기계학습 기초수학

이현석 교수

2024-1

- 기계 학습에서 수학의 역할
 - 수학은 목적함수를 정의하고, 목적함수가 최저가 되는 점을 찾아주는 최적화 이론 제공
 - 최적화 이론에 규제, 모멘텀, 학습률, 멈춤조건과 같은 제어를 추가하여 알고리즘 구축
 - 사람은 알고리즘을 설계하고 데이터를 수집함

- 선형대수: 이 분야의 개념을 이용하면 학습 모델의 매개변수집합, 데이터, 선형연산의 결합 등을 행렬 또는 텐서로 간결하게 표현할 수 있다. 데이터를 분석하여 유용한 정보를 알아내거나 특징 공간을 변환하는 등의 과업을 수행하는 데 핵심 역할을 한다.
- 확률과 통계: 데이터에 포함된 불확실성을 표현하고 처리하는 데 활용한다. 베이즈 이론과 최대 우 도 기법을 이용하여 확률 추론을 수행한다.
- 최적화: 목적함수를 최소화하는 최적해를 찾는 데 활용하며, 주로 미분을 활용한 방법을 사용한다. 수학자들이 개발한 최적화 방법을 기계 학습이라는 도메인에 어떻게 효율적으로 적용할지가 주요 관심사이다.

■ 벡터

- 샘플을 특징 벡터로feature vector 표현
- 예) Iris 데이터에서 꽃받침의 길이, 꽃받침의 너비, 꽃잎의 길이, 꽃잎의 너비라는 4개의 특징이 각각 5.1,
 3.5, 1.4, 0.2인 샘플

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}$$

■ 여러 개의 특징 벡터를 첨자로 구분

$$\mathbf{x}_{1} = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}, \ \mathbf{x}_{2} = \begin{pmatrix} 4.9 \\ 3.0 \\ 1.4 \\ 0.2 \end{pmatrix}, \ \mathbf{x}_{3} = \begin{pmatrix} 4.7 \\ 3.2 \\ 1.3 \\ 0.2 \end{pmatrix}, \ \cdots, \ \mathbf{x}_{150} = \begin{pmatrix} 5.9 \\ 3.0 \\ 5.1 \\ 1.8 \end{pmatrix}$$

■ 행렬

- 여러 개의 벡터를 담음
- 훈련집합을 담은 행렬을 설계행렬이라 부름
- 예) Iris 데이터에 있는 150개의 샘플을 설계 행렬 **X**로 표현

$$\mathbf{X} = \begin{pmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 4.9 & 3.0 & 1.4 & 0.2 \\ 4.7 & 3.2 & 1.3 & 0.2 \\ 4.6 & 3.1 & 1.5 & 0.2 \\ \vdots & \vdots & \vdots & \vdots \\ 6.2 & 3.4 & 5.4 & 2.3 \\ 5.9 & 3.0 & 5.1 & 1.8 \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\ x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\ x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\ x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4} \\ \vdots & \vdots & \vdots & \vdots \\ x_{149,1} & x_{149,2} & x_{149,3} & x_{149,4} \\ x_{150,1} & x_{150,2} & x_{150,3} & x_{150,4} \end{pmatrix}$$
 달 Column

■ 행렬 A의 전치행렬 A^T

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}, \quad \mathbf{A}^{\mathrm{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{pmatrix}$$

예를 들어,
$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 5 & 2 \end{pmatrix}$$
라면 $\mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 3 & 0 \\ 4 & 5 \\ 1 & 2 \end{pmatrix}$

Iris의 설계 행렬을 전치행렬 표기에 따라 표현하면,

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1^{\mathrm{T}} \\ \mathbf{X}_2^{\mathrm{T}} \\ \vdots \\ \mathbf{X}_{150}^{\mathrm{T}} \end{pmatrix}$$

