

$-> \frac{2f}{2x_i}(x_0) := \lim_{n\to0} \frac{f(x_0 + hei) - f(x_0)}{h}$
olore ei = (0,0,, 1,00) 1-esima posizion
J: A C IR^ -> IR si dice DERIVABILE in X0 eA se in X0 essistions totte le derivate parzieli.
Si du a du j et DERIVADITE in A 2 étabrivable in agri xo e A.
Escupio 1 $m = 2$ $\int : \mathbb{R}^2 \rightarrow \mathbb{R}$
$\delta(x,y) = x^2 + \frac{5}{y}$, $(x_0,y_0) = (4,\sqrt{5})$
$ > \frac{\partial f}{\partial x}(x_1y_1) = 2x $
$ > \frac{\partial \mathcal{J}}{\partial y} (x_1 y_2) = -\frac{5}{y^2} $ $ > \frac{\partial \mathcal{J}}{\partial y} (x_0 y_0) = -\frac{5}{y_0^2} = -1 $
Esemple 2 $f(x,y) = \frac{x-y}{x+y}$
$ > \frac{2t}{2x}(x,y) = \frac{1 \cdot (x+y) - (x-y) \cdot 1}{(x+y)^2} = \frac{x+y-x+y}{(x+y)^2} = \frac{2y}{(x+y)^2} $
$ > \frac{\partial f}{\partial y}(x_1y) = \frac{(-1) \cdot (x_1y) - (x_2y) \cdot 1}{(x_1y)^2} = \frac{-x_1y - x_2y}{(x_1y)^2} = \frac{-2x_1}{(x_1y)^2} $
Escupso 3
$f(x,y) = y^3 \sqrt{x}$. Calcolore le derivate pouziele di f respetto $= x$ $x^{\frac{1}{3}} \qquad \text{in } (0,0) = x0 .$
$> 2f(x,y) = y \frac{1}{2} = \frac{y}{2} = \frac{x=0 \text{ nou } \vec{e} \text{ define}}{2}$

> 01	(xy) = u 1 1 =	y x=0 nou é définée
		x=0 non é défine
=> 3	$\frac{1}{h} = \frac{hu}{h} = \frac{h(h,0)}{h}$	$-\frac{1}{2}(0,0) = \lim_{N \to 0} 0 = 0$
Del Se f : A	schem-> IR é denie hit	le in xo e A, si cluisme
	TE di j in xo le vett	
	$\nabla \left\{ \left(\overline{x}_{0}\right) \right\} = \left(\begin{array}{c} 0 \\ 0 \\ \end{array} \right) \left(\underline{x}_{0} \right)$),, Of (xo))
	Ac	
	Vj: R -> R	
Equation		
Esupro 4	j, 1R^ -> 1R,	
	((x) + R	dore $ X = \sqrt{x_1^2 + \cdots + x_n^2}$
Celo	don le der. portrioli $in \times .$	
• <u>of</u> (×)	$=\frac{\partial}{\partial(x_i)}\left(e^{\sqrt{\chi_1^2 i \chi_1^2 \chi_m^2}}\right) (x)$	$= \frac{1}{2} (x_1^2 + \dots + x_n^2)^{-\frac{1}{2}} \cdot 2x_1 \cdot e^{ X } =$
	$\frac{x_i}{1 \times 1}$, $e^{ \underline{x} }$, $e^{\underline{x}}$	x = 0 was has sup!
	151	X = 0 - (0,,0)
• X = Q ,		
	(0) = lim f(hei) -	$\frac{g(p) = \lim_{h \to 0} \frac{e^{\ln e i l} - e^{1p l}}{h}$
		$=\lim_{h\to 0}\frac{e^{-1}}{h}$

$e_{1}' = (0,, 0, 1, 0, 0)$ $e_{1}' - e_{1}'' = e_{2}'' =$	$=\lim_{h\to 0}\frac{e^{-1}}{h}$
1-l> me for 270n	20-2
	$\frac{1}{h \to 0^{+}} \frac{e^{\ln 1}}{\ln 1} = 1$
	1hl
	bin e h = -1
=> f nou é depichel in o.	
Probleme	
· m=1, se j é dérivable in x	o∈A => f e coutino in xo
• $m=1$, se f et derivable in x .	ed esixte la vetta tangette a
	du du

· m > 1,	4
j e derishti in xo eA	of e outine in xo ed esiste
	it piens tengente in xo
	f(xis)
	y y
	X (xo, yo)
Del 1: A c IR^ -> IR, xo e A.	
	Tour a colo de
d é DIFFERENZADIUS in Xo se e	essie un vemore of EIR
$\lambda(x_0+h) - \lambda(x_0) = 0$.h + o(1/21) per / -> 0
0 == = 7	
ί.ε.	
$\lim_{x \to \infty} \beta(x_0 + h) - \beta(x_0)$	- <u>a</u> . <u>h</u> = 0

