Universidad Nacional de San Agustín

Artificial Intelligence

Multiple Sequence Alignment using Particle Swarm Optimization

MSc. Vicente Machaca Arceda

Content

Introduction

Bioinformatics

Problem

Objective

Proposal

Particle definition

Movements

Objective function

Mutations

Experiments

Datasets and params

Results

PSO vs CLUSTALW

Introduction Bioinformatics

Proposal

Particle definition Movements Objective function

Experiments

Datasets and params

Results

PSO vs CLI

Bioinformatics

Bioinformatics What is Bioinformatics?

According to Luscombe et al.: **Bioinformatics** involves the technology that uses computers for storage, retrieval, manipulation, and distribution of information related to biological macromolecules such as DNA, RNA, and proteins [1].

Bioinformatics

Bioinformatics Example of DNA sequence

>J01859.1 Escherichia coli 16S ribosomal RNA, complete sequence AAATTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAACGGT AACAGGAAGAAGCTTGCTCTTTGCTGACGAGTGGCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATG GAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGGACCTTCG GGCCTCTTGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACG A TCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGG CAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTT CGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAAGTTAATACCTTTTGCCTCATTGACGTTACCCG CAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAAT TACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAAC TGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGT AGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCG TGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTTGTGCCC TTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACT CAAATGAATTGACGGGGCCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCT TACCTGGTCTTGACATCCACGGAAGTTTTCAGAGATGAGAATGTGCCTTCGGGAACCGTGAGACAGGTGC TGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCT TTGTTGCCAGCGGTCCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGA CGTCAAGTCATCATGGCCCTTACGACCAGGGCTACACACGTGCTACAATGGCGCATACAAAGAGAAGCGA CCTCGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTGGATCAGAATGCCACGGTGAATACGTTCCCGGGCCTTGTACACACCG TGTGATTCATGACTGGGGTGAAGTCGTAACAAGGTAACCGTAGGGGAACCTGCGGTTGGATCACCTCCTT

Figure: 16S ribosomal DNA of Escherichia coli with FASTA Format.

Introduction

Bioinformatics

Problem

Proposal

Particle definition

Objective function

Experiments

Datasets and params

Results

PSO vs CLU

Problem Sequence alignment

No alignment

CGATGCTAGCGTATCGTAGTCTATCGTAC

ACGATGCTAGCGTTTCGTATCATCGTA

Alignned

- CGATGCTAGCGTATCGTAGTCTATCGTAC

In the alignment process there could be substitutions, changes of residues and gaps. Gaps could cause by insertions or deletions.

Figure: No alignment versus alignment.

Problem Sequence alignment

No gaps (10 matches)

a: ATATTGCTACGTATATCAT

b: ATATATGCTACGTATCAT

With one gap (14 matches)

a: ATAT-TGCTACGTATATCAT

b: ATATATGCTACGTATCAT

With two gaps (16 matches)

a: ATAT-TGCTACGTATATCAT

b: ATATATGCTACG--TATCAT

Figure: Alignment and gaps.

Algorithms should take into account the possibility of introducing gaps. **Several alignments can be constructed** between two sequences.

Problem Multiple Sequence alignment


```
RLAO METVA
            --MIDAKSEHKIAPWKIEEVNALKELLKSANVIALIDMMEVPAVOLOEIRDK
RLAO METJA
            ---METKVKAHVAPWKIEEVKTLKGLIKSKPVVAIVDMMDVPAPOLOEIRDK
                   --MAHVAEWKKKEVEELANLIKSYPVIALVDVSSMPAYPLSOMRRL
RLAO PYRAB
                  ---MAHVAEWKKKEVEELAKLIKSYPVIALVDVSSMPAYPLSOMRRL
RLAO PYRHO
RLAO PYRFU
                   --MAHVAEWKKKEVEELANLIKS<mark>YP</mark>VVALVDVSSM<mark>P</mark>AY<mark>P</mark>LSQMRRL
RLAO PYRKO
                   --MAHVAEWKKKEVEELANIIKSYPVIALVDVAGVPAYPLSKMRDK
RLAO HALMA
            MSAESERKTET IPEWKQEEVDAIVEMIESYESVGVVNIAGIPSRQLQDMRRD
            MSESEVROTEVI<mark>P</mark>QWKREEVDELVDFIESYESVGVVGVAGIPSRQLQSMRRE
RLAO HALVO
RLAO HALSA
            MSAEEORTTEEVPEWKROEVAELVDLLETYDSVGVVNVTGIPSKOLODMRRG
RLAO THE AC
                   --MKEVSOO<mark>K</mark>KELVNEIT<mark>ORIKASRSVAIVDTAGIRTROIODIRG</mark>K
RLAO THEVO
                    -MRKINPKKKEIVSELAQDITKSKAVAIVDIKGVRTRQMQDIRAK
                    -MTEPAOWKIDFVKNLENE INSRKVAAIVSIKGLRNNEFOKIRNS
RLAO PICTO
```

Figure: Example of Multiple Sequence Alignment (MSA) in amino acid sequences.

