Tärnülesanne nr. 104

Joosep Näks

Vaatleme funktsiooni $f:[0,1] \to \mathbb{R}$, kus

$$f(x) = \begin{cases} \frac{1}{n}, & \text{ kui } x = \frac{1}{n} \text{ mingi } n \in \mathbb{N} \text{ korral,} \\ 0 & \text{ mujal.} \end{cases}$$

Kas f on integreeruv?

Lahendus: Loengukonspekti omaduse 5.6 järgi on f integreeruv parajasti siis, kui iga $\varepsilon>0$ korral leidub lõigu [a,b] selline alajaotus $\mathbf{T},$ et $S(T)-s(T)<\varepsilon$. Antud funktsioonile saan ma lõigus [0,1] luua iga epsiloni puhul sellise jaotuse, et esimene osalõik on pikkusega $\frac{\varepsilon}{2}$. Sealt edasi jääb alles lõplik arv k x väärtuseid, kus kehtib $x=\frac{1}{n},\ n\in\mathbb{N}.$ Võtan iga sellise x väärtuse ümber osalõigu pikkusega $\frac{\varepsilon}{2k}$. Kui mõni nendest osalõikudest kattuvad omavahel, ühendan need üheks osalõiguks. Kõik piirkonnad, mis ei ole praeguseks osalõikudega kaetud, võtan eraldi osalõikudeks. Nendes osalõikudes on f väärtus 0. Nüüd kuna igas osalõigus on vähemalt mõni väärtus, kus x ei ole naturaalarvu pöördarv, kehtib:

$$s(T) = \sum_{v=1}^{v} \inf_{x \in [0,1]} f(x) \Delta x_k = 0$$

Kuna naturaalarvu pöördarvud esinevad esimeses osalõigus ning kõigis nendes maksimaalselt k osalõigus, mis ma võtsin pikkusega maksimaalselt $\frac{\varepsilon}{2k}$ iga naturaalarvupöördarvu kohta, kehtib ka järgnev võrratus (lihtsustamiseks võtan et kui x on naturaalarvu pöördarv siis f väärtus on 1 mitte x, nii saan suurema tulemuse ehk võrratus ikkagi kehtib):

$$S(T) = \sum_{u=1}^{v} \sup_{x \in [0,1]} f(x) \Delta x_k \le \frac{\varepsilon}{2} + k \frac{\varepsilon}{2k} = \varepsilon$$

Seega leidub iga ε jaoks selline jaotus T, et kehtib $S(T) - s(T) < \varepsilon - 0 = \varepsilon$, ehk f on integreeruv.