Лабораторная работа №10

«Метод вращений»

выполнил Пажитных Иван, 2-й курс, 1-я группа

1) Постановка задачи

Необходимо найти максимальное собственное значение и соответствующий ему собственный вектор матрицы А.

$$A - \lambda E_n = \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{23} & \cdots & & \\ \vdots & \ddots & & \vdots \\ a_{n1} & a_{n2} a_{n3} & \cdots & a_{nn} - \lambda \end{bmatrix}, \quad \det(A - \lambda E_n) = (-1)^n \operatorname{Pn}(\lambda)$$

С помощью метода вращений найти спектр матрицы А. Вычислить собственный вектор, соответствующий максимальному по модулю собственному значению.

2)Алгоритм решения

Метод вращений является итерационным методом решения полной проблемы собственных значений. Суть метода заключается в привидении матрицы A к диагональному виду с помощью подобных преобразований: $A = U\Lambda U^{-1}$, где U — ортогональная матрица, Λ — диагональная матрица, на диагонали которой стоят собственные значения. В силу ортогональности U, получаем $U^TAU = \Lambda$.

На каждом шаге итерации строиться матрица U_{ij} :

$$U_{ij} = \begin{pmatrix} 1 & \dots & & & 0 \\ & \cos \varphi^k & \dots & -\sin \varphi^k & \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ & \sin \varphi^k & \dots & \cos \varphi^k & \\ 0 & \dots & & 1 \end{pmatrix}^{i},$$

где $\cos \varphi^k$, $\sin \varphi^k$ можно находить по формулам:

$$tg \ 2\varphi^k = \frac{2a_{ij}^k}{a_{ii}^k - a_{jj}^k}, \qquad \cos 2\varphi^k = \frac{1}{\sqrt{1 + tg^2 2\varphi^k}}, \qquad \cos \varphi^k = \sqrt{\frac{1 + \cos 2\varphi^k}{2}},$$

 $sin\ \varphi^k = sign(a^k_{ij}(a^k_{ii}-a^k_{jj})\sqrt{\frac{1-cos\ 2\varphi^k}{2}}$, а і, ј получаем как индексы максимального недиагонального элемента матрицы A^k . Последовательно выполняя $A^{k+1} = (U^k_{ij})^T A^k U^k_{ij}$, придем к диагональной матрице. Тогда $U = U^1_{ij} U^2_{ij} \dots U^k_{ij} -$ координатные столбцы матрицы U образуют соответственно координатные столбцы собственных векторов соответствующих собственным значениям, стоящим а диагональ матрицы Λ . Итерационный процесс заканчивается, когда $|t(A^{k+1})| \le \varepsilon$ $(t(A) = \sigma_1 + \sigma_2 + \dots + \sigma_n, \ \sigma_i(A) = \sum_{j=1, i\neq j}^n |a_{ij}|^2$).

