Обобщенные системы координат

Компьютерная геометрия и геометрическое моделирование

2 сентября 2024 г.

План

1 Обобщенные системы координат

2 Линейные векторные пространства

План

Обобщенные системы координат

2 Линейные векторные пространства

Основные определения

Более подробно: Макаров Е. М. Линейные и аффинные пространства в компьютерной геометрии. — Нижний Новгород, ННГУ, 2019. — URL: http://www.lib.unn.ru/students/src/linear-affine.pdf

- Отображение = функция.
- Преобразование = взаимно-однозначное отображение.
- ullet id_U тождественное отображение на множестве U.
- $(f \circ g)(x) = (g; f)(x) = f(g(x)).$

Определение (Система координат)

Пусть U — произвольное непустое множество, называемое в дальнейшем пространством. Элементы U будем называть точками. Пусть $D \neq \emptyset$. Обычно $D \subseteq \mathbb{R}^n$ для некоторого n. Биекция $S\colon D \to U$ называется системой координат на U. Будем называть $S^{-1}(P)$ координатами точки P и обозначать их через [P]S.

Система координат — обобщение единиц измерения.

Определение (Система координат)

Пусть U — произвольное непустое множество, называемое в дальнейшем пространством. Элементы U будем называть точками. Пусть $D \neq \emptyset$. Обычно $D \subseteq \mathbb{R}^n$ для некоторого n. Биекция $S\colon D \to U$ называется системой координат на U. Будем называть $S^{-1}(P)$ координатами точки P и обозначать их через [P]S.

Система координат — обобщение единиц измерения.

Отличия от многообразия:

- U не обязательно метрическое пространство;
- не обязательно $D \subseteq \mathbb{R}^n$;
- S «глобальная» система координат (атлас из одной карты);
- ullet S направлена снизу вверх.

Определение

Пусть $f\colon U\to U$, а $S,S'\colon D\to U$ — две системы координат. Будем говорить, что f сохраняет координаты по отношению к S и S', если

$$[P]S = [f(P)]S'$$

для каждой точки $P \in U.$ В этом случае будем писать S' = f(S).

Равенство S'=f(S) формально ложно, потому что f нельзя применить к S.

Однако имеет место $S'=f\circ S$. Действительно,

$$[P]S = [f(P)]S' \iff S^{-1} = (S')^{-1} \circ f \iff S' = f \circ S.$$

В будущем система координат будет часто задаваться элементами пространства:

- векторами в линейном векторном пространстве (базис);
- точкой и векторами в аффинном пространстве (репер);
- точками в аффинном пространстве (барицентрический репер).

6 / 27

В этих случаях мы увидим, что f(S) действительно получается применением f к элементам пространства, задающим S.

Равенство [P]S = [f(P)]S' читается так: координаты прообраза в S равны координатам образа в S'.

Эквивалентное утверждение $S'=f\circ S$ можно записать так: «следующая диаграмма коммутативна».

Коммутативность означает, что любые перемещения вдоль стрелок с общим началом и концом дают одно и то же отображение.

Замечание о развороте стрелок

Рассмотрим коммутативную диаграмму с начальной вершиной U_1 и конечной вершиной $U_4.$

$$f_3 \circ f_2 \circ f_1 = g_3 \circ g_2 \circ g_1$$

Если стрелка, выходящая из U_1 или входящая в U_4 , соответствует биекции, то ее можно развернуть, и полученная диаграмма по-прежнему будет коммутативной.

Замечание о развороте стрелок

Рассмотрим коммутативную диаграмму с начальной вершиной U_1 и конечной вершиной U_4 .

Если стрелка, выходящая из U_1 или входящая в U_4 , соответствует биекции, то ее можно развернуть, и полученная диаграмма по-прежнему будет коммутативной.

Замечание о развороте стрелок

Рассмотрим коммутативную диаграмму с начальной вершиной U_1 и конечной вершиной U_4 .

