1) Publication number: 0 641 542 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 94401944.7

(51) Int. Cl.6: A61B 5/00

(22) Date of filing: 01.09.94

(30) Priority: 03.09.93 JP 220147/93 25.03.94 JP 56259/94

(3) Date of publication of application: 08.03.95 Bulletin 95/10

(84) Designated Contracting States : DE FR GB IT

(1) Applicant : Ishihara, Ken 1-15, Chigusa 1-chome Takarazuka-shi, Hyogo-ken (JP)

 Applicant: TOA MEDICAL ELECTRONICS CO., LTD.
 2-1, Minatojimanakamachi 7-chome Chuo-ku Kobe-shi Hyogo-ken (JP)

(72) Inventor : Ishihara, Ken 1-15 Chigusa 1-Chome Takarazuka-shi, Hyogo-ken (JP) Inventor: Yamamoto, Hiroshi 6-11 Shofudai 1-Chome, Tarumi-ku Kobe-shi, Hyogo-ken (JP) Inventor: Watanabe, Mitsuru 8-6 Momoyamadai 6-Chome, Tarumi-ku Kobe-shi, Hyogo-ken (JP) Inventor: Asano, Kaoru 17-19 Nakano 1-Chome. Nishi-ku Kobe-shi, Hyogo-ken (JP) Inventor: Suzuki, Akio C-502, 2001-18, Nishifutami, Futami-cho Akashi-shi, Hyogo-ken (JP) Inventor: Maekawa, Yasunori 35-111, Asahigaoka, Bessho-cho Miki-shi, Hyogo-ken (JP)

(74) Representative: Orès, Bernard et al Cabinet ORES 6, Avenue de Messine F-75008 Paris (FR)

- (54) Non-invasive blood analyzer and method using the same.
- A non-invasive blood analyzer includes a light application device for applying light to a detection region of vessels contained in part of the living body, a capturing device for capturing the detection region to which light is applied, a fixing device for relatively fixing the capturing device and the part of the living body; a stabilizing device for stabilizing a focus of the capturing device with respect to the detection region; and an analyzer for analyzing the morphology and/ or number of blood cells contained in the detection region by processing images captured with the capturing device, the light application device and the capturing device forming one image with light application or capturing process during one ten thousandth to one billionth second.

15

20

25

30

35

40

45

50

1. Field of the Invention

The present invention relates to an apparatus for analyzing blood in a non-invasive manner and a method using the same, and more particularly to an apparatus for analyzing blood components necessary for a hematology test by optically measuring blood flowing through blood vessels in a living body and a method using the same apparatus.

2. Description of the Related Art

The items of hemotology test such as the number of blood cells, hematocrit, hemoglobin, and corpuscular constant (mean corpuscular volume: MCV, mean corpuscular hemoglobin: MCH, and mean corpuscular hemoglobin concentration: MCHC) are extremely important for the diagnosis of diseases and the treatment thereof. Such items are most frequently used in a clinical test of patients.

Such hematology test involves collecting blood from a living body to analyze the sample thereof with an analyzer. However, the collection of blood from the living body causes a considerable pain to the living body. The above method of hematology test is always accompanied by a fear that needles for blood collection might cause an accident due to error injection when they are used for collecting blood from a different living body contracted with infectious diseases such as hepatitis and AIDS. Thus, a demand has been made for many years that an apparatus be developed that allows practitioners to perform a blood test in a non-invasive manner. When such blood analyzer is installed besides the bed on which the living body is laid, the practitioners can monitor real-time conditions thereof on the spot without difficulty. Examples of the widely known prior art relating to such apparatus include a video microscope which applies light to a subject portion of observation on a skin surface of a living body to capture a video image thereof (static image) at a shutter speed of about one thousandth second and identifies discontinuous points in the blood stream which points move one by one on the static image, and an analyzer providing a video camera attached with a high-speed shutter which captures red blood cells in the conjunctival capillary blood vessels in an eyeball (see Japanese Unexamined Patent Publication No. HEI 4-161915 and USP No. 4998533).

By the way, the speed of blood flow is about five mm to tens of mm per second. When images of red blood cells are captured at a shutter speed of one thousandth second like in the prior art assuming that the blood flows at a rate of 10mm per second, red blood cells move by the distance equal to the diameter thereof thereby generating a shift in the image by

the diameter.

Furthermore, red blood cells adjoin each other in blood vessels with a space of the diameter or less therebetween and almost all the red blood cells overlap each other in the image due to the shift in the image thereof. Consequently, the above Japanese prior art is far from allowing examiners to quantitatively measure the above test items through the morphological analysis of blood cells and the counting of the number thereof from captured images.

On the other hand, the analyzer disclosed in USP No. 4998533 captures conjunctival capillary blood vessels in an eyeball with the video camera. However, the focus of the video camera is relatively shifted at all times with respect to the captured portion of the eyeball because of a slight motion inherent in the eyeball. Thus, it is very difficult to repetitively capture the same region of the captured portion thereof with the video camera. It is impossible to mechanically stop the slight motion of the eyeball by closely contacting some object to eyeballs because the eyeball might be damaged. Furthermore, USP No. 4998533 describes counting the number of RBC and measuring HCT, MCV and MCHC, but it describes no procedure for measuring these values.

SUMMARY OF THE INVENTION

The present invention has been conceived in view of the above circumstances, and an object of the invention is to provide an apparatus and a method which can analyze blood in non-invasive manner by capturing with good accuracy blood cells moving in blood vessels in a living body and analyzing the morphology and/ or number of the blood cells from captured images.

Therefore, the present invention provides a noninvasive blood analyzer comprising: light application means for applying light to a detection region in a blood vessel contained in part of a living body; capturing means for capturing the detection region to which light is applied; fixing means for relatively fixing the capturing means and the part of the living body; stabilizing means for stabilizing a focus of the capturing means with respect to the detection region; and analysis means for analyzing the morphology and/ or the number of blood cells contained in the detection region by processing images captured with the capturing means; the light application means and the capturing means forming one image with light application or capturing process during one ten thousandth (10-4) to one billionth (10-9) second.

The blood analyzer is characterized by analyzing blood in a living body in a non-invasive manner. Preferably, the living body is that of mammals including human bodies.

The part of the living body containing the detection region to which the light application means ap-

10

15

20

30

35

45

50

plies light refers to a portion having a skin that is not easily damaged by a contacting object and blood vessels below the skin, such as a lip, finger, and ear lobe. Portions like eyeballs which can be easily damaged by a contacting object are excluded from the abovementioned part of the living body.

