Prof. Dr. Frank Noé

Dr. Christoph Wehmeyer

Tutoren:

Katharina Colditz; Anna Dittus;

Felix Mann; Christopher Pütz

9. Übung zur Vorlesung Computerorientierte Mathematik I

Abgabe: Freitag, 16.01.2015, 16:00 Uhr, Tutorenfächer Arnimallee 3

http://www.mi.fu-berlin.de/w/CompMolBio/ComaI

Aufgabe 1 (Singuläre Matrizen, 3T):

Sei $A \in \mathbb{R}^{n \times n}$ regulär.

a) (1T) Zeigen Sie, dass für beliebiges $B \in \mathbb{R}^{n \times n}$, $\mathbf{x} \in \mathbb{R}^n$, folgende Abschätzung gilt:

$$\frac{\|A - B\|}{\|A\|} \ge \frac{\|(A - B)x\|}{\|A\| \|x\|}.$$

b) (1T) Sei nun B singulär. Zeigen Sie, dass es einen Vektor $\mathbf{x} \in \mathbb{R}^n$ gibt, sodass

$$\frac{\|(A-B)x\|}{\|A\|\|x\|} = \frac{\|A^{-1}\|\|Ax\|}{\|A\|\|A^{-1}\|\|x\|}.$$

c) (1T) Folgern Sie nun, dass für singuläres B die Abschätzung

$$\frac{\|A - B\|}{\|A\|} \ge \frac{1}{\kappa(A)}$$

gilt.

Aufgabe 2 (Kondition einer Matrix, 7T):

Sei A eine reguläre $n \times n$ -Matrix.

a) (1T) Sei $\mathbf{x}_0 \in \mathbb{R}^n$, $\|\mathbf{x}_0\| = 1$ so gewählt, dass

$$||A\mathbf{x}_0|| = \min_{\|\mathbf{x}\|=1} ||A\mathbf{x}||,$$

und bezeichne dieses Minimum mit $\sigma := ||A\mathbf{x}_0||$. Definiere $\mathbf{y}_0 := \frac{1}{\sigma}A\mathbf{x}_0$. Zeigen Sie, dass $\|\mathbf{y}_0\| = 1$ und $\|A^{-1}\mathbf{y}_0\| = \frac{1}{\sigma}$. b) (4T) Zeigen Sie, dass es kein $\mathbf{x} \in \mathbb{R}^n$, $\|\mathbf{x}\| = 1$ geben kann, sodass

$$||A^{-1}\mathbf{x}|| > \frac{1}{\sigma}$$

gilt.

c) (2T) Folgern Sie, dass die Kondition der Matrix A durch

$$\kappa(A) = \frac{\max_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|}{\min_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|}$$

berechnet werden kann.

Aufgabe 3 (Hilbert-Matrix, 7P):

Das Paradebeispiel einer schlecht konditionierten Matrix ist die Hilbert-Matrix $H_n \in \mathbb{R}^{n \times n}$ mit den Einträgen

$$h_{ij} = \frac{1}{i+j-1}, i, j = 1, \dots, n.$$

In Matlab können Sie die Hilbert-Matrix direkt durch den Befehl **hilb(n)** erzeugen. Schreiben Sie ein Programm, dass für n = 1, 2, ..., 15 die Hilbert-Matrix H_n und die rechte Seite \mathbf{b}_n erzeugt, wobei \mathbf{b}_n der erste Einheitsvektor im \mathbb{R}^n ist, also derjenige Vektor, dessen erster Eintrag Eins ist und alle anderen Einträge gleich Null sind. Danach sollen die linearen Systeme

$$H_n \mathbf{x} = \mathbf{b}_n$$
$$\sqrt{2}H_n \mathbf{x} = \sqrt{2}\mathbf{b}_n$$

nacheinander gelöst werden. Dazu können Sie den Backslash-Operator \setminus verwenden. Berechnen Sie jeweils den relativen Fehler in der 2-Norm zwischen den beiden Lösungen und plotten Sie diesen über n. Berechnen Sie auch jeweils die Konditionszahl $\kappa(H_n)$ mit Hilfe von **cond** und plotten Sie auch die Kondition über n. Was geschieht und warum?