დავალებები 1-30-ის პასუხები:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
5		X		X								X						
δ	X							X	X	X								
გ			X											X				
Q						X	X				X		X			X		X
J J					x										X		X	

	19	20	21	22	23	24	25	26	27	28	29	30
٥				X		X		X				
δ		X							X			
გ	X		X							X	X	
Q												
O O					X		X					X

დავალებები 1-30-ის შეფასების სქემა: ყოველი დავალების სწორი პასუხი ფასდება 1 ქულით, ხოლო მცდარი პასუხი - 0 ქულით.

დავალება 31 (5 ქულა).

ზრტყელი ჰაერიანი კონდენსატორი მიუერთეს დენის წყაროს და შემდეგ ფირფიტებს შორის მანძილი 2-ჯერ გაზარდეს. შეუსაბამეთ ციფრებით დანომრილ ფიზიკურ სიდიდეებს ასოებით დანომრილი შესაძლო ცვლილებები.

- 1. კონდენსატორის ტევადობა
- 2. კონდენსატორის მუხტი
- 3. მაზვა კონდენსატორზე
- 4. ველის დაძაბულობა კონდენსატორში
- 5. კონდენსატორის ენერგია
- 6. მიზიდულობის ძალა ფირფიტებს შორის

- ა. შემცირდა 4-ჯერ
- ბ. შემცირდა 2-ჯერ
- გ. არ შეიცვალა
- დ. გაიზარდა 2-ჯერ
- ე. გაიზარდა 4-ჯერ
- ვ. გაიზარდა 8-ჯერ

	1	2	3	4	5	6
5						X
δ	X	X		X	X	
გ			X			
გ დ						
ე						
3						

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია. (მაქს. 5 ქულა)

დავალება 32 (5 ქულა).

შეუსაბამეთ ციფრებით დანომრილ ფიზიკურ სიდიდეებს ასოებით დანომრილი განზომილებები, რომლებიც გამოსახულია SI სისტემის ძირითადი ერთეულებით. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი \mathbf{X} .

- 1. მაგნიტური ველის ინდუქცია
- 2. მაგნიტური ნაკადი
- 3. ინდუქციურობა
- 4. ელექტროტევადობა
- 5. ა ელექტრული მუდმივა
- 6. ელექტრული მაზვა

- ა. ა 2 ·წმ 4 /კგ·მ 2
- ბ. ა 2 ·წმ 4 /კგ·მ 3
- გ. კგ \cdot მ 2 /ა \cdot წმ 3
- დ. კგ/ა \cdot წმ 2
- ე. კგ. $\partial^2/$ ა \cdot წ ∂^2
- ვ. კგ. $\frac{\partial^2}{\partial^2}$

	1	2	3	4	5	6
5				X		
ა გ					X	
გ						X
გ დ	X					
J		X				
3			X			

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია. (მაქს. 5 ქულა)

დავალება 33 (2 ქულა).

დედამიწის ზედაპირიდან ორი სხეული ერთდროულად გაისროლეს ერთი და იმავე ადგილიდან ტოლი, $v_1=v_2=20$ მ/წმ სიჩქარეებით, ერთი ვერტიკალურად ზევით, მეორე კი ჰორიზონტისადმი 30° კუთხით. განსაზღვრეთ მანძილი სხეულებს შორის გასროლიდან 1 წმ-ის შემდეგ.

ამოხსნა:

მოცემული მონაცემებით ჰაერის წინააღმდეგობის ძალას ვერ გავითვალისწინებთ, ამიტომ ის უგულებელვყოთ. რადგან სხეულებს ექნებათ ტოლი აჩქარებები, ამიტომ ისინი ერთმანეთის მიმართ თანაბრად მოძრაობენ. ვიპოვოთ ერთი სხეულის $\mathbf{v}_{\text{gs/fig}}$ სიჩქარე მეორის მიმართ ვექტორების გამოკლების წესის გამოყენებით:

ნახატზე ვხვდავთ, რომ სამკუთხედი ტოლგვერდაა და ამიტომ $v_{\text{gam}}=20$ მ/წმ.