- 행렬을 이용하면 수학을 간결하게 표현할 수 있음
 - 예) 다항식의 행렬 표현

$$f(\mathbf{x}) = f(x_1, x_2, x_3)$$

$$= 2x_1x_1 - 4x_1x_2 + 3x_1x_3 + x_2x_1 + 2x_2x_2 + 6x_2x_3 - 2x_3x_1 + 3x_3x_2 + 2x_3x_3 + 2x_1 + 3x_2 - 4x_3 + 5$$

$$= (x_1 \quad x_2 \quad x_3) \begin{pmatrix} 2 & -4 & 3 \\ 1 & 2 & 6 \\ -2 & 3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + (2 \quad 3 \quad -4) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + 5$$

$$= \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{x} + c$$

■ 특수한 행렬들

정사각행렬
$$\begin{pmatrix} 2 & 0 & 1 \\ 1 & 21 & 5 \\ 4 & 5 & 12 \end{pmatrix}$$
, 대각행렬 $\begin{pmatrix} 50 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 8 \end{pmatrix}$, 단위행렬 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 대칭행렬 $\begin{pmatrix} 1 & 2 & 11 \\ 2 & 21 & 5 \\ 11 & 5 & 1 \end{pmatrix}$

■ 행렬 연산

• 행렬 곱셈
$$\mathbf{C} = \mathbf{AB}$$
, 이때 $c_{ij} = \sum_{k=1,s} a_{ik} b_{kj}$

2*3 행렬
$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 5 & 2 \end{pmatrix}$$
와 3*3행렬 $\mathbf{B} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & 5 \\ 4 & 5 & 1 \end{pmatrix}$ 을 곱하면 2*3 행렬 $\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{pmatrix} 14 & 5 & 24 \\ 13 & 10 & 27 \end{pmatrix}$

- 교환법칙 성립하지 않음: AB ≠ BA
- 분배법칙과 결합법칙 성립: A(B+C) = AB + AC이고 A(BC) = (AB)C

• 벡터의 내적
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^{\mathrm{T}} \mathbf{b} = \sum_{k=1,d} a_k b_k$$

$$\mathbf{x}_1 = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}$$
와 $\mathbf{x}_2 = \begin{pmatrix} 4.9 \\ 3.0 \\ 1.4 \\ 0.2 \end{pmatrix}$ 의 내적 $\mathbf{x}_1 \cdot \mathbf{x}_2 \succeq 37.49$

■ 텐서

- 3차원 이상의 구조를 가진 숫자 배열
- 예) 3차원 구조의 RGB 컬러 영상

$$\mathbf{A} = \begin{pmatrix} 74 & 1 & 0 & 3 & 2 & 2 \\ 72 & 0 & 2 & 2 & 3 & 1 & 6 \\ 3 & 0 & 1 & 2 & 6 & 7 & 6 & 3 \\ 3 & 1 & 2 & 3 & 5 & 6 & 3 & 0 \\ 1 & 2 & 2 & 2 & 2 & 2 & 3 & 0 \\ 3 & 0 & 0 & 1 & 1 & 0 & 3 & 1 \\ 5 & 4 & 1 & 3 & 3 & 3 & 3 & 1 \\ 2 & 2 & 1 & 2 & 2 & 1 & 1 \end{pmatrix}$$

- 벡터와 행렬의 크기를 놈으로 측정
 - 벡터의 p차 놈

$$p$$
차냠: $\|\mathbf{x}\|_p = \left(\sum_{i=1,d} |x_i|^p\right)^{\frac{1}{p}}$

최대 놈: $\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_d|)$

• 예)
$$\mathbf{x} = (3 - 4 \ 1)$$
 일 때, 2차 놈은 $\|\mathbf{x}\|_2 = (3^2 + (-4)^2 + 1^2)^{1/2} = 5.099$

■ 행렬의 프로베니우스 놈
$$\|\mathbf{A}\|_F = \left(\sum_{i=1,n} \sum_{j=1,m} a_{ij}^2\right)^{\frac{1}{2}}$$

