Q: The state equation of a second order system is

 $\dot{x}(t) = Ax(t),$ x(0) is the initial condition.

Suppose λ_1 and λ_2 are two distinct eigenvalues of A, and ν_1 and ν_2 are the corresponding eigenvectors. For constants α_1 and α_2 , the solution, x(t), of the state equation is

(A)
$$\sum_{i=1}^{2} \alpha_{i} e^{\lambda_{i}t} v_{\mathbf{i}}$$
(B)
$$\sum_{i=1}^{2} \alpha_{i} e^{2\lambda_{i}t} v_{\mathbf{i}}$$
(C)
$$\sum_{i=1}^{2} \alpha_{i} e^{3\lambda_{i}t} v_{\mathbf{i}}$$
(D)
$$\sum_{i=1}^{2} \alpha_{i} e^{4\lambda_{i}t} v_{\mathbf{i}}$$

(B)
$$\sum_{i=1}^{2} \alpha_i e^{2\lambda_i t} v_i$$

(C)
$$\sum_{i=1}^{2} \alpha_i e^{3\lambda_i t} v_i$$

(D)
$$\sum_{i=1}^{2} \alpha_i e^{4\lambda_i t} v_i$$

Solution:

Variable	Description	Value
x(t)	state variable	-
$\dot{x}(t)$	derivative of x(t) w.r.t t	$\frac{dx(t)}{dt}$
A	2x2 matrix	-
λ_i for $i = 1, 2$	eigen values of A	-
$v_i \text{ for } i = 1, 2$	eigen vectors of A	-
α_i for $i = 1, 2$	constants for $x(0)$ i.e. initial conditions	-
TARIFI		

TABLE I

INPUT PARAMETERS

Theories and Proofs:

$$Ax(t) = \lambda x(t) \tag{1}$$

Eigen values of inverse of a matrix is reciprocal of eigen value of the given matrix

$$A^{-1}Ax(t) = A^{-1}\lambda x(t) \tag{2}$$

$$\implies x(t) = \lambda A^{-1} x(t) \tag{3}$$

$$\implies A^{-1}x(t) = \frac{1}{\lambda}x(t) \tag{4}$$

Eigen value of a matrix shifts by the same amount as that of the matrix.

$$(A - \sigma I)x(t) = Ax(t) - \sigma Ix(t)$$
(5)

$$= \lambda x(t) - \sigma x(t) \tag{6}$$

$$= (\lambda - \sigma)x(t) \tag{7}$$

Sol:

Using Laplace transform:

Given Equation:

$$\dot{x}(t) = Ax(t) \tag{8}$$

$$\frac{dx(t)}{dt} = Ax(t) \tag{9}$$

Taking Laplace Transform:

$$\mathcal{L}\left(\frac{dx(t)}{dt}\right) = \mathcal{L}\left(Ax(t)\right) \tag{10}$$

$$sX(s) - x(0) = AX(s) \tag{11}$$

$$(sI - A)X(s) = x(0) \tag{12}$$

$$X(s) = (sI - A)^{-1}x(0)$$
(13)

From Table I, we can write x(0) in terms of two linearly independent variables as

$$x(0) = \alpha_1 v_1(t) + \alpha_2 v_2(t) \tag{14}$$

$$=\sum_{i=1}^{2}\alpha_{i}v_{i}(t) \tag{15}$$

From (13), (15)

$$X(s) = (sI - A)^{-1} \left(\sum_{i=1}^{2} \alpha_i v_i(t) \right)$$
 (16)

From (4), (7)

$$X(s) = \sum_{i=1}^{2} \frac{1}{s - \lambda_i} \left(\alpha_i v_i(t) \right) \tag{17}$$

Now take inverse Laplace Transform

$$\mathcal{L}^{-1}(X(s)) = \mathcal{L}^{-1}\left(\sum_{i=1}^{2} \frac{1}{s - \lambda_i} \left(\alpha_i \nu_i(t)\right)\right)$$
(18)

$$x(t) = \sum_{i=1}^{2} e^{\lambda_i t} \left(\alpha_i v_i(t) \right)$$
 (19)

Hence the answer is option (A).