Rozwiązania zadań domowych 1

Zadanie 1.

i)
$$a \circ b = a - b$$
 (naturalne)

Wewnętrzność

$$1,2 \in N \ 1 \circ 2 = 1 - 2 = -1 \notin N$$

zatem działanie $a \circ b$ nie jest wewnętrzne w ${\bf N}$

Łączność

kontrprzykład

$$1,2,3 \in \mathbb{N}$$

 $1 \circ (2 \circ 3) = 1 \circ (2 - 3) = 1 - (2 - 3) = 2 \in \mathbb{N}$
 $(1 \circ 2) \circ 3 = (1 - 2) \circ 3 = (1 - 2) - 3 = -4 \notin \mathbb{N}$

zatem działanie $a \circ b$ nie jest wewnętrzne w **N**

Przemienność

Jeżeli $a, b \in N$ takie, że $a - b \in N$, to

$$a \circ b = a - b = b - a = b \circ a$$

Działanie $a \circ b$ nie jest wewnętrzne w **N** zatem równość $a \circ b = b \circ a$ nie zachodzi w **N**.

iii)
$$a \oplus b = \frac{1}{2}(a+b)$$
 (całkowite)

Wewnętrzność

$$-2,1 \in \mathbf{Z} - 2 \oplus 1 = \frac{1}{2}(-2+1) = -\frac{1}{2} \notin \mathbf{Z}$$

zatem działanie $a \oplus b$ nie jest wewnętrzne w **Z**

Łączność

kontrprzykład

$$-1, -2, -3 \in \mathbf{Z}$$

$$-1 \oplus (-2 \oplus -3) = -1 \oplus \left(\frac{1}{2}(-2 + (-3))\right) = \frac{1}{2}\left(-1 + \left(\frac{1}{2}(-2 + (-3))\right)\right) \notin \mathbf{Z}$$

$$(-1 \oplus -2) \oplus -3 = \left(\frac{1}{2}(-1 + (-2))\right) \oplus -3 = \frac{1}{2}\left(\left(\frac{1}{2}(-2 + (-3))\right) + (-3)\right) \notin \mathbf{Z}$$

zatem działanie $a \oplus b$ nie jest łączne w **Z**

Przemienność

Jeżeli $a,b \in \mathbf{Z}$ takie, że $\frac{1}{2}(a+b) \in \mathbf{Z}$, to

$$a \oplus b = \frac{1}{2}(a+b) = \frac{1}{2}(b+a) = b \oplus a$$

Działanie $a \oplus b$ nie jest wewnętrzne w **Z** zatem równość $a \oplus b = b \oplus a$ nie zachodzi w **Z**

v) $a \oslash b = b$ (wymierne)

Wewnetrzność

$$\bigvee_{a,b\in \boldsymbol{Q}} a \oslash b = b \in \boldsymbol{Q}$$

zatem działanie $a \oslash b$ jest wewnętrzne w ${\bf Q}$

Łączność

$$a, b, c \in \mathbf{Q}$$

 $a \oslash (b \oslash c) = a \oslash (c) = c$
 $(a \oslash b) \oslash c = (b) \oslash c = c$

Zatem działanie $a \oslash b$ jest łączne w **Q**

Wewnętrzność

$$\bigvee_{a,b\in\mathbf{Q}}a\oslash b=b=a=b\oslash a$$

sprzeczność, zatem działanie $a \oslash b$ nie jest wewnętrzne w ${\bf Q}$

vii)
$$a \triangle b = a + a * b - b$$
 (rzeczywiste)

Wewnętrzność

$$\bigvee_{a,b\in\mathbf{R}} a \triangle b = a + a * b - b \in \mathbf{R}$$

ponieważ wszystkie działania (dodawania, odejmowania i mnożenia) są wewnętrzne w ${\bf R}$ zatem działanie $a \triangle b$ jest również wewnętrzne.

Łączność

kontrprzykład

$$2,3,4 \in \mathbb{R}$$

 $2 \triangle (3 \triangle 4) = 2 \triangle (3 + 3 * 4 - 4) = 2 + 2 * (3 + 3 * 4 - 4) - (3 + 3 * 4 - 4)$
 $= 2 + 22 - 11 = 13$
 $(2 \triangle 3) \triangle 4 = (2 + 2 * 3 - 3) \triangle 4 = (2 + 2 * 3 - 3) + (2 + 2 * 3 - 3) * 4 - 4$
 $= 5 + 20 - 4 = 21$

 $2 \triangle (3 \triangle 4) \neq (2 \triangle 3) \triangle 4$ zatem $a \triangle b$ nie jest łączne w **R**.

