jhTAlib

Joost Hoeks

2019-03-20

Contents

jhTAlib	2
Depends only on	2
Docs	2
Install	3
Update	3
Examples	3
	3
Example 2	3
	4
Example 4	4
Example 5	4
	4
Example 7	5
Example 8	5
Example 9	5
Example 10	5
Test	5
Reference	6
Behavioral Techniques	6
	8
	9
Data	0
Event Driven	1
	1
General	.3
Information	.5
Math Functions	5
Momentum Indicators	20
	24
-	27
9	80
	₹1

Uncategorised
jhTAlib
Technical Analysis Library Time-Series
You can use and import it for your:
Technical Analysis Software
• Charting Software
Backtest Software
• Trading Robot Software
• Trading Software in general
Work in progress
Depends only on • The Python Standard Library
Docs
• .html
• .epub
• .json
• .odt
• .pdf
• .rst
• .rtf
• .xml

Install

```
From PyPI:
$ [sudo] pip3 install jhtalib
From source:
$ git clone https://github.com/joosthoeks/jhTAlib.git
$ cd jhTAlib
$ [sudo] pip3 install -e .
Update
From PyPI:
$ [sudo] pip3 install --upgrade jhtalib
From source:
$ cd jhTAlib
$ git pull [upstream master]
Examples
$ cd example/
Example 1
$ python3 example-1-plot.py
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/\\
example/example-1-plot.ipynb
```

Example 2

\$ python3 example-2-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-2-plot.ipynb

Example 3

\$ python3 example-3-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-3-plot.ipynb

Example 4

\$ python3 example-4-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-4-plot-quandl.ipynb

Example 5

\$ python3 example-5-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-5-plot-quandl.ipynb

Example 6

\$ python3 example-6-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-6-plot-quandl.ipynb

<pre>\$ python3 example-7-quand1-2-df.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-7-quandl-2-df.ipynb
Example 8
<pre>\$ python3 example-8-alphavantage-2-df.py</pre>
or
$https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-8-alphavantage-2-df.ipynb \\ \underline{\hspace{1.5cm}}$
Example 9
<pre>\$ python3 example-9-cryptocompare-2-df.py</pre>
or
$https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-9-cryptocompare-2-df.ipynb \\ ___$
Example 10
DF NumPy Pandas
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-10-df-numpy-pandas.ipynb
Test
<pre>\$ cd test/ \$ python3 test.py</pre>

Example 7

import jhtalib as jhta Behavioral Techniques ATH | All Time High | DONE • dict of lists = jhta.ATH(df, price='High') LMC | Last Major Correction | DONE • dict of lists = jhta.LMC(df, price='Low') PP | Pivot Point | DONE • dict of lists = jhta.PP(df) • https://en.wikipedia.org/wiki/Pivot_point_(technical_analysis) FIBOPR | Fibonacci Price Retracements | DONE • dict of lists = jhta.FIBOPR(df, price='Close') FIBTR | Fibonacci Time Retracements | GANNPR | W. D. Gann Price Retracements | DONE • dict of lists = jhta.GANNPR(df, price='Close') GANNTR | W. D. Gann Time Retracements |

Reference

JDN Julian Day Number DONE	
• jdn = jhta.JDN(utc_year, utc_month, utc_day)	
• https://en.wikipedia.org/wiki/Julian_day	
JD Julian Date DONE	
 jd = jhta.JD(utc_year, utc_month, utc_day, ut utc_second) 	c_hour, utc_minute,
$\bullet \ \ https://en.wikipedia.org/wiki/Julian_day$	
SUNC Sun Cycle	
MERCURYC Mercury Cycle •	
VENUSC Venus Cycle •	
EARTHC Earth Cycle	
MARSC Mars Cycle	

JUPITERC Jupiter Cycle •	
SATURNC Saturn Cycle •	
URANUSC Uranus Cycle •	
NEPTUNEC Neptune Cycle •	
PLUTOC Pluto Cycle •	
MOONC Moon Cycle •	
Candlestick	
CDLBODYS Candle Body Size DONE • jhta.CDLBODYS(df) • https://www.tradeciety.com/understand-candlesticks-	patterns/

