# Lab 9-10 – Nanoprocessor Design Competition CS1050 Computer Organization and Digital Design

## Group 14:

- 210001R AATHIF M.N.M
- 210290A KHAN M.I

## Lab Task:

- Design a simple nano processor capable of executing the following assembly instructions.
- 1. ADD (Addition)
- 2. MOV (Move)
- 3. NEG (Negation) 2's complement
- 4. JZR (Jump) Jump to an instruction if condition is met.
- Build the nano processor using the following components.
- 1. 4-bit Add/Subtract unit
- 2. 3-bit adder
- 3. 3-bit Program Counter (PC)
- 4. k-way b-bit multiplexers
- 5. Register Bank
- 6. Program ROM

- 7. Buses
- 8. Instruction Decoder
- Write an assembly program to calculate the total between 1 to 3.
- Simulate addition of 1,2 and 3 and load it to R7(8th register).
- Test on BASYS 3 and verify the functionality of the nano processor.
- Demonstrate the circuit to the instructor

# **Assembly Program and Machine code representation:**

| ASSEMBLY CODE | MACHINE CODE REPRESENTATION |
|---------------|-----------------------------|
| MOV 0,R7      | 101110000000                |
| MOV 1,R1      | 100010000001                |
| MOV 2,R2      | 10010000010                 |
| MOV 3,R3      | 100110000011                |
| ADD R7,R1     | 001110010000                |
| ADD R7,R2     | 001110100000                |
| ADD R7,R3     | 001110110000                |
| JZR RO,7      | 11000000111                 |

## **ALL VHDL FILES AND TIMING DIAGRMS:**

## ❖ Slow Clock

## 1. Design Source code

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Slow_Clk is
  Port ( Clk_in : in STD_LOGIC;
      Clk_out : out STD_LOGIC);
end Slow_Clk;
architecture Behavioral of Slow_Clk is
signal count: integer := 1;
signal clk_status: STD_LOGIC := '1';
begin
  process(Clk_in) begin
```

```
if (rising_edge(Clk_in)) then
      count <= count +1;
      --if (count = 50000000) then -- for practical purposes
      if (count = 1) then --only for the simulation purposes
         clk_status <= NOT(clk_status);</pre>
         Clk_out <= clk_status;
         count <= 1;
      end if;
    end if;
  end process;
end Behavioral;
    2. Simulation code
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Slow_Clk_Sim is
```

```
-- Port ();
end Slow_Clk_Sim;
architecture Behavioral of Slow_Clk_Sim is
-- Component Declaration for DUT
  component Slow_Clk is
    Port (
      Clk_in: in STD_LOGIC;
      Clk_out : out STD_LOGIC
       );
end component;
signal Clk_in : STD_LOGIC := '0';
signal Clk_out : STD_LOGIC;
begin
uut: Slow_Clk port map (
  Clk_in => Clk_in,
  Clk_out => Clk_out
 );
process begin
wait for 50ns;
Clk_in <= NOT(Clk_in);
end process;
end Behavioral;
```



## ❖ 3-bit adder

#### 1. Souce code

library IEEE;
use IEEE.STD\_LOGIC\_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC\_STD.ALL;

- -- Uncomment the following library declaration if instantiating
- -- any Xilinx leaf cells in this code.
- --library UNISIM;

```
--use UNISIM.VComponents.all;
entity Adder_3 is
  Port ( A : in STD_LOGIC_VECTOR (2 downto 0);
   B: in STD_LOGIC_VECTOR (2 downto 0);
   S: out STD_LOGIC_VECTOR (2 downto 0);
   Carry_in: in STD_LOGIC;
   Carry_out : out STD_LOGIC);
end Adder_3;
architecture Behavioral of Adder_3 is
  component FA
  Port ( A : in STD_LOGIC;
     B: in STD_LOGIC;
     C_in : in STD_LOGIC;
     S: out STD_LOGIC;
     C_out : out STD_LOGIC);
end component;
signal FA0_C,FA1_C: STD_LOGIC;
begin
FA_0:FA
  port map(
    A => A(0),
    B => B(0),
    C_in => Carry_in,
    S => S(0),
    C_out => FAO_C
 );
FA_1:FA
  port map(
    A => A(1),
```

```
B => B(1),
    C_in => FA0_C,
    S => S(1),
    C_out => FA1_C
  );
FA_2:FA
  port map(
    A => A(2),
    B => B(2),
    C_in => FA1_C,
    S => S(2),
    C_out => Carry_out
  );
end Behavioral;
    2. Simulation code
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Adder_3_sim is
```

```
-- Port ();
end Adder_3_sim;
architecture Behavioral of Adder_3_sim is
component Adder_3
  Port ( A: in STD_LOGIC_VECTOR (2 downto 0);
     B: in STD_LOGIC_VECTOR (2 downto 0);
     S: out STD_LOGIC_VECTOR (2 downto 0);
     Carry_in : in STD_LOGIC;
     Carry_out : out STD_LOGIC);
end component;
signal A : STD_LOGIC_VECTOR(2 downto 0);
signal B: STD_LOGIC_VECTOR (2 downto 0);
signal S : STD_LOGIC_VECTOR (2 downto 0);
signal Carry_in : STD_LOGIC;
signal Carry_out : STD_LOGIC;
begin
UUT: Adder_3
  port map(
    A => A,
    B =>B,
    S => S,
    Carry_in => Carry_in,
    Carry_out => Carry_out
    );
```

```
process
begin
        --110 011 010 001 010 001 ; 210001R
        --110 011 010 101 110 010 ; 210290A
 Carry_in <= '0';
 A <= "001"; --1
 B <= "010"; --2
wait for 100ns;
 A <= "010"; --2
 B <= "011"; --3
wait for 100ns;
 A <= "110"; --6
 B <= "101"; --5
wait for 100ns;
end process;
end Behavioral;
```



# ❖ 4-bit Adder Subtractor unit

#### 1. Source code

library IEEE;

use IEEE.STD\_LOGIC\_1164.ALL;

- -- Uncomment the following library declaration if using
- -- arithmetic functions with Signed or Unsigned values
- --use IEEE.NUMERIC\_STD.ALL;
- -- Uncomment the following library declaration if instantiating
- -- any Xilinx leaf cells in this code.
- --library UNISIM;
- --use UNISIM.VComponents.all;

```
entity ASUnit_4 is
  Port ( A : in STD_LOGIC_VECTOR(3 downto 0);
      B: in STD_LOGIC_VECTOR(3 downto 0);
     C: in STD_LOGIC;
     S: out STD_LOGIC_VECTOR(3 downto 0);
      Overflow,Zero : out STD_LOGIC);
      --C_out : out STD_LOGIC);
end ASUnit_4;
architecture Behavioral of ASUnit_4 is
  component FA
    port (
     A: in std_logic;
     B: in std_logic;
     C_in: in std_logic;
     S: out std_logic;
     C_out: out std_logic);
  end component;
  SIGNAL FA0_S, FA0_C, FA1_S, FA1_C, FA2_S, FA2_C, FA3_S, FA3_C, X0, X1, X2, X3: std_logic;
begin
  X0 <= B(0) XOR C;
  X1 <= B(1) XOR C;
  X2 \le B(2) XOR C;
```

```
X3 <= B(3) XOR C;
FA_0 : FA
 port map (
  A => A(0),
  B => X0,
  C_in => C,
  S => FA0_S,
  C_Out => FA0_C);
FA_1:FA
  port map (
  A => A(1),
  B => X1,
  C_in => FA0_C,
  S => FA1_S,
  C_Out => FA1_C);
FA_2 : FA
  port map (
  A => A(2),
  B => X2,
  C_in => FA1_C,
  S => FA2_S,
  C_Out => FA2_C);
FA_3 : FA
  port map (
  A => A(3),
  B => X3,
  C_in => FA2_C,
```

```
S \Rightarrow FA3_S,
     C_out => FA3_C);
  S(0) \leq FA0_S;
  S(1) \leftarrow FA1_S;
  S(2) \leftarrow FA2_S;
  S(3) <= FA3_S;
  --C_out <= FA3_C;
   Overflow <= FA3_C XOR FA2_C;
  Zero <= NOT(FA0_S OR FA1_S OR FA2_S OR FA3_S);</pre>
end Behavioral;
    2. Simulation code
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity ASUnit_4_sim is
-- Port ();
```

```
end ASUnit_4_sim;
architecture Behavioral of ASUnit_4_sim is
component ASUnit_4 is
  Port ( A : in STD_LOGIC_VECTOR(3 downto 0);
     B: in STD_LOGIC_VECTOR(3 downto 0);
     C: in STD_LOGIC;
     S: out STD_LOGIC_VECTOR(3 downto 0);
     Overflow,Zero: out STD_LOGIC);
end component;
signal A: STD_LOGIC_VECTOR (3 downto 0);
signal B: STD_LOGIC_VECTOR (3 downto 0);
signal C : STD_LOGIC;
signal Overflow,Zero: STD_LOGIC;
signal S: STD_LOGIC_VECTOR (3 downto 0);
begin
UUT: ASUnit_4
port map(
 A \Rightarrow A,
  B => B,
  C => C,
  --C_out => C_out,
  Overflow => Overflow,
  Zero => Zero,
```

```
S => S
);
process
begin
        --11 0011 0100 0101 0001 ; 210001R
        --11 0011 0101 0111 0010 ; 210290A
A <= "0011"; -- 3 - 3
B <= "0011";
C <= '1';
wait for 100ns;
A <= "0100"; -- 4 + 5
B <= "0101";
C <= '0';
wait for 100ns;
A <= "0101"; -- 5 - 7
B <= "0101";
C <= '1';
wait for 100ns;
A <= "0001"; -- 1 + 2
B <= "0010";
C <= '0';
```

| wait for 100ns; |  |  |
|-----------------|--|--|
| end process;    |  |  |
| end Behavioral; |  |  |



## ❖ 3-bit Program Counter

#### 1. Source code

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity PC_3bit is
Port ( D : in STD_LOGIC_VECTOR (2 downto 0);
    Clk: in STD_LOGIC;
    Clr: in STD_LOGIC;
    Q : out STD_LOGIC_VECTOR (2 downto 0));
end PC_3bit;
architecture Behavioral of PC_3bit is
  component D_FF
    Port ( D: in STD_LOGIC;
        Res: in STD_LOGIC;
        Clk: in STD_LOGIC;
```

```
Q : out STD_LOGIC;
        Qbar : out STD_LOGIC
        );
end component;
begin
D_FF_0:D_FF
 port map(
    D=>D(0),
    Q = > Q(0),
    Res=>clr,
    Clk=>Clk
 );
D_FF_1:D_FF
  port map(
    D=>D(1),
   Q=>Q(1),
    Res=>clr,
    Clk=>Clk
 );
D_FF_2:D_FF
  port map(
    D=>D(2),
    Q=>Q(2),
    Res=>clr,
    Clk=>Clk
 );
```

end Behavioral;

#### 2. Simulation code

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity PC_3bit_sim is
-- Port ();
end PC_3bit_sim;
architecture Behavioral of PC_3bit_sim is
component PC_3bit
Port ( D : in STD_LOGIC_VECTOR (2 downto 0);
Clk: in STD_LOGIC;
Clr: in STD_LOGIC;
Q: out STD_LOGIC_VECTOR (2 downto 0));
end component;
signal Clk : STD_LOGIC :='0';
signal Clr : STD_LOGIC;
```

