(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 18 July 2002 (18.07.2002)

PCT

(10) International Publication Number WO 02/055709 A2

(51) International Patent Classification7: C07K 14/195, C12Q 1/68, C12N 15/74 C12N 15/31,

(21) International Application Number: PCT/US01/47868

(22) International Filing Date:

12 December 2001 (12.12.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/254,868

12 December 2000 (12.12.2000) US

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007

MARKET STREET, WILMINGTON, DE 19898 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRAMUCCI, Michael, G. [US/US]; 532 Melmont Avenue, Folsom, PA 19033 (US). CHENG, Qiong [CN/US]; 4 Collins Drive, Wilmington, DE 19803 (US). KOSTICHKA, Kristy, N. [US/US]; 111 Shrewsbury Drive, Wilmington, DE 19810 (US). TOMB, Jean-Francois [US/US]; 627 Haverhill Road, Wilmington, DE 19803 (US).

- (74) Agent: FELTHAM, S., Neil; E.I. Dupont de Nemours and Company, Legal Patent Records Center, 4417 Lancaster Pike, Wilmington, DE 19805 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: RHODOCOCCUS CLONING AND EXPRESSION VECTORS

(57) Abstract: A plasmid has been isolated from Rhodococcus erythropolis strain AN12 comprising a unique replication protein. The replication protein may be used in a variety of cloning and expression vectors and particularly in shuttle vectors for the expression of heterologous genes in Rhodococcus sp.

> FP04-0397-OOEP-FY LABOH BEPORT

WO 02/055709 A2

5

10

15

20

TITLE

RHODOCOCCUS CLONING AND EXPRESSION VECTORS
This application claims the benefit of U.S. Provisional Application
60/254,868 filed December 12, 2000.

FIELD OF THE INVENTION

The invention relates to the field of microbiology. More specifically, vectors are provided for the cloning and expression of genes in *Rhodococcus* species and like organisms.

BACKGROUND OF THE INVENTION

Gram-positive bacteria belonging to the genus *Rhodococcus*, some of which were formerly classified as *Nocardia*, *Mycobacterium*, *Gordona*, or *Jensenia* spp., or as members of the "rhodochrous" complex, are widely distributed in the environment. Members of the genus *Rhodococcus* exhibit a wide range of metabolic activities, including antibiotic and amino acid production, biosurfactant production, and biodegradation and biotransformation of a large variety of organic and xenobiotic compounds (see Vogt Singer and Finnerty, 1988, *J. Bacteriol.*, 170:638-645; Quan and Dabbs, 1993, *Plasmid*, 29: 74-79; Warhurst and Fewson, 1994, *Crit. Rev. Biotechnol.*, 14:29-73). Unfortunately, few appropriate genetic tools exist to investigate and exploit these metabolic activities in *Rhodococcus* and like organisms (see Finnerty, 1992, *Annu. Rev. Microbiol.*, 46:193-218).

Recently, several *Rhodococcus* plasmids and *Rhodococcus-Escherichia coli* shuttle vectors have been described. These plasmids and vectors can be divided into five different derivation groups:

a) plasmids derived from *Rhodococcus fascians* (Desomer et al., 1988, *J. Bacteriol.*, 170:2401-2405; and Desomer et al., 1990, *Appl. Environ. Microbiol.*, 56:2818-2815); b) plasmids derived from *Rhodococcus erythropolis* (JP 10248578; EP 757101; JP 09028379; US

Patent 5,705,386; Dabbs et al., 1990, *Plasmid*, 23:242-247; Quan and Dabbs, 1993, *Plasmid*, 29:74-79; Dabbs et al., 1995, *Biotekhnologiya*, 7-8:129-135; De Mot, et al., 1997, *Microbiol.*, 143:3137-3147); c) plasmids

Patent 5,246,857; JP 1990-270377; JP 07255484; JP 08038184; US

Patent 5,776,771; EP 704530; JP 08056669; Hashimoto et al., 1992, *J. Gen. Microbiol.*, 138:1003-1010; Bigey et al., 1995, *Gene*, 154:77-79; Kulakov et al., 1997, *Plasmid*, 38:61-69); d) plasmids derived from *Rhodococcus equi* (US Patent 4,920,054; Zheng et al., 1997, Plasmid,

derived from Rhodococcus rhodochrous (EP 482426; US

38:180-187) and e) plasmids derived from a *Rhodococcus* sp. (WO 89/07151; US Patent 4,952,500; Vogt Singer et al., 1988, *J. Bacteriol.*, 170:638-645; Shao et al., 1995, *Lett. Appl. Microbiol.*, 21:261-266; Duran, 1998, *J. Basic Microbiol.*, 38:101-106; Denis-Larose et al., 1998, *Appl. Environ. Microbiol.*, 64:4363-4367).

While these prior studies describe several plasmids and shuttle vectors, the relative number of commercially available tools that exist for the genetic manipulation of *Rhodococcus* and like organisms remains limited. One of the difficulties in developing a suitable expression vector for *Rhodococcus* is the limited number of sequences encoding replicase or replication proteins (rep) which allow for plasmid replication in this host. Knowledge of such sequences is needed to design a useful expression or shuttle vector. Although replication sequences are known for other shuttle vectors that function in *Rhodococcus* (see for example Denis-Larose et al., 1998, *Appl. Environ. Microbiol.*, 64:4363-4367); Billington, et al., *J. Bacteriol.* 180 (12), 3233-3236 (1998); Dasen,G.H. Gl:3212128; and Mendes, et al, Gl:6523480) they are rare.

Similarly, another concern in the design of shuttle expression and shuttle vectors in *Rhodococcus* is plasmid stability. The stability of any plasmid is often variably and maintaining plasmid stability in a particular host usually requires the antibiotic selection, which is neither an economical nor a safe practice in the industrial scale production. Little is known about genes or proteins that function to increase or maintain plasmid stability without antibiotic selection.

The problem to be solved, therefore is to provide additional useful plasmid and shuttle vectors for use in genetically engineering *Rhodococcus* and like organisms. Such a vector will need to have a robust replication protein and must be able to be stably maintained in the host.

Applicants have solved the stated problem by isolating and characterizing a novel cryptic plasmid, pAN12, from *Rhodococcus* erythropolis strain AN12 and constructing a novel *Escherichia coli-Rhodococcus* shuttle vector using pAN12. Applicants' invention provides important tools for use in genetically engineering *Rhodococcus* species (sp.) and like organisms. The instant vectors contain a replication sequence that is required for replication of the plasmid and may be used to isolate or design other suitable replication sequences for plasmid

5

10

15

20

25

30

replication. Additionally, the instant plasmids contain a sequence having homology to a cell division protein which is required for plasmid stability. Applicants' shuttle vectors are particularly desirable because they are able to coexist with other shuttle vectors in the same *Rhodococcus* host cell. Therefore, Applicants' vectors may also be used in combination with other compatible plasmids for co-expression in a single host cell.

SUMMARY OF THE INVENTION

The present invention provides novel nucleic acids and vectors comprising these nucleic acids for the cloning and expression of foreign genes in Rhodococcus sp. In particular, the present invention provides a novel plasmid isolated from a proprietary strain AN12 of Rhodococcus erythropolis and a novel shuttle vector prepared from this plasmid that can be replicated in both Escherichia coli and members of the Rhodococcus genus. These novel vectors can be used to clone and genetically engineer a host bacterial cell to express a polypeptide of protein of interest. In addition, Applicants have identified and isolated several unique coding regions on the plasmid that have general utility for plasmid replication and stability. The first of these is a nucleic acid encoding a unique replication protein, rep, within the novel plasmid. The second sequence encodes a protein having significant homology to a cell division protein and has been determined to play a role in maintaining plasmid stability. Both the replication protein and the stability protein nucleotide sequences may be used in a variety of cloning and expression vectors and particularly in shuttle vectors for the expression of homologous and heterologous genes in Rhodococcus sp. and like organisms.

Thus, the present invention relates to an isolated nucleic acid molecule encoding a replication protein selected from the group consisting of: (a) an isolated nucleic acid encoding the amino acid sequence as set forth in SEQ ID NO:2;(b) an isolated nucleic acid that hybridizes with (a) under the following hybridization conditions: 0.1X SSC, 0.1% SDS, 65°C and washed with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS; or an isolated nucleic acid that is complementary to (a), or (b).

Similarly the present invention provides an isolated nucleic acid molecule encoding a plasmid stability protein selected from the group consisting of: (a) an isolated nucleic acid encoding the amino acid sequence as set forth in SEQ ID NO:4; (b) an isolated nucleic acid that

5

10

15

20

25

30

hybridizes with (a) under the following hybridization conditions: 0.1X SSC, 0.1% SDS, 65°C and washed with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS; or an isolated nucleic acid that is complementary to (a) or (b).

5

10

15

The invention additionally provides polypeptides encoded by the present nucleotide sequences and transformed hosts containing the same.

Methods for the isolation of homologs of the present genes are also provided. In one embodiment the invention provides a method of obtaining a nucleic acid molecule encoding an replication protein or stability protein comprising: (a) probing a genomic library with a nucleic acid molecule of the present invention; (b) identifying a DNA clone that hybridizes with the nucleic acid molecule of the present invention; and (c) sequencing the genomic fragment that comprises the clone identified in step (b), wherein the sequenced genomic fragment encodes a replication protein or a stability protein.

In another embodiment the invention provides a method of obtaining a nucleic acid molecule encoding a replication protein or a stability protein comprising: (a) synthesizing at least one oligonucleotide primer corresponding to a portion of the sequences of the present invention; and (b) amplifying an insert present in a cloning vector using the oligonucleotide primer of step (a); wherein the amplified insert encodes a portion of an amino acid sequence encoding a replication protein or a stability protein.

25

20

In a preferred embodiment the invention provides plasmids comprising the genes encoding the present replication and stability proteins and optionally selectable markers. Preferred hosts for plasmid replication for gene expression are the *Actinomycetales* bacterial family and specifically the *Rhodococcus* genus.

30

In another preferred embodiment the invention provides a method for the expression of a nucleic acid in an *Actinomycetales* bacteria comprising: a) providing a plasmid comprising: (i) the nucleic acids of the present invention encoding the rep and stability proteins; (ii) at least one nucleic acid encoding a selectable marker; and (iii) at least one promoter operably linked to a nucleic acid fragment to be expressed;

35

b) transforming an *Actinomycetales* bacteria with the plasmid of (a); and c) culturing the transformed *Actinomycetales* bacteria of (b) for a length of

time and under conditions whereby the nucleic acid fragment is expressed.

In an alternate embodiment the invention provides a method for the expression of a nucleic acid in an *Actinomycetales* bacteria comprising:

a) providing a first plasmid comprising: (i) the nucleic acid of the present invention encoding a rep protein; (ii) at least one nucleic acid encoding a selectable marker; and (iii) at least one promoter operably linked to a nucleic acid fragment to be expressed; b) providing at least one other plasmid in a different incompatibility group as the first plasmid, wherein the at least one other plasmid comprises: (ii) at least one nucleic acid encoding a selectable marker; and (iii) at least one promoter operably linked to a nucleic acid fragment to be expressed; c) transforming an *Actinomycetales* bacteria with the plasmids of (a) and (b); and d) culturing the transformed *Actinomycetales* bacteria of (c) for a length of time and under conditions whereby the nucleic acid fragment is expressed.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a restriction endonuclease map of pAN12, a cryptic plasmid from *Rhodococcus erythropolis* strain AN12.

Figure 2 is a restriction endonuclease map of pRhBR17, an Escherichia coli-Rhodococcus shuttle vector.

Figure 3 is a restriction endonuclease map of pRhBR171, an Escherichia coli-Rhodococcus shuttle vector.

Figure 4A is an alignment of amino acid sequences of various replication proteins of plJ101/pJV1 family of rolling circle replication plasmids.

Figure 4B is an alignment of nucleotide sequences for various origins of replication of the rolling circle replication plasmids.

SEQUENCE DESCRIPTIONS

The invention can be more fully understood from the following detailed description and the accompanying sequence descriptions which form a part of this application.

Applicant(s) have provided 30 sequences in conformity with 37 C.F.R. 1.821-1.825 ("Requirements for Patent Applications Containing Nucleotide Sequences and/or Amino Acid Sequence Disclosures - the Sequence Rules") and consistent with World Intellectual Property Organization (WIPO) Standard ST.25 (1998) and the sequence listing requirements of the EPO and PCT (Rules 5.2 and 49.5(a-bis), and

5

10

15

20

25

30

Section 208 and Annex C of the Administrative Instructions). The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. §1.822.

Description	SEQ ID	SEQ ID
	Nucleic acid	Peptide
Replications (Rep)	1	2
protein isolated from		
Rhodococcus AN12		
Plasmid stability protein	3	4
isolated from	•	
Rhodococcus AN12		
plasmid pAN12	5	
Plasmid pRHBR17	6	
Plasmid pRHBR171	7	
pAN12 origin of	8	
replication		
HK12 primer	9	
HK13 primer	10	
HK14 primer	11	
16S rRNA from	12	
Rhodococcus AN12		
M13 universal primer	13	
M13 reverse primer	14	
1.7kb(1) Fragment	15	
1.7(kb)2 Fragment	16	
4.4 kb Fragment	17	
the Primer N	18	
rep1 primer	19	<u> </u>
rep2 primer	20	
Arcanobacterium		21
pyrogenes replication		
protein		
Streptomyces lividans		22
replication protein		
Streptomyces		23
phaeochromogenes		
replication protein]
Streptomyces		24
<i>nigrifaciens</i> replication	(<u> </u>
protein		
Streptomyces lividans Ori	25 .	
sequence]	

5

10

15

20

25

30

Description	SEQ ID. Nucleic acid	SEQ ID Peptide
Streptomyces phaeochromogenes Ori sequence	26	
Streptomyces nigrifaciens Ori sequence	27	

DETAILED DESCRIPTION OF THE INVENTION

Applicants have isolated and characterized a novel cryptic plasmid. pAN12, from Rhodococcus erythropolis strain AN12 and constructed a novel Escherichia coli-Rhodococcus shuttle vector using pAN12. Applicants' invention provides important tools for use in genetically engineering Rhodococcus species and like organisms. In addition, Applicants have identified and isolated a nucleic acid encoding a unique replication protein, rep, from the novel plasmid. This replication protein encoding nucleic acid may be used in a variety of cloning and expression vectors and particularly in shuttle vectors for the expression of homologous and heterologous genes in Rhodococcus species (sp.) and like organisms. Similarly, Applicants have identified and characterized a sequence on the plasmid encoding a protein useful for maintaining plasmid stability. Applicants' shuttle vectors are particularly desirable because they are able to coexist with other shuttle vectors in the same Rhodococcus host cell. Therefore, Applicants' vectors may also be used in combination with other compatible plasmids for co-expression in a single host cell.

In another embodiment the invention provides a compact shuttle vector that has the ability to replicate both in *Rhodococcus* and *E. coli*, yet is small enough to transport large DNA.

In this disclosure, a number of terms and abbreviations are used. The following definitions are provided and should be helpful in understanding the scope and practice of the present invention.

In a specific embodiment, the term "about" or "approximately" means within 20%, preferably within 10%, and more preferably within 5% of a given value or range.

A "nucleic acid" is a polymeric compound comprised of covalently linked subunits called nucleotides. Nucleic acid includes polyribonucleic acid (RNA) and polydeoxyribonucleic acid (DNA), both of which may be

single-stranded or double-stranded. DNA includes cDNA, genomic DNA, synthetic DNA, and semi-synthetic DNA.

An "isolated nucleic acid molecule" or "isolated nucleic acid fragment" refers to the phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine or cytidine; "RNA molecules") or deoxyribonucleosides (deoxyadenosine, deoxyguanosine, deoxythymidine, or deoxycytidine; "DNA molecules"), or any phosphoester anologs thereof, such as phosphorothicates and thioesters, in either single stranded form, or a double-stranded helix. Double stranded DNA-DNA, DNA-RNA and RNA-RNA helices are possible. The term nucleic acid molecule, and in particular DNA or RNA molecule, refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear or circular DNA molecules (e.g., restriction fragments), plasmids, and chromosomes. In discussing the structure of particular double-stranded DNA molecules, sequences may be described herein according to the normal convention of giving only the sequence in the 5' to 3' direction along the non-transcribed strand of DNA (i.e., the strand having a sequence homologous to the mRNA).

20

25

30

35

15

5

10

polypeptide, and includes cDNA and genomic DNA nucleic acids. "Gene" also refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence. "Native gene" refers to a gene as found in nature with its own regulatory sequences. "Chimeric gene" refers to any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. "Endogenous gene" refers to a native gene in its natural location in the genome of an organism. A "foreign" gene refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes. A "transgene" is a gene that has been introduced into the genome by a transformation procedure.

A "gene" refers to an assembly of nucleotides that encode a

A nucleic acid molecule is "hybridizable" to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength. Hybridization and washing conditions are well known and exemplified in Sambrook, J., Fritsch, E. F. and Maniatis, T. Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989), particularly Chapter 11 and Table 11.1 therein (hereinafter "Maniatis", entirely incorporated herein by reference). The conditions of temperature and ionic strength determine the "stringency" of the hybridization. Stringency conditions can be adjusted to screen for moderately similar fragments. such as homologous sequences from distantly related organisms, to highly similar fragments, such as genes that duplicate functional enzymes from closely related organisms. Post-hybridization washes determine stringency conditions. One set of preferred conditions uses a series of washes starting with 6X SSC, 0.5% SDS at room temperature for 15 min. then repeated with 2X SSC, 0.5% SDS at 45°C for 30 min, and then repeated twice with 0.2X SSC, 0.5% SDS at 50°C for 30 min. A more preferred set of stringent conditions uses higher temperatures in which the washes are identical to those above except for the temperature of the final two 30 min washes in 0.2X SSC, 0.5% SDS was increased to 60°C. Another preferred set of highly stringent conditions uses two final washes in 0.1X SSC, 0.1% SDS at 65°C. Another set of highly stingent conditions are defined by hybridization at 0.1X SSC, 0.1% SDS, 65°C and washed

Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acids having those sequences. The relative stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA. For hybrids of greater than 100 nucleotides in length, equations for calculating Tm have been derived

with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS.

5

10

15.

20

25

30

(see Maniatis, supra, 9.50-9.51). For hybridizations with shorter nucleic acids, i.e., oligonucleotides, the position of mismatches becomes more important, and the length of the oligonucleotide determines its specificity (see Maniatis, supra, 11.7-11.8). In one embodiment the length for a hybridizable nucleic acid is at least about 10 nucleotides. Preferable a minimum length for a hybridizable nucleic acid is at least about . 15 nucleotides; more preferably at least about 20 nucleotides; and most preferably the length is at least 30 nucleotides. Furthermore, the skilled artisan will recognize that the temperature and wash solution salt concentration may be adjusted as necessary according to factors such as length of the probe.

The term "percent identity", as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness 15 between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "identity" and "similarity" can be readily calculated by known methods, including but not limited to those described in: Computational Molecular 20 Biology (Lesk, A. M., ed.) Oxford University Press, NY (1988); Biocomputing: Informatics and Genome Projects (Smith, D. W., ed.) Academic Press, NY (1993); Computer Analysis of Seguence Data, Part I (Griffin, A. M., and Griffin, H. G., eds.) Humana Press, NJ (1994); Sequence Analysis in Molecular Biology (von Heinje, G., ed.) Academic 25 Press (1987); and Sequence Analysis Primer (Gribskov, M. and Devereux, J., eds.) Stockton Press, NY (1991). Preferred methods to determine identity are designed to give the best match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Sequence alignments and percent identity calculations may be performed using the Megalign 30 program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, 35 GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3.

WINDOW=5 and DIAGONALS SAVED=5.

5

Suitable nucleic acid fragments (isolated polynucleotides of the present invention) encode polypeptides that are at least about 70% identical, preferably at least about 80% identical to the amino acid sequences reported herein. Preferred nucleic acid fragments encode amino acid sequences that are about 85% identical to the amino acid sequences reported herein. More preferred nucleic acid fragments encode amino acid sequences that are at least about 90% identical to the amino acid sequences reported herein. Most preferred are nucleic acid fragments that encode amino acid sequences that are at least about 95% identical to the amino acid sequences reported herein. Suitable nucleic acid fragments not only have the above homologies but typically encode a polypeptide having at least 50 amino acids, preferably at least 100 amino acids, more preferably at least 150 amino acids, still more preferably at least 200 amino acids, and most preferably at least 250 amino acids.

The term "probe" refers to a single-stranded nucleic acid molecule that can base pair with a complementary single stranded target nucleic acid to form a double-stranded molecule.

The term "complementary" is used to describe the relationship between nucleotide bases that are capable to hybridizing to one another. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine. Accordingly, the instant invention also includes isolated nucleic acid fragments that are complementary to the complete sequences as reported in the accompanying Sequence Listing as well as those substantially similar nucleic acid sequences.

As used herein, the term "oligonucleotide" refers to a nucleic acid, generally of about 18 nucleotides, that is hybridizable to a genomic DNA molecule, a cDNA molecule, or an mRNA molecule. Oligonucleotides can be labeled, e.g., with ³²P-nucleotides or nucleotides to which a label, such as biotin, has been covalently conjugated. An oligonucleotide can be used as a probe to detect the presence of a nucleic acid according to the invention. Similarly, oligonucleotides (one or both of which may be labeled) can be used as PCR primers, either for cloning full length or a fragment of a nucleic acid of the invention, or to detect the presence of nucleic acids according to the invention. In a further embodiment, an oligonucleotide of the invention can form a triple helix with a DNA molecule. Generally, oligonucleotides are prepared synthetically,

5

10

15

20

25

30

preferably on a nucleic acid synthesizer. Accordingly, oligonucleotides can be prepared with non-naturally occurring phosphoester analog bonds, such as thioester bonds, etc.

A DNA "coding sequence" is a double-stranded DNA sequence which is transcribed and translated into a polypeptide in a cell in vitro or in vivo when placed under the control of appropriate regulatory sequences. "Suitable regulatory sequences" refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, translation leader sequences, RNA processing site, effector binding site and stem-loop structure. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from mRNA, genomic DNA sequences, and even synthetic DNA sequences. If the coding sequence is intended for expression in a eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence.

"Open reading frame" is abbreviated ORF and means a length of nucleic acid sequence, either DNA, cDNA or RNA, that comprises a translation start signal or initiation codon, such as an ATG or AUG, and a termination codon and can be potentially translated into a polypeptide sequence.

"Promoter" refers to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a promoter sequence. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental or physiological conditions. Promoters which cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". It is further recognized that since in most cases the exact boundaries of regulatory sequences

5

10

15

20

25

30

have not been completely defined, DNA fragments of different lengths may have identical promoter activity.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined for example, by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase.

A coding sequence is "under the control" of transcriptional and translational control sequences in a cell when RNA polymerase transcribes the coding sequence into mRNA, which is then trans-RNA spliced (if the coding sequence contains introns) and translated into the protein encoded by the coding sequence.

"Transcriptional and translational control sequences" are DNA regulatory sequences, such as promoters, enhancers, terminators, and the like, that provide for the expression of a coding sequence in a host cell. In eukaryotic cells, polyadenylation signals are control sequences.

The term "operably linked" refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation.

The term "expression", as used herein, refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the invention. Expression may also refer to translation of mRNA into a polypeptide.

The terms "restriction endonuclease" and "restriction enzyme" refer to an enzyme which binds and cuts within a specific nucleotide sequence within double stranded DNA.

5

10

15

20

25

30

"Regulatory region" means a nucleic acid sequence which regulates the expression of a second nucleic acid sequence. A regulatory region may include sequences which are naturally responsible for expressing a particular nucleic acid (a homologous region) or may include sequences of a different origin which are responsible for expressing different proteins or even synthetic proteins (a heterologous region). In particular, the sequences can be sequences of prokaryotic, eukaryotic, or viral genes or derived sequences which stimulate or repress transcription of a gene in a specific or non-specific manner and in an inducible or non-inducible manner. Regulatory regions include origins of replication, RNA splice sites, promoters, enhancers, transcriptional termination sequences, and signal sequences which direct the polypeptide into the secretory pathways of the target cell.

A regulatory region from a "heterologous source" is a regulatory region which is not naturally associated with the expressed nucleic acid. Included among the heterologous regulatory regions are regulatory regions from a different species, regulatory regions from a different gene, hybrid regulatory sequences, and regulatory sequences which do not occur in nature, but which are designed by one having ordinary skill in the art.

"Heterologous" DNA refers to DNA not naturally located in the cell, or in a chromosomal site of the cell. Preferably, the heterologous DNA includes a gene foreign to the cell.

"RNA transcript" refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from post-transcriptional processing of the primary transcript and is referred to as the mature RNA. "Messenger RNA (mRNA)" refers to the RNA that is without introns and that can be translated into protein by the cell. "cDNA" refers to a double-stranded DNA that is complementary to and derived from mRNA. "Sense" RNA refers to RNA transcript that includes the mRNA and so can be translated into protein by the cell. "Antisense RNA" refers to a RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene (U.S. Patent No. 5,107,065; WO 9928508). The complementarity of an antisense RNA may be with any part of the specific

5

10

15

20

25

30

- 35

5

20

25

30

gene transcript, i.e., at the 5' non-coding sequence, 3' non-coding sequence, or the coding sequence. "Functional RNA" refers to antisense RNA, ribozyme RNA, or other RNA that is not translated yet has an effect on cellular processes.

