Teorija vjerojatnosti 1 & 2

Laura Župčić

zadnji put ažurirano 23. lipnja 2025.

Bilješke prema predavanjima prof. Šikića s Meduze u akademskoj godini 2020./2021. te redovitim predavanjima u 2024./2025. i manjim dijelom predavanjima prof. Vondračeka u 2023./2024.

Predgovor

Ove bilješke ne mogu zamijeniti dolaske na predavanja.

U svakom poglavlju, navedene su relevantne stranice u knjizi prof. Sarape. U dodatcima su rezultati i neki alternativni dokazi s predavanja prof. Vondračeka u akademskoj godini 2023./2024. Najopširniji je prvi posvećen Brownovom gibanju kako ga je obradio prof. Vondraček u ljetnom semestru 2023./2024. neposredno nakon kraćeg pogavlja o Brownovom gibanju s predavanja prof. Šikića.

Dobrodošao je svaki ukaz na grešku ili propust bilo koje vrste ©©©.

Stvari koje su se znatno razlikovale na predavanjima 2024./2025. dodajem kao zasebna predavanja. Predavanja vjerna knjizi, a onda i skripti, samo nadopunjujem pa čitatelju skrećem pažnju i na male izmjene u ljetnim bilješkama.

Također, čitateljima koji uče iz ovih bilješki, preporučam da pogledaju i ažuriranja u slučaju da se potkradu greške ili nadopunim materijale smatrajući potrebnim.

Posebno veliko hvala svim kolegama prijašnjih generacija koji su velikodušno ustupili bilo koji vid materijala.

laura.zupcic@student.math.hr

Sadržaj

Pr	edgovor	1
1	Slučajne varijable (§8, Sarapa, 233249. str.)	4
2	Slučajni vektori (§9.1, 9.2, 9.3, Sarapa, 250. – 276. str.)	9
3	Vjerojatnosti na beskonačnodimenzionalnim prostorima (§9.4, Sarapa, 276. – 284. str.)	15
4	Matematičko očekivanje (§10.1, 10.2, 10.3, Sarapa, 287. – 309. str.)	19
5	Nejednakosti i kovarijance (§10.4, Sarapa, 310. – 319. str.)	23
6	Konvergencija slučajnih varijabli (§10.4,Sarapa, 319. – 327. str.)	26
7	Nezavisnost (§11.1, Sarapa, 353. – 358. str.)	35
8	Račun i primjene (§11.2,11,3, Sarapa 359. – 382. str.)	4 0
9	Slabi zakoni velikih brojeva (§12.1, Sarapa, 391. – 395. str.)	43
10	Zakoni nula-jedan (§12.2, Sarapa, 395. – 401. str.)	48
11	Konvergencija redova (§12.3, Sarapa, 402. – 409. str.)	53
12	Jaki zakon velikih brojeva (§12.4, Sarapa, 413. – 417. str.)	64
13	Karakteristične funkcije (§13.1, 13.2, Sarapa, 442. – 447. str.)	7 0
14	Teorem inverzije (§13.2, Sarapa, 447. – 457. str.)	77
15	Momenti i karakteristične funkcije (§13.3, Sarapa, 461. – 466. str.)	83
16	Konvolucije (§13.4, Sarapa, 467. – 470. str.)	89
17	Slaba konvergencija (§13.5, Sarapa, 470. – 474. str.)	92
18	Prohorovljev teorem (§13.5, Sarapa, 475. – 479. str.)	96
19	Teorem neprekidnosti (§13.6, Sarapa, 480. – 485. str.)	00
20	Bochner-Hinčinov teorem (§13.7, Sarapa, §13.8, 486. – 492. str.)	06
21	Primjene (§13.9,Sarapa 496. – 501. str.)	16
22	Centralni granični teoremi (§14.1, Sarapa, 506. – 509. str.)	19
23	Lindebergov teorem (§14.1, Sarapa, 509. – 513. str.)	23
24	Lindeberg-Fellerov teorem (§14.1, Sarapa, 514. – 517. str.)	27
25	Primjeri (slobodan izbor, za znatiželjne)	30
26	Stabilne distribucije	38
27	Infinitezimalni sustavi	47
28	Uvod u teoriju slučajnih procesa	50
2 9	Brownovo gibanje - okvirno	52
30	Dodatak 1 (Brownovo gibanje - općenitije, svibanj 2024.)	55

SADRŽAJ

	30.1 Uvod
	30.5 Kvadratna varijacija Brownovog gibanja
31	Dodatak 2
32	Dodatak 3
33	Dodatak 4 (Rekordi)
34	Dodatak 5 (familije skupova)
35	Dodatak 6
36	Dodatak 7 (neprekidnost vjerojatnosti)
37	Dodatak $8\ L^p$ prostori (crash course $@)$
38	Dodatak 9 (jedinstvenosti limesa)
39	Dodatak 10
40	Dodatak 11
41	Dodatak 12 (Uniformna integrabilnost)
42	Dodatak 13 (Lema A.1.13, A. Gut)
43	Dodatak 14 Poissonovska konvergencija
44	Dodatak 15 (o jednoj stabilnoj distribuciji, Durret)
45	Predavanje 30. rujna 2024. (dio)
46	Predavanje 1. listopada 2024
47	Predavanje 14. listopada 2024
	Predavanje 15. listopada 2024
	Predavanje 21. listopada 2024
	Predavanje 22. i 28. listopada 2024
	Predavanje 4. studenoga 2024
	Predavanje 3. i 9. prosinca 2024
U 2	52.1 Vjerojatnost na produktnim prostorima
53	Literatura

1 Slučajne varijable (§8, Sarapa, 233.-249. str.)

 $(\Omega,\mathcal{F},\mathbb{P}),\emptyset\neq\Omega$ nazivamo skupom elementarnih događaja, \mathcal{F} je $\sigma\text{-algebra},\,\mathbb{P}(\Omega)=1.$ Ponoviti:

□ poluprsten

 \square π -sustav

□ prsten

□ algebra

 \Box σ -prsten

 \Box σ -algebra

Definicije iz starih bilješki s predavanja iz Mjere i integrala:

- (1) Neka je X neprazan skup. Kažemo da je familija $\mathcal{S} \subseteq \mathcal{P}(X)$ poluprsten (podskupova od X) ako
 - $(i) \emptyset \in \mathcal{S}$
 - (ii) $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$
 - (iii) $A, B \in \mathcal{S} \Rightarrow \exists n \in \mathbb{N}, C_1, \dots, C_n \in \mathcal{S}$ međusobno disjunktni t. d. je $A \setminus B = \bigcup_{i=1}^n C_i$.
- (2) Neka je X neprazan skup. Za nepraznu familiju $\mathcal{R} \subseteq \mathcal{P}(X)$ kažemo da je prsten (podskupova od X) ako je zatvorena na operacije $\cup, \cap, \setminus, \triangle$. Ako je $X \in \mathcal{R}$, kažemo da je \mathcal{R} algebra.
- (3) π -sustav je neprazna familija podskupova od X zatvorena na \cap .
- (4) Za nepraznu familiju $\mathcal{F} \subseteq \mathcal{P}(X), X \neq \emptyset$, kažemo da je σ -prsten (podskupova od X) ako
 - (i) $A, B \in \mathcal{F} \Rightarrow A \setminus B \in \mathcal{F}$
 - $(ii) (A_n)_{n \in \mathbb{N}} \subseteq \mathcal{F} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}.$

Ako je $X \in \mathcal{F}$, onda kažemo da je \mathcal{F} σ -algebra.

Definicije iz novih bilješki s predavanja iz Mjere i integrala:

- (1) Neka je X neki skup. Za nepraznu familiju $\mathcal{R} \subseteq \mathcal{P}(X)$ kažemo da je prsten skupova na X ako vrijedi:
 - (i) $A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{F}$
 - (ii) $A, B \in \mathcal{R} \Rightarrow A \setminus B \in \mathcal{R}$
- (2) Neka je X neki skup. Za familiju $\mathcal{R} \subseteq \mathcal{P}(X)$ kažemo da je σ -algebra na X ako vrijedi:
 - $(i) \emptyset \in \mathcal{F}$
 - (ii) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - $(iii) (A_n)_{n \in \mathbb{N}} \subseteq \mathcal{F} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}.$
- (3) Neka je X neki skup. Za familiju $\mathcal{F} \subseteq \mathcal{P}(X)$ kažemo da je π -sustav (na X) sadrži prazan skup te je zatvorena na konačne presjeke.

 \mathbb{R} , \mathcal{U} — familija otvorenih skupova; oni tvore topologiju. Promatramo najmanju σ algebru koja sadrži \mathcal{U} : $\sigma(\mathcal{U}) =: B_{\mathbb{R}}$ (znamo da se još naziva i σ -algebrom Borelovih skupova).

Slučajna varijabla X preslikavanje je $X: \Omega \to \mathbb{R}$ izmjerivo u paru σ -algebri $(\mathcal{F}, B_{\mathbb{R}})$.

 \mathcal{H} generirajuća klasa za $B_{\mathbb{R}}$, tj., $\sigma(\mathcal{H}) = B_{\mathbb{R}}$, X je slučajna varijabla $\Leftrightarrow X^{-1}(\mathcal{H}) \subseteq \mathcal{F}$.

Kažemo da je slučajna varijabla X jednostavna ako je $X(\Omega)$ konačan skup.

Općenito, promatrat ćemo i izmjerive funkcije $\mathbb{R}^n \to \mathbb{R}^m$ i takve ćemo funkcije zvati Borelovima jer ćemo izmjerivost promatrati u odnosu na Borelovu σ -algebru.

 $\mathbb{R}^n, \mathcal{U}^n$ = otvoreni skupovi (koji se mogu dobiti kao prebrojive unije otvorenih kugala), $\sigma(\mathcal{U}^n) =: B_{\mathbb{R}^n}$.

Ako je $g: \mathbb{R}^n \to \mathbb{R}^m$, $(B_{\mathbb{R}^n}, B_{\mathbb{R}^m})$ -izmjeriva, kažemo da je g Borelova funkcija.

Prisjetimo se da, ako je g neprekidna funkcija, tada je ona Borelova.

 $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ slučajne varijable.

činjenica

$$B_{\mathbb{R}^n} = \underbrace{B_{\mathbb{R}} \otimes \cdots \otimes B_{\mathbb{R}}}_{n \text{ puta}}$$

Ponoviti: produkt σ -agebri najmanja je σ -algebra generirana izmjerivim **pravokutnicima**. Jednakost gornjih σ -algebri vrijedi zbog **separabilnosti**.

NAPOMENA Definicija 6.1., Mjera i integral, 49. str.:

Neka su (X, \mathcal{F}) i (Y, \mathcal{G}) izmjerivi prostori. σ -algebru na $X \times Y$ generiranu familijom skupova oblika $A \times B$ za $A \in \mathcal{F}, B \in \mathcal{G}$ nazivamo **produktnom** σ -algebrom i označavamo ju s $\mathcal{F} \times \mathcal{G}$.

Slučajni vektor $X = (X_1, \dots, X_n) : \Omega \to \mathbb{R}^n$ je $(\mathcal{F}, B_{\mathbb{R}^n})$ -izmjerivo preslikavanje.

 $X = (X_1, \dots X_n)$ je slučajni vektor $\Leftrightarrow X_1, \dots, X_n$ su slučajne varijable.

Kompozicija izmjerivih preslikavanja izmjeriva je.

Ako je X n-dimenzionalan slučajni vektor i $g: \mathbb{R}^n \to \mathbb{R}^m$ Borelova funkcija, $g(X): \Omega \to \mathbb{R}^m$ je mdimenzionalan slučajni vektor.

 $+,\cdot,\min,\max$ neprekidne su funkcije pa su *Borelove*.

$$+:\mathbb{R}^2\to\mathbb{R}$$

Cijeli niz posljedica:

Ako su X, X_1, X_2 slučajne varijable, tada su $X_1 + X_2, aX_1, \frac{1}{X}, X_1 \vee X_2 := \max\{X_1, X_2\},$ $X_1 \wedge X_2 := \min\{X_1, X_2\}, X^+ := X \vee 0 = \max\{X, 0\}, X^- := -X \vee 0 = \max\{-X, 0\}, |X|$ slučajne varijable.

Važno u teoriji mjere: $X = X^+ - X^-$ (svaka izmjeriva funkcija može se prikazati kao linearna kombinacija dviju **nenegativnih** izmjerivih funkcija), $|X| = X^+ + X^-$

Neka je X slučajna varijabla. Budući da praslika čuva skupovne operacije, $\sigma(X) := X^{-1}(B_{\mathbb{R}}) \subseteq \mathcal{F}$ je opet σ -algebra. $\sigma(X)$ je **najmanja** σ -algebra **generirana preslikavanjem** X. Općenito, ako X nije izmjerivo preslikavanje, $\sigma(X)$ je najmanja σ -algebra s obzirom na koju je X izmjerivo.

Neka su X,Y preslikavanja. Tada je $\sigma(X)\subseteq\sigma(Y)\Leftrightarrow$ postoji izmjeriva funkcija g t. d. je X=g(Y).

Neka je X slučajna varijabla, $P_X: B_{\mathbb{R}} \to [0,1]$ preslikavanje definirano s

$$P_X(B) := \mathbb{P}(X \in B), B \in B_{\mathbb{R}}$$

(podsjetnik: $(X \in B) = \{\omega \in \Omega \mid X(\omega) \in B\}$)

Riječ je o mjeri induciranoj polaznom vjerojatnosnom mjerom i preslikavanjem X.

 P_X nazivamo **zakonom razdiobe**.

Preslikavanje $F_X : \mathbb{R} \to [0, 1],$

$$F_X(x) := P_X(\langle -\infty, x]) = \mathbb{P}(X \le x)$$

zovemo funkcijom distribucije slučajne varijable X.

- (i) F_X je neopadajuća
- (ii) neprekidna zdesna

(iii)
$$F_X(-\infty) := \lim_{x \searrow -\infty} F_X(x) = 0$$

$$(iv)$$
 $F_X(+\infty) = \lim_{x \to +\infty} F_X(x) = 1$

(v) F_X je neprekidna u točki $x \Leftrightarrow F_X(x) = 0$.

PITANJE: Ako znamo F_X , znamo li tada i P_X ? Drugim riječima, je li P_X jedinstveno određena funkcijom F_X ? Možemo li od F_X rekonstruirati P_X ? **DA**.

NAPOMENA TEOREM 3.10. (Caratheodoryjev teorem proširenja), Mjera i integral, 23. str.:

Neka je X skup, \mathcal{R} neki prsten skupova na njemu, a μ neka σ -konačna konačna aditivna mjera na (X, \mathcal{R}) koja zadovoljava svojstvo neprekidnosti. Tada se μ na **jedinstven** način može proširiti do **mjere** na $\sigma(\mathcal{R})$.

CARATEODHORYJEVA KONSTRUKCIJA

- (i) poluprsten (sadrži Ω) (poluotvoreni intervali tvore poluprsten) \rightarrow proširimo na najmanji prsten (algebru) generiran tim poluprstenom (elementi prstena mogu se dobiti kao konačne disjunktne unije elemenata poluprstena)
- (ii) prsten (algebra) $\rightarrow \sigma$ -prsten (σ -algebra)

Shema:

$$\begin{array}{c} \text{poluprsten} \\ (\text{sadr}\check{\text{zi}} \ \Omega) \end{array} \Rightarrow \begin{array}{c} \text{prsten} \\ (\text{algebra}) \end{array} \Rightarrow \begin{array}{c} \sigma - \text{prsten} \\ (\sigma - \text{algebra}) \end{array}$$

Neka je $F: \mathbb{R} \to [0,1]$ (apriori nije vezana za slučajnu varijablu) neopadajuća, neprekidna zdesna i sa svojstvom $F(-\infty) = 0$ i $F(+\infty) = 1$.

 P_F definiran na $(\mathbb{R}, B_{\mathbb{R}})$

 $\langle a, b \rangle \rightarrow \text{poluprsten},$

$$P_F(\langle a, b |) := F(b) - F(a)$$

poluprsten \to prsten \to σ -prsten (budući je $\mathbb R$ separabilan,tj., može se dobiti kao prebrojiva unija poluotvorenih intervala, taj σ -prsten bit će i σ -algebra)

$$P_F(\mathbb{R}) = \lim_{\substack{x \nearrow +\infty \\ y \searrow -\infty}} P_F(\langle y, x]) = F(+\infty) - F(-\infty) = 1.$$

Dobivamo vjerojatnosni prostor $(\mathbb{R}, B_{\mathbb{R}}, P_F)$, a slučajna je varijabla, npr., $X = \mathrm{id} \Rightarrow F_X = F \leftarrow \mathrm{kanonski}$ primjer ovakve slučajne varijable.

NAPOMENA

pogledaj zadatak 3.18, 23. str., Mjera i integral, vježbe

Neka su F_1, F_2 funkcije distribucije, $D\subseteq \mathbb{R}$ gust u \mathbb{R} te $F_1\mid_D=F_2\mid_D$. Tada je $F_1=F_2$. Skica dokaza:

Budući je D gust u \mathbb{R} , za svaki $x \in \mathbb{R}$, postoji nerastući niz $(x_n)_{n \in \mathbb{N}} \subseteq D$ t. d. $\lim_{n \to \infty} x_n = x$, a kako su F_1 i F_2 neprekidne zdesna te je $F_1(x_n) = F(x_n), \forall n \in \mathbb{N}$, to je

$$F_1(x) = \lim_{n \to \infty} F_1(x_n) = \lim_{n \to \infty} F_2(x_n) = F_2(x).$$

Neka je F_X funkcija distribucije. Tada F_X ima najviše prebrojivo mnogo prekida.

NAPOMENA Teorem 3.16, Matematička analiza 1 & 2, 84. str.:

Neka je $I \subseteq \mathbb{R}$ otvoren interval i $f: I \to \mathbb{R}$ monotona funkcija.

- $(i)\,$ Monotona funkcija može imati samo prekide ${\bf prve}$ v
rste.
- (ii) Monotona funkcija ima najviše prebrojivo mnogo prekida.

Ako F_X ima prekid u točki x, tada je, kako F_X u svakoj točki ima limes slijeva, $F_X(x) \neq F_X(x^-)$. Posljedica: $\mathbb{P}(X=x) = F_X(x) - F_X(x^-) > 0$.

(Već smo prije spomenuli da je F_X neprekidna u točki $x \Leftrightarrow F_X(x) = 0$.) Zaključujemo:

$$\mathbb{P}(X=x)>0$$
za najviše prebrojivo točaka $x\in\mathbb{R}.$

$$C(F) := \{x \in \mathbb{R} \mid F \text{ je neprekidna u } x\}$$
uvijek gust u \mathbb{R}

(C(F) je **neprebrojiv**, a komplement mu je **prebrojiv**, što nije slučaj za komplement proizvoljnog neprebrojivog podskupa skupa \mathbb{R})

Neka su opet F_1, F_2 funkcije distribucije i promotrimo $C(F_1), C(F_2)$. Uočimo

$$\mathbb{R} \setminus (C(F_1)) \cap C(F_2)) = \mathbb{R} \setminus C(F_1) \cup \mathbb{R} \setminus C(F_2)$$

je prebrojiv skup pa je $C(F_1) \cap C(F_2)$ gust u \mathbb{R} , iz čega slijedi: ako je $F_1 \mid_{C(F_1) \cap C(F_2)} = F_2 \mid_{C(F_1) \cap C(F_2)}$, tada je $F_1 = F_2$.

Slučajna je varijabla **diskretna** ako postoji konačan ili prebrojiv podskup $D \subseteq \mathbb{R}$ t. d. je $\mathbb{P}(X \in D) = 1$.

Ako postoji **nenegativna izmjeriva** funkcija $f: \mathbb{R} \to \mathbb{R}$ t. d. je

$$F_X(x) = \underbrace{\int_{-\infty}^x f(t)\lambda(dt)}_{\text{Lebesgueov}}, \forall x \in \mathbb{R},$$

tada kažemo da je f funkcija gustoće slučajne varijable X te kažemo da je slučajna varijabla X (apsolutno) neprekidna.

Prisjetimo se, po Radon-Nikodymovu teoremu, $P_X \ll \lambda$ (P_X je apsolutno neprekidna s obzirom na Lebesgueovu mjeru λ na \mathbb{R} , tj., $\lambda(S) = 0 \Rightarrow P_X(S) = 0, \forall S \in B_{\mathbb{R}}.$)¹

$$f = \frac{dP_X}{d\lambda}$$
 — Radon-Nikodymova derivacija

NAPOMENA

TEOREM 9.7 (Radon-Nikodymov teorem), Mjera i integral, 80. str.:

Neka je ν σ -konačna **realna**, a μ σ -konačna **nenegativna** mjera na (X, \mathcal{F}) . Ako je $\nu \ll \mu$, tada postoji izmjeriva funkcija $f: X \to \mathbb{R}$ t. d. je $\nu = \mu_f$, a svaka druga funkcija s istim svojstvom jednaka je f μ -gotovo svuda. Ako je ν **nenegativna**, tada je i f **nenegativna** μ -gotovo svuda.

f je funkcija gustoće neke funkcije distribucije $F\Leftrightarrow f$ je Borelova, $f\geq 0$ i $\int_{-\infty}^{+\infty}f(t)\lambda(dt)=1.$

Dokaz.

 $^{^1}$ Općenitije, ako su μ i ν dvije mjere na izmjerivom prostoru (Ω,\mathcal{F}) , tada je μ apsolutno neprekidna u odnosu na ν i pišemo $\mu \ll \nu$ ako $E \in \mathcal{F}, \nu(E) = 0 \Rightarrow \mu(E) = 0$. Također, u slučaju nenegativnih mjera, u vjerojatnosnoj terminologiji, Radon Nikodymovu derivaciju $f = \frac{d\mu}{d\nu}$ nazvali bismo gustoćom mjere μ u odnosu na ν .

 \Leftarrow : Pretpostavimo da je $f \geq 0$ λ -g. s. i da je $\int_{\mathbb{R}} f = 1$.

$$\forall x \in \mathbb{R}, f \mathbbm{1}_{\langle -\infty, x \rangle} \geq 0 \text{ λ-g. s.} \Rightarrow \text{ postoji integral } \int_{\mathbb{R}} f(t) \mathbbm{1}_{\langle -\infty, x \rangle} \lambda(dt)$$

$$F(x) := \int_{-\infty}^{x} f(t) \lambda(dt) \Rightarrow F : \mathbb{R} \to [0, 1]$$

$$f \geq 0 \text{ λ-g. s.}, x_1 \leq x_2 \Rightarrow \underbrace{\int_{-\infty}^{x_2} f(t) \lambda(dt)}_{F(x_2)} = \underbrace{\int_{-\infty}^{x_1} f(t) \lambda(dt)}_{F(x_1)} + \underbrace{\int_{x_1}^{x_2} f(t) \lambda(dt)}_{\geq 0},$$

dakle, F je neopadajuća. Nadalje,

$$F(+\infty) = \lim_{x \to +\infty} F(x) \stackrel{\text{TMK}}{=} \int_{-\infty}^{+\infty} f(t)\lambda(dt) = 1.$$

S druge strane, ako je $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ niz t. d. $x_n\searrow x\in\mathbb{R}$ ili $x_n\searrow -\infty$,

$$\lim_{n \to \infty} F(x_n) \stackrel{\text{LTDK}}{=} \begin{cases} F(x) \Rightarrow \text{ neprekidnost zdesna} \\ F(-\infty) = \int_{-\infty}^{-\infty} f = 0. \end{cases}$$

Dakle, F je neopadajuća, neprekidna zdesna, $F(-\infty)=0$ i $F(+\infty)=1$ pa je F vjerojatnosna funkcija distribucije.

Singularne distribucije: $\forall x \in \mathbb{R}, \mathbb{P}(X = x) = 0$ (tj., F_X je neprekidna), ali F_X nema funkciju gustoće, odnosno, $P_X \not\ll \lambda$. (konstrukcije takvih funkcija zasnivaju se na Cantorovom skupu i sl.)

NAPOMENA

Teorem 9.8 (Lebesgueova dekompozicija), Mjera i integral, 81. str.:

Ako je ν σ -konačna **realna**, a μ σ -konačna nenegativna mjera na (X, \mathcal{F}) , tada se ν na **jedinstven** način može rastaviti kao $\nu = \lambda + \rho$ t. d. je $\lambda \perp \mu$ i $\rho \ll \mu$. Ako je ν **nenegativna**, tada su **nenegativne** i mjere λ i ρ .

${\bf Lebesgueova\ dekompozicija:}$

Funkcija distribucije F proizvoljne slučajne varijable može se napisati kao **konveksna** kombinacija s pozitivnim članovima funkcija distribucija spomenutih triju tipova varijabli:

$$F = \alpha_1 F_d + \alpha_2 F_a + \alpha_3 F_s, \alpha_1, \alpha_2, \alpha_3 \ge 0, \alpha_1 + \alpha_2 + \alpha_3 = 1.$$

2 Slučajni vektori (§9.1, 9.2, 9.3, Sarapa, 250. – 276. str.)

n-dimenzionalni slučajni vektor $X:\Omega\to\mathbb{R}^n$ ($\mathcal{F},B_{\mathbb{R}^n}$)-izmjerivo preslikavanje. Prisjetimo se

- $\square B_{\mathbb{R}^n} = \sigma \left(\{ U \subseteq \mathbb{R}^n \mid U \text{ je otvoren u } \mathbb{R}^n \} \right)$
- 🗖 svaki otvoren skup može se prikazati kao prebrojiva unija otvorenih kugala
- 🗖 svaka otvorena kugla može se prikazati kao prebrojiva unija otvorenih pravokutnika
- \square kao posljedica separabilnosti, $B_{\mathbb{R}^n} = \sigma \{U_1 \times \cdots \times U_n \mid U_i \text{ je otvoren u } \mathbb{R}\} = \bigotimes_{i=1}^n B_{\mathbb{R}}$ $\Rightarrow X = (X_1, \dots, X_n)$ je slučajni vektor $\Leftrightarrow X_1, \dots, X_n$ su slučajne varijable.

X inducira vjerojatnosnu mjeru P_X na $(\mathbb{R}^n, B_{\mathbb{R}^n})$: $P_X(B) := \mathbb{P}(X \in B) \leftarrow \mathbf{zakon}$ razdiobe za vektor X (distribucija vektora X sadržava svu vjerojatnosnu informaciju).

DEFINICIJA

Analogno slučajnim varijablama, slučajni vektori X i Y jednako su distribuirani i pišemo $X \sim Y$, ako je $\mathbb{P}_X = \mathbb{P}_Y$. X i Y ne moraju biti definirani na istim vjerojatnosnom prostoru.

Može li se informacija \mathbb{P}_X svesti na neku realnu funkciju? DA! Analogno slučajnim varijablama:

DEFINICIJA

Neka je $X:\Omega\to\mathbb{R}^n$ slučajan vektor. Ako je $F_X:\mathbb{R}^n\to[0,1],$

$$F_X(a) := \mathbb{P}(X \le a), \quad a \in \mathbb{R}^n,$$

 F_X je funkcija distribucije slučajnog vektora X.

NAPOMENA

$$X = (X_1, \dots, X_n) \le (a_1, \dots, a_n) = a : \Leftrightarrow X_i \le a_i, \forall i = 1, \dots, n.$$

U ovoj situaciji moramo paziti: $F_X(a) \to 0$ ako postoji barem jedan $i, 1 \le i \le n$ t. d. $a_i \to -\infty$. S druge strane, $F_X(a) \to 1$ ako $a_i \to +\infty, \forall i = 1, \ldots, n$.

 $(a_1,a_2)<(b_1,b_2)$, tj., $a_1< b_1$ i $a_2< b_2$. Što sad igra ulogu poluotvorenih intervala? \Rightarrow presjek pruga

$$\left\{ x \in \mathbb{R}^2 \mid a_1 < x_1 \le b_1 \right\} \cap \left\{ x \in \mathbb{R}^2 \mid a_2 < x_2 \le b_2 \right\} = \left\{ x \in \mathbb{R}^2 \mid a_1 < x_1 \le b_1, a_2 < x_2 \le b_2 \right\} = \left\{ x \in \mathbb{R}^2 \mid a < x \le b \right\} \rightarrow \text{pravokutnik}$$

Vrijedi (nacrtati sliku):

$$\mathbb{P}(a < X \le b) = F_X(b_1, b_2) - F_X(b_1, a_2) - F_X(a_1, b_2) + F_X(a_1, a_2) =: \Delta_{b-a} F_X(a) \ge 0$$

$$\Delta_{b-a} = \sum_{x_i \in \{a_i, b_i\}}^n \pm F_X(x_1, \dots, x_n),$$

pri čemu je predznak sumanda + ako i samo ako je paran broj a_i -eva među (x_1, \ldots, x_n) .² Primijetimo da je ovo svojevrsni analogon monotonosti u n-dimenzija: lako se vidi sljedeće: neka je $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}^n, x\in\mathbb{R}^n$ t. d. $x_n\searrow x$. Tada, iz neprekidnosti vjerojatnosti na nerastuće događaje, slijedi

$$\lim_{n \to \infty} F_X(x_n) = \lim_{n \to \infty} \mathbb{P}_X \left(\langle -\infty, x_n] \right) = \lim_{n \to \infty} \mathbb{P}(X \le x_n)$$
$$= \mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \{ X \le x_n \} \right) = \mathbb{P}\left(X \le x \right) = \mathbb{P}_X \left(\langle -\infty, x] \right) = F_X(x)$$

Neka je $F:\mathbb{R}^n \to [0,1]$ sa svojstvima

$$\begin{split} & \Delta_{b-a}F_X(a) = \Delta_{b_1-a_1}\left(\cdots\Delta_{b_n-a_n}(a)\cdots\right) \\ & = \Delta_{b_2-a_2}\left(\cdots\Delta_{b_n-a_n}F_X(b_1,a_2,\ldots,a_n)\cdots\right) - \Delta_{b_2-a_2}\left(\cdots\Delta_{b_n-a_n}F_X(a_1,a_2,\ldots,a_n)\cdots\right) \\ & \text{Kao na predavanjima iz Matematičke statistike} \end{split}$$

- (a) $\Delta_{b-a}F(a) \geq 0, \forall a, b \in \mathbb{R}^n, a < b$
- (b) $\lim_{a_i \to -\infty} F(a) = 0$, što se može zapisati i kao $F(a_1, \dots, a_{i-1}, -\infty, a_{i+1}, \dots, a_n) = 0$.
- (c) $\lim_{\substack{a_1\to +\infty,\\ \vdots\\ a_n\to +\infty}} F(a)=1$, što se može pisati i kao $F(+\infty,\dots\infty)=1$.

Promatramo poluotvorene intervale $\langle a,b \rangle = \{x \in \mathbb{R}^n \mid a_i < x_i \leq b_i, \forall i=1,\ldots,n\}$ u \mathbb{R}^n . Familija $\mathcal{S} = \{\langle a,b \rangle \mid a,b \in \mathbb{R}^n, a \leq b\}$ je **poluprsten** na \mathbb{R}^n koji generira $B_{\mathbb{R}^n}$. Prisjetimo se da je \mathcal{S} i π -sustav. Također, svaki otvoren skup u \mathbb{R}^n prebrojiva je unija elemenata iz $\mathcal{S}. \Rightarrow \sigma(\mathcal{S}) = B_{\mathbb{R}^n}$. Definiramo \mathbb{P}_F prvo na poluotvorenim intervalima:

$$\mathbb{P}_F\left(\langle a, b \right]\right) := \Delta_{b-a} F(a) \ge 0$$

 \mathbb{P}_F je σ -aditivna na poluprstenu \mathcal{S} . Po Caratheodoryjevoj konstrukciji, proširi se, na jedinstven način, do \mathbb{P}_F na $B_{\mathbb{R}^n}$ i \mathbb{P}_F je konačna mjera; sjetimo se Dynkinovih klasa i jednakosti vjerojatnosnih mjera na π -sustavu \mathcal{C} koji generira σ -algebru:

$$F_X = F_Y \Leftrightarrow \mathbb{P}_X = \mathbb{P}_Y \Leftrightarrow X \sim Y.$$

$$\mathbb{R}^n = \bigcup_{k \in \mathbb{N}} \langle (-k, \dots, -k), (k, \dots, k)]$$

$$\mathbb{P}_F (\mathbb{R}^n) = \lim_{k \to +\infty} \mathbb{P}_F (\langle (-k, \dots, -k), (k, \dots, k)])$$

$$= \lim_{k \to +\infty} \Delta_{(k, \dots, k) - (-k, \dots, -k)} F((-k, \dots, -k))$$

$$= \lim_{k \to +\infty} \sum_{x_i \in \{-k, k\}}^n \pm F(x_1, \dots, x_n)$$

$$= \lim_{k \to +\infty} F(k, \dots, k)$$

$$= 1^3$$

tj., \mathbb{P}_F je vjerojatnosna mjera.

$$(\Omega, \mathcal{F}, \mathbb{P}) = (\mathbb{R}^n, B_{\mathbb{R}^n}, P_F)$$

$$X: \mathbb{R}^n \to \mathbb{R}^n, X:=\mathrm{id} \Rightarrow (P_F)_X = P_F.$$

Pokazali smo da, za svaku funkciju F sa svojstvima (a),(b),(c), postoji jedinstvena vjerojatnosna mjera na Borelovim skupovima t. d., za $X = \operatorname{id}$, pripadni **zakon distribucije** za X je $P_F \Rightarrow F_X = F$.

$$F_{X=id}(x) = (P_F)_X (\langle -\infty, x])$$

$$= P_F(X \le x)$$

$$= P_F(\langle -\infty, x])$$

$$= \lim_{k \to +\infty} P_F (\langle (-k, \dots, -k), x])$$

$$= \lim_{k \to +\infty} \sum_{\substack{y_i \in \{k, x_i\}\\i=1}}^{n} \pm F(y_1, \dots, y_n)$$

$$= \lim_{k \to +\infty} F(x_1, \dots, x_n)$$

$$= F(x)$$

NAPOMENA

Budući da je

$$\blacktriangleright \lim_{a_i \to -\infty} F(a) = 0$$
 za bilo koji $i \in \{1, \dots, n\},$

$$\blacktriangleright \Delta_{b-a}F(a) \geq 0, \forall a,b \in \mathbb{R}^n, a \leq b$$

 $^{^3}$ jer se u svakom od preostalih sumanada nalazi barem jedan -k,a $-k\to\infty$ pa svaki od njih teži u 0

stavimo li $a := (y_1, \dots, y_{i-1}, a_i, y_{i+1}, \dots, y_n)$ i $b := (x_1, \dots, x_{i-1}, b_i, x_{i+1}, \dots, x_n)$ t. d. je $a \le b$, dobivamo

$$0 \le \lim_{\substack{y_k \to -\infty \\ k \in \{1, \dots, i-1, i+1, \dots, n\}}} \Delta_{b-a} F(a)$$

$$= F(x_1, \dots, x_{i-1}, b_i, x_{i+1}, \dots, x_n) - F(x_1, \dots, x_{i-1}, a_i, x_{i+1}, \dots, x_n)$$

pa zaključujemo da je F monotono rastuća po i-toj varijabli (svaki član u kojem je barem jedna koordinata iz skupa $\{y_1,\ldots,y_{i-1},y_{i+1},\ldots,y_n\}$ teži u 0 kad pustimo da svaka, pa posebno i ta koordinata y_k , teži u $-\infty$)

DEFINICIJA

Neka je $X:\Omega\to\mathbb{R}^n$ slučajan vektor. Ako postoji (najviše) prebrojiv skup $E\subseteq\mathbb{R}^n$ t. d. je $\mathbb{P}_X(E)=1$, kažemo da je X diskretan slučajan vektor.

Ako postoji nenegativna Borelova funkcija $f: \mathbb{R}^n \to \mathbb{R}$ t. d. je

$$F(x) = \int_{\langle -\infty, x \rangle} f(t) \lambda_n(dt),$$

kažemo da je X apsolutno neprekidan slučajan vektor. $f = f_X$ tada nazivamo gustoćom slučajnog vektora X i ona jedinstveno određuje F_X do na skup λ_n -mjere 0.

Potpuno analogno jednodimenzionalnom slučaju, vrijedi sljedeći teorem:

TEOREM

Neka je $f: \mathbb{R}^n \to \mathbb{R}$ Borelova funkcija. Tada je f funkcija gustoće nekog slučajnog vektora $\Leftrightarrow f \geq 0$ λ_n -g. s. i $\int_{\mathbb{R}^n} f(x)\lambda_n(dx) = 1$. Uočimo,

$$f \ge 0 \stackrel{\text{FUBINI}}{\Rightarrow} \int_{\mathbb{R}^n} f(x) \lambda_n(dx) = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f(x_1, \dots, x_n) \lambda(dx_1) \cdots \lambda(dx_n)$$
$$\int_{\langle -\infty, x |} f(t) \lambda_n(dt) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(t_1, \dots, t_n) \lambda(dt_n) \cdots \lambda(dt_1).$$

Neka je $X=(X_1,\ldots,X_n)$ slučajan vektor s funkcijom distribucije F_X . Znamo da postoje F_{X_1},\ldots,F_{X_n} . Možemo li naći F_{X_i} i F_X ?

$$F_{X_i}(x_i) = \mathbb{P}\left((X_1, \dots, X_n) \in \mathbb{R} \times \dots \times \mathbb{R} \times \langle -\infty, x_i] \times \mathbb{R} \times \dots \times \mathbb{R}\right)$$

$$= \lim_{\substack{x_k \to +\infty \\ k \neq i}} F_X(x_1, \dots, x_n)$$

$$= F_X(+\infty, \dots, +\infty, x_i, +\infty, \dots, +\infty)$$

Možemo dobiti distribuciju svih X_i iz distribucije vektora X.

PITANJE:

Možemo li postići "obrat", tj., ako su nam poznate F_{X_1}, \ldots, F_{X_n} , je li nam tada poznata i F_X ? NE! Npr., uzmimo

$$X_1 \sim X_2 \sim \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$$
.

Ako je $X_1=X_2$, vektor (X_1,X_2) živi samo na skupu $\{(0,0),(1,1)\}$. S druge strane, ako je

$$Y = (Y_1, Y_2) \sim \begin{pmatrix} (0, 0) & (0, 1) & (1, 0) & (1, 1) \\ q^2 & qp & pq & p^2 \end{pmatrix},$$

onda su marginalne distribucije iste, ali vektori njihovih distribucija bitno su različiti. Na temelju F_{X_1}, \ldots, F_{X_n} , može se napisati jedna posebna distribucija

$$F_Y(x_1, \dots, x_n) = \prod_{i=1}^n F_{X_i}(x_i).$$

Očito $F_Y: \mathbb{R}^n \to [0,1]$ zadovoljava stvojstva (1) i (2), a

$$\Delta_{b-a} F_Y(a) = \prod_{i=1}^n \left[F_{X_i}(b_i) - F_{X_i}(a_i) \right]$$

PRIMJER.

Neka su $n,k\in\mathbb{N}$ te $p_1,\ldots,p_k\geq 0$ t. d. je $\sum_{i=1}^k p_i=1$. Promatrat ćemo k-dimenzionalnu distribuciju. Reći ćemo da slučajni vektor ima polinomijalnu distribuciju s parametrima n,p_1,\ldots,p_k ako vrijedi

$$\mathbb{P}_X(x_1,\ldots,x_k) = \mathbb{P}\left(X = (x_1,\ldots,x_k)\right) = \begin{cases} \frac{n!}{x_1!x_2!\cdots x_n!}, & \text{ako } x_1,\ldots,x_k \in \{0,1,\ldots,n\} \text{ i } \sum_{i=1}^k x_i = n \\ 0, & \text{inače} \end{cases}$$

 $\Rightarrow \mathbb{P}(X \in E) = 1$ za konačanE.

$$1 = (p_1 + \dots + p_k)^n = \sum_{\substack{x_1,\dots,x_k \in \{0,1,\dots,n\}\\x_1 + \dots + x_k = n}} \binom{n}{x_1,\dots,x_k} p_1^{x_1} \cdots p_k^{x_k}.$$

PRIMJER (2-dimenzionalna normalna, bivarijatna normalna).

Neka su $\rho \in \langle -1, 1 \rangle$, $\mu_1, \mu_2 \in \mathbb{R}$, $\sigma_1, \sigma_2 > 0$. Reći ćemo da $X = (X_1, X_2)$ ima 2-dimenzionalnu normalnu razdiobu ako ima funkciju gustoće $f = f_X$ danu s

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left(\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho \frac{x_1 - \mu_1}{\sigma_1} \cdot \frac{x_2 - \mu_2}{\sigma_2} + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right) \right)$$

Uočimo da je f neprekidna pa je izmjeriva, a još je i $f \ge 0$. Da bi f bila funkcija gustoće, još treba biti i $\int_{\mathbb{R}^2} f(t)d(\lambda t) = 1$. Budući da je f neprekidna, riječ je o Riemannovu integralu.

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x_1, x_2) dx_1 dx_2 = \begin{bmatrix} u = \frac{x_1 - \mu_1}{\sigma_1} \Rightarrow x_1 = \sigma_1 u + \mu_1, dx_1 = \sigma_1 du \\ v = \frac{x_2 - \mu_2}{\sigma_2} \Rightarrow x_2 = \sigma_2 v + \mu_2, dx_2 = \sigma_2 dv \end{bmatrix}$$

$$= \frac{1}{2\pi \sqrt{1 - \rho^2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2(1 - \rho^2)} \left(u^2 - 2\rho u v + v^2\right)\right) du dv$$

$$= \frac{1}{2\pi \sqrt{1 - \rho^2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2(1 - \rho^2)} \left((u - \rho v)^2 + (1 - \rho^2)v^2\right)\right) du dv$$

$$= \frac{1}{2\pi \sqrt{1 - \rho^2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} \left(\left(\frac{u - \rho v}{\sqrt{1 - \rho^2}}\right)^2 + v^2\right)\right)$$

$$= \begin{bmatrix} w = \frac{u - \rho v}{\sqrt{1 - \rho^2}} \Rightarrow u = \sqrt{1 - \rho^2} w + \rho w' \\ \varphi(w, w') = \left(\sqrt{1 - \rho^2} w + \rho w', w'\right) = \left(\begin{bmatrix} \sqrt{1 - \rho^2} & \rho \\ 0 & 1 \end{bmatrix} \begin{bmatrix} w \\ w' \end{bmatrix}\right)^T$$

$$|J_{\phi}| = \begin{vmatrix} \sqrt{1 - \rho^2} & \rho \\ 0 & 1 \end{vmatrix} = \sqrt{1 - \rho^2}$$

$$= \frac{1}{2\pi \sqrt{1 - \rho^2}} \cdot \sqrt{1 - \rho^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} (w^2 + w'^2)\right) dw dw'$$

$$\stackrel{\text{Fubini}}{=} \left(\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-w^2/2} dw\right) \left(\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-w'/2} dw\right)$$

$$= 1 \cdot 1 = 1$$

(Fubinijev teorem mogli smo iskoristiti jer su podintegralne funkcije nenegativne)

$$F_X(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} f(u, v) du dv.$$

 ${f PRIMJER}$. (n-dimenzionalna normalna razdioba) Neka su

- $n \in \mathbb{N}$,

$$-\mu = (\mu_1, \dots, \mu_n) \in \mathbb{R}^n.$$

- $A \in \mathbb{R}^{n \times n}$ (simetrična) pozitivno definitna matrica (tj., $\langle Ax, x \rangle > 0, \forall x \in \mathbb{R}^n \setminus \{0\}$) $\Rightarrow \det A > 0$ i $A^{-1} = [\sigma_{ij}]_{i,j=1}^n$ je, također, (simetrična) pozitivno definitna matrica.

Definiramo kvadratnu formu: $x = (x_1, \dots, x_n) \in \mathbb{R}^n$

$$Q(x) := (x - \mu)A^{-1}(x - \mu)^{T} = \sum_{i,j=1}^{n} \sigma_{ij}(x_{i} - \mu_{i})(x_{j} - \mu_{j})$$

n-dimenzionalni slučajni vektor Ximan-dimenzionalnu $normalnu \ distribuciju$ ako mu je funkcija gustoće dana s

$$f_X(x) := (2\pi)^{-n/2} (\det A)^{-1/2} \exp\left(-\frac{1}{2}Q(x)\right), x \in \mathbb{R}^n$$

f je neprekidna pa je izmjeriva, f>0 i još samo preostaje pokazati da je $\int_{\mathbb{R}^n} f=1$. A^{-1} je simetrična pozitivno definitna matrica pa postoji ortogonalna matrica U t. d. je $UA^{-1}U^T=D=\mathrm{diag}(d_1,d_2,\ldots,d_n)$, pri čemu su $d_1,d_2,\ldots,d_n>0$. Stavimo $x-\mu=yU$. Vrijedi

$$(x - \mu)A^{-1}(x - \mu)^T = yUA^{-1}U^Ty^T = yDy^T.$$

Sada:

$$(2\pi)^{-n/2}(\det A)^{-1/2} \int_{\mathbb{R}^n} \exp\left(-\frac{1}{2}Q(x)\right) dx \stackrel{|\det U|=1}{=} (2\pi)^{-n/2}(\det A)^{-1/2} \int_{\mathbb{R}^n} \exp\left(-\frac{1}{2}yDy^T\right) dy$$

$$= (2\pi)^{-n/2}(\det A)^{-1/2} \int_{\mathbb{R}^n} \exp\left(-\frac{1}{2}\sum_{i=1}^n d_i y_i^2\right) dy_1 \cdots dy_n$$

$$\stackrel{\text{Fubini}}{=} (\det A)^{-1/2} \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-dy_i^2/2} dy_i$$

$$= (\det A)^{-1/2} \prod_{i=1}^n \frac{1}{\sqrt{d_i}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-(\sqrt{d_i}y_i)^2/2} \sqrt{d_i} dy_i$$

$$= [t_i = \sqrt{d_i}y_i, i = 1, \dots, n]$$

$$= (\det A)^{-1/2} \prod_{i=1}^n \frac{1}{\sqrt{d_i}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-u_i^2/2} du_i$$

$$= (\det A)^{-1/2} \prod_{i=1}^n \frac{1}{\sqrt{d_i}}$$

$$= (\det A)^{-1/2} \left(\prod_{i=1}^n d_i\right)^{-1/2}$$

$$= (\det A)^{-1/2} ((\det A)^{-1})^{-1/2}$$

$$= (\det A)^{-1/2} ((\det A)^{-1/2}(\det A)^{1/2})$$

U 2-dimenzionalnom slučaju,

$$A = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} \Rightarrow A^{-1} = \frac{1}{(1 - \rho^2)\sigma_1^2 \sigma_2^2} \begin{bmatrix} \sigma_2^2 & -\rho \sigma_1 \sigma_2 \\ -\rho \sigma_1 \sigma_2 & \sigma_1^2 \end{bmatrix}$$

Mali detalj: u nekoj literaturi dozvoljen je slučaj degenerirane normalne razdiobe, $X = (X_1, \underbrace{\ldots}_{\substack{\text{degenerirane} \\ \text{(koncentrirane} \\ \text{to Mali detal)}}}, X_n).$

 $^{^4}A \text{ je pozitivno definitna, pa je posebno bijekcija i } \langle A^{-1}y,y\rangle = \langle A^{-1}(Ax),Ax\rangle = \langle x,Ax\rangle = \langle Ax,x\rangle > 0, \forall y\in\mathbb{R}^n\setminus\{0\}$

PRIMJER (Γ-razdioba)

Slučajna varijabla X ima Γ razdiobu s parametrima α, β ako joj je funkcija gustoće jednaka

$$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}} \mathbb{1}_{\langle 0, +\infty \rangle},$$

gdje je Γ funkcija $\Gamma:\mathbb{R}\to\langle 0,+\infty\rangle$ definirana s

$$\Gamma(x) := \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

Primijetimo da je $f_X>0$ izmjeriva. Još preostaje provjeriti da je $\int_{\mathbb{R}} f_X(x) dx=1.$

$$\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}} = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_{0}^{\infty} x^{\alpha-1} e^{-\frac{x}{\beta}} dx$$

$$= \left[x = \beta t \Rightarrow dx = \beta dt \right]$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_{0}^{\infty} (\beta t)^{\alpha-1} e^{-t} \beta dt$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \beta^{\alpha} \underbrace{\int_{0}^{\infty} t^{\alpha-1} e^{-t} dt}_{\Gamma(\alpha)}$$

$$= 1$$

Vjerojatnosti na beskonačnodimenzionalnim prostorima (§9.4, 3 Sarapa, 276. - 284. str.)

➤ u knjizi prof. Sarape: metrički prostori

 \triangleright na kolegiju: \mathbb{R}^n

NAPOMENA (iako Lebesgueova mjera nije konačna)

Propozicija 2.13, (Regularnost Lebesgueove mjere) Mjera i integral, 15. str.:

 \mathcal{L} sadrži sve otvorene i zatvorene skupove. Nadalje, ako je $A \in \mathcal{L}$, tada za sve $\varepsilon > 0$, postoje **otvoreni** skup U i **zatvoreni** F t. d. je $F \subset A \subset U$ i $\lambda(U \setminus A) < \varepsilon$ te $\lambda(A \setminus F) < \varepsilon$.

Svaka konačna mjera na \mathbb{R}^n regularna je (i napeta): $\forall B \in B_{\mathbb{R}^n}$

$$\mu(B) = \inf \{ \mu(O) \mid B \subseteq O, O \text{ otvoren} \}$$

$$= \sup \{ \mu(F) \mid F \subseteq B, F \text{ zatvoren} \}$$

$$\stackrel{\text{napetost}}{=} \sup \{ \mu(K) \mid K \subseteq B, K \text{ kompaktan} \}$$

Prisjetimo se

$$K \subseteq \mathbb{R}^n$$
 kompaktan $\Leftrightarrow K$ zatvoren i ograničen

Ovo posebno vrijedi za vjerojatnosne mjere.

Tipično ćemo promatrati niz slučajnih varijabli $(X_n \mid n \in \mathbb{N})$. Recimo da ne znamo polazni vjerojatnosni prostor, već su nam samo zadane distribucije tih slučajnih varijabli i želimo staviti taj niz u okvir naše teorije.

Kolmogorov

Neka je T proizvoljan skup indeksa. Za $t \in T$, promatramo situaciju $R_t = \mathbb{R}$. Označimo tada

$$R^{T} = \prod_{t \in T} R_{t} = \{ \omega = x(t) \mid t \in T, x(t) \in \mathbb{R} \} = \{ (x_{t}) \mid t \in T \},$$

drugim riječima, to je Kartezijev produkt skupa \mathbb{R} sa samim sobom |T| puta.

Ako je $T = \{1, 2, ..., n\}$, onda je $R^T = \mathbb{R}^n$. Ako je $T = \mathbb{N}$, onda ćemo pisati $R^T = \mathbb{R}^\infty = \{x_n \mid n \in \mathbb{N}\}$.

Želimo vidjeti kako bi izgledale mjere na skupovima kao što je R^T . Prvo je pitanje prirodne σ -algebre koja će se javiti.

Neka je $\{t_1,\ldots,t_n\}\subseteq T$ konačan⁵ podskup. Promotrimo projekciju $\pi_{t_1,\ldots,t_n}:\mathbb{R}^T\to\mathbb{R}^n$,

$$\pi_{t_1,\ldots,t_n}(\omega) = (x_{t_1},\ldots,x_{t_n})$$

DEFINICIJA

Skup $A \subseteq \mathbb{R}^T$ je **cilindar s bazom** $M \subseteq \mathbb{R}^n$ nad koordinatama t_1, \ldots, t_n ako je $A = \pi_{t_1, \ldots, t_n}^{-1}(M)$. Ako je $M \in B_{\mathbb{R}^n}$, onda je A Borelov cilindar.

Ovakva reprezentacija cilindra nije jedinstvena.

Uočimo da su i \mathbb{R}^T i \emptyset Borelovi cilindri, npr. $\mathbb{R}^T = \pi_{t_1}^{-1}(\mathbb{R})$ te $\emptyset = \pi_{t_1}^{-1}(\emptyset)$

$$\mathcal{F}^T = \{ A \subseteq \mathbb{R}^T \mid A \text{ je Borelov cilindar} \}$$

 \mathcal{F}^T je algebra podskupova od \mathbb{R}^T (zatvorena na operacije $\cup, \cap, \setminus, \triangle$).

Definirajmo $\mathcal{B}^T = \sigma\left(\mathcal{F}^T\right)$. \mathcal{B}^T nazivamo σ -algebrom Borelovih skupova na \mathbb{R}^T .

Ako je M oblika $M = M_1 \times \cdots \times M_n, M_i \in B_{\mathbb{R}}, \forall i = 1, \dots, n, ^6$ kažemo da je $A = \pi_{t_1, \dots, t_n}^{-1}(M)$ Borelov $\mathbf{pravokutnik}.$ Označimo s \mathcal{P}^T skup svih Borelovih pravokutnika. Vrijedi niz strogih inkluzija

$$\mathcal{P}^T \subset \mathcal{F}^T \subset \mathcal{B}^T. \Rightarrow \sigma\left(\mathcal{P}^T\right) \subseteq \mathcal{B}^T$$

⁵KONAČAN, ne PREBROJIV; nećemo gledati projekcije na prebrojivo mnogo koordinata, već konačno mnogo 6 Prisjetimo se da je produktna σ -algebra $B_{\mathbb{R}^n}$ generirana upravo tim skupovima!!!!!

Izaberimo koordinate t_1, \ldots, t_n i promatrajmo podskupove $C \subseteq \mathbb{R}^n$. Znamo da je $\sigma(\mathcal{P}^T)$ σ -algebra. Gledamo skupove

$$\{\omega \in \mathbb{R}^T \mid (x_{t_1}, \dots, x_{t_n}) \in C\} \in \sigma(\mathcal{P}^T)$$

NAPOMENA

Zadatak 3.3., Mjera i integral, vježbe, 18. str.

Neka je $f: X \to Y$ funkcija i \mathcal{G} σ -algebra na Y. Dokažite da je $f^{-1}(\mathcal{G}) := \mathcal{F} = \{f^{-1}(G) \mid G \in \mathcal{G}\}$ σ -algebra na X.

Posebno je $\pi_{t_1,\dots,t_n}^{-1}(\mathcal{P}(\mathbb{R}^n))\cap\sigma(\mathcal{P}^T)$ σ -algebra kao presjek dviju σ -algebri

Skupovi $\{\omega \in \mathbb{R}^T \mid (x_{t_1}, \dots, x_{t_n}) \in C\} \in \sigma(\mathcal{P}^T), C \subseteq \mathbb{R}^n$ tvore σ -algebru. Primijetimo da je posebno, za $C \in B_{\mathbb{R}^n} = \underbrace{B_{\mathbb{R}} \otimes \cdots \otimes B_{\mathbb{R}}}_{n \text{ puta}}$,

$$\left\{\omega \in \mathbb{R}^{T} \mid (x_{t_{1}}, \dots, x_{t_{n}}) \in C\right\} \in \sigma\left(\mathcal{P}^{T}\right) \Rightarrow \left\{\left\{\omega \in \mathbb{R}^{T} \mid (x_{t_{1}}, \dots, x_{t_{n}}) \in C\right\} \mid t_{1}, \dots, t_{n} \in T, n \in \mathbb{N}, C \in B_{\mathbb{R}^{n}}\right\}$$

$$\subseteq \left\{\left\{\omega \in \mathbb{R}^{T} \mid (x_{t_{1}}, \dots, x_{t_{n}}) \in C\right\} \in \sigma\left(\mathcal{P}^{T}\right) \mid t_{1}, \dots, t_{n} \in T, n \in \mathbb{N}, C \subseteq \mathbb{R}^{n}\right\}$$

$$\subseteq \sigma\left(\mathcal{P}^{T}\right)$$

pa je očito \mathcal{F}^T sadržana u ovoj familiji. Međutim, ova familija sadržana je u $\sigma(\mathcal{P}^T)$ pa je i $\mathcal{B}^T = \sigma(\mathcal{F}^T) \subseteq \sigma(\mathcal{P}^T)$. Dakle,

$$\mathcal{B}^T = \sigma\left(\mathcal{F}^T\right) = \sigma\left(\mathcal{P}^T\right).$$

Izmjeriv prostor: $(\mathbb{R}^T, \mathcal{B}^T)$. \mathcal{F}^T je generirajuća algebra. \Rightarrow Ako su $\mathbb{P}_1, \mathbb{P}_2$ vjerojatnosti na $(\mathbb{R}^T, \mathcal{B}^T)$ t. d. je $\mathbb{P}_1 \mid_{\mathcal{F}^T} = \mathbb{P}_2 \mid_{\mathcal{F}^T}$, onda je $\mathbb{P}_1 = \mathbb{P}_2$.

Neka su koordinate $\{t_1,\ldots,t_n\}\subseteq T$ i promatramo $(\mathbb{R}^n,B_{\mathbb{R}^n})$ te n-dimenzionalnu funkciju distribucije F_{t_1,\ldots,t_n} .

Ako je \mathbb{P} vjerojatnost na $(\mathbb{R}^T, \mathcal{B}^T)$, onda će projekcija $\pi_{t_1,\dots,t_n}: \mathbb{R}^T \to \mathbb{R}^n$ inducirati jednu vjerojatnost na \mathbb{R}^n , a ta vjerojatnost potom inducira pripadnu n-dimenzionalnu funkciju distribucije F_{t_1,\dots,t_n} . Očito, familija $\{F_{t_1,\dots,t_n} \mid \{t_1,\dots,t_n\} \subseteq T\}$ mora zadovoljavati sljedeće uvjete:

- $(i) \ \text{Ako je} \ (i_1,\ldots,i_n) \ \text{permutacija skupa} \ \{1,\ldots,n\}, \ \text{tada je} \ F_{t_{i_1},\ldots,t_{i_n}} \left(x_{t_{i_1}},\ldots,x_{t_{i_n}}\right) = F_{t_1,\ldots,t_n}(x_1,\ldots,x_n).$
- (ii) Ako je m < n, tada je $F_{t_1, \dots, t_m}(x_1, \dots, x_m) = F_{t_1, \dots, t_n}(x_1, \dots, x_m, \infty, \dots, \infty)^7$

Ako konačnodimenzionalne distribucije zadovoljavaju navedene uvjete, kažemo da su zadovoljeni **uvjeti** suglasnosti Kolmogorova⁸.

TEŽE PITANJE: Vrijedi li i obrat, tj., ako je zadana familija konačnodimenzionalnih distribucija koja zadovoljava uvjete suglasnosti Kolmogorova, određuje li ona **jedinstveno vjerojatnost** na $(\mathbb{R}^T, \mathcal{B}^T)$? **DA! (VELIKI KOLMOGOROVLJEV TEOREM)**

Uočimo da smo **jedinstvenost** već pokrili jer, zadati konačnodimenzionalne distribucije znači da ćemo znati ponašanje takve vjerojatnosti na svim **cilindrima**, a, podudaraju li se dvije vjerojatnosti na cilindrima, onda se moraju podudarati svuda.

Ključno će, dakle, biti pitanje egzistencije!

TEOREM (Kolmogorov)

Neka je $\{F_{t_1,\ldots,t_n} \mid \{t_1,\ldots,t_n\} \subseteq T\}$ zadana **suglasna** familija konačnodimenzionalnih funkcija distribucija. Tada postoji i jedinstvena je vjerojatnosna mjera \mathbb{P}_T na $(\mathbb{R}^T,\mathcal{B}^T)$ t. d. za svaki Borelov cilindar $A = \pi_{t_1,\ldots,t_n}^{-1}(M)$ vrijedi

$$\mathbb{P}_T(A) = \underbrace{\mathbb{P}_{F_{t_1,\dots,t_n}}(M)}_{\text{na } B_{\mathbb{R}^n}}.(*)$$

⁷Bitno za nerastući niz cilindara u nastavku (svojstvo neprekidnosti konačno aditivne mjere)

⁸Oba svojstva odražavaju se i na pripadnim induciranim vjerojatnostima.

Dokaz.

Jedinstvenost smo već komentirali (ako \mathbb{P}_1 i \mathbb{P}_2 zadovoljavaju *, slijedi $P_1 \mid_{\mathcal{F}^T} = P_2 \mid_{\mathcal{F}^T} \Rightarrow \mathbb{P}_1 = \mathbb{P}_2$).

EGZISTENCIJA

Uzmimo proizvoljne koordinate t_1,\ldots,t_n i proizvoljnu bazu cilindra $M\in B_{\mathbb{R}^n}$. Promatramo cilindar $A:=\pi_{t_1,\ldots,t_n}^{-1}(M)$. Konačnodimenzionalne funkcije distribucije F_{t_1,\ldots,t_n} svakako će inducirati vjerojatnosnu mjeru $\mathbb{P}_{F_{t_1,\ldots,t_n}}=:\mathbb{P}_{t_1,\ldots,t_n}$ i ta je vjerojatnosna mjera jedinstveno određena funkcijom distribucije (ovdje koristimo n-dimenzionalni slučaj). Definirajmo upravo $\mathbb{P}_T(A):=\mathbb{P}_{F_{t_1,\ldots,t_n}}(M)$. Prvo treba dokazati da je \mathbb{P}_T dobro definirana.

$$\pi_{t_1,\dots,t_n}^{-1}(M_1) = A = \pi_{u_1,\dots,u_m}^{-1}(M_2)$$

Prebacimo se na veći skup koordinata $\{t_1, \ldots, t_n, u_1, \ldots, u_m\} = \{s_1, \ldots, s_k\}$.

$$\mathbb{P}_{t_1,\dots,t_n}(M_1) \stackrel{2.}{=} \mathbb{P}_{s_1,\dots,s_k} \left(M_1 \times \mathbb{R}^{n'} \right)$$

$$\stackrel{1}{=} \mathbb{P}_{s_{i_1},\dots,s_{i_k}} \left(M_2 \times \mathbb{R}^{m'} \right)$$

$$\stackrel{2.}{=} \mathbb{P}_{u_1,\dots,u_m}(M_2).$$

NAPOMENA

Uočimo da su nam **uvjeti suglasnosti** bili potrebni samo da bismo ustanovili da je **definicija dobra**. Uočimo i da smo definirali funkciju na **algebri** skupova:

$$\mathbb{P}_T: \mathcal{F}^T \to [0,1].$$

Posebno, $\mathbb{P}_T(\mathbb{R}^T) = \mathbb{P}_{t_1}(\mathbb{R}) = 1$.

KONAČNA ADITIVNOST:

Neka su $A,B\in\mathcal{F}^T$ disjunktni. Znamo da postoje $\{t_1,\ldots,t_n\},\{u_1,\ldots,u_m\}\subseteq T,M_1,M_2\subseteq\mathbb{R}^n$ t. d. je $A=\pi_{t_1,\ldots,t_n}^{-1}(M_1)$ i $B=\pi_{u_1,\ldots,u_m}^{-1}(M_2)...$ Tada su, kako je riječ o projekciji, i M_1' i M_2' disjunktni

$$\begin{split} \pi_{s_1,\dots,s_k}^{-1}(M_1'\cap M_2') &= \pi_{s_1,\dots,s_k}^{-1}(M_1')\cap \pi_{s_1,\dots,s_k}^{-1}(M_2') = A\cap B = \emptyset \Rightarrow M_1'\cap M_2' = \emptyset \\ \mathbb{P}_T(A\cup B) &= \mathbb{P}_{F_{s_1,\dots,s_k}}(M_1'\cup M_2') \\ &= \mathbb{P}_{F_{s_1,\dots,s_k}}(M_1') + \mathbb{P}_{F_{s_1,\dots,s_k}}(M_2') \\ &= \mathbb{P}_{F_{t_1,\dots,t_n}}(M_1) + \mathbb{P}_{F_{u_1,\dots,u_m}}(M_2) \\ &= \mathbb{P}_T(A) + \mathbb{P}_T(B). \end{split}$$

 \mathcal{F}^T je algebra koja generira \mathcal{B}^T . Dovoljno je dokazati da je \mathbb{P}_T σ -aditivna na \mathcal{F}^T . Tada možemo iskoristiti Caratheodoryjevu konstrukciju.

Budući da je \mathbb{P}_T konačno aditivna na \mathcal{F}^T , dovoljno je dokazati sljedeće: ako je $(A_n \mid n \in \mathbb{N}) \subseteq \mathcal{F}^T$ nerastući niz (tj. $A_n \supseteq A_{n+1}, \forall n \in \mathbb{N})$ i $\bigcap_{n=1}^{+\infty} A_n = \emptyset$, tada je

$$\lim_{n\to\infty} \mathbb{P}_T(A_n) = 0.$$

NAPOMENA

Usporedi s DEFINICIJOM 3.9, Mjera i integral, 22. str.

Dokaz.

Budući da je \mathbb{P}_T konačno aditivna, to je i monotona, dakle, $\mathbb{P}_T(A_n) \geq \mathbb{P}_T(A_{n+1}), \forall n \in \mathbb{N}$. Zaključujemo: $\{\mathbb{P}_T(A_n)\}_{n \in \mathbb{N}}$ je padajuć niz u [0,1], dakle, omeđen odozdo pa ima limes $\varepsilon = \lim_{n \to \infty} \mathbb{P}_T(A_n) \geq 0$.

Treba dokazati da je $\varepsilon=0$. Pretpostavimo suprotno, tj. da je $\varepsilon>0$.

Postoje koordinate $t_1, \ldots, t_{m_n}, M_n$ Borelovi skupovi t. d. je $A_n = \pi_{t_1, \ldots, t_{m_n}}^{-1}(M_n)$.

 $\Rightarrow \mathbb{P}_{t_1,\dots,t_{m_n}}(M_n)=\mathbb{P}_T(A_n)\geq \varepsilon$. Zbog svojstva 2. suglasnosti uvjeta Kolmogorova, BSOMP da je $n\mapsto m_n$ strogo rastuća funkcija.

Budući da je $M_n \subseteq \mathbb{R}^{m_n}$ Borelov, zbog regularnosti vjerojatnosne mjere $\mathbb{P}_{t_1,\dots,t_{m_n}}$ na $(\mathbb{R}^{m_n},B_{\mathbb{R}^{m_n}})$, postoji kompaktan $K_n \subseteq M_n$ t. d. je

$$\mathbb{P}_{t_1,\dots,t_{m_n}}\left(M_n\setminus K_n\right)<\frac{\varepsilon}{2^{n+1}}.$$

Promotrimo cilindre baš nad kompaktnim skupovima: $B_n := \pi_{t_1, \dots, t_{m_n}}^{-1}(K_n)$. Primijetimo da je

$$\boxed{B_n} = \pi_{t_1,\dots,t_{m_n}}^{-1}(K_n) \subseteq \pi_{t_1,\dots,t_{m_n}}^{-1}(M_n) = \boxed{A_n}.$$

$$\mathbb{P}_T(A_n \setminus B_n) = \mathbb{P}_{t_1, \dots, t_{m_n}}(M_n \setminus K_n) < \frac{\varepsilon}{2^{n+1}}.$$

Označimo $C_n := \bigcap_{k=1}^n B_k$. (vidi kasnije: $C_n \subseteq B_k, \forall k = 1, \dots, n$ i posebno $C_n \subseteq B_k, \forall n \ge k$) Budući da je $B_n \in \mathcal{F}^T, \forall n \in \mathbb{N}$, a familija \mathcal{F}^T zatvorena na konačne skupovne operacije, $C_n \in \mathcal{F}^T$.

$$C_n \subseteq B_n \subseteq A_n$$
.

 \mathbb{P}_T je konačno aditivna $\Rightarrow \mathbb{P}_T$ je konačno subaditivna.

$$\mathbb{P}_{T}(A_{n} \setminus C_{n}) = \mathbb{P}_{T}\left(\bigcup_{k=1}^{n} (A_{n} \setminus B_{k})\right)$$

$$\leq \mathbb{P}\left(\bigcup_{k=1}^{n} (A_{k} \setminus B_{k})\right)$$

$$\leq \sum_{k=1}^{n} \mathbb{P}_{T}(A_{k} \setminus B_{k})$$

$$< \varepsilon \sum_{k=1}^{n} \frac{1}{2^{n+1}} \leq \frac{\varepsilon}{2}$$

$$\Rightarrow \mathbb{P}_{T}(C_{n}) = \mathbb{P}_{T}(A_{n}) - \mathbb{P}_{T}(A_{n} \setminus C_{n}) \geq \frac{\varepsilon}{2}, \forall n \in \mathbb{N}$$

$$\Rightarrow C_{n} \neq \emptyset, \forall n \in \mathbb{N}$$

DIJAGONALNI POSTUPAK:

 $\forall n \in \mathbb{N}, \exists \omega^{(n)} = \left(x_t^{(n)}\right) \in C_n \subseteq B_1 \stackrel{\text{po}}{\Longrightarrow} \left(\left(x_{t_1}^{(n)}, \dots, x_{t_{n_1}}^{(n)}\right) \mid n \in \mathbb{N}\right) \subseteq K_1, \text{ što je niz sadržan u kompakt-}$ nom podskupu konačnodimenzionalnog prostora ⇒ postoji konvergentan podniz (indeksi→ preslikavanje $n\mapsto r_{1,n}$):

$$\left(x_{t_1}^{(r_{1,n})}, \dots, x_{t_{m_1}}^{(r_{1,n})}\right) \stackrel{n \to \infty}{\longrightarrow} \left(x_{t_1}^{(0)}, \dots, x_{t_{m_1}}^{(0)}\right) \in K_1.$$

KORAK INDUKCIJE: $n \ge 2 \Rightarrow C_n \subseteq B_2, \forall n \ge 2$ $\left(x_{t_1}^{(r_{1,n})}, \dots, x_{t_{m_1}}^{(r_{1,n})}, \dots, x_{t_{m_2}}^{(r_{1,n})}\right) \text{ sadržani su u } K_2 \text{ (osim možda prvog člana, naime vrijedi, štoviše } C_1 = C_1 + C_2$ B_1). Opet, postoji podniz $(r_{2,n})$ podniza $(r_{1,n})$ t. d.

$$\left(x_{t_1}^{(r_{2,n})}, \dots, x_{t_{m_1}}^{(r_{2,n})}, \dots, x_{t_{m_2}}^{(r_{2,n})}\right) \stackrel{n \to \infty}{\longrightarrow} \left(\underbrace{x_{t_1}^{(0)}, \dots, x_{t_{m_1}}^{(0)}}_{\text{prethodni limes}}, \dots, x_{t_{m_2}}^{(0)}\right) \in K_2$$

Induktivno nastavimo dalje.

Uzmemo $\omega = (x_t) \in \mathbb{R}^T$ t. d. je $\pi_{t_1,\dots,t_{m_n}}(\omega) = \left(x_{t_1}^{(0)},\dots,x_{t_{m_n}}^{(0)}\right), \forall n \in \mathbb{N} \Rightarrow \boxed{\omega \in C_n, \forall n \in \mathbb{N}}$

$$\Rightarrow \omega \in \bigcap_{n=1}^{\infty} C_n = \bigcap_{n=1}^{\infty} B_n \Rightarrow \bigcap_{n=1}^{\infty} A_n \neq \emptyset$$
, kontradikcija!

Dakle, $\varepsilon = 0 \Rightarrow \mathbb{P}_T$ je σ -aditivna \Rightarrow može se jedinstveno proširiti na \mathcal{B}^T .

NAPOMENA

Teorem 2.3, Matematička analiza 1 & 2, 44. str.

Svaki ograničen i monoton niz u \mathbb{R} konvergentan je.

4 Matematičko očekivanje (§10.1, 10.2, 10.3, Sarapa, 287.–309. str.)

Ako je X slučajna varijabla, znamo da se može zapisati kao $X = X^+ - X^-$. Pitanje integrabilnosti svodi se na pitanje integrabilnosti nenegativnih izmjerivih funkcija.

Ako je X nenegativna slučajna varijabla, postoji $\int_{\Omega} X dP \in [0, +\infty]$.

$$\mathbb{E}[X] := \int_{\Omega} X dP.$$

Uvijek postoje $\mathbb{E}[X^+]$ i $\mathbb{E}[X^-]$. Ako je barem jedan od brojeva $\mathbb{E}[X^+]$, $\mathbb{E}[X^-]$ konačan, onda postoji $\mathbb{E}[X]$ i

$$\begin{split} \mathbb{E}[X] &:= \mathbb{E}\left[X^+\right] - \mathbb{E}\left[X^-\right] \in [-\infty, +\infty] \\ \mathbb{E}[X] \text{ je konačno} &\Leftrightarrow \mathbb{E}\left[X^+\right] \text{ i } \mathbb{E}\left[X^-\right] \text{ konačna su} \\ &\Leftrightarrow X \text{ je integrabilna u odnosu na } \mathbb{P} \\ &\Leftrightarrow X \in L^1\left(\Omega, \mathcal{F}, \mathbb{P}\right) \\ &\Leftrightarrow |X| \in L^1\left(\Omega, \mathcal{F}, \mathbb{P}\right) \\ &\Leftrightarrow \mathbb{E}\left[|X|\right] < +\infty \end{split}$$

 ${\bf U}$ tom slučaju, kažemo da ${\bf X}$ ima konačno očekivanje i broj

$$\mathbb{E}[X] = \int_{\Omega} X dP$$

zovemo matematičkim očekivanjem slučajne varijable X.

Neka je $g:\mathbb{R}\to\mathbb{R}$ Borelova funkcija. Tada je $g\circ X$ slučajna varijabla.

$$\mathbb{E}\left[g\circ X\right] \text{ je konačno } \Leftrightarrow g\circ X\in L^{1}\left(\Omega,\mathcal{F},\mathbb{P}\right).$$

Tada vrijedi

$$\mathbb{E}\left[g\circ X\right] = \int_{\Omega} g(X(\omega)) d\mathbb{P}(\omega)$$

$$\stackrel{\text{zamjena}}{=} \int_{\mathbb{R}} g(x) d\mathbb{P}_X(x)$$

Očekivanje svake slučajne varijable može se svesti na pitanje integriranja unutar $\mathbb R$ po induciranoj mjeri $\mathbb P_X$.

$$\mathbb{E}\left[g\circ X\right]$$
 je konačno $\Leftrightarrow g\in L^1\left(\mathbb{R},B_{\mathbb{R}},\mathbb{P}_X\right)$

Posebno $(g = id_{\mathbb{R}}),$

$$\mathbb{E}[X]$$
 je konačan $\Leftrightarrow \int_{\mathbb{D}} |x| d\mathbb{P}_X(x) < +\infty$

Ako je \mathbb{P}_X diskretna,

$$\sum_{n\in\mathbb{N}}p_n\delta_{a_n},\quad a_n\in\mathbb{R}, 0\leq p_n\leq 1, \sum_{n\in\mathbb{N}}p_n=1.$$

$$\mathbb{E}[|X|] = \int_{\mathbb{R}} |x| d\mathbb{P}_X(x) = \sum_{n \in \mathbb{N}} |a_n| p_n^9.$$

$$\mathbb{E}[|X|] < +\infty \Leftrightarrow \sum_{n \in \mathbb{N}} |a_n| p_n < +\infty$$

i tada je

$$\mathbb{E}[X] = \sum_{n \in \mathbb{N}} a_n p_n.$$

⁹Proof of Dirac δ 's sifting property (sifting, ne shifting!)

Pretpostavimo da slučajna varijabla X ima funkciju gustoće f_X (Radon-Nikodymova derivacija mjere \mathbb{P}_X u odnosu na Lebesgueovu mjeru: $f_X = \frac{d\mathbb{P}_X}{d\lambda}$)

$$\mathbb{E}[|X|] < +\infty \Leftrightarrow \int_{\mathbb{R}} |x| d\mathbb{P}_X(x) \Leftrightarrow \int_{\mathbb{R}} |x| \underbrace{f_X(x) dx}_{\text{Lebesgueov}} < +\infty$$

Tada je

$$\mathbb{E}[X] = \int_{\mathbb{R}} x f_X(x) dx.$$

Budući da je id $\mathbb{R}: x \mapsto x$ neprekidna, ako je $f_X: \mathbb{R} \to \mathbb{R}$ neprekidna funkcija, možemo promatrati i Riemannov integral.

Istaknimo još:

$$\mathbb{E}\left[g \circ X\right] = \int_{\mathbb{R}} g(x) f_X(x) dx$$

Očekivanje je integral \Rightarrow :

- □ linearnost
- monotonost
- ☐ granični teoremi:
 - **☆** Fatouova lema
 - ❖ teorem o monotonoj konvergenciji (TMK)
 - ❖ Lebesgueov teorem o dominiranoj konvergenciji (LTDK)

Na Mjeri i integralu, koristili smo terminologiju s. s., g. s.,

"gotovo svuda" = "gotovo sigurno"

Recimo da ispitujemo svojstva S_1 i S_2 na Ω . Reći ćemo da su S_1 i S_2 jednaka g. s. ako postoji $E \in \mathcal{F}$ t. d. je $\mathbb{E} \subseteq \{\omega \in \Omega \mid S_1(\omega) = S_2(\omega)\}$ i $\mathbb{P}(E) = 1$.

X=Y g. s. \Rightarrow [X ima konačno očekivanje \Leftrightarrow Y ima konačno očekivanje] i u tom slučaju $\mathbb{E}[X]=\mathbb{E}[Y]$.

NAPOMENA

Mjera i integral, 56./57. str., relacije ekvivalencije, \mathcal{L}^p i L^p prostori.

Pretpostavimo da X ima konačno očekivanje. Vrijedi: X=0 g. s. $\Rightarrow \mathbb{E}X=0$, no, obrat ne vrijedi.

Međutim:

NAPOMENA

- **PROPOZICIJA** 5.12., **Mjera i integral**, 44. **str.** Neka su $f, g: X \to \mathbb{R}$ **integrabilne** funkcije t. d. je $f \geq g$. Ako je $\int f d\mu = \int g d\mu$, tada je f = g g. s.
- \Re Prethodna porpozicija iznimno se često koristi uz g=0. U tom slučaju, ona se svodi na tvrdnju: ako je $f:X\to\mathbb{R}$ nenegativna izmjeriva funkcija t. d. je $\int fd\mu=0$, tada je f=0 g. s.

Dakle, ako je $X \geq 0$, tada je X = 0 g. s. $\Leftrightarrow \mathbb{E}[X] = 0$.

Neka je X slučajna varijabla, $g: \mathbb{R} \to \mathbb{R}$ funkcija definirana s $g(x) = x^r$, za r > 0. Ako je $\mathbb{E}[|X|^r] < +\infty$, kažemo da X ima **konačan** r-ti **moment**. Tada je $\mathbb{E}[X^r]$ r-ti moment slučajne varijable X, a $\mathbb{E}\left[|X|^r\right]$ r-ti apsolutni moment slučajne varijable X. Neka je $0 \le s < r$. Tada:

$$\begin{split} |X|^s &= |X|^s \mathbbm{1}_{\{|X| < 1\}} + |X|^s \mathbbm{1}_{\{|X| \ge 1\}} \le 1 + |X|^r. \\ \Rightarrow \mathbbm{1}_{\{|X|^s\}} &\le \mathbbm{1}_{\{|X|^r\}} = 1 + \mathbbm{1}_{\{|X|^r\}}. \end{split}$$

Ovime smo dokazali sljedeću propoziciju:

PROPOZICIJA

Ako X ima konačan r-ti moment, tada X ima konačan i s-ti moment.

NAPOMENA

Prisjetimo se i PRIMJERA 7.8, Mjera i integral, 60. str.:

Neka je (X, \mathcal{F}, μ) prostor **konačne** mjere te neka je ponovno $1 \leq p < q \leq +\infty$. Pokazat ćemo da je $L^q \subset L^p$, tj. da, ako je $\|f\|_q < +\infty$, tada je nužno i $\|f\|_p < +\infty$.

Obrat ne vrijedi, npr. Cauchyjeva distribucija ima konačno očekivanje, no nema 2. moment. Neke distribucije nemaju ni 1. moment.

Neka je X slučajna varijabla koja ima **konačno** očekivanje (tj., ima **konačan** 1. moment) i $r \geq 0$. Neka je $g : \mathbb{R} \to \mathbb{R}$ zadana s $g(x) := |x - \mathbb{E}X|^r$. Ako je $\mathbb{E}[|X - \mathbb{E}X|^r] = \mathbb{E}[g \circ X] < +\infty$, kažemo da X ima r-ti centralni (apsolutni) moment. Lako se vidi $(r \geq 1)$:

Xima konačan r-timoment $\Leftrightarrow X$ ima konačan r-ticentralni apsolutni moment

$$\mathbb{E}\left[|X|^r\right] = \mathbb{E}\left[|(X - \mathbb{E}X) + \mathbb{E}X|^r\right]$$

$$\stackrel{r \ge 0}{\le} \mathbb{E}\left[(|X - \mathbb{E}X| + |\mathbb{E}X|)^r\right]$$

$$\stackrel{r \ge 1}{\le} \mathbb{E}\left[|X - \mathbb{E}X|^r + |\mathbb{E}X|^r\right]$$

$$= \mathbb{E}\left[|X - \mathbb{E}X|^r\right] + |\mathbb{E}X|^r$$

$$\mathbb{E}\left[|X - \mathbb{E}X|^r\right] = \mathbb{E}\left[|X + (-\mathbb{E}X)|^r\right]$$

$$\stackrel{r \ge 0}{\le} \mathbb{E}\left[(|X| + |\mathbb{E}X|)^r\right]$$

$$\stackrel{r \ge 1}{\le} \mathbb{E}\left[|X|^r + |\mathbb{E}X|^r\right]$$

$$= \mathbb{E}\left[|X|^r\right] + |\mathbb{E}X|^r$$

NAPOMENA

PROPOZICIJA 7.1 (NEJEDNAKOST MINKOWSKOG), Mjera i integral, 56. str.:

Neka je $p \in [1, +\infty)$. Za proizvoljne $f, g \in \mathcal{L}^p$ vrijedi

$$||f + g||_p \le ||f||_p + ||g||_p.$$

 $\forall r \in \mathbb{N}, X$ ima konačan r-ti centralni apsolutni moment $\Leftrightarrow X \in L^r(\Omega, \mathcal{F}, \mathbb{P})$.

NAPOMENA

Uočimo da, zbog $|X - \mathbb{E}X|^r \ge 0$, vrijedi: $(X \in L^1(\Omega, \mathcal{F}, \mathbb{P}) \Rightarrow \mathbb{E}[|X - \mathbb{E}X|^r]$ postoji, ali može biti i beskonačno).

Neka je $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ i promatramo r = 2. Ako je $\mathbb{E}\left[|X - \mathbb{E}X|^2\right] = \mathbb{E}\left[(X - \mathbb{E}X)^2\right] < +\infty$, kažemo da X ima konačnu varijancu i pišemo

$$\begin{aligned} \operatorname{Var} X &:= \underbrace{\mathbb{E}\left[(X - \mathbb{E}X)^2 \right]}_{\substack{\text{interpretacija} \\ \text{mjera raspršenja} \\ \text{oko očekivanja}}} \\ &= \mathbb{E}\left[X^2 - 2X\mathbb{E}X + (\mathbb{E}X)^2 \right] \\ &= \mathbb{E}\left[X^2 \right] - 2\mathbb{E}X\mathbb{E}X + (\mathbb{E}X)^2 \\ &= \mathbb{E}\left[X^2 \right] - (\mathbb{E}X)^2 \end{aligned}$$

pa

X ima konačnu varijancu $\Leftrightarrow X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$,

tj.,

$$\operatorname{Var} X < +\infty \Leftrightarrow \mathbb{E} \left[X^2 \right] < +\infty.$$

 $\sqrt{\operatorname{Var} X} = \mathbf{standardna} \ \mathbf{devijacija}$

Neka je X slučajna varijabla s konačnom varijancom te $a, b \in \mathbb{R}$. Tada

$$Var(aX + b) = \mathbb{E}\left[(aX + b - \mathbb{E}[aX + b])^2\right]$$

$$= \mathbb{E}\left[(aX + b - a\mathbb{E}[X] - b)^2\right]$$

$$= \mathbb{E}\left[(a(X - \mathbb{E}X))^2\right]$$

$$= a^2\mathbb{E}\left[(X - \mathbb{E}X)^2\right]$$

$$= a^2 \text{Var } X$$

ZADATAK*(bitan, vidjeti poglavlje §Primjene)

Neka su $(\mu_n)_{n\in\mathbb{N}}$ i μ vjerojatnosne mjere na $(\mathbb{R}, B_{\mathbb{R}})$. Kažemo da niz $(\mu_n)_{n\in\mathbb{N}}$ slabo konvergira prema μ (oznaka $\mu_n \xrightarrow{w} \mu$) ako za svaku neprekidnu ograničenu funkciju $g: \mathbb{R} \to \mathbb{R}$, vrijedi

$$\lim_{n\to\infty}\int_{\mathbb{R}}gd\mu_n=\int_{\mathbb{R}}gd\mu.$$

Neka su $(X_n)_{n\in\mathbb{N}}$ i X slučajne varijable, $(\mathbb{P}_{X_n})_{n\in\mathbb{N}}$, \mathbb{P}_X njihovi zakoni razdiobe i neka $\mathbb{P}_{X_n} \xrightarrow{w} \mathbb{P}_X$. Ako je f neprekidna funkcija, dokažite da $\mathbb{P}_{f(X_n)} \xrightarrow{w} \mathbb{P}_{f(X)}$.

Rješenje.

$$\begin{split} f &\text{ je neprekidna } \Rightarrow f \text{ je Borelova} \Rightarrow (f(X_n))_{n \in \mathbb{N}}, f(X) \text{ su slučajne varijable} \\ &\lim_{n \to \infty} \int_{\mathbb{R}} g d\mathbb{P}_{f(X_n)} = \lim_{n \to \infty} \int_{\Omega} g(f(X_n)) d\mathbb{P} = \lim_{n \to \infty} \int_{\Omega} (g \circ f)(X_n) d\mathbb{P} = \lim_{n \to \infty} \int_{\mathbb{R}} (g \circ f) d\mathbb{P}_{X_n} \\ &= \begin{bmatrix} g \text{ je ograničena} & \Rightarrow g \circ f \text{ je ograničena} \\ g, f \text{ su neprekidne} & \Rightarrow g \circ f \text{ je neprekidna} \end{bmatrix} \\ &= \int_{\mathbb{R}} (g \circ f) d\mathbb{P}_{X} \\ &= \int_{\Omega} (g \circ f)(X) d\mathbb{P} = \int_{\Omega} g(f(X)) d\mathbb{P} = \int_{\mathbb{R}} g d\mathbb{P}_{f(X)} \end{split}$$

5 Nejednakosti i kovarijance (§10.4, Sarapa, 310. – 319. str.)

Neka je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor, X slučajna varijabla i $r \in (0, +\infty)$. Promatrali smo r-ti (apsolutni, centralni apsolutni) moment.

PRIMJER

(a) $X \sim U([a,b])$.

$$\mathbb{E}\left[X^{2}\right] = \frac{1}{b-a} \int_{a}^{b} x^{2} dx = \frac{b^{2} + ab + a^{2}}{3}$$

$$\operatorname{Var} X = \mathbb{E}\left[X^{2}\right] - (\mathbb{E}X)^{2} = \frac{a^{2} + ab + b^{2}}{3} - \left(\frac{a+b}{2}\right)^{2} = \frac{(a-b)^{2}}{12}$$

(b) $X \sim \text{Exp}(\lambda), \lambda \in \langle 0, +\infty \rangle$

$$\begin{split} \mathbb{E}\left[X^2\right] &= \lambda \int_0^{+\infty} x^2 e^{-\lambda x} dx = \frac{2}{\lambda^2} \\ \operatorname{Var} X &= \mathbb{E}\left[X^2\right] - (\mathbb{E}X)^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2} \end{split}$$

(c) $X \sim N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma \in \langle 0, +\infty \rangle$.

$$\mathbb{E}\left[(X - \mu)^2 \right] = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} (x - \mu)^2 e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$

$$= \left[t = \frac{x - \mu}{\sigma} \Rightarrow x = \sigma t + \mu \right]$$

$$= \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t^2 e^{-t^2/2} dt$$

$$= \frac{2\sigma^2}{\sqrt{2\pi}} \int_0^{+\infty} t^2 e^{-t^2/2} dt$$

$$= \left[du = t e^{-t^2/2} \Rightarrow u = -e^{-t^2/2} \right]$$

$$= \frac{2\sigma^2}{\sqrt{2\pi}} \left[\underbrace{-t e^{-t^2/2} \Big|_0^{+\infty}}_{=0} + \underbrace{\int_0^{+\infty} e^{-t^2/2} dt}_{=\sqrt{\pi/2}} \right]$$

$$= \frac{2\sigma^2}{\sqrt{2\pi}} \left[\underbrace{-t e^{-t^2/2} \Big|_0^{+\infty}}_{=0} + \underbrace{\int_0^{+\infty} e^{-t^2/2} dt}_{=\sqrt{\pi/2}} \right]$$

(d) $X \sim \Gamma(\alpha, \beta), \alpha, \beta \in \langle 0, +\infty \rangle$

$$\mathbb{E}\left[X^{r}\right] = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_{0}^{+\infty} x^{r+\alpha-1} e^{-x/\beta} dx$$

$$= \begin{bmatrix} y = \frac{x}{\beta} \Rightarrow dx = \beta dy \\ \frac{x^{r+\alpha-1}}{\beta^{\alpha}} dx = (\beta y)^{r} y^{\alpha-1} dy \end{bmatrix}$$

$$= \frac{\beta^{r}}{\Gamma(\alpha)} \int_{0}^{+\infty} y^{r+\alpha-1} e^{-y} dy$$

$$= \frac{\beta^{r}}{\Gamma(\alpha)} \Gamma(r+\alpha)$$

$$\mathbb{E}\left[X^{2}\right] = \frac{\beta^{2} \Gamma(\alpha+2)}{\Gamma(\alpha)} = \frac{\beta^{2} (\alpha+1)\alpha\Gamma(\alpha)}{\Gamma(\alpha)} = \beta^{2} \alpha(\alpha+1)$$

$$(\mathbb{E}X)^{2} = (\beta \alpha)^{2}$$

$$\Rightarrow \operatorname{Var} X = \beta^{2} \alpha(\alpha+1) - (\beta \alpha)^{2} = \alpha \beta^{2}$$

Jedna od najvažnijih ocjena: ocjena repa distribucije

- ➤ A. A. Markov (Markovljevi procesi)
- ➤ L. P. Čebišev

TEOREM

Neka je X slučajna varijabla i g nenegativna Borelova funkcija t. d. je $\mathbb{E}(g(X)) = \mathbb{E}(|g(X)|) < +\infty$. Ako je g parna funkcija neopadajuća na $[0, +\infty)$ (dakle, nerastuća na $(-\infty, 0]$), tada za svaki $\varepsilon > 0$,

$$\mathbb{P}\left(|X| \ge \varepsilon\right) \le \frac{\mathbb{E}(g(X))}{g(\varepsilon)}.$$

Dokaz.

Promatrajmo događaj $A = \{|X| \geq \varepsilon\} = \{\omega \in \Omega \mid |X(\omega)| \geq \varepsilon\}$. Uočimo da, budući da je g nerastuća na $\langle -\infty, 0 \rangle$ i neopadajuća na $[0, +\infty)$,

$$\begin{split} g(X(\omega)) &\geq g(\varepsilon), \forall \omega \in A. \\ \mathbb{E}(g(X)) &= \int_{\Omega} g(X) d\mathbb{P} \\ &= \int_{A} g(X) d\mathbb{P} + \underbrace{\int_{A^{c}} \underbrace{g(X)}_{\geq 0} d\mathbb{P}}_{\geq 0} \\ &\geq \int_{A} g(X) d\mathbb{P} \\ &\geq g(\varepsilon) \int_{A} d\mathbb{P} \\ &= g(\varepsilon) \mathbb{P}(A) \\ &= g(\varepsilon) \mathbb{P}(|X| \geq \varepsilon) \end{split}$$

(pazimo da: $g(\varepsilon) > 0$)

Važni korolari: ako je

$$\Box$$
 $g(x) = |x|^r$

$$\square$$
 $g(x) = |x - \mathbb{E}X|^2$ (mislim da je ipak $g(y) = y^2, Y := X - \mathbb{E}X$)

KOROLAR (Markovljeva nejednakost):

Ako je r > 0 i $\mathbb{E}[|X|^r] < +\infty$, tada, za svaki $\varepsilon > 0$,

$$\mathbb{P}\left(|X| \ge \varepsilon\right) \le \frac{\mathbb{E}\left[|X|^r\right]}{\varepsilon^r}.$$

KOROLAR (Čebiševljeva nejednakost):

Ako je X slučajna varijabla s **konačnim** očekivanjem i **konačnom** varijancom (odnosno,**konačnim** drugim momentom), tada, za svaki $\varepsilon > 0$,

$$\mathbb{P}\left(|X - \mathbb{E}X| \ge \varepsilon\right) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}$$

Primijetimo da je g parna oko $\mathbb{E}(X)$.

NAPOMENA

Mjera i integral, 58. str.

Neka je L^{∞} skup svih izmjerivih **esencijalno** ograničenih funkcija $f: X \to \mathbb{R}$, tj. izmjerivih funkcija $f: X \to \mathbb{R}$ za koje postoji konstanta $M \in \mathbb{R}$ t. d. je $|f| \leq M$ g. s. Definiramo i funkciju: $\|\cdot\|_{\infty} L^{\infty} \to \mathbb{R}$

$$||f||_{\infty} := \{M \mid |f| \le M \text{ g. s.}\}$$

PROPOZICIJA

Neka je X slučajna varijabla, g nenegativna Borelova funkcija t. d. je $\mathbb{E}(g(X)) < +\infty$. Ako je g parna funkcija neopadajuća na $[0, +\infty)$, te sup $g < +\infty$ g. s., tada, za svaki $\varepsilon > 0$,

$$\mathbb{P}(|X| \ge \varepsilon) \ge \frac{\mathbb{E}(g(X)) - g(\varepsilon)}{(\text{g. s.}) \sup g}$$

Dokaz.

Definirajmo, kao u posljednjem teoremu, prije dvaju korolara, $A:=\{|X|\geq \varepsilon\}$

$$\begin{split} \mathbb{E}(g(X)) &= \int_A g(X) d\mathbb{P} + \int_{A^c} g(X) d\mathbb{P} \\ &\leq \ (\text{g. s.}) \sup g \mathbb{P}(A) + g(\varepsilon) \underbrace{\mathbb{P}(A^c)}_{\leq 1} \\ &\leq \ (\text{g. s.}) \sup g \mathbb{P}(A) + g(\varepsilon) \end{split}$$

Dokazivali smo, sada usporedno:

$$g(\varepsilon) \int_A d\mathbb{P} + \int_{A^c} g(X) d\mathbb{P} \le \mathbb{E}(g(X)) \le \text{ g. s. sup } g \int_A d\mathbb{P} + g(\varepsilon) \int_{A^c} d\mathbb{P}$$

Poznate nejednakosti (Mjera i integral):

- □ (Cauchy-Schwarz/Hölder za p=q=2?) Ako su X,Y slučajne varijable i $\mathbb{E}\left[X^2\right],\mathbb{E}\left[Y^2\right]<+\infty$, tada je $\mathbb{E}\left[|XY|\right]^2\leq\mathbb{E}\left[X^2\right]\left[Y^2\right]$
- \square (Hölder) Ako su X,Y slučajne varijable, $p,q\in\langle 1,+\infty\rangle, \frac{1}{p}+\frac{1}{q}=1$ te $\mathbb{E}\left[X^p\right],\mathbb{E}\left[Y^q\right]<+\infty$, tada je

$$\mathbb{E}\left[\left|XY\right|\right] \le \left(\mathbb{E}\left[X^p\right]\right)^{\frac{1}{p}} \left(\mathbb{E}\left[Y^q\right]\right)^{\frac{1}{q}}$$

 \square (Minkowski) Ako su X,Yslučajne varijable i $p\in [1,+\infty\rangle$ te $\mathbb{E}\left[|X|^p\right]<+\infty, \mathbb{E}\left[|Y|^p\right]<+\infty,$ tada je

$$\left(\mathbb{E}\left[|X+Y|^p\right]\right)^{\frac{1}{p}} \leq \left(\mathbb{E}\left[|X|^p\right]\right)^{\frac{1}{p}} + \left(\mathbb{E}\left[|Y|^p\right]\right)^{\frac{1}{p}}$$

$$(\|X + Y\|_p \le \|X\|_p + \|Y\|_p)$$

Neka su X,Y slučajne varijable t. d. je $\mathbb{E}\left[X^2\right],\mathbb{E}\left[Y^2\right]<+\infty.^{10}$ Definiramo kovarijancu slučajnih varijabli X,Y:

$$Cov(X, Y) := \mathbb{E} [(X - \mathbb{E}X) (Y - \mathbb{E}Y)] \in \mathbb{R}.$$
$$= \mathbb{E} [XY] - \mathbb{E}X\mathbb{E}Y$$

Ako je Cov(X, Y) = 0, kažemo da su X i Y nekorelirane.

Neka je $X=(X_1,\ldots,X_n)$ n-dimenzionalni slučajni vektor. Znamo da je $\mathbb{E} X=(\mathbb{E} X_1,\ldots,\mathbb{E} X_n)\in\mathbb{R}^n$. Pretpostavimo da je $\mathbb{E} \left[X_i^2\right]<+\infty, \forall i=1,\ldots,n$. Definirajmo **kovarijacionu matricu vektora** X $M=\left[\mu_{ij}\right]_{i,j=1}^n, \mu_{ij}:=\operatorname{Cov}\left(X_i,X_j\right)$. Ako je i=j, tada je $\mu_{ii}=\operatorname{Var}\left(X_i\right)$. Isto tako, uočimo $\operatorname{Cov}\left(X_i,X_j\right)=\operatorname{Cov}\left(X_j,X_i\right)$ pa je M simetrična. Za bilo koji izbor $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$, lako se vidi da je

$$\sum_{i,j=1}^{n} \mu_{ij} \lambda_{i} \lambda_{j} = \mathbb{E}\left[\left(\sum_{i=1}^{n} \lambda_{i} \left(X_{i} - \mathbb{E}X_{i}\right)\right)^{2}\right] \geq 0 \Rightarrow M \text{ je pozitivno semi-definitna}$$

 $^{^{10}}$ Tehnički, možemo promatrati i situacije $\mathbb{E}[|X|],\mathbb{E}[|Y|]<+\infty,$ no najčešće ćemo kovarijancu promatrati u slučaju $\mathbb{E}\left[X^2\right],\mathbb{E}\left[Y^2\right]<+\infty$

6 Konvergencija slučajnih varijabli (§10.4,Sarapa, 319. – 327. str.)

Neka je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor, $(X_n)_{n \in \mathbb{N}}$ niz slučajnih varijabli na Ω i X će biti izdvojena slučajna varijabla.

DEFINICIJA

Niz $(X_n)_{n\in\mathbb{N}}$ konvergira gotovo sigurno (g. s.) prema X ako

$$\mathbb{P}\left(\left\{\omega \in \Omega \mid \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1.$$

Pišemo $X_n \stackrel{\mathrm{g. s.}}{\longrightarrow} X$. Takav je limes g. s. jedinstven.

DEFINICIJA

Niz $(X_n)_{n\in\mathbb{N}}$ konvergira po vjerojatnosti prema X ako za svaki $\varepsilon>0$,

$$\lim_{n \to \infty} \mathbb{P}\left(|X_n - X| \ge \varepsilon\right) = 0.$$

Pišemo $X_n \xrightarrow{\mathbb{P}} X$ ili $X = (\mathbb{P}) \lim_n X_n$. Limes je (g. s.) jedinstven.

DEFINICIJA (konvergencija u Banachovom prostoru L^p)

Neka je $1 \leq p < +\infty, X_n, X \in L^p(\Omega, \mathcal{F}, \mathbb{P})$. Niz $(X_n)_{n \in \mathbb{N}}$ konvergira u srednjem reda p ako je

$$\lim_{n \to \infty} \mathbb{E}\left[|X_n - X|^p\right] = 0.$$

Pišemo $X_n \xrightarrow{m^p} X$ ili govorimo o (m^p) limesu. Limes je (g. s.) jedinstven.

DEFINICIJA

Niz $(X_n)_{n\in\mathbb{N}}$ konvergira po distribuciji prema X ako

$$\forall x \in C(F_X), \lim_{n \to \infty} F_{X_n}(x) = F_X(x).$$

Budući da je svaka funkcija distribucije određena svojim skupom neprekidnosti, limes je jednako distribu
iran: ako $X_n \xrightarrow{\mathcal{D}} X$ i $X_n \xrightarrow{\mathcal{D}} Y$, onda je $F_X = F_Y$.

NAPOMENA

- * DEFINICIJA 7.11, Mjera i integral, 62. str.
- * TEOREM 7.12, Mjera i integral, 62. str.

Očito vrijedi:

$$\square X_n \xrightarrow{g. s.} X \Leftrightarrow (X_n)_{n \in \mathbb{N}}$$
 je (g. s.) Cauchyjev

$$\square X_n \xrightarrow{m^p} X \Leftrightarrow (X_n)_{n \in \mathbb{N}}$$
 je (m^p) Cauchyjev

PROPOZICIJA

- (i) $X_n \stackrel{\text{g. s.}}{\longrightarrow} X \Leftrightarrow \forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k=n}^{+\infty} \{|X_k X| \ge \varepsilon\}\right) = 0.$ (vidjet ćemo da odavde slijedi da konvergencija g. s. \Rightarrow konvergencija po \mathbb{P})
- $(ii) \ (X_n)_{n\in\mathbb{N}}$ je (g. s.) Cauchyjev $\Leftrightarrow \forall \varepsilon > 0$, $\lim_{n\to\infty} \mathbb{P}\left(\bigcup_{k=n}^{+\infty} \left\{|X_{n+k} X_n| \ge \varepsilon\right\}\right) = 0$. (bitno za **Teorem** 1,§Konvergencija redova)

Intuicija:

$$\mathbb{P}(X_n \to X) = 1 \Leftrightarrow \mathbb{P}(\forall \varepsilon > 0, \exists n \in \mathbb{N}, k \ge n \Rightarrow |X_k - X| < \varepsilon) = 1$$

$$\Leftrightarrow \mathbb{P}(\exists \varepsilon > 0, \forall n \in \mathbb{N}, \exists k \ge n, |X_k - X| \ge \varepsilon) = 0$$

$$\Leftrightarrow \mathbb{P}\left(\bigcup_{\varepsilon > 0} \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{|X_k - X| \ge \varepsilon\}\right) = 0$$

$$\Leftrightarrow \forall \varepsilon > 0, \mathbb{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{|X_k - X| \ge \varepsilon\}\right) = 0$$

$$\Leftrightarrow \forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k=n}^{\infty} \{|X_k - X| \ge \varepsilon\}\right) = 0$$

Dokaz.

(i) Neka je $\varepsilon > 0$. Za svaki $n \in \mathbb{N}$, definirajmo $A_n(\varepsilon) := \{|X_n - X| \ge \varepsilon\} \in \mathcal{F}$ te

$$A = \limsup_{n \to \infty} A_n = \bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} A_k(\varepsilon).$$

Uočimo da je niz $\left(\bigcup_{k=n}^{+\infty}A_k(\varepsilon)\right)_{n\in\mathbb{N}}\subset\mathcal{F}$ nerastuć pa je $\mathbb{P}(A(\varepsilon))=\lim_{n\to\infty}\mathbb{P}\left(\bigcup_{k=n}^{+\infty}A_k(\varepsilon)\right)$. Neka je $D:=\{\omega\in\Omega\mid X_n(\omega)\not\to X(\omega)\text{ kad }n\to\infty\}$. Uočimo:

$$\omega \in D \Leftrightarrow X_n(\omega) \not\to X(\omega)$$

$$\Leftrightarrow [\exists \varepsilon > 0, \forall n \in \mathbb{N}, \exists k \ge n, |X_k(\omega) - X| \ge \varepsilon]$$

$$\Leftrightarrow \exists \varepsilon > 0, \omega \in A(\varepsilon)$$

Dakle, $D = \bigcup_{\varepsilon > 0} A(\varepsilon)$. Primijetimo i da $0 < \varepsilon_1 \le \varepsilon_2 \Rightarrow A(\varepsilon_1) \supseteq A(\varepsilon_2)$ pa slobodno možemo reći: $D = \bigcup_{\varepsilon > 0} A(\varepsilon) = \bigcup_{\substack{n \in \mathbb{N} \\ \text{prebrojiva}}} A\left(\frac{1}{n}\right) \in \mathcal{F}.$

Vidimo

$$X_n \overset{\text{g. s.}}{\to} X \Leftrightarrow \mathbb{P}(D) = 0 \Leftrightarrow \mathbb{P}(A(\varepsilon)) = 0, \forall \varepsilon > 0 \Leftrightarrow \forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k=n}^{+\infty} \{|X_n - X| \ge \varepsilon\}\right) = 0.$$

(ii) Neka je $\varepsilon > 0$ i i za sve $k, j \in \mathbb{N}$ definirajmo $B_{k,j}(\varepsilon) := \{|X_k - X_j| \ge \varepsilon\}$ te

$$B(\varepsilon) = \bigcap_{n=1}^{+\infty} \bigcup_{k,j=n}^{+\infty} B_{k,j}(\varepsilon) = \limsup_{n \to \infty}.$$

Opet,
$$\left(\bigcup_{k,j=n}^{+\infty}B_{k,j}(\varepsilon)\right)_{n\in\mathbb{N}}\subset\mathcal{F}$$
 nerastuć je pa je $\mathbb{P}(B(\varepsilon))=\lim_{n\to\infty}\mathbb{P}\left(\bigcup_{j,k=n}^{+\infty}B_{k,j}(\varepsilon)\right)$. Neka je $D:=\{\omega\in\Omega\mid (X_n(\omega))_{n\in\mathbb{N}} \text{ nije Cauchyjev}\}$. Uočimo:

$$\omega \in D \Leftrightarrow (X_n(\omega))_{n \in \mathbb{N}} \text{ nije Cauchyjev}$$

$$\Leftrightarrow \exists \varepsilon > 0, \forall n \in \mathbb{N}, \exists k, j \geq n, |X_k(\omega) - X_j(\omega)| \geq \varepsilon$$

$$\Leftrightarrow \exists \varepsilon > 0, \omega \in B(\varepsilon)$$

Dakle, $D=\bigcup_{\varepsilon>0}B(\varepsilon)$. Kao i prije, $0<\varepsilon_1\leq \varepsilon_2\Rightarrow B(\varepsilon_1)\supseteq B(\varepsilon_2)$ pa slobodno možemo pisati

$$D = \bigcup_{\varepsilon} B(\varepsilon) = \underbrace{\bigcup_{n \in \mathbb{N}} B\left(\frac{1}{n}\right)}_{\substack{\text{prebrojiva} \\ \text{unia!}}} \in \mathcal{F}. \text{ Vidimo}$$

$$(X_n)_{n\in\mathbb{N}}$$
 je (g. s.) Cauchyjev $\Leftrightarrow \mathbb{P}(D) = 0 \Leftrightarrow \forall \varepsilon > 0, \mathbb{P}(B(\varepsilon)) = 0 \Leftrightarrow \forall \varepsilon > 0, \lim_{n\to\infty} \mathbb{P}\left(\bigcup_{j,k=n}^{+\infty} B_{k,j}(\varepsilon)\right) = 0.$

Uočimo:

$$\bigcup_{k,j=n}^{+\infty} \left\{ |X_k - X_j| \geq \frac{\varepsilon}{2} \right\} \supseteq \left\{ \omega \in \Omega \mid \sup_{j,k \geq n} |X_k(\omega) - X_j(\omega)| \geq \varepsilon \right\} \supseteq \bigcup_{k,j=n}^{+\infty} \left\{ |X_k - X_j| \geq \varepsilon \right\}.$$

Pa je

$$\lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k,j=n}^{+\infty} \left\{ |X_k - X_j| \ge \frac{\varepsilon}{2} \right\} \right) \ge \lim_{n \to \infty} \mathbb{P}\left(\left\{ \omega \in \Omega \mid \sup_{k,j \ge n} |X_k(\omega) - X_j(\omega)| \ge \varepsilon \right\} \right)$$

$$\ge \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k,j=n}^{\infty} \left\{ |X_k - X_j| \ge \varepsilon \right\} \right)$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{P}\left(\left\{\omega \in \Omega \mid \sup_{k,j \ge n} |X_k(\omega) - X_j(\omega)| \ge \varepsilon\right\}\right) = 0, \forall \varepsilon > 0 \Leftrightarrow \mathbb{P}(D) = 0$$

Uočimo i

$$\sup_{k\geq 0} |X_{n+k}-X_n| \leq \sup_{\substack{k\geq 0\\j\geq 0}} |X_{n+k}-X_{n+j}| \overset{\text{nejednakost}}{\leq} 2\sup_{k\geq 0} |X_{n+k}-X_n| \leq 2\sup_{\substack{k\geq 0\\j\geq 0}} |X_{n+k}-X_{n+j}|$$

NAPOMENA

* PROPOZICIJA 8.8, Mjera i integral, 68. str.:

Neka je (X, \mathcal{F}, μ) prostor **konačne** mjere. Ako su $(f_n)_{n \in \mathbb{N}}$ i f izmjerive funkcije $X \to \mathbb{R}$ t. d. $f_n \xrightarrow{g. s.} f$, tada i $f_n \xrightarrow{\mu} f$.

 \Re PROPOZICIJA 8.6, Mjera i integral, 67. str.:

Neka je $p \in [1, +\infty]$, a $(f_n)_{n \in \mathbb{N}} \subset L^p$ i $f \in L^p$ t. d. $f_n \xrightarrow{L^p} f$. Tada i $f_n \xrightarrow{\mu} f$.

* TEOREM 8.12, Vjerojatnost, 158. str.

Konvergencija po vjerojatnosti povlači konvergenciju po distribuciji.

TEOREM

$$(i) \ X_n \xrightarrow{\mathrm{g. s.}} X \Rightarrow X_n \xrightarrow{\mathbb{P}} X$$

$$(ii) \ X_n \xrightarrow{m^p} X \Rightarrow X_n \xrightarrow{\mathbb{P}} X \text{ za } 1 \leq p < +\infty.$$

$$(iii) \ X_n \stackrel{\mathbb{P}}{\longrightarrow} X \Rightarrow X_n \stackrel{\mathcal{D}}{\longrightarrow} X.$$

Dokaz.

