

TÖL403G GREINING REIKNIRITA

11. Gráðug reiknirit 1

Hjálmtýr Hafsteinsson Vor 2022

Í þessum fyrirlestri

- Að raða skrám á segulband (storing files on tape)
 - Jafnar líkur á skrám
 - Mismunandi lestrartíðni
- Skipulag námskeiða (verkval, scheduling classes)
 - Finna mesta fjölda námskeiða sem skarast ekki

Almennt form sannana á gráðugum reikniritum

4.1 - 4.3

Skrár á segulbandi

- Höfum n skrár (files) sem á að geyma á segulbandi
- Skrá i hefur lengd L[i]
 - Þurfum að spóla framhjá skrám 1 til k-1 til þess að lesa skrá k

$$kostn(k) = \sum_{i=1}^{k} L[i]$$
 parf að spóla framhjá 1 til k -1 og lesa skrá k

Ef jafnlíklegt er að allar n skrárnar séu lesnar þá er væntur kostnaður (expected cost) að lesa skrá:

$$E[kostn] = \sum_{k=1}^{n} \frac{kostn(k)}{n} = \sum_{k=1}^{n} \sum_{i=1}^{k} \frac{L[i]}{n}$$

Umröðun skráa

- Getum breytt væntum kostnaði með því að umraða skránum
 - Lát π vera umröðun (permutation) á 1, ..., n. Þá gildir:

$$E[kostn(\pi)] = \sum_{k=1}^{n} \sum_{i=1}^{k} \frac{L[\pi(i)]}{n}$$

Hvaða umröðun á að nota?

Dæmi:

$$A B C$$

 $L = [5, 1, 3]$

Væntur kostnaður:
$$\frac{1}{3}(5+6+9) = \frac{20}{3}$$

Betri röð:

Væntur kostnaður:
$$\frac{1}{3}(1+4+9) = \frac{14}{3}$$

Ekki gott að hafa lengstu skrárnar fremst, þurfum alltaf að fara framhjá þeim til að komast í hinar

Besta röðunin

Setning:

 $E[kostn(\pi)]$ er í lágmarki þegar

$$L[\pi(i)] \le L[\pi(i+1)]$$
 fyrir $i = 1, ... n - 1$

skrárnar eru í hækkandi röð eftir lengd

Sönnun: (með mótsögn)

Segjum að umröðunin π gefi lágmarks væntan kostnað, en samt gildi að $L[\pi(i)] > L[\pi(i+1)]$ fyrir eitthvert i.

а	D	
π(<i>i</i>)	π(<i>i</i> +1)	

Hvað myndi gerast ef við víxluðum á skrám a og b á segulbandinu?

Kostnaðurinn við að <u>lesa a</u> myndi <u>aukast</u> um L[b] og kostnaðurinn við að <u>lesa b</u> myndi <u>minnka</u> um L[a]

Því nú er <u>b fyrir framan a</u> og þurfum að fara framhjá henni fyrst

Því nú er <u>a ekki fyrir framan b</u> og sleppum við að fara framhjá henni

Sönnun, frh.

Heildarbreytingin á væntum kostnaði væri $\frac{L[b] - L[a]}{n}$

En við gáfum okkur að L[a] > L[b], svo að þetta er <u>lækkun</u> á væntum kostnaði

Hvernig er hægt að lækka eitthvað sem er þegar í lágmarki?

En kostnaðurinn var þegar í lágmarki, svo þetta er í mótsögn við það!

Forsendan sem við gáfum okkur hlýtur því að vera röng þ.e. að til sé i þannig að $L[\pi(i)] > L[\pi(i+1)]$

Þetta þýðir að ef væntur kostnaður er í lágmarki þá hljóta skrárnar að vera í hækkandi lengdarröð

Gráðugt reiknirit er best!