CDLWICKS | Candle Wick Size | DONE • jhta.CDLWICKS(df) • https://www.tradeciety.com/understand-candlesticks-patterns/ CDLUPPSHAS | Candle Upper Shadow Size | DONE • jhta.CDLUPPSHAS(df) $\bullet \ \, \rm https://www.tradeciety.com/understand-candlesticks-patterns/$ CDLLOWSHAS | Candle Lower Shadow Size | DONE • jhta.CDLLOWSHAS(df) • https://www.tradeciety.com/understand-candlesticks-patterns/ Cycle Indicators HT_DCPERIOD | Hilbert Transform - Dominant Cycle Period | HT_DCPHASE | Hilbert Transform - Dominant Cycle Phase | HT_PHASOR | Hilbert Transform - Phasor Components |

HT_SINE | Hilbert Transform - SineWave |

HT_TRENDLINE Hilbert Transform - Instantaneous Trendline •
HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode •
TS Trend Score DONE
 list = jhta.TS(df, n, price='Close') https://www.fmlabs.com/reference/default.htm?url=TrendScore.htm
Data
<pre>CSV2DF CSV file 2 DataFeed DONE dict of tuples = jhta.CSV2DF(csv_file_path)</pre>
CSVURL2DF CSV file url 2 DataFeed DONE • dict of tuples = jhta.CSVURL2DF(csv_file_url)
OF2CSV DataFeed 2 CSV file DONE • csv file = jhta.DF2CSV(df, csv_file_path)
OF2DFREV DataFeed 2 DataFeed Reversed DONE • dict of tuples = jhta.DF2DFREV(df)

• dict of tuples = jhta.DF2DFWIN(df, start=0, end=10) DF_HEAD | DataFeed HEAD | DONE • dict of tuples = jhta.DF_HEAD(df, n=5) DF_TAIL | DataFeed TAIL | DONE • dict of tuples = jhta.DF_TAIL(df, n=5) DF2HEIKIN_ASHI | DataFeed 2 Heikin-Ashi DataFeed | DONE • dict of tuples = jhta.DF2HEIKIN_ASHI(df) **Event Driven** ASI | Accumulation Swing Index (J. Welles Wilder) | DONE • list = jhta.ASI(df, L) • book: New Concepts in Technical Trading Systems SI | Swing Index (J. Welles Wilder) | DONE • list = jhta.SI(df, L) • book: New Concepts in Technical Trading Systems Experimental JH_SAVGP | Swing Average Price - previous Average Price | DONE • list = jhta.JH_SAVGP(df)

DF2DFWIN | DataFeed 2 DataFeed Window | DONE

mation DONE		
• list = jhta.	JH_SAVGPS(df)	
JH_SCO Swing • list = jhta.	Close - Open DONE JH_SCO(df)	
JH_SCOS Swin • list = jhta.	g Close - Open Summation DON $_{ m JH_SCOS(df)}$	ΤE
JH_SMEDP Sw	ring Median Price - previous Media	an Price DONE
jh_SMEDPS Sw tion DONE • list = jhta.	ving Median Price - previous Media	an Price Summa-
	Price - previous Price DONE JH_SPP(df, price='Close')	
•	g Price - previous Price Summatio	on DONE

 ${\bf JH_SAVGPS}$ | Swing Average Price - previous Average Price Sum-

$ m JH_{-}$	_STYPP	Swing	Typical	Price -	${\bf previous}$	Typical	Price	DONE
-------------	--------	-------	---------	---------	------------------	---------	-------	------

• list = jhta.JH_STYPP(df)

JH_STYPPS | Swing Typical Price - previous Typical Price Summation | DONE

• list = jhta.JH_STYPPS(df)

JH_SWCLP | Swing Weighted Close Price - previous Weighted Close Price | DONE

• list = jhta.JH_SWCLP(df)

JH_SWCLPS | Swing Weighted Close Price - previous Weighted Close Price Summation | DONE

• list = jhta.JH_SWCLPS(df)

General

NORMALIZE | Normalize | DONE

- list = jhta.NORMALIZE(df, price_max='High', price_min='Low', price='Close')
- $\bullet \ \ https://machinelearningmastery.com/normalize-standardize-time-series-data-python/$

STANDARDIZE | Standardize | DONE

- list = jhta.STANDARDIZE(df, price='Close')
- $\bullet \ \ https://machinelearning mastery.com/normalize-standardize-time-series-data-python/$