예를 들어,
$$\left\| \begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix} \right\|_F = \sqrt{2^2 + 1^2 + 6^2 + 4^2} = 7.550$$

놈과 유사도

■ 유사도와 거리

■ 벡터를 기하학적으로 해석

■ 코사인 유사도

$$cosine_similarity(\mathbf{a}, \mathbf{b}) = \frac{\mathbf{a}}{\|\mathbf{a}\|} \cdot \frac{\mathbf{b}}{\|\mathbf{b}\|} = cos(\theta)$$

선형결합과 벡터공간

- 벡터
 - 공간상의 한 점으로 화살표 끝이 벡터의 좌표에 해당
- 선형결합이 만드는 벡터공간
 - 기저벡터 a와 b의 선형결합

$$\mathbf{c} = \alpha_1 \mathbf{a} + \alpha_2 \mathbf{b}$$

■ 선형결합으로 만들어지는 공간을 벡터공간이라 부름

그림 2-6 벡터의 연산

(a) 기저 벡터와 벡터공간

그림 2-7 벡터공간

(b) 정규직교 기저 벡터

■ 역행렬의 원리

그림 2-9 역행렬

■ 정사각행렬 A의 역행렬 A⁻¹

$$A^{-1}A = AA^{-1} = I$$

■ 예를 들어,
$$\begin{pmatrix} 2 & 1 \\ 6 & 4 \end{pmatrix}$$
의 역행렬은 $\begin{pmatrix} 2 & -0.5 \\ -3 & 1 \end{pmatrix}$

■ 정리

정리 2-1 다음 성질은 서로 필요충분조건이다.

- A는 역행렬을 가진다. 즉, 특이행렬이 아니다.
- A는 최대계수를 가진다.
- A의 모든 행이 선형독립이다.
- A의 모든 열이 선형독립이다.
- A의 행렬식은 0이 아니다.
- A^TA는 양의 정부호positive definite 대칭 행렬이다.
- A의 고윳값은 모두 0이 아니다.

행렬 분해

- 분해란?
 - 정수 3717은 특성이 보이지 않지만, 3*3*7*59로 소인수 분해를 하면 특성이 보이듯이, 행렬도 분해하면 여러모로 유용함
- 고윳값과 고유 벡터
 - 고유 벡터 v와 고윳값 λ

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

• 예를 들어,
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 3\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
이고 $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\begin{pmatrix} 1 \\ -1 \end{pmatrix} = 1\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 이므로, $\lambda_1 = 3, \lambda_2 = 1$ 이고 $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

■ 고윳값 분해eigen value decomposition

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1} \tag{2.21}$$

- Q는 A의 고유 벡터를 열에 배치한 행렬이고 A는 고윳값을 대각선에 배치한 대각행렬
- 예를 들어, $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix}$
- 고윳값 분해는 정사각행렬에만 적용 가능한데, 기계 학습에서는 정사각행렬이 아닌 경우의 분해도 필요하므로 고윳값 분해는 한계를 가짐

■ *n***m* 행렬 A의 특잇값 분해^{SVD(singular value decomposition)}

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} \tag{2.22}$$

- 왼쪽 특이행렬 U는 AA^T 의 고유 벡터를 열에 배치한 n*n 행렬
- 오른쪽 특이행렬 V는 A^TA 의 고유 벡터를 열에 배치한 m*m 행렬
- Σ 는 AA^{T} 의 고윳값의 제곱근을 대각선에 배치한 n*m 대각행렬

예를 들어. A를 4*3 행렬이라고 했을 때 다음과 같이 특잇값 분해가 된다.

