(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-41429

(43)公開日 平成11年(1999)2月12日

(51) Int.Cl. 6	識別記号	F I
H04N 1	/21	H04N 1/21
B41J 5	5/30	B41J 5/30 Z
G03G 15	/36	H 0 3 M 7/30 Z
H03M 7	7/30	H04N 1/41 Z
H04N 1	/41	G 0 3 G 21/00 3 8 2
		審査請求 未請求 請求項の数1 OL (全 29 頁)
(21)出願番号	特顧平9-191210	(71)出頭人 000006079
		ミノルタ株式会社
(22)出顧日	平成9年(1997)7月16日	大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル
		(72)発明者 三縞 信広
		大阪府大阪市中央区安土町二丁目3番13号
		大阪国際ピル ミノルタ株式会社内
		(74)代理人 弁理士 青山 葆 (外2名)
•		

(54) 【発明の名称】 圧縮・伸張処理装置

(57)【要約】

【課題】 圧縮・伸張処理を効率よく、低コストで実行する圧縮・伸張処理装置を提供することを目的とする。 【解決手段】 本発明の圧縮・伸張処理装置では、互いに並列接続され、設定に応じて、入力されたデータの圧縮又は伸張処理を実行する複数の圧縮・伸張処理部と、入出力されるデータの量に基づいて特定される数の圧縮・伸張処理部を圧縮処理を実行するように設定し、入力されたデータを圧縮処理を実行するように設定された各圧縮・伸張処理部に分割して、中張処理部で圧縮されたデータを記憶する記憶手段と、各圧縮・伸張処理部に分割して、伸張処理部に分割して、中張処理部に分割して、中張処理部に分割して、クを連続するデータに合成して出力する手段とを備える。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 互いに並列接続され、設定に応じて、入力されたデータの圧縮又は伸張処理を実行する複数の圧縮・伸張処理部と、

入出力されるデータの量に基づいて特定される数の圧縮 ・伸張処理部を圧縮処理を実行するように設定し、残り の圧縮・伸張処理部を伸張処理を実行するように設定す る設定手段と、

入力されたデータを、上記設定手段により圧縮処理を実 行するように設定された各圧縮・伸張処理部に分割して 入力する第1データ転送手段と、

各圧縮・伸張処理部で圧縮されたデータを記憶する記憶 手段と、

記憶手段に記憶されたデータを読み出し、上記設定手段 により伸張処理に用いるように設定された各圧縮・伸張 処理部に分割して入力する第2データ転送手段と、

各圧縮・伸張処理部で伸張されたデータを連続するデータに合成して出力するデータ出力手段とを備えることを 特徴とする圧縮・伸張処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ディジタル複写機などの画像形成装置に内蔵されるデータの圧縮・伸張処理装置に関する。

[0002]

【従来の技術】ディジタル複写機等の画像処理装置では、圧縮・伸張処理装置を備えるものが知られている。 圧縮・伸張処理装置を備えるものが知られている。 圧縮・伸張処理装置は、イメージリーダ等の読取手段で 読み取った画像データ、又は、外部より入力された画像 データを圧縮した状態でメモリに格納しておき、必要に 応じてメモリから圧縮データを読み出し、これを伸張して では、これを伸張処理装置に用いられる圧縮・伸張処理制で、 伸張処理動作それぞれに用いる回路に共通部分が多く、 通常は、1チップで圧縮及び伸張を行う機能を兼ね備えている(例えば、三菱電機株式会社製のQMーCODE R:型番M65760FP)。また、当該チップは、内部回路の規模が大きいため、非常に高価である。

【0003】図1は、画像形成装置に備えられる圧縮・伸張処理装置の従来例のブロック図である。 I R部58 Oは、2値画像データを圧縮・伸張処理装置600に出力する。また、ブリンタ部65 Oは、圧縮・伸張処理装置600から入力される画像データに基づいて用紙上に画像を形成する。 I R部580より圧縮・伸張処理装置600に入力された画像データは、データ転送処理部601を介して圧縮処理の601を介して圧縮処理部603に入力される。圧縮処理部603は、入力された画像データを圧縮して符号データとし、当該符号データをデータ転送処理部604を介して符号メモリ605

に番き込む。符号メモリ605に書き込まれた符号データは、必要に応じて読み出され、データ転送処理部604を介して伸張処理部606に入力される。伸張処理部606は、入力される符号データを伸張して画像データとし、当該画像データをデータ転送処理部607を介して出力バッファメモリ608に一旦書き込んだ後に、再びデータ転送処理部607を介してプリンタ部650に出力する。なお、データ転送処理部601,604,6つ7は、CPU610によって制御され、所定のデータ転送処理を行う。

【0004】圧縮・伸張処理装置600におけるデータ の入出力の状態は、画像データの入力のみが行われてい る状態、画像データの入力と読み出しが同時に行われて いる状態、及び、画像データの読み出しのみが行われて いる状態の3つの場合がある。例えば、ホストコンピュ ータ等の外部装置に接続され、外部装置の画像読み取り 装置及びプリンタとしても機能するディジタル複写機に 当該圧縮・伸張処理装置600が備えられている場合を 想定する。ディジタル複写機が外部装置の画像読み取り 装置として使用される場合には、圧縮・伸張処理装置6 00には画像データの入力みが行われる。また、ディジ タル複写機が外部装置のプリンタとして使用される場合 には、圧縮・伸張処理装置600では画像データの読み 出しのみが行われる。そして、ディジタル複写機が、本 来の複写機として使用される場合、原稿の画像データを 読み取る一方で、先に読み取った画像データに基づくプ リント動作を行う。従って、圧縮・伸張処理装置600 では、画像データの入力と読み出しが同時に行われる。

[0005]

【発明が解決しようとする課題】圧縮・伸張処理装置6 〇〇では、圧縮・伸張処理用のチップの使用効率が悪い ため、装置全体のコストパフォーマンスが低い。上に記 すように、圧縮・伸張処理用のチップは、通常、データ の圧縮処理、及び、圧縮されたデータの伸張処理を行う 機能を兼ね備える。しかし、圧縮・伸張処理装置600 において圧縮処理部603はデータの圧縮しか行わず、 伸張処理部606はデータの伸張しか行わない。圧縮・ 伸張処理装置600に画像データの入力のみが行われる 場合、及び、画像データの読み出しのみが行われる場合 には、装置内部に2つ備える圧縮・伸張処理用のチップ の内の一方が全く使用されない。圧縮・伸張用チップで 行われるデータの圧縮及び伸張処理は、データ転送処理 部601、604、607で行われるデータ転送処理に 比べて非常に遅い。圧縮・伸張処理装置600におい て、データの圧縮・伸張処理速度を早くするには、図2 に示すように圧縮処理部603′及び伸張処理部60 6'を並列に追加してデータを分割して処理する方法が 考えられる。この場合、データの圧縮・伸張処理速度 は、約2倍になる。しかし、この場合においても、画像 データの入力のみが行われる場合、及び、画像データの

読み出しのみが行われる場合には、4つの圧縮・伸張処理用のチップの半分が全く使用されないため、圧縮・伸張用のチップの使用効率は依然として悪く、装置全体のコストパフォーマンスは低い。

【0006】本発明の目的は、圧縮・伸張処理の制御を 効率よく、低コストで実行する圧縮・伸張処理装置を提 供することである。

[0007]

