Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по лабораторной работе №1 по дисциплине «Математическая статистика»

Выполнил студент В. А. Рыженко

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург, 2020 г.

Содержание

1.	. Постановка задачи			
2.	Теория 2.1. Распределения 2.2. Характеристики положения 2.3. Характеристики рассеяния	3 3 4 5		
3.	Реализация	5		
4.	Результаты	5		
5.	Обсуждение	7		
6.	Приложения	7		
C	писок иллюстраций			

1. Постановка задачи

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- Распределение Коши С(х, 0, 1)
- Распределение Лапласа $L(x, 0, \frac{1}{\sqrt{2}})$
- Постановка задач исследования Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: \overline{x} (8), $med\ x$ (9), z_R (10), z_Q (12), z_tr (13). Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2. Теория

2.1. Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \tag{3}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{4}$$

• Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{\sqrt{2}|x|} \tag{5}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{6}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}}, & \text{при } |x| \le \sqrt{3} \\ 0, & \text{при } |x| > \sqrt{3} \end{cases}$$
 (7)

2.2. Характеристики положения

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана

$$medx = \begin{cases} x_{(l+1)} & \text{при } n = 2l+1 \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при } n = 2l \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

$$z_p = \begin{cases} x_{([np]+1)} & \text{при } np \text{ дробном} \\ x_{(np)} & \text{при } np \text{ целом} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{12}$$

• Усечённое среднее

$$z_R = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, r \approx \frac{n}{4}$$
 (13)

2.3. Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} x_i - \overline{x} \tag{14}$$

3. Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки Jupyter Notebook и Visual Code. Исходный код лабораторной работы приведён в приложении.

4. Результаты

Normal n = 10					
	\overline{x} (8)	medx (8)	$z_R (10)$	$z_Q (12)$	$z_{tr} (13)$
E(z) (1)	-0.01240	-0.02489	-0.00474	-0.01261	-0.44611
D(z) (2)	0.09935	0.13874	0.18181	0.11633	0.19166
Normal $n = 100$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	-0.00618	-0.00857	-0.00707	0.00268	-0.53702
D(z)	0.05471	0.07758	0.13405	0.06471	0.11674
Normal $n = 1000$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	-0.00409	-0.00551	-0.00393	0.00217	-0.56976
D(z)	0.03683	0.05231	0.11162	0.04357	0.08085

Таблица 1. Нормальное распределение

Cauchy n = 10					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	4.65358	0.02889	23.04936	0.03492	-4.33522
D(z)	15908.09147	0.43148	397531.77972	1.26249	523.04326
Cauchy n = 100					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	1.72418	0.01434	-18.42564	0.03585	-7.08401
D(z)	8637.35792	0.22896	1880864.30928	0.65602	2509.25432
Cauchy $n = 1000$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	1.55612	0.01011	190.09045	0.02555	-6.98385
D(z)	6106.00336	0.15343	87773120.69259	0.43918	1712.09914

Таблица 2. Распределение Коши

Laplace $n = 10$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	0.00358	-0.00151	0.02326	0.00012	-0.40006
D(z)	0.10735	0.08220	0.41080	0.11063	0.18386
Laplace $n = 100$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	0.00153	-0.00143	0.04186	0.00484	-0.49776
D(z)	0.05890	0.04395	0.40008	0.06062	0.11308
Laplace $n = 1000$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	0.00126	-0.00117	0.02586	0.00361	-0.53088
D(z)	0.03961	0.02948	0.40734	0.04075	0.07833

Таблица 3. Распределение Лапласа

Poisson n = 10					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	10.03390	9.87850	10.35950	9.96100	11.98083
D(z)	0.94092	1.30249	1.90001	1.19398	1.61149
Poisson $n = 100$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	10.00905	9.85175	10.64650	9.95325	12.45501
D(z)	0.51966	0.74990	1.51329	0.67369	1.14114
Poisson $n = 1000$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	10.00531	9.89917	10.97383	9.96717	12.61537
D(z)	0.34978	0.50642	1.43907	0.45051	0.81966

Таблица 4. Распределение Пуассона

Uniform n = 10					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	0.00634	0.00643	0.00743	0.00912	-0.41120
D(z)	0.10099	0.23114	0.04599	0.13631	0.22124
Uniform $n = 100$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	-0.00131	-0.00276	0.00308	0.00859	-0.53424
D(z)	0.05538	0.13012	0.02329	0.07517	0.13984
Uniform $n = 1000$					
	\overline{x}	medx	z_R	z_Q	z_{tr}
E(z)	-0.00070	-0.00120	0.00207	0.00667	-0.57210
D(z)	0.03726	0.08778	0.01553	0.05062	0.09711

Таблица 5. Равномерное распределение

5. Обсуждение

Из полученных данных видно, что среднее (1) всех характеристик стремится к теоретическому, а оценка дисперсии (2) к нулю при увеличении размера выборки. В случае распределения Коши (4) это верно только для характеристик положения.

6. Приложения

Репозиторий на GitHub с релизацией: github.com.