

Journée Nationale de la Lithographie par Nano-Impression 2021

La nano-impression @ Nanolyon - plateforme INL

L'Institut des Nanotechnologies de Lyon

développer des recherches multidisciplinaires dans le domaine des Micro et Nanotechnologies

Actif pour les enjeux sociétaux:

Energie

Santé

Environnement

4 AXES THEMATIQUES (5 EQUIPES)

- Matériaux fonctionnels
- Electronique
- Photonique-Photovoltaïque
- Biotechnologies Santé

~ 200 personnes

- 68 Pr et MCF 18 CR et DR
- 34 pers. Techniques et Administratifs
- 70 doctorants 10 post-docs

Les recherches menées s'étendent des matériaux aux systèmes, permettant l'émergence de filières technologiques complètes et s'appuient sur les moyens disponibles de la plateforme de nanotechnologie Nanolyon

Les structures d'appui et de développement du laboratoire, en lien avec la nano-impression

manolyon

un parc complet d'équipements, des expertises spécifiques pour

l'émergence de concepts originaux

Du procédé de micro-nanofabrication au développement de filières, du dispositif innovant au système instrumental avancé

Plateau technique de 1400 m² comprenant 600 m² de salles blanches (ISO5-ISO7) et plus de 800 m² d'espaces technologiques et de caractérisation en atmosphère contrôlée (ISO8) pour une valeur de l'ordre 5 M€.

Parc d'équipements d'une valeur de près de 11 M€

Moyens numériques importants (simulation multiphysique/multiéchelle)

Ressources humaines au 01/01/2021 : 21 personnes (20 ITA/BIATS) – 11,5 ETP

Utilisateurs habilités : 200 actifs – 650 archivés

Taux d'ouverture : 20 à 30% (Académiques et Industriels)

croissance, dépôts, lithographie, gravure, métrologie, caractérisation, biotechnologies, back-end

Du cm² à la plaque (100 mm en routine – jusqu'à 200 mm sur certains équipements)

Matériau → Composant discret → Intégration

Structuration: quels enjeux?

Integrated photonic / Si

Taille de structures contraintes

 $r\sim 80-90 \text{ nm } \Delta Rc = Rc1 - Rc2 \sim 1-10 \text{ nm}$ T: 300 nm

Color printing

Photonic crystals

grande surface

Nanophotonic for Photovoltaic

Surface nanopatterning

grande surface

Biocapteurs

Matériau variés

Photonic crystals on porous silicon

STAMP

- Hard stamp
 - Silicium
 - Wafer verre
- Soft stamp
 - PDMS
 - h-PDMS

OUTILS

UV-NIL
Th-NIL par hot embossing
Step and repeat

RESINES

Résines commerciales AMONIL, mr-NIL, PMMA... Sol-Gel TiO2 développés par LHC @ Saint-Etienne

STAMP

- Hard stamp
 - Silicium
 - Wafer verre
- Soft stamp
 - PDMS
 - h-PDMS

FABRICATION

- Lithographie interférentielle
 - Structuration périodiques (semi-) @ ~130nm Taille ~cm²
- Lithographie électronique
 - Structuration nano Taille mm²

Exemples de réalisations de tampons silicium et verre

PDMS

PDMS

Du cm² au 4"

Kit RTV615

(monomers + reticulent)

Nanopatterned substrate (« master sample »)

Solution d'injection de PDMS INL

Tampons PDMS: qqs exemples

CP multipériodiques

UV-NIL sur Solgel TiO2

Thermal NIL – réalisations

200mm

15 x 15 cm²

10T

300 °C

Presse thermique

Th-NIL sur perovskite

Th-NIL sur TiO2 sol gel

Step and Repeat NIL

07/2021: Acquisition de la NPS300

UV-NIL + Thermal-NIL

PROCESS Step and Repeat Alignement <300nm

Tampons: de l'échantillon millimétrique up to 2" **Imprint:**

> Jusqu'au 200mm Force: 4000N

Température : up to 450°C

Step and Repeat NIL

1 OBJECTIF MAJEUR

=>>>>>> Patterning grande surface avec tampons de petite surface (mm²)

Step and Repeat NIL

En cours de développements process en UV-NIL ET thermal-NIL

Ex thèmes scientifiques 1/2

PHOTOCATALYSE

MANAGEMENT DE PHOTONS
PAR μ/NANOSTRUCTURATION
POUR LA DEPOLLUTION ET LA
PHOTOSYNTHESE ARTIFICIELLE

Approche 1: NIL sur résine + plasma etching

Approche 2: direct NIL sur sol-gel

Ex thèmes scientifiques 2/2

PHOTOVOLTAIQUE

FILTRES SELECTIFS COLORES POUR
L'INTEGRATION DE PANNEAUX SOLAIRES
SUR DES GRANDES SURFACES

« SURFACES μ/NANOSTRUCTUREES semi-transparentes » Régis Orobtchouk, Fabien Mandorlo

Contacts:

celine.chevalier@insa-lyon.fr

Nanolyon: ppittet@univ-lyon1.fr

https://inl.cnrs.fr/nanolyon/

Merci pour votre attention