```
signal D,Q : STD_LOGIC_VECTOR(2 downto 0);
begin
\mathsf{UUT}:\mathsf{PC}\_\mathsf{3bit}
PORT MAP(
  D => D,
  Clk => Clk,
  Clr => Clr,
  Q => Q
  );
process
begin
wait for 5ns;
Clk <= not (Clk);
end process;
process
begin
         --110 011 010 001 010 001 ; 210001R
         --110 011 010 101 110 010 ; 210290A
Clr <= '1';
wait for 100ns;
D <= "001";
Clr <= '0';
```

wait for 100ns;

D <= "010";
wait for 100ns;

D <= "110";
wait for 100ns;

D <= "101";
wait for 100ns;

D <= "011";
wait for 100ns;

end process;</pre>

## 3. Timing Diagram



## 2-way 3-bit multiplexer

#### 1. Source Code

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Mux_2_to_1_3bit is
  Port (
    R0: in STD_LOGIC_VECTOR(2 downto 0);
    R1: in STD_LOGIC_VECTOR(2 downto 0);
    Sel: in STD_LOGIC;
    Y: out STD_LOGIC_VECTOR (2 downto 0));
  end Mux_2_to_1_3bit;
architecture Behavioral of Mux_2_to_1_3bit is
  begin
  Y \le R0 when Sel = '0' else R1;
```

end Behavioral;

#### 2. Simulation code

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Mux_2_to_1_3bit_sim is
-- Port ();
end Mux_2_to_1_3bit_sim;
architecture Behavioral of Mux_2_to_1_3bit_sim is
component Mux_2_to_1_3bit is
  Port (
    R0 : in STD_LOGIC_VECTOR(2 downto 0);
    R1: in STD_LOGIC_VECTOR(2 downto 0);
    Sel: in STD_LOGIC;
    Y: out STD_LOGIC_VECTOR (2 downto 0));
```

```
end component;
        --110 011 010 001 010 001 ; 210001R
        --110 011 010 101 110 010 ; 210290A
signal Sel: STD_LOGIC;
signal R0 : STD_LOGIC_VECTOR(2 downto 0):= "001";
signal R1 : STD_LOGIC_VECTOR(2 downto 0):= "010";
signal Y : STD_LOGIC_VECTOR(2 downto 0);
begin
UUT:Mux_2_to_1_3bit
port map(
  Sel => Sel,
  R0 => R0,
  R1 => R1,
 Y => Y
 );
process begin
Sel <= '0';
wait for 100ns;
Sel <= '1';
wait for 100ns;
end process;
```

end Behavioral;

## 3. Timing Diagram



## 2-way 4-bit multiplexer

## 1. Source code

library IEEE;

use IEEE.STD\_LOGIC\_1164.ALL;

- -- Uncomment the following library declaration if using
- -- arithmetic functions with Signed or Unsigned values
- --use IEEE.NUMERIC\_STD.ALL;
- -- Uncomment the following library declaration if instantiating
- -- any Xilinx leaf cells in this code.

```
--library UNISIM;
--use UNISIM.VComponents.all;
entity Mux_2_to_1_4bit is
  Port ( Sel : in STD_LOGIC;
      R0: in STD_LOGIC_VECTOR (3 downto 0);
      R1: in STD_LOGIC_VECTOR (3 downto 0);
      Y: out STD_LOGIC_VECTOR (3 downto 0));
  end Mux_2_to_1_4bit;
architecture Behavioral of Mux_2_to_1_4bit is
begin
  Y <= R0 when Sel ='0' else R1;
end Behavioral;
    2. Simulation code
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
```

```
--library UNISIM;
--use UNISIM.VComponents.all;
entity Mux_2_to_1_4bit_sim is
-- Port ();
end Mux_2_to_1_4bit_sim;
architecture Behavioral of Mux_2_to_1_4bit_sim is
component Mux_2_to_1_4bit is
  Port (
    R0 : in STD_LOGIC_VECTOR(3 downto 0);
    R1: in STD_LOGIC_VECTOR(3 downto 0);
    Sel: in STD_LOGIC;
    Y: out STD_LOGIC_VECTOR (3 downto 0));
  end component;
        --11 0011 0100 0101 0001 ; 210001R
        --11 0011 0101 0111 0010 ; 210290A
signal Sel: STD_LOGIC;
signal R0: STD_LOGIC_VECTOR(3 downto 0):= "0001";
signal R1: STD_LOGIC_VECTOR(3 downto 0):= "0010";
signal Y : STD_LOGIC_VECTOR(3 downto 0);
begin
UUT:Mux_2_to_1_4bit
port map(
  Sel => Sel,
```

```
R0 => R0,
R1 => R1,
Y => Y
);

process begin

Sel <= '0';

wait for 100ns;

Sel <= '1';

wait for 100ns;

end process;
```



## ❖ 8-way 4-bit multiplexer

#### 1. Source code

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Mux_8_to_1_4bit is
Port (
    R0 : in STD_LOGIC_VECTOR(3 downto 0);
    R1: in STD_LOGIC_VECTOR(3 downto 0);
    R2: in STD_LOGIC_VECTOR(3 downto 0);
    R3: in STD_LOGIC_VECTOR(3 downto 0);
    R4 : in STD_LOGIC_VECTOR(3 downto 0);
    R5: in STD_LOGIC_VECTOR(3 downto 0);
    R6: in STD_LOGIC_VECTOR(3 downto 0);
    R7: in STD_LOGIC_VECTOR(3 downto 0);
    Sel: in STD_LOGIC_VECTOR (2 downto 0);
    Y: out STD_LOGIC_VECTOR (3 downto 0));
end Mux_8_to_1_4bit;
```

```
architecture Behavioral of Mux_8_to_1_4bit is
SIGNAL DY: STD_LOGIC_VECTOR(7 downto 0);
begin
  Y <= R0 when Sel="000" else
  R1 when Sel="001" else
  R2 when Sel="010" else
  R3 when Sel="011" else
  R4 when Sel="100" else
  R5 when Sel="101" else
  R6 when Sel="110" else
  R7 when Sel="111";
end Behavioral;
    2. Simulation code
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
```

```
--use UNISIM.VComponents.all;
entity Mux_8_to_1_4bit_sim is
-- Port ();
end Mux_8_to_1_4bit_sim;
architecture Behavioral of Mux_8_to_1_4bit_sim is
component Mux_8_to_1_4bit is
Port (
    R0 : in STD_LOGIC_VECTOR(3 downto 0);
    R1: in STD_LOGIC_VECTOR(3 downto 0);
    R2: in STD_LOGIC_VECTOR(3 downto 0);
    R3: in STD_LOGIC_VECTOR(3 downto 0);
    R4: in STD_LOGIC_VECTOR(3 downto 0);
    R5: in STD_LOGIC_VECTOR(3 downto 0);
    R6: in STD_LOGIC_VECTOR(3 downto 0);
    R7: in STD_LOGIC_VECTOR(3 downto 0);
    Sel: in STD_LOGIC_VECTOR (2 downto 0);
    Y: out STD_LOGIC_VECTOR (3 downto 0));
end component;
        --11 0011 0100 0101 0001 ; 210001R
        --11 0011 0101 0111 0010 ; 210290A
signal Sel: STD_LOGIC_VECTOR(2 downto 0);
signal R0: STD_LOGIC_VECTOR(3 downto 0):= "0001";
signal R1: STD_LOGIC_VECTOR(3 downto 0):= "0101";
signal R2: STD_LOGIC_VECTOR(3 downto 0):= "0100";
signal R3: STD_LOGIC_VECTOR(3 downto 0):= "0011";
```

```
signal R4: STD_LOGIC_VECTOR(3 downto 0):= "0010";
signal R5: STD_LOGIC_VECTOR(3 downto 0):= "0111";
signal R6: STD_LOGIC_VECTOR(3 downto 0):= "0101";
signal R7: STD_LOGIC_VECTOR(3 downto 0):= "0011";
signal Y : STD_LOGIC_VECTOR(3 downto 0);
begin
UUT: Mux_8_to_1_4bit
port map(
  Sel => Sel,
  R0 => R0,
  R1 => R1,
  R2 => R2,
  R3 => R3,
  R4 => R4,
  R5 => R5,
  R6 => R6,
  R7 => R7,
 Y => Y
 );
process begin
Sel <= "000";
wait for 100ns;
Sel <= "001";
wait for 100ns;
Sel <= "010";
```





# 4-bit Register

#### 1. Source code

library IEEE;

use IEEE.STD\_LOGIC\_1164.ALL;

- -- Uncomment the following library declaration if using
- -- arithmetic functions with Signed or Unsigned values
- --use IEEE.NUMERIC\_STD.ALL;
- -- Uncomment the following library declaration if instantiating
- -- any Xilinx leaf cells in this code.

```
--library UNISIM;
--use UNISIM.VComponents.all;
entity Reg_4bit is
Port ( D : in STD_LOGIC_VECTOR (3 downto 0);
    Clk: in STD_LOGIC;
    Reset : in STD_LOGIC;
    EN: in STD_LOGIC;
    Q: out STD_LOGIC_VECTOR (3 downto 0));
  end Reg_4bit;
architecture Behavioral of Reg_4bit is
begin
  process(Clk)
  begin
    if (rising_edge(Clk)) then
      if( Reset = '1') then
        Q <= "0000";
      elsif (EN = '1') then
        Q <= D;
      end if;
    end if;
end process;
end Behavioral;
```

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Reg_4bit is
Port ( D: in STD_LOGIC_VECTOR (3 downto 0);
    Clk: in STD_LOGIC;
    Reset: in STD_LOGIC;
    EN: in STD_LOGIC;
    Q: out STD_LOGIC_VECTOR (3 downto 0));
  end Reg_4bit;
architecture Behavioral of Reg_4bit is
begin
  process(Clk)
  begin
    if (rising_edge(Clk)) then
      if( Reset = '1') then
```