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -0.1914 & -0.2412 & 0.1195 & -0.9439 \\ -0.5144 & 0.6990 & -0.4781 & -0.1348 \\ -0.6946 & -0.6226 & -0.2390 & 0.2697 \\ -0.4651 & 0.2560 & 0.8367 & 0.1348 \end{pmatrix}$$

$$\begin{pmatrix} 3.7837 & 0 & 0 \\ 0 & 2.7719 & 0 \\ 0 & 0 & 1.4142 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -0.7242 & -0.4555 & -0.5177 \\ -0.6685 & 0.2797 & 0.6891 \\ 0.1690 & -0.8452 & 0.5071 \end{pmatrix}$$

확률과 통계

■ 기계 학습이 처리할 데이터는 불확실한 세상에서 발생하므로, <mark>불확실성을</mark> 다루는 확률과 통계를 잘 활용해야 함

- 확률변수random variable
 - 예) 윷

그림 2-13 윷을 던졌을 때 나올 수 있는 다섯 가지 경우(왼쪽부터 도, 개, 걸, 윷, 모)

- 다섯 가지 경우 중 한 값을 갖는 확률변수 *x*
- *x*의 정의역은 {도, 개, 걸, 윷, 모}

■ 확률분포

$$P(x = \Xi) = \frac{4}{16}, P(x = 71) = \frac{6}{16}, P(x = 2) = \frac{4}{16}, P(x = 2) = \frac{1}{16}, P(x = 1) = \frac{1}{16}$$

그림 2-14 확률분포

■ 확률벡터random vector

• 예) Iris에서 확률벡터 \mathbf{x} 는 4차원 $\mathbf{x}=(x_1,x_2,x_3,x_4)^{\mathrm{T}}=(꽃받침 길이,꽃받침 너비_1,꽃잎 길이,꽃잎 너비)^{\mathrm{T}}$

- 간단한 확률실험 장치
 - 주머니에서 번호를 뽑은 다음, 번호에 따라 해당 병에서 공을 뽑고 색을 관찰함
 - 번호를 y, 공의 색을 x라는 확률변수로 표현하면 정의역은 $y \in \{0, 2, 3\}$, $x \in \{\text{파랑, 하양}\}$

그림 2-15 확률 실험

- 곱 규칙과 합 규칙
 - ①번 카드를 뽑을 확률은 *P*(*y*=①)=*P*(①)=1/8
 - 카드는 ①번, 공은 하양일 확률은 P(y=①,x=하양)=P(①,하양) ← 결합확률

$$P(y = 1, x = 5) = P(x = 5) + y = 1)P(y = 1) = \frac{9}{12} = \frac{3}{32}$$

- 곱 규칙 P(y,x) = P(x|y)P(y) (2.23)
- 하얀 공이 뽑힐 확률

$$P(\text{하양}) = P(\text{하양}(1))P(1) + P(\text{하양}(2))P(2) + P(\text{하양}(3))P(3)$$
$$= \frac{9}{128} + \frac{5}{158} + \frac{3}{68} = \frac{43}{96}$$

• 합규칙
$$P(x) = \sum_{y} P(y, x) = \sum_{y} P(x|y)P(y)$$
 (2.24)

■ 베이즈 정리 (식 (2.26))

$$P(y,x) = P(x|y)P(y) = P(x,y) = P(y|x)P(x)$$

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} (2.26)$$

■ 다음 질문을 식 (2.27)로 쓸 수 있음

"하얀 공이 나왔다는 사실만 알고 어느 병에서 나왔는지 모르는데, 어느 병인지 추정하라."

