MA3408 - ALGEBRAIC TOPOLOGY II

Homotopy theory

1.1 Review of basics on homotopy theory

We begin with a recollection of some facts that have been covered in Algebraic Topology I and Introduction to Topology.

1.1.1 *Notation.* We let I = [0,1] denote the unit interval. For a pointed topological space X we will denote the basepoint by x_0 or *.

We recall the following definition.

1.1.2 *Definition.* A homotopy between $f,g: X \to Y$ is a continuous function $H: X \times I \to Y$ such that H(x,0) = f(x) and H(x,1) = g(x) and $H(x_0,t) = y_0$ for all $t \in I$. We will write $f \simeq g$, or $f \simeq_H g$, if we need to make the choice of homotopy clear.

For a subspace $A \subseteq X$, a relative homotopy is a homotopy with H(a,t) = f(a) = g(a) for all $a \in A, t \in I$.

1.1.3 *Remark.* Equivalently, we can specify a family of continuous maps $h_t \colon X \to Y$ such that $h_0 = f, h_1 = g$ and

$$H \colon X \times I \to Y$$
$$(x,t) \mapsto h_t(x)$$

is continuous. We will switch between the two equivalent definitions without comment, using whatever is more convenient.

1.1.4 Proposition. For all spaces X and Y, homotopy is an equivalence relation on the set of maps from X to Y. Furthermore, if we are given $k: A \to X, \ell: Y \to B$ and homotopic maps $f \simeq g: X \to Y$, then $fk \simeq gk: A \to Y$ and $\ell f \simeq \ell g: X \to B$.

Proof. Let $f,g:X\to Y$, then

- 1. $f \simeq_F f$ via F(x,t) = f(x) for all $x \in X, t \in I$.
- 2. If $f \simeq_F g$, then $g \simeq_G f$ where G(x,t) = F(x,1-t).
- 3. If $f \simeq_F g$ and $g \simeq_G h$, then $f \simeq_H h$ via

$$H(x,t) = \begin{cases} F(x,2t) & \text{if } 0 \le t \le 1/2\\ G(x,2t-1) & \text{if } 1/2 \le t \le 1. \end{cases}$$

For the last part of the proposition let f_t be a homotopy between f and g, then $f_t k$ and ℓf_t give the required homotopy.

Figure 1.1: A homotopy between *f* and *g*.

1.1.5 Definition. For a map $f: X \to Y$, we let [f] denote the equivalence class containing f. The collection of all homotopy classes of maps from X to Y is denoted [X,Y].

1.1.6 Remark. Note that if $\alpha = [f] \in [Y, Z]$ and $\beta = [g] \in [X, Y]$, then $\alpha\beta = [f \circ g] \in [X, Z]$, i.e., we can form the category $hTop_*$ whose objects are topological spaces, and whose morphisms are homotopy classes of maps.

1.1.7 *Remark.* We now very quickly review a number of standard topological constructions.

- Let X be a space and $A \subseteq X$. A map $r \colon X \to A$ such that ri(a) = a for all $a \in A$ is called a retraction of X onto A, and A is called a retract of X.
- Let $i: A \hookrightarrow X$ be the inclusion, so that $ri = \mathrm{id}_A$. If $ir \simeq \mathrm{id}_X$, we call this a deformation retraction, and say that A is a deformation retract of X.
- If $f: X \to Y$, then a section of f is a map $s: Y \to X$ such that $f \circ s = \mathrm{id}_Y$. We can also ask for a *homotopy* section by requiring only that $f \circ s \simeq \mathrm{id}_Y$.

1.1.8 Definition. A map $f: X \to Y$ is called null-homotopic if $f: c_y: X \to Y$ where $c_yX \to Y$ is the constant map sending all of X to the point $y \in Y$. A homotopy between f and c_y is called a null-homotopy. A space X is contractible if id_X is null-homotopic.

1.1.9 *Definition.* Let (X, x_0) be a based topological space and $X \times I$ the cylinder on X. The quotient

$$CX = (X \times I) / (X \times \{1\} \cup \{x_0\} \times I)$$

with the base-point the equivalence class of $(x_0, 1)$ is called the (reduced) cone on X. Note that we have a natural inclusion $X \to CX$ of based maps given by $x \mapsto [x, 0]$.

1.1.10 Lemma. *The cone CX is contractible.*

Proof. Define $F: CX \times I \rightarrow CX$ by

$$F([x,t],s) = [x,s+(1-s)t].$$

Note then that we have

$$F([x,t],0) = [x,t]$$
 and $F([x,t],1) = [x,1]$.

