Multi-CLS BERT: An Efficient Alternative to Traditional Ensembling

Haw-Shiuan Chang* Ruei-Yao Sun* Kathryn Ricci* Andrew McCallum

UMassAmherst

Manning College of Information & Computer Sciences

BERT Classifier

- Problem
 - A small text classification task
 - Unstable BERT's performance
- What About?
 - Ensembling
- But
 - Costly

Can We Make Ensembling Almost as Efficient as the Single Model?

Yes!

Sharing the BERT Encoder

Fine-tuning only Once!

Goal and Challenge

- Our goal
 - Aggregate the contextualized word embeddings differently
- Challenge
 - CLS embeddings are often identical
 - After seeing the same training samples

Proposed Multi-CLS BERT

Pretraining Diversification

Pretraining Diversification

Architecture Diversification

- Insert different linear layers for different CLS tokens
 - The differences of CLS could be stored in the linear weights
 - The parameter increase is relatively small

Fine-tuning Diversification

After fine-tuning using gradient descent

Experiment Settings

- Our main baseline MTL
 - By optimizing the pretraining and fine-tuning methods of a state-of-theart BERT model (Aroca-Ouellette and Rudzicz, 2020)
- Repeat training 16 times
 - Pretraining 4 times and fine-tuning 4 times
 - Many previous work shows that random seeds are important in GLUE and SuperGLUE

Natural Language Understanding

BERT Base could be better than BERT Large

			GLUE			SuperGLUE		
Configuration ↓	Model Name ↓	Model Size ↓	100	1k	Full	100*	1k*	Full
BERT	Pretrained	109.5M	55.71	71.67	82.05	57.18	61.55	65.04
			± 0.62	± 0.15	± 0.08	± 0.43	± 0.37	± 0.36
	MTL	109.5M	59.29	73.26	83.30†	57.50	62.94	66.33
			± 0.27	± 0.13	± 0.07	± 0.41	± 0.36	± 0.33
	Our + 8.9M	// 111.3M //	57.84	+ 2.5	33.40	57.31	63.35	66.29
			± 0.32			± 0.35	± 0.18	± 0.18
	Ours (K=5, $\lambda = 0$)	\\ 118.4M \\	61.54	74.14	83.41	58.29	63.71	66.80
Base			± 0.32	± 0.12	± 0.07	± 0.33	± 0.26	± 0.25
	Ours (K=5, $\lambda = 0.1$)	118.4M	61.80	74.10	83.47	58.20	63.61	66.74
	0 (17 5) 0 5)	110.43.5	± 0.35	± 0.13	± 0.05	± 0.31	± 0.27	± 0.26
	Ours (K=5, $\lambda = 0.5$)	118.4M	60.49	74.02	83.47	58.41	63.78	66.80
	+ 225.7 M	110.43.5	± 0.35	$_{7}+2.$	± 0.08	± 0.38	± 0.25	± 0.24
	Ours + 225.7 W	\ 118.4M \	59.86	/	05.75	57.84	63.56	66.39
		\	± 0.34	± 0.14	± 0.07	± 0.40	± 0.22	± 0.22
BERT Large	MTL	335.2M	61.39	75.30	84.13	59.03	65.21	69.16
			± 0.37	± 0.27	± 0.11	± 0.54	± 0.38	± 0.37
	Ours (K=1)	338.3M	59.19	75.35	84.59	57.35	64.67	69.24
			± 0.43	± 0.21	± 0.07	± 0.42	± 0.43	± 0.41
	Ours (K=5, $\lambda = 0$)	350.9M	63.19	75.73	84.51	59.46	65.43	69.56
			± 0.49	± 0.26	± 0.05	± 0.44	± 0.38	± 0.31
	Ours (K=5, $\lambda = 0.1$)	350.9M	64.24	76.27	84.61	59.88	65.58	70.03
			± 0.40	± 0.12	± 0.08	± 0.43	± 0.26	± 0.25
	Ours (K=5, $\lambda = 0.5$)	350.9M	63.02	75.95	84.49	59.42	65.84	69.79
			± 0.42	± 0.10	± 0.08	± 0.34	± 0.25	± 0.25
	Ours (K=5, $\lambda = 1$)	350.9M	62.07	75.85	84.61	58.74	65.00	69.04
			± 0.45	± 0.17	± 0.07	± 0.50	± 0.29	± 0.27