베이즈 정리와 기계 학습

■ 베이즈 정리 (식 (2.26))

$$\hat{y} = \operatorname{argmax}_{y} P(y|x = \bar{c})$$
 $= \operatorname{argmax}_{y} \frac{P(x = \bar{c}) \cdot \bar{c}|y) P(y)}{P(x = \bar{c}) \cdot \bar{c}}$

■ 세 가지 경우에 대해 확률을 계산하면,

$$P(\hat{1}|\hat{5}|\hat{5}|) = \frac{P(\hat{5}|\hat{5}|\hat{1})P(\hat{1})}{P(\hat{5}|\hat{5}|)} = \frac{\frac{9}{12}\frac{1}{8}}{\frac{43}{96}} = \frac{9}{43}$$

$$P(2|\text{하양}) = \frac{P(\text{하양}2)P(2)}{P(\text{하양})} = \frac{\frac{5}{15}\frac{4}{8}}{\frac{43}{96}} = \frac{16}{43} \longrightarrow 3 \text{ 번 병일 확률이 가장 높음}$$

$$P(3|\vec{\delta}|\vec{\delta}) = \frac{P(\vec{\delta}|\vec{\delta}|3)P(3)}{P(\vec{\delta}|\vec{\delta}|\vec{\delta})} = \frac{\frac{3}{6}\frac{3}{8}}{\frac{43}{96}} = \frac{18}{43}$$

$$P(y|x) = \frac{P(x|y) P(y)}{P(x)}$$

베이즈 정리와 기계 학습

■ 기계 학습에 적용

- 예) Iris 데이터 분류 문제
 - 특징 벡터 x, 부류 y∈{setosa, versicolor, virginica}
 - 분류 문제를 argmax로 표현하면 식 (2.29)

$$\hat{y} = \underset{\mathbf{y}}{\operatorname{argmax}} P(\mathbf{y}|\mathbf{x}) \tag{2.29}$$

그림 2-16 붓꽃의 부류 예측 과정

- 사후확률 $P(y|\mathbf{x})$ 를 직접 추정하는 일은 아주 단순한 경우를 빼고 불가능
- 따라서 베이즈 정리를 이용하여 추정함
 - 사전확률은 식 (2.30)으로 추정

사전확률:
$$P(y = c_i) = \frac{n_i}{n}$$
 (2.30)

• 우도는 밀도 추정 기법으로 추정

■ 매개변수 Θ를 모르는 상황에서 매개변수를 추정하는 문제

• 예) [그림 2-17(b)] 상황

데이터집합 X={•00•0000000}

"데이터 \mathbb{X} 가 주어졌을 때, \mathbb{X} 를 발생시켰을 가능성을 최대로 하는 매개변수 $\Theta = \{q_3\}$ 의 값을 찾아라."

■ 최대 우도법

■ [그림 2-17(b)] 문제를 수식으로 쓰면,

$$\hat{q}_3 = \operatorname*{argmax}_{q_3} P(\mathbb{X}|q_3) \tag{2.31}$$

■ 일반화 하면,

최대 우도 추정:
$$\widehat{\Theta} = \underset{\Theta}{\operatorname{argmax}} P(\mathbb{X}|\Theta)$$
 (2.32)

• 수치 문제를 피하기 위해 로그 표현으로 바꾸면,

최대 로그우도 추정:
$$\hat{\Theta} = \underset{\Theta}{\operatorname{argmax}} \log P(\mathbb{X}|\Theta) = \underset{\Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log P(\mathbf{x}_{i}|\Theta)$$
 (2.34)

■ 데이터의 요약 정보로서 평균과 분산

평균
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

분산 $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$
(2.36)

■ 평균 벡터와 공분산 행렬

$$\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$

$$\boldsymbol{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}) (\mathbf{x}_{i} - \boldsymbol{\mu})^{\mathrm{T}}$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \ddots & \vdots \end{pmatrix} = \begin{pmatrix} \sigma_{11}^{2} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22}^{2} & \dots & \sigma_{2d} \\ \vdots & \ddots & \vdots \end{pmatrix}$$

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22}^{2} & \dots & \sigma_{2d} \\ \vdots & \ddots & \vdots \\ \sigma_{1} & \sigma_{2} & \dots & \sigma_{2d} \end{pmatrix} = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22}^{2} & \dots & \sigma_{2d} \\ \vdots & \ddots & \vdots \\ \sigma_{2n} & \sigma_{2n}^{2} & \dots & \sigma_{2d} \end{pmatrix}$$

