Gas Chromatography

Ilana Berlin (worked with Gina Dazzo) Tuesday January 23rd 2024

The purpose of this lab is to

- Record the molecular properties, of five molecules
- Run gas chromatography of each of the five compounds to determine retention time $(T_{\rm r})$ in triplicates.
- Run gas chromatography for an unknown mixture to determine composition and percent abundance
- inject compounds into a gas chromatographer and read a ch [omit]
- Model compounds and calculate dipoles in Spartan Student v9
- Increase understanding of the function of intermolecular forces and role in det of Tr

Reference:

- (1) Aldrich Chemical Company. Aldrich Catalogue Handbook of Fine Chemicals; Milwaukee, WI: Sigma-Aldrich, **2002**.
- (2) Kateley, L. J., *Introduction to Chemistry in the Laboratory*, 20th Ed., Lake Forest College, **2021**, Experiment 1, Appendix I.

Observations and Data:

1. GC of Pure Compound*

*See GC table (Figure 3)

To determine the retention time, used needle bleed of pure substances in a gas chromatographer.

2. Separating and Quantifying Components in the Mixture

Using needle bleed, a small amount of mixture one was injected into a gas chromatograph. The mixture smelled sweet and fruity, akin to sweet tarts candy.

Figure 1. Chromatogram

Compound	Results(T _r (min))	% Composition of Mixture
		(A _{Norm})
Pentane	0.15	13.45
2-butanone	0.21	17.88
1-butanol	0.27	24.17
Isobutyl acetate	0.52	23.09
Ethyl trimethylacetate	0.58	21.40

Table 1. Mixture Results

GC Parameters Apparatus-Better image of instument available

Figure 2. Gas Chromatography

Instrument	HP5890
Oven	50°C
Injector	120°C
Detector	150°C
Split vent flow	44-45mL/min
Column flow	35mL/min
Sample size	needle bleed
Column Restek 5	Crossbond® 5%diphenyl/95%dimethy polysiloxane
Column length	15 meters
Column inside diameter	0.53mm
Column catalog number	10252
Serial number	118671A

Table 2. Instrument information

GC Table. Structures and Properties GAS CHROMATOGRAPHY: STRU 0.303 -butano CH3 ((H2),01 3 74.12 D.DD, HB 2 5 118 Lrimethylisobutyl H3COOCH acetate 4.86 CH(CH3)2 (Hz ((Hz)3 CH3 0.04 0.164 pentane

Figure 3. Structures and properties of compounds

Dipole Moment Calculations

The dipole moment was modeled using Spartan Student v9.

Questions

- 1)Peaks were identified based on retention time (T_r)
- 2)Retention time for a given compound is reproduceable given unchanged conditions. This means the helium flow should be consistent and the coil of the gas chromatographer has been kept at a consistent temperature among other factors.

The percent values are reproduceable given the same unchanged conditions and if the sample has been kept in a sealed container to prevent evaporation.

- 3)
- a) If the temperature is lowered the T_r will increase because there is less energy in the system so the molecules will move slower. This will not change the proportions?, %?.
- b) If the helium flow rate is increased the T_r will decrease as the increased flow will carry things through the column faster. This will not change the proportions.
- c)If the column length is doubled then the T_r will increase as there is a larger distance for the molecules to travel. This will not change the proportions.

Conclusion:

- 1)See Table 1
- a) The most abundant compound in mixture one was 1-butanol at 24.17%
- b) The least abundant compound in mixture one was pentane at 13.45%
- 2)

a)

Compound	MW	BP	IMFs	Order of elution
				(T_r)
Pentane	72.15	36.1	Dispersion	1
2-butanone	72.11	79.6	Dispersion	2
			Dipole-dipole	
1-butanol	74.12	117.73	Dispersion	3
			Dipole-Dipole	
			Hydrogen Bonds	

Pentane is the smallest compound with the least intermolecular forces, and the least polarity so it is the fasted to elute. 2-butanone has stronger dipole-dipole forces with more polarity so it elutes slower than pentane but not as slowly as 1-butanol which as the strongest intermolecular forces, hydrogen bonds.

b)

Compound	MW	BP	IMFs	Order of
				elution(T _r)
1-butanol	74.12	117.73	Dispersion	1
			Dipole-dipole	
			Hydrogen bonds	
Isobutyl acetate	116.16	116.5	Dispersion	2
			Dipole-dipole	
Ethyl	130.18	118	Dispersion	3
trimethylacetate			Dipole-dipole	

1-butanol is the lightest compound so, despite its stronger intermolecular forces, it elutes the fastest. Ethyl trimethylacetate is the heaviest and largest compound (big surface area) so there is more room for it to interact with the coating of the column, causing it to elute last.

GC use, importance