Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Отчёт по лабораторной работе N2

По дисциплине «Вычислительная математика» (четвёртый семестр)

Студент:

Дениченко Александр Р3212

Практик:

Наумова Надежда Александровна

Санкт-Петербург 2024 г.

LATEX.

1 Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения я/системы нелинейных уравнений, выполнить программную реализацию методов.

2 Задание

Часть 1.

- 1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 6)
- 2. Определить интервалы изоляции корней.
- 3. Уточнить корни нелинейного уравнения (см. табл. 6) с точностью $\epsilon = 10^{-2}$.
- 4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.
- 5. Вычисления оформить в виде таблиц (1-5), в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой.
 - 5.1 Для метода половинного деления заполнить таблицу 1.
 - 5.2 Для метода хорд заполнить таблицу 2.
 - 5.3 Для метода Ньютона заполнить таблицу 3.
 - 5.4 Для метода секущих заполнить таблицу 4.
 - 5.5 Для метода простой итерации заполнить таблицу 5. Проверить условие сходимости метода на выбранном интервале.
 - 6. Заполненные таблицы отобразить в отчете.

Вид нелинейного уравнения для вычислительной реализации:

$$3x^3 + 1,7x^2 - 15,42x + 6,89$$

Выбор метода для вычислительной реализации задачи:

Номер	Крайний	Крайний	Центральный	
варианта	правый корень	левый корень	корень	
8	Метод простой итерации (5)	Метод хорд (2)	Метод Ньютона (3)	

Таблица 1: Методы для вычислительной реализации

3 Выполнение первой части

Точки пересечения:

$$x_3(1.67953,0)$$

$$x_2(0.498258,0)$$

$$x_1(-2.7445,0)$$

Построим график функции:

$$--- 3x^3 + 1.7x^2 - 15.42x + 6.89$$

1. Метод простой итерации для $x_3(1.67953,0)$.

$$3x^3 + 1.7x^2 - 15.42x + 6.89$$

Приведём уравнение:

$$3x^3 + 1,7x^2 - 15,42x + 6,89 = 0$$

к следующему виду:

$$x = \phi(x)$$

получим:

$$\phi(x) = 0,195x^3 + 0,110x^2 + 0,447 = 0$$
$$\phi'(x) = 0,585x^2 + 0,220x$$

Пусть начальное приближение будет:

$$a_0 = 1, 2; \ b_0 = 2$$

Тогда проверим условие сходимости:

$$\phi'(1,2)=0,805<1$$

$$\phi'(2) = 0,585 \cdot 4 + 0,220 \cdot 2 = 2,34 + 0,44 = 2,78 > 1$$
$$q = \max_{[a,b]} |\phi'(x)| = 2,78 > 1$$

Сходимости нет.

Пойдём по другому способу, где применяется приём введения параметра λ :

$$f(x) = 3x^{3} + 1,7x^{2} - 15,42x + 6,89$$

$$\lambda f(x) = 0 \ (\lambda! = 0)$$

$$\phi(x) = x + \lambda f(x)$$

$$\phi'(x) = 1 + \lambda f'(x)$$

$$f'(x) = 9x^{2} + 3,4x - 15,42$$

$$f'(1,2) = 9 \cdot (1,2)^{2} + 3,4 \cdot (1,2) - 15,42 = 1,62$$

$$f'(2) = 9 \cdot 4 + 3,4 \cdot 2 - 15,42 = 27,38$$

Так как f'[a,b] > 0, то рассматриваем:

$$\lambda = -\frac{1}{\max|f'(x)|} = -\frac{1}{27,38} = -0,037$$

Подставим:

$$\phi(x) = x - 0.037 \cdot (3x^3 + 1.7x^2 - 15.42x + 6.89) =$$

$$= 1.571x - 0.111x^3 - 0.063x^2 - 0.255$$

$$\phi'(x) = 1.571 - 0.333x^2 - 0.126x$$

Проверим точки:

$$\phi'(1,2) = 1,571 - 0,333 \cdot (1,2)^2 - 0,126 \cdot 1,2 = 0,940 < 1$$

$$\phi'(2) = 1,571 - 0,333 \cdot (2)^2 - 0,126 \cdot 2 = -0,013 < 1$$

Условие сходимости выполняется!

