

MATH1149 — TRIGONOMETRY — MATH. DEPT.

Recitation Instructor: Ivo Terek

Solution for quizzes — SP20

Quiz 1

Question 1 (1.0 point). Convert $5\pi/18$ radians to decimal degrees. Round your answer to the nearest degree if neces-

Solution. Just recall that $180 \deg = \pi \operatorname{rad}$, so

$$\frac{5\pi}{18}$$
 rad = $\frac{5\pi}{18} \frac{180}{\pi}$ deg = 50 deg.

Question 2 (4.0 points). An energy-efficient hard drive has a 2.5-in. diameter and spins at 4600 rpm. Give exact values for:

- (a) the angular speed of the hard drive (in 1/min).
- (b) the linear speed of a point on the edge of the hard drive (in in./min).

(a) Note that rpm = $2\pi/\min$, so

$$\omega = 4600 \, \text{rpm} = 4600 \frac{2\pi}{\text{min}} = \frac{9200\pi}{\text{min}}.$$

 $\omega = 4600 \, \text{rpm} = 4600 \frac{2\pi}{\text{min}} = \frac{9200\pi}{\text{min}}.$ (b) The linear speed is given by $v = r\omega$, where the radius here is $r = 2.5 \, \text{in}/2 = 1.25 \, \text{in}$ (which also equals $(5/4) \, \text{in}$), so we get that

$$v = \frac{5}{4} \ln \frac{9200\pi}{\min} = 11500\pi \frac{\text{in}}{\text{min}}.$$

Question 3 (5.0 points). Assume that θ is an acute angle with $\tan \theta = \sqrt{13}/7$. By drawing a right triangle with angle θ (as we have done in recitation) and finding the lengths of all sides, determine the value of $\cos \theta$.

Solution. Since $\tan \theta = \text{opp/adj}$, we may draw a right triangle whose opposite side to θ is $\sqrt{13}$ and the adjacent is 7:

To find c, use the Pythagorean Theorem to write $c^2 = 7^2 + (\sqrt{13})^2 = 49 + 13 = 62 \implies c = \sqrt{62}$, since c > 0. So $\cos \theta = \text{adj/hyp} = 7/\sqrt{62} = 7\sqrt{62}/62.$

Quiz 2

Question 1 (4.0 points). Given an angle θ , and knowing that the point (-3,2) lies on the terminal side of θ , compute $\sin \theta$, $\cos \theta$ and $\tan \theta$. Round your answers to 2 decimal places.

Solution. The distance of this point to the origin is $r = \sqrt{(-3)^2 + 2^2} = \sqrt{13}$. So we obtain

$$\sin \theta = \frac{y}{r} = \frac{2}{\sqrt{13}} \approx 0.55$$
, $\cos \theta = \frac{x}{r} = \frac{-3}{\sqrt{13}} \approx -0.83$ and $\tan \theta = \frac{y}{x} = \frac{2}{-3} \approx -0.67$.

(Note that -0.666... is rounded to -0.67 because the third decimal place is bigger than 5.)

Question 2 (2.0 points). Give, in radians, the reference angle for $\theta = -7\pi/8$.

Solution. This angle is in the third quadrant (draw a picture), so the reference angle is just $\pi/8$. Alternatively, work with the coterminal angle $-7\pi/8 + 2\pi = 9\pi/8$ and compute the reference angle as $9\pi/8 - \pi = \pi/8$.

Question 3 (4.0 points). Write $\cos t$ in terms of $\sin t$ for t in the third quadrant of the plane.

Solution. Since $\cos^2 t + \sin^2 t = 1$, we have that $\cos^2 t = 1 - \sin^2 t$ and so $\cos t = \pm \sqrt{1 - \sin^2 t}$. The choice of sign \pm depends on the quadrant. If t is in the third quadrant, we have $\cos t = -\sqrt{1-\sin^2 t}$.

Question 1 (2.0 points). Give the exact value for $\arcsin\left(\sin\frac{7\pi}{4}\right)$.

Solution. Directly compute

$$\arcsin\left(\sin\frac{7\pi}{4}\right) = \arcsin\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}.$$

Observe that you cannot "cancel" arcsin and sin to say that the answer is $7\pi/4$, because arcsin is only defined once a choice of interval on which sin is one-to-one has been made. The default choice is arcsin: $[-1,1] \rightarrow [-\pi/2,\pi/2]$, so your answer should be in this latter interval.

Question 2 (4.0 points). Write $\tan \left(\arccos \frac{3}{x} \right)$ (valid for x > 3) as an algebraic expression.

Solution. If we write $\theta = \arccos(3/x)$, then $\cos \theta = 3/x$. We may draw the following right triangle:

The opposite side $\sqrt{x^2-9}$ was found using the Pythagorean Theorem again. This implies that

$$\tan\left(\arccos\frac{3}{x}\right) = \frac{\sqrt{x^2 - 9}}{3}.$$

Question 3 (4.0 points). Write $\frac{\sin^2 x + 1}{\cos^2 x} + 1$ in terms of $\sec x$ only.

Solution. Use the identity $1 + \tan^2 x = \sec^2 x$ given in the first page of the quiz (as usual) to write

$$\frac{\sin^2 x + 1}{\cos^2 x} + 1 = \tan^2 x + \sec^2 x + 1 = (\tan^2 x + 1) + \sec^2 x = (\sec^2 x) + \sec^2 x = 2\sec^2 x.$$