

11-751/ 18-781 Speech Recognition and Understanding

Hidden Markov Models

Florian Metze

September 16th & 23rd, 2013

Carnegie Mellon

Agenda

- Problems with Pattern Matching
- Markov Models
 - Hidden Markov Models
 - Topologies, some properties, terminology
- Three Main Problems of Hidden Markov Models
 - The Evaluation Problem the **Forward** Algorithm
 - The Decoding Problem the Viterbi Algorithm
 - The Learning/Optimization Problem the Forward-Backward Algorithm
- Hidden Markov Models in Speech Recognition
 - Overview of Hidden Markov Models Training
 - Using (hand-)labeled Data
 - K-Means
 - Training HMMs with Viterbi
- Components of an HMM-Recognizer

Problems with Pattern Matching

- Need endpoint detection
- Need collection of reference patterns (inconvenient for user)
- Works only well for speaker-dependent recognition (variations)
- High computational effort (esp. for large vocabularies), as proportional to vocabulary size
- Large vocabulary also means: need huge amount of training data
 - Difficult to train suitable references (or sets of references)
 - Poor performance when the environment changes
 - Unsuitable where speaker is unknown and no training is feasible
- Unsuitable for continuous speech (combinatorial explosion of possible patterns, co-articulation)
- Impossible to recognize untrained words
- Difficult to train/ recognize sub-word units

What we're looking for

- We would like to work with speech units shorter than words
 - ⇒ each subword unit occurs often, training is easier, less data
- We want to recognize speech from any speaker, without prior training
 - ⇒ store "speaker-independent" reference (examples from many speakers)
- We want to recognize continuous rather than isolated speech
 - ⇒ handle coarticulation effects, handle sequences of words
- We want to recognize words that have not been trained
 - ⇒ train subword units and compose any word out of these (vocabulary independence)
- We would prefer a sound mathematical foundation

Speech Production as Stochastic Process

- We can regard words/ phonemes as states of a speech production process
 - The same word/ phoneme/ sound sounds different every time it is uttered
 - In a given state we can observe different acoustic sounds
 - Not all sounds are possible/ likely in every state
 - We say: in a given state the speech process "emits" sounds according to some probability distribution/ density
- The production process can make transitions from one state into another
 - Not all transitions are possible, transitions have different probabilities
 - When we specify the probabilities for sound-emissions (emission probabilities) and for the state transitions, we call this a model.

Markov Models

• Observable states:

$$1, 2, \ldots, N$$

• Observed sequence:

$$q_1, q_2, \ldots, q_t, \ldots, q_T$$

• First order Markov assumption:

$$P(q_t = j | q_{t-1} = i, q_{t-2} = k,...) = P(q_t = j | q_{t-1} = i)$$

• Stationarity:

$$P(q_t = j | q_{t-1} = i) = P(q_{t+l} = j | q_{t+l-1} = i)$$

Markov Models

ullet State transition matrix A:

$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1N} \ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2N} \ dots & dots & \cdots & dots & \cdots & dots \ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{iN} \ dots & dots & \cdots & dots & \cdots & dots \ a_{N1} & a_{N2} & \cdots & a_{Nj} & \cdots & a_{NN} \ \end{pmatrix}$$

where

$$a_{ij} = P(q_t = j | q_{t-1} = i)$$
 $1 \leq i, j, \leq N$

 \bullet Constraints on a_{ij} :

$$egin{array}{ll} a_{ij} \ \geq \ 0, & orall i,j \ \sum\limits_{j=1}^N a_{ij} \ = \ 1, & orall i \end{array}$$

Example

Formal and graphical representation:

- States:
 - 1. Rainy (R)
 - 2. Cloudy (C)
 - 3. Sunny (S)
- \bullet State transition probability matrix:

$$A = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

ullet Compute the probability of observing SSRRSCS given that today is S.

