Examenul național de bacalaureat 2023

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 1

Varianta 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z(z-2i) = (3+i)(3-i) = 3^2 - i^2 =$	3p
	=9+1=10	2 p
2.	f(2x) = 10x + 1, pentru orice număr real x	2p
	f(2x)-2f(x)=10x+1-2(5x+1)=10x+1-10x-2=-1, pentru orice număr real x	3 p
3.	$x^3 - 2x + 2 = x^3$, deci $-2x + 2 = 0$	3 p
	x=1	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea A sunt 9 numere n pentru care $n+5$ este multiplu de 10, deci sunt 9 cazuri	
	favorabile, de unde obținem $p = \frac{9}{90} = \frac{1}{10}$	3 p
5.	$m_{AB} = 4$ şi, cum $d \parallel AB$, obținem $m_d = 4$	3p
	Ecuația dreptei este $y-0=4(x-0)$, adică $y=4x$	2p
6.	$AD = \frac{BC}{2}$, unde AD este înălțime în triunghiul ABC	3p
	$\mathcal{A}_{\Delta ABC} = \frac{AD \cdot BC}{2} = 4$, de unde obținem $BC = 4$	2p

1.a)	$A(0) = \begin{pmatrix} 2 & 1 & 2 \\ 1 & -1 & 0 \\ 0 & 1 & -2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 2 & 1 & 2 \\ 1 & -1 & 0 \\ 0 & 1 & -2 \end{vmatrix} =$	2p
	=4+2+0-0-0+2=8	3р
b)	$\det(A(a)) = \begin{vmatrix} 2 & 1 & 2 \\ 1 & -1 & a \\ a & a+1 & -2 \end{vmatrix} = -a^2 + 2a + 8, \text{ pentru orice număr real } a$ $\det(A(a)) = 0 \Leftrightarrow a = -2 \text{ sau } a = 4, \text{ deci matricea } A(a) \text{ este inversabilă dacă și numai dacă}$ $a \in \mathbb{R} \setminus \{-2, 4\}$	2p 3p
c)	Pentru $a=-2$, soluțiile sistemului de ecuații sunt de forma $(2,-2-2\alpha,\alpha)$, cu $\alpha \in \mathbb{C}$	3p
	$x_0z_0+y_0=2\alpha-2-2\alpha=-2$, pentru orice soluție (x_0,y_0,z_0) a sistemului de ecuații	2p
2.a)	$2 \circ 3 = 2 \cdot 3 + (2^2 - 2)(2^3 - 2) =$	3p
	=6+12=18	2p

	Contrar rayonar do rondor și Evardaro în Eddedijo	
b)	$x \circ 1 = x \cdot 1 + (2^x - 2)(2^1 - 2) = x + 0 = x$, pentru orice număr real x	2p
	$1 \circ x = 1 \cdot x + (2^1 - 2)(2^x - 2) = x + 0 = x$, pentru orice număr real x , deci $e = 1$ este elementul neutru al legii de compoziție " \circ "	3 p
c)	$x \circ (-x) = -x^2 + 1 - 2 \cdot 2^x - 2 \cdot 2^{-x} + 4 =$	2p
	$= -x^2 + 1 - 2 \cdot \left(2^x - 2 + \frac{1}{2^x}\right) = 1 - x^2 - 2 \cdot \left(\sqrt{2^x} - \frac{1}{\sqrt{2^x}}\right)^2 \le 1, \text{ pentru orice număr real } x$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 1 + 3(\ln(x+3) - \ln(x-1))' = 1 + \frac{3}{x+3} - \frac{3}{x-1} =$	3 p
	$= \frac{x^2 + 2x - 3 + 3x - 3 - 3x - 9}{(x+3)(x-1)} = \frac{x^2 + 2x - 15}{(x+3)(x-1)}, \ x \in (1, +\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 + \frac{3}{x} \ln \frac{x+3}{x-1} \right) = 1$	2p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \left(3 \ln \frac{x+3}{x-1} \right) = 0, \text{ deci dreapta de ecuație } y = x \text{ este asimptota oblică}$ $\text{spre } +\infty \text{ la graficul funcției } f$	3 p
c)	$f'(x)=0 \Rightarrow x=3$; $f'(x) \leq 0$, pentru orice $x \in (1,3] \Rightarrow f$ este descrescătoare pe $(1,3]$ și $f'(x) \geq 0$, pentru orice $x \in [3,+\infty) \Rightarrow f$ este crescătoare pe $[3,+\infty)$, deci $f(x) \geq f(3)$, pentru orice $x \in (1,+\infty)$	3p
	$f(3) = 3 + 3\ln 3$, deci $x + 3\ln \frac{x+3}{x-1} \ge 3 + 3\ln 3$, pentru orice $x \in (1, +\infty)$, de unde obţinem $\ln \frac{x+3}{3(x-1)} \ge 1 - \frac{x}{3}$, pentru orice $x \in (1, +\infty)$	2p
2.a)	$\int_{0}^{3} f(x)e^{x}dx = \int_{0}^{3} (x^{2} + 2x)dx = \left(\frac{x^{3}}{3} + x^{2}\right)\Big _{0}^{3} =$	3p
	$=\frac{27}{3}+9=18$	2p
b)	$\int_{0}^{1} \frac{f(x)}{x+2} dx = \int_{0}^{1} x \left(-e^{-x}\right)' dx = x \left(-e^{-x}\right) \Big _{0}^{1} - e^{-x} \Big _{0}^{1} =$	3p
	$=-\frac{1}{e}-\frac{1}{e}+1=\frac{e-2}{e}$	2p
c)	$\lim_{x \to 0} \left(\frac{1}{x^2} \int_0^x f(t) dt \right) = \lim_{x \to 0} \frac{\left(\int_0^x f(t) dt \right)'}{\left(x^2 \right)'} =$	2p
	$= \lim_{x \to 0} \frac{f(x)}{2x} = \lim_{x \to 0} \frac{(x+2)e^{-x}}{2} = 1$	3p