The detection region in the blood vessel refers to a predetermined region of blood vessels that is really present in the living body. In this particular invention, the predetermined region is referred to as a detection region. This region has such a volume that blood cells in the region can be individually differentiated.

This region may be partitioned with two parallel planes traversing orthogonally or diagonally relative to the direction of blood flow. Preferably, the distance between the parallel planes may be about 10 to 20 microns.

On the other hand, the thickness of the subject blood vessels is not limited, but capillary arteries and veins are preferable to produce a good result in reproduction of the detected state. Incidentally, blood cell information obtained in capillary arteries and veins can be translated into information on thick vessels (medium-size or large arteries and veins).

From another viewpoint, the present invention provides a non-invasive method for analyzing blood comprising the steps of: relatively fixing capturing means and part of a living body: applying light to a detection region in a blood vessel contained in the part; stabilizing a focus of the capturing means with respect to the detection region: and capturing the detection region, thereby forming an image of the detection region; and processing the formed image to perform an morphological analysis of blood cells contained in the detection region and to count the number of the blood cells; the light application step and capturing step forming one image during one ten thousandth to one billionth second.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be detailed by way of the accompanying drawings, which are not intended to limit the scope of the present invention.

FIG. 1 is a view illustrating the structure of embodiment 1 of the present invention.

FIG. 2 is a view showing an example of a detection region.

FIG. 3 is a view showing an example of a detection region.

FIG. 4 is a view showing an example of the detection region.

FIG. 5 is a view illustrating the structure of embodiment 2 of the present invention, the view showing an essential portion thereof.

FIG. 6 is a view showing an example of a detection region.

FIG. 7 is a view showing an example of a detec-

tion region.

FIG. 8 is a view illustrating a captured image.

FIG. 9 is a view showing a state in which an image is cut with a window.

FIG. 10 is a flowchart showing a procedure for calculating the number of red blood cells.

FIG. 11 is a flowchart showing the procedure for calculating MCV.

FIG. 12 is a flowchart showing a procedure for calculating hemoglobin.

FIG. 13 is a flowchart showing the procedure for calculating hemoglobin.

FIG. 14 is a flowchart showing the procedure for calculating hemoglobin.

FIG. 15 is a flowchart showing a procedure for classifying white blood cells (leukocytes).

FIGs. 16 (a) through 16(d) are views illustrating the principle of calculating the flow rate of blood.

FIG. 17 is a view showing an example in which a probe is attached in an embodiment.

FIG. 18 is a view showing a construction of embodiment 3 of the present invention.

FIG. 19 is a flowchart showing a procedure of calculating hematocrit value of the embodiment shown in FIG.18.

FIG. 20 is a view showing a structure of embodiment 4 of the present invention.

FIG. 21 is a view showing a modification of embodiment 4 shown in FIG. 20.

FIG. 22 is a view illustrating an essential part of FIG. 21.

FIG. 23 is a partial expanded view of FIG. 21

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the light application means of the present invention, either a continuous or an intermittent light source may be used; the continuous light source that continuously applies light to the detection region includes a laser, a halogen lamp or a tungsten lamp while the intermittent light source that applies light intermittently to the detection region includes a pulse laser (for example, 7000 series manufactured by Spectra-Physics Co., Ltd.) and a multi-strobe (for example, DSX series manufactured by Sugawara Laboratories, Inc., Japan). Preferably, the continuous light source may incorporate an optical shutter therein to be used as an intermittent light source. As the optical shutter, known acoustic-optic modulator or electro-optic modulator can be used. Incidentally, the light application (flickering) duration in intermittent light sources of these kinds can be set to a range of ten thousandth seconds to one billionth second.

Besides, the light application means may comprise at least one of an optical fiber, various kinds of reflectors, a polarizing element, various kinds of lenses, a prism, a slit and a filter in addition to the above

10

15

20

25

30

35

40

45

light source. Light emitted from the light source may be directed to the detection region by an appropriate combination of the above means. In particular, the light application means preferably comprises a polarizing means for applying light to the detection region with the polarization effect.

As the capturing means of the present invention, general CCD image sensor for use in visible light, infrared rays and ultraviolet rays can be used. In particular, a CCD image sensor provided with an electronic shutter having a speed of one ten thousandth or more is preferably used. Such CCD image sensor includes XC-73/3CE and XC-75/75CE (provided with a variable shutter having a maximum shutter speed of one five hundred thousandth seconds) both manufactured by Sony Corporation in Japan.

Furthermore, the capturing means may comprise at least one of an optical fiber, various kinds of reflectors, a polarizing element, a lens of each kind, a prism, a slit, a filter and an image intensifier so that an appropriate combination of the above devices allows the reflection light from the detection region to be introduced into the CCD image sensor. In particular, a polarizing means is preferably provided for removing unnecessary scattered light components from the detection region.

In accordance with the present invention, the light application means or the capturing means forms one image during one ten thousandth to one billionth second of light application or capturing process. For example, red blood cells moving at a speed of 1 Omm per sec through the vein moves by a distance of one micron during one ten thousandth second. A shift in the image of the red blood cells captured with the device of the present invention is equal to 10% of the diameter (10 micron) of red blood cells.

The morphological analysis of blood cells in vessels and the counting of the number thereof is experimentally proved to be possible in the presence of such degree of image blur. When one image is formed in one hundred thousandth second, the image blur can be suppressed to one tenth thereof (1% of the diameter). When one image is formed in one millionth second, the image blur can be suppressed to one hundredth thereof (0.1% of the diameter). Consequently, the accuracy in the morphological analysis of blood cells and the counting thereof improves with the shortening of time required for forming one image.

However, the amount of light received by the capturing means reduces as the time for forming one image is shortened. Thus, the amount of light emitted from the light application means and/or the light sensitivity of the capturing means need to be increased. Preferably, one image formation time ranges from one ten thousandth to one billionth seconds. More preferably, the time ranges from one fifty thousandth to one two hundred thousandth second. Then, in order to form one image in time ranging from one ten

thousandth to one billionth second, preferably light application means providing an intermittent light source and capturing means providing CCD image sensor are combined, or light application means providing continuous light source and capturing means providing CCD image sensor with an electronic shutter are combined.

Furthermore, the light application means and the capturing means are preferably constituted to capture a plurality of images in a predetermined cycle so that the analysis means can analyze the morphology of blood cells including their color tone and/ or count the number thereof based on the plurality of images.

Incidentally, the capturing means may further provide a recording means for recording captured images such as, for example, an image memory or a video tape recorder.