Introduction

Bioinformatics

Objective

Proposal

Mayoments

Objective function

Experiments

Datasets and params

Results

PSO vs CL

Objective

Propose Particle Swarn Optimization (PSO) to solve the Multiple Sequence Alignment (MSA) [2].

Introduction

Bioinformatics Problem Objective

Proposal Particle definition

Objective function

Experiments

Datasets and params

Results

PSO vs CLUS

Proposal Particle definition

	W	G	K	V	-	9	N	V	D
Leader:	W	D	K	V	(3)	9	N	-	-
	S	20	K	V	G	G	N	-	12
	W	G	K	-	-	V	N	V	D
Particle:	W	G	K	- K	-	V -	N -	V	D

	5	6		
Leader:	5	6	8	9
	2	8	9	
		-		
1	4	5		
Particle:	4	5	6	7

Figure: Example of particle representation.

Introduction

Bioinformatics Problem

Proposal

Movements

Objective function

Experiments

Datasets and params

Results

PSO vs CL

Proposal Movements

(1)

$$distance = \frac{matchingGaps}{totalGaps}$$

$$crossPoint = rand(1, distance * length)$$
 (2)

	5	6		
Leader:	5	6	8	9
	2	8	9	
			1	
	4	5		
Particle:	1	5	6	7

Figure: Example of particle movement.

Introduction

Bioinformatics Problem

Proposal

Movements
Objective function

Experiments

Datasets and params

Results

PSO vs CLU

Proposal Objective function

ACGTCTGAT**A**CGCCGTAT**A**GTCTATCT

----CTGAT**T**CGC---AT**C**GTCTATCT

Matches: $18 \times (+1)$

Score = +11

Mismatches: 2×0

Gaps: $7 \times (-1)$

Figure: Example of score in sequence alignment.

Introduction

Bioinformatics Problem

Proposal

Particle definition Movements Objective function

Mutations

Experiments

Datasets and params

Results

PSO vs CL

Proposal Mutations

The mutation operator inserts a gap in a random position in a random sequence inside a particle.

Introduction

Bioinformatics Problem Objective

Proposal

Movements
Objective function

Experiments
Datasets and params

Results

PSO vs CL

Experiments Datasets

Table: Dataset used in the experiments.

Dataset	min. length	max. length	num. bases
S6	8	17801	153
S7	457	457	8
S8	7	10	5

Experiments Datasets S8


```
1 A T G C A A G
2 T A A G T C A A G T
3 A T G C A A C T
4 T A A G T C A T A
5 A T G G A T T C
```

Figure: Sequences of S8 dataset.

Experiments Params

Table: Params used in the experiments.

Param	Value
Iterations	30
Num. of particles	25
Mutation probability	0.2
Gaps	30%
Num. of experiments test	10

Introduction

Bioinformatics Problem Objective

Proposal

Movements
Objective function

Experiments

Datasets and params

Results PSO vs CLUSTALW

Table: Score comparison of PSO and CLUSTALW.

Dataset	PSO-mutation	PSO	CLUSTALW
S6	12678	10012	18045
S7	11105	9054	12564
S8	32	28	49

Results PSO vs CLUSTALW


```
1 - ATG-C-AAG
2 TAAGTCAAGT
3 - A-TGCAACT
4 TAAGTCAT-A
5 - ATGGATTC
```

```
1 A T G C A A G - - - - - 2 - T A A G T C A A G T 3 A T G C A A C T - - - 4 - T A A G T C A T A - 5 A T G G A T T C - - -
```

Figure: Left: S8 alignment with PSO-mutation. Right: S8 alignment with CLUSTALW.

Figure: Extract of S7 alignment using PSO-mutation

Conclusions

This thesis proposed the use of PSO to solve the MSA problem. The author used a set of datasets from NCBI.

The author proposed a mutation operator to avoid local solutions. This operator just inserts a gap.

The score of PSO was accepatble and very similar to CLUSTALW. Currently, there is more research on this topic.

References I

- [1] N. M. Luscombe, D. Greenbaum, and M. Gerstein, "What is bioinformatics? a proposed definition and overview of the field," *Methods of information in medicine*, vol. 40, no. 04, pp. 346–358, 2001.
- [2] F. B. R. Zablocki et al., "Multiple sequence alignment using particle swarm optimization," Ph.D. dissertation, University of Pretoria, 2009.