Przemienność

$$10,30 \in \mathbf{R}$$

 $10 \triangle 30 = 10 + 10 * 30 - 30 = 30 + 10 * 30 - 10 = 30 \triangle 10$
 $280 \neq 320$

zatem działanie $a \triangle b$ nie jest przemienne w **R.**

Zadanie 2. Czy (R, \otimes), gdzie a \otimes b = a · b + 3 · a + 3 · b + 6 jest grupą?

Wewnętrzność

Działania zawarte w działaniu ⊗ (mnożenie, dodawanie) są wewnętrzne w R.

Łączność

Niech $a, b, c \in \mathbf{R}$

$$a \otimes (b \otimes c) = a \otimes (b * c + 3 * b + 3 * c + 6)$$

$$= a * (b * c + 3 * b + 3 * c + 6) + 3 * a + 3$$

$$* (b * c + 3 * b + 3 * c + 6) + 6$$

$$= abc + 3ab + 3ac + 6a + 3a + 3bc + 9b + 9c + 18 + 6$$

$$= abc + 3ab + 3ac + 3bc + 9a + 9b + 9c + 24$$

$$(a \otimes b) \otimes c = (a * b + 3 * a + 3 * b + 6) \otimes c$$

$$= (a * b + 3 * a + 3 * b + 6) * c + 3 * (a * b + 3 * a + 3 * b + 6) + 3$$

$$* c + 6 = abc + 3ac + 3bc + 6c + 3ab + 9a + 9b + 18 + 3c + 6$$

$$= abc + 3ab + 3ac + 3bc + 9a + 9b + 9c + 24$$

$$\bigvee_{a,b,c\in\mathbf{R}} a\otimes (b\otimes c) = (a\otimes b)\otimes c$$

zatem działanie ⊗ jest łączne w R.

Element neutralny

Weźmy e = -2 wtedy

$$\bigvee_{a \in \mathbf{R}} a \otimes e = a * -2 + 3 * a + 3 * (-2) + 6 = a$$

czyli -2 jest elementem neutralnym działania ⊗.

Element odwrotny

Niech $a, a^{-1} \in \mathbf{R}$

$$a \otimes a^{-1} = a^{-1} \otimes a = e$$

 $a * a^{-1} + 3a + 3a^{-1} + 6 = -2$
 $a * a^{-1} + 3a + 3a^{-1} + 8 = 0$

Element odwrotny nie istnieje, dlatego (\mathbf{R} , \otimes) nie jest grupą.

Zadanie 3. Czy ($\{-1, 1\}$, ·), gdzie · to mnożenie indukowane z liczb rzeczywistych jest grupą abelową?

Wewnetrzność

	1	-1
1	1	-1
-1	-1	1

Na podstawie tabelki powyżej można stwierdzić, że działanie mnożenia w $\{-1,1\}$ jest wewnętrzne, ponieważ żadna z wartości nie wychodzi poza zdefiniowany zbiór.

Łączność

Działanie · jest łączne, ponieważ · jest łączne w R.

Element naturalny

Na podstawie tabelki, rząd dla wartości 1 zawiera te same wartości co wartości dla kolumn. Zatem elementem naturalnym $(\{-1,1\},\cdot)$ jest 1.

Element odwrotny

Dla każdej liczby z $\{-1,1\}$ istnieje element odwrotny zatem $(\{-1,1\},\cdot)$ jest grupą

$$1^{-1} = 1 \ bo \ 1 * 1 = 1 * 1 = 1$$

 $(-1)^{-1} = 1 \ bo \ (-1) * 1 = (-1) * 1 = -1$

Przemienność

Przemienność, abelowość grupy $(\{-1,1\},\cdot)$ jest uzasadnione tym, że \cdot jest przemienne w **R**.

Zadanie 4. Czy (Z, \circ), gdzie a \circ b = a + b + 2 jest grupą abelową?

Wewnętrzność

Działanie dodawania zawarte w o jest wewnętrzne w Z.

Łączność

Działanie dodawania zawarte w o jest łączne w Z.

Element neutralny

Weźmy e = -2 wtedy

$$\bigvee_{a \in \mathbf{Z}} a \circ e = a + (-2) + 2 = a$$

czyli -2 jest elementem neutralnym działania o.

Element odwrotny

Niech a, $a^{-1} \epsilon \mathbf{Z}$

$$a \circ a^{-1} = a^{-1} \circ a = e$$

 $a^{-1} = -a - 4 \text{ bo } a \circ a^{-1} = a + (-a - 4) + 2 = -2$

zatem $(\{-1,1\},\cdot)$ jest grupą.

