Lecture 3: MDPs, Returns, Value functions, Q-function

B. Ravindran

Immediate Reinforcement

- The payoff accrues immediately after an action is chosen
- One key question the dilemma between exploration and exploitation
- Bandit problems encapsulates 'Explore vs Exploit'

What about Tic-Tac-Toe?

Action at a (Temporal) Distance

- \Box Learning an appropriate action at S₁:
 - \Box depends on the actions at S_2 and S_3
 - gains no immediate feedback

Full RL Framework

- Learn from close interaction
 - with a stochastic environment
 - having noisy <u>delayed</u> scalar evaluation
 - with a goal to maximize a measure of long term performance

Full RL Framework

- Learn from close interaction
 - with a stochastic environment
 - having noisy <u>delayed</u> scalar evaluation
 - with a goal to maximize a measure of long term performance

Designing an RL solution

- States
 - Enough information to take decisions
 - Raw inputs often not sufficient
- Actions
 - ☐ The control variables
 - Discrete items to recommend, moves in a game
 - Continuous torque to a motor, rate of mixing
- Rewards
 - Define the goal of the problem

Bandit Problem

Bandit Problem

$$Q(a^*) = max_i \{Q(a_i)\}$$

Bandit Problem

$$Q(a^*) = max_i \{Q(a_i)\}\$$

Contextual Bandit Problem

Bandit Problem

$$Q(a^*) = max_i \{Q(a_i)\}$$

Contextual Bandit Problem

$$Q(j, a^*) = max_i \{Q(j, a_i)\}\$$

Bandit Problem

Contextual Bandit Problem

Full Reinforcement Learning Problem

Action at a (Temporal) Distance

- \Box learning an appropriate action at S_1 :
 - \Box depends on the actions at S_2 and S_3
 - gains no immediate feedback
- Idea: use prediction as surrogate feedback

The Agent-Environment Interface

The Agent-Environment Interface

Agent and environment interact at discrete time steps: t = 0, 1, 2, ...

Agent observes state at step t: $s_t \in S$

produces action at step t: $a_t \in A(s_t)$

gets resulting reward: $r_{t+1} \in \Re$

and resulting next state: S_{t+1}

The Markov Property

- "the state" at step *t*, means whatever information is available to the agent at step *t* about its environment.
- □ The state can include immediate "sensations", highly processed sensations, and structures built up over time from sequences of sensations.
- Ideally, a state should summarize past sensations so as to retain all 'essential' information, i.e., it should have the Markov Property:

$$\Pr\left\{s_{t+1} = s', r_{t+1} = r \mid s_{t}, a_{t}, r_{t}, s_{t-1}, a_{t-1}, \dots, r_{1}, s_{0}, a_{0}\right\} = \Pr\left\{s_{t+1} = s', r_{t+1} = r \mid s_{t}, a_{t}\right\}$$
for all s' , r , and histories $s_{t}, a_{t}, r_{t}, s_{t-1}, a_{t-1}, \dots, r_{1}, s_{0}, a_{0}$.

Markov Decision Processes

- lacktriangle MDP, *M*, is the tuple: $M = \langle S, A, r, p \rangle$
 - \supset S: set of states.
 - \Box A: set of actions.
 - ightharpoonup p: S imes A imes S o [0,1]: probability of transition
 - $ightharpoonup r: S imes A imes S o \mathbb{R}$: expected reward
- □ Policy: $\pi: S \times A \rightarrow [0,1]$ (can be deterministic)
- Maximize total expected reward
- ☐ Learn an *optimal* policy

Example: 2-D workspace

$$M = \langle S, A, p, r \rangle$$

Robot Control

- ☐ Input consists of the reading of the sonars, the bump sensors, the camera, the arm position, and wheel encoder
 - State is typically a short history of the sensor readings
- Actions are the torques to the motors
- Positive rewards on achieving the goal;
 Negative rewards for bumping into obstacles

MDP Example ...

A computer manufacturing company sells a computer that can either be hot-selling, or selling poorly.

If the computer is hot-selling, the company can advertise it to get an immediate reward of 4 units. On doing so, with probability 0.8, the computer continues to sell well. However, with probability 0.2, the computer starts selling poorly. The company can alternately decide not to advertise a hot-selling computer yielding an immediate reward of 6 units with a 0.5 probability that the computer continues to remain hot-selling.

In case the computer is selling poorly, the company has the option to perform research to improve its computer. This results in an immediate reward of -5 units and a 0.7 probability of the research leading to the computer becoming a hot-selling one. Finally, if the company decides not to perform research for a poorly selling computer, it receives an immediate reward of -3, with the computer continuing to sell poorly with a probability of 0.6.

Formulating MDP

- What are the choices (actions) that can be made in this problem?
 - \Box Actions: A = {advertise, ¬advertise, research, ¬research}
- What are the states in which these choices can be made?
 - advertise or ¬advertise for hot-selling product
 - □ research or ¬research for poorly-selling product
 - ☐ States: S = {hot, cold}
- Applicable actions in each state:
 - □ A(hot) = {advertise, ¬advertise}
 - \Box A(cold) = {research, ¬research}
- Finally, consider the transition probabilities & rewards

Formulating MDP (Contd.)

The Agent Learns a Policy

Policy at step t, π_t :

a mapping from states to action probabilities

$$\pi_t(s, a) = \text{probability that } a_t = a \text{ when } s_t = s$$

- Reinforcement Learning methods specify how the agent changes its policy as a result of experience.
- □ Roughly, the agent's goal is to get as much reward as it can over the long run.

Returns

Suppose the sequence of rewards after step *t* is:

$$r_{t+1}, r_{t+2}, r_{t+3}, \dots$$

What do we want to maximize?

We want to maximize the **return** - G_t , for each step t.

Episodic tasks: interaction breaks naturally into episodes, *e.g.*, *plays of a game, trips through a maze.*

$$G_{t} = r_{t+1} + r_{t+2} + \cdots + r_{T},$$

where *T* is a final time step at which a **terminal state** is reached, ending an episode.

Returns for Continuing Tasks

- Continuing tasks: interaction does not have natural episodes.
- Discounted return:

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1},$$

where γ , $0 \le \gamma \le 1$, is the **discount rate**.

short-sighted $0 \leftarrow \gamma \rightarrow 1$ far-sighted

In general,

we want to maximize the **expected return**, $E\{G_t\}$, for each step t.

Value Functions

 \Box Expected future rewards starting from a state (or state-action pair) and following policy π

State - value function for policy π :

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s\right]$$

Action - value function for policy π :

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a\right]$$

Value Functions

 \Box Expected future rewards starting from a state (or state-action pair) and following policy π

State - value function for policy π :

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s\right]$$

Action - value function for policy π :

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | S_{t} = s, A_{t} = a \right]$$
$$v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s, a)$$

Solving RL problems

- Learn an optimal policy a mapping from states to actions such that no other policy has a higher long term reward
- Can learn such a policy directly
- Or through estimating an optimal value function
- Optimal Value function: The estimated long term reward that you would get starting from a state and behaving optimally