Asymptotic Analysis

Discussion 7: March 1, 2017

1 Computational Cost

- 1.1 Count the operations it takes to execute kviate as a function of N= a.length. Assume each of the following operations each take 1 timestep to complete.
 - \cdot variable declaration \cdot assignment \cdot comparison \cdot array access \cdot increment

```
public static void kviate(int[] a, int k) {
    int count = 0, N = a.length;
    for (int i = 0; i < N; i += 1) {
        if (a[i] == k) {
            count += 1;
        }
    }
    a[k] += count;
}</pre>
```

2 Analysis of Algorithms

Give a tight asymptotic runtime bound for linearSearch as a function of *N*, the size of the array, in the *best case*, *worst case*, *and overall*.

```
public static boolean linearSearch(int[] a, int value, int start) {
   if (start >= a.length) {
      return false;
   } else if (a[start] == value) {
      return true;
   } else {
      return linearSearch(a, value, start + 1);
   }
}
```

2.2 Give a tight asymptotic runtime bound for binarySearch as a function of N, the size of the array, in the *best case*, *worst case*, *and overall*. Assume the array is sorted.

```
public static boolean binarySearch(int[] a, int value, int start, int end) {
   if (start == end || start == end - 1) { return a[start] == value; }
   int mid = end + ((start - end) / 2);
   if (a[mid] == value) {
      return true;
   } else if (a[mid] > value) {
      return binarySearch(a, value, start, mid);
   } else {
      return binarySearch(a, value, mid, end);
   }
}
```

Give a tight asymptotic runtime bound for mysterySearch as a function of N, the size of the array, in the *best case*, *worst case*, *and overall*. Assume the array is sorted.

```
public static boolean mysterySearch(int[] a, int value) {
    if (Math.random() < 0.5) {
        return linearSearch(a, value, 0);
    } else {
        return binarySearch(a, value, 0, a.length);
    }
}</pre>
```

- For each pair of functions f(n) and g(n), state whether $f(n) \in O(g(n))$, $f(n) \in \Omega(g(n))$, or $f(n) \in \Theta(g(n))$. For example, for $f(n) = n^2$ and $g(n) = 2n^2 n + 3$, write $f(n) \in \Theta(g(n))$.
 - (a) $f(n) = n \text{ and } g(n) = n^2 n$
 - (b) $f(n) = n^2$ and $g(n) = n^2 + n$
 - (c) $f(n) = 8n \text{ and } g(n) = n^2$
 - (d) $f(n) = 2^n$ and $g(n) = n^2$
 - (e) $f(n) = 3^n$ and $g(n) = 2^{2n}$
- 2.5 For each of the following, state the order of growth using $\Theta(\cdot)$ notation. For example, $f(n) \in \Theta(n)$.
 - (a) f(n) = 50
 - (b) $f(n) = n^2 2n + 3$
 - (c) $f(n) = n + \cdots + 2 + 1$
 - (d) $f(n) = n^{100} + 1.01^n$
 - (e) $f(n) = n^{1.1} + n \log n$