अध्याय **9** अनुक्रम तथा श्रेणी Sequences and Series

प्रश्नावली 9.1

निर्देश (प्र. सं. 1 - 6) प्रत्येक प्रश्न के अनुक्रमों में प्रत्येक के प्रथम पाँच पद लिखिए, जिनका n वाँ पद दिया गया है।

प्रश्न 1. $a_n = n(n+2)$

हल दिया है, $a_n = n(n+2)$

n = 1, 2, 3, 4, 5 रखने पर.

n = 1 पर,

 $a_1 = 1(1+2) = 3$

n = 2 पर,

 $a_2 = 2(2+2) = 8$

 $n = 3 \, \text{प} \text{र}$,

 $a_3 = 3(3+2) = 15$

 $n = 4 \, \text{UV}$

 $a_4 = 4(4+2) = 24$

n = 5 UV,

 $a_5 = 5(5+2) = 35$

प्रश्न 2.
$$a_n = \frac{n}{n+1}$$

हल दिया है,
$$a_n = \frac{n}{n+1}$$

$$n=1 \text{ पर}, \qquad a_1 = \frac{1}{1+1} = \frac{1}{2}$$

$$n=2 \text{ TV},$$
 $a_2=\frac{2}{2+1}=\frac{2}{3}$

$$n = 3 \, \text{TV},$$
 $a_3 = \frac{3}{3+1} = \frac{3}{4}$

$$n = 4 \, \text{TT},$$
 $a_4 = \frac{4}{4+1} = \frac{4}{5}$

$$n = 5 \, \text{प} \, \text{T}, \qquad \qquad a_5 = \frac{5}{5+1} = \frac{5}{6}$$

प्रश्न 3. $a_n = 2^n$

हल दिया है,
$$a_n = 2^n$$

$$n = 1$$
 पर, $a_1 = 2^1 = 2$
 $n = 2$ पर. $a_2 = 2^2 = 4$

$$n = 2$$
 पर, $a_2 = 2^2 = 4$
 $n = 3$ पर. $a_3 = 2^3 = 8$

$$n = 3 \, \text{UV},$$
 $a_3 = 2^3 = 8$ $a_4 = 2^4 = 16$

$$n = 5 \, \text{TT},$$
 $a_5 = 2^5 = 32$

प्रश्न 4.
$$a_n = \frac{2n-3}{6}$$

हल दिया है,
$$a_n = \frac{6n-3}{6}$$

$$n = 1$$
पर,
$$a_1 = \frac{2 \times 1 - 3}{6} = \frac{2 - 3}{6} = \frac{1}{6}$$

$$n = 2 \, \text{ पर}, \qquad \qquad a_2 = \frac{2 \times 2 - 3}{6} = \frac{4 - 3}{6} = \frac{1}{6}$$

$$n = 3 \, \text{ पर}, \qquad \qquad a_3 = \frac{2 \times 3 - 3}{6} = \frac{6 - 3}{6} = \frac{3}{6} = \frac{1}{2}$$

$$n = 4 \, \text{ UV}, \qquad \qquad a_4 = \frac{2 \times 4 - 3}{6} = \frac{8 - 3}{6} = \frac{5}{6}$$

$$n = 4 \, \text{TT},$$
 $a_4 = \frac{2 \times 4 - 3}{6} = \frac{8 - 3}{6} = \frac{5}{6}$

$$n = 5 \,\text{TeV},$$
 $a_5 = \frac{2 \times 5 - 3}{6} = \frac{10 - 3}{6} = \frac{7}{6}$

प्रश्न 5.
$$a_n = (-1)^{n-1} 5^{n+1}$$
 हल दिया है, $a_n = (-1)^{n-1} 5^{n+1}$

$$n = 1 \, \text{UV},$$
 $a_1 = (-1)^{1-1} \, 5^{1+1} = (-1)^0 \, 5^2 = 25$
 $n = 2 \, \text{UV},$ $a_2 = (-1)^{2-1} \, 5^{2+1} = (-1)^1 \, 5^3 = -125$
 $n = 3 \, \text{UV},$ $a_3 = (-1)^{3-1} \, 5^{3+1} = (-1)^2 \, 5^4 = 625$
 $n = 4 \, \text{UV},$ $a_4 = (-1)^{4-1} \, 5^{4+1} = (-1)^3 \, 5^5 = -3125$
 $a_5 = (-1)^{5-1} \, 5^{5+1} = (-1)^4 \, 5^6 = 15625$

प्रश्न 6.
$$a_n = \frac{n(n^2 + 5)}{4}$$

हल दिया है,
$$a_n = \frac{n(n^2 + 5)}{4}$$

$$n = 1 \, \text{TV}, \qquad a_1 = \frac{1(1^2 + 5)}{4} = \frac{6}{4} = \frac{3}{2}$$

$$n = 2 \, \text{TV}, \qquad a_2 = \frac{2(2^2 + 5)}{4} = \frac{2(4 + 5)}{4} = \frac{9}{2}$$

$$n = 3 \, \text{TV}, \qquad a_3 = \frac{3(3^2 + 5)}{4} = \frac{3(9 + 5)}{4} = \frac{21}{2}$$

$$n = 4 \, \text{TV}, \qquad a_4 = \frac{4(4^2 + 5)}{4} = \frac{4(16 + 5)}{4} = 21$$

$$n = 5 \, \text{TV}, \qquad a_5 = \frac{5(5^2 + 5)}{4} = \frac{5(25 + 5)}{4} = \frac{75}{2}$$

निर्देश (प्र. सं. 7 - 10) प्रत्येक प्रश्न के अनुक्रमों में प्रत्येक का वांछित पद ज्ञात कीजिए। जिनका দৰ্वो पद दिया गया है।

प्रश्न 7.
$$a_n = 4n - 3$$
, a_{17} , a_{24}

हल दिया है,
$$a_n = 4n - 3$$

$$n = 17 रखने पर,$$

$$a_{17} = 4 \times 17 - 3 = 68 - 3 = 65$$

$$a_{24} = 4 \times 24 - 3 = 96 - 3 = 93$$

प्रश्न 8.
$$a_n = \frac{n^2}{2^n}, a_7$$

हल दिया है,
$$a_n = \frac{n^2}{2^n}$$

$$n=7$$
 रखने पर,
$$a_7 = \frac{7^2}{2^7} = \frac{49}{128}$$

प्रश्न 9.
$$a_n = (-1)^{n-1} n^3$$
, a_9 हला दिया है, $a_n = (-1)^{n-1} n^3$

n=9 रखने पर.

$$a_9 = (-1)^{9-1}9^3 = (-1)^8 \times 9 \times 9 \times 9 = 729$$

प्रश्न 10.
$$a_n = \frac{n(n-2)}{n+3}, a_{20}$$

हल दिया है, $a_n = \frac{n(n-2)}{n+3}$

∩=20 रखने पर,

$$a_{20} = \frac{20(20-2)}{20+3}$$

$$a_{20} = \frac{20 \times 18 - 360}{23 - 23}$$

निर्देश (प्र. सं. 11 - 13) प्रत्येक प्रश्न के प्रत्येक अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए।

प्रश्न 11. $a_1 = 3$, $a_n = 3a_{n-1} + 2$ सभी n > 1 के लिए

हल दिया है, $a_1 = 3$, $a_n = 3a_{n-1} + 2$, सभी n > 1 के लिए

$$\Rightarrow$$
 $a_2 = 3a_1 + 2 = 3 \times (3) + 2 = 9 + 2 = 11$

$$n = 3$$
 रखने पर, $a_3 = 3a_{3-1} + 2 = 3a_2 + 2 = 3(11) + 2 = 33 + 2 = 35$

$$n = 4$$
 रखने पर, $a_4 = 3a_{4-1} + 2 = 3a_3 + 2 = 3 \times 35 + 2 = 105 + 2 = 107$

$$n = 5$$
रखने पर, $a_5 = 3 \times a_{5-1} + 2 = 3a_4 + 2 = 3 \times 107 + 2 = 321 + 2 = 323$

∴ श्रेणी है. 3+ 11+ 35+ 107+ 323....

हल दिया है,
$$a_1 = -1$$
, $a_n = \frac{a_{n-1}}{a}$, $n \ge 2$

$$n=2$$
 रखने पर, $a_2=\frac{a_{2-1}}{2}=\frac{a_1}{2}=-\frac{1}{2}$

$$n=3$$
 रखने पर, $a_3=\frac{a_{3-1}}{2}=\frac{a_2}{2}=\frac{-\frac{1}{2}}{2}=-\frac{1}{6}$

$$n=4$$
 रखने पर, $a_4=\frac{a_{4-1}}{4}=\frac{a_3}{4}=\frac{-\frac{1}{6}}{4}=-\frac{1}{24}$

प्रश्न 13. $a_1 = a_2 = 2, a_n = a_{n-1} - 1, n > 2$

हल दिया है, a₁ = a₂ = 2

तथा
$$a_n = a_{n-1} - 1, n > 2$$

$$n = 3$$
 रखने पर, $a_3 = a_{3-1} - 1 = a_2 - 1 = 2 - 1 = 1$

$$n = 4$$
 रखने पर, $a_4 = a_{4-1} - 1$
= $a_3 - 1 = 1 - 1 = 0$

$$n = 5$$
 रखने पर, $a_5 = a_{5-1} - 1 = a_4 - 1 = 0 - 1 = -1$

प्रश्न 14. फाइबोनेकी (Fibonacci) अनुक्रम निम्निलिखित रूप में परिभाषित है $1=a_1=a_2$

तथा
$$a_n = a_{n-1} + a_{n-2}, n > 2$$
 , तो $\frac{a_{n+1}}{a_n}$ ज्ञात कीजिए, जबिक $n = 1, 2, 3, 4, 5$

$$1 = a_1 = a_2$$

$$a_n = a_{n-1} + a_{n-2}, n > 2$$

n = 3, 4, 5, 6 रखने पर,

$$n = 3 \, \text{TV}, \qquad \qquad a_3 = a_{3-1} + a_{3-2}$$

$$= a_2 + a_1$$

= 1 + 1 = 2

$$n = 4 \text{ पर},$$
 $a_4 = a_{4-1} + a_{4-2}$

$$= a_3 + a_2$$

= 2 + 1 = 3

$$n = 5 \, \text{UV}, \qquad \qquad a_5 = a_{5-1} + a_{5-2}$$

$$= a_4 + a_3 = 3 + 2 = 5$$

$$n = 6 \, \text{TT}, \qquad \qquad a_6 = a_{6-1} + a_{6-2}$$

$$= a_5 + a_4 = 5 + 3 = 8$$

अब, $\frac{a_{n+1}}{a_0}$, n = 1, 2, 3, 4, 5 के लिए,

$$n = 1 \, \text{UV}, \qquad \qquad \frac{a_2}{a_1} = \frac{1}{1} = 1$$

$$n = 2 \text{ UV},$$
 $\frac{a_3}{a_2} = \frac{2}{1} = 2$
 $n = 3 \text{ UV},$ $\frac{a_4}{a_3} = \frac{3}{2} = \frac{3}{2}$
 $n = 4 \text{ UV},$ $\frac{a_5}{a_4} = \frac{5}{3}$
 $n = 5 \text{ UV},$ $\frac{a_6}{a_5} = \frac{8}{5}$

अतः पद 1, 2, $\frac{3}{2}$, $\frac{5}{3}$ तथा $\frac{8}{5}$ हैं।

प्रश्नावली 9.2

प्रश्न 1. 1 से 2001 तक के विषम पूर्णांकों का योग ज्ञात कीजिए।

सर्वप्रथम हम 1 से 2001 तक के पदों की संख्या निकालेंगे और इसके बाद सूत्र

$$S_n = \frac{n}{2} [2a + (n-1) d]$$
 का प्रयोग करेंगे।

हल 1 से 2001 तक के विषम पूर्णांकों की श्रेणी है, 1+3+5+7+...+2001

यहाँ, पहला पद a = 1

सार्वान्तर d = 2

हम जानते हैं कि श्रेणी का nवाँ पद $T_n = a + (n - 1)d$

ः
$$2001 = 1 + (n-1)2$$
 (: $a = 1, T_n = 2001$ दिया है)
 $\Rightarrow 2000 = (n-1)2 \Rightarrow (n-1) = \frac{2000}{2}$
 $\Rightarrow n-1 = 1000 \Rightarrow n = 1001$ अब, अभीष्ट योग $S_n = \frac{n}{2} [2a + (n-1)d]$
 $= \frac{1001}{2} [2 \times 1 + (1001 - 1) \times 2]$
 $= \frac{1001}{2} \times 2 (1 + 1001 - 1) = 1001 \times 1001 = 1002001$

प्रश्न 2. 100 तथा 1000 के मध्य उन सभी प्राकृत संख्याओं का योगफल ज्ञात कीजिए जो 5 के गुणज हों।

सर्वप्रथम हम सूत्र $T_n = a + (n-1)d$ द्वारा 100 तथा 1000 के बीच स्थित उन पदों की कुल संख्या निकालेंगे जो 5 के गुणज हैं तथा इसके बाद सूत्र $S_n = \frac{n}{2}[2a + (n-1)d]$ का प्रयोग करेंगे।

हल प्रश्नानुसार, संख्याएँ हैं 105, 110, 115, ..., 995 यहाँ, पहला पद, a=105

अब,
$$n$$
वाँ पद $T_n = a + (n-1)d$ \Rightarrow 995 = 105 + $(n-1)5$ \Rightarrow 995 - 105 = $(n-1)5$ \Rightarrow 890 = $(n-1)5$ \Rightarrow $n-1 = \frac{890}{5} \Rightarrow n-1 = 178$ \Rightarrow $n = 178 + 1 = 179$ अतः अभीष्ट संख्याओं का योग $S_n = \frac{n}{2} [2a + (n-1)d]$ $= \frac{179}{2} [2 \times 105 + (179 - 1)5]$ $= \frac{179}{2} [210 + 178 \times 5]$ $= \frac{179}{2} [210 + 890] = \frac{179}{2} \times 1100$ $= 179 \times 550 = 98450$

प्रश्न 3. किसी समांतर श्रेढ़ी में प्रथम पद 2 है तथा प्रथम पाँच पदों का योगफल, अगले पाँच पदों के योगफल का एक-चौथाई है। दर्शाइए कि 20वाँ पद - 112 है।

हल मान लीजिए समांतर श्रेढ़ी है, a, a + d, a + 2d, a + 3d,

दिया है, a = 2

प्रश्नानुसार,

प्रथम पाँच पदों का योग =
$$\frac{1}{4}$$
 अगले पाँच पदों का योग

$$a + (a + d) + (a + 2d) + (a + 3d) + a + 4d$$

$$= \frac{1}{4} [a + 5d + a + 6d + a + 7d + a + 8d + a + 9d]$$

$$\Rightarrow 5a + 10d = \frac{1}{4} [5a + 35d]$$

$$\Rightarrow 4 [5a + 10d] = 5a + 35d$$

$$\Rightarrow 20a + 40d = 5a + 35d \Rightarrow 20a - 5a = 35d - 40d$$

$$\Rightarrow 15a = -5d \Rightarrow 15 \times 2 = -5d$$

$$\Rightarrow 30 = -5d \Leftrightarrow \frac{d - 30}{5} = -6$$

$$(\because a = 2)$$

अब,
$$T_n = a + (n-1)d$$

$$\Rightarrow T_{20} = 2 + (20-1)(-6) = 2 + 19(-6)$$

$$= 2 - 19 \times 6 = 2 - 114 = -112$$
प्रश्न 4. समांतर श्रेढ़ी -6 , $-\frac{11}{2}$, -5 ... के कितने पदों का

प्रश्न 4. समांतर श्रेढ़ी - 6, - $\frac{11}{9}$, - 5... के कितने पदों का योगफल - 25 है?

हल दिया हुआ अनुक्रम
$$-6, -\frac{11}{2}, -5...$$
 समांतर श्रेढ़ी में है।

यहाँ,
$$a = -6$$
,
$$d = -\frac{11}{2} - (-6) = -\frac{11}{2} + 6 = -\frac{11}{2} + \frac{6}{1}$$
$$\frac{d = -11 + 12 - 1}{2}$$

अब,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\Rightarrow -25 = \frac{n}{2} \left[2 \times (-6) + (n-1) \frac{1}{2} \right]$$

$$\Rightarrow \qquad -25 \times 2 = n \left[\frac{-12}{1} + \frac{(n-1)}{2} \right]$$

$$\Rightarrow \qquad -50 = n \left[\frac{-24 + n - 1}{2} \right]$$

$$\Rightarrow \qquad -50 \times 2 = n (n - 25)$$

$$\Rightarrow \qquad -100 = n^2 - 25n$$

$$\Rightarrow n^2 - 25n + 100 = 0$$

मध्य पद को विभक्त कर गुणनखंड करने पर,

$$n^{2} - (20 + 5)n + 100 = 0$$

$$\Rightarrow n^{2} - 20n - 5n + 100 = 0$$

$$\Rightarrow$$
 $n(n-20)-5(n-20)=0 \Rightarrow n=5,20$

किसी समांतर श्रेढ़ी का pवाँ पद $\frac{1}{q}$ तथा q वाँ पद $\frac{1}{p}$ हो, तो सिद्ध कीजिए कि प्रथम pq पदों का योग $\frac{1}{2}(pq+1)$ होगा, जहाँ $p \neq q$

सर्वप्रथम हम सूत्र $I_n = a + (n-1)d$ का प्रयोग कर a तथा d के मान निकालेंगे तथा इसके बाद पदों के योग का सूत्र $S_n = \frac{n}{2}[2a + (n-1)d]$ का प्रयोग कर योग निकालेंगे।

हल
$$:$$
 $T_n = a + (n-1)d$
 $:$ $T_p = a + (p-1)d = \frac{1}{q}$ (दिया है) ...(i)
तथा $a + (q-1) = \frac{1}{p}$ (दिया है) ...(i)

समी (ii) में से समी (i) को घटाने पर,

$$d(p-1-q+1) = \frac{1}{q} - \frac{1}{p}$$

$$\Rightarrow \qquad d(p-q) = \frac{p-q}{pq} \implies d = \frac{1}{pq}$$

d का मान समी (i) में रखने पर,

$$a + \frac{(p-1)}{pq} = \frac{1}{q}$$

$$\Rightarrow \frac{1 - p - 1}{q - pq}$$

$$\Rightarrow \frac{1 - p - 1}{pq}$$

$$\Rightarrow \frac{p - p + 1 - 1}{pq}$$

$$\Rightarrow S_{pq} = \frac{pq}{2} [2a + (pq - 1)d] \left[\because S_n = \frac{n}{2} \{2a + (n - 1)d\} \right]$$

$$= \frac{pq}{2} \left[2 \times \frac{1}{pq} + (pq - 1) \frac{1}{pq} \right]$$

$$= \frac{pq}{2} \times \frac{1}{pq} (2 + pq - 1) = \frac{1}{2} (pq + 1) \quad \xi \text{ ति सिद्धम्}$$

प्रश्न 6. यदि किसी समांतर श्रेढ़ी 25, 22, 19,... के कुछ पदों का योगफल 116 है, तो अंतिम पद ज्ञात कीजिए।

3n(n-8)-29(n-8)=0

सर्वप्रथम हम सूत्र $S_n = \frac{n}{2} [2a + (n-1)d]$ का प्रयोग कर पदों की संख्या निकालेंगे तत्पश्चात् सूत्र $T_n = a + (n-1)d$ का प्रयोग करेंगे।

