PROJECT

Q1(a) Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.

1) Data type of columns in a table:

```
SELECT column_name,data_type FROM target-382417.Target_sql_businesscase.INFORMATION_SCHEMA.COLUMNS order by column_name
```


2) Time period for which the data is given

```
select min(order_purchase_timestamp) as First_order_purchase_timestamp,
max(order_delivered_customer_date) as Last_order_delivered_customer_date ,
max(order_estimated_delivery_date) as Last_order_estimated_delivery_date
from `Target_sql_businesscase.orders`
```


(3) Cities and States of customers ordered during the given period

(i) Details of customers who ordered:

```
select c.customer_id,c.customer_city,c.customer_state
from `target-382417.Target_sql_businesscase.customers` as c
join `target-382417.Target_sql_businesscase.orders` as o
on c.customer_id=o.customer_id
```

Row	customer_id	customer_city //	customer_state				
1	5fc4c97dcb63903f996714524	maceio	AL				
2	a5c8228ef32a5a250903b18c0	aracaju	SE				
3	670af30ca5b8c20878fecdafa5	aracaju	SE				
4	5351c1e4ae199735063d6406c	maceio	AL				
5	5b54155ba8103b1bb1e157edc	teresina	PI				
6	1318775058e4321f5018e2fe4	pau d'arco	AL				
7	9c4efecd1866c2177998d461b	natal	RN				
8	84cb4824ee3f6d0c24b60d12a	teresina	PI				
9	6143e5df1b61e9568a5f02adb	sao joao do piaui	PI				
10	de270dbea5d94e6436d84456	boquim	SE				
	Results per page: 50 ▼ 1 – 50 of 99441						

ii) Details of customers who have not ordered:

```
select c.customer_city,c.customer_state,o.order_id
from `target-382417.Target_sql_businesscase.customers` as c
left join `target-382417.Target_sql_businesscase.orders` as o
on c.customer_id=o.customer_id
where o.order_id is null
```


Conclusions:

- Data is given for the time period :04-09-2016 to 17-10-2018
 Every customer has made a purchase so we can find customer_city,customer_state from customer table only.
 select customer_city,customer_state from `target-382417.Target_sql_businesscase.customers` as c
- Q(2) (1) Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Yearly growth:

```
with table as( select
extract(YEAR FROM order_purchase_timestamp) AS Year,
count(distinct order_id) as Number_of_orders,
sum(count(distinct order_id)) over () as total
from `target-382417.Target_sql_businesscase.orders`
where extract(YEAR FROM order_purchase_timestamp) !=2016
group by Year
```

```
order by Year)
select Year, Number_of_orders, round((Number_of_orders/total)*100,3) as percentage
from table
```

Row	Year	Number_of_orde	percentage
1	2017	45101	45.505
2	2018	54011	54.495

Quarterly growth:

```
select extract(Quarter FROM order_purchase_timestamp) AS Quarter,
extract(YEAR FROM order_purchase_timestamp) AS Year,
count(distinct order_id) as Number_of_orders,
from `target-382417.Target_sql_businesscase.orders`
group by Quarter,Year
order by Year,Quarter
```

Row	Quarter	Year	Number_of_orde
1	3	2016	4
2	4	2016	325
3	1	2017	5262
4	2	2017	9349
5	3	2017	12642
6	4	2017	17848
7	1	2018	21208
8	2	2018	19979
9	3	2018	12820
10	4	2018	4

Conclusion:

- 1) There is an increase in number of orders of **8.99%** from 2017 to 2018 (see Yearly growth).
- 2) Data for year 2016 is given for last two quarters only. So, quarterly number of orders may provide a meaningful insight about e-commerce growing trend (see Quarterly growth).
- 3) Number of orders are increasing from quarter 3, 2016 to quarter 1,2018, while after quarter 1, 2018 orders are decreasing.
- 4) There is no specific month in which there is a hike in each year.

