Sampling and Inference for Beta

Networks

Neutral-to-the-Left Models of Sparse

Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh Department of Statistics, University of Oxford

Contents

Background

Temporal networks Asymptotic properties Empirical study

Models

Sampling and inference

Preliminaries

Gibbs sampler

Point estimation

Experiments

Inference

Scalability of Gibbs sampler

Large scale real data experiments

Conclusion

Examples

- ► Messages on WhatsApp
- Posts + replies on StackOverflow

Abstraction

- ▶ Graph grows adding one edge (Z_i, Z_{i+1}) at a time
- ▶ Vertices enter the graph when connected to

Ends of edges $\mathbf{Z}_{n} = Z_{1}, ..., Z_{n}$ E.g. $\mathbf{Z}_{6} = a, b, c, a, d, e$

Number of vertices K_n E.g. $K_6 = 5$

Arrival time of vertex j is $T_j := \inf\{n : Z_n = j\}$ E.g. $T_e = 6$

Degree of vertex j is $d_{j,n}$ E.g. $d_{e,6} = 1$

Degree counts $m_n(d) := |\{j : d_{j,n} = d\}|$ E.g. $m_6(1) = 4, m_6(2) = 1$

Sparsity

- ▶ For a dense graph, $K_n = O(n^{1/2})$
- ► For a sparse graph,

$$K_n = O(n^{1/(1+\sigma)})$$

for
$$0 \le \sigma < 1$$

► Stack Overflow network likely sparse

Power law degree distribution

A power law distribution of exponent η on $\{1,2,...\}$ has

$$p(d) \propto d^{-\eta}$$

where $\eta > 1$.

Power law degree distribution

A power law distribution of exponent η on $\{1, 2, ...\}$ has

$$p(d) \propto d^{-\eta}$$

where $\eta > 1$.

The asymptotic degree distribution has power law tail with exponent $\eta>1$ if

$$\frac{m_n(d)}{K_n} \xrightarrow[n \to \infty]{p} L(d)d^{-\eta} , \qquad (1)$$

for slowly varying function L(d).

Power law degree distribution

A power law distribution of exponent η on $\{1,2,...\}$ has

$$p(d) \propto d^{-\eta}$$

where $\eta > 1$.

The asymptotic degree distribution has **power law tail with** exponent $\eta > 1$ if

$$\frac{m_n(d)}{K_n} \xrightarrow[n \to \infty]{p} L(d)d^{-\eta} , \qquad (1)$$

for slowly varying function L(d).

A slowly varying function L has the property $\lim_{x\to\infty} L(rx)/L(x)=1$ for all r>0 [1].

We have

$$\mathcal{K}_n = \sum_{d=1}^{\infty} m_n(d),$$

$$n = \sum_{d=1}^{\infty} d m_n(d).$$

Suppose $m_n(d)$ is power law distributed

$$K_n = C \sum_{d=1}^n d^{-\eta},$$

$$n = C \sum_{d=1}^n d^{-\eta+1} = K_n \frac{\sum_{d=1}^n d^{-\eta+1}}{\sum_{d=1}^n d^{-\eta}}.$$

Letting
$$n \to \infty$$
 in

$$\frac{K_n}{n} = \frac{\sum_{d=1}^n d^{-\eta}}{\sum_{d=1}^n d^{-\eta+1}}$$

we see $K_n = O(n)$ if $\eta > 2$, $K_n = o(n)$ if $\eta \in (1,2]$.

Letting $n \to \infty$ in

$$\frac{K_n}{n} = \frac{\sum_{d=1}^{n} d^{-\eta}}{\sum_{d=1}^{n} d^{-\eta+1}}$$

we see $K_n = O(n)$ if $\eta > 2$, $K_n = o(n)$ if $\eta \in (1,2]$.

Summary

For sparse graphs, $\sigma=0 \leftrightarrow \eta>2$ and $\sigma>0 \leftrightarrow \eta\in (1,2].$

Empirical study

SNAP datasets [2]

Dataset	# of vertices	# of edges
Ask Ubuntu	159,316	964,437
UCI social network	1,899	20,296
EU email	986	332,334
Math Overflow	24,818	506,550
Stack Overflow	2,601,977	63,497,050
Super User	194,085	1,443,339
Wikipedia talk pages	1,140,149	7,833,140

Ask Ubuntu arrival process

Stack Overflow arrival process

UCI social network arrival process

Ask Ubuntu degree distribution

Estimation used technique of [3]

Todo

- ▶ Recompile the images with better labels on the axes
- ightharpoonup Estimate σ by linear regression

Models

- ▶ Vertex exchangeable models do not give sparsity [4] [5]
- ► Exchangeable point process models [6] have an independent notion of time
- ► Preferential attachment models [7]
- ► Edge exchangeable models [8] [9]

Yule-Simon Process

Parameter $\beta \in (0,1)$.