(i) Pretpostavimo da $X_n \stackrel{\text{g. s.}}{\longrightarrow} X$, što je, po prethodnoj propoziciji, ekvivalentno

$$\forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k=n}^{+\infty} \{|X_k - X| \ge \varepsilon\}\right) = 0.$$

Vrijedi:

$$\{|X_n - X| \ge \varepsilon\} \subseteq \bigcup_{k=n}^{+\infty} \{|X_k - X| \ge \varepsilon\}, \forall n \in \mathbb{N}$$

$$\Rightarrow \mathbb{P}\left(\{|X_n - X| \ge \varepsilon\}\right) \le \mathbb{P}\left(\bigcup_{k=n}^{+\infty} \{|X_k - X| \ge \varepsilon\}\right), \forall n \in \mathbb{N}$$

$$\Rightarrow 0 \le \lim_{n \to \infty} \mathbb{P}\left(\{|X_n - X| \ge \varepsilon\}\right) \le \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k=n}^{+\infty} \{|X_k - X| \ge \varepsilon\}\right) = 0$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{P}\left(\{|X_n - X| \ge \varepsilon\}\right) = 0$$

(ii) Pretpostavimo da $X_n \xrightarrow{m^p} X$. Iz Markovljeve nejednakosti,

$$\forall \varepsilon > 0, \mathbb{P}\left(|X_n - X| \ge \varepsilon\right) \le \frac{1}{\varepsilon^p} \mathbb{E}\left[|X_n - X|^p\right]$$

$$\Rightarrow \forall \varepsilon > 0, 0 \le \lim_{n \to \infty} \mathbb{P}\left(|X_n - X| \ge \varepsilon\right) \le \frac{1}{\varepsilon^p} \lim_{n \to \infty} \mathbb{E}\left[|X_n - X|^p\right] = 0$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{P}\left(|X_n - X| \ge \varepsilon\right) = 0$$

(iii) Pretpostavimo da $X_n \xrightarrow{\mathbb{P}} X$. Neka je $x \in C(F_X)$ i $\varepsilon > 0$.

$$F_{X}(x-\varepsilon) = \mathbb{P}(X \leq x - \varepsilon)$$

$$= \mathbb{P}(X \leq x - \varepsilon, X_{n} \leq x) + \mathbb{P}(X \leq x - \varepsilon, X_{n} > x)$$

$$\stackrel{X_{n} > x}{\geq X}$$

$$\stackrel{\geq X}{\leq} \underbrace{\mathbb{P}(X_{n} \leq x)} + \mathbb{P}(|X_{n} - X| \geq \varepsilon)$$

$$\Rightarrow F_{X}(x-\varepsilon) - \mathbb{P}(|X_{n} - X| \geq \varepsilon) \leq F_{X_{n}}(x)$$

$$F_{n}(x) = \mathbb{P}(X_{n} \leq x)$$

$$= \mathbb{P}(X_{n} \leq x, X \leq x + \varepsilon) + \mathbb{P}(X_{n} \leq x, X > x + \varepsilon)$$

$$\stackrel{X(\omega) - X_{n}(\omega)}{\geq x + \varepsilon - x}$$

$$\leq \underbrace{\mathbb{P}(X \leq x + \varepsilon)}_{F_{X}(x+\varepsilon)} + \mathbb{P}(|X_{n} - X| > \varepsilon)$$

$$\Rightarrow F_{n}(x) \leq F(x+\varepsilon) + \mathbb{P}(|X_{n} - X| > \varepsilon)$$

Dakle

$$\Rightarrow F_X(x-\varepsilon) - \mathbb{P}(|X_n - X)| \ge \varepsilon) \le F_{X_n}(x)$$

$$\le F_X(x+\varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon)$$

$$\Rightarrow F_X(x-\varepsilon) - \underbrace{\lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \varepsilon)}_{=0} \le \liminf_{n \to \infty} F_{X_n}(x)$$

$$\le \lim_{n \to \infty} \sup_{r \to \infty} F_{X_n}(x)$$

$$\le F_X(x+\varepsilon) + \underbrace{\lim_{n \to \infty} \mathbb{P}(|X_n - X| > \varepsilon)}_{=0}$$

Međutim,
$$x \in C(F_X) \Rightarrow \lim_{\varepsilon \to 0^+} (F_X(x+\varepsilon) - F_X(x-\varepsilon)) = 0.$$

$$\Rightarrow \exists \lim_{n \to \infty} F_{X_n}(x) \text{ i } \lim_{n \to \infty} F_{X_n}(x) = F(x) \Rightarrow X_n \xrightarrow{\mathcal{D}} X$$

NAPOMENA

PROPOZICIJA 8.7, Mjera i integral, 67. str.

Neka su $(f_n)_{n\in\mathbb{N}}$ i f izmjerive funkcije $X\to\mathbb{R}$. Pretpostavimo da $f_n\xrightarrow{L^p}f$ za neki $p\in[1,+\infty]$ i $((f_n)_{n\in\mathbb{N}}\subset L^p$ i $f\in L^p)$ ili da $f_n\xrightarrow{\mu}f$. Tada postoji neki podniz $(f_{n_k})_{k\in\mathbb{N}}$ t. d. $f_{n_k}\xrightarrow{g.\ s.}f$.

TEOREM

Ako niz $(X_n)_{n\in\mathbb{N}}$ konvergira po vjerojatnosti prema X, tada postoji podniz $(X_{n_k})_{k\in\mathbb{N}}$ niza $(X_n)_{n\in\mathbb{N}}$ koji konvergira (g. s.) prema X.

Dokaz.

Dovoljno je dokazati da postoji podniz koji je Cauchyjev gotovo sigurno. Lako se vidi

$$X_n \xrightarrow{\mathbb{P}} X \Rightarrow (X_n)_{n \in \mathbb{N}}$$
 je Cauchyjev po vjerojatnosti :

Pretpostavimo suprotno: $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$, ali $(X_n)_{n \in \mathbb{N}}$ nije Cauchyjev po vjerojatnosti. Tada $\exists \varepsilon, \delta > 0$, $\forall N \in \mathbb{N}, \exists n, m \geq N, \mathbb{P}(|X_n - X_m| \geq \varepsilon) > \delta$.

$$|X_n(\omega) - X(\omega)| + |X_m(\omega) - X(\omega)| \ge |X_n(\omega) - X_m(\omega)| \ge \varepsilon \Rightarrow \max\{|X_n(\omega) - X(\omega)|, |X_m(\omega) - X(\omega)|\} \ge \frac{\varepsilon}{2}$$

Dakle,

$$\{|X_n - X_m| \ge \varepsilon\} \subseteq \left\{ \max \{|X_n - X|, |X_m - X|\} \ge \frac{\varepsilon}{2} \right\}$$

$$\Rightarrow \mathbb{P}\left(\left\{ \max \{|X_n - X|, |X_m - X|\} \ge \frac{\varepsilon}{2} \right\} \ge \mathbb{P}\left(|X_n - X_m| \ge \varepsilon\right) > \delta$$

Međutim, $\forall \varepsilon > 0, \forall \delta > 0, \exists M \in \mathbb{N}, \forall m \geq M, \mathbb{P}\left(|X_m - X| \geq \frac{\varepsilon}{2}\right) < \frac{\delta}{2}$, a, za $n, m \geq \max\{M, N\}$

$$\begin{split} \left\{ \max\left\{ |X_n - X|, |X_m - X| \right\} &\geq \frac{\varepsilon}{2} \right\} \subseteq \left\{ |X_n - X| \geq \frac{\varepsilon}{2} \right\} \cup \left\{ |X_m - X| \geq \frac{\varepsilon}{2} \right\} \\ \Rightarrow \mathbb{P}\left(\max\left\{ |X_n - X|, |X_m - X| \right\} \geq \frac{\varepsilon}{2} \right) \leq \mathbb{P}\left(|X_n - X| \geq \frac{\varepsilon}{2} \text{ ili } |X_m - X| \geq \frac{\varepsilon}{2} \right) < \delta \text{ kontradikcija!} \end{split}$$

Sada ćemo pokazati:

ako je $(X_n)_{n\in\mathbb{N}}$ Cauchyjev po vjerojatnosti, tada postoji podniz koji je (g. s.) Cauchyjev.

Neka je $k \in \mathbb{N}$. Izravna je posljedica činjenice da je niz i Cauchyjev po vjerojatnosti:

$$\exists N(k) \in \mathbb{N}, \forall m, n \ge N(k), \mathbb{P}\left(|X_m - X_n| \ge \frac{1}{2^k}\right) < \frac{1}{2^k}.$$

Stavimo $n_1 := N(1), n_2 := \max\{n_1 + 1, N(2)\}, \dots, n_k := \{n_{k-1} + 1, N(k)\}, \dots$ Uočimo da $n_k \nearrow +\infty, k \to \infty$, tj. $(X_{n_k})_{k \in \mathbb{N}}$ je podniz niza $(X_n)_{n \in \mathbb{N}}$. Za $k \in \mathbb{N}$, neka je $Y_k := X_{n_k}, A_k := \{|Y_k - Y_{k+1}| \ge \frac{1}{2^k}\} \in \mathcal{F}$ te

$$A := \limsup_{k \to \infty} A_k = \bigcap_{m=1}^{+\infty} \bigcup_{k=m}^{+\infty} A_k \in \mathcal{F}.$$

 $\left(\bigcup_{k=m}^{+\infty}A_k\right)_{m\in\mathbb{N}}\subset\mathcal{F}$ je nerastuć pa je

$$\mathbb{P}(A) = \lim_{k \to \infty} \mathbb{P}(A_k).$$

Štoviše,

$$\sum_{k=1}^{+\infty} \mathbb{P}(A_k) \leq \sum_{k=1}^{+\infty} \frac{1}{2^k} < +\infty \Rightarrow \mathbb{P}(A) = \lim_{k \to \infty} \mathbb{P}(A_k) = 0 \Rightarrow \mathbb{P}(A^c) = 1.$$

$$\omega \in A^c \Leftrightarrow \exists N(\omega) \in \mathbb{N}, \forall k \geq N(\omega), x \notin A_k \quad (\omega \in A_k \text{najviše konačno}) \text{mnogo } k$$

$$\Leftrightarrow \exists N(\omega) \in \mathbb{N}, \forall k \ge N(\omega), |Y_k(\omega) - Y_{k+1}(\omega)| < \frac{1}{2^k}$$

$$\Rightarrow \forall \omega \in A^c, \sum_{k=1}^{+\infty} |X_{n_k}(\omega) - X_{n_{k+1}}(\omega)| = \sum_{k=1}^{+\infty} |Y_k(\omega) - Y_{k+1}(\omega)| < +\infty$$

Definirajmo:

$$Y:=\left(X_{n_1}+\left(\sum_{k=1}^{+\infty}(X_{n_{k+1}}-X_{n_k}
ight)
ight)\mathbbm{1}_{A^c}\Rightarrow Y$$
 je slučajna varijabla

Sada vidimo $X_{n_k} \xrightarrow{\text{g. s.}} Y$ (teleskopiramo konačne parcijalne sume, zato smo promatrali baš indekse $m = n_k, n = n_{k+1}$), a odatle slijedi $X_{n_k} \xrightarrow{\mathbb{P}} Y$. Međutim,

$$\begin{cases} X_n \stackrel{\mathbb{P}}{\longrightarrow} X \Rightarrow X_{n_k} \stackrel{\mathbb{P}}{\longrightarrow} X \\ X_{n_k} \stackrel{\mathbb{P}}{\longrightarrow} Y \end{cases} \Rightarrow X = Y \text{ g. s.},$$

a onda i $X_{n_k} \xrightarrow{g. s.} X.^{11}$

KOROLAR

 $X_n \xrightarrow{\mathbb{P}} X \Leftrightarrow (X_n)_{n \in \mathbb{N}}$ je Cauchyjev po vjerojatnosti.

Dokaz.

 \Rightarrow : pogledaj gore.

 $\stackrel{}{\Leftarrow}$: Ako je $(X_n)_{n\in\mathbb{N}}$ Cauchyjev po vjerojatnosti, onda postoji podniz i slučajna varijabla Y t. d. $X_{n_k} \stackrel{\text{g. s.}}{\longrightarrow} Y$, ali onda i $X_{n_k} \stackrel{\mathbb{P}}{\longrightarrow} Y(*)$. Vrijedi

$$\mathbb{P}\left(|X_n - Y| \ge \varepsilon\right) \le \underbrace{\mathbb{P}\left(|X_n - X_{n_k}| \ge \frac{\varepsilon}{2}\right)}_{\text{(Cauchyjev po }\mathbb{P})} + \underbrace{\mathbb{P}\left(|X_{n_k} - Y| \ge \frac{\varepsilon}{2}\right)}_{X_{n_k} \xrightarrow{\mathbb{P}} Y}.$$

Slika 1: Sljedeća je shema

PRIMJER

Neka je $\left([0,1],B_{[0,1]},\lambda\mid_{[0,1]}\right)$ vjerojatnosni prostor. Stavimo $X_n:=e^n\mathbbm{1}_{\left[\left[0,\frac{1}{n}\right]\right]}$.

$$\forall \omega \in \langle 0,1], \exists N \in \mathbb{N}, \omega > \frac{1}{N} \Rightarrow \forall \omega \in \langle 0,1], \exists N \in \mathbb{N}, \forall n \geq N, X_n(\omega) = 0 \Rightarrow X_n(\omega) \rightarrow 0, \forall \omega \in \langle 0,1].$$

Primijetimo da niz $(X_n)_{n\in\mathbb{N}}$ nije dominiran nijednom integrabilnom funkcijom i za $p\in[1,+\infty\rangle,\mathbb{E}[|X_n|^p]=\frac{1}{n}e^{np}\to+\infty.$

 $^{^{11}}$ Sličnu smo tehniku koristili u dokazu da je L^p Banachov prostor, $\forall p \geq 1.$ Podsjetimo se, $(X_n)_{n \in \mathbb{N}}$ je Cauchyjev niz u L^p ako $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n, m \geq n_0, \|X_n - X_m\|_p < \varepsilon.$

PRIMJER

Neka je $([0,1], B_{[0,1]}, \lambda|_{[0,1]})$ vjerojatnosni prostor. Stavimo $X_{nm} = \mathbb{1}_{\left(\frac{m-1}{n}, \frac{m}{n}\right]}, n \in \mathbb{N}, m = 1, \dots, n.$

$$p \ge 1, \lim_{n \to \infty} \mathbb{E}\left[|X_{nm}|^p\right] = 0 \Rightarrow X_n \stackrel{L^p, p \ge 1}{\longrightarrow} 0,$$

međutim, niz ne konvergira gotovo sigurno. Znamo da

$$y \le \lceil y \rceil, \forall y \in \mathbb{R} \Rightarrow \frac{1}{\lceil 1/x \rceil} \le \frac{1}{1/x} = x \& 1 - \frac{1}{\lceil 1/(1-x) \rceil} \ge 1 - \frac{1}{1/(1-x)} = 1 - (1-x) = x,$$

dakle,

$$\frac{1}{\left\lceil \frac{1}{x} \right\rceil} \le x \le 1 - \frac{1}{\left\lceil \frac{1}{1-x} \right\rceil}, \forall x \in \langle 0, 1 \rangle.$$

Neka je za $n \in \mathbb{N}, N(n) := \max\left\{n, \left\lceil \frac{1}{x} \right\rceil, \left\lceil \frac{1}{1-x} \right\rceil \right\}$. Tada je $\frac{1}{N(n)} \le x \le \frac{N(n)-1}{N(n)}$ pa mora postojati $2 \le kN(n)$ t. d. je $\frac{k-1}{N(n)} \le x < \frac{k}{N(n)}$ pa vidimo da, $\forall \omega \in \langle 0, 1 \rangle$, niz $(X_{nm})_{n \in \mathbb{N}, 1 \le m \le n}$ ima beskonačno

ZADATAK

Neka su $(X_n)_{n\in\mathbb{N}}, X$ diskretne slučajne varijable s vrijednostima u \mathbb{N}_0 . Dokažite

$$X_n \xrightarrow{\mathcal{D}} X \Leftrightarrow \forall k \in \mathbb{N}_0, \lim_{n \to \infty} \mathbb{P}(X_n = k) = \mathbb{P}(X = k).$$

 \Longrightarrow : Neka $X_n \xrightarrow{\mathcal{D}} X$, tj., $\lim_{x \to \infty} F_{X_n}(x) = F(x), \forall x \in C(F_X)$. Vrijedi

$$\mathbb{P}(X_n = k) = \mathbb{P}\left(k - \frac{1}{2} < X_n \le k + \frac{1}{2}\right) = \mathbb{P}\left(X_n \le k + \frac{1}{2}\right) - \mathbb{P}\left(X_n \le k - \frac{1}{2}\right)$$

$$= F_{X_n}\left(k + \frac{1}{2}\right) - F_{X_n}\left(k - \frac{1}{2}\right)$$

$$\stackrel{k + \frac{1}{2}, k - \frac{1}{2} \in C(F_X)}{\Rightarrow} \lim_{n \to \infty} \mathbb{P}(X_n = k) = F_X\left(k + \frac{1}{2}\right) - F_X\left(k - \frac{1}{2}\right) = \dots = \mathbb{P}(X = k)$$

 $\boxed{\Leftarrow} : \text{ Neka vrijedi } \forall k \in \mathbb{N}_0, \lim_{n \to \infty} \mathbb{P}(X_n = k) = \mathbb{P}(X = k). \text{ Tada, za proizvoljan } x \in \mathbb{R}, \text{ vrijedi } x \in \mathbb{R}$

$$\lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} \sum_{k \le x} \mathbb{P}(X_n = k) \stackrel{\mathrm{TMK}}{=} \sum_{k \le x} \lim_{n \to \infty} \mathbb{P}(X_n = k) = \sum_{k \le x} \mathbb{P}(X = k) = F_X(x).$$

$$\begin{array}{c} \mathbf{PROPOZICIJA} \\ X_n \stackrel{\mathcal{D}}{\longrightarrow} c \Leftrightarrow X_n \stackrel{\mathbb{P}}{\longrightarrow} c. \end{array}$$

Dokaz.

 \Rightarrow :

$$\begin{split} X_n & \xrightarrow{\mathcal{D}} c \Rightarrow \lim_{n \to \infty} F_{X_n}(c - \varepsilon) = 0, \forall \varepsilon > 0 \\ & \lim_{n \to \infty} F_{X_n} \left(c + \frac{\varepsilon}{2} \right) = 1, \forall \varepsilon > 0 \\ & \lim_{n \to \infty} \mathbb{P}(|X_n - c| \ge \varepsilon) = \lim_{n \to \infty} \mathbb{P}\left(X_n - c \le -\varepsilon \text{ ili } X_n - c \ge \varepsilon \right) \\ & = \lim_{n \to \infty} \mathbb{P}(X_n \le c - \varepsilon \text{ ili } X_n \ge c + \varepsilon) \\ & = \lim_{n \to \infty} \left(\mathbb{P}(X_n \le c - \varepsilon) + \mathbb{P}(X_n \ge c + \varepsilon) \right) \\ & = \lim_{n \to \infty} \mathbb{P}(X_n \le c - \varepsilon) + \lim_{n \to \infty} \mathbb{P}(X_n \ge c + \varepsilon) \\ & = \lim_{n \to \infty} F_{X_n}(c - \varepsilon) + \lim_{n \to \infty} \mathbb{P}(X_n \ge c + \varepsilon) \\ & = 0 + \lim_{n \to \infty} \mathbb{P}(X_n \ge c + \varepsilon) \\ & \le \lim_{n \to \infty} \mathbb{P}\left(X_n \ge c + \frac{\varepsilon}{2} \right) \\ & = 1 - \lim_{n \to \infty} F_{X_n} \left(c + \frac{\varepsilon}{2} \right) \\ & = 0 \end{split}$$

(= : već smo pokazali da ovaj smjer vrijedi općenito.

PRIMJER (Teorem, A. Gut)

Za bilo koji niz slučajnih varijabli $(X_n)_{n\in\mathbb{N}}$, uvijek postoji niz $(a_n)_{n\in\mathbb{N}}$ t. d.

$$\frac{X_n}{a_n} \stackrel{\mathbb{P}}{\longrightarrow} 0.$$

Zbilja, kako je $\forall n \in \mathbb{N}$, $\lim_{x \to \infty} \mathbb{P}(|X_n| > x) = 0$, postoje $(c_n)_{n \in \mathbb{N}}$ t. d. je $\mathbb{P}(|X_n| > c_n) < \frac{1}{n}$. Stavimo li $a_n = nc_n$, za proizvoljan $\varepsilon > 0$ i $n \in \mathbb{N}$ t. d. je $n > 1/\varepsilon$,

$$\mathbb{P}\left(\frac{|X_n|}{a_n} > \varepsilon\right) = \mathbb{P}(|X_n| > nc_n\varepsilon) \le \mathbb{P}(|X_n| > c_n) < \frac{1}{n} \xrightarrow{n \to \infty} 0.$$

PRIMJER

Neka je $X \sim B\left(\frac{1}{2}\right)$ i $X_{2n-1} = 1 - X, X_{2n} = X, \forall n \in \mathbb{N}.$ $(X_n)_{n \in \mathbb{N}}$ očito konvergira po distribuciji, ali, ne konvergira ni po vjerojatnosti, ni gotovo sigurno.

PRIMJER

Neka su $1 \le p < q < +\infty$. Tada $X_n \xrightarrow{m^q} X \Rightarrow X_n \xrightarrow{m^p}$.

Dokaz.

Primijenit ćemo Holderovu nejednakost na konjugate $\tilde{p}=\frac{q}{p}$ i $\tilde{q}=\frac{q}{q-p}$.

$$||X_n - X||_p^p = \int_{\Omega} |X_n - X|^p d\mathbb{P} = |||X_n - X|^p ||_1 \le |||X_n - X|^p)||_{\frac{q}{p}} ||\mathbb{1}_{\Omega}||_{\frac{q}{q-p}}$$

$$= |||X_n - X|^q ||_{\frac{q}{p}} \mathbb{P}(\Omega)^{\frac{q-p}{q}} = \left(\int_{\Omega} (|X_n - X|^p)^{\frac{q}{p}} d\mathbb{P}\right)^{\frac{p}{q}} = \left(\int_{\Omega} |X_n - X|^q d\mathbb{P}\right)^{\frac{p}{q}}$$

$$= ||X_n - X||_q^p$$

$$\Rightarrow ||X_n - X||_p \le ||X_n - X||_q$$

pa tvrdnja slijedi puštanjem $n\to\infty$ i primjenom teorema o sendviču.

ZADATAK

Neka je r > 0 i $(Y_n)_{n \in \mathbb{N}}$ niz slučajnih varijabli na $(\Omega, \mathcal{F}, \mathbb{P})$ te neka je $S_n := \sum_{k=1}^n Y_k, n \in \mathbb{N}$. Dokažite:

$$Y_n \stackrel{\mathbb{P}}{\longrightarrow} 0 \Leftrightarrow \mathbb{E}\left[\frac{|Y_n|^r}{1+|Y_n|^r}\right] \stackrel{n \to \infty}{\longrightarrow} 0.$$

Rješenje.

$$\lim_{l\to\infty}\mathbb{E}\left[\frac{|Y_{n_{k_l}}|^r}{1+|Y_{n_{k_l}}|^r}\right]=\mathbb{E}\left[\lim_{l\to\infty}\frac{|Y_{n_{k_l}}|^r}{1+|Y_{n_{k_l}}|^r}\right]=0, \text{ kontradikcija!}$$

 \Leftarrow : Definirajmo $g: \mathbb{R} \to [0, +\infty)$,

$$g(x) := \frac{|x|^r}{1 + |x|^r} = 1 - \frac{1}{1 + |x|^r}.$$

Uočimo da je g neopadajuća na $[0, +\infty)$, pa je, po jednom od prethodnih rezultata,

$$\forall \varepsilon > 0, \mathbb{P}(|Y_n| \ge \varepsilon) \le \frac{\mathbb{E}[g(Y_n)]}{g(\varepsilon)} \stackrel{n \to \infty}{\longrightarrow} 0.$$

Navest ću nešto što se nije spominjalo na kolegiju Teorija vjerojatnosti 1, ali smatram da je korisno za kolegij Slučajni procesi jer se javlja u jednom dokazu:

KOROLAR

Neka su $(X_n)_{n\in\mathbb{N}}, X$ slučajne varijable na vjerojatnosnom prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ t. d. $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$. Tada vrijedi

$$\mathbb{E}|X| \leq \liminf_{n \to \infty} \mathbb{E}|X_n|.$$

Dokaz.

 $|\cdot|:\mathbb{R} \to [0,+\infty)$ je neprekidno preslikavanje pa, što smo i dokazali na vježbama, $|X_n| \stackrel{\mathbb{P}}{\longrightarrow} |X|$. Označimo $L:=\liminf_{n\to\infty}|X_n|$. Tvrdimo da je $|X|\leq L$ g. s. Pretpostavimo suprotno, tj., na nekom događaju A t. d. je $\mathbb{P}(A)>0$, vrijedi L<|X|. Budući da je L gomilište niza $(X_n)_{n\in\mathbb{N}}$, postoji neki podniz $(X_{n_k})_{k\in\mathbb{N}}$ t. d. $|X_{n_k}|\to L$ po točkama na A. Zbog konvergencije čitavog niza po vjerojatnosti, postoji daljnji podniz $(X_{n_k})_{l\in\mathbb{N}}$ t. d. $|X_{n_k}|\stackrel{\mathrm{g. s.}}{\longrightarrow} |X|$ posebno, $|X_{n_k}|\to |X|$ g. s. na A, što je nemoguće jer je $\mathbb{P}(A)>0$ i $|X_{n_k}|\to L$ po točkama na A. Dakle, $X\leq L$ g. s., a, kako je i X jedno gomilište niza, to je X=L. Sada primijenimo Fatouovu lemu:

$$\mathbb{E}|X| = \mathbb{E}\left[\liminf_{n \to \infty} |X_n|\right] \le \liminf_{n \to \infty} \mathbb{E}|X_n|.$$

7 Nezavisnost (§11.1, Sarapa, 353. – 358. str.)

Vrlo je bitna prva PROPOZICIJA u kasnijem poglavlju §Zakoni nula-jedan!

DEFINICIJA

Neka su X_1, \ldots, X_n slučajne varijable na $(\Omega, \mathcal{F}, \mathbb{P})$. Kažemo da su X_1, \ldots, X_n nezavisne ako za svaki $i = 1, \ldots, n$, i za svaki $B_i \in B_{\mathbb{R}}$, vrijedi

$$\mathbb{P}\left(X_1 \in B_1, \dots, X_n \in B_n\right) = \prod_{i=1}^n \mathbb{P}\left(X_i \in B_i\right).$$

Nezavisan je svaki podskup od $\{X_1, \ldots, X_n\}$.

Ako je $X=(X_1,\ldots,X_n)$ slučajan vektor, nezavisnost $\Leftrightarrow \mathbb{P}_X=\mathbb{P}_{X_1}\otimes\cdots\otimes\mathbb{P}_{X_n}.$

DEFINICIJA

Neka je $I \neq \emptyset$ i neka su $\{X_i \mid i \in I\}$ slučajne varijable na $(\Omega, \mathcal{F}, \mathbb{P})$. Kažemo da je to familija **nezavisnih** slučajnih varijabli ako za svaki **konačan** podskup $\{i_1, \ldots, i_n\} \subseteq I$ vrijedi da su X_{i_1}, \ldots, X_{i_n} **nezavisne**. Nezavisna je svaka podfamilija nezavisne familije.

Ako su $\{X_i \mid i \in I\}$ nezavisne i $\{g_i \mid i \in I\}$ Borelove funkcije, nezavisne su i $\{g_i(X_i) \mid i \in I\}$. Naime, neka su $\{i_1, \ldots, i_n\} \subseteq I$ i $\{B_i \mid i \in I\} \subset B_{\mathbb{R}}$ proizvoljni. Tada vrijedi:

$$\mathbb{P}\left(g_{i_{1}}(X_{i_{1}}) \in B_{i_{1}}, \dots, g_{i_{n}}(X_{i_{n}}) \in B_{i_{n}}\right) = \mathbb{P}\left(X_{i_{1}} \in g_{i_{1}}^{-1}(B_{i_{1}}), \dots, X_{i_{n}} \in g_{i_{n}}^{-1}(B_{i_{n}})\right)$$

$$= \prod_{j=1}^{n} \mathbb{P}\left(X_{i_{j}} \in g_{i_{j}}^{-1}(B_{i_{j}})\right)$$

$$= \prod_{j=1}^{n} \mathbb{P}\left(g_{i_{j}}(X_{i_{j}}) \in B_{i_{j}}\right)$$

TEOREM

Neka su X_1, \ldots, X_n slučajne varijable na $(\Omega, \mathcal{F}, \mathbb{P})$ i neka je $X = (X_1, \ldots, X_n)$. Neka su F_1, \ldots, F_n funkcije distribucija slučajnih varijabli X_1, \ldots, X_n redom te neka je F funkcija distribucije slučajnog vektora X. Tada su X_1, \ldots, X_n nezavisne ako i samo ako je

$$F(x_1, \dots, x_n) = \prod_{i=1}^n F_{X_i}(x_i), \forall (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Dokaz.

 \Rightarrow : Neka su X_1, \ldots, X_n nezavisne i $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

$$F(x_1, \dots, x_n) = \mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n)$$

$$\stackrel{\text{neza-vismost}}{=} \prod_{i=1}^{n} \mathbb{P}(X_i \le x_i)$$

$$= \prod_{i=1}^{n} F_{X_i}(x_i).$$

 \Leftarrow : Pretpostavimo da vrijedi $F(x_1,\ldots,x_n)=\prod_{i=1}^n F_{X_i}(x_i), \forall (x_1,\ldots,x_n)$ i neka su $a,b\in\mathbb{R}^n,a\leq b$

proizvoljni. Tada

$$\begin{split} \mathbb{P}_{X}\left(\langle a,b]\right) &= \Delta_{b-a}F(a) \\ &= \sum_{\substack{x_i \in \{a_i,b_i\}\\i=1}}^n \pm F_X(x_1,\ldots,x_n) \\ &= \sum_{\substack{x_i \in \{a_i,b_i\}\\i=1}}^n \pm \prod_{i=1}^n F_i(x_i) \\ &= \prod_{i=1}^n (F_i(b_i) - F_i(a_i)) \\ &= \prod_{i=1}^n \mathbb{P}_{X_i}\left(\langle a_i,b]\right) \\ &= \prod_{i=1}^n \mathbb{P}_{X_i}\left(\langle a_i,b|\right) \\ &= \mathbb{P}_{X} \quad \otimes \cdots \times \mathbb{P}_{X_n} \text{ dvije mjere nad } B_{\mathbb{R}^n} \end{split}$$

Po Caratheodoryjevoj konstrukciji, slijedi $\mathbb{P}_X = \mathbb{P}_{X_1} \otimes \cdots \otimes \mathbb{P}_{X_n}$ (jedinstvenost proširenja mjere) $\Rightarrow X_1, \dots, X_n$ su nezavisne..

TEOREM

Ako slučajni vektor $X=(X_1,\ldots,X_n)$ ima gustoću f, tada svaka slučajna varijabla X_i ima gustoću $f_i, i=1,\ldots,n$. U tom slučaju, X_1,\ldots,X_n nezavisne su $\Leftrightarrow f(x_1,\ldots,x_n)=\prod_{i=1}^n f_i(x_i)$ (g. s.) na \mathbb{R}^n (s obzirom na Lebesgueovu mjeru)

Dokaz.

(Prisjetimo se i sa statistike: $X_i = \pi_i \circ X, i = 1, \dots, n$.)

Pretpostavimo da slučajni vektor $X = (X_1, ..., X_n)$ ima gustoću f i BSO pretpostavimo da je i = 1: pokazujemo da slučajna varijabla X_1 ima gustoću, a dokaz je analogan za preostale i = 2, ..., n. Neka je $x_1 \in \mathbb{R}$. Promotrimo funkciju distribucije $F_1 = F_{X_1}$ slučajne varijable X_1 (za koju znamo da postoji).

$$F_{1}(x) = \mathbb{P}(X_{1} \leq x_{1}) = \mathbb{P}(X_{1} \leq x_{1}, X_{2} \in \mathbb{R}, \dots, X_{n} \in \mathbb{R})$$

$$= \mathbb{P}_{X}(\langle -\infty, x_{1}] \times \mathbb{R} \times \dots \times \mathbb{R})$$

$$= \int_{\langle -\infty, x_{1}] \times \mathbb{R} \times \dots \times \mathbb{R}} f_{X}(t_{1}, \dots, t_{n}) d\lambda^{n}(t_{1}, \dots, t_{n})$$

$$\stackrel{f \geq 0}{\text{FUBINI}} \int_{-\infty}^{x_{1}} \int_{\mathbb{R}} \dots \int_{\mathbb{R}} f_{X}(t_{1}, \dots, t_{n}) d\lambda(t_{n}) \dots d\lambda(t_{1})$$

Budući da je f nenegativna, možemo iskoristiti Fubinijev teorem da bismo integral rastavili na višestruki i koji kaže da je $g_1: t \mapsto \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f(t, t_2, \dots, t_n) dt_2 \cdots dt_n$ nenegativna **izmjeriva** funkcija čiji je ukupni integral jednak 1.

$$F_{X_1}(x) = \int_{-\infty}^{x} g_1(t)d\lambda(t) \Rightarrow g_1 : \mathbb{R} \to \mathbb{R}, g_1 : t \mapsto \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} f(t, t_2, \dots, t_n)dt_2 \cdots dt_n$$

je funkcija gustoće slučajne varijable X_1 . Analogno bismo postupili za sve komponentne slučajne varijable i došli bismo do funkcija f_1, f_2, \ldots, f_n zadanih ovakvim formulama.

$$ightharpoonup f_1, \ldots, f_n = \text{marginalne gusto\'e od } f$$

Prijeđimo sada na dokaz drugog dijela teorema.

$$\stackrel{}{\Leftarrow}$$
: Neka je $f(x_1,\ldots,x_n)=\prod_{i=1}^n f_i(x_i)\ \lambda^n$ (g. s.). $(\lambda^n=\lambda\otimes\cdots\otimes\lambda)\ f,f_1,\ldots,f_n\geq 0$ pa možemo

primijeniti Fubinijev teorem.

$$F_X(x_1, \dots, x_n) = \int_{\langle -\infty, x_1] \times \dots \times \langle -\infty, x_n]} f(t_1, \dots, t_n) d\lambda^n(t_1, \dots, t_n)$$

$$= \int_{\langle -\infty, x_1] \times \dots \times \langle -\infty, x_n]} \prod_{i=1}^n f_{X_i}(t_i) d\lambda^n(t_1, \dots, t_n)$$

$$\stackrel{\text{FUBINI}}{=} \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} \prod_{i=1}^n f_{X_i}(t_i) \lambda(dt_n) \dots \lambda(dt_1)$$

$$= \prod_{i=1}^n \int_{-\infty}^{x_i} f_i(t_i) \lambda(dt_i)$$

$$= \prod_{i=1}^n F_i(x_i)$$

 $\stackrel{\text{prethodni}}{\Rightarrow} X_1, \dots, X_n \text{ nezavisne}$

 \Rightarrow : Neka su X_1, \ldots, X_n nezavisne.

$$F_X(x_1, \dots, x_n) \stackrel{\text{prethodni}}{=} \prod_{i=1}^n F_{X_i}(x_i)$$

$$= \prod_{i=1}^n \int_{-\infty}^{x_i} f_{X_i}(t_i) \lambda(dt_i)$$

$$f_{X_i \geq 0, \forall i} \int_{\langle -\infty, x_1] \times \dots \times \langle -\infty, x_n]} \prod_{\substack{i=1 \\ \text{nenegativna} \\ \text{izmjeriva} \\ \text{funkcija}}} f_{X_i}(t_i) \lambda(dt_n) \dots \lambda(dt_1)$$

$$\Rightarrow (t_1, \dots, t_n) \mapsto \prod_{i=1}^n f_i(t_i)$$

je jedan predstavnik funkcije gustoće (Radon-Nikodymove derivacije) za F (tj., \mathbb{P}_X). $\Rightarrow f_1 \cdots f_n = f \lambda^n$ (g. s.)

KOROLAR

Ako su X_1, \ldots, X_n nezavisne i svaka slučajna varijabla X_i ima gustoću $f_i, i = 1, \ldots, n$, tada i slučajni vektor $X = (X_1, \ldots, X_n)$ ima gustoću danu s $f(x_1, \ldots, x_n) = \prod_{i=1}^n f_i(x_i)$. (U suštini jer \Rightarrow smjer u dokazu prethodnog teorema.)

NAPOMENA

Ako X_1, \dots, X_n nisu nezavisne, tvrdnja korolara ne mora vrijediti!

TEOREM

Neka su $\{X_{mn} \mid m=1,\ldots,p, n=1,\ldots,n_m\}$ nezavisne slučajne varijable i $g_m: \mathbb{R}^{n_m} \to \mathbb{R}, m=1,\ldots,p$ Borelove funkcije. Ako je $Y_m = g_m\left(X_{m1},\ldots,X_{mn_m}\right), m=1,\ldots,p$, tada su slučajne varijable Y_1,\ldots,Y_p nezavisne.

Dokaz

Za $m=1,\ldots,p$, definiramo slučajni vektor $Z_m=(X_{m1},\ldots,X_{mn_m})$. Ako su $C_m\in B_{\mathbb{R}^{n_m}}$, $m=1,\ldots,p$. Cilj nam je pokazati da

$$\mathbb{P}\left(Z_1 \in C_1, \dots, Z_p \in C_p\right) = \prod_{m=1}^p \mathbb{P}\left(Z_m \in C_m\right).$$

Najprije tvrdnju dokazujemo za C_1, \ldots, C_p koji su izmjerivi pravokutnici. Tada događaje $Z_m \in C_m$, $m = 1, \ldots, p$ možemo zapisati preko (po pretpostavci) **nezavisnih** slučajnih varijabli $X_{nm}, m = 1, \ldots, p$,

 $n = 1, \ldots, n_m$, vjerojatnost rastaviti na produkt vjerojatnosti te potom grupirati produkte po odgovarajućim komadima.

Tada će se dvije vjrojatnosne mjere podudarati na generirajućim poluprstenovima σ -algebri \mathbb{R}^{n_m} , $m=1,\ldots,p$

Konačno: Za sve $m=1,\ldots,p$, promotrimo $B_m\in B_{\mathbb{R}}$ i zapišimo $Y_m=g_m(Z_m)$. Primijetimo da su $g_m^{-1}(B_m)\in B_{\mathbb{R}^{n_m}}, \forall m=1,\ldots,p$ te

$$\mathbb{P}(Y_1 \in B_1, \dots, Y_p \in B_p) = \mathbb{P}(Z_1 \in g_1^{-1}(B_1), \dots, Z_p \in g_p^{-1}(B_p))$$

$$= \prod_{m=1}^p \mathbb{P}(Z_m \in g_m^{-1}(B_m))$$

$$= \prod_{m=1}^p \mathbb{P}(g_m(Z_m) \in B_m)$$

$$= \prod_{m=1}^p \mathbb{P}(Y_m \in B_m)$$

Neka su $X,Y\in L^1\left(\Omega,\mathcal{F},\mathbb{P}\right)$ nezavisne. Tada je $\mathbb{P}_{(X,Y)}=\mathbb{P}_X\otimes\mathbb{P}_Y$. Promotrimo nenegativnu neprekidnu (posebno, izmjerivu) funkciju $(x,y)\mapsto |x\cdot y|$.

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underbrace{|x \cdot y|}_{=|x| \cdot |x|} d\mathbb{P}_{(X,Y)}(x,y) \stackrel{\text{Fubini}}{=} \underbrace{\int_{-\infty}^{+\infty} |x| d\mathbb{P}_{X}(x)}_{<+\infty} \cdot \underbrace{\int_{-\infty}^{+\infty} |y| d\mathbb{P}_{Y}(y)}_{+\infty} < +\infty$$

 $\Rightarrow (x,y) \mapsto y$ je apsolutno integrabilna pa Fubinijev teorem možemo primijeniti i bez apsolutnih vrijednosti.

$$\Rightarrow \underbrace{\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot y d\mathbb{P}_{(X,Y)}(x,y)}_{\substack{\int_{\Omega} X \cdot Y d\mathbb{P} \\ \text{(teorem o zamelie in variabli}}} = \underbrace{\int_{-\infty}^{+\infty} x d\mathbb{P}_X(x)}_{\textstyle \int_{\Omega} X d\mathbb{P}} \cdot \underbrace{\int_{-\infty}^{+\infty} y d\mathbb{P}_Y(y)}_{\textstyle \int_{\Omega} Y d\mathbb{P}}.$$

XY ima konačno očekivanje i $\mathbb{E}[XY] = \mathbb{E}X \cdot \mathbb{E}Y$.

Dokazali smo sljedeći teorem:

TEOREM

Neka su $X, Y \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ (imaju 1. momente). Ako su X i Y **nezavisne**, tada je $XY \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ i $\mathbb{E}[XY] = \mathbb{E}X \cdot \mathbb{E}Y$.

NAPOMENA

Za X i Y koje **nisu nezavisne**, općenito ne vrijedi $XY \in L^1(\Omega, \mathcal{F}, \mathbb{P})$.

Indukcijom slijedi (koristimo teorem o grupiranju nezavisnih slučajnih varijabli):

KOROLAR

Ako su $X_1, \ldots, X_n \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ nezavisne slučajne varijable, tada je i $\prod_{i=1}^n X_i \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ i

$$\mathbb{E}\left[\prod_{i=1}^{n} X_i\right] = \prod_{i=1}^{n} \mathbb{E} X_i.$$

 $\text{Neka su } X,Y \in L^{2}\overbrace{(\Omega,\mathcal{F},\mathbb{P})}^{\text{konačni 2.}} \Rightarrow \left(X,Y \in L^{1}\left(\Omega,\mathcal{F},\mathbb{P}\right)\right) \text{ Tada je i } X+Y \in L^{2}\left(\Omega,\mathcal{F},\mathbb{P}\right).$

$$\begin{aligned} \operatorname{Var}(X+Y) &= \mathbb{E}\left[((X+Y) - \mathbb{E}[X+Y])^2\right] \\ &= \mathbb{E}\left[((X-\mathbb{E}X) + (Y-\mathbb{E}Y))^2\right] \\ &= \mathbb{E}\left[(X-\mathbb{E}X)^2 + 2(X-\mathbb{E}X)(Y-\mathbb{E}Y) + (Y-\mathbb{E}Y)^2\right] \\ &= \operatorname{Var}(X) + 2\operatorname{Cov}(X,Y) + \operatorname{Var}(Y) \\ &= \operatorname{Var}(X) + 2\left(\mathbb{E}[XY] - \mathbb{E}X \cdot \mathbb{E}Y\right) + \operatorname{Var}(Y) \end{aligned}$$

Ako su X i Y **nezavisne**, $Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}X \cdot \mathbb{E}Y = 0$ pa je Var(X+Y) = Var(X) + Var(Y).

Indukcija daje sljedeći teorem:

TEOREM

Ako su X_1, \ldots, X_n nezavisne slučajne varijable s konačnom varijancom, tada i $\sum_{i=1}^n X_i$ ima konačnu varijancu i vrijedi

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i).$$

Neka je $(F_n)_{n\in\mathbb{N}}$ niz jednodimenzionalnih funkcija distribucije. Uzmimo $n_1,\ldots,n_p\in\mathbb{N}$. Definirajmo

$$F_{n_1,\dots,n_p}(x_1,\dots,x_p) := \prod_{i=1}^p F_{n_i}(x_i).$$

Uočimo da familija

$$\left\{F_{n_1,\ldots,n_p} \mid p \in \mathbb{N}, n_1,\ldots,n_p \in \mathbb{N}\right\}$$

zadovoljava uvjete suglasnosti Kolmogorova (trenutna 10. str.) što daje vjerojatnost $\mathbb P$ na **beskonač**nom produktu. Definirajmo:

$$X_i := i$$
-ta koordinata

$$F_{X_i}(x_i) = \mathbb{P}(X_i \le x_i) = \underbrace{F_i(x_i)}_{\{i\} = \{n_1, \dots, n_n\}} \Rightarrow F_{X_i} = F_i.$$

Uzmimo neki $(x_{n_1}, \ldots, x_{n_n}) \in \mathbb{R}^p$

$$\mathbb{P}\left(X_{n_1} \leq x_1, \dots, X_{n_p} \leq x_p\right) = F_{n_1, \dots, n_p}(x_1, \dots, x_p)$$

$$= \prod_{i=1}^p F_{n_i}(x_i)$$

$$= \prod_{i=1}^p \mathbb{P}(X_i \leq x_i),$$

tj., X_{n_1},\dots,X_{n_p} su nezavisne. Time smo dokazali sljedeći teorem

TEOREM

Neka je $(F_n \mid n \in \mathbb{N})$ niz funkcija distribucije. Tada postoji vjerojatnosni prostor $(\Omega, \mathcal{F}, \mathbb{P})$ i $(X_n \mid n \in \mathbb{N})$ nezavisnih slučajnih varijabli na Ω t. d. je $F_{X_n} = F_n, \forall n \in \mathbb{N}$.

8 Račun i primjene (§11.2, 11, 3, Sarapa 359. – 382. str.)

□ dijelom na vježbama

Ako je $g: \mathbb{R} \to \mathbb{R}$ bijekcija, $g, g^{-1} \in C^1(\mathbb{R}), \varphi: \mathbb{R} \to \mathbb{R}$ Borelova i $B \in B_{\mathbb{R}}$,

$$\int_{B} \varphi(x)d\lambda(x) = \left[x = g(t)\right] = \int_{g^{-1}(B)} \varphi(g(x))|g'(x)d\lambda(x)$$

 φ najčešće će biti Riemann integrabilna (po dijelovima) neprekidna funkcija.

TEOREM

Neka je X neprekidna slučajna varijabla s gustoćom $f_X, L := \{x \in \mathbb{R} \mid f(x) > 0\}$ i $g : \mathbb{R} \to \mathbb{R}$ Borelova funkcija. Pretpostavimo još:

(i)
$$g: L \to T := g(L)$$
 je bijekcija.

(ii)
$$g^{-1} \in C^1(T)$$
 i $\frac{d}{du}g^{-1}(T) \neq 0, \forall y \in T$.

Tada je Y = g(X) neprekidna slučajna varijabla s gustoćom

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| \mathbb{1}_T(y).$$

Dokaz.

Neka je $B \in B_{\mathbb{R}}$.

$$\int_{B} f_{X} \left(g^{-1}(y)\right) \left| \frac{d}{dy} g^{-1}(y) \right| \mathbb{1}_{T}(y) dy = \int_{T \cap B} f_{X} \left(g^{-1}(y)\right) \left| \frac{d}{dy} g^{-1}(y) \right| dy$$

$$\stackrel{\text{zamjena}}{=} \int_{g^{-1}(T \cap B)} f_{X}(g^{-1}(g(x))) \left| \frac{d}{dy} g^{-1}(g(x)) \right| |g'(x)| dx$$

$$= \int_{g^{-1}(T \cap B)} f_{X}(x) dx$$

$$= \int_{g^{-1}(B) \cap L} f_{X}(x) dx$$

$$f_{X}|_{L^{c}=0} \int_{g^{-1}(B)} f_{X}(x) dx$$

$$= \mathbb{P} \left(X \in g^{-1}(B)\right)$$

$$= \mathbb{P} (g(X) \in B)$$

$$= \mathbb{P}(Y \in B)$$

Pretpostavimo da postoji najviše prebrojivo mnogo međusobno disjunktnih Borelovih skupova $(L_i \mid i=1,2,\ldots)$ t. d. je $L=\bigcup_i L_i$ i $g_i=g\mid_{L_i}$ injekcija na $L_i \,\forall i$ te da su g,g^{-1} klase C^1 . Tada je

$$\sum_{i} f_X\left(g_i^{-1}(x)\right) \left| \frac{d}{dy} g_i^{-1}(y) \right| \mathbb{1}_{T_i}(y),$$

gdje je $T_i = g_i(L_i), \forall i$.

PRIMJER.

Neka je X neprekidna slučajna varijabla s gustoćom $f_X,Y=g(X),g=\operatorname{tg}(x)$. $L_k=\left\langle -\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi\right\rangle,g_k=g\mid_{L_k}$. Uočimo: $g_k(L_k)=\mathbb{R}.\mathbbm{1}_{T_k}=\mathbb{R}$ $g_k^{-1}(y)=\operatorname{arctg}(y)+k\pi,k\in\mathbb{Z}$

$$f_Y(y) = \sum_{k \in \mathbb{Z}} f_X \left(\operatorname{arctg}(y) + k\pi \right) \frac{1}{1 + y^2}, y \in \mathbb{R}$$

Neka su $g_i: \mathbb{R}^n \to \mathbb{R}, i=1,\ldots,n, y_i=g_i(x_1,\ldots,x_n)$ glatke funkcije (dovoljno je klase C^1). Tada je $g:=(g_1,\ldots,g_n): \mathbb{R}^n \to \mathbb{R}^n$ glatko preslikavanje. Jacobijan $Dg(x)=\det\left[\frac{\partial g_i}{\partial x_j}(x)\right]_{i,j=1}^n, x\in\mathbb{R}^n$. Ako je $Dg(x)\neq 0$, tada u okolini točke g(x) postoji glatko inverzno preslikavanje g^{-1} i vrijedi:

$$Ix = g^{-1}(g(x))$$

$$\Rightarrow Ix = \nabla g^{-1}(g(x))\nabla g(x)$$

$$\Rightarrow 1 = Dq^{-1}(g(x))D_g(x)$$

Ako je $g:\mathbb{R}^n\to\mathbb{R}$ bijekcija i $\varphi:\mathbb{R}^n\to\mathbb{R}$ Borelova funkcija,

$$\forall B \in B_{\mathbb{R}^n}, \int_B \varphi(x) d\lambda(x) = \int_{q^{-1}(B)} \varphi(g(y)) |Dg(x)| dx$$

Isti račun kao i za n=1 daje sljedeći teorem:

TEOREM

Neka je $X=(X_1,\ldots,X_n)$ neprekidan slučajan vektor s gustoćom $f_X,L:=\{x\in\mathbb{R}^n\mid f_X(x)>0\}$, $g:\mathbb{R}^n\to\mathbb{R}^n$ Borelova funkcija t. d. vrijedi

(i)
$$g: L \to T := g(L)$$
 je bijekcija

$$(ii)\ g^{-1}$$
je glatka na T i $Dg^{-1}(y) \neq 0, \forall y \in T.$

Tada je Y := g(X) neprekidan slučajan vektor s gustoćom

$$f_Y(y) = f_X(g^{-1}(y)) |Dg^{-1}(y)| \mathbb{1}_T(y), y \in \mathbb{R}^n.$$

PRIMJER

n=2: marginalne gustoće

Neka su $X \sim N(\mu_1, \sigma_1^2)$ i $Y \sim N(\mu_2, \sigma_2^2)$ **nezavisne** slučajne varijable i definirajmo Z := X + Y. Označimo: $\mu = \mu_1 + \mu_2$ i neka je $\sigma > 0$ t. d. je $\sigma^2 = \sigma_1^2 + \sigma_2^2$.

Budući da su **neprekidne** slučajne varijable X i Y **nezavisne**, neprekidan je i slučajni vektor (X, Y), a, kako je $+ : \mathbb{R}^2 \to \mathbb{R}$ neprekidno preslikavanje, neprekidna je i slučajna varijabla Z.

$$F_{Z}(z) = \mathbb{P}(Z \le z)$$

$$= \mathbb{P}(X + Y \le z)$$

$$= \int_{x+y \le z} f_{Z}(x,y) dx dy$$

$$= \begin{bmatrix} x \mapsto x \\ t \mapsto y = t - x \\ |Dg| = \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = 1 \end{bmatrix}$$

$$= \int_{t \le z} f_{Z}(x,t-x) dx dt$$

$$= \int_{t \le z} f_{X}(x) F_{Y}(t-x) dx dt$$

$$= \int_{-\infty}^{z} \int_{-\infty}^{+\infty} f_{X}(x) F_{Y}(t-x) dx dt$$

$$\Rightarrow f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z-x) dx$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}}} e^{-\frac{(z-x-\mu_{2})^{2}}{2\sigma_{2}^{2}}} dx$$

$$= \left[y = x - \mu_{1} \right]$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2} \left[\frac{y^{2}}{\sigma_{1}^{2}} - \frac{(y-(z-\mu))^{2}}{\sigma_{2}^{2}} \right]} dy$$

$$-\frac{y^{2}}{\sigma_{1}^{2}} + \frac{(y - (z - \mu))^{2}}{\sigma_{2}^{2}} = \frac{(z - \mu)^{2}}{\sigma^{2}} + \frac{(y - a)^{2}}{b^{2}}$$

$$a = \frac{\sigma_1^2(z - \mu)}{\sigma^2}$$

$$b = \frac{\sigma_1 \sigma_2}{\sigma}$$

$$f_Z(z) = \frac{1}{2\pi\sigma_1 \sigma_2} e^{-\frac{(z - \mu)^2}{2\sigma^2}} \underbrace{\int_{-\infty}^{+\infty} e^{-\frac{(y - a)^2}{2b^2}} dy}_{=\sqrt{2\pi}b}$$

$$= \frac{1}{2\pi\sigma} e^{-\frac{(z - \mu)^2}{2\sigma^2}}$$

$$\Rightarrow Z \sim N(\mu, \sigma^2)$$

PRIMJER

Neka je $X=(X_1,\ldots,X_n)$ neprekidan slučajan vektor s gustoćom f_X i $[a_{ij}]_{i,j=1}^n=A\in\mathbb{R}^{n\times n}$ regularna matrica i $Y:=XA^T\Rightarrow Y_i=\sum_{j=1}^n a_{ij}X_j$. Budući da je A regularna, $X\mapsto Y(X)$ je bijektivno glatko preslikavanje. Jacobijan = $\det A\neq 0$. Jacobijan preslikavanja $y\mapsto y(A^{-1})^T$ jednak je $\det(A^{-1})=\frac{1}{\det A}$ pa je

$$f_Y(y) = f_X (y(A^{-1})^T) \frac{1}{|\det A|}.$$

TEOREM

Neka su $X \sim \chi^2(n)$ i $Y \sim N(0,1)$ nezavisne slučajne varijable. Tada je $Z := \frac{Y}{\sqrt{\frac{X}{n}}} \sim t(n)$.

Dokaz.

Definirajmo $z := \psi(x,y) = \frac{y}{\sqrt{\frac{x}{n}}}$. $(y \in \mathbb{R}, x > 0) \Rightarrow y = \varphi(z,x) = z\sqrt{\frac{x}{n}}$. Jacobijan u točki (x,z) jednak je $\sqrt{\frac{x}{n}}$

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}\left(z\sqrt{\frac{x}{n}}\right) dx$$

$$= \frac{1}{n\sqrt{2\pi}} \frac{1}{2^{n/2}\Gamma\left(\frac{n}{2}\right)} \int_{0}^{+\infty} x^{\frac{n}{2} - \frac{1}{2}} e^{-\frac{x}{2}\left(1 + \frac{z^{2}}{n}\right)} dx$$

$$= \begin{bmatrix} t = \frac{x}{2}\left(1 + \frac{z^{2}}{n}\right) \\ dt = \frac{1}{2}\left(1 + \frac{z^{2}}{n}\right) dx \\ x^{\frac{n}{2} - \frac{1}{2}} dx = 2^{\frac{n}{2} - \frac{1}{2} + 1}\left(1 + \frac{z^{2}}{n}\right)^{-\frac{n}{2} + \frac{1}{2} - 1} \end{bmatrix}$$

$$= \frac{1}{n\sqrt{\pi}} \frac{1}{\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{z^{2}}{n}\right)^{-\frac{n+1}{2}} \int_{0}^{+\infty} e^{-t} t^{\frac{n}{2} - \frac{1}{2}} dt$$

$$= \frac{1}{n\sqrt{\pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{z^{2}}{n}\right)^{-\frac{n+1}{2}}$$

Direktnim računom: ako su X_1, \ldots, X_n nezavisne jednako distribuirane slučajne varijable s razdiobom $N\left(\mu, \sigma^2\right)$, tada $Z := \frac{\overline{X}_n - \mu}{\sigma} \sqrt{n} \sim N(0, 1)$.

Neka je $X=(X_1,\ldots,X_n)\sim N_n(\mu,A)$. Ako je A dijagonalna matrica, tada su X_1,\ldots,X_n nezavisne.

 $A = \operatorname{diag}\left(\sigma_1^2,\ldots,\sigma_n^2\right), \sigma_i^2 = \operatorname{Var} X_i > 0 \Rightarrow A$ je regularna. Zatim izračunamo da je $f_X(x) = \prod_{i=1}^n f_{X_i}(x_i) \Rightarrow X_1,\ldots,X_n$ su **nezavisne**.

9 Slabi zakoni velikih brojeva (§12.1, Sarapa, 391. – 395. str.)

Postavlja se prirodno pitanje: imamo li neke relativne frekvencije, $\frac{f_n}{n} \stackrel{n \to \infty}{\longrightarrow} \mathbb{P}$?

Općenito promatramo niz **nezavisnih** slučajnih varijabli $(X_n)_{n\in\mathbb{N}}$ i, u načelu, pitamo se što se događa s $\overline{X}_n = \frac{1}{n}\sum_{i=1}^n X_i$. Ponašanje ovakvog niza može se promatrati u odnosu na više tipova konvergencije.

- (a) (\mathbb{P}) \to **slabi** zakoni velikih brojeva
- (b) (g. s.) \rightarrow jaki zakoni velikih brojeva
- (c) $(F) \rightarrow$ centralni granični teoremi

TEOREM (L^2 slabi zakon velikih brojeva)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli s **konačnim** varijancama i neka je

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = 0.$$

Tada je

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}X_i) \right| \ge \varepsilon \right) = 0, \forall \varepsilon,$$

tj.

$$\frac{1}{n}\sum_{i=1}^{n}(X_i-\mathbb{E}X_i)\stackrel{\mathbb{P}}{\longrightarrow} 0.$$

Dokaz

Označimo $Y_n := \frac{1}{n} \sum_{i=1}^n (X_i - \mathbb{E}X_i), n \in \mathbb{N}$. Treba dokazati da $Y_n \stackrel{\mathbb{P}}{\longrightarrow} 0$. Dovoljno je dokazati da $Y_n \stackrel{m^2}{\longrightarrow} 0$. Uočimo:

$$X_i \in L^2(\Omega, \mathcal{F}, \mathbb{P}), \forall i \in \mathbb{N} \Rightarrow Y_n \in L^2(\Omega, \mathcal{F}, \mathbb{P}), \forall n \in \mathbb{N}.$$

te je

$$\operatorname{Var}(X_i - \mathbb{E}X_i) = \operatorname{Var}(X_i).$$

Nadalje, i $(X_n - \mathbb{E}X_n)_{n \in \mathbb{N}}$ niz je **nezavisnih** slučajnih varijabli pa je

$$\operatorname{Var}\left(\sum_{i=1}^{n}(X_{i}-\mathbb{E}X_{i})\right)=\sum_{i=1}^{n}\operatorname{Var}(X_{i}-\mathbb{E}X_{i})=\sum_{i=1}^{n}\operatorname{Var}(X_{i})\Rightarrow\operatorname{Var}(Y_{n})=\frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i}).$$

Također, $\mathbb{E}Y_n = 0, \forall n \in \mathbb{N}.$

$$\int_{\Omega} Y_n^2 d\mathbb{P} = \mathbb{E} \left[Y_n^2 \right]$$

$$= \operatorname{Var}(Y_n) - (\mathbb{E}Y_n)^2$$

$$= \operatorname{Var}(Y_n)$$

$$= \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i)$$

$$\Rightarrow \lim_{n \to \infty} \int_{\Omega} Y_n^2 d\mathbb{P} = \lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = 0$$

$$\Rightarrow Y_n \xrightarrow{\mathbb{P}} 0$$

$$\Rightarrow Y_n \xrightarrow{\mathbb{P}} 0.$$

KOROLAR (Čebiševljev slabi zakon velikih brojeva)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli i neka postoji $\gamma\in\langle 0,+\infty\rangle$ t. d. je $\mathrm{Var}(X_n)\leq\gamma, \forall n\in\mathbb{N}$ (dakle, $(X_n)_{n\in\mathbb{N}}\subset L^2\left(\Omega,\mathcal{F},\mathbb{P}\right)$). Označimo $S_n:=\sum_{i=1}^n X_i$. Tada je

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{S_n - \mathbb{E}S_n}{n} \right| \ge \varepsilon \right) = 0, \forall \varepsilon > 0,$$

tj.

$$(\mathbb{P})\lim_{n\to\infty}\frac{S_n-\mathbb{E}S_n}{n}=0.$$

Dokaz.

Uočimo

$$\frac{S_n - \mathbb{E}S_n}{n} = \frac{1}{n} \sum_{i=0}^{n} (X_i - \mathbb{E}X_i)$$

te

$$\frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) \le \frac{n\gamma}{n^2} = \frac{\gamma}{n} \xrightarrow{n \to \infty} = 0.$$

Tvrdnja slijedi po prethodnom teoremu.

Slijedi rezultat koji smo spomenuli na početku ovog poglavlja

KOROLAR

 $(X_n)_{n\in\mathbb{N}}$ nezavisnih slučajnih varijabli sa zajedničkim očekivanjem μ i varijancom $\sigma^2<+\infty$ (dakle, $(X_n)_{n\in\mathbb{N}}\subset L^2\left(\Omega,\mathcal{F},\mathbb{P}\right)$). Tada je

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{S_n}{n} - \mu \right| \ge \varepsilon \right) = 0, \forall \varepsilon > 0,$$

tj.

$$(\mathbb{P})\lim_{n\to\infty}\frac{S_n}{n}=\mu.$$

Dokaz.

Uočimo:

$$\frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} = 0$$

i

$$\frac{S_n}{n} - \mu = \frac{S_n - n\mu}{n} = \frac{S_n - \mathbb{E}S_n}{n}.$$

NAPOMENA

Ni u posljednjem korolaru nismo zahtijevali jednaku distribuiranost, samo zajedničko očekivanje i konačnu zajedničku varijancu.

KOROLAR (Bernoullijev slabi zakon velikih brojeva)

Neka je $Z_n \sim B(n, p)$. Tada je

$$(\mathbb{P})\lim_{n\to\infty}\frac{Z_n}{n}=p.$$

Dokaz.

Definirajmo $Y_n := \frac{Z_n}{n}, n \in \mathbb{N}$. Prisjetimo se da je binomna slučajna varijabla s parametrima n i p suma n nezavisnih Bernoullijevih slučajnih varijabli s parametrom p. Njihovo je zajedničko očekivanje jednako p, a zajednička konačna varijanca pq.

Slijedi da je $\mathbb{E}Z_n = np \Rightarrow \mathbb{E}Y_n = p$.

$$\operatorname{Var}(Y_n) = \int_{\Omega} (Y_n - p)^2 d\mathbb{P}$$

$$= \frac{1}{n^2} \operatorname{Var}(Z_n)$$

$$= \frac{1}{n^2} n p (1 - p)$$

$$= \frac{p(1 - p)}{n} \xrightarrow{n \to \infty} 0$$

$$\Rightarrow Y_n - p \xrightarrow{m^2} 0$$

$$\Rightarrow Y_n \xrightarrow{\mathbb{P}} p$$

$$\Rightarrow Y_n \xrightarrow{\mathbb{P}} p.$$

Xi Yjednako su distribuirane ako je $\mathbb{P}_X = \mathbb{P}_Y \Leftrightarrow F_X = F_Y$

Neka su X i Y jednako distribuirane slučajne varijable i $g: \mathbb{R} \to \mathbb{R}$ integrabilna. Tada je $\mathbb{E}[g(X)] = \mathbb{E}[g(Y)]$. (Hinčin)

Posebno je zanimljiv slučaj $g(x) := x^n, n \ge 1$ jer slijedi da jednako distribuirane slučajne varijable imaju jednake momente (doduše, g nije integrablna na čitavoj domeni).

U sljedećem teoremu **ne** pretpostavljamo da je zajednička varijanca **konačna**. **Nezavisnost** nam treba da bismo znali da je varijanca sume jednaka sumi varijanci.

TEOREM (Hinčinov slabi zakon velikih brojeva)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** <u>jednako distribuiranih</u> slučajnih varijabli sa zajedničkim konačnim očekivanjem μ . Tada je

$$(\mathbb{P})\lim_{n\to\infty}\frac{S_n}{n}=\mu.$$

Dokaz.

Metoda rezanja:

Neka je $\delta > 0, n \in \mathbb{N}$ te

$$X_k^*(\omega) := \begin{cases} X_k(\omega), & \text{za } |X_k(\omega)| < n \delta \\ 0, & \text{inače} \end{cases},$$

tj.,

$$X_k^* = X_k \mathbbm{1}_{\{|X_k| < n\delta\}} \Rightarrow X_1^*, \dots, X_n^*$$
su nezavisne i jednako distribuirane.

$$\mathbb{E}X_1 = \mu, \mathbb{E}[|X_1|] = \beta < +\infty$$
 (dakle, $X_1 \in L^1(\Omega, \mathcal{F}, \mathbb{P})!$). Definirajmo

$$E_n := \{ \omega \in \Omega \mid |X_1(\omega)| < n\delta \}$$

Odmah primijetimo da $E_n \nearrow \Omega$;

$$\omega \in E_n \Rightarrow |X_1(\omega)| < n\delta < (n+1)\delta \Rightarrow \omega \in E_{n+1}.$$

S druge strane, $\forall \omega \in \Omega, \exists n(\omega) \in \mathbb{N}, |X_1(\omega)| < n\delta \Rightarrow \omega \in E_{n(\omega)}$

pa je

$$\Omega = \bigcup_{n \in \mathbb{N}} E_n \Rightarrow 1 = \lim_{n \to \infty} \mathbb{P}(E_n)$$

i za $1 \le k \le n$,

$$\mu_n^* = \mathbb{E}\left[X_n^*\right] = \mathbb{E}\left[X_k^*\right] = \int_{\{|X_k| < n\delta\}} X_k d\mathbb{P} = \int_{\{|X_1| < n\delta\}} X_1 d\mathbb{P} = \mathbb{E}\left[X_1 \mathbbm{1}_{E_n}\right]$$

Dakle,

$$\mu_n^* = \mathbb{E}\left[X_1 \mathbb{1}_{E_n}\right]$$

$$\operatorname{Var}(X_k^*) = \mathbb{E}\left[X_k^{*2}\right] - (\mathbb{E}[X_k^*])^2 \le \mathbb{E}\left[X_k^{*2}\right] = \int_E |X_1|^2 d\mathbb{P} \le n\delta \int_E |X_1| d\mathbb{P} \le n\delta \beta.$$

Dakle,

$$\boxed{\operatorname{Var}(X_k^*) \le \mathbb{E}\left[X_k^{*2}\right] \le n\delta\beta}$$

Neka je sada $S_n^* := \sum_{k=1}^n X_k^*$

$$\Rightarrow \mathbb{E}[S_n^*] = n\mu_n^*, \operatorname{Var}(S_n^*) \le n^2 \delta \beta \Rightarrow \mathbb{E}\left[\frac{S_n^*}{n}\right] = \mu_n^*, \operatorname{Var}\left(\frac{S_n^*}{n}\right) = \frac{1}{n^2} \operatorname{Var}(S_n^*) \stackrel{\text{nez.}}{=} \frac{n}{n^2} \operatorname{Var}(X_1^*) \le \delta \beta.$$

Za svaki $\varepsilon > 0$, po Čebiševljevoj nejednakosti (ne miješaj sa Čebiševljevim SZVB),

$$\mathbb{P}\left(\left|\frac{S_n^*}{n} - \mu_n^*\right| \ge \varepsilon\right) \le \frac{\operatorname{Var}\left(\frac{S_n^*}{n}\right)}{\varepsilon^2} \le \frac{\delta\beta}{\varepsilon^2}$$

Promatramo niz izmjerivih funkcija $(X_1\mathbbm{1}_{E_n})_{n\in\mathbb{N}}, X_1\mathbbm{1}_{E_n} \xrightarrow{\text{g. s.}} X_1$, apsolutno dominiran integrabilnom funkcijom $X_1\mathbbm{1}_{\Omega} = X_1$. Primjenom Lebesgueova teorema o dominiranoj konvergenciji,

$$\mu_n^{*12} = \mathbb{E}\left[X_1 \mathbb{1}_{E_n}\right] \stackrel{n \to \infty}{\longrightarrow} \mathbb{E}\left[X_1 \mathbb{1}_{\Omega}\right] = \mu,$$

što će reći da,

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall n \geq n_{\varepsilon}, |\mu_n^* - \mu| < \varepsilon.$$

Dakle,

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall n \geq n_{\varepsilon}, \mathbb{P}(|\mu_n^* - \mu| \geq \varepsilon) = 0.$$

Iz relacije trokuta zaključujemo:

$$\begin{split} \forall n \geq n_{\varepsilon}, \mathbb{P}\left(\left|\frac{S_{n}^{*}}{n} - \mu\right| \geq 2\varepsilon\right) \leq \mathbb{P}\left(\left|\frac{S_{n}^{*}}{n} - \mu_{n}^{*}\right| + |\mu_{n}^{*} - \mu| \geq 2\varepsilon\right) \\ \leq \mathbb{P}\left(\max\left\{\left|\frac{S_{n}^{*}}{n} - \mu_{n}^{*}\right|, |\mu_{n}^{*} - \mu|\right\} \geq \varepsilon\right) \\ \leq \mathbb{P}\left(\left|\frac{S_{n}^{*}}{n} - \mu_{n}^{*}\right| \geq \varepsilon\right) + \underbrace{\mathbb{P}\left(|\mu_{n}^{*} - \mu| \geq \varepsilon\right)}_{=0} \\ = \mathbb{P}\left(\left|\frac{S_{n}^{*}}{n} - \mu_{n}^{*}\right| \geq \varepsilon\right) \leq \frac{\delta\beta}{\varepsilon^{2}} \frac{13}{\varepsilon} \end{split}$$

Za $1 \leq k \leq n, Y_k := X_k - X_k^*, Y_k$ su jednako distribuirane.

$$\begin{split} \mathbb{P}(Y_k \neq 0) &= \mathbb{P}(|X_k| \geq n\delta) \\ &= \mathbb{P}(|X_1| \geq n\delta) \\ &= \mathbb{P}\left(|X_1| \mathbbm{1}_{E_n^c} \geq n\delta\right) \\ &\leq \frac{1}{n\delta} \int_{E_n^c} |X_1| d\mathbb{P}_{\text{meda } \forall k=1,\dots,n}^{\text{ista gornja}} \\ \Rightarrow \mathbb{P}\left(\frac{S_n - S_n^*}{n} \neq 0\right) &= \mathbb{P}\left(S_n - S_n^* \neq 0\right) \\ &\leq \mathbb{P}\left(\exists k \in \{1,\dots,n\}, Y_k \neq 0\right) \\ &\leq \sum_{k=1}^n \mathbb{P}(Y_k \neq 0) \\ &\leq \frac{1}{\delta} \int_{E_n^c} |X_1| d\mathbb{P} \end{split}$$

Dakle, $\forall \delta > 0, \forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall n \geq n_{\varepsilon},$

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| \ge 2\varepsilon\right) \le \mathbb{P}\left(\left|\frac{S_n - S_n^*}{n}\right| + \left|\frac{S_n^*}{n} - \mu\right| \ge 2\varepsilon\right) \\
\le \mathbb{P}\left(\max\left\{\left|\frac{S_n - S_n^*}{n}\right|, \left|\frac{S_n^*}{n} - \mu\right|\right\} \ge \varepsilon\right) \\
\le \mathbb{P}\left(\left|\frac{S_n - S_n^*}{n}\right| \ge \varepsilon\right) + \mathbb{P}\left(\left|\frac{S_n^*}{n} - \mu\right| \ge \varepsilon\right) \\
\le \mathbb{P}\left(\frac{S_n - S_n^*}{n} \ne 0\right) + \mathbb{P}\left(\left|\frac{S_n^*}{n} - \mu\right| \ge \varepsilon\right) \\
\le \frac{1}{\delta} \int_{E_n^c} |X_1| d\mathbb{P} + \frac{4\delta\beta}{\varepsilon^2}$$

 $^{^{12}\}mu_n^*$ je zajedničko očekivanje slučajnih varijabli $\left(X_k^{(n,\delta)}\right)_{k\in\mathbb{N}}$ uz dani $\delta>0$

 $^{^{13}}$ Treba imati na umu da $\left(\frac{S_n^*}{n}\right)_{n\in\mathbb{N}}$ nije niz parcijalnih suma jednog niza n.j.d. slučajnih varijabli $(X_k^*)_{k\in\mathbb{N}}$ jer je $\frac{S_n^*}{n} = \frac{\sum_{k=1}^n X_k \mathbbm{1}_{\{|X_k| < n\delta\}}}{n}.$

Zbog $\mathbbm{1}_{E_n} \stackrel{\mathrm{g. s.}}{\longrightarrow} \mathbbm{1}_{\Omega}$, tj. $\mathbbm{1}_{E_n^c} \stackrel{\mathrm{g. s.}}{\longrightarrow} 0$,

$$\forall \delta > 0, \exists n_{\delta}, \forall n \geq n_{\delta}, \int_{E_n^c} |X_1| d\mathbb{P} < \delta^2.$$

(Uzmimo $N := \max\{n_{\varepsilon}, n_{\delta}\}$).

$$\forall \varepsilon > 0, \forall \delta' > 0, \exists N = N(\varepsilon, \delta) \in \mathbb{N}, \forall n \ge N, \mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| \ge 2\varepsilon\right) \le \frac{4\delta\beta}{\varepsilon^2} + \delta$$
$$\Rightarrow \forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| \ge \varepsilon\right) = 0 \Rightarrow \frac{S_n}{n} \xrightarrow{\mathbb{P}} \mu.$$

Rekapitulacija:

(i)
$$\mathbb{E}\left[\frac{S_n^*}{n}\right] = \mu_n^*, \operatorname{Var}\left(\frac{S_n^*}{n}\right) \le \delta\beta$$

(ii)
$$\forall \varepsilon > 0, \mathbb{P}\left(\left|\frac{S_n^*}{n} - \mu_n^*\right| \ge \varepsilon\right) \le \frac{\delta\beta}{\varepsilon^2}$$

(iii)
$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall n \geq n_{\varepsilon}, |\mu_n^* - \mu| < \varepsilon$$

$$(iv) \ \forall n \ge n_{\varepsilon}, \mathbb{P}\left(\left|\frac{S_n^*}{n} - \mu\right| \ge 2\varepsilon\right) \le \frac{\delta\beta}{\varepsilon^2}$$

$$(v) \ \forall k \in \{1, \dots, n\}, \mathbb{P}(Y_k \neq 0) \leq \frac{1}{n\delta} \int_{E_{-}^c} |X_1| \mathbb{P}$$

$$(vi) \ \mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| \ge 2\varepsilon\right) \le \frac{1}{\delta} \int_{E_c^c} |X_1| d\mathbb{P} + \frac{4\delta\beta}{\varepsilon^2}$$

$$(vii) \ \forall \delta > 0, \exists n_{\delta} \in \mathbb{N}, \forall n \geq n_{\delta}, \int_{E_{n}^{c}} |X_{1}| \mathbb{P} < \delta$$

10 Zakoni nula-jedan (§12.2, Sarapa, 395. – 401. str.)

Promatramo niz $(X_n)_{n\in\mathbb{N}}$ nezavisnih slučajnih varijabli i zanima nas što se događa s beskonačnom sumom $\sum_{n\in\mathbb{N}}X_n.$ Neka je $(X_n)_{n\in\mathbb{N}}$ niz slučajnih varijabli. Za $n\in\mathbb{N},$ definiramo

$$\mathcal{F}_n := \sigma(X_n, X_{n+1}, \ldots) = \sigma\left(\bigcup_{k=n}^{+\infty} \sigma(X_k)\right),$$

najmanju σ -algebru s obzirom na koju su X_n, X_{n+1}, \ldots izmjerive. Vrijedi:

$$\mathcal{F}_n \supseteq \mathcal{F}_{n+1} \supseteq \mathcal{F}_{n+2} \supseteq \cdots$$
.

Budući da je presjek σ -algebri i sam σ -algebra, i sljedeća je familija σ -algebra:

$$\mathcal{F}_{\infty} = \bigcap_{n \in \mathbb{N}} F_n$$

 \mathcal{F}_{∞} nazivamo **repnom** σ -algebrom niza $(X_n)_{n\in\mathbb{N}}$, a njezine elemente **repnim događajima**. $(\mathcal{F}_{\infty}, B_{\mathbb{R}})$ -izmjerivu funkciju $f: \Omega \to \mathbb{R}$ zovemo **repnom funkcijom**.

PRIMJER

$$(a) \ \left\{ \sum_{n=1}^{+\infty} X_n \text{ konvergira } \right\} = \bigcap_{n=1}^{+\infty} \underbrace{\left\{ \sum_{k=n}^{+\infty} X_k \text{ konvergira } \right\}}_{\in \mathcal{F}_n} \text{je repni događaj.}$$

- (b) $\left\{\lim_{n\to\infty} X_n \text{ postoji }\right\}, \left\{\limsup_{n\to\infty} X_n \text{ je konačan }\right\}$ su repni događaji.
- (c) $\limsup X_n$ je repna funkcija.
- $(d) \left\{ \sum_{n=1}^{+\infty} X_n = 3 \right\} \text{ nije repni događaj jer iznos sume ovisi i o prvih konačno mnogo članova } X_1, \dots, X_k.$

DEFINICIJA

Neka je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor, $T \neq \emptyset$. Za svaki $t \in T$, definiramo $\mathcal{S}_t \subseteq \mathcal{F}$. Kažemo da je familija $\{S_t \mid t \in T\}$ nezavisna ako za svaki konačan podskup $U \subseteq T$, vrijedi

$$\mathbb{P}\left(\bigcap_{t\in U}A_t\right) = \prod_{t\in U}\mathbb{P}(A_t)$$

za svaki izbor događaja A_t t. d. je $A_t \in \mathcal{S}_t, \forall t \in U$.

Nezavisnost slučajnih varijabli = nezavisnost σ -algebri generiranih tim slučajnim varijablama.

ZADATAK

Ako je $\mathcal E$ proizvoljna familija **nezavisnih** događaja i ako svaki događaj iz nekog podskupa od $\mathcal E$ zamijenimo njegovim komplementom, tada je nova familija također nezavisna.

ideja: Ako su E i F nezavisni događaji,

$$\mathbb{P}(E) = \mathbb{P}(E \cap F) - \mathbb{P}(E \cap F^c)$$

$$= \mathbb{P}(E)\mathbb{P}(F) - \mathbb{P}(E \cap F^c)$$

$$\Rightarrow \mathbb{P}(E \cap F^c) = \mathbb{P}(E) - \mathbb{P}(E)\mathbb{P}(F)$$

$$= \mathbb{P}(E)(1 - \mathbb{P}(F))$$

$$= \mathbb{P}(E)\mathbb{P}(F^c)$$

pa su i E i F^c **nezavisni** događaji.

Prisjetimo se:

- π -sustav je familija zatvorena na (konačne) presjeke (koja sadrži prazan skup?)
- Familija $\mathcal{D} \subseteq \mathcal{P}(\Omega)$ je **Dynkinova klasa** ako je
 - (i) $\Omega \in \mathcal{D}$
 - (ii) \mathcal{D} zatvorena na **prave** razlike: $A, B \in \mathcal{D}, B \subseteq A \Rightarrow A \setminus B \in \mathcal{D}$
 - (iii) \mathcal{D} zatvorena na prebrojive **rastuće** unije: $A_1 \subseteq A_2 \subseteq \cdots \in \mathcal{D} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{D}$.
- TEOREM

Ako je S neki π -sustav, tada je $d(S) = \sigma(S)$.

PROPOZICIJA

Neka je $\{S_t \mid t \in T\}$ nezavisna familija i neka je S_t π -sustav za svaki $t \in T$. Tada je familija $\{\sigma(S_t) \mid t \in T\}$ također nezavisna.

Dokaz.

Neka je $U \subseteq T$ konačan. BSO, neka je $U = \{1, 2, \dots, n\}$ t. d. promatramo S_1, \dots, S_n . Definirajmo

$$\mathcal{A}_1 := \left\{ A \in \sigma\left(\mathcal{S}_1\right) \mid \mathbb{P}\left(A \cap A_2 \cap \dots \cap A_n\right) = \mathbb{P}(A)\mathbb{P}(A_2) \cdots \mathbb{P}(A_n), \forall A_2 \in \mathcal{S}_2, \dots A_n \in \mathcal{S}_n \right\}.$$

Budući da je $\{S_t \mid t \in T\}$ nezavisna i $S_1 \subseteq \sigma(S_1)$, sigurno je $S_1 \subseteq A_1$. Tvrdimo da je A_1 d-sustav.

(i) Znamo da je $\Omega \in \sigma(\mathcal{S}_1)$.

$$\mathbb{P}(\Omega \cap A_2 \cap \cdots \cap A_n) = \mathbb{P}(A_2 \cdots \cap A_n) \stackrel{\text{nez.}}{=} \mathbb{P}(A_2) \cdots \mathbb{P}(A_n) = \mathbb{P}(\Omega) \mathbb{P}(A_2) \cdots \mathbb{P}(A_n)$$

pa je $\Omega \in \mathcal{A}_1$.

 $(ii) \ \text{Neka su } A,B \in \mathcal{A}_{1},B \subseteq A. \ \text{Budu\'ei da je } \mathcal{A}_{1} \subseteq \sigma\left(\mathcal{S}_{1}\right),\, A,B \in \sigma\left(\mathcal{S}_{1}\right) \Rightarrow A \setminus B \in \sigma\left(\mathcal{S}_{1}\right)$

$$\mathbb{P}(A)\mathbb{P}(A_2)\cdots\mathbb{P}(A_n) = \mathbb{P}(A\cap A_2\cap\cdots\cap A_n)$$

$$= \mathbb{P}((A\cap B)\cap A_2\cap\cdots\cap A_n) + \mathbb{P}((A\setminus B)\cap A_2\cap\cdots\cap A_n)$$

$$= \mathbb{P}(B\cap A_2\cap\cdots\cap A_n) + \mathbb{P}((A\setminus B)\cap A_2\cap\cdots\cap A_n)$$

$$= \mathbb{P}(B)\mathbb{P}(A_2)\cdots\mathbb{P}(A_n) + \mathbb{P}((A\setminus B)\cap A_2\cap\cdots\cap A_n)$$

$$\Rightarrow \mathbb{P}(A\setminus B)\mathbb{P}(A_2)\cdots\mathbb{P}(A_n) = (\mathbb{P}(A)-\mathbb{P}(B))\mathbb{P}(A_2)\cdots\mathbb{P}(A_n)$$

$$= \mathbb{P}((A\setminus B)\cap A_2\cdots\cap A_n)$$

pa je i $A \setminus B \in \mathcal{A}_1$,

(iii) Neka je $B_1 \subseteq B_2 \subseteq \cdots A_1$. Budući da je $A_1 \subseteq \sigma(S_1)$, $(B_k)_{k \in \mathbb{N}} \subset \sigma(S) \Rightarrow \bigcup_{k=1}^{+\infty} B_k \in \sigma(S_1)$. Uočimo da je $(B_k \cap A_2 \cdots \cap A_n)_{k \in \mathbb{N}}$ neopadajući niz događaja u \mathcal{F} .

$$\mathbb{P}\left(\left(\bigcup_{k=1}^{+\infty} B_k\right) \cap A_2 \cap \dots \cap A_n\right) = \mathbb{P}\left(\bigcup_{k=1}^{+\infty} (B_k \cap A_2 \cap \dots \cap A_n)\right)$$

$$= \lim_{k \to +\infty} \mathbb{P}\left(B_k \cap A_2 \cap \dots \cap A_n\right)$$

$$= \lim_{k \to +\infty} \mathbb{P}(B_k) \mathbb{P}(A_2) \cdots \mathbb{P}(A_n)$$

$$= \left(\lim_{k \to +\infty} \mathbb{P}(B_k)\right) \mathbb{P}(A_2) \cdots \mathbb{P}(A_n)$$

$$= \mathbb{P}\left(\bigcup_{k=1}^{+\infty} B_k\right) \mathbb{P}(A_2) \cdots \mathbb{P}(A_n).$$

Dakle, \mathcal{A}_1 je uistinu d-sustav. Budući da je \mathcal{A}_1 d-sustav i $\mathcal{S}_1 \subseteq \mathcal{A}_1$, vrijedi $\sigma(\mathcal{S}_1) \subseteq \mathcal{S}_1$, a, kako je očito $\mathcal{A}_1 \subseteq \sigma(\mathcal{S}_1)$, to je $\mathcal{A}_1 = \sigma(\mathcal{S}_1)$.

Induktivno nastavljamo: fiksirajmo $A_1 \in \sigma(S_1), A_3 \in S_3, \ldots, A_n \in S_n$. Isti dokaz daje $A_2 \subseteq \sigma(S_2)$.

TEOREM

Neka je $\{C_t \mid t \in T\}$ nezavisna familija σ -algebri i neka je $\{T_\gamma \mid \gamma \in \Gamma\}$ particija skupa T (dakle, $T_\gamma \subseteq T, \forall \gamma \in \Gamma, T_\gamma \cap T_{\gamma'} = \emptyset, \forall \gamma, \gamma' \in \Gamma, \gamma \neq \gamma', \bigcup_{\gamma \in \Gamma} T_\gamma = T$). Za svaki $\gamma \in \Gamma$, neka je

$$\mathcal{F}_{\gamma} := \sigma \left(\bigcup_{t \in T_{\gamma}} \mathcal{C}_{t} \right).$$

Tada je familija

$$\{\mathcal{F}_{\gamma} \mid \gamma \in \Gamma\}$$

nezavisna.

Dokaz.

Za $\gamma \in \Gamma$, neka je

$$\mathcal{D}_{\gamma} := \left\{ \bigcap_{t \in K} C_t \mid K \subseteq T_{\gamma} \text{ konačan }, C_t \in \mathcal{C}_t, \forall t \in K \right\}$$

 \mathcal{D}_{γ} je π -sustav (zatvorena je na **konačne** presjeke i sadrži \emptyset): ako su $\bigcap_{t \in K_1} C_t, \bigcap_{t \in K_2} C_t \in \mathcal{D}_{\gamma}$, tada je $K_1 \cup K_2 \subseteq T_{\gamma}$ konačan pa je

$$\bigcap_{t \in K_1} C_t \cap \bigcap_{t \in K_2} C_t = \bigcap_{t \in K_1 \cup K_2} C_t \in \mathcal{D}_{\gamma}.$$

Promatramo familiju $\{\mathcal{D}_{\gamma} \mid \gamma \in \Gamma\}$. Neka je $\Gamma' \subseteq \Gamma$ konačan i fiksirajmo $A_1 \in \mathcal{D}_{\gamma_1}, \ldots, A_n \in \mathcal{D}_{\gamma_n}$, pri čemu su $\gamma_1, \ldots, \gamma_n \in \Gamma'$. Tada je, za svaki $i = 1, \ldots, n$,

$$A_i = \bigcap_{t \in K_{\gamma_i}} C_t,$$

pri čemu je $K_{\gamma_i} \subseteq T_{\gamma_i}$ konačan i $C_t \in \mathcal{C}_t, \forall t \in K_{\gamma_i}$ te je

$$\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right) = \left(\bigcap_{i=1}^{n} \bigcap_{t \in K_{\gamma_{i}}} C_{t}\right)$$

$$= \mathbb{P}\left(\bigcap_{t \in \bigcup_{i=1}^{n} K_{\gamma_{i}}} C_{t}\right)$$

$$\stackrel{\text{nez.}}{=} \prod_{t \in \bigcup_{i=1}^{n} K_{\gamma_{i}}} \mathbb{P}(C_{t})$$

$$= \prod_{i=1}^{n} \prod_{t \in K_{\gamma_{i}}} \mathbb{P}(C_{t})$$

$$= \bigcap_{i=1}^{n} \mathbb{P}\left(\bigcap_{t \in K_{\gamma_{i}}} C_{t}\right)$$

$$= \prod_{i=1}^{n} \mathbb{P}(A_{i})$$

pa je familija $\{\mathcal{D}_{\gamma} \mid \gamma \in \Gamma\}$ nezavisna.

Iz definicije vidimo da je $\mathcal{D}\gamma \subseteq \mathcal{F}_{\gamma}$. S druge strane, $\mathcal{C}_t \subseteq \mathcal{D}_{\gamma}$, $\forall t \in T_{\gamma}$ (uvijek možemo konačno mogo puta presjeći skupom Ω), a onda

$$C_t \subseteq \mathcal{D}_{\gamma} \Rightarrow \bigcup_{t \in T_{\gamma}} C_t \subseteq \mathcal{D}_{\gamma}.$$

Sada, kako je \mathcal{D}_{γ} π -sustav i $\bigcup_{t \in T_{\gamma}} \mathcal{C}_{t} \subseteq \mathcal{D}_{f}$, to je $\mathcal{F}_{\gamma} = \sigma\left(\bigcup_{t \in T_{\gamma}} \mathcal{C}_{t}\right) = d\left(\mathcal{D}_{\gamma}\right)$. Dakle, σ -algebre $\mathcal{F}_{\gamma}, \gamma \in \Gamma$ zapravo generiraju **nezavisni** π -sustavi $\mathcal{D}_{\gamma}, \gamma \in \Gamma$ pa su i one, po prethodnoj propoziciji, **nezavisne**.

Rekapitulacija

- (i) D_{γ} je π -sustav, $\forall \gamma \in \Gamma$
- (ii) $(D_{\gamma})_{\gamma \in \Gamma}$ je nezavisna familija
- (iii) $F_{\gamma} = \sigma(D_{\gamma}), \forall \gamma \in \Gamma.$

TEOREM (Kolmogorovljev zakon nula-jedan)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli. Tada je vjerojatnost svakog **repnog događaja** 0 ili 1, a svaka je **repna funkcija** (g. s.) **konstanta**.

Dokaz.

 $(X_n)_{n\in\mathbb{N}}$ su **nezavisne** $\Leftrightarrow \{\sigma(X_n)\mid n\in\mathbb{N}\}$ su **nezavisne**. Neka je $n\in\mathbb{N}$ i promotrimo

$$\sigma(X_1,...,X_n) i \mathcal{F}_{n+1} := \sigma(X_{n+1},X_{n+2},...).$$

Po prethodnom teoremu, uz

$$T = \mathbb{N}, \mathcal{C}_n = \sigma(X_n), \Gamma = \{1, 2\}, T_1 = \{1, \dots, n\}, T_2 = \{n+1, \dots\}, \tilde{\mathcal{F}}_1 = \sigma(X_1, \dots, X_n), \tilde{\mathcal{F}}_2 = \sigma(X_{n+1}, \dots), \sigma(X_1, \dots, X_n) \in \mathcal{F}_{n+1} \text{ su nezavisne.}$$

$$\mathcal{F}_{\infty} \subseteq \mathcal{F}_{n+1}, \forall n \in \mathbb{N} \Rightarrow \sigma(X_1, \dots, X_n) \text{ i } \mathcal{F}_{\infty} \text{ su nezavisne}, \forall n \in \mathbb{N}$$

 $\Rightarrow \{\mathcal{F}_{\infty}, \sigma(X_1), \sigma(X_2), \dots\} \text{ je nezavisna}.$

Po prethodnom teoremu, \mathcal{F}_{∞} i \mathcal{F}_1 su nezavisne. Međutim, $\mathcal{F}_{\infty} \subseteq \mathcal{F}_1$ pa je, posebno, **nezavisna sama sa sobom**, odakle zaključujemo: ako je $A \in \mathcal{F}_{\infty}$, $A_1 := A$, $A_2 := A$, kako su \mathcal{F}_{∞} i \mathcal{F}_{∞} **nezavisne**, to je

$$\mathbb{P}(A) = \mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1)\mathbb{P}(A_2) = \mathbb{P}(A)\mathbb{P}(A) \Rightarrow \mathbb{P}(A) \in \{0, 1\}.$$

Neka je f repna funkcija u odnosu na niz $(X_n)_{n\in\mathbb{N}}$, tj. f je \mathcal{F}_{∞} -izmjeriva. Za $y\in\mathbb{R}$, promatramo repni događaj $\{f\leq y\}$. Budući da je f slučajna varijabla, možemo promatrati njenu funkciju distribucije F. Znamo da je svaka funkcija distribucije neopadajuća i neprekidna zdesna

$$\Rightarrow \exists e \in \mathbb{R}, F(y) = \begin{cases} 0, & \text{ako je } y < e \\ 1, & \text{ako je } y \ge e. \end{cases}$$

Naime

$$\lim_{x \to +\infty} F(x) = 1 \Rightarrow \exists d \in \mathbb{R}, F(d) = 1$$

$$\lim_{x \to -\infty} F(x) = 0 \Rightarrow \exists c \in \mathbb{R}, c < d, F(c) = 0$$

$$e := \inf\{x \le d \mid F(x) = 1\}$$

$$\text{neprekidnost}$$

$$\text{zdesna}$$

$$\text{T}(e) = 1$$

$$\text{def.}$$

$$F(c) = 0, \forall c < e.$$

Tada je i $\mathbb{P}(f > e) = 0$ jer bi, u protivnom, bilo

$$1 = \mathbb{P}(f \le e) + \mathbb{P}(f > e) = F(e) + \mathbb{P}(f > e) = 1 + \mathbb{P}(f > e) > 1,$$

što je neistina. Dakle, f = e (g. s.).

KOROLAR

Ako je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli, tada vrijedi

- (i) $(X_n)_{n\in\mathbb{N}}$ konvergira (g. s.) prema konačnom limesu ili divergira (g. s.)
- (ii) $\sum_{n=1}^{+\infty} X_n$ konvergira (g. s.) prema konačnom limesu ili divergira (g. s.)
- (iii) za proizvoljan niz $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ koji konvergira prema 0, niz $(a_n\sum_{i=1}^n X_i)_{n\in\mathbb{N}}$ konvergira (g. s.) prema **konačnom** limesu ili divergira (g. s.)

Dokaz.

(i) Neka je

$$E := \{(X_n)_{n \in \mathbb{N}} \text{ konvergira prema konačnom limesu } \}$$

Uočimo

 $\forall n \in \mathbb{N}, E = \{(X_{n+k})_{k \in \mathbb{N}} \text{ konvergira prema konačnom limesu }\}, n \in \mathbb{N}$

Zbog Cauchyjevosti¹⁴, koje se tiču svi, osim konačno mnogo indeksa,

$$\forall n \in \mathbb{N}, E = \bigcap_{m=1}^{+\infty} \bigcup_{k=n}^{+\infty} \bigcap_{i=k}^{+\infty} \bigcap_{j=i}^{+\infty} \left\{ -\frac{1}{m} < X_i - X_j < \frac{1}{m} \right\} \Rightarrow E \in \sigma(X_n, X_{n+1}, \dots), \forall n \in \mathbb{N} \Rightarrow E \in \mathcal{F}_{\infty}.$$

$$\stackrel{\text{prethodni}}{\Rightarrow} \mathbb{P}(E) \in \{0,1\}$$

(ii) Red konvergira na skupu

$$\forall n \in \mathbb{N}, E = \bigcap_{m=1}^{+\infty} \bigcup_{k=n}^{+\infty} \bigcap_{i=k}^{+\infty} \bigcap_{j=i}^{+\infty} \left\{ -\frac{1}{m} < \underbrace{X_i + \dots + X_j}_{\substack{\sum_{l=i}^{+\infty} X_l - \sum_{l=j+1}^{+\infty} X_l \\ \text{ili } S_{j+1} - S_i}} < \frac{1}{m} \right\}$$

i pratimo dokaz analogan onome u(i).

(iii)

$$a_n \sum_{i=1}^{n} X_i = \underbrace{a_n \sum_{i=1}^{m} X_i}_{n \to +\infty} + a_n \sum_{i=m+1}^{n} X_i, n > m$$

Dakle, $(a_n \sum_{i=1}^n X_i)_{n \in \mathbb{N}}$ konvergira $\Leftrightarrow (a_n \sum_{i=m+1}^n X_i)_{n \in \mathbb{N}}, \forall m \in \mathbb{N}$ konvergira $\Rightarrow E \in \sigma(X_m, X_{m+1}, \ldots) \Rightarrow E \in \mathcal{F}_{\infty}$.

Proširimo li promatranje na $\overline{\mathbb{R}}$, uočimo da su $\liminf_{n \to \infty} X_n$ i $\limsup_{n \to \infty} X_n$ repne funkcije pa je $\left\{ \liminf_{n \to \infty} X_n = \limsup_{n \to \infty} X_n \right\}$ repni događaj i obje su funkcije $\liminf_{n \to \infty} X_n$ i $\limsup_{n \to \infty} X_n$ (g. s.) konstante.

¹⁴Zašto Cauchyjevost? Pa, u iskazu nigdje nismo spomenuli konkretne limese... Jednako ćemo postupiti i u dokazu **TEOREMA** 2. gdje polazimo od pretpostavke da red **nezavisnih** slučajnih varijabli konvergira g. s.

Konvergencija redova (§12.3, Sarapa, 402. – 409. str.) 11

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli. Konvergira li (u (g. s.) smislu, i kada) $\sum_{n=1}^{\infty} X_n$? Oznake:

$$> S_n = \sum_{i=1}^n X_i,$$

$$\sum_{n=1}^{+\infty} X_n \text{ konvergira } \Leftrightarrow (S_n)_{n \in \mathbb{N}} \text{ konvergira (prema konačnom limesu) tj.,} \exists \lim_{n \to \infty} S_n.$$

Promotrimo repni događaj

$$E:=\left\{\omega\in\Omega\mid \sum_{n=1}^{+\infty}X_n(\omega)$$
konvergira ka konačnom limesu $\right\}$

Iz prethodnog poglavlja, znamo da je $\mathbb{P}(E) \in \{0, 1\}.$

Pitamo se: kada je $\mathbb{P}(E) = 1$?

Sljedeća je propozicija svojevrsna generalizacija Čebiševljeve nejednakosti:

PROPOZICIJA (Kolmogorovljeve nejednakosti)¹⁵

(i) Neka su X_1, \ldots, X_n nezavisne slučajne varijable s konačnim varijancama. Tada za svaki $\varepsilon > 0$,

$$\mathbb{P}\left(\max_{1\leq j\leq n}|S_j - \mathbb{E}S_j| \geq \varepsilon\right) \leq \frac{\operatorname{Var}S_n}{\varepsilon^2}.$$

(Odmah možemo primijetiti da je, zbog **nezavisnosti**, $\operatorname{Var} S_n = \operatorname{Var} S_{n-1} + \operatorname{Var} X_n \ge \operatorname{Var} S_{n-1}$.)

(ii)Ako još postoji i $c\in[0,+\infty\rangle$ t. d. je $\mathbb{P}\left(|X_i|\leq c\right)=1, \forall i=1,\ldots,n,$ tada, za svaki $\varepsilon>0,$ vrijedi

$$\mathbb{P}\left(\max_{1\leq j\leq n}|S_j-\mathbb{E}S_j|\geq \varepsilon\right)\geq 1-\frac{(\varepsilon+2c)^2}{\operatorname{Var}S_n}.$$

Dokaz.

(i) BSOMP $\mathbb{E}X_i = 0, \forall i = 1, \dots, n^{16}$ Nadalje, $\mathbb{E}X_i = 0, \forall i = 1, \dots, n \Rightarrow \mathbb{E}S_j = 0, \forall j = 1, \dots, n$.

$$A := \left\{ \max_{1 \le j \le n} |S_j| \ge \varepsilon \right\}.$$

¹⁷ Za svaki k = 1, ..., n, definirajmo skupove

$$A_k := \{|S_j| < \varepsilon, \forall j = 1, \dots, k - 1, |S_k| \ge \varepsilon\} = \left\{ \max_{1 \le j \le k - 1} |S_j| < \varepsilon, |S_k| \ge \varepsilon \right\}.$$

Uočimo da je $A_{k_1} \cap A_{k_2} = \emptyset, \forall 1 \leq k_1, k_2 \leq n, k_1 < k_2$ jer

$$\omega \in A_{k_1} \Rightarrow |S_{k_1}(\omega)| \ge \varepsilon$$
,

dok

$$\omega \in A_{k_2} \Rightarrow |S_{k_1}(\omega)| < \varepsilon.$$

$$\omega \in A \Rightarrow \left| S_{\min\{j \in \{1, \dots, n\} \mid |S_j(\omega)| \ge \varepsilon\}}(\omega) \right| \ge \varepsilon \Rightarrow \omega \in A_{\min\{j \in \{1, \dots, n\} \mid |S_j(\omega)| \ge \varepsilon\}} \Rightarrow A \subseteq \bigcup_{k=1}^n A_k.$$

¹⁵Pogledati dokaz Leme Ottaviani-Skorohod

 $^{^{16}}$ jer možemo promatrati varijable $\tilde{X_i}=X_i-\mathbb{E}X_i,$ a Var $\tilde{X_i}=\mathrm{Var}\,X_i, \forall i=1,\ldots,n.$ $^{17}\mathit{Mala\ digresija}$: Kolmogorov, na neki način, indekse $j=1,\ldots,n$ promatra kao vrijeme.

S druge strane,

$$\omega \in A_k \Rightarrow \max_{1 \le j \le n} |S_j(\omega)| \ge |S_k(\omega)| \ge \varepsilon \Rightarrow A_k \subseteq A \Rightarrow \bigcup_{k=1}^n A_k \subseteq A,$$

dakle, $(A_k)_{k=1}^n$ međusobno su disjunktni događaji i $A = \bigcup_{k=1}^n A_k$.

$$\operatorname{Var} S_n = \mathbb{E}[S_n^2] - (\mathbb{E}S_n)^2 = \mathbb{E}[S_n^2] = \int_{\Omega} \underbrace{S_n^2}_{\geq 0} d\mathbb{P} \geq \int_A S_n^2 d\mathbb{P}$$
$$= \sum_{k=1}^n \int_{A_k} S_n^2 d\mathbb{P}$$

$$S_n = S_k + Y_k, Y_k := X_{k+1} + \dots + X_n$$

Primijetimo da je

$$\mathbb{E}[Y_k] = \sum_{i=k+1}^n \mathbb{E}X_i = 0.$$

$$\int_{A_k} S_n^2 d\mathbb{P} = \int_{A_k} S_k^2 + 2 \int_{A_k} S_k Y_k d\mathbb{P} + \underbrace{\int_{A_k} Y_k^2 d\mathbb{P}}_{\geq 0}$$

$$\int_{A_k} S_k Y_k d\mathbb{P} = \mathbb{E}\left[\mathbbm{1}_{A_k} S_k Y_k\right] = \begin{bmatrix} S_k \mathbbm{1}_{A_k} & \mathrm{i} \ Y_k \\ \mathrm{nezavisne} \end{bmatrix} = \mathbb{E}\left[S_k \mathbbm{1}_{A_k}\right] \cdot \underbrace{\mathbb{E}Y_k}_{=0} = 0$$

$$\Rightarrow \int_{A_k} S_n^2 d\mathbb{P} \ge \int_{A_k} S_k^2 d\mathbb{P} \ge \varepsilon^2 \mathbb{P}(A_k)$$

$$\Rightarrow \operatorname{Var} S_n \ge \sum_{k=1}^n \int_{A_k} S_n^2 d\mathbb{P} \ge \varepsilon^2 \sum_{k=1}^n \mathbb{P}(A_k) = \varepsilon^2 \mathbb{P}(A)$$

$$\Rightarrow \mathbb{P}(A) \le \frac{\operatorname{Var} S_n}{\varepsilon^2}$$

$$\begin{aligned} \mathbb{P}(|X_i| \leq c) &= 1 \Rightarrow \mathbb{E}[|X_i|] = \int_{\Omega} |X_i| d\mathbb{P} \\ &= \int_{\{|X_i| \leq c\}} |X_i| d\mathbb{P} + \int_{\underbrace{\{|X_i| > c\}}} \underbrace{|X_i|}_{\geq 0} d\mathbb{P} \\ &= \int_{\{|X_i| \leq c\}} |X_i| d\mathbb{P} \\ &\leq c \mathbb{P}(|X_i| \leq c) \\ &= c \end{aligned}$$

Dakle,

$$\begin{split} \mathbb{P}(|X_i| \leq c) &= 1 \Rightarrow |\mathbb{E}X_i| \leq \mathbb{E}[|X_i|] \leq c \\ 1 &= \mathbb{P}\left(|X_i| \leq c\right) = \mathbb{P}(-c \leq X_i \leq c) \\ &= \mathbb{P}(-c - \mathbb{E}X_i \leq X_i - \mathbb{E}X_i \leq c - \mathbb{E}X_i) \\ &\geq \mathbb{P}\left(-c - |\mathbb{E}X_i| \leq X_i - \mathbb{E}X_i \leq c + |\mathbb{E}X_i|\right) \\ &\leq \mathbb{P}\left(-2c \leq X_i - \mathbb{E}X_i \leq 2c\right) \\ &= \mathbb{P}(|X_i - \mathbb{E}X_i| \leq 2c) \\ &\leq 1 \\ \Rightarrow \mathbb{P}\left(|X_i - \mathbb{E}X_i| \leq 2c\right) = 1 \end{split}$$

Dakle,

$$\mathbb{P}(|X_i| \le c) = 1 \Rightarrow \mathbb{P}(|X_i - \mathbb{E}X_i| \le 2c) = 1$$

BSOMP, $\mathbb{E}X_i = 0 \ (\Rightarrow \mathbb{E}S_n = 0, \text{Var } X_i = \mathbb{E}\left[X_i^2\right])$ i $\mathbb{P}(|X_i| \leq 2c) = 1$. Neka je skup A definiran kao u (i) dijelu.

$$\begin{split} \int_A S_n^2 d\mathbb{P} &= \operatorname{Var} S_n - \int_{A^c} S_n^2 d\mathbb{P} = \left[\omega \in A \Leftrightarrow \max_{1 \leq j \leq n} |S_j(\omega)| \geq \varepsilon \text{ pa } \omega \in A^c \Leftrightarrow |S_n(\omega)| \leq \max_{1 \leq j \leq n} |S_j(\omega)| < \varepsilon \right] \\ &\geq \operatorname{Var} S_n - \varepsilon^2 \mathbb{P}(A^c) \\ &= \operatorname{Var} S_n - \varepsilon^2 (1 - \mathbb{P}(A)) \\ &= \operatorname{Var} S_n - \varepsilon^2 + \varepsilon^2 \mathbb{P}(A) \quad (*) \end{split}$$

Na skupu A_k , (g. s.)

$$|S_{k-1}| \le \varepsilon, |S_k| \le |S_{k-1}| + |X_k| \le \varepsilon + 2c^{18}$$

$$\Rightarrow S_k^2 \mathbb{1}_{A_k} \le (\varepsilon + 2c)^2 \text{ (g. s.)}$$

$$\int_A S_n^2 d\mathbb{P} = \sum_{k=1}^n \int_{A_k} S_n^2 d\mathbb{P} \overset{\text{dokaz kao}}{=} \sum_{k=1}^n \int_{A_k} S_k^{\ 2} d\mathbb{P} + \sum_{k=1}^n \int_{A_k} (\underbrace{S_n - S_k})^2 d\mathbb{P}$$

$$\leq (\varepsilon + 2c)^2 \sum_{i=1}^n \mathbb{P}(A_k) + \sum_{k=1}^n \mathbb{E}\left[(X_{k+1} + \dots + X_n)^2 \mathbb{1}_{A_k} \right]$$

$$=(\varepsilon+2c)^2\mathbb{P}(A)+\sum_{k=1}^n\mathbb{E}\left[(X_{k+1}+\cdots+X_n)^2\right]\underbrace{\mathbb{E}[\mathbbm{1}_{A_k}]}_{\mathbb{P}(A_k)}=\begin{bmatrix}\mathbb{E}X_i=0,\forall i\Rightarrow\mathbb{E}[X_i^2]=\operatorname{Var}X_i\\ \left(\sum_{i=k+1}X_i\right)^2=\sum_{i=k+1}^nX_i^2+\sum_{i,j=k+1}^nX_iX_j\\ (X_i)_{i\in\mathbb{N}}\text{ nezavisne }\Rightarrow\sum_{i=1}^n\operatorname{Var}X_i=\operatorname{Var}S_n\end{bmatrix}$$

$$= (\varepsilon + 2c)^2 \mathbb{P}(A) + \sum_{k=1}^n \mathbb{P}(A_k) \sum_{i=k+1}^n \operatorname{Var} X_i = \left[\forall k = 1, \dots, n, \sum_{i=k+1} \operatorname{Var} X_i \leq \sum_{i=1}^n \operatorname{Var} X_i \stackrel{\text{nez.}}{=} \operatorname{Var} S_n \right]$$

$$\leq (\varepsilon + 2c)^2 \mathbb{P}(A) + \sum_{k=1}^n \mathbb{P}(A_k) \operatorname{Var} S_n$$

$$= (\varepsilon + 2c)^2 \mathbb{P}(A) + \operatorname{Var} S_n \mathbb{P}(A)$$

$$= ((\varepsilon + 2c)^2 + \operatorname{Var} S_n) \mathbb{P}(A)$$

Dakle,

$$\operatorname{Var} S_{n} - \varepsilon^{2} + \varepsilon^{2} \mathbb{P}(A) \leq \int_{A} S_{n}^{2} d\mathbb{P} \leq \left((\varepsilon + 2c)^{2} + \operatorname{Var} S_{n} \right) \mathbb{P}(A)$$

$$\Rightarrow \left((\varepsilon + 2c)^{2} + \operatorname{Var} S_{n} \right) \mathbb{P}(A) \geq \operatorname{Var} S_{n} - \varepsilon^{2} + \varepsilon^{2} \mathbb{P}(A)$$

$$\Rightarrow \left((\varepsilon + 2c)^{2} + \operatorname{Var} S_{n} - \varepsilon^{2} \right) \mathbb{P}(A) \geq \operatorname{Var} S_{n} - \varepsilon^{2}$$

$$\Rightarrow \mathbb{P}(A) \geq \frac{\operatorname{Var} S_{n} - \varepsilon^{2}}{(\varepsilon + 2c)^{2} + \operatorname{Var} S_{n} - \varepsilon^{2}}$$

$$= 1 - \frac{(\varepsilon + 2c)^{2}}{(\varepsilon + 2c)^{2} + \operatorname{Var} S_{n} - \varepsilon^{2}}$$

$$\geq 1 - \frac{(\varepsilon + 2c)^{2}}{\operatorname{Var} S_{n}}$$

Rekapitulacija

$$(i) \quad (a) \ \ \text{Definiramo skup} \ A = \left\{ \max_{1 \leq j \leq n} |S_j| \geq \varepsilon \right\} \ \text{i skupove} \ A_k := \left\{ \max_{1 \leq j \leq k-1} |S_j| < \varepsilon, |S_k| \geq \varepsilon \right\}. \ \text{Tada}$$
 su A_1, \dots, A_n međusobno disjunktni događaji i $A = \bigcup_{k=1}^n A_k$

 $^{^{18}}$ U slučaju (ii), zapravo je $\varepsilon \leq |S_k| \leq \varepsilon + 2c$ (g. s.) na skupu A_k

(b) Var
$$S_n \geq \sum_{k=1}^n \int_{A_k} S_n^2 d\mathbb{P}$$

(c)
$$\int_{A_k} S_n^2 d\mathbb{P} \ge \int_{A_k} S_k^2 d\mathbb{P} \ge \varepsilon^2 \mathbb{P}(A_k)$$

(d)
$$\operatorname{Var} S_n \geq \varepsilon^2 \mathbb{P}(A)$$

(ii) (a)
$$\mathbb{P}(|X_i| \le c) = 1 \Rightarrow \mathbb{P}(|X_i - \mathbb{E}X_i| \le 2c) = 1$$

(b)
$$\int_A S_n^2 d\mathbb{P} \ge \operatorname{Var} S_n - \varepsilon^2 + \varepsilon^2 \mathbb{P}(A)$$

(c)
$$\int_{A_k} S_k^2 d\mathbb{P} \le (\varepsilon + 2c)^2 \mathbb{P}(A)$$

$$(d) \int_{A_k} (\underbrace{S_n - S_k}_{Y_k})^2 \le \operatorname{Var} S_n \mathbb{P}(A_k)$$

Sad ćemo primijeniti upravo dokazanu **PROPOZICIJU** (i).

TEOREM 1

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli s **konačnim** varijancama. Ako je $\sum_{n=1}^{+\infty} \operatorname{Var} X_n < +\infty$, tada red

$$\sum_{n=1}^{+\infty} \left(X_n - \mathbb{E} X_n \right)$$

konvergira (g. s.)

Dokaz.

BSO, $\mathbb{E}X_n = 0, \forall n \in \mathbb{N}$. Tvrdimo da $\sum_{n=1}^{+\infty} X_n$ konvergira (g. s.). Želimo pokazati da niz $(S_n)_{n \in \mathbb{N}}$ konvergira (g. s.). Dovoljno je pokazati da je $(S_n)_{n \in \mathbb{N}}$ (g. s.) Cauchyjev, no to je ekvivalentno s

$$\forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k=1}^{+\infty} \{|S_{n+k} - S_n| \ge \varepsilon\}\right) = 0.$$

Fiksirajmo $m \in \mathbb{N}$. Primijetimo:

$$\left\{ \max_{1 \le k \le n} |S_{m+k} - S_m| \ge \varepsilon \right\} = \bigcup_{k=1}^n \{|S_{m+k} - S_m| \ge \varepsilon\}$$

Također,

$$\sum_{n=1}^{+\infty} \operatorname{Var} X_n < +\infty \Leftrightarrow \sum_{n=m}^{+\infty} \operatorname{Var} X_n < +\infty, \forall m \in \mathbb{N}.$$

$$\mathbb{P}\left(\bigcup_{k=1}^{+\infty} \{|S_{m+k} - S_m| \ge \varepsilon\}\right) = \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k=1}^{n} \{|S_{m+k} - S_m| \ge \varepsilon\}\right)$$

$$= \lim_{n \to \infty} \mathbb{P}\left(\max_{1 \le k \le n} |S_{m+k} - S_m| \ge \varepsilon\right)$$
Kolmogorovljeva nejednakost (nez. \checkmark , $\operatorname{Var} X_{m+k} < \infty, \forall k \in \mathbb{N} \checkmark$) $\frac{1}{\varepsilon^2} \lim_{n \to \infty} \operatorname{Var}(S_{m+n} - S_m)$

$$\stackrel{\text{nez.}}{=} \frac{1}{\varepsilon^2} \lim_{n \to \infty} \sum_{j=1}^{n} \operatorname{Var} X_{m+j}$$

$$= \frac{1}{\varepsilon^2} \sum_{i=1}^{+\infty} \operatorname{Var} X_{m+j} = \frac{1}{\varepsilon^2} \sum_{n=m+1}^{\infty} \operatorname{Var} X_n \xrightarrow{m \to +\infty} 0$$

NAPOMENA

Na vježbama smo dokazali slabiju tvrdnju

$$\sum_{n=1}^{\infty} \operatorname{Var} X_n < \infty \Rightarrow X_n \xrightarrow{g.s.} \mu$$

za $(X_n)_{n\in\mathbb{N}}$ definirane na istom vjerojatnosnom prostoru.