A "polypeptide" is a polymeric compound comprised of covalently linked amino acid residues. Amino acids have the following general structure:

Amino acids are classified into seven groups on the basis of the side chain R: (1) aliphatic side chains, (2) side chains containing a hydroxylic (OH) group, (3) side chains containing sulfur atoms, (4) side chains containing an acidic or amide group, (5) side chains containing a basic group, (6) side chains containing an aromatic ring, and (7) proline, an imino acid in which the side chain is fused to the amino group. A polypeptide of the invention preferably comprises at least about 14 amino acids.

A "protein" is a polypeptide that performs a structural or functional role in a living cell.

A "heterologous protein" refers to a protein not naturally produced in the cell.

A "mature protein" refers to a post-translationally processed polypeptide; i.e., one from which any pre- or propeptides present in the primary translation product have been removed. "Precursor" protein refers to the primary product of translation of mRNA; i.e., with pre- and propeptides still present. Pre- and propeptides may be but are not limited to intracellular localization signals.

The term "signal peptide" refers to an amino terminal polypeptide preceding the secreted mature protein. The signal peptide is cleaved from and is therefore not present in the mature protein. Signal peptides have the function of directing and translocating secreted proteins across cell membranes. Signal peptide is also referred to as signal protein.

A "signal sequence" is included at the beginning of the coding sequence of a protein to be expressed on the surface of a cell. This

sequence encodes a signal peptide, N-terminal to the mature polypeptide, that directs the host cell to translocate the polypeptide. The term "translocation signal sequence" is used herein to refer to this sort of signal sequence. Translocation signal sequences can be found associated with a variety of proteins native to eukaryotes and prokaryotes, and are often functional in both types of organisms.

As used herein, the term "homologous" in all its grammatical forms and spelling variations refers to the relationship between proteins that possess a "common evolutionary origin," including proteins from superfamilies and homologous proteins from different species (Reeck et al., 1987, *Cell* 50:667). Such proteins (and their encoding genes) have sequence homology, as reflected by their high degree of sequence similarity.

The term "corresponding to" is used herein to refer to similar or homologous sequences, whether the exact position is identical or different from the molecule to which the similarity or homology is measured. A nucleic acid or amino acid sequence alignment may include spaces. Thus, the term "corresponding to" refers to the sequence similarity, and not the numbering of the amino acid residues or nucleotide bases.

A "substantial portion" of an amino acid or nucleotide sequence comprising enough of the amino acid sequence of a polypeptide or the nucleotide sequence of a gene to putatively identify that polypeptide or gene, either by manual evaluation of the sequence by one skilled in the art, or by computer-automated sequence comparison and identification using algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul, S. F., et al., (1993) J. Mol. Biol. 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/). In general, a sequence of ten or more contiguous amino acids or thirty or more nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene. Moreover, with respect to nucleotide sequences, gene specific oligonucleotide probes comprising 20-30 contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., in situ hybridization of bacterial colonies or bacteriophage plaques). In addition, short oligonucleotides of 12-15 bases may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers. Accordingly, a "substantial portion" of a

5

10

15

20

25

30

nucleotide sequence comprises enough of the sequence to specifically identify and/or isolate a nucleic acid fragment comprising the sequence. The instant specification teaches partial or complete amino acid and nucleotide sequences encoding one or more particular microbial proteins.

The skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art. Accordingly, the instant invention comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above.

The term "sequence analysis software" refers to any computer algorithm or software program that is useful for the analysis of nucleotide or amino acid sequences. "Sequence analysis software" may be commercially available or independently developed. Typical sequence analysis software will include but is not limited to the GCG suite of programs (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, WI), BLASTP, BLASTN, BLASTX (Altschul et al., J. Mol. Biol. 215:403-410 (1990), and DNASTAR (DNASTAR, Inc. 1228 S. Park St. Madison, WI 53715 USA), and the FASTA program incorporating the Smith-Waterman algorithm (W. R. Pearson, Comput. Methods Genome Res., [Proc. Int. Symp.] (1994), Meeting Date 1992, 111-20. Editor(s): Suhai, Sandor. Publisher: Plenum, New York, NY). Within the context of this application it will be understood that where sequence analysis software is used for analysis, that the results of the analysis will be based on the "default values" of the program referenced, unless otherwise specified. As used herein "default values" will mean any set of values or parameters which originally load with the software when first initialized.

A "vector" is any means for the transfer of a nucleic acid into a host cell. A vector may be a replicon to which another DNA segment may be attached so as to bring about the replication of the attached segment. A "replicon" is any genetic element (e.g., plasmid, phage, cosmid, chromosome, virus) that functions as an autonomous unit of DNA replication *in vivo*, i.e., capable of replication under its own control. The term "vector" includes both viral and nonviral means for introducing the nucleic acid into a cell *in vitro*, *ex vivo* or *in vivo*. Viral vectors include retrovirus, adeno-associated virus, pox, baculovirus, vaccinia, herpes simplex, Epstein-Barr and adenovirus vectors. Non-viral vectors include

5

10

15

20

25

30

plasmids, liposomes, electrically charged lipids (cytofectins), DNA-protein complexes, and biopolymers. In addition to a nucleic acid, a vector may also contain one or more regulatory regions, and/or selectable markers useful in selecting, measuring, and monitoring nucleic acid transfer results (transfer to which tissues, duration of expression, etc.).

The term "plasmid" refers to an extra chromosomal element often carrying a gene that is not part of the central metabolism of the cell, and usually in the form of circular double-stranded DNA molecules. Such elements may be autonomously replicating sequences, genome integrating sequences, phage or nucleotide sequences, linear, circular, or supercoiled, of a single- or double-stranded DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction which is capable of introducing a promoter fragment and DNA sequence for a selected gene product along with appropriate 3' untranslated sequence into a cell.

A "cloning vector" is a "replicon", which is a unit length of DNA that replicates sequentially and which comprises an origin of replication, such as a plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment. Cloning vectors may be capable of replication in one cell type, and expression in another ("shuttle vector").

A cell has been "transfected" by exogenous or heterologous DNA when such DNA has been introduced inside the cell. A cell has been "transformed" by exogenous or heterologous DNA when the transfected DNA effects a phenotypic change. The transforming DNA can be integrated (covalently linked) into chromosomal DNA making up the genome of the cell.

"Transformation" refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" or "recombinant" or "transformed" organisms.

"Polymerase chain reaction" is abbreviated PCR and means an in vitro method for enzymatically amplifying specific nucleic acid sequences. PCR involves a repetitive series of temperature cycles with each cycle comprising three stages: denaturation of the template nucleic acid to separate the strands of the target molecule, annealing a single

5.

10

15

20

25

30

stranded PCR oligonucleotide primer to the template nucleic acid, and extension of the annealed primer(s) by DNA polymerase.

The term "rep" or "repA"refers to a replication protein which controls the ability of a *Rhodococcus* plasmid to replicate. As used herein the rep protein will also be referred to as a "replication protein" or a "replicase". The term "rep" will be used to delineate the gene encoding the rep protein.

The term "div" refers to a protein necessary for maintaining plasmid stability. The div protein has significant homology to cell division proteins and will also be referred to herein as a "plasmid stability protein".

The terms "origin or replication" or "ORI" mean a specific site or sequence within a DNA molecule at which DNA replication is initiated. Bacterial and phage chromosomes have a single origin of replication.

The term "pAN12" refers to a plasmid comprising all or a substantial portion of the nucleotide sequence as set forth in SEQ ID NO:5, wherein the plasmid comprises a rep encoding nucleic acid comprising a nucleotide sequence as set forth in SEQ ID NO:1, a div encoding nucleic acid comprising a nucleotide sequence as set forth in SEQ ID NO:3, and an origin of replication comprising a nucleotide sequence as set forth in SEQ ID NO:8.

The term "pRHBR17" refers to an *Escherichia coli-Rhodococcus* shuttle vector comprising all or a substantial portion of the nucleotide sequence as set forth in SEQ ID NO:6, wherein the shuttle vector comprises a rep encoding nucleic acid comprising a nucleotide sequence as set forth in SEQ ID NO:1, a div encoding nucleic acid comprising a nucleotide sequence as set forth in SEQ ID NO:3, and an origin of replication comprising a nucleotide sequence as set forth in SEQ ID NO:8.

The term "pRHBR171" refers to an Escherichia coli-Rhodococcus shuttle vector comprising all or a substantial portion of the nucleotide sequence as set forth in SEQ ID NO:7, wherein the shuttle vector comprises a rep encoding nucleic acid comprising a nucleotide sequence as set forth in SEQ ID NO:1, a div encoding nucleic acid comprising a nucleotide sequence as set forth in SEQ ID NO:3, and an origin of replication comprising a nucleotide sequence as set forth in SEQ ID NO:8.

The term "genetic region" will refer to a region of a nucleic acid molecule or a nucleotide sequence that comprises a gene encoding a polypeptide.

5

10

15

20

25

30

The term "selectable marker" means an identifying factor, usually an antibiotic or chemical resistance gene, that is able to be selected for based upon the marker gene's effect, i.e., resistance to an antibiotic, wherein the effect is used to track the inheritance of a nucleic acid of interest and/or to identify a cell or organism that has inherited the nucleic acid of interest.

The term "incompatibility" as applied to plasmids refers to the inability of any two plasmids to co-exist in the same cell. Any two plasmids fom the same incompatibility group can not be maintained in the same cell. Plasmids from different "incompatibility groups" can be in the same cell at the same time. Incompatibility groups are most extensively worked out for conjugative plasmids in the gram negative bacteria.

The term "Actinomycetales bacterial family" will mean a bacterial family comprised of genera, including but not limited to Actinomyces, Actinoplanes, Arcanobacterium, Corynebacterium, Dietzia, Gordonia, Mycobacterium, Nocardia, Rhodococcus, Tsukamurella, Brevibacterium, Arthrobacter, Propionibacterium, Streptomyces, Micrococcus, and Micromonospora.

Nucleic Acids of the Invention

5

10

15

20

25

30

35

Applicants have identified and isolated a nucleic acid encoding a unique replication protein, rep, within a novel *Rhodococcus* plasmid of the invention. This replication protein encoding nucleic acid may be used in a variety of cloning and expression vectors and particularly in shuttle vectors for the expression of homologous and heterologous genes in *Rhodococcus* sp. and like organisms. Comparisons of the nucleotide and amino acid sequences of the present replication protein indicated that the sequence was unique, having only 51% identity and a 35% similarity to the 459 amino acid Rep protein from *Arcanobacterium pyogenes* (Billington, S. J. et al, J. *Bacteriol.* 180, 3233-3236, 1998) as aligned via the Smith-Waterman alignment algorithm (W. R. Pearson, *Comput. Methods Genome Res.*, [Proc. Int. Symp.] (1994), Meeting Date 1992, 111-20. Editor(s): Suhai, Sandor. Publisher: Plenum, New York, NY).

Applicants have identified and isolated a nucleic acid encoding a unique plasmid stability protein having homology to a putative cell division (div) protein within a novel *Rhodococcus* plasmid of the invention. The stability protein is unique when compared with sequences in the public database having only 24% identity and a 40% similarity to the C-terminal

portion of the 529 amino acid putative cell division protein from Haemophilus influenzae (Fleischmann et al., Science 269 (5223), 496-512 (1995).

Thus a sequence is within the scope of the invention if it encodes a replication function and comprises a nucleotide sequence encoding a polypeptide of at least 379 amino acids that has at least 70% identity based on the Smith-Waterman method of alignment (W. R. Pearson, supra) when compared to a polypeptide having the sequence as set forth in SEQ ID NO:2, or a second nucleotide sequence comprising the complement of the first nucleotide sequence.

Similarly a sequence is within the scope of the invention if it encodes a stability function and comprises a nucleotide sequence encoding a polypeptide of at least 296 amino acids that has at least 70% identity based on the Smith-Waterman method of alignment (W. R. Pearson, *supra*) when compared to a polypeptide having the sequence as

set forth in SEQ ID NO:4, or a second nucleotide sequence comprising the complement of the first nucleotide sequence.

Accordingly, preferred amino acid fragments are at least about 70%-80% identical to the sequences herein. Most preferred are amino acid fragments that are at least 90-95% identical to the amino acid fragments reported herein. Similarly, preferred encoding nucleic acid sequences corresponding to the instant rep and div genes are those encoding active proteins and which are at least 70% identical to the nucleic acid sequences of reported herein. More preferred rep or div nucleic acid fragments are at least 80% identical to the sequences herein. Most preferred are rep and div nucleic acid fragments that are at least 90-95% identical to the nucleic acid fragments reported herein.

The nucleic acid fragments of the instant invention may be used to isolate genes encoding homologous proteins from the same or other microbial species. Isolation of homologous genes using sequence-dependent protocols is well known in the art. Examples of sequence-dependent protocols include, but are not limited to, methods of nucleic acid hybridization, and methods of DNA and RNA amplification as exemplified by various uses of nucleic acid amplification technologies [e.g., polymerase chain reaction, Mullis et al., U.S. Patent 4,683,202; ligase chain reaction (LCR), Tabor, S. et al., *Proc. Acad. Sci.* USA 82,

5

10

15

20

25

30

1074, (1985)] or strand displacement amplification [SDA, Walker, et al., *Proc. Natl. Acad. Sci. U.S.A.*, 89, 392, (1992)].

For example, genes encoding similar proteins or polypeptides to those of the instant invention could be isolated directly by using all or a portion of the instant nucleic acid fragments as DNA hybridization probes to screen libraries from any desired bacteria using methodology well known to those skilled in the art. Specific oligonucleotide probes based upon the instant nucleic acid sequences can be designed and synthesized by methods known in the art (Maniatis, supra 1989). Moreover, the entire sequences can be used directly to synthesize DNA probes by methods known to the skilled artisan such as random primers DNA labeling, nick translation, or end-labeling techniques, or RNA probes using available in vitro transcription systems. In addition, specific primers can be designed and used to amplify a part of or full-length of the instant sequences. The resulting amplification products can be labeled directly during amplification reactions or labeled after amplification reactions, and used as probes to isolate full length DNA fragments under conditions of appropriate stringency.

Typically, in PCR-type amplification techniques, the primers have different sequences and are not complementary to each other. Depending on the desired test conditions, the sequences of the primers should be designed to provide for both efficient and faithful replication of the target nucleic acid. Methods of PCR primer design are common and well known in the art. (Thein and Wallace, "The use of oligonucleotide as specific hybridization probes in the Diagnosis of Genetic Disorders", in *Human Genetic Diseases: A Practical Approach*, K. E. Davis Ed., (1986) pp. 33-50 IRL Press, Herndon, Virginia); Rychlik, W. (1993) In White, B. A. (ed.), Methods in Molecular Biology, Vol. 15, pages 31-39, PCR Protocols: Current Methods and Applications. Humania Press, Inc., Totowa, NJ).

Generally two short segments of the instant sequences may be used in polymerase chain reaction (PCR) protocols to amplify longer nucleic acid fragments encoding homologous genes from DNA or RNA. The polymerase chain reaction may also be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer is derived from the instant nucleic acid fragments, and the sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' end of the mRNA precursor encoding microbial genes.

5

10

15

20

25

30

Alternatively, the second primer sequence may be based upon sequences derived from the cloning vector. For example, the skilled artisan can follow the RACE protocol [Frohman et al., *PNAS USA* 85:8998 (1988)] to generate cDNAs by using PCR to amplify copies of the region between a single point in the transcript and the 3' or 5' end. Primers oriented in the 3' and 5' directions can be designed from the instant sequences. Using commercially available 3' RACE or 5' RACE systems (BRL), specific 3' or 5' cDNA fragments can be isolated [Ohara et al., *PNAS USA* 86:5673 (1989); Loh et al., *Science* 243:217 (1989)].

Alternatively the instant sequences may be employed as hybridization reagents for the identification of homologs. The basic components of a nucleic acid hybridization test include a probe, a sample suspected of containing the gene or gene fragment of interest, and a specific hybridization method. Probes of the present invention are typically single stranded nucleic acid sequences which are complementary to the nucleic acid sequences to be detected. Probes are "hybridizable" to the nucleic acid sequence to be detected. The probe length can vary from 5 bases to tens of thousands of bases, and will depend upon the specific test to be done. Typically a probe length of about 15 bases to about 30 bases is suitable. Only part of the probe molecule need be complementary to the nucleic acid sequence to be detected. In addition, the complementarity between the probe and the target sequence need not be perfect. Hybridization does occur between imperfectly complementary molecules with the result that a certain fraction of the bases in the hybridized region are not paired with the proper complementary base.

Hybridization methods are well defined and have been described above. Typically, the probe and sample must be mixed under conditions which will permit nucleic acid hybridization. This involves contacting the probe and sample in the presence of an inorganic or organic salt under the proper concentration and temperature conditions. The probe and sample nucleic acids must be in contact for a long enough time that any possible hybridization between the probe and sample nucleic acid may occur. The concentration of probe or target in the mixture will determine the time necessary for hybridization to occur. The higher the probe or target concentration the shorter the hybridization incubation time needed. Optionally a chaotropic agent may be added. The chaotropic agent stabilizes nucleic acids by inhibiting nuclease activity. Furthermore, the

5

10

15

20

25

30

chaotropic agent allows sensitive and stringent hybridization of short oligonucleotide probes at room temperature [Van Ness and Chen (1991) *Nucl. Acids Res.* 19:5143-5151]. Suitable chaotropic agents include guanidinium chloride, guanidinium thiocyanate, sodium thiocyanate, lithium tetrachloroacetate, sodium perchlorate, rubidium tetrachloroacetate, potassium iodide, and cesium trifluoroacetate, among others. Typically, the chaotropic agent will be present at a final concentration of about 3M. If desired, one can add formamide to the hybridization mixture, typically 30-50% (v/v).

Various hybridization solutions can be employed. Typically, these comprise from about 20 to 60% volume, preferably 30%, of a polar organic solvent. A common hybridization solution employs about 30-50% v/v formamide, about 0.15 to 1M sodium chloride, about 0.05 to 0.1M buffers, such as sodium citrate, Tris-HCI, PIPES or HEPES (pH range about 6-9), about 0.05 to 0.2% detergent, such as sodium dodecylsulfate, or between 0.5-20 mM EDTA, FICOLL (Pharmacia Inc.) (about 300-500 kilodaltons), polyvinylpyrrolidone (about 250-500 kdal), and serum albumin. Also included in the typical hybridization solution will be unlabeled carrier nucleic acids from about 0.1 to 5 mg/mL, fragmented nucleic DNA, e.g., calf thymus or salmon sperm DNA, or yeast RNA, and optionally from about 0.5 to 2% wt./vol. glycine. Other additives may also be included, such as volume exclusion agents which include a variety of polar water-soluble or swellable agents, such as polyethylene glycol. anionic polymers such as polyacrylate or polymethylacrylate, and anionic saccharidic polymers, such as dextran sulfate.

Nucleic acid hybridization is adaptable to a variety of assay formats. One of the most suitable is the sandwich assay format. The sandwich assay is particularly adaptable to hybridization under non-denaturing conditions. A primary component of a sandwich-type assay is a solid support. The solid support has adsorbed to it or covalently coupled to it immobilized nucleic acid probe that is unlabeled and complementary to one portion of the sequence.

Plasmids and Vectors of the Invention

Plasmids useful for gene expression in bacteria may be either selfreplicating (autonomously replicating) plasmids or chromosomally integrated. The self-replicating plasmids have the advantage of having multiple copies of genes of interest, and therefore the expression level can

5

10

15

20

25

30

be very high. Chromosome integration plasmids are integrated into the genome by recombination. They have the advantage of being stable, but they may suffer from a lower level of expression. In a preferred embodiment, plasmids or vectors according to the present invention are self-replicating and are used according to the methods of the invention.

Vectors or plasmids useful for the transformation of suitable host cells are well known in the art. Typically the vector or plasmid contains sequences directing transcription and translation of the relevant gene, a selectable marker, and sequences allowing autonomous replication or chromosomal integration. In a specific embodiment, the plasmid or vector comprises a nucleic acid according to the present invention. Suitable vectors comprise a region 5' of the gene which harbors transcriptional initiation controls and a region 3' of the DNA fragment which controls transcriptional termination. It is most preferred when both control regions are derived from genes homologous to the transformed host cell, although it is to be understood that such control regions need not be derived from the genes native to the specific species chosen as a production host. Vectors of the present invention will additionally contain a unique replication protein (rep) as described above that facilitates the replication of the vector in the Rhodococcus host. Additionally the present vectors will comprise a stability coding sequence that is useful for maintaining the stability of the vector in the host and has a significant degree of homology to putative cell division proteins. The vectors of the present invention will contain convenient restriction sites for the facile insertion of genes of interest to be expressed in the Rhodococcus host.

The present invention relates to two specific plasmids, pAN12, isolated from a *Rhodococcus erythropolis* host and shuttle vectors derived and constructed therefrom. The pAN12 vector contains a unique Ori and replication and stability sequences for *Rhodococcus* while the shuttle vectors additionally contain an origin of replication (ORI) for replication in *E. coli* and antibiotic resistance markers for selection in *Rhodococcus* and *E. coli*.

Bacterial plasmids typically range in size from about 1 kb to about 200 kb and are generally autonomously replicating genetic units in the bacterial host. When a bacterial host has been identified that may contain a plasmid containing desirable genes, cultures of host cells are growth up, lysed and the plasmid purified from the cellular material. If the plasmid is.

5

10

15

20

25

30

of the high copy number variety, it is possible to purify it without additional amplification. If additional plasmid DNA is needed, a bacterial cell may be grown in the presence of a protein synthesis inhibitor such as chloramphenical which inhibits host cell protein synthesis and allow additional copies of the plasmid to be made. Cell lysis may be accomplished either enzymatically (i.e lysozyme) in the presence of a mild detergent, by boiling or treatment with strong base. The method chosen will depend on a number of factors including the characteristics of the host bacteria and the size of the plasmid to be isolated.

After lysis the plasmid DNA may be purified by gradient centrifugation (CsCl-ethidium bromide for example) or by phenol:chloroform solvent extraction. Additionally, size or ion exchange chromatography may be used as well a s differential separation with polyethylene glycol.

Once the plasmid DNA has been purified, the plasmid may be analyzed by restriction enzyme analysis and sequenced to determine the sequence of the genes contained on the plasmid and the position of each restriction site to create a plasmid restriction map. Methods of constructing or isolating vectors are common and well known in the art (see for example Manitas *supra*, Chapter 1;Rohde, C., *World J. Microbiol. Biotechnol.* (1995), 11(3), 367-9);Trevors, J. T., *J. Microbiol. Methods* (1985), 3(5-6), 259-71).

Using these general methods the 6.3 kb pAN12 was isolated from *Rhodococcus erythropolis* AN12, purified and mapped (see Figure 1) and the position of restriction sites determined (see Table 1, below).

TABLE 1. Restriction Endonuclease Cleavage of pAN12 (SEQ ID NO:5)

Restriction Enzyme	Number/Nucleotide Location of Cleavage Site(s)	Size of Digested Fragments (kb)
Afl III	1/515	6.334
BamH I	2/ 2240, 6151	2.423, 3.911
Ban I	1/4440	6.334 .
Ban II	1/4924	6.334
Bbe i	1/4440	6.334
Bsm I	1/6295	6.334
BssH II	1/2582	6.334

10

15

20

Restriction Enzyme	Number/Nucleotide Location	Size of Digested
	of Cleavage Site(s)	Fragments (kb)
Bsu36 I	1/6070	6.334
EcoR I	1/797	6.334
Esp I	1/1897	6.334
Hind III	3/61, 4611, 6308	0.087, 1.697, 4.550
Mlu I	1/515	6.334
Nar I	1/4440	6.334
Nde I	1/626	6.334
Nsi I	1/3758	6.334
PpuM I	1/3060	6.334
Pst I	1/110	6.334
Pvu II	3/ 555, 2697, 3865	1.168, 2.142, 3.024
Rsr II	1/2866	6.334
Sac I	1/4924	6.334
Sac II	1/3272	6.334
SnaB I	1/2418	6,334
Spe f	1/3987	6.334
Ssp I	1/1	6.334
Stul	2/193, 2843	2.650, 3.684
Tth1111	1/4900	6.334
Xho I	2/ 3746, 3784	0.038, 6.296

Once mapped, isolated plasmids may be modified in a number of ways. Using the existing restriction sites specific genes desired for expression in the host cell may be inserted within the plasmid. Additionally, using techniques well known in the art, new or different 5 restriction sites may be engineered into the plasmid to facilitate gene insertion. Many native bacterial plasmid contain genes encoding resistance or sensitivity to various antibiotics. However, it may be useful to insert additional selectable markers to replace the existing ones with others. Selectable markers useful in the present invention include, but are 10 not limited to genes conferring antibiotic resistance or sensitivity, genes encoding a selectable label such as a color (e.g. lac) or light (e.g. Luc; Lux) or genes encoding proteins that confer a particular phenotypic metabolic or morphological trait. Generally, markers that are selectable in 15 both gram negative and gram positive hosts are preferred. Particularly

suitable in the present invention are markers that encode antibiotic resistance or sensitivity, including but not limited to ampicillin resistance gene, tetracycline resistance gene, chloramphenicol resistance gene, kanamycin resistance gene, and thiostrepton resistance gene.

Plasmids of the present invention will contain a gene of interest to be expressed in the host. The genes to be expressed may be either native or endogenous to the host or foreign or heterologus genes. Particularly suitable are genes encoding enzymes involved in various synthesis or degradation pathways.