[課題を解決するための手段] 本発明の圧縮・伸張処理 装置では、互いに並列に接続され、設定に応じて、入力 されたデータの圧縮又は伸張処理を実行する複数の圧縮 ・伸張処理部と、入出力されるデータの量に基づいて特 定される数の圧縮・伸張処理部を圧縮処理を実行するよ うに設定し、残りの圧縮・伸張処理部を伸張処理を実行 するように設定する設定手段と、入力されたデータを、 上記設定手段により圧縮処理を実行するように設定され た1以上の圧縮・伸張処理部に各々分割して入力する第 1 データ転送手段と、各圧縮・伸張処理部で圧縮された データを合成して記憶する記憶手段と、記憶手段に記憶 されたデータを読み出し、上記設定手段により伸張処理 に用いるように設定された1以上の圧縮・伸張処理部に 各々分割して入力する第2データ転送手段と、各圧縮・ 伸張処理部で伸張されたデータを合成して出力するデー タ出力手段とを備える。上記の設定手段は、画像データ の入力のみが行われる場合、画像データの入力及び読み 出しが同時に行われる場合、画像データの読み出しのみ が行われる場合で、複数備えられる圧縮・伸張処理部の 内、圧縮処理用に設定する数を変更する。これにより、 複数の圧縮・伸張処理部の備える圧縮・伸張処理用のチ ップの使用効率を、常に100%にすることができる。

[8000]

【発明の実施の形態】以下、本発明の圧縮・伸張処理装置の実施形態であるメモリユニットを備える複写機について、添付の図面を用いて説明する。

(1) 複写機の構成

図3は、複写機の断面図である。複写機は、原稿の画像 データを読み取るイメージリーダ部100と、イメージリーダ部100において読み取られた原稿の画像データ に基づいて、用紙上に画像を形成するプリンタ部200に基づいて、用紙上に画像を形成するプリンタ部20において、原稿カバーを兼ねる自動原稿搬送装置1は、原稿トレイリニを兼ねる自動原稿搬送装置1は、原稿トレイリニス2上に載置された原稿を順にプラテンガラス2上に載置する。プラテンガラス2上に載置された原稿は、スキンガラス2上に載置された原稿を順にプラテンガラス2上に載置された原稿で、これによりに多数の光電変換素子(CCD)を配列したものであり、400dpiで原稿の画像データを読み取り、これを出力する。モータ11は、スキャナ3を速度Vで矢印

の方向(副走査方向)に移動して原稿全体を走査させる。スキャナ3の移動に伴い、ミラー6及び7の格納されるミラーボックス8は、速度V/2で矢印の方向に移動する。CCDラインセンサ9から出力された画像データは、画像処理ユニット10において、2値データに変換された後、メモリユニット13に送信される。メモリユニット13は、画像処理ユニット10より入力される2値の画像データを圧縮して得られる符号データを、一旦符号メモリ511(図6を参照)に記憶し、必要に応じて符号データを符号メモリ511から読み出して伸張した後に、プリンタ部200へ出力する。

【0009】プリンタ部200において、印字処理ユニ ット20は、メモリユニット13より受け取った画像デ ータを変調(オン/オフ)してレーザ光学系21に出力 する。レーザ光学系21は、半導体レーザ21a、ポリ ゴンミラー21b、fーθレンズ21c、及び、ミラー 21 dを備える。半導体レーザ21 aは、入力される変 調制御された画像データに基づいてレーザビームを放射 する。半導体レーザ21aから放射されたレーザビーム は、ポリゴンミラー21b、f-θレンズ21c、ミラ -21d、及び、ミラー22を介して、感光体ドラム3 〇の表面を走査する。感光体ドラム30の表面は、1複 写毎に露光を受ける前にイレーサランプ31で照射さ れ、帯電チャージャ32により一様に帯電されている。 この状態で露光を受けると、感光体ドラム30の表面に は、原稿の静電潜像が形成される。トナー現像器33 は、感光体ドラム30上の静電潜像を現像する。適切な 用紙が給紙カセット41又は43より給紙ローラ42又 は44によって供給され、用紙搬送通路45を通過し、 タイミングローラ46によって転写チャージャ35の位 置まで搬送される。感光体ドラム30上に現像されたト ナー像は、転写チャージャ35により用紙に転写され る。トナー像が転写された用紙は、分離除電チャージャ 36の働きにより転写ドラム30の表面から分離され、 搬送ベルト37、定着装置38、排出ローラ39を介し て排紙ユニット80に搬送される。なお、両面にコピー を行う場合には、用紙は、切り換え爪70により再搬送 路71へと導かれ、再びタイミングローラ46の位置ま で搬送される。感光体ドラム30上に残ったトナーは、 クリーナ72により除去される。なお、給紙カセット4 1及び43に格納される用紙のサイズは、センサ47及 び48により検出される。

【0010】排紙ユニット80は、設定されているモードに応じて用紙を所定の排紙トレイ上に排出する。具体的には、ノンソートモード、ソートモード及び週刊誌綴じモードの設定時には、切り換え爪50により用紙は第1搬送路52へと導かれる。ノンソートモードの設定時には、第1搬送路52に導かれた用紙は切り換え爪54によりトレイ61に排出される。ソートモード及び週刊誌綴じモードが設定されている場合、第1搬送路52に

導かれた用紙は切り換え爪54、55及び56により適宜トレイ61、62又は63に排出される。ステープルソートモードが設定されている場合には、切り換え爪50により用紙はステープルユニット51へと挿入される。ステープルユニット51では、所定の枚数の用紙が挿入される毎に、ステープラ(ホッチキス)により用紙を綴じ、綴じた用紙を第2搬送路53に排出する。第2搬送路53に排出された用紙は、切り換え爪59、60によりトレイ61、62又は63に排出される。

【0011】図4は、操作パネル400の正面図であ る。操作パネル400上に設けられた液晶表示部401 は、設定されたコピーモードや、コピー枚数など複写機 の状態を表示する。キー402は、ノンソート、ソー ト、ステープルソートを切り換えて順に設定するキーで ある。キー403は、原稿の2ページ分の画像を1枚の 用紙に出力する2in1モードを設定するキーである。キ -404は、両面/片面コピーを切り換えて設定するた めのキーである。キー405は、原稿用紙の枚数をカウ ントするカウントモードを設定/解除するためのキーで ある。キー406は、週刊誌綴じモードの設定/解除を 行う。この週刊誌綴じモードは、コピー用紙を堆積した 状態でそのまま中央で半分に折り、折り目で綴じること で製本が完成するように、用紙の両面に各2ページ分の 画像を所定の順序で印刷するものである。テンキー40 7は、コピー枚数や複写倍率などの数値を直接入力する ためのキーである。スタートキー408は、設定された モードに応じるコピージョブを開始するためのキーであ る。ストップキー409は、実行中のコピージョブを中 断するためのキーである。リセットキー410は、既に 設定されたモードのリセットを行うキーである。キー4 20~422は、用紙のサイズを設定するためのキーで ある。キー420、421、411を押下することによ リ用紙のサイズがA4, A3, B4に設定される。

【0012】図5は、複写機の制御系を示す図である。イメージリーダ部100、プリンタ部200、及び、操作パネル400の各ブロックは、全体制御部300を中心に接続され、それぞれコマンドやデータのやりとりを行う。全体制御部300は、操作パネル400からのキー入力を受け付け、所定のモード設定などの処理を実力する。イメージリーダ部100内に備える画像処理ユニット10は、CCDラインセンサ9により読み取られた原稿のアナログ画像データを所定の2値画像データに変換する。メモリユニット13は、画像処理ユニット10により2値化処理の施されたデータに対して所定の圧縮処理を施し、圧縮後の符号データを符号メモリ511に記憶すると共に、必要に応じて符号メモリ511より符号データを読み出し、これを伸張してプリンタ部200に出力する。

【0013】図6は、イメージリーダ部100内における制御系を示す図である。イメージリーダ部100は、

図5にも示したように、CCDラインセンサ9、画像処理ユニット10、及び、本発明の圧縮・伸張処理装置の実施形態であるメモリユニット13で構成される。画像処理ユニット10において、A/D変換部550は、CCDラインセンサ9で読み取られた原稿の画像データが入力され、入力された画像データをディジタル信号に変換する。ディジタル処理部551は、A/D変換部550でディジタル信号に変換された信号が入力され、入力されたデータに対してシェーディング補正などの所定の処理を施す。2値化部552は、ディジタル処理部551で所定の処理の施された信号が入力され、入力されたデータに対して2値化処理を施し、当該処理を施した後の2値の画像データを出力する。

