Studente (Nome e cognome,	e, in stampatello):	
Matricola:	Corso di Laurea: □ IEL; □ IDT; □ Altro; Valutaz.:	
l/la sottoscritto/a, ai sensi dell'ar suindicati (Nome, Cognome, a	rticolo 13 del D.Lgs. 196/2003, presta il suo consenso al trattamento dei dati personali atricola, Corso di laurea, valutazione) ai fini della pubblicazione su pagina internet? Do il consenso Nego il consenso Firma:	
	ato come in figura, con due onde piane $\mathbf{E}_1 = E_0 e^{-jk_1 z} \mathbf{i}_x$ e	
$\mathbf{E}_{\alpha} = E_{\alpha} e^{+j\left(k_{1}z + \frac{\pi}{2}\right)} \mathbf{i} \text{a frequenza}$	a 3GHz su una lastra dielettrica con A B	
perdite spessa d (mezzo ②) im calcoli: (1) la profondità di pen campi riflessi nei mezzi ① e ③; (4) La potenza dissipata nel mez	mmersa nel vuoto (mezzi ① e ③). Si netrazione nel mezzo conduttore; (2) I σ ; (3) Il campo trasmesso nel mezzo ②; σ ; (5) la quota σ , se esiste, dove il σ ; (5) la quota σ , se esiste, dove il σ ; σ 0 σ 1 σ 2 σ 3 σ 3 σ 4 σ 5 σ 5 σ 6 σ 7 σ 9	
$\sigma_2 = 10Sm^{-1}, d = 1m, E_0 = 1Vm^{-1}$	-1.	
<u>≈</u> ≈ 60 >> 1	-> buon conduttore	
La James Comment		
$\delta = \sqrt{\frac{2}{\omega M \alpha}} = 2$	2,9 mm	
V COM, V	l nezzo 2 si piò considerare semi-infini espetto a entrande le interfecce	10
d>> 8 -> 10	l me zzo 2 si pro constante la la Terfecca	
r.	spetto a entranse ce in	2/
3, =3, =3. k,	$=k_3=k_0$ $S_2=\frac{1}{\sigma s}(11)=347)34$ $K_2=\frac{1}{5}(11)$: 34
$\Gamma_{12} = \Gamma_{32} = \Gamma = \frac{3}{3}$	$\frac{3z-5}{5z+5} = -0.82 + j \cdot 0.15$	
To = To = T =	$1 + T = 0.18 + j \cdot 0.15$ $z \neq k, d = jk, z$	
12 32 4jk, 2	$E_{2} = IjE_{0} e^{jk_{1}z} e^{-jk_{1}z}$ $= -ik_{2}z - ik_{2}z - ik_{3}z$	
En = I E. e) ?	x ====================================	
E = 1 = 1 = 1	× _er 00	
Potenza incident	Le su ciesume feccie 11-23.	<i>m</i>
DA PILLAKEA	10 (16)W	
Potenza Trasmena	attrevorso & facile to = 1: -1, -0.4 mm	
D+ /win	to = 25 = 0.8 mm	
Puzdez l'ette	nuezione fe si che i moduli st. E, c Ezt olirezione sono ortogonol e le fose e 30°	

2 — La configurazione schematizzata in figura è operante a una frequenza per cui sulla linea $\lambda=1$ e tutte le linee hanno impedenza caratteristica $Z_0=50\Omega$ tranne il pezzo tra le sezioni AA' e BB' che ha impedenza $Z_1=150\Omega$. A distanza $d_1=\lambda/5$ dal carico $Z_{L_1}=100+j100\Omega$ vi è un primo stub in corto circuito, segue il tratto lungo $\lambda/4$ e, in BB' vi è un secondo carico $Z_{L_2}=50\Omega$. Si determini (1) la lunghezza dello stub l_1 tale per

cui alla sezione AA' si misura un coefficiente di riflessione $\Gamma_{AA'}$ reale. (2) La posizione d_2 e la lunghezza l_2 di uno stub in circuito aperto che adatti a sinistra della sezione CC'. (3) Nel caso in cui l'onda di tensione incidente su CC' trasporti una potenza di 1W si determini la potenza dissipata su ciascuno dei due carichi.