Endogenous genes of interest for expression in a *Rhodococcus* using Applicants' vectors and methods include, but are not limited to: a) genes encoding enzymes involved in the production of isoprenoid molecules, for example, 1-deoxyxylulose-5-phosphate synthase gene (dxs) can be expressed in *Rhodococcus* to exploit the high flux for the isoprenoid pathway in this organism; b) genes encoding polyhydroxyalkanoic acid (PHA) synthases (phaC) which can also be expressed for the production of biodegradable plastics; c) genes encoding carotenoid pathway genes (eg, crtl) can be expressed to increase pigment production in *Rhodococcus*; d) genes encoding nitrile hydratases for production of acrylamide in *Rhodococcus* and the like, and d) genes encoding monooxygenases derived from waste stream bacteria.

Heterologous genes of interest for expression in a *Rhodococcus* include, but are not limited to: a) ethylene forming enzyme (efe) from *Pseudomonas syringae* for ethylene production, b) pyruvate decarboxylase (pdc), alcohol dehydrogenase (adh) for alcohol production, c) terpene synthases from plants for production of terpenes in *Rhodococcus*, d) cholesterol oxidase (choD) from *Mycobacterium tuberculosis* for production of the enzyme in *Rhodococcus*; and the like, and e) genes encoding monooxygenases derived from waste stream bacteria.

The plasmids or vectors according to the invention may further comprise at least one promoter suitable for driving expression of a gene in *Rhodococcus*. Typically these promoters including the initiation control regions will be derived from a *Rhodococcus* sp. Termination control regions may also be derived from various genes native to the preferred hosts. Optionally, a termination site may be unnecessary, however, it is most preferred if included.

5

10

15

20

25

30

Optionally it may be desired to produce the instant gene product as a secretion product of the transformed host. Secretion of desired proteins into the growth media has the advantages of simplified and less costly purification procedures. It is well known in the art that secretion signal sequences are often useful in facilitating the active transport of expressible proteins across cell membranes. The creation of a transformed host capable of secretion may be accomplished by the incorporation of a DNA sequence that codes for a secretion signal which is functional in the host production host. Methods for choosing appropriate signal sequences are well known in the art (see for example EP 546049; WO 9324631). The secretion signal DNA or facilitator may be located between the expression-controlling DNA and the instant gene or gene fragment, and in the same reading frame with the latter.

The present invention also relates to a plasmid or vector that is able to replicate or "shuttle" between at least two different organisms. 15 Shuttle vectors are useful for carrying genetic material from one organism to another. The shuttle vector is distinguished from other vectors by its ability to replicate in more than one host. This is facilitated by the presence of an origin of replication corresponding to each host in which it 20 must replicate. The present vectors are designed to replicate in Rhodococcus for the purpose of gene expression. As such each contain a unique origin of replication for replication in Rhodococcus. This sequence is set forth in SEQ ID NO:8. Many of the genetic manipulations for this vector may be easily accomplished in E. coli. It is therefore 25 particularly useful to have a shuttle vector comprising an origin of replication that will function in E. coli and other gram positive bacteria. A number of ORI sequences for gram positive bacteria have been determined and the sequence for the ORI in E. coli determined (see for example Hirota et al., Prog. Nucleic Acid Res. Mol. Biol. (1981), 26, 30 33-48); Zyskind, J.W.; Smith, D.W., Proc. Natl. Acad. Sci. U.S.A., 77, 2460-2464 (1980), GenBank ACC. NO. (GBN): J01808). Preferred for use in the present invention are those ORI sequences isolated from gram positive bacteria, and particularly those members of the Actinomycetales bacterial family. Members of the Actinomycetales bacterial family include for example, the genera Actinomyces, Actinoplanes, Arcanobacterium. 35 Corynebacterium, Dietzia, Gordonia, Mycobacterium, Nocardia,

5

Rhodococcus, Tsukamurella, Brevibacterium, Arthrobacter, Propionibacterium, Streptomyces, Micrococcus, and Micromonospora.

Two shuttle vectors are described herein, pRhBR17 and pRhBR171, each constructed and isolated separately but having the same essential features. The complete sequence of pRhBR17 is given in SEQ ID NO:6 and the complete sequence of the pRhBR171 is given in SEQ ID NO:7.

pRhBR17 has a size of about 11.2 kb and the characteristics of cleavage with restriction enzymes as shown in Table 2 and Figure 2.

<u>TABLE 2</u>. Restriction Endonuclease Cleavage of pRhBR17 (SEQ ID NO:6)

Restriction Enzyme	Number/Nucleotide Location	Size of Digested
restriction Enzyme	of Cleavage Site(s)	Fragments (kb)
Afi III	1/4105	11.241
Ase I	1/2450	11.241
Bal I		
	1/10289	11.241
BamH I	3/ 375, 5830, 9741	1.875, 3.911, 5.455
BssH II	1/6172	11.241
EcoR I	2/4387, 10024	5.604, 5.637
EcoR V	1/185	11.241
Esp I	1/5487	11.241
Hind III	4/ 29, 3651, 8201, 9898	1.372, 1.697, 3.622,
		4.550
Mlu I	1/4105	11.241
Nco i	1/10325	11.241
Nde I	1/4216	11.241
Nhe I	1/229	11.241
Nsi I	1/7348	11.241
PpuM I	1/6650	11.241
Pst·I	2/2520, 3700	1.180, 11.061
Pvu II	3/ 4145, 6287, 7455	1.168, 2.142, 7.931
Rsr II	1/6456	11.241
Saci	1/8514	11.241
Sac II	1/6862	11.241
SnaB I	1/6008	11.241

5

Restriction Enzyme	Number/Nucleotide Location	Size of Digested
	of Cleavage Site(s)	Fragments (kb)
Spe I	1/7577	11.241
Ssp I	2/3081, 10334	3.988, 7.253
Stul	2/3783, 6433	2.650, 8.591

PRhBR171 has a size of about 9.7 kb and the characteristics of cleavage with restriction enzymes as shown in Table 3 and Figure 3.

5 TABLE 3. Restriction Endonuclease Cleavage of pRhBR171 (SEQ ID NO:7)

Restriction Enzyme	Number/Nucleotide Location	Size of Digested
	of Cleavage Site(s)	Fragments (kb)
Ase I	1/2450	9.652
Bal I	1/8700	9.652
BamH I	3/375, 4241, 8152	1.875, 3.866, 3.911
BssH II	1/4583	9.652
EcoR I	2/2798, 8435	4.015, 5.637
EcoR V	1/185	9.652
Esp I	1/3898	9.652
Hind III	3/29, 6612, 8309	1.372, 1.697, 6.583
Nco I	1/8736	9.652
Nde I	1/2627	9.652
Nhe I	1/229	9.652
Nsi I	1/5759	9.652
PpuM I	1/5061	9.652
Pvu II	3/2556, 4698, 5866	1.168, 2.142, 6.342
Rsr II	- 1/4867	9.652
SacI	1/6925	9.652
Sac II	1/5273	9.652
SnaB I	1/4419	9.652
Spe I	1/5988	9,652
Ssp I	1/8745	9.652
Stul	1/4844	9.652

The vectors of the present invention will be particularly useful in expression of genes in *Rhodococcus sp* and other like bacteria. Species of *Rhodococcus* particularly suited for use with these vectors include but are not limited to *Rhodococcus equi*, *Rhodococcus erythropolis*, *Rhodococcus opacus*, *Rhodococcus rhodochrous*, *Rhodococcus globerulus*, *Rhodococcus koreensis*, *Rhodococcus fascians*, and

Methods for Gene Expression.

Rhodococcus ruber.

5

10

15

20

25

30

35

Applicants' invention provides methods for gene expression in host cells, particularly in the cells of microbial hosts. Expression in recombinant microbial hosts may be useful for the expression of various pathway intermediates; for the modulation of pathways already existing in the host for the synthesis of new products heretofore not possible using the host. Additionally the gene products may be useful for conferring higher growth yields of the host or for enabling alternative growth mode to be utilized.

Once suitable plasmids are constructed they are used to transform appropriate host cells. Introduction of the plasmid into the host cell may be accomplished by known procedures such as by transformation, e.g., using calcium-permeabilized cells; electroporation, transduction, or by transfection using a recombinant phage virus. (Maniatis, *supra*)

In a preferred embodiment the present vectors may be cotransformed with additional vectors, also containing DNA heterologus to the host. It will be appreciated that both the present vector and the additional vector will have to reside in the same incompatibility group. The ability for two or plasmids to coexist in same host will depend on whether they belong to the same incompatibility group. Generally, plasmids that do not compete for the same metabolic elements will be compatible in the same host. For a compete review of the issues surrounding plasmid coexistence see Thomas et al., *Annu. Rev. Microbiol.* (1987), 41, 77-101. Vectors of the present invention comprise the rep protein coding sequence as set forth in SEQ ID NO:1 and the ORI sequence as set forth in SEQ ID NO:8. Any vector containing the instant rep coding sequence and the ORI will be expected to replicate in *Rhodococcus*. Any plasmid that has the ability to co-exist with the rep expressing plasmid of the present invention is in the different compatibility group as the instant

plasmid and will be useful for the co-expression of heterologus genes in a specified host.

Rhodococcus transformants as microbial production platform

Once a suitable *Rhodococcus* host is successfully transformed with the appropriate vector of the present invention it may be cultured in a variety of ways to allow for the commercial production of the desired gene product. For example, large scale production of a specific gene product, overexpressed from a recombinant microbial host may be produced by both batch or continuous culture methodologies.

A classical batch culturing method is a closed system where the composition of the media is set at the beginning of the culture and not subject to artificial alterations during the culturing process. Thus, at the beginning of the culturing process the media is inoculated with the desired organism or organisms and growth or metabolic activity is permitted to occur adding nothing to the system. Typically, however, a "batch" culture is batch with respect to the addition of carbon source and attempts are often made at controlling factors such as pH and oxygen concentration. In batch systems the metabolite and biomass compositions of the system change constantly up to the time the culture is terminated. Within batch cultures cells moderate through a static lag phase to a high growth log phase and finally to a stationary phase where growth rate is diminished or halted. If untreated, cells in the stationary phase will eventually die. Cells in log phase are often responsible for the bulk of production of end product or intermediate in some systems. Stationary or post-exponential phase production can be obtained in other systems.

A variation on the standard batch system is the Fed-Batch system. Fed-Batch culture processes are also suitable in the present invention and comprise a typical batch system with the exception that the substrate is added in increments as the culture progresses. Fed-Batch systems are useful when catabolite repression is apt to inhibit the metabolism of the cells and where it is desirable to have limited amounts of substrate in the media. Measurement of the actual substrate concentration in Fed-Batch systems is difficult and is therefore estimated on the basis of the changes of measurable factors such as pH, dissolved oxygen and the partial pressure of waste gases such as CO₂. Batch and Fed-Batch culturing methods are common and well known in the art and examples may be found in Thomas D. Brock in Biotechnology: <u>A Textbook of Industrial</u>

5

10

15

20

25

30

Microbiology, Second Edition (1989) Sinauer Associates, Inc., Sunderland, MA., or Deshpande, Mukund V., Appl. Biochem. Biotechnol., 36, 227, (1992), herein incorporated by reference.

Commercial production of the instant proteins may also be accomplished with a continuous culture. Continuous cultures are an open system where a defined culture media is added continuously to a bioreactor and an equal amount of conditioned media is removed simultaneously for processing. Continuous cultures generally maintain the cells at a constant high liquid phase density where cells are primarily in log phase growth. Alternatively continuous culture may be practiced with immobilized cells where carbon and nutrients are continuously added, and valuable products, by-products or waste products are continuously removed from the cell mass. Cell immobilization may be performed using a wide range of solid supports composed of natural and/or synthetic materials.

Continuous or semi-continuous culture allows for the modulation of one factor or any number of factors that affect cell growth or end product concentration. For example, one method will maintain a limiting nutrient such as the carbon source or nitrogen level at a fixed rate and allow all other parameters to moderate. In other systems a number of factors affecting growth can be altered continuously while the cell concentration, measured by media turbidity, is kept constant. Continuous systems strive to maintain steady state growth conditions and thus the cell loss due to media being drawn off must be balanced against the cell growth rate in the culture. Methods of modulating nutrients and growth factors for continuous culture processes as well as techniques for maximizing the rate of product formation are well known in the art of industrial microbiology and a variety of methods are detailed by Brock, *supra*.

EXAMPLES

The present invention is further defined in the following Examples. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

5

10

15

20

25

30

GENERAL METHODS

Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described by Sambrook, J., Fritsch, E. F. and Maniatis, T. *Molecular Cloning: A Laboratory Manual*;

5 Cold Spring Harbor Laboratory Press: Cold Spring Harbor, (1989) (Maniatis) and by T. J. Silhavy, M. L. Bennan, and L. W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1984) and by Ausubel, F. M. et al., Current Protocols in Molecular Biology, pub. by Greene Publishing Assoc. and Wiley-Interscience (1987).

Materials and methods suitable for the maintenance and growth of bacterial cultures are well known in the art. Techniques suitable for use in the following examples may be found as set out in <u>Manual of Methods for General Bacteriology</u> (Phillipp Gerhardt, R. G. E. Murray, Ralph N.

15 Costilow, Eugene W. Nester, Willis A. Wood, Noel R. Krieg and G. Briggs Phillips, eds), American Society for Microbiology, Washington, DC. (1994)) or by Thomas D. Brock in <u>Biotechnology: A Textbook of Industrial Microbiology</u>, Second Edition, Sinauer Associates, Inc., Sunderland, MA (1989). All reagents, restriction enzymes and materials used for the growth and maintenance of bacterial cells were obtained from Aldrich

Chemicals (Milwaukee, WI), DIFCO Laboratories (Detroit, MI), GIBCO/BRL (Gaithersburg, MD), or Sigma Chemical Company (St. Louis, MO) unless otherwise specified.

Manipulations of genetic sequences were accomplished using the suite of programs available from the Genetics Computer Group Inc. (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, WI). Where the GCG program "Pileup" was used the gap creation default value of 12, and the gap extension default value of 4 were used. Where the CGC "Gap" or "Bestfit" programs were used the default gap creation penalty of 50 and the default gap extension penalty of 3 were used. Multiple alignments were created using the FASTA program incorporating the Smith-Waterman algorithm (W. R. Pearson, Comput. Methods Genome Res., [Proc. Int. Symp.] (1994), Meeting Date 1992, 111-20. Editor(s): Suhai, Sandor. Publisher: Plenum, New York, NY). In any case where program parameters were not prompted for, in these or any other programs, default values were used.

25

30

The meaning of abbreviations is as follows: "h" means hour(s), "min" means minute(s), "sec" means second(s), "d" means day(s), "µL" means microliter(s), "mL" means milliliter(s), "L" means liter(s), "µM" means micromolar, "mM" means millimolar, "µg" means microgram(s), "mg" means milligram(s), "psi" means pounds per square inch, "ppm" means parts per million, "A" means adenine or adenosine, "T" means thymine or thymidine, "G" means guanine or guanosine, "C" means cytidine or cytosine, "x g" means times gravity, "nt" means nucleotide(s), "aa" means amino acid(s), "bp" means base pair(s), and "kb" means kilobase(s).

Isolation of Rhodococcus erthyopolis AN12

5

10

15

20

25

30

35

The present *Rhodococcus erythropolis* AN12 strain was isolated from wastestream sludge as described below in Example 1.

Preparation of Genomic DNA for Sequencing and Sequence Generation

Genomic DNA was isolated from *Rhodococcus erythropolis* AN12 according to standard protocols.

Genomic DNA and library construction were prepared according to published protocols (Fraser et al The Minimal Gene Complement of Mycoplasma genitalium; *Science* 270, 1995). A cell pellet was resuspended in a solution containing 100 mM Na-EDTA pH 8.0, 10 mM Tris-HCl pH 8.0, 400 mM NaCl, and 50 mM MgCl2.

Genomic DNA preparation After resuspension, the cells were gently lysed in 10% SDS, and incubated for 30 minutes at 55°C. After incubation at room temperature, proteinase K (Boehringer Mannheim, Indianapolis, IN) was added to 100 μg/ml and incubated at 37°C until the suspension was clear. DNA was extracted twice with Tris-equilibrated phenol and twice with chloroform. DNA was precipitated in 70% ethanol and resuspended in a solution containing 10 mM Tris-HCl and 1 mM Na-EDTA (TE buffer) pH 7.5. The DNA solution was treated with a mix of RNAases, then extracted twice with Tris-equilibrated phenol and twice with chloroform. This was followed by precipitation in ethanol and resuspension in TE.

Library construction 200 to 500 μg of chromosomal DNA was resuspended in a solution of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, and 30% glycerol, and sheared at 12 psi for 60 sec in an Aeromist Downdraft Nebulizer chamber (IBI Medical products, Chicago, IL). The DNA was precipitated, resuspended and treated with Bal31

nuclease (New England Biolabs, Beverly, MA). After size fractionation, a fraction (2.0 kb, or 5.0 kb) was excised, cleaned and a two-step ligation procedure was used to produce a high titer library with greater than 99% single inserts.

Sequencing A shotgun sequencing strategy approach was adopted for the sequencing of the whole microbial genome (Fleischmann, Robert et al Whole-Genome Random sequencing and assembly of Haemophilus influenzae Rd Science, 269:1995).

Sequence was generated on an ABI Automatic sequencer using dye terminator technology (US Patent 5,366,860; EP 272007) using a combination of vector and insert-specific primers. Sequence editing was performed in either Sequencher (Gene Codes Corporation., Ann Arbor, MI) or the Wisconsin GCG program (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, WI) and the CONSED package (version 7.0). All sequences represent coverage at least two times in both directions.

Identification and Characterization of repA coding regions

DNA encoding the repA protein was identified by conducting BLAST (Basic Local Alignment Search Tool; Altschul, S. F., et al., (1993) J. Mol. Biol. 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/) searches for similarity to sequences contained in the BLAST "nr" database (comprising all non-redundant GenBank CDS translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, the SWISS-PROT protein sequence database, EMBL, and DDBJ databases). The sequences were analyzed for similarity to all publicly available DNA sequences contained in the "nr" database using the BLASTN algorithm provided by the National Center for Biotechnology Information (NCBI). The DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the "nr" database using the BLASTX algorithm (Gish, W. and States, D. J. (1993) Nature Genetics 3:266-272) provided. by the NCBI. All comparisons were done using either the BLASTNnr or BLASTXnr algorithm. The results of the BLAST comparison is given in Table 4 that summarizes the sequences to which they have the most similarity. Table 4 displays data based on the BLASTXnr algorithm with values reported in expect values. The Expect value estimates the statistical significance of the match, specifying the number of matches,

5

10

15

20

25

30

with a given score, that are expected in a search of a database of this size absolutely by chance.

EXAMPLE 1

Isolation and Characterization of Strain AN12

This Example describes the isolation of strain AN12 of Rhodococcus erythropolis on the basis of being able to grow on aniline as the sole source of carbon and energy. Analysis of a 16S rRNA gene sequence indicated that strain AN12 was related to high G + C Gram positive bacteria belonging to the genus Rhodococcus.

Bacteria that grow on aniline were isolated from an enrichment culture. The enrichment culture was established by inoculating 1 ml of activated sludge into 10 ml of S12 medium (10 mM ammonium sulfate. 50 mM potassium phosphate buffer (pH 7.0), 2 mM MgCl₂, 0.7 mM CaCl₂, 50 μM MnCl₂, 1 μM FeCl₃, 1 μM ZnCl₃, 1.72 μM CuSO₄, 2.53 μM CoCl₂, 2.42 µM Na₂MoO₂, and 0.0001% FeSO₄) in a 125 ml screw cap Erlenmeyer flask. The activated sludge was obtained from a wastewater treatment facility. The enrichment culture was supplemented with 100 ppm aniline added directly to the culture medium and was incubated at 25°C with reciprocal shaking. The enrichment culture was maintained by adding 100 ppm of aniline every 2-3 days. The culture was diluted every 14 days by replacing 9.9 ml of the culture with the same volume of S12 medium. Bacteria that utilize aniline as a sole source of carbon and energy were isolated by spreading samples of the enrichment culture onto S12 agar. Aniline was placed on the interior of each petri dish lid. The petri dishes were sealed with parafilm and incubated upside down at room temperature (25°C). Representative bacterial colonies were then tested for the ability to use aniline as a sole source of carbon and energy. Colonies were transferred from the original S12 agar plates used for initial isolation to new S12 agar plates and supplied with aniline on the interior of each petri dish lid. The petri dishes were sealed with parafilm and incubated upside down at room temperature (25°C).

The 16S rRNA genes of each isolate were amplified by PCR and analyzed as follows. Each isolate was grown on R2A agar (Difco Laboratories, Bedford, MA). Several colonies from a culture plate were suspended in 100 µl of water. The mixture was frozen and then thawed. The 16S rRNA gene sequences were amplified by PCR by using a commercial kit according to the manufacturer's instructions (Perkin Elmer)

5

10

15

20

25

30

with primers HK12 (5'-GAGTTTGATCCTGGCTCAG-3') (SEQ ID NO:9) and HK13 (5'-TACCTTGTTACGACTT-3') (SEQ ID NO:10). PCR was performed in a Perkin Elmer GeneAmp 9600. The samples were incubated for 5 minutes at 94°C and then cycled 35 times at 94°C for 30 seconds, 55°C for 1 minute, and 72°C for 1 minute. The amplified 16S rRNA genes were purified using a commercial kit according to the manufacturer's instructions (QIAquick PCR Purification Kit) and sequenced on an automated ABI sequencer. The sequencing reactions were initiated with primers HK12, HK13, and HK14 (5'-

GTGCCAGCAGYMGCGGT-3') (SEQ ID NO:11, where Y=C or T, M=A or C). The 16S rRNA gene sequence of each isolate was used as the query sequence for a BLAST search [Altschul, et al., *Nucleic Acids Res.* 25:3389-3402(1997)] of GenBank for similar sequences.

A 16S rRNA gene of strain AN12 was sequenced (SEQ ID NO:12) and compared to other 16S rRNA sequences in the GenBank sequence database. The 16S rRNA gene sequence from strain AN12 was at least 98% homologous to the 16S rRNA gene sequences of high G + C Gram positive bacteria belonging to the genus *Rhodococcus*.

EXAMPLE 2

Isolation And Partial Sequencing Of Plasmid DNA From Strain AN12 20 The presence of small plasmid DNA in the Rhodococcus AN12 strain isolated as described in Example 1 was suggested by Applicants' observation of a low molecular weight DNA contamination in a genomic DNA preparation from AN12. Plasmid DNA was subsequently isolated from AN12 strain using a modified Qiagen plasmid purification protocol 25 outlined as follows. AN12 was grown in 25 ml of NBYE medium (0.8% Nutrient Broth, 0.5% Yeast Extract and 0.05% Tween80) at 30°C for 24 hours. The cells were centrifuged at 3850 x g for 30 min. The cell pellet was washed with 50 mM sodium acetate (pH 5) and 50 mM sodium bicarbonate and KCI (pH 10). The cell pellet was then resuspended in 30 5 ml Qiagen P1 solution with 100 µg/ml RNaseA and 2 mg/ml lysozyme and incubated at 37°C for 30 min to ensure cell lysis. Five ml of Qiagen P2 and 7 ml of Qiagen N3 solutions were added to precipitate chromosomal DNA and proteins. Plasmid DNA was recovered by the addition of 12 ml of isopropanol. The DNA was washed and resuspended 35 in 800 µl of water. This DNA was loaded onto a Qiagen miniprep spin column and washed twice with 500 µl PB buffer followed by one wash with

5

750 µl of PE buffer to further purify the DNA. The DNA was eluted with 100 µl of elution buffer. An aliquot of the DNA sample was examined on a 0.8% agarose gel and a small molecular weight DNA band was observed.

The DNA was then digested with a series of restriction enzymes and a restriction map of pAN12 is presented in Figure 1. While *HindIII* cleaves pAN12 at three sites (see Table 1), only the two larger bands were recovered for further analysis. These two *Hind*III generated bands, one of 1.7 kb and one of 4.4 kb, were excised from the agarose gel and cloned into the *Hind*III site of pUC19 vector. The ends of both inserts were sequenced from the pUC constructs using the M13 universal primer (-20; GTAAAACGACGGCCAGT) (SEQ ID NO:13) and the M13 reverse primer (-48; AGCGGATAACAATTTCACACAGGA) (SEQ ID NO:14). Consensus sequences were obtained from the sequencing of two clones of each insert and comprise the nucleotide sequences as set forth in SEQ ID NOs:15-17. Sequence obtained from one end of the 4.4 kb insert was poor and is not shown. The *Hind*III recognition site is highlighted in bold and underlined in SEQ ID NOs:15-17.

EXAMPLE 3

Complete Sequencing And Confirmation Of A Cryptic Plasmid In Strain AN12

The sequences generated from the two Hindll fragments of the plasmid DNA were used to search the DuPont internal AN12 genome database. All three sequences had 100% match with regions of contig 2197 from assembly 4 of AN12 genomic sequences. Contig 2197 was 6334 bp in length. There were randomly sequenced clones in the database spanning both ends of contig 2197, indicating that this is a circular piece of DNA. Applicants have designated the 6334 bp circular plasmid from strain AN12 as pAN12. The complete nucleotide sequence of pAN12 designating the unique Sspl site as the position 1 and is set forth in SEQ ID NO:5. One end of the 1.7 kb HindIII insert (SEQ ID NO:15) matched with the 6313-5592 bp region of the complement strand of pAN12 sequence (SEQ ID NO:5). Another end of the 1.7 kb Hindlil insert (SEQ ID NO:16) matched with the 4611-5133 bp region of pAN12 sequence (SEQ ID NO:5). One end of the 4.4 kb HindIII insert (SEQ ID NO:17) matched with the 4616-4011 bp region of the complement strand of pAN12 sequence (SEQ ID NO:5). Three HindIII restriction sites were predicted to be on the pAN12 plasmid based on the complete sequence.

