

PATENT OFFICE

JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application:

November 20, 2001

Application Number:

2001-354341

Applicant(s):

Kawasaki Steel Corporation

December 28, 2001

Commissioner, Patent Office

Kozo OIKAWA

Certification No. 2001-3112189

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2001年11月20日

出 願 番 号

Application Number:

特願2001-354341

出 願 人 Applicant(s):

川崎製鉄株式会社

2001年12月28日

特 許 庁 長 官 Commissioner, Japan Patent Office

特2001-354341

【書類名】

特許願

【整理番号】

01J00802

【提出日】

平成13年11月20日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

H01M 8/02

【発明者】

【住所又は居所】

千葉県千葉市中央区川崎町1番地 川崎製鉄株式会社

技術研究所内

【氏名】

横田 毅

【発明者】

【住所又は居所】

千葉県千葉市中央区川崎町1番地 川崎製鉄株式会社

技術研究所内

【氏名】

高尾 研治

【発明者】

【住所又は居所】

千葉県千葉市中央区川崎町1番地 川崎製鉄株式会社

技術研究所内

【氏名】

古君 修

【特許出願人】

【識別番号】

000001258

【氏名又は名称】

川崎製鉄株式会社

【代理人】

【識別番号】

100080687

【弁理士】

【氏名又は名称】

小川 順三

【電話番号】

03-3561-2211

【選任した代理人】

【識別番号】

100077126

【弁理士】

【氏名又は名称】 中村 盛夫

特2001-354341

【手数料の表示】

【予納台帳番号】 011947

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 接触抵抗値の低い燃料電池用ステンレス製セパレータとその製造方法、および固体高分子型燃料電池

【特許請求の範囲】

【特許請求の範囲】

【請求項1】

C: 0.03mass%以下、

N:0.03mass%以下、

C+N:0.03mass%以下、

 $Cr: 20 \sim 45 \text{mass}\%$

Mo: $0.5 \sim 3.0 \text{mass}\%$

を含有する燃料電池用ステンレス製セパレータにおいて、このセパレータの燃料ガス流路溝の電極膜に接する凸部が、算術平均粗さRaが0.01~1.0μmかつ最大高さRyが0.01~20μmの表面粗さを有することを特徴とする接触抵抗値の低い燃料電池用ステンレス製セパレータ。

【請求項2】

C:0.03mass%以下、

Si: 1.00mass%以下、

Mn: 1.00mass%以下、

N:0.03mass%以下、

C+N:0.03mass%以下、

 $Cr: 16 \sim 45 \text{mass}\%$

Mo: $0.1 \sim 3.0 \text{mass}\%$

を含有するステンレス製セパレータにおいて、このセパレータの燃料ガス流路溝の電極膜に接する凸部が、算術平均粗さ Raが $0.01\sim1.0\,\mu$ mかつ最大高さ Ryが $0.01\sim20\,\mu$ mの表面粗さを有することを特徴とする接触抵抗値の低い燃料電池用ステンレス製セパレータ。

【請求項3】

上記成分組成に加えてさらに、V] を0.005 \sim 0.5mass%含有してなる請求項1また

は2に記載の燃料電池用ステンレス製セパレータ。

【請求項4】

上記成分組成に加えてさらに、Agを0.001~0.1mass%含有してなる請求項1~3 のいずれか1項に記載の燃料電池用ステンレス製セパレータ。

【請求項5】

上記成分組成に加えてさらに、Ti, Nbの少なくとも1種を合計で0.01~0.5mass %含有してなる請求項1~4のいずれか1項に記載の燃料電池用ステンレス製セパレータ。

【請求項6】

請求項1~5のいずれか1項に記載の燃料電池用ステンレス製セパレータの製造にあたり、セパレータに燃料ガスを供給するガス流路溝の凸部を、算術平均粗さRaが0.01~1.0μmかつ最大高さRyが0.01~20μmの表面粗さに加工することを特徴とする耐久性に優れるとともに接触抵抗値の低い燃料電池用ステンレス製セパレータの製造方法。

