

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 FORMAL LANGUAGE AND AUTOMATA THEORY SEMESTER - 5

Time: 3 Hours]				[Full Marks: 70
		and the second	the second section is	
	1.8			

			(Multiple Choice	Type (Juestions J	
1.	Cho	ose the correct al	ternatives for the fo	llowing		$10\times1=10$
	1)	Moore machine	output depends on			
		a) input		b)	input and present sta	ate
		c) present s	tate	d)	none of these.	
	H)	FSM can recogn	nize			$\begin{array}{ll} x & y \\ y & y \\ x & y \\ x & y \\ y & y \\ \end{array}$
		a) any langu	iage			grade Alexander Alexander (Alexander) Alexander (Alexander)
		b) only conto	ext free language			
		c) only conte	ext sensitive langua	ξ e		
	e e e e e e e e e e e e e e e e e e e	d) only regul	lar language.			
	III)	A grammar tha	t produces more tha	an one	parse tree for some se	ntence is said to
		a) contiguou	s	b)	ambiguous	
		c) unambigu	ious	d)	regular.	
	iv)	The following pr	roductions of a regu	lar gra	mmar generates a lang	uage L :
		S → aS b	S a b			
		The regular exp	pression for L is			
		a) a + b		b)	(a+b)*	
		c) (a+b)(a + b)*	d)	(aa + bb) a*b*.	

1)/ 96 1	M-5/C8-512/06/(09)
	it sequence of a information lossless machine can be determined from the
kno	wledge of
aj	only output sequence
b)	output sequence and initial state
c)	output sequence, initial state and final state
d)	initial state.
,	
Let	$\Sigma = \{0, 1\}$. The number of possible strings of length n that can be formed
by t	he elements of set Σ is
a)	
c)	n^n
Whi	ch of the following are regular?
a)	Strings of 0's whose length is perfect square
b) :	Set of all palindromes made up of 0's and 1's
c)	Strings of 0's whose length is prime number
d)	Strings of odd number of 0's.
_ ;	
Pun	nping Lemma is generally used for proving whether
al	a given grammar is regular
w	
b)	a given grammar is not regular
c)	two given grammars are equivalent or not
•	none of these.
	Inpulation a) a) b) c) d) Let by t a) c) Whit a) b) Pun a) b)

	and the second of the second			4	
35/B.Tec	:h(ft)/8EX	[-5/C 8 -6	113	/08	(00)

B.Teck	IT)/SEM-5/CS-512/	/08/(09)	5			
DC)	If Q be the nunnumber of state	mber of states i tes	n NDFA, tì	ien equivalei	nt DFA can h	ave maximun
	a) <i>Q</i>		b)	Q-1		
	c) 2 <i>9</i>		d)	20-1.		
x)	A PDM behave	s like an FSM w	hen the nu	mber of auxi	liary memory	it has is
	a) 0		b)	2		
	c) - 1		d)	none of th	ese.	
			ROUP - B			
		(Short Ansv	ver Type 9	uestions)		
		Answer any	three of the	following.		3×5 * 15
Con	struct a DFA wi	aloh oodeata the	s and of all	binaine atala		
7	ry representation					
	zy representation	r or arr mreigne	i decimai n	reger is divi	sidle by 5.	
a)	State pumping	Lemma for regu	ilar languag	(e.		
b)	Using this Lem	ma prove that	$L = \{ a^n b^n \}$	$ n \ge 1$ is n	ot regular.	2 + 3
Cons	sider the followin	g context free g	rammar :			
G = ((V, Σ, P, S)					
wher	$e V, \Sigma, P, S$ are i	n their usual m	eaning.			
P cor	nsists of the follo	wing production	rules :			
	$S \rightarrow aAbB$					
	A → aA a					
	$B \rightarrow bB \mid b$					

Find a grammar in Chomsky normal form equivalent of the grammar G.

CS/B.Tech(IT)/SEM-5/CS-512/08/(09)

6

a) Show that the following grammar is ambiguous:

$$S \rightarrow a \mid abSb \mid aAb$$

$$A \rightarrow bS \mid a AA b$$

3

b) Define DFA. 2

What is ID of PDA? a)

2

b) Construct a context free grammar that generates the language

$$L = \{ wcw^r \mid w \in (a, b)^* \}$$

3

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- What do you mean by k-equivalent? Why any two final states are 0-equivalent 7. a) and any two non-final states are 0-equivalent?
 - Construct the minimum state equivalent DFA for the following DFA. b)

Find a grammar generating $L = \{a^n b^n c^j \mid n \ge 1, j \ge 0\}$ (2+2)+6+5c)

CS/B.Tech(IT)/SEM-5/CS-512/08/(09)

7

- 8. a) What is information lossless machine?
 - b) Consider the machine shown in the following table:

Present	Nest State			
State	x = 0	x = 1		
A	A, 1	C, 1		
В	Е, О	B, 1		
С	D, 0	A, 0		
D	C, 0	В, 0		
E	B, 1	A, 0		

- i) Is this machine information lossless of finite order ? If yes, find the order μ .
- The machine produced the output sequence Z = 110001100101. What is the corresponding input sequence if the initial state is A and final state is B? 3 + (5 + 7)
- a) State and discuss Myhill-Nerode theorem.
 - b) Write the DFG for the language

$$L = \{ 0^{i} 1^{j} 2^{k} \mid i = j \text{ or } j = k \}.$$

c) Prove that CFLs are not closed under intersection and complement operation.

$$5 + 5 + 5$$

- 10. a) Define push down automation (PDA).
 - b) Construct a PDA, A accepting the set of all strings over $\{a, b\}$ with equal number of a's and b's.
 - c) Construct a PDA, A equivalent to the following context-free grammar $S \rightarrow OBB, B \rightarrow OS/IS/O$. Test whether 010 ⁴ is in N(A). 2 + 5 + 8

CS/B.Tech(IT)/SEM-5/CS-512/08/(09)

8

11. a) Design a finite automata for the RE

$$a^* + (ab + a)^*$$

b) Construct a minimum state automata equivalent to a given automata M defined below:

States \(\States \)	а	b
$\rightarrow q_0$	q ₀	q_3
q_1	q ₂	q_{5}
q_2	q_3	q ₄
q_3	q_0	q_{5}
q ₄	q_0	q ₆
q_5	q_{1}	q ₄
q_6	q_1	q ₃

5 + 10

END