I claim:

- 1 A heating element for igniting a pyrotechnic charge 2 comprising 3 a base body, a structured strip shaped resistance layer on said 4 base body, and contact fields overlapping said resistance layer 5 at ends thereof for applying a current pulse to the heating element, wherein the heating element has a mass of 1.0x10⁻⁹ kg to 6 4.0×10^{-9} kg, a specific resistance of 1×10^{-6} Ω m to 2×10^{-6} Ω m and a 7 specific heat capacity of 100 W/(kg.K) to 400 W/(kg•K). 8
- 2. The heating element defined in claim 1 wherein the heating element has a cross sectional area of 3.5×10^{-10} m² to 7.0×10^{-10} m².
- 3. The heating element defined in claim 1 wherein the resistance layer is composed of a sintered Ag/Pd resistance paste or a sintered Ag/Au/Pd resistance paste containing 30 to 50 mass% Ag and 35 to 50 mass % Pd, or a sintered Pt/W resistance paste containing 70 to 90 mass %% Pt and 5 to 20 mass% W.

- 13 -

22771

- 4. The heating element defined in claim 1 wherein the base body is composed of a high-temperature-resistant glass or glass-ceramic or ceramic with a thermal conductivity of at most 2 W/(m•K).
- 5. The heating element defined in claim 1 wherein the base body is composed of a high-temperature-resistant glass or glass-ceramic or ceramic with a thermal conductivity of at most 3 W/(m•K) and a heat barrier is applied to said base body which is comprised of a glass or glass-ceramic layer of a thickness of 20 to 80 μ m and a thermal conductivity of at most 1.5 W/(m•K).
- 6. The heating element defined in claim 1 wherein the contact fields are composed of sintered AgPd or AgPt thick-layer conductor pa ste with Pd or Pt proportions between 1 and 10 mass%.
- 7. The heating element defined in claim 1 wherein the heating element has a cross sectional area of 3.5x10⁻¹⁰ m² to 7.0x10⁻¹⁰ m², the resistance layer is composed of a sintered Ag/Pd resistance paste or a sintered Ag/Au/Pd resistance paste

- 14 -

containing 30 to 50 mass% Ag and 35 to 50 mass % Pd, or a sintered Pt/W resistance paste containing 70 to 90 mass %% Pt and 5 to 20 mass% W, the base body is composed of a high-temperature-resistant glass or glass-ceramic or ceramic with a thermal conductivity of at most 2 W/(m•K), and the contact fields are composed of sintered AgPd or AgPt thick-layer conductor paste with Pd or Pt proportions between 1 and 10 mass%.

8. The heating element defined in claim 1 wherein the heating element has a cross sectional area of 3.5x10⁻¹⁰ m² to 7.0x10⁻¹⁰ m², the resistance layer is composed of a sintered Ag/Pd resistance paste or a sintered Ag/Au/Pd resistance paste containing 30 to 50 mass% Ag and 35 to 50 mass% Pd, or a sintered Pt/W resistance paste containing 70 to 90 mass% Pt and 5 to 20 mass% W, the base body is composed of a high-temperature-resistant glass or glass-ceramic or ceramic with a thermal conductivity of at most 3 W/(m°K) and a heat barrier is applied to said base body which is comprised of a glass or glass-ceramic layer of a thickness of 20 to 80 µm and a thermal conductivity of at most 1.5 W/(m°K), and the contact fields are composed of sintered AgPd or AgPt thick-layer conductor paste with Pd or Pt proportions between 1 and 10 mass%.

- 15 -

22771

13

1	9. A method of making a heating element for igniting
2	a pyrotechnic charge, comprising the steps of:
3	depositing a glass or glass ceramic on a base body to
4	form a glass or glass ceramic layer;
5	applying to said glass or glass ceramic layer a
6	resistance layer in the shape of a strip;
7	structuring said resistance layer with a programmable
8	layer; and
9	applying to ends of said resistance layer respective
10	contact fields enabling electrical excitation of the resulting
11	heating element, said heating element having a mass of 1.0x10 ⁻⁹
12	kg to 4.0×10^{-9} kg, a specific resistance of 1×10^{-6} Ωm to 2×10^{-6} Ωm

1 10. The method defined in claim 9 wherein said layer
2 of glass or glass ceramic is applied to said base body by screen
3 printing, is dried and sintered and these steps are repeated
4 until said layer has a thickness ensuring the recited mass,
5 specific resistance and heat capacity for said heating element.

and a specific heat capacity of 100 W/(kg.K) to 400 W/(kg•K).

1 11. The method defined in claim 10 wherein the
2 resistance layer is produced by screen printing on said layer of
3 glass or glass ceramic, followed by drying and sintering.

- 16 -

- 13. The method defined in claim 12 wherein after
 2 sintering of at least one of said layers or after structuring of
 3 said resistance layer by said layer, said heating element is
 4 subjected to an after-sintering at 800°C to 900°C peak
 5 temperature for 10 to 20 minutes to stabilize said heating
 6 element against high electrical and thermal loads.

- 17 -