Projekt chwytaka

Dominik Korona

Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Rok I, semestr II, gr. 3a

Spis treści:

- 1. Założenia projektowe
- 2. Założenia co do budowy
- 3. Obliczenie ruchliwości chwytaka
- 4. Konstrukcja i obliczenia w wieloboku wektorowym
- 5. Projekt w programie wraz z wymiarami w SAM 6.1
- 6.Obliczenie wymiaru szczęk
- 7. Maksymalny ciężar przenoszonego przedmiotu
- 8. Wyznaczenie siły chwytu
- 9. Charakterystyka przemieszczeniowa y= $f_p(x)$
- 10. Charakterystyka prędkościowa $f_v(x)$
- 11. Charakterystyka siłowa $f_F(x)$
- 12. Dobranie siłownika dzięki policzonej sile $F_{s\ max}$
- 13.Obliczenie sił przyłożonych do poszczególnych części chwytaka
- 14. Sprawdzenie warunku wytrzymałościowego na ścinanie dla obciążonego sworznia
- 15. Sprawdzenie warunku wytrzymałościowego na zginanie ramion chwytaka
- 16. Projekt chwytaka w Inventorze

1. Założenia projektowe

Celem jest zaprojektowanie chwytaka według poniższego schematu i spełniającego następujące założenia:

- Urządzenie ma uchwycić walec, tuleje i utrzymać podczas transportu oraz upuścić w wyznaczonym miejscu
- Urządzenie powinno unieść przedmiot o ciężarze maksymalnym Q=15.37[N]
- Urządzenie transportuje w pozycji pionowej

Podkreślę jeszcze, że przez cześć sprawozdania brałem pod uwagę przesuniecie siłownika równe 26,5 [mm] mimo ze zastosowałem 20[mm], stosowałem 26.5[mm] ponieważ była to wygodna liczba ze względu na położenie ramion, wtedy kat miedzy cięgnem a ramieniem chwytaka w minimalnym rozwarciu wynosił 90+60°, a w maksymalnym 90+30°(φ_3)

2. Założenia co do budowy

Dźwiga walce/tuleje o średnicy:
 Długość elementu do przetransportowania:
 Rozwiera się na szerokość:
 Jest zbudowany z stali :
 50mm
 100mm
 27-80mm
 S235

• Napęd pneumatyczny: p_n =0.6MPa

3. Obliczenie ruchliwości chwytaka

$$w=3\cdot n-2\cdot p_5-p_4$$

Gdzie *w* - ruchliwość chwytaka, n - liczba członów ruchomych, *p5* - liczba par kinematycznych klasy piątej obrotowych i postępowych, *p4* - liczba par klasy czwartej.

n=5

$$p_5$$
={(0.1),(0.2),(1.2),(2.3),(0.2'),(1.2'),(2'.3')}=7
 p_4 =0
w=3·5-2·7=1

Ruchliwość mechanizmu wynosi 1, wiec zastosuje jeden siłownik pneumatyczny o ruchu liniowym

4. Konstrukcja i obliczenia w wieloboku wektorowym

$$\vec{l}_1 + \vec{l}_2 + \vec{l}_3 + \vec{l}_4 + \vec{l}_5 = 0$$

 $\vec{l}_1+\vec{l}_2+\vec{l}_3+\vec{l}_4+\vec{l}_5=0$ Ponieważ $\pmb{\varphi}_1=0^\circ$, $\pmb{\varphi}_2=90^\circ$, $\pmb{\varphi}_4=270^\circ$, $\pmb{\varphi}_5=180^\circ$ a $\pmb{\varphi}_3=var$

Oraz
$$l_1 = var$$
, $l_2 = var$

Mam dla osi X i Y równania:

$$\left\{ \begin{array}{l} l_1 + \cos \varphi_3 \cdot l_3 - l_5 = 0 \\ l_2 + \sin \varphi_3 l_3 - l_4 = 0 \end{array} \right.$$