Basic conditional probability rule:

$$P(A,B) = P(A|B)P(B)$$

The Markov chain rule:

$$P(q_1, q_2, \dots, q_T)$$

$$= P(q_T | q_1, q_2, \dots, q_{T-1}) P(q_1, q_2, \dots, q_{T-1})$$

$$= P(q_T | q_{T-1}) P(q_1, q_2, \dots, q_{T-1})$$

$$= P(q_T | q_{T-1}) P(q_{T-1} | q_{T-2}) P(q_1, q_2, \dots, q_{T-2})$$

$$= P(q_T | q_{T-1}) P(q_{T-1} | q_{T-2}) \cdots P(q_2 | q_1) P(q_1)$$

Example

ullet Observation sequence O:

$$O=\left(S,S,S,R,R,S,C,S\right)$$

• Using the chain rule we get:

P(O|model)

$$=\ P(S,S,S,R,R,S,C,S|model)$$

$$=\ P(S)P(S|S)P(S|S)P(R|S)P(R|R)\times \\$$

P(S|R)P(C|S)P(S|C)

 $= \pi_3 a_{33} a_{33} a_{31} a_{11} a_{13} a_{32} a_{23}$

 $= (1)(0.8)^2(0.1)(0.4)(0.3)(0.1)(0.2)$

 $= 1.536 \times 10^{-4}$

• The prior probability $\pi_i = P(q_1 = i)$

Today is $S \Rightarrow P(S)=1$

Hidden Markov Models

- Hidden: States are not observable
- Observations are probabilistic functions of states
- State transitions are also probabilistic

The "urn and ball" model

- n urns containing colored balls
- v distinct colors
- Each urn has a (possibly) different distribution of colors

Sequence generation algorithm:

- 1. (Behind the curtain) Pick initial urn according to some random process
- 2. (Behind the curtain) Randomly pick ball from the urn. Show it to the audience and put it back
- 3. (Behind the curtain) Select another urn according to random selection process associated with the urn
- 4. Repeat step 2 and 3

Formal Definition of HMMs

A "Hidden Markov Model" is a 5-tupel consisting of:

- S The set of **States** $S=\{s_1,s_2,...,s_n\}$, n is the number of states
- π The **initial probability distribution**, $π(s_i) = P(q_1 = s_i)$ probability of s_i being the first state of a sequence
- A The matrix of state transition probabilities: $1 \le i, j \le n$ $A = (a_{ij})$ with $a_{ij} = P(q_{t+1} = s_j | q_t = s_i)$ going from state s_i to s_j
- *B* The set of **emission probability distributions/ densities**, $B = \{b_1, b_2, ..., b_n\}$ where $b_i(x) = P(o_t = x | q_t = s_i)$ is the probability of observing x when the system is in state s_i
- V Set of symbols, v is the number of distinct symbols. The observable **feature** space can be discrete: $V = \{x_1, x_2, ..., x_v\}$, or continuous $V = \mathbb{R}^d$

Generating an Observation Sequence

The term "hidden" refers to seeing observations and drawing conclusions without knowing the *hidden* sequence of states (urns)

 x_2

 \mathbf{x}_1

x₃

Some Properties of Hidden Markov Models

- For the initial probabilities we have: $\Sigma_i \pi(s_i) = 1$
- Often things are simplified by $\pi(s_1) = 1$, and $\pi(s_{i>1}) = 0$
- Obviously: $\sum_{i} a_{ij} = 1$ for all I
- Often: $a_{ij} = 0$ for most j except for a few states
- When $V = \{x_1, x_2, ..., x_v\}$ then b_i are discrete probability distributions, the HMMs are called **discrete HMMs**
- When $V = \mathbb{R}^d$ then b_i are continuous probability density functions, the HMMs are called **continuous (density) HMMs**

Some Typical HMM Topologies

· Linear model:

· Left-to-right model:

· Alternative paths:

· Bakis model:

every state has transition to self or successor or successor of successor

Ergodic model:

every state has transitions to every other state

Applications: simulation and analysis of complex stochastic systems (weather, traffic, queues); recognition of dynamic patterns (speech, handwriting, video).

