§1 Lecture 02-19

Vector spaces. Basis. Let V be a vector space over F. Then there exists a basis B of V such that all $v \in V$ can be written uniquely as a sum

$$\sum_{w \in B} \lambda_w w \quad \lambda_w \in F$$

 $\lambda_w = 0$ for all but finitely many $w \in B$. Therefore

$$V = F_0(B, F)$$
$$v \mapsto (w \mapsto \lambda_w)$$
$$F_0(B, F) \subseteq F(B, F)$$

Exercise 1.1. Show that there are vector spaces that are not isomorphic to F(X, F) for any set X.

Attempt 1:

$$V = F[[x]] = \{a_0 + a_1x + a_2x^2 + \cdots \}$$

$$= \{(a_0, a_1, a_2, \dots) \mid a_j \in F\}$$

$$= \{a : \{0, 1, 2, \dots \} \to F\}$$

$$= Func(\mathbb{N}, F)$$

Attempt 2:

$$F[x] = \{a_0 + a_1x + \dots + a_nx^n \mid a_i \in F\}$$

So F[x] has a countable basis.

- 1. If X is finite, then $\dim(Func(X, F))$ is also finite.
- 2. If X is infinite, then Func(X, F) does not have a countable basis.

If $F = \mathbb{Q}$, we observe that $Func(X, \mathbb{Q})$ is uncountable.

$$f_1$$
 $f_1(x_1), f_1(x_2)...$
 f_2 $f_2(x_1), f_2(x_2)...$
 f_n $f_n(x_1), f_n(x_2)...$

Define $f(x_n) = f_n(x_n) + 1$

- 1. TOH, $\mathbb{Q}[x]$ is countable.
- 2. $F = \mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$. $Func(X, \mathbb{F}_2) = P(X) = \{A \subseteq X\}$.

 $Func(X, \mathbb{F}_2)$ is either finite, or uncountable. $\mathbb{F}_2[x]$ is countable.

Exercise 1.2. Show that, for any F, that Func(X,F) does not have a countable basis.