THỐNG KÊ MÁY TÍNH

(Computational Statistics)

Trường Đại học Nha Trang Khoa Công nghệ thông tin Bộ môn Hệ thống thông tin Giảng viên: TS.Nguyễn Khắc Cường

CHUONG 3

TÓM TẮT DỮ LIỆU

- Trung bình cộng (Arithmetic mean)
 - - x_i: giá trị quan sát thứ i của mẫu;
 n: kích thước mẫu.
 - Hàm trong R: mean(dữ liệu)
 - VD:
 - Doanh số của các xí nghiệp

Xí nghiệp	A	В	C	D	Е	F
Doanh số	25	17	34	26	43	35

- Doanh số trung bình: > ds<-c(25,17,34,26,43,35)
 > mean(ds)
 [1] 30
- Nhận xét: Các phần tử có giá trị tương đồng và ít tương đồng → mean ?

Trung bình cộng có trọng số (Weighted mean)

• Công thức: $\overline{x_w} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$

x_i: giá trị quan sát thứ i của mẫu;
 n: kích thước mẫu

w_i: trọng số/tần số xuất hiện của quan sát thứ i

VD:

Tổ	A	В	C	D	Е
Số lượng thành viên	10	15	14	10	16
Sản phẩm của mỗi thành viên trong tổ	30	20	25	20	25

Số sản phẩm trung bình mỗi thành viên làm được

$$\overline{x}_{w} = \frac{(10*30+15*20+14*25+10*20+16*25}{(10+15+14+10+16)} = 23.84615$$

Trung bình cộng có trọng số (Weighted mean)

VD:

Tổ	A	В	C	D	Е
Số lượng thành viên	10	15	14	10	16
Sản phẩm của mỗi thành viên trong tổ	30	20	25	20	25

Số sản phẩm trung bình mỗi thành viên làm được

$$\overline{x}_{w} = \frac{(10*30+15*20+14*25+10*20+16*25}{(10+15+14+10+16)} = 23.84615$$

Tính bằng R

```
> sl<-c(10,15,14,10,16)
> sp<-c(30,20,25,20,25)
> ts<-sl*sp
> ts
[1] 300 300 350 200 400
> x<-sum(ts)/sum(sl)
> x
[1] 23.84615
```

- Trung bình hình học (Geometric Mean)
 - Công thức: $\bar{x} = (x_1 \times x_2 \times ... \times x_n)^{1/n} = (\prod_{i=1}^n x_i)^{1/n}$ (trung bình nhân)
 - Công thức tương đương

$$\left(\prod_{i=1}^{n} x_{i}\right)^{1/n} = \exp\left(\frac{1}{n} \sum_{i=1}^{n} \ln(x_{i})\right) \quad \text{(TB hình học = TB logarit)}$$

VD:

```
> data <- c(1, 15, 12, 5, 18, 11, 12, 15, 18, 25)
> exp(mean(log(data)))
[1] 10.37383
```

VD: tính TB hình học cho 3 biến

- Trung bình cộng điều hòa (Harmonic mean)
 - Công thức: $\bar{x} = H = n / \sum_{i=1}^{n} \frac{1}{x_i}$
 - Tác dụng:
 - Thường dùng để đo xu hướng tập trung về trung tâm đối với dữ liệu chứa các giá trị đại diện cho tốc độ thay đổi
 - VD:
 - Khoảng cách giữa A và B là 120 km
 - Vòng đi: đi trong 3 giờ
 - Vòng về: đi trong 2 giờ
 - → tổng khoảng cách đi và về: 240 km, tổng thời gian: 5 giờ
 - → Tốc độ trung bình = 240 km / 5 giờ = 48 km/h

- Trung bình cộng điều hòa (Harmonic mean)
 - VD: tính bằng Harmonic mean R

```
> allSpeed= c(40,60)
> N=length(allSpeed)
> inverseOfAllSpeed=allSpeed^(-1)
> sumOfInverse=sum(inverseOfAllSpeed)
> HM=N/sumOfInverse
> print(HM)
[1] 48
```

- →Trong khi TB cộng = (40 km/h + 60 km/h) / 2 = 50 km/h
- →Nhận xét:

Harmonic mean chính xác hơn trong loại dữ liệu này

VD

```
> # create a data vector
> x <- c(30, 35, 45)
> # calculate harmonic mean
> HM <- 1/mean(1/x)
> HM
[1] 35.66038
```