हल दी हुई समांतर श्रेढ़ी 25, 22, 19, ... है।

 \rightarrow

यहाँ
$$a = 25, d = -3$$
 तथा $S_n = 116$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$116 = \frac{n}{2} [2 \times 25 + (n-1)(-3)]$$

$$116 \times 2 = n [50 - 3n + 3]$$

$$232 = n [53 - 3n]$$

$$232 = 53n - 3n^2$$

$$3n^2 - 53n + 232 = 0$$
अब, मध्य पद विभक्त कर गुणनखंड करने पर,
$$3n^2 - (24 + 29) n + 232 = 0$$

$$3n^2 - 24n - 29n + 232 = 0$$

$$\Rightarrow (3n-29)(n-8)=0$$

$$\Rightarrow n=\frac{29}{3}, n=8$$

 $n=\frac{29}{3}$ अमान्य है क्योंकि n भिन्न नहीं हो सकता। अतः केवल n=8 मान्य है।

अब,

$$T_n = a + (n-1)d$$

 $T_8 = 25 + (8-1)(-3)$
 $= 25 + 7 \times (-3) = 25 - 21 = 4$

प्रश्न 7. उस समांतर श्रेढ़ी के n पर्दों का योगफल ज्ञात कीजिए, जिसका K वाँ पद 5K+1 है। सर्वप्रथम हम K वाँ पद की मदद से श्रेणी निकालेंगे तथा इसके बाद n पदों के योग का सूत्र $S_n = \frac{n}{2} \left[2a + (n-1) d \right]$ का प्रयोग करके योग ज्ञात करेंगे।

हल दिया है, Kवाँ पद $T_K = 5K + 1$

K = 1, 2, 3, 4, ... रखने पर.

$$T_1 = 5 \times 1 + 1 = 6$$
 $T_2 = 5 \times 2 + 1 = 11$
 $T_3 = 5 \times 3 + 11 = 16$ इत्यादि
$$\Rightarrow \qquad \qquad a = 6, d = 11 - 6 = 5$$
अब,
$$S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} [2 \times 6 + (n-1)5]$$

$$= \frac{n}{2} [12 + 5n - 5] = \frac{n}{2} [5n + 7]$$

प्रश्न 8. यदि किसी समांतर श्रेढ़ी के n पदों का योगफल $(pn+qn^2)$ है, जहाँ p तथा q अचर हों, तो सार्वान्तर ज्ञात कीजिए।

यहाँ हम $T_n = S_n - S_{n-1}$ का प्रयोग कर T_n ज्ञात करेंगे तथा इसके बाद हम कोई एक पद तथा सार्वान्तर ज्ञात कर सकते हैं।

हल दिया है,
$$S_n = pn + qn^2$$

अब, $T_n = S_n - S_{n-1}$

$$\Rightarrow T_n = (pn + qn^2) - [p(n-1) + q(n-1)^2]$$

$$= pn + qn^2 - [pn - p + q(n^2 + 1 - 2n)]$$

$$= pn + qn^2 - (pn - p + qn^2 + q - 2qn)$$

$$= pn + qn^2 - pn + p - qn^2 - q + 2qn = p - q + 2qn$$

अब, n = 1, 2, 3, ... रखने पर,

⇒
$$T_1 = p - q + 2q \times 1 = p - q + 2q = p + q$$

⇒ $T_2 = p - q + 2q \times 2 = p - q + 4q = p + 3q$
⇒ $T_3 = p - q + 2q \times 3 = p - q + 6q = p + 5q$
.......

अतः श्रेणी है p+q,p+3q,p+5q......

जिसका सार्वान्तर = (p + 3q) - (p + q) = 2q

प्रश्न 9. दो समांतर श्रेढ़ियों के n पदों के योगफल का अनुपात 5n + 4:9n + 6 हो, तो उनके 18वें पदों का अनुपात ज्ञात कीजिए।

हल मान लीजिए दो समांतर श्रेढ़ियों के प्रथम पद तथा सार्वान्तर क्रमशः a_1, a_2 तथा d_1, d_2 हैं। प्रश्नानुसार,

$$\frac{S_{n_1} = 5n + 4}{S_{n_2} = 9n + 6}$$

$$\Rightarrow \frac{\frac{n}{2} [2a_1 + (n-1)d_1]}{\frac{n}{2} [2a_2 + (n-1)d_2]} = \frac{5n + 4}{9n + 6}$$

$$\Rightarrow \frac{2a_1 + (n-1)d_1}{2a_2 + (n-1)d_2} = \frac{5n + 4}{9n + 6}$$

$$[\because S_n = \frac{n}{2} \{2a + (n-1)d\} \}$$

(हमें 18वें पदों का अनुपात ज्ञात करना है इसलिए 2 उभयनिष्ठ लेकर समीकरण को nवें पद में बदल लेते हैं।)

$$\Rightarrow \frac{2\left[a_{1} + \frac{n-1}{2}d_{1}\right]}{2\left[a_{2} + \frac{n-1}{2}d_{2}\right]} = \frac{5n+4}{9n+6}$$

$$\Rightarrow \frac{a_{1} + \left(\frac{n-1}{2}\right)d_{1}}{a_{2} + \left(\frac{n-1}{2}\right)d_{2}} = \frac{5n+4}{9n+6} \qquad ...(i)$$

हमें $\frac{a_1 + 17d_1}{a_2 + 17d_2}$ - का मान ज्ञात करना है।

$$\Rightarrow \frac{n-1}{2} = 17 \Rightarrow n-1 = 2 \times 17$$

$$\Rightarrow n = 34 + 1 \Rightarrow n = 35$$

अतः समी (i) से,

$$\frac{a_1 + 17d_1}{a_2 + 17d_2} = \frac{5 \times 35 + 4_{1} 175 + 4}{9 \times 35 + 6_{1} 315 + 6} = \frac{179}{321}$$

प्रश्न 10. यदि किसी समांतर श्रेढ़ी के प्रथम pपदों का योग, प्रथम qपदों के योगफल के बराबर हो, तो प्रथम (p+q)पदों का योगफल ज्ञात कीजिए।

सूत्र
$$S_n = \frac{n}{2}[2a + (n-1)d]$$
 का प्रयोग कर इसे सरल करेंगे।

हल मान लीजिए दी हुई समांतर श्रेढ़ी का प्रथम पद a तथा सार्वान्तर d है। प्रश्नानुसार, चूँकि प्रथम p पदों का योग, प्रथम q पदों के योग के बराबर है।

प्रश्न 11. यदि किसी समांतर श्रेढ़ी के प्रथम p, q, r पदों का योगफल क्रमश: a, b तथा c हो, तो सिद्ध कीजिए कि

$$\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$$

हल मान लीजिए समांतर श्रेढ़ी का प्रथम पद A तथा सार्वान्तर d है।

दिया है,
$$S_p = a \Rightarrow \frac{p}{2} [2A + (p-1)d] = a \left[\because S_n = \frac{n}{2} \{2a + (n-1)d\} \right] \dots (i)$$
 $S_q = b \Rightarrow \frac{q}{2} [2A + (q-1)d] = b \dots (ii)$ ਰथा $S_r = c \Rightarrow \frac{r}{2} [2A + (r-1)d] = c \dots (iii)$

$$\frac{a}{\rho}(q-r) + \frac{b}{q}(r-\rho) + \frac{c}{r}(\rho-q) = 0$$
सिद्ध करना है।

बायाँ पक्ष =
$$\frac{a}{\rho}(q-r) + \frac{b}{q}(r-\rho) + \frac{c}{r}(\rho-q)$$

समी (i), (ii) तथा (iii) से क्रमशः a, b तथा c के मान रखने पर,

∴ बायाँ पक्ष =
$$\frac{1}{\rho} \times \frac{\rho}{2} [2A + (\rho - 1)d](q - r) + \frac{1}{q} \times \frac{q}{2}$$

$$[2A + (q-1)d](r-p) + \frac{1}{r} \times \frac{r}{2} [2A + (r-1)d](p-q)$$

$$= \frac{1}{2} [\{2A + (p-1)d\}(q-r) + \{2A + (q-1)d\}(p-q)]$$

$$= \frac{1}{2} [2A + (p-1)d](p-q) + \{2A + (r-1)d\}(p-q)]$$

$$= \frac{1}{2} [2A + (p-1)d](p-q) + (p-1)d(p-q) + (p-1)d(p-q) + (p-1)d(p-q)]$$

$$= \frac{1}{2} [2A + (p-1)d](p-q) + (p-1)d(p-q) + (p-1)d(p-q)]$$

$$= \frac{1}{2} [2A + (p-1)d](p-q) + (p-1)d(p-q) + (p-1)d(p-q)$$

$$= \frac{1}{2} [2A + (p-1)d](p-q) + (p-1)d(p-q) + (p-1)d(p-q)$$

$$= \frac{1}{2} [2A + (p-1)d](p-q) + (p-1)d(p-q) + (p-1)d(p-q)$$

 $= \frac{1}{2} (0 + d \times 0) = 0$

🗅 बायाँ पक्ष = दायाँ पक्ष

इति सिद्धम्

नोट यहाँ विद्यार्थी को पहला पद a नहीं लेना चाहिए क्योंकि p पदों का योग a दिया हुआ है।

प्रश्न 12. किसी समांतर श्रेढ़ी के m तथा n पदों के योगफलों का अनुपात $m^2: n^2$ है, तो दर्शाइए कि mवें तथा nवें पदों का अनुपात (2m-1): (2n-1) है।

हल मान लीजिए समांतर श्रेढ़ी है, a, a + d, a + 2d, a + 3d ...

$$\frac{S_m}{S_m} = \frac{m^2}{n^2}$$

$$\Rightarrow \frac{\frac{m}{2}[2a + (m-1)d]}{\frac{n}{2}[2a + (n-1)d]} = \frac{m^2}{n^2}$$

$$\left[:: S_n = \frac{n}{2} \left\{ 2a + (n-1)d \right\} \right]$$

$$\Rightarrow \frac{m \left[2a + (m-1)d\right]}{n \left[2a + (n-1)d\right]} = \frac{m^2}{n^2}$$

$$\Rightarrow \frac{2a + (m-1)d}{2a + (n-1)d} = \frac{m}{n}$$

⇒
$$[2a + (m-1)d]n = [2a + (n-1)d]m$$
⇒
$$2an + (m-1)dn = 2am + (n-1)dm$$
⇒
$$2an - 2am = (n-1)dm - (m-1)dn$$
⇒
$$2a (n-m) = d [(n-1)m - (m-1)n]$$
⇒
$$2a (n-m) = d (mn - m - mn + n)$$
⇒
$$2a (n-m) = d (n-m) \Rightarrow 2a = d$$

$$\frac{T_m}{T_n} = \frac{a + (m-1)d}{a + (n-1)d} = \frac{a + (m-1)2a}{a + (n-1)2a} [\because T_n = a + (n-1)d]$$

अंश तथा हर से a उभयनिष्ठ लेने पर,

$$\Rightarrow \frac{T_m}{T_n} = \frac{1+2(m-1)}{1+2(n-1)} = \frac{1+2m-2}{1+2n-2} = \frac{2m-1}{2n-1}$$

प्रश्न 13. यदि किसी समांतर श्रेढ़ी के nवें पद का योगफल $3n^2 + 5n$ है तथा इसका mवों पद 164 है, तो m का मान ज्ञात कीजिए।

जब कभी श्रेणी का योग दिया हुआ होता है, तब हमें सूत्र $T_m = S_m - S_{m-1}$ का प्रयोग कर T_m निकालना चाहिए और बाद में इसे सरल करना चाहिए।

हल दिया है,
$$S_n = 3n^2 + 5n$$

 \therefore $S_m = 3m^2 + 5m$ तथा $S_{m-1} = 3(m-1)^2 + 5(m-1)$
सूत्र $T_m = S_m - S_{m-1}$ का प्रयोग करने पर,
 \Rightarrow $T_m = (3m^2 + 5m) - [3(m-1)^2 + 5(m-1)]$

$$T_m = (3m^2 + 5m) - [3(m-1)^2 + 5(m-1)]$$

$$= (3m^2 + 5m) - [3(m^2 + 1 - 2m) + 5m - 5]$$

$$= (3m^2 + 5m) - (3m^2 + 3 - 6m + 5m - 5)$$

$$= 3m^2 + 5m - 3m^2 - 3 + 6m - 5m + 5 = 6m + 2$$

िकंतु दिया है,
$$T_m = 164$$

 $\therefore 6m + 2 = 164 \implies 6m = 164 - 2$
 $\Rightarrow 6m = 162 \implies m = \frac{162}{6} = 27$

प्रश्न 14. 8 और 26 के बीच ऐसी 5 संख्याएँ डालिए ताकि प्राप्त अनुक्रम समांतर श्रेढ़ी बन जाए।

हल मान लीजिए 8 और 26 के बीच 5 संख्याएँ A_1 , A_2 , A_3 , A_4 तथा A_5 हैं, तब 8, A_1 , A_2 , A_3 , A_4 , A_5 , 26 समांतर श्रेढ़ी में होंगी।

$$T_n = a + (n - 1)d$$
∴ $26 = 8 + (7 - 1)d$ $(n = 7 ∵ 2 \, \text{पद हैं तथा 5 संख्याएँ हैं।})$
⇒ $26 - 8 = 6d$

⇒
$$18 = 6d$$
 ⇒ $d = \frac{18}{6}$ ⇒ $d = 3$
अब, $A_1 = a + d = 8 + 3 = 11$
⇒ $A_2 = a + 2d = 8 + 2 \times 3 = 14$
 $A_3 = a + 3d = 8 + 3 \times 3 = 17$
 $A_4 = a + 4d = 8 + 4 \times 3 = 20$
 $A_5 = a + 5d = 8 + 5 \times 3 = 23$

प्रश्न 15. यदि $\frac{a^n+b^n}{a^{n-1}+b^{n-1}}$, a तथा b के मध्य समांतर माध्य हो, तो n का मान ज्ञात कीजिए।

हम जानते हैं कि दो संख्याएँ a तथा b के बीच समांतर माध्य $\frac{a+b}{a}$ होता है। प्रश्न में दिए हुए समांतर माध्य को $\frac{a+b}{a}$ के बराबर रखकर इसे हल करते हैं।

a तथा b के बीच दिया हुआ समांतर माध्य $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ है किंतु हम जानते हैं कि a तथा b के बीच समांतर माध्य $\frac{a+b}{2}$ होता है।

⇒

प्रश्न 16. m संख्याओं को 1 तथा 31 तक रखने पर प्राप्त अनुक्रम एक समांतर श्रेढ़ी है और 7वीं एवं (m-1) वीं संख्याओं का अनुपात 5:9 है, तो m का मान ज्ञात कीजिए।

दी हुई संख्याओं के बीच संख्या रखने के बाद, सर्वप्रथम हम सूत्र $I_n = a + (n-1) d$ का प्रयोग कर d निकालेंगे तथा दिए हुए अनुपात का प्रयोग कर हम m का मान निकालेंगे।

हल मान लीजिए 1 तथा 31 के बीच m संख्याएँ A1, A2, A3,..., Am हैं।

अर्थात् 1,
$$A_1$$
, A_2 , A_3 ,, A_m , 31 समांतर श्रेणी है। अब,
$$T_n = a + (n-1)d$$

$$31 = 1 + (m+2-1)d$$

[∵ n = m + 2 जहाँ दो पद (1 तथा 31) हैं, m संख्याएँ हैं]

$$\Rightarrow 31-1=(m+1)d$$

$$\Rightarrow 30=(m+1)d \Rightarrow d=\frac{30}{m+1} \dots (i)$$

दिया है,
$$\frac{T_7}{T_{m-1}} = \frac{5}{9}$$

$$\Rightarrow \frac{a + 7d}{a + (m-1)d} = \frac{5}{9}$$

⇒
$$\frac{1+7 \times \frac{30}{m+1}}{1+(m-1) \times \frac{30}{m+1}} = \frac{5}{9}$$
 [समी (i) से]

$$\Rightarrow \frac{\frac{m+1+210}{m+1}}{\frac{(m+1)+30(m-1)}{m+1}} = \frac{5}{9} \Rightarrow \frac{m+211}{m+1+30m-30} = \frac{5}{9}$$

⇒
$$9(m+211) = 5(31m-29)$$
⇒ $9m+1899 = 155m-145$
⇒ $1899+145=155m-9m$
⇒ $146m=2044$

$$\Rightarrow m = \frac{2044}{146} = 14$$

प्रश्न 17. एक व्यक्ति ऋण का भुगतान ११०० की प्रथम किश्त से शुरू करता है। यदि वह प्रत्येक किश्त में १ 5 प्रतिमाह बढ़ाता है, तो 30वीं किश्त की राशि क्या होगी?

यहाँ प्रथम किश्त को समांतर श्रेढ़ी का प्रथम पद लेते हैं तथा प्रतिमाह बढ़ी किश्त को समांतर श्रेढ़ी का सार्वान्तर लेते हैं।

हल दिया है,
$$a = 100, d = 5$$
 : $T_n = a + (n-1)d$
: $T_{30} = 100 + (30-1)5 = 100 + 29 \times 5 = 100 + 145 = 245$

प्रश्न 18. एक बहुभुज की दो क्रमिक अंत: कोणों का अंतर 5° है। यदि सबसे छोटा कोण 120° हो, तो बहुमुज की भुजाओं की संख्या ज्ञात कीजिए।

यहाँ, हम बहुभुज के सभी आंतरिक कोणों के योग का सूत्र (n - 2) 180° का प्रयोग करेंगे।

हल हम जानते हैं कि
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

परंतु किसी बहुभुज के सभी आंतरिक कोणों के योग के लिए, $S_n = (n-2)180^\circ$

$$(n-2) 180^{\circ} = \frac{n}{2} [2 \times 120^{\circ} + (n-1)(5)] \qquad (\because a = 120^{\circ}, d = 5)$$

$$\Rightarrow \qquad (n-2) 180 \times 2 = n (240 + 5n - 5)$$

$$\Rightarrow$$
 $(n-2)180 \times 2 = n(240 + 5n - 5)$

$$\Rightarrow$$
 $(n-2) 360 = n (5n + 235)$

$$(n-2)72 = n(n+47) \implies 72n-144 = n^2 + 47n$$

$$\Rightarrow n^2 + 47n - 72n + 144 = 0$$
 $\Rightarrow n^2 - 25n + 144 = 0$

अब, मध्य पद को विभक्त कर गुणनखंड करने पर,

$$\Rightarrow$$
 $n^2 - (16 + 9) n + 144 = 0$

$$\Rightarrow$$
 $n^2 - 16n - 9n + 144 = 0$

$$\Rightarrow$$
 $n(n-16)-9(n-16)=0$

$$(n-16)(n-9)=0$$

$$n = 9.16$$

केवल n = 9 अमीष्ट भुजाओं की संख्या है।

नोट यदि n = 16.

 \Rightarrow

$$\Rightarrow$$
 $T_n = 120 + (16 - 1)5 = 120 + 15 \times 5 = 120 + 75 = 195 > 180°$

जे संमव नहीं है।

अतः बहुमुज में मुजाओं की संख्या 9 है।

प्रष्टनावली १.३

प्रश्न 1. गुणोत्तर श्रेढ़ी $\frac{5}{2}$, $\frac{5}{4}$, $\frac{5}{8}$, ... का 20वाँ तथा nवाँ पद ज्ञात कीजिए।

(प्र. सं. 1 - 4) गुणोत्तर श्रेढ़ी के n वें पद का सूत्र, $T_n = ar^{n-1}$ का प्रयोग करेंगे।

हल दी हुई श्रेणी है,
$$\frac{5}{2}$$
, $\frac{5}{4}$, $\frac{5}{8}$, ...

