Computer Science 162: Operating Systems and Systems Programming

Scribe: Tyler Nguyen

Lecture 1: August 23, 2017

1 What is an operating system?

- Special layer of software that provides application software access to hardware resources
 - Convenient abstraction of complex hardware devices
 - Protected access to shared resources
 - Security and authentication
 - Communication amongst logical entities

1.1 What Does an OS do?

- Provide abstractions to apps
 - File systems
 - Processes, threads
 - VM, containers
 - Naming system
 - . . .
- Manage resouces:
 - Memory, CPU, storage, ...

1.2 OS Basics: "Virtual Machine" Boundary

- Software
- OS Hardware Virtualization
 - Threads
 - Processes
 - Address Spaces

- Files
- Windows
- Sockets

• Hardware

- Processor
- Memory
- Storage
- Networks
- Inputs
- Displays

2 What makes Operating Systems exciting and challenging

2.1 Technology Trends: Moore's Law

Moore's law: Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months. Microprocessors have become smaller, denser, and more powerful.

2.2 New Challenge: Slowdown in Joy's law of Performance

2.3 Another Challenge: Power Density

Super-exponential growth in power density.

- Moore's law extrapolation
 - Potential power density reaching amazing levels!
- Flip side: battery life more important

3 People-to-Computer Ratio Over Time

- Today: multiple CPUs per person!
 - Approaching hundreds?

3.1 The End of Moore's Law...

- Moore's Law has (officially) ended Feb 2016
 - No longer getting $2\times$ transistors per chip every 18 months. . .
 - or even every 24 months

- May have only 2-3 smallest geometry fabrication plants left:
 - Intel and Samsung and/or TSMC
- Vendors moving to 3D stacked chips
 - More layers in older geometries

3.2 Storage Capacity

Increasing exponentially

3.3 Network Capacity

Increasing exponentially

3.4 Challenge: Complexity

- Applications consisting of...
 - ... a variety of software modules that...
 - ... run on a variety of devices (machines) that
 - * ... implement different hardware architectures
 - * ...run competing applications
 - * ... fail in unexpected ways
 - * ...can be under a variety of attacks
- Not feasible to test software for all possible environments and combinations of components and devices
 - The question is not whether there are bugs, but how serious they are!

3.5 How do we tame complexity?

- Every piece of computer hardware different
 - Different CPU
 - * Pentium, PowerPC, ColdFire, ARM, MIPS
 - Different amounds of memory, disk, ...
 - Different types of peripherals
 - * Mice, keyboards, sensors, cameras, fingerprint readers
 - Different networking environment
 - * Cable, DSL, Wireless, Firewalls

3.6 OS Tool: Virtual Machine Abstraction

3.6.1 Virtual Machines

- Software emulation of an abstract machine
 - Give programs illusion they own the machine
 - Make it look like hardware has features you want
- Two types of "Virtual Machines"
 - Process VM: supports execution of a single program; this functionality is typically provided by OS
 - System VM

3.6.2 Process VMs

- Programming simplicity
 - Each process thinks it has all memory/CPU time
 - Each process thinks it owns all devices
 - Different devices appear to have same high level interface
 - Device interfaces more powerful than raw hardware
 - * Bitmapped display →windowing system
 - * Ethernet card \rightarrow reliable, ordered, networking (TCP/IP)
- Fault isolation

3.6.3 System Virtual Machines: Layers of OSs

- Useful for OS development
 - WHen an OS crashes, restricted to one VM
 - Can aid testing programs on other OSs