Educação Profissional Paulista

Técnico em Ciência de Dados

Pandas: combinando DataFrames

Aula 1

Código da aula: [DADOS]ANO1C2B4S26A1

Bibliotecas: Pandas, NumPy, SciPy, Matplotlib e Seaborn Mapa da Unidade 5 Componente 3

Você está aqui!

Pandas: combinando DataFrames

Aula 1

Código da aula: [DADOS]ANO1C2B4S26A1

26

Objetivos da Aula

• Filtrar um DataFrame usando a biblioteca Pandas do Python.

Recursos Didáticos

- Recurso audiovisual para exibição de vídeos e imagens;
- Acesso ao laboratório de informática e/ou internet;
- Software Anaconda/Jupyter Notebook instalado ou similar.

Duração da Aula

50 minutos.

Competências Técnicas

- Ser proficiente em linguagens de programação para manipular e analisar grandes conjuntos de dados;
- Usar técnicas para explorar e analisar dados, aplicar modelos estatísticos, identificar padrões, realizar inferências e tomar decisões baseadas em evidências.

Competências Socioemocionais

- Colaborar efetivamente com outros profissionais, como cientistas de dados e engenheiros de dados;
- Trabalhar em equipes multifuncionais, colaborando com colegas, gestores e clientes.

taria da SÃO PAULO GOVERNO DO ESTADO

- No que a mulher está pensando?
- É possível duas tabelas distintas, mas que contêm uma coluna em comum, ou seja, estão relacionadas?
- É possível juntar as informações de duas tabelas em uma única?
- Como combinar duas tabelas? Juntar na horizontal? Na vertical? Ou relacionada a uma chave?

	Nome	Turma	Nasc	Escola	C1	C2	C3	C4	C5	media	media_ponderada
0	Micael Miguel Ehenvic Puzuho de Oliveira	Turma_5	30/01/2007	Escola 2	10.0	7.0	9.5	9.5	10.0	9.000	8.85
1	Janaína Mupru Froiri	Turma_3	18/09/2008	Escola 1	10.0	3.5	10.0	10.0	5.0	8.375	8.05
2	Álvaro Savo da Silva	Turma_4	06/07/2006	Escola 1	10.0	7.5	7.0	7.5	7.5	8.000	7.85
3	Marlon Rosatto Neto	Turma_1	16/10/2006	Escola 2	7.0	5.0	10.0	8.0	0.5	7.500	7.50
4	Sandra Inetirn	Turma_3	08/07/2006	Escola 1	4.0	3.0	6.5	7.5	7.5	5.250	5.15
5	Charlene Sandra Klein de Simões	Turma_3	02/07/2006	Escola 1	10.0	1.0	10.0	8.5	0.0	7.375	7.00
6	Gilberto Martinho Riga	Turma_2	05/05/2007	Escola 2	6.0	9.5	9.5	4.0	3.5	7.250	7.70
7	Gilson de Albuquerque	Turma_1	15/01/2007	Escola 3	8.0	9.5	8.0	10.0	2.0	8.875	8.85
8	Fred Jair dos Santos	Turma_4	03/08/2008	Escola 1	6.0	4.5	9.5	5.5	10.0	6.375	6.50
9	Damião Gowa de Soares	Turma_5	28/02/2009	Escola 1	2.0	8.5	6.5	7.5	4.0	6.125	6.40
10	Filipe Anakin de Padilha	Turma_1	01/12/2008	Escola 1	5.0	8.5	8.5	10.0	7.5	8.000	8.10
11	Guiomar Mourão	Turma_2	04/08/2008	Escola 2	8.5	3.0	10.0	5.5	10.0	6.750	6.70
12	Graziele Minu	Turma_3	23/11/2008	Escola 1	7.0	4.0	10.0	10.0	10.0	7.750	7.60
13	Oliver Doma Teles	Turma_2	09/01/2009	Escola 2	8.0	6.5	7.0	10.0	0.0	7.875	7.65

Elaborado especialmente para o curso com a ferramenta Jupyter Notebook.

A partir da planilha, você consegue responder às seguintes questões?

- . Se a média final é 7,0, quais alunos passaram?
- 2. Como filtrar os alunos aprovados?
- 3. Como separar os alunos apenas da Turma 5 da Escola 2?