```
Q <= "0000";
elsif (EN = '1') then
Q <= D;
end if;
end if;
end process;
end Behavioral;</pre>
```



### Register Bank

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Reg_Bank is
  Port (EN: in STD_LOGIC;
     D: in STD_LOGIC_VECTOR (3 downto 0);
     Clk: in STD_LOGIC;
     Reset: in STD_LOGIC;
     Reg_En : in STD_LOGIC_VECTOR (2 downto 0);
     R0 : out STD_LOGIC_VECTOR (3 downto 0);
     R1 : out STD_LOGIC_VECTOR (3 downto 0);
     R2 : out STD_LOGIC_VECTOR (3 downto 0);
     R3 : out STD_LOGIC_VECTOR (3 downto 0);
     R4 : out STD_LOGIC_VECTOR (3 downto 0);
     R5 : out STD_LOGIC_VECTOR (3 downto 0);
     R6 : out STD_LOGIC_VECTOR (3 downto 0);
     R7: out STD_LOGIC_VECTOR (3 downto 0));
```

```
end Reg_Bank;
architecture Behavioral of Reg_Bank is
component Reg_4bit
  Port ( D: in STD_LOGIC_VECTOR (3 downto 0);
      Clk: in STD_LOGIC;
      Reset: in STD_LOGIC;
      EN: in STD_LOGIC;
      Q: out STD_LOGIC_VECTOR (3 downto 0));
  end component;
component Decoder_3_to_8
  Port (I: in STD_LOGIC_VECTOR (2 downto 0);
     EN: in STD_LOGIC;
     Y: out STD_LOGIC_VECTOR (7 downto 0));
end component;
signal RS: STD_LOGIC_VECTOR(7 downto 0);
begin
Decoder_3_to_8_0: Decoder_3_to_8
  PORT MAP(
   I => Reg_En,
    EN => EN,
    Y => RS
    );
Reg_4bit_0: Reg_4bit
```

```
PORT MAP(
    D => "0000",
    Clk => Clk,
    Reset => Reset,
    EN \Rightarrow RS(0),
    Q => R0
    );
Reg_4bit_1: Reg_4bit
  PORT MAP(
    D => D,
    Clk => Clk,
    Reset => Reset,
    EN => RS(1),
    Q => R1
    );
Reg_4bit_2 : Reg_4bit
  PORT MAP(
    D => D,
    Clk => Clk,
    Reset => Reset,
    EN => RS(2),
    Q => R2
    );
Reg_4bit_3 : Reg_4bit
  PORT MAP(
    D => D,
    Clk => Clk,
    Reset => Reset,
```

```
EN \Rightarrow RS(3),
    Q => R3
    );
Reg_4bit_4 : Reg_4bit
  PORT MAP(
    D => D,
    Clk => Clk,
    Reset => Reset,
    EN \Rightarrow RS(4),
    Q => R4
    );
Reg_4bit_5 : Reg_4bit
  PORT MAP(
    D => D,
    Clk => Clk,
    Reset => Reset,
    EN \Rightarrow RS(5),
    Q => R5
    );
Reg_4bit_6 : Reg_4bit
  PORT MAP(
    D => D,
    Clk => Clk,
    Reset => Reset,
    EN => RS(6),
    Q => R6
    );
```

```
Reg_4bit_7: Reg_4bit
  PORT MAP(
    D => D,
    Clk => Clk,
    Reset => Reset,
    EN \Rightarrow RS(7),
    Q => R7
    );
end Behavioral;
    2. Simulation code
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Reg_Bank_sim is
-- Port ();
end Reg_Bank_sim;
architecture Behavioral of Reg_Bank_sim is
```

```
component Reg_Bank is
  Port ( EN : in STD_LOGIC;
     D: in STD_LOGIC_VECTOR (3 downto 0);
     Clk: in STD_LOGIC;
     Reset: in STD_LOGIC;
     Reg_En : in STD_LOGIC_VECTOR (2 downto 0);
     R0: out STD_LOGIC_VECTOR (3 downto 0);
     R1: out STD_LOGIC_VECTOR (3 downto 0);
     R2 : out STD_LOGIC_VECTOR (3 downto 0);
     R3: out STD_LOGIC_VECTOR (3 downto 0);
     R4: out STD_LOGIC_VECTOR (3 downto 0);
     R5 : out STD_LOGIC_VECTOR (3 downto 0);
     R6: out STD_LOGIC_VECTOR (3 downto 0);
     R7: out STD_LOGIC_VECTOR (3 downto 0));
end component;
signal EN: STD_LOGIC:='1';
signal Clk: STD_LOGIC:='0';
signal Reset: STD_LOGIC:='0';
signal D,R0,R1,R2,R3,R4,R5,R6,R7:STD_LOGIC_VECTOR (3 downto 0):="0000"; --setting all to 0000
signal Reg_En: STD_LOGIC_VECTOR (2 downto 0);
begin
UUT:Reg_Bank port map(
  Clk => Clk,
  D => D,
  R0 => R0,
  R1 => R1,
  R2 => R2,
```

```
R3 => R3,
  R4 => R4,
  R5 => R5,
  R6 => R6,
  R7 => R7,
  Reg_EN => Reg_EN,
  Reset => Reset,
  EN => EN
 );
process
begin
Clk <= NOT(Clk);
wait for 5ns;
end process;
process begin
        --11 0011 0100 0101 0001 ; 210001R
        --11 0011 0101 0111 0010 ; 210290A
  D <= "0001"; -- 1
  Reg_EN <= "000"; -- reg0
  wait for 20ns;
  D <= "0010"; -- 2
  Reg_EN <= "001"; -- reg1
```

wait for 20ns; D <= "0101"; --5 Reg\_EN <= "010"; -- reg2 wait for 20ns; D <= "0111"; -- 7 Reg\_EN <= "011"; --reg3 wait for 20ns; D <= "0100"; -- 4 Reg\_EN <= "100"; --reg4 wait for 20ns; D <= "0101"; -- 5 Reg\_EN <= "101"; --reg5 wait for 20ns; D <= "0011"; -- 3 Reg\_EN <= "110"; --reg6 wait for 20ns;

D <= "0011"; -- 3

wait for 20ns;

Reg\_EN <= "111"; --reg7

D <= "1111"; -- 15

Reg\_EN <= "000"; -- reg0

wait for 20ns;

Reset <= '1';

wait for 20ns;

end process;





### Program Rom

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Prog_Rom is
  Port ( Address : in STD_LOGIC_VECTOR (2 downto 0);
      Ins_Bus : out STD_LOGIC_VECTOR (11 downto 0));
end Prog_Rom;
architecture Behavioral of Prog_Rom is
type rom_type is array(0 to 7) of STD_LOGIC_VECTOR(11 downto 0);
signal Rom_Instruction: rom_type := (
    --instruction set 1
-- "100010000011",-- mov 3 to reg1
-- "100100000001",-- mov 1 to reg2
```

```
-- "010100000000",-- negative of reg2
 - "001110010000",-- adding reg1 to reg7 , store in 1
-- "000010100000",--adding reg2 to reg1 and store in 1
-- "110010000111",--if value in reg1 is 0 pc=7, else increment pc
  "110000000011",--
  "11000000111" -- if value in reg0 is 0(always) pc=7 => stay in
    --instruction set2
 "101110000000", -- mov 0 to reg7
 "100010000001", -- mov 1 to reg1
 "100100000010", -- mov 2 to reg2
 "100110000011", -- mov 3 to reg3
 "001110010000", -- add reg 1 and 7 and store in 7 ==> reg7=1
 "001110100000", -- add reg 2 and 7 and store in 7 ==> reg7=3
 "001110110000", -- add reg 3 and 7 and store in 7 ==> reg7=6
 "11000000111" -- if reg 0 is 0 pc=7
  );
begin
  Ins_Bus <= Rom_Instruction(to_integer(unsigned(Address)));</pre>
end Behavioral;
```

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Prog_Rom_sim is
-- Port ();
end Prog_Rom_sim;
architecture Behavioral of Prog_Rom_sim is
component Prog_Rom is
  Port ( Address : in STD_LOGIC_VECTOR (2 downto 0);
      Ins_Bus : out STD_LOGIC_VECTOR (11 downto 0));
end component;
signal Address :STD_LOGIC_VECTOR (2 downto 0);
signal Ins_Bus: STD_LOGIC_VECTOR (11 downto 0);
begin
```

```
UUT: Prog_Rom
port map(
  Address => Address,
 Ins_Bus => Ins_Bus
 );
process
begin
Address <= "000";
wait for 20ns;
Address <= "001";
wait for 20ns;
Address <= "010";
wait for 20ns;
Address <= "011";
wait for 20ns;
Address <= "100";
wait for 20ns;
Address <= "101";
wait for 20ns;
Address <= "110";
wait for 20ns;
Address <= "111";
```

wait for 20ns;



## Instruction Decoder

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Ins_Decoder is
  Port (Ins_Bus: in STD_LOGIC_VECTOR (11 downto 0);
     Reg_Jump_Check : in STD_LOGIC_VECTOR (3 downto 0);
     Reg_EN : out STD_LOGIC_VECTOR (2 downto 0);
     AS_Sel : out STD_LOGIC;
     RegS_Mux_A : out STD_LOGIC_VECTOR (2 downto 0);
     RegS_Mux_B : out STD_LOGIC_VECTOR (2 downto 0);
     Immediate_Value :out STD_LOGIC_Vector(3 downto 0);
     Load_Sel : out STD_LOGIC;
     Jump_Flag : out STD_LOGIC;
     Jump_Address : out STD_LOGIC_VECTOR (2 downto 0));
end Ins_Decoder;
architecture Behavioral of Ins_Decoder is
```

```
signal Instruction : STD_LOGIC_VECTOR(1 downto 0);
signal Reg_1,Reg_2 : STD_LOGIC_VECTOR(2 downto 0);
signal Data : STD_LOGIC_VECTOR(3 downto 0);
begin
process(Instruction,Reg_1,Reg_2, Reg_Jump_Check,Data,Data(2 downto 0))
begin
--initialize jump to 0
    Jump_Flag <='0';
    Reg_EN <= "000";
    if (Instruction = "00") then --ADDITION
      AS_Sel <= '0';
      RegS_Mux_A <= Reg_1;</pre>
      RegS_Mux_B <= Reg_2;</pre>
       --TIME FOR ATITHMETIC OPERATION
      Reg_En <= Reg_1;</pre>
      Load_Sel<= '0'; --MUX SELECTOR</pre>
    elsif (Instruction = "10") then --MOVE
      Immediate_Value <=Data;</pre>
      Reg_En <= Reg_1;</pre>
      Load_Sel<= '1'; --MUX SELECTOR
```

```
elsif (Instruction = "01") then -- NEGATION
      RegS_Mux_A <= "000";
      RegS_Mux_B <= Reg_1;</pre>
       --TIME FOR ATITHMETIC OPERATION
      Reg_En <= Reg_1;
      AS_Sel <= '1';
      Load_Sel<= '0'; --MUX SELECTOR
    elsif (Instruction = "11") then --JUMPZ
      RegS_Mux_A <= Reg_1;</pre>
      if (Reg_Jump_Check="0000") then
        Jump_Flag <='1';</pre>
        Jump_Address <=Data(2 downto 0);</pre>
         Load_Sel<= '0'; --MUX SELECTOR
      end if;
    end if;
end process;
Instruction <= Ins_Bus(11 downto 10);</pre>
Reg_1 <= Ins_Bus(9 downto 7);</pre>
Reg_2 <= Ins_Bus(6 downto 4);</pre>
Data<= Ins_Bus(3 downto 0);
end Behavioral;
```

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Ins_decoder_sim is
-- Port ();
end Ins_decoder_sim;
architecture Behavioral of Ins_decoder_sim is
component Ins_Decoder is
  Port (Ins_Bus: in STD_LOGIC_VECTOR (11 downto 0);
     Reg_Jump_Check : in STD_LOGIC_VECTOR (3 downto 0);
     Reg_EN : out STD_LOGIC_VECTOR (2 downto 0);
     AS_Sel : out STD_LOGIC;
     RegS_Mux_A : out STD_LOGIC_VECTOR (2 downto 0);
     RegS_Mux_B : out STD_LOGIC_VECTOR (2 downto 0);
     Immediate_Value :out STD_LOGIC_Vector(3 downto 0);
     Load_Sel : out STD_LOGIC;
     Jump_Flag : out STD_LOGIC;
```

```
Jump_Address : out STD_LOGIC_VECTOR (2 downto 0));
end component;
signal Ins_Bus : STD_LOGIC_VECTOR(11 downto 0);
signal Reg_Jump_Check,Immediate_Value : STD_LOGIC_VECTOR(3 downto 0);
signal Reg_En, RegS_Mux_A,RegS_Mux_B, Jump_Address: STD_LOGIC_VECTOR(2 downto 0);
signal Load_Sel, AS_Sel, Jump_Flag: STD_LOGIC;
begin
uut:Ins_Decoder
  port map(
     Ins_Bus => Ins_Bus,
     Reg_Jump_Check => Reg_Jump_Check,
     Reg_En => Reg_En,
     Load_Sel => Load_Sel,
     Immediate_Value => Immediate_Value,
     RegS_Mux_A => RegS_Mux_A,
     RegS_Mux_B => RegS_Mux_B,
     AS_Sel => AS_Sel,
     Jump_Flag => Jump_Flag,
     Jump_Address => Jump_Address
  );
  process
  begin
    Ins_Bus <= "101110000000";
    wait for 20 ns;
    Ins_Bus <= "100010000001";
    wait for 20 ns;
```

```
Ins_Bus <= "100100000010";
    wait for 20 ns;

Ins_Bus <= "100110000011";

wait for 20 ns;

Ins_Bus <= "001110010000";

wait for 20 ns;

Ins_Bus <= "001110100000";

wait for 20 ns;

Ins_Bus <= "110000000111";

Reg_Jump_Check <= "0000";

wait for 20 ns;
```



