## **ИТМО**

#### ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

### ОТЧЕТ

по лабораторной работе

# **Исследование характеристик источника** электрической энергии постоянного тока

Группа *Р3331* 

Вариант *057* 

Выполнил(а): Тимошкин Роман Вячеславович

Дата сдачи отчета: **08.09.2025** 

Дата защиты:

Контрольный защиты: 06.10.2025

Количество баллов:

**Цель работы**: исследование режимов работы и экспериментальное определение параметров схемы замещения источника электрической энергии.

Исходные данные для выполнения лабораторной работы:

|      | Параметры источника |       | Параметры нагрузки, [Ом] |                |                |                |                |                   |                |                |                |                 |                 |
|------|---------------------|-------|--------------------------|----------------|----------------|----------------|----------------|-------------------|----------------|----------------|----------------|-----------------|-----------------|
| Bap. | E, B                | r, Om | R <sub>1</sub>           | R <sub>2</sub> | R <sub>3</sub> | R <sub>4</sub> | R <sub>5</sub> | R <sub>6</sub> =r | R <sub>7</sub> | R <sub>8</sub> | R <sub>9</sub> | R <sub>10</sub> | R <sub>11</sub> |
| 057  | 20                  | 125   | $\infty$                 | 1125           | 500            | 292            | 188            | 125               | 83             | 54             | 31             | 14              | 0               |

#### Схема эксперимента



Таблица экспериментальных и расчетных данных

| k  | Изме      | рения     | Расчет $r = 125,043 \text{ [OM]}, E = 20 \text{ [B]}, I_{sc} = 160 \text{ [мА]}$ |            |       |            |  |  |  |
|----|-----------|-----------|----------------------------------------------------------------------------------|------------|-------|------------|--|--|--|
|    | $R_k[OM]$ | $U_k$ [B] | $I_k$ [MA]                                                                       | $P_k[B_T]$ | η     | $r_k$ [OM] |  |  |  |
| 0  | $\infty$  | 20        | 0                                                                                | 0          | 1     |            |  |  |  |
| 1  | 1125      | 18        | 16                                                                               | 0,288      | 0,9   | 125        |  |  |  |
| 2  | 500       | 16        | 32                                                                               | 0,512      | 0,8   | 125,071    |  |  |  |
| 3  | 292       | 14,004    | 47,959                                                                           | 0,672      | 0,7   | 125,01     |  |  |  |
| 4  | 188       | 12,012    | 63,894                                                                           | 0,768      | 0,6   | 124,919    |  |  |  |
| 5  | 125       | 10        | 80                                                                               | 0,8        | 0,5   | 124,346    |  |  |  |
| 6  | 83        | 7,985     | 96,205                                                                           | 0,768      | 0,399 | 125,794    |  |  |  |
| 7  | 54        | 6,033     | 111,722                                                                          | 0,674      | 0,302 | 125,005    |  |  |  |
| 8  | 31        | 3,974     | 128,194                                                                          | 0,509      | 0,199 | 125,136    |  |  |  |
| 9  | 14        | 2,014     | 143,857                                                                          | 0,29       | 0,101 | 125,11     |  |  |  |
| 10 | 0         | 0         | 160                                                                              | 0          | 0     |            |  |  |  |

#### Параметры схемы замещения

- ЭДС источника  $E = U_{xx} = 20$  [В]
- внутреннее сопротивление  $\mathbf{r}=\sqrt{\sum_{k=1}^{9}\frac{r_k^2}{9}}=$

$$\sqrt{\frac{125^2+125,071^2+125,01^2+124,919^2+124,346^2+125,794^2+125,005^2+125,136^2+125,111^2}{9}} = 125,043 \, [\text{Om}]$$

- ток короткого замыкания (сила тока источника)  $J=I_{\rm K3}=E$  / r=20 / 125,043 = 160 [мА]

#### Пример измерений и расчета для строки «8»

- пример измерений





- пример расчета  $R_8=31 \text{ [OM]},\ U_8=3,974 \text{ [B]},\ r=125,043 \text{ [OM]}$   $I_8=U_8/R_8=3,974/31=128,194 \text{ [MA]}$   $P_8=U_8^2/R_8=3,974^2/31=0,509 \text{ [BT]}$   $\eta=R_8/(R_8+r)=31/(31+125,043)=0,199$   $r_8=(U_8-U_9)/(I_9-I_8)=1000\cdot(3,974-2,014)/(143,857-128,194)=125,136 \text{ [OM]}$ 

#### Внешняя характеристика источника



#### Рабочие характеристики источника



#### Выводы по работе

В ходе работы цель достигнута: в LTspice собрана схема замещения источника (E, r) с резистивной нагрузкой, получены экспериментальные точки внешней характеристики и определены параметры источника — напряжение холостого хода  $U_0$  (по разрыву),

внутреннее сопротивление r (по дифференциальной оценке из соседних точек и по условию  $U_{\rm H}=U_0/2$  при  $R_n\approx r$ ) и ток K3  $I_{\rm sc}=U_0/r$ ; зависимость  $U_{\rm H}(I_{\rm H})$  оказалась линейной  $(U_{\rm H}=U_0-rI_{\rm H})$ ; мощность в нагрузке достигает максимума при согласовании  $R_n\approx r$  ( $U_{\rm H}\approx U_0/2$ ,  $I_{\rm H}\approx U_0/(2r)$ ,  $P_n^{max}\approx U_0^2/(4r)$ ), а КПД  $\eta=R_n/(r+R_n)$  возрастает с  $R_n$  и в точке максимальной мощности близок к 50%; расхождения объясняются конечным шагом  $R_n$ , точностью измерений, разбросом номиналов и влиянием проводов при малых сопротивлениях.