Wyliczam wartości dla przypadków

I.
$$\varphi_3 = 150^{\circ}$$

II.
$$\varphi_3 = 120^{\circ}$$

III.
$$\varphi_3 = 135^\circ$$

Otrzymuje:

$$\begin{array}{c} \textbf{I Max} \\ l_{1\text{Min}} = 73.5 \\ l_{1\text{Max}} = 100 \\ l_{2\text{Min}} = 13.5 \\ l_{2\text{Max}} = 40 \\ l_{3} = 72.5 \\ l_{4} = 76 \\ l_{5} = 37 \\ \text{L}=60 \\ *Założone z góry \\ I tuleja R=25[mm] \\ *obliczone za pomocq \\ wzorów \\ \end{array} \begin{array}{c} \textbf{I Min} \\ 100 = \frac{\sqrt{3}}{2} l_{3} + l_{5} \\ 100 = \frac{\sqrt{3}}{2} l_{3} +$$

5. Projekt w programie wraz z wymiarami w SAM 6.1

Wymiary chwytaka w maksymalnym rozwarciu (neutralnej pozycji):

Skrajne położenia ramion chwytaka

Rozwarcie maksymalne:

Rozwarcie minimalne

 $l_{1Min} = 73.5$ $l_{2Min} = 13.5 \rightarrow \text{Ramie długości 27 [mm]}$

Chwycenie tulei o średnicy ϕ = 50mm

6.Obliczenie wymiaru szczęk

Zakładam, że przenoszony wałek będzie stykał się z każdą szczęką w dwóch punktach. Korzystam zatem z zależności:

e>emin

$$e_{min} = \frac{d}{2 t g \gamma} = \frac{50}{2 \cdot \sqrt{3}} = 14.43 \text{[mm]}$$
 dla $\gamma = 60^{\circ}$

Minimalny rozmiar szczęk wynosi zatem około 15 [mm]. Przyjąłem, że szczęki będą

miały długość 20 [mm].

Schemat ramienia w programie Inventor

7. Maksymalny ciężar przenoszonego przedmiotu

Największe rozwarcie ramion: 80[mm] Najmniejsze rozwarcie ramion: 27[mm]

d=50 [mm]=0,05 [m] (średnica chwytanego obiektu) l=100 [mm]=0,1 [m] (długość chwytanego obiektu) $\gamma=78300 \text{ [N}m^{-3]}$ (ciężar właściwy materiału – stali)

Obliczam maksymalny ciężar przenoszonego przedmiotu z powyższych założeń:

$$Q = \frac{\Pi \cdot d^2}{4} \cdot l \cdot \gamma$$

Q=15.366375[N]

8. Wyznaczenie siły chwytu

Układ sił działających na chwytak:

- a) rozkład sił tarcia podczas chwytania
- b) rozkład sił normalnych podczas chwytania

Do obliczeń zakładam:

• Q=15.37 [N] (ciężar przenoszonego przedmiotu)

• $\mu = 0.2$ (współczynnik tarcia metal – metal)

• $2 \gamma = 120^{\circ}$ (kąt rozwarcia szczęk)

• **n=2** (współczynnik bezpieczeństwa)

Siła chwytu powinna utrzymać tuleje/walec o ciężarze Q za pomocą sił tarcia, które występują na szczekach podczas chwytania przedmiotu

Jak zakładałem do wyliczenia wymiaru szczęk, przedmiot będzie się stykał ze szczekami w 4 miejscach, stąd:

Obliczam sile chwytu $F_{ch} = n \cdot F_c$ Gdzie n to współczynnik bezpieczeństwa

Uwzględniam kat rozwarcia szczęk i otrzymuje wzór:

$$F_c = 2 \cdot N \cos(90^{\circ} - \gamma) = 2 \cdot N \sin \gamma$$

Przekształcając:

$$N = \frac{F_c}{2 \cdot \sin \gamma} \quad / \cdot \mu \quad \rightarrow \quad T = \frac{\mu \cdot F_c}{2 \sin \gamma}$$

