

#### Майнор «Прикладной статистический анализ»

## Временные ряды и их практическое применение (Time Series and Their Application)

Родионова Лилия Анатольевна

к.э.н., доцент департамента статистики и анализа данных НИУ ВШЭ LRodionova@hse.ru



#### Родионова Лилия Анатольевна к.э.н., доцент

Департамент статистики и анализа данных Факультет экономических наук НИУ ВШЭ (Москва)

LRodionova@hse.ru

Web: <a href="https://www.hse.ru/staff/LRodionova">https://www.hse.ru/staff/LRodionova</a>





#### Организация курса

- •3-4 Модуль 2020-2021 уч.г.г.
- •Лекции 28 часов (14 лекций)
- •Практика 48 часов (24 занятия)
- •Контроль: СР1, СР2, текущие Д3, текущие тесты.
- •Стат пакеты: Stata, Gretl (на занятиях), дома любой пакет
- Материалы лекций, задания и отчеты в LMS
- •Работа с учебными ассистентами:

Артемова Полина Васильева Наталья Юдина Валерия

Никонова Екатерина



#### Оценка по курсу

#### Промежуточная аттестация

Промежуточная аттестация (4 модуль)

0.200 активность на семинарах

0.200 Самостоятельная работа 1

0.200 Самостоятельная работа 2

0.200 Текущие домашние работы

0.200 Текущие тесты

Условие пересдачи: СР1, СР2





 Айвазян С.А. Методы эконометрики: учебник– М.: Магистр: ИНФРА-М, 2010.



▶ Анализ временных рядов (курс лекций) / Канторович Г. Г.// Экономический журнал ВШЭ, 2002-2003.

[2002] T. 6 № 1. C. 85–116 [2002] T. 6 № 2. C. 251–273 [2002] T. 6 № 3. C. 379–401 [2002] T. 6 № 4. C. 498–523 [2003] T. 7 № 1. C. 79–103





Подкорытова, О. А. Анализ временных рядов: учебное пособие для бакалавриата и магистратуры. — М.:
 Издательство Юрайт, 2016. — 266 с. — (Серия: Бакалавр и магистр. Модуль.).





Носко В.П. Эконометрика Книга 1. —
 М.: Изд. дом «Дело», 2011.



▶ Магнус Я.Р., Катышев П.К., Пересецкий А.А.
 Эконометрика. Начальный курс.- М.: Дело,
 2004. – 576 с.

#### Электронные ресурсы:

http://www.twirpx.com/files/financial/apvr





Hamilton James D. Time Series Analysis. Princeton University Press, 1994.



Enders W. Applied Econometric Times Series. Wiley, 2009.



Brooks C. Introductory Econometrics for Finance, 2014. (VAR, GARCH, switching models)



#### Рекомендуемая литература (стат. пакеты):



➤ Hamilton L.C. Statistics with STATA. 2004, 2012.

Lawrence C. Hamilton

▶ Куфель Т. Эконометрика: решение задач с применением пакета программ GRETL, 2007.

Сайт программы (Free Software):

http://gretl.sourceforge.net/





#### Обозначения. Греческий алфавит

| Прописные | Строчные | Название |
|-----------|----------|----------|
| Α         | α        | альфа    |
| В         | β        | бета     |
| Γ         | γ        | гамма    |
| Δ         | δ        | дельта   |
| E         | ε        | эпсилон  |
| Z         | ζ        | дзета    |
| Н         | η        | эта      |
| Θ         | θ, ϑ     | тета     |
| I         | ι        | йота     |
| K         | κ, χ     | каппа    |
| Λ         | λ        | лямбда   |
| M         | μ        | МЮ       |
| N         | V        | ню       |
| Ξ         | ξ        | кси      |
| 0         | 0        | омикрон  |
| П         | π        | ПИ       |
| P         | ρ        | ро       |
| Σ         | σ, ς     | сигма    |
| T         | τ        | тау      |
| Υ         | υ        | ипсилон  |
| Ф         | φ, φ     | фи       |
| X         | χ        | хи       |
| Ψ         | Ψ        | пси      |
| Ω         | ω        | омега    |



#### Введение

Родионова Л.А. 2021



#### История прогнозирования

## *Цель анализа временных рядов – прогнозирование* История:

-Еврейский пророк Исаия написал примерно в 700 г. до н.э. «Tell us what the future holds, so we may know that you are gods».(Isaiah 41:23)

(«Расскажите нам, что нас ждет в будущем, чтобы мы знали, что вы боги»)

- -В древнем Вавилоне, синоптики предсказывали будущее, основываясь на распределении личинок в печени гнилой овцы.
- -К 300 г. до н.э. люди, желающие получить прогнозы, отправлялись в Дельфы в Греции, чтобы проконсультироваться с Оракулом, который предоставлял свои прогнозы, находясь в состоянии алкогольного опьянения.

https://otexts.com/fpp2/intro.html



#### История прогнозирования

-император Константин, указ в 357 г. н.э., запрещающий кому-либо «консультироваться с предсказателем, математиком... Пусть любопытство предсказывать будущее будет навсегда заглушено»

- Англия, 1736 г., запрет на прогнозирование, преступление - взимать деньги за предсказания. Наказание - три месяца каторжных работ!

