Algebra

Michał Dobranowski

 $\begin{array}{c} \mathrm{semestr} \ \mathrm{zimowy} \ 2022 \\ \mathrm{v} 0.4 \end{array}$

Poniższy skrypt zawiera materiał obejmujący wykłady z Algebry prowadzone przez dr hab. Jakuba Przybyło na I semestrze Informatyki na AGH oraz tematy, które uznałem za warte uwagi podczas własnych studiów nad tematem.

Spis treści

1	Licz	zy zespolone	
	1.1	Działania na liczbach zespolonych	
		Interpretacja geometryczna liczb zespolonych	
	1.3	Pierwiastkowanie liczb zespolonych	
	1.4	Postać wykładnicza	
2	Relacje		
	2.1	Porządki	
3	Struktury algebraiczne		
	3.1	Grupy	
	3.2	Pierścienie i ciała	
	3.3	Morfizmy	
	3.4	Przestrzenie wektorowe	

§1 Liczy zespolone

Definicja 1.1. Liczba zespolona z to uporządkowana para liczb rzeczywistych. Pierwszy element tej pary to **część rzeczywista**, ozaczana symbolem Re(z), a drugi to **część urojona**, oznaczana symbolem Im(z). Zbiór liczb zespolonych oznaczamy przez \mathbb{C} .

Liczby zespolone można reprezentować w kilku postaciach, jedna z nich to **postać** algebraiczna. Używając jej, liczba z = (x, y) jest zapisywana jako

$$z = x + iy,$$

gdzie i nazywamy **jednostką urojoną**, która spełnia

$$i^2 = -1$$
.

§1.1 Działania na liczbach zespolonych

Niech $z_1 = x_1 + iy_1$ oraz $z_2 = x_2 + iy_2$. Określamy:

- dodawanie $z_1 + z_2 = x_1 + x_2 + i(y_1 + y_2)$
- mnożenie $z_1z_2 = x_1x_2 + ix_1y_2 + ix_2y_1 + i^2y_1y_2$ = $x_1x_2 - y_1y_2 + i(x_1y_2 + x_2y_1)$

Wniosek 1.2

Dodawanie i mnożenie liczb zespolonych jest przemienne i łączne. Mnożenie jest rozdzielne względem dodawania.

Definicja 1.3. Sprzężenie liczby zespolonej z = x + iy to liczba $\overline{z} = x - iy$.

Definicja 1.4. Moduł liczby zespolonej z = x + iy to liczba $|z| = \sqrt{x^2 + y^2}$.

Zachodzi pewna własność, wynikająca ze wzoru skróconego mnożenia:

$$z\overline{z} = (x+iy)(x-iy) = x^2 - i^2y^2 = x^2 + y^2$$
$$z\overline{z} = |z|^2$$
(1)

Powyższa liczba jest liczbą rzeczywistą, więc znaleźliśmy prosty sposób na dzielenie liczb zespolonych przez siebie, mnożąc licznik i mnianownik przez sprzężenie mianownika. Na przykład:

$$\frac{1+2i}{-1-i} = \frac{(1+2i)(-1+i)}{(-1-i)(-1+i)} = \frac{-3-i}{2} = \frac{-3}{2} - \frac{i}{2}.$$

Lemat 1.5

Oprócz $z\overline{z} = |z|^2$, zachodzą również równości:

- $|\overline{z}| = |z|$
- $\bullet \quad \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$
- $|z_1z_2| = |z_1||z_2|$

Ich dowody można w łatwy sposób przeprowadzić z definicji poszczególnych działań.

§1.2 Interpretacja geometryczna liczb zespolonych

Liczby zespolone można interpretować jako punkty na **płaszczyźnie zespolonej**. Dla przykładu liczba z=3+2i.

 ${\bf Fakt}$ 1.6. Moduł liczby zespolonej z to długość wektora wodzącego tej liczby na płaszczyźnie zespolonej.

Dowód. Wynika to z twierdzenia Pitagorasa oraz definicji modułu (1.4).

Możemy wyprowadzić **postać trygonometryczną** liczby zespolonej, która, zamiast dwóch współrzędnych, będzie operować na długości wektora wodzącego oraz kącie skierowanym. Mamy więc

$$z = |z|(\cos\varphi + i\sin\varphi)$$

gdzie φ to miara kąta skierowanego między wektorem wodzącym liczby zespolonej z a osią liczb rzeczywistych. Ten kąt nazywany jest **argumentem** i oznaczany przez Arg(z). Argument nie jest określony jednoznacznie – dowolne dwa argumenty jednej liczby różnią się o wielokrotność 2π . Jeśli argument jest w przedziale $[0, 2\pi)$, to mówimy, że jest to **argument główny** liczby z i oznaczamy arg(z).

Za pomocą podstawowej trygonometrii możemy łatwo zamieniać postać algebraiczną i trygonometryczną między sobą.

$$\operatorname{Re} z = |z| \cos \varphi, \qquad \operatorname{Im} z = |z| \sin \varphi$$
 (2)

Na potrzeby dalszych rozważań przyjmujemy, że arg(0) = 0.

Fakt 1.7. Odległość między liczbami z_1 i z_2 na płaszczyźnie zespolonej wynosi $|z_1 - z_2|$.