यहाँ,
$$a=$$
 प्रथम पद = $\frac{5}{2}$ तथा सार्वानुपात (r) = $\frac{5/4}{5/2}$ = $\frac{2}{4}$ = $\frac{1}{2}$

अब,
$$T_n = ar^{n-1}$$

$$\Rightarrow T_{20} = ar^{20-1} = \left(\frac{5}{2}\right) \times \left(\frac{1}{2}\right)^{20-1} = \frac{5}{2} \times \left(\frac{1}{2}\right)^{19} = \frac{5}{2} \times \frac{1}{2^{19}} = \frac{5}{2^{20}}$$

पुन:
$$T_n = ar^{n-1} = \left(\frac{5}{2}\right) \times \left(\frac{1}{2}\right)^{n-1} = \frac{5}{2} \times \frac{1}{2^{n-1}} = \frac{5}{2^{1+n-1}} = \frac{5}{2^n}$$

उस गुणोत्तर श्रेढ़ी का 12वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्वानुपात 2 है।

हल दिया है, 8वाँ पद T₈ = 192

तथा सार्वानुपात
$$r = 2$$

$$\Rightarrow ar^{8-1} = 192 \qquad (\because T_n = ar^{n-1})$$

$$\Rightarrow a \times (2)^7 = 192$$

$$\Rightarrow a \times 128 = 192$$

$$\Rightarrow a = \frac{192}{128} = \frac{48}{32} = \frac{3}{2}$$

अब, $T_{12} = ar^{12-1} = \frac{3}{2} \times (2)^{11} = \frac{3}{2} \times 2^{11} = 3 \times 2^{10} = 3 \times 1024 = 3072$

प्रश्न 3. किसी गुणोत्तर श्रेढी का 5वाँ, 8वाँ तथा 11वाँ पद क्रमश: p,q तथा s हैं, तो दिखाइए िक $a^2 = ps$

हल मान लीजिए गुणोत्तर श्रेढ़ी का प्रथम पद a तथा सार्वानुपात r है।

$$T_5 = \rho \Rightarrow ar^4 = \rho \qquad \dots (i)$$

$$T_8 = q \Rightarrow ar^7 = q$$
 ...(ii)

तथा

अब,

$$T_{11} = s \Rightarrow ar^{10} = s \qquad \qquad \dots \text{(iii)}$$

समी (i) तथा (ii) को गुणा करने पर,

$$ar^4 \times ar^{10} = \rho s$$

$$a^2 r^{14} = \rho s$$

$$\Rightarrow \qquad [(ar)^7]^2 = \rho s \qquad [समी (ii) से]$$

$$\Rightarrow \qquad q^2 = \rho s \qquad \qquad$$
 इति सिद्धम्

प्रश्न 4. किसी गुणोत्तर श्रेढ़ी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद - 3है, तो 7वाँ पद ज्ञात कीजिए।

हल मान लीजिए गुणोत्तर श्रेढ़ी का प्रथम पद a तथा सार्वानुपात r है। $(:T_n = ar^{n-1})$ $T_A = (T_2)^2$ दिया है, $ar^3 = (ar)^2$ \Rightarrow

⇒
$$ar^3 = a^2r^2$$

⇒ $r = a$
चिंतु दिया है, $a = -3$
⇒ $r = -3$
अन, $T_2 = ar^6 = (-3)(-3)^6 = (-3)^7 = -2187$

प्रश्न 5. अनुक्रम का कौन-सा पद

(i) 2, $2\sqrt{2}$, 4, ...; 128 $\stackrel{?}{\notin}$? (ii) $\sqrt{3}$, 3, $3\sqrt{3}$, ...; 729 $\stackrel{?}{\notin}$? (iii) $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{27}$, ...; $\frac{1}{19683}$ $\stackrel{?}{\notin}$?

गुणोत्तर श्रेढ़ी के nवें पद का सूत्र $I_n = ar^{n-1}$ का प्रयोग कर हम n का मान निकालेंगे। हिंत (i) श्रेणी है, 2.2 $\sqrt{2}$, 4....

यहाँ,
$$a = 2$$
, $r = \frac{2\sqrt{2}}{2} = \sqrt{2}$
तथा $T_n = 128$ (दिया है)
अब, $T_n = ar^{n-1}$
 $\Rightarrow 128 = 2(\sqrt{2})^{n-1} \Rightarrow 2^{\frac{n-1}{2}} = \frac{128}{2}$
 $\Rightarrow 2^{\frac{n-1}{2}} = 64 \Rightarrow 2^{\frac{n-1}{2}} = 2^6$

दोनों ओर 2 के घात की तुलना करने पर,

$$\Rightarrow \frac{n-1}{2} = 6 \Rightarrow n = 12 + 1 \Rightarrow n = 13$$

(ii)
$$\sqrt{3}$$
, $3, 3\sqrt{3}$, ...

यहाँ,

 $a = \sqrt{3}$, $r = \frac{3}{\sqrt{3}} = \sqrt{3}$, $T_n = 729$

अब,

 $T_n = ar^{n-1}$
 $\Rightarrow 729 = \sqrt{3} (\sqrt{3})^{n-1}$
 $\Rightarrow 729 = (\sqrt{3})^n \Rightarrow 3^{\frac{n}{2}} = 3^6$
दोनों ओर 3 के घात की तुलना करने पर,

 $\Rightarrow \frac{n}{2} = 6 \Rightarrow n = 12$

(iii) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \dots$

पहाँ,
$$a = \frac{1}{3}, r = \frac{1}{\frac{9}{3}} = \frac{3}{9} = \frac{1}{3}$$

अब,
$$T_n = \frac{1}{19683}$$
 (दिया है)
$$T_n = ar^{n-1}$$

$$\frac{1}{19683} = \frac{1}{3} \times \left(\frac{1}{3}\right)^{n-1} \implies \frac{1}{6561} = \left(\frac{1}{3}\right)^{n-1}$$

$$\implies \left(\frac{1}{3}\right)^{n-1} = \left(\frac{1}{3}\right)^{8}$$
 होतों ओप (1/3) के प्राप्त की तत्त्वा करने पर

दोनों ओर (1/3) के घात की तुलना करने पर,

$$\Rightarrow \qquad n-1=8 \Rightarrow n=8+1 \Rightarrow n=9$$

x के किस मान के लिए संख्याएँ $-\frac{2}{7}$, x, $-\frac{7}{9}$ गुणोत्तर श्रेदी में हैं?

हम जानते हैं कि यदि तीन संख्याएँ a, b, c ग्णोत्तर श्रेढी में हों. तब $b^2 = ac$

हल चूँकि $-\frac{2}{7}, x, -\frac{7}{6}$ गुणोत्तर श्रेदी में हैं, तब

$$\Rightarrow x^{2} = \left(-\frac{2}{7}\right) \times \left(-\frac{7}{2}\right) \Rightarrow x^{2} = \frac{2}{7} \times \frac{7}{2}$$

$$\Rightarrow x^{2} = 1 \Rightarrow x = \pm 1$$

निर्देश (प्र. सं. 7 - 10) निम्नलिखित प्रश्नों के प्रत्येक गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

(प्र. सं. 7 - 10) यहाँ, हम सूत्र $S_n = \frac{a(r^n - 1)}{r - 1}$, r > 1 या $S_n = \frac{a(1 - r^n)}{1 - r}$, r < 1 का प्रयोग कर सरल करेंगे।

प्रश्न 7. 0.15, 0.015, 0.0015, ..., 20 परों तक हिंदी यहाँ,
$$a = 0.15$$
, $r = \frac{0.015}{0.15} = \frac{15}{1000} \times \frac{100}{15}$
$$r = \frac{1}{10} < 1 \quad \text{तिथा} \quad n = 20$$
 अब,
$$S_n = \frac{a(1-r^n)}{1-r}$$

$$\Rightarrow S_{20} = \frac{0.15 \left[1 - \left(\frac{1}{10}\right)^{20}\right] - 0.15 \left[1 - \frac{1}{10^{20}}\right] - 0.15 \times 10 \left(1 - \frac{1}{10^{20}}\right)}{1 - \frac{1}{10}} = \frac{15 \times 10}{900} \left[1 - \left(\frac{1}{10}\right)^{20}\right] = \frac{1}{6} \left[1 - (0.1)^{20}\right]$$

प्रश्न 8. $\sqrt{7}, \sqrt{21}, 3\sqrt{7}, ..., n$ पदों तक

हिला यहाँ,
$$a = \sqrt{7}, r = \frac{\sqrt{21}}{\sqrt{7}} = \frac{\sqrt{7 \times 3}}{\sqrt{7}} = \sqrt{3} > 1$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \qquad (\because r > 1)$$

$$\Rightarrow S_n = \frac{\sqrt{7} \left[(\sqrt{3})^n - 1 \right]}{\sqrt{3} - 1} = \frac{\sqrt{7} \left[(3^{1/2})^n - 1 \right]}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$$

$$= \frac{\sqrt{7} \left(\sqrt{3} + 1 \right) (3^{n/2} - 1)}{3 - 1} \quad [\because a^2 - b^2 = (a + b) (a - b)]$$

$$= \frac{\sqrt{7}}{2} \left(\sqrt{3} + 1 \right) (3^{n/2} - 1)$$

प्रश्न 9. $1, -a, a^2, -a^3, ..., n$ पदों तक (यदि $a \neq -1$)

हल यहाँ,
$$a = 1$$
, $r = -\frac{a}{1} = -a < 1$

$$S_n = \frac{a(1-r^n)}{1-r} \qquad (\because r < 1)$$

$$S_n = \frac{1\{1 - (-a)^n\}}{1 - (-a)} = \frac{1 - (-a)^n}{1 + a}$$

प्रश्न 10. $x^3, x^5, x^7, ..., n$ पदों तक (यदि $x \neq \pm 1$)

हल यहाँ,
$$a = x^3$$
, $r = \frac{x^5}{x^3} = x^2$

$$S_{n} = \frac{a(1-r^{n})}{1-r} \qquad (\because r < 1)$$

$$S_{n} = \frac{x^{3} [1 - (x^{2})^{n}]}{1-x^{2}} = \frac{x^{3} (1-x^{2n})}{1-x^{2}}$$

प्रश्न 11. मान ज्ञात कीजिए $\sum_{k=1}^{11} (2+3^k)$

ECT.
$$\sum_{k=1}^{11} 2 + \sum_{k=1}^{11} 3^k = 2 \times 11 + (3^1 + 3^2 + 3^3 + \dots + 3^{11}) \quad \left[\because S_n = \frac{a(r^n - 1)}{r - 1}, r > 1 \right]$$
$$= 22 + \frac{3(3^{11} - 1)}{3 - 1} = 22 + \frac{3(3^{11} - 1)}{2}$$

प्रश्न 12. एक गुणोत्तर श्रेढ़ी के तीन पर्दों का योगफल $\frac{39}{10}$ है तथा उनका गुणनफल 1 है। सार्वानुपात तथा पर्दों को ज्ञात कीजिए।

यहाँ, हम गुणोत्तर श्रेढ़ी में तीन संख्याएँ दें, a, ar लेकर दी गई शर्त का प्रयोग करेंगे।

$$\therefore$$
 प्रश्नानुसार,
$$\frac{a}{r} + a + ar = \frac{39}{10} \qquad ...(i)$$

$$\left(\frac{a}{r}\right) \times (a) \times (ar) = 1 \implies a^3 = 1 \implies a = 1$$

समी (i) में
$$a = 1$$
 रखने पर, $\frac{1}{r} + 1 + r = \frac{39}{10} \implies \frac{1}{r} + \frac{1}{1} + \frac{r}{1} = \frac{39}{10}$

$$\Rightarrow \frac{1+r+r^2-39}{r-10}$$

$$\Rightarrow 10 + 10r + 10r^2 = 39r$$

$$\Rightarrow 10r^2 + 10r - 39r + 10 = 0$$

$$\Rightarrow$$
 $10r^2 - 29r + 10 = 0$

अब, मध्य पद को विमक्त कर गुणनखंड करने पर,

$$\Rightarrow 10r^2 - 25r - 4r + 10 = 0$$

$$\Rightarrow 5r(2r-5)-2(2r-5)=0$$

$$\Rightarrow \qquad (5r-2)(2r-5)=0$$

$$\Rightarrow r = \frac{2}{5} \quad \text{तथा} \quad r = \frac{5}{2}$$

जब a=1 तथा $r=\frac{2}{5}$, तब संख्याएँ हैं

$$\frac{a}{r} = \frac{1}{\frac{2}{5}} = \frac{5}{2}, a = 1$$
 तथा $ar = 1 \times \frac{2}{5} = \frac{2}{5}$

٠.

.. <u>2</u> '

जब a=1 तथा $r=\frac{5}{2}$, तब संख्याएँ हैं

$$\frac{a}{r} = \frac{1}{\frac{5}{2}} = \frac{2}{5}$$
, $a = 1$ तथा $ar = 1 \times \frac{5}{2} = \frac{5}{2}$

٠.

 $\frac{2}{5}$, 1, $\frac{5}{2}$

प्रश्न 13. गुणोत्तर श्रेढ़ी 3, 3², 3³, ... के कितने पद आवश्यक हैं, ताकि उनका योगफल 120 हो जाए?

यहाँ, हम सूत्र $S_n = \frac{a(r^n-1)}{r-1}$, r > 1 का प्रयोग कर n का मान निकालेंगे।

हल यहाँ,
$$a = 3, r = 3, S_n = 120$$

স্তাৰ,
$$S_n = \frac{a(r^n - 1)}{r - 1}, r > 1$$

$$\Rightarrow 120 = \frac{3(3^n - 1)}{3 - 1}$$

$$\Rightarrow 120 = \frac{3(3^n - 1)}{2}$$

$$\Rightarrow 120 \times 2 = 3(3^n - 1)$$

$$\Rightarrow \frac{240}{3} = 3^n - 1$$

$$\Rightarrow 3^n - 1 = 80 \Rightarrow 3^n = 80 + 1$$

$$\Rightarrow 3^n = 81 \Rightarrow 3^n = 3^4$$

दोनों ओर 3 के घातों की तुलना करने पर,

प्रश्न 14. किसी गणोत्तर श्रेढी के प्रथम तीन पदों का योगफल 16 है तथा अगले तीन पदों का योग 128 है, तो गुणोत्तर श्रेढ़ी का प्रथम पद, सार्वानुपात तथा n पदों का योगफल ज्ञात कीजिए।

हल मान लीजिए गुणोत्तर श्रेढी है. a. ar. ar². ar³. ...

दिया है,
$$a + ar + ar^2 = 16$$
 ...(i)

तथा
$$ar^3 + ar^4 + ar^5 = 128$$
 ...(ii)

समी (i) को समी (ii) से माग करने पर,
$$\frac{a + ar + ar^2}{ar^3 + ar^4 + ar^5} = \frac{16}{128}$$

$$\Rightarrow \frac{a(1+r+r^2)}{ar^3(1+r+r^2)} = \frac{1}{8} \Rightarrow \frac{1}{r^3} = \left(\frac{1}{2}\right)^3 = \left(\frac{1}{r}\right)^3$$

दोनों ओर घात 3 के आघार की तुलना करने पर,

r = 2 समी (i) में रखने पर.

$$r = 2$$
 समा (1) म रखन पर,

$$\Rightarrow \qquad a + 2a + 4a = 16$$

$$\Rightarrow \qquad 7a = 16$$

$$\Rightarrow \qquad a = \frac{16}{7}$$
अब,
$$S_n = \frac{a(r^n - 1)}{r - 1}$$
(: $r = 2 > 1$)

$$=\frac{\frac{16}{7}(2^n-1)}{2-1}=\frac{16}{7}(2^n-1) \qquad (\because r>1)$$

$$\Rightarrow$$
 $a = \frac{16}{7}, r = 2$
तथा $S_n = \frac{16}{7}(2^n - 1)$

प्रश्न 15. एक गुणोत्तर श्रेढ़ी का प्रथम पद a=729 तथा 7वाँ पद 64 है, तो S_7 ज्ञात कीजिए।

हल दिया है, a = 729, T₇ = 64

$$\Rightarrow \qquad \qquad ar^{7-1} = 64$$

$$\Rightarrow 729r^6 = 64$$

$$\Rightarrow \qquad \qquad r^6 = \frac{64}{729} = \left(\frac{2}{3}\right)^6$$

दोनों ओर घात 6 के आधार की तुलना करने पर,

$$\Rightarrow r = \frac{2}{3} < 1$$

अब,
$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_7 = \frac{729 \left[1 - \left(\frac{2}{3} \right)^7 \right]}{1 - \frac{2}{3}} = \frac{729 \left(1 - \frac{2^7}{3^7} \right)}{\frac{1}{1} - \frac{2}{3}}$$

$$= \frac{729 \left(\frac{1}{1} - \frac{128}{2187} \right)}{\frac{3 - 2}{3}} = \frac{729 \times 3}{1} \times \frac{2187 - 128}{2187}$$

$$= \frac{1}{1} \times 2059 = 2059$$

प्रश्न 16. एक गुणोत्तर श्रेढ़ी को ज्ञात कीजिए। जिसके प्रथम दो पदों का योगफल – 4 है तथा 5 वाँ पद तृतीय पद का 4 गुना है।

हल मान लीजिए गुणोत्तर श्रेढ़ी है, a, ar, ar², ar³, ...

दिया है,
$$a + ar = -4$$
 ...(i)

तथा $T_5 = 4T_5$

$$\Rightarrow \qquad ar^{5-1} = 4 ar^{3-1}$$

$$\Rightarrow \qquad \qquad r^4 = 4r^2$$

$$\Rightarrow$$
 $r^2 = 4$

यदि
$$r=2$$
, तब समी (i) से, $a+a(2)=-4$ $3a=-4$ $\Rightarrow a=-\frac{4}{3}$ अतः गुणोत्तर श्रेढ़ी है $-\frac{4}{3},\left(-\frac{4}{3}\right)(2),\left(-\frac{4}{3}\right)(2)^2 \dots -\frac{4}{3},-\frac{8}{3},-\frac{16}{3},\dots$ यदि $r=-2$, तब समी (i) से,

$$a + a(-2) = -4$$

$$\Rightarrow \qquad -a = -4$$

$$\Rightarrow \qquad a = 4$$

अत: गुणोत्तर श्रेढ़ी है, 4, 4(-2), 4(-2)², ..., 4, - 8, 16, ...