1.1.11 Lemma. The following are equivalent:

- (i) $f: X \to Y$ is null-homotopic.
- (ii) f can be extended to CX:

$$X \xrightarrow{f} Y$$

$$i \downarrow \qquad \qquad \exists \tilde{f}$$

$$CX$$

¹ If our spaces are based, then these should be homotopy classes of *based* maps.

Proof. $(i) \implies (ii)$: Suppose f is null-homotopic, so $f \simeq_F *$. Then $F(X \times \{1\} \cup \{*\} \times I) = *$, so by the universal property of the quotient, we can find $\tilde{F} : CX \to Y$ such that $\tilde{f} \circ i = f$.

 $(ii) \implies (i)$: Suppose $\tilde{f} \circ i = f$, then because CX is contractible (Lemma 1.1.10), we have $f = \tilde{f} \circ \mathrm{id}_{CX} \circ i \simeq \tilde{f} \circ (*_{CX}) \circ i \simeq *$, so that f is null-homotopic. \Box

1.1.12 *Definition.* A map $f: X \to Y$ is a homotopy equivalence if there exists $g: Y \to X$ such that $fg \simeq \mathrm{id}_Y$ and $gf \simeq \mathrm{id}_X$. We write $X \simeq Y$.

1.1.13 *Example*. (i) X is contractible if and only if $X \simeq *$.

- (ii) If $i: A \hookrightarrow X$, and $r: X \to A$ is a deformation retract, then i and r are homotopy equivalences, and $A \simeq X$.
 - 1.2 Higher homotopy groups

1.2.1 *Notation*. We will let $I_n = I^{\times n}$, ∂I^n be the boundary of I^n , and write [-,-] for homotopy classes of maps (if our spaces are based, these fix the base point).

1.2.2 *Definition.* For each $n \ge 0$ and X a topological space with $x_0 \in X$, we define

$$\pi_n(X, x_0) = [(I^n, \partial I^n), (X, x_0)].$$

- 1.2.3 *Remark*. (i) When n=0, we have $I^0=$ pt and $\partial I^0=\emptyset$, therefore $\pi_0(X)$ is the set of path components of X.
- (ii) When n = 1, this is a group, but need not be abelian (for example, consider the wedge of two circles).
- (iii) Note that $I^n/\partial I^n \simeq S^n$ and $\partial I^n/\partial I^n \simeq s_0$. By the universal property of the quotient map, we see that

$$\pi_n(X, x_0) \cong [(S_n, s_0), (X, x_0)].$$

1.2.4 *Definition.* A maps of pairs $(X, A) \rightarrow (Y, B)$ is a map $f: X \rightarrow Y$ with $f(A) \subseteq B$, i.e., the diagram:

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & Y
\end{array}$$

commutes.

1.2.5 Proposition. *If* $n \ge 1$, then $\pi_n(X, x_0)$ is a group with respect to the operation

$$(f+g)(t_1,\ldots,t_n) = \begin{cases} f(2t_1,t_2,\ldots,t_n) & 0 \le t_1 \le 1/2\\ g(2t_1-1,t_2,\ldots,t_n) & 1/2 \le t_1 \le 1. \end{cases}$$

Proof. The identity is given by the constant map taking all of I^n to x_0 and the inverse of f is given by

$$-f(t_1,\ldots,t_n) = f(1-t_1,t_2,\ldots,t_n).$$

1.2.6 Remark. Call the group operation $+_1$. Note that we can also define an operation $+_i$ for $1 \le i \le n$ by the same formula on the i-th coordinate.

1.2.7 Theorem. All of these operations agree, and for $n \ge 2$, these give $\pi_n(X, x_0)$ the structure of an abelian group.

This is a consequence of the following exercise, known as the Eckmann–Hilton lemma.

Exercise 1: Eckmann–Hilton lemma

Let M be a set and let $*, \bullet$ be two binary operations on M, $*, \bullet : M \times M \to M$, both with unit elements. Suppose that

$$(a*b) \bullet (c*d) = (a \bullet c) * (b \bullet d)$$

for all $a, b, c, d \in M$. Show that the units agree, these two operations agree, and that the multiplication is commutative and associative.

