

TUS

Technological University of the Shannon: Midlands Midwest

Ollscoil Teicneolaíochta na Sionainne: Lár Tíre Iarthar Láir

6 Pages Doc ID: MATS_LIST_ FYP_ Rev. A0

Contents

1.0 INTRO	DUCTION	3
	ıls List:	
Conveyo	or Belt:	4
Servo Mo	Iotor:	4
Siemens	s S7 1200 PLC:	4
HMI (Hu	uman-Machine Interface):	okmark not defined.
Raspberr	ry Pi 4:	4
Camera:	*	4
Encoders	s:Error! Bo	okmark not defined.
Sensors:		4
Power Su	upply:	4
Mounting	ng Hardware	4
Wiring		
willing a	and Cables:	4
Tools:	and Cables:	4
Tools:	and Cables:er and Software:	4

6 Pages Doc ID: MATS_LIST_ FYP_ Rev. A0

REVISION HISTORY

Rev.	Date	Approval	REVISION SUMMARY	
A0	05/11/23		Initial Draft – Cormac Farrelly	

6 Pages
Doc ID:
MATS_LIST_
FYP_
Rev. A0

Document Description: AI Powered Industrial Automated Part Sorting System.

Status: For Integration.

Client: TUS.

Doc Name/Nr: MATERIALS_LIST_K00259724_CF

1.0 INTRODUCTION

For the FYP in industrial automation and robotics engineering, the student will be working on an innovative project that involves creating a custom machine learning algorithm to classify industrial parts. The system integrates various components to efficiently classify these parts into three categories: damaged, undamaged, and unrecognized. The core components of the project include a conveyor belt, servo motor, Siemens S7 1200 PLC, an HMI (Human-Machine Interface), a Raspberry Pi 4, a camera (such as a Cognex camera), encoders, and sensors. Here's a detailed list of the materials needed:

6 Pages Doc ID: MATS_LIST_ FYP_ Rev. A0

2.0 Materials List:

Conveyor Belt:

The conveyor belt will transport the industrial parts.

Servo Motor:

To control the motion of the conveyor belt, a servo motor is essential.

Siemens S7 1200 PLC:

This programmable logic controller will handle the coordination and decision-making aspects of the system.

Raspberry Pi 4:

The Raspberry Pi will host the machine learning algorithm.

Camera:

Cognex or other compatible models, making sure it's capable of capturing high-quality images and can interface with the Raspberry Pi..

Sensors:

Sensors for part collection and release are essential to track when the system has run out of parts or when to release new ones.

Power Supply:

Ensuring the necessary power supplies for all components, including the conveyor belt, servo motor, PLC, Raspberry Pi, and other devices.

Mounting Hardware:

Depending on design, may need brackets, stands, or other hardware to securely install and assemble the components.

Wiring and Cables:

Various cables, such as power cables, data cables, and connectors, are needed to interconnect the components of the system. Cat, generic wiring cables etc.

Tools:

Standard tools for assembly, such as screwdrivers, pliers, and wire cutters, will be required.

Computer and Software:

A computer with Python, TensorFlow, Keras, and other necessary software for algorithm development and testing.

6 Pages Doc ID: MATS_LIST_ FYP_ Rev. A0

Miscellaneous:

Screws, nuts, bolts, and other miscellaneous items for securing components together.