Varianta 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numărul complex z = 3 + i. Arătați că z(z-2i) = 10.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 5x + 1. Arătați că f(2x) 2f(x) = -1, pentru orice număr real x.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt[3]{x^3 2x + 2} = x$.
- **5p 4.** Se consideră mulțimea A, a numerelor naturale de două cifre. Calculați probabilitatea ca, alegând un număr n din mulțimea A, numărul n+5 să fie multiplu de 10.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(4,0) și B(5,4). Determinați ecuația dreptei d care trece prin punctul O și este paralelă cu dreapta AB.
- **5p 6.** Se consideră triunghiul isoscel ABC, dreptunghic în A, cu aria egală cu 4. Arătați că BC = 4.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} 2 & 1 & 2 \\ 1 & -1 & a \\ a & a+1 & -2 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} 2x+y+2z=2 \\ x-y+az=4 \\ ax+(a+1)y-2z=a \end{cases}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(0)) = 8$.
- **5p b)** Determinați mulțimea numerelor reale a pentru care matricea A(a) este inversabilă.
- **5p** c) Pentru a = -2, arătați că $x_0 z_0 + y_0 = -2$, pentru orice soluție (x_0, y_0, z_0) a sistemului de ecuații.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + (2^x 2)(2^y 2)$.
- **5p** a) Arătați că $2 \circ 3 = 18$.
- **5p b)** Arătați că e=1 este elementul neutru al legii de compoziție " \circ ".
- **5p** | c) Demonstrați că $x \circ (-x) \le 1$, pentru orice număr real x.

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = x + 3\ln\frac{x+3}{x-1}$
- **5p** a) Arătați că $f'(x) = \frac{x^2 + 2x 15}{(x 1)(x + 3)}, x \in (1, +\infty).$
- **5p b**) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **5p** c) Arătați că $\ln \frac{x+3}{3(x-1)} \ge 1 \frac{x}{3}$, pentru orice $x \in (1,+\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x^2 + 2x)e^{-x}$.
- **5p a)** Arătați că $\int_{0}^{3} f(x)e^{x}dx = 18$.

5p b) Arătați că
$$\int_{0}^{1} \frac{f(x)}{x+2} dx = \frac{e-2}{e}.$$

5p c) Demonstrați că
$$\lim_{x\to 0} \left(\frac{1}{x^2} \int_0^x f(t) dt \right) = 1$$
.

Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$4r = a_5 - a_1 = 20$, deci $r = 5$, unde r este rația progresiei aritmetice	3 p
	$a_6 = a_5 + r \Rightarrow a_6 = 28$	2p
2.	$f(m) = -1$, de unde obținem $m^2 - 6m + 9 = 0$	3 p
	m=3	2p
3.	$3^{2x-1} = 3^{x+3}$, de unde obținem $2x-1 = x+3$	3 p
	x = 4	2 p
4.	$C_5^1 + C_5^2 =$	3 p
	=5+10=15	2 p
5.	$\overrightarrow{OA} = 3\overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{BC} = (x_C - 4)\overrightarrow{i} + (y_C - 4)\overrightarrow{j}$	3 p
	$x_C = 7 \text{ si } y_C = 5$	2 p
6.	Triunghiul <i>ADB</i> este dreptunghic în <i>D</i> , deci $BD = 3\sqrt{3}$	2p
	$BC = 4\sqrt{3}$, deci $R = 2\sqrt{3}$	3 p

1.a)	$(1 \ 1 \ 1)$ $ 1 \ 1 \ 1 $	
	$A(1) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{vmatrix} =$	2p
	$\begin{bmatrix} -1 & -1 & -1 \end{bmatrix}$ $\begin{bmatrix} -1 & -1 & -1 \end{bmatrix}$	
	=-1-1-1+1+1+1=0	3 p
b)	$A(x) \cdot A(y) - A(xy) = \begin{pmatrix} 0 & 0 & 0 \\ y + x - 2 & 0 & y + x - 2 \\ -y - x + 2 & 0 & -y - x + 2 \end{pmatrix} =$	
	$A(x) \cdot A(y) - A(xy) = \begin{vmatrix} y + x - 2 & 0 & y + x - 2 \end{vmatrix} =$	3 p
	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	
	=(y+x-2) 1 0 1 $=(x+y-2)A(0)$, pentru orice numere reale x şi y	2p
	$= (y+x-2)\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & -1 \end{pmatrix} = (x+y-2)A(0), \text{ pentru orice numere reale } x \text{ și } y$ $A(x) = A(x) + A(x$	
c)	$A(-1)\cdot A(3)\cdot A(x) = A(-3)\cdot A(x) = A(-3x) + (x-5)A(0)$, pentru orice număr real x	2p
	A(-3x)+(x-5)A(0)=A(y), de unde obţinem $x=5$ şi $y=-15$	3 p
2.a)	$f = X^4 + 2X^3 - 8X^2 + 6X + 2 \Rightarrow f(1) = 1^4 + 2 \cdot 1^3 - 8 \cdot 1^2 + 6 \cdot 1 + 2 =$	3 p
	=1+2-8+6+2=3	2p
b)	$f = X^4 + 2X^3 - 8X^2 = X^2 (X^2 + 2X - 8)$	2p
	Rădăcinile polinomului f sunt $x_1 = x_2 = 0$, $x_3 = -4$, $x_4 = 2$	3р
c)	Polinomul f are coeficienți raționali, deci $x_2 = 1 - \sqrt{3}$ este rădăcină a polinomului f	2p
	$x_1 + x_2 + x_3 + x_4 = -2$ şi $x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4 = -8$, unde x_3 şi x_4 sunt	
	celelalte rădăcini ale polinomului f , de unde obținem $x_3 + x_4 = -4$ și $x_3x_4 = 2$ și, cum	3 p
	$x_1x_2x_3x_4 = m$, rezultă $m = -4$, care convine	