【請求項7】

ガス流路溝の凸部を所定表面粗さにする加工が、プレス加工もしくは酸洗によって行われることを特徴とする請求項6に記載のステンレス製セパレータの製造方法。

【請求項8】

高分子膜、電極およびセパレータとからなる固体高分子型燃料電池において、前 記セパレータとして、請求項1~5のいずれかに1項に記載のステンレス製セパ レータを用いたことを特徴とする固体高分子型燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、接触抵抗値の低い燃料電池用ステンレスセパレータとその製造方法 、およびそのセパレータを用いた自動車の駆動電源および補助電源あるいは小型 分散型電源として用いられる固体高分子型燃料電池に関する。

[0002]

【従来の技術】

近年、地球温暖化の防止を目的として、二酸化炭素の排出量の削減が先進各国に強く求められている。このため、環境面において優れた、二酸化炭素を排出しない燃料電池の開発が進められている。この燃料電池は、水と酸素を反応させて電気を発生させるもので、その基本構造は、サンドイッチのような構造を有しており、水素や酸素を供給する2つのセパレータ、2つの電極(燃料極と空気極)、電極を結ぶ導体および電解質膜(イオン交換膜)から構成されている。そして、用いる電解質の種類により、リン酸型、溶融炭酸塩型、固体電解質型、アルカリ型および固体高分子型などが開発されている。

[0003]

上記の燃料電池の中で、固体高分子型燃料電池は、溶融塩炭酸塩型およびリン酸型燃料電池等に比べて、(1)運転温度が80℃程度と格段に低い、(2)電池本体の軽量化・小型化が可能である、(3)立上げが早く、燃料効率、出力密度が高いなどの特徴を有している。このため、固体高分子型燃料電池は、電気自動車の搭載用電源や家庭用、携帯用の小型分散型電源(定置型の小型発電機)として利用すべく、今日もっとも注目されている燃料電池の一つである。

[0004]

この固体高分子型燃料電池は、一般に、高分子膜と白金系の触媒を担持した電極からなる膜ー電極接合体と呼ばれる部分と、この両側に配置された2つのセパレータとを単一の構成要素(単セル)とし、この単セルを数十から数百個直列につないで(燃料電池スタック)使用される。

[0005]

上記セパレータには、単セル間を隔てる隔壁としての役割に加えて、(1)発生した電子を運ぶ電導体としての機能、(2)酸素や水素の流路および生成した水や排出ガスの排出路としての機能が求められる。(1)に関しては、セパレータの接触抵抗が高くなると、ジュール熱の発生により発電特性が低下するため、接触抵抗は極力低いことが望まれる。(2)関しては、流路(ガス流路溝)を形成するための加工性の他、ガスシールド性および耐食性などが材料特性として要求される。なお、耐久性に関しては、自動車用の燃料電池では約5,000時間と想定されてい

3

るが、家庭用の小型分散電源などとして使用される定置型の燃料電池では、約40,000時間と想定されており、自動車用に比較して格段の耐久性が要求される。

[0006]

現在までに実用化されている固体高分子型燃料電池は、セパレータとして、カーボン素材を用いたものが提供されている。このカーボン製セパレータは、接触抵抗も比較的低く、腐食しないという特徴がある。しかしながら、衝撃により破損しやすく、コンパクト化が困難で、かつ流路を形成するための加工コストが高いという欠点があった。特にコストの問題は、燃料電池普及の最大の障害となっている。そこで、カーボン素材にかわり金属素材、特にステンレス鋼を適用しようとする試みがある。

[0007]

例えば、特開平8-180883号公報には、不動態皮膜を形成しやすい金属をセパレータとして用いる技術が開示されている。しかし、不動態皮膜の形成は、接触抵抗の上昇を招くことになり、発電効率の劣化につながる。このため、上記素材は、カーボン素材にくらべて接触抵抗が高く、また、耐食性が劣るなどの改善すべき問題点が指摘されていた。

[0008]

また、特開平10-228914号公報には、SUS304などの金属セパレータの表面に、 金めっきを施すことにより、接触抵抗を低減し高出力を確保する技術が開示され ている。しかし、薄金めっきでは、ピンホールの発生防止が困難であり、逆に厚 い金めっきはコストの問題が残っている。

[0009]