-! В нашем курсе рассмотрим современные статистические подходы прогнозирования.



#### Что можно прогнозировать?

- **-Прогнозирование** важная помощь для эффективного и результативного планирования.
- **-Прогноз спроса на электроэнергию**: строить ли еще одну электростанцию в ближайшие пять лет;
- -**Прогноз объема звонков**: составление графика работы персонала в колл-центре на следующей неделе;
- -Прогноз спроса на товар: запас товара на складе.
- **-Типы прогнозов:** Прогнозы могут потребоваться на несколько лет (для капиталовложений) или на несколько минут (для телекоммуникационной маршрутизации).



#### Условия прогнозирования

#### Предсказуемость события зависит от:

- Факторов, влияющих на событие;
- -Доступности данных;

15



#### Что можно прогнозировать?

#### Пример 1. Прогнозы спроса на электроэнергию

**Факторы:** спрос на электроэнергию зависит от температуры, времени года, суток, в меньшей степени влияет на изменения календаря (праздники и экономические условия). **Доступность данных** - спрос на электроэнергию и погодные условия, прогноз может быть точным.

**Пример 2. Прогнозирование курсов валют.** Выполняется только *одно* из условий: имеется множество доступных данных. Ограничение понимания факторов, влияющих на обменные курсы, и прогнозы обменного курса напрямую влияют на сами курсы.





Модели стационарных ВР

ARMA-модели

#### ARIMA-модели







#### Класс ARIMA-моделей: примеры использования



Рис. 1. Чистая стоимость производства пшеницы в США (в млн. постоянных долл. США 2004 - 2006) по годам 1961 - 2016



3500 2500 1500 1500 1900 1905 1990 1995 2000 2005 2010 2015

#### Значения реального ВВП Испании (млрд. евро)





#### Динамика потребления электроэнергии в ЕЭС России по мес 2010–2012 г.г.



mtp://so-ups.ru/meaumm/mes/company/reports/discrosure/2015/des\_rep2012.pdf



### Анализ и моделирование сезонности:

- -SARIMA-модели
- -трендсезонные
- -модели с фиктивными переменными, гармоническими составляющими -адаптивные модели

Пассажирские авиаперевозки в России, млн чел.



#### Класс SARIMA-моделей: примеры использования





#### Кластеризация волатильности



Fig. 1.4. Returns of the NYSE. The data are daily value weighted market returns from February 2, 1984 to December 31, 1991 (2000 trading days). The crash of October 19, 1987 occurs at t = 938.

•19 октября 1987. <u>Чёрный понедельник</u>: <u>индекс Доу-Джонса</u> пережил самое большое падение в истории — на 22,6 %.

# ARCH and GARCH models (Engle, 1982; Bollerslev, 1986)









Модели с авторегрессионной условной гетероскедастичностью ARCH (AutoRegressive Conditional Heteroscedasticity),







Monthly youth unemployment rate (18-24 years old) in UK, by gender

Модели многомерных временных рядов:

VAR-модели

Модели коинтеграции (ЕСМ)



Динамика индексов глобализации



#### Структура курса

#### Тема 1. Введения в анализ одномерных временных рядов

Временной ряд: основные понятия, определения, характеристики. Простейшие примеры стационарных и нестационарных временных рядов (белый шум, временной ряд с линейным трендом, случайное блуждание, случайным блужданием с дрейфом) и их характеристики. Основные составляющие временного ряда.

Исследование и моделирование неслучайной составляющей временного ряда: основные типы трендов (детерминированный и стохастический); проверка наличия тренда во временных рядах; методы выделения тренда.



#### Сложность курса

- -От простого к сложному
- Необходимость чтения документации к стат пакетам, статей по анализу BP в журналах, учебников по анализу BP

#### Пример

#### Impulse Response Function

An impulse response function (IRF) of a time series model (or dynamic response of the system) measures the ch when a variable is shocked by an impulse. In other words, the IRF at time t is the derivative of the responses at ti innovation was shocked),  $t \ge t_0$ .

Consider a numseries-D VEC(p-1) model for the multivariate response variable  $y_t$ . In lag operator notation, the

$$\Gamma(L)y_t = c + dt + \beta x_t + \varepsilon_t$$

where  $\Gamma(L) = I - \Gamma_1 L - \Gamma_2 L^2 - ... - \Gamma_n L^p$  and I is the numseries-by-numseries identity matrix.

In lag operator notation, the infinite lag MA representation of y<sub>t</sub> is:

$$\begin{split} y_t &= \Gamma^{-1}(L)(c + \beta x_t + dt) + \Gamma^{-1}(L)\varepsilon_t \\ &= \Omega(L)(c + \beta x_t + dt) + \Omega(L)\varepsilon_t. \end{split}$$

The general form of the IRF of  $y_i$  shocked by an impulse to variable j by one standard deviation of its innovation n

$$\psi_j(m) = C_m e_j$$
.

https://www.mathworks.com/help/econ/vecm.irf.html#mw\_9ad2b0fa-23d2-44b5-8e39-741684571ef8



#### Тема 1.

# Введение в анализ одномерных временных рядов

Родионова Л.А. 2021



#### Структура данных

**Пространственная** выборка

 $Y_i$ 

Временной ряд

 $Y_t$ 



#### Временной ряд: основные понятия и определения

#### Определение 1.1.

**Временной ряд** (time series) – совокупность наблюдений экономической величины в различные моменты времени.

(Канторович)

Другие названия в литературе: ряд динамики, динамический ряд.

