N° de demande: YQ00-336656668-2016 Dossier de construction du Réseau: DMD0456-F012B Validé le: 12/01/2022

Matériau: Inco 718 TTH: R1

Applicable: PIECES FORGEES G=7-9 SUIVANT DMC0250 ZONES NON GRENAILLEES SELON FICHE KM PT-RGL1178

Classe d'Applicable: PIECES SPECIFIQUES

Niveau statistique: Mini m-4s

Objectif:

Officialisation Réseau DMW0456-F528B

1) Les Courbes de fatigue:

Températures (°C)	Courbes	Bornes des courbes en Cycles	Catégorie	Niveau Stat	Valeur de K et de l'écart-type
-60	idem 20°C			-	
20	DMD0456-4058A	6918 à 2e6	II	Mini	
200	DMD0456-4059A	4073 à 2e6	II	Mini	
350	DMD0456-4060A	5248 à 2e6	II	Mini	
450	DMD0456-4061A	2884 à 2e6	II	Mini	
550	DMD0456-4062A	2344 à 2e6	II	Mini	
650	DMD0456-4063A	2398 à 2e6	II	Mini	
700	extrapolation			-	

^{*}Les courbes surlignées en orange sont les courbes interpolées ou extrapolées dans le Réseau à partir des courbes sources (voir paragraphe 3)

2) Propriétés de Traction et coefficients de Walker

Les propriétés de Traction et les coefficients de Walker utilisés pour la construction du Réseau sont présentés dans le tableau ci-dessous:

Propriétés	Courbes	Commentaires
Rm	DMD0456-2001D	Les Valeurs de Rm et A% sont prises en au niveau statistique mini pour la construction
Α%	DMD0456-2038A	du Réseau de Fatigue Mini DMD0456-F011A
E	DMD0456-1001A	Les Valeurs de Module sont prises au niveau statistique Moyen pour le DMD0456-F011A et DMW0456-F527B
Coeff. Walker	DMD0456-4050A	

3) Extrapolations & Interpolations:

A) Interpolations en Température: Voir Note DMP-00047863/A

Les interpolations en température, entre les températures des courbes LCF, tous les X°, X ∈ R, ont été réalisées en utilisant le modèle suivant :

$$(1) f(x(T)) = \log(x(T))$$

$$(2) f(x(T)) = (1 - \theta) * f(x(T_{inf})) + \theta * f(x(T_{sup}))$$

$$(3) \theta = \frac{(T - T_{inf})}{(T_{sup} - T_{inf})}$$

Les données d'entrées permettant de réaliser ces interpolations en température sont fournis dans les fichiers .BMAT

B) Valeurs d'Extrapolation à 1 cycle:

Les courbes du Réseau sont fermées à 1 cycle en prolongeant la population 1 (correspondant à l'amorçage en surface) réidentifiée du réseau (cf. droite jaune dans la définition du modèle mathématique)

C) Extrapolations à haute durée de vie:

Extrapolations appliquées ici à haute durée de vie : Fermeture à 0,01 en contrainte à 1E15 cycles

^{*}Les autres courbes sont les courbes sources

 $^{(3) \ \}theta = \frac{(T-T_{\rm inf}\)}{(T_{\rm sup}\ -T_{\rm inf}\)}$ * Avec T = Température de calcul de durée de vie (DDV) , x = nombre de cycle, Tinf et Tsup les températures encadrant la température de calcul et appartenant aux températures de définition des courbes LCF, et θ le paramètre d'interpolation

Dossier de construction du Réseau:

DMD0456-F012B

N° de demande: YQ00-336656668-2016

Validé le: 12/01/2022

4) Modèle mathématique

A) Présentation du modèle à la température souhaitée :

Important : L'utilisation du modèle présenté ne permet pas de prendre en compte toutes les règles standards utilisées pour réaliser les fermetures à 1 cycle ainsi que les fermetures à hautes durées de vies. Le modèle défini ci-dessous est un modèle simplifié développé pour l'inco 718.

k : le nombre d'écart type pour l'abattement (ici k=3)