1.2.8 Remark. Let use show that

$$(f +_1 g) +_2 (h +_1 i) \simeq (f +_2 h) +_1 (g +_2 i).$$

Indeed, both of these are the following map

$$(t_1, t_2, \dots,) \mapsto \begin{cases} f(2t_1, 2t_2, \dots,) & [1/2, 0] \times [1/2, 0] \\ g(2t_1 - 2, 2t_2, \dots,) & [1/2, 1] \times [0, 1/2] \\ h(2t_1, 2t_2 - 2, \dots) & [0, 1/2] \times [1/2, 1] \\ i(2t_1 - 1, 2t_2 - 2, \dots) & [1/2, 1] \times [1/2, 1]. \end{cases}$$

1.2.9 *Remark.* Another approach is given by the following visualization: That is, so long as $n \ge 2$, we can shrink the domain of f and g

Figure 1.2: $f + g \simeq g + f$.

to smaller cubes (mapping the remaining region to the base point), slide f and g past each other, and then increase the domains back again.

Exercise 2

Let *G* be a topological group with identity element *e*, then $\pi_1(G, e)$ is abelian.

Hint: Use Eckmann–Hilton, or note the following: A topological group is a group object in the category of topological spaces. What is a group object in the category of groups?

1.2.10 Proposition. *If* $n \ge 1$ *and* X *is path connected, then there is* an isomorphism $\beta_{\gamma}: \pi_n(X,x_0) \xrightarrow{\simeq} \pi_n(X,x_0)$ given by $\beta_{\gamma}([f]) =$ $[\gamma \circ f]$ where γ is a path in X from x_1 to x_0 and $\gamma \circ f$ is constructed by first shrinking the domain of f to a smaller cube inside of Iⁿ, and then inserting the path γ radially from x_1 to x_0 on the boundaries of these cubes.

Figure 1.3: β_{γ} .

Proof. Observe the following:

- 1. $\gamma \circ (f + g) \simeq \gamma \circ f + \gamma \circ g$, i.e., β_{γ} is a group homomorphism.
- 2. $(\gamma \circ \eta) \circ f \simeq \gamma \circ (\eta \circ f)$, for η a path from x_0 to x_1 .
- 3. $c_{x_0} \circ f \simeq f$, where c_{x_0} denotes the constant path based at x_0 .
- 4. β_{γ} is well-defined with respect to homotopies of f or γ .

The only point that is perhaps not clear is (i). For this, we deform f and g to be constant on the right and left halves of I^n , respectively, producing maps we call f + 0 and 0 + g. We then excise a wider symmetric middle slab of $\gamma(f+0)$ and $\gamma(0+g)$ until it becomes $\gamma(f+g)$:

1.2.11 Remark. Therefore if X is path-connected, different choices of base point x_0 yield isomorphic groups $\pi_n(X, x_0)$, which may then simply be written as $\pi_n(X)$.

1.2.12 Lemma. If $\{X_{\alpha}\}$ is a collection of path-connected spaces, then $\pi_n(\prod_{\alpha} X_{\alpha}) \cong \prod_{\alpha} \pi_n(X_{\alpha}).$

Proof. Note that $\operatorname{Hom}(Y,\prod_{\alpha}X_{\alpha})\simeq\prod_{\alpha}\operatorname{Hom}(Y,X_{\alpha})$. In particular, a map $S^n\to\operatorname{Hom}(Y,\prod_{\alpha}X_{\alpha})$ is determined by a collection of maps $S^n\to X_{\alpha}$. Likewise, a homotopy $S^n\times I\to\prod_{\alpha}X_{\alpha}$ is determined by a colletion of homotopies $S^n\times I\to X_{\alpha}$. This implies the result.

1.2.13 Proposition. Homotopy groups are functorial: given a map $\phi: X \to Y$ we get group homomorphisms $\phi_*: \pi_n(X, x_0) \to \pi_n(X, \phi(x_0))$ given by $[f] \mapsto [\phi \circ f]$ for all $n \ge 1$.

Proof. We have the following:

- 1. ϕ_* is well-defined: if $f \simeq g$ via ψ_t , then $\phi \circ \psi_t$ defines a homotopy between $\phi \circ f$ and $\phi \circ g$.
- 2. This is a group homomorphism: $\phi \circ (f+g) \simeq \phi \circ g + \phi \circ g$ by the definition of the addition operation. Therefore.

$$\phi_*[f+g] = \phi_*[f] + \phi_*[g].$$

Exercise 3

If $\phi\colon X\to Y$ is homotopy equivalence (not necessarily base-point preserving), then $\pi_*\colon \pi_n(X,x_0)\to \pi_n(Y,\phi(y_0))$ is an isomorphism.

