classy

acondolu

March 2024

1 Calculus

Definition 1 (Terms).

$$t, u := \blacksquare \mid x \mid \langle t, u \rangle \mid [t, u] \mid \{t, u\}$$

Definition 2 (Types).

$$A,B ::= p \mid \bar{p} \mid A \wedge B \mid A \vee B$$

Definition 3 (Dual type A^{\perp}). .

$$\begin{array}{cccc} p^{\perp} & \coloneqq & \bar{p} \\ \bar{p}^{\perp} & \coloneqq & p \\ (A \vee B)^{\perp} & \coloneqq & A^{\perp} \wedge B^{\perp} \\ (A \wedge B)^{\perp} & \coloneqq & A^{\perp} \vee B^{\perp} \end{array}$$

Definition 4 (Typing rules). .

Note: the rules Axiom, Cut, Conjunction, Disjunction correspond to the sequent calculus rules of multiplicative linear logic (MLL).

Definition 5 (Programs). A cut expression has the form t * u where t and u are terms. The cut operator * is commutative.

Programs are denoted by Π and are (possibly empty) unordered sequences of cut expressions:

$$\Pi := \epsilon \mid \Pi, t * u$$

Definition 6 (Reduction rules). Reduction rules can apply to any cut expression in a program, and are defined as follows:

Destruct
$$\Pi, \langle t_1, t_2 \rangle * [u_1, u_2] \rightarrow_d \Pi, t_1 * u_1, t_2 * u_2$$

Send $\Pi, x * t \rightarrow_s \Pi \{x \Leftarrow t\}$
Copy $\Pi, \{t_1, t_2\} * u \rightarrow_c \Pi, t_1 * u, t_2 * u^{\alpha}$ (*)

(*) The Copy rule makes a copy of the closed term u by duplicating all variables that occur in it. We denote by u^{α} a term obtained from u by replacing each variable x with a new globally fresh variable x'. u and u^{α} are α -equivalent according to upcoming definition of α -equivalence. Note: if u contains free variables, the notion of copy is undefined at the moment (TODO).

Definition 7 (α -equivalence). We define \equiv_{α} , the equivalence relation over classy-terms or classy-programs up to renaming of variables. (TODO)

Example 1 (Divergent program).

$$\omega \coloneqq \texttt{[\{<}x,y>,x\},y\texttt{]}$$

$$\begin{split} \Omega &:= \quad \omega * < \omega', \mathbb{R} > \\ &\to_d \quad \{ < x, y >, x \} * \omega', y * \mathbb{R} \\ &= \quad \{ < x, y >, x \} * [\{ < x', y' >, x' \}, y'], y * \mathbb{R} \\ &\to_c \quad < x, y > * [\{ < x', y' >, x' \}, y'], x * \omega'', y * \mathbb{R} \\ &\to_d \quad x * \{ < x', y' >, x' \}, y * y', x * \omega'', y * \mathbb{R} \\ &\to_s \quad x * \{ < x', y' >, x' \}, x * \omega'', y' * \mathbb{R} \\ &\to_s \quad \{ < x', y' >, x' \} * \omega'', y' * \mathbb{R} \end{split}$$

2 Confluence

Upon a first inspection, critical pairs may seem to arise because of terms of the form x * y, $\{t_1, t_2\} * x$, or $\{t_1, t_2\} * \{u_1, u_2\}$.

- $\Pi\{y \Leftarrow x\} \leftarrow_s \Pi, x * y \rightarrow_s \Pi\{x \Leftarrow y\}$. This is actually not a critical pair, because $\Pi\{y \Leftarrow x\} \equiv_{\alpha} \Pi\{x \Leftarrow y\}$ in valid programs.
- Π , $\{t_1, t_2\} * x$: cannot apply \rightarrow_c , because x has a free variable (TODO).
- $\{t_1, t_2\} * \{u_1, u_2\}$: it is clearly locally confluent.

3 Embedding λ -terms

An embedding of λ -terms into classy-programs can be defined through the usual type embedding that translates $A \to B$ into $A \vee B^{\perp}$.

We denote by σ a sequence of assignment of variables to terms of the form $(x \mapsto t)$.

We denote by σ_x the restriction of an assignment σ to the variable x:

$$\sigma_x := \{t \mid (x \mapsto t) \in \sigma\}.$$

The translation $\tau(t)$ of a λ -term into a program relies on an auxiliary function $\tau_{\text{aux}}(t)$, which takes in input a λ -term and returns a thriple $(\Pi; \sigma; t')$ composed of a program, a substitution, and a term.