प्रश्न 17. यदि किसी गुणोत्तर श्रेढ़ी का 4वाँ, 10वाँ तथा 16वाँ पद क्रमशः x, y तथा z है, तो सिद्ध कीजिए कि x, y, z गुणोत्तर श्रेढ़ी में है।

हल दिया है,
$$T_4 = x \Rightarrow ar^{4-1} = x \Rightarrow ar^3 = x$$
 ...(i)

$$T_{10} = y \implies ar^{10-1} = y \implies ar^9 = y \qquad ...(ii)$$

$$T_{16} = z \implies ar^{16-1} = z \implies ar^{15} = z \qquad ...(iii)$$

समी (i) को समी (iii) से गुणा करने पर,

$$\Rightarrow \qquad \qquad ar^{3} \times ar^{15} = x \times z$$

$$\Rightarrow \qquad \qquad a^{2}r^{3+15} = xz$$

$$\Rightarrow \qquad \qquad a^{2}r^{18} = xz$$

$$\Rightarrow \qquad \qquad (ar^{9})^{2} = xz$$

$$\Rightarrow \qquad \qquad \qquad v^{2} = xz$$

[समी (ii) से]

अतः x, y तथा z गुणोत्तर श्रेढ़ी में हैं।

इति सिद्धम

प्रश्न 18. अनुक्रम 8, 88, 888, 8888,... के n पर्दों का योग ज्ञात कीजिए।

निम्न प्रकार के प्रश्नों में (जैसे-5, 55, 555, ... तथा 7, 77, 777 ...) हम उभयनिष्ठ गुणनखंड को बाहर लेते हैं तथा इसके बाद प्रत्येक पद को 9 से गुणा तथा भाग कर गुणोत्तर श्रेढ़ी बना लेते हैं।

हल मान लीजिए S = 8 + 88 + 888 + 8888 + ...+n पदों तक

⇒
$$S = 8(1+11+111+1111+...+n \text{ पदों } \text{ तक})$$

 $= \frac{8}{9}(9+99+999+9999+...+n \text{ पदों } \text{ तक})$
 $= \frac{8}{9}[(10-1)+(100-1)+(1000-1)+...+n \text{ पदों } \text{ तक}]$

प्रश्न 19. अनुक्रम 2, 4, 8, 16, 32 तथा 128, 32, 8, 2, $\frac{1}{2}$ के संगत पदों के गुणनफल से बने अनुक्रम का योगफल ज्ञात कीजिए।

हल दिया हुआ अनुक्रम है, 2,4,8,16,32

...(i)

तथा

समी (i) तथा (ii) के संगत पदों को गुणा कर एक नया अनुक्रम बना लेते हैं।

256, 128, 64, 32, 16

मान लीजिए

$$S = 256 + 128 + 64 + 32 + 16$$

यहाँ,
$$a = 256$$
, $r = \frac{1}{2}$

$$\therefore \text{ अभीष्ट योग } S = \frac{256 \left[1 - \left(\frac{1}{2}\right)^5\right]}{1 - \frac{1}{2}} = 256 \times 2 \left(1 - \frac{1}{2^5}\right) \qquad \left[\because S_n = \frac{a(1 - r^n)}{1 - r}, r < 1\right]$$
$$= 512 \times \left(1 - \frac{1}{32}\right) = 512 \left(\frac{32 - 1}{32}\right)$$
$$= 16 \times 31 = 496$$

प्रश्न 20. दिखाइए कि अनुक्रम $a, ar, ar^2,...ar^{n-1}$ तथा $A, AR, AR^2,..., AR^{n-1}$ के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेढ़ी होती है तथा सार्वानुपात ज्ञात कीजिए। हल दिया हुआ अनुक्रम है, $a, ar, ar^2,..., ar^{n-1}$...(i)

तथा A, AR, AR²,..., ARⁿ⁻¹ ...(ii)

समी (i) तथा (ii) के संगत पदों को गुणा करने पर,

$$\therefore$$
 सार्वानुपात = $\frac{arAR}{aA} = rR$

प्रश्न 21. ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेढ़ी में हों, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।

हल मान लीजिए गुणोत्तर श्रेढ़ी है, a, ar, ar², ar³ ...

दिया है.

तीसरा पद = पहला पद +9

$$T_3 = a + 9 \implies ar^2 = a + 9$$

 $ar^2 - a = 9$...(i)

पुन:

⇒⇒

दूसरा पद = चौथा पद +18

$$T_2 = T_4 + 18 \implies ar = ar^3 + 18$$

 $ar - ar^3 = 18$...(ii)

समी (i) को समी (ii) से भाग देने पर,

$$\frac{ar^2 - a}{ar - ar^3} = \frac{9}{18}$$

$$\Rightarrow \qquad \frac{a(r^2 - 1)}{ar(1 - r^2)} = \frac{1}{2}$$

$$\Rightarrow \qquad \frac{-1}{r} \frac{(1 - r^2)}{(1 - r^2)} = \frac{1}{2}$$

$$\Rightarrow \qquad -\frac{1}{r} = \frac{1}{2} \Rightarrow r = -2$$

समी (ii) में r = -2 रखने पर,

$$a(-2) - a(-2)^3 = 18$$

 $-2a + 8a = 18$
 $6a = 18 \implies a = 3$

गुणोत्तर श्रेढ़ी है, 3,3 (-2), 3 (-2)², 3(-3)³, ...

प्रश्न 22. यदि किसी समांतर श्रेढ़ी का pवाँ, q वाँ तथा rवाँ पद क्रमश: a, b तथा c हो, तो सिद्ध कीजिए कि a^{q-r} $b^{r-p}c^{p-q}=1$

हल मान लीजिए गुणोत्तर श्रेढ़ी का प्रथम पद A तथा सार्वानुपात R है। दिया है, ρ वाँ पद = I_{ρ} = $a \Rightarrow AR^{\rho-1}$ = a

$$q$$
 वाँ पद = $T_0 = b \implies AR^{q-1} = b \qquad ...(ii)$

$$r$$
वॉ पद = T_r = $C \Rightarrow AR^{r-1} = C$...(iii)

अब, हमें सिद्ध करना है कि $a^{q-r}b^{r-p}c^{p-q}=1$

...(i)

समी (i), (ii) तथा (iii) से a, b तथा c का मान रखने पर,

बायाँ पक्ष =
$$(AR^{p-1})^{q-r} (AR^{q-1})^{r-p} (AR^{r-1})^{p-q}$$

= $A^{q-r} R^{(p-1)(q-r)} A^{r-p} R^{(q-1)(r-p)} A^{p-q} R^{(r-1)(p-q)}$
= $A^{q-r+r-p+p-q} R^{(p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q)}$
= $A^0 R^{pq-pr-q+r+qr-pq+r+p+rp-rq-p+q}$
= $A^0 R^0 = 1 \times 1 = 1 =$ दायाँ पक्ष

नोट यहाँ पर गुणोत्तर श्रेदी के प्रथम पद तथा सार्वानुपात क्रमशः A तथा R लेते हैं, क्योंकि a तथा r प्रश्न में दिया हुआ है।

प्रश्न 23. यदि किसी गुणोत्तर श्रेढ़ी का प्रथम तथा nवाँ पद क्रमश: a तथा b है एवं P, n पदों का गुणनफल हो, तो सिद्ध कीजिए कि $P^2 = (ab)^n$

हल मान लीजिए गुणोत्तर श्रेढ़ी है, A, AR, AR², AR³....

$$n$$
वाँ पद $AR^{n-1} = b$

...(ii)

अब, P= n पदों का गुणनफल

$$P = A \times AR^{1} \times AR^{2} \times AR^{3} \times ... \times n \text{ पदों तक}$$

$$P = A^{1+1+1+1+...+n} \text{ पदों तक } R^{1+2+3+...+(n-1)}$$

$$P = A^{n} R^{\frac{n(n-1)}{2}} \left[\because \text{प्रथम } n \text{ प्राकृत संख्याओं का योग } = \frac{n(n+1)}{2} \right]$$

दोनों ओर वर्ग करने पर,

$$P^{2} = A^{2n} R^{n(n-1)}$$
 $\Rightarrow P^{2} = A^{n} A^{n} R^{n(n-1)} = A^{n} (AR^{n-1})^{n}$
 $\Rightarrow P^{2} = a^{n}b^{n}$ [समी (i) तथा (ii) से]
 $\Rightarrow P^{2} = (ab)^{n}$ इति सिद्धम्

प्रश्न 24. दिखाइए कि एक गुणोत्तर श्रेढ़ी के प्रथम n पर्दों का योगफल तथा (n+1)वें पद से (2n)वें पद तक के पर्दों के योगफल का अनुपात $\frac{1}{r^n}$

यहाँ, हम गुणोत्तर श्रेढ़ी को 2nपदों तक लेते हैं।

हल मान लीजिए गुणोत्तर श्रेढ़ी है

$$\underbrace{a^{n}, a^{n^{2}}, a^{n^{3}}, a^{n^{4}}, a^{n^{5}}, ..., a^{n^{n-1}}}_{n \text{ पदों तक}}, \underbrace{a^{n}, a^{n^{n+1}}, ..., a^{n^{2n-1}}}_{n \text{ पदों तक}}$$

अब, अमीष्ट अनुपात =
$$\frac{\pi^{22} + n \text{ पदों का योग}}{(n+1)^{\frac{2}{3}} \text{ पद से } (2n)^{\frac{2}{3}} \text{ पदों का योग}}$$

$$= \frac{\frac{a(r^{n}-1)}{r-1}}{\frac{ar^{n}}{r^{n}}(r^{n}-1)} = \frac{1}{r^{n}}$$
इति सिद्धम्

प्रश्न 25. यदि a, b, c तथा d गुणोत्तर श्रेढ़ी में हैं, तो दिखाइए कि

$$(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2$$

हल : a, b, c, d गुणोत्तर श्रेढ़ी में हैं।

अब, हमें सिद्ध करना है कि

(
$$a^2 + b^2 + c^2$$
)($b^2 + c^2 + d^2$)=($ab + bc + cd$)²
बायाँ पक्ष =($a^2 + b^2 + c^2$)($b^2 + c^2 + d^2$)
=($a^2 + a^2r^2 + a^2r^4$)($a^2r^2 + a^2r^4 + a^2r^6$)
= $a^2 (1 + r^2 + r^4)a^2 r^2 (1 + r^2 + r^4)$
= $a^4r^2 (1 + r^2 + r^4)^2$
=[$a^2r (1 + r^2 + r^4)$]²
=($a^2r + a^2r^3 + a^2r^5$)²
=($a \cdot ar + ar \cdot ar^2 + ar^2 \cdot ar^3$)²
=($ab + bc + cd$)²
[समी (i) से]
= दायाँ पक्ष

प्रश्न 26. ऐसी दो संख्याएँ ज्ञात कीजिए जिनको 3 तथा 81 के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेढ़ी बन जाए।

दो दी हुई संख्याओं के बीच संख्याएँ रखने पर हम सूत्र T_n का प्रयोग कर सार्वानुपात निकालेंगे।

हल मान लीजिए दो संख्याएँ a तथा b हैं, तब 3, a, b, 81 गुणोत्तर श्रेढ़ी में होंगी। \therefore nवाँ पद $T_a = AR^{n-1}$

$$\therefore \qquad \qquad 81 = 3R^{4-1}$$

$$\Rightarrow \qquad \qquad R^3 = \frac{81}{3}$$

$$\Rightarrow \qquad \qquad R^3 = 27 \Rightarrow R^3 = 3^3 \Rightarrow R = 3$$

दोनों ओर घात 3 के आधार की तुलना करने पर,

$$\Rightarrow$$
 $a = AR = 3 \times 3 = 9$, $b = AR^2 = 3 \times 3^2 = 27$

दोनों ओर आधार (a/b) के घात की तुलना करने पर,

⇒

 \Rightarrow

 $n + \frac{1}{2} = 0$

 $n = -\frac{1}{2}$

प्रश्न 27. n का मान ज्ञात कीजिए ताकि $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$, a तथा b के बीच गुणोत्तर माध्य हो।

हम जानते हैं कि दो संख्याएँ a तथा b के बीच समांतर माध्य \sqrt{ab} होता है, हम इसे दी गई गुणोत्तर माध्य के बराबर रखकर n के लिए हल करेंगे। इस संबंध का प्रयोग कर इसे सरल करेंगे।

हल दिया है,
$$\frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \sqrt{ab}$$

$$\Rightarrow \frac{a^{n+1} + b^{n+1}}{a^n + b^n} = \frac{a^{\frac{1}{2}} b^{\frac{1}{2}}}{1}$$

$$\Rightarrow a^{n+1} + b^{n+1} = (a^n + b^n)(a^{\frac{1}{2}} b^{\frac{1}{2}})$$

$$\Rightarrow a^{n+1} + b^{n+1} = a^{n+\frac{1}{2}} b^{\frac{1}{2}} + a^{\frac{1}{2}} b^{n+\frac{1}{2}}$$

$$\Rightarrow a^{n+1} + b^{n+1} = a^{n+\frac{1}{2}} b^{\frac{1}{2}} + a^{\frac{1}{2}} b^{n+\frac{1}{2}} = 0$$

$$\Rightarrow (a^{n+1} - a^{n+\frac{1}{2}} b^{\frac{1}{2}}) + (b^{n+1} - a^{\frac{1}{2}} b^{n+\frac{1}{2}}) = 0$$

$$\Rightarrow a^{n+\frac{1}{2}} [a^{\frac{1}{2}} - b^{\frac{1}{2}}] - b^{n+\frac{1}{2}} [a^{\frac{1}{2}} - b^{\frac{1}{2}}] = 0$$

$$\Rightarrow (a^{n+\frac{1}{2}} - b^{n+\frac{1}{2}}) (a^{\frac{1}{2}} - b^{\frac{1}{2}}) = 0$$

$$\Rightarrow a^{n+\frac{1}{2}} - b^{n+\frac{1}{2}} (a^{\frac{1}{2}} - b^{\frac{1}{2}}) = 0$$

$$\Rightarrow a^{n+\frac{1}{2}} - b^{n+\frac{1}{2}} = 0$$

$$\Rightarrow a^{n+\frac{1}{2}} - b^{n+\frac{1}{2}} = 0$$

$$\Rightarrow a^{n+\frac{1}{2}} = b^{n+\frac{1}{2}}$$

$$\Rightarrow (a^{n+\frac{1}{2}} - b^{n+\frac{1}{2}}) = 0$$

$$\Rightarrow a^{n+\frac{1}{2}} = b^{n+\frac{1}{2}}$$

$$\Rightarrow (a^{n+\frac{1}{2}} - b^{n+\frac{1}{2}}) = 0$$

$$\Rightarrow a^{n+\frac{1}{2}} = b^{n+\frac{1}{2}}$$

$$\Rightarrow (a^{n+\frac{1}{2}} - b^{n+\frac{1}{2}}) = 0$$

$$\Rightarrow (a^{n+$$

प्रश्न 28. दो संख्याओं का योगफल उनके गुणोत्तर माध्य का 6 गुना है, तो दिखाइए कि संख्याएँ $(3 + 2\sqrt{2})$: $(3 - 2\sqrt{2})$ के अनुपात में हैं।

दी हुई शर्त लेने के बाद हम योगांतर निष्पत्ति का प्रयोग करेंगे।

अर्थात्
$$\frac{a}{b} = \frac{c}{d} \implies \frac{a+b-c+d}{a-b-c-d}$$

हल मान लीजिए संख्याएँ a तथा b हैं।

दिया है,
$$a + b = 6\sqrt{ab}$$

$$\Rightarrow \frac{a+b}{2\sqrt{ab}} = \frac{3}{1}$$

अब, योगांतर निष्पत्ति का प्रयोग करने पर,

$$\Rightarrow \frac{a+b+2\sqrt{ab}}{a+b-2\sqrt{ab}} = \frac{3+1}{3-1}$$

$$\Rightarrow \frac{(\sqrt{a})^2 + (\sqrt{b})^2 + 2\sqrt{ab}}{(\sqrt{a})^2 + (\sqrt{b})^2 - 2\sqrt{ab}} = \frac{4}{2}$$

$$\Rightarrow \frac{(\sqrt{a}+\sqrt{b})^2}{(\sqrt{a}-\sqrt{b})^2} = \frac{2}{1}$$

$$\Rightarrow \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}} = \frac{\sqrt{2}}{1}$$

पुनः योगांतर निष्पत्ति का प्रयोग करने पर,

$$\Rightarrow \frac{\sqrt{a} + \sqrt{b} + \sqrt{a} - \sqrt{b}}{\sqrt{a} + \sqrt{b} - (\sqrt{a} - \sqrt{b})} = \frac{\sqrt{2} + 1}{\sqrt{2} - 1}$$

$$\Rightarrow \frac{2\sqrt{a}}{2\sqrt{b}} = \frac{\sqrt{2} + 1}{\sqrt{2} - 1}$$

$$\Rightarrow \frac{\sqrt{a}}{\sqrt{b}} = \frac{\sqrt{2} + 1}{\sqrt{2} - 1}$$

दोनों ओर वर्ग करने पर,

⇒
$$\frac{a}{b} = \frac{(\sqrt{2} + 1)^2}{(\sqrt{2} - 1)^2}$$
⇒
$$\frac{a}{b} = \frac{2 + 1 + 2\sqrt{2}}{2 + 1 - 2\sqrt{2}} \qquad \left[\because (a + b)^2 = a^2 + b^2 + 2ab \right]$$
⇒
$$\frac{a}{b} = \frac{3 + 2\sqrt{2}}{3 - 2\sqrt{2}}$$
⇒
$$a : b = (3 + 2\sqrt{2}) : (3 - 2\sqrt{2})$$

प्रश्न 29. यदि A तथा G दो धनात्मक संख्याओं के बीच क्रमश: समांतर माध्य तथा गुणोत्तर माध्य हों, तो सिद्ध कीजिए कि संख्याएँ $A \pm \sqrt{(A+G)(A-G)}$

यदि द्विचात समीकरण के मूल दिए हुए हैं, तब द्विचात समीकरण $x^2 - (मूलों का योग) x + मूलों का गुणनफल = 0$

हल मान लीजिए संख्याएँ α तथा β हैं।

दिया है, मूलों का योग,
$$\frac{\alpha + \beta}{2} = A(\pi + \pi)$$

$$\alpha + \beta = 2A$$

$$\sqrt{\alpha \beta} = G(\eta \text{ णोत्तर माध्य}) \implies \alpha \beta = G^2$$

अब, द्विघात समीकरण जिनके मूल α तथा β हैं,

$$x^{2} - (\alpha + \beta) x + \alpha \beta = 0$$

$$x^{2} - 2A x + G^{2} = 0$$

$$\Rightarrow \qquad x = \frac{2A \pm \sqrt{4A^{2} - 4 \times 1 \times G^{2}}}{2 \times 1} \qquad \left(\because x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\right)$$

$$= \frac{2A \pm 2\sqrt{A^{2} - G^{2}}}{2}$$

$$= A \pm \sqrt{(A + G)(A - G)} \quad \left[\because a^{2} - b^{2} = (a + b)(a - b)\right]$$

इति सिद्धम्

प्रश्न 30. यदि किसी कल्चर में बैक्टीरिया की संख्या प्रत्येक घंटे पश्चात् दोगुनी हो जाती है। यदि प्रारंभ में उसमें 30 बैक्टीरिया उपस्थित थे, तो बैक्टीरिया की संख्या दूसरे, चौथे तथा n में घंटों बाद क्या होगी?

यहाँ, हम गुणोत्तर माध्य के सूत्र का प्रयोग करेंगे क्योंकि बैक्टीरिया प्रत्येक घंटे बहुल-गुणज में बढ़ती है।

हल कल्वर में उपस्थित बैक्टीरिया की संख्या एक गुणोत्तर श्रेढ़ी का निर्माण करती है जिसका पहला पद a=30 तथा सार्वानुपात r=2

दूसरे घंटे बाद उपस्थित बैक्टीरिया =
$$ar^2 = 30 \times (2)^2 = 120$$
 (:: $T_n = ar^{n-1}$) चौथे घंटे बाद उपस्थित बैक्टीरिया = $ar^4 = 30 \times (2)^4 = 30 \times 16 = 480$
 r वें घंटे बाद उपस्थित बैक्टीरिया = $ar^0 = 30 \times 2^n = (30) \cdot (2^n)$

प्रश्न 31. र 500 धनराशि 10% वार्षिक चक्रवृद्धि ब्याज पर 10 वर्षों बाद क्या हो जाएगी, ज्ञात कीजिए?