Generally, the number of blood cells as an item of hematology test is calculated in terms of the number per blood volume. It is necessary to know the volume of the detection region for the calculation.

Consequently, the detection region in the blood vessel to which the present invention is directed includes a three-dimensional volume region in which blood cells exist can be optically classified. The volume (capacity) of the detection region is calculated in the following manner.

- (1) The volume is calculated from an area of the captured image, a depth to which the capturing means can capture (depth of focus) and a magnification ratio thereof.
- (2) Light is applied to a predetermined volume of region in blood vessel with the light application means so that the region to which light is applied is captured.
- (3) The volume of the detection region is calculated by measuring the internal diameter of the captured blood vessel at the detection region.

In accordance with the above method (2), when a slit light is directed to a blood vessel in the vertical or diagonal direction relative to the blood flow with the light application means in such a manner that the blood vessel is sliced into a thin disk with the slit light, the capturing means captures the sliced region from the direction of the cross section thereof. In this manner, the dynamic mechanism of blood cells that flows through the blood vessel can be captured from the direction of the blood flow thereby the volume of the detection region can be calculated from the product of the area of the cross section of the blood vessel and the slit width thereof.

In the capturing of the cross section of the blood vessel, preferably the capturing surface of the capturing means is disposed so as to be focused on the overall surface of the cross section by the swing and tilt photography (since the swing and tilt photography is a known art, detailed description thereof is not given here).

15

20

25

30

40

45

50

The analysis means according to the present invention preferably provides an analog and/ or digital mode image processing means selectively having functions such as each kind of filter, y (gamma) correction, color correction, interpolation, jitter correction, color tone conversion, color balance correction, white balance and shading correction.

Furthermore, the analysis means preferably comprises means for calculating the number of red blood cells and/ or white blood cells(leukocytes); means for calculating a hematocrit amount; means for calculating hemoglobin (HGB) by analyzing the intensity of reflection light from the detection region; means for calculating the mean corpuscular volume (MCV), the mean corpuscular hemoglobin (MCH) and corpuscular hemoglobin concentration (MCHC), based on the morphology of blood cells; means for analyzing the morphology of blood cells and classifying thus analyzed blood cells; and means for translating blood cell information obtained from arteriolas and veinlets or capillary arteries and veins into blood cell information corresponding to mediumsize and large arteries and veins.

The analysis means may comprise a digital signal processor (DSP), for example, TMS320C30 manufactured by Texas Instruments, Inc.

Desirably, the non-invasive blood analyzer provides fixing means for relatively fixing at least part of the living body and the capturing means and stabilizing means for stabilizing the focus of the capturing means with respect to the detection region in order to exactly apply the light from the light application means to the detection region in the vessel and clearly photograph the detection region. For this purpose, more preferably, the blood analyzer of the present invention provides integrally or separately the fixing means and the stabilizing means. The structure of such means can be appropriately designed in consideration of the analyzer and the part containing the detection region. The structure thereof can also be determined in consideration of the configuration and size of the living body portion where the detection region exists. For example, when the detection region is contained in a capillary vessel in a lip, means as shown in FIG. 17 can be used. In addition, when the detection region is contained in a capillary blood vessel in a finger, means as shown in FIG. 21 can be used.

The present invention will be detailed in conjunction with the preferred embodiments, which are not intended to limit the scope of the present invention.

Embodiment 1

FIG. 1 is a view illustrating a structure of embodiment 1 of the present invention. As shown in FIG. 1, light application means for applying light to a detection region V in a blood vessel 12 that exists inside of a skin surface 16 of a living body comprises a laser light source 22, an optical fiber 24, and a slit 60. Additionally, capturing means comprises a CCD 40 provided with one hundred thousandth (10-5) second electronic shutter, a lens 38, a polarizing filter 61 and a video system 44.

Then, analysis means which processes images captured with the CCD 40 provided on the capturing means, analyzes the morphology of blood cells contained in the detection region V and counts the number thereof comprises an image processing circuit 46. means 48 for counting the number of red blood cells, means 50 for calculating MCV means 52 for calculating HGB, means 54A for calculating HCT means 54B for calculating MCH, means 54C for calculating MCHC, means 56A for calculating the number of white blood cells, means 56B for classifying white blood cells and means 57 for calculating the blood

Then, the CCD 40 forms one frame image each time the CCD captures the detection region V irradiated with a laser at a shutter speed (capturing time) of one hundred thousandth second (10-5sec). In this embodiment, as shown in FIG.2, the light application means forms the thin disk-like detection region V having a cross section S and a thickness T with slit light applied to the blood vessel 12 in a direction diagonal with respect to the direction of the blood stream of the blood vessel 12 so as to capture blood cells that exists in the detection region V. Incidentally, in FIG.1, a subcutaneous portion (below the skin 16) of the living body is magnified for convenience.

The light source 22 is accommodated in an analyzer 20. The tip of the optical fiber 24, the slit 60, the CCD 40, the lens 38, the polarizing filter 61 are all accommodated in a probe 58. Laser light fired from the light source 22 is regulated with the slit 60 after coming out of the tip of the optical fiber 24 and is translated into a thin belt-like optical beam having a thickness T to irradiate the living body. A transparent plate 66 made of plastic or glass is provided to give a stable image by allowing a tip 59 of the probe 58 to closely contact the skin surface 16.

When the optical beam (slit light) traverses the blood vessel 12, a specific region of the blood vessel is irradiated to form a detection region V. The reflection light coming from the detection region V is received at a light receiving surface of the CCD 40 via the polarizing filter 61 and the lens 38. The captured image is recorded in the video system 44 via a transmission cable 42. Here the "swing and tilt" photography technique is used to capture an reflection light coming from a cross section 62 having a thin disk-like configuration. Since the cross section 62, the lens 38 and the CCD 40 are disposed at positions that enables the swing and tilt photography technique thereby providing a clear image in focus.

The area S of the cross section 62 is determined

15

20

25

35

40

45

50

by dividing the square of the capturing magnification into the image area on the captured cross section. Since the thickness T which represents the thickness of the belt-like optical beam is already known from the slit width of the slit 60, the volume of the region V can be calculated.

Furthermore, the volume of the region V may be determined by cutting the image of the captured cross section with a window having a predetermined area, dividing the square of the capturing magnification into the window area and multiplying the value thus given by the thickness T.

Since the thickness T of the region V is set to a small value, for example, on the order of 10 microns, a probability is not so high that blood cells overlap a flat image captured with the CCD. Even if the blood cells overlap the flat image, it is still easy to differentiate each of the blood cells on the image with the image processing technique.

