Hough-Transformation

Silas Ueberschaer Seminar Computer Vision WS 2020/21 Universität Hamburg, Fachbereich Informatik

- 1. Motivation: Wozu sollte man Linien in Bildern erkennen?
- **2. Einleitung:** Woher kommt die Transformation?
- 3. Geradengleichung: Was sind Vorteile und warum funktioniert sie nicht?
- **4. Hough-Transformation:** Wie funktioniert die Transformation?
- **5. PPHT:** Was kann sie besser und wo liegen die Unterschiede?
- 6. Zusammenfassung

- 1. Motivation: Wozu sollte man Linien in Bildern erkennen?
- 2. Einleitung: Woher kommt die Transformation?
- 3. Geradengleichung: Was sind Vorteile und Warum funktioniert sie nicht?
- 4. Hough-Transformation: Wie funktioniert die Transformation?
- **5. PPHT:** Was kann sie besser und wo liegen die Unterschiede
- 6. Zusammenfassung

Motivation

- Was ist eine Linie in einem Bild?
- Information vom Bild minimieren
- Weiterverarbeitung der Linien
 - Autonomes fahren, Landebahn erkennung,...

[Quelle: youtube.com]

- 1. Motivation: Wozu sollte man Linien in Bildern erkennen?
- 2. Einleitung: Woher kommt die Transformation?
- 3. Geradengleichung: Was sind Vorteile und Warum funktioniert sie nicht?
- 4. Hough-Transformation: Wie funktioniert die Transformation?
- **5. PPHT:** Was kann sie besser und wo liegen die Unterschiede
- 6. Zusammenfassung

Erfindung

- Paul V. C. Hough
- Grundstein der Transformation
- Problem Vertikale Kanten
- Richard O. Duda und Peter E. Hart

$$\rho = x_i \cdot cos(\theta) + y_i \cdot cos(\theta)$$

- 1. Motivation: Wozu sollte man Linien in Bildern erkennen?
- 2. Einleitung: Woher kommt die Transformation?
- 3. Geradengleichung: Was sind Vorteile und Warum funktioniert sie nicht?
- 4. Hough-Transformation: Wie funktioniert die Transformation?
- **5. PPHT:** Was kann sie besser und wo liegen die Unterschiede
- 6. Zusammenfassung

Geradengleichung

- y=a*x+b (y=m*x+b)
- Schnittstelle gibt m und b
- Gleichung aufstellen
- Problem: Vertikale Kanten

[Gonzalez/Woods, 2018]

Geradengleichung

- y=a*x+b (y=m*x+b)
- Schnittstelle gibt m und b
- Gleichung aufstellen
- Problem: Vertikale Kanten
 - o -x_j*a+y_j=-x_i*a+y_i (Gleichstellen)
 - $\circ \quad a = (y_i y_j) / (x_i x_j) \text{ (nach a umstellen)}$

[Gonzalez/Woods, 2018]

- 1. Motivation: Wozu sollte man Linien in Bildern erkennen?
- 2. Einleitung: Woher kommt die Transformation?
- 3. Geradengleichung: Was sind Vorteile und Warum funktioniert sie nicht?
- 4. Hough-Transformation: Wie funktioniert die Transformation?
- **5. PPHT:** Was kann sie besser und wo liegen die Unterschiede
- 6. Zusammenfassung

Hough-Transformation

- ρ = Abstand vom Ursprung
- θ = Winkel zwischen X-Achse und ρ

$$\rho = x_i \cdot cos(\theta) + y_i \cdot cos(\theta)$$

[Gonzalez/Woods, 2018]

[Wikipedia, 2020]

ρθ-Koordinatensystem

- Eintrag für jedes ρ und θ
- Ergebnis ist Sinuskurve
- Schnittpunkt
- Problem: viele Punkte

[Gonzalez/Woods, 2018]

Accumulator

- Koordinatensystem mit Werten
- Einteilung in kleine Kästchen
- Wert erhöhen
- Höhere Werte = Mehr Punkte auf Gerade

[Gonzalez/Woods, 2018]

Anwendung auf Bild

- 1. Kantenbild erstellen
- 2. Sinuskurven berechnen und eintragen
- 3. Schwellwert überschreiten
- 4. Linien malen

Problem unendliche Linien

- ρ und θ erzeugen unendliche Linien
- Problem?
- Lösung: Progressive Probabilistic
 Hough Transformation

[eigene Darstellung]

- 1. Motivation: Wozu sollte man Linien in Bildern erkennen?
- 2. Einleitung: Woher kommt die Transformation?
- 3. Geradengleichung: Was sind Vorteile und Warum funktioniert sie nicht?
- 4. Hough-Transformation: Wie funktioniert die Transformation?
- **5. PPHT:** Was kann sie besser und wo liegen die Unterschiede
- 6. Zusammenfassung