■ 평균 벡터와 공분산 행렬 예제

예제 2-7

lris 데이터베이스의 샘플 중 8개만 가지고 공분산 행렬을 계산하자.

$$\mathbb{X} = \{\mathbf{x}_1 = \begin{pmatrix} 5.1 \\ 3.5 \\ 1.4 \\ 0.2 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 4.9 \\ 3.0 \\ 1.4 \\ 0.2 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 4.7 \\ 3.2 \\ 1.3 \\ 0.2 \end{pmatrix}, \mathbf{x}_4 = \begin{pmatrix} 4.6 \\ 3.1 \\ 1.5 \\ 0.2 \end{pmatrix}, \mathbf{x}_5 = \begin{pmatrix} 5.0 \\ 3.6 \\ 1.4 \\ 0.2 \end{pmatrix}, \mathbf{x}_6 = \begin{pmatrix} 5.4 \\ 3.9 \\ 1.7 \\ 0.4 \end{pmatrix}, \mathbf{x}_7 = \begin{pmatrix} 4.6 \\ 3.4 \\ 1.4 \\ 0.3 \end{pmatrix}, \mathbf{x}_8 = \begin{pmatrix} 5.0 \\ 3.4 \\ 1.5 \\ 0.2 \end{pmatrix} \}$$

먼저 평균벡터를 구하면 μ = $(4.9125, 3.3875, 1.45, 0.2375)^T$ 이다. 첫 번째 샘플 \mathbf{x} 을 식 (2.39)에 적용하면 다음과 같다.

$$(\mathbf{x}_1 - \boldsymbol{\mu})(\mathbf{x}_1 - \boldsymbol{\mu})^{\mathrm{T}} = \begin{pmatrix} 0.1875 \\ 0.1125 \\ -0.05 \\ -0.0375 \end{pmatrix} (0.1875 \quad 0.1125 \quad -0.05 \quad -0.0375)$$

$$= \begin{pmatrix} 0.0325 & 0.0211 & -0.0094 & -0.0070 \\ 0.0211 & 0.0127 & -0.0056 & -0.0042 \\ -0.0094 & -0.0056 & 0.0025 & 0.0019 \\ -0.0070 & -0.0042 & 0.0019 & 0.0014 \end{pmatrix}$$

나머지 7개 샘플도 같은 계산을 한 다음, 결과를 모두 더하고 8로 나누면 다음과 같은 공분산 행렬을 얻는다.

$$\boldsymbol{\Sigma} = \begin{pmatrix} 0.0661 & 0.0527 & 0.0181 & 0.0083 \\ 0.0527 & 0.0736 & 0.0181 & 0.0130 \\ 0.0181 & 0.0181 & 0.0125 & 0.0056 \\ 0.0083 & 0.0130 & 0.0056 & 0.0048 \end{pmatrix}$$

- 가우시안 분포
 - 평균 μ와 분산 σ²으로 정의

$$N(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$$

그림 2-19 가우시안 분포

■ 다차원 가우시안 분포: 평균벡터 µ와 공분산행렬 Σ로 정의

$$N(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{|\boldsymbol{\Sigma}|} \sqrt{(2\pi)^d}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

유용한 확률분포

■ 베르누이 분포

■ 성공(*x*=1) 확률 *p*이고 실패(*x*=0) 확률이 1-*p*인 분포

$$Ber(x; p) = p^{x}(1-p)^{1-x} = \begin{cases} p, & x = 1 일 \text{ 때} \\ 1-p, & x = 0 일 \text{ 때} \end{cases}$$

■ 이항 분포

■ 성공 확률이 *p*인 베르누이 실험을 *m*번 수행할 때 성공할 횟수의 확률분포

$$B(x; m, p) = C_m^x p^x (1 - p)^{m - x} = \frac{m!}{x! (m - x)!} p^x (1 - p)^{m - x}$$