हल मान लीजिए Aधनराशि, Pमूलधन, rब्याज की दर तथा t समय काल वर्षों में दिया हुआ है। तब, धनराशि Aनिम्न सूत्र से प्राप्त होता है। अर्थात्

$$A = P\left(1 + \frac{r}{100}\right)^{1} = 500\left(1 + \frac{10}{100}\right)^{10}$$
$$= 500\left(1 + \frac{1}{10}\right)^{10} = 500\left(1 + 0.1\right)^{10}$$
$$= 500 \times (1.1)^{10}$$

प्रश्न 32. यदि किसी द्विषात समीकरण के मूलों के समांतर माध्य एवं गुणोत्तर माध्य क्रमशः 8 तथा 5 हैं. तो द्विषात समीकरण जात कीजिए।

यदि द्विघात समीकरण के दो मूल दिए हुए हों, तब द्विघात समीकरण होती है,

$$x^2 - (\mu m)$$
 का योग) $x + \mu m$ का गुणनफल = 0

हल मान लीजिए द्विघात समीकरण के मूल α तथा β हैं, तब

(समांतर माध्य)
$$\frac{\alpha + \beta}{2} = 8$$
 तथा (गुणोत्तर माध्य) $\sqrt{\alpha\beta} = 5$

$$\Rightarrow$$
 $\alpha + \beta = 16$ तथा $\alpha\beta = 25$

यदि द्विघात समीकरण के मूल α तथा β दिए हुए हों, तब द्विघात समीकरण

$$x^2 - (\pi m^2 + \pi^2 m^2 +$$

$$\Rightarrow x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

$$\Rightarrow \qquad \qquad x^2 - 16x + 25 = 0$$

प्रश्नावली 9.4

निर्देश (प्र. सं. 1 - 7) निम्नलिखित प्रश्नों में प्रत्येक श्रेणी के n पदों का योग ज्ञात कीजिए।

(प्र. सं. 1 - 7) जब हम किसी श्रेणी के ρ पदों का योग निकालते हैं, तब सर्वप्रथम ρ वाँ पद T_{ρ} निकालते हैं तथा योग $S = \Sigma T_{\rho}$ निकालने में निम्न सूत्र

$$\Sigma n = \frac{n(n+1)}{2}$$

$$\Sigma n^2 = \frac{n(n+1)(2n+1)}{6} \quad \text{तथा} \quad \Sigma n^3 = \left[\frac{n(n+1)}{2}\right]^2 \text{ का प्रयोग करते हैं।}$$

प्रश्न 1. 1×2+2×3+3×4+4×5+...

हल मान लीजिए दी हुई श्रेणी है।

$$S = 1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + ...$$

सर्वप्रथम, हम दी हुई श्रेणी को दो भागों में विभक्त करते हैं जो है, 1,2,3,4,5... तथा 2,3,4,5... दी हुई श्रेणी का तवाँ पद निकालने के लिए प्रत्येक भाग का तवाँ पद अलग-अलग निकालते हैं।

$$T_n = (1, 2, 3, \dots$$
 का n वाँ पद) $\times (2, 3, 4, \dots$ का n वाँ पद)
$$= [1 + (n-1) \, 1] \times [2 + (n-1) \, 1] \qquad [\because T_n = a + (n-1) \, d]$$

$$= (1 + n - 1) \, (2 + n - 1)$$

$$\Rightarrow T_n = n(n+1)$$

$$\Rightarrow S = \Sigma T_n = \Sigma \, (n^2 + n) = \Sigma \, n^2 + \Sigma \, n$$

$$= \frac{n(n+1) \, (2n+1)}{6} + \frac{n(n+1)}{2} \qquad \qquad \left[\because \Sigma \, n^2 = \frac{n \, (n+1) \, (2n+1)}{6} \right]$$

$$= \frac{n(n+1) \, \left(2n+1 + 3 \right)}{2}$$

$$= \frac{n(n+1) \, \left(2n+1 + 3 \right)}{2}$$

$$= \frac{n(n+1) \, \left(2n+4 \right)}{2} - \frac{n(n+1) \, (n+2)}{3}$$

प्रश्न 2. $1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + ...$

हल मान लीजिए दी हुई श्रेणी है.

$$S = 1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + ...$$

सर्वप्रथम हम दी हुई श्रेणी को तीन भागो में विभक्त करते हैं जो है। 1, 2, 3,... तथा 2, 3, 4, ... तथा 3, 4, 5, ... दी हुई श्रेणी का गवाँ पद निकालने के लिए प्रत्येक भाग का गवाँ पद अलग-अलग निकालते हैं।

अर्थात्
$$T_n = (1, 2, 3, ...$$
 का n वॉ पद) \times $(2, 3, 4 ...$ का n वॉ पद) \times $(3, 4, 5, ...$ का n वॉ पद) $= [1 + (n - 1)1][2 + (n - 1)1][3 + (n - 1)1] \quad [\because T_n = a + (n - 1)d]$ $= (1 + n - 1)(2 + n - 1)(3 + n - 1)$ $\Rightarrow T_n = n(n + 1)(n + 2) = n(n^2 + 2n + n + 2) = n(n^2 + 3n + 2)$ $\Rightarrow T_n = n^3 + 3n^2 + 2n$ $\Rightarrow T_n = n^3 + 3n^2 + 2n$ $\Rightarrow T_n = n^3 + 3\sum n^2 + 2\sum n$ $\Rightarrow T_n = \sum (n^3 + 3\sum n^2 + 2\sum n)$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{3n(n + 1)(2n + 1)}{6} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)(2n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)(2n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)(2n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)(2n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)(2n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2} + \frac{2n(n + 1)}{2}$ $\Rightarrow T_n = \frac{n(n + 1)}{2} + \frac{2n(n + 1)}{2$

$$= \frac{n(n+1)(n^2+5n+6)}{4} = \frac{n(n+1)(n^2+2n+3n+6)}{4}$$
$$= \frac{n(n+1)[n(n+2)+3(n+2)]}{4} = \frac{n(n+1)(n+2)(n+3)}{4}$$

ਸ਼ਵਜ 3. $3 \times 1^2 + 5 \times 2^2 + 7 \times 3^2 + ...$

हल मान लीजिए दी हुई श्रेणी है

$$S = 3 \times 1^2 + 5 \times 2^2 + 7 \times 3^2 + ...$$

सर्वप्रथम हम दी हुई श्रेणी को दो भागों में विभक्त करते हैं जो 3, 5, 7, ... तथा 12, 22,32, ... है। दी हुई श्रेणी का ∩वाँ पद निकालने के लिए प्रत्येक भाग का ∩वाँ पद अलग-अलग निकालते हैं।

$$T_n = (3, 5, 7 \dots$$
 का n वॉ पद) $\times (1, 2, 3 \dots$ का n वॉ पद)²
= $[3 + (n - 1)2][1 + (n - 1)1]^2$
= $(3 + 2n - 2)(n)^2 = (2n + 1)n^2 = 2n^3 + n^2$

 $S = \Sigma T_n = 2\Sigma n^3 + \Sigma n^2$ अब.

$$= \frac{2\left[n(n+1)\right]^{2}}{2} + \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{n(n+1)}{2} \left[2 \times \frac{n(n+1)}{2} + \frac{2n+1}{3}\right]$$

$$= \frac{n(n+1)}{2} \left[\frac{3n(n+1)+2n+1}{3}\right]$$

$$= \frac{n(n+1)}{6} \times (3n^{2} + 3n + 2n + 1)$$

$$= \frac{n(n+1)(3n^{2} + 5n + 1)}{6}$$

$$\begin{bmatrix} :: \Sigma n^3 = \left[\frac{n(n+1)}{2} \right]^2 \\ \Sigma n^2 = \frac{n(n+1)(2n+1)}{6} \end{bmatrix}$$

ਸ਼ਵਜ 4. $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + ...$

हल मान लीजिए दी हुई श्रेणी है

$$S = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots$$

यहाँ, हम दी हुई श्रेणी के हर को दो भागों में बाँटेंगे अर्थात्

$$T_n = \frac{1}{(1, 2, 3, ... \text{ का } n \text{ वॉ } \text{ पद}) \times (2, 3, 4, ... \text{ का } n \text{ वॉ } \text{ पद})}$$

$$= \frac{1}{[1 + (n-1)1][2 + (n-1)1]} [\because T_m = a + (m-1)d]$$

$$= \frac{1}{n(n+1)}$$

$$= \frac{(n+1)-n}{n(n+1)}$$

$$= \frac{n+1}{n(n+1)} - \frac{n}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

(इस चरण पर ध्यान दें)

अब, n = 1, 2, 3, 4 ... रखने पर.

$$T_{1} = \frac{1}{1} - \frac{1}{2}$$

$$T_{2} = \frac{1}{2} - \frac{1}{3}$$

$$T_{3} = \frac{1}{3} - \frac{1}{4}$$
......
$$T_{n} = \frac{1}{2} - \frac{1}{2 + 1}$$

अब, इन पदों को जोड़ने पर,

$$S = T_1 + T_2 + T_3 + \dots + T_n$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} + \frac{1}{n+1}\right)$$

$$-1 - \frac{1}{n+1} = \frac{1}{1} - \frac{1}{n+1} - \frac{n+1-1}{n+1}$$

$$S = \frac{n}{n+1}$$

⇒

नोट जब दी हुई श्रेणी मिन्न में हो, तब हम सूत्र Σn , Σn^2 , Σn^3 का प्रयोग नहीं कर सकते।

प्रश्न 5. $5^2 + 6^2 + 7^2 + ... + 20^2$ हल मान लीजिए दी हुई श्रेणी है.

$$S = 5^{2} + 6^{2} + 7^{2} + ... + 20^{2}$$

$$= (1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2} + 6^{2} + ... + 20^{2}) - (1^{2} + 2^{2} + 3^{2} + 4^{2})$$

$$= \frac{20 \times (20 + 1) \times (2 \times 20 + 1)}{6} - \frac{4(4 + 1)(2 \times 4 + 1)}{6}$$

$$\left[\because \Sigma n^{2} = \frac{n(n + 1)(2n + 1)}{6}\right]$$

$$= \frac{20 \times 21 \times 41}{6} - \frac{4 \times 5 \times 9}{6} = \frac{17220}{6} - \frac{180}{6}$$
$$= \frac{17220 - 180}{6} = \frac{17040}{6} = 2840$$

हल मान लीजिए दी हुई श्रेणी है,

अब,

$$S = 3 \times 8 + 6 \times 11 + 9 \times 14 + ...$$
 $T_n = (3, 6, 9 ... का nवाँ पद) \times (8, 11, 14 ... का nवाँ पद)$
 $T_n = [3 + (n - 1) 3] [8 + (n - 1) 3]$
 $= (3 + 3n - 3) (8 + 3n - 3)$
 $= 3n (3n + 5) = 9n^2 + 15n$

$$S = \sum T_n$$

$$= \sum (9n^2 + 15n) = 9 \sum n^2 + 15\sum n$$

$$= \frac{9n(n+1)(2n+1)}{6} + \frac{15n(n+1)}{2} \qquad \left[\because \sum n^2 = \frac{n(n+1)(2n+1)}{6} \right]$$

$$= \frac{n(n+1)\left[9(2n+1) + 15\right]}{2} = \frac{n(n+1)}{2} [3(2n+1) + 15]$$

$$= \frac{n(n+1)3(2n+1+5)}{2} = \frac{3n(n+1)(2n+6)}{2} = 3n(n+1)(n+3)$$

ਸ਼ਵਜ 7. $1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + ...$

हल मान लीजिए दी हुई श्रेणी है,

$$S = 1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + ...$$

यहाँ, प्रथम पद में 1 पद है, दूसरे पद में 2 पद हैं, तीसरे पद में 3 पद हैं इत्यादि। इसलिए दी हुई श्रेणी का तवाँ पद होगा

अर्थात्
$$T_{n} = 1^{2} + 2^{2} + \dots + n^{2}$$

$$T_{n} = \Sigma n^{2}$$

$$= \frac{n(n+1)(2n+1)}{6}$$

$$T_{n} = \frac{n(2n^{2} + n + 2n + 1)}{6}$$

$$T_{n} = \frac{n(2n^{2} + 3n + 1)}{6}$$

$$T_{n} = \frac{2n^{3} + 3n^{2} + n}{6}$$

$$S = \Sigma T_{n} = \frac{1}{6}(2n^{3} + 3n^{2} + n)$$

$$= \frac{1}{6}[2\Sigma n^{3} + 3\Sigma n^{2} + \Sigma n]$$

$$= \frac{1}{6} \left[2 \left\{ \frac{n(n+1)}{2} \right\}^2 + 3 \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right]$$

$$\left\{ \because \Sigma n = \frac{n(n+1)}{2}, \Sigma n^2 = \frac{n(n+1)(2n+1)}{6}, \Sigma n^3 = \left[\frac{n(n+1)}{2} \right]^2 \right\}$$

$$= \frac{1}{6} \times \frac{n(n+1)}{2} \left[\frac{2n(n+1)}{2} + \frac{2n+1}{1} + \frac{1}{1} \right]$$

$$= \frac{n(n+1)}{12} \times (n^2 + n + 2n + 1 + 1)$$

$$= \frac{n(n+1)}{12} (n^2 + 3n + 2)$$

$$= \frac{n(n+1)(n^2 + 2n + n + 2)}{12}$$

$$= \frac{n(n+1)(n+2)(n+1) - n(n+1)^2 (n+2)}{12}$$

नोट जब दी हुई श्रेणी के पद समूह में हों, तब ∩वौं पद निकालने के लिए श्रेणी के योग के सूत्र का प्रयोग करेंगे।

निर्देश (प्र. सं. 8 - 10) निम्नलिखित प्रश्नों में प्रत्येक श्रेणी के n पदों का योग ज्ञात कीजिए, जिसका n वाँ पद दिया है।

यहाँ, हम सूत्र
$$\Sigma n = \frac{n(n+1)}{2}$$
, $\Sigma n^2 = \frac{n(n+1)(2n+1)}{6}$ तथा $\Sigma n^3 = \left[\frac{n(n+1)}{2}\right]^2$ का प्रयोग करेंगे।

प्रश्न 8.
$$n(n+1)$$
 $(n+4)$

हल मान लीजिए $T_n = n(n+1)(n+4)$
 $= n(n^2 + 4n + n + 4)$
 $= n(n^2 + 5n + 4)$
 $= n^3 + 5n^2 + 4n$
अब, $S = \Sigma T_n = \Sigma (n^3 + 5n^2 + 4n)$
 $= \Sigma n^3 + 5\Sigma n^2 + 4\Sigma n$
 $= \left[\frac{n(n+1)}{2}\right]^2 + \frac{5n(n+1)(2n+1)}{6} + \frac{4n(n+1)}{2}$
 $= \frac{n(n+1)\left[n(n+1) + \frac{5(2n+1)}{3} + \frac{4}{1}\right]}{2}$
 $= \frac{n(n+1)\left[3n(n+1) + 10(2n+1) + 24\right]}{2}$

$$= \frac{n(n+1)(3n^2 + 3n + 20n + 10 + 24)}{12}$$
$$= \frac{n(n+1)(3n^2 + 23n + 34)}{12}$$

प्रश्न 9. $n^2 + 2^n$

हल मान लीजिए
$$T_n = n^2 + 2^n$$

$$S = \Sigma T_n = \Sigma (n^2 + 2^n) 0 = \Sigma n^2 + \Sigma 2^n$$

$$= \frac{n(n+1)(2n+1)}{6} + (2^1 + 2^2 + 2^3 + 2^4 + ... + 2^n)$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{2(2^n-1)}{2-1} \left[\because S_n = \frac{a(r^n-1)}{r-1}, r > 1 \right]$$

$$S = \frac{n(n+1)(2n+1)}{6} + 2(2^n-1)$$

नोट जब श्रेणी में किसी पद की घात n हो, तब हम Σn का प्रयोग नहीं करेंगे अर्थात् Σ2ⁿ ≠2^{Σn}

प्रश्न 10. $(2n-1)^2$

$$T_n = (2n - 1)^2$$

$$T_0 = 4n^2 + 1 - 4n$$

$$[:(a-b)^2 = a^2 + b^2 - 2ab]$$

$$S = \Sigma T_n = \Sigma (4n^2 + 1 - 4n)$$

$$=4\Sigma n^2+\Sigma 1-4\Sigma n$$

$$= \frac{4n(n+1)(2n+1)}{6} + n - \frac{4n(n+1)}{2}$$
$$= n \left[\frac{2(n+1)(2n+1)}{2} + \frac{1}{4} - \frac{2(n+1)}{4} \right]$$

$$= n \left[\frac{2(2n^2 + n + 2n + 1) + 3 - 6(n + 1)}{3} \right]$$

$$=\frac{n(4n^2+6n+2+3-6n-6)}{2}$$

$$=\frac{n(4n^2-1)}{3}=\frac{n}{3}(2n+1)(2n-1)$$

$$[:: (a^2 - b^2) = (a - b)(a + b)]$$

 $(:: \Sigma 1 = n)$

विविध प्रश्नावली

प्रश्न 1. दर्शाइए कि किसी समांतर श्रेढ़ी के (m+n)वें तथा (m-n)वें पदों का योग mवें पद का दोगुना है।

प्रश्नानुसार, हमें सिद्ध करना है,

$$T_{m+n} + T_{m-n} = 2T_m$$
 हल अब, बायाँ पक्ष = $T_{m+n} + T_{m-n}$
$$= a + (m+n-1)d + a + (m-n-1)d \qquad [\because T_n = a + (n-1)d]$$

$$= 2a + d (m+n-1+m-n-1) = 2a + d (2m-2)$$

$$= 2 [a + d (m-1)] = 2 T_m = दायाँ पक्ष \qquad \text{इति सिद्धम्}$$

प्रश्न 2. यदि किसी समांतर श्रेढ़ी की तीन संख्याओं का योग 24 है तथा उनका गुणनफल 440 है, तो संख्याएँ ज्ञात कीजिए।

हल मान लीजिए तीन संख्याएँ a - d, a, a + d हैं।

दिया हुआ है, संख्याओं का योग =24

$$\therefore \qquad a-d+a+a+d=24$$

$$\Rightarrow 3a = 24 \Rightarrow a = 8$$

तथा संख्याओं का गुणनफल = 440

$$\therefore \qquad (a-d) a (a+d) = 440$$

$$\Rightarrow \qquad a(a^2-d^2) = 440$$

$$\Rightarrow 8(64 - d^2) = 440$$

$$\Rightarrow \qquad 64 - d^2 = 55$$

$$\Rightarrow \qquad \qquad d^2 = 64 - 55$$

$$\Rightarrow \qquad \qquad d^2 = 9 \quad \Rightarrow \quad d = \pm 3$$

जब a = 8 तथा d = 3, तब संख्याएँ हैं,

$$a - d = 8 - 3 = 5$$

तथा

$$a+d=8+3=11 \implies 5, 8, 11$$

जब a = 8 तथा d = - 3, तब संख्याएँ हैं,

$$a-d=8+3=11$$

 $a=8$
 $a+d=8-3=5$

अतः संख्याएँ हैं, 5, 8, 11 या 11, 8, 5

प्रश्न 3. मान लीजिए कि किसी समांतर श्रेढ़ी के n, 2n तथा 3n पदों का योगफल क्रमश: S_1 , S_2 तथा S_3 है, तो दिखाइए कि $S_3 = 3$ ($S_2 - S_1$)

