Categorical: Poisson regression

Table of contents

1	Goals	1
	1.1 Goals	1
2	Zeroes	2
	2.1 Zeroes (0)	2
	2.2 Too few zeroes	2
	2.2 Too few zeroes	3
3	Miscellaneous	8
	3.1 Pseudo R^2	8
	3.2 Variable length of time	9
	3.3 Comparing models	
4	Summary	14
	4.1 Summary	14

1 Goals

1.1 Goals

1.1.1 Goals of this lecture

- More count models
 - Too many or too few zeroes
 - Variable lengths of time
 - $-R^2$ values
 - Comparing models

2 Zeroes

2.1 Zeroes (0)

2.1.1 Zeroes can be really important

- Conceptually, zeroes are meaningful
 - Lowest possible value of a count
 - Indicate "nothing"
- Three situations:
 - Too few zeroes
 - Too many zeroes (and **some** zeroes will always be zeroes)
 - Too many zeroes (and all zeroes will always be zeroes)

2.2 Too few zeroes

2.2.1 Too few zeroes

- Situation: Outcome is a count
 - But it cannot take on a value of 0
- Study of medical visits
 - Must visit the doctor to get involved in the study
- Study of substance use
 - Only recruit substance users

2.2.2 Truncated Poisson regression

- Truncated Poisson regression
 - Also truncated negative binomial
- Probability distribution removes the probability of zeroes
 - Only **positive** integer values

2.3 Too many zeroes

2.3.1 "Excess" zeroes

- Counts often display "excess" zeroes
 - More values of 0 than expected for a Poisson distribution
- Even if the rest of the distribution is approximately Poisson
 - "Excess" zeroes lead to overdispersion
 - Sometimes, what looks like overdispersion is really excess zeroes
- Several specific Poisson family models to deal with excess zeroes
 - Depending on why the zeroes are there

2.3.2 Why are there all these zeroes?

- This is a **substantive** question
 - Know about the outcome you're studying
- Do some people who are responding zero have **some probability** of responding otherwise?
 - Yes: **Zero-inflated Poisson regression** (or NB)
 - No (structural zeroes): hurdle regression (also called with-zeroes regression)

2.3.3 Why are there all these zeroes?

- Do the people who are responding zero have **some probability** of responding otherwise?
 - Cigarettes smoked today
 - * Smoker who hasn't smoked yet today could respond with non-zero
 - * Non-smoker could not respond with non-zero
 - Alcoholic beverages consumed today
 - * Someone who drinks but hasn't today could respond with non-zero
 - * Abstainer could not respond with non-zero

2.3.4 Zero-inflated Poisson regression

- Zeroes have some probability to be non-zero
- Two parts modeled simultaneously:
 - Logistic regression
 - * Structural zero (must be 0) or not
 - Poisson regression (or OD Poisson or NB)
 - * Non-structural zeroes and positive values
- Can use same set of predictors in both parts, but do not have to

2.3.5 ZIP: Some zeroes are always zeroes, some are not

2.3.6 ZIP: Some zeroes are always zeroes, some are not

2.3.7 Output: Zero-inflated Poisson regression

```
zeroinfl(formula = y ~ sensation4 | sensation4, data = jpa)
Pearson residuals:
    Min
             1Q Median
                             3Q
                                    Max
-1.4675 -0.9658 -0.3395 0.7122 4.9638
Count model coefficients (poisson with log link):
            Estimate Std. Error z value Pr(>|z|)
                       0.06577 15.597 < 2e-16 ***
(Intercept) 1.02579
sensation4
             0.21183
                        0.04304
                                  4.922 8.57e-07 ***
Zero-inflation model coefficients (binomial with logit link):
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.2836
                         0.2633 -4.874 1.09e-06 ***
sensation4
            -0.1152
                         0.1850 -0.622
                                          0.534
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Number of iterations in BFGS optimization: 8 Log-likelihood: -953.4 on 4 Df

2.3.8 Hurdle regression (or with-zeroes regression)

- Zeroes have no probability to be non-zero
 - Two different populations: Smokers vs not, drinkers vs not
- Two parts modeled simultaneously:
 - Logistic regression
 - * Zero or not zero
 - Truncated Poisson regression (or OD Poisson or NB)
 - * Positive values only
- Can use same set of predictors in both parts, but do not have to

2.3.9 Hurdle: All zeroes are structural zeroes

2.3.10 Hurdle: All zeroes are structural zeroes

2.3.11 Output: Hurdle regression