- Hér er þá komið gráðugt reiknirit sem finnur alltaf bestu lausn á verkefni
- Óvenjulegt að gráðug reiknirit finni alltaf bestu lausn
 - Oftast finna þau bara góða lausn, eða staðvært bestu (locally optimal) lausn
- Græðgin getur verið á ýmsa vegu:
 - Hér felst hún í að setja stystu skránna fremst og leysa svo restina á sama hátt

<u>Tími</u>: O(n log(n)) til að raða skránum í hækkandi röð eftir lengd

Dæmigerð tímaflækja fyrir gráðug reiknirit. Þau eru oftast nokkuð hraðvirk: O(n) eða $O(n \log(n))$

Önnur tíðnidreifing

- Hvað ef skrárnar eru lesnar með mismunandi tíðni?
 - Gefið fylkið *F*[1..*n*] þar sem *F*[*i*] er lestrartíðni á skrá *i*

Þá myndum við vilja hafa þær skrár sem eru lesnar oft framarlega á segulbandinu og það eru ekki endilega stystu skrárnar!

Nú er heildarkostnaðurinn:

$$\Sigma kostn(\pi) = \sum_{k=1}^{n} \left(F[\pi(k)] \cdot \sum_{i=1}^{k} L[\pi(i)] \right) = \sum_{k=1}^{n} \sum_{i=1}^{k} (F[\pi(k)] \cdot L[\pi(i)])$$
tíðni lestrar á skrá k
kostnaður við lestur á skrá k

Besta röðun fyrir almenna tíðnidreifingu

Sjáum:

Best að hafa skrár með <u>háa tíðni fremst</u> - hátt *F*[*i*] fremst

Best að hafa skrár með stutta lengd fremst - lágt L[i] fremst

Skoðum hlutfallið L[i]/F[i]:

Best að hafa skrár með lágt gildi á L[i]/F[i] fremst

Setning:

Heildarkostnaðurinn $\Sigma kostn(\pi)$ er í lágmarki þegar

$$\frac{L[\pi(i)]}{F[\pi(i)]} \le \frac{L[\pi(i+1)]}{F[\pi(i+1)]}$$
 fyrir $i = 1, ..., n-1$

Sönnun:

Svipuð röksemdafærsla og í fyrri sönnun (með mótsögn)

Skipulag námskeiða (scheduling classes)

- Höfum n námskeið með upphafstíma S[1..n] og lokatíma F[1..n]
 - Gildir alltaf að S[i] < F[i]</p>
- Viljum velja sem stærsta hlutmengi X ⊆ {1, 2, ..., n}, þ.a. fyrir sérhver stök i, j ∈ X gildir að S[i] > F[j] eða S[j] > F[i]

i er á eftir j j er á eftir i

- Viljum finna mesta fjölda námskeiða sem ekki skarast
 - Hugsum ekkert um lengd námskeiðana, bara fjöldann

Gætum líka talað um verk (*activity*) í staðinn fyrir námskeið

Æfing

Gefin þessi 9 verk, hver er mesti fjöldi verka sem ekki skarast?

Finnið tvær ólíkar lausnir

Möguleg gráðug reiknirit

Hvernig á græðgin að vera?

Velja fyrst lægsta upphafstíma S[i]?	Nei, hægt að finna mótdæm			
	Til dæmis:			

- Velja fyrst minnstu lengd námskeiðs (*F[i]* – *S[i]*)? **Nei**, hægt að finna mótdæmi

Til dæmis:

- Velja fyrst lægsta lokatíma *F[i]*?

Já, þetta virkar

Gráðugt reiknirit

Röðum verkum eftir lokatíma F.]

4

Gerum nú ráð fyrir að verkin séu í röð eftir lokatíma, þ.a. verk 1 hefur lægsta lokatíma, verk 2 næstlægsta, o.s.frv.

Velja fyrsta verkið

Fyrir i = 2 til n

Ef verk *i* skarast ekki við síðasta valið verk **þá** Velja verk *i*

Formlega:

Raða verkunum fyrst Valin verk koma í fylkið *X*

Ef upphafstími verks *i* er hærri en lokatími síðasta valins verks ...