Q2 (2) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
with cte as(select purchase time, count(purchase time) as Num of purchases, sum(count(
purchase_time)) over () as total from
(select order purchase timestamp,
case
when extract(time from
order_purchase_timestamp) between "03:00:00" and "06:30:00" then "Dawn"
when extract(time from order purchase timestamp) between "06:30:01" and "12:00:00"
then "Morning"
when extract(time from order purchase timestamp) between "12:00:01" and "16:30:00"
then "Afternoon"
else "Night"
end as purchase time
from `target-382417.Target sql businesscase.orders`) as temp
group by purchase time
order by purchase_time)
select purchase_time, Num_of_purchases, round((Num_of_purchases/total)*100,2) as
                                                                                       purchase
_percentage from cte
```

Row	purchase_time	Num_of_purchas	purchase_percer
1	Afternoon	28836	29.0
2	Dawn	864	0.87
3	Morning	22042	22.17
4	Night	47699	47.97
			·

Conclusion:

- 1) Brazilian customers mostly do purchases in night during 16:30:01 to 2:59:59.
- 2) In dawn, purchase percentage is minimum.
- 3) They also prefer to do purchases in afternoon in comparison of morning.

Q(3) Evolution of E-commerce orders in the Brazil region:

(1) Get month on month orders by states:

```
select extract(MONTH FROM o.order_purchase_timestamp) AS Month,
extract(YEAR FROM o.order_purchase_timestamp) AS Year,c.customer_state,
count(distinct o.order_id) as Number_of_orders
from `target-382417.Target_sql_businesscase.orders` as o
join `target-382417.Target_sql_businesscase.customers` as c
on c.customer_id=o.customer_id
group by Month,Year,c.customer_state
order by Year,Month
```


Q3(2) Distribution of customers across the states in Brazil

```
select customer_state,count_customer_id
from (select count(distinct customer_id) as count_customer_id,
customer_state
from `target-382417.Target_sql_businesscase.customers`
group by customer_state) as temp
order by count_customer_id desc
```

Row	customer_state	count_customer
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020

Conclusions:

Q3(1):

- 1) Just few states have growing month on month orders in 2016.
- 2) There is a growing trend in month on month orders for each state in 2017.
- 3) In 2018, the month on month orders are getting decreased for many of the states but, still orders have been increased on yearly basis as seen in Q 2 (1).

Q3(2):

1) SP and RR are the states with maximum and minimum number of customers.

Q 4(1) Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment value" column in payments table

```
SELECT

100.0 * (SUM(CASE WHEN DATE_TRUNC(o.order_purchase_timestamp, MONTH) BETWEEN '201
8-01-01' AND '2018-08-31' THEN p.payment_value END)

- SUM(CASE WHEN DATE_TRUNC(o.order_purchase_timestamp, MONTH) BETWEEN '2017-
01-01' AND '2017-08-31' THEN p.payment_value END))

/ SUM(CASE WHEN DATE_TRUNC(o.order_purchase_timestamp, MONTH) BETWEEN '2017-01-
01' AND '2017-08-31' THEN p.payment_value END) AS percent_increase
FROM `target-382417.Target_sql_businesscase.orders` as o
join `target-382417.Target_sql_businesscase.payments` as p
on o.order_id =p.order_id
```


Q 4(2) Mean & Sum of price and freight value by customer state.

```
SELECT c.customer_state,sum(oi.price) as Price,sum(oi.freight_value) as Freight_value,sum(pric e+freight_value)as Sum_Price_Freight,
AVG(oi.price) as Mean_price,AVG(oi.freight_value) as Mean_freight,
AVG(price+freight_value) as Mean_Price_Freight
from
  `target-382417.Target_sql_businesscase.customers` as c
join
  `target-382417.Target_sql_businesscase.orders` as o
on o.customer_id=c.customer_id
left join
  `target-382417.Target_sql_businesscase.order_items` as oi
on o.order_id=oi.order_id
group by c.customer_state
```

JOB IN	FORMATION RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH	PREVIEW		
Row /	customer_state	Price //	Freight_value //	Sum_Price_Freig	Mean_price //	Mean_freight //	Mean_Price_Frei	
1	AC	15982.9499	3686.74999	19669.7000	173.727717	40.0733695	213.801086	
2	AL	80314.81	15914.5899	96229.3999	180.889211	35.8436711	216.732882	
3	AM	22356.8400	5478.88999	27835.7300	135.495999	33.2053939	168.701393	
4	AP	13474.2999	2788.50000	16262.8	164.320731	34.0060975	198.326829	
5	BA	511349.990	100156.679	611506.670	134.601208	26.3639589	160.965167	
6	CE	227254.709	48351.5899	275606.299	153.758261	32.7142016	186.472462	
7	DF	302603.939	50625.4999	353229.440	125.770548	21.0413549	146.811903	
8	ES	275037.309	49764.5999	324801.909	121.913701	22.0587765	143.972477	
9	GO	294591.949	53114.9799	347706.930	126.271731	22.7668152	149.038546	
10	MAA	1106/0 210	21522 7700	151171 000	145 204150	20 2570024	102 /61152	

Q5(1) Calculate days between purchasing, delivering and estimated delivery