हल मान लीजिए समांतर श्रेढ़ी का पहला पद a तथा सार्वान्तर d है।

दिया है,
$$S_1 = n \text{ पदों }$$
का योग $= \frac{n}{2} [2a + (n-1)d]$...(i)

$$S_2 = 2n$$
 पदों का योग = $\frac{2n}{2}$ [2a + (2n - 1)d] ...(ii)

तथा

$$S_3 = 3n$$
 पदों का योग = $\frac{3n}{2} [2a + (3n - 1)d]$...(iii)

अब, हमें सिद्ध करना है

$$S_3 = 3(S_2 - S_1)$$

=
$$3\left[\frac{2n}{2}\left\{2a + (2n-1)d\right\} - \frac{n}{2}\left\{2a + (n-1)d\right\}\right]$$
 [समी (i) तथा (ii) से]
= $\frac{3n}{2}\left[2\left\{2a + (2n-1)d\right\} - \left\{2a + (n-1)d\right\}\right]$
= $\frac{3n}{2}\left[4a + 2(2n-1)d - 2a - (n-1)d\right]$
= $\frac{3n}{2}\left[(4a - 2a) + d(4n - 2 - n + 1)\right]$
= $\frac{3n}{2}\left[2a + (3n-1)d\right]$
= S_3 = बायाँ पक्ष [समी (iii) से]

इति सिद्धम

प्रश्न 4. 200 तथा 400 के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो 7 से विभाजित हों।

हल 200 तथा 400 के मध्य आने वाली संख्याएँ जो 7 से विभाज्य है निम्न हैं

स्पष्ट है, ये संख्याएँ समांतर श्रेढ़ी में हैं।

जहाँ,
$$a = 203, d = 7$$
 तथा $T_0 = 399$

अब,
$$T_n = a + (n-1)d$$

⇒ $399 = 203 + (n-1)7$
⇒ $(n-1)7 = 399 - 203$
⇒ $(n-1)7 = 196$
⇒ $n-1 = \frac{196}{7}$
⇒ $n-1 = 28$
⇒ $n = 28 + 1$

नोट विद्यार्थियों को ध्यान देना चाहिए कि संख्याएँ 200 तथा 400 सिम्मलित नहीं हैं।

प्रश्न 5. 1 से 100 तक आने वाले उन सभी पूर्णांकों का योगफल ज्ञात कीजिए जो 2 या 5 से विभाजित हों।

यहाँ, हम 2 तथा 5 से विभाजित संख्याओं का योग अलग-अलग निकालेंगे तथा इनके योगों को जोड़ने के पश्चात् 2 साथ ही साथ 5 से विभाजित अर्थात् (अर्थात् 2 तथा 5 का लघुत्तम समापवर्त्य) संख्याओं के योग को पहले वाले योग में से घटायेंगे।

हल 1 से 100 तक की संख्याएँ जो 2 से विमाज्य हों 2, 4, 6, 8, ... 100 हैं। संख्याएँ 2, 4, 6, 8, ... 100 समांतर श्रेढ़ी में है, जहाँ a = 2, d = 4 - 2 = 2

$$T_n = a + (n-1)d \Rightarrow 100 = 2 + (n-1)2$$

$$\Rightarrow 100 - 2 = (n-1)2 \Rightarrow 98 = (n-1)2$$

$$\Rightarrow 49 = n-1 \Rightarrow n = 50$$

इसलिए 50 संख्याओं का योग.

$$S_{50} = \frac{50}{2} [2 \times 2 + (50 - 1)2] \qquad \left[\because S_n = \frac{n}{2} \{2a + (n - 1)d\} \right]$$

$$= 25 [4 + 49 \times 2]$$

$$= 25 [4 + 98] = 25 \times 102$$

$$S_{50} = 2550 \qquad \dots (i)$$

अब, 1 से 100 तक की संख्याएँ, जो 5 से विमाज्य हों, हैं,

ये सभी संख्याएँ समांतर श्रेढ़ी में हैं, जहाँ a=5, d=10-5=5

∴
$$T_n = a + (n-1)d$$

 $100 = 5 + (n-1)5$
⇒ $100 - 5 = (n-1)5$
⇒ $(n-1) = \frac{95}{5}$
⇒ $n-1 = 19$

⇒
$$n = 19 + 1 = 20$$

अब, $S_n = \frac{n}{2} [2a + (n-1)d]$

⇒ $S_{20} = \frac{20}{2} [2 \times 5 + (20-1)5]$
 $= 10 (10 + 19 \times 5)$
 $= 10(10 + 95) = 10 (105)$

⇒ $S_{20} = 1050$...(ii)

अब, 1 से 100 तक की संख्याएँ, जो 10 से (अर्थात् 2 तथा 5 का लघुत्तम समापवर्तक) विमाज्य हों, हैं, 10, 20, 30, ..., 100

ये सभी संख्याएँ समांतर श्रेढ़ी में हैं, जहाँ a = 10, d = 20 - 10 = 10 तथा n = 10

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

$$S_{10} = \frac{10}{2}[2 \times 10 + (10 - 1)10]$$

$$= 5(20 + 9 \times 10) = 5(20 + 90)$$

$$= 5 \times 110 = 550 \qquad ...(iii)$$

अतः 1 से 100 तक आने वाले सभी पूर्णांकों का योग जो 2 या 5 से विमाज्य हो

प्रश्न 6. दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको 4 से विभाजित करने पर शेषफल 1 हो।

हल दो अंकों की संख्याएँ जिन्हें 4 से विभाजित करने पर शेषफल 1 हो, तब प्रत्येक संख्या 4 के गुणज से 1 अधिक होगी

स्पष्ट है, ये सभी संख्याएँ समांतर श्रेढ़ी में हैं, जहाँ

$$a = 13, d = 4, T_n = 97$$
∴
$$T_n = a + (n - 1)d$$
∴
$$97 = 13 + (n - 1) 4$$
⇒
$$97 - 13 = (n - 1)4$$
⇒
$$84 = (n - 1)4$$
⇒
$$21 = n - 1$$
⇒
$$n = 21 + 1 = 22$$

$$S_{22} = \frac{22}{2} [2 \times 13 + (22 - 1)4]$$

$$= 11(26 + 21 \times 4) = 11(26 + 84)$$

$$= 11 \times 110 = 1210$$

प्रश्न 7. सभी $x, y \in N$ के लिए $f(x + y) = f(x) \cdot f(y)$ को संतुष्ट करता हुआ f एक ऐसा फलन है कि f(1) = 3 तथा $\sum_{x=1}^{n} f(x) = 120$, तो n का मान ज्ञात कीजिए।

दिया हुआ फलन संबंध से सर्वप्रथम हम f(1), f(2), f(3), f(4),... इत्यादि का मान निकालेंगे तथा इन मानों को इनके योग अर्थात् 120 में रख देंगे।

हरा दिया है,
$$f(x + y) = f(x) f(y)$$
 ...(i)

समी (i) में x = y = 1 रखने पर,

$$f(1+1) = f(1)f(1)$$

$$\Rightarrow \qquad f(2) = 3 \times 3 \qquad [\because f(1) = 3]$$

$$\Rightarrow \qquad f(2) = 9$$

समी (i) में x = 2, y = 1 रखने पर,

$$f(2 + 1) = f(2)f(1)$$

 $f(3) = 9 \times 3$ [: $f(2) = 9$, $f(1) = 3$]
 $f(3) = 27$

समी (i) में x = 3, y = 1 रखने पर,

 \Rightarrow

 \Rightarrow

$$f(3 + 1) = f(3)f(1)$$

$$f(4) = 27 \times 3$$

$$f(4) = 81$$

$$∫_{x=1}^{n} f(x) = 120$$

$$∫_{x=1}^{n} f(2) + f(3) + ... + f(n) = 120$$

⇒ $3 + 9 + 27 + ... + n \text{ पदों } \pi \text{ $\sigma} = 120$

यहाँ,
$$a = 3, r = \frac{9}{3} = 3$$

$$\frac{a(r^{n} - 1)}{r - 1} = \frac{3(3^{n} - 1)}{3 - 1} = 120$$

$$\Rightarrow \qquad 3(3^{n} - 1) = 120 \times 2$$

$$\Rightarrow \qquad 3(3^{n} - 1) = 240$$

$$\Rightarrow \qquad 3^{n} - 1 = \frac{240}{3}$$

$$\Rightarrow \qquad 3^{n} - 1 = 80$$

$$\Rightarrow \qquad 3^{n} = 80 + 1$$

दोनों ओर 3 की घात की तुलना करने पर,

$$\Rightarrow \qquad 3'' = 81$$

$$\Rightarrow \qquad 3^n = 3^4 \Rightarrow n = 4$$

प्रश्न 8. गुणोत्तर श्रेढ़ी के कुछ पदों का योग 315 है, उसका प्रथम पद तथा सार्वानुपात क्रमश: 5 तथा 2 है। अंतिम पद तथा पदों की संख्या ज्ञात कीजिए।

हल मान लीजिए गुणोत्तर श्रेढ़ी के n पद है। a, ar, ar^2 , ar^3 , ..., ar^{n-1}

दिया है, a = 5, r = 2 तथा $S_n = 315$

$$315 = \frac{5(2^n - 1)}{2 - 1} \Rightarrow \frac{315}{5} = 2^n - 1 \qquad \left[\because S_n = \frac{a(r^n - 1)}{r - 1}, r > 1 \right]$$

$$\Rightarrow \qquad 2^n - 1 = 63 \qquad \Rightarrow \qquad 2^n = 63 + 1 \Rightarrow 2^n = 64$$

दोनों ओर 2 की घात की तुलना करने पर,

$$\Rightarrow \qquad 2^n = 2^6 \qquad \Rightarrow \qquad n = 6$$

पुनः अंतिम पद के लिए,

$$T_n = ar^{n-1} = 5 \times (2)^{6-1} = 5 \times 2^5 = 5 \times 32 = 160$$

प्रश्न 9. किसी गुणोत्तर श्रेढ़ी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो, तो गुणोत्तर श्रेढ़ी का सार्वानुपात ज्ञात कीजिए।

हल मान लीजिए गुणोत्तर श्रेढ़ी है,

दिया है,
$$a = 1 \pi a T_3 + T_5 = 90$$

$$\therefore \qquad \qquad ar^2 + ar^4 = 90 \qquad \qquad (\because T_n = ar^{n-1})$$

$$\Rightarrow r^2 + r^4 = 90 \qquad (\because a = 1)$$

$$\Rightarrow \qquad r^4 + r^2 - 90 = 0$$

अब, मध्य पद को विभक्त कर गुणनखंड करने पर,

$$\Rightarrow r^4 + 10r^2 - 9r^2 - 90 = 0$$

$$\Rightarrow r^2(r^2 + 10) - 9(r^2 + 10) = 0$$

$$\Rightarrow \qquad (r^2 + 10)(r^2 - 9) = 0$$

$$r^2 + 10 \neq 0 \implies r^2 - 9 = 0$$

$$\Rightarrow \qquad \qquad r^2 = 9 \Rightarrow r = \pm 3$$

प्रश्न 10. किसी गुणोत्तर श्रेढ़ी के तीन पदों का योग 56 है। यदि हम क्रम से इन संख्याओं में से 1, 7, 21 घटाएँ, तो हमें एक समांतर श्रेढ़ी प्राप्त होती है। संख्याएँ ज्ञात कीजिए।

हल मान लीजिए गुणोत्तर श्रेढ़ी में तीन संख्याएँ, a, ar, ar² है।

दिया है,
$$a + ar + ar^2 = 56$$
 ...(i)

पुनः a - 1, ar - 7, ar² - 21 गुणोत्तर श्रेढ़ी में हैं।

⇒
$$2(ar-7) = (a-1) + (ar^2-21)$$
 (∵ यदि a,b,c समांतर श्रेढ़ी में हों, तब2 $b=a+c$)

$$\Rightarrow$$
 2ar - 14 = a + ar² - 22

$$\Rightarrow a + ar^2 - 2ar = -14 + 22$$

$$\Rightarrow a + ar^2 - 2ar = 8 \qquad ...(ii)$$

समी (i) को समी (ii) से भाग देने पर,

$$\frac{a + ar + ar^{2}}{a + ar^{2} - 2ar} = \frac{56}{8}$$

$$\Rightarrow \frac{1 + r + r^{2}}{1 + r^{2} - 2r} = \frac{7}{1}$$

$$\Rightarrow 1 + r + r^{2} = 7 + 7r^{2} - 14r$$

$$\Rightarrow 6r^{2} - 15r + 6 = 0$$

3 से भाग देने पर.

$$\Rightarrow \qquad 2r^2 - 5r + 2 = 0$$

अब मध्य पद विभक्त कर गुणनखंड करने पर,

$$\Rightarrow 2r^2 - (4+1)r + 2 = 0$$

$$\Rightarrow 2r^2 - 4r - r + 2 = 0$$

$$\Rightarrow 2r(r-2) - (r-2) = 0$$

$$\Rightarrow (r-2)(2r-1) = 0$$

$$\Rightarrow r = 2, \frac{1}{2}$$

यदि r = 2, तब समी (i) से,

$$a + 2a + 4a = 56$$

$$\Rightarrow 7a = 56$$

$$a = 8$$

तब संख्याएँ हैं,

$$a = 8$$
 $ar = 8 \times 2 = 16$
 $ar^2 = 8 \times 4 = 32$
 $8 \cdot 16 \cdot 32$
यदि $r = \frac{1}{2}$, तब सभी (i) से, $\frac{a}{1} + \frac{a}{2} + \frac{a}{4} = 56$
 $\frac{4a + 2a + 1}{4} = 56$
 $\Rightarrow \frac{7a}{4} = 56$

तब संख्याएँ हैं,

a = 32

a = 32

$$ar = 32 \times \frac{1}{2} = 16$$

या $ar^2 = 32 \times \frac{1}{4} = 8$
⇒ 32, 16, 8

अत: अभीष्ट संख्याएँ हैं, 8, 16, 32 या 32, 16, 8

प्रश्न 11. किसी गुणोत्तर श्रेढ़ी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल का 5 गुना है, तो सार्वानुपात ज्ञात कीजिए।

हल मान लीजिए गुणोत्तर श्रेढ़ी है, $a_i a_i, a_i^2$, a_i^3 , a_i^4 ,..., a_i^{2n-2} , a_i^{2n-1} जहाँ $a_i a_i^2$, a_i^4 ,... विषम स्थान पर रखे हैं तथा a_i, a_i^3 , a_i^5 , a_i^7 ,... सम स्थान पर रखे हैं। दिया है, सभी पदों का योग = 5×6 विषम स्थान पर रखे पदों का योगफल

अर्थात्
$$a + ar + ar^{2} + ... + ar^{2n-1}$$

$$= 5 \times (a + ar^{2} + ar^{4} + ... + ar^{2n-2})$$

$$\Rightarrow \frac{a(r^{2n} - 1)}{r - 1} = \frac{5a[(r^{2})^{n} - 1]}{r^{2} - 1} \qquad \left[\because S_{n} = \frac{a(r^{n} - 1)}{r - 1}, r > 1 \right]$$

$$\Rightarrow \frac{r^{2n} - 1}{r - 1} = \frac{5(r^{2n} - 1)}{(r - 1)(r + 1)}$$

$$\Rightarrow 1 = \frac{5}{r + 1} \Rightarrow r + 1 = 5 \Rightarrow r = 4$$

नोट विद्यार्थी को ध्यान देना चाहिए कि यदि गुणोत्तर श्रेढ़ी में पदों की संख्या 2n है अर्थात् सम है, तब इनमें n विषम पद तथा n सम पद होंगे।

प्रश्न 12. एक समांतर श्रेढ़ी के प्रथम चार पदों का योगफल 56 है। अंतिम चार पदों का योगफल 112 है। यदि इसका प्रथम पद 11 है, तो पदों की संख्या ज्ञात कीजिए।

हल मान लीजिए दी हुई समांतर श्रेढी है, a, a + d, a + 2d,

दिया है, प्रथम चार पदों का योगफल = 56

ভাষান্
$$T_1 + T_2 + T_3 + T_4 = 56$$
 $\Rightarrow a + a + d + a + 2d + a + 3d = 56$
 $\Rightarrow 4a + 6d = 56$
 $\Rightarrow 4 \times 11 + 6d = 56$
 $\Rightarrow 6d = 56 - 44 = 12$
 $\Rightarrow d = \frac{12}{6} \Rightarrow d = 2$

यदि अंतिम पद T, है, तब अंतिम चार पदों का योगफल =112

$$T_n + T_{n-1} + T_{n-2} + T_{n-3} = 112$$
 [: $T_n = a + (n-1)d$]

अतः श्रेणी में कुल पदों की संख्या = 11

प्रश्न 13. यदि $\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx}$ $(x \neq 0)$ हो, तो दिखाइए कि a,b,c तथा d गुणोत्तर श्रेढी में हैं।

यहाँ, हम योगांतर निष्पत्ति का प्रयोग करेंगे

अर्थात्
$$\frac{a}{b} = \frac{c}{d}$$
 \Rightarrow $\frac{a+b}{a-b} = \frac{c+d}{c-d}$

हल दिया है,

$$\frac{a + bx _b + cx _c + dx}{a - bx b - cx c - dx}$$

योगांतर निष्पत्ति का प्रयोग करने पर,

$$\Rightarrow \frac{a+bx+a-bx}{a+bx-(a-bx)} = \frac{b+cx+b-cx}{b+cx-(b-cx)} = \frac{c+dx+c-dx}{c+dx-(c-dx)}$$

$$\Rightarrow \frac{2a-2b-2c}{2bx-2cx-2dx}$$

$$\Rightarrow \frac{a+bx+a-bx}{b+cx-(b-cx)} = \frac{c+dx+c-dx}{c+dx-(c-dx)}$$

प्रत्येक पद को x से गुणा करने पर,

$$\Rightarrow \frac{a}{b} = \frac{b}{c} = \frac{c}{d}$$

इसलिए, a, b, c, d गुणोत्तर श्रेढ़ी में हैं।

प्रश्न 14. किसी गुणोत्तर श्रेढ़ी में S, n पदों का योग, P उनका गुणनफल तथा R उनके व्युक्तमों का योग हो, तो सिद्ध कीजिए कि $P^2R^n=S^n$

हल मान लीजिए गुणोत्तर श्रेढ़ी है, a, ar, ar²,ar³,..., arⁿ⁻¹

दिया है, S=n पदों का योग = $a + ar + ar^2 + ar^3 + ... + ar^{n-1}$

$$=\frac{a(r^n-1)}{r-1} \qquad (यदि r>1) \qquad \dots (i)$$

तथा R=n पदों के व्युक्तमों का योग

$$= \frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^{2}} + \dots + \frac{1}{ar^{n-1}} \left(\frac{1}{r} < 1\right)$$

$$= \frac{1}{a} \left[1 - \left(\frac{1}{r}\right)^{n}\right] = \frac{1}{a} \left[1 - \frac{1}{r^{n}}\right] \times \frac{1}{\frac{r-1}{r}}$$

$$= \frac{1}{a} \left[\frac{r^{n} - 1}{r^{n}}\right] \times \frac{r}{r - 1}$$

$$\Rightarrow R = \frac{(r^{n} - 1)r}{ar^{n}(r - 1)} \qquad \dots (ii)$$

तथा

P = n पदों का गुणनफल = $a \times ar \times ar^2 \times ar^3 \times ... \times ar^{n-1}$ = a1 + 1 + 1 + ... + n पदों तक f1 + 2 + 3 + ... + (n - 1) पदों तक

$$= a^{n} r^{\frac{n(n-1)}{2}} \qquad \left[\because \Sigma n = \frac{n(n+1)}{2} \right]$$

$$P^{2} = a^{2n} r^{n(n-1)} \qquad (iii)$$

 \Rightarrow

अब, हमें सिद्ध करना है, $P^2R^n = S^n$

या

$$P^2 = \frac{S^n}{R^n} \operatorname{TI} P^2 = \left(\frac{S}{R}\right)^n$$

दायाँ पक्ष =
$$\left(\frac{S}{R}\right)^n = \left[\frac{a(r^n-1)}{r-1} \times \frac{ar^n(r-1)}{(r^n-1)r}\right]^n$$
 [समी (i) तथा (ii) से]
= $[a^2r^nr^{-1}]^n = (a^2r^{n-1})^n = [a^{2n}r^{n(n-1)}]$
= $P^2 =$ बायाँ पक्ष [समी (iii) से]