Sa sljedećim pristupom upoznali smo se još u dokazu Hinčinovog slabog zakona velikih brojeva.

Metoda rezanja

Neka je Xslučajna varijabla ic>0. Definirajmo slučajnu varijablu

$$X_c := X \mathbbm{1}_{\{|X| < c\}} = \begin{cases} X, & \text{ako je } |X| < c \\ 0, & \text{ako je } |X| \geq c \end{cases}$$

 X_c je **ograničena** \Rightarrow ima sve momente. Jasno,

$$X(\omega) \neq X_c(\omega) \stackrel{c>0}{\Leftrightarrow} X \leq -c < 0 \text{ ili } X \geq c > 0$$

Budući da $\lim_{c \to +\infty} \mathbb{P}(|X| \ge c) = 0$, rezanje možemo "namjestiti":

$$\forall \varepsilon > 0, \exists c_{\varepsilon} > 0, \underbrace{\mathbb{P}(X \neq X_{c_{\varepsilon}})}_{\mathbb{P}(|X| \geq c_{\varepsilon})} < \varepsilon$$

Neka je $(X_n)_{n\in\mathbb{N}}$ niz slučajnih varijabli.

$$\forall \varepsilon > 0, \exists (c_n)_{n \in \mathbb{N}} \subset \langle 0, +\infty \rangle, \forall n \in \mathbb{N}, \mathbb{P}(X_n \neq (X_n)_{c_n}) < \frac{\varepsilon}{2^n} \Rightarrow \mathbb{P}\left(\bigcup_{n=1}^{+\infty} \{X_n \neq (X_n)_{c_n}\}\right) \leq \varepsilon \sum_{n=1}^{+\infty} \frac{1}{2^n} = \varepsilon.$$

Sljedeći rezultat bit će ključan u dokazu Kolmogorovljeva teorema o trima redovima te dovoljnosti u Kolmogorovljevom jakom zakonu velikih brojeva.

PROPOZICIJA

Neka su $(X_n)_{n\in\mathbb{N}}$ i $(Y_n)_{n\in\mathbb{N}}$ nizovi slučajnih varijabli t. d. za neki $\varepsilon>0$, vrijedi

$$\sum_{n=1}^{+\infty} \mathbb{P}(X_n \neq Y_n) < \infty.$$

Tada $(X_n)_{n\in\mathbb{N}}$ konvergira (g. s.) \Leftrightarrow $(Y_n)_{n\in\mathbb{N}}$ konvergira (g. s.). (i to prema istom limesu). Isto vrijedi i za nizove $\left(\frac{1}{n}\sum_{k=1}^n X_k\right)_{n\in\mathbb{N}}$ i $\left(\frac{1}{n}\sum_{k=1}^n Y_k\right)_{n\in\mathbb{N}}$. (\to vidi JZVB) Nadalje, $\sum_{n=1}^{+\infty} X_n$ konvergira (g. s.) $\Leftrightarrow \sum_{n=1}^{+\infty} Y_n$ konvergira (g. s.)

Dokaz.

$$\sum_{n=1}^{+\infty} \mathbb{P}(X_n \neq Y_n) < \infty \Rightarrow 0 = \lim_{n \to \infty} \sum_{k=n}^{+\infty} \mathbb{P}(X_k \neq Y_k)$$

$$\geq \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k=n}^{+\infty} \{X_k \neq Y_k\}\right)$$

$$\stackrel{\heartsuit}{=} \mathbb{P}\left(\bigcap_{n=1}^{+\infty} \bigcup_{k=n}^{+\infty} \{X_k \neq Y_k\}\right)$$

$$= \mathbb{P}\left(\limsup_{n \to \infty} \{X_n \neq Y_n\}\right)$$
mentiranic (

$$\overset{\heartsuit}{\Rightarrow} \mathbb{P}\left(\liminf_{n \to \infty} \{X_n = Y_n\} \right) = 1$$

Odnosno, za (g. s.) $\omega \in \Omega, \exists n_{\omega} \in \mathbb{N}, \forall k \geq n_{\omega}, X_k(\omega) = Y_k(\omega)$, što znači da eventualno početni komadi tih dvaju nizova nisu jednaki pa ni eventualno konačno mnogo parcijalnih suma i eventualno konačno mnogo parcijalnih aritmetičkih sredina nije jednako, što smo i tvrdili.

LEMA

Očekivanje slučajne varijable X postoji (konačno je) $\Leftrightarrow \sum_{n=1}^{+\infty} \mathbb{P}(|X| \geq n) < +\infty.$

Dokaz.

$$\begin{split} |\mathbb{E}X| < +\infty &\Leftrightarrow \mathbb{E}[|X|] < +\infty \\ \mathbb{E}[|X|] &= \int_{\Omega} |X| d\mathbb{P} \\ &= \int_{\Omega} \left(\sum_{n=1}^{+\infty} \underbrace{|X| \mathbbm{1}_{\{n-1 \leq |X| < n\}}}_{\geq 0} \right) d\mathbb{P} \\ &\overset{\text{Beppo}}{=} \sum_{n=1}^{+\infty} \int_{\Omega} |X| \mathbbm{1}_{\{n-1 \leq |X| < n\}} d\mathbb{P} \end{split}$$

$$\Rightarrow \sum_{n=1}^{+\infty} (n-1) \mathbb{P}(n-1 \le |X| < n) \le \mathbb{E}[|X|] \le \sum_{n=1}^{+\infty} n \mathbb{P}(n-1 \le |X| < n)$$

$$\Rightarrow \sum_{n=1}^{+\infty} (n-1) \left(\mathbb{P}(|X| \ge n-1) - \mathbb{P}(|X| \ge n) \right) \le \mathbb{E}[|X|] \le \sum_{n=1}^{+\infty} n \left(\mathbb{P}(|X| \ge n-1) - \mathbb{P}(|X| \ge n) \right)$$

$$\mathbb{P}(|X| \ge 1) + \sum_{n=2}^{+\infty} \left(-(n-1) \mathbb{P}(|X| \ge n) + n \mathbb{P}(|X| \ge n) \right) \le \mathbb{E}[|X|] \le \mathbb{P}(|X| \ge 0) + \sum_{n=2}^{+\infty} \left(-(n-1) \mathbb{P}(|X| \ge n-1) + n \mathbb{P}(|X| \ge n-1) \right)$$

$$\Rightarrow \sum_{n=1}^{+\infty} \mathbb{P}(|X| \ge n) \le \mathbb{E}[|X|] \le 1 + \sum_{n=1}^{+\infty} \mathbb{P}(|X| \ge n)$$

NAPOMENA

(a) Primijetimo da je $|X| \ge n \Leftrightarrow \lceil X \rceil \le -n$ ili $\lfloor X \rfloor \ge n$ i

$$\mathbb{E}[\lfloor |X|\rfloor] = \sum_{n=1}^{\infty} \mathbb{P}(\lfloor |X|\rfloor \ge n)$$

(b) U Zadatku 4.15. s vježbi, pokazali smo nešto drugo: za nenegativnu slučajnu varijablu X na $(\Omega, \mathcal{F}, \mathbb{P})$, vrijedi

$$\mathbb{E}X < \infty \Leftrightarrow \sum_{n=1}^{\infty} n\mathbb{P}(n \le X < n+1) < \infty.$$

Metoda simetrizacije

Neka je X slučajna varijabla i recimo da možemo naći slučajnu varijablu X t. d. su X i X nezavisne. To je uvijek moguće, ali ne nužno na polaznom prostoru. Treba povećati vjerojatnosni prostor; uz polazni vjerojatnosni prostor, možemo vezati jednu njegovu kopiju na kojem realiziramo X s pripadnom produktnom vjerojatnošću. Za niz slučajnih varijabli, trebali bismo prebrojivo mnogo kopija. Simetrizirana slučajna varijabla $X^{(s)} := X - \tilde{X}$.

$$|\mathbb{E}X| < +\infty \Rightarrow \mathbb{E}X^{(s)} = 0.$$

 $\mathbb{E}[X^2] < +\infty \Rightarrow \operatorname{Var}X^{(s)} = 2\operatorname{Var}X.$

Ako je $(X_n)_{n\in\mathbb{N}}$ niz slučajnih varijabli, **simetrizirani niz slučajnih varijabli** $\left(X_n^{(s)}\right)_{n\in\mathbb{N}}$. Ako su $(X_n)_{n\in\mathbb{N}}$

- lacktriangle jednako distribuirane, onda će i $\left(X_n^{(s)}\right)_{\mathbb{R}^{-\mathbb{N}}}$ biti jednako distribuirane.
- \blacktriangleright nezavisne, možemo postići **nezavisan** niz slučajnih varijabli $X_1, \tilde{X}_1, X_2, \tilde{X}_2, \dots$
- \blacktriangleright g. s. uniformno ograničene, tj., $\exists c>0, \forall n\in\mathbb{N}, \mathbb{P}(|X_n|\leq c)=1$, onda su i $\left(X_n^{(s)}\right)_{n\in\mathbb{N}}$ g. s. uniform
no ograničene: $\mathbb{P}\left(\left|X_n^{(s)}\right| \leq 2c\right) = 1, \forall n \in \mathbb{N}.$

$$\sum_{n=1}^{+\infty} X_n \text{ konvergira (g. s.) } \Rightarrow \sum_{n=1}^{+\infty} X_n^{(s)} \text{ konvergira (g. s.)}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

$$\sum_{n=1}^{+\infty} \tilde{X}_n \text{ konvergira (g.s.)}$$

$$A := \bigcap_{m=1}^{+\infty} \bigcup_{k=1}^{+\infty} \bigcap_{i=k}^{+\infty} \bigcap_{j=i}^{+\infty} \left\{ -\frac{1}{m} < X_i + \dots + X_j < \frac{1}{m} \right\}$$

$$B := \bigcap_{m=1}^{+\infty} \bigcup_{k=1}^{+\infty} \bigcap_{i=k}^{+\infty} \bigcap_{j=i}^{+\infty} \left\{ -\frac{1}{m} < \tilde{X}_i + \dots + \tilde{X}_j < \frac{1}{m} \right\}$$

$$B := \bigcap_{m=1}^{+\infty} \bigcup_{k=1}^{+\infty} \bigcap_{i=k}^{+\infty} \bigcap_{j=i}^{+\infty} \left\{ -\frac{1}{m} < \tilde{X}_i + \dots + \tilde{X}_j < \frac{1}{m} \right\}$$

Opet, ne spominjemo konkretne limese parcijalnih suma, dakako, Cauchyjevost je razumno obilježje. Tvrdimo: $\mathbb{P}(A) = 1 \Leftrightarrow \mathbb{P}(B) = 1$. (vrijedi zbog jednake distribuiranosti nizova $(X_n)_{n \in \mathbb{N}}$ i $(\tilde{X}_n)_{n \in \mathbb{N}}$ $\Rightarrow \mathbb{P}_{(X_n)_{n\in\mathbb{N}}} = \mathbb{P}_{\left(\tilde{X}_n\right)_{n\in\mathbb{N}}} \text{ realizirane na } (\mathbb{R}^\infty, B_{\mathbb{R}^\infty}))$

$$\sum_{n=1}^{+\infty} X_n \text{ konvergira (g. s.) } \Rightarrow \sum_{n=1}^{+\infty} X_n^{(s)} \text{ konvergira (g. s.)}$$

TEOREM 2.

Koristit ćemo:

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli i pretpostavimo da postoji $c\geq 0$ t. d. je $\mathbb{P}(|X_n| \leq c) = 1, \forall n \in \mathbb{N} \text{ (g. s. uniformno ograničen niz)}.$ Ako red $\sum_{n=1}^{+\infty} X_n$ konvergira (g. s.), tada redovi (realnih brojeva, ne slučajnih varijabli)

$$\sum_{n=1}^{+\infty} \mathbb{E}[X_n] \text{ i } \sum_{n=1}^{+\infty} \operatorname{Var} X_n$$

konvergiraju.

Dokaz.

 X_n je ograničena (g. s.) \Rightarrow postoji konačna varijanca $\operatorname{Var} X_n$. Neka je $\left(X_n^{(s)}\right)_{n\in\mathbb{N}}$ **simetrizirani** niz niza $(X_n)_{n\in\mathbb{N}}$. \Rightarrow $\mathbb{E}X_n^{(s)}=0$ i $\operatorname{Var} X_n^{(s)}=2\operatorname{Var} X_n$. Dovoljno je dokazati da red $\sum_{n=1}^{\infty} \operatorname{Var} X_n = \frac{1}{2} \sum_{n=1}^{\infty} \operatorname{Var} X_n^{(s)}$ konvergira.

$$\left|X_n^{(s)}\right| \le |X_n| + \left|\tilde{X}_n\right| \le 2c \text{ (g. s.)}$$

Ako red $\sum_{n=1}^{+\infty} X_n$ konvergira (g. s.), onda red $\sum_{n=1}^{+\infty} X_n^{(s)}$ konvergira (g. s.) \rightarrow događaj na kojem konvergira (na kojem je Cauchyjev!!!!!)

$$\bigcap_{m=1}^{+\infty} \bigcup_{k=1}^{+\infty} \bigcap_{k \le i \le j \le +\infty} \left\{ \left| X_i^{(s)} + \dots + X_j^{(s)} \right| < \frac{1}{m} \right\}.$$

$$1 = \mathbb{P}\left(\bigcap_{m=1}^{+\infty} \bigcup_{k=1}^{+\infty} \bigcap_{i=k}^{+\infty} \bigcap_{j=i}^{+\infty} \left\{ \left| X_i^{(s)} + \dots + X_j^{(s)} \right| < \frac{1}{m} \right\} \right) \le \mathbb{P}\left(\bigcup_{k=1}^{+\infty} \bigcap_{i=k}^{+\infty} \bigcap_{j=i}^{+\infty} \left\{ \left| X_i^{(s)} + \dots + X_j^{(s)} \right| < \frac{1}{m} \right\} \right) \le 1, \forall m \in \mathbb{N}$$

$$\Rightarrow \mathbb{P}\left(\bigcup_{k=1}^{+\infty} \bigcap_{i=k}^{+\infty} \bigcap_{j=i}^{+\infty} \left\{ \left| X_i^{(s)} + \dots + X_j^{(s)} \right| < \frac{1}{m} \right\} \right) = 1, \forall m \in \mathbb{N} \ (*)$$

Sada: (*) i činjenica da je niz $\left(\bigcap_{i=k}^{+\infty}\bigcap_{j=i}^{+\infty}\left\{\left|X_i^{(s)}+\cdots+X_j^{(s)}\right|<\frac{1}{m}\right\}\right)_{k\in\mathbb{N}}$ neopadajuć za svaki $m\in\mathbb{N},$ a onda da je $\bigcup_{k=1}^{+\infty}\bigcap_{i=k}^{+\infty}\bigcap_{j=i}^{+\infty}\left\{\left|X_i^{(s)}+\cdots+X_j^{(s)}\right|<\frac{1}{m}\right\}$ rastuća unija za svaki $m\in\mathbb{N},$ povlače da je

$$\lim_{k \to +\infty} \mathbb{P}\left(\bigcap_{i=k}^{+\infty} \bigcap_{j=i}^{+\infty} \left\{ \left| X_i^{(s)} + \dots + X_j^{(s)} \right| < \frac{1}{m} \right\} \right) = \mathbb{P}\left(\bigcup_{k=1}^{+\infty} \bigcap_{i=k}^{+\infty} \bigcap_{j=i}^{+\infty} \left\{ \left| X_i^{(s)} + \dots + X_j^{(s)} \right| < \frac{1}{m} \right\} \right) = 1, \forall m \in \mathbb{N}$$

Stoga, za m = 1, postoji $k \in \mathbb{N}$ t. d. je

$$\begin{split} & \mathbb{P}\left(\bigcap_{i=k}^{+\infty}\bigcap_{j=i}^{+\infty}\left\{\left|X_{i}^{(s)}+\cdots+X_{j}^{(s)}\right|<1\right\}\right)>\frac{1}{2}\\ \Rightarrow & \mathbb{P}\left(\bigcup_{i=k}^{+\infty}\bigcup_{j=i}^{+\infty}\left\{\left|X_{i}^{(s)}+\cdots+X_{j}^{(s)}\right|\geq1\right\}\right)\leq\frac{1}{2}\\ \Leftrightarrow & \mathbb{P}\left(\max_{k\leq i\leq j<+\infty}\left|X_{i}^{(s)}+\cdots+X_{j}^{(s)}\right|\geq1\right)\leq\frac{1}{2}\\ & \stackrel{\bigtriangledown}{\Rightarrow}\mathbb{P}\left(\max_{k\leq r\leq n}\left|X_{k}^{(s)}+\cdots+X_{r}^{(s)}\right|\geq1\right)\leq\frac{1}{2}, \forall n>k \text{ (pustit \acute{c}emo kasnije } n\rightarrow+\infty) \end{split}$$

Kolmogorovljev nejednakost

$$1 - \frac{(1+4c)^2}{\sum_{j=k}^n \operatorname{Var} X_j^{(s)}} \overset{(\text{nez.,}}{\leq} \left| X_k^{(s)} \right| \leq 2c} \mathbb{P} \left(\max_{k \leq r \leq n} \left| X_k^{(s)} + \dots + X_r^{(s)} \right| \geq 1 \right) \leq \frac{1}{2}, \forall n > k$$

$$\Rightarrow \sum_{j=k}^n \underbrace{\operatorname{Var} X_j^{(s)}}_{2 \operatorname{Var} X_j} \leq 2(1+4c)^2, \forall n > k / \lim_{n \to \infty}$$

$$\Rightarrow \sum_{j=k}^{+\infty} \operatorname{Var} X_j \leq (1+4c)^2 < +\infty$$

$$\Rightarrow \sum_{n=1}^{+\infty} \operatorname{Var} X_n < +\infty$$

$$\overset{\text{TEOREM 1.}}{\Rightarrow} \sum_{r=1}^{+\infty} (X_n - \mathbb{E} X_n) \text{ konvergira (g. s.)}$$

Međutim, po pretpostavci teorema, $\sum_{n=1}^{+\infty} X_n$ konvergira (g. s.), što skupa povlači da $\sum_{n=1}^{+\infty} \mathbb{E} X_n$ konvergira.

♡: uočimo da

$$\left\{ \max_{k \le r \le n} \left| X_k^{(s)} + \dots + X_r^{(s)} \right| \ge 1 \right\} \subseteq \left\{ \max_{k \le i \le j < +\infty} \left| X_i^{(s)} + \dots + X_j^{(s)} \right| \ge 1 \right\}, \forall n \in \mathbb{N}$$

TEOREM 1. i TEOREM 2. povlače:

TEOREM (Kolmogorovljev teorem o dvama redovima)

Neka je $(X_n)_{n\in\mathbb{N}}$ (g. s.) uniformno ograničen niz nezavisnih slučajnih varijabli.

$$\operatorname{Red} \sum_{n=1}^{+\infty} X_n \text{ konvergira (g. s.)} \Leftrightarrow \operatorname{redovi} \sum_{n=1}^{+\infty} \mathbb{E} X_n \text{ i } \sum_{n=1}^{+\infty} \operatorname{Var} X_n \text{ konvergira ju.}$$

TEOREM (Kolmogorovljev teorem o trima redovima)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli. Ako red $\sum_{n=1}^{+\infty} X_n$ konvergira (g. s.), tada redovi (realnih brojeva)

$$(i) \sum_{n=1}^{+\infty} \mathbb{P}(|X_n| \ge c)$$

$$(ii) \sum_{n=1}^{+\infty} \mathbb{E}\left[X_n \mathbb{1}_{\{|X_n| \le c\}}\right]$$

$$(iii) \sum_{n=1}^{+\infty} \operatorname{Var} \left(X_n \mathbb{1}_{\{|X_n| \le c\}} \right)$$

konvergiraju za svaki c > 0. Obratno, ako postoji c > 0 t. d. redovi (i), (ii), (iii) konvergiraju, tada red $\sum_{i=1}^{+\infty} X_n \text{ konvergira} \text{ (g. s.)}.$

Dokaz.

 \leftarrow : Pretpostavimo da postoji c > 0 t. d. redovi (i), (ii), (iii) konvergiraju. Neka je

$$X_n^* = X_n \mathbb{1}_{\{|X_n| < c\}}$$

 $(X_n^*)_{n\in\mathbb{N}}$ su **nezavisne** i **uniformno ograničene** $\stackrel{\mathbf{TEOREM}}{\Rightarrow} \sum_{n=1}^{1.+\infty} X_n^*$ konvergira (g. s.).

$$\sum_{n=1}^{+\infty} \mathbb{P}(X_n \neq X_n^*) = \sum_{n=1}^{+\infty} \mathbb{P}(|X_n| > c) \leq \sum_{n=1}^{+\infty} \mathbb{P}(|X_n| \geq c) \overset{(i)}{<} + \infty \overset{\mathbf{PROPOZICIJA}}{\Rightarrow} \sum_{n=1}^{+\infty} X_n \text{ konvergira (g. s.)}$$

 \Longrightarrow : Pretpostavimo da red $\sum_{n=1}^{+\infty} X_n$ konvergira (g. s.). $\Rightarrow X_n \stackrel{\text{(g. s.)}}{\Longrightarrow} 0$, a, po propoziciji iz 6. poglavlja, koja kaže

$$X_n \xrightarrow{(\mathbf{g. s.})} X \Leftrightarrow \forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k=n}^{\infty} \{|X_n - X| \ge \varepsilon\}\right) = 0,$$

vrijedi

$$\mathbb{P}\left(\limsup_{n\to\infty}\{|X_n|\geq c\}\right) = 0 \overset{\text{Borelov } 0-1}{\Longrightarrow} \sum_{n=1}^{+\infty} \mathbb{P}(|X_n|\geq c) < +\infty \Rightarrow (i) \text{ konvergira.}$$

$$\Rightarrow \sum_{n=1}^{+\infty} \mathbb{P}(X_n\neq X_n^*) < +\infty \overset{\text{propozicija}}{\Longrightarrow} \sum_{n=1}^{+\infty} X_n^* \text{ konvergira } (g. \ s.)$$

Međutim, $(X_n^*)_{n\in\mathbb{N}}$ su nezavisne i uniformno ograničene (g. s.)

TEOREM 2. redovi (realnih brojeva)
$$\sum_{n=1}^{+\infty} \mathbb{E} X_n^*$$
 i $\sum_{n=1}^{+\infty} \operatorname{Var} X_n^*$ konvergiraju

Summa summarum

$$\begin{split} \sum_{n=1}^{\infty} X_n < \infty \text{ (g. s.)} & \Leftrightarrow \sum_{n=1}^{\infty} \mathbb{P}(|X_n| \geq c) < \infty \text{ i } \sum_{n=1}^{\infty} X_n^* < \infty \text{ (g. s.)} \\ & \Leftrightarrow \sum_{n=1}^{\infty} \mathbb{P}(|X_n| \geq c) < \infty \text{ i } \sum_{n=1}^{\infty} \mathbb{E} X_n^* < \infty \text{ i } \sum_{n=1}^{\infty} \operatorname{Var} X_n^* < \infty \end{split}$$

 $Rekapitulacija\ poglavlja$

- ➤ Kolmogorovljeve nejednakosti
 - konačno mnogo **nezavisnih** slučajnih varijabli s **konačnim** varijancama
 - donja ograda na $\mathbb{P}(A)$ uz (g. s.) uniformnu ograničenost

➤ TEOREM 1

- niz **nezavisnih** slučajnih varijabli s **konačnim** varijancama (zahtjev na konvergenciju reda s općim članom $\operatorname{Var} X_n$ ne bi ni imao smisla van L^2 teorije)
- jasno: $X_n \in L^2 \Rightarrow \mathbb{E}[|X_n|] < \infty, \forall n \in \mathbb{N}$
- ne spominjemo konkretan limes niza $(S_n)_{n\in\mathbb{N}}$; dokazujemo da je Cauchyjev
- primjenjujemo Kolmogorovljevu nejednakost(i),uz n>k

➤ METODA REZANJA

➤ PROPOZICIJA (primjena LEME BOREL-CANTELLI)

$$\sum_{n=1}^{\infty} \mathbb{P}(X_n \neq Y_n) < \infty \Rightarrow \mathbb{P}\left(\limsup_{n \to \infty} \{X_n \neq Y_n\}\right) = 0, \text{ odnosno, } \mathbb{P}\left(\liminf_{n \to \infty} \{X_n = Y_n\}\right) = 1$$

KARAKTERIZACIJA KONAČNOG OČEKIVANJA (preko repova)

METODA SIMETRIZACIJE

TEOREM 2

- niz **nezavisnih** i (g. s.) uniformno ograničenih slučajnih varijabli t. d.
- $\sum_{n=1}^{\infty} X_n$ konvergira (g. s.)
- primjenjujemo sljedeće:
 - METODA SIMETRIZACIJE
 - KOLMOGOROVLJEVA NEJEDNAKOST (ii)
 - TEOREM 1

12Jaki zakon velikih brojeva (§12.4, Sarapa, 413. – 417. str.)

Jaki zakoni velikih brojeva odnose se na konvergenciju (g. s.). Ako je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli, $S_n:=\sum_{k=1}^n X_k$. Zanima nas što se događa s nizom $(\overline{X}_n:=\frac{1}{n}\sum_{k=1}^n X_k\mid n\in\mathbb{N})$. Već znamo da ili konvergira (g. s.) prema **konačnom** limesu ili divergira (g. s.).

LEMA 1.

Neka je $A = [a_{nj}] \ (n, j \in \mathbb{N})$ beskonačna realna matrica. Pretpostavimo da je $\lim_{n \to \infty} a_{nj} = 0, \forall j \in \mathbb{N}$ i

da postoji $c \in \langle 0, +\infty \rangle$ t. d. je $\sum_{i=1}^{+\infty} |a_{nj}| \le c, \forall n \in \mathbb{N}$. Ako je $(x_n)_{n \in \mathbb{N}}$ ograničen niz u \mathbb{R} , definiramo

$$y_n := \sum_{j=1}^{+\infty} a_{nj} x_j, \forall n \in \mathbb{N}.$$

(a)~Ako je $\lim_{n\to\infty}x_n=0,$ tada je i $\lim_{n\to\infty}y_n=0.$

(b) Ako je
$$\lim_{n\to\infty}\sum_{j=1}^{+\infty}a_{nj}=1$$
 i $\lim_{n\to\infty}x_n=x\in\mathbb{R}$, tada je tada je $\lim_{n\to\infty}y_n=x$.

Dokaz.

(a) Neka je $\varepsilon>0.$ Budući da je $\lim_{j\to\infty}x_j=0,\,\exists k_0\in\mathbb{N}, \forall j>k_0, |x_j|\leq\frac{\varepsilon}{c}.$ Zapišimo

$$y_n = \sum_{j=1}^{k_0} a_{nj} x_j + \sum_{j=k_0+1}^{\infty} a_{nj} x_j.$$

Budući da je $\lim_{n\to\infty} a_{nj}=0, \forall j\in\mathbb{N}, \ \exists n_0, \forall j=1,\ldots,k_0, \forall n>n_0, |a_{nj}|<\frac{\varepsilon}{k_0|x_j|}.$ ¹⁹ Stoga:

$$\forall n > n_0, |y_n| \le \sum_{j=1}^{k_0} |a_{nj}| \cdot |x_j| + \sum_{j=k_0+1}^{\infty} |a_{nj}| \cdot |x_j| \le \sum_{j=1}^{k_0} \frac{\varepsilon}{k_0 |x_j|} \cdot |x_j| + \frac{\varepsilon}{c} \underbrace{\sum_{j=k_0+1}^{\infty} |a_{nj}|}_{\le c} \le 2\varepsilon$$

$$(b) \ y_n = \sum_{j=1}^{+\infty} a_{nj}(x_j - x) + x \sum_{j=1}^{+\infty} a_{nj} = \underbrace{\sum_{j=1}^{+\infty} a_{nj} \tilde{x}_j}_{\substack{n \to \infty \\ (a) \text{ slučaj}}} + x \underbrace{\sum_{j=1}^{+\infty} a_{nj}}_{\substack{n \to \infty \\ n \to \infty \\ 1}} \text{ za } \tilde{x}_j := x_j - x, \lim_{n \to \infty} \tilde{x}_n = 0$$

LEMA 2. (Toeplitz)

Neka je $(a_n)_{n\in\mathbb{N}}\subseteq[0,+\infty)$ i neka je $b_n:=\sum_{j=1}^n a_j, \forall n\in\mathbb{N}$. Pretpostavimo da je $b_n>0, \forall n\in\mathbb{N}$ i $\lim_{n\to\infty} b_n = +\infty$. Ako je $(x_n)_{n\in\mathbb{N}} \subset \mathbb{R}$ t. d. je $\lim_{n\to\infty} x_n = x \in \mathbb{R}$, tada je

$$\lim_{n \to \infty} \frac{1}{b_n} \sum_{j=1}^n a_j x_j = x.$$

¹⁹Naprosto uzmemo $n_0 = \max\{n_0(1), \ldots, n_0(k)\}, n > n_0(j) \Rightarrow |a_{nj}| < \frac{\varepsilon}{k_0|x_j|}$

Dokaz.

Neka je A matrica čiji je n-ti redak $\left(\frac{a_1}{b_n}, \frac{a_2}{b_n}, \dots, \frac{a_n}{b_n}, 0, 0, \dots\right)$:

$$A = \begin{bmatrix} \frac{a_1}{b_1} & 0 & 0 & 0 & \dots & 0 & \dots & 0 \\ \frac{a_1}{b_2} & \frac{a_2}{b_2} & 0 & 0 & \dots & 0 & \dots & 0 \\ \frac{a_1}{b_3} & \frac{a_2}{b_3} & \frac{a_3}{b_3} & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{a_1}{b_n} & \frac{a_2}{b_n} & \frac{a_3}{b_n} & \frac{a_4}{b_n} & \dots & \frac{a_n}{b_n} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \end{bmatrix}$$

Neka je

$$\tilde{a}_{nj} = \begin{cases} \frac{a_j}{n}, & \text{also je } j \le n \\ 0, & \text{also je } j > n \end{cases}$$

Zadovoljene su pretpostavke LEME 1.:

(i)
$$\lim_{n \to \infty} \tilde{a}_{nj} = \lim_{n \to \infty} \frac{a_j}{b_n} = 0, \forall j \in \mathbb{N}$$

$$(ii) \sum_{j=1}^{+\infty} \tilde{a}_{nj} = \sum_{j=1}^{\infty} \frac{a_j}{b_n} < 1, \forall n \in \mathbb{N}$$

(iii)
$$\lim_{n \to \infty} \sum_{j=1}^{\infty} \tilde{a}_{nj} = \lim_{n \to \infty} \frac{1}{b_n} \sum_{j=1}^{+\infty} a_j = 1$$

LEMA 3. (Kronecker)

Neka je $(b_n)_{n\in\mathbb{N}}\subset\langle 0,+\infty\rangle$ rastući niz, neka je $\lim_{n\to\infty}b_n=+\infty$ i $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ i $\sum_{n=1}^{+\infty}x_n=x$. Tada je

$$\lim_{n \to \infty} \frac{1}{b_n} \sum_{j=1}^n b_j x_j = 0.$$

U primjenama će najčešće biti $b_n = n$.

Dokaz

Neka je $b_0 = 0, s_0 := 0, s_n := \sum_{j=1}^n x_j, n \in \mathbb{N}$ i $a_j := b_j - b_{j-1}, j \in \mathbb{N}$ $(b_n = \sum_{j=1}^n a_j \text{ i } (b_n)_{n \in \mathbb{N}} \text{ rastuć}$ $\Rightarrow a_j \geq 0, \forall j \in \mathbb{N})$. Tada vrijedi BSO,

$$b_{n}s_{n} = \sum_{j=1}^{n} b_{j}s_{j} - \sum_{j=1}^{n} s_{j-1}b_{j-1}$$

$$= \sum_{j=1}^{n} b_{j}(x_{j} + s_{j-1}) - \sum_{j=1}^{n} s_{j-1}b_{j-1}$$

$$= \sum_{j=1}^{n} b_{j}x_{j} + \sum_{j=1}^{n} s_{j-1}(b_{j} - b_{j-1})$$

$$= \sum_{j=1}^{n} b_{j}x_{j} + \sum_{j=1}^{n} s_{j-1}a_{j}$$

$$\Rightarrow \sum_{j=1}^{n} b_{j}x_{j} = b_{n}s_{n} - \sum_{j=1}^{n} s_{j-1}a_{j}$$

$$\Rightarrow \frac{1}{b_{n}} \sum_{j=1}^{n} b_{j}x_{j} = s_{n} - \frac{1}{b_{n}} \sum_{j=1}^{n} s_{j-1}a_{j}$$

Prema **LEMI** 2., $\lim_{n\to\infty} \frac{1}{b_n} \sum_{j=1}^n a_j s_{j-i} = x$ pa tvrdnja slijedi jer $\lim_{n\to\infty} s_n = x$.

TEOREM (Kolmogorovljev dovoljan uvjet za jaki zakon velikih brojeva)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli s **konačnim** varijancama i neka je $(b_n)_{n\in\mathbb{N}}\subset\langle 0,+\infty\rangle$

rastući niz t. d. je
$$\lim_{n\to\infty}b_n=+\infty$$
. Ako je $\sum_{n=1}^{+\infty}\frac{{\rm Var}\,X_n}{b_n^2}<+\infty$, tada je

(g. s.)
$$\lim_{n \to \infty} \frac{S_n - \mathbb{E}S_n}{n} = 0.$$

Dokaz.

$$\sum_{n=1}^{+\infty} \operatorname{Var}\left(\frac{X_n - \mathbb{E}_n}{b_n}\right) \stackrel{\text{nez.}}{=} \sum_{n=1}^{+\infty} \frac{\operatorname{Var} X_n}{b_n^2} < +\infty \stackrel{\text{TEOREM 1.}}{\Rightarrow} \sum_{n=1}^{+\infty} \frac{X_n - \mathbb{E} X_n}{b_n} \text{ konvergira (g. s.)}$$

$$\lim_{n \to \infty} \frac{S_n - \mathbb{E} S_n}{b_n} = \lim_{n \to \infty} \frac{1}{b_n} \sum_{j=1}^n b_j \frac{X_j - \mathbb{E} X_j}{b_j} \stackrel{\text{LEMA 3.}^{20}}{=} 0 \text{ (g. s.)}$$

KOROLAR (Borelov jaki zakon)

Neka je $(X_n)_{n\in\mathbb{N}}, X_n \sim B(p), \forall n\in\mathbb{N}$ niz **nezavisnih** jednako distribuiranih Bernoullijevih slučajnih varijabli (Bernoullijeva shema?) i neka je $Z_n := \sum_{k=1}^n X_k \sim B(n,p)$. Tada je

$$\lim_{n \to \infty} \frac{Z_n}{n} = p \text{ (g. s.)}.$$

Dokaz.

Neka je $b_n := n$.

$$\sum_{n=1}^{+\infty} \frac{\operatorname{Var} X_n}{n^2} = p(1-p) \sum_{n=1}^{+\infty} \frac{1}{n^2} < +\infty \overset{\text{prethodni}}{\Longrightarrow} \lim_{n \to \infty} \frac{Z_n - np}{n} = 0 \text{ (g. s.)} \Rightarrow \lim_{n \to \infty} \frac{Z_n}{n} = p \text{ (g. s.)}.$$

TEOREM (Kolmogorovljev jaki zakon velikih brojeva)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih jednako distribuiranih** slučajnih varijabli. Tada niz $\left(\frac{1}{n}\sum_{j=1}^n X_j\right)_{n\in\mathbb{N}}$ konvergira (g. s.) $\Leftrightarrow \mathbb{E}[|X_1|] < +\infty$. Nadalje, u tom je slučaju

(g. s.)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} X_j = \mathbb{E} X_1.$$

Dokaz.

 \implies : Pretpostavimo da niz $\left(\frac{1}{n}\sum_{j=1}^{n}X_{j}\right)_{n\in\mathbb{N}}$ konvergira (g. s.).

$$\frac{X_n}{n} = \frac{1}{n} \sum_{j=1}^n X_j - \underbrace{\frac{n-1}{n}}_{n \to \infty} \left(\frac{1}{n-1} \sum_{j=1}^{n-1} X_j \right) \stackrel{\text{(g. s.)}}{\longrightarrow} 0.$$

No znamo da

$$\begin{split} \frac{X_n}{n} & \xrightarrow{(\mathbf{g. s.})} 0 \Leftrightarrow \forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{k=n}^{\infty} \left\{ \left| \frac{X_k}{k} \right| \geq \varepsilon \right\} \right) = 0 \Rightarrow \mathbb{P}\left(\limsup_{n \to \infty} \left\{ \left| \frac{X_n}{n} \right| \geq 1 \right\} \right) = 0 \\ & \Rightarrow \mathbb{P}\left(\limsup_{n \to \infty} \left\{ |X_n| \geq n \right\} \right) = 0 \\ & \xrightarrow{\text{Borel } 0 - 1} \sum_{n=1}^{+\infty} \mathbb{P}\left(|X_n| \geq n\right) < +\infty \\ & \xrightarrow{X_n \approx X_1} \sum_{n=1}^{+\infty} \mathbb{P}(|X_1| \geq n) < +\infty \\ & \xrightarrow{\text{LEMA}} \mathbb{E}[|X_1|] < +\infty \end{split}$$

 $^{^{20}\}mathbf{LEMU}$ 3 primjenjenjujemo na nizove $(b_n)_{n\in\mathbb{N}}$ i $x_n(\omega)=\frac{X_j(\omega)-\mathbb{E}X_n}{b_n}, \omega\in\left\{\sum_{n=1}^{+\infty}\frac{X_n-\mathbb{E}X_n}{b_n}\text{ konvergira}\right\}.$

 \Leftarrow : Pretpostavimo da je $\mathbb{E}[|X_1|] < +\infty$. Neka je $X_n^* = X_n \mathbb{1}_{\{|X_n| < n\}}, \forall n \in \mathbb{N}$.

$$\Rightarrow \mathbb{P}(X_n^* \neq X_n) = \mathbb{P}(|X_n| \geq n) \xrightarrow{X_n \simeq X_1} \mathbb{P}(|X_1| \geq n)$$
$$\Rightarrow \sum_{n=1}^{+\infty} \mathbb{P}(X_n^* \neq X_n) = \sum_{n=1}^{+\infty} \mathbb{P}(|X_1| \geq n) \xrightarrow{\mathbb{E}[|X_1|] < +\infty} +\infty$$

pa je dovoljno dokazati da

(g. s.)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} X_{j}^{*} = \mathbb{E}X_{1}.$$

$$\lim_{j \to +\infty} \mathbb{E}[X_j^*] = \lim_{j \to +\infty} \mathbb{E}\left[X_j \mathbbm{1}_{\{|X_j| < j\}}\right] \stackrel{X_j \sim X_1}{=} \lim_{j \to +\infty} \mathbb{E}[X_1 \mathbbm{1}_{\{|X_1| < j\}}] \stackrel{\text{LTDK}}{=} \mathbb{E}X_1$$

pa je, štoviše, dovoljno dokazati da

(g. s.)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} (X_j^* - \mathbb{E}X_j^*) = 0.$$

Uočimo

$$\operatorname{Var} X_j^* \leq \mathbb{E}\left[{X_j^*}^2\right]/:j^2/\sum_i$$

i stoga je, po Kolmogorovljevu dovoljnom uvjetu, dovoljno dokazati da je

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} \mathbb{E}\left[X_n^{*2}\right] < +\infty.$$

 $(X_n^*)_{n\in\mathbb{N}}$ su nezavisne slučajne varijable s konačnim varijancama.

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} \mathbb{E} \left[X_n^{*2} \right] = \sum_{n=1}^{+\infty} \frac{1}{n^2} \mathbb{E} \left[X_n^2 \mathbb{1}_{\{|X_n| < n\}} \right] = \sum_{n=1}^{+\infty} \frac{1}{n^2} \mathbb{E} \left[X_1^2 \mathbb{1}_{\{|X_1| < n\}} \right]$$

$$= \mathbb{E} \left[X_1^2 \sum_{n=1}^{+\infty} \frac{1}{n^2} \mathbb{1}_{\{|X_1| < n\}} \right] = \int_{\Omega} \left(X_1^2 \sum_{n=1}^{+\infty} \frac{1}{n^2} \mathbb{1}_{\{|X_1| < n\}} \right) d\mathbb{P}$$

$$= \int_{\Omega} \left(X_1^2 \sum_{n=1}^{\infty} \frac{1}{n^2} \mathbb{1}_{\{|X_1| < n\}} \right) \sum_{m=1}^{\infty} \mathbb{1}_{\{m-1 \le |X_1| < m\}} d\mathbb{P}$$

$$\begin{split} m \in \mathbb{N}, \int_{\Omega} \left(X_{1}^{2} \sum_{n=1}^{+\infty} \frac{1}{n^{2}} \mathbbm{1}_{\{|X_{1}| < n\}} \right) \mathbbm{1}_{\{m-1 \leq |X_{1}| < m\}} d\mathbb{P} &= 21 \int_{\Omega} \left(X_{1}^{2} \sum_{n=m}^{+\infty} \frac{1}{n^{2}} \mathbbm{1}_{\{m-1 \leq |X_{1}| < m\}} d\mathbb{P} \right) d\mathbb{P} \\ &= \int_{\Omega} \left(X_{1}^{2} \sum_{n=m}^{+\infty} \frac{1}{n^{2}} \right) \mathbbm{1}_{\{m-1 \leq |X_{1}| < m\}} d\mathbb{P} \\ &\leq \int_{\Omega} \left(m^{2} \sum_{n=m}^{+\infty} \frac{1}{n^{2}} \right) \mathbbm{1}_{\{m-1 \leq |X_{1}| < m\}} d\mathbb{P} \\ &= \left[\sum_{n=m}^{+\infty} \frac{1}{n^{2}} \leq \frac{1}{m^{2}} + \int_{m}^{+\infty} \frac{1}{x^{2}} dx \right] \\ &\leq m^{2} \left(\frac{1}{m^{2}} + \int_{m}^{+\infty} \frac{1}{x^{2}} dx \right) \int_{\Omega} \mathbbm{1}_{\{m-1 \leq |X_{1}| < m\}} d\mathbb{P} \\ &= m^{2} \left(\frac{1}{m^{2}} + \int_{m}^{+\infty} \frac{1}{x^{2}} dx \right) \mathbb{P}(m-1 \leq |X_{1}| < m) \\ &= m^{2} \left(\frac{1}{m^{2}} + \left[-\frac{1}{x} \right]_{m}^{+\infty} \right) \mathbb{P}(m-1 \leq |X_{1}| < m) \\ &= (1+m)\mathbb{P}(m-1 \leq |X_{1}| < m) \\ &\leq 2m\mathbb{P}(m-1 \leq |X_{1}| < m) \\ &\Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^{2}} \mathbb{E}\left[X_{n}^{*2} \right] \leq 2 \sum_{m=1}^{+\infty} m\mathbb{P}(m-1 \leq |X_{1}| < m), \end{split}$$

ali, sjetimo se iz dokaza **LEME** na 50./51. str...

$$\mathbb{E}[|X_1|] < +\infty \Rightarrow \sum_{m=1}^{+\infty} m \mathbb{P}(m-1 \le |X_1| < m) < +\infty.$$

TEOREM (Kai Lai Chung)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz nezavisnih slučajnih varijabli i neka je $\mathbb{E}X_n=0, \forall n\in\mathbb{N}$. Neka su $\varphi:\langle 0,+\infty\rangle \to \langle 0,+\infty\rangle, n\in\mathbb{N}$ t. d. su, za sve $n\in\mathbb{N}$,

$$\frac{\varphi_n(t)}{t}$$
 i $\frac{t^2}{\varphi_n(t)}$

neopadajuće funkcije i $(c_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}\setminus\{0\}$. Ako je

$$\sum_{n=1}^{\infty} \frac{\mathbb{E}\left[\varphi_n(|X_n|)\right]}{\varphi_n(|c_n|)} < \infty,$$

tada red

$$\sum_{n=1}^{\infty} \frac{X_n}{c_n} \text{ konvergira (g. s.)}.$$

Dokaz

Primijenimo metodu rezanja, tj., za $n \in \mathbb{N}$, stavimo

$$Y_n = X_n \mathbb{1}_{\{|X_n| < |c_n|\}}.$$

 φ_n su neopadajuće pa su Borelove.

$$\begin{split} \sum_{n=1}^{\infty} \mathbb{E}\left[\frac{Y_n^2}{c_n^2}\right] &= \sum_{n=1}^{\infty} \int_{\left\{|x| < |c_n|\right\}} \frac{x^2}{c_n^2} dF_{X_n}(x) \leq \left[|x| < |c_n| \Rightarrow \frac{x^2}{\varphi_n(|x|)} \leq \frac{c_n^2}{\varphi_n(|c_n|)} \Rightarrow \frac{x^2}{c_n^2} \leq \frac{\varphi_n(|x|)}{\varphi_n(|c_n|)}\right] \\ &\leq \sum_{n=1}^{\infty} \int_{\left\{|x| < |c_n|\right\}} \frac{\varphi_n(|x|)}{\varphi_n(|c_n|)} dF_{X_n}(x) \leq \sum_{n=1}^{\infty} \int_{\mathbb{R}} \frac{\varphi_n(|x|)}{\varphi_n(|c_n|)} dF_{X_n}(x) = \sum_{n=1}^{\infty} \frac{\mathbb{E}\left[\varphi_n(|X_n|)\right]}{\varphi_n(|c_n|)} < \infty \end{split}$$

²¹Najlakše je rastaviti $\sum_{n=1}^{\infty} = \sum_{n=1}^{m-1} + \sum_{n=m}^{\infty}$

$$\begin{split} \sum_{n=1}^{\infty} \frac{|\mathbb{E}Y_n|}{|c_n|} &\leq \left[\mathbb{E}X_n = 0 \Rightarrow \left| \mathbb{E} \left[X_n \mathbb{1}_{\{|X_n| < |c_n|\}} \right] \right| = \left| \mathbb{E} \left[X_n \mathbb{1}_{\{|X_n| \ge |c_n|\}} \right] \right| \\ & |x| \geq |c_n| \Rightarrow \frac{\varphi_n(|x|)}{|x|} \geq \frac{\varphi_n(|c_n|)}{|c_n|} \Rightarrow \frac{|x|}{|c_n|} \leq \frac{\varphi_n(|x|)}{\varphi_n(|c_n|)} \right] \leq \sum_{n=1}^{\infty} \int_{\{|x| \ge |c_n|\}} \frac{\varphi_n(|x|)}{\varphi_n(|c_n|)} dF_{X_n}(x) \\ &\leq \sum_{n=1}^{\infty} \int_{\mathbb{R}} \frac{\varphi_n(|x|)}{\varphi_n(|c_n|)} dF_{X_n}(x) = \sum_{n=1}^{\infty} \frac{\mathbb{E}[\varphi_n(|X_n|)]}{\varphi_n(|c_n|)} < \infty \\ &\sum_{n=1}^{\infty} \mathbb{P}\left(\frac{|X_n|}{|c_n|} \geq 1\right) = \sum_{n=1}^{\infty} \mathbb{P}(|X_n| \ge |c_n|) = \sum_{n=1}^{\infty} \int_{\{|x| \ge |c_n|\}} dF_{X_n}(x) \\ &\leq \left[|x| \ge |c_n| \Rightarrow \frac{\varphi_n(|x|)}{|x|} \geq \frac{\varphi_n(|c_n|)}{|c_n|} \Rightarrow \frac{\varphi_n(|x|)}{\varphi_n(|c_n|)} \geq \frac{|x|}{|c_n|} \geq 1 \right] \leq \sum_{n=1}^{\infty} \int_{|x| \ge |c_n|} \frac{\varphi_n(|x|)}{\varphi_n(|c_n|)} dF_{X_n}(x) \\ &\leq \sum_{n=1}^{\infty} \int_{\mathbb{R}} \frac{\varphi_n(|x|)}{\varphi_n(|c_n|)} dF_{X_n}(x) = \sum_{n=1}^{\infty} \frac{\mathbb{E}[\varphi_n(|X_n|)]}{\varphi_n(|c_n|)} < \infty. \end{split}$$

Po Teoremu o trima redovima, slijedi da red $\sum_{n=1}^{\infty}\frac{X_n}{c_n}<\infty$ konvergira (g. s.)

13 Karakteristične funkcije (§13.1, 13.2, Sarapa, 442. – 447. str.)

- F ograničena funkcija distribucije na \mathbb{R} (odnosi se na $F(+\infty) \in [0, +\infty)$)
- $F(-\infty) = 0, F(+\infty) > 0$
- ako je $F(+\infty) = 1$, onda je F vjerojatnosna funkcija distribucije
- F inducira mjeru μ_F na $(\mathbb{R}, B_{\mathbb{R}})$, $\mu_F(+\infty) = \mu_F(\mathbb{R})$.
- integriranje po mjeri $\rightsquigarrow dF = \mu_F(dx)$ (moramo znati mjeru iz sljedeće definicije!)

DEFINICIJA

Neka je F ograničena (poopćena) funkcija distribucije na \mathbb{R} . Karakteristična funkcija od F jest funkcija $\varphi : \mathbb{R} \to \mathbb{C}$,

$$\boxed{\varphi(t) := \int_{-\infty}^{+\infty} e^{itx} dF(x)} = \int_{-\infty}^{+\infty} \cos(tx) dF(x) + i \int_{-\infty}^{+\infty} \sin(tx) dF(x), \quad t \in \mathbb{R}$$

- $x \mapsto e^{itx}$ je neprekidna \Rightarrow izmjeriva
- $|e^{itx}| = 1, \mu_F$ je konačna mjera

 $\Rightarrow x \mapsto e^{itx}$ je integrabilna pa je definicija dobra.

Ako je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor, X slučajna varijabla, onda X inducira funkciju distribucije $F_X \leadsto \varphi_{F_X} =: \varphi_X$. Reći ćemo da je karakteristična funkcija **slučajne varijable** karakteristična funkcija **pripadne funkcije distribucije**.

$$\varphi_X(t) = \int_{-\infty}^{+\infty} e^{itx} dF_X(x) = \mathbb{E}\left[e^{itX}\right].$$
 (OO)

Navodimo prva tri osnovna svojstva karakterističnih funkcija:

PROPOZICIJA

Karakteristična funkcija φ jest **uniformno neprekidna** na \mathbb{R} i za svaki $t \in \mathbb{R}$, vrijedi

$$(i) |\varphi(t)| \stackrel{\spadesuit}{\leq} \varphi(0) = F(+\infty)$$

$$(ii) \ \varphi(-t) \stackrel{\mathfrak{P}}{=} \overline{\varphi(t)}.$$

Dokaz.

Neka su $t,h\in\mathbb{R}$ proizvoljni.

$$|\varphi(t+h) - \varphi(t)| = \left| \int_{-\infty}^{+\infty} e^{i(t+h)x} dF_X(x) - \int_{-\infty}^{+\infty} e^{itx} dF_X(x) \right| = \left| \int_{-\infty}^{+\infty} e^{itx} \left(e^{ihx} - 1 \right) dF_X(x) \right|$$

$$\leq \int_{-\infty}^{+\infty} \underbrace{\left| e^{itx} \right| \cdot \left| e^{ihx} - 1 \right| dF_X(x)}_{\leq 1 \xrightarrow{h \to 0} 0}$$

$$= \int_{-\infty}^{+\infty} \underbrace{\left| e^{ihx} - 1 \right| dF_X(x)}_{\leq 2 \xrightarrow{h \to 0} 0}$$
 (ne ovisi o t)

$$\begin{array}{c} |e^{ihx}-1|\leq 2\\ x\mapsto 2 \text{ integrabilna}\\ (\mu_F \text{ je konačna ,2 ograničena})\\ \stackrel{\text{LTDK}}{\Longrightarrow} |\varphi(t+h)-\varphi(t)|\to 0 \text{ i to uniformno po } t \text{ (nema ovisnosti o } t) \end{array}$$

(i)
$$|\varphi(t)| \le \int_{-\infty}^{+\infty} \underbrace{|e^{itx}|} dF_X(x) = \mu_F(\mathbb{R}) = F(+\infty) = \varphi(0)$$

(ii)
$$\varphi(-t) = \int_{-\infty}^{+\infty} e^{-itx} dF_X(x) = \int_{-\infty}^{+\infty} \overline{e^{itx}} dF_X(x) = \overline{\int_{-\infty}^{+\infty} e^{itx} dF_X(x)} = \overline{\varphi(t)}.$$

PROPOZICIJA

- (i) Ako je X slučajna varijabla i $a,b \in \mathbb{R}$, onda je $\varphi_{aX+b}(t) = e^{ibt}\varphi_X(at), \forall t \in \mathbb{R}$. Posebno, $\varphi_{-X}(t) = \varphi_X(-t) \stackrel{\mbox{$\stackrel{\triangle}{=}$}}{=} \overline{\varphi_X(t)}$. (Dakle, $\overline{\varphi_X}$ je karakteristična funkcija slučajne varijable -X.)
- (ii) Ako su X_1, \ldots, X_n nezavisne slučajne varijable, onda je

$$\varphi_{\sum_{k=1}^{n} X_k}(t) = \prod_{k=1}^{n} \varphi_{X_k}(t), t \in \mathbb{R}.$$

Dokaz.

$$(i) \ \varphi_{aX+b}(t) \overset{(\heartsuit\heartsuit)}{=} \mathbb{E}\left[e^{itb}e^{itaX}\right] = \mathbb{E}\left[e^{itb}e^{i(at)X}\right] = e^{ibt}\mathbb{E}\left[e^{i(at)X}\right] \overset{(\heartsuit\heartsuit)}{=} e^{ibt}\varphi_X(at), \forall t \in \mathbb{R}.$$

$$(ii) \ \varphi_{\sum_{k=1}^n X_k}(t) \stackrel{(\heartsuit\heartsuit)}{=} \mathbb{E}\left[e^{it\sum_{k=1}^n X_k}\right] = \mathbb{E}\left[\prod_{k=1}^n e^{itX_k}\right] \stackrel{\text{nez.}}{=} \prod_{k=1}^n \mathbb{E}\left[e^{itX_k}\right] \stackrel{(\heartsuit\heartsuit)}{=} \prod_{k=1}^n \varphi_{X_k}(t), \forall t \in \mathbb{R}$$

NAPOMENA

 \square Neka su X i Y nezavisne slučajne varijable t. d. je $Y \sim -X$ (sjetimo se da to uvijek možemo postići prelaskom na veći vjerojatnosni prostor). Tada vrijedi

$$\varphi_{X+Y} \stackrel{\text{nez.}}{=} \varphi_X \varphi_Y = \varphi_X \overline{\varphi_X} = |\varphi_X|^2.$$

 \Rightarrow **POSLJEDICA** Ako je φ karakteristična funkcija slučajne varijable, onda je i $|\varphi|^2$ karakteristična funkcija slučajne varijable.

Podsjetnik:

 $\overline{\text{Kažemo da}}$ je slučajna varijabla X simetrična ako $X \sim -X$. Tada je $\overline{\varphi_X} = \varphi_X \Rightarrow \varphi_X$ je realna funkcija.

Neka je F n-dimenzionalna **ograničena** funkcija distribucije $(F(+\infty) \in [0, +\infty)!)$. Karakteristična funkcija od F:

$$\varphi(t) := \int_{-\infty}^{+\infty} e^{\langle t, x \rangle} dF(x), \qquad t = (t_1, \dots, t_n) \in \mathbb{R}^n, x = (x_1, \dots, x_n) \in \mathbb{R}^n, \langle t, x \rangle = \sum_{i=1}^n t_i x_i$$

Ako je $X=(X_1,\ldots,X_n)$ slučajan vektor, X inducira pripadnu funkciju distribucije F_X na \mathbb{R}^n i

$$\varphi_X(t) \stackrel{\heartsuit\heartsuit}{=} \mathbb{E}\left[e^{i\langle t, X\rangle}\right]$$

Poopćenje **PROPOZICIJE** za karakteristične funkcije slučajnih varijabli:

PROPOZICIJA

Karakteristična funkcija φ jest **uniformno neprekidna** na \mathbb{R}^n i za svaki $t = (t_1, \dots, t_n) \in \mathbb{R}^n$, vrijedi

(i)
$$|\varphi(t)| \leq \varphi(\mathbf{0}) = F(+\infty, \dots, +\infty)$$

(ii)
$$\varphi(-t) \stackrel{\diamondsuit}{=} \overline{\varphi(t)}$$
.

Dokaz.

Neka su $t,h\in\mathbb{R}^n$ proizvoljni.

$$|\varphi(t+h) - \varphi(t)| = \left| \int_{-\infty}^{+\infty} e^{i\langle t+h, x \rangle} dF_X(x) - \int_{-\infty}^{+\infty} e^{i\langle t, x \rangle} dF_X(x) \right| = \left| \int_{-\infty}^{+\infty} e^{i\langle t, x \rangle} \left(e^{i\langle h, x \rangle} - 1 \right) dF_X(x) \right|$$

$$\leq \int_{-\infty}^{+\infty} \underbrace{\left| e^{i\langle t, x \rangle} \right| \cdot \left| e^{i\langle h, x \rangle} - 1 \right| dF_X(x)}_{=1}$$

$$= \int_{-\infty}^{+\infty} \underbrace{\left| e^{i\langle h, x \rangle} - 1 \right| dF_X(x)}_{<2 \text{ i } \xrightarrow{h \to 0}} dF_X(x) \text{ (ne ovisi o } t)$$

$$\begin{array}{c} |e^{i\langle h,x\rangle}-1|\leq 2\\ x\mapsto 2 \text{ integrabilna}\\ (\mu_F \text{ je konačna ,2 ograničena})\\ \stackrel{L\overset{\square}{\longrightarrow}}{\Longrightarrow} |\varphi(t+h)-\varphi(t)|\to 0 \text{ i to uniformno po }t \text{ (nema ovisnosti o }t) \end{array}$$

(i)
$$|\varphi(t)| \le \int_{-\infty}^{+\infty} \underbrace{\left| e^{i\langle t, x \rangle} \right|}_{-1} dF_X(x) = \mu_F(\mathbb{R}^n) = F(+\infty, \dots, +\infty) = \varphi(\mathbf{0})$$

(ii)
$$\varphi(-t) = \int_{-\infty}^{+\infty} e^{-i\langle t, x \rangle} dF_X(x) = \int_{-\infty}^{+\infty} \overline{e^{i\langle t, x \rangle}} = \overline{\int_{-\infty}^{+\infty} e^{i\langle t, x \rangle} dF_X(x)} = \overline{\varphi(t)}.$$

Ako je $X=(X_1,\ldots,X_n):\Omega\to\mathbb{R}^n$ slučajan vektor i $t\in\mathbb{R},$ tada

$$\square \varphi_{X_k(t)} \overset{(\heartsuit\heartsuit)}{=} \mathbb{E}\left[e^{itX_k}\right] = \mathbb{E}\left[e^{i\langle(0,\dots,0,t,0,\dots,0),(X_1,\dots,X_{k-1},X_k,X_{k+1},\dots,X_n)\rangle}\right] \overset{(\heartsuit\heartsuit)}{=} \varphi_X(0,\dots,0,t,0,\dots,0), \forall k=1,\dots,n$$

 \square potpuno analogno vrijedi i za bilo koji podvektor slučajnog vektora X.

PROPOZICIJA

Neka je $X=(X_1,\ldots,X_n)$ n-dimenzionalan slučajan vektor i $Y=(Y_1,\ldots,Y_n), Y_k=a_kX_k+b_k,$ $a_k,b_k\in\mathbb{R},k=1,\ldots,n.$ Tada vrijedi

$$\varphi_{aX+b} = e^{i\langle b,t \rangle} \varphi_X(a_1t_1, \dots, a_nt_n), t = (t_1, \dots, t_n), b := (b_1, \dots, b_n) \in \mathbb{R}^n.$$

Dokaz.

$$\varphi_Y(t) \stackrel{(\heartsuit\heartsuit)}{=} \mathbb{E}\left[e^{i\langle t,Y\rangle}\right] = \mathbb{E}\left[e^{i\langle t,b\rangle}e^{i\langle t,(a_1X_1,\ldots,a_nX_n)\rangle}\right] = e^{i\langle t,b\rangle}\mathbb{E}\left[e^{i\langle (a_1t_1,\ldots,a_nt_n),X\rangle}\right] \stackrel{(\heartsuit\heartsuit)}{=} e^{i\langle b,t\rangle}\varphi_X(a_1t_1,\ldots,a_nt_n)$$

Važno pitanje

Mogu li karakteristične funkcije dviju različitih distribucija biti jednake?

TEOREM (teorem jedinstvenosti)

Neka su F_1, F_2 ograničene funkcije distribucije na \mathbb{R} i neka vrijedi $\varphi_{F_1} = \varphi_{F_2}$. Tada je $F_1 = F_2$.

Dokaz.

$$\forall t \in \mathbb{R}, \int_{-\infty}^{+\infty} e^{itx} dF_1(x) = \int_{-\infty}^{+\infty} e^{itx} dF_2(x) \quad (\spadesuit).$$

Neka su $a, b \in \mathbb{R}, a < b, \varepsilon > 0$

$$f^{(\varepsilon)}(x) := \begin{cases} 0, & \text{ako je } x \leq a - \varepsilon \text{ ili } x \geq b + \varepsilon, \\ \frac{1}{\varepsilon}(x - a + \varepsilon), & \text{ako je } x \in \langle a - \varepsilon, a \rangle \\ 1, & \text{ako je } x \in [a, b] \\ -\frac{1}{\varepsilon}(x - b - \varepsilon), & \text{ako je } x \in \langle b, b + \varepsilon \rangle \end{cases}$$

Zapravo,

$$f^{(\varepsilon)}(x) = \frac{x - (a - \varepsilon)}{\varepsilon} \mathbb{1}_{\langle a - \varepsilon, a \rangle}(x) + \mathbb{1}_{[a,b]}(x) - \frac{x - (b + \varepsilon)}{\varepsilon} \mathbb{1}_{\langle b, b + \varepsilon \rangle}(x)$$

Što možemo reći o integralu funkcije $f^{(\varepsilon)}$?

 $f^{(\varepsilon)}$ je neprekidna funkcija i, za dovoljno je veliki $n \in \mathbb{N}, [a - \varepsilon, b + \varepsilon] \subseteq [-n, n]$. Promotrimo restrikciju $f^{(\varepsilon)}|_{[-n,n]}$. To je i dalje **neprekidna** funkcija i $f^{(\varepsilon)}(-n) = f^{(\varepsilon)}(n) = 0$. Funkciju neprekidnu na segmentu s jednakim rubnim vrijednostima možemo aproksimirati trigonometrijskim polinomima. Neka je $0 \not oleho ole$

$$\overset{\text{Stone-Weierstrass}}{\Rightarrow} \exists f_n^{(\varepsilon)}(x) := \underbrace{\sum_k a_k e^{i\frac{\pi k}{n}x}}_{\text{konačna}} \overset{\text{22}}{=}, \sup_{x \in [-n,n]} \left| f^{(\varepsilon)}(x) - f_n^{(\varepsilon)}(x) \right| \leq \delta_n.(*)$$

Aproksimacije su sve bolje na sve većim segmentima.

 $f_n^{(\varepsilon)}$ periodički proširimo na cijeli \mathbb{R} . $\overset{0 \leq f^{(\varepsilon)} \leq 1}{\overset{\mathrm{i}}{\Rightarrow}} \sup_{x \in \mathbb{R}} \left| f_n^{(\varepsilon)} \right| \leq 2$.

$$\stackrel{(\blacklozenge)}{\Rightarrow} \int_{-\infty}^{+\infty} f_n^{(\varepsilon)}(x) dF_1(x) = \int_{-\infty}^{+\infty} f_n^{(\varepsilon)}(x) dF_2(x) \quad (\blacklozenge \blacklozenge)$$

Neka je $M := \max\{F_1(+\infty), F_2(+\infty)\} < +\infty$ (jer je riječ o konačnim mjerama).

$$\left| \int_{-\infty}^{+\infty} f^{(\varepsilon)}(x) dF_{1}(x) - \int_{-\infty}^{+\infty} f^{(\varepsilon)}(x) dF_{2}(x) \right|$$

$$= \left| \int_{-n}^{n} f^{(\varepsilon)}(x) dF_{1}(x) - \int_{-n}^{n} f^{(\varepsilon)}(x) dF_{2}(x) \right|$$

$$= \left| \int_{-n}^{n} f_{n}^{(\varepsilon)}(x) dF_{1}(x) + \int_{-n}^{n} \left(f^{(\varepsilon)}(x) - f_{n}^{(\varepsilon)}(x) \right) dF_{1}(x) - \int_{-n}^{n} f_{n}^{(\varepsilon)} dF_{2}(x) \right|$$

$$- \int_{-n}^{n} \left(f^{(\varepsilon)}(x) - f_{n}^{(\varepsilon)}(x) \right) dF_{2}(x) \right|$$

$$\leq \left| \int_{-n}^{n} dF_{i}(x) = \mu_{F_{i}} ([-n, n]) \leq \mu_{F_{i}}(\mathbb{R}) = F_{i}(+\infty) \leq M \right|$$

$$\leq 2M \delta_{n} + \left| \int_{-n}^{n} f_{n}^{(\varepsilon)}(x) dF_{1}(x) - \int_{-n}^{n} f_{n}^{(\varepsilon)}(x) dF_{2}(x) \right|$$

$$\leq 2M \delta_{n} + \underbrace{\left| \int_{-\infty}^{+\infty} f_{n}^{(\varepsilon)}(x) dF_{1}(x) - \int_{-\infty}^{+\infty} f_{n}^{(\varepsilon)}(x) dF_{2}(x) \right|}_{\bullet \bullet} + 2\mu_{F_{1}} ([-n, n]^{c}) + 2\mu_{F_{2}} ([-n, n]^{c})$$

$$= 2 \left(M \underbrace{\delta_{n}}_{\bullet \to 0} + \underbrace{\frac{\log n \delta_{n} n \delta_$$

Primijetimo (poanta cijele priče)

- $\Box f^{(\varepsilon)} \to \mathbb{1}_{[a,b]}$ po točkama,
- $\Box |f^{(\varepsilon)}| \le 1 := g, \forall \varepsilon > 0$
- \square g je integrabilna na prostorima konačne mjere.

$$\begin{array}{c}
\text{LTDR} \\
\text{(za oba integrala)} \\
\Rightarrow \\
\int_{-\infty}^{+\infty} \mathbb{1}_{[a,b]}(x) dF_1(x) = \int_{-\infty}^{+\infty} \mathbb{1}_{[a,b]}(x) dF_2(x).
\end{array}$$

Neka je $b \in \mathbb{R}$, a $a \in C(F_1) \cap C(F_2)$ (pokazali smo da je $C(F_1) \cap C(F_2)$ gust u \mathbb{R} , a onda i neprazan)

$$\Rightarrow \int_{-\infty}^{+\infty} \mathbb{1}_{\langle a,b]}(x)dF_1(x) = \int_{-\infty}^{+\infty} \mathbb{1}_{\langle a,b]}(x)dF_2(x) \Rightarrow F_1(b) - F_1(a) = F_2(b) - F_2(a)$$

Budući da je $C(F_1) \cap C(F_2)$ gust u \mathbb{R} , postoji niz $(a_n)_{n \in \mathbb{N}} \subseteq C(F_1) \cap C(F_2)$ t. d. $a_n \to -\infty$ $\Rightarrow F_1(a_n) \to 0, F_2(a_n) \to 0.$ $(a_n \ge b$ za eventualno **konačno** mnogo $n \in \mathbb{N}$)

Rekapitulacija

 $^{^{22}\}mathrm{Radimo}$ na intervalu[-n,n]

- (i) Za dvije ograničene funkcije distribucije F_1 i F_2 na \mathbb{R} , t. d. je $\varphi_{F_1} = \varphi_{F_2}$, uzmemo $b \in \mathbb{R}$ te $a \in C(F_1) \cap C(F_2)$. Štoviše, možemo uzeti čitav niz $(a_n)_{n \in \mathbb{N}} \subseteq C(F_1) \cap C(F_2)$, $a_n \searrow -\infty$ i tada $F_1(a_n), F_2(a_n) \searrow 0$, posebno, $F_1(b) F_1(a_n) \to F_1(b), F_2(b) F_2(a_n) \to F_2(b)$ $(C(F_1) \cap C(F_2))$ je gust u \mathbb{R})
- $(ii) \ \text{dovoljno je pokazati da je za} \ b \in \mathbb{R} \ \text{i} \ a \in C(F_2) \cap C(F_2), \\ \int_{-\infty}^{+\infty} \mathbbm{1}_{\langle a,b]}(x) dF_1(x) = \int_{-\infty}^{+\infty} \mathbbm{1}_{\langle a,b]}(x) dF_2(x) dF_$
- (iii) štoviše, dovoljno je pokazati da je $\int_{-\infty}^{+\infty} f^{(\varepsilon)}(x) dF_1(x) = \int_{-\infty}^{+\infty} f^{(\varepsilon)}(x) dF_2(x)$, pri čemu $\lim_{\varepsilon \nearrow 0^+} f^{(\varepsilon)} = \mathbb{1}_{\langle a,b|}$ po točkama te je $\forall \varepsilon > 0, |f^{(\varepsilon)}| \le 1$, što je integrabilno, jer tada tvrdnja slijedi po LTDK-u.
- (iv) za $\varepsilon>0$, pomno odaberemo $f^{(\varepsilon)}$ t. d. ju možemo aproksimirati trigonometrijskim polinomima (uzet ćemo neprekidnu $f^{(\varepsilon)}$ t. d. $\exists n\in\mathbb{N}, |x|>n\Rightarrow f^{(\varepsilon)}(x)=0$) i tada proširimo relaciju $\varphi_{F_1}(t)=\varphi_{F_2}(t), t\in\mathbb{R}$ i na trigonometrijske polinome koristeći linearnost integrala/matematičkog očekivanja.

PRIMJER

(i) Neka je $X \sim \begin{pmatrix} -1 & 1\\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$. Tada je

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = \frac{e^{-it} + e^{it}}{2} = \cos t$$

(ii) (Usporedi sa zadatkom s vježbi, gdje smo ispitivali je li $\varphi(t)=(1-|t|)\mathbbm{1}_{\langle -1,1\rangle}$ karakteristična funkcija!) Neka je X slučajna varijabla s gustoćom $f_X(x)=(1-|x|)\mathbbm{1}_{\langle -1,1\rangle}(x)$. Neka su $X_1,X_2\sim U\left(-\frac{1}{2},\frac{1}{2}\right)$. Tada je

$$f_{X_1+X_2}(z) = \int_{-\infty}^{+\infty} f_{X_1}(z-y) f_{X_2}(y) dy = \int_{-\infty}^{+\infty} \mathbb{1}_{\{z-1/2 < y < z+1/2\} \cap \{-1/2 < y < 1/2\}} dy$$

(1°)
$$z < 0$$
: $\Rightarrow f_{X_1 + X_2}(z) = \int_{-1/2}^{z+1/2} dy = z + 1 = 1 - (-z)$.

$$(2^{\circ}) \ z > 0 \Rightarrow f_{X_1 + X_2}(z) = \int_{z - 1/2}^{1/2} dy = 1 - z.$$

Dakle, $f_{X_1+X_2}(z) = 1 - |z|$. Stoga je $X \sim X_1 + X_2$, a kako je $\varphi_{U(-1/2,1/2)} = \frac{\sin \frac{t}{2}}{\frac{t}{2}} = \frac{2 \sin \frac{t}{2}}{t}$, zaključujemo da je $\varphi_{X_1+X_2}(t) = 2\frac{2 \sin^2 \frac{t}{2}}{t^2} = \frac{1-\cos t}{t^2}$

(iii) Neka je $X \sim G(p)$.

$$\varphi_X(t) = \int_{-\infty}^{+\infty} e^{itx} dF_X(x) = \sum_{k=0}^{\infty} e^{itk} \mathbb{P}(X = k) = \sum_{k=1}^{\infty} e^{itk} (1 - p)^{k-1} p = \sum_{k=0}^{\infty} e^{it} e^{itk} (1 - p)^k p$$
$$= p e^{it} \sum_{k=0}^{\infty} ((1 - p) e^{it})^k = \left[\left| (1 - p) e^{it} \right| = (1 - p) \in \langle 0, 1 \rangle \right] = p e^{it} \frac{1}{1 - (1 - p) e^{it}}$$

(iv) Neka je $X \sim \text{Exp}(\lambda)$.

$$\varphi_X(t) = \int_{-\infty}^{+\infty} e^{itx} dF_X(x) = \int_{0}^{+\infty} e^{itx} \lambda e^{-\lambda x} dx = \lambda \int_{0}^{+\infty} e^{(it-\lambda)x} dx = \lambda \frac{e^{(it-\lambda)x}}{it-\lambda} \bigg|_{0}^{+\infty}$$
$$= \left[\lim_{x \to +\infty} \left| e^{(it-\lambda)x} \right| = \lim_{x \to +\infty} \left| e^{-\lambda x} \right| \lim_{x \to +\infty} \left| e^{itx} \right| = 0 \cdot 1 = 0 \right] = \frac{\lambda}{\lambda - it}$$

(v) Neka je $X \sim \Gamma(\alpha, \beta), \alpha, \beta > 0$, dakle

$$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} \mathbb{1}_{\langle 0, +\infty \rangle}(x).$$

$$\varphi_X(t) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_0^\infty x^{\alpha-1} e^{-x(1/\beta - it)} dx, \ t \in \mathbb{R}$$

Neka je $\alpha \geq 1$. Promotrimo kompleksnu funkciju $z \mapsto z^{\alpha-1}e^{-z}$ i integrirajmo ju po konturi Γ_R prikazanoj na slici:

Slika 2

 $\int_{\Gamma_R}z^{\alpha-1}e^{-z}dz=0$ jer je podintegralna funkcija analitička u promatranom području. Označimo s $\rho(\gamma_{2R})$ duljinu luka krivulje $\gamma_{2R}.$ Tada

$$\lim_{R \to \infty} \left| \int_{\gamma_{2R}} z^{\alpha - 1} e^{-z} dz \right| \le \lim_{R \to \infty} \rho(\gamma_{2R}) \max_{z \in \gamma_{2R}} \left| z^{\alpha - 1} e^{-z} \right| = 0$$

(eksponencijalna funkcija raste brže od svakog polinoma)

$$\lim_{R \to \infty} \int_{\gamma_{1R}} z^{\alpha - 1} e^{-z} dz = \lim_{R \to \infty} \int_0^R x^{\alpha - 1} e^{-x} dx = \Gamma(\alpha).$$

Vrijedi $\gamma_{3R}=\left\{z=\left(\frac{1}{\beta}-it\right)x\mid x\in[0,\lambda R]\right\},$ gdje je $\lambda>0$ pa

$$\lim_{R \to \infty} \int_{\gamma_{3R}} z^{\alpha - 1} e^{-z} dz = \lim_{R \to \infty} \int_0^{\lambda R} \left[\left(\frac{1}{\beta} - it \right) x \right]^{\alpha - 1} e^{-x(1/\beta - it)} \left(\frac{1}{\beta} - it \right) dx$$

$$= \lim_{R \to \infty} \frac{(1 - i\beta t)^{\alpha}}{\beta^{\alpha}} \int_0^{\lambda R} x^{\alpha - 1} e^{-x(1/\beta - it)} dx$$

$$= \frac{(1 - i\beta t)^{\alpha}}{\beta^{\alpha}} \int_0^{\infty} x^{\alpha - 1} e^{-x(1/\beta - it)} dx.$$

Odavde zaključujemo

$$\frac{(1-i\beta t)^{\alpha}}{\beta^{\alpha}} \int_{0}^{\infty} x^{\alpha-1} e^{-x(1/\beta-it)} dx = \Gamma(\alpha) \Rightarrow \varphi_X(t) = (1-it\beta)^{-\alpha}, \ t \in \mathbb{R}.$$

(vi) Neka je $(\varphi_n)_{n\geq 0}$ niz karakterističnih funkcija, $\varphi=\sum_{i=1}^\infty \lambda_i \varphi_i$ konveksna kombinacija. Tada je φ karakteristična funkcija. Za karakterisičnu funkciju $\varphi_n, n\in \mathbb{N}$, možemo definirati slučajnu varijablu X_n t. d. je $\varphi_{X_n}=\varphi_n$. Napravimo to za svaki $n\in \mathbb{N}$ i to t. d. su X_1,X_2,\ldots nezavisne. Definiramo i diskretnu slučajnu varijablu N, nezavisnu od X_1,X_2,\ldots t. d. je $\mathbb{P}(N=k)=\lambda_k$ (što je dobro definirano jer je $\lambda_i\geq 0, \forall i$ i $\mathbb{P}(N\in \mathbb{N})=\sum_{i=1}^\infty \lambda_i=1)$. Definiramo $X=\sum_{k=1}^\infty X_k\mathbbm{1}_{\{N=k\}}$.

$$\varphi_{X}(t) = \varphi_{\sum_{k=1}^{\infty} X_{k} \mathbb{1}_{\{N=k\}}}(t) = \mathbb{E}\left[e^{it\sum_{k=1}^{\infty} X_{k} \mathbb{1}_{\{N=k\}}}\right] = \mathbb{E}\left[e^{itX_{N}}\right] = \mathbb{E}\left[\sum_{k=1}^{\infty} \mathbb{1}_{\{N=k\}} e^{itX_{k}}\right]$$

$$= \mathbb{E}\left[\lim_{M \to \infty} \sum_{k=1}^{M} \mathbb{1}_{\{N=k\}} e^{itX_{k}}\right] = \left[\left|\mathbb{1}_{\{N=k\}} e^{itX_{k}}\right| \le 1 \text{ koja je integrabilna}\right]$$

$$\stackrel{\text{LTDK}}{=} \lim_{M \to \infty} \mathbb{E}\left[\sum_{k=1}^{M} \mathbb{1}_{\{N=k\}} e^{itX_{k}}\right] = \lim_{M \to \infty} \sum_{k=1}^{M} \mathbb{E}\left[\mathbb{1}_{\{N=k\}} e^{itX_{k}}\right] \stackrel{\text{nez}}{=} \lim_{M \to \infty} \sum_{k=1}^{M} \mathbb{E}\left[\mathbb{1}_{\{N=k\}}\right] \mathbb{E}\left[e^{itX_{k}}\right]$$

$$= \sum_{k=1}^{\infty} \lambda_{k} \varphi_{k}$$

(vii) Vrijedi: $\varphi_X(t_0) = 1 \Rightarrow \mathbb{P}\left(\frac{t_0 X}{2\pi} \in \mathbb{Z}\right) = 1$:

$$\varphi_X(t_0) = 1 \Leftrightarrow \int_{-\infty}^{+\infty} e^{it_0 x} dF(x) = \int_{-\infty}^{+\infty} dF(x) \Leftrightarrow \int_{-\infty}^{+\infty} \left(1 - e^{it_0 x}\right) = 0$$

$$\Rightarrow \operatorname{Re}\left(\int_{-\infty}^{+\infty} \left(1 - e^{it_0 x}\right) dF(x)\right) = 0 \Rightarrow \int_{-\infty}^{+\infty} \underbrace{\left(1 - \cos(t_0 x)\right)}_{\geq 0} dF(x) = \int_{\Omega} (1 - \cos(t_0 X)) d\mathbb{P} = 0 \Rightarrow 1 - \cos(t_0 X) = 0$$

$$\Leftrightarrow t_0 X \in 2\pi \mathbb{Z} \text{ g. s.} \Leftrightarrow \frac{t_0 X}{2\pi} \in \mathbb{Z} \text{ g. s.}$$

(viii) Primjeri funkcija koje nisu karakteristične funkcije:

(a) $\varphi(t) = e^{-i|t|}$; općenito $\varphi(-t) = \varphi(t) \neq e^{i|t|} = \overline{\varphi(t)}$ Vidimo da je φ parna, ali nije realna...

 $(b) \ \varphi(t) = \frac{1}{1-i|t_0|};$ isti argument kao u(a)

(c)

$$\varphi(t) = \begin{cases} 1 - t^2, & |t| < 1 \\ 0, & |t| \ge 1 \end{cases};$$

 φ je Lebesgue-integrabilna na \mathbb{R} i $\varphi(0) = 1$. Prema tome, ako je φ karakteristična funkcija, iz Teorema inverzije (b) (iduće poglavlje), slijedi da je

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \varphi(t) dt$$

vjerojatnosna funkcija gustoće.

$$\begin{split} \int_{-1}^{1} (1 - t^2) e^{-itx} dt &= 2 \int_{0}^{1} (1 - t^2) \cos(tx) dt = 2(1 - t^2) \frac{\sin(tx)}{x} \Big|_{0}^{1} + \frac{4}{x} \int_{0}^{1} t \sin(tx) dt \\ &= \frac{4}{x} \left(-\frac{\cos x}{x} + \frac{\sin x}{x^2} \right) = \frac{4}{x^2} \left(\frac{\sin x}{x} - \cos x \right) \\ &\Rightarrow f(x) = \frac{2}{\pi x^2} \left(\frac{\sin x}{x} - \cos x \right), \end{split}$$

što nije nenegativna funkcija, pa φ ne može biti karakteristična funkcija.

(d) $\varphi(t) = \cos\left(|t|^{2/3}\right)$; primijetimo da je, za $t_0 = (2\pi)^{3/2}$, $(4\pi)^{3/2}$, $\varphi(t_0) = 1$, što znači da je, po primjeru (vii), $\mathbb{P}\left(\frac{t_0X}{2\pi} \in \mathbb{Z}\right) = 1$ u obama slučajevima,

$$\mathbb{P}\left(\sqrt{2\pi}X\in\mathbb{Z}\right)=\mathbb{P}\left(4\sqrt{\pi}X\in\mathbb{Z}\right)=1.$$

$$\Rightarrow \exists m,n\in\mathbb{N},\frac{m}{\sqrt{2\pi}}=\frac{n}{4\sqrt{\pi}},\text{ kontradikcija!}$$

(e)

$$\varphi(t) = \begin{cases} e^{-2t}, & t \ge 0 \\ \frac{1}{1+t^2}, & t < 0 \end{cases};$$

 φ je realna, ali nije parna.

14 Teorem inverzije (§13.2, Sarapa, 447. – 457. str.)

PITANJE: Možemo li otkriti distribuciju iz karakteristične funkcije?

Podsjetnik:

$$\frac{1}{\pi} \int_0^{+\infty} \frac{\sin(ct)}{t} dt = \begin{cases} -\frac{1}{2}, & \text{ako je } c < 0, \\ 0, & \text{ako je } c = 0 \\ \frac{1}{2}, & \text{ako je } c > 0 \end{cases} = -\frac{1}{2} \mathbbm{1}_{\langle -\infty, 0 \rangle}(c) + \frac{1}{2} \mathbbm{1}_{\langle 0, +\infty \rangle}(c) \quad (\star)$$

Također, budući da je $t\mapsto \cos(ct), c\neq 0$ parna, $t\mapsto \frac{\cos(ct)}{t}$ je neparna, pa je $\int_{-T}^{T} \frac{\cos(ct)}{t} dt = 0$ i to ćemo koristiti bez daljnjeg spominjanja.

TEOREM (teorem inverzije)

(a)Ako je φ karakteristična funkcija od F i $a,b \in C(F), a < b,$ tada vrijedi

$$F(b) - F(a) = \lim_{T \to +\infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-iat} - e^{-ibt}}{it} \varphi(t) dt.$$

(b) Ako je $\int_{-\infty}^{+\infty} |\varphi(t)| dt < +\infty$, tada F ima gustoću f (u smislu $F(x) = \int_{-\infty}^{x} f(t) dt$) i vrijedi

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \varphi(t) dt, x \in \mathbb{R}.$$

Nadalje, f je neprekidna i **ograničena** funkcija.

Dokaz.

(a) Neka je

$$\begin{split} I(T) &:= \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-iat} - e^{-ibt}}{it} \varphi(t) dt = \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-iat} - e^{-ibt}}{it} \left(\int_{-\infty}^{+\infty} e^{itx} dF(x) \right) dt \\ &= \frac{1}{2\pi} \int_{-T}^{T} \int_{-\infty}^{+\infty} \frac{e^{-iat} - e^{-ibt}}{it} e^{itx} dF(x) dt \\ &= \begin{bmatrix} \left| \frac{e^{-iat} - e^{-ibt}}{it} e^{itx} \right| = \left| \frac{e^{-iat} - e^{-ibt}}{it} \right| = \left| \frac{e^{-ibt} - e^{-iat}}{-itx} \right| = \left| \int_{a}^{b} e^{-itx} dx \right| \leq b - a \\ \int_{-c}^{c} \int_{-\infty}^{+\infty} (b - a) dt dF(x) = 2c(b - a) F(+\infty) < \infty \\ &= \text{FUBINI} \end{bmatrix} \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-T}^{T} \frac{e^{-iat} - e^{-ibt}}{it} e^{itx} dt = \int_{-T}^{T} \frac{(\cos((x - a)t) + i\sin((x - a)t) - \cos((x - b)t) + i\sin((x - b)t))}{it} dt \\ &= \int_{-T}^{T} \frac{e^{-iat} - e^{-ibt}}{it} e^{itx} dt = \int_{-T}^{T} \frac{\sin((x - a)t)}{it} dt - \int_{-T}^{T} \frac{\sin((x - b)t)}{it} dt \\ &= \int_{-T}^{T} \frac{\sin((x - a)t)}{it} dt - \int_{-T}^{T} \frac{\sin((x - b)t)}{it} dt \\ &= \int_{-T}^{T} \frac{e^{-iat} - e^{-ibt}}{it} e^{itx} dt = S(T, x - a) - S(T, x - b) \end{bmatrix} \\ &= \int_{-\infty}^{+\infty} \psi(T, x) dF(x) = \int_{-\infty}^{+\infty} (S(T, x - a) - S(T, x - b)) dF(x) \end{split}$$

Budući da je S(T,c) neprekidna po T i $\lim_{T\to +\infty} S(T,c)$ postoji konačan je (\star) , S(T,c) je uniformno ograničena, tj., $\exists M>0, \forall T>0, \forall c\in \mathbb{R}, |S(T,c)|\leq M.$ (M=1? Vidi lemu A.1.13 na koju se referira Allan Gut u *Probability: A Graduate Course*)

$$\overset{\text{LTDK}}{\Rightarrow} \lim_{T \to +\infty} I(T) = \lim_{T \to +\infty} \int_{-\infty}^{+\infty} (S(T, x - a) - S(T, x - b)) dF(x) = \int_{-\infty}^{+\infty} L(x, a, b) dF(x),$$

gdje je

$$L(x,a,b) = \begin{cases} 1, & \text{ako je } a < x < b \\ \frac{1}{2}, & \text{ako je } x = a \text{ ili } x = b \\ 0, & \text{ako je } x < a \text{ ili } x > b \end{cases}$$

$$\Rightarrow \lim_{T \to +\infty} I(T) = \int_{-\infty}^{+\infty} \left(\mathbbm{1}_{\langle a,b \rangle}(x) + \frac{1}{2} \mathbbm{1}_{\{a\}}(x) + \mathbbm{1}_{\{b\}}(x) \right) dF(x) = \mu_F \left(\langle a,b \rangle \right) + \frac{1}{2} \underbrace{\mu_F \left(\{a\} \right)}_{\substack{=0 \text{jer je} \\ b \in C(F)}} + \frac{1}{2} \underbrace{\mu_F \left(\{b\} \right)}_{\substack{=0 \text{jer je} \\ b \in C(F)}} = \mu_F \left(\langle a,b \rangle \right) = F(b) - F(a)$$

(b) Pođimo od funkcije f definirane s $f(x)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{-itx}\varphi(t)dt, x\in\mathbb{R}$. Pokazat ćemo da je f funkcija gustoće od F.

 φ je integrabilna pa je f dobro definirana i ograničena. Vrijedi

$$|f(x+\delta)-f(x)| = \left|\frac{1}{2\pi}\int_{-\infty}^{+\infty} e^{-itx} \left(e^{-it\delta}-1\right) \varphi(t) dt\right| \leq \frac{1}{2\pi}\int_{-\infty}^{+\infty} \left|e^{-itx} \left(e^{-itx}-1\right) \varphi(t)\right| dt \leq \frac{1}{\pi}\int_{-\infty}^{+\infty} |\varphi(t)| < \infty$$

pa, po Lebesgueovom teoremu o dominiranoj konvergenciji, slijedi da je f uniformno neprekidna (na \mathbb{R}), a onda i integrabilna na [a, b].

Primjenjujući i Fubinijev teorem (φ je integrabilna),

$$\int_{a}^{b} f(x)dx \stackrel{\text{FUBINI}}{=} \frac{1}{2\pi} \int_{-\infty}^{+\infty} \varphi(t) \left[\int_{a}^{b} e^{-itx} dx \right] dt$$

$$\stackrel{\int_{-\infty}^{+\infty} |\varphi(t)| dt < +\infty}{=} \frac{1}{2\pi} \lim_{T \to +\infty} \int_{-T}^{T} \varphi(t) \left[\int_{a}^{b} e^{-itx} dx \right] dt$$

$$= \frac{1}{2\pi} \lim_{T \to +\infty} \int_{-T}^{T} \varphi(t) \frac{e^{-iat} - e^{-ibt}}{it} dt$$

$$\stackrel{(a)}{=} F(b) - F(a)$$

$$\Rightarrow \int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

$$= \lim_{a \to -\infty} (F(b) - F(a))$$

$$= F(b) - F(-\infty)$$

$$= F(b)$$

Rekapitulacija

(i) $S(T,c) := \frac{1}{\pi} \int_0^T \frac{\sin(ct)}{t} dt$ (i se pokratio u računu!)

$$(ii) \ \psi(T,x) := \tfrac{1}{2\pi} \int_{-T}^{T} \tfrac{e^{-iat} - e^{-ibt}}{it} e^{itx} dt = \tfrac{1}{2\pi} \int_{-T}^{T} \tfrac{e^{i(x-a)t} - e^{i(x-b)t}}{it} dt$$

(iii)
$$I(T) := \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-iat} - e^{-ibt}}{it} \varphi(t) dt$$

- $(iv)\,$ koristeći Fubinijev teorem, pokažemo da je $I(T)=\int_{-\infty}^{+\infty}\psi(T,x)dF(x)$
- (v) koristeći parnost kosinusa i neparnost sinusa, pokažemo $\psi(T,x)=S(T,x-a)-S(T,x-b)$
- (vi) argumentiramo zašto $\exists M > 0, \forall T > 0, \forall c \in \mathbb{R}, |S(T,c)| \leq M.$

Za konkretne distribucije, izračunamo karakterističnu funkciju. Niz primjera (više na vježbama)

(i) Neka je X slučajna varijabla i φ_X realna funkcija. Prisjetimo se: ako je X simetrična, onda mora imati realnu karakterističnu funkciju. Pitamo se vrijedi li obrat.

$$\varphi_{-X}(t) = \overline{\varphi_X(t)} = \varphi_X(t) \stackrel{\text{teorem}}{\Rightarrow} X \sim (-X), \text{tj.}, X \text{ je simetrična.}$$

- (ii) Ako je $X \sim B(p)$ Bernoullijeva, onda je $\varphi_X(t) \stackrel{(\heartsuit \heartsuit)}{=} \mathbb{E}\left[e^{itX}\right] = pe^{it \cdot 1} + qe^{it \cdot 0} = pe^{it} + q$. Ako je $X \sim B(n,p)$, onda je $\varphi_X(t) = \left(pe^{it} + q\right)^n$.
- (iii)Neka je $X \sim U\left([a,b]\right)$. Tada je

$$\varphi_X(t) \stackrel{(\heartsuit\heartsuit)}{=} \mathbb{E}\left[e^{itX}\right] = \frac{1}{b-a} \int_a^b e^{itx} dx = \frac{e^{-iat} - e^{-ibt}}{it}.$$

Posebno, za a = -c, b = c

$$\varphi_X(t) = \frac{1}{2c} \frac{e^{ict} - e^{-ict}}{it} = \frac{\frac{e^{ict} - e^{-ict}}{2i}}{ct} = \frac{\sin(ct)}{ct}.$$

(iv) Neka je $X \sim N(0,1), e^{itx} = \sum_{k=0}^{+\infty} \frac{(itx)^k}{k!}.$

$$\begin{split} \varphi_X(t) \stackrel{(\heartsuit\heartsuit)}{=} \mathbb{E}\left[e^{itX}\right] &= \mathbb{E}\left[\sum_{k=0}^{\infty} \frac{(itX)^k}{k!}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left[\sum_{k=0}^{+\infty} \frac{(itx)^k}{k!} e^{-x^2/2}\right] dx \\ &= \left[\left|\sum_{k=0}^{+\infty} \frac{(itx)^k}{k!} e^{-x^2/2}\right| \leq e^{|tx|-x^2} \leftarrow \text{ integrabilna}\right] \\ &\stackrel{\text{Fubini}}{=} \sum_{k=0}^{+\infty} \left[\frac{(it)^k}{k!} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^k e^{-x^2/2} dx\right] \quad \text{(prežive samo parni)} \\ &= \sum_{k=0}^{+\infty} \frac{(it)^{2k}}{(2k)!} \frac{(2k)!}{2^k k!} \\ &= \left[n = 2m \Rightarrow (ix)^n = i^{2m} x^{2m} = (-1)^m x^{2m} = (-x^2)^m\right] \\ &= \sum_{k=0}^{+\infty} \left(-\frac{t^2}{2}\right)^k \frac{1}{k!} = e^{-t^2/2}, t \in \mathbb{R}. \end{split}$$

Vidimo da je X simetrična akko je $\mu=0$. Ako je $X\sim N(\mu,\sigma^2)$, onda je $Y=\frac{X-\mu}{\sigma}\sim N(0,1), X=\sigma Y+\mu$

$$\Rightarrow \varphi_X(t) = e^{i\mu t} \varphi_{\sigma Y}(t) = e^{i\mu t - \frac{\sigma^2 t^2}{2}}, t \in \mathbb{R}$$

(v) Neka su $X_1, \ldots, X_n, X_k \sim N(\mu_k, \sigma_k^2), k = 1, \ldots, n$ nezavisne slučajne varijable. Tada je $X = \sum_{k=1}^n X_k$ normalna;

$$\varphi_X(t) \stackrel{\text{nez.}}{=} \prod_{k=1}^n \varphi_{X_k}(t) = \prod_{k=1}^n e^{i\mu_k t - \frac{\sigma_k^2 t^2}{2}} = e^{i\left(\sum_{k=1}^n \mu_k\right)t - \frac{\left(\sum_{k=1}^n \sigma_k^2\right)t^2}{2}} \Rightarrow X \sim N\left(\sum_{k=1}^n \mu_k, \sum_{k=1}^n \sigma_k^2\right).$$

(vi) Za $t \in \mathbb{R}$, željeli bismo izračunati integral

$$\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{e^{itx}}{1+x^2} dx.$$

U tu svrhu, neka X ima dvostranu eksponencijalnu razdiobu s parametrom $\lambda > 0$. Izračunajmo, najprije, $\varphi_X(t)$:

$$\varphi_X(t) = \frac{\lambda}{2} \int_{-\infty}^{+\infty} e^{itx} e^{-\lambda|x|} dx = \lambda \int_0^{\infty} \cos(tx) e^{-\lambda x} dx = \lambda \frac{e^{-\lambda} (t \sin(tx) - \lambda \cos(tx))}{\lambda^2 + t^2} \Big|_0^{\infty} = \frac{\lambda^2}{\lambda^2 + t^2}.$$

Posebno, ako je $\lambda = 1$,

$$f_X(x) = \frac{1}{2}e^{-|x|},$$

$$\varphi_X(t) = \frac{1}{1+t^2}$$

$$\int_{-\infty}^{+\infty} \frac{dt}{1+t^2} = \int_{-1}^{1} \frac{1}{1+t^2} + \int_{\{|t|>1\}} \frac{dt}{1+t^2} < +\infty,$$

dakle, φ_X je apsolutno neprekidna pa, po (b) dijelu Teorema inverzije,

$$\frac{1}{2}e^{-|x|} = f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{itx} \varphi_X(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{e^{itx}}{1+t^2} dt.$$

(vii) Neka je

$$\begin{split} I_T(a) := \frac{1}{2T} \int_{-T}^T e^{-ita} \varphi(t) dt &= \frac{1}{2T} \int_{-T}^T \int_{-\infty}^{+\infty} e^{-it(a-x)} d\mathbb{P}_X(x) dt \\ &\stackrel{\text{FUBINI}}{=} \frac{1}{2T} \int_{-\infty}^{+\infty} \int_{-T}^T e^{-it(a-x)} dt d\mathbb{P}_X(x) = \frac{1}{2T} \int_{-\infty}^{+\infty} \int_{-T}^T \cos(t(a-x)) dt d\mathbb{P}_X(x) \\ &= \int_{-\infty}^{+\infty} \frac{\sin(T(a-x))}{T(a-x)} d\mathbb{P}_X(x) \end{split}$$

Zanima nas $\lim_{T\to\infty}I_T(a)...$

(vii) Neka su X i Y nezavisne jednako distribuirane slučajne varijable t. d. je $\mathbb{E}X = 0, \mathbb{E}[X^2] = 1$ te su X + Y i X - Y nezavisne. Tada je $X \sim Y \sim N(0,1)$. Zaista, kako su X i Y nezavisne i jednako distribuirane, $\varphi_{(X+Y)/2}(t) = \varphi_{X+Y}\left(\frac{t}{2}\right) = \varphi_X\left(\frac{t}{2}\right)^2$, a kako su i $\frac{X+Y}{2}$ i $\frac{X-Y}{2}$ nezavisne te $\varphi_{-Y}\left(\frac{t}{2}\right) = \varphi_X\left(-\frac{t}{2}\right)$, to je

$$\varphi_X(t) = \varphi_{[(X+Y)+(X-Y)]/2}(t) = \varphi_X\left(\frac{t}{2}\right)^3 \varphi_X\left(-\frac{t}{2}\right) \quad (\star)$$

Stoga je dovoljno odrediti $\varphi := \varphi_X$ na nekoj otvorenoj kugli $K := K(0, \varepsilon), \varepsilon > 0$.

$$\varphi(0) = 1 \Rightarrow \exists \varepsilon > 0, \varphi(K) \cap \{x + iy \mid x \le 0, y \in \mathbb{R}\} = \emptyset.$$

Za $t \in K(0, \varepsilon)$, definirajmo

$$\psi(t) := \log \varphi(t).$$

Iz (\star) , slijedi

$$\psi(t) = 3\psi\left(\frac{t}{2}\right) + \psi\left(-\frac{t}{2}\right) \quad (\star\star)$$

Primijenimo li to na -t,

$$\psi(-t) = 3\psi\left(-\frac{t}{2}\right) + \psi\left(\frac{t}{2}\right).$$

Oduzimajući posljednje dvije jednakosti, dobivamo

$$\delta(t) := \psi(t) - \psi(-t) = 2\left[\psi\left(\frac{t}{2}\right) - \psi\left(-\frac{t}{2}\right)\right] = 2\delta\left(\frac{t}{2}\right).$$

Odatle, posebno, slijedi

$$\frac{\delta(t)}{t} = \frac{\delta\left(\frac{t}{2^n}\right)}{\frac{t}{2^n}}.$$

Po rezultatu iz idućeg poglavlja, $\mathbb{E}X=0\Rightarrow \varphi'(0)=0, \mathbb{E}[X^2]=1\Rightarrow \varphi''(0)=1$ i stoga su i ψ i δ dvaput diferencijabilne. Isto tako,

$$\psi'(0) = \frac{1}{\varphi(0)}\varphi'(0) = 0 \Rightarrow \delta'(0) = 2\psi'(0) = 0$$

i

$$\frac{\delta(t)}{t} \stackrel{n \to \infty}{\longrightarrow} \delta'(0) = 0,$$

a kako je $\frac{\delta(t)}{t}$ fiksan izraz neovisan on, to je

$$\psi(t) - \psi(-t) = \delta(t) = 0$$

pa, uvrstimo li to u $(\star\star)$, dobivamo

$$\psi(t) = 4\psi\left(\frac{t}{2}\right) = \dots = \frac{\psi\left(\frac{t}{2^n}\right)}{\frac{t}{2^{2n}}}.$$

Primjenom L'Hospitalova pravila

$$\frac{\psi(t)}{t^2} = \frac{\psi\left(\frac{t}{2}\right)}{\left(\frac{t^2}{2n}\right)^2} \stackrel{n \to \infty}{\longrightarrow} \psi''(0) = -\frac{1}{2}.$$

Dakle,

$$\psi(t) = -\frac{1}{2}t^2 \Rightarrow \varphi(t) = e^{-t^2/2}.$$

(viii) Neka su $(\varphi_n)_{n\in\mathbb{N}}$ i φ apsolutno integrabilne karakteristične funkcije t. d. $\lim_{n\to\infty}\int_{-\infty}^{+\infty}|\varphi_n(t)-\varphi(t)|dt$. Tada je i $\lim_{n\to\infty}f_n(x)=f$ ako su $(f_n)_{n\in\mathbb{N}}$ i f odgovarajuće gustoće; budući da su $(\varphi_n)_{n\in\mathbb{N}}$ i φ apsolutno integrabilne, to po Teoremu inverzije (b), imamo

$$\lim_{n\to\infty} |f_n(x) - f(x)| = \frac{1}{2\pi} \lim_{n\to\infty} \left| \int_{-\infty}^{+\infty} (\varphi_n(t) - \varphi(t)) e^{-itx} dt \right| \le \frac{1}{2\pi} \lim_{n\to\infty} \int_{-\infty}^{+\infty} |\varphi_n(t) - \varphi(t)| dt = 0.$$

TEOREM

Ako je φ karakteristična funkcija **ograničene** funkcije distribucije F na \mathbb{R}^n , i $a=(a_1,\ldots,a_n), b=(b_1,\ldots,b_n)\in C(F), a< b(a_j< b_j, \forall j=1,\ldots,n),$ tada je

$$F(b_1,\ldots,b_n) - F(a_1,\ldots,a_n) = \lim_{T \to +\infty} \frac{1}{(2\pi)^n} \int_{-T}^T \cdots \int_{-T}^T \left[\prod_{k=1}^n \frac{e^{-ia_k t} - e^{-ib_k t}}{it_k} \right] \varphi(t_1,\ldots,t_n) dt_1 \cdots dt_n.$$

TEOREM

Slučajne varijable X_1, \ldots, X_n nezavisne su $\Leftrightarrow \varphi_{X_1, \ldots, X_k}(t_1, \ldots, t_k) = \prod_{k=1}^n \varphi_{X_k}(t_k), (t_1, \ldots, t_n) \in \mathbb{R}^n$.

 \Rightarrow :

$$\varphi_{X_1,\dots,X_n}(t_1,\dots,t_n) \stackrel{(\heartsuit\heartsuit)}{=} \mathbb{E}\left[e^{i\sum_{k=1}^n t_k X_k}\right] = \mathbb{E}\left[\prod_{k=1}^n e^{it_k X_k}\right] \stackrel{\text{nez.}}{=} \prod_{k=1}^n \mathbb{E}\left[e^{it_k X_k}\right] \stackrel{(\heartsuit\heartsuit)}{=} \prod_{k=1}^n \varphi_{X_k}(t_k).$$

 $\vdash \subseteq$: Označimo $X=(X_1,\ldots,X_n)$. Neka je $G:\mathbb{R}^n\to\mathbb{R}$ zadana s

$$G(x_1,\ldots,x_n):=\prod_{k=1}^n F_{X_k}(x_k).$$

 \Rightarrow G je n-dimenzionalna vjerojatnosna funkcija distribucije i inducira mjeru $\mu_G = \bigotimes_{k=1}^n \mu_{F_k}$. Dokažemo li da je, zapravo, $F_X = G$, dokazat ćemo da je funkcija distribucije slučajnog vektora jednaka produktu distribucija komponenti, a, iz karakterizacije nezavisnosti u terminima funkcija distribucija, znamo da su tada slučajne varijable X_1, \ldots, X_n nezavisne. Po **Teoremu inverzije**,

dovoljno je dokazati da je $\varphi_X = \varphi_G$.

$$\int_{\mathbb{R}^n} e^{i(t_1 x_1 + \dots + t_n x_n)} dF_X(x_1, \dots, x_n) = \varphi_X(t_1, \dots, t_n)$$

$$= \prod_{k=1}^n \varphi_{X_k}(t_k)$$

$$= \prod_{k=1}^n \int_{\mathbb{R}} e^{it_k x_k} dF_{X_k}(x_k)$$

$$= \int_{\mathbb{R}} \left(\dots \int_{\mathbb{R}} \prod_{k=1}^n e^{it_k x_k} dF_1(x_k) \dots \right) dF_n(x_n)$$

$$\stackrel{\text{def. od } G}{\text{Fubini}} \int_{\mathbb{R}^n} e^{i(t_1 x_1 + \dots + t_n x_n)} dG(x_1, \dots, x_n)$$

15 Momenti i karakteristične funkcije (§13.3, Sarapa, 461. – 466. str.)

NAPOMENA

Teorem 5.16, Guljaš,148. str. (slično za $f: \mathbb{C} \to \mathbb{C}$?)

Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I, n \in \mathbb{N}_0$ i neka $f : I \to \mathbb{R}$ ima **neprekidnu** derivaciju (n+1)-vog reda na I. Tada, za svaki $x \in I$, vrijedi

$$f(x) = f(c) + \sum_{k=1}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + \int_{c}^{x} \frac{f^{(n+1)}(t)}{n!} (x - t)^{n} dt.$$

Posebno, ako je $f(x) = e^x$, zapišimo integralni oblik ostatka:

$$\frac{1}{n!} \int_{0}^{z} (z - y)^{n} e^{y} dy = \frac{1}{n!} \int_{0}^{z} z^{n} \left(1 - \frac{y}{z} \right)^{n} e^{z \cdot \frac{y}{z}} dy$$

$$= \left[y = zt \Rightarrow dy = zdt, z = \frac{y}{t} \right]$$

$$= \frac{1}{n!} z^{n+1} \int_{0}^{1} (1 - t)^{n} e^{zt} dt$$

$$= \left[\int_{0}^{u} du = z e^{zt} dt \Rightarrow u = e^{zt} \right]$$

$$= \int_{0}^{u} \frac{(1 - t)^{n}}{n} \Rightarrow dv = -(1 - t)^{n-1} dt$$

$$= \cdots = \frac{1}{(n-1)!} z^{n} \int_{0}^{1} (1 - y)^{n-1} (e^{zy} - 1) dy \quad \textcircled{2}$$

TEOREM

Ako je $\mathbb{E}[|X|^n] < +\infty$ za neki $n \in \mathbb{N}$, tada φ_X ima k-tu derivaciju za $k \leq n$ i

(i)
$$\forall t \in \mathbb{R}, \varphi_X^{(k)}(t) = \int_{-\infty}^{+\infty} (ix)^k e^{itx} dF_X(x)$$

(ii)
$$\mathbb{E}\left[X^{k}\right] = \frac{1}{i^{k}} \varphi_{X}^{(k)}(0)$$

(iii)
$$\forall t \in \mathbb{R}, \varphi_X(t) = \sum_{k=0}^n \frac{(it)^k}{k!} \mathbb{E}\left[X^k\right] + o\left(t^n\right)$$

$$o\left(t^n\right) = \frac{(it)^n}{(n-1)!} \int_{-\infty}^{+\infty} \int_0^1 x^n (1-y)^{n-1} \left(e^{itxy} - 1\right) dy dF_X(x)$$

Podsjetnik:

$$\lim_{t \to 0} \frac{o(t^n)}{t^n} = 0$$

Dokaz.

(i) Neka je $k \leq n$. Budući da X ima konačan n-ti moment, ima konačan i k-ti moment: $\mathbb{E}\left[|X|^k\right] < +\infty$, tj. $\int_{-\infty}^{+\infty} |x|^k dF_X(x) < +\infty$, odnosno, $|x|^k$ je **integrabilna**. [[Koliko sam ja razumijela, u knjizi je malo drugačiji pristup: Neka je $(t_m)_{m \in \mathbb{N}} \subseteq I, t_m \to t$. Po Teoremu srednje vrijednosti, $\forall m \in \mathbb{N}, \exists \hat{t}_m \in \langle \min\{t_m, t\}, \max\{t_m, t\} \rangle$,

$$\left| \frac{\frac{\partial^k}{\partial t^k} e^{itx} - \frac{\partial^k}{\partial t^k} e^{it_m x}}{t - t_m} \right| = \left| \frac{\partial^{k+1}}{\partial t^k} e^{i\hat{t}_m x} \right| = \left| (ix)^{k+1} e^{i\hat{t}_m x} \right| = |x|^{k+1}$$

$$\frac{\partial^{k}}{\partial t^{k}}e^{itx} = (ix)^{k}e^{itx} \Rightarrow \left|\frac{\partial^{k}}{\partial t^{k}}e^{itx}\right| = |x|^{k} \leftarrow \text{ integrabilna}$$

$$\stackrel{\text{LTDK}}{\stackrel{(k \text{ puta})}{\Rightarrow}} \frac{\partial^{k}}{\partial t^{k}} \int_{-\infty}^{+\infty} e^{itx} dF_{X}(x) = \int_{-\infty}^{+\infty} \frac{\partial^{k}}{\partial t^{k}} e^{itk} dF_{X}(x)$$

$$= \int_{-\infty}^{+\infty} (ix)^{k} e^{itx} dF_{X}(x) \quad (\mathfrak{D})$$

 \prod

$$\begin{split} \frac{\partial^k}{\partial t^k} \int_{-\infty}^{+\infty} e^{itx} dF(x) &= \lim_{t_m \to t} \frac{\frac{\partial^{k-1}}{\partial t^{k-1}} \int_{-\infty}^{+\infty} e^{itx} dF(x) - \frac{\partial^{k-1}}{\partial t^{k-1}} \int_{-\infty}^{+\infty} e^{it_m x} dF(x)}{t - t_m} \\ &= \left[\text{pretpostavka indukcije/LTDK } k - 1 \text{ puta: } \varphi^{(k-1)}(t_0) = \int_{-\infty}^{+\infty} (ix)^{k-1} e^{it_0 x} dF(x) \right] \\ &= \lim_{t \to t_m} \frac{\int_{-\infty}^{+\infty} (ix)^{k-1} \left(e^{itx} - e^{it_m x} \right) dF(x)}{t - t_m} \\ &= \lim_{t_m \to t} \int_{-\infty}^{+\infty} (ix)^{k-1} \frac{e^{itx} - e^{it_m x}}{t - t_m} dF(x) = \lim_{t_m \to t} \int_{-\infty}^{+\infty} (ix)^{k-1} \frac{\partial}{\partial t} e^{i\hat{t}_m x} dF(x) \\ &= \lim_{t \to t_m} \int_{-\infty}^{+\infty} (ix)^k e^{i\hat{t}_m x} dF(x) \\ &= \left[x^k \text{ je integrabilna i } \left| e^{i\hat{t}_m x} dF(x) \right| = 1 \right] \\ &= \int_{-\infty}^{+\infty} (ix)^k \lim_{t_m \to t} e^{i\hat{t}_m x} dF(x) = \int_{-\infty}^{+\infty} (ix)^k e^{itx} dF(x) \end{split}$$

11

(ii) U ()) uvrstimo t = 0:

$$\frac{1}{i^k}\varphi_X^{(k)}(0) = \frac{1}{i^k}\frac{\partial^k}{\partial t^k} \int_{-\infty}^{+\infty} x^k e^{i\cdot 0\cdot x} dF_X(x) = \mathbb{E}\left[X^k\right].$$

(iii) Kompleksnu funkciju $z\mapsto e^z$ razvijamo u Taylorov polinom:

$$\begin{split} e^z &= \sum_{k=0}^n \frac{z^k}{k!} + \frac{1}{(n-1)!} z^n \int_0^1 (1-y)^{n-1} \left(e^{zy} - 1\right) dy \\ z^{(\omega)=itX(\omega)} &= \sum_{k=0}^n \frac{(it)^k}{k!} X^k + \frac{1}{(n-1)!} (it)^n X^n \int_0^1 (1-y)^{n-1} \left(e^{ityX} - 1\right) dy \\ &= \sum_{k=0}^n \frac{(it)^k}{k!} X^k + \frac{1}{(n-1)!} (it)^n \int_0^1 X^n (1-y)^{n-1} \left(e^{ityX} - 1\right) dy / \mathbb{E} \\ &\Rightarrow \varphi_X(t) = \sum_{k=0}^n \frac{(it)^k}{k!} \mathbb{E} \left[X^k \right] + \underbrace{\mathbb{E}[\text{ost.}]}_{R_n(t)} \\ R_n(t) &= \frac{(it)^n}{(n-1)!} \int_{-\infty}^{+\infty} \int_0^1 x^n (1-y)^{n-1} \left(e^{itxy} - 1\right) dy dF_X(x) \\ &\Rightarrow |R_n(t)| = \frac{|t|^n}{(n-1)!} \left| \int_{-\infty}^{+\infty} \int_0^1 x^n (1-y)^{n-1} \left(e^{itxy} - 1\right) dy dF_X(x) \right| \\ &= \begin{bmatrix} |x^n (1-y)^{n-1} \left(e^{itxy} - 1\right)| \leq 2|x|^n (1-y)^{n-1} \left(\text{ne ovisi o } t\right) \\ \int_{-\infty}^{+\infty} \int_0^1 2|x|^n (1-y)^{n-1} dy dF_X(x) = 2 \int_{-\infty}^{+\infty} |x|^n \frac{(1-y)^n}{n} \Big|_0^1 dF_X(x) = \frac{2}{n} \mathbb{E} \left[|X|^n \right] < + \infty \end{bmatrix} \\ &\leq \frac{2}{n} |t|^n \mathbb{E} \left[|X|^n \right] \end{split}$$

Dakle, i ocijenili smo

$$|R_n(t)| \le \frac{2}{n!} |t|^n \mathbb{E}\left[|X|^n\right]$$

Primijenimo Lebesgueov teorem o dominiranoj konvergenciji na $f_n:(x,y)\mapsto x^n(1-y)^{n-1}\left(e^{itxy}-1\right)$ kako bismo zaključili da

$$\lim_{t\to 0}\frac{R_n(t)}{t^n}=0\Rightarrow R_n(t)=o\left(t^n\right).$$

Prirodno se postavlja pitanje: vrijedi li obrat? Ne sasvim.