1.2.14 *Remark.* We recall the following lifting property: Suppose $p\colon (\tilde{X},\tilde{x}_0)\to (X,x_0)$ is a covering, and there is a map $f\colon (Y,y_0)\to (X,x_0)$ with Y path-connected and locally path-connected. Then a lift \tilde{f} exists if and only if $f_*\pi_1(Y,y_0)\subseteq p_*\pi_1(\tilde{X},\tilde{x}_0)$.

$$(\tilde{X}, \tilde{x}_0) \xrightarrow{\tilde{f}} (X, x_0)$$

$$(Y, y_0) \xrightarrow{f} (X, x_0)$$

1.2.15 Proposition. *If* p *is a covering, then* p_* : $\pi_n(\tilde{X}, \tilde{x}_0) \to \pi_n(X, x_0)$ *is an isomorphism for all* $n \ge 2$.

Proof. Let us first show surjectivity. To that end, suppose we have a map $f:(S^n,s_0)\to (X,x_0)$ where $n\geq 2$. The assumption on n gives $\pi_1(S^n)=0$, so $f_*\pi_1(S^n,s_0)\subseteq p_*\pi_1(\tilde{X},\tilde{x}_0)$ holds. We therefore find a lift in the following:

Then $p_*[\tilde{f}] = [f]$, and p_* is surjective.

To see that p_* is injective, let $[\tilde{f}] \in \ker(p_*)$, i.e., $p_*[\tilde{f}] = [p \circ \tilde{f}] = 0$. Let $f = p \circ \tilde{f}$, then this is homotopic to the constant map $f \simeq c_{x_0}$

via a homotopy ϕ_t : $(S^n, s_0) \to (X, x_0)$ with $\phi_1 = f$ and $\phi_0 = c_{x_0}$. By the same argument as above, the homotopy ϕ_t can be lifted to $\tilde{\phi}_t$. This satisfies $p \circ \tilde{\phi}_1 \simeq \phi_1$ and $p \circ \tilde{\phi}_0 \simeq \phi_0$. By the uniqueness of lifts, we must have $\tilde{\phi}_1 \simeq \tilde{f}$ and $\tilde{\phi}_0 \simeq c_{x_0}$. In other words, $\tilde{\phi}_t$ gives a homotopy between \tilde{f} and c_{x_0} , so that $[\tilde{f}] = 0$, and p_* is injective. \square

1.2.16 *Example.* S^1 has universal cover $p: \mathbb{R} \to S^1$, $p(t) = e^{2\pi i t}$. Then $\pi_n(S^1) \cong \pi_n(\mathbb{R}) \cong 0 \text{ for } n \geq 2.$

Exercise 4

Find two spaces X, Y with $\pi_n X \cong \pi_n Y$ but $X \not\simeq Y$.

Hint: What is the universal cover of $\mathbb{R}P^n$?

1.2.17 *Remark* (Relative homotopy groups). Suppose we have (X, x_0) and a subspace A containing x_0 . We note that i_* : $\pi_n(A, x_0) \rightarrow$ $\pi_n(X,x_0)$ is not injective in general (example, take S^1 into \mathbb{R}^2). An element in the kernel of i_* is a map $f:(I^n,\partial I^n)\to (A,x_0)$ such that

$$(I^n, \partial I^n) \xrightarrow{f} (A, x_0) \xrightarrow{i} (X, x_0)$$

is homotopic to c_{x_0} . This means there exists a homotopy

$$H: I^n \times I \to X$$

such that H(-,1) = f, $H(-,0) = c_{x_0}$ and $H|_{\partial I^n \times I} = c_{x_0}$.

If we define $I^n = I^n \times \{0\} \cup \partial I^n \times I \subseteq I^n \times I$, then this is a map of triples

$$H: (I^{n+1}, \partial I^{n+1}, I^n) \to (X, A, x_0).$$

1.2.18 Definition.

$$\pi_n(X, A, x_0) = [(I^n, \partial I^n, J^{n-1}), (X, A, x_0)]$$

1.2.19 Remark. Equivalently,

$$\pi_n(X, A, x_0) = [(D^n, S^{n-1}, s_0), (X, A, x_0)]$$

1.2.20 Proposition. *If* $n \ge 2$, then $\pi_n(X, A, x_0)$ is a group, and if $n \ge 3$, then it is abelian.

For all $n \geq 2$, a map of pairs $\phi: (X, A, x_0) \rightarrow (Y, B, y_0)$ induces homomorphisms ϕ_* : $\pi_n(X, A, x_0) \to \pi_n(Y, B, y_0)$ for all $n \ge 2$.