Wyliczone T podstawiam:

$$4 \cdot \frac{\mu \cdot F_c}{2 \sin \gamma} \ge \mathbf{Q} \quad \rightarrow \quad F_c \ge \frac{Q \sin \gamma}{2 \cdot \mu}$$

Uwzględniam współczynnik bezpieczeństwa i otrzymuje:

$$F_{\text{ch}} = n \cdot F_c = \frac{Q \cdot n \cdot \sin \gamma}{2 \cdot \mu} = \frac{15.37 \cdot 2 \cdot \sin 60}{2 \cdot 0.2} \approx 66.55[N]$$

Minimalna siła potrzebna do uchwycenia przenoszonego przedmiotu o założonych wymiarach wynosi 66.55 [N] Do następnych obliczeń przyjmę:

$$F_{\rm ch}=70~[N]$$

9. Charakterystyka przemieszczeniowa y= $f_p(x)$

Charakterystykę przemieszczeniowa wyznaczyłem w programie SAM 6.1 i pokazałem na wieloboku wektorowym wraz z wyznaczeniem równań:

Na wieloboku wektorowym

$$\begin{array}{ll} r_{\rm C} = l_1 + l_2 & r_{\rm C} = \left[x_{\rm C}, y_{\rm C} \right] \\ \left\{ \begin{array}{ll} x_{\rm c} = l_1 \cos \varphi_1 + l_2 \cos \varphi_2 = l_1 = l_5 - l_3 \cdot \cos \varphi_3 \\ y_{\rm c} = l_1 \sin \varphi_1 + l_2 \sin \varphi_2 = l_2 = l_4 - l_3 \cdot \sin \varphi_3 \end{array} \right. \\ x_{\rm c} = 37 - 72.5 \cos \varphi_3 \\ y_{\rm c} = 76 - 72.5 \sin \varphi_3 \end{array} \qquad 120^\circ \leq \varphi_3 \leq 150^\circ \end{array}$$

Charakterystyka wykonana w programie Excel

Liczyłem dla punktu C, ale identycznie przesunięcie wygląda dla punktu D

Punkt D to nr 6 na schemacie z programu SAM

Równanie y= $f_p(x)$ z wieloboku wektorowego:

$$\begin{cases} y = l_2 = l_4 - \sin \varphi_3 l_3 \\ \cos \varphi_3 = \frac{l_5 - l_1}{l_3} \rightarrow \varphi_3 = \arccos(\frac{l_5 - l_1}{l_3}) \end{cases}$$

Przyjmę: l_1 =100-x, ponieważ zaczynamy od pozycji l_1 =100 i poruszamy się po ujemnej osi x, czyli manipulator wykonuje ruch ciągnący Zmienna x przyjmuje wartości od 0 do 25[mm]

$$y = l_4 - l_3 \sin arccos(\frac{l_5 - l_1}{l_3}) = 76 - 72.5 \sin arccos(\frac{x - 63}{72.5})$$

= $f_p(x)$

Charakterystyka przesunięciowa

Ujemne wartości mówią, **Ż**e poruszamy sie w lewo, ale x przyjmuje wartosci od 0 do 25

W programie SAM 6.1 wyznaczyłem dla punktów 5 i 6 miedzy szczekami i dlatego że są symetryczne, wychodzi przeciwnie

Punkty maksymalnie z lewej oznaczają pozycje ramion w chwili maksymalnego ich zaciśniecia Stąd manipulator teoretycznie powinien wektor $\mathbf{l_1}$ zmniejszyc w lini poziomej z $\mathbf{l_1} = 100 \text{mm} \rightarrow \mathbf{l_1} = 73.5 \text{mm}$

Charakterystyki różnią się tylko punktem w którym zaczyna się ruch, ale krzywa jest ta sama oraz przesuniecie punktu względem osi X oraz Y jest takie samo