TEOREM

Ako postoji $\varphi_X^{(2n)}(0)$ i konačna je, tada je $\mathbb{E}\left[|X|^{2n}\right]<+\infty$.

Dokaz.

Indukcijom po $n \in \mathbb{N}$.

▶ n = 1. Pokazat ćemo da, ako $\varphi_X''(0)$ postoji i konačna je, tada je $\mathbb{E}\left[|X|^2\right] < +\infty$. Prvi korak u sljedećem računu viđali smo i kod podijeljenih razlika na Numeričkoj matematici.

$$\begin{split} \varphi_X''(0) &= \frac{1}{2} \cdot 2\varphi_X''(0) = \frac{1}{2} \left[\lim_{\Delta \to 0} \frac{\varphi_X'(\Delta) - \varphi_X'(0)}{\Delta} + \lim_{\Delta \to 0} \frac{\varphi'(0) - \varphi'(\Delta)}{\Delta} \right] \\ &= \lim_{h \to 0} \frac{1}{2} \left[\frac{\varphi_X'(2h) - \varphi_X'(0)}{2h} + \frac{\varphi_X'(0) - \varphi_X'(-2h)}{2h} \right] \cdot \frac{2}{2} \\ &= \lim_{h \to 0} \frac{2\varphi_X'(2h) - 2\varphi_X'(-2h)}{8h} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ &\stackrel{\text{L'H.}}{=} \lim_{h \to 0} \frac{1}{4h^2} \left[\varphi_X(2h) - 2\varphi_X(0) + \varphi_X(-2h) \right] \\ &= \lim_{h \to 0} \frac{1}{4h^2} \left[\varphi_X(2h) - 2\varphi_X(h - h) + \varphi_X(-2h) \right] \\ &= \lim_{h \to 0} \frac{1}{4h^2} \left[\varphi_X(2h) - 2\varphi_X(h - h) + \varphi_X(-2h) \right] \\ &= \lim_{h \to 0} \int_{-\infty}^{+\infty} \left(e^{i2hx} - 2e^{i(h - h)x} + e^{i(-2h)x} \right) dF_X(x) \\ &= \lim_{h \to 0} \int_{-\infty}^{+\infty} \left(\frac{e^{ihx} - e^{-ihx}}{2h} \right)^2 dF_X(x) \\ &= \lim_{h \to 0} \int_{-\infty}^{+\infty} \left(\frac{\sin(hx)}{hx} \right)^2 x^2 dF_X(x) \\ &= -\lim_{h \to 0} \int_{-\infty}^{+\infty} \left(\frac{\sin(hx)}{hx} \right)^2 x^2 dF_X(x) \\ &= -\int_{-\infty}^{+\infty} x^2 dF_X(x) \\ &= -\int_{-\infty}^{+\infty} x^2 dF_X(x) \\ &= \int_{-\infty}^{+\infty} x^2 dF_X(x) \le -\varphi_X''(0) \end{split}$$

Spojimo li ovaj i prethodni teorem: ako druga derivacija postoji u 0, onda druga derivacija mora postojati u svim točkama; postoji 2.-moment koji jamči postojanje druge derivacije g. s.

ightharpoonup Pretpostavimo da tvrdnja vrijedi za n=k i pokažimo da vrijedi i za n=k+1. Ako postoji $\varphi_X^{(2k+2)}(0)$, tada postoji i $\varphi_X^{(2k)}(0)$, a, po pretpostavci indukcije, to povlači da je

$$\int_{-\infty}^{+\infty} x^{2k} dF_X(x) = \mathbb{E}\left[X^{2k}\right] < +\infty \Rightarrow \int_{-\infty}^{x} y^{2k} dF_X(y) < +\infty, \forall x \in \mathbb{R}. \quad (**)$$

Ako je $\mathbb{E}\left[X^{2k}\right]=0,$ sve trivijalno vrijedi, stoga pretpostavimo da je

$$\int_{-\infty}^{+\infty} x^{2k} dF_X(x) = \mathbb{E}\left[X^{2k}\right] > 0.$$

Promotrimo funkciju distribucije $G: \mathbb{R} \to \mathbb{R}$,

$$G(x) = \int_{-\infty}^{x} y^{2k} dF_X(y) \Rightarrow dG(y) = y^{2k} dF_X(y) \text{ (g. s.)}$$

 $(0 < G(+\infty) < +\infty$ po (**)) i karakterističnu funkciju

$$\eta(t) := \frac{(-1)^k}{G(+\infty)} \varphi_X^{(2k)}(t) = \frac{i^{2k}}{G(+\infty)} \varphi_X^{(2k)}(t) = \frac{i^{2k}}{G(+\infty)} \int_{-\infty}^{+\infty} (iy)^{2k} e^{ity} dF_X(y) = \int_{-\infty}^{+\infty} e^{ity} \frac{y^{2k} dF_X(y)}{G(+\infty)} dF_X(y) = \frac{i^{2k}}{G(+\infty)} e^{ity} \frac{y^{2k}}{G(+\infty)} e^{ity} \frac{y^{2k}}{G(+\infty)} dF_X(y) = \frac{i^{2k}}{G(+\infty)} e^{ity} \frac{y^{2k}}{G(+\infty)}$$

vjerojatnosne funkcije distribucije

$$x \mapsto \frac{G(x)}{G(+\infty)}.$$

Po pretpostavci indukcije, $\eta''(0)=\frac{(-1)^k}{G(+\infty)}\varphi_X^{(2k+2)}(0)$ postoji i konačna je

$$\overset{\text{baza}}{\Rightarrow}\underbrace{\frac{1}{G(+\infty)}}_{<+\infty}\int_{-\infty}^{+\infty}x^2dG(x)<+\infty.$$

$$\Rightarrow \int_{-\infty}^{+\infty} x^{2k+2} dF_X(x) = \int_{-\infty}^{+\infty} x^2 dG(x) < +\infty$$

 \mathbb{N} APOMENA Znamo li da $\varphi_X^{(2k+1)}(0)$ postoji i konačna je, znamo da postoji $\varphi_X^{(2k)}(0)$, odakle slijedi $\mathbb{E}\left[X^{2k}\right]<+\infty$. Vrijedi li $\varphi_X'(0)\Rightarrow \mathbb{E}\left[|X|\right]<+\infty$? Ne. Napredna D.Z.: nađite kontraprimjer. 23 .

TEOREM

Neka je $\mathbb{E}[|X|^n] < +\infty, \forall n \in \mathbb{N}$ i neka je $\limsup_{n \to \infty} \left[\frac{\mathbb{E}[|X|^n]}{n!} \right]^{1/n} = \frac{1}{R} < +\infty$. Tada za sve $t \in \langle -|R|, |R| \rangle$

$$\varphi_X(t) = \sum_{n=0}^{+\infty} \frac{(it)^n}{n!} \mathbb{E}\left[X^n\right].$$

Dokaz.

Neka je $0 < t_0 < R$. Radijus reda konvergencije potencija barem je $R \Rightarrow \sum_{n=0}^{+\infty} \frac{(it_0)^n}{n!} \mathbb{E}[X^n] < +\infty$.

 $\Rightarrow \forall t \in [-t_0, t_0], \text{ red } \sum_{n=0}^{+\infty} \frac{(it)^n}{n!} \mathbb{E}[X^n] \text{ (apsolutno) konvergira ($\frac{1}{2}$). Prema polaznom teoremu,$

$$\forall n \in \mathbb{N}, \varphi_X(t) = \sum_{k=0}^n \frac{(it)^k}{k!} \mathbb{E}\left[X^k\right] + o_n\left(t^n\right) \text{ i } \underbrace{\left|o\left(t^n\right)\right| \leq \frac{2}{n!} |t|^n \mathbb{E}\left[|X|^n\right]}_{\Rightarrow \lim_{n \to \infty} o(t^n) = 0} \overset{(\diamondsuit)}{\Rightarrow} \varphi_X(t) \sum_{n=0}^{+\infty} \frac{(it)^n}{n!} \mathbb{E}\left[X^n\right], \forall t \in [-t_0, t_0].$$

PRIMJER

(i) Neka su $X \sim N(0,1), n \in \mathbb{N}$. Tada je $\mathbb{E}\left[X^{2n+1}\right] = 0$ i $\mathbb{E}\left[X^{2n}\right] = \frac{(2n)!}{2^n n!}$. Vidimo da je

$$\limsup_{n \to \infty} \left\lceil \frac{\mathbb{E}\left[|X|^n\right]}{n!} \right\rceil^{1/n} = 0 \Rightarrow R = +\infty.$$

To i izravno možemo vidjeti: neka je $t \in \mathbb{R}$.

$$\sum_{n=0}^{+\infty} \frac{(2n)!}{2^n n!} \frac{(it)^{2n}}{(2n)!} = \left[(it)^{2n} = (-t^2)^n \right] = \sum_{n=0}^{+\infty} \frac{1}{n!} \left(-\frac{t^2}{2} \right)^n = e^{-t^2/2} = \varphi_X(t).$$

Pitanje: može li se karakteristična funkcija izraziti preko momenata čim svi momenti postoje? NE! Kontraprimjer:

$$\int_0^{+\infty} x^n e^{-x^{1/4}} dx = 4\Gamma(4n+4) = 4(4n+3)! \Rightarrow \int_0^{+\infty} e^{x^{-1/4}} dx = 4 \cdot 3! = 24$$

 $^{^{23}}$ Aurel Wintner

$$\int_0^{+\infty} x^n e^{-x^{1/4}} \sin\left(x^{1/4}\right) dx = 0$$

$$p>0, q\in\mathbb{C}, \operatorname{Re}q>0, \int_0^{+\infty}t^{p-1}e^{-qt}dt=rac{\Gamma(p)}{q^p}$$

Za p = 4(n+1), q = 1+i,

$$\int_0^{+\infty} x^{\frac{1}{4}[4(n+1)-1]} e^{-(1+i)x} x^{1/4-1} dx = \left[(1+i)^4 = \sqrt{2}^4 e^{4 \cdot i\pi/4} = -4 \right] = \frac{\Gamma(4(n+1))}{(-4)^{n+1}}$$

Za svaki je $0 \le a \le 1$,

$$f_a(x) := \begin{cases} \frac{1}{24} e^{-x^{1/4}} \left(1 - a \sin\left(x^{-1/4}\right) \right), & x \ge 0\\ 0, & x < 0 \end{cases}$$

gustoća vjerojatnosne funkcije distribucije (dakle, slučajne varijable X_a);

$$\int_{-\infty}^{+\infty} f_a(x)dx = \frac{1}{24} \int_0^{+\infty} e^{-x^{1/4}} \left(1 - a \sin\left(x^{-1/4}\right) \right) dx = \underbrace{\frac{1}{24} \int_0^{+\infty} e^{-x^{1/4}} dx}_{=1} - \underbrace{\frac{1}{24} \int_0^{+\infty} e^{-x^{1/4}} \sin\left(x^{1/4}\right) dx}_{=0}$$

$$\mathbb{E}\left[X_a^n\right] = \frac{1}{24} \int_0^{+\infty} x^n e^{-x^{1/4}} \left(1 - a \sin\left(x^{-1/4}\right) \right) dx$$

$$= \underbrace{\frac{1}{24} \int_0^{+\infty} x^n e^{-x^{1/4}} dx}_{4(4n+3)!} - \underbrace{\frac{a}{24} \int_0^{+\infty} x^n e^{-x^{1/4}} \sin\left(x^{1/4}\right) dx}_{=0}$$

$$= \underbrace{\frac{(4n+3)!}{6}} \text{ (ne ovisi o } a \text{)}$$

Za različite $a \in [0,1]$, dolazimo do različitih slučajnih varijabli s različitim funkcijama distribucije (a onda i različitim karakterističnim funkcijama) koje imaju iste momente!

16 Konvolucije (§13.4, Sarapa, 467. – 470. str.)

Vidjeli smo da, na neki način, sumi nezavisnih slučajnih varijabli X+Y odgovara produkt karakterističnih funkcija $\varphi_X\varphi_Y$. Nameće se prirodno pitanje koja je veza između produkta $\varphi_X\varphi_Y$ i funkcija distribucije F_X, F_Y .

DEFINICIJA

Neka su F_1, F_2 ograničene funkcije distribucije na \mathbb{R} $(F_1(+\infty), F_2(+\infty) < +\infty)$.

I dalje je dogovor: $F_1(-\infty) = 0 = F_2(-\infty)$.

Funkcija $y \mapsto F_1(x-y)$ je neprekidna slijeva (zbog -y) (\Rightarrow izmjeriva) i ograničena \Rightarrow integrabilna u odnosu na μ_{F_2} . Definirajmo funkciju $F : \mathbb{R} \to \mathbb{R}$,

$$F(x) = \int_{-\infty}^{+\infty} F_1(x - y) dF_2(y), x \in \mathbb{R}.$$

F nazivamo **konvolucijom** od F_1 i F_2 i pišemo $F = F_1 * F_2$.

- $\square x_1 < x_2 \Rightarrow F_1(x_1 y) \leq F_1(x_2 y), \forall y \in \mathbb{R} \Rightarrow F(x_1) \leq F(x_2) \Rightarrow$ konvolucija je neopadajuća funkcija.
- \square Neka je $x \in \mathbb{R}$ i $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}, x_n \setminus x$ Tada:

$$\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} \int_{-\infty}^{+\infty} F_1(x_n - y) dF_2(y)$$

$$\stackrel{\text{LTDK}}{=} \int_{-\infty}^{+\infty} \lim_{n \to \infty} F_1(x_n - y) dF_2(y)$$

$$\stackrel{F_1 \text{ neprekidna zde-sina}}{=} \int_{-\infty}^{+\infty} F_1\left(\lim_{n \to \infty} x_n - y\right) dF_2(y)$$

$$= \int_{-\infty}^{+\infty} F_1(x - y) dF_2(y)$$

$$= F(x)$$

 \square analogno, puštajući $x \to +\infty$ i pozivajući se na Lebesgueov teorem o dominiranoj konvergenciji, $F(-\infty) = 0, F(+\infty) = F_1(+\infty)F_2(+\infty)$.

 $\Rightarrow F$ je ograničena funkcija distribucije na \mathbb{R} .

TEOREM

Neka su F_1, F_2 ograničene funkcije distribucije i φ_1, φ_2 njihove karakteristične funkcije. Neka je F ograničena funkcija distribucije s karakterističnom funkcijom φ . Tada vrijedi

$$F = F_1 * F_2 \Leftrightarrow \varphi = \varphi_1 \varphi_2.$$

Dokaz.

Ako je $F_1(+\infty)=0$ ili $F_2(+\infty)=0$, tvrdnja trivijalno vrijedi (barem je jedna od μ_{F_1} i μ_{F_2} nul-mjera). U nastavku pretpostavljamo da je i $F_1(+\infty)>0$ i $F_2(+\infty)>0$. Definirajmo nove **vjerojatnosne** funkcije distribucije: $G_1(x):=\frac{F_1(x)}{F_1(+\infty)}$ i $G_2(x):=\frac{F_2(x)}{F_2(+\infty)}$. Tada je $\varphi_{G_1}=\frac{1}{F_1(+\infty)}\varphi_1$ i $\varphi_{G_2}=\frac{1}{F_2(+\infty)}\varphi_2$ pa, BSOMP da je $F_1(+\infty)=1=F_2(+\infty)$. Neka je je $F=F_1*F_2$. Postoje **nezavisne** slučajne varijable X_1,X_2 t. d. je $F_{X_1}=F_1$ i $F_{X_2}=F_2$. Neka je $X=X_1+X_2\Rightarrow \varphi_X=\varphi_{X_1}\varphi_{X_2}=\varphi_1\varphi_2$.

$$F_X(z) = \mathbb{P}(X_1 + X_2 \le z)$$

$$\stackrel{\text{nez.}}{=} \iint_{\{x+y \le z\}} dF_1(x)dF_2(y)$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbb{1}_{\{x+y \le z\}}(x,y)dF_1(x)dF_2(y)$$

$$= \int_{-\infty}^{+\infty} F_1(z-y)dF_2(y)$$

$$= (F_1 * F_2)(z)$$

$$\Rightarrow F_X = F_1 * F_2$$

Sumi nezavisnih slučajnih varijabli odgovara konvolucija njihovih distribucija. Dakle, $\varphi = \varphi_X = \varphi_1 \varphi_2$. A

Obratno, ako je $\varphi = \varphi_1 \varphi_2$, onda $F_1 * F_2$ ima karakterističnu funkciju $\varphi_1 \varphi_2$.

$$\varphi_F = \varphi = \varphi_1 \varphi_2 = \varphi_{F_1 * F_2} \overset{\text{teorem}}{\Rightarrow} F = F_1 * F_2.$$

NAPOMENA

Po prethodnom teoremu, i zbog <u>komutativnosti i asocijativnosti množenja karakterističnih funkcija</u> slijedi:

$$F_1 * F_2 = F_2 * F_1$$

 $F_1 * (F_2 * F_3) = (F_1 * F_2) * F_3$

Ako su X,Y nezavisne i imaju gustoće i izravno raspišemo integral, izlazi sljedeći korolar:

KOROLAR

Neka su X, Y neprekidne nezavisne slučajne varijable i Z := X + Y. Tada je Z neprekidna i vrijedi

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(z - y) f_Y(y) dy = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx, z \in \mathbb{R}.$$

 $C_b(\mathbb{R}) := \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ ograničena i neprekidna} \}$ (C-continuous, b-bounded)

$$U(\mathbb{R}) := \{ f \in C_b(\mathbb{R}) \mid f \text{ uniform no neprekidna} \}.$$

TEOREM

Neka su F, F_1, F_2 ograničene funkcije distribucije. Tada je

$$F = F_1 * F_2 \Leftrightarrow \forall g \in C_b(\mathbb{R}), \int_{-\infty}^{+\infty} g(x) dF(x) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x+y) dF_1(x) dF_2(y).$$

Dokaz.

 \sqsubseteq : Budući da jednakost vrijedi za proizvoljnu funkciju $g \in C_b(\mathbb{R})$, posebno, za svaki $t \in \mathbb{R}$, uzmimo $g(x) := \cos(tx)$ i $g(x) := \sin(tx)$ i $\tilde{g}(x) = \cos(tx) + i\sin(tx) = e^{itx}$:

$$\underbrace{\int_{-\infty}^{+\infty} e^{itx} dF(x)}_{\varphi_F(t)} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{it(x+y)} dF_1(x) dF_2(y) = \underbrace{\left(\int_{-\infty}^{+\infty} e^{itx} dF_1(x)\right)}_{\varphi_{F_1}(t)} \underbrace{\left(\int_{-\infty}^{+\infty} e^{ity} dF_2(y)\right)}_{\varphi_{F_2}(t)}, t \in \mathbb{R}$$

$$\Rightarrow \varphi_F = \varphi_{F_1} \varphi_{F_2} \Rightarrow F = F_1 * F_2$$

 \Rightarrow : Pretpostavimo da je $F = F_1 * F_2$ i neka je $g \in C_b(\mathbb{R})$.

$$\begin{split} \int_a^b g(x)dF(x) &= \lim_{n \to \infty} \sum_{k=1}^{k_n} g(x_{k,n}) \left(F(x_{k,n}) - F(x_{k-1,n}) \right)^{24} \\ &= \left[F(x_{k,n}) = \int_{-\infty}^{+\infty} F_1(x_{k,n} - y) dF_2(y) \right] \\ &= \lim_{n \to \infty} \int_{-\infty}^{+\infty} \sum_{k=1}^{k_n} g(x_{k,n}) \left[F_1(x_{k,n} - y) - F_1(x_{k-1,n} - y) \right] dF_2(y) \\ &\stackrel{\leq \sup_{x \in \mathbb{R}} |g(x)|}{\leq |F_1(x_{0,n})| \leq |F_1(x_{0,n})| \leq |F_1(x_{k-1,n} - y)|} \\ &\stackrel{\text{LTDK}}{=} \int_{-\infty}^{+\infty} \lim_{n \to \infty} \sum_{k=1}^{k_n} g(x_{k,n}) \left[F_1(x_{k,n} - y) - F_1(x_{k-1,n} - y) \right] dF_2(y) \\ &= \int_{-\infty}^{+\infty} \left[\int_{a-y}^{b-y} g(x + y) dF_1(x) \right] dF_2(y) / \lim_{\substack{a \to -\infty \\ b \to +\infty}} \\ &\stackrel{\text{LTDK}}{=} \int_{-\infty}^{+\infty} g(x) dF(x) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x + y) dF_1(x) dF_2(y). \end{split}$$

Sljedeći postupak vrijedi i za konačne mjere.

BSO, promatramo vjerojatnosne mjere. Ako su $\mathbb{P}_1, \mathbb{P}_2$ dvije vjerojatnosne mjere na $(\mathbb{R}, B_{\mathbb{R}})$, za skup $E \in B_{\mathbb{R}}, E+a := \{x+a \mid x \in E\}$, (ako je $E \in B_{\mathbb{R}}, T_{-a}(E+a) = E \in B_{\mathbb{R}}$). $y \mapsto \mathbb{P}_1(E-y) = \int\limits_{\mathbb{R}} \mathbb{1}_{E-y}(t) d\mathbb{P}_1(t)$ je izmjeriva po Fubinijevu teoremu i ograničena \Rightarrow integrabilna po \mathbb{P}_2 Definiramo \mathbb{P} na $(\mathbb{R}, B_{\mathbb{R}})$,

$$\mathbb{P}(E) := \int_{\mathbb{R}} \mathbb{P}_1(E - y) d\mathbb{P}_2(y), E \in B_{\mathbb{R}}. \overset{\text{Fubini}}{\Rightarrow} \mathbb{P}(E) = \int_{\mathbb{R}^2} \underbrace{\mathbb{1}_{E(x + y)}}_{x \in E - y \Leftrightarrow x + y \in E} d(\mathbb{P}_1 \otimes \mathbb{P}_2)(x, y), E \in B_{\mathbb{R}}.$$

 $\Rightarrow \mathbb{P}$ je vjerojatnost na $(\mathbb{R}, B_{\mathbb{R}})$.

Oznaka: $\mathbb{P} = \mathbb{P}_1 * \mathbb{P}_2$.

Kažemo da je \mathbb{P} konvolucija vjerojatnosnih mjera \mathbb{P}_1 i \mathbb{P}_2 .

Posebno, za $a, b \in \mathbb{R}, a < b$,

$$\mathbb{P}_1(\langle a, b | -y \rangle) = \mathbb{P}_1(\{x - y \mid a < x < b\}) = \mathbb{P}_1(x \in \mathbb{R} \mid a - y < x < b - y) = F_1(b - y) - F_1(a - y)$$

za pripadnu funkciju distribucije F_1 .

TEOREM

Neka su $\mathbb{P}, \mathbb{P}_1, \mathbb{P}_2$ vjerojatnosne mjere na $(\mathbb{R}, B_{\mathbb{R}})$ i $\varphi, \varphi_1, \varphi_2$ njihove karakteristične funkcije. Sljedeće su tvrdnje ekvivalentne:

- (i) $\mathbb{P} = \mathbb{P}_1 * \mathbb{P}_2$
- (ii) $\varphi = \varphi_1 \varphi_2$
- (iii) $\forall g \in C_b(\mathbb{R}), \int_{\mathbb{R}} g(x) d\mathbb{P}(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} g(x+y) d\mathbb{P}_1(x) d\mathbb{P}_2(y).$ (\triangle)

Dokaz.

 $(ii) \Leftrightarrow (iii) \mid \text{(prethodna dva teorema)}$

 $\overline{(ii)\Rightarrow(i)}$ Neka su F,F_1,F_2 funkcije distribucije $\mathbb{P},\mathbb{P}_1,\mathbb{P}_2 \stackrel{2:}{\Rightarrow} F=F_1*F_2$. Neka su $a,b\in\mathbb{R},a< b$ i promotrimo

$$\mathbb{P}\left(\langle a,b]\right) = F(b) - F(a) = \int_{\mathbb{R}} \left[F_1(b-y) - F_1(a-y)\right] dF_2(y) = \int_{\mathbb{R}} \mathbb{P}_1\left(\langle a,b] - y\right) d\mathbb{P}_2(y) = \left(\mathbb{P}_1 * \mathbb{P}_2\right) \left(\langle a,b]\right),$$

dakle, \mathbb{P} i $\mathbb{P}_1 * \mathbb{P}_2$ podudaraju se na generirajućem poluprstenu. $\Rightarrow \mathbb{P} = \mathbb{P}_1 * \mathbb{P}_2$.

Podsietnik:

Topološki prostori X

Neka je X topološki prostor, $A, B \subseteq X, A \cap B = \emptyset$. Kažemo da su A i B **separirani okolinama** ako postoje disjunktni otvoreni skupovi U, V t. d. je $A \subseteq U$ i $B \subseteq V$.

Kažemo da su disjunktni A i B separirani funkcijama ako postoji neprekidna funkcija $f: X \to [0,1]$ t. d. je $A \subseteq f^{-1}(\{0\})$ i $B \subseteq f^{-1}(\{1\})$.

Kažemo da je topološki prostor **normalan** ako se svaka dva disjunktna **zatvorena** podskupa mogu **separirati okolinama**.

 \mathbb{R}^n , \mathbb{C}^n su normalni prostori.

LEMA (Urysohnova lema²⁵)

Topološki je prostor **normalan** \Leftrightarrow svaka dva disjunktna **zatvorena** podskupa mogu se **separirati funkcijama**.

²⁴Lebesgue-Stieltjes $\leftarrow dF$

²⁵Urysohn, Pavel Samuilovič (Odesa, 3. veljače 1898. - Batz-sur-Mer, 17. kolovoza 1924.)

17 Slaba konvergencija (§13.5, Sarapa, 470. – 474. str.)

Promatramo izmjeriv prostor $(\mathbb{R}, B_{\mathbb{R}})$ i **konačne** pozitivne mjere.

DEFINICIJA

Niz $(\mu_n)_{n\in\mathbb{N}}$ konačnih mjera $(\mathbb{R}, B_{\mathbb{R}})$ konvergira slabo prema konačnoj mjeri μ na $(\mathbb{R}, B_{\mathbb{R}})$ ako, za svaki $g \in C_b(\mathbb{R})$,

$$\lim_{n\to\infty}\int_{\mathbb{R}}gd\mu_n=\int_{\mathbb{R}}gd\mu.$$

Definicija je smislena jer je $g \in C_b(\mathbb{R})$ integrabilna s obzirom na konačne mjere.

Pišemo $\mu_n \xrightarrow{w} \mu$ ili $\mu = w - \lim_{n \to \infty} \mu_n$ (w-weak)

Uočimo:

Ako je $g \equiv 1, \ \mu_n(\mathbb{R}) \to \mu(\mathbb{R})$. Posebno, ako su $(\mu_n)_{n \in \mathbb{N}}$ vjerojatnosne mjere, μ je vjerojatnosna mjera.

TEOREM

Neka su μ, μ_1, μ_2, \dots konačne mjere na $(\mathbb{R}, B_{\mathbb{R}})$. Sljedeće su tvrdnje ekvivalentne:

$$(i) \mu_n \xrightarrow{w} \mu$$

(ii)
$$\lim_{n\to\infty} \int_{\mathbb{R}} g d\mu_n = \int_{\mathbb{R}} g d\mu, \forall g \in U(\mathbb{R}) \ (U(\mathbb{R}) \subset C_b(\mathbb{R}))$$

(iii)
$$\forall A \subseteq \mathbb{R}, A \text{ zatvoren}, \limsup_{n \to \infty} \mu_n(A) \le \mu(A) \text{ i } \mu_n(\mathbb{R}) \to \mu(\mathbb{R}).$$

(iv)
$$\forall A \subseteq \mathbb{R}, A \text{ otvoren}, \liminf_{n \to \infty} \mu_n(A) \ge \mu(A) \text{ i } \mu_n(\mathbb{R}) \to \mu(\mathbb{R}).$$

(v)
$$\forall A \in B_{\mathbb{R}}$$
 t. d. je $\mu(\partial A) = 0$, $\lim_{n \to \infty} \mu_n(A) = \mu(A)$ $(\partial A = \overline{A} \setminus \text{Int } A)$.

Dokaz.

Očito vrijedi
$$(i) \Rightarrow (ii)$$
 i $(iii) \Leftrightarrow (iv)$

(ii) \Rightarrow (iii) Neka je $A \subsetneq \mathbb{R}$ zatvoren. Za $k \in \mathbb{N}$, definirajmo skup $G_k := \{x \in \mathbb{R} \mid d(x,A) < \frac{1}{k}\}$. $(G_k)_{k \in \mathbb{N}}$ su otvoreni skupovi. Radio da je A zatvoren, $A \cap G_k^c = \emptyset^{27}$, a kako je G_k otvoren, G_k^c je zatvoren.

Dakle, A i G_k^c disjunktni su zatvoreni skupovi u normalnom topološkom prostoru $\stackrel{\text{lema}}{\Rightarrow}$ postoji $g_k \in U(\mathbb{R})$ t. d. je $0 \leq g_k \leq 1, g_k(x) = 1, \forall x \in A$ i $g_k(x) = 0, \forall x \in G_k^c$. Uočimo da $G_1 \supseteq G_2 \supseteq \ldots$ pa, kako je A zatvoren,

$$\bigcap_{k \in \mathbb{R}} G_k = \left\{ x \in \mathbb{R} \mid d(x, A) < \frac{1}{k} \right\} = \left\{ x \in \mathbb{R} \mid d(x, A) = 0 \right\} \stackrel{A \text{ je}}{\stackrel{\text{zatvoren}}{=}} A. *$$

$$\limsup_{n\to\infty}\mu_n(A) = \limsup_{n\to\infty} \int_{\mathbb{R}} \mathbbm{1}_A d\mu_n \overset{g_k \geq 0}{\leq} \limsup_{n\to\infty} \int_{\mathbb{R}} g_k d\mu_n = \lim_{n\to\infty} \int_{\mathbb{R}} g_k d\mu_n = \left[\text{za funkcije } g_k \text{ iz Urysohnove leme} \right]$$

$$= \int_{\mathbb{R}} g_k d\mu \overset{g_k \mid_{G_k^c} = 0}{\leq} \int_{G_k} g_k d\mu \overset{g_k \leq 1}{\leq} \mu(G_k) / \lim_{k\to +\infty}$$

$$\Rightarrow \limsup_{n\to\infty} \mu_n(A) \leq \lim_{k\to +\infty} \mu(G_k) \overset{*}{\underset{k\to +\infty}{\longrightarrow}} \mu\left(\bigcap_{k=1}^{\infty} G_k\right) = \mu(A).$$

Za $g \equiv 1 \in U(\mathbb{R})$, dobivamo $\mu_n(\mathbb{R}) \to \mu(\mathbb{R})$.

 $^{^{\}mathbf{26}}x\mapsto d(x,A)$ je neprekidna

 $^{^{27}}$ Primjer 3.38, 15. str., Difraf, predavanja: $x \in \overline{A} \Leftrightarrow d(x,A) = 0.$

 $(iii)\&(iv) \Rightarrow (v)$ Neka je $A \in B_{\mathbb{R}}$ t. d. je $\mu(\partial A) = 0$. Vrijedi: Int $A \subseteq A \subseteq \overline{A}$.

$$\overline{A} \setminus A \subseteq \overline{A} \setminus \operatorname{Int} A = \partial A \Rightarrow \mu(\overline{A} \setminus A) = 0 \Rightarrow \mu(\overline{A}) = \mu(A)$$

$$A \setminus \operatorname{Int} A \subseteq \overline{A} \setminus \operatorname{Int} A = \partial A \Rightarrow \mu(A \setminus \operatorname{Int} A) = 0 \Rightarrow \mu(\operatorname{Int} A) = \mu(A)$$

$$\lim \sup_{n \to \infty} \mu_n(A) \le \lim \sup_{n \to \infty} \mu_n(\overline{A}) \stackrel{(iii)}{\le} \mu(\overline{A}) = \mu(A)$$

$$\lim \inf_{n \to \infty} \mu_n(A) \ge \lim \inf_{n \to \infty} \mu_n(\operatorname{Int} A) \stackrel{(iv)}{\ge} \mu(\operatorname{Int} A) = \mu(A)$$

$$\liminf_{n \to \infty} \mu_n(A) \ge \liminf_{n \to \infty} \mu_n(\operatorname{Int} A) \stackrel{(iv)}{\ge} \mu(\operatorname{Int} A) = \mu(A)$$

$$\Rightarrow \lim_{n \to \infty} \mu_n(A) = \mu(A), \quad \text{tj., } \mu_n(A) \to \mu(A).$$

 $(v) \Rightarrow (i)$ Neka je $g \in C_b(\mathbb{R})$. $||g|| := \sup_{x \in \mathbb{R}} |g(x)| < M < +\infty$. Definirajmo

$$A = A_g := \{c \in \mathbb{R} \mid \mu(g^{-1}(\{c\})) > 0\}.$$

Uočimo da

$$c_1 \neq c_2 \Rightarrow g^{-1}(\{c_1\}) \cap g^{-1}(\{c_2\}) = \emptyset \overset{\mu(\mathbb{R}) < +\infty}{\Rightarrow} A$$
 je najviše prebrojiv²⁸

Napravimo subdiviziju segmenta [-M, M] (Im $g \subseteq [-M, M]$)

$$[-M, M] = -M = t_0 < t_1 < \dots < t_j = M, t_i \notin A, \forall i = 0, 1, \dots, j, \forall j \in \mathbb{N}.$$

Neka je

$$B_i := \{x \in \mathbb{R} \mid t_i \le g(x) < t_{i+1}\}, i = 0, 1, \dots, j - 1.$$

Budući da je g neprekidna, $g^{-1}(\langle t_i, t_{i+1} \rangle)$ je otvoren skup i $\partial B_i \subseteq g^{-1}(\{t_i, t_{i+1}\})$, ²⁹ $\forall i = 0, 1, \dots, j - 1$. Međutim, $t_i \neq t_{i+1}$ pa je

$$\mu(\partial B_i) \leq \mu\left(g^{-1}\left(\{t_i, t_{i+1}\}\right)\right) = \mu\left(g^{-1}\left(\{t_i\}\right) \cup g^{-1}\left(\{t_{i+1}\}\right)\right) = \mu\left(g^{-1}\left(\{t_i\}\right)\right) + \mu\left(g^{-1}\left(\{t_{i+1}\}\right)\right) \stackrel{t_i, t_{i+1} \notin A}{=} 0.$$

$$\stackrel{(v)}{\Rightarrow} \lim_{n \to \infty} \sum_{i=0}^{j-1} t_i \mu_n(B_i) = \sum_{i=0}^{j-1} t_i \mu(B_i).$$

Promotrimo sada skupove B_0, B_1, \dots, B_{j-1} . Oni su u parovima disjunktni i $\bigcup_{i=1}^{j-1} B_i = \mathbb{R}$ pa je

$$\begin{split} \int_{\mathbb{R}} g d\mu_n &= \sum_{i=0}^{j-1} \int_{B_i} g(x) d\mu_n(x) \text{ i } \int_{\mathbb{R}} g d\mu = \sum_{i=0}^{j-1} \int_{B_i} g(x) d\mu(x). \\ \left| \int_{\mathbb{R}} g d\mu_n - \int_{\mathbb{R}} g d\mu \right| \\ &\leq \left| \int_{\mathbb{R}} g d\mu_n - \sum_{i=0}^{j-1} t_i \mu_n(B_i) \right| + \left| \sum_{i=0}^{j-1} t_i \mu_n(B_i) - \sum_{i=0}^{j-1} t_i \mu(B_i) \right| + \left| \sum_{i=0}^{j-1} t_i \mu(B_i) - \int_{\mathbb{R}} g d\mu \right| \\ &= \left| \sum_{i=0}^{j-1} \int_{B_i} [g(x) - t_i] d\mu_n(x) \right| + \left| \sum_{i=0}^{j-1} t_i \mu_n(B_i) - \sum_{i=0}^{j-1} t_i \mu(B_i) \right| + \left| \sum_{i=0}^{j-1} \int_{B_i} [g(x) - t_i] d\mu(x) \right| \\ &\leq \left| \sum_{i=0}^{j-1} \int_{B_i} (t_{i+1} - t_i) d\mu_n(x) \right| + \left| \sum_{i=0}^{j-1} t_i \mu_n(B_i) - \sum_{i=0}^{j-1} t_i \mu(B_i) \right| + \left| \sum_{i=0}^{j-1} \int_{B_i} (t_{i+1} - t_i) d\mu(x) \right| \\ &\leq \max_{0 \leq i \leq j-1} (t_{i+1} - t_i) \left| \sum_{i=0}^{j-1} \int_{B_i} d\mu_n \right| + \left| \sum_{i=0}^{j-1} t_i \mu_n(B_i) - \sum_{i=0}^{j-1} t_i \mu(B_i) \right| + \max_{0 \leq i \leq j-1} (t_{i+1} - t_i) \left| \sum_{i=0}^{j-1} \int_{B_i} d\mu \right| \end{split}$$

Za $\varepsilon > 0$ i dovoljno finu particiju i dovoljno velik $n \in \mathbb{N}$.

$$\limsup_{n \to \infty} \left| \int_{\mathbb{R}} g d\mu_n - \int_{\mathbb{R}} g d\mu \right| \le 2\varepsilon.$$

²⁸Sjetimo se da je $g: \mathbb{R} \to g(\mathbb{R})$ surjekcija koja inducira particiju domene; $\mathbb{R} = \bigcup_{c \in g(\mathbb{R})} g^{(-1)} \left(\{c\} \right)$ ²⁹Alo su $X \to Y$ topološki prostori i $f: X \to Y$ neprekidna, tada je $\partial f^{-1}(S) \subseteq f^{-1}(\partial S), \forall S \subseteq Y$

 $^{^{\}mathbf{29}}$ Ako su X,Ytopološki prostori i $f:X\to Y$ neprekidna, tada je $\partial f^{-1}(S)\subseteq f^{-1}$

Radimo li s vjerojatnosnim mjerama, onda u 3. i 4. ne moramo zahtijevati da $\mu_n(\mathbb{R}) \to \mu(\mathbb{R})$.

LEMA

Neka su μ, ν konačne mjere na $(\mathbb{R}, B_{\mathbb{R}})$.

$$\int_{\mathbb{R}} g d\mu = \int_{\mathbb{R}} g d\nu, \forall g \in U(\mathbb{R}), \Rightarrow \mu = \nu.$$

Dokaz.

Neka je $A \subseteq \mathbb{R}$, A zatvoren. Kao i prije, neka su $G_k := \{x \in \mathbb{R} \mid d(x,A) < \frac{1}{k}\}, k \in \mathbb{N}$. Vidjeli smo da je $(G_k)_{k \in \mathbb{N}}$ nerastući niz otvorenih skupova t. d. je (zbog zatvorenosti skupa A) $\bigcap_{k=1}^{+\infty} G_k = A$. Prema Urysohnovoj lemi, postoji funkcija $g_k \in U(\mathbb{R}), 0 \le g_k \le 1$ te $g_k(x) = 1, \forall x \in A$ i $g_k(x) = 0, \forall x \in G_k^c$.

$$\mu(A) \le \int_{\mathbb{R}} g_k d\mu = \int_{\mathbb{R}} g_k d\nu \le \nu(G_k), \forall k \in \mathbb{N} / \lim_{k \to +\infty} \Rightarrow \mu(A) \le \nu(A).$$

Analogno, $\nu(A) \leq \mu(A)$, dakle, $\mu(A) = \nu(A), \forall A \in B_{\mathbb{R}}, A$ zatvoren. Budući da su konačne mjere regularne na Borelovoj σ -algebri, tvrdnja vrijedi za svaki Borelov skup.

Promatramo **ograničene** funkcije distribucije uz konvenciju $F(-\infty) = 0$.

C'(F)-skup točaka neprekidnosti i $\pm \infty$, tj., $C'(F) = C(F) \cup \{\pm \infty\}$.

Svaka je ograničena funkcija distribucije F u 1-1 korespondenciji s konačnom mjerom μ_F .

Primijetimo da, $\forall x \in \mathbb{R}, F_{\delta_{\{n\}}}(x) \to 0$, što nije funkcija distribucije. Jedan način kako razriješiti tu dihotomiju pojačati je pojam slabe konvergencije za funkcije distribucije. Ideja je promatrati prošireni skup točaka neprekidnosti, tj, $C'(F) = C(F) \cup \{\pm \infty\}$. Onda uvodimo pojačani pojam slabe konvergencije (koristit ćemo istu oznaku):

DEFINICIJA

Niz ograničenih funkcija distribucije $(F_n)_{n\in\mathbb{N}}$ slabo konvergira prema ograničenoj funkciji distribucije F ako za svaki $x\in C'(F)$,

$$\lim_{n \to \infty} F_n(x) = F(x).$$

Dovoljno je promatrati točke $x \in C'(F) \setminus \{-\infty\} = C'(F) \cap \mathbb{R} \cup \{+\infty\}.$

$$F_n(+\infty) \to F(+\infty) \Leftrightarrow \mu_{F_n}(\mathbb{R}) \to \mu_F(\mathbb{R}).$$

Pišemo $F_n \xrightarrow{w} F$.

Ako je $(F_n)_{n\in\mathbb{N}}$ niz **vjerojatnosnih** funkcija distribucije, riječ je o konvergenciji po distribuciji:

$$F_n \xrightarrow{w} F \Leftrightarrow X_n \xrightarrow{\mathcal{D}} X.$$

Uočimo, sada više $F_{\delta_{\{n\}}} \not\stackrel{w}{\longrightarrow} 0$.

TEOREM

Neka su $\mu, \mu_1, \mu_2, \ldots$ konačne mjere na $(\mathbb{R}, B_{\mathbb{R}})$ i neka su F, F_1, F_2, \ldots pripadne funkcije distribucije. Tada

$$\mu_n \xrightarrow{w} \mu \Leftrightarrow F_n \xrightarrow{w} F.$$

Dokaz.

 $F(-\infty) = 0$ pa, uzmemo li $a, b \in C(F), a < b$,

$$F_n(\langle a, b |) = F_n(b) - F_n(a) \text{ i } F(\langle a, b |) = F(b) - F(a)$$

$$F_n \xrightarrow{w} F \Rightarrow \forall a, b \in C'(F) \cap \mathbb{R}, a < b, F_n(\langle a, b \rangle) \to F(\langle a, b \rangle) (*).$$

$$\underbrace{\mu_n\left(\langle a,b\right]\right)}_{F_n(b)-F_n(a)} \to \underbrace{\mu\left(\langle a,b\right]\right)}_{F(b)-F(a)}.$$

 \Leftarrow : Ideja je iskoristiti karakterizaciju (v) (otvorenim skupovima) iz prethodnog teorema. Neka je $A \subseteq \mathbb{R}$ otvoren $\Rightarrow A = \bigcup_{k=1}^{+\infty} I_k$, gdje su $(I_k)_{k \in \mathbb{N}}$ u parovima disjunktni otvoreni intervali.

$$\liminf_{n \to \infty} \mu_n(A) = \liminf_{n \to \infty} \sum_{k=1}^{+\infty} \mu_n(I_k) \stackrel{\text{Fatou}}{\geq} \sum_{k=1}^{+\infty} \liminf_{n \to \infty} \mu_n(I_k).$$

Neka je $\varepsilon > 0$. $[C(F)]^c$ je najviše prebrojiv pa

$$\forall k \in \mathbb{N}, \exists I_k' \subseteq I_k, I_k' = \langle a_k, b_k], a_k, b_k \in C(F) \text{ i } \mu(I_k') \ge \mu(I_k) - \frac{\varepsilon}{2^k}.$$

$$\lim_{n \to \infty} \inf \mu_n(I_k) \ge \liminf_{n \to \infty} \mu_n(I_k') \stackrel{(*)}{=} \mu(I_k') \ge \mu(I_k) - \frac{\varepsilon}{2^k}$$

$$\Rightarrow \lim_{n \to \infty} \inf \mu_n(A) \ge \sum_{k=1}^{+\infty} \mu(I_k') \ge \sum_{k=1}^{+\infty} \mu(I_k) - \frac{\varepsilon}{2^k} = \sum_{k=1}^{+\infty} \mu(I_k) - \varepsilon = \mu(A) - \varepsilon / \lim_{\varepsilon \to 0^+}.$$

$$\Rightarrow \liminf_{n \to \infty} \mu_n(A) \ge \mu(A)$$

$$\stackrel{\text{karakte-}}{\Rightarrow} \mu_n \stackrel{w}{\longrightarrow} \mu.$$

18 Prohorovljev teorem (§13.5, Sarapa, 475. – 479. str.)

KOROLAR (poopćeni Helly-Brey teorem)

Neka je $(F_n)_{n\in\mathbb{N}}$ niz **ograničenih** funkcija distribucije koji slabo konvergira prema ograničenoj funkciji distribucije F. Tada

$$\lim_{n \to \infty} \int_{-\infty}^{+\infty} g dF_n = \int_{-\infty}^{+\infty} g dF, \forall g \in C_b(\mathbb{R}).$$

TEOREM (Helly)

Neka je $(F_n)_{n\in\mathbb{N}}$ niz funkcija distribucije na \mathbb{R} i neka je $F_n(-\infty) = 0, \forall n \in \mathbb{N}$ i neka $\exists M < +\infty, F_n(+\infty) \leq M, \forall n \in \mathbb{N}$. Tada postoji funkcija distribucije F i podniz $(F_{n_k})_{k\in\mathbb{N}}$ t. d. $F_{n_k}(x) \to F(x), \forall x \in C(F)$.

Dokaz.

Neka je $D:=\{x_1,x_2,\ldots\}$ prebrojiv i gust podskup od \mathbb{R} . Promatramo niz $(F_n(x_1))_{n\in\mathbb{N}}\subset [0,M]$. \Rightarrow postoji podniz $(F_{1_j})_{j\in\mathbb{N}}$ niza $(F_n)_{n\in\mathbb{N}}$ t. d. je $\lim_{j\to+\infty}F_{1_j}(x_1)=y_1\in [0,M]$. Promatramo niz $(F_{1_j}(x_2))_{j\in\mathbb{N}}\subset [0,M]$. \Rightarrow postoji podniz $(F_{2_j})_{j\in\mathbb{N}}$ niza $(F_{1_j})_{j\in\mathbb{N}}$ t. d. je $\lim_{j\to+\infty}F_{2_j}(x_2)=y_2\in [0,M]$. Promatramo niz $(F_{m-1,j}(x_m))_{j\in\mathbb{N}}\subset [0,M]$. \Rightarrow postoji podniz $(F_{m_j})_{j\in\mathbb{N}}$ niza $(F_{m-1,j})_{j\in\mathbb{N}}$ t. d. je $\lim_{j\to+\infty}F_{m_j}(x_m)=y_m\in [0,M]$. Ovako dolazimo do niza $(y_m)_{m\in\mathbb{N}}\subset [0,M]$. Definirajmo funkciju $F_D:D\to\mathbb{R}$,

$$F_D(x_i) := y_i, j \in \mathbb{N}$$

i $F_{n_k} := F_{kk}, k \in \mathbb{N}$. Sada vidimo

$$\lim_{k \to +\infty} F_{n_k}(x) = F_D(x), \forall x \in D$$

$$\left(\lim_{j \to +\infty} F_{kj}(x_m) = y_m, \forall k \ge m \Rightarrow \lim_{k \to +\infty} F_{kk}(x_m) = y_m.\right)$$

$$x, y \in D, x < y \Rightarrow F_{n_k}(x) \le F_{n_k}(y) / \lim_{k \to +\infty} \Rightarrow F_{n_k}(x) \le F_{n_k}(y).$$
Sada definirajmo $F : \mathbb{R} \to [0, M]$,

$$F(x) := \inf \{F_D(y) \mid y \in D, y > x\}, x \in \mathbb{R} \text{ (radi neprekidnosti zdesna)}^{30}$$

Tvrdimo da je ovako definirana F neprekidna zdesna.

Neka je $x \in \mathbb{R}$ i $(z_n)_{n \in \mathbb{N}}$ t. d. $z_n \searrow x$. Niz $(F(z_n))_{n \in \mathbb{N}}$ je nerastuć i ograničen $\Rightarrow \exists b \in \mathbb{R}$, $b = \lim_{n \to \infty} F(z_n) \geq F(x)$. Tvrdimo da je b = F(x). Pretpostavimo suprotno, tj. da je b > F(x). $\exists y_0 \in D, x < y_0, F_D(y_0) < b$ (inače bi bilo $F(x) \geq b$). Za dovoljno velike $n \in \mathbb{N}, x < z_n < y_0$. $\Rightarrow F(z_n) \leq F(y_0) < b / \lim_{n \to \infty} \Rightarrow b < b$, kontradikcija! Dakle, F je neprekidna zdesna. Sveukupno, F je

- ograničena
- neopadajuća
- neprekidna zdesna
- $\Rightarrow F$ je ograničena funkcija distribucije. Još preostaje dokazati da je

$$\lim_{k \to +\infty} F_{n_k}(x) = F(x), \forall x \in C(F) \cap \mathbb{R}.$$

Neka je $x \in C(F), y \in D, x < y$

$$\limsup_{k \to +\infty} F_{n_k}(x) \leq \limsup_{k \to +\infty} F_{n_k}(y) = F_D(y) / \inf_{\substack{x < y \\ y \in D}} \Rightarrow \limsup_{k \to +\infty} F_{n_k}(x) \leq F(x).$$

Neka je sada z < x. Budući da je D gust u \mathbb{R} , $\exists y \in D, z < y < x$.

$$F(z) \leq F_D(y) = \lim_{k \to +\infty} F_{n_k}(y) \leq \liminf_{k \to +\infty} F_{n_k}(x)/z \nearrow x \Rightarrow F(x-) \leq \liminf_{k \to +\infty} F_{n_k}(x).$$

 $^{^{30}}$ slično kako smo eksponencijalnu funkciju proširili s $\mathbb Q$ na $\mathbb R$ preko supremuma

No, $x \in C(F) \Rightarrow F(x) = F(x-)$. Dakle, dobili smo:

$$\lim_{k \to +\infty} \sup_{x \to +\infty} F_{n_k}(x) \le F(x) \le \lim_{k \to +\infty} \inf_{x \to +\infty} F_{n_k}(x) \Rightarrow \lim_{k \to +\infty} F_{n_k}(x) = F(x).$$

PRIMJER(ograničen niz funkcija distribucije koji nema slabo konvergentan podniz) Neka je, za svaki $n \in \mathbb{N}$, F_n funkcija distribucije slučajne varijable identički jednake n, tj.,

$$F_n(x) = \begin{cases} 0, & x < n \\ 1, & x \ge n \end{cases}.$$

Primijetimo da, $\forall x \in \mathbb{R}, \exists n_x \in \mathbb{N}, F_n(x) = 0, \forall n \geq n_x \text{ i } F_n(-\infty) = 0, F_n(+\infty) = 1, \forall n \in \mathbb{N}.$ Neka je $(F_{n_k})_{k \in \mathbb{N}}$ podniz od $(F_n)_{n \in \mathbb{N}}$ koji slabo konvergira prema nekoj funkciji distribucije F. Tada, $\forall a, b \in \mathbb{R}, a < b, F(b) - F(a) = 0$ (naime, $\forall n_k \geq n_b, F_{n_k}(a) = F_{n_k}(b) = 0$), a $F_{n_k}(+\infty) - F_{n_k}(-\infty) = 1, \forall k \in \mathbb{N}$ pa zaključujemo da ne vrijedi $F_{n_k}(+\infty) \to F(+\infty)$ i $F_{n_k}(-\infty) \to F(-\infty)$, što je kontradikcija!

Neka je \mathcal{M} familija konačnih mjera na $(\mathbb{R}, B_{\mathbb{R}})$.

DEFINICIJA

 \mathcal{M} je **napeta** familija (eng. tight, uniformly tight) ako

$$\forall \varepsilon > 0, \exists K_{\varepsilon} \subset \mathbb{R} \text{ kompaktan}, \forall \mu \in \mathcal{M}, \mu (\mathbb{R} \setminus K_{\varepsilon}) < \varepsilon.$$

DEFINICIJA (više pojam nizovne kompaktnosti)

 \mathcal{M} je **relativno kompaktna** ako svaki niz u \mathcal{M} ima podniz koji **slabo konvergira** prema **konačnoj** mjeri na $(\mathbb{R}, B_{\mathbb{R}})$.

Uz familiju $\mathcal{M} = \{\mu_i\}_{i \in I}$ uvijek možemo vezati familiju $\mathcal{K} = \{F_{\mu_i}\}_{i \in I}$ pripadnih funkcija distribucija. Reći ćemo da je \mathcal{K} napeta (relativno kompaktna) ako je pripadna familija \mathcal{M} napeta (relativno kompaktna).

TEOREM (Prohorov)

Neka je $\mathcal{K} = \{F_i\}_{i \in I}$ familija funkcija distribucija na \mathbb{R} t. d. je $F_i(-\infty) = 0, F_i(+\infty) \leq M, \forall i \in I$. Tada je familija \mathcal{K} napeta $\Leftrightarrow \mathcal{K}$ je relativno kompaktna.

Dokaz.

⇒: Pretpostavimo da je \mathcal{K} napeta i neka je $(F_n)_{n\in\mathbb{N}}$ proizvoljan niz u \mathcal{K} . Po Hellyjevom teoremu, postoji podniz $(F_{n_k})_{k\in\mathbb{N}}$ i funkcija distribucije F t. d. je $\lim_{k\to\infty}F_{n_k}(x)=F(x), \forall x\in C'(F)\cap\mathbb{R}$. Nadalje, $F(+\infty)\leq M$ ($\Rightarrow \mu_F$ je konačna). Budući da je \mathcal{K} napeta, za proizvoljan $\varepsilon>0, \exists a,b\in C'(F)\cap\mathbb{R}$,

$$\begin{split} \mu_{F_n}(\mathbb{R}\setminus\langle a,b]) < \varepsilon, \forall n \geq 1, \\ \mu_F(\mathbb{R}\setminus\langle a,b]) < \varepsilon \\ \Rightarrow [F_n(+\infty) - F_n(b)] + [F_n(a) - F_n(-\infty)] < \varepsilon, \forall n \geq 1 \\ [F(+\infty) - F(b)] + [F(a) - F(-\infty)] < \varepsilon \end{split}$$

[[Budući da je μ_F konačna mjera, za $\varepsilon > 0$,

$$\exists \tilde{a} = \tilde{a}(\varepsilon), \tilde{b} = \tilde{b}(\varepsilon), \mu_F\left(\left\langle \tilde{a}, \tilde{b} \right|\right) < \varepsilon$$

pa uzmemo

$$\tilde{\tilde{a}} := \min \left\{ a, \tilde{a} \right\}, \tilde{\tilde{b}} := \max \left\{ b, \tilde{b} \right\}$$

]] Neka je $x \in C'(F) \cap \mathbb{R}, \exists k_0 \in \mathbb{R}$ t. d. je $|F_{n_k}(x) - F(x)| < \varepsilon$ i $|F_{n_k}(b) - F(b)| < \varepsilon, \forall k \geq k_0$. Vrijedi

$$\begin{split} &[F(+\infty) - F(x)] - [F_{n_k}(+\infty) - F_{n_k}(x)] \\ &= [F(+\infty) - F(b)] - \underbrace{[F_{n_k}(+\infty) - F_{n_k}(b)]}_{\geq 0} + [F(b) - F_{n_k}(b)] - [F(x) - F_{n_k}(x)] \\ &\leq [F(+\infty) - F(b)] + |F(b) - F_{n_k}(b)| + |F(x) - F_{n_k}(x)| \leq 3\varepsilon, \forall k \geq k_0 \end{split}$$

 $^{^{31}}$ Nije dovoljno pretpostaviti, kao što piše u knjizi prof. Sarape, da $\exists M>0, \forall i\in I, F_i(+\infty)-F_i(-\infty)\leq M.$ Naime, uzmemo li niz funkcija distribucije $F_n:=\mathbbm{1}_{[0,+\infty)}+n,$ vidimo $F_n(+\infty)-F_n(-\infty)=\mathbbm{1}_{[0,+\infty)}.$ Međutim, uzmemo li $G_n(x)=F_n(x)-n=\mathbbm{1}_{[0,+\infty)}=G.$ $\lim_{n\to\infty}F_n(-\infty)=+\infty$

Slično,

$$\begin{aligned} [F_{n_k}(+\infty) - F_{n_k}(x)] - [F(+\infty) - F(x)] &\leq 3\varepsilon, \forall k \geq k_0 \\ \Rightarrow |[F(+\infty) - F(x)] - [F_{n_k}(+\infty) - F_{n_k}(x)]| &\leq 3\varepsilon, \forall k \geq k_0. \\ |F(+\infty) - F_{n_k}(+\infty)| &\leq |F(+\infty) - F(x) - F_{n_k}(+\infty) + F_{n_k}(x)| + |F(x) - F_{n_k}(x)| \leq 3\varepsilon + \varepsilon = 4\varepsilon. \\ \Rightarrow F(+\infty) &= \lim_{k \to \infty} F_{n_k}(+\infty). \end{aligned}$$

 \leftarrow : Neka je $\mathcal K$ relativno kompaktna i pretpostavimo suprotno, tj., da $\mathcal K$ nije napeta. To znači da

$$\exists \varepsilon > 0, \forall n \in \mathbb{N}, \exists F_n \in \mathcal{K}, \mu_{F_n} (\mathbb{R} \setminus [-n, n]) \geq \varepsilon.$$

Time smo dobili niz $(F_n)_{n\in\mathbb{N}}\subseteq\mathcal{K}$. Budući da je \mathcal{K} relativno kompaktna, postoji ograničena funkcija distribucije i podniz $(F_{n_k})_{k\in\mathbb{N}}$ niza $(F_n)_{n\in\mathbb{N}}$ t. d. $F_{n_k} \xrightarrow{w} F$. Za $n \in \mathbb{N}$, promotrimo zatvoreni skup $\mathbb{R}\setminus \langle -n,n\rangle$. Iz karakterizacije (iv) slabe konvergencije, znamo

$$\boxed{0 < \varepsilon} \le \limsup_{k \to +\infty} \mu_{F_{n_k}} \left(\mathbb{R} \setminus \langle -n, n \rangle \right) \stackrel{(iv)}{\le} \boxed{\mu_F \left(\mathbb{R} \setminus \langle -n, n \rangle \right), \forall n \in \mathbb{N}},$$

što je kontradikcija s činjenicom da je μ_F konačna mjera jer su konačne mjere neprekidne s obzirom na nerastuće događaje i stoga μ_F ($\mathbb{R} \setminus \langle -n, n \rangle$) $\to 0$!

KOROLAR

Neka je $(\mathbb{P}_n)_{n\in\mathbb{N}}$ napet niz vjerojatnosnih mjera na $(\mathbb{R}, B_{\mathbb{R}})$. Ako svaki slabo konvergentan podniz niza $(\mathbb{P}_n)_{n\in\mathbb{N}}$ konvergira prema istoj vjerojatnosnoj mjeri \mathbb{P} , tada $\mathbb{P}_n \xrightarrow{w} \mathbb{P}$.

Dokaz.

Pretpostavimo suprotno, tj. da $\mathbb{P}_n \stackrel{w}{\to} \mathbb{P}$. Tada postoji $g \in C_b(\mathbb{R})$,

$$\int_{\mathbb{R}} g d\mathbb{P}_n \nrightarrow \int_{\mathbb{R}} g d\mathbb{P}.$$

Po Heineovoj karakterizaciji, postoji $\varepsilon > 0$ i podniz $\left(\int_{\mathbb{R}} g d\mathbb{P}_{n_k} \right)_{k \in \mathbb{N}}$ niza $\left(\int_{\mathbb{R}} g d\mathbb{P}_n \right)_{n \in \mathbb{N}}$ t. d. je

$$\left| \int_{\mathbb{R}} g d\mathbb{P}_{n_k} - \int_{\mathbb{R}} g d\mathbb{P} \right| \ge \varepsilon, \forall k \in \mathbb{N}$$

Ali, i podniz $(\mathbb{P}_{n_k})_{k\in\mathbb{N}}$ niz je u **napetoj** familiji $(\mathbb{P}_n)_{n\in\mathbb{N}}$ koji zadovoljava uvjete Prohorovljeva teorema pa postoji podniz $(\mathbb{P}_{m_j})_{j\in\mathbb{N}}$ (niza $(\mathbb{P}_{n_k})_{k\in\mathbb{N}}$) koji slabo konvergira prema nekoj vjerojatnosnoj mjeri Q. Međutim, uvjeti korolara povlače da je $\mathbb{P}=Q$. Stoga,

$$\int_{\mathbb{R}} g d\mathbb{P}_{m_j} \to \int_{\mathbb{R}} g d\mathbb{P},$$

kontradikcija!

KOROLAR (karakterizacija slabe konvergencije napetog niza vjerojatnosnih mjera na $(\mathbb{R}, B_{\mathbb{R}})$) Neka je $(\mathbb{P}_n)_{n\in\mathbb{N}}$ napet niz vjerojatnosnih mjera na $(\mathbb{R}, B_{\mathbb{R}})$. Niz $(\mathbb{P}_n)_{n\in\mathbb{N}}$ slabo konvergira prema nekoj vjerojatnosnoj mjeri \Leftrightarrow

$$\forall t \in \mathbb{R}, \exists \lim_{n \to \infty} \varphi_n(t),$$

pri čemu je φ_n karakteristična funkcija od \mathbb{P}_n .

(riječ je o običnoj konvergenciji po točkama karakterističnih funkcija)

Dokaz.

 \Rightarrow : Jasno je jer za funkciju $g \in C_b(\mathbb{R})$ uzmemo $\sin(tx), \cos(tx)$ i imamo konvergenciju integrala preko kojih su φ_n definirane.

 $\stackrel{\textstyle \longleftarrow}{\longleftarrow} : \text{ Neka za svaki } t \in \mathbb{R} \text{ postoji } \lim_{n \to \infty} \varphi_n(t) = \lim_{n \to \infty} \int_{\mathbb{R}} e^{itx} d\mathbb{P}_n(x). \text{ Po Prohorovljevu teoremu, postoji } \\ \text{podniz } (\mathbb{P}_{n_k})_{k \in \mathbb{N}} \text{ niza } (\mathbb{P}_n)_{n \in \mathbb{N}} \text{ i vjerojatnosna mjera } \mathbb{P} \text{ t. d. } \mathbb{P}_{n_k} \xrightarrow{w} \mathbb{P}.$

$$\Rightarrow \lim_{n \to \infty} \varphi_n(t) = \lim_{k \to +\infty} \varphi_{n_k}(t) \stackrel{\mathbb{P}_{n_k} \stackrel{w}{\to} \mathbb{P}}{=} \varphi_{\mathbb{P}}(t)$$

Pretpostavimo da $\mathbb{P}_n \stackrel{w}{\nrightarrow} \mathbb{P}$. Za proizvoljan $t \in \mathbb{R}$, obratom po kontrapoziciji, iz prethodnog korolara, slijedi da

$$\exists Q \neq \mathbb{P} \text{ i podniz } (\mathbb{P}_{m_k})_{k \in \mathbb{N}} \text{ t. d. } \mathbb{P}_{m_k} \xrightarrow{w} Q. \Rightarrow \varphi_{\mathbb{P}}(t) = \lim_{n \to \infty} \varphi_n(t) = \lim_{k \to +\infty} \varphi_{m_k}(t) \stackrel{\mathbb{P}_{m_k} \xrightarrow{w} Q}{=} \varphi_Q(t)$$

$$\Rightarrow \varphi_{\mathbb{P}}(t) = \varphi_{Q}(t), \forall t \in \mathbb{R} \stackrel{\text{teorem}}{\Rightarrow} \mathbb{P} = Q,$$

kontradikcija. Dakle, $\mathbb{P}_n \xrightarrow{w} \mathbb{P}$.

19 Teorem neprekidnosti (§13.6, Sarapa, 480. – 485. str.)

Sljedeća lema govori nam kako je ponašanje repa distribucije opisano ponašanjem karakteristične funkcije oko 0.

LEMA

Neka je F vjerojatnosna funkcija distribucije na $\mathbb R$ i φ njezina karakteristična funkcija. Tada

$$\exists K>0, \forall a>0, \int_{\left\{|x|\geq \frac{1}{a}\right\}} dF(x) \leq \frac{K}{a} \int_0^a \left[1-\operatorname{Re}\varphi(t)\right] dt.$$

Dokaz.

$$\operatorname{Re} \varphi(t) = \int_{-\infty}^{+\infty} \cos(tx) dF(x)$$

$$\int_{-\infty}^{+\infty} dF(x) = 1$$

$$\frac{1}{a} \int_{0}^{a} \left[1 - \operatorname{Re} \varphi(t) \right] dt = \frac{1}{a} \int_{0}^{a} \left[\int_{-\infty}^{+\infty} \left(1 - \cos(tx) \right) dF(x) \right] dt$$

$$\stackrel{\text{Fubini}}{=} \frac{1}{a} \int_{-\infty}^{+\infty} \left[\int_{0}^{a} \left(1 - \cos(tx) \right) dt \right] dF(x)$$

$$= \int_{-\infty}^{+\infty} \left(1 - \frac{\sin(ax)}{ax} \right) dF(x)$$

$$\geq \inf_{|y| \geq 1} \left(1 - \frac{\sin y}{y} \right) \int_{\{|ax| \geq 1\}} dF(x)$$

$$\stackrel{\sum_{1 = \sin 1 \geq \frac{1}{7}}{K}}{\sum_{1 \leq 1 \leq \frac{1}{4}}} dF(x).$$

TEOREM

Neka je $(F_n)_{n\in\mathbb{N}}$ niz vjerojatnosnih funkcija distribucije, a $(\varphi_n)_{n\in\mathbb{N}}$ niz odgovarajućih karakterističnih funkcija $(\varphi_{F_n} = \varphi_n)$.

i) Ako $F_n \xrightarrow{w} F$, pri čemu je F vjerojatnosna funkcija distribucije, tada

$$\varphi_n(t) \to \varphi(t), \forall t \in \mathbb{R}, \varphi = \varphi_F.$$

(ii) ako $\forall t \in \mathbb{R}, \exists \varphi(t) = \lim_{n \to \infty} \varphi_n(t)$ i ako je funkcija φ neprekidna u t = 0, tada je φ karakteristična funkcija vjerojatnosne funkcije distribucije i $F_n \stackrel{w}{\longrightarrow} F$.

Dokaz.

- (i) Slijedi izravno iz definicije slabe konvergencije (74. str.) primijenjene na $\sin(tx)$, $\cos(tx)$.
- (ii) Pretpostavimo da $\varphi_n(t) \to \varphi(t), \forall t \in \mathbb{R}$ i da je φ neprekidna u 0. Svakoj vjerojatnosnoj funkciji distribucije F_n odgovara jedna vjerojatnosna mjera \mathbb{P}_n na $(\mathbb{R}, B_{\mathbb{R}})$. Tvrdimo da je niz $(\mathbb{P}_n)_{n \in \mathbb{N}}$ napet. Neka je a > 0 i promotrimo

$$\mathbb{P}_n\left(\mathbb{R}\setminus\left\langle-\frac{1}{a},\frac{1}{a}\right\rangle\right) = \int_{\left\{|x|\geq\frac{1}{a}\right\}} dF_n(x) \overset{\text{LEMA}}{\leq} \frac{K}{a} \int_0^a \underbrace{\left[1-\operatorname{Re}\varphi_n(t)\right]}_{\in[0,2]} dt \bigg/ n \to +\infty$$

$$\overset{\text{LTDK}}{\Rightarrow} \limsup_{n\to\infty} \mathbb{P}_n\left(\mathbb{R}\setminus\left\langle-\frac{1}{a},\frac{1}{a}\right\rangle\right) \leq \frac{K}{a} \int_0^a \left[1-\operatorname{Re}\varphi(t)\right] dt$$

$$\varphi(0) = 1 \overset{\text{neprekidnost}}{\Rightarrow} \lim_{a\searrow 0} \frac{K}{a} \int_0^a \left[1-\operatorname{Re}\varphi(t)\right] dt = 0^{32}$$

Dakle, $\forall \varepsilon, \exists a > 0$, (a dovoljno mal) t. d. je

$$\limsup_{n\to\infty} \mathbb{P}_n\left(\mathbb{R}\setminus\left\langle -\frac{1}{a},\frac{1}{a}\right\rangle\right) \leq \frac{\varepsilon}{2},$$

³²Guljaš,§5.5. Primitivna funkcija

dakle, $\forall \varepsilon > 0, \exists a > 0, n_{\varepsilon} \in \mathbb{N}$ (a dovoljno mal) t. d. je

$$\mathbb{P}_n\left(\mathbb{R}\setminus\left\langle -\frac{1}{a},\frac{1}{a}\right\rangle\right) \le \varepsilon, \forall n \ge n_{\varepsilon}.$$

Budući da je \mathbb{P}_n konačna mjera, za svaki $n \in \mathbb{N}$, za dani $\varepsilon > 0$, možemo pronaći $a_1, \ldots, a_{n_{\varepsilon}} > 0$ t. d. je $\mathbb{P}_i\left(\mathbb{R} \setminus \left\langle -\frac{1}{a_i}, \frac{1}{a_i} \right\rangle \right) \le \varepsilon, \forall i = 1, \ldots, n_{\varepsilon} - 1$. Uzmemo li $a_{\varepsilon} := \min\left\{a, a_1, \ldots, a_{n_{\varepsilon}}\right\}$, slijedi

$$\mathbb{P}_n\left(\mathbb{R}\setminus\left[-\frac{1}{a_{\varepsilon}},\frac{1}{a_{\varepsilon}}\right]\right)\leq \mathbb{P}_n\left(\mathbb{R}\setminus\left\langle-\frac{1}{a_{\varepsilon}},\frac{1}{a_{\varepsilon}}\right\rangle\right)\leq \varepsilon, \forall n\in\mathbb{N},$$

tj. $(\mathbb{P}_n)_{n\in\mathbb{N}}$ je **napet**. Prema korolaru Prohorovljeva teorema (potrebno: **napetost** i $\varphi_n \to \varphi$ po točkama!!), postoji vjerojatnosna mjera \mathbb{P} na $(\mathbb{R}, B_{\mathbb{R}})$ t. d. $\mathbb{P}_n \xrightarrow{w} \mathbb{P}$.

$$\stackrel{\sin(tx),\cos(tx)\in U(\mathbb{R})}{\Rightarrow} \varphi_n(t) = \int_{-\infty}^{+\infty} e^{itx} d\mathbb{P}_n(x) \to \int_{-\infty}^{+\infty} e^{itx} d\mathbb{P}(x),$$

međutim, po pretpostavci,

$$\varphi_n(t) \to \varphi(t) \Rightarrow \varphi(t) = \int_{-\infty}^{+\infty} e^{itx} d\mathbb{P}(x).$$

 $\Rightarrow \varphi$ je karakteristična funkcija of \mathbb{P} pa je φ karakteristična funkcija i od $F_{\mathbb{P}}$ i $F_n \xrightarrow{w} F_{\mathbb{P}}$.

Sada je zgodan trenutak za spomenuti primjer koji će se kasnije ponoviti na vježbama.

PRIMJER

Neka je $(X_n)_{n\in\mathbb{N}}$ niz nezavisnih slučajnih varijabli t. d. je $X_n\sim N(1,n)$. Ispitajmo li konvergira li niz $(Y_n)_{n\in\mathbb{N}}, Y_N=\frac{X_1+\cdots+X_n}{\sqrt{n}}, n\in\mathbb{N}$. U neformalnom zapisu,

$$Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}} \stackrel{\mathcal{D}}{=} \frac{N\left(n, \sum_{k=1}^n k\right)}{\sqrt{n}} \stackrel{\mathcal{D}}{=} N\left(\sqrt{n}, \frac{n+1}{2}\right).$$

 $(Z_n)_{n\in\mathbb{N}}$ ne konvergira po distribuciji jer, npr., po Teoremu neprekidnosti,

$$\lim_{n \to \infty} |\varphi_{Z_n}(t)| = \lim_{n \to \infty} \left| e^{it\sqrt{n}} \right| e^{-\frac{n+1}{4}t^2} = \begin{cases} 0, & t \neq 0 \\ 1, & t = 0. \end{cases}$$

Dakle, funkcija $\lim_{n\to\infty} \varphi_{Z_n}$ nije neprekidna u 0 pa $(Z_n)_{n\in\mathbb{N}}$ ne može konvergirati po distribuciji.

Familija \mathcal{T} karakterističnih funkcija jest **ekvikontinuirana** ako $\forall \varepsilon > 0, \exists \delta > 0$

$$|h| < \delta \Rightarrow |\varphi(t+h) - \varphi(t)| < \varepsilon, \forall t, \forall \varphi \in \mathcal{T}.$$

PROPOZICIJA

Niz $(\varphi_n)_{n\in\mathbb{N}}$ karakterističnih funkcija koji konvergira prema karakterističnoj funkciji φ jest **ekvikontinuiran**.

Dokaz

Neka je $\varepsilon > 0$. Budući da $\varphi_n \to \varphi$ po točkama, a φ je **karakteristična** funkcija, po Teoremu neprekidnosti, $F_n \stackrel{w}{\longrightarrow} F$ (tj. $\mathcal{K} = (\{F_n\}_{n \in \mathbb{N}})$ je **relativno kompaktna**), gdje su F_n i F vjerojatnosne funkcije distribucije koje odgovaraju redom φ_n i φ .

Po Prohorovljevu teoremu, $\mathcal{K} = \{F_n\}_{n \in \mathbb{N}}$, je **napeta**, tj., $\exists K = K_{\varepsilon} > 0$,

$$\int_{\{|x|>K\}} dF_n(x) \le \varepsilon, \forall n \in \mathbb{N}.$$

Uočimo da postoji $\delta > 0$ t. d.

$$|y| < \delta$$
 i $|x| < K \Rightarrow |e^{ixy} - 1| \le \varepsilon$.

Uočimo da izbor δ ovisi o $\varepsilon;$ δ ovisi o konstanti K, a Kovisi o $\varepsilon.$ Neka je $|h|<\delta.$ Tada

$$|\varphi_n(t+h) - \varphi_n(t)| \le \int_{-\infty}^{+\infty} \left| e^{itx} \left(e^{ihx} - 1 \right) \right| dF_n(x)$$

$$= \int_{-\infty}^{+\infty} \left| e^{ihx} - 1 \right| dF_n(x)$$

$$\le \int_{|x| < K} \varepsilon dF_n(x) + \int_{|x| \ge K} 2dF_n(x)$$

$$\le \varepsilon \underbrace{\int_{\mathbb{R}} dF_n(x)}_{=1} + 2\varepsilon$$

$$= 3\varepsilon.$$

što je i trebalo dokazati.

KOROLAR

Ako niz $(\varphi_n)_{n\in\mathbb{N}}$ karakterističnih funkcija konvergira prema karakterističnoj funkciji φ , tada je konvergencija uniformna na svakom ograničenom intervalu.

Dokaz.

Neka je $\varepsilon > 0$ i promotrimo segment $[a,b] \subset \mathbb{R}$. Neka je $\delta > 0$ kao u dokazu **ekvikontinuiranosti**. Neka je $a := t_0 < t_1 < \ldots < t_k =: b$ subdivizija segmenta [a,b] t. d. je $\max_{0 \le i \le k-1} |t_{i+1} - t_i| < \delta$

$$|\varphi_n(t) - \varphi(t)| \leq |\varphi_n(t) - \varphi_n(t_i)| + |\varphi_n(t_i) - \varphi(t_i)| + |\varphi(t_i) - \varphi(t)|, t \in [t_i, t_{i+1}].$$

$$|\varphi_n(t) - \varphi(t)| \leq |\varphi_n(t) - \varphi_n(t_i)| + |\varphi_n(t_i) - \varphi(t_i)| + |\varphi(t_i) - \varphi(t)|, t \in [t_i, t_{i+1}].$$

TEOREM

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli. Tada red $\sum_{n=1}^{+\infty} X_n$ konvergira po distribuciji \Leftrightarrow konvergira (g. s.)

Ovaj, pomalo neočekivan, skok s konvergencije po distribuciji na konvergenciju (g. s.) moguć je na redovima, ali ne i općenito na slučajnim varijablama.

Skica dokaza.

Dokaz se zasniva na nekoliko tvrdnji. Zapravo, samo treba pokazati smjer " \Rightarrow ". Ideja je prijeći na **simetrizirane** slučajne varijable: $X_n \dashrightarrow X_n^{(s)}$. Može se pokazati:

$$\sum_{n=1}^{+\infty} X_n^{(s)} \text{ konvergira (g. s.)} \Leftrightarrow \text{postoji niz } (a_n)_{n \in \mathbb{N}} \text{ t. d. red } \sum_{n=1}^{+\infty} (X_n - a_n) \text{ konvergira (g. s.)}$$

Ideja: iz konvergencije po distribuciji reda $\sum_{n=1}^{+\infty} X_n$, dokazati konvergenciju (g. s.) reda $\sum_{n=1}^{+\infty} X_n^{(s)}$, a zatim konvergenciju reda $\sum_{n=1}^{+\infty} a_n$.

➤ Ako su $0 \le b_k \le 1, k = 1, ..., n$, onda je $1 - \sum_{k=1}^n b_k \le \prod_{k=1}^n (1 - b_k)$. [[dokaz indukcijom; korak indukcije:

$$\prod_{k=1}^{n+1} (1 - b_k) = \underbrace{\prod_{k=1}^{n} (1 - b_k) - b_{n+1}}_{n} \underbrace{\prod_{k=1}^{n} (1 - b_k)}_{\in [0,1]} \ge 1 - \sum_{k=1}^{n} b_k - b_{n+1} = 1 - \sum_{k=1}^{n+1} b_k.]$$

 $ightharpoonup x \ge 0 \Rightarrow 1 - x \le e^{-x}$. Slijedi:

$$x \in [0, 1] \Rightarrow x = 1 - (1 - x) < e^{1 - x}$$

$$\Rightarrow \prod_{k=1}^{n} (1 - b_k) = 1 - \left(1 - \prod_{k=1}^{n} (1 - b_k)\right) \le \exp\left(-\left(1 - \prod_{k=1}^{n} (1 - b_k)\right)\right) \le \exp\left(-\sum_{k=1}^{n} b_k\right) / \lim_{n \to \infty}$$

$$\Rightarrow \sum_{k=1}^{+\infty} b_k \le \prod_{k=1}^{+\infty} (1 - b_k) \le \exp\left(-\sum_{k=1}^{+\infty} b_k\right).$$

Slijedi: ako $\prod_{k=1}^{+\infty} (1-b_k)$ konvergira prema strogo pozitivnom limesu (tada eksponent $1-\sum_{k=1}^{+\infty} b_k$ mora

biti konačan jer je
$$\lim_{x\to +\infty} e^{-x} = 0$$
), tada $\sum_{k=1}^{+\infty} b_k$ konvergira.

Slučajnoj varijabli X_n pridružimo $\varphi_n := \varphi_{X_n}$. Polazimo od pretpostavke da $\sum_{n=1}^{+\infty} X_n$ konvergira po distribuciji. Promotrimo karakterističnu funkciju $\varphi_{X_n^{(s)}} = |\varphi_n|^2$ **simetrizirane** slučajne varijable $X_n^{(s)}$. Budući da $\text{red } \sum_{n=1}^{+\infty} X_n$ konvergira po distribuciji, niz parcijalnih suma $\left(\sum_{k=1}^n X_k\right)_{n\in\mathbb{N}}$ konvergira po distribuciji.

$$\varphi_{\sum_{k=1}^n X_k} \stackrel{\text{nez.}}{=} \prod_{k=1}^n \varphi_k.$$

Po Teoremu neprekidnosti, $\prod_{k=1}^n \varphi_k$ konvergira prema karakterističnoj funkciji φ kad $n \to +\infty$. Slijedi da $\prod_{k=1}^n |\varphi_k|^2$ konvergira prema karakterističnoj funkciji $|\varphi|^2$ i $\varphi \neq 0$ u okolini 0 jer je φ neprekidna, a $\varphi(0) = 1. \Rightarrow \prod_{n=1}^{+\infty} |\varphi_n(t)|^2$ konvergira prema pozitivnom limesu za t blizu 0.

$$0 < \prod_{n=1}^{+\infty} |\varphi_n(t)|^2 = \prod_{n=1}^{+\infty} \left[1 - \underbrace{\left(1 - |\varphi_n(t)|^2\right)}_{b_n} \right] \Rightarrow \sum_{n=1}^{+\infty} \left(1 - |\varphi_n(t)|^2\right) \text{ konvergira prema konačnom limesu za } t \text{ blizu } 0.$$

Označimo $F_n^{(s)} := F_{X^{(s)}}.$

$$1 - |\varphi_n(t)|^2 \stackrel{\mathbb{R}\ni |\varphi_n^2| = \varphi_n^{(s)}}{=} \int_{-\infty}^{+\infty} (1 - \cos(tx)) dF_n^{(s)}(x) \ge \text{const. Var}\left(X_n^{(s)} \mathbb{1}_{\left\{\left|X_n^{(s)}\right| < c\right\}}\right) / \sum_{n=1}^{+\infty} \text{Var}\left(X_n^{(s)} \mathbb{1}_{\left\{\left|X_n^{(s)}\right| < c\right\}}\right) < +\infty$$

Uočimo da je

$$\sum_{n=1}^{+\infty} \mathbb{E}\left[X_n^{(s)} \mathbb{1}_{\left\{\left|X_n^{(s)}\right| < c\right\}}\right] = 0$$

Pokažemo li da je

točkama. Dalje,

$$\sum_{n=1}^{+\infty} \mathbb{P}\left(\left|X_n^{(s)}\right| \ge c\right) < +\infty,$$

možemo primijeniti Kolmogorovljev teorem o trima redovima i zaključiti da $\sum_{n=1}^{+\infty} X_n^{(s)}$ konvergira (g. s.). Može se pokazati:

$$\frac{1}{t} \int_0^t \left(1 - |\varphi_n(u)|^2 \right) du \ge (1 - \sin 1) \mathbb{P} \left(\left| X_n^{(s)} \right| \ge \frac{1}{t} \right)$$

Nađemo dovoljno mali t t.d. je, za $c=\frac{1}{t},$ $\sum_{n=1}^{+\infty} \mathbb{P}\left(\left|X_n^{(s)}\right| \geq c\right) < +\infty.$

Jednom kad znamo da $\sum_{n=1}^{+\infty} X_n^{(s)}$ konvergira (g. s.) \rightsquigarrow postoji niz $(a_n)_{n\in\mathbb{N}}$ t. d. $\sum_{n=1}^{+\infty} (X_n - a_n)$ konvergira (g. s.) pa, opet po Teoremu neprekidnosti (obratan smjer?), $\prod_{k=1}^{n} e^{-ia_k t} \varphi_k(t)$ konvergira po

$$\prod_{k=1}^{n} e^{-ia_k t} \varphi_k(t) = \exp\left(-it \sum_{k=1}^{n} a_k\right) \prod_{k=1}^{n} \varphi_k(t) \dots \Rightarrow \sum_{k=1}^{+\infty} a_k \text{ konvergira (g. s.)},$$

odakle, konačno, slijedi

$$\sum_{n=1}^{+\infty} X_n \text{ konvergira (g. s.)}.$$

20 Bochner-Hinčinov teorem (§13.7, Sarapa, §13.8, 486. –492. str.)

DEFINICIJA

Funkcija $g: \mathbb{R} \to \mathbb{C}$ je **pozitivno semidefinitna**

$$\forall n \in \mathbb{N}, \forall t_1, \dots, t_n \in \mathbb{R}, \forall \alpha_1, \dots, \alpha_n \in \mathbb{C}, \sum_{j=1}^n \sum_{k=1}^n g(t_j - t_k) \alpha_j \overline{\alpha_k} \ge 0.$$

Karakteristične funkcije imaju ovo svojstvo. Također, ako je g bilo koja **pozitivno semidefinitna** funkcija, tada je to i cg, $\forall c > 0$ te $t \mapsto g(at)$, $\forall a \in \mathbb{R}$.

 \blacktriangleright Neka je φ karakteristična funkcija neke **ograničene** funkcije distribucije F.

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \varphi(t_{j} - t_{k}) \alpha_{j} \overline{\alpha_{k}} = \int_{-\infty}^{+\infty} \left[\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{j} \overline{\alpha_{k}} e^{i(t_{j} - t_{k})x} \right] dF(x)$$

$$= \int_{-\infty}^{+\infty} \left[\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{j} e^{it_{j}x} \overline{\alpha_{k}} e^{it_{k}x} \right] dF(x)$$

$$= \int_{-\infty}^{+\infty} \left| \sum_{j=1}^{n} \alpha_{j} e^{it_{j}x} \right|^{2} dF(x) \ge 0$$

LEMA

Ako je g **pozitivno semidefinitna**, tada je

$$(i) \ g(0) \ge 0,$$

(ii)
$$g(-t) = \overline{g(t)}, \forall t \in \mathbb{R},$$

(iii)
$$|g(t)| \le g(0), \forall t \in \mathbb{R}.$$

Dokaz.

n = 1: Stavimo $t_1 = 0, \alpha_1 = 1. \leadsto g(0) \ge 0.$

$$n=2: t_1=0, t_2=t:$$

$$\underbrace{\frac{\left(|\alpha_{1}|^{2}+|\alpha_{2}|^{2}\right)g(0)}{\in\mathbb{R}}}_{\in\mathbb{R}}+g(t)\alpha_{1}\overline{\alpha_{2}}+g(t)\alpha_{2}\overline{\alpha_{1}}\geq0,\forall\alpha_{1},\alpha_{2}\in\mathbb{C}$$

$$\Rightarrow\forall\alpha_{1},\alpha_{2},g(-t)\alpha_{1}\overline{\alpha_{2}}+g(t)\overline{\alpha_{1}}\alpha_{2}\in\mathbb{R}$$

$$\Rightarrow g(-t)+g(t)\in\mathbb{R}$$

$$\Rightarrow g(-t)+g(t)=\overline{g(-t)}+\overline{g(t)}$$

$$\alpha_{1}=1,\alpha_{2}=-i$$

$$g(-t)i-g(t)i\in\mathbb{R}$$

$$\Rightarrow g(-t)-g(t)\in\mathbb{R}$$

$$\Rightarrow g(-t)-g(t)=-\left(\overline{g(-t)}-\overline{g(t)}\right)=-\overline{g(-t)}+\overline{g(t)}$$

$$\Rightarrow 2g(-t)=2\overline{g(t)}$$

$$\Rightarrow g(-t)=\overline{g(t)}.$$

(iii) Ako je |g(t)|=0, za neki t, onda je za taj t, $|g(t)|=0 \le g(0)$, a ako je |g(t)|>0, za n=2, stavimo $\alpha_1=g(t)$ i $\alpha_2=-|g(t)|$.

$$g(0-0)g(t)\overline{g(t)} - g(0-t)g(t)|g(t)| - g(t-0)\overline{g(t)}|g(t)| + g(t-t)|g(t)|^2 = 2|g(t)|^2g(0) - 2|g(t)|^3 \ge 0/: 2|g(t)|^2 \Rightarrow g(0) - |g(t)| \ge 0$$

$$\Rightarrow g(0) \ge |g(t)|, \forall t \in \mathbb{R}$$

Primijetimo da, ako je q pozitivno semidefinitna funkcija t. d. je g(0) = 0, iz 3. slijedi da je $g \equiv 0$.

PROPOZICIJA

Ako je g pozitivno semidefinitna funkcija neprekidna u 0, onda je g neprekidna na cijelom \mathbb{R} .

Dokaz.

Ako je g(0)=0, tada je to očito jer je u tom slučaju $g\equiv 0$. Promotrimo slučaj g(0)>0. Primijetimo da je $\frac{g}{g(0)}$ i dalje **pozitivno semidefinitna** funkcija pa BSOMP da je g(0)=1. Neka je $n=3,t_1=0,t_2=t,t_3=s,\alpha_3=1$.

$$0 \le (|\alpha_{1}|^{2} + |\alpha_{2}|^{2} + 1|) \underbrace{g(0)}_{=1} + g(t)\alpha_{1}\overline{\alpha_{2}} + g(t)\overline{\alpha_{1}}\alpha_{2} + g(-s)\alpha_{1} - g(s)\overline{\alpha_{1}} + g(t-s)\alpha_{2} + g(s-t)\overline{\alpha_{2}}$$

$$= |\alpha_{1} + \alpha_{2}g(t) + g(s)|^{2} + |\alpha_{2}|^{2} + \underbrace{1}_{|\alpha_{3}|^{2}} + \overline{g(s-t)}\alpha_{2} + g(s-t)\overline{\alpha_{2}} - |g(t)||\alpha_{2}|^{2} - |g(s)|^{2} - \alpha_{2}g(t)\overline{g(s)} - g(s)\overline{\alpha_{2}}\overline{g(t)}$$

$$= |\alpha_{1} + \alpha_{2}g(t) + g(s)|^{2} + (1 - |g(t)|^{2}) |\alpha_{2}|^{2} + (\overline{g(s-t)} - g(t)\overline{g(s)}) \alpha_{2} + (g(s-t) - \overline{g(t)}g(s)) \overline{\alpha_{2}} + (1 - |g(s)|^{2})$$

Kako bismo se oslobodili izraza $\left|\alpha_1+\alpha_2g(t)+g(s)\right|^2$, stavimo $\alpha_1:=-\alpha_2g(t)-g(s), \alpha_2\in\mathbb{C}.$

$$\Rightarrow \left(1-|g(t)|^2\right)|\alpha_2|^2+\left(\overline{g(s-t)}-g(t)\overline{g(s)}\right)\alpha_2+\left(g(s-t)-\overline{g(t)}g(s)\right)\overline{\alpha_2}+\left(1-|g(s)|^2\right)\geq 0, \forall \alpha_2\in\mathbb{C}.\mathbb{C}$$

Tvrdimo da odavde slijedi

$$\left|g(s-t) - \overline{g(t)}g(s)\right|^2 \le \left(1 - |g(t)|^2\right)\left(1 - |g(s)|^2\right) \quad \heartsuit \heartsuit.$$

(1°) Pretpostavimo da je $|g(t)|^2 \neq 1$. Budući da je g(0) = 1, to je, po (iii) iz prethodne leme, $1 - |g(t)|^2 \geq 0$. Pomnožimo nejednakost ∇ s $1 - |g(t)|^2$:

$$\Rightarrow \left| \left(1 - |g(t)|^2 \right) \alpha_2 + g(s-t) - \overline{g(t)}g(s) \right|^2 + \left| \left(1 - |g(t)|^2 \right) \left(1 - |g(s)|^2 \right) - \left| g(s-t) - \overline{g(t)}g(s) \right|^2 \right| \ge 0.$$

Primijetimo da se α_2 pojavljuje samo u prvom članu, a $1-|g(t)|\neq 0$, pa ga odaberimo t. d. prvi član iščezava: $\alpha_2:=-\frac{g(s-t)-\overline{g(t)}g(s)}{1-|g(t)|^2}$. Sada slijedi nejednakost $\heartsuit \heartsuit$.

(2°) Pretpostavimo sada da je $|g(t)|^2=1$. Neka je $\gamma:=g(s-t)-\overline{g(t)}g(s)$. Tada je \heartsuit ekvivalentno s

$$\overline{\gamma}\alpha_2 + \gamma \overline{\alpha_2} + \left(1 - |g(s)|^2\right) \ge 0, \forall \alpha_2 \in \mathbb{C}. \Rightarrow \operatorname{Re} \gamma = \operatorname{Im} \gamma = 0 \Rightarrow \gamma = 0$$

pa je lijeva strana nejednakosti $\heartsuit \heartsuit$ jednaka 0 i $\heartsuit \heartsuit$ očito vrijedi.

$$\left(1-|g(t)|^2\right)\left(1-|g(s)|^2\right) \geq \left|\left(g(s-t)-\overline{g(t)}g(s)\right|^2 = |g(s-t)|^2 - 2\operatorname{Re}\left(g(s-t)g(t)\overline{g(s)}\right) + |g(t)|^2|g(s)|^2$$
pa, iz $\heartsuit \heartsuit$ slijedi

$$|g(t)|^{2} + |g(s)|^{2} \le 1 - |g(s-t)|^{2} + 2\operatorname{Re}\left(g(s-t)g(t)\overline{g(s)}\right) / - 2\operatorname{Re}\left(g(t)\overline{g(s)}\right)$$

$$\Rightarrow |g(t) - g(s)|^{2} \le 1 - |g(s-t)|^{2} + 2\operatorname{Re}\left(\underbrace{g(t)\overline{g(s)}}_{\text{ograničeno}}(g(s-t) - 1)\right) / \lim_{t \to s}$$

 $\Rightarrow g$ je neprekidna na cijelom $\mathbb{R}.$

TEOREM (Bochner-Hinčin)

Funkcija $\varphi : \mathbb{R} \to \mathbb{C}$ je karakteristična funkcija (neke ograničene funkcije distribucije) $\Leftrightarrow \varphi$ je **pozitivno** semidefinitna i neprekidna u 0.

Dokaz.

⇒ : već dokazano.

 \Leftarrow : Pretpostavimo da je φ pozitivno semidefinitna i neprekidna u 0. Po prethodnoj propoziciji, φ je neprekidna na \mathbb{R} . Na neki bismo način željeli iskoristiti pozitivnu semidefinitnost kako bi nas odvela do svojevrsne formule inverzije. Neka su $x \in \mathbb{R}, n \in \mathbb{N}$. Definirajmo

$$f_n(x) := \frac{1}{n} \int_0^n \int_0^n \varphi(v - w) e^{-i(v - w)x} dw dv.$$

 $(f_n$ je dobro definirana jer je podintegralna funkcija neprekidna na kompaktu, dakle i Riemann integrabilna.)

Aproksimirajmo $f_n(x)$ Riemannovim sumama. To su izrazi koji se javljaju u definiciji pozitivne semidefinitnosti pa je $f_n(x) \ge 0$. Sprovedimo zamjenu varijabli:

$$u := v - w \Rightarrow 0 \le w + u \le n$$
$$0 < w < n$$

$$= \{-n \le u \le 0, -u \le w \le n - u, 0 \le w \le n\} \cup \{0 \le u \le n, -u \le w \le n - u, 0 \le w \le n\}$$

$$= \{-n \le u \le 0, -u \le w \le n\} \cup \{0 \le u \le n, 0 \le w \le n - u\}$$

$$\Rightarrow 0 \le f_n(x) = \frac{1}{n} \int_{-n}^0 \varphi(u) e^{-iux} \left(\int_{-u}^n dw \right) du + \frac{1}{n} \int_0^n \varphi(u) e^{-iux} \left(\int_0^{n-u} dw \right) du$$

$$= \frac{1}{n} \int_{-n}^0 \varphi(u) e^{-iux} (n+u) du + \frac{1}{n} \int_0^n \varphi(u) e^{-iux} (n-u) du$$

$$= \int_{-n}^n \varphi(u) e^{-iux} \left(1 - \frac{|u|}{n} \right) du$$

$$\Rightarrow f_n(x) = \int_{-\infty}^{+\infty} \varphi_n(u) e^{-iux} du$$

$$\varphi_n(u) := \begin{cases} \varphi(u) \left(1 - \frac{|u|}{n} \right), & \text{ako je } |u| \le n \\ 0, & \text{ako je } |u| > n. \end{cases}$$

Za $m \in \mathbb{N}$, definirajmo: $h_m(x) := \begin{cases} 1 - \frac{|x|}{m}, & \text{ako je } |x| \leq m \\ 0, & \text{ako je } |x| > m. \end{cases}$

 $\{-n < u < n, -u < w < n - u, 0 < w < n\}$

Promotrimo preslikavanje $x \mapsto f_n(x)h_m(x) \geq 0$. ? Primijetimo da je $f_n(x)h_m(x) = 0, \forall |x| > m$, a kako je f_nh_m neprekidna na [-m,m], to je f_nh_m ograničena na $\mathbb R$ pa je gustoća **konačne** mjere. ? Definirajmo sada, za $m,n \in \mathbb N$,

$$\varphi_{m,n}(t) := \int_{-\infty}^{+\infty} f_n(x) h_m(x) e^{itx} dx.$$

 $\varphi_{m,n}$ je karakteristična funkcija. Dovoljno je pokazati da je φ limes funkcija $\varphi_{m,n}$. Budući da je φ neprekidna na \mathbb{R} , neprekidna je i na [-n,n] pa je to i φ_n neprekidna na [-n,n], a onda i ograničena. Dakle, $(u,x)\mapsto \varphi_n(u)h_m(x)e^{-i(t-x)}$ je ograničena pa možemo zamijeniti poredak integracije po Fubinijevu teoremu. Zapišimo:

$$\varphi_{m,n}(t) = \int_{-\pi}^{n} \int_{-m}^{m} \varphi_n(u) h_m(x) e^{-i(u-t)x} dx du.$$

Neka je

$$J_{m,t}(u) := \int_{-m}^{m} \left(1 - \frac{|x|}{m}\right) e^{-i(u-t)x} dx$$

$$= \int_{-m}^{m} \underbrace{\left(1 - \frac{|x|}{m}\right) \cos((u-t)x)}_{\text{parna funkcija}} dx + i \underbrace{\int_{-m}^{m} \left(1 - \frac{|x|}{m}\right) \sin((u-t)x) dx}_{\text{integral neparne funkcije na simetri cnom intervalu}}$$

$$= 2 \int_{0}^{m} \left(1 - \frac{x}{m}\right) \cos((u-t)x) dx$$

$$= 2 \left(1 - \frac{x}{m}\right) \frac{\sin((u-t)x)}{u-t} \Big|_{0}^{m} + \frac{2}{m} \int_{0}^{m} \frac{\sin((u-t)x)}{u-t} dx = \frac{2}{m} \cdot \frac{1 - \cos((u-t)m)}{(u-t)^{2}}$$

$$\varphi_{m,n}(t) = \int_{-\infty}^{+\infty} \varphi_{n}(u) J_{m,t}(u) du.$$

Računamo:

$$\int_{-\infty}^{+\infty} J_{m,t}(u)du = \left[v := m(u-t) \Rightarrow du = \frac{1}{m}dv, \frac{1}{(u-t)^2} = \frac{m^2}{v^2}\right]$$

$$= 2\int_{-\infty}^{+\infty} \frac{1 - \cos v}{v^2} dv$$

$$= 4\int_{0}^{+\infty} \frac{1 - \cos v}{v^2} d$$

$$= \left[y := \frac{v}{2} \Rightarrow dv = 2dy\right]$$

$$= 4\int_{0}^{+\infty} \frac{\sin^2 y}{y^2} dy$$
(kompleksna analiza)
$$= 2\pi, \forall m \in \mathbb{N}, \forall t \in \mathbb{R}$$

Budući da je φ_n neprekidna u u, za dani $\varepsilon > 0$, postoji $\delta > 0$ t. d. $[|t-u| < \delta \Rightarrow |\varphi_n(t) - \varphi(u)| < \varepsilon]$. Uočimo da je

$$J_{m,t}(u) = \frac{2}{m} \cdot \frac{1 - \cos((u-t)m)}{(u-t)^2}$$

funkcija parna oko t pa je

$$\left| \int_{-\infty}^{t-\delta} J_{m,t}(u) du \right| = \left| \int_{t+\delta}^{+\infty} J_{m,t}(u) du \right| \le \frac{4}{m} \int_{t+\delta}^{+\infty} \frac{du}{(u-t)^2} = \frac{4}{m} \frac{1}{u-t} \Big|_{t+\delta}^{+\infty} = \frac{4}{m\delta}$$

$$\Rightarrow \lim_{m \to +\infty} \int_{-\infty}^{t-\delta} J_{m,t}(u) du = \lim_{m \to +\infty} \int_{t+\delta}^{+\infty} J_{m,t}(u) du = 0.$$

$$\left| \int_{t-\delta}^{t+\delta} (\varphi_n(t) - \varphi_n(u)) J_{m,t}(u) du \right| \le \int_{t-\delta}^{t+\delta} |\varphi_n(t) - \varphi_n(u)| J_{m,t}(u) du \le \varepsilon \int_{t-\delta}^{t+\delta} J_{m,t}(u) du \le 2\pi\varepsilon/\varepsilon \to 0^+$$

$$\left| \int_{\{|u-t| \ge \delta\}} (\varphi_n(t) - \varphi_n(u)) J_{m,t}(u) \right| \le 2 \int_{\{|u-t| \ge \delta\}} J_{m,t}(u) du$$

$$\Rightarrow \lim_{m \to +\infty} \varphi_{m,n}(t) = \lim_{m \to +\infty} \int_{-\infty}^{+\infty} \varphi_n(u) J_{m,t}(u) du = 2\pi\varphi_n(t), \forall t \in \mathbb{R}$$

$$\Rightarrow \forall t \in \mathbb{R}, \lim_{m \to +\infty} \varphi_{m,n}(t) = 2\pi\varphi_n(t)$$

pa, ako je $2\pi\varphi_n(t)$ karakteristična funkcija, i φ_n je karakteristična funkcija i

$$\lim_{n \to \infty} \varphi_n(t) = \varphi(t), \forall t \in \mathbb{R}$$

pa je φ karakteristična.

 $Rekapitulacija \ smjera \Leftarrow$

- (i) Definiramo $f_n(x) := \frac{1}{n} \int_0^n \int_0^n \varphi(v-w) e^{-i(v-w)x} dw dv$
- (ii) Definiramo $\varphi_n(u) = \varphi(u) \left(1 \frac{|u|}{n}\right) \mathbbm{1}_{[-n,n]}(u)$
- (iii) Pokažemo da je $f_n(x)=\int_{-n}^n\varphi_n(u)e^{-iux}du=\int_{-\infty}^{+\infty}\varphi_n(u)\left(1-\frac{|u|}{n}\right)e^{-iux}du$
- (iv) Definiramo $h_m(x) := \left(1 \frac{|x|}{m}\right) \mathbbm{1}_{[-m,m]}(x)$
- (v) Koristeći Riemannove sume i pozitivnu semidefinitnost funkcije φ iz iskaza, obrazložimo zašto je $f_n(x) \ge 0$, a onda $f_n(x)h_m(x) \ge 0$ (još je i ograničena pa je funkcija gustoće konačne distribucije)
- (vi) Definiramo karakterističnu funkciju $\varphi_{m,n}(t):=\int_{-\infty}^{+\infty}f_n(x)h_m(x)e^{itx}dx.$
- (vii) Obrazložimo zašto možemo zamijeniti poredak integracije i napisati

$$\varphi_{m,n}(t) = \int_{-n}^{n} \int_{-m}^{m} f_n(x) h_m(x) e^{-i(u-t)x} dx du$$

 $(dudx \leadsto dxdu)$

- (viii) Definiramo $J_{m,t}(u) := \int_{-m}^{m} h_m(x) e^{-i(u-t)x} dx = \dots = \frac{2}{m} \frac{1 \cos((u-t)m)}{(u-t)^2}$.
 - (ix) Izračunamo da je $\int_{-\infty}^{+\infty} J_{m,t}(u) du = 2\pi$.
 - (x) Za svaki $n \in \mathbb{N}$, koristeći neprekidnost funkcije φ_n i parnost funkcije $J_{m,t}(u)$, pokažemo da je

$$\forall t \in \mathbb{R} \lim_{m \to \infty} \int_{-\infty}^{+\infty} \varphi_n(u) J_{m,t}(u) du = \varphi_n(t) \int_{-\infty}^{+\infty} J_{m,t}(u) du$$

(Zapravo, na t gledamo kao na parametar, no $J_{m,t}(u)$ različito je definirana za svaki fiksirani t, a u knjizi se ispusti, ali meni je ovako lakše pratiti)

 $z\in\mathbb{C}\setminus\{0\}, z=|z|e^{it}, \ln z=\ln|z|+$ arg obično glavna vrijednost. $h:\mathbb{R}\to\mathbb{C}, h(t)\neq 0, h$ neprekidna

Sljedeći teoremi i njihovi dokazi nisu se ispitivali još u akademskoj godini 2024./2025. Tu su navedeni radi potpunosti.

TEOREM (kompleksna analiza)

Neka je $h: \mathbb{R} \to \mathbb{C}$ neprekidna funkcija i $h(t) \neq 0, \forall t \in \mathbb{R}$. Neka je $h(0) \in \langle 0, +\infty \rangle$. Tada postoji neprekidna funkcija $\alpha: \mathbb{R} \to \mathbb{R}$ t. d. je $\alpha(0) = 0$ i $h(t) = |h(t)|e^{i\alpha(t)}, \forall t \in \mathbb{R}$ i takva je α jedinstvena.

Dokaz.

Jedinstvenost. BSOMP da je |h(t)| = 1 i h(0) = 1; u protivnom promatramo funkciju $\frac{h}{|h|}$ (h ne iščezava). Neka je $h(t) = e^{i\alpha_1(t)} = e^{i\alpha_2(t)}$, gdje su α_1 i α_2 neprekidne i vrijedi $\alpha_1(0) = \alpha_2(0) = 0$. Tada postoji funkcija $k : \mathbb{R} \to \mathbb{Z}$ t. d je $\alpha_1(t) = \alpha_2(t) + 2\pi k(t)$, $\forall t$, tj., $k(t) = \frac{\alpha_1(t) - \alpha_2(t)}{2\pi}$ pa, kako su α_1 i α_2 neprekidne, to je i k neprekidna te $\alpha_1(0) = \alpha_2(0) = 0 \Rightarrow k(0) = 0$. Budući da k poprima samo cjelobrojne vrijednosti, zaključujemo da je k(t) = 0, $\forall t$. Prema tome, postoji li funkcija α , ona je jedinstvena.

Egzistencija. Promatrajmo funkciju $z\mapsto\arg z=\arg z=\arg tg\frac{\operatorname{Im}z}{\operatorname{Re}z},$ pri čemu arctgw označava glavnu vrijednost arkus tangensa za $w\in\mathbb{R}.$ Promatramo samo $z\in\mathbb{S}^1=\{z\in\mathbb{C}\mid |z|=1\}.$ Funkcija argz, za |z|=1, ima jedine točke prekida $\pm i.$ Jedan od načina na koji ih možem ukloniti promatrati je samo one točke z za koje je |z-1|<1. Egzistenciju od α dokazat ćemo na proizvoljnom segmentu [0,b],b>0, a analogno bismo dokazali egzistenciju od α na [-b,b],b>0. To nam, zbog dokazane jedinstvenosti, osigurava egzistenciju od α na $\mathbb{R}.$ Budući da je h neprekidna na [0,b], i uniformno je neprekidna na [0,b] pa, za $\varepsilon=1,\ \exists \delta>0, \forall s,t\in[0,b], |s-t|<\delta\Rightarrow|h(s)-h(t)|<1.$ Neka je zadana subdivizija $0=t_0< t_1<\cdots< t_m=b$ t. d. je $t_k-t_{k-1}<\delta, \forall k=1,\ldots,m.$ Definirajmo α na $[t_0,t_1]$ s $\alpha(t)=\arg h(t).$ Budući da je $|h(t)-1|=|h(t)-h(t_0)|<1,$ iz navedenih razmatranja slijedi da je α

neprekidna na $[t_0, t_1]$. Ako je α definirana na $[0, t_k]$ za neko $k = 1, \ldots, m-1$, proširimo joj domenu stavljajući $\alpha(t) = \alpha(t_k) + \arg \frac{h(t)}{h(t_k)}, t \in [t_k, t_{k+1}]$. Iz

$$\left| \frac{h(t)}{h(t_k)} - 1 \right| = \frac{|h(t) - h(t_k)|}{|h(t)|} = |h(t) - h(t_k)| < 1, t \in [t_k, t_{k+1}],$$

slijedi da je α neprekidna funkcija na cijeloj domeni. Lako se pokaže da ovako definirana funkcija α zadovoljava uvjete teorema.

$$\Rightarrow \ln h(t) = \ln |h(t)| + i\alpha(t)$$

Ako je $\varphi(t) \neq 0, \forall t \in \mathbb{R},$

$$\ln \varphi(t) = \ln |\varphi(t)| + i\alpha(t).$$

TEOREM

Neka su $(\varphi_n)_{n\in\mathbb{N}}$ i φ karakteristične funkcije svuda različite od 0. Tada niz $(\varphi_n)_{n\in\mathbb{N}}$ konvergira prema φ \Leftrightarrow niz $(\ln \varphi_n)_{n\in\mathbb{N}}$ konvergira prema $\ln \varphi$.

Dokaz.