SUBII	ECTUL al III-lea	(30 de puncte)
1.a)	$3e^{x}(x^{2}+x+1)-3e^{x}(2x+1)$	

SUBII	UBIECTUL al III-lea (30 de punct	
1.a)	$f'(x) = \frac{3e^x (x^2 + x + 1) - 3e^x (2x + 1)}{(x^2 + x + 1)^2} =$	3р
	$= \frac{3e^{x} \left(x^{2} + x + 1 - 2x - 1\right)}{\left(x^{2} + x + 1\right)^{2}} = \frac{3e^{x} \left(x^{2} - x\right)}{\left(x^{2} + x + 1\right)^{2}}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{f(2x)}{f(x)} = \lim_{x \to +\infty} \frac{3e^{2x}}{4x^2 + 2x + 1} \cdot \frac{x^2 + x + 1}{3e^x} =$	2p
	$= \lim_{x \to +\infty} \left(e^x \cdot \frac{x^2 + x + 1}{4x^2 + 2x + 1} \right) = \lim_{x \to +\infty} \left(e^x \cdot \frac{1 + \frac{1}{x} + \frac{1}{x^2}}{4 + \frac{2}{x} + \frac{1}{x^2}} \right) = +\infty$	3p
c)		
	crescătoare pe $(-\infty,0)$; pentru orice $x \in (0,1)$, $f'(x) < 0 \Rightarrow f$ este strict descrescătoare pe $(0,1)$; pentru orice $x \in (1,+\infty)$, $f'(x) > 0 \Rightarrow f$ este strict crescătoare pe $(1,+\infty)$	2p
	$\lim_{x \to -\infty} f(x) = 0, \ f(0) = 3, \ f(1) = e, \ \lim_{x \to +\infty} f(x) = +\infty \text{ și, cum } f \text{ este continuă, obținem că}$ ecuația $f(x) = m$ are exact trei soluții, pentru orice $m \in (e,3)$	3р
2.a)	$\int_{1}^{2} (f(x) - \ln(x+1)) dx = \int_{1}^{2} 6x dx = 3x^{2} \Big _{1}^{2} =$	3p
	=12-3=9	2p
b)	$\int_{0}^{e-1} \frac{f(x) - 6x}{x+1} dx = \int_{0}^{e-1} \ln(x+1) (\ln(x+1))' dx = \frac{\ln^{2}(x+1)}{2} \Big _{0}^{e-1} =$	3p
	$=\frac{\ln^2 e}{2} - \frac{\ln^2 1}{2} = \frac{1}{2}$	2p
c)	$g(x) = 6x^{2} + \ln(x^{2} + 1) \Rightarrow \mathcal{A} = \int_{0}^{1} g(x) dx = 2x^{3} \Big _{0}^{1} + \int_{0}^{1} x' \ln(x^{2} + 1) dx = 2 + \ln 2 - \int_{0}^{1} \frac{2x^{2}}{x^{2} + 1} dx = 2 + \ln 2 - \frac{1}{2} \frac{2x^{2}}{x^{2} + 1} $	3p
	$= 2 + \ln 2 - 2x \Big _{0}^{1} + 2 \arctan x \Big _{0}^{1} = \frac{\pi}{2} + \ln 2, \text{ deci } \frac{\pi}{2} + \ln 2 = a\pi + \ln 2, \text{ de unde obținem } a = \frac{1}{2}$	2p

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați termenul a_6 al progresiei aritmetice $(a_n)_{n\geq 1}$, cu $a_1=3$ și $a_5=23$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 6x + 8$. Determinați numărul real m, știind că punctul A(m,-1) aparține graficului funcției f.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{2x-1} = 9 \cdot 3^{x+1}$.
- **5p 4.** Se consideră mulțimea $A = \{1, 2, 3, 4, 5\}$. Determinați numărul submulțimilor nevide ale mulțimii A, care au cel mult două elemente.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,1) și B(4,4). Determinați coordonatele punctului C, știind că $\overrightarrow{OA} = \overrightarrow{BC}$.
- **5p 6.** Se consideră triunghiul ABC, dreptunghic în A, cu AB = 6 și înălțimea AD = 3. Arătați că raza cercului circumscris triunghiului ABC este egală cu $2\sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} x & x & x \\ 1 & x & 1 \\ -1 & -x & -1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = 0$.
- **5p b)** Arătați că $A(x) \cdot A(y) A(xy) = (x + y 2)A(0)$, pentru orice numere reale x și y.
- **5p** c) Determinați numerele reale x și y pentru care $A(-1) \cdot A(3) \cdot A(x) = A(y)$.
 - **2.** Se consideră polinomul $f = X^4 + 2X^3 8X^2 + 3mX + m$, unde m este număr real.
- **5p** a) Pentru m=2, arătați că f(1)=3.
- **5p b)** Pentru m = 0, determinați rădăcinile polinomului f.
- **5p** c) Determinați numărul rațional m pentru care polinomul f are rădăcina $x_1 = 1 + \sqrt{3}$.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{3e^x}{x^2 + x + 1}$.
- **5p** a) Arătați că $f'(x) = \frac{3e^x(x^2 x)}{(x^2 + x + 1)^2}, x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x \to +\infty} \frac{f(2x)}{f(x)} = +\infty$.
- **5p** c) Demonstrați că ecuația f(x) = m are exact trei soluții, pentru orice $m \in (e,3)$.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = 6x + \ln(x+1)$.
- **5p** a) Arătați că $\int_{1}^{2} (f(x) \ln(x+1)) dx = 9$.

5p b) Arătați că
$$\int_{0}^{e-1} \frac{f(x) - 6x}{x+1} dx = \frac{1}{2}$$
.

5p c) Determinați numărul real a, știind că aria suprafeței plane delimitate de graficul funcției $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x^2)$, axa Ox și dreptele de ecuații x = 0 și x = 1 este egală cu $a\pi + \ln 2$.