- Median (trung vi)
 - Median là giá trị đứng giữa của dãy đã sắp xếp tăng dần
 - Công thức:
 - Sắp xếp phần tử tăng dần
 - Tìm median M_e $M_e = \begin{cases} (x_{[n/2]} + x_{[(n+2)/2]})/2 & \text{n\'eu n chẵn} \\ x_{[n+1]/2} & \text{n\'eu n l\'e} \end{cases}$
 - Tính median trong R > x<-c(10,18,12,30,20)
 median (x)
 [1] 18
 - Nhận xét:
 - Median không phụ thuộc vào giá trị biên

- Mode
 - Giới thiệu
 - Mode là giá trị xuất hiện nhiều lần nhất
 - Có thể có nhiều mode trong một tập dữ liệu
 - VD:
 - Dãy các giá trị quan sát: 7 15 18 22 25 37
 - → Không có mode
 - Dãy các giá trị quan sát: 7 15 18 25 25 37
 - → mode là 25
 - Dãy các giá trị quan sát: 7 7 15 18 25 25
 - → mode là 7 và 25

- Mode
 - Tim mode trong R

```
> # Create the function.
> getmode <- function(v) {
+     uniqv <- unique(v)
+     uniqv[which.max(tabulate(match(v, uniqv)))]
+ }
>
> # Create the vector with numbers.
> v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)
>
> # Calculate the mode using the user function.
> result <- getmode(v)
> print(result)
[1] 2
```

- Midrange
 - Giới thiệu:
 - Midrange là giá trị trung bình cộng của giá trị lớn nhất và giá trị nhỏ nhất của dữ liệu
 - VD

```
> x<-c(27,17,34,26,43,35)
> range(x)
[1] 17 43
> mean(range(x))
[1] 30
```

- Quartiles (Tứ phân vị)
 - Giới thiệu:
 - Q1 (tứ phân vị thứ nhất): Là giá trị trị sao cho có
 - 25% số quan sát nhỏ hơn Q1
 - và 75% số quan sát lớn hơn Q1
 - Q2 (tứ phân vị thứ hai): Là số trung vị, có
 - 50% số quan sát nhỏ hơn Q2
 - và 50% số quan sát lớn hơn Q2
 - Q3 (tứ phân vị thứ ba): Là giá trị sao cho có
 - 75% số quan sát nhỏ hơn Q3
 - và 25% số quan sát lớn hơn Q3
 - Tim Quartiles trong R

```
> x<-c(6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49)
> summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.00 25.50 40.00 33.18 42.50 49.00
```

- Range (Khoảng biến thiên)
 - Giới thiệu:
 - Là hiệu số giữa giá trị lớn nhất và nhỏ nhất trong dữ liệu quan sát

$$R = a_{\text{max}} - a_{\text{min}}$$

- Tác dụng:
 - Cho biết độ trải của dữ liệu
 - Không cho biết mức độ phân bố của dữ liệu
- VD:

```
> x<-c(12,15,23,45,67,89)
> range(x)
[1] 12 89
> min(x)
[1] 12
> max(x)
[1] 89
```

- Interquartile Range (Độ trải trong)
 - Ký hiệu: IQR
 - Cách tính: $IQR = Q_3 Q_1$
 - Là hiệu số giữa tứ phân vị thứ 3 (Q3) và tứ phân vị thứ nhất (Q1)
- Variance (Phương sai)
 - Tác dụng :
 - Phương sai dùng để đánh giá mức độ biến thiên của các giá trị quan sát quanh giá trị trung bình
 - Công thức: $s^{2} = \frac{\sum_{i=1}^{n} (x_{i} \overline{x})^{2}}{(n-1)}$ $s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2} \frac{n(\overline{x})^{2}}{n-1}$
 - VD: > x<-c(25, 17, 34, 26, 43, 35)
 > var(x)
 [1] 84

- Standard Deviation (Độ lệch chuẩn)
 - Công thức: $sd = \sqrt{s^2}$
 - Độ lệch chuẩn là căn bận hai của phương sai
 - Ý nghĩa:
 - Phương sai : đánh giá ở miền bình phương của đơn vị đo dữ liệu
 - Độ lệch chuẩn : đánh giá ở miền đơn vị đo dữ liệu
 - Đa số các giá trị quan sát được nằm trong phạm vi $(\bar{x} \sigma, \bar{x} + \sigma)$

• VD σ (=sd)

```
> x<-c(25, 17, 34, 26, 43, 35)
> var(x)
[1] 84
> sd(x)
[1] 9.165151
> mean(x)
[1] 30
```