Proof. This is similar to the case of $\pi_n(X)$ itself, and the details are left to the reader. П

1.2.21 Theorem. The relative homotopy groups (X, A, x_0) fit into a long exact sequence

$$\cdots \to \pi_n(A,x_0) \xrightarrow{i_*} \pi_n(X,x_0) \xrightarrow{j_*} \pi_n(X,A,x_0) \xrightarrow{\partial_n} \pi_{n-1}(A,x_0) \to \cdots$$

where the map ∂_n is defined by $\partial_n([f]) = [f|_{I^{n-1}}].$

The proof relies on the following.

1.2.22 Lemma (Compression criterion). A map $f:(D^n, S^{n-1}, x_0) \to (X, A, x_0)$ represents o in $\pi_n(X, A, x_0)$ if and only if $f \sim g$ rel S^{n-1} , where g is a map whose image is contained entirely in A.

Proof. Suppose [f] = [g] with g as in the statement of the lemma. Note that there is a deformation of D^n onto x_0 , and so [f] = [g] = 0 in $\pi_n(X, A, x_0)$.

Conversely, suppose that [f] represents 0 in $\pi_n(X,A,x_0)$. This means there exists a homotopy, relative to S^{n-1} , $F \colon D^n \times I \to X$ with $F \mid_{D^n \times \{0\}} = f$, $F \mid_{D^n \times 1} = c_{x_0}$ and $F \mid_{S^{n-1} \times I} \subseteq A$. We can restrict F to a family of n-disks in $D^n \times I$ starting with $D^n \times \{0\}$ and ending with the disk $D^n \times \{1\} \cup S^{n-1} \times \{1\}$, all the disks in the family having the same boundary, then we get a homotopy from f to a map in f0, stationary on f1 (said in other words, we can deformation retract f2 (said in other words).

We now prove the existence of the long exact sequence.²

Proof of Theorem 1.2.21. **Step 1.** Let us first show exactness at $\pi_n(X, x_0)$.

We first show $\operatorname{im}(i_*) \subseteq \ker(j_*)$. Note that j_*i_* is induced by the composition $j \circ i$ and that these are both inclusion maps. Therefore, for $[f] \in \pi_n(A, x_0)$ we have $j_*i_*[f] = [j \circ i \circ f]$, but this has image contained in A, and so $j_*i_*[f] = 0$. This shows $\operatorname{im}(i_*) \subseteq \ker(j_*)$.

To see the converse (namely, $\ker(j_*) \subseteq \operatorname{im}(i_*)$) let $[f] \in \ker(j_*)$, i.e. $[j \circ f] = 0$. Note that again j is an inclusion map, and by the compression criteria $f \simeq g'$ relative to S^{n-1} , where g' has image contained in A. Since $x_0 \in S^{n-1}$, the homotopy fixes the basepoint, i.e, $[f] = [g'] \in \pi_n(X, x_0)$. But because g' has image in A, $[g'] \in \pi_n(A, x_0)$ and $i_*[g'] = [i \circ g'] = [f]$, so $[f] \in \operatorname{im}(i_*)$.

Step 2. Let us now show exactness at $\pi_n(X, A, x_0)$.

Note that the composite $\partial \circ j_* = 0$ since the restriction of a map $(I^n, \partial I^n, J^{n-1}) \to (X, x_0, x_0)$ to I^{n-1} has image x_0 and so represents 0 in $\pi_{n-1}(A, x_0)$. Therefore, $\operatorname{im}(j_*) \subseteq \ker(\partial)$. For the converse, suppose $[f] \in \ker(\partial)$. This means there exists a basepoint preserving homotopy $H \colon I^{n-1} \times I \to A$ (relative to ∂I^{n-1}) from $f \mid_{I^{n-1} \times \{0\}}$ to the constant map where the image of H is contained entirely in A. We can then define another homotopy H, such that $G_0 = f$, $G_t \mid_{I^{n-1}} = H_t$ and the rest of the image of G_t is $f[I^n]$ union with the image of H_s for $0 \le s \le t$. This homotopy maps S^{n-1} into A at all times, so $[f] = [G_1]$. Moreover, G_1 maps the boundary of I^n to x_0 , so $[G_1] \in \pi_n(X, x_0)$. Altogether,

$$j_*[G_1] = [j \circ G_1] = [G_1] = [f]$$

so $\ker(\partial) \subseteq \operatorname{im}(j_*)$.

Step 3: Exactness at $\pi_n(A, x_0)$.

Let $[f] \in \pi_n(X, A, x_0)$ then $i_* \partial \in \pi_{n-1}(X, x_0)$ is the class represented by $f \mid_{I^{n-1}}$ and this is homotopic relative J^{n-2} to the constant map to x_0 , via f viewed as a homotopy. So this implies $\operatorname{im}(\partial_*) \subseteq \ker(i_*)$. Conversely, let $[f] \in \ker(i_*)$ i.e., $i_*[f] = [i \circ f] = 0$.