Some HMM Terminology

The most ambiguously used term is the "model", which can be one of:

- The language model = combination of all parameters describing probabilities of word sequences
- The acoustic model = combination of all parameters of a recognizer describing all acoustic features
- An (acoustic) model = combination of the parameters that describe acoustic features of a specific unit of speech
- A Hidden Markov Model = the defined five-tuple
- The model of a state = the combination of HMM-parameters that describe the properties of an HMM-state (different states can have the same model)

Typical HMM Questions

- A magician draws balls from urns behind the curtain, the audience sees the observation sequence O=(o₁,o₂,...,o₇)
- Your friend told you about two sets of urns and drawing patterns = models λ_1 =(A,B, π) λ_2 =(A,B, π) the magician usually uses
- Assume you have an efficient algorithm to compute P(O| λ)

- 1. Compute $P(O|\lambda)$ for both models, which of the models λ_1 or λ_2 was more likely to be used by the magician
- 2. Given one model, find the "optimal" aka most likely state sequence that would produce the observation
- 3. Find a new model λ' such that $P(O|\lambda') > P(O|\lambda)$

Three Main Problems of HMMs

The Evaluation Problem:

given an HMM λ and an observation $O=(x_1,\,x_2,\,...,\,x_{\mathbb{Z}})$ efficiently compute the probability of the observation: $p(O|\lambda)$

The Decoding Problem:

given an HMM λ and an observation $O=(x_1,\,x_2,\,...,\,x_T)$ compute the most likely state sequence $s_{q1},\,s_{q2},\,...,\,s_{qT}$, i.e. $\operatorname{argmax}_{q1,...,qT}p(q_1,\,..,\,q_T|\,O,\,\lambda)$

• The Learning/ Optimization Problem:

given an HMM λ and an observation $O = (x_1, x_2, ..., x_T)$ find an HMM λ' such that $p(O \mid \lambda') \geq p(O \mid \lambda)$

The Evaluation Problem

Given an HMM λ and an observation O = $(x_1, x_2, ..., x_7)$ compute the probability of the observation $p(O|\lambda)$.

Solution to the weaker problem with a fixed state sequence Q = $(s_{q1}, s_{q2}, ..., s_{qT})$:

$$\begin{array}{lll} p(O,Q|\;\lambda) & = & p(O|Q,\;\lambda)\; p(Q|\;\lambda) \\ & = & b_{q1}(x_1)\; b_{q2}(x_2)\; b_{q3}(x_3)\; \dots \; \pi(s_{q1})\; a_{q1q2}\; a_{q2q3}\; \dots \\ & = & \pi(s_{q1})b_{q1}(x_1) \prod_{k=1\dots T-1} \; a_{qkqk+1}\; b_{qk+1}(x_{k+1}) \end{array}$$

from this we get: enumerate all possible paths (state sequences) and sum probabilities

$$\begin{array}{lll} p(O|\;\lambda) & = & \sum_{a|l|Q} p(O,\;Q|\;\lambda) \\ & = & \sum_{q1,...qT} \pi(s_{q1}) b_{q1}(x_1) \prod_{k=1..T-1} a_{qkqk+1} \; b_{qk+1}(x_{k+1}) \end{array}$$

 $\frac{\textbf{Problem - Complexity:}}{N^{\text{T}} \text{ possible state sequences and } O(T) \text{ calculations}}$

⇒ O(TN^T)

⇒ find a more efficient algorithm

The Forward Algorithm

Can we recursively define $p(x_1, x_2, ..., x_T | \lambda)$?

Obviously:
$$p(x_1, x_2, ..., x_T \mid \lambda)$$

= $\sum_{j=1..n} p(x_1, x_2, ..., x_T, q_T = j \mid \lambda)$

If we define:

$$\alpha_l(j) := p(x_1, x_2, ..., x_l, q_l = j \mid \lambda)$$
 then $p(x_1, x_2, ..., x_T \mid \lambda) = \sum_{j=1..n} \alpha_T(j)$ $\alpha_l(j)$ is the probability of observing the partial observation $x_1, x_2, ..., x_l$ and then being in state s_j

Remember DP: Can we compute $\alpha_l(j)$ out of $\alpha_{l-1}(...)$?

