${ m CM042}$ - Cálculo II

28 de Agosto de 2017 - Prova 1

	Q:	1	2	3	4	5	Total
Nome:	P:	45	20	15	20	10	100
	N:						
Questão 1							
Considere a curva dada pela função $\vec{r}(t) = e^t \cos t \hat{\mathbf{i}} + e^t \hat{\mathbf{j}} + e^t \sin t \hat{\mathbf{k}}, t \in \mathbb{R}.$							
(a) $\boxed{7}$ Calcule o vetor tangente unitário $\hat{\mathbf{T}}(t)$.							
(b) 7 Calcule o vetor normal unitário $\hat{N}(t)$.							
(c) $\boxed{7}$ Calcule o vetor binormal unitário $\hat{\mathbf{B}}(t)$.							
(d) 8 Calcule a curvatura dessa curva.							
(e) 8 Calcule o comprimento da curva dada por $\vec{r}(t)$ no intervalo $-2\pi \le t \le 2\pi$.							
(f) 8 Calcule a reparametrização de \vec{r} em relação ao comprimento de arco a partir do ponto $(1,1,0)$ na direção crescente de t .							
Questão 2							
(a) 10 Essa curva está sobre uma quádrica conhecida. Qual a equação dessa quádrica e seu nome?							
(b) $\boxed{10}$ Calcule a curvatura dessa curva em $t=0$.							
Questão 3							
Questão 4							
(a) 10 Verifique que $ \vec{r}'(t) = h(t)\sqrt{\lambda^2 + 1}$.							
(b) $\boxed{10}$ Mostre que o ângulo entre $\vec{r}(t)$ e $\vec{r}'(t)$ é sempre constante, i.e., não depende de t .							
Questão 5							