² This is the type of proof that is best done by the reader themselves.

Therefore, there exists a homotopy H between f and a constant map through a homotopy that has image in X and preserves x_0 . Since $H_0 = f$ has image in A and H_1 has image $\{x_0\}$, and H_0 takes the boundary to $\{x_0\}$, we see that $[H] \in \pi_n(X, A, x_0)$, and moreover $\partial([H]) \simeq f$. Therefore, $[f] \in \operatorname{im}(\partial)$, and $\operatorname{im}(\partial) = \ker(i_*)$.

1.2.23 *Definition.* A pair (X, A) with basepoint x_0 is said to be *n*-connected if $\pi_i(X, A) = 0$ for all $i \leq n$.

1.2.24 Lemma. A pair (X, A) is n-connected if and only if $\pi_i(A) \xrightarrow{l_*}$ $\pi_i(X)$ is an isomorphism for i < n and a surjection for i = n.

Proof. Use the long exact sequence in homotopy.

Exercise 5

Let *X* be a path-connected space, and *CX* the cone on *X*. Show that

$$\pi_n(CX, X, X_0) \cong \pi_{n-1}(X, x_0)$$

for $n \ge 1$.

Cofibrations and the homotopy extension property

1.3.1 Definition. Let C be a class of topological spaces. A map $i: A \to X$ has the homotopy extension property (HEP) if, for every $Y \in \mathcal{C}$, the following extension property has a solution³

 $\begin{array}{ccc}
A & \stackrel{i_0}{\longrightarrow} & A \times I \\
\downarrow i \downarrow & & \downarrow i \times id \\
X & \stackrel{i_0}{\longrightarrow} & X \times I \\
& & & \downarrow 3\tilde{H} \\
& & & & & & & & & & & & & & & \\
\end{array}$

A map $f: A \to X$ is a cofibration if it has the HEP with respect to all spaces Y.4

1.3.2 *Remark.* Note that we do not ask that \tilde{H} is unique.

1.3.3 Remark. If we are in a 'nice' category of topological spaces (see CREF), which we always assume, then we have an adjunction

$$\operatorname{Hom}(X,\operatorname{Hom}(Y,Z)) \cong \operatorname{Hom}(X \otimes Y,Z)$$

of topological spaces, where Hom(Y, Z) is given the compact open topology. Writing, $Z^Y := \text{Hom}(Y, Z)$, the homotopy extension property admits a reformulation in the following diagram

$$\begin{array}{ccc}
A & \xrightarrow{h} & Y^{I} \\
\downarrow i & & \downarrow p \\
X & \xrightarrow{f} & Y
\end{array}$$

where $p: Y^I \to Y$ is the evaluation at o map. It is often easier to work with this equivalent diagram.

³ Here $i_0(x) = (x, 0)$.

⁴ We will see later that cofibrations are always inclusions, and, if *X* is Hausdorff, are always closed maps.

Exercise 6

Let (X, A) have the HEP, and assume moreover that $i: A \rightarrow X$ is a retract up to homotopy. Show that A is a retract of X.

1.3.4 Lemma. Let J = [0, 1].

- (i) The inclusion $i_0: X \to X \times J$ has the homotopy extension property for all Y.
- (ii) The inclusion $i_0: X \to CX$ has the homotopy extension property for all Y.

Proof. The proof in both cases is very similar; we do the first case in some detail. We are claiming there exists a lift \tilde{H} in the following diagram:

Geometrically, we will do this in two parts: we will define a map that "stacks" the two intervals on top of each other, i.e., we construct a map $G: X \times J \times I \to X \times [0,2]$. We will then do H on one part of the cylinder, and f on the remaining part.

For the first part, let $G: X \times J \times I \to X \times [0,2]$ be defined as⁵

$$G(x,t,s) = (x,t(1+s)).$$

We then define $F \colon X \times [0,2] \to Y$ by

$$F(x,k) = \begin{cases} f(x,k) & 0 \le k \le 1\\ H(x,k/2) & 1 \le k \le 2. \end{cases}$$

Putting these together and defining $\tilde{H} := F \circ G$, we see that⁶

$$\tilde{H}((x,t),s) = \begin{cases} f(x,1-(1-t)(1+s)), & (1-t)(1+s) \le 1\\ H(x,(1-t)(1+s)-1), & (1-t)(1+s) \ge 1. \end{cases}$$

One verifies directly that this gives the required extension.

