Constantes

Constante de Avogadro $(N_A) = 6,02 \times 10^{23} \text{ mol}^{-1}$

Constante de Faraday (F) = $9,65 \times 10^4$ C mol⁻¹ = $9,65 \times 10^4$ A s mol⁻¹ = $9,65 \times 10^4$ J V⁻¹ mol⁻¹

Carga elementar = $1,60 \times 10^{-19}$ C

Constante dos gases (R) = 8.21×10^{-2} atm L K⁻¹ mol⁻¹ = 8.31 J K⁻¹ mol⁻¹ = 1.98 cal K⁻¹ mol⁻¹

Constante de Planck (h) = $6,63 \times 10^{-34} \text{ J s}$

Velocidade da luz no vácuo = $3.0 \times 10^8 \text{ m s}^{-1}$

Número de Euler (e) = 2,72

Definições

Pressão: 1 atm = 760 Torr = $1,01325 \times 10^5 \text{ N m}^{-2} = 1,01325 \text{ bar}$

Energia: $1 J = 1 N m = 1 kg m^2 s^{-2} = 6,24 \times 10^{18} eV$

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm, equivalente a um volume de um gás ideal de 22,4 L.

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol L⁻¹ (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gasoso. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias. u.m.a. = unidade de massa atômica. [X] = concentração da espécie X em mol L⁻¹.

In $X = 2.3 \log X$

log 2 = 0.30

EPH = eletrodo padrão de hidrogênio

Massas Molares

Elemento Químico Número Atômico Massa Molar (g mol-¹) Elemento Químico Número Atômico Massa Molar (g mol-¹) H 1 1,01 K 19 39,10 B 5 10,81 Zn 30 65,38 C 6 12,01 Se 34 78,96 N 7 14,01 Nb 41 92,91 O 8 16,00 Ag 47 107,87 Na 11 22,99 Te 52 127,60 S 16 32,06 Po 84 209,00 CI 17 35,45 Po 84 209,00						
B 5 10,81 Zn 30 65,38 C 6 12,01 Se 34 78,96 N 7 14,01 Nb 41 92,91 O 8 16,00 Ag 47 107,87 Na 11 22,99 Te 52 127,60 S 16 32,06 Po 84 209,00						
C 6 12,01 Se 34 78,96 N 7 14,01 Nb 41 92,91 O 8 16,00 Ag 47 107,87 Na 11 22,99 Te 52 127,60 S 16 32,06 Po 84 209,00	Н	1	1,01	K	19	39,10
N 7 14,01 Nb 41 92,91 O 8 16,00 Ag 47 107,87 Na 11 22,99 Te 52 127,60 S 16 32,06 Po 84 209,00	В	5	10,81	Zn	30	65,38
O 8 16,00 Ag 47 107,87 Na 11 22,99 Te 52 127,60 S 16 32,06 Po 84 209,00	С	6	12,01	Se	34	78,96
Na 11 22,99 Te 52 127,60 S 16 32,06 Po 84 209,00	N	7	14,01	Nb	41	92,91
S 16 32,06 Po 84 209,00	0	8	16,00	Ag	47	107,87
,	Na	11	22,99	Te	52	127,60
Cl 17 35,45	S	16	32,06	Ро	84	209,00
	CI	17	35,45			

Questão 1. Para cada par de substâncias abaixo, indique qual apresenta maior ponto de fusão e justifique sua indicação.

- a) Benzeno ou Naftaleno
- **b)** Ácido etanoico ou Propanona
- **c)** H₂O ou D₂O
- d) CSe₂ ou CS₂

Questão 2. Considere as seguintes substâncias:

- I. 2-metil-1-butanol
- II. 3-metil-2-butanol

Escreva as equações químicas que descrevem as reações abaixo, apresentando a fórmula estrutural dos compostos orgânicos envolvidos, ou seja, reagentes, eventuais produtos intermediários e produtos finais.

