

Άλγεβρα Boole: επανάληψη

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- (A OR B)
- A + B
- (ή απλά ΑΒ, Α ΑΝΟ Β) **A** • B
- \overline{A} (NOT A)
 - A + 0 = A $\kappa \alpha \iota$ $A \cdot 1 = A$
 - A + 1 = 1 $\kappa \alpha \iota$ $A \cdot 0 = 0$
 - $A + \overline{A} = 1$ $\kappa \alpha \iota A \cdot \overline{A} = 0$
 - A + B = B + A kal $A \bullet B = B \bullet A$

7

- A+(B+C)=(A+B)+C και
- A(BC)=(AB)C

Αρχιτεκτονική Υπολογιστών - "Ψηφιακή Λογική και Σχεδίαση"

Ψηφιακά Ηλεκτρονικά και Δυαδική λογική

- Ηλεκτρονικά κυκλώματα
- Η δυαδική λογική ταιριάζει με την τεχνολογία του τρανζίστορ
 - 2 καταστάσεις: ON-OFF, 1-0
 - Ψηφιακά ηλεκτρονικά (2 στάθμες)
- Δυαδική άλγεβρα Boole
 - Λογική άλγεβρα
 - Συσγέτιση με διακοπτικά κυκλώματα
 - Η εργασία του Shannon (1938)

Αρχιτεκτονική Υπολογιστών - "Ψηφιακή Λογική και Σχεδίαση"

Άλγεβρα Boole: επανάληψη

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- $A(B+C) = (AB)+(AC) \kappa \alpha \iota$
- A+(BC) = (A+B)(A+C)
- $\overline{(A+B)} = \overline{A} \cdot \overline{B} \kappa \alpha \iota$
- $(\overline{A \cdot B}) = \overline{A} + \overline{B}$ (DeMorgan)

Αρχιτεκτονική Υπολογιστών - "Ψηφιακή Λογική και Σχεδίαση"

Άλλες λογικές πύλες • Ηλεκτρονικά κυκλώματα Άλγεβρα Boole • Λογικές Πύλες AND OR XOR Ως συνδυασμός των βασικών πυλών NOT, NAND, NOR Υπάρχουν και εναλλακτικές μέθοδοι σχεδίασης! 13 Αρχιτεκτονική Υπολογιστών - "Ψηφιακή Λογική και Σχεδίαση"

Υλοποίηση συναρτήσεων

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες
- Συνδυαστική Λογική

١	
٠	

Πάντοτε προσπαθούμε να απλοποιήσουμε τις συναρτήσεις (πίνακες Karnaugh ή άλλες υπολογιστικές μέθοδοι)

A	В	C	Y	Ελαχιστόροι	Μεγιστόροι
0	0	0	1	a'b'c'	a+b+c
0	0	1	0	a'b'c	a+b+c'
0	1	0	0	a'bc'	a+b'+c
0	1	1	1	a'bc	a+b'+c'
1	0	0	0	ab'c'	a'+b+c
1	0	1	0	ab'c	a'+b+c'
1	1	0	1	abc'	a'+b'+c
1	1	1	1	abc	a'+b'+c'

- Y = a'b'c' + a'bc + abc' + abc
- Y = (a+b+c')(a+b'+c)(a'+b+c)(a'+b+c')

Αρχιτεκτονική Υπολογιστών - "Ψηφιακή Λογική και Σχεδίαση"

15

Συνδυαστική Λογική

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες
- Συνδυαστική Λογική

- Μπλοκ λογικών συναρτήσεων
 - Οι έξοδοι εξαρτώνται αποκλειστικά από την τρέχουσα τιμή των εισόδων
 - Δεν υπάρχει μνήμη προηγούμενων καταστάσεων
 - Αλλαγή των εισόδων θα επηρεάσει τις εξόδους μετά από χρονικό διάστημα (καθυστέρηση διάδοσης)
 - Η συνάρτηση που υλοποιεί το μπλοκ μπορεί να εκφραστεί με έναν πίνακα αλήθειας

Αρχιτεκτονική Υπολογιστών - "Ψηφιακή Λογική και Σχεδίαση"

14

Βασικά συνδυαστικά τμήματα

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole
- Λογικές Πύλες • Συνδυαστική
- Λογική • Βασικά Συνδυαστικά Τμήματα
- Αποκωδικοποιητής (decoder)
- Ν είσοδοι ενεργοποιούν 1 από 2^N εξόδους
- Πολυπλέκτης (multiplexer)
 - Ν είσοδοι επιλέγουν 1 από 2^N εισόδους
- Αθροιστής (adder)
 - Αριθμητική πρόσθεση δυαδικών ψηφίων

Αρχιτεκτονική Υπολογιστών - "Ψηφιακή Λογική και Σχεδίαση"

16

Πέρα από τη συνδυαστική λογική...

- Ηλεκτρονικά κυκλώματα
- Άλγεβρα Boole Λογικές Πύλες Συνδυαστική
- Λογική
- Βασικά Συνδυαστικά Τμήματα
- Στο επόμενο μάθημα...
 - Πώς εισάγω την έννοια της κατάστασης ενός λογικού τμήματος;
- Που φυλάσσεται η κατάσταση;
- Πότε ενημερώνεται;
- Πώς συγχρονίζονται τα διάφορα τμήματα λογικής;

Αρχιτεκτονική Υπολογιστών – "Ψηφιακή Λογική και Σχεδίαση"

21

