

Power Electronics

Power Switches

For Switching Power Conversion

Please read
pages 16-31 in Chapter 2
Pages 546-661 Chapter 21-26
of the textbook

Ideal Semiconductor

Power Switches

- 1. Unidirectional current flow
- 2. Zero on-state voltage drop
- 3. ∞ Voltage/Current rating
- 4. Instantaneous switching on/off

Constraints of Actual Power Switch

- Power Losses The smaller, the better
 - Conduction loss due to voltage drop $V_{on} > 0$
 - Switching loss due to switching on/off time $t_{c(on)}$, $t_{c(off)} > 0$
- Limited Power Rating (等级)→ The larger, the better
 - Limited voltage/current rating
 - Limited dv/dt and di/dt
- Driver Circuit → The easier & more efficient, the better
 - Specific driver circuit for device's switching on/off
- Thermal Management → The tougher, the better
 - Limited operation temperature range

Generic-Switch Power Loss

Total Power Loss:

$$P_{s} = \frac{1}{2}V_{d}I_{o}f_{s}\left(t_{c(on)} + t_{c(off)}\right)$$
Switching Power Loss

 $P_{on} = V_{on}I_o \frac{t_{on}}{T_s} = V_{on}I_o f_s t_{on}$ Conduction Power Loss

 $t_{c(on)}, t_{c(off)} \rightarrow 0 \Rightarrow$ faster switching capability; $V_{on} \rightarrow 0 \Rightarrow$ higher efficiency

(Semiconductor) Transistor Switch

As an amplifier, the transistor operates in amplification region;

As a switch, the transistor operates in saturation region for the reduction of conduction voltage drop V_{on} ;

Of Course, unlike transistor amplifiers, the transistor switches are specifically designed and manufactured to behave like an ideal switch – fast, efficient, easy for drive.....

Switches Classification I

- Controllability (可控性)
 - Uncontrollable: Power Diode
 - Semi-controllable: Thyristor
 - Fully-controllable: GTR, MOSFET, IGBT, GTO ...
- Driving Method (驱动方式)
 - Voltage drive: MOSFET, IGBT, MCT
 - Current drive: GTR, GTO, Thysistor
- Carriers (载流子)
 - Unipolar: MOSFET, Schottky (肖特基) Diode
 - Bipolar: GTR, Thyristor, GTO
 - Hybrid: IGBT, MCT

Switches Classification II

- Rating (等级)
 - Voltage/current,switching frequency
- Material
 - Silicon, SiC (Silicon Carbide), GaN
- Package/Integration
 - HVIC (high voltage IC), SPIC (smart power IC), IPM (intelligent power module)

Power Semiconductor Switches

The break-through and evolution of power switch devices benchmark the history of power electronics.

There is a trade-off among voltage, current and frequency for power switches.

Towards Faster, Higher Power, More Efficient and Smart Power Switches

Faster, More Efficient "GTO"

Intelligent Power Module

Silicon Carbide 碳化硅 GaN 氮化镓

Smaller, Faster, Toughelf

Typical Power Switches.

There are several different electronic devices used for switching appreciable amounts of electrical power. Those to be examined in the next two lectures are:

- 1.Power Diodes 电力二极管 (uncontrolled)
- 2.Thyristors (Silicon Controlled Rectifiers; SCRs) 晶闸管 (half-controlled)
- 3. GTOs (Gate turn-off Thyristors) 可关断晶闸管 (fully controlled)
- 4. TRIACs (triode for alternating current) & Solid State Relays (SSRs) 双向晶闸管与固态继电器
- 5. MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) (fully controlled)
- 6. GTR (Giant Transistor)大功率晶体管 (fully controlled)
- 7. IGBT (Insulated Gate Bipolar Transistors) 绝缘栅极双极性晶体管 (fully controlled)

Practical Considerations for Switch Selection:

- I. How much control do we have (or need)?
 - → Controllability
- I. How much voltage will it drop when on?
 - → Conduction Resistance
- I.How much voltage can it block 阻断 when off?
 - → Voltage Rating
- I.How much current can it carry承受?
 - → Current Rating
- I. How long does it take to turn on and off?
 - → Switching Frequency