Lemat 1.8

Zachodzą następujące nierówności:

- $|z_1 + z_2| \le |z_1| + |z_2|$
- $||z_1| |z_2|| \le |z_1 z_2|$

Możemy łatwo mnożyć dwie liczby zespolone w postaci trygonometrycznej przez siebie za pomocą poniższego wzoru.

$$z_1 \cdot z_2 = |z_1|(\cos\varphi_1 + i\sin\varphi_1)|z_2|(\cos\varphi_2 + i\sin\varphi_2)$$

$$= |z_1||z_2|(\cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2 + i(\cos\varphi_1\sin\varphi_2 + \sin\varphi_1\cos\varphi_2))$$
(3)
$$= |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

Stosując wzór 3 n razy otrzymujemy dowód następującego twierdzenia.

Twierdzenie 1.9 (Wzór de Moivre'a)

Dla $z = |z|(\cos \varphi + i \sin \varphi)$ oraz $n \in \mathbb{Z}$ zachodzi równość

$$z^n = |z|^n (\cos n\varphi + i\sin n\varphi)$$

Wzór de Moivre'a zapewnia prosty sposób na potęgowanie liczb zespolonych. Dlatego, mając za zadanie obliczyć

$$(-2\sqrt{3}-2i)^{16}$$

najłatwiej będzie zmienić postać liczby do postaci trygonometrycznej, a następnie skorzystać z twierdzenia 1.9.

§1.3 Pierwiastkowanie liczb zespolonych

Definicja 1.10 (Pierwiastek liczby zespolonej). Jeśli z jest liczbą zespoloną, to $\sqrt[n]{z}$ jest zbiorem wszystkich takich $w \in \mathbb{C}$, że $w^n = z$.

Korzystając ze wzoru de Moivre'a (twierdzenie 1.9) łatwo wyprowadzić wzór

$$\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right), k \in \mathbb{Z}$$
 (4)

Fakt 1.11. Pierwiastków *n*-tego stopnia z $z \neq 0$ jest dokładnie *n* i leżą one w równych odstępach na okręgu o środku w 0 i promieniu $\sqrt[n]{|z|}$.

Dowód. Dla $k \in \{0, 1, \ldots, n-1\}$ liczba z równości 4 będzie przyjmować różne wartości (wynika to z okresowości funkcji trygonometrycznych). Liczby te będą na wspomnianym okręgu (to wynika wprost z postaci trygonometrycznej), a ich argumenty główne różnić będzie wielokrotność $\frac{2\pi}{n}$.

§1.4 Postać wykładnicza

Postać $z=|z|e^{i\varphi}$ liczby zespolonej bedziemy nazywać **postacią wykładniczą** tej liczby.

Twierdzenie 1.12 (Wzór Eulera)

Dla każdego $\varphi \in \mathbb{R}$ zachodzi

$$e^{i\varphi} = \cos\varphi + i\sin\varphi.$$

Dowód. Weźmy $z = \cos \varphi + i \sin \varphi$. Różniczkując po zmiennej φ otrzymujemy

$$\frac{dz}{d\varphi} = -\sin\varphi + i\cos\varphi = iz$$
$$\therefore \frac{dz}{z} = id\varphi.$$

Po obustronnym całkowaniu mamy

$$\int \frac{dz}{z} = \int id\varphi$$

$$\ln z = i\varphi + c$$

$$e^{\ln z} = e^{i\varphi + c}$$

$$z = e^{i\varphi + c}.$$

Podstawiając $\varphi = 0$ otrzymujemy $1 = e^c$, skąd mamy c = 0, co kończy dowód.

§2 Relacje

Definicja 2.1. Relacja to trójka $\mathcal{R} = (X, \operatorname{gr} \mathcal{R}, Y)$, gdzie X i Y są zbiorami, a $\operatorname{gr} \mathcal{R} \subset X \times Y$.

Zbiór X nazywamy **naddziedziną**, Y **zapasem**, gr \mathcal{R} to **wykres** relacji. Piszemy, że $x\mathcal{R}y$, jesli $(x,y) \in \operatorname{gr} \mathcal{R}$. **Dziedzina** relacji \mathcal{R} to zbiór

$$D_{\mathcal{R}} = \{ x \in X : \exists y \in Y : x \mathcal{R} y \},\$$

a jej przeciwdziedzina to zbiór

$$G_{\mathcal{R}} = \{ y \in Y : \exists x \in X : x \mathcal{R} y \}.$$

Definicja 2.2. Relacja odwrotna do relacji $\mathcal{R} = (X, \operatorname{gr} \mathcal{R}, Y)$ to taka relacja $\mathcal{R}^{-1} = (Y, \operatorname{gr} \mathcal{R}^{-1}, X)$, że

$$\operatorname{gr} \mathcal{R}^{-1} = \{ (y, x) \in Y \times X : (x, y) \in \operatorname{gr} \mathcal{R} \}.$$

Definicja 2.3. Złożeniem relacji $\mathcal{R}=(X,\operatorname{gr}\mathcal{R},Y)$ z relacją $\mathcal{S}=(Y,\operatorname{gr}\mathcal{S},Z)$ nazywamy relację

$$\mathcal{R} \circ \mathcal{S} = (X, \operatorname{gr}(\mathcal{R} \circ \mathcal{S}), Z),$$

gdzie

$$\operatorname{gr}(\mathcal{R} \circ \mathcal{S}) = \{(x, z) \in X \times Z : \exists y \in Y : x\mathcal{R}y \land y\mathcal{S}z\}.$$