3) Листинг программы

```
eps = 10 ** (-15) 
 a = array(A) 
 At = a.transpose() # находим At 
 a = dot(At, a) # перемножаем A на At, теперь A — симметрическая E, U = identity(n), identity(n) k = 0 
 ak = a # копия A
```

```
while (True):
                                            # итерационный процесс
  L = tril(ak)
  temp = absolute(ak - L)
                                            # получаем верхний треугольник, без диагонали
  sigma = sum([abs(el) ** 2 for el in temp])
                                                  # считаем сумму квадратов недиагональных
  if (sigma \leq eps):
                                                  # условие итерирования
    break
  i, j = unravel index(temp.argmax(), temp.shape)
                                                       # индексы максимального
  alpha = math.atan(2 * ak[i][j] / (ak[i][i] - ak[j][j])) / 2
                                                       # считаем угол
  uk = identity(n)
  uk[i][i], uk[i][j], uk[j][i] = cos(alpha), -sin(alpha), cos(alpha), sin(alpha)
  ak = dot(dot(uk.transpose(), ak), uk)
                                                       # Ukt*A*Uk
  U = dot(U, uk)
                                                       #U*Uk
  k += 1
                                                       # max lambda
lmax = max(ak.diagonal())
x = U.transpose()[ak.diagonal().argmax()]
                                                       # получаем х
x = max(x)
                                                       # нормируем
r = dot(a, x) - lmax * x
                                                       # находим вектор невязки
rnorm = norm(r, 1)
                                                       # находим норму невязки
p = [4.58801522, -7.82119475, 6.11344651, -2.15665219, 0.2685558]
                                                                  #Рп из Данилевского
                                      # считаем невязку собственного многочлена P_n(\lambda^k)
p.insert(0, -1)
r1 = sum(-(lmax ** (n - i)) * p[i] for i in range(n + 1))
4) Результат и его анализ
Симметрическая AA^{T}:
     [[ 0.70536135  0.01441237  0.13398766 -0.08030921  0.5676231 ]
      [ 0.01441237 1.22673234 -0.00165256 0.11340719 0.05855825]
      [ 0.13398766 -0.00165256  0.77976056 -0.21682262  0.2943685 ]
      [-0.08030921 0.11340719 -0.21682262 0.79926611 -0.0500214]
      [ 0.5676231  0.05855825  0.2943685  -0.0500214  1.07689486]]
Матрица \Lambda = U^T A U:
     [[ 2.74152550e-01 -7.02078740e-16 -1.69795744e-09 9.92616735e-24
 -2.51592413e-14]
     [-6.96426697e-16 1.26253884e+00 -3.28971647e-11 -8.73124257e-09
 -4.72955349e-11]
     [-1.69795740e-09 -3.28971606e-11 5.50498738e-01 -5.19529740e-14
  1.98523347e-231
     [ 2.98254727e-17 -8.73124262e-09 -5.19462112e-14 8.57845170e-01
 -2.66909835e-21]
     [-2.50773971e-14 -4.72955215e-11 -5.25380656e-17 8.65306331e-17
  1.64297992e+00]]
Коэффициенты собственного многочлена P(\lambda):
     [4.58801522 -7.82119475 6.11344651 -2.15665219 0.2685558]
Собственные значения \lambda - диагональные \Lambda:
     [ 0.27415255 1.26253884 0.55049874 0.85784517 1.64297992]
```

```
Максимальное собственное \lambda_{max}:
     1.64297992228
Матрица U:
    [[0.75469032 - 0.00518699 - 0.32156456 0.23944754 0.51930408]
     [ 0.00890354  0.95274993 -0.08876095 -0.28144888  0.07138854]
     [0.21314597 - 0.10890943 \ 0.74137613 - 0.49970174 \ 0.37863853]
     [ 0.14401974  0.28119084  0.5822991  0.72686392 -0.18107078]
     [-0.60348186 0.03620937 -0.00263148 0.29226428 0.74099473]]
Собственный вектор матрицы A - x(\lambda_{max}):
    Количество итераций k:
    25
Вектор невязки r:
    3.06199510e-13 -6.08115225e-11 6.94433400e-12 -1.79525839e-11
 -2.28994601e-12]
Hорма ||r||:
    8.83045858657e-11
Невязка P_n(\lambda^k):
    1.89213148483e-08
Эпсилон \varepsilon:
     1e-15
```

С помощью метода вращений мы нашли максимальное все собственные значения и соответствующий им спектр с точностью порядка 10^{-1} за 25 итераций для эпсилона порядка 10^{-15} . Невязка собственного многочлена также довльно близка к нулю (порядка 10^{-8}) что означает, что собственное значение также найдено правильно. Собственное значение и собственный вектор также совпадают с получеными ранее методами Крылова и Данилевского. Сравнивая со степенным методом имеем гораздо более высокую скорость сходимости (в СМ 105 итераций), при незначительном ухудшении точности (в СМ невязка порядка 10^{-13}). Построенный итерационный процесс является сходящимся, так как $t(A^k) \xrightarrow[k \to \infty]{} 0$.