Recall: fundamental group $\pi_1(X, x_0) = \{ path homotopy classes of loops in <math>(X, x_0) \}$.

At some point we'd like to show $\pi_1(S') \cong \mathbb{Z}$. We'll do this by introducing a key bol for the shudy of π_1 ; the notion of covering spaces.

Def: Let $p: E \rightarrow B$ be a continuous size dire map. We say p evenly covers an open subset $U \subset B$ if $p^{-1}(U) = \bigcup V_{\alpha}$ where $V_{\alpha} \subset E$ are disjoint open subsets, and for each $\alpha \in A$. $P_{IV_{\alpha}}: V_{\kappa} \longrightarrow U$ is a homeomorphism. The V_{α} are called slices.

CP S1

Def: If every point of B has a neighborhood which is evenly covered by p, we say E is a covering space of B and p is a covering map.

B is called the base of the covering.

 $\frac{E \times :}{p(t)} = (\cos t, \sin t)$

This is a covering map! for instance consider $(1,0) \in S^1$ and the neighborhood $U = \{(x,y) \in S^1 \mid x > 0\}$.

· Thm: | P:E -> B , q:E'-> B' Gring maps => Pxq: ExE'-> BxB'
is a coving map.

 $\frac{Pf.}{p'(U)} = \frac{1}{2} V_{\alpha}, \quad q'(U') = \frac{1}{2} V_{\beta} \quad \text{size}, \quad \text{hen} \quad (p \times q)^{-1}(U \times U') = p'(U) \times q^{-1}(U') = \frac{1}{2} V_{\alpha} \times V_{\beta}' \quad \text{union of open sizes homeo to } U \times U'. \qquad Q, \beta$

Ex: consider the tomo SIXSI:
since R cores SI, R2 cores SIRSI

• If p: E - 1B is a overing, and $B_0 \subset B$ is a subspace, then by reduction we get a covering $p^{-1}(B_0) \longrightarrow B_0$.

Key point; if p: E-> B covering then paths and path homotopies in B always lift.

This has infinitely many possible lifts to paths in IR, depending on where 0 gets lifted to.

 $\frac{-2\pi - \pi}{\widehat{f}} = \frac{-2\pi}{\sqrt{R}} = \frac{2\pi}{\sqrt{R}} = \frac{3\pi}{\sqrt{R}}$ $0 \quad 1 \quad f$

Theorem: $||p| \in AB$ covering map, $f: [0,1] \to B$ a path starting at f(0) = b, and $e \in p^{-1}(b)$. Then there exists a unique lift $f: [0,1] \to E$ str f(0) = e.

PF: cove B by open sets 4 which are evenly covered by p. Then the preimages $f^{-1}(U_{x})$ an an open con of [0,1], which is compact, so \exists lebegue number S>0 st. $\forall x$, $(x,x+S) \subset f^{-1}(U_{x})$ for some α . Here we can find a finite subdivision $0 = s_0 < s_1 < ... < s_n = 1$ st. each $f([s_i, s_{i+1}])$ les inside one of the U_a .

Define $\tilde{f}(0) = e$. Assume we have defined $\tilde{f}(s)$ for $s \in [0, s;]$. Then we 3 define $\tilde{f}(s)$ for $s \in [s; s;]$ as follows, Recall $f([s, s;]) \subset \mathcal{U}$ for sme \mathcal{U} which is everly covered by p, $p'(\mathcal{U}) = \coprod slices$. Let \mathcal{V} be the slice which cotains $\tilde{f}(s)$. The map $P_{\mathcal{U}}$, $\mathcal{V} \to \mathcal{U}$ is a homeomorphism, so has a continuous investe \mathcal{U} we can define $\tilde{f}(s) = p_{\mathcal{U}}^{-1}(f(s))$ for $s \in [s; s;]$, which extends \tilde{f} continuously over [s; s;]. Repeating the process, we obtain a continuous lift $\tilde{f}: [0,1] \to E$. \tilde{f} is unique since for each s; there was a unique slice containing $\tilde{f}(s)$ and a unique way to lift $f_{[s; s; h]}$ into it.

Then; Let $F: I \times I \to B$ be continuous with F(0,0) = b, $p: E \to B$ a covering map, $e \in p^{-1}(b)$, then $\exists w: que \ lift \ \widetilde{F}: I \times I \to E \ st. \ \widetilde{F}(0,0) = e$.

The prof is exactly the same, subdividing IxI into squares of side length <8 which map into open substit of B that are evenly covered; then combining the lift F one square at a time.

