

PARTIE I

• GENERALITES, DEFINITIONS

- 1.1.1 Notion d'image numérique
- 1.1.2 Notion de causalité, de voisinage
- 1.1.3 Notion de stationnarité
- 1.1.4 Notion d'ergodicité

1.1.1 Notion d'image numérique

Signal continu bidimensionnel:

$$f(x,y)$$
 avec (x,y) R^2 et $f(x,y) \in [0, max[.$

- Echantillonnage de f(x,y) selon $\Delta x \Delta y$ conduit à une série S: $s(i,j)=f(i.\Delta x, j.\Delta y)$ (i,j entiers). Attention à Shannon!
- Quantification de S => image numérique $X: x_{ij} \in \Gamma = \{0,1,...M\}$; $i \in \{0,1,...M\}$ et $j \in \{0,1,...M\}$

1.1.1 Notion d'image numérique

Principales particularités des images vs un signal temporel (classique) :

- L'image est un signal bi-dimensionnel.
- La notion de temps n'a pas de sens, le passé et le futur sont remplacés par des notions de voisinage.
- L'information élémentaire : le pixel
 Valeur : intensité lumineuse, couleur, autre...

1.1.2 Notion de causalité, de voisinage

- Signaux temporels => causaux
 - chaque échantillon a un passé et un futur.
 Souvent les algo s'appuient sur le passé pour prédire l'avenir.

Images :

- temps remplacé par l'espace.
- Pixel pas de passé et ni de futur.
- Algo généralement non causaux.

1.1.2 Notion de causalité, de voisinage

- De la Causalité au Voisinage
 - L'algo exploite une zone entourant chaque pixel.
 - Le voisinage d'un pixel est l'ensemble des pixels qui sont ces voisins
 - Notion très large: n'importe quelle <u>relation symétrique et</u> <u>anti-réflexive</u>.

Exemples : le 4-Voisinage et le 8-Voisinage.

	1	
2	X	4
	3	

1	2	3
8	X	4
7	6	5

4-voisinage

8-voisinage

Support du cours de segmentation

1.1.3 Notion de stationnarité

signal stationnaire:

- conserve ses propriétés statistiques après une translation quelconque de la zone considérée.
- propriétés statistiques du signal à l'instant t et à l'instant $t+\Delta t$ doivent être identiques quel que soit Δt .
- peut être limitée aux statistiques d'ordre 1, 2 ou plus.

Image stationnaire:

- propriétés statistiques conservées par translation
- => identiques pour n'importe quelle sous-fenêtre de l'image.

1.1.3 Notion de stationnarité

Image stationnaire

Images non stationnaires

Support du cours de segmentation

1.1.4 Notion d'ergodicité

 Un signal aléatoire est dit ergodique lorsque les statistiques temporelles du signal sont égales à ses statistiques d'ensemble.

 L'ergodicité d'un signal bidimensionnel (image) s'exprime en termes de moyenne spatiale versus moyenne d'ensemble.

1.2 Généralités: Segmentation ou traitement des non stationnarités

Approches "contours"

Trouver les pixels de frontières

Approches "régions "

Partitionner l'image en ensembles connexes de pixels Ri

$$\bigcup_{i} R_{i} = X \quad \text{et} \quad R_{i} \cap R_{j} = \phi, \quad \forall i, j, \qquad i \neq j$$

1.2 Généralités: Segmentation ou traitement des non stationnarités

Approches "contours" vs approches "régions"

Support du cours de segmentation

1.3 GENERALITES: Segmentation dans la chaîne de traitement d'une image

PARTIE II

SEGMENTATION DE REGIONS

Region Segmentation

Various Methods

- Threshold /Connected component labelling
- Statistics oriented (MRF)
- Computer oriented (Split & Merge)
- Practical (Region growing)
- Topological (Watershed, geodesic contours)

2.0 Segmentation de régions Thresholding / Labelling

- Manual thresholding:
 - Mode, inter-mode
- Automatic thresholding:
 - Fisher, Entropic, ...
- Connected component labelling.
- Pros/Cons:
 - Simple and fast: if it works, do not hesitate!!!
 - But:
 - no region model, irregular shapes
 - class overlapping => labelling errors.
- Improvements: Adaptive thresholding.

