# Završni ispit

23. siječnja 2017.

# Ime i Prezime: Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

### 1. zadatak (18 bodova)

U sustavu upravljanja prikazanom slikom 1 upravlja se procesom  $G_P(s)$ . Za upravljanje se koristi diskretni regulator oblika  $G_R(z) = \mathcal{Z}\left\{G_R(s)\right\} = K_R \frac{z}{z-1}$ .



Slika 1: Diskretni sustav upravljanja.



Slika 2: Bodeov dijagram procesa  $G_P(s)$  uz zadatak 1.

- a) (3 boda) Odredite prijenosnu funkciju procesa  $G_P(s)$  koji je zadan Bodeovim dijagramom prikazanim na slici 2.
- b) (3 boda) Neka je prijenosna funkcija procesa zadana s $G_P(s) = \frac{s+5}{(s+1)(s+10)}$ , odredite diskretiziranu prijenosnu funkciju procesa  $G_P(z)$  korištenjem odgovarajućeg postupka diskretizacije uz vrijeme uzorkovanja T = 0.05 s.
- c) (4 boda) Nacrtajte Bodeov dijagram (amplitudnu i faznu frekvencijsku karakteristiku) otvorenog kruga diskretnoga sustava upravljanja korištenjem aproksimacije pravcima ako je prijenosna funkcija procesa dana sa  $G_P(z) = \frac{0.05}{z-0.9}$  i zadano je  $K_R = 1$ .
- d) (3 boda) Koristeći jednadžbe pravaca koje aproksimiraju Bodeov dijagram odredite iznos pojačanja  $K_R$  za koji se ostvaruje fazno osiguranje sustava  $\gamma = 50^{\circ}$ .
- e) (5 bodova) Korištenjem Jurijevog kriterija odredite za koje vrijednosti pojačanja  $K_R$  je diskretni sustav upravljanja stabilan ako je prijenosna funkcija procesa dana sa  $G_P(z) = \frac{0.05z 0.05}{z^2 1.5z + 0.5}$ .

## 2. zadatak (7 bodova)

Na slici 3 prikazan je blokovski dijagram sustava s ulaznim signalima  $u_1$  i  $u_2$ , varijablama stanja  $x_1$  i  $x_2$  te izlaznim signalom y.

- a)  $(3 \ boda)$  Iz blokovskog dijagrama sustava odredite matrice  $A,\ B,\ C$  i D iz opisa sustava u prostoru stanja.
- b) (4 boda) Poznati su iznosi upravljačkih signala  $u_1 = 1$  i  $u_2 = 0.5$ . Odredite iznose varijabli stanja u ustaljenom stanju.



Slika 3: Blokovski dijagram sustava.

### 3. zadatak (12 bodova)

Zadana je prijenosna funkcija otvorenog kruga

$$G_o(s) = K_R \frac{1 + T_I s}{T_I s} \frac{1}{0.1s^2 + 0.7s + 1}.$$
 (1)

Procesom se upravlja u zatvorenom krugu s jediničnom negativnom povratnom vezom.

- a) (6 bodova) Korištenjem Hurwitzog kriterija odredite prostor parametara regulatora  $(K_R, T_I)$  za koji je regulacijski krug stabilan i potom skicirajte pripadajuće područje stabilnosti.
- b) (3 boda) Odredite iznos presječne frekvencije otvorenog kruga  $\omega_c$  uz  $K_R=1$  i  $T_I=1$ .
- c) (3 boda) Neka je iznos integracijske vremenske konstante jednak iznosu najveće vremenske konstante procesa, odredite najveći iznos parametra  $K_R$  uz kojeg je prijelazna funkcija zatvorenog kruga aperiodska.

#### 4. zadatak (10 bodova)

Na slici 4 prikazana je prijelazna funkcija procesa s tangentom u točki infleksije W. Poznato je  $t_z = 0.2$  s.



Slika 4: Prijelazna funkcija procesa (puna linija) i tangenta u točki infleksije W (isprekidana linija).

- a) (4 boda) Odredite prijenosnu funkciju pojednostavljenog  $PT_1T_t$  matematičkog modela  $G_p(s)$  takvog da jednadžba tangente njegove prijelazne funkcije  $h_p(t)$  u trenutku  $t_z^+$  bude jednaka jednadžbi tangente prijelazne funkcije procesa u točki W. Pritom vrijedi  $h_p(t_z) = 0$ . Napomena: Vrijedi  $t_z^+ = t_z + 0^+$ .
- b) (3 boda) Korištenjem Ziegler-Nicholsovog postupka prijelazne funkcije odredite parametre PI regulatora za upravljanje procesom u zatvorenom krugu upravljanja.
- c) (3 boda) Možete li primijeniti jedan od Ziegler-Nicholsovih postupaka sinteze regulatora ako proces nije stabilan? Objasnite.

