

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences Second Year – Semester I Examination – Oct/ Nov 2015

PHY2103-Electronics

Answer All Questions.

Time allowed: $1\frac{1}{2}$ hours

1. The Zener diode in the circuit has following characteristics: 7.0 V rating at 10 mA, $r_z = 20 \Omega$ and $I_{zk} = 0.2$ mA.

- a. Find Vzo of the Zener diode.
- b. Find V_{out} with no load (no R_L) and $V_{in} = 10 \text{ V}$.
- c. Find the change in output voltage (V_{out}), if the input voltage (V_{in}) fluctuate by $\pm~1~V$.
- d. The Line Regulation of a regulator circuit is defined by the ratio of the change in output voltage to the change in input voltage $(\frac{\Delta V_{out}}{\Delta V_{in}})$. Find the Line Regulation of the above circuit.
- e. Find the change in output voltage (V_{out}), resulting from connecting a load of 2 k Ω ($R_L = 2 \text{ k}\Omega$) to the circuit.

(35 Marks)

2. Following circuit diagram shows a common-emitter configuration of an npn transistor.

- a. Using Thevenin's theorem simplify the above circuit to have one base resistor (R_{TH}) and one base power source (V_{TH}). Derive equations for R_{TH} and V_{TH} .
- b. Derive equations for open circuit voltage ($V_{CE(max)}$) and short circuit current ($I_{C(max)}$). If $R_1 = R_2 = 150 \ \Omega$, $R_L = R_E = 500 \ \Omega$, $V_{BE} = 0.7 \ V$, $V_{CC} = 12 \ V$ and $\beta = 100$, calculate the $I_{C(max)}$ and $V_{CE(max)}$.
- c. Sketch the load line and mark the $I_{\text{CE}(max)}$ and $V_{\text{CE}(max)}$ for the above circuit.
- d. Find the Q-point of the circuit.
- e. Show that the Q point of the above circuit is independent of the change in β .

(35 Marks)

- 3. Operational Amplifiers (Op-Amp) are a class of high gain DC coupled amplifiers with two differential inputs and one output terminal.
 - a. State two golden rules of an ideal Op Amp.
 - b. Using above mentioned rules derive an equation for the voltage gain of the following non-inverting amplifier.

c. Following circuit has two inputs $(V_1 \text{ and } V_2)$ and one output (V_{out}) . Derive an equation for the output voltage (V_{out}) in terms of V_1 and V_2 . (Assume all the Op-Amps are ideal)

11 15

d. Calculate the V_{out} of the following inverted circuit.

(30 Marks)