- Элементы BP: время (t) и значение показателя  $(y_t)$
- -Классификация BP: по форме представления уровней; по характеру временного параметра (из курса статистики)
- Случайный процесс и BP: случайный процесс случайные функции от времени  $\{Y_t, t = \overline{1,T}\}$
- BP это реализация случайных процессов (или говорят, BP порождается стохастическим процессом).

$$\dots, y_{-1}, y_0, y_1, y_2, \dots, y_T, y_{T+1}, y_{T+2}, \dots$$

Наблюдаемая выборка



#### Временной ряд: основные понятия и определения

#### Определение 1.2.

**Временной ряд** (time series) – ряд наблюдений  $Y_{t_1}, Y_{t_2}, ..., Y_{t_N}$ , анализируемой сл. величины  $\xi(t)$ , произведенных в последовательные моменты времени  $t_1, t_2, ..., t_N$ .

(Айвазян)

#### Проблема.

Если основные статистические характеристики случ. процесса со временем меняются, то по поведению ВР (как реализации) ничего сказать нельзя

→ необходимо рассмотрение узкого класса случайных процессов (стационарного)



Далее будем рассматривать: одномерные, дискретные с равноотстоящими моментами наблюдений, случайные ВР.  $Y_t, t \in [t_o, T], \Delta = t_i - t_{i-1} = const$  характеристика периода, лаг





#### Случайная выборка и ВР

- Различия. 1. Члены ВР статистически зависимы.
- 2. Члены ВР не являются одинаково распределенными.
- Проблема ложной корреляции:  $x_t = x_{t-1} + \varepsilon_t$ ,  $y_t = y_{t-1} + v_t$ .





! Нельзя рассматривать свойства и правила статистического анализа случайной выборки на BP



#### ВР: преобразования

#### Зачем преобразовывать ряд?

- Выделение интересующих временных компонент.
- -Удаление действия мешающих компонент (например, сезонности).
  - Сезонная корректировка
- -Приведение ряда к стационарному виду (например, подход Бокса-Дженкинса).
  - дифференцирование (взятие разности ), детрендирование.
- Уменьшение ложных эффектов регрессии.
  - дифференцирование в случае ложных эффектов при коинтеграции
- -Стабилизирование изменчивости, которая растет с уровнем ряда.
  - логарифмирование
- Необходимость сопоставимости рядов.



#### ВР: преобразования, пример





#### ВР: преобразования

**Первое запаздывание** (первый лаг) ВР  $Y_t$  – это  $Y_{t-1}$  . j-е запаздывание (j-й лаг) ВР  $Y_t$  – это  $Y_{t-j}$  .

**Первая разность** BP  $\Delta Y_t = Y_t - Y_{t-1} -$ это его изменение

(приращение) между периодами (t-1) и t.

(Позже введем *лаговый* и *разностный* операторы)

Вторая разность

$$\bar{\Delta}^2 y_t = \Delta \Delta y_t = \Delta (y_t - y_{t-1}) = (y_t - y_{t-1}) - (y_{t-1} - y_{t-2}) = y_t - 2y_{t-1} + y_{t-2}$$







#### ВР: преобразования

Первая разность логарифма (логарифмическая разность)  $\Delta \ln Y_t = \ln Y_t - \ln Y_{t-1} -$  это процентное изменение  $Y_t$  между периодами (t-1) и t, равно  $100 \cdot \Delta \ln Y_t$ .

аналог темпа прироста:

$$T_{t} = \frac{Y_{t} - Y_{t-1}}{Y_{t-1}} \cdot 100\%$$

Скорость изменения ценового ряда называется доходностью. В финансовой эконометрике вместо ценовых рядов обычно используются ряды доходностей.



логарифмическая доходность



#### ВР: преобразования, волатильность

#### Логарифмическая разность (Первая разность логарифма)







Fig. 1.4. Returns of the NYSE. The data are daily value weighted market returns from February 2, 1984 to December 31, 1991 (2000 trading days). The crash of October 19, 1987 occurs at t = 938.

•19 октября 1987. Чёрный понедельник: индекс Доу-Джонса пережил самое большое падение в истории на 22,6 %.

Индекс Доу-Джонса - старейший из существующих американских рыночных индексов (с 1884 г.), был создан для отслеживания развития промышленной составляющей американских фондовых рынков, индекс охватывает 30 крупнейших компаний США, рассчитывается как масштабируемое среднее цен на акции.

