Práctica 3: Algoritmos genéticos

Antonio Álvarez Caballero 15457968-J 5º Doble Grado Ingeniería Informática y Matemáticas Grupo de prácticas del Viernes 17:30-19:30 analca3@correo.ugr.es

9 de mayo de 2016

Índice

1.	Descripción del problema	2
2.	Descripción de aplicación de los algoritmos al problema	2
3.	Descripción de la estructura del método de búsqueda	2
4.	Descripción del algoritmo de comparación	4
5.	Desarrollo de la práctica	4
6.	Experimentos	6
7.	Referencias	8

1. Descripción del problema

El problema a resolver es el problema de Selección de características. En el ámbito de la Ciencia de Datos, la cantidad de datos a evaluar para obtener buenos resultados es excesivamente grande. Esto nos lleva a la siguiente cuestión: ¿Son todos ellos realmente importantes? ¿Podemos establecer dependencias para eliminar los que no nos aportan información relevante? La respuesta es que sí: en muchas ocasiones, no todos los datos son importantes, o no lo son demasiado. Por ello, se intentará filtrar las características relevantes de un conjunto de datos.

La selección de características tiene varias ventajas: se reduce la complejidad del problema, disminuyendo el tiempo de ejecución. También se aumenta la capacidad de generalización puesto que tenemos menos variables que tener en cuenta, además de conseguir resultados más simples y fáciles de entender e interpretar.

Para conseguir este propósito se deben usar técnicas probabilísticas, ya que es un problema *NP-hard*. Una técnica exhaustiva sería totalmente inviable para cualquier caso de búsqueda medianamente grande. Usaremos metaheurísticas para resolver este problema, aunque también podríamos intentar resolverlo utilizando estadísticos (correlación entre características, medidas de separabilidad o basadas en teoría de información o consistencia, etc).

2. Descripción de aplicación de los algoritmos al problema

Los elementos comunes de los algoritmos son:

 Representación de las soluciones: Se representan las soluciones como vectores 1-dimensionales binarios (los llamaremos bits para poder hacer uso de términos como darle la vuelta a un bit):

$$s = (x_1, x_2, \dots, x_{n-1}, x_n); \ x_i \in \{True, False\} \ \forall i \in \{1, 2, \dots, n\}$$

Función objetivo: La función a maximizar es la tasa de clasificación de los datos de entrada:

$$tasa_clas = 100 \cdot \frac{instancias\ bien\ clasificadas}{instancias\ totales}$$

 Generación de vecino: La función generadora de vecinos es bien simple. Se toma una solución y se le da la vuelta a uno de sus bits, el cual se escoge aleatoriamente.

```
Tomar un vector de características "característica"
indice = generarAleatorio(0, numero_características)
características[indice] = not características[indice]
```

3. Descripción de la estructura del método de búsqueda

Ambos algoritmos se han implementado con el mismo código. Sólo varía un booleano en la llamada a la función, que altera el número de cromosomas cogidos para la selección y en la presencia del elitismo.

Algoritmo genético:

```
tamaño_cromosoma = número de características
evaluaciones = 0
max_evaluaciones = 15000
```

```
probabilidad_cruce = 0.7
probabilidad_mutacion = 0.001
tamaño_poblacion = 30
Si es generacional, numero_seleccionados = tamaño_poblacion
si no, numero_seleccionados = 2
numero_cruces = EnteroPorArriba(probabilidad_cruce *
                  numero_seleccionados / 2)
# Esta probabilidad es la probabilidad de que un cromosoma mute.
# Esto lo hacemos para evitar trabajar a nivel de gen y generar el
# mínimo número de aleatorios posible, además de homogeneizar
# la implementación de ambas variantes del algoritmo
probabilidad_total_mutacion = probabilidad_mutacion *
        numero_seleccionadas * tamaño_cromosoma
# Inicializar la población y evaluarla
poblacion = Generar "tamaño_poblacion" cromosomas aleatorios
evaluar(poblacion)
# Ordenamos la población por tasa en orden creciente
ordenar(poblacion)
Mientras evaluaciones < max_evaluaciones
  # Cogemos la solución que está en último lugar,
  # ya que la población está ordenada
 mejor_solucion = poblacion[-1]
  # Selección
 Para cada i en [1,2,...,numero_seleccionados]
    eleccion = Coger 2 individuos aleatorios de la población
    ordenar(poblacion)
    mejor = election[-1]
    seleccionados.añadir(mejor)
  # Cruce
 Para cada i en [1,2,...numero_cruces] tomados de dos en dos
    puntos_cruce = tomar dos aleatorios entre 1 y el tamaño del cromosoma
    # El operador de cruce es el típico en dos puntos
    cruce(seleccionados[i], seleccionados[i+1], puntos_cruce)
  # Mutación
  Si aleatorio() < probabilidad_mutacion_completa
    cromosoma_mutado = aleatorio()
    gen_mutado = aleatorio()
    flip(cromosoma_mutado, gen_mutado)
```

```
# Actualizar tasas
evaluar(seleccionados)
evaluaciones = evaluaciones + numero_seleccionados

# Reemplazo
Para cada i en [1,2,..., numero_seleccionados]
    # Reemplazamos los peores de la población por los mejores seleccionados
    poblacion[i] = seleccionados[-i]
Si es generacional y mejor_solucion[tasa] > poblacion[0][tasa]
    # Sustituimos la peor solución de la población por la mejor que había (el
    poblacion[0] = mejor_solucion

ordenar(poblacion)
mejor_solucion, mejor_tasa = poblacion[-1][cromosoma], poblacion[-1][tasa]
return mejor solucion
```