Incidentally, it is possible to calculate the number of blood cells from one frame of the image as described above. In this embodiment, tens of frames of images to hundreds of frames of images are continuously captured to enhance the accuracy in the analysis. In other words, although a distribution of blood cells should be essentially determined from a wide scope of blood vessels to calculate each of the above indices based on the determined distribution, it is found that the distribution of blood cells can be determined from a large number of images obtained by the continuous capturing of the same detection region to statistically calculate each reliable index based on the distribution thus determined.

When an image intensifier provided with a high speed gate is adopted into the capturing means, a clear image can be obtained even when the amount of light application to the blood vessel is small. Thus the light source may have such a low power that the light application to the living body might not cause a burn thereon.

As shown in FIG. 1, the handling of the optical system can be facilitated by integrally accommodating all the equipment of the optical system in the single probe 58. Thus images of blood cells can be captured and measured only by placing the tip of the probe 58 on the surface of the skin 16 via the transparent plate 66.

FIG. 17 is a view illustrating a state of measuring a blood vessel in a lip by attaching the probe 58 to an attaching device to fix the probe 58 to a subject. A forehead fixing part 100a fixes a probe attaching device 100 to the forehead of the subject, and a jaw fixing part 100b fixes the probe attaching device to the jaw of the subject. When the probe 58 is allowed to closely contact the lip as a detection region via stabilizing means, for example, a transparent plate 66 by using the probe attaching device as shown in FIG. 17, the friction of the transparent plate 66 causes the tip

of the probe 58 to be fixed on the skin surface of the subject to suppress the relative fine vibration between the tip of the probe 58 and the lip portion thereby stabilizing the focus of the capturing system and preventing the detection region from mechanically shifting with respect to the capturing system.

Furthermore, providing the polarizing filter 61 on the light receiving system enables the removal of the unnecessary component of scattered light to give a good image having a good contrast. Even if no polarizing filter is mounted on the light application system at this time, the filter on the light receiving system can improve the contrast of the image to a considerable degree. Preferably, the light application system provides a polarizing filter. A method may be used which involves introducing a polarized laser beam through a polarized wavefront protection fiber.

In FIGs. 1 and 2, the volume region V for detection is formed in a disk-like configuration diagonally with respect to the direction of the blood stream through the blood vessel 12. However, as shown in FIG. 3, the region V may be formed in a disk-like configuration having a diameter W and a thickness W orthogonally with respect to the direction of the bllod flow. In this case, like FIG. 1, an image of the vessel vertically sectioned in the direction of the blood stream will be captured in the swing and tilt photography. The diameter W is determined by the diameter of the blood vessel. The thickness T is determined by the beam width of the light application system. When the disk-like cross section of the blood vessel is similar to a complete circle, the area of the cross section can be simply determined from the diameter W. When the cross section is deviated from a complete circle, the area of the cross section may be determined in the same manner as shown in FIG. 2.

In FIGs. 2 and 3, the entire region V cannot be accommodated in the capturing screen. In other words, as shown in FIG. 4, only a region V' which constitutes part of the region V is displayed on the entire surface of the screen. In such case, the entire portion displayed on the screen can be regarded as a magnified image of the detection region V (V' is regarded as V).

In this manner, the dynamic state of the blood cells flowing through the blood vessels can be captured from the direction of the blood stream.

Referring to FIG. 1, the video system 44 provides a video recorder (VTR) for recording an image captured with the CCD 40. The recorded image is processed at the image processing circuit 46 and is sent to means 48 for calculating the number of red blood cells, means 50 for calculating MCV, means 52 for calculating HGB, means 54A for calculating HCT, means 54B for calculating MCH, means 54C for calculating MCHC, means 56A for calculating the number of white red blood cells, means 56B for classifying white blood cells, and means 57 for calculating the flow rate of blood thereby analyzing the morphology (including

15

20

25

30

35

40

45

50

the tone) and/ or number of the blood cells to calculate each of the items of the blood test. In addition, the image processing circuit 46 selectively provides the functions of each kind of filter, color tone correction, interpolation, jitter correction, tone conversion, color balance correction, white balance, and shading correction to perform pretreatment of images. Subsequently, the means 48 for calculating the number of red blood cells will be detailed hereinafter. The means 48 for calculating the number of red blood cells calculates the number of red blood cells (RBC) per unit volume by counting the number of red blood cells in images of the region V. The procedure of the calculation is shown in the flowchart in FIG. 10. In FIG. 10 a frame of an image in which the region V is captured is read one by one from the video system 44 as shown in FIG. 8 (step 11), followed by cutting the read image with a window having a predetermined size as shown in FIG. 9 (step S12), and identifying red blood cells in the window to determine the number a of red blood cells in the window (step S13). This operation is repeated by a predetermined number F of frames to determine the sum n of the number a of red blood cells obtained in each operation (steps S14 and S15) thereby calculating the mean red blood cell per unit volume represented by $N_0=K_0\cdot n/F$ (step S16). In the formula, symbol K_0 is a conversion constant determined from the window size, the capturing magnification and the thickness T of the region V. When necessary, No is multiplied by a correction constant K1 to translate data on arteriolas and veinlets (capillary vessels) into the number of red blood cells (RBC) corresponding to the medium-size and large blood vessels (step S17). When necessary, with respect to the image processing of red blood cells at step S23, a known method (for example, see "Red Blood Cells Automatic Identification Algorithm and its Evaluation" Akihide Hashizume et al, Medical Electronics and Bio-Engineering Vol. 28, No. 1, March, 1990). Two continuous captured images in which red blood cells moved by approximately 0.1 micron (showing a time lag of one hundred thousandth at the blood stream of 10mm per second) is subjected to subtraction processing so that red blood cells can be identified at a higher speed from two dimensional differentiated image in which only edges of moving red blood cells are emphasized.

Subsequently, the means 50 for calculating MCV will be explained hereinafter. The means 50 determines the mean corpuscular volume (MCV) by determining an area of each red blood cell from the image and multiplying the mean value of the area of each red blood cell by a predetermined constant to calculate the volume value. The procedure is shown in the flow-chart in FIG. 11. In FIG. 11, a frame of an image is read by one by one from the video system 44 (step 21) followed by cutting the image thus read with a window having a predetermined size (step 22) and identifying red blood cells in the window to determine the diam-

eter di thereby calculating the mean value b thereof (step S23). The same operation is repeated by the predetermined number of frames F to determine the sum V of the mean values b obtained in each operation (steps S24 and S25). The sum V is divided by the number F of frames to calculate the mean diameter Va (step S26) to determine the volume V_0 by using a function f (experimentally determined function) for translating the diameter into the volume (step S27). Then the volume Vo thus given is multiplied by a correction constant $\alpha 1$ to determine the mean corpuscular volume (MCV) corresponding to the medium-size and large arteries and veins from data on the arteriolas and veinlets as well as capillary vessels (step S18).