- a) I com excesso de agente oxidante.
- b) Il com excesso de agente oxidante.
- c) Il com o produto final da reação do item a), em meio ácido.
- d) Produto orgânico final do item b) com NaBH₄(aq), seguido de tratamento com ácido diluído.

Questão 3. São descritos dois experimentos (Exp. 1 e Exp. 2) a respeito de uma solução aquosa de uma substância A, de massa molar igual a 50 g mol⁻¹, que não se dissocia e não se volatiliza. Os experimentos foram realizados a 25 °C.

- Exp. 1 Em um béquer, foram dissolvidos 100 g da substância A em 360 mL de água pura. A seguir, colocou-se o béquer em um recipiente que foi fechado.
- Exp. 2 Em um béquer denominado I, preparou-se a mesma solução descrita no Exp.1, e em outro béquer denominado II, adicionou-se 360 mL de água pura. Em seguida, os béqueres I e II foram colocados em um recipiente que foi fechado.

Considere que a solução aquosa de A se comporte idealmente, a massa específica da água seja 1 g cm⁻³ e a pressão de vapor da água seja 23,8 Torr a 25 °C. A partir das informações acima:

- a) determine os valores numéricos das frações molares da substância A e da água na solução do Exp. 1;
- b) determine o valor numérico da fração molar da água na fase de vapor no Exp.1;
- c) determine o valor numérico da pressão de vapor da água, em Torr, no Exp. 1;
- d) desconsiderando o efeito causado pelo volume do recipiente no Exp. 2, descreva sucintamente e de forma qualitativa o que acontecerá com o volume do líquido no béquer l após o equilíbrio ter sido atingido.

Questão 4. Considere as semicélulas descritas e os respectivos potenciais do elemento galvânico em relação ao eletrodo padrão de hidrogênio.

Semicélula A: $Ag_2O(s)|Ag(s)$ em meio básico; $E^o = 0.342 \text{ V}$; Semicélula B: $NbO_2(s)|Nb(s)$ em meio ácido; $E^o = -0.690 \text{ V}$.

Com base nas informações fornecidas, apresente:

- **a)** As equações químicas balanceadas que representam as semirreações, especificando o catodo e o anodo.
- b) A equação química que representa a reação global.
- c) O valor numérico da força eletromotriz.

Questão 5. Os dados da tabela abaixo foram obtidos em um estudo de determinação dos parâmetros cinéticos de uma reação hipotética e irreversível do tipo $A + B \rightarrow C + D$.

Experimento	[A] (mol L ⁻¹)	[B] (mol L ⁻¹)	T (K)	v (mol L ⁻¹ min ⁻¹)
1	0,50	0,50	400	1,25.10 ⁻²
2	0,50	0,25	400	$6,25.10^{-3}$
3	1,00	0,25	400	$2,50.10^{-2}$
4	0,50	0,50	500	1,25.10 ⁻¹

Não havendo mudança no mecanismo da reação no intervalo de temperatura considerado, determine os seguintes valores numéricos:

- a) Ordem da reação em relação ao reagente A.
- **b)** Ordem da reação em relação ao reagente B.
- c) Ordem global da reação.
- d) Constante de velocidade da reação a 400 K, com sua respectiva unidade de medida.
- e) Constante de velocidade da reação a 500 K, com sua respectiva unidade de medida.
- f) Energia de ativação da reação, em kcal mol⁻¹.

Questão 6. Considere que a água destilada esteja em equilíbrio com a atmosfera, em dois ambientes distintos (I e II), nos quais a pressão parcial de CO_2 foi medida em $p_{CO_2,I} = 300 \times 10^{-6} atm$ e $p_{CO_2,II} = 600 \times 10^{-6} atm$. Com base nessas informações e considerando apenas a primeira dissociação do ácido carbônico,

- a) escreva a equação química que representa o equilíbrio entre a água e o CO2;
- **b)** escreva uma expressão matemática para o pH da amostra de água em função da pressão parcial de CO₂;
- c) determine o valor numérico da diferença de pH (pH_{II} pH_I) entre as duas amostras de água.

