Case 1 - Obesity NLP Challenge

2021/10/20

Outline

- Dataset Parsing
- Preprocessing
 - Text Recontruction
 - Remove irrelevant section
 - NLTK
 - o TF-IDF
- Model
 - Random forest
 - \circ NN

- Results
- Reference
- Team Member Contribution

Dataset Parsing

- Train (textual labels): 400 records, including 200 U and 200 Y
- Test (intuitive labels): 400 records, including 200 N and 200 Y
- Overlap Records:
 - Total records: 465 (335 overlap records)
 - Records of consistent label:
 - U -> N:158
 - Y -> Y: 140
 - Records of inconsistent label (37 records)
 - U -> Y:13
 - ID_716, ID_725, ID_728, ID_737, ID_740, ID_747,
 - ID_851, ID_855, ID_861, ID_869, ID_882, ID_884, ID_891
 - Y -> N:24
 - ID_715, ID_726, ID_734, ID_739, ID_746, ID_750,
 - ID_854, ID_857, ID_868, ID_873, ID_876, ID_883, ID_890, ID_892, ID_897,
 - ID_904, ID_909, ID_915, ID_921, ID_929, ID_932, ID_935, ID_943, ID_945

Dataset Parsing

		Y	U	Not included	Sum
	Y	140	13	47	200
Intuitive	N	24	158	18	200
	Not included	36	29		65
	Sum	200	200	65	

Preprocessing - Reconstruction

PHYSICAL EXAMINATION: On admission , the patient was an uncomfortable obese white female in moderate distress. Vital signs were stable and her temperature was 98.6. SKIN: Normal. HEENT: Normocephalic and atraumatic. CHEST: Clear bilaterally. CARDIAC: Regular rate and rhythm with normal S1 and S2 with a grade II/VI systolic ejection murmur. ABDOMEN: Soft , non-tender , and non-distended except for in the right upper quadrant where she had right upper quadrant pain and a positive

LABORATORY EXAMINATION: Significant for hematocrit of 40.5, and a normal set of liver function tests with an amylase of

ept for in the right upper
nt pain and a positive

PHYSICAL EXAMINATION: On admission, the patient was an uncomfortable obese white female in

moderate distress. Vital signs were stable and her temperature was 98.6.

SKIN: Normal.

HEENT: Normocephalic and atraumatic.

CHEST: Clear bilaterally.

CARDIAC: Regular rate and rhythm with normal S1 and S2 with a grade II/VI systolic ejection

murmur.

ABDOMEN: Soft, non-tender, and non-distended except for in the right upper quadrant where s he had right upper quadrant pain and a positive Murphy's but no peritoneal signs.

LABORATORY EXAMINATION: Significant for a white count of 7.2, hematocrit of 40.5, and a nor mal set of liver function tests with an amylase of 63.

Preprocessing - Removing Irrelevant Sections

Removed sections

- 'Discharge Date'
- 'Attending',
- 'Reason for override',
- 'Dictated By'
- o 'Batch',
- o 'T'
- o 'CC',
- o 'D',
- o 'ENTERED BY',
- 'Service',

- 'eScription document',
- 'FAMILY HISTORY',
- 'Previous override information',
- o 'ID'
- 'Infectious Disease'
- 0 ...

Preprocessing - NLTK

- correct verb's other express:
 - o e.g. branching. branched, branches->branch
- correct plural:
 - o e.g. apples->apple
- remove stopwords:
 - o e.g. the, a, this

Feature Extraction - TF-IDF

TF-IDF:

$$W_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

TF-IDF

Term x within document y

 $tf_{x,y}$ = frequency of x in y

 df_x = number of documents containing x

N = total number of documents

	note	renal	sbp	myocardi	gastric	hip	срар	bipap	right	knee		chronic	hemodialysi	coronari
0	0,000000	0.000000	0.0	0.044391	0.0	0.0	0.000000	0.0	0.030887	0.0		0.000000	0.000000	0.215112
1	0.000000	0.085303	0.0	0.000000	0.0	0.0	0.000000	0.0	0.034433	0.0	***	0.000000	0.085218	0.039968
2	0.020170	0.095439	0.0	0.027684	0.0	0.0	0.000000	0.0	0.000000	0.0	***	0.000000	0.333707	0.022358
3	0.050491	0.074661	0.0	0.000000	0.0	0.0	0.000000	0.0	0.000000	0.0		0.014982	0.059670	0.013993
4	0.045709	0.000000	0.0	0.041826	0.0	0.0	0.000000	0.0	0.014551	0.0	***	0.018085	0.000000	0.000000
				***	***						***			

Feature Extraction - TF-IDF

- Calculate TF-IDF score of different terms, and rank the feature importance by "mean" of each term.
- Compare the ranking by the difference of TF-IDF score in datasets labeled "Y" and labed "U".

