

**MODULARES SYSTEM FÜR EINEN OPTISCHEN RÜCKWANDBUS**

5 Die vorliegende Erfindung betrifft ein modulares System. Insbesondere betrifft die Erfindung einen Rückwandbus gemäß dem Oberbegriff des Anspruch 1, ein Modul gemäß dem Oberbegriff des Anspruchs 5, ein modulares System gemäß dem Oberbegriff des Anspruchs 9 sowie ein Verfahren zur Adressierung  
10 solcher Module gemäß dem Oberbegriff des Anspruchs 12.

Modulare Systeme bestehen aus einer Anzahl von Modulen, die über einen Rückwandbus, einer so genannten Backplane, miteinander in Verbindung stehen. Der Rückwandbus weist dazu eine  
15 Anzahl von Steckplätzen auf, an welche die einzelnen Module modular ansteckbar sind. Üblicherweise stellt der Rückwandbus über diese Steckplätze die Spannungsversorgung für die einzelnen Module bereit. Zudem sind die Steckplätze mit entsprechend geeigneten elektrischen oder optischen Mitteln so mit  
20 einander verbunden, dass die von einem der Module gesendeten Signale von anderen Modulen empfangen werden können und umgekehrt. Die gesendeten und empfangenen Signale enthalten dabei Informationen, beispielsweise eine Kennung zur Adressierung oder auch Daten zur Datenkommunikation zwischen den Modulen.  
25

Aus der EP 0 237 236 ist bekannt, einen Rückwandbus mit einem Lichtwellenleiter für die Datenkommunikation zwischen den Modulen zu benutzen. Dazu weist der Lichtwellenleiter über seine Länge in bestimmten Abständen entsprechende Mittel auf,  
30 die Teile des im Lichtwellenleiter geführten Lichtes auskoppeln und den restlichen Teil des Lichtes durchlassen. Diese ausgekoppelten Lichtteile enthalten weiterhin die vollständige, in den Lichtsignalen transportierten, Informationen. Das ausgekoppelte Licht, und damit die Lichtsignale werden dann  
35 über weitere optische Elemente, wie beispielsweise Linsen, auf den einzelnen Modulen geführt. Durch diese Anordnung der Mittel im Lichtwellenleiter werden so immer wieder Teile des

im Lichtwellenleiter verbleibenden Lichtes ausgekoppelt. Damit nimmt die Intensität des Lichtes gerade bei einer großen Anzahl von Steckplätzen immer weiter ab. Dies hat zum Nachteil, dass die in Ausbreitungsrichtung des Lichtes weiter entfernten Module, die in den ausgekoppelten Lichtsignalen enthaltenen Informationen mit immer weniger Lichtintensität empfangen. Dadurch verschlechtert sich das Signal- zu Rausch-Verhältnis mit zunehmender Zahl von Modulen immer weiter, wodurch es zu fehlerhafter Übertragung der Informationen kommen kann.

Die WO 88/08573 beschreibt auch ein modulares System mit einer Anzahl von Modulen, die auf einen Rückwandbus gesteckt sind. Über den Rückwandbus können die gesteckten Module entsprechend miteinander kommunizieren. Zusätzlich weist jedes der Module einen optischen Sender und einen optischen Emitter auf, die so angeordnet sind, dass im gesteckten Zustand der optische Sender eines Moduls immer dem optischen Empfänger des direkten Nachbarmoduls gegenüberliegt. Zur Adressierung der Module sendet dann das erste Modul über den Rückwandbus eine Kennung für eine mögliche gültige Adresse. Gleichzeitig aktiviert das erste Modul seinen optischen Sender. Über die freie Luftschnittstelle zwischen dem ersten und dem benachbarten zweiten Modul wird somit der optische Empfänger des zweiten Moduls beleuchtet und aktiviert. Der aktivierte optische Empfänger schaltet dann die, über den Rückwandbus übermittelte Kennung für die weitere Bearbeitung auf dem zweiten Modul frei. Nachdem dieses zweite Modul die Kennung der gültigen Adresse übernommen hat, aktiviert es seinen optischen Sender. Dieser beleuchtet wiederum über eine weitere Luftschnittstelle den optischen Empfänger des nachfolgenden dritten Moduls und so fort. Solch eine Reihenschaltung von Modulen zur Adressierung ist unter dem Begriff "daisy-chain" bekannt. Die in WO 88/08573 gezeigte Anordnung hat aber den Nachteil, dass zusätzlich zum Rückwandbus weitere optische Sender und Empfänger für die Adressierung notwendig sind.

