
- https://lcsi.umh.es/docs/papers/2003_espaciosdecolor.pdf
- https://rua.ua.es/dspace/bitstream/10045/2179/1/Jornadas2004.pdf
- http://www.aulapc.es/dibujo_imagen_gamut.html
- http://bibing.us.es/proyectos/abreproy/11875/fichero/Proyecto+Fin+de+Carrera%252F3.Espacios+de+color.
 pdf
- https://intranet.ceautomatica.es/old/actividades/jornadas/XXIV/documentos/viar/117.pdf
- https://es.wikipedia.org/wiki/Espacio_de_color#:~:text=A%20esta%20%22huella%22%20se%20la,basados%20en%20el%20modelo%20RGB.
- https://www.dzoom.org.es/que-demonios-es-el-espacio-de-color/
- https://www.profesionalreview.com/2019/02/23/espacio-de-color-de-un-monitor/