Then, means 52 for calculating the amount of hemoglobin will be explained hereinbelow. The means 52 calculates the total amount of hemoglobin (HGB) per unit area from the intensity of light incident to the region V and the intensity of light reflected at the region V in accordance with the following principle.

When the intensity of incident light is represented by $I_0(\lambda)$ and the intensity of the reflection light by $I(\lambda)$, the following formula is established:

$$I(\lambda) = Io(\lambda) \cdot \alpha(\lambda) \times esp((\epsilon_1(\lambda)Hgb0_2 + \epsilon_2 (\lambda)Hgb))$$
 (1)

where $\alpha(\lambda)$ represents a scattering term (which depends on the wavelength), $\epsilon_1(\lambda)$ an absorption constant of oxyhemoglobin (which depends on the wavelength), $\epsilon_2(\lambda)$ an absorption of deoxyhemoglobin (which depends on the wavelength), HgbO₂ a concentration of oxyhemoglobin , Hgb a concentration of deoxyhemoglobin and λ a wavelength.

The total amount of hemoglobin HGB per unit volume is determined by the formula:

$$HGB = HgbO_2 + Hgb.$$

The scattering term of formula (1) can be regarded approximately as a constant by appropriately selecting a predetermined wavelength λ . When the scattering term is represented by α_0 , the formula (1) can be represented as

$$\log (I(\lambda)/Io(\lambda)) = (\epsilon 1(\lambda)HbO_2 + \epsilon 2(\lambda)Hg) + \log \alpha_0$$

By the way, $I(\lambda)/Io(\lambda)$ is a value obtained in the measurement. Then $\epsilon 1(\lambda)$ and $\epsilon 2(\lambda)$ become a constant with respect to the selected wavelength, and three values such as $HgbO_2$, Hb, and α_0 , are given as unknown values.

Therefore, the following results are produced.

- (a) Two values $HgbO_2$ and Hgb are determined by measuring $I(\lambda)/Io(\lambda)$ with respect to appropriate three wavelengths.
- (b) When α_0 , does not depend on living bodies and is assumed to be definite, two values HgbO₂ and Hgb can be determined by measuring the two values on condition that α_0 is preliminarily determined in tests (there is no problem for practical purposes when α_0 is assumed to be definite).
- (c) Furthermore, selecting a wavelength (for ex-

10

20

25

30

35

40

45

50

ample, 525nm) at which the oxygen type and the deoxygen type Hgb have the same light absorbance produces a result of $\varepsilon_1(\lambda) = \varepsilon_2(\lambda)$. The total amount of hemoglobin per unit volume can be determined by the wavelength.

Incidentally, in the field of blood analysis, the total amount of hemoglobin is simply referred to as hemoglobin. Thus the amount will be described as such hereinbelow.

In accordance with the above principle, the means 52 for calculating hemoglobin calculates HGB. The calculation follows any of the three procedures shown in the flowchart in FIGs. 12 to 14.

At the outset, the procedure shown in FIG. 12 is characterized by determining the intensity $I(\lambda)$ of reflection light from the sum of the intensity of images. In other words, a frame of an image is read by one by one from the video system 44 (step S31), cutting the read image with a window having a predetermined size and recognizing red blood cells within the window to determine the intensity s of the red blood cell image. Then, the intensity b at the background of the image is determined (step S 34).

Each of the sums S and B of the intensity s and b is determined which is thus obtained by repeating the above operation by the predetermined number F of frames (steps S 35 and S 36). Then the intensity I (λ) is calculated by the function g with which the intensity I (λ) is determined from a difference between S and B (step S37). Incidentally, function g was experimentally determined. Then the hemoglobin and HGB are determined by the formula (1) on condition that $lo(\lambda)$ is already known (step S38).

Then, the procedure shown in FIG. 13 is characterized by determining the intensity $I(\lambda)$ of the reflection light from the mean concentration of red blood cells. In FIG. 13, a frame of an image is read one by one from the video system 44 (step S 41) followed by cutting read image with a window having a predetermined dimension (step S 42), identifying red blood cells within the window, and determining the mean scattered light intensity (step S 43). The sum C of the intensity c is determined which is obtained in each operation by repeating the above operation by the predetermined number F of frames (step S44 and S45) followed by calculating the mean scattered light intensity Ca with respect to one red blood cell (step S 46). Then I (λ) is determined by using a function (experimentally determined) in which I (λ) is determined from the mean intensity Ca and the red blood cell number (RBC) (step S 47). Given that lo (λ) is already known, hemoglobin (HGB) is determined from the formula (1) (step S 48).

Incidentally, one of the above procedures (shown in FIG. 12 and FIG. 13) which has a smaller difference between frames can be adopted by executing either the procedure shown in FIG. 12 or the procedure shown in FIG. 13. When the light source 22 applies

light having two wavelengths, either the procedure shown in FIG. 12 or the procedure shown in FIG. 13 is executed with respect to each wavelength to determine the hemoglobin based on formula (1). In such case, oxygen hemoglobin and the deoxygen hemoglobin can be respectively determined.

Subsequently, the procedure shown in FIG. 14 is characterized by determining the hemoglobin from the tone of the image when light is applied which has three wavelengths, a white color or a wide band spectrum. In FIG. 14 a frame of an image is read one by one from the video system 44, read image is cut with a window having a predetermined size, and red blood cell in the window is identified while each component r, g and b of R (red), G (green) and B (blue) colors in the red blood cell image is extracted (steps S 51, S 52 and S 53). The above operation is repeated by a predetermined number F of frames to calculate the respective sum R, G, and B of component r, g and b obtained in each operation (steps S 54 and S 55). Then the mean original color components Ra, Ga and Ba are determined (step S56) to calculate hemoglobin HGB by using a function of experimentally determined in advance (step S 57).

Subsequently, the means 54A for calculating a hematocrit value will be detailed herein after. The means 54A calculates the following equation to determine the hematocrit value HCT.

$$HCT = \alpha_2 X (MCV) X (RBC)$$

Here, MCV is a value determined at the means 50 for calculating MCV whereas RBC is a value determined at the means 48 for calculating the number of red blood cells. Then α_2 is a correction constant for translating a value corresponding to veinlets into a value corresponding to medium-size to large arteries and veins.