5

10

15

20

25

30

Three restriction fragments generated from *HindIII* digest should be in sizes as 4550 bp, 1687 bp and 87 bp. The 4.4 kb and 1.7 kb bands Applicants observed on the gel matched well with the predicated 4550 bp and 1687 bp fragments. The 87 bp fragment would not be easily detected on a 0.8% agarose gel. The copy number of the pAN12 plasmid was estimated to be around 10 copies per cell, based on the statistics that contig 2197 was sequenced at 80x coverage comparing to average about 8x coverage of other contigs representing chromosomal sequences.

BLASTX analysis showed that two open reading frames (ORFs) encoded on pAN12 shared some homology with proteins in the "nr" database (comprising all non-redundant GenBank CDS translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, SWISS-PROT protein sequence database, EMBL, and DDBJ databases). One ORF (designated rep) at the complement strand of nucleotides 3052-1912 of SEQ ID NO:5 showed the greatest homology to replication protein of plasmid pAP1from Arcanobacterium pyogenes (Billington, S. J. et al, J. Bacteriol. 180, 3233-3236, 1998). The second ORF (designated div) at the complement strand of nucleotides 5179-4288 of SEQ ID NO:5 showed the greatest homology to a putative cell division protein from Haemophilus influenzae identified by genomic sequencing (Fleischmann et al., Science 269 (5223), 496-512 (1995). The rep nucleic acid (SEQ ID NO:1) on pAN12 is predicted to encode a Rep protein of 379 amino acids in length (SEQ ID NO:2). It shares a 51% identity and a 35% similarity to the 459 amino acid Rep protein from Arcanobacterium (see Table 4). The div nucleic acid (SEQ ID NO:3) on pAN12 is predicted to encode a Div protein of 296 amino acids in length (SEQ ID NO:4). It shares only a 24% identity and a 40% similarity to the internal portion of the 529 amino acid putative cell division protein from Haemophilus (see Table 4).

30

5

10

15

20

TABLE 4: BLASTX analysis of the two pAN12 open reading frames (ORFs)

ORF	Similarity Identified	% Identity ^a	% Similarity ^b	E-value ^c	Citation
rep	Gb AAC46399.1 (U83788) Replication protein [Arcanobacterium pyogeness]	35	51	e-59	Billington et al J. Bacterjol. 180 (12), 3233-3236 (1998)
div	sp P45264 (U32833) Cell division protein ftsK homolog [Haemophilus influenzae]	24	40	2e-4	Fleischmann et al Science 269 (5223), 496-512 (1995)

a%Identity is defined as percentage of amino acids that are identical between the two proteins.

b% Similarity is defined as percentage of amino acids that are identical or conserved between the two proteins.

^CExpect value. The Expect value estimates the statistical significance of the match, specifying the number of matches, with a given score, that are expected in a search of a database of this size absolutely by chance.

EXAMPLE 4

Construction Of An Escherichia Coli-Rhodococcus Shuttle Vector With The Cryptic Pan12 Plasmid

An *E. coli-Rhodococcus* shuttle vector requires a set of replication function and antibiotic resistance markers that functions both in *E. coli* and in *Rhodococcus*. Applicants have identified a cryptic pAN12 plasmid which encodes the replication function for *Rhodococcus*. To identify an antibiotic resistance marker for *Rhodococcus*. The on *E. coli* plasmid pBR328 (ATCC 37517) was tested to see whether it would function in *Rhodococcus*. Plasmid pBR328 carries ampicillin, chloramphenicol and tetracycline resistance markers that function in *E. coli*. pBR328 was linearized with *Pvu*II which disrupted the chloramphenicol resistance gene and ligated with pAN12 digested with *Ssp*I. The resulting clone was designated pRhBR17 (SEQ ID NO:6).

pRhBR17 was confirmed to be ampicillin resistant, chloramphenicol sensitive and tetracycline resistant in *E. coli*. DNA of pRhBR17 was prepared from *E. coli* DH10B (GIBCO, Rockville, MD) and electroporated into *Rhodococcus erythropolis* (ATCC 47072) which does not contain the pAN12 plasmid. The electrocompetent cells of ATCC 47072 were prepared as follows:

ATCC 47072 was grown in NBYE (0.8% nutrient broth and 0.5% yeast extract) + Tween 80 (0.05%) medium at 30°C with aeration to an

OD600 of about 1.0. Cells were cooled at 4°C for more than 30 minutes before they were pelleted by centrifugation. Pellets were washed with ice cold sterile water three times and ice cold sterile 10% glycerol twice and resuspended in 10% glycerol as aliquots for quick freeze. Electroporation was performed with 50 μ l of competent cells mixed with 0.2-2 μ g of 5 plasmid DNA. The electroporation setting used was similar to E. coli electroporation: 200 ohms, 25 μF and 2.5 kV for 0.2 cm gap cuvette. After an electroporation pulse, 0.5-1 mL of NBYE medium was immediately added and cells were recovered on ice for at least 5 minutes. The transformed cells were incubated at 30°C for 4 hours to express the 10 antibiotic resistance marker and plated on NBYE plates with 5 µg/ml of tetracycline. Tetracycline resistance transformants were obtained when ATCC 47072 was transformed with pRhBR17. No tetracycline resistant colony was obtained for mock transformation of ATCC 47072 with sterile water. The results suggested that the tetracycline resistance marker on 15 pBR328 functioned in Rhodococcus and the plasmid pRhBR17 was able to shuttle between E. coli and Rhodococcus. The transformation frequency was about 106 colony forming units (cfu)/µg of DNA for ATCC 47072. The shuttle plasmids were also able to transform the AN12 strain containing the indigenous pAN12 cryptic plasmid at about 10-fold 20 lower frequency.

<u>EXAMPLE 5</u> <u>pAN12 Replicon Is Compatible With Nocardiophage Q4 Replicon Of</u> <u>pDA71</u>

The replicon is a genetic element that behaves as an autonomous 25 unit during replication. To identify and confirm the essential elements such as the replication protein and origin of replication that define the function of the pAN12 replicon, the pAN12 sequence was further examined by multiple sequence alignment with other plasmids. Although Rep of pAN12 had only 35% overall amino acid identity to Rep of 30 Arcanobacterium plasmid pAP1, five motifs were identified in pAN12 Rep that are conserved in the pIJ101/pJV1 family of rolling circle replication plasmids including pAP1 (Ilyina, T. V. et al Nucleic Acids Research, 20:3279-3285; Billington, S. J. et al, J. Bacteriol. 180, 3233-3236, 1998) through ClustalW multiple sequence alignment (Figure 4A). Some of the 35 other members in this family of plasmids include plJ101 from Streptomyces lividans (Kendall, K. J. et al, J. Bacteriol. 170:4634-4651, 1988), pJV1 from Streptomyces phaeochromogenes (Servin-Gonzalez, L.

Plasmid. 30:131-140, 1993; Servin-Gonzalez, L. Microbiology.
141:2499-2510, 1995) and pSN22 from Streptomyces nigrifaciens
(Kataoka, M. et al. Plasmid. 32:55-69, 1994). The numbers in Figure 4A indicate the starting amino acid for each motif within the Rep. Also
identified were the putative origin of replication (Khan, S. A. Microbiol. and Mol. Biology Reviews. 61:442-455, 1997) in pAN12 through multiple sequence alignment (Figure 4B). The numbers in Figure 4B indicate the positions of the first nucleotide on the plasmid for the origins of replication. The origins of replication in plJ101, pJV1 and pSN22 have been
previously confirmed experimentally (Servin-Gonzalez, L. Plasmid. 30:131-140, 1993; Suzuki, I. et al., FEMS Microbiol. Lett. 150:283-288, 1997). The GG dinucleotides at the position of the nick site where the replication initiates are also conserved in pAN12.

The pAN12 replicon was found to be compatible with at least one other Rhodococcus replicon Q4 derived from nocardiophage (Dabbs, 15 1990, Plasmid 23:242-247). pDA71 is a E. coli-Rhodococcus shuttle plasmid constructed based on the nocardiophage Q4 replicon and carries a chloramphenicol resistance marker that expresses in Rhodococcus (ATCC 77474, Dabbs, 1993, Plasmid 29:74-79). Transformation of 20 pDA71 into Rhodococcus erythropolis strain AN12 and subsequent plasmid DNA isolation from the transformants indicated that the chloramphenicol resistant pDA71 plasmid (~9 kb) coexisted with the 6.3 kb indigenous pAN12 plasmid in AN12 strain. Additionally the order of the plasmid introduction into the host was reversed. The chloramphenicol resistant pDA71 was first introduced into the plasmid free 25 Rhodococcus erythropolis strain ATCC 47072. Competent cells were prepared from a chloramphenicol resistant transformant of ATCC 47072(pDA71) and then transformed with the tetracycline resistant pRhBR17 shuttle plasmid constructed based on the pAN12 replicon (Example 4). Transformants of both chloramphenicol and tetracycline 30 resistance were isolated, suggesting both pDA71 and pRhBR17 were maintained in the ATCC 47072 host. The compatibility of pAN12 replicon with the nocardiophage Q4 replicon could be exploited for co-expression of different genes in a single Rhodococcus host using shuttle plasmids derived from pAN12 replicon such as pRhBR17 and shuttle plasmids 35 derived from the nocardiophage Q4 replicon such as pDA71.

EXAMPLE 6

Rep On pAN12 Is Essential For Shuttle Vector Function

The previous examples demonstrated that pAN12 provides the replication function in *Rhodococcus* for the constructed shuttle plasmid.

- To characterize the essential region of pAN12 for shuttle plasmid function, Applicants performed *in vitro* transposon mutagenesis of the shuttle plasmids, pRhBR17, using the GPS-1 genome priming system from New England Biolabs (Beverly, MA). The *in vitro* transposition reaction was performed following manufacturer's instructions. The resulting transposon
- insertions of pRhBR17 were transformed into *E. coli* DH10B (GIBCO, Rockville, MD) and kanamycin resistant colonies were selected by plating on LB agar plates comprising 25 μg/ml of kanamycin. Transposon insertions in the ampicillin resistance and tetracycline resistance genes were screened out by sensitivity to ampicillin and tetracycline.
- respectively. Plasmid DNA from 34 of the ampicillin resistant, tetracycline resistant and kanamycin resistant colonies were purified and the insertion sites were mapped by sequencing using the Primer N (ACTITATTGTCATAGTTTAGATCTATTTTG; SEQ ID NO:18)
- complementary to the right end of the transposon. Applicants also tested the ability of the shuttle plasmids comprising the transposon insertions to transform *Rhodococcus* ATCC 47072. Table 5 summarizes the data of insertion mapping and transformation ability. The insertion site on Table 5 refers to the base pair (bp) numbering on the shuttle plasmid pRhBR17 (SEQ ID NO:6), which uses the position 1 of pBR328 as the position 1 of the shuttle plasmid. High quality junction sequence were obtained for most
 - the shuttle plasmid. High quality junction sequence was obtained for most of the insertions so that the exact location of the transposon insertions could be identified on the plasmids. In clones 17, 33 and 37, the sequence of the transposon ends could not be identified to map the exact insertion sites.

<u>TABLE 5</u>: Transposon insertion mapping of pRhBR17 and the effects on transformation of *Rhodococcus* ATCC 47072

Clone	Site inserted	Strand	Gene	Transformation
number		inserted	inserted	ability
pRhBR17	No insertion	N/A	N/A	+++
30, 31	2092 bp	Forward	pBR328	+++
26,27	3120 bp	Reverse	pBR328	ND
29	3468 bp	Reverse	pBR328	ND
24	3625 bp	Reverse	pAN12	+++
2	4030 bp	Reverse	pAN12	+++
38, 39	4114 bp	Forward	pAN12	+++
20	4442 bp	Reverse	pAN12	+++
1	4545 bp	Reverse	pAN12	+++
35	4568 bp	Forward	pAN12	+++
13	4586 bp	Forward	pAN12	+
17, 33	<4920 bp	Forward	pAN12	+
7	5546 bp	Forward	pAN12 rep	+
11	5739 bp	Reverse	pAN12 rep	-
12	5773 bp	Forward	pAN12 rep	-
16	5831 bp	Forward	pAN12 rep	-
5	5883 bp	Reverse	pAN12 rep	-
9	6050 bp	Reverse	pAN12 rep	-
28	6283 bp	Forward	pAN12 rep	-
6	6743 bp	Reverse	pAN12	-
37	<6935 bp	Forward	pAN12	+++
32	6965 bp	Forward	pAN12	+++
15	6979 bp	Forward	pAN12	+
3	7285 bp	Reverse	pAN12	+++
4	7811 bp	Reverse	pAN12	+++
22, 23	8274 bp	Forward	pAN12 div	+++
21	8355 bp	Forward	pAN12 div	+++
18	8619 bp	Reverse	pAN12 div	+++
10	10322 bp	Reverse	pBR328	+++
36	11030 bp	Forward	pBR328	ND

+++ the transformation frequency was comparable to that of the wild type plasmid.

ND the transformation frequency was not determined.

Transposon insertions at most sites of the shuttle plasmid did not abolish the ability of the plasmids to transform *Rhodococcus*ATCC 47072. The insertions that abolished the shuttle plasmid function were clustered at the rep region. Clones 5, 9, 11, 12, 16, and 28 all contained transposon insertions that mapped within the *rep* gene of pAN12. These mutant plasmids were no longer able to transform

⁺ the transformation frequency decreased about 100 fold.

⁻ the transformation frequency was zero.

Rhodococcus ATCC 47072. Clone 6 contained an insertion at 6743 bp, which is 100 bp upstream of the start codon (6642 bp) of the Rep region. This insertion also disrupted the shuttle plasmid function since it most likely interrupted the transcription of the *rep* promoter. Clone 7 contained an insertion at 5546 bp, which is very close to the C terminal end (5502 bp) of the Rep region. The transformation frequency of this plasmid was decreased by at least 100 fold. This is likely due to the residual activity of the truncated Rep which was missing 14 amino acids at the C terminal end because of the transposon insertion. In summary, the data indicated that the Rep region at the complement strand of nucleotides 3052-1912 of pAN12 (SEQ ID NO:5) was essential for shuttle plasmid function in *Rhodococcus*.

EXAMPLE 7

Div On pAN12 Is Involved In Maintaining Plasmid Stability The transposon insertions within the div gene of pAN12 did not 15 affect the ability of the shuttle plasmid to transform Rhodococcus. To determine if the putative cell division protein encoded by div played a role in cell division particularly plasmid partition, plasmid stability of Rhodococcus strain AN12 or ATCC 47072 comprising a pRhBR17 plasmid with different insertions was examined. After propagating the 20 cells in NBYE + Tween80 medium with and without antibiotic selection (tetracycline at 10µg/ml) for about 30 generations, dilutions (10-4, 10-5 and 10-6) of cells were plated out on LB plates. Colonies grown on the nonselective LB plates were subsequently patched onto a set of LB and LB + tetracycline plates. Two hundred colonies of each were scored for 25 tetracycline sensitivity. Representatives of the tetracycline sensitive cells were also examined to confirm the loss of the plasmid by PCR and plasmid isolation. The primers for PCR were designed based on the rep gene sequence of pAN12. A 1.1 kb PCR fragment could be obtained with Rep1 primer: 5'-ACTTGCGAACCGATATTATC-3' (SEQ ID NO:19) and 30 Rep2 primer: 5'-TTATGACCAGCGTAAGTGCT-3' (SEQ ID NO:20) if the pAN12-based shuttle plasmid was present in the cell to serve as the template. The percentage of the plasmid maintained after 30 generations is summarized in Table 6. The wild type pRhBR17 plasmid was very stable in AN12 and slightly less stable in ATCC 47072. Clone #15 35 contained an insertion at the upstream region of the rep on pRhBR17 (Table 5) and showed slightly decreased stability in both AN12 and ATCC

5

47072 comparable to that of the wild type plasmid. Both the wild type pRhBR17 plasmid and the plasmid with insertion #15 were maintained 100% in the presence of the tetracycline selection in both *Rhodococcus* strains. In contrast, clone #23 contained an insertion that disrupted the putative cell division protein div and showed decreased plasmid stability. Loss of plasmid was observed even in the presence of the tetracycline selection. The stability was affected more in ATCC 47072 than in AN12. These results suggest that the putative cell division protein on pAN12 regulates plasmid partitioning during cell division and is important for maintaining plasmid stability.

<u>TABLE 6</u> Plasmid stability in *Rhodococcus* strains after 30 generations

	AN12 without selection	AN12 with selection	ATCC 47072 without selection	ATCC 47042 with selection
WT pRhBR17	100%	100%	96.5%	100%
Insertion #15	93%%	100%	93%	100%
Insertion #23	74%	97%	8.5%	77.5%

15

20

25

30

5

10

EXAMPLE 8

Construction Of pRHBR171 Shuttle Vector Of Smaller Size

Transposon mutagenesis of the shuttle plasmid pRhBR17 suggested that certain regions of the shuttle plasmid may not be essential for the plasmid function (TABLE 5). One of the regions was at the junction of pBR328 and pAN12. It was decided to examine whether this region of the plasmid was dispensable and if the size of the shuttle plasmid could be trimmed. Shuttle plasmid pRhBR17 was digested with *Pst* I (2 sites/2520, 3700 bp) and *mlu* I (1 site/4105 bp), yielding three fragments of the following sizes: 9656, 1180 and 405 bp. The digested DNA fragments were blunted with mung bean nuclease (New England Biolabs, Beverly, MA) following manufacturer's instruction. The largest 9.7 kb fragment was separated by size on an agarose gel, and purified using QIAEX II Gel Extraction Kit (Qiagen Inc., Valencia, CA). This 9.7 kb DNA fragment with deletion of region 2520-4105 bp of pRhBR17 was self-ligated to form a circular plasmid designated pRhBR171 (Figure 3). Plasmid isolation from the *E. coli* DH10B transformants and restriction enzyme characterization

showed the correct size and digest pattern of pRhBR171. *E. coli* cells harboring the pRhBR171 plasmid lost the ability to grow in the presence of ampicillin (100 µg/ml), since the *Pst* I and *Mlu* I digest removed part of the coding region for the ampicillin resistant gene on the parental plasmid.

The tetracycline resistance gene on pRhBR171 served as the selection marker for both *E. coli* and *Rhodococcus*. Transformation of pRhBR171 to *Rhodococcus* was tested. It transformed competent *Rhodococcus* erythropolis ATCC 47072 and AN12 cells with similar frequency by electroporation as compared with its parent plasmid pRhBR17. These results demonstrate that this region (2520-4105 bp) of pRhBR17 was not essential as suggested by transposon mutagenesis. It also provided a smaller shuttle vector that is more convenient for cloning.

EXAMPLE 9

Increased Carotenoid Production With Multicopy Expression of Dxs on pRhBR171

The *dxs* gene encodes 1-deoxyxylulose-5-phosphate synthase that catalyzes the first step of the synthesis of 1-deoxyxylulose-5-phosphate from glyceraldehyde-3-phosphate and pyruvate precursors in the isoprenoid pathway for carotenoid synthesis. The putative *dxs* gene from AN12 was expressed on the multicopy shuttle vector pRhBR171 and the effect of *dxs* expression on carotenoid expression was evaluated.

The dxs gene with its native promoter was amplified from the Rhodococcus AN12 strain by PCR. Two upstream primers, New dxs 5' primer: 5'-ATT TCG TTG AAC GGC TCG CC-3' (SEQ ID NO:28) and New2 dxs 5' primer: 5'-CGG CAA TCC GAC CTC TAC CA-3' (SEQ ID NO:29), were designed to include the native promoter region of dxs with different lengths. The downstream primer, New dxs 3' primer: 5'-TGA GAC GAG CCG TCA GCC TT-3 (SEQ ID NO:30)' included the underlined stop codon of the dxs gene. PCR amplification of AN12 total DNA using New dxs 5' + New dxs 3' yielded one product of 2519 bp in size, which included the full length AN12 dxs coding region and about 500 bp of immediate upstream region (nt. #500 - #3019). When using New2 dxs 5' + New dxs 3' primer pair, the PCR product is 2985 bp in size, including the complete AN12 dxs gene and about 1 kb upstream region (nt. #34 -#3019). Both PCR products were cloned in the pCR2.1-TOPO cloning vector according to manufacturer's instruction (Invitrogen, Carlsbad, CA). Resulting clones were screened and sequenced. The confirmed plasmids

5

10

15

20

25

30

were digested with *EcoRI* and the 2.5 kb and 3.0 kb fragments containing the *dxs* gene and the upstream region from each plasmid were treated with the Klenow enzyme and cloned into the unique *Ssp I* site of the *E. coli – Rhodococcus* shuttle plasmid pRhBR171. The resulting constructs pDCQ22 (clones #4 and #7) and pDCQ23 (clones #10 and #11) were electroporated into *Rhodococcus erythropolis* ATCC 47072 with tetracycline 10 µg/ml selection.

The pigment of the Rhodococcus transformants of pDCQ22 and pDCQ23 appeared darker as compared with those transformed with the vector control. To quantify the carotenoid production of each Rhodococcus strain, 1 ml of fresh cultured cells were added to 200 ml fresh LB medium with 0.05% Tween-80 and 10 µg/ml tetracycline, and grown at 30°C for 3 days to stationary phase. Cells were pelleted by centrifugation at 4000 g for 15 min and the wet weight was measured for each cell pellet. Carotenoids were extracted from the cell pellet into 10 ml acetone overnight with shaking and quantitated at the absorbance maximum (465nm), 465nm is the diagnostic absorbance peak for the carotenoid isloated from Rhodococcus sp. ATCC 47072. The absorption data was used to calculate the amount of carotenoid produced, calculated and normalized in each strain based either on the cell paste weight or the cell density (OD600). Carotenoid production calculated by either method showed about 1.6-fold increase in ATCC47072 with pDCQ22, which contained the dxs gene with the shorter promoter region.

Carotenoid production increased even more (2.2-fold) when the *dxs* gene was expressed with the longer promoter region. It is likely that the 1 kb upstream DNA contains the promoter and some elements for enhancement of the expression. HPLC analysis also verified that the same carotenoids were produced in the dxs expression strain as those of the wild type strain.

30

5

10

15

20

Table 2. Carotenoids production by Rhodococcus strains.

Strain	OD600	weight (g)	OD465	%ª	% (wt) b	% (OD600)	% (avg)
ATCC 47072 (pRhBR171)	1.992	2.82	0.41	100	100	100	100
ÄTCC (pDCQ22)#4	1.93	2.9	0.642	157	161	152	156
ATCC (pDCQ22)#7	1.922	2.76	0.664	162	159	156	157
ATCC (pDCQ23)#10	1.99	2.58	0.958	234	214	233	224
ATCC (pDCQ23)#11	1.994	2.56	0.979	239	217	239	228

a % of carotenoid production based on OD465nm.
b % of carotenoid production (OD465nm) normalized with wet cell paste weight.
c % of carotenoid production (OD465nm) normalized with cell density (OD600nm).
d % of carotenoid production (OD465nm) averaged from the normalizations with wet cell paste weight and cell density.

CLAIMS

What is claimed is:

5

10

15

20

25

35

 An isolated nucleic acid molecule encoding a replication protein selected from the group consisting of:

- (a) an isolated nucleic acid encoding the amino acid sequence as set forth in SEQ ID NO;2;
- (b) an isolated nucleic acid that hybridizes with (a) under the following hybridization conditions: 0.1X SSC, 0.1% SDS, 65°C and washed with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS; or

an isolated nucleic acid that is complementary to (a), or (b).

- 2. The isolated nucleic acid of Claim 1 as set forth in SEQ ID NO:1.
 - 3. A polypeptide encoded by the isolated nucleic acid of Claim 1.
 - 4. The polypeptide of Claim 3 as set forth in SEQ ID NO:2.
- 5. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 379 amino acids that has at least 70% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:2, or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 6. A method of obtaining a nucleic acid molecule encoding an replication protein comprising:
 - (a) probing a genomic library with the nucleic acid molecule of any one of Claims 1 or 5;
 - (b) identifying a DNA clone that hybridizes with the nucleic acid molecule of any one of Claims 1 or 5; and
 - (c) sequencing the genomic fragment that comprises the clone identified in step (b),
- 30 wherein the sequenced genomic fragment encodes a replication protein.
 - 7. A method of obtaining a nucleic acid molecule encoding a replication protein comprising:
 - (a) synthesizing an at least one oligonucleotide primer corresponding to a portion of the sequence as set forth in SEQ ID NO:2; and
 - (b) amplifying an insert present in a cloning vector using the oligonucleotide primer of step (a);

10

15

20

25

30

35

wherein the amplified insert encodes a portion of an amino acid sequence encoding a replication protein.

- 8. The product of the method of Claims 6 or 7.
- An isolated nucleic acid molecule encoding a plasmid stability protein selected from the group consisting of:
 - (a) an isolated nucleic acid encoding the amino acid sequence as set forth in SEQ ID NO:4;
 - (b) an isolated nucleic acid that hybridizes with (a) under the following hybridization conditions: 0.1X SSC, 0.1% SDS, 65°C and washed with 2X SSC, 0.1% SDS followed by 0.1X SSC, 0.1% SDS; or

an isolated nucleic acid that is complementary to (a) or (b).

