Why ReLU?

Radek Bartyzal rbartyzal1@gmail.com

17. 8. 2016

Let's talk ML in Prague

Biological inspiration

Activation functions

Logistic Sigmoid

- non-symmetric
- bounded
- more biologically accurate than Tanh
 - Positive values only
- when initialized with small weights output is around 0.5
 - = not biologically accurate
 - = hurts gradient-based optimization

Hyperbolic Tangent

- anti-symmetric
- bounded
- faster backprop convergence than Sigmoid
 - due to large gradient around 0
- works well even though the forced antisymmetry around 0 is absent in biological neurons

Rectified Linear Unit = ReLU

Pros:

- most biologically accurate of the three mentioned ones
- allows true zeros
- leads to truly sparse networks
- computationally cheaper than exponential functions

Rectified Linear Unit = ReLU

Cons:

- too much sparsity may hurt predictive performance = reduced capacity of model
 - from 85% + of true zeros
- unbounded
 - use regularizer to prevent potential numerical problems
- not symmetric around 0
 - multiply half of the units output values by -1
- true zeros could hurt backprop
 - they don't: equal or better results than Softplus

Rectified Linear Unit = ReLU

Results

stacked denoising auto-encoders

1.77%

Softplus

• three hidden layers, 1000 units per layer

Neuron MNIST | CIFAR10 | NISTP

With unsupervised pre-training				
Rectifier	1.20%	49.96%	32.86%	$\boxed{\textbf{16.46}\%}$
Tanh	1.16%	$\boldsymbol{50.79\%}$	35.89%	17.66%
Softplus	1.17%	49.52%	33.27%	19.19%
Without unsupervised pre-training				
Rectifier	1.43%	$\boldsymbol{50.86\%}$	32.64%	$\boxed{\textbf{16.40\%}}$
Tanh	1.57%	52.62%	36.46%	19.29%

53.20%

35.48%

17.68%

Conlusion

- biologically credible
- almost no improvement when using unsupervised pre-training, contrary to tanh or softplus.
- rectifier networks are truly deep sparse networks
 - average sparsity of hidden layers = 50 80%
 - brain hypothetical sparsity = 95 99%
- great for image classification
- awesome for sentiment analysis

Sources

- Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. "Deep Sparse Rectifier Neural Networks." *Aistats*. Vol. 15. No. 106. 2011.
- LeCun, Yann, Ido Kanter, and Sara A.
 Solla. "Second order properties of error
 surfaces: Learning time and
 generalization." Advances in neural
 information processing systems 3 (1991): 918924.