Об одном методе оценивания параметров распределений

Браун Мария Петровна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н.,проф. Мелас В.Б. Рецензент: к.ф.-м.н., Пепелышев А.Н.

Санкт-Петербург 2007г.

Постановка задачи

Пусть имеется распределение, зависящее от неизвестного параметра:

$$X \sim F_{\vartheta}, \quad \vartheta \in \Theta \subset \mathbb{R}^k.$$

По выборке X_1,\ldots,X_N требуется оценить ϑ . Фиксируются точки $\mathbf{t}=\{t_j\}_{j=1}^m$, в которых находятся эмпирические и теоретические значения характеристической функции. Содержание работы:

- Нахождение оптимальных наборов $\{t_j\}_{j=1}^m$ и зависимости качества оценок от m.
- Итерационная процедура нахождения оценки ϑ для заранее промоделированной выборки.

Оценка обобщенного метода моментов

Определим вектора $\mathbf{K}(\mathbf{t}) = \{K(t_j)\}_{j=1}^m$, $\mathbf{K}_N(\mathbf{t}) = \{K_N(t_j)\}_{j=1}^m$ где

•
$$K(t) = \int_{-\infty}^{\infty} k(t, x) dF_{\vartheta}(x), \ t \in \mathbb{R}$$

•
$$K_N(t) = \int_{-\infty}^{\infty} k(t, x) dF_N(x) = \frac{1}{N} \sum_{i=1}^{N} k(t, X_i)$$

Оценки строятся следующим образом:

$$\mathbf{K}(\mathbf{t}) = \mathbf{K}_N(\mathbf{t}).$$

 $oldsymbol{Q} \ \underline{m>k}$: обобщенный метод моментов: $\hat{artheta}_N=\mathrm{argmin}_{artheta}Q(artheta;\mathbf{t})$, где

$$Q(\vartheta; \mathbf{t}) = (\mathbf{K}_N(\mathbf{t}) - \mathbf{K}(\mathbf{t}))^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{K}_N(\mathbf{t}) - \mathbf{K}(\mathbf{t})),$$

$$\Sigma: \sqrt{N}(\mathbf{K}_N(\mathbf{t}) - \mathbf{K}(\mathbf{t})) \xrightarrow{\mathcal{D}} N(\mathbf{0}, \Sigma).$$

Оптимальное планирование

На качество оценок влияет выбор $\{t_j\}_{j=1}^m.$ План эксперимента:

$$\xi = \left(\begin{array}{cccc} t_1 & t_2 & \dots & t_m \\ 1/m & 1/m & \dots & 1/m \end{array}\right).$$

Критерий оптимальности: локальная D-оптимальность:

$$\det M(\xi, \vartheta_*) \to \max,$$

$$M = F^T \Sigma^{-1} F,$$

где

$$F = \begin{pmatrix} \frac{\partial K(t_1)}{\partial \theta_1} & \dots & \frac{\partial K(t_1)}{\partial \theta_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial K(t_m)}{\partial \theta_1} & \dots & \frac{\partial K(t_m)}{\partial \theta_k} \end{pmatrix}.$$

Устойчивые распределения

Частный случай: строго положительные устойчивые распределения (SPS).

В качестве K(t) рассматривается преобразование Лапласа:

$$L(t) = E(-tX) = \exp(-ct^{\alpha}), \quad c > 0, \ \alpha \in (0,1).$$

Его эмпирический аналог:

$$L_N(t) = N^{-1} \sum_{i=1}^{N} \exp(tx_i)$$

Информационная матрица: $M=F^T\Sigma^{-1}F$, где

$$F = \left(\frac{\partial L(t_i)}{\partial c}, \frac{\partial L(t_i)}{\partial \alpha}\right)_{i=1}^m, \quad (\Sigma)_{i,j} = L(t_i + t_j) - L(t_i)L(t_j).$$

Утверждение:

- $\mathbf{0}$ $c^2 \det \mathbf{M}(\xi, \vartheta)$ не зависит от c.
- $\{t_i\}_{i=1}^m \to \{ct_i\}_{i=1}^m$.

SPS: зависимость оптимальных планов от параметра

Зависимость $\max \det M$ от параметра:

Зависимость точек оптимального плана от параметра:

Устойчивые распределения: численные результаты

Зависимость $\max \det M$ от числа точек плана:

α	m=2	m=3	m=5	m = 10	m = 14
0.05	310.55	417.52	551.37	640.22	657.05
0.2	32.33	41.23	49.41	52.35	52.57
0.5	24.38	27.59	29.00	29.18	29.18
0.8	290.31	301.75	303.50	303.58	303.58
0.95	48684.25	49548.70	49582.67	49583.76	49583.77

При m>10 рост $\max \det M$ практически прекращается для $\alpha>0.2.$ Таким образом, не имеет смысла выбирать большее число точек плана.

NVG и NVIG распределения: определение

NVG распределение:

- $\mathbf{Q} \quad \eta \sim N(\beta \xi, 2\xi), \ \beta \in \mathbb{R};$

Характеристическая функция NVG:

$$\varphi(t) = \exp(i\delta t)(1 - i\beta ct + c^2 t^2)^{-\lambda}.$$

NVIG распределение:

- $3 X = c\eta + \delta, \ (\delta, c) \in \mathbb{R} \times \mathbb{R}^+.$

Плотность IG распределения: $f_{IG}(x,\mu,\lambda) = \frac{\lambda\sqrt{\mu}}{\sqrt{2\pi}x^3} \exp\left(\frac{-(x-\mu\lambda)^2}{2\mu x}\right)$.