The auxiliary function $\tau_{\text{aux}}(t)$ is defined as follows:

$$\tau_{\text{aux}}(\lambda x.t) \qquad \coloneqq \quad (\Pi; \sigma \setminus \sigma_x; \, [\{\sigma_x\}, t']) \\ \qquad \qquad \text{where } (\Pi; \sigma; t') \coloneqq \tau_{\text{aux}}(t) \\ \tau_{\text{aux}}(xt_1 \dots t_n) \qquad \coloneqq \quad (\Pi_1 \dots \Pi_n; \sigma_1 \dots \sigma_n(x \mapsto \langle t'_1, \dots \langle t'_n, z \rangle \rangle; z) \\ \qquad \qquad \text{where } (\Pi_i; \sigma_i; t'_i) \coloneqq \tau_{\text{aux}}(t_i) \text{ for } i = 1 \dots n \\ \qquad \qquad \text{and } z \text{ is a fresh variable} \\ \tau_{\text{aux}}(t_0t_1 \dots t_n) \qquad \coloneqq \quad (\Pi_0\Pi_1 \dots \Pi_n, t'_0 * \langle t'_1, \dots \langle t'_n, z \rangle \rangle; \sigma_0 \dots \sigma_n; z) \\ \qquad \qquad \text{where } (\Pi_i; \sigma_i; t'_i) \coloneqq \tau_{\text{aux}}(t_i) \text{ for } i = 0 \dots n \\ \qquad \qquad \text{and } z \text{ is a fresh variable} \\ \qquad \qquad \text{and } t_0 \text{ is a lambda abstraction.}$$

The translation $\tau(t)$ is then defined as follows:

$$\tau(t) := \Pi$$
 where $(\Pi; \sigma; t') := \tau_{\text{aux}}(t)$.

4 Correctness

Definition 8 (Π -path). Let Π be a program. A Π -path is given by:

- n > 0
- a sequence of variables x_0, \ldots, x_n in Π
- $terms \ t_0 \circledast u_0, \ldots, t_n \circledast u_n \ in \ \Pi \ (where \ t \circledast u \ is \ either < t, u > or \ t * u)$
- such that $x_i \in t_i$ and $x_{i+1} \in u_i$ for $i = 0 \dots n-1$.

Definition 9. A program Π is valid if

- All subterms are unique, except variables: each variable occurs exactly twice.
- There are no cyclic Π -paths (cyclic meaning a Π -path x_0, \ldots, x_n such that $x_0 = x_n$).

5 Simulation

Theorem 1. For every λ -terms t and u, if $t \rightarrow_{\beta} u$, then $\tau\left(t\right) \rightarrow \tau\left(u\right)$.

Proof. Let C be an evaluation context such that $t=C\langle (\lambda x.t')u'\rangle$ and $u=C\langle t'\{x\Leftarrow u'\}\rangle.$

6 Stub correctness proofs

$$\begin{array}{c|c}
\hline \parallel x,x & \text{wf} \\
\hline
\Pi \parallel \Gamma & \text{wf} \\
\hline
\Pi \parallel \Gamma, \blacksquare & \text{wf} \\
\hline
\Pi \parallel \Gamma, t, u & \text{wf} \\
\hline
\Pi \parallel \Gamma, t, u & \text{wf} \\
\hline
\Pi \parallel \Gamma, t, u & \text{wf} \\
\hline
\Pi \parallel \Gamma, t, u & \text{wf} \\
\hline
\Pi, \Pi' \parallel \Gamma, \Delta, < t, u > \text{wf} \\
\hline
\Pi, \Pi', t, wf & \Pi' \parallel \Delta, u & \text{wf} \\
\hline
\Pi, \Pi', t, wf & \Pi' \parallel \Delta, u & \text{wf} \\
\hline
\Pi, \Pi', t, wf & \Pi' \parallel \Delta, u & \text{wf} \\
\hline
\Pi, \Pi', t, wf & \Pi' \parallel \Delta, u & \text{wf} \\
\hline
\Pi, \Pi', t, wf & \Pi & \Delta, u & \text{wf} \\
\hline
\Pi, \Pi', t, wf & \Pi & \Delta, u & \text{wf} \\
\hline
\Pi, \Pi', t, wf & \Pi & \Delta, u & \text{wf} \\
\hline
\end{array}$$

- *x* * *a*
- *x* * *b*
- < a, b >

$$T := [\{ <-x, -y >, +x \}, +y]$$