【〇〇14】以下、メモリユニット13におけるデータ の流れと共に、その構成を説明する。画像処理ユニット 10から出力される2値の画像データは、データ転送処 理部501を介して入力バッファメモリ502に格納さ れる。4つの圧縮・伸張処理部506~509は、互い に並列に接続され、CPU503による設定に応じて、 データの圧縮又は伸張処理を実行する。入力バッファメ モリ502に格納された1ページ分の画像データは、デ **一夕転送処理部501の働きにより、4つの圧縮・伸張** 処理部506~509の内、CPU503により圧縮処 理を実行するように設定されているものに分割して出力 される。CPU503により圧縮処理を実行するように 設定されている圧縮・伸張処理部は、画像データを符号 データに圧縮し、当該符号データをデータ転送処理部5 10を介して符号メモリ511に出力する。符号メモリ 511は、符号データを記憶する。データ転送処理部5 10は、所定のタイミングで符号メモリ511に記憶さ れる符号データを読み出し、読み出した符号データを圧 縮・伸張処理部506~509の内、CPU503によ り伸張処理を実行するように設定されているものに出力 する。CPU503により伸張処理を実行するように設 定されている圧縮・伸張処理部は、符号データを画像デ ータに伸張し、データ転送処理部504を介して出力バ ッファメモリ505に出力する。出力バッファメモリ5 O5は、1ページ分の画像データを一旦格納する。出力 バッファメモリ505に格納された1ページ分の画像デ ータは、データ転送処理部504の働きによりプリンタ 部200に出力される。

【〇〇15】上に記すように、4つの圧縮・伸張処理部506~509は、互いに並列に接続され、CPU503による設定に応じて、データの圧縮又は伸張処理を実行する。CPU503は、設定されたコピージョブの内容に応じて定まるメモリユニット13に入力されるデータとメモリユニット13から読み出されるデータの量の関係に基づいて、データ転送処理部501、504、510及び圧縮・伸張処理部506~509の内部レジスタの設定を行い、データ転送処理が最も効率良く行われ

るように、圧縮処理用に割り当てる圧縮・伸張処理部と 伸張処理に割り当てる圧縮・伸張処理部の数を変更す る。より、具体的には、メモリユニット13に画像デー タの入力のみが行われる場合には、4つの圧縮・伸張処 理部506~509の全てを圧縮処理を実行するように 設定する。画像データの入力と読み出しが同時に行われ ている場合には、4つの圧縮・伸張処理部506~50 9の内、2つを圧縮処理を実行するように設定し、残り の2つを伸張処理を実行するように設定する。なお、複 数備える圧縮・伸張処理部の内の半分を圧縮処理を実行 するように設定するのは、入力される画像データの量 と、読み出される画像データの量とが同じであるとの前 提に基づくものである。例えば、符号メモリ511に鸖 き込まれた符号データを間引きながら読み出す場合や、 偶数ページの符号データのみを出力するようなコピージ ョブが設定されたような場合には、入力される画像デー タの量が読み出される画像データの量よりも多い。この ような場合には、圧縮処理用に3つの圧縮・伸張処理部 を割り当て、残りの1つを伸張処理用に割り当てる。ま た、画像データの読み出しのみが行われる場合には、4 つの圧縮・伸張処理部506~509の全てを伸張処理 を実行するように設定する。

【0016】例えば、合計でN枚の原稿をM部コピーする場合を想定する。ソートモードの設定時には、まず、4つの圧縮・伸張処理部506~509の全てを圧縮処理を実行するように設定し、最初の1枚目の原稿の画像データを読み込む。2枚目からN枚目の原稿について

は、4つの圧縮・伸張処理部506~509の内、2つを圧縮処理を実行するように設定して画像データの読み取りを行うと共に、残りの2つを伸張処理を実行するように設定して画像データの読み取りが終了した後は、残りのMー1部のコピーが完了するまでの間、4つの圧縮・伸張処理部506~509の全てを伸張処理を実行するように設定する。また、週刊誌綴じモードやステーブルモードの設定時には、4つの圧縮・伸張処理部506~509の全てを圧縮処理を実行するように設定し、N枚全ての原稿の画像データの読み取りを行う。この後、M部のコピーが完了するまでの間、4つの圧縮・伸張処理部506~509の全てを伸張処理を実行するように設定して画像データの読み出しを行う。

【0017】また、CPU503は、データ転送処理部501、504、510に所定の制御信号を送信し、該当するデータ転送処理(ダイレクトメモリアクセス)をイネーブルにする。次の表1は、データ転送処理部501,504,510において実行されるデータ転送処理の内容を示す。表は、データ転送処理DMA-1~DMA-1実行時に読み出すデータの転送元と、読み出したデータの転送先を示す。例えば、CPU503によりデータ転送処理DMA-1がイネーブルにされた場合、データ転送処理のMA-1がイネーブルにされた場合、データ転送処理のMA-1がイネーブルにされた場合、データ転送処理部501は、入力部(転送元)からの画像データを入力バッファメモリ502(転送先)へ転送する。

【表1】

	転送元	転送先
DMA-1	入力部	入力パッファメモリ502
DMA-2	入力パッファメモリ502	圧縮/伸張処理部506
DMA-3	入力パッファメモリ502	圧縮/伸張処理部507
DMA-4	入力パッファメモリ502	圧縮/伸張処理部508
DMA-5	入力パッファメモリ502	圧縮/伸張処理部509
DMA-6	圧縮/伸張処理部506	符号メモリ511
DMA-7	圧縮/伸張処理部507	符号メモリ511
DMA-8	圧縮/伸張処理部508	符号メモリ511
DMA-9	圧縮/伸張処理部509	符号メモリ 5 1 1
DMA-A	符号メモリ511	圧縮/伸張処理部506
DMA-B	符号メモリ511	E:縮/伸張処理部507
DMA-C	符号メモリ 5 1 1	圧縮/伸張処理部508
DMA-D	符号メモリ511	圧縮/伸張処理部509
DMA-E	圧縮/伸張処理部506	出力パッファメモリ505
DMA-F	圧縮/伸張処理部507	出力パッファメモリ505
DMA-G	<u></u> <u></u> 	出力パッファメモリ505
DMA-H	圧縮/伸張処理部509	出力パッファメモリ505
DMA-I	出力パッファメモリ505	出力部

~509と接続されており、データ転送処理DMA-1 ~DMA-5を実行する。データ転送処理部510は、 4つの圧縮・伸張処理部506~509と符号メモリと に接続されており、データ転送処理DMA-6~DMA -Dを実行する。データ転送処理部504は、圧縮·伸 張処理部506~509、出力バッファメモリ505、 及び、出力部と接続されており、データ転送処理DMA -E~DMA-Iを実行する。また、データ転送処理部 501、504、510は、それぞれ外部インターフェ ース512を介して外部装置とデータのやりとりを行う ことができる。ディジタル複写機が外部装置の画像読み 取り装置として使用される場合、データ転送処理部50 1からイメージリーダ部100で読み取られた原稿の画 像データが外部インターフェース512を介して外部装 置へ出力される。または、データ転送処理部510から 符号データが外部インターフェース512を介して外部 装置へ出力される。一方、ディジタル複写機が外部装置 のプリンタとして使用される場合、外部装置より外部イ ンターフェース512を介して入力される画像データ は、データ転送処理部501に入力され、圧縮された後 に一旦符号メモリ511に格納される。または、データ 転送処理部504を介して直接プリンタ部200に出力 される。

