7	題	6.
		•

$$\frac{1^{\circ}}{\Rightarrow} \frac{dy}{y^{2}y} = \frac{dx}{\Rightarrow c}$$

$$\frac{2(3)}{x^2-xy+y^2} = \frac{dy}{2y^2-xy}$$

$$\frac{1}{2}u=\frac{y}{2}$$

$$\frac{1}{10} = \frac{y}{10} = \frac{y}{1 - u + u^2} = u + x \frac{dy}{dx}$$

 $\frac{1}{2u^2u^3-2u}du=\frac{dx}{2c}$

$$-x) = (y(y-2x)^{2}$$

 $23t (y-x)^{2} = (y(y-2x)^{3})$
 $y=x$

3.11)	
= 7 4=>1+2	
2 V= y+1	
=7 dv u+v	
$\frac{1}{du} = \frac{u+v}{u-v}$	
- V	
-> { p= V	
$= 7 u \frac{dP}{du} + p = \frac{1+p}{1-p}$	
y +1	
$= \frac{y+1}{(x+2)^2 + (y+1)^2} = (-e^{-x+2}) \frac{y+1}{x+2}$	
4	
$\frac{4}{(4)} \frac{y' + \frac{y}{51} = y' \ln x}{1 + \frac{1}{51} = \frac{1}{12} \frac{x}{1} + \frac{1}{12} \frac{x}{1} = \frac{1}{12} \frac{x}{1}$	
=> y''y'+ 1 = (n)	
$= \frac{y^{2}y' + \frac{1}{xy} = \ln x}{2 \cdot y' - \frac{1}{x} \cdot u = -\ln x}$	
7 That plate - in x	
y = e - Sp(x)dx () Q(x) e Sp(x)dx	+()
$\Rightarrow y(y) \left(\frac{1}{2} (u,x) + (1) = 0$	

$$= \frac{y}{x^{dy}} + u = u \ln u \quad u = 1$$

y(2)=3

9.
$$f(x) = \int_{0}^{x} f(t) dt$$
 $f(x) = \int_{0}^{x} f(t) dt$

=> $f(x) = \int_{0}^{x} f(t) dt$

=>