Sa1 et Sb1 : coefficients du modèle linéaire en log-log

Sα1 et Sβ1 : coefficients de l'écart type variable

SC1 et SC2 : les positions en contraintes des coudes 1 et 2

SB2 et SB3 : les positions en contraintes respectivement à DDVF2 et

DDVF1 : la durée de vie au niveau du coude 2 (population 2)

DDVF2 et DDVF3 : la durée de vie respectivement égale à 1E9 et 1E15

cycles

Le réseau DMW0456-F528B a été construit en suivant le modèle ci-dessus :

Le modèle est construit en 4 morceaux définis sur des plages de contraintes ou des plages de durées de vie décrits dans tableau ci-dessous :

Morceaux	Modèles mathématiques	Bornes	Commentaires
1	$log(DDV) = Sa1 log(\Delta\sigma) + Sb1 - k (S\alpha1 log(\Delta\sigma) + S\beta1)$	DDVU (cycles) à SC1 (Mpa)	Population 1 du modèle bimodal
2	du type : $log(DDV) = a \Delta \sigma + b$	SC1 à SC2 (Mpa)	Population 2 du modèle bimodal
3	du type : $log(DDV) = a log(\Delta\sigma) + b$	DDVF1 à 1E9 (cycles)	Extrapolation à haute durée de vie
4	du type : $log(DDV) = a log(\Delta\sigma) + b$	1E9 à 1E15 (cycles)	Fermeture du réseau

Remarques:

- 1. Les points SC1 et SC2, définis en contraintes ici, sont les intersections entre les morceaux 1 et 2 et les morceaux 2 et 3. Ils ont été définis à iso durée de vie par rapport au réseau Mini DMW0456-F527B
- 2. Pour avoir plus d'information sur le modèle présenté, il est possible de consulter la note : DMP-00047863/A. Cette note explique aussi la méthode utilisée pour réaliser les interpolations en températures des réseaux bimodaux de manière robuste.

B) Coefficients retenus:

Le réseaux étant mis à disposition au format .bmat, les coefficients définis précédemment dans le paragraphe A de la section 4 sont disponibles cidessous:

Temperature (°C)	Sa1	Sb1 (Cycles)	SC1 (Mpa)	SC2 (Mpa)	SB2 (Mpa)	DDVF1 (Cycles)
20 / 60	-3.445979770	14.3347926831403	333.276094868051	234.220538978257	192.515462571165	1058503.411
200	-3.585944873	14.6690288661409	410.828216642191	216.187890641739	177.906195630434	1087232.718
350	-3.702582466	14.9260734819190	432.072870240899	216.967616186436	178.559307891492	1083628.787
450	-3.702582479	14.8663778611833	440.107442694277	227.818459430572	186.730900571252	1045126.516
550	-3.702582479	14.7898004064288	441.481265009928	232.925167728053	187.956925464805	1243059.161
650	-3.702582479	14.5006327232945	452.074439669718	287.045659882532	185.227745135401	1024313.215
700	-3.626085451	14.3314164832529	387.251487356087	241.021605745832	155.034551795624	1026335.819

A noter que:

- les coefficients Sα1 est mis à 0 car il n'y a pas d'écart-type variable

- le coefficient SB3 est égal à 0,01 Mpa

Dossier de construction du Réseau:

DMD0456-F012B

N° de demande: YQ00-33665668-2016

Validé le: 12/01/2022

Les valeurs retenues pour l'écart-type sont les suivantes (Sbeta1) :

Temperature (°C)	Sbeta1
20/-60	0.1281593843801
200	0.1282213320470
350	0.1282248739730
450	0.1282348070611
550	0.1289949421429
650	0.1530194844315
700	0.2222825110843

4) Modèle mathématique

C) Présentation de la stratégie utilisée pour l'identification des paramètres du réseau de référence :

Identification des différents morceaux du modèle :

Pour différencier les différents morceaux du modèle mathématique défini précédemment dans le paragraphe A de la section 4, le réseau de référence a été dérivé. Ainsi il a été possible d'identifier facilement et visuellement les changements de pentes correspondants à des changements de sections dans le modèle.