Характеристическая функция NVIG:

$$\varphi(t) = \exp(i\delta t) \exp\left(\lambda(1 - \sqrt{1 - 2i\beta ct + c^2 t^2})\right)$$
.

NVG и NVIG: зависимость качества планов от числа опорных точек

В качестве K(t) рассматривается характеристическая функция:

$$\mathbf{K}(\mathbf{t}) = (C(t_1), C(t_2), ..., C(t_l), S(t_1), S(t_2), ..., S(t_l))^{\mathrm{T}},$$
 где $C(t) = \mathrm{E}[\cos(tX)], \, S(t) = \mathrm{E}[\sin(tX)].$

Результаты максимизации определителя информационной матрицы при различных значениях параметров $(c=1,\delta=0)$:

β	λ	m=4	m=5	m=10	m=15	m=20	
0	1	5.958	6.742	8.302	8.778	8.999	$ imes 10^{-3}$
0.5	1.7	3.694	3.969	4.247	4.275	4.281	$ imes 10^{-4}$
2	2.5	2.972	5.519	10.96	11.13	11.35	$ imes 10^{-6}$

Таблица: Зависимость $\max \det M$ от числа опорных точек плана, NVG

β	λ	m=4	m=5	m=10	m=15	m=20	
0	1	3.676	3.720	3.739	3.739	3.739	$ imes 10^{-3}$
0.5	1.7	3.804	3.913	3.955	3.955	3.955	$ imes 10^{-4}$
2	2.5	1.596	2.485	4.631	4.840	4.868	$ imes 10^{-6}$

Таблица: Зависимость $\max \det M$ от числа опорных точек плана, \mathbb{NVIG}

NVG и NVIG: оценка параметров

Обозначим вектор параметров

 $\vartheta=(\vartheta_j)_{j=1}^4=(\lambda,\beta,c,\delta)\in\mathbb{R}^+ imes\mathbb{R}\times\mathbb{R}^+ imes\mathbb{R}$. Моделируется выборка: x_1,\ldots,x_n .

Процедура:

- Шаг 1: Нахождение ϑ при фиксированных (t_1, \ldots, t_l) минимизация $Q(\vartheta; \mathbf{t})$.
- Шаг 2: Нахождение (t_1, \ldots, t_l) при фиксированных значениях параметров ϑ максимизация $\det M$.

На первом шаге фиксируем равноотстоящие t_j . Повторяем до тех пор, пока процедура не сойдется.

Моделируется 1000 выборок; для каждой сохраняются результаты первого и последнего шага оптимизации.

 ${f eff}=(\det M_1/\det M_0)^{(1/4)}$, где M_1 — информационная матрица для оптимальных t_i , а M_0 — информационная матрица для равноотстоящих t_i .

NVG: численные результаты

ssize=100	$\lambda = 1.7$	$\beta = 0.7$	c = 0.6	$\delta = 0.4$
сред., равном.	1.77	0.82	0.69	0.42
сред., опт.	1.80	0.78	0.65	0.39
откл., равном.	1.19	0.65	0.28	0.41
откл., опт.	1.12	0.45	0.20	0.34
eff: 1.63	равн.	858	ОПТ.	933
ssize=1000	λ	β	c	δ
сред., равном.	1.75	0.71	0.60	0.39
сред., опт.	1.71	0.71	0.61	0.40
откл., равном.	0.40	0.15	0.08	0.12
откл., опт.	0.29	0.09	0.06	0.09
eff: 1.53	равн.	1000	ОПТ.	1000

Таблица: Средние и стандартные отклонения оценок параметров NVG распределения для равномерных и оптимальных t_i

NVIG: численные результаты

ssize=100	$\lambda = 1.7$	$\beta = 0.7$	c = 0.6	$\delta = 0.4$
сред., равном.	1.76	0.86	0.77	0.40
сред., опт.	1.68	0.81	0.76	0.40
откл., равном.	1.41	0.51	0.41	0.36
откл., опт.	1.34	0.39	0.35	0.33
eff: 1.45	равн.	814	ОПТ.	887
ssize=1000	λ	β	c	δ
сред., равном.	1.78	0.73	0.61	0.38
сред., опт.	1.67	0.72	0.63	0.40
откл., равном.	0.58	0.13	0.12	0.15
откл., опт.	0.46	0.10	0.10	0.12
eff: 1.32	равн.	1000	ОПТ.	1000

Таблица: Средние и стандартные отклонения оценок параметров NVIG распределения для равномерных и оптимальных t_i

Сравнение эффективности

Фиксируем c=0.6, $\delta=0.4$ и сравним значение эффективности при различных истинных значениях параметров NVG и NVIG:

λ	β	NVG	NVIG
1	0	1.23	1.08
1	0.5	1.24	1.11
1	2.0	1.65	1.42
2.5	0	2.12	1.43
2.5	0.5	2.35	1.62
2.5	2.0	3.92	3.20

Таблица: Эффективность при различных истинных значениях параметров