Definicja 2.4 (rodzaje relacji). Relacja $\mathcal{R} = (X, \operatorname{gr} \mathcal{R}, X)$ jest:

- **zwrotna** $\Leftrightarrow \forall x \in X : x\mathcal{R}x$,
- symetryczna $\Leftrightarrow \forall x, y \in X : x\mathcal{R}y \Rightarrow y\mathcal{R}x$,

- antysymetryczna $\Leftrightarrow \forall x, y \in X : x \mathcal{R} y \land y \mathcal{R} x \Rightarrow x = y$,
- asymetryczna $\Leftrightarrow \forall x, y \in X : x\mathcal{R}y \Rightarrow \neg y\mathcal{R}x$,
- **przechodnia** $\Leftrightarrow \forall x, y, z \in X : x\mathcal{R}y \land y\mathcal{R}z \Rightarrow x\mathcal{R}z,$
- **spójna** $\Leftrightarrow \forall x, y \in X : x\mathcal{R}y \vee y\mathcal{R}x \vee x = y.$

Definicja 2.5. Relacja równoważności to relacja $\mathcal{R} = (X, \operatorname{gr} \mathcal{R}, X)$, która jest zwrotna, przechodnia i symetryczna.

Definicja 2.6. Jeżeli (X, \mathcal{R}) zbiorem z relacją równoważności, to dla każdego $x \in X$ klasą abstrakcji (klasą równoważności) tego elementu nazywamy zbiór

$$[x] = \{ y \in X : x \mathcal{R} y \}.$$

Definicja 2.7. Zbiór ilorazowy relacji \mathcal{R} to zbiór klas abstrakcji tej relacji; przyjmujemy oznaczenie

$$X/\mathcal{R} = \{ [x] : x \in X \}.$$

Twierdzenie 2.8

Niech (X, \mathcal{R}) będzie zbiorem z relacją równoważności. Wtedy

$$\forall x, y \in X : [x] \neq [y] \Leftrightarrow [x] \cap [y] = \emptyset.$$

Dowód wystarczalności. Załóżmy przez sprzeczność, że $[x] \cap [y] \neq \emptyset$, a więc $\exists z \in X : x\mathcal{R}z \wedge y\mathcal{R}z$. Teraz weźmy dowolny element $a \in [x]$. Mamy więc $x\mathcal{R}a$. Korzystając z symetryczności i przechodniości relacji \mathcal{R} mamy

$$a\mathcal{R}x \wedge x\mathcal{R}z \wedge z\mathcal{R}y$$
,

$$\therefore y\mathcal{R}a.$$

Z tego wynika, że $[x] \subset [y]$. Analogicznie (przyjmując na początku $a \in [y]$) dostaniemy, że $[y] \subset [x]$, wiec [x] = [y], co jest sprzeczne z założeniem.

 $Dowód\ konieczności.$ Załóżmy przez sprzeczność, że [x]=[y]. Wtedy $[x]\cap[y]=[x]\cap[x]=[x]$ nie może być zbiorem pustym, ponieważ ze zwrotności relacji $\mathcal R$ wynika, że $x\mathcal Rx$, więc [x] to zbiór przynajmniej jednoelementowy.

Z powyższego twierdzenie wynika, że relacja równoważności w danym zbiorze X dzieli ten zbiór na niepuste i rozłączne podzbiory, których suma daje cały zbiór X.

§2.1 Porządki

Definicja 2.9. Porządek (częściowy) to relacja $\mathcal{R} = (X, \operatorname{gr} \mathcal{R}, X)$, która jest zwrotna, przechodnia i antysymetryczna. Zbiór X nazywamy zbiorem (częściowo) uporządkowanym.

Definicja 2.10. Porządek liniowy (totalny) to porządek, który jest spójny.

Niech (X, \preceq) będzie zbiorem z porządkiem częściowym. Wtedy **element największy** $\overline{M} \in X$ zbioru X to taki element, że

$$\forall x \in X : x \prec \overline{M}$$

a element maksymalny $M_{\text{max}} \in X$ to taki element, że

$$\forall x \in X : (M_{\text{max}} \leq x) \Rightarrow (M_{\text{max}} = x).$$

Uwaga 2.11. Analogicznie można zdefiniować element najmniejszy \overline{m} :

$$\forall x \in X : \overline{m} \preceq x$$

oraz element minimalny m_{\min} :

$$\forall x \in X : x \leq m_{\min} \Rightarrow (x = m_{\min})$$

Twierdzenie 2.12

Niech (X, \preceq) będzie zbiorem z porządkiem częściowym. Jeśli w zbiorze X istnieje element największy, to jest on jedyny.

 $Dow \acute{o}d.$ Załóżmy przeciwnie, że istnieją dwa elementy największe $M_1, M_2.$ Z definicji zachodzi

$$M_1 \leq M_2$$

oraz

$$M_2 \leq M_1$$

co jest sprzeczne z antysymetrycznością porządków.

Twierdzenie 2.13

Niech (X, \preceq) będzie zbiorem z porządkiem częściowym. Jeśli $M \in X$ jest elementem największym zbioru X, to jest on jedynym elementem maksymalnym tego zbioru.

Dowód. Skoro M jest elementem największym, to poprzednik implikacji w definicji elementu maksymalnego będzie prawdziwy tylko dla x=M, więc sama implikacja zawsze będzie prawdziwa.