Indeed:

and
$$\alpha_1(j) = b_j(x_t) \cdot \sum_{i=1..n} a_{ij} \alpha_{t-1}(i)$$

$$\alpha_{t-1}(i) \underbrace{\alpha_{t-1}(i)}_{\alpha_{t-1}(n)} \alpha_{t}(j)$$

$$\alpha_{t-1}(n) \underbrace{\alpha_{t-1}(n)}_{\alpha_{t-1}(n)} \alpha_{t}(j)$$

The Forward Procedure

Initialization:

$$\alpha_1(j) = \pi(s_i) \ b_i(x_1)$$

Induction:

$$\alpha_t(j) = b_j(x_t) \cdot \sum_{i=1..n} a_{ij} \alpha_{t-1}(i)$$

Termination:

$$p(x_1, x_2, ..., x_T | \lambda) = \sum_{j=1..n} \alpha_T(j)$$

Complexity:
$$\alpha_{t-1}(t) \bigcirc a_{ij}$$

$$\alpha_{t-1}(i) \bigcirc a_{ij}$$

$$\alpha_{t}(i) \bigcirc a_{ij}$$

Three Main Problems of HMMs

• The Evaluation Problem:

given an HMM λ and an observation $O=(x_1, x_2, ..., x_T)$ efficiently compute the probability of the observation: $p(O|\lambda)$

The Decoding Problem:

given an HMM λ and an observation $O=(x_1,\,x_2,\,...,\,x_T)$ compute the most likely state sequence $s_{q1},\,s_{q2},\,...,\,s_{qT}$, i.e. $\operatorname{argmax}_{q1,...qT}p(q_1,\,..,\,q_T|\,O,\,\lambda)$

• The Learning/ Optimization Problem:

given an HMM λ and an observation $O = (x_1, x_2, ..., x_7)$ find an HMM λ' such that $p(O \mid \lambda') > p(O \mid \lambda)$

The Decoding Problem

• Given an HMM λ and an observation $x_1, x_2, ..., x_T$, compute the most likely state sequence $s_{q1}, s_{q2}, ..., s_{qT}$, that has to be traversed to produce the observation. I.e.

 $\begin{aligned} & \text{argmax}_{q1,...,qT} & & & p(q_1,...,q_T|x_1,x_2,...,x_T,\,\lambda) = \\ & \text{argmax}_{q1,...,qT} & & & p(q_1,...,q_T,\,x_1,x_2,...,x_T\,|\,\lambda) \,/\, p(x_1,x_2,...,x_T\,|\,\lambda) \end{aligned}$

 For finding the max, the denominator of the last term is of no importance, so all we need is:

 $\operatorname{argmax}_{q_1,...,q_T} \qquad \qquad p(q_1,...,q_T,x_1,x_2,...,x_T \mid \lambda)$

Remember forward algorithm. Can we compute

 $\max_{q_{1,...,q_{t}}} p(q_{1},..,q_{t},x_{1},x_{2},...,x_{t} \mid \lambda) \quad \text{out of} \quad p(q_{1},..,q_{t-1},x_{1},x_{2},...,x_{t-1} \mid \lambda) ?$

The Viterbi Algorithm

Let's define $z_t(j) := \max\{ p(q_1,...,q_t, x_1,x_2,...,x_t \mid \lambda) \mid q_1,..., q_t = j \}$

hen $z_t(j) = \max_i (z_{t-1}(i) a_{ij}) b_j(x_t)$

$$z_{t}(j) = \max_{i} (z_{t-1}(i) a_{ij}) b_{j}(i)$$

and $z_{1}(j) = \pi(s_{i}) b_{j}(x_{1})$

To retrieve the optimal state sequence, we have to remember for every state its optimal predecessor $r_i(j) = \operatorname{argmax}_i(z_{t-1}(i) \ a_{ij})$

Note: the Viterbi algorithm is very similar to the DTW algorithm

- Viterbi multiplies probabilities, DTW adds up distances.
- Viterbi uses state transition probabilities, DTW weighted transition patterns
- When we logarithmize the probabilities in Viterbi, we get "scores" that can be added like distances

Some Notes about the Viterbi Algorithm

Compare Viterbi to the Forward algorithm:

Viterbi
$$z_t(j) = b_j(x_t) * \max_{j=1..n} a_{jj} z_{t-1}(i)$$

Forward
$$\alpha_t(j) = b_j(x_t) * \sum_{i=1..n} a_{ij} \alpha_{t-1}(i)$$

$$z_{t}(j) = b_{j}(x_{t}) * \max_{i} (z_{t-1}(i) a_{ij})$$

$$\alpha_t(j) = b_j(x_t) * \sum_{i=1..n} \alpha_{t-1}(i) \; a_{ij}$$

Both, **Viterbi** and the **Forward** algorithm are multiplying many (often T>1000) small probabilities (density values) \Rightarrow floating point underflow.