### Nanoprocessor

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Nanoprocessor_4bit is
  Port ( Clk_in : in STD_LOGIC;
      Reset: in STD_LOGIC;
      Overflow: out STD_LOGIC;
     Zero: out STD_LOGIC;
      R7_out: out STD_LOGIC_VECTOR (3 downto 0));
end Nanoprocessor_4bit;
architecture Behavioral of Nanoprocessor_4bit is
component Reg_Bank is
  Port (EN: in STD_LOGIC;
      D: in STD_LOGIC_VECTOR (3 downto 0);
      Clk: in STD_LOGIC;
```

```
Reset: in STD LOGIC;
     Reg_En : in STD_LOGIC_VECTOR (2 downto 0);
     R0 : out STD_LOGIC_VECTOR (3 downto 0);
     R1: out STD_LOGIC_VECTOR (3 downto 0);
     R2: out STD_LOGIC_VECTOR (3 downto 0);
     R3: out STD_LOGIC_VECTOR (3 downto 0);
     R4: out STD_LOGIC_VECTOR (3 downto 0);
     R5 : out STD_LOGIC_VECTOR (3 downto 0);
     R6: out STD_LOGIC_VECTOR (3 downto 0);
     R7: out STD_LOGIC_VECTOR (3 downto 0));
end component;
component Mux_8_to_1_4bit
  Port (
    R0 : in STD_LOGIC_VECTOR(3 downto 0);
    R1: in STD_LOGIC_VECTOR(3 downto 0);
    R2: in STD_LOGIC_VECTOR(3 downto 0);
    R3: in STD_LOGIC_VECTOR(3 downto 0);
    R4: in STD_LOGIC_VECTOR(3 downto 0);
    R5: in STD_LOGIC_VECTOR(3 downto 0);
    R6: in STD_LOGIC_VECTOR(3 downto 0);
    R7: in STD_LOGIC_VECTOR(3 downto 0);
    Sel: in STD_LOGIC_VECTOR (2 downto 0);
    Y: out STD_LOGIC_VECTOR (3 downto 0));
end component;
component ASUnit_4 is
  Port ( A : in STD_LOGIC_VECTOR(3 downto 0);
     B: in STD_LOGIC_VECTOR(3 downto 0);
     C: in STD_LOGIC;
```

```
S: out STD LOGIC VECTOR(3 downto 0);
     Overflow, Zero: out STD_LOGIC);
end component;
component Mux_2_to_1_4bit is
  Port ( Sel : in STD_LOGIC;
      R0: in STD_LOGIC_VECTOR (3 downto 0);
      R1: in STD_LOGIC_VECTOR (3 downto 0);
     Y: out STD_LOGIC_VECTOR (3 downto 0));
end component;
component Ins_Decoder is
  Port (Ins_Bus: in STD_LOGIC_VECTOR (11 downto 0);
     Reg_Jump_Check : in STD_LOGIC_VECTOR (3 downto 0);
     Reg_EN : out STD_LOGIC_VECTOR (2 downto 0);
     AS_Sel : out STD_LOGIC;
     RegS_Mux_A : out STD_LOGIC_VECTOR (2 downto 0);
     RegS_Mux_B : out STD_LOGIC_VECTOR (2 downto 0);
     Immediate_Value :out STD_LOGIC_Vector(3 downto 0);
     Load_Sel : out STD_LOGIC;
     Jump_Flag : out STD_LOGIC;
     Jump_Address : out STD_LOGIC_VECTOR (2 downto 0));
end component;
component Adder_3 is
Port ( A: in STD_LOGIC_VECTOR (2 downto 0);
   B: in STD_LOGIC_VECTOR (2 downto 0);
   S: out STD_LOGIC_VECTOR (2 downto 0);
   Carry_in : in STD_LOGIC;
   Carry_out : out STD_LOGIC);
```

```
end component;
component Mux_2_to_1_3bit is
  Port (
    R0 : in STD_LOGIC_VECTOR(2 downto 0);
    R1: in STD_LOGIC_VECTOR(2 downto 0);
    Sel: in STD_LOGIC;
    Y: out STD_LOGIC_VECTOR (2 downto 0));
end component;
component PC_3bit is
Port ( D: in STD_LOGIC_VECTOR (2 downto 0);
    Clk: in STD_LOGIC;
    Clr: in STD_LOGIC;
    Q: out STD_LOGIC_VECTOR (2 downto 0));
end component;
component Slow_Clk is
  Port ( Clk_in : in STD_LOGIC;
     Clk_out : out STD_LOGIC);
end component;
component Prog_Rom is
  Port ( Address : in STD_LOGIC_VECTOR (2 downto 0);
     Ins_Bus : out STD_LOGIC_VECTOR (11 downto 0));
end component;
-- For the Register Bank
signal Mux_Reg_Bank: STD_LOGIC_VECTOR (3 downto 0);
signal Decoder_Reg_Bank: STD_LOGIC_VECTOR (2 downto 0);
```

```
signal Reg_0_out, Reg_1_out, Reg_2_out, Reg_3_out, Reg_4_out, Reg_5_out, Reg_6_out, Reg_7_out:
STD_LOGIC_VECTOR (3 downto 0);
-- For the Mux_8_way_4_Bit
signal Reg_Sel_0,Reg_Sel_1: STD_LOGIC_VECTOR (2 downto 0);
signal Reg_Sel_0_out, Reg_Sel_1_out: STD_LOGIC_VECTOR (3 downto 0);
-- For the AddSubUnit_4
signal AddSubSel: STD_LOGIC;
signal AddSubOut: STD_LOGIC_VECTOR (3 downto 0);
-- For the Mux_2_way_4_Bit
signal Immediate_Value: STD_LOGIC_VECTOR (3 downto 0);
signal Mux_Decoder_Sel: STD_LOGIC;
-- For the Instruction Decoder
signal Rom_out: STD_LOGIC_VECTOR (11 downto 0);
signal JumpAddress: STD_LOGIC_VECTOR (2 downto 0);
signal JumpFlag: STD_LOGIC;
-- For the Bit_3_adder
signal Bit_3_adder_out: STD_LOGIC_VECTOR (2 downto 0);
-- For the Program Counter
signal PC_in,PC_out: STD_LOGIC_VECTOR (2 downto 0);
signal Clk: STD_LOGIC;
begin
Slow_Clk_0: Slow_Clk
Port Map(
   Clk_in => Clk_in,
   Clk_out => Clk
);
```

```
Reg_Bank_0: Reg_Bank
Port Map(
   Clk => Clk,
   D => Mux_Reg_Bank,
   Reg_EN => Decoder_Reg_Bank,
   R0 => Reg_0_out,
   R1 => Reg_1_out,
   R2 => Reg_2_out,
   R3 => Reg_3_out,
   R4 => Reg_4_out,
   R5 => Reg_5_out,
   R6 => Reg_6_out,
   R7 => Reg_7_out,
   Reset => Reset,
   EN => '1'
);
Mux\_8\_to\_1\_4bit\_0: Mux\_8\_to\_1\_4bit
Port Map(
     R0 => Reg_0_out,
     R1 => Reg_1_out,
     R2 => Reg_2_out,
     R3 => Reg_3_out,
     R4 => Reg_4_out,
     R5 => Reg_5_out,
     R6 => Reg_6_out,
     R7 => Reg_7_out,
     Sel => Reg_Sel_0,
     Y => Reg_Sel_0_out
     --EN => '1'
);
```

```
Mux_8_to_1_4bit_1: Mux_8_to_1_4bit
Port Map(
     R0 => Reg_0_out,
     R1 => Reg_1_out,
     R2 => Reg_2_out,
     R3 => Reg_3_out,
     R4 => Reg_4_out,
     R5 => Reg_5_out,
     R6 => Reg_6_out,
     R7 => Reg_7_out,
     Sel => Reg_Sel_1,
     Y => Reg_Sel_1_out
     --EN => '1'
);
ASunit\_4\_0:ASUnit\_4
Port Map(
     A => Reg_Sel_0_out,
     B => Reg_Sel_1_out,
     C => AddSubSel,
     S => AddSubOut,
     Overflow => Overflow,
     Zero => Zero
     --C_out => C_out
);
Mux_2_{to}_1_{4bit}_0: Mux_2_{to}_1_{4bit}
Port Map(
     R0 => AddSubOut,
     R1 => Immediate_Value,
```

```
Y => Mux_Reg_Bank,
     Sel => Mux_Decoder_Sel
     --EN => '1'
 );
Ins_Decoder_0 : Ins_Decoder
Port Map (
     Ins_Bus => Rom_out,
     Reg_Jump_Check =>Reg_Sel_0_out,
     Reg_En => Decoder_Reg_Bank,
     Load_Sel => Mux_Decoder_Sel,
     Immediate_Value => Immediate_Value,
     RegS_Mux_A => Reg_Sel_0,
     RegS_Mux_B => Reg_Sel_1,
     AS_Sel => AddSubSel,
     Jump_Flag => JumpFlag,
     Jump_Address =>JumpAddress
);
Adder_3_0: Adder_3
Port Map (
   A => PC_out,
   B => "001",
   S => Bit_3_adder_out,
   Carry_in => '0'
   Carry_out => -- Not mapped
);
Mux_2_to_1_3bit_0:Mux_2_to_1_3bit
Port Map(
     R0 => Bit_3_adder_out,
```