10. Charakterystyka prędkościowa $f_v(x)$

Korzystając ze współrzędnych z charakterystyki przemieszczeniowej różniczkuje obustronnie:

$$x_c = 37 - 72.5\cos\varphi_3 y_c = 76 - 72.5\sin\varphi_3$$

Po zróżniczkowaniu otrzymuje

$$v_{x_C} = 72.5\omega_3 \sin \varphi_3$$

$$v_{y_C} = -72.5\omega_3\cos\varphi_3$$

$$v_{\mathcal{C}} = \sqrt{v_{x_{\mathcal{C}}}^2 + v_{y_{\mathcal{C}}}^2} = \sqrt{72.5^2 \cdot \omega_3^2 (\sin^2 \varphi_3 + \cos^2 \varphi_3)} = 72.5\omega_3$$
 – co oznacza, ze mamy do

czynienia z ruchem obrotowym, co potwierdza charakterystyka wykonana w programie SAM w punkcie 6, dla punktu z drugiej strony nr 5 jest przeciwnie, bo ramienia są symetryczne

Rózniczkując
$$y=f_p(x)=76-72.5 \sin arccos(\frac{x-63}{72.5})$$
 po zmiennej t otrzymuję:

$$f_{v}(x) = \frac{(63-x)x'}{\sqrt{72.5^2 - [x-63]^2}} = \frac{(63-x)1000\frac{mm}{s}}{\sqrt{72.5^2 - [x-63]^2}} = \frac{63-x}{\sqrt{72.5^2 - [x-63]^2}} \left[\frac{m}{s}\right]$$

Za x' przyjmuje predkosc członu napędzającego x'= $1\frac{m}{s}$

Charakterystyka predkościowa z zalozeniem ze czlon napedzajacy porusza sie z predkością 1m/s

$$v_{yDmin} = v_{yCmin} = 0.75 \frac{m}{s}$$
 $v_{yDmax} = v_{yCmax} = 1.73 \frac{m}{s}$
Predkosci dla punktu C i D, a na rysunku pkt 6

Wykres w excelu

11. Charakterystyka siłowa $f_F(x)$

Charakterystyka siłowa:

$$f_F(x) = \frac{F_{ch}}{F_s} = \frac{\dot{x}}{2\dot{y}} = \frac{1}{2 \cdot f_v(x)}$$

gdzie

 F_s – siła na wyjściu napędu chwytaka (siłownika)

 F_{ch} – siła chwytu

 $f_F(x)$ – przełożenie siłowe mechanizmu chwytaka

 $f_{v}(x)$ -charakterystyka prędkościowa

Równanie po podstawieniu jest w postaci:

$$f_F(x) = \frac{1}{2 \cdot \frac{63 - x}{\sqrt{72.5^2 - [x - 63]^2}}}$$

Wyznaczam charakterystykę siłową na członie napędzającym w programie SAM 6.1

Zakładam obciążenie ramion chwytaka symetrycznym układem sił $F_{\rm ch}$ =70 [N], która jest potrzebna do uniesienia przedmiotu o obliczonym ciężarze 0=15.37

Określenie maksymalnej wymaganej siły do napędu miejsca zaznaczonego nr 1 w czerwonym kołku na schemacie:

F_{s min}= 80 [N] F_{s max}= 242.5 [N]

Obliczenia sprawdzające poprawnośc:

Jak widać, w programie SAM została wyznaczona taka sama siła na siłowniku(siła równoważąca) dla maksymalnego rozwarcia ramion i dla minimalnego

