100	VINAX PARTAP SINCH 2301010 231.
	BTech CSE 4. PAGE NO.: DATE: 1 1
1.1	Address translation in modern System.
	Early generates logical Evizture) address.
	HHU (Memory management unet) translates these into
	thysical address
	Translation steps:
a.)	CPU generates logical address.
6)	MHU Checks page table for consesponding frame number.
c.)	Concaterates frame no + affect to physical address
5.)	Hemory layout.
	Eg: layout
	0 -1: 11 012 11 PL-41 1 20 2044 Processes
	Process Al 100 Kb of 120 Kb Block) Free 30kb Process Bl
	Internal fragmentation: 20 Kb wasted inside. A's block
	External fragmentation: 30 Kb freel, but \$100 small for 40K).
	0 1
→	Mitigation techniques:
	Paging 1. Ex invitates externol aux many lause show its conse
	ecompordation with baging hybrid.
	Buddy sulten allocation.
	slab alleration (in linux)
	a .) .) - Dorothon and of los a Rubathetical OS.
3	Raging-bowed allocation model for a Rypothetical OS. Memory divided into fixed from.
0	Temory actions are great
•	Toods - of
*	Over Read.
×	Speed.

Page May 179 Unused = 259 1(B. All three give same unused memory, but worst - Int may delay fragmentation buildup. Page replacement reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,3 a) FIFO: 9 page faults
Optimal: 7 page faults - LRU: 10 page faults c) Best: Optimal (minimum). FIFO worse due to Belady's anomaly. 8. Disk write = 10 ms Memory winde = 100 ms a) Overhead = 300 × 10 ms z 3000 ms z 3 secondo b) Optimization: Write-back eaching with dirty bit tracking or pre-cleaning (background flush) reduces blocking time. 9 a) working set model + replacement policy · OS tracks recent active pages per task · For object detection: Allocate stable working set For infotamient: Allows flexible replacement so it adapts to available memory b) Memory allocation strategy. · Use priority - based dynamic allocation. Real - time responsiveness ensured by working out + real time schedule