Нью-Йоркская фондовая биржа New York Stock Exchange



#### ВР: показатели динамики ряда

# **Численность России**

#### населения

| Годы | Bce         | в том числе |          |  |  |  |
|------|-------------|-------------|----------|--|--|--|
|      | население,  |             |          |  |  |  |
|      | млн.человек | городское   | сельское |  |  |  |
| 2007 | 142,8       | 104,7       | 38,1     |  |  |  |
| 2008 | 142,8       | 104,9       | 37,9     |  |  |  |
| 2009 | 142,7       | 104,9       | 37,8     |  |  |  |
| 2010 | 142,9       | 105,3       | 37,6     |  |  |  |
| 2011 | 142,9       | 105,4       | 37,5     |  |  |  |
| 2012 | 143,0       | 105,7       | 37,3     |  |  |  |
| 2013 | 143,3       | 106,1       | 37,2     |  |  |  |
| 2014 | 143,7       | 106,6       | 37,1     |  |  |  |
| 2015 | 146,3       | 108,3       | 38,0     |  |  |  |
| 2016 | 146,5       | 108,6       | 37,9     |  |  |  |
| 2017 | 146,8       | 109,0       | 37,8     |  |  |  |
| 2018 | 146,9       | 109,3       | 37,6     |  |  |  |

### Пример.

**Первая разность**  $\Delta Y_t = Y_t - Y_{t-1} -$ это изменение (приращение) между периодами (t-1) и t.

Первая разность логарифма  $\Delta \ln Y_t = \ln Y_t - \ln Y_{t-1} -$ это процентное изменение  $Y_t$  между периодами (t-1) и t. Равно  $100 \cdot \Delta \ln Y_t$ .

Темпа прироста:  $T_t = \frac{Y_t - Y_{t-1}}{Y_{t-1}} \cdot 100\%$ 

Как изменилась численность населения в 2018г.?

$$\Delta Y_{t=2018} = Y_{2018} - Y_{2017} = 146,9-146,8=0,1$$

$$T_{t=2018} = \frac{Y_t - Y_{t-1}}{Y_{t-1}} \cdot 100\% = \frac{146,9 - 146,8}{146,8} \cdot 100\% = 0,07\%$$

http://www.gks.ru/wps/wcm/connect/rosstat\_main/rosstat/ru/statistics/population/demography/#



## Генезис наблюдений, образующих ВР

# 4 типа факторов (Айвазян):

- (A) Долговременные  $\rightarrow$  общая тенденция  $Y_t$
- (Б)  $Ce3ohhble \rightarrow$  периодически повторяющиеся в определенное время года колебания  $Y_t$
- (B) Циклические  $\to$  изменения  $Y_t$ , обусловленные действием долговременных циклов
- (Г) Случайные (не поддаются учету и регистрации)





$$Y_t = \chi(A) f_{mp}(t) + \chi(B) \varphi(t) + \chi(B) \psi(t) + \mathcal{E}_t$$
 Трендовая Сезонная Компонента Компонента Компонента Компонента



#### Компоненты ВР







#### Динамика индекса Dow (DJIA) Доу Джонса

http://news.yandex.ru/quotes/12.html



Число мигрантов, перемещающихся в пределах России



#### Компоненты ВР

**Рост денежной массы в России в зависимости от выборов:** манипулируют ли политики монетарными инструментами для того, чтобы выиграть выборы в новых демократиях?

Источник: Журнал Квантиль№11. Бурковская Анастасия. Монетарные политические бизнес-циклы: новые демократии <a href="http://quantile.ru/11/N11.htm">http://quantile.ru/11/N11.htm</a>



Денежная масса — совокупность наличных денег, находящихся в обращении, и безналичных средств на счетах, которыми располагают физические и юридические лица и государство.



## Генезис наблюдений, образующих ВР



Australian quarterly electricity production

Year



2021

#### US treasury bill contracts



Google daily changes in closing stock price



41



## ВР и их характеристики: среднее

#### Теоретические

$$E(Y_t) = \mu$$

#### Выборочные

$$\hat{\mu} = \overline{y} = \frac{1}{T} \sum_{t=1}^{T} y_t$$











## ВР и их характеристики: дисперсия

#### Теоретические

$$Var(Y_t)=E(Y_t - \mu)^2 = \sigma^2$$

## Выборочные

$$\hat{\sigma}^{2} = \frac{1}{T} \sum_{t=1}^{T} (y_{t} - \hat{\mu})^{2}$$











## ВР и их выборочные характеристики: ковариация



 $\gamma_1$  измеряет линейную взаимосвязь между  $y_t$  и  $y_t$   $\pm 1$ 



 $\gamma_2$  измеряет линейную взаимосвязь между  $y_t$  и  $y_t$ 

Ковариация наз. **автоковариацией**, т.к. характеризует статистическую взаимосвязь между уровнями одного и того же временного ряда, отстоящих на т тактов времени.

$$\hat{\gamma}(1) = \frac{1}{T - 1} \sum_{t=1}^{T-1} (y_t - \hat{\mu})(y_{t+1} - \hat{\mu})$$

$$\hat{\gamma}(2) = \frac{1}{T - 2} \sum_{t=1}^{T-2} (y_t - \hat{\mu})(y_{t+2} - \hat{\mu})$$



