《概率论与数理统计》期末速通

8. 假设检验

8.1 假设检验

8.1.1 假设检验的思想和方法

[定理8.1.1] [实际推断原理] 小概率事件在一次试验中几乎不发生.

[**注**] 由实际推断原理: 对一个假设检验问题, 需借助某个统计量构造一个事件 A , 使得若假设 H_0 为真, 则 A 发生的概率很小; 若 H_0 不真, 则 A 发生的概率显著增大. 根据样本观察值确定 A 是否发生, 若发生, 则拒绝 H_0 ; 否则接受 H_0 .

[**例8.1.1**] 葡萄糖用某机器包装. 每袋糖的重量 $X\sim N(\mu,\sigma^2)$. 机器正常时, 其均值为 0.5, 标准差为 0.015. 某日为检验机器是否正常, 随机抽取它包装的 9 袋糖, 测得重量分别为 0.497, 0.506, 0.518, 0.524, 0.498, 0.511, 0.520, 0.515, 0.512. 判断机器是否正常.

[**解**] 因长期实践时标准差较稳定, 不妨设 $\sigma=0.015$, 则 $X\sim N(\mu,0.015)$.

问题转化为判断 μ 是否为 0.5 . 对此提出两个对立的假设: $H_0: \mu=\mu_0=0.5$ 和 $H_1: \mu
eq \mu_0$.

因 \overline{X} 是 μ 的无偏估计,若 H_0 为真,则 $\left|\overline{X}-\mu_0\right|$ 应较小,拒绝 H_0 应满足 $\left|\overline{X}-\mu_0\right|$ 较大.

设随机变量
$$Z=rac{\overline{X}-\mu_0}{\dfrac{\sigma}{\sqrt{n}}}\sim N(0,1)$$
 , 称其为**检验统计量**.

可认为 Z 的观察值较大, 即小概率事件发生时, 可作出拒绝 H_0 的结论.

下面求一个
$$k>0$$
 $s.$ $t.$ $\dfrac{\left|\overline{X}-\mu_0\right|}{\dfrac{\sigma}{\sqrt{n}}}>k$ 时可拒绝 H_0 .

令
$$P\{$$
拒绝 $H_0 \mid H_0$ 为真 $\} = P\left\{rac{\left|\overline{X} - \mu_0
ight|}{rac{\sigma}{\sqrt{n}}} > k
ight\} = lpha$. 由上图, 解得: $k = z_{rac{lpha}{2}}$.

综上:

(1) 若检验统计量的观察值
$$|z|=rac{|\overline{x}-\mu_0|}{rac{\sigma}{\sqrt{n}}}\geq z_{rac{lpha}{2}}$$
 , 则拒绝 H_0 .

$$W = \left\{ |z| = rac{|\overline{x} - \mu_0|}{rac{\sigma}{\sqrt{n}}} \geq z_{rac{lpha}{2}}
ight\} = \left(-\infty, z_{rac{lpha}{2}}
ight) igcup \left(z_{rac{lpha}{2}}, +\infty
ight)$$
 称为**拒绝域**, 其边界点 $-z_{rac{lpha}{2}}$ 和 $z_{rac{lpha}{2}}$ 称为**临界点**.

(2) 若
$$|z|=rac{|\overline{x}-\mu_0|}{rac{\sigma}{\sqrt{n}}} < z_{rac{lpha}{2}}$$
 , 则接受 H_0 .

具体地, 取显著性水平 lpha=0.05 , 则上 $rac{lpha}{2}$ 分位点 $z_{0.025}=1.96$.

因样本均值
$$\overline{x}=rac{1}{9}\sum_{i=1}^9 x_i=0.511$$
 , $n=9,\sigma=0.015,\mu_0=0.5$,

则 Z 的观察值 |z|=2.22>1.96 , 故拒绝 H_0 , 即认为机器工作不正常.