2.0 Segmentation de régions Limites du seuillage

2 pics+ peu de recouvrement: Seuillage facile

3 pics + fort recouvrement: Seuillage très difficile

1 seul pic: Seuillage impossible

Images de matériaux fibreux

2.0 Segmentation de régions Seuillage de Fisher

• Trouver la meilleure partition $P=\{C_1, C_2, ..., C_N\}$

• Minimiser l'inertie de l'histogramme

$$W(P) = \sum_{i=1}^{N} \sum_{k \in C_i} h(k) \cdot (k - G(C_i))^2$$

avec
$$G(C_i) = \frac{\sum_{k \in C_i} k.h(k)}{\sum_{k \in C_i} h(k)}$$

2.1 Segmentation par modèles Markoviens (Markov Random Fields)

Problem description:

Number of classes: 5

Class standard deviation of the grey levels: 8

Class average of the grey levels:

27 46 111 120 179

The image to be segmented

Hidden field (labels)

Measured field (pixels)

Hiden Markov field

N number of pixels. $S = \{s_1, s_2, ..., s_N\}$ the site grid.

K number of possible labels (number of classes).

 $L=\{1,2,...,K\}$ the labels.

V a neighborhood system (4-connexity).

- If s and t are neighbor sites $s \in V(t)$ et $t \in V(s)$

Clique: a set of sites which are mutually neighbors:

- $\{s_1, s_2, ... s_p\}$ are in a clique if $\forall i$ and j, $i \neq j$, $s_i \in V(s_i)$
- $A=\{a_s, s \in S\}$ the known field (pixels);
 - $-a_s$ the grey level of site s.
- $\Lambda = {\lambda_s, s \in S}$ the hidden field (the segmentation):
 - $-\lambda_s$ the label of site s.

 Ω the set of all the possible labelling Λ .

- Card $\Omega = ? K^N$

Labeling likelihood.

We know A, we want Λ . The problem is to maximize $P(\Lambda|A)$

From Bayes:
$$P(\Lambda|A) = \frac{P(A|\Lambda).P(\Lambda)}{P(A)}$$

Since A is known, we can maximize $P(A|\Lambda).P(\Lambda)$

- Calculation of $P(A|\Lambda).P(\Lambda)$
- Grey levels are independent. Therefore: $P(A|\Lambda) = \prod_{s \in S} P(a_s | \lambda_s)$
 - The grey level in each class being Gaussian:

$$P(a_s|\lambda_s) = \frac{1}{\sigma_{\lambda s} \sqrt{2\pi}} \exp\left(-\frac{(a_s - \mu_{\lambda s})^2}{2\sigma_{\lambda s}^2}\right)$$

 $\mu_{\lambda s}$ and $\sigma_{\lambda s}$ being the mean and standard deviation of the grey level of then class λ_s

- Calculation of $P(A|\Lambda).P(\Lambda)$
- Labels are NOT independent. Therefore: $P(\Lambda) = \prod_{s \in S} P(\lambda_s | \lambda_{t,t \neq s})$
- But Λ is markovian. So: $P(\Lambda) = \prod_{s \in S} P(\lambda_s | \lambda_{V(s)})$

• Besides, Hammersley-Clifford says that a Markov Random Field (under some easy restrictions) can be expressed as a Gibbs Field for which the probability is well known in Physics:

$$P(\Lambda) = \exp(-U(\Lambda)) = \exp\left(-\sum_{c \in C} W_c(\lambda_c)\right)$$

U is the energy of the labeling.

The lower the energy, the more likely he labeling.

W_c is the clique c potential.

C being the whole set of cliques in the field.

Autologistic potential:

s₁ et s₂ being sites of clique c.

If
$$\lambda_{s1} = \lambda_{s2}$$
 then $W_c = -\beta$ else $W_c = +\beta$.

 β parameter expresses the expected regularity of the labeling.

We will minimize a pseudo energy E as:

$$E(A, \Lambda) = -\log(P(A|\Lambda).P(\Lambda))$$

Combining the previous relations we have:

$$E(A, \Lambda) = \sum_{s \in S} \left(\log \left(\sigma_{\lambda s} \sqrt{2\pi} \right) + \frac{\left(a_s - \mu_{\lambda s} \right)^2}{2\sigma_{\lambda s}^2} \right) + \sum_{c \in C} W_c \left(\lambda_c \right)$$

And locally:

$$e_{s} = \log\left(\sigma_{\lambda s}\sqrt{2\pi}\right) + \frac{\left(a_{s} - \mu_{\lambda s}\right)^{2}}{2\sigma_{\lambda s}^{2}} + \sum_{Cs} W_{Cs}\left(\lambda_{Cs}\right)$$

Minimization: I.C.M.