इति सिद्धम

...(iii)

नोट विद्यार्थियों को ध्यान देना चाहिए कि यदि S में r < 1 लेते हैं, तब R में r > 1 लेंगे।

किसी समांतर श्रेढी का p वाँ, q वाँ तथा rवाँ पद क्रमश: a, b तथा c हैं, तो सिद्ध कीजिए

$$(q-r)a + (r-p)b + (p-q)c = 0$$

हल मान लीजिए समांतर श्रेढ़ी है, A, A + D, A + 2D, A + 3D,

दिया है,
$$\rho$$
 वाँ पद = $A + (p-1)D = a$...(i)

$$q$$
वाँ पद = $A + (q - 1)D = b$...(ii)

$$r$$
वाँ पद = $A + (r - 1)D = c$...(iii)

अब, हमें सिद्ध करना है
$$(q-r)a+(r-p)b+(p-q)c=0$$
 बायाँ पक्ष = $(q-r)a+(r-p)b+(p-q)c$...(iv)

समी (i), (ii) तथा (iii) से क्रमशः a, b,c का मान लेकर समी (iv) में रखने पर,

बायाँ पक्ष =
$$(q - r)[A + (p - 1)D] + (r - p)[A + (q - 1)D] + (p - q)[A + (r - 1)D]$$

= $(q - r)A + (q - r)(p - 1)D + (r - p)A + (r - p)(q - 1)D$
+ $(p - q)A + (p - q)(r - 1)D$
= $A(q - r + r - p + p - q) + D[(q - r)(p - 1) + (r - p)(q - 1)$
+ $(p - q)(r - 1)]$
= $A(0) + D(qp - q - rp + r + rq - r - pq + p + pr - p - qr + q)$
= $0 + 0 = 0$ = दायाँ पक्ष

∴ बायाँ पक्ष = दायाँ पक्ष

इति सिद्धम

नोट समांतर श्रेढ़ी का पहला पद a के स्थान पर A लेते हैं क्योंकि p वाँ पद a दिया हुआ है। विद्यार्थियों को इसे समांतर श्रेणी मानते समय ध्यान में रखना चाहिए।

प्रश्न 16. यदि $a\left(\frac{1}{b}+\frac{1}{c}\right)$, $b\left(\frac{1}{c}+\frac{1}{a}\right)$, $c\left(\frac{1}{a}+\frac{1}{b}\right)$ समांतर श्रेढ़ी में हैं, तो सिद्ध कीजिए कि a,b,c समांतर श्रेढ़ी में हैं।

हम समांतर श्रेढ़ी के सारे गुणों को ध्यान में रखते हुए इस प्रश्न को हल करेंगे।

हल दिया है,
$$a\left(\frac{1}{b} + \frac{1}{c}\right)b\left(\frac{1}{c} + \frac{1}{a}\right)c\left(\frac{1}{a} + \frac{1}{b}\right)$$
 समांतर श्रेढ़ी में हैं।

$$\Rightarrow a\left(\frac{b+c}{bc}\right)b\left(\frac{a+c}{ac}\right)c\left(\frac{b+c}{ab}\right)$$
 समांतर श्रेढ़ी में हैं।

$$\Rightarrow \frac{ab+ac}{bc}\frac{ba+bc}{ac}\frac{cb+ca}{ab}$$
 समांतर श्रेढ़ी में हैं।

प्रत्येक पद में 1 जोड़ने पर,

$$\Rightarrow \frac{ab+ac}{bc} + 1, \frac{ba+bc}{ac} + 1, \frac{cb+ca}{ab} + 1 समांतर श्रेढ़ी में हैं।$$

$$\Rightarrow \frac{ab+ac+bc}{bc} + \frac{ba+bc+ac}{ac} + \frac{bc+ac+ab}{ab}$$
 समांतर श्रेढ़ी में हैं।

प्रत्येक पद को ab + bc + ac से भाग करने पर,

$$\Rightarrow \frac{1}{bc}, \frac{1}{ac}, \frac{1}{ab} समांतर श्रेढ़ी में हैं।$$

प्रत्येक पद को abc से गुणा करने पर,

⇒ a, b, c समांतर श्रेढ़ी में हैं।

इति सिद्धम्

प्रश्न 17. यदि a, b, c, d गुणोत्तर श्रेणी में हैं, तो सिद्ध कीजिए कि

$$(a^{n}+b^{n}), (b^{n}+c^{n}), (c^{n}+d^{n})$$
 गुणोत्तर श्रेढ़ी में हैं।

हम जानते हैं कि यदि तीन संख्याएँ a,b,c गुणोत्तर श्रेढ़ी में हों, तब $b^2=ac$ इस परिणाम का प्रयोग कर सत्यापित करेंगे।

हल : a, b, c, d गुणोत्तर श्रेढ़ी में हैं।

$$\Rightarrow \qquad \qquad b = ar, c = ar^2, d = ar^3 \qquad ...(i)$$

अब, हमें सिद्ध करना है $a^n + b^n$, $b^n + c^n$, $c^n + d^n$ गुणोत्तर श्रद्धी में हैं।

= बायाँ पक्ष

बायाँ पक्ष = दायाँ पक्ष

इति सिद्धम्

प्रश्न 18. यदि $x^2 - 3x + p = 0$ के मूल a तथा b हैं तथा $x^2 - 12x + q = 0$, के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेढ़ी के रूप में हैं। सिद्ध कीजिए कि (q+p): (q-p) = 17: 15.

यदि द्विघात समीकरण $ax^2 + bx + c = 0$ के मूल α तथा β हैं।

तब, मूलों का योग =
$$\alpha + \beta = -\frac{b}{a}$$
 तथा मूलों का गुणनफल = $\alpha\beta = \frac{c}{a}$

हल दिया है, समीकरण $x^2 - 3x + p = 0$ के मूल a तथा b हैं।

$$a+b=-\frac{(-3)}{1}=3$$

$$a + b = 3$$

...(ii)

...(i)

तथा मूलों का गुणनफल,

$$ab = p$$

पुनः दिया है, समीकरण $x^2 - 12x + q = 0$ के मूल c तथा d हैं।

मूलों का योग,

$$c + d = -\frac{(-12)}{1} = 12$$

$$c + d = 12$$
 ...(iii)

तथा मूलों का गुणनफल,

$$cd = q$$
 ...(iv)

पुनः यह दिया हुआ है कि a, b, c, d गुणोत्तर श्रेढ़ी में हैं।

$$\Rightarrow$$
 $b = ar, c = ar^2$ तथा $d = ar^3$

इन मानों को समी (i) तथा (iii) में रखकर समी (i) को समी (iii) से भाग करने पर,

$$\frac{a + ar}{ar^2 + ar^3} = \frac{3}{12} \implies \frac{a(1+r)}{ar^2(1+r)} = \frac{1}{4}$$

$$\frac{1}{r^2} = \frac{1}{4}$$

 \Rightarrow $r^2 = 4$

पुनः समी (i) से,

 \Rightarrow

$$a + ar = 3 \implies a + 2a = 3$$
 (:: $r = 2$)
 $3a = 3 \implies a = 1$

अतः गुणोत्तर श्रेढ़ी है

$$a = 1$$
, $b = ar = 1 \times 2 = 2$, $c = ar^2 = 1 \times 2^2 = 4$, $d = ar^3 = 1 \times 2^3 = 8$

समी (ii) से, $p = ab = 1 \times 2 = 2$

समी (iv) से, $q = cd = 4 \times 8 = 32$

अतः $(q + \rho): (q - \rho) = 17:15$

 $\Rightarrow a-2a=3 \Rightarrow a=-3$

अतः गुणोत्तर श्रेदी है a=-3, b=ar=(-3)(-2)=6

$$c = ar^2 = (-3)(-2)^2 = -12$$

 $d = ar^3 = (-3)(-2)^3 = 24$

समी (ii) से,
$$p = ab = (-3) \cdot (+6) = -18$$

समी (iv) से, q = cd = (-12)(24) = -288

$$\frac{q+p}{q-p} = \frac{-288-18}{-288+18} = \frac{-306}{-270} = \frac{17}{15}$$

अत: (a + p): (a - p) = 17:15

प्रश्न 19. दो धनात्मक संख्याओं a तथा b के बीच समांतर माध्य तथा गुणोत्तर माध्य का अनुपात m:n है। दशांइए कि $a:b=(m+\sqrt{m^2-n^2}):(m-\sqrt{m^2-n^2})$

हल मान लीजिए संख्याएँ a तथा b के बीच समांतर माध्य A है तथा a तथा b के बीच गुणोत्तर माध्य G है।

तब,
$$A = \frac{a+b}{2}$$
 तथा $G = \sqrt{ab}$

दिया है, A:G=m:n

$$\frac{A}{G} = \frac{m}{n} \implies \frac{a+b}{2\sqrt{ab}} = \frac{m}{n}$$

योगांतर निष्पत्ति का प्रयोग करने पर,

$$\Rightarrow \frac{a+b+2\sqrt{ab}}{a+b-2\sqrt{ab}} = \frac{m+n}{m-n} \Rightarrow \frac{(\sqrt{a})^2 + (\sqrt{b})^2 + 2\sqrt{ab}}{(\sqrt{a})^2 + (\sqrt{b})^2 - 2\sqrt{ab}} = \frac{m+n}{m-n}$$

$$\Rightarrow \frac{(\sqrt{a}+\sqrt{b})^2}{(\sqrt{a}-\sqrt{b})^2} = \frac{m+n}{m-n} \Rightarrow \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}} = \frac{\sqrt{m+n}}{\sqrt{m-n}}$$

पुनः योगांतर निष्पत्ति का प्रयोग करने पर,

$$\Rightarrow \frac{(\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b})}{(\sqrt{a} + \sqrt{b}) - (\sqrt{a} - \sqrt{b})} = \frac{\sqrt{m+n} + \sqrt{m-n}}{\sqrt{m+n} - \sqrt{m-n}}$$

$$\Rightarrow \frac{2\sqrt{a}}{2\sqrt{b}} = \frac{\sqrt{m+n} + \sqrt{m-n}}{\sqrt{m+n} - \sqrt{m-n}}$$

$$\Rightarrow \frac{\sqrt{a}}{\sqrt{b}} = \frac{\sqrt{m+n} + \sqrt{m-n}}{\sqrt{m+n} - \sqrt{m-n}}$$

दोनों ओर का वर्ग करने पर

$$\frac{a}{b} = \frac{(\sqrt{m+n} + \sqrt{m-n})^2}{(\sqrt{m+n} - \sqrt{m-n})^2} \qquad \left[\because (a+b)^2 = a^2 + b^2 + 2ab \right]$$

$$\Rightarrow \qquad \frac{a}{b} = \frac{m+n+m-n+2\sqrt{m+n}\sqrt{m-n}}{m+n+m-n-2\sqrt{m+n}\sqrt{m-n}}$$

$$\Rightarrow \qquad \frac{a}{b} = \frac{2m+2\sqrt{m^2-n^2}}{2m-2\sqrt{m^2-n^2}} \qquad \left[\because (a+b)(a-b) = a^2 - b^2 \right]$$

$$\Rightarrow \qquad \frac{a}{b} = \frac{m+\sqrt{m^2-n^2}}{m-\sqrt{m^2-n^2}}$$

$$\Rightarrow \qquad a: b = (m+\sqrt{m^2-n^2}) : (m-\sqrt{m^2-n^2})$$

$$\Rightarrow \qquad a: b = (m+\sqrt{m^2-n^2}) : (m-\sqrt{m^2-n^2})$$

प्रश्न 20. यदि a, b तथा c समांतर श्रेढ़ी में हैं b, c तथा d गुणोत्तर श्रेढ़ी में हैं तथा $\frac{1}{c}$, $\frac{1}{d}$ तथा

 $\frac{1}{2}$ समांतर श्रेढ़ी में है, तो सिद्ध कीजिए कि a, c तथा e गुणोत्तर श्रेढ़ी में हैं।

हल दिया है, a, b तथा c समांतर श्रेढ़ी में हैं।

$$\Rightarrow 2b = a + c \qquad ...(i)$$

⇒ पुनः b, c तथा d गुणोत्तर श्रेदी में हैं।

इसी प्रकार, $\frac{1}{c}$, $\frac{1}{d}$ तथा $\frac{1}{e}$ समांतर श्रेढ़ी में हैं।

$$\Rightarrow \frac{2}{d} = \frac{1}{c} + \frac{1}{e} \Rightarrow \frac{2}{d} = \frac{e + c}{ce}$$

$$\Rightarrow d = \frac{2ce}{c + e} \qquad ...(iii)$$

समी (i) तथा (iii) से b, d का मान समी (ii) में रखने पर,

$$c^{2} = \left(\frac{a+c}{2}\right) \times \left(\frac{2ce}{c+e}\right) \Rightarrow c^{2} = \frac{a+c}{2} \times \frac{2ce}{c+e}$$

$$c^{2}(c+e) = (a+c)ce$$

$$c(c+e) = (a+c)e \implies c^{2} + ce = ae + ce$$

इसलिए a,c तथा e गुणोत्तर श्रेढ़ी में हैं।

⇒

प्रश्न 21. निम्नलिखित श्रेणियों के n पदों का योग ज्ञात कीजिए।

(i) $5 + 55 + 555 + \dots$ (ii) $0.6 + 0.66 + 0.666 + \dots$

इस प्रकार के प्रथनों में (जैसे-a aa aaa ...) हमेशा उभयनिष्ठ गुणनखंड बाहर लेकर गुणोत्तर श्रेढ़ी में बनाने के लिए प्रत्येक पद को 9 से गुणा तथा भाग करते हैं।

हल (i) मान लीजिए S = 5 + 55 + 555 + ... + n पदों तक

=
$$5(1 + 11 + 111 + ... + n \text{ uri})$$

= $\frac{5}{9}(9 + 99 + 999 + ... + n \text{ uri})$
= $\frac{5}{9}[(10 - 1) + (100 - 1) + (1000 - 1) + ... + n \text{ uri})$
= $\frac{5}{9}[(10 + 100 + 1000 + ... + n \text{ uri})]$

$$-(1+1+1+...+n पदों तक)]$$

$$= \frac{5}{9} \left[\frac{10(10^n - 1)}{10-1} - n \right] \qquad \left[\because गुणोत्तर श्रेढ़ी का योग = \frac{a(r^n - 1)}{r-1}, r > 1 \right]$$

$$= \frac{5}{9} \left[\frac{10(10^n - 1)}{9} - n \right] \qquad (\because \Sigma 1 = n)$$

(ii) मान लीजिए S = 0.6 + 0.66 + 0.666 + ... + n पदों तक

$$S = 6(0.1 + 0.11 + 0.111 + ... + n पदों तक)$$

$$= \frac{6}{9}(0.9 + 0.99 + 0.999 + ... + n पदों तक)$$

$$= \frac{2}{3} \left(\frac{9}{10} + \frac{99}{100} + \frac{999}{1000} + ... + n पदों तक\right)$$

$$= \frac{2}{3} \left[\left(1 - \frac{1}{10}\right) + \left(1 - \frac{1}{1000}\right) + \left(1 - \frac{1}{1000}\right) + ... + n पदों तक\right]$$

प्रश्न 22. श्रेणी का 20वाँ पद जात कीजिए

$$2 \times 4 + 4 \times 6 + 6 \times 8 + ... + n$$
 पदों तक

हल दी हुई श्रेणी है, $2 \times 4 + 4 \times 6 + 6 \times 8 + ... + n$ पदों तक

यहाँ, हम दी हुई श्रेणी को दो भागों में विभक्त करते हैं जो 2, 4, 6,... तथा 4, 6, 8, ... हैं। दी हुई श्रेणी का त्याँ पद निकालने के लिए प्रत्येक माग का तयाँ पद अलग-अलग निकालते हैं।

$$T_n = (2, 4, 6 ...$$
 का n वाँ पद) \times (4, 6, 8, ... का n वाँ पद)
$$= [2 + (n-1)2][4 + (n-1)2] \qquad [\because T_n = a + (n-1)d]$$

$$= (2 + 2n - 2)(4 + 2n - 2) = 2n(2n + 2)$$

n = 20 रखने पर, $T_{20} = 2 \times 20(2 \times 20 + 2) = 40(40 + 2) = 40 \times 42 = 1680$

प्रश्न 23. श्रेणी 3+7+13+21+31+... के n पदों का योग ज्ञात कीजिए।

यहाँ, हम अंतर विधि का प्रयोग करेंगे अर्थात् यदि एक श्रेणी इस प्रकार है कि जिसके दो क्रमागत पदों का अंतर या तो समांतर श्रेढ़ी या गुणोत्तर श्रेढ़ी में हैं, तब हम इसका n वाँ पद अंतर विधि द्वारा निकालते हैं एवं इसका योग सूत्र Σn , Σn^2 तथा Σn^3 का प्रयोग कर निकालते हैं।

हल मान लीजिए
$$S = 3 + 7 + 13 + 21 + ... + T_n$$

$$\frac{S = 3 + 7 + 13 + ... + T_n}{0 = (3 + 4 + 6 + 8 + + n \text{ पदों तक}) - T_n}$$

$$\Rightarrow T_n = 3 + [4 + 6 + 8 + ...(n - 1) \text{ पदों तक}]$$

$$= 3 + \frac{n-1}{2} [2 \times 4 + (n-1-1)2] \qquad \left[\because S_n = \frac{n}{2} \left\{ 2a + (n-1)d \right\} \right]$$

$$(\text{यहाँ, पदों की संख्या} = n - 1)$$

$$= 3 + \frac{n-1}{2} [8 + (n-2)2]$$

$$= 3 + \frac{n-1}{2}(2n+4) = 3 + \frac{(n-1)}{2} \times 2(n+2)$$

$$= 3 + (n-1)(n+2) = 3 + n^2 + 2n - n - 2$$

$$\Rightarrow T_n = n^2 + n + 1$$

$$\exists \exists \exists, S = \Sigma T_n = \Sigma(n^2 + n + 1) = \Sigma n^2 + \Sigma n + \Sigma 1$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} + n$$

$$= n\left(\frac{2n^2 + n + 2n + 1}{6} + \frac{n+1}{2} + \frac{1}{1}\right) \qquad \left[\because \Sigma n^2 = \frac{n(n+1)(2n+1)}{6} \\ \Sigma n = \frac{n(n+1)(2n+1)}{2} \Sigma 1 = n \right]$$

$$= n\left(\frac{2n^2 + 3n + 1 + 3n + 3 + 6}{6}\right)$$

$$= n\left(\frac{2n^2 + 6n + 10}{6}\right) = \frac{2n(n^2 + 3n + 5)}{6} = \frac{n(n^2 + 3n + 5)}{3}$$

प्रश्न 24. यदि S_1 , S_2 , S_3 क्रमशः प्रथम n प्राकृत संख्याओं का योग, उनके वर्गों का योग तथा घनों का योग है, तो सिद्ध कीजिए कि $9S_2^2 = S_3$ (1 + $8S_1$)

यहाँ, हम सूत्र $\Sigma n = \frac{n(n+1)}{2}$, $\Sigma n^2 = \frac{n(n+1)(2n+1)}{6}$ तथा $\Sigma n^3 = \left[\frac{n(n+1)}{2}\right]^2$ का प्रयोग करेंगे।

हल दिया है, $S_1 = yean n yapa संख्याओं का योग = <math>\sum n$

$$\Rightarrow S_1 = \frac{n(n+1)}{2} \qquad \dots (i)$$

तथा $S_2 = \pi \Psi + n \pi \eta$ प्राकृत संख्याओं के वर्गों का योग = Σn^2

$$\Rightarrow S_2 = \frac{n(n+1)(2n+1)}{6}$$
 ...(ii)

तथा $S_3 = \pi \Psi + n \pi$ प्राकृत संख्याओं के घनों का योग = Σn^3

$$\Rightarrow S_3 = \left[\frac{n(n+1)}{2}\right]^2 \qquad \dots (iii)$$

अब, हमें सिद्ध करना है कि $9S_2^2 = S_3 (1 + 8S_1)$

दायाँ पक्ष =
$$S_3$$
 (1 + 8 S_1)
$$= \left[\frac{n(n+1)}{2}\right]^2 \left[1 + 8 \times \frac{n(n+1)}{2}\right] \qquad [समी (i) तथा (iii) से]$$

$$= \left[\frac{n(n+1)}{2}\right]^2 \left[1 + 4n(n+1)\right] = \left[\frac{n(n+1)}{2}\right]^2 (4n^2 + 4n + 1)$$

$$= \left[\frac{n(n+1)}{2}\right]^2 (2n+1)^2$$

9 से गुणा तथा भाग करने पर.

