

CENTRO UNIVERSITÁRIO GERALDI DI BIASE

FUNDAÇÃO EDUCACIONAL ROSEMAR PIMENTEL

PRÓ-REITORIA DE ASSUNTOS ACADÊMICOS - PROAC

CURSO: Sistemas de Informação

DISCIPLINA: Probabilidade e Estatística - Trabalho 1 - Bimestre 1 - Valor: 3,0

PROFESSOR: Marcelo Arantes

PERÍODO: 3º - Sistemas de Informação	TURNO: Noturno	Data de Entrega: 30/09/2022
ALUNO (A): Carlos Eduardo ferreira		MATRÍCULA: 2022101225
ALUNO (A): Cícero Moraes		MATRÍCULA: 2022101193
ALUNO (A): Guilherme Ramos		MATRÍCULA: 2022101582
ALUNO (A): Larissa Carius		MATRÍCULA: 2022101873
ALUNO (A): Matheus de Souza		MATRÍCULA: 2022101315
ALUNO (A): Pedro Henrico		MATRÍCULA: 2022101127

1. Explicar o cálculo da Moda pelos métodos de Czuber e King, apresentando dois exemplos de cada. (2,0)

MÉTODO KING

Utilizando o método de King o cálculo da moda leva em consideração a influência das classes adjacentes à classe modal. A moda de King não leva em conta a frequência da própria classe modal.

A fórmula para cálculo da moda de King é:

$$Mo_{king} = l_i + \left(\frac{f_{post}}{f_{ant} + f_{post}}\right)h$$

Onde:

- li é o limite inferior da classe modal;
- h é a amplitude das classes;
- fpost é a frequência da classe imediatamente posterior à classe modal;
- fant é a frequência da classe imediatamente anterior à classe modal;

Calculando a moda de King:

Classes	Engali ân aig	nodal é a terceira: 30 40.
Classes	Freqüência	
10 20	30	nferior desta classe vale 30 (li = 30).
20 30	50	ude das classes vale 10 (h = 10).
30 40	70	
40 50	60	ncia da classe imediatamente
50 60	10	é 60 (fpost = 60), e da classe
Total	220	mente anterior é 50 (fant = 50).
		mente anterior e 30 (tant - 30).

ex 1:

M Li+ Fristian xh	Altura (cm)	History with
Mo = Li + <u>fantian</u> x h Spetiment fortainer	140 - 145	4
Mo = 145 + 6 x5	MS 1-150	9
6+4	1901-195	6
	155 - 160	7
M6 = 145 + 36 = 145+3		

ex 2:

Mc. Li + frotein xh	CLASSE	FREGUENCIA
Frantisum + Fernitusian	0-3	2
16:24+1 x8	8-16	5
1+7	161-24	7
Mp=24+0 = 24+1	2h - 32	12
8 Mana 2 25	32 -40	7

MÉTODO CZUBER

O cálculo da moda de Czuber leva em conta não somente a influência das classes adjacentes à modal, mas também a própria frequência modal.

$$Mo_{czuber} = l_i + \left(\frac{\Delta_{ant}}{\Delta_{ant} + \Delta_{post}}\right)h$$

Onde:

- li é o limite inferior da classe de modal;
- h é a amplitude das classes;
- fmodal é a frequência da classe modal;
- fpost é a frequência da classe imediatamente posterior à classe modal;
- fant é a frequência da classe imediatamente anterior à classe modal;

Calculando a moda de Czuber para a tabela de frequências mostrada anteriormente:

Classes	Freqüência
10 20	30
20 30	50
30 40	70
40 50	60
50 60	10
Total	220

A classe modal é a terceira: 30 | -- 40.

O limite inferior desta classe vale 30 (li = 30). A amplitude das classes vale 10 (h= 10).

A frequência da classe imediatamente posterior é 60 (fpost = 60), da classe imediatamente anterior é 50 (fant = 50), e a frequência modal vale 70.

ex 1: ex 2:

Mo=li+anterior_ xh	NOT A 0 1 4	fi 4
$M_0 = 12 + (22-12) \times 4$	81-12	9
(12-12)+(22-17)	12-16	27
Mo= 12+ 10 ×4.	16 1- 20	17
MC218FR = 12+40 = 12+2.66 = 14	.66	

Mo = L; + A antirist x h	COLUNA	OUNTINDE
Mart + Aport	401-50	6
Mo=50+ (11-6) x 10	50-60	14
(11-6)+(11-2)	60 - 70	2
Mo=50+5 × 10	70 1-08	1
5+9		
Mc2088 = 50 + 50 = 50 + 3.57	r = 53.5°	f

2. Criar um programa em python que permita a digitação de vários valores (a digitação de -1 deve encerrar a digitação). Apresente a moda e a média. (1,0)

```
valores = []
while True:
 valor = int(input("Digite um valor: "))
  if valor == -1:
    break
  else:
    valores.append(valor)
media = f'{sum(valores)/(len(valores)):.2f}'
valores_nao_repetidos = set()
valores_nao_repetidos.update(valores)
dicionario_valores = {}
for i in valores_nao_repetidos:
  dicionario_valores.update({i:0})
for j in valores:
 if j in dicionario_valores.keys():
    dicionario_valores[j] +=1
key_maior_valor = max(dicionario_valores, key=dicionario_valores.get)
maior_valor = dicionario_valores[key_maior_valor]
chaves_com_maior_valor = []
for x in dicionario_valores.keys():
  if dicionario_valores[x] == maior_valor:
    chaves_com_maior_valor.append(x)
print(f'Lista completa de valores:\n{valores}\nValores que não se repetem:\n{valores_nao_repetidos}\nDicionário completo com a quantidade de cada
valor:\n{dicionario_valores}\nA média é: {media}')
if len(valores) == len(valores_nao_repetidos):
  print('Não há moda')
elif len(chaves_com_maior_valor) == 1:
  print(f'A moda é unimodal: {chaves_com_maior_valor}')
elif len(chaves_com_maior_valor) == 2:
  print(f'A moda é bimodal: {chaves_com_maior_valor}')
elif len(chaves_com_maior_valor) >= 3:
  print(f'A moda é multimodal: {chaves_com_maior_valor}')
```