13

SPREAD | Spread | DONE

• list = jhta.SPREAD(df1, df2, price1='Close', price2='Close')

CP | Comparative Performance | DONE

- list = jhta.CP(df1, df2, price1='Close', price2='Close')

CRSI | Comparative Relative Strength Index | DONE

- list = jhta.CRSI(df1, df2, n, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=RSIC.htm

CS | Comparative Strength | DONE

- list = jhta.CS(df1, df2, price1='Close', price2='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=CompStrength.htm$

HR | Hit Rate / Win Rate | DONE

- float = jhta.HR(hit_trades_int, total_trades_int)
- http://traderskillset.com/hit-rate-stock-trading/

PLR | Profit/Loss Ratio | DONE

- float = jhta.PLR(mean_trade_profit_float, mean_trade_loss_float)
- https://www.investopedia.com/terms/p/profit_loss_ratio.asp

EV | Expected Value | DONE • float = jhta.EV(hitrade_float, mean_trade_profit_float, mean_trade_loss_float) • https://en.wikipedia.org/wiki/Expected_value POR | Probability of Ruin (Table of Lucas and LeBeau) | DONE • int = jhta.POR(hitrade_float, profit_loss_ratio_float) • book: Computer Analysis of the Futures Markets Information INFO | Print df Information | DONE • print = jhta.INFO(df, price='Close') INFO_TRADES | Print Trades Information | DONE • print = jhta.INFO_TRADES(profit_trades_list, loss_trades_list) **Math Functions** EXP | Exponential | DONE • list = jhta.EXP(df, price='Close') LOG | Logarithm | DONE • list = jhta.LOG(df, price='Close')

LOG10 | Base-10 Logarithm | DONE

• list = jhta.LOG10(df, price='Close')

```
SQRT | Square Root | DONE
  • list = jhta.SQRT(df, price='Close')
ACOS | Arc Cosine | DONE
  • list = jhta.ACOS(df, price='Close')
ASIN | Arc Sine | DONE
  • list = jhta.ASIN(df, price='Close')
ATAN | Arc Tangent | DONE
  • list = jhta.ATAN(df, price='Close')
COS | Cosine | DONE
  • list = jhta.COS(df, price='Close')
SIN | Sine | DONE
  • list = jhta.SIN(df, price='Close')
TAN | Tangent | DONE
  • list = jhta.TAN(df, price='Close')
ACOSH | Inverse Hyperbolic Cosine | DONE
  • list = jhta.ACOSH(df, price='Close')
```

ASINH | Inverse Hyperbolic Sine | DONE • list = jhta.ASINH(df, price='Close') ATANH | Inverse Hyperbolic Tangent | DONE • list = jhta.ATANH(df, price='Close') COSH | Hyperbolic Cosine | DONE • list = jhta.COSH(df, price='Close') SINH | Hyperbolic Sine | DONE • list = jhta.SINH(df, price='Close') TANH | Hyperbolic Tangent | DONE • list = jhta.TANH(df, price='Close') PI | Mathematical constant PI | DONE • float = jhta.PI() $\mathbf{E} \mid \mathbf{Mathematical}$ constant $\mathbf{E} \mid \mathbf{DONE}$ • float = jhta.E() TAU | Mathematical constant TAU | DONE • float = jhta.TAU()

PHI | Mathematical constant PHI | DONE • float = jhta.PHI() CEIL | Ceiling | DONE • list = jhta.CEIL(df, price='Close') FLOOR | Floor | DONE • list = jhta.FLOOR(df, price='Close') **DEGREES** | Radians to Degrees | **DONE** • list = jhta.DEGREES(df, price='Close') RADIANS | Degrees to Radians | DONE • list = jhta.RADIANS(df, price='Close') ADD | Addition High + Low | DONE • list = jhta.ADD(df) $\mathbf{DIV} \mid \mathbf{Division} \ \mathbf{High} \ / \ \mathbf{Low} \mid \mathbf{DONE}$ • list = jhta.DIV(df) MAX | Highest value over a specified period | DONE • list = jhta.MAX(df, n, price='Close')