[注1] 假设检验问题的概念:

- (1) 两个对立的假设:
 - ① 机器正常: $H_0: \mu = \mu_0 = 0.5$, 称为**原假设**.
 - ② 机器不正常: $H_1: \mu \neq \mu_0$, 称为**备择假设**.
- (2) 根据有限的样本值判断 H_0 是否成立时, 不可避免地会发生如下两类错误:
 - ① 第一类错误: $\{H_0$ 为真, 拒绝 $H_0\}$, 称为**弃真错误**.
 - ② 第二类错误: $\{H_0$ 为假,接受 $H_0\}$,称为**取伪错误**.
- (3) 显著性检验: 因(2)中的两类错误无法排除,则只能控制犯错的概率,此处只考虑控制犯第一类错误的概率,称为**显著性检验**,即令 $P\{H_0$ 为真,拒绝 $H_0\}\leq \alpha$,其中很小的数 α 称为**显著性水平**.

[注2] 假设检验问题的步骤:

- (1) 根据实际问题, 提出原假设和备择假设.
- (2) 根据实际问题, 构造检验统计量, 在 H_0 成立的条件下确定其分布.
- (3) 给定显著性水平 α , 在 H_0 成立的条件下由 $P\{H_0$ 为真, 拒绝 $H_0\} \leq \alpha$ 求得拒绝域和临界点.
- (4) 用样本值求得检验统计量的观察值, 若观察值落入拒绝域, 则拒绝 H_0 ; 否则接受 H_0 .

8.1.2 假设检验的概念

[定义8.1.1]

- (1) 考察**假设检验问题**: 在显著性水平 α 下, 检验假设 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$, 其中 H_0 称为**原假设**或**零假设**, H_1 称为**备选假设**.
 - (2) 假设检验问题的任务: 根据样本, 用检验方法选择接受 H_0 或接受 H_1 .
 - (3) 根据题设和条件确定一个统计量 Z 并在 H_0 成立的条件下确定其分布, 称 Z 为**检验统计**量.
 - (4) Z 取某区域 C 中的值时拒绝 H_0 , 称 C 为**拒绝域**, 拒绝域的边界点称为**临界点**.
 - (5) 根据有限的样本值判断 H_0 是否成立时, 不可避免地会发生如下两类错误:
 - ① 第一类错误: $\{H_0$ 为真, 拒绝 $H_0\}$, 称为**弃真错误**.
 - ② 第二类错误: $\{H_0$ 为假,接受 $H_0\}$,称为**取伪错误**.
- (6) 上述错误无法排除,只能控制犯错的概率,此处只考虑控制犯第一类错误的概率,称为**显著性检验**,即令 $P\{H_0$ 为真,拒绝 $H_0\} \le \alpha$,其中很小的数 α 称为**显著性水平**.
 - (7) 根据假设的形式, 假设检验分为三类:
 - ① 假设形如 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$ 的假设检验称为**双边检验**.

- ② 假设形如 $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$ 的假设检验称为**右边检验**
- ③假设形如 $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$ 的假设检验称为**左边检验**.

左边检验和右边检验统称单边检验

- [注1] 根据假设是否关于参数, 假设检验分为两类:
 - ① 参数检验: 总体分布已知, 检验关于未知参数.
 - ② 非参数检验: 假设不关于总体的参数.

[注2] 原假设和备选假设的选取原则:

- ① 将大众普遍认为成立的命题作为原假设, 因为原假设不能轻易拒绝, 除非有足够的证据证明它不真.
- ② 将想证否的命题作为原假设, 将想证真的命题作为备择假设.
- [注3] 样本容量固定时, 若犯第一类错误的概率降低, 则犯第二类错误的概率增大; 反之亦然.

为降低两类错误的概率, 应增大样本容量.

一般增大样本容量使得犯第一类错误的概率不超过某个给定的数

8.1.3 单边检验的拒绝域

[**定理8.1.2**] 设 X_1,\cdots,X_n 是取自总体 $X\sim N(\mu,\sigma^2)$ 的一组样本, 其中 μ 未知, σ 已知. 取显著性水平为 α , 则:

(1) 右边检验问题
$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
 的拒绝域为 $z=rac{\overline{x}-\mu_0}{rac{\sigma}{\sqrt{n}}} \geq z_lpha$.

(2) 左边检验问题
$$H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$$
 的拒绝域为 $z=rac{\overline{x}-\mu_0}{rac{\sigma}{\sqrt{n}}} \leq -z_lpha$.

[证] 只证(1), (2) 同理.

因
$$\overline{X}$$
 是 μ 的无偏估计, σ 已知, 取检验统计量 $Z=\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}\sim N(0,1)$.