```
R1 => JumpAddress,
     Y => PC_in,
     Sel => JumpFlag
     --EN => '1'
);
PC_3bit_0: PC_3bit
Port Map(
     D => PC_in,
     Q => PC_out,
     clr => Reset,
     Clk => Clk
);
Prog_ROM_0:Prog_ROM
Port Map(
     Address => PC_out,
     Ins_Bus => Rom_out
);
R7_out <= Reg_7_out;
end Behavioral;
```

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Nanoprocessor_4bit_sim is
-- Port ();
end Nanoprocessor_4bit_sim;
architecture Behavioral of Nanoprocessor_4bit_sim is
component Nanoprocessor_4bit is
  Port ( Clk_in : in STD_LOGIC;
      Reset: in STD_LOGIC;
      Overflow: out STD_LOGIC;
     Zero: out STD_LOGIC;
      R7_out : out STD_LOGIC_VECTOR (3 downto 0));
end component;
signal Clk_in,Reset,Overflow,Zero : STD_LOGIC:='0';
signal R7_out :STD_LOGIC_VECTOR (3 downto 0);
```

```
begin
{\tt UUT:Nanoprocessor\_4bit}
port map(
    R7_out=>R7_out,
    Clk_in => Clk_in,
    Overflow => Overflow,
    Zero => Zero,
    Reset => Reset
    );
process
begin
    Clk_in <= not Clk_in;
    wait for 5ns;
    end process;
process
begin
    Reset <= '1';
    wait for 50ns;
    Reset <= '0';
    wait for 3000ns;
```



### Lookup table

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity LUT_16_7 is
  Port (address: in STD_LOGIC_VECTOR (3 downto 0);
      data: out STD_LOGIC_VECTOR (6 downto 0));
end LUT_16_7;
architecture Behavioral of LUT_16_7 is
type rom_type is array (0 to 15) of std_logic_vector (6 downto 0);
  signal sevenSegment_ROM: rom_type := (
        "1000000", --0
        "1111001", --1
```

```
"0100100", --2
        "0110000", --3
        "0011001", --4
        "0010010", --5
        "0000010", --6
        "1111000", --7
        "0000000", --8
        "0010000", --9
        "0001000", --a
        "0000011", --b
        "1000110", --c
        "0100001", --d
        "0000110", --е
        "0001110" --f
   );
begin
data <= sevenSegment_ROM(to_integer(unsigned(address)));</pre>
end Behavioral;
```

### Final Project

### 1. Source code

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Final_Project is
  Port ( Clk_in : in STD_LOGIC;
   Reset: in STD_LOGIC;
   Overflow: out STD_LOGIC;
   Zero: out STD_LOGIC;
   R7_out : out STD_LOGIC_VECTOR (3 downto 0);
   Sev_Seg_Out:out STD_LOGIC_VECTOR (6 downto 0);
   an : out STD_LOGIC_VECTOR (3 downto 0)
   );
end Final_Project;
architecture Behavioral of Final_Project is
```

```
component LUT_16_7
  Port ( address : in STD_LOGIC_VECTOR (3 downto 0);
   data: out STD_LOGIC_VECTOR (6 downto 0));
end component;
component Nanoprocessor_4bit
  Port ( Clk_in : in STD_LOGIC;
   Reset: in STD_LOGIC;
   Overflow: out STD_LOGIC;
   Zero: out STD_LOGIC;
   R7_out : out STD_LOGIC_VECTOR (3 downto 0));
end component;
signal Reg_7_Out: STD_LOGIC_VECTOR (3 downto 0);
begin
LUT_16_7_0:LUT_16_7
  Port Map(
    address => Reg_7_Out,
    data => Sev_Seg_Out
 );
Nanoprocessor_4bit_0:Nanoprocessor_4bit
  Port Map(
   Clk_in =>Clk_in,
   Reset =>Reset,
   Overflow =>Overflow,
   Zero =>Zero,
   R7_out => Reg_7_Out
```

```
);
an<="1110";
R7_out<=Reg_7_Out;
end Behavioral;
    2. Simulation code
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Final_Project_sim is
-- Port ();
end Final_Project_sim;
architecture Behavioral of Final_Project_sim is
  component Final_Project
    Port ( Clk_in : in STD_LOGIC;
        Reset: in STD_LOGIC;
        Overflow: out STD_LOGIC;
        Zero: out STD_LOGIC;
        R7_out : out STD_LOGIC_VECTOR (3 downto 0);
```

```
Sev_Seg_Out:out STD_LOGIC_VECTOR (6 downto 0);
        an : out STD_LOGIC_VECTOR (3 downto 0)
       );
  end component;
  signal Clk_in: STD_LOGIC:='0';
  signal Reset, Overflow, Zero: STD_LOGIC;
  signal R7_out,an: STD_LOGIC_VECTOR (3 downto 0);
  signal Sev_Seg_Out: STD_LOGIC_VECTOR (6 downto 0);
begin
  uut:Final_Project
  port map(
       Clk_in =>Clk_in,
       Reset => Reset,
       Overflow => Overflow,
       Zero => Zero,
       R7_out => R7_out,
       Sev_Seg_Out => Sev_Seg_Out,
       an => an
 );
  process
  begin
    Clk_in <= not(Clk_in);
    wait for 1ns;
  end process;
  process
  begin
```

Reset<='1';
wait for 10ns;
Reset<='0';
wait;
end process;

end Behavioral;

### 3. Timing Diagram



### **Elaborated Design:**



### **Synthesis Report:**

#-----

# Vivado v2018.1 (64-bit)

# SW Build 2188600 on Wed Apr 4 18:40:38 MDT 2018

# IP Build 2185939 on Wed Apr 4 20:55:05 MDT 2018

# Start of session at: Sun Jun 11 16:51:37 2023

# Process ID: 17664

# Current directory: C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.runs/synth\_1

# Command line: vivado.exe -log Final\_Project.vds -product Vivado -mode batch -messageDb vivado.pb -notrace - source Final\_Project.tcl

# Log file: C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.runs/synth\_1/Final\_Project.vds

# Journal file: C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.runs/synth\_1\vivado.jou

#-----

source Final\_Project.tcl -notrace

Command: synth\_design -top Final\_Project -part xc7a35tcpg236-1

Starting synth\_design

Attempting to get a license for feature 'Synthesis' and/or device 'xc7a35t'

INFO: [Common 17-349] Got license for feature 'Synthesis' and/or device 'xc7a35t'

INFO: Launching helper process for spawning children vivado processes

INFO: Helper process launched with PID 8804

-----

Starting RTL Elaboration : Time (s): cpu = 00:00:07 ; elapsed = 00:00:07 . Memory (MB): peak = 384.012 ; gain = 97.230

\_\_\_\_\_

INFO: [Synth 8-638] synthesizing module 'Final\_Project' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/new/Final Project.vhd:46]

INFO: [Synth 8-3491] module 'LUT\_16\_7' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/imports/new/LUT\_16\_7.vhd:34' bound to instance 'LUT\_16\_7\_0' of component 'LUT\_16\_7' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Final\_Project.vhd:66]

INFO: [Synth 8-638] synthesizing module 'LUT\_16\_7' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources 1/imports/new/LUT 16 7.vhd:39]

INFO: [Synth 8-256] done synthesizing module 'LUT\_16\_7' (1#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/LUT\_16\_7.vhd:39]

INFO: [Synth 8-3491] module 'Nanoprocessor\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:34' bound to instance 'Nanoprocessor\_4bit\_0' of component 'Nanoprocessor\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Final\_Project.vhd:72]

INFO: [Synth 8-638] synthesizing module 'Nanoprocessor\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:42]

INFO: [Synth 8-3491] module 'Slow\_Clk' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/imports/new/Slow\_Clk.vhd:34' bound to instance 'Slow\_Clk\_0' of component 'Slow\_Clk' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:165]

INFO: [Synth 8-638] synthesizing module 'Slow\_Clk' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/imports/new/Slow\_Clk.vhd:39]

INFO: [Synth 8-256] done synthesizing module 'Slow\_Clk' (2#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources 1/imports/new/Slow Clk.vhd:39]

INFO: [Synth 8-3491] module 'Reg\_Bank' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_Bank.vhd:34' bound to instance 'Reg\_Bank\_0' of component 'Reg\_Bank' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:171]

INFO: [Synth 8-638] synthesizing module 'Reg\_Bank' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/new/Reg Bank.vhd:50]

INFO: [Synth 8-3491] module 'Decoder\_3\_to\_8' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/Decoder\_3\_to\_8.vhd:34' bound to instance 'Decoder\_3\_to\_8\_0' of component 'Decoder\_3\_to\_8' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Reg\_Bank.vhd:71]

INFO: [Synth 8-638] synthesizing module 'Decoder\_3\_to\_8' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/Decoder\_3\_to\_8.vhd:40]

INFO: [Synth 8-3491] module 'Decoder\_2\_to\_4' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/Decoder\_2\_to\_4.vhd:34' bound to instance 'Decoder\_2\_to\_4\_0' of component 'Decoder\_2\_to\_4' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/imports/new/Decoder\_3\_to\_8.vhd:56]

INFO: [Synth 8-638] synthesizing module 'Decoder\_2\_to\_4' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/Decoder\_2\_to\_4.vhd:40]

INFO: [Synth 8-256] done synthesizing module 'Decoder\_2\_to\_4' (3#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources 1/imports/new/Decoder 2 to 4.vhd:40]

INFO: [Synth 8-3491] module 'Decoder\_2\_to\_4' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/Decoder\_2\_to\_4.vhd:34' bound to instance 'Decoder\_2\_to\_4\_1' of component 'Decoder\_2\_to\_4' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/imports/new/Decoder\_3\_to\_8.vhd:63]

INFO: [Synth 8-256] done synthesizing module 'Decoder\_3\_to\_8' (4#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources 1/imports/new/Decoder 3 to 8.vhd:40]

INFO: [Synth 8-3491] module 'Reg\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_4bit.vhd:34' bound to instance 'Reg\_4bit\_0' of component 'Reg\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_Bank.vhd:78]

INFO: [Synth 8-638] synthesizing module 'Reg\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_4bit.vhd:43]

INFO: [Synth 8-256] done synthesizing module 'Reg\_4bit' (5#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/new/Reg 4bit.vhd:43]

INFO: [Synth 8-3491] module 'Reg\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_4bit.vhd:34' bound to instance 'Reg\_4bit\_1' of component 'Reg\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Reg\_Bank.vhd:87]

INFO: [Synth 8-3491] module 'Reg\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_4bit.vhd:34' bound to instance 'Reg\_4bit\_2' of component 'Reg\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_Bank.vhd:96]

INFO: [Synth 8-3491] module 'Reg\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_4bit.vhd:34' bound to instance 'Reg\_4bit\_3' of component 'Reg\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Reg\_Bank.vhd:105]

INFO: [Synth 8-3491] module 'Reg\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_4bit.vhd:34' bound to instance 'Reg\_4bit\_4' of component 'Reg\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_Bank.vhd:114]

INFO: [Synth 8-3491] module 'Reg\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_4bit.vhd:34' bound to instance 'Reg\_4bit\_5' of component 'Reg\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/new/Reg Bank.vhd:123]

INFO: [Synth 8-3491] module 'Reg\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_4bit.vhd:34' bound to instance 'Reg\_4bit\_6' of component 'Reg\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Reg\_Bank.vhd:132]

INFO: [Synth 8-3491] module 'Reg\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_4bit.vhd:34' bound to instance 'Reg\_4bit\_7' of component 'Reg\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_Bank.vhd:141]

INFO: [Synth 8-256] done synthesizing module 'Reg\_Bank' (6#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Reg\_Bank.vhd:50]