Fakt 2.14. W zbiorach z porządkiem totalnym pojęcia elementu największego i maksymalnego oraz najmniejszego i minimalnego są tożsame ze sobą. Wynika to ze spójności porządków totalnych.

Niech (X, \preceq) będzie zbiorem uporządkowanym, a zbiór $A \subset X$ jego podzbiorem. Element $M \in X$ jest **majorantą** (ograniczeniem górnym) zbioru A jeśli

$$\forall x \in A : x \leq M$$
.

Kresem górnym (supremum) zbioru A (w zbiorze X) jest element najmniejszy zbioru majorant. Oznaczamy go symbolem

$$\sup A$$
.

Uwaga 2.15. Analogicznie można zdefiniować **minorantę** (ograniczenie dolne) $m \in X$ zbioru $A \subset X$:

$$\forall x \in A: m \preceq x$$

oraz **kres dolny** (infimum) tego zbioru (jest nim element największy zbioru minorant), który oznaczamy symbolem

 $\inf A$.

Twierdzenie 2.16

Niech (X, \preceq) będzie zbiorem z porządkiem częściowym oraz $A \subset X$. Jeśli A ma element największy, to jest on również supremum tego zbioru.

Dowód. Z definicji majoranty wynika, że element największy zbioru A jest również jego majorantą. Każda majoranta $M \in X$ zbioru A oczywiście jest "większa" niż dowolny element zbioru A (w tym również jego element największy \overline{M}), to znaczy

$$\forall M: \overline{M} \leq M,$$

z czego wynika, że \overline{M} jest elementem najmniejszym zbioru majorant zbioru A, a więc supremum tego zbioru.

Wniosek 2.17

Jeśli zbiór częściowo uporządkowany X ma supremum, które nie należy do tego zbioru, to zbiór X nie ma elementu największego.

Dowód. Ponieważ dowolny zbiór (na mocy twierdzenia 2.12) ma co najwyżej jedno supremum, to gdyby zbiór X miał element najwiekszy, to na mocy twierdzenia 2.16 byłoby ono również supremum, które należy do zbioru X.

Przykład 2.18

Weźmy zbiór liniowo uporządkowany (\mathbb{R}, \leq) oraz jego podzbiór $A = [0, 1) \subset \mathbb{R}$. Zbiór majorant zbioru A to przedział $[1, \infty)$, a jego najmniejszy element (a zarazem supremum zbioru A) to liczba 1. Mamy więc

$$\sup A = 1.$$

Liczba 1 nie należy jednak do zbioru A, więc, na mocy wniosku 2.17, element największy (a z faktu 2.14 również maksymalny) nie istnieje.

Przykład 2.19

Weźmy zbiór częściowo uporządkowany (\mathbb{C}, \preceq) , gdzie zdefiniujemy

$$x \leq y \Leftrightarrow \operatorname{Re} x \leq \operatorname{Re} y \wedge \operatorname{Im} x \leq \operatorname{Im} y.$$

Oczywiście niektóre elementy nie będą w tym porządku porównywalne, na przykład 1 oraz i.

Weźmy również podzbiór $A \subset \mathbb{C}$ taki, że

$$A = \{z : |z| \le 1\}.$$

Na rysunku zaznaczono zbiór A, zbiór majorant M zbioru A, supremum zbioru A oraz zbiór elementów maksymalnych (jako ćwierćokrąg). Na mocy wniosku 2.17 element największy nie istnieje.

Definicja 2.20. Łańcuch to taki podziór $C \subset X$, że (X, \preceq) jest zbiorem z porządkiem częściowym, a (C, \preceq) jest zbiorem z porządkiem liniowym.

Definicja 2.21. Silny porządek to relacja, która jest przechodnia i asymetryczna. Silnie uporządkowany zbiór X oznaczamy przez (X, \prec) .

§3 Struktury algebraiczne

Działaniem (wewnętrznym) w zbiorze A nazwiemy każde odwzorowanie h takie, że

$$h: A \times A \rightarrow A$$
.

Działaniem zewnętrznym w zbiorze A jest odwzorowanie

$$h: F \times A \rightarrow A$$
.

Jeśli zamiast h weźmiemy jakiś symbol, na przykład \circ , to zamiast h(a,b) będziemy pisać $a \circ b$.

Definicja 3.1 (rodzaje działań). W zbiorze z działaniem (A, \circ) działanie \circ jest:

- łączne $\Leftrightarrow \forall x, y, z \in A : (x \circ y) \circ z = x \circ (y \circ z),$
- **przemienne** $\Leftrightarrow \forall x, y, \in A : x \circ y = y \circ x$.

Jeśli dla pewnego elementu $e \in A$ zachodzi

$$\forall x \in A : x \circ e = e \circ x = x,$$

to e jest elementem neutralnym.

Fakt 3.2. Jeżeli w zbiorze A z działaniem \circ istnieje element neutralny, to jest on jedyny. Dowód. Jeśli mielibyśmy dwa elementy neutralne e_1, e_2 to mamy

$$e_1 \circ e_2 = e_1 = e_2.$$

Jeżeli istnieje element neutralny $e \in A$ działania \circ , to elementem symetrycznym do $x \in A$ jest taki element $x' \in A$, że

$$x \circ x' = e = x' \circ x$$
.

Lemat 3.3

Jeśli działanie o jest łączne w zbiorze A i istnieje element neutralny $e \in A$, to jeśli dany element $x \in A$ ma element symetryczny, to jest on jedyny oraz zachodzi (x')' = x.