- August 1998
- Jiri Matas und Charles Galambos
- Max gap, Min line
- Schwellwert

- Ablauf:
 - 1. zufällige Auswahl
 - 2. Sinuskurve eintragen
 - 3. aus Kantenbild entfernen
 - 4. Threshold überschritten?
 - nein -> Schritt 1
 - 5. Linie konstruiert
 - 6. Alle Pixel entfernt aus Kantenbild von Linie
 - 7. Für Pixel Accumulator Eintrag gelöscht

- Ablauf:
 - 1. zufällige Auswahl
 - 2. Sinuskurve eintragen
 - 3. aus Kantenbild entfernen
 - 4. Threshold überschritten?
 - nein -> Schritt 1
 - 5. Linie konstruiert
 - 6. Alle Pixel entfernt aus Kantenbild von Linie
 - 7. Für Pixel Accumulator Eintrag gelöscht

Ablauf:

- 1. zufällige Auswahl
- 2. Sinuskurve eintragen
- 3. aus Kantenbild entfernen
- 4. Threshold überschritten?
 - nein -> Schritt 1
- 5. Linie konstruiert
- 6. Alle Pixel entfernt aus Kantenbild von Linie
- 7. Für Pixel Accumulator Eintrag gelöscht

- Ablauf:
 - 1. zufällige Auswahl
 - 2. Sinuskurve eintragen
 - 3. aus Kantenbild entfernen
 - 4. Schwellwert überschritten?
 - nein -> Schritt 1
 - 5. Linie konstruiert
 - 6. Alle Pixel entfernt aus Kantenbild von Linie
 - 7. Für Pixel Accumulator Eintrag gelöscht

Ablauf:

- 1. zufällige Auswahl
- 2. Sinuskurve eintragen
- 3. aus Kantenbild entfernen
- 4. Threshold überschritten?
 - nein -> Schritt 1
- 5. Linie konstruiert
- 6. Alle Pixel entfernt aus Kantenbild von Linie
- 7. Für Pixel Accumulator Eintrag gelöscht

Ablauf:

- 1. zufällige Auswahl
- 2. Sinuskurve eintragen
- 3. aus Kantenbild entfernen
- 4. Threshold überschritten?
 - nein -> Schritt 1
- 5. Linie konstruiert
- 6. Alle Pixel entfernt aus Kantenbild von Linie
- 7. Für Pixel Accumulator Eintrag gelöscht

Ablauf:

- 1. zufällige Auswahl
- 2. Sinuskurve eintragen
- 3. aus Kantenbild entfernen
- 4. Threshold überschritten?
 - nein -> Schritt 1
- 5. Linie konstruiert
- 6. Alle Pixel entfernt aus Kantenbild von Linie
- 7. Für Pixel Accumulator Eintrag gelöscht

Vergleich

Hough-Transformation

[eigene Darstellung]

PPHT

[eigene Darstellung]

- 1. Motivation: Wozu sollte man Linien in Bildern erkennen?
- 2. Einleitung: Woher kommt die Transformation?
- 3. Geradengleichung: Was sind Vorteile und Warum funktioniert sie nicht?
- 4. Hough-Transformation: Wie funktioniert die Transformation?
- **5. PPHT:** Was kann sie besser und wo liegen die Unterschiede
- 6. Zusammenfassung

Zusammenfassung

- Motivation: Weiterverarbeiten
 - Autonomes fahren,
- Geradengleichung: funktioniert nicht immer
- Hough-Transformation: unendliche Linien, Bruteforce
- **PPHT:** endliche Linien, nicht konstant

Vielen Dank für die Aufmerksamkeit!

Literatur

- Richard O. Duda und Peter E. Hart. "Use of the Hough transformation to detect lines and curves in pictures". In: Communications of the ACM 15 (1972). doi: https://doi.org/10.1145/361237.361242.
- Paul V C Hough. "Method and means for recognizing complex patterns".
 US3069654A. März 1960.
- C. Galambosy J. Matasy und J. Kittlery. Progressive Probabilistic Hough Transform. Aug. 1988. url: https://cmp.felk.cvut.cz/~matas/ papers/matas-bmvc98.pdf.
- Rafael C. Gonzalez Richard E. Woods. Digital Image Processing. Rafael C. Gonzalez, 2018. isbn: 9353062985.
- Azriel Rosenfeld. Picture Processing by Computer. Academic Press, 1969. isbn: 0125973500.

Quellen

Bilder:

https://en.wikipedia.org/wiki/Hough transform (Englisch)

Videos:

https://www.youtube.com/watch?v=J2QgPdEhMZE