What is claimed is:

1	1. A conversion device for use in an imaging system
2	comprising:
3	a first perforated plate portion forming a plurality of collimator
4	channels separated by a plurality of thin collimator walls;
5	a second perforated plate portion forming a plurality of
6	scintillator channels separated by a plurality of thin scintillator walls;
7	reflective coating applied to the inside scintillator surface of said
8	plurality of thin scintillator walls; and
9	a scintillator material filling said plurality of scintillator
10	channels.
1	2. A conversion device for use in an imaging system as in
2	claim 1 wherein said first perforated plate portion and said second perforated
3	plate portion are formed from a single perforated plate element.
1	3. A conversion device for use in an imaging system as in
2	claim 1 wherein said collimator channels comprise a spacing pitch of less than
3	or equal to 2mm.
1	4. A conversion device for use in an imaging system as in
2	claim 1 wherein said collimator channels comprise a collimator channel width
3	less than 500 microns.
1	5. A conversion device for use in an imaging system as in
2	claim 1 wherein said then collimator walls comprise a wall thickness of 100
3	microns.
1	6. A conversion device for use in an imaging system as in
2	alaim 1 wharain said saintillator material comprises luminoscent glass

1	7. A conversion device for use in an imaging system as in
2	claim 6 wherein said luminescent glass comprises luminescent materials
3	dispersed in a glassy matrix.
1	8. A conversion device for use in an imaging system as in
2	claim 6 wherein said luminescent glass comprises a glass ceramic containing
3	crystalline particles.
1	9. A conversion device for use in an imaging system as in
2	claim 1 wherein said scintillator material comprises luminescent polymer.
1	10. A conversion device for use in an imaging system as in
2	claim 9 wherein said luminescent polymer comprises inorganic phosphor
3	particles suspended in a polymer matrix.
1	
1	11. A conversion device for use in an imaging system as in
2	claim 1 wherein said plurality of thin collimator walls is comprised of a high
3	atomic number metal.
1	12. A conversion device for use in an imaging system as in
2	claim 1 wherein said first perforated plate portion comprises a perforated copper
3	plate.
1	13. A conversion device for use in an imaging system as in
2	claim 1 wherein said reflective coating comprises TiO2.
1	14. A conversion device for use in an imaging system as in
2	claim 1 wherein said scintillator material comprises a luminescent material that
3	does not decompose when dispersed in molten glass, said luminescent material
4	suspended in said molten glass.
1	15. A conversion device for use in an imaging system
2	comprising:

3	a periorated plate forming a plurality of scintillator channels
4	separated by a plurality of thin scintillator walls;
5	reflective coating applied to the inside scintillator surface of said
6	plurality of thin scintillator walls; and
7	a scintillator material filling said plurality of scintillator
8	channels.
1	16. A method of manufacturing a conversion device for use
2	in an imaging system comprising:
3	perforating a plate element to form a plurality of scintillator
4	channels separated by a plurality of thin scintillator walls;
5	coating an inside surface of said plurality of thin scintillator
6	walls with a reflective coating; and
7	filling said plurality of scintillator channels with a scintillator
8	material.
1	17. A method of manufacturing a conversion device for use
2	in an imaging system as described in claim 16, wherein said filling said plurality
3	of scintillator channels comprises:
4	placing a scintillator material on said performated plate element;
5	applying a load to said scintillator material such that said
б	scintillator material is pressed onto said perforated plate element;
7	heating said scintillator material to a slumping temperature such
8	that said scintillator material fills said plurality of scintillator channels.
1	18. A method of manufacturing a conversion device for use
2	in an imaging system as described in claim 16, further comprising:
3	grinding said scintillator material such that a scintillator upper
4	surface is planar with a perforated plate upper surface.
1	19. A method of manufacturing a conversion device for use
2.	in an imaging system as described in claim 18, further comprising

3	grinding said perforated plate upper surface such that a
4	perforated plate depth is adjusted.
1	20. A method of manufacturing a conversion device for use
2	in an imaging system as described in claim 16, wherein said filling said plurality
3	of scintillator channels comprises:
4	forming a block of scintillator material with said performated
5	plate element embedded within said block of scintillator material; and
6	grinding said scintillator material such that a scintillator upper
7	surface is planar with a perforated plate upper surface.
1	21. A method of manufacturing a conversion device for use
2	in an imaging system as described in claim 16, wherein said scintillator material
3	only partially fills said perforated plate element such that a scintillator function
4	is generated by said scintillator material and a collimator function is generated
5	by an unfilled portion.