因 H_0 中的 μ 都比 H_1 中的 μ 小, 则 H_1 为真时, 样本均值的观察值 \overline{x} 的值偏大.

故取拒绝域形如 $\overline{x} \geq k$, 其中 k 是某一正常数. 下面求 k.

$$P\{H_0$$
为真, 拒绝 $H_0\}=P_{\mu\in H_0}\left\{\overline{X}\geq k
ight\}=P_{\mu\leq \mu_0}\left\{rac{\overline{X}-\mu_0}{rac{\sigma}{\sqrt{n}}}\geq rac{k-\mu_0}{rac{\sigma}{\sqrt{n}}}
ight\}$

$$\leq P_{\mu \leq \mu_0} \left\{ rac{\overline{X} - \mu}{rac{\sigma}{\sqrt{n}}} \geq rac{k - \mu_0}{rac{\sigma}{\sqrt{n}}}
ight\} * H_0$$
 为真时, $\mu \leq \mu_0$, 则 $-\mu \geq -\mu_0$, 进而 $rac{\overline{X} - \mu}{rac{\sigma}{\sqrt{n}}} \geq rac{k - \mu_0}{rac{\sigma}{\sqrt{n}}}$.

欲使得
$$P\{H_0$$
为真,拒绝 $H_0\} \leq lpha$, 只需令 $P_{\mu \leq \mu_0} \left\{ \dfrac{\overline{X} - \mu}{\dfrac{\sigma}{\sqrt{n}}} \geq \dfrac{k - \mu_0}{\dfrac{\sigma}{\sqrt{n}}}
ight\} = lpha$.

因
$$Z\sim N(0,1)$$
 , 由上图, 解得: $\dfrac{k-\mu_0}{\dfrac{\sigma}{\sqrt{n}}}=z_{\alpha}$, 即 $k=\mu_0+\dfrac{\sigma}{\sqrt{n}}z_{\alpha}$. 故拒绝域为 $z=\dfrac{\overline{x}-\mu_0}{\dfrac{\sigma}{\sqrt{n}}}\geq z_{\alpha}$.

[例8.1.2] 为检验生产商是否在牛奶中掺水, 可测定牛奶的冰点. 设牛奶的冰点温度服从均值 $\mu_0=-0.545$ 、标准差 $\sigma=0.008$ 的正态分布, 牛奶掺水会使得冰点温度升高至约 0 . 现测得 5 批牛奶的冰点温度, 其均值 $\overline{x}=-0.535$. 取显著性水平 $\alpha=0.05$, 问是否可认为牛奶掺水.

[解] 因想证明牛奶掺水,

则检验假设 $H_0: \mu \leq \mu_0 = -0.545$ (牛奶未掺水), $H_1: \mu > \mu_0$ (牛奶掺水), 为右边检验.

lpha=0.05 , 则上 lpha 分位点 $z_{0.05}=1.645$.

取检验统计量
$$Z=rac{\overline{X}-\mu_0}{rac{\sigma}{\sqrt{n}}}\sim N(0,1)$$
 , 其观察值 $z=rac{\overline{x}-\mu_0}{rac{\sigma}{\sqrt{n}}}=2.7951\geq 1.645$,

则在显著性水平 lpha=0.05 下拒绝 H_0 , 即认为牛奶掺水.

8.2 正态总体的均值的假设检验

8.2.1 单个正态总体的均值的假设检验

[**定理8.2.1**] 设 X_1,\cdots,X_n 是取自总体 $X\sim N(\mu,\sigma^2)$ 的一组样本, 其中总体均值 μ 未知. 取显著性水平为 α .

(1) 若总体方差
$$\sigma^2$$
 已知, 则用 Z **检验** , 即取检验统计量 $Z=\dfrac{\overline{X}-\mu_0}{\dfrac{\sigma}{\sqrt{n}}}\sim N(0,1)$, 则检验问题和拒绝域如下:

检验问题	假设	拒绝域
双边检验	$H_0: \mu=\mu_0, H_1: \mu\neq\mu_0$	$ z \geq z_{rac{lpha}{2}}$
右边检验	$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$	$z \geq z_{lpha}$
左边检验	$H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$	$z \leq -z_{lpha}$

(2) 若
$$\sigma^2$$
 未知, 则用 t **检验**, 即取检验统计量 $t=\dfrac{\overline{X}-\mu}{\dfrac{S}{\sqrt{n}}}\sim t(n-1)$, 则检验问题和拒绝域如下:

检验问题	假设	拒绝域
双边检验	$H_0: \mu=\mu_0, H_1: \mu \neq \mu_0$	$ t \geq t_{rac{lpha}{2}}(n-1)$
右边检验	$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$	$t \geq t_{\alpha}(n-1)$
左边检验	$H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$	$t \leq -t_{\alpha}(n-1)$

[证]

(1) 见定理8.1.2.