Dowód. Jeśli mielibyśmy dwa elementy symetryczne x'_1, x'_2 , to mamy

$$x'_1 = x'_1 \circ e = x'_1 \circ (x \circ x'_2) = (x'_1 \circ x) \circ x'_2 = e \circ x'_2 = x'_2.$$

Ponadto z definicji elementu symetrycznego mamy

$$x' \circ x = e$$

oraz

$$x' \circ (x')' = e,$$

a więc x jest elementem symetrycznym x', ergo (x')' = x.

§3.1 Grupy

Definicja 3.4. Grupa to para (A, \circ) , gdzie A jest zbiorem, a działanie \circ jest:

- 1. wewnetrzne,
- 2. łączne,
- 3. ma element neutralny,
- 4. a każdy element $x \in A$ ma element symetryczny.

Definicja 3.5. Grupa abelowa (przemienna) to grupa, w której działanie o jest przemienne.

Przykład 3.6

Przykłady grup:

- 1. $(\mathbb{Z}, +)$ grupa abelowa,
- 2. $(\mathbb{Z}_n, +_n)$ grupa abelowa^a,
- 3. (\mathbb{Q}_+,\cdot) grupa abelowa,
- 4. grupą nie
abelową jest grupa obrotów danego obiektu o 90° względem dowolnej z trzech osi.

 $^{{}^}a$ gdzie \mathbb{Z}_n oznacza zbiór $\{0,1,\dots,n-1\},$ a $+_n$ operację dodawania modulo n

Twierdzenie 3.7

 $(\mathbb{Z}_n \setminus \{0\}, \cdot_n)$ jest grupą wtedy i tylko wtedy, gdy $n \geq 2$ jest liczbą pierwszą.

Łatwo sprawdzić, że mnożenie modulo n w zbiorze $\mathbb{Z}_n \setminus \{0\}$ jest wewnętrze i łączne. Ma również element neutralny 1. Będziemy więc dowodzić jedynie istnienia elementu symetrycznego dla każdego elementu.

Dowód wystarczalności. Załóżmy przeciwnie, że istnieje $k \in \mathbb{Z}_n \setminus \{0,1\}$ takie, że $k \mid n$. Skoro $(\mathbb{Z}_n \setminus \{0\}, \cdot_n)$ jest grupą, to k ma element symetryczny k^{-1} . Zachodzi więc

$$kk^{-1} \equiv 1 \pmod{n}$$
,

czyli inaczej

$$\exists m \in \mathbb{Z} : kk^{-1} - 1 = mn.$$

Co jednak prowadzi do sprzeczności, ponieważ

$$kk^{-1} - 1 \not\equiv mn \pmod{k}$$
$$-1 \not\equiv 0 \pmod{k}.$$

 $Dowód\ dostateczności.$ Skoronjest liczbą pierwszą, to z małego twierdzenia Fermata mamy

$$a^{n-1} \equiv 1 \pmod{n}$$

dla każdego $a \in \mathbb{Z}_n \setminus \{0\}$. Z tego wynika, że dla dowolnego elementu a jego elementem symetrycznym będzie a^{n-2} .

§3.2 Pierścienie i ciała

Definicja 3.8. Pierścień to trójka $(P, \circ, *)$, gdzie P jest zbiorem, $\circ, *$ to działania wewnętrzne oraz

- 1. (P, \circ) jest grupa abelowa
- 2. działanie * jest łączne
- 3. działanie ∗ jest rozdzielne względem ∘, czyli

$$\forall x, y, z \in P : \frac{(x \circ y) * z = (x * z) \circ (y * z)}{x * (y \circ z) = (x * y) \circ (x * z)}.$$

Definicja 3.9. Pierścień przemienny to pierścień $(P, \circ, *)$, w którym * jest działaniem przemiennym¹.

Pierwsze działanie w pierścieniu nazywamy **działaniem addytywnym** i oznaczamy przez +. Element neutralny tego działania nazywamy zerem $(\mathbf{0})$, a element symetryczny do elementu x nazywamy elementem przeciwnym i oznaczamy -x.

Drugie działanie nazywamy **działaniem multiplikatywnym** i oznaczamy przez ·. Jeśli w P dodatkowo istnieje element neutralny tego działania, to ten element nazywamy jedynką (1), a pierścień nazywamy **pierścieniem z jedynką**. Element symetryczny do elementu x nazywamy elementem odwrotnym i oznaczamy x^{-1} .

¹wtedy też rozdzielność prawo- i lewostronna stają się tożsame

Definicja 3.10. Dzielnikiem zera jest taki element pierścienia $a \neq \mathbf{0}$, że istnieje niezerowy element b, dla którego zachodzi $a \cdot b = \mathbf{0}$.

Definicja 3.11. Pierścień całkowity to pierścień z jedynką, w którym nie ma dzielników zera.

Lemat 3.12

W pierścieniach całkowitych zachodzi własność skracania, to znaczy, że dla elementów pierścienia a,b,c przy $c \neq \mathbf{0}$ zachodzi

$$ac = bc \Rightarrow a = b$$
.

Dowód. Jeśli ac = bc, to ac - bc = 0. Z rozdzielności dostajemy

$$(a-b)c = \mathbf{0}.$$

W pierścieniu całkowitym nie ma jednak dzielników zera, więc $a-b=\mathbf{0}$, co dowodzi tezy.

