Домашнее задание по курсу "Математическая логика - 2"

1 Язык и аксиоматика теории множеств

§ 1.3

Условие Доказать, что $\emptyset \neq \{\emptyset\}$.

Доказательство По определению

 $x = y \rightleftharpoons \forall t (t \in x \Leftrightarrow t \in y).$

Пусть $\emptyset = \{\emptyset\}, \Rightarrow \forall t (t \in \{\emptyset\} \Leftrightarrow t \in \emptyset)$ Противоречие для $t = \emptyset$

§ 1.4

Условие Доказать, что $\{\{1,2\},\{2,3\}\}\neq\{1,2,3\}$.

Доказательство По определению

 $x = y \Longrightarrow \forall t (t \in x \Leftrightarrow t \in y).$

Пусть $\{\{1,2\},\{2,3\}\}=\{1,2,3\},$ \Rightarrow $\forall t(t\in\{1,2,3\}\Leftrightarrow t\in\{\{1,2\},\{2,3\}\})$ Противоречие для t=1

§ 1.6

Условие Доказать, что ∃ лишь одно множество, не имеющее элементов.

Доказательство Пусть \exists два множества X и X_0 , не имеющих элементов и такие, что $X \neq X_0$

$$\Rightarrow \exists t (t \in X \Rightarrow t \not\in X_0)$$

Противоречие так как $\nexists t \in X$.

§ 1.8

Условие Доказать, что множество всех корней многочлена $\alpha(x) = \beta(x)\gamma(x)$ есть объединение множеств корней $\beta(x)$ и $\gamma(x)$.

Доказательство Чтобы докаказать, что множество корней = объединения множеств, надо доказать, что любой корень является либо корнем $\beta(x)$ либо $\gamma(x)$ и что других корней не существует.

1) Пусть существует корень x_0 , который не является корнем ни $\beta(x)$, ни корнем $\gamma(x)$ $\Rightarrow \alpha(x_0) = 0, \beta(x_0) \neq 0, \gamma(x_0) \neq 0$. Противоречие 2) Пусть x_0 корень $\beta(x)$ или $\gamma(x)$, тогда $\beta(x_0) = 0$ или $\gamma(x_0) = 0 \Rightarrow \alpha(x_0) = 0$

§ 1.9

Условие Доказать, что персечение множеств действительных корней многочленов $\alpha(x)\beta(x)$ с действительными коэффицентами совпадает с множеством всех действительных корней $\gamma(x) = \alpha^2(x) + \beta^2(x)$.

Доказательство Чтобы докаказать, что множество корней = персечение множеств, надо доказать, что любой корень из пересейчения является корнем и что других корней не существует.

1)Если x_0 корень $\alpha(x)\beta(x) \Rightarrow \gamma(x_0) = 0$ 2)Пусть существует корень $\gamma(x)x_0$, который не является корнем ни $\alpha(x)$, ни корнем $\beta(x)$

Тогда
$$\gamma(x_0) = 0 \Rightarrow \alpha^2(x_0) + \beta^2(x_0) = 0 \Rightarrow \alpha(x_0) = 0 \& \beta(x_0) = 0$$

§ 1.11 (а, г, ж)

Условие Доказать следующие тождества

$$a)A \cup A = A \cap A = A$$

Доказательство Распишем по определению

$${Z \mid (Z \in A \lor Z \in A)} = {Z \in A \cup A \mid Z \in A \land Z \in A} = A$$

Упростим

$$\{Z \mid (Z \in A)\} = \{Z \in A \cup A \mid Z \in A\} = A \Leftrightarrow A = \{Z \in A \mid Z \in A\} = A \Leftrightarrow A = A = A$$

Условие $\Gamma A \cap (B \cap C) = (A \cap B) \cap C$

Доказательство

Условие ж) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Доказательство

§ 1.15

Условие Доказать, что

a)
$$(A_1 \cup ... \cup A_n) \triangle (B_1 \cup ... \cup B_n) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_n \triangle B_n)$$

Доказательство Докажем по индукции:

База индукции

$$n=1) \ (A_1) \triangle (B_1) \subseteq (A_1 \triangle B_1) \ (очевидно)$$

n=2)
$$(A_1 \cup A_2) \triangle (B_1 \cup B_2) \subseteq (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$$
 (Доказывалось на уроке)