$$f_F(x) = \frac{F_{ch}}{F_s}$$

$$F_{ch} = 70[N]$$

$$80[N] < F_s = \frac{70}{\text{tg}\alpha} < 242[N]$$

$$30^{\circ} < \alpha < 60^{\circ}$$

fF	Fch	Fs	alfa	tangens(alfa)	
0.866025	70	80.82903769	60	1.732050808	Charakterystyka silowa metodą mocy
0.83214	70	84.12048666	59	1.664279482	chwilowych: recznie policzone
0.800167	70	87.48170927	58	1.600334529	
0.769932	70	90.91706305	57	1.539864964	1
0.74128	70	94.43119236	56	1.482560969	0.0 stood st
0.714074	70	98.02905535	55	1.428148007	5 0.6 —
0.688191	70	101.7159539	54	1.37638192	 9 04
0.663522	70	105.497567	53	1.327044822	2 0.4
0.639971	70	109.3799877	52	1.279941632	[™] 0.2
0.617449	70	113.3697646	51	1.234897157	0
0.595877	70	117.4739484	50	1.191753593	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0.575184	70	121.7001433	49	1.150368407	Wysunięcie x
0.555306	70	126.0565662	48	1.110612515	
0.536184	70	130.5521121	47	1.07236871	——−fF
0.517765	70	135.1964285	46	1.035530314	
0.5	70	140	45	1	
0.482844	70	144.9742439	44	0.965688775	
0.466258	70	150.1316194	43	0.932515086	
0.450202	70	155.4857521	42	0.900404044	
0.434643	70	161.051577	41	0.869286738	
0.41955	70	166.845503	40	0.839099631	
0.404892	70	172.8856019	39	0.809784033	
0.390643	70	179.1918285	38	0.781285627	
0.376777	7 70	185.786275	37	0.75355405	
0.363271	70	192.6934689	36	0.726542528	
0.350104	70	199.9407209	35	0.700207538	
0.337254	70	207.5585356	34	0.674508517	
0.324704	70	215.5810949	33	0.649407593	
0.312435	70	224.0468341	32	0.624869352	
0.30043	70	232.9991275	31	0.600860619	
0.288675	70	242,4871131	30	0.577350269	

Sprawdzenie za pomocą wzoru $f_F(x) = \frac{1}{2 \cdot f_n(x)}$:

F	2у	Х							$v^{(X)}$
0.812413	1.2309	25		Charak	terystyka si	ilowa me	toda mo	су	
0.783547	1.276247	24		:hwilowych:	wykorzysta	ano cha-k	ke predk	ościowa	
0.755837	1.323037	23	1	,	,,				
0.729188	1.371389	22	_						
0.703515	1.421434	21	0.8 0.6 0.6 0.4 0.4 0.2						
0.67874	1.473318	20	÷ 0.6						
0.654791	1.527205	19							
0.631601	1.583278	18	- U.4						
0.609108	1.641745	17	₹ 0.2						
0.587254	1.70284	16	0						
0.565986	1.76683	15		1 2 3 4 5 6	7 8 9 10 11	12 13 14 15 1	.6 17 18 19 2	20 21 22 23 24	25 26
0.54525	1.83402	14			V	/ysunięciex			
0.525	1.904762	13							
0.505187	1.979463	12			_	— F			
0.485767	2.058599	11							
0.466695	2.142726	10							
0.447927	2.232506	9							
0.429419	2.328727	8							
0.411127	2.432341	7							
0.393003	2.54451	6							
0.375	2.666667	5							
0.357065	2.800607	4							
0.339142	2.948617	3							
0.321166	3.113653	2							
0.303064	3.299635	1							
0.284748	3.511875	0							

Obliczenia wykonane ręcznie, czyli wyznaczenie sił metodą mocy chwilowych oraz posłużenie się gotową charakterystyką prędkościową dały ten sam rezultat

12. Dobranie siłownika dzięki policzonej sile $F_{s\,max}$

Zakładam $F_{s max}$ =242.5[N]

W chwytaku nr 26 ściskanie jest powodowane "ciągnięciem" siłownika, zatem korzystam ze wzoru na teoretyczną siłę ciągnącą

$$P_{c} = F_{s max} = \frac{\pi(D^2 - d^2)}{4} \cdot p_n$$

Zakładam:

 p_n =0.6 [MPa]