Definicja 3.13. Ciało to pierścień z jedynką, w którym dla każdego elementu $x \neq \mathbf{0}$ istnieje element odwrotny x^{-1} .

Ciałem przemiennym będzie ciało, w którym działanie · jest przemienne. Niektórzy autorzy utożsamiają pojęcie ciała z ciałem przemiennym.

Można zauważyć, że struktura $(K, +, \cdot)$ jest ciałem (przemiennym) jeżeli:

- 1. (K, +) jest grupą abelową,
- 2. $(K \setminus \{0\}, \cdot)$ jest grupą (przemienną),
- 3. zachodzi warunek rozdzielności · względem +.

Lemat 3.14

Dla każdego elementu ciała a zachodzi $a \cdot \mathbf{0} = \mathbf{0}$.

Dowód.

$$a \cdot \mathbf{0} = a \cdot (\mathbf{0} + \mathbf{0})$$

$$a \cdot \mathbf{0} = a \cdot \mathbf{0} + a \cdot \mathbf{0}$$

$$a \cdot \mathbf{0} + -a \cdot \mathbf{0} = a \cdot \mathbf{0} + a \cdot \mathbf{0} + -a \cdot \mathbf{0}$$

$$\mathbf{0} = a \cdot \mathbf{0} + \mathbf{0}$$

$$\mathbf{0} = a \cdot \mathbf{0}$$

Twierdzenie 3.15

Każde ciało jest pierścieniem całkowitym.

Dowód. Załóżmy przeciwnie, że istnieją dzielniki zera, czyli takie dwa elementy ciała x, y, że $x, y \neq \mathbf{0}$ oraz $x \cdot y = \mathbf{0}$. Mamy

$$x \cdot y = \mathbf{0}$$
$$x^{-1} \cdot x \cdot y = x^{-1} \cdot \mathbf{0}$$
$$y = x^{-1} \cdot \mathbf{0},$$

co, na mocy lematu 3.14, jest sprzecznością z założeniem.

Twierdzenie 3.16

Każdy skończony pierścień całkowity jest ciałem.

Dowód. Załóżmy przeciwnie, że istnieje element pierścienia $a \neq \mathbf{0}$, który nie ma elementu odwrotnego. Rozważmy iloczyny aa_1, aa_2, aa_3, \ldots elementu a ze wszystkimi innymi elementami pierścienia (w tym z 1). Z założenia nie ma wsród nich jedynki, więc, skoro · jest działaniem wewnętrznym, to z zasady szufladkowej istnieją takie $a_k \neq a_l$, że $aa_k = aa_l$. To stwierdzenie jest jednak sprzecznością na mocy lematu 3.12, ponieważ rozważamy pierścienie całkowite, w których nie ma dzielników zera.

Przykład 3.17

Przykłady pierścieni i ciał:

- $(\mathbb{Z}, +, \cdot)$ pierścień całkowity, który nie jest ciałem (nie ma dzielników zera, ale często elementy odwrotne nie zawierają się z zbiorze \mathbb{Z}),
- $(\mathbb{Q}, +, \cdot)$ ciało liczb wymiernych,
- $(\mathbb{R}, +, \cdot)$ ciało liczb rzeczywistych,
- $(\mathbb{C}, +, \cdot)$ ciało liczb zespolonych,
- $(\mathbb{Z}_n, +_n, \cdot_n)$ pierścień przemienny z jedynką.

Wniosek 3.18 (z twierdzenia 3.7)

Pierścień $(\mathbb{Z}_n, +_n, \cdot_n)$ jest ciałem wtedy i tylko wtedy, gdy n jest liczbą pierwszą.

§3.3 Morfizmy

Definicja 3.19. Homomorfizmem grupy $(A_1, +)$ w grupę (A_2, \oplus) jest takie odwzorowanie $h: A_1 \to A_2$, że

$$\forall x, y \in A_1 : h(x+y) = h(x) \oplus h(y).$$

Fakt 3.20. Jeśli $h: A_1 \to A_2$ jest homomorfizmem grupy $(A_1, +)$ w (A_2, \oplus) , to

- 1. $e \in A_1$ jest elementem neutralnym w $(A_1, +) \Longrightarrow h(e) \in A_2$ jest elementem neutralnym w (A_2, \oplus) ,
- 2. $\forall x \in A_1 : h(x') = h(x)'$.

Definicja 3.21. Izomorfizm między grupami $(A_1, +), (A_2, \oplus)$ jest homomorfizmem bijektywnym. Jeśli taki izomorfizm istnieje, to dwie grupy nazywamy izomorficznymi.

Definicja 3.22. Automorfizm to izomorfizm struktury na samą siebie.

Analogicznie definiujemy morfizmy między pierścieniami i ciałami (wtedy równość z definicji 3.19 musi zachodzić dla obydwu działań).

Przykład 3.23

Przykłady morfizmów:

- $h(x) = x^2$ jest homomorfizmem grupy $(\mathbb{R} \setminus \{0\}, \cdot)$ w (\mathbb{R}_+, \cdot) ,
- $h(x) = e^x$ jest izomorfizmem grupy $(\mathbb{R}, +)$ w (\mathbb{R}_+, \cdot) , ponieważ

$$h(x+y) = e^{x+y} = e^x \cdot e^y = h(x) \cdot g(y),$$

• $h(z) = \overline{z}$ jest automorfizmem grupy $(\mathbb{C}, +)$.