```
Call:
```

hurdle(formula = y ~ sensation4, data = jpa)

Pearson residuals:

Min 1Q Median 3Q Max -1.4825 -0.9675 -0.3363 0.7135 4.9816

Count model coefficients (truncated poisson with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.02798 0.06547 15.701 < 2e-16 ***

sensation4 0.21022 0.04283 4.908 9.22e-07 ***

Zero hurdle model coefficients (binomial with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0158 0.2112 4.810 1.51e-06 *** sensation4 0.2177 0.1556 1.399 0.162

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of iterations in BFGS optimization: 7

3 Miscellaneous

3.1 Pseudo \mathbb{R}^2

3.1.1 Pseudo R^2 for count models

- Many of the same issues as logistic regression
 - No sums of squares
 - Not always between 0 and 1
 - Don't always increase with added predictors
 - Several options

3.1.2 Poisson regression model

```
Call:
glm(formula = y ~ sensation4, family = poisson(link = "log"),
    data = jpa)
Deviance Residuals:
   Min 1Q Median
                              3Q
                                      Max
-2.7912 -1.5001 -0.4624 0.8418
                                   4.9122
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.78560 0.05977 13.144 < 2e-16 ***
sensation4 0.23148
                      0.03966 5.837 5.33e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 1186.8 on 399 degrees of freedom
Residual deviance: 1151.7 on 398 degrees of freedom
AIC: 2079
Number of Fisher Scoring iterations: 5
```

3.1.3 (Squared) correlation between predicted & observed

- Literally, the (squared) correlation between the observed (Y) values and the predicted (Y) values
 - For the Poisson regression example, this value is 0.031
- Mathematically the same as Efron's \mathbb{R}^2

3.1.4 McFadden \mathbb{R}^2 (a.k.a. Likelihood ratio \mathbb{R}^2 , pseudo \mathbb{R}^2)

- $R_{McFadden}^2 = 1 \frac{LL_{model}}{LL_{null}}$
- For the Poisson regression example, this value is 0.017
- Proportion of variance accounted for
 - Proportion of the way from null model to perfect model

3.1.5 Caution about deviance and log-likelihood

Warning

- For many models (e.g., logistic regression)
 - Deviance = -2 * log-likelihood
 - Use either deviance or LL for calculations
- · Count models don't work like that
 - Deviance \neq -2 * log-likelihood
 - Much more complicated, due to scaling, LL value in null model
 - Here are some links with more info
- Don't calculate things like R^2 or LR test by hand
 - Let the program do it for you: It will use the correct values

3.2 Variable length of time

3.2.1 Poisson distribution assumption

• Poisson distribution (and extensions) model the number of events in a fixed length of time

- Everyone is measured for the same time frame
 - Number of aggressive acts committed by a child in 1 hour
 - Number of cigarettes smoked per day
 - Number of alcoholic drinks consumed on Saturday

3.2.2 Variable length of time

- Often, we measure a count over some variable period of time
 - Number of aggressive acts committed by a child while playing
 - Number of cigarettes smoked today before you came in
 - Number of alcoholic drinks consumed the last time you drank

3.2.3 Variable length of time

- Extend Poisson-type model to incorporate variable time period
 - Include ln(time) (measurement interval) as a predictor with regression coefficient

*
$$ln(\hat{\mu}) = ln(time) + b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$$

- The "offset" option
 - * offset(logtime) in glm(), where logtime is the log(time)

3.2.4 How does this work?

$$ln(\hat{\mu}) = ln(time) + b_0 + b_1 X_1$$

• Subtract ln(time) from both sides

$$ln(\hat{\mu}) - ln(time) = b_0 + b_1 X_1$$

• Subtraction converts to **division** (i.e., ln(x) - ln(y) = ln(x/y))

$$ln(\frac{\hat{\mu}}{time}) = b_0 + b_1 X_1$$

• Predict $ln(count \ per \ unit \ of \ time)$ instead of ln(count)

3.2.5 Code for offset