Преположение индукции

Пусть верно для $\forall n < k$

Шаг индукции

Докажем для k+1

$$(A_1 \cup ... \cup A_k + 1) \triangle (B_1 \cup ... \cup B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$
 пусть $A_0 = A_1 \cup ... \cup A_k B_0 = B_1 \cup ... \cup B_k$

$$(A_1 \cup \dots \cup A_{k+1}) \triangle (B_1 \cup \dots \cup B_{k+1}) \Leftrightarrow (A_0 \cup A_{k+1}) \triangle (B_0 \cup B_{k+1}) \subseteq$$

$$\subseteq (A_0 \triangle B_0) \cup (A_k \triangle B_k)$$

$$(A_0 \triangle B_0) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k \triangle B_k)$$

$$\Rightarrow (A_1 \cup ... \cup A_k + 1) \triangle (B_1 \cup ... \cup B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$

Условие б)
$$(A_1 \cap ... \cap A_n) \triangle (B_1 \cap ... \cap B_n) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_n \triangle B_n)$$

Доказательство Докажем по индукции:

База индукции

$$n=1$$
) $(A_1) \triangle (B_1) \subseteq (A_1 \triangle B_1)$ (очевидно)

$$n=2$$
) $(A_1 \cap A_2) \triangle (B_1 \cap B_2) \subseteq (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$ (Доказывалось на уроке)

Преположение индукции

Пусть верно для $\forall n < k$

Шаг индукции

Докажем для k+1

$$(A_1 \cap \dots \cap A_k + 1) \triangle (B_1 \cap \dots \cap B_k + 1) \subseteq (A_1 \triangle B_1) \cup \dots \cup (A_k + 1 \triangle B_k + 1)$$

пусть
$$A_0 = A_1 \cap ... \cap A_k B_0 = B_1 \cap ... \cap B_k$$

$$(A_1 \cap ... \cap A_{k+1}) \triangle (B_1 \cap ... \cap B_{k+1}) \Leftrightarrow (A_0 \cap A_{k+1}) \triangle (B_0 \cap B_{k+1}) \subseteq$$

$$\subseteq (A_0 \triangle B_0) \cup (A_k \triangle B_k)$$

$$(A_0 \triangle B_0) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k \triangle B_k)$$

$$\Rightarrow (A_1 \cap ... \cap A_k + 1) \triangle (B_1 \cap ... \cap B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$

§ 1.17

Условие Определить операции \cup , \cap , \setminus , через:

$$a)\triangle, \cap$$

Доказательство

$$\cap = \cap$$

$$A \cup B = (A \triangle B) \triangle (A \cap B)$$
$$A \setminus B = (A \triangle B) \cap A$$

Условие б)△, ∪

Доказательство

Условие и)\, △

Доказательство

$$A \cup B = (A \setminus B) \triangle$$
$$A \cap B = (B \setminus (A \setminus B))$$
$$\setminus = \setminus$$

§ 1.18

Условие Доказать, что нельзя определить:

- a) \setminus через \cap и \cup
- б) ∪ через ∩ и \

§ 1.20

Условие Найти все подмножества множеств: \emptyset , $\{\emptyset\}$, $\{x\}$, $\{1,2\}$.

Ответ

$$\varnothing$$
 - нет $\{\varnothing\} - \varnothing$ $\{x\} - \varnothing, \{x\}$ $\{1,2\} - \varnothing, \{1\}, \{2\}, \{1,2\}$

§ 2.1

Условие Доказать, что существуют A, B и C такие, что: а) $A \times B \neq B \times A$

Решение

$$A=\{1\}$$
 и $B=\{2\}$, так как, пользуясь определением упорядоченной пары: $(\{1\},\{2\})=\{\{1\},\{1,2\}\}\neq \{\{2\},\{2,1\}\}=(\{2\},\{1\}).$

Условие б) $A \times (B \times C) \neq (A \times B) \times C$

Решение

Условие Доказать, что если A, B, C и D не пусты, то:

а)
$$A \subseteq B$$
 и $C \subseteq D \Leftrightarrow A \times C \subseteq B \times D$ б) $A = B$ и $C = D \Leftrightarrow A \times C = B \times D$

Решение

Очеивдно доказывается методом от противного.

§ 2.6(а, б, г)

Условие Доказать, что:

- a) $(A \cup B) \times C = (A \times B) \cup (B \times C)$
- 6) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- Γ $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$

Решение

2 Отношения и функции

§ 2.8(a, в)

Условие Найти $\delta_R, \, \rho_R, \, R^{-1}, \, R \cdot R, \, R \cdot R^{-1}, \, R^{-1} \cdot R$ для следующих отношений:

- (a) $R = \{(x, y) | x, y \in \mathbb{N} \text{ и } x \text{ делит } y\};$
- (в) $R = \{(x, y) | x, y \in \mathbb{D} \text{ и } x + y \leq 0\}.$

Решение (a) Это отношение - всюдуопределенное, так как для любого x существует y = x, для которого x делит $y \Rightarrow \delta_R = Pr_1(R) = \mathbb{N}$.

