LES FONCTIONS PART1 E02

EXERCICE N°1 Ne pas oublier les bases

Soit f définie sur \mathbb{R} par f(x) = -2x + 12.

- 1) Déterminer l'image de -3 et de 1 par la fonction f.
- 2) Déterminer les antécédents éventuels de 4 et de $-\frac{1}{3}$ par la fonction f.

EXERCICE N°2 Python

On considère la fonction suivante Python:

def signe(f, x): '''Renvoie Positif si f(x) est positif et Négatif dans le cas contraire "

- 1) Recopier et compléter la fonction pour effectue ce qui est indiqué dans sa des
- 2) Utiliser la fonction précédente pour afficher le signe des images de tous les entiers compris entre -10 et 10 par la fonction f définie sur \mathbb{R} par : $f(x)=x^2-4x-21$.

EXERCICE N°3 **Tableur**

On a préparé avec un tableur un tableau de valeurs d'une fonction f sur l'intervalle avec un pas de 1.

		_
	Α	В
1	X	f(x)
2	0	-5
3	1	-2
4	2	11
5		

Dans la cellule B2, nous avons saisi la formule suivante : $=2*A2^3 - A2^2 + 2*A2 - 5$

- 1) Donner l'expression de f(x) en fonction de x
- 2) En déduire la valeur affichée dans la cellule B5.

EXERCICE Nº4

On donne ci-contre la courbe représentative d'une fonction f définie sur [-2; 4].

- 1) Déterminer l'image de 3 par f.
- 2) Déterminer le nombre d'antécédents de 0 par f.
- 3) Résoudre graphiquement f(x)=-1.
- **4)** Donner la valeur de f(0).
- nombre(s) a (ont) pour **5**) Quel(s) antécédent 1 ?
- 6) Quels nombres ont pour image -2?
- 7) Déterminer le taux de variation de fentre 1 et 3.
- 8) Construire le tableau de variations de $f \quad \text{sur} \quad [-2; 4]$.
- 9) Construire le tableau de valeurs de fsur [-2; 4] avec un pas de 1.

LES FONCTIONS PART1 E02

EXERCICE N°1 Ne pas oublier les bases

Soit f définie sur \mathbb{R} par f(x) = -2x + 12.

- 1) Déterminer l'image de -3 et de 1 par la fonction f.
- 2) Déterminer les antécédents éventuels de 4 et de $-\frac{1}{3}$ par la fonction f.

EXERCICE N°2 Python

On considère la fonction suivante Python:

def signe(f, x): '''Renvoie Positif si f(x) est positif et Négatif dans le cas contraire "

- 1) Recopier et compléter la fonction pour effectue ce qui est indiqué dans sa des
- 2) Utiliser la fonction précédente pour afficher le signe des images de tous les entiers compris entre -10 et 10 par la fonction f définie sur \mathbb{R} par : $f(x)=x^2-4x-21$.

EXERCICE N°3 **Tableur**

On a préparé avec un tableur un tableau de valeurs d'une fonction f sur l'intervalle avec un pas de 1.

		_
	Α	В
1	X	f(x)
2	0	-5
3	1	-2
4	2	11
5		

Dans la cellule B2, nous avons saisi la formule suivante : $=2*A2^3 - A2^2 + 2*A2 - 5$

- 1) Donner l'expression de f(x) en fonction de x
- 2) En déduire la valeur affichée dans la cellule B5.

EXERCICE Nº4

On donne ci-contre la courbe représentative d'une fonction f définie sur [-2; 4].

- 1) Déterminer l'image de 3 par f.
- 2) Déterminer le nombre d'antécédents de 0 par f.
- 3) Résoudre graphiquement f(x)=-1.
- **4)** Donner la valeur de f(0).
- nombre(s) a (ont) pour **5**) Quel(s) antécédent 1 ?
- 6) Quels nombres ont pour image -2?
- 7) Déterminer le taux de variation de fentre 1 et 3.
- 8) Construire le tableau de variations de $f \quad \text{sur} \quad [-2; 4]$.
- 9) Construire le tableau de valeurs de fsur [-2; 4] avec un pas de 1.