Solution 1: apply scaling factors:

$$\max_{i=1..n} a_{ij} \mathbf{f} \cdot z_{t-1}(i) = \mathbf{f} \cdot \max_{i=1..n} a_{ij} z_{t-1}(i)$$

$$\sum_{i=1..n} a_{ij} \mathbf{f} \cdot \alpha_{t-1}(i) = \mathbf{f} \cdot \sum_{i=1..n} a_{ij} \alpha_{t-1}(i)$$

Solution 2: use logarithms: (remember "score" = -log p)

$$\max_{i=1..n} \log (a_{ij} z_{t-1}(i)) = \log \max_{i=1..n} a_{ij} z_{t-1}(i)$$

Idea: the "Backward Algorithm"

The Backward Algorithm

Obviously:
$$p(x_{t+1}, x_{t+2}, ..., x_T) = \sum_{i=1...n} p(x_{t+1}, x_{t+2}, ..., x_T, q_t = i)$$
 | λ)

Define backward variable $\beta_t(i) := p(x_{t+1}, x_{t+2}, ..., x_T, q_t = i \mid \lambda)$

 β_i (i) is the probability of observing the partial observation $x_{t+1}, x_{t+2}, ..., x_T$ and being in state s_i

Induction

Initialization: $\beta_T(i) = 1/N$

Induction: $\beta_t(i) = \sum_{j=1...n} a_{ij} b_j(x_{t+1}) \beta_{t+1}(j), t = T-1, ... 1$

Termination: $p(x_{t+1}, x_{t+2}, ..., x_T | \lambda) = \sum_{j=1..n} \beta_T(j)$

Complexity: O(N2T)

Relationship of Adjacient α and β

Compute α recursively from left to right, and β from right to left

By convention, alpha's contain the *b(t)* (emission probability at *t*)

Three Main Problems of HMMs

• The Evaluation Problem:

given an HMM λ and an observation $O=(x_1,\,x_2,\,...,\,x_{\mathbb{Z}})$ efficiently compute the probability of the observation: $p(O|\lambda)$

• The Decoding Problem:

given an HMM λ and an observation $O=(x_1,\,x_2,\,...,\,x_T)$ compute the most likely state sequence $s_{q1},\,s_{q2},\,...,\,s_{qT}$, i.e. $\operatorname{argmax}_{q1,...,qT}p(q_1,\,..,\,q_T|\,O,\,\lambda)$

• The Learning/ Optimization Problem:

given an HMM λ and an observation $O=(x_1,\,x_2,\,...,\,x_T)$ find an HMM λ' such that $p(O\mid\lambda')>p(O\mid\lambda)$

Optimize HMM λ

In order to optimize λ and retrieve λ' we can iteratively refine the HMM parameters $\lambda\text{=}(A,B,\pi)$ by maximizing the likelihood $P(X|\;\lambda)$

- Optimize π, optimize b_i optimize a_{ii}
- No analytical method known, therefore solve by Expectation Maximisation (EM)algorithm (iteratively maximizing the expectation of likelihood)

<u>To optimize π , b_j </u> we need the probability that the system λ is in state s_j at time t when producing the observation $X = x_1, x_2, ..., x_T$.

 $P(q_i=i \mid x_1, x_2, ..., x_T, \lambda)$ tells us the "weight" with which we need to modify the parameters of the model in order to increase the likelihood of observing x_t .