 \Rightarrow Pretpostavimo da niz $(\varphi_n)_{n\in\mathbb{N}}$ konvergira prema φ . Stavimo

$$\ln \varphi_n = \ln |\varphi_n| + i\alpha_n$$
$$\ln \varphi = \ln |\varphi| + i\alpha$$

pri čemu su $(\alpha_n)_{n\in\mathbb{N}}, \alpha: \mathbb{R} \to \mathbb{R}$ neprekidne funkcije i $\alpha_n(0) = \alpha(0) = 0, \forall n \in \mathbb{N}$. Jasno, $\ln |\varphi_n| \to \ln |\varphi|$, pa, da bismo dokazali da $\ln \varphi_n \to \ln \varphi$, dovoljno je dokazati da $\alpha_n \to \alpha$, a za to je dovoljno dokazati da $\alpha_n \to \alpha$ na proizvoljnome ograničenom intervalu čija je jedna od rubnih točaka 0. Budući da su $(\varphi_n)_n, \varphi$ svuda različite od 0, BSOMP da je $|\varphi_n| = |\varphi| = 1, \forall n \in \mathbb{N}$; u protivnom promatramo $\frac{|\varphi_n|}{|\varphi_n|} = e^{i\alpha_n}, \frac{\varphi}{|\varphi|} = e^{i\alpha}$. Neka je b > 0 proizvoljan. Budući da je niz $(\varphi_n)_{n \in \mathbb{N}}$ ekvikontinuiran, a φ uniformno neprekidna,

$$\exists \delta > 0, \forall t, s \in [0, b], |t - s| < \delta \Rightarrow [\forall n \in \mathbb{N}, |\varphi_n(t) - \varphi_n(s)| < 1 \& |\varphi(t) - \varphi(s)| < 1].$$

Uzmimo subdiviziju segmenta [0,b]: $0=t_0 < t_1 < \cdots < t_m=b$ t. d. je $|t_k-t_{k-1}| < \delta$, za $k=1,\ldots,m$. Za $t\in [t_0,t_1]$, kako je $\forall n\in \mathbb{N}, |\varphi_n(t)-\varphi_n(s)|<1$ i $|\varphi(t)-\varphi(s)|<1$ te α_n i α neprekidne,

$$\alpha_n(t) = \arg \varphi_n(t), \quad \alpha(t) = \arg \varphi(t).$$

Budući da je $\forall t \in [t_0, t_1], |\arg \varphi_n(t)| < \frac{\pi}{3}, |\arg \varphi(t)| < \frac{\pi}{3}$, argument je neprekidna funkcija. Prema tome,

$$[\varphi_n(t) \stackrel{n \to \infty}{\longrightarrow} \varphi(t), \forall t \in [t_0, t_1]] \Rightarrow [\alpha_n(t) \stackrel{n \to \infty}{\longrightarrow} \alpha(t), \forall t \in [t_0, t_1]].$$

Pretpostavimo sada da, za neki $k < m, \forall t \in [t_0, t_k], \alpha_n(t) \xrightarrow{n \to \infty} \alpha(t)$. Za $t \in [t_0, t_k], \forall n \in \mathbb{N}, |\varphi_n(t) - \varphi_n(t_k)| < 1$ i $|\varphi(t) - \varphi(t_k)| < 1$

$$\Rightarrow \alpha_n(t) = \alpha_n(t_k) + \arg \frac{\varphi_n(t)}{\varphi_n(t_k)} \quad \alpha(t) = \alpha_t(t_k) + \arg \frac{\varphi(t)}{\varphi(t_k)}.$$

Argument funkcija ponovno je neprekidna za sve $t \in [t_k, t_{k+1}]$ pa $\forall t \in [t_k, t_{k+1}], \alpha_n \xrightarrow{n \to \infty} \alpha(t)$. Prema tome, $\alpha_n(t) \xrightarrow{n \to \infty} \alpha(t), \forall t \in [0, b]$, a konvergencija na [-b, 0] dokazuje se analogno.

 \sqsubseteq Pretpostavimo da $\ln \varphi_n \to \ln \varphi$. Zbog $\varphi_n = e^{\ln \varphi_n}$ i $\varphi = e^{\ln \varphi}$, slijedi $\varphi_n \to \varphi$.

- ➤ vjerojatnosne funkcije distribucije
- $\blacktriangleright \varphi_n(0) = \varphi(0) = 1.$

LEMA (Pringsheim)

Ako funkcija φ ne raste na $\langle 0, +\infty \rangle$, integrabilna je na svakom konačnom intervalu $\langle 0, a \rangle$, gdje je a > 0 i ako je $\lim_{t \to \infty} \varphi(t) = 0$, tada, za svaki t > 0, vrijedi formula inverzije:

$$\frac{1}{2}\left[\varphi(t+0)+\varphi(t-0)\right] = \frac{2}{\pi}\int_0^\infty \cos(tu)\left[\int_0^\infty \varphi(y)\cos(uy)dy\right]du.$$

TEOREM (Polya)

Neka je $\varphi: \mathbb{R} \to \mathbb{R}$ neprekidna funkcija koja zadovoljava sljedeće uvjete:

- (i) $\varphi(0) = 1$
- (ii) $\varphi(-t) = \varphi(t)$
- (iii) φ je konveksna na $\langle 0, \infty \rangle$, tj.,

$$\forall t_1, t_2 > 0, \varphi\left(\frac{t_1 + t_2}{2}\right) \le \frac{\varphi(t_1) + \varphi(t_2)}{2};$$

$$(iv)$$
 $\lim_{t\to\infty} \varphi(t) = 0.$

Tada je φ karakteristična funkcija apsolutno neprekidne funkcije distribucije, tj., φ je karakteristična funkcija apsolutno neprekidne slučajne varijable.

Dokaz.

Budući da je φ konveksna na $\langle 0, \infty \rangle$, ona svugdje ima desnu derivaciju neopadajuću na $\langle 0, +\infty \rangle$. Označimo tu derivaciju sa ψ . Dokažimo da vrijedi:

- (a) $\psi(t) \le 0 \text{ za } t > 0$;
- (b) $\lim_{t \to \infty} \psi(t) = 0.$

Pretpostavimo da (a) ne vrijedi, tj., $\exists t_0 > 0, \psi(t_0) > 0$. ψ je neopadajuća na ψ pa je $\psi(t) > 0, \forall t \geq t_0$, iz čega zaključujemo da je φ strogo rastuća na $[t_0, \infty)$. Neka su $t_1, t_2 \in [t_0, \infty)$.

$$0\stackrel{(iv)}{=}\lim_{t_2\to\infty}\varphi\left(\frac{t_1+t_2}{2}\right)\leq\lim_{t_2\to\infty}\frac{\varphi(t_1)+\varphi(t_2)}{2}=\frac{\varphi(t_1)}{2}\Rightarrow\varphi(t_1)\geq0.$$

Međutim, φ je strogo rastuća, a to je kontradikcija s(iv). Dakle, vrijedi(a), a odatle slijedi da je φ nerastuća na $\langle 0, \infty \rangle$, što znači da ima derivaciju g. s. na $\langle 0, \infty \rangle$. Tu derivaciju označimo s φ' . Jasno, φ' je neopadajuća i $\varphi \leq 0$ g. s. na $\langle 0, \infty \rangle$. Dovoljno je dokazati da $\lim_{t \to \infty} \varphi'(t) = 0$. Pretpostavimo da to nije istina. φ' je neopadajuća i omeđena odozgo g. s. na $\langle 0, \infty \rangle$, pa, svakako, postoji $0 > \alpha := \lim_{t \to \infty} \varphi'(t)$. Posebno,

$$\varphi(t) \leq \alpha, \forall t > 0 \Rightarrow \varphi(t) - 1 = \varphi(t) - \varphi(0) = \int_0^t \varphi'(s) ds \leq \alpha t \Rightarrow \varphi(t) \leq \alpha t + 1 \Rightarrow \lim_{t \to \infty} \varphi(t) = -\infty,$$

što je u kontradikciji s (iv), dakle, vrijedi (b).

Promotrimo integral

$$\begin{split} \int_{-\infty}^{+\infty} e^{-itx} \varphi(t) dt &= \lim_{M \to \infty} \left[\int_{-M}^{0} e^{-itx} \varphi(t) dt + \int_{0}^{M} e^{-itx} \varphi(t) dt \right] \\ &\stackrel{(ii)}{=} \lim_{M \to \infty} \left[\int_{-M}^{0} e^{-itx} \varphi(-t) dt + \int_{0}^{M} e^{-itx} \varphi(t) dt \right] \\ &= \lim_{M \to \infty} \left[\int_{0}^{M} \varphi(t) \left(e^{-itx} + e^{itx} \right) dt \right] \\ &= 2 \int_{0}^{\infty} \cos(tx) \varphi(t) dt \ (*) \end{split}$$

Budući da je $\varphi' \leq 0$ i φ' je neopadajuća, $\varphi' \mathbb{1}_{[0,T]}$ je ograničena pa je ograničena i $t \mapsto |\sin(tx)\varphi'(t)|$,

$$\int_{0}^{\infty} \sin(tx)\varphi'(t)dt = \lim_{T \to \infty} \int \sin(tx)\varphi'(t) \mathbb{1}_{[0,T]} dt$$

pa vidimo da integral (*) postoji za $x \neq 0$, jer, parcijalnom integracijom, dobivamo

$$\int_0^T \cos(tx)\varphi(t)dt = \varphi(T)\frac{\sin(Tx)}{x} - \frac{1}{x}\int_0^T \sin(tx)\varphi'(x)dt,$$

a potom, koristeći i (iv) i $\lim_{t\to\infty} \varphi'(t)=0$ te puštajući $T\to\infty$, zaključujemo da limes desne strane postoji i konačan je.

Stavimo

$$f(x) := \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \varphi(t) dt = \frac{1}{\pi} \int_{0}^{\infty} \cos(tx) \varphi(t) dt.$$

Iz Pringsheimove leme slijedi

$$\begin{split} \varphi(t) &= \frac{1}{2}(\varphi(t+0) + \varphi(t-0)) = \frac{2}{\pi} \int_0^\infty \cos(tx) \left[\int_0^\infty \varphi(y) \cos(xy) dy \right] dx = 2 \int_0^\infty \cos(tx) f(x) dx \\ &= \left[\underset{\text{na simetričnom intervalu}}{\text{na simetričnom intervalu}} \right] = \int_{-\infty}^{+\infty} e^{itx} f(x) dx \left(\stackrel{?}{=} \mathbb{E} \left[e^{itX} \right] \right. \text{ za neku sl. var. } X ? \right). \end{split}$$

Trebamo još dokazati da je f vjerojatnosna funkcija gustoće. Uvrstimo li t = 0, iz (i) slijedi

$$\int_{-\infty}^{+\infty} f(x)dx = 1.$$

Prema tome, dovoljno je dokazati da je $f(x) \ge 0, \forall x \in \mathbb{R} \setminus \{0\}$. Parcijalnom integracijom dobivamo:

$$f(x) = \frac{1}{\pi x} \int_0^\infty \sin(tx)(-\varphi'(t))dt.$$

 $-\varphi$ je nerastuća i nenegativna g. s. na $\langle 0,\infty \rangle$ i $\lim_{t \to \infty} (-\varphi'(t)) = 0$. Prema tome, za x>0, vrijedi

$$f(x) = \frac{1}{\pi x} \sum_{j=0}^{\infty} \int_{j\pi/x}^{(j+1)\pi/x} \sin(tx)(-\varphi'(t))dt = \begin{bmatrix} s = t - \frac{j\pi}{x}, ds = dt \\ \frac{j\pi}{x} \mapsto 0, \frac{(j+1)\pi}{x} \mapsto \frac{\pi}{x} \\ \sin\left(\left(s + \frac{j\pi}{x}\right)x\right) = \sin(sx + j\pi) = (-1)^{j}\sin(sx) \end{bmatrix}$$
$$= \frac{1}{\pi x} \int_{0}^{\pi/x} \sin(tx) \left(\sum_{j=0}^{\infty} (-1)^{j} \left(-\varphi'\left(t + \frac{j\pi}{x}\right)\right)\right) dt.$$

Za x > 0, red $\sum_{j=0}^{\infty} (-1)^j \left(-\varphi'\left(t + \frac{j\pi}{x}\right) \right)$ alternirajući je i njegovi članovi ne rastu po apsolutnoj vrijed-

nosti. Budući da je prvi član tog reda nenegativan, imamo $\sum_{j=0}^{\infty} (-1)^{j} \left(-\varphi' \left(t + \frac{j\pi}{x} \right) \right) \geq 0 \text{ za } x > 0 \text{ pa,}$

zbog $\sin(tx) \ge 0$ za $x \in \left[0, \frac{\pi}{x}\right]$, zaključujemo da je integrand na desnoj strani nenegativan. Prema tome, $f(x) \ge 0$ za x > 0, a kako je f parna, $f(x) \ge 0, \forall x \ne 0$. Odavde slijedi da je f vjerojatnosna funkcija gustoće, a φ karakteristična funkcija od f.

Jedan rezultat za razmišljanje:

PROPOZICIJA

Neka je φ_X karakteristična funkcija slučajne varijable X.

(a) Ako je $|\varphi_X(t_0)|=1$ za neki $t_0\neq 0$, tada je X diskretna slučajna varijabla t. d. vrijedi

$$\sum_{n=-\infty}^{\infty} \mathbb{P}\left(X = a + \frac{2\pi n}{t_0}\right) = 1,$$

gdje je a neka konstanta.

- (b) Ako je $|\varphi_X(t)| = |\varphi_X(\alpha t)| = 1$ za dvije različite vrijednosti t i αt , pri čemu je α iracionalan broj, tada je slučajna varijabla X degenerirana, tj., $\exists a, \mathbb{P}(X=a) = 1$.
- (c) Ako je $|\varphi_X(t)| \equiv 1$, tada je slučajna varijabla X degenerirana.

Dokaz.

(a) Ako je $|\varphi_X(t_0)|=1$ za neki $t_0\neq 0$, tada postoji $a\in\mathbb{R}$ t. d. je $\varphi_X(t_0)=e^{it_0a}$. Imamo

$$e^{it_0 a} = \int_{-\infty}^{+\infty} e^{it_0 x} dF_X(x)$$

$$\Rightarrow 1 = \int_{-\infty}^{+\infty} e^{it_0 (x-a)} dF_X(x)$$

$$\Rightarrow 1 = \int_{-\infty}^{+\infty} \cos(t_0 (x-a)) dF_X(x)$$

$$\Rightarrow \int_{-\infty}^{+\infty} [1 - \cos(t_0 (x-a))] dF_X(x) = 0 \xrightarrow{1 - \cos(t_0 (x-a)) \ge 0} \cos(t_0 (X-a)) = 1 \text{ g. s.}$$

(b) Iz $|\varphi_X(t_0)| = |\varphi_X(\alpha t)| = 1$ i prethodnog slijedi

$$\sum_{n=-\infty}^{\infty} \mathbb{P}\left(X=a+\frac{2\pi n}{t}\right) = \sum_{m=-\infty}^{\infty} \mathbb{P}\left(X=b+\frac{2\pi m}{\alpha t}\right) = 1.$$

Ako X nije degenerirana, tada skupovi

$$\left\{a + \frac{2\pi n}{t} \mid n \in \mathbb{Z}\right\} \text{ i } \left\{b + \frac{2\pi m}{\alpha t} \mid m \in \mathbb{Z}\right\}$$

sadrže barem dvije različite točke:

$$a+\frac{2\pi n_1}{t}=b+\frac{2\pi m_1}{\alpha t},\ a+\frac{2\pi n_2}{t}=b+\frac{2\pi m_2}{\alpha t}\Rightarrow \frac{2\pi(n_1-n_2)}{t}=\frac{2\pi(m_1-m_2)}{\alpha t}\Rightarrow \alpha=\frac{m_1-m_2}{n_1-n_2}\in\mathbb{Q},$$

kontradikcija!

(c) slijedi iz (b).

PRIMJER

Ispitujemo jesu li sljedeće funkcije karakteristične funkcije.

- (c) (3. zadatak, 2. kolokvij 2018./2019.) | φ | ako je φ karakteristična? - ne nužno Provjerimo nužne uv
jete
 - (i) neprekidnost \checkmark
 - (ii) $||\varphi(t)|| = |\varphi(t)| \le \varphi(0) = 1 = |\varphi(0)| \checkmark$
 - (iii)simetričnost: $\left|\overline{\varphi_X(t)}\right| = \left|\varphi_X(t)\right| \checkmark$

Pokušajmo konstruirati kontraprimjer, tj., naći karakterističnu funkciju φ t. d. $|\varphi|$ nije karakteristična.

 φ je karakteristična funkcija $\Leftrightarrow \varphi(0) = 1 \checkmark \varphi$ je neprekidna u $0 \checkmark i \varphi$ je pozitivno semidefinitna (tj., $\Gamma = (\Gamma_{ij})_{i,j=1}^n$, gdje je $\Gamma_{ij} = \varphi(t_i - t_j)$, je pozitivno semidefinitna matrica). Olakšajmo si posao i uzmimo što manji n, recimo, $n = 2, t_1, t_2 \in \mathbb{R}$

$$\Gamma_2^{(2)} = \begin{bmatrix} |\varphi(t_1-t_2)| & |\varphi(t_1-t_2)| \\ |\varphi(t_2-t_1)| & |\varphi(t_2-t_2)| \end{bmatrix} = \begin{bmatrix} 1 & |\varphi(t_1-t_2)| \\ |\varphi(t_1-t_2)| & 1 \end{bmatrix},$$

gdje smo koristili činjenice: $\varphi(0) = 1, \varphi(t_2 - t_1) = \overline{\varphi(t_1 - t_2)}$. Ako je matrica pozitivno semidefinitna, determinanta je nenegativna. Pokušajmo naći karakterističnu funkciju φ t. d. je determinanta gornje matrice negativna.

 $\det \Gamma^{(2)} = 1 - |\varphi(t_1 - t_2)|^2 \ge 0 \ (|\varphi(t_1 - t_2)|^2 \le 1 \ \text{jer je} \ \varphi \ \text{karakteristična funkcija}).$ Pokušajmo s n = 3.

$$\Gamma^{(3)} = \begin{bmatrix} 1 & |\varphi(t_1 - t_2)| & |\varphi(t_1 - t_3)| \\ |\varphi(t_1 - t_2)| & 1 & |\varphi(t_2 - t_3)| \\ |\varphi(t_1 - t_3)| & |\varphi(t_2 - t_3)| & 1 \end{bmatrix}$$

 $\det \Gamma^{(3)} = 1 \cdot \left(1 - |\varphi(t_2 - t_3)|^2\right) - |\varphi(t_1 - t_2)| \left(|\varphi(t_1 - t_2)| - |\varphi(t_2 - t_3)| \cdot |\varphi(t_1 - t_3)|\right) + |\varphi(t_1 - t_3)| \left(|\varphi(t_1 - t_2)| \cdot |\varphi(t_2 - t_3)|^2\right) - |\varphi(t_1 - t_2)| \cdot |\varphi(t_1$

$$\det \Gamma^{(3)} = 1 - |\varphi(t_2 - t_3)|^2 - |\varphi(t_2)|^2 + |\varphi(t_2)\varphi(t_2 - t_3)\varphi(t_3)| + |\varphi(t_3)\varphi(t_2)\varphi(t_2 - t_3)| - |\varphi(t_3)|^2.$$

(d)
$$\varphi(t) = (1 - t^2)^+$$

Ne možemo primijeniti Polyin teorem jer φ nije konveksna na $\langle 0, +\infty \rangle$, stoga provjeravamo nužne uvjete iz Bochner-Hinčinovog teorema. Jedino što nije jednostavno vidjeti jest je li φ pozitivno semidefinitna. Ponovno, neka je n=3 i gledamo $\Gamma^{(3)}$. Uzmimo $t_1=0$.

$$\det \Gamma^{(3)} = 1 - \varphi(t_2)^2 - 1 - \varphi(t_3)^2 - \varphi(t_2 - t_3)^2 + 2\varphi(t_2)\varphi(t_3)\varphi(t_2 - t_3).$$

Uzmimo, npr.,
$$t_2 = 0.5, t_3 = 1$$
. Tada je $\varphi(t_2) = 1 - 0.25 = 0.75, \varphi(t_3) = 0, \varphi(t_2 - t_3) = 0.75$ i

$$\det \Gamma^{(3)} = 1 - 2 \cdot 0.75^2 + 2 \cdot 0.75^2 \cdot 0 = 1 - 2 \cdot 0.5625 < 0$$

pa zaključujemo da φ nije karakteristična funkcija.

21Primjene (§13.9, Sarapa 496. – 501. str.)

(a) Neka je $X_1, \ldots, X_n, n > 1$ slučajan uzorak iz distribucije F (nezavisne, jednako distribuirane, $X_i \sim F$) $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Neka je $\varphi := \varphi_F$ (to je karakteristična funkcija svih slučajnih varijabli u

$$\varphi_{\overline{X}}(t) = \prod_{k=1}^{n} \mathbb{E}\left[e^{\frac{it}{n}X_k}\right]^n = \left(\varphi\left(\frac{t}{n}\right)\right)^n, t \in \mathbb{R}.$$

 $\varphi_{\overline{X}} \dashrightarrow F_{\overline{X}}$ Dakle, uzorak sužava raspršenje. Istim računom možemo ustanoviti da je, za statistiku $\frac{1}{\sqrt{n}}(X_1 + \dots + X_n)$ raspršenje σ^2 , no, mijenja se očekivanje: $\mu \mapsto \mu \sqrt{n}$. To nije problem ako je $\mu = 0$ jer je tada i $\mu \sqrt{n} = 0$, što nas motivira da gledamo statistiku $\frac{1}{\sqrt{n}}((X_1 - \mu) + \cdots + (X_n - \mu))$.

$$(a1) \ F \sim N(\mu, \sigma^2)$$

$$\varphi_{\overline{X}}(t) = \left[e^{i\mu \frac{t}{n} - \frac{\sigma^2 t^2}{2n^2}} \right]^n = e^{i\mu t - \frac{\sigma^2 t^2}{2n}} \Rightarrow \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

 $(a2)\ F$ Bernoullijeva distribucija s parametrom p,a q=1-p

$$\varphi_{\sum_{i=1}^{n}}(t) = \left[pe^{it} + q\right]^{n}, t \in \mathbb{R}$$

$$n\overline{X} = \sum_{i=1}^{n} X_{i} \sim B(n, p)$$

$$\mathbb{P}\left(\overline{X} = \frac{k}{n}\right) = \mathbb{P}\left(n\overline{X} = k\right) = \binom{n}{k} p^{k} (1 - p)^{n - k}, k = 0, 1, \dots, n$$

(b) Neka je X_1, \ldots, X_n slučajan uzorak i $Z := \left(\prod_{k=1}^n X_k\right)^{\frac{1}{n}}$. Pretpostavimo da je F(0) = 0, tj., $X_k > 0$ (g. s.) $k = 1, \dots, n$. Tada je $\ln Z = \frac{1}{n} \sum_{k=1}^{n} \ln X_k$ i stavimo $Y_k := \ln X_k, k = 1, \dots, n$.

$$\varphi_{\overline{Y}}(t) = \left[\varphi\left(\frac{t}{n}\right)\right]^{\frac{1}{n}}$$

$$\varphi(t) = \varphi_{Y_k}(t) = \int_0^{+\infty} e^{it \ln x} dF(x) = \int_0^{+\infty} x^{it} dF(x)$$

$$Z = e^{\overline{Y}}$$

$$F_Z(x) = \begin{cases} 0, & \text{ako je } x \le 0 \\ F_{\overline{Y}}(\ln x), & \text{ako je } x > 0 \end{cases}$$

Neka je X_1, \ldots, X_n slučajan uzorak iz uniformne razdiobe na (0, 1).

$$\begin{split} \varphi(t) &= \varphi_{Y_k}(t) = \int_0^1 x^{it} dx = \frac{x^{1+it}}{1+it} \Big|_0^1 = \frac{1}{1+it} \\ &\Rightarrow \varphi\left(\frac{t}{n}\right) = \frac{1}{1+i\frac{t}{n}} = \left(1+i\frac{t}{n}\right)^{-1} \\ &\varphi_{\overline{Y}}(t) = \left(1+i\frac{t}{n}\right)^{-n} \\ &\varphi_{-\overline{Y}}(t) = \overline{\varphi_{\overline{Y}}(t)} = \left(1-i\frac{t}{n}\right)^{-n} \frac{33}{33} \end{split}$$

 $\Rightarrow \overline{Y} \text{ ima } \Gamma \text{ razdiobu s parametrima } n \text{ i } \frac{1}{n}.$ $\overline{^{33}\frac{\overline{1}}{z}} = \overline{\overline{z}}|z|^2 = \frac{\overline{\overline{z}}}{|z|^2} = \frac{1}{\overline{z}}$

(c) Ako slučajan uzorak dolazi iz normalne razdiobe, statistike \overline{X}, S^2 nezavisne su. No, promotrimo sada slučajan uzorak X_1, \ldots, X_n iz Cauchyjeve razdiobe s parametrima $a > 0, b \in \mathbb{R}$.

$$\varphi_{\overline{X}}(t) = \left[e^{ib\frac{t}{n} - a\frac{|t|}{n}}\right] = e^{ibt - a|t|} \Rightarrow \overline{\overline{X}} \sim X_1$$

(d) Hinčinov slabi zakon:

Neka je $(X_n)_{n\in\mathbb{N}}\subset L^1\left(\Omega,\mathcal{F},\mathbb{P}\right)$ niz **nezavisnih** jednako distribuiranih slučajnih varijabli sa zajedničkim očekivanjem $\mu\in\mathbb{R}.$ $\overline{X}_n=\frac{1}{n}\sum_{k=1}^n X_k, \varphi=\varphi_{X_1}$ $(\varphi=\varphi_{X_n},\forall n\in\mathbb{N})$

$$\varphi_{\overline{X}_n}(t) = \left[\varphi\left(\frac{t}{n}\right)\right]^n \xrightarrow{X_1 \in L^1} \left[1 + i\frac{t}{n}\mu + o\left(\frac{t}{n}\right)\right]^n = \left[1 + \frac{1}{n}it\mu\left(1 + \frac{o\left(\frac{t}{n}\right)}{\frac{t}{n}}\right)\right]^n \xrightarrow{n \to \infty} e^{it\mu} \left[\lim_{n \to \infty} g - \frac{o\left(\frac{t}{n}\right)}{\frac{t}{n}}\right] = 0$$

$$\begin{split} \left[\lim_{n \to \infty} \frac{o\left(\frac{t}{n}\right)}{\frac{t}{n}} &= 0 \right] \\ &\Rightarrow \lim_{n \to \infty} \varphi_{\overline{X}_n} = e^{it\mu} \leftarrow \text{\tiny karakteristična funkcija degenerirane slučajne varijable} \\ &\overset{\text{teorem ne-prekidnosti}}{\Longrightarrow} X_n \stackrel{\mathcal{D}}{\longrightarrow} \mu \\ &\Rightarrow \overline{X}_n \stackrel{\mathbb{P}}{\longrightarrow} \mu \end{split}$$

Sljedeći rezultat, naravno, vrijedi i za sve **degenerirane** razdiobe, no ispitajmo što je s **nedegeneriranima**.

PROPOZICIJA

Neka je F nedegenerirana razdioba i $\overline{X}_n \sim F, \forall n \in \mathbb{N}$. Tada F ima Cauchyjevu razdiobu.

Dokaz

Neka je $\varphi = \varphi_F$. Želimo pokazati da je $\varphi(t) = e^{ibt - a|t|}, \forall t \in \mathbb{R}$ za neke $a > 0, b \in \mathbb{R}$. $\overline{X}_n \sim F, \forall n \in \mathbb{N} \Rightarrow \varphi_{\overline{X}_n} = \varphi, \forall n \in \mathbb{N}$.

$$\Rightarrow \varphi(t) = \left[\varphi\left(\frac{t}{n}\right)\right]^n, \forall t \in \mathbb{R}, \forall n \in \mathbb{N}$$

$$\Rightarrow \varphi(t)^{\frac{1}{n}} = \varphi\left(\frac{t}{n}\right), \forall t \in \mathbb{R}, \forall n \in \mathbb{N}$$

$$\varphi(n)^{\frac{1}{n}} = \varphi\left(\frac{n}{n}\right) = \varphi(1), \forall n \in \mathbb{N}$$

$$t = \frac{m}{n} \varphi\left(\frac{m}{n}\right) = \varphi(m)^{1/n} = \left[\varphi(1)^m\right]^{\frac{1}{n}} = \varphi(1)^{\frac{m}{n}}, \forall m, n \in \mathbb{N}$$

$$\Rightarrow \varphi(r) = \varphi(1)^r, \forall r \in \mathbb{Q}, r > 0.$$

Međutim, φ je neprekidna $\Rightarrow \varphi(t) = \varphi(1)^t, \forall t \in \mathbb{R}, t > 0$. Ali, $\varphi(1) \in \mathbb{C}$ pa je $\varphi(1) = \rho e^{ib}$ za neki $\rho > 0, b \in \mathbb{R}$, no,

$$\varphi(-t) = \overline{\varphi(t)} = \overline{\varphi(1)^t} = \overline{(\rho e^{ib})^t} = \rho^t e^{-ibt}, \forall t > 0 \Rightarrow \varphi(t) = \rho^{|t|} e^{ibt}$$

Isto tako, $|\varphi(t)| \le \varphi(0) = 1$ (vjerojatnosna situacija) $\Rightarrow \rho = e^{-a}, a \ge 0$. Ako je a = 0, razdioba je degenerirana pa je a > 0.

$$\Rightarrow \varphi(t) = e^{ibt - a|t|}, \forall t \in \mathbb{R}, a > 0, b \in \mathbb{R}.$$

Valjalo bi se prisjetiti Zadatka* iz poglavlja §Matematičko očekivanje, 21. str.!

LEMA

Ako $X_n \xrightarrow{\mathcal{D}} X$ i ako je $h : \mathbb{R} \to \mathbb{R}$ neprekidna funkcija, tada i $h(X_n) \xrightarrow{\mathcal{D}} h(X)$.

Dokaz.

Prisjetimo se, konvergencija po distribuciji slučajnih varijabli ekvivalentna je slaboj konvergenciji odgovarajućih funkcija distribucije pa

$$\begin{split} X_n & \xrightarrow{\mathcal{D}} X \Rightarrow \lim_{n \to \infty} \int_{\mathbb{R}} g d\mathbb{P}_{X_n} = \int_{\mathbb{R}} g d\mathbb{P}_X, \forall g \in C_b(\mathbb{R}). \\ h \text{ je neprekidna i } g \in C_b(\mathbb{R}) \Rightarrow \boxed{g \circ h \in C_b(\mathbb{R})} \\ & \Rightarrow \lim_{n \to \infty} \int_{\mathbb{R}} (g \circ h) d\mathbb{P}_{X_n} = \int_{\mathbb{R}} (g \circ h) d\mathbb{P}_X \\ & \overset{u=h(x)}{\Rightarrow} \lim_{n \to \infty} \int_{\mathbb{R}} g d\mathbb{P}_{h(X_n)} = \int_{\mathbb{R}} g d\mathbb{P}_{h(X)} \\ & \Rightarrow h(X_n) \xrightarrow{\mathcal{D}} h(X). \end{split}$$

 \square χ^2 -test (distribucija odgovarajućeg oblika) (dokazujemo isto pomoću karakterističnih funkcija)

Zadatak

Neka su X i Y nezavisne jednako distribuirane slučajne varijable s očekivanjem 0 i varijancom 1. Dokažite da je tada

$$\frac{X-Y}{\sqrt{2}} \sim X$$

ako i samo ako $X, Y \sim N(0, 1)$.

 $Rje\check{s}enje.$

Neka je $\varphi = \varphi_X$ karakteristična funkcija slučajne varijable X (a time i Y). Tada

$$\varphi_{(X+Y)/\sqrt{2}}(t) = \varphi_{X+Y}\left(\frac{t}{\sqrt{2}}\right) = \varphi_X\left(\frac{t}{\sqrt{2}}\right)\varphi_Y\left(\frac{t}{\sqrt{2}}\right) = \left(\varphi_X\left(\frac{t}{\sqrt{2}}\right)\right)^2.(*)$$

$$\varphi_X\left(\frac{t}{\sqrt{2}}\right) = \left(\varphi_X\left(\frac{t}{\sqrt{4}}\right)\right)^2 \Rightarrow \varphi_X(t) = \left(\varphi_X\left(\frac{t}{\sqrt{4}}\right)\right)^4 \Rightarrow \boxed{\varphi_X(t) = \left(\varphi_X\left(\frac{t}{\sqrt{N}}\right)\right)^N, N = 2^k, k \in \mathbb{N}}.$$

Po Teoremu o vezi između karakteristične funkcije i reda očekivanja,

$$\varphi_X\left(\frac{t}{\sqrt{N}}\right) = 1 - \frac{t^2}{2N} + o\left(\frac{t^2}{N}\right) \Rightarrow \left(\varphi_X\left(\frac{t}{\sqrt{N}}\right)\right)^N = \left(1 - \frac{t^2}{2N} + o\left(\frac{t^2}{N}\right)\right)^N \xrightarrow{N \to \infty} e^{-t^2/2}.$$

$$\Rightarrow \varphi_X(t) = e^{-t^2/2}, \forall t \in \mathbb{R} \Rightarrow X \sim N(0, 1).$$

22 Centralni granični teoremi (§14.1, Sarapa, 506. – 509. str.)

Opće pitanje: ako je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli, $(S_n)_{n\in\mathbb{N}}$ niz parcijalnih suma $(S_n:=\sum_{k=1}^n X_k)$, postoje li $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}\setminus\{0\}, (b_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ t. d.

$$\frac{S_n - b_n}{a_n} \xrightarrow{\mathcal{D}}$$
neka (nedegenerirana) distribucija ?

Prvenstveno ćemo se baviti pitanjem kada je ta distribucija normalna.

 \Box (de Moivre-Laplace, 18. st.) $S_n \sim B(n, p), 0 ,$

$$\frac{S_n - np}{\sqrt{np(1-p)}} \xrightarrow{\mathcal{D}} N(0,1)$$

(korolar sljedećeg teorema, $X_n \sim B(p), \forall n \in \mathbb{N}$ nezavisne slučajne varijable, $\mathbb{E} X_1 = p$, $\mathbb{E} S_n = np, \sqrt{\operatorname{Var} S_n} = \sqrt{np(1-p)}$)

Mala napomena

 $\sigma^2=0$ znači da je slučajna varijabla degenerirana; $(X-\mathbb{E}X)^2=0$ g. s

TEOREM (Lévy)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih jednako distribuiranih** slučajnih varijabli s očekivanjem μ i varijancom $\sigma^2\in\langle 0,+\infty\rangle$ i neka je $S_n:=\sum_{k=1}^n X_k, n\in\mathbb{N}$. Tada

$$\frac{S_n - \mathbb{E}S_n}{\sigma\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} N(0,1).$$

Dokaz

Neka je $Z_k := \frac{X_k - \mu}{\sigma}, k \in \mathbb{N}$. I $(Z_k)_{k \in \mathbb{N}}$ su **nezavisne jednako distribuirane** slučajne varijable (uvijek primjenjujemo istu izmjerivu funkciju $x \mapsto \frac{x - \mu}{\sigma}$). Neka je $Y_n := \frac{1}{\sqrt{n}} \sum_{k=1}^n Z_k = \frac{S_n - \mathbb{E}S_n}{\sigma \sqrt{n}}$. Želimo pokazati da

$$Y_n \xrightarrow{\mathcal{D}} N(0,1).$$

Po Teoremu neprekidnosti, dovoljno je dokazati da pripadne karakteristične funkcije konvergiraju prema karakterističnoj funkciji N(0,1) distribucije, tj.,

$$\lim_{n \to \infty} \varphi_{Y_n}(t) = e^{-t^2/2}, \forall t \in \mathbb{R}.$$

 $\mathbb{E} Z_k = 0, \text{Var}\, Z_k = 1, \forall k \in \mathbb{N} \Rightarrow \varphi_{Z_k}(t) = 1 - \tfrac{t^2}{2} + o\left(t^2\right) = \varphi_{Z_1}(t), \forall t \in \mathbb{R} \Rightarrow o(t^2) \text{ ne ovisi o } k \in \mathbb{N}.$

$$\varphi_{Y_n} \stackrel{\text{nez.}}{=} \prod_{k=1}^n \varphi_{Z_k} \left(\frac{t}{\sqrt{n}} \right) = \left[1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right) \right]^n = \left[1 + \frac{-\frac{t^2}{2}}{n} + o\left(t^2\right) \right]^n \stackrel{n \to \infty}{\longrightarrow} e^{-t^2/2},$$

što je i trebalo pokazati.

Pitamo se koje se pretpostavke prethodnog teorema mogu oslabiti. Smijemo li, umjesto $(X_n)_{n\in\mathbb{N}}\subset L^1(\Omega,\mathcal{F},\mathbb{P})$, zahtijevati samo $(X_n)_{n\in\mathbb{N}}\subset L^2(\Omega,\mathcal{F},\mathbb{P})$? Taj problem počeo se razmatrati tek u 20. st.

TEOREM (Ljapunov)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli, $S_n=\sum_{k=1}^n X_k, s_n^2:=\operatorname{Var} S_n\stackrel{\text{nez.}}{=}\sum_{k=1}^n \operatorname{Var} X_k$. Pretpostavimo da je $s_1>0$ (već X_1 nije degenerirana) i da $\exists \delta>0, \forall n\in\mathbb{N}, \mathbb{E}\left[|X_n|^{2+\delta}\right]<+\infty$, te da vrijedi **uvjet Ljapunova**:

$$\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{k=1}^n \mathbb{E}\left[\left| X_k - \mathbb{E} X_k \right|^{2+\delta} \right] = 0.$$

Tada

$$\frac{S_n - \mathbb{E}S_n}{s_n} \xrightarrow{\mathcal{D}} N(0,1).$$

TEOREM (Lindebergov teorem, 1923.)³⁴

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli s **konačnom** varijancom,

 $S_n := \sum_{k=1}^n X_k, \mu_n := \mathbb{E}X_n, s_n^2 := \operatorname{Var}S_n, n \in \mathbb{N}$. Pretpostavimo da je $s_1 > 0$. Ako vrijedi **Lindebergov uviet**:

$$\lim_{n\to\infty}\frac{1}{s_n^2}\sum_{k=1}^n\int_{\{x\in\mathbb{R}||x-\mu_k|\geq\varepsilon s_n\}}(x-\mu_k)^2dF_{X_k}(x)=0, \forall \varepsilon>0, \text{ (sve manji rep izraza za varijancu kad } n\to+\infty)$$

tada

$$\frac{S_n - \mathbb{E}S_n}{s_n} \xrightarrow{\mathcal{D}} N(0,1), n \to +\infty.$$

NAPOMENA (s viežbi)

☐ Lindebergov uvjet ekvivalentan je s

$$\lim_{n\to\infty} \frac{1}{s_n^2} \sum_{k=1}^n \int_{\{x\in\mathbb{R}||x-\mu_k|\geq \varepsilon s_k\}} (x-\mu_k)^2 dF_{X_k}(x) = 0, \forall \varepsilon > 0,$$

odnosno, u Lindebergovom uvjetu, smijemo koristiti i " $\geq \varepsilon s_k$ ". Za Ljapunovljev uvjet nije napomenuto ništa takvo!

- $\ \square$ U Ljapunovljevu uvjetu ne spominje se nikakav $\varepsilon,$ u Lindebergovom teoremu ne spominje se nikakav $\delta.$
- □ U Ljapunovljevu teoremu zahtijevamo $\exists \delta > 0, \forall n \in \mathbb{N}\left[|X_n|^{2+\delta}\right] < \infty$, a u Lindebergovom teoremu samo $\forall n \in \mathbb{N}, \text{Var } X_n < \infty$.

Lindebergov teorem povlači razne druge teoreme.

(1) Jednako distribuirane varijable (Lévy).

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** jednakodistribuiranih slučajnih varijabli s **konačnim** varijancama. $\mathbb{E}X_n = \mu$, $\text{Var } X_1 = \sigma^2, 0 < \sigma^2 < +\infty, F = F_{X_1} = F_{X_k}, \forall k \in \mathbb{N}$. Slijedi li iz ovoga Lindebergov uvjet?

$$\frac{1}{s_n^2} \sum_{k=1}^n \int_{\{x \in \mathbb{R} | |x - \mu_k| \ge \varepsilon s_n\}} (x - \mu_k)^2 dF_{X_k}(x) = \frac{1}{n\sigma^2} \sum_{k=1}^n \int_{\{x \in \mathbb{R} | |x - \mu| \ge \varepsilon \sigma \sqrt{n}\}} (x - \mu)^2 dF(x)
= \frac{1}{n\sigma^2} n \int_{\{x \in \mathbb{R} | |x - \mu| \ge \varepsilon \sigma \sqrt{n}\}} (x - \mu)^2 dF(x)
= \frac{1}{\sigma^2} \int_{\{x \in \mathbb{R} | |x - \mu| \ge \varepsilon \sigma \sqrt{n}\}} (x - \mu)^2 dF(x)$$

$$\stackrel{\text{LTDK}}{\Rightarrow} \lim_{n \to \infty} \frac{1}{\sigma^2} \int_{\{x \in \mathbb{R} \mid |x - \mu| \ge \varepsilon \sigma \sqrt{n}\}} (x - \mu)^2 dF(x) = 0.$$

Dakle, niz nezavisnih jednako distribuiranih slučajnih varijabli s konačnom varijancom zadovoljava Lindebergov uvjet.

(2) (Ljapunov) [Ljapunovljev uvjet \Rightarrow Lindebergov uvjet] pa [Lindebergov teorem \Rightarrow Ljapunovljev teorem].

³⁴Jarl Waldemar Lindeberg - finski matematičar i farmer ©

$$\begin{split} \mathbb{E}\left[|X_{\pmb{k}} - \mathbb{E}X_{\pmb{k}}|^{2+\delta}\right] &= \int_{-\infty}^{+\infty} |x - \mu_{\pmb{k}}|^{2+\delta} dF_{X_{\pmb{k}}}(x) \\ &\geq \int_{\{x \in \mathbb{R} \mid |x - \mu_{\pmb{k}}| \geq \varepsilon s_n\}} |x - \mu_{\pmb{k}}|^{\delta} \cdot |x - \mu_{\pmb{k}}|^2 dF_{X_{\pmb{k}}}(x) \\ &\geq \varepsilon^{\delta} s_n^{\delta} \int_{\{x \in \mathbb{R} \mid |x - \mu_{\pmb{k}}| \geq \varepsilon s_n\}} |x - \mu_{\pmb{k}}|^2 dF_{X_{\pmb{k}}}(x) / : \left[\varepsilon^{\delta} s_n^{2+\delta}\right] \\ &\Rightarrow \frac{1}{s_n^2} \sum_{k=1}^n \int_{\{x \in \mathbb{R} \mid |x - \mu_{\pmb{k}}| \geq \varepsilon s_n\}} (x - \mu_{\pmb{k}})^2 dF_{X_{\pmb{k}}}(x) \leq \frac{1}{\varepsilon^{\delta} s_n^{2+\delta}} \sum_{k=1}^n \mathbb{E}\left[|X_k - \mathbb{E}X_k|^{2+\delta}\right]. \end{split}$$

- (3) * Neka je $(X_n)_{n \in \mathbb{N}}$ niz **nezavisnih** slučajnih varijabli za koje vrijedi:
 - $(i) \ \exists M>0, \forall n\in \mathbb{N}, |X_n|\leq M$ (uniformna ograničenost) pa svaka od njih ima k-ti moment $\forall k\in \mathbb{N}$
 - (ii) $\lim_{n\to\infty} s_n = +\infty$. Tada

$$\frac{S_n - \mathbb{E}S_n}{s_n} \xrightarrow{\mathcal{D}} N(0,1).$$

Dokaz.

$$\int_{\{x \in \mathbb{R} | |x - \mu_k| \ge \varepsilon s_n\}} (x - \mu_k)^2 dF_{X_k}(x) = \mathbb{E}\left[(X_k - \mu_k)^2 \mathbbm{1}_{\{|X_k - \mu_k| \ge \varepsilon s_n\}} \right]$$

$$\leq 4M^2 \mathbb{P}\left(|X_k - \mu_k| \ge \varepsilon s_n \right)$$

$$\stackrel{\text{Čebišev}}{\leq} \frac{4M^2}{\varepsilon^2 s_n^2} \operatorname{Var} X_k \bigg/ \cdot \frac{1}{s_n^2} \bigg/ \sum_{k=1}^n$$

$$\Rightarrow \frac{1}{s_n^2} \int_{\{x \in \mathbb{R} | |x - \mu_k| \ge \varepsilon s_n\}} (x - \mu_k)^2 dF_{X_k}(x) \le \frac{4M^2}{\varepsilon^2 s_n^4} \sum_{k=1}^n \operatorname{Var} X_k = \frac{4M^2}{\varepsilon^2 s_n^4} s_n^2 = \frac{1}{\varepsilon^2} \frac{4M^2}{s_n^2} \stackrel{n \to \infty}{\longrightarrow} 0$$

PRIMJER

Promotrimo niz nezavisnih jednako distribu
iranih slučajnih varijabli $(X_n)_{n\in\mathbb{N}}$ iz Paretove distribucije s
 pripadnom funkcijom gustoće

$$f(x) = \frac{c}{|x|^3 (\ln|x|)^2}, |x| > 2,$$

gdje je c normalizirajuća konstanta.

$$\mathbb{E}\left[|X_1|^{2+\delta}\right] = 2c \int_0^\infty \frac{1}{x^{1-\delta}(\ln x)^2} dx = \left[u = \ln x \Rightarrow dx = xdu = e^u du\right] = 2c \int_{\ln x}^\infty \frac{e^{\delta u}}{u^2} du,$$

što divergira za svaki $\delta > 0$ pa Ljapunovljev uvjet ne može biti zadovoljen. Međutim, stavimo li $\delta = 0$, vidimo da je $\sigma^2 = \operatorname{Var} X < +\infty$, zbog parnosti funkcije gustoće, $\mathbb{E} X = 0$ te, za $\varepsilon > 0$,

$$\frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}\left[X_k^2; |X_k| \ge \varepsilon s_n\right] = \frac{1}{n\sigma^2} n \mathbb{E}\left[X_1^2; |X_1| \ge \varepsilon \sigma \sqrt{n}\right] = \frac{1}{\sigma^2} \int_{\varepsilon \sigma \sqrt{n}}^\infty \frac{1}{x^2} dx \le \frac{1}{\sigma^2} \cdot \sigma^2 < \infty$$

pa tvrdnja slijedi puštanjem $n \to +\infty$ po Teoremu o dominiranoj konvergenciji, vrijedi Lindebergov uvjet. Da vrijedi Centralni granični teorem, mogli smo izravno zaključiti pozivanjem na Lévyjev teorem jer je riječ o nizu nezavisnih jednakodistribuiranih slučajnih varijabli s konačnimo čekivanjem i pozitivnom konačnom varijancom.

- ⇒ Ljapunovljev uvjet jači je od Lindebergovog uvjeta, pokazuje ovaj primjer.
- ➤ Znatiželjni mogu zaviriti i ovdje za kriterije konvergencije integrala: (1), (2), (3), (4), (5)

PRIMJER **

Neka je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor i neka je $(X_n)_{n \in \mathbb{N}}$ niz nezavisnih slučajnih varijabli na njemu t. d. je s_n^2 : Var $(X_1 + \cdots + X_n) > 0$. Ako <u>Lindebergov</u> uvjet vrijedi, onda $s_n^2 \to \infty$. Zaista, pretpostavimo

suprotno, što, zbog nenegativnosti i monotonosti, znači $s_n^2 \to c \in \langle 0, \infty \rangle$. Za velike $n \in \mathbb{N}$, tada vrijedi $\frac{c}{2} \leq s_n^2 \leq 2c$ i, za izraz iz Lindebergovog uvjeta, imamo

$$\begin{split} \liminf_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E} \left[(X_k - \mathbb{E} X_k)^2; |X_k - \mathbb{E} X_k| \ge \varepsilon s_n \right] &\ge \frac{1}{2c} \liminf_{n \to \infty} \sum_{k=1}^n \mathbb{E} \left[(X_k - \mathbb{E} X_k)^2; |X_k - \mathbb{E} X_k| \ge \varepsilon \sqrt{c/2} \right] \\ &\ge \frac{1}{2c} \liminf_{n \to \infty} \sum_{k=1}^n \mathbb{E} \left[\varepsilon^2 c/2; (X_k - \mathbb{E} X_k)^2 \ge \varepsilon \sqrt{c/2} \right] \\ &\ge \frac{\varepsilon^2}{4} \liminf_{n \to \infty} \sum_{k=1}^n \mathbb{P} \left(|X_k - \mathbb{E} X_k| \ge \varepsilon \sqrt{c/2} \right) > 0 \end{split}$$

jer, za dovoljno male $\varepsilon > 0$, imamo $\mathbb{P}(|X_1 - \mathbb{E}X_1| \ge \varepsilon \sqrt{c/2}) > 0$. Dakle, Lindebergov uvjet ne vrijedi, što je kontradikcija.

NAPOMENA

Primjeri \times i $\times \times$ zajedno daju:

 \square Neka je $(X_n)_{n\in\mathbb{N}}$ niz nezavisnih i uniformno ograničenih slučajnih varijabli i neka je $s_1>0$. Tada Lindebergov uvjet vrijedi $\Leftrightarrow \lim_{n\to\infty} s_n^2=+\infty$.

NAPOMENA

Na vježbama i kolokvijima često će nam trebati sljedeće asimptotike:

$$\sum_{k=1}^{n} k^{\alpha} \sim \begin{cases} n^{\alpha+1}, & \alpha < -1, \\ \ln n, & \alpha = -1, \\ 1, & \alpha > 1 \end{cases}$$

23 Lindebergov teorem (§14.1, Sarapa, 509. – 513. str.)

U ovom poglavlju dokazujemo Lindebergov teorem.

Za slučajnu varijablu X_k s očekivanjem μ_k , definiramo $X_k':=X_k-\mu_k, k\in\mathbb{N}$. Očito je $\mathbb{E}X_k'=0$ i $\operatorname{Var}X_k'=\operatorname{Var}X_k, \forall k\in\mathbb{N}$. Označimo $S_k':=\sum_{k=1}^n X_k'$.

$$\Rightarrow \frac{S'_n - \mathbb{E}S'_n}{s'_n} = \frac{S_n - \mathbb{E}S_n}{s_n}, \forall n \in \mathbb{N}.$$

$$\int_{\{x \in \mathbb{R} | |x - \mu_k| \ge \varepsilon s_n\}} (x - \mu_k)^2 dF_{X_k}(x) = \mathbb{E}\left[(X_k - \mu_k)^2 \mathbbm{1}_{\{|X_k - \mu_k| \ge \varepsilon s_n\}} \right] = \mathbb{E}\left[{X_k'}^2 \mathbbm{1}_{\left\{|X_k'| \ge \varepsilon s_n'\right\}} \right] = \int_{\{x \in \mathbb{R} | |x| \ge \varepsilon s_n\}} x^2 dF_{X_k'}(x).$$

Ovime smo pokazali da, BSO, možemo promatrati slučaj $\mu_k=0.$

Neka je $f \in C^n(\mathbb{R})$.

$$\int_{0}^{x} f^{(n)}(t) \frac{(x-1)^{n-1}}{(n-1)!} dt = \begin{bmatrix} du = f^{(n)}(t) dt \Rightarrow u = f^{(n-1)}(t) \\ dv = \frac{(x-t)^{n-1}}{(n-1)!} \Rightarrow v = -\frac{(x-t)^{n-2}}{(n-2)!} \end{bmatrix}$$

$$= f^{(n-1)}(t) \frac{(x-t)^{n-1}}{(n-1)!} \Big|_{0}^{x} + \int_{0}^{x} f^{(n-1)}(t) \frac{(x-t)^{n-2}}{(n-2)!} dt$$

$$= -\frac{t^{n-1}}{(n-1)!} f^{(n-1)}(0) + \int_{0}^{x} f^{(n-1)}(t) \frac{(x-t)^{n-2}}{(n-2)!} dt$$

$$= \cdots$$

$$= -\sum_{k=1}^{n-1} \frac{f^{(k)}(0)}{k!} t^{k} - \underbrace{\int_{0}^{x} f'(x) dt}_{f(x)-f(0)}$$

LEMA

Neka je $f:\mathbb{R}\to\mathbb{C},I=\langle -b,b\rangle$ i $f\in C^n\left(\langle -b,b\rangle\right).$ Tada

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k + x^n \int_0^1 \frac{(1-t)^{n-1}}{(n-1)!} f^{(n)}(tx) dt, \forall x \in I.$$

Posebno, ako je $|f^{(n)}| \leq M$ na I, tada je

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k + \frac{\vartheta |x|^n}{n!}, |\vartheta| \le M, \vartheta = \vartheta(x).$$

 $f: y \mapsto e^{iy}, b = +\infty \stackrel{\text{LEMA}}{\Rightarrow} \forall y \in \mathbb{R},$

$$\begin{split} e^{iy} &= 1 + iy + \frac{\vartheta y^2}{2}, |\vartheta| \le 1. (\blacktriangle) \\ e^{iy} &= 1 + iy - \frac{y^2}{2} + \frac{\vartheta_1 |y|^3}{6}, |\vartheta_1| \le 1. (\blacktriangle \blacktriangle) \end{split}$$

Neka je L
n glavna grana logaritma. Promatrajmo $z \in \mathbb{C}, |z| \leq \frac{1}{2}.$

$$\operatorname{Ln}(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \cdots$$

$$= z + z^2 \left(-\frac{1}{2} + \frac{z}{3} - \frac{z^2}{4} + \cdots \right)$$

$$\left| -\frac{1}{2} + \frac{z}{3} - \frac{z^2}{4} + \cdots \right| \stackrel{|z| \le \frac{1}{2}}{\le} \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \cdots$$

$$\le \sum_{k=1}^{+\infty} \left(\frac{1}{2}\right)^k = 1$$

$$\Rightarrow \text{Ln}(1+z) = z + \vartheta'|z|^2, |\vartheta'| \le 1. \quad z^2 = |z|^2 e^{\arg z^2}.$$

 $\mathbb{E}S_n = 0$. Želimo dokazati $\frac{S_n}{s_n} \xrightarrow{\mathcal{D}} N(0,1)$. Dovoljno je promatrati slučaj-

nu varijablu $T_n := \frac{S_n}{s_n}$. Trebamo pokazati da $\varphi_{T_n}(t) \xrightarrow{n \to \infty} e^{-t^2/2}, \forall t \in \mathbb{R}$ (pozivamo se na Teorem neprekidnosti). Fiksirajmo $t \in \mathbb{R}$.

$$\varphi_{T_n}(t) = \mathbb{E}\left[e^{itT_n}\right] = \mathbb{E}\left[e^{it\frac{S_n}{s_n}}\right]$$

$$= \varphi_{S_n}\left(\frac{t}{s_n}\right)$$

$$\stackrel{\text{nez.,}}{=} \prod_{k=1}^n \varphi_k\left(\frac{t}{s_n}\right)$$

$$\varphi_k(t) = \int_{-\infty}^{+\infty} e^{itx} dF_{X_k}(x)$$

$$= \int_{\{|x| > \varepsilon s_n\}} \left(1 + itx + \frac{\vartheta t^2 x^2}{2}\right) dF_{X_k}(x) + \int_{\{|x| < \varepsilon s_n\}} \left(1 + itx - \frac{t^2 x^2}{2} + \frac{\vartheta_1 |t|^3 |x|^3}{6}\right) dF_{X_k}(x),$$

 $|\vartheta|, |\vartheta_1| \le 1$ i ovise o tx. Uočimos

$$\int_{-\infty}^{+\infty} itx dF_{X_k}(x) = it\mathbb{E}X_k = 0$$

$$\Rightarrow \int_{\{|x| < \varepsilon s_n\}} (1 + itx) dF_{X_k}(x) + \int_{\{|x| \ge \varepsilon s_n\}} (1 + itx) dF_{X_k}(x) = 1 + it\mathbb{E}X_k = 1 + 0 = 1.$$

$$\Rightarrow \varphi_k\left(\frac{t}{s_n}\right) = 1 + \frac{t^2}{2s_n^2} \int_{\{|x| \ge \varepsilon s_n\}} \vartheta x^2 dF_{X_k}(x) - \frac{t^2}{2s_n^2} \int_{\{|x| < \varepsilon s_n\}} x^2 dF_{X_k}(x) + \frac{|t|^3}{6|s_n|^3} \int_{\{|x| < \varepsilon s_n\}} \theta_1 |x|^3 dF_{X_k}(x)$$

$$\left|\frac{1}{2} \int_{\{|x| \ge \varepsilon s_n\}} \vartheta x^2 dF_{X_k}(x)\right| \le \frac{1}{2} \int_{\{|x| \ge \varepsilon s_n\}} x^2 dF_{X_k}(x)$$

$$\Rightarrow \int_{\{|x| \ge \varepsilon s_n\}} \vartheta x^2 dF_{X_k}(x) = \vartheta_2 \int_{\{|x| \ge \varepsilon s_n\}} x^2 dF_{X_k}(x), |\vartheta_2| \le \frac{1}{2}$$
Slično,
$$\frac{1}{6} \int_{\{|x| < \varepsilon s_n\}} \theta_1 |x|^3 dF_{X_k}(x) = \vartheta_3 \int_{\{|x| < \varepsilon s_n\}} \varepsilon s_n x^2 dF_{X_k}(x), |\vartheta_3| \le \frac{1}{6}$$

Označimo:

$$\alpha_{nk} := \frac{1}{s_n^2} \int_{\{|x| \ge \varepsilon s_n\}} x^2 dF_{X_k}(x)$$

$$\beta_{nk} := \frac{1}{s_n^2} \int_{\{|x| < \varepsilon s_n\}} x^2 dF_{X_k}(x)$$

$$\gamma_{nk} := \vartheta_2 t^2 \alpha_{nk} - \frac{t^2}{2} \beta_{nk} + \varepsilon |t|^3 \vartheta_3 \beta_{nk}$$

$$\Rightarrow \varphi_k \left(\frac{t}{s_n}\right) = 1 + \gamma_{nk}$$

Lindebergov uvjet kaže $\lim_{n\to\infty}\sum_{k=1}^n \alpha_{nk}=0$. Uočimo:

$$\sum_{k=1}^{n} \alpha_{nk} + \sum_{k=1}^{n} \beta_{nk} = \sum_{k=1}^{n} (\alpha_{nk} + \beta_{nk}) = \frac{1}{s_n^2} \sum_{k=1}^{n} \operatorname{Var} X_k = 1 \xrightarrow{\alpha_{nk}, \beta_{nk} \ge 0} \alpha_{nj}, \beta_{nj} \sum_{k=1}^{n} \alpha_{nk}, \sum_{k=1}^{n} \beta_{nk} \le 1, j = 1, \dots, n.$$
$$\beta_{nk} \le \varepsilon^2$$

$$\lim_{n\to\infty}\sum_{k=1}^n\alpha_{nk}=0\Rightarrow \exists n_\varepsilon\in\mathbb{N}, \forall n\geq n_\varepsilon, 0\leq \max_{1\leq k\leq n}\alpha_{nk}\leq \sum_{k=1}^n\alpha_{nk}<\varepsilon.$$

PONOVLJENA NAPOMENA(valjalo bi provjeriti!)

Neka su $f, g: X \to \mathbb{R}$ integrabilne funkcije t. d. je $f \geq g$. Ako je $\int f d\mu = \int g d\mu$, tada je f = g (g. s.)

Označimo $f = \varepsilon^2 \mathbb{1}_{\mathbb{R}}, g = \frac{1}{s_n^2} \mathbb{1}_{\{|x| < \varepsilon s_n\}} x^2$.

$$\beta_{nk} = \varepsilon^2 \Leftrightarrow \int_{\mathbb{R}} \frac{1}{s_n^2} \mathbb{1}_{\{|X_k| < \varepsilon s_n\}}(x) x^2 dF_{X_k}(x) = \int_{\mathbb{R}} \varepsilon^2 dF_{X_k}(x),$$

no, kako je $f \geq g$, nužno je f = g (g. s.), no, to je nemoguće pa mora biti $\beta_{nk} < \varepsilon^2$.

$$\max_{1 \leq k \leq n} |\gamma_{nk}| \leq \frac{t^2 \varepsilon^2}{2}^{35} + |t|^3 \varepsilon, \sum_k |\gamma_{nk}| \leq \frac{t^2}{2} + |t|^3 \varepsilon$$

za dovoljno velike $n \in \mathbb{N}$.

$$\frac{t^2}{2} + \sum_{k=1}^n \operatorname{Ln} \underbrace{(1 + \gamma_{nk})}_{(1 + \gamma_{nk})} = \frac{t^2}{2} + \sum_{k=1}^n (\gamma_{nk} + \vartheta'_k | \gamma_{nk} |^2), |\vartheta'_k| \le 1.$$
$$\sum_{k=1}^n |\gamma_{nk}|^2 \le \max_{1 \le k \le n} |\gamma_{nk}| \sum_{k=1}^n |\gamma_{nk}|$$

Neka je $\delta > 0$ i uzmimo $\varepsilon > 0$ dovoljno mali (ovisno o δ i t). Tada, za dovoljno veliki $n \in \mathbb{N}$,

$$\left| \frac{t^2}{2} + \sum_{k=1}^n \text{Ln}(1 + \gamma_{nk}) \right| < \delta$$

$$\frac{t^2}{2} + \sum_{k=1}^n \gamma_{nk} + \sum_{k=1}^n \vartheta'_k |\gamma_{nk}|^2 \le \frac{t^2}{2} + \sum_{k=1}^n |\gamma_{nk}| + \max_{1 \le k \le n} |\gamma_{nk}| \sum_{k=1}^n |\gamma_{nk}|.$$

Eksponencijalna je funkcija neprekidna pa je

$$\lim_{n \to \infty} \underbrace{\exp\left(\frac{t^2}{2} + \sum_{k=1}^n \operatorname{Ln}(1 + \gamma_{nk})\right)}_{e^{t^2/2} \prod_{k=1}^n (1 + \gamma_{nk})} = 1.$$

$$= e^{t^2/2} \prod_{k=1}^n \varphi_k \left(\frac{t}{s_n}\right)$$

$$\Rightarrow \underbrace{\prod_{k=1}^n \varphi_k \left(\frac{t}{s_n}\right)}_{\varphi_{T_n}(t)} \xrightarrow{n \to \infty} e^{-t^2/2}.$$

 $^{^{35}}$ Nisam sigurna zašto je 1. član u ocjeni za $\max_k |\gamma_{nk}|$ baš $\frac{t^2\varepsilon^2}{2}$ umjesto $t^2\varepsilon^2,$ no to ne utječe na rezultat.

$$\left(\frac{X_k-\mu_k}{s_n}\right)_{1\leq k\leq n}, n\in\mathbb{N}$$
su
 uaz (UNIFORMNO ASIMPTOTSKI ZANEMARIVE) ako je

$$\lim_{n \to \infty} \left[\max_{1 \le k \le n} \mathbb{P} \left(|X_k - \mu_k| \ge \varepsilon s_n \right) \right] = 0, \forall \varepsilon > 0.$$

VAŽNO:

$$\frac{1}{s_n^2} \sum_{k=1}^n \int_{\{x \in \mathbb{R} \mid |x - \mu_k| \ge \varepsilon s_n\}} (x - \mu_k)^2 \ge \varepsilon^2 \sum_{k=1}^n \mathbb{P}(|X_k - \mu_k| \ge \varepsilon s_n) \ge \varepsilon^2 \max_{\substack{1 \le k \le n \\ \text{uniformnost}}} \mathbb{P}(|X_k - \mu_k| \ge \varepsilon s_n)$$

 $uaz \equiv \check{\mathbf{c}}\mathbf{ine} \ \mathbf{infinitezimalni} \ \mathbf{sustav}.$

 $\label{eq:Lindebergov} \mbox{Lindebergov uvjet} \Rightarrow \mbox{uaz}.$

24 Lindeberg-Fellerov teorem (§14.1, Sarapa, 514. – 517. str.)

Znamo: Lindeberg \Rightarrow CGT za N(0,1). No, vrijedi li obrat? U najstrožem smislu, NE. Znamo i: Lindeberg \Rightarrow uniformna asimptotska zanemarivost (uaz)

PRIMJER

Neka su X_1, X_2, \ldots nezavisne slučajne varijable, $X_1 \sim N(0,1), X_k \sim N(0,2^{k-2}), \forall k \geq 2.$ ³⁶

$$s_n^2 = \sum_{k=1}^n \operatorname{Var} X_k = 1 + \sum_{k=2}^n 2^{k-2} = 1 + \sum_{k=0}^{n-2} 2^k = 1 + \frac{2^{n-1} - 1}{2 - 1} = 2^{n-1}$$

$$\Rightarrow \frac{X_n}{s_n} \sim N\left(0, \frac{1}{2}\right)$$

 $\Rightarrow \mathbb{P}\left(\left|\frac{X_n}{s_n}\right| \geq \varepsilon\right)$ je pozitivna konstanta koja ne ovisi o $n \in \mathbb{N}$.

$$\Rightarrow \max_{1 \leq k \leq n} \mathbb{P}\left(\left|\frac{X_k}{s_n}\right| \geq \varepsilon\right) \geq \mathbb{P}\left(\left|\frac{X_n}{s_n}\right| \geq \varepsilon\right) > 0 \Rightarrow \max_{1 \leq k \leq n} \mathbb{P}\left(\left|\frac{X_k}{s_n}\right| \geq \varepsilon\right) \overset{n \to \infty}{\nrightarrow} 0$$

pa $\left(\frac{X_k}{S_n}\right)_{1\leq k\leq n}$ nije uaz (ne zadovoljava Lindebergov teorem). S druge strane,

$$\frac{S_n - \mathbb{E}S_n}{s_n} = \frac{S_n}{s_n} \sim N(0, 1) \Rightarrow \frac{S_n}{s_n} \xrightarrow{\mathcal{D}} N(0, 1).$$

Pretpostavimo uniformnu asimptotsku zanemarivost. Vrijedi li tada

Lindebergov uvjet \Leftrightarrow CGT ? **DA!**³⁷

LEMA

Neka je $(X_{nk} \mid n \in \mathbb{N}, k = 1, ..., n)$ dvostruki niz slučajnih varijabli i označimo $\varphi_{nk} := \varphi_{X_{nk}}$. Tada su $(X_{nk})_{\substack{n \in \mathbb{N}, \\ 1 \le k \le n}}$ uaz $\Leftrightarrow \lim_{n \to \infty} \max_{1 \le k \le n} |\varphi_{nk}(t) - 1| = 0$ (uniformno na ograničenim intervalima po t).

Dokaz.

Neka je $\vartheta \in \mathbb{R}$.

$$\left|e^{i\vartheta}-1\right|=\left|i\int_{0}^{\vartheta}e^{ix}dx\right|\leq\left|\int_{0}^{\vartheta}\left|e^{ix}\right|dx\right|=\left|\int_{0}^{\vartheta}dx\right|=\left|\vartheta\right|$$

 \Longrightarrow : Neka su $(X_{nk})_{\substack{n\in\mathbb{N}\\1\leq k\leq n}}$ uaz. Označimo $F_{nk}:=F_{X_{nk}}.$ Neka je $\varepsilon>0.$

$$\begin{aligned} \max_{1 \leq k \leq n} |\varphi_{nk}(t) - 1| &= \max_{1 \leq k \leq n} \left| \int_{-\infty}^{+\infty} \left(e^{itx} - 1 \right) dF_{nk} \right| \leq \max_{1 \leq k \leq n} \int_{\{|x| < \varepsilon\}} |tx| dF_{nk}(x) + \max_{1 \leq k \leq n} \int_{\{|x| \geq \varepsilon\}} 2dF_{nk}(x) \\ &\leq \varepsilon |t| + 2 \max_{1 \leq k \leq n} \underbrace{\mathbb{P}\left(|X_{nk}| \geq \varepsilon \right)}_{\substack{\text{uaz} \\ n \to +\infty \\ \to 0 \\ \text{in ne ovisi o } t}}, \end{aligned}$$

odakle slijedi tvrdnja.

 \sqsubseteq : Neka su indeksi $(j_n)_{n\in\mathbb{N}}, 1 \leq j_n \leq n$ t. d. je $\mathbb{P}(|X_{nj_n}| \geq \varepsilon) = \max_{1 \leq k \leq n} \mathbb{P}(|X_{nk}| \geq \varepsilon)$. S druge strane,

$$0 \le \lim_{n \to \infty} |\varphi_{nj}(t) - 1| \le \lim_{n \to \infty} \max_{1 \le k \le n} |\varphi_{nk} - 1| = 0 \Rightarrow \lim_{n \to \infty} |\varphi_{nj}(t) - 1| = 0, \forall t \in \mathbb{R}.$$

$$\overset{\varphi_{\mathbf{0}}(t)=1,\forall t\in\mathbb{R}}{\Rightarrow}X_{nj_{n}}\overset{\mathcal{D}}{\longrightarrow}0\Rightarrow X_{nj_{n}}\overset{\mathbb{P}}{\longrightarrow}0, \text{tj.}, \forall \varepsilon>0, \lim_{n\to\infty}\underbrace{\underbrace{\mathbb{P}\left(|X_{nj_{n}}|\geq\varepsilon\right)}_{\underset{1\leq k< n}{\text{max}}\mathbb{P}\left(|X_{nk}|\geq\varepsilon\right)}}=0, \text{dakle, uaz.}$$

 $^{^{36} \}mathrm{podsjetimo}$ da uvijek možemo realizirati niz **nezavisnih** slučajnih varijabli s danim distribucijama

 $^{^{37}}$ William Feller (rođ. Vilibald Srećko Feller, Zagreb. 7. srpnja 1906. - New York, 14. siječnja 1970.)

KOROLAR

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** uaz slučajnih varijabli s **konačnim** varijancama t. d. je $\mathbb{E}X_n=0, \forall n\in\mathbb{N}$ i $\frac{S_n}{s_n} \xrightarrow{\mathcal{D}} N(0,1)$. Tada je

$$\lim_{n \to \infty} \left[\frac{t^2}{2} + \sum_{k=1}^n \left(\varphi_k \left(\frac{t}{s_n} \right) - 1 \right) \right] = 0 \quad (*).$$

Dokaz.

Budući da su $(X_n)_{n\in\mathbb{N}}$ uaz, po prethodnoj lemi,

$$\lim_{n \to \infty} \max_{1 \le k \le n} \left| \varphi_k \left(\frac{t}{s_n} \right) - 1 \right| = 0$$

(uniformno po t iz ograničenog intervala). Neka je $T_n := \frac{S_n}{s_n}$.

$$\prod_{k=1}^{n} \left[1 + \left(\varphi_k \left(\frac{t}{s_n} \right) - 1 \right) \right] \overset{\text{dokaz}}{\overset{\text{tendebergova}}{=}} \underbrace{ \overbrace{\varphi_{T_n}(t) \overset{n \to \infty}{\longrightarrow} e^{-t^2/2}}^{\text{jer } T_n \overset{\mathcal{D}}{\longrightarrow} N(0,1)} }$$

uniformno po ograničenim intervalima.

$$\Rightarrow \sum_{k=1}^{n} \operatorname{Ln} \left(1 + \left(\varphi_{k} \left(\frac{t}{s_{n}} \right) - 1 \right) \right) \xrightarrow{n \to \infty} - \frac{t^{2}}{2}.$$

$$\Rightarrow \frac{t^{2}}{2} + \sum_{k=1}^{n} \left(\varphi_{k} \left(\frac{t}{s_{n}} \right) - 1 \right) + \sum_{k=1}^{n} \vartheta_{k} \left| \varphi \left(\frac{t}{s_{n}} \right) - 1 \right|^{2} \xrightarrow{n \to \infty} 0, |\vartheta_{k}| \le 1, \forall k = 1, \dots, n.$$

$$\Rightarrow \limsup_{n \to \infty} \left| t^{2} + \sum_{k=1}^{n} \left(\varphi_{k} \left(\frac{t}{s_{n}} \right) - 1 \right) \right| = \limsup_{n \to \infty} \left| \sum_{k=1}^{n} \vartheta_{k} \left| \varphi_{k} \left(\frac{t}{s_{n}} \right) - 1 \right|^{2} \right|$$

$$\leq \limsup_{n \to \infty} \left[\max_{1 \le k \le n} \left| \varphi_{nk} \left(\frac{t}{s_{n}} \right) - 1 \right| \sum_{k=1}^{n} \left| \varphi_{nk} \left(\frac{t}{s_{n}} \right) - 1 \right| \right]$$

$$\sum_{k=1}^{n} \left| \varphi_{nk} \left(\frac{t}{s_{n}} \right) - 1 \right| = \sum_{k=1}^{n} \left| \int_{-\infty}^{+\infty} \left(e^{i \frac{tx}{s_{n}}} - 1 \right) dF_{X_{k}}(x) \right|$$

$$\leq \sum_{k=1}^{n} \left| \int_{-\infty}^{+\infty} \vartheta \frac{t^{2}x^{2}}{2s_{n}^{2}} dF_{X_{k}}(x) \right|$$

$$\stackrel{\mathbb{E}X_{k} = 0, \forall k \in \mathbb{N}}{\leq 2s_{n}^{2}} \sum_{k=1}^{n} \operatorname{Var} X_{k}$$

$$= \frac{t^{2}}{2} < + \infty,$$

odakle slijedi (*).

TEOREM (Lindeberg-Feller)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli s **konačnim** varijancama i neka je $S_n:=\sum_{k=1}^n X_k, \mu_k:=\mathbb{E}X_k, s_n^2:=\operatorname{Var}S_n$. Lindebergov uvjet vrijedi $\Leftrightarrow \frac{S_n-\mathbb{E}S_n}{s_n} \stackrel{\mathcal{D}}{\longrightarrow} N(0,1)$ i $\left(\frac{X_k-\mu_k}{s_n}\right)_{1\leq k\leq n}, n\in\mathbb{N}$ su uaz.

Dokaz.

 \Rightarrow : Već dokazano.

 \leftarrow : BSOMP $\mu_k = 0$. Dokazali smo da u tom slučaju vrijedi (*). Sada dokazujemo da

$$\forall \varepsilon > 0, \limsup_{n \to \infty} \left[1 - \frac{1}{s_n^2} \sum_{k=1}^n \int_{\{|x| < \varepsilon s_n\}} x^2 dF_{X_k}(x) \right] \le \frac{4}{\varepsilon^2 t^2}.(\triangle)$$

Iz (*) slijedi

$$\lim_{n \to \infty} \left[\frac{t^2}{2} - \sum_{k=1}^n \underbrace{\operatorname{Re}\left(1 - \varphi_k\left(\frac{t}{s_n}\right)\right)}_{\int_{-\infty}^{+\infty} \left(1 - \cos\frac{tx}{s_n}\right) dF_{X_k}(x)} \right] = 0$$

$$\Rightarrow \lim_{n \to \infty} \left[\frac{t^2}{2} - \sum_{k=1}^n \int_{-\infty}^{+\infty} \left(1 - \cos\frac{tx}{s_n}\right) dF_{X_k}(x) \right] = 0$$

Neka je $\varepsilon > 0$.

$$\begin{split} \lim_{n \to \infty} \left[\frac{t^2}{2} - \sum_{k=1}^n \int_{\{|x| < \varepsilon s_n\}} \left(1 - \cos \frac{tx}{s_n} \right) dF_{X_k}(x) - \sum_{k=1}^n \int_{\{|x| \ge \varepsilon s_n\}} \left(1 - \cos \frac{tx}{s_n} \right) dF_{X_k}(x) \right] &= 0 \\ \Rightarrow \lim\sup_{n \to \infty} \left| \frac{t^2}{2} - \sum_{k=1}^n \int_{\{|x| < \varepsilon s_n\}} \left(1 - \cos \frac{tx}{s_n} \right) dF_{X_k}(x) \right| &= \lim\sup_{n \to \infty} \left| \sum_{k=1}^n \int_{\{|x| \ge \varepsilon s_n\}} \left(1 - \cos \frac{tx}{s_n} \right) dF_{X_k}(x) \right|. \\ \sum_{k=1}^n \int_{\{|x| < \varepsilon s_n\}} \left(1 - \cos \frac{tx}{s_n} \right) dF_{X_k}(x) &\leq \sum_{k=1}^n \int_{\{x < \varepsilon s_n\}} \frac{t^2 x^2}{2 s_n^2} dF_{X_k}(x) \xrightarrow{\text{(pogledati pretpostavku)}} \\ &\leq \frac{t^2}{2 s_n^2} \sum_{k=1}^n \text{Var } X_k \\ &= \frac{t^2}{2} \end{split}$$

$$\Rightarrow \frac{t^2 - \sum_{k=1}^n \int_{\{|x| < \varepsilon s_n\}} \left(1 - \cos \frac{tx}{s_n} \right) dF_{X_k}(x) \ge \frac{t^2}{2} - \sum_{k=1}^n \int_{\{x < \varepsilon s_n\}} \frac{t^2 x^2}{2 s_n^2} dF_{X_k}(x) \ge \frac{t^2}{2} - \frac{t^2}{2} = 0 \right],$$

$$\Rightarrow \lim\sup_{n \to \infty} \left[\frac{t^2}{2} \left(1 - \frac{1}{s_n^2} \sum_{k=1}^n \int_{\{x < \varepsilon s_n\}} x^2 dF_{X_k}(x) \right) \right] \le \lim\sup_{n \to \infty} \left[\frac{t^2}{2} - \sum_{k=1}^n \int_{\{|x| < \varepsilon s_n\}} \left(1 - \cos \frac{tx}{s_n} \right) dF_{X_k}(x) \right]$$

$$0 \le \sum_{k=1}^n \int_{\{|x| \ge \varepsilon s_n\}} \left(1 - \cos \frac{tx}{s_n} \right) dF_{X_k}(x) \le 2 \sum_{k=1}^n \int_{\{|x| \ge \varepsilon s_n\}} \left(1 - \cos \frac{tx}{s_n} \right) dF_{X_k}(x) \right]$$

$$\stackrel{\text{Cebisev}}{\le} 2 \sum_{k=1}^n \frac{\text{Var } X_k}{s_n^2 \varepsilon^2}$$

$$= \frac{2}{-}$$

Sada je

$$\begin{split} \limsup_{n \to \infty} \left[\frac{t^2}{2} \left(1 - \frac{1}{s_n^2} \sum_{k=1}^n \int_{\{x < \varepsilon s_n\}} x^2 dF_{X_k}(x) \right) \right] &\leq \limsup_{n \to \infty} \left[\frac{t^2}{2} - \sum_{k=1}^n \int_{\{|x| < \varepsilon s_n\}} \left(1 - \cos \frac{tx}{s_n} \right) dF_{X_k}(x) \right] \\ &= \limsup_{n \to \infty} \left[\sum_{k=1}^n \int_{\{|x| \ge \varepsilon s_n\}} \left(1 - \cos \frac{tx}{s_n} \right) dF_{X_k}(x) \right] \\ &\leq \frac{2}{\varepsilon^2} \bigg/ \frac{2}{t^2}. \end{split}$$

Dakle, vrijedi (\triangle), odakle, puštanjem $t + \infty$, slijedi tvrdnja.

25 Primjeri (slobodan izbor, za znatiželjne)

PRIMJER

Neka je $(X_n)_{n\in\mathbb{N}}$ niz nezavisnih jednako distribu
iranih slučajnih varijabli s očekivanjem 0 i varijancom 1. $\frac{X_1+\dots+X_n}{\sqrt{n}}$ nikad ne može konvergi
rati po vjerojatnosti. Po Lévyjevom CGT-u, $\frac{S_n}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} N(0,1)$; neka je Z ta granična varijabla. Pret
postavimo suprotno, tj., da $\frac{S_n}{\sqrt{n}} \stackrel{\mathbb{P}}{\longrightarrow} \tilde{Z}$. Budući da konvergencija po vjerojatnosti povlači konvergenciju po distribuciji, $\tilde{Z} \sim Z$. S druge strane, za podniz $\left(\frac{S_{2n}}{\sqrt{2n}}\right)_{n\in\mathbb{N}}$, vrijedi

$$\frac{S_{2n}}{\sqrt{2n}} = \frac{S_n + (X_{n+1} + \dots + X_{2n})}{\sqrt{2n}} \xrightarrow{\mathbb{P}} Z.$$

Stoga,

$$\frac{X_{n+1} + \dots + X_{2n}}{\sqrt{n}} = \sqrt{2} \cdot \frac{S_{2n}}{\sqrt{2n}} - \frac{S_n}{\sqrt{n}} \xrightarrow{\mathbb{P}} \left(\sqrt{2} - 1\right) Z.$$

No, kako je

$$\frac{X_{n+1} + \dots + X_{2n}}{\sqrt{n}} \sim \frac{S_n}{\sqrt{n}}$$

to

$$\frac{X_{n+1} + \dots + X_{2n}}{\sqrt{n}} \xrightarrow{\mathcal{D}} Z$$

Odatle slijedi $Z \sim (\sqrt{2} - 1) Z$, kontradikcija!

NAPOMENA

☐ Prethodni primjer pokazuje da Centralni granični teorem ne možemo ojačati na konvergenciju po vjerojatnosti.

PRIMJER

Neka je $(X_n)_{n\in\mathbb{N}}$ niz nezavisnih jednako distribuiranih slučajnih varijabli s očekivanjem 0 i pozitivnom varijancom $\sigma^2>0$. Neka je $S_n=\sum_{k=1}^n X_k$. Neka je M>0. Vrijedi $\mathcal{E}_M:=\left\{\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}\right\}\in\sigma(X_n\mid n\in\mathbb{N})$ jer je to repni događaj, dakle, konačno mnogo vrijednosti slučajnih varijabli $X_1,\ldots,X_n,n\in\mathbb{N}$ neće utjecati na lim sup. Po Kolmogorovljevu zakonu 0-1, $\mathbb{P}(\mathcal{E}_M)\in\{0,1\}$. Pokažimo da je $\mathbb{P}(\mathcal{E}_M)>0$. Po CGT-u, $\mathbb{P}\left(\frac{S_n}{\sqrt{n}}>M\right)\to\mathbb{P}(N>M)=\Phi(M),N\sim(0,\sigma^2)$. Zbog neprekidnosti vjerojatnosti na neopadajući niz događaja,

$$\mathbb{P}(\mathcal{E}_M) \ge \limsup_{n \to \infty} \mathbb{P}\left(\frac{S_n}{\sqrt{n}} > M\right) = \Phi(M) > 0.$$

Dakle, $\mathbb{P}(\mathcal{E}_M) = 1$. Budući da je M > 0 bio proizvoljan,

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}=\infty\right)=\mathbb{P}\left(\bigcap_{M=1}^\infty\mathcal{E}_M\right)=1.$$

NAPOMENA

ightharpoonup Činjenica da, za Brownovo gibanje $B=(B_t)_{t\geq 0}$, vrijedi $\limsup_{n\to\infty} \frac{B_t}{\sqrt{t}}=+\infty$, počiva na prethodnom primjeru i stoga ćemo ga, u §Dodatku 1 ponoviti jer je na vježbama 2023./2024. mrvicu drugačije raspisan.

PRIMJER

Neka je $(X_n)_{n\in\mathbb{N}}$ niz nezavisnih jednako distribuiranih slučajnih varijabli s očekivanjem 0. Neka je

$$R_n := \frac{\frac{1}{\sqrt{n}} \sum_{k=1}^n X_k}{\sqrt{\frac{1}{n} \sum_{k=1}^n X_k}}, \sigma^2 := \mathbb{E}X_1^2.$$

Po Jakom zakonu velikih brojeva,

$$\frac{1}{n} \sum_{k=1}^{n} X_k^2 \xrightarrow{\text{g. s.}} \mathbb{E} X_1^2 = \sigma^2 \Rightarrow \frac{1}{\sqrt{\frac{1}{n} \sum_{k=1}^{n} X_k^2}} \xrightarrow{\text{g. s.}} \frac{1}{\sigma},$$

dok, po Centralnom graničnom teoremu,

$$\frac{1}{\sqrt{n}} \sum_{k=1}^{n} X_k \xrightarrow{\mathcal{D}} N(0,1),$$

pa, po rezultatu s vježbi,

$$R_n \xrightarrow{\mathcal{D}} \frac{1}{\sigma} N(0, \sigma^2) \equiv N(0, 1).$$

PRIMJER

Postoji vjerojatnosna mjera na euklidskoj sferi \mathbb{S}^{n-1} invarijantna na rotacije. Zaista, neka je $X \sim N_n(0_n, I_n)$ te $Z := \frac{X}{\|X\|}$. Z je n-dimenzionalan slučajan vektor s vrijednostima na \mathbb{S}^{n-1} . Preostaje dokazati da je Z invarijantan na transformacije. Z možemo realizirati kao Z=f(X), gdje je $f:\mathbb{R}^n \to \mathbb{S}^{n-1}\,f(x)=\frac{x}{\|x\|}$. Tada, za svaki Borelov skup $B\subseteq\mathbb{S}^{n-1}$ i ortogonalan operator $U\in O(n)$, vrijedi $\mathbb{P}(Z \in UB) = \mathbb{P}(f(X) \in UB) = \mathbb{P}(X \in f^{-1}(UB)).$ Lema $f^{-1}(UB) = Uf^{-1}(B).$

Dokaz.

Dovoljno je dokazati da je $f(x) \in UB \Leftrightarrow f^{-1}(U^{-1}x) \in B$, ali,

$$\frac{U^{-1}x}{\|U^{-1}x\|} = \frac{U^{-1}x}{\|x\|} \in B \Leftrightarrow \frac{x}{\|x\|} \in B.$$

Stoga,

$$\mathbb{P}(Z \in UB) = \mathbb{P}(X \in Uf^{-1}(B)) = \mathbb{P}(X \in f^{-1}(B)) = \mathbb{P}(Z \in B).$$

Napomena

 $f^{-1}(B)$ je stožac generiran s B.

Maxwell-Borel-Poincareov projektivni centralni granični teorem

Neka je $X^{(n)} \sim U(\mathbb{S}^{n-1})$. Tada su koordinate od $X^{(n)}$ asimptotski normalne, npr., $\sqrt{n}X_1^{(n)} \stackrel{\mathcal{D}}{\longrightarrow} N(0,1)$.

Kao u prethodnom primjeru, slučajni vektor $X^{(n)}$ možemo realizirati kao $X^{(n)} = \frac{Y^{(n)}}{\|Y^{(n)}\|}$, gdje je $Y^{(n)} \sim N_n(0_n, I_n)$. Po Jakom zakonu velikih brojeva,

$$\frac{\|Y^{(n)}\|}{\sqrt{n}} \stackrel{\text{g. s.}}{\longrightarrow} 1$$

(jer je $\|Y^{(n)}\|^2 = \sum_{k=1}^n \left(Y_k^{(n)}\right)^2$ suma n nezavisnih slučajnih varijabli s očekivajem 1) pa

$$\sqrt{n}X_1^{(n)} = \frac{Y_1^{(n)}}{\|Y^{(n)}\|} \to N(0,1).$$

PRIMJER (Exercise 27. 6, Bilingsley, ponegdje Hájek-Šidák CGT)

Neka su $(X_n)_{n\in\mathbb{N}}$ nezavisne i jednako distribuirane slučajne varijable s očekivanjem μ i varijancom 1. Neka su, za svaki $n \in \mathbb{N}, \sigma_{nk}, 1 \leq k \leq n$ konstante. Tada

$$\frac{\max_{1 \leq k \leq n} \sigma_{nk}^2}{\sum_{k=1}^n \sigma_{nk}^2} \overset{n \to \infty}{\longrightarrow} 0 \Rightarrow \frac{\sum_{k=1}^n \sigma_{nk} X_k}{\sqrt{\sum_{k=1}^n \sigma_{nk}^2}} \overset{\mathcal{D}}{\longrightarrow} N(0, 1).$$

Prvo, BSOMP da je $\sigma_n^2 := \sum_{k=1}^n \sigma_{nk}^2 = 1$. U protivnom, promatramo $\tilde{\sigma}_{nk}^2 = \frac{\sigma_{nk}^2}{\sigma_n^2}$ i

$$\frac{\max\limits_{1\leq k\leq n}\sigma_{nk}^2}{\sum_{k=1}^n\sigma_{nk}^2} = \frac{\max\limits_{1\leq k\leq n}\tilde{\sigma}_{nk}^2}{\sum_{k=1}^n\tilde{\sigma}_{nk}^2}$$

i

$$\frac{\sum_{k=1}^{n} \sigma_{nk} X_k}{\sqrt{\sum_{k=1}^{n} \sigma_{nk}^2}} = \sum_{k=1}^{n} \frac{\sigma_{nk}}{\sum_{k=1}^{n} \sigma_{nk}^2} X_k = \frac{\sum_{k=1}^{n} \tilde{\sigma}_{nk} X_k}{1}.$$

Neka je $Y_{nk} = \sigma_{nk} X_k$. Tada je $\mathbb{E} Y_{nk} = 0, 1 \le k \le n, n \in \mathbb{N}$ i $s_n^2 := \sum_{k=1}^n \mathrm{Var}(Y_{nk}) = \sum_{k=1}^n \sigma_{nk}^2 = 1$. Neka je $\varepsilon > 0$ i $m_n := \max_{1 \le k \le n} \sigma_{nk}^2$. Za sve $n, \in \mathbb{N}, 1 \le k \le n$,

$$\mathbb{E}\left[|Y_{nk}|^2;|Y_{nk}| \geq \varepsilon\right] = \sigma_{nk}^2 \mathbb{E}\left[|X_k|^2;\sigma_{nk}|X_k| \geq \varepsilon\right] \leq \sigma_{nk}^2 \mathbb{E}\left[|X_k|^2;m_n|X_k| \geq \varepsilon\right]$$

$$= \sigma_{nk}^2 \mathbb{E}\left[|X_1|^2;m_n|X_1| \geq \varepsilon\right] \left/ \cdot \frac{1}{s_n^2} \right/ \sum_{k=1}^n$$

$$\Rightarrow \frac{1}{s_n^2} \mathbb{E}\left[|Y_{nk}|^2; |Y_{nk}| \ge \varepsilon \right] \le \sum_{k=1}^n \sigma_{nk}^2 \mathbb{E}\left[|X_1|^2; m_n |X_1| \ge \varepsilon \right]$$

Budući da $m_n \stackrel{n \to \infty}{\longrightarrow} \infty$, po Lebesgueovom teoremu o dominiranoj konvergenciji, posljednji izraz teži u 0 kad $n \to \infty$.

Lindeberg Fellerov teorem za trokutaste nizove

Neka su $(X_{n,m})_{\substack{1 \leq m \leq n, \\ n \in \mathbb{N}}}$ slučajne varijable nezavisne po retcima i s <u>očekivanjem $\mathbb{E}X_{n,m} = 0$.</u> Neka vrijedi:

$$(i) \sum_{m=1}^{n} \mathbb{E}\left[X_{n,m}^{2}\right] \stackrel{n \to \infty}{\longrightarrow} \sigma^{2} > 0,$$

(ii)
$$\forall \varepsilon > 0, \lim_{n \to \infty} \sum_{m=1}^{n} \mathbb{E}\left[X_{n,m}^{2}; |X_{n,m}| \ge \varepsilon\right] = 0.$$

Tada
$$S_n := \sum_{m=1}^n X_{n,m} \xrightarrow{n \to \infty} \sigma N(0,1) \equiv N(0,\sigma^2).$$

NAPOMENA

 \square Uočimo da je događaj pod očekivanjem u (ii) $\{|X_{nm}| \geq \varepsilon\}$, ne spominjemo nikakav $s_n!$ I tvrdi se $S_n = \sum_{m=1}^n nn X_{nm} \xrightarrow{\mathcal{D}} N(0, \sigma^2)$.

U dokazu ovog teorema, koriste se sljedeći rezultati, koje samo navodimo bez dokaza:

(1)
$$c_n, c \in \mathbb{C}, c_n \to c \Rightarrow \lim_{n \to \infty} \left(1 + \frac{c_n}{n}\right)^n = c$$

(2)
$$z_1, \ldots, z_n, w_1, \ldots, w_n \in \mathbb{C}, |z_i|, |w_i| \le \vartheta \Rightarrow \left| \prod_{j=1}^n z_j - \prod_{j=1}^n w_j \right| \le \vartheta^{n-1} \sum_{j=1}^n |z_j - w_j|$$

(3) Neka je $X \in \mathcal{L}^2$ slučajna varijabla i $\varphi = \varphi_X$ karakteristična funkcija. Tada

$$\left| \varphi(t) - 1 - it \mathbb{E}X + \frac{t^2}{2} \mathbb{E}\left[X^2 \right] \right| \le \mathbb{E}\left[(tX)^2 \wedge \frac{|tX|^3}{6} \right]$$

LEMA Promatramo $\forall n \in \mathbb{N}, (a_{n,m})_{1 \leq m \leq n}$. Pretpostavimo

$$\sup_{1 \le m \le n} a_{n,m} \stackrel{n \to \infty}{\longrightarrow} 0 \quad \& \quad \sum_{m=1}^{n} a_{n,m} \stackrel{n \to \infty}{\longrightarrow} a.$$

Tada je
$$e^{-a} = \lim_{n \to \infty} \prod_{m=1}^{n} (1 - a_{n,m}).$$

Dokaz teorema.

 $\varphi_{n,m}(t):=\mathbb{E}\left[e^{itX_{n,m}}\right],\sigma_{n,m}^2:=\mathbb{E}\left[X_{n,m}^2\right]$. Po Teoremu neprekidnosti, dovoljno je dokazati

$$\prod_{i=1}^{m} \varphi_{n,m}(t) \to e^{-\frac{\sigma^2 t^2}{2}}, \forall t \in \mathbb{R}.$$

Dokazat ćemo

$$\left| \prod_{m=1}^{n} \varphi_{m,n}(t) - \prod_{m=1}^{n} \left(1 - \frac{\sigma_{n,m}^{2} t^{2}}{2} \right) \right| \stackrel{n \to \infty}{\longrightarrow} 0 \ (\blacktriangle)$$

$$\left| \prod_{m=1}^{n} \left(1 - \frac{\sigma_{n,m}^{2} t^{2}}{2} \right) - e^{-\frac{\sigma^{2} t^{2}}{2}} \right| \stackrel{n \to \infty}{\longrightarrow} 0 \ (\blacktriangle \blacktriangle)$$

Neka je $z_{n,m}=\varphi_{n,m}(t), w_{n,m}=1-\frac{\sigma_{n,m}^2t^2}{2}.$ BSOMP $t\neq 0.$

$$\forall n \in \mathbb{N}, 1 \leq m \leq n, |z_{n,m} - w_{n,m}| = \left| \varphi_{n,m}(t) - \left(1 + \frac{\mathbb{E}\left[(itX_{n,m})^2 \right]}{2} \right) \right| \stackrel{(3)}{\leq} \mathbb{E}\left[\frac{|tX_{n,m}|^3}{3} \wedge (tX_{n,m})^2 \right]$$

$$\leq \mathbb{E}\left[\frac{|t|^3 |X_{n,m}|^3}{6}; |X_{n,m}| \leq \varepsilon \right] + \mathbb{E}\left[t^2 X_{n,m}^2; |X_{nnm}| \geq \varepsilon \right]$$

$$\leq \frac{\varepsilon |t|^3}{6} \mathbb{E}\left[X_{n,m}^2; |X_{n,m}| \leq \varepsilon \right] + t^2 \mathbb{E}\left[X_{n,m}^2; |X_{n,m}| > \varepsilon \right]$$

$$\Rightarrow \limsup_{n \to \infty} \sum_{m=1}^{n} |z_{n,m} - w_{n,m}| \leq \frac{\varepsilon |t|^3}{6} \limsup_{n \to \infty} \sum_{m=1}^{n} \underbrace{\mathbb{E}\left[X_{n,m}^2; |X_{n,m}| \leq \varepsilon\right]}_{\leq \mathbb{E}\left[X_{n,m}^2\right]} + t^2 \underbrace{\limsup_{n \to \infty} \sum_{m=1}^{n} \mathbb{E}\left[X_{n,m}^2; |X_{n,m}| \geq \varepsilon\right]}_{=0 \text{ zbog } (ii)}$$

$$\leq \frac{\varepsilon |t|^3}{6} \underbrace{\limsup_{n \to \infty} \sum_{m=1}^n \mathbb{E}\left[X_{n,m}^2\right]}_{=\sigma^2 \text{ zbog } (i)}$$

$$\Rightarrow \lim_{n \to \infty} \sum_{m=1}^{n} |z_{n,m} - w_{n,m}| = 0$$

 $|z_{n,m}| = |\varphi_{n,m}(t)| \le 1$. Želimo još $|w_{n,m}| \le 1$.

$$\sigma_{n,m}^2 = \mathbb{E}\left[X_{n,m}^2\right] \leq \varepsilon^2 + \mathbb{E}\left[X_{n,m}^2; |X_{n,m}| \geq \varepsilon\right]$$

$$\sup_{1 \leq m \leq n} \sigma_{n,m}^2 \leq \varepsilon^2 + \sup_{1 \leq m \leq n} \mathbb{E}\left[X_{n,m}^2; |X_{n,m}| \geq \varepsilon\right] \leq \varepsilon^2 + \sum_{m=1}^n \mathbb{E}\left[X_{n,m}^2; |X_{n,m}| \geq \varepsilon\right] / \limsup_{n \to \infty} \left[X_{n,m}^2; |X_{n,m}| \geq \varepsilon\right] = 0$$

$$\Rightarrow \limsup_{n \to \infty} \sup_{1 \le m \le n} \sigma_{n,m}^2 \le \varepsilon^2 + \underbrace{\limsup_{n \to \infty} \sum_{m=1}^n \mathbb{E}\left[X_{n,m}^2; |X_{n,m}| > \varepsilon\right]}_{=0 \text{ zbog } (ii)}$$

Slijedi $\lim_{n\to\infty}\sup_{1\le m\le n}\sigma_{n,m}^2=0$. Dakle, uniformno po retku varijanca teži prema 0. Posebno, $\sigma_{n,m}$ možemo učiniti proizvoljno malim i $|w_{n,m}|=\left|1-\frac{\sigma_{n,m}^2t^2}{2}\right|\le 1$.

(2):
$$(\vartheta = 1)$$

$$\left| \prod_{m=1}^{n} \varphi_{n,m}(t) - \prod_{m=1}^{n} \left(1 - \frac{\sigma_{m,n}^2 t^2}{2} \right) \right| \le \sum_{m=1}^{n} |z_{n,m} - w_{n,m}| \stackrel{n \to \infty}{\longrightarrow} 0.$$

Dakle, vrijedi (▲).

Neka je $a_{n,m} := \frac{\sigma_{m,n}^2 t^2}{2}$.

$$\sum_{m=1}^{n} a_{n,m} = \frac{t^2}{2} \sum_{m=1}^{n} \mathbb{E} \left[X_{n,m}^2 \right] \xrightarrow[n \to \infty]{(i)} \frac{\sigma^2 t^2}{2}$$

$$\sup_{1 \le m \le n} a_{n,m} = \frac{t^2}{2} \sup_{1 \le m \le n} \sigma_{n,m}^2$$

Prema Lemi,
$$\lim_{n\to\infty} \prod_{m=1}^n \left(1-\frac{\sigma_{n,m}^2 t^2}{2}\right) = e^{-\frac{\sigma^2 t^2}{2}}.$$

Neka su $(Y_n)_{n\in\mathbb{N}}$ nezavisne slučajne varijable t. d. je $\mathbb{E}X_n=0, \forall n\in\mathbb{N}$. Tada je $\mathbb{E}Y_m^2=\mathrm{Var}\,Y_m$ i pretpostavimo

$$\sum_{i=1}^{n} \mathbb{E}\left[Y_i^2\right] = \operatorname{Var} S_n = s_n^2 < \infty.$$

Definirajmo $X_{n,m} := \frac{Y_m}{s_n}$.

 \blacktriangleright retci: skalirani početni komadi polaznog niza $(Y_n)_{n\geq 0}$:

$$\begin{array}{c|cccc} \underline{X_1} & & & \\ \underline{X_1} & \underline{X_2} & & \underline{X_2} \\ \underline{s_2} & & \underline{s_2} & & \\ \vdots & \vdots & \ddots & & \\ \underline{X_1} & \underline{X_2} & & \dots & \underline{X_n} \\ \underline{s_n} & & \underline{s_n} & & \dots & \underline{s_n} \\ \vdots & \vdots & & \vdots & \ddots & \dots \end{array}$$

Skalirani početni komadi nisu međusobno nezavisni, ali treba nam samo nezavisnost po svakom retku, što smo sačuvali.

$$(i) \sum_{m=1}^{n} \mathbb{E}\left[X_{n,m}^{2}\right] = \frac{1}{s_{n}^{2}} \underbrace{\sum_{m=1}^{n} \mathbb{E}\left[Y_{m}^{2}\right]}_{\text{Var} S_{n}} = 1 < \infty \checkmark$$

$$(ii) \lim_{n \to \infty} \sum_{m=1}^{n} \mathbb{E}\left[X_{n,m}^{2}; |X_{n,m}| \ge \varepsilon\right] = \lim_{n \to \infty} \sum_{m=1}^{n} \mathbb{E}\left[\frac{Y_{m}^{2}}{s_{n}^{2}}; |X_{n,m}| \ge \varepsilon\right] = \lim_{n \to \infty} \frac{1}{s_{n}^{2}} \sum_{m=1}^{n} \mathbb{E}\left[Y_{m}^{2}; |Y_{m}| \ge \varepsilon s_{n}\right] = 0$$

Sada

$$\frac{\sum_{m=1}^{n} Y_m}{s_n} = \frac{S_n^Y}{s_n} = \sum_{m=1}^{n} X_{n,m} \xrightarrow{\mathcal{D}} N(0,1).$$

PRIMJER (Exercise 3.4.13., Durret)

Neka su $(X_j)_{j\in\mathbb{N}}$ nezavisne slučajne varijable t. d. je

$$X_j \sim \begin{pmatrix} -j & 0 & j \\ \frac{1}{2j^{\beta}} & 1 - \frac{1}{j^{\beta}} & \frac{1}{2j^{\beta}} \end{pmatrix}.$$

 $\beta > 1$ Tada je

$$\sum_{j=1}^{\infty} \mathbb{P}(X_j \neq 0) = \sum_{j=1}^{\infty} \frac{1}{j^{\beta}} < \infty.$$

Pa, po Borel-Cantelli 1, $\mathbb{P}(X_j \neq 0 \text{ b. m. p.}) = 0$, odnosno za $\omega \in \Omega_0 := \{\omega \mid X_j(\omega) = 0 \text{ kad-tad}\}$, $S_n(\omega)$ konvergira prema $S_{\infty}(\omega), S_{\infty} := \sum_{j=1}^{\infty} X_j$, tj., $S_n \stackrel{\text{g. s.}}{\longrightarrow} S_{\infty}$ jer je $\mathbb{P}(\Omega_0) = 1$.

 $\beta < 1$: Neka je

$$\begin{cases} X_{nm} = X_m, 1 \le m \le n, \forall n \in \mathbb{N} \\ Y_{nm} = \frac{X_{nm}}{n^{(3-\beta)/2}} \\ T_n = \sum_{m=1}^n Y_{nm} = \frac{S_n}{n^{(3-\beta)/2}} \end{cases}$$

Tada je $\mathbb{E}Y_{nm}=0$ i $\mathbb{E}\left[Y_{nm}^2\right]=\frac{1}{n^{3-\beta}}\mathbb{E}\left[X_m^2\right]=\frac{1}{n^{3-\beta}}m^{2-\beta}.$

(i) $\sum_{m=1}^n \mathbb{E}\left[Y_{nm}^2\right] = \frac{1}{n^{3-\beta}} \sum_{m=1}^n m^{2-\beta} \le \frac{1}{n^{3-\beta}} \cdot n \cdot n^{2-\beta} = 1$. Po Teoremu o monotonoj konvergenciji, sada $\sum_{m=1}^n \mathbb{E}\left[Y_{nm}^2\right] \to c^2 \le 1$ za neki c>0.

 $\begin{array}{l} (ii) \ \lim_{n \to \infty} \mathbb{E}\left[Y_{nm}^2; |Y_{nm}| \geq \varepsilon\right] = \lim_{n \to \infty} \mathbb{E}\left[Y_{nm}^2; |X_{nm}| \geq \varepsilon n^{(3-\beta)/2}\right]. \ \text{Budu\'ei da je } \beta < 1, \frac{3-\beta}{2} > 1 \ \text{pa} \\ \text{je, za sve dovoljno velike } n \in \mathbb{N}, \ \varepsilon n^{(3-\beta)/2} > n \ \text{i stoga je } \left\{|X_{nm}| \geq \varepsilon n^{(3-\beta)/2}\right\} = \emptyset. \ \text{Dakle,} \\ \lim_{n \to \infty} \sum_{m=1}^n \mathbb{E}\left[Y_{nm}^2; |X_{nm}| \geq \varepsilon n^{(3-\beta)/2}\right] = 0. \end{array}$

Po Lindeberg-Fellerovom teoremu za trokutaste nizove, slijedi $T_n = \frac{S_n}{n^{(3-\beta)/2}} \xrightarrow{\mathcal{D}} N(0, c^2)$.

 $\beta = 1$:

$$\varphi_{S_n/n}(t) = \prod_{j=1}^n \varphi_{X_j}\left(\frac{t}{n}\right) = \prod_{j=1}^n \left(\frac{1}{2j}e^{-ijt/n} + 1 - \frac{1}{j} + \frac{1}{2j}e^{ijt/n}\right) = \prod_{j=1}^n \left(1 - \frac{1}{j}\left(1 - \cos\left(\frac{jt}{n}\right)\right)\right)$$

$$= \prod_{j=1}^n \left(1 - \frac{1}{n}\cdot\left(\frac{j}{n}\right)^{-1}\left(1 - \cos\left(\frac{jt}{n}\right)\right)\right)$$

Primijetimo da je sljedeće, u stvari, Riemannova suma

$$\sum_{j=1}^{n} \frac{1}{n} \left(\frac{j}{n} \right)^{-1} \left(1 - \cos \left(\frac{jt}{n} \right) \right) \to \int_{0}^{1} \frac{1}{x} (1 - \cos(xt)) dx.$$

Također, $\forall j, \frac{1}{j} \left(\cos \left(\frac{jt}{n} \right) - 1 \right)$ i $\lim_{n \to \infty} \frac{1}{j} \left(\cos \left(\frac{jt}{n} \right) - 1 \right) = 0$. Sada

$$\varphi_{S_n/n}(t) = \prod_{j=1}^n \left(1 + \left(-\frac{1}{j} \left(1 - \cos \left(\frac{jt}{n} \right) \right) \right) \right) \to \exp \left(-\int_0^1 \frac{1}{x} (1 - \cos(xt)) dx \right),$$

što je, prema zadatku, za neku slučajnu varijablu \aleph , upravo jednako $\mathbb{E}\left[e^{it\aleph}\right]$ (može se pokazati da je granična funkcija koju smo dobili neprekidna u t=0). Zaključujemo da $\frac{S_n}{n} \stackrel{\mathcal{D}}{\longrightarrow} \aleph$.

PRIMJER

Neka je $(X_n)_{n\in\mathbb{N}}$ niz nezavisnih slučajnih varijabli definiran ovako:

$$X_1 \sim \begin{pmatrix} -1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
.

Ako je k > 1 i c > 1 fiksan realan broj,

$$X_k \sim \begin{pmatrix} -k & -1 & 0 & 1 & k \\ \frac{1}{2k^2} \left(1 - \frac{1}{c}\right) & \frac{1}{2c} & 1 - \frac{1}{c} - \frac{1}{k^2} \left(1 - \frac{1}{c}\right) & \frac{1}{2c} & \frac{1}{2k^2} \left(1 - \frac{1}{c}\right) \end{pmatrix}.$$

Stavimo $X_{nk} = X_k \mathbb{1}_{\{|X_k| \le \sqrt{n}\}}$. Olakšajmo si izračun:

$$X_k^2 \sim \left(\begin{matrix} 0 & 1 & k^2 \\ 1 - \frac{1}{c} - \frac{1}{k^2} \left(1 - \frac{1}{c} \right) & \frac{1}{c} & \frac{1}{k^2} \left(1 - \frac{1}{c} \right) \end{matrix} \right)$$

(a) $\frac{X_k}{s_n}$ su UAZ, gdje je $s_n^2 = \operatorname{Var} S_n, S_n = \sum_{k=1}^n X_k$. Zaista, $\forall k, \mathbb{E} X_k = 0$, $\operatorname{Var} X_k = 1 \Rightarrow s_n = \sqrt{n}$. Neka je $\varepsilon > 0$ te $n \in \mathbb{N}$ t. d. je $\varepsilon \sqrt{n} > 1$. Tada

$$\mathbb{P}\left(\left|\frac{X_k}{s_n}\right| \geq \varepsilon\right) = \mathbb{P}\left(|X_k| \geq \varepsilon\sqrt{n}\right) = \begin{cases} 0, & k < \varepsilon\sqrt{n} \\ \frac{1}{k^2}\left(1 - \frac{1}{c}\right), & k \geq \varepsilon\sqrt{n} \end{cases} \Rightarrow \max_{1 \leq k \leq n} \mathbb{P}\left(\left|\frac{X_k}{s_n}\right| \geq \varepsilon\right) \leq \frac{1}{\varepsilon^2 n} \left(1 - \frac{1}{c}\right) \overset{n \to \infty}{\longrightarrow} 0.$$

(b) Lindebergov uvjet ne vrijedi za $(X_k)_{k\in\mathbb{N}}$, ali vrijedi za (X_{nk}) . Također, $Z_n:=\sum_{k=1}^n X_{nk}, c_n^2=$ Var $Z_n\Rightarrow \frac{Z_n}{c_n}\xrightarrow{\mathcal{D}} N(0,1)$. Zaista,

$$\frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}\left[|X_k|^2; |X_k| \ge \varepsilon s_n\right] = \frac{1}{n} \sum_{k=1}^n \mathbb{E}\left[|X_k|^2; |X_k| \ge \varepsilon \sqrt{n}\right].$$

Neka je n dovoljno velik t. d. $\varepsilon \sqrt{n} > 1$. Tada

$$\frac{1}{n} \sum_{k=\lceil \varepsilon \sqrt{n} \rceil}^{n} k^2 \mathbb{P}(|X_k| = k) \sim \frac{1}{n} (n - \varepsilon \sqrt{n}) \left(1 - \frac{1}{c} \right) \to 1 - \frac{1}{c} > 0.$$

Dakle, Lindebergov uvjet ne vrijedi za niz $(X_k)_{k\in\mathbb{N}}$.

$$\operatorname{Var} X_{nk} = \mathbb{E}[|X_k|^2; |X_k| \le \sqrt{n}] = \begin{cases} \mathbb{E}\left[X_k^2\right] = 1, & k \le \sqrt{n} \\ \mathbb{P}(|X_k| = 1) = \frac{1}{c}, & k > \sqrt{n} \end{cases} \Rightarrow c_n^2 = \sum_{k=1}^n \operatorname{Var} X_k = \lfloor \sqrt{n} \rfloor + \frac{1}{c} \left(n - \lfloor \sqrt{n} \rfloor\right) \sim \frac{n}{c}.$$

Budući da je $\mathbb{E}X_{nk}=0$, u izrazu Lindebergovih suma za (X_{nk}) , imamo

$$\frac{1}{c_n^2} \sum_{k=1}^n \mathbb{E}\left[X_{nk}^2; |X_{nk}| \ge \varepsilon c_n\right] \sim \frac{c}{n} \sum_{k=\lceil \varepsilon c_n \rceil}^{\sqrt{n}} k^2 \mathbb{P}(|X_k| = k) = \frac{c}{n} \left(\sqrt{n} - \varepsilon \sqrt{\frac{n}{c}}\right) \left(1 - \frac{1}{c}\right) \to 0.$$

Iz Lindebergovog teorema, sada slijedi $\frac{Z_n}{c_n} \xrightarrow{\mathcal{D}} N(0,1)$.

