Step-1

All possible 2×2 matrices with entries 1,-1 are

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix},$$

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix},$$

$$\begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix},$$

We can observe that the values of determinants of all these matrices are zero $^{-2,2}$ only.

Step-2

So that maximum values of determinant in 2×2 case is 2.

Now getting to 3×3 case, we should compute $a_{22}c_{11}+a_{12}c_{12}+a_{13}c_{13}$ to get $\det A$ where c_{ij} cofactors are a_{ij}

Exploring possibilities suppose $a_{11} = 1, a_{12} = 1$ $a_{13} = 1$

The other two rows should not be proportional to this row and proportional to each other so that determinant is non zero so they can be

$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix} or \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} or \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} or$$
$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix} or \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} or \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$

Step-3

The remaining cases are negatives of rows of these versions.

Clearly at least one factor vanishes.

So, the determinant value can not exceed 4

Similarly we can dispose all cases where exactly one entry of 1^{st} row is -1 and exactly two entries of 1^{st} row are $-1 \hat{a} \in T^{M} s$ etc.

In any case we note that at least one cofactor vanishes and hence determinant of 3×3 matrix of entries 1 or -1 cannot exceed 4.