Na podobnej zasadzie jak w przykładzie drugim, można pokazać izomorfizm grupy $(\mathbb{Z}_n, +_n)$ z grupą pierwiastów n-tego stopnia z jedności względem mnożenia $(\mu_n(\mathbb{C}), \cdot)$. Biorąc funkcję $h(x) = \cos(\frac{2\pi}{n}x) + i\sin(\frac{2\pi}{n}x)$, mamy

$$h(x+y) = \cos(\frac{2\pi}{n}(x+y)) + i\sin(\frac{2\pi}{n}(x+y))$$
$$= \left(\cos(\frac{2\pi}{n}x) + i\sin(\frac{2\pi}{n}x)\right) \cdot \left(\cos(\frac{2\pi}{n}y) + i\sin(\frac{2\pi}{n}y)\right) = h(x) \cdot h(y)$$

§3.4 Przestrzenie wektorowe

Definicja 3.24. Przestrzeń wektorowa (liniowa) nad ciałem (K, \oplus, \otimes) to struktura $(V, K, +, \cdot)$, gdzie

- 1. (V, +) jest grupą abelową,
- 2. działanie $\cdot: K \times V \to V$ jest zewnętrzne
- 3. działanie · jest rozdzielne względem działania +, to znaczy

$$\bigvee_{u,v \in V} \bigvee_{\alpha \in K} \alpha \cdot (u+v) = (\alpha \cdot u) + (\alpha \cdot v),$$

4. zachodzi "rozdzielność" działania \cdot względem + i \oplus , to znaczy

$$\bigvee_{v \in V} \bigvee_{\alpha, \beta \in K} (\alpha \oplus \beta) \cdot v = (\alpha \cdot v) + (\beta \cdot v),$$

5. zachodzi "łączność" działań \cdot i \otimes , to znaczy

$$\bigvee_{v \in V} \bigvee_{\alpha, \beta \in K} (\alpha \otimes \beta) \cdot v = \alpha \cdot (\beta \cdot v),$$

6. jedynka z ciała (K,\oplus,\otimes) jest elementem neutralnym również dla działania ·, to znaczy

$$\bigvee_{v \in V} \mathbf{1} \cdot v = v.$$

Elementy zbioru V nazywamy **wektorami**, a zbioru K – **skalarami**. Często zamiast przestrzeni $(V, K, +, \cdot)$ piszemy o przestrzeni V, a zamiast symboli \oplus , \otimes piszemy po prostu $+, \cdot$. Element neutralny dodawania wektorów to wektor zerowy $\overline{0}$.

Przykład 3.25

Przestrzenią wektorową nad ciałem liczb rzeczywistych jest struktura $(\mathbb{R}^n, \mathbb{R}, +, \cdot)$, często oznaczana jako $\mathbb{R}^n(\mathbb{R})$, gdzie

- $(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n),$
- $\alpha \cdot (x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$

Przykład 3.26

Jeśli przez $\mathbb{R}[x]_n$ oznaczymy zbiór wielomianów rzeczywistych o stopniu równym co najwyżej n, to struktura

$$(\mathbb{R}[x]_n, \mathbb{R}, +, \cdot)$$

będzie przestrzenią liniową.

Twierdzenie 3.27

W przestrzeni liniowej $(V,K,+,\cdot)$ dla każdych $u,v\in V$ oraz $\alpha,\beta\in K$ zachodzą następujące własności:

- 1. $\mathbf{0} \cdot v = \overline{0}$,
- $2. \ \alpha \cdot \overline{0} = \overline{0},$
- 3. $(-\alpha) \cdot v = -(\alpha \cdot v)$,
- 4. $\alpha \cdot (-v) = -(\alpha \cdot v)$,
- 5. $\alpha \cdot v = \overline{0} \Leftrightarrow (\alpha = \mathbf{0} \vee v = \overline{0}),$
- 6. $\alpha \cdot u = \alpha \cdot v \Rightarrow u = v$, dla $\alpha \neq \mathbf{0}$,
- 7. $\alpha \cdot v = \beta \cdot v \Rightarrow \alpha = \beta$, dla $v \neq \overline{0}$.

Dowód. W dowodach wszystkich własności posługujemy się wyłącznie definicją przestrzeni wektorowej (3.24), wektora zerowego oraz poprzednimi w kolejności udowadnianymi własnościami.

- 1. $v + \mathbf{0} \cdot v = \mathbf{1} \cdot v + \mathbf{0} \cdot v = (\mathbf{1} + \mathbf{0}) \cdot v = v = v + \overline{0}$
 - $\cdot \mathbf{0} \cdot v = \overline{0}$
- 2. $\alpha \cdot \overline{0} = \alpha \cdot (\overline{0} + \overline{0}) = \alpha \cdot \overline{0} + \alpha \cdot \overline{0}$
 - $\therefore \overline{0} = \alpha \cdot \overline{0}$
- 3. $\overline{0} = \alpha \cdot v (\alpha \cdot v)$ oraz $\overline{0} = \mathbf{0} \cdot v = (\alpha \alpha) \cdot v = \alpha \cdot v + (-\alpha) \cdot v$

$$\therefore -(\alpha \cdot v) = (-\alpha) \cdot v$$

4. $\overline{0} = \alpha \cdot v - (\alpha \cdot v)$ oraz $\overline{0} = \alpha \cdot \overline{0} = \alpha \cdot (v - v) = \alpha \cdot v + \alpha \cdot (-v)$

$$\therefore -(\alpha \cdot v) = \alpha \cdot (-v)$$

5. implikacja \Leftarrow (konieczność) trywialna; implikacja \Rightarrow (dostateczność) wynika z tego, że jeśli założymy, że $\alpha \neq \mathbf{0}, v \neq \overline{\mathbf{0}}$, to mamy

$$\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v = \alpha \cdot u.$$

Mnożąć przez a^{-1} (które istnieje, bo $(K, +, \cdot)$ jest ciałem) otrzymujemy

$$u + v = u$$
,

a dodając obustronnie -u (które istnieje z definicji 3.24) dochodzimy do sprzeczności z założeniem

$$v = \overline{0}$$
.