Aufgabe der vorliegenden Erfindung ist deshalb einen Rückwandbus und ein entsprechendes Modul bereitzustellen, die auf einfache Art und Weise eine Datenkommunikation und Autoadresierung über ein gemeinsames Mittel ermöglichen. Ferner ist  
5 es die Aufgabe, ein entsprechendes modulares System bereitzustellen.

Diese Aufgabe wird gelöst durch den Rückwandbus mit den Merkmalen des Anspruchs 1, das Modul mit den Merkmalen des Anspruchs 5, sowie das modulare System mit den Merkmalen des Anspruchs 9.  
10

Dadurch, dass der Lichtwellenleiter eines Rückwandsbusses Unterbrechungen aufweist und in diese Unterbrechungen Mittel zum Ein- und Auskoppeln der steckbaren Module einfügbar sind, können im Lichtwellenleiter geführte Lichtsignale über die Mittel zu den gesteckten Modulen umgeleitet, das heißt aus dem Lichtwellenleiter ausgekoppelt werden. Insbesondere erkennt das Modul die in den umgeleiteten Lichtsignale enthaltenen Informationen, wie beispielsweise die Kennung zur Addressierung oder die Daten für die Datenkommunikation. Entsprechende vom Modul generierte Lichtsignale werden über die Mittel zum Ein- und Auskoppeln dem Lichtwellenleiter wieder zugeführt, das heißt in Ausbreitungsrichtung der ursprünglichen Lichtsignale in den Lichtwellenleiter eingekoppelt. Dadurch, dass die Unterbrechungen so angeordnet sind, dass einem Steckplatz auf dem Rückwandbus eine Unterbrechung zuordenbar ist, ist eine einfache Hintereinanderschaltung einer Anzahl von, auf einen Rückwandbus gesteckter, Module möglich.  
20  
25  
30

Somit können ohne weiteres gesteckte Module adressiert werden und anschließend über die gleichen Mittel, das heißt den Lichtwellenleiter, Daten für die Datenkommunikation austauschen. Dadurch sind keine separaten Mittel für die Adressierung und die Datenkommunikation notwendig.

35

Weitere vorteilhafte Ausführungen und bevorzugte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.

Die vorliegende Erfindung sowie deren Vorteile sollen nun anhand der folgenden Figuren näher beschrieben werden. Es zeigen:

5 FIG 1 eine mögliche Ausführungsform des modularen Systems mit einem Rückwandbus und drei Modulen,

FIG 2 Flussdiagramme für den prinzipiellen Ablauf der Adressierung der Module

10

Der in Figur 1 dargestellte Teil eines modularen Systems weist einen Rückwandbus B mit einem Lichtwellenleiter L auf. In der hier vorliegenden Ausführungsform führt der Lichtwellenleiter L entsprechende Lichtsignale von der linken auf die rechte Seite des Rückwandbusses B. Somit ist die Ausbreitungsrichtung des geführten Lichtes für diesen Lichtwellenleiter L vorgegeben. Gemäß der vorliegenden Erfindung weist der Lichtwellenleiter L eine Anzahl von Unterbrechungen U1, U2 und U3 auf. Ist kein Modul gesteckt, wie beispielsweise bei der Unterbrechung U2, tritt das geführte Licht, respektive die Lichtsignale, an einer Grenzfläche zwischen Lichtwellenleiter L und Unterbrechung U2 aus dem Lichtwellenleiter aus, wird entsprechend der vorgegebenen Ausbreitungsrichtung die Unterbrechung U2 überwinden und an der anderen Grenzfläche wieder in den Lichtwellenleiter L eintreten. Um die Verluste, insbesondere Reflexionsverluste, an den Grenzflächen gering zu halten, sind vorzugsweise entsprechende Antireflexionsschichten auf diesen Grenzflächen aufgebracht.

30 Auf dem Rückwandbus B ist eine Mehrzahl von Steckplätzen, wie beispielsweise die in Figur 1 gezeigten Steckplätze P, vorgesehen. Die Steckplätze P sind so ausgebildet, dass eine stabile mechanische oder auch eine zusätzliche elektrische Verbindung zwischen Rückwandbus B und den darauf steckbaren Modulen M1, M2 und M3 besteht. Gemäß der vorliegenden Erfindung weisen die Module M1, M2 und M3 zusätzlich noch Mittel zum Ein- und Auskoppeln der Lichtsignale in und aus dem Lichtwel-