Arrivals

$$T_{j+1} - T_j \stackrel{\text{i.i.d.}}{\sim} \text{Geom}(\beta)$$

Size-biased reinforcement

$$Z_{n+1}|\mathbf{Z}_n,\mathbf{T}=\left\{egin{array}{ll} K_{n+1} & ext{w.p. 1} & ext{if } n+1=T_{K_{n+1}} \ j & ext{w.p.} & ext{d}_{j,n} & ext{otherwise} \end{array}
ight.$$

Yule-Simon Process

Asymptotic power law degree distribution with

$$\eta = 1 + \frac{1}{1-\beta} > 2$$

and
$$K_n = O(n)$$

Pitman-Yor Process

Parameters $\tau \in (0,1), \theta > -\tau$.

Urn process

$$Z_{n+1}|\mathbf{Z}_n = \left\{egin{array}{l} K_{n+1} & ext{w.p.} & \dfrac{ heta + K_n au}{n+ heta} \ & j & ext{w.p.} & \dfrac{d_{j,n} - au}{ heta + n} \end{array}
ight.$$

Pitman-Yor Process

Asymptotic power law degree distribution with

$$\eta = 1 + \tau \in (1, 2)$$

and
$$K_n = o(n)$$

Edge exchangeable models [9], [8]

"The probability of all orderings of edge arrivals is the same"

 $\eta \in (1,2)$

 \exists a class of models that includes (some) edge exchangeable models, but also YS and admits all the η s

Rewriting the Pitman-Yor Process

Parameters $\tau \in (0,1), \theta > -\tau$.

Arrivals

$$\mathbb{P}(T_{j+1} - T_j > t \mid T_j) = \prod_{i=1}^t \frac{T_j + t - j\tau}{T_j + t + \theta}$$

Size-biased reinforcement

$$Z_{n+1}|\mathbf{Z}_n,\mathbf{T}=\left\{egin{array}{ll} \mathcal{K}_{n+1} \ ext{w.p.} \ 1 & ext{if} \ n+1=T_{\mathcal{K}_{n+1}} \ j \ ext{w.p.} \ \propto (d_{j,n}- au) & ext{otherwise} \end{array}
ight.$$

Beta Neutral-to-the-left Process [10]

Parameters $\alpha \in (-\infty, 1)$ and Λ_{ϕ} a law on \mathbb{N}^{∞} .

Arrivals

$$extsf{T}\sim \Lambda_{\phi}$$

Size-biased reinforcement

$$Z_{n+1}|\mathbf{Z}_n,\mathbf{T}=\left\{egin{array}{ll} K_{n+1} & ext{w.p. 1} & ext{if } n+1=T_{K_{n+1}} \ j & ext{w.p. } \propto \left(d_{j,n}-lpha
ight) & ext{otherwise} \end{array}
ight.$$

Relationship with other model classes

Hierarchical representation of BNTL process

Arrivals

$$\mathbf{T} \sim \Lambda_{\phi}$$

Latent sociabilities

$$\Psi_j | \mathit{T}_j \sim \mathsf{Beta}(1-lpha, \mathit{T}_j - 1 - (j-1)lpha) \ \mathsf{for} \ j \geq 1$$

Left-neutral resampling probabilities

$$P_{j,k+1} = \begin{cases} P_{j,k}(1 - \Psi_{k+1}), & j \in \{1, \dots, k\} \\ \Psi_{k+1}, & j = k+1 \end{cases}$$

Sampling rule

$$Z_{n+1}|\mathbf{P}_{K_n},\mathbf{T}=\left\{egin{array}{ll} K_{n+1} \ \text{w.p.} \ 1 & ext{if} \ n+1=T_{K_{n+1}} \ j \ ext{w.p.} \ P_{j,K_n} & ext{otherwise} \end{array}
ight.$$

BNTL properties

- ► Collapsed sampler
- ► Latent representation
- ▶ But *not* from de Finetti latents change with K_n

Sampling and inference

- ► Sampling posterior on latents
- ▶ Point estimation of latents
- ► Sampling predictive distribution

Sampling and inference

- ► Sampling posterior on latents Condition on what?
- ▶ Point estimation of latents
- ► Sampling predictive distribution

Observation cases

Observation	Unobserved variables
End of edge sequence \mathbf{Z}_n	α, ϕ, Ψ_{K_n}
Vertex arrival-ordered graph	$\alpha, \phi, \Psi_{K_n}, T_{K_n}$
Unlabeled graph	$\alpha, \phi, \Psi_{K_n}, T_{K_n}, \sigma[K_n]$

