Matemática Discreta

Indução Matemática

Profa. Helena Caseli helenacaseli@ufscar.br

Objetivo desta aula

- Apresentar o princípio da indução matemática
- Apresentar a estratégia de prova por indução, que se baseia no princípio da indução matemática
- Capacitar o aluno a decidir quando usar a prova por indução na demonstração de um teorema

Problema #5

Provar

Para todo
$$n \ge 0$$
:
1 + 3 + 5 + ... + (2n+1) = (n+1)²

Como provar?
Obviamente não podemos testar um por um todos os números naturais!

Prova por indução – Ideia geral

Fonte: (MENEZES, 2005, p. 160)

- Efeito dominó
 - Derruba a primeira peça
 - A primeira peça ao cair derruba a segunda peça
 - A segunda peça ao cair derruba a terceira peça
 - e assim por diante

Prova por indução

- Baseia-se em duas hipóteses
 - A primeira peça é derrubada
 - Uma vez derrubada uma peça, a seguinte também é derrubada

Base da indução

Passo indutivo

Princípio da Indução Matemática

Seja P(n) uma proposição definida sobre ℕ. Suponha que:

1. P(0) é verdade

Base da indução

2. Sempre que P(k) é verdade, para algum $k \in \mathbb{N}$, temos que P(k+1) é verdade

Passo indutivo

Então, P(n) é verdade para todo $n \in \mathbb{N}$.

Estrutura de uma prova por indução

AFIRMAÇÃO na forma de se-então que traz a apresentação da prova, ou seja, o que vai ser provado e qual a estrutura dessa prova.

HIPÓTESES

- Base da indução: supor k = 0
- Hipótese de indução: supor que P(k) é verdade

CORPO

- Mostrar que P(0) é verdade
- Mostrar que P(k+1) é verdade

CONCLUSÃO

- P(n) é verdade

- Prova por indução entendendo a ideia
 - Teoria dos Conjuntos Tamanho do conjunto potência
 - Se um conjunto S tem n elementos, seu conjunto potência contém 2ⁿ elementos (os subconjuntos de S)
 - Assim $|2^{S}| = 2^{|S|}$
 - → Vamos demonstrar que "Se S é um conjunto com *n* elementos, então seu conjunto potência 2^s contém 2ⁿ elementos"

- Prova por indução entendendo a ideia
 - Conjunto potência Tamanho
 - Vamos demonstrar por indução matemática que se S é um conjunto com n elementos, então seu conjunto potência 2^s contém 2ⁿ elementos
 - Base da indução: prova-se a veracidade do caso base
 - Para a base da indução tomamos n = 0.
 - O único conjunto com zero elementos é ø (S).
 - O único subconjunto de ø é ø.
 - Logo, $2^s = \{\emptyset\}$ ou seja, um conjunto com 1 elemento.
 - Portanto, $|2^S| = 1 = 2^{n=0}$ quando $S = \emptyset$, ou seja, quando n = 0.

- Prova por indução entendendo a ideia
 - Conjunto potência Tamanho
 - Vamos demonstrar por indução matemática que se S é um conjunto com n elementos, então seu conjunto potência 2^s contém 2ⁿ elementos
 - Passo indutivo: supõe-se que a hipótese de indução é verdadeira e prova-se para o próximo passo
 - Hipótese de indução: Vamos supor que, para qualquer conjunto com k elementos o conjunto potência tem 2^k elementos

- Prova por indução entendendo a ideia
 - Conjunto potência Tamanho
 - Vamos demonstrar por indução matemática que se S é um conjunto com n elementos, então seu conjunto potência 2^s contém 2ⁿ elementos
 - Passo indutivo
 - 1. Seja S um conjunto com k+1 elementos.
 - 2. Retire 1 desses elementos, por exemplo, o x.

- Prova por indução entendendo a ideia
 - Conjunto potência Tamanho
 - Vamos demonstrar por indução matemática que se S é um conjunto com n elementos, então seu conjunto potência 2^s contém 2ⁿ elementos
 - Passo indutivo
 - 3. Qual é o conjunto potência do conjunto resultante?