Если стрелка, выходящая из U_1 или входящая в U_4 , соответствует биекции, то ее можно развернуть, и полученная диаграмма по-прежнему будет коммутативной.

Определение

Пусть $S,S'\colon D\to U$ — две системы координат. Функцией перехода от S к S' называется отображение $C_{S'}^S$, если диаграмма

коммутативна, то есть если $S' = S \circ C_{S'}^S$.

Функция перехода единственна и является биекцией: $C_{S'}^S = S^{-1} \circ S'$.

Как доказать, что $C = C_{S'}^S$? В силу единственности достаточно показать, что C делает диаграмму коммутативной.

Основное свойство $C_{S'}^S$ (следует из определения): $[P]S = C_{S'}^S([P]S')$.

Мнемоника: $836800\,\mathrm{Дж} = 4184\,\frac{\mathrm{Дж}}{\mathrm{ккал}}\cdot 200\,\mathrm{ккал},$

9 / 27

Пусть S, S^{\prime} и $S^{\prime\prime}$ являются системами координат на U.

- 1. $C_{S'}^S \circ C_{S''}^{S'} = C_{S''}^S$.
- 2. $(C_{S'}^S)^{-1} = C_S^{S'}$.
- 3. $C_S^S = \mathrm{id}_D$.

Пусть S, S^{\prime} и $S^{\prime\prime}$ являются системами координат на U.

- 1. $C_{S'}^S \circ C_{S''}^{S'} = C_{S''}^S$.
- 2. $(C_{S'}^S)^{-1} = C_S^{S'}$.
- 3. $C_S^S = \mathrm{id}_D$.

Пусть S, S^{\prime} и $S^{\prime\prime}$ являются системами координат на U.

- 1. $C_{S'}^S \circ C_{S''}^{S'} = C_{S''}^S$.
- 2. $(C_{S'}^S)^{-1} = C_S^{S'}$.
- 3. $C_S^S = \mathrm{id}_D$.

Пусть S, S^{\prime} и $S^{\prime\prime}$ являются системами координат на U.

- 1. $C_{S'}^S \circ C_{S''}^{S'} = C_{S''}^S$.
- 2. $(C_{S'}^S)^{-1} = C_S^{S'}$.
- 3. $C_S^S = \mathrm{id}_D$.

Пусть S, S^{\prime} и $S^{\prime\prime}$ являются системами координат на U.

- 1. $C_{S'}^S \circ C_{S''}^{S'} = C_{S''}^S$.
- 2. $(C_{S'}^S)^{-1} = C_S^{S'}$.
- 3. $C_S^S = \mathrm{id}_D$.

Определение

Пусть S — система координат на пространстве U. Координатной функцией отображения $f\colon U\to U$ в S называется отображение $[f]S\colon D\to D$, которое делает следующую диаграмму коммутативной.

Интуиция: [f]S на уровне координат pprox f на уровне точек.

Основное свойство [f]S (из определения): ([f]S)([P]S) = [f(P)]S.

f и [f]S единственным образом восстанавливаются друг по другу, даже если они не являются биекциями.

Как доказать, что g=[f]S? В силу единственности достаточно показать, что g делает диаграмму коммутативной.

Если
$$f(S)=S'$$
, то $[f]S=C_{S'}^S$.

В силу единственности достаточно показать, что $C_{S'}^S$ выполняет роль [f]S, то есть делает квадрат коммутативным.

Это следует из коммутативности треугольников.

Еще одно объяснение: $[P]S = [f(P)]S' \xrightarrow{C_{S'}^S} [f(P)]S$.

- 1. $[f \circ g]S = ([f]S) \circ ([g]S)$.
- 2. $[\mathrm{id}_U]S = \mathrm{id}_D$.
- 3. Если f преобразование, то $[f^{-1}]S = ([f]S)^{-1}$.

По условию квадраты коммутативны, следовательно, весь прямоугольник также коммутативен.