4. Descripción del algoritmo de comparación

El algoritmo de comparación es un algoritmo greedy: el Sequential Forward Selection(SFS). La idea es muy simple: se parte del conjunto vacío de características (todos los bits a 0) y se recorren todas las características, evaluando la función de coste. La característica que más mejora ofrezca, se coje. Y se vuelve a empezar. Así hasta que ninguna de las características mejore el coste.

```
caracteristicas_seleccionadas = [False, False, ..., False]
mejor_caracteristica = 0
mejor_tasa = 0

Mientras mejor_caracteristica != -1
    mejor_caracteristica = -1

caracteristicas_disponibles = indices donde caracteristicas_seleccionadas vale False
Para cada caracteristica c de caracteristicas_disponibles
    tasa = coste al añadir c a las caracteristicas seleccionadas
    Si tasa > mejor_tasa
        mejor_tasa = tasa
        mejor_caracteristica = caracteristica
Si mejor_caracteristica != -1
    caracteristicas_seleccionadas.añadir(mejor_caracteristica)
```

5. Desarrollo de la práctica

En primer lugar, comentar que las bases de datos han sido modificadas en su estructura (que no en sus datos) para que sean homogéneas. Así, se han puesto todas las clases como numéricas (en Wdbc no lo estaban) y se han colocado en la última columna.

La práctica se ha desarrollado usando el lenguage de programación Python, ya que su velocidad de desarrollo es bastante alta. Para intentar lidiar con la lentitud que puede suponer usar un lenguaje interpretado, utilizaremos las librerías NumPy, SciPy y Scikit-Learn, que tienen módulos implementados en C (sobre todo NumPy) y agilizan bastante los cálculos y el manejo de vectores grandes. Para el KNN con Leave One Out se ha utilizado un módulo que ha desarrollado

mi compañero Alejandro García Montoro 1 , que usa CUDA para agilizar los cálculos usando la GPU.

Usaremos alguna funcionalidad directa de estas bibliotecas:

- NumPy: Generación de números aleatorios y operaciones rápidas sobre vectores.
- SciPy: Lectura de ficheros ARFF de WEKA.
- Scikit-Learn: Particionamiento de los datos, se han usado las particiones estratificadas de la validación cruzada 5x2.
- ScorerGPU: Para el KNN con Leave One Out.

Esta elección se ha hecho para poder preocuparme sólo y exclusivamente de la implementación de las metaheurísticas.

Los requisitos para ejecutar mis prácticas son *Python3* (importante que sea la 3), *NumPy*, *SciPy*, *Scikit-Learn* y *CUDA*, por lo que es necesario una gráfica nVidia. En mi plataforma (Archlinux) están disponibles desde su gestor de paquetes.