MAXINDEX Index of highest value over a specified period •
MIN Lowest value over a specified period DONE • list = jhta.MIN(df, n, price='Close')
$\label{eq:minimized_minimized} \begin{split} & \text{MININDEX} \mid \text{Index of lowest value over a specified period} \mid & \\ \bullet & \end{split}$
MINMAX Lowest and Highest values over a specified period \bullet
MINMAXINDEX Indexes of lowest and highest values over a specified period $ \bullet $
MULT Multiply High * Low DONE • list = jhta.MULT(df)
SUB Subtraction High - Low DONE • list = jhta.SUB(df)
<pre>SUM Summation DONE • list = jhta.SUM(df, n, price='Close')</pre>

Momentum Indicators
ADX Average Directional Movement Index
•
${f ADXR}$ Average Directional Movement Index Rating
APO Absolute Price Oscillator DONE
• list = jhta.APO(df, n_fast, n_slow, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=PriceOscillator.htm
AROON Aroon
AROONOSC Aroon Oscillator
BOP Balance Of Power
CCI Commodity Channel Index

CMO Chande M	Iomentum Oscillator	
DX Directional I	Movement Index	
IMI Intraday Mo	omentum Index DONE	
• https://www.fr	mlabs.com/reference/default.htm?url=	IMI.htm
MACD Moving	Average Convergence/Divergence	I
MACDEXT MA	CD with controllable MA type	
MACDFIX Movi	ing Average Convergence/Diverge	nce Fix 12/26
MFI Money Flow	w Index	
MINUS_DI Min	nus Directional Indicator	

MINUS_DM Minus Directional Movement •
MOM Momentum DONE • list = jhta.MOM(df, n, price='Close')
 https://www.fmlabs.com/reference/default.htm?url=Momentum.htm PLUS_DI Plus Directional Indicator •
PLUS_DM Plus Directional Movement •
PPO Percentage Price Oscillator •
RMI Relative Momentum Index DONE • list = jhta.RMI(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=RMI.htm
ROC Rate of Change DONE • list = jhta.ROC(df, n, price='Close')

ROCP Rate of Change Percentage DONE
• list = jhta.ROCP(df, n, price='Close')
ROCR Rate of Change Ratio DONE
• list = jhta.ROCR(df, n, price='Close')
ROCR100 Rate of Change Ratio 100 scale DONE
• list = jhta.ROCR100(df, n, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=RateOfChange.htm
RSI Relative Strength Index DONE
• list = jhta.RSI(df, n, price='Close')
• https://www.fmlabs.com/reference/default.htm?url=rsi.htm
STOCH Stochastic DONE
• list = jhta.STOCH(df, n, price='Close')
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=Stochastic.htm} \\ \underline{\hspace{1cm}}$
STOCHF Stochastic Fast
STOCHRSI Stochastic Relative Strength Index •

TRIX 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA •
ULTOSC Ultimate Oscillator •
WILLR Williams' %R DONE • list = jhta.WILLR(df, n)
• https://www.fmlabs.com/reference/default.htm?url=WilliamsR.htm
Overlap Studies
BBANDS Bollinger Bands DONE • dict of lists = jhta.BBANDS(df, n, f=2) • https://www.fmlabs.com/reference/default.htm?url=Bollinger.htm
BBANDW Bollinger Band Width DONE • list = jhta.BBANDW(df, n, f=2)
• https://www.fmlabs.com/reference/default.htm?url=BollingerWidth.htm
DEMA Double Exponential Moving Average •
EMA Exponential Moving Average •

ENVP | Envelope Percent | DONE • dict of lists = jhta.ENVP(df, pct=.01, price='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=EnvelopePct.htm$ KAMA | Kaufman Adaptive Moving Average | MA | Moving Average | MAMA | MESA Adaptive Moving Average | MAVP | Moving Average with Variable Period | MIDPOINT | MidPoint over period | DONE • list = jhta.MIDPOINT(df, n, price='Close') • http://www.tadoc.org/indicator/MIDPOINT.htm MIDPRICE | MidPoint Price over period | DONE

• list = jhta.MIDPRICE(df, n)