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

-		
1.	a-b+(a+b)i=4, de unde obținem $a-b=4$ și $a+b=0$	3 p
	a=2 și $b=-2$	2 p
2.	$m(m-x)^2 - 2(m-x) + m = m(m+x)^2 - 2(m+x) + m \Rightarrow x(m^2-1) = 0$ şi, cum egalitatea are loc pentru orice număr real x , obținem $m^2 - 1 = 0$	3 p
	m = -1 sau $m = 1$, care convin	2p
3.	$\log_2(2x^2) = \log_2(x^2 + x + 2)$, de unde obținem $x^2 - x - 2 = 0$	3p
	x = -1, care nu convine; $x = 2$, care convine	2 p
4.	Mulțimea F are $4^4 = 256$ de elemente, deci sunt 256 de cazuri posibile	2p
	Pentru fiecare $n \in A$, $f(n)$ se poate alege în n moduri, deci sunt $1 \cdot 2 \cdot 3 \cdot 4 = 24$ de cazuri	
	favorabile, de unde obținem $p = \frac{24}{256} = \frac{3}{32}$	3 p
5.	$\overrightarrow{CM} = \frac{1}{2} \left(\overrightarrow{CA} + \overrightarrow{CB} \right)$, unde M este mijlocul segmentului AB , de unde obținem $\overrightarrow{CM} = \overrightarrow{OC}$, deci punctul C este mijlocul segmentului OM	3p
	Cum $x_M = 2$ și $y_M = 4$, obținem $x_C = 1$ și $y_C = 2$	2 p
6.	$\frac{AB}{\sin C} = 2R \Rightarrow R = \frac{AB}{2\sin C} = \frac{8}{2 \cdot \frac{1}{2}} = 8$, unde R este raza cercului circumscris triunghiului ABC	2p
	Triunghiul OAB este echilateral cu latura egală cu 8, deci distanța de la punctul O la latura AB este $OM = 4\sqrt{3}$, unde M este mijlocul segmentului AB	3 p

1.a)	$A(0) = \begin{pmatrix} 3 & 0 & -2 \\ 1 & 1 & -1 \\ 2 & -2 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 3 & 0 & -2 \\ 1 & 1 & -1 \\ 2 & -2 & 1 \end{vmatrix} =$	2p
	=3+4+0+4-6-0=5	3 p
b)	$\det(A(a)) = \begin{vmatrix} 3 & a & -2 \\ 2a+1 & 1-a & -1 \\ a+2 & -2 & 1 \end{vmatrix} = 5(1+a)(1-a), \text{ pentru orice număr real } a$	2p
	$\det(A(a)) = 0 \Leftrightarrow a = -1 \text{ sau } a = 1$, deci matricea $A(a)$ este inversabilă dacă și numai dacă $a \in \mathbb{R} \setminus \{-1,1\}$	3 p

c)	Pentru $a \in \mathbb{R} \setminus \{-1,1\}$, sistemul de ecuații este compatibil, oricare ar fi numerele reale b și c ;	
	pentru $a \in \{-1,1\}$, $\begin{vmatrix} a & -2 \\ 1-a & -1 \end{vmatrix} \neq 0$, deci sistemul este compatibil dacă și numai dacă	3р
	$\begin{vmatrix} -1 & -2 & b \\ 2 & -1 & c \\ -2 & 1 & -1 \end{vmatrix} = 0 \text{si} \begin{vmatrix} 1 & -2 & b \\ 0 & -1 & c \\ -2 & 1 & -1 \end{vmatrix} = 0$	Эþ
	$\begin{vmatrix} -2 & 1 & -1 \end{vmatrix}$, $\begin{vmatrix} -2 & 1 & -1 \end{vmatrix}$	
	b=2 și $c=1$	2p
2.a)	$f(-1) = (-1)^4 + a \cdot (-1)^3 + a \cdot (-1)^2 + 8 \cdot (-1) - 8 =$	3 p
	=1-a+a-8-8=-15, pentru orice număr real a	2p
b)	Restul împărțirii polinomului f la polinomul g este egal cu $(a+8)X+a-7$, pentru orice număr real a	3 p
	(a+8)X + a - 7 = 15X, de unde obţinem $a = 7$	20
	$(u+\delta)A+u-1-13A$, de unde objinent $u-1$	2p
c)	Presupunând că rădăcinile x_1, x_2, x_3, x_4 ale polinomului f sunt numere întregi, cum $x_1 + x_2 + x_3 + x_4 = -a$, obținem că $a \in \mathbb{Z}$	2p
	$x_1x_2x_3x_4 = -8 \Rightarrow x_1 \cdot x_2 \cdot x_3 \cdot x_4 = 8$, de unde obținem că cel puțin o rădăcină a	
	polinomului f are modulul egal cu 1 și, cum $f(-1) \neq 0$ pentru orice număr real a ,	
	obținem $f(1) = 0$, deci $a = -\frac{1}{2}$, ceea ce este fals, deci polinomul f nu are toate rădăcinile	3 p
	numere întregi	