Сравнение функций перехода и координатных функций

- $\bullet \ C_{S'}^S \circ C_{S''}^{S'} = C_{S''}^S$
- $[f \circ g]S = ([f]S) \circ ([g]S)$

Различия

- Композиция функций перехода записывается слева направо,
 - lacktriangle Сначала происходит переход от S к S', а затем от S' к S''.
- Композиция координатных функций записывается справа налево.
 - Сначала к точке применяется q, затем f.
- В цепочке композиций функций перехода каждая следующая использует систему координат, полученную из предыдущей.
- В цепочке композиций отображений все координатные функции берутся в одной и той же системе координат.

Теорема 4

Рассмотрим отображение $f\colon U\to U$ и системы координат $S,S'\colon D\to U$. Пусть $g\colon U\to U$ будет преобразованием, сохраняющим координаты по отношению к S и S', а $h\colon U\to U$ будет таким отображением, что [h]S'=[f]S. Тогда $f=g^{-1}\circ h\circ g$.

Треугольники коммутативны в силу предположения о g, а трапеция — по определению [h]S'.

Отсюда следует коммутативность прямоугольника.

Но f единственным образом восстанавливается по [f]S.

- Будем называть S «известной» системой координат, поскольку [f]S известна, а S' «неизвестной», поскольку [f]S' неизвестна.
- ullet g сохраняет координаты по отношению к S и S'.
- [h]S' = [f]S: h делает в S' то же, что f делает в S.
- Тогда $f = g^{-1} \circ h \circ g$.
- Интуитивно: преобразуем S в S', делаем наше отображение, преобразуем обратно.

Более привычно через S обозначить стандартную (неизвестную) систему координат, а через S' — нестандартную (известную) систему координат.

(См. следующий слайд.)

Также удобнее найти и обозначить через g преобразование, сохраняющее координаты по отношению к новым S и S'.

Более привычно через S обозначить стандартную (неизвестную) систему координат, а через S' — нестандартную (известную) систему координат.

Также удобнее найти и обозначить через g преобразование, сохраняющее координаты по отношению к новым S и S'.

Равенство $f = g \circ h \circ g^{-1}$ можно записать в координатах S:

$$[f]S = [g]S \circ [h]S \circ ([g]S)^{-1}$$
$$= (C_{S'}^S) \circ ([f]S') \circ (C_{S'}^S)^{-1}$$

так как g(S) = S' влечет $[g]S = C_{S'}^S$ (утверждение 2).

Например, в документации Java написано про метод

void rotate(double theta, double x, double y)

осуществляющий поворот на θ вокруг точки (x,y):

This is equivalent to the following sequence of calls:

```
translate(x, y);  \text{cp. } [f]S = (C_{S'}^S) \circ ([f]S') \circ (C_{S'}^S)^{-1} \\ \text{translate(-x, -y);}
```

19 / 27

План

Обобщенные системы координат

2 Линейные векторные пространства

Базис как система координат

Рассматриваем конечномерные векторные пространства над $\mathbb R$.

Базис $E = (e_1, \dots, e_n)$ определяет систему координат:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto x_1 e_1 + \ldots + x_n e_n.$$

Из свойств базиса вытекает, что $E\colon \mathbb{R}^n \to V$ — биекция.

Утверждение 5

Функция перехода $C_{E'}^E$ от E к $E'=(e'_1,\ldots,e'_n)$ определяется умножением на матрицу, состоящую из столбцов $\left([e'_1]E \ldots e'_n]E\right)$.

Доказательство. Рассмотрим координаты $v = x_1'e_1' + \ldots + x_n'e_n'$ в E:

$$[v]E=x_1'[e_1']E+\ldots+x_n'[e_n']E.$$
 Это и означает $egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}=ig([e_1']E&\ldots&[e_n']Eig)ig(egin{pmatrix} x_1' \ dots \ x_n' \end{pmatrix}.$

Линейные отображения

Отображение $f\colon V\to V'$ называется линейным, если оно сохраняет операции векторного пространства, то есть

$$f(u+v) = f(u) + f(v), \quad f(\lambda v) = \lambda f(v)$$

для любых $u, v \in V$ и $\lambda \in \mathbb{R}$.

