Visualisasi data

Diagram batang

```
library(dplyr)
df <- read.csv('../data/murders.csv')
head(df)</pre>
```

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union
```

STATE	ABB	REGION	POPULATION	POPULATIONDENSITY	MURDERS	GUNMURDERS	GUNOW
Alabama	AL	South	4779736	94.65	199	135	0.517
Arizona	AZ	West	6392017	57.05	352	232	0.311
California	CA	West	37253956	244.20	1811	1257	0.213
Colorado	CO	West	5029196	49.33	117	65	0.347
Connecticut	СТ	Northeast	3574097	741.40	131	97	0.167
Florida	FL	South	19687653	360.20	987	669	0.245

```
subdf <- select(df, state, population, murders)
head(subdf)</pre>
```

STATE	POPULATION	MURDERS
Alabama	4779736	199
Arizona	6392017	352
California	37253956	1811
Colorado	5029196	117
Connecticut	3574097	131
Florida	19687653	987

State vs Murders

State vs Murders

Diagram batang horizontal

```
df <- read.csv("../data/murdersmini.csv")
df</pre>
```

STATE	POPULATION	MURDERS
Arizona	6392017	352
Colorado	5029196	117
Georgia	9920000	527
Iowa	3046355	38
Kansas	2853118	100
Maine	1328361	24
Michigan	9883640	558
New York	19378102	860
Texas	25145561	1246
Washington	6724540	151

States vs Murders

Diagram batang bertumpuk

df

STATE	POPULATION	MURDERS
Arizona	6392017	352
Colorado	5029196	117
Georgia	9920000	527
Iowa	3046355	38
Kansas	2853118	100
Maine	1328361	24
Michigan	9883640	558
New York	19378102	860
Texas	25145561	1246
Washington	6724540	151

```
dfs <- mutate(df,pop = population / 10000)</pre>
```

names(dfs)

- 1. 'state'
- 2. 'population'
- 3. 'murders'
- 4. 'pop'

```
dfs <- dfs[c(1,3,4)]
barplot(dfs$pop)</pre>
```


barplot(dfs\$murders)


```
mat <- data.matrix(dfs)
mat <- t(mat) # transpos
mat</pre>
```

```
      state
      1.0000
      2.0000
      3
      4.0000
      5.0000
      6.0000
      7.000
      8.00
      9.000
      10.000

      murders
      352.0000
      117.0000
      527
      38.0000
      100.0000
      24.0000
      558.000
      860.00
      1246.000
      151.000

      pop
      639.2017
      502.9196
      992
      304.6355
      285.3118
      132.8361
      988.364
      1937.81
      2514.556
      672.454
```

Population vs Murders

Histogram

```
df <- read.csv('../data/GEStock.csv')
head(df)</pre>
```

DATE	PRICE
1/1/70	74.25333
2/1/70	69.97684
3/1/70	72.15857
4/1/70	74.25273
5/1/70	66.66524
6/1/70	67.59318

```
subdf <- select(df, Date, Price)</pre>
```

```
hist(subdf$Price,
    xlab='Stock Price',
    main='',
    col='#afe3be',
    border='red',
    breaks = 20) # secara default bins=10
```


Scatterplot

```
df <- read.csv("../data/murders.csv")
df <- select(df,state,population,murders)</pre>
```

```
plot(df$population, df$murders,
    xlab='Population', ylab='Murders',
    main='Population vs Murders', col='red',
    pch = 20)
```

Population vs Murders

Diagram garis

```
plot(df$murders,type='1',
    xlab='States', ylab='Murders',
    main='States vs Murders',
    col='blue')
```

States vs Murders

Boxplot

```
df <- read.csv('../data/murders.csv')
df <- select(df, state, population, murders, region)</pre>
```

```
Warning message in bxp(list(stats = structure(c(151, 198,
436, 460, 558, 131, 209, :
    "some notches went outside hinges ('box'): maybe set
notch=FALSE"
```

Region vs Murders

Kombinasi plot

```
df <- read.csv("../data/murdersmini.csv")
df <- mutate(df, pop = population/10000)
df <- df[c(1,3,4)] # seleksi kolom 1, 3, dan 4</pre>
```


barplot(df\$murders, xlab='States', ylab='Murders',
 main='State vs Murders', col='blue',
 names.arg=df\$state)

Population vs Murders