1.3.5 *Remark.* We recall that given a map $f: X \to Y$, the mapping cylinder (see Figure 1.4) is the pushout

$$X \xrightarrow{i_0} X \times I$$

$$f \downarrow \qquad \qquad \downarrow$$

$$Y \longrightarrow M_f$$

In formulas,

$$M_f = ((X \times I) \coprod Y) / ((0, x) \sim f(x), \ \forall x \in X)$$

⁵ To see what is going on it is worth testing some cases and drawing pictures. For example, when t = 0 we have G(x,0,s) = (x,0). When t = 1 we have G(x,1,s) = (x,1+s). When s = 0 we have G(x,t,0) = (x,t) and when s = 1 we have G(x,t,1) = (x,2t).

⁶ Again, it is worthwhile to consider some cases. For example, if t=0, then $(1-t)(1+s)=(1+s)\geq 1$ for all s, so $\tilde{H}((x,0),s)=H(x,s)$. At the other extreme, if t=1, then $(1-t)(1+s)=0\leq 1$ for all s, so $\tilde{H}((x,1),s)=f(x,1)$.

Figure 1.4: The mapping cylinder.

Note that M_f deformation retracts on Y by sliding each point $(x,t) \in M_f$ to the end-point. Note that we have a natural map $j: X \to M_f$ sending x to (x,1).

1.3.6 Lemma. The map $j: X \to M_f$ has the HEP for all spaces Y.

Proof. The proof is similar to the previous lemma; one just has to modify the end point by defining

$$\tilde{H}|_{Y\times I}(y,s)=f(y,0).$$

1.3.7 Corollary. The inclusion $S^{n-1} \to D^n$ is a cofibration.

Proof. Simply note that
$$D^n \simeq CS^{n-1}$$
.

There is a universal test space for cofibrations.

1.3.8 Proposition. Let $i: A \to X$, and let M_i be the mapping cylinder. Then $i: A \to X$ is a cofibration if and only if there exists a map $r: X \times X$ $I \rightarrow M_i$ making the diagram

commute.

Proof. If i is a cofibration, then the map r exists as a consequence of the HEP.

For the other direction, if *r* exists, then for any maps $f: X \to Y$ and $H: A \times I \rightarrow Y$ making the obvious diagram commute, the universal property of the pushout gives us a map $H': M_i \to Y$. Then let $\tilde{H} = H' \circ r$, and we are done.

1.3.9 Corollary. *If* $A \subseteq X$, then $I: A \to X$ is a cofibration if and only if $X \times I$ is a retract of $M_i = X \times \{0\} \cup A \times I$.

1.3.10 Corollary. A cofibration $i: A \rightarrow X$ is an injection. If X is Hausdorff, then i(A) is closed in X.

Proof. Let $J: A \times I \rightarrow M_i$ be the canonical map (arising from the definition of M_i as a pushout). Then, J(a,1) = r(i(a),1), and observe that $J|_{A\times\{1\}}$ is the identity, as it is the top of the mapping cylinder. So, $i(a) \neq i(a')$ if $a \neq a'$, i.e., i is injective.

Because $i: A \to X$ is a cofibration, so is $i(A) \to X$. Hence $X \times I$ retracts onto $X \times \{0\} \cup i(A) \times I$ (Corollary 1.3.9). For a Hausdorff space, the image of a retract is closed, and so $X \times \{0\} \cup i(A) \times I$ is a closed subspace of $X \times I$. Intersecting with $X \times \{1\}$, we see that $i(A) \times \{1\}$ is closed in $X \times \{1\}$, i.e, i(A) is closed in X.

The following (rather pathological) example shows that i is not always a closed map if X is not Hausdorff.

Exercise 7

Let $A = \{a\}$ and $X = \{a, b\}$ with the trivial topology. Show that the inclusion $A \to X$ is a cofibration whose image is not closed.

1.3.11 *Remark*. The next goal is to show that CW-complexes (X, A) are always cofibrations. The key is the following exercise.

Exercise 8

- (a) Suppose $\{(X_i, A_i)\}$ are a collection of spaces satisfying the HEP, then so does $\{(\coprod X_i, \coprod A_i)\}$.
- (b) Suppose (X, A) satisfies the HEP, and $f: A \to B$ is a continuous map. Let $Y = X \cup_f B$ be the pushout, then (Y, B) satisfies the HEP.
- (c) Suppose $A = X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n \subseteq X_{n+1} \subseteq \cdots$. Let $X = \operatorname{colim} X_i$. If each (X_i, X_{i-1}) satisfies the HEP, then so does (X, A).

