Instituto Nacional de Astrofísica Óptica y Electrónica

Coordinación de Ciencias Computacionales

Cross-Clustering: A partial clustering algorithm with automatic estimation of the number of clusters

Cruz Paz Daniel Melendez Melendez Gabriel

Puntos

- Descripción del problema abordado en el artículo seleccionado.
- Breve descripción del trabajo relacionado que se comenta en el artículo.
- Breve descripción de la solución propuesta en el artículo.
- Descripción de los experimentos que soportan dicha solución, incluyendo tablas y/o gráficas tomadas del artículo.
- Conclusiones a las que llegan los autores.
- Análisis de debilidades y/o modificaciones posibles para mejorar la solución propuesta por los autores. (Puede basarse en el trabajo futuro propuesto).

Descripción del problema

- Limitaciones comunes en la mayoría de métodos de agrupamiento
 - Agrupación de objetos alejados (Falta de buena estrategia)
 - Detectar elementos aislados
 - Estimación a priori del número de clusters
 - Falta de un método capaz de detectar cuando la partición de un dataset no es apropiada
 - Inicialización (Métodos no deterministas)

Descripción del trabajo relacionado

Descripción del trabajo relacionado

- Métodos clásicos de agrupamiento
 - Método de Ward
 - Vinculación completa
 - K-means
 - DBSCAN
 - SOM

Descripción de la solución propuesta

- Cross clustering
 - Método de Ward
 - Vinculación completa

Vinculación completa

- Parametros
- Ward
 - Rango para el número de clusters $I^W = [n_{W_{min}}, \dots, n_{W_{max}}]$
- Vinculación completa
 - Rango para el número de clusters $I^{c} = [n_{W_{ initial}} + 1, \dots, n_{W_{ initial}}]$

$$I^{\mathcal{C}} = [n_{W_{\min}} + 1, \dots, n_{W_{\max}}]$$

Pruebas con datasets simulados

- Se generaron 100 datasets simulados
 - 2000 perfiles de expresión de genes para 5 ejemplos con valor:
 - Positivo (500)
 - Creciente (250)
 - Decreciente (700)
 - Oscilante (300)
 - Convexo (100)
 - Además se introdujo ruido en la información
- Aplicación de Ward y CL Distancia euclediana

- Pruebas con datasets reales
 - Tumores del cerebro
 - 5299 perfiles de expresión genética
 - 42 ejemplos
 - ASW para seleccionar el # de clusters
 - Se aplicaron los CC, Ward, CL, DBSCAN, K-means, SOM

Cancer de seno

- 719,690 pruebas
- 30 ejemplos
- ASW para seleccionar el # de clusters
 - Se aplicaron los métodos CC, Ward, CL, DBSCAN, k-means y SOM

	Results	
Method	# Clusters	ARI
Ward	2	0.14
CL	2	0.18
K-means	3	0.19
SOM	2	0.003
\overline{CC}	9 + 1	0.64

	D 1/	
	Results	
Method	# Clusters	ARI
Ward	11	0.09
CL	11	0.10
K-means	11	0.04
SOM	18	0.07
$^{\rm CC}$	2 + 1	0.63
	-	_

Aceite de oliva

- 572 diferentes tipos de aceite de oliva
 - 8 mediciones
 - Se aplicaron los métodos CC, Ward, CL, DBSCAN, k-means y SOM

Conclusiones (autores)

- CC ofrece grandes ventajas con respecto a algoritmos clásicos de agrupamiento como:
 - CC no necesita un conocimiento a priori del # de clusters
 - Quita elementos aislados del agrupamiento
 - Es capaz de sugerir cuándo un dataset no debe ser agrupado
 - Se hicieron comparaciones con los siguientes métodos:
 - DBSCAN, Ward, CL, NMF, SPARCoC, K-means y SOM
 - CC siempre tuvo mejor rendimiento

Análisis de CC

- Complejidad del orden O(n/2)
 - n = número de elementos a ser agrupados
- Crear un umbral que sirva como referencia para el valor del parámetro ASW y así funcione como una condición de paro.