Homework 4

Jiří Klepl

(10 points) Show that every CNF φ can be translated in polynomial time into an equisatisfiable CNF ψ which is a conjunction of a 2-CNF and a Horn formula. How many additional variables are needed?

Let T denote the translation from φ to ψ . First, we do few observations:

- Any variable in φ with no positive or with no negative literal occurrence trivially satisfies the clauses it appears in. The same applies to all clauses which contain a positive and a negative literal occurrence of a certain variable.
- Any clause C in φ with less than two positive literals is already a Horn clause and we can simplify the translation from $T(\varphi) = \psi$ to $T(\varphi') \wedge C = \psi$, where φ' is φ without the clause C.

So, without loss of generality, we can assume φ consists of clauses such that each has at least two positive literals, and that every variable has a positive and a negative occurrence and never in the same clause.

Then we will describe the algorithm for $T(\varphi)$ as follows:

```
1: function T(\varphi)
           \varphi' \leftarrow \top
 2:
           while \varphi \notin \text{Horn do}
 3:
 4:
                 x \leftarrow a variable with most positive occurrences in non-Horn clauses
                 l \leftarrow \text{Lit } x
 5:
                 x' \leftarrow \text{fresh variable}
 6:
                \varphi' \leftarrow \varphi' \land (x \lor x') \land (\neg x \lor \neg x')
 7:
                 \varphi \leftarrow \varphi[l := \neg x']
                                                                      \triangleright rewrite positive occurrences of x with \neg x'
 8:
 9:
           end while
10:
           return \varphi \wedge \varphi'
11: end function
```

The needed number of fresh variables is $\leq |\mathbf{x}|$ (if we consider only the variables with positive occurrences in clauses with at least two positive literals). We could achieve a slightly higher number with tseitin transformation of the maximal positive subsets of clauses.