- Prova por indução entendendo a ideia
 - Conjunto potência Tamanho
 - Vamos demonstrar por indução matemática que ...
 - Passo indutivo
 - 4. Os únicos elementos de 2^s ainda não incluídos em 2^s são os que contêm x. Todos os subconjuntos que contêm x podem ser encontrados colocando-se x em todos os subconjuntos que não o contêm (2^k no total).

Veja descrição da prova em forma textual em (GOMIDE; STOLFI, 2011) pag. 75

- Prova por indução entendendo a ideia
 - Conjunto potência Tamanho
 - Vamos demonstrar por indução matemática que ...
 - Passo indutivo
 - 5. Assim, temos 2^k conjuntos contendo x e 2^k conjuntos sem o x, ou seja, $2^k + 2^k = 2^{k+1}$ subconjuntos. Portanto, quando |S| = k+1, $|2^{S}| = 2^{k+1}$.

Prova por indução

```
Passo indutivo

+1 P(k): k < 2^{k} \notin V

P(k+1): k+1 < 2^{k+1}?

• k+1 < 2^{k} + 1

• (2^{k} + 2^{k})

• (2^{k+1}) OK
```

"Se n é um número natural, então n é menor do que 2ⁿ."

Prova:

Vamos demonstrar por indução que se n é um número natural então n é menor do que 2 elevado a n, ou seja: $n < 2^n$.

- i) Base da indução: Seja k = 0. Então $0 < 2^0 = 1$. Portanto, P(0) é verdade.
- ii) Passo indutivo: Suponha que, para algum número natural k, P(k): $k < 2^k$ é verdade. Vamos provar que para qualquer número natural k+1, P(k+1) também é verdade, ou seja, que $k+1 < 2^{k+1}$. Somando 1 em ambos os lados da desigualdade:

$$k+1 < 2^k+1 < 2^k + 2^k = 2 * 2^k = 2^{k+1}$$

Logo, P(k+1) é verdade.

Portanto, para qualquer número natural n tem-se que $n < 2^n$.

Generalização

 Muitas vezes precisamos demonstrar que uma proposição P(n) é válida <u>para todos os números</u> <u>naturais maiores ou iguais a um certo n₀</u>

Nestes casos usamos n₀ no lugar do 0 na base de

indução

Fonte: Adaptado de (MENEZES, 2005, p. 160)

Prova por indução

"Prove que $n^2 > 3n$ para todo $n \in \mathbb{N}$ com $n \ge 4$."

Prova por indução

"Prove que $n^2 > 3n$ para todo $n \in \mathbb{N}$

Prova:

Vamos demonstrar por indução que se n é um núme 4 então $n^2 > 3n$.

- i) Base da indução: Seja k = 4. Então $4^2 = 16$ é maior do que 3*4 = 12. Portanto, P(4) é verdade.
- ii) Passo indutivo: Suponha que, para algum número natural $k \ge 4$, P(k): $k^2 > 3k$ é verdade. Vamos provar que para qualquer número natural k+1, P(k+1) também é verdade, ou seja, que $(k+1)^2 > 3*(k+1)$.

Reescrevendo: $(k+1)^2 = k^2 + 2k + 1$

Pela hipótese de indução, sabe-se que $k^2 > 3k$. Logo,

$$k^2 + 2k + 1 > 3k + 2k + 1$$

Como $k \ge 4$, sabe-se que $2k \ge 8$. Logo,

$$3k + 8 + 1 = 3k + 9 = 3(k + 3) > 3(k + 1)$$

Assim,

$$(k+1)^2 > 3(k+1)$$

Portanto, para qualquer número natural tem-se que $n^2 > 3n$.

Passo indutivo

P(k):
$$k^2 > 3k$$

P(k+1): $(k+1)^2 > 3(k+1)$?