그림 2-20 이항 분포

- 순수 수학 최적화와 기계 학습 최적화의 차이
 - 순수 수학의 최적화 예) $f(x_1, x_2) = -(\cos(x_1^2) + \sin(x_2^2))^2$ 의 최저점을 찾아라.
 - 기계 학습의 최적화는 단지 훈련집합이 주어지고, 훈련집합에 따라 정해지는 목적함수의 최저점을 찾아야 함
 - 데이터로 미분하는 과정 필요 → 오류 역전파 알고리즘 (딥러닝)
 - 주로 SGD(스토캐스틱 경사 하강법) 사용

최적화 이론

- 최적의 선택을 찾는 것
 - 무엇이 "최적"인가?
 - 모든 가능한 $\mathbf{x} \in \Omega$ 중 함수 $f(\mathbf{x})$ 를 최소화 (혹은 최대화)하는 \mathbf{x} 를 찾음
- 최적화 문제의 수학적 표현

minimize or maximize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Omega$

- $f(\mathbf{x})$: 목적함수 (objective function)
- $\mathbf{x} = [x_1, ..., x_n]^T$: 결정변수벡터 (vector of decision variables)
- $\Omega \subset \mathbb{R}^n$: 가능해집합 (feasible set)
- 목적함수 f를 최소화(최대화)하는 x를 최적해 (optimal solution) 라 함

■ 예1)

minimize
$$x^2 - 2x + 1$$

subject to $x \in [-2,2]$

■ 예2)

minimize
$$x^2 - 2x + 1$$

subject to $x \in [-6, -2]$

최적화 이론

- 예3) 선형회귀
 - n 개의 점 $(x_1, y_1), ..., (x_n, y_n)$
 - 위의 점을 가장 적은 오차로 표현하는 직선 y = ax + b 를 찾고 싶을 경우
 - 목적 \rightarrow 평균제곱오차를 최소화하는 직선의 매개변수 a, b를 찾는 최적화 문제

$$\underset{a,b}{\text{minimize}} \frac{1}{n} \sum_{i=1}^{n} (ax_i + b - y_i)^2$$

- n, x_i, y_i: 상수
- *a*, *b*: 결정변수

매개변수 공간의 탐색

- 학습 모델의 매개변수 공간
 - 특징 공간보다 수 배~수만 배 넓음 (딥러닝의 경우)
 - 선형회귀에서는 특징 공간은 1차원, 매개변수 공간은 2차원
 - MNIST 인식하는 딥러닝 모델은 784차원 특징 공간, 수십만~수백만 차원의 매개변수 공간
 - [그림 2-23] 개념도의 매개변수 공간: \hat{x} 은 전역 최적해, x_2 와 x_4 는 지역 최적해
 - x₂와 같이 전역 최적해에 가까운 지역 최적해를 찾고 만족하는 경우 많음

그림 2-23 최적해 탐색

■ 기계 학습이 해야 할 일을 식으로 정의하면,

$$J(\mathbf{\Theta})$$
를 최소로 하는 최적해 $\hat{\mathbf{\Theta}}$ 을 찾아라. 즉, $\hat{\mathbf{\Theta}} = \underset{\mathbf{\Theta}}{\operatorname{argmin}} J(\mathbf{\Theta})$ (2.50)

Θ는 매개변수, J(Θ)는 목적함수

매개변수 공간의 탐색

- 최적화 문제 해결
 - <mark>낱낱탐색^{exhaustive} search 알고리즘</mark>
 - 차원이 조금만 높아져도 적용 불가능
 - 예) 4차원 Iris에서 각 차원을 1000구간
 으로 나눈다면 총 1000⁴개의 점을 평가
 해야 함

