6. Топология числовой прямой. Компактность. Лемма Гейне-Бореля

1. Топология числовой прямой

1.1. Основные определения

Окрестность точки: Множество $U\subset\mathbb{R}$ называется окрестностью точки $x_0\in\mathbb{R}$, если существует $\varepsilon>0$ такое, что $(x_0-\varepsilon,x_0+\varepsilon)\subset U$

Внутренняя точка: Точка x_0 называется внутренней точкой множества $A \subset \mathbb{R}$, если существует окрестность U точки x_0 , целиком содержащаяся в A.

Предельная точка: Точка x_0 называется предельной точкой множества $A \subset \mathbb{R}$, если в любой её окрестности содержится хотя бы одна точка из A, отличная от x_0 .

Изолированная точка: Точка $x_0 \in A$, не являющаяся предельной точкой A.

1.2. Открытые и замкнутые множества

Открытое множество: Множество, все точки которого внутренние.

Замкнутое множество: Множество, содержащее все свои предельные точки.

Замыкание множества: Замыканием \overline{A} множества A называется объединение A и множества всех его предельных точек.

2. Компактность

2.1. Определение компактности

Множество $K \subset \mathbb{R}$ называется **компактным**, если из любого его открытого покрытия можно выбрать конечное подпокрытие.

Открытое покрытие: Семейство открытых множеств $\{U_{\alpha}\}$ такое, что $K \subset \bigcup_{\alpha} U_{\alpha}$.

2.2. Критерий компактности в $\mathbb R$

Теорема: Множество $K \subset \mathbb{R}$ компактно тогда и только тогда, когда оно ограничено и замкнуто.

Доказательство необходимости (⇒):

Формальное доказательство необходимости:

- 1. **Ограниченность:** Предположим, что K не ограничено. Тогда для любого $n \in \mathbb{N}$ существует $x_n \in K$ такой, что $|x_n| > n$. Рассмотрим покрытие $U_n = (-n, n)$. Это открытое покрытие K, но из него нельзя выбрать конечное подпокрытие, так как K не ограничено. Противоречие с компактностью.
- 2. **Замкнутость:** Пусть x_0 предельная точка K. Предположим, что $x_0 \notin K$. Рассмотрим открытые множества $U_n = \left(-\infty, x_0 \frac{1}{n}\right) \cup \left(x_0 + \frac{1}{n}, +\infty\right)$. Они покрывают K, но нельзя выбрать конечное подпокрытие, так как в любой окрестности x_0 есть точки из K. Противоречие.

Доказательство достаточности (⇐) — лемма Гейне-Бореля:

3. Лемма Гейне-Бореля

Теорема (Гейне-Бореля): Всякое ограниченное замкнутое множество в ℝ компактно.

Доказательство:

Формальное доказательство:

- 1. Пусть $K \subset [a,b]$ замкнутое множество, и пусть $\{U_{\alpha}\}$ его открытое покрытие.
- 2. Предположим противное: K не компактно, то есть нельзя выбрать конечное подпокрытие.
- 3. Разделим отрезок [a,b] пополам. Хотя бы одна из половин содержит часть K, которая не покрывается конечным числом U_{α} . Выберем эту половину.
- 4. Продолжим процесс деления пополам. Получим систему вложенных отрезков $[a_n,b_n]$ с длиной $b_n-a_n o 0$, каждый из которых содержит точки K, не покрываемые конечным числом U_{α} .
- 5. По принципу вложенных отрезков существует точка $c \in \bigcap [a_n,b_n]$. Так как K замкнуто, то $c \in K$.
- 6. Точка c покрывается некоторым U_{α_0} . Так как U_{α_0} открыто, существует $\varepsilon>0$ такое, что $(c-\varepsilon,c+\varepsilon)\subset U_{\alpha_0}$.
- 7. При достаточно больших n будет $[a_n,b_n]\subset (c-\varepsilon,c+\varepsilon)\subset U_{\alpha_0}$. Но это противоречит тому, что отрезок $[a_n,b_n]$ не покрывается конечным числом U_{α} .

4. Связь с теоремой Больцано-Вейерштрасса

Теорема: Множество $K \subset \mathbb{R}$ компактно тогда и только тогда, когда любая последовательность точек из K имеет подпоследовательность, сходящуюся к точке из K.

Доказательство:

Формальное доказательство:

• **Необходимость** (\Rightarrow): Пусть K компактно (значит, ограничено и замкнуто). Возьмем любую последовательность $\{x_n\} \subset K$. Так как K ограничено, по теореме Больцано-Вейерштрасса существует сходящаяся подпоследовательность $x_{n_k} \to x_0$. Так как K замкнуто, то $x_0 \in K$.

• Достаточность (\Leftarrow): Если K не ограничено, то существует последовательность $x_n \in K$ такая, что $|x_n| \to \infty$, и никакая подпоследовательность не сходится к конечному пределу. Если K не замкнуто, то существует предельная точка $x_0 \notin K$ и последовательность $x_n \in K$, сходящаяся к x_0 . Любая подпоследовательность сходится к $x_0 \notin K$. Противоречие.

6. Вопросы для самопроверки

- 1. Дайте определение открытого и замкнутого множества. Приведите пример множества, которое не является ни открытым, ни замкнутым.
- 2. Что такое предельная точка множества? Докажите, что замыкание множества является наименьшим замкнутым множеством, его содержащим.
- 3. Сформулируйте и докажите критерий компактности в ℝ.
- 4. Докажите лемму Гейне-Бореля методом деления отрезка пополам.
- 5. Как связаны компактность и теорема Больцано-Вейерштрасса? Докажите эквивалентность этих свойств.
- 6. Приведите пример покрытия отрезка [0,1] открытыми интервалами, из которого нельзя выбрать конечное подпокрытие. Почему это невозможно?
- 7. Верно ли, что объединение любого семейства компактных множеств компактно? А пересечение?