Then, the means 54B for calculating the mean corpuscular hemoglobin (MCH). The means 54B calculates the following equation to calculate the following equation to determine the mean corpuscular hemoglobin (MCH).

MCH = (HGB) / (RBC)

where HGB is a value determined by the means 52 for calculating the hemoglobin, and RBC is a value determined by the means 48 for calculating the number of red blood cells.

Then, the means 56A for calculating the number of white blood cells will be explained hereinbelow. The means 56A calculates the number of white blood cells per unit volume by recognizing white blood cells in images of the region V and counting the number thereof. Since the procedure for calculating the number thereof is the same as the counterpart for calculating the number of red blood cells (RBC) as shown in FIG. 10, detailed description thereof is omitted here. The number F of frames has to be increased in the case of counting the white blood cells because the number of white blood cells are smaller than red blood

10

20

25

30

35

40

45

cells (about one thousandth).

Then, the means 56B for classifying white blood cells will be detailed hereinbelow. The means 56B classifies white blood cells into lymphocytes, monocytes, neutrophil, eosinophil and basophil from morphological features. The procedure thereof is shown in the flowchart of FIG. 15. In FIG. 15 a frame of image is read from the video system 44 one by one (step S61), the read image is cut with a window having a predetermined size (step S 62), and white blood cells in the window are recognized from the strength of scattered light and color tone (step S 63). Then the feature parameters (such as size, shape, size of cores, shape of cores) of individual white blood cells are determined (step S64), and the classification is made in accordance with the determined feature parameters (step S 65). The above operation is repeated by the predetermined number F of frames to calculate each classification ratio (step S 65).

Then means 57 for calculating the rate of blood stream will be detailed hereinbelow. The means 57 can, as shown in FIGs. 2 and 3, provide a crosssection image of blood vessels thereby enabling the calculation of the rate of blood stream with the principle (zero-cross method expanded in space). In other words, when the particles passes through the detection region partitioned with parallel planar surfaces A and B spaced by T in the direction M as shown in FIG. 16 (a), the traveling particles are observed from the direction N. Referring to FIG. 16 (b), ten particles are observed at time t. After time Δ t, a particles (1) and (9) located near the surface A get out of the region V. When a particles (11) located in the neighborhood of the surface B enters the region V, particles that appear and disappear in time Δ t with respect to the region V becomes apparent as shown in FIG. 16 (d) based on a difference between FIGs. 16 (b) and 16 (c). Then, assuming that the distribution density of the particles is definite, the frequency of appearance is proportional to the speed of particles. In other words, when the speed is high, the frequency is high. When the speed is low, the frequency is low.

Suppose that the mean observed particle number is designated by Na, and the mean number of the particles that appear at time t and t + Δ t by Aa, particles go out of the region by Aa/2 during time Δ t. Time required for all the number Na of particles to move by distance T is represented by a formula: $2\Delta t \cdot Na/Aa$. The average speed Xa of particles is given by

$$Xa = T \cdot Aa (2\Delta t \cdot Na)j$$
 (2)

where Δt is a preset value, and T is a known value.

The means 57 uses this principle to allow the determination of Na and Aa with respect to captured red blood cells by reading an image from the video system 44, and the calculation of the rate of blood stream from equation (2).

Any information on each kind of blood cell (calculated value) can be translated into blood information

that has been clinically used for the medium and large arteries and veins by multiplying experimentally determined correction constant.

Embodiment 2

FIG. 5 is a view showing a structure of embodiment 2 of the invention, the view showing an essential portion of the embodiment 2. FIG. 6 shows a case in which the light application means forms a thin belt-like detection region V having a width of W, a length of L and a thickness of T in parallel to the direction 14 of the blood stream through the vessel 12 thereby counting the number of blood cells that are present in the region V. Also in FIG. 5, a portion below the skin surface 16 is magnified for simplicity. Referring to FIG. 5, the direction of the blood stream is vertical to the paper surface. The main body of the analyzer 20 is the same as FIG. 1, so the drawings thereof is omitted here.

The light generated from the light source 22 in the main body of the analyzer 20 irradiates the diffuser 26 via an optical fiber 24. Light is diffused with the diffuser 26 to uniformly irradiate a plate 28. The plate 28 substantially forms a surface light generator so that an real image of the plate 28 is formed across the blood vessel 12. Incidentally, as the plate 28, an optical diffusion plate, for example, a frost type diffusion plate manufactured by Sigma Optical Materials Co., Ltd. is used.

The real image 36 of the plate 28 has a thickness of T. A region where the real image 36 of the plate 28 intersects the blood vessel 12 forms the detection region V.

To obtain a good contrast between the brightness of the real image 36 and the brightness of other portions, preferably the optical path of irradiation at least from the skin surface 16 to the real image is abruptly drawn.

The width W of the region V is identical to the diameter of the blood vessel in FIGs. 5 and 6. The region V shown in FIG. 5 has a length of L in the direction of the paper surface (see FIG. 6). The length L is determined by the degree of aperture of the light application system.

The CCD 40 receives the reflection light reflected at the region V via a dichroic mirror 34 and a lens 38a. Analyzing an image captured with the CCD 40a enables the determination of values in each item of hematology test from the morphological analysis and the number of blood cells in images in the region in the same manner as FIGs. 1 and 2.

Incidentally, FIGs. 5 and 6 shows a case in which the real image 36 of the plate and the blood vessel 12 intersect each other. When the diameter of the blood vessel is thick, the real image 36 of the plate 28 may be formed completely inside of the blood vessel 12. In such case, the real image 36 of the plate itself con-

10

15

20

25

30

35

40

45

50

stitutes the detection region V.

In addition, both in FIGs. 6 and 7, the magnification may be too large to allow the whole volume of the region V for detection to be accommodated within the capturing screen. In such case, the whole screen may be regarded as a magnification image of the detection region V. The actual size of the width W and the length L of the region W is determined by dividing the horizontal width and vertical width of the screen by the magnification of the capturing system. The thickness T of the region W is identical to the thickness of the real image 36 of the plate 28.

Incidentally, in embodiment shown in FIG. 5, the detection region V is generated by forming the real image 36 of the plate 28 inside of living bodies. The region V same as shown in FIG. 5 can be formed by applying laser light to living bodies from different directions via a conversion lens and a scanning means to form a focus (common focus) with a certain depth in living bodies.

In any case, light can be applied to a region having a certain depth in living bodies, so the effect of scattered light is extremely small from other portions of living bodies, for example, portions deeper than a position where blood vessels to be measured are located.