【0019】図7は、データ転送処理部501の構成を 示す図である。 | Rインターフェース520は、二値化 部552よりデータを受け取る。メモリインターフェー ス521は、各DMAの調停 (arbitration) と入力バ ッファメモリのアクセス (read/write) を行う。QMイ ンターフェース523は、DMA523~527の設定 により、対応した圧縮/伸張チップ506~509にデ ータ転送を許可し、圧縮/伸張チップ506~509か らの要求に応じて調停を行う。DMA523は、IRイ ンターフェース520からメモリインターフェース52 1へのデータ転送処理DMA-1を実行する。DMA5 24~527は、メモリインターフェース521からQ Mインターフェース522へのデータ転送処理DMA2 ~5を実行する。なお、データ転送量と転送命令はCP U503により設定され、各DMA524~527から は、CPU503に対して転送終了信号が出力される。 DMA524~527は、CPU503により設定され たチャンネル全てについて時分割による並列処理を実行 することができる。なお、DMA523, DMA52 4, DMA525, DMA526, DMA527の優先 順位で調停(arbitration)される。また、QMインタ ーフェース522は、データ転送処理部504と圧縮/ 伸張画像データバスを共有するため、データ転送処理部 504の備えるQMインターフェース532 (図8を参 照) に対して調停信号 (arbitration signal) を出力す

【0020】図8は、データ転送処理部504の構成を

示す図である。プリンタインターフェース530は、二 値化部552からデータを入力する。メモリインターフ ェース531は、各DMAの調停 (arbitration) と出 カバッファメモリ505のアクセス (read/write) を行 う。QMインターフェース532は、DMA533~5 37の設定により、対応した圧縮/伸張チップ506~ 509からの要求に対して調停を行う。DMA537 は、メモリインターフェース531からプリンタインタ ーフェース530へのデータ転送処理DMAーlを実行 する。DMA533~536は、QMインターフェース 532からメモリインターフェース531へのデータ転 送処理DMA-E~DMA-Hを実行する。なお、デー タ転送量と転送命令はCPU503により設定され、各 DMA533~536からは、CPU503に対して転 送終了信号が出力される。DMA533~536は、C PU503により設定されたチャンネル全てについて時 分割による並列処理を実行することができる。なお、D MA537, DMA533, DMA534, DMA53 5. DMA536の優先順位で調停 (arbitration) さ れる。また、QMインターフェース532は、データ転 送処理部501と圧縮/伸張画像データバスを共有する ため、データ転送処理部501の備えるQMインターフ ェース522に対して調停信号 (arbitration signal) を出力する。

【0021】図9は、データ転送処理部510の構成を 示す図である。メモリインターフェース540は、各D MA543~DMA552との調停 (arbitration) と 符号メモリのアクセス (read/write) を行う。QMイン ターフェース541は、DMA543~DMA550の 設定により、対応する圧縮/伸張チップ506~509 からのデータ送受信を許可し、圧縮/伸張チップ506 ~509からの要求に対して調停を行う。インターフェ ース542は、外部インターフェース512とのアクセ スを行う。DMA543~546は、QMインターフェ ース540からメモリインターフェース541へのデー タ転送処理DMA-6~DMA-9を実行する。なお、 データ転送量と転送命令はCPU503により設定さ れ、各DMA543~546からは、CPU503に対 して転送終了信号が出力される。DMA547~550 は、メモリインターフェース541からQMインターフ ェース540へのデータ転送処理DMA-A~DMA-Dを実行する。なお、データ転送量と転送命令はCPU 503により設定され、各DMA547~550から は、CPU503に対して転送終了信号が出力される。 DMA551は、インターフェース542からメモリイ ンターフェース540へのデータ転送処理DMAーJを 実行する。また、DMA552は、メモリインターフェ ース540からインターフェース542へのデータ転送 処理DMA-Kを実行する。なお、データ転送量と転送 命令はCPU503により設定され、各DMA551及

び552からは、CPU503に対して転送終了信号が出力される。DMA543~552は、CPU503により設定されたチャンネル全てについて時分割による並列処理を実行することができる。なお、DMA543、DMA544、DMA545、DMA546、DMA547、DMA548、DMA549、DMA550、DMA551、DMA552の優先順位で調停(arbitration)される。

【0022】図10は、入力バッファメモリ502に入 力される画像データを示す図である。CCDラインセン サ9により読み取られた原稿の画像データは、入力基準 位置513からラスタ走査方向に、順に入力される。図 11は、入力バッファメモリ502及び出力バッファメ モリ505のデータ格納エリアを示す図である。データ 転送処理部501及び504は、画像データを二次元ア ドレスで管理しており、使用する用紙のサイズに応じて 定められる横サイズY、縦サイズT、及び、圧縮・伸張 処理部506~509における処理効率に基づいて定め られる圧縮ブロック幅Cの値に基づいてデータ転送処理 を実行する。横サイズ Y はドット (便宜上8の倍数)、 縦サイズTはラインの単位で設定する。解像度が400 dpiで用紙のサイズがA4Tの場合、入出力バッファ 横サイズYは3328ドット(210mm)であり、入 出力パッファ縦サイズTは4677ライン(297m m) であり、圧縮ブロック幅Cは832ドット(52. 5mm)である。入力バッファメモリ502及び出力バ ッファメモリ505は、使用する用紙の縦サイズの2倍 のデータ格納エリアを有する。

【〇〇23】データ転送処理DMA-1の実行時には、データ転送処理部501に入出力バッファ横サイズY及び入出力バッファ縦サイズTを設定する。ブロック圧縮処理を行うデータ転送処理DMA-2及びDMA-6、DMA-3及びDMA-7、DMA-4及びDMA-8、DMA5及びDMA-9の実行時には、データ転送処理部501へ入出力バッファ縦サイズT及び圧縮ブロック幅Cを設定する。ブロック伸張処理を行うデータ転送処理DMA-E及びDMA-C、DMA-F及びDMA-B、DMA-G及びDMA-C、DMA-H及びDMA-Dの実行時には、データ転送処理部504に入出力バッファ縦サイズT及び圧縮ブロック幅Cを設定する。ブリンタ200への出力を行うデータ転送処理DMA-Iの実行時には、データ転送処理部504に入出力バッファ横サイズY及び入出力バッファ縦サイズTの設定を行う。

【0024】データ転送処理を行う際には、データ格納エリアを2等分し、それぞれAブロック及びBブロックとして管理する。実際のデータ転送処理においては、Aブロック及びBブロックを、更に圧縮・伸張処理部で処理する単位である圧縮ブロック幅Cで分割してA1~A4、B1~B4とする。例えば、入力バッファメモリ5

02に連続してデータが書き込まれる場合には、Aブロックへのデータ書き込みを行うと同時にBブロックに書き込まれたデータの読み出しを行い、Aブロックへのデータの書き込みが終了した場合には、書き込まれたデータの読み出しを行うと同時にBブロックにデータの書き込みを行うように各ブロックを管理する。これにより入力バッファメモリ502及び出力バッファメモリ505へのデータの書き込みに要する時間を省くことができるためデータ転送処理の効率化が図られる。

【0025】(2)全体制御部における制御

図12は、全体制御部300において実行される制御処理のメインルーチンのフローチャートである。操作パネル400からのキー入力処理(ステップS1)を受け付けた後に、自動原稿搬送装置1の原稿トレイ1aにセットされた原稿の画像を一括して読み込むか否かの判断を行う一括読み込み設定処理(ステップS2)、モード設定処理(ステップS3)、パネル入力処理(ステップS4)、及び、他のキー入力処理や画像処理などのその他の処理(ステップS5)を実行する。

【0026】図13及び図14は、キー入力処理(図1 2、ステップS1)のフローチャートである。操作パネ ル400上に設けられたキー402が押下された場合に おいて(ステップS10でYES)、ソートモードが設 定されていた場合には(ステップS11でYES)、ス テープルソートモードを設定する(ステップS12)。 ステープルソートモードが設定されていた場合には (ス テップS13でYES)、ノンソートモードを設定する (ステップS14)。 ノンソートモードが設定されてい た場合には(ステップS13でNO)、ソートモードを 設定する(ステップS15)。キー403が押下された 場合において(ステップS16でYES)、2ページ分 の画像を1枚の用紙上に形成する2in1コピーモードが 設定されていた場合には(ステップS17でYES)、 原稿1ページを1枚の用紙上に形成する通常の1in1コ ピーモードを設定する(ステップS18)。一方、1in 1コピーモードが設定されていた場合には(ステップS 17でNO)、2in1モードを設定する(ステップS1 9)。また、キー404が押下された場合において(ス テップS20でYES)、両面コピーモードが設定され ていた場合には(ステップS21でYES)、片面コピ ーモードを設定する(ステップS22)。片面コピーモ ードが設定されていた場合には(ステップS21でN O)、両面コピーモードを設定する(ステップS2 3)。