Una vez instalados los paquetes, sólo hay que ejecutar la práctica diciéndole al programa los algoritmos que queremos ejecutar. La semilla aleatoria está fijada dentro del código como 12345678 para no inducir a errores. Veamos algunos ejemplos de llamadas a la práctica. Primero notamos que los algoritmos disponibles son:

- -SFS: Ejecuta el algoritmo greedy SFS.
- LS: Ejecuta la Local Search.
- -SA: Ejecuta el Simulated Annealing.
- -TS: Ejecuta la Tabu Search.
- TSext: Ejecuta la Tabu Search extendida.
- BMB: Ejecuta la Búsqueda Multiarranque Básica.
- -GRASP: Ejecuta el GRASP.
- -ILS: Ejecuta la Iterated Local Search.
- EGA: Ejecuta el genético estacionario.
- -GGA: Ejecuta el genético generacional.
 - \$ python featureSelection.py -TS

Se ejecutará la Tabu Search. Pero no sólo se limita el programa a un algoritmo. Si le pasamos varios, los ejecutará en serie uno detrás de otro. Esto ha cambiado desde la práctica anterior por la entrada de CUDA, que hay que iniciarlo debidamente y no es tan sencillo de ejecutar cosas en paralelo.

\$ python featureSelection.py -EGA -GGA

Se ejecutarán EGA y GGA en serie.

Una vez ejecutado, irán saliendo por pantalla mensajes de este tipo, que proporcionan datos en tiempo real del estado de la ejecución:

¹https://github.com/agarciamontoro/metaheuristics

INFO:__main__:W - TS - Time elapsed: 2265.526112794876.

Score: 98.2394337654. Score out: 95.0877192982 Selected features: 15

Este mensaje nos dice todo lo necesario: W es la base de datos (Wdbc), TS el algoritmo, el tiempo transcurrido para esta iteración (recordemos que hay 10), el score de entrenamiento, el score de validación y las características seleccionadas.

6. Experimentos

Como se ha comentado antes, la semilla está fija a 12345678 para no tener problemas de aleatoriedad. El número de evaluaciones máxima de todos los algoritmos es de 15000. Por lo demás, todos los demás parámetros propios de cada algoritmo están tal y como se explica en el guión (25 número de búsquedas en BMB e ILS, $10\,\%$ de mutación en ILS, etc).

KNN

		Wdbc			N	Iovement_Lil	oras	Arrhythmia				
	% clas in % clas out % red T					% clas out	% red	Т	% clas in	% clas out	% red	Т
Partición 1-1	96.12676	96.84211	0.0	0.0	66.66667	65.0	0.0	0.0	62.5	66.49485	0.0	0.0
Partición 1-2	96.49123	96.83099	0.0	0.0	65.55556	80.55556	0.0	0.0	61.85567	62.5	0.0	0.0
Partición 2-1	96.12676	96.49123	0.0	0.0	68.88889	74.44444	0.0	0.0	64.0625	64.43299	0.0	0.0
Partición 2-2	95.78947	96.12676	0.0	0.0	75.55556	68.88889	0.0	0.0	61.34021	64.58333	0.0	0.0
Partición 3-1	96.47887	95.4386	0.0	0.0	75.55556	71.66667	0.0	0.0	63.02083	63.91753	0.0	0.0
Partición 3-2	96.84211	96.83099	0.0	0.0	68.88889	65.55556	0.0	0.0	62.37113	64.58333	0.0	0.0
Partición 4-1	97.53521	96.14035	0.0	0.0	66.66667	66.11111	0.0	0.0	65.625	64.43299	0.0	0.0
Partición 4-2	93.33333	97.88732	0.0	0.0	72.77778	72.77778	0.0	0.0	60.30928	64.58333	0.0	0.0
Partición 5-1	96.47887	96.84211	0.0	0.0	75.0	71.11111	0.0	0.0	65.625	65.97938	0.0	0.0
Partición 5-2	97.89474	95.42254	0.0	0.0	70.0	70.0	0.0	0.0	61.85567	63.54167	0.0	0.0
Media	96.30974	96.48530	0.0	0.0	70.55556	70.61111	0.0	0.0	62.85653	64.50494	0.0	0.0