1.3.12 Theorem. A relative CW-complex (X, A) satisfies the HEP.

Proof. Using Corollary 1.3.7 and the previous exercise we see that (S^{n-1}, D^n) satisfies the HEP $\implies (\coprod S^{n-1}, \coprod D^n)$ satisfies the HEP. Inductively, (X_{n-1}, A) satisfies the HEP and by the exercise (X, A) satisfies the HEP.

- 1.3.13 *Remark.* One can also prove this directly by constructing a deformation retract $r: X \times I \to X \times \{0\} \cup A \times I$.
- 1.3.14 Remark. One can consider the following question: Suppose that $A \subset X$ with A contractible, then is $X \simeq X/A$? Surprisingly, this is not true in general. Indeed, let $A = S^1 \setminus \{(1,0)\}$ and consider $A \to S^1$. Then $S^1/A \cong T$, the $T = \{a,b\}$ the two point space with open sets \emptyset , $\{a\}$, $\{a,b\}$ (this is the Sierpiński space). One can check that this space is contractible. The exact condition we need is that $A \to X$ is a cofibration.
- 1.3.15 *Definition.* A contracting homotopy is a map $H: X \times I \to X$ such that $H(x,0) = \mathrm{id}_X$ and $H(x,1) = c_{x_0}$, the constant map at x_0 .
- **1.3.16 Proposition.** Suppose $A \subseteq X$ and $x_0 \in A$. Suppose there exists a map $H \colon X \times I \to X$ such that $H \mid_{X \times \{0\}} = id_X$ and $H \mid_{A \times I}$ has image in A and is a contacting homotopy for A. Then $q \colon X \to X/A$ is a homotopy equivalence.

Proof. We need to find $p: X/A \to X$ such that $q \circ p \simeq \mathrm{id}_{X/A}$ and $p \circ q \simeq \mathrm{id}_X$. The quotient map has a set-theoretic section given by

$$s(\overline{x}) = \begin{cases} x & x \notin A \\ x_0 & x \in A \end{cases}$$

⁷ See https://math.stackexchange.com/a/264789/64273.

Define $p: X/A \rightarrow X$ by the following diagram

$$X \xrightarrow{q} X/A \xrightarrow{s} X$$

$$\downarrow H|_{X \times \{1\}}$$

$$X$$

Assume for a moment that p is continuous. Then $p \circ q = H \mid_{X \times \{1\}}$, and so *H* gives a homotopy between id_X and $p \circ q = H \mid_{X \times \{1\}}$. Likewise, if we define *G* by

$$X/A \times I \xrightarrow{s \times id} X \times I \xrightarrow{H} X$$

$$\downarrow q$$

$$X/A$$

and assume that *G* is continuous, then

$$G(\overline{x},1) = q \circ (H \mid_{X \times \{1\}} \circ s) = q \circ p,$$

so that *G* is a homotopy between $id_{X/A}$ and $q \circ p$. To see that *p* is continuous, let $U \subset X$ be open, then

$$q^{-1}p^{-1}(U) = (p \circ q)^{-1}(U) = (H \mid_{X \times \{1\}})^{-1}(U)$$

is open in *X* by the continuity of $H|_{X\times\{1\}}$, hence $p^{-1}(U)$ is open in X/A by the definition of the quotient topology, and so p is continuous. We leave the proof of continuity of *G* to the reader.

1.3.17 Theorem. Let $A \subseteq X$ be a subspace with A contractible. Suppose that the inclusion i: $A \rightarrow X$ is a cofibration, then $X \rightarrow X/A$ is a homotopy equivalence.

Proof. Let $h: A \to I \to A$ be a contracting homotopy. Let $H: A \times A$ $I \rightarrow X$ be the composition of h with the inclusion map of A into X, i.e., the following diagram commutes:

By the HEP, the dotted map \tilde{H} exists as in the diagram. This map satisfies the conditions of Proposition 1.3.16:

- (i) $\tilde{H}: X \times \{0\} \to X$ is the identity.
- (ii) $\tilde{H}(A \times I) = H(A \times I) = h(A \times I) \subseteq A$.
- (iii) $\tilde{H}(A \times \{1\}) = x_0$.

Therefore, $q: X \to X/A$ is a homotopy equivalence, as claimed.

Exercise 9: Cofibrations are pushout closed.

Let $i: A \to X$ be a cofibration, and $g: A \to B$ any map ,then the induced map $B \to B \cup_g X$ is a fibration.

\boldsymbol{A}

A nice category of topological spaces