Les nombres en écriture fractionnaire : Comparaisons et Opérations

Ayoub Aissaoui

14 octobre 2024

Table des matières

- 1. Écriture fractionnaire d'un nombre
- 2. Égalité de fractions
- 3. Comparaison de fractions
- 3.1 fractions de même dénominateur
- 3.2 Fractions de dénominateurs différentes
- 4. Operations sur les nombres en écritures fractionnaire
- 4.1 additionner (ou soustraire) deux fractions ayant le même dénominateur
- 4.2 additionner (ou soustraire) deux fractions ayant des dénominateurs différentes
- 5. Multiplication

1. Écriture fractionnaire d'un nombre

Activité

Exprimer par une fraction la partie hachurée de chaque figure :

Définition

a et b deux nombres décimaux avec $b \neq 0$.

 $\frac{a}{b}$ est une écriture fractionnaire d'un nombre. a représente le numérateur et b le dénominateur.

 $\frac{a}{b}$ est le quotient de a par b où $\frac{a}{b} = a \div b$

Remarques

- Le quotient de deux entiers est une fraction.
- La division par 0 est impossible.

Exemples

 $\frac{7}{2}$ est une écriture fractionnaire ainsi ; c'est aussi une fraction et $\frac{7}{2}=7\div 2=3,5$

$$\frac{7}{2} = 7 \div 2 = 3,5$$

est une écriture fractionnaire mais n'est pas une fraction et

$$\frac{3,5}{0,4} = 3,5 \div 0,4 = 8,75$$

Remarques

▶ Tous les entiers sont des fractions.

Par exemple : 5 est une fraction car :
$$5 = \frac{5}{1} = \frac{10}{2} = \cdots$$

▶ Tous les décimaux sont des fractions.

Par exemple : 4,5 et 0,241 sont des fractions, car : 4,5 =
$$\frac{45}{10}$$

et
$$0,241 = \frac{241}{1000}$$

2. Égalité de fractions

Activité

Relier par un trait les figures dont les proportions de surface hachurée sont égales, puis déduire les égalités de fractions correspondantes.

Règle 1

On ne change pas une fraction lorsqu'on multiplie (ou on divise) son numérateur et son dénominateur par un même nombre non nul. Autrement dit a, b et k des nombres décimaux avec $b \neq 0$ et $k \neq 0$.

$$\frac{a}{b} = \frac{a \times k}{b \times k}$$
 et $\frac{a}{b} = \frac{a \div k}{b \div k}$

Exemples

$$\Rightarrow \frac{20}{35} = \frac{5 \times 4}{5 \times 7} = \frac{4}{7}$$
$$\Rightarrow \frac{24}{16} = \frac{24 \div 8}{16 \div 8} = \frac{3}{2}$$

Exercice 1

Compléter les égalités suivantes :

$$\triangleright \frac{4}{5} = \frac{16}{\cdots}$$

$$\Rightarrow \frac{18}{27} = \frac{\cdots}{3}$$

$$> \frac{12}{28} = \frac{\cdots}{7}$$

$$> \frac{9}{62} = \frac{1}{}$$

$$> \frac{5}{9} = \frac{15}{11}$$

Définition

Simplifier une fraction c'est l'écrire avec de plus petits numérateur et dénominateur entiers possibles.

On dit alors qu'elle est irréductible.

Exemple

$$\frac{42}{56} = \frac{21 \times 2}{28 \times 2} = \frac{21}{28} = \frac{3 \times 7}{4 \times 7} = \frac{3}{4}$$

 $\frac{3}{4}$ est une fraction irréductible.

Exercice 2

Simplifier le plus possible les fractions suivantes :

- 25 100
- $\triangleright \frac{21}{49}$

3. Comparaison de fractions

Activité 3

- Exprimer par une fraction la partie hachurée de chaque figure.
- A l'aide du graphique, comparer ces deux fractions.