(Iterated Conditional Mode)

• Deterministic method. Fast (several loop) but stops to the 1st local minimum of E.

```
Begin
Starting from a "good" initial labeling
Repeat
For each site s
Set the label which minimize the local energy e to s
End
Until convergence
End
```

• This algorithm is effective only when the initial labeling is close to the global minimum of E

Minimization: Metropolis

```
Begin
Starting from random initial labeling and choose temperature T
   Repeat
      For each site s
         Draw a candidate label \mathbf{x} and compute the local energy \mathbf{e}(\mathbf{s}) & \mathbf{e}(\mathbf{x})
         If e(x) < e(s) Then Set x to s
                        Else Set x to s with a probability = exp(-\Delta e/T)
        End
      End
   Until convergence
```

• Algorithm optimal in theory... but unreasonably long!

End

Minimization: Simulated annealing

```
Begin
Starting from random initial labeling and choose initial temperature T
   Repeat
      For each site s
         Draw a candidate label \mathbf{x} and compute the local energy \mathbf{e}(\mathbf{s}) & \mathbf{e}(\mathbf{x})
         If e(x) < e(s) Then Set x to s
                        Else Set x to s with a probability = exp(-\Delta e/T)
        End
      End
      Decrease T (i.e T\leftarrowk*T with k\in[0.8,0.999])
  Until convergence
End
```

Algorithm usually suboptimal. Takes hundreds of iterations (k>0.9)

2.1 Segmentation par *Modèles markoviens*

Exemple de résultat pour une relaxation markovienne

L'image à segmenter

Résultat

2.2 Segmentation par Ligne de partage des eaux (Watershed)

2.2.1 Principe

• Une Image en niveaux de gris peut être considérée comme une surface topographique (un terrain pentu...)

Support du cours de segmentation

2.2 Segmentation par Ligne de partage des eaux (Watershed)

2.2.1 Principe

- Remplir de la surface à partir ses minima ET empêcher l'eau en provenance de différentes sources de se mélanger
- Résultat:
 - Des bassins versants
 - et des lignes de partage des eaux

Segmentation par la ligne de partage des eaux Analogie topographique

Segmentation par la ligne de partage des eaux Simulation d'immersion

Segmentation par la ligne de partage des eaux Simulation d'immersion

Première LPE

Deuxième LPE

Segmentation par la ligne de partage des eaux Simulation d'immersion

```
Début
     Classer les sites par niveau de gris croissant.
     Pour ( tout h entre h_{min} et h_{max} ) faire
           Marquer tous les sites de niveau h avec le label M
           Mettre en attente les sites ayant des voisins déjà labellisés (≠M)
           Tant que ( file d'attente non vide ) faire
                 Défiler un site s
                 Examiner son voisinage V_s
                 Si, sur V_s, on ne trouve qu'un seul label L,
                 alors
                            s reçoit ce label.
                 Si, sur V_s, il existe des labels différents,
                alors
                            s reçoit le label LPE
                 Si \exists t \in V_s tel que t a le label M,
                 alors
                           mettre t en attente.
           Fin Tant que
           On repère tous les sites marqués (label M) mais non encore traités,
           et on leur affecte des nouveaux labels.
```

Fin Pour

Fin

Fin de l'étape h-1

Tous les pixels de niveau inférieur à *h* ont été traités. 3 régions ont été identifiées.

Etape h

On marque tous les pixels de niveau h:

Etape h (suite)

On met en file d'attente ceux ayant des voisins labellisés

Etape h (suite...)

Pour chaque site *s* en attente, on examine ses voisins... Si *s* n'est adjacent qu'à des sites de même label : on lui affecte ce label.

Etape h (suite)

Si *s* est adjacent à 2 (ou plus) labels différents : on le marque comme LPE.

Si un voisin de s a le label masque M, on met ce pixel en attente...

					L ₁	L ₁		
					L ₁	L ₁		
	M			LPE	LPE			
					L ₂			
					L ₂			
		L ₃	L ₃					
		L ₃					M	
							M	

Etape h (suite)

... et on le traite.

Etape h (fin)

On repère tous les sites marqués mais non encore traités : on leur donne un nouveau label.

					L ₁	L ₁	M	
				M	L ₁	L ₁		
M	L ₄			LPE	LPE			
					L ₂			
					L ₂			
		L ₃	L ₃					
		L ₃				M	L ₅	
							L ₅	

Etape h+1

On recommence...