Then we define $\gamma_t(j)$ the probability that system λ is in state s_j at time t when producing the observation $X = x_1, x_2, ..., x_T$:

$$\gamma_t(j) := \frac{P(q_t = j \mid X, \lambda)}{P(X \mid \lambda)} = \frac{\alpha_t(j) \cdot \beta_t(j)}{\sum_{\alpha} \alpha_t(i) \cdot \beta_t(i)}$$

Optimizing the Transition Probabilities

To optimize a_{ji} we need the probability $\xi_t(i,j)$ of being in state i at time t, transition from state i to j, and be in state j at time t+1

$$P(q_t=i,q_{t+1}=j|X,\lambda) = \frac{P(q_t=i,q_{t+1}=j,X|\lambda)}{P(X\mid\lambda)} = \frac{\alpha_t(i)\;a_{ij}b_j(x_{t+1})\;\beta_{t+1}(j)}{P(X\mid\lambda)} =: \xi_t(i,j)$$

The Baum-Welch Algorithm

The Baum-Welch Optimization Rules

- Run a forward-backward algorithm, compute the $\alpha_t(i)$, $\beta_t(i)$, $\gamma_t(i)$, and $\xi_t(i,j)$
- $\sum_{t=1...7-1} \gamma_t(i)$ is the expected number of times state *i* is visited
- $\sum_{t=1...T-1} \xi_t(i,j)$ is the expected number of transitions from state i to j
- $\pi(i)$ is the expected frequency in state *i* at time (t=1) = $\gamma_1(i)$
- a_{ij} is the expected # of transitions from i to j DIV expected # of transitions from i
- b_i(v_k) is the expected # in state i and observing symbol k DIV expected # in state i

The Baum-Welch Optimization Rules

$$\lambda': P(q_{1}=i \mid X,\lambda) = \frac{P(X,q_{1}=i \mid \lambda)}{P(X \mid \lambda)} = \gamma_{1}(i) = \frac{\alpha_{1}(i) \beta_{1}(i)}{\sum_{i=1...n} \alpha_{1}(i) \cdot \beta_{1}(i)}$$

$$a'_{ij} = \frac{\sum_{t=1...T-1} P(X, q_{t}=i, q_{t+1}=j \mid \lambda)}{\sum_{t=1...T-1} P(X, q_{t}=i \mid \lambda)} = \frac{\sum_{t=1...T-1} \xi_{t}(i,j)}{\sum_{t=1...T-1} \gamma_{t}(i)}$$

$$b'_{i}(v_{k}) = \frac{\sum_{t=1...T} P(X, q_{t}=i \mid \lambda) \cdot \delta(X_{t}, v_{k})}{\sum_{t=1...T} P(X, q_{t}=i \mid \lambda)} = \frac{\sum_{t=1...T} \gamma_{t}(i) \cdot \delta(X_{t}, v_{k})}{\sum_{t=1...T} \gamma_{t}(i)}$$

For proof that $P(X|\lambda') > P(X|\lambda)$ see X.D. Huang, Y. Ariki, M.D. Jack: HMMs for Speech Recognition, Edinburgh University Press, 1990.

$$\delta(x,y) = \{ \begin{array}{c} 1 \text{ if } x=y \\ 0 \text{ else} \end{array}$$

HMMs and their Recognizers

- Hidden Markov Models in Speech Recognition
- Overview of Hidden Markov Models Training
 - Using (Hand-)Labeled Data
 - K-Means
 - Training HMMs with Viterbi
- Components of an HMM-Recognizer

Hidden Markov Models in Speech Recognition

- The states that correspond to the same acoustic phenomenon share the same "acoustic model"
- The training data can be exploited better
- In this example HMM $b_1=b_7=b_{q-b}$
- The parameters of the emission probabilities can be estimated more robustly
- Save computation time (don't evaluate b(...) for every state)

Hidden Markov Models in Speech Recognition

Semi-continuous HMMs do even more

- only one codebook of Gaussians in the system
- every acoustic model shares the same Gaussian codebook
- every acoustic model has its own set of mixture weights
- the Gaussians evaluation can be seen as part of the signal processing, and the HMM works like a discrete HMM
- ⇒ fewer parameters, but poor resolution of the feature space and thus usually lower recognition accuracy

GAG /ae/ /g/ g-b g-e ae-b ae-e g-b g-m ae-e g-b g-m

Phonetically-tied Semi-continuous

HMMs: one codebook per phone that is shared across polyphones of that phone, i.e. in the example above: one codebook for /g/ and another codebook for /ae/