- Sampling Distribution (Phân phối mẫu)
 - Giới thiệu:
 - Thực hiện lấy mẫu lặp lại N lần → thu được N bộ mẫu
 - Tính giá trị cần khảo sát (trung bình, median, ...) đối với N bộ mẫu
 đó → thu được một phân phối mẫu đối với giá trị cần khảo sát
- Standard error (Sai số chuẩn)
 - Giới thiệu:
 - Thực hiện lấy mẫu (từ quần thể) N lần, mỗi lần lấy n phần tử
 - Sai số chuẩn chính là độ lệch chuẩn của tập hợp mẫu sau khi chọn mẫu N lần
 - Công thức: $SE = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$
 - σ : là độ lệch chuẩn của quần thể; N: số lần lấy mẫu;
 - n: số lượng phần tử trong mẫu

- Standard error (Sai số chuẩn)
 - Sử dụng sai số chuẩn:
 - Trong thực tế: tính được giá trị trung bình của quần thể là rất khó?
 - Do đó, thường giá trị trung bình được tính từ mẫu
 - Mà sai số chuẩn thể hiện sự sai khác giữa giá trị trung bình của mẫu và giá trị trung bình của quần thể
 - → Có thể ước lượng được giá trị trung bình của quần thể nhờ
 - Giá trị trung bình của mẫu
 - Sai số chuẩn

- Coefficient of Variance (Hệ số biến thiên CV)
 - Công thức: $CV = \frac{s}{r} * 100\%$
 - s : độ lệch chuẩn; \bar{x} : giá trị trung bình;
 - Ý nghĩa:
 - CV thể hiện độ phân tán trên một đơn vị trung bình
 - Sử dụng:
 - CV được sử dụng để so sánh độ phân tán của 2 tập dữ liệu (kể cả các tập dữ liệu đo lượng ở 2 đơn vị khác nhau)

```
> CV <- function(x)
+ { sd<-sd(x)
+ xn<-mean(x)
+ CoV<-sd/xn*100
+ c(CV=CoV)
+ }
> x<-c(12,34,45,56,67,89)
> CV(x)
CV
52,90873
```

- Mối quan hệ thực nghiệm giữa average, median, mode
 - 3 giá trị này là các độ đo mức độ hướng tâm của dữ liệu
 - Không có độ đo duy nhất nào thể hiện chính xác mức độ hướng tâm của dữ liệu
 - Việc chọn độ đo nào phụ thuộc vào phân bố của dữ liệu
- Chú ý khi chọn độ đo:
 - Average:
 - Ưu:
 - Được tính từ dữ liệu số cụ thể của dữ liệu
 - Sử dụng tất cả các giá trị của các quạn sát
 - Có giá trị đơn nhất
 - Nhược: bị ảnh hưởng bởi giá trị biên (cực đoan)

- Chú ý khi chọn độ đo:
 - Median:
 - U'u:
 - Khắc phục được nhược điểm của average → không bị ảnh hưởng bởi giá trị biên (cực đoan)
 - Nhược:
 - Không tốt khi số lượng quan sát nhỏ, vì
 - o chỉ là trung bình vị trí
 - Không phải là trung bình giá trị của dữ liệu
 - Mode:
 - Chỉ dùng tốt khi:
 - Dữ liệu có phân bố rõ ràng, cân đối về tính hướng tâm
 - Số lượng quan sát đủ lớn

- Chú ý khi chọn độ đo:
 - Nắm rõ vị trí của các độ đo khi hình dạng phân phối của dữ liệu thay đổi

- Định lý Chebychev
 - Với 1 quần thể bất kỳ có trung bình μ, độ lệch chuẩn σ, k
 là giá trị bất kỳ lớn hơn 1.
 - Tối thiểu (1-1/k²)x100% các giá trị quan sát nằm trong khoảng (μ -k σ, μ +k σ)

k	Số phần trăm giá trị các quan sát	Thuộc khoảng
1	68%	$(\mu - \sigma, \mu + \sigma)$
2	95%	$(\mu-2\sigma,\mu+2\sigma)$
3	99%	$(\mu-3\sigma,\mu+3\sigma)$

- Định lý Chebychev
 - Cụ thể:
 - μ + 1σ : chứa khoảng 68% giá trị dữ liệu của mẫu hoặc quần thể
 - μ + 2σ : chứa khoảng 95% giá trị dữ liệu của mẫu hoặc quần thể
 - μ + 3σ : chứa khoảng 99.7% giá trị dữ liệu của mẫu hoặc quần thể

Q/A