სხეულებს შორის მანძილი იქნება $s=v_{gარდ}t=20$ მ.

შეფასების სქემა:

სრული ამოხსნა - 2 ქულა

თუ სრულად არაა ამოხსნილი, მაგრამ ნათქვამია, რომ სხეულები ერთმანეთის მიმართ თანაბრად მომრაობენ ან შემოტანილია კოორდინატთა სისტემა და მოყვანილია სხეულებს შორის მანძილის ფორმულა და ერთ-ერთი სხეულის კოორდინატების ფორმულები ან არ არის მანძილის ფორმულა, მაგრამ მოყვანილია ორივე სხეულის კოორდინატის ფორმულები - 1 ქულა

დავალება 34 (3 ქულა).

გლუვ ჰორიზონტალურ ზედაპირზე დევს L სიგრძის უმასო ღეროთი შეერთებული ორი ერთნაირი პატარა ბურთულა. ერთ-ერთ ბურთულას ბიძგით მიანიჭეს ღეროს მართობული და ზედაპირის პარალელური v სიჩქარე (იხ. ნახ.). განსაზღვრეთ ამის შემდეგ:

- 1) სისტემის მასათა ცენტრის სიჩქარე;
- 2) თითოეული ბურთულას სიჩქარის მოდული მასათა ცენტრთან ერთად გადატანითად მოძრავ ათვლის სისტემაში;
- 3) ღეროს ზრუნვის კუთხური სიჩქარე.

ამოხსნა:

- 1) რადგან v ვექტორი მიმართულია ღეროს მართობულად და ღერო უმასოა, მეორე ბურთულას საწყისი სიჩქარე ნულის ტოლი იქნება. შესაბამისად, ღეროს შუა წერტილის (ანუ ბურთულების მასათა ცენტრის) საწყისი სიჩქარე არის v/2 და მიმართულია მარჯვნივ. მასათა ცენტრის სიჩქარე უცვლელი დარჩება ღეროს და ბურთულების შემდგომი მოძრაობისასაც (1 ქულა).
- 2) ხსენებულ ათვლის სისტემაში გადასვლისას სიჩქარის ყველა ვექტორს დაემატება მარცხნივ მიმართული მოდულით (v/2)-ის ტოლი ვექტორი. ამიტომ ამ სისტემაში ბურთულების საწყისი სიჩქარეები მოდულით (v/2)-ის ტოლი იქნება (პირველის სიჩქარე მიმართული მარჯვნივ, მეორისა მარცხნივ). შესაბამისად, მათი მასათა ცენტრი იქნება უძრავი და, ცხადია, დარჩება უძრავი ბურთულების შემდგომი მოძრაობისას კერძოდ კი ბურთულები მოდულით (v/2)-ის ტოლი სიჩქარით იბრუნებენ ამ უძრავი ცენტრის გარშემო საათის ისრის მიმართულებით (1 ქულა).
- 3) ბურთულების ბრუნვის კუთხური სიჩქარეა $\omega = (v/2)/(L/2) = v/L$. ცხადია, ასეთივე კუთხური სიჩქარით იბრუნებს მთლიანად ღეროც (1 ქულა).

მოვიყვანოთ მკაცრი ამოხსნაც:

 $\mathrm{Ft} = 2\mathrm{mv_c}$ (მასათა ცენტრის მოძრაობის განტოლება)

$$Frac{L}{2}t=2m\left(rac{L}{2}
ight)^2$$
 ω (მომენტების განტოლება)

აქ F ბურთულაზე მოქმედი ძალაა, t ძალის მოქმედების მცირე დროა, v_c მასათა ცენტრის სიჩქარეა, ω შეძენილი კუთხური სიჩქარეა.

აქედან მიიღება, რომ $v_c = \omega \cdot \frac{L}{2}$.

ნახატზე გამოსახული ზედა ბურთულას სიჩქარისათვის მივიღებთ, რომ

$$\begin{array}{c} m \\ \hline F \\ L/2 \\ c \\ \hline \end{array}$$

$$\mathbf{v} = \mathbf{v_c} + \mathbf{\omega} \cdot \frac{\mathbf{L}}{2}$$

აქედან მიიღება ამოცანის პასუხები.