Аналогично это отношение - всюдузначное. $\Rightarrow \rho_R = Pr_2(R) = \mathbb{N}$.

$$R^{-1} = \{(x,y)|(y,x) \in R\} = \{(x,y)|x,y \in \mathbb{N} \text{ и } y \text{ делит } x\}.$$

$$R \cdot R \rightleftharpoons \{t \in \mathbb{N} \times \mathbb{N} | \exists u = (u_1, u_2) \exists v = (v_1, v_2) (u \in R \& v \in R \& pr_1(t) = pr_1(u) \& pr_2(u) = pr_1(v) \& pr_2(v) = pr_2(t))\} \sim$$

$$\sim \{(x,y)|x,y \in \mathbb{N} \& \exists u \exists v (u_2 : u_1 \& v_2 : v_1 \& x = u_1 \& u_2 = v_1 \& v_2 = y)\} \sim$$
$$\sim \{(x,y)|x,y \in \mathbb{N} \& y : x\} \Rightarrow R \cdot R = R.$$

(так как $v_2 = y : v_1 = u_2 : u_1 = x$, значит x должен делить y)

$$R \cdot R^{-1} \rightleftharpoons \{t \in \mathbb{N} \times \mathbb{N} | \exists u = (u_1, u_2) \exists v = (v_1, v_2) (u \in R \& v \in R^{-1} \& pr_1(t) = pr_1(u) \& pr_2(u) = pr_1(v) \& pr_2(v) = pr_2(t))\} \sim$$

$$\sim \{(x, y) | x, y \in \mathbb{N} \& \exists u \exists v (u_2 : u_1 \& v_1 : v_2 \& x = u_1 \& u_2 = v_1 \& v_2 = y)\} \sim$$

 $\sim \{(x,y)|x,y \in \mathbb{N}\} \Rightarrow R \cdot R^{-1} = \mathbb{N} \times \mathbb{N}$

(так как $u_2 = v_1 : v_2 = y$ и $u_2 : u_1 = x$, то можно взять в качетстве u_2 число, делящееся и на x, и на y, а сами x и y связаны не будут. Значит, нет дополнительных условий на упорядоченную

пару (x, y))

$$R^{-1} \cdot R \rightleftharpoons \{t \in \mathbb{N} \times \mathbb{N} | \exists u = (u_1, u_2) \exists v = (v_1, v_2) (u \in R^{-1} \& v \in R \& pr_1(t) = pr_1(u) \& pr_2(u) = pr_1(v) \& pr_2(v) = pr_2(t))\} \sim$$

$$\sim \{(x, y) | x, y \in \mathbb{N} \& \exists u \exists v (u_1 : u_2 \& v_2 : v_1 \& x = u_1 \& u_2 = v_1 \& v_2 = y)\} \sim$$

$$\sim \{(x, y) | x, y \in \mathbb{N}\} \Rightarrow R^{-1} \cdot R = \mathbb{N} \times \mathbb{N}$$

(так как $x = u_1 : u_2 = v_1$ и $v_2 = y : v_1$, то можно взять в качетстве v_1 число 1, на которое делится и x, и y, а сами x и y связаны не будут. Значит, нет дополнительных условий на упорядоченную пару (x, y))

(в) Это отношение - всюдуопределенное, так как для любого x существует y=-x, для которого $x+y\leqslant 0 \Rightarrow \delta_R=Pr_1(R)=\mathbb{D}.$

Аналогично это отношение - всюдузначное. $\Rightarrow \rho_R = Pr_2(R) = \mathbb{D}$.

 $R^{-1} = \{(x,y)|(y,x) \in R\} = R$, так как отношение - симметричное.

$$R \cdot R \rightleftharpoons \{t \in \mathbb{D} \times \mathbb{D} | \exists u = (u_1, u_2) \exists v = (v_1, v_2) (u \in R \& v \in R \& pr_1(t) = pr_1(u) \& pr_2(u) = pr_1(v) \& pr_2(v) = pr_2(t)) \} \sim$$

$$\sim \{(x, y) | x, y \in \mathbb{D} \& \exists u \exists v (u_1 + u_2 \leq 0 \& v_1 + v_2 \leq 0 \& x = u_1 \& u_2 = v_1 \& v_2 = y) \} \sim$$

$$\sim \{(x, y) | x, y \in \mathbb{D} \} \Rightarrow R \cdot R = \mathbb{D} \times \mathbb{D}.$$

(условие на x, y: $x + v_1 \le 0$ и $v_1 + y \le 0$, но всегда можно взять v_1 таким, что оба условия будут выполняться)

В силу симметричности отношения $R \cdot R^{-1} = R^{-1} \cdot R = R \cdot R = \mathbb{D} \times \mathbb{D}$.