=
$$9 \times \frac{n^2 (n+1)^2}{4} \times \frac{(2n+1)^2}{9} = 9 \left[\frac{n (n+1) (2n+1)}{6} \right]^2$$

= $9 \times S_2^2 = 9 S_2^2$ [समी (ii) से]
= बायाँ पक्ष

.. बायाँ पक्ष = दायाँ पक्ष

डति सिद्धम

प्रश्न 25. निम्नलिखित श्रेणियों के n पदों तक योग ज्ञात कीजिए

$$\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$$

दी हुई श्रेणी के n पदों का योग निकालने के लिए हम अंश तथा हर के पदों का योग क्रमशः निकालेंगे।

$$T_n = \frac{3i\pi \sin n\vec{a}^{\dagger} \ \text{पc}}{\vec{\epsilon} \vec{\tau} \ \vec{\sigma} \vec{n} \ \vec{n} \vec{a}^{\dagger} \ \vec{\tau} \vec{c}} = \frac{1^3 + 2^3 + 3^3 + ... + n^3}{1 + 3 + 5 + ... + n \ \vec{\tau} \vec{c} \vec{n} \vec{\sigma}}$$

$$= \frac{\overline{\Sigma}n^3}{\frac{n}{2}[2 \times 1 + (n-1)2]}$$

$$= \frac{\Sigma n^3}{\frac{n}{2}(2 + 2n - 2)} = \frac{\Sigma n^3}{\frac{n}{2} \times 2n}$$

$$\begin{bmatrix} \because S_n = \frac{n}{2} \{2a + (n-1)d\} \\ \Sigma n^3 = \left\{\frac{n(n+1)}{2}\right\}^2 \end{bmatrix}$$

$$\Rightarrow T_n = \frac{\sum n^3}{n^2} = \frac{\left[\frac{n(n+1)}{2}\right]^2}{n^2} = \frac{n^2(n+1)^2}{4n^2}$$

$$\Rightarrow T_n = \frac{1}{4} (n+1)^2 \Rightarrow T_n = \frac{1}{4} (n^2 + 1 + 2n)$$

$$\Rightarrow S = \Sigma T_n = \frac{1}{4} \Sigma (n^2 + 1 + 2n) = \frac{1}{4} (\Sigma n^2 + \Sigma 1 + 2\Sigma n)$$

$$= \frac{1}{4} \left[\frac{n(n+1)(2n+1)}{6} + n + \frac{2 \times n(n+1)}{2} \right] \qquad \left[\because \Sigma n^2 = \frac{n(n+1)(2n+1)}{6} \\ \Sigma n = \frac{n(n+1)}{2}, \Sigma 1 = n \right]$$

$$= \frac{n}{4} \left[\frac{2n^2 + n + 2n + 1}{6} + 1 + n + 1 \right] = \frac{n}{4} \left[\frac{2n^2 + 3n + 1}{6} + \frac{n+2}{1} \right]$$

$$= \frac{n}{4} \left(\frac{2n^2 + 3n + 1 + 6n + 12}{6} \right)$$

$$=\frac{n}{24}(2n^2+9n+13)$$

प्रश्न 26. दर्शाइए कि
$$\frac{1\times 2^2 + 2\times 3^2 + ... + n\times (n+1)^2}{1^2\times 2 + 2^2\times 3 + ... + n^2\times (n+1)} = \frac{3n+5}{3n+1}$$

दी हुई श्रेणी का योग निकालने के लिए, हम अंश तथा हर का अलग-अलग योग निकालेंगे। मान लीजिए T_n तथा T_n क्रमशः अंश तथा हर के nवाँ पद क्रमशः है एवं S_n तथा S_n क्रमशः अंश तथा हर के n पदों का योग है।

हल अंश के लिए,
$$T_n = n(n+1)^2 = n(n^2+1+2n) = n^3+2n^2+n$$

$$\Rightarrow S_n = \Sigma T_n = \Sigma (n^3+2n^2+n)$$

$$= \Sigma n^3 + 2\Sigma n^2 + \Sigma n$$

$$\left[\because \Sigma n^2 = \left\{\frac{n(n+1)}{2}\right\}^2, \Sigma n^2 = \frac{n(n+1)(2n+1)}{6}, \Sigma n = \frac{n(n+1)}{2}\right]$$

$$= \left[\frac{n(n+1)}{2}\right]^2 + \frac{2n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)\left[\frac{n(n+1)}{2} + \frac{2(2n+1)}{3} + \frac{1}{1}\right]}{2}$$

$$= \frac{n(n+1)\left[\frac{3n(n+1)+4(2n+1)+6}{6}\right]}{2}$$

$$= \frac{n(n+1)\left(\frac{3n^2+3n+8n+4+6}{6}\right)}{12}$$

$$= \frac{n(n+1)\left(\frac{3n^2+11n+10}{2}\right)}{12} = \frac{n(n+1)\left(\frac{3n^2+6n+5n+10}{2}\right)}{12}$$

$$= \frac{n(n+1)\left(\frac{3n(n+2)+5(n+2)\right)}{12}$$

$$= \frac{n(n+1)(n+2)(3n+5)}{12} \qquad ...(i)$$

पुनः हर के लिए, मान लीजिए

$$T_n' = n^2 (n+1) = n^3 + n^2$$

अब,
$$S_{n}' = \Sigma T_{n}' = \Sigma (n^{3} + n^{2}) = \Sigma n^{3} + \Sigma n^{2}$$

$$\left\{ \because \Sigma n^3 = \left[\frac{n(n+1)}{2} \right]^2, \ \Sigma n^2 = \frac{n(n+1)(2n+1)}{6} \right\}$$

$$= \left[\frac{n(n+1)}{2} \right]^2 + \frac{n(n+1)(2n+1)}{6} = \frac{n(n+1)\left[n(n+1) + \frac{2n+1}{3} \right]}{2}$$

$$= \frac{n(n+1)(3n^2 + 3n + 4n + 2)}{12} = \frac{n(n+1)(3n^2 + 7n + 2)}{12}$$

$$= \frac{n(n+1)(3n^2 + 6n + n + 2)}{12} = \frac{n(n+1)[3n(n+2) + 1(n+2)]}{12}$$

$$T_n' = \frac{n(n+1)(3n+1)(n+2)}{12} \qquad \dots (ii)$$

अतः श्रेढ़ी का अभीष्ट योग है,

$$\frac{T_n}{T_n'} = \frac{\frac{n(n+1)(n+2)(3n+5)}{12}}{\frac{n(n+1)(3n+1)(n+2)}{12}} \qquad [समी (i) तथा (ii) से]$$

$$= \frac{3n+5}{3n+1} \qquad \qquad$$
 इति सिद्धम्

प्रश्न 27. कोई किसान एक पुराने ट्रैक्टर को र 12000 में खरीदता है। वह र 6000 का नकद मुगतान करता है और शेष राशि को र 500 की वार्षिक किस्त के अतिरिक्त उस धन पर जिसका मुगतान न किया गया हो 12% वार्षिक ब्याज भी देता है। किसान को ट्रैक्टर की कुल कितनी कीमत देनी पड़ेगी?

यहाँ, हम प्रत्येक वर्ष सरल ब्याज का मान निम्न सूत्र

सरल ब्याज =
$$\frac{\mu \pi u + x}{100}$$

द्वारा निकालेंगे तथा इसके बाद हम ट्रैक्टर की कुल लागत सभी को जोड़कर निकालेंगे।

हल ट्रैक्टर की कीमत = ₹ 12000

नकद भुगतान = ₹ 6000

शेष राशि = ₹ 6000

पहली किस्त पर ब्याज=
$$\frac{6000 \times 12 \times 1}{100}$$

$$\left(\because I = \frac{P \times R \times T}{100}\right)$$

अब, भुगतान न की गई राशि = 6000 – 500 = ₹ 5500

पुन: भुगतान न की गई राशि =5500-500 = ₹ 5000

तीसरी किस्त पर ब्याज =
$$\frac{5000 \times 12 \times 1}{100}$$
 = ₹ 600

किसान द्वारा भुगतान किया गया कुल ब्याज = 720 + 660 + 600 + ... + 12 पदों तक

जो समांतर श्रेढ़ी में है तथा a = 720, d = 660 - 720 = - 60

इसलिए, कुल ब्याज =
$$\frac{12}{2}$$
 [2 × 720 + (12 – 1) (– 60)]

= 6 (1440
$$-$$
 11 \times 60) = 6 (1440 $-$ 660) = 6 \times 780 = ₹ 4680

अतः कुल राशि या वास्तविक राशि = 12000+ 4680 = ₹ 16680

प्रश्न 28. शमशाद अली ₹ 22000 में एक स्कूटर खरीदता है। वह ₹ 4000 नकद देता है तथा शेष राशि को ₹ 1000 वार्षिक किस्त के अतिरिक्त उस धन पर जिसका भुगतान न किया गया हो 10% वार्षिक ब्याज भी देता है। उसे स्कूटर के लिए कितनी राशि चुकानी पड़ेगी?

नकद मुगतान = ₹ 4000, शेष मुगतान = ₹ 18000
अब, पहली किस्त पर ब्याज =
$$\frac{18000 \times 10 \times 1}{100}$$
 = ₹ 1800

$$\left(\because I = \frac{P \times R \times T}{100}\right)$$

मुगतान न की गई राशि =18000-1000=17000

दूसरी किस्त पर ब्याज =
$$\frac{17000 \times 10 \times 1}{100}$$
 = ₹ 1700

मुगतान न की गई राशि =17000-1000=16000

तीसरी किस्त पर ब्याज =
$$\frac{16000 \times 10 \times 1}{100}$$
 = ₹ 1600

•••••

∴ शमशाद द्वारा मुगतान किया गया कुल ब्याज = 1800 + 1700 + 1600 + ... + 18 पदों तक जो एक समांतर श्रेढ़ी में है तथा a=1800,d =1700-1800=-100

इसलिए कुल ब्याज =
$$\frac{18}{2}$$
 [2 × 1800 + (18 – 1) (– 100)]

[: समांतर श्रेढ़ी का योग =
$$S_n = \frac{n}{2} \{2a + (n-1)d\}$$
]

$$= 9 (3600 - 1700) = 9 \times 1900 = 17100$$

अतः कुल राशि या वास्तविक राशि = 22000 + 17100 = ₹ 39100

प्रश्न 29. एक व्यक्ति अपने चार मित्रों को पत्र लिखता है। वह प्रत्येक को उसकी नकल करके चार दूसरे व्यक्तियों को भेजने पर निर्देश देता है तथा उनसे यह भी करने को कहता है कि प्रत्येक पत्र प्राप्त करने वाला व्यक्ति इस शृंखला को जारी रखे। यह कल्पना करके कि शृंखला न दूटे, तो 8वें पत्रों के समूह भेजे जाने तक कितना डाक खर्च होगा जबकि एक पत्र का डाक खर्च 50 पैसे है।

हल सर्वप्रथम एक व्यक्ति अपने चार मित्रों को चार पत्र मेजता है, तब उन चार व्यक्तियों द्वारा जो दूसरे व्यक्ति को प्रत्येक चार-चार पत्र मेजते हैं अर्थात् कुल 4×4=16 पत्र मेजते हैं। इसी प्रकार, अगले चरण में, 4×4×4=64पत्र मेजे जाते हैं।

इस प्रकार, एक गुणोत्तर श्रेढ़ी बनेगी।

अर्थात्

4, 16, 64, 256,...

जहाँ, a = 4 तथा r = 4

अब, 8वें पत्रों के समूह तक कुल संख्या

$$S_n = \frac{a(r^n - 1)}{r - 1} \Rightarrow S_8 = \frac{4(4^8 - 1)}{4 - 1} \Rightarrow S_8 = \frac{4}{3}(4^8 - 1) \quad \left[\because S_n = \frac{a(r^n - 1)}{(r - 1)}, r > 1 \right]$$

एक पत्र का डाक खर्च = ₹ 0.50

अतः कुल खर्च =
$$\frac{4}{3}$$
 (4⁸ - 1) × 0.50 = $\frac{4}{3}$ × (65536 - 1) × 0.50 = $\frac{4}{3}$ × 65535 × 0.50 = ₹ 43690

प्रश्न 30. एक आदमी ने एक बैंक में र 10000, 5% वार्षिक साधारण ब्याज पर जमा किया। जब से रकम बैंक में जमा की गई तब से, 15वें वर्ष में उसके खाते में कितनी रकम हो गई तथा 20 वर्षों बाद कल कितनी रकम हो गई, ज्ञात कीजिए?

हल 1 वर्ष बाद र 10000 पर व्याज =
$$\frac{10000 \times 5 \times 1}{100}$$
 $\left(\because I = \frac{P \times R \times T}{100}\right)$

=₹ 500

एक वर्ष बाद जमा की गई राशि=10000+500=10500

अब, दो वर्ष बाद ₹ 10000 पर व्याज =
$$\frac{10000 \times 5 \times 2}{100}$$
 = ₹1000

2 वर्ष बाद जमा की गई राशि =10000+1000=₹11000

इसी प्रकार, तीन वर्ष बाद ₹ 10000 पर ब्याज =
$$\frac{10000 \times 5 \times 3}{100}$$
 = 1500

∴ तीन वर्ष बाद जमा की गई राशि =10000 +1500 =₹11500

अतः आदमी के खाते में पहले, दूसरे तथा तीसरे वर्ष बचत की राशि क्रमशः ₹ 10000, 10500, 11000, ... हैं।

यह समांतर श्रेढ़ी में है जहाँ, a = 10000 तथा d = 500

15 वर्ष में जमा की गई राशि = T_{15} = a + 14d = $10000 + 14 \times 500$

20 वर्ष बाद जमा की गई राशि = 10000 + 20 × 500

प्रश्न 31. एक निर्माता घोषित करता है कि उसकी मशीन जिसका मूल्य ₹ 15625 है, हर वर्ष 20% की दर से उसका अवमूल्यन होता है। 5 वर्ष बाद मशीन का अनुमानित मूल्य ज्ञात कीजिए।

यदि किसी मशीन की कीमत P है जो r% की दर से प्रतिवर्ष घट जाती है, तब n वर्षों बाद मशीन की कीमत का सूत्र निम्न है अर्थात्

$$A = P \left(1 - \frac{r}{100} \right)^n$$

हल यहाँ, श्रेणी है, 15625
$$\left(1 - \frac{20}{100}\right)$$
, 15625 $\left(1 - \frac{20}{100}\right)^2$, 15625 $\left(1 - \frac{20}{100}\right)^3$, ...

5 वर्ष बाद मशीन का अनुमानित मूल =
$$T_5$$
 = 15625 $\left(1 - \frac{20}{100}\right)^5$ = 15625 $\times \left(1 - \frac{1}{5}\right)^5$

$$= 15625 \times \left(\frac{5-1}{5}\right)^{5}$$

$$= 15625 \times \left(\frac{4}{5}\right)^{5}$$

$$= \frac{15625 \times 1024}{625 \times 5}$$

$$= \frac{25 \times 1024}{5} = 5 \times 1024$$

$$= 5120$$

नोट ह्रास में, प्रत्येक वर्ष मूल्य का मान घटता है।

प्रश्न 32. किसी कार्य को कुछ दिनों में पूरा करने के लिए 150 कर्मचारी लगाए गए। दूसरे दिन 4 कर्मचारियों ने काम छोड़ दिया, तीसरे दिन 4 और कर्मचारियों ने काम छोड़ दिया तथा इस प्रकार अन्य। अब कार्य पूर्ण करने में 8 दिन अधिक लगते हैं, तो दिनों की संख्या ज्ञात कीजिए, जिनमें कार्य पूर्ण किया गया।

हल मान लीजिए दिनों की संख्या जिनमें कार्य पूर्ण किया जाता है n है। अब प्रश्नानुसार, प्रत्येक दिन चार कर्मचारी कार्य छोड़ देते हैं अर्थात् कर्मचारियों की संख्या निम्न प्रकार है, 150, 146, 142, 138, ... स्पष्ट रूप से, दोनों स्थितियों में कार्य करना समान है।

[यदि कोई कर्मचारी कार्य नहीं छोड़ता है, तब प्रत्येक दिन 150 कर्मचारियों द्वारा (n – 8) दिनों में कार्य पूर्ण होगा। अतः कर्मचारियों की कुल संख्या 150 (n – 8) होगी जिन्होंने n दिनों तक कार्य किया होगा।]

⇒
$$150 (n - 8) = \frac{n}{2} [2 \times 150 + (n - 1)(-4)] \qquad \left[\frac{\pi}{2} S_n = \frac{n}{2} \{2a + (n - 1)d\} \right]$$
⇒
$$150n - 1200 = \frac{n}{2} \times 2 (150 - 2n + 2)$$
⇒
$$150n - 1200 = \frac{n}{2} \times 2 (152 - 2n)$$

प्रत्येक पद को 2 से भाग करने पर,

$$75n - 600 = n (76 - n) \implies 75n - 600 = 76n - n^2$$

 $n^2 - 76n + 75n - 600 = 0 \implies n^2 - n - 600 = 0$

मध्य पद को विभक्त कर गुणनखंड करने पर,

$$\Rightarrow n^2 - (25n - 24n) - 600 = 0 \Rightarrow n^2 - 25n + 24n - 600 = 0$$

$$\Rightarrow n(n - 25) + 24(n - 25) = 0 \Rightarrow (n - 25)(n + 24) = 0$$

$$\Rightarrow n = 25$$

तथा n ≠ - 24 क्योंकि यह संभव नहीं है।

अतः 25 दिनों में कार्य पूर्ण होगा।