Advanced R Visualizations.

STAT UN2102 Statistical Computing & Introduction to Data Science

Gabriel Young Columbia University

February 13, 2018

Course Notes

Last Time

Base R Graphics

Section I

Some More Plotting with Base R

Basics of Plotting

Recall,

- Visualization variation (of a single variable):
 - hist() Histograms.
 - barplot() Bargraphs.
- Visualizing covariation (of multiple variables):
 - plot() Scatterplots.
 - boxplot() Boxplots (box-and-whisker plots).

Basics of Plotting

The plot() function.

- The foundation of many of R's graphics functions.
- Often one builds up the graph in stages with plot() as a base.
- Each call to plot() begins a new graph window.
- Takes arguments, called *graphical parameters*, to change various aspects of the plot. (?par)

Diamonds Dataset

- Recall the diamonds data set. (diamonds.csv)
- Run diamonds <- read.csv("diamonds.csv", as.is = TRUE).

```
> plot(log(diam$carat), log(diam$price), col = diam$cut)
> legend("bottomright", legend = levels(diam$cut),
+ fill = 1:length(levels(diam$cut)), cex = .5)
```


Let's instead plot a regression line for each cut separately.

```
> cuts <- levels(diam$cut)
> col counter <- 1
> for (i in cuts) {
+ this_cut <- diam$cut == i
+ this_data <- diam[this_cut, ]
+ this_lm <- lm(log(this_data$price)
+
                     ~ log(this_data$carat))
   abline(this_lm, col = col_counter)
+
   col_counter <- col_counter + 1
+ }
```


Check Yourself

Exercise:

Use the built-in iris dataset.

- Create a new column Setosa that takes a 1 if the iris is a setosa and a 0 otherwise.
- Plot iris Sepal.Width on the x-axis and Sepal.Length on the y-axis. Color the points according to whether the iris is a setosa or not.
- Plot two regression lines on the plot, one for the setosa iris and one for non-setosa iris.

We add a new point for a diamond that is \$898 and 0.67 carats.

> points(-0.4, 6.8, pch = "*", col = "purple")

We add text to the new point we just added.

> text(-0.4, 6.8 - .2, "New Diamond", cex = .5)

Useful Graphical Parameters

The table below lists a selection of R's graphical parameters. More info at http://www.statmethods.net/advgraphs/parameters.html or using ?par.

Parameter	Description
pch	Point Character. Character of the points in the plot.
main	Title of the plot.
xlab, ylab	Axes labels.
lty	Line Type. E.g. 'dashed', 'dotted', etc.
lwd	Line Width. Line width relative to default $= 1$.
cex	Character Expand. Character size relative to default $= 1$.
xlim, ylim	The limits of the axes.
mfrow	Plot figures in an array (e.g. next to each other).
col	Plotting color.

Section II

Data Visualization

Section II

Good Visualizations

In data science, good visualizations should give you more information than you can see in just the data table itself.

Good Visualizations - John Snow 1854 (Wikipedia)

Good Visualizations - Charles Joseph Minard 1896 (Wikipedia)

Good Visualizations - Charles Joseph Minard 1896 (Wikipedia)

Minard Graph

Minard shows six variables:

- Number of soldiers,
- Direction of the march,
- Location coordinates,
- Temperature on the return journey,
- Location on dates in November and December.

Bad Visualizations - Hillary Clinton

Good Visualizations - Washington Post

Improving the Clinton campaign's terrible graph

Population estimates from the Census Bureau. Gun ownership estimate based on calculations from Gallup compared with Census household data. Percentages based on Clinton campaign figures.

90% support universal background checks ~287 MILLION

Bad Visualizations

Even statisticians are sometimes bad at making visualizations!

Bad Visualizations - Nate Silver

Bad Visualizations - Nate Silver

Candidate	Moderate	Establishment	Christian Conservative	Libertarian	Tea Party
Bush	Х	X			
Carson					X
Christie	X	X			
Cruz					X
Huckabee			X		
Jindal		X	X		
Kasich		X			
Martinez	X	X			
Paul				X	
Pence		X	X		
Perry		X	X		X
Romney		X			
Rubio		X			
Ryan		X			
Santorum			X		
Walker		X			X

Check Yourself - Good or Bad?

Figure 2
Distribution of after-tax income of census family units for Canada, 2005 and 2010

Bad Visualizations

Pie charts are a poor way to illustrate information.

Bad Visualizations

Pie charts are a poor way to illustrate information.

Especially this one:

Task

Identify what the following function does.

Code

```
> pie.chart <- function(data) {
+ print("I suck")
+ }</pre>
```

Task

Identify what the following function does.

Code

```
> pie.chart <- function(data) {
+ print("I suck")
+ }</pre>
```

The pie.chart function prints "I suck"

```
> pie.chart(c("Red","Red","Blue"))
```

```
[1] "I suck"
```

Good Visualizations

- Keep things simple in terms of color and presentation!
- Try not adding non-needed dimensions to a plot, i.e., 3D bar chart describing one categorical variable.
- Showing more dimensions on lower a dimensional plot is encouraged, i.e, diamond price versus carat split by cut.
- Barcharts are a better way to summarize categorical data compared to piecharts.

Section III

Advanced Visualization Techniques

- R has several systems for making graphs (we've looked at the base R functions).
- ggplot2 is one of the most elegant and flexible.
- ggplot2 uses a coherent system (or 'grammar') for describing and building graphs.

- R has several systems for making graphs (we've looked at the base R functions).
- ggplot2 is one of the most elegant and flexible.
- ggplot2 uses a coherent system (or 'grammar') for describing and building graphs.