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = -1 - 4x^3 \arctan x - (x^4 - 1) \cdot \frac{1}{x^2 + 1} =$	3р
	$=-1-4x^3 \arctan x-x^2+1=-x^2(4x\arctan x+1), x \in \mathbb{R}$	2p
b)	Tangenta la graficul funcției f în punctul $A(x_0, f(x_0))$ este paralelă cu axa $Ox \Leftrightarrow f'(x_0) = 0$	2p
	$-x_0^2 (4x_0 \operatorname{arctg} x_0 + 1) = 0$ și, cum $x_0 \operatorname{arctg} x_0 \ge 0$ pentru orice $x_0 \in \mathbb{R}$, obținem $x_0 = 0$, deci ecuația tangentei la graficul funcției f care este paralelă cu axa Ox este $y - f(0) = f'(0)(x - 0)$, adică $y = 1$	3 p
c)	$f'(x) \le 0$, pentru orice $x \in \mathbb{R}$, deci funcția f este descrescătoare pe \mathbb{R} și, cum $f(0) = 1$ și $f(1) = 0$, obținem $0 \le f(x) \le 1$, pentru orice $x \in [0,1]$	2p
	Pentru $g:[0,1] \to \mathbb{R}$, $g(x) = \operatorname{tg} x - x$, $g'(x) = \frac{1}{\cos^2 x} - 1 \ge 0$, pentru orice $x \in [0,1]$, deci g este crescătoare, de unde obținem $\operatorname{tg} x \ge x$, pentru orice $x \in [0,1]$, deci $\operatorname{tg}(f(x)) \ge f(x) \ge f(\operatorname{tg} x)$, pentru orice $x \in [0,1]$	3 p
2.a)	$\int_{0}^{3} (1 + e^{-x}) f(x) dx = \int_{0}^{3} (x^{2} + e^{x}) dx = \left(\frac{x^{3}}{3} + e^{x}\right) \Big _{0}^{3} =$	3p
	$=\frac{27}{3}+e^3-0-1=8+e^3$	2p
b)	$\int_{-m}^{m} \frac{f(x)}{x^2 + e^x} dx = \int_{-m}^{m} \frac{1}{1 + e^{-x}} dx = \int_{-m}^{m} \frac{\left(e^x + 1\right)'}{e^x + 1} dx =$	3 p
	$= \ln\left(1 + e^x\right) \Big _{-m}^{m} = \ln\left(1 + e^m\right) - \ln\left(\frac{1 + e^m}{e^m}\right) = \ln e^m = m, \text{ pentru orice } m \in (0, +\infty)$	2p

Probă scrisă la matematică M_mate-info

Barem de evaluare și de notare

Model

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

c)	$\lim_{x \to 0} \left(\frac{1}{e^{ax} - 1} \int_{0}^{x} f(t) dt \right) = \lim_{x \to 0} \frac{\left(\int_{0}^{x} f(t) dt \right)'}{\left(e^{ax} - 1 \right)'} =$	2p
	$= \lim_{x \to 0} \frac{f(x)}{ae^{ax}} = \frac{1}{2a}, \text{ de unde obținem } \frac{1}{2a} = 1, \text{ deci } a = \frac{1}{2}, \text{ care convine}$	3 p

Examenul național de bacalaureat 2023 Proba E. c)

Matematică M_mate-info

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați numerele reale a și b pentru care (a+bi)(1+i)=4, unde $i^2=-1$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = mx^2 2x + m$, unde m este număr real nenul. Determinați numerele reale m pentru care f(m-x) = f(m+x), pentru orice număr real x.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2\log_2(2x) 1 = \log_2(x^2 + x + 2)$.
- **5p 4.** Se consideră mulțimile $A = \{1, 2, 3, 4\}$ și $F = \{f \mid f : A \to A\}$. Determinați probabilitatea ca, alegând un element f din mulțimea F, acesta să verifice inegalitatea $f(n) \le n$, pentru orice $n \in A$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(5,3) și B(-1,5). Determinați coordonatele punctului C, stiind că $\overrightarrow{CA} + \overrightarrow{CB} = 2\overrightarrow{OC}$.
- **5p 6.** Se consideră triunghiul ABC, cu AB = 8, măsura unghiului C de 30° și punctul O, centrul cercului circumscris triunghiului ABC. Determinați distanța de la punctul O la latura AB.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} 3 & a & -2 \\ 2a+1 & 1-a & -1 \\ a+2 & -2 & 1 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} 3x+ay-2z=b \\ (2a+1)x+(1-a)y-z=c, \\ (a+2)x-2y+z=-1 \end{cases}$

unde a, b și c sunt numere reale.

- **5p** a) Arătați că $\det(A(0)) = 5$.
- **5p b)** Determinați numerele reale a pentru care matricea A(a) este inversabilă.
- **5p** c) Determinați numerele reale b și c pentru care sistemul de ecuații este compatibil, oricare ar fi numărul real a.
 - **2.** Se consideră polinomul $f = X^4 + aX^3 + aX^2 + 8X 8$, unde a este număr real.
- **5p** a) Arătați că f(-1) = -15, pentru orice număr real a.
- **5p b)** Determinați numărul real a pentru care restul împărțirii polinomului f la polinomul $g = X^2 1$ este egal cu 15X.
- **5p** c) Arătați că, pentru orice număr real a, polinomul f nu are toate rădăcinile numere întregi.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 1 x (x^4 1) \operatorname{arctg} x$.
- **5p** a) Arătați că $f'(x) = -x^2 (4x \operatorname{arctg} x + 1), x \in \mathbb{R}$.
- $\mathbf{5p}$ **b**) Determinați ecuația tangentei la graficul funcției f care este paralelă cu axa Ox.
- **5p** c) Demonstrați că $\operatorname{tg}(f(x)) \ge f(x) \ge f(\operatorname{tg} x)$, pentru orice $x \in [0,1]$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 + e^x}{1 + e^{-x}}$.
- **5p** a) Arătați că $\int_{0}^{3} (1+e^{-x}) f(x) dx = 8+e^{3}$.
- **5p b)** Arătați că $\int_{-m}^{m} \frac{f(x)}{x^2 + e^x} dx = m$, pentru orice $m \in (0, +\infty)$.
- **5p** c) Determinați numărul real nenul a pentru care $\lim_{x\to 0} \left(\frac{1}{e^{ax} 1} \int_{0}^{x} f(t) dt \right) = 1$.