```
SELECT order_id,DATETIME_DIFF(order_delivered_customer_date,order_purchase_timestamp,day) as ti me_to_delivery

DATETIME_DIFF(order_estimated_delivery_date _,order_delivered_customer_date,day)
as diff_estimated_delivery,

DATETIME_DIFF(order_estimated_delivery_date _,order_purchase_timestamp,day) as diff_estimated_delivery_and_purchase from `target-382417.Target_sql_businesscase.orders` order by order_id
```

Row	order_id	time_to_delivery	diff_estimated_d	diff_estimated_c
1	00010242fe8c5a6d1ba2dd792	7	8	15
2	00018f77f2f0320c557190d7a1	16	2	18
3	000229ec398224ef6ca0657da	7	13	21
4	00024acbcdf0a6daa1e931b03	6	5	11
5	00042b26cf59d7ce69dfabb4e	25	15	40
6	00048cc3ae777c65dbb7d2a06	6	14	21
7	00054e8431b9d7675808bcb8	8	16	24
8	000576fe39319847cbb9d288c	5	15	20
9	0005a1a1728c9d785b8e2b08	9	0	9
10	0005f50442cb953dcd1d21e1f	2	18	20

Q 5 (2)Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

- o time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
- diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

```
SELECT order_id,(order_delivered_customer_date -
  order_purchase_timestamp) as time_to_delivery,
  (order_estimated_delivery_date - order_delivered_customer_date) as diff_estimated_delivery
  from `target-382417.Target_sql_businesscase.orders`
  order by order_id
```

Row	order_id	time_to_delivery	diff_estimated_delivery
1	00010242fe8c5a6d1ba2dd792	0-0 0 182:44:46	0-0 0 192:16:12
2	00018f77f2f0320c557190d7a1	0-0 0 389:11:18	0-0 0 55:55:36
3	000229ec398224ef6ca0657da	0-0 0 190:45:45	0-0 0 322:40:44
4	00024acbcdf0a6daa1e931b03	0-0 0 147:32:4	0-0 0 130:27:21
5	00042b26cf59d7ce69dfabb4e	0-0 0 602:44:40	0-0 0 367:17:29
6	00048cc3ae777c65dbb7d2a06	0-0 0 160:2:1	0-0 0 346:15:25
7	00054e8431b9d7675808bcb8	0-0 0 202:9:50	0-0 0 385:56:22
8	000576fe39319847cbb9d288c	0-0 0 121:55:40	0-0 0 369:55:53
9	0005a1a1728c9d785b8e2b08	0-0 0 239:36:58	0-0 0 -18:17:31

Q5 (3) Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
select customer state, round(AVG(freight value),2) as mean freigth value,
round(AVG(time_to_delivery),2) as mean_time_to_delivery,
round(AVG(diff_estimated_delivery),2)
as mean_diff_estimated_delivery
(SELECT *, DATETIME DIFF(order delivered customer date, order purchase timestamp, day) as time to
_delivery,
DATETIME DIFF(order estimated delivery date ,order delivered customer date,day)
as diff_estimated_delivery
from `target-382417.Target sql businesscase.orders` as o
join `target-382417.Target sql businesscase.customers` as c
on c.customer id=o.customer id
join
`target-382417.Target sql businesscase.order items` as oi
on oi.order_id=o.order_id
) as X
group by customer state
```

Row	customer_state	mean_freigth_va	mean_time_to_delivery	mean_diff_estimated_delive
1	MT	28.17	17.51	13.64
2	MA	38.26	21.2	9.11
3	AL	35.84	23.99	7.98
4	SP	15.15	8.26	10.27
5	MG	20.63	11.52	12.4
6	PE	32.92	17.79	12.55
7	RJ	20.96	14.69	11.14
8	DF	21.04	12.5	11.27
0	DC	21.74	1 / 71	10.0

Q (5) Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

```
SELECT customer_state, round(AVG(freight_value),2) as mean_freigth_value
from `target-382417.Target_sql_businesscase.orders` as o
join `target-382417.Target_sql_businesscase.customers` as c
on c.customer_id=o.customer_id
join
`target-382417.Target_sql_businesscase.order_items` as oi on oi.order_id=o.order_id
group by customer_state
order by mean_freigth_value
limit 5
Note: For top 5 highest average freight value, use order by mean_freigth_value desc
```