- 무작위 탐색 알고리즘
 - 아무 전략이 없는 순진한 알고리즘

알고리즘 2-1 낱낱탐색 알고리즘

입력: 훈련집합 ※와 ※

출력: 최적해 $\hat{\Theta}$

- 1 가능한 해를 모두 생성하여 집합 *S*에 저장한다.
- 2 *min*을 충분히 큰 값으로 초기화한다.
- 3 for (S에 속하는 각 점 $\Theta_{current}$ 에 대해)
- $if(J(\mathbf{\Theta}_{current}) < min) \ min=J(\mathbf{\Theta}_{current}), \ \mathbf{\Theta}_{best} = \mathbf{\Theta}_{current}$
- $\widehat{\mathbf{\Theta}} = \mathbf{\Theta}_{best}$

알고리즘 2-2 무작위 탐색 알고리즘

입력: 훈련집합 ※와 ¥

출력 : 최적해 Θ

- 1 *min*을 충분히 큰 값으로 초기화한다.
- 2 repeat
- 3 무작위로 해를 하나 생성하고 $\Theta_{current}$ 라 한다.
- 4 if $(J(\mathbf{\Theta}_{current}) < min)$ min= $J(\mathbf{\Theta}_{current})$, $\mathbf{\Theta}_{best} = \mathbf{\Theta}_{current}$
- 5 until(멈춤 조건)
- $6 \quad \widehat{\mathbf{\Theta}} = \mathbf{\Theta}_{best}$

매개변수 공간의 탐색

- [알고리즘 2-3]은 기계 학습이 사용하는 전형적인 알고리즘
 - 라인 3에서는 목적함수가 작아지는 방향을 주로 미분으로 찾아냄

알고리즘 2-3 기계 학습이 사용하는 전형적인 탐색 알고리즘(1장의 [알고리즘 1-1]과 같음)

입력 : 훈련집합 ※와 ※

출력 : 최적해 Θ

- 1 난수를 생성하여 초기해 ⊖을 설정한다.
- 2 repeat
- $J(\mathbf{\Theta})$ 가 작아지는 방향 $d\mathbf{\Theta}$ 를 구한다.
- $4 \qquad \mathbf{0} = \mathbf{0} + d\mathbf{0}$
- 5 until(멈춤 조건)
- $\widehat{\mathbf{\Theta}} = \mathbf{\Theta}$

■ 미분을 이용한 경사하강법

■ 미분을 이용한 경사하강법

- 미분에 의한 최적화
 - 미분의 정의

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}, \qquad f''(x) = \lim_{\Delta x \to 0} \frac{f'(x + \Delta x) - f'(x)}{\Delta x}$$
(2.51)

- 1차 도함수 *f* ′(*x*)는 함수의 기울기, 즉 값이 커지는 방향을 지시함
- 따라서 -f'(x) 방향에 목적함수의 최저점이 존재
- [알고리즘 2-3]에서 $d\Theta$ 로 -f'(x)를 사용함 \leftarrow 경사 하강 알고리즘의 핵심 원리

그림 2-24 간단한 미분 예제

■ 편미분

- 변수가 여러 개인 함수의 미분
- 미분값이 이루는 벡터를 그래디언트라 부름
- 여러 가지 표기: ∇f , $\frac{\partial f}{\partial \mathbf{x}}$, $\left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right)^{\mathrm{T}}$
- 예)

$$f(\mathbf{x}) = f(x_1, x_2) = \left(4 - 2.1x_1^2 + \frac{x_1^4}{3}\right)x_1^2 + x_1x_2 + (-4 + 4x_2^2)x_2^2$$

$$\nabla f = f'(\mathbf{x}) = \frac{\partial f}{\partial \mathbf{x}} = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right)^{\mathrm{T}} = (2x_1^5 - 8.4x_1^3 + 8x_1 + x_2, 16x_2^3 - 8x_2 + x_1)^{\mathrm{T}}$$
(2.52)

■ 기계 학습에서 편미분

■ 매개변수 집합 Θ에 많은 변수가 있으므로 편미분을 많이 사용