La dérivée a été calculée comme ci-dessous :

(4)
$$\frac{d\Delta\sigma_i}{dDDV_i} = \frac{(\Delta\sigma_i - \Delta\sigma_{i+1})}{(DDV_i - DDV_{i+1})}$$

Avec

 $\Delta \sigma i$: la ième pseudo contrainte du réseau .roc DDVi : la ième durée de vie en nombre de cycles

 $d\Delta\sigma$ / dDDV : la dérivée de la pseudo contrainte par unité de DDV

Détermination des écart-types :

• Pour toutes les températures sauf 700°C :

Pour identifier les écarts-types des populations 1 et 2 à chaque température (sauf 700°C), l'écart à iso durée de vie a été calculé entre les courbes moyennes et les courbes minis. Cet écart représente donc sur chaque population 3 fois l'écart-type.

• A 700°C

Ne disposant pas de courbes moyennes l'écart a été mesuré entre la courbe mini et la courbe du réseau Mini m-Xs, X={2,4,5,6} antérieur (respectivement DMD0456-F024A (X=2), DMD0456-F012A (X=4), DMD0456-F022A (X=5), DMD0456-F013A (X=6)). Cet écart représente directement |X-3|écart-type, X={2,4,5,6}, car il est mesuré entre la courbe mini m-3s et la courbe mini m-Xs.

L'écart-type de la population 2 a été calculé à 1e6 cycles pour respecter l'intention du constructeur des courbes de références LCF moyennes et minis.

Calcul des paramètres du modèle par morceaux :

Une fois les écarts-types des populations 1 et 2 déterminés la construction du réseau mini m-4s a pu être réalisée en conservant :

- Les coudes 1 (SC1) et coude 2 (SC2) à iso durée de vie par rapport au réseau DMW0456-F527B, réseau mini m-3s
- Les paramètres Sa1, sb1 du réseau DMW0456-F527B pour la population 1

Dossier de construction du Réseau:

DMD0456-F012B

N° de demande: YQ00-336656668-2016

Validé le: 12/01/2022

La construction des réseaux mini m-Xs, X={2,4,5,6} est réalisée en suivant les étapes suivantes :

Etape 1: Calcul de l'écart-type en pop 1

1. Calcul des écarts en contraintes, à iso durée de vie, sur la partie linéaire de la population 1 dans le domaine où l'écart est constant. Le modèle mini m-3s est décrit par l'équation (1) ci-dessous pour la population 1. La courbe moyenne quand a elle est discrétisée à certaines valeurs de durée de vie. En calculant les valeurs de contraintes aux durées de vies de la courbe moyenne on obtient les écarts & définis dans l'équation (6).

$$(5) \log(DDV) = Sa_1 \log(\Delta\sigma) + Sb_1 - k \left(S\alpha_1 \log(\Delta\sigma) + S\beta_1\right)$$

(6)
$$y_{moyen} - y_{mini} = \varepsilon$$

Avec:

 $y_{moyen}\,$: les valeurs discrétisées en log de contrainte de la courbe moyenne

 y_{mini} : les valeurs calculées en log de contrainte aux mêmes durées de vie que la courbe moyenne.

- 2. Calcul de l'ordonnée à l'origine de la courbe moyenne sur le domaine sélectionné en 1. avec une pente égale à celle du DMW0456-F527B par méthode des moindres carrés.
- 3. Détermination de l'écart ɛ (en log-log) en contrainte entre la droite identifiée par méthode des moindres carrés et le réseau DMW0456-F527B

(7)
$$\varepsilon = 3 s$$

/!\ pour 700°C comme il n'existe pas de courbe LCF les écarts-types ont été déterminés en calculant les écarts entre le réseau mini m-3s DMW0456-F527B et le réseau mini m-Xs historique (respectivement DMD0456-F024A (X=2), DMD0456-F012A (X=4), DMD0456-F022A (X=5), DMD0456-F013A (X=6)).