- 10. The isolated nucleic acid of Claim 9 as set forth in SEQ ID NO:3.
 - 11. A polypeptide encoded by the isolated nucleic acid of Claim 9.
 - 12. The polypeptide of Claim 11 as set forth in SEQ ID NO:4.
- 13. An isolated nucleic acid molecule comprising a first nucleotide sequence encoding a polypeptide of at least 296 amino acids that has at least 70% identity based on the Smith-Waterman method of alignment when compared to a polypeptide having the sequence as set forth in SEQ ID NO:4, or a second nucleotide sequence comprising the complement of the first nucleotide sequence.
- 14. A method of obtaining a nucleic acid molecule encoding a plasmid stability protein comprising:
 - (a) probing a genomic library with the nucleic acid molecule of any one of Claims 9 or 13;
 - (b) identifying a DNA clone that hybridizes with the nucleic acid molecule of any one of Claims 9 or 13; and
 - (c) sequencing the genomic fragment that comprises the clone identified in step (b),

wherein the sequenced genomic fragment encodes a plasmid stability protein .

- 15. A method of obtaining a nucleic acid molecule encoding a plasmid stability protein comprising:
- (a) synthesizing an at least one oligonucleotide primer corresponding to a portion of the sequence as set forth in SEQ ID NO:3;and

15

25

35

(b) amplifying an insert present in a cloning vector using the oligonucleotide primer of step (a);

wherein the amplified insert encodes a portion of an amino acid sequence encoding a plasmid stability protein.

- 16. The product of the method of Claims 14 or 15.
- 17. A plasmid comprising the nucleic acid of Claim 1.
- 18. A plasmid comprising the nucleic acid of Claim 1 and the nucleic acid of Claim 13.
- 19. A plasmid having the nucleotide sequence as set forth in SEQ10 ID NO:5.
 - 20. A plasmid according to Claim 17 or 18 further comprising at least one nucleic acid encoding a selectable marker.
 - 21. A plasmid according to Claim 19 wherein the selectable marker is selectable in both gram negative and gram positive bacteria.
 - 22. A plasmid according to Claim 17 or 18 further comprising an origin of replication that is functional in a gram positive bacterium.
 - 23. A plasmid according to Claim 22 wherein the gram positive bacterium is a member of the Actinomycetales bacterial family.
- 24. A plasmid according to Claim 23 wherein the gram positive bacterium is selected from the group consisting of, Actinomyces, Actinoplanes, Arcanobacterium, Corynebacterium, Dietzia, Gordonia, Mycobacterium, Nocardia, Rhodococcus, Tsukamurella, Brevibacterium, Arthrobacter, Propionibacterium, Streptomyces, Micrococcus, and Micromonospora.
 - 25. The plasmid according to Claim 17 or 18 further comprising at least one promoter suitable for the expression of a gene in *Rhodococcus*.
 - 26. A plasmid having the nucleotide sequence as set forth in SEQ ID NO:6.
- 27. A plasmid having the nucleotide sequence as set forth in SEQ 30 ID NO:7.
 - 28. A method for the expression of a nucleic acid in an *Actinomycetales* bacteria comprising:
 - a) providing a plasmid comprising:
 - (i) the nucleic acid of Claim 1 and the nucleic acid of Claim 13;
 - (ii) at least one nucleic acid encoding a selectable marker; and

10

25

- (iii) at least one promoter operably linked to a nucleic acid fragment to be expressed;
- b) transforming an Actinomycetales bacteria with the plasmid of (a); and
- c) culturing the transformed Actinomycetales bacteria .of (b) for a length of time and under conditions whereby the nucleic acid fragment is expressed.
- 29. A method according to Claim 28 wherein the plasmid further comprises an origin of replication that is functional in gram positive bacterium.
- 30. A method according to Claim 29 wherein the selectable marker gene is selected from the group consisting of ampicillin resistance gene, tetracycline resistance gene, chloramphenicol resistance gene, kanamycin resistance gene, and thiostrepton resistance gene.
- 31. A method according to Claim 28 wherein the nucleic acid fragment to be expressed is selected from the group consisting of genes encoding; enzymes involved in the production of isoprenoid molecules, polyhydroxyalkanoic acid (PHA) synthases, carotenoid biosynthesis enzymes, nitrile hydratases, ethylene forming enzyme, pyruvate decarboxylase, alcohol dehydrogenase, terpene synthases, and cholesterol oxidase.
 - 32. A method according to Claim 28 wherein the Actinomycetales bacteria is selected from the group consisting of Actinomyces, Actinoplanes, Arcanobacterium, Corynebacterium, Dietzia, Gordonia, Mycobacterium, Nocardia, Rhodococcus, Tsukamurella, Brevibacterium, Arthrobacter, Propionibacterium, Streptomyces, Micrococcus, and Micromonospora.
 - 33. A method according to Claim 32 wherein the Actinomycetales bacteria is is selected from the group consisting of: Rhodococcus equi, Rhodococcus erythropolis, Rhodococcus opacus, Rhodococcus rhodochrous, Rhodococcus globerulus, Rhodococcus koreensis,Rhodococcus fascians, and Rhodococcus ruber.
 - 34. A transformed bacteria comprising the plasmid of Claim 17 or 18.
- 35. A transformed bacteria according to Claim 34 wherein the bacteria is a member of the *Actinomycetales* bacterial family.

36. A transformed bacteria according to Claim 35 wherein the bacteria is selected from the group consisting of, Actinomyces, Actinoplanes, Arcanobacterium, Corynebacterium, Dietzia, Gordonia, Mycobacterium, Nocardia, Rhodococcus, Tsukamurella, Brevibacterium, Arthrobacter, Propionibacterium, Streptomyces, Micrococcus, and Micromonospora.

- 37. A transformed bacteria. according to Claim 36 selected from the group consisting of: Rhodococcus equi, Rhodococcus erythropolis, Rhodococcus opacus, Rhodococcus rhodochrous, Rhodococcus globerulus, Rhodococcus koreensis, Rhodococcus fascians, and Rhodococcus ruber.
- 38. A transformed bacteria of Claim 34 comprising a second plasmid belonging to a different incompatibility group.
- 39. A method for the expression of a nucleic acid in an15 Actinomycetales bacteria comprising:
 - a) providing a first plasmid comprising:
 - (i) the nucleic acid of Claim 1;
 - (ii) at least one nucleic acid encoding a selectable marker; and
 - (iii) at least one promoter operably linked to a nucleic acid fragment to be expressed;
 - b) providing at least one other plasmid in the different incompatibility group as the first plasmid, wherein the at least one other plasmid comprises:
 - (ii) at least one nucleic acid encoding a selectable marker; and
 - (iii) at least one promoter operably linked to a nucleic acid fragment to be expressed;
 - c) transforming an *Actinomycetales* bacteria with the plasmids of (a) and (b); and
 - d) culturing the transformed *Actinomycetales* bacteria of (c) for a length of time and under conditions whereby the nucleic acid fragment is expressed.
- 40. A method according to Claim 39 wherein the Actinomycetales bacteria is selected from the group consisting of Actinomyces, Actinoplanes, Arcanobacterium, Corynebacterium, Dietzia, Gordonia, Mycobacterium, Nocardia, Rhodococcus, Tsukamurella, Brevibacterium,

5

10

20

25

Arthrobacter, Propionibacterium, Streptomyces, Micrococcus, and Micromonospora.

41. A method according to Claim 39 wherein the at least one other plasmid is pDA7 having the ATCC designation ATCC 47072.

Figure 1

Figure 2

Figure 3

Figure 4

A Replication proteins

	RSEQ ID NO:51 RSEQ ID NO:22 RSEQ ID NO:23 RSEQ ID NO:23
Motif V	WREFERSMGRRAIAWSKGI) WESYERARGRRAIEWTRU WAQYEEALRGRRAIEWTRGI) WHEYERATKGRRAIEWTRGI)
Motif III.	LAAVLTKIAS IGNYVSKWQT LABYIAKTQD LIBYLTKNQD LABYIAKTQD
Motif II	8 HVHVHALIM 229 9 HVHSHVLII 314 8 HPHIHAIVE 225 4 HPHINIIVE 272 8 HPHIHAIVE 272
MOCLE I	09 MYMMYKH 168 80 MINITORH 239 52 LVTHTARH 148 80 VYVLTARH 184 52 LVTHTARH 148
MOCLE IV	73 CGKGWICEC 109 143 CGSVWACEVC 180 25 CGRIWLCEVC 62 43 CGRIWECEEC 80 25 CGRIWLCEVC 62
	pawis pari pirioi prvi pswis

B Origin of replication

NO:8	NO:25	NO:26	NO:27	
日	A	A	A	
CON-GECTACACTASEQ	CCTTGGGDAAGAABSEQ	CCTAGGTAAAGGTTSEO		*
Š	ğ	ğ	ğ	
ğ	CGAM-	ģ	ប្តែ	
AAAA	AAAAK	CTGGCAYAAAAG	GACCOANAGCT	
574	1696	1668	7805	
AN12	ij	TAPA	psnzz 78	

SEQUENCE LISTING

- <110> E.I. du Pont De Nemours and Company
- <120> Rhodococcus Cloning and Expression Vectors
- <130> CL1709 PCT
- <150> 60/254,868 <151> 2000-12-12
- <160> 30
- <170> Microsoft Office 97
- <210> 1
- <211> 1140
- <212> DNA
- <213> Rhodococcus AN12

<400> 1						
	taagtgctga	acacctttcc	ggcaaagacc	ggcctcccgt	cctcgtgtcg	60
tecgataage	geggeateeg	gcacgaactg	cgacccaaac	ttcaacaaat	caccacgtca	120
gaaacattta	acgcctgtgg	ccggccgatt	tetggegtga	acggtgtgac	cattgtcaac	180
ggtccgaaag	gttctggatt	cggaggcctt	cgttcctgcg	gaaagggctg	gatetgeece	240
tgctgtgcgg	gaaaagtcgg	tgcacatcgt	gcagacgaaa	tttctcaagt	tgttgctcat	300
caactcggga	ctggatetgt	tgcgatggtg	acgatgacca	tgcgccatac	agctggtcag	360
cggctccacg	acctatggac	tggactttcg	gcagcctgga	aagctgcgac	caacggtcgt	420
cgttggcgta	cggaacgtga	aatgtacggc	tgcgacggat	acgtgcgcgc	tgttgaaatc	480
actcacggaa	aaaacggctg	gcacgtccac	gttcacgcgc	tactcatgtt	cagtggtgac	540
gtgagtgaga	acatectega	atcetteteg	gat,gcgatgt	tcgatcggtg	gacttccaaa	600
ctcgtatctc	tgggatttgc	tgcgccacta	cgtaattcgg	gtggtctcga	tgtacgaaag	660
atcggcggtg	aagctgatca	agttctcgct	gcgtatctga	cgaaaattgc	atctggcgtt	720
ggtatggagg	ttggtagtgg	cgacggaaaa	agtggtcgac	atggcaaccg	tgcaccctgg	780
gaaatcgctg	ttgatgcagt	gggcggggat	ccacaagcgt	tggaactgtg	gcgagaattt	840
gagtttggtt	cgatgggacg	tcgggcaatc	gcgtggtccc	gtggattgcg	tgcccgagct	900

ggtettgggg cagaactaac agatgeteag àtegttgage aggaagaate tgeeceggte 960 atggttgega teatteegge gegategtgg atgatgatte ggaettgtge geettaegte 1020 tteggegaga teeteggaet egtegaaget ggegegaett gggaaaatet tegtgateae 1080 ttgeattate gattgeegg ageggatgtg eggeeceega taatateggt tegeaagtga 1140

<210> 2

<211.> 379

<212> PRT

<213> Rhodococcus AN12

<400> 2

Met Thr Ser Val Ser Ala Glu His Leu Ser Gly Lys Asp Arg Pro Pro 1 5 10 15

Val Leu Val Ser Ser Asp Lys Arg Gly Ile Arg His Glu Leu Arg Pro 20 25 30

Lys Leu Gln Gln Ile Thr Thr Ser Glu Thr Phe Asn Ala Cys Gly Arg 35 40 45

Pro Ile Ser Gly Val Asn Gly Val Thr Ile Val Asn Gly Pro Lys Gly 50 55 60

Ser Gly Phe Gly Gly Leu Arg Ser Cys Gly Lys Gly Trp Ile Cys Pro 65 70 75 80

Cys Cys Ala Gly Lys Val Gly Ala His Arg Ala Asp Glu Ile Ser Gln 85 90 95

Val Val Ala His Gln Leu Gly Thr Gly Ser Val Ala Met Val Thr Met 100 105 110

Thr Met Arg His Thr Ala Gly Gln Arg Leu His Asp Leu Trp Thr Gly 115 120 125

Leu Ser Ala Ala Trp Lys Ala Ala Thr Asn Gly Arg Arg Trp Arg Thr 130 135 140

Glu Arg Glu Met Tyr Gly Cys Asp Gly Tyr Val Arg Ala Val Glu Ile 145 150 155 160

Thr His Gly Lys Asn Gly Trp His Val His Val His Ala Leu Leu Met 165 170 175

Phe Ser Gly Asp Val Ser Glu Asn Ile Leu Glu Ser Phe Ser Asp Ala 180 185 190

Met Phe Asp Arg Trp Thr Ser Lys Leu Val Ser Leu Gly Phe Ala Ala 195 200 205

Pro Leu Arg Asn Ser Gly Gly Leu Asp Val Arg Lys Ile Gly Gly Glu 210 215 220

Ala Asp Gln Val Leu Ala Ala Tyr Leu Thr Lys Ile Ala Ser Gly Val 225 230 235 240

Gly Met Glu Val Gly Ser Gly Asp Gly Lys Ser Gly Arg His Gly Asn 245 250 255

Arg Ala Pro Trp Glu Ile Ala Val Asp Ala Val Gly Gly Asp Pro Gln 260 265 270

Ala Leu Glu Leu Trp Arg Glu Phe Glu Phe Gly Ser Met Gly Arg Arg 275 280 285

Ala Ile Ala Trp Ser Arg Gly Leu Arg Ala Arg Ala Gly Leu Gly Ala 290 295 300

Glu Leu Thr Asp Ala Gln Ile Val Glu Glu Glu Glu Ser Ala Pro Val 305 310 315 320

Met Val Ala Ile Ile Pro Ala Arg Ser Trp Met Met Ile Arg Thr Cys 325 330 335

Ala Pro Tyr Val Phe Gly Glu Ile Leu Gly Leu Val Glu Ala Gly Ala 340 345 350

Thr Trp Glu Asn Leu Arg Asp His Leu His Tyr Arg Leu Pro Ala Ala 355 360 365

Asp Val Arg Pro Pro Ile Ile Ser Val Arg Lys 370 375

<210> 3

<211> 891

<212> DNA

<213> Rhodococcus AN12

<400> 3						
	cagacacgat	cccgattgcg	atṫggatgga	acgaactagc	tcaacctgtc	60
atggtcgata	tagccaaaga	tgctgctcac	tggctcattc	aaggcaaaac	ccgttccgga	120
aaatctcaat	gcacctacaa	cctgctcgca	caggctggat	cgaatcccgc	tgtgcgtgtc .	180
gtcggagtcg	atcccacttc	cgtcttacta	gccccattcg	tccaccgacg	accggctgaa	240
ccgaacatcg	agctcgggct	gaacgatttt	gacaaagtcc	tccgagtgct	ccagttcgtc	300
aaagcagaat	ctgaccgacg	aatcgagtgt	ttctgggatc	gacgcataga	caaaatttcg	360
ttgttctcgc	cagcactacc	tctcatcctg	ctcgtactgg	aagaatttcc	cggaatcatc	420
gagggcgcac	aggatttcga	tgcaaccaac	ggtctgaaac	cagcagacag	atacgcaccc	480
cgcatcacat	cgcttgttcg	acagatcgct	gctcagtctg	ccaaagcagg	catcagaatg	540
ttgctcttgg	ctcaacgtgc	ggaagettee	atcgtgggtg	gaaacgcccg	ctcgaacttc	600
gcggtgaaaa	tgactctccg	cgtagacgaa	cctgaatctg	tcaaaatgct	gcaccccaac	660
gcaacacctg	aagagtgcgc	actggtcgaa	ggattcgtcc	ctggtçaagg	cttcttcgac	720
caacccggac	tacggcgcca	aatgatccga	acggttcgcg	taggtgagta	ctcgacctac	780
gcgagttacg	tcgaaaacgc	agacctcgcg	tacgaagccg	cactgaacat	cgaccgagca	840
caacgaatga	caatcgcctc	ggaataccca	catctcggcg	acataggctg	a	891

<210> 4

<211> 296

<212> PRT

<213> Rhodococcus AN12

<400> 4

Met Asp Gln Thr Asp Thr Ile Pro Ile Ala Ile Gly Trp Asn Glu Leu 1 5 10 15

Ala Gln Pro Val Met Val Asp Ile Ala Lys Asp Ala Ala His Trp Leu 20 " 25 30

Ile Gln Gly Lys Thr Arg Ser Gly Lys Ser Gln Cys Thr Tyr Asn Leu 35 40 45

Leu Ala Gln Ala Gly Ser Asn Pro Ala Val Arg Val Val Gly Val Asp 50 . 55 60

Pro Thr Ser Val Leu Leu Ala Pro Phe Val His Arg Arg Pro Ala Glu 65 70 75 80

Pro Asn Ile Glu Leu Gly Leu Asn Asp Phe Asp Lys Val Leu Arg Val 85 90 95

Leu Gln Phe Val Lys Ala Glu Ser Asp Arg Arg Ile Glu Cys Phe Trp 100 105 110

Asp Arg Arg Ile Asp Lys Ile Ser Leu Phe Ser Pro Ala Leu Pro Leu 115 · 120 125

Ile Leu Leu Val Leu Glu Glu Phe Pro Gly Ile Ile Glu Gly Ala Gln 130 135 140

Asp Phe Asp Ala Thr Asn Gly Leu Lys Pro Ala Asp Arg Tyr Ala Pro 145 150 155 160

Arg Ile Thr Ser Leu Val Arg Gln Ile Ala Ala Gln Ser Ala Lys Ala 165 170 175

Gly Ile Arg Met Leu Leu Leu Ala Gln Arg Ala Glu Ala Ser Ile Val 180 185 190

Gly Gly Asn Ala Arg Ser Asn Phe Ala Val Lys Met Thr Leu Arg Val 195 200 205

Asp Glu Pro Glu Ser Val Lys Met Leu His Pro Asn Ala Thr Pro Glu 210 215 . 220

Glu Cys Ala Leu Val Glu Gly Phe Val Pro Gly Gln Gly Phe Phe Asp 225 230 235 240

Gln Pro Gly Leu Arg Arg Gln Met Ile Arg Thr Val Arg Val Gly Glu 245 250 255

Tyr Ser Thr Tyr Ala Ser Tyr Val Glu Asn Ala Asp Leu Ala Tyr Glu 260 265 270

Ala Ala Leu Asn Ile Asp Arg Ala Gln Arg Met Thr Ile Ala Ser Glu 275 280 285

Tyr Pro His Leu Gly Asp Ile Gly 290 295

<210> 5

<211> 6334

<212> DNA

<213> Rhodococcus AN12

<400> 5 attcagacca	acaatcagtc	caactagcaa	ggcgacaacc	ggtatcgcaa	ttegtgaaac	60
aagctttgtc	atgcgtccgc	gctcttacga	gcaggtgcgg	agacggccgc	tgcaggcatt	120
ggaaccaaat	tctccactgt	gatggatagt	gcgagacgat	ccatgccagt	catgtagggc	180
tgcacccaga	caaggccttc	tgctcggtag	atcgtgccga	agctgaacgg	ctcgttcggc	240
gggttgatga	cgtgcacgga	tgctgtcttg	tcagtcgcaa	cagttccgtc	cttgcgtgca	300
acteggagea	atgcgccagt	cgaatacttc	acacggccgt	cgggagtgag	cttgtcctga	360
accggcttga	tggggtcgtc	cataccggct	acgaacaccg	ggaactgatc	agcggtagtt	420
gcgacgggga	gggacgttcc	gagetgaaca	ttcatgcgag	ttcctttgat	cgaggctggt	480
acagcttatg	tctccggtgt	ccatattcag	cgacacgcgt	tcatctacac	tcaaaaccgt	540
acacatagtg	tagecagetg	tccagttttc	gcacactacg	ttagcaactg	aacatatttt	600
gtggttgatc	agtcaataag	ctgtccatat	ggacgagaaa	gaggttcgcg	cgatgattca	660
gcgcaaagaa	accgaacgaa	aaatgcaggt	catcaagcag	gcgtccgtgg	atctgtcaca	720
ctcctggcag	accattcaga	acgcgcacga	ctccacgact	gtcgcaatgg	agctacgaga	780
agccgggctt	caacgcgaat	tctggctaca	agctctcgcg	gacatcacat	ctgttgtggg	840
aactgcctct	gagctgcgca	aatctatttc	ccgttttctc	gttgacgagc	ttgacgtcag	900
cagccgaacc	gttgccaccg	ttgcagatgt	ttcaccgtcg	accatcagta	cttggcgtgg	960
tgagcatgag	tcatcgtaaa	aacatcctct	gacctgctat	ggccccaatg	atcacctatt	1020
accaaggcgg	cggcttcgcc	gccgctgcca	gcaggctccc	ccacctacgc	getecgette	1080
getegegett	cggtgctccg	·cccgcaggee	caggagcgag	tttgcgcctc	gtttagtcca	1140
tctaaggggt	tcctagctgg	cttgaggtcg	caacgcatcc	tgaagtcgat	cgaggagcag	1200
gaacgcatca	tetegateca	gcgtggtttc	ttgaccataa	atcgagaggt	acacgcccat	1260
gacaacgcca	tegaegteta	ccgaagctigg	attcgctgcg	atgccaagag	gacgttcgtt	1320
gatgctcatg	tgatgggttt	acctgcaaaa	atagtcagca	gccaaatcgg	aggeggegge	1380
ttegeegeeg	ctgccagcag	gctcccceac	ctacgcgctc	cgcttcgctc	gcgcttcggt	1440
gctccgcccg	caggcccagg	agcgagtttg	cgcctcgttt	agtecateta	aggggttcct	1500
agctggcttg	aggtcgcaac	gcatcctgaa	gtégategag	gagcaggaac	gcatcatctc	15 6 0
gatccagcgt	ggtttcttga	ccataaatcg	agaggtacac	gcccatgaca	acgccatcga	1620
cgtctaccga	agctggattc	gctgcgatgc	caagaggacg	ttcgttgatg	ctcatgtgat	16 80
gggtttacct	gcaaaaatag	tcagcagcca	aatcggccgg	cctttttcta	tctgcccggt	1740
cagecceceg	agaccaacca	tgaaacaggc	cgtctctctg	tcaaggccaa	gccgctacgc	1800
ggtgctatcg	cagccctgac	agagagacac	ccagcttcag	agcggcaagt	atcgggggga	1860

tgccctcaag	tgtggttcat	gcgggtgaaa	gttgttgctc	agcaacgctt	ttcacttgcg	1920
aaccgatatt	ategggggce	gcacatecge	tgcgggcaat	cgataatgca	agtgatcacg	1980
aagattttcc	caagtcgcgc	cagettegae	gagtccgagg	atctcgccga	agacgtaagg	2040
cgcacaagtc	cgaatcatca	tccacgatcg	cgccggaatg	ategeaacea	tgaccggggc	2100
agattcttcc	tgctcaacga	tctgagcatc	tgttagttct	gccccaagac	cagctcgggc	2160
acgcaatcca	cgggaccacg	cgattgcccg	acgtcccatc	gaaccaaact	caaattctcg	2220
ccacagttcc	aacgcttgtg	gateceegee	cactgcatca	acagcgattt	cccagggtgc	2280
acggttgcca	tgtcgaccac	tttttccgtc	gccactacca	acctccatac	caacgccaga	2340
tgcaattttc	gtcagatacg	cagcgagaac	ttgatcagct	tcaccgccga	tctttcgtac	2400
atcgagacca	cccgaattac	gtagtggcgc	agcaaatccc	agagatacga	gtttggaagt	2460
ccaccgatcg	aacatcgcat	ccgagaagga	ttcgaggatg	ttctcactca	cgtcaccact	2520
gaacatgagt	agcgcgtgaa	cgtggacgtg	ccagccgttt	tttccgtgag	tgatttcaac	2580
agegegeaeg	tatccgtcgc	agccgtacat	ttcacgttcc	gtacgccaac	gacgaccgtt	2640
ggtcgcagct	ttccaggctg	ccgaaagtcc	agtccatagg	tcgtggagcc	gctgacçagc	2700
tgtatggcgc	atggtcatcg	tcaccatcgc	aacagatcca	gtcccgagtt	gatgagcaac	2760
aacttgagaa	atttcgtctg	cacgatgtgc	accgactttt	cccgcacagc	aggggcagat	2820
ccagcccttt	ccgcaggaac	gaaggcctcc	gaatccagaa	cctttcggac	cgttgacaat	2880
ggtcacaccg	ttcacgccag	aaatcggccg	gccacaggcg	ttaaatgttt	ctgacgtggt	2940
gatttgttga	agtttgggtc	gcagttcgtg	ccggatgccg	cgcttatcgg	acgacacgag	3000
gacgggaggc	cggtctttgc	cggaaaggtg	ttcagcactt	acgctggtca	taacgagcgg	3060
ggtcctagtc	aagtaggagc	ctcgaaggcg	gcggcagggt	ggtccaacac	ccttcgtcgc	3120
cgctcgtatt	ttcggagtaa	atccagctag	ttcagctcgg	atactccact	tcgaggttca	3180
tcgattattt	ggtttttatc	cacttaacca	gcagaaacag	cgtttatcgc	tgatctgctg	3240
gtcagtgcgg	cgtgtcgggg	gagtcgctag	tccgcggcga	gtccccatgc	ttcgagaaca	3300
ccgaccttct	cttctggggt	tctgcttgtc	ttcaccagtg	catcgaacag	acctcggtat	3360
tcacccaagt	gttcaatatc	gaatccggct	tecetggegt	aatcaggggt	gtagtagcag	3420
cacatcgcag	ccagaatctc	ggacgattcg	gcgcgttcac	cagcatgaat	ccaaccataa	3480
acgtcatgcc	caccccatag	atcaggccct	cgatgatcgt	aaatgccaac	ggctagtcgg	3540
aggatgaata	ccgtagette	gtgcttcacg	catcaaccct	ctgatctgct	gcactcagaa	3600
ttgcatgacc	tcccgaatga	ctgcataact	cgtcgtagac	ctgagcaacg	aacgaaggcc	3660
gatcagcatt	gtccatgaag	agttggacga	acttcggccg	gacgaggcca	atccacggcg	3720
cagtcaaagt	ttcaaaatca	tgtgcctcga	ggtgctcatg	cattgcaacc	gcccatgcgg	3780