(c) Vrijedi $\lim_{n\to\infty} \mathbb{P}(S_n \neq Z_n) = 0.$ Zaista,

$$\mathbb{P}(S_n \neq Z_n) \leq \left[S_n \neq Z_n \Leftrightarrow \exists 1 \leq k \leq n, X_k \neq X_{nk} \right] \leq \sum_{k=1}^n \mathbb{P}(X_k \neq X_{nk}) \leq \sum_{k=1}^n \mathbb{P}(|X_k| > \sqrt{n})$$

$$\leq \sum_{k=\lceil \sqrt{n} \rceil}^n \mathbb{P}(|X_k| = k) \leq \sum_{k=\lceil \sqrt{n} \rceil}^\infty \mathbb{P}(|X_k| = k) = \left(1 - \frac{1}{c} \right) \sum_{k=\lceil \sqrt{n} \rceil}^\infty \frac{1}{k^2} \xrightarrow{n \to \infty} 0$$

$$\begin{array}{c} (d) \ \ \frac{\sqrt{c}S_n}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} N(0,1), \ \frac{S_n}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} N(0,1). \\ \text{Zaista, ako} \ Y_n \stackrel{\mathcal{D}}{\longrightarrow} Y, \ \text{tada} \ \varphi_{Y_n} \to \varphi_Y \ \text{uniformno na svakom ograničenom intervalu pa, ako još i} \\ a_n \to 1, \ \varphi_{Y_n}(a_nt) \to \varphi_Y(t), \forall t, \ \text{odnosno,} \ a_nY_n \stackrel{\mathcal{D}}{\longrightarrow} Y. \ \text{Zapišimo} \ \frac{\sqrt{c}Z_n}{\sqrt{n}} = a_n\frac{Z_n}{c_n}, \ \text{gdje} \ a_n = \frac{c_n\sqrt{c}}{\sqrt{n}} \to 1 \\ \text{prema} \ (b) \ \text{dijelu.} \ \text{Iz} \ (b), \ \text{također, slijedi} \ \frac{\sqrt{c}Z_n}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} N(0,1). \end{array}$$

$$\begin{split} &\mathbb{P}(Y_n \leq y) = \mathbb{P}(Y_n \leq y, Y_n' \leq y) + \mathbb{P}(Y_n \leq y, Y_n' > y) \leq \mathbb{P}(Y_n \leq y) + \mathbb{P}(Y_n \neq Y_n') \leq \mathbb{P}(Y_n \leq y) + 2\mathbb{P}(Y_n \neq Y_n') \\ &\text{pa, ako } Y_n \stackrel{\mathcal{D}}{\longrightarrow} Y \text{ i } \mathbb{P}(Y_n \neq Y_n') \to 0 \text{, tada i } Y_n' \stackrel{\mathcal{D}}{\longrightarrow} Y \text{. Budući da } \frac{\sqrt{c}Z_n}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} N(0, 1) \text{ te, po } (c) \text{ dijelu,} \\ &\mathbb{P}\left(\frac{\sqrt{c}Z_n}{\sqrt{n}} \neq \frac{\sqrt{c}S_n}{\sqrt{n}}\right) = \mathbb{P}(Z_n \neq S_n) \to 0 \text{, zaključujemo da i } \frac{\sqrt{c}S_n}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} N(0, 1). \\ &\text{Što se tiče } \left(\frac{S_n}{s_n}\right)_{n \in \mathbb{N}} \text{, kako su } (X_{nk}) \text{ UAZ, a po } (b) \text{ dijelu, za } (X_k)_{k \in \mathbb{N}} \text{ ne vrijedi Lindebergov uvjet,} \\ &\frac{S_n}{s_n} = \frac{S_n}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} N(0, 1). \end{split}$$

PRIMJER

Neka su $(X_n)_{n\geq 1}$ nezavisne, $\alpha>0$ i

$$X_n \sim \begin{pmatrix} -n^{\alpha} & 0 & n^{\alpha} \\ \frac{1}{2n^{2\alpha}} & 1 - \frac{1}{n^{2\alpha}} & \frac{1}{2n^{2\alpha}} \end{pmatrix}.$$

 $\operatorname{Var} X_k=1, \forall k\Rightarrow s_n^2=\operatorname{Var}(S_n)\stackrel{\text{nez.}}{=}\sum_{k=1}^n\operatorname{Var}(X_k)=n.$ Neka je $\varepsilon>0.$ Provjeravamo Lindebergov uvjet, tj., vrijedi li

$$\lim_{n\to\infty}\frac{1}{s_n^2}\sum_{k=1}^n\mathbb{E}[|X_k|^2;|X_k|\geq \varepsilon s_n]=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\mathbb{E}[|X_k|^2;|X_k|\geq \sqrt{n}].$$

$$\begin{split} &\alpha<\tfrac{1}{2}\ \forall \varepsilon>0, \exists n_\varepsilon, n^{\alpha-1/2}\leq \varepsilon,\ \mathrm{tj.},\ n^\alpha<\varepsilon n^{1/2}, \forall n\geq n_\varepsilon \Rightarrow \forall n\geq n_\varepsilon, \sum_{k=1}^n \mathbb{E}[|X_k|;|X_k|\geq \varepsilon\sqrt{n}]=0\\ &\alpha\geq \tfrac{1}{2}\ \mathrm{Neka\ je}\ \varepsilon\in\langle 0,1\rangle, \end{split}$$

$$\begin{split} & \mathbb{E}\left[|X_k|^2; |X_k| \geq \varepsilon \sqrt{n}\right] = \begin{cases} 1, & k^\alpha \geq \varepsilon \sqrt{n}, \text{ tj., } k \geq \varepsilon^{1/\alpha} n^{1/(2\alpha)} \\ 0, & k < \varepsilon^{1/\alpha} n^{1/(2\alpha)} \end{cases} \\ \Rightarrow & \sum_{k=1}^n \mathbb{E}\left[|X_k|^2; |X_k| \geq \varepsilon \sqrt{n}\right] \geq \sum_{k=\left\lfloor \varepsilon^{1/\alpha} n^{1/(2\alpha)} \right\rfloor}^n \mathbb{E}\left[|X_k|^2; |X_k| \geq \varepsilon \sqrt{n}\right] = \left(n - \left\lfloor n^{1/\alpha} n^{1/(2\alpha)} \right\rfloor\right). \end{split}$$

 ${\rm Također},$

$$\lim_{n\to\infty} \max_{1\leq k\leq n} \mathbb{P}\left(|X_n - \mathbb{E}X_n| \geq s_n\right) \leq \lim_{n\to\infty} \max_{1\leq k\leq n} \frac{\mathbb{E}\left[|X_k|^2\right]}{\varepsilon^2 s_n^2} = \frac{1}{\varepsilon^2} \lim_{n\to\infty} \frac{1}{s_n^2} = 0,$$

tj., $\left(\frac{X_k}{s_n}\right)_{1 \leq k \leq n}$ su UAZ pa
, kako Lindebergov uvjet ne vrijedi,

$$\frac{S_n}{s_n} \not\stackrel{\mathcal{D}}{\longleftrightarrow} N(0,1).$$

26 Stabilne distribucije

Neka je $(X_n)_{n\in\mathbb{N}}$ niz nezavisnih jednako distribuiranih slučajnih varijabli, $S_n := \sum_{k=1}^n X_k$. Ovdje bitan faktor: $\frac{1}{\sqrt{n}} \cdot \text{const.}$

PITANJE Što izostavimo li jednaku distribuiranost, a želimo asimptotski normalnu distribuiranost? Vrhunac rješenja tog problema → Lindeberg.

PITANJE Što imamo li neki drugi faktor? Možemo li dobiti limese koji nisu Gaussove razdiobe?

PRIMJER

Neka su $(X_n)_{n\in\mathbb{N}}$ nezavisne jednako distribuirane slučajne varijable, $X_n \sim C(a,b), a>0$, tj., $f(x)=\frac{a}{\pi(a^2+(x-b)^2)}$. Budući da je $\mathbb{E}|X_n|=+\infty$, ovaj primjer ne potpada pod klasični centralni granični teorem. Za karakteristične funkcije vrijedi: $\varphi_{X_n}(t)=e^{-a|t|}, \varphi_{\frac{S_n}{n}}(t)=\left[e^{-a\frac{|t|}{n}}\right]^n=e^{-a|t|}=\varphi_{X_1}(t)\left(\frac{S_n}{n}\right)^n$ ne potpada, iz istog razloga, pod Kolmogorovljev jaki zakon velikih brojeva). $\Rightarrow \forall n\in\mathbb{N}, \frac{S_n}{n}\sim X_1$ (niz je stacionaran po distribuciji). $\frac{S_n}{n}\stackrel{\mathcal{D}}{\longrightarrow}$ Cauchyjeva distribucija (promjena normativnog faktora, polazne distribucije bez konačnog 1. i 2. momenta; limes nije normalna distribucija). Ovaj primjer pokazuje da su mogući i drugi limesi.

PITANJE

Neka je $(X_n)_{n\in\mathbb{N}}$ niz nezavisnih jednako distribu
iranih slučajnih varijabli. Što sve može biti limes po distribuciji niza
 $\left(\frac{1}{a_n}(S_n-b_n)\right)_{n\in\mathbb{N}}$, pri čemu su $a_n>0,b_n\in\mathbb{R},\forall n\in\mathbb{N}$? Ideja se zasniva na temelju Cauchyjeva primjera.

BSO, $a_n > 0, \forall n \in \mathbb{N}$ (može biti i $a_n < 0$ za konačno mnogo članova, a u slučaju da je $a_n < 0$ za beskonačno mnogo $n \in \mathbb{N}$, rastavili bismo niz $(a_n)_{n \in \mathbb{N}}$ na dva niza, pozitivnih i negativnih članova). Za početak, promotrimo distribucije koje se ne mijenjaju afinom transformacijom sume S_n . U nastavku će se javljati dva nova bitna pojma.

DEFINICIJA

Slučajne varijable X i Y (ili F_X i F_Y) istog su **pozitivnog tipa** ako postoje $a>0, b\in\mathbb{R}$ t. d. je $X\sim\frac{1}{a}(Y-b)$ (tj., $F_X(x)=F_Y(ax+b)$). Ako je samo $a\neq 0$, kažemo da su **istog tipa**. Isti pozitivan tip dobro se ponaša s obzirom na konvergenciju. Preciznije,

TEOREM (o konvergenciji tipova) (bez dokaza):

Neka su $(X_n)_{n\in\mathbb{N}}$ i $(Y_n)_{n\in\mathbb{N}}$ dva niza slučajnih varijabli t. d. $X_n \xrightarrow{\mathcal{D}} X$ i $Y_n \xrightarrow{\mathcal{D}} Y$ te, neka su, za svaki $n\in\mathbb{N},\ X_n$ i Y_n istog pozitivnog tipa, tj., neka postoje $a_n>0,b_n\in\mathbb{R}$ t. d. je $X_n\sim\frac{1}{a_n}(Y_n-b_n)$. Ako granične slučajne varijable X i Y nisu degenerirane, $\exists a>0,b\in\mathbb{R},X\sim\frac{1}{a}(Y-b)$ i $a_n\to a,b_n\to b$, tj., i granične varijable X i Y također su istog pozitivnog tipa.

Promatramo razdiobe koje se dobro ponašaju na afine transformacije.

DEFINICIJA

Slučajna varijabla X, (tj., njezina distribucija F_X) stabilna je ako vrijedi:

$$n \in \mathbb{N}, X_1, \dots, X_n$$
 nezavisne i $F_{X_i} = F_X \Rightarrow S_n = \sum_{k=1}^n X_k$ je istog pozitivnog tipa kao X

$$(\exists a_n > 0, b_n \in \mathbb{R}, X \sim \frac{1}{a_n} (S_n - b_n)).$$

Već znamo za 1-1 korespondenciju $F_X \leftrightarrow \varphi_X$, pa možemo reći:

$$\Rightarrow$$
 X je stabilna $\Leftrightarrow \forall n \in \mathbb{N}, \exists a_n > 0, b_n \in \mathbb{R}, \varphi_X(t)^n = e^{itb_n}\varphi_X(a_nt).$

PRIMJER

Neka je karakteristična funkcija oblika $\varphi_X = e^g$, pri čemu je g ili oblika

$$\begin{array}{l} (1^\circ) \ g(t) = it\beta - d|t|^\alpha \left(1 + i\vartheta \frac{t}{|t|} \operatorname{tg}\left(\frac{\pi}{2}\alpha\right)\right), \\ 0 < \alpha < 1 \ \text{ili} \ 1 < \alpha \leq 2, \beta \in \mathbb{R}, d \geq 0, |\vartheta| \leq 1, \ \text{ili} \end{array}$$

$$(2^{\circ}) \ g(t) = it\beta - d|t| \left(1 + i\vartheta \frac{2}{\pi} \ln|t|\right), \beta \in \mathbb{R}, d \ge 0, |\vartheta| \le 1.$$

Dogovor Za t = 0, smatramo $\frac{t}{|t|} = 0$.

Neka je, u prvom slučaju, $\lambda := \frac{1}{\alpha}$, a u drugom $\lambda = 1$. Tada

$$(1^{\circ}) \ g\left(n^{\lambda}t\right) = itn^{\lambda}t\beta - dn|t|^{\alpha}\left(1 + i\vartheta\frac{t}{|t|}\right) = ng(t) - it\beta\left(n - n^{\lambda}\right)$$

$$(2^{\circ}) \ g\left(n^{\lambda}t\right) = g(nt) = in\beta t - dn|t|\left(1 + i\vartheta \frac{t}{|t|}\frac{2}{\pi}\left(\ln n + \ln|t|\right)\right) = ng(t) - intd\vartheta \frac{2}{\pi}\ln n$$

U obama slučajevima,

$$(\varphi_X(t))^n = e^{ng(t)} = e^{g(n^{\lambda}t)}e^{ib_nt},$$

$$(1^{\circ}) \ b_n = \beta \left(n - n^{\lambda} \right)$$

$$(2^{\circ})$$
 $b_n = nd\vartheta \frac{2}{\pi} \ln n$

$$\Rightarrow X \sim \frac{1}{a_n}(S_n - b_n), a_n = n^{\lambda} = n^{1/\alpha}$$

TEOREM (bez dokaza):

X je stabilna ako i samo ako je $\varphi_X(t)$ ili onog prvog ili onog drugog oblika.

Posebnu pažnju pridajemo simetričnim stabilnim distribucijama. Znamo da je X simetrična $\Leftrightarrow \varphi_X$ je realna funkcija.

$$\Rightarrow X$$
je simetrična stabilna $\Leftrightarrow \varphi_X(t) = e^{-d|t|^{\alpha}}, d \geq 0, 0 < \alpha \leq 2$ (**)

Komentari za znatiželjne:

-
$$d=0$$
 (α više nije bitan) $\Rightarrow X$ je degenerirana u 0

-
$$d > 0$$
:

-
$$\alpha = 2 \Rightarrow X \sim N(0, 2d)$$

- proces Brownovog gibanja
- generator: Laplaceov operator (Δ)
- neprekidne, nigdje diferencijabilne trajektorije
- Stokesov model \rightarrow zasnovan na Brownovom gibanju
- lokalni operator ⇒ lokalno ponašanje određuje dinamiku

-
$$\alpha = 1 \Rightarrow X \sim C(d, 0)$$

- generira stohastički proces koji se zove stabilnim
- Lévyjev proces \rightarrow n. j. d. prirasti
- Fellerov proces:
 - polugrupa operatora
 - infinitezimalni generator nije nužno lokalnog tipa
 - generalizacija e^{tA} , gdje je A konačan operator/matrica
 - koristi se u teoriji potencijala i parcijalnim diferencijalnim jednadžbama

$-0 < \alpha < 2$

- nije više lokalnog tipa
- procesi nisu više neprekidni —
- strahovito veliki skokovi, debeli repovi
- koristi se u modeliranju anomalne
- bitno je još ime: Ralph Phillips

TEOREM

Slučajna je varijabla X stabilna \Leftrightarrow postoji niz $(X_n)_{n\in\mathbb{N}}$ nezavisnih jednako distribuiranih slučajnih varijabli i $a_n>0, b_n\in\mathbb{R}, n\in\mathbb{N}$ t. d. $\frac{1}{a_n}(S_n-b_n)\stackrel{\mathcal{D}}{\longrightarrow} X$.

Dokaz.

- ⇒: Neka je X stabilna. Tada postoje vjerojatnosni prostor $(\Omega, \mathcal{F}, \mathbb{P})$ i niz nezavisnih jednako distribuiranih slučajnih varijabli na Ω t. d. je $F_{X_n} = F_X, \forall n \in \mathbb{N}$. $S_n := \sum_{k=1}^n X_k$. Budući da je X stabilna, $\forall n \in \mathbb{N}, \exists a_n > 0, b_n \in \mathbb{R}, \frac{1}{a_n}(S_n b_n) \sim X$. Dakle, niz $\left(\frac{1}{a_n}(S_n b_n)\right)$ je stacionaran po distribuciji. $\Rightarrow \frac{1}{a_n}(S_n b_n) \xrightarrow{\mathcal{D}} X$.
- \sqsubseteq : Neka je $(Y_n)_{n\in\mathbb{N}}$ niz nezavisnih jednako distribuiranih slučajnih varijabli t. d. postoje $(a_n)_{n\in\mathbb{N}}\subseteq \langle 0,+\infty\rangle, (b_n)_{n\in\mathbb{N}}\subseteq \mathbb{R}$ i slučajna varijabla X t. d. $\frac{1}{a_n}(S_n-b_n)\stackrel{\mathcal{D}}{\longrightarrow} X$. Slučaj kada je X degenerirana trivijalno slijedi, stoga pretpostavimo da je X nedegenerirana. Neka je $r\in\mathbb{R}$. Definirajmo:

$$S_n^{(1)} := X_1 + \dots + X_n$$

$$S_n^{(2)} := X_{n+1} + \dots + X_{2n}$$

$$\vdots$$

$$S_n^{(r)} := X_{(r-1)n+1} + \dots + X_{rn}.$$

 $S_n^{(1)},\dots,S_n^{(r)}$ su nezavisne kao funkcije disjunktnih "komada". Neka je

$$W_n^{(r)} := \underbrace{\frac{S_n^{(1)} - b_n}{a_n}}_{=:Z_n^{(1)}} + \underbrace{\frac{S_n^{(2)} - b_n}{a_n}}_{=:Z_n^{(2)}} + \dots + \underbrace{\frac{S_n^{(r)} - b_n}{a_n}}_{=:Z_n^{(r)}}$$

Budući da su $S_n^{(1)}, \ldots, S_n^{(2)}$ nezavisne, a i jednako distribuirane te da je $Z_n^{(k)} = g_n\left(S_n^{(k)}\right)$, pri čemu je $g_n: \mathbb{R} \to \mathbb{R}, g_n(x) = \frac{x-b_n}{a_n}, Z_n^{(1)}, \ldots, Z_n^{(r)}$ nezavisne su i jednako distribuirane. Iz pretpostavke, znamo $Z_n^{(k)} \xrightarrow{\mathcal{D}} X, \forall k = 1, \ldots, r$ pa, po Teoremu neprekidnosti, $W_n^{(r)} \xrightarrow{\mathcal{D}} Z_1 + \cdots + Z_r$, pri čemu su Z_1, \ldots, X_r nezavisne i $Z_k \sim X$. Zapišimo sada

$$W_n^{(r)} = \frac{X_1 + \dots + X_{rn} - rb_n}{a_n} = \underbrace{\frac{a_{rn}}{a_n}}_{=:\alpha_r^{(r)} > 0} \cdot \underbrace{\frac{X_1 + \dots + X_{rn} - b_{rn}}{a_{rn}}}_{=:Y_{rn}} + \underbrace{\frac{b_{rn} - rb_n}{a_n}}_{=:\beta_n^{(r)}}.$$

 $Y_{nr} = \frac{1}{\alpha_n^{(r)}} \left(W_n^{(r)} - \beta_n^{(r)} \right)$. S druge strane, opet iz pretpostavke, slijedi $Y_{rn} \stackrel{\mathcal{D}}{\longrightarrow} X$ $((Y_{rn})_{n \in \mathbb{N}})$ je podniz niza $\left(\frac{S_n - b_n}{a_n} \right)_{n \in \mathbb{N}}$). Već smo rekli $W_n^{(r)} \stackrel{\mathcal{D}}{\longrightarrow} Z_1 + \dots + Z_r$. Po Teoremu o tipovima³⁸, slijedi $\exists \alpha_r > 0, \beta_r \in \mathbb{R}$ t. d. $\alpha_n^{(r)} \stackrel{n \to \infty}{\longrightarrow} \alpha_r$ i $\beta_n^{(r)} \stackrel{n \to \infty}{\longrightarrow} \beta_r$.

$$\Rightarrow X \sim \frac{1}{\alpha_r}(Z_1 + \dots + Z_r - \beta_r)$$

$$\Rightarrow \forall r \in \mathbb{N}, \exists \alpha_r > 0, \beta_r \in \mathbb{R}, Z_1, \dots, Z_r \text{ nezavisne i } Z_k \sim X, X \sim \frac{1}{\alpha_r} (Z_1 + \dots + Z_r - \beta_r).$$

Dakle, X je stabilna.

Neka je $(X_n)_{n\in\mathbb{N}}$ niz nezavisnih jednako distribuiranih slučajnih varijabli, $S_n:=\sum_{k=1}^n X_k$.

$$\left(\frac{S_n}{a_n} - b_n\right) \longrightarrow \text{ u limesu moramo dobiti stabilne distribucije.}$$

Što se događa ako slučajne varijable nisu jednako distribuirane? Neka su $(X_n)_{n\in\mathbb{N}}$ nezavisne slučajne varijable i promotrimo $\left(\frac{S_n}{a_n}-b_n\right)_{n\in\mathbb{N}}$. Prisjetimo se svojstva stabilnih distribucija: Ako je X stabilna,

$$\forall n \in \mathbb{N}, \exists a_n > 0, b_n \in \mathbb{R}, X_1, \dots, X_n \text{ nezavisne kopije od } X \Rightarrow a_n(X1+\dots+X_n)-b_n \sim X, \ \frac{X-b_n}{a_n} \sim \sum_{k=1}^n X_k.$$

³⁸Ovdje $(Y_{rn})_{n\in\mathbb{N}}$ ima ulogu niza $(X_n)_{n\in\mathbb{N}}$, a $\left(W_n^{(r)}\right)_{n\in\mathbb{N}}$ ulogu niza $(Y_n)_{n\in\mathbb{N}}$ iz tog teorema

Jedan je put "imitirati" to svojstvo stabilnih.

Drugi detalj: $\frac{S_n}{a_n} - b_n$ možemo gledati kao poseban slučaj problema $(X_{n,k} \mid n \in \mathbb{N}, k = 1, \dots, k_n)$ nezavisnih po retcima,

$$X_{11}, \dots, X_{1k_1} \\ X_{21}, \dots, X_{2k_2} \\ \vdots$$

Od interesa $k_n \to \infty$ (sve dulji retci).

Hinčin i Lévy, nezavisno jedan od druoga, pokazali su da je poopćenje svojstva stabilnih distribucija dobar put.

Sljedeća definicija iskazana je za vjerojatnosne distribucije, ali može se iskazati i za konačne distribucije.

DEFINICIJA

Karakteristična funkcija φ vjerojatnosne razdiobe jest **beskonačno djeljiva** ako za sve $n \in \mathbb{N}$, postoji vjerojatnosna karakteristična funkcija φ_n t. d. je $\varphi = \varphi_n^n$.

$$\varphi(0)=1\Rightarrow \varphi_n(0)=1$$
 \Rightarrow u okolini 0, φ_n je jedinstveno određena $\Rightarrow \varphi_n$ je svuda jedinstveno određena u okolini 0, $\varphi(t)\neq 0$

DEFINICIJA

Vjerojatnosna funkcija distribucije beskonačno je djeljiva ako za sve $n \in \mathbb{N}$, postoji vjerojatnosna funkcija distribucije F_n t. d. je $F = \underbrace{F_n * \cdots * F_n}_{n \text{ puta}}$.

Iz Teorema jedinstvenosti, slijedi:

F je beskonačno djeljiva $\Leftrightarrow \varphi_F$ je beskonačno djeljiva

PRIMJER

(i) degenerirana razdioba u točki
$$a$$

$$\varphi(t) = e^{iat}, \varphi_n(t) = e^{ia\frac{t}{n}} \ (a = \underbrace{\frac{a}{n} + \cdot + \frac{a}{n}})$$

(ii) Bernoullijeva, $X \sim \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}, 0 < p, q < 1.$ Neka je $n=2, X_1, X_2$ distribuirane t. d. je $X_1+X_2\sim X$. Neka je $X_1, X_2\geq 0$ g. s. $\Rightarrow \mathbb{P}(X_i=0)>0$ Oko $a, \mathbb{P}(X_i\in \langle a-\varepsilon, a+\varepsilon\rangle)>0 \Rightarrow \mathbb{P}(X\in \langle 2a-2\varepsilon, 2a+2\varepsilon\rangle)>0 \Rightarrow 2a=1, \varepsilon=0$ $\Rightarrow \mathbb{P}(X_1 = \frac{1}{2}) > 0 \Rightarrow \mathbb{P}(X_1 + X_2 = \frac{1}{2}) \ge \mathbb{P}(X_1 = \frac{1}{2}, X_2 = 0) = \mathbb{P}(X_1 = \frac{1}{2}) \mathbb{P}(X_2 = 0) > 0$, dok je $\mathbb{P}(X=\frac{1}{2})=0$. Slično i ostali slučajevi. \Rightarrow Bernoullijeva nije beskonačno djeljiva. Kasnije ćemo pokazati da nijedna nedegenerirana ograničena slučajna varijabla nije beskonačno djeljiva.

(iii) Poissonova,
$$P(\lambda), \lambda > 0$$
.

$$\varphi(t) = e^{\lambda(e^{it}-1)}, \varphi_n(t) = e^{-\frac{\lambda}{n}(e^{it}-1)}$$

$$\begin{split} (iv) \ \text{normalna} \ X &\sim N(\mu, \sigma^2) \\ \varphi(t) &= e^{i\mu t - \frac{\sigma^2 t^2}{2}}, \varphi_n(t) = e^{\frac{i\mu t}{n} - \frac{\sigma^2 t^2}{2n}} \end{split}$$

Prirodno je pitanje koja svojstva imaju ovakve distribucije. Mogu li se potpuno opisati?

PROPOZICIJA

Ako je φ beskonačno djeljiva, tada je $\varphi(t) \neq 0, \forall t \in \mathbb{R}$.

Neka je φ beskonačno djeljiva i, za svaki $n \in \mathbb{N}, \varphi_n$ karakteristična funkcija t. d. je $\varphi_n^n = \varphi$. Posebno, $|\varphi_n(t)| = |\varphi(t)|^{1/n}$. Označimo:

$$g(t):=\lim_{n\to\infty}|\varphi_n(t)|^2=\lim_{n\to\infty}|\varphi(t)|^{2/n}=\lim_{n\to\infty}\left(|\varphi(t)|^2\right)^{1/n}=\left[0\leq|\varphi(t)|^2\leq1\right]=\begin{cases}0,&|\varphi(t)|=0,\\1,&|\varphi(t)|\neq0\end{cases}$$

 $|\varphi_n(t)|^2$ je karakteristična funkcija pa je, po Teoremu neprekidnosti, i g(t) karakteristična funkcija. $g(0) = \lim_{n \to \infty} |\varphi_n(0)|^2 = 1 \Rightarrow g$ je karakteristična funkcija vjerojatnosne razdiobe $\Rightarrow g$ je uniformno neprekidna, pa kako je g(0) = 1, nužno je $g \equiv 1 \Rightarrow \varphi(t) \neq 0, \forall t \in \mathbb{R}$.

PRIMJER

Neka je $X \sim U\left([-c,c]\right), c > 0$. Tada je $\varphi_X(t) = \frac{\sin(ct)}{ct}, t \in \mathbb{R}$ i postoje točke $t \in \mathbb{R}$ u kojima je $\varphi_X(t) = 0$ pa X nije beskonačno djeljiva.

 φ je beskonačno djeljiva $\Rightarrow \varphi(t) \neq 0, \forall t \in \mathbb{R}$, pa
, po jednom od prijašnjih teorema, postoji jedinstvena neprekidna funkcija $\alpha : \mathbb{R} \to \mathbb{R}, \alpha(0) = 0, \forall t \in \mathbb{R}, \varphi(t) = |\varphi(t)| e^{i\alpha t}$ i možemo definirati $\ln \varphi(t) = \ln |\varphi(t)| + i\alpha(t)$

$$\Rightarrow \forall n \in \mathbb{N}, \varphi_n(t) = \varphi(t)^{1/n} = e^{\frac{1}{n}\ln\varphi(t)} = e^{\frac{1}{n}\ln|\varphi(t)| + i\frac{\alpha(t)}{n}}$$

PROPOZICIJA

- (i) Produkt konačno mnogo beskonačno djeljivih karakterističnih funkcija i sam je beskonačno djeljiva karakteristična funkcija.
- (ii)Ako je φ beskonačno djeljiva, tada je i $|\varphi|$ beskonačno djeljiva karakteristična funkcija.

Dokaz.

- (i) Dovoljno je dokazati za produkt dviju karakterističnih funkcija. Za produkt više od dviju karakterističnih funkcija, tvrdnja slijedi indukcijom. Neka su φ, ψ beskonačno djeljive karakteristične funkcije. Tada $\forall n \in \mathbb{N}, \exists \varphi_n, \psi_n, \varphi = \varphi_n^n, \psi = \psi_n^n$. Budući da je množenje komutativno, $\varphi \psi = (\varphi_n \psi_n)^n$.
- (ii) Neka je φ beskonačno djeljiva. Tada je i $\varphi(-t) = \overline{\varphi(t)}$ beskonačno djeljiva karakteristična funkcija pa je, po (i) dijelu, $|\varphi|^2 = \varphi(t)\overline{\varphi(t)}$ također beskonačno djeljiva. $\Rightarrow |\varphi|^{1/n} = \left(|\varphi|^2\right)^{1/(2n)}$ je opet karakteristična funkcija $\Rightarrow |\varphi|$ je beskonačno djeljiva.

NAPOMENA

Općenito neće vrijediti tvrdnja: φ je vjerojatnosna karakteristična funkcija $\Rightarrow |\varphi|$ je karakteristična funkcija. Međutim, ako je φ beskonačno djeljiva karakteristična funkcija, i $|\varphi|$ je (beskonačno djeljiva) karakteristična funkcija.

ZADATAK:

Neka je φ beskonačno djeljiva karakteristična funkcija φ_n t. d. je $\varphi(0) = 1$. Dokažite da postoji samo jedna karakteristična funkcija φ_n t. d. je $\varphi_n(0) = 1$ i $\varphi^n = \varphi, n \in \mathbb{N}$.

Rješenje

Neka su φ_n, ψ_n karakteristične funkcije t. d. je $\varphi = \varphi_n^n = \psi_n^n$ (na \mathbb{R}) i $\varphi_n(0) = \psi_n(0) = 1$. Funkcije φ_n i ψ_n nigdje ne iščezavaju (jer bi tada iščezavala i φ , što je nemoguće jer je beskonačno djeljiva). Sada $\left(\frac{\varphi_n}{\psi_n}\right)^n = 1$ (na \mathbb{R}), dakle neprekidna funkcija $\frac{\varphi_n}{\psi_n}$ skup \mathbb{R} preslikava u skup $\mu_n = \{z \in \mathbb{C} \mid |z|^n = 1\}$, međutim, \mathbb{R} je povezan pa njegova slika pod neprekidnim preslikavanjem i sama mora biti povezan skup (Teorem 9.19, Difraf, predavanja), pa zaključujemo da je ta slika jednočlana. Prema tome, $\frac{\varphi_n}{\psi_n}$ je konstanta, a kako je $\frac{\varphi_n(0)}{\psi_n(0)} = 1$, to je $\varphi_n = \psi_n$.

PROPOZICIJA

Karakteristična funkcija koja je limes niza beskonačno djeljivih funkcija i sama je beskonačno djeljiva.

Dokaz.

Neka je φ karakteristična funkcija i $(\varphi_n)_{n\in\mathbb{N}}$ niz beskonačno djeljivih karakterističnih funkcija koji konvergira prema φ . Primijetimo, $\varphi_n\overline{\varphi_n}=|\varphi_n|^2$ je beskonačno djeljiva funkcija $\Rightarrow \forall m\in\mathbb{N}, |\varphi_n|^{2/m}$ je karakteristična funkcija.

$$|\varphi|^{2/m} = \lim_{n \to \infty} |\varphi_n|^{2/m} \overset{\text{Teorem}}{\Rightarrow} |\varphi|^{2/m} \text{ je karakteristična funkcija.}$$

Budući da to vrijedi za sve $m \in \mathbb{N}$, $|\varphi|^2$ je beskonačno djeljiva $\Rightarrow |\varphi| \neq 0$ na cijelom \mathbb{R} pa postoji $\ln \varphi(t)$, $\forall t \in \mathbb{R}$. Imajmo na umu da je $\varphi(t) \in \mathbb{C}$ i da moramo raditi s modulima (m različitih korijena!). Sada, \ln daje neprekidnu transformaciju:

$$\varphi^{1/m} = e^{\frac{1}{m}\ln\varphi} = \lim_{n \to \infty} e^{\frac{1}{m}\ln\varphi_n} = \lim_{n \to \infty} \varphi_n^{1/m}.$$

Budući da je φ_n beskonačno djeljiva, $\varphi_n^{1/m}$ je karakteristična funkcija i stoga, po Teoremu neprekidnosti, slijedi da je $\forall m \in \mathbb{N}, \varphi^{1/m}$ karakteristična funkcija, dakle φ je beskonačno djeljiva.

PROPOZICIJA (Compound Poisson distribution)

Neka su Y, X_1, X_2, \ldots nezavisne slučajne varijable t. d. je $Y \sim P(\lambda)$, a $(X_n)_{n \in \mathbb{N}}$ jednako distribuirane s $\varphi_{X_1} = \varphi$. Tada je slučajna varijabla $Z = X_1 + \cdots + X_Y$ beskonačno djeljiva i $\varphi_Z = e^{\lambda(\varphi - 1)}$.

Dokaz.

$$\begin{split} \varphi_Z(t) &= \mathbb{E}\left[e^{itZ}\right] = \sum_{n=0}^\infty \mathbb{E}\left[e^{itZ}\mathbbm{1}_{\{Y=n\}}\right] = \sum_{n=0}^\infty \mathbb{E}\left[\mathbbm{1}_{\{Y=n\}}e^{it(X_1+\dots+X_n)}\right] \\ &= \sum_{n=0}^\infty \mathbb{P}(Y=n)\mathbb{E}\left[e^{it(X_1+\dots+X_n)}\right] = \sum_{n=0}^\infty \mathbb{P}(Y=n)\left(\varphi(t)\right)^n \\ &= \sum_{n=0}^\infty \frac{\lambda^n}{n!}e^{-\lambda}\left(\varphi(t)\right)^n = \sum_{n=0}^\infty \frac{(\lambda\varphi(t))^n}{n!}e^{-\lambda} = e^{-\lambda}e^{\lambda\varphi(t)} = e^{\lambda(\varphi(t)-1)}. \end{split}$$

Uočimo da iz ovih razmatranja slijedi φ je beskonačno djeljiva \Leftrightarrow postoji ψ t. d. je $\varphi = e^{\psi}$. Pitanje karakterizacije svih beskonačno djeljivih φ svodi se na pitanje karakterizacije ψ . Taj problem riješili su Hinčin i Lévy.

$$N(0,1), \psi = -\frac{t^2}{2}$$

 $\mathbb{E}X \sim \text{dio od } \psi \text{ mora biti } i\text{const.}$

 $e^{itx} \sim$ Taylor do prvog nekonstantnog člana $e^{itx} - 1 - itx$ (ovdje nam treba još nešto) $\left(e^{itx}\right)'' = (it)^2 e^{itx} = -t^2 e^{itx}$

$$L(x,t) := \begin{cases} \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right) \frac{1+x^2}{x^2}, & x \neq 0 \\ -\frac{t^2}{2}, & x = 0. \end{cases}$$

Primjenom L'Hospitalova pravila, slijedi da je L(x,t) neprekidna i ograničena po x za svaki t i neprekidna po t za svaki x

Vidjet ćemo da se t odnosi na dio $\varphi(t)$

LEMA:

Ako je φ beskonačno djeljiva karakteristična funkcija i ako je, za svaki $n \in \mathbb{N}, \varphi = \varphi_n^n, \varphi_n$ karakteristična funkcija, tada je

(a)
$$\lim_{n \to \infty} n \left(\varphi_n(t) - 1 \right) = \ln \varphi(t)$$

(b)
$$\lim_{n\to\infty} \varphi_n(t) = 1$$
,

pri čemu je, u obama limesima, konvergencija uniformna po ograničenim intervalima.

Dokaz.

(a) φ je beskonačno djeljiva $\Rightarrow \varphi(t) \neq 0, \forall t \in \mathbb{R}$. Dakle, $\forall t \in \mathbb{R}, \forall n \in \mathbb{N}, \varphi_n(t) = (\varphi(t))^{1/n} = e^{\frac{1}{n} \ln \varphi(t)}$. Neka je $I \subseteq \mathbb{R}$ ograničen interval. $t \mapsto \ln \varphi(t)$ neprekidno je preslikavanje $(?) \Rightarrow \exists 0 < c < +\infty, |\ln \varphi(t)| \leq c, \forall t \in I$.

$$|n(\varphi_n(t) - 1) - \ln \varphi(t)| = \left[\varphi_n(t) = e^{\frac{1}{n} \ln \varphi} = \sum_{k=0}^{\infty} \frac{(\ln \varphi(t))^k}{k! n^k}\right] = \left|n \sum_{k=2}^{\infty} \frac{1}{k!} \left(\frac{\ln \varphi(t)}{n}\right)^k\right| \le \sum_{k=2}^{\infty} \frac{1}{k!} \frac{|\ln \varphi(t)|^k}{n^{k-1}}$$

$$\le c \sum_{k=2}^{\infty} \frac{1}{(k-1)!} \left(\frac{c}{n}\right)^{k-1} = c \left(e^{c/n} - 1\right) / n \to \infty$$

i time slijedi tvrdnja (a)

(b)
$$\lim_{n \to \infty} |\varphi_n(t) - 1| = \lim_{n \to \infty} \frac{1}{n} |n(\varphi_n(t) - 1)| = 0.$$

Kako bi mogla izgledati funkcija ψ ?

 $\psi(t)$ bi morao imati član $i\gamma t$

plus $\left(e^{itx}-1-\frac{itx}{1+x^2}\right)\frac{1+x^2}{x^2}$ (očekuju da je, za svaki t, ovo zapravo vezano uz neku distribuciju od x)

$$n\underbrace{\left(\varphi_n(t)-1\right)}_{\rightarrow \ln \varphi(t)} = n \int_{-\infty}^{+\infty} \left(e^{itx}-1\right) dF_n(x),$$

pri čemu $F_n \leftrightarrow \varphi_n$. Definirajmo

$$G_n(x) := n \int_{-\infty}^x \frac{y^2}{1 + y^2} dF_n(y).$$

 G_n je neopadajuća i neprekidna zdesna $\Rightarrow G_n$ je funkcija distribucije i $G_n(-\infty) = 0$. No, što je s $G_n(+\infty)$? To nećemo detaljno razlagati.

$$\operatorname{Re}\left(n\left(\varphi_n(t)-1\right)\right) \to \ln|\varphi(t)| \text{ (realni dio od } \ln\varphi(t)\text{)}$$

$$\int_{-\infty}^{+\infty} \left(\cos(tx)-1\right) \frac{1+x^2}{x^2} dG_n(x)$$

$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2} \text{ (bitno da je konačan)}$$

 $\Rightarrow x \mapsto \frac{1-\cos x}{x^2}$ je omeđena na [-1,1], a može se pokazati da $(G_n(+\infty))_{n\in\mathbb{N}}$ tvore ograničen niz. Po Hellyjevom teoremu, postoji slabo konvergentan podniz $G_{n_k} \xrightarrow{w} G$, pri čemu je G (ne nužno vjerojatnosna) funkcija distribucije.

$$\gamma_n := n \int_{-\infty}^{+\infty} \frac{x}{1+x^2} dF_n(x) \Rightarrow n \left(\varphi_n(t) - 1 \right) = i \gamma_n t + \int_{-\infty}^{+\infty} L(x,t) dG_n(x).$$

 $G_{n_k} \stackrel{w}{\longrightarrow} G.$ Može se pokazati da $\gamma_n \to \gamma \in \mathbb{R}.$ Dakle.

$$\ln \varphi(t) = \lim_{n \to \infty} n \left(\varphi_n(t) - 1 \right) = i \gamma t + \int_{-\infty}^{+\infty} L(x, t) dG(x),$$

pri čemu je G funkcija distribucije konačne mjere na \mathbb{R} .

Je li jedinstvena? Da!

Daje li takav φ uvijek beskonačno djeljivu distribuciju? Da!

TEOREM (Lévy-Hinčin)

Funkcija φ beskonačno je djeljiva \Leftrightarrow postoji $\gamma \in \mathbb{R}$ i ograničena funkcija distribucije G na \mathbb{R} t. d. je

$$\varphi(t) = \exp\left[i\gamma t + \int_{-\infty}^{+\infty} \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right) \frac{1+x^2}{x^2} dG(x)\right], t \in \mathbb{R}.$$

Nadalje, ova je reprezentacija jedinstvena:

 $\varphi \leftrightarrow (\gamma, G)$ nazivamo **Lévy-Hinčinovim parom**.

NAPOMENA

Na vježbama smo spomenuli slabiji rezultat koji na predavanjima nismo radili i nema ga u knjizi prof. Sarape:

 \square Neka je φ karakteristična funkcija neke beskonačno djeljive slučajne varijable (tj., distribucije) koja ima konačnu varijancu. Tada vrijedi

$$\varphi(t) = \exp\left(i\gamma t + \int_{-\infty}^{+\infty} \left(e^{itx} - 1 - itx\right) \frac{dG(x)}{x^2}\right),\,$$

gdje je $\gamma \in \mathbb{R}$, a G?
slijeva neprekidna, neopadajuća ograničena funkcija.

➤ Uočimo suptilnu razliku u podintegralnoj funkciji u odnosu na podintegralnu funkciju iz Lévy-Hinčinove reprezentacije.

➤ v. Theorem 3.9.7. Kolmogorov's Theorem u [1]. Ondje je dodatna pretpostavka da je očekivanje jednako 0.

PRIMJER

(i) degenerirana u $a \varphi(t) = e^{iat}, \gamma = a, G = 0$

(ii) Poissonova
$$P(\lambda)$$
 $\varphi(t) = e^{\lambda (e^{it}-1)}, \gamma = \frac{\lambda}{2}, G(x) = \frac{\lambda}{2} \mathbb{1}_{[1,+\infty)}(x)$

(iii) normalna
$$N(\mu, \sigma^2)$$
 $\varphi(t) = e^{i\mu t - \frac{\sigma^2 t^2}{2}}, \gamma = \mu, G(x) = \sigma^2 \mathbbm{1}_{[0,\infty)}(x)$

Definirajmo sada

$$M(x) := \begin{cases} \int_{-\infty}^{x} \frac{1+y^2}{y^2} dG(y), & x < 0\\ -\int_{x}^{\infty} \frac{1+y^2}{y^2} dG(y), & x > 0 \end{cases}$$

M je definirana na $\mathbb{R}\setminus\{0\}$, neopadajuća je i neprekidna zdesna posebno na $\langle -\infty,0\rangle$ i posebno na $\langle 0,+\infty\rangle$ te je $M(-\infty)=M(+\infty)=0$.

$$\int_{\mathbb{R}\setminus\{0\}} x^2 dM(x) < \infty.$$

Mi još zovemo Lévyjeva spektralna funkcija.

$$\varphi \text{ je beskonačno djeljiva } \Leftrightarrow \varphi(t) = \exp\left(i\gamma t - \frac{\sigma^2 t^2}{2} + \int_{\mathbb{R}\backslash\{0\}} \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right) dM(x)\right).$$

I ova je reprezentacija jedinstvena. $\gamma \leftrightarrow (\gamma, \sigma^2, M)$ nazivamo **Lévyjevom trojkom**.

PRIMJER

(i)
$$\gamma = a, \sigma^2 = 0, M = 0$$

(ii)
$$\gamma = \frac{\lambda}{2}, \sigma^2 = 0, M(x) = \begin{cases} 0, & x < 0 \\ -\lambda, & x \in \langle 0, 1 \rangle \\ 0, & x \ge 1 \end{cases}$$

(iii) Cauchyjeva
$$C(a,b)$$
 $\gamma = b, \sigma^2 = 0, M(x) = -\frac{a}{\pi x}, x \in \mathbb{R} \setminus \{0\}.$

PRIMJER

Nedegenerirane beskonačno djeljive slučajne varijable nužno su neograničene. Zaista, neka je X beskonačno djeljiva i pretpostavimo da postoji M>0 t. d. je $|X|\leq M$. Budući da je X beskonačno djeljiva, za svaki $n\in\mathbb{N}$, možemo pronaći nezavisne i jednako distribuirane slučajne varijable X_1,\ldots,X_n t. d. je $X\sim X_1+\cdots+X_n$. Vrijedi $0=\mathbb{P}(|X|>M)\geq \mathbb{P}\left(X_1>\frac{M}{n},\ldots,X_n>\frac{M}{n}\right)=\left(\mathbb{P}\left(X_1>\frac{M}{n}\right)\right)^n$ pa je $X_1\leq \frac{M}{n}$ g. s. i slično je i $X_1\geq -\frac{M}{n}$ g. s. Dakle, $|X_1|\leq \frac{M}{n}$ g. s. i Var $(X_1)\leq \frac{M^2}{n^2}$. S druge strane, zbog nezavisnosti i jednake distribuiranosti, $\mathrm{Var}(X)=n\,\mathrm{Var}(X_1)\leq \frac{M^2}{n}$. Budući da to vrijedi za svaki $n\in\mathbb{N}$, zaključujemo da je $\mathrm{Var}(X)=0$, odnosno X je g. s. konstanta.

Izravna posljedica

☐ Bernoullijeva, binomna i uniformna razdioba nisu beskonačno djeljive.

Još neke beskonačno djeljive distribucije:

□ Γ-distribucija:
$$X \sim \Gamma(\alpha, \beta), \varphi_X(t) = (1 - i\beta t)^{-\alpha} = ((1 - i\beta t)^{\alpha/n})^n = \varphi_{X_1}(t)^n$$
, gdje je $X_1 \sim \Gamma(\frac{\alpha}{n}, \beta)$

$$\square$$
 $N(r,p)$ - negativna binomna distribucija; $X \sim N(r,p), \mathbb{P}(X=n) = \binom{n+r-1}{r-1}(1-p)^np^r$ (zbroj neuspjeha prije r -tog uspjeha, v. https://web.math.pmf.unizg.hr/nastava/vjer/files/vjer_predavanja. pdf). Tada je $X = X_1 + \cdots + X_n$, gdje su $X_1, \ldots, X_n \sim G(p)$

ZADATAK

Dokažite: ako je φ beskonačno djeljiva karakteristična funkcija, tada je takva i $\varphi_c(t) := \exp\left(c \ln \varphi(t)\right), \forall c > 0.$

Rješenje.

Budući da je φ beskonačno djeljiva, $\varphi(t) \neq 0, \forall t \in \mathbb{R}$ pa, po jednom od prijašnjih teorema, postoji jedinstvena neprekidna funkcija $\alpha: \mathbb{R} \to \mathbb{R}, \alpha(0) = 0, \forall t \in \mathbb{R}, \varphi(t) = |\varphi(t)| e^{i\alpha t}$ i možemo definirati $\ln |\varphi(t)| + i\alpha(t)$. Neka je $q \in \mathbb{Q}_+$ proizvoljan. Tada je $c = \frac{p}{q}, p \in \mathbb{N}_0, q \in \mathbb{N}$. Uzmimo i $n \in \mathbb{N}$ proizvoljan.

$$\varphi_c(t)^{1/n} = e^{\frac{1}{n}c\ln\varphi(t)} = e^{\frac{1}{n}\frac{p}{q}\ln|\varphi(t)| + i\frac{p}{q}\frac{\alpha(t)}{n}} = \left(\left(e^{\ln|\varphi(t)| + i\alpha(t)}\right)^{1/(nq)}\right)^p$$
$$= \left((\varphi(t))^{1/(nq)}\right)^p.$$

Opet, kako je φ beskonačno djeljiva, $\varphi^{1/(nq)}$ je karakteristična funkcija, a ona je $\varphi_c = (\varphi^{1/(nq)})^p$ karakteristična funkcija kao produkt karakterističnih funkcija.

Za c > 0, postoji $(c_n)_{n \in \mathbb{N}} \subseteq \mathbb{Q}_+$ t. d. $c_n \to c$. Po Teoremu neprekidnosti, $\varphi_{c_n}(t) \xrightarrow{n \to \infty} \varphi_c(t), \forall t \in \mathbb{R}$ pa je φ_c , prema ranijem rezultatu, beskonačno djeljiva karakteristična funkcija kao limes beskonačno djeljivih karakterističnih funkcija.

PRIMJER

Linearne kombinacije beskonačno djeljivih slučajnih varijabli beskonačno su djeljive slučajne varijable.

Neka su X_1, \ldots, X_m beskonačno djeljive slučajne varijable, $a_1, \ldots, a_m \in \mathbb{R}, n \in \mathbb{N}$ proizvoljni. Budući da je $X_i, i = 1, \ldots, m$ beskonačno djeljiva, možemo pronaći nezavisne i jednako distribuirane slučajne varijable X_{i1}, \ldots, X_{in} t. d. je $X_i \sim X_{i1} + \cdots + X_{in}$. Štoviše, znamo i da možemo postići da su X_{i_1,j_1}, X_{i_2,j_2} međusobno nezavisne i za sve $i_1, i_2 \in \{1, \ldots, m\}, i_1 \neq i_2, j_1, j_2 \in \{1, \ldots, n\}$. Tada

$$\sum_{i=1}^{m} a_i X_i = \sum_{i=1}^{m} a_i \sum_{j=1}^{n} X_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} a_i X_{ij}.$$

Budući da je $a_iX_{ij_1} \sim a_iX_{ij_2}, \forall j_1, j_2 \in \{1,\dots,n\}, \forall i \in \{1,\dots,m\},$ uz oznaku $\tilde{X}_j := \sum_{i=1}^m a_iX_{ij}, j = 1,\dots,n,$ $(\tilde{X}_j)_{1 \leq j \leq n}$ jednako su distribuirane. Dakle, $\sum_{i=1}^m a_iX_i \sim \tilde{X}_1 + \dots + \tilde{X}_n$, pri čemu su $\tilde{X}_1,\dots,\tilde{X}_n$ nezavisne i jednako distribuirane. Budući da je n bio proizvoljan, zaključujemo da je $\sum_{i=1}^m a_iX_i$ beskonačno djeljiva slučajna varijabla. Alternativno, u terminima karakterističnih funkcija, kako je njihovo množenje komutativno,

$$\varphi_{a_1X_1+\dots+a_mX_m}(t) = \prod_{i=1}^m \varphi_{X_1}(a_it) = \prod_{i=1}^m \varphi_{\tilde{X}_{1,i}}(a_it)^n = \left(\prod_{i=1}^m \varphi_{\tilde{X}_{1,i}}(a_it)\right)^n = \left(\prod_{i=1}^m \varphi_{a_i\tilde{X}_{1,i}}(t)\right)^n$$

uz sva obrazloženja kao i gore.

27 Infinitezimalni sustavi

Promatramo dvostruko indeksiranu familiju slučajnih varijabli $(X_{nk}) = \{X_{nk} \mid n \in \mathbb{N}, k = 1, \dots, k_n\},$

$$X_{11}, \quad X_{12}, \quad \dots, \quad X_{1k}$$
 $X_{21}, \quad X_{22}, \quad \dots, \quad X_{2k_2}$
 $\vdots \quad \vdots \quad \ddots \quad \vdots$
 $X_{n1}, \quad X_{n2}, \quad \dots, \quad X_{nk_n}$
 $\vdots \quad \vdots \quad \ddots \quad \vdots$

Pretpostavljamo

- (i) $k_n \nearrow +\infty$
- (ii) $\forall n \in \mathbb{N}, X_{n1}, \dots, X_{nk}$ nezavisne (nezavisnost po retcima)
- (iii) $(c_n)_{n\in\mathbb{N}}$ su konstante t. d. $Z_n:=X_{n1}+\cdots+X_{nk}-c_n$

DEFINICIJA

Reći ćemo da je $(X_{nk} \mid n \in \mathbb{N}, k = 1, \dots, k_n)$ infinitezimalni sustav ako vrijedi

$$\forall \varepsilon > 0, \lim_{n \to \infty} \max_{1 \le k \le k_n} \mathbb{P}(|X_{nk}| \ge \varepsilon) = 0.$$

PROPOZICIJA

 (X_{nk}) je infinitezimalni sustav $\Leftrightarrow X_{nj_n} \stackrel{\mathbb{P}}{\longrightarrow} 0$ za svaki niz $(j_n)_{n \in \mathbb{N}}$ t. d. je $1 \leq j_n \leq k_n, \forall n \in \mathbb{N}$.

Dokaz.

 \implies : Pretpostavimo da je (X_{nk}) infinitezimalni sustav, $1 \le j_n \le k_n$ i $\varepsilon > 0$.

$$\mathbb{P}(|X_{nj_n}| \ge \varepsilon) \le \max_{1 \le k \le k_n} \mathbb{P}(|X_{nk}| \ge \varepsilon) \to 0.$$

Dakle, $\forall \varepsilon > 0$, $\lim_{n \to \infty} \mathbb{P}(|X_{nk}| \ge \varepsilon) = 0$, odnosno, $X_{nj_n} \xrightarrow{\mathbb{P}} 0$.

 $\stackrel{\text{\tiny{$(z)$}}}{\Leftarrow} : \text{ Pretpostavimo da } X_{nj_n} \stackrel{\mathbb{P}}{\longrightarrow} 0 \text{ za svaki izbor niza } (j_n)_{n \in \mathbb{N}}. \text{ Odaberimo } (j_n)_{n \in \mathbb{N}} \text{ t. d. je } \mathbb{P}(|X_{nj_n}| \geq \varepsilon) = \max_{1 \leq k \leq k_n} \mathbb{P}(|X_{nk}| \geq \varepsilon).$

$$\Rightarrow \left[X_{nj_n} \stackrel{\mathbb{P}}{\longrightarrow} 0 \Rightarrow \lim_{n \to \infty} \mathbb{P}(|X_{nj_n}| \ge \varepsilon) = 0 \right] \Rightarrow \lim_{n \to \infty} \max_{1 \le k \le k_n} \mathbb{P}(|X_{nkk}| \ge \varepsilon) = 0.$$

NAPOMENA

□ Već smo vidjeli sljedeći rezultat. Usporedite **Lemu 14.2** (514. str.) i **Propoziciju 14.6** (544. str.) u knjizi prof. Sarape.

PROPOZICIJA

 (X_{nk}) je infinitezimalni sustav \Leftrightarrow vrijedi

$$\lim_{n \to \infty} \max_{1 \le k \le k_n} |\varphi_{nk}(t) - 1| = 0 \quad (*)$$

uniformno po t iz ograničenog intervala u \mathbb{R} (za svaki ograničen interval u \mathbb{R}).

Dokaz.

 \Rightarrow : Pretpostavimo da je (X_{nk}) infinitezimalni sustav i neka je $\varepsilon > 0$.

$$\max_{1 \le k \le k_n} |\varphi_{nk}(t) - 1| = \max_{1 \le k \le k_n} \left| \int_{-\infty}^{+\infty} \left(e^{itx} - 1 \right) dF_{nk}(x) \right| \\
\leq \max_{1 \le k \le k_n} \int_{\{|x| < \varepsilon\}} \left| e^{itx} - 1 \right| dF_{nk}(x) + 2 \max_{1 \le k \le k_n} \int_{\{|x| \ge \varepsilon\}} dF_{nk}(x) \\
\leq \varepsilon |t| + 2 \underbrace{\max_{1 \le k \le k_n} \mathbb{P}(|X_{nk}| \ge \varepsilon)}_{\to 0}.$$

 \Leftarrow : Pretpostavimo da vrijedi (*). Tada, za bilo koji izbor $(j_n)_{n\in\mathbb{N}}, 1\leq j_n\leq k_n, \lim_{n\to\infty}\varphi_{nj_n}(t)=1, \forall t\in\mathbb{R}$ pa, po Teoremu neprekidnosti, $X_{nj_n}\stackrel{\mathcal{D}}{\longrightarrow} 0$, odnosno $X_{nj_n}\stackrel{\mathbb{P}}{\longrightarrow} 0$. Iz prethodne propozicije, slijedi da je (X_{nk}) infinitezimalni sustav.

PROPOZICIJA

 (X_{nk}) je infinitezimalni sustav \Leftrightarrow

$$\lim_{n \to \infty} \max_{1 \le k \le k_n} \int_{-\infty}^{+\infty} \frac{x^2}{1 + x^2} dF_{nk}(x) = 0 \quad (\diamondsuit)$$

Dokaz.

 \Rightarrow : Pretpostavimo da je (X_{nk}) infinitezimalni sustav i neka je $\varepsilon > 0$.

$$\max_{1 \le k \le k_n} \int_{-\infty}^{+\infty} \frac{x^2}{1 + x^2} dF_{nk}(x) \le \max_{1 \le k \le k_n} \int_{\{|x| < \varepsilon\}} \frac{x^2}{1 + x^2} dF_{nk}(x) + \max_{1 \le k \le k_n} \int_{\{|x| \ge \varepsilon\}} \frac{x^2}{1 + x^2} dF_{nk}(x)
\le \varepsilon^2 + \max_{1 \le k \le k_n} \mathbb{P}(|X_{nk}| \ge \varepsilon) \to 0.$$

⇐: Obratno, pretpostavimo da vrijedi (♦).

$$\underbrace{\max_{1 \le k \le k_n} \int_{-\infty}^{+\infty} \frac{x^2}{1+x^2} dF_{nk}(x)}_{\geq 0} \ge \max_{1 \le k \le k_n} \int_{\{|x| \ge \varepsilon\}} \frac{x^2}{1+x^2} dF_{nk}(x) \ge \frac{\varepsilon^2}{1+\varepsilon^2} \max_{1 \le k \le k_n} \mathbb{P}(|X_{nk}| \ge \varepsilon)$$

 $Ideja: Z_n \xrightarrow{\mathcal{D}} Z \Leftrightarrow \varphi_n \to \varphi_Z$, pri čemu su φ_n "slične" φ_{Z_n} na dovoljno velikom intervalu oko nule i φ_n su beskonačno djeljive. Tada je $\varphi_n(t) = e^{\ln \varphi_n(t)}, \varphi_n^{1/k} = e^{\frac{1}{k} \ln \varphi_n}$. Neka je $\tau > 0$.

$$a_{nk} = a_{nk}(\tau) := \int_{\{|x| < \tau\}} x dF_{nk}(x).$$

Uočimo da a_{nk} postoji i $|a_{nk}| \le \tau$. Lako se vidi da, neovisno o izboru broja $\tau > 0$, vrijedi: (X_{nk}) je infinitezimalni sustav $\Rightarrow \lim_{n \to \infty} \max_{1 \le k \le k_n} |a_{nk}| = 0$.

Vratimo se na niz $(Z_n-c_n)_{n\in\mathbb{N}}$. Može li svaka beskonačno djeljiva distribucija biti limes niza $(Z_n-c_n)_{n\in\mathbb{N}}$? Neka je φ beskonačno djeljiva i $c_n=0, \forall n\in\mathbb{N}$. Tada $\forall n\in\mathbb{N}, \exists \varphi_n, \varphi_n^n=\varphi$, odnosno, za sve $n\in\mathbb{N}$, postoji n nezavisnih kopija X_{n1},\ldots,X_{nn} distribucije φ_n .

 \Rightarrow postoji vjerojatnosni prostor $(\Omega, \mathcal{F}, \mathbb{P})$ i na njemu definirane slučajne varijable $X_{nk}, n \in \mathbb{N}, k = 1, \ldots, n$ $(k_n = n)$ t. d. $\varphi_{nk} = \varphi_n$, pri čemu su, za svaki $n \in \mathbb{N}, X_{n1}, \ldots, X_{nn}$ nezavisne.

$$Z_n = X_{n1} + \dots + X_{nn} \Rightarrow \varphi_{Z_n} = \varphi_{X_{n1}} \cdots \varphi_{X_{nn}} = \varphi_n^n = \varphi \Rightarrow \forall n \in \mathbb{N}, Z_n \sim \varphi$$

pa je niz $(Z_n)_{n\in\mathbb{N}}$ stacionaran po distribuciji i $Z_n \xrightarrow{\mathcal{D}} F, \varphi_F = \varphi$. Slijedi da se svaka beskonačno djeljiva distribucija može dobiti kao limes po distribuciji niza $(Z_n)_{n\in\mathbb{N}}$.

Neka je (X_{nk}) infinitezimalni sustav, $\mathbb{E}X_{nk}=0$ i $\sigma_{nk}^2:=\operatorname{Var}X_{nk}<+\infty, \sum_{k=1}^{k_n}\sigma_{nk}^2< c<+\infty, \forall n\in\mathbb{N}.$ Var $Z_n=\sum_{k=1}^{k_n}\sigma_{nk}^2$. Postoji interval oko 0 na kojem su $\varphi_{nk}\neq 0$ (za dovoljno velike n). Stavimo $\varphi_n:=\varphi_{Z_n}$ na tom intervalu, $\ln\varphi_n(t)=\sum_{k=1}^{k_n}\ln\varphi_{nk}(t)$. Neka je $\beta_{nk}(t):\varphi_{nk}(t)-1$. $Ideja: \ln\varphi_{nk}\sim\beta_{nk}$. Može se pokazati

$$\begin{aligned} |\ln \varphi_{nk}(t) - \beta_{nk}(t)| &\leq |\beta_{nk}(t)|^2 \\ |\beta_{nk}(t)| &\leq \frac{t^2}{2} \sigma_{nk}^2 \\ &\sum_{k=1}^{k_n} |\beta_{nk}(t)|^2 \leq \max_{1 \leq k \leq k_n} |\beta_{nk}(t)| \sum_{k=1}^{k_n} |\beta_{nk}(t)| \leq \max_{1 \leq k \leq k_n} |\beta_{nk}(t)| \frac{t^2}{2} \underbrace{\sum_{k=1}^{k_n} \sigma_{nk}^2}_{$$

Iz današnje (*), slijedi $\max_{1 \le k \le k_n} |\beta_{nk}(t)| \stackrel{n \to \infty}{\longrightarrow} 0.$

Ideja: koristiti karakterističnu funkciju

$$\psi_n(t) := \exp\left(\sum_{k=1}^{k_n} \beta_{nk}(t)\right) = \exp\left(\sum_{k=1}^{k_n} (\varphi_{nk}(t) - 1)\right).$$

Uočimo da je ψ_n beskonačno djeljiva $[[\psi_n^{1/k} = \exp\left(\frac{1}{k}\sum_{k=1}^{k_n}(\varphi_{nk}(t)-1)\right)!!!]]$

Glavni tehnički problem: pokazati $\varphi_n(t) \to \varphi(t) \Leftrightarrow \psi_n(t) \to \varphi(t)$ (to slijedi iz (\triangle) za ovaj poseban slučaj, treba dokazati opći slučaj). Opći dokaz ide prema (\triangle) , ali puno je zahtjevniji (ima u knjizi).

TEOREM (Opći centralni granični teorem)

Neka je (X_{nk}) infinitezimalni sustav nezaavisan po retcima i neka je $(c_n)_{n\in\mathbb{N}}$ niz konstanti. Neka je $Z_n := X_{n1} + \cdots + X_{nk_n}$. Tada $Z_n - c_n \xrightarrow{\mathcal{D}} Z \leftrightarrow \psi_n(t) \to \varphi_Z(t)$, pri čemu je

$$\psi_n(t) = \exp\left(-ic_n t + \sum_{k=1}^{k_n} \left[ia_{nk}t + \int_{-\infty}^{+\infty} (e^{itx} - 1) dF_{nk}(x + a_{nk})\right]\right)$$

i u tom je slučaju φ_Z beskonačno djeljiva.

Kasnije su ljudi još proučavali Wienerovu mjeru na Banachovim prostorima. Dokazom općeg CGT-a, Lévy i Hinčin zatvorili su poglavlje u teoriji vjerojatnosti koje se protezalo gotovo jedno stoljeće krajem prve polovice XX stoljeća. Prije završetka kolegija, još ćemo zaći u teoriju slučajnih procesa.

28 Uvod u teoriju slučajnih procesa

Od 1950. pa nadalje, sve se više proučavaju slučajni procesi. Spomenimo:

- \blacktriangleright Kolmogorov, Hinčin \blacksquare L^2 teorija (L^2 je Hilbertov prostor), Markovljevi procesi
- ➤ Feller → veza Markovljevih procesa i funkcionalne analize
- ➤ Doob ➡ opća teorija slučajnih procesa, posebno teorija martingala
- ➤ Lévy ➡ tzv. "Lévyjevi procesi" (procesi s nezavisnim stacionarnim prirastima) 1960. dodatak tome ➡ Kiyosi Itô (njegova predavanja bilježi njegov student Murali Rao)

Znamo:

$$X \text{ je beskonačno djeljiva } \Leftrightarrow \varphi_X(u) = e^{\psi(u)}, \\ \psi(u) = \underbrace{i\gamma u - \sigma^2 \frac{u^2}{2}}_{\psi_A(u)} + \underbrace{\int_{\mathbb{R}\backslash\{0\}} \left(e^{itx} - 1 - \frac{iux}{1+x^2}\right) dM(x)}_{\psi_B(u)}$$

Neka je X_1 beskonačno djeljiva s karakterističnom funkcijom $\varphi_{X_1}(u) = e^{\psi(u)}$.

$$X_1 = \underbrace{X_1 - X_{\frac{n-1}{n}}}_{Y_{n-1}} + \underbrace{X_{\frac{n-1}{n}} - X_{\frac{n-2}{n}}}_{Y_{n-2}} + \dots + \underbrace{X_{\frac{1}{n}} - X_{0}}_{Y_{0}}, X_0 := 0$$

 Y_0,Y_1,\ldots,Y_{n-1} nezavisne jednako distribuirane, $\varphi_{Y_0}=\varphi_{X_1}^{1/n}$ \(\nsime \) može jer je X_1 beskonačno djeljiva \(\mathbf{Y} \) Možemo nastaviti dalje na $[0,+\infty \rangle$: $X_{\frac{k}{n}},k\in\mathbb{N}_0 \to n \to +\infty$ i "profinjenje";

$$X_{\frac{k}{n}}, n \in \mathbb{N}, k \in \mathbb{N}_0, \varphi_{X_{1/n}} = e^{\frac{1}{n}\psi} \Rightarrow \varphi_{X_{k/n}} = e^{\frac{k}{n}\psi}.$$

Možemo li dobiti nešto u limesu?

- ightharpoonup Lévy ightharpoonup DA! Dobijemo familiju slučajnih varijabli $(X_t)_{t\geq 0}$ t. d. vrijedi
- (i) $0 \le t_0 < t_1 < \dots < t_n$ $X_{t_1} - X_{t_0}, \dots, X_{t_n} - X_{t_{n-1}}$ su nezavisne (svojstvo nezavisnih prirasta)
- $(ii) \ \varphi_{X_{t+s}-X_t}=\varphi_{X_s}=e^{s\psi}, s,t\geq 0$ (svojstvo stacionarnih prirasta) $t=0\Rightarrow \varphi_{X_0}=e^0=1\Rightarrow X_0=0$ g. s.

Lévy je pokazao da iz svake beskonačno djeljive distribucije s karakterističnom funkcijom e^{ψ} , možemo vezati familiju $(X_t)_{t\geq 0}$ s nezavisnim stacionarnim prirastima t. d. je $\varphi_{X_t}=e^{t\psi}, \forall t\geq 0$.

NAPOMENA

Ovakva familija $(X_t)_{t\geq 0}$ naziva se slučajan proces, a varijablu t interpretiramo kao vrijeme. Možeo promatrati preslikavanja:

- $\blacktriangleright X: \Omega \times [0, +\infty) \to \mathbb{R}, X(\omega, t) := X_t(\omega)$
- \blacktriangleright slučajnu varijablu $\omega \mapsto X_t(\omega)$
- \blacktriangleright za fiksirani $\omega \in \Omega, [0, +\infty) \ni t \mapsto X_t(\omega) \rightarrow \text{trajektorija (eng. "sample path")}$

Ovakav slučajan proces ima još jedno važno svojstvo:

$$(iii) \ t \searrow 0 \Rightarrow \forall u \in \mathbb{R}, \varphi_{X_t} = \underbrace{e^{t\psi(u)}}_{\substack{\text{nepre-} \\ \text{kidna} \\ \text{funkcija}}} \rightarrow \varphi_{X_0}(u) \Rightarrow X_t \stackrel{\mathcal{D}}{\longrightarrow} 0 \text{ (const.)} \Rightarrow X_t \stackrel{\mathbb{P}}{\longrightarrow} 0$$

Fiksirajmo neki t>0 i pustimo $s\to t$. $\varphi_{X_s}(u)\to \varphi_{X_t}(u)\Rightarrow X_s\stackrel{\mathcal{D}}{\longrightarrow} X_t$, ali može se pokazati i da $X_s\stackrel{\mathbb{P}}{\longrightarrow} X_t$

⇒ slučajni proces koji je Lévy realizirao neprekidan je po vjerojatnosti.

Okrenimo "kut gledanja".

DEFINICIJA

Slučajan proces $(X_t)_{t\geq 0}$ jest proces s nezavisnim stacionarnim prirastima ako vrijedi (i) te

$$\forall t, s \ge 0, X_{t+s} - X_t \sim X_s, X_0 = 0 \text{ g. s.}$$

Mora li takav proces nastati iz beskonačno djeljive distribucije? Ne!

PRIMJER (čak deterministički):

Ako imamo funkciju $g(t), t \ge 0$ t. d. je $g(t+s) = g(t) + g(s), \forall t, s \ge 0$, onda će $Y_t := g(t)$ zadovoljavati gornju definiciju.

Kako izgledaju rješenja te funkcionalne jednadžbe? Može se konstruirati proces koji zadovoljava ova svojstva, ali nije "pravac". Takav proces konstruira se pomoću aksioma izbora i daje funkciju koja nije neprekidna.

➤ deterministički pravac → drugo ponašanje na svakom.

Takav pravac nije nastao ni iz jedne beskonačno djeljive distribucije.

Ideja: zahtijevamo barem da je $t\mapsto \varphi_{X_t}(u)$ neprekidna za svaki u. Uzmimo $n\in\mathbb{N}$.

$$X_{\frac{1}{n}} - X_0 + X_{\frac{2}{n}} - X_{\frac{1}{n}} + \dots + X_1 - X_{\frac{n-1}{n}} = X_1,$$

$$X_{\frac{1}{n}} - X_0, X_{\frac{2}{n}} - X_{\frac{1}{n}}, \dots, X_1 - X_{\frac{n-1}{n}}$$

$$\Rightarrow X_1 = \sum_{k=1}^n Y_k \Rightarrow \varphi_{X_1} = \varphi_{Y_1}^n \ (\forall n \in \mathbb{N}) \ \Rightarrow \varphi_{X_1}$$
je beskonačno djeljiva

Svaki $t \ge 0$ može se aproksimirati racionalnim točkama $\frac{k}{n}$, pa iz ove neprekidnosti slijedi

$$\frac{k_l}{n_l} \to t \Rightarrow \varphi_{X_{\frac{k_l}{n_l}}} \to \varphi_{X_t},$$

a

$$\varphi_{X_{\frac{k_l}{n_l}}}(u) = e^{\frac{k_l}{n_l}\psi(u)}$$

pa, sveukupno,

$$\Rightarrow \varphi_{X_*}(u) = e^{t\psi(u)}$$

Time je pokazano sljedeće:

TEOREM

 $(X_t)_{t\geq 0}$ je slučajan proces s nezavisnim stacionarnim prirastima t. d. je $\forall u \in \mathbb{R}, t \mapsto \varphi_{X_t}(u)$ neprekidna $\Leftrightarrow (X_t)_{t\geq 0}$ je nastao iz beskonačno djeljive razdiobe $\varphi_{X_1} = e^{\psi}$ i $\forall t \geq 0, \varphi_{X_t} = e^{\psi}$.

1-1 korespondencija $(X_t)_{t>0} \leftrightarrow e^{\psi}$ beskonačno djeljiva.

Npr. ako $X_{t+s} - X_t$ ne ovisi o događajima
do trenutka t, proces ima i Markovljevo svojstvo.

29 Brownovo gibanje - okvirno

NAPOMENA

Neka su $(X_t)_{t\geq 0}$ i $(Y_t)_{t\geq 0}$ slučajni procesi s vrijednostima u \mathbb{R} . Može se pokazati da je spomenuto preslikavanje $X: \Omega \times [0,+\infty).X(\omega,t) = X_t(\omega)$ $(\mathcal{F} \otimes B_{[0,+\infty)},B_{\mathbb{R}})$ -izmjerivo u smislu verzije. Također, $(X_t)_{\geq 0}$ i $(Y_t)_{t\geq 0}$ su jednako distribuirani \Leftrightarrow za svaki $n \in \mathbb{N}$ i svaki izbor međusobno različitih $t_1,\ldots,t_n \in [0,+\infty), (X_{t_1},\ldots,X_{t_n}) \sim (Y_{t_1},\ldots,Y_{t_n})$. Kad govorimo o "ovakvom procesu", zapravo govorimo o klasi jednako distribuiranih stohastičkih procesa. $(Y_t)_{t\geq 0}$ je modifikacija procesa $(X_t)_{t\geq 0}$ ako je, za svaki $t\geq 0, X_t=Y_t$ g. s. Očito je da modifikacija $\Rightarrow X_t\sim Y_t$, no obrat ne vrijedi! $(X_t)_{t\geq 0}$ i $(Y_t)_{t\geq 0}$ su nerazlučivi ako $\exists A\in\mathcal{F}, \mathbb{P}(A)=0, \forall t\geq 0, \forall \omega\in A^c, X_t(\omega)=Y_t(\omega)$. Ako su dva procesa nerazlučiva, onda je jedan modifikacija drugoga, no ne i obratno.

Što se događa s trajektorijom? $\omega \in \Omega, t \mapsto X_t(\omega), (\mathbb{P}) \lim_{h \to 0} X_{t+h} = X_t$. Znamo da tada postoji podniz $(X_{t+h_{p_n}})$ t. d. $X_{t+h_{p_n}} \stackrel{\text{g. s.}}{\longrightarrow} X_t$.

NAPOMENA

Mogli bismo pomisliti da su možda gotovo sve trajektorije neprekine, no to je netočno!

cadlag(continue à droite, limite à gauche)

$$D([0,+\infty)) := \{f: [0,+\infty) \to \mathbb{R} \mid f \text{ je neprekidna zdesna i ima limes slijeva u svakoj točki } t \in [0,+\infty) \}$$

Može se pokazati da, za svaku e^{ψ} , postoji modifikacija originalnog procesa t. d. su gotovo sve trajektorije unutar $D\left([0,+\infty\rangle)\right)$. $(X_t)_{t\geq 0} \leadsto \left(\tilde{X}_t\right)_{t\geq 0}$. Trivijalnim redefiniranjem procesa na skupu vjerojatnosti 0, dolazimo do procesa $\left(\tilde{X}_t\right)_{t>0}$ nerazlučivog od $\left(\tilde{X}_t\right)_{t>0}$ čije su sve trajektorije u $D\left([0,+\infty\rangle\right)$.

Uspostavili smo, dakle, korespondenciju e^{ψ} s procesom $(X_t)_{t>0}$ sa sljedećim svojstvima:

- (i) $(X_t)_{t\geq 0}$ je proces s nezavisnim stacionarnim prirastima.
- (ii) $\varphi_{X_t} = e^{t\psi}$
- (iii) $\forall \omega \in \Omega, t \mapsto X_t(\omega) \in D([0, +\infty))$.

Kažemo da je $(X_t)_{t\geq 0}$ Lévyjev proces generiran sa ψ .

PITANJE: jesu li i kada trajektorije ipak neprekidne? Prisjetimo se $\psi = \psi_A + \psi_B$, gdje je $\psi_A(u) = iu\gamma - \frac{\sigma^2 u^2}{2}$, a ψ_B je definirana pomoću integrala. Ispostavlja se da funkcijom ψ_B dodajemo skokove, a u integralu je dana informacija o njihovoj distribuciji.

TEOREM

Lévyjev proces generiran sa ψ ima modifikaciju kojoj su sve trajektorije neprekidne $\Leftrightarrow \psi = \psi_A$.

TEOREM

Za svaki ψ , postoje međusobno nezavisni procesi $(X_t^A)_{t\geq 0}$ s eksponentom ψ_A i $(X_t^B)_{t\geq 0}$ s eksponentom ψ_B t. d. je eksponent od $(X_t^A + X_t^B)_{t\geq 0}$ ψ .

Pogledajmo proces generiran sa $\psi_A(u) = iu\gamma - \frac{\sigma^2 t^2}{2}, \sigma > 0.$ $[\sigma] \ge 0$, ali $\sigma = 0 \Rightarrow X_t = \gamma t$ trivijalno].

$$\psi_{X_t}(u) = e^{t\psi_A(u)} \Rightarrow X_t = t\gamma + \sigma B_t, B_t \sim \psi(u) = -\frac{t^2}{2}.$$

Po prethodnom teoremu, $(B_t)_{t>0}$ ima neprekidne trajektorije. \Rightarrow analiza ψ_A svodi se na analizu $(B_t)_{t>0}$.

 $(B_t)_{t\geq 0}$ je matematička generalizacija procesa u prirodi, poznat pod nazivom **Brownovo gibanje**.

Historijat

➤ Antonie van Leeuwenhoek (1632.-1723.), izumitelj mikroskopa, "kaotično gibanje čestica promatranih u vodi"

- ➤ 1819., Bywater "neorganske supstance" (iziritirane)
- ➤ škotski botaničar Robert Brown (1773.-1858.)
- ➤ 1917. D'Arcy Thompson "žive ili ne?"
- ➤ XIX st. fizičari i kemičari
- ➤ Louis Bachelier
- ➤ Albert Einstein

 $p(y,t,t_0,x_0)$

$$p(t+s, y; t_0, x_0) = \int_{-\infty}^{+\infty} p(t, u; t_0, x_0) p(s, y, t, u) du$$
$$p(t+\delta, x) = \int_{-\infty}^{+\infty} p(t, u) p(\delta, x - u) du, \ t_0 = x_0 = 0$$

postoji konstanta D,

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{-\infty}^{+\infty} x^k p(\Delta t, x) dx = \begin{cases} 0, & k = 1, 3, 4, 5, \dots \\ D, & k = 2 \end{cases}$$

Einstein zanemaruje više momente, naslućuje simetričnost

jednadžba topline

$$\begin{split} \frac{\partial p}{\partial t} &= D\left(\frac{1}{2}\frac{\partial^2 p}{\partial x^2}\right), p(0,x) = \delta_{\{x\}} \\ p(t,x) &= \frac{1}{\sqrt{2\pi Dt}}e^{-\frac{x^2}{2Dt}} \\ D &= \frac{kT}{3\pi \eta a} = \frac{kT}{m\beta} 2 \end{split}$$

- ➤ Jean-Baptiste Perrin (1870.-1942.)
 - * serija eksperimenata (broj udara u sekundi reda 10²⁰)
 - * 1926. Nobelova nagrada
- ➤ Norbert Wiener

DEFINICIJA

Stohastički proces $(B_t)_{t\geq 0}$ na vjerojatnosnom prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ s vrijednostima u \mathbb{R} jest **standardno jednodimenzionalno Brownovo gibanje** ako vrijedi:

- (i) $B_0 = 0$
- (ii) $(B_t)_{t\geq 0}$ je proces s nezavisnim stacionarnim prirastima
- (iii) $\forall t \geq 0, B_t \sim N(0, t)$
- (iv) trajektorije $t \mapsto B_t(\omega)$ su neprekidne za sve $\omega \in \Omega$.
 - ➤ Markovljevi procesi
 - ➤ Feller → jednodimenzionalne difuzije
 - Jaki Markovljevi procesi
 - sve trajektorije neprekidne
 - ➤ Itô-McKeen
 teorija stohastičkih integrala

Budući da je $B_0 = 0, B_h \sim N(0, h^2)$ te da su prirasti nezavisni i stacionarni,

$$\lim_{h\to 0^+} \operatorname{Var}\left(\frac{B_{t+h}-B_t}{h}\right) = \lim_{h\to 0^+} \operatorname{Var}\left(\frac{B_h-B_0}{h}\right) = \lim_{h\to 0^+} \operatorname{Var}\left(\frac{B_h}{h}\right) = \lim_{h\to 0^+} \frac{1}{h} = +\infty$$

TEOREM

Gotovo sve trajektorije Brownovog gibanja nemaju nigdje derivaciju. (Dvoretsky, Erdös, Kakutani)

Za gotovo sve trajektorije

$$\lim_{t \to \infty} \inf B_t(\omega) = -\infty$$

$$\lim_{t \to \infty} \sup B_t(\omega) = +\infty$$

- \Box broj prijelaza Brownovog gibanja kroz 0: ∞ (kako se vrši dok se ne odvoji od 0?)
- ☐ Hausdorffova dimenzija
- u vrijeme zadržavanja u 0
- □ lokalno vrijeme
- \Box d-dimenzionalno Brownovo gibanje u \mathbb{R}^d
 - * profinjenje slučajne šetnje
 - $X_t = (B_t^1, \dots, B_t^d)$, pri čemu su $(B_t^1)_{t \ge 0}, \dots, (B_t^d)_{t \ge 0}$ standardna jednodimenzionalna Brownova gibanja i nezavisne komponente!
- \square u slučaju d=1, promatramo ograničen otvoreni skup D, to može biti i otvoren interval I oko nule, i pretpostavimo da je na ∂D definirana funkcija f. Tražimo funkciju u koja je rješenje od

$$\begin{cases} \Delta u = 0 \text{ na } D^{39} \\ u_{|\partial D} = f \end{cases}$$

Svakoj točki $x \in D$, možemo pridružiti $(X_t + x)_{t \geq 0}$ -Brownovo gibanje koje počinje u x. Definirajmo $\tau_x := \inf\{t > 0 \mid X_t \in \partial D\} = \min\{t > 0 \mid X_t \in \partial D\}$ (jer je trajektorija neprekidna, a ∂D je kompaktan) i $\mathbb{E}^x [f(X_{\tau_x})]$ -srednja vrijednost tih udara. Ispostavlja se $u(x) = \mathbb{E}[f(X_{\tau_x})]$.

- \square u slučaju d=2, promatramo otvorenu kuglu . $(B_t)_{t\geq 0}$ beskonačno mnogo puta vraća se u otvoreni krug I i to počevši od bilo kojeg trenutka $\Rightarrow povratnost/rekurentnost$
- \square u slučaju d=3, promatramo otvorenu kuglu oko ishodišta. $\Rightarrow prolaznost/tranzijentnost$

KRAJ KOLEGIJA*

³⁹Laplacian

30 Dodatak 1 (Brownovo gibanje - općenitije, svibanj 2024.)

30.1 Uvod

Neka su $(Y_n)_{n\in\mathbb{N}}$ nezavisne jednako distribuirane slučajne varijable, $\mathbb{E}Y_i=0$, $\operatorname{Var}Y_i=1$, npr., $Y_1\sim \binom{-1}{1/2}$. Slučajna šetnja: $S_0=0, S_n=Y_1+\cdots+Y_n, n\in\mathbb{N}$. Kažemo da ima nezavisne priraste ako su za $n,k\geq 0$, S_n i $S_{n+k}-S_n$ nezavisne. Induktivno su i $S_{n_1},S_{n_2}-S_{n_1},\ldots,S_{n_k}-S_{n_{k-1}}$ nezavisne za $n_1< n_2<\cdots< n_k$. Fiksirajmo $n\in\mathbb{N}$ i "ubrzajmo" slučajnu šetnju:

$$S_t^{(n)} := S_{nt}, \text{ za } nt \in \mathbb{Z}_+, t \ge 0.$$

(Kao da ju suzimo, npr., na [0,1]).

 \blacktriangleright linearno interpoliramo za $t > 0, nt \notin \mathbb{Z}_+$

$$S_t^{(n)} = S_{|nt|} + \left(S_{|nt|+1} - S_{|nt|}\right) (nt - |nt|) = S_{|nt|} + Y_{|nt|+1} (nt - |nt|)$$

$$t = \frac{k}{n} \leadsto S_k + Y_{k+1}(nt - k)$$

 $\text{Var}\,S_1^{(n)}=\text{Var}\,S_n=\sum_{k=1}^n\text{Var}\,Y_k=n,$ što ne konvergira pa moramo skalirati. $\sqrt{\text{Var}\,S_1^{(n)}}=\sqrt{n}$

DEFINICIJA

$$B_t^{(n)} := \frac{1}{\sqrt{n}} S_t^{(n)} = \frac{1}{\sqrt{n}} S_{\lfloor nt \rfloor} + \frac{1}{\sqrt{n}} Y_{\lfloor nt \rfloor + 1} \left(nt - \lfloor nt \rfloor \right)$$

$$\operatorname{Var} B_1^{(n)} = \operatorname{Var} \left(\frac{1}{\sqrt{n}} S_1^{(n)} \right) = \frac{1}{n} \operatorname{Var} S_n = 1$$

$$B_1^{(n)} = \frac{S_1^{(n)}}{\sqrt{n}} = \frac{S_n}{\sqrt{n}} = \frac{Y_1 + \dots + Y_n}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} N(0, 1)$$

$$B_t^{(n)} \xrightarrow{\mathcal{D}} N(0,t) \text{ (jer } \sqrt{\frac{\lfloor nt \rfloor}{n}} \to \sqrt{t}, \text{ a } \frac{nt - \lfloor nt \rfloor}{\sqrt{n}} \to 0 \text{ kad } n \to \infty)$$

30.2 Definicija i konačno-dimenzionalne distribucije

DEFINICIJA

Standardno jednodimenzionalno Brownovo gibanje jest slučajni proces $B = (B_t)_{t>0}$ sa svojstvima:

- (i) $B_0 = 0$ g. s.
- (ii) Za $0 \le t_1 < \cdots < t_n, B_{t_1}, B_{t_2} B_{t_1}, \dots, B_{t_n} B_{t_{n-1}}$ su nezavisne slučajne varijable. (B ima nezavisne priraste)
- (iii) Za $s, t \ge 0, B_{s+t} B_s \sim N(0, t)$
- (iv) Za g. s. $\omega \in \Omega$, $t \mapsto B_t(\omega)$ je neprekidna funkcija.

ZADATAK

Neka je $B = (B_t)_{t \geq 0}$ slučajan proces t. d. vrijedi (i), (ii) i (iii).

Rješenje.

$$s,t \geq 0, B_{s+t} = (B_{s+t} - B_s) + B_s \stackrel{\text{(ii)}}{\Rightarrow} \underbrace{\varphi_{B_{s+t}}(u)}_{e^{-\frac{(s+t)u^2}{2}}} = \varphi_{B_{s+t} - B_s}(u) \underbrace{\varphi_{B_s}(u)}_{e^{-\frac{su^2}{2}}} \Rightarrow \varphi_{B_{s+t} - B_s}(u) = e^{-\frac{tu^2}{2}} \Rightarrow B_{s+t} - B_s \sim N(0,t).$$

ZADATCI

Neka je $B=(B_t)_{t\geq 0}$ Brownovo gibanje. Tada su Brownova gibanja i

$$(i) (-B_t)_{t>0}$$

(ii) Za
$$s>0, X=(X_t)_{t\geq 0}, X_t:=B_{t+s}-B_s$$
 (invarijantnost na translaciju)

(iii) Za
$$a > 0$$
, $X = (X_t)_{t \ge 0}$, $X_t := \frac{1}{\sqrt{a}} B_{at}$

$$(iv)$$
 $(B_1 - B_{1-t})_{t \in [0,1]}$ (Brownovo gibanje na $[0,1]$) (invarijantnost na skaliranje)

Neka je $0 < t_1 < t_2 < \dots < t_n$. $\left(B_{t_1}, B_{t_2} - B_{t_1}, \dots, B_{t_n} - B_{t_{n-1}}\right)$ je normalan slučajan vektor s gustoćom vektor s gustov vektor s

$$g(x_1, \dots, x_n) = g_{t_1}(x_1)g_{t_2-t_1}(x_2)\cdots g_{t_t n-n-1}(x_n), \ g_t(x) := \frac{1}{\sqrt{2\pi t}}e^{-\frac{x^2}{2t}}$$

i kovarijacijskom matricom

$$\begin{bmatrix} t_1 & & & & \\ & t_2 - t_1 & & & \\ & & \ddots & & \\ & & & t_n - t_{n-1} \end{bmatrix}.$$

Distribucija vektora $(B_{t_1}, \ldots, b_{t_n})$:

$$\begin{bmatrix} B_{t_1} \\ B_{t_2} \\ \vdots \\ B_{t_n} \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ 1 & 1 & & & \\ 1 & 1 & 1 & & \\ \vdots & \vdots & \vdots & \ddots & \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} B_{t_1} \\ B_{t_2} - B_{t_1} \\ \vdots \\ B_{t_n} - B_{t_{n-1}} \end{bmatrix},$$

a kovarijacijska mu je matrica $[t_i \wedge t_j]_{i,j}$.

$$s \leq t \operatorname{Cov}(B_s, B_t) = \mathbb{E}\left[B_s B_t\right] = \mathbb{E}\left[B_s \left(B_s + B_t - B_s\right)\right] \stackrel{\text{nez.}}{=} \mathbb{E}\left[B_s^2\right] + \underbrace{\mathbb{E}B_s}_{0} \mathbb{E}\left[B_t - B_s\right] = s = s \wedge t$$

DEFINICIJA

Slučajni je proces *qaussovski* ako su mu sve konačno-dimenzionalne distribucije normalne.

PROPOZICIJA

Neka je $B = (B_t)_{t \ge 0}$ slučajan proces sa svojstvima:

- (a) $B_0 = 0$ g. s.
- $(b)\ B$ je gaussovski
- (c) $\forall s, t \geq 0, \mathbb{E}B_s = 0, \operatorname{Cov}(B_s, B_t) = s \wedge t$
- (d) = (iv)

Tada je B standardno jednodimenzionalno Brownovo gibanje. Vrijedi i obrat.

Dokaz.

 \Leftarrow

Dakle, komponente su mu normalne i nekorelirane pa su i nezavisne.

TEOREM

$$\sum_{n=0}^{\infty} \mathbb{P}\left(\sup_{n \le t < n+1} |B_t - B_n| \ge n^{2/3}\right) < \infty.$$

Dokaz.

Neka je $m \in \mathbb{N}$. $B_{n+2^{-m}} - B_n, B_{n+2\cdot 2^{-m}} - B_{n+2^{-m}}, \dots, B_{n+1} - B_{n+(2^m-1)2^{-m}}$ su nezavisne (podijelimo [n, n+1] na 2^m dijelova).

$$\sum_{j=1}^{k} \left(B_{n+j2^{-m}} - B_{n+(j-1)2^{-m}} \right) = B_{n+k2^{-m}} - B_n$$
Kolmogorovljeva maksimalna nejednakost produkta prod

Budući da su trajektorije neprekidne, a dijadski razlomci gusti u R,

$$\left\{ \sup_{n \le t \le n+1} |B_t - B_n| > n^{2/3} \right\} = \bigcup_{m=1}^{\infty} \left\{ \sup_{1 \le k \le 3^m} |B_{n+k2^{-m}} - B_n| > n^{2/3} \right\}$$

$$\Rightarrow \mathbb{P} \left(\sup_{n \le t \le n+1} |B_t - B_n| > n^{2/3} \right) = \lim_{m \to \infty} \mathbb{P} \left(\sup_{1 \le k \le 3^m} |B_{n+k2^{-m}} - B_n| > n^{2/3} \right) \le \frac{1}{n^{4/3}}$$

$$\Rightarrow \sum_{n=0}^{\infty} \mathbb{P} \left(\sup_{n \le t \le n+1} |B_t - B_s| \ge n^{2/3} \right) \le 1 + \sum_{n=1}^{\infty} \frac{1}{n^{4/3}} < +\infty$$

POSLJEDICA ovog teorema: Po Borel-Cantelli 1, $\mathbb{P}\left(\sup_{n \leq t \leq n+1} |B_t - B_n| \geq n^{2/3} \text{ b. m. p.}\right) = 0. \Rightarrow$ za g. s. $\omega \in \Omega, \exists n_0 = n_0(\omega) \in \mathbb{N}, \forall n \geq n_0, \sup_{n \leq t \leq n+1} |B_t - B_s| < n^{2/3}$

$$\limsup_{t \to \infty} \frac{\left| B_t(\omega) - B_{\lfloor t \rfloor}(\omega) \right|}{t} \le \limsup_{t \to \infty} \sup_{n < t < n+1} \frac{\left| B_t(\omega) - B_n(\omega) \right|}{t} \le \limsup_{t \to \infty} \frac{\lfloor t \rfloor^{2/3}}{t} = 0.$$

PROPOZICIJA (Jaki zakon velikih brojeva za Brownovo gibanje)

Neka je $B = (B_t)_{t>0}$ standardno jednodimenzionalno Brownovo gibanje. Tada vrijedi

$$\lim_{t \to \infty} \frac{B_t}{t} = 0 \text{ g. s.}$$

Dokaz.

$$\lim_{n \to \infty} \frac{B_n}{n} = \lim_{n \to \infty} \frac{B_1 + (B_2 - B_1) + \dots + (B_n - B_{n-1})}{n}$$

$$\frac{B_t}{t} = \underbrace{\frac{B_{\lfloor t \rfloor}}{\lfloor t \rfloor}}_{\to 0} \underbrace{\frac{\lfloor t \rfloor}{t}}_{\to 1} + \underbrace{\frac{B_t - B_{\lfloor t \rfloor}}{t}}_{\stackrel{g. s.}{\to} 0}$$

ZADATAK

Neka je $B=(B_t)_{t\geq 0}$ standardno jednodimenzionalno Brownovo gibanje. Definiramo slučajni proces $X=(X_t)_{t\geq 0}$: $X_0=0$ g. s. $X_t=tB_{1/t}, t>0$. Tada je X standardno jednodimenzionalno Brownovo gibanje.

Rješenje.

(a) iz definicije (prethodna propozicija)

$$(b) \ \ (X_{t_1}, X_{t_2}, \dots, X_{t_n})^T = (t_1 B_{1/t_1}, \dots, t_n B_{1/t_n})^T = \begin{bmatrix} t_1 & & \\ & \ddots & \\ & & t_n \end{bmatrix} \begin{bmatrix} B_{1/t_1} \\ \vdots \\ B_{1/t_n} \end{bmatrix}, \text{ ``sto je afina transformacija normalnog slučajnog vektora pa je opet normalan slučajan vektor.}$$

(c) $s \le t$, $Cov(X_s, X_t) = Cov(sB_{1/s}, tB_{1/t}) = st Cov(B_{1/s}, B_{1/t}) = st \left(\frac{1}{s} \land \frac{1}{t}\right) = st \frac{1}{t} = s = s \land t$

(d) za
$$t > 0$$
: $t \mapsto X_t = tB_{1/t}$ je produkt neprekidnih funkcija. A, za $t = 0$,

$$\lim_{t \to 0} X_t = \lim_{t \to 0} t B_{1/t} = \left[s = \frac{1}{t} \right] = \lim_{s \to \infty} \frac{B_s}{s} \stackrel{\text{JZVB}}{=} 0 \text{ g. s.}$$

30.3 Egzistencija Brownovog gibanja

Relativno je lagano pokazati da postoji slučajan proces sa svojstvima (i),(ii) i $(iii):t>0x,y\in\mathbb{R}$

$$p_t(x,y) = g_t(y-x) = \frac{1}{\sqrt{2\pi t}}e^{-\frac{(y-x)^2}{3t}}$$

Za $0 < s < t < u, x, z \in \mathbb{R}$

$$\int_{\mathbb{R}} p_{t-s}(x,y) p_{u-t}(y,z) dy = p_{u-s}(0,z), x < 0 \quad (\triangle)$$

$$(B_t - B_s) + (B_u - B_t) = B_u - B_s.$$

Gustoća zbroja nezavisnih slučajnih varijabli konvolucija je gustoća pribrojnika.

$$\begin{split} \int_{\mathbb{R}} f_{B_t - B_s}(y) f_{B_u - B_t}(z - y) dy &= f_{B_u - B_s}(z) \\ \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi(t - s)}} e^{-\frac{y^2}{2(t - s)}} \cdot \frac{1}{\sqrt{2\pi(u - t)}} e^{-\frac{(z - u)^2}{2(u - t)}} dy &= \frac{1}{\sqrt{2\pi(u - s)}} e^{-\frac{z^2}{2(u - s)}} \end{split}$$

- $ightharpoonup \mathbb{Q}_2 := \{m2^{-n} \mid m,n \in \mathbb{N}_0\}$ -skup svih nenegativnih dijadskih razlomaka (gusti u \mathbb{R}_+)
- $ightharpoonup \Omega_q := \mathbb{R}^{\mathbb{Q}_2} = \{ \text{ funkcije } \mathbb{Q}_2 \to \mathbb{R} \}$

$$\blacktriangleright \mathcal{F}_{q} = \text{cilindrična } \sigma\text{-algebra na } \Omega_{q} = \sigma \left(\bigcup_{\substack{n \in \mathbb{N} \\ 0 < t_{1} < \dots < t_{n} \\ t_{i} \in \mathbb{Q}_{2}}} \pi_{t_{1}, \dots, t_{n}}^{-1} \left(B_{\mathbb{R}^{n}} \right) \right)$$

Uniformna neprekidnost

- \square $\varepsilon > 0$, odaberemo $\eta > 0$ t. d. je $\eta < \min\left\{\left(\frac{\varepsilon}{c}\right)^{1/\gamma}, 2^{-(1-\delta)N}\right\}$
- \square $r, q \in \mathbb{Q}_2 \cap [0, 1]$ t. d. $|r q| < \eta$

Tada

- (i) $|r q| < 2^{-(1-\delta)N}$
- (ii) $c|r q|^{\gamma} < c \cdot \frac{\varepsilon}{c} = \varepsilon$

$$\Rightarrow |f(q) - f(r)| \le C|r - q|^{\gamma} < \varepsilon \Rightarrow f$$
 je uniformno neprekidna

Proširenje po neprekidnosti funkcije na [0,1]

- \square $t \in [0,1], (q_n)_{n \in \mathbb{N}} \subseteq \mathbb{Q}_2 \cap [0,1], q_n \stackrel{n \to \infty}{\longrightarrow} t$
- $\Box |f(q_n) f(q_m)| \le C|q_n q_m|^{\gamma} \rightsquigarrow \text{za dovoljno velike } n, m$
- $\Rightarrow (f(q_n))_{n \in \mathbb{N}}$ je Cauchyjev $\Rightarrow (f(q_n))_{n \in \mathbb{N}}$ konvergira
- $\Box f(t) := \lim_{n \to \infty} f(q_n). \ s, t \in [0, 1]$

$$|f(t) - f(s)| = \left[r_n := s\right] = \lim_{n \to \infty} |f(q_n) - f(r_n)| \le C \lim_{n \to \infty} |q_n - r_n|^{\gamma} = C|t - s|^{\gamma}$$

DEFINICIJA

- $\Box \ f: [0,+\infty\rangle \to \mathbb{R} \ \text{je} \ Lipschitz \ neprekidna u točki } t_0 \geq 0 \ \text{ako} \ \exists \delta > 0, \exists c > 0, \forall t \in [0,+\infty\rangle, |t-t_0| < \delta \Rightarrow |f(t)-f(t_0)| \leq C|t-t_0|$
- \square $f:[0,+\infty)$ je Lipschitz neprekidna ako $\exists c>0, |f(t)-f(s)|\leq c|t-s|, \forall t,s\geq 0.$

Zbog $m \geq N$ te $j - i \leq 2^{m\delta}$, iz pretpostavke (\triangle), slijedi

$$|f(j2^{-m}) - f(i2^{-m})| \le (2^{m\delta}2^{-m})^{\gamma} = 2^{-\gamma m(1-\delta)}$$

Po neprekidnosti,

$$|f(q) - f(i2^{-m})| = |f(i2^{-m} - 2^{-q(1)} - \dots - 2^{-q(k)}) - f(i2^{-m})|$$

$$\leq \sum_{p=1}^{k} |f(i2^{-m} - q^{-q(1)} - \dots - 2^{-q(p)}) - f(i2^{-m} - 2^{-q(1)} - \dots - 2^{-q(p-1)})| \leq (**)$$

$$|f(i2^{-m} - 2^{-q(1)} - \dots - 2^{-q(p)}) - f(i2^{-m} - \dots - 2^{-q(p-1)})| = |f(i'2^{-q(p)}) - f(i'+1)2^{-q(p)})|$$

$$\leq 2^{-q(p)\gamma}$$

$$(**) \leq \sum_{\gamma=1}^{k} 2^{-q(p)\gamma} \leq [q(p) > m+p] \leq \sum_{p=1}^{k} 2^{-(m+p)\gamma} \leq \sum_{p=m}^{\infty} 2^{-p\gamma} = C_1 2^{-m\gamma}$$

$$\Rightarrow |f(q) - f(i2^{-m})| \leq C_1 2^{-\gamma m} \quad (\triangle \triangle \triangle)$$

$$|f(r) - f(j2^{-m})| \leq C_2 2^{-\gamma m} \quad (\triangle \triangle \triangle) \quad \text{(slično)}$$

$$\Rightarrow |f(q) - f(r)| \leq |f(q) - f(i2^{-m})| + |f(i2^{-m}) - f(j2^{-m})| + |f(j2^{-m}) - f(r)|$$

$$\leq C_1 2^{-m\gamma} + C_2 2^{-m\gamma} + 2^{-\gamma m(1-\delta)} \leq C_3 2^{-\gamma m(1-\delta)}$$

$$\leq [2^{-m(1-\delta)} = 2^{-(m+1)(1-\delta)} \cdot 2^{1-\delta} \leq (r-q)2^{1-\delta}] \leq C_3 2^{1-\delta} (r-q)$$

PROBLEM

$$C := \{ \omega \in \Omega \mid t \mapsto \omega(t) \text{ je neprekidna funkcija} \}$$

Po svojstvu $(iv) \rightsquigarrow \nu(C) = 1$, ali, ispostavlja se da $C \notin \mathcal{F}_0$. Po Kolmogorovljevom teoremu proširenja, postoji jedinstvena vjerojatnosna mjera na $(\Omega_q, \mathcal{F}_q)$ t. d. $\nu\left(\{\omega \mid \omega(0) = 0\}\right) = 1$ i vrijedi

$$\nu\left(\left\{\omega \mid \omega(t_i) \in A_i, 0 < t_1 < \dots < t_n\right\}\right) = \mu_{t_1,\dots,t_n}(A_1 \times \dots \times A_n), t_i \in \mathbb{Q}_2.$$

LEMA

Neka je $f: \mathbb{Q}_2 \to \mathbb{R}, \gamma, \delta > 0$. Pretpostavimo da $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, \text{ vrijedi}$

$$\left|f\left(j2^{-n}\right) - f\left(i2^{-n}\right)\right| \leq \left((j-i)2^{-n}\right)^{\gamma}, \forall 0 \leq i, j \leq 2^n \text{ t. d. } 0 < j-i < 2^{n\delta}.$$

Tada $\exists c > 0, \forall r, q \in \mathbb{Q}_2 \cap [0, 1]$ t. d. $0 < r - q < 2^{-(1-\delta)N}$ vrijedi $|f(q) - f(r)| \le c|r - q|^{\gamma}$. Posebno, f je uniformno neprekidna na $\mathbb{Q}_2 \cap [0, 1]$.

Dokaz.

Neka su $r, q \in \mathbb{Q}_2 \cap [0, 1], 0 < r - q < 2^{-(1-\delta)N}, m \in \mathbb{N}$ t. d. $2^{-(m+1)(1-\delta)} \le r - q < 2^{-m(\gamma-\delta)}$. (*). Neka je j najveći indeks t. d. je $j2^{-m} \le r$. $\Rightarrow r = j2^{-m} + 2^{-r(1)} + \dots + 2^{-r(l)}, m < r(1) < \dots < r(l)$. Slično, neka je i najmanji indeks t. d. $i2^{-m} \ge q$. $\Rightarrow q = i2^{-m} - 2^{-q(1)} - \dots - 2^{-q(k)}, m < q(1) < \dots < q(k)$.

$$\Rightarrow r - q = (j - i)2^{-m} + 2^{-r(1)} + \dots + 2^{-r(l)} + 2^{-q(1)} + \dots + 2^{-q(k)} < 2^{-m(1 - \delta)} \Rightarrow (j - i)2^{-m} \le 2^{-m(1 - \delta)} / \cdot 2^m \Rightarrow j - i \le 2^{m\delta}$$

$$\begin{cases} X_t = tB_{1/t}, t > 0 \\ X_0 = 0 \end{cases}$$

- ➤ Kad Brownovo gibanje izlazi iz 0, beskonačno mnogo puta pogodi 0
- ➤ to vrijedi za svako Brownovo gibanje (svojstvo distribucije Brownovog gibanja)
- \square $0 < t_1 < t_2 < \cdots < t_n, n \in \mathbb{N}$. Na $(\mathbb{R}^n, B_{\mathbb{R}^n})$ definiramo vjerojatnosnu mjeru

$$\mu_{t_1,\dots,t_n}(A_1 \times \dots \times A_n) = \int_{A_1} dx_1 \int_{A_2} dx_2 \cdots \int_{A_n} dx_n \prod_{m=1}^n p_{t_m,t_{m-1}}(x_{m-1},x_m).$$

Zbog (\triangle), ta je familija vjerojatnosnih mjera SUGLASNA.

$$t_{n+1} > t_n$$
, $\mu_{t_1,\dots,t_{n+1}}(A_1 \times \dots \times A_n \times \mathbb{R}) = \mu_{t_1,\dots,t_n}(A_1 \times \dots \times A_n)$

$$ightharpoonup \Omega_0 := \mathbb{R}^{[0,+\infty)} = \{f : [0,+\infty) \to \mathbb{R}\}$$

$$\blacktriangleright \mathcal{F}_0 = \sigma \left(\bigcup_{\substack{0 < t_1 < \dots < t_n}} \pi_{t_1, \dots, t_n}^{-1} \left(B_{\mathbb{R}^n} \right) \right)$$

Iz Kolomogorovljevog teorema o proširenju, slijedi

TEOREM

Postoji jedinstvena vjerojatnost ν na $(\Omega_0, \mathcal{F}_0)$ t. d. $\nu(\{\omega \mid \omega(0) = 0\}) = 1$ i

$$\nu\left(\left\{\omega \mid \omega(t_i) \in A_i, 0 < t_1 < \dots < t_n\right\}\right) = \mu_{t_1,\dots,t_n}(A_1 \times \dots \times A_n).$$

Stavimo $X_t(\omega) = \omega(t)$. Tada $(X_{t_1}, \dots, X_{t_n})$ ima distribuciju μ_{t_1, \dots, t_n} , tj., normalnu distribuciju - centriranu, s kovarijacijskom matricom $\left[t_i \wedge t_j\right]_{i,j}$.

Dakle, našli smo prostor i proces koji zadovoljava (i) - (iii).

TEOREM

Neka je $f:[0,+\infty)\to\mathbb{R}$ diferencijabilna u $t_0\geq 0$. Tada je f Lipschitz neprekidna u t_0 .

NAPOMENA

Obrat ne vrijedi! Npr., f(x) = |x|.

DEFINICIJA

 $f: [0, +\infty) \to \mathbb{R}$ je Hölder neprekidna u $t_0 \ge 0$ s eksponentnom $\alpha > 0$ ako $\exists \delta > 0, \exists c > 0, \forall t \in [0, +\infty), |t - t_0| < \delta \Rightarrow |f(t) - f(t_0)| \le C|t - t_0|^{\alpha}$.

NAPOMENA

Ako je f Hölder neprekidna s eksponentom $\alpha > 0$, onda je Hölder neprekidna i s eksponentom $\beta > \alpha, \forall \beta > \alpha$.

TEOREM

Neka je $T<+\infty$. Tada je ν -g. s. $\omega:\mathbb{Q}_2\to\mathbb{R}$ uniformno neprekidna na $\mathbb{Q}_2\cap[0,2]$.

Dokaz.

$$\begin{split} & \text{BSOMP } T = 1. \text{ Neka je } \mathbb{P} := \nu, B_t - B_s \sim N(0, t - s), 0 \leq s < t, s, t \in \mathbb{Q}_2. \\ & \mathbb{E}\left[(B_t - B_s)^4\right] = 3(t - s)^2 \rightsquigarrow \mathbb{E}\left[(B_t - B_s)^4\right] \leq C(t - s)^2. \\ & \gamma < \frac{1}{4}, \delta > 0. \text{ Markovljeva nejednakost: } a^4\mathbb{P}(|X| > a) \leq \mathbb{E}\left[|X|^4\right] \end{split}$$

$$& \mathbb{P}\left(\left|B_{j2^{-n}} - B_{i2^{-n}}\right| > \left((j - i)2^{-n}\right)^{\gamma} \text{ za neke } 0 \leq i, j < 2^n \text{ t. d. } 0 < j - i < 2^{n\delta}\right) \end{aligned}$$

$$& = \mathbb{P}\left(\bigcup_{\substack{0 \leq i, j \leq 2^n \\ 0 < j - i < 2^{n\delta}}} \left\{\left|B_{j2^{-n}} - B_{i2^{-n}}\right| > \left((j - i)2^{-n}\right)^{\gamma}\right\} \right)$$

$$& \leq \sum_{\substack{0 \leq i, j \leq 2^n \\ 0 < j - i < 2^{n\delta}}} \mathbb{P}\left(\left|B_{j2^{-n}} - B_{i2^{-n}}\right| > \left((j - i)2^{-n}\right)^{\gamma}\right) \xrightarrow{\text{Markov}} \sum_{\substack{0 \leq i, j \leq 2^n \\ 0 < j - i < 2^{n\delta}}} \left((j - i)2^{-n}\right)^{-4\gamma} \mathbb{E}\left[\left|B_{j2^{-n}} - B_{i2^{-n}}\right|^4\right]$$

$$& \leq \sum_{\substack{0 \leq i, j \leq 2^n \\ 0 < j - i < 2^{n\delta}}} \left((j - i)2^{-n}\right)^{-4\gamma} C\left((j - i)2^{-n}\right)^2 \leq C \sum_{\substack{0 \leq i, j \leq 2^n \\ 0 < j - i < 2^{n\delta}}} \left((j - i)2^{-n}\right)^{-4\gamma + 2}$$

$$& \leq \left[\lim_{j = 1}^{\infty} \frac{\# \text{ sumanada}}{\# \text{ sumanada}} \leq 2^n \cdot 2^{n\delta} + i\right]$$

$$& \leq C \cdot 2^n \cdot 2^{n\delta} \cdot \left(2^{n\delta}2^{-n}\right)^{-4\gamma + 2} = C2^{-n(-1 - \delta + (4\gamma - 2))\delta - 4\delta + 2)}$$

$$& = \left[\varepsilon := (2 - 4\delta)(1 - \delta) - (1 + \delta) > 0\right]$$

$$& \geq \sum_{n \in \mathbb{N}} \mathbb{P}\left(\left|B_{j2^{-n}} - B_{i2^{-n}}\right| > \left((j - i)2^{-n}\right)^{\gamma} \text{ za neke } 0 \leq i, j \leq 2^n, 0 < j - i < 2^{n\delta}\right) \leq C\sum_{n \in \mathbb{N}} 2^{-n\varepsilon} < \infty$$

Po Borel-Cantelli 1, za g. s. $\omega \in \Omega_q$, $\exists N(\omega) \in \mathbb{N}$ t. d.

$$\forall n \geq N(\omega), |B_{j2^{-n}}(\omega) - B_{i2^{-n}}(\omega)| \leq ((j-i)2^{-n})^{\gamma}, \forall 0 \leq i, j < 2^n, 0 < j-i < 2^{n\delta}$$

Po Lemi, slijedi neprekidnost na [0, 1], tj., postoji neprekidno proširenje.