#### ВР и их характеристики: ковариация



 $\gamma_1$  измеряет линейную взаимосвязь между  $y_t$  и  $y_{t\pm 1}$ 

$$\gamma(1) = \gamma_1 = \text{Cov}(Y_t, Y_{t-1}) = E((Y_t - \mu)(Y_{t-1} - \mu))$$

#### Теоретические

$$\gamma(\tau) = \gamma_{\tau} = \operatorname{Cov}(Y_{t}, Y_{t+\tau}) =$$

$$= E((Y_{t} - \mu)(Y_{t+\tau} - \mu))$$

#### Выборочные

$$\hat{\gamma}(\tau) = \frac{1}{T - \tau} \sum_{t=1}^{T - \tau} (y_t - \hat{\mu})(y_{t+\tau} - \hat{\mu})$$

$$\hat{\gamma}(0) = \text{Cov}(y_t, y_t) = \frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^2 = \text{Var}(y_t)$$
 дисперсия



#### ВР и их характеристики: автоковариации

$$\gamma(\tau) = \gamma_{\tau} = \text{Cov}(Y_{t}, Y_{t-\tau}) = E((Y_{t} - \mu)(Y_{t-\tau} - \mu))$$

Выборочная

автоковариация

$$\hat{\gamma}(\tau) = \frac{1}{T - \tau} \sum_{t=1}^{T - \tau} (y_t - \hat{\mu})(y_{t+\tau} - \hat{\mu})$$

$$\hat{\gamma}(\tau) = \hat{\gamma}(-\tau) = \frac{1}{T - \tau} \sum_{t=\tau+1}^{T} (y_t - \hat{\mu})(y_{t-\tau} - \hat{\mu})$$

Замечание. Возможны альтернативные состоятельные оценки, которые имеют другое скорректированное число степеней свободы.

1  $T-\tau$ 

$$\hat{\gamma}(\tau) = \frac{1}{T} \sum_{t=1}^{T-\tau} (y_t - \hat{\mu})(y_{t+\tau} - \hat{\mu})$$

Вербик, 2008, с.410

Состоятельная оценка — это точечная оценка, сходящаяся по вероятности к оцениваемому параметру.



#### Автокорреляционная функция

## Автокорреляционная функция (autocorrelation function, ACF).

$$\rho(\tau) = \text{Cor}(Y_{t}, Y_{t-\tau}) = \frac{E((Y_{t} - \mu)(Y_{t-\tau} - \mu))}{\sqrt{E(Y_{t} - \mu)^{2} E(Y_{t-\tau} - \mu)^{2}}} = \frac{\gamma(\tau)}{\gamma(0)}$$

$$\hat{\rho}_{1} = cor(y_{t}, y_{t-1}); \hat{\rho}_{2} = cor(y_{t}, y_{t-2}); \hat{\rho}_{3} = cor(y_{t}, y_{t-3});$$

$$\hat{\rho}(\tau) = \frac{\frac{1}{T - \tau} \sum_{t=1}^{T - \tau} (y_t - \hat{\mu})(y_{t+\tau} - \hat{\mu})}{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^2}$$

**Замечание.** Теоретическая АСF и выборочная АСF различаются. График АСF – **коррелограмма**.



#### Пример: Автокорреляция 1-го порядка



 $\rho_1$ линейную измеряет взаимосвязь между  $y_t$  и  $y_{t+1}$ 

Численность населения России

Рассчитайте коэффициенты корреляции 1, 2, 3-го порядков.

| Годы | Bce         |  |
|------|-------------|--|
|      | население,  |  |
|      | млн.человек |  |
| 2015 | 146,3       |  |
| 2016 | 146,5       |  |
| 2017 | 146,8       |  |
| 2018 | 146,9       |  |

$$\hat{\rho}_{1} = cor(y_{t}, y_{t-1}); \qquad \qquad \hat{\mu} = \overline{y}_{t} = 146.6; \sigma^{2} = 0.09$$

$$\hat{\rho}(1) = \frac{\frac{1}{T-1} \sum_{t=1}^{T-1} (y_{t} - \overline{y}_{t})(y_{t+1} - \overline{y}_{t})}{\frac{1}{T} \sum_{t=1}^{T} (y_{t} - \overline{y}_{t})^{2}} \qquad \qquad \hat{\rho}_{1} = \frac{\frac{1}{3} \sum_{t=2}^{4} (y_{t} - 146.6)(y_{t-1} - 146.6)}{0.09} = \frac{0.09}{\rho_{1}} = 0.7$$

$$\hat{\mu} = \overline{y}_{t} = 146.6; \sigma^{2} = 0.09$$

$$\hat{\rho}_{1} = \frac{\frac{1}{3} \sum_{t=2}^{4} (y_{t} - 146.6)(y_{t-1} - 146.6)}{0.09} = \frac{0.09}{\rho_{1}} = 0.7$$

| t    | Yt    | Yt-1  | Yt+1  |  |
|------|-------|-------|-------|--|
| 2015 | 146,3 |       | 146,5 |  |
| 2016 | 146,5 | 146,3 | 146,8 |  |
| 2017 | 146,8 | 146,5 | 146,9 |  |
| 2018 | 146,9 | 146,8 |       |  |