Embodiment 3

FIG. 18 is a view showing a structure of embodiment 3 of the present invention. The structure shown in FIG. 18 is formed such that the hematocrit calculation means 54A and the mean corpuscular volume calculating means 50 in the structure shown in FIG. 1 is replaced by means 100 for calculating hematocrit value and means 101 for calculating the mean corpuscular volume. Other portions are the same as the structure shown in FIG. 1.

The means 100 for calculating the hematocrit value in this embodiment will be explained.

The means 100 for calculating the hematocrit value calculates a hematocrit value (HCT) from a ratio of the area occupied by the image of red blood cells to a predetermined area of the image captured by the video system 44 and processed by the image processing circuit 46. The procedure for the calculation of the value is shown in the flowchart of FIG. 19. In FIG. 19, the procedure involves reading a frame of an image of the region V one by one from the video system 44 as shown in FIG. 8 (step S71), cutting the read image with a window having a predetermined size (step S72), thresholding the image of the red blood cells within the window with an appropriate value (step S73), determining the ratio AR (%) of the area occupied by the red blood cell image to the area of the window is determined (step S74). This operation is repeated by the predetermined number F of frames (step S76) to determine the cumulative sum h of AR

which is provided in each operation thereby calculating the mean value \overline{h} by dividing h by F (step S77), and determining H by using a function g (which has been theoretically and experimentally determined) for correcting the overlap of the red blood cell (step S78). The H thus given is multiplied by a correction constant α to determine a hematocrit value HCT corresponding to the medium and large size arteries and veins out of data on arteriolas and veinlets (step S 79).

Then, the means 101 for calculating the mean corpuscular volume will be explained hereinafter. The means 101 operates the following equation to determine the mean corpuscular volume (MCV).

MCV = (HCT)/(RBC)

where HCT represents a value determined by the hematocrit value means 100, and RBC represents a value determined by the means 48 for calculating the number of the red blood cells.

The means 54A for calculating the hematocrit value as shown in FIG. 1 calculates the hematocrit value (HCT) from the mean corpuscular volume (MCV) and the number of red blood cells. In this case, the calculation time is relatively long because each erythrocyte is recognized and the configuration thereof has to be analyzed in order to determine MCV. However, the hematocrit value calculation means 100 in the embodiment shown in FIG. 18 is not required to recognize each erythrocyte and can obtain HCT directly from images. Thus the calculation time is extremely shortened. Besides, when the calculation time is shortened, the analysis of various screens can be made possible with the result that the accuracy in the calculation of HCT is improved.

Embodiment 4

FIG. 20 is a view showing a structure of embodiment 4 of the present invention. Like numerals designate like elements in FIG. 1. Referring to FIG. 20, light generated by the light source in the main body in the analyzer 20 is led into the probe 58 through the optical fiber 24 to irradiate the diffuser 26. Light is diffused by the diffuser 26 and converted into collimated light by the collimator lens 30.

The central portion of the collimated light is shielded by a disk-like shield 67, whereas the periphery of the collimated light is directed to the outside from the tip 59 of the probe 58 via a ring-like mirror 34a and 34b. Light directed to the outside from the tip 59 of the probe 58 irradiates the detection region V in the blood vessel 12 via the transparent plate 66 and the skin surface 16. The light reflected from the detection region V is received by the CCD 40a via the transparent plate 66 and an object lens 38b. The main body of the analyzer 20 analyzes an image captured by the CCD 40a. The main body of the analyzer 20 has been already explained in Embodiment 1 and no further detailed explanation thereof is given here.

15

20

25

30

35

40

19

The dark field illumination defined here refers to an illumination mode by which illumination light is directed to the detection region from the outside of the object lens 38b. In other words, the illumination light illuminates the detection region V at an angle $\phi 1$ or $\phi 2$ larger than an angular aperture θ of the object lens 38b with respect to the detection region V. Consequently, since the illumination light reflected at the skin surface 16 is directed to the outside of the object lens 38b failing to reach the CCD 40a, the contrast of the image captured by the CCD 40a is greatly improved.

FIG. 21 is a view showing a state in which the probe 58 shown in FIG. 20 and part of the subject (finger nail wall) are relatively fixed. An L-shaped support base 71 is attached to the probe 58. The tip 59 of the probe 58 provides a cylinder 59a extending from the probe 58, and a sliding cylinder 59b attached on the external circumference of the end of the cylinder 59a. The sliding cylinder 59b can slide in the directions of arrows a and b. The transparent plate 66 is fixed to the end of the sliding cylinder 59b.

Springs 72a, 72b are provided on the end of the cylinder 59a that energize the sliding cylinder 59b in the direction of the arrow b. An internal cylinder 73a incorporates the object lens 38b and the ring-like mirror 34b and is fixed to the probe 58 via a micro-motion element 74. Here, the support base 71, the cylinder 59a, the sliding cylinder 59b, the springs 72a, 72b and the transparent plate 66 constitute fixing means, while the sliding cylinder 59b, the springs 72a, 72b and the transparent plate 66 constitute stabilizing means.

When a finger 75 of the subject is inserted between the support base 71 and the transparent plate 66 as shown in FIG. 21, the springs 72a, 72b press the transparent plate 66 on the nail wall of the finger 75 at an appropriate pressure. The detection region V in the blood vessel of the nail wall is fixed in the sight of the CCD 40a thereby preventing a shift motion of the detection region V caused by the fine vibration of the finger 75.

In addition, the focus of the CCD 40a is adjusted by moving the lens 38b in the direction of the optical axis (in the direction shown by arrow a or b) with the micro-motion element 74. As the micro-motion element 74, for example, an element with a piezo element P-720/ P-721 (manufactured by Physik Instrumente), or an element with an ultrasonic motor can be used.

The transparent plate 66 is detachably attached on the tip 59 of the probe 58 so that the plate 66 can be replaced for each subject. The transparent plate 66 can be replaced for hygienic reasons, i.e., for pro-

tecting subjects from contracting diseases.

As the transparent plate 66, a glass plate, a resinmade flexible film can be used.

Otherwise, the transparent plate 66 itself is not replaced, and a replacable film can be closely contacted to the finger 75.

Furthermore, as shown in FIG. 22 a liquid or gelatinous optical medium safe for the living body is more preferably intervened between the skin surface 16 and the transparent plate 66 in order to prevent the illumination light from irregularly reflecting on the skin surface 16 and obtain a sharp image of the detection region V.