Correction

- La fraction qui représente la partie hachurée de la la première figure est : 2 / 8
 La fraction qui représente la partie hachurée de la deuxième figure est : 7 / 32
- ② En observant le graphique, on peut déduire que la partie hachurée de la première figure $\left(\frac{2}{8}\right)$ est plus grande que celle de la deuxième figure $\left(\frac{7}{32}\right)$.

3.1. Fractions de dénominateurs différentes

Propriété

Si deux nombres en écritures fractionnaires ont le même dénominateur, le plus petit est celui qui a le plus petit numérateur.

Exemple

Comparons
$$\frac{7}{5}$$
 et $\frac{2}{5}$

On a les deux fractions $\frac{7}{5}$ et $\frac{2}{5}$ ont le même dénominateur 5, et comme 7>2 alors $\frac{7}{5}>\frac{2}{5}$

3.2. Fractions de dénominateurs différentes

Propriété

Pour comparer deux nombres en écritures fractionnaires de dénominateurs différentes, on commence par les mettre au même dénominateur puis on compare leurs numérateurs.

Exemples

 \triangleright Comparaisons $\frac{1}{4}$ et $\frac{3}{8}$

Mettons les deux fractions $\frac{1}{4}$ et $\frac{3}{8}$ au même dénominateur.

On a :
$$\frac{1}{4} = \frac{1 \times 2}{4 \times 2} = \frac{2}{8}$$
.

Alors la comparaison de $\frac{1}{4}$ et $\frac{3}{8}$ revient à comparer $\frac{2}{8}$ et $\frac{3}{8}$ Et comme 2 < 3, donc $\frac{2}{8} < \frac{3}{8}$ alors $\frac{1}{4} < \frac{3}{8}$

 \triangleright Comparaisons $\frac{4}{2}$ et $\frac{7}{5}$

On a:
$$\frac{4}{3} = \frac{4 \times 5}{3 \times 5} = \frac{20}{15}$$
 et $\frac{7}{5} = \frac{7 \times 3}{5 \times 3} = \frac{21}{15}$

Mettons les deux fractions $\frac{4}{3}$ et $\frac{7}{5}$ au même dénominateur. On a : $\frac{4}{3} = \frac{4 \times 5}{3 \times 5} = \frac{20}{15}$ et $\frac{7}{5} = \frac{7 \times 3}{5 \times 3} = \frac{21}{15}$ Alors la comparaison de $\frac{4}{3}$ et $\frac{7}{5}$ revient à comparer $\frac{20}{15}$ et $\frac{21}{15}$ Et comme 20 < 21, donc $\frac{20}{15} < \frac{21}{15}$ alors $\frac{4}{3} < \frac{7}{5}$

Exercice 3

Comparer les fractions suivants :

$$\frac{15}{78} \text{ et } \frac{17}{78}$$

$$\frac{5}{27} \text{ et } \frac{7}{54}$$

$$\frac{6}{7} \text{ et } \frac{8}{9}$$

$$\frac{2}{2} \text{ et } \frac{2}{9}$$

4. Operations sur les nombres en écritures fractionnaire

4.1. additionner (ou soustraire) deux fractions ayant le même dénominateur

Activité

Kenza a acheté une tablette de chocolate noir de 18 carrés. Kenza en a mangé 5 carrés et Othmane 7 carrés.

- Quelle fraction de la tablette Kenza a-t-elle mangé?
 - 2 Quelle fraction de la tablette Othmane a-t-il mangé?
- Quelle fraction de la tablette ont-ils mangée à eux deux?
 - Quelle est la fraction qui reste?

