

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP2 2° semestre de 2018

Observações:

- A prova é acompanhada de uma tabela da distribuição Normal
- É permitido o uso de máquina de calcular
- Todos os cálculos devem ser mostrados passo a passo para a questão ser considerada
- Utilize em todos os cálculos pelo menos quatro casas decimais arrendondando para duas só ao final
- Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas
- Você pode usar lápis para responder as questões
- Os desenvolvimentos e respostas devem ser escritas de forma legível
- Ao final da prova devolva as folhas de questões e as de respostas
- Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões ou em folhas marcadas como rascunho não serão corrigidas.
- É PROIBIDO O USO DE CELULARES DURANTE A PROVA SOB QUALQUER PRETEXTO.

Professores: Otton Teixeira da Silveira Filho e Regina Célia de Paula Toledo

1 - Primeira questão (2,0 pontos)

Verifique quais das funções abaixo são distribuições de probabilidade. Caso alguma não seja devido à constante de normalização, apresente a função normalizada.

Em todas as questões verificaremos se as funções são não negativas e as integraremos para verificar se elas estão normalizadas.

a)
$$f(x)=(x-1)(x-2); x \in [1,2]$$

Resolução:

Observe que a função toma valores negativos em todo intervalo, menos nos extremos. Por exemplo, em x=1,5 o valor da função é -0,25. Portanto, não pode ser distribuição de probabilidade.

b)
$$f(x)=3(x-1)(x-2); x \in [-1,1]$$

Resolução:

Repare que no intevalo dado a função não toma nenhum valor negativo, sendo nula em x = 1. Integremos:

$$\int_{-1}^{1} 3(x-1)(x-2) dx = \int_{-1}^{1} \left[3x^{2} - 9x + 6 \right] dx = 3\int_{-1}^{1} x^{2} dx - 9\int_{-1}^{1} x dx + 6\int_{-1}^{1} dx = 3\frac{x^{3}}{3} \Big|_{-1}^{1} - 9\frac{x^{2}}{2} \Big|_{-1}^{1} + 6x \Big|_{-1}^{1}$$

ou

$$\int_{1}^{1} 3(x-1)(x-2) dx = 1^{3} - (-1)^{3} - \frac{9}{2} [1^{2} - (-1)^{2}] + 6[1 - (-1)] = 2 + 12 = 14$$

Aplicando a constante de normalização teremos a distribuição de probabilidade

$$f(x) = \frac{3}{14}(x-1)(x-2); x \in [-1,1]$$
.

c)
$$4x(x-1)(x-2)$$
; $x \in [0,1]$

Resolução:

Esta função é não negativa em todos o intervalo se anulando em x = 1. Integremos

$$\int_{0}^{1} 4x(x-1)(x-2) dx = 4 \int_{0}^{1} (x^{3}-3x^{2}+2x) dx = 4 \left[\int_{0}^{1} x^{3} dx - 3 \int_{0}^{1} x^{2} dx + 2 \int_{0}^{1} x dx \right]$$

ou

$$\int_{0}^{1} 4x(x-1)(x-2) dx = 4\left[\frac{x^{4}}{4}|_{0}^{1} - 3\frac{x^{3}}{3}|_{0}^{1} + 2\frac{x^{2}}{2}|_{0}^{1}\right] = 4\left[\frac{1}{4} - 1 + 1\right] = 1.$$

Esta função é uma distribuição de probabilidade.

d)
$$f(x) = sen(4x); x \in [0, \pi/2]$$

Resolução:

Observe que esta função toma valores negativos para x maior que $\pi/4$. Logo não é distribuição de probabilidade.

2 – Segunda questão (1,0 ponto)

Um estudante de botânica calculava a área foliar de uma variedade de tomateiros. Depois de tediosas medidas diretas de dezenas de folhas de vários tomateiros, ela obteve a média (7,3 cm²) e variância (5,29 cm⁴) da área das folhas. Calcule a probabilidade de se encontrar num tomateiro similar

a) uma folha com área maior que 9 cm²;

Resolução:

Vamos supor que a amostra seja grande o suficiente para usarmos a distribuição Normal. Assim teremos para a probabilidades

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$
.

Para os valores dados teremos $\sigma^2 = 5,29 \Rightarrow \sigma = 2,3$ **logo**

$$P(X>9)=0,5-P(Z<9)=0,5-P(Z<\frac{9-7,3}{2,3})\approx0,5-P(Z<0,74)=0,5-0,2704=0,2296$$
.

b) uma folha com área menor que 4,5 cm².

Resolução:

Aqui teremos

$$P(X<4,5)=P\left(Z<\frac{4,5-7,3}{2,3}\right)\approx P(Z<-1,2117)\approx P(Z<-1,21)=0,5-P(Z<1,21)=0,5-0,3869=0,1131$$
.