```
m1 <- glm(y ~ sensation4 + offset(logtime),
data = jpa,
family = poisson(link = "log"))</pre>
```

• Where logtime is ln(time variable)

3.3 Comparing models

3.3.1 Nested models

- We've already talked about comparing nested models using LR test
 - Linear regression, logistic regression, ordinal logistic, SEM
- Whether models are nested is more complicated for count models
 - Mostly because of overdispersion parameter

3.3.2 What's in each model?

Model	Coefficients	ψ	α
Poisson	count	fixed at 1	fixed at 0
Overdispersed Poisson	count	ψ	fixed at 0
Negative Binomial	count	fixed at 1	α
ZIP	count, logistic	fixed at 1	fixed at 0
ZIOD Poisson	count, logistic	ψ	fixed at 0
ZINB	count, logistic	fixed at 1	α

3.3.3 What is nested?

- Poisson is nested within overdispersed Poisson
 - But Poisson and OD Poisson have the same degrees of freedom
 - So LR tests don't work
- Poisson is nested within negative binomial
 - Do a LR test!

3.3.4 What is not nested?

- OD Poisson and NB are **not nested** (either direction)
 - Different overdispersion parameters
- Non-inflated models are not nested in zero-inflated models
 - Different sets of coefficients in the models
 - Logistic regression coefficients in inflated models

3.3.5 What is not nested?

- Overdispersed models (OD Poisson or NB) with different predictors
 - Model 1: Overdispersed Poisson with predictor X_1
 - Model 2: Overdispersed Poisson with predictors X_1 and X_2
- These models have different overdispersion parameters
 - Model 1: ψ parameter based on X_1
 - Model 2: ψ parameter based on both X_1 and X_2

3.3.6 LR tests

- Overdispersed Poisson vs Poisson
 - Technically nested, but same degrees of freedom
 - * 0 df for the LR test

```
lrtest(poi, odpoi)
```

Likelihood ratio test

```
Model 1: y ~ sensation4
Model 2: y ~ sensation4
  #Df LogLik Df Chisq Pr(>Chisq)
1  2 -1037.5
2  2  0
```

3.3.7 LR tests

- Negative binomial vs Poisson
 - If same predictors: Test of **overdispersion** parameter

```
lrtest(poi, negbin)
```

Likelihood ratio test

```
Model 1: y ~ sensation4

Model 2: y ~ sensation4

#Df LogLik Df Chisq Pr(>Chisq)

1 2 -1037.51

2 3 -883.05 1 308.93 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

3.3.8 Non-nested models?

- Vuong test: vuong() function in **pscl** package
 - Don't use to compare zero-inflated to non-inflated models: Why
- AIC and BIC
 - Function of log-likelihood and number of parameters
 - * Penalizes models with more parameters
 - Smaller values are better
 - No associated test

3.3.9 Compare using AIC: Smaller is better

Model	AIC
Poisson	2079.025
OD Poisson	NA
Negative binomial	1772.091

4 Summary

4.1 Summary

4.1.1 Summary of this week

- Zeroes are interesting and important
 - Too few or too many zeroes
- Pseudo \mathbb{R}^2 : Similar to logistic regression
- Variable length of time for observations
- Comparing models
 - Nested or (more likely) not

4.1.2 Next week

- Interactions in GLiMs
 - Nonlinear models: What is an *interaction* if lines can't be parallel?
- Mediation with GLiMs
 - Just use the a and b paths like "normal"? Nope
 - What are those coefficients, conceptually?
 - * What in a GLiM corresponds to that?
- Wrap up any other details of GLiMs that I have time for
 - Residuals? Diagnostics?