《通信与网络》实验六电平判决实验

清华大学 电子工程系

通信与网络课程组

2022年11月

目录

• 电平信道与判决回顾

• 实验内容和流程

一、电平信道与判决回顾

电平信道

·为了传输"逻辑"符号{0,1},我们用物理量"电平"承载符号。

• 对于不同的符号发送不同幅度的电平

- 格雷映射(Gray Mapping)
 - 例: M=8时

电平信道

•信道:加性高斯噪声信道

$$n \sim \mathcal{N}(0, \sigma^2)$$
 即 $p(n) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{n^2}{2\sigma^2})$

· 信噪比(SNR): 符号功率与噪声功率的比值

判决方法

•接收机根据接收电平进行符号判决

最大后验概率判决(MAP)

符号等概率发送

最大似然判决(ML)

高斯分布的性质

最小欧氏距离判决(MED)

评价方法

- 误符号率(SER, Symbol Error Rate): P_e
- 误比特率(BER, Bit Error Rate): P_b
- 在格雷映射下:

- ①相邻符号差1个bit
- ②错到相邻位置导致1个bit错
- ③高SNR时错到非相邻位概率极小

$$P_b pprox rac{P_e}{log_2 M}$$

二、实验内容介绍

1. AWGN电平信道与二元符号判决

• 搭建模型

- 发送电平符号 {-1, 1}
- 判决:根据接收电平的正负

1. AWGN电平信道与二元符号判决

· 观察AWGN信道对二元电平信号的影响

•测量信号、噪声功率和误符号率并计算信噪比

信号功率 E _s			
噪声功率 σ^2			
信噪比 E_s/σ^2			
误符号率 P _e			

・采样判决

· 观察AWGN信道对波形影响

- 硬判决(Hard Decision)
 - 对高速率信号的每个采样进行判决后,取判决结果最多的符号作为最终判决,等价于汉明距离最小

- 软判决(Hard Decision)
 - 计算整个采样序列的似然比,进行最大似然判决(ML, Maximum Likelihood)
 - 最大似然判决等同于采样平均值的最小距离(MD)判决

- •研究采样次数 N_s 与抗噪声性能的关系
 - 改变AWGN信道的噪声方差, 写出信号功率和信噪比
 - 运行仿真并记录三种判决方法的误比特率

信号功率 E_s			
噪声功率 σ^2	4.0	1.0	0.25
信噪比 E_s/σ^2			
采样速率		$N_s = 5$	
采样判决 P_b			
硬判决 P _b			
软判决 P _b			
采样速率		$N_s = 10$	
采样判决 P_b			
硬判决 P _b			
软判决 P _b			

• 三种判决方法的误比特率曲线绘制

- 在3种采样速率(Ns=5, 10, 20)和11种信噪比取值下对 比不同的判决方法
- 确定误比特率(BER)在0.01时三种判决方法所需的最低信噪比,并写出软判决相比于硬判决和采样判决的"信噪比增益"。

3. 多元符号判决(选做)

• 搭建Bit to Symbol 模块

- 用M元符号表示k个比特的信息, $M=2^k$
- Data Mapper进行格雷映射
- 符号取值:

• 创建子系统并封装为模块以便重复使用

3. 多元符号判决(选做)

·编写自定义Matlab函数实现最小距离判决

```
function y = decision(x, A, k)
% TODO: y = ?
```

• 提示: 线性变换后利用round()函数进行判决,需注意 两端的判决

• 搭建Symbol to Bit模块

3. 多元符号判决(选做)

• 最终模型

• 绘制M元符号AWGN信道曲线

- 计算填写噪声功率sigma2
- 计算填写误符号率和误比特率的理论值
- 分析实验结果和理论的符合关系

注意事项

- 提交实验报告至网络学堂
- •实验报告需包括代码、实验流程记录、思考题回答