Exercices

Partie 1: Espaces Vectoriels

- 1. Vérification des axiomes : Montrer que l'ensemble $V = \{(x, y) \in \mathbb{R}^2 \mid x, y \in \mathbb{R}\}$, muni des opérations usuelles d'addition et de multiplication par un scalaire, est un espace vectoriel.
- 2. Espaces vectoriels de fonctions : Soit V = C([0,1]), l'ensemble des fonctions continues définies sur [0,1]. Vérifiez que V est un espace vectoriel sur \mathbb{R} . Justifiez.
- 3. Sous-ensemble non vectoriel : L'ensemble $W = \{(x,y) \in \mathbb{R}^2 \mid x > 0\}$ est-il un espace vectoriel ? Justifiez.

Partie 2: Sous-Espaces Vectoriels

- 1. Vérification d'un sous-espace : Démontrer que $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Intersection de sous-espaces : Soient $W_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}$ et $W_2 = \{(x, y, z) \in \mathbb{R}^3 \mid y + z = 0\}$. Déterminez si $W_1 \cap W_2$ est un sous-espace vectoriel de \mathbb{R}^3 .
- 3. **Génération d'un sous-espace** : Trouvez la dimension et une base du sous-espace W de \mathbb{R}^3 engendré par les vecteurs $\mathbf{v}_1 = (1, 2, 1)$, $\mathbf{v}_2 = (2, 4, 2)$ et $\mathbf{v}_3 = (0, 0, 1)$.

Partie 3: Applications Linéaires

- 1. **Définition et propriétés** : Vérifiez si les fonctions suivantes sont des applications linéaires. Justifiez :
 - $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x+y, 2x-y),
 - $\bullet \ g:\mathbb{R}^2 \to \mathbb{R}^2, \, g(x,y)=(x^2,y^2).$
- 2. Noyau et image : Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$, définie par f(x, y, z) = (x + y, y + z). Trouvez une base du noyau $\ker(f)$ et de l'image $\operatorname{Im}(f)$.
- 3. Représentation matricielle : Représentez l'application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x,y) = (x-y,2x+y,3y) sous forme matricielle.

Partie 4 : Théorème Fondamental de l'Algèbre Linéaire

- 1. Calcul dimensionnel : Soit $f : \mathbb{R}^4 \to \mathbb{R}^3$ une application linéaire telle que dim $(\ker(f)) = 2$. Quelle est la dimension de l'image $\operatorname{Im}(f)$?
- 2. Exemple avec des matrices : Soit $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$. Trouvez :
 - \bullet La dimension du noyau de A,
 - La dimension de l'image de A,
 - Une base pour chacun.

Partie 5 : Applications à la Géométrie

- 1. Transformation géométrique : L'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ est définie par f(x,y) = (2x,3y). Décrivez l'effet de cette transformation sur le plan.
- 2. **Projection** : Trouvez la matrice de l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ qui projette orthogonalement tout vecteur sur le plan x+y+z=0.

1