Exercici 12. Apliqueu l'algoritme d'Euclides als polinomis $p_1 = 2x^4 + 4x^3 + 7x^2 + 12x + 3$, i $p_2 = x^4 + 2x^3 + 6x^2 + 6x + 9$, per a calcular-ne el màxim comú divisor, d, i una igualtat de Bézout que expressi d com a combinació lineal de p_1 i p_2 .

Tot i que el polinomi p_2 és mònic i, per tant, la divisió entera entre p_2 es pot realitzar en Z[x], els polinomis que proporciona l'algoritme d'Euclides no tenen els coeficients enters. Podríeu donar-ne una explicació?

Solució. Comencem dividint p_1 entre el p_2 , ja que tenen el mateix grau i el coeficient de p_1 és major.

Obtenim que el quocient és 2 i el residu $-5x^2 - 15$, i per tant $2x^4 + 4x^3 + 7x^2 + 12x + 3 = (x^4 + 2x^3 + 6x^2 + 6x + 9) \cdot 2 + -5x^2 - 15$. Seguint l'Algoritme d'Euclides, dividim ara $x^4 + 2x^3 + 6x^2 + 6x + 9$ entre $-5x^2 - 15$.

Aquesta vegada el quocient és $\frac{-x^2}{5} - \frac{2x}{5} - \frac{3}{5}$ i el residu és 0, i per tant ja podem parar de dividir. Aleshores, $mcd(p_1,p_2) = -5x^2 - 15$, ja que és el residu de la divisió anterior a la que té residu 0.

Per calcular una identitat de Bézout és suficient amb aïllar el residu de la primera divisió:

$$-5x^{2} - 15 = (2x^{4} + 4x^{3} + 7x^{2} + 12x + 3) \cdot (1) + (x^{4} + 2x^{3} + 6x^{2} + 6x + 9) \cdot (-2)$$

A l'hora de dividir dos polinomis $ax^n + ...$ i $bx^m + ...$ amb $m \le n$ el primer que hem de fer per trobar el quocient és trobar una expressió que multiplicada per bx^m doni ax^n , i que és per tant de la forma $\frac{a}{b} \cdot x^{n-m}$. A no ser que b|a, que no té perquè donar-se, el coeficient resultant d'aquest terme del quocient no serà un nombre enter. Per tant, tot i que tots els coeficients dels polinomis que es divideixen siguin enters, l'Algoritme d'Euclides al realitzar la divisió euclidiana pot generar polinomis amb coeficients no enters.