Observe: If F is a path-homotopy from f to g (in B), then F is a path homotopy (in E) from \tilde{f} to \tilde{g} . Indeed, if F(0,t)=b for all t, then $\tilde{F}(0,t)\in p^1(b)$ which is a disturbe subset of E (one point in each slice), so we must have $\tilde{F}(0,t)=e$ for all t (always the same point). Similarly for the other end point $\tilde{F}(1,t)$.

On the other hand, loops don't always lift to loops!

 E_K ; $I \longrightarrow \frac{0}{e_0 \mid P} \mathbb{R}$

But since path lifting is unique, given a stating point $e_0 \in p'(b_0)$, the end point is uniquely determined. This leads to a key notion:

Def: The lifting correspondence $\varphi: \pi_1(B, b_0) \longrightarrow p'(b_0)$ for a covering f defined by $\varphi([f]) = \widetilde{f}(1)$ where \widetilde{f} is the lift of f st. $\widetilde{f}(0) = e_0$. (B, b₀)

Q: Why is & well-defined? (ie. independent of choice of f in its homotopy class?)

A: if F is a path homotopy $f \cong_p g$, then its lift \widetilde{F} starting at eo is a path homotopy between \widetilde{f} and \widetilde{g} , so $\widetilde{f}(1) = \widetilde{g}(1)$.

 E_{K} : for the covering $p: R \rightarrow S^{1}$, taking $b_{0} = (1,0)$, $e_{0} = 0 \in \mathbb{R}$, if f loops around the circle k times (counting CCW) them its lift \tilde{f} ends at $\varphi(f) = \tilde{f}(1) = 2\pi k$. This gives a map $\pi_{1}(S^{1},(1,0)) \longrightarrow 2\pi \mathbb{Z}$ (sujective). Now we know, at last, that S^{1} isn't simply connected!

Prop: If E is path connected then $\varphi: \overline{\pi}_1(B,b_0) \to \overline{\rho}'(b_0)$ is sujective.

If. Let $e \in \tilde{p}^1(b_0)$, $g: J \to E$ a path from e_0 to e_1 , then $f = p \circ g: J \to B$ is a loop at bo whose lift starting at e_0 is $\tilde{f} = g$. So $\varphi([f]) = e$. \square

Recalling Prop: IF X is simply connected then any two paths f, g from xo to x, are path-homotopic

 $\frac{Pf_1}{f * g} \text{ is a loop at } x_0, s_0 \quad f * g \simeq_p e_{x_0} \quad (X \text{ singly anachol}).$ Then $f \simeq_p f * (g * g) \simeq_p (f * g) * g \simeq_p e_{x_0} * g \simeq_p g.$

 \Rightarrow Thm: If $p: E \rightarrow B$ is a caveing and E is simply connected, then $\varphi: \pi_1(B, b_0) \rightarrow p^1(b_0)$ is a Lijection.

Pf. By the above, φ is sujective. If $\varphi([f]) = \varphi([g])$ then \widetilde{f} , \widetilde{g} are paths in E stating at e_0 and ending at the same point e_1 . Since E is simply considered, $\widetilde{f} \simeq_p \widetilde{g}$. Here $p \circ \widetilde{f} \simeq_p p \circ \widetilde{g}$, i.e. $f \simeq_p g$, so [f] = [g]. So φ is injective. \square

 $\frac{1}{2} \ln \left(|\pi_1(S^1)| \simeq \mathbb{Z} \right)$

If consider the overing map $p:(R,0) \longrightarrow (S^1,(I,0))$, $p(x)=(\cos 2\pi x, \sin 2\pi x)$. Since R is simply connected, by the above than the lifting correspondence $\varphi: \pi_1(S^1,(I,0)) \longrightarrow p^{-1}((I,0)) = \mathbb{Z}$ is a bijection.

We just need to show it is a group homomorphism.

Let (f), $[g] \in \pi_1(S^1)$ and let $\varphi([f]) = n$, $\varphi([g]) = m$.

Je. the lifts if and i starting at 0 end at n and m.

Define a new path $h: I \to R$ by $h(s) = n + \tilde{g}(s)$; this is the lift of g starting at $n = \tilde{f}(1)$. Then $\tilde{f} * h$ is a well-defined path in R, from 0 to n + m, and it is the lift of f * g starting at 0. So $\varphi([f * g]) = n + m = \varphi([f]) + \varphi([g])$.

(Can show similarly; for , TI(S'aS') ~ ZXZ, using Gueing pxp: R2-, S'xS'.)