Introduction to Bayesian Networks Part 2

Gennaro De Luca, PhD Arizona State University

The lecture is based on the slides developed by Prof. Yu Zhang from ASU School of Computing and Augmented Intelligence

Objectives

Objective
Describe Bayesian
Networks

Illustrate key tasks in implementing Bayesian Networks

D-Separation

Study independence properties for simple structures.

Analyze complex cases in terms of these simple structures.

Causal Chains

This configuration is a "causal chain":

Guaranteed X independent of Y?

- Answer: No
- One example of Conditional Probability Tables (CPTs) for which
 X is **not** independent of Y is sufficient to show this result.
- E.g., When x = true (false), y = true (false), z = true (false) are all causally related.

Causal Chains

This configuration is a "causal chain":

Guaranteed X independent of Y given Z?

$$P(X|Y,Z) = \frac{P(X,Y,Z)}{P(Y,Z)}$$

$$= \frac{P(X)P(Z|X)P(Y|Z)}{P(Y|Z)P(Z)} = P(X|Z)$$

- Answer: Yes!
- Evidence along the chain "blocks" the influence.

Common Cause

This configuration is a "common cause":

Guaranteed X independent of Y?

- Answer: No
- One example of CPTs for which X is not independent of Y is sufficient to show this result.
- E.g., when x = true (false), y = true
 (false), z = true (false) are all causally related.

Common Cause

This configuration is a "common cause":

Guaranteed X and Y independent given Z?

$$P(X|Y,Z) = \frac{P(X,Y,Z)}{P(Y,Z)}$$

$$= \frac{P(X|Z)P(Y|Z)P(Z)}{P(Y|Z)P(Z)} = P(X|Z)$$

- Answer: Yes!
- Observing the cause "blocks" influence between effects.

Common Effect

This configuration is a "common effect" (v-structure):

Are X and Y independent?

$$P(X,Y) = \sum_{z} P(X,Y,z) = \sum_{z} P(X)P(Y)P(z|X,Y) = P(X)P(Y)$$

- Answer: Yes!

Common Effect

This configuration is a "common effect" (v-structure):

Are X and Y independent given Z?

Answer: No

This is backwards from the other cases.

 Observing an effect "activates" influence between possible causes.

Active / Inactive Path

$A \perp \!\!\!\perp B \mid E$?

- Consider any undirected path from A to B.
- A path is active if each triple on the path is active:
 - Causal chain X → Z → Y where Z is unobserved (either direction)
 (not in E)
 - Common cause X ← Z → Y where Z is unobserved (not in E)
 - Common effect X → Z ← Y where Z is observed or one of its descendants is observed (in E)
- All it takes to block a path is a single inactive segment —
 D-separation.

D-Separation

If every undirected path from a node in A to a node in B is D-separated by E, then A and B are conditionally independent given E.

D-Separation Example

Cavity and Visit Pharmacy are independent given Toothache.

Cavity and Abscess are independent given no evidence about Toothache, Visit Dentist, or Visit Pharmacy.

Otherwise, they are dependent.