 \sim g. s. ω se može proširiti do uniformno neprekidne, štoviše do γ -Hölder neprekidne s eksponentom $\frac{1}{4}$, na svakom $[0,T] \Rightarrow$ sveukupno, može se proširiti do uniformno neprekidne $(\gamma$ -Hölder neprekidne na $[0,+\infty\rangle)$

$$(\Box)\mathbb{E}\left[|B_t - B_s|^{\beta}\right] \le C|t - s|^{1+\alpha}$$

- \blacktriangleright u dokazu prethodnog teorema, umjesto $^{-4}$, pišemo $-\beta$, umjesto γ , pišemo $1+\alpha$
- \blacktriangleright ... isti način $\varepsilon = (1 + \alpha \beta \gamma)(1 \delta) (1 + \delta)$
- \leadsto uniformna neprekidnost vrijedi $\forall \gamma, 1+\alpha-\beta\gamma>0,$ tj., ?? $\forall \gamma<\frac{\alpha}{\beta}$

$$\begin{array}{l} \square \ \beta = 2m, \alpha = m-1 \\ ?? \forall \gamma < \frac{1}{2}, \exists m, \gamma < \frac{m-1}{2m} = \frac{\alpha}{\beta} \end{array}$$

POANTA

Zapravo je $\forall \gamma < \frac{1}{2}$, a ne $\gamma < \frac{1}{4}$ γ -Hölder neprekidna

- \blacktriangleright Izmjeriv prostor (C, \mathcal{C})
- ightharpoonup C neprekidne funkcije $[0, +\infty) \to \mathbb{R}$
- \triangleright C cilindrična σ -algebra (generirana projekcijama $\pi_t: C \to \mathbb{R}, \pi_t(\omega) = \omega(t)$)

DEFINICIJA

$$\Psi:\Omega_q\to C$$

 $\Psi(\omega) :=$ neprekidno proširenje of ω s Ω_q na $[0, +\infty)$ \rightarrow ako je ω iz skupa ν -vjerojatnosti 1, funkcija je $\equiv 0$ i na ??

LEMA

 Ψ je $(\mathcal{F}_q, \mathcal{C})$ -izmjeriva.

Dokaz.

Dovoljno je pokazati da Ψ dobro invertira skupove iz neke generirajuće familije za \mathcal{C} .

$$\{\tilde{\omega} \in C \mid \tilde{\omega}(t_1) \in A_1, \dots, \tilde{\omega}(t_n) \in A_n\}, A_1, \dots, A_n \subseteq \mathbb{R} \text{ otvoreni.}$$

Neka je $t > 0, A \subseteq \mathbb{R}$ otvoren.

$$\Psi^{-1}\left(\left\{\tilde{\omega} \in C \mid \tilde{\omega}(t) \in A\right\}\right) = \left\{\omega \in \Omega_q \mid \Psi(\omega)(t) \in A\right\} = \left\{\omega \in \Omega_q \mid \lim_{\substack{q_n \to t \\ q_n \in \mathbb{Q}}} \omega(q_n) \in A\right\} = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \left\{\omega(q_m) \in A\right\} \in \mathcal{F}_q.$$

Konačno, definirajmo vjerojatnost \mathbb{P} na (C,\mathcal{C}) : $\mathbb{P}:=\nu\circ\Psi^{-1}$ te $B_t:C\to\mathbb{R}, B_t(\omega):=\omega(t).$

TVRDNJA

 $B = (B_t)_{t \geq 0}$ Brownovo gibanje na vjerojatnosnom prostoru $(C, \mathcal{C}, \mathbb{P})$.

Dokaz.

Svojstva (i) i (iv) slijede po definiciji. Dokažimo (iii). Neka su $s,t \geq 0$. Ako su $(q_n)_{n \in \mathbb{N}}, (r_n)_{n \in \mathbb{N}}$ t. d. $q_n \to s+t, r_n \to t$, zbog neprekidnosti trajektorija, slijedi $B_{s+t} = \lim_{n \to \infty} B_{q_n}, B_s = \lim_{n \to \infty} B_{r_n}$ i

$$B_{t+s} - B_s = \lim_{n \to \infty} \underbrace{\left(B_{q_n} - B_{r_n}\right)}_{\stackrel{\mathbb{P}}{\sim} N(0, q_n - r_n)} \text{ g. s.}$$

%POANTA: Postoji Brownovo gibanje ₹

PROPOZICIJA

Neka je $t_0 \ge 0$. Za g. s. $\omega \in \Omega$, putovi $t \mapsto B_t(\omega)$ nisu Lipschitz-neprekidni u t_0 .

Dokaz.

Definirajmo $A_{t_0}:=\{\omega\in\Omega\mid t\mapsto B_t$ je Lipschitz-neprekidna u $t_0\}$. Neka je $\omega\in A_{t_0}$. $\exists \delta=\delta(\omega)>0, \exists c=c(\omega)>0, |t-t_0|<\delta\Rightarrow |B_t(\omega)-B_{t_0}(\omega)|\leq C|t-t_0|$. Neka je $n\in\mathbb{N}$ t. d. $\frac{1}{2^n}<\delta; m\in\mathbb{N}, m\geq c$.

$$\forall j \ge n, \left| \left(t_0 + 2^{-j} - t_0 \right) \right| = 2^{-j} < \delta \Rightarrow \left| B_{t_0 + 2^{-j}}(\omega) - B_{t_0}(\omega) \right| \le C \left| \left(t_0 + 2^{-j} \right) - t_0 \right| \le m 2^{-j}$$

$$\Rightarrow \omega \in A_{m,n} := \left\{ |B_{t_0 + 2^{-j}} - B_{t_0}| \leq m2^{-j}, \forall j \geq n \right\} = \bigcap_{j=n}^{\infty} \left\{ |B_{t_0 + 2^{-j}} - B_{t_0}| \leq m2^{-j} \right\} \Rightarrow A_{t_0} \subseteq \bigcup_{m,n=1}^{\infty} A_{m,n}.$$

Nadalje, $A_{n,m}\subseteq\left\{|B_{t_0+2^{-l}}-B_{t_0}|\leq m2^{-l}\right\}, \forall l\geq n$ kao presjek takvih.

$$\mathbb{P}\left(|B_{t_0+2^{-l}} - B_{t_0}| \le 2^{-l} \cdot m\right) = \begin{bmatrix} \text{stacionarnost} \\ \text{prirasta} \end{bmatrix} = \mathbb{P}\left(|B_{2^{-l}}| \le m2^{-l}\right) = \left[B_t \sim \sqrt{t}B_1\right] \\
= \mathbb{P}\left(\sqrt{2^{-l}}|B_1| \le m2^{-l}\right) = \mathbb{P}\left(|B_1| < m2^{-l/2}\right)$$

$$\forall l \geq n, \mathbb{P}(A_{n,m}) \leq \mathbb{P}\left(|B_{t_0+2^{-l}} - B_{t_0}| \leq 2^{-l}m\right) = \mathbb{P}\left(|B_1| \leq m2^{-l/2}\right) \stackrel{l \to \infty}{\longrightarrow} 0, \forall m, n \in \mathbb{N}$$

$$\stackrel{\text{neprekidnost}}{\Rightarrow} \mathbb{P}\left(\bigcup_{m,n=1}^{\infty} A_{m,n}\right) = 0 \Rightarrow \mathbb{P}(A_{t_0}) = 0.$$

 \Rightarrow Lipschitz-neprekidne na događaju vjerojatnosti 0

TEOREM

Neka je $B = (B_t)_{t\geq 0}$ Brownovo gibanje na $(\Omega, \mathcal{F}, \mathbb{P})$. Za g. s. $\omega \in \Omega$, putovi $t \mapsto B_t(\omega)$ nisu Lipschitzneprekidni ni u jednoj točki $t \geq 0$. Posebno, g. s. putovi $t \mapsto B_t(\omega)$ nigdje nisu diferencijabilni.

Dokaz.

Definirajmo $A:=\{\omega\in\Omega\mid\exists s\in[0,1],t\mapsto B_t(\omega)$ Lipschitz-neprekidna u $s\}$. Neka je c>0. Za $n\in\mathbb{N}$, definirajmo $\tilde{A}_n:=\{\omega\in\Omega\mid\exists s\in[0,1],|t-s|<\frac{3}{n}\Rightarrow|B_t(\omega)-B_s(\omega)|\leq c|t-s|\}$. Neka je $n\geq3,k\in\{1,\ldots,n-2\}$ te

$$\begin{split} Y_{k,n} &:= \max_{j=0,1,2} \left\{ \left| B_{(k+j)/n} - B_{(k+j-1)/n} \right| \right\} \\ \tilde{B}_n &:= \left\{ \text{ barem jedan } Y_{k,n} \leq \frac{5c}{n} \right\} = \bigcup_{k=0}^{n-2} \left\{ Y_{k,n} \leq \frac{5c}{n} \right\}. \end{split}$$

Pokažimo da je $\tilde{A}_n \subseteq \tilde{B}_n$. Neka je $\omega \in \tilde{A}_n$. Tada $\exists s \in [0,1]$ t. d. je $|B_t(\omega) - B_t(s)| \leq c|t-s|$ za $|t-s| < \frac{3}{n}$.

s = 1 (najgora mogućnost)

$$\begin{vmatrix} B_{\frac{n-2}{n}}(\omega) - B_{\frac{n-3}{n}}(\omega) \end{vmatrix} \leq \underbrace{\left| B_{\frac{n-2}{n}}(\omega) - B_{1}(\omega) \right|}_{\leq c_{\frac{n}{n}}^{2}} + \underbrace{\left| B_{1}(\omega) - B_{\frac{n-3}{n}}(\omega) \right|}_{c_{\frac{n}{n}}^{3}} \leq \frac{5c}{n}$$

$$\begin{vmatrix} B_{\frac{n-1}{n}}(\omega) - B_{\frac{n-2}{n}}(\omega) \end{vmatrix} \leq \underbrace{\left| B_{\frac{n-1}{n}}(\omega) - B_{1}(\omega) \right|}_{\leq c_{\frac{1}{n}}} + \underbrace{\left| B_{1}(\omega) - \frac{n-2}{n} \right|}_{c_{\frac{n}{n}}^{2}} \leq \frac{5c}{n}$$

$$\begin{vmatrix} B_{\frac{n-2}{n}}(\omega) - B_{\frac{n}{n}}(\omega) \end{vmatrix} \leq c_{\frac{1}{n}}^{1} \leq \frac{5c}{n}$$

$$\Rightarrow Y_{n-2,n}(\omega) \leq \frac{5c}{n} \Rightarrow \omega \in \tilde{B}_{n}$$

s<1 Tada $\exists k\in\{1,\ldots,n-2\}$ t. d. se s nalazi negdje između točaka $\frac{k-1}{n},\frac{k}{n},\frac{k+1}{n},\frac{k+2}{n}$ i, opet, rapisujući $\left|B_{\frac{k+j}{n}}-B_s\right|+\left|B_s-B_{\frac{k+j-1}{n}}\right|$ (za koje ima smisla gledati), vidim da taj zbroj ne prelazi $\frac{5c}{n}$. Dakle, i u ovom slučaju, $\omega\in\tilde{B}_n$.

Dalje,

$$\begin{split} \mathbb{P}\left(Y_{k,n} \leq \frac{5c}{n}\right) &= \mathbb{P}\left(\left|B_{\frac{k}{n}} - B_{\frac{k-1}{n}}\right| \leq \frac{5c}{n}, \left|B_{\frac{k+1}{n}} - B_{\frac{k}{n}}\right| \leq \frac{5c}{n}, \left|B_{\frac{k+2}{n}} - B_{\frac{k+1}{n}}\right| \leq \frac{5c}{n}\right) \\ &= \begin{bmatrix} \operatorname{nezavisnost} + \\ \operatorname{stacionarnost} \end{bmatrix} = \mathbb{P}\left(\left|B_{\frac{1}{n}}\right| \leq \frac{5c}{n}\right)^3 = \left[B_{\frac{1}{n}} \sim \sqrt{\frac{1}{n}}B_1\right] \\ &= \mathbb{P}\left(|B_1| \leq 5cn^{-1/2}\right)^3 = \left(\int_{-\frac{5c}{n}}^{\frac{5c}{n}} \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx\right)^3 \leq \left(\frac{1}{\sqrt{2\pi}} \cdot \frac{10c}{\sqrt{n}}\right)^3 \\ \Rightarrow \mathbb{P}\left(\tilde{B}_n\right) \leq \sum_{k=1}^{n-2} \mathbb{P}\left(Y_{k,n} \leq \frac{5c}{n}\right) \leq (n-2) \cdot (2\pi)^{-3/2} \cdot 10^3 \cdot c^3 \cdot n^{-3/2} \leq (2\pi)^{-3/2} \cdot 10^3 \cdot c^3 \cdot n^{-1/2}. \end{split}$$

Neka je $n \in \mathbb{N}$. Definirajmo sada $A_n := \{\omega \in \Omega \mid \exists s \in [0,1], |B_t(\omega) - B_s(\omega)| \le n^{1/12}|t-s|\}$ ($c = n^{1/12}$) te

$$B_n := \left\{ \text{ barem jedan } Y_{k,n} \le \frac{5n^{1/12}}{n} \right\} ??$$

Prema pokazanome, vrijedi $\mathbb{P}(B_n) \leq (2\pi)^{-3/2} 10^3 n^{3/12-1/2} = (2\pi)^{-3/2} 10^3 n^{-1/4}$. $A_1 \subseteq A_2 \subseteq \cdots$ Pokažimo da je $A \subseteq \bigcup_{n=1}^\infty A_n$. Neka je $\omega \in A$. Tada $\exists s \in [0,1], \exists \delta > 0, \exists c > 0, |t-s| < \delta \Rightarrow |B_t(\omega) - B_s(\omega)| \leq c|t-s|$. Neka je $n \in \mathbb{N}$ t. d. $\frac{3}{n} < \delta, n^{1/12} \geq c$. Tada je $\omega \in A_n$.

$$\limsup_{n\to\infty} A_n = \{A_n \text{ b. m. p.}\} = \begin{bmatrix} \text{neopadaju\'ei} \\ \text{događaji} \end{bmatrix} = \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} A_{2^n}$$
$$\sum_{n=1}^{\infty} \mathbb{P}(B_{2^n}) \leq (2\pi)^{-3} 10^3 \sum_{n=1}^{\infty} (2^n)^{-1/4} < +\infty$$

 $\stackrel{\text{Borel Cantelli-1}}{\Rightarrow} \mathbb{P}(B_{2^n} \text{ b. m. p.}) = 0.$

No,

$$A \subseteq \bigcup_{n=1}^{\infty} A_{2^n} = \{A_{2^n} \text{ b. m. p.}\} \subseteq \{B_{2^n} \text{ b. m. p.}\} \Rightarrow \mathbb{P}(A) = 0.$$

30.4 Funkcije ograničene varijacije

Neka je $f: [0, +\infty) \to \mathbb{R}, t > 0.\Delta = \{0 = t_0 < t_1 < \cdots < t_n = t\}$. Definiramo

$$V^{\Delta}(t;f) := \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|.$$

Ako je $\Delta' \supseteq \Delta$ profinjenje od Δ , $V^{\Delta'}(t; f) \ge V^{\Delta}(t; f)$.

DEFINICIJA

Varijacija funkcije f na [0,t] je

$$V(t) = V(t; f) := \sup_{\Delta} V^{\Delta}(t; f) \le +\infty.$$

- \square $V(t) < +\infty$, f je ograničene varijacije na [0,t]
- \Box f je ograničene varijacije ako je $\forall t > 0, V(t) < +\infty$.

LEMA

Za 0 < s < t vrijedi V(t) > V(s) + |f(t) - f(s)|.

Dokaz.

$$\Delta = \{0 = t_0 < \dots < t_n = s\}$$

$$\tilde{\Delta} = \{0 = t_0 < \dots < t_n < t_{n+1} = t\} = \Delta \cup \{t\}$$

$$V^{\tilde{\Delta}}(t; f) = V^{\Delta}(s; f) + |f(t) - f(s)| / \sup_{\Delta_{[0, t]}}$$

$$\Rightarrow V(t; f) \ge V^{\Delta}(s; f) + |f(t) - f(s)| / \sup_{\Delta_{[0, s]}}$$

$$\Rightarrow V(t; f) \ge V(s; f) + |f(t) - f(s)|$$

Neka je $f:[0,+\infty)\to\mathbb{R}$ ograničene varijacije i neprekidna zdesna.

 $\blacktriangleright V^+ \to \mu_1, V^- \to \mu_2$ neopadajuće i neprekidne zdesna

$$\Rightarrow V = V^+ + V^- \to \mu = \mu_1 + \mu_2; f \to \mu_1 - \mu_2$$

- ▶ $\int_0^t g(s)dB_s(\omega) \sim$ sama teorija mjere, tj., integracije, ne dopušta! Tj., ne dopušta po trajektorijama jer nisu ograničene varijacije.
- ⇒ ali, može se (financijsko modeliranje...)

30.5 Kvadratna varijacija Brownovog gibanja

Neka je $B = (B_t)_{t>0}$ Brownovo gibanje na $(\Omega, \mathcal{F}, \mathbb{P})$. Za $\Delta = \{0 = t_0 < t_1 < \cdots < t_n = t\}$, definiramo

$$\begin{split} Q^{\Delta}(t;B) := \sum_{i=1}^n \left(B_{t_i} - B_{t_{i-1}}\right) \\ |\Delta| := \max_{1 \leq i \leq n} |t_i - t_{i-1}| \leadsto \text{ dijametar particije} \end{split}$$

Neka je

- $ightharpoonup \varphi[0,+\infty) \to \mathbb{R}^d$ neprekidna funkcija,
- $V^{\Delta}(t;f) = \sum_{i=1}^{n} \|\varphi(t_i) \varphi(t_{i-1})\|$

$$\underbrace{\int_0^t \|\varphi'(s)\| ds}_{\text{duljina}} = V(t;\varphi) = \sup_{\Delta} V^{\Delta}(t;\varphi) < +\infty \text{ (φ rektifibilina)}$$

${\bf TEOREM\ (Lebesgue)} ({\bf bez\ dokaza})$

Neka je $f:[0,+\infty\rangle\to\mathbb{R}$ neopadajuća funkcija. Tada je f diferencijabilna $\lambda\text{-g. s.}$

POSLJEDICA

- \Rightarrow funkcije ograničene varijacije diferencijabilne su $\lambda\text{-g.}$ s.
- \Rightarrow trajektorije Brownovog gibanja <u>nisu</u> ograničene varijacije (jer nisu diferencijabilne g. s.)

Neka je $F:[0,+\infty)\to[0,+\infty)$ neopadajuća i neprekidna zdesna

- $\blacktriangleright \mu(\langle a, b]) := F(b) F(a)$
- \triangleright postoji jedinstveno proširenje od μ na $B_{\mathbb{R}}$.
- \blacktriangleright 1 1 $F \leftrightarrow \mu_F$
- $ightharpoonup t\mapsto V(t)$ je neopadajuća funkcija
- ightharpoonup 0 < s < t:

$$[V(t) \pm f(t)] - [V(s) \pm f(s)] = V(t) - V(s) \pm [f(t) - f(s)] \ge V(t) - V(s) - |f(t) - f(s)| \stackrel{\text{LEMA}}{\ge} 0.$$

Definiramo pozitivnu i negativnu varijaciju funkcije f:

$$V^{+}(t) = \frac{V(t) + f(t)}{2} \quad V^{-}(t) := \frac{V(t) - f(t)}{2}$$

$$\Rightarrow f(t) = V^{+}(t) - V^{-}(t)$$

$$V(t) = V^{+}(t) + V^{-}(t)$$

funkcija ograničene varijacije razlika je dviju neopadajućih funkcija. Vrijedi i obrat.

Neka je $f:[0,1]\to\mathbb{R}$ neopadajuća. Tada je f ograničene varijacije. Ako je, dodatno, f(0)=0, V(t;f)=f(t).

PRIMJER

Neka je $f:[0,+\infty)\to\mathbb{R}$ klase C^1 na $[0,t], \forall t\geq 0$. Tada je f ograničene varijacije.

$$V^{\Delta}(t;f) = \sum_{i=1}^{n} \underbrace{|f(t_i) - f(t_{i-1})|}_{|f(\xi_i)|(t_i - t_{i-1})} \leq \sum_{i=1}^{n} ||f'||_{\infty,t}(t_i - t_{i-1}) = t||f'||_{\infty,t} \Rightarrow V^{\Delta}(t;f) \leq t||f'||_{\infty,t} < +\infty.$$

$$\mathbb{E}Q^{\Delta}(t;B) = \sum_{i=1}^{n} \underbrace{\mathbb{E}\left[\left(B_{t_i} - B_{t_{i-1}}\right)^2\right]}_{t_i - t_{i-1}} = t$$

$$\mathbb{E}\left[\left(Q^{\Delta}(t;B)-t\right)^{2}\right] = \operatorname{Var}Q^{\Delta}(t;B) = \begin{bmatrix} \operatorname{nezavisnost} \\ \operatorname{prirasta} \end{bmatrix} = \sum_{i=1}^{n} \operatorname{Var}\left(B_{t_{i}} - B_{t_{i-1}}\right)^{2} = (*)$$

$$0 < s < t: \text{ Var } (B_t - B_s)^2 = \mathbb{E}\left[\left((B_t - B_s)^2 - (t - s)\right)^2\right] = \mathbb{E}\left[(B_t - B_s)^4\right] - 2(t - s)\mathbb{E}\left[(B_t - B_s)^2\right] + (t - s)^2,$$
a kako je $B_t - B_s \sim N(0, \sigma^2)$ te $Z \sim N(0, \sigma^2) \Rightarrow \mathbb{E}\left[Z^4\right] = 3\sigma^4$, to je jednako $3(t - s)^2 - 2(t - s)^2 + (t - s)^2 = 2(t - s)^2$

$$(*) = \sum_{i=1}^{n} 2 \underbrace{(t_i - t_{i-1})^2}_{<|\Delta|} \le 2|\Delta| \sum_{i=1}^{n} (t_i - t_{i-1})^{=} 2t|\Delta|.$$

TEOREM

Neka je $(\Delta_k)_{k\in\mathbb{N}}$ niz particija segmenta [0,t] t. d. $|\Delta_k|\stackrel{k\to\infty}{\longrightarrow} 0$. Tada je

$$\lim_{k \to \infty} Q^{\Delta_k}(t; B) = t \text{ u } L^2(\Omega, \mathcal{F}, \mathbb{P}), \text{ tj.},$$

$$\lim_{k\to\infty}\mathbb{E}\left[\left(Q^{\Delta_k}(t;B)-t\right)^2\right]=0 \text{ (dokazano u gornjem razmatranju)}.$$

Pretpostavimo nadalje da je $\lim_{k\to\infty} k^2 |\Delta_k| = 0$. Tada je

$$\lim_{k \to \infty} Q^{\Delta_k}(t; B) = t \text{ g. s.}$$

Dokaz 2. tvrdnje:

$$\mathbb{P}\left(\left(Q^{\Delta_{k}}(t;B)-t\right)^{2} > 2k^{2}|\Delta_{k}|\right) \stackrel{\text{Markov}}{\leq} \frac{\mathbb{E}\left[\left(Q^{\Delta_{k}}(t;B)-t\right)^{2}\right]}{2k^{2}|\Delta_{k}|} \leq \frac{2|\Delta_{k}|t}{2k^{2}|\Delta_{k}|} = \frac{t}{k^{2}}$$

$$\Rightarrow \sum_{k=1}^{n} \mathbb{P}\left(\left(Q^{\Delta_{k}}(t;B)-t\right)^{2} > 2k^{2}|\Delta_{k}|\right) \leq \sum_{k=1}^{n} \frac{t}{k^{2}} < +\infty$$

Cantelli-1
$$\mathbb{P}\left(\left(Q^{\Delta_k}(t;B)-t\right)^2 > 2k^2|\Delta_k| \text{ b. m. p.}\right) = 0$$

$$\Rightarrow \left(Q^{\Delta_k}(t;B)-t\right)^2 \to 0 \text{ g. s.}$$

$$0 \le s < t, \Delta = \{s = t_0 < \dots < t_n = t\}$$

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} \left(B_{t_i} - B_{t_{i-1}}\right)^2 - (t-s)\right)^2\right] \stackrel{|s| \to 0}{\longrightarrow} 0.$$

□ POANTA: Kvadratna varijacija Brownovog gibanja na svakom segmentu jednaka je t!

30.6 Nultočke Brownovog gibanja

Neka je $B = (B_t)_{t \geq 0}$ Brownovo gibanje na $(\Omega, \mathcal{F}, \mathbb{P})$. $\exists \Omega_0 \in \mathcal{F}, \mathbb{P}(\Omega_0) = 1$ t. d. ako za $\omega \notin \Omega_0$ redefiniramo $B_t(\omega) = 0$ [nešto bude neprekidno... upotpuni bilješke]. Zanima nas skup

$$\mathcal{Z} := \{ (t, \omega) \in [0, +\infty) \times \Omega \mid B_t(\omega) = 0 \}$$
 prerez $\leftarrow \mathcal{Z}(\omega) := \{ t \ge 0 \mid B_t(\omega) = 0 \}$

LEMA

Preslikavanje $(t, \omega) \mapsto B_t(\omega)$ s $[0, +\infty) \times \Omega$ u \mathbb{R} jest $(B_{[0, +\infty)} \times \mathcal{F}, B_{\mathbb{R}})$ -izmjerivo.

Dokaz.

Neka je $n \in \mathbb{N}$. $B_t^{(n)}(\omega) := \sum_{k=0}^{\infty} \mathbb{1}_{\left[\frac{k}{n}, \frac{k+1}{n}\right\rangle}(t) B_{\frac{k}{n}}(\omega)$. Zbog neprekidnosti trajektorija, $B_t(\omega) = \lim_{n \to \infty} B_t^{(n)}(\omega), \forall t \geq 0, \forall \omega \in \Omega$. [[Zbilja, $\forall n \in \mathbb{N}, \exists ! k \in \mathbb{N}, t \in \left[\frac{k}{n}, \frac{k+1}{n}\right\rangle, \frac{k+1}{n} - \frac{k}{n} = \frac{1}{n} \xrightarrow{n \to \infty} 0$ i nizom $\left(\frac{k(t,n)}{n}\right)_{n \in \mathbb{N}}$ aproksimiramo t.]] $B_t^{(n)}$ je izmjeriva kao suma izmjerivih produkata, a onda je još i limes izmjerivih izmjerivo preslikavanje.

$$\Rightarrow \mathcal{Z} = B^{-1}(\{0\}) \in B_{[0,+\infty)} \times \mathcal{F}.$$

 $\Rightarrow Z_{\omega} \in B_{[0,+\infty)}$ je zatvoren
 kao praslika zatvorenog $\{0\}$ po neprekidnoj funkcij
i $t \mapsto B_t(\omega)$.

KOROLAR

Za g. s. $\omega \in \Omega$, trajektorije $t \mapsto B_t(\omega)$ beskonačne su varijacije na svakom intervalu.

Dokaz

 $\exists \Omega_0 \in \mathcal{F}, \mathbb{P}(\Omega_0) = 1$ t. d. za svaki par racionalnih brojeva p < q, postoji niz particija $(\Delta_k)_{k \in \mathbb{N}}$ segmenta $[p,q], |\Delta_k| \stackrel{k \to \infty}{\longrightarrow} 0$

$$\lim_{k \to \infty} \sum_{t_i \in \Delta_k} \left(B_{t_i}(\omega) - B_{t_{i-1}}(\omega) \right)^2 = q - p, \forall \omega \in \Omega_0.$$

Neka je $V(\omega) \leq +\infty$ varijacija funkcije $t \mapsto B_t(\omega)$ na [p,q]. Vrijedi

$$\sum_{i} \left(B_{t_{i}}(\omega) - B_{t_{i-1}}(\omega) \right)^{2} \leq \sup_{i} \left| B_{t_{i}}(\omega) - B_{t_{i-1}}(\omega) \right| \sum_{i} \left| B_{t_{i}}(\omega) - B_{t_{i-1}}(\omega) \right| \\
\leq \underbrace{\left(\sup_{i} \left| B_{t_{i}}(\omega) - B_{t_{i-1}}(\omega) \right| \right)}_{\substack{k \to \infty \\ \to 0 \\ \text{(neprekidnost)}}} \underbrace{V(\omega)}_{\text{-ako}} - \text{ako} < +\infty \xrightarrow{|\Delta| \to 0} 0.$$

Dakle, na segmentu [p,q] je $V(\omega)=+\infty$

KOROLAR

Trajektorije Brownovog gibanja su g. s. nigdje Hölder-neprekidne za $\gamma > \frac{1}{2}$.

Dokaz.

Pretpostavimo da je $|B_t(\omega) - B_s(\omega)| \le c|t-s|^{\gamma}, p \le s, t \le q, p, q \in \mathbb{Q}_+, \gamma > \frac{1}{2}$. Tada je

$$\sum_{i} \left(B_{t_{i}}(\omega) - B_{t_{i-1}}(\omega) \right)^{2} \leq c^{2} \sum_{i} |t_{i} - t_{i-1}|^{2\gamma} \leq c^{2} \sup_{i} |t_{i} - t_{i-1}|^{2\gamma - 1} \sum_{i} (t_{i} - t_{i-1}) = c^{2} (q - p) \sup_{i} |t_{i} - t_{i-1}|^{2\gamma - 1} / \lim_{|\Delta| \to 0} |t_{i} - t_{i-1}|^{2\gamma - 1} /$$

DEFINICIJA/PODSJETNIK

- ▶ Neka je $A \subseteq [0, +\infty)$. Kažemo da je $t \in [0, +\infty)$ gomilište skupa A ako postoji niz $(t_n)_{n \in \mathbb{N}} \subseteq A \setminus \{t\}$ t. d. $t = \lim_{n \to \infty} t_n$
- ▶ $t \in A$ je izolirana točka skupa A ako <u>nije</u> gomilište skupa A. Alternativno, ako $\exists \varepsilon > 0, A \cap \langle t \varepsilon, t + \varepsilon \rangle = \{t\}$
- ➤ Kažemo da je skup perfektan ako je jednak skupu svojih gomilišta.

☐ Pokazuje se da je svaki perfektan skup neprebrojiv.

Neka je $0 \le q \in \mathbb{Q}_+$. Definiramo $d_q := \inf\{t > q \mid B_t = 0\}$.

- \square $(B_{d_q+t})_{t\geq 0}$ je standardno Brownovo gibanje. (*) (Kad dođemo iz 0, ponaša se kao standardno Brownovo gibanje.) Ovo nećemo dokazivati, ali točno je.
- $\square q_1 \leq q_2 \Rightarrow d_{q_1} \leq d_{q_2}.$

TEOREM

Za \mathbb{P} -g. s. $\omega \in \Omega$, skup \mathcal{Z}_{ω}

- (i) ima Lebesgueovu mjeru 0
- (ii) je zatvoren i neomeđen
- (iii) ima gomilište u t=0
- (iv) nema izoliranih nultočaka

Dokaz.

(i) Neka je λ Lebesgueova mjera na $[0, +\infty)$. $\mathbb{1}_{\mathcal{Z}}(t, \omega)$ je izmjeriva (jer je \mathcal{Z} izmjeriv)

$$\mathbb{E}\left[\lambda(\mathcal{Z}_{\omega})\right] = (\lambda \times \mathbb{P})(\mathcal{Z}) = \int_{\Omega} \int_{[0,+\infty)} \mathbb{1}_{\mathcal{Z}}(t,\omega) d\lambda(t) d\mathbb{P}(\omega) = \int_{[0,+\infty)} \underbrace{\int_{\Omega} \mathbb{1}_{\mathcal{Z}}(t,\omega) d\mathbb{P}(\omega)}_{\mathbb{P}(R_{\omega}=0)=0} d\lambda(t) = 0$$

$$\Rightarrow \mathbb{E}[\lambda(\mathcal{Z}_{\omega})] = 0 \Rightarrow \lambda(\mathcal{Z}_{\omega}) = 0 \text{ za g. s. } \omega \in \Omega.$$

- (ii) ➤ zatvorenost ✓
 - \blacktriangleright neomeđenost \leftarrow

$$\limsup_{t\to\infty} \frac{B_t}{\sqrt{t}} = +\infty$$
:

Ponovimo: za niz $(X_n)_{n\in\mathbb{N}}$ nezavisnih jednako distribuiranih slučajnih varijabli s očekivanjem 0 i varijancom 1, vrijedi

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} = +\infty \text{ g. s.}$$

[[Neka je K > 0 proizvoljan. Tada je

$$\mathbb{P}\left(\frac{S_n}{\sqrt{n}} \geq K \text{ b. m. p.}\right) = \mathbb{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} \left\{\frac{S_m}{\sqrt{m}} \geq K\right\}\right) = \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{m=n}^{\infty} \left\{\frac{S_m}{\sqrt{m}} \geq K\right\}\right)$$
$$\geq \lim_{n \to \infty} \mathbb{P}\left(\frac{S_n}{\sqrt{n}} \geq K\right) \stackrel{\text{CGT}}{=} \Phi(-K) > 0$$

Nadalje,

$$\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}\geq K\Leftrightarrow \limsup_{n\to\infty}\frac{S_n-S_{n_0}}{\sqrt{n}}\geq K, \forall n_0\in\mathbb{N}\quad \bigg(\text{ jer }\forall n_0\in\mathbb{N}, \lim_{n\to\infty}\frac{S_{n_0}}{\sqrt{n}}=0\bigg)$$

 $S_n - S_{n_0} \in \sigma(X_{n_0+1}, X_{n_0+2}, \ldots), \forall n_0 \in \mathbb{N} \Rightarrow \left\{ \limsup_{n \to \infty} \frac{S_n - S_{n_0}}{\sqrt{n}} \ge K \right\} \in \sigma(X_{n_0+1}, X_{n_0+2}, \ldots), \forall n_0 \in \mathbb{N}, \text{ tj., } \underbrace{\text{repni je događaj}}_{n \to \infty} \text{ pa znamo da je vjerojatnosti } 0 \text{ ili } 1. \text{ Zbog}$

$$0 < \mathbb{P}\left(\frac{S_n}{\sqrt{n}} \ge K \text{ b. m. p.}\right) \le \mathbb{P}\left(\limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} \ge K\right),$$

slijedi $\mathbb{P}\left(\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}\right)=1\Rightarrow\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}\geq K$ g. s. $\forall K>0\Rightarrow\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}=+\infty$ g. s.]] $B_1,B_2-B_1,\ldots,B_n-B_{n-1}$ nezavisne su i jednako distribuirane sN(0,1)-razdiobom, dakle, očekivanjem 0 i varijancom 1, $B_n=B_1+(B_2-B_1)+\cdots+(B_n-B_{n-1})$ pa, po spomenutom rezultatu,

$$\limsup_{t \to +\infty} \frac{B_t}{\sqrt{t}} \ge \limsup_{n \to \infty} \frac{B_n}{\sqrt{n}} = +\infty \text{ g. s.}$$

$$\lim_{t\to\infty}\inf\frac{B_t}{\sqrt{t}}=-\infty$$

(mora beskonačno mnogo puta proći kroz 0)

$$\begin{array}{ll} (iii) & \limsup_{t \to 0} \frac{B_t}{\sqrt{t}} = +\infty \\ & \lim\inf_{t \to 0} \frac{B_t}{\sqrt{t}} = -\infty \end{array}$$

- $\Rightarrow \forall \varepsilon > 0, B_t$ ima nultočku na $[0, \varepsilon]$.
- (iv) Nužno je i dovoljno dokazati da je svaka točka iz \mathcal{Z}_{ω} gomilište skupa \mathcal{Z}_{ω} . (iii) & $(*) \Rightarrow B_{d_q}$ je g. s. gomilište skupa \mathcal{Z}_{ω} .
 - $\Rightarrow \{\omega \in \Omega \mid d_q(\omega)$ je izolirana točka u $\mathcal{Z}_\omega\}$ je \mathbb{P} -zanemariv.
 - \Rightarrow $N:=\bigcup_{q\in\mathbb{O}_+}\{d_q$ je izolirana točka u $\mathcal{Z}\}$ je $\mathbb{P}\text{-zanemariv}.$

Neka je $h \in \mathcal{Z}_{\omega}$. Tvrdimo da h nije izolirana.

Neka je $(q_n)_{n\in\mathbb{N}}\subseteq\mathbb{Q}$ t. d. $q_n\nearrow h$. Dvije su mogućnosti:

1°
$$h=d_{q_n}$$
 za neki $n\in\mathbb{N}$ Zbog $h\geq d_{q_{n+k}}\geq\cdots\geq d_{q_n}, k\geq 1$, slijedi $h=d_{q_k}, \forall k\geq n$.

2° $h \neq d_{q_n}, \forall n \in \mathbb{N}$. Tada je $q_1 < d_{q_1} \leq q_2 < d_{q_2} < \cdots \leq h$ pa je $h = \lim_{n \to \infty} d_{q_n}$ (točke između točaka niza, a h je nultočka). h je opet gomilište (a još je i limes vremena zaustavljanja, premda ono samo to nije)

31 Dodatak 2

LEMA (Ottaviani⁴⁰ - Skorohod⁴¹)

Neka je $(X_n)_{n\in\mathbb{N}}$ niz **nezavisnih** slučajnih varijabli , $S_n:=\sum_{k=1}^n X_k, n\in\mathbb{N}, x,y>0.$

Ako je $\beta := \max_{1 \le k \le n} \mathbb{P}(|S_n - S_k| > y) < 1$, tada

$$\mathbb{P}\left(\max_{1\leq k\leq n}|S_k|>x+y\right)\leq \frac{1}{1-\beta}\mathbb{P}(|S_n|>x|).$$

Dokaz.

Definirajmo

$$A := \left\{ \max_{1 \le k \le n} |S_k| > x + y \right\}$$

$$A_k := \left\{ \max_{1 \le j \le k-1} |S_j| \le x + y, |S_k| > x + y \right\}.$$

$$A = \bigcup_{k=1}^n A_k$$

 $(A_k)_{k=1}^n$ su u parovima disjunktni.

$$\begin{split} \mathbb{P}\left(|S_{n}| > x\right) &\geq \mathbb{P}\left(\{|S_{n}| > x\} \cap A\right) \\ &= \sum_{k=1}^{n} \mathbb{P}\left(\{|S_{n}| > x\} \cap A_{k}\right) \\ &= \sum_{k=1}^{n} \mathbb{P}\left(|S_{n}| > x, \max_{1 \leq j \leq k-1} |S_{j}| \leq x + y, |S_{k}| > x + y\right) \\ &= \left[|S_{k}| \leq |S_{n}| + |S_{k} - S_{n}| \Rightarrow |S_{n}| \geq |S_{k}| - |S_{n} - S_{k}|\right] \\ &\geq \sum_{k=1}^{n} \left(\{|S_{n} - S_{k}| \leq y\} \cap A_{k}\right) \\ &= \left[\{|S_{n} - S_{k}| \leq y\} \in \sigma\left(X_{k+1}, \dots, X_{n}\right), A_{k} \in \sigma\left(X_{1}, \dots, X_{k}\right)\right] \\ &= \sum_{k=1}^{n} \mathbb{P}\left(|S_{n} - S_{k}| \leq y\right) \mathbb{P}(A_{k}) \\ &= \sum_{k=1}^{n} \left(1 - \mathbb{P}\left(|S_{n} - S_{k}| > y\right)\right) \mathbb{P}(A_{k}) \\ &\geq \left(1 - \beta\right) \sum_{k=1}^{n} \mathbb{P}(A_{k}) \\ &= (1 - \beta) \mathbb{P}\left(\max_{1 \leq k \leq n} |S_{k}| > x + y\right) \end{split}$$

⁴⁰Giuseppe Ottaviani

⁴¹Skorohod, Anatolij Vladimirovič, 10. rujna 1930., Dnjepropetrovsk', SSSR - 3. siječnja 2011., Lansing, Michigan, SAD

32 Dodatak 3

PROPOZICIJA (dovoljan uvjet napetosti)

Ako postoji $f: \mathbb{R} \to [0, +\infty)$ t. d. je $\lim_{|x| \to +\infty} f(x)$ i $C:=\sup_n \int f d\mathbb{P}_n < +\infty$, tada je niz $(\mathbb{P}_n)_{n \in \mathbb{N}}$ napet.

Dokaz.

Po definiciji, $\forall M, \exists K>0, f(x)>M, \forall |x|\geq K\Rightarrow \inf_{|x|\geq K}f(x)\geq M>0.$ Dakle, sigurno $\exists M>0, \inf_{|x|\geq M}f(x)>0.$

$$\Rightarrow C \geq \int f d\mathbb{P}_n \geq \int_{\{|x| \geq M\}} f d\mathbb{P}_n \geq \left(\inf_{|x| \geq M} f\right) \int_{\{|x| \geq M\}} d\mathbb{P}_n = \left(\inf_{|x| \geq M} f\right) \mathbb{P}_n \left(\langle -M, M \rangle^c\right) \\ \Rightarrow \mathbb{P}_n \left(\langle -M, M \rangle^c\right) \leq \frac{C}{\inf_{|x| > M} f}.$$

Za $\varepsilon > 0$, odaberemo M > 0 t. d. je $\frac{C}{\inf_{|x| \ge M} f} < \varepsilon$ (možemo jer, kako $f(x) \to +\infty$ za velike x, inf se može proizvoljno povećati).

Dokaz (prof. Vondračeka) napetosti niza vjerojatnosnih mjera u dokazu Teorema neprekidnosti

Za dani $\varepsilon > 0$, treba naći dovoljno mali u > 0 t. d. je $\mathbb{P}_{X_n}\left(\left\{x \mid |x| > \frac{2}{u}\right\}\right) = \mathbb{P}_{X_n}\left(\mathbb{R} \setminus \left\langle -\frac{2}{u}, \frac{2}{u}\right\rangle\right)$ uniformno malo (po $n \in \mathbb{N}$) (za $\varepsilon > 0$ naći u t. d. je dana vjerojatnost $\leq \varepsilon$ za sve dovoljno velike n). Neka je u > 0. Tada je

$$\underbrace{\int_{-u}^{u} \left(1 - e^{itx}\right) dt}_{=:L(x)} = 2u - \int_{-u}^{u} \left(\cos(tx) + i \underbrace{\sin(tx)}_{\text{neparna}}\right) dt = 2u - \frac{2\sin(ux)}{x}$$

$$\frac{1}{u} \int_{\mathbb{R}} L(x) d\mathbb{P}_{X_n}(x) = \frac{1}{u} \int_{\mathbb{R}} \left(\int_{-u}^{u} \left(1 - e^{itx}\right) dt\right) d\mathbb{P}_{X_n}(x)$$

$$\stackrel{\text{FUBINI}}{\stackrel{\text{gier je}}{\text{je}}} \frac{1}{|\cdot| \le 2} \frac{1}{u} \int_{-u}^{u} \left(\int_{\mathbb{R}} \left(1 - e^{itx}\right) d\mathbb{P}_{X_n}(x)\right) dt$$

$$= \frac{1}{u} \int_{-u}^{u} \left(1 - \varphi_n(t)\right) dt$$

$$\Rightarrow \frac{1}{u} \int_{-u}^{u} \left(1 - \varphi_n(t)\right) dt = 2 \int_{\mathbb{R}} \underbrace{\left(1 - \frac{\sin(ux)}{ux}\right)}_{\ge 0} d\mathbb{P}_{X_n}(x)$$

$$\geq 2 \int_{\left\{|x| \ge \frac{2}{u}\right\}} \left(1 - \frac{1}{|ux|}\right) d\mathbb{P}_{X_n}(x)$$

$$\geq 2 \int_{\left\{|x| \ge \frac{2}{u}\right\}} \left(1 - \frac{1}{2}\right) d\mathbb{P}_{X_n}(x)$$

$$= \mathbb{P}_{X_n} \left(\left\{x \mid |x| \ge \frac{2}{u}\right\}\right)$$

Vrijedi

$$\varphi(0) = \lim_{n \to \infty} \varphi_n(0) = 1,$$

a, kako smo pretpostavili da je φ neprekidna u t=0,

$$\lim_{t\to 0}\varphi(t)=1$$

Sada

$$\lim_{u \to 0} \frac{1}{u} \int_{-u}^{u} (1 - \varphi(t)) dt = 0;^{42}$$

naime,

$$\begin{split} \forall \varepsilon > 0, \exists u > 0, |1 - \varphi(t)| < \frac{\varepsilon}{2}, \forall |t| \leq u \\ \Rightarrow \left| \frac{1}{u} \int_{-u}^{u} (1 - \varphi(t)) dt \right| \leq \frac{1}{u} \int_{-u}^{u} |1 - \varphi(t)| dt \leq \frac{1}{u} \int_{-u}^{u} \frac{\varepsilon}{2} dt = \varepsilon. \end{split}$$

Dakle, za dani $\varepsilon>0, \exists u>0, \frac{1}{u}\int_{-u}^{u}(1-\varphi(t))dt<\frac{\varepsilon}{2}$ (imajmo na umu da je, zbog neparnosti funkcije $t\mapsto\sin(tx)$ na [-u,u], integral realan broj!!!!!). Sveukupno

$$\lim_{n\to\infty} \frac{1}{u} \int_{-u}^{u} \left(1 - \varphi_n(t)\right) dt \stackrel{\text{LTDK}}{=} \frac{1}{u} \int_{-u}^{u} \left(1 - \lim_{n\to\infty} \varphi_n(t)\right) dt = \frac{1}{u} \int_{-u}^{u} (1 - \varphi(t)) dt < \frac{\varepsilon}{2}.$$

Dakle, postoji $n_{\varepsilon} \in \mathbb{N}$ t. d. je

$$\begin{split} \mathbb{P}_{X_n}\left(\left\{x\mid |x|\geq \frac{2}{u}\right\}\right) &= \frac{1}{u}\int_{-u}^{u}(1-\varphi_n(t))dt < \varepsilon\\ \Rightarrow \limsup_{n\to\infty} \mathbb{P}_{X_n}\left(\left\{x\mid |x|\geq \frac{2}{u}\right\}\right) \leq \varepsilon, \end{split}$$

odakle slijedi da je $(\mathbb{P}_{X_n})_{n\in\mathbb{N}}$ napet niz.

 $^{^{42}\}mathrm{Ovdje}$ kliknuti za općenit slučaj s Matematičke analize 2

33 Dodatak 4 (Rekordi)

Neka je $(X_n)_n$ niz nezavisnih jednako distribuiranih neprekidnih slučajnih varijabli na $(\Omega, \mathcal{F}, \mathbb{P})$.

- ightharpoonup L(n)-vremena rekorda
- ightharpoonup L(1) = 1
- $ightharpoonup L(n) = \min\{k \in \mathbb{N} \mid X_k > X_{L(n-1)}\}.$
- \triangleright Rekordi vrijednosti $(X_{L(n)})_n$

Neprekidnost je potrebna radi:

$$\mathbb{P}\left(\bigcup_{\substack{i,j=1\\i\neq j}}^{\infty} \{X_i = X_j\}\right) \leq \sum_{\substack{i,j=1\\i\neq j}}^{\infty} \underbrace{\mathbb{P}(X_i = X_j)}_{=0} = 0$$

▶ Brojeći proces $\mu(n) := \#$ rekorda u $X_1, \ldots, X_n = \max\{k \in \mathbb{N} \mid L(k) \leq n\}$.

Definirajmo $|_k, k \ge 1$

$$|_{k} = \begin{cases} 1, & X_{k} \text{ rekord} \\ 0, & \text{inače} \end{cases} \Rightarrow \mu(n) = \sum_{k=1}^{n} |_{k}$$

PITANJA:

- $\blacktriangleright \mathbb{E}[\mu(n)] = ?, n \to \infty$
- $ightharpoonup \mathbb{P}(|_n=1 \text{ za beskonačno mnogo } n \in \mathbb{N})=1?$

DEFINICIJA

Neka je $n \in \mathbb{N}, k \in \{1, \dots, n\}$. Rang od X_k definiramo s $R_k^{(n)} = j$ ako je X_k j-ta najveća vrijednost među X_1, \dots, X_n .

Jednaka distribuiranost povlači simetriju zbog koje je

$$\mathbb{P}\left(R_1^{(n)} = r_1, \dots, R_n^{(n)} = r_n\right) = \frac{1}{n!}, \{r_1, \dots, r_n\} = [n].$$

Zanima nas distribucija slučajnog vektora $\left(R_1^{(1)},R_2^{(2)},\dots,R_n^{(n)}\right)$.

TVRDNJA:

Za $r_k \in \{1, ..., k\}, k = 1, ..., n$,

$$\mathbb{P}\left(R_1^{(1)} = \underbrace{r_1}_{1}, R_2^{(2)} = \underbrace{r_2}_{\in \{1,2\}}, \dots, R_n^{(n)} = \underbrace{r_n}_{\in [n]}\right) = \frac{1}{n!}$$

IDEJA DOKAZA

$$ightharpoonup \mathbb{P}\left(R_1^{(1)} = 1\right) = 1$$

$$ightharpoonup \mathbb{P}\left(R_1^{(1)} = 1, R_2^{(2)} = 1\right) = \mathbb{P}(X_1 < X_2) = \frac{1}{2}$$

$$ightharpoonup \mathbb{P}\left(R_1^{(1)} = 1, R_2^{(2)} = 2\right) = \mathbb{P}(X_1 > X_2) = \frac{1}{2}.$$

$$ightharpoonup \mathbb{P}\left(R_1^{(1)} = 1, R_2^{(2)} = 1, R_3^{(3)} = 1\right) = \mathbb{P}(X_1 < X_2 < X_3) = \frac{1}{3!}$$

$$\Rightarrow \forall r_1, \dots, r_n, r_k \in [k], \exists ! \pi \in S_n, \left\{ R_1^{(1)} = r_1, R_2^{(2)} = r_2, \dots, R_n^{(n)} = r_n \right\} = \left\{ X_{\pi(1)} < X_{\pi(2)} < \dots < X_{\pi(n)} \right\}$$

$$\mathbb{P}\left(R_n^{(n)} = r_n\right) = \sum_{r_1, \dots, r_{n-1}} \mathbb{P}\left(R_1^{(1)} = r_1, R_2^{(2)} = r_2, \dots, R_n^{(n)} = r_n\right) = (n-1)! \cdot \frac{1}{n!} = \frac{1}{n}, \forall r_n \in [n].$$

Posebno,

$$\mathbb{P}\left(R_k^{(k)} = r_k\right) = \frac{1}{k}, \forall k \in [n] = [k] \cup \{k+1,\ldots,n\}.$$

$$\Rightarrow \mathbb{P}\left(R_1^{(1)} = r_1, R_2^{(2)} = r_2,\ldots, R_n^{(n)} = r_n\right) = \frac{1}{n!} = \prod_{k=1}^n \frac{1}{k} = \prod_{k=1}^n \mathbb{P}\left(R_k^{(k)} = r_k\right), \forall r_1,\ldots,r_n$$

$$\Rightarrow R_1^{(1)},\ldots,R_n^{(n)} \text{ su } \mathbf{nezavisne} \text{ slučajne varijable.}$$

Vidimo da je $|_k = \mathbb{1}_{\left\{R_k^{(k)} = 1\right\}}$ funkcija od $R_k^{(k)} \Rightarrow |_1, \dots, |_n$ su **nezavisne** slučajne varijable.

$$\mathbb{P}(|_{n}=1) = \mathbb{P}\left(R_{n}^{(n)}=1\right) = \frac{1}{n} \Rightarrow \sum_{n=1}^{\infty} \mathbb{P}(|_{n}=1) = \sum_{n=1}^{\infty} \frac{1}{n} = +\infty \xrightarrow{\text{-Cantelli}} \mathbb{P}\left(\forall m \in \mathbb{N}, \exists n \geq m, |_{n}=1\right) = 1$$

$$\mathbb{E}\left[\mu(n)\right] = \mathbb{E}\left[\sum_{k=1}^{n} |_{k}\right] = \sum_{k=1}^{n} \mathbb{E}\left[|_{k}\right] = \sum_{k=1}^{n} \mathbb{P}(|_{k}=1) = \sum_{k=1}^{n} \frac{1}{k} = \log n + \gamma + o(1) \approx \log n \Rightarrow \frac{\mu(n)}{\log n} \xrightarrow{\text{g. s.}} 1$$

$$\operatorname{Var}(\mu(n)) = \operatorname{Var}\left(\sum_{k=1}^{n} |_{k}\right) \stackrel{\text{nez}}{=} \sum_{k=1}^{n} \operatorname{Var}|_{k} = \sum_{k=1}^{n} \left(\frac{1}{k} - \left(\frac{1}{k}\right)^{2}\right) = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k^{2}} = \log n + \gamma - \frac{\pi^{2}}{6} + o(1).$$

Dvostruki rekordi

- ➤ 2 rekorda jedan za drugim
- $\blacktriangleright \ D_n=1$ ako su X_{n-1} i X_n oba rekordi $\Rightarrow D_n=\mathbbm{1}_{\{|_{n-1}=1,|_n=1\}}$

$$\blacktriangleright \mathbb{P}\left(\limsup_{n\to\infty}\{D_n=1\}\right)=?$$

▶
$$\mathbb{P}(D_n = 1) = \mathbb{P}(|_{n-1}, |_n) \stackrel{\text{nez}}{=} \mathbb{P}(|_{n-1} = 1) \mathbb{P}(|_n = 1) = \frac{1}{n-1} \cdot \frac{1}{n}$$

$$\sum_{n=2}^{\infty} \mathbb{P}\left(D_n = 1\right) = \sum_{n=2}^{\infty} \frac{1}{n} \cdot \frac{1}{n-1} = \sum_{n=2}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 < +\infty \xrightarrow{\text{Cantelli} \\ \bigoplus} \mathbb{P}\left(\limsup_{n \to \infty} \{D_n = 1\}\right) = 0.$$

34 Dodatak 5 (familije skupova)

Neka je \mathcal{A} neprazna familija podskupova od Ω . Definirat ćemo neku elementarnu terminologiju:

- (i) zatvorenost na komplementiranje: $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$,
- (ii) zatvorenost na (induktivno proizvoljne konačne) unije: $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$,
- (iii) zatvorenost na konačne presjeke $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$,
- (iv) zatvorenost na razlike: $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}$
- (v) zatvorenost na prebrojive unije: $A_n \in \mathcal{A}, \forall n \in \mathbb{N} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{A},$
- (vi) zatvorenost na disjunktne prebrojive unije: $A_n \in \mathcal{A}, \forall n \in \mathbb{N}, A_i \cap A_j = \emptyset, \forall i \neq j \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{A},$
- (vii) zatvorenost na prebrojive presjeke: $A_n \in \mathcal{A}, \forall n \in \mathbb{N} \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{A},$
- (viii) zatvorenost na prebrojive rastuće unije $A_n \in \mathcal{A}, \forall n \in \mathbb{N}, A_n \nearrow \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{A},$
- (ix) zatvorenost na prebrojive padajuće presjeke $A_n \in \mathcal{A}, \forall n \in \mathbb{N}, A_n \searrow \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}.$
 - \blacktriangleright (i) & (ii) \Rightarrow (iii) $(A \cap B = (A^c \cup B^c)^c)$
 - \blacktriangleright (i) & (v) \Rightarrow (vii) $\left(\bigcap_{n=1}^{\infty} A_n = \left(\bigcup_{n=1}^{\infty} A_n^c\right)^c\right)$
 - ► (i) & (vii) \Rightarrow (v) $(\bigcup_{n=1}^{\infty} A_n = (\bigcap_{n=1}^{\infty} A_n^c)^c)$

DEFINICIJA

Neka je \mathcal{A} familija podskupova od Ω .

- (a) \mathcal{A} je algebra skupova (eng. field) ako je $\Omega \in \mathcal{A}$ ($\emptyset \in \mathcal{A}$ ili $\mathcal{A} \neq \emptyset$) i vrijedi (i) & (ii)
- (b) \mathcal{A} je σ-algebra skupova ako je $\Omega \in \mathcal{A}$ i vrijede (i) & (v)
- (c) \mathcal{A} je monotona familija skupova ako vrijedi (viii) & (ix)
- (d) \mathcal{A} je π -sustav ako je $\mathcal{A} \neq \emptyset$ i vrijedi (iii)
- (e) \mathcal{A} je Dynkinova familija (π - λ sustav) ako je $\Omega \in \mathcal{A}$ i vrijedi (iv) & (viii) (Alternativno, ako je $\Omega \in \mathcal{A}$ i vrijedi (i) & (vi))

TEOREM

Vrijedi sljedeće:

- (1) Svaka je σ -algebra π -sustav.
- (2) Svaka je σ -algebra algebra.

$$A \cup B = A \cup B \cup A \cup A \cdots$$
$$A \cup B = A \cup B \cup \emptyset \cup \cdots$$

- (3) Algebra \mathcal{A} je σ -algebra \Leftrightarrow algebra \mathcal{A} je monotona familija. Smjer " \Rightarrow " je očit. Obratno, neka je $(A_n)_n \subseteq \mathcal{A}$. Budući da je \mathcal{A} algebra, zatvorena je na konačne unije pa je $\bigcup_{k=1}^n A_k \in \mathcal{A}, \forall n \in \mathbb{N}$. S druge strane, kako je \mathcal{A} monotona familija te $(\bigcup_{k=1}^n A_k)_{n \in \mathbb{N}} \subseteq \mathcal{A}$ rastuća familija, to je $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^n A_k \in \mathcal{A}$ pa je \mathcal{A} zatvorena na prebrojive unije.
- (4) Svaka je σ -algebra Dynkinova familija.
- (5) Dynkinova familija \mathcal{A} jest σ -algebra \Leftrightarrow Dynkinova familija \mathcal{A} jest π -sustav. Smjer " \Rightarrow " je očit iz prethodne točke. Obratno. Neka je $(A_n)_n \subseteq \mathcal{A}$. Budući da je \mathcal{A} Dynkinova familija, $(\Omega \in A \text{ i } 4. \Rightarrow) \mathcal{A}$ je zatvorena na komplementiranje, a kako je i π -sustav, zatvorena je na konačne presjeke

$$\blacktriangleright \bigcup_{k=1}^n A_k = \left(\bigcap_{k=1}^n A_k^c\right)^c \in \mathcal{A}$$

a, opet jer je $\mathcal A$ Dynkinova familija, iz zatvorenosti na prebrojive rastuće unije, slijedi

$$\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{n} A_k \in \mathcal{A}.$$

- (6) Dynkinova je familija monotona. Znamo da je Dynkinova familija \mathcal{A} zatvorena na komplementiranje i i prebrojive rastuće unije. Neka je $(A_n)_n \subseteq \mathcal{A}$ padajući niz skupova. Tada je $\bigcap_{n=1}^{\infty} = \left(\bigcup_{n=1}^{\infty} A_n^c\right)^c \in \mathcal{A}$ jer je $(A_n^c)_n \subseteq \mathcal{A}$ rastući niz.
- (7) Presjek proizvoljno mnogo $\sigma\text{-algebri}$ i sam je $\sigma\text{-algebra}.$
- (8) Prebrojiva unija rastuće familije σ -algebri i sama je σ -algebra.

35 Dodatak 6

ZADATAK 2.35., 10. str., vježbe

Neka su (X_1, \mathcal{U}_1) i (X_2, \mathcal{U}_2) topološki prostori i (X, \mathcal{U}) njihov produktni prostor. Za $x_1 \in X_1$ i $x_2 \in X_2$ te $A \subseteq X$, definiramo prereze skupa A:

$$A_{x_1} := \{ y \in X_2 \mid (x_1, y) \in A \}$$
$$A_{x_2} := \{ x \in X_1 \mid (x, x_2) \in A \}.$$

- (a) Dokažite: A je otvoren $\Rightarrow A_{x_1}$ je otvoren u $X_2,\,A_{x_2}$ otvoren je u $X_1.$
- (b) Neka je $f:(X,\mathcal{U})\to (Y,\mathcal{V})$ proizvoljna funkcija. Definiramo

$$f_{x_1}: X_2 \to Y, \quad f_{x_1}(y) := f(x_1, y)$$

 $f_{x_2}: X_1 \to Y, \quad f_{x_2}(x) := f(x, x_2).$

Dokažite: f je neprekidna $\Rightarrow f_{x_1}$ i f_{x_2} su neprekidne.

Rješenje.

(a) Neka je

$$\mathcal{U}' := \{ A \in \mathcal{U} \mid A_{x_1} \in \mathcal{U}_2, A_{x_2} \in \mathcal{U}_1 \}.$$

Po definiciji je $\mathcal{U}'\subseteq\mathcal{U}$. S
 druge strane, \mathcal{U} sigurno sadrži sve skupove oblika $A=E\times F$ z
a $E\in\mathcal{U}_1,F\in\mathcal{U}_2$ jer je

$$A_{x_2} = \begin{cases} E, & x_2 \in F \\ \emptyset, & \text{inače} \end{cases}$$

$$A_{x_1} = \begin{cases} F, & x_1 \in E, \\ \emptyset, & \text{inače} \end{cases}.$$

Pokazat ćemo da je \mathcal{U}' i topologija.

- (i) $\emptyset_{x_1} = \emptyset \in \mathcal{U}_2$, odnosno, $\emptyset_{x_2} = \emptyset \in \mathcal{U}_2$. $\Rightarrow \emptyset \in \mathcal{U}'$.
- (ii) Neka su $A_1, A_2 \in \mathcal{U}'$.

$$(A_1 \cap A_2)_{x_2} = \{x \in X_1 \mid (x, x_2) \in A_1 \cap A_2\}$$

= \{x \in X_1 \| (x, x_2) \in A_1\} \cap \{x \in X_1 \| (x, x_2) \in A_2\}
= (A_1)_{x_2} \cap (A_2)_{x_2} \in \mathcal{U}_1.

Analogno je $(A_1 \cap A_2)_{x_1} \in \mathcal{U}_2$ pa je $A_1 \cap A_2 \in \mathcal{U}'.\checkmark$

(iii) Neka je I neki skup indeksa i $(A_i)_{i\in I}\subseteq U$. Tada

$$\left(\bigcup_{i \in I} A_i\right)_{x_2} = \left\{x \in X_1 \mid (x, x_2) \in \bigcup_{i \in I} A_i\right\}$$

$$= \left\{x \in X_1 \mid \exists i \in I, (x, y) \in A_i\right\}$$

$$= \bigcup_{i \in I} \left\{x \in X_1 \mid (x, x_2) \in A_i\right\}$$

$$= \bigcup_{i \in I} (A_i)_{x_2} \in \mathcal{U}_1.$$

Analogno je
$$\bigcup_{i\in I}(A_i)_{x_1}\in\mathcal{U}_2$$
 pa je $\bigcup_{i\in I}A_i\in\mathcal{U}'.\checkmark$

Sada slijedi $\mathcal{U} \subseteq \mathcal{U}'$. Dakle, $\mathcal{U} = \mathcal{U}'$, tj., za svaki otvoren skup A, A_{x_1} i A_{x_2} su također otvoreni u pripadnim ambijentnim skupovima.

(b) Dovoljno je pokazati tvrdnju za f_{x_1} . Neka $f: X \to Y$ neprekidna i $U \in \mathcal{U}$ proizvoljan. Uočimo:

$$y \in f_{x_1}^{-1}(U) \Leftrightarrow f(x_1, y) \in U \Leftrightarrow (x_1, y) \in f^{-1}(U) \Leftrightarrow y \in (f^{-1}(U))_{x_1},$$

odnosno, $f_{x_1}^{-1}(U) = (f^{-1}(U))_{x_1}$. Budući da je f neprekidna, $f^{-1}(U)$ je otvoren skup u X pa je, po prethodnom dijelu, $(f^{-1}(U))_{x_1}$ otvoren skup u X_2 , tj., $f_{x_2}: X_2 \to Y$ je neprekidna. Analogno se dokaže da je i $f_{x_2}: X_1 \to Y$ neprekidna.

ZADATAK 2.36., 11. str., vježbe

Neka su $(\Omega_1, \mathcal{F}_1)$ i $(\Omega_2, \mathcal{F}_2)$ izmjerivi prostori i (Ω, \mathcal{F}) njihov produkt. Dokažite da je tada, za $F \in \mathcal{F}$, F_{x_1} \mathcal{F}_2 -izmjeriv skup, F_{x_2} \mathcal{F}_1 -izmjeriv skup i da je, za izmjerivu funkciju $f: (\Omega, \mathcal{F}) \to (Z, \mathcal{G})$, f_{x_2} $(\mathcal{F}_1, \mathcal{G})$ -izmjeriva, a f_{x_1} $(\mathcal{F}_2, \mathcal{G})$ -izmjeriva funkcija.

Rješenje.

Vidjeti dokaz LEME 6.4 Mjera i integral, 49./50. str., predavanja.

ZADATAK 2.37., 11. str., vježbe

Neka je $X = \mathbb{R}^{\langle 0, +\infty \rangle} = \left\{ (x_t)_{t \in \langle 0, +\infty \rangle} \mid x_t \in \mathbb{R}, \forall t \in \langle 0, +\infty \rangle \right\}.$

Na $X=\mathbb{R}^{\langle 0,+\infty \rangle}$ možemo gledati kao skup svih funkcija $f:\langle 0,+\infty \rangle \to \mathbb{R}.$

Na \mathbb{R} gledamo klasičnu euklidsku topologiju, a na $\mathbb{R}^{\langle 0,+\infty\rangle}$ gledamo topologiju \mathcal{U} koja je najmanja topologija u kojoj su sve projekcije neprekidne te pripadnu Borelovu σ -algebru

 $\mathcal{B}(X) = \mathcal{B}\left(\mathbb{R}^{\langle 0, +\infty \rangle}\right) = \sigma(\mathcal{U})$. Dokažite da skup svih neprekidnih funkcija na $\langle 0, +\infty \rangle$, u oznaci $C\left(\langle 0, +\infty \rangle\right)$, nije Borel-izmjeriv, tj., $C\left(\langle 0, +\infty \rangle\right) \notin \mathcal{B}\left(\mathbb{R}^{\langle 0, +\infty \rangle}\right)$.

Rješenje.

Označimo $\mathbb{Q}^+ := \mathbb{Q} \cap \langle 0, +\infty \rangle$ i definirajmo preslikavanje $T : C(\langle 0, +\infty \rangle) \to \mathbb{R}^{\mathbb{Q}^+}$,

$$T(f) = (f(q))_{q \in \mathbb{Q}^+}.$$

Budući da je neprekidna funkcija jedinstveno određena svojim djelovanjem na gustom podskupu u domeni (\mathbb{Q}^+ u $\langle 0, +\infty \rangle$), T je injekcija. \Rightarrow card $(C\langle 0, +\infty \rangle) \leq$ card $(\mathbb{R}^{\mathbb{Q}^+}) = 2^{\aleph_0}$. Pretpostavimo da je $C(\langle 0, +\infty \rangle)$ izmjeriv skup. Tada postoji prebrojiv skup $J \subseteq \langle 0, +\infty \rangle$ i neprazan Borelov skup $A = \mathbb{R}^J$ (dakle, card $(A) \geq 1$) t. d. je $C(\langle 0, +\infty \rangle) = A \times \mathbb{R}^{\langle 0, +\infty \rangle \setminus J}$. \Rightarrow card $(C(\langle 0, +\infty \rangle)) \geq$ card $(\mathbb{R}^{\langle 0, +\infty \rangle \setminus J}) > 2^{\aleph_0}$, kontradikcija.

36 Dodatak 7 (neprekidnost vjerojatnosti)

TEOREM

(i) (neprekidnost vjerojatnosti na neopadajuće događaje) Za svaki neopadajući niz događaja $(A_j)_{j\in\mathbb{N}}\subseteq\mathcal{F}$, vrijedi

$$\mathbb{P}\left(\bigcup_{j\in\mathbb{N}}A_j\right) = \lim_{j\to\infty}\mathbb{P}(A_j).$$

(ii) (neprekidnost vjerojatnosti na nerastuće događaje) Za svaki nerastući niz događaja $(A_j)_{j\in\mathbb{N}}\subseteq\mathcal{F}$, vrijedi

$$\mathbb{P}\left(\bigcap_{j\in\mathbb{N}}A_j\right) = \lim_{j\to\infty}\mathbb{P}(A_j).$$

Dokaz.

(i) Primijetimo da je $\bigcup_{j=1}^n A_j = A_n$. Definirajmo $B_1 := A_1 \in \mathcal{F}$ te $B_n = A_n \setminus A_{n-1} \in \mathcal{F}$. $(B_n)_{n \in \mathbb{N}} \subseteq \mathcal{F}$ je niz u parovima disjunktnih događaja i $\bigcup_{j=1}^n B_j = A_n$ pa je $\mathbb{P}(A_n) = \sum_{j=1}^n \mathbb{P}(B_j)$ i

$$\mathbb{P}\left(\bigcup_{j\in\mathbb{N}}A_{j}\right) = \mathbb{P}\left(\bigcup_{j\in\mathbb{N}}B_{j}\right) = \sum_{j=1}^{\infty}\mathbb{P}(B_{j})$$
$$= \lim_{n\to\infty}\sum_{j=1}^{n}\mathbb{P}(B_{j}) = \lim_{n\to\infty}\mathbb{P}(A_{n}).$$

 $\begin{array}{ll} (ii) \ \ \text{Uočimo da} \ \lim_{j \to \infty} \mathbb{P}(A_j) \ \text{postoji zbog monotonosti niza} \ (\mathbb{P}(A_j))_{j \in \mathbb{N}}. \ \text{Budući da je niz} \ (A_j)_{j \in \mathbb{N}} \ \text{nerastuć, niz} \ \left(A_j^c\right)_{j \in \mathbb{N}} \ \text{je neopadajuć. Sada, primjenom prethodnog dijela na niz} \ \left(A_j^c\right)_{j \in \mathbb{N}}, \end{array}$

$$\mathbb{P}\left(\bigcap_{j\in\mathbb{N}}A_{j}\right) = \mathbb{P}\left(\left(\bigcup_{j\in\mathbb{N}}A_{j}^{c}\right)^{c}\right) = 1 - \mathbb{P}\left(\bigcup_{j\in\mathbb{N}}A_{j}^{c}\right)$$
$$= 1 - \lim_{j\to\infty}\mathbb{P}\left(A_{j}^{c}\right) = \lim_{j\to\infty}\left(1 - \mathbb{P}\left(A_{j}^{c}\right)\right)$$
$$= \lim_{j\to\infty}\mathbb{P}(A_{j}).$$

PROPOZICIJA

Za proizvoljan niz događaja $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{F}$ na vjerojatnosnom prostoru $(\Omega,\mathcal{F},\mathbb{P})$, vrijedi

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)\leq \liminf_{n\to\infty}\mathbb{P}(A_n)\leq \limsup_{n\to\infty}\mathbb{P}(A_n)\leq \mathbb{P}\left(\limsup_{n\to\infty}A_n\right).$$

Dokaz.

Stavimo $B_n := \bigcap_{k=n}^{\infty} A_k, C_n = \bigcup_{k=n}^{\infty} A_k, n \in \mathbb{N}$. Tada su $B_n, C_n \in \mathcal{F}, B_n \subseteq B_{n+1}, C_n \supseteq C_{n+1}, B_n \subseteq A_n \subseteq C_n, \forall n \in \mathbb{N}$. Osim toga, $\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} B_n, \limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} C_n$. Slijedi

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=\lim_{n\to\infty}\mathbb{P}(B_n)\leq \liminf_{n\to\infty}\mathbb{P}(A_n)\leq \limsup_{n\to\infty}\mathbb{P}(A_n)\leq \lim_{n\to\infty}\mathbb{P}(C_n)=\mathbb{P}\left(\limsup_{n\to\infty}A_n\right).$$

Dodatak $8 L^p$ prostori (crash course \mathfrak{D}) 37

Neka je $(\Omega, \mathcal{F}, \mu)$ prostor mjere, (Y, \mathcal{G}) izmjeriv prostor i $f: X \to Y$ $(\mathcal{F}, \mathcal{G})$ izmjeriva funkcija. Definirajmo funkciju $\mu f^{-1}: \mathcal{G} \to [0, +\infty]$ s

$$\mu f^{-1}(B) := \mu(f^{-1}(B)), B \in \mathcal{G}.$$

 μf^{-1} je mjera na (Y, \mathcal{G}) . Doista:

- (i) $\mu f^{-1}(\emptyset) = \mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0.$
- (ii) Neka je $(B_n)_{n\in\mathbb{N}}\subseteq\mathcal{G}$ proizvoljan niz disjunktnih međusobno. Tada je $(f^{-1}(B_n))_{n\in\mathbb{N}}\subseteq\mathcal{F}$ pa je

$$\mu f^{-1} \left(\bigcup_{n \in \mathbb{N}} B_n \right) = \mu \left(f^{-1} \left(\bigcup_{n \in \mathbb{N}} \right) B_n \right) = \mu \left(\bigcup_{n \in \mathbb{N}} f^{-1}(B_n) \right)$$
$$= \sum_{n=1}^{\infty} \mu(f^{-1}(B_n)) = \sum_{n=1}^{\infty} \mu f^{-1}(B_n)$$

U kontekstu ovog kolegija vrijedi sljedeća inačica Teorema o zamjeni varijabli:

Neka je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor, $g: \mathbb{R} \to \mathbb{R}$ Borelova funkcija, $X: \Omega \to \mathbb{R}$ slučajna varijabla. Tada vrijedi

$$\int_{B} g(x)d\mathbb{P}_{X}(x) = \int_{X^{-1}(B)} g(X(\omega))d\mathbb{P}(\omega), B \in B_{\mathbb{R}}.$$

Dokaz.

Lebesgueovom indukcijom. Pokažimo tvrdnju za $g = \mathbb{1}_A, A \in \mathcal{F}$.

$$\int_{B} \mathbb{1}_{A}(x)d\mathbb{P}_{X}(x) = \int_{A\cap B} d\mathbb{P}_{X}(x)$$

$$= \mathbb{P}(X \in A \cap B)$$

$$= \mathbb{P}(\{X \in A\} \cap X^{-1}(B))$$

$$= \int_{X^{-1}(B)} \mathbb{1}_{\{X \in A\}}(\omega)d\mathbb{P}(\omega)$$

$$= \int_{X^{-1}(B)} \mathbb{1}_{A}(X(\omega))d\mathbb{P}(\omega).$$

Dalje je postupak standardan.

TEOREM (Hölderova nejednakost, slučaj s konačnim eksponentima)

Neka su $1 konjugirani eksponenti. Ako je <math>X \in \mathcal{L}^p$ i $Y \in \mathcal{L}^p$, tada je $XY \in \mathcal{L}^1$ i vrijedi

$$||XY||_1 \le ||f||_p ||g||_q$$
.

Dokaz.

BSOMP $X,Y\neq 0$ g. s., tj., $\|X\|_p, \|Y\|_q>0$ (jer $\|X\|_p=\|Y\|_q=0$ vodi na trivijalnu relaciju). Definirajmo preslikavanje $\varphi:\langle 0,+\infty\rangle \to \langle 0,+\infty\rangle, \varphi(t):=\frac{t}{p}+\frac{1}{q}-t^{1/p}>0$. Vrijedi $\varphi'(t)=\frac{1}{p}\left(1-t^{1/p-1}\right)=\frac{1}{p}\left(1-t^{-1/q}\right)=0 \Leftrightarrow t=1$ i t=1 je točka minimuma

$$\Rightarrow \forall t>0, \frac{t}{p}+\frac{1}{q}-t^{1/p}\geq \varphi(1)=\frac{1}{p}+\frac{1}{q}-1=0 \Rightarrow t^{1/p}\leq \frac{t}{p}+\frac{1}{q}.$$

Neka su $u:=x^p, v=y^q, t=\frac{u}{v}$. Slijedi

$$t^{1/p}v \le \frac{tv}{p} + \frac{v}{q} \Leftrightarrow u^{1/p}v^{1/q} \le \frac{u}{p} + \frac{v}{q}.$$

 $S(X,Y) := \mathbb{E}[XY]$ definiran je jedan skalarni produkt na Hilbertovom prostoru $L^2(\Omega,\mathcal{F},\mathbb{P})$.

$$\begin{split} &\frac{|X(\omega)Y(\omega)|}{\|X\|_p\|Y\|_q} \leq \frac{1}{p} \frac{|X(\omega)|^p}{\mathbb{E}[|X|^p]} + \frac{1}{q} \frac{|Y(\omega)|^q}{\mathbb{E}[|Y|^q]} \\ &|X(\omega)Y(\omega)| \leq \|X\|_p \|Y\|_q \left[\frac{1}{p} \frac{|X(\omega)|^p}{\mathbb{E}[|X|^p]} + \frac{1}{q} \frac{|Y(\omega)|^q}{\mathbb{E}[|Y|^q]} \right] \big/ \int \end{split}$$

Jednakost sada slijedi iskoristimo li opet pretpostavku $\frac{1}{p} + \frac{1}{q} = 1$.

TEOREM (Nejednakost Minkowskog)

Neka je $1 \le p < +\infty, X, Y \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$. Tada je $X + Y \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ i

$$||X + Y||_p \le ||X||_p + ||Y||_p.$$

Dokaz.

p=1je očito iz aditivnosti integrala i nejednakosti trokuta. Neka je $p\in\langle 1,+\infty\rangle.$ Tada $\exists!q\in\langle 1,+\infty\rangle,\frac{1}{p}+\frac{1}{q}=1\Rightarrow (p-1)q=p.$

$$\begin{split} |X+Y|^p &= |X+Y| \cdot |X+Y|^{p-1} \leq |X| |X+Y|^{p-1} + |Y| \cdot |X+Y|^{p-1} \\ & \mathbb{E}\left[\left[|X+Y|^{p-1}\right]^q\right] = \mathbb{E}[|X+Y|^p]/^{1/q} \\ & \|(X+Y)^{p-1}\|_q = \|X+Y\|_p^{p/q} = \|X+Y\|_p^{p-1} \\ & \overset{\mathrm{H\"older}}{\Rightarrow} \mathbb{E}\left[|X| \cdot |X+Y|^{p-1}\right] \leq \|X\|_p \|X+Y\|_p^{p-1} \\ & \mathbb{E}\left[|Y| \cdot |X+Y|^{p-1}\right] \leq \|Y\|_p \|X+Y\|_p^{p-1} \\ & \Rightarrow \|X+Y\|_p^p \leq \|X+Y\|_p^{p-1} \left(\|X\|_p + \|Y\|_p\right). \end{split}$$

Ako je $\|X+Y\|_p=0$, tvrdnja trivijalno slijedi. Ako je $\|X+Y\|_p>0$, tvrdnja slijedi dijeljenjem s $\|X+Y\|_p^{p-1}$.

38 Dodatak 9 (jedinstvenosti limesa)

TEOREM

Neka je $(X_n)_{n\in\mathbb{N}}$ niz slučajnih varijabli. Ako $(X_n)_{n\in\mathbb{N}}$ konvergira

- (a) gotovo sigurno, po vjerojatnosti ili u srednjem reda r, tada je granična slučajna varijabla g.s. jedinstvena
- (b) po distribuciji, tada je granična slučajna varijabla jedinstvena (svuda).

Dokaz.

(a) (a1) Neka $X_n \xrightarrow{g. s.} X$ i $Y_n \xrightarrow{g. s.} Y$. Tada, za

$$N_X := \{X_n \not\longrightarrow X\} \text{ i } N_Y := \{X_n \not\longrightarrow Y\},$$

vrijedi $\mathbb{P}(N_X) = \mathbb{P}(N_Y) = 0$. Neka je $\omega \in (N_X \cup N_Y)^c$. Tada

$$|X(\omega) - Y(\omega)| \le |X(\omega) - X_n(\omega)| + |X_n(\omega) - Y(\omega)| \xrightarrow{n \to \infty} 0 \Rightarrow X = Y \text{ na } (N_X \cup N_Y)^c,$$

a
$$\mathbb{P}((N_X \cup N_Y)^c) = 1 - \mathbb{P}(N_X \cup N_Y) \ge 1 - \mathbb{P}(N_X) - \mathbb{P}(N_Y) = 1.$$

(a2) Neka $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ i $X_n \stackrel{\mathbb{P}}{\longrightarrow} Y$ te neka je $k \in \mathbb{N}$ proizvoljan.

$$\mathbb{P}\left(|X-Y| \geq \frac{1}{k}\right) \leq \mathbb{P}\left(|X-X_n| \geq \frac{1}{2k}\right) + \mathbb{P}\left(|X_n-Y| \geq \frac{1}{2k}\right) \overset{n \to \infty}{\longrightarrow} 0 \Rightarrow \mathbb{P}\left(|X-Y| \geq \frac{1}{k}\right) = 0, \forall k \in \mathbb{N}.$$

Stoga je

$$\mathbb{P}(X \neq Y) = \mathbb{P}\left(\bigcup_{k \in \mathbb{N}} \left\{|X - Y| \geq \frac{1}{n}\right\}\right) \leq \sum_{n = 1}^{\infty} \mathbb{P}\left(|X - Y| \geq \frac{1}{n}\right) = 0.$$

(a3) Koristit ćemo sljedeću tvrdnju:

Pretpostavimo da su $\mathbb{E}\left[|X|^p\right], \mathbb{E}\left[|Y|^p\right] < +\infty$ za p > 0. Tada

$$\mathbb{E}\left[|X+Y|^p\right] \le C_p \left(\mathbb{E}\left[|X|^p\right] + \mathbb{E}\left[|Y|^p\right]\right),\,$$

gdje je

$$C_p = \begin{cases} 1, & p \in (0, 1]^{43} \\ 2^{p-1}, & p \in (1, +\infty). \end{cases}$$

Dakle,

$$\mathbb{E}\left[|X-Y|^r\right] \leq C_r \left(\mathbb{E}\left[|X-X_n|^r\right] + \mathbb{E}\left[|X_n-Y|^r\right]\right) \stackrel{n\to\infty}{\longrightarrow} 0 \Rightarrow |X-Y|^r = 0 \text{ g. s.}.$$

(b) Tvrdnja slijedi iz neprekidnosti zdesna i činjenice da je $C(F_X) \cap C(F_Y)$ gust skup u \mathbb{R} .

 $[\]frac{1}{43}\text{Ako je }r \in \langle 0,1], t \in \langle 0,1], t^{1/r} \le t \text{ i } \left(\frac{x^r}{x^r + y^r}\right)^{1/r} + \left(\frac{y^r}{x^r + y^r}\right)^{1/r} \le \frac{x^r}{x^r + y^r} + \frac{y^r}{x^r + y^r} = 1 \Rightarrow x + y \le (x^r + y^r)^{1/r} \Rightarrow (x + y)^r \le x^r + y^r$

39 Dodatak 10

Sadržaj ovog dodatka nije se obrađivao na predavanjima u zimskom semestru 2024./2025., no pojavio se zadatak na roku 2023./2024.

Neka je $F : \mathbb{R} \to [0,1]$ vjerojatnosna funkcija distribucije, $\Omega := \langle 0,1 \rangle, \mathcal{F} = B_{\langle 0,1 \rangle}, \mathbb{P} := \lambda \mid_{\langle 0,1 \rangle}$. Ako je F neprekidna bijekcija, ima inverz, a ako nije neprekidna, treba drugačije definirati "inverz".

(1)
$$X(\omega) := \sup\{y \mid F(y) < \omega\}$$
 (lijevi inverz)

(3)
$$Y(\omega) := \inf\{y \mid F(y) > \omega\}$$
 (desni inverz)

Vrijedi:

(2)
$$X(\omega) \le x \Leftrightarrow \omega \le F(x)$$
.

Dokaz.

$$\leftarrow$$
 $\omega \leq F(x) \Rightarrow X(\omega) = \sup\{y \mid F(y) < \omega\} \leq x$

$$\implies$$
 Pretpostavimo suprotno, $\omega > F(x) \Rightarrow \exists \varepsilon > 0, \omega > F(x+\varepsilon) \geq F(x) \Rightarrow F(x+\varepsilon) \geq F(x) \Rightarrow X(\omega) \geq x + \varepsilon > x$, kontradikcija.

Tvrdnja 1:

X je izmjeriva i $F_X = F$.

Dokaz

Zbog (2),
$$\forall x \in \mathbb{R}, \{\omega \mid X(\omega) \le x\} = \{\omega \mid \omega \le F(x)\} = \langle 0, F(x) | \in B_{\langle 0, 1 \rangle}$$
.

Vrijedi:

(4a)
$$\omega \ge F(x) \Rightarrow Y(\omega) = \inf\{\omega \mid y \mid F(y) > \omega\} \ge x$$

(4b)
$$\omega < F(x) \Rightarrow Y(\omega) = \inf\{y \mid F(y) > \omega\} < x$$
.

Tvrdnja 2:

 $\forall \omega \in \Omega, X(\omega) \leq Y(\omega).$

Dokaz.

Pretpostavimo suprotno, $\exists \omega, Y(\omega) < X(\omega) \Rightarrow \exists x, Y(\omega) < x < X(\omega)$.

$$\circ Y(\omega) < x \stackrel{(4a)}{\Rightarrow} \omega < F(x),$$

$$\circ \ x < X(\omega) \stackrel{(2)}{\Rightarrow} \omega > F(x).$$

Tvrdnja 3

Za $\omega_1 < \omega_2$, vrijedi $Y(\omega_1) \leq X(\omega_2)$.

Dokaz.

Pretpostavimo suprotno, $Y(\omega_1) > X(\omega_2)$. Tada $\exists x, X(\omega_2) < x < Y(\omega_1)$.

$$\circ \ X(\omega_2) < x \stackrel{(2)}{\Rightarrow} \omega_2 \le F(x)$$

$$\circ x < Y(\omega_1) \stackrel{(4a)}{\Rightarrow} F(x) \le \omega_1$$
, kontradikcija.

Tvrdnia

Definirajmo $\Omega_0 := \{ \omega \in \Omega \mid X(\omega) = Y(\omega) \} = \{ \omega \in \Omega \mid \langle X(\omega), Y(\omega) \rangle = \emptyset \}$. $\Omega \setminus \Omega_0$ je najviše prebrojiv.

Dokaz

Neka su
$$\omega_1, \omega_2 \in \Omega \setminus \Omega_0, \omega_1 < \omega_2$$
. Tvrdnja 3 $\underbrace{\langle X(\omega_1), Y(\omega_1) \rangle}_{I_1} \cap \underbrace{\langle X(\omega_2), Y(\omega_2) \rangle}_{I_2} = \emptyset$ i $I_1, I_2 \neq \emptyset$ pa postoje $q_1, q_2 \in \mathbb{Q}, q_1 < q_2, q_1 \in I_1, q_2 \in I_2$. $\Rightarrow \mathfrak{k}(\Omega \setminus \Omega_0) \leq \mathfrak{k}(\mathbb{Q}) = \aleph_0$.

 $Za \omega \in \Omega_0$,

(5a)
$$x < X(\omega) \stackrel{(2)}{\Rightarrow} F(x) < \omega$$

(5b)
$$x > X(\omega) = Y(\omega) \stackrel{(4a)}{\Rightarrow} F(x) > \omega.$$

TEOREM

Neka je $(F_n)_{n\in\mathbb{N}}$ niz vjerojatnosnih funkcija distribucije, F vjerojatnosna funkcija distribucije i $F_n\to F$. Tada postoji vjerojatnosni prostor $(\Omega,\mathcal{F},\mathbb{P})$ i slučajne varijable $(X_n)_{n\in\mathbb{N}},X:\Omega\to\mathbb{R}$ t. d. $F_{X_n}=F_n,F_X=F$ i $X_n\overset{\mathrm{g. s.}}{\longrightarrow}X$.

Dokaz.

Neka je $\Omega := \langle 0, 1 \rangle, \mathcal{F} = B_{\langle 0, 1 \rangle}, \mathbb{P} = \lambda,$ $X(\omega) := \sup\{y \mid F(y) < \omega\}, X_n(\omega) := \sup\{y \mid F_n(y) < \omega\}, Y(\omega) := \inf\{y \mid F(y) > \omega\},$ $\Omega_0 = \{\omega \in \Omega \mid \langle X(\omega), Y(\omega) \rangle = \emptyset\}.$ Pokazujemo da $X_n(\omega) \to X(\omega), \forall \omega \in \Omega_0.$ Budući da je $\mathbb{P}(\Omega_0) = 1$, slijedit će $X_n \stackrel{\text{g. s.}}{\longrightarrow} X.$

- $\begin{array}{ll} (a) & \liminf_{n \to \infty} X_n(\omega) \geq X(\omega), \forall \omega \in \Omega_0 \colon \\ & \mathrm{Neka} \text{ je } x \in C(F), x < X(\omega) \text{ (takav sigurno postoji jer je skup točaka neprekidnosti gust u } \mathbb{R}) \\ & \stackrel{(5a)}{\Rightarrow} F(x) < \omega. \text{ Budući da je } x \in C(F), \text{ za velike je } n \in \mathbb{N} \text{ i } F_n(\omega) < x \stackrel{(2)}{\Rightarrow} x < X_n(\omega) \text{ za dovoljno velike } n \in \mathbb{N}. \text{ Tada je } x \leq \liminf_{n \to \infty} X_n(\omega), \forall x \in C(F) \text{ t. d. je } x < X(\omega). \text{ Promotrimo posebno nizove takvih točaka; neka je } (y_m)_{m \in \mathbb{N}} \subseteq C(F), y_m \nearrow X(\omega) \text{ (postoji jer je } C(F) \text{ gust u } \mathbb{R}!), \\ & y_m \leq \liminf_{n \to \infty} X_n(\omega) / \lim_{m \to \infty} \Rightarrow X(\omega) \leq \liminf_{n \to \infty} X_n(\omega). \end{aligned}$
- $\begin{array}{ll} (b) & \limsup_{n \to \infty} X_n(\omega) \leq X(\omega), \forall \omega \in \Omega_0 \colon \\ & \text{Neka je } x \in C(F), x > X(\omega) \overset{(5b)}{\Rightarrow} \omega < F(x) \overset{x \in C(F)}{\Rightarrow} \omega < F_n(\omega) \text{ za dovoljno velike } n \in \mathbb{N} \Rightarrow x > X_n(\omega) \\ & \text{za dovoljno velike } n \in \mathbb{N}. \text{ Dakle, } x \geq \limsup_{n \to \infty} X_n(\omega), \forall x \in C(F) \text{ t. d. je } x > X(\omega). \text{ Promotrimo nizove takvih točaka; neka je } (y_m)_{m \in \mathbb{N}} \subseteq C(F), y_m \searrow X(\omega) \text{ (postoji jer je } C(F) \text{ gust u } \mathbb{R}!), \\ & y_m \geq \limsup_{n \to \infty} X_n(\omega) / \lim_{m \to \infty} \Rightarrow X(\omega) \geq \limsup_{n \to \infty} X_n(\omega). \end{array}$

40 Dodatak 11

TEOREM (Integralni Moivre-Laplaceov teorem)

Neka je $p \in (0,1)$ i $X_n \sim B(n,p), n \in \mathbb{N}$. Tada, za proizvoljne $a,b \in \mathbb{R}, a < b$, vrijedi

$$\lim_{n \to \infty} \mathbb{P}\left(a \le \frac{X_n - np}{\sqrt{npq}} \le b\right) = \frac{1}{2} \int_a^b e^{-\frac{x^2}{2}} dx.$$

TEOREM

(a) Ako je $p = \frac{1}{2}$, tada je

$$\mathbb{P}\left(\limsup_{n\to\infty} \{S_n = 0\}\right) = 1.$$

(b) Ako je $p \neq \frac{1}{2}$, tada je

$$\mathbb{P}\left(\limsup_{n\to\infty} \{S_n = 0\}\right) = 0.$$

Dokaz.

(a) Stavimo

$$A = \left\{ \limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} = \infty, \liminf_{n \to \infty} \frac{S_n}{\sqrt{n}} = -\infty \right\}.$$

 $A \subseteq B$ pa je dovoljno pokazati $\mathbb{P}(A) = 1$. Neka je

$$A(c) = \left\{ \limsup_{n \to \infty} \frac{S_n}{\sqrt{n}} \ge c, \liminf_{n \to \infty} \frac{S_n}{\sqrt{n}} \le -c \right\}, c > 0.$$

Tada $A(c) \searrow A$ kad $c \to +\infty$. Osim toga, A i svi A(c) repni su događaji. Pokazat ćemo da je $\mathbb{P}(A(c)) = 1, \forall c > 0$. Budući da je A(c) repni događaj, dovoljno je dokazati da je A(c) > 0.

$$\frac{X_i+1}{2} \sim \begin{pmatrix} 0 & 1\\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, i \in \mathbb{N} \Rightarrow \frac{S_n+n}{2} = \sum_{i=1}^n \frac{X_i+1}{2} \sim B\left(n, \frac{1}{2}\right), \ \frac{S_n'-\frac{n}{2}}{\frac{\sqrt{n}}{2}} = \frac{S_n}{\sqrt{n}}, n \in \mathbb{N}.$$

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}\geq c, \liminf_{n\to\infty}\frac{S_n}{\sqrt{n}}\leq -c\right)\geq \mathbb{P}\left(\limsup_{n\to\infty}\left\{\frac{S_n}{\sqrt{n}}\geq c \text{ ili } \frac{S_n}{\sqrt{n}}\leq -c\right\}\right)\geq \limsup_{n\to\infty}\mathbb{P}\left(\left|\frac{S_n}{\sqrt{n}}\right|\geq c\right)>0.$$

(b) Stavimo

$$B := \limsup_{n \to \infty} \{ S_n = 0 \} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{ S_k = 0 \}.$$

B nije repni događaj u odnosu na $(X_n)_{n\in\mathbb{N}}$ pa nije odmah jasno da $\mathbb{P}(B)\in\{0,1\}$. Neka je $B_{2n}:=\{S_{2n}=0\}$. Tada je

$$\mathbb{P}(B_{2n}) = \binom{2n}{n} p^n q^n.$$

Iz Stirlingove formule $n! \sim \sqrt{2\pi n} n^n e^{-n}, n \to \infty$

$$\binom{2n}{n} = \frac{(2n)!}{n!^2} = \frac{\sqrt{4\pi n}(2n)^{2n}e^{-2n}}{2\pi nn^{2n}e^{-2n}} = \frac{24^n}{\sqrt{\pi n}}$$

pa je

$$p_{00}^{(2n)} \sim \frac{2}{\sqrt{\pi n}} (4pq)^n.$$

$$p \neq \frac{1}{2} \Rightarrow 4pq < 1 \overset{D'Alembert}{\Rightarrow} \sum_{n=1}^{\infty} \mathbb{P}(B_{2n}) < \infty \Rightarrow \mathbb{P}\left(\limsup_{n \to \infty} \{S_n = 0\}\right) = 0.$$

41 Dodatak 12 (Uniformna integrabilnost)

DEFINICIJA

Niz $(X_n)_{n\in\mathbb{N}}$ slučajnih varijabli na vjerojatnosnom prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ uniformno je integrabilan ako

$$\lim_{c\to\infty}\sup_{n\in\mathbb{N}}\int_{\{|X_n|>c\}}|X_n|d\mathbb{P}=0.$$

ZADATAK

Dokažite: ako je $|X_n| \leq Y, \forall n \in \mathbb{N}$ i $\mathbb{E}Y < \infty$, tada je niz $(X_n)_{n \in \mathbb{N}}$ uniformno integrabilan.

Rješenje.

Pretpostavimo suprotno, tj.,

$$\exists \varepsilon > 0, \forall N \in \mathbb{N}, \exists c_N \geq N, \sup_{n \in \mathbb{N}} \int_{\{|X_n| > c_N\}} |X_n| d\mathbb{P} > 2\varepsilon.$$

S druge strane,

$$|X_n|\mathbb{1}_{\{|X_n|>c_N\}} \le |Y|\mathbb{1}_{\{Y\ge c_N\}} \le |Y|,$$

a

$$\mathbb{E}\mathbb{1}_{\{Y>c_N\}} = \mathbb{P}(Y>c_N) \leq \frac{\mathbb{E}Y}{c_N} \stackrel{N\to\infty}{\longrightarrow} 0 \Rightarrow \mathbb{1}_{\{Y>c_N\}} \stackrel{L^1}{\longrightarrow} 0$$

pa postoji podniz $\left(\mathbbm{1}_{\{Y>c_{N_k}\}}\right)_{k\in\mathbb{N}}$ koji konvergira u 0 (g. s.)

Za više, pogledati skriptu prof. Vondračeka iz Slučajnih procesa ili knjigu prof. Ricka Durreta (v. literaturu)

Dodatak 13 (Lema A.1.13, A. Gut) **42**

LEMA

Za $\alpha > 0$,

$$\int_0^t \frac{\sin(\alpha x)}{x} dx \le \int_0^\pi \frac{\sin x}{x} dx \le \pi, \forall t > 0.$$

Dokaz.

Dokaz.
$$y = \alpha x \Rightarrow dy = \alpha dx \Rightarrow \frac{dy}{y} = \frac{\alpha dx}{\alpha dx} \Rightarrow \text{BSOMP } \alpha = 1.$$

-
$$t < \pi$$
:
$$\int_0^t \frac{\sin x}{x} \le \int_0^\pi \frac{\sin x}{x} dx$$

-
$$t > \pi$$
: $a_n := \int_{-(n-1)\pi}^{n\pi} \frac{\sin x}{x} dx$. Tada je $a_1 > |a_2| > a_3 > |a_4| > \cdots$, $a_{2n-1} > 0, a_{2n} < 0$. Neka je $n \in \mathbb{N}$ t. d. je $(n-1)\pi < t < n\pi$. Tada je $\int_0^t \frac{\sin x}{x} dx = \sum_{k=1}^{n-1} a_k + \int_{(n-1)}^t$. Oduzimamo više nego što dodajemo.

43 Dodatak 14 Poissonovska konvergencija

LEMA 1

Neka su $z_1, \ldots, z_n, w_1, \ldots, w_n \in \mathbb{C}$ i modula $\leq \vartheta$. Tada

$$\left| \prod_{m=1}^{n} z_m - \prod_{m=1}^{n} w_m \right| \le \vartheta^{n-1} \sum_{m=1}^{n} |z_m - w_m|.$$

LEMA 2 Ako je $b \in \mathbb{C}$ t. d. $|b| \leq 1$, tada je $|e^b - (1+b)| \leq b^2$.

TEOREM

Za svaki $n \in \mathbb{N}, m \in \{1, ..., n\}$, neka su $X_{n,m}$ nezavisne slučajne varijable t. d. $\mathbb{P}(X_{n,m}=1)=p_{n,m}, \mathbb{P}(X_{n,m}=0)=1-p_{n,m}$. Pretpostavimo da vrijedi:

$$(i) \sum_{m=1}^{n} p_{n,m} \stackrel{n \to \infty}{\longrightarrow} \lambda > 0$$

(ii)
$$\max_{1 \le m \le n} p_{n,m} \stackrel{n \to \infty}{\longrightarrow} 0.$$

 Tada

$$S_n := X_{n,1} + \dots + X_{n,n} \xrightarrow{\mathcal{D}} P(\lambda).$$

Dokaz.

$$\varphi_{n,m}(t) := \mathbb{E}\left[e^{itX_{n,m}}\right] = (1 - p_{n,m}) + p_{n,m}e^{it}$$
$$\varphi_{S_n}(t) := \prod_{m=1}^n \varphi_{n,m}(t) = \prod_{m=1}^n \left[(1 - p_{n,m}) + p_{n,m}e^{it} \right]$$

Za $p \in [0, 1]$,

$$\left| e^{p(e^{it}-1)} \right| = e^{p\operatorname{Re}(e^{it}-1)} \le 1$$

 $\left| 1 + p(e^{it}-1) \right| = \left| 1 - p + pe^{it} \right| \le 1$

Primijenimo Lemu 2 na $z_m := \exp\left(p_{n,m}\left(e^{it}-1\right)\right), w_m := 1 + p_{n,m}\left(e^{it}-1\right)$.

$$\left| \exp\left(\sum_{m=1}^{n} p_{n,m} \left(e^{it} - 1\right)\right) - \prod_{m=1}^{n} \left(1 + p_{n,m} \left(e^{it} - 1\right)\right) \right|$$

$$\leq \sum_{m=1}^{n} \left| \exp\left(p_{n,m} \left(e^{it} - 1\right)\right) - \prod_{m=1}^{n} \left(1 - p_{m,m} \left(e^{it} - 1\right)\right) \right|$$

$$\leq \left[\left|p_{n,m} \left(e^{it} - 1\right)\right| \leq \frac{1}{2} \text{ za dovoljno velik } n \in \mathbb{N}\right] \leq \left[\text{Lema B}\right]$$

$$\leq p_{n,m}^{2} \left|e^{it} - 1\right|^{2} \leq 4 \underbrace{\max_{\substack{1 \leq m \leq n \\ n \to \infty}} p_{n,m}}_{\substack{n \to \infty \\ n \to \infty}} \underbrace{\sum_{\substack{m = 1 \\ n \to \infty}}}_{\substack{n \to \infty \\ n \to \infty}} p_{n,m} \to 0.$$

$$\lim_{n \to \infty} \exp\left(\sum_{m=1}^{n} p_{n,m} \left(e^{it} - 1\right)\right) = \exp\left(\lambda \left(e^{it} - 1\right)\right) =: \varphi_{Z}(t)$$

$$|\varphi_{S_{n}}(t) - \varphi_{Z}(t)| \le \left|\varphi_{S_{n}}(t) - \exp\left(\sum_{m=1}^{n} p_{n,m} \left(e^{it} - 1\right)\right)\right| + \left|\varphi_{Z}(t) - \exp\left(\sum_{m=1}^{n} p_{n,m} \left(e^{it} - 1\right)\right)\right|$$

$$\left|1 - p + pe^{it}\right| = |1 - p + p\cos t + pi\sin t| = |1 + p(\cos t - 1) + ip\sin t|$$

$$= \sqrt{1 + 2p(\cos t - 1) + p^{2}\cos^{2} t - 2p^{2}\cos t + p^{2} + p^{2}\sin^{2} t}$$

$$= \sqrt{1 - 2p(1 - \cos t) + 2p^{2}(1 - \cos t)}$$

$$= \sqrt{1 - 2p(1 - p)(1 - \cos t)} < \sqrt{1} = 1$$

44 Dodatak 15 (o jednoj stabilnoj distribuciji, Durret)

Pretpostavimo da za distribuciju od X_i vrijedi

$$\mathbb{P}(X_1 > x) = \mathbb{P}(X_1 < -x) = \frac{1}{2x^{\alpha}} \text{ za } x \ge 1 \quad (*)$$

gdje je $0 < \alpha < 2$. $\varphi(t) = \mathbb{E}\left[e^{itX_1}\right]$ pa

$$1 - \varphi(t) = \int_{\{|x| \ge 1\}} \left(1 - e^{itx}\right) \frac{\alpha}{2|x|^{\alpha + 1}} dx = \alpha \int_{1}^{\infty} \frac{1 - \cos(tx)}{x^{\alpha + 1}} dx$$
$$= \left[tx = u \Rightarrow dx = \frac{du}{t}\right] = \alpha \int_{t}^{\infty} \frac{1 - \cos u}{\left(\frac{u}{t}\right)^{\alpha + 1}} \frac{du}{t}$$
$$= \alpha t^{\alpha} \int_{t}^{\infty} \frac{1 - \cos u}{u^{\alpha + 1}} du$$

Kad $u \to 0$,

$$1-\cos u \sim \frac{u^2}{2} \Rightarrow \frac{1-\cos u}{u^{\alpha+1}} \sim \frac{1}{2u^{\alpha-1}},$$

a, kako $0<\alpha<2\Rightarrow 1-\alpha>-1,\,u\mapsto \frac{1-\cos u}{u^{\alpha-1}}$ je integrabilna. Stavimo li

$$C := \alpha \int_0^\infty \frac{1 - \cos u}{u^{\alpha + 1}} du < \infty,$$

i uočimo li da $(*) \Rightarrow \varphi(t) = \varphi(-t)$, vidimo da

$$1 - \varphi(t) \sim C|t|^{\alpha} \text{ kad } t \to 0.$$

Neka su sada $(X_i)_{i\in\mathbb{N}}$ nezavisne jednako distribuirane s distribucijom (*) te $S_n:=\sum_{i=1}^n X_i$.

$$\mathbb{E}\left[\frac{itS_n}{n^{1/\alpha}}\right] = \left(\varphi\left(\frac{t}{n^{1/\alpha}}\right)\right)^n = \left(1 - \frac{n\left(1 - \varphi\left(\frac{t}{n^{1/\alpha}}\right)\right)}{n}\right)^n.$$

Budući da je

$$\lim_{n\to\infty} n\left(1-\varphi\left(\frac{t}{n^{1/\alpha}}\right)\right) = C\lim_{n\to\infty} n\left(\frac{t}{n^{1/\alpha}}\right)^\alpha = C|t|^\alpha$$

pa

$$\lim_{n\to\infty}\mathbb{E}\left[\frac{itS_n}{n^{1/\alpha}}\right]=e^{-C|t|^{\alpha}}$$

i stoga je, po Teoremu neprekidnosti, izraz zdesna karakteristična funkcija neke slučajne varijable Y i

$$\frac{S_n}{n^{1/\alpha}} \xrightarrow{\mathcal{D}} Y \quad (**).$$

(**) može se dokazati na još jedan način. Ako je 0 < a < b i $an^{1/\alpha} > 1$, tada je, u distribuciji (*),

$$\mathbb{P}\left(an^{1/\alpha} < X_1 < bn^{1/\alpha}\right) = \frac{1}{2n} \left(\frac{1}{a^{\alpha}} - \frac{1}{b^{\alpha}}\right)$$

Po Teoremu 3.6.1, Durret, §Poissonovska konvergencija,

$$N_n(a,b) \equiv \left| \left\{ m \le n \mid a < \frac{X_m}{n^{1/\alpha}} < b \right\} \right| \xrightarrow{\mathcal{D}} N(a,b) \equiv P\left(\frac{1}{2} \left(\frac{1}{a^{\alpha}} - \frac{1}{b^{\alpha}}\right)\right).$$

Jednostavno po
općenje posljednjeg rezultata pokazuje da, ako je $A\subset\mathbb{R}\setminus\langle -\delta,\delta\rangle$ i
 $\delta n^{1/\alpha}>1,$

$$\mathbb{P}\left(\frac{X_1}{n^{1/\alpha}} \in A\right) = \frac{1}{n} \int_A \frac{\alpha}{2|x|^{\alpha+1}} dx$$

pa

$$N_n(A) \equiv \left| \left\{ m \le n \mid \frac{X_m}{n^{1/\alpha}} \in A \right\} \right| \xrightarrow{\mathcal{D}} N(A) \equiv P(\mu(A)),$$

gdje je

$$\mu(A) = \int_A \frac{\alpha}{2|x|^{\alpha+1}} dx < \infty.$$

Zadnji paragraf (umetni ga) opisuje granično ponašanje slučajnog skupa

$$\mathcal{X}_n = \left\{ \frac{X_m}{n^{1/\alpha}} \mid 1 \le m \le n \right\}.$$

Da bismo opisali limes od $\frac{S_n}{n^{1/\alpha}}$, definirajmo

$$I_n(\varepsilon) := \left\{ m \le n \mid |X_m| > \varepsilon n^{1/\alpha} \right\}$$
$$\hat{S}_n(\varepsilon) := \sum_{m \in I_n(\varepsilon)} X_m$$
$$\bar{S}_n(\varepsilon) := S_n - \hat{S}_n(\varepsilon).$$

Pokazat ćemo da $\bar{S}_n(\varepsilon)$ malo doprinosi sumi kad je ε mal. Neka je

$$\bar{X}_m(\varepsilon) := X_m \mathbb{1}_{\{|X_m| \le \varepsilon n^{1/\alpha}\}}.$$

Iz simetrije, slijedi $\mathbb{E}\bar{X}_m(\varepsilon)=0$ pa je $\mathbb{E}\left[\bar{S}_n(\varepsilon)^2\right]=n\mathbb{E}\left[\bar{X}_1(\varepsilon)^2\right]$

$$\mathbb{E}\left[\bar{X}_{1}(\varepsilon)^{2}\right] = \int_{0}^{\infty} 2y \mathbb{P}\left(\left|\bar{X}_{1}(\varepsilon)\right| > y\right) dy \leq \int_{0}^{1} 2y dy + \int_{1}^{\varepsilon n^{1/\alpha}} \frac{1}{y^{\alpha}} dy$$

$$= 1 + \frac{2}{2 - \alpha} \varepsilon^{2 - \alpha} n^{2/\alpha - 1} - \frac{2}{2 - \alpha} \leq \frac{2\varepsilon^{2 - \alpha}}{2 - \alpha} n^{2/\alpha - 1} / n^{1 - 2\alpha}$$

$$\Rightarrow \mathbb{E}\left[\frac{\bar{S}_{n}(\varepsilon)^{2}}{n^{1/\alpha}}\right] \leq \frac{2\varepsilon^{2 - \alpha}}{2 - \alpha} \quad (* * *).$$

Uočimo da $I_n(\varepsilon) \sim B(n,p), p = \mathbb{P}\left(|X_1| > \varepsilon n^{1/\alpha}\right) = \frac{1}{n\varepsilon^{\alpha}}$. Ako je $|I_n(\varepsilon)| = m, \frac{\hat{S}_n(\varepsilon)}{n^{1/\alpha}}$ suma je m nezavisnih slučajnih varijabli s distribucijom F_n^{ε} , simetričnom oko 0 i t. d.

$$1 - F_n^{\varepsilon}(x) = \mathbb{P}\left(\frac{X_1}{n^{1/\alpha}} > x \mid \frac{|X_1|}{n^{1/\alpha}} > \varepsilon\right) = \frac{x^{-\alpha}}{2\varepsilon^{-\alpha}}, \text{ za } x \ge \varepsilon.$$

Uočimo da je ovo posljednje točno distribucija slučajne varijable εX_1 pa $\varphi(t) = \mathbb{E}\left[e^{itX_1}\right] \Rightarrow$ distribucija F_n^{ε} ima karakterističnu funkciju $\varphi(\varepsilon t)$.

$$\mathbb{E}\left[\exp\left(\frac{it\hat{S}_n(\varepsilon)}{n^{1/\alpha}}\right)\right] = \mathbb{E}\left[\exp\left(\frac{it}{n^{1/\alpha}}\sum_{m\in I_n(\varepsilon)}X_m\right)\right] = \sum_{m=0}^n \binom{n}{k}\left(\varepsilon^{-\alpha}/n\right)^m\left(1-\varepsilon^{-\alpha}/n\right)^{n-m}\varphi(\varepsilon t)^m.$$

Zapišimo

$$\binom{n}{m}\frac{1}{n^m} = \frac{1}{m!}\frac{n(n-1)\cdots(n-m+1)}{n^m} \le \frac{1}{m!},$$

podsjetimo se da je $(1-\varepsilon^{-\alpha}n)^n \leq \exp\left(-\varepsilon^{-\alpha}\right)$ pa primijenimo Lebesgueov teorem o dominiranoj konvergenciji

$$\mathbb{E}\left[\frac{it\hat{S}_n(\varepsilon)}{n^{1/\alpha}}\right] = \sum_{m=0}^{\infty} \exp\left(-\varepsilon^{-\alpha}\right) \left(\varepsilon^{-\alpha}\right)^m \varphi(\varepsilon t)^m / m! = \exp\left(-\varepsilon^{-\alpha}\right) \underbrace{\sum_{m=0}^{\infty} \frac{\left(\varepsilon^{-\alpha} \varphi(\varepsilon t)\right)^m}{m!}}_{\exp\left(\varepsilon^{-\alpha} \varphi(\varepsilon t)\right)} = \exp\left(-\varepsilon^{-\alpha}\left(1 - \varphi(\varepsilon t)\right)\right)$$

LEMA

Ako $h_n(\varepsilon) \to g(\varepsilon)$ za svaki $\varepsilon > 0$ i $\lim_{\varepsilon \to 0} g(\varepsilon) = g(0)$, tada postoji niz $(\varepsilon_n)_{n \in \mathbb{N}}, \varepsilon_n \to 0$ t. d. $h_n(\varepsilon_n) \to g(0)$.

Dokaz

Neka je N_m odabran t. d. $\left|h_n\left(\frac{1}{m}\right)-g\left(\frac{1}{m}\right)\right|\leq \frac{1}{m}, \forall n\geq N_m$ i neka je $m\mapsto N_m$ rastuća. Neka je

$$\varepsilon_n := \begin{cases} \frac{1}{m}, & N_m \le n \le N_{m+1}, \\ 1, & n < N_1. \end{cases}$$

$$\Rightarrow |h_n(\varepsilon_n) - g(0)| \le \left| h_n\left(\frac{1}{m}\right) - g\left(\frac{1}{m}\right) \right| + \left| g\left(\frac{1}{m}\right) - g(0) \right| \le \frac{1}{m} + \left| g\left(\frac{1}{m}\right) - g(0) \right|.$$

Kad $n\to\infty, m\to\infty$ i rezultat slijedi.

