Time Series Analysis on Indian Car Manufacturers' Stock Performance

GROUP-5

DIKSHANT JOSHI

NAVEEN K KRISHNASAMY

RAJASHEKAR REDDY VEMULA

Agenda

INTRODUCTION TO THE DATASET

DATA EXPLORATION

TIME SERIES MODELS USED FOR PREDICTION

FUTURE ENHANCEMENTS

Dataset

- Stocks considered for study:
 - > TATA Motors
 - Maruti Suzuki
 - > Mahindra & Mahindra
- ▶ Source: Yahoo Finance
- Data period: 5 years [02/26/2018 02/22/2023]
- Variables:
 - Closing Price
 - Daily returns
 - Volume Traded
- Variable of interest:
 - > TATA Motors Closing Price

Data Exploration

- ► Training data:
 - 4 years data (1000 entries)
- ▶ Test Data:
 - > 1 year data (last 235 entries)
- Inspecting Time series plot

TS & ACF of Actual data

- > ACF Inference:
 - Non-Stationary data
 - Hence not a white noise

Box -Ljung Test

 H_0 : White Noise H_a : Not White Noise

```
##
## Box-Ljung test
##
## data: train$TATA_close
## X-squared = 37992, df = 50, p-value < 2.2e-16</pre>
```

Inducing Stationarity (1st Differencing)

The 1st difference of dependent variable shows stationarity

Box -Ljung Test H_0 : White Noise H_a : Not White Noise

```
##
## Box-Ljung test
##
## data: diff(train$TATA_close)
## X-squared = 46.072, df = 20, p-value = 0.0007878
```

TIME SERIES MODELS

- Multiple Regression Model
- Polynomial Model
- AR Model
- MA model
- Arima model
- ► ARCH/GARCH model

MULTIPLE LINEAR REGRESSION

```
ModelRSquaredResidualErrorAICBICMLR Model0.587374.3211465.6311514.7
```

```
##
## Call:
## lm(formula = TATA close ~ ., data = newdata)
## Residuals:
            1Q Median
## -137.119 -50.272 -9.492 36.047 194.245
## Coefficients:
    Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.345e+02 2.334e+01 -5.759 1.13e-08 ***
## M.M close
                6.213e-01 2.598e-02 23.918 < 2e-16 ***
## M..M vol
                -1.083e-06 9.888e-07 -1.095 0.2738
## M..M returns
                3.012e-01 2.069e-01 1.455 0.1459
## Maruti close
                -7.996e-03 4.035e-03 -1.981
                                            0.0478
## Maruti vol
                -3.062e-06 5.144e-06 -0.595 0.5519
## Maruti returns -7.536e-03 2.019e-02 -0.373 0.7090
## TATA vol
                -7.957e-09 7.047e-08 -0.113 0.9101
## TATA returns -5.004e-01 3.551e-01 -1.409 0.1591
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 74.32 on 991 degrees of freedom
## Multiple R-squared: 0.5906, Adjusted R-squared: 0.5873
## F-statistic: 178.7 on 8 and 991 DF, p-value: < 2.2e-16
```

Multicollinearity Check

Correlation Matrix

```
M.M_close M..M_vol M..M_returns Maruti_close 1.00000000 -0.26122153 -0.04849320 0.79215140
M.M close
                               1.00000000
M..M_{Vol}
                                             -0.23895641
M..M_returns
                 -0.04849320 -0.23895641
                                              1.00000000
                                                            -0.04769979
Maruti_close
                                             -0.04769979
                                             -0.03356211
Maruti_vol
                               0.42858538
Maruti_returns -0.01221074 -0.05661977
                                              0.47714156
                                                            -0.06158669
TATA vol
                 -0.22851005
                              0.43579032
                                             -0.08860927
                                                            -0.27933125
                                              0.47481060
                 -0.03599352 -0.12325773
                                                            -0.02386186 -0.04221662
TATA_returns
```

TATA_returns Maruti_returns $-0.\overline{0}1221074 - 0.2285\overline{1}005$ $-0.\overline{0}3599352$ -0.05661977 0.43579032 -0.123257730.47481060 0.47714156 -0.02386186 -0.13999610 0.36666850 -0.04221662 1.00000000 -0.04267306 0.40372765 -0.04267306 1.00000000 0.40372765 -0.21722555 1.00000000

Normality Test

Hypothesis:

 H_0 : Series are normally distributed H_a : Series are not normally distributed

Shapiro-Wilk Normality Test

```
#Normality test
library(nortest)
shapiro.test(sres)
```

```
##
## Shapiro-Wilk normality test
##
## data: sres
## W = 0.94742, p-value < 2.2e-16</pre>
```


Heteroscedasticity Test

Hypothesis:

 H_0 : No Heteroscedascity (constant variance) H_a : Heteroscedasticity (non-constant variance)

White Test

```
white(mlr,interactions = TRUE)
```

```
## # A tibble: 1 × 5
## statistic p.value parameter method alternative
## <dbl> <dbl> <dbl> <chr> ## 1 399. 8.54e-59 44 White's Test greater
```

