

Agenda

- 1. Theoretical background
- 2. Algorithm: Normalized Advantage Function
- 3. Model-based Acceleration of NAF
- 4. Experimental Results
- 5. Outlook
- 6. Critique

Reinforcement Learning Recap

An agent learns how to **take actions** in a dynamic, unknown environment in order to **maximize** some cumulative reward

Environment modeled as a **Markov Decision Process**:

Objective:

$$\underset{\pi(a|s)}{\operatorname{argmax}} \mathbb{E}\left[\sum_{t=0} \gamma^t r_t \left| \pi(a|s), s_0 \right] \right]$$

- States $s \in \{s_a, s_b, s_c\}$
- Actions $a \in \{R, L, S\}$
- Transition probabilities p(s'|s,a)
- Rewards r

Terminology

- Policy $\pi(a|s)$
 - Strategy which action a to take in state s
- Transition (s, a, r, s')
- Trajectory $\tau = (s_0, a_0, r_0, s_1, a_1, ..., s_T)$
- Value function V^{π}
 - $V^{\pi}(s_0) = \mathbb{E}\left[\sum_{t=0} \gamma^t r_t \mid \pi, s_0\right]$
 - Defined w.r.t. some policy
 - Cumulative reward when following the policy from this state
- State-Action Value function Q^{π}
 - $Q^{\pi}(s_0, a_0) = \mathbb{E}[\sum_{t=0} \gamma^t r_t | \pi, s_0, a_0]$
 - Take any action in the current state
 - Then follow the policy afterwards

Advantage Function

$$A(s,a) = Q(s,a) - V(s)$$

Quantify changes in rewards when going off-policy

If
$$\max_{a} A(s, a) = 0$$
:

$$\max_{a} Q(s, a) = V(s)$$

Bellman Equation

Recursive way of writing the Value function:

$$V^{\pi}(s_0) = \mathbb{E}_{a_0 \sim \pi(a_0|s_0)} \mathbb{E}_{s_1 \sim p(s_1|s_0,a_0)} [(r(s_0,a_0,s_1) + \gamma V^{\pi}(s_1))]$$

Bellman Optimality:
$$V^*(s_0) = \max_{a} \left(\mathbb{E}_{s_1 \sim p(s_1 | s_0, a_0)} \left[\left(r(s_0, a_0, s_1) + \gamma V^*(s_1) \right) \right] \right)$$

How can we determine the optimal policy?

Use the Bellman optimality!

$$V_{t+1}(s_0) \leftarrow \max_{a} \left(\sum_{s_1} p(s_1|s_0, a) \left(r(s_0, a, s_1) + \gamma V_t(s_1) \right) \right)$$
 Model-based

Need to know the model dynamics

Optimal policy:
$$\pi^*(a|s) = \underset{\hat{a}}{\operatorname{argmax}} Q^*(s, \hat{a})$$
 (Greedy policy)

What can we do instead?

- Collected transitions (s, a, r, s') indirectly encode the model dynamics
- Use them to obtain **bootstrap estimate** of the Q-function

$$Q^{*}(s, a) = \mathbb{E}_{s_{1} \sim p(s_{1}|s, a)} \left(r(s, a, s_{1}) + \gamma \max_{a_{1}} Q^{*}(s_{1}, a_{1}) \right) \approx r + \gamma \max_{a'} Q^{*}(s', a')$$

$$Q_{t+1}(s, a) \leftarrow Q_{t}(s, a) + \alpha \left(r + \gamma \max_{a'} Q_{t}(s', a') - Q_{t}(s, a) \right) \quad \text{Model-free}$$

Q-Learning

A TD-Learning algorithm

Model-free

Off-policy

- 1. Collect transitions by following explorative policy (e.g. ε -greedy)
- 2. Update Rule:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(\underbrace{(r + \gamma \max_{a} Q(s_{t+1}, a))}_{\text{Learning rate}} - Q(s_t, a_t)) - Q(s_t, a_t))$$

Until convergence

- 3. Optimal policy: Greedy policy $\pi(a|s) = \underset{a'}{\operatorname{argmax}} Q(s, a')$
- Update rule looks like Gradient Ascent!
- - $Q(s,a) \approx Q(s,a|\theta)$

• Loss
$$L = \frac{1}{N} \sum_{i}^{N} \left(\left(r^{(i)} + \gamma \max_{a} Q\left(s_{t+1}^{(i)}, a | \theta \right) \right) - Q\left(s_{t}^{(i)}, a_{t}^{(i)} | \theta \right) \right)^{2}$$
Label (fixed) Backprop through this term

Taxonomy

Collect transitions (s_t, a_t, r, s_{t+1}) by ...