$$Z_{L} = 100 + j 100 \Omega + Z_{L_{1}} = 2 + j 2 + g_{L_{1}} = \frac{1}{4} - j \frac{1}{4}$$

$$\int_{AA'} = \frac{g_{L_{1}} + j \tan(kA)}{1 + j g_{L_{1}} \tan(kA)} = 0.70 + j 1.3 \quad Z_{2} = 5 t + j 2 \text{ severe } b = -1.3$$

$$l_{1} = \arctan(\frac{-b_{1}}{k}) = 0,104 \text{ } \lambda$$

$$y_{AA'_{+}} = 0.70$$

$$y_{AA'_{+}} = 0.0145 + y_{AA'_{+}} = 0.0145 + y_{AA'_{+}} = 2.11 + y_{BB'_{-}} = 0.00325$$

$$150 \Omega$$

$$y_{BB'} = 0.158$$
 $y_{BB'} = y_{BB'} + y_{L_2} = 0.158 + 1 = 1.158$
 $x_i = y_{BB'} + y_{L_2} = 0.119$ Solle coste

 $x_i = y_{BB'} + y_{L_2} = 0.119$ Solle coste

 $y_{L_1} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_1} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_1} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_1} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_1} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_1} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_2} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_1} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_2} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_2} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_2} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_2} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_2} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_2} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_2} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_2} = y_{L_2} + y_{L_2} = 0.119$ Solle coste

 $y_{L_2} = y_{L_2} + y_{L_2} = y_{L_2} + y_{L_2} = y_{L_2} + y_{L$

3) Toth i'l well si slissipe sol perellelo $y_{12} + y_{33}$ '
entrembi reali' $\frac{1}{2}Y_{12}W_1^2 + \frac{1}{2}Y_{33}'_{-}|V|^2 = 1W$ Ricero $|V|^2 = 86$ e $P_{11} = \frac{1}{2}Y_{33}'_{-}|V|^2 = 0.13W$

$$P_{L_{2}} = \frac{1}{2} \gamma_{03} / |V| = 0.75 \text{ W}$$

$$P_{L_{2}} = \frac{1}{2} \gamma_{L_{2}} |V|^{2} = 0.87 \text{ W}$$

3 - (1) Ricavare la soluzione delle equazioni di Maxwell nel caso di assenza di sorgenti e con dipendenza spaziale dalla sola coordinata z nel dominio della frequenza. (2) Discutere tale soluzione in un mezzo caratterizzato da $\varepsilon = \varepsilon_0$ e $\mu = \mu_0 \left(1 - \omega/\omega_0\right)$ calcolando esplicitamente velocità di fase e di gruppo.

La derivezione delle ande piene e quelle delle teorie.

E = E. (2) $M = M. \left(1 - \frac{\omega}{\omega}\right)$ k=w VE u = w/E, u. (1-w) = ko VI-w

Il muzzo e DISVENSIVO NEL TENVO

A wews kER si he propagazione

 $v_f = \frac{\omega}{k} = \frac{\omega}{k \cdot \sqrt{1 - \omega}} = \frac{\omega}{\omega \cdot \sqrt{1 - \omega}} = \frac{1}{\sqrt{1 - \omega}}$

 $V_g = \frac{\partial \omega}{\partial k} = \frac{1}{\frac{\partial k}{\partial \omega}} = \frac{1}{\frac{\partial k}{\partial \omega}} = \frac{1}{\frac{\partial k}{\partial \omega}} \left[\frac{\partial \omega}{\partial \omega} \right] \left[\frac$

 $= \frac{2 \times \sqrt{\omega^2 - \frac{\omega^3}{\omega_0}}}{\sqrt{2\omega^2 - \frac{\omega^3}{\omega_0}}} = \frac{2 \times \sqrt{\omega^2 - \frac{\omega^3}{\omega_0}}}{2\omega - 3\frac{\omega^2}{\omega_0}}$ $= \frac{2 \times \sqrt{\omega^2 - \frac{\omega^3}{\omega_0}}}{\sqrt{2\omega^2 - \frac{\omega^3}{\omega_0}}} = \frac{2 \times \sqrt{\omega^2 - \frac{\omega^3}{\omega_0}}}{2\omega - 3\frac{\omega^2}{\omega_0}}$ $= \frac{2 \times \sqrt{\omega^2 - \frac{\omega^3}{\omega_0}}}{\sqrt{2\omega}} = \frac{2 \times \sqrt{\omega^2 - \frac{\omega^3}{\omega_0}}}{2\omega - 3\frac{\omega^2}{\omega_0}}$ $= \frac{2 \times \sqrt{\omega^2 - \frac{\omega^3}{\omega_0}}}{\sqrt{2\omega}} = \frac{2 \times \sqrt{\omega^2 - \frac{\omega^3}{\omega_0}}}{2\omega - 3\frac{\omega^2}{\omega_0}}$ $= \frac{2 \times \sqrt{\omega^2 - \frac{\omega^3}{\omega_0}}}{\sqrt{2\omega}} = \frac{2 \times \sqrt{\omega^2 - \frac{\omega^3}{\omega_0}}}{2\omega - 3\frac{\omega^2}{\omega_0}}$

4 - Le condicioni de continuite sono I relle delle Teorie