Etape 2: Détermination de l'équation de la population 1

1. Calcul du point 1, correspondant au coude 1 du réseau DMW0456-F527B et aux coudes 1 des réseaux mini m-Xs. En réutilisant les paramètres trouvés du réseau mini m-3s et en appliquant la formule définie dans le paragraphe 4 on obtient l'équation suivante pour chaque température :

(8)
$$\log(DDV) = Sa_{mini} \log(\Delta\sigma) + Sb_{mini} - (X - 3) s$$

Avec:

 $\mathit{Sa}_{mini}\ \mathit{et}\ \mathit{Sb}_{mini}\ \mathsf{les}\ \mathsf{coefficients}\ \mathsf{des}\ \mathsf{courbes}\ \mathsf{du}\ \mathsf{r\'eseau}\ \mathsf{mini}\ \mathsf{m-3s}\ \mathsf{DMW0456-F527B},$

s, l'écart-type identifié à l'étape 1.

 $X=\{2,4,5,6\}$

On a ici mis k=X-3 et pas k=X car nous sommes repartis de l'équation de la courbe mini m-3s et qu'il n'y a que X-3 d'écart-type d'écart entre les 2 réseaux.

Dossier de construction du Réseau:

DMD0456-F012B

N° de demande: YQ00-336656668-2016

Validé le: 12/01/2022

Etape 3: Calcul de l'écart-type pop 2

Calcul de l'écart à 1^E6 cycles entre la courbe moyenne et la courbe DMW0456-F527B. Le calcul de cet écart-type a été fait avant les durées de vies définies pour les coudes 2 car l'intention du constructeur des courbes moyennes semblait être de finir la population 2 à 1^E6 pour les courbes moyennes. Cet écart est défini comme dans l'équation (7) de l'étape 1.

/!\ pour 700°C comme il n'existe pas de courbe LCF, les écarts-types ont été déterminés en calculant les écarts entre le réseau mini m-3s DMW0456-F527B et le réseau mini m-Xs historique, X={2,4,5,6} respectivement (respectivement DMD0456-F024A (X=2), DMD0456-F012A (X=4), DMD0456-F022A (X=5), DMD0456-F013A (X=6))

Etape 4: Détermination de l'équation de la population 2

Le point 2 à 1^E6 cycles et trouvé en prenant la valeur en contrainte à 1^E6 cycles de la courbe mini du réseau DMW0456-F527B et en retirant un écart-type de la population 2.

On a donc :

(9)
$$\sigma = 10^{\log(\sigma_{mini})-s}$$

 σ : la contrainte en MPa à 1 $^{\rm E}$ 6 cycles du réseau DMW0456-F528B que l'on cherche

 σ_{mini} : La contrainte à 1 $^{\rm E}$ 6 cycles du réseau mini m-3s DMW0456-F527B

s: l'écart-type de la population 2 trouvé à l'étape 3

Avec les points 1 et 2 déterminés on peut donc trouver l'équation de la courbe de la population 2. La courbe de la population 2 étant pour rappel du type :

$$(10)\log(DDV) = a\,\Delta\sigma + b$$

Le domaine de définition de la population 2 allant de la valeur en cycle du coude 1 (SC1) jusqu'à la valeur en cycle du coude 2 (SC2) du réseau DMW0456-F527B mini m-3s.

Etape 5 : Calcul du point à 1^E9 cycles

Reprise du point de la courbe mini m-3s du réseau DMW0456-F527B à 1^E9 cycles auquel on retire un écart-type.