さらに、特開2000-277133号公報には、フェライト系ステンレス鋼基材に、カーボン粉末を分散付着させて、電導性(接触抵抗)を改善したセパレータを得る方法が開示されている。しかしながら、カーボン粉末を用いた場合も、表面処理には相応のコストがかかることから、依然としてコストの問題が残っている。また、表面処理を施したセパレータは、組立時にキズ等が入った場合、耐食性が著しく低下するという問題点も指摘されている。

[0010]

【発明が解決しようとする課題】

以上説明したように、従来技術では、ステンレス製セパレータを燃料電池に適用するには不十分であり、接触抵抗の低減および耐食性向上のための技術確立が望まれていた。

本発明の目的は、耐食性と安定した発電特性を有する燃料電池用の接触抵抗値の低いステンレス製セパレータおよびその製造方法ならびにこのセパレータを用いた固体高分子型燃料電池を提供することにある。

[0011]

【課題を解決するための手段】

発明者らは、高い耐食性を保持したまま接触抵抗を低く抑えたステンレス製セパレータについて、化学成分、表面形状および表面酸化膜の点から鋭意研究を行った。その結果、Moを含有した高耐食性フェライト系ステンレス鋼を素材とし、セパレータのガス流路溝加工後の表面に浅く微細な凹凸を形成することにより、接触抵抗が改善されること、さらに、素材の化学成分として、Agを微量添加することで接触抵抗が大幅に改善されることを見出した。さらに、接触抵抗を低く抑えた状態で、耐食性を大きく向上させる方法についても研究を行った。その結果、セパレータの表面に薄いBA皮膜を形成させることが、有効であるとの知見を得た。

[0012]

そこでまず、本発明に想到する契機となった実験結果について説明する。

この実験では、C:0.004mass%、N:0.008mass%、Cr:29.5mass%、Mo:1.8mass%、Si:0.2mass%、Mn:0.1mass%、S:0.005mass%、P:0.02mass%を含有するフェライト系ステンレス鋼および前記ステンレス鋼にさらにAg:0.005mass%を添加したステンレス鋼を、板厚0.4mm、表面仕上げ2B(JISG4305)とした冷延鋼板を準備した。そして、準備したこれらの鋼板を用いて、機械加工により、流路凸部(膜-電極接合体である電極膜に接する部)が幅2mm、高さ2mmの正方形断面を持ち、かつ流路を1mm間隔で22列配置したセパレータを作製し、供試した。その後、その供試材を硝酸と塩酸を体積比で1:3の割合で混合した溶液(王水)にて酸洗し、表面粗さを算術平均粗さ $Ra=0.1\sim0.3$ μ m、最大高さRy=0.

5~1.0μmの範囲に調整した。これらのセパレータと固体高分子膜としてナフロンを使用した70mm×70mmの電極膜を用いて単セルを組み立てた。また、比較のため、SUS304を上記と同一形状に加工したのち、表面に厚さ約0.05μmの金めっきを施したステンレス製セパレータおよび板厚2.0mmでガス流路溝の形状は上記と同一のカーボン製セパレータを作製した。

[0013]

これらのセパレータの接触抵抗を測定し比較した。接触抵抗の測定は、溝加工後のセパレータをカーボンクロスで挟み、さらに銅板に金めっきを施した電極を接触させて、50N/cm²の荷重をかけて、2枚の電極間の抵抗を測定し、接触抵抗とした。測定の模式図を図2に示した。

[0014]

測定結果を図3に示す。酸洗により表面粗さを制御したセパレータは、カーボン製セパレータと同等またはそれ以上に良好な接触抵抗を示す。特に、Agを添加した場合、接触抵抗は金めっきを施したステンレス製セパレータとほぼ同等の値を示す。一方、表面形状を制御していないセパレータの接触抵抗は、非常に高い値を示している。本発明は、上記した知見に基づいて完成されたものである。

[0015]

すなわち、本発明は、C:0.03mass%以下、N:0.03mass%以下、C+N:0.03mass%以下、C+N:0.03mass%以下、C:0.03mass%以下。C:0.03mass%

[0016]

また、本発明は、C:0.03mass%以下、Si:1.0mass%以下、Mn:1.0mass%以下、N:0.03mass%以下、C+N:0.03mass%以下、Cr:20~45mass%、Mo:0.5~3.0mass%を含有する燃料電池用ステンレス製セパレータにおいて、このセパレータの燃料ガス流路溝の凸部が、算術平均粗さRaが0.01~1.0μmかつ最大高さRyが0.01~20μmの表面粗さを有することを特徴とする接触抵抗値の低い燃料