Examenul național de bacalaureat 2023 Proba E. c)

Matematică M mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z_1^2 + 4z_2 = (1+2i)^2 + 4(1-i) = 1 + 4i + 4i^2 + 4 - 4i =$	3 p
	$=5+4\cdot(-1)=5-4=1$	2p
2.	$f(x) = g(x) \Rightarrow x^2 - 2x + m - 1 = 0$	2p
	$\Delta = 0$ şi, cum $\Delta = 8 - 4m$, obţinem $8 - 4m = 0$, deci $m = 2$	3 p
3.	$\lg(x^2+9) = \lg(10x^2) \Rightarrow x^2+9=10x^2, \text{ de unde obținem } x^2-1=0$	3p
	x = -1, care nu convine; $x = 1$, care convine	2p
4.	Mulțimea A are 100 de elemente, deci sunt 100 de cazuri posibile	2p
	Numerele din mulțimea A , divizibile cu 9 , sunt $9 \cdot 0$, $9 \cdot 1$, $9 \cdot 2$, $9 \cdot 11$, deci sunt 12	
	cazuri favorabile, de unde obținem $p = \frac{12}{100} = \frac{3}{25}$	3 p
5.	$\overrightarrow{MD} = \overrightarrow{MA} + \overrightarrow{AD}$ și $\overrightarrow{ME} = \overrightarrow{MC} + \overrightarrow{CB} + \overrightarrow{BE}$	2p
	$\overrightarrow{MD} + \overrightarrow{ME} = \overrightarrow{MA} + \overrightarrow{MC} + \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CB} = \overrightarrow{0} + \overrightarrow{0} + \overrightarrow{CB} = \overrightarrow{CB}$	3 p
6.	$2\sin x \cos x = 2\cos^2 x \Leftrightarrow 2\cos x (\sin x - \cos x) = 0$	2p
	Cum $x \in [0, \pi]$, obținem $x = \frac{\pi}{2}$ sau $x = \frac{\pi}{4}$	3p

1.a)	$\det(A(0)) = \begin{vmatrix} 0 & 1 & 2 \\ 1 & 0 & -1 \\ 2 & 2 & 1 \end{vmatrix} = 0 \cdot 0 \cdot 1 + 1 \cdot (-1) \cdot 2 + 1 \cdot 2 \cdot 2 - 2 \cdot 0 \cdot 2 - 1 \cdot 1 \cdot 1 - (-1) \cdot 2 \cdot 0 =$	3p
	=0-2+4-0-1-0=1	2p
b)	$\det(A(a)) = (a-1)^2$, pentru orice număr real a	3 p
	$\det(A(a)) = 0 \Leftrightarrow a = 1$, deci sistemul are soluție unică pentru $a \in \mathbb{R} \setminus \{1\}$	2p
c)	Pentru $a=1$, soluțiile sistemului de ecuații sunt $(\alpha, 2-\alpha, -2)$, unde $\alpha \in \mathbb{C}$	2p
	Cum α este număr întreg și $\alpha > 2 - \alpha > -2$, obținem $\alpha = 2$ sau $\alpha = 3$, deci soluțiile sunt $(2,0,-2)$ și $(3,-1,-2)$	3p

2.a)	$1*\frac{1}{2} = \frac{1 \cdot \frac{1}{2}}{1 + \sqrt{(1 - 1^2)\left(1 - \left(\frac{1}{2}\right)^2\right)}} =$	3р
	$=\frac{\frac{1}{2}}{1+\sqrt{0}}=\frac{1}{2}$	2p
b)	$x*(-x) = \frac{-x^2}{1+ 1-x^2 } = \frac{-x^2}{2-x^2}$, pentru orice $x \in M$	3р
	$(x*(-x))+x^2 = \frac{x^2(1-x^2)}{2-x^2} \ge 0$, deci $x*(-x) \ge -x^2$, pentru orice $x \in M$	2p
c)	$a*b=1 \Rightarrow \sqrt{(1-a^2)(1-b^2)}=ab-1$, deci $ab \ge 1$	3p
	Cum $a, b \in M$, obținem $ab = 1$, deci perechile sunt $(-1, -1)$ și $(1,1)$, care convin	2p

(30 de puncte) **SUBIECTUL al III-lea**

	•	,
1.a)	$f'(x) = 1 - \frac{1}{e^x + x^2} \cdot (e^x + 2x) =$	3p
	$= \frac{x^2 - 2x}{e^x + x^2} = \frac{x(x - 2)}{e^x + x^2}, \ x \in \mathbb{R}$	2p
b)	Tangenta la graficul funcției f în punctul de coordonate $(a, f(a))$ este paralelă cu axa $Ox \Leftrightarrow f'(a) = 0$	3p
	$\frac{a(a-2)}{e^a + a^2} = 0 \Leftrightarrow a = 0 \text{ sau } a = 2$	2p
c)	Pentru orice $x \in (-\infty,0]$, $f'(x) \ge 0$, deci f este crescătoare pe $(-\infty,0]$; pentru orice $x \in [0,2]$, $f'(x) \le 0$, deci f este descrescătoare pe $[0,2]$; pentru orice $x \in [2,+\infty)$, $f'(x) \ge 0$, deci f este crescătoare pe $[2,+\infty)$	2p
	Cum f este continuă, $\lim_{x\to -\infty} f(x) = -\infty$, $f(0) = -1$ și $\lim_{x\to +\infty} f(x) = -1$, imaginea funcției f este $(-\infty, -1]$	3 p
2.a)	$\int_{0}^{3} f(x)\sqrt{x+3} dx = \int_{0}^{3} (x^{2}+1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{3} =$	3p
	=9+3=12	2p
b)	$\int_{-2}^{1} \frac{f(x)}{x^2 + 1} dx = \int_{-2}^{1} \frac{(x+3)'}{\sqrt{x+3}} dx = 2\sqrt{x+3} \Big _{-2}^{1} =$	3 p
	=4-2=2	2p
c)	$\frac{1}{f(x)} = \frac{\sqrt{x+3}}{x^2+1} \le \frac{2}{x^2+1} \text{, pentru orice } x \in [0,1], \text{ de unde obținem } \int_0^1 \frac{1}{f(x)} dx \le 2 \int_0^1 \frac{1}{x^2+1} dx = \frac{1}{x^2+1} $	3p
	$=2\arctan x \left \frac{1}{0} = \frac{\pi}{2} \right $	2p