Filtrando linhas com base nos valores das colunas

Filtrando linhas com valor específico em uma coluna

Para selecionar linhas que contenham um valor específico em uma coluna, você pode usar a indexação booleana.

```
import pandas as pd

data = {
    "Date": ["April-10", "April-11", "April-12", "April-13", "April-14", "April-16"],
    "Sales": [200, 300, 400, 200, 300],
    "Price": [3, 1, 2, 4, 3, 2]
}

df = pd.DataFrame(data)
df
```

	Date	Sales	Price
0	April-10	200	3
1	April-11	300	1
2	April-12	400	2
3	April-13	200	4
4	April-14	300	3
5	April-16	300	2

```
# Filtrando linhas com Sales igual a 300
df_mask = df["Sales"] == 300
df_filtrado = df[df_mask]

df_filtrado
```

	Date	Sales	Price
1	April-11	300	1
4	April-14	300	3
5	April-16	300	2

Elaborado especialmente para o curso com a ferramenta Jupyter Notebook.

Filtrando linhas com base nos valores das colunas

Uma outra forma é usando a máscara diretamente no DataFrame, e uma outra forma é usando o .loc():

<pre>df.loc[df["Sales"]</pre>	==	300]

	Date	Sales	Price
1	April-11	300	1
4	April-14	300	3
5	April-16	300	2

	Date	Sales	Price
1	April-11	300	1
4	April-14	300	3
5	April-16	300	2

Elaborado especialmente para o curso com a ferramenta Jupyter Notebook.

Filtrando colunas

Para filtrar colunas, você pode usar a função **.loc[]**. Por exemplo, para selecionar apenas as colunas "Date" e "Sales":

```
colunas_selecionadas = df.loc[:, ["Date", "Sales"]]
colunas_selecionadas
```

	Date	Sales
0	April-10	200
1	April-11	300
2	April-12	400
3	April-13	200
4	April-14	300
5	April-16	300

Elaborado especialmente para o curso com a ferramenta Jupyter Notebook.

Filtrando linhas e colunas

<pre>df.loc[df["Sales"] == 300, ["Date", "Sales"]]</pre>					
	Date	Sales			
1	April-11	300			
4	April-14	300			
5	April-16	300			

Elaborado especialmente para o curso com a ferramenta Jupyter Notebook.

df: Refere-se ao DataFrame (estrutura de dados tabular) que estamos manipulando.

.loc[]: É um método do Pandas usado para acessar um grupo de linhas e colunas por rótulos ou uma matriz booleana.

[df["Sales"] == 300]: É uma condição booleana aplicada à coluna "Sales". Ela cria uma máscara booleana, onde cada linha é marcada como True se o valor da coluna "Sales" for igual a 300 e False, caso contrário.

Filtrando linhas e colunas

df	.loc[df["Sales'	'] == 300,	["Date",	"Sales"]]
	Date	Sales			
1	April-11	300			
4	April-14	300			
5	April-16	300			

Elaborado especialmente para o curso com a ferramenta Jupyter Notebook.

["Date", "Sales"]: Aqui, estamos especificando as colunas que queremos selecionar. Portanto, estamos filtrando as colunas "Date" e "Sales".

Portanto, a expressão df.loc[df["Sales"] == 300, ["Date", "Sales"]] retorna um novo DataFrame contendo apenas as linhas onde o valor da coluna "Sales" é igual a 300 e apenas as colunas "Date" e "Sales" são selecionadas.

Nuvem de palavras

Então ficamos assim...

- Tiltrar dados de um DataFrame é importante para tirar informações das tabelas.
- 2 A utilização de filtro é por linhas, colunas e por ambos ao mesmo tempo.
- 3 Pode-se usar o método .loc para filtrar dados de um DataFrame, selecionando linhas e/ou colunas.

Referências da aula

MCKINNEY, W. *Python para análise de dados*: tratamento de dados com Pandas, NumPy & Jupyter. São Paulo: Novatec, 2023.

PANDAS. *Pandas documentation*, 10 abr. 2024. Disponível em: https://pandas.pydata.org/docs/. Acesso em: 19 jul. 2024.

Identidade visual: imagens © Getty Images.

Educação Profissional Paulista

Técnico em Ciência de Dados

