Review of Signals and Systems-II

Dr. B. Sainath
EEE Dept., BITS PILANI

Aug., 2017

Important Instructions

- Try to complete all tasks within 2 hours. After 2 hrs, evaluation starts.
- For each subtask, create mfiles (eg. CT_HT.m) and save them with suitable name.
- Prepare a word document naming your name and ID. In it, save all results including plots.
- In all plots, put x-label, y-label, legend, font 'Arial' (Size = 10), and, Width '2'.

Task 1: Convolution of continuous-time signals

- Understand following commands/operators
 - size
 - max
 - zeros
 - &&
 - conv
 - subplot
- Question (a): Convolution of identical rectangular pulses
 - Write a MATLAB function for x(t) = u(t+1) u(t). Name it rect_pulse.m.
 - Write a program to find convolution of two identical, rectangular pulses x(t) = u(t+1) u(t)
 - Use $f_s = 100$; $T_s = \frac{1}{f_s}$; t = -5: T_s :5
 - hint: Call 'rect_pulse.m' in your main program.
 - Plot both input and output (use subplot)
 - **Question:** What is the output if x(t) = rect(2t)u(t) convolved with itself

Task 1: Q. (b):

- Question (b): Convolution of non-identical rectangular pulses
 - Write two MATLAB functions rect_pulse1.m and rect_pulse2.m. Modify your logic based on data in the question below.
 - Write a program to find convolution of two non-identical rectangular pulses $x_1(t) = \text{rect}(t+0.5)u(-t)$ and $x_2(t) = \text{rect}(t+0.4)u(-t)$
 - Hint: Call 'rect_pulse1.m', 'rect_pulse2.m' in your main program. In the main program, set $f_s = 100$; $T_s = \frac{1}{f_s}$; t1 = -5: T_s :5; t2 =-4: T_s :4;
 - Opening Plot both input pulses and output pulse in the same figure. Differentiate them by color/line style

Task 2: RC network impulse response

• Question: What is the impulse response h(t) of RC network shown?

Figure: RC network.

• Questions:

- Write a program to plot the impulse response and its amplitude spectrum (Hints: Write a function using fft and fftshift commands. Call it in main program. Set time constant $\tau = RC = 1$. Make sure that spectrum is centered at origin.)
- Let the input be a rectangular pulse x(t) = rect(3t). What is the area under output autocorrelation function (ACF)? (Non-MATLAB question)