(2) 以证明检验问题 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$ 的拒绝域为 $|t| \geq t_{\frac{\alpha}{2}}(n-1)$ 为例.

若
$$H_0$$
 为真, 则 $\mu=\mu_0$. 取检验统计量 $t=rac{\overline{X}-\mu}{rac{S}{\sqrt{n}}}\sim t(n-1)$.

若 H_0 为真, 因样本均值 \overline{X} 是 μ 的无偏估计, 则 $\left|\overline{X}-\mu\right|$ 较小. 若 $\left|\overline{X}-\mu\right|$ 较大, 则拒绝 H_0 .

故拒绝域形如 $|t|=rac{|\overline{x}-\mu_0|}{rac{s}{\sqrt{n}}}\geq k$, 其中 k 是一个正常数. 下面求 k .

令
$$P\{H_0$$
为真,拒绝 $H_0\}=P_{\mu_0}\left\{rac{\overline{X}-\mu}{rac{S}{\sqrt{n}}}\geq k
ight\}=lpha$. 由上图: 解得: $k=t_{rac{lpha}{2}}(n-1)$.

故拒绝域为
$$|t|=rac{|\overline{x}-\mu_0|}{rac{s}{\sqrt{n}}}\geq t_{rac{lpha}{2}}(n-1)$$
 .

[**例8.2.1**] 设某元件的寿命 $\sim N(\mu,\sigma^2)$, 其中总体均值 μ 和总体方差 σ^2 都未知. 现测得 16 只元件的寿命如下: 159 , 280 , 101 , 212 , 224 , 379 , 179 , 264 , 222 , 362 , 168 , 250 , 149 , 260 , 485 , 170 . 在显著性水平 $\alpha=0.05$ 的条件下, 问是否能认为元件的平均寿命 >225 .

[**解**] 检验假设: $H_0: \mu \leq \mu_0 = 225, H_1: \mu > \mu_0$, 为右边检验.

取检验统计量
$$t=rac{\overline{X}-\mu_0}{\dfrac{S}{\sqrt{n}}}$$
 , 由**定理8.2.1**的(2): 拒绝域为 $t=rac{\overline{x}-\mu_0}{\dfrac{s}{\sqrt{n}}}\geq t_{lpha}(n-1)$.

n=16,则上 α 分位点 $t_{0.05}(15)=1.7531$.

样本均值
$$\overline{x}=rac{1}{16}\sum_{i=1}^{16}x_i=241.5$$
 , 样本标准差 $s=\sqrt{rac{1}{n-1}\sum_{i=1}^n\left(x_i-\overline{x}
ight)^2}=98.7259$.

观察值
$$t = rac{\overline{x} - \mu_0}{rac{s}{\sqrt{n}}} = 0.6685 < 1.7531$$
 ,

则在显著性水平 lpha=0.05 的条件下接受 H_0 , 即可认为元件的平均寿命 >225 .

8.2.2 两个正态总体的均值的假设检验

[**定理8.2.2**] 设 X_1,\cdots,X_{n_1} 和 Y_1,\cdots,Y_{n_2} 分别是取自总体 $X\sim N(\mu_1,\sigma_1^2)$ 和 $Y\sim N(\mu_2,\sigma_2^2)$ 的一组样本, 其中总体均值 μ_1 和 μ_2 、总体方差 $\sigma_1^2=\sigma_2^2=\sigma^2$ 都未知. 设这两个样本相互独立, 样本均值分别为 \overline{X} 和 \overline{Y} ,样本方差分别为 S_1^2 和 S_2^2 . 取显著性水平为 α ,给定一个常数 δ ,用 t **检验**,即取检验统计量

$$t=rac{\overline{X}-\overline{Y}-\delta}{S_w\cdot\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\sim t(n_1+n_2-2)$$
 , 则检验问题和拒绝域如下:

检验问题	假设	拒绝域
双边检验	$H_0: \mu_1-\mu_2=\delta, H_1: \mu_1-\mu_2\neq \delta$	$ t \geq t_{\frac{\alpha}{2}}(n_1+n_2-2)$
右边检验	$H_0: \mu_1-\mu_2 \leq \delta, H_1: \mu_1-\mu_2 > \delta$	$t \geq t_{\alpha}(n_1+n_2-2)$
左边检验	$H_0: \mu_1-\mu_2 \geq \delta, H_1: \mu_1-\mu_2 < \delta$	$t \leq -t_{\alpha}(n_1+n_2-2)$

[证] 以证明检验问题 $H_0: \mu_1-\mu_2=\delta$. $H_1: \mu_1-\mu_2
eq \delta$ 的拒绝域为 $|t|\geq t_{\frac{\alpha}{2}}(n_1+n_2-2)$ 为例.

若 H_0 为真,则 $\mu_1 - \mu_2 = \delta$.

取检验统计量
$$t=rac{\overline{X}-\overline{Y}-\delta}{S_w\cdot\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\sim t(n_1+n_2-2)$$
 , 其中 $S_w^2=rac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}, S_w=\sqrt{S_w^2}$.

类似于一个正态总体的均值的 t 检验,

易知拒绝域形如
$$|t|=rac{|\overline{x}-\overline{y}-\delta|}{s_w\cdot\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\geq k$$
 , 其中 k 是一个正常数. 下面求 k .

令
$$P\{H_0$$
为真,拒绝 $H_0\}=P_{\mu_1-\mu_2=\delta}\left\{rac{\left|\overline{X}-\overline{Y}-\delta
ight|}{S_w\cdot\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\geq k
ight\}=lpha$, 解得: $k=t_{rac{lpha}{2}}(n_1+n_2-2)$.

故拒绝域为
$$|t|=rac{|\overline{x}-\overline{y}-\delta|}{s_w\cdot\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\geq t_{rac{lpha}{2}}(n_1+n_2-2)$$
 .

[**注1**] 常取 $\delta = 0$.

[**注2**] 若 σ_1^2 和 σ_2^2 都已知, 则用 Z **检验**, 即取检验统计量 $Z=\dfrac{\overline{X}-\overline{Y}-\delta}{\sqrt{\dfrac{\sigma_1^2}{n_1^2}+\dfrac{\sigma_2^2}{n_2^2}}}\sim N(0,1)$, 则检验问题和拒绝域如

下:

检验问题	假设	拒绝域
双边检验	$H_0: \mu_1-\mu_2=\delta, H_1: \mu_1-\mu_2\neq \delta$	$ z \geq z_{rac{lpha}{2}}$
右边检验	$H_0: \mu_1-\mu_2 \leq \delta, H_1: \mu_1-\mu_2 > \delta$	$z \geq z_{lpha}$
左边检验	$H_0: \mu_1-\mu_2 \geq \delta, H_1: \mu_1-\mu_2 < \delta$	$z \leq -z_\alpha$

[例8.2.2] 用A和B两种方法分别测定水的融化热,测得的数据如下:

方法A	79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04 79.97, 80.05, 80.03, 80.02, 80.00, 80.02
方法B	80.02 , 79.94 , 80.03 , 80.02 , 80.00 , 80.02

设这两个样本相互独立, 且分别来自正态总体 $N(\mu_1,\sigma^2)$ 和 $N(\mu_2,\sigma^2)$, 其中总体均值 μ_1,μ_2 和总体方差 σ^2 都未知. 在显著性水平 $\alpha=0.05$ 的条件下检验假设 $H_0:\mu_1-\mu_2\leq 0, H_1:\mu_1-\mu_2>0$.

[解] 对样本A:
$$n_1=13$$
 , 样本均值 $\overline{x_1}=80.02$, 样本方差 $s_1^2=\frac{1}{n_1-1}\sum_{i=1}^{n_1}\left(x_{1,i}-\overline{x_1}\right)^2=0.024^2$.