On-policy

... following the policy that is optimized

Off-policy

- ... following a different policy than the optimized one
- + higher sample efficiency

Optimize the policy ...

Model-based

- ... on a learnt model of the environment
- + Need fewer real-world rollouts
- Policy quality limited by quality of learned model

Model-free

- ... directly on the real environment
- + Can handle complex systems

Difficulties of Q-Learning

Need to compute $argmax \, Q(s_t, a)$ to collect a rollouts and $max \, Q(s_t, a)$ at every gradient step

Infeasible to do naively in continuous action spaces

Actor-Critic Methods

Need to experience good and **bad** transitions **in the beginning** to learn good policy

Dangerous in safety-critical applications

Need to **interact** with environment **many times** to collect rollouts

Less sample-efficient than model-based approaches

Deep Deterministic Policy Gradient

Deep RL in continuous action spaces

- Q-Function network and Policy network → 2 sets: Online and Target
- Replay Buffer R stores all transitions

Collect a trajectory (=episode)

Collect the next transition
• Store in R

Update Q-Function and Policy
• On a random batch from R

Online networks: Hard update (Gradient Descent)

Target networks: Soft update (Moving Average of Online)

Stabilize Training

Deep Deterministic Policy Gradient

Model-free

Off-policy

Deep RL in continuous action spaces

Algorithm 1 DDPG algorithm Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ . Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$ Initialize replay buffer Rfor episode = 1, M do Initialize a random process \mathcal{N} for action exploration Receive initial observation state s_1 for t = 1. T do Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise Execute action a_t and observe reward r_t and observe new state s_{t+1} Collect Store transition (s_t, a_t, r_t, s_{t+1}) in R transition Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1} | \theta^{\mu'}) | \theta^{Q'})$ Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$ Update Update the actor policy using the sampled policy gradient: networks $J \approx \frac{1}{N} \sum_{i} Q(s, \mu(s|\theta^{\mu})|\theta^{Q}) \longrightarrow \nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a|\theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s|\theta^{\mu})|_{s_{i}}$ Update the target networks: $\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$ $\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$ end for end for

 $\longrightarrow Q(s,a|\theta^Q)$ and $\mu(s|\theta^\mu)$ trained on different objectives

Does DDPG solve all our problems?

Need to compute $\mathop{\rm argmax}_a Q(s_t,a)$ to collect $\mathop{\rm argmax}_a Q(s_t,a)$ at every gradient step

Need to experience good and **bad** transitions **in the beginning** to learn good policy Need to **interact** with environment **many times** to collect rollouts

Infeasible to do naively in continuous action spaces

Dangerous in safety-critical applications

Less sample-efficient than model-based approaches

Continuous Deep Q-Learning with Model-based Acceleration

Normalized Advantage Function

Model-free

Off-policy

Adapting Q-Learning to continuous action spaces

Algorithm 1 Continuous Q-Learning with NAF

```
Randomly initialize normalized Q network Q(x, u | \theta^Q).
         Initialize target network Q' with weight \theta^{Q'} \leftarrow \theta^Q.
         Initialize replay buffer R \leftarrow \emptyset.
        for episode=1, M do
            Initialize a random process \mathcal{N} for action exploration
            Receive initial observation state x_1 \sim p(x_1)
            for t=1, T do
               Select action \boldsymbol{u}_t = \mu(\boldsymbol{x}_t|\theta^{\mu}) + \mathcal{N}_t
Collect
                Execute u_t and observe r_t and x_{t+1}
transition
                Store transition (\boldsymbol{x}_t, \boldsymbol{u}_t, r_t, \boldsymbol{x}_{t+1}) in R
               for iteration=1. I do
                   Sample a random minibatch of m transitions from R
                   Set y_i = r_i + \gamma V'(x_{i+1}|\theta^{Q'}) = r_i + \gamma \max_{a} Q'(x_{i+1}, a|\theta^{Q'})
Update
                   Update \theta^Q by minimizing the loss: L = \frac{a}{N} \sum_i (y_i - y_i)^{-1}
networks
                   Q(\boldsymbol{x}_i, \boldsymbol{u}_i | \theta^Q))^2
                   Update the target network: \theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}
               end for
            end for
        end for
```

Parametrization of the Q-Function:

 $\longrightarrow \mu(s|\theta^{\mu})$ is trained on same objective as $V(s|\theta^{\nu})$ and $L(s|\theta^{\nu})$

A brief history of (Deep) RL

Does NAF solve all our problems?