【〇〇27】更に、図14に示すように、キー4〇5が押下された場合において(ステップS24でYES)、原稿トレイ1aにセットされた原稿の枚数をカウントするカウントモードが設定されていた場合には(ステップS25でYES)、原稿の枚数のカウントを行わないノンカウントモードを設定する(ステップS26)。ノン

カウントモードが設定されていた場合には(ステップS 25でNO)、カウントモードを設定する(ステップS 27)。キー406が押下された場合において(ステップS28でYES)、週刊誌綴じモードが設定されていた場合には(ステップS29でYES)、仕上げ無しモードを設定する(ステップS30)。仕上げ無しモードが設定されていた場合には(ステップS29でNO)、週刊誌綴じモードを設定する(ステップS29でNO)、キー402~406以外のキーが押下された場合には(ステップS28でNO)、キー420~422による用紙サイズの設定を含むその他のキー入力処理(ステップS32)を実行した後に、リターンする。

【0028】図15は、一括読み込み設定処理(図1 2、ステップS2)のフローチャートである。ここで は、キー入力処理によって設定されたモードの種類に応 じて、原稿トレイ1a上にセットされた原稿を一括して **読み込むか否かを判断する。ステーブルソートモードが** 設定されている場合(ステップS50及びS51でYE S)、2 in 1 モードとカウントモードが共に設定されて いる場合(ステップS52及びS54でYES)、両面 モードとカウントモードが共に設定されている場合(ス テップS53及びS54でYES)、または、週刊誌綴 じモードが設定されている場合(ステップS55でYE S)には、原稿トレイla上にセットされた原稿を一括 して読み込む一括読み込みモードを設定する(ステップ S56)。その他の場合、例えば2in1モードが設定さ れているがカウンタモードは設定されていない場合や、 片面モードの設定時であって週刊誌綴じモードの非設定 時には(ステップS55でNO)、一括読み込みモード を解除して、イメージリーダ部100における原稿の読 み込み動作と、プリンタ部200におけるプリント動作 とを同時に実行する通常の読み込みモードを設定する (ステップS57)。

【0029】図16は、モード設定処理(図12、ステップS3)のフローチャートである。画像データの入力がされている場合であって(ステップS60でYES)、一括読み込みモードが設定されている場合には(ステップS61でYES)、イメージリーダ部100における原稿の画像データの読み込みを連続して実通常の読み込みモードが設定されている場合には(ステップS62)。通常の読み込みモードが設定されている場合には(ステップS61でNO)、イメージリーダ部100における原稿の画像データの読みと、プリンタ部200へのデータの読み出しを同時に実行するコピーモードを設定する(ステップS63)。画像データの入力がされていい場合には(ステップS60でNO)、プリンタ部200への画像データの読み出しのみを実行するプリントモードを設定する(ステップS64)。

【0030】図17は、パネル入力処理(図12、ステップS4)のフローチャートである。操作パネル400

上に設けるテンキー407からコピー部数の入力を受付、これを変数busuuに入力する(ステップS70)。 その他の処理を実行した後に(ステップS71)、リターンする。

【0031】(3)メモリユニット内における制御 図18は、メモリユニット13内に備えるCPU503 の実行する制御処理のフローチャートである。操作パネ ル400上に設けたスタートキー408が押下された直 後の場合には、初期化処理を実行する。この場合(ステ ップS100でYES)、ページカウントレジスタPの 設定を行うページカウント処理(ステップS1O1)、 選択された用紙のサイズに応じた入力バッファメモリ5 02及び出力バッファメモリ505のデータ格納エリア 等のサイズ設定処理(ステップS102)を実行する。 次に、データの書き込みを行う入力バッファメモリ50 2のブロックをAからB、または、BからAに切り換え るための入力処理を実行する(ステップS103)。モ ード設定処理で設定されたモードに基づいて特定される 圧縮・伸張処理部において、圧縮処理を実行するための 各種のレジスタを設定する圧縮用レジスタ設定処理を実 行する (ステップS104)。 同様に、伸張用レジスタ 設定処理を実行する(ステップS105)。4つの圧縮 ・伸張処理部の内、設定されたモードに基づいて特定さ れるものを圧縮処理を実行するように、または、伸張処 理を実行するようにレジスタ設定する、圧縮・伸張処理 部レジスタ設定処理を実行する(ステップS106)。 この後、出力バッファメモリ505に展開されたページ データの読み出しを行うブロックをAからB、または、 BからAに切り換えるための出力処理(ステップS10 7) を実行する。

【0032】図19は、ページカウント処理(図18、 ステップS101)のフローチャートである。プリント キー408が押下された場合には(ステップS108で YES)、ページカウントレジスタPの値をOにクリア する (ステップS109)。 プリントキー408が押下 されていない場合には (ステップS108でNO)、ス テップS109の処理をスキップする。画像入力要求が なされた場合には(ステップS110でYES)、ペー ジカウントレジスタPの値に1を加算する(ステップS 111)。ここで、画像入力要求がなされていない場合 には(ステップS110でNO)、直ちにリターンす る。画像入力が終了した場合には(ステップS112で YES)、ページ数レジスタpageをページカウントレジ スタPの値にした後にリターンする(ステップS11 3)。画像入力が終了していない場合には(ステップS 112でNO)、直ちにリターンする。

【0033】図20は、サイズ設定処理(図18、ステップS102)のフローチャートである。設定されている用紙のサイズがA4の場合には、入出力バッファの横サイズをYA4(=3328ドット)に、入出力バッファ

の縦サイズをTA4(=4677ライン)に、圧縮ブロッ ク幅をCA4 (=832ドット) に、QM画素数を I A4に、QMライン数をLA4に設定する(ステップS11 5~S119)。設定されている用紙のサイズがA3の 場合には、入出力バッファの横サイズをYA3に、入出力 バッファの縦サイズをTA3に、圧縮ブロック幅をC A3に、QM画素数をIA3に、QMライン数をLA3に設定 する(ステップS120~S124)。設定されている 用紙のサイズがB4の場合には、入出力バッファの横サ イズをYB4に、入出力バッファの縦サイズをTB4に、圧 縮ブロック幅をCB4に、QM画素数をIB4に、QMライ ン数をLB4に設定する(ステップS125~129)。 【0034】図21は、入力処理(図18、ステップS 103)のフローチャートである。入力処理では、デー タの售き込みを行う入力バッファメモリ502のブロッ クをAからB、または、BからAに切り換えて、入力バ ッファメモリ502に鸖き込まれたページデータの圧縮 処理を実行すると同時に、次のページデータの入力バッ ファメモリ502への書き込みを行う。上記の表1に示 す入力部から入力パッファメモリ502への1ページ分 のデータ転送処理DMA-1が終了しており(ステップ S130でYES)、画像処理ユニット10より次のペ ージデータの入力が要求されている場合(ステップS1 31でYES)、ページカウントレジスタPの値をカウ ントアップし(ステップS132)、次のページデータ を書き込む処理ブロックを選択する。ここで、前回の入 力処理で選択したブロックがAの場合には(ステップS 133でNO)、Bブロックを選択し(ステップS13 5)、前回の入力処理で選択したブロックがBの場合に は(ステップS133でYES)、Aブロックを選択す る(ステップS134)。この選択の後に、データ転送 処理DMA-1をイネーブルにする(ステップS13 6)。