INFO: [Synth 8-3491] module 'Mux\_8\_to\_1\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Mux\_8\_to\_1\_4bit.vhd:34' bound to instance 'Mux\_8\_to\_1\_4bit\_0' of component 'Mux\_8\_to\_1\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:188]

INFO: [Synth 8-638] synthesizing module 'Mux\_8\_to\_1\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Mux\_8\_to\_1\_4bit.vhd:50]

INFO: [Synth 8-256] done synthesizing module 'Mux\_8\_to\_1\_4bit' (7#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/new/Mux 8 to 1 4bit.vhd:50]

INFO: [Synth 8-3491] module 'Mux\_8\_to\_1\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Mux\_8\_to\_1\_4bit.vhd:34' bound to instance 'Mux\_8\_to\_1\_4bit\_1' of component 'Mux\_8\_to\_1\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:203]

INFO: [Synth 8-3491] module 'ASUnit\_4' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/ASUnit\_4.vhd:34' bound to instance 'ASunit\_4\_0' of component 'ASUnit\_4' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/new/Nanoprocessor 4bit.vhd:218]

INFO: [Synth 8-638] synthesizing module 'ASUnit\_4' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/ASUnit\_4.vhd:45]

INFO: [Synth 8-3491] module 'FA' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/FA.vhd:34' bound to instance 'FA\_0' of component 'FA' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources 1/new/ASUnit 4.vhd:66]

INFO: [Synth 8-638] synthesizing module 'FA' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/imports/new/FA.vhd:42]

INFO: [Synth 8-3491] module 'HA' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/HA.vhd:34' bound to instance 'HA\_0' of component 'HA' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/imports/new/FA.vhd:59]

INFO: [Synth 8-638] synthesizing module 'HA' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/imports/new/HA.vhd:41]

INFO: [Synth 8-256] done synthesizing module 'HA' (8#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/imports/new/HA.vhd:41]

INFO: [Synth 8-3491] module 'HA' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/HA.vhd:34' bound to instance 'HA\_1' of component 'HA' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/FA.vhd:66]

INFO: [Synth 8-256] done synthesizing module 'FA' (9#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/imports/new/FA.vhd:42]

INFO: [Synth 8-3491] module 'FA' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/FA.vhd:34' bound to instance 'FA\_1' of component 'FA' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/ASUnit\_4.vhd:74]

INFO: [Synth 8-3491] module 'FA' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/FA.vhd:34' bound to instance 'FA\_2' of component 'FA' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/new/ASUnit 4.vhd:82]

INFO: [Synth 8-3491] module 'FA' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/FA.vhd:34' bound to instance 'FA\_3' of component 'FA' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/new/ASUnit 4.vhd:90]

INFO: [Synth 8-256] done synthesizing module 'ASUnit\_4' (10#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources 1/new/ASUnit 4.vhd:45]

INFO: [Synth 8-3491] module 'Mux\_2\_to\_1\_4bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Mux\_2\_to\_1\_4bit.vhd:34' bound to instance 'Mux\_2\_to\_1\_4bit\_0' of component 'Mux\_2\_to\_1\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:229]

INFO: [Synth 8-638] synthesizing module 'Mux\_2\_to\_1\_4bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Mux\_2\_to\_1\_4bit.vhd:42]

INFO: [Synth 8-256] done synthesizing module 'Mux\_2\_to\_1\_4bit' (11#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Mux\_2\_to\_1\_4bit.vhd:42]

INFO: [Synth 8-3491] module 'Ins\_Decoder' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Ins\_Decoder.vhd:34' bound to instance 'Ins\_Decoder\_0' of component 'Ins\_Decoder' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:238]

INFO: [Synth 8-638] synthesizing module 'Ins\_Decoder' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/new/Ins Decoder.vhd:47]

INFO: [Synth 8-256] done synthesizing module 'Ins\_Decoder' (12#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Ins\_Decoder.vhd:47]

INFO: [Synth 8-3491] module 'Adder\_3' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Adder\_3.vhd:34' bound to instance 'Adder\_3\_0' of component 'Adder\_3' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:252]

INFO: [Synth 8-638] synthesizing module 'Adder\_3' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/new/Adder 3.vhd:42]

INFO: [Synth 8-3491] module 'FA' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/FA.vhd:34' bound to instance 'FA\_0' of component 'FA' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Adder\_3.vhd:52]

INFO: [Synth 8-3491] module 'FA' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/FA.vhd:34' bound to instance 'FA\_1' of component 'FA' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Adder\_3.vhd:60]

INFO: [Synth 8-3491] module 'FA' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/FA.vhd:34' bound to instance 'FA\_2' of component 'FA' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Adder\_3.vhd:68]

INFO: [Synth 8-256] done synthesizing module 'Adder\_3' (13#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources 1/new/Adder 3.vhd:42]

INFO: [Synth 8-3491] module 'Mux\_2\_to\_1\_3bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Mux\_2\_to\_1\_3bit.vhd:34' bound to instance 'Mux\_2\_to\_1\_3bit\_0' of component 'Mux\_2\_to\_1\_3bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:261]

INFO: [Synth 8-638] synthesizing module 'Mux\_2\_to\_1\_3bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Mux\_2\_to\_1\_3bit.vhd:43]

INFO: [Synth 8-256] done synthesizing module 'Mux\_2\_to\_1\_3bit' (14#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Mux\_2\_to\_1\_3bit.vhd:43]

INFO: [Synth 8-3491] module 'PC\_3bit' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/PC\_3bit.vhd:34' bound to instance 'PC\_3bit\_0' of component 'PC\_3bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:270]

INFO: [Synth 8-638] synthesizing module 'PC\_3bit' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources 1/new/PC 3bit.vhd:43]

INFO: [Synth 8-3491] module 'D\_FF' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/D\_FF.vhd:34' bound to instance 'D\_FF\_0' of component 'D\_FF' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/PC\_3bit.vhd:54]

INFO: [Synth 8-638] synthesizing module 'D\_FF' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/imports/new/D FF.vhd:42]

INFO: [Synth 8-256] done synthesizing module 'D\_FF' (15#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/imports/new/D FF.vhd:42]

INFO: [Synth 8-3491] module 'D\_FF' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/D\_FF.vhd:34' bound to instance 'D\_FF\_1' of component 'D\_FF' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/PC\_3bit.vhd:61]

INFO: [Synth 8-3491] module 'D\_FF' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/imports/new/D\_FF.vhd:34' bound to instance 'D\_FF\_2' of component 'D\_FF' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources 1/new/PC 3bit.vhd:68]

INFO: [Synth 8-256] done synthesizing module 'PC\_3bit' (16#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/PC\_3bit.vhd:43]

INFO: [Synth 8-3491] module 'Prog\_Rom' declared at 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Prog\_Rom.vhd:34' bound to instance 'Prog\_ROM\_0' of component 'Prog\_Rom' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:278]

INFO: [Synth 8-638] synthesizing module 'Prog\_Rom' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9

final.srcs/sources\_1/new/Prog\_Rom.vhd:39]

INFO: [Synth 8-256] done synthesizing module 'Prog\_Rom' (17#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Prog\_Rom.vhd:39]

INFO: [Synth 8-256] done synthesizing module 'Nanoprocessor\_4bit' (18#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Nanoprocessor\_4bit.vhd:42]

INFO: [Synth 8-256] done synthesizing module 'Final\_Project' (19#1) [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources 1/new/Final Project.vhd:46]

WARNING: [Synth 8-3917] design Final\_Project has port an[3] driven by constant 1

WARNING: [Synth 8-3917] design Final\_Project has port an[2] driven by constant 1

WARNING: [Synth 8-3917] design Final\_Project has port an[1] driven by constant 1

WARNING: [Synth 8-3917] design Final\_Project has port an[0] driven by constant 0

-----

Finished RTL Elaboration : Time (s): cpu = 00:00:07; elapsed = 00:00:08. Memory (MB): peak = 439.750; gain = 152.969

.....

| Rep  | ort Check N | Vetlist:                |                   |      |
|------|-------------|-------------------------|-------------------|------|
| +    | +           |                         | +                 |      |
|      | Item        | Errors  Warnings  Statu | us  Description   | 1    |
| +    | +           | +                       | +                 |      |
| 1    | multi_dr    | riven_nets   0  0 Pas   | sed  Multi driven | nets |
| +    | +           | ++++                    | +                 |      |
|      |             |                         |                   |      |
| Stai | rt Handling | Custom Attributes       |                   |      |
|      |             |                         |                   |      |
|      |             |                         |                   |      |
|      |             |                         |                   |      |

Finished Handling Custom Attributes: Time (s): cpu = 00:00:08; elapsed = 00:00:08. Memory (MB): peak = 439.750; gain = 152.969

-----

| Finished RTL Optimization Phase 1 : Time (s): cpu = 00:00:08 ; elapsed = 00:00:08 . Memory (MB): peak = 439.750 ; gain = 152.969                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INFO: [Device 21-403] Loading part xc7a35tcpg236-1                                                                                                                                                                                                                                                                                                                    |
| INFO: [Project 1-570] Preparing netlist for logic optimization                                                                                                                                                                                                                                                                                                        |
| Processing XDC Constraints                                                                                                                                                                                                                                                                                                                                            |
| Initializing timing engine                                                                                                                                                                                                                                                                                                                                            |
| Parsing XDC File [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/constrs_1/new/Basys3.xdc]                                                                                                                                                                                                                                                       |
| Finished Parsing XDC File [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/constrs_1/new/Basys3.xdc]                                                                                                                                                                                                                                              |
| INFO: [Project 1-236] Implementation specific constraints were found while reading constraint file [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/constrs_1/new/Basys3.xdc]. These constraints will be ignored for synthesis but will be used in implementation. Impacted constraints are listed in the file [.Xil/Final_Project_propImpl.xdc]. |
| Resolution: To avoid this warning, move constraints listed in [.Xil/Final_Project_propImpl.xdc] to another XDC file and exclude this new file from synthesis with the used_in_synthesis property (File Properties dialog in GUI) and rerun elaboration/synthesis.                                                                                                     |
| Completed Processing XDC Constraints                                                                                                                                                                                                                                                                                                                                  |
| INFO: [Project 1-111] Unisim Transformation Summary:                                                                                                                                                                                                                                                                                                                  |
| No Unisim elements were transformed.                                                                                                                                                                                                                                                                                                                                  |
| Constraint Validation Runtime : Time (s): $cpu = 00:00:00$ ; $elapsed = 00:00:00.005$ . Memory (MB): $peak = 771.184$ ; $gain = 0.000$                                                                                                                                                                                                                                |
| Finished Constraint Validation : Time (s): cpu = 00:00:26 ; elapsed = 00:00:34 . Memory (MB): peak = 771.184 ; gain = 484.402                                                                                                                                                                                                                                         |
| Start Loading Part and Timing Information                                                                                                                                                                                                                                                                                                                             |
| Loading part: xc7a35tcpg236-1                                                                                                                                                                                                                                                                                                                                         |

| Finished Loading Part and Timing Information: Time (s): cpu = 00:00:26; elapsed = 00:00:34. Memory (MB): peak = 771.184; gain = 484.402                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Start Applying 'set_property' XDC Constraints                                                                                                               |
| Finished applying 'set_property' XDC Constraints : Time (s): cpu = 00:00:26 ; elapsed = 00:00:34 . Memory (MB): peak = 771.184 ; gain = 484.402             |
| INFO: [Synth 8-5544] ROM "sevenSegment_ROM" won't be mapped to Block RAM because address size (4) smaller than threshold (5)                                |
| INFO: [Synth 8-5545] ROM "count" won't be mapped to RAM because address size (32) is larger than maximum supported(25)                                      |
| INFO: [Synth 8-5545] ROM "clk_status" won't be mapped to RAM because address size (32) is larger than maximum supported(25)                                 |
| INFO: [Synth 8-5544] ROM "Jump_Flag" won't be mapped to Block RAM because address size (4) smaller than threshold (5)                                       |
| INFO: [Synth 8-5544] ROM "AS_Sel" won't be mapped to Block RAM because address size (2) smaller than threshold (5)                                          |
| INFO: [Synth 8-5544] ROM "AS_Sel" won't be mapped to Block RAM because address size (2) smaller than threshold (5)                                          |
| INFO: [Synth 8-5544] ROM "Load_Sel" won't be mapped to Block RAM because address size (2) smaller than threshold (5)                                        |
| INFO: [Synth 8-5544] ROM "Rom_Instruction" won't be mapped to Block RAM because address size (3) smaller than threshold (5)                                 |
| WARNING: [Synth 8-327] inferring latch for variable 'Y_reg' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources_1/new/Mux_8_to_1_4bit.vhd:55]  |
| WARNING: [Synth 8-327] inferring latch for variable 'AS_Sel_reg' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources_1/new/Ins_Decoder.vhd:63] |
| WARNING: [Synth 8-327] inferring latch for variable 'RegS_Mux_A_reg' [C:/Users/Uzma/Desktop/Final/New                                                       |