- 6. dowód analogiczny do dowodu lematu 3.12,
- 7. dowód analogiczny do dowodu lematu 3.12.

Definicja 3.28. Podprzestrzeń liniowa $(U, K, +, \cdot)$ to taka struktura, że

- 1. $(V, K, +, \cdot)$ jest przestrzenią liniową oraz $U \subset V, U \neq \emptyset$,
- 2. $\bigvee_{u,v \in U} (u+v) \in U,$ 3. $\bigvee_{\alpha \in K} \bigvee_{u \in U} (\alpha \cdot u) \in U.$

Fakt 3.29 (Równoważna charakterystyka podprzestrzeni). Dwa ostatnie warunki z powyższej definicji są równoważne warunkowi:

$$\bigvee_{\alpha,\beta \in K} \bigvee_{u,v \in V} \alpha \cdot u + \beta \cdot v \in U.$$

Dowód. Implikacja w jedną stroną jest trywialna, w drugą stronę można ją udowodnić przez stwierdzenie, że każdy wektor ma wektor przeciwny (bo z definicji 3.24 (V, +) jest grupa abelowa) oraz że pod α, β można podstawić 1 (i znowu użyć definicji 3.24).

Definicja 3.30. Kombinacja liniowa wektorów v_1, v_2, \ldots, v_n to wektor

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$$

gdzie skalary $\alpha_1, \alpha_2, \dots, \alpha_n$ nazywamy współczynnikami tej kombinacji.

Definicja 3.31. Wektory v_1, v_2, \ldots, v_n są liniowo niezależne, jeśli dla każdego ciągu współczynników α zachodzi implikacja

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \overline{0} \Rightarrow \alpha_1, \alpha_2, \ldots, \alpha_n = 0.$$

Mówimy również, że wektory są liniowo zależne, jeśli nie są liniowo niezależne.

Przykład 3.32

W przestrzeni wektorowej $\mathbb{R}^3(\mathbb{R})$ weźmy wektory

$$u = (3, 2, -1), v = (1, -2, 1), w = (1, 1, 1).$$

Rozwiązujemy układ równań $\alpha u + \beta v + \gamma w = \overline{0} \Rightarrow$

$$\begin{cases} 3\alpha + \beta + \gamma = 0 \\ 2\alpha - 2\beta + \gamma = 0 \\ -\alpha + \beta + \gamma = 0 \end{cases} \Rightarrow \begin{cases} 4\alpha = 0 \\ 2\alpha - 2\beta + \gamma = 0 \\ -\alpha + \beta + \gamma = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ -2\beta + \gamma = 0 \\ \beta + \gamma = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = 0 \\ \gamma = 0 \end{cases}$$

pokazując, że wektory u, v, w są liniowo niezależne.

Twierdzenie 3.33

Wektory v_1, \ldots, v_n są liniowo zależne wtedy i tylko wtedy, gdy przynajmniej jeden jest kombinacją liniową pozostałych.

Dowód. Jeśli istnieje taki ciąg $\alpha_1, \alpha_2, \dots, \alpha_n$, że $\{\alpha_1, \dots, \alpha_n\} \neq \{0\}$ oraz

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = \overline{0},$$

to bez starty ogólności możemy przyjąć, że $\alpha_n \neq 0.$ Równoważnie przekształcamy równość do postaci

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_{n-1} v_{n-1} = -\alpha_n v_n$$

$$\frac{-\alpha_1}{\alpha_n} v_1 + \frac{-\alpha_2}{\alpha_n} v_2 + \dots + \frac{-\alpha_{n-1}}{\alpha_n} v_{n-1} = v_n,$$

więc otrzymujemy równoważność między założeniem i stwierdzeniem, że v_n jest kombinacją liniową wektorów $\alpha_1, \ldots, \alpha_{n-1}$.

Twierdzenie 3.34

Jeśli wektory v_1, v_2, \ldots, v_n są liniowo niezależne oraz wektor u jest kombinacją liniową tych wektorów, to współczynniki tej kombinacji są wyznaczone jednoznacznie.

Dowód. Weźmy takie ciągi (α_n) i (β_n) , że

$$u = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$$

$$u = \beta_1 v_1 + \beta_2 v_2 + \ldots + \beta_n v_n$$

Mamy

$$u - u = \overline{0} = (\alpha_1 - \beta_1)v_1 + (\alpha_2 - \beta_2)v_2 + \ldots + (\alpha_n - \beta_n)v_n$$

co, skoro v_1, v_2, \ldots, v_n są liniowo niezależne, dowodzi, że dla każdego i zachodzi $\alpha_i - \beta_i = 0$, więc ciągi (α_n) i (β_n) są równe.