

UNIVERSITY of LIMERICK

OLLSCOIL LUIMNIGH

COLLEGE of INFORMATICS and ELECTRONICS

Department of Computer Science and Information Systems

End-of-Semester Assessment Paper

Academic Year: 2007/08 Semester: **Spring** Module Title: P.L.T. Module Code: CS4158 Duration of Exam: Percent of Total Marks: 2½ Hours **65** Lecturer(s): Jim Buckley Paper marked out of: **65**

Instructions to Candidates:

- Answer question 1.
- Answer 2 of the remaining 3 questions.
- Question 1 carries 25 marks.
- All other questions carry 20 marks.
- Your first 3 attempts will be marked unless you explicitly state otherwise.

Q1. a) Form a 'LEX' regular expression that identifies a token that starts with 1, 2 or 3 'a's, and is then made up of a sequence of any characters (numbers letters, punctuation) apart from the letter 'a'. The final character in the token must be a 't'. For example aac80505^& \\$\$rt, at, and aaa&*^rd\$5t are valid, while aaaacjir*^86t aa^%rat and aa&*gtrf are invalid.

5 Marks

b) Draw both a deterministic FSA and a transducer for the regular expression constructed in part 'a' above, and from it, create a transition table.

5 Marks

c) Describe why it is inappropriate to use an ambiguous grammar in a compiler.

5 Marks

d) Classify the following 2 grammars as either Context Free Grammars, Context Sensitive Grammars, Unrestricted Grammars or Regular Grammars (Explaining your reasons)

Grammar I	Grammar 2
$E \rightarrow aB$	$E \rightarrow gH$
$B \rightarrow dH$	$H \rightarrow RT$
H -> cGd	$rR \rightarrow k$
G -> ad	T -> p
$G \rightarrow \lambda$	

5 Marks

e) Give 4 sentential forms of the grammar in question 4(a)

5 Marks

Q2. a) Describe the structural issue addressed by the mathematical conventions of associatively and priority

4 Marks

b) Write a CF grammar that embeds the relative priority of the operators '+', '-', '*' and '/' in its structure, demonstrating its correctness by drawing the parse tree for 7+6*5+4*3

10 Marks

c) Write a CF grammar that embeds the associativity of the '^' (to the power of) operator in its structure, demonstrating its correctness by drawing the parse tree for 7^5^3

6 Marks

Q3.	a)	Transform the following into an LL(1) grammar, explaining the transformation:
		$S \rightarrow PQ$ \$ $P \rightarrow Pt$ $P \rightarrow y$ $P \rightarrow f$ $Q \rightarrow Xr$ $Q \rightarrow j$ $Q \rightarrow \lambda$ $X \rightarrow hyg$ $X \rightarrow \lambda$
		7.5 Mark
	b)	Using the resultant LL(1) grammar, calculate the predict set for each production.
		9.5 Mark
	c)	Use this predict set to form a LL(1) Parse table for the grammar.
		3 Mark
	a)	Build the LR(1) FSA for the grammar, and use it to illustrate how the LR(0) equivalent would be unsuitable
		S->R \$ R->R / Q R->Q Q->Q - z
		Q-> e 12 Mark
	b)	Discuss the problem associated with LR(1) parsing of real programming language and identify 2 possible solutions.
		2 Mark
c)	c)	For one of these solutions, discuss how it addresses this problem and how it loses precision somewhat in doing so.
		6 Mark