Легко показать:

- 1. тождественное отображение линейно;
- 2. композиция линейных отображений линейна;
- 3. отображение, обратное к линейному преобразованию линейно.

Система координат, порождаемая базисом (предыдущий слайд) — линейное отображение.

Утверждения на предыдущих слайдах использовали понятие отображения, сохраняющего координаты.

Следовательно, нужно доказать, что сохранение координат равносильно линейности.

Эквивалентность линейности и сохранения координат

Утверждение б

Пусть V-n-мерное векторное пространство, $f\colon V\to V$ и $E=(e_1,\ldots,e_n)$ — базис V.

- 1. Если f линейное отображение, то $f \circ E = E'$, где $E' = (f(e_1), \dots, f(e_n)).$
- 2. Обратно, если $f\circ E=E'$ для некоторой системы векторов E', то $E'=(f(e_1),\dots,f(e_n))$ и f линейное отображение.
- 1. Следует из $f(x_1e_1 + \ldots + x_ne_n) = x_1f(e_1) + \ldots + x_nf(e_n)$.
- 2. Пусть $f\circ E=E'.$ Тогда $f=E'\circ E^{-1}$ линейно как композиция линейных отображений. Заметим, что биективность E' не используется.

$$f(e_1) = f(E(1,0,\ldots,0)) = E'(1,0,\ldots,0) = e'_1$$
 и аналогично для других e_i .

Матрица линейного отображения

Пусть $E=(e_1,\ldots,e_n)$ — базис.

Обозначение E'=f(E) на слайде 6 означает $E'=f\circ E.$

Согласно п. 2 утверждения 6, $E' = f \circ E$ влечет $E' = (f(e_1), \dots, f(e_n)).$

Поэтому $f(E)=(f(e_1),\ldots,f(e_n)).$

Согласно п. 1 утверждения 6, если f линейно, то оно сохраняет координаты по отношению к E и f(E).

Следовательно, согласно утверждениям 2 и 5, имеет место равенство $[f]E=C_{f(E)}^E$, то есть [f]E есть матрица, состоящая из столбцов $[f(e_1)]E,\ldots,[f(e_n)]E$.

Направление системы координат как отображения

Заметим, что для равенства $f\circ E=E'$ отображения E и E' должны преобразовывать координаты в векторы, а не наоборот (причина направления S на слайде 5).

Еще одно преимущества такого выбора в том, что отображение $E'\colon \mathbb{R}^n \to V$ определено для линейно зависимых систем E'.

Это позволяет обобщить определения «f сохраняет координаты по отношению к E и E'» и «функция перехода от E к E'» для для линейно зависимых E' и сохранить утверждение $[f]E=C_{f(E)}^E$ (следующая лекция).

Основные линейные отображения на плоскости

Поворот (rotation)

Поворот в направлении от e_1 к e_2 ; иначе нужно сменить знак угла.

Масштабирование (scaling)

$$e'_{2} = \mu e'_{2}$$

$$e'_{1} = \lambda e_{1}$$

$$S(\lambda, \mu) = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$

S(-1,1) есть симметрия относительно оси Oy (обозначение: S_y). S(1,-1) есть симметрия относительно оси Ox (обозначение: S_x). S(-1,-1) есть симметрия относительно точки O. $S(\lambda,\lambda)$ есть гомотетия с центром в O.

Основные линейные отображения на плоскости

Сдвиг (shear)

$$Sh(a,b) = \begin{pmatrix} 1 & a \\ b & 1 \end{pmatrix}$$

Единичный квадрат переводится в показанный параллелограмм.

Не путать с параллельным переносом.