Sampling Ψ

If \mathbf{Z}_n or d_{K_n} observed

$$egin{aligned}
ho_{lpha,\phi}(oldsymbol{\Psi}_{\mathcal{K}_n},oldsymbol{\mathsf{Z}}_n|oldsymbol{\mathsf{T}}_{\mathcal{K}_n},oldsymbol{\mathsf{d}}_{\mathcal{K}_n})&\propto\prod_{j=1}^{\mathcal{K}_n} & \Psi_j^{-lpha}(1-\Psi_j)^{\mathcal{T}_j-(j-1)lpha-1} \ & \cdot\prod_{j=1}^{\mathcal{K}_n} \Psi_j^{d_{j,n}-1}(1-\Psi_j)^{ar{d}_{j-1,n}-\mathcal{T}_j} \ & \propto\prod_{j=1}^{\mathcal{K}_n} & \Psi_j^{d_{j,n}-lpha-1}(1-\Psi_j)^{ar{d}_{j-1,n}-(j-1)lpha-1} \end{aligned}$$

where

$$\bar{d}_{j,n} = \sum_{i=1}^{j} d_{j,n}.$$

Sampling Ψ

Spot a closed form for Ψ

$$\Psi_j \mid \mathbf{Z}_n, \mathbf{\Psi}_{\setminus j} \sim \mathsf{Beta}(d_{j,n} - lpha, ar{d}_{j-1,n} - (j-1)lpha) \; ,$$

- \blacktriangleright For fixed α , we have our posterior
- ▶ Learning other variables, we have a Gibbs update

Sampling α, ϕ

- ▶ Place priors on α, ϕ
- \blacktriangleright Left with one-dimensional unnormalized density for α and MCMC is applicable
- ► For ϕ , depends on Λ_{ϕ} . Our experiments used conjugacy or slice sampling.

Sampling **T**

Assume

$$\Lambda^{\phi}(\mathbf{T}_k) = \delta_{T_1}(1) \prod_{j=2}^{\kappa} \Lambda_j^{\phi}(\Delta_j | T_{j-1}) ,$$

Support of $T_j - T_{j-1} | T_{\setminus j}$ is

$$\{1,...,\min(T_{j+1}-T_{j-1}-1,\bar{d}_{j-1}-T_{j-1}+1)\}$$

and we can compute each probability

$$p_{\alpha,\phi}(T_j - T_{j-1} = s | \mathbf{T}_{\setminus j}, \mathbf{d}_K) \propto \Lambda_j^{\phi}(s | T_{j-1}) \Lambda_{j+1}^{\phi}(T_{j+1} - T_{j-1} - s) \cdot \begin{pmatrix} \bar{d}_j - T_{j-1} - s \\ d_j - 1 \end{pmatrix}$$

and sample.

Sampling $\sigma[K_n]$

- ▶ Use Metropolis-Hastings with swap proposal $\sigma_j \leftrightarrow \sigma_{j+1}$
- ightharpoonup Ratio of joints can be easily computed in terms of Γ function.

Point estimation

- ► Factorization $p_{\alpha,\phi}(\mathbf{Z}_n) = p_{\alpha}(\mathbf{Z}_n|\mathbf{T}_{K_n})\Lambda_{\phi}(\mathbf{T}_{K_n})$
- ▶ Learn α separately from ϕ using standard optimization (low dimensional)
- lacktriangle We have explicit formulae for MLE/MAP estimates for $oldsymbol{\Psi}$

Synthetic data

- ▶ Simulate 500 edges from the prior with fixed α , Λ_{ϕ}
- ightharpoonup Either \mathcal{PYP} or Geom
- Observe final snapshot of the graph only

Gibbs sampler results

Gen. arrival distn.	Inference model	$ \hat{\alpha} - \alpha^* $	$ \mathbf{\hat{S}} - \mathbf{S}^* $	Pred. log-lik.
$\mathcal{PYP}(1.0, 0.75)$	$(\tau, \mathcal{PYP}(\theta, \tau))$	$\textbf{0.046}\pm\textbf{0.002}$	$\textbf{28.5}\pm\textbf{0.7}$	-2637.0 ± 0.1
PYP(1.0, 0.75)	$(\alpha,Geom(eta))$	0.049 ± 0.004	66.8 ± 1.2	-2660.5 ± 0.7
Geom(0.25)	$(\tau, \mathcal{PYP}(\theta, \tau))$	0.086 ± 0.002	56.6 ± 1.3	-2386.8 ± 0.1
Geom(0.25)	$(\alpha,Geom(eta))$	$\textbf{0.043}\pm\textbf{0.003}$	$\textbf{24.8}\pm\textbf{0.8}$	$\textbf{-2382.6}\pm0.2$

where
$$\mathbf{S} := rac{1}{K_n-1} \sum_{j>1} (ar{d}_{j-1} - T_j)$$

Scalability of Gibbs sampler

- ▶ Do we learn from all data?
- ▶ How does performance scale?