Auto Correlation Test

- Visual Test
 - Autocorrelation exists (the residuals are not white noise)

Hypothesis:

 H_0 : All Auto Correlations are 0

 H_a :: At least one autocorrelation is different than 0

Box-Ljung Test

```
Box.test(sres,type = "Ljung", lag=20)
```

```
##
## Box-Ljung test
##
## data: sres
## X-squared = 16668, df = 20, p-value < 2.2e-16</pre>
```


Deterministic Time Series Model

```
#Deterministic time series model
#hours=rep(c(1:24),times=412)[1:9886]
time=seq(1:length(diff(train$TATA_close)))
fit<-lm(diff(TATA_close)~time,data=train)
summary(fit)</pre>
```

Box -Ljung Test H_0 : White Noise H_a : Not White Noise

```
Box.test(sres,type = "Ljung", lag=20)
```

```
##
## Box-Ljung test
##
## data: sres
## X-squared = 43.105, df = 20, p-value = 0.00198
```

```
##
## Call:
## lm(formula = diff(TATA_close) ~ time, data = train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -50.003 -3.355 -0.013 2.963 85.269
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8943236 0.5016593 -1.783 0.0749 .
## time 0.0018719 0.0008691 2.154 0.0315 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.922 on 997 degrees of freedom
## Multiple R-squared: 0.004631, Adjusted R-squared: 0.003633
## F-statistic: 4.639 on 1 and 997 DF, p-value: 0.03149
```


Polynomial Model

K=8

```
Call:
lm(formula = diff(TATA_close) ~ polv(time, k), data = train)
Residuals:
            1Q Median
-45.869 -3.326 -0.081 2.940 84.460
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                0.04164
                          0.25007
                                   0.167
                                           0.8678
poly(time, k)1 17.06268
                         7.90399 2.159
                                            0.0311 *
poly(time, k)2 -8.71831
                          7.90399 -1.103
                                           0.2703
poly(time, k)3 -10.07358
                          7.90399 -1.274
                                           0.2028
poly(time, k)4 -13.24779
                          7.90399 -1.676
                                           0.0940 .
poly(time, k)5 -8.62130
                          7.90399 -1.091
                                           0.2756
poly(time, k)6 -4.89378
                          7.90399 -0.619
                                           0.5360
poly(time, k)7 -10.53521
                          7.90399 -1.333
                                           0.1829
poly(time, k)8 -12.62817
                          7.90399 -1.598
                                           0.1104
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.904 on 990 degrees of freedom
Multiple R-squared: 0.01611, Adjusted R-squared: 0.008162
F-statistic: 2.027 on 8 and 990 DF, p-value: 0.04056
```

K=1

```
##
## Call:
## lm(formula = diff(TATA close) ~ poly(time, k), data = train)
## Residuals:
      Min
               10 Median
## -50.003 -3.355 -0.013
                            2.963 85.269
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04164
                            0.25064
                                              0.8681
                                      0.166
## poly(time, k) 17.06268
                            7.92201
                                      2.154
                                              0.0315 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.922 on 997 degrees of freedom
## Multiple R-squared: 0.004631, Adjusted R-squared: 0.003633
## F-statistic: 4.639 on 1 and 997 DF, p-value: 0.03149
```

Polynomial – White Noise Check

- ACF Plot
 - There is no white noise, but need to run test

Box -Ljung Test H_0 : White Noise H_a : Not White Noise

Box.test(sres,type = "Ljung", lag=20)

```
##
## Box-Ljung test
##
## data: sres
## X-squared = 43.105, df = 20, p-value = 0.00198
```


Stochastic time series model

Check for AR/MA model

AR (11) Model

- ACF Plot
 - There is white noise

Box -Ljung Test H_0 : White Noise H_a : Not White Noise

Box.test(fit_ar\$residuals, lag=20)

```
##
## data: fit_ar$residuals
## X-squared = 12.074, df = 20, p-value = 0.9135
```


Series fit_ar\$residuals

MA(8) Model

- ACF Plot
 - There is a spike, but we will do Box-Ljung test

Box -Ljung Test H_0 : White Noise H_a : Not White Noise

```
Box.test(fit_ar$residuals, lag=20)
```

```
##
## data: fit_ar$residuals
## X-squared = 12.074, df = 20, p-value = 0.9135
```

```
fit_ma = arima(train$TATA_close, order = c(0,1,8))
acf(fit_ma$residuals)
```


ARIMA(2,2) model

- ACF Plot
 - There is a spike, but we will do Box-Ljung test

Box -Ljung Test H_0 : White Noise H_a : Not White Noise

```
Box.test(fit_arima$residuals, lag=20)

##
## Box-Pierce test
##
## data: fit_arima$residuals
## X-squared = 28.635, df = 20, p-value = 0.0952
```

```
fit arima=arima(train\$TATA close, order = c(2,1,2))
 acf(fit arima$residuals)
                             Series fit_arima$residuals
ACF
                                                                25
                               10
                                          15
                                                     20
                                                                           30
                                          Lag
```