对样本B:
$$n_2=8$$
 , 样本均值 $\overline{x_2}=79.97$, 样本方差 $s_2^2=rac{1}{n_2-1}\sum_{i=1}^{n_2}\left(x_{2,i}-\overline{x_2}
ight)^2=0.03^2$.

$$S_w^2 = rac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} = 0.0007178, S_w = \sqrt{S_w^2} \; .$$

取检验统计量
$$t=rac{\overline{X}-\overline{Y}-\delta}{S_w\cdot\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\sim t(n_1+n_2-2)$$
 ,

由**定理8.2.2**的右边检验: 拒绝域为 $t \geq t_{0.05}(13+8-2) = 1.7291$.

观察值
$$t=rac{\overline{x_1}-\overline{x_2}-0}{S_w\cdot\sqrt{rac{1}{n_1}+rac{1}{n_2}}}=3.33>1.7291$$
 ,

则在显著性水平 $\alpha=0.05$ 的条件拒绝 H_0 , 即认为方法A测得的熔化热大于方法B测得的熔化热.

8.3 正态总体的方差的假设检验

8.3.1 单个正态总体的方差的假设检验

[**定理8.3.1**] 设 X_1,\cdots,X_n 是取自总体 $X\sim N(\mu,\sigma^2)$ 的一组样本, 其中总体均值 μ 和总体方差 σ^2 都未知. 取显著性水平为 α . 用 χ^2 **检验**, 即取检验统计量 $\chi^2=\dfrac{(n-1)S^2}{\sigma_0^2}\sim \chi^2(n-1)$, 则检验问题和拒绝域如下:

检验问题	假设	拒绝域
双边检验	$H_0:\sigma^2=\sigma_0^2, H_1:\sigma^2 eq\sigma_0^2$	$\chi^2 \geq \chi^2_{rac{lpha}{2}}(n-1)$ 或 $\chi^2 \leq \chi^2_{1-rac{lpha}{2}}(n-1)$
右边检验	$H_0:\sigma^2\leq\sigma_0^2, H_1:\sigma^2>\sigma_0^2$	$\chi^2 \geq \chi^2_lpha(n-1)$
左边检验	$H_0:\sigma^2\geq\sigma_0^2, H_1:\sigma^2<\sigma_0^2$	$\chi^2 \leq \chi^2_{1-\alpha}(n-1)$

[证] 只证(1)和(2), (3)同理.

(1) 因 $E(S^2) = \sigma^2$, 则样本方差 S^2 是 σ^2 无偏估计.

若
$$H_0$$
 为真, 则 $\sigma^2=\sigma_0^2$. 取检验统计量 $\chi^2=rac{(n-1)S^2}{\sigma_0^2}\sim \chi^2(n-1)$.

因 S^2 是 σ^2 无偏估计, 若 H_0 为真, 则比值 $\frac{S^2}{\sigma_0^2}$ 在 1 附近摆动,

进而拒绝域形如 $rac{S^2}{\sigma_0^2} \leq k_1'$ 或 $rac{S^2}{\sigma_0^2} \geq k_2'$, 其中 k_1' 和 k_2' 是两个正常数.

两边同乘 (n-1) 并令 $k_i=(n-1)k_i'$ (i=1,2) 得: $\dfrac{(n-1)S^2}{\sigma_0^2} \leq k_1$ 或 $\dfrac{(n-1)S^2}{\sigma_0^2} \geq k_2$.

下面求 k_1, k_2 .

令
$$P\{H_0$$
为真,拒绝 $H_0\}=P_{\sigma_0^2}\left\{\left(rac{(n-1)S^2}{\sigma_0^2}\leq k_1
ight)igcup\left(rac{(n-1)S^2}{\sigma_0^2}\geq k_2
ight)
ight\}$ $=P_{\sigma_0^2}\left\{rac{(n-1)S^2}{\sigma_0^2}\leq k_1
ight\}+P_{\sigma_0^2}\left\{rac{(n-1)S^2}{\sigma_0^2}\geq k_2
ight\}$ * 两事件互斥.

为计算方便, 取
$$P_{\sigma_0^2}\left\{rac{(n-1)S^2}{\sigma_0^2}\leq k_1
ight\}=rac{lpha}{2}, P_{\sigma_0^2}\left\{rac{(n-1)S^2}{\sigma_0^2}\geq k_2
ight\}=rac{lpha}{2}$$
 .