Need to run install.packages("ggplot2") now and library("ggplot2") every time you want to use it!

We study ggplot2 using the mpg dataset. Let's try to answer the question: do cars with bigger engines use more fuel than cars with small engines?

> dim(mpg)

We study ggplot2 using the mpg dataset. Let's try to answer the question: do cars with bigger engines use more fuel than cars with small engines?

```
Read about the data using ?mpg.
```

```
[1] 234 11
> head(mpg, 3)
 manufacturer model displ year cyl trans drv cty hwy
                             4 auto(15) f 18
        audi
             a4 1.8 1999
                                                 29
        audi a4 1.8 1999
                             4 manual(m5) f 21 29
3
                             4 manual(m6) f
      andi
            a4 2.0 2008
                                             20
                                                31
 f1
      class
  p compact
  p compact
  p compact
```

A First Plot

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy))
```



```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy))
```

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy))
```

- Begin a plot with ggplot().
 - It creates the coordinate axis that you add to.
 - The first argument is the dataset

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy))
```

- Begin a plot with ggplot().
 - It creates the coordinate axis that you add to.
 - The first argument is the dataset
- Next you want to add layers to the plot.
 - In our example: geom_point() adds a layer of points.
 - Lots of different geom functions doing different things.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy))
```

- Begin a plot with ggplot().
 - It creates the coordinate axis that you add to.
 - The first argument is the dataset
- Next you want to add layers to the plot.
 - In our example: geom_point() adds a layer of points.
 - Lots of different geom functions doing different things.
- geom functions take mapping arguments.
 - Defines how variables in your dataset are mapped to visual properties.
 - Always paired with aes().
 - The x and y arguments specify which variables to map to the axes.

General structure:

```
ggplot(data = <DATA>) +
  <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

To create a plot, replace the bracketed sections in the code above with a datatset, a geom function, and a set of mappings.

From this template, we can make many different kinds of graphs using ggplot.

Check Yourself

Tasks

- Plot just ggplot(data = mpg). What do you get?
- Make a scatterplot of hwy vs. cyl.
- Make a scatterplot of class vs. drv. Why is this plot not useful?

Aesthetic Mappings

The blue points seem to have a different trend than the rest – possibly hybrids? We study car class to find out.

Aesthetic Mappings

- We can add a third variable to a scatterplot by mapping it to an aesthetic.
- An aesthetic is a visual property of the objects in the plot.
- Things like size, color, shape of points.

Mapping Aesthetics

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x=displ, y=hwy, color=class))
```


Check Yourself

Tasks

- Instead of mapping class to the color aesthetic, map it to the alpha aesthetic or the size aesthetic.
- Instead of mapping class to the color aesthetic, map it to the shape aesthetic. Note that ggplot() will only use 6 shapes at a time. What does this mean for our plot?
- What does the following code do?ggplot(data = mpg) +

```
grot(data = mpg) +
geom_point(mapping = aes(x=displ, y=hwy), color="blue")
```

 Map a continuous variable in the mpg dataset, like cty, to the alpha, shape, and size aesthetics. What does this do?

Facets

- We saw we could add categorical variables to plots using aesthetics.
- Can also do this by splitting the plot into facets, which are subplots that each display one subset of the data.
- Use the fact_wrap() command to facet a plot by a single variable.
- The argument is a formula created with ~ followed by a variable name.

Facets

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_wrap(~ class, nrow = 2)
```


Check Yourself

Tasks

 Facet on two variables use the facet_grid() command. An example is the following:

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(drv ~ class)
```

What do the empty cells mean?

- Look at ?facet_wrap. What do nrow and ncol do? Why doesn't facet_grid() have nrow and ncol arguments?
- What happens if you facet on a continuous variable?

- In the previous slide, each plot used a different **visual object** to represent the data.
- Produce this by using different geoms.
- A geom is a geometrical object used to represent data in a plot.
- Often describe plots by the type of geom they use. For example, bar graphs use bar geoms.

```
ggplot(data = mpg) +
  geom_smooth(mapping = aes(x = displ, y = hwy))
```


- Every geom takes a mapping argument but not every aesthetic works with every geom.
 - E.g., you can set the shape of a point, but not a line. You can set the linetype of a line.
- ggplot2 has around 30 different geoms.
- Can get help with ?geom_smooth, for example.

Some Commonly-used geoms

geom Name	Used to	Aesthetics
geom_histogram	Visualize a Continuous Variable	х.
geom_bar	Visualize a Discrete Variable	x.
geom_point	Visualize a Two Continuous Variables	x, y.
geom_text	Add Labels to a Plot	x, y, label.
geom_boxplot	Visualize Continuous and Discrete Variables	x, y.
geom_jitter	Visualize a Two Variables	x, y.
many more		

Layering geoms

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  geom_smooth(mapping = aes(x = displ, y = hwy))
```


Adding Axis Labels

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  geom_smooth(mapping = aes(x = displ, y = hwy)) +
  geom_point(mapping = aes(x=3, y=30), color = "purple") +
  geom_text(mapping = aes(x=3, y=31, label = "New Point"), size=4) -
  labs(title = "New Plot", x = "Engine Weight", y = "Highway mpg")
```


Layering geoms

```
> ggplot(data = diamonds) +
+ geom_point(mapping = aes(x = carat, y = price),
+ alpha = 1/10)
```


Check Yourself

Exercise:

Use the built-in iris dataset.

- Plot iris Sepal.Width on the x-axis and Sepal.Length on the y-axis. Color the points according to whether