Аналогично

$$\rho_2, \, \rho_3, \, \rho_4, \dots$$

$$\hat{\rho}_{2} = cor(y_{t}, y_{t-2}); \hat{\rho}_{3} = cor(y_{t}, y_{t-3});$$

$$\hat{\rho}(\tau) = \frac{1}{T - \tau} \sum_{t=1}^{T - \tau} (y_{t} - \hat{\mu})(y_{t+\tau} - \hat{\mu})$$

$$\frac{1}{T} \sum_{t=1}^{T} (y_{t} - \hat{\mu})^{2}$$



#### Автокорреляция

**Автокорреляционная функция (autocorrelation function, ACF)** – зависимость значений автокорреляций (серийных автокорреляций) от лага τ



График АСГ – коррелограмма



# Автокорреляционная функция: примеры





# Автокорреляционная функция: примеры





Процесс с длинной памятью



## Автокорреляционная функция





#### Свойства:

- 1. АСГ безразмерна
- 2.  $|\rho(\tau)| \le 1$
- 3.  $\rho(\tau) = \rho(-\tau)$
- 4. Если у<sub>t</sub> белый шум, то при п→∞ выборочная АСF имеет нормальное распределение:

$$\hat{\rho}_{\tau} \approx N(0, \frac{1}{N})$$

(используется для проверки значимости АСF)



# Простейшие примеры временных рядов: белый шум

**Белый шум (white noise) -** процесс  $\varepsilon_{t}$ , удовлетворяющий условиям теоремы Гаусса-Маркова:

$$E(\varepsilon_t) = 0$$
,  $Var(\varepsilon_t) = \sigma^2$   
 $Cov(\varepsilon_t, \varepsilon_{t-s}) = 0$   $(s \neq 0)$ 

Если  $\varepsilon_{t}$  распределены в совокупности нормально, то процесс наз. **гауссовым белым шумом.** 







**Свойство:** Если  $y_t$  – белый шум, то при  $n \to \infty$  выборочная АСF имеет нормальное распределение:  $\hat{\rho}_{\tau} \approx N(0, \frac{1}{N})$ 

**Интерпретация:** 95% пиков в ACF находятся в пределах  $\pm 1,96/\sqrt{T}$ 



### Автокорреляционная функция

Свойство 4 используется для проверки значимости АСГ.

**Пример.** Пусть T=9. Если ряд является БШ, то 95% значений АСF должны лежать в интервале  $\pm 1,96/\sqrt{9} \sim \pm 0,65$ 



**Вывод:** данный ряд не является реализацией процесса БШ

В Stata для проверки значимости АСF используется аппроксимация Бартлетта

Bartlett's formula

2021

$$\operatorname{Var}(\widehat{\rho}_v) = \begin{cases} 1/n & v = 1\\ \frac{1}{n} \left\{ 1 + 2 \sum_{i=1}^{v-1} \widehat{\rho}^2(i) \right\} & v > 1 \end{cases}$$





#### Автокорреляционная функция: замечание

$$\hat{\rho}(\tau) = \frac{\frac{1}{T - \tau} \sum_{t=\tau+1}^{T} (y_t - \hat{\mu})(y_{t-\tau} - \hat{\mu})}{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{\mu})^2}$$

#### Пример

| t    | Yt    | Yt-1  | Yt-2  | Yt-3  |
|------|-------|-------|-------|-------|
| 2015 | 146,3 |       |       |       |
| 2016 | 146,5 | 146,3 |       |       |
| 2017 | 146,8 | 146,5 | 146,3 |       |
| 2018 | 146,9 | 146,8 | 146,5 | 146,3 |

**Пример.** Если T=4, то для вычисления  $\rho(3)$  исп-ся 1 наблюдение

- по ряду длиной T можно вычислить  $\rho(\tau)$  до порядка (T-1).
- «дальние»  $\rho(\tau)$  вычисляются неточно: с ростом  $\tau$  количество наблюдений, по которым считаются автокорреляции уменьшается (для расчета  $\rho(T-1)$  используется 1 наблюдение).
  - при анализе ACF следует принимать во внимание «ближние» ρ(τ) (первые [Т/5] автокорреляций)

Суслов



## Частная автокорреляционная функция

**Частная автокорреляционная функция** (partial autocorrelation function, PACF) – аналог частной корреляции. (Айвазян)

-значение  $\rho_{part}(k)$  на лаге k определяется как значение коэффициента корреляции между случайными величинами  $Y_t$  и  $Y_{t+k}$ , очищенными от влияния случайных величин  $Y_{t+1}$ , ...,  $Y_{t+k-1}$ .

$$\rho_{vacm}(1) = \text{Cor}(Y_t, Y_{t+1}) = \rho(1)$$

$$\rho_{vacm}(2) = \text{Cor}(Y_t, Y_{t+2} | Y_{t+1} = \mu) = \frac{\rho(2) - \rho^2(1)}{1 - \rho^2(1)}$$

 $\rho_{_{uacm}}(3) = ...$ (выписать самостоятельно)



## Стационарность ВР

*Onp. 1.3.* Временной ряд наз. *стационарным* (*слабо стационарным*) (weak stationary) (в широком стационарным) (он обладает постоянной средней и дисперсией, а ковариация зависит только от временного интервала между отдельными наблюдениями.

$$1.E(Y_t) = \mu$$

$$2.V(Y_t) = \sigma^2$$

3.Cov(Y<sub>t</sub>, Y<sub>t+\tau</sub>) = 
$$E[(Y_t - \mu)(Y_{t+\tau} - \mu)] = \gamma(\tau)$$



# Стационарность ВР

Общая идея: стационарность → поведения ряда в настоящем и будущем совпадает с его поведением в прошлом.