【0035】図22は、圧縮用レジスタ設定処理(図1 8、ステップS104)のフローチャートである。圧縮 用レジスタ設定処理では、モード設定処理(図16)に より設定されたモード(画像入力モード、コピーモー ド、プリントモード)に基づいて、特定される圧縮・伸 張処理部において、圧縮処理を実行するための各種のレ ジスタを設定する。読み込むべきページデータの入力バ ッファメモリ502への入力処理が終了した後 (ステッ プS140でYES)、圧縮処理用のスタック領域を設 定する(ステップS141)。具体的には、レジスタP inにページカウントレジスタPの値を書き込み、これを 参照して圧縮処理の手順を設定する。ステップS142 において、フローは、設定されているモードに対応して 分岐する。コピーモードが設定されていると判断される 場合には、4つの圧縮・伸張処理部の内の2つをデータ の圧縮用に使用する。入力処理において選択されたブロ ックがAの場合(ステップS143でYES)、入力バ

ッファメモリ502から圧縮・伸張処理部506へのデ ータ転送処理DMA-2を行うブロックとしてA1及び A2プロックを選択すると共に(ステップS144)、 入力パッファメモリ502から圧縮・伸張処理部507 へのデータ転送処理DMA-3を行うブロックとしてA 3及びA4ブロックを選択する(ステップS145)。 一方、入力処理において選択されたブロックがBの場合 (ステップS143でNO)、入力バッファメモリ50 2から圧縮・伸張処理部506へのデータ転送処理DM A-2を行うブロックとしてB1及びB2ブロックを選 択すると共に(ステップS146)、入力バッファメモ リ502から圧縮・伸張処理部507へのデータ転送処 理DMA-3を行うブロックとしてB3及びB4ブロッ クを選択する(ステップS147)。上記データ転送処 理で用いるブロックの選択の終了後、データ転送処理D MA-2の実行に伴い圧縮・伸張処理部506より出力 されるデータの符号メモリ511への転送先アドレスA DD(P1), ADD(P2)を設定する(ステップS 148)。データ転送処理DMA-3の実行に伴い圧縮 ・伸張処理部507より出力されるデータの符号メモリ 511への転送先アドレスADD (P3), ADD (P 4)を設定する(ステップS149)。入力バッファメ モリ502から圧縮・伸張処理部506へのデータ転送 処理DMA-2及び圧縮・伸張処理部506から符号メ モリ511へのデータ転送処理DMA-6を共にイネー ブルにする (ステップS150)。 入力バッファメモリ 502から圧縮・伸張処理部507へのデータ転送処理 DMA-3及び圧縮・伸張処理部507から符号メモリ 511へのデータ転送処理DMA-7を共にイネーブル にする(ステップS151)。各データ転送処理をイネ ーブルにした後に、圧縮・伸張処理部506における圧 縮処理(以下、フローチャートにおいて、当該処理をQ M1処理という)をイネーブルにする(ステップS15 2)。圧縮・伸張処理部507における圧縮処理(以 下、フローチャートにおいて、当該処理をQM2処理と いう)をイネーブルにした後に(ステップS153)、 リターンする。上記ステップS142において、プリン タ部200における印刷処理のみを行うプリントモード が設定されている場合には、入力されるデータは存在せ ず、4つの全ての圧縮・伸張処理部を符号データの伸張 用に使用する。このため、圧縮用のレジスタは設定せ ず、直ちにリターンする。

【0036】図23は、画像入力モードが設定されている場合に実行される処理のフローチャートである。図21に示すステップS142において、イメージリーダ部100における原稿の画像データの読み取りのみを行う画像入力モードが設定されていると判断される場合、4つの全ての圧縮・伸張処理部506~509を入力画像データの圧縮用に使用する。次に処理を行うブロックがAの場合(ステップS154でYES)、入力バッファ

メモリ502から圧縮・伸張処理部506へのデータ転 送処理DMA-2を行うブロックとしてA1ブロックを 選択し(ステップS155)、入力バッファメモリ50 2から圧縮・伸張処理部507へのデータ転送処理DM A-3を行うブロックとしてA2ブロックを選択し(ス テップS156)、入力バッファメモリ502から圧縮 ・伸張処理部508へのデータ転送処理DMA-4を行 うブロックとしてA3ブロックを選択し(ステップS1 57)、入力バッファメモリ502から圧縮・伸張処理 部509へのデータ転送処理DMA-5を行うブロック としてA4ブロックを選択する(ステップS158)。 一方、次に処理を行うブロックがBの場合(ステップS 154でNO)、入力パッファメモリ502から圧縮・ 伸張処理部506へのデータ転送処理DMA-2を行う ブロックとしてB1ブロックを選択し(ステップS15 9)、入力バッファメモリ502から圧縮・伸張処理部 507へのデータ転送処理DMA-3を行うプロックと してB2ブロックを選択し(ステップS160)、入力 バッファメモリ502から圧縮・伸張処理部508への データ転送処理DMA-4を行うブロックとしてB3ブ ロックを選択し(ステップS161)、入力バッファメ モリ502から圧縮・伸張処理部509へのデータ転送 処理DMA-5を行うブロックとしてB4ブロックを選 択する (ステップS162)。各データ転送処理に用い るブロックの上記選択の終了後、データ転送処理DMA ―2の実行に伴い圧縮・伸張処理部506より出力され るデータの符号メモリ511への転送先アドレスADD (P1)を設定し(ステップS163)、データ転送処 理DMA-3の実行に伴い圧縮・伸張処理部507より 出力されるデータの符号メモリ511への転送先アドレ スADD(P2)を設定し(ステップS164)、デー タ転送処理 DMA - 4の実行に伴い圧縮・伸張処理部5 08より出力されるデータの符号メモリ511への転送 先アドレスADD (P3)を設定し(ステップS16 5)、データ転送処理DMA-5の実行に伴い圧縮・伸 張処理部509より出力されるデータの符号メモリ51 1への転送先アドレスADD (P4)を設定する (ステ ップS166)。入力バッファメモリ502から圧縮・ 伸張処理部506へのデータ転送処理DMA-2及び圧 縮・伸張処理部506から圧縮メモリ511へのデータ 転送処理DMA-6をイネーブルにし(ステップS16 7)、入力バッファメモリ502から圧縮・伸張処理部 507へのデータ転送処理DMA-3及び圧縮・伸張処 理部507から圧縮メモリ511へのデータ転送処理D MA-7をイネーブルにし(ステップS168)、入力 パッファメモリ502から圧縮・伸張処理部508への データ転送処理DMA-4及び圧縮・伸張処理部508 から圧縮メモリ511へのデータ転送処理DMA-8を イネーブルにし(ステップS169)、入力バッファメ モリ502から圧縮・伸張処理部509へのデータ転送

処理DMA-5及び圧縮・伸張処理部509から圧縮メモリ511へのデータ転送処理DMA-9をイネーブルにする(ステップS170)。次に、圧縮・伸張処理部506における圧縮処理(QM1処理)をイネーブルにし(ステップS171)、圧縮・伸張処理部507における圧縮処理(QM2処理)をイネーブルにし(ステップS172)、圧縮・伸張処理部508における圧縮処理(以下、フローチャートにおいて、当該処理をQM3処理という)をイネーブルにし(ステップS173)、圧縮・伸張処理部509における圧縮処理(以下、フローチャート中において、当該処理をQM4処理という)をイネーブルにした後に(ステップS174)、リターンする。

