class 11

Jenny Zhou

Identify genetic variants of interest

Q5: What proportion of the Mexican Ancestry in Los Angeles sample population (MXL) are homozygous for the asthma associated SNP (G|G)?

```
MXL <- read.csv("373531-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378.csv") head(MXL)
```

```
Sample..Male.Female.Unknown. Genotype..forward.strand. Population.s. Father
1
                    NA19649 (M)
                                                       G|G ALL, AMR, MXL
2
                                                       G|G ALL, AMR, MXL
                    NA19652 (M)
3
                                                       G|G ALL, AMR, MXL
                    NA19654 (F)
                                                       G|G ALL, AMR, MXL
4
                    NA19676 (M)
5
                                                       G|G ALL, AMR, MXL
                    NA19719 (F)
6
                    NA19720 (M)
                                                       G|G ALL, AMR, MXL
 Mother
1
2
3
4
```

```
table(MXL$Genotype..forward.strand.)/ nrow(MXL) *100
```

```
A|A A|G G|A G|G
34.3750 32.8125 18.7500 14.0625
```

Now let's look at a different population (British in England and Scotland)

```
GBR <- read.csv("373522-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378.csv") head(GBR)
```

```
Sample..Male.Female.Unknown. Genotype..forward.strand. Population.s. Father
                   HG00099 (F)
1
                                                       G|G ALL, EUR, GBR
2
                                                       G|G ALL, EUR, GBR
                   HG00107 (M)
3
                                                       G|G ALL, EUR, GBR
                   HG00109 (M)
                                                       G|G ALL, EUR, GBR
4
                   HG00112 (M)
5
                   HG00113 (M)
                                                       G|G ALL, EUR, GBR
6
                   HG00116 (M)
                                                       G|G ALL, EUR, GBR
 Mother
1
2
3
4
5
```

```
signif(table(GBR$Genotype..forward.strand.)/ nrow(GBR) *100,3)
```

```
A|A A|G G|A G|G
25.3 18.7 26.4 29.7
```

This variation that is associated with childhood asthma is more frequent the GBR population than the MKL population.

Lets now dig into this further.

Population Scale Analysis

Determine whether there is any association of the 4 asthma-associated SNPs (rs8067378...) on **ORMDL3** expression.

Q13: Read this file into R and determine the sample size for each genotype and their corresponding median expression levels for each of these genotypes.

```
expr <- read.table("rs8067378_ENSG00000172057.6.txt")
head(expr)</pre>
```

```
sample geno
                    exp
1 HG00367 A/G 28.96038
2 NA20768 A/G 20.24449
3 HG00361 A/A 31.32628
4 HG00135 A/A 34.11169
5 NA18870 G/G 18.25141
6 NA11993 A/A 32.89721
  table(expr$geno)
A/A A/G G/G
108 233 121
  exp.med <- function(x) {</pre>
    # select one specific genotype
    which.geno <- expr$geno == x
    #filter the expression levels for that genotype
    exps <- expr$exp[which.geno]</pre>
    #calculate medium of filted expression levels, with 2 decimal points.
    round(median(exps), 2)
  exp.med("G/G")
[1] 20.07
  exp.med("A/A")
[1] 31.25
  exp.med("A/G")
[1] 25.06
```

The median expression level for G/G genotype is 20.07. The median expression level for A/A genotype is 31.25. The median expression level for A/G genotype is 25.06.

Q14: Generate a boxplot with a box per genotype, what could you infer from the relative expression value between A/A and G/G displayed in this plot? Does the SNP effect the expression of ORMDL3?

```
library(ggplot2)

ggplot(expr) + aes(geno, exp, fill = geno) +
    geom_boxplot(notch=TRUE)
```


SNP effects the expression of ORMDL3. According to the boxplot, comparing to A/A genotype, G/G genotype leads to a lower expression of ORMDL3 by an around 1/3 fold. ORMDL3 expression with a A/G genotype is between that of A/A and G/G.