Przykladowyegzamin

placeholder

February 4, 2023

1

 $\mathbf{2}$

2

Contents

1 Zad 1

2 Zad 2

1	Zad 1
	$\Im\left(\frac{1+3i}{3-2i}+i^3+5\right) = \Im\left(\frac{1+3i}{3-2i}+\frac{i^3(3-2i)}{3-2i}+\frac{5(3-2i)}{3-2i}\right)$
	$=\Im\left(\frac{1+3i+3i^3-2i^4+15-10i}{3-2i}\right)$
	$=\Im\left(\frac{16-7i+3i^3-2i^4}{3-2i}\right)$
	$=\Im\left(\frac{14-10i}{3-2i}\right)$
	$=\Im\left(\frac{14-10i}{3-2i}\cdot\frac{3+2i}{3+2i}\right)$
	$=\Im\left(\frac{42+28i-30i+20}{9+4}\right)$
	$=\Im\left(\frac{62-2i}{13}\right)$
	$=\frac{-2}{13}$

2 Zad 2

$$\frac{(3-3i)^{14}}{(-1+i\sqrt{3})^{11}} = \frac{z^{14}}{w^{11}}$$

2.1 2

$$\sin(\varphi_z) = \frac{-3}{3\sqrt{2}} = \frac{-1}{\sqrt{2}} = \frac{-\sqrt{2}}{2} \to \varphi_z = \frac{7}{4}\pi$$

$$z^{14} = (3 - 3i)^{14}$$

$$= (3 - 3i)^{14}$$

$$= (3\sqrt{2})^{14} (\cos 14\varphi + i\sin 14\varphi)$$

$$= (3\sqrt{2})^{14} \left(\cos\left(14 \cdot \frac{7}{4}\pi\right) + i\sin\left(14 \cdot \frac{7}{4}\pi\right)\right)$$

$$= (3\sqrt{2})^{14} \left(\cos\left(\frac{49}{2}\pi\right) + i\sin\left(\frac{49}{2}\pi\right)\right)$$

$$= (3\sqrt{2})^{14} \left(\cos\left(\frac{1}{2}\pi\right) + i\sin\left(\frac{1}{2}\pi\right)\right)$$

$$= (3\sqrt{2})^{14} (0 + i1)$$

$$= (3\sqrt{2})^{14} i$$

2.2 w

$$\sin(\varphi_w) = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2} \to \varphi_w = \frac{2}{3}\pi$$

$$w^{11} = 2^{11} \left(\cos \left(11 \cdot \frac{2}{3} \pi \right) + i \sin \left(11 \cdot \frac{2}{3} \pi \right) \right)$$
$$= 2^{11} \left(-\cos \frac{\pi}{3} - i \sin \frac{\pi}{3} \right)$$
$$= 2^{11} \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2} \right)$$
$$= 2^{10} \left(-1 - i \sqrt{3} \right)$$

2.3 Podstawiamy

$$\begin{split} \frac{(3-3i)^{14}}{(-1+i\sqrt{3})^{11}} &= \frac{z^{14}}{w^{11}} \\ &= \frac{(3\sqrt{2})^{14}i}{2^{10}(-1-i\sqrt{3})} \\ &= \frac{((3\sqrt{2})^{14}i)(-1+i\sqrt{3})}{2^{10}(-1-i\sqrt{3})(-1+i\sqrt{3})} \\ &= \frac{((3\sqrt{2})^{14}i)(-1+i\sqrt{3})}{2^{10}(-2)} \\ &= \frac{((3\sqrt{2})^{14}i)(-1+i\sqrt{3})}{-2^{11}} \end{split}$$