MA 26500-215 Quiz 5

July 15, 2016

- 1. Which of the following are *not* a basis for the vector space of all symmetric 2×2 matrices? Why? [HINT: Recall that a symmetric matrix must satisfy $A = A^{T}$.]
 - A. $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}.$
 - $\mathbf{B.} \ \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 & -3 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\}.$
 - $\mathbf{C.} \ \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$

Solution: The correct choices are marked in **bold**.

Here is the rationale that accompanies it. We know that a symmetric matrix has the property that $A = A^{T}$. That is, if

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

then

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{\mathsf{T}} = A^{\mathsf{T}}.$$

This forces b = c. Then we can replace our original matrix A by one that looks like

$$A = \begin{bmatrix} a & b \\ b & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

since we know b=c must be true for any 2×2 symmetric matrix. Thus, one basis for the set of all 2×2 symmetric matrices is the set

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}. \tag{*}$$

The rest of the problem comes down to taking the set of vectors for options A, B and C and trying to reduce them to the set in (\star) .

- 2. Which of the following are *not* a basis for \mathbb{R}^3 ? Why?
 - A. $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$.
 - $B. \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}.$
 - C. $\left\{ \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix} \right\}$.