cccctcgagc	ggcgcaccag	tctcgttcaa	ctccctcgct	gtccgaaatg	tcgtatttaa	3840
ggcccagtga	tcgtccaact	tcggcagctg	cgtcactggc	acgtttccaa	tegteacege	3900
gtaagtcgtt	gagettteeg	agttcatcgc	ctagaagcag	ctcagacatt	gcaaaaacgg	3960
tcatcgaact	gacccatcgt	ggaccgacta	gtgcaccaag	gtcgtcgtcg	gtgatctgca	4020
tgccgcgaag	ttcgtcgacg	acagcttggc	cttccaaacc	tactctggcc	ctgagtattt	4080
cagttattac	gagatgatcg	ttcggccagc	ctgatttgat	ccggagtgca	gtcgttacga	4140
ctcgttccgt	gggcaggttt	cggcgtgagg	cgagtttttc	tcctgcctca	tgtgcaacct	4200
tctcaaattg	ctgtcgaatg	taggtgttta	ccgggattgc	gtctgtcggg	tagccgatca	4260
aggtgtgtcc	tcctgtgtgt	tcggttgtca	gcctatgtcg	ccgagatgtg	ggtatteega	4320
ggcgattgtc	attcgttgtg	ctcggtcgat	gttcagtgcg	gcttcgtacg	cgaggtetge	4380
gttttcgacg	taactcgcgt	aggtcgagta	ctcacctacg	cgaaccgttc	ggatcatttg	4440
gcgccgtagt	ccgggttggt	cgaagaagcc	ttgaccaggg	acgaatcctt	cgaccagtgc	4500
gcactcttca	ggtgttgcgt	tggggtgcag	cattttgaca	gattcaggtt	cgtctacgcg	4560
gagagtcatt	ttcaccgcga	agttcgagcg	ggcgtttcça	cccacgatgg	aagcttccgc	4620
acgttgagcc	aagagcaaca	ttctgatgcc	tgctttggca	gactgagcag	cgatctgtcg	4680
aacaagcgat	gtgatgcggg	gtgcgtatct	gtctgctggt	ttcagaccgt	tggttgċatc	4740
gaaatcctgt	gcgccctcga	tgattccggg	aaattcttcc	agtacgagca	ggatgagagg	480.0
tagtgctggc	gagaacaacg	aaattttgtc	tatgcgtcga	tcccagaaac	actcgattcg	4860
tcggtcagat	tctgctttga	cgaactggag	cactcggagg	actttgtcaa	aatcgttcag	4920
cccgageteg	atgttcggtt	cagccggtcg	teggtggaeg	aatggggcta	gtaagacgga	4980
agtgggatcg	actccgacga	cacgcacage	gggattcgat	ccagcctgtg	cgagcaggtt	5040
gtaggtgcat	tgagattttc	cggaacgggt	tttgccttga	atgagccagt	gagcagcatc	5100
tttggctata	tcgaccatga	caggttgagc	tagttcgttc	catccaatcg	caatcgggat	5160
cgtgtctgtt	tgatccatca	ggcgtccgtg	cttttgtcga	acggaagatc	cttttcttgc	5220
tcccaccagg	gccgattgtc	cccgagtatg	ccgccggcct	cttccttcaa	tgtgccggcc	5280
gatgagteet	cgacgtcact	gagccatgct	gcatctcgtg	cttgagaaat	ggtgtctgca	5340
tcgatcagaa	gtagctcgac	ccgacgcggc	tcťactttgg	tgaaactggc	acgtagagca	5400
ccgaaagcat	cggctatttt	gaccgtcttc	gatgtcatat	cttcaccggt	gatecetgte	5460
ggaaggtcga	aagcgactga	tcgagtcaat	ccgtcgtccg	aaaatttgta	gctacgaatg	5520
atgggaggct	gcccagagga	gttgatcaga	ccaagattgg	ccgcagcacc	tgcaacttcc	5580
ggggttcctc	gccaccatcg	agctgtac g a	cgtttgcgac	gccgagcctt	cgttgcctct	5640
ctcaggtaga	ccattgccac	aacgcacacc	agcagcacac	tgaccaaaag	ccacatctga	5700

gcgtcgaaga	tgtacagcag	cagaagcaac	agaaacgtag	aggacagaat	cgggtaatcg	5760
gcaatttttg	ccttgagttt	tgctcgcaaa	atttgccagg	tggaacgtct	tttaacctgg	5820
tcaccgcgtc	gaacggcttc	gtagttgctc	ateggggeea	ctccacaacg	acattcggac	5880
tatctacttc	gacttgctca	tctacgttcc	acaaccacga	ttcgactgga	acgagagcgc	5940
atcccgaggt	tccattctga	agattgcttt	gcactcgatc	actcatcaaa	gtctctggaa	6000
cegteteage	ctctacgccc	ttatgtaccg	ggacaggggt	attcacggtc	aaatacactg	6060
cccgccagcc	ctcaggcact	ggcacgtcac	cgcacgcgct	ggtcttcgag	tacggcgacg	6120
tgatgacctt	tccatctggg	ttagtccact	ggatcccatc	ggcgctcaat	tccggattca	6180
ctcggatgta	tccaggtatc	tctctgcatg	cactgacaga	tggaacagaa	cctgtcggaa	6240
gaggggatct	gcaccaggtc	accgttcgtt	cagcccatga	gtcccgacgc	tettgeatte	6300
cgctggaaag	cttaatatct	tgcgtgccaa	caat			6334

<210> 6

<211> 11241

<212> DNA

<213> Plasmid pRHBR17

<400> ttotoatgtt tgacagotta toatogataa gotttaatgo ggtagtttat cacagttaaa 60 ttgctaacgc agtcaggcac cgtgtatgaa atctaacaat gcgctcatcg tcatcctcgg 120 caccgtcacc ctggatgctg taggcatagg cttggttatg ccggtactgc cgggcctctt 180 gogggatato gtocattoog acageatogo cagtoactat ggogtgotgo tagogotata 240 tgcgttgatg caatttctat gcgcacccgt tctcggagca ctgtccgacc gctttggccg 300 360 ccgcccagtc ctgctcgctt cgctacttgg agccactatc gactacgcga tcatggcgac cacaccegte etgtggatee tetacgeegg acgeategtg geeggeatea eeggegeeae 420 aggtgcggtt gctggcgcct atatcgccga catcaccgat ggggaagatc gggctcgcca 480 cttcgggctc atgagcgctt gtttcggcgt gggtatggtg gcaggccccg tggccggggg 540 actgttgggc gccatctcct tgcatgcacc attccttgcg gcggcggtgc tcaacggcct 600 caacctacta ctqqqctqct tcctaatqca ggaqtcgcat aagggagagc gtcgaccgat 660 gecettgaga geetteaace eagteagete etteeggtgg gegeggggea tgaetategt 720 780 cgccgcactt atgactgtct tctttateat gcaactcgta ggacaggtgc cggcagcgct 840 ctgggtcatt ttcggcgagg accgctttcg ctggagcgcg acgatgatcg gcctgtcgct tqcqqtattc ggaatcttgc acgccctcgc tcaagccttc gtcactggtc ccgccaccaa 900

acgtttcggc	gagaagcagg	ccattatcgc	cggcatggcg	gccgacgcgc	tgggctacgt	960
cttgctggcg	ttcgcgacgc	gaggctggat	ggaattacca	attatgatto	ttctcgcttc	1020
cggcggcatc	gggatgcccg	cgttgcaggc	catgctgtcc	aggcaggtag	atgacgacca	1080
tcagggacag	cttcaaggat	cgctcgcggc	tcttaccage	ctaacttcga	tcactggacc	1140
gctgatcgtc	acggcgattt	atgccgcctc	ggcgagcaca	tggaacgggt	tggcatggat	1200
tgtaggegee	gccctatacc	ttgtctgcct	ccccgcgttg	cgtégeggtg	catggagccg	1260
ggccacctcg	acctgaatgg	aagccggcgg	cacctcgcta	acggattcac	cactecaaga	1320
attggagcca	atcaattctt	gcggagaact	gtgaatgcgc	aaaccaaccc	ttggcagaac	1380
atatccatcg	cgtccgccat	ctccagcagc	cgcacgcggc	gcatctcggg	ccgcgttgct	1440
ggcgttttc	cataggctee	gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	1500
gaggtggcga	aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaagctccct	1560
cgtgcgctct	cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	ttetecette	1620
gggaagcgtg	gcgctttctc	atagctcacg	ctgtaggtat	ctcagttcgg	tgtaggtcgt	1680
tcgctccaag	ctgggctgtg	tgcacgaacc	ccccgttcag	cccgaccgct	gegeettate	1740
cggtaactat	cgtcttgagt	ccaacccggt	aagacacgac	ttatcgccac	tggcagcagc	1800
cactggtaac	aggattagca	gagcgaggta	tgtaggcggt	gctacagagt	tcttgaagtg	1860
gtggcctaac	tacggctaca	ctagaaggac	agtatttggt	atctgcgctc	tgctgaagcc	1920
agttaccttc	ggaaaaagag	ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	1980
cggtggtttt	tttgtttgca	agcagcagat	tacgcgcaga	aaaaaaggat	ctcaagaaga	2040
tcctttgatc	ttttctacgg	ggtctgacgc	tcagtggaac	gaaaactcac	gttaagggat	2100
tttggtcatg	agattatcaa	aaaggatctt	cacctagatc	cttttaaatt	aaaaatgaag	2160
ttttaaatca	atctaaagta	tatatgagta	aacttggtct	gacagttacc	aatgcttaat	2220.
cagtgaggca	cctatctcag	cgatctgtct	atttcgttca	tccatagttg	cctgactccc	2280
cgtcgtgtag	ataactacga	tacgggaggg	cttaccatct	ggccccagtg	ctgcaatgat	2340
accgcgagac	ccacgctcac	cggctccaga	tttatcagca	ataaaccagc	cagccggaag	2400
ggccgagcgc	agaagtggtc	ctgcaacttt	atecgeetee	atccagtcta	ttaattgttg	2460
ccgggaagct	agagtaagta	gttcgccagt	taatagtttg	cgcaacgttg	ttgccattgc	2520
tgcaggcatc	gtggtgtcac	gctcgtcgtt	tggtatggct	tcattcagct	ccggttccca	2580
acgatcaagg	cgagttacat	gatcccccat.	gttgtgcaaa	aaagcggtta	gctcċttcgg	2640
tcctccgatc	gttgtcagaa	gtaagttggc	cgcagtgtta	tcactcatgg	ttatggcagc	2700
actgcataat	tctcttactg	tcatgccatc	cgtaagatgc	ttttctgtga	ctggtgagta	2760
ctcaaccaag	tcattctgag	aatagtgtat	gcggcgaccg	agttgctctt	gaccggcgta	2820

aacacgggat	aataccgcgc	cacatageag	aactttaaaa	gtgctcatca	ttggaaaacg	2880
ttcttcgggg	cgaaaactct	caaggatctt	accgctgttg	agatccagtt	cgatgtaacc	2940
cactcgtgca	cccaactgat	cttcagcate	ttttactttc	accagegttt	ctgggtgagc	3000
aaaaacagga	aggcaaaatg	ccgcaaaaaa	gggaataagg	gcgacacgga	aatgttgaat	3060
actcatactc	ttecttttc	aatattattg	aagcatttat	cagggttatt	gtctcatgag	3120
cggatacata	tttgaatgta	tttagaaaaa	taaacaaata	ggggttccgc	gcacatttcc	3180
ccgaaaagtg	ccacctgacg	tctaagaaac	cattattatc	atgacattaa	cctataaaaa	3240
taggcgtatc	acgaggccct	ttcgtcttcg	aataaatacc	tgtgacggaa	gatcacttcg	3300
cagaataaat	aaatcctggt	gtccctgttg	ataccgggaa	gccctgggcc	aacttttggc	3360
gaaaatgaga	cgttgatcgg	cacgtaagag	gttccaactt	tcaccataat	gaaataagat	3420
cactaccggg	cgtattttt	gagttatcga	gattttcagg	agctaaggaa	gctaaaatgg	3480
agaaaaaaat	cactggatat	accaccgttg	atatatccca	atggcatcgt	aaagaacatt	3540
ttgaggcatt	tcagtcagtt	gctcaatgta	cctataacca	gaccgttcag	attcagacca	. 3600
acaatcagtc	caactagcaa	ggcgacaacc	ggtatcgcaa	ttcgtgaaac	aagctttgtc	3660
atgcgtccgc	gctcttacga	gcaggtgcgg	agacggccgc	tgcaggcatt	ggaaccaaat	3720
tctccactgt	gatggatagt	gcgagacgat	ccatgccagt	catgtagggc	tgcacccaga	3780
caaggccttc	tgctcggtag	atcgtgccga	agctgaacgg	ctcgttcggc	gggttgatga ʻ	3840
cgtgcacgga	tgctgtcttg	tcagtcgcaa	cagttccgtc	cttgcgtgca	actoggagca	3900
atgcgccagt	cgaatacttc	acacggecgt	cgggagtgag	cttgtcctga	accggcttga	3960
tggggtcgtc	cataccggct	acgaacaccg	ggaactgatc	agcggtagtt	gcgacgggga	4020
gggacgttcc	gagctgaaca	ttcatgcgag	ttcctttgat	cgaggctggt	acagcttatg	4080
teteeggtgt	ccatattcag	cgacacgcgt	tcatctacac	tcaaaaccgt	acacatagtg	4140
tagecagetg	tccagttttc	gcacactacg	ttagcaactg	aacatatttt	gtggttgatc	4200
agtcaataag	ctgtccatat	ggacgagaaa	gaggttcgcg	cgatgattca	gcgcaaagaa	4260
accgaacgaa	aaatgcaggt	catcaageag	gcgtccgtgg	atctgtcaca	ctcctggcag	4320
accattcaga	acgcgcacga	ctccacgact	gtcgcaatgg	agctacgaga	agccgggctt	4380
caacgcgaat	tctggctaca	agctctcgcg	gacatcacat	ctgttgtggg	aactgcctct	4440
gagctgcgca	aatctatttc	cegttttete	gttgacgagc	ttgacgtcag	cagccgaacc	4500
gttgccaccg	ttgcagatgt	ttcaccgtcg _,	accatcagta	cttggcgtgg	tgagcatgag	4560
tcatcgtaaa	aacatcctct	gacctgctat	ggccccaatg	atcacctatt	accaaggcgg	4620
eggettegee	gccgctgcca	gcaggeteee	ccacctacgc	gctccgcttc	gctcgcgctt	4680
cggtgctccg	cccgcaggcc	caggagcgag	tttgcgcctc	gtttagtcca	tctaaggggt	4740

tectagetgg	cttgaggtcg	caacgcatec	tgaagtcgat	cgaggagcag	gaacgcatca	4800
tctcgatcca	gcgtggtttc	ttgaccataa	atcgagaggt	acacgeceat	gacaacgcca	4860
tcgacgtcta	ccgaagetgg	attegetgeg	atgccaagag	gacgttcgtt	gatgctcatg	4920
tgatgggttt	acctgcaaaa	atagtcagca	gccaaatcgg	aggcggcggc	ttegeegeeg	4980
ctgccagcag	gctccccac	ctacgcgctc	cgcttcgctc	gcgcttcggt	gctccgcccg	5040
caggcccagg	agcgagtttg	cgcctcgttt	agtccatcta	aggggttect	agctggcttg	5100
aggtcgcaac	gcatcctgaa	gtcgatcgag	gagcaggaac	gcatcatcto	gatccagcgt	5160
ggtttcttga	ccataaatcg	agaggtacac	gcccatgaca	acgccatcga	cgtctaccga	5220
agctggattc	gctgcgatgc	caagaggacg	ttcgttgatg	ctcatgtgat	gggtttacct	5280
gcaaaaatag	tcagcagcca	aatcggccgg	cctttttcta	tctgcccggt	cageceeeeg	5340
agaccaacca	tgaaacaggc	cgtctctctg	tcaaggccaa	gccgctacgc	ggtgctatcg	5400
cagccctgac	agagagacac	ccagetteag	agcggcaagt	atcgggggga	tgccctcaag	5460
tgtggttcat	gcgggtgaaa	gttgttgctc	agcaacgctt	ttcacttgcg	aaccgatatt	5520
ategggggee	gcacatccgc	tgcgggcaat	cgataatgca	agtgatcacg	aagattttcc	5580
caagtcgcgc	cagettegae	gagtccgagg	atctcgccga	agacgtaagg	cgcacaagtc	5640
cgaatcatca	tccacgatcg	cgccggaatg	atcgcaacca	tgaccggggc	agattettee	5700
tgctcaacga	tctgagcatc	tgttagttct	gccccaagac	cagctcgggc	acgcaatcca	5760
cgggaccacg	cgattgcccg	acgtcccatc	gaaccaaact	caaattctcg	ccacagttcc	5820
aacgcttgtg	gateceegee	cactgcatca	acagcgattt	cccagggtgc	acggttgcca	5880
tgtcgaccac	tttttccgtc	gccactacca	acctccatac	caacgccaga	tgcaattttc	5940
gtcagatacg	cagcgagaac	ttgatcagct	tcaccgccga	tctttcgtac	atcgagacca	6000
cccgaattac	gtagtggcgc	agcaaatccc	agagatacga	gtttggaagt	ccaccgatcg	6060
aacatcgcat	ccgagaagga	ttcgaggatg	ttctcactca	cgtcaccact	gaacatgagt	6120
agcgcgtgaa	cgtggacgtg	ccagccgttt	tttccgtgag	tgatttcaac	agcgcgcacg	6180
tatccgtcgc	agccgtacat	ttcacgttcc	gtacgccaac	gacgaccgtt	ggtcgcagct	6240
ttccaggctg	ccgaaagtcc	agtccatagg	tcgtggagcc	gctgaccagc	tgtatggcgc	6300
atggtcatcg	tcaccatege	aacagatcca	gtcccgagtt	gatgagcaac	aacttgagaa	6360
atttcgtctg	cacgatgtgc	accgactttt	cccgcacagc	aggggcagat	ccagcccttt	6420
ccġcaggaac	gaaggcctcc	gaatccagaa _.	cctttcggac	cgttgacaat	ggtcacaccg	6480
ttcacgccag	aaatcggccg	gccacaggcg	ttaaatgttt	ctgacgtggt	gatttgttga	6540
agtttgggtc	gcagttcgtg	ceggatgeeg	cgcttatcgg	acgacacgag	gacgggaggc	6600
cggtctttgc	cggaaaggtg	ttcagcactt	acgctggtca	taacgagegg	ggtcctagtc	6660

aagtaggagc	ctcgaaggcg	gcggcagggt	ggtccaacac	ccttcgtcgc	cgctcgtatt	6720
ttcggagtaa	atccagctag	ttcagctcgg	atactccact	tcgaggttca	togattattt	6780
ggtttttatc	cacttaacca	gcagaaacag	cgtttatcgc	tgatctgctg	gtcagtgcgg	6840
cgtgtcgggg	gagtcgctag	teegeggega	gtccccatgc	ttcgagaaca	ccgaccttct	6900
cttctggggt	tctgcttgtc	ttcaccagtg	catcgaacag	acctcggtat	tcacccaagt	6960
gttcaatatc	gaatccggct	tecetggegt	aatcaggggt	gtagtagcag	cacatcgcag	7020
ccagaatctc	ggacgattcg	gcgcgttcac	cagcatgaat	ccaaccataa	acgtcatgcc	7080
caccccatag	atcaggccct	cgatgatcgt	aaatgccaac	ggctagtcgg	aggatgaata	7140
ccgtagcttc	gtgcttcacg	catcaaccct	ctgatctgct	gcactcagaa	ttgcatgacc	7200
tcccgaatga	ctgcataact	cgtcgtagac	ctgagcaacg	aacgaaggcc	gatcagcatt	7260
gtccatgaag	agttggacga	acttcggccg	gacgaggcca	atccacggcg	cagtcaaagt	7320
ttcaaaatca	tgtgcctcga	ggtgctcatg	cattgcaacc	gcccatgcgg	cccctcgage	7380
ggcgcaccag	tctcgttcaa	ctccctcgct	gtccgaaatg	togtatttaa	ggcccagtga	7440
tegtecaact	teggeagetg	cgtcactggc	acgtttccaa	tcgtcaccgc	gtaagtcgtt	7500
gagctttccg	agttcatcgc	ctagaagcag	ctcagacatt	gcaaaaacgg	tcatcgaact	7560
gacccatcgt	ggaccgacta	gtgcaccaag	gtcgtcgtcg	gtgatctgca	tgccgcgaag	7620
ttcgtcgacg	acagettgge	cttccaaacc	tactctggcc	ctgagtattt	cagttattac	7680
gagatgatcg	ttcggccagc	ctgatttgat	ccggagtgca	gtcgttacga	ctcgttccgt	7740
gggcaggttt	cggcgtgagg	cgagtttttc	tcctgcctca	tgtgcaacct	tctcaaattg	7800
ctgtcgaatg	taggtgttta	ccgggattgc	gtctgtcggg	tagccgatca	aggtgtgtcc	7860
tcctgtgtgt	teggttgtca	gcctatgtcg	ccgagatgtg	ggtattccga	ggcgattgtc	7920
attcgttgtg	ctcggtcgat	gttcagtgcg	gcttcgtacg	cgaggtctgc	gttttcgacg	7980
taactcgcgt	aggtcgagta	ctcacctacg	cgaaccgttc	ggatcatttg	gcgccgtagt	8040
ccgggttggt	cgaagaagcc	ttgaccaggg	acgaatcctt	cgaccagtgc	gcactcttca	8100
ggtgttgcgt	tggggtgcag	cattttgaca	gattcaggtt	cgtctacgcg	gagagtcatt	8160
ttcaccgcga	agttcgagcg	ggcgtttcca	cccacgatgg	aagcttccgc	acgttgagcc	8220
aagagcaaca	ttctgatgcc	tgctttggca	gactgagcag	cgatctgtcg	aacaagcgat	8280
gtgatgcggg	gtgcgtatct	gtctgctggt	ttcagaccgt	tggttgcatc	gaaatcctgt	8340
gcgccctcga	tgattccggg	aaattcttcc	agtacgagca	ggatgagagg	tagtgctggc	8400
gagaacaacg	aaattttgtc	tatgcgtcga	tcccagaaac	actcgattcg	teggteagat	8460
tctgctttga	cgaactggag	cactcggagg	actttgtcaa	aatcgttcag	cccgagctcg	8520
atgttcggtt	cagccggtcg	tcggtggacg	aatggggcta	gtaagacgga	agtgggatcg	8580

