Sentiments in Twitter

The problem

Company

Twitter is one of the popular micro-blogging platforms that provide data for a wide range of users.

Context

Tweets come from a variety of sources (consumers, companies, public officials etc). Consumers use Twitter to connect to their brand. Likewise, their sentiments are an invaluable asset to the company.

Problem statement

"How can a company use Twitter sentiments to predict consumer spending patterns?"

Problem Identification & Approach

Goal: Identify the positive and negative sentiments in making a purchasing decision.

Approach

- Read the Twitter Data
- 2. Data Exploration
- 3. Data Cleaning and Preprocessing
- 4. Exploratory Analysis and Visualization
- 5. Feature Extraction
- 6. Model Building and Evaluation

Twitter Dataset

	sentiment	user_id	date	query	user	tweet
0	0	1467810369	Mon Apr 06 22:19:45 PDT 2009	NO_QUERY	_TheSpecialOne_	@switchfoot http://twitpic.com/2y1zl - Awww, t
1	0	1467810672	Mon Apr 06 22:19:49 PDT 2009	NO_QUERY	scotthamilton	is upset that he can't update his Facebook by \dots
2	0	1467810917	Mon Apr 06 22:19:53 PDT 2009	NO_QUERY	mattycus	@Kenichan I dived many times for the ball. Man
3	0	1467811184	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	ElleCTF	my whole body feels itchy and like its on fire
4	0	1467811193	Mon Apr 06 22:19:57 PDT 2009	NO_QUERY	Karoli	@nationwideclass no, it's not behaving at all
5	0	1467811372	Mon Apr 06 22:20:00 PDT 2009	NO_QUERY	joy_wolf	@Kwesidei not the whole crew
6	0	1467811592	Mon Apr 06 22:20:03 PDT 2009	NO_QUERY	mybirch	Need a hug
7	0	1467811594	Mon Apr 06 22:20:03 PDT 2009	NO_QUERY	coZZ	@LOLTrish hey long time no see! Yes Rains a
8	0	1467811795	Mon Apr 06 22:20:05 PDT 2009	NO_QUERY	2Hood4Hollywood	@Tatiana_K nope they didn't have it
9	0	1467812025	Mon Apr 06 22:20:09 PDT 2009	NO_QUERY	mimismo	@twittera que me muera?

Univariate Analysis

Data Preprocessing and Cleaning

The raw Twitter text include people's casual opinions in the form of informal language which add noise to our data.

Steps to Preprocess:

- 1. Drop Columns 'user_id', 'date', 'query', 'user'
- 2. Convert tweet to lower case
- 3. Remove punctuation, numbers, and irrelevant characters
- 4. Eliminate extra white space
- 5. Tokenization
- 6. Remove Stop words
- 7. Lemmatization
- 8. Stemming

Twitter Sentiments

Train-Test Split

Identify the Variables

- Y = target variable = sentiment
- X = features = tweets

Data is distributed into two sets on a 75:25 ratio

- Training set
- Testing set

```
Splitting train and test dataset into 75:25
Train data distribution:
1    150219
0    149781
Name: sentiment, dtype: int64
Test data distribution:
0    50219
1    49781
Name: sentiment, dtype: int64
Split complete
```

Feature Extraction

I used the following methods to extract words from our clean dataset:

TF-IDF Features (Term Frequency- Inverse Document Frequency):

To identify and extract the most important words

Bag-of-Words Features:

Words are extracted and converted into the binary form

Model Evaluation

	Random Forest	Logistic Regression	Naive Bayes	Gradient Boosting
Accuracy	98.983%	98.744%	90.273%	86.737%
F1 Score	0.99	0.99	0.91	0.88

Best Model

The best classifier in predicting the Twitter Sentiment is the Random Forest Classifier

- Predictive performance: Higher accuracy scores on the Training and Testing data (98%)
- Captures both positive and negative words and predicts the outcome of the future Twitter Sentiment
 - Reliable feature importance

estimate

Training Random Forest Classifier Predicting the train data Training accuracy: 98.966% Predicting the test data Testing accuracy: 98.983% Confusion Matrix: [[49202 1017]

0 49781]] Classification Report precision recall f1-score

> 1.00 0.98

0.98

1.00

0.99

0.99

Conclusion

My goal was to detect the positive and negative sentiments from the Twitter data to help the company predict their consumer spending patterns.

- Preprocessed data using NLP techniques
- Extracted features using two methods
- Built several models to predict performance
- Evaluated models using 2-3 metrics
- Best model: Random Forest
 Classifier

Future Work

- Increase the sample size and analyze the impact of model performance
- Use advanced Natural Language Processing techniques to classify the text
- Build more models and evaluate against different performance metrics
- Tune the hyperparameters through cross validation