Natural Language Understanding

The improvement of BERT Large is usually larger than the improvement of BERT Base

			GLUE			SuperGLUE		
Configuration ↓	Model Name ↓	Model Size ↓	100	1k	Full	100*	1k*	Full
BERT Base	Pretrained	109.5M	55.71	71.67	82.05	57.18	61.55	65.04
	MTL	109.5M	± 0.62 59.29	± 0.15 73.26	± 0.08 83.30†	± 0.43 57.50	± 0.37 62.94	± 0.36 66.33
	Ours (K=1)	111.3M	± 0.27 57.94 + 2.51	± 0.13 $+ 0.84$	± 0.07 + 0.17	± 0.41 57.21 + 0.70	± 0.36 + 0.67	± 0.33 + 0.41
	Ours (K=5, $\lambda = 0$)	118.4M	61.54 ± 0.32	74.14 ± 0.12	83.41 ± 0.07	58.29 ± 0.33	63.71 ± 0.26	66.80 ± 0.25
	Ours (K=5, $\lambda = 0.1$)	118.4M	61.80 ± 0.35	74.10 ± 0.13	83.47 ± 0.05	58.20 ± 0.31	63.61 ± 0.27	66.74
	Ours (K=5, $\lambda = 0.5$)	118.4M	60.49	74.02	83.47	58.41	63.78	± 0.26 66.80
	Ours (K=5, $\lambda = 1$)	118.4M	$^{\pm0.35}_{59.86}_{\pm0.34}$	$^{\pm0.12}_{73.75}_{\pm0.14}$	$^{\pm0.08}_{83.43}_{\pm0.07}$	$^{\pm0.38}_{57.84}_{\pm0.40}$	± 0.25 63.56 ± 0.22	$^{\pm0.24}_{66.39}_{\pm0.22}$
	MTL	335.2M	61.39	75.30	84.13	59.03	65.21	69.16
BERT Large	Ours (K=1)	338.3M			± 0.11 84 50			
	Ours (K=5, $\lambda = 0$)	350.9M	+ 2.85	15.13	+ 0.48	59.46	65.43	69.56
	Ours (K=5, $\lambda = 0.1$)	350.9M	+ 0.49 64.24	+ 0.26 76.27	+ 0.05 84.61	+ 0.44 59.88	$\frac{+0.38}{65.58}$	+ 0.31 70.03
	Ours (K=5, $\lambda = 0.5$)	350.9M	± 0.40 63.02	± 0.12 75.95	± 0.08 84.49	± 0.43 59.42	± 0.26 65.84	± 0.25 69.79
	Ours (K=5, $\lambda = 1$)	350.9M	± 0.42 62.07	± 0.10 75.85	± 0.08 84.61	± 0.34 58.74	± 0.25 65.00	± 0.25 69.04
			± 0.45	± 0.17	± 0.07	± 0.50	± 0.29	± 0.27

Multi-CLS vs Ensembling

Multi-CLS vs Ensembling

• In GLUE 100, Comparison of expected calibration errors (ECE).

Conclusion

- Ensembling BERT almost without extra cost is achievable
- We need some tricks to diversify the multiple CLS hidden states
- Compared to standard ensembling
 - Improve more when the training dataset is small
 - Improve less otherwise

Our Other Work using Multiple Embeddings

BERT-like LM encoder for NLU

NLI QA IR Sent sim

GPT-like LM decoder for NLG

Text Completion Summarization

- H.-S. Chang*, Z. Yao*, A. Gon, H. Yu, and A. McCallum, "Revisiting the Architectures like Pointer Networks to Efficiently Improve the Next Word Distribution, Summarization Factuality, and Beyond" ACL Findings 2023
- H.-S. Chang, and A. McCallum, "Softmax Bottleneck Makes Language Models Unable to Represent Multi-mode Word Distributions," ACL 2022
- H.-S. Chang, "Modeling the Multi-mode Distribution in Self-Supervised Language Models, "PhD Thesis 2022