## 深度学习参考习题()

| 1. | 什么情况下神经网络模型被称为深度学习模型                                                                                                                  | .?  |                                      | (      | A            | ) |
|----|---------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------|--------|--------------|---|
|    | A. 加入更多层,使神经网络的深度增加 B. 有维度更高的数据                                                                                                       |     |                                      |        |              |   |
|    | C. 当这是一个图形识别的问题时                                                                                                                      | D.  | 以上都不正确                               |        |              |   |
| 2. | 下面哪项操作能实现跟神经网络中 Dropout 的                                                                                                             | 的类似 | 效果?                                  | (      | В            | ) |
|    | A. Boosting B. Bagging                                                                                                                | C.  | Stacking D. Mapp                     | oing   |              |   |
| 3. | 下列哪一项在神经网络中引入了非线性?                                                                                                                    |     |                                      | (      | В            | ) |
|    | A. 随机梯度下降                                                                                                                             | В.  | 修正线性单元 (ReLU)                        |        |              |   |
|    | C. 卷积函数                                                                                                                               | D.  | 以上都不正确                               |        |              |   |
| 4. | 深度学习是当前很热门的机器学习算法,在深算三个稠密矩阵 $A,B,C$ 的乘积 $ABC$ ,假设是 $m < n < p < q$ ,以下计算顺序效率最高的是                                                      | 三个知 | E阵的尺寸分别为 $m \times n$ , $n \times n$ | p, p;  | $\times q$ , |   |
|    | A. $(AB)C$ B. $AC(B)$                                                                                                                 |     | ,                                    |        |              |   |
| 5. | 输入图片大小为 $200 \times 200$ , 依次经过一层卷积 (kernel size $3\times 3$ , padding $0$ , stride $1$ ), 又一层和输出特征图大小为                               | •   |                                      |        | _            | _ |
|    | A. 95 B. 96                                                                                                                           | С.  | 97 D. 98                             |        |              |   |
|    | 解答 输出大小为 $\lfloor (n-k+2p+s)/s \rfloor$ , 故 $\lfloor (99-3+2\times 0+1)/1 \rfloor = 97$ , $\lfloor (97-3+2\times 0+1)/1 \rfloor = 97$ |     | ,, =                                 |        |              |   |
| 6. | 神经网络模型 (Neural Network) 因受人类大脑的启发而得名, 神经网络由许多神经元 (Neuron) 组成,每个神经元接受一个输入,对输入进行处理后给出一个输出,如下图所示。请问下列关于神经元的描述中,哪一项是正确的?                  |     |                                      |        |              |   |
|    | A. 每个神经元可以有一个输入和一个输出                                                                                                                  | В.  | 每个神经元可以有多个输入和                        | 一个     | 渝出           |   |
|    | C. 每个神经元可以有一个输入和多个输出                                                                                                                  | D.  | 每个神经元可以有多个输入和                        | 多个     | 渝出           |   |
|    | E. 上述都正确                                                                                                                              |     |                                      |        |              |   |
| 7. | 如果我们用了一个过大的学习速率会发生什么                                                                                                                  | ?   |                                      | (      | D            | ) |
|    | A. 神经网络会收敛                                                                                                                            | В.  | 不好说                                  |        |              |   |
|    | C. 都不对                                                                                                                                | D.  | 神经网络不会收敛                             |        |              |   |
| 8. | 在一个神经网络中,下面哪种方法可以用来处                                                                                                                  | 理过  | 拟合?                                  | (      | D            | ) |
|    | A. Dropout                                                                                                                            | В.  | 分批归一化 (Batch Normalize               | ation) |              |   |
|    | C. 正则化 (regularization)                                                                                                               | D.  | 都可以                                  |        |              |   |
| 9. | 批规范化 (Batch Normalization) 的好处                                                                                                        |     |                                      | (      | A            | ) |
|    | A. 让每一层的输入的范围都大致固定                                                                                                                    | В.  | 它将权重的归一化平均值和标                        | 准差     |              |   |
|    | C. 它是一种非常有效的反向传播 (BP) 方法                                                                                                              | D.  | 这些均不是                                |        |              |   |

