

Szakmai gyakorlat a szakdolgozat előkészítésére

Név: Nagy Csaba

Témavezető: Dr. Iclănzan David Andrei

Téma: Automatikus hangszerfelismerés zenefelvételek alapján

Számítástechnika III 2024.08.29

Tartalom

1.	Bevezető	3
2.	A szakmai gyakorlat menete	3
2.1	Fizikai alapok	3
2.2	Hullámformák jellemzése	3
2.3	Akusztikai paraméterek	3
2.4	Audiojelek (analóg – digitális)	3
2.5	Audio-jellemzők típusai	4
2.6	Audio-jellemzők kinyerése	4

1. Bevezető

Az Államvizsga-dolgozat előkészítését szolgáló szakmai gyakorlatom célja, hogy szilárd elméleti és gyakorlati alapot teremtsen a hullámok fizikai viselkedésének, a jelfeldolgozásnak és a korszerű hangfeldolgozási módszereknek a megértéséhez. Régóta foglalkoztat a zene világa, most pedig arra törekszem, hogy a hagyományos zenei képzésemet technikai és digitális nézőponttal egészítsem ki, előkészítve "Automatikus hangszerfelismerés" témájú államvizsga-dolgozatom kutatási munkáját.

2. A szakmai gyakorlat menete

A szakmai gyakorlatot tudatosan apró, egymásra épülő lépésekre bontottam. Először a hang fizikai alapjait tisztáztam – rezgés, frekvencia, amplitúdó –, majd ezekre építve haladtam az akusztikai mennyiségek, az analóg-digitális átalakítás, végül az audio-jellemzők elméletéig. Ezzel a "legelemibb kiindulóponttól" jutottam el odáig, hogy biztonsággal értelmezhessem a hangszerfelismeréshez szükséges fogalmakat és módszereket, megalapozva a későbbi gyakorlati kísérleteket.

2.1 Fizikai alapok

Kitekintés arra, hogyan keletkezik és terjed a hang, és miként alakul ki a hangérzet.

- A hang keletkezése, közegtípusok szerinti terjedés
- Rezgési alapfogalmak: frekvencia, amplitúdó, fázis
- Az emberi hallás határai (20 Hz 20 kHz)

2.2 Hullámformák jellemzése

Áttekintem a hullámformák legfontosabb idő- és frekvenciasíkbeli tulajdonságait.

- Időbeli osztályozás: periodikus vs. aperiodikus
- Összetett hang és felharmonikusok
- Spektrogram-alapú vizualizációk

2.3 Akusztikai paraméterek

Bemutatom, hogyan vezethetők le a fizikai hangerősségi mennyiségek a halláslélektani érzetekhez.

- Hangteljesítmény, hangintenzitás, intenzitásszint
- Hallás- és fájdalomküszöb, decibel-skála
- Komplex hang, hangszín kialakulása

2.4 Audiojelek (analóg – digitális)

Részletezem az ADC/DAC (analóg-digitális és digitális-analóg átalakítás) lépéseit.

- PCM, mintavételezés, Nyquist-frekvencia
- Kvantálás, bitmélység, aliasing

• A hang rögzítésének és reprodukciójának folyamata

2.5 Audio-jellemzők típusai

Rendszerezem az audio-jellemzőket három szempont szerint.

- Absztrakció: low-, mid-, high-level jellemzők
- Időbeli lefedettség: pillanatnyi, szakaszos, globális
- Zenei szempont: hangszín, hangmagasság, időtartam, hangerő
- Jeltartomány: idő-, frekvencia-, idő-frekvencia (spektrogram)

2.6 Audio-jellemzők kinyerése

Összevetem a hagyományos gépi tanulás (Traditional Machine Learning) és a mélytanulás (Deep Learning) megközelítéseit.

- Keretezés (framing) → ablakozás (windowing) → átfedés (overlapping)
- Fourier-transzformáció, spektrális szivárgás csökkentése
- Feature-pipeline: számítás → aggregálás → értékesítés

3. Elméleti összegzés és tapasztalatok

A rendelkezésre álló 36 óra alatt kizárólag irodalom- és fogalomfeldolgozó munkára volt lehetőség. A fogalmi térkép elkészítése összekötötte a hangfizikai alapokat a jelfeldolgozás és a mélytanulás eszközeivel, egyértelmű kutatási irányt jelölve ki. Ezzel az elméleti áttekintő szakasszal sikerült egységes fogalmi keretet létrehozni, melyet a gyakorlati implementáció követ a nyári gyakorlat idején, a lefektetett elméleti alapokra építve.

A következő szakaszban az elméleti ismeretbővítést kódalapú, gyakorlati implementáció egészíti ki: az audio-jellemzők kinyerését és vizualizálását Python környezetben, a Librosa és TensorFlow csomagok segítségével végzem el.

Felhasznált forrás:

Valerio Velardo - Audio Signal Processing for Machine Learning - The Sound of AI https://www.youtube.com/playlist?list=PL-wATfeyAMNqlee7cH3qlbh4QJFAaeNv0

Github:

https://github.com/nCsab/Instrument-Recognition