D=6d

$$F_{s max} = \frac{\pi \cdot \left(D_{min}^2 - \frac{1}{36}D_{min}^2\right)}{4} p_n \rightarrow D_{min} = \frac{12 \cdot \sqrt{F_{s max}}}{\sqrt{p_n \cdot 35\Pi}}$$

$$D_{min} = \frac{12 \cdot \sqrt{242.5}}{\sqrt{600000 \cdot 35\Pi}} = 0.023 \text{[m]}$$
 \rightarrow $D_{min} = 23 \text{[mm]}$ $d_{min} = 3.8 \text{[mm]}$

Zatem dobieram siłownik o średnicy:

- wewnętrznej $d \ge 3.8$ [mm]
- zewnętrznej $D \ge 23[mm]$

Dobór siłownika na podstawie wymaganej średnicy tłoka i skoku tłoka oraz siły pchającej na tłoczysku:

Zasada doboru siłownika: Pt \geq P_w = k · $F_{s max}$ gdzie

Pt- teoretyczna siła ciągnąca siłownika

Pw- obliczona wymagana siła na tłoczysku

k– współczynnik przeciążenia zakładam k=1.4

do doboru siłownika należy uwzględnić odpowiedni $\Delta x - skok \, silownika$

$$P_t \ge P_w = k \cdot F_{s \text{ max}} = 1.4 \cdot 242.5 = 339.5 \text{ [N]}$$

Dobieram siłownik z odpowiednimi średnicami tłoków, silą ciągnąca oraz skokiem:

Moment ściśnięcia jest w punkcie odległym od maksimum o \sim -11.75 [mm] A najmniejsze teoretyczne zaciśnięcie jest w punkcie -26.5 od maksymalnego, stąd zakładam:

- $\Delta x = 20 [mm]$
- dla tulei ϕ = 50mm wystarczająco
- Pt = 350 [N]
- D=32mm
- Siłownik ciągnący

FESTO

Przegl**ą**d wybranych cech Siłownik kompaktowy AEN-32-20-A-P-A-Z #536418

Podstawowe cechy			
Cecha	Wartość		
Funkcja	AEN Siłownik kompaktowy, jednostronnego działania, na bazie ISO 21287		
Średnica tłoka mm	32 mm		
Skok mm	20 mm		
Typ gwintu	A Gwint zewnętrzny		
Amortyzacja	P Elastyczne pierścienie/płytki amortyzujące w obu położ. końcowych		
Sygnalizacja położenia	A Przy pomocy czujnika zbliżeniowego		

Dalsze opcje	
Cecha	Wartość
Kierunek efektywny	Z Jednostronnego działania, ciągnący
Zabezpieczenie przed obrotem	Bez
K2 - Wydłużony gwint na tłoczysku	Bez
K5 - Gwint specjalny na tłoczysku	Gwint standardowy na tłoczysku
Zwiększony przebieg	Bez
Odporność temperaturowa	Standard
Stała tabliczka opisowa	Tabliczka znamionowa przyklejona

Karta danych

Ogólna karta danych - pojedyncze dane będą zależały od konfiguracji.