由 χ^2 分布的概率密度的图象,解得: $k_1=\chi^2_{1-\frac{\alpha}{2}}(n-1), k_2=\chi^2_{\frac{\alpha}{2}}(n-1)$. 故拒绝域为 $\chi^2\geq\chi^2_{\frac{\alpha}{2}}(n-1)$ 或 $\chi^2\leq\chi^2_{1-\frac{\alpha}{2}}(n-1)$.

(2) H_0 中的 σ^2 都比 H_1 中的 σ^2 小, 则 H_1 为真时, S^2 的观察值 s^2 往往偏大, 故拒绝域形如 $S^2 \geq k$, 其中 k 是正常数. 下面求 k .

$$\Leftrightarrow P\{H_0$$
为真, 拒绝 $H_0\} = P_{\sigma^2 \leq \sigma_0^2}\{S^2 \geq k\} = P_{\sigma^2 \leq \sigma_0^2}\left\{rac{(n-1)S^2}{\sigma_0^2} \geq rac{(n-1)k}{\sigma_0^2}
ight\}.$

$$\leq P_{\sigma^2 \leq \sigma_0^2} \left\{ rac{(n-1)S^2}{\sigma^2} \geq rac{(n-1)k}{\sigma_0^2}
ight\} = lpha$$

*因
$$H_0$$
 为真时,有 $\dfrac{1}{\sigma^2}\geq \dfrac{1}{\sigma_0^2}$,则 $\dfrac{(n-1)S^2}{\sigma^2}\geq \dfrac{(n-1)S^2}{\sigma_0^2}\geq \dfrac{(n-1)k^2}{\sigma_0^2}$.

由上图, 有
$$rac{(n-1)k}{\sigma_0^2}=\chi_lpha^2(n-1)$$
 , 解得: $k=rac{\sigma_0^2}{n-1}\cdot\chi_lpha^2(n-1)$.

故拒绝域为 $\chi^2 \geq \chi^2_lpha(n-1)$.

[**例8.3.1**] 某电池的寿命长期以来服从方差 $\sigma^2=5000$ 的正态分布. 现有一批电池, 寿命的波动性可能有所改变. 现任取 26 只电池, 测得其寿命的样本方差 $s^2=9200$. 在显著性水平 $\alpha=0.02$ 的条件下, 能否判断这批电池的寿命的波动性较以往有显著变化.

[**解**] 问题转化为: 在显著性水平 lpha=0.02 的条件下, 检验假设 $H_0:\sigma^2=5000, H_1:\sigma^2
eq 5000$.

$$n=26$$
 . 取检验统计量 $\chi^2=rac{(n-1)S^2}{\sigma_0^2}\sim \chi^2(n-1)$.

由**定理8.3.1**的双边假设: 拒绝域为 $\chi^2 \leq \chi^2_{1-\frac{\alpha}{2}}(n-1) = 11.524$ 或 $\chi^2 \geq \chi^2_{\frac{\alpha}{2}}(n-1) = 44.314$.

观察值 $\chi^2=46>44.314$, 则在显著性水平 $\alpha=0.02$ 的条件下拒绝 H_0 ,

即认为这批电池的寿命的波动性较以往有显著变化.

8.3.2 两个正态总体的方差的假设检验

[**定理8.3.2**] 设 X_1,\cdots,X_{n_1} 和 Y_1,\cdots,Y_{n_2} 分别是取自总体 $X\sim N(\mu_1,\sigma_1^2)$ 和 $Y\sim N(\mu_2,\sigma_2^2)$ 的一组样本, 其中总体均值 μ_1,μ_2 和总体方差 σ_1^2,σ_2^2 都未知. 设这两个样本相互独立, 样本方差分别为 S_1^2 和 S_2^2 . 取显著性水平为 α , 用 F **检验**, 即取检验统计量 $F=\frac{S_1^2}{S_2^2}$, 则检验问题和拒绝域如下:

检验问题	假设	拒绝域
双边检验	$H_0:\sigma_1^2=\sigma_2^2, H_1:\sigma_1^2 eq\sigma_2^2$	$F \geq F_{rac{lpha}{2}}(n_1-1,n_2-1)$ 或 $F \leq F_{1-rac{lpha}{2}}(n_1-1,n_2-1)$
右边检验	$H_0: \sigma_1^2 \leq \sigma_2^2, H_1: \sigma_1^2 > \sigma_2^2$	$F \geq F_{\alpha}(n_1-1,n_2-1)$
左边检验	$H_0: \sigma_1^2 \geq \sigma_2^2, H_1: \sigma_1^2 < \sigma_2^2$	$F \leq F_{1-\alpha}(n_1-1,n_2-1)$

[证] 以证明(2)为例.

