Lecture 38: Review

ECE221: Electric and Magnetic Fields

Prof. Sean V. Hum

Winter 2019

Outline

- Flux Linkage Integrals
- Midterms

3 End

Flux Linkage Integrals: Cylindrical Coordinates

If the flux density $oldsymbol{B}$ passes through the top of a cylinder (z = constant)...const. $\phi_{\text{const.}}$

...and the density does not vary

... and the density does not vary with ϕ :

7=const.

Flux Linkage Integrals: Cylindrical Coordinates

If the flux density B passes through the side of a cylinder $(\mathcal{J} = \mathrm{constant})...$

 \ldots and the density does not vary with z:

 \dots and the density does not vary with ρ :

Flux Linkage Integrals: Cylindrical Coordinates

If the flux density B passes through an internal plane of a cylinder $(\phi = {\rm constant}) \dots$

 \ldots and the density does not vary with z:

 \dots and the density does not vary with ρ :

Difficult Midterm Problems

- Midterm 1 Problem 3
- Midterm 2 Problem 3

Please fill our your course evaluations before April 12! http://uoft.me/openevals

Review session / office hours Wednesday, April 24?

Ask me anything! sean.hum@utoronto.ca