acteegaega	cacgcacago	gggattcgat	ccagcctgtg	cgagcaggtt	gtaggtgcat	8640
tgagattttc	: cggaacgggt	tttgccttga	atgagccagt	gagcagcato	tttggctata	8700
tcgaccatga	caggttgagc	tagttcgttc	: catecaateg	caatcgggat	cgtgtctgtt	8760
tgatccatca	ggcgtccgtg	cttttgtcga	acggaagatc	cttttcttgc	tcccaccagg	8820
gccgattgtc	cccgagtatg:	ccgccggcct	cttccttcaa	tgtgccggcc	gatgagtcct	8880
cgacgtcact	gagccatgct	gcatctcgtg	cttgagaaat	ggtgtctgca	tcgatcagaa	8940
gtagctcgac	ccgacgcggc	tctactttgg	tgaaactggc	acgtagagca	ccgaaagcat	9000
cggctatttt	gaccgtcttc	gatgtcatat	cttcaccggt	gatccctgtc	ggaaggtcga	9060
aagcgactga	tcgagtcaat	ccgtcgtccg	aaaatttgta	gctacgaatg	atgggagget	9120
gcccagagga	gttgatcaga	ccaagattgg	ccgcagcacc	tgcaacttco	ggggttcctc	9180
gccaccatcg	agctgtacga	cgtttgcgac	gccgagcctt	cgttgcctct	ctcaggtaga	9240
ccattgccac	aacgcacacc	agcagcacac	tgaccaaaag	ccacatctga	gcgtcgaaga	9300
tgtacagcag	cagaagcaac	agaaacgtag	aggacagaat	cgggtaatcg	gcaatttttg	9360
ccttgagttt	tgctcgcaaa	atttgccagg	tggaacgtct	tttaacctgg	tcaccgcgtc	9420
gaacggcttc	gtagttgctc	ateggggeca	ctccacaacg	acattcggac	tatctacttc	9480
gacttgctca	tctacgttcc	acaaccacga	ttcgactgga	acgagagcgc	atcccgaggt	9540
tccattctga	agattgcttt	gcactcgatc	actcatcaaa	gtctctggaa	ccgtctcagc	9600
ctctacgccc	ttatgtaccg	ggacaggggt	attcacggtc	aaatacactg	cccgccagcc	9660
ctcaggcact	ggcacgtcac	cgcacgcgct	ggtcttcgag	tacggcgacg	tgatgacctt	9720
tccatctggg	ttagtccact	ggateceate	ggcgctcaat	tccggattca	ctcggatgta	9780
tccaggtatc	tetetgeatg	cactgacaga	tggaacagaa	cctgtcggaa	gaggggatct	9840
gcaccaggtc	accgttcgtt	cagcccatga	gtcccgacgc	tcttgcattc	cgctggaaag	9900
cttaatatct	tgcgtgccaa	caatctggat	attacggcct	ttttaaagac	cgtaaagaaa	9960
aataagcaca	agttttatcc	ggcctttatt	cacattettg	cccgcctgat	gaatgctcat	10020
ccggaattcc	gtatggcaat	gaaagacggt	gagctggtga	tatgggatag	tgttcaccct	10080
tgttacaccg	ttttccatga	gcaaactgaa	acgttttcat	cgcţctggag	tgaataccac	10140
gacgatttcc	ggcagtttct	acacatatat	tcgcaagatg	tggcgtgtta	cggtgaaaac	10200
ctggcctatt	tccctaaagg	gtttattgag	aatatgtttt	tcgtctcagc	caatccctgg	10260
gtgagtttca	ccagttttga	tttaaacgtg	gccaatatgg	acaacttett	cgcccccgtt	10320
ttcaccatgg	gcaaatatta	tacgcaaggc	gacaaggtgc	tgatgccgct	ggcgattcag	10380
gttcatcatg	ccgtttgtga	tggcttccat	gtcggcagaa	tgcttaatga	attacaacag	10440
tactgcgatg	agtggcaggg	cggggcgtaa	ttttttaag	gcagttattg	gtgcccttaa	10500

acgcctggtg ctacgcctga ataagtgata ataagcggat gaatggcaga aattcgaaag caaattcgac coggtogtog qttcagggca gggtogttaa atagcogott atgtotatig 10620 ctggtttacc ggtttattga ctaccggaag cagtgtgacc gtgtgcttct caaatgcctg 10680 10740 aggecagttt geteaggete teecegtgga ggtaataatt gaegatatga teatttatte tgcctcccag agcctgataa aaacggtgaa tccgttagcg aggtgccgcc ggcttccatt 10800 10860 caqqtcqaqq tqqcccqqct ccatqcaccq cqacqcaacq cqgqqaqqca gacaaqqtat agggeggege ctacaateca tgecaaeceg tteeatgtge tegeegagge ggeataaate 10920 gccqtqacqa tcaqcqqtcc aqtqatcqaa gttaggctgg taagagccqc gagcgatcct 10980 tgaagctgtc cctgatggtc gtcatctacc tgcctggaca gcatggcctg caacgcgggc 11040 atcecqatge egeeggaage gagaagaate ataatgggga aggecateca geetegegte 11100 gegaaegeea geaagaegta geeeagegeg teggeegeea tgeeggegat aatggeetge 11160 ttctcgccga aacgtttggt ggcgggacca gtgacgaagg cttgagcgag ggcgtgcaag 11220 attecgaata cegeaagega c 11241

<210> 7

<211> 9652

<212> DNA

<213> Plasmid pRHBR17

<400> ttotoatgit tgacagotta toatogataa gotttaatgo ggtagittat cacagitaaa 60 ttgctaacgc agtcaggcac cgtgtatgaa atctaacaat gcgctcatcg tcatcctcgg 120 caccgtcacc ctggatgetg taggcatagg cttggttatg ccggtactgc cgggcctctt 1.80 gcgggatate gtecatteeg acageatege eagteactat ggegtgetge tagegetata 240 tgcqttqatq caatttctat gcqcacccgt tctcggaqca ctgtccgacc gctttggccq 300 ecgeccagte etgetegett egetaettgg agecaetate gaetaegega teatggegae 360 420 cacaccegte etgtggatee tetacgeegg acgeategtg geeggeatea eeggegeeae aggtgcggtt gctggcgct atategccga catcaccgat ggggaagatc gggctcgcca 480 cttcgggctc atgagcgctt gtttcggcgt gggtatggtg gcaggccccg tggccggggg 540 600 actgttqqqc gccatctcct tgcatgcacc attccttgcg gcggcggtgc tcaacggcct 660 caacctacta ctgggctgct tcctaatgca ggagtcgcat aagggagagc gtcgaccgat gcccttgaga gccttcaacc cagtcagctc cttccggtgg gcgcggggca tgactatcgt 720 780 egeogeactt atgactgtet tetttateat geaactegta ggacaggtge eggeageget

ctgggtcat	t tteggegag	g accgettte	g ctggagcgc	g acgatgatc	g geetgteget	840
tgcggtatt	c ggaatcttg	c acgeceteg	c tcaagectt	c gtcactggt	c ccgccaccaa	900
acgtttcgg	z gagaagcag	g ccattatog	c cggcatggc	g gccgacgcg	c tgggctacgt	960
cttgctggc	j ttegegaege	c gaggetgga	t ggccttccc	c attatgatt	c ttatagatta	1020
cggcggcato	gggatgccc	g cgttgcagg	c catgotgto	c aggcaggta	g atgacgacca	1080
tcagggacag	; cttcaaggat	cgctcgcgg	c. tcttaccag	c ctaacttcg	a tcactggacc	1140
gctgatcgt	acggcgattt	atgccgcctd	c ggcgagcaca	a tggaacgggi	t tggcatggat	1200
tgtaggcgcc	gecetatace	ttgtctgcct	ccccgcgttq	g cgtcgcggt	g catggageeg	1260
ggccacctcc	, acctgaatgo	aagccggcg	g cacctcgcta	acggattcac	c cactccaaga	1320
attggagcca	ı atcaattctt	gcggagaact	gtgaatgcgd	aaaccaacco	ttggcagaac	1380
atatccatcg	gcgtccgccat	ctccagcago	.cgcacgcggc	gcateteggg	g cegegttget	1440
ggcgttttc	: cataggetee	gececetga	a cgagcatcac	aaaaatcgad	gctcaagtca	1500
gaggtggcga	. aacccgacag	gactataaag	g ataccaggeg	tttccccctg	j gaageteeet	1560
cgtgcgctct	cetgttccga	ccctgccgct	taccggatac	: ctgtccgcct	ttctcccttc	1620
gggaagcgtg	gcgctttctc	atageteacg	r ctgtaggtat	ctcagttcgg	tgtaggtcgt	1680
tegetecaag	ctgggctgtg	tgcacgaacc	ccccgttcag	cccgaccgct	gcgccttatc	1740
cggtaactat	cgtcttgagt	ccaacccggt	aagacacgac	ttatcgccac	tggcagcagc	1800
cactggtaac	aggattagca	gagcgaggta	tgtaggcggt	gctacagagt	tcttgaagtg	1860
gtggcctaac	tacggctaca	ctagaaggac	agtatttggt	atctgcgctc	tgctgaagcc	1920
agttaccttc	ggaaaaagag	ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	1980
cggtggtttt	tttgtttgca	agcagcagat	tacgcgcaga	aaaaaaggat	ctcaagaaga	2040
tcctttgatc	ttttctacgg	ggtctgacgc	tcagtggaac	gaaaactcac	gttaagggat	2100
tttggtcatg	agattatcaa	aaaggatctt	cacctagatc	cttttaaatt	aaaaatgaag	2160
ttttaaatca	atctaaagta	tatatgagta	aacttggtct	gacagttacc	aatgcttaat	2220
cagtgaggca	cctatctcag	cgatctgtct	atttcgttca	tccatagttg	cctgactccc	2280
cgtcgtgtag	ataactacga	tacgggaggg	cttaccatct	ggccccagtg	ctgcaatgat	2340
accgcgagac	ccacgctcac	cggctccaga	ttťatcagca	ataaaccagc	cagccggaag	2400
ggccgagcgc	agaagtggtc	ctgcaacttt	atccgcctcc	atccagtcta	ttaattgttg	2460
ccgggaagct	agagtaagta	gttcgccagt	taatagtttg	cgcaacgttg	ttgccattgc	2520
ttcatctaca	ctcaaaaccg	tacacatagt	gtagccagct	gtccagtttt	cgcacactac	2580
	gaacatattt					2640
	gcgatgattc					2700

ggcgtccgtg	gatctgtcac	actcctggca	gaccattcag	aacgcgcacg	actecacgae	2760
tgtcgcaatg	gagctacgag	aagccgggct	tcaacgcgaa	ttctggctac	aagctctcgc	2820
ggacatcaca	tctgttgtgg	gaactgcctc	tgagctgcgc	aaatctattt	cccgttttct	2880
cgttgacgag	cttgacgtca	gcagccgaac	cgttgccacc	gttgcagatg	tttcaccgtc	2940
gaccatcagt	acttggcgtg	gtgagcatga	gtcatcgtaa	aaacatcctc	tgacctgcta	3000
tggccccaat	gatcacctat	taccaaggeg	gcggcttcgc	cgccgctgcc	agcaggctcc	3060
cccacctacg	cgctccgctt	cgctcgcgct	teggtgetee	gcccgcaggc	ccaggagcga	3120
gtttgcgcct	cgtttagtcc	atctaagggg	ttcctagctg	gcttgaggtc	gcaacgcatc	3180
ctgaagtcga	tcgaggagca	ggaacgcatc	atctcgatcc	agcgtggttt	cttgaccata	3240
aatcgagagg	tacacgccca	tgacaacgcc	atcgacgtct	accgaagctg	gattcgctgc	3300
gatgccaaga	ggacgttcgt	tgatgctcat	gtgatgggtt	tacctgcaaa	aatagtcagc	3360
agccaaatcg	gaggcggcgg	cttcgccgcc	gctgccagca	ggctccccca	cctacgcgct	3420
ccgcttcgct	cgcgcttcgg	tgctccgccc	gcaggcccag	gagcgagttt	gcgcctcgtt	3480
tagtccatct	aaggggttcc	tagctggctt	gaggtcgcaa	cgcatectga	agtegatega	3540
ggagcaggaa	egeateatet	cgatccagcg	tggtttcttg	accataaatc	gagaggtaca	3600
cgcccatgac	aacgccatcg	acgtctaccg	aagctggatt	cgctgcgatg	ccaagaggac	3660
gttcgttgat	gctcatgtga	tgggtttacc	tgcaaaaata	gtcagcagcc	aaatcggccg	3720
gcctttttct	atctgcccgg	teageceece	gagaccaacc	atgaaacagg	ccgtctctct	3780
gtcaaggcca	agccgctacg	cggtgctatc	gcagccctga	cagagagaca	cccagcttca	3840
gagcggcaag	tatcgggggg	atgecetcaa	gtgtggttca	tgcgggtgaa	agttgttgct	3900
cagcaacgct	tttcacttgc	gaaccgatat	tatcgggggc	cgcacatccg	ctgcgggcaa	3960
tcgataatgc	aagtgatcac	gaagattttc	ccaagtcgcg	ccagcttcga	cgagtccgag	4020
gatctcgccg	aagacgtaag	gcgcacaagt	ccgaatcatc	atccacgatc	gcgccggaat	4080
gategeaace	atgaccgggg	cagattcttc	ctgctcaacg	atctgagcat	ctgttagttc	4140
tgccccaaga	ccagctcggg	cacgcaatcc	acgggaccac	gcgattgccc	gacgtcccat	4200
cgaaccaaac	tcaaattctc	gccacagttc	caacgcttgt	ggateceege	ccactgcatc	4260
aacagcgatt	tcccagggtg	cacggttgcc	atgtcgacca	ctttttccgt	cgccactacc	4320
aacctccata	ccaacgccag	atgcaatttt	cgtcagatac	gcagcgagaa	cttgatcagc	4380
ttcaccgccg	atctttcgta	catcgagacc	acccgaatta	cgtagtggcg	cagcaaatcc	4440
cagagatacg	agtttggaag	tccaccgatc	gaacatcgca	tccgagaagg	attcgaggat	4500
gttctcactc	acgtcaccac	tgaacatgag	tagcgcgtga	acgtggacgt	gecagecgtt	4560
ttttccgtga	gtgatttcaa	cagegegeae	gtatccgtcg	cagccgtaca	tttcacgttc	4620

cgtacgccaa	cgacgaccgt	tggtcgcagc	tttccaggct	gccgaaagtc	cagtccatag	4680
gtcgtggagc	cgctgaccag	ctgtatggcg	catggtcatc	gtcaccateg	caacagatcc	4740
agtcccgagt	tgatgagcaa	caacttgaga	aatttcgtct	gcacgatgtg	caccgacttt	4.800
tecegeacag	caggggcaga	tccagccctt	tccgcaggaa	cgaaggcctc	cgaatccaga	4860
acctttcgga	ccgttgacaa	tggtcacacc	gttcacgcca	gaaatcggcc	ggccacaggc	4920
gttaaatgtt	tctgacgtgg	tgatttgttg	aagtttgggt	cgcagttcgt	geeggatgee	4980
gcgcttatcg	gacgacacga	ggacgggagg	ccggtctttg	ccggaaaggt	gttcagcact	5040
tacgctggtc	ataacgagcg	gggtcctagt	caagtaggag	cctcgaaggc	ggcggcaggg	5100
tggtccaaca	cccttcgtcg	ccgctcgtat	tttcggagta	aatccagcta	gttcagctcg	5160
gatactccac	ttcgaggttc	atcgattatt	tggtttttat	ccacttaacc	agcagaaaca	5220
gcgtttatcg	ctgatctgct	ggtcagtgcg	gcgtgtcggg	ggagtcgcta	gtccgcggcg	5280
agtecceatg	cttcgagaac	accgacette	tcttctgggg	ttctgcttgt	cttcaccagt	5340
gcatcgaaca	gacctcggta	ttcacccaag	tgttcaatat	cgaatccggc	ttccctggcg	5400
taatcagggg	tgtagtagca	gcacatcgca	gccagaatct	cggacgattc	ggcgcgttca	5460
ccagcatgaa	tccaaccata	aacgtcatgc	ccaccccata	gatcaggccc	tcgatgatcg	5520
taaatgccaa	cggctagtcg	gaggatgaat	accgtagett	cgtgcttcac	gcatcaaccc	5580
tctgatctgc	tgcactcaga	attgcatgac	ctcccgaatg	actgcataac	tcgtcgtaga	5640
cctgagcaac	gaacgaaggc	cgatcagcat	tgtccatgaa	gagttggacg	aacttcggcc	5700
ggacgaggcc	aatccacggc	gcagtcaaag	tttcaaaatc	atgtgcctcg	aggtgctcat	5760
gcattgcaac	cgcccatgcg	gcccctcgag	cggcgcacca	gtctcgttca	actccctcgc	5820
tgtccgaaat	gtcgtattta	aggcccagtg	atcgtccaac	ttcggcagct	gcgtcactgg	5880
cacgtttcca	atcgtcaccg	cgtaagtcgt	tgagctttcc	gagttcatcg	cctagaagca	5940
gctcagacat	tgcaaaaacg	gtcatcgaac	tgacccatcg	tggaccgact	agtgcaccaa	6000
ggtcgtcgtc	ggtgatctgc	atgccgcgaa	gttcgtcgac	gacagettgg	ccttccaaac	6060
ctactctggc	cctgagtatt	tcagttatta	cgagatgatc	gttcggccag	cctgatttga	6120
teeggagtge	agtcgttacg	actcgttccg	tgggcaggtt	tcggcgtgag	gcgagttttt	6180
ctectgecte	atgtgcaacc	ttctcaaatt	gctgtcgaat	gtaggtgttt	accgggattg	6240
cgtctgtcgg	gtagccgatc	aaggtgtgtc	ctcctgtgtg	ttcggttgtc	agcctatgtc	6300
gccgagatgt	gggtattccg	aggcgattgt	cattegttgt	gctcggtcga	tgttcagtgc	6360
ggcttcgtac	gcgaggtctg	cgttttcgac	gtaactcgcg	taggtcgagt	actcacctac	6420
gcgaaccgtt	cggatcattt	ggcgccgtag	tccgggttgg	tegaagaage	cttgaccagg	6480
gacgaatcct	tcgaccagtg	cgcactcttc	aggtgttgcg	ttggggtgca	gcattttgac	6540

agattcaggt	tegtetaege	ggagagtcat	tttcaccgcg	aagttcgagc	gggcgtttcc	6600
acccacgatg	gaagcttccg	cacgttgagc	caagagcaac	attctgatgc	ctgctttggc	6660
agactgagca	gcgatctgtc	gaacaagcga	tgtgatgcgg	ggtgcgtatc	tgtctgctgg	6720
tttcagaccg	ttggttgcat	cgaaatcctg	tgcgccctcg	atgattccgg	gaaattette	6780
cagtacgagc	aggatgagag	gtagtgctgg	cgagaacaaç	gaaattttgt	ctatgcgtcg	6840
atcccagaaa	cactcgattc	gtcggtcaga	ttctgctttg	acgaactgga	gcactcggag	6900
gactttgtca	aaatcgttca	gcccgagctc	gatgttcggt	tcagccggtc	gtcggtggac	6960
gaatggggct	agtaagacgg	aagtgggatc	gactccgacg	acacgcacag	cgggattcga	7020
tccagcctgt	gcgagcaggt	tgtaggtgca	ttgagatttt	ccggaacggg	ttttgccttg	7080
aatgagccag	tgagcagcat	ctttggctat	atcgaccatg	acaggttgag	ctagttcgtt	7140
ccatccaatc	gcaatcggga	tegtgtetgt	ttgatccatc	aggcgtccgt	gcttttgtcg	7200
aacggaagat	ccttttcttg	ctcccaccag	ggccgattgt	ccccgagtat	gccgccggcc	7260
tcttccttca	atgtgccggc	cgatgagtcc	togacgtcac	tgagccatgc	tgcatctcgt	7320
gcttgagaaa	tggtgtctgc	atcgatcaga	agtagctcga	cccgacgcgg	ctctactttg	7380
gtgaaactgg	cacgtagagc	accgaaagca	teggetattt	tgaccgtctt	cgatgtcata	7440
tcttcaccgg	tgatccctgt	cggaaggtcg	aaagcgactg	atcgagtcaa	tccgtcgtca	7500
gaaaatttgt	agctacgaat	gatgggaggc	tgcccagagg	agttgatcag	accaagattg	7560
gccgcagcac	ctgcaacttc	cggggttcct	cgccaccatc	gagctgtacg	acgtttgcga	7620
cgccgagcct	tegttgeete	tctcaggtag	accattgcca	caacgcacac	cagcagcaca	7680
ctgaccaaaa	gccacatctg	agcgtcgaag	atgtacagca	gcagaagcaa	cagaaacgta	7740
gaggacagaa	tcgggtaatc	ggcaatttt	gccttgagtt	ttgctcgcaa	aatttgccag	7800
gtggaacgtc	ttttaacctg	gtcaccgcgt	cgaacggctt	cgtagttgct	categgggee	7860
actccacaac	gacattcgga	ctatctactt	cgacttgctc	atctacgttc	cacaaccacg	7920
attcgactgg	aacgagagcg	catecegagg	ttccattctg	aàgattgctt	tgcactcgat	7980
cactcatcaa	agtctctgga	accgtcteag	cctctacgcc	cttatgtacc	gggacagggg	8040
tattcacggt	caaatacact	gcccgccagc	cctcaggcac	tggcacgtca	ccgcacgcgc	8100
tggtcttcga	gtacggcgac	gtgatgacct	ttccatctgg	gttagtccac	tggateccat	8160
eggegeteaa	ttccggattc	actcggatgt	atccaggtat	ctctctgcat	gcactgacag	8220
atggaacaga	acctgtcgga	agaggggatc	tgcaccaggt	caccgttcgt	tcagcccatg	8280
agtcccgacg	ctcttgcatt	ccgctggaaa	gottaatato	ttgcgtgcca	acaatctgga	8340
tattacggcc	tttttaaaga	ccgtaaagaa	aaataagcac	aagttttatc	cggcctttat	8400
tcacattctt	gcccgcctga	tgaatgetea	tccggaattc	cgtatggcaa	tgaaagacgg	8460

tgagctggtg	ı atatgggata	gtgttcacco	ttgttacacc	gttttccatg	agcaaactga	8520
aacgttttca	tegetetgga	gtgaatacca	cgacgatttc	cggcagtttc	: tacacatata	8580
ttcgcaagat	gtggcgtgtt	acggtgaaaa	cctggcctat	ttccctaaag	ggtttattga	8640
gaatatgttt	ttcgtctcag	ccaatcccto	ggtgagtttc	accagttttg	atttaaacgt	8700
ggccaatatg	gacaacttct	tegececegt	tttcaccatg	ggcaaatatt	atacgcaagg	8760
cgacaaggtg	ctgatgccgc	tggcgattca	ggttcatcat	gccgtttgtg	atggcttcca	8820
tgtcggcaga	atgcttaatg	aattacaaca	gtactgcgat	gagtggcagg	gcggggcgta	8880
attttttaa	ggcagttatt	ggtgccctta	aacgcctggt	gctacgcctg	aataagtgat	8940
aataagcgga	tgaatggcag	aaattcgaaa	gcaaattcga	cccggtcgtc	ggttcagggc	9000
agggtcgtta	aatagccgct	tatgtctatt	gctggtttac	cggtttattg	actaccggaa	9060
gcagtgtgac	cgtgtgcttc	tcaaatgcct	gaggccagtt	tgctcaggct	ctccccgtgg	9120
aggtaataat	tgacgatatg	atcatttatt	ctgcctccca	gagcctgata	aaaacggtga	9180
atccgttagc	gaggtgccgc	cggcttccat	tcaggtcgag	gtggcccggc	tccatgcacc	9240
gcgacgcaac	gcggggaggc	agacaaggta	tagggcggcg	cctacaatcc	atgecaacee	9300
gttccatgtg	ctcgccgagg	cggcataaat	cgccgtgacg	atcagcggtc	cagtgatcga	9360
agttaggctg	gtaagagccg	cgagcgatcc	ttgaagctgt	ccctgatggt	cgtcatctac	9420
ctgcctggac	agcatggcct	gcaacgcggg	catcccgatg	ccgccggaag	cgagaagaat	9480
cataatgggg	aaggccatcc	agcctcgcgt	cgcgaacgcc	agcaagacgt	agcccagcgc	9540
gtcggcegcc	atgccggcga	taatggcctg	cttctcgccg	aaacgtttgg	tggcgggacc	9600
agtgacgaag	gcttgagcga	gggcgtgcaa	gattccgaat	accgcaagcg	ac	9652

<210> 8

<211> 29

<212> DNA

<213> Rhodococcus AN12

<400> 8 gtgcgaaaac tggacagctg gctacacta

29

<210> 9

<211> 19

<212> DNA

<213> Primer

<400> gagtttg	9 gatc	ctggctcag					19
<210>	10						
<211>	16		, ·				•
<212>	DNA						
<213>	Prim	er					
							•
<400>		cgactt			•	•	16
	,						
<210>	11						•
<211>	1.7						
<212>	ANG						
<213>	Prin	ıer					
<400> gtgccae	11 gcag	ymgcggt					17
5 -5	, ,	1 2 32					
<210>	12			•		•	
<211>	1424	Į			•		
<212>	DNA						
<213>	Rhoc	dococcus AN1	.2				
<400> tcgagc		gagagaagct	tgcttctctt	gagageggeg	gacgggtgag	taatgcctag	60
gaatct	geet	ggtagtgggg	gataacgttc	ggaaacggac	gctaataccg	catacgtcct	120
acggga	gaaa	gcaggggacc	ttcgggcctt	gcgctatcag	atgagectag	gtcggattag	180
ctagtt	ggtg	aggtaatggc	tcaccaaggc	gacgatccgt	aactggtctg	agaggatgat	240
cagtca	cact	ggaactgaga	cacggtccag	act'cctacgg	gaggcagcag	tggggaatat	300
tggaca	atgg	gcgaaagcct	gatecageca	tgccgcgtgt	gtgaagaagg	tetteggatt	360
gtaaag	cact	ttaagttggg	aggaagggca	gttacctaat	acgtgattgt	tttgacgtta	420
ccgaca	gaat	aagcaccggc	taactctgtg	ccagcagccg	cggtaataca	gagggtgcaa	480
gcgtta	atcg	gaattactgg	gcgtaaagcg	cgcgtaggtg	gtttgttaag	ttggatgtga	540
aatccc	cggg	ctcaacctgg	gaactgcatt	caaaactgac	tgactagagt	atggtagagg	600

gtggtg	gaat	ttcctgtgta	gcggtgaaat	gcgtagatat	aggaaggaac	accagtggcg	660
aaggcg	jacca	cctggactga	tactgacact	gaggtgcgaa	agcgtgggga	gcaaacagga	720
ttagat	accc	tggtagtcca	cgccgtaaac	gatgtcaact	agccgttggg	agccttgagc	780
			cattaagttg				840
			ggcccgcaca				900
			gccttgacat				960
			gtgctgcatg				1020
			gcaaccettg				1080
			acaaaccgga				1140
			acacgtgcta				1200
			aaaaccgatc				1260
			gtaatcgcga				1320
			cacaccatgg				1380
			cacggtgtga			, J - J	1424
							7724
<210>	13						
<211>	17		•				
<212>	DNA		٠				
<213>	Prim	er					
					r		
<400> gtaaaa	13 cgac	ggccagt					
		55 c c c g c					17
<210>	14				_		
<211>	24				•		
<212>	DNA						
<213>	Prim	er	*				
<400>	14			•		•	
aycggat	.aac a	aatttcacac	agga				24
<210>	15	•	•				