§ 2.9(a, B)

Условие Доказать, что:

- (a) $\delta_R = \emptyset \Leftrightarrow R = \emptyset \Leftrightarrow \rho_R = \emptyset$;
- (B) $\delta_{R_1 \cdot R_2} = R_1^{-1}(\rho_{R_1} \cap \delta_{R_2}).$

Решение (a)
$$\delta_R = \emptyset \Leftrightarrow \forall u \in \cup \cup R \ \forall v \ (u,v) \notin R \Leftrightarrow R = \emptyset$$
 $\rho_R = \emptyset \Leftrightarrow \forall v \in \cup \cup R \ \forall u \ (u,v) \notin R \Leftrightarrow R = \emptyset$

(B)
$$x \in \delta_{R_1 \cdot R_2} \Leftrightarrow \exists y : (x,y) \in R_1 \cdot R_2 \Leftrightarrow \exists y : \exists u \exists v (u \in R_1 \& v \in R_2 \& x = u_1 \& u_2 = v_1 \& v_2 = y) \Leftrightarrow \exists y \exists z = u_2 = v_1 : (x = u_1, z) \in R_1) \& (z, y = v_2) \in R_2 \Leftrightarrow \exists z : (x, z) \in R_1 \& z \in \delta_{R_2} \Leftrightarrow \exists z : (z, x) \in R_1^{-1} \& z \in \rho_{R_1} \& z \in \delta_{R_2} \Leftrightarrow x \in R_1^{-1}(\rho_{R_1} \cap \delta_{R_2}).$$

§ 2.12 (б, г)

Условие Доказать, что для любых бинарных отношений:

- (6) $(R^{-1})^{-1} = R;$
- $(\Gamma) (R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}.$

Решение

$\S 2.13$

Условие Для каких бинарных отношений R справедливо $R^{-1} = -R$?

Решение Пусть $R \subseteq A \times B$.

(1) Предположим, что $x \in A \cap B$. Тогда $(x,x) \in R \Leftrightarrow (x,x) \in R^{-1}$. Если $R^{-1} = -R$, то получим, что (x,x) лежит и в отношении, и в его дополнении, чего быть не может.

(2) Значит, $A \cap B = \emptyset$. По определению $R \subseteq A \times B$, $R^{-1} \subseteq B \times A$. Значит, $-R = R^{-1} = \emptyset$. Получим, что $R = \emptyset$ и $R = A \times B$, что возможно только при $A = B = \emptyset$.

§ 2.14

Условие

Решение

§ 2.22

Условие

Решение

§ 2.25(а-д)

Условие

Решение

§ 2.31(a)

Условие

Решение

§ 2.32(a)

Условие

Решение

§ 2.34

Условие

Решение

 $\S 2.35$

Условие

Решение

§ 2.38(а, в, д)

Условие

Решение

3 Мощности множеств

§ **4.1**

Условие Доказать, что:

 $A \backsim A$ (рефлексивность)

Если $A \backsim B$, то $B \backsim A$ (симметричность)

Если $A \backsim B$ и $B \backsim$, то $A \backsim$ (транзетивность)

Решение

§ 4.5

Условие Доказать, что:

- а) Всякое подмножество конечного множества конечно
- б) Объединение конечного числа конечных множест кончено
- в) Прямое произведение конечного числа конечных множеств конечно

Доказательство

Доказательство от противного

§ 4.8

Условие Доказать, что множество тогда и только тогда бесконечно, когда оно эквивалентно некоторому своему подмножеству.

Доказательство

В условие имеется введу, подмножество не равное множетсву, тк иначе есть контрпример.

{1} эквивалентен {1}

Докажем лемму о том, что счетное множество $A \sim A \setminus B$, где B конечное множество.

А - счетное, значит все его элементы можно пронумеровать.

Возьмем множество $A \setminus B$, его мы тоже можем пронумеровать, сдвигая каждый раз нумерацию.

- \Rightarrow) Еслим множество бесконечно, то в нем есть счетное подмножество \Rightarrow \exists подмножество нашего счетного множества, которое ему \sim
- \Leftarrow) Если мноетсво \sim свое подмножеству, то оно не может быть конечным, доказывается от противного \Rightarrow оно бесконечно.

