

Data: γ-ray spectrum

Model: Power law + Gaussian

line

Likelihood: Poisson

Parameters: A_{PL} , Γ , A_{Line} , E_{Line} , σ_{Line}

 $A_{\rm Line}$

Data: X-ray spectrum

Model: Power law + Gaussian line

Likelihood: Poisson

Parameters: $A_{\rm PL}$, Γ , $A_{\rm Line}$, $E_{\rm Line}$, $\sigma_{\rm Line}A_{\rm Line}$

Data: X-ray spectrum

Model: Power law + Gaussian line

Likelihood: Poisson

Parameters: A_{PL} , Γ , A_{Line} , E_{Line} , σ_{Line}

$$p(A_{\rm PL}, \Gamma, A_{\rm Line}, E_{\rm Line}, \sigma_{\rm Line} | D) = \frac{p(D | A_{\rm PL}, \Gamma, A_{\rm Line}, E_{\rm Line}, \sigma_{\rm Line}) p(A_{\rm PL}, \Gamma, A_{\rm Line}, E_{\rm Line}, \sigma_{\rm Line})}{p(D)}$$

Data: X-ray spectrum

Model: Power law + Gaussian line

Likelihood: Poisson

Parameters: A_{PL} , Γ , A_{Line} , E_{Line} , $\sigma_{\text{Line}}A_{\text{Line}}$

$$p(A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}} | D) = \frac{p(D | A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}}) p(A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}})}{p(D)}$$

$$p(A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}} | D) = \frac{p(D | A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}}) p(A_{\text{PL}}) p(\Gamma) p(A_{\text{Line}}) p(E_{\text{Line}}) p(\sigma_{\text{Line}})}{p(D)}$$

Data: X-ray spectrum

Model: Power law + Gaussian line

Likelihood: Poisson

Parameters: A_{PL} , Γ , A_{Line} , E_{Line} , $\sigma_{\text{Line}}A_{\text{Line}}$

Priors: ???

$$p(A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}} | D) = \frac{p(D | A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}}) p(A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}})}{p(D)}$$

$$p(A_{\rm PL}, \Gamma, A_{\rm Line}, E_{\rm Line}, \sigma_{\rm Line} \mid D) = \frac{p(D \mid A_{\rm PL}, \Gamma, A_{\rm Line}, E_{\rm Line}, \sigma_{\rm Line}) p(A_{\rm PL}) p(\Gamma) p(A_{\rm Line}) p(E_{\rm Line}) p(\sigma_{\rm Line})}{p(D)}$$

What assumption have we made here?

Data: X-ray spectrum

Model: Power law + Gaussian line

Likelihood: Poisson

Parameters: A_{PL} , Γ , A_{Line} , E_{Line} , $\sigma_{\text{Line}}A_{\text{Line}}$

Priors: ???

$$p(A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}} | D) = \frac{p(D | A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}}) p(A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}})}{p(D)}$$

$$p(A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}} | D) = \frac{p(D | A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}}) p(A_{\text{PL}}) p(\Gamma) p(A_{\text{Line}}) p(E_{\text{Line}}) p(\sigma_{\text{Line}})}{p(D)}$$

What assumption have we made here?

Independence of priors!

Data: X-ray spectrum

Model: Power law + Gaussian line

Likelihood: Poisson

Parameters: A_{PL} , Γ , A_{Line} , E_{Line} , $\sigma_{\text{Line}}A_{\text{Line}}$

Priors: ???

What priors should we choose?

$$p(A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}} | D) = \frac{p(D | A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}}) p(A_{\text{PL}}, \Gamma, A_{\text{Line}}, E_{\text{Line}}, \sigma_{\text{Line}})}{p(D)}$$

$$p(A_{\rm PL}, \Gamma, A_{\rm Line}, E_{\rm Line}, \sigma_{\rm Line} \mid D) = \frac{p(D \mid A_{\rm PL}, \Gamma, A_{\rm Line}, E_{\rm Line}, \sigma_{\rm Line}) p(A_{\rm PL}) p(\Gamma) p(A_{\rm Line}) p(E_{\rm Line}) p(\sigma_{\rm Line})}{p(D)}$$

What assumption have we made here?

Independence of priors!

$$p(q|k) \propto p(k|q)p(q)$$

$$p(k \mid q, N) \propto q^{k} (1 - q)^{N - k}$$

$$p(q|k) \propto p(k|q)p(q)$$

$$p(k \mid q, N) \propto q^{k} (1 - q)^{N - k}$$

$$p(q) \propto q^{\alpha - 1} (1 - q)^{\beta - 1}$$

$$p(q | k) \propto p(k | q)p(q)$$

$$p(k | q, N) \propto q^k (1 - q)^{N-k}$$
 $p(q) \propto q^{\alpha - 1} (1 - q)^{\beta - 1}$

$$p(q) \propto q^{\alpha - 1} (1 - q)^{\beta - 1}$$

$$p(q|k) \propto p(k|q)p(q)$$

Flat Priors:

Ι

"I know nothing but I'm 100% sure that my parameter is between θ_{\min} and θ_{\max}

A_{PL}, A_{Line}

A_{PL}, A_{Line}

A_{PL}, A_{Line}

 $A_{\rm PL}$, $A_{\rm Line}$

 $A_{\rm PL}$, $A_{\rm Line}$

 $\log(A_{\rm PL})$, $\log(A_{\rm Line})$

Also use this for parameters that cannot be negative!

Other Distributions:

 E_{line}

"I have prior information that says that my parameter θ should be around a value of $\hat{\theta}$, but I'm not sure."

Gaussian and t-distribution

Beta-distribution

Reparametrizations

 $\sigma_{\rm line}$

"The possible width of a line generally scales with the line's energy."

$$p(E_{\text{line}}, \sigma_{\text{line}}) \neq p(E_{\text{line}})p(\sigma_{\text{line}})$$

Reparametrizations

 $\sigma_{
m line}$

"The possible width of a line generally scales with the line's energy."

Reparametrizations

 $\sigma_{
m line}$

"The possible width of a line generally scales with the line's energy."

$$p(E_{\text{line}}, \sigma_{\text{line}}) \neq p(E_{\text{line}}) p(\sigma_{\text{line}})$$

$$q = \frac{E_{\text{line}}}{\sigma_{\text{line}}}$$

$$p(E_{\text{line}}, q) = p(E_{\text{line}}) p(q)$$

Empirical Distributions

"My prior is actually someone else's posterior"

Empirical Distributions

"My prior is actually someone else's posterior"

Kernel Density Estimation