WARNING: [Synth 8-327] inferring latch for variable 'RegS\_Mux\_B\_reg' [C:/Users/Uzma/Desktop/Final/New

folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Ins\_Decoder.vhd:64]

folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Ins\_Decoder.vhd:65]

WARNING: [Synth 8-327] inferring latch for variable 'Immediate\_Value\_reg' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Ins\_Decoder.vhd:75]

WARNING: [Synth 8-327] inferring latch for variable 'Load\_Sel\_reg' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.srcs/sources\_1/new/Ins\_Decoder.vhd:71]

WARNING: [Synth 8-327] inferring latch for variable 'Jump\_Address\_reg' [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources\_1/new/Ins\_Decoder.vhd:95]

-----

Finished RTL Optimization Phase 2 : Time (s): cpu = 00:00:27; elapsed = 00:00:35. Memory (MB): peak = 771.184; gain = 484.402

-----

```
Report RTL Partitions:
+-+----+
| | RTL Partition | Replication | Instances |
+-+----+
Start RTL Component Statistics
Detailed RTL Component Info:
+---Adders:
        2 Input 32 Bit Adders := 1
+---XORs:
        2 Input 1 Bit
                         XORs := 19
+---Registers:
              32 Bit Registers := 1
              4 Bit Registers := 8
              1 Bit Registers := 8
+---Muxes :
        2 Input 32 Bit
                          Muxes := 1
        9 Input 12 Bit
                          Muxes := 1
```

Muxes := 1

17 Input 7 Bit

```
2 Input 4 Bit
                           Muxes := 1
         4 Input 3 Bit
                           Muxes := 1
         2 Input 3 Bit
                           Muxes := 4
         2 Input 1 Bit
                           Muxes := 11
         4 Input 1 Bit
                           Muxes := 1
         5 Input 1 Bit
                           Muxes := 2
         3 Input 1 Bit
                           Muxes := 2
Finished RTL Component Statistics
Start RTL Hierarchical Component Statistics
Hierarchical RTL Component report
Module LUT_16_7
Detailed RTL Component Info:
+---Muxes:
         17 Input 7 Bit
                           Muxes := 1
Module Slow_Clk
Detailed RTL Component Info:
+---Adders:
         2 Input 32 Bit Adders := 1
+---Registers:
               32 Bit Registers := 1
                1 Bit Registers := 2
+---Muxes :
         2 Input 32 Bit
                           Muxes := 1
         2 Input 1 Bit
                           Muxes := 1
Module Reg_4bit
Detailed RTL Component Info:
+---Registers:
```

```
4 Bit Registers := 1
Module HA
Detailed RTL Component Info:
+---XORs:
         2 Input 1 Bit
                           XORs := 1
Module ASUnit_4
Detailed RTL Component Info:
+---XORs :
         2 Input 1 Bit
                           XORs := 5
Module Mux_2_to_1_4bit
Detailed RTL Component Info:
+---Muxes:
         2 Input 4 Bit
                           Muxes := 1
Module Ins_Decoder
Detailed RTL Component Info:
+---Muxes :
         4 Input 3 Bit
                           Muxes := 1
         2 Input 3 Bit
                           Muxes := 3
         2 Input 1 Bit
                           Muxes := 10
         4 Input 1 Bit
                           Muxes := 1
         5 Input 1 Bit
                           Muxes := 2
         3 Input 1 Bit
                           Muxes := 2
Module Mux_2_to_1_3bit
Detailed RTL Component Info:
+---Muxes :
         2 Input 3 Bit
                           Muxes := 1
Module D_FF
Detailed RTL Component Info:
+---Registers:
                1 Bit Registers := 2
```

Module Prog\_Rom

| Detailed RTL Component Info :                                                                                                                                                           |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| +Muxes :                                                                                                                                                                                |                                  |
| 9 Input 12 Bit Muxes := 1                                                                                                                                                               |                                  |
| Finished RTL Hierarchical Component Statistics                                                                                                                                          |                                  |
| Start Part Resource Summary                                                                                                                                                             |                                  |
| Part Resources:                                                                                                                                                                         |                                  |
| DSPs: 90 (col length:60)                                                                                                                                                                |                                  |
| BRAMs: 100 (col length: RAMB18 60 RAMB36 30)                                                                                                                                            |                                  |
| Finished Part Resource Summary                                                                                                                                                          |                                  |
| Start Cross Boundary and Area Optimization                                                                                                                                              |                                  |
| Warning: Parallel synthesis criteria is not met                                                                                                                                         |                                  |
| WARNING: [Synth 8-6014] Unused sequential element Nanoprocessor_4bit_0 removed. [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources_1/imports/new/D_FF.vhd:50] | /PC_3bit_0/D_FF_0/Qbar_reg was   |
| WARNING: [Synth 8-6014] Unused sequential element Nanoprocessor_4bit_0 removed. [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources_1/imports/new/D_FF.vhd:50] | /PC_3bit_0/D_FF_1/Qbar_reg was   |
| WARNING: [Synth 8-6014] Unused sequential element Nanoprocessor_4bit_0 removed. [C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final/Lab 9 final.srcs/sources_1/imports/new/D_FF.vhd:50] | /PC_3bit_0/D_FF_2/Qbar_reg was   |
| INFO: [Synth 8-5545] ROM "Nanoprocessor_4bit_0/Slow_Clk_0/count" won't size (32) is larger than maximum supported(25)                                                                   | be mapped to RAM because address |
| INFO: [Synth 8-5545] ROM "Nanoprocessor_4bit_0/Slow_Clk_0/clk_status" waddress size (32) is larger than maximum supported(25)                                                           | on't be mapped to RAM because    |
| WARNING: [Synth 8-3917] design Final_Project has port an[3] driven by const                                                                                                             | ant 1                            |
| WARNING: [Synth 8-3917] design Final_Project has port an[2] driven by const                                                                                                             | ant 1                            |

WARNING: [Synth 8-3917] design Final Project has port an[1] driven by constant 1

WARNING: [Synth 8-3917] design Final\_Project has port an[0] driven by constant 0

INFO: [Synth 8-3333] propagating constant 0 across sequential element (\Nanoprocessor\_4bit\_0/Ins\_Decoder\_0/Immediate\_Value\_reg[3])

INFO: [Synth 8-3886] merging instance 'Nanoprocessor\_4bit\_0/Reg\_Bank\_0/Reg\_4bit\_0/Q\_reg[0]' (FDRE) to 'Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 0/Q reg[1]'

INFO: [Synth 8-3886] merging instance 'Nanoprocessor\_4bit\_0/Reg\_Bank\_0/Reg\_4bit\_0/Q\_reg[1]' (FDRE) to 'Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 0/Q reg[2]'

INFO: [Synth 8-3886] merging instance 'Nanoprocessor\_4bit\_0/Reg\_Bank\_0/Reg\_4bit\_0/Q\_reg[2]' (FDRE) to 'Nanoprocessor\_4bit\_0/Reg\_Bank\_0/Reg\_4bit\_0/Q\_reg[3]'

INFO: [Synth 8-3333] propagating constant 0 across sequential element (\Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 0/Q reg[3])

WARNING: [Synth 8-3332] Sequential element (Nanoprocessor\_4bit\_0/Mux\_8\_to\_1\_4bit\_0/Y\_reg[3]) is unused and will be removed from module Final Project.

WARNING: [Synth 8-3332] Sequential element (Nanoprocessor\_4bit\_0/Mux\_8\_to\_1\_4bit\_0/Y\_reg[2]) is unused and will be removed from module Final\_Project.

WARNING: [Synth 8-3332] Sequential element (Nanoprocessor\_4bit\_0/Mux\_8\_to\_1\_4bit\_0/Y\_reg[1]) is unused and will be removed from module Final Project.

WARNING: [Synth 8-3332] Sequential element (Nanoprocessor\_4bit\_0/Mux\_8\_to\_1\_4bit\_0/Y\_reg[0]) is unused and will be removed from module Final Project.

WARNING: [Synth 8-3332] Sequential element (Nanoprocessor\_4bit\_0/Mux\_8\_to\_1\_4bit\_1/Y\_reg[3]) is unused and will be removed from module Final Project.

WARNING: [Synth 8-3332] Sequential element (Nanoprocessor\_4bit\_0/Mux\_8\_to\_1\_4bit\_1/Y\_reg[2]) is unused and will be removed from module Final Project.

WARNING: [Synth 8-3332] Sequential element (Nanoprocessor\_4bit\_0/Mux\_8\_to\_1\_4bit\_1/Y\_reg[1]) is unused and will be removed from module Final Project.

WARNING: [Synth 8-3332] Sequential element (Nanoprocessor\_4bit\_0/Mux\_8\_to\_1\_4bit\_1/Y\_reg[0]) is unused and will be removed from module Final\_Project.

WARNING: [Synth 8-3332] Sequential element (Nanoprocessor\_4bit\_0/Ins\_Decoder\_0/Immediate\_Value\_reg[3]) is unused and will be removed from module Final\_Project.

WARNING: [Synth 8-3332] Sequential element (Nanoprocessor\_4bit\_0/Reg\_Bank\_0/Reg\_4bit\_0/Q\_reg[3]) is unused and will be removed from module Final\_Project.