[0017]

なお、本発明は、上記成分組成に加えてさらに、 $V:0.005\sim0.5$ mass%、 $Ag:0.001\sim0.1$ mass%、Ti, Nbのうち少なくとも1種を合計で $0.01\sim0.5$ mass%含有することが好ましい。

[0018]

また、本発明は、請求項1~3のいずれか1項に記載の燃料電池用ステンレス製セパレータの製造にあたり、セパレータに燃料ガスを供給するガス流路溝の凸部を、好ましくはプレス加工もしくは酸洗によって、算術平均粗さRaが0.01~1.0μmかつ最大高さRyが0.01~20μmの表面粗さとすることを特徴とする接触抵抗値の低い燃料電池用ステンレス製セパレータの製造方法を提案する。

[0019]

さらに、本発明は、電極およびセパレータとからなる固体高分子型燃料電池において、前記セパレータとして、上記ステンレス製セパレータを用いた固体高分子型燃料電池を提案する。

[0020]

【発明の実施の形態】

本発明に係るステンレス製セパレータの化学組成は以下の通りである。

C:0.03mass%以下、N:0.03mass%以下、

C+N:0.03mass%以下

CおよびNは、ともに鋼中のCrと化合物を形成し、粒界にCr炭窒化物として析出し、耐食性の低下をもたらす。このため、両元素とも低いほど望ましく、C: 0.03mass%以下、N: 0.03mass%以下、C+N: 0.03mass%以下であれば、耐食性を著しく低下させることはない。また、C+Nが0.03mass%を超えると、セパレータに機械加工する際に割れを生じることが多い。このため、C: 0.03mass%以下、N: 0.03mass%以下、C+N: 0.03mass%以下に制限する。好ましくは、C: 0.015mass%以下、N: 0.015mass%以下、C+N: 0.02mass%以下である。

[0021]

Si:1.0mass%以下

Siは、脱酸のために有効な元素であるが、過度に含有させると鋼板の硬質化と 延性の低下を招くので、その含有量の上限を1.0mass%とする。好ましくは、0.0 005~0.6mass%である。

[0022]

Mn: 1.0mass%以下

Mnは、Sと結合し、固溶Sを固定することにより、Sの粒界偏析を抑制し、熱間圧延時の割れを防止するのに有効な元素である。この目的のためには、1.0mass%以下含有させれば十分である。好ましくは、0.0005~0.8mass%である。

[0023]

 $Cr:20\sim45$ mass%

Crは、ステンレス鋼の耐食性を確保するための基本的に必要な元素である。Crの量が20mass%未満では、セパレータとして、長期の使用に耐えられない。一方、Cr量が45mass%を超えると、シグマ相の析出による靭性の低下がおこる。このため、Cr量は20~45mass%とした。好ましくは、22~35mass%である。

[0024]

Mo: $0.5 \sim 3.0 \text{mass}\%$

Moは、ステンレス鋼の耐隙間腐食性改善に有効な元素である。Mo量が0.5mass %未満では改善効果が少なく、逆に、3.0mass%を超えて添加しても効果が飽和する。このため、Mo量は0.5~3.0mass%とした。好ましくは1.0~2.5mass%である。

[0025]

 $V: 0.005 \sim 0.5 \text{mass}\%$

Vは、塩化物を含有した溶液環境における耐食性を改善する効果を有し、かつ 製鋼過程において、Agを均一微細に分散させるのに有効な元素である。耐食性改善効果は0.005mass%以上の添加で認められるが、0.5mass%を超えるとその効果が飽和する。したがって、V量は0.005~0.5mass%とした。好ましくは0.005~0.3mass%である。なお、AgとVの複合添加した場合には、最終製品の耐食性の向上と接触抵抗の改善の複合効果が認められることから、VとAgは複合添加することが望ましい。

 $Ag: 0.001 \sim 0.1 \text{mass}\%$

Agは、微生物の増殖を抑制するいわゆる抗菌元素として用いられている(例えば、特開平11-172379号公報、特開平11-12692号公報など)が、発明者らは、ステンレス鋼に微量のAgを添加すると、耐食性を維持したまま接触抵抗を低下できることを新たに見出した。接触抵抗の低下は、Ag添加量が0.001mass%以上で認められるが、0.1mass%を超えると耐食性が低下し始める。このため、Ag添加量はAg: 0.001~0.1mass%とした。好ましくは、0.005~0.07mass%である。

[0027]

Ti, Nb:合計で、0.01~0.5mass%

TiおよびNbは、鋼中のC,Nを炭化物として固定し、プレス成形性を改善するのに有効な元素である。C+Nが0.03mass%以下の場合、TiおよびNbの添加によるプレス成形性の改善効果は、Ti,Nbを合計で0.01mass%以上含有している場合に認められ、0.5mass%を超えて含有させてもその効果は飽和する。このため、Ti,Nbのうち少なくとも1種を、合計で0.01~0.5mass%含有させる。好ましくは0.02~0.4mass%である。

[0028]

次に、本発明に係るステンレス製セパレータの表面粗さ、特に電極膜に接する 部分の表面粗さについて説明する。

上述したように、金属セパレータの接触抵抗を低くするためには、表面粗さの制御が重要である。そして、その接触抵抗を低くするためには、表面に微細な凹凸を形成することが有効である。ただし、凹部が深くなりすぎると、局所的な耐食性の低下を招き、孔食が発生する。接触抵抗がカーボン製セパレータと同等になる表面粗さは、Raで 0.01μ m以上であるが、その効果は 0.8μ m程度で飽和し、逆にRaが 1.0μ mを超えると接触抵抗が高くなる。したがって、Ra: $0.01\sim1.0\mu$ mとした。好ましくは、Ra: $0.05\sim0.8\mu$ mである。

一方、凹凸の大きさを表す最大高さRyは、 20μ mを超えると孔食の起点となるため、 20μ m以下とする必要がある。このRyは、低ければ低いほどよいが、表面粗さ(Ra)との関係から、下限値は 0.01μ mとする。したがって、Ry: $0.01 \sim 20$

表面粗さの制御には、機械加工、ショットブラスト、レーザー加工、プレス加工、酸洗処理、フォトエッチングなどいずれの方法を用いてもよいが、大量生産には、微細な凹凸加工を施したプレス金型でプレスする方法または混酸、塩酸および王水などを用いた酸洗処理が適している。

[0029]

次に、本発明のセパレータの製造方法について簡単に説明する。

本願発明セパレータは、通常の公知の溶製方法がすべて適用でき、溶製方法は特に限定する必要はないが、例えば、製鋼の工程は転炉、電気炉等で溶製し、SS-VODにより2次精錬を行うのが好適である。鋳造方法は、生産性、品質の面から連続鋳造法が好ましい。鋳造により得られたスラブは、熱間圧延し、800~1150℃の熱延板焼鈍後、酸洗し、冷間圧延して所定の製品板厚とし、あるいはさらに800~1150℃の焼鈍、酸洗処理を施して製品とするのが好ましい。

その後、プレス加工、機械加工等によりガス流路を形成し、さらに機械加工、 ショットブラスト、レーザー加工、プレス加工、酸洗処理、フォトエッチングな どの方法を用いて表面粗度を調整し、セパレータとすることが望ましい。

[0030]

【実施例】

表1に示す化学組成の鋼を、転炉-2次精錬(SS-VOD)により溶製し、連続鋳造法により200mm厚のスラブとした。これらスラブを1250℃に加熱したのち熱間圧延し、板厚4mmの熱延板とし、850~1100℃の熱延板焼鈍後、酸洗処理を施したのち、冷間圧延し、さらに、850~1100℃の冷延板焼鈍および酸洗による脱スケール処理を施して、板厚0.5mmの冷延焼鈍板とした。

これらの冷延焼鈍板からサンプルを切り出し、図1に示すガス流路溝(空気流路4および水素流路5)の凸部(電極膜に接触する側)が幅2mm、高さ2mmの正方形断面を持ち、かつ流路(ガス流路溝)を1mm間隔で配置した、有効面積50cm²のセパレータを、機械加工により作製した。その後、硝酸と塩酸を体積比で1:3の割合で混合した溶液で酸洗(王水酸洗)し、または8mass%HNO₃+2.5mass%HFの混合溶液で酸洗(混酸酸洗)し、表面粗さを調整した。

