Sistemas de Control (EYAG-1005): Tarea 01

Semestre: 2017-2018 Término I Instructor: Luis I. Reyes Castro

Problema 1.1. [X Puntos] En el siguiente sistema mecánico la entrada es el torque T(t) y la salida es el desplazamiento del bloque de masa x(t). Encuentre la función de transferencia, *i.e.*:

$$G(s) = \frac{X(s)}{T(s)}$$

Problema 1.2. [X Puntos] En el siguiente sistema mecánico la entrada es el torque T(t) y la salida es el desplazamiento del bloque de masa x(t). Encuentre la función de transferencia, *i.e.*:

$$G(s) = \frac{X(s)}{T(s)}$$

Problema 1.3. [X Puntos] Considere el siguiente sistema mecánico donde un motor DC controlado por armadura sirve de actuador. La entrada es el voltage de la armadura $e_a(t)$ y la salida es el desplazamiento angular $\theta_2(t)$. Encuentre la función de transferencia, *i.e.*:

$$G(s) = \frac{\Theta_2(s)}{E_a(s)}$$

Problema 1.4. [X Puntos] Considere el siguiente modelo de un giroscopio, donde la ecuación diferencial se muestra arriba del esquema del sistema. Escriba la función de transferencia, *i.e.*:

$$G(s) = \frac{\Theta_x(s)}{\Theta_z(s)}$$

Problema 1.5. [X Puntos] Para el siguiente sistema de control, encuentre su función de transferencia en circuito cerrado como función de K.