# **RJEŠENJA:**

### Zadatak 1

a) 
$$G_P(s) = 3.16 \frac{1 + \frac{s}{2}}{(1+s)(1 + \frac{s}{10})} = 15.81 \frac{s+2}{(s+1)(s+10)}$$

- b) Primjenom ZOH diskretizacije uz vrijeme uzorkovanja T=0.05 s dobiva se:  $G(z)=\frac{0.04z-0.03}{z^2-1.558z+0.577}$
- c) Kako bismo nacrtali aproksimaciju Bodeovim pravcima diskretnoga sustava potrebno je primijeniti modificiranu bilinearnu transformaciju.

$$G_o(z) = \frac{z}{z - 1} \frac{0.05}{z - 0.09} = \frac{0.05z}{z^2 - 1.9z + 0.9}$$

$$G_o(\Omega) = G_o(z)|_{z = \frac{1 + \Omega \frac{T}{2}}{1 - \Omega \frac{T}{2}}} = 10 \frac{(1 - \Omega \frac{1}{40})(1 + \Omega \frac{1}{40})}{\Omega(1 + \Omega \frac{1}{2.1})}$$

Aproksimacija Bodeovog dijagrama pravcima je prikazana na slici 5.



Slika 5: Bodeov dijagram iz podzataka c)

d) Tražimo frekvenciju na faznoj karkteristici gdje fazno kašnjenje iznosi 180° –  $\gamma = 130^\circ$ .

$$10^x = 0.21 \Rightarrow x = -0.6778$$

Iz točke (-0.6778, -90) na faznoj karakteristici slijedi:

$$y+90=-45(x+0.6778)$$
 
$$y=-45x-120.501$$
 Za y uvrstimo -130, iz čega slijedi 
$$x=0.211$$

Iz točke (0, 20) na amplitudnoj karakteristici slijedi:

$$y-20=-20x$$
 
$$y=-20x+20$$
 Za x uvrstimo 0.211, iz čega slijedi
$$y=15.78$$

Kako bi ostvarili željeno fazno osiguranje moramo spustiti amplitudnu karakteristiku za 15.78 dB.

$$-15.78 = 20 \log K_R$$
$$K_R = 0.16$$

e) Kako bi primijenili Jurijev kriterij potrebno je pronaći karakterističnu funkciju f(z) zatvorenoga kruga upravljanja  $G_z(z) = \frac{G_o(z)}{1+G_o(z)}$ .

$$G_o(z) = K_R \frac{z}{z - 1} \frac{0.05(z - 1)}{z^2 - 1.5z + 0.5} = \frac{0.05K_R z}{z^2 - 1.5z + 0.5}$$
$$f(z) = 1 + G_o(z) = 0$$
$$f(z) = z^2 + (0.05K_R - 1.5)z + 0.5$$

Uvjeti:

$$1 + 0.05K_R - 1.5 + 0.5 > 0$$
$$0.05K_R > 0$$
$$K_R > 0$$

$$(-1)^n f(-1) > 0$$

$$\begin{aligned} 1 - 0.05 K_R - 1.5 + 0.5 &> 0 \\ -0.05 K_R &> -3 \\ K_R &< 60 \end{aligned}$$

$$|a_0| < |a_2| \Rightarrow 0.5 < 1$$

Sustav je stabilan za  $K_R \in (0, 60)$ .

#### Zadatak 2

a) Iz blokovskog dijagrama slijede diferencijalne jednadžbe prvog reda koje opisuju dinamiku varijabli stanja:

$$\dot{x}_1 = -0.1x_1 - 0.3x_2 + u_1 - 0.3u_2,$$
  
$$\dot{x}_2 = 0.3x_1 - 0.5x_2 - 0.5u_2,$$

dok je izlazna jednadžba definirana s

$$y = x_1 + x_2 + u_2$$
.

Možemo odrediti matrice sustava u prostoru stanja:

$$A = \begin{bmatrix} -0.1 & -0.3 \\ 0.3 & -0.5 \end{bmatrix}, B = \begin{bmatrix} 1 & -0.3 \\ 0 & -0.5 \end{bmatrix},$$
$$C = \begin{bmatrix} 1 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 & 1 \end{bmatrix}.$$

b) U ustaljenom stanju vrijedi  $\dot{x}_{\infty} = [0; 0]$  pa se iznos varijabli stanja dobije rješavanjem 2 jednadžbe s 2 nepoznanice. Rješavanjem matrične jednadžbe sustava u prostoru stanja uz  $u_{\infty} = [1; 0.5]$  i  $\dot{x}_{\infty} = [0; 0]$  slijedi:

$$x_{\infty} = -A^{-1}Bu_{\infty} = \begin{bmatrix} 3.5714\\ 1.6429 \end{bmatrix}.$$