Top 5	Top 5 states with lowest average freight-value Top 5 states with highest average freight-value			states with h	ighest aver	age freight	-
freigh							
000111	TEOLIG CONT.			NFORMATION	RESULTS	JSON	EX
Row	customer_state //	mean_freigth_value	Row	customer_state		mean_freigth_va	
1	SP	15.15	1	RR	"	42.98	
2	PR	20.53	2	PB		42.72	
3	MG	20.63	3	RO		41.07	
4	RJ	20.96	4	AC		40.07	
5	DF	21.04	5	PI		39.15	

Q 5(6) Top 5 states with highest/lowest average time to delivery

```
select customer_state, round(AVG(time_to_delivery),2) as mean_time_to_delivery,
from
(SELECT *,DATETIME_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,day) as tim
e_to_delivery,
from `target-382417.Target_sql_businesscase.orders` as o
join `target-382417.Target_sql_businesscase.customers` as c
on c.customer_id=o.customer_id
) as X
group by customer_state
order by mean_time_to_delivery
limit 5
Note: For top 5 with highest avg time to delivery, use order by mean_time_to_delivery desc
```

Top 5 states with lowest average time delivery		Top 5 states with highest average time to delivery				
Row	customer_state	mean_time_to_d	Row	customer_state	h	mean_time_to_d
1	SP	8.3	1	RR		28.98
2	PR	11.53	2	AP		26.73
3	MG	11.54	3	AM		25.99
4	DF	12.51	4	AL		24.04
5	SC	14.48	4	AL		24.04
			5	PA		23.32

Q5 (7)Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
select customer_state, round(AVG(diff_estimated_delivery),2) as mean_diff_estimated_delive
ry,
from
(SELECT *,DATETIME_DIFF(o.order_estimated_delivery_date ,o.order_delivered_customer_date,d
ay)
```

```
as diff_estimated_delivery,
from `target-382417.Target_sql_businesscase.orders` as o
join `target-382417.Target_sql_businesscase.customers` as c
on c.customer_id=o.customer_id
) as X
group by customer_state
order by mean_diff_estimated_delivery
limit 5
Note: For Top 5, use order by mean_diff_estimated_delivery desc
```

Top 5 States with slowest delivery			Top 5 S	States with fastest del	ivery
Row	customer_state	mean_diff_estim	Row	customer_state	mean_diff_estim
1	AL	7.95	1	AC	19.76
2	MA	8.77	2	RO	19.13
3	SE	9.17	3	AP	18.73
4	ES	9.62	4	AM	18.61
5	BA	9.93	5	RR	16.41
· ·	571	7.70			

Q 6(1) Month over Month count of orders for different payment types

```
select *,Lag(num_order,1,0) over (partition by payment_type,Year order by Month)
as prev_month_order,
(num_order-Lag(num_order,1,0) over (partition by payment_type,Year order by Month))
as diff_current_prev_month,
from (select extract(Year from o.order_purchase_timestamp) AS Year,
extract(Month from o.order_purchase_timestamp) AS Month, p.payment_type,
count(distinct o.order_id) as num_order from
`target-382417.Target_sql_businesscase.orders` as o
join `target-382417.Target_sql_businesscase.payments` as p
on o.order_id=p.order_id
group by Year,Month,p.payment_type) as temp
order by Year,Month,payment_type
```

Row	Year //	Month	payment_type	num_order //	prev_month	diff_current_prev_m
1	2016	9	credit_card	3	0	3
2	2016	10	UPI	63	0	63
3	2016	10	credit_card	253	3	250
4	2016	10	debit_card	2	0	2
5	2016	10	voucher	11	0	11
6	2016	12	credit_card	1	253	-252
7	2017	1	UPI	197	0	197
8	2017	1	credit_card	582	0	582
9	2017	1	debit_card	9	0	9
10	2017	1	voucher	33	0	33

Q. 6(2) Count of orders based on the no. of payment installments

```
Select payment_installments as Num_Payment_Installments, count (distinct order_id) as Num_Ord ers from `target-382417.Target_sql_businesscase.payments` group by Num_Payment_Installments order by Num_Payment_Installments
```

Row	Num_Payment_J	Num_Orders
1	0	2
2	1	49060
3	2	12389
4	3	10443
5	4	7088
6	5	5234
7	6	3916
8	7	1623
9	8	4253
	_	

Q(7) Insights: (1)Payment due for an order

(i)Yearwise total number of orders for which payments are received.

