Problem Set 2 : Causal Graphs

Problem 1 (2 points)

Consider the following two period TSCS model where we assume constant effects:

$$y_{i,2} = \beta_0 + \beta_1 x_{i,2} + \beta_2 x_{i,1} + \beta_3 y_{i,1} + \epsilon_{i,2}$$

$$\epsilon_{i,2} = \rho \epsilon_{i,1} + \nu_{i,2}$$

$$x_{i,2} = \delta_1 x_{i,1} + \delta_2 y_{i,1} + \gamma_{i,2}$$

You have the option of estimating the effect of $x_{i,2}$ on $y_{i,2}$ using the coefficient on $x_{i,2}$ from the following regressions:

- 1. $y_2 \sim x_2$
- 2. $y_2 \sim x_2 + y_1$
- 3. $y_2 \sim x_2 + x_1$
- 4. $y_2 \sim x_2 + x_1 + y_1$

Consider the situation where some of following may equal zero: β_2 , β_3 , ρ , δ_1 , and δ_2 .

- a) Suppose that $\beta_2 = \beta_3 = \delta_2 = 0$. Which regression or regressions will produce a consistent estimator for β_1 ?
- b) Suppose that $\beta_2 = 0$ which regression or regressions will produce a consistent estimator for β_1 ?

Problem 2 (5 points)

Consider the following two period TSCS model where we assume constant effects:

$$y_{i,2} = \beta_0 + \beta_1 x_{i,2} + \beta_2 x_{i,1} + \beta_3 y_{i,1} + \epsilon_{i,2}$$

$$\epsilon_{i,2} = \rho_{\epsilon} \epsilon_{i,1} + \nu_{i,2}$$

$$x_{i,2} = \delta_1 x_{i,1} + \delta_2 y_{i,1} + \gamma_{i,2}$$

$$\gamma_{i,2} = \rho_{\gamma} \gamma_{i,1} + \omega_{i,2}$$

You have the option of estimating the effect of $x_{i,2}$ on $y_{i,2}$ using the coefficient on $x_{i,2}$ from the following regressions:

- 1. $y_2 \sim x_2$
- 2. $y_2 \sim x_2 + y_1$
- 3. $y_2 \sim x_2 + x_1$
- 4. $y_2 \sim x_2 + x_1 + y_1$

Consider the situation where some of following may equal zero: β_2 , β_3 , ρ_{ϵ} , δ_1 , δ_2 , and ρ_{γ} .

- a) Suppose that $\beta_2 = \beta_3 = \rho_{\epsilon} = \delta_1 = \delta_2 = 0$ but that $\rho_{\gamma} \neq 0$. Which regression or regressions will produce a consistent estimator for β_1 ?
- b) Suppose that $\beta_2 = \beta_3 = \delta_1 = \delta_2 = 0$ but that $\rho_{\gamma} \neq 0$ and $\rho_{\epsilon} \neq 0$. Which regression or regressions will produce a consistent estimator for β_1 ?
- c) Suppose that $\beta_2 = \delta_1 = \delta_2 = 0$ but that $\beta_3 \neq 0$, $\rho_{\gamma} \neq 0$ and $\rho_{\epsilon} \neq 0$. Which regression or regressions will produce a consistent estimator for β_1 ?
- d) Suppose that $\beta_1 = \beta_2 = \beta_3 = \delta_1 = \rho_{\gamma} = 0$ but that $\delta_2 \neq 0$ and $\rho_{\epsilon} \neq 0$. Will regression 1 or 3 produce more bias for an estimate of β_1 ?
- e) Suppose that $\beta_1 = \beta_2 = \beta_3 = \delta_1 = \rho_{\gamma} = 0$ but that $\delta_2 \neq 0$ and $\rho_{\epsilon} \neq 0$ and suppose you do not observe y_1 (i.e., regressions 2 and 4 are no longer options). Propose a consistent estimator for β_1 .

Problem 3 (3 points, plus bonus)

Figure 1: Linear Constant-Effects SEM. U is unobserved.

- a) What is the effect of D on Y?
- b) Describe how you could estimate the effect of D on Y using the Wald estimator.
- c) Which regression would produce more bias for the effect of D on Y: $lm(y \sim d)$ or $lm(y \sim d+z)$? Why?
- d) (bonus) Describe some additional ways you could estimate the effect of D on Y.

Problem 4 (4 points)

Figure 2: Linear Constant-Effects SEM. U is unobserved.

- a) What is the effect of Z on Y?
- b) Describe one way you could consistently estimate the effect of Z on Y.
- c) What is the effect of D on Y?
- d) Describe two ways you could consistently estimate the effect of D on Y.