Week 2

Hardware and Virtualization

Agenda

- How does a computer work?
- CPU, Memory,
 Disk, Network

Virtualization

- What is it?
- What are the advantages and disadvantages?

VMware workstation

Working on the case

Hardware

How does a computer work?

CPU Clock speed max +/- 4 GHz

Registers and L1, L2, L3 Cache: ~MB

Super fast. Instruction takes 4 ns

Main memory: ~GB

Very fast. Instruction takes 10 ns

SSD: ~GB

Quickly. Instruction takes 10 µs

HDD: ~TB

Less fast. Instruction takes 10 ms

Network storage: ~TB

Less fast. Instruction takes 10 ms

TB, GB, MB, do you remember?

- 1 Byte is 1 character (letter or number)
- 1 Kilobyte = 1 KB = 1000 Bytes
- 1 Megabyte = 1 MB = 1000,000 Bytes (1 million)
- 1 Gigabyte = 1 GB = 1000,000,000 Bytes (1 billion)
- 1 Terabyte = 1 TB = 1000,000,000,000 Bytes (1000 billion)

Decimal			Binary				
Value	ı	Metric	Value		IEC	I	Legacy
1000	kΒ	kilobyte	1024	KiB	kibibyte	KB	kilobyte
1000 ²	MB	megabyte	1024 ²	MiB	mebibyte	MB	megabyte
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	GB	gigabyte
10004	ТВ	terabyte	1024 ⁴	TiB	tebibyte	ТВ	terabyte
1000 ⁵	РВ	petabyte	1024 ⁵	PiB	pebibyte		-
1000 ⁶	ЕВ	exabyte	1024 ⁶	EiB	exbibyte		-
1000 ⁷	ZΒ	zettabyte	1024 ⁷	ZiB	zebibyte		-
1000 ⁸	YΒ	yottabyte	1024 ⁸	YiB	yobibyte		-
			1				

How much is 1 GB, TB, PB?

- Internal memory in PC is 4GB to 32GB
- Harddisk in PC is 100GB to 2 TB in size
- Daily upload to Youtube: 4 PB
- Daily upload to Facebook: 1 PB

Video: https://www.youtube.com/watch?v=OQgVrh871hs

Millisecond, microsecond, nanosecond?

- 1 s (second) = 1000 ms (millisecond)
- 1 ms = $1000 \mu s$ (microsecond)
- $1 \mu s = 1000 \, \text{ns} \, (\text{nanosecond})$
- Latency is often expressed in one of these units.

On the previous slides fill in the places with the question marks:

- What comes after PB?
- What comes after ns?
- How much faster is the internal memory compared to a hard disk?
- Youtube receives 4 PB of data every day. How many harddisks of 1TB (as in a PC) are needed to store that?

The processor

- Contains:
 - The CPU
 - Registers
 - L1, L2, L3 cache

- The clock speed has reached its physical limits:
 - Max 5 to 6 GHZ.
- This is why each processor now has multiple cores (each core is a CPU).
- Xeon processor: up to 58 cores, L3 cache 70 MB
- In PC often a processor with 4 cores.
- Each core is a CPU.

Hyperthreading

- Within a core, there was still a wait.
- Hyperthreading gives more efficient CPU usage.
- If the processor supports it:
 - First turn on hyperthreading in the BIOS (can be reached directly after booting by pressing F10 key).
 - Then double the number of cores.
 - In reality the performance gain not factor 2 but factor 1.6.

processor.

Main memory

- The computer's internal memory.
- Order of size 1GB to 32GB for a PC, 32GB to 1TB for a server.
- Is not permanent memory: computer powered down → internal memory empty

SSD (Solid State Drive)

- Permanent memory (computer powered down → data remains)
- Does not contain a rotating disk (storage in chips (semiconductor material)).
- Cheaper than main memory but also slower (factor 1000).
- Faster than rotating hard disk (factor 1000).
- In PC SSD often 100 500 GB.

