```
In [5]: import numpy as np
   import pandas as pd
   %matplotlib inline
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Out[20]:

•	Α	ge	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeN
_	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	_
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	

5 rows × 35 columns

In [9]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

11/5/2020

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtype	es: int64(26), object(9)		

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

heatmap to check the missing value

```
In [10]: plt.figure(figsize =(10, 4))
sns.heatmap(dataset.isnull(), yticklabels = False, cbar = False, cmap ='viridis')
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x27adf548e80>

So, we can see that there are no missing values in the dataset.

```
In [11]: sns.set_style('darkgrid')
    sns.countplot(x ='Attrition', data = dataset)
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x27adf5f98b0>


```
In [12]: sns.lmplot(x = 'Age', y = 'DailyRate', hue = 'Attrition', data = dataset)
```

Out[12]: <seaborn.axisgrid.FacetGrid at 0x27adf5d68b0>


```
In [13]: plt.figure(figsize =(10, 6))
sns.boxplot(y ='MonthlyIncome', x ='Attrition', data = dataset)
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x27adff9c640>

In the dataset there are 4 irrelevant columns, i.e:EmployeeCount, EmployeeNumber, Over18 and StandardHour. So, we have to remove these for more accuracy.

```
In [21]: dataset.drop('EmployeeCount', axis = 1, inplace = True)
    dataset.drop('StandardHours', axis = 1, inplace = True)
    dataset.drop('EmployeeNumber', axis = 1, inplace = True)
    dataset.drop('Over18', axis = 1, inplace = True)
    print(dataset.shape)

(1470, 31)

In [22]: y = dataset.iloc[:, 1]
    X = dataset
    X.drop('Attrition', axis = 1, inplace = True)
```

```
In [23]: from sklearn.preprocessing import LabelEncoder
lb = LabelEncoder()
y = lb.fit_transform(y)
```

In the dataset there are 7 categorical data, so we have to change them to int data, i.e we have to create 7 dummy variable for better accuracy.

```
In [25]: | dum BusinessTravel = pd.get dummies(dataset['BusinessTravel'],prefix = 'BusinessTravel')
         dum Department = pd.get dummies(dataset['Department'],prefix = 'Department')
         dum EducationField = pd.get dummies(dataset['EducationField'],prefix ='EducationField')
         dum Gender = pd.get dummies(dataset['Gender'], prefix = 'Gender', drop first = True)
         dum JobRole = pd.get dummies(dataset['JobRole'],prefix ='JobRole')
         dum MaritalStatus = pd.get dummies(dataset['MaritalStatus'],prefix ='MaritalStatus')
         dum OverTime = pd.get dummies(dataset['OverTime'], prefix ='OverTime', drop first = True)
         # Adding these dummy variable to input X
         X = pd.concat([X, dum BusinessTravel, dum Department, dum EducationField, dum Gender, dum JobRole, dum MaritalS
         tatus, dum OverTime], axis = 1)
         # Removing the categorical data
         X.drop(['BusinessTravel', 'Department', 'EducationField', 'Gender', 'JobRole', 'MaritalStatus', 'OverTime'],
         axis = 1, inplace = True)
         print(X.shape)
         print(y.shape)
         (1470, 49)
         (1470,)
In [26]: from sklearn.model selection import train test split
         X train, X test, y train, y test = train test split(X, y, test size = 0.25, random state = 40)
```

Apply KNN Algo

```
In [27]: from sklearn.neighbors import KNeighborsClassifier
         neighbors = []
         cv scores = []
         from sklearn.model selection import cross val score
         # perform 10 fold cross validation
         for k in range(1, 40, 2):
             neighbors.append(k)
             knn = KNeighborsClassifier(n neighbors = k)
             scores = cross val score(knn, X train, y train, cv = 10, scoring = 'accuracy')
             cv scores.append(scores.mean())
         error rate = [1-x for x in cv scores]
         # determining the best k
         optimal k = neighbors[error rate.index(min(error rate))]
         print('The optimal number of neighbors is % d ' % optimal k)
         # plot misclassification error versus k
         plt.figure(figsize = (10, 6))
         plt.plot(range(1, 40, 2), error rate, color ='blue', linestyle ='dashed', marker ='o', markerfacecolor ='red',
         markersize = 10)
         plt.xlabel('Number of neighbors')
         plt.ylabel('Misclassification Error')
          plt.show()
```

The optimal number of neighbors is 7

The optimal number of neighbors is 7

In [28]: | from sklearn.model selection import cross val predict, cross val score from sklearn.metrics import accuracy score, classification report from sklearn.metrics import confusion matrix def print score(clf, X train, y train, X test, y test, train = True): if train: print("Train Result:") print("----") print("Classification Report: \n {}\n".format(classification_report()) v train, clf.predict(X train)))) print("Confusion Matrix: \n {}\n".format(confusion matrix(y train, clf.predict(X train)))) res = cross val score(clf, X train, y train, cv = 10, scoring = 'accuracy') print("Average Accuracy: \t {0:.4f}".format(np.mean(res))) print("Accuracy SD: \t\t {0:.4f}".format(np.std(res))) print("accuracy score: {0:.4f}\n".format(accuracy score(y train, clf.predict(X train)))) elif train == False: print("Test Result:") print("----") print("Classification Report: \n {}\n".format(classification report(y test, clf.predict(X test)))) print("Confusion Matrix: \n {}\n".format(confusion_matrix(y_test, clf.predict(X_test)))) print("accuracy score: {0:.4f}\n".format(accuracy score(y test, clf.predict(X test)))) print("-----") knn = KNeighborsClassifier(n neighbors = 7) knn.fit(X train, y train) print_score(knn, X_train, y_train, X_test, y_test, train = True) print score(knn, X train, y train, X test, y test, train = False)

Train Result:

Classification Report:

	precision	recall	f1-score	support
0	0.86	0.99	0.92	922
1	0.83	0.19	0.32	180
accuracy			0.86	1102
macro avg	0.85	0.59	0.62	1102
weighted avg	0.86	0.86	0.82	1102

Confusion Matrix:

[[915 7] [145 35]]

Average Accuracy: 0.8421 Accuracy SD: 0.0148

accuracy score: 0.8621

Test Result:

Classification Report:

	precision	recall	f1-score	support
0	0.84	0.96	0.90	311
1	0.14	0.04	0.06	57
accuracy			0.82	368
macro avg	0.49	0.50	0.48	368
weighted avg	0.74	0.82	0.77	368

Confusion Matrix:

[[299 12] [55 2]]

accuracy score: 0.8179

.....

In []: