

Actividad 11: Slice - Sampling

Tópicos Avanzados en Inteligencia de Máquina - IIC 3695

Profesor: Karim Pichara Baksai.

Ayudantes : Ignacio Becker, Francisco Pérez Galarce, Matías Vergara

Fecha: 14 de Mayo de 2019

1 Introducción

En esta actividad se implementará el método $Slice\ Sampling\$ para samplear desde una distribución bimodal P^* .

2 Instrucciones de la actividad

Considere la siguiente distribución dada por una mezcla de distribuciones gaussianas(gaussian mixture model) de la cual se quiere muestrear:

$$P(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)$$

- Defina su distribución target P^* como una mezcla de **2** gaussianas <u>univariadas</u>. Usted defina tanto los pesos (π_k) de cada gaussiana como también sus medias (μ) y varianzas (σ) .
- \bullet Grafique las distribución $P^*.$ Que particularidad vé en esta? Comente.
- Cree un método llamado $Slice_Sampling()$ que reciba como argumentos P^* , la muestra inicial x_0 , $window\ size(w)$, el número de muestras (n) y retorne las muestras generadas de P^* . Recuerde definir los procesos de $shrink\ interval\ y$ de $stepping\ out$ dentro del método.
- Implemente un método que permita visualizar cada una de las etapas del método *slice sampling* (imagine una visualización *frame by frame*). El número de iteraciones a visualizar queda definido por ustedes.
- Finalmente obtenga un número <u>razonable</u> de muestras (por ejemplo: 10000) y muestre en <u>un solo gráfico</u> el histograma de muestras y la distribución P^* . ¿Se aproxima suficientemente bien el histograma de muestras a la mezcla de gaussianas? Comente.