sine basis 06

Design matrix

Statistics: p-values adjusted for search volume

set-level	C	luster-leve	peak-level					mm mm mm			
р с	p_{FWE-c}	g k corrFDR-corr E	p _{uncorr}	p_{FWE-c}	<i>q</i> corrFDR-co	<i>T</i> orr	(Z_{\equiv})	$p_{ m uncorr}$			
1.00084	1.000 1.000 1.000 1.000 0.973	0.791 28 0.791 17 0.791 12 0.791 41 0.791 71	0.115 0.212 0.293 0.062 0.018	1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	3.47 3.40 3.36 3.33 2.72 3.25 3.09 3.02 3.24	3.45 3.38 3.34 3.31 2.71 3.23 3.07 3.00 3.22	0.000 0.000 0.000 0.000 0.003 0.001 0.001 0.001	-2 -28 20 36 30 46 48 44 24	4 -46 14 -50 -58 -40 -40 -50	-8 38 60 60 58 52 62 48 36
	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.791 12 0.791 19 0.791 11 0.791 9 0.791 8 0.791 12 0.791 17 0.791 9 0.791 21 0.791 8 0.791 8 0.791 6 0.791 6	0.293 0.189 0.314 0.363 0.392 0.293 0.212 0.363 0.168 0.392 0.392 0.461 0.461	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	3.14 3.10 3.07 3.04 3.02 3.00 2.96 2.95 2.91 2.88 2.86 2.83	3.12 3.09 3.05 3.03 3.00 2.98 2.95 2.94 2.90 2.87 2.85 2.81	0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002	44 26 -10 32 -4 -2 4 66 24 18 -52 30	-32 34 -2 -4 -48 -30 14 0 -38 -50 34 -46 24	2 48 62 50 -8 18 14 -8 -48 24 20 40