შევნიშნოთ, რომ მეორე ბურთულას შეძენილი სიჩქარე ნულის ტოლია:

$$v_2 = \mathbf{v_c} - \omega \cdot \frac{L}{2} = 0$$

დავალება 35 (5 ქულა).

ნახატზე გამოსახულ სქემაში დენის წყაროს ემ ძალაა \mathcal{E} , წყაროს შიგა წინაღობაა r=0.5R. განსაზღვრეთ:

- 2) ძაბვა მეხუთე რეზისტორზე;
- 3) მეორე და მეოთხე რეზისტორებში დენის ძალების I_2/I_4 შეფარდება;

- 4) პირველ და მესამე რეზისტორებში სიმძლავრეების P_1/P_3 შეფარდება;
- 5) t დროში დენის წყაროს დახარჯული ენერგია. ამოხსნა:

1) პირველ რიგში ვიპოვოთ $(R_1,\,R_2)$ და $(R_3,\,R_4)$ პარალელური უბნების წინაღობები. ისინი უდრის შესაბამისად $R^{'}=\frac{R_1\,R_2}{R_1+R_2}=2R$ და $R^{''}=\frac{R_3\,R_4}{R_3+R_4}=0,5R$, ხოლო გარე წრედის წინაღობაა $R_3=2R+0,5R+2R=4,5R$ (1 ქულა).

2) წყაროში გამავალი დენის ძალაა $I = \mathcal{E}/(r + R_{\delta}) = \mathcal{E}/5R$, ამიტომ საძიებელი ძაბვა იქნება $U_5 = 2R \cdot \mathcal{E}/5R = 0,4$ \mathcal{E} (1 ქულა).

ახლა ვიპოვოთ, რა ძაზვეზია მოდეზული თითოეული პარალელური უზნის ზოლოეზზე. გვაქვს $U^{'}=2R\cdot \mathbb{E}/5R=0,4~\mathbb{E};~~U^{''}=0,5R\cdot \mathbb{E}/5R=0,1~\mathbb{E}.$ ამიტომ

$$3) \ I_2/I_4 = (U^{'}/3R) / (U^{''}/R) = 4/3$$
 (1 ქულა) და

4)
$$P_1/P_3 = ((U^{'})^2/6R) / ((U^{''})^2/R) = 8/3$$
 (1 ქულა).

5) წყაროს მიერ t დროში დახარჯული ენერგიაა $E=\mathbb{E}It=\mathbb{E}^2t/5R$ (1 ქულა).

დავალება 36 (5 ქულა).

სითბურ მრავაში სრულდება ნახატზე გამოსახული 1-2-3-1 ციკლური პროცესი. მუშა სხეული ერთატომიანი იდეალური აირია. P_0 წნევა და V_0 მოცულობა ცნობილი სიდიდეებია. განსაზღვრეთ:

 P_0

0

 V_0

 $5V_0$

- 1) 2-3 პროცესის დროს აირის მიერ შესრულებული მუშაობა;
- 2) 1-2-3-1 ციკლური პროცესის დროს აირის მიერ შესრულებული მუშაობა;
- 3) 1-2 პროცესის დროს აირის მიერ მიღებული სითბოს რაოდენობა;
- 4) 2-3 პროცესის დროს აირის მიერ მიღებული სითბოს რაოდენობა;
- 5) სითბური ძრავას მარგი ქმედების კოეფიციენტი. ამოხსნა:
- $1) A_{23} = 3P_0 (5V_0 V_0) = 12P_0V_0 (1 ქულა).$
- 2) 1-2-3-1 ციკლური პროცესის დროს აირის მუშაობა რიცხობრივად 1-2-3-1 სამკუთხედის ფართობის ტოლია: $A_{1231} = \frac{1}{2} \left(3P_0 P_0 \right) \left(5V_0 V_0 \right) = 4P_0 V_0$ (1 ქულა).
- 3) ერთატომიანი აირის შინაგანი ენერგია $U=\frac{3}{2}$ PV ფორმულით გამოითვლება. 1-2 პროცესის დროს აირის მოცულობა არ იცვლება და მისი მუშაობა ნულის ტოლია. შესაბამისად გვაქვს $Q_{12}=\Delta U_{12}=U_2-U_1=\frac{3}{2}\left(3P_0V_0-P_0V_0\right)=3P_0V_0$ (1 ქულა).
- 4) 2-3 პროცესის დროს აირის მიერ შესრულებული მუშაობა უკვე ნაპოვნია. ამიტომ $Q_{23} = \Delta U_{23} + A_{23} = \frac{3}{2} \left(15 P_0 V_0 3 P_0 V_0\right) + 12 P_0 V_0 = 30 P_0 V_0$ (1 ქულა).
- 5) ძრავას მქკ განისაზღვრება აირის მიერ ერთი ციკლის განმავლობაში შესრულებული მუშობის (ანუ $A_{1231}=4P_0V_0$ -ის) შეფარდებით მიღებულ სითბოს რაოდენობასთან. შევნიშნოთ, რომ 3-1 პროცესის დროს აირი სითბოს გასცემს და, შესაბამისად, ერთ ციკლში მიღებული სითბოს რაოდენობა Q_{12} -სა და Q_{23} -ის ჯამის, ანუ $33P_0V_0$ -ის ტოლი იქნება. ამიტომ ამ მრავას მქკ $\eta=\frac{4}{33}$ (1 ქულა).

დავალება 37 (2 ქულა).

(2) 37. განსაზღვრეთ, რა კანონით იცვლება დროის განმავლობაში X ღერმზე მომრავი m მასის სხეულზე მოქმედი ძალის F_x გეგმილი, თუ კოორდინატი იცვლება შემდეგი კანონით: x= $Asin\omega t$, სადაც A და ω მუდმივი სიდიდეებია.

ამოხსნა:

მალის გეგმილისთვის ნიუტონის მეორე კანონის თანახმად გვაქვს $F_x = ma_x$, სადაც აჩქარების გეგმილი a_x უნდა ვიპოვოთ x კოორდინატის დროით ორჯერ გაწარმოებით. პირველი წარმოებულისთვის ანუ სიჩქარისთვის მივიღებთ $\dot{x} = A\omega \cos\omega t$ (1 ქულა), მეორისთვის კი $a_x = \ddot{x} = -A\omega^2 \sin\omega t$ (1 ქულა).

საბოლოოდ ძალის დროზე დამოკიდებულებისთვის გვექნება $F_x = -mA\omega^2 \sin \omega t$.

დავალება 38 (3 ქულა).

განსაზღვრეთ, რა კანონით იცვლება დროის განმავლობაში X ღერძზე მოძრავი სხეულის x კოორდინატი, თუ საწყისი კოორდინატია x_0 და სიჩქარის გეგმილი იცვლება შემდეგი კანონით:

- 1) v_x = At^2 , სადაც A მუდმივი სიდიდეა;
- 2) v_x = $A\cos\omega t$, სადაც A და ω მუდმივი სიდიდეებია;
- 3) v_x = $Asin\omega t$, სადაც A და ω მუდმივი სიდიდეებია.

ამოხსნა:

სამივე შემთხვევაში კოორდინატი უნდა ვიპოვოთ v_x -ის ინტეგრებით საწყისი პირობის გათვალისწინებით, ანუ შემდეგი ფორმულით:

$$x = x_0 + \int_0^t v_x dt.$$

გვაქვს

1)
$$x = x_0 + \int_0^t A t^2 dt = x_0 + \frac{1}{3} A t^3$$
 (1 ქულა).

2)
$$x = x_0 + \int_0^t A\cos\omega t dt = x_0 + \frac{A\sin\omega t}{\omega}$$
 (1 Jycs).

$$3) \ x = x_0 + \int_0^t A sin\omega t dt = x_0 + \frac{A - A cos\omega t}{\omega}$$
 (1 ქულა).