 $(k+1)^2 = k^2 + 2k + 1$
 $> 3k + 2k + 1$
 $> 3k + 8 + 1$
 $> 3k + 9$
 $> 3(k + 3)$
 $> 3(k + 1) OK$

Indução completa/forte

Princípio da Indução Completa

Seja P(n) uma proposição definida sobre ℕ. Suponha que:

- 1. P(0) é verdade
- 2. Sempre que para todo $k \in \mathbb{N}$, P(0), P(1), ..., P(k) é verdade, temos que P(k+1) é verdade

Então, P(n) é verdade para todo $n \in \mathbb{N}$.

Princípio da Indução Matemática

Seja P(n) uma proposição definida sobre ℕ. Suponha que:

- 1. P(0) é verdade
- 2. Sempre que P(k) é verdade, para algum $k \in \mathbb{N}$, temos que P(k+1) é verdade

Então, P(n) é verdade para todo $n \in \mathbb{N}$.

Prova por indução

"Todo inteiro maior ou igual a 2 é primo d primos."

```
Passo indutivo

2 \le i \le k, P(i) \notin V

P(k+1) \notin V?

=> ou k+1 \notin prod. prim.

k+1 = a*b

1 < a < k+1

1 < b < k+1
```

Prova:

Vamos demonstrar por indução completa que se n é um número inteiro maior ou igual a 2 então n é primo ou é um produto de primos.

- i) Base da indução: Seja k = 2. Então P(k) é verdade, pois 2 é primo.
- ii) Passo indutivo: Suponha que, para algum número natural $k \ge 2$, P(i) é verdade para todo $2 \le i \le k$. Vamos provar que P(k+1) também é verdade, ou seja, que k+1 é primo ou um produto de primos.

Se k+1 é primo, então P(k+1) é verdade.

Se k+1 não é primo então, ele deve ter algum divisor diferente de 1 e de k+1, ou seja,

k+1 = ab para algum 1 < a < k+1 e 1 < b < k+1

Pela hipótese de indução forte, sabe-se que a e b são produtos de primos. Assim, multiplicando dois primos tem-se um produto de primos.

Portanto, para qualquer número inteiro maior ou igual a 2, esse número é primo ou um produto de primos.

Indução completa/forte X Indução

- A indução forte parece "mais forte" do que a indução comum/ordinária, uma vez que pode-se assumir muito mais a partir do passo indutivo
 - Mas a indução forte não é realmente mais forte, pois é possível reformatar qualquer prova originalmente usando indução forte em uma prova por indução ordinária
- Mas é interessante indicar qual tipo de indução é usada para deixar claro se o passo indutivo para n+1 vem diretamente do caso n (indução ordinária) ou requer casos menores do que n (indução forte)
- → No fundo ... as duas são equivalentes!

Demonstração de Teoremas

Resumo

Estratégia de Demonstração	Abordagem para provar p → q	Observações
Demonstração por exaustão	Demonstre p → q para todos os casos possíveis	Pode ser usada apenas para provar um número finito de casos
Demonstração direta	Suponha p, deduza q	Abordagem padrão – o que se deve tentar em geral
Demonstração por contraposição	Suponha ¬q, deduza ¬p	Use essa estratégia se ¬q parece dar mais munição do que p
Demonstração por absurdo	Suponha p л ¬q, deduza uma contradição	Use essa estratégia quando q disser que alguma coisa não é verdade
Demonstração por indução	Prove para o caso base da indução; suponha a hipótese de indução e prove o passo indutivo	Use a base de indução juntamente com a hipótese de indução para provar o passo indutivo

Problema #5

Provar

Para todo
$$n \ge 0$$
:
1 + 3 + 5 + ... + (2n+1) = (n+1)²

Prova:

Vamos demonstrar por indução que se n é um número natural então 1+3+5+...+(2n+1) é igual a n+1 elevado ao quadrado, ou seja: $(n+1)^2$.

Portanto, para todo número natural n tem-se que $1+3+5+...+(2n+1)=(n+1)^2$.