Preview of Exta(M,N)

How do you think of the importance of Homological Algebra?

1. Def of $Ext_{A}^{n}(M,N)$ $E_{A}(M,N) = fo \rightarrow N \xrightarrow{f} E \xrightarrow{g} M \rightarrow 0 \text{ [equivalence]}$ devi $= fproj \ resolution \ P., H^{n}(Hom_{A}(P,N)) \text{ [fresolution]}$ SES $= finj \ resolution \ I', H^{n}(Hom_{A}(M,I')) \text{ [fresolution]}$ = fderivation [finner derivation]

2. Special module/ring interact with Ext?

P proj \Leftrightarrow $Ext_A^n(P,-) = 0$ $\forall n \ge 1 \Leftrightarrow Ext_A^1(P,-) = 0$ \Leftrightarrow proj $\dim P = 0$ I proj \Leftrightarrow $Ext_A^n(-,I) = 0$ $\forall n \ge 1 \Leftrightarrow Ext_A^1(-,I) = 0$ A fod alg $\dim Fxt_A^1(S(i), S(i)) = \dim_A (\operatorname{rad}(P(i)), S(i))$

A find alg dim_kExt_A(S(i), S(j)) = dim_kHom_A (rad(P(i)), S(j)) $= \frac{A \cdot k \mathcal{U}/2}{|Sa \in \mathcal{U}_1| S(a) = i}, t(a) = j$ Second level of detail.

 $\Rightarrow E_A(M,N)$. Def, Difunctor and K-linear space structure $0 \Rightarrow 0 \Rightarrow 0$

$$f. \sim g. \Rightarrow H_n(f.) = H_n(g.)$$

 $g.f. \sim Id$ $f.g. \sim Id$ $\Rightarrow H_n(C.) = H_n(C.)$
 $\Rightarrow Ext_n^n(M,N)$. Def, bifunctor and k -linear space structure $0 \Rightarrow 3$

⇒ $E_A(M,N)$ → $Ext_A^2(M,N)$ ① well-defined by resolution & lift dequiv ② bifunctor ③ K-linear map

Schanuel's lemma
$$0 \rightarrow U \rightarrow P \rightarrow M \rightarrow 0$$

 $0 \rightarrow U' \rightarrow P' \rightarrow M \rightarrow 0$ $\Rightarrow U \oplus P' \cong U' \oplus P$
 $P, P' proj$

 $\int_{0}^{0} \frac{1}{\sqrt{1+x^{2}}} dx \to V \to 0 \quad \begin{cases} \text{Non-split} \\ \text{f.ol. } A\text{-mod} \end{cases} \Rightarrow \dim_{k} \text{End}_{A}(X) < \dim_{k} \text{End}_{A}(U \oplus V)$ $\int_{0}^{0} \frac{1}{\sqrt{1+x^{2}}} dx = \int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}$

Third level of details purely for difficulty?

```
. submodules in Snake lemma similar to realize J-mod complex. C(Mod(F(J))) \longrightarrow Mod(F(J')) \mod(KQ) \cong Pep(Q). factor category C/I, stable module category, bounded homotopy category relations between S(i), P(i), I(i), rad, soc, top, semisimple, minimal proj resolution, duality Propension F_A(V, U) \longrightarrow Propension F_A(
```

The most important A-modules are:

$$AA \leadsto P(1), \dots, P(n)$$
 indecomposable projective A -modules $D(A_A) \leadsto I(1), \dots, I(n)$ indecomposable injective A -modules $A/J(A) \leadsto S(1), \dots, S(n)$ simple A -modules

We can label these modules such that

$$top(P(i)) \cong S(i) \cong soc(I(i))$$

for $1 \le i \le n$.

Fourth level of details. (partly) 人类驯服野生正合列的珍贵图像

