Projection

Wilhansen Li

August 27, 2011

Outline

- Projection
 - Derivation
 - Definition
- 2 Applications of Projection
 - Distance Computation
 - Intersection Computation
 - Reflection
- 3 Orthogonal Projection Generalization
 - Projection of Points into a Plane
 - General Projection Function

Suppose $|\vec{u}| = 1$, then

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta = |\vec{v}|\cos\theta$$

How do we get a vector with the same direction as \vec{u} but with the magnitude of $|\vec{v}|\cos\theta$?

Suppose $|\vec{u}| = 1$, and let

$$\vec{w} = (\vec{u} \cdot \vec{v})\vec{u} = (|\vec{v}|\cos\theta)\vec{u}$$

This is what we call "projection".

What if $|\vec{u}| \neq 1$? Consider the normalized vector $\vec{u_N}$.

$$\vec{u_N} = \|\vec{u}\| = \frac{\vec{u}}{|\vec{u}|}$$

So we can get the same resultant vector by computing $(\vec{u_N} \cdot \vec{v})\vec{u_N}$. Expanding this:

$$(\vec{u}_{N} \cdot \vec{v}) \vec{u}_{N} = \left(\frac{\vec{u}}{|\vec{u}|} \cdot \vec{v}\right) \frac{\vec{u}}{|\vec{u}|}$$
$$= \frac{\vec{u} \cdot \vec{v}}{|\vec{u}|^{2}} \vec{u}$$
$$= \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \vec{u}$$

The Projection Function

Definition

Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ with $\vec{u} \neq 0$, the projection of vector \vec{v} into \vec{u} defined as:

$$\operatorname{proj}_{\vec{u}}(\vec{v}) = \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \vec{u}$$

Remark

If $|\vec{u}| = 1$ then the function simplifies to

$$\operatorname{proj}_{\vec{u}}(\vec{v}) = (\vec{u} \cdot \vec{v})\vec{u}$$

Suppose we have a vector $u \in \mathbb{R}^m$ and a matrix $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ where $v_1, v_2 \dots v_n \in \mathbb{R}^m$ are linearly independent vectors. How do we come up with a matrix function $\operatorname{proj}_u(A)$ such that:

$$\operatorname{proj}_{u}(A) = [\operatorname{proj}_{u}(v_{1}) \operatorname{proj}_{u}(v_{2}) \cdots \operatorname{proj}_{u}(v_{n})]$$
?

$$\operatorname{proj}_{u}(A) = u \frac{u^{T} A}{u^{T} u}$$

Computing Distances from a Point to a Line/Hyperplane

Suppose we have a point \vec{p} and a line/hyperplane passing through point $\vec{p_0}$ with normal \vec{n} .

To find the distance between point \vec{p} and line L. Simply compute

Point-Hyperplane Distance Formula

$$d=rac{ec{n}\cdot(ec{p}-ec{p_0})}{|ec{n}|}=\pm|\operatorname{proj}_{ec{n}}\left(ec{p}-ec{p_0}
ight)|$$

$$d = \frac{\vec{n} \cdot (\vec{p} - \vec{p_0})}{|\vec{n}|}$$

Exercise

- What does the sign of the result mean?
- How would you do this for the implicit form?

Exercise

Suppose we have a line $L: \vec{l} = \vec{p_0} + t\vec{u}$ and a point \vec{p} . What is the distance from \vec{p} to line L?

Solution

Simply compute

$$rac{(ec{p}-ec{p_0})\cdotec{u}^\perp}{|ec{u}|}$$

Or alternatively, if we're in \mathbb{R}^2 :

$$\frac{\vec{u}\times (\vec{p}-\vec{p_0})}{|\vec{u}|}$$

To find the interesection between a line L and a hyperplane P, simply find the solution for:

$$\frac{(\vec{p} - \vec{p_L}) \cdot \vec{u}}{|\vec{u}|} = 0$$

Where \vec{u} is the normal of P, \vec{p} is a point in P and $\vec{p_L}$ is the point in L to be solved.

Exercise

How would you find the intersection of two lines in parametric form?