SFS
Movement_Libras Wdbo Arrhythmia % clas in % clas in % red % clas in % clas out % clas out % clas out | % red % red Partición 1-1 83.33333 0.15793 72.22222 93.33333 0.50295 96.76259 2.41429 97.53521 92.2807 66.66667 80.20833 70.61856 77.22222 73.19588 Partición 1-2 94.01408 0.12852 0.91927 67.1875 97.48201 1.84876 96.84211 86.66667 66.66667 87.77778 83.33333 0.15797 Partición 2-1 95.42254 91.22807 84.44444 68.88889 85.55556 1.0978 79.16667 69.58763 97.48201 1.83412 Partición 2-2 97.5438692.6056386.66667 0.12911 77.77778 61.6666793.33333 0.49637 74.226864.5833397.48201 1.88374 Partición 3-1 96.12676 92.98246 90.0 0.0998283.33333 71.66667 87.77778 0.9251976.562568.5567 98.20144 1.30598 Partición 3-2 97.54386 96.47887 86.66667 0.12927 72 22222 60.0 93.33333 0.50101 71.64948 66.14583 98.20144 1.33008 70.55556 Partición 4-1 98.23944 96.49123 86.66667 0.12883 62.22222 91.11111 0.66223 76.04167 69.58763 97.84173 1.55438 97.1223 2.16781 97.48201 1.85395 Partición 4-2 | 94.73684 94.366290.0 0.10095 80.55556 65.55556 90.0 0.74934 82.98969 73.95833 Partición 5-1 94.71831 91.92982 90.0 0.09997 78.88889 66.11111 92.22222 0.57865 77.08333 68.04124 76.66667 0.21516 76.66667 Partición 5-2 98.94737 93.66197 66.66667 90.0 0.74815 82.98969 71.35417 96.40288 2.75023 Media 96.76563 93.60390 86.00000 0.13475 77.38889 65.61111 90.44444 0.71810 77.41140 68.96209 97.44604 1.89433

 $\overline{\text{EGA}}$

		Wdł	ос			Movement	_Libras		Arrhythmia			
	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т
Partición 1-1	97.88732	96.84211	46.66667	25.51973	70.55556	69.44444	53.33333	32.1129	66.14584	64.94845	46.40288	137.72354
Partición 1-2	97.54386	95.42254	53.33333	25.33447	70.0	82.22222	54.44444	32.58699	64.94846	64.0625	52.51799	109.34967
Partición 2-1	97.88732	93.68421	40.0	24.82009	68.88889	67.77778	61.11111	31.87575	67.70834	60.82474	51.07914	133.62195
Partición 2-2	97.19299	95.07042	56.66667	24.43126	73.33334	74.44444	50.0	33.51131	65.46392	64.58333	48.56115	109.79654
Partición 3-1	96.47887	96.14035	46.66667	24.29119	72.77778	73.33333	56.66667	32.18128	66.66666	62.8866	52.8777	133.40944
Partición 3-2	98.24561	95.77465	50.0	25.45476	70.55556	70.0	56.66667	33.02999	64.94846	66.66667	52.51799	112.84293
Partición 4-1	97.53521	95.78947	46.66667	24.57323	72.77778	70.55556	52.22222	33.47668	65.625	67.52577	52.15827	135.74265
Partición 4-2	95.08772	94.3662	40.0	24.46908	73.33334	75.0	45.55556	32.8192	67.01031	59.89583	51.07914	110.84738
Partición 5-1	96.83099	95.78947	36.66667	24.56784	74.44444	72.22222	47.77778	33.24316	66.66666	63.91753	55.39568	131.22696
Partición 5-2	97.19299	95.42254	40.0	25.13447	71.66666	79.44444	54.44444	32.43114	65.97938	65.10417	50.71942	108.67263
Media	97.18829	95.43020	45.66667	24.85961	71.83334	73.44444	53.22222	32.72684	66.11630	64.04156	51.33094	122.32337

