Metaheuristic Approaches for Travelling Thief Problem

Aykut Kuşkaya

aykutkuskaya.58@gmail.com

erhanyalniiz@gmail.com

Erhan Yalnız

Kadir Acun

kadiracunn@gmail.com

Asst. Prof. Fatma Corut Ergin

Introduction

Travelling Thief Problem (TTP)

- Traveling Thief Problem (TTP) is combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP).
- In Traveling Thief Problem (TTP), a person known as a thief starts traveling from a city and travels between designated cities.
- The thief has a knapsack with a limited capacity and wants to collect items which are located in different cities with some weight and value.
- While the thief is collecting the items, thief's speed slows down and the rent he will pay for the backpack increases in direct proportion to the tour time.
- The thief's goal when collecting this item is to maximize his profit without exceeding the capacity of the knapsack.

Formulas:

 \bullet Total Profit = Total Price of Items - Rent Of Knapsack * Total Travel Time

 $Z(\pi, Y) = \text{Total profit}$ $p_{ik} = k^{th}$ item of i^{th} city $y_{ik} = k^{th}$ item of i^{th} city collected $R = Rent \ ratio \ of \ knapsack$ $d_{x_ix_i} = Distance$ between i^{th} and j^{th} city $v_i = Speed of thief$

 $v_i = Speed \ of \ thief$ $v_{max} = Maximum speed of thief$ $v_{min} = Minimum \ speed \ of \ thief$ $W_c = Current$ weight of knapsack W = Capacity of knapsack

Methodology

Genetic Algorithm

Formulas of Genetic Algorithm

- $Fitness\ value = \frac{1}{total\ profit} + penalty$
- $Penalty = Total\ weight Knapsack\ capacity$

Order Crossover

Parent 1	2		4		9		8		6		7		10		3		5		1	
raieiiti	0	0	0	1	1	0	1	1	0	0	0	1	1	0	1	1	0	0	0	1
Parent 2	3		9		4		1		5		8		6		10		7		2	
	0	0	0	1	1	0	1	1	0	0	0	1	Ψ	0	~	1	0	0	0	1
	, 1																			
Child 1	4		1		5		8		6	3	7	7	1	0	3	3	2	2	g	
	1	0	1	1	0	0	0	1	0	0	0	1	1	0	1	1	0	1	0	1
Child 2	4		9		7		3		5		8		6		10		1		2	
	0	1	1	0	0	1	1	1	0	0	0	1	1	0	1	1	0	1	0	0

Partially Mapped Crossover

Exchange Mutation

Inverse Mutation

Artificial Bee Colony Algorithm

Formulas of Artificial Bee Colony Algorithm

• Fitness Value =
$$\begin{cases} \frac{1}{1+f_i}, & f_i \geq 0\\ 1+|f_i|, & f_i < 0 \end{cases}$$

 $Limit = \frac{Colony\ Size\ *\ City\ Number}{}$

Test Results

Crossover-Mutation	Average	Standard Deviation
Ordered Crossover - Exchange Mutation	1693.805804	1142.44048
Ordered Crossover - Inversion Mutation	3139.296868	880.1741439
Partially Mapped Crossover- Exchange Mutation	1186.099463	1342.925149
Partially Mapped Crossover- Inversion Mutation	2829.975568	1260.030996

Population Size	Average	Standard Deviation
50	1199.536838	1322.489615
100	2128.640234	1338.700694
200	3308.706205	1329.196218

Crossover Probability	Average	Standard Deviation
50%	2100.600097	1395.631404
90%	2381.111538	1417.082674
100%	2155.171642	1444.034142

Mutation Probabilty	Average	Standard Deviation
10%	2254.96332	1424.747382
20%	2358.642863	1446.718027
50%	2023.277094	1528.573975

Colony Size	Average	Standard Deviation
20	1436.798627	589.626207
50	1668.063683	684.0644453
80	1212.908593	393.5336824

Conclusion

- The parameters of the best solution we have achieved by Genetic Algorithm as follows; "Ordered Crossover - Inversion Mutation Dual", "200 Population Size", "%90 Crossover Probability", "%20 Mutation Probability".
- When we compare the results we have obtain, we have observed that the results of Genetic Algorithm are better than Artificial Bee Colony Algorithm.
- As a future work, we plan to run these algorithms for datasets with a larger number of cities and a larger number of items in a city.

References

- Bonyadi, M.R., Michalewicz, Z., Barone, L.: The travelling thief problem: the first step in the transition from theoretical problems to realistic problems. In: Congress on Evolutionary Computation, pp. 1037–1044. IEEE, (2013)
- D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algorithm, Erciyes University, 2007
- Saso Karakatic, Vili Podgorelec, A survey of genetic algorithms for solving multi depot vehicle routing problem, University of Maribor, 2014

