Basic Latex Example

Steve D Roach

Table of Contents

1. Demo1	1
1.1. Ascii Doc Source Code	1
1.2. Output	1
2. Demo 2	2
2.1. Ascii Doc Source Code	2
2.2. Output	2
3. Demo 3	
3.1. Ascii Doc Source Code	
3.2. Output	
4. Demo 4	4
4.1. AsciiDoc Source Code	4
4.2. Output	4
5. Demo 5 - Conduction in a finite thickness, rotating disk	5
5.1. AsciiDoc Source Code	5
5.2. Output	5
6. Demo 6	6
6.1. Combining Multiple equations in a single diagram	6
6.2. AsciiDoc Source Code	6
6.3. Output	6
7. Demo 7	7
7.1. Source	7
7.2. Output	7
8. Demo 8 Bit complex	8
8.1. Source	8
8.2. Output	8
9. Demo 9	9
9.1. Source	9
9.2 Output	Q

Chapter 1. Demo1

1.1. Ascii Doc Source Code

```
@startmath
f(t)=(a_0)/2 + sum_(n=1)^ooa_ncos((npit)/L)+sum_(n=1)^oo b_n sin((npit)/L)
@endmath
----
```

1.2. Output

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi t}{L}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi t}{L}\right)$$

Figure 1. demo1

Chapter 2. Demo 2

2.1. Ascii Doc Source Code

```
[latex,demo2]
----
@startmath
\underbrace{a_0+a_1+a_2+\cdots+a_n}_{x}
@endmath
----
```

$$\underbrace{a_0 + a_1 + a_2 + \dots + a_n}_{x}$$

Figure 2. demo2

Chapter 3. Demo 3

3.1. Ascii Doc Source Code

```
[latex,demo3]
----
@startmath
2x^2 + 3(x-1)(x-2) = 2x^2 + 3(x^2-3x+2) = 2x^2 + 3x^2 - 9x + 6 = 5x^2 - 9x + 6
@endmath
----
```

$$2x^2 + 3(x - 1)(x - 2) = 2x^2 + 3(x^2 - 3x + 2) = 2x^2 + 3x^2 - 9x + 6 = 5x^2 - 9x + 6$$
 Figure 3. demo3

Chapter 4. Demo 4

4.1. AsciiDoc Source Code

```
[latex,demo4]
----
@startuml
!theme silver
:<latex>q_{w}=\varepsilon q_{w,0} \sqrt{\frac{{L}}{{h_{ w}}}}</latex>;
@enduml
----
```

$$q_w = arepsilon q_{w,0} \sqrt{rac{L}{h_w}}$$

Figure 4. demo4

Chapter 5. Demo 5 - Conduction in a finite thickness, rotating disk

5.1. AsciiDoc Source Code

```
[latex,demo5]
----
@startuml
!theme silver
:<latex>\frac {\partial^2 u} {\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \left(\frac{r_0}{z_0}\right)^2 \frac{\partial^2 u}{\partial \zeta^2} = P\frac{\partial u}{\partial \theta}; \quad P = \omega r_0^2 /
\alpha</latex>;
@enduml
----
```

$$\frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \left(\frac{r_0}{z_0}\right)^2 \frac{\partial^2 u}{\partial \zeta^2} = P \frac{\partial u}{\partial \theta}; \quad P = \omega r_0^2 / \alpha$$

Figure 5. demo5

Chapter 6. Demo 6

6.1. Combining Multiple equations in a single diagram

6.2. AsciiDoc Source Code

```
[latex,demo6]
----
@startuml
!theme silver
:<latex>q_{w}=\varepsilon q_{w,0} \sqrt{\frac{{L}}{{h_{ w}}}}</latex>;
:<latex>\frac {\partial^2 u} {\partial \rho^2}</latex>;
@enduml
----
```

6.3. Output

Figure 6. demo6

Chapter 7. Demo 7

7.1. Source

```
[latex,demo7]
----
@startuml
!theme silver
scale 4
skinparam Backgroundcolor transparent
:<math>int_-1^1 sqrt(1-x^2)dx = pi/2</math>]
@enduml
----
```

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx = \frac{\pi}{2}$$

Figure 7. demo7

Chapter 8. Demo 8 Bit complex

8.1. Source

```
@startuml
 !theme silver
left to right direction
skinparam dpi 192
 skinparam componentStyle uml2
 [\begin{cases} \cline{1.5cm} \cline{1.5cm}
 [<color:blue><latex>\mathcal{D}</latex></color>] as D
 [<latex>\mathcal{H}</latex>] as H
 [<latex>\mathcal{g}</latex>] as g
 [<latex>P(\mathbf{x})</latex>] as Px
 (<latex>\mathcal{A}</latex>) as A
Px --> D
fx --> D
D --> A
H --> A
A \longrightarrow g
 g .-> fx: <latex>\mbox{Loss}(f,g)</latex>
@enduml
```


Figure 8. demo8

Chapter 9. Demo 9

9.1. Source

```
[latex,demo9]
----
@startuml
!theme silver
:<math>f(t) = a_(0)/2 + sum_(n=1)^oo [a_(n) cos(nt) + b_(n) sin(nt)]</math>]
:<math>x^' = frac(-b -sqrt(Delta))(2a)</math>]
:<math>ax^2 + bx + c = 0</math>]
@enduml
----
```

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(nt) + b_n \sin(nt) \right]$$

$$x' = \frac{-b - \sqrt{\Delta}}{2a}$$

$$ax^2 + bx + c = 0$$

Figure 9. demo9