 $\bullet \ \, http://www.tadoc.org/indicator/MIDPRICE.htm$

• list = jhta	.MMR(df, n=200, price='Close')	
• https://www.	the investor spod cast. com/bit coin-mayer-multi-like the investor spod cast. coin-mayer-multi-like	ple/
AR Parabolic	SAR DONE	
	.SAR(df, af_step=.02, af_max=.2)	
· ·	oncepts in Technical Trading Systems	
$f AREXT \mid Paral$	bolic SAR - Extended	
• list = jhta	<pre>loving Average DONE .SMA(df, n, price='Close')</pre>	
• https://www.	fmlabs.com/reference/default.htm?url=Simple	eMA.htm
3 Triple Expo	nential Moving Average (T3)	
EMA Triple F	Exponential Moving Average	
• list = jhta	ular Moving Average DONE .TRIMA(df, n, price='Close') fmlabs.com/reference/default.htm?url=Triang	

WMA | Weighted Moving Average •

Pattern Recognition CDL2CROWS | Two Crows | CDL3BLACKCROWS | Three Black Crows | CDL3INSIDE | Three Inside Up/Down | CDL3LINESTRIKE | Three-Line Strike | CDL3OUTSIDE | Three Outside Up/Down | CDL3STARSINSOUTH | Three Stars In The South | CDL3WHITESOLDIERS | Three Advancing White Soldiers | CDLABANDONEDBABY | Abandoned Baby | CDLADVANCEBLOCK | Advance Block | CDLBELTHOLD | Belt-hold | CDLBREAKAWAY | Breakaway | CDLCLOSINGMARUBOZU | Closing Marubozu | CDLCONSEALBABYSWALL | Concealing Baby Swallow | CDLCOUNTERATTACK | Counterattack |

CDLDARKCLOUDCOVER | Dark Cloud Cover |

```
CDLDOJI | Doji |
CDLDOJISTAR | Doji Star |
CDLDRAGONFLYDOJI | Dragonfly Doji |
CDLENGULFING | Engulfing Pattern |
CDLEVENINGDOJISTAR | Evening Doji Star |
CDLEVENINGSTAR | Evening Star |
CDLGAPSIDESIDEWHITE | Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI | Gravestone Doji |
CDLHAMMER | Hammer |
CDLHANGINGMAN | Hanging Man |
CDLHARAMI | Harami Pattern |
CDLHARAMICROSS | Harami Cross Pattern |
CDLHIGHWAVE | High-Wave Candle |
CDLHIKKAKE | Hikkake Pattern |
CDLHIKKAKEMOD | Modified Hikkake Pattern |
CDLHOMINGPIGEON | Homing Pigeon |
CDLIDENTICAL3CROWS | Identical Three Crows |
```

```
CDLINNECK | In-Neck Pattern |
CDLINVERTEDHAMMER | Inverted Hammer |
CDLKICKING | Kicking |
CDLKICKINGBYLENGTH | Kicking - bull/bear determined by the
longer marubozu |
CDLLADDERBOTTOM | Ladder Bottom |
CDLLONGLEGGEDDOJI | Long Legged Doji |
CDLLONGLINE | Long Line Candle |
\mathbf{CDLMARUBOZU} \mid \mathbf{Marubozu} \mid
CDLMATCHINGLOW | Matching Low |
CDLMATHOLD | Mat Hold |
CDLMORNINGDOJISTAR | Morning Doji Star |
CDLMORNINGSTAR | Morning Star |
CDLONNECK | On-Neck Pattern |
CDLPIERCING | Piercing Pattern |
CDLRICKSHAWMAN | Rickshaw Man |
CDLRISEFALL3METHODS | Rising/Falling Three Methods |
CDLSEPARATINGLINES | Separating Lines |
```

```
{\bf CDLSHOOTINGSTAR} \mid {\bf Shooting} \ {\bf Star} \mid
CDLSHORTLINE | Short Line Candle |
CDLSPINNINGTOP | Spinning Top |
CDLSTALLEDPATTERN | Stalled Pattern |
CDLSTICKSANDWICH | Stick Sandwich |
CDLTAKURI | Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP | Tasuki Gap |
CDLTHRUSTING | Thrusting Pattern |
CDLTRISTAR | Tristar Pattern |
CDLUNIQUE3RIVER | Unique 3 River |
CDLUPSIDEGAP2CROWS | Upside Gap Two Crows |
CDLXSIDEGAP3METHODS | Upside/Downside Gap Three Meth-
ods |
Price Transform
AVGPRICE | Average Price | DONE
  • list = jhta.AVGPRICE(df)
```