Przemienność

Przemienność, abelowość grupy $(\{-1,1\},\cdot)$ wynika z przemienności działania dodawania w **Z**

Zadanie 5.

i) Dodawanie jest wewnętrzne w N ponieważ dodawanie jest wewnętrzne w R Dodawanie jest łączne w N ponieważ dodawanie jest łączne w R Elementem naturalny

brak

Dodawania w N nie jest grupą

ii) Dodawanie jest wewnętrzne w **Q** ponieważ dodawanie jest wewnętrzne w **R**Dodawanie jest łączne w **Q** ponieważ dodawanie jest wewnętrzne w **R**Element naturalny

weźmy $e=0\in \mathbf{Q}$

$$\bigvee_{a \in \mathbf{Q}} a + e = e + a = a$$

Element odwrotny niech $a, a^{-1} \in \mathbf{Q}$

$$a^{-1} = 0$$
 bo $a + a^{-1} = a + 0 = a$

zatem dodawanie w Q jest grupą.

iii) Dodawanie jest grupą w R bo

iv) Dodawanie jest wewnętrzne w **Z** podzielnych przez 3ponieważ dodawanie jest wewnętrzne w **R**

Dodawanie jest łączne w **Z** podzielnych przez 3 ponieważ jest łączne w **R** Element naturalny

weźmy $e = 0 \in \mathbf{Z}$ podzieln przez 3

$$\bigvee_{a \in \mathbf{Q}} a + e = e + a = a$$

Element odwrotny

niech $a, a^{-1} \in \mathbf{Z}$ podzieln przez 3

$$a^{-1} = 0$$
 bo $a + a^{-1} = a + 0 = a$

zatem dodawanie w Z podzielnych przez 3 jest grupą

- v) Jw. n, zamiast 3
- vi) Dodawanie w zbiorze {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} nie jest grupą ponieważ nie każdy element zbioru ma element odwrotny (9).
- vii) Dodawanie w zbiorze {0} jest grupą ponieważ zbiór {0} jest podzbiorem R.
- viii) Dodawanie w **Z** nieparzystych nie jest grupą, ponieważ element naturalny nie istnieje dla tego działania.

Zadanie 6.

i) Mnożenie jest wewnętrzne w $\{\mathbf{Z}\setminus\{0\}\}$ ponieważ mnożenie jest wewnętrzne w \mathbf{R} . Mnożenie jest łączne w $\{\mathbf{Z}\setminus\{0\}\}$ ponieważ mnożenie jest wewnętrzne w \mathbf{R} . Element naturalny weźmy $e=1\in\mathbf{Z}$

$$\bigvee_{a \in \{\mathbf{Z} \setminus \{0\}\}} a * e = a * 1 = a$$

Element odwrotny

brak elementu odwrotnego, działanie mnożenia w $\{ {m Z} \setminus \{0\} \}$ nie jest grupą

ii) Mnożenie jest wewnętrzne w **Q** ponieważ mnożenie jest wewnętrzne w **R**. Mnożenie jest łączne w **Q** ponieważ mnożenie jest wewnętrzne w **R**. Element naturalny

weźmy $e = 1 \in \mathbf{Q}$

$$\bigvee_{a \in \mathbf{0}} a * e = a * 1 = a$$

Element odwrotny

kontrprzykład

niech $a = 0 i a^{-1} \in \mathbf{Q}$

$$a * a^{-1} = 0 * a^{-1} = 0 \neq e$$

zatem działanie mnożenia w $\{\mathbf{Q}\setminus\{0\}\}$ nie jest grupą

iii) Mnożenie jest wewnętrzne w $\{\mathbf{Q} \setminus \{0\}\}$ ponieważ mnożenie jest wewnętrzne w \mathbf{R} . Mnożenie jest łączne w $\{\mathbf{Q} \setminus \{0\}\}$ ponieważ mnożenie jest wewnętrzne w \mathbf{R} . Element naturalny

weźmy $e = 1 \in \{\mathbf{Q} \setminus \{0\}\}$

$$\bigvee_{a \in \{\mathbf{Q} \setminus \{0\}\}} a * e = a * 1 = a$$

Element odwrotny

kontrprzykład

niech a, $a^{-1} \in \{ \mathbf{Q} \setminus \{ 0 \} \}$

$$a^{-1} = \frac{1}{a} bo \ a * a^{-1} = a * \frac{1}{a} = 1 = e$$

zatem działanie mnożenia w $\{\mathbf{Q} \setminus \{0\}\}$ jest grupą.

- iv) Tak jak w przypadku ii
- v) Tak jak w przypadku iii
- vi) Mnożenie jest wewnętrzne w R_+ ponieważ mnożenie jest wewnętrzne w R_- Mnożenie jest łączne w R_+ ponieważ mnożenie jest łączne w R_-

Element naturalny

weźmy $e = 1 \in \mathbf{R}_+$

$$\bigvee_{a \in \mathbf{R}_+} a * e = a * 1 = a$$

Element odwrotny

kontrprzykład

niech a, $a^{-1} \in \mathbf{R}_+$

$$a^{-1} = \frac{1}{a} bo \ a * a^{-1} = a * \frac{1}{a} = 1 = e$$

zatem działanie mnożenia w R_{+} jest grupą.