As the light medium 76, oil or cream can be used. In embodiment 4, as the plate 66 contacting the living body, a transparent plate is used. In stead of plate 66, however, an intransparent plate with a hole transmitting light can be used since the intransparent plate can prevent the shift of the detection region.

Therefore, the present invention enables non-invasively capturing an image of a predetermined volume of blood passing through the blood vessel and counting the number of blood cells per unit volume by analyzing the image thereof thereby calculating the hematocrit value, hemoglobin and corpuscular constant. Furthermore, it is possible to classify white blood cells because the image is clear despite the fact that they are non-invasively captured.

Claims

- 1. A non-invasive blood analyzer (20) comprising:
 - light application means (22, 24, 60, 26, 28, 30, ...) for applying light to a detection region (V) in a blood vessel (12) contained in part of a living body;
 - capturing means (40, 38, 61, 44, 34, 38a, 40a, 38b, ...) for capturing the detection region to which the light is applied;
 - fixing means (100, 100a, 71, 59a, 59b, 72a, 72b, 66) for relatively fixing said capturing means and the part of the living body;
 - stabilizing means (66, 59b, 72a, 72b) for stabilizing a focus of said capturing means with respect to the detection region; and
 - analysis means (46, 48, 50, 52, 54A, 54B, 54C, 56A, 56B, 57) for analyzing the morphology and/or number of blood cells contained in the detection region by processing images captured with the capturing means; said light application means and said cap-

turing means forming one image with light application or capturing process during one ten thousandth to one billionth second.

A non-invasive blood analyzer according to Claim
 wherein said stabilizing means provides a

55

10

15

20

25

30

35

40

45

50

transparent member (66) which contacts the part of the living body whereas said capturing means captures the detection region (V) via said transparent member.

- A non-invasive blood analyzer according to Claim
 wherein said transparent member (66) is either
 a plate or a flexible film which transmits light.
- 4. A non-invasive blood analyzer according to Claim 2 wherein said stabilizing means further provides a liquid or gelatinous optical medium (76) that intervenes between said transparent member (66) and the part of the living body.
- A non-invasive blood analyzer according to Claim
 1 wherein said capturing means further provides
 adjusting means (74) for adjusting the focus with
 respect to the detection region (V).
- 6. A non-invasive blood analyzer according to Claim 1 wherein said capturing means provides an object lens (38b) which collects light from the detection region (V), and said light application means applies light to the detection region at an angle larger (φ₁, φ₂) than an angular aperture (θ) of the object lens.
- 7. A non-invasive blood analyzer according to Claim 1 wherein said capturing means comprises an optical system for collecting reflection light from said detection region (V), a capturing sensor for receiving the collected light and image recording means for recording an image captured with said capturing sensor.
- A non-invasive blood analyzer according to Claim

 wherein the detection region (V) includes a volume region in which each cell is optically differentiated.
- A non-invasive blood analyzer according to Claim
 1 wherein the detection region (V) is a region partitioned with two parallel planes traversing the vessel orthogonally or diagonally relative to the direction of blood flow.
- 10. A non-invasive blood analyzer according to Claim 1 wherein said capturing means collects light from the direction non-parallel to the light application direction in which light is applied with said light application means.
- 11. A non-invasive blood analyzer according to Claim 7 wherein said captured surface of the detection region and a capturing surface of the capturing sensor are disposed so as to enable a swing and tilt photography.

- A non-invasive blood analyzer according to Claim
 1 wherein said light application means and said
 capturing means are constituted so that said de tection region (V) is repeatedly captured every
 predetermined time.
- 13. A non-invasive blood analyzer according to Claim 1 wherein said capturing means provides a polarizing means (61) for removing unnecessary scattered light from said detection region (V).
- 14. A non-invasive blood analyzer according to Claim 1 wherein said light application means provides polarizing means for applying polarizing light to the detection region.
- 15. A non-invasive blood analyzer according to Claim 1 wherein said analysis means (48, 56A) analyzes the number of red blood cells and/or white blood cells.
- A non-invasive blood analyzer according to Claim
 wherein said analysis means (54A, 100) calculates a hematocrit.
- 17. A non-invasive blood analyzer according to Claim 1 wherein said analysis means further comprises a light intensity analysis means for analyzing a light intensity of the reflection light from the detection region thereby calculating a hemoglobin.
- 18. A non-invasive blood analyzer according to Claim 1 wherein said analysis means (50, 101) calculates a mean corpuscular volume (MCV) from morphology of red blood cells.
- A non-invasive blood analyzer according to Claim
 wherein said analysis means analyzes and classifies the morphology of red blood cells.
- 20. A non-invasive blood analyzer according to Claim 1 wherein said analysis means translates blood cell information obtained from arteriolas and veinlets or capillary vessels into blood cell information corresponding to medium-size and large arteries or veins.
- 21. A non-invasive blood analyzer according to Claim 1 wherein said analysis means provides means (100) for calculating a hematocrit value (HCT) from the ratio of the area occupied by red blood cells to a predetermined area of the image.
- 22. A non-invasive blood analyzer according to Claim 1 wherein said analysis means (100, 48) comprises means for calculating a hematocrit value (HCT) and the number of red blood cells (RBC) and obtaining a mean corpuscular volume (MCV)

by dividing the hematocrit value by the number of red blood cells.

- 23. A non-invasive method for analyzing blood comprising the steps of :
 - relatively fixing capturing means (40, 38, 61, 44, 40a, ...) and part of a living body;
 - applying light to a detection region (V) in a blood vessel (12) contained in said part; stabilizing a focus of the capturing means with respect to the detection region; and capturing the detection region, thereby forming an image of the detection region; and
 - processing the formed image to perform a morphological analysis of blood cells contained in said detection region and count the number of said blood cells;

said light application step and/or capturing step being performed during one ten thousandth to one billionth second to form one image.

24. A non-invasive method according to Claim 23 wherein the steps of stabilizing the focus and capturing the detection region (V) further comprise bringing a light-pervious member (66) into contact with the part of the living body and capturing the detection region through the light-pervious member, respectively.

.

10

15

20

25

30

35

40

45

50

FIG.1

FIG.2

FIG.3

FIG. 5

FIG.6

FIG.7

FIG.8

FIG.9

__FIG.10

FIG.11

FIG. 12

FIG.13

FIG.14

FIG.15

FIG.17

FIG.18

FIG.19

FIG.20

FIG. 21 -20 5,8 .40a 30 67 26 3,4 a -71 -74 59a 59-38b a 73 Ь **34**b 72a -72 b 59b-66 -75

FIG. 22

FIG. 23