また、図1に示す形状を持つ、有効面積50cm²のセパレータを、プレス加工により作製し、その後、王水酸洗または混酸酸洗により表面粗さを調整した。さらに、プレス金型の表面に予め微細な凹凸加工を施しておき、プレス加工することにより、セパレータの表面形状を調整する方法も実施した。

さらに / 比較のため、SUS304を図1と同一形状に機械加工したのち、表面に厚さ約0.005μmの金めっきを施したステンレスセパレータおよび板厚2.0mmで、ガス流路溝の形状は図1と同一のカーボンセパレータを作製し、試験に供した。

[0031]

【表1】

施		発明例	発明例	発明例	発明例	発明例	発明例	比較例	発明例	比較例	比較例	発明例	発明例
	≨	<u>**</u>	<u>**</u>	 	1	<u>**</u>	米	표		L.		米	
	Ţ		1	_	0.22	ı		1	0.18	0.20	0.19	ı	0.07
	£	1	ı	0.29	1	0.16	0.20	0.24	ı	ı	1	0.31	0.09
	>	l	0.13	0.09	0.11	0.11	0.15	0.09	0.13	0.09	0.10	0.10	0.00
	Ag	1	l	1	0.0105	0.0021	0.0910	0.0280	0.0050	2.1 0.0110	0.0140	0.019 0.0030 30.0 1.8 0.0040	43.2 1.7 0.0080
	ş	1.7	1.5	1.8	2.0	1.9	1.8	11	5.9	2.1	2.0	1.8	1.7
(%	ι	22.3	23.1	21.7	29.7	30.1 1.9	8.67	30.2	28.9	29.5	29.6	30.0	43.2
化学成分(mass%)	S	0.0030 22.3	0800.0	0.220 0.025 0.0040 21.7	0.0040	0.110 0.018 0.0030	0.0040 29.8 1.8 0.0910	0.0060	0.017 0.0050 28.9	0.0040	0.0030	0.0030	0.001 0.001 0.0002
学成分	Ъ	0.020	0.022	0.025	0.021	0.018	0.020	0.019	0.017	0.028	0.024	0.019	0.001
Æ	Mn	0.170	0.250	0.220	0.190 0.021	0.110	0.150	0.210	0.170	0.210	0.190	0.220	0.001
	Si	0.200	0.310	0.290	0.180	0.200	0.190	0.220	0.270	0.240	0.260	0.240 0.220	0.002
	C + N	0.0069	0.0137 0.310	0.0176 0.290	0.0059	0.0048 0.200	0.0068	0.0051	0.0075 0.270 0.170	0.0730	0.0520	0.0085	0.0005 0.002
	N	0.0035	0.0062	0.0082	0.0033	0.0021	0.0035	0.0022	0.0031	0.0210	0.0270	0.0054	0.0002
	C	0.0034	0.0075 0.0062	0.0094 0.0082	0.0026 0.0033	0.0027 0.0021	0.0033 0.0035	0.0029 0.0022	0.0044 0.0031	0.0520 0.0210	0.0250 0.0270	0.0031 0.0054	0.0003 0.0002
San	na field	-	2	က	4	5	9	2	∞	6	10	11	12

[0032]

上記により作製した各種のセパレータについて、前記の方法で、接触抵抗を測

<耐食性試験>

JIS G 0591に準拠して10mass%硫酸腐食試験を実施した。各種セパレータを5 mass%硫酸中に浸漬し80℃で90日間保持後の腐食減量を測定した。

<燃料電池(単セル)での発電特性試験(出力電圧低下)>

高分子膜としてナフロンを使用した電極膜を用いて固体高分子型燃料電池(単セル)を作製し、カソード側には空気を、アノード側には超高純度水素(純度99.9 999mass%)を、それぞれ500cm³/min流し、負荷電流密度0.6A/cm²で、1000時間の耐久性試験を実施した。特性評価は、1000時間後の出力電圧の低下が0.03V以下を耐久性良好とした。なお、電池本体は75±1℃に、電池内部の温度は78±2℃に保持し、膜ー電極接合体、カーボンクロス等は試験片を変えるたびに新品に交換した。