### Zadatak 3

a) Karakteristični polinom zatvorenog kruga je

$$P(s) = 0.1s^3 + 0.7s^2 + (1 + K_R)s + \frac{K_R}{T_L}$$

- $K_R > -1, \; \frac{K_R}{T_I} > 0 \to K_R, T_I > 0$  odnosno  $K_R, T_I < 0.$
- Iz drugog uvjeta slijedi

$$K_R\left(0.7 - \frac{0.1}{T_I}\right) > -0.7$$

što je zadovoljeno ako:

I) 
$$K_R < \frac{-0.7}{0.7 - \frac{0.1}{T_I}} \text{ i } 0 < T_I < \frac{1}{7},$$

II) 
$$K_R > \frac{-0.7}{0.7 - \frac{0.1}{T_I}} \text{ i } (T_I > \frac{1}{7} \text{ ili } T_I < 0).$$

Prostor parametara za koje je sustav stabilan prikazan je na slici 6. Priznavala su se i djelomična rješenja u kojima je razmatrana stabilnost uz uvjet  $T_I > 0$ .

b) Presječna frekvencija slijedi iz jednadžbe  $|G_o(j\omega_c)|=1$ , odnosno uzima se realno i pozitivno rješenje slijedećeg polinoma:

$$0.01\omega^6 + 0.29\omega^4 - 1 = 0.$$

(Presječna frekvencija jednaka je  $\omega_c = 1.3423 \text{ rad/s}$ )

c) Integracijska vremenska konstanta je  $T_I=0.5$  pa dobivamo za prijenosnu funkciju otvorenog kruga

$$G_o(s) = \frac{K_R}{0.1s^2 + 0.5s}.$$



Slika 6: Prostor parametara PI regulatora za koje je zatvoreni krug upravljanja stabilan.

Karakteristični polinom zatvorenog kruga je

$$P(s) = 0.1s^2 + 0.5s + K_R.$$

Prijelazna funkcija zatvorenog kruga bit će aperiodska ako su nultočke karakterističnog polinoma realne i negativne (čitaj polovi zatvorenog kruga su realni i negativni). Iznos najvećeg pojačanja koji zadovoljava uvjet dobije se izjednačavanjem diskriminante karakterističnog polinoma s0,a rezultat je  $K_R=0.625$  (pripadajući polovi su  $s_{p_{1,2}}=-2.5).$ 

#### Zadatak 4

a) Prijenosna funkcija PT<sub>1</sub>T<sub>t</sub> člana je

$$G(s) = e^{-sT_d} \frac{K_s}{Ts+1}.$$

• Postupak 1: Do trenutka  $t_z$  prijelazna funkcija modela je 0 pa iz toga zaključujemo  $T_d=t_z=0.2$ . Iz odziva također možemo odrediti iznos koeficijenta pojačanja modela  $K_s=2$ . Uvrštavanjem vremena kašnjenja  $t_z$  slijedi diferencijalna jednadžba modela

$$T\dot{y}(t) + y(t) = K_s u(t - t_z).$$

U trenutku  $t=t_z^+$ nagib tangente prijelazne funkcije modela dan je jednadžbom

$$T\dot{y}(t_z^+) = 2, (2)$$

a nagib tangente prijelazne funkcije procesa je

$$\dot{y}_p(t_z^+) = \frac{2}{0.8}. (3)$$

Izjednačavanjem jednadbžbi (2) i (3) slijedi iznos vremenske konstante modela

$$T = 0.8$$
.

• Postupak 2: Prijelazna funkcija modela zadana je s

$$H(s) = \frac{1}{s}e^{-sT_d}\frac{K_s}{T_{s+1}},$$

odnosno možemo pisati

$$H(s)e^{sT_d} = \frac{1}{s}\frac{K_s}{Ts+1}. (4)$$

S lijeve strane jednadžbe (4) imamo u vremenskoj domeni  $h(t+T_d)$ . Primijetimo kako vrijedi  $T_d=t_z$  i primjenom teorema o početnoj vrijednosti dobivamo

$$\dot{h}(t_z^+) = \lim_{s \to \infty} s^2 \frac{1}{s} \frac{K_s}{Ts+1} = \frac{K_s}{T}.$$

Iz stacionarnog stanja prijelazne funkcije procesa možemo očitati iznos statičkog pojačanja  $PT_1$  člana  $K_s=2$  pa izjednačavanjem nagiba tangente modela s tangentom procesa

$$\frac{2}{T} = \frac{2}{0.8}$$

slijedi iznos vremenske konstante modela T = 0.8.

b) Iz odziva možemo očitati:  $t_a=0.8,\;t_z=0.2$  i  $K_s=2$  pa prema ZN preporukama slijede iznosi parametara regulatora

$$K_R = 0.9 \frac{t_a}{t_z K_s} = 1.8,$$

$$T_I = 3.33t_z = 0.67.$$

c) Da. Moguće je primijeniti ZN postupak ruba stabilnosti ako se sustav može stabilizirati u zatvorenom krugu upravljanja korištenjem P regulatora.