```
select extract(YEAR FROM o.order_purchase_timestamp) AS Year,
count(distinct o.order_id) as Number_of_orders,
sum(p.payment_value) as Total_payment,
from `target-382417.Target_sql_businesscase.orders` as o
join `target-382417.Target_sql_businesscase.payments`as p
on o.order_id=p.order_id
group by Year
order by Year
```


(ii) Year-wise total number of orders and payments received.

```
select extract(YEAR FROM o.order_purchase_timestamp) AS Year,
count(distinct o.order_id) as Number_of_orders,
sum(p.payment_value) as Total_payment,
from `target-382417.Target_sql_businesscase.orders` as o
left join `target-382417.Target_sql_businesscase.payments`as p
on o.order_id=p.order_id
group by Year
order by Year
```


(iii) Orders for which payments are not received.

```
select c.customer_id, o.order_jurchase_timestamp,
p.payment_value
from `target-382417.Target_sql_businesscase.orders` as o
left join `target-382417.Target_sql_businesscase.payments`as p
on o.order_id=p.order_id
join `target-382417.Target_sql_businesscase.customers` c
on c.customer_id=o.customer_id
where p.payment_value is null
```

Row	customer_id	order_id //	Year	payment_value
1	86dc2ffce2dfff336de2f386a78	bfbd0f9bdef84302105ad712db	2016	null

Conclusions:

- 1) Number of orders in 2016 are 328 in (i) whereas in (ii) number of orders are 329. There is an order for which payment is not received.
- 2) The order_id is given in (iii).

(2) Insight: Customers preferable time to buy from Q2

- 1) Brazilian customers mostly do purchases in night during 16:30:00 to 2:59:59.
- 2) In dawn, purchase percentage is minimum.
- 3) They also prefer to do purchases in afternoon in comparison of morning.

(3) Insight: Top 5 states with maximum and minimum sales

Top 5 States with maximum orders and sales

```
select customer_state, Number_of_orders, payment_received from (
select c.customer_state, count(distinct o.order_id) as Number_of_orders, round(sum(p.payment_va lue), 2) as payment_received
from `target-382417.Target_sql_businesscase.orders` as o
join `target-382417.Target_sql_businesscase.customers` as c
on c.customer_id=o.customer_id
join `target-382417.Target_sql_businesscase.payments` as p
on p.order_id=o.order_id
group by c.customer_state) as temp
order by payment_received desc
```

Row	customer_state	Number_of_orde	payment_receive
1	SP	41745	5998226.96
2	RJ	12852	2144379.69
3	MG	11635	1872257.26
4	RS	5466	890898.54
5	PR	5045	811156.38

Top 5 States with minimum sales:

```
select customer_state,payment_received from (
select c.customer_state, round(sum(p.payment_value),2) as payment_received
from `target-382417.Target_sql_businesscase.orders` as o
join `target-382417.Target_sql_businesscase.customers` as c
on c.customer_id=o.customer_id
join `target-382417.Target_sql_businesscase.payments` as p
on p.order_id=o.order_id
group by c.customer_state) as temp
order by payment_received
```

Row /	customer_state	payment_receive
1	RR	10064.62
2	AP	16262.8
3	AC	19680.62
4	AM	27966.93
5	RO	60866.2
6	то	61485.33
7	SE	75246.25
8	AL	96962.06
9	RN	102718.13

Observations:

- 1) SP,RJ,MG,RS and PR are top 5 states with maximum number of customers, orders and payments.
- 2) RR and AP are states with minimum sales.

4) Average profit percentage:

```
select customer_state,Mean_payment,Mean_Price_Freight,((Mean_payment-
Mean_Price_Freight)/Mean_Price_Freight)*100 as Profit_percentage from
(SELECT c.customer state, AVG(oi.price) as Mean price, AVG(oi.freight value) as Mean freight, Avg
(p.payment_value) as Mean_payment,
AVG(price+freight value) as Mean Price Freight
from
`target-382417.Target_sql_businesscase.customers` as \boldsymbol{c}
join
`target-382417.Target sql businesscase.orders` as o
on o.customer_id=c.customer_id
left join
`target-382417.Target_sql_businesscase.order_items` as oi
on o.order_id=oi.order_id
join `target-382417.Target_sql_businesscase.payments` as p
on o.order id=p.order id
group by c.customer state
order by Mean_Price_Freight desc) as temp
order by Profit_percentage desc
**add where c.customer state="SP" to find SP profit percentage before group by
```

Row	customer_state	Mean_payment	Mean_Price_Frei	Profit_percentag
1	GO	211.290425	150.235288	40.6396782
2	AP	257.651190	196.635595	31.0297813
3	PR	178.596342	138.967822	28.5163272
4	MA	234.916051	183.853222	27.7736926
5	MT	228.031576	180.812764	26.1147559
6	SC	184.643234	146.543888	25.9985906
7	RR	239.657884	193.550384	23.8219624
8	RJ	180.526865	145.950160	23.6907616
9	RS	176.662961	143.285572	23.2943127

Row	customer_state	Mean_payment	Mean_Price_Frei	Profit_percentag
1	SP	153.574344	125.116368	22.7452060

Observations:

- 1) RR and AP have minimum sale but their profit percentage are appreciable.
- 2) Go is in top 10 maximum sale and has maximum profit percentage so could be a choice for new outlet opening.
- 3) SP is the state with maximum sale but profit percentage is not in the list of top 10.

5) Insight: Increasing late delivery percentage

```
select Year, sum(late_deliveryy) as late_delivery,
count(Days_between_estimated_delivery_delivery) as total_delivery,
round((sum(late_deliveryy)/count(Days_between_estimated_delivery_delivery))*100,2) as late_del
ivery_percentage
from(SELECT DATETIME DIFF(order estimated delivery date ,order delivered customer date,day)
as Days_between_estimated_delivery_delivery, extract(YEAR FROM order_purchase_timestamp) as Ye
ar,
case
when DATETIME_DIFF(order_estimated_delivery_date _,order_delivered_customer_date,day) >0 or
DATETIME_DIFF(order_estimated_delivery_date ,order_delivered_customer_date,day) is
null then 0
else 1
end as late_deliveryy
from `target-382417.Target_sql_businesscase.orders`
order by Year) as temp
group by Year
order by Year
```

Row	Year /	late_delivery //	total_delivery /	late_delivery_per
1	2016	5	272	1.84
2	2017	3321	43426	7.65
3	2018	5963	52778	11.3

(6) Insight: Payment type analysis

Payment type	Total month of transactions	Count of Months with decreasing orders
Credit card	23	8
Debit card	21	6
UPI	21	9
Voucher	23	21
Not defined	2	1
Total	90	35

```
with cte as (select payment_type, case when (diff_current_prev_month) < 0 then 1 else 0
```

```
end as decreasing order count from (select *, Lag(num order, 1,0) over (partition by payment typ
e, Year order by Month) as prev month,
(num order-
Lag(num_order,1,0) over (partition by payment_type, Year order by Month)) as diff_current_prev_
month,
from (select extract(Year from o.order purchase timestamp) AS Year,
extract(Month from o.order_purchase_timestamp) AS Month, p.payment_type,
count(distinct o.order id) as num order from
`target-382417.Target_sql_businesscase.orders` as o
join `target-382417.Target_sql_businesscase.payments` as p
on o.order id=p.order id
group by Year, Month, p.payment type) as temp
order by Year, Month, payment_type) X
order by Year, Month, payment_type)
select sum(decreasing_order_count) as num_months_decreasing_order,count(decreasing_order_count
) total transaction month from cte
Note: Use where payment_type = "name of payment type" to find data for each payment type
```


Q (8) (1) Recommendations:

- 1) Do a follow up with a reminder to the customer for the payment due.(Insight 1)
- 2) Target can scale up its operations in Brazil as number of orders are getting increased yearly. (Q2(1))
- 3) Offer a referral program, discounts to make more purchases or a refund guarantee in the Top 5 states with minimum sale, especially in AP as it has 2nd highest profit percentage.(Insight 3 and 4)
- 4) Offer happy hours during dawn to attract more customers.(Q2)
- 5) RR,AP and GO may be better choices to open new outlets in terms of profit percentage. (Insight 4)
- 6) Tend to minimize the increasing percentage of delay in delivery services. (Insight 5)
- 7) Payment via voucher is decreasing almost each month, so Target may discontinue with voucher payment mode.(Insight 6)