 $\lim_{\underline{h} \to 2} \frac{\int (\underline{x}_0 + \underline{h}) - \int (\underline{x}_0) - \underline{a} \cdot \underline{h}}{|\underline{h}|} = 0$ Proplo se f é DIFFERENZ in xo e A () f é outino in xo ed estar il piero teyeste in xo Come sons collegate le dérivab e differe? Proplet of DIFFERENZ in XO => 1 DERIVAB in XO e a = \f (x0)
\[
\varepsilon \text{(x0)} \\
\varepsilon \\
\varepsilon \text{(x0)} \\
\varepsilon \varepsilon \text{(x0)} \\
\varepsilon \text{(x0)} \\
\varepsilon \varepsilon \text{(x0)} \\
\varepsilon \varepsilon \text{(x0)} \\
\varepsilon \varepsilon \text{(x0)} \\
\varepsilon \varepsilon \varepsilon \\
\varepsilon \varepsilo (Coroll 1) se f mon e den'vahile in xo => f non toleflererz in xo Esuplo 5 $\begin{cases} \frac{x^2y^3}{x^4+y^4}, & (x_1y) \neq (0,0) \\ 0, & (x_1y) = (0,0) \end{cases}$ d et duffereziels. in (0,0)? · Calcola le derivate porabili in (0,0): $> \frac{2f}{2x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$ $> \frac{\partial f}{\partial x}(0,0) = \lim_{n\to\infty} \frac{f(0,n) - f(0,0)}{n} = \lim_{n\to\infty} \frac{f(0,n)}{n} = 0$

	In	qvzl	i piv	oti e	-ol.j	ferez:	e) le	?											
Ce	ا حملن ي																		
		> '	ી	(X18) <u>-</u>	y 3/3													
		(∂×			V													
		> 9:	! (xia)	_	Х													
		لاو ک	r		3	3 y = 3													
o											1	ı.							
ير حق	<u> </u>	(x1g)	(Qe)	r y	40	-					7	(king	, y						
											u X								
	=	> 6	j é	oliffe	142)	elili	in	(xy	s) ,	y <i>40</i>									
\sim	_																		
2° c	~	(x)	0)																
-	_			s 90	4 (x .) _	liu	d (x.h.)) _ {	(x10) =						
				9)	(,)	_	h->0	<u> </u>	7/10/	n (
							1		١.	<u>1</u> 3			1.1						
							= 1 h	Ju ->0	×h	h		=	иш h->0	×.	1 h=3				
										• •									
			0	se	× ≠	0	=>	ie	lini	e no	u est	8T4 (inf:	uto) =	> (f no	n e	DIFF
																i'n	(>(>	·	con)
														,		1)			
)		
																	9		
				اد) ,										yex (
			•	24	(0	0101	= 0	5											
				,															
					- >		0,0)	na	u s ⁻ s	. م									
-																			
)1	Deriv	ete.	di a	rduh	u 8	rper	ione		J	: A	⊆ R^	n_	> 1R						
-						١	_	1	U										
. ^	_ 0		17	. \	_		21				~ () _			-	,		Δ	~ IO
• (1)	= 2 ,	ĺ	0 C X1	8)	į.		0.4 0.4	(>1	()	,	0	ト(ペ	4)	2	OVVO	Lus	UL.	() —	-> IIC

	$\frac{\partial^{2} f}{\partial y^{2}} (x_{1}y) = 2x^{3} - 36xy^{2}$
	$\frac{3^{2}}{2^{2}}$ (x18) = $6 \times ^{2} y - 12 y^{3}$
$\Rightarrow H_{\mathcal{J}}(x,y) = \begin{bmatrix} 6xy^2 \\ -1 \end{bmatrix}$	$6x^{2}y - 12y^{3}$ $2x^{3} - 36xy^{2}$
Eseros f(xy) = xy xy	Colcolore Heosona.
Res: Hy (xy) = $\begin{bmatrix} -\frac{2y^2}{(x+y)^3} & \frac{2xy}{(x+y)} \\ \frac{2xy}{(x+y)^3} & -\frac{2x^2}{(x+y)} \end{bmatrix}$	
$\begin{bmatrix} \frac{2xy}{(x+y)^3} & -\frac{2x^2}{(x+y)^3} \\ \frac{2xy}{(x+y)^3} & \frac{2x^2}{(x+y)^3} \end{bmatrix}$	