## Стационарные ВР: АСГ и РАСГ

Для стационарных BP коррелограмма (график ACF и PACF) «быстро убывает» после нескольких первых значений.







1. **Белый шум (white noise) -** процесс  $\varepsilon_t$ , удовлетворяющий условиям теоремы Гаусса-Маркова:

$$E(\varepsilon_t) = 0$$
,  $Var(\varepsilon_t) = \sigma^2$   
 $Cov(\varepsilon_t, \varepsilon_{t-s}) = 0$   $(s \neq 0)$ 



Если  $\varepsilon_{\rm t}$  распределены в совокупности нормально, то процесс наз. гауссовым белым шумом.

Какой вид имеют АСГ и РАСГ?



# Белый шум



$$E(\varepsilon_t) = 0,$$

$$V(\varepsilon_t) = \sigma^2$$





## 2. случайное блуждание (random walk) $Y_t = Y_{t-1} + \varepsilon_t$

(броуновское движение)



Стационарен или нет?

$$E(Y_t) =$$

$$E(Y_t) = V(Y_t) = V(Y_t)$$



#### 3. Процесс с линейным трендом

$$Z_t = \alpha + \beta t + \varepsilon_t$$

Стационарен или нет?

$$E(Z_t) =$$

$$V(Z_t) =$$



## 4. случайное блуждание с дрейфом (random walk with drift)

$$X_t = \mu + X_{t-1} + \varepsilon_t$$

(броуновское движение)

Стационарен или нет?

$$E(X_t) =$$

$$V(X_t) =$$



Fig. 1.10. Random walk,  $\sigma_w = 1$ , with drift  $\delta = .2$  (upper jagged line), without drift,  $\delta = 0$  (lower jagged line), and a straight line with slope .2 (dashed line).



## 5. Случайный процесс как скользящее среднее белого шума

$$Z_t = 1/3(\varepsilon_{t-1} + \varepsilon_t + \varepsilon_{t+1})$$

Стационарен или нет?

$$E(Z_t) =$$

$$V(Z_t) =$$





Fig. 1.8. Gaussian white noise series (top) and three-point moving average of the Gaussian white noise series (bottom).

(Shumway)

#### 6. Случайный процесс с периодической составляющей

$$X_t = 3\cos(2\pi t/20) + \varepsilon_t$$

Стационарен или нет?

$$E(X_t) =$$

$$V(X_t) =$$





## Лаговый и разностный оператор

# Лаговый оператор (Lag operator): (оператор запаздывания)

Обеспечивает сжатую запись уравнений.

$$1)LC = C,$$

$$2)(L^{j} + L^{i})y_{t} = y_{t-j} + y_{t-i},$$

$$3)L^{j}L^{i}y_{t}=y_{t-j-i},$$

$$4)L^{-i}y_t = y_{t+i},$$

5)
$$|a| < 1 \rightarrow (1 + aL + a^2L^2 + a^3L^3 + ...)y_t = \frac{y_t}{1 - aL}$$

$$Ly_t = y_{t-1}, \quad t = 2,...n$$

$$L^2 y_t = y_{t-2}, L^4 y_t = y_{t-4},$$

$$L^k y_t = y_{t-k},$$

Stata

$$LY_t=L.Y$$

$$L^2 Y_t = L2.Y$$



# Лаговый и разностный оператор

## Разностный оператор (Difference operator):

$$\Delta y_t = y_t - y_{t-1} = y_t - Ly_t = (1 - L)y_t$$

$$\Delta^2 y_t = \Delta \Delta y_t = \Delta (y_t - y_{t-1}) = (y_t - y_{t-1}) - (y_{t-1} - y_{t-2}) = y_t - 2y_{t-1} + y_{t-2}$$

$$\Delta^3 y_t = y_t - y_{t-1} + y_{t-2}$$
! Записать самостоятельно

**Пример** 
$$y_t$$
 1 2 3 4 5  
Найти L  $y_t$ , L<sup>2</sup>  $y_t$ ,  $\Delta y_t$ ,  $\Delta^2 y_t$ 

Stata  

$$\Delta Y_t = D.Y$$
  
 $\Delta^2 Y_t = D2.Y$ 



## Разностный оператор: частный случай

Разностный оператор (Difference operator): Fractional differencing

Если d- не целое число?

$$\begin{split} \Delta^d y_t &= (1 - L)^d y_t = \dots \\ (1 - L)^d &= \sum_{k=0}^{\infty} \left(\frac{d}{k}\right) (-L)^k = \\ &= 1 - dL + \frac{d(d-1)}{2!} L^2 - \frac{d(d-1)(d-2)}{3!} L^3 + \dots \end{split}$$