[0033]

上記測定結果を表2に示す。本発明例は、いずれもカーボンセパレータよりも良好な接触抵抗を示すとともに、耐食性は、金めっきセパレータよりも良好な特性を示している。さらに1000時間の発電試験による出力電圧低下は、本発明例のセパレータを組み込んだ燃料電池は、いずれも0.05 V以下である。なお、セパレータ加工できなかった鋼9,10を使用した比較例では、特性の評価は実施しなかった。

[0034]

【表2】

1	(8/=1) 無 允	0.31 発明例	0.21 発明例	0.31 発明例	0.12 比較例	0.09 発明例	0.05 発明例	0.06 発明例	0.21 比較例	0.04 発明例	0.04 比較例	0.05 比較例	0.06 発明例	0.09 発明例	0.01 発明例	- 参考例	9.2
圧低下		0.04	0.03	0.04	初期出力電圧<0.3V (<0.01	<0.01	<0.01	200時間で出力電圧 低下が 0.05V 以上	<0.01	1	1	<0.01	<0.01	<0.01	0.02	200時間で出力電圧
接触抵抗	(mg)	3.2	3.0	3.4	11.2	5.6	3.2	2.0	2.4	8.2	ı	I	2.5	2.4	2.3	3.6	8.1
な田	Ry(μm)	0.94	2.97	0.51	4.6	1.02	1.93	5.34	4.18	1.88	8.01	8.73	1.87	1.89	1.12	1	1
表面粗さ	Ra(µm)	0.12	0.31	0.07	3.2	0.15	0.83	0.42	0.44	0.79	0.41	0.45	8.0	0.81	0.14	ı	ı
表面形状	調整方法	混酸酸洗	混酸酸洗	混酸酸洗	つ選	王水酸洗	ブレス	王水酸洗	王水酸洗	プレス	王水酸洗	混酸酸洗	ブレス	ブレス	王水酸洗	-	1
セパレータ	加工方法	機械加工	機械加工	機械加工	機械加工	機械加工	ブレス	機械加工	機械加工	プレス	機械加工(割れ発生)	機械加工(割れ発生)	ブレス	プレス	機械加工	機械加工	機械加工
N.		1	2	က	က	4	5	9	7	&	6	10	11	12	12	カーホン	金めつき
N	[2	က	4	5	9	2	∞	6	9	=	12	13	14	15	16

[0035]

【発明の効果】

特2001-354341

以上説明したように、本発明によれば、従来のカーボンセパレータや金めっき ステンレスセパレータよりも接触抵抗が小さくかつ耐食性に優れ、固体高分子型 燃料電池用セパレータとして用いて好適なステンレスセパレータを得ることがで きる。この結果、従来、耐久性の問題から、高価なカーボンセパレータを使用し ていた燃料電池に、安価なステンレスセパレータを提供することが可能となった

【図面の簡単な説明】

- 【図1】 固体高分子型燃料電池の単セルの構造を示した模式図である。
- 【図2】 接触抵抗の測定方法を示した模式図である。
- 【図3】 セパレータ加工条件と接触抵抗の関係を示した図である。

【符号の説明】

- 1:(電極)膜-電極接合体
- 2,3:セパレータ
- 4:空気流路
- 5:水素流路

図面

【図1】

【図2】

2

【要約】

【課題】 耐久性と安定した発電特性を有する燃料電池用の接触抵抗値の低いステンレス製セパレータ提供する。

【解決手段】 成分組成としてC:0.03mass%以下、N:0.03mass%以下、C+N:0.03mass%以下、Cr:20~45mass%、Mo:0.5~3.0mass%を含有した燃料電池用ステンレス製セパレータの燃料ガス流路溝の電極膜に接する凸部を、算術平均粗さRaで0.01~1.0μmかつ最大高さRyで0.01~20μmの表面粗さとする。

【選択図】 図3

出願人履歴情報

識別番号

[000001258]

1. 変更年月日

1990年 8月13日

[変更理由]

新規登録

住 所

兵庫県神戸市中央区北本町通1丁目1番28号

氏 名

川崎製鉄株式会社