Introduction to Python

Day 1

Erin Rossiter

Intros

Please stop me at any time if you ever have any questions!

Office Hours

- One hour before each meeting or anytime I am in the office
- Email me if you'd rather set up a time
- Email me clarifying questions, but questions about code are better in-person

Homeworks

- 5 assignments
- Complete on GitHub, commit often w/comments
- Due Fridays and Mondays before class starts (final commit)
- Can work together but "each keystroke should be your own"
- Direct all grading, due date, etc. questions to Ryden

Homeworks

- 5 assignments
- Complete on GitHub, commit often w/comments
- Due Fridays and Mondays before class starts (final commit)
- Can work together but "each keystroke should be your own"
- Direct all grading, due date, etc. questions to Ryden

Poster session TBD (Friday 9/7?)

- Schedule is up
- Files will be up before each class
- Are we all comfortable forking, syncing, commiting, etc.?
 - You can edit, commit, and sync the files with own notes & answers with conflicts
 - I'll sync my solutions later in separate files

Learn Python!

Learn Python!

• Python is especially useful for scraping, APIs, text, etc.

Learn Python!

- Python is especially useful for scraping, APIs, text, etc.
- Transferable skills \rightarrow better programmer overall

Learn Python!

- Python is especially useful for scraping, APIs, text, etc.
- $\bullet \ \, \text{Transferable skills} \rightarrow \text{better programmer overall}$
- Sends a signal

Today

- Inconsequential quiz
- Make sure we're good to go with GitHub
- Go through syntax script & exercise
- Lunch 12-1ish
- Lab

Quiz

https://www.onlineexambuilder.com/python2015/exam-33067

Number Bases

- Think of each digit or "places" as a "column" in the number.
- For base 10, these columns come from

	10^{4}	10^{3}	10^{2}	10^{1}	10^{0}
	10000	1000	100	10	1

- How many of each?
 - "10" means "1 tens-place and o ones-place"
 - "201" means "2 in hundreds-place, 0 in tens-place, 1 in ones-place"

Number Bases

- Think of each digit or "places" as a "column" in the number.
- For base 10, these columns come from

	10^{4}	10^{3}	10^{2}	10^{1}	10^{0}
	10000	1000	100	10	1

- How many of each?
 - "10" means "1 tens-place and o ones-place"
 - "201" means "2 in hundreds-place, 0 in tens-place, 1 in ones-place"
- For base 2, these columns come from power of two.

 24	23	22	21	20
 16	8	4	2	1

• Think of it as "ones-place", "twos-place", "fours-place", etc...

_			
	decimal	binary	
	(base 10)	(base 2)	expansion
	0	0	0 ones
	1	1	1 one
	2	10	1 two and zero ones
	3	11	1 two and 1 one
	4	100	1 four, 0 twos, and 0 ones
	5	101	1 four, 0 twos, and 1 one
	6	110	1 four, 1 two, and 0 ones
	7	111	1 four, 1 two, and 1 one
	8	1000	1 eight, 0 fours, 0 twos, and 0 ones
	9	1001	1 eight, 0 fours, 0 twos, and 1 ones
	10	1010	1 eight, 0 fours, 1 two, and 0 ones
	11	1011	1 eight, 0 fours, 1 two, and 1 one
	12	1100	1 eight, 1 four, 0 twos, and 0 ones
	13	1101	1 eight, 1 four, 0 twos, and 1 one
	14	1110	1 eight, 1 four, 1 two, and 0 ones
İ	15	1111	1 eight, 1 four, 1 two, and 1 one
Ì	16	10000	1 sixteen, 0 eights, 0 fours, 0 twos, and 0 ones

 $Table\ from\ \texttt{http://www.purplemath.com/modules/numbbase.htm}.$

$$50/2 = 25 \text{ Ro}$$

$$50/2 = 25 \text{ Ro}$$

$$25/2 = 12 R1$$

```
50/2 = 25 \text{ Ro}
```

$$25/2 = 12 R1$$

$$12/2 = 6 \text{ Ro}$$

```
50/2 = 25 \text{ Ro}
```

$$25/2 = 12 R1$$

$$12/2 = 6 \text{ Ro}$$

$$6/2 = 3 \text{ Ro}$$

```
50/2 = 25 \text{ Ro}
```

$$25/2 = 12 R1$$

$$12/2 = 6 \text{ Ro}$$

$$6/2 = 3 \text{ Ro}$$

$$3/2 = 1 R_1$$

$$50/2 = 25 \text{ Ro}$$

$$25/2 = 12 R1$$

$$12/2 = 6 \text{ Ro}$$

$$6/2 = 3 \text{ Ro}$$

$$3/2 = 1 R_1$$

$$1/2 = 0 R_1$$

$$50/2 = 25 \text{ Ro}$$

$$25/2 = 12 R_1$$

$$12/2 = 6 \text{ Ro}$$

$$6/2 = 3 \text{ Ro}$$

$$3/2 = 1 R_1$$

$$1/2 = 0 R_1$$

Writing it from the bottom... 110010₂

2 ⁵	2^4	2 ³	22	21	20
32	16	8	4	2	1
1	1	0	О	1	О

Explanation: http://www.purplemath.com/modules/base_why.htm

Converting to base 10.... go backwards!

$$1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 50_{10}$$