Ряды Маклорена некоторых функций **Биномиальное разложение:** 

$$(1+x)^lpha = \sum_{k=0}^\infty inom{lpha}{k} x^k \ = 1+lpha x + rac{lpha(lpha-1)}{2!} x^2 + \cdots \ inom{lpha}{k} := rac{lpha(lpha-1)(lpha-2)\cdots(lpha-k+1)}{k!}$$

https://en.wikipedia.org/wiki/Binomial\_series

**Задание.** 
$$d=0.1 \rightarrow (1-L)^{0.1}y_t =$$
 записать самостоятельно



# Разностный оператор: преобразования рядов





## Разностный оператор: реализация в пакетах

#### Stata

#### Time Series Operators

- L. Lag  $y_{t-1}$  (L1. means the same thing)
- L2. 2-period lag  $y_{t-2}$  (similarly, L3., etc. L(1/4). means L1. through L4.)
- F. Lead  $y_{t+1}$  (F1. means the same thing)
- F2. 2-period lead  $y_{t+2}$  (similarly, F3., etc.)
- **D.** Difference  $y_t y_{t-1}$  (**D1.** means the same thing)
- **D2.** Second difference  $(y_t y_{t-1}) (y_{t-1} y_{t-2})$  (similarly, **D3.**, etc.)

list year cpi L.cpi L2.cpi L3.cpi

|    | year | срі   | L.<br>cpi | L2.<br>cpi | L3.<br>cpi |
|----|------|-------|-----------|------------|------------|
| L. | 1989 | 124   |           |            |            |
| 2. | 1990 | 130.7 | 124       |            |            |
| 3. | 1991 | 136.2 | 130.7     | 124        |            |
| 4. | 1992 | 140.3 | 136.2     | 130.7      | 124        |
| 5. | 1993 | 144.5 | 140.3     | 136.2      | 130.7      |
| 5. | 1994 | 148.2 | 144.5     | 140.3      | 136.2      |
| 7. | 1995 | 152.4 | 148.2     | 144.5      | 140.3      |
| 8. | 1996 | 156.9 | 152.4     | 148.2      | 144.5      |
|    |      |       |           |            |            |

list year cpi D.cpi D2.cpi D3.cpi

|                            | year                                 | срі                                     | D.<br>cpi                               | D2.<br>cpi                         | D3.<br>cpi              |
|----------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------|-------------------------|
| 1.<br>2.<br>3.<br>4.<br>5. | 1989<br>1990<br>1991<br>1992<br>1993 | 124<br>130.7<br>136.2<br>140.3<br>144.5 | 6.699997<br>5.5<br>4.100006<br>4.199997 | -1.199997<br>-1.399994<br>.0999908 | 1999969<br>1.499985     |
| 6.<br>7.                   | 1994<br>1995                         | 148.2<br>152.4<br>156.9                 | 3.699997<br>4.199997<br>4.5             | 5<br>. 5<br>. 3000031              | 5999908<br>1<br>1999969 |

list year cpi F.cpi F2.cpi F3.cpi

| year | срі                                                  | F.<br>cpi                                                                                    | F2.<br>cpi                                                                                                                          | F3.<br>cpi                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1989 | 124                                                  | 130.7                                                                                        | 136.2                                                                                                                               | 140.3                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1990 | 130.7                                                | 136.2                                                                                        | 140.3                                                                                                                               | 144.5                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1991 | 136.2                                                | 140.3                                                                                        | 144.5                                                                                                                               | 148.2                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1992 | 140.3                                                | 144.5                                                                                        | 148.2                                                                                                                               | 152.4                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1993 | 144.5                                                | 148.2                                                                                        | 152.4                                                                                                                               | 156.9                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1994 | 148.2                                                | 152.4                                                                                        | 156.9                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1995 | 152.4                                                | 156.9                                                                                        |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1996 | 156.9                                                |                                                                                              |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995 | 1989 124<br>1990 130.7<br>1991 136.2<br>1992 140.3<br>1993 144.5<br>1994 148.2<br>1995 152.4 | year cpi cpi  1989 124 130.7 1990 130.7 136.2 1991 136.2 140.3 1992 140.3 144.5 1993 144.5 148.2  1994 148.2 152.4 1995 152.4 156.9 | year         cpi         cpi         cpi           1989         124         130.7         136.2           1990         130.7         136.2         140.3           1991         136.2         140.3         144.5           1992         140.3         144.5         148.2           1993         144.5         148.2         152.4           1994         148.2         152.4         156.9           1995         152.4         156.9         . |



#### Лаговый многочлен

**Лаговый многочлен** (многочлен от оператора сдвига) — линейная комбинация лагов в записи моделей ВР.

$$C(L) = \sum_{j=0}^{\infty} c_j L^j$$

C(L) преобразует  $X_t$  в процесс  $Y_t$  такой что:

$$Y_{t} = C(L)X_{t} = \sum_{j=0}^{\infty} c_{j}L^{j}X_{t} = \sum_{j=0}^{\infty} c_{j}X_{t-j}$$