Natural Language Processing - Practical Case

Fernando Rabanal Presa

Máster Big Data Science (Universidad de Valladolid)

Disclaimer

- All materials provided here reflect my own views and not those of my employer.
- Please, do not take my opinions too seriously as I tend to be wrong more times than expected (on average) every single day.

https://github.com/frabanalpresa/mbds/master

Practical case: Amazon Fine Food reviews

Image from D. Chen analysis

License

- CC0: Public Domain License
- J. McAuley and Jure Leskovec, From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews, 2013

Data sources

http://snap.stanford.edu/data/web-FineFoods.html https://www.kaggle.com/snap/amazon-fine-food-reviews

- Kernels
- Discussions
- Visualizations

Dataset information

Number of reviews	568,454
Number of users	256,059
Number of products	74,258
Users with >50 reviews	260
Median words per review	56
Timespan	Oct '99 - Oct '12

Other information

From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews

J. McAuley and Jure Leskovec, 2013

Different problems can be solved:

- Sentiment analysis
- Regression over ratings
- Generate synthetic reviews
- Categorize users
- Clusterize products
- Acquire knowledge about a domain

Proposal

- Have some knowledge about real-world NLP problems.
- Solve a NLP question with real data.
- Apply a NLP algorithm in R/Python to solve a problem.
- Have fun!

Introduction

- Retain only 'Text' field in each sample.
- Explore some of the reviews in the dataset visually (5-10)

```
# Reveived my item fast! It was exactly what I ordered
# in excellent shape with safe shipping - i will came
# back and shop here again. Thanks
```

NLP - Máster Big Data Science (UVA)

```
# I tasted this Matcha from Rishi the first time today.
# The flavor is bright, assertive and fresh...
```

```
# When I was young, nearly a half century ago, Chuckles
# was a very popular candy. I really enjoyed eating
# these jellied treats...
```

Text preprocessing

```
text = ''
text = text.lower()
```

- Load sentence/text/document
- Lowercase characters

Remove punctuation

```
from nltk.corpus import stopwords

text = [word for word in text.split()
        if word not in stopwords.words('english')]

text = ' '.join(text)
```

- Remove stopwords
- Form a full sentence

```
# Reveived my item fast! It was exactly what I ordered
# in excellent shape with safe shipping - i will came
# back and shop here again. Thanks
```

```
# reveived item fast exactly ordered
# excellent shape safe shipping came back shop thanks
```

```
# I tasted this Matcha from Rishi the first time today.
# The flavor is bright, assertive and fresh...
```

```
# tasted matcha rishi first time today flavor
# bright assertive fresh
```

```
# When I was young, nearly a half century ago, Chuckles
# was a very popular candy. I really enjoyed eating
# these jellied treats...
```

young nearly half century ago chuckles popular
candy really enjoyed eating jellied treats

For starters...

Display some statistics about the text, once it has been cleaned:

Top Count Words Used In Review

br	22349	flavor	7819	product	6976	tri	6052
like	10099	coffe	7376	one	6511		
tast	9321	good	7301	love	6311		

Kaggle, 2017

Choose a problem

Classic NLP problems:

- Clustering: k-means, hierarchical...
- Topic modeling: LSI, LDA...

Other problems that could be solved:

- Word similarity: GLoVe, word2vec...
- Generate reviews: LSTM, GAN
- Summarize reviews
- Clusterize users
- Rating prediction
- Popularity prediction

• ...

Choose an environment

Use Case: Data Analysis

Usage

Python is generally used when the data analysis tasks need to be integrated with web apps or if statistics code needs to be incorporated into a production database.

Since it's a full-fledged programming language, Python is a good tool to implement algorithms for use in production.

R is mainly used when the data analysis tasks require standalone computing or analysis on individual servers.

For exploratory work, R is easier for beginners. Statistical models can be written with a few lines of code.

DataCamp analysis for R vs Python.

R

Formats	Packages
R scripts	tm
RMarkdown	tidytext
R Notebook	

Python

Formats	Packages
Scripts	NLTK, gensim
Jupyter Notebook	scikit-learn
Python module	pandas

Have fun!

Kaggle home page for dataset, SNAP group, 2016.

NLP - Máster Big Data Science (UVA)

An interesting analysis by Daniel Chen

NLP - Máster Big Data Science (UVA)

Additional challenges

- Yelp Dataset, also in Kaggle Datasets.
- Open Food Facts, also in Kaggle Datasets.