$$x_0 = 1, 2$$

$$x_1 = \phi(x_0) = 1,571 \cdot 1, 2 - 0,111 \cdot (1,2)^3 - 0,063 \cdot (1,2)^2 - 0,255 = 1,348$$

$$x_2 = 1,571 \cdot 1,348 - 0,111 \cdot (1,348)^3 - 0,063 \cdot (1,348)^2 - 0,255 = 1,476$$

$$f(x_2) = 3 \cdot (1,476)^3 + 1,7 \cdot (1,476)^2 - 15,42 \cdot (1,476) + 6,89 = -2,520$$

. . .

$$f(x) = 3x^3 + 1,7x^2 - 15,42x + 6,89$$
$$\phi(x) = 1,571x - 0,111x^3 - 0,063x^2 - 0,255$$

Номер	x_i	x_{i+1}	$\phi(x_{i+1})$	$f(x_{i+1})$	$ x_{i+1}-x_i $
0	1,2	1,348	1,476	-2,520	0,148
1	1,348	1,476	1,57	-2,520	0,128
2	1,476	1,57	1,627	-1,519	0,094
3	1,57	1,627	1,656	-0,778	0,057
4	1,627	1,656	1,67	-0,36	0,029
5	1,656	1,67	1,676	-0,148	0,014
6	1,67	1,676	1,679	-0,055	0,006

Таблица 2: Уточнение корня уравнения методом простой итерации

2. Метод хорд для $x_1(-2.7445, 0)$.

$$3x^3 + 1.7x^2 - 15.42x + 6.89$$

Возьму за изолированный интервал [-3, -2]

$$f(x) = 3x^3 + 1,7x^2 - 15,42x + 6,89$$

Вычисление будем произвадить по формуле:

$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$$

Номер	a	b	x	f(a)	f(b)	f(x)	$ x_{i+1}-x_i $
0	-3	-2	-2.62062	-12.55	20.53	4.98259	0.37938
1	-3	-2.62062	-2.72843	-12.55	4.98247	0.68357	0.10781
2	-3	-2.72843	-2.74246	-12.55	0.68375	0.08569	0.01403
3	-3	-2.74246	-2.74421	-12.55	0.08574	0.01062	0.00175

Таблица 3: Уточнение корня уравнения методом хорд

Подсчитанный результат:

$$x\approx -2.74421$$

3. Метод Ньютона $x_2(0.498258,0)$.

$$--- 3x^3 + 1.7x^2 - 15.42x + 6.89$$

Возьму изолированный интервал [0.4, 0.6]

$$f(x) = 3x^3 + 1.7x^2 - 15.42x + 6.89$$

$$f(0.4) = 3 \cdot (0.4)^3 + 1.7 \cdot (0.4)^2 - 15.42 \cdot 0.4 + 6.89 = 1.186$$

$$f(0.6) = 3 \cdot (0.6)^3 + 1.7 \cdot (0.6)^2 - 15.42 \cdot 0.6 + 6.89 = -1.102$$

Найдём производные:

$$f'(x) = 9x^2 + 3.4x - 15.42;$$
 $f'(0.4) = 9(0.4)^2 + 3.4 \cdot (0.4) - 15.42 = -12.62;$ $f'(0.6) = 9 \cdot 0.6^2 + 3.4 \cdot 0.6 - 15.42 = -10,14$

(первая производная сохраняет знак на интервале)

$$f''(x) = 18x + 3.4$$
; $f''(0.4) = 18 \cdot 0.4 + 3.4 = 10.6$; $f''(0.6) = 18 \cdot 0.6 + 3.4 = 14, 2$

(вторая производная сохраняет знаки)

Выполняется условие $f(a_0) \cdot f''(a_0) > 0$, тогда $x_0 = a_0 = 0.4$

Номер	x_i	$f(x_i)$	$f'(x_i)$	x_{i+1}	$ x_{i+1} - x_i $
0	0.4	1.186	-12.62	0.49398	0.09398
1	0.49398	0.049273	-11.54432	0.49825	0.00427
2	0.49825	$9.147 \cdot 10^{-5}$	-11.49167	0.49825	0

Таблица 4: Уточнение корня уравнения методом хорд

Условие окончания итер метода соблюдается:

$$|x_n - x_{n-1}| \le \epsilon |f(x_n)| \le \epsilon$$

Тогда ответ:

$$x \approx 0.49825$$

4 Выполнение второй части

Задание:

- 1. Отделить корни заданной системы нелинейных уравнений графически (вид системы представлен в табл. 8).
- 2. Используя указанный метод, решить систему нелинейных уравнений с точностью до 0,01.
- 3. Для метода простой итерации проверить условие сходимости метода.
- 4. Подробные вычисления привести в отчете.