10. 下列哪个神经网络结构会发生权重共享? ( D ) B. 循环神经网络 C. 全连接神经网络 D. 选项 A 和 B A. 卷积神经网络 11. 下列哪个函数不可以做激活函数?(线性函数) ( D ) A.  $y = \tanh(x)$ B.  $y = \sin(x)$ C.  $y = \max(x, 0)$ D. y = 2x12. 下图显示了训练过的 3 层卷积神经网络准确度,与参数数量 (特征核的数量)的关系。从图中 96 95 94 93 93 lest 92 0.2 0.6 0.8 1.0 Number of parameters 趋势可见,如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这 一现象的可能原因是什么? ( C ) A. 即使增加卷积核的数量,只有少部分的核会被用作预测 B. 当卷积核数量增加时,神经网络的预测能力会降低 C. 当卷积核数量增加时, 导致过拟合 D. 以上都不正确 13. 假设你需要调整超参数来最小化代价函数 (cost function),会使用下列哪项技术? (D) A. 穷举搜索 B. 随机搜索 C. Bayesian 优化 D. 都可以 14. 构建一个神经网络,将前一层的输出和它自身作为输入。下列哪一种架构有反馈连接? ( A ) A. 循环神经网络 B. 卷积神经网络 C. 限制玻尔兹曼机 D. 都不是 15. 下列哪项关于模型能力 (model capacity) 的描述是正确的? (指神经网络模型能拟合复杂函数 的能力) A ) A. 隐藏层层数增加,模型能力增加 B. Dropout 的比例增加,模型能力增加 C. 学习率增加,模型能力增加 D. 都不正确 16. 在训练神经网络时, 损失函数 (loss) 在最初的几个 epochs 时没有下降, 可能的原因是? ( D ) A. 学习率 (learning rate) 太低 B. 正则参数太高 D. 以上都有可能 C. 陷入局部最小值 17. 下列哪一项属于特征学习算法 (representation learning algorithm)? ( C ) A. K 近邻算法 B. 随机森林 C. 神经网络 D. 都不属于

- 18. 假设我们拥有一个已完成训练的、用来解决车辆检测问题的深度神经冈络模型,训练所用的数 据集由汽车和卡车的照片构成,而训练目标是检测出每种车辆的名称(车辆共有 10 种类型)。 现在想要使用这个模型来解决另外一个问题,问题数据集中仅包含一种车(福特野马)而目标 变为定位车辆在照片中的位置。 ( B )
  - A. 除去神经网络中的最后一层, 冻结所有层然后重新训练
  - B. 对神经网络中的最后几层进行微调,同时将最后一层(分类层)更改为回归层
  - C. 使用新的数据集重新训练模型
  - D. 所有答案均不对
- 19. 假设你有 5 个大小为 7×7、边界值为 0 的卷积核,同时卷积神经网络第一层的深度为 1。此 时如果你向这一层传入一个维度为 224 × 224 × 3 的数据,那么神经网络下一层所接收到的数 据维度是多少? ( A )
  - A.  $218 \times 218 \times 5$
- B.  $217 \times 217 \times 8$  C.  $217 \times 217 \times 3$
- D.  $220 \times 220 \times 5$
- 20. 假设我们有一个使用 ReLU 激活函数 (ReLU activation function) 的神经网络, 假如我们把 ReLU 激活替换为线性激活,那么这个神经网络能够模拟出同或函数 (XNOR function) 吗?

(D)

- A. 可以
- B. 不好说
- C. 不一定
- D. 不能
- 21. 下列的哪种方法可以用来降低深度学习模型的过拟合问题?
  - 1 增加更多的数据 2 使用数据扩增技术 3 使用归纳性更好的架构 4 正规化数据 5 降低架构的 复杂度 ( D )
  - A. 145
- B. 123
- C. 1345
- D. 都有用
- 22. 下图是一个利用 sigmoid 函数作为激活函数的含四个隐藏层的神经网络训练的梯度下降图。这 个神经网络遇到了梯度消失的问题。下面哪个叙述是正确的? ( A )



- A. 第一隐藏层对应 D, 第二隐藏层对应 C, 第三隐藏层对应 B, 第四隐藏层对应 A
- B. 第一隐藏层对应 A, 第二隐藏层对应 C, 第三隐藏层对应 B, 第四隐藏层对应 D
- C. 第一隐藏层对应 A, 第二隐藏层对应 B, 第三隐藏层对应 C, 第四隐藏层对应 D
- D. 第一隐藏层对应 B, 第二隐藏层对应 D, 第三隐藏层对应 C, 第四隐藏层对应 A