lenleiter L auf. Sind, wie im vorliegenden Beispiel gezeigt, die Module M1 und M3 gesteckt, so sind die entsprechenden Mittel in die Unterbrechungen U1 und U3 eingefügt. Die im Lichtwellenleiter L geführten Lichtsignale werden dann beispielweise am Modul M1 zu einem optischen Empfänger E1. Dieser wandelt das empfangene Lichtsignal für die weitere Verarbeitung auf dem Modul M1 in ein elektrisches Signal um. Zudem ist auf dem Modul ein optischer Sender S1 vorgesehen, der optische Lichtsignale generiert, die dann über die Mittel zum Ein- und Auskoppeln in den Lichtwellenleiter L des Rückwandbusses B einkoppelt werden. Dabei sind die Mittel zum Ein- und Auskoppeln vorzugsweise so ausgebildet, dass sie aus einem ersten (WE1) und zweiten (WS1) Lichtwellenleiterstück bestehen, die parallel zueinander angeordnet sind. In einer Ausbildung ist, so wie in Figur 1 gezeigt, zwischen den zwei parallel angeordneten Lichtwellenleiterstücken WE1 und WS1 zusätzlich noch ein Schild vorgesehen, dass die beiden Lichtwellenleiterstücke WE1 und WS1 optisch voneinander trennt. Beide Wellenleiterstücke weisen an einem Ende jeweils eine abgeschrägte Endfläche auf. Dabei sind die beiden Endflächen so ausgebildet bzw. angeordnet, dass sie die im Lichtwellenleiter L geführten Lichtsignale auskoppeln und anschließend wieder Lichtsignale in der Ausbreitungsrichtung einkoppeln. Am Beispiel des in Figur 1 gezeigten erstem Moduls M1 bedeutet das, dass das erste Lichtwellenleiterstück WE1 so in die Unterbrechung U1 des Lichtwellenleiters L hineinragt, dass die von links kommenden Lichtsignale an der Grenzfläche aus dem Lichtwellenleiter L austreten, anschließend in das erste Lichtwellenleiterstück WE1 eintreten, an dessen abgeschrägter Endfläche reflektiert und anschließend von ersten Lichtwellenleiterstück WE1 zum optischen Empfänger E1 des Moduls M1 geführt werden. Die abgeschrägte Endfläche ist so ausgebildet, dass die in das erste Lichtwellenleiterstück WE1 eintretenden Lichtsignale an dieser Endfläche total reflektiert werden. Entsprechend werden die vom optischen Sender S1 erzeugten Lichtsignale im zweiten Lichtwellenleiterstück WS1 geführt, an dessen abgeschrägten Endfläche reflektiert und am

anderen Ende der Unterbrechung U1 in Ausbreitungsrichtung über die nächste Grenzfläche des Lichtwellenleiters L in diesen eingekoppelt. Das bedeutet, dass das auf dem Modul M1 generierte und nach der Unterbrechung U1 wieder in den Lichtwellenleiter L eingekoppelte Lichtsignal, in dem Lichtwellenleiter L die gleiche Ausbreitungsrichtung aufweist wie das vor der Unterbrechung U1 im Lichtwellenleiter L geführte ursprüngliche Lichtsignal. Die eingekoppelten Lichtsignale werden dann weiter über den Lichtwellenleiter L und die Unterbrechung U2 zur Unterbrechung U3 geführt. An der Unterbrechung U3 werden die Lichtsignale dann über die entsprechenden Mittel des gesteckten Moduls M3 ausgekoppelt und so weiter. Auf diese Art erhält man auf einfache Art und Weise eine Hintereinanderschaltung von mehreren Modulen M1 und M3, die in einem modularen System auf einen Rückwandbus B gesteckt sind. Entsprechend können dann mittels des Lichtwellenleiters L die Informationen über die Kennungen für die Autoadressierung und/oder Daten für die Datenkommunikation über das gleiche Mittel, nämlich den Lichtwellenleiter L, übertragen werden.

20

Die in Figur 1 gezeigte Ausführungsform erlaubt das Führen von Licht, respektive der in den geführten Lichtsignalen enthaltenen Informationen, in genau einer Ausbreitungsrichtung, nämlich von dem Modul M1 auf der linken Seite zu dem Modul M3 auf der rechten Seite. Für eine bidirektionale Übertragung von Lichtsignalen ist auf dem Rückwandbus B entsprechend ein zweiter Lichtwellenleiter gemäß der vorliegenden Erfindung und Module mit entsprechend weiteren Mitteln zum Ein- und Auskoppeln von Lichtsignalen aus diesem zweiten Lichtwellenleiter vorzusehen. Dadurch können Lichtsignale und damit Kennungen und Daten sowohl in die eine als auch in die andere Richtung geführt werden und damit die Module M1 und M3 in beiden Richtungen miteinander kommunizieren.