因
$$E(S_i^2)=\sigma_i^2 \ \ (i=1,2)$$
 , 则 S_i^2 是 σ_i^2 的无偏估计. 取检验统计量 $F=rac{S_1^2}{S_2^2}$.

若 H_0 为真, 则 $\sigma_1^2 \leq \sigma_2^2, E(S_1^2) \leq E(S_2^2)$.

若
$$H_1$$
 为真, 则 $E(S_1)^2 > E(S_2^2)$, 进而 $\dfrac{S_1^2}{S_2^2}$ 的观察值 $\dfrac{s_1^2}{s_2^2}$ 往往偏大.

故拒绝域形如 $\dfrac{S_1^2}{S_2^2} \geq k$, 其中 k 是一个正常数. 下面求 k .

令
$$P\{H_0$$
为真, 拒绝 $H_0\}=P_{\sigma_1^2\leq\sigma_2^2}\left\{rac{S_1^2}{S_2^2}\geq k
ight\}$

$$\leq P_{\sigma_1^2 \leq \sigma_2^2} \left\{ egin{array}{c} rac{S_1^2}{S_2^2} \ \hline rac{\sigma_1^2}{\sigma_2^2} \geq k \end{array}
ight\}$$
 *因 H_0 为真时,有 $rac{\sigma_1^2}{\sigma_2^2} \leq 1$,则 $rac{rac{S_1^2}{S_2^2}}{rac{\sigma_1^2}{\sigma_2^2}} \geq rac{S_1^2}{S_2^2}$.

 $= \alpha$.

因
$$\dfrac{\dfrac{S_1^2}{S_2^2}}{\dfrac{\sigma_1^2}{\sigma_2^2}}\sim F(n_1-1,n_2-1)$$
 , 由 F 分布的概率密度的图象, 解得: $k=F_{lpha}(n_1-1,n_2-1)$.

故拒绝域 $F \geq F_{\alpha}(n_1 - 1, n_2 - 1)$.

[\mathbf{i}] 注意 F 检验的假设统计量不服从 F 分布.

[例8.3.2] 用A和B两种方法分别测定水的融化热, 测得的数据如下:

方法A	79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04 79.97, 80.05, 80.03, 80.02, 80.00, 80.02
方法B	80.02 , 79.94 , 80.03 , 80.02 , 80.00 , 80.02

设这两个样本相互独立, 且分别来自正态总体 $N(\mu_1,\sigma_1^2)$ 和 $N(\mu_2,\sigma_2^2)$, 其中总体均值 μ_1,μ_2 和总体方差 σ^2 都未知. 在显著性水平 $\alpha=0.01$ 的条件下检验假设 $H_0:\sigma_1^2=\sigma_2^2,H_1:\sigma_1^2\neq\sigma_2^2$, 并说明假设 $\sigma_1^2=\sigma_2^2$ 是合理的, 即两总体有**方差齐性**.

[解] 对样本A:
$$n_1=13$$
 , 样本均值 $\overline{x_1}=80.02$, 样本方差 $s_1^2=\frac{1}{n_1-1}\sum_{i=1}^{n_1}\left(x_{1,i}-\overline{x_1}\right)^2=0.024^2$.

对样本B:
$$n_2=8$$
 , 样本均值 $\overline{x_2}=79.97$, 样本方差 $s_2^2=rac{1}{n_2-1}\sum_{i=1}^{n_2}\left(x_{2,i}-\overline{x_2}
ight)^2=0.03^2$.

取检验统计量
$$F=rac{S_1^2}{S_2^2}$$
 , 由**定理8.3.2**的双边假设:

拒绝域为
$$F \geq F_{0.005}(12,7) = 8.18$$
 或 $F \leq F_{0.995}(12,7) = \frac{1}{F_{0.005}(7,12)} = 0.18$.

观察值
$$f=rac{s_1^2}{s_2^2}=0.60\in(0.18,8.18)$$
 , 故在显著性水平 $lpha=0.01$ 的条件下接受 H_0 ,

即认为两总体的方差相等.