Correction

- Kenza a mangé 5 carrés sur une tablette de 18 carrés. La fraction correspondante est donc : 5/18
 - ② Othmane a mangé 7 carrés sur une tablette de 18 carrés. La fraction correspondante est : $\frac{7}{18}$
- Ils ont mangé ensemble un total de 5 + 7 = 12 carrés sur 18. La fraction totale est donc : $\frac{12}{18} = \frac{2}{3}$
 - ② Il restait 18 12 = 6 carrés sur 18, donc la fraction restante est : $\frac{6}{18} = \frac{1}{3}$

Régle 2

Pour calculer la somme (ou la différence) de deux nombres en écritures fractionnaires de même dénominateur :

- On additionne (ou on soustrait) les numérateurs.
- On conserve le dénominateur commun.

Autrement dit : a, b et c des nombres décimaux avec $c \neq 0$.

On a:
$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$
 et $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$

Exemples

Calculons et simplifions si possible :

4.2. additionner (ou soustraire) deux fractions ayant des dénominateurs différentes

Activité 6

Othmane a acheté une tablette au chocolate noir de 18 carrés. Othmane a mangé $\frac{1}{3}$ de la tablette et Kenza $\frac{11}{18}$ de la tablette.

Quelle fraction de la tablette ont-ils mangée à eux deux?

Quelle fraction de la tablette reste-t-il?

Correction

- Othmane a mangé $\frac{1}{3}$ de la tablette, et Kenza a mangé $\frac{11}{18}$ de la tablette. Il faut d'abord exprimer les deux fractions avec un dénominateur commun. Le plus petit commun multiple de 3 et 18 est 18. Donc : $\frac{1}{3} = \frac{6}{18}$ Maintenant, on peut additionner les deux fractions : $\frac{6}{18} + \frac{11}{18} = \frac{17}{18}$ Ils ont donc mangé ensemble $\frac{17}{18}$ de la tablette.
- 2 La fraction qui reste est : $1 \frac{17}{18} = \frac{18}{18} \frac{17}{18} = \frac{1}{18}$ Il reste donc $\frac{1}{18}$ de la tablette.

Règle 6

Pour calculer la somme (ou la différence) de deux nombres en écritures fractionnaires qui ont des dénominateurs différentes :

- On commence par les écrire avec le même dénominateur.
- On additionne (ou on soustrait) les numérateurs en conservant le dénominateur commun.

Exemples

$$\begin{vmatrix}
\frac{1}{3} + \frac{5}{2} = \frac{1 \times 2}{3 \times 2} + \frac{5 \times 3}{2 \times 3} = \frac{2}{6} + \frac{15}{6} = \frac{2+15}{6} + \frac{17}{6}
\end{vmatrix}$$

$$\begin{vmatrix}
\frac{3}{5} - \frac{1}{4} = \frac{3 \times 4}{5 \times 4} - \frac{1 \times 5}{4 \times 5} = \frac{12}{20} - \frac{5}{20} = \frac{12-5}{20} = \frac{7}{20}
\end{vmatrix}$$

$$\begin{vmatrix}
\frac{8}{5} + \frac{4}{15} = \frac{8 \times 3}{5 \times 3} + \frac{4}{15} = \frac{24}{15} + \frac{4}{15} = \frac{24+4}{15} = \frac{28}{15}
\end{vmatrix}$$

Exercice 4

Calculer:

$$A = \frac{3}{4} + \frac{7}{4}$$

$$B = \frac{6}{5} - \frac{1}{5}$$

$$D = \frac{4}{9} - \frac{2}{81}$$

$$E = \frac{6}{7} + \frac{3}{4}$$

$$F = \frac{5}{2} - \frac{1}{11}$$

5. Multiplication

Activité

ACDG est un rectangle

- Exprimer l'aire du rectangle ABEF à l'aide de ses dimensions.
- S'aider de la figure pour exprimer l'aire de ce rectangle à l'aide d'une fraction.

Correction

Règle

Pour calculer le produit de deux nombres en écriture fractionnaire, on multiplie les numérateurs entre eux et les dénominateurs entre eux.

Autrement dit:

a, b, c et d des nombres décimaux ($b \neq 0$ et $d \neq 0$), On a : $\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$

Exemples