Neka je sada $h_n(\varepsilon) = \mathbb{E}\left[\frac{it\hat{S}_n(\varepsilon)}{n^{1/\alpha}}\right]$ i $g(\varepsilon) = \exp\left(-\varepsilon^{-\alpha}\left(1-\varphi(\varepsilon t)\right)\right)$. Budući da je $1-\varphi(t) \sim C|t|^{\alpha}$ kad $t \to 0$,

$$\lim_{\varepsilon \to 0} g(\varepsilon) = \exp\left(-C|t|^{\alpha}\right).$$

Po prethodnoj lemi, možemo konstruirati niz $(\varepsilon_n)_{n\in\mathbb{N}}, \varepsilon_n \to 0$ t. d. $h_n(\varepsilon_n) \to \exp\left(-C|t|^{\alpha}\right)$. Ako je Y slučajna varijabla t. d. $\mathbb{E}\left[e^{itY}\right] = \exp\left(-C|t|^{\alpha}\right)$, slijedi da $\frac{\hat{S}_n(\varepsilon_n)}{n^{1/\alpha}} \stackrel{\mathcal{D}}{\longrightarrow} Y$. Ako $\varepsilon_n \to 0$, tada $(***) \Rightarrow \frac{\bar{S}_n(\varepsilon_n)}{n^{1/\alpha}} \stackrel{\mathcal{D}}{\longrightarrow} 0$.

45 Predavanje 30. rujna 2024. (dio)

Uzmimo [a,b] = [-3,3]. Pretpostavimo suprotno, tj., da postoji funkcija sa svojstvima (i), (ii), (iv), (iv). $(ii) \Rightarrow [B \subseteq C \Rightarrow \mathbb{P}(B) \leq \mathbb{P}(C).]$ Na [-1,1], definiramo relaciju \sim :

$$t_1 \sim t_2 :\Leftrightarrow t_1 - t_2 \in \mathbb{Q}.$$

Po aksiomu izbora, postoji $A \subseteq [-1,1]$ t. d. je skup $A \cap [x]$ jednočlan $\forall x \in [-1,1]$. Označimo $\mathbb{Q} \cap [-2,2] = \{q_i\}_{i \in \mathbb{N}}$. Za svaki $i \in \mathbb{N}$, definirajmo $A_i := q_i + A$. Tvrdimo da $i \neq j \Rightarrow A_i \cap A_j = \emptyset$. Pretpostavimo suprotno: postoji $a \in A_i \cap A_j$. Tada postoje $a_1, a_2 \in A, a_1 \neq a_2$ t. d. je $q_1 + a_1 = a = q_2 + a_2 \Rightarrow a_2 - a_1 = q_1 - q_2 \in \mathbb{Q} \Rightarrow a_1 \sim a_2$, kontradikcija! Dakle, $A_i \cap A_j = \emptyset, \forall i \neq j$. Zbog invarijantnosti na translacije,

$$1 \ge \mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A) = \mathbb{P}(A) \sum_{n=1}^{\infty} 1 \Rightarrow \mathbb{P}(A) = 0.$$

S druge strane, $A_i\subseteq [-3,3]\Rightarrow\bigcup_{i=1}^nA_i\subseteq [-3,3].$ Neka je $x\in [-1,1]$ proizvoljan. Tada je $A\cap [x]=a_x\Rightarrow x-a_x=q_x\in\mathbb{Q},$ no, $x,a_x\in [-1,1]\Rightarrow q_x\in [-2,2]$ pa postoji $i\in\mathbb{N}, q_x=q_i\overset{a_x\in A}{\Rightarrow}x=q_i+a_x\in A_i,$ dakle $[-1,1]\subseteq\bigcup_{n=1}^\infty A_n,$ a potom $0\geq\mathbb{P}(\bigcup_{n=1}^\infty A_n)\geq\mathbb{P}([-1,1])\geq 0\Rightarrow\mathbb{P}([-1,1])=0\neq\frac{1-(-1)}{3-(-3)},$ kontradikcija.

46 Predavanje 1. listopada 2024.

Neka je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor. Navodimo 8 važnih svojstava funkcije $\mathbb{P}: \mathcal{F} \to [0, 1]$.

- (i) $\mathbb{P}(\emptyset) = 0$.
- (ii) konačna aditivnost

Neka je $(A_i)_{i=1}^n \subseteq \mathcal{F}$ niz međusobno disjunktnih skupova. Tada je $\mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i)$ (za ovo je ključno $\mathbb{P}(\emptyset) = 0 \& \sigma$ -aditivnost)

(iii) monotonost:

$$A,B\in\mathcal{F},A\subseteq B\Rightarrow\mathbb{P}(A)\leq\mathbb{P}(B)$$
 (konačna aditivnost+ $B=A\cup(B\setminus A)$)

(iv) neprekidnost na rastuće događaje:

$$A_1 \subseteq A_2 \subseteq \cdots \Rightarrow \mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

(v) neprekidnost na padajuće događaje:

$$A_1 \supseteq A_2 \supseteq \cdots \Rightarrow \mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

(vi) σ -poluaditivnost:

$$(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{F}\Rightarrow\mathbb{P}\left(\bigcup_{n=1}^{\infty}A_n\right)\leq\sum_{n=1}^{\infty}\mathbb{P}(A_n).$$

(vii) formula uključivanja i isključivanja:

npr.
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
.

- (viii) $A \in \mathcal{F} \Rightarrow \mathbb{P}(A^c)$
- **NAPOMENA**

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < +\infty \Rightarrow \mathbb{P}\left(\overline{\lim}_n A_n\right) = 0.$$

Pretpostavimo li dodatno i **nezavisnost** događaja, vrijedi i više:

Neka je $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{F}$ niz **nezavisnih** događaja. Tada vrijedi Borelov zakon 0-1:

$$\mathbb{P}\left(\overline{\lim_{n}}A_{n}\right) = \begin{cases} 0, & \text{ako je } \sum_{n=1}^{\infty}\mathbb{P}(A_{n}) < \infty \\ 1, & \text{ako je } \sum_{n=1}^{\infty}\mathbb{P}(A_{n}) = \infty. \end{cases}$$

PROPOZICIJA

Neka je (Ω, \mathcal{F}) izmjeriv prostor i $\mathbb{P}: \mathcal{F} \to [0, 1]$ konačno aditivna funkcija. Tada je \mathbb{P} vjerojatnost \Leftrightarrow $[(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{F},A_1\supseteq A_2\supseteq\cdots,\bigcap_{n=1}^\infty A_n=\emptyset\Rightarrow\lim_{n\to\infty}\mathbb{P}(A_n)=0].$

Oznake:

 $\operatorname{Za}(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{F},$

$$\overline{\lim_{n}} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}$$
$$\underline{\lim_{n}} A_{n} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}.$$

$$\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Vidimo da je $\underline{\lim}_n A_n \subseteq \overline{\lim}_n A_n$.

PROPOZICIJA

Neka su $S_1, S_2 \neq \emptyset$ i $h: S_1 \rightarrow S_2$.

- (i) Ako je S_2 σ -algebra na S_2 , tada je $h^{-1}(S_2)$ σ -algebra na S_1 .
- (ii) Ako je S_1 σ -algebra na S_1 , tada je familija $\mathcal{H} := \{E \subseteq S_2 \mid h^{-1}(E) \in S_1\}$ σ -algebra na S_2 .

Dokaz.

- (i) $\square S_1 = h^{-1}(S_2) \in h^{-1}(S_2) \Rightarrow S_2 \in S_2.$
 - □ Neka je $A \in h^{-1}(\mathcal{S}_2)$. Tada postoji $E \in \mathcal{S}_2$ t. d. je $A = h^{-1}(E) \Rightarrow A^c = (h^{-1}(E))^c = h^{-1}(E^c) \in h^{-1}(\mathcal{S}_2) \Rightarrow E^c \in \mathcal{S}_2$.
 - \square Neka je $(A_n)_{n\in\mathbb{N}}\subseteq h^{-1}(\mathcal{S}_2)$. Tada,

$$\forall n \in \mathbb{N}, \exists E_n \in \mathcal{S}_2, A_n = h^{-1}(E_n) \Rightarrow \bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} h^{-1}(E_n)$$
$$= h^{-1} \left(\bigcup_{n \in \mathbb{N}} E_n \right) \in h^{-1}(\mathcal{S}_2) \Rightarrow \bigcup_{n \in \mathbb{N}} E_n \in \mathcal{S}_2$$

- (ii) $\square h^{-1}(S_2) = S_1 \in S_1 \Rightarrow S_2 \in \mathcal{H}$
 - □ Neka je $E \in \mathcal{H}$. $\Rightarrow h^{-1}(E^c) = (h^{-1}(E))^c \in \mathcal{S}_1$, a \mathcal{S}_1 je σ -algebra te $h^{-1}(E) \in \mathcal{H}$ po pretpostavci. Dakle, $E^c \in \mathcal{H}$.
 - \square Neka je $(E_n)_{n\in\mathbb{N}}\subseteq\mathcal{H}$. $\Rightarrow \forall n\in\mathbb{N}, h^{-1}(E_n)\in\mathcal{S}_1\Rightarrow h^{-1}\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\bigcup_{n\in\mathbb{N}}h^{-1}(E_n)\in\mathcal{S}_1$

TEOREM

Neka su $S_1, S_2 \neq \emptyset, A_2 \subseteq \mathcal{P}(S_2)$ i $h: S_1 \to S_2$. Tada vrijedi $\sigma\left(h^{-1}(A_2)\right) = h^{-1}\left(\sigma(A)\right)$.

Dokaz.

 \subseteq : Primijetimo da, koristeći činjenicu da je $h^{-1}(\sigma(A_2))$ σ -algebra,

$$\mathcal{A}_2 \subseteq \sigma(\mathcal{A}_2) \Rightarrow h^{-1}(\mathcal{A}_2) \subseteq h^{-1}(\sigma(\mathcal{A}_2)) \Rightarrow \sigma(h^{-1}(\mathcal{A}_2)) \subseteq h^{-1}(\sigma(\mathcal{A}_2)).$$

 \supseteq : Po prethodnoj propoziciji, familija $\mathcal{H} := \{E \subseteq S_2 \mid h^{-1}(E) \in \sigma(h^{-1}(\mathcal{A}_2))\}$ je σ -algebra na S_2 . Isto tako, iz definicije je očito $h^{-1}(\mathcal{H}) \subseteq \sigma(h^{-1}(\mathcal{A}_2))$. Nadalje, $\forall A \in \mathcal{A}_2, h^{-1}(A) \in h^{-1}(\mathcal{A}_2) \subseteq \sigma(h^{-1}(\mathcal{A}_2))$.

Dakle, $A \subseteq S_2$ & $h^{-1}(A) \in \sigma(h^{-1}(A_2)) \Rightarrow A \in \mathcal{H} \Rightarrow A_2 \subseteq \mathcal{H}$, a kako je \mathcal{H} σ -algebra, to je $\sigma(A_2) \subseteq \mathcal{H}$, a onda i $h^{-1}(\sigma(A_2)) \subseteq h^{-1}(\mathcal{H}) \subseteq \sigma(h^{-1}(A_2))$

DEFINICIJA

Neka su $(\Omega_1, \mathcal{F}_1)$ i $(\Omega_2, \mathcal{F}_2)$ izmjerivi prostori. Funkcija $g: \Omega_1 \to \Omega_2$ je izmjeriva u paru σ -algebri $(\mathcal{F}_1, \mathcal{F}_2)$ ako je $g^{-1}(\mathcal{F}_2) \subseteq \mathcal{F}_1$.

Neka su $(\Omega_1, \mathcal{F}_1), (\Omega_2, \mathcal{F}_2)$ i $(\Omega_3, \mathcal{F}_3)$ izmjerivi prostori te $f: \Omega_1 \to \Omega_2$ i $g: \Omega_2 \to \Omega_3$ redom $(\mathcal{F}_1, \mathcal{F}_2)$ i $(\mathcal{F}_2, \mathcal{F}_3)$ -izmjerive funkcije. Tada je $(g \circ f)$ $(\mathcal{F}_1, \mathcal{F}_3)$ -izmjeriva funkcija.

Dokaz.

$$(g \circ f)^{-1}(\mathcal{F}_3) = f^{-1}(g^{-1}(\mathcal{F}_3)) \subseteq f^{-1}(\mathcal{F}_2) \subseteq \mathcal{F}_1.$$

Ako je $\mathcal{G} \subseteq \mathcal{F}_2$, $\sigma(\mathcal{G}) = \mathcal{F}_2$, odnosno, \mathcal{G} je generirajuća familija za \mathcal{F}_2 , tada je

$$f^{-1}(\mathcal{F}_2) = f^{-1}(\sigma(\mathcal{G})) = \sigma(f^{-1}(\mathcal{G})) \subseteq \sigma(f^{-1}(\mathcal{F}_2)) \subseteq \sigma(\mathcal{F}_1) = \mathcal{F}_1.$$

DEFINICIJA

Neka su $(\Omega_1, \mathcal{F}_1)$ i $(\Omega_2, \mathcal{F}_2)$ izmjerivi prostori. Promotrimo skup $\Omega_1 \times \Omega_2$ i definirajmo familiju

 $\mathcal{G} := \{E_1 \times E_2 \mid E_1 \in \mathcal{F}_1, E_2 \in \mathcal{F}_2\}.$ Definiramo produktnu σ -algebru na $\Omega_1 \times \Omega_2 \mathcal{F}_1 \otimes \mathcal{F}_2 := \sigma(\mathcal{G}).$

Ako je $S \neq \emptyset, (\Omega, \mathcal{F})$ izmjeriv prostor i $h: S \to \Omega$, tada je $h^{-1}(\mathcal{F})$ najmanja σ -algebra na S s ozirom na koju je h-izmjeriva u odnosu \mathcal{F} .

Promotrimo projekcije $\pi_i: \Omega_1 \times \Omega_2 \to \Omega_i, i = 1, 2.$ $\pi_1^{-1}(\mathcal{F}_1) = \{E_1 \times \Omega_2 \mid E_1 \in \mathcal{F}_1\}.$ Isto tako, $(E_1 \times \Omega_2) \cap (\Omega_1 \times E_2) = E_1 \times E_2$ odakle slijedi da je $\mathcal{F}_1 \otimes \mathcal{F}_2$ najmanja σ -algebra u odnosu na koju su π_1 i π_2 izmjerive.

Neka je $(\Omega, \mathcal{F}, \mathbb{P})$ vjerojatnosni prostor i (X, \mathcal{U}) topološki prostor. Definiramo $B_{\mathbb{R}} := \sigma(\mathcal{U})$.

Neka su (X_1,\mathcal{U}_1) i (X_2,\mathcal{U}_2) topološki prostori. $g:X_1\to X_2$ je Borelova ako je izmjeriva u paru σ -algebri (B_{X_1},B_{X_2}) , $B_{X_1}=\sigma(\mathcal{U}_1)$, $B_{X_2}=\sigma(\mathcal{U}_2)$.

Svaka neprekidna funkcija $X_1 \to X_2$ ujedno je i Borelova. Naime, ako je f neprekidna, onda je $f^{-1}(\mathcal{U}_2) \subseteq \mathcal{U}_1$ te je

$$g\left(B_{X_2}\right) = g^{-1}(\sigma(\mathcal{U}_2)) = \sigma\left(g^{-1}(\mathcal{U}_2)\right) \subseteq \sigma\left(\mathcal{U}_1\right) = B_{X_1}$$

DEFINICIJA

Neka je $f: \Omega \to X$. Kažemo da je f X-vrijednosni slučajni element ako je f izmjeriva u paru $(\mathcal{F}, \sigma(\mathcal{U})) = (\mathcal{F}, B_{\mathbb{R}})$.

Neka je \mathcal{G} bilo koja generirajuća familija za B_X , tj., $\sigma(G) = B_X$. Tada je f X-vrijednosni slučajni element $\Leftrightarrow f^{-1}(\mathcal{G}) \subset \mathcal{F}$.

Također, za G možemo uzeti \mathcal{U} ili $\{A^c \mid A \in \mathcal{U}\}.$

Neka je (Y,V) topološki prostor i $g:X\to Y$. Ako je f slučajni element, a g Borelova, $g\circ f$ je X-vrijednosni slučajni element.

Ako je

- $X = \mathbb{R}$ s euklidskom topologijom, \mathbb{R} -vrijednosni slučajni element naziva se slučajna varijabla (ako je $X = \overline{\mathbb{R}}$ govorimo o **proširenoj** slučajnoj varijabli)
- $ightharpoonup X=\mathbb{R}^n$ s euklidskom topologijom, \mathbb{R}^n -vrijednosni slučajni element naziva se slučajni vektor.
- $ightharpoonup X = \mathbb{C}$ govorimo o kompleksnoj slučajnoj varijabli.

Primjeri generirajućih familija za $B_{\mathbb{R}}$:

- (a) otvoreni skupovi
- (b) $\{\langle a, b \rangle \mid a < b, a, b \in \mathbb{Q}\}$
- (c) $\{\langle -\infty, x | | x \in \mathbb{R} \}$ i sl.

Prebacimo se na \mathbb{R}^n . Zbog separabilnosti, znamo da vrijedi

$$B_{\mathbb{R}^n} = \underbrace{B_{\mathbb{R}} \oplus \cdots \oplus B_{\mathbb{R}}}_{n \text{ puta}}.$$

Neka je $(f_1, \ldots, f_n): \Omega \to \mathbb{R}^n$. (f_1, \ldots, f_n) je slučajni vektor $\Leftrightarrow f_i$ je slučajna varijabla $\forall i \in \{1, \ldots, n\}$. $(Uputa \ za \ jedan \ smjer: \ f_i = \pi_i \circ (f_1, \ldots, f_n), \ \pi_i$ je Borelova, (f_1, \ldots, f_n) je slučajni element).

⁴⁴Zadatak 2.29., 8. str. vježbe

47 Predavanje 14. listopada 2024.

Dokaz svojstava funkcije distribucije F_X slučajne varijable $X:\Omega\to\mathbb{R}$ na $(\Omega,\mathcal{F},\mathbb{P})$

- (i) $F_X: \mathbb{R} \to [0,1]$
- (ii) F_X je neopadajuća:

Neka su $a_1, a_2 \in \mathbb{R}, a_1 \leq a_2$ proizvoljni. Tada:

$$\langle -\infty, a_1] \subseteq \langle -\infty, a_2 |$$

$$\Rightarrow X^{-1} (\langle -\infty, a_1]) \subseteq X^{-1} (\langle -\infty, a_2])$$

$$\Rightarrow \{ X \le a_1 \} \subseteq \{ X \le a_2 \}$$

$$\Rightarrow \underbrace{\mathbb{P}(X \le a_1)}_{F_X(a_1)} \le \underbrace{\mathbb{P}(X \le a_2)}_{F_X(a_2)}.$$

Dakle, F_X je neopadajuća.

(iii) F_X je neprekidna zdesna:

Neka su $a \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \subset \mathbb{R}, a_1 \geq a_2 \geq \cdots, a_n \searrow a$ proizvoljni. Tada

$$\langle -\infty, a_1] \supseteq \langle -\infty, a_2] \supseteq \cdots \supseteq \langle -\infty, a]$$

$$y \in \bigcap_{n \in \mathbb{N}} \langle -\infty, a_n] \Rightarrow y \le a_n, \forall n \in \mathbb{N}$$

$$\Rightarrow y \le a \Rightarrow y \in \langle -\infty, a]$$

$$\Rightarrow \bigcap_{n \in \mathbb{N}} \langle -\infty, a_n] = \langle -\infty, a]$$

$$\Rightarrow \bigcap_{n \in \mathbb{N}} X^{-1} (\langle -\infty, a_n]) = X^{-1} (\langle -\infty, a])$$
The prekidnost erojatnostic erojatnostic solution.

 $\overset{\text{vjerojatnosti}}{\Rightarrow} \underbrace{= \mathbb{P}\left(\bigcap_{n \in \mathbb{N}} X^{-1}\left(\langle -\infty, a_n \right]\right)}_{F_X(a)} = \lim_{n \to \infty} \underbrace{\mathbb{P}\left(X^{-1}\left(\langle -\infty, a_n \right]\right)\right)}_{F_X(a)}$

$$\Rightarrow F_X(a) = \lim_{x \searrow a} F_X(x).$$

Dakle, F_X je neprekidna zdesna.

(iv) $\lim_{x \to \infty} F_X(x) = 0$:

Neka je niz $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}, a_1\geq a_2\geq\cdots, a_n\searrow-\infty$ proizvoljan. Tada

$$\langle -\infty, a_1] \supseteq \langle -\infty, a_2] \supseteq \cdots$$

$$y \in \bigcap_{n \in \mathbb{N}} \langle -\infty, a_n] \Rightarrow y_n \leq a_n, \forall n \in \mathbb{N} \Rightarrow y \leq -\infty \Rightarrow y \notin \mathbb{R}, \text{ kontradikcija!}$$

$$\Rightarrow \bigcap_{n \in \mathbb{N}} \langle -\infty, a_n] = \emptyset$$

$$\Rightarrow \bigcap_{n \in \mathbb{N}} X^{-1} \langle -\infty, a_n]) = \emptyset$$

neprekidnost vjerojatnosti će događaje

$$\lim_{n \to \infty} \underbrace{\mathbb{P}\left(X^{-1}\left(\langle -\infty, a_n]\right)\right)}_{=F_X(a_n)} = \mathbb{P}(\emptyset) = 0.$$

$$\Rightarrow \lim_{x \to -\infty} F_X(x) = 0.$$

Kraće pišemo $F_X(-\infty) = 0$.

(v)
$$\lim_{x\to+\infty}F_X(x)=1$$
:
Neka je niz $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}, a_1\leq a_2\leq\cdots\leq a_n\nearrow+\infty$ proizvoljan. Tada

$$\langle -\infty, a_1] \subseteq \langle -\infty, a_2] \subseteq \cdots$$

$$\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x \leq a_n \Rightarrow x \in \bigcup_{n \in \mathbb{N}} \langle -\infty, a_n]$$

$$\Rightarrow \mathbb{R} = \bigcup_{n \in \mathbb{N}} \langle -\infty, a_n]$$

$$\Rightarrow X^{-1}(\mathbb{R}) = \bigcup_{n \in \mathbb{N}} X^{-1} (\langle -\infty, a_n])$$

neprekidnost vjerojatnosti na rastuće događaje
$$= \underbrace{\mathbb{P}\left(X^{-1}(\mathbb{R})\right)}_{=\mathbb{P}(\Omega)=1} = \lim_{n \to \infty} \underbrace{\mathbb{P}\left(X^{-1}\left(\langle -\infty, a_n]\right)\right)}_{=F_X(a_n)}$$

$$\Rightarrow \lim_{n \to \infty} F_X(x) = 1.$$

Kraće pišemo $F_X(+\infty) = 1$.

(vi) Ako funkcija F_X ima limes slijeva u svakoj točki, tj., $\forall a \in \mathbb{R}, \exists \lim_{x \to a^-} F_X(x)$, označit ćemo ga s $F_X(a^-)$. Slično, $\lim_{x \to a^+} F_X(x) = F(a^+)$.

Neka je $a \in \mathbb{R}$ i $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ proizvoljan rastuć niz t. d. $a_n < a, \forall n \in \mathbb{N}$ i $a_n \nearrow a$.

$$F_X(a^-) = \lim_{n \to \infty} F_X(a_n)$$

$$a_n < a, \forall n \in \mathbb{N} \Rightarrow F_X(a_n) \le F_X(a), \forall n \in \mathbb{N}$$

$$\Rightarrow F_X(a^-) \le F_X(a) = F_X(a^+) \text{ (neprekidnost zdesna)}.$$

Posebno, F_X je neprekidna u $a \Leftrightarrow F_X(a^-) = F_X(a)$.

Može se desiti da F_X ima prekid u a, ali to onda mora biti prekid 1. vrste i tada je $F_X(a) > F_X(a^-)$. Za isti niz $(a_n)_{n \in \mathbb{N}}$ i a kao gore,

$$x \in \langle -\infty, a \rangle \Leftrightarrow x < a \Leftrightarrow \exists n \in \mathbb{N}, x \leq a_n < a$$

$$\bigcup_{n \in \mathbb{N}} \langle -\infty, a_n] = \langle -\infty, a \rangle$$

$$\Rightarrow \bigcup_{n \in \mathbb{N}} X^{-1} (\langle -\infty, a_n]) = X^{-1} (\langle -\infty, a \rangle)$$

$$\Rightarrow \lim_{n \to \infty} F_X(a_n) = \mathbb{P}(X < a)$$

$$\Rightarrow F_X(a^-) = \mathbb{P}(X < a)$$

$$F_X(a) = \mathbb{P}(X \leq a)$$

$$F_X(a) - F_X(a^-) = \mathbb{P}(X \leq a) - \mathbb{P}(X < a)$$

$$= \mathbb{P}(\{X \leq a\} \setminus \{X < a\})$$

$$= \mathbb{P}(X = a)$$

Funkcija F_X ima prekid u $a \in \mathbb{R} \Leftrightarrow \mathbb{P}(X = a) > 0$.

Intervali skokova disjunktni su zbog monotonosti, ali svaki interval sadrži racionalan broj stoga: Ako je X slučajna varijabla, skup $D(F_X) = \{a \in \mathbb{R} \mid \mathbb{P}(X = a) > 0\}$ je najviše prebrojiv.

48 Predavanje 15. listopada 2024.

Prisjetimo se: X slučajna varijabla $\to \mathbb{P}_X$ vjerojatnost na $(\mathbb{R}, B_{\mathbb{R}}) \to F_X$ Kažemo da su dvije slučajne varijable X i Y jednako distribuirane i pišemo $X \sim Y$ ako je $\mathbb{P}_X = \mathbb{P}_Y$. Očito, $\mathbb{P}_X = \mathbb{P}_Y \Rightarrow F_X = F_Y$, no, vrijedi li obrat? DA!

TEOREM

Ako su X i Y slučajne varijable, ne nužno na istom vjerojatnosnom prostoru, t. d. je $F_X = F_Y$, tada je $\mathbb{P}_X = \mathbb{P}_Y$.

Pretpostavimo da vrijedi $F_X = F_Y$. Tada za svaki poluotvoreni interval (a, b], vrijedi

$$\mathbb{P}_X\left(\langle a,b]\right) = F_X(b) - F_X(a) = F_Y(b) - F_Y(a) = \mathbb{P}_Y\left(\langle a,b]\right).$$

Dakle, inducirane vjerojatnosti \mathbb{P}_X i \mathbb{P}_Y podudaraju se na svim poluotvorenim intervalima. Primijetimo da je, za $a,b,c,d\in\mathbb{R},a< b,c< d$

$$\langle a, b \rangle \cap \langle c, d \rangle = \begin{cases} \emptyset \\ \text{poluotvoren interval} \end{cases}$$

pa je klasa $\{\emptyset\} \cup \{\langle a,b] \mid a,b \in \mathbb{R}, a < b]\}$ zatvorena na **konačne presjeke**, što je svojstvo bitno za naš teorem.

DEFINICIJA

Neka je $\emptyset \neq \Omega, \emptyset \neq \mathcal{C} \subseteq \mathcal{P}(\Omega)$. Reći ćemo da je \mathcal{C} π -sustav (ili π -klasa) ako $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$.

NAPOMENA

 π -sustav ne mora sadržavati \emptyset . Ako u $\mathcal C$ postoje barem dva disjunktna skupa, tada $\mathcal C$ mora sadržavati \emptyset .

Zanimaju nas minimalne pretpostavke kako bismo, s **konačnih** operacija, prešli na **prebrojive** operacije.

DEFINICIJA

Neka je $\Omega \neq \emptyset$ i $\mathscr{D} \subseteq \mathcal{P}(\Omega)$. Reći ćemo da je \mathscr{D} Dynkinova klasa ako vrijedi:

- (i) $\Omega \in \mathscr{D}$
- (ii) $A, B \in \mathcal{D}$ i $A \subseteq B \Rightarrow B \setminus A \in \mathcal{D}$
- (iii)ako je $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{D}$ i $A_1\subseteq A_2\subseteq\cdots$, tada je i $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{D}.$

LEMA

Ako je ${\mathcal D}$
π-sustav i Dynkinova klasa, tada je ${\mathcal D}$
 $\sigma\text{-algebra}.$

Dokaz.

Neka je $(A_n)_{n\in\mathbb{N}}\subseteq \mathscr{D}$ proizvoljan niz. Neka je $B_n:=\bigcup_{k=1}^n A_k$. Budući da je \mathscr{D} π -sustav, zatvorena je na konačne presjeke, a kako je i Dynkinova klasa, $\Omega\in\mathscr{D}$ i svojstvo (ii) povlače da je zatvorena na komplementiranje. Vidimo da je

$$B_{\mathbf{n}}^{\ c} = \left(\bigcap_{k=1}^n A_k^c\right)^c \in \mathscr{D} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n \overset{(iii)}{\in} \mathscr{D}.$$

Budući da je i $\mathcal{P}(\Omega)$ Dynkinova klasa, neprazna je familija Dynkinovih klasa koje sadrže \mathcal{E} . Definiramo \mathscr{D} kao najmanju Dynkinovu klasu koja sadrži \mathcal{E} .

Pokazat ćemo: ako je $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ π -sustav, onda je to i $\mathcal{D}(\mathcal{C})$.

TEOREM

Ako je $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ π -sustav, tada je $\mathscr{D}(\mathcal{C}) = \sigma(\mathcal{C})$.

Dokaz.

Svaka je σ -algebra Dynkinova klasa pa je, posebno, $\mathscr{D}(\mathcal{C}) \subseteq \sigma(\mathcal{C})$. Dovoljno je dokazati da je $\mathscr{D}(\mathcal{C})$ σ algebra kako bismo zaključili da je i $\sigma(\mathcal{C}) \subseteq \mathcal{D}(\mathcal{C})$. No, kako je $\mathcal{D}(\mathcal{C})$ Dynkinova klasa, po prethodnoj lemi, dovoljno je dokazati da je $\mathcal{D}(\mathcal{C})$ π -sustav, tj., da

$$A, B \in \mathcal{D}(\mathcal{C}) \Rightarrow A \cap B \in \mathcal{D}(\mathcal{C}).$$

Definirajmo familiju

$$\mathscr{D}_1 := \{ A \in \mathscr{D}(\mathcal{C}) \mid A \cap B \in \mathscr{D}(\mathcal{C}), \forall B \in \mathcal{C} \}.$$

Očito je $\mathscr{D}_1 \subseteq \mathscr{D}(\mathcal{C})$ Neka je $A \in \mathcal{C}$. Budući da je \mathcal{C} π -sustav, $A \cap B \in \mathcal{C}, \forall B \in \mathcal{C} \Rightarrow C \subseteq \mathscr{D}_1$. Tvrdimo da je \mathscr{D}_1 Dynkinova klasa jer će tada slijediti i $\mathscr{D}(\mathcal{C}) \subseteq \mathscr{D}_1$, dakle $\mathscr{D}_1 = \mathscr{D}(\mathcal{C})$.

(i) $\Omega \cap B = B, \forall B \in \mathcal{C} \Rightarrow \Omega \in \mathcal{D}_1 \checkmark$

 $B_1 \cap B \in \mathcal{D}(\mathcal{C})$

- $(ii) \text{ Neka su } B_1, B_2 \in \mathcal{D}_1, B_1 \subseteq B_2, B \in \mathcal{C}. \text{ Tada } (B_2 \backslash B_1) \cap B = (B_2 \cap B) \backslash (B_1 \cap B) \overset{2.\text{svojstvo za } \mathscr{D}(\mathcal{C})}{\in} \mathscr{D}(\mathcal{C})$
- $\begin{array}{l} (iii) \ \ \mathrm{Neka} \ \mathrm{je} \ (A_n)_{n \in \mathbb{N}} \subseteq \mathscr{D}_1, A_1 \subseteq A_2 \subseteq , B \in \mathcal{C}. \ \mathrm{Za} \ \mathrm{svaki} \ n \in \mathbb{N}, \ A_n \cap B \in \mathscr{D}(\mathcal{C}) \ \mathrm{i} \ (A_n \cap B)_{n \in \mathbb{N}} \ \mathrm{je} \ \mathrm{rastu\acute{c}i} \\ \mathrm{niz} \ \mathrm{u} \ \mathscr{D}(\mathcal{C}). \ \stackrel{(iii)}{\Rightarrow} \stackrel{\mathrm{za}}{\Rightarrow} \mathscr{D}(\mathcal{C}) \ \Big(\bigcup_{n \in \mathbb{N}} A_n \cap B\Big) = \bigcup_{n \in \mathbb{N}} (A_n \cap B) \in \mathscr{D}(\mathcal{C}) \ \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathscr{D}_1 \checkmark \end{array}$

Po definiciji, \mathcal{D}_1 je Dynkinova klasa. Dakle,

$$(\forall A \in \mathcal{D}(\mathcal{C}))(\forall B \in \mathcal{C}), A \cap B \in \mathcal{D}(\mathcal{C}).$$
 (©)

Definirajmo sada

$$\mathcal{D}_2 := \{ A \in \mathcal{D}(\mathcal{C}) \mid A \cap B \in \mathcal{D}(\mathcal{C}), \forall B \in \mathcal{D}(\mathcal{C}) \}$$

Očito je $\mathscr{D}_2 \subseteq \mathscr{D}(\mathcal{C})$. Neka je $A \in \mathcal{C}$ i $B \in \mathscr{D}(\mathcal{C})$. Iz (©) vidimo da je $A \cap B \in \mathscr{D}(\mathcal{C})$ pa je $A \in \mathscr{D}_2$. Dovoljno je još dokazati da je \mathcal{D}_2 Dynkinova klasa (analogno kao za \mathcal{D}_1). \mathcal{D}_2 je Dynkinova klasa $\Rightarrow \mathcal{D}_2 = \mathcal{D}(\mathcal{C}) \Rightarrow \mathcal{D}(\mathcal{C})$ je π -sustav.

TEOREM

Neka je (Ω, \mathcal{F}) izmjeriv prostor sa svojstvom $\sigma(\mathcal{C}) = \mathcal{F}$. Ako su P i Q vjerojatnosne mjere na (Ω, \mathcal{F}) , tada je

$$P = Q \Leftrightarrow P \mid_{\mathcal{C}} = Q \mid_{\mathcal{C}}.$$

Dokaz.

 \Rightarrow : Očito.

 $\ \ \, \Leftarrow : \ \, \text{Definirajmo klasu} \,\, \mathscr{D} := \, \{A \in \underbrace{\mathcal{F}}_{\sigma(\mathcal{C})} \mid \, P(A) \, = \, Q(A) \}. \,\, \text{Vidimo da je} \,\, \mathscr{D} \subseteq \mathcal{F}, \,\, \text{a} \,\, \mathcal{C} \subseteq \mathscr{D} \,\, \text{zbog}$ pretpostavke $P\mid_{\mathcal{C}}=Q\mid_{\mathcal{C}}$. Tvrdimo da je \mathscr{D} Dynkinova klasa.

(i) $P(\Omega) = 1 = Q(\Omega) \Rightarrow \Omega \in \mathscr{D} \checkmark$

$$(ii) \ A, B \in \mathscr{D}, A \subseteq B \Rightarrow P(B \setminus A) = P(B) - P(A) = Q(B) - Q(A) = Q(B \setminus A) \Rightarrow B \setminus A \in \mathscr{D} \checkmark$$

(iii) Neka je $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{D}, A_1\subseteq A_2\subseteq\cdots$. Tada je

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\lim_{n\to\infty}P(A_n)=\lim_{n\to\infty}Q(A_n)=Q\left(\bigcup_{n\in\mathbb{N}}A_n\right)\Rightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathscr{D}\checkmark$$

Dakle, $\mathcal{C} \subseteq \mathcal{D}$ i \mathcal{D} je Dynkinova klasa pa je, po definiciji, $\mathcal{D}(\mathcal{C}) \subseteq \mathcal{D}$. S druge strane, po pretpostavci je \mathcal{C} π -sustav pa je, po prethodnom teoremu, $\mathscr{D}(\mathcal{C}) = \sigma(\mathcal{C}) = \mathcal{F}$, pa je, sveukupno,

$$\mathcal{F} = \sigma(\mathcal{C}) = \mathscr{D}(\mathcal{C}) \subseteq \mathscr{D} \subseteq \mathcal{F} \Rightarrow \mathscr{D} = \mathcal{F}.$$

Dokaz početnog teorema.

 $F_X = F_Y \Leftrightarrow \mathbb{P}_X \mid_{\mathcal{C}} = \mathbb{P}_Y \mid_{\mathcal{C}}, \mathcal{C} = \{\emptyset\} \cup \{\langle a, b] \mid a, b \in \mathbb{R}, a < b\}$. \mathcal{C} je π -sustav i $\sigma(\mathcal{C}) = B_{\mathbb{R}}$ pa je, po prethodnom teoremu, $\mathbb{P}_X = \mathbb{P}_Y$.

$$X \sim Y \Leftrightarrow \mathbb{P}_X = \mathbb{P}_Y \Leftrightarrow F_X = F_Y.$$

Primijetimo i $\langle a, b \rangle = \bigcup_{n \in \mathbb{N}} \langle a, b - \frac{1}{n} \rangle$.

Koje od funkcija jesu funkcije distribucije?

NAPOMENA

Kad imamo mjeru (vjerojatnosnu), nalaženje slučajne varijable s tom mjerom nije problem. Neka je \mathbb{P} vjerojatnosna mjera na $(\mathbb{R}, B_{\mathbb{R}})$. Je li to vjerojatnosna mjera neke slučajne varijable? DA! Uzmimo vjerojatnosni prostor $(\Omega, B_{\mathbb{R}}, \mathbb{P})$ i definirajmo $X : \Omega \to \mathbb{R}$ kao identitetu $X(\omega) := \omega, X : (\mathbb{R}, B_{\mathbb{R}}, \mathbb{P}) \to (\mathbb{R}, B_{\mathbb{R}})$.

$$\mathbb{P}_{X}\left(\langle a,b]\right)=\mathbb{P}\left(X\in\langle a,b]\right)=\mathbb{P}\left(\langle a,b]\right)\Rightarrow\mathbb{P}_{X}=\mathbb{P}.$$

$(\mathbb{R}, B_{\mathbb{R}}, \mathbb{P})$ nazivamo kanonskim vjerojatnosnim prostorom.

Pitanje se svodi na nalaženje funkcija koje mogu generirati vjerojatnosnu mjeru na $(\mathbb{R}, B_{\mathbb{R}})$.

Krenimo od klase funkcija $F: \mathbb{R} \to [0, 1]:$

- (i) F je neopadajuća
- (ii) F je neprekidna zdesna
- (iii) $F(-\infty) = 0$
 - 1. $(iv) F(+\infty) = 1$.

 $\langle a,b] \leadsto \mathbb{P}_F (\langle a,b]) = F(b) - F(a)$. 1. $\Rightarrow \mathbb{P}_F (\langle a,b]) \geq 0$, a $F(\mathbb{R}) \subseteq [0,1] \Rightarrow \mathbb{P}_F (\langle a,b]) \leq 1$. Definiramo $\mathbb{P}(\emptyset) := 0$.

Primijetimo $\langle a, b \rangle \subseteq \langle c, d \rangle \Rightarrow \langle c, d \rangle \setminus \langle a, b \rangle = \langle c, a \rangle \cup \langle b, d \rangle$.

 $\{\emptyset\} \cup \{\langle a, b | \mid a, b \in \mathbb{R}, a < b\}$ je π -sustav (i poluprsten).

DEFINICIJA

Neka je $\Omega \neq \emptyset$ i $\emptyset \neq S \subseteq \mathcal{P}(\Omega)$. Reći ćemo da je S poluprsten (skupova nad Ω) ako vrijedi:

- $(i) A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$
- (ii) $\emptyset \in \mathcal{S}$
- (iii) $A, B \in \mathcal{S}, A \subseteq B, \exists n \in \mathbb{N}, E_1, \dots, E_n \in \mathcal{S}$ međusobno disjunktni t. d. je $B \setminus A = \bigcup_{i=1}^n E_i$.

NAPOMENA

Što ako su $A, B \in \mathcal{S}$, ali $A \nsubseteq B$? Vrijedi li i tada 3. za poluprsten \mathcal{S} ? Da!

$$A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$$
, ali $A \cap B \subseteq B$ i $B \setminus A = B \setminus (A \cap B) = \sum_{i=1}^{n} E_i$ za neki $n \in \mathbb{N}$ i međusobno disjunktne $(E_i)_{i=1}^n \subseteq \mathcal{S}$.

DEFINICIJA

Neka je $\emptyset \neq \Omega, \emptyset \neq \mathcal{C} \subseteq \mathcal{P}(\Omega), \mu : \mathcal{C} \to [0, +\infty)$. Reći ćemo da je μ konačno aditivna ako vrijedi:

- $(i) \mu(\emptyset) = 0$
- (ii) A_1, \ldots, A_n međusobno disjunktni i $\bigcup_{i=1}^n A_i \in \mathcal{C} \Rightarrow \mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$.

DEFINICIJA

Neka je $\Omega \neq \emptyset, \emptyset \neq R \subseteq \mathcal{P}(\Omega)$. Reći ćemo da je R prsten skupova (nad Ω) ako je zatvoren na konačnu upotrebu $\cup, \cap, \setminus, \triangle$ (ne uključuje komplementiranje!!!!!). Može se pokazati da je taj zahtjev ekvivalentan zatvorenosti na konačne unije i skupovne razlike.

PRIMJER

 $\{\emptyset\}, \{\emptyset, A\}$. Možemo promatrati i particije skupa Ω i unije atoma.

PROPOZICIJA

Ako je $\mathcal S$ poluprsten skupova nad Ω , tada je

$$\mathcal{R}(\mathcal{S}) = \left\{ \bigcup_{i=1}^n E_i \mid m \in \mathbb{N}, E_1, \dots, E_m \in \mathcal{S} \text{ međusobno disjunktni} \right\} =: \mathcal{R}.$$

Dokaz.

Očito je $\mathcal{R} \subseteq \mathcal{R}(S)$. Primijetimo da, uzmemo li $m=1, E_1=A$ za proizvoljan $A \in \mathcal{S}$, odmah slijedi $S \subseteq \mathcal{R}$. Dovoljno je dokazati da je \mathcal{R} prsten. Neka su $A, B \in \mathcal{R}$ proizvoljni. Tada postoje $m, n \in \mathbb{N}$, međusobno disjunktni E_1, \ldots, E_m i međusobno disjunktni F_1, \ldots, F_n t. d. je $A = \bigcup_{i=1}^m E_i$ i $B = \bigcup_{j=1}^n F_j$. Definirajmo familiju $G = \{G_{ij} = E_i \cap F_j \mid i = 1, \ldots, m, j = 1, \ldots, n\}$.

 $E_i \cap F_j \subseteq E_i, F_j \Rightarrow G_{ij}$ su međusobno disjunktni, a kako je \mathcal{S} prsten, to je i π -sustav pa je $G \subseteq \mathcal{S}$.

 $E_i \setminus F_j \in \mathcal{S}$ za svaki uređeni par indeksa (i,j), postoje međusobno disjunktni $(H_k(i,j))_{k=1}^{p(i,j)} \subseteq \mathcal{S}$ t. d. je $E_i \setminus F_j = \bigcup_{k=1}^{p(i,j)} H_k(i,j)$. Vidimo

$$E_{i} \setminus B = E_{i} \setminus \left(\bigcup_{j=1}^{n} F_{j}\right) = \bigcap_{j=1}^{n} \left(E_{i} \setminus F_{j}\right)$$

$$= \bigcap_{j=1}^{n} \left(\bigcup_{k=1}^{p(i,j)} H_{k}(i,j)\right)$$

$$= \bigcup_{k_{1}=1}^{p(i,1)} \cdots \bigcup_{k_{n}=1}^{p(i,n)} \left(\bigcap_{j=1}^{n} H_{k_{j}}(i,j)\right)$$

$$= \bigcup_{k_{1}=1}^{p(i,1)} \cdots \bigcup_{k_{n}=1}^{p(i,n)} \left(\bigcap_{j=1}^{n} H_{k_{j}}(i,j)\right)$$

Zaključujemo da je $E_i \setminus B$ konačna unija međusobno disjunktnih skupova iz S. Analogno se pokaže za $F_i \setminus A$ i $B \setminus A$. $\Rightarrow A \setminus B \in \mathcal{R}_{\checkmark}$.

$$A\triangle B = (A \setminus B) \cup (B \setminus A), A \setminus B, B \setminus A \in \mathcal{S}, (A \setminus B) \cap (B \setminus A) = \emptyset \Rightarrow A\triangle B \in \mathcal{R}\checkmark.$$

$$A \cap B = \bigcup_{i=1}^{m} \bigcup_{j=1}^{n} G_{ij} \in \mathcal{R} \checkmark$$

$$A \cup B = (A \triangle B) \cup (A \cap B), A \triangle B, A \cap B \in \mathcal{S}, (A \triangle B) \cap (A \cap B) = \emptyset \Rightarrow A \cup B \in \mathcal{R} \checkmark.$$

Pretpostavimo da imamo konačno aditivnu funkciju $\mu: \mathcal{S} \to [0, +\infty) \leadsto$ imamo jedinstveno proširenje funkcije μ sa \mathcal{S} na $\mathcal{R}(\mathcal{S})$:

$$\tilde{\mu}: \mathcal{R}(S) \to [0, +\infty), A \in \mathcal{R}(S), A = \bigcup_{i=1}^{m} E_m, \tilde{\mu}(A) = \sum_{i=1}^{m} \mu(E_i).$$

 $\tilde{\mu}$ je dobro definirano: zaista, neka su $\bigcup_{i=1}^n E_i^{(1)} = A = \bigcup_{j=1}^m E_m^{(2)}$ dva rastava skupa A iz prethodne propozicije. Tada je

$$E_i^{(1)} = E_i^{(1)} \cap A, \forall i \in \{1, \dots, m\}$$

$$E_j^{(2)} = E_j^{(2)} \cap A, \forall j \in \{1, \dots, n\}$$

$$\begin{split} \sum_{i=1}^{m} \mu\left(E_{i}^{(1)}\right) &= \sum_{i=1}^{m} \mu\left(E_{i}^{(1)} \cap A\right) \\ &= \sum_{i=1}^{m} \mu\left(\bigcup_{j=1}^{n} E_{i}^{(1)} \cap E_{j}^{(2)}\right) \\ &= \sum_{i=1}^{m} \sum_{j=1}^{n} \mu\left(E_{i}^{(1)} \cap E_{j}^{(2)}\right) \\ &= \sum_{j=1}^{n} \sum_{i=1}^{m} \mu\left(E_{j}^{(2)} \cap E_{i}^{(1)}\right) \\ &= \sum_{j=1}^{n} \mu\left(\bigcup_{i=1}^{n} E_{j}^{(2)} \cap E_{i}^{(1)}\right) \\ &= \sum_{j=1}^{n} \mu\left(E_{j}^{(2)} \cap A\right) \\ &= \sum_{i=1}^{n} \mu\left(E_{j}^{(2)}\right) \end{split}$$

Sama definicija funkcije $\tilde{\mu}$ jamči jedinstvenost proširenja.

ZADATAK

Ako je μ σ -aditivna, tada je i $\tilde{\mu}$ σ -aditivna.

Ako imam σ -aditivnu funkciju na **prstenu**, mogu li ju jedinstveno prošriti do σ -aditivne funkcije na σ -prstenu? DA! \leadsto "Caratheodoryjeva konstrukcija"

49 Predavanje 21. listopada 2024.

DEFINICIJA

Neka je $\Omega \neq \emptyset$. Vanjska mjera na Ω jest funkcija $m^*: \mathcal{P}(\Omega) \to [0, +\infty]$ za koju vrijedi:

- (i) $m^*(\emptyset) = 0$.
- (ii) m^* je monotona: $A \subseteq B \subseteq \Omega \Rightarrow m^*(A) \le m^*(B)$.
- (iii) m^* je σ -poluaditivna: $A \subseteq \bigcup_{n \in \mathbb{N}} A_n \Rightarrow m^*(A) \le \sum_{n=1}^{\infty} m^*(A_n)^{45}$

DEFINICIJA

 $B \subseteq \Omega$ je **izmjeriv** ako za svaki $A \subseteq \Omega$, vrijedi

$$m^*(A) = m^*(A \cap B) + m^*(A \cap B^c).$$

Kažemo da B aditivno raščlanjuje sve podskupove skupa Ω .

Definiramo familiju $\mathcal{M}_{m^*} := \{ B \in \Omega \mid B \text{ je izmjeriv } \}$.

TEOREM (Caratheodory)

Ako je m^* vanjska mjera na Ω , tada je \mathcal{M}_{m^*} σ -algebra na Ω i $m^* \mid_{\mathcal{M}_{m^*}}$ je mjera.

DEFINICIJA

Neka je μ σ -aditivna funkcija na prstenu \mathcal{R} . Definirajmo $\mu^* : \mathcal{P}(\Omega) \to [0, +\infty]$,

$$\mu^*(E) := \inf \left\{ \sum_{i=1}^{\infty} \mu(E_i) \mid (E_i)_{i \in \mathbb{N}} \subseteq \mathcal{R}, E \subseteq \bigcup_{i \in \mathbb{N}} E_i \right\}.$$

Primijetimo, ako je $E \in \mathcal{R}$, stavimo li $E_1 := E, E_n := \emptyset, \forall n \geq 2$, slijedi $\mu^*(E) \leq \mu(E)$. S druge strane, kako je μ σ -aditivna na \mathcal{R} , to je i σ -poluaditivna na \mathcal{R} ; neka je $E \in \mathcal{R}, (E_n)_{n \in \mathbb{N}} \subseteq \mathcal{R}, E \subseteq \bigcup_{n \in \mathbb{N}} E_n$. Definirajmo familiju $(F_n)_{n \in \mathbb{N}} \subseteq \mathcal{R}$ međusobno disjunktnih skupova na sljedeći način:

$$F_1 := E_1, F_n = E_n \setminus \left(\bigcup_{i=1}^{n-1} E_i\right), \forall n \ge 2.46$$

Vrijedi

$$\bigcup_{n\in\mathbb{N}} F_n = \bigcup_{n\in\mathbb{N}} E_n \supseteq E \text{ i } F_n \subseteq E_n, \forall n\in\mathbb{N}.$$

$$\mu(E) = \mu\left(\bigcup_{n\in\mathbb{N}} E \cap F_n\right) = \sum_{n=1}^{\infty} \mu(E \cap F_n) \le \sum_{n=1}^{\infty} \mu(F_n) \le \sum_{n=1}^{\infty} \mu(E_n).$$

Stoga je

$$\mu(E) \le \sum_{i=1}^{\infty} \mu(E_i) \Rightarrow \mu(E) \le \mu^*(E).$$

Dakle, $\mu^* \mid_R = \mu$.

Pokažimo da μ^* zaista je vanjska mjera na Ω :

- (i) $\emptyset \in \mathcal{R} \Rightarrow \mu^*(\emptyset) = \mu(\emptyset) = 0$
- (ii) monotonost:

Samo treba uočiti da, u slučaju $A \subseteq B$, treba primijetiti da, $\emptyset \neq S_1 \subseteq S_2 \subseteq \mathbb{R} \Rightarrow \inf S_2 \geq \inf S_1$ $A \subseteq B \subseteq \Omega, B \subseteq \bigcup_{i \in \mathbb{N}} E_i$, gdje je $(E_i)_{i \in \mathbb{N}} \subseteq \mathcal{R}$ proizvoljan takav pokrivač skupa B, $\Rightarrow A \subseteq \bigcup_{i \in \mathbb{N}} E_i \stackrel{\mathrm{DEF}}{\Rightarrow} \mu^*(A) \leq \sum_{i=1}^{\infty} \mu(E_i)$, a sada proizvoljnost pokrivača $(E_i)_{i \in \mathbb{N}}$ povlači $\mu^*(A) \leq \mu^*(B)$.

⁴⁵Primijetimo da je, zbog zahtjeva monotonosti, $\mu^*(A) \leq \mu^* \left(\bigcup_{n \in \mathbb{N}} A_n\right)$, a stavimo li $A := \bigcup_{n \in \mathbb{N}} A_n$, tada točno dobivamo ono što smo nazivali σ-subaditivnošću.

 $^{^{46}}$ Usporedi s dokazom σ -subaditivnosti vjerojatnosti u skripti prof. Vondračeka, 21. str., ili s dokazom σ -subaditivnosti mjere μ , Propozicija 3.4, Mjera i integral, 20. str., predavanja

(iii) σ -poluaditivnost:

Neka je
$$A\subseteq\bigcup_{i\in\mathbb{N}}B_i,\ \left(E^i_j\right)_{i,j\in\mathbb{N}}\subseteq\mathcal{R}, B_i\subseteq\bigcup_{j\in\mathbb{N}}E^i_j, \forall i\in\mathbb{N}\Rightarrow A\subseteq\bigcup_{i\in\mathbb{N}}\bigcup_{j\in\mathbb{N}}E^i_j$$
 pa je

$$\mu^*(A) \le \sum_{i,j=1}^{\infty} \mu\left(E_j^i\right) = \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} \mu\left(E_j^i\right)\right),$$

pa, iz proizvoljnosti pokrivača $(E_j^i)_{j\in\mathbb{N}}, \forall i\in\mathbb{N},$ kao u prethodnome, slijedi $\mu^*(A)\leq\sum_{i=1}^\infty\mu^*(B_i).$

ZADATAK

Dokažite da je $\mathcal{R} \subseteq \mathcal{M}_{\mu^*}$. (Caratheodory kaže da je \mathcal{M}_{μ^*} σ -algebra (dakle, zatvorena na prebrojive unije) \Rightarrow i $\sigma_p(\mathcal{R}) \subseteq \mathcal{M}_{\mu^*}$)

Rješenje.

Less Neka je $A \subseteq \Omega$ proizvoljan. Primijetimo da, ako su $(E_i)_{i \in \mathbb{N}}, (F_j)_{j \in \mathbb{N}} \subseteq \mathcal{R}$ t. d. je $A \cap B \subseteq \bigcup_{i \in \mathbb{N}} E_i, A \cap B^c \subseteq \bigcup_{j \in \mathbb{N}} F_j$ proizvoljni, tada je

$$A = (A \cap B) \cup (A \cap B^c) \subseteq \bigcup_{i \in \mathbb{N}} E_i \cup \bigcup_{j \in \mathbb{N}} F_j$$

pa je

$$\mu^*(A) \le \sum_{i,j=1}^{\infty} \mu(E_i \cup F_j) \le \sum_{i=1}^{\infty} \mu(E_i) + \sum_{j=1}^{\infty} \mu(F_j).$$

Budući da su pokrivači $(E_i)_{i\in\mathbb{N}}, (F_j)_{j\in\mathbb{N}}\subseteq\mathcal{R}$ bili proizvoljni, slijedi $\mu^*(A)\leq \mu(A\cap B)+\mu(A\cap B^*)$. Rezultat posebno vrijedi za $E=B\in\mathcal{R}$.

Neka su $E \in \mathcal{R}, A \in \Omega$ i $\varepsilon > 0$. Po definiciji, postoji pokrivač $(E_i)_{i \in \mathbb{N}} \subseteq \mathcal{R}, A \subseteq \bigcup_{i \in \mathbb{N}} E_i$, t. d. je

$$\mu^*(A) + \varepsilon \ge \sum_{i=1}^{\infty} \mu(E_i)$$

$$= \sum_{i=1}^{\infty} \left[\mu(E_i \cap E) + \mu(E_i \cap E^c) \right]$$

$$= \sum_{i=1}^{\infty} \mu(E_i \cap E) + \sum_{i=1}^{\infty} \mu(E_i \cap E^c).$$

Primijetimo da su $(E_i \cap E)_{i \in \mathbb{N}}, (E_i \cap E^c)_{i \in \mathbb{N}} \subseteq \mathcal{R}$ i

$$A \cap E \subseteq \bigcup_{i \in \mathbb{N}} (E_i \cap E) \text{ i } A \cap E^c \subseteq \bigcup_{i \in \mathbb{N}} (E_i \cap E^c),$$

stoga je $\mu^*(A) + \varepsilon \ge \mu^*(A \cap E) + \mu(A \cap E^c)$. Puštanjem $\varepsilon \to 0^+$, slijedi $\mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$.

Prisjetimo se:

DEFINICIJA

 σ -prsten \mathcal{A} na Ω jest prsten sa svojstvom

$$(E_i)_{i\in\mathbb{N}}\subseteq\mathcal{A}\Rightarrow\bigcup_{i\in\mathbb{N}}E_i\in\mathcal{A}.$$

Slijedili smo

$$\mu \longmapsto \mu^* \to \mathcal{M}_{\mu^*} \overset{\text{Caratheodory}+}{\Longrightarrow} \underbrace{\mu^* \mid_{\mathcal{M}_{\mu^*}} \text{ je mjera }}_{\text{Caratheodory}} \text{ i} \underbrace{\sigma_p(\mathcal{R}) \subseteq \mathcal{M}_{\mu^*}}_{+ \text{ Caratheodory}}.$$

$$\Rightarrow \boxed{\mu^* \mid_{\sigma_p(\mathcal{R})} \text{ je mjera i } \mu^* \mid_{\mathcal{R}} = \mu} \Rightarrow \mu^* \mid_{\sigma_p(\mathcal{R})} \text{ je proširenje od } \mu.$$

Neka je $(\Omega, \mathcal{F}), \Omega \neq \emptyset, \mathcal{F}$ σ -algebra na Ω i \mathcal{S} poluprsten t. d. je $\sigma_p(\mathcal{S}) = \mathcal{F}$. Neka je μ σ -aditivna na \mathcal{S} :

$$\mu$$
 na $\mathcal{S} \longmapsto \mu$ na $\mathcal{R}(\mathcal{S}) \longmapsto \mu$ na \mathcal{M}_{μ^*} .

$$\underset{\sigma-\text{algebra}}{\mathcal{S}} \subseteq \mathcal{R}(\mathcal{S}) \subseteq \underbrace{\mathcal{M}_{\mu^*}}_{\sigma-\text{algebra}} \Rightarrow \sigma_p(\mathcal{S}) \subseteq \mathcal{M}_{\mu^*} \Rightarrow \mathcal{F} \subseteq \mathcal{M}_{\mu^*}.$$

 $\mu^* \mid_{\mathcal{F} = \sigma_p(\mathcal{S})}$ je proširenje funkcije μ s poluprstena \mathcal{S} na mjeru na $\mathcal{F} = \sigma_p(\mathcal{S})$. Spojimo ovaj rezultat s onim o jedinstvenosti proširenja (Dynkinova klasa $+ \pi$ -sustav):

TEOREM

Neka je (Ω, \mathcal{F}) izmjeriv prostor i \mathcal{S} poluprsten⁴⁷ na Ω t. d. je $\sigma_p(\mathcal{S}) = \mathcal{F}$. Ako je μ σ -aditivna funkcija na \mathcal{S} , tada postoji jedinstveno proširenje od μ na mjeru na \mathcal{F} .

Mi ćemo promatrati

- \blacktriangleright izmjeriv prostor $(\Omega, \mathcal{F}) = (\mathbb{R}, B_{\mathbb{R}})$
- ightharpoonup poluprsten $S := \{ \langle a, b | \mid a, b \in \mathbb{R}, a \leq b \}$ (ubrojili smo i \emptyset s relaksacijom na $a \leq b$)
- ▶ $\mathbb{R} = \bigcup_{n \in \mathbb{N}} \langle -n, n] \Rightarrow \sigma_p(\mathcal{S}) = B_{\mathbb{R}}$ (nemamo problema kad je prostor separabilan)

NAPOMENA

 \mathcal{A} je σ -prsten i $\Omega \in \mathcal{A} \Leftrightarrow \mathcal{A}$ je σ -algebra

Ako Ω nije u σ -prstenu, σ -prsten nije zatvoren na komplementiranje. Npr., neka je Ω neprebrojiv skup (dakle, neprazan). Definirajmo

$$\mathcal{A} := \{ S \subseteq \Omega \mid S \text{ je prebrojiv} \}.$$

Vratimo se na funkciju $F: \mathbb{R} \to [0,1]$ sa svojstvima:

- \square F je neopadajuća
- \square F je neprekidna zdesna
- \Box $F(-\infty) = 0, F(+\infty) = 1.$

Već smo pokazali da je id : $\mathbb{R} \to \mathbb{R}$ izmjeriva u paru σ -algebri $(B_{\mathbb{R}}, B_{\mathbb{R}})$, dakle, slučajna varijabla na $(\mathbb{R}, B_{\mathbb{R}}, \mathbb{P})$ sa zakonom razdiobe $\mathbb{P}_{\mathrm{id}} = \mathbb{P}$.

Definirajmo mjeru μ_F na S:

$$\mu_F(\langle a, b \rangle) = F(b) - F(a).$$

- (i) μ_F je monotona: $\langle a, b \rangle \subseteq \langle c, d \rangle \Rightarrow \mu_F (\langle a, b \rangle) = F(b) F(a) \leq F(d) F(c) = \mu_F (\langle c, d \rangle)$.
- (ii) Neka su $a, b, c, d \in \mathbb{R}$ t. d. je $\langle a, b \rangle \cap \langle c, d \rangle = \emptyset$. BSOMP, b = c. $\mu_F\left(\langle a, d \rangle\right) = F(d) F(a) = F(d) F(c) + F(c) F(a) \stackrel{b=c}{=} F(d) F(c) + F(b) F(a) = \mu_F\left(\langle c, d \rangle\right) + \mu_F\left(\langle a, b \rangle\right)$. Induktivno pokažemo i konačnu aditivnost.
- (iii) Je li μ_F σ -aditivna na S?

Neka su $\langle a_i, b_i |, i \in \mathbb{N}$ međusobno disjunktni t. d. je $\langle a_0, b_0 | = \bigcup_{i \in \mathbb{N}} \langle a_i, b_i |$. Budući da je μ_F monotona i konačno aditivna, $\mu_F (\langle a_0, b_0 |) \leq \sum_{i=1}^{\infty} \mu_F (\langle a_i, b_i |)$. S druge strane, za $\varepsilon > 0$, promotrimo **otvorene** intervale $\langle a_i, b_i + \frac{\varepsilon}{2i} \rangle$. Tada je $[a_0 + \varepsilon, b_0] \subseteq \bigcup_{i \in \mathbb{N}} \langle a_i, b_i + \frac{\varepsilon}{2i} \rangle$. Budući da je $[a_0 + \varepsilon, b_0]$ kompaktan, ima i **konačan** otvoren potpokrivač pa je

$$F(b_0) - F(a_0 + \varepsilon) \sim \sum_{i=1}^{n_{\varepsilon}} \left(F\left(b_i + \frac{\varepsilon}{2^i}\right) - F(a_i) \right) \ge \sum_{i=1}^{n_{\varepsilon}} F(b_i) - F(a_i)$$

pa, pustimo li $\varepsilon \to 0^{+48}$ i iskoristimo neprekidnost zdesna:

$$\lim_{\varepsilon \to 0^+} F\left(b_i + \frac{\varepsilon}{2^i}\right) = F(b_i), \forall i \in \mathbb{N}$$
$$\lim_{\varepsilon \to 0^+} F(a_0 + \varepsilon) = F(a_0),$$

 $^{^{47}{\}rm a}$ onda i $\pi\text{-sustav!}$

 $^{^{48}}$ Što se događa s, npr., $[a_0+\varepsilon_0,b_0]$ kad $\varepsilon\to 0^+?$ Primijetimo, po Arhimedovu aksiomu, $\forall \varepsilon>0, \exists n\in\mathbb{N}, \frac{1}{n}<\varepsilon$ pa je $\bigcup_{\varepsilon\leq\varepsilon_0}[a_0+\varepsilon,b_0]=\bigcup_{n\in\mathbb{N},n>\frac{1}{\varepsilon}}\left[a_0+\frac{1}{n},b_0\right]=\langle a_0,b_0]$

$$\Rightarrow \sum_{i=1}^{\infty} \mu_F\left(\langle a_i, b_i]\right) \le \mu_F\left(\langle a_0, b_0]\right)$$

pa je μ_F σ -aditivna na \mathcal{S} .

TEOREM

Za svaku funkciju $F: \mathbb{R} \to [0,1]$ koja je neopadajuća, neprekidna zdesna te vrijedi $F(-\infty) = 0$ i $F(+\infty) = 1$, postoji i jedinstvena je vjerojatnosna mjera $(\mathbb{R}, B_{\mathbb{R}})$ t. d. je $\forall a,b \in \mathbb{R}, a \leq b, \mathbb{P}_F(\langle a,b]) = F(b) - F(a)$.

Budući da je \mathbb{P}_F mjera, neprekidna je na neopadajuće nizove događaja:

$$\mathbb{P}_F(\mathbb{R}) = \lim_{n \to \infty} \mathbb{P}_F\left(\langle -n, n \rangle\right) = \lim_{n \to \infty} (F(n) - F(-n)) = F(+\infty) - F(-\infty) = 1.$$

50 Predavanje 22. i 28. listopada 2024.

Sjetimo se, ako je F vjerojatnosna funkcija distribucije, i $\mathbb{R} \setminus C(F) \neq \emptyset$, postoji konačan ili beskonačan prebrojiv niz $(x_n)_{n\in I}$ t. d. je $\mathbb{R}\setminus C(F)=(x_n)_{n\in I}$. U svakoj točki $x_n,n\in I$, vrijedi $\mathbb{P}_F\left(\{x_n\}\right)>0$. No, $\mathbb{P}_F(\mathbb{R}) = 1 \Rightarrow \sum_{n \in I} \mathbb{P}_F(\{x_n\}) = \mathbb{P}_F(\mathbb{R} \setminus C(F)) \le 1.$

$$G(x) := \sum_{x_n \le x} \mathbb{P}_F(\{x_n\}) = \sum_{x_n \le x} [F(x_n) - F(x_n^-)].$$

G(x) je funkcija čija je ukupna mjera jednaka α .

Neka je $F_d := \frac{1}{\alpha}G \Rightarrow F_d$ vjerojatnosna funkcija distribucije koja je oblika $\sum_{x_n \leq x} \frac{1}{\alpha} \mathbb{P}_F(\{x_n\})$. To je funkcija koja je uvijek ili konstantna na intervalu ili ima skokove. Reći ćemo da je takva funkcija vjerojatnosna funkcija distribucije.

Ako je X slučajna varijabla na $(\Omega, \mathcal{F}, \mathbb{P})$ i $D \in B_{\mathbb{R}}$ t. d. je $\mathbb{P}_X(D) = 1$, onda kažemo da je X koncentrirana na D. Ako je D najviše prebrojiv, onda kažemo da je X diskretna slučajna varijabla.

 F_d ima skokove ukupne mase $1 \Rightarrow$ slučajna varijabla koja je u pozadini funkcije F_d koncentrirana je na $(x_n)_{n\in I}$. Ta je slučajna varijabla diskretna.

X je diskretna slučajna varijabla (koncentrirana na prebrojivom D) $\Leftrightarrow F_X$ je skok funkcija čija je suma skokova iz D jednaka $1 \Leftrightarrow F_X(x) = \sum_{\substack{y \in D \\ y \le x}} \mathbb{P}(X = y)^{49}$

$$F = G + H = \alpha \left(\frac{1}{\alpha}G\right) + H = \alpha F_d + H \Rightarrow H = F - G = F - \alpha F_d.$$

 $\Rightarrow H = F - G$ je neprekidna zdesna, neopadajuća i $H(-\infty) = 0$ i $H(+\infty) = 1 - \alpha$.

F i G imaju prekid u <u>istim</u> točkama i to je skok <u>iste veličine</u> pa je F-G neprekidna u svakoj točki. Dale, H je neprekidna funkcija. Definirajmo $F_n := \frac{1}{1-\alpha}H \Rightarrow F_n$ je **neprekidna** funkcija distribucije.

$$\Rightarrow F = \alpha \underbrace{F_d}_{\text{diskretna}} + (1 - \alpha) \underbrace{F_n}_{\text{neprekidna}}.$$

Nadalje, F_n neprekidna $\Rightarrow \mathbb{P}_{F_n}(\{x\}) = 0, \forall x \in \mathbb{R}$.

Bernoullijeva slučajna varijabla

$$X \sim \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}, p+q = 1, p, q > 0.$$

Što možemo reći o vjerojatnosnim funkcijama distribucije koje su neprekidne. \mathbb{P}_F je neopadajuća, neprekidna zdesna, $\underbrace{F(-\infty)=0,F(+\infty)=1}_{\text{radi ukupne mase}}$.

Neka je G neopadajuća i neprekidna zdesna. Definirajmo

$$\mu_G(\langle a, b]) := G(b) - G(a) \ge 0.$$

Caratheodoryjev teorem možemo primijeniti i u ovoj situaciji: proširimo μ_G na mjeru na $B_{\mathbb{R}}$. \leadsto dobijemo mjeru μ_G na $(\mathbb{R}, B_{\mathbb{R}})$.

$$\mu_G(\mathbb{R}) = G(+\infty) - G(-\infty) \in [0, +\infty].$$

Neka je $K \subseteq \mathbb{R}$ kompaktan. Tada postoji $n \in \mathbb{N}$ t. d. je $K \subseteq [-n, n]$

$$\Rightarrow \mu_G(K) < \mu_G([-n, n]) = G(n) - G(-n^-) < +\infty.$$

Dakle, μ_G je konačna na svim ograničenim skupovima i na kompaktima.

$$\mu_G(\mathbb{R}) = \sum_{k \in \mathbb{Z}} [G(k) - G(k-1)] = \sum_{k \in \mathbb{Z}} \mu_G\left(\langle k-1, k]\right) \Rightarrow \mu_G \text{ je } \sigma - \text{konačna}.$$

⁴⁹najviše prebrojiva suma nenegativnih brojeva

NAPOMENA

Ako je $c \in \mathbb{R}$ konstanta, tada je $\mu_{G+c} = \mu_G$. Međutim, mjere su drugačije centrirane pa je pitanje koliko iznose $G(-\infty) + c$ i $G(+\infty) + c$.

Važan primjer:

$$G(x) = x \Rightarrow \mu_G(\langle a, b |) = b - a.$$

G je neprekidna $\Rightarrow \mu_G(\lbrace x \rbrace) = 0, \forall x \in \mathbb{R}$

$$\Rightarrow \mu_G(\langle a, b \rangle) = \mu_G([a, b]) = \mu_G(\langle a, b \rangle) = b - a.$$

 μ_G nazivamo Lebesgueovom⁵⁰ mjerom i označavamo s $\lambda := \mu_G$.

Ponovimo:

Neka je $(\Omega, \mathcal{F}, \mu)$ prostor σ -konačne mjere. To znači da je $\mu : \mathcal{F} \to [0, +\infty]$ σ -aditivna funkcija i da postoji niz $(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{F}, \mu(A_n) < +\infty, \forall n \in \mathbb{N}, \Omega = \bigcup_{n \in \mathbb{N}} A_n$.

Neka lijepa svojstva koje priželjkujemo od Lebesgueova integrala:

- (i) prirodan: $A \in \mathcal{F}, f \mid_{A} \equiv 1, \int_{\Omega} \mathbb{1}_{A} = \mu(A).$
- $A \in \mathcal{F}, f \mid_{A} \equiv 1, \int_{\Omega} \mathbb{1}_{A} = \mu(A)$
- (ii) linearnost: Neka su $(A_k)_{k=1}^n \subseteq \mathcal{F}, f = \sum_{k=1}^n a_k \mathbbm{1}_{A_k}, \int_{\Omega} f d\mu = \sum_{k=1}^n a_k \mu(A_k).$ Nije teško pokazati da je ovakva definicija dobra na jednostavnim funkcijama i da je linearna na jednostavnim funkcijama.
- $\begin{array}{ll} (iii) \ \ {\rm Neka\ je}\ (f_n)_{n\in\mathbb{N}}\ {\rm niz\ izmjerivih\ integrabilnih\ funkcija},\ 0\leq f_1\leq f_2\leq\cdots\ .\ {\rm Budu\acute{c}i\ da\ je\ niz\ monoton},\\ {\rm postoji}\ f:=\lim_{n\to\infty}f_n.\ f\ {\rm mo\check{z}e\ poprimiti\ i\ vrijednost}\ +\infty\ u\ {\rm nekim\ to\check{c}kama}.\\ {\rm Uvodimo\ konvenciju:}\ 0\cdot(+\infty)=0.\\ {\rm Definiramo}\ \int_\Omega fd\mu=\lim_{n\to\infty}\int_\Omega f_nd\mu. \end{array}$

NAPOMENA

Ako je $f:\Omega\to [0,+\infty]$ izmjeriva, onda f možemo aproksimirati neopadajućim nizom nenegativnih jednostavnih funkcija. (umetni crtež)

$$A_{k,n}:=f^{-1}\left(\left\langle\frac{k-1}{n},\frac{k}{n}\right|\right)\in\mathcal{F}\text{ jer je }f\text{ izmjeriva}$$

$$\leadsto\frac{k-1}{n}\mathbbm{1}_{A_{k,n}}$$

$$f_n:=n\mathbbm{1}_{\{f>n\}}+\sum_{k=1}^{n^2}\frac{k-1}{n}\mathbbm{1}_{A_{k,n}}$$

Neka je $x \in \Omega$. Za sve (dovoljno velike) $n \in \mathbb{N}$, $\exists ! k \in \{1, \ldots, n\}, x \in A_{k_n}$ pa je za sve (dovoljno velike) $n \in \mathbb{N}$,

$$|f(x) - f_n(x)| < \frac{1}{n}.$$

Dakle, $f_n \nearrow f$.

Definiramo

$$\int_{\Omega} f d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu.$$

- ➤ Pokaže se da je definicija dobra (različiti nizovi?) i da očito čuva linearnost.
 - \Rightarrow za svaku nenegativnu izmjerivu funkciju f, postoji $\int_{\Omega} f d\mu \in [0, +\infty]$.

 $^{^{50}\}mathrm{Henry}$ Lebesgue

Neka je $f: \Omega \to \overline{\mathbb{R}} = [-\infty, +\infty]$ izmjeriva $(f^{-1}(B_{\overline{\mathbb{R}}}) \subseteq \mathcal{F})$. $f = f^+ - f^-$. f^+ i f^- nenegativne su izmjerive funkcije pa postoje integrali

$$\int_{\Omega} f^+ d\mu \ i \ \int_{\Omega} f^- d\mu.$$

DEFINICIJA

Reći ćemo da za izmjerivu funkciju f postoji integral ako je barem jedan od integrala $\int_{\Omega} f^+ d\mu$ i $\int_{\Omega} f^- d\mu$ konačan.

Reći ćemo da je fintegrabilna ako su oba integrala konačna.

U obama slučajevima,

$$\int_{\Omega} f d\mu = \int_{\Omega} f^{+} d\mu - \int_{\Omega} f^{-} d\mu.$$

Uočimo

f je integrabilna $\Leftrightarrow f^+$ i f^- integrabilne su $\Leftrightarrow |f|$ je integrabilna.

NAPOMENA

Ako je f izmjeriva realna funkcija, za |f| uvijek postoji integral, no ne mora biti integrabilna, tj. taj integral ne mora biti konačan.

Ponoviti:

TMK i LTDK; Lebesgueov teorem s Analize 2 iskazi!

Nadalje, ako je f Riemann integrabilna, onda je i Lebesgue integrabilna, no obrat, općenito, ne vrijedi! Kontraprimjer: $f = \mathbbm{1}_{\mathbb{Q}\cap[0,1]}$ nije Riemann integrabilna jer gornji i donji Riemannov integral nisu jednaki, no f je Lebesgue integrabilna i $\int_{[0,1]} f(x) d\lambda(x) = \lambda\left([0,1] \cap \mathbb{Q}\right) = 0$.

Vratimo se na problem egzistencije uniformne distribucije s uvodnih predavanja.

Neka je $f(x) := \frac{1}{b-a} \mathbbm{1}_{\langle a,b \rangle}(x)$. Definirajmo i funkciju $F(x) := \int_{-\infty}^{x} f(t) dt$ (promatramo slobodno kao Riemannov integral). F je neprekidna, neopadajuća, $F(-\infty) = 0$, $F(+\infty) = 1 \Rightarrow F$ generira vjerojatnosnu mjeru \mathbb{P}_F , \mathbb{P}_F ($\langle a,b \rangle$) = 1. Također, ako je $\langle c,d \rangle \subseteq \langle a,b \rangle$, tada je \mathbb{P}_F ($\langle c,d \rangle$) = $\frac{d-c}{b-a}$.

Dosad smo ustanovili da

- \square na $\{1,\ldots,n\}, n\in\mathbb{N}, [a,b], a,b\in\mathbb{R}$ postoji uniformna distribucija, ali
- □ na N ne postoji!

Reći ćemo da je F apsolutno neprekidna ako postoji nenegativna Borel-izmjeriva funkcija f t. d. je, $\forall x \in \mathbb{R}, F(x) = \int_{-\infty}^{x} f(t)dt$. Očito je takva F i topološki neprekidna. f nazivamo gustoćom pripadne distribucije. Istu terminologiju koristimo i za pripadnu slučajnu varijablu: X, F_X, f_X .

PITANJE od 22. listopada: Što znamo o vjerojatnosnim funkcijama distribucije neprekidnim u svakoj točki? Dvije su klase takvih funkcija.⁵¹

- (i) Vjerojatnosna funkcija distribucije F jest **apsolutno neprekidna** ako postoji **Borelova** funkcija $f: \mathbb{R} \to [0, +\infty)$ t. d. je $\forall x \in \mathbb{R}, F(x) = \int_{-\infty}^{x} f(t) \lambda(dt)$.⁵²
- (ii) Vjerojatnosna funkcija distribucije F jest **singularna** ako je neprekidna na cijelom \mathbb{R} i postoji F' λ -g. s. i $F'(x) = 0, \lambda$ -g.s. Dakle, $\mathbb{P}_F(\{x\}) = 0, \forall x \in \mathbb{R}$, no postoji $E \in B_{\mathbb{R}}$ t. d. je $\lambda(E) = 0$, ali $\mathbb{P}_F(E) > 0$.

 $^{^{51}{\}rm Za}$ još informacija, pogledati 1. poglavlje u ovoj skripti.

 $^{^{52}}$ integral je po Lebesgueovoj mjeri, ali, ako je f i Riemann integrabilna, možemo koristiti i Riemannov integral

51 Predavanje 4. studenoga 2024.

Neka je $\emptyset \neq \Omega$ s metrikom d(x, y), $\Omega = \mathbb{R}^n$ ili $\Omega = \mathbb{C}^n$, $(x_1, \dots, x_n) = x \in \Omega$, $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$. $d(x, y) := ||x - y||_2 \to K(x_0, r) = \{x \in \Omega \mid d(x, x_0) < r\}$.

Označimo, opet, s B_{Ω} najmanju σ -algebru nad otvorenim skupovima.

Zanima nas kako topološka svojstva utječu na σ -konačne mjere. U nastavku slijedi nekoliko tehničkih rezultata.

DEFINICIJA

Neka je $\emptyset \neq A \subseteq \Omega$ i $x \in \Omega$. Definiramo udaljenost točke x od skupa A s $d(x,A) := \inf_{y \in A} d(x,y)$.

LEMA

A je zatvoren $\Leftrightarrow [d(x, A) = 0 \Leftrightarrow x \in A].$

Dokaz.

- $[\Leftarrow]$: Neka je $x \in \overline{A}$. Tada postoji niz $(y_n)_{n \in \mathbb{N}} \subseteq A$ t. d. $d(x,y_n) \to 0$. Ako bi bilo $x \in \overline{A} \setminus A$, bilo bi d(x,A) > 0, no $d(x,A) \le d(x,y_n) \to 0 \Rightarrow d(x,A) = 0$. Dakle, $\overline{A} \subseteq A$, tj., A je zatvoren.
- \implies : Neka je $A \neq \emptyset$ zatvoren i $x \in \Omega \setminus A$. Budući da je A zatvoren, $\Omega \setminus A$ je otvoren, pa postoji $\delta > 0$ t. d. je $K(x,\delta) \subseteq \mathbb{R} \setminus A$. Dakle, ako je, za $0 < \delta' < \delta$, $||x-y|| < \delta'$, nužno je $y \in K(x,\delta) \subseteq \mathbb{R} \setminus A$ pa je d(x,A) > 0.

LEMA

 $\Omega \ni x \mapsto d(x,A)$ je uniformno neprekidna.

Dokaz.

Neka su $z \in A, x, y \in \Omega$ proizvoljni. Vrijedi

$$\begin{split} d(x,A) &\leq d(x,z) \leq d(x,y) + d(y,z) / \inf_{z \in A} \\ &\Rightarrow d(x,A) \leq d(x,y) + d(y,A) \\ &\Rightarrow d(x,A) - d(y,A) \leq d(x,y) \\ &\overset{\text{analogno}}{\Rightarrow} d(y,A) - d(x,A) \leq d(y,x) = d(x,y) \\ &\Rightarrow |d(x,A) - d(y,A)| \leq d(x,y). \end{split}$$

DEFINICIJA

 $A \subseteq \Omega$ je tipa G_{δ} ako se može prikazati kao presjek prebrojivo mnogo otvorenih skupova. Slično, $A \subseteq \Omega$ je tipa F_{σ} ako se može prikazati kao unija od prebrojivo mnogo zatvorenih skupova. Primijetimo A je $G_{\delta} \Leftrightarrow A^c$ je F_{σ} .

LEMA

Svaki je zatvoren skup tipa G_δ i svaki je otvoreni skup tipa F_σ .

Dokaz.

BSO, dokazujemo prvu tvrdnju. Neka je $A\subseteq\Omega$ zatvoren i definirajmo skupove

$$A_n := \left\{ x \in \Omega \mid d(x, A) < \frac{1}{n} \right\}, n \in \mathbb{N}.$$

Po pretprošloj lemi, A je zatvoren $\Leftrightarrow [d(x,A) = 0 \Leftrightarrow x \in A]$. Dakle,

$$x \in A \Leftrightarrow d(x,A) = 0 \Leftrightarrow d(x,A) < \frac{1}{n}, \forall n \in \mathbb{N} \Leftrightarrow x \in A_n, \forall n \in \mathbb{N} \Leftrightarrow x \in \bigcap_{n \in \mathbb{N}} A_n$$

 $x\mapsto d(x,A)$ je neprekidna $\Rightarrow A_n$ je otvoren $\forall n\in\mathbb{N} \Rightarrow A=\bigcap_{n\in\mathbb{N}}A_n$ je G_δ .

DEFINICIJA

Vjerojatnosna mjera \mathbb{P} na (Ω, B_{Ω}) regularna ako za svaki $A \in B_{\Omega}$ vrijedi

$$\mathbb{P}(A) = \sup \{ \mathbb{P}(C) \mid C \subseteq A, C \text{ zatvoren } \} = \inf \{ \mathbb{P}(U) \mid U \supseteq A, U \text{ otvoren } \}.$$

Primijetimo, \mathbb{P} je regularna $\Leftrightarrow \forall A \in B_{\Omega}, \varepsilon > 0, \exists C_{\varepsilon} \subseteq A \subseteq U_{\varepsilon}, C_{\varepsilon}$ zatvoren, U_{ε} otvoren.

$$\mathbb{P}\left(U_{\varepsilon} \setminus C_{\varepsilon}\right) = \mathbb{P}\left(\left(U_{\varepsilon} \setminus A\right) \setminus C_{\varepsilon}\right) + \mathbb{P}\left(A \setminus C_{\varepsilon}\right) \leq \underbrace{\mathbb{P}\left(U_{\varepsilon} \setminus A\right)}_{<\frac{\varepsilon}{2}} + \underbrace{\mathbb{P}\left(A \setminus C_{\varepsilon}\right)}_{<\frac{\varepsilon}{2}} < \varepsilon.(*)$$

NAPOMENA

Iz ovoga ne slijedi da su svi Borelovi skupovi G_{δ} ili F_{σ} . Priča oko Borelove hijerarhije...⁵³

TEOREM

Svaka vjerojatnosna mjera na (Ω, B_{Ω}) regularna je.

Dokaz.

Definirajmo familiju $\mathcal{R} := \{ B \in B_{\Omega} \mid \text{ za } B \text{ vrijedi } (*) \}$.

Pokazat ćemo da je ${\mathcal R}$
 σ -algebra koja sadrži sve zatvorene skupove.

- (i) \emptyset, Ω su i zatvoreni i otvoreni pa za njih vrijedi (*), tj., $\emptyset, \Omega \in \mathcal{R} \Rightarrow \mathcal{R} \neq \emptyset$.
- (ii) Neka je $A \in \mathcal{R}, \varepsilon > 0$.

$$\Rightarrow \exists C_{\varepsilon} \subseteq A \subseteq U_{\varepsilon}, C_{\varepsilon} \text{ zatvoren, } U_{\varepsilon} \text{ otvoren, } \mathbb{P}(U_{\varepsilon} \setminus C_{\varepsilon}) < \varepsilon.$$

$$\Rightarrow U_{\varepsilon}^c \subseteq A^c \subseteq C_{\varepsilon}^c, U_{\varepsilon}^c \text{ zatvoren, } C_{\varepsilon}^c \text{ otvoren }, C_{\varepsilon}^c \setminus U_{\varepsilon}^c = U_{\varepsilon} \setminus C_{\varepsilon} \Rightarrow \mathbb{P}(C_{\varepsilon}^c \setminus U_{\varepsilon}^c) < \varepsilon.$$

Dakle, $A^c \in B_{\Omega}$ i za A^c vrijedi (*). $\Rightarrow A^c \in \mathcal{R}$.

(iii) Neka su $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{R}, \varepsilon>0$. Tada,

$$\forall n \in \mathbb{N}, \exists C_{n,\varepsilon} \subseteq A_n \subseteq U_{n,\varepsilon}, C_{n,\varepsilon} \text{ zatvoren, } U_{n,\varepsilon} \text{ otvoren, } \mathbb{P}\left(U_{n,\varepsilon} \setminus C_{n,\varepsilon}\right) < \frac{\varepsilon}{3^n}.$$

Stavimo

$$U_\varepsilon:=\bigcup_{n\in\mathbb{N}}U_{n,\varepsilon}$$
otvoren skup i $A=\bigcup_{n\in\mathbb{N}}A_n\subseteq U_\varepsilon$

$$C_{\varepsilon}:=\bigcup_{n=1}^k C_{n,\varepsilon} \text{ zatvoren}^{54} \text{ i } C_{\varepsilon}\subseteq A, k \text{ dovoljno velik t. d. je } \mathbb{P}\left(\bigcup_{n=1}^{\infty} C_{n,\varepsilon}\setminus \bigcup_{n=1}^k C_{n,\varepsilon}\right)<\frac{\varepsilon}{2}.$$

$$\mathbb{P}\left(U_{\varepsilon} \setminus C_{\varepsilon}\right) = \mathbb{P}\left(U_{\varepsilon} \setminus \left(\bigcup_{n=1}^{\infty} C_{n,\varepsilon}\right)\right) + \mathbb{P}\left(\bigcup_{n=1}^{\infty} C_{n,\varepsilon} \setminus C_{\varepsilon}\right) \leq \underbrace{\sum_{n=1}^{\infty} \mathbb{P}\left(U_{n,\varepsilon} \setminus C_{n,\varepsilon}\right)}_{<\varepsilon\left(\frac{3}{2}-1\right) = \frac{\varepsilon}{2}} + \underbrace{\frac{\varepsilon}{2} = \varepsilon}.$$

Dakle, $\bigcup_{n\in\mathbb{N}} A_n \in B_{\Omega}$ i za $\bigcup_{n\in\mathbb{N}} A_n$ vrijedi (*). $\Rightarrow \bigcup_{n\in\mathbb{N}} A_n \in \mathcal{R}$.

 $\Rightarrow \mathcal{R}$ je σ -algebra.

Neka je $C\subseteq \Omega$ zatvoren. Pokazali smo da je C tipa G_δ pa je $C=\bigcap_{n\in\mathbb{N}}U_n$, za neke otvorene skupove $U_n, n\in\mathbb{N}$. BSOMP, $U_1\supseteq U_2\supseteq \cdots$. Iz neprekidnosti vjerojatnosti na padajuće događaje, slijedi $\mathbb{P}(C)=\lim_{n\to\infty}\mathbb{P}\left(U_n\right)$. Neka je $\varepsilon>0$. Neka je upravo $C=C_\varepsilon$, a $U_\varepsilon=U_n$ za n dovoljno velik t. d. je $|\mathbb{P}(U_n)-\mathbb{P}(C)|<\varepsilon$.

$$\Rightarrow \mathbb{P}\left(U_{\varepsilon} \setminus C_{\varepsilon}\right) = \mathbb{P}(U_{\varepsilon} \setminus C) = \mathbb{P}\left(U_{n} \setminus C\right) = \mathbb{P}(U_{n}) - \mathbb{P}(C) < \varepsilon \Rightarrow C \in \mathcal{R}$$

$$\Rightarrow \mathcal{R} = B_{\Omega}$$
.

Neka je metrički prostor potpun i separabilan (svojstvo kompakta):

$$\forall A \in B_{\Omega}, \mathbb{P}(A) = \sup \{ \mathbb{P}(K) \mid K \subseteq A, K \text{ kompaktan} \}.$$

Vrijedi li to, kažemo da je P napeta.

KOROLAR

Na potpunom separabilnom metričkom prostoru svaka je vjerojatnost napeta.

⁵³Mjera i integral, 22. str., predavanja

⁵⁴Općenito, prebrojiva unija zatvorenih skupova nije zatvorena pa tome trebamo doskočiti.

52 Predavanje 3. i 9. prosinca 2024.

52.1 Vjerojatnost na produktnim prostorima

Neka su $\Omega_1, \Omega_2 \neq \emptyset$ i $\mathcal{F}_1, \mathcal{F}_2$ σ -algebre na Ω_1 i Ω_2 redom i razmislimo kako bismo, "u koracima" konstruirali vjerojatnosnu mjeru na izmjerivom prostoru $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2)$.

Zamišljamo da provodimo 2 pokusa, ne nužno nezavisna.

1. korak

Neka je $\omega_1 \in \Omega_1$ proizvoljan, a $\mathbb{P}_1 : \mathcal{F}_1 \to [0,1]$ neka vjerojatnosna mjera na izmjerivom prostoru $(\Omega_1, \mathcal{F}_1)$. 2. korak

Želimo definirati vjerojatnost $\mathbb{P}_2(\omega_1,\cdot):\mathcal{F}_2\to[0,1].^{55}$

Neka su $(\Omega_j, \mathcal{F}_j), j = 1, \ldots, n$ izmjerivi prostori i $A_1 \times \cdots \times A_n, A_j \in \mathcal{F}_j, \forall j = 1, \ldots, n$ izmjerivi pravokutnici. Znamo da za produktnu σ -algebru vrijedi

$$\bigotimes_{j=1}^{n} \mathcal{F}_{j} = \sigma\left(\left\{A \subseteq \Omega_{1} \times \cdots \times \Omega_{n} \mid A \text{ je izmjeriv pravokutnik }\right\}\right).$$

Ograničimo se na slučaj n=2.

Prisjetimo se sljedećih rezultata iz mjere i integrala:

LEMA

Neka su (X, \mathcal{F}) i (Y, \mathcal{G}) izmjerivi prostori.

- (i) Neka je $E \in \mathcal{F} \times G$. Za svaki je $x \in X$, skupovni prerez $E_x := \{y \in Y \mid (x,y) \in E\}$ \mathcal{G} -izmjeriv. Analogno je, za svaki $y \in Y$, skupovni prerez $E_y = \{x \in X \mid (x,y) \in E\}$ \mathcal{F} -izmjeriv.
- (ii) Neka je $f: X \times Y \to [-\infty, +\infty]$ neka $\mathcal{F} \times \mathcal{G}$ -izmjeriva funkcija. Za svaki je $x \in X$, funkcijski prerez $f_x(y) := f(x,y)$ \mathcal{G} -izmjeriva funkcija. Analogno je, za svaki $y \in Y$, funkcijski prerez $f^y(x) := f(x,y)$ \mathcal{F} -izmjeriva funkcija.

TEOREM

Neka je $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ vjerojatnosni prostor, $(\Omega_2, \mathcal{F}_2)$ izmjeriv prostor te:

- (i) $\forall \omega_1 \in \Omega_1, \mathcal{F}_2 \ni E \to \mathbb{P}_2(\omega_1, E)$ vjerojatnost (dakle, $\mathbb{P}_2(\omega_1, \cdot) : \mathcal{F}_2 \to [0, 1]$)
- $(ii) \ \forall E \in \mathcal{F}_2, \Omega_1 \ni \omega_1 \mapsto \mathbb{P}_2(\omega_1, E)$ slučajna varijabla (dakle, $\mathbb{P}_2(\cdot, E) : \omega_1 \to \mathbb{R}$ je $(\mathcal{F}_1, B_{\mathbb{R}})$ -izmjeriva).

Tada postoji jedinstvena vjerojatnost \mathbb{P} na $\mathcal{F}=\mathcal{F}_1\otimes\mathcal{F}_2$ t. d. je

$$\mathbb{P}(A \times B) = \int_{A} \mathbb{P}_{2}(\omega_{1}, B) \mathbb{P}(d\omega_{1}), A \in \mathcal{F}_{1}, B \in \mathcal{F}_{2} (1)$$

i

$$\mathbb{P}(F) = \int_{\Omega_1} \mathbb{P}_2(\omega_1, F_{\omega_1}) \mathbb{P}_1(d\omega_1), F \in \mathcal{F} (2).$$

Dokaz.

Funkcija $\omega_1 \mapsto \mathbb{P}_2(\omega_1, F_{\omega_1})$ zaista jest slučajna varijabla za svaki $F \in \mathcal{F}$.

Profesorov dokaz i dokaz iz knjige profesora Sarape:

Zaista, neka je \mathcal{A} familija svih skupova iz \mathcal{F} za koje to vrijedi. Ako je $F = A \times B, A \in \mathcal{F}_1, B \in \mathcal{F}_2$, tada je:

$$\mathbb{P}_{2}\left(\omega_{1}, F_{\omega_{1}}\right) = \begin{cases} \mathbb{P}_{2}(\omega_{1}, B), & \omega_{1} \in A, \\ 0, & \omega_{1} \notin A. \end{cases}$$

 $^{^{55}\}mathrm{U}$ literaturi se često govori o jezgri; izmjerivost po jednoj varijabli, a mjera po drugoj

Prema tome, imamo:

$$\mathbb{P}_2(\omega_1, F_{\omega_1}) = \mathbb{P}_2(\omega_1, B) \cdot \mathbb{1}_A(\omega_1),$$

a to je slučajna varijabla prema pretpostavci teorema. Dakle, izmjerivi su pravokutnici, generatori σ -algebre \mathcal{F} , u \mathcal{A} .

Neka su F_1, \ldots, F_n disjunktni izmjerivi pravokutnici. Tada imamo:

$$\mathbb{P}_2\left(\omega_1, \left(\bigcup_{k=1}^n F_k\right)_{\omega_1}\right) = \mathbb{P}_2\left(\omega_1, \bigcup_{k=1}^n (F_k)_{\omega_1}\right) = \sum_{k=1}^n \mathbb{P}_2(\omega_1, (F_k)_{\omega_1}),$$

a to je slučajna varijabla kao suma konačno mnogo slučajnih varijabli. Prema tome, \mathcal{A} sadrži algebru svih konačnih unija disjunktnih pravokutnika. Osim toga, \mathcal{A} je monotona familija. Zaista,

$$(F_n)_{\omega_1} \nearrow F_{\omega_1} \Rightarrow \mathbb{P}_2(\omega_1, (F_n)_{\omega_1}) \to \mathbb{P}_2(\omega_1, F_{\omega_1}).$$

Prema tome, $\mathbb{P}_2(\omega_1, F_{\omega_1})$ je slučajna varijabla kao limes niza slučajnih varijabli. Analogan zaključak izveli bismo i u slučaju $F_n \searrow F$. Odavde slijedi da je $\mathcal{A} = \mathcal{F}$.

Moj dokaz.

Zaista, neka je

$$\mathcal{A} := \{ F \in \mathcal{F} \mid \omega_1 \mapsto \mathbb{P}_2(\omega_1, F_{\omega_1}) \text{ je slučajna varijabla} \}.$$

Očito je $A \subseteq \mathcal{F}$.

Neka je

$$\mathcal{C} = \{ A \times B \mid A \in \mathcal{F}_1, B \in \mathcal{F}_2 \}.$$

Znamo da je \mathcal{C} π -sustav pa je $\mathcal{F} = \sigma(\mathcal{C}) = \mathcal{D}(\mathcal{C})$. Ako je $F = A \times B, A \in \mathcal{F}_1, B \in \mathcal{F}_2$, tada je

$$\mathbb{P}_2(\omega_1, F_{\omega_1}) = \begin{cases} \mathbb{P}_2(\omega_1, B), & \text{ako je } \omega_1 \in A \\ \mathbb{P}_2(\omega_1, \emptyset), & \text{ako } \omega_1 \notin A \end{cases} = \mathbb{1}_A(\omega_1) \mathbb{P}_2(\omega_1, B),$$

što je slučajna varijabla po pretpostavci teorema. Dakle, \mathcal{A} sadrži familiju izmjerivih pravokutnika. Pokažimo da je \mathcal{A} Dynkinova klasa.

- (i) $\Omega \in \mathcal{C}$, zapravo, a već znamo $\mathcal{C} \subseteq \mathcal{A} \Rightarrow \Omega \in \mathcal{A}$
- (ii) Neka su $E, F \in \mathcal{A}, E \subseteq F$. Primijetimo da

$$\begin{split} \omega_2 &\in (F \backslash E)_{\omega_1} \Leftrightarrow (\omega_1, \omega_2) \in F \backslash E \Leftrightarrow (\omega_1, \omega_2) \in F \text{ i } (\omega_1, \omega_2) \notin E \Leftrightarrow \omega_2 \in F_{\omega_1} \text{ i } \omega_2 \notin E_{\omega_1} \Leftrightarrow \omega_2 \in F_{\omega_1} \backslash E_{\omega_1}, \forall \omega_1 \in \Omega_1 \\ \text{i} \\ \mathbb{P}_2(\omega_1, (F \backslash E)_{\omega_1}) &= \mathbb{P}_2(\omega_1, F_{\omega_1} \backslash E_{\omega_1}) = \mathbb{P}_2(\omega_1, F_{\omega_1}) - \mathbb{P}_2(\omega_1, E_{\omega_1}), \forall \omega_1 \in \Omega_1 \end{split}$$

pa je
$$\omega_1 \mapsto \mathbb{P}_2(\omega_1, (F \setminus E)_{\omega_1})$$
 slučajna varijabla, tj., $F \setminus E \in \mathcal{A}$.

(iii) Neka je $(F_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$ neopadajuć niz, tj., neka su $\omega_1\mapsto\mathbb{P}_2(\omega_1,(F_n)_{\omega_1}),n\in\mathbb{N}$ slučajne varijable i $F_1\subseteq F_2\subseteq\cdots$. Primijetimo da

$$\omega_2 \in (F_n)_{\omega_1} \Leftrightarrow (\omega_1, \omega_2) \in F_n \subseteq \mathcal{F}_{n+1} \Rightarrow \omega_2 \in (F_{n+1})_{\omega_1} \Rightarrow (F_n)_{\omega_1} \subseteq (F_{n+1})_{\omega_1}, \forall \omega_1 \in \Omega_1$$

pa je $((F_n)_{\omega_1})_{n\in\mathbb{N}}\subseteq\mathcal{F}_2$ neopadajuć niz i

$$\mathbb{P}_2\left(\omega_1, \left(\bigcup_{n\in\mathbb{N}} F_n\right)_{\omega_1}\right) = \mathbb{P}_2\left(\omega_1, \bigcup_{n\in\mathbb{N}} (F_n)_{\omega_1}\right) = \lim_{n\to\infty} \mathbb{P}_2(\omega_1, (F_n)_{\omega_1}), \forall \omega_1 \in \Omega$$

Dakle, $\omega_1 \mapsto \mathbb{P}_2\left(\omega_1, \left(\bigcup_{n \in \mathbb{N}} F_n\right)_{\omega_1}\right)$ slučajna je varijabla kao limes niza slučajnih varijabli, odnosno, $\bigcup_{n \in \mathbb{N}} F_n \in \mathcal{A}$.

Dakle, \mathcal{A} je Dynkinova klasa pa je $\mathscr{D}(\mathcal{C}) \subseteq \mathcal{A}$. Konačno, $\mathcal{A} = \mathcal{F}$.

Prema tome, možemo definirati funkciju

$$Q(F) = \int_{\Omega_1} \mathbb{P}_2(\omega_1, F_{\omega_1}) \mathbb{P}_1(d\omega_1), F \in \mathcal{F}.$$

Pokažimo da je Q σ -aditivna. Neka su $(F_n)_{n\in\mathbb{N}}\subseteq\mathcal{F}$ međusobno disjunktni. Tada je

$$Q\left(\bigcup_{n\in\mathbb{N}}F_n\right) = \int_{\Omega_1} \mathbb{P}_2\left(\omega_1, \left(\bigcup_{n\in\mathbb{N}}F_n\right)_{\omega_1}\right) \mathbb{P}_1(d\omega_1) = \int_{\Omega_1} \mathbb{P}_2\left(\omega_1, \bigcup_{n\in\mathbb{N}}(F_n)_{\omega_1}\right) \mathbb{P}_1(d\omega_1)$$

$$= \int_{\Omega_1} \left(\sum_{n=1}^{\infty} \mathbb{P}_2(\omega_1, (F_n)_{\omega_1})\right) \mathbb{P}_1(d\omega_1) \stackrel{\mathrm{TMK}}{=} \sum_{n=1}^{\infty} \int_{\Omega_1} \mathbb{P}_2(\omega_1, (F_n)_{\omega_1}) \mathbb{P}(d\omega_1) = \sum_{n=1}^{\infty} Q(F_n)$$

TEOREM (Fubini)

Neka su ispunjeni uvjeti prethodnog teorema (uz navedene $\mathbb{P}_1, \mathbb{P}_2, \mathbb{P}$) i neka je X slučajna varijabla na $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2, \mathbb{P})$.

(i) Ako je $X \ge 0$, tada

$$\int_{\Omega_2} X(\omega_1, \omega_2) \mathbb{P}_2(\omega_1, d\omega_2) \ \omega_1 \in \Omega_1$$

postoji i definira slučajnu varijablu na Ω_1 . Osim toga, vrijedi

$$\int_{\Omega} X d\mathbb{P} = \int_{\Omega_1} \left(\int_{\Omega_2} X(\omega_1, \omega_2) \mathbb{P}_2(\omega_1, d\omega_2) \right) \mathbb{P}_1(d\omega_1).$$

(ii) Ako $\int_{\Omega} X d\mathbb{P}$ postoji (odnosno, konačan je), tada

$$\int_{\Omega_2} X(\omega_1, \omega_2) d\mathbb{P}_2(\omega_1, d\omega_2)$$

postoji (odnosno, konačan je) \mathbb{P}_1 - g. s. po ω_1 i definira slučajnu varijablu na Ω_1 (stavimo da je ta funkcija jednaka 0 izvan ovoga "dobrog" skupa).

Indukcijom dobivamo sljedeći teorem:

TEOREM

Neka su $(\Omega_j, \mathcal{F}_j)_{j=1}^n$ izmjerivi prostori.

- (i) Neka je \mathbb{P}_1 vjerojatnost na $(\Omega_1, \mathcal{F}_1)$ i za svako $(\omega_1, \dots, \omega_j) \in \Omega_1 \times \dots \times \Omega_j$, neka je $\mathbb{P}_{j+1}(\omega_1, \dots, \omega_j, B), B \in \mathcal{F}_{j+1}$ vjerojatnost na $(\mathcal{F}_{j+1}), j = 1, \dots, n-1$.
- $(ii) \ \ \text{Neka je za svaki fiksni} \ C \in \mathcal{F}_{j+1}, \mathbb{P}_{j+1}(\omega_1, \dots, \omega_j, C) : \Omega_1 \times \dots \times \Omega_j \to \mathbb{R} \left(\bigotimes_{k=1}^j \mathcal{F}_k, B_{\mathbb{R}} \right) \text{-izmjeriva}.$
- (ii) Neka je $\Omega := \prod_{j=1}^n \Omega_j, \mathcal{F} := \bigotimes_{j=1}^n \mathcal{F}_j.$
- (a) Tada postoji jedinstvena vjerojatnost \mathbb{P} na \mathcal{F} t. d. za svaki izmjeriv pravokutnik $A_1 \times A_2 \times \cdots \times A_n \in \mathcal{F}$, vrijedi

$$\mathbb{P}(A_1 \times A_2 \times \dots \times A_n) = \int_{A_1} \mathbb{P}_1(d\omega_1) \int_{A_2} \mathbb{P}_2(\omega_1, d\omega_2) \cdots \int_{A_{n-2}} \mathbb{P}_{n-1}(\omega_1, \dots, \omega_{n-2}, d\omega_{n-1}) \underbrace{\int_{A_n} \mathbb{P}_n(\omega_1, \dots, \omega_{n-1}, d\omega_n)}_{\mathbb{P}_n(\omega_1, \dots, \omega_{n-1}, A_n)}.$$

(b) Neka je X slučajna varijabla na $(\Omega, \mathcal{F}, \mathbb{P})$. Ako je $X \geq 0$,

$$\int_{\Omega} X d\mathbb{P}$$

$$= \int_{\Omega_1} \mathbb{P}_1(d\omega_1) \int_{\Omega_2} \mathbb{P}_2(\omega_1, d\omega_2) \cdots \int_{\Omega_{n-1}} \mathbb{P}_{n-1}(\omega_1, \dots, \omega_{n-2}, d\omega_{n-1}) \int_{\Omega_n} X(\omega_1, \dots, \omega_n) \mathbb{P}_n(\omega_1, \dots, \omega_{n-1}, d\omega_n).$$

$$\forall j = 1, \dots, n - 1,$$

$$(\omega_1, \dots, \omega_j) \mapsto \int_{\Omega_{j+1}} \mathbb{P}_{j+1}(\omega_1, \dots, \omega_j, d\omega_{j+1}) \cdots \int_{\Omega_n} X(\omega_1, \dots, \omega_n) \mathbb{P}(\omega_1, \dots, \omega_{n-1}, d\omega_n)$$

je
$$\left(\bigotimes_{k=1}^{j} \mathcal{F}_{k}, B_{\mathbb{R}}\right)$$
-izmjeriva funkcija.

(c) Ako $\int_{\Omega} X d\mathbb{P}$ postoji (odnosno, konačan je), tada vrijedi gornja jednakost, u smislu da, za svaki $j=1,\ldots,n-1$, integral u odnosu na $\mathbb{P}_{j+1}(\omega_1,\ldots,\omega_j,\cdot)$ postoji, odnosno, konačan je, osim za $(\omega_1,\ldots,\omega_j)$ iz skupa λ_j -mjere 0, gdje je λ_j mjera određena s $\mathbb{P}_1,\mathbb{P}_2(\omega_1,\cdot),\ldots,\mathbb{P}_j(\omega_1,\ldots,\omega_{j-1},\cdot)$. Ako na tom skupu stavimo da je integral jednak 0, onda je on $(\bigotimes_{k=1}^j \mathcal{F}_k,B_{\mathbb{R}})$ -izmjeriva funkcija od $(\omega_1,\ldots,\omega_j)$.

TEOREM (Ionescu-Tulcea)⁵⁶

Neka su
$$(\Omega_j, \mathcal{F}_j)_{j \in \mathbb{N}}$$
 izmjerivi prostori i neka je $\Omega = \prod_{j=1}^{\infty} \Omega_j, \mathcal{F} = \bigotimes_{j=1}^{\infty} \mathcal{F}_j.$

- (i) Neka je zadana vjerojatnost \mathbb{P}_1 na \mathcal{F}_1 .
- (ii) Neka je za svaki $j \in \mathbb{N}$ i svaki $(\omega_1, \dots, \omega_j) \in \prod_{k=1}^j \Omega_k$, zadana vjerojatnost $\mathbb{P}_{j+1}(\omega_1, \dots, \omega_j, \cdot)$ na \mathcal{F}_{j+1} .
- (iii) Neka je za svaki fiksni $C \in \mathcal{F}_{j+1}$, $\mathbb{P}_{j+1}(\omega_1, \dots, \omega_j, C) : \prod_{k=1}^j \to \mathbb{R} \left(\bigoplus_{k=1}^j \mathcal{F}_k, B_{\mathbb{R}} \right)$ -izmjeriva.
- (iv) Za $B^n \in \bigotimes_{j=1}^n \mathcal{F}_j$, stavimo

$$\mathbb{P}'_{n}(B^{n})$$

$$= \int_{\Omega_{1}} \mathbb{P}_{1}(d\omega_{1}) \int_{\Omega_{2}} \mathbb{P}_{2}(\omega_{1}, d\omega_{2}) \cdots \int_{\Omega_{n-1}} \mathbb{P}_{n-1}(\omega_{1}, \dots, \omega_{n-2}, d\omega_{n-1}) \int_{\Omega_{n}} \mathbb{1}_{B^{n}}(\omega_{1}, \dots, \omega_{n}) \mathbb{P}_{n}(\omega_{1}, \dots, \omega_{n-1}, d\omega_{n}).$$

Tada postoji jedinstvena vjerojatnost \mathbb{P} na \mathcal{F} t. d. se, za svaki $n \in \mathbb{N}$, \mathbb{P} podudara s \mathbb{P}'_n na n-dimenzionalnim izmjerivim cilindrima, tj., vrijedi

$$\mathbb{P}\left(\left\{\omega \in \Omega \mid (\omega_1, \dots, \omega_n) \in B^n\right\}\right) = \mathbb{P}'_n\left(B^n\right), \forall n \in \mathbb{N}, \forall B^n \in \bigotimes_{j=1}^n \mathcal{F}_j.$$

 $^{^{56} {\}rm Cassius}$ Tocqueville Ionescu Tulcea, 14. listopada 1923., Bukurešt - 6. ožujka 2021., Chicago Alexandra Bellow, 30. kolovoza 1935., Bukurešt-

Saul Bellow, 10. lipnja 1915., Lachine, Quebec, Kanada - 5. travnja 2005., Brookline, Massachusetts Alberto Calderon, 14. rujna 1920., Mendoza, Argentina - 16. travnja 1998., Chicago

53 Literatura

- [1] N. Sarapa. Teorija vjerojatnosti, Treće, prerađeno izdanje, 2002.
- [2] A. Gut A Graduate Course in Probability Theory. https://www.usb.ac.ir/FileStaff/5678_2018-9-18-12-55-51.pdf (ali, više nije dostupno)
- [3] R.T. Durrett. Probability: Theory and Examples, 5th Edition. https://sites.math.duke.edu/~rtd/PTE/PTE5_011119.pdf
- [4] R. Vershynin. Probability Theory Lecture Notes. https://www.math.uci.edu/~rvershyn/teaching/2007-08/235B/lecture-notes.pdf
- [5] R. Vershynin. Course Materials Math 235B. https://www.math.uci.edu/~rvershyn/teaching/2007-08/235B/235B.html
- [6] R. Mrazović. Bilješke s predavanja (iz Mjere i integrala)
 https://www.dropbox.com/scl/fi/yuvjwvor59jaqx4rwlxn4/Mrazovi-.-Mjera-i-integral.-Zagreb.-2025.pdf?rlkey=icsfb9y1tfgpizomphkljce=1&dl=0 (zadnje pristupljeno 13. lipnja 2025.)
- [7] Z. Vondraček & N. Sandrić. Vjerojatnost predavanja. https://web.math.pmf.unizg.hr/nastava/vjer/files/vjer_predavanja.pdf
- [8] I. Krijan. Bilješke s predavanja (iz Mjere i integrala) https://web.math.pmf.unizg.hr/nastava/mii/files/mii-predavanja-sikic.pdf
- [9] T. Koczan. Graduate Probability Lecture Notes. Carnegie Mellon University. https://www.math.cmu.edu/users/ttkocz/teaching/1920/prob-grad-notes.pdf
- [10] N. Sun. Theory of Probability, Fall 2019. MIT. https://math.mit.edu/~nsun/f19-18675.html
- [11] D. Aldous. STAT 205A: Probability Theory. UC Berkeley. https://www.stat.berkeley.edu/~aldous/205A/
- $[12] \ \ J. \ Norris. \ \ Advanced \ Probability \ Lecture \ Notes. \ University of Cambridge. \\ https://www.statslab.cam.ac.uk/~james/Lectures/ap.pdf$
- $[13] \ \ H. \ G. \ \ Tucker \ A \ \ Graduate \ \ Course \ in \ Probability. \\ https://ia800104.us.archive.org/9/items/in.ernet.dli.2015.141066/2015.141066. A-Graduate-Course-In-Probability_text.pdf$