35 Die Unterbrechungen U1, U2 und U3 des Lichtwellenleiters L des modularen Systems sind vorzugsweise so ausgebildet, dass ihre Abmessungen in Ausbreitungsrichtung der Lichtsignale nur

geringfügig größer sind als die Abmessungen der einfügbaren Mittel zum Ein- und Auskoppeln. Damit wird ein direkter Kontakt des Lichtwellenleiters L mit den entsprechenden Mitteln zum Ein- und Auskoppeln, gerade beim Einsticken oder Heraus-

5 ziehen der Module vermieden. Solche unbeabsichtigten mechanischen Kontakte können die Oberflächen der Lichtwellenleiter L, WE1 oder WS1, insbesondere die Grenzflächen, beschädigen, wodurch sich auf längere Sicht die Transmissionseigenschaften und damit die Intensität der geführten Lichtsignale verringert.

10 Auf der anderen Seite sollten die Abmessungen auch nicht zu groß gewählt werden, da es dann in den frei bleibenden Bereichen der Unterbrechungen U1, U2 und U3 zu zusätzlichen nicht notwendigen Dämpfungen kommt.

15 Durch die gemäß der vorliegenden Erfindung bewirkte Reihenschaltung von Modulen M1, M2, M3,... werden auf einem Modul die aus dem Lichtwellenleiter L ausgekoppelten Lichtsignale von einem optischen Empfänger in entsprechende elektrische Signale umgewandelt und abhängig von diesen elektrischen Sig-

20 nalen dann ein optischer Sender gesteuert. Somit können beispielsweise die vom Modul M1 empfangenen Lichtsignale und die darin enthaltenen Informationen vom optischen Empfänger E1 in elektrische Signale umgewandelt und anschließend verstärkt werden. Diese verstärkten elektrischen Signale werden dann im

25 Sender S1 wieder in Lichtsignale umgewandelt, anschließend in den Lichtwellenleiter L eingekoppelt und von diesem zum nächsten gesteckten Modul M3 geführt. Somit ist auch bei einer hohen Anzahl von gesteckten Modulen gewährleistet, dass auch noch beim letzten Modul in der Reihe die Intensität der

30 Lichtsignale genügend hoch ist.

Ist die Höhe der Signalverstärkung und die Dämpfung für die geführten Lichtsignale in den Lichtwellenleitern L, WE1, WS1, ... und den Unterbrechungen U1, U2, U3, ... bekannt, kann mit

35 Hilfe einer Intensitätsmessung an nachfolgenden Modulen der Reihe erkannt werden, wie viele Module nicht gesteckt sind. Wird zudem noch ein Dämpfungselement mit einer definierten

Dämpfung in die Unterbrechungen, die nicht durch Module belegt sind, eingefügt, kann die Bestimmung von freien Steckplätzen anhand der Intensitätsmessung noch sicherer erfolgen.

- 5 Modulare Systeme, wie beispielsweise Automatisierungssysteme bestehen aus einer Anzahl von Modulen, die jeweils vordefinierte Aufgaben bzw. Funktionen wahrnehmen. Dabei wird im Allgemeinen eines der Module, beispielsweise eine Kopfbaugruppe, der Master für die anderen gesteckten Module sein.
- 10 Über den Rückwandbus werden alle Module mit entsprechenden Spannungen versorgt. Damit die Module untereinander zusammenwirken, muss während der Projektierung allen Modulen des Automatisierungssystems eine Adresse zugewiesen werden. Während des Betriebes überprüft der Master dann zuerst, ob den einzelnen Modulen gültige Adressen zugewiesen sind, um sie anschließend anhand dieser Kennung entsprechend mit Daten zu versorgen oder zu steuern. Der prinzipielle Ablauf der Adressierung soll nun anhand des in Figur 2 gezeigten Flussdiagramms näher beschrieben werden. Der gezeigte Ablauf ist so-wohl anwendbar bei einem Neustart, das heißt beim Anlauf des modularen Systems, aber auch beim Tausch oder Hinzufügen von Modulen. Dabei wird davon ausgegangen, dass jedem Modul nach Spannungswiederkehr, eine Default-Adresse zugeordnet sowie dessen optischer Sender deaktiviert ist. Der Master wird in regelmäßigen Abständen über den Lichtwellenleiter L mit den Modulen kommunizieren und überprüfen, ob ihnen eine gültige Adresse zugeordnet ist. Ist ein Modul erkannt, das die Reihe unterbricht, das heißt dessen optischer Sender deaktiviert ist, pollt der Master die Default-Adresse dieses Moduls. Ist die Default-Adresse bereits eine gültige Adresse, weil beispielsweise diese Adresse an kein anderes Modul vergeben ist, wird der optische Sender dieses Moduls aktiviert. Ist dagegen die Default-Adresse keine gültige Adresse, so bekommt dieses Modul vom Mastermodul über die im Lichtwellenleiter geführten Lichtsignale eine gültige Adresse zugeordnet. Und dessen optische Sender wird aktiviert. Damit kann der Master dann über den Lichtwellenleiter L, das erste Lichtwellenleiterstück WE1,

den optischen Empfänger E1 und den damit elektrisch verbundenen optischen Sender S1, dem zweiten Lichtwellenleiterstück WS1 und dem Lichtwellenleiter L mit dem nachfolgenden Modul kommunizieren. Ist ein weiteres Modul vorhanden, das auch die

5 Reihe unterbricht, wird wiederum für dieses die Default-Adresse gepollt und so fort. Damit ist es möglich, einzelne oder auch mehrere neu zugeschaltete Module einzubinden. Beim

10 Neustart des Systems besitzen alle Module eine Default-Adresse, so dass hier dann die Schritte auf das erste, dem Master folgende Modul, vorgenommen werden müssen. Ist allen Modulen eine gültige Adresse zugewiesen, kann die Adressierung beendet werden und mit der Datenkommunikation beispielsweise zum Steuern der Module begonnen werden. Vorzugsweise gehen dazu alle Module in einen Parallelmodus über, das heißt

15 alle Module empfangen nahezu gleichzeitig Daten, aber nur das Modul, das die den Daten zugeordnete Adresse besitzt, antwortet oder führt aus.

**Patentansprüche**

1. Rückwandbus (B), mit einer Mehrzahl von Steckplätzen (P) an die Module (M1,M2,M3,...) steckbar, und einem  
5 Lichtwellenleiter (L) zum Führen von Lichtsignalen,  
dadurch gekennzeichnet, dass  
der Lichtwellenleiter (L) in Ausbreitungsrichtung der  
Lichtsignale eine Anzahl von Unterbrechungen (U1,U2,  
10 U3,...) aufweist, in die Mittel zum Ein- und Auskoppeln  
der im Lichtwellenleiter (L) geführten Lichtsignale ein-  
fügbar sind, und wobei die Unterbrechungen (U1,U2,U3,...)  
des Lichtwellenleiters so angeordnet sind, dass einem  
Steckplatz (P) eine Unterbrechung (U1,U2,U3,...) zuorden-  
bar ist.
- 15 2. Rückwandbus nach Anspruch 1,  
dadurch gekennzeichnet, dass  
auf einer Grenzfläche der Unterbrechung (U1,U2,U3,...) des  
Lichtwellenleiters (L) eine Antireflexionsbeschichtung  
20 aufgebracht ist.
- 25 3. Rückwandbus nach einem der Ansprüche 1 oder 2,  
dadurch gekennzeichnet, dass  
die im Lichtwellenleiter (L) geführten Lichtsignale Ken-  
nungen für die Autoaddressierung und/oder Daten für die Da-  
tenkommunikation übertragen.
- 30 4. Rückwandbus nach einem der vorherigen Ansprüche,  
dadurch gekennzeichnet, dass  
ein weiterer Lichtwellenleiter mit Unterbrechungen vorge-  
sehen ist, in die weitere Mittel zum Ein- und Auskoppeln  
einfügbar sind, wobei der eine Lichtwellenleiter die  
Lichtsignale in eine Ausbreitungsrichtung und der weitere  
Lichtwellenleiter die Lichtsignale in die entgegengesetzte  
35 Ausbreitungsrichtung führt.

5. Modul (M1,M2,M3), das auf einen optischen Rückwandbus (B) steckbar ist und Mittel zum Ein- und Auskoppeln von, im Rückwandbus (B) in einem Lichtwellenleiter (L) geführten Lichtsignalen aufweist,

5 durch gekennzeichnet, dass die Mittel zum Ein- und Auskoppeln so angeordnet sind, dass sie in Unterbrechungen (U1,U2,U3,...) im Lichtwellenleiter (L) einfügbar sind, Lichtsignale aus dem Lichtwellenleiter (L) auskoppeln und Lichtsignale in Ausbreitungsrichtung in den Lichtwellenleiter (L) einkoppeln.

10 6. Modul nach Anspruch 5,

dadurch gekennzeichnet, dass - die Mittel zum Ein- und Auskoppeln aus einem ersten (WE1) und einem zweiten (WS1), parallel zum ersten (WE1) angeordneten, Lichtwellenleiterstück bestehen, - wobei ein Ende des ersten Lichtwellenleiterstückes (WE1) eine abgeschrägte Endfläche aufweist, die so ausgebildet ist, dass die im Lichtwellenleiter (L) geführten Lichtsignale über die abgeschrägte Endfläche aus dem Lichtwellenleiter (L) auskoppelbar sind und zu einem auf dem Modul (M1) angeordneten optischen Empfänger (E1) geführt werden - und wobei ein Ende des zweiten Lichtwellenleiterstückes (WS1) eine abgeschrägte Endfläche aufweist, die so ausgebildet ist, dass die von einem auf dem Modul (M1) angeordneten optischen Sender (S1) gesendeten Lichtsignale über die abgeschrägte Endfläche in Ausbreitungsrichtung in den Lichtwellenleiter (L) einkoppelbar sind.

20 7. Modul nach Anspruch 5 oder 6,

dadurch gekennzeichnet, dass der optische Empfänger (E1) die empfangenen Lichtsignale in elektrische Signale umwandelt und der optische Sender (S1) abhängig von diesen elektrischen Signalen gesteuert wird.

8. Modul nach einem der Ansprüche 5 bis 7,  
dadurch gekennzeichnet, dass  
die über die Mittel ein- und ausgekoppelten Lichtsignale  
Kennungen für die Autoadressierung und/oder Daten für die  
5 Datenkommunikation übertragen.

9. Modulares System mit einem Rückwandbus (B) nach einem der  
Ansprüche 1 bis 4 und einer Anzahl von Modulen  
(M1,M2,M3,...) nach einem der Ansprüche 5 bis 8,  
dadurch gekennzeichnet, dass  
10 die Unterbrechungen (U1,U2,U3,...) des Lichtwellenleiters  
(L) so ausgebildet sind, dass deren Abmessungen in Aus-  
breitungsrichtung der Lichtsignale nur geringfügig größer  
sind als die Abmessungen den einsteckbaren Mittel zum Ein-  
15 und Auskoppeln.

10. Modulares System nach Anspruch 9,  
dadurch gekennzeichnet, dass  
Dämpfungselemente zum Einfügen in die Unterbrechungen  
20 (U1,U2,U3,...) vorgesehen sind, wobei die Abmessungen der  
Dämpfungselemente geringfügig kleiner sind als die Abmes-  
sungen der Unterbrechungen und wobei die Dämpfungselemente  
eine definierte Dämpfung für die Lichtsignale aufweisen.

25 11. Modulares System nach einem der Ansprüche 9 oder 10,  
dadurch gekennzeichnet, dass  
das modulare System ein Automatisierungssystem ist, wobei  
eines der gesteckten Module ein Master für die anderen  
gesteckten Module ist.

30 12. Verfahren zur Adressierung von, auf einem Rückwandbus  
eines Automatisierungssystems gesteckten Modulen, wobei  
die nach einem der Ansprüche 5 bis 8 ausgebildeten Module  
über einen Lichtwellenleiter des nach einem der Ansprüche  
35 1 bis 4 ausgebildeten Rückwandbusses in Reihe geschaltet  
sind und eines der gesteckten Module ein Master für die  
anderen gesteckten Module ist und wobei der Master über

den Lichtwellenleiter mit den gesteckten Modulen kommuniziert um die folgenden Schritte auszuführen:

- überprüfen und erkennen, ob einem der gesteckten Module keine Adresse zugeordnet ist,

5 - pollen der Default-Adresse des gesteckten Moduls, dem keine Adresse zugeordnet ist,

- zuweisen einer gültigen Adressen zu diesem Modul und aktivieren des optischen Senders dieses Moduls,

10 - wiederholen der Schritte, wenn einem nachfolgenden weiteren gesteckten Modul keine Adresse zugeordnet ist.

1/2

FIG 1



2/2

## FIG 2



# INTERNATIONAL SEARCH REPORT

International Application No  
PCT/EP2004/007738

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC 7 G02B6/43

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
IPC 7 G02B H04B H04L G02F G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                       | Relevant to claim No.    |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| X          | US 5 500 523 A (HAMANAKA KENJIRO)<br>19 March 1996 (1996-03-19)<br>column 1, line 15 – line 20<br>column 4, line 53 – line 55<br>column 6, lines 3-6; figures 5,16f,18<br>column 7, line 48 – line 52; figures 6a,6b<br>column 8, line 12 – line 29<br>column 9, line 15 – line 23<br>column 14, line 13 – line 67<br>the whole document | 1-5,8,9                  |
| Y          | -----                                                                                                                                                                                                                                                                                                                                    | 6,7,10,<br>11<br><br>-/- |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

\* Special categories of cited documents :

- \*A\* document defining the general state of the art which is not considered to be of particular relevance
- \*E\* earlier document but published on or after the international filing date
- \*L\* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*O\* document referring to an oral disclosure, use, exhibition or other means
- \*P\* document published prior to the international filing date but later than the priority date claimed

\*T\* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

\*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

\*Y\* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

\*&\* document member of the same patent family

Date of the actual completion of the international search

26 October 2004

Date of mailing of the international search report

04/11/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patenttaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Authorized officer

Blau, G

## INTERNATIONAL SEARCH REPORT

International Application No  
PCT/EP2004/007738

## C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                  | Relevant to claim No. |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X          | US 4 856 091 A (TASKA JOHN L)<br>8 August 1989 (1989-08-08)<br>cited in the application<br>column 3, line 65 - column 4, line 62;<br>figures 1-4<br>column 5, line 10 - line 53<br>column 6, line 37 - line 39<br>figure 1<br>-----                                 | 12                    |
| Y          | SAUTER G F: "GRADIENT-INDEX LENS OPTICAL BACKPLANE"<br>APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US,<br>vol. 33, no. 16, 1 June 1994 (1994-06-01),<br>pages 3446-3453, XP000450238<br>ISSN: 0003-6935<br>page 3446; figures 1,7<br>page 3450<br>----- | 6,7                   |
| Y          | US 2002/181863 A1 (KIBLER THOMAS ET AL)<br>5 December 2002 (2002-12-05)<br>paragraph '0007! - paragraph '0008!;<br>figure 2<br>paragraph '0018!<br>-----                                                                                                            | 7                     |
| Y          | US 2002/030809 A1 (HOSOKAWA TAKAHIRO ET AL)<br>14 March 2002 (2002-03-14)<br>paragraphs '0061! - '0069!; figures 5,6<br>-----                                                                                                                                       | 10                    |

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International Application No

PCT/EP2004/007738

| Patent document cited in search report |    | Publication date |    | Patent family member(s) | Publication date |
|----------------------------------------|----|------------------|----|-------------------------|------------------|
| US 5500523                             | A  | 19-03-1996       | JP | 4131820 A               | 06-05-1992       |
|                                        |    |                  | JP | 4131801 A               | 06-05-1992       |
|                                        |    |                  | JP | 4130913 A               | 01-05-1992       |
|                                        |    |                  | JP | 4177515 A               | 24-06-1992       |
|                                        |    |                  | JP | 4175704 A               | 23-06-1992       |
|                                        |    |                  | JP | 4270306 A               | 25-09-1992       |
|                                        |    |                  | JP | 4270301 A               | 25-09-1992       |
|                                        |    |                  | JP | 4275508 A               | 01-10-1992       |
|                                        |    |                  | US | 5362961 A               | 08-11-1994       |
|                                        |    |                  | DE | 69115815 D1             | 08-02-1996       |
|                                        |    |                  | EP | 0477036 A2              | 25-03-1992       |
|                                        |    |                  | EP | 0658786 A2              | 21-06-1995       |
|                                        |    |                  | US | 5202567 A               | 13-04-1993       |
| US 4856091                             | A  | 08-08-1989       | EP | 0358637 A1              | 21-03-1990       |
|                                        |    |                  | JP | 4501343 T               | 05-03-1992       |
|                                        |    |                  | WO | 8808573 A1              | 03-11-1988       |
| US 2002181863                          | A1 | 05-12-2002       | DE | 10126756 A1             | 02-01-2003       |
|                                        |    |                  | EP | 1262807 A2              | 04-12-2002       |
| US 2002030809                          | A1 | 14-03-2002       | WO | 0103481 A1              | 11-01-2001       |
|                                        |    |                  | US | 2004150812 A1           | 05-08-2004       |

**Best Available Copy**

# INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen  
PCT/EP2004/007738

## A. KLASSEFIZIERTUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 G02B6/43

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

## B. RECHERCHIERTE GEBiete

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationssymbole)  
IPK 7 G02B H04B H04L G02F G06F

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

## C. ALS WESENTLICH ANGEGEHENE UNTERLAGEN

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                                                                                                                                                                                               | Botr. Anspruch Nr. |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| X          | US 5 500 523 A (HAMANAKA KENJIRO)<br>19. März 1996 (1996-03-19)<br>Spalte 1, Zeile 15 – Zeile 20<br>Spalte 4, Zeile 53 – Zeile 55<br>Spalte 6, Zeilen 3-6; Abbildungen 5,16f,18<br>Spalte 7, Zeile 48 – Zeile 52; Abbildungen<br>6a,6b<br>Spalte 8, Zeile 12 – Zeile 29<br>Spalte 9, Zeile 15 – Zeile 23<br>Spalte 14, Zeile 13 – Zeile 67<br>das ganze Dokument | 1-5,8,9            |
| Y          | -----<br>-/-                                                                                                                                                                                                                                                                                                                                                     | 6,7,10,<br>11      |
|            |                                                                                                                                                                                                                                                                                                                                                                  |                    |