Etape 6 : Fermeture à 1^E15 cycles

N° de demande: YQ00-336656668-2016 DMD0456-F012B Dossier de construction du Réseau: Validé le: 12/01/2022 5) Passages en CVCM et Commentaires: YQ00-336656668-1934: [DMD0456] Mise à jour des Réseaux LCF dans le cadre de l'optimisation des interpolations en T°C via Validation des réseaux : DMW0456-F528A (DMD0456-F012A) mini m-4s - Le Réseau est construit à partir d'un script externe à Toscane avec la méthode de construction présentée dans la Note DMP-On observe des écarts avec le Réseau DMD0456-F012A et le réseau DMW0456-F528A au niveau : 05/05/2022 des extrapolations à 1 cycle (à cela vient du fait que les fermetures à 1 cycle ont été réalisées à partir d'un prolongement linéaire de la pente identifiée en Pop1) * des extrapolations à haute durée de vie. Ces écarts observés sont pour la plupart conservatifs et/ou dans des zones jugées non critiques. Le réseau est donc validé tel quel. Numéro de demande d'étude d'impact : YQ00-792588068-247 Ce réseau a été diffusé en réseau interpolé tous les 1°C sous le format .ROC YQ00-336656668-1951: Maj des réseaux -2s -4s -5s et -6s Les constructions des réseaux historiques ne respectant plus nos méthodes de construction actuelles il a été décidé de les retracer en suivant la méthodologie proposée par la note DMP-00047863/A en modifiant la valeur de k correspondant au niveau statistique du Décisions : Définition de la méthode d'abattement pour les réseaux -4s, -6s -2s et -5s correspondant aux réseaux historiques suivants : * DMD0456-F012A -> DMW0456-F528B * DMD0456-F024A -> DMW0456-F531A 28/07/2022 * DMD0456-F022A -> DMW0456-F532A * DMD0456-F013A -> DMW0456-F530A La méthode sélectionnée est celle présentée précedemment dans le paragraphe 4.C. Implémentation dans Matépédia: Nouveau formalisme au format BMAT (plus de format ROC pour les réseaux bimodaux) Le .ROC équivalent est à conserver avec un « Warning » sur serveur pour utilisateur averti et n'est pas à mettre dans Matépédia, les deux formalismes n'étant pas équivalents et pouvant dans certains cas donner des résultats en DDV un peu différents dûs à la discrétisation choisie dans les .ROC. 4-79 (200-336656668-2016 [DMD0456] Demande de passage DMW en DMD suite à étude d'impact des Réseaux DMW0456-F527B / DMW0456-F528B / DMW0456-F530A / DMW0456-F531A / DMW0456-F532A Décisions : Validation du passage en DMD des 5 Réseaux DMW0456 G=7-9 : DMD0456-F011B (officialisation du DMW0456-F527B (Mini)) • DMD0456-F024B (officialisation duDMW0456-F531A (m-2s)) • DMD0456-F012B (officialisation du DMW0456-F528B (m-4s)) DMD0456-F022B (officialisation du DMW0456-F532A (m-5s)) 12/01/2023 • DMD0456-F013B (officialisation du DMW0456-F530A (m-6s)) Les Réseaux suivants sont à Réformer : DMD0456-F011A et DMW0456-F527B (Mini) • DMD0456-F024A et DMW0456-F531A (m-2s) DMD0456-F012A et DMW0456-F528B (m-4s) DMD0456-F022A et DMW0456-F532A (m-5s) • DMD0456-F013A et DMW0456-F530A (m-6s) Validé le : Personnes présentes: Expert: 12/01/2022 J. LEBLANC M. POIROT, A. BOUMAZA, M. AL KOTOB, J. DUMONT

N° de demande: YQ00-336656668-2016 Dossier de construction du Réseau: DMD0456-F012B 12/01/2022 Superposition des réseaux DMW0456-F528B et DMD0456-F012A **350.0C** DDV **20.0C** DDV 200.0C **450.0C** DDV 10⁴ 1 10³ 10⁶ 10³ 10⁶ 10³ 10⁶ 10³ 10⁶ 1000 1000 1000 1000 500 500 500 500 Ó Ò Ó 20 Ó -20 20 diff relative % diff relative % diff relative % diff relative % 650.0C DDV 550.0C 700.0C DDV 10⁴ DDV 10⁶ 10⁶ 10³ 10³ 10³ 10⁶ 1000 1000 1000 500 500 500 Ò 20 -20 20 20 diff relative % diff relative % diff relative % DMD0456-F012A.roc DMW0456-F528B.roc Diff relative à iso contrainte Superposition des réseaux DMW0456-F528B et DMD0456-F012A Zoom **450.0C** DDV 10⁵ **350.0C** DDV 10⁵ **20.0C** DDV 10⁶ **200.0C** DDV 10⁶ 10⁵ 10⁵ 10⁷ 10⁷ 10⁷ 10 500 600 600 400 400 400 400 300 300 200 200 200 200 20 10 20 diff relative % diff relative % diff relative % diff relative % 700.0C 550.0C 650.0C DDV DDV 10⁷ 10⁷ 10⁷ 10 600 600 400 400 400 200 200 20 -20 Ó 20 -20 Ó 20 diff relative % diff relative % diff relative %