

Capítulo 2 Modelos lineales y Programación lineal

Método simplex y gran "M"

Paso 1: Formular el problema en la forma canónica.

Paso 2: Luego llevar a la forma estándar

Paso 3: Igualar la Función Objetivo a cero.

Paso 4: Llenar la tabla con los valores de los coeficientes de

todas las variables.

Paso 5: Verificar si en la FILA de todos los valores son ceros o

positivos: SI: TERMINAR el método

NO: Continuar con el Paso 6

Paso 6: Determinar la columna del pivote: el menor negativo

Paso 7: Determinar la fila del pivote: hallar el menor radio.

Paso 8: Aplicar GAUSS-JOURDAN.

Paso 9: Volver al Paso 5.

$$F.O$$
 MAX $z = 3x_1 + 5x_2$
 $S.A$ $x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $\forall x_i \ge 0 \land x_i \in R$

$$z - 3x_1 - 5x_2 = 0$$

$$x_1 + h_1 = 4$$

 $2x_2 + h_2 = 12$
 $3x_1 + 2x_2 + h_3 = 18$

	Z	x_1	x_2	h_1	h_2	h_3	LD	θ
Z	1	- 3	- 5	0	0	0	0	
h ₁	0	1		1	Ö	0	4	
h ₂	0	0	(2)pixot	e 0	1	0	12	6
h ₃	0	3	2	0	0	1	18	9

	Z	x_1	x_2	h_1	h_2	h_{3}	LD	θ
Z	1	- 3	- 5	0	0	0	0	
h ₁	0	1		1	0	0	4	
h ₂	0	0 (2)pixot	te O	1	0	12	6
h ₃	0	3	2	0	0	1	18	9
Z	1	- 3	0	0	5/2	0	30	
h ₁	0	1	0	1	0	0	4	4
X 2	0 pixo:		1	0	1/2	0	6	
hз	0	~(3)	0	0	– 1	1 /	6	2
Z	1	0	0	0	3/2	0	36	
h ₁	0	0	<u>0</u>	1	1/3	$- \frac{1}{3}$	2	
X2	0	0	1	0	1/2	0	6	
X 1	0	1	0	0	$- \frac{1}{3}$	1/3	2	

	Z	x_1	x_2	h_1	h_2	h_{3}	LD	θ
Z	1	- 3	- 5	0	0	0	0	
h ₁	0	1		1	0	0	4	
h ₂	0	0 (2)pixot	te O	1	0	12	6
h ₃	0	3	2	0	0	1	18	9
Z	1	- 3	0	0	5/2	0	30	
h ₁	0	1	0	1	0	0	4	4
X 2	0 pixo:		1	0	1/2	0	6	
hз	0	~(3)	0	0	– 1	1 /	6	2
Z	1	0	0	0	3/2	0	36	
h ₁	0	0	<u>0</u>	1	1/3	$- \frac{1}{3}$	2	
X2	0	0	1	0	1/2	0	6	
X 1	0	1	0	0	$- \frac{1}{3}$	1/3	2	

- 1.Pasar a la forma estándar el modelo matemático.
- 2. Agregar variables artificiales a los que no tienen variables de holgura.
- 3. Penalizar las variables artificiales en la función objetivo. (MAX =resta y min=suma)
- 4.Luego se deben <u>eliminar las variables artificiales</u> de la función objetivo.
- 5.Llenar la tabla inicial.
- 6. Aplicar Gauss-Jordan. Para el pivote elegir :

Columna pivote

En el caso de MAX, de la fila de "z" todos los valores negativos el mayor en valor absoluto

En el caso de **min**, utilizar todos los valores positivos de la fila de "z" y tomar el mayor.

Fila pivote

Calcular el radio y tomar el menor de ellos. (se aplica la misma idea para MAX y min)

El método termina:

- En el caso de MAX, la fila de z todos ≥ 0.
- En el caso de min, la fila de z todos ≤ 0.

F.O MAX
$$z = 3x_1 + 5x_2$$

$$S.A \qquad x_1 \le 4$$

$$2x_2 = 12$$

$$3x_1 + 2x_2 \ge 18$$

$$\forall x_i \ge 0 \land x_i \in R$$

$$x_1 + h_1 = 4$$

 $2x_2 + a_1 = 12$
 $3x_1 + 2x_2 - s_1 + a_2 = 18$

Fila de la F.O.	-3	-5	<i>s</i> ₁ 0	а ₁ М	а ₂ М	LD 0
Restricciones sumadas (las que tienen variables artificiales)	3	4	-1	1	1	30 <
Nueva F.O	-3M-3	-4M-5	М	0	0	-30M

Para que desaparezcan las variables artificiales de la F.O, se multiplica por -M el resultado de las restricciones y se suma con todos los valores de la antigua F.O.

Н		Z	x1	x2	h1	a1	s1	a2	LD	θ	
5	Z	1	-3M-3	-4M-5	0	0	M	0	-30M		
5	h1	0	1	0	1	0	0	0	4		
7	a1	0	0	2	0	1	0	0	12	6	
3	a2	0	3	2	0	0	-1	1	18	9	
)	Z	1	-3M-3	0	0	2M +5/2	M	0	-6M+30		
)	h1	0	1	0	1	0	0	0	4	4	
	x2	0	0	1	0	0,5	0	0	6		
2	a2	0	3	0	0	-1	-1	1	6	2	
3	Z	1	0	0	0	M+ 3/2	-1	M+1	36		
ŀ	h1	0	0	0	1	1/3	1/3	- 1/3	2		
5	x2	0	0	1	0	1/2	0	0	6		
5	x1	0	1	0	0	- 1/3	- 1/3	1/3	2		
,	Z	1	0	0	0	M+5/2	0	М	42		
3	s1	0	0	0	1	1	1	-1	6		
)	x2	0	0	1	0	1/2	0	0	6		
)	x1	0	1	0							
	Solución óptima factible.										

F.O MAX
$$z = 3x_1 + 2x_2$$

S.A $x_1 + x_2 \le 6$ R1
 $2x_1 - x_2 \ge 0$ R2
 $x_1 = 2$ R3
 $\forall x_i \ge 0$

