C. Some Important Convergent Sequences

- 1. a) $(\sqrt[n]{a})_1 : a, \sqrt{a}, \sqrt[3]{a}, \cdots, \sqrt[n]{a}, \cdots$ converges to 1 (for a > 0);
 - b) $(\sqrt[n]{n})_1:1,\sqrt{2},\sqrt[3]{3},\cdots,\sqrt[n]{n},\cdots$ converges to 1
- 2. $((1+\frac{\lambda}{n})^n) \to e^{\lambda}$ or $(\frac{n+\lambda}{n})^n \to e^{\lambda}$
- 3. a) $\left(\frac{\ln^p n}{n}\right) \to 0$ for any constant p.
 - b) $\frac{n^p}{e^n} \to 0$ for any constant p.
- 4. If $(a_n)_1: a_1, a_2, \dots, a_n, \dots$ is a sequence with positive terms converging to the limit a, then
 - a) $A_n = \frac{a_1, \dots, a_n}{n} \to a$
 - b) $G_n = \sqrt[n]{a_1 \cdots a_n} \to a$

where A_n, G_n are called the <u>arithmetic mean</u> and <u>geometric mean</u> of the positive numbers a_1, a_2, \dots, a_n .

5. a)
$$\left(\frac{n}{\sqrt[n]{n!}}\right) \to e$$
,

$$b)(\frac{e^n}{n!}) \to 0$$

The proofs of 1 to 3 are obtained by limit process considering the functions $a^{1/x}, x^{1/x}, (1 + \frac{\lambda}{x})^x, x^p/e^x$ of continuous variable x.

Proof. Since $(a_n) \to a$, then given $\varepsilon > 0$ there is $\mathbb{N} > 0$ such that