CCPS 844 Data Mining (Lab 8) Submit your solution as a pdf file

- · Q-1 Select a dataset/datasets of your choice. Apply/Fit MLP Classification Evaluate the results
- Q-2 Select a multi-label dataset/datasets of your choice. Apply/Fit MLP Classification Call the predict function to get a multi label value for your test data

```
In [2]: import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
   from sklearn import metrics
   from sklearn.preprocessing import StandardScaler
   from sklearn.metrics import confusion_matrix
   from sklearn.model_selection import train_test_split

pd.set_option('display.max_columns', 100)
```

```
In [3]: from sklearn.neural_network import MLPClassifier
```

```
In [4]: df = pd.read_csv('winequality-red.csv')
df['overfive'] = (df.quality > 5).astype(int)
```

In [5]: df.sample(5)

383

9.4

>> [6]

Out[5]:

	fixed acidity	volatile acidity		residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
915	8.6	0.315	0.40	2.2	0.079	3.0	6.0	0.99512	3.27	0.67	11.9
1195	6.2	0.430	0.22	1.8	0.078	21.0	56.0	0.99633	3.52	0.60	9.5
1230	7.7	0.180	0.34	2.7	0.066	15.0	58.0	0.99470	3.37	0.78	11.8
149	8.2	0.400	0.44	2.8	0.089	11.0	43.0	0.99750	3.53	0.61	10.5
360	8.2	0.700	0.23	2.0	0.099	14.0	81.0	0.99730	3.19	0.70	9.4

```
In [70]: # dropping citric acid appears to increase MLP accuracy
X=df.iloc[:,0:11].drop(columns=['citric acid'])
#y=df.iloc[:,-2]
y=df.quality
```

```
In [71]: sam = X.sample()
print(sam, " >> ", y[sam.index].values)
```

fixed acidity volatile acidity residual sugar chlorides \

```
383 8.3 0.26 2.0 0.08

free sulfur dioxide total sulfur dioxide density pH sulphates \
383 11.0 27.0 0.9974 3.21 0.8

alcohol
```

```
In [94]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_s
tate = 0)

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

clf = MLPClassifier(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(50,6,), random_st
ate=1)
clf.fit(X_train,y_train)

y_pred = clf.predict(X_test)
print("MLP accuracy: ",clf.score(X_test,y_test))
```

MLP accuracy: 0.655