3 – Terceira questão (2,0 pontos)

A figura abaixo representa uma função de distribuição de probabilidade (a função vale zero para valores fora do intervalo [0, 1]).

a) Prove que esta função é de fato uma função de probabilidade;

Resolução:

Esta função pode ser entendida como a composição de um trapézio e um retângulo ou como a composição de um triângulo de dos retângulos. No entanto, tal observação não nos ajudaria muito quando calcularmos a média e a variância. Façamos esta função como a composição de uma região definida por um segmento de reta definido pelos pontos (0, 0) e (1/4, 7/5) e duas funções constantes. Determinemos a reta sabendo que a equançã oda reta é dada por y=ax+b. Com o ponto (0,0) já sabemos que b=0. calculemos a usando o outro ponto, ou seja,

$$\frac{7}{5} = a \frac{1}{4} \Rightarrow a = \frac{28}{5}$$
.

A equação da reta é então $y = \frac{28}{5}x$. Integremos

$$\int_{0}^{1} f(x) dx = \int_{0}^{1/4} \frac{28}{5} x dx + \int_{1/4}^{3/4} \frac{7}{5} dx + \int_{3/4}^{1} \frac{1}{2} dx = \frac{28}{5} \frac{x^{2}}{2} \Big|_{0}^{1/4} + \frac{7}{5} x \Big|_{1/4}^{3/4} + \frac{1}{2} x \Big|_{3/4}^{1} = \frac{14}{5} \frac{1}{16} + \frac{7}{5} \left(\frac{3}{4} - \frac{1}{4} \right) + \frac{1}{2} \left(1 - \frac{3}{4} \right)$$

ou

$$\int_{0}^{1} f(x) dx = \frac{7}{40} + \frac{7}{10} + \frac{1}{8} = 1 .$$

b) Calcule a média da distribuição;

Resolução:

Da definição de média temos

$$\mu = \int_{0}^{1} x f(x) dx = \int_{0}^{1/4} \frac{28}{5} x^{2} dx + \int_{1/4}^{3/4} \frac{7}{5} x dx + \int_{3/4}^{1} \frac{1}{2} x dx = \frac{28}{5} \frac{x^{3}}{3} \Big|_{0}^{1/4} + \frac{7}{5} \frac{x^{2}}{2} \Big|_{1/4}^{3/4} + \frac{1}{2} \frac{x^{2}}{2} \Big|_{3/4}^{1}$$

que resulta em

$$\mu = \frac{28}{15} \frac{1}{64} + \frac{7}{10} \left[\left(\frac{3}{4} \right)^2 - \left(\frac{1}{4} \right)^2 \right] + \frac{1}{4} \left[1^2 - \left(\frac{3}{4} \right)^2 \right] = \frac{7}{240} + \frac{7}{20} + \frac{7}{64} = \frac{469}{960} \approx 0,4885 .$$

c) Calcule a variância da distribuição;

Resolução:

Partindo da definição

$$\sigma^2 = \int_0^1 x^2 f(x) dx - \mu^2$$

calculemos a integral

$$\int_{0}^{1} x^{2} f(x) dx = \int_{0}^{1/4} \frac{28}{5} x^{3} dx + \int_{1/4}^{3/4} \frac{7}{5} x^{2} dx + \int_{3/4}^{1} \frac{1}{2} x^{2} dx = \frac{28}{5} \frac{x^{4}}{4} \Big|_{0}^{1/4} + \frac{7}{5} \frac{x^{3}}{3} \Big|_{1/4}^{3/4} + \frac{1}{2} \frac{x^{3}}{3} \Big|_{3/4}^{1} .$$

Desenvolvendo teremos

$$\int_{0}^{1} x^{2} f(x) dx = \frac{7}{5} \frac{1}{256} + \frac{7}{15} \left[\left(\frac{3}{4} \right)^{3} - \left(\frac{1}{4} \right)^{3} \right] + \frac{1}{6} \left[1^{3} - \left(\frac{3}{4} \right)^{3} \right] = \frac{7}{1280} + \frac{91}{480} + \frac{37}{384} \approx 0,2914 .$$

Assim sendo teremos

$$\sigma^2 = \int_0^1 x^2 f(x) dx - \mu^2 = 0,2914 - (0,4885)^2 \approx 0,05277 .$$

d) Calcule a moda desta distribuição.

Resolução:

Como a moda é o valor para o qual a distribuição de probabilidade toma seu maior valor, temos que a distribuição aqui apresentada é multimodal valendo os valores no intervalo [1/4, ¾].

4 – Quarta questão (2,0 pontos)

Calcule as probabilidades solicitadas:

a) P(0.65 < X < 0.88) para a distribuição da terceira questão.

Resolução:

Neste caso a probabilidade será dada por

$$P(0,65 < X < 0,88) = \int_{0.65}^{0.88} f(x) dx = \int_{0.65}^{3/4} \frac{7}{5} dx + \int_{3/4}^{0.88} \frac{1}{2} dx = \frac{7}{5} x \Big|_{0.65}^{3/4} + \frac{1}{2} x \Big|_{3/4}^{0.88} = \frac{7}{5} \left(\frac{3}{4} - 0,65 \right) + \frac{1}{2} \left(0,88 - \frac{3}{4} \right)$$

portanto,

$$P(0.65 < X < 0.88) = 0.14 + 0.065 = 0.205$$
.

b) P(0,65 < X < 0,88) para distribuição Normal com média 0,45 e variância 5,32;

Resolução:

Usemos

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$
.

