Stress, Strain and Deformation **Bending Stresses – Visualisation**

Dr Luiz Kawashita

Luiz.Kawashita@bristol.ac.uk

07 November 2017

Example 2.2.8: I-section beam in combined bending

Example 2.2.8: I-section beam in combined bending

Example 2.2.8: I-section beam in combined bending

Stress, Strain and Deformation **Bending Deflections**

Dr Luiz Kawashita

Luiz.Kawashita@bristol.ac.uk

07 November 2017

peak stresses

$$M_{(x)} = \frac{1}{R_{(x)}} E I = \kappa_{(x)} E I$$

And from Calculus:

$$\phi_{(x)} = \frac{\mathrm{d} v}{\mathrm{d} x}$$

$$\kappa_{(x)} = \frac{\mathrm{d}\,\phi}{\mathrm{d}\,x} = \frac{\mathrm{d}^2\,v}{\mathrm{d}\,x^2}$$

$$\frac{\mathrm{d}^2 \kappa_{(x)}}{\mathrm{d} x^2}$$

$$\frac{d^4 v}{d x^4}$$

(Sign depends on assumed sense of
$$w$$
)
$$+\frac{1}{FI} W_{(x)} - \frac{\text{External load}}{\text{distribution}}$$

$$W_{(x)}$$
 — External load distribution

$$\frac{\mathrm{d}\,\kappa_{(x)}}{\mathrm{d}\,x} =$$

$$\frac{\mathrm{d}^3 v}{\mathrm{d} x^3}$$

(Sign depends on assumed
$$x$$
-direction)
$$-\frac{1}{FI} V_{(x)} \longrightarrow \text{Shear force}$$

$$V_{(x)}$$
 — Shear force

differentiating

$$=\frac{\mathrm{d}^2 v}{\mathrm{d} x^2}$$

$$\frac{1}{I}M_{(x)}$$

$$M_{\odot}$$
 — Moment

Slope

Curvature

$$\phi_{(x)}$$

$$\frac{\mathrm{d} v}{\mathrm{d} x}$$

Deflection

$$v_{(x)}$$

Derivatives and their physical meaning

y x		M_0		#1111111111111111111111111111111111111	w(x)
$EI \frac{\mathrm{d}^4 v}{\mathrm{d} x^4} = w_{(x)}$	External load distribution			X X	X
4 th order ODE		0	0	constant	1 st order polynomial
$-EI \frac{\mathrm{d}^3 v}{\mathrm{d} x^3} = V_{(x)}$	Shear force		X	X	x
3 rd order ODE		0	constant	1 st order polynomial	2 nd order polynomial
$EI \frac{\mathrm{d}^2 v}{\mathrm{d} x^2} = M_{(x)}$	Moment	x	x	x	x
2 nd order ODE		constant	1 st order polynomial	2 nd order polynomial	3 rd order polynomial
$\frac{\mathrm{d}v}{\mathrm{d}x} = \phi_{(x)}$ 1st order ODE	Slope	χ 1st order polynomial	2 nd order polynomial	χ 3 rd order polynomial	4 th order polynomial
$v_{(x)}$	Deflection	2 order porymonial	2 didd. polynomial	5 State polynomial	. Graci polynomiai
polynomial	20	2 nd order polynomial (arc)	χ 3 rd order polynomial	4 th order polynomial	χ 5 th order polynomial