Need to compute $\mathop{\rm argmax}_a Q(s_t,a)$ to collect $\mathop{\rm collouts}_a$ rollouts and $\mathop{\rm max}_a Q(s_t,a)$ at every gradient step

Need to experience good and **bad** transitions **in the beginning** to learn good policy Need to **interact** with environment **many times** to collect rollouts

Infeasible to do naively in continuous action spaces

Dangerous in safety-critical applications

Less sample-efficient than model-based approaches

Continuous Deep Q-Learning with Model-based Acceleration

Idea

- What if we had more experience to learn from, especially in the beginning?
- Can we get more experience without the danger of taking bad actions in the real environment?
- Can we leverage the advantages of Model-based learning?

Simulate rollouts using a model of the environment!

17

Dyna-Q

Model-based

Off-policy

Incorporate experience simulated by a Model (Sutton 1990)

Fitting the Dynamics Model

The iLQG algorithm (Tassa et al. 2012, Levine & Koltun 2013, Levine & Abbeel 2014)

- Collect n = 5 episodes $(s_0, a_0, s_1, ..., s_T)$ in \mathcal{B}_f
- For every timestep *t*:
 - 1. Fit Gaussian to Dynamics:

$$\left\{ \left(s_t^{(i)}, a_t^{(i)}, s_{t+1}^{(i)} \right)_{i=1} \right\} \approx p_t(s_{t+1}, a_t, s_t) \xrightarrow{\text{Condition on } (a_t, s_t)} p_t(s_{t+1} | a_t, s_t)$$

2. Compute Gaussian policy:

Q and V are locally quadratic under the Dynamics model

Policy
$$\pi_t^{iLQG}(a_t|s_t) = \mathcal{N}(\hat{a}_t + k_t + K_t(s_t - \hat{s}_t), c\Sigma)$$
 maximizes the locally quadratic Q begin to the local point Q begin to the local po

NAF + Model-based Acceleration

```
Algorithm 2 Imagination Rollouts with Fitted Dynamics
         and Optional iLQG Exploration
            Randomly initialize normalized Q network Q(x, u|\theta^Q).
            Initialize target network Q' with weight \theta^{Q'} \leftarrow \theta^Q.
            Initialize replay buffer R \leftarrow \emptyset and fictional buffer R_f \leftarrow \emptyset.
            Initialize additional buffers B_f \leftarrow \emptyset, B_{old} \leftarrow \emptyset with size nT.
            Initialize fitted dynamics model \mathcal{M} \leftarrow \emptyset.
            for episode = 1, M do
               Initialize a random process \mathcal{N} for action exploration
               Receive initial observation state x_1
Select \mu'(x,t) from \{\mu(x|\theta^{\mu}), \pi_t^{iLQG}(u_t|x_t)\} with proba-
                                                                                                              Switch between real-world rollouts from Greedy Policy and iLQG Policy
               bilities \{p, 1-p\}
               for t = 1, T do
                  Select action \boldsymbol{u}_t = \mu'(\boldsymbol{x}_t, t) + \mathcal{N}_t
Collect
                  Execute u_t and observe r_t and x_{t+1}
transition
                  Store transition (\boldsymbol{x}_t, \boldsymbol{u}_t, r_t, \boldsymbol{x}_{t+1}, t) in R and B_t
                  if mod (episode \cdot T + t, m) = 0 and \mathcal{M} \neq \emptyset then
                     Sample m(\mathbf{x}_i, \mathbf{u}_i, r_i, \mathbf{x}_{i+1}, i) from B_{old}
                     Use \mathcal{M} to simulate l steps from each sample
                                                                                                              Simulate Rollouts
                     Store all fictional transitions in R_f
                  end if
                  Sample a random minibatch of m transitions I \cdot l times
                                                                                                              Update networks on real-world rollouts and simulated rollouts
Update
                  from R_f and I times from R, and update \theta^Q, \theta^{Q'} as in
networks
                  Algorithm 1 per minibatch.
               end for
               if B_f is full then
                                                                                                               Update the Dynamics Model
                  \mathcal{M} \leftarrow \text{FitLocalLinearDynamics}(B_f)
                  \pi^{iLQG} \leftarrow iLOG\_OneStep(B_f, \mathcal{M})
                                                                                                               Update the iLOG Policy
                  B_{old} \leftarrow B_f, B_f \leftarrow \emptyset
                end if
            end for
```

Experimental Results

How good is NAF compared to DDPG?

