Durante la clase discutimos un ejemplo del teorema de transformación en el que $X \sim N\left(\mu, \sigma^2\right)$ y $Y = h\left(X\right) = \exp\left(X\right)$. Recordemos que la función de densidad de una variable aleatoria que siga una distribución normal con parámetros μ y σ^2 está dada por

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$$

1. En el ejemplo que discutimos en clase encontramos $F_{Y}\left(y\right)$. Usando la regla de Leibniz, muestre que

$$f_Y(y) = \frac{1}{y} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \left(\frac{\ln y - \mu}{\sigma}\right)^2\right)$$

- 2. Sea $Z=h\left(X\right)=\frac{X-\mu}{\sigma}$ donde $X\sim N\left(\mu,\sigma^2\right)$. Usando los resultados del teorema de transformación, encuentre $F_{Z}\left(z\right)$ y $f_{Z}\left(z\right)$.
- 3. Sea W=h(X)=|X| donde $X\sim N\left(\mu,\sigma^2\right)$. Usando la lógica que discutimos en clase, encuentre $F_W\left(w\right)$ y $f_W\left(w\right)$. Notas: (1) en este caso la función $h\left(x\right)$ NO es monótona; (2) Note que para una variable aleatoria X se tiene que $P\left(|X|\leq x\right)=P\left(-x\leq X\leq x\right)$; (3) Para hallar f_W , puede ser una buena idea usar la regla de Leibniz.