Hidden Markov Model Training

A typical HMM training session looks like this:

1. Initialization

- Either initialize all parameters randomly
- Or use pre-labeled data (by hand or other recognizer) and compute initial parameters with e.g. k-means

2. Iterative Optimization/ Training

- For all training utterances, run forward-backward algorithm or Viterbi
- Perform Baum-Welch re-estimation on HMM parameters (example: Gaussian Mixtures with the EM-Algorithm)
- Continue for a defined number of iterations or until evaluation on development set give no more improvements

3. Evaluation

- Record utterance X
- Run forward algorithm with every internal reference HMM
- Recognize the word λ_w with the highest $P(X|\lambda_w)$

Using (Pre-)Labeled Data

A good initialization of HMM-parameters can be made with labeled data:

Automatic Labeling (that is probably somehow suboptimal)

- Use an existing recognizer λ_{old}
- Use $\gamma_i(j)$ of its forward-backward algorithm and optimize parameters of λ_{new}

Using Hand-Made Labels (that is probably somehow time consuming)

- For all training utterances, assign an HMM-state j to every speech-frame t
- Train the corresponding model as if its $\gamma_t(j)$ was 1.0

The Labeling Process

- Have people (experts) sit down and listen to utterances
- Let them mark boundaries between speech units like words. Phonemes, ...

Using Partial Labels

- When labels are not available for HMM-states but for larger speech units ...
 - ... then partition the utterances into the labeled segments
- Run forward-backward with randomly/ uniformly initialized parameters on small segments

Training HMMs with Viterbi

- The forward-backward algorithm gives us $P(q_t = j \mid X, \lambda) =: \gamma_t(j)$, the probability that the system λ is in state s_j at time t when producing the observation $X = x_1, x_2, ..., x_T$.
- In other words: γ_t(j) is the weight (0.0 ... 1.0) of the impact of the observation x_t on the training of b_j.

so we could simply define: $\gamma_t(j) = \begin{cases} 1.0 \text{ if } j = q_t \\ 0.0 \text{ for all other } j \end{cases}$

- Sometimes for a given t the $\gamma_t(j)$ are "spread" over many states, sometimes there are only few (maybe just one) states that have a $\gamma_t(j)$ that is significantly greater than 0.0.
- This leads us to the following idea: the Viterbi-algorithm computes the most likely state sequence $s_{q1}, s_{q2}, ..., s_{qT}$,

Training HMMs with Viterbi

The forward-backward algorithm produces a γ_t(j)-Matrix like:

The Viterbi algorithm produces a $\gamma_t(j)$ -Matrix like:

Viterbi training is faster than forward backward BUT: When only little data is available forward-backward performs better

interact Components of an HMM-Recognizer Utterances Signal Observation Database Processing Forward-Backward **HMM** Update Training Procedure Accumulators Emission Prob. Hypothesis Generator Hypothesis Computers

Components of an HMM Recognizer

- Signal Processing: time-representation → frequency-representation, normalization
- Utterance Database: training, development, and evaluation data with transcriptions
- Forward-Backward Algorithm: forward okay for evaluation, forward-backward for computing α, β, γ, ξ for training
- Training Accumulators: when training more than one utterance replace $\Sigma_{L.T}$ by $\Sigma_u \Sigma_{L}.T_u$
- Set of HMM Models: one "five-tuple" for every word/ phoneme/ unit to be recognized
- Set of Acoustic Models: different states can share same model, (usually Gaussian mixture densities)
- Parameter Update Procedure: model-dependent, e.g. EM algorithm for Gaussians

Backup

References

- L.R. Rabiner: A Tutorial on HMM and Selected Applications in Speech Recognition, In: [WL], pp 267-296
- X. Huang, A. Acero, H.-W. Hon: Spoken Language Processing, Chapter 8, pp 374-409
- Tapas Kanungo, Uni Maryland, HMM Tutorial Slides (many of his slides have been reused here)
- Andrew Moore slides: similar to the above, see http://www.autonlab.org/tutorials/hmm.html
- J. Bilmes: "What HMMs can do"