GGA

	Wdbc					Movement_Libras				Arrhythmia			
	% clas in	% clas out	% red	T	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т	
Partición 1-1	98.59155	96.49123	30.0	28.54975	73.33334	72.77778	44.44444	32.82207	69.27084	62.8866	28.41727	171.97474	
Partición 1-2	97.89474	94.71831	43.33333	25.68448	73.88889	82.77778	43.33333	33.94593	69.58763	62.5	31.65468	144.6906	
Partición 2-1	99.29578	95.78947	13.33333	31.87766	78.33334	72.77778	38.88889	36.46547	69.27084	63.40206	40.28777	145.52217	
Partición 2-2	97.19299	95.42254	70.0	20.04464	75.55556	70.0	56.66667	28.68688	70.1031	62.5	35.97122	128.9489	
Partición 3-1	98.23943	96.84211	26.66667	29.04386	78.33334	77.22222	45.55556	33.47387	69.27084	61.34021	33.81295	153.89323	
Partición 3-2	96.8421	96.12676	26.66667	29.71426	76.11111	77.77778	40.0	35.69104	72.68041	63.54167	34.53237	136.74538	
Partición 4-1	98.23943	96.49123	16.66667	31.48225	74.44444	77.22222	36.66667	36.95578	66.66666	66.49485	29.13669	166.16106	
Partición 4-2	97.89474	93.30986	16.66667	31.71025	76.66666	78.88889	43.33333	33.67301	71.13402	65.10417	42.44604	110.06556	
Partición 5-1	98.23943	96.14035	16.66667	31.36285	75.55556	68.88889	44.44444	34.03647	71.35416	61.34021	31.65468	168.08526	
Partición 5-2	97.54386	96.47887	33.33333	28.12527	77.77778	73.33333	51.11111	31.31469	70.61855	60.9375	36.69065	127.532	
Media	97.99740	95.78107	29.33333	28.75953	76.00000	75.16667	44.44444	33.70652	69.99571	63.00473	34.46043	145.36189	

	Media												
		Wdb	ос			Movement	_Libras		Arrhythmia				
	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т	
KNN	96.30974	96.48530	0.0	0.0	70.55556	70.61111	0.0	0.0	62.85653	64.50494	0.0	0.0	
SFS	96.76563	93.60390	86.00000	0.13475	77.38889	65.61111	90.44444	0.71810	77.41140	68.96209	97.44604	1.89433	
EGA	97.18829	95.43020	45.66667	24.85961	71.83334	73.44444	53.22222	32.72684	66.11630	64.04156	51.33094	122.32337	
GGA	97.99740	95.78107	29.33333	28.75953	76.00000	75.16667	44.44444	33.70652	69.99571	63.00473	34.46043	145.36189	

En primer lugar, comentamos los 2 algoritmos principales: el KNN y el SFS. El primero de ellos obtiene una buena tasa de acierto en la base de datos pequeña, Wdbc, y cuanto más grande es la base de datos, más solapamiento se produce y menos tasa de acierto va teniendo.

Madia

El SFS se caracteriza por tener una tasa de acierto que sólo mejora en la base de datos más grande a la del KNN, pero tiene una tasa de reducción bastante alta, ya que al partir de una solución sin características y al parar en cuanto no hay mejora, es muy fácil que se quede con muy pocas características.

Ahora evaluamos las tres metaheurísticas implementadas. La BMB funciona bastante bien sobre estas tres bases de datos. En *Wdbc* tiene la segunda mejor tasa de clasficiación en el conjunto de test, con una tasa de reducción del 36 %, lo cual no es nada despreciable. En *Movement Libras* es la metaheurística que consigue la mejor tasa de clasificación en el conjunto de test, con una reducción de casi el 50 % de las características. En estas dos bases de datos el tiempo que tarda es muy pequeño, ni siquiera 5 segundos. No es así en el caso de *Arrhythmia*, donde tarda más de un minuto y se queda a mitad de la tabla en cuanto a tasa de acierto, aunque reduce en casi la mitad también el número de características.

Ahora vamos con el GRASP. Es el algoritmo con mejor tasa de acierto dentro de la muestra en las tres bases de datos. Fuera de la muestra se comporta bastante bien, sobre todo en las bases de datos grandes: en Arrhythmia consigue una grandísima tasa de acierto de más del $71\,\%$ con un $92\,\%$ de reducción de las características, tardando además sólo 34 segundos en esta gran base de datos. En las pequeñas también tiene una tasa de reducción bastante notable.

Por último, el ILS. Sólo en *Arrhythmia* se comporta peor que cualquier otro fuera de la muestra, pero en las tres bases de datos es la que menos reduce el número de características.

Posiblemente, el primer algoritmo que probaría de estos 3 en este problema sería un GRASP. Tasa de acierto muy competitiva, tasa de reducción casi insuperable y unos tiempos de ejecución muy razonables.

7. Referencias

Las referencias utilizadas han sido:

- Scikit-Learn: La propia documentación² de la biblioteca.
- SciPy: La propia documentación³ de la biblioteca.

²http://scikit-learn.org/stable/modules/classes.html

http://docs.scipy.org/doc/scipy/reference/