Used:

- Also used in servers for low latency
- Laptops for size benefit
- Quick booting

HDD (Hard Disk Drive)

- Permanent memory (computer powered down → data remains)
- Rotating disc
- Maximum speed 15000 rpm (rotations per minute)
- In PC often 7200 rpm

- In storage device 1 TB 1 PB
- Hard disk latency:

Typical HDD figures					
HDD spindle speed [rpm]	Average rotational latency [ms]				
4,200	7.14				
5,400	5.56				
7,200	4.17				
10,000	3.00				
15,000	2.00				

Network

- Computer has 1 or more network cards.
- Speeds:
 - PC: often 1 Gbps
 - Server: 10 Gbps or greater.

There is also wifi in a PC.

SMART Requirements

S pecific easurable M chievable ealistic imely

SMART Examples

Bad

Machine needs to be fast

Good

Must be portable with at least 2-hour normal usage battery life.

?

Can render videos.

?

Meets recommended requirements for Office 365.

Difference PC and Server

PC vs Server

PC

CPU: intel or AMD, 1 to 4 cores

Memory: 4GB to 32GB

SSD: 500 GB to 1 TB

Hard disk: 500 GB to 2 TB

Mouse, keyboard and monitor

Types: Desktop or laptop.

Server

CPU: 1 or 2 sockets with each socket 4 to 50 cores

Memory: 32 GB to 1 TB

• SSD: 20 GB to 1 TB

Rack

Hard disk: 20 GB to 1 TB

 1 keyboard, mouse and monitor for multiple servers

• Types: Tower, Rack or Blade

Desktop model

Tower

Blade

Activity

Research your own PC

- What CPU is in there with how many cores?
- How much main memory
- SSD yes or no, if so what size?
- Harddisk yes or no. If yes what size and what is the speed?

Watch the following video that shows what goes into a server:

https://youtu.be/F-x OTRdNSO

You may want to watch this at home.

Virtualization

Introduction

Normal situation:

- On hardware we install an Operating System (e.g. Windows 10 or Linux). And the applications on top of it.
- OS and hardware are then directly linked. Disadvantages:
 - Hard to replace hardware (requires reinstalling everything).
 - Each OS on its own computer (applications for different OS cannot run together on 1 computer).
 - **Difficult to manage** (many different hardware).
 - Poor resource usage (per computer, CPU is only used 10%; just look at your own PC).
 - •

Server virtualization

- Separation between hardware and OS.
- Hypervisor applies separation:

After virtualization

- Installing OS in VM (virtual machine) on hypervisor
- Multiple VMs on 1 machine
- Hardware host is shared with VMs
- VMs are independent of each other
- Virtual machine is software (as a file)

In these lessons we use

Bare-Metal Architecture

Host based

VMware workstation pro 17 on Windows 10/11 or Fusion 13 on Apple macOS

Types of hypervisors

Host based

Used by e.g. developers or small test environments

Hypervisor on underlying OS

Hosted Architecture

Bare-Metal Architecture

Products for Virtualization

Examples Hostbased:

- Virtual Box
- VMware Workstation (on e.g. windows 11)

Examples Bare metal Virtualisation:

- VMware ESXi
- Microsoft Hyper V
- KVM
- Proxmox

In production environments

- Baremetal
- Hypervisor installed directly on hardware (server).
- Hypervisors: HyperV, KVM (open source), VMware ESXi.
- Typical layout:

- Multiple hosts
- Multiple VMs per host
- Shared Storage attached to each host

Benefits of virtualization

- More efficient use of hardware (CPU and memory used up to 80%)
- Central management (central access to all VMs)
- Less hardware to maintain
- Smaller data center (so cooling etc.)
- Easier hardware replacement (independent of VM; VMs can be moved to different host)
- If a host fails, the VMs can be restarted elsewhere (automatically)
- Virtual machine has become software (file). Therefore, easy to copy, backup etc.
- •

Examine which quality requirements
 of the previous lesson virtualization can
 contribute to.

Working on the case

Case

Do the assignments of week 2

Please consult the assignments document and the template report for more details.

Any questions?