Neste item teremos

$$P[0,65 < X < 0,88] = P\left(\frac{0,65 - 0,45}{\sqrt{5,32}} < Z < \frac{0,88 - 0,45}{\sqrt{5,32}}\right) \approx P\left(\frac{0,2}{2,3065} < Z < \frac{0,43}{2,3065}\right) = P[0,08671 < Z < 0,1864],$$

e então.

$$P(0.65 < X < 0.88) \approx P(0.09 < Z < 0.19) = P(0.19 < Z) - P(0.09 < Z) = 0.0753 - 0.0359 = 0.0394$$
.

c) P(0,65 < X < 0,88) para a distribuição Normal com média 0,45 e variância 1,74; **Resolução:**

$$P(0.65 < X < 0.88) = P\left(\frac{0.65 - 0.45}{\sqrt{1.74}} < Z < \frac{0.88 - 0.45}{\sqrt{1.74}}\right) \approx P\left(\frac{0.2}{1.3191} < Z < \frac{0.43}{1.3191}\right) \approx P(0.1516 < Z < 0.3260),$$

ou

$$P(0.65 < X < 0.88) \approx P(0.16 < Z < 0.33) = P(0.33 < Z) - P(0.16 < Z) = 0.1293 - 0.0636 = 0.0657$$
.

d) P(0.65 < X < 0.88) para a distribuição Exponencial com $\alpha = 0.86$.

Resolução:

Aqui usaremos

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b}$$

que para este item permite escrever

$$P(0,65 < X < 0,88) = e^{-0,86 \times 0,65} - e^{-0,86 \times 0,88} = e^{-0,559} - e^{-0,7568} \approx 0,5718 - 0,4692 = 0,1026 .$$

5 – Quinta questão (2,0 pontos)

Um grupo de biólogos encontraram o que parece ser uma nova espécie de sapo numa região da Amazônia próxima a uma área ameaçada por exploração desordenada de madeira. Queriam caracterizar o peso destes pequenos animais. Foram capturadas 10 rãs e se obteve os seguintes pesos

Peso(g)	6,7	5,8	4,5	5,4	4,9	6,2	6,1	5,5	6,8	6,1	
---------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

Use estimadores não viciados para obter a média e a variância desta amostra. Feito isto, obtenha a estimativa do intervalo de confiança para a média da população com um coeficiente de confiança de 90 %.

Resolução:

Usaremos os estimadores apresentados abaixo para a média e para a variãncia

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 e $var = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \bar{X}^2 \right)$.

Assim, calculemos

$$\bar{X} = \frac{6,7+5,8+4,5+5,4+4,9+6,2+6,1+5,5+6,8+6,1}{10} = 5,8$$
.

Calculemos o somatório da variãncia

$$\sum_{i=1}^{10} X_i^2 = 6.7^2 + 5.8^2 + 4.5^2 + 5.4^2 + 4.9^2 + 6.2^2 + 6.1^2 + 5.5^2 + 6.8^2 + 6.1^2 = 341.2 ,$$

assim teremos

$$var = \frac{1}{9}(341,2-10\times5,8^2) = \frac{4,8}{9} = \frac{8}{15} \approx 0,5333$$
.

Caculemos o intervalo de confiança dado por

$$IC(\mu, \gamma) = \left[\bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right]$$
.

Neste caso temos $\frac{\sigma}{\sqrt{n}} = \frac{\sqrt{8/15}}{\sqrt{10}} = \sqrt{\frac{4}{75}} \approx 0,2309$ e $z_{\gamma/2} = z_{0,45} = 1,65$ e assim teremos

$$IC = [5,8-1,65\times0,2309;5,8+1,65\times0,2309] = [5,4190;6,1809] \approx [5,42;6,18]$$
.

6 – Sexta questão (1,0 ponto)

Uma empresa fazia um levantamento do setor de atendimento ao consumidor. O tempo de atendimento de cada cliente, T, foi modelado por uma densidade Exponencial (1,3). Calcule:

a)
$$P(T<1,1)$$

Resolução:

Usemos

$$P(a < X < b) = e^{-\alpha a} - e^{-\alpha b}$$

que no caso da distribuição Exponencial é equivalente a

$$P(0 < X < 1,1) = 1 - e^{-1,3 \times 1,1} \approx 1 - 0,23293 = 0,7607$$
.

b)
$$P(T<1,2|T\leq3,2)$$

Resolução:

Neste caso a probabilidade condicional é dada portanto

$$P(T<1,2|T\leq3,2) = \frac{P(T<1,2;T\leq3,2)}{P(T\leq3,2)} = \frac{P(T\leq1,2)}{P(T\leq3,2)} = \frac{1-e^{-1,3\times1,2}}{1-e^{-1,3\times3,2}} \approx \frac{0,7898}{0,9844} \approx 0,8023.$$

Tabela da distribuição Normal N(0,1)

\mathbf{Z}_{c}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.