Important Terms by TF-IDF

	obes	chronic	right	note	pt	apnea	sleep	gastric	knee	morbid	daili	bleed	срар	weight	renal	ms	continu	chf	copd	bipap
0	0.000000	0.000000	0.030887	0.000000	0.000000	0.000000	0.000000	0.0	0.0	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.066011	0.027966	0.000000	0.000000	0.0
1	0.000000	0.000000	0.034433	0.000000	0.000000	0.000000	0.000000	0.0	0.0	0.000000	0.000000	0.000000	0.000000	0.00000	0.085303	0.000000	0.000000	0.104849	0.000000	0.0
2	0.000000	0.000000	0.000000	0.020170	0.000000	0.000000	0.000000	0.0	0.0	0.000000	0.000000	0.000000	0.000000	0.00000	0.095439	0.000000	0.087204	0.000000	0.000000	0.0
3	0.000000	0.014982	0.000000	0.050491	0.000000	0.000000	0.000000	0.0	0.0	0.000000	0.265409	0.000000	0.000000	0.00000	0.074661	0.000000	0.054575	0.000000	0.000000	0.0
4	0.000000	0.018085	0.014551	0.045709	0.000000	0.000000	0.000000	0.0	0.0	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	0.031098	0.039525	0.000000	0.000000	0.0
						F					in				***		***			

	instruct	aortic	sbp	valv	fall	electrocardiogram	ро	descend	dc	cardiomyopathi	lovenox	myocardi	infarct	hemodialysi	mg	coronari	sp	arteri
0	0.000000	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.062571	0.000000	0.000000	0.000000	0.044391	0.042229	0.000000	0.000000	0.215112	0.000000	0.136483
1	0.154965	0.065654	0.0	0.065654	0.000000	0.000000	0.119494	0.000000	0.079185	0.000000	0.000000	0.000000	0.000000	0.085218	0.085710	0.039968	0.048717	0.038038
2	0.000000	0.000000	0.0	0.000000	0.085943	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.027684	0.026336	0.333707	0.000000	0.022358	0.000000	0.021279
3	0.000000	0.000000	0.0	0.000000	0.000000	0.000000	0.020917	0.024421	0.027722	0.022841	0.000000	0.000000	0.000000	0.059670	0.130031	0.013993	0.000000	0.039951
4	0.000000	0.000000	0.0	0.000000	0.000000	0.177942	0.050497	0.088433	0.000000	0.000000	0.000000	0.041826	0.039789	0.000000	0.120735	0.000000	0.000000	0.016074
	***					444			***				***					***

40 terms for Final method

tfidf-selection

- ['obes', 'chronic', 'right', 'note', 'pt', 'apnea', 'sleep', 'gastric', 'knee', 'morbid', 'daili', 'bleed', 'cpap', 'weight', 'renal', 'ms', 'continu', 'chf', 'copd', 'bipap']
- ['instruct', 'aortic', 'sbp', 'valv', 'fall', 'electrocardiogram', 'po', 'descend', 'dc', 'cardiomyopathi', 'lovenox', 'myocardi', 'infarct', 'hemodialysi', 'mg', 'coronari', 'sp', 'arteri', 'qd', 'hip']

Method 1 result

- data preprocessing
- keyword amounts as feature(['coronary', 'diabetic', 'diabetes', 'dyslipidemia', 'hypertension', 'hypothyroidism','hyperlipidemia', 'gout', 'chronic','nondistended'])
- consider keyword as "non-obese", 'non-distended'
- not consider text "obese" -> more accurate

Method 1 result(cont.)

use textual dataset(400)

- random forest -> f1 score: 0.62857(highest)
- nn model -> f1 score: 0.60000

use merged dataset(428)

- o random forest ->f1 score: 0.60000
- nn model-> f1 score: 0.62857(highest)

Final method

- Data preprocessing (train_textual)
 - Remove section
 - NLTK preprocessing: remove stop words, vocabulary formity
 - TF-IDF
 - # feature: 40
- Model
 - Random forest: f1 score: 0.57142
 - NN: f1 score: 0.60000

Results

- Local train/test results
 - use textual dataset to split 7:3 for train/test

	Acc	f1 score
Train	0.8142856955528259	0.7984496124031009
Test	0.7166666388511658	0.6964285714285715

- use original train/test split

:	Acc	f1 score
Train	0.8224999904632568	0.8065395095367848
Test	0.8525000214576721	0.8459530026109661

Reference

- Uzuner O. Recognizing obesity and comorbidities in sparse data. J Am Med Inform Assoc. 2009 Jul-Aug.
- Mishra NK, Cummo DM, Arnzen JJ, Bonander J. A rule-based approach for identifying obesity and its comorbidities in medical discharge summaries. J Am Med Inform Assoc. 2009 Jul-Aug.
- Yang H, Spasic I, Keane JA, Nenadic G. A text mining approach to the prediction of disease status from clinical discharge summaries. J Am Med Inform Assoc. 2009 Jul-Aug.
- Natural Language Toolkit (NLTK): https://www.nltk.org

Team Member Contribution

	Dataset Parsing		Preprocessing		Feature I	Extraction	Model/A	Analysis	Result Presentation		
	Dataset Parsing	Text Recontruct	Remove Irrelevant Sections	NLTK	TF-IDF	Manual Selection	Random Forest	Neural Network	Slides	Oral	
林亦盛 309551074	V				V		V	V	V	V	
周君諦 310551136	V	V	V					V	V	V	
陳昱銘 310554007	V			V		V	V	V	V	V	

Thank you!

The codes for this experiment are available at

https://github.com/tim310579/Digital-Medicine-Case-Presentation-1.git