Cecha	Wartość
Skok	1 25 mm
Średnica tłoka	32 mm
W oparciu o norme	ISO 21287
Amortyzacia	P: Elastyczne pierścienie / płytki amortyzacyjne z obu stron
Pozycja zabudowy	Dowolna
Konstrukcja	Tłok
*	Tłoczyskowy
	Korpus z profilu
Sygnalizacja położenia	Przy pomocy czujników
Warianty	Tłoczysko aluminiowe
	Wydłużona część gwintowana tłoczyska – gwint zewnętrzny
	Tłoczysko z gwintem specjalnym
	Wydłużone tłoczysko
	Z zabezpieczeniem przed obrotem
	Uszczelnienia odporne na temp. Do maks. +120°C
	Opis wypalany laserem
	Ciagnacy
	Jednostronne tłoczysko
Ciśnienie robocze MPa	0.1 1 MPa
Ciśnienie robocze	1 10 bar
Tryb pracy	Jednostronnego działania
	Pchający
	Ciagnacy
Medium robocze	Sprężone powietrze wg ISO8573-1:2010 [7:4:4]
Uwagi odnośnie medium roboczego	Możliwa praca na powietrzu olejonym (po rozpoczęciu olejenia jest
	ono wymagane przy dalszej pracy)
Klasa odporności na korozję CRC	2 – Średnia odporność na korozję
Temperatura otoczenia	-20 120 °C
Theoretical force at 0.6 MPa (6 bar, 87 ps)), retracting	362 N
Theoretical force at 0.6 MPa (6 bar, 87 ps), advance	422 N
Przemieszczana masa własna przy 0 mm skoku	60 g
Ciężar dodatkowy na 10 mm skoku	30 g
Ciężar podstawowy dla 0 mm skoku	265 g
Dodatkowy współczynnik przemieszczanej masy własnej na 10 mm skoku	9 g
Sposób montażu	Przy pomocy otworów przelotowych
	Przy pomocy gwintów wewnętrznych
	Przy pomocy osprzętu
	Do wyboru:
Przyłącza pneumatyczne	G1/8
Uwaga dotycząca materiałów	Zgodne z RoHS
Materiał pokrywy	Aluminium
	Anodowanie
Materiał tłoczyska	Stal wysokostopowa
Materiał rury siłownika	Stop aluminium
	Anodowany

13.Obliczenie sił przyłożonych do poszczególnych części chwytaka

Dzięki programowi SAM byłem w stanie oscenic, gdzie występują teoretycznie największe siły reakcji na ścisk ramion z siła F=70N, na rysunku zobrazowałem najwazniejsze

$$F_{s_{max}}$$
=242.5[N]
 $F_{s_{min}} = R_{11min} = R_{12min} = 81[N]$
 $R_{11max} = R_{12max} = 140[N]$

14. Sprawdzenie warunku wytrzymałościowego na ścinanie dla obciążonego sworznia

Na podstawie odczytania wartości z charakterystyk z programu SAM duże obciążenie występuje w sworzniach w punktach 11 i 12 na schemacie jako siły:

$$P = R_{11max} = R_{12max} = 140[N]$$

Pary obrotowe (przeguby) w mechanizmie chwytaka są zrealizowane jako połączenia sworzniowe. Wszystkie sworznie posiadają średnicę $\phi = 4[mm]$

Jako materiał sworzni przyjąłem **stal C45**, o wytrzymałości na ścinanie . Każdy sworzeń ścinany jest w dwóch płaszczyznach. Dla danej stali $k_t=0.3R_m=130MPa$

Warunek wytrzymałościowy na ścinanie sworznia ma postać:

$$\tau = \frac{P}{2A} = \frac{R_{11\text{max}}}{2\Pi \cdot \left[\frac{d}{2}\right]^2} = \frac{4R_{11\text{max}}}{2\Pi \cdot d^2} = \frac{4R_{12\text{max}}}{2\Pi \cdot d^2} \le k_r$$

Gdzie

au -maksymalne naprężenie

P=140 - maksymalna siła tnąca

2A - dwójka jest bo zakładam dwie powierzchnie ścinające sworzeń

oraz za A przyjmuje A= $2\Pi \cdot \left[\frac{d}{2}\right]^2$

d-średnica sworznia

$$\frac{2R_{12\text{max}}}{\Pi \cdot d^2} = \frac{2 \cdot 140}{\Pi \cdot 0.004^2} = 5570423 Pa \approx \mathbf{5.6MPa} \leq k_r = \mathbf{130MPa}$$

Zatem dla przyjętej średnicy warunek $\tau \leq k_r$ jest spełniony

15. Sprawdzenie warunku wytrzymałościowego na zginanie ramion chwytaka

Do zadania projektowego zastosuje stal S235 o granicy plastyczności R_e=235 [MPa]