Scalability of Gibbs sampler

- ▶ Do we learn from all data?
- ► How does performance scale?

	n = 200	n = 20000			
$\frac{ \hat{\alpha} - \alpha^* }{ \hat{\alpha} - \alpha^* }$	0.12 ± 0.01	0.01 ± 0.00			
$ \hat{\beta} - \beta^* $	0.02 ± 0.00	0.00 ± 0.00			
ESS	0.90 ± 0.04	0.75 ± 0.08			
Runtime (s)	21 ± 0	2267 ± 2			

► Most expensive Gibss update is for **T**

Large scale real data experiments

- ► MLE point estimation for SNAP datasets
- ► Predictive log-likelihood

$\mathcal{P}\mathcal{Y}\mathcal{P}$ parameter estimates vary coupled and uncoupled

Dataset	Coupled $PYP(\theta, \alpha)$			Uncoupled $\mathcal{PYP}(\theta, \tau)$			$Geom(\beta)$		
	$(\hat{\theta}, \hat{\alpha})$		Pred. I-I.	â	$(\hat{\theta}, \hat{\tau})$	Pred. I-I.			Pred. I-I.
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6
UCI social network	(320.4, 4.4e-11)		-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5
EU email	(113.6, 2.5e-14)		-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7

Edge exchangeable models likely misspecified

Dataset	Coupled $\mathcal{PYP}(\theta, \alpha)$				Uncoupled $\mathcal{PYP}(heta, au)$			$Geom(\beta)$			
			Pred. I-I.	â		Pred. I-I.		$\hat{\eta}$	Pred. I-I.		
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6		
UCI social network	(320.4, 4.4e-11)		-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5		
EU email	(113.6, 2.5e-14)		-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5		
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6		
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8		
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6		
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7		

Though better than Geom for some datasets

Dataset	Coupled $PYP(\theta, \alpha)$				Uncoupled $\mathcal{PYP}(\theta, \tau)$			Geom(eta)		
Dataset			Pred. I-I.	â		Pred. I-I.			Pred. I-I.	
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6	
UCI social network	(320.4, 4.4e-11)		-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5	
EU email	(113.6, 2.5e-14)		-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5	
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6	
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8	
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6	
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7	

These datasets may lack sparsity

Dataset	Coupled $PYP(\theta, \alpha)$			Uncoupled $\mathcal{PYP}(\theta, \tau)$			$Geom(\beta)$			
		$\hat{\eta}$	Pred. I-I.	â		Pred. I-I.			Pred. I-I.	
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6	
UCI social network	(320.4, 4.4e-11)	-	-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5	
EU email	(113.6, 2.5e-14)	-	-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5	
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6	
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8	
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6	
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7	

Conclusion

- ▶ BNTL models are *flexible*
- ▶ BNTL models are tractable

Future work

- ► Scalability of inference
 - ▶ Metroplis-Hastings
 - ▶ variational inference [11]
- ► Recency-weighted preferential attachment

References

- Nicholas H Bingham, Charles M Goldie, and Jef L Teugels. Regular variation, volume 27. Cambridge University Press, 1989.
- [2] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
- [3] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51(4):661–703, 2009.
- [4] David J Aldous. Representations for partially exchangeable arrays of random variables. *Journal of Multivariate Analysis*, 11(4):581–598, 1981.
- [5] Douglas N Hoover. Relations on probability spaces and arrays of random variables. Preprint, Institute for Advanced Study, Princeton, NJ, 2, 1979.
- [6] François Caron and Emily B Fox. Sparse graphs using exchangeable random measures. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(5):1295–1366, 2017.
- [7] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286(5439):509–512, 1999.
- [8] Harry Crane and Walter Dempsey. Edge exchangeable models for interaction networks. Journal of the American Statistical Association, (just-accepted), 2017.
- [9] Diana Cai, Trevor Campbell, and Tamara Broderick. Edge-exchangeable graphs and sparsity. In Advances in Neural Information Processing Systems, pages 4249–4257, 2016.
- [10] Benjamin Bloem-Reddy and Peter Orbanz. Preferential attachment and vertex arrival times. arXiv preprint arXiv:1710.02159, 2017.
- [11] Scott W Linderman, Gonzalo E Mena, Hal Cooper, Liam Paninski, and John P Cunningham. Reparameterizing the birkhoff polytope for variational permutation inference. arXiv preprint arXiv:1710.09508, 2017.