<211> 722

<212> DNA

<213> Rhodococcus AN12

<400> 15					•	
·	gcggaatgca	agagcgtcgg	gactcatggg	ctgaacgaac	ggtgacctgg	60
tgcagatccc	ctcttccgac	aggttctgtt	ccatctgtca	gtgcatgcag	agagatacct	120
ggatacatcc	gagtgaatcc	ggaattgagc	gccgatggga	tccagtggac	taacccagat	180
ggaaaggtca	tcacgtcgcc	gtactcgaag	accagcgcgt	gcggtgacgt	gccagtgcct	240
gagggctggc	gggcagtgta	tttgaccgtg	aatacccctg	teceggtaca	taagggcgta	300
gaggctgaga	cggttccaga	gactttgatg	agtgatcgag	tgcaaagcaa	tcttcagaat	360
ggaacctcgg	gatgcgctct	cgttccagtc	gaatcgtggt	tgtggaacgt	agatgagcaa	420
gtcgaagtag	atagtccgaa	tgtcgttgtg	gagtggcccc	gatgagcaac	tacgaagccg	480
ttcgacgcgg	tgaccaggtt	aaaagacgtt	ccacctggca	aattttgcga	gcaaaactca	540
aggcaaaaat	tgccgattac	ccgattctgt	cctctacgtt	tatgttgatt	ctgctgctgt	600
acatettega	cgctcagatg	tggcttttgg	tcagtgtgct	gctggtgtgc	gttgtggcaa	660
tggtctacct	gagagaggca	acgaaggctc	ggcgtcgcaa	acgtcgtaca	gctcgatggt	720
gg		•				722

<210> 16

<211> 523

<212> DNA

<213> Rhodococcus AN12

<400> 16 aagcttccgc	acgttgagcc	aagagcaaca	ttctgatgcc	tgctttggca	gactgagcag	60
cgatctgtcg	aacaagcgat	gtgatgcggg	gtgcgtatct	gtctgctggt	ttcagaccgt	120
tggttgcatc	gaaatcctgt	gegeeetega	tgattccggg	aaattcttcc	agtacgagca	180
ggatgagagg	tagtgctggc	gagaacaacg	aaattttgtc	tatgcgtcga	tcccagaaac	240
actcgattcg	teggteagat	tctgctttga	cgaactggag	cactcggagg	actttgtcaa	300
aategttcag	cccgagctcg	atgttcggtt	casccggtcg	tcggtggacg	aatggggcta	360
gtaagacgga	agtgggatcg	actccgacga	cacgcacagc	gggattcgat	ccagcctgtg	420
cgagcaggtt	gtaggtgcat	tgagattttc	cggaacgggt	tttgccttga	atgagccagt	480
gagcagcatc	tttggctata	tegaceatga	caggittgagc	tag		523

WO	02/05576	oí

<210> 17

PCT/US01/47868

<211>	606						
<212>	DNA						
<213>	Rho	dococcus AN	12	•			
<400>	17						
						actctccgcg	. 60
						gagtgcgcac	120
tggtcga	aagg	attcgtccct	ggtcaaggct	tcttcgacca	acccggacta	cggcgccaaa	180
tgatcc	gaac	ggttcgcgta	ggtgagtact	cgacctacgc	gagttacgtc	gaaaacgcag	240
acctcg	cgta	cgaagccgca	ctgaacatcg	accgagcaca	acgaatgaca	atcgcctcġg	300
aatacco	caca	tctcggcgac	ataggctgac	aaccgaacac	acaggaggac	acaccttgat	360
				cacctacatt			420
				acgccgaaac			480
				gccgaacgat			540
				agctgtcgtc			600
gatcac							606
403.0 5							
	18						
	30						, -
<212>	DNA						
<213>	Prim	er					
					•		
	18 tat d	catagtttag a	atotattte	-			
	-5	arragereag .	acceatettg				30
<210>	19				-		
<211>	20		~1				
<212>	DNA			,			
<213> 1	Prime	er		•	•		
	19	•	•	•			
acttgcga	aac c	gatattatc					20

WO 02/055709

<210> 20

<211> 20

<212> DNA

<213> Primer

<400> 20 ttatgaccag cgtaagtgct

20

PCT/US01/47868

<210> 21

<211> 459

<212> PRT

<213> Arcanobacterium pyogenes

<400> 21

Met Asn Arg Leu Ser Glu Arg Thr Ala Leu Ser Leu Pro Ala Arg Gln 1 5 10 15

Ile Gln Lys Val Ile Pro Ala Ala Gly Gly Arg Ser Leu Lys Ser Phe 20 25 30

Glu Gly Met Thr Ala Thr Trp Ser Ala Arg Gly Gly Ala Ser Ser Asp 35 40 . 45

Glu Arg Ser Arg Asp Lys Arg Ser Gln Ile Pro Ser Asn Arg Arg Glu 50 60

Gly Arg Ser Ala Thr His Pro Leu Gly Asn Thr Val Leu Thr Phe Pro 65 70 75 80

Val Ser Asn Glu Ser Lys Lys Thr Ala Lys Ser Arg Arg Ser Glu Arg 85 90 95

Tyr Glu Leu Arg Asp Gly Leu Ala Glu Ile Ser Thr Ile Glu Ser Val . 100 105 110

Arg Lys Cys Gly Arg Val Pro Val Ala Pro Leu Val Ser Leu Arg Ala 115 120 125

Lys Ser Asp Gly Lys Gly Ala Gly Tyr Gly Gly Leu His Thr Cys Gly 130 135 140

Ser Val Trp Ala Cys Pro Val Cys Ser Ala Lys Ile Ala Ala Arg Arg 145 150 155 160

Lys Thr Asp Leu Gln Gln Val Val Asp His Ala Val Lys His Gly Met 165 170 175

Thr Val Ser Met Leu Thr Leu Thr Gln Arg His His Lys Gly Gln Gly 180 185 190

Leu Lys His Leu Trp Asp Ala Leu Ser Thr Ala Trp Asn Arg Val Thr 195 200 205

Ser Gly Arg Arg Trp Ile Glu Phe Lys Glu Gln Phe Gly Leu Val Gly 210 215 220

Tyr Val Arg Ala Asn Glu Ile Thr His Gly Lys His Gly Trp His Val 225 230 235 240

His Ser His Val Leu Ile Ile Ser Glu Lys Asp Pro Leu Thr Ser Thr 245 255

Phe Val Tyr Gln Arg Lys Gln Gly Arg Arg Arg Leu Pro Tyr Pro Pro 260 265 270

Glu Ile Tyr Met Ser Ser Asp Phe Ile Ala Glu Arg Trp Glu Ala Gly 275 280 285

Leu Ala Lys His Gly Val Asp Phe Leu Arg Asp Ser Gly Gly Leu Asp 290 295 300

Trp Thr Val Ala Lys Asp Ala Arg Ala Ile Gly Asn Tyr Val Ser Lys 305 310 315 320

Met Gln Thr Ser Thr Asp Ala Ile Ser Ser Glu Val Thr Leu Gly Gly 325 330 335

Phe Lys Lys Ala Arg Asn Gly Asn Arg Thr Pro Phe Gln Ile Leu Ala 340 345 350

Asp Ile Leu Ser Leu Gly Asp Val Asp Asp Leu Lys Leu Trp Lys Glu 355 360 365

Tyr Glu Lys Ala Ser Phe Gly Arg Arg Ala Leu Thr Trp Ser Lys Gly 370 375 380

Leu Arg Asp Trp Ala Asm Leu Gly Val Glu Gln Ser Asp Glu Glu Ile 385 390 395 400

Ala Ser Glu Glu Ile Gly Asp Glu Ala Ile Ala Leu Phe Thr His Asp 405 410 415

Ala Trp Arg Gln Val Arg Arg Phe Gly Ala Ala Glu Leu Leu Asp Val 420 425 430

Thr Glu Ser Gly Gly Arg Ala Ala Ala Tyr Arg Trp Leu Asp Phe Arg 435 440 . 445

Glu Ile Asp Trp Ser Leu Pro Pro Lys Ile Glu 450 455

<210> 22

<211> 456

<212> PRT

<213> Streptomyces lividans

<400> 22

Met Asp Pro Ala Ser Gly Val Ile Val Ala Gln Thr Ala Ala Gly Thr 1 5 10 15

Ser Val Val Leu Gly Leu Met Arg Cys Gly Arg Ile Trp Leu Cys Pro 20 25 30

Val Cys Ala Ala Thr Ile Arg His Lys Arg Ala Glu Glu Ile Thr Ala 35 40 45

Ala Val Val Glu Trp Ile Lys Arg Gly Gly Thr Ala Tyr Leu Val Thr 50 55 60

Phe Thr Ala Arg His Gly His Thr Asp Arg Leu Ala Asp Leu Met Asp 65 70 75 80

Ala Leu Gln Gly Thr Arg Lys Thr Pro Asp Ser Pro Arg Arg Pro Gly 85 90 95

Ala Tyr Gln Arg Leu Ile Thr Gly Gly Thr Trp Ala Gly Arg Arg Ala 100 105 110

Lys Asp Gly His Arg Ala Ala Asp Arg Glu Gly Ile Arg Asp Arg Ile 115 . 120 125

Gly Tyr Val Gly Met Ile Arg Ala Thr Glu Val Thr Val Gly Gln Ile 130 140

Asn Gly Trp His Pro His Ile His Ala Ile Val Leu Val Gly Gly Arg 145 150 155 160

Thr Glu Gly Glu Arg Ser Ala Lys Gln Ile Val Ala Thr Phe Glu Pro 165 170 175

Thr Gly Ala Ala Leu Asp Glu Trp Gln Gly His Trp Arg Ser Val Trp 180 185 190

Thr Ala Ala Leu Arg Lys Val Asn Pro Ala Phe Thr Pro Asp Asp Arg 195 200 205

His Gly Val Asp Phe Lys Arg Leu Glu Thr Glu Arg Asp Ala Asn Asp 210 215 220

Leu Ala Glu Tyr Ile Ala Lys Thr Gln Asp Gly Lys Ala Pro Ala Leu 225 230 235 240

Glu Leu Ala Arg Ala Asp Leu Lys Thr Ala Thr Gly Gly Asn Val Ala 245 250 255

Pro Phe Glu Leu Leu Gly Arg Ile Gly Asp Leu Thr Gly Gly Met Thr 260 265 270

Glu Asp Asp Ala Ala Gly Val Gly Ser Leu Glu Trp Asn Leu Ser Arg 275 280 285

Trp His Glu Tyr Glu Arg Ala Thr Arg Gly Arg Arg Ala Ile Glu Trp 290 295 300

Thr Arg Tyr Leu Arg Gln Met Leu Gly Leu Asp Gly Gly Asp Thr Glu 305 310 315 320

Ala Asp Asp Leu Asp Leu Leu Leu Ala Ala Asp Ala Asp Gly Glu 325 330 335

Leu Arg Ala Gly Val Ala Val Thr Glu Asp Gly Trp His Ala Val Thr 340. 345 350

Arg Arg Ala Leu Asp Leu Glu Ala Thr Arg Ala Ala Glu Gly Lys Asp 355 360 365

Gly Asn Glu Asp Pro Ala Ala Val Gly Glu Arg Val Arg Glu Val Leu 370 375 380

Ala Leu Ala Asp Ala Ala Asp Thr Val Val Leu Thr Ala Gly Glu 385 390 395 400

Val Ala Glu Ala Tyr Ala Asp Met Leu Ala Ala Leu Ala Gln Arg Arg 405 410 415 Glu Glu Ala Thr Ala Arg Arg Arg Glu Gln Asp Asp Gln Asp 420 425 430

Asp Asp Ala Asp Asp Arg Gln Glu Arg Ala Ala Arg His Ile Ala Arg 435 440 445

Leu Ala Ser Gly Pro Thr Ser His 450 455

<210> 23

<211> 528

<212> PRT

<213> Streptomyces phaeochromogenes

<400> 23

Met Leu Asn Arg Val Ser Gly Ile Asp Ala Cys Gly Gly Cys Gly Arg 1 5 10 15

Arg Val Leu Asp Pro Asp Thr Gly Val Ile Tyr Ala Lys Ser Ser Arg 20 25 30

Gly Tyr Val Val Thr Ile Gly Leu Val Arg Cys Gly Arg Ile Trp Phe 35 40 45

Cys Pro Glu Cys Ser Ser Ala Ile Arg Arg Gly Arg Thr Glu Glu Ile 50 55 60

Lys Thr Gly Ala Leu Arg His Leu Ala Ala Gly Gly Thr Leu Ala Val 65 70 75 80

Val Val Leu Thr Ala Arg His Asn Gln Thr Thr Asp Leu Asp Ser Leu 85 90 95

Val Ala Ala Leu Trp Gly Gly Pro Leu Leu Asp Asp Lys Gly Ala Pro 100 105 110

Val Leu Asp Arg Ser Gly Lys Pro Arg Arg Ala Pro Gly Ala Tyr Gln 115 120 125

Arg Met Leu Thr Ala Pro Ala Phe Tyr Gly Arg Pro Glu Ala Arg Arg 130 135 140

Thr Arg Lys Asp Gly Thr Gln Tyr Val Arg Pro Ala Glu Asp Gly Ile 145 150 155 160

Arg His Arg Ile Gly Tyr Ile Gly Met Val Arg Ala Ala Glu Val Thr
165 170 175

Arg Ser Lys Lys Asn Gly Tyr His Pro His Leu Asn Leu Leu Val Phe
180 185 190

Leu Gly Gly Glu Leu Ser Gly Thr Pro Ala Lys Gly Asp Val Val Gly 195 200 205

His Phe Glu Pro Ser Glu Thr Asp Leu Gly Asp Trp Glu Asp Trp Leu 210 220

Arg Glu Met Trp Ala Gly Ala Leu Lys Arg Ala Asp Pro Lys Phe Glu 225 230 235 240

Pro Ser Thr Asp Cys Asp Thr Pro Gly Cys Lys Cys Lys Gly Lys Gly 245 250 255

His Gly Val Met Val Ser Ile Val Arg Ser Ala Asp Asp Val Ala Leu 260 265 270

Ile Glu Tyr Leu Thr Lys Asn Gln Asp Gly Lys Arg Glu Arg Pro Asp 275 280 285

Ser Val Asp Gln Asp Leu Glu Ala Ala Gly Ala Ala Ala Met Glu Thr 290 295 300

Ala Arg Leu Asp Ser Lys Thr Gly Arg Gly Arg Lys Ser Met Thr Pro 305 310 315 320

Phe Gln Ile Leu Tyr Arg Leu Trp Asp Ile Glu Val Ala Gly Leu Asp 325 330 335

Pro Asp Met Ala Glu Gly Tyr Gly Thr Pro Lys Gln Leu Arg Ala Trp 340 345 350

Trp Ala Gln Tyr Glu Glu Ala Leu Ala Gly Arg Arg Ala Ile Glu Trp 355 360 365

Thr Arg Gly Leu Arg Arg His Val Asp Leu Asp Gly Asp Asp Asp Glu 370 375 380

Glu Thr Asp Leu Gln Tyr Val Tyr Glu Pro Glu Ala Ala Pro Leu Asp 385 390 395 400

Gly Gly Val Val Leu Thr Ser Asp Ala Met Arg Leu Val Val Gly Ala 405 410 415

Asp Ala Glu Leu Asp Leu Asp Asp Val Val Arg Ala Glu Ala Tyr Tyr 420 425, 430

Ser Ala Val Asp Val Val Thr Gly Leu Gly Gly Arg Ala Asp His Val 435 440 445

Arg Val Ala Thr Ala Glu Glu Leu Ala Glu Val Gln Glu Val Leu Phe 450 455 460

Ala Arg Thr Gln Glu Arg Ala Glu Glu Ser Arg Arg Gln Arg Arg Ile 465 470 475 480

Ala Glu His Glu Ala Glu Gln Ala Ala Ala His Arg Lys Arg Gln Glu 485 490 · 495

Leu Ala Arg Cys Leu Gly Leu Leu Val Arg Gln Arg Gly Gly Thr Gln 500 505 510

Asp Asp Ser Ala Ala Asp Asn Phe Val Ala His Ile His Ala Asn Arg 515 520 525

<210> 24

<211> 451

<212> PRT

<213> Streptomyces nigirifaciens

<400> 24

Met Asp Pro Ala Ser Gly Val Ile Val Ala Gln Thr Ala Ala Gly Thr 1 5 10 15

Ser Val Val Leu Gly Leu Met Arg Cys Gly Arg Ile Trp Leu Cys Pro 20 25 30

Val Cys Ala Ala Thr Ile Arg His Lys Arg Ala Glu Glu Ile Thr Ala 35 40 45

Ala Val Val Glu Trp Ile Lys Arg Gly Gly Thr Ala Tyr Leu Val Thr 50 55 60

Phe Thr Ala Arg His Gly His Thr Asp Arg Leu Ala Asp Leu Met Asp 65 70 75 80

Ala Leu Gln Gly Thr Arg Lys Thr Ala Asp Ala Pro Arg Arg Pro Gly 85 90 95

Ala Tyr Gln Arg Leu Ile Thr Gly Gly Thr Trp Ala Gly Arg Arg Ala 100 105 110

Lys Asp Gly His Arg Ala Ala Asp Arg Glu Gly Ile Arg Asp Arg Ile 115 120 125

Gly Tyr Val Gly Met Ile Arg Ala Thr Glu Val Thr Val Gly Gln Ile 130 135 140

Asn Gly Trp His Pro His Ile His Ala Ile Val Leu Val Gly Gly Arg 145 150 155 160

Thr Glu Gly Glu Arg Ser Ala Lys Gln Ile Val Gly Thr Phe Glu Pro 165 170 175

Ser Glu Ala Ala Leu Asp Glu Trp Gln Gly Gln Trp Arg Ala Val Trp 180 185 190

Thr Ala Ala Leu Arg Lys Val Asn Pro Gln Phe Thr Pro Asp Asp Arg 195 200 205

His Gly Val Asp Phe Lys Arg Leu Glu Thr Glu Arg Asp Ala Asn Asp 210 215 220

Leu Ala Glu Tyr IIe Ala Lys Thr Gln Asp Gly Lys Ala Pro Ala Leu 230 235 240

Glu Leu Ala Arg Ala Asp Leu Lys Thr Ala Asn Gly Gly Asn Val Ala 245 250 255

Pro Phe Glu Leu Leu Gly Arg Ile Gly Asp Leu Thr Gly Gly Met Thr 260 265 . 270

Glu Asp Asp Ala Ala Gly Val Gly Ser Leu Glu Trp Asn Leu Ala Arg 275 280 285

Trp His Glu Tyr Glu Arg Ala Thr Lys Gly Arg Arg Ala Ile Glu Trp 290 295 300

Thr Arg Tyr Leu Arg Gln Met Leu Gly Leu Asp Gly Gly Asp Thr Glu 305 310 315 320

Ala Asp Asp Leu Asp Leu Leu Leu Ala Asp Ala Asp Gly Glu 325 330 335

Leu Arg Ala Gly Val Ala Val Thr Glu Asp Gly Trp His Ala Val Thr 340 345 350

Arg Arg Ala Leu Asp Leu Ala Ala Thr Gln Ala Ala Glu Gly Thr Asp 355 360 365

Gly Asn Thr Asp Pro Ala Ala Met Gly Glu Arg Val Arg Glu Val Leu 370 380

Ala His Ala Asp Ala Asp Ala Val Val Leu Thr Ser Gly Glu 385 390 395 400

Val Ala Glu Ala Tyr Ala Asp Met Leu Ala Ala Leu Ala Leu Arg Arg
405 410 415

Glu Glu Ala Ala Arg Arg Arg Glu Gln Asp Asp Gln Asp 420 425 430

Asp Asp Ala Asp Asp Arg Gln Glu Arg Ala Ala Arg His Ile Ala Arg 435 440 445

Leu Arg Asn 450

<210> 25

<211> 30

<212> DNA

<213> Streptomyces lividans

<400> 25 gaggcaaaag cgaacacett gggaaagaaa

<210> 26

<211> 30

<212> DNA

<213> Streptomyces phaeochromogenes

<400> 26 ctggcaaaaa gggacgccta ggtaaaggtt

30

30

<210> 27

<211> 31

VO 02/055	5709	PCT/US01/47868
<212>	DNA	
<213>	Streptomyces nigirifaciens	
<400> gaccca	27 aaaac tgtcgcgcct tgggaaagaa a	31
<210>	28	
<211>		
<212>	DNA	
<213>	Primer	
<400> atttcg	28 Etga acggete g ee	20
4010		
<210> <211>	29	•
<212>		
<213>	Primer	
<400>	29 teeg aeetetaeea	0.0
		20
<210> <211>	30 20	
<211>	DNA	
	Primar	

20

<400> 30

tgagacgagc cgtcagcctt

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 18 July 2002 (18.07.2002)

PCT

(10) International Publication Number WO 02/055709 A3

(51) International Patent Classification7: C12N 15/31, C07K 14/36, C12Q 1/68, C12N 15/74

(21) International Application Number: PCT/US01/47868

(22) International Filing Date:

12 December 2001 (12.12.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/254,868

12 December 2000 (12.12.2000)

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 MARKET STREET, WILMINGTON, DE 19898 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRAMUCCI, Michael, G. [US/US]; 532 Melmont Avenue, Folsom, PA 19033 (US). CHENG, Qiong [CN/US]; 4 Collins Drive,

Wilmington, DE 19803 (US). KOSTICHKA, Kristy, N. [US/US]; 111 Shrewsbury Drive, Wilmington, DE 19810 (US). TOMB, Jean-Francois [US/US]; 627 Haverhill Road, Wilmington, DE 19803 (US).

- (74) Agent: FELTHAM, S., Neil; E.I. Dupont de Nemours and Company, Legal Patent Records Center, 4417 Lancaster Pike, Wilmington, DE 19805 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FL, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

[Continued on next page]

(54) Title: RHODOCOCCUS CLONING AND EXPRESSION VECTORS

(57) Abstract: A plasmid has been isolated from Rhodococcus erythropolis strain AN12 comprising a unique replication protein. The replication protein may be used in a variety of cloning and expression vectors and particularly in shuttle vectors for the expression of heterologous genes in Rhodococcus sp.

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

- with international search report

Published:

(88) Date of publication of the international search report: 17 April 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INTERNATIONAL SEARCH REPORT

Interview nal Application No PCT/US 01/47868

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/31 C07K14/36 C1201/68 C12N15/74 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K C12Q Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EMBL, EPO-Internal, WPI Data, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 9 Citation of document, with indication, where appropriate, of the retevant passages Relevant to claim No. Α STEPHEN J. BILLINGTON ET AL.: "The 1 - 41Arcanobacterium (Actinomyces) pyogenes plasmid pAP1 is a member of the pIJ101/pJV1 family of rolling circle replication plasmids" JOURNAL OF BACTERIOLOGY, vol. 180, no. 12, June 1998 (1998-06), pages 3233-3236, XP002225296 the whole document US 4 952 500 A (WILLIAM R. FINNERTY ET 17 - 41AL.) 28 August 1990 (1990-08-28) the whole document X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *A* document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 17 December 2002 13/01/2003 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016 Montero Lopez, B

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

ional Application No PCT/US 01/47868

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 01	, -1,000
Category °			Relevant to claim No.
A	DATABASE EMBL 'Online! Database Entry SCPBR328V, 10 October 1983 (1983-10-10) GILBERT W. ET AL.: "pBR328 cloning vector" Database accession no. L08858 XP002225297 the whole document & SOBERON X. ET AL.: GENE, vol. 9, 1982, pages 287-305,		26,27
Α	MOT DE R ET AL: "STRUCTURAL ANALYSIS OF THE 6 KB CRYPTIC PLASMID PFAJZ600 FROM RHODOCOCCUS ERYTHROPOLIS NI86/21 AND CONSTRUCTION OF ESCHERICHIA COLI-RHODOCOCCUS SHUTTLE VECTORS" MICROBIOLOGY, SOCIETY FOR GENERAL MICROBIOLOGY, READING, GB, vol. 143, no. 10, 1997, pages 3137-3147, XP001015207 ISSN: 1350-0872 the whole document		1-41

INTERNATIONAL SEARCH REPORT

Internation No
PCT/US 01/47868

Patent document cited in search report Publication date Patent family member(s) Publication date

US 4952500 A 28-08-1990 W0 8907151 A1 10-08-1989

Form PCT/ISA/210 (patent family annex) (July 1992)