... þá getum við valið verk i

Bláu verkin valin

Reikniritið gefur bestu lausn

Setning:

Þetta gráðuga reiknirit gefur mesta fjölda námskeiða sem skarast ekki

• Sönnun:

Segjum að gráðuga reikniritið skili eftirfarandi runu af verkum:

G:
$$\langle g_1, g_2, ..., g_k \rangle$$
 í röð eftir upphafstíma

Segjum nú að til sé annað skipulag sem er betra Kannski byrjar það eins og *G*, en svo breytist það:

O:
$$\langle g_1, g_2, ..., g_{j-1}, c_j, c_{j+1}, ..., c_m \rangle$$
 með $m > k$

 $c_j \neq g_j$ og er fyrsta verkið sem er öðruvísi

Sönnun, frh.

Gráðug: $G: \langle g_1, g_2, ..., g_{j-1}, g_j, g_{j+1}, ..., g_k \rangle$

Besta: O: $\langle g_1, g_2, ..., g_{j-1}, c_j, c_{j+1}, ..., c_m \rangle$

Munið að gráðuga reikniritið tók námskeiðin fyrir í hækkandi röð eftir lokatíma og g_j var valið því það var fyrsta verkið sem ekki skaraðist við g_{j-1}

En c_j skarast heldur ekki við g_{j-1} og $c_j \neq g_j$, svo þá hlýtur lokatími c_j að vera hærri en g_j

Við getum því sett g_j í stað c_j í verkrununa O, án þess að það skemmi neitt

O:
$$\langle g_1, g_2, ..., g_{j-1}, g_j, c_{j+1}, ..., c_m \rangle$$

Sönnun, frh.

Gráðug: $G: \langle g_1, g_2, ..., g_{j-1}, g_j, g_{j+1}, ..., g_k \rangle$

Besta: O: $\langle g_1, g_2, ..., g_{j-1}, g_j, c_{j+1}, ..., c_m \rangle$

Sáum að við gátum sett g_i í stað c_i í O

Getum þá haldið þessu áfram og sett g_{i+1} í stað c_{i+1} (ef þau eru ólík), o.s.frv.

Það er því til <u>besta</u> verkruna sem inniheldur **öll verk** sem gráðuga reikniritið valdi

En það þýðir að k = m, því ef það væri til verk c_{k+1} sem skarast ekki við neitt verk þá myndi gráðuga reikniritið velja það!

Við höfum þá sýnt að verkrunan G er alveg eins góð og verkrunan O

Það geta oft verið fleiri en ein verkruna með sama fjölda verka

Almennt form sannana

- Þegar við ætlum að sanna að gráðugt reiknirit finni bestu laust er skipulagið oft svipað:
 - Gera ráð fyrir að til sé besta (optimal) lausn sem er ólík gráðugu lausninni
 - Finna "fyrsta" staðinn þar sem lausnirnar eru ólíkar
 - Sýna að við getum skipt út besta valinu fyrir gráðuga valið, án þess að lausnin verði verri

lausnin verður ekki endilega betri heldur

Sýnir að einhver besta lausn <u>innihaldi</u> alla gráðugu lausnina og er þess vegna <u>jöfn</u> gráðugu lausninni

Fyrirlestraæfingar

- 1. Ef allar skrárnar eru jafnstórar (L[1] = L[2] = ... = L[n]) en lestrartíðnir þeirra (F[1..n]) eru ólíkar, hvaða röð skráanna gefur lægsta heildarkostnað?
- 2. Gefnar eru 3 skrá með stærðum L = [50, 20, 30] og lestrartíðnir F = [50, 5, 15]. Hvaða röð skráanna lágmarkar heildarlestrarkostnað?
- 3. Í stað þess að velja alltaf námskeiðið með lægsta lokatímann sem passar, þá veljum við nú alltaf námskeiðið með hæsta upphafstímann sem passar. Finnur þessi aðferð alltaf bestu lausn?