Simulare

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Se consideră numerele complexe $z_1 = 1 + 2i$ și $z_2 = 1 i$. Arătați că $z_1^2 + 4z_2 = 1$.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 1 și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 + x + m$, unde m este număr real. Determinați numărul real m pentru care graficele funcțiilor f și g au exact un punct comun.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\lg(x^2+9) = 2\lg(x\sqrt{10})$.
- **5p 4.** Se consideră mulțimea A, a numerelor naturale de cel mult două cifre. Determinați probabilitatea ca, alegând un număr din mulțimea A, acesta să fie divizibil cu 9.
- **5p 5.** În triunghiul ABC, punctul M este mijlocul laturii AC, iar punctele D și E aparțin segmentului AB, astfel încât AD = BE. Arătați că $\overrightarrow{MD} + \overrightarrow{ME} = \overrightarrow{CB}$.
- **5p** | **6.** Determinați $x \in [0, \pi]$ pentru care $\sin 2x = 1 + \cos 2x$.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} a & 1 & 2 \\ 1 & a & -1 \\ 2 & 2 & 1 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} ax + y + 2z = -2 \\ x + ay - z = 4 \end{cases}$, unde a este 2x + 2y + z = 2

număr real.

- **5p** a) Arătați că $\det(A(0))=1$.
- $\mathbf{5p}$ **b)** Determinați mulțimea numerelor reale a pentru care sistemul de ecuații are soluție unică.
- **5p** c) Pentru a = 1, determinați soluțiile (x_0, y_0, z_0) ale sistemului pentru care x_0 , y_0 și z_0 sunt numere întregi și $x_0 > y_0 > z_0$.
 - **2.** Pe mulțimea $M = \begin{bmatrix} -1,1 \end{bmatrix}$ se definește legea de compoziție $x * y = \frac{xy}{1 + \sqrt{(1 x^2)(1 y^2)}}$.
- **5p** a) Arătați că $1*\frac{1}{2} = \frac{1}{2}$.
- **5p b)** Arătați că $x*(-x) \ge -x^2$, pentru orice $x \in M$.
- **5p** c) Determinați perechile (a,b) de numere din mulțimea M pentru care a*b=1.

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x 1 \ln(e^x + x^2)$.
- **5p** a) Arătați că $f'(x) = \frac{x(x-2)}{e^x + x^2}, x \in \mathbb{R}$.
- **5p b)** Determinați numerele reale a pentru care tangenta la graficul funcției f în punctul de coordonate (a, f(a)) este paralelă cu axa Ox.
- **5p c**) Determinați imaginea funcției f.

- **2.** Se consideră funcția $f:(-3,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2+1}{\sqrt{x+3}}$.
- **5p a)** Arătați că $\int_{0}^{3} f(x)\sqrt{x+3} dx = 12$. **5p b)** Arătați că $\int_{-2}^{1} \frac{f(x)}{x^2+1} dx = 2$.
- **5p** c) Demonstrați că $\int_{0}^{1} \frac{1}{f(x)} dx \le \frac{\pi}{2}$.

Pagina 2 din 2

Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(2-i)^2 + i(4+i) = 4-4i+i^2+4i+i^2 =$	3р
	=4-1-1=2	2p
2.	$(f \circ f)(m) = m + 6$, pentru orice număr real m	3p
	m+6=2m, de unde obţinem $m=6$	2p
3.	$5 \cdot 5^x - 3 \cdot 5^x = 10$, deci $2 \cdot 5^x = 10$, de unde obținem $5^x = 5$	3 p
	x=1	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Deoarece cifrele pot fi 7, 8 și 9, sunt $3 \cdot 3 = 9$ numere naturale de două cifre care au cifrele mai mari sau egale cu 7, deci sunt 9 cazuri favorabile, de unde obținem $p = \frac{9}{90} = \frac{1}{10}$	3p
5.	$m_{AB} = -2$	2p
	$m_{OC} = \frac{1}{2}$, pentru orice număr real nenul a și, cum $m_{AB} \cdot m_{OC} = (-2) \cdot \frac{1}{2} = -1$, obținem că dreptele AB și OC sunt perpendiculare, pentru orice număr real nenul a	3 p
6.	$\sin\frac{\pi}{2} = 1$, $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$, $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$	3 p
	$E\left(\frac{\pi}{2}\right) = 1 + 4 \cdot \frac{3}{4} = 4$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & -2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & -1 & 0 \\ 1 & -2 & 0 \\ 1 & 1 & 1 \end{vmatrix} = 0 + 0 + 0 - 0 - 0 - (-1) = 1$	2p
		3 p
b)	$\det(A(a)) = \begin{vmatrix} a & -1 & 2a \\ 1 & -2 & a \\ 1 & 1 & 1-a \end{vmatrix} = (a+1)^2, \text{ pentru orice număr real } a$	2p
	$\det(A(a)) = 0 \Leftrightarrow a = -1$, deci sistemul de ecuații are soluție unică dacă și numai dacă $a \in \mathbb{R} \setminus \{-1\}$	3 p
c)	Pentru $a=-1$, soluțiile sistemului de ecuații sunt de forma $(-\alpha,-\alpha,\alpha)$, cu $\alpha \in \mathbb{C}$	2p
	$x_0^2 + y_0^2 + z_0^2 = 3\alpha^2$, deci $3\alpha^2 = 3$, de unde obținem $\alpha = -1$ sau $\alpha = 1$, deci soluțiile sunt $(1,1,-1)$ și $(-1,-1,1)$	3 p