【0037】図24及び図25は、伸張用レジスタ設定 処理のフローチャートである。伸張用レジスタ設定処理 (図18、ステップS105)では、モード設定処理 (図16)により設定されたモード(画像入力モード、 コピーモード、プリントモード)に基づいて、特定され る圧縮・伸張処理部において、伸張処理を実行するため の各種のレジスタを設定する。原稿トレイ1aにセット された原稿のページデータの読み込み処理が終了した場 合には(ステップS179でYES)、ページ設定処理 (ステップS180)を実行する。このページ設定処理 によるページ設定レジスタPSの値を伸張用スタック領 域を規定するレジスタP_{out}に書き込み、これを参照し てデータ転送処理実行時に伸張データを出力バッファメ モリ505に書き込むブロックのアドレスを設定する (ステップS181)。次のステップS182におい て、フローは、設定されているモードに対応して分岐す る。ここで、コピーモードが設定されていると判断され る場合には、4つの圧縮・伸張処理部506~509の 内、データの圧縮用に用いる2つを除く、残りの2つを データ伸張用として用いる。圧縮・伸張処理部508か ら出力バッファメモリ505へのデータ転送処理DMA -Gの実行時に符号メモリ511より読み出す符号デー タのアドレスADD (P1), ADD (P2)を設定し (ステップS183)、符号メモリ511より読み出す 符号データのデータ長CNT(P1), CNT(P2) を設定し(ステップS184)、圧縮・伸張処理部50 9から出力バッファメモリ505へのデータ転送処理D MA-Hの実行時に符号メモリ511より読み出す圧縮 データのアドレスADD (P3), ADD (P4)を設 定し(ステップS185)、符号メモリ511より読み 出す符号データのデータ長CNT(P3),CNT(P 4) を設定する (ステップS186)。 次の処理ブロッ クがAの場合には(ステップS187でYES)、デー タ転送処理DMA-G実行時に伸張データを出力バッフ ァメモリ505に魯き込むブロックとしてA1、A2ブ ロックを選択し(ステップS188)、データ転送処理 DMA-H実行時に伸張データを出力バッファメモリ5

05に魯き込むブロックとしてA3、A4ブロックを選 択する (ステップS189)。次の処理ブロックがBの 場合には(ステップS187でNO)、データ転送処理 DMA-G実行時に伸張データを出力バッファメモリ5 O5に書き込むブロックとしてB1, B2ブロックを選 択し(ステップS190、データ転送処理DMA-H実 行時に伸張データを出力バッファメモリ505に書き込 むブロックとしてB3、B4ブロックを選択する(ステ ップS191)。伸張データを書き込むブロックを選択 した後に、符号メモリ511から圧縮/符号処理部50 8へのデータ転送処理DMA-C、及び、圧縮/符号処 理部508から出力バッファメモリ505へのデータ転 送処理DMA-Gをイネーブルにする(ステップS19 2)。符号メモリ511から圧縮/符号処理部509へ のデータ転送処理DMA-D、及び、圧縮/符号処理部 509から出力バッファメモリ505へのデータ転送処 理DMA-Hをイネーブルにする(ステップS19 3)。各データ転送処理をイネーブルにした後に、圧縮 ・伸張処理部508における伸張処理(QM3処理)を イネーブルにし(ステップS194)、圧縮・伸張処理 部509における伸張処理(QM4処理)をイネーブル にする(ステップS195)。ステップS182におい て、イメージリーダ部100における原稿の画像データ の読み取りのみを行う画像入力モードが設定されている と判断される場合、符号メモリ511より読み出す符号 データは存在せず、4つの全ての圧縮・伸張処理部を入 力画像データの圧縮用に使用する。このため、伸張用の レジスタは、設定せず、直ちにリターンする。

【0038】図25は、プリントモードが設定されてい る場合に実行される処理のフローチャートである。 図2 4に示すステップS182において、プリンタ部200 における印刷処理のみを行うプリントモードが設定され ていると判断される場合、4つの全ての圧縮・伸張処理 部を符号データの伸張用に使用する。まず、符号データ の符号メモリ511からの読み出しアドレスとデータ長 の設定を行う。圧縮/符号処理部506から出力バッフ ァメモリ505へのデータ転送処理DMA-Eの実行時 に符号メモリ511より読み出す符号データのアドレス ADD (P1) を設定し (ステップS196)、符号メ モリ511より読み出す符号データのデータ長CNT (P1)を設定する(ステップS197)。圧縮/符号 処理部507から出力バッファメモリ505へのデータ 転送処理 (DMA-F) の実行時に符号メモリ511よ り読み出す符号データのアドレスADD(P2)を設定 し(ステップS198)、符号メモリ511より読み出 す符号データのデータ長CNT(P2)を設定する(ス テップS199)。圧縮/符号処理部508から出力バ ッファメモリ505へのデータ転送処理DMA-Gの実 行時に符号メモリ511より読み出す符号データのアド レスADD(P3)を設定し(ステップS200)、符

号メモリ511より読み出す符号データのデータ長CN T (P3) を設定する (ステップS201)。 圧縮/符 号処理部509から出力パッファメモリ505へのデー タ転送処理DMA-Hの実行時に符号メモリ511より 読み出す符号データのアドレスADD (P4)を設定し (ステップS202)、符号メモリ511より読み出す 符号データのデータ長CNT (P4)を設定する(ステ ップS203)。符号データの読み出しアドレスとデー タ長の設定終了後、次の処理ブロックがAの場合には (ステップS204でYES)、データ転送処理DMA **-E実行時に伸張データを出力バッファメモリ505に** 書き込むブロックとしてA1ブロックを選択し(ステッ プS205)、データ転送処理DMA-F実行時に伸張 データを出力バッファメモリ505に書き込むブロック としてA2ブロックを選択し(ステップS206)、デ ータ転送処理DMA-G実行時に伸張データを出力バッ ファメモリ505に魯き込むブロックとしてA3ブロッ クを選択し(ステップS207)。データ転送処理DM A-H実行時に伸張データを出力バッファメモリ505 に書き込むブロックとしてA4ブロックを選択する(ス テップS208)。次の処理ブロックがBの場合には (ステップS204でNO)、データ転送処理DMA-E実行時に伸張データを出力バッファメモリ505に售 き込むブロックとしてBIブロックを選択し(ステップ S209)、データ転送処理DMA-F実行時に伸張デ ータを出力バッファメモリ505に書き込むブロックと してB2ブロックを選択し(ステップS210)、デー タ転送処理DMA-G実行時に伸張データを出力バッフ ァメモリ505に書き込むブロックとしてB3ブロック を選択し(ステップS211)、データ転送処理DMA - H実行時に伸張データを出力バッファメモリ505に **掛き込むブロックとしてB4ブロックを選択する(ステ** ップS212)。伸張データを書き込むブロックを選択 した後に、符号メモリ511から圧縮/符号処理部50 6へのデータ転送処理DMA-A、及び、圧縮/符号処 理部506から出力バッファメモリ505へのデータ転 送処理DMA-Eをイネーブルにし(ステップS21 3)、符号メモリ511から圧縮/符号処理部507へ のデータ転送処理DMA-B、及び、圧縮/符号処理部 507から出力バッファメモリ505へのデータ転送処 理DMA-Fをイネーブルにし(ステップS214)、 符号メモリ511から圧縮/符号処理部508へのデー タ転送処理DMA-C、及び、圧縮/符号処理部508 から出力パッファメモリ505へのデータ転送処理DM A-Gをイネーブルにし(ステップS215)、符号メ モリ511から圧縮/符号処理部509へのデータ転送 処理DMA-D、及び、圧縮/符号処理部509から出 カバッファメモリ505へのデータ転送処理DMA-H をイネーブルにする (ステップS216)。 各データ転 送処理をイネーブルにした後に、圧縮・伸張処理部50

6における伸張処理(QM1処理)をイネーブルにし (ステップS217)、圧縮・伸張処理部507におけ る伸張処理(QM2処理)をイネーブルにし(ステップ S218)、圧縮・伸張処理部508における伸張処理 (QM3処理)をイネーブルにし(ステップS21 9)、圧縮・伸張処理部509における伸張処理(QM 4処理)をイネーブルにする(ステップS220)。 【0039】図26は、ページ設定処理(図24、ステ ップS180)のフローチャートである。 プリントキー 408が押下された場合(ステップS221でYE S)、ページ設定レジスタPSの値をOにクリアする (ステップS222)。部数設定レジスタBSの値を0 にクリアする(ステップS223)。プリントキー40 8が押下されない場合には)ステップS221でN 〇)、上記ステップS222、S223をスキップす る。画像出力要求がなされた場合には(ステップS22 4でYES)、ページ設定レジスタPSの値に1を加算 する(ステップS225)。ここでページ設定レジスタ PSの値がページ数レジスタpage (図19、ステップS 113において設定)の値に等しい場合、即ち最終ペー ジの場合には(ステップS226でYES)、部数設定 レジスタBSの値に1を加算する(ステップS22 7)。ここで、最終ページでない場合には(ステップS 226でNO)、直ちにリターンする。ページ設定レジ スタPSの値を〇にクリアする(ステップS228)。 部数設定レジスタBSの値がテンキー407を介して設 定された変数busuuの値に等しい場合、即ち、最終部数 の場合(ステップS229でYES)、終了処理を実行 する (ステップ S 2 3 0)。 最終部数でない場合には (ステップS229でNO)、直ちにリターンする。~ 方、上記ステップS224において、画像出力要求がな されていない場合には(ステップS224でNO)、直 ちにリターンする。

