Lasso regression

Nathanaël Carraz Rakotonirina

MISA Université d'Antananarivo

Model

We want the parameters to no just be small as in ridge regression, but to be exactly zero. l_1 norm is used for the penalty. This way, $\hat{\boldsymbol{w}}$ is sparse. This approach is called lasso or least absolute shrinkage and selection operator.

The loss function becomes

$$J(\mathbf{w}) = RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_1$$

where λ controls the strength of the regularizer

Probabilistic interpretation

We use MAP estimation with a Laplace prior on the weights $p(\boldsymbol{w};\lambda) = \prod_{i=1}^D Lap(w_i;0,1/\lambda)$. The MAP estimate corresponds to minimizing the previous objective function

$$J(\boldsymbol{w}) = ||\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}||_2^2 + \lambda ||\boldsymbol{w}||_1$$

Optimization

There is no analytical solution as in linear and ridge regression. However, the objective function is still convex.

Explore further

Solve Lasso using:

- ► LARS (least angle regression and shrinkage)
- Gradient descent
- Coordinate descent

Combine lasso and ridge to obtain elastic net whose objective is:

$$J(\mathbf{w}) = ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 + \lambda_2 ||\mathbf{w}||_2^2 + \lambda_1 ||\mathbf{w}||_1$$