(1) Taking a₁ is correct (greedy-choice property)

(2) Optimal substructure

(2) Optimal substructure

Let
$$X = \{a_i \mid s_i < f_1\}$$
 and $A' = A - X = \{a_i \mid s_i \ge f_1\}$.

和 a_1 衝 突

和 a_1 海 突

After taking a₁

- (i) all a_i in X should be discarded;
- (ii) the problem becomes to select a maximum set of compatible activities in A'

 \implies Y' is optimal for A'

(2) Optimal substructure

Let
$$X = \{a_i \mid s_i < f_1\}$$
 and $A' = A - X = \{a_i \mid s_i \ge f_1\}$.

 $1 \approx a_1 \approx a_1 \approx a_1 \approx a_1 \approx a_1 \approx a_2 \approx$

After taking a_1

- (i) all a_i in X should be discarded;
- (ii) the problem becomes to select a maximum set of compatible activities in A'

$$\implies$$
 Y' is optimal for A'

(after a choice \rightarrow same problem of smaller size)

Optimal substructure $A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8\}$ $W = \{7, 12, 9, 6, 11, 15, 12, 7\}$

0-1:

optimal for $\begin{cases} A \\ C = 40 \end{cases}$

fractional:

optimal for

$$\begin{cases} A \\ C = 40 \end{cases}$$

Optimal substructure

0-1:

1: fractional:

optimal for $\begin{cases} A = \{a_1, a_2, ..., a_n\} \\ C \end{cases}$

optimal for

$$\begin{cases} A' = \{a_1, a_2, ..., a_{k-1}, x_k, ..., x_n\} \\ C' = C - w_k \end{cases}$$

optimal for $\begin{cases} A = \{a_1, a_2, ..., a_n\} \\ C \end{cases}$

optimal for

$$\begin{cases} A' = \{a_1, a_2, ..., a_{k-1}, x_k, ..., x_k\} \\ C' = C - w \end{cases}$$

A naive DP: 0/1 knapsack

- * f(g, k): optimal value for $\begin{cases} a_1 a_2 \dots a_{s-1} a_s \dots a_k \\ capacity is q \end{cases}$
- * solution: f(C,n)

$$f[g, k] = \underset{1 \le s \le k}{\text{MAX}} \left\{ f[g-w_s, s-1] + v_s \right\}$$

Time: O(Cn2)

0-1 Knapsack problem (integer weights, DP)

* f(g,k): optimal value for

* solution: f(C,n)

Case 1. a_k is not selected

$$a_1 \quad a_2 \quad \bullet \quad \bullet \quad a_{k-1} \quad a_k$$

$$f(g,k-1)$$

Case 2. a_k is selected

*
$$f(g,k) = \max \left\{ f(g, k-1) \\ f(g-w_k, k-1) + v_k \right\}$$

*
$$f(0,k) = f(g,0) = 0$$
, $f(-,k) = -\infty$

* Time: O(Cn)

*
$$f(g,k) = \max\{ f(g, k-1), f(g-w_k, k-1) + v_k \}$$

* goal: $f(C,n)$

	0	1	2	••••• k	17.	n
0	0	0	0	••••	0	0
1 3	0					
3	0					
: 9	•			W_{k} $\begin{cases} 2 \\ 1 \\ g,k \end{cases}$		
	0					
	0			· · · · · · · · · · · · · · · · · · ·		
C	0		1			X

Time:
$$Cn \times O(1) = O(Cn)$$

table size

prefix code _____ n-leaf full binary tree

n-leaf tree \implies prefix code

Algo Outline: repeatedly combine two trees into one (initially, each leaf is a "trees)

d:16

e:9

d:16

e:9

e: 4 "combining", e contributes 4×9 to cost (each combining +9 to cost)

(See 6-8)

```
Priority Queue
                     binary heap (max-heap)
                        O(n)
Build
                       O(1g n)
Insert
                        O(1)
Maximum
                       O(\lg n)
Increase-Key
                       O(\lg n)
Extract-Max
Priority Queue
                     binary heap (min-heap)
                        O(n)
Build
                       O(1g n)
Insert
                        O(1)
Minimum
                       O(lg n)
Decrease-Key
                       O(\lg n)
Extract-Min
```

Hint for correctness

Building an optimal tree for (f1, f2, f3, f4, ..., fn)
(size = n)

(Assume sorted)

Greedy-choice property:

there is an optimal solution with

f1 f2

Optimal substructure:

after merge f1 and f2, the problem becomes "building a tree for (f1+f2, f3, f4, ..., fn) (size = n - 1)