【〇〇4〇】図27は、圧縮・伸張処理部レジスタ設定 処理(図18、ステップS106)のフローチャートで ある。圧縮・伸張処理部レジスタ設定処理では、4つの 圧縮・伸張処理部の内、設定されたモードに基づいて特 定されるものを圧縮処理を実行するように、または、伸 張処理を実行するようにレジスタ設定する。圧縮・伸張 処理部506における圧縮又は伸張処理(QM1処理) が終了した場合(ステップS231でYES)、設定さ れているモードを調べる (ステップS232)。画像入 カモード又はコピーモードが設定されている場合には入 力画像データの圧縮を行うモードを設定する(ステップ S233)。プリントモードが設定されている場合には 符号データの伸張を行うモードを設定する(ステップS 234)。一方、圧縮・伸張処理部506における圧縮 又は伸張処理(QM1処理)が終了していない場合(ス テップS231でNO)、上記処理(ステップS232 ~5234) をスキップする。

【0041】圧縮・伸張処理部507における圧縮又は伸張処理(QM2処理)が終了した場合(ステップS235でYES)、設定されているモードを調べる(ステップS236)。画像入力モード又はコピーモードが設定されている場合には入力画像データを圧縮するモードを設定する(ステップS237)。プリントモードが設定されている場合には符号データの伸張を行うモードを設定する(ステップS238)。一方、圧縮・伸張処理部507における圧縮又は伸張処理(QM2処理)が終了していない場合(ステップS235でNO)、上記処理(ステップS236~S238)をスキップする。

【0042】圧縮・伸張処理部508における圧縮又は伸張処理(QM3処理)が終了した場合(ステップS239でYES)、設定されているモードを調べる(ステップS240)。画像入力モードが設定されている場合には入力画像データを圧縮するモードを設定する(ステップS241)。コピーモード又はプリントモードが設定されている場合には符号データの伸張を行うモードを設定する(ステップS242)。一方、圧縮・伸張処理部508における圧縮又は伸張処理(QM3処理)が終了していない場合(ステップS239でNO)、上記処理(ステップS240~S242)をスキップする。

【0043】圧縮・伸張処理部509における圧縮又は伸張処理(QM4処理)が終了した場合(ステップS243でYES)、設定されているモードを調べる(ステップS244)。画像入力モードが設定されている場合には入力画像データを圧縮するモードを設定する(ステップS245)。コピーモード又はプリントモードが設定されている場合には符号データの伸張を行うモードを設定する(ステップS246)。一方、圧縮・伸張処理部509における圧縮又は伸張処理(QM4処理)が終了していない場合(ステップS243でNO)、上記処理(ステップS244~S246)をスキップする。

【0044】図28は、出力処理(図18、ステップS 107)のフローチャートを示す。出力処理では、出力 バッファメモリ505に展開されたページデータの読み 出しを行うブロックをAからB、または、BからAに切 り換える。出力バッファメモリ505から出力部への伸 張データの出力処理DMA-Iが終了しており(ステッ プS250でYES)、プリンタ部200よりプリント 要求がされている場合であって(ステップS251でY ES)、選択されている処理ブロックがBの場合(ステ ップS252でYES)、Aブロックを選択する(ステ ップS253)。選択されているブロックがAの場合に は (ステップS252でNO) 、Bブロックを選択する (ステップS254)。データ転送処理DMA- | をイ ネーブルにする(ステップS255)。データ転送処理 DMA-Iが終了していない場合(ステップS250で NO)、又は、データ転送処理DMA-Iが終了してい るがプリンタ部200よりプリント要求がなされていな

い場合には(ステップS251でNO)、そのままリターンする。

【〇〇45】以上、説明した構成のメモリユニット13では、画像入力モード、コピーモード、ブリントモードの何れの動作状況下においても全ての圧縮/伸張処理部を使用することができる。このため、図1及び図2に示す圧縮・伸張処理装置の従来例に比べて、圧縮・伸張処理装置の従来例に比べて、圧縮・伸張処理支重が改善され、全体の処理速度が向上する。特に、メモリユニット13は、図2に示す圧縮・伸張処理用のチップの数は同じであるにも拘わらず、画像入力モード及びブリントモード時には2倍の処理速度を実現する。これにより、装置のコストパフォーマンスも向上する。なお、メモリユニット13は、圧縮・伸張処理部を4つ備えるが、圧縮・伸張処理部の数が2つであっても8つである。本的なデータ転送処理の制御内容は同じである。

[0046]

【発明の効果】本発明の圧縮・伸張処理装置では、画像 データの入力のみが行われる場合、画像データの入力及 び読み出しが同時に行われる場合で、設定手段が圧縮処理用に用いる圧縮・伸張処理部の数と、伸張処理用に用いる 圧縮・伸張処理部の数を変更する。これにより、データの入出力時には、装置が備える全ての圧縮・伸張処理部の備えるチップを全て有効に使用することができる。特にデータ転送処理として、データの入力のみが行われる場合、及び、データの読み出しのみが行われる場合の処理速度が向上する。これにより、圧縮・伸張処理装置のコストパフォーマンスが向上する。

【図面の簡単な説明】

【図1】 圧縮・伸張処理装置の従来例のブロック図である。

【図2】 圧縮・伸張処理装置の従来例のブロック図である。

【図3】 本発明の圧縮・伸張処理装置の実施形態例であるメモリユニットを備えるディジタル複写機の構成断面図である。

【図4】 操作パネルの正面図である。

【図5】 複写機の制御ブロックを示す図である。

【図6】 イメージリーダ部内における制御ブロックを示す図である。

【図7】 データ転送処理部の構成を示す図である。

【図8】 データ転送処理部の構成を示す図である。

【図9】 データ転送処理部の構成を示す図である。

【図10】 入力バッファメモリに入力される画像デー

タのイメージを示す図である。

【図11】 入出力バッファメモリのデータ格納エリアのイメージを示す図である。

【図12】 全体制御部において実行される制御処理の メインルーチンのフローチャートである。

【図13】 キー入力処理のフローチャートである。

【図14】 キー入力処理のフローチャートである。

【図15】 一括読み込み設定処理のフローチャートである。

【図16】 モード設定処理のフローチャートである。

【図17】 パネル入力処理のフローチャートである。

【図18】 メモリユニット内に備えるCPUの実行する制御処理のフローチャートである。

【図19】 ページカウント処理のフローチャートである。

【図20】 サイズ設定処理のフローチャートである。

【図21】 入力処理のフローチャートである。

【図22】 圧縮用レジスタ設定処理のフローチャートである。

【図23】 圧縮用レジスタ設定処理のフローチャートである。

【図24】 伸張用レジスタ設定処理のフローチャートである。

【図25】 伸張用レジスタ設定処理のフローチャート である。

【図26】 ページ設定処理のフローチャートである。

【図27】 圧縮・伸張処理部レジスタ設定処理のフローチャートである。

【図28】 出力処理のフローチャートを示す。

【符号の説明】

9…CCDラインセンサ

10…画像処理ユニット

13…メモリユニット

100…イメージリーダ部

200…プリンタ部

300…全体制御部

400…操作パネル

501、504、510…データ転送処理部

502…入力バッファメモリ

503 ··· CPU

505…出力バッファメモリ

506、507、508、509…圧縮・伸張処理部

511…符号メモリ

512…外部インターフェース

【図13】

【図15】

【図20】

【図22】

【図23】

【図24】

【図25】

【図27】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.