Wytrzymałość materiału na zginanie określa się dla tego typu stali jako: $k_{\rm g}\text{=}(0.55\text{-}0.65)~R_{\rm e}$

Przyjmę, że k_g =0.6 R_e=141[MPa]

Ramię chwytaka możemy potraktować jako belkę o długości **L=60mm** obciążoną na końcu siłą chwytającą $F_{\rm ch}=70~N$

Maksymalny moment gnący występuje na odcinkach 3-5 oraz 4-6 chwytaka – na ramionach

Skorzystam ze wzoru na moment gnący dla danego przypadku: $M_a = F_{ch} \cdot L$ =70·0.06=4.2 Nm

Warunek wytrzymałościowy na zginanie ramienia:

$$\sigma_{gmax} = \frac{M_{gmax}}{W_g} \le k_g$$

Gdzie:

 W_g - wskaźnik wytrzymałości przekroju na zginanie k_g -wytrzymałość materiału na zginanie Wskaźnik wytrzymałości przekroju ramienia na zginanie z uwzględnieniem otworu na sworzeń liczę ze wzoru:

$$W_g = \frac{b \cdot (H^3 - h^3)}{6 \cdot H}$$

Zakładam:

h=4mm -średnica sworznia(sprawdzona zgodnie z warunkiem

na ścinanie sworznia)

H=10mm -pierwszy wymiar przekroju ramienia b=10mm -drugi wymiar przekroju ramienia

$$W_g = \frac{0.01 \cdot (0.01^3 - 0.004^3)}{0.001} = 1.56 \cdot 10^{-7}$$

$$\sigma_{gmax} = \frac{M_{gmax}^{6.0.01}}{W_g} = \frac{4.2}{1.56 \cdot 10^{-7}} \approx 13 \text{[MPa]} \leq k_g = 141 \text{[MPa]}$$

Dla zadanych wymiarów warunek jest spełniony

Ramie schematycznie

16.Projekt chwytaka w Inventorze

₹	7
`\	$\boldsymbol{\nu}$

				LICTA CZEĆCI			
	07//014			LISTA CZĘŚCI	0.017		
Р	OZYCJA	1 IEOSC NOMER CEÇSEI		OPIS			
	1	:	1	536418	AEN-Compact cyli	nder	
				AEN-32-20-A-P-A-Z(0)			
	2		1	kołnierz			
	3		1	Belka			
	4	1	1	Belka_prosta			
	5		2	Zespół_ramienia			
	6	- 2	2	Mocowanie_dzwigni			
	7		2	Cięgno			
	8		2	ISO 2341 - A - 4 x 18			
	9	4	4	ISO 2341 - A - 4 x 22			
	10	1		BS 4320 - M10 (Postać A)	Podkładki dokładne - Szereg		
					metryczny		
	11	+ + +		DIN-439-B - M10x1.25(F)	DIN-439 Form B-Hex nut		
	12			PN-87/M-82302 - M6 x 20	Śruby z łbem walcowym z		
					gniazdem sześciol		
	13	4	4	BS 4320 - M6 (Postać A)	Podkładki dokładn		
					metryczny	_	
	14	4	4	ISO 4015 - M5 x 30	Śruby z łbem sześ	ciokatnym. Z	
					redukowaną częśc		
					Klasa produkcyjna	•	
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	15		4	ISO 4032 - M5	Nakrętki sześciokątne, styl 1 -		
					Klasa dokładności A i B		
Projek.	Korona	26/04/2021		Nazwa przedmiotu:		Podz.	
Konstr.	Korona	26/04/2021		Chwytak typu P-(P-O-O) nr	26		
Rvsow.	Korona	26/04/2021		, ,,, (, , , , , , , , , , , ,			
,	Notoria			Nazwa Zakładu	Nr rysunku	Arkusz	
Spraw.				Wydział Elektrotechniki, Automatyki,	Chwytak	2	
gr 3a	Nazwisko	Data P	odpis	Informatyki i Inżynierii Biomedycznej			