Система нелинейных уравнений для вычислительной реализации:

$$\begin{cases} tg \ x \cdot y = x^2 \\ 0.8x^2 + 2y^2 = 1 \end{cases}$$

Система имеет не более двух решений, это видно по графику. Решения в точках x_1, x_2 . Выразим:

$$\begin{cases} tg \ x \cdot y - x^2 = 0\\ 0.8x^2 + 2y^2 - 1 = 0 \end{cases}$$

Построим матрицу Якоби:

$$\frac{\partial f}{\partial x} = \frac{y}{\cos^2 x} - 2x$$

$$\frac{\partial f}{\partial y} = tg(x)$$

Рис. 1: Система нелинейных уравнений

$$\frac{\partial g}{\partial x} = 1.6x$$
$$\frac{\partial f}{\partial y} = 4y$$

Получим матрицу Якоби:

$$\begin{vmatrix} \frac{y}{\cos^2 x} - 2x & tg(x) \\ 1.6x & 4y \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} tg \ x \cdot y - x^2 \\ 0.8x^2 + 2y^2 - 1 \end{pmatrix}$$

Возьмём точку $x_0 = 0.5; \ y_0 = 0.5$

$$\begin{cases} -0.35078\Delta x + 0.5463\Delta y = -0.02315\\ 0.8\Delta x + 2\Delta y = 0.3 \end{cases}$$

Решения:

$$\Delta x = 0.185; \quad \Delta y = 0.076$$

Проверка:

$$x_1 = x_0 + \Delta x = 0.5 + 0.185 = 0.685$$

 $y_1 = y_0 + \Delta y = 0.5 + 0.076 = 0.576$

Продолжим вычисление при новом приближении $x_0 = 0.685; \ y_0 = 0.576$

$$\begin{vmatrix} \frac{0.576}{\cos^2(0.685)} - 2 \cdot 0.685 & tg(0.685) \\ 1.6 \cdot 0.685 & 4 \cdot 0.576 \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} tg(0.685) \cdot 0.576 - 0.685^2 \\ 0.8 \cdot (0.685)^2 + 2 \cdot (0.576)^2 - 1 \end{pmatrix}$$

$$\begin{cases} -0.40956\Delta x + 0.81697\Delta y = -0.00135 \\ 1.096\Delta x + 2.304\Delta y = -0.03893 \end{cases}$$

Решения:

$$\Delta x = -0.016; \quad \Delta y = -0.009;$$

Проверка:

$$x_2 = x_1 + \Delta x = 0.685 - 0.016 = 0.669$$

 $y_2 = y_1 + \Delta y = 0.576 - 0,009 = 0.567$

Продолжим вычисление при новом приближении $x_0=0.669;\ y_0=0.567$

$$\begin{vmatrix} \frac{0.567}{\cos^2(0.669)} - 2 \cdot (0.669) & tg(0.669) \\ 1.6 \cdot 0.669 & 4 \cdot 0.567 \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} tg(0.669) \cdot 0.567 - (0.669)^2 \\ 0.8 \cdot (0.669)^2 + 2 \cdot (0.567)^2 - 1 \end{pmatrix}$$

$$\begin{cases} 0.416573\Delta x + 0.790628\Delta y = -0.00072\\ 1.0704\Delta x + 2.268\Delta y = -0.00103 \end{cases}$$

Решения:

$$\Delta x = -0.008 < \epsilon;$$
 $\Delta y = 0.003 < \epsilon;$ $x_2 = x_1 + \Delta x = 0.669 - 0.008 = 0.661$ $y_2 = y_1 + \Delta y = 0.576 + 0,003 = 0.579$