| 23. | 考虑某个具体问题时,你可能只有少量数据来经已经预先训练好的神经网络。可以用下面哪种:                                                                    | 解决这个问题。不过幸运的是你有一个类似问题<br>方法来利用这个预先训练好的网络? ( C )                               |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
|     | A. 把除了最后一层外所有的层都冻结,重新训练最后一层                                                                                   |                                                                               |  |  |  |  |
|     | B. 对新数据重新训练整个模型                                                                                               |                                                                               |  |  |  |  |
|     | C. 只对最后几层进行调参 (fine tune)                                                                                     |                                                                               |  |  |  |  |
|     | D. 对每一层模型进行评估,选择其中的少数来                                                                                        | <del>〔</del> 用                                                                |  |  |  |  |
| 24. | 在选择神经网络的深度时,下面哪些参数需要<br>(1)神经网络的类型(如 MLP, CNN)<br>(2)输入数据<br>(3)计算能力(硬件和软件能力决定)<br>(4)学习速率<br>(5)映射的输出函数      | 考虑?<br>( C )                                                                  |  |  |  |  |
|     | A. 1, 2, 4, 5 B. 2, 3, 4, 5                                                                                   |                                                                               |  |  |  |  |
|     | 输入数据维度越高,映射的输出函数非线性越复                                                                                         | 型的深度都是重要的。特征抽取所需分层越多,<br>夏杂,所需深度就越深.另外为了达到最佳效果,<br>件计算能力和学习速率以设计合理的训练时间。<br>口 |  |  |  |  |
| 25. | 当数据过大以至于无法在 RAM 中同时处理时 A. 随机梯度下降法 B. 不知道                                                                      |                                                                               |  |  |  |  |
| 26. | 基于二次准则函数的 H-K 算法较之于感知器第A. 计算量小                                                                                | 正法的优点是? (B)<br>B. 可以判别问题是否线性可分                                                |  |  |  |  |
|     | C. 其解完全适用于非线性可分的情况                                                                                            |                                                                               |  |  |  |  |
|     | 解答 HK 算法思想很朴实,就是在最小均方误差准则下求得权矢量。他相对于感知器算法的优点在于,他适用于线性可分和非线性可分的情况,对于线性可分的情况,给出最优权矢量,对于非线性可分得情况,能够判别出来,以退出迭代过程。 |                                                                               |  |  |  |  |
| 27. | 在一个神经网络中,知道每一个神经元的权重和的权重和偏差,便可以近似任何函数,但怎么然<br>A. 搜索每个可能的权重和偏差组合,直到得到                                          |                                                                               |  |  |  |  |
|     | B. 赋予一个初始值, 然后检查跟最佳值的差值                                                                                       | 1,不断迭代调整权重(梯度下降)                                                              |  |  |  |  |
|     | C. 随机赋值, 听天由命                                                                                                 |                                                                               |  |  |  |  |
|     | D. 以上都不正确的                                                                                                    |                                                                               |  |  |  |  |
| 28. | 混沌度 (Perplexity) 是一种常见的应用在使用于混沌度,哪种说法是正确的?                                                                    | 深度学习处理 NLP 问题过程中的评估技术,关 ( B )                                                 |  |  |  |  |
|     | A. 混沌度没什么影响                                                                                                   | B. 混沌度越低越好                                                                    |  |  |  |  |
|     | C. 混沌度越高越好                                                                                                    | D. 混沌度对于结果的影响不一定                                                              |  |  |  |  |

| 29. | 训练神经网络过程中,提<br>1. 学习率太低 2. 正则参             |                     | _                 | ,原因可能是:                                | ( D                     | )   |
|-----|--------------------------------------------|---------------------|-------------------|----------------------------------------|-------------------------|-----|
|     | A. 1, 2                                    | B. 2, 3             | C. 1, 3           | D. 都是                                  |                         |     |
| 30. | 我们不是想要绝对零误差度量。使用贝叶斯(baye<br>A. 输入变量可能不包含   | es)误差的原因是           | 什么?               | 《差(我们希望实现的                             | 的误差<br>( D              |     |
|     | B. 系统(创建输入-输出                              | 映射) 可以是随村           | <b>爪的</b>         |                                        |                         |     |
|     | C. 有限的训练数据                                 |                     |                   |                                        |                         |     |
|     | D. 所有                                      |                     |                   |                                        |                         |     |
| 31. | 神经网络中的死神经元(A. 在训练任何其它相邻                    | ,                   |                   |                                        | ( A                     | . ) |
|     | B. 没有完全响应任何训练模式的单元                         |                     |                   |                                        |                         |     |
|     | C. 产生最大平方误差的单元                             |                     |                   |                                        |                         |     |
|     | D. 以上均不符合                                  |                     |                   |                                        |                         |     |
| 32. | 对于分类任务,我们不是正确?                             | 是将神经网络中的图           | <b>随机权重初始化,而是</b> | <sup>1</sup> 将所有权重设为零。                 | ,下列<br>( B              |     |
|     | A. 没有任何问题,神经                               | 网络模型将正常训            | 练                 |                                        |                         |     |
|     | B. 神经网络模型可以训练, 但所有的神经元最终将识别同样的事情           |                     |                   |                                        |                         |     |
|     | C. 神经网络模型不会进                               | 行训练,因为没有            | <b>万净梯度变化</b>     |                                        |                         |     |
|     | D. 这些均不会发生                                 |                     |                   |                                        |                         |     |
| 33. | 开始时有一个停滞期,这种情况,下面的哪个策略                     |                     | 在进入全局最小值之前        | 「陷入局部最小值。)                             | 为了避 <sub>2</sub><br>( C |     |
|     | A. 增加参数的数量,因                               | 为网络不会卡在局            | <b></b>           |                                        |                         |     |
|     | B. 在开始时把学习率降低 10 倍,然后使用梯度下降加速算子 (momentum) |                     |                   |                                        |                         |     |
|     | C. 抖动学习速率,即改变几个时期的学习速率                     |                     |                   |                                        |                         |     |
|     | D. 以上均不是                                   |                     |                   |                                        |                         |     |
| 34. | 假设在训练时,你遇到这<br>将数据描绘出来,找到了<br>个挑战?         | - , , , , - , , , , |                   | _ , ,, _ , , , , , , , , , , , , , , , |                         | 对这  |
|     | A. 归一化                                     |                     | B. 应用 PCA タ       | 然后归一化                                  |                         |     |
|     | C. 对数据进行对数变换                               |                     | D. 以上这些都          | 不符合                                    |                         |     |