Precision Robotic Tasks

- Faster convergence of NAF
- NAF finds the target precisely
- DDPG fluctuates around target

Locomotion Tasks

- Similar performance of NAF and DDPG
- Faster convergence of DDPG
 - Mode-seeking behavior of NAF

Experimental Results

Benefit of Model-based Acceleration

- iLQG real-world rollouts provide no significant improvement
 - Need to experience bad actions
- Faster convergence with Imagination rollouts

- Faster convergence with Imagination rollouts
- Most of the benefit of Model-based Acceleration in the beginning

Key Takeaways

- NAF as Q-Learning alternative to Actor-Critic methods in continuous action and state domains
 - ✓ Conceptually simpler than Actor-Critic
 - ✓ Mostly faster convergence than DDPG
 - ✓ Especially suited for high-precision tasks
- Leverage advantages of Model-based + Model-free methods with simulated experience
 - ✓ Need fewer real-world rollouts with Imagination rollouts
 - ✓ Good results with simple dynamics model
 - ✓ Combine the "best of both worlds"

Outlook

Schulman et al. 2017: PPO

Simpler policy gradient method with better performance

Haarnoja et al. 2018: SAC

More sample-efficient and stable Actor-Critic

Chebotar et al. 2017: PILQR

Directly combine Model-based and Model-free updates

Critique of the Paper

Pros

- Very systematic analysis of different approaches
- Include unsuccessful results aswell
 - iLQG exploration has no substantial benefit

Cons

- NAF not simpler than Actor-Critic methods in practice
 - Needs 3 NNs instead of 2 for Actor-Critic
 - But all trained on same objective
- Confusing usage of the terms on-policy vs. off-policy
- Typo in algorithm
- Do not explain iLQG algorithm in detail

Exploration Policy

Discrete action spaces (ε -greedy):

$$\pi(a|s) = \begin{cases} \arg\max Q(s,a) & \text{with probability } 1 - \varepsilon \\ a & \text{random action with probability } \varepsilon \end{cases}$$

Continuous action spaces:

$$\pi(a|s) = \arg\max_{a} Q(s,a) + \epsilon$$
 $\epsilon \sim \mathcal{N}$ (e.g. Ohrnstein-Uhlenbeck process)

NAF vs. DDPG

Domain	Description	Domain	Description
Cartpole	The classic cart-pole swing-up task. Agent must balance a pole attached to a cart by applying forces to the cart alone. The pole starts each episode hanging upside-down.	Reacher	Agent is required to move a 3-DOF arm from random starting locations to random target positions.
Peg	Agent is required to insert the tip of a 3-DOF arm from locally-perturbed starting locations to a fixed hole.	Gripper	Agent must use an arm with gripper appendage to grasp an object and manuver the object to a fixed target.
GripperM	Agent must use an arm with gripper attached to a moveable platform to grasp an object and move it to a fixed target.	Canada2d	Agent is required to use an arm with hockey-stick like appendage to hit a ball initialzed to a random start location to a random target location.
Cheetah	Agent should move forward as quickly as possible with a cheetah- like body that is constrained to the plane.	Swimmer6	Agent should swim in snake-like manner toward the fixed target using six joints, starting from random poses.
Ant	The four-legged ant should move toward the fixed target from a fixed starting position and posture.	Walker2d	Agent should move forward as quickly as possible with a bipedal walker constrained to the plane without falling down or pitching the torso too far forward or backward.

Domains	-	DDPG	episodes	NAF	episodes
Cartpole	-2.1	-0.601	420	-0.604	190
Reacher	-2.3	-0.509	1370	-0.331	1260
Peg	-11	-0.950	690	-0.438	130
Gripper	-29	1.03	2420	1.81	1920
GripperM	-90	-20.2	1350	-12.4	730
Canada2d	-12	-4.64	1040	-4.21	900
Cheetah	-0.3	8.23	1590	7.91	2390
Swimmer6	-325	-174	220	-172	190
Ant	-4.8	-2.54	2450	-2.58	1350
Walker2d	0.3	2.96	850	1.85	1530

Bellman Equation

$$V^{\pi}(s_0) = \sum_{a_0} \pi(a_0|s_0) \sum_{s_1} p(s_1|s_0, a_0) \left(r(s_0, a_0, s_1) + \gamma V^{\pi}(s_1) \right)$$

Bellman Optimality:
$$V^*(s_0) = \max_{a} \left(\sum_{s_1} p(s_1|s_0, a) \left(r(s_0, a, s_1) + \gamma V^*(s_1) \right) \right)$$

15.05.24 Frederieke Lohmann 29

Hyperparameters

Parameter	Value		
Number of Episodes for Model Fitting n	5		
Number of simulated steps $\it l$	5, 10		
Batch size m	?		
Number of updates I	5		
Episode length T	154?		
Number of Episodes M	$\sim 10^2 - 10^3$		
Fraction of greedy rollouts p	0.5, 0		