Лабораторная работа 4.1.2. Моделирование оптических приборов и определение их увеличения

Калинин Даниил, Б01-110 23 марта 2023 г.

Цель работы: Определить фокусные расстояния собирающих и рассеивающих линз, смоделировать ход лучей в трубе Галилея, трубе Кеплера и микроскопе, определить их увеличение.

В работе используются: Оптическая скамья, набор линз, экран, осветитель со шкалой, зрительная труба, диафрагма, линейка.

Ход работы:

1. Для начала определим примерные фокусные расстояния линз. Для этого возьмем парралельный пучок лучей и будем добиваться четкого изображения, если изображения наблюдаться не будет, то линза — рассеивающая. Проделаем такой эксперимент со всеми линзами. Результат занесем в таблицу 1.

Номер линзы	Приблизительное фокусное расстояние, см.
1	7.7
2	10
3	20.7
4	31
5	_

Таблица 1. Приблизительные фокусные расстояния линз

Таким образом, у нас получилось, что линзы 1-4 — собирающие, а линза 5 — рассеивающая. 2. Теперь определим точное фокусное расстояние собирающий линз. Для этого сначала настроим зрительную трубу на бесконечность, а затем будем располагать линзы на расстоянии, примерно равном фокуснуму. Передвигая линзу вдоль скамьи, получим в окуляре зрительной трубы четкое изображение предмета — миллиметровой сетки, тогда расстояние между предметом и серединой линзы равно фокуснуму. Полученные измерения занесем в таблицу 2.

Номер линзы	Фокусное расстояние, см.
1	7.5
2	10.6
3	19.3
4	28.1

Таблица 2. Фокусные расстояния собирающих линз

3. Далее определим фокусное расстояние рассеивающей линзы. Для начала, получим увеличенное изображение сетки при помощи короткофокусной линзы № 1. Измерим расстояние между линзой и экраном: $a_0 = 37.5$ см. Сразу за экраном разместим зрительную трубу, настроенную на бесконечность, уберем экран, а на его месте поставим рассеивающую линзу. (Установка изображена на рисунке 1).

Рис. 1. Схема эксперимента по измерению фокусного расстояния рассеивающей линзы.

Перемещая рассеивающую линзу, добьемся четкого изображения сетки в зрительной трубе. Измерив расстояние между линзами, расчитаем фокусное расстояние рассеивающей линзы: $l=11.5\ cm.,\ f_5=a_0-l=26\ cm.$

4. Измерив фокусные расстояния, приступим к моделированию оптических приборов. Первым смоделериуем трубу Кеплера.

Ход лучей в трубе Кеплера представлен на рисунке 2. Пользуясь рисунком, найдем теоретическое увеличение системы.

Рис. 2. Ход лучей в трубе Кеплера

Пусть пучок света, попадающий в объектив, составляет с оптической осью угол φ_1 , а пучок, выходящий из окуляра, — угол φ_2 . По определению, увеличение γ зрительной трубы равно

$$\gamma = \frac{\tan \varphi_2}{\tan \varphi_1},\tag{1}$$

но также из рисунка 2 следует, что

$$\gamma_K = -\frac{f_1}{f_2} = -\frac{D_1}{D_2},\tag{2}$$

где D_1 - ширина пучка, прошедшего через объектив, а D_2 - ширина пучка, вышедшего из окуляра

Возьмем линзы \mathbb{N}_2 и \mathbb{N}_2 4, построим из них трубу Кеплера. Далее, построим оптическую систему из трубы Кеплера и каллиматора. Схема установки изображена на рисунке 3.

Телескоп Кеплера 3рит. труба $f_1 + f_2$ f_2

Рис. 3. Телескоп Кеплера

Получим экспериментальное значение увеличения трубы Кеплера. Пусть h_1 – размер ячей-ки сетки без телескопа, h_2 – с телескопом.

$$h_1 = 10$$
 дел., $h_2 = 27$ дел.

Таким образом, получим:

$$\gamma_{K_{\Re cn}} = -\frac{h_2}{h_1} = -2.7$$

Сравним это значение с расчитанными по формуле (2).

Во-первых, по диаметру оправы объектива и диаметру изображения этой оправы в окуляре:

$$D_1 = 3.6 \text{ cm}, \qquad D_2 = 9.6 \text{ cm}$$

$$\gamma_{K_{\partial uam}} = -\frac{D_2}{D_1} = -2.66$$

И, во-вторых, по фокусным расстояниям линз:

$$f_2 = 10.6 \text{ cm}, \qquad f_4 = 28.1 \text{ cm}$$

$$\gamma_{K_{\phi o x y c}} = -\frac{f_4}{f_2} = -2.65$$

5. Теперь смоделируем трубу Галилея. Труба Галлилея получается после замены собирающей линзы в трубе Кепплера рассеивающей. Таким образом, формулы для увеличения остаются те же (за исключением знака, т.к. труба Галлилея дает прямое изображение):

$$\gamma_K = \frac{f_1}{f_2} = \frac{D_1}{D_2},\tag{3}$$

Заменим линзу № 4 на рассеивающую линзу № 5 (с фокусным расстоянием $f_5=26c$ м.). Измерим увеличение:

$$h_1 = 10$$
 дел., $h_2 = 25$ дел.

$$\gamma_{G_{\Re cn}} = \frac{h_2}{h_1} = 2.5$$

Теперь сравним значение с расчитанным по формуле (3):

$$\gamma_{G_{\text{фокус}}} = \frac{f_4}{f_2} = 2.45$$

6. Моделирование микроскопа. Схема микроскопа приведена на рисунке 4. Увеличение микроскопа вычисляется по следующей формуле

$$\gamma_M = \Gamma_{ob} \Gamma_{oc} = -\frac{\triangle}{f_1} \frac{L}{f_2},\tag{4}$$

где f_1 и f_2 - фокусные расстояния линз микроскопа, $\triangle = l_{12} - f_1 - f_2$ см - интервал, l_{12} - длина тубуса, L - расстояние наилучшего зрения (L = 25 см).

Рис. 4. Схема микроскопа

Соберем микроском с пятикратным увеличением. Для сборки используем линзы №1 ($f_1 = 7.5 \ cm$) и №2 ($f_2 = 10.6 \ cm$). По формуле (4) расчитаем необходимую длину тубуса: $l_{12} = 33.75 \ cm$.

Измерим размер ячейки миллиметровой сетки, и расчитаем увеличение.

$$h_1 = 10$$
 дел., $h_2 = 38$ дел.

$$\gamma_{M_{\mathfrak{I}KCn}} = -\frac{h_2 L}{h_1 f} = -4.92$$

где f – фокусное расстояние линзы-коллиматора $f=f_3=19.3~{\rm cm}.$

Заключение:

В ходе выполнения лабораторной работы были получены следующие результаты:

- 1. Для трубы Кепплера:
 - (a) $\gamma_{K_{excn}} = -2.7$
 - (b) $\gamma_{K_{\partial uam.}} = -2.66$
 - (c) $\gamma_{K_{\phi o \kappa u c.}} = -2.65$
- 2. Для трубы Галлилея:
 - (a) $\gamma_{G \ni \kappa c n} = 2.5$
 - (b) $\gamma_{G_{\phi o \kappa y c}} = 2.45$
- 3. Для микроскопа:
 - (a) $\gamma_{M_{2KCD}} = -4.92$
 - (b) $\gamma_{M_{meon.}} = -5$

Как видно, значения хорошо соответствуют друг другу. Небольшое расхождение можно объяснить небольшими продольными сдвигами приборов при выставлении их на оптической скамье.