30

• https://www.fmlabs.com/reference/default.htm?url=AvgPrices.htm

MEDPRICE | Median Price | DONE

- list = jhta.MEDPRICE(df)
- $\bullet \quad \text{https://www.fmlabs.com/reference/default.htm?url=MedianPrices.htm}$

TYPPRICE | Typical Price | DONE

- list = jhta.TYPPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TypicalPrices.htm$

WCLPRICE | Weighted Close Price | DONE

- list = jhta.WCLPRICE(df)
- $\verb| https://www.fmlabs.com/reference/default.htm?url=WeightedCloses. \\ \verb| htm| \\$

Statistic Functions

MEAN | Arithmetic mean (average) of data | DONE

• list = jhta.MEAN(df, n, price='Close')

HARMONIC_MEAN | Harmonic mean of data | DONE

• list = jhta.HARMONIC_MEAN(df, n, price='Close')

MEDIAN | Median (middle value) of data | DONE

• list = jhta.MEDIAN(df, n, price='Close')

MEDIAN_LOW | Low median of data | DONE

• list = jhta.MEDIAN_LOW(df, n, price='Close')

• list = jhta.MEDIAN_HIGH(df, n, price='Close') MEDIAN_GROUPED | Median, or 50th percentile, of grouped data | DONE • list = jhta.MEDIAN_GROUPED(df, n, price='Close', interval=1) MODE | Mode (most common value) of discrete data | DONE • list = jhta.MODE(df, n, price='Close') PSTDEV | Population standard deviation of data | DONE • list = jhta.PSTDEV(df, n, price='Close', mu=None) PVARIANCE | Population variance of data | DONE • list = jhta.PVARIANCE(df, n, price='Close', mu=None) STDEV | Sample standard deviation of data | DONE • list = jhta.STDEV(df, n, price='Close', xbar=None) VARIANCE | Sample variance of data | DONE • list = jhta.VARIANCE(df, n, price='Close', xbar=None)

MEDIAN_HIGH | High median of data | DONE

COV | Covariance | DONE

- float = jhta.COV(list1, list2)
- https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance

COVARIANCE | Covariance | DONE

- list = jhta.COVARIANCE(df1, df2, n, price1='Close', price2='Close')

COR | Correlation | DONE

• float = jhta.COR(list1, list2)

CORRELATION | Correlation | DONE

• list = jhta.CORRELATION(df1, df2, n, price1='Close', price2='Close')

PCOR | Population Correlation | DONE

• float = jhta.PCOR(list1, list2)

PCORRELATION | Population Correlation | DONE

• list = jhta.PCORRELATION(df1, df2, n, price1='Close', price2='Close')

BETA | Beta | DONE

- float = jhta.BETA(list1, list2)
- https://en.wikipedia.org/wiki/Beta_(finance)

BETAS | Betas | DONE

- list = jhta.BETAS(df1, df2, n, price1='Close', price2='Close')
- https://en.wikipedia.org/wiki/Beta_(finance)

LSR | Least Squares Regression | DONE

- list = jhta.LSR(df, price='Close', predictions_int=0)
- $\bullet \ \ https://www.mathsisfun.com/data/least-squares-regression.html$

SLR | Simple Linear Regression | DONE

- list = jhta.SLR(df, price='Close', predictions_int=0)
- $\bullet \ \ https://machinelearningmastery.com/implement-simple-linear-regression-scratch-python/$

Uncategorised

Volatility Indicators

ATR | Average True Range | DONE

- list = jhta.ATR(df, n)
- https://www.fmlabs.com/reference/default.htm?url=ATR.htm

NATR | Normalized Average True Range |

•

RVI | Relative Volatility Index | DONE

- list = jhta.RVI(df, n)
- https://www.fmlabs.com/reference/default.htm?url=RVI.htm

INERTIA Inertia •
TRANGE True Range DONE • list = jhta.TRANGE(df) • https://www.fmlabs.com/reference/default.htm?url=TR.htm
Volume Indicators
AD Chaikin A/D Line DONE
• list = jhta.AD(df)
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AccumDist.htm$
ADOSC Chaikin A/D Oscillator •
OBV On Balance Volume DONE
• list = jhta.OBV(df)
• https://www.fmlabs.com/reference/default.htm?url=OBV.htm