Lecture # 4

Positive term series

In this section, we consider only positive-term series-that is series $\leq a_n$ such that $a_n > 0$ for every n. Although this approach may appear to be very specialized, positive-term series are the foundation for all of our future work with series

The next theorem shows that to eastablish convergence or divergence of a positive term series, it is sufficient to determine whether the sequence of partial sum { Sn} is bounded.

Theorem

If $\leq a_n$ is a positive-term series and if there exists a number M such that

$$S_n = a_1 + a_2 + - - - + a_n \leq M$$

for every n, then the series converges and has a sum $S \leq M$. If no such M exists, the series diverges.

Integral test.

If $\leq a_n$ is a series, let $f(n) = a_n$ and let fbe a function obtained by replacing n with x. If f is positive - valued, continuous and decreasing for every real number $x \gg 1$, then the series Ea_n

(i) converges if $\int_{-\infty}^{\infty} f(x) dx$ converges (ii) diverges if $\int_{-\infty}^{\infty} f(x) dx$ diverges

Example 1

Use the integral test to prove that the harmonic series

1+ シャラナーーーナーー

diverges.

Solution

 $a_n = \frac{1}{n}$, we let $f(n) = \frac{1}{n}$. Replacing n by x gives us $f(x) = \frac{1}{x}$. Because f is positive valued, continuous, and decreasing for x > 1, we can apply the integral test

$$\int_{-\infty}^{\infty} \frac{1}{x} dx = \lim_{t \to \infty} \int_{-\infty}^{t} \frac{1}{x} dx = \lim_{t \to \infty} \lim_{t \to \infty} \left[\ln t - \ln t \right]_{t \to \infty}^{t}$$

$$= \lim_{t \to \infty} \left[\ln t - \ln t \right]_{t \to \infty}^{t}$$

Example 2

Determine whether the infinite series $\leq ne^{-n^2}$ converges or diverges.

Solution

Since
$$a_n = ne^{n^2}$$
, we let $f(n) = ne^{-n^2}$

$$f(x) = xe^{-x^2}$$

If x >1, then & is positive valued and continuous.

The first derivative may be used to determine.

whether f is decreasing. Since !.

$$f'(x) = e^{-x^2} - 2x^2e^{-x^2} = e^{-x^2}(1-2x^2) \angle 0$$

f is decreasing on $(1, \infty)$. We therefore

apply the integral test as follows:

$$\int_{1}^{\infty} xe^{x^{2}} dx = \lim_{k \to \infty} \frac{1}{1} \left(\frac{2x}{2x} \right) e^{x^{2}} dx = \lim_{k \to \infty} \left[-\frac{1}{2} e^{x^{2}} \right]_{1}^{k}$$

$$=-\frac{1}{2}\lim_{k\to\infty}\left(\frac{1}{e^{k^2}}-\frac{1}{e}\right)=\frac{1}{2e}$$

Hence the series converges.

An integral test may also be used if the function f satisfies the conditions for every x >k for some positive integer k. In this case, we merely replace the integral by f f(x)dx. This corresponds to deleting the first k-1 k terms of the series.

A p-series, or a hyperharmonic series, is a series of the form

$$\frac{2}{2p} \frac{1}{np} = 1 + \frac{1}{2p} + \frac{1}{3p} + \cdots + \frac{1}{np} + \cdots$$

where p is a positive real number.

Theorem.

The p-series
$$\leq \frac{1}{n^p}$$
 $n=1$

- (i) converges if P>1
- (ii) diverges if P ≤ 1

Example

S

1

Converges

The next theorem allows us to use known convergent (divergent) series to establish the convergence (divergence) of other series.

Basic Comparison test.

Let Ean and Ebn be positive-term series.

(i) If $\leq b_n$ converges and $a_n \leq b_n$ for every positive integer n, then $\leq a_n$ converges

(ii) If $\leq b_n$ diverges and $a_n \gg b_n$ for every positive integer n, then $\leq a_n$ diverges.

Example 3

Determine whether the series converges or divergence $\sum_{n=1}^{\infty} \frac{1}{2+5^n}$

For every
$$n > 1$$

$$\frac{1}{2+5^n} < \frac{1}{5^n} = \left(\frac{1}{5}\right)^n$$

Since $\leq (1/5)^n$ is a convergent geometric ser the given series converges, by the Basic Comparison Ti

$$(b) \qquad \bigotimes_{n=2}^{\infty} \frac{3}{\sqrt{n-1}}$$

The p-series $\leq \sqrt{n}$ diverges, and hence so does the series obtained by disregarding the first term \sqrt{n} of $n \geqslant 2$, then

$$\frac{1}{\sqrt{n-1}} > \frac{1}{\sqrt{n}}$$

hence

$$\frac{3}{\sqrt{n-1}} > \frac{1}{\sqrt{n}}$$

If follows from the basic comparison test that given series diverges.

When we use a basic comparison test, we must first decide on a suitable series $\leq b_n$ and then prove that either an $\leq b_n$ or an $\geqslant b_n$ for every n greater than some positive integer k. This proof can be very difficult if an is a complicated expression. The following comparison test is often easier to apply, because after deciding on $\leq b_n$, we need only take a limit of the quotient $a_n \leq b_n$ as $n \rightarrow \infty$.

Limit Comparison test.

Let \leq an and \leq bn be positive term series. If there is a positive real number c such that

$$\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$$

then either both l'deverge or both series converge.

* illustration

an	Deleting terms of least magnitude	Choice of b
$\frac{3n+1}{4n^3+n^2-2}$	$\frac{3n}{4n^3} = \frac{3}{4n^2}$	$\frac{1}{n^2}$
$\frac{5}{\sqrt{n^2+2n+7}}$	$\frac{5}{\sqrt{n^2}} = \frac{5}{n}$	1 n
$\frac{3\sqrt{n^2+4}}{6n^2-n-1}$	$\frac{\sqrt[3]{n^2}}{6n^2} = \frac{n^{2/3}}{6n^2} = \frac{1}{6n^{4/3}}$	1 n 4/3

Example 4

Determine whether the series converges or diverges.

$$a_n = \frac{1}{\sqrt[3]{n^2+1}}$$

iet
$$b_m = \frac{1}{\sqrt[3]{n^2}}$$

applying limit comparison test.

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{n^{\frac{2}{3}}}{(n^2+1)^{\frac{1}{3}}}$$

$$= \lim_{n\to\infty} \left(\frac{n^2}{n^2+1}\right)^{\frac{1}{3}}$$

$$= \left(\lim_{n \to \infty} \frac{n^2}{n^2 + 1} \right)^{\frac{1}{3}} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1}$$

bn diverges (by divergent p-series test) so does £an.

It is important to note that we cannot use $b_n = \frac{1}{3m^2}$ with basic campanisan lest because $a_n \subset b_n$ instead of an > bn.

(b)
$$\frac{2^{n}}{2^{n}(n^{2}+1)}$$

The nth term of the series is

$$a_n = \frac{3n^2 + 5n}{2^n n^2 + 2^n}$$

$$b_n = \frac{1}{2}n$$

Applying the limit comparison test

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{3n^2 + 5n}{2^n (n^2 + 1)} \cdot \frac{2^n}{1}$$

As $\leq b_n = \leq \leq_n$ is a convergent geometric series. The series $\leq a_n$ is also convergent.