

Schema circuitale

Uno schema circuitale è un collegamento di porte (rappresentate in maniera grafica) tramite linee.

Identifichiamo tre tipi di linee:

1.linee di ingresso, ognuna etichettata con una delle *n* variabili booleane;

2.linee di uscita, ognuna etichettata con una delle *m* variabili di uscita (una per ogni FB calcolata);

3.linee interne, ciascuna delle quali collega l'uscita di una porta con l'ingresso di un'altra porta.

Vincoli:

- Ogni ingresso di ogni porta deve essere collegato ad una linea di ingresso oppure ad una linea interna.
- L'uscita di ogni porta deve essere collegata ad una linea di uscita oppure ad una linea interna.
- Il collegamento di porte tramite linee non deve dare luogo a cicli.

Reti combinatorie

Una *rete combinatoria* è un circuito elettronico digitale in grado di calcolare in modo automatico una funzione booleana.

Un *circuito elettronico* è un sistema costituito da blocchi elementari (porte) interconnesse tra loro in maniera <u>aciclica</u>.

Gli ingressi di porte che non sono uscite di altre porte sono gli input.

Le uscite di porte che non sono ingressi di altre porte sono gli output.

$$z_i = f_i(x_1...x_n) \quad (i=1...m)$$

N.B.: I valori degli output in ogni istante sono univocamente determinati dai valori presenti contemporaneamente sugli input.

Definizione induttiva di Rete combinatoria

Una rete combinatoria a una uscita (RC1) è induttivamente definita da:

• una linea che connette un input x a un output z

è una RC1:

• se R è una RC1 e op è una porta a una entrata (NOT), allora anche

è una RC1;

• se R_1 e R_2 sono RC1 e op è una porta a due entrate (AND, OR, NOR, NAND, XOR, XNOR), allora anche

è una RC1, unendo tra loro gli input etichettati dalla stessa variabile.

Una **rete combinatoria** a *m* **uscite** (semplicemente **rete combinatoria**, RC) è la giustapposizione di *m* RC1 ottenute unendo tra loro gli input etichettati dalla stessa variabile.

Relazione tra EB e RC

Per ogni EB esiste un'unica RC (in realtà, RC1) formata solo da porte NOT, AND e OR che la calcola.

Procedimento:

- 1.Data una EB, rappresentala in modo gerarchico, mettendo più in alto gli operatori che vanno effettuati per ultimi; al livello più basso ci saranno le variabili
 - \rightarrow attenzione alle regole di precedenza tra gli operatori ($\bar{} > \cdot > +$)
- 2.Ruotando a destra di 90° tale rappresentazione si ha la struttura della RC, con gli input più a sinistra e l'output più a destra
- 3.Basta trasformare ogni operatore nella porta corrispondente e collegare con una linea di ingresso le entità a livello inferiore a quella di livello immediatamente superiore (che è sempre una porta)

SAPIENZA UNIVERITA DI ROMA

Per ogni RC a *m* uscite esiste un'*m*-pla di EB che la descrive; tale *m*-pla è unica a meno di ridenominazione delle variabili associate agli input della RC

Procedimento:

Es.:

Relazioni tra RC e EB

- 1. Assegna una variabile distinta ad ogni input
- 2.Per ogni porta con ingressi assegnati ad una EB, associa all'uscita la EB risultante dall'operazione della porta sugli ingressi
- 3. Itera finché tutti gli output non sono assegnati a una EB

Analisi di RC

SCOPO: data una RC, trovare la FB calcolata

PASSAGGI: RC \rightarrow ¹ \rightarrow EB \rightarrow ² \rightarrow TV (= FB)

Il passaggio 1 si fa come abbiamo visto in precedenza in questa lezione

Il passaggio 2 si fa usando uno dei modi visti per passare da una EB a una TV:

- Induzione perfetta: assegna tutti i possibili valori di verità alle variabili e costruisci la TV in maniera incrementale
- Usando FND, FCD, FNC o FCC

Sintesi di RC

SCOPO: data una descrizione verbale di una FB, trovare una RC che la calcola

PASSAGGI: Descrizione verbale \rightarrow ¹ \rightarrow FB (= TV) \rightarrow ² \rightarrow EB \rightarrow ³ \rightarrow RC

Il passaggio 1 è l'unico per cui non possiamo dare un procedimento meccanico (dipende da come è data la descrizione verbale: vedremo vari esempi!)