Probă scrisă la matematică M_mate-info

Barem de evaluare și notare

	, , ,	
2.a)	$0*1 = 0^{2} \cdot 1^{2} - 4(0+1)^{2} + 1 =$ $= 0 - 4 + 1 = -3$	3 p
	=0-4+1=-3	2p
b)	$x*(-1) = -3x^2 + 8x - 3 =$	2p
	$=-3x^2+6x-3+2x=-3(x-1)^2+2x \le 2x$, pentru orice număr real x	3 p
c)	$m^2n^2-4(m+n)^2+1=1$ și, cum m și n sunt numere naturale nenule, obținem $mn-2m-2n=0$	2p
	$(m-2)(n-2)=4$ și, cum m și n sunt numere naturale nenule, cu $m \le n$, perechile sunt $(3,6)$ și $(4,4)$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{1}{5} - \frac{2x+1}{x^2 + x + 5} =$	3 p
	$= \frac{x^2 + x + 5 - 10x - 5}{5(x^2 + x + 5)} = \frac{x^2 - 9x}{5(x^2 + x + 5)}, \ x \in \mathbb{R}$	2p
b)	Tangenta la graficul funcției f în punctul de coordonate $(a, f(a))$ este paralelă cu axa	3p
	$Ox \Leftrightarrow f'(a) = 0$	
	$a^2 - 9a = 0$, de unde obținem $a = 0$ sau $a = 9$	2p
c)	$f'(x) \ge 0$, pentru orice $x \in (-\infty, 0] \Rightarrow f$ este crescătoare pe $(-\infty, 0]$; $f'(x) \le 0$, pentru	
	orice $x \in [0,9] \Rightarrow f$ este descrescătoare pe $[0,9]$, deci $f(x) \le f(0)$, pentru orice	2p
		2p
	$x \in (-\infty, 9]$	
	$f'(x) > 0$, pentru orice $x \in (9, +\infty) \Rightarrow f$ este strict crescătoare pe $(9, +\infty)$ și, cum	
	$f(0) = -\ln 5 < 0$, $\lim_{x \to +\infty} f(x) = +\infty$ și f este continuă, obținem că ecuația $f(x) = 0$ are	3 p
	X 7100	
2.a)	soluție unică	
2.a)	$\int_{0}^{2} (x^{3} + 8) f(x) dx = \int_{0}^{2} 4x dx = 2x^{2} \Big _{0}^{2} =$	3 p
	=8-0=8	2p
b)	$\int_{1}^{4} x f(x) dx = \int_{1}^{4} \frac{4x^{2}}{x^{3} + 8} dx = \frac{4}{3} \int_{1}^{4} \frac{(x^{3} + 8)'}{x^{3} + 8} dx = \frac{4}{3} \cdot \ln(x^{3} + 8) \bigg _{1}^{4} =$	3p
	$=\frac{4}{3}\ln 8 = 4\ln 2$	2p
c)	$\lim_{x \to 0} \left(\frac{1}{x^3} \int_0^x t \cdot f(t) dt \right) = \lim_{x \to 0} \frac{\left(\int_0^x t \cdot f(t) dt \right)'}{\left(x^3 \right)'} = \lim_{x \to 0} \frac{x \cdot f(x)}{3x^2} =$	3 p
	$= \lim_{x \to 0} \frac{4}{3(x^3 + 8)} = \frac{1}{6}$	2p

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(2-i)^2 + i(4+i) = 2$, unde $i^2 = -1$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 3. Determinați numărul real m pentru care $(f \circ f)(m) = 2m$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $5^{x+1} 3 \cdot 5^x = 10$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifrele mai mari sau egale cu 7.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,4), B(3,-2) și C(2a,a), unde a este număr real nenul. Arătați că dreptele AB și OC sunt perpendiculare, pentru orice număr real nenul a.
- **5p 6.** Se consideră expresia $E(x) = \sin x + 4\cos\frac{x}{3}\sin\frac{2x}{3}$, unde x este număr real. Arătați că $E\left(\frac{\pi}{2}\right) = 4$.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} a & -1 & 2a \\ 1 & -2 & a \\ 1 & 1 & 1-a \end{pmatrix}$ și sistemul de ecuații $\begin{cases} ax - y + 2az = 0 \\ x - 2y + az = 0 \\ x + y + (1-a)z = 0 \end{cases}$, unde a

este număr real.

- **5p** a) Arătați că $\det(A(0))=1$.
- $\mathbf{5p} \mid \mathbf{b}$) Determinați mulțimea numerelor reale a pentru care sistemul de ecuații are soluție unică.
- **5p** c) Pentru a = -1, determinați soluțiile (x_0, y_0, z_0) ale sistemului pentru care $x_0^2 + y_0^2 + z_0^2 = 3$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x * y = x^2y^2 4(x + y)^2 + 1$.
- **5p a)** Arătați că 0*1=-3.
- **5p b)** Arătați că $x*(-1) \le 2x$, pentru orice număr real x.
- **5p** c) Determinați perechile (m,n) de numere naturale nenule, cu $m \le n$, pentru care m * n = 1.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{5} \ln(x^2 + x + 5)$.
- **5p** a) Arătați că $f'(x) = \frac{x^2 9x}{5(x^2 + x + 5)}, x \in \mathbb{R}$.
- **5p b)** Determinați abscisele punctelor situate pe graficul funcției f în care tangenta la graficul funcției f este paralelă cu axa Ox.
- **5p** c) Demonstrați că ecuația f(x) = 0 are soluție unică.
 - **2.** Se consideră funcția $f:(-2,+\infty) \to \mathbb{R}$, $f(x) = \frac{4x}{x^3+8}$.
- **5p a)** Arătați că $\int_{0}^{2} (x^3 + 8) f(x) dx = 8$.

5p b) Arătați că
$$\int_{1}^{4} xf(x)dx = 4\ln 2$$
.

5p c) Calculați
$$\lim_{x\to 0} \left(\frac{1}{x^3} \int_0^x t \cdot f(t) dt \right)$$
.