Definition

The reflection of an incident vector \vec{i} , hitting a plane with normal \vec{n} is:

$$\vec{r}(\vec{i}, \vec{n}) = \vec{i} - 2\operatorname{proj}_{\vec{n}}(\vec{i})$$

Projection of Points into a Plane

Suppose we have a set of points $S = \{p_1, p_2, \dots, p_n\} \subset \mathbb{R}^n$ and a plane P(s,t) = su + tv + d (where $u,v,d \in \mathbb{R}^n$). How do we project S orthogonally to P? That is, find the set $S' = \{p'_1, p'_2, \dots, p'_n\}$ such that:

- **1** All points in S' lie in P.
- 2 $p_i p_i'$ is orthogonal to both u and v for all i (i.e. $|p_i p_i'|$ is minimized).

Point Projection Visualization

This is how many algorithms compute shadows.

To make the derivation easier, suppose that the plane passes through the origin (so d=0). Let $p_i \in S$, we need to find an $a,b \in \mathbb{R}$ such that:

$$p_i = au + bv = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

However, since p_i is not in the span(u, v), we have an inconsistent solution. However, we know that $p_i - p'_i$ is orthogonal to both u and v so:

$$\begin{array}{l} (p_i - (au + bv)) \cdot u = 0 \\ (p_i - (au + bv)) \cdot v = 0 \end{array} \Rightarrow \begin{array}{l} p_i \cdot u = (au + bv) \cdot u \\ p_i \cdot v = (au + bv) \cdot v \end{array}$$

The following system

can be expressed in terms of a matrix equation:

$$\begin{bmatrix} u & v \end{bmatrix}^T p_i = \begin{bmatrix} u & v \end{bmatrix}^T \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

Note how this differs from the initial system that we formed that was inconsistent. Let $B = \begin{bmatrix} u & v \end{bmatrix}$, the system looks like:

$$B^T p_i = B^T B \begin{bmatrix} a \\ b \end{bmatrix}$$

Since u and v are linearly independent, B^TB is non-singular (verify). So, B^TB has an inverse, therefore:

$$\begin{bmatrix} a \\ b \end{bmatrix} = (B^T B)^{-1} B^T p_i$$

Here, a and b are the coordinates of p'_i on the basis $\{u, v\}$. To get the actual value of p'_i , simply do a linear combination:

$$p'_i = au + bv = B \begin{bmatrix} a \\ b \end{bmatrix} = B(B^T B)^{-1} B^T p_i$$

So the projection of point p_i to a plane defined by u, v passing through the origin is:

$$\operatorname{proj}_{B}(p_{i}) = B(B^{T}B)^{-1}B^{T}p_{i}$$

where $B = \begin{bmatrix} u & v \end{bmatrix}$.

Remark

This formula is applicable for any matrix B formed by linearly independent vectors. (i.e. if $B = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$ such that $u_i \in \mathbb{R}^m$ for all i and $p_i \in \mathbb{R}^m$).

If the plane passes through a point p_0 , then the function can be modified to:

$$\operatorname{proj}_{B}(p_{i}-p_{0})+p_{0}=B(B^{T}B)^{-1}B^{T}(p_{i}-p_{0})+p_{0}.$$

We've managed to define

$$\operatorname{proj}_{u}(v)$$

when u and v are both vectors. We also defined

$$\operatorname{proj}_{B}(v)$$
 and $\operatorname{proj}_{u}(A)$

when B and A is a matrix.

Can we combine both to form

$$\operatorname{proj}_{B}(A)$$
?

General Orthogonal Projection Function

Let $S = \{u_1, u_2, \dots, u_n\} \subset \mathbb{R}^m$ be a linearly independent set and let $T = \{v_1, v_2, \dots, v_n\} \subset \mathbb{R}^m$. Construct $B = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$ and $A = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$. The projection of T into span(S) is then:

$$\operatorname{proj}_{B}(A) = B(B^{T}B)^{-1}B^{T}A$$

Remarks

Note that the projection function simple degrades to the vector-vector and vector-matrix and matrix-vector projections when A or B is a $1 \times m$ matrix (i.e. a vector).