Il passaggio 2 si fa usando uno dei modi visti per passare da una TV a una EB. Siccome vorremmo la RC più piccola possibile, di solito si usano le MdK per trovare la FND/FNC minima e poi si semplifica per quanto ulteriormente possibile, usando assiomi dell'algebra di Boole o porte NAND/NOR/XOR/XNOR

Il passaggio 3 si fa usando il semplice metodo per ottenere una RC a partire da una EB visto nella precedentemente in questi lucidi

Esempio (1)

Si progetti il circuito di controllo di un rubinetto che controlla la quantità d'acqua in una soluzione chimica. Il rubinetto deve essere chiuso se:

- 1. Il serbatoio è pieno; oppure
- La valvola di scarico è chiusa, la concentrazione di reagenti è sufficiente e il livello d'acqua non è basso.

SOLUZIONE:

Ad ogni evento associamo una variabile (di input):

S = 1 se il serbatoio è pieno, 0 altrimenti;

V = 1 se la valvola di scarico è aperta, 0 se è chiusa;

C = 1 se la concentrazione di reagenti è sufficiente, 0 altrimenti;

L = 1 se il livello dell'acqua è basso, 0 altrimenti.

Anche la funzione da calcolare è un evento, quindi una variabile (di output):

R = 1 se il rubinetto è aperto, 0 altrimenti;

OSS.: in questo caso si poteva ricavare l'EB minima direttamente dalla specifica verbale, senza passare per la TV e la MdK:

Una volta definite le variabili booleane, si ha che

"Il rubinetto deve essere chiuso se: (1) Il serbatoio è pieno; oppure (2) La valvola di scarico è chiusa, la concentrazione di reagenti è sufficiente e il livello d'acqua non è basso"

diventa $\bar{R} = S + \bar{V}C\bar{L}$

da cui $R = \overline{S + \overline{VCL}} = \overline{S}(V + \overline{C} + L)$

SAPIENZA Università di Roma Dipartimento di Inform Esempio (3) Mappa di Karnaugh: 11 10 CL00 0 01 0 0 11 10 0 FND minima: $R = \overline{S}V + \overline{S}\overline{C} + \overline{S}L$ $R=\overline{S}(V+\overline{C}+L)$ EB minima: Circuito: OSS.: questa è la minima POS che avrei ottenuto dalla MdK coprendo gli 0

Esempio (5)

N.B.: con una scelta diversa delle variabili associate agli eventi avrei avuto una TV (e quindi EB) diversa!!

Es.: S = 0 se il serbatoio è pieno, 1 altrimenti;

L = 0 se il livello dell'acqua è basso, 1 altrimenti.

porterebbe a $\overline{R} = \overline{S} + \overline{V}CL$

da cui $R = S(V + \overline{C} + \overline{L})$

Un secondo esempio (1)

Si progetti un circuito combinatorio che riceve in ingresso quadruple di bit con un numero pari di "1" e restituisce 1 se il numero degli "1" è uguale al numero degli "0".

	xyzt	f	
	0000	0	
SOLUZIONE	0 0 0 1	-	
	0 0 1 0	-	
In questo caso, le variabili di input sono 4, una per ogni bit della quadrupla;	0 0 1 1	1	
	0100	-	
	0 1 0 1	1	
	0 1 1 0	1	
inoltre, le configurazioni con un numero dispari di "1" non si presenteranno mai; quindi, useremo i <i>don't care</i> per tali quadruple.	0 1 1 1	-	
	1000	-	
	1001	1	
	1010	1	
	1011	-	
	1100	1	
	1101	-	
	1110	_	
	1111	0	