§ 4.10 a

Условие Пусть область определения счетна, доказать, что область значений этой функции конечна или счетна.

Доказательство

Докажем, что она не более чем счетна.

Тк область определения счетна, а каждой точки из области оперделения можно поставить в соотвествие значение функции в этой точки \Rightarrow область значений не более чем счетна \Rightarrow

область значений этой функции конечна или счетна.

§ 4.13

Условие Доказать, что:

а) Если A бескончено и B - конечное или счетное множество, то $A \cup B \sim A$

Доказательство Рассмотрим 2 варианта А счетно и А не счетно.

Докажем от противного, что в каждом из этих случаях $A \cup B$ счетно и $A \cup B$ не счетно соответственно.

Условие б) Если А бескончено и несчетно, В конечное или счетное множество, то $A \setminus B \sim A$

Доказательство Пусть это не так \Rightarrow $A \setminus B$ - счетно или конечно. Доказываем от противного, что это невозможно.

§ 4.15

Условие Доказать, что:

а) Множество целых чисел счетно

Доказательство пронумеруем

1	2	3	4	5	6	7	8	
0	1	-1	2	-2	3	-3	4	

Условие б) Множество рациональных чисел счетно

Доказательство пронумеруем

Условие в) Множество рациональных чисел сегмента [a,b] счетно при a < b

Доказательство Множество рациональных чисел сегмента [a,b] - беконечно. (тк множество плотно)

 \Rightarrow оно не менее чем счетно. Но по доказанному выше оно не более, чем счетно \Rightarrow счетно.

Условие г) Множество пар $\langle x, y \rangle$, где х и у - рациональные числа, счетно

Доказательство Множество рациональных чисел счетно.

Тогда выпишем все рациональный числа сеткой и докажем, что кол-во пар сечтно аналогично доказатульству 4.15 б

§ 4.16

Условие Доказать, что множество всех конечных последовательностей, составленных из элементов некотрого счетного множества, есть счетное множество.

Доказательство Докажем, что множество последовательностей длины п счетно.

Используя 4.15 Γ мы знаем, что счетно * счетно = счетно

 \Rightarrow cчетноеⁿ = счетное.

Кол-во последовательностей конченой длиный счетно \Rightarrow множество всех последедовательностей конечной длинны тоже счетно.

§ 4.18

Условие Доказать, что множество многочленов от одной переменной с целыми коэффицентами счетно.

Доказательство Многочлен от одной переменно с целыми коэффицентами представляет из себя конечную последовательных целых чисел ⇒ сводится к задаче 4.16

§ 4.19

Условие Доказать счетность множетсва алгебраических чисел, т. е. чисел, являющихся корнями многочленов от одной переменной с целыми коэвицентами.

Доказательство Кол-во корней у многочлена степени п не более, чем п.

Тк кол-во многочленов с целыми коеффицентами от одной перменной счетно (по задаче 4.18), то и кол-во корней счетно.

Тк можем пронумеровать.

§ 4.20

Условие Доказать, что любое множество попарно непересекающихся открытых интервалов на действительной прямой не более чем счетно.

Доказательство Кол-во рациональных чисел счетно. А в каждом интервале есть хотя бы одно рациональное число ⇒ интервалов не более чем счетное кол-во.

§ 4.23

Условие Доказать, что множетсво точек разрыва монотонной функции на дейсвтительной оси не более, чем счетно.

Доказательство У монотонной функции каждая точка разрыва соответствует интервалу на оси Y

Эти интервалы попарно непересекающиеся \Rightarrow по здадаче 4.20 множесво не более, чем счетно.

§ **4.24**

Условие Доказать, что: a) $(0,1) \sim [0,1] \sim (0,1] \sim [0,1)$

Доказательство

$$(0,1) \sim [0,1]$$
 $1/2 \leftrightarrow 0$ $1/4 \leftrightarrow 1$ $1/k^n \leftrightarrow 4/k^n$ остальные числа переведем в себя же соответственно $(0,1] \sim [0,1]$ $1 \leftrightarrow 1$ $1/2 \leftrightarrow 0$ $1/k^n \leftrightarrow 2/k^n$ остальные числа переведем в себя же соответственно $(0,1] \sim [0,1)$

 $x \leftrightarrow 1/2 - \mid 1/2 - x \mid$ (симметрично отнасительно 1/2)

Условие б) $[a, b] \sim [c, d]$, где a < b, c < d

Доказательство

Условие в) $[a,b] \sim \mathbb{D}$

Доказательство

по пункту а) $(0,1) \sim [0,1]$

