Volume, Part 2 Assignment

Author Aaron Tresham

Date 2017-06-19T19:31:03

Project 9189c752-e334-4311-afa9-605b6159620a

Location <u>05 - Volume, part 2 Assignment/Volume part 2 Assignment.sagews</u>

Original file Volume part 2 Assignment.sagews

Volume, Part 2 Assignment

Question 0

Watch the lecture video here.

Did you watch the video? [Type yes or no.]

For each question below:

- Draw a graph of the region to be rotated.
- Find the volume of the solid.

Note: You do not have to do any 3D plots.

Question 1

Use disks to find the volume of the solid obtained by rotating about the x-axis the region between $y=x^3$ and the x-axis from x=0 to x=2. [Answer: $\frac{128\pi}{7}$]

Question 2

Use disks to find the volume of the solid obtained by rotating about the y-axis the region between y=2x and the y-axis from y=0 to y=5. [Answer: $\frac{125\pi}{12}$]

Question 3

Use washers to find the volume of the solid obtained by rotating about the x-axis the region between $y=\sqrt{x}$ and $y=x^3$ from x=0 to x=1. [Answer: $\frac{5\pi}{14}$]

Question 4

Use washers to find the volume of the solid obtained by rotating about the horizontal line y=4 the region between y=x and $y=x^2$ from x=0 to x=1. [Answer: $\frac{6\pi}{5}$]

Question 5

Use washers to find the volume of the solid obtained by rotating about the y-axis the region between y=x and $y=x^2$ from x=0 to x=1. [Answer: $\frac{\pi}{6}$]

Question 6

Use washers to find the volume of the solid obtained by rotating about the vertical line x=3 the region between y=x+2 and $y=\frac{1}{2}x^2+2$ from x=0 to x=2. [Answer: $\frac{8\pi}{3}$]

generated 2017-06-19T19:31:03 on CoCalc