MAC105 FUNDAMENTOS DE MATEMÁTICA PARA A COMPUTAÇÃO

FOLHA DE SOLUÇÃO

Nome: PEDRO GIGECE FREIRE

Número USP: 40737136

Assinatura

PEDRO GIGIECA CREIKE

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: E34

Data: 02/05/2018

SOLUÇÃO

(i)
$$A(2) \stackrel{!}{=} \frac{1}{2} (x_1 + x_2) ?$$
, $\sqrt{x_1 x_2}$, ELEVANDO AO QUADRADO;
$$\frac{1}{4} (x_1^2 + 2x_1 x_2 + x_2^2) ?$$
 $|x_1 x_2|$, como $x_1 e x_2 = x_0$ 0 majores $x_1 x_2 = x_1 x_2 = x_1 x_2 = x_1 x_2 = x_1 x_2 = x_2 =$

(ii) Sejam a e b as médias aritméticas entre $(x_i \in x_n) \in (x_{n+1} \in x_{2n})$, respectivamente, temos que:

$$\frac{1}{Z}(a+b) = \frac{1}{Zn}(x_1 + \dots + x_{2n})$$
, A média Aritmética DE x_1 Até x_{2n}

Gomo A(2) É VERDADEIRO, SEGUE QUE

AGORA, PERCEBA que $\alpha = \frac{1}{n} (x_1 + \dots + x_n)$ e $b = \frac{4}{n} (x_{n+1} + \dots + x_{2n})$, Assin

como A(n) É VERDADEIRO, JEGUE QUE

$$a > \sqrt{x_1 - x_n}$$
 $e b > \sqrt{x_{n+1} - x_{2n}}$

Como a e b são positivos, pois x; é positivo pard qualquer i, temos que

Vab 7, V72, xn 72m 1 colocano TAL DESIGNALDADE em (*):

PARTACIO, A(2n) É VERDADEIRO.

(iii) Como queremos provar A(n-1) A PARTIR DE A(n), VAMOS TOMOUR

(1111) Se $A(z_n)$ é verdadeiro, podemos tomar uma indugão em n com BASC n=4, assim descoarimos que $A(z^n)$ é verdadeiro para toxo n > 1, $n \in \mathbb{N}$.

ADEMAIS, SABEMOS QUE A(n-1) É VERDADEIRO, PORTANTO, com os passos de 2º e.

A Subtração de 1 deste, podemos provar que A(n) vale para qualquer n.

1/10 1/2 (40.0) 2

Index of comments

1.1 Você fez a demonstração ao contrário: deve-se começar de uma desigualdade conhecida e concluir a desigualdade que queremos provar.

2.1 ?