Questão 7. Uma solução foi preparada por meio da dissolução de 1,330 g de uma mistura de NaCl(s) e KCl(s) em água. A essa solução, foram adicionados 10 mL de uma solução 4,0 mol.L⁻¹ em AgNO₃ para precipitar todo cloreto na amostra. Posteriormente, o sólido foi removido e uma placa de zinco foi adicionada à solução sobrenadante. Após um tempo suficiente para a reação completa, verificou-se uma variação de massa de 1,506 g na placa de zinco. Com base nessas informações, determine as quantidades, em mol, de:

- a) zinco consumido na placa;
- b) cloreto na solução inicial;
- c) NaCl(s) e KCl(s) na mistura inicial.

Questão 8. As resinas epoxídicas contêm pelo menos dois grupos epóxidos terminais por molécula e reagem com um agente de cura para a formação de um polímero por meio de uma reação de cura (ou reticulação). Uma forma comum de se obter resina epoxídica envolve a reação entre epicloridrina (1-cloro-2,3-epoxipropano) e bisfenol-A (4,4'dihidroxi-2,2-difenilpropano).

- a) Apresente a fórmula estrutural da epicloridrina e do bisfenol-A.
- **b)** Escreva a equação química balanceada entre as substâncias do item a) para a formação de uma resina epoxídica.
- c) Escreva a equação química entre um anel epóxido e o agente de cura 4,4 Diaminodifenilmetano (DDM).

Questão 9. Seja a reação $A \xrightarrow{k_1} B$, que apresenta lei de velocidade de primeira ordem (em relação a A) e constante de velocidade k_1 igual a $5 \times 10^{-4} \text{ s}^{-1}$ a 300 K. A reação reversa, $B \xrightarrow{k_2} A$, também é de primeira ordem (em relação a B) e, a 300 K, tem uma constante de velocidade k_2 igual a um milésimo de k_1 . A constante de velocidade total em direção ao equilíbrio é dada pela soma das constantes de velocidade direta e reversa, e para cada aumento de 10 K na temperatura, os valores de k_1 são duplicados e os de k_2 são quadruplicados.

Deseja-se realizar essa reação buscando a máxima constante de velocidade total possível, mas utilizando um reator limitado a uma temperatura de trabalho de até 500 K, e mantendo um rendimento mínimo de 24,41%, representado por $\frac{[B]_{eq}}{[A]_{eq}} \ge \frac{1}{4,096}$. Com base nessas restrições, determine:

- a) qual das propriedades constitui o limitante para a operação do reator, a temperatura ou o rendimento;
- b) o valor numérico da temperatura de operação;
- c) o valor numérico do rendimento de operação;
- d) se a constante de velocidade total na condição de operação supera o valor de 10 s⁻¹.

Questão 10. Sejam as substâncias simples na forma alotrópica mais estável nas condições padrão dos elementos de números atômicos Z, (Z-2) e (Z-3). Considere que 96,0 g da substância simples gasosa de um calcogênio de número atômico Z reage estequiometricamente com

- **I.** a substância simples sólida do elemento de número atômico (Z-2), formando aproximadamente 132,0 g de um gás;
- II. a substância simples sólida do elemento de número atômico (Z-3), formando aproximadamente 139,2 g de um sólido.

Responda as questões abaixo, utilizando as informações fornecidas.

- a) Identifique os elementos químicos de números atômicos Z, (Z-2) e (Z-3).
- **b)** Apresente a equação química balanceada que representa a reação entre as substâncias simples dos elementos de números atômicos Z e (Z-2).
- c) Apresente a equação química balanceada que representa a reação entre as substâncias simples dos elementos de números atômicos Z e (Z-3).