AND CONTROL OF THE PROPERTY OF

Data Structures Chapter 5 Tree

- 1. Introduction
- 2. Binary Tree
- 3. Binary Search Tree
 - Introduction
 - Operations
 - Demo & Coding
- 4. Balancing Tree

Operations: Insert (or grow)

- grow(node, k) Insert a node with k
 - Step 1: If the tree is empty, return a new node(k).
 - Step 2: Pretending to search for k in BST, until locating a nullptr.
 - Step 3: create a new node(k) and link it.

- Q1: Do you see the difference between the binary tree and binary search tree in this operation?
- Q2: To complete inserting 7, how many times was grow() called?
- Q3: How many times "if (key < node->key) ... " called during this process?
- Q4: At the end of this whole process, which return will be executed and what is the key value of the node?

```
tree grow(tree node, int key) {
  if (node == nullptr)
    return new tree(key);

if (key < node->key)
    node->left = grow(node->left, key);
  else if (key > node->key)
    node->right = grow(node->right, key);
  return node;
}
```


- When we delete a node, three possibilities arise depending on how many children the node to be deleted has:
 - Case 1: No child Simply delete a leaf itself from the tree and return a null.
 - Case 2: Only one child before deleting itself and save the link, then pass over the link.

- When we delete a node, three possibilities arise depending on how many children the node to be deleted has:
 - Case 1: No child Simply delete a leaf itself from the tree and return a null.
 - Case 2: Only one child before deleting itself and save the link, then pass over the link.

- When we delete a node, three possibilities arise depending on how many children the node to be deleted has:
 - Case 1: No child Simply delete a leaf itself from the tree and return a null.
 - Case 2: Only one child before deleting itself and save the link, then pass over the link.
 - Case 3: Two children
 - Call the node to be deleted N. Do not delete N.
 - Instead, choose either its in-order successor node or its in-order predecessor node, R.
 - Then, recursively call delete on R until reaching one of the first two cases.
 - If you choose in-order **successor** of a node, as right subtree is not NULL, then its in-order **successor** is node when least value in its right subtree, which will have at a maximum of 1 subtree, so deleting it would fall in one of first two cases.

- Case 3: Two children
 - 1. The rightmost node in the left subtree, the inorder **predecessor 6**, is identified.
 - 2. Its value is copied into the node being trimmed.
 - 3. The inorder predecessor can then be trimmed because it has at most one child.
- NOTE: The same method works symmetrically using the inorder successor labelled 9.

Case 3: Two children

 Idea: Replace the trimmed node with a value guaranteed to be between two child subtrees

Options:

- predecessor from left subtree: maximum(node->left)
- successor from right subtree: minimum(node->right)
- These are the easy cases of predecessor/successor
- Now trim the original node containing successor or predecessor
- It becomes leaf or one child case easy cases of trim!

trim(5);

• **Example:** Case 1: No child – a leaf node deletion


```
int key = 9;
root = trim(root, key);
...
return node;
}
tree trim(tree node, int key) {
   if (node == nullptr) return node;
   ...
return node;
}
```

Example: Case 1: No child – a leaf node deletion


```
int key = 9;
root = trim(root, key);
...
```

```
tree trim(tree node, int key) {
  if (node == nullptr) return node;
  ...
  else if (key > node->key)
    node->right = trim(node->right, key);
    return node;
}
```

... // no child case
 delete node;
 return nullptr;
...

Example: Case 2: One child – a node deletion


```
int key = 8;
root = trim(root, key);
...
```

```
tree trim(tree node, int key) {
  if (node == nullptr) return node;
  ...
  else if (key > node->key)
    node->right = trim(node->right, key);
    return node;
}
```

```
... // one right child case
  tree temp = node;
  node = node->right;
  delete temp;
  return node;
```

• Example: Case 3: Two children

1. find the node 1 to delete

• **Example:** Case 3: Two children

- 1. find the node 1 to delete
- 2. if (two children case),
 find 1's successor's key = 2

• **Example:** Case 3: Two children

- 1. find the node 1 to delete
- 2. if (two children case),
 find 1's successor's key = 2
- 3. replace 1 with 2

• **Example:** Case 3: Two children

- 1. find the node 1 to delete
- 2. if (two children case),
 find 1's successor's key = 2
- 3. replace 1 with 2
- 4. invoke
- node->right = trim(node->right, 2)

Example: Case 3: Two children

- 1. find the node 1 to delete
- 2. if (two children case),
 find 1's successor's key = 2
- 3. replace 1 with 2
- 4. invoke
 node->right = trim(node->right, 2)

Some thoughts:

- Step 2 Get the heights of two subtree first.
 - If right subtree height is larger, then use the successor.

 Otherwise use the predecessor to shorten the tree height.
- Step 4 simply uses the code for one-child case deletion.

Example: Case 3: Two children

- 1. find the node 1 to delete
- 2. if (two children case),
 find 1's successor's key = 2
- 3. replace 1 with 2
- 4. invoke
 node->right = trim(node->right, 2)

Some thoughts:

- Step 2 Get the heights of two subtree first.
 - If right subtree height is larger, then use the successor.
 Otherwise use the predecessor to shorten the tree height.
- Step 4 simply uses the code for one-child case deletion.

Some questions:

- What if successor has two children?
 - Not possible!
 - Because if it has two nodes, at least one of them is less than it, then in the process of finding successor, we won't pick it!

Binary search trees

More Operations:

- Query search, minimum, maximum, successor, predecessor
- Minimum, maximum
 - For min, we simply follow the left pointer until we find a nullptr node.
 Time complexity: O(h)
- Search operation takes time O(h), where h is the height of a BST.

Data Structures Chapter 5 Tree

- 1. Introduction
- 2. Binary Tree
- 3. Binary Search Tree
 - Introduction
 - Operations
 - Demo & Coding
- 4. Balancing Tree