\_\_\_\_\_

Finished Cross Boundary and Area Optimization : Time (s): cpu = 00:00:28; elapsed = 00:00:37. Memory (MB): peak = 771.184; gain = 484.402

\_\_\_\_\_

| Report RTL Partitions:                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| +-+                                                                                                                                                         |
| RTL Partition  Replication  Instances                                                                                                                       |
| +-++                                                                                                                                                        |
| +-++                                                                                                                                                        |
| Start Applying XDC Timing Constraints                                                                                                                       |
| Finished Applying XDC Timing Constraints : Time (s): cpu = 00:00:37 ; elapsed = 00:00:47 . Memory (MB): peak = 771.184 ; gain = 484.402                     |
| Start Timing Optimization                                                                                                                                   |
|                                                                                                                                                             |
| Report RTL Partitions:                                                                                                                                      |
| +-+                                                                                                                                                         |
| RTL Partition  Replication  Instances                                                                                                                       |
| +-++                                                                                                                                                        |
| +-++                                                                                                                                                        |
| Start Technology Mapping                                                                                                                                    |
| INFO: [Synth 8-3886] merging instance 'Nanoprocessor_4bit_0/Reg_Bank_0/Reg_4bit_4/Q_reg[1]' (FDRE) to 'Nanoprocessor_4bit_0/Reg_Bank_0/Reg_4bit_6/Q_reg[1]' |
| INFO: [Synth 8-3886] merging instance 'Nanoprocessor_4bit_0/Reg_Bank_0/Reg_4bit_5/Q_reg[1]' (FDRE) to                                                       |

 $'N an oprocessor\_4bit\_0/Reg\_Bank\_0/Reg\_4bit\_6/Q\_reg[1]'$ 

```
INFO: [Synth 8-3333] propagating constant 0 across sequential element
(\Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 6/Q reg[1])
INFO: [Synth 8-3886] merging instance 'Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 4/Q reg[0]' (FDRE) to
'Nanoprocessor_4bit_0/Reg_Bank_0/Reg_4bit_6/Q_reg[0]'
INFO: [Synth 8-3886] merging instance 'Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 5/Q reg[0]' (FDRE) to
'Nanoprocessor_4bit_0/Reg_Bank_0/Reg_4bit_6/Q_reg[0]'
INFO: [Synth 8-3333] propagating constant 0 across sequential element
(\Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 6/Q reg[0])
INFO: [Synth 8-3886] merging instance 'Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 4/Q reg[2]' (FDRE) to
'Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 6/Q reg[2]'
INFO: [Synth 8-3886] merging instance 'Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 5/Q reg[2]' (FDRE) to
'Nanoprocessor_4bit_0/Reg_Bank_0/Reg_4bit_6/Q_reg[2]'
INFO: [Synth 8-3333] propagating constant 0 across sequential element
(\Nanoprocessor_4bit_0/Reg_Bank_0/Reg_4bit_6/Q_reg[2])
INFO: [Synth 8-3886] merging instance 'Nanoprocessor_4bit_0/Reg_Bank_0/Reg_4bit_4/Q_reg[3]' (FDRE) to
'Nanoprocessor_4bit_0/Reg_Bank_0/Reg_4bit_6/Q_reg[3]'
INFO: [Synth 8-3886] merging instance 'Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 5/Q reg[3]' (FDRE) to
'Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 6/Q reg[3]'
INFO: [Synth 8-3333] propagating constant 0 across sequential element
(\Nanoprocessor_4bit_0/Reg_Bank_0/Reg_4bit_6/Q_reg[3])
WARNING: [Synth 8-3332] Sequential element (Nanoprocessor_4bit_0/Reg_Bank_0/Reg_4bit_6/Q_reg[1]) is
unused and will be removed from module Final Project.
WARNING: [Synth 8-3332] Sequential element (Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 6/Q reg[0]) is
unused and will be removed from module Final Project.
WARNING: [Synth 8-3332] Sequential element (Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 6/Q reg[2]) is
unused and will be removed from module Final Project.
WARNING: [Synth 8-3332] Sequential element (Nanoprocessor 4bit 0/Reg Bank 0/Reg 4bit 6/Q reg[3]) is
unused and will be removed from module Final Project.
Finished Technology Mapping: Time (s): cpu = 00:00:37; elapsed = 00:00:47. Memory (MB): peak = 786.246; gain
= 499.465
Report RTL Partitions:
+-+----+
```

| | RTL Partition | Replication | Instances |

| +-++                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------|
| +-+                                                                                                                  |
| Start IO Insertion                                                                                                   |
| Start Flattening Before IO Insertion                                                                                 |
| Finished Flattening Before IO Insertion                                                                              |
| Start Final Netlist Cleanup                                                                                          |
| Finished Final Netlist Cleanup                                                                                       |
| Finished IO Insertion : Time (s): cpu = 00:00:38 ; elapsed = 00:00:48 . Memory (MB): peak = 786.246 ; gain = 499.465 |
| Report Check Netlist:                                                                                                |
| Item   Errors   Warnings   Status   Description                                                                      |
| 1  multi_driven_nets   0  0 Passed  Multi driven nets   ++                                                           |
| Start Renaming Generated Instances                                                                                   |

| Finished Renaming Generated Instances: Time (s): cpu = 00:00:38; elapsed = 00:00:48. Memory (MB): peak = 786.246; gain = 499.465 |
|----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                  |
| Report RTL Partitions:                                                                                                           |
| +-+                                                                                                                              |
| RTL Partition  Replication  Instances                                                                                            |
| +-++                                                                                                                             |
| +-+                                                                                                                              |
| Start Rebuilding User Hierarchy                                                                                                  |
|                                                                                                                                  |
|                                                                                                                                  |
| Finished Rebuilding User Hierarchy: Time (s): cpu = 00:00:38; elapsed = 00:00:48. Memory (MB): peak = 786.246; gain = 499.465    |
|                                                                                                                                  |
| Start Renaming Generated Ports                                                                                                   |
|                                                                                                                                  |
| Finished Renaming Generated Ports : Time (s): cpu = 00:00:38 ; elapsed = 00:00:48 . Memory (MB): peak = 786.246 ; gain = 499.465 |
|                                                                                                                                  |
| Start Handling Custom Attributes                                                                                                 |
|                                                                                                                                  |
| Finished Handling Custom Attributes: Time (s): cpu = 00:00:38; elapsed = 00:00:48. Memory (MB): peak = 786.246; gain = 499.465   |
|                                                                                                                                  |

| Start Renaming Generated Nets                                                                                            |      |
|--------------------------------------------------------------------------------------------------------------------------|------|
| Finished Renaming Generated Nets: Time (s): cpu = 00:00:38; elapsed = 00:00:48. Memory (MB): peak = 786.2 gain = 499.465 | 46 ; |
| Start Writing Synthesis Report                                                                                           |      |
| Report BlackBoxes:                                                                                                       |      |
| +-++                                                                                                                     |      |
| BlackBox name  Instances                                                                                                 |      |
| +-+                                                                                                                      |      |
| +-+                                                                                                                      |      |
| Report Cell Usage:                                                                                                       |      |
| ++                                                                                                                       |      |
| Cell  Count                                                                                                              |      |
| ++                                                                                                                       |      |
| 1  BUFG   1                                                                                                              |      |
| 2  CARRY4   8                                                                                                            |      |
| 3  LUT1   1                                                                                                              |      |
| 4  LUT2   1                                                                                                              |      |
| 5  LUT3   23                                                                                                             |      |
| 6  LUT4   18                                                                                                             |      |
| 7  LUT5   15                                                                                                             |      |
| 8  LUT6   10                                                                                                             |      |
| 9  MUXF7   6                                                                                                             |      |
| 10  FDRE   53                                                                                                            |      |
| 11  LD   12                                                                                                              |      |

```
|12 |LDC | 1|
|13 |IBUF | 2|
|14 |OBUF | 17|
+-----+
```

### Report Instance Areas:



Finished Writing Synthesis Report : Time (s): cpu = 00:00:38 ; elapsed = 00:00:48 . Memory (MB): peak = 786.246 ; gain = 499.465

-----

Synthesis finished with 0 errors, 0 critical warnings and 28 warnings.

Synthesis Optimization Runtime : Time (s): cpu = 00:00:24; elapsed = 00:00:38. Memory (MB): peak = 786.246; gain = 168.031

Synthesis Optimization Complete: Time (s): cpu = 00:00:38; elapsed = 00:00:48. Memory (MB): peak = 786.246; gain = 499.465

```
INFO: [Project 1-571] Translating synthesized netlist
```

INFO: [Netlist 29-17] Analyzing 29 Unisim elements for replacement

INFO: [Netlist 29-28] Unisim Transformation completed in 0 CPU seconds

INFO: [Project 1-570] Preparing netlist for logic optimization

INFO: [Opt 31-138] Pushed 0 inverter(s) to 0 load pin(s).

INFO: [Project 1-111] Unisim Transformation Summary:

A total of 13 instances were transformed.

LD => LDCE: 12 instances
LDC => LDCE: 1 instances

INFO: [Common 17-83] Releasing license: Synthesis

113 Infos, 32 Warnings, 0 Critical Warnings and 0 Errors encountered.

synth\_design completed successfully

synth\_design: Time (s): cpu = 00:00:40; elapsed = 00:00:52. Memory (MB): peak = 786.305; gain = 511.516

INFO: [Common 17-1381] The checkpoint 'C:/Users/Uzma/Desktop/Final/New folder/Lab 9 final.runs/synth\_1/Final\_Project.dcp' has been generated.

INFO: [runtcl-4] Executing : report\_utilization -file Final\_Project\_utilization\_synth.rpt -pb Final\_Project\_utilization\_synth.pb

report utilization: Time (s): cpu = 00:00:00; elapsed = 00:00:00.031. Memory (MB): peak = 786.305; gain = 0.000

INFO: [Common 17-206] Exiting Vivado at Sun Jun 11 16:52:34 2023...

# **Conclusions:**

- In this lab designed and developed a functional nano-processor that could execute simple assembly instructions like ADD, MOV, NEG and JNZ and display the output value on a seven segment display and a set of LEDs too.
- In attempt to reduce the LUT and Flip Flop count we tried our best to minimize the number of if-else statements and we were able to optimize it as desired.

- In addition we were able to further optimize the design by using a behavioral approach to design the MUXs instead of decoders.
- Initially we faced an issue where our nano-processor was apparently perfectly
  functioning when simulated, but it failed to display the result on the seven-segment
  display when tested on Basys3. Later after careful debugging we were able to pinpoint
  the reason. And it was as we had not assigned a value for load select after a jump
  instruction. Even though logically it was unnecessary for such an assignment we
  concluded that in practice it was necessary.

# **Contribution:**

| MEMBER       | TOTAL HOURS SPENT |
|--------------|-------------------|
| AATHIF M.N.M | 27                |
| KHAN M.I     | 25                |

| NAME   | DESIGN                                  | HOURS   |
|--------|-----------------------------------------|---------|
| AATHIF | <ul> <li>4 bit AddSub unit</li> </ul>   | 1 hour  |
|        | <ul> <li>Multiplexers</li> </ul>        | 1 hours |
|        | <ul> <li>Register bank</li> </ul>       | 1 hour  |
|        | Program ROM                             | ½ hour  |
| IYADH  | 3 bit Adder                             | 1 hour  |
|        | <ul> <li>Program counter</li> </ul>     | 1 hour  |
|        | <ul> <li>Instruction decoder</li> </ul> | 2 hours |

# Nano processor and Final project: We worked together to build them and implement taking turns. Totally spending around 4 hours each. **Testing, Debugging and Optimization:** We worked together trying to optimize the design and debug along the way. Total time spent on optimizing and debugging amounted to around 15 hours each.