5054

B.Tech. Examination, 2017

(First Semester)

(C.S. Branch)

Paper - II

(GRAPH THEORY)

Time Allowed: Three Hours

Maximum Marks: 50

Note: Attempt any five questions. All questions carry equal marks.

Q. 1. (a) What do you understand by isomorphic graphs? Whether the following graphs are isomorphic or not?

5

- (b) Discuss the travelling salesman problem. 5
- Q. 2. (a) Define Euler circuit. Discuss Konigsberg bridge problem.
 - (b) Define chromatic number. Find the chromatic polynomial for the cycle of length 4, hence find its chromatic number.
 5
 - 2. 3. Define the following by taking example: 10
 - (i) Bipartite graph

- (ii) Path matrix
- (iii) Planar graph
- (iv) Complete graph
- Q. 4. (a) Apply Prim's algorithm to find a minimal spanning tree of the following graph. 5

- (b) Explain Dijkstra's Algorithm.

 5
 C. 5. Explain the following:
 - (i) Rooted tree
 - (ii) Complete binary tree
 - (iii) Spanning tree
 - (iv) Adjacency matrix
- Q. 6. (a) Define (i) reduced incidence matrix (ii) fundamental circuit matrix and fundamental cut-set matrix of a connected graph.
 - (b) Show that a complete graph K_n is planar if $n \le 4$.
- Q. 7. Write short notes on any two of the following: 10
 - (a) Cayley's theorem
 - (b) Kuratowski graphs
 - (c) Covering and partitioning of a graph main website

sunwebblog.wordpress.com

2239

B.Tech. Examination, 2015

(First Semester)

(C.S. Branch)

Paper-II

(GRAPH THEORY)

Time Allowed: Two Hours

Maximum Marks: 50

Note: Attempt any five questions. All questions carry equal marks.

Q. 1. (a) Prove that a simple graph with n vertices and k components can have atmost

$$\frac{(n-k)(n-k+1)}{2} \text{ edges.}$$

- (b) Prove that the set consisting of all the circuits and the edge-disjoint union of circuits in a graph G is an abelian group under the ringsum operation.
- Q. 2. (a) Prove that a graph is an Euler graph if and only if it can be decomposed into circuits. 5

	(b)	Draw a graph with six vertices, which is	5
		(i) Hamiltonian and non-Eulerian	
		(ii) Eulerian and non-Hamiltonion.	
Q. 3.	Show that :		
	(i)	If in Graph G, there is one and only one p	ath
		between every pair of vertices, G is tree.	5
Way .	(ii)	A connected graph with n vertices and	n-1
	-	edges is a tree.	5
Q. 4.	Des	scribe an algorithm to detect the planarity	of a
		oh. Detect planarity of K ₅ .	10
Q. 5.	_	ve that for any connected planar grap	h G
.	v – e	e + r = 2. Where v, e and r are number of vert	ices,
		es and regions.	10
Q. 6.		lain the four color problem. Show that ver	tices
Q . J .	of a	planar graph with less that 30 edges	in 4-
		rable.	10
		ine abborescence graph. Write dow	n the
Q. 7.	procedure to obtain the expression in polish		
		· · · · · · · · · · · · · · · · · · ·	10
	nota		
Q. 8.	State	e and prove Cayley's theorem.	10
	28		