CV test for GARCH

GARCH Model

```
garch.fit<-garchFit(~garch(1,1),data=diff(train$TATA close), trace=FALSE)</pre>
summary(garch.fit)
## Title:
## GARCH Modelling
## Call:
## garchFit(formula = ~garch(1, 1), data = diff(train$TATA_close),
      trace = FALSE)
##
## Mean and Variance Equation:
## data ~ garch(1, 1)
## <environment: 0x0000016d5d12fb58>
## [data = diff(train$TATA close)]
## Conditional Distribution:
## norm
## Coefficient(s):
                          alpha1
## -0.142156 1.985680
                        0.095764 0.874475
## Std. Errors:
## based on Hessian
##
## Error Analysis:
          Estimate Std. Error t value Pr(>|t|)
          -0.14216
                      0.19813 -0.717 0.47307
          1.98568
                                 2.637 0.00836 **
## omega
                      0.75290
## alpha1
          0.09576
                      0.02189
                               4.375 1.22e-05 ***
          0.87447
                      0.03106 28.152 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
## Log Likelihood:
## -3341.858
                normalized: -3.345203
## Description:
## Wed Mar 8 00:36:19 2023 by user: Dikshant
## Standardised Residuals Tests:
                                 Statistic p-Value
                          Chi^2 1748.675 0
## Jarque-Bera Test R
## Shapiro-Wilk Test R
                                 0.925103 0
## Ljung-Box Test
                          Q(10) 8.967408 0.5351995
## Ljung-Box Test
                          Q(15) 16.6957 0.3373786
## Ljung-Box Test
                          Q(20) 19.58289 0.4842785
## Ljung-Box Test
                                 10.45774 0.4012919
                     R^2 Q(10)
## Ljung-Box Test
                          Q(15) 14.45905 0.4910372
## Ljung-Box Test
                          Q(20) 15.51204 0.7463975
## LM Arch Test
                          TR^2 11.66329 0.473086
## Information Criterion Statistics:
       AIC
                BIC
                        SIC
                                HQIC
## 6.698414 6.718061 6.698382 6.705881
```

Residual test for GARCH

- ACF Plot
 - There is white noise

Box -Ljung Test H₀: White Noise

 H_a : Not White Noise

Box.test(garch.fit@residuals/garch.fit@sigma.t, lag=50)

```
##
## data: garch.fit@residuals/garch.fit@sigma.t
## X-squared = 29.586, df = 50, p-value = 0.9905
```


Squared Residual test for GARCH

- ACF Plot
 - There is a spike, but we will do Box-Ljung test

Box -Ljung Test H_0 : White Noise H_a : Not White Noise

Box.test((garch.fit@residuals/garch.fit@sigma.t)^2, lag=10)

```
##
## data: (garch.fit@residuals/garch.fit@sigma.t)^2
## X-squared = 10.391, df = 10, p-value = 0.4069
```


GARCH Fit plot

Prediction Plots

VARMA (1,0) Model

```
Number of parameters: 6
initial estimates: 0.1554 0.906 0.9972 8e-04 0.0056 0.9975
Par. lower-bounds: -1.478 -2.2091 0.9913 -0.0023 -0.0055 0.9915
Par. upper-bounds: 1.7889 4.0212 1.003 0.004 0.0168 1.0035
Final Estimates: 0.1554464 0.9060499 0.9971843 0.0008350342 0.005644754 0.9974993
Coefficient(s):
            Estimate Std. Error t value Pr(>|t|)
                         0.815889
                                     0.191
                                               0.849
TATA_close 0.155446
                                     0.582
M.M_close
           0.906050
                         1.556291
                                               0.560
TATA_close 0.997184
                         0.002919
                                   341.656
                                              <2e-16 ***
M.M_close
            0.000835
                         0.001579
                                     0.529
                                               0.597
TATA_close 0.005645
                         0.005567
                                     1.014
                                               0.311
                                              <2e-16 ***
                                   331.098
M.M close 0.997499
                         0.003013
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Estimates in matrix form:
Constant term:
Estimates: 0.1554464 0.9060499
AR coefficient matrix
AR(1)-matrix
[1,] 0.99718 0.000835 [2,] 0.00564 0.997499
Residuals cov-matrix:
         [,1]
[1,] 64.12775 59.73347 [2,] 59.73347 233.24693
aic= 9.350165
bic= 9.375034
```


MAPE & AIC

Comparison of Mean of Absolute percentage Error(MAPE) & AIC for all the models

Model	MAPE	AIC
MLR	0.2935636	11465.627
Polynomial	0.9971848	6974.188
AR(11)	0.0502220	6965.529
MA(8)	0.0498548	6965.154
ARIMA(2,2)	0.0617765	6967.379
Garch	0.0500251	6698.000

Future Scope

We would try and predict daily closing price for next few months for other automobile stocks in the study. Thank you

Any questions?

Thank you

Any questions?

