Département de Physique Faculté des Sciences Université Chouaïb Doukkali EL Jadida

Année Universitaire 2023-2024

Physique Quantique Série n^o 3 - SMP, S5

Exercice 1

Considérons une particule de moment cinétique j = 1.

- 1. Ecrire les matrices représentant les observables J^2 et J_z dans leur base des vecteurs propres communs. En déduire les représentations matricielles de J_x et J_y dans la même base.
- 2. Sans faire le calcul, donner les valeurs propres de J_x et J_y . Justifier votre réponse. Déterminer les vecteurs propres de J_y .
- 3. On suppose que le système est régi par l'hamiltonien $H = \omega J_x$ où ω est une constante positive. A l'instant t = 0, le système est préparé dans l'état $|\psi(0)\rangle = |j = 1, m = 1\rangle$.
 - (a) Déterminer l'état de $|\psi(t)\rangle$ A l'instant t>0.
 - (b) On effectue une mesure du moment cinétique à l'instant $t \neq 0$ selon l'axe oy, quelles sont les valeurs peut-on trouver et avec quelles probabilités.
 - (c) Calculer $\langle J_x \rangle_t$, $\langle J_y \rangle_t$ et $\langle J_z \rangle_t$. Que peut-on-conclure?.

Exercice 2

Le moment cinétique du spin $s=\frac{1}{2}$ peut s'écrire $\vec{S}=\frac{\hbar}{2}\vec{\sigma}$, où $\vec{\sigma}=(\sigma_x,\sigma_y,\sigma_z)$ est le vecteur formé par les matrices de Pauli σ_i .

- 1. Montrer que $\sigma_j \sigma_k = \delta_{jk} \mathbb{1} + i \varepsilon_{jk\ell} \sigma_\ell$.
- 2. En déduire que $[\sigma_j,\sigma_k]=2i\varepsilon_{jk\ell}\,\sigma_\ell$, $\left\{\sigma_j,\sigma_k\right\}=2\delta_{jk}\mathbbm{1}$, $\sigma_i^2=\mathbbm{1}$, et ${\rm Tr}\sigma_i=0$
- 3. Montrer que $(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma}) = (\vec{a} \cdot \vec{b})I + i\vec{\sigma} \cdot (\vec{a} \times \vec{b})$, où $\vec{a} = (a_1, a_2, a_3)$ et $\vec{b} = (b_1, b_2, b_3)$ sont deux vecteurs quelconques.
- 4. Montrer que toute matrice $M_{2\times 2}$, peut s'écrire sous la forme $M=a_0\mathbb{1}+\vec{a}.\vec{\sigma}$. Exprimer a_0,a_1,a_2 et a_3 sous forme d'une trace.
- 5. Démontrer que $\mathbf{e}^{i\phi\vec{n}.\vec{\sigma}} = \cos\phi\mathbb{1} + i\vec{n}.\vec{\sigma}\sin\phi$, où ϕ est un angle de rotation et \vec{n} un vecteur unitaire.

Exercice 3

On considère un système d'hamiltonien H et de moment orbital \vec{L} dont l'espace des états \mathcal{E} est rapporté à la base $\{|k,\ell,m\rangle\}$ où k est le nombre quantique associé à H et ℓ et m les nombres quantiques associés respectivement à L^2 et L_z .

- 1. Dans la représentation $|\vec{r}\rangle$, la fonction d'onde du système est donnée par $\psi_{k,\ell,m}(r,\theta,\varphi) = f(r)Y_\ell^m(\theta,\varphi)$. Montrer que : $Y_\ell^m(\theta,\varphi) = A_\ell^m(\theta) e^{im\varphi}$.
- 2. Montrer que $A_{\ell}^{-\ell}(\theta) = c_{\ell} \sin^{\ell}(\theta)$ où c_{ℓ} est une constante de normalisation.
- 3. Déterminer la constante de normalisation c_{ℓ} .

4. Déterminer les fonctions $Y_\ell^m(\theta,\varphi)$ pour $\ell=0$ et $\ell=1$. On donne :

$$I_{\ell} = \int_{0}^{\pi} (\sin \theta)^{2\ell+1} d\theta = 2 \frac{(2^{\ell} \ell!)^{2}}{(2\ell+1)!}, \qquad \int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} Y_{\ell}^{m} (Y^{*})_{\ell'}^{m'} \sin(\theta) d\theta d\varphi = \delta_{\ell \ell'} \delta_{mm'},$$

Exercice 4

Considérons la composition de deux moments cinétiques $j_1 = 2$ et $j_2 = 3/2$.

- 1. Le moment cinétique total \vec{J} est déterminé par les nombres quantiques j et m. Préciser les valeurs possibles de j et m.
- 2. Ecrire l'état $|j=5/2,m=1/2\rangle$ en fonction des états de la base découplée qu'on notera par $|j_1,m_1;j_2,m_2\rangle$. Vérifier le résultat en utilisant le tableau de Clebsch-Gordan.
- 3. Ecrire l'état $|m_1 = -2, m_2 = 3/2\rangle$ en fonction des états $|j, m\rangle$.