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- \* Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kolidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

26. Oktober 2004

04/11/2004

Name und Postanschrift der internationalen Recherchenbehörde  
Europäisches Patentamt, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Blau, G

**INTERNATIONALER RECHERCHENBERICHT**

Internationales Aktenzeichen  
PCT/EP2004/007738

| <b>C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN</b> |                                                                                                                                                                                                                                                                            |                    |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Kategorie*                                                  | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                                                                                                         | Botr. Anspruch Nr. |
| X                                                           | US 4 856 091 A (TASKA JOHN L)<br>8. August 1989 (1989-08-08)<br>in der Anmeldung erwähnt<br>Spalte 3, Zeile 65 – Spalte 4, Zeile 62;<br>Abbildungen 1-4<br>Spalte 5, Zeile 10 – Zeile 53<br>Spalte 6, Zeile 37 – Zeile 39<br>Abbildung 1<br>-----                          | 12                 |
| Y                                                           | SAUTER G F: "GRADIENT-INDEX LENS OPTICAL BACKPLANE"<br>APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US,<br>Bd. 33, Nr. 16, 1. Juni 1994 (1994-06-01),<br>Seiten 3446-3453, XP000450238<br>ISSN: 0003-6935<br>Seite 3446; Abbildungen 1,7<br>Seite 3450<br>----- | 11<br>6,7          |
| Y                                                           | US 2002/181863 A1 (KIBLER THOMAS ET AL)<br>5. Dezember 2002 (2002-12-05)<br>Absatz '0007! – Absatz '0008!; Abbildung 2<br>Absatz '0018!<br>-----                                                                                                                           | 7                  |
| Y                                                           | US 2002/030809 A1 (HOSOKAWA TAKAHIRO ET AL)<br>14. März 2002 (2002-03-14)<br>Absätze '0061! – '0069!; Abbildungen 5,6<br>-----                                                                                                                                             | 10                 |

**INTERNATIONALER RECHERCHENBERICHT**

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/007738

| Im Recherchenbericht<br>angeführtes Patentdokument |    | Datum der<br>Veröffentlichung |    | Mitglied(er) der<br>Patentfamilie |  | Datum der<br>Veröffentlichung |
|----------------------------------------------------|----|-------------------------------|----|-----------------------------------|--|-------------------------------|
| US 5500523                                         | A  | 19-03-1996                    | JP | 4131820 A                         |  | 06-05-1992                    |
|                                                    |    |                               | JP | 4131801 A                         |  | 06-05-1992                    |
|                                                    |    |                               | JP | 4130913 A                         |  | 01-05-1992                    |
|                                                    |    |                               | JP | 4177515 A                         |  | 24-06-1992                    |
|                                                    |    |                               | JP | 4175704 A                         |  | 23-06-1992                    |
|                                                    |    |                               | JP | 4270306 A                         |  | 25-09-1992                    |
|                                                    |    |                               | JP | 4270301 A                         |  | 25-09-1992                    |
|                                                    |    |                               | JP | 4275508 A                         |  | 01-10-1992                    |
|                                                    |    |                               | US | 5362961 A                         |  | 08-11-1994                    |
|                                                    |    |                               | DE | 69115815 D1                       |  | 08-02-1996                    |
|                                                    |    |                               | EP | 0477036 A2                        |  | 25-03-1992                    |
|                                                    |    |                               | EP | 0658786 A2                        |  | 21-06-1995                    |
|                                                    |    |                               | US | 5202567 A                         |  | 13-04-1993                    |
| US 4856091                                         | A  | 08-08-1989                    | EP | 0358637 A1                        |  | 21-03-1990                    |
|                                                    |    |                               | JP | 4501343 T                         |  | 05-03-1992                    |
|                                                    |    |                               | WO | 8808573 A1                        |  | 03-11-1988                    |
| US 2002181863                                      | A1 | 05-12-2002                    | DE | 10126756 A1                       |  | 02-01-2003                    |
|                                                    |    |                               | EP | 1262807 A2                        |  | 04-12-2002                    |
| US 2002030809                                      | A1 | 14-03-2002                    | WO | 0103481 A1                        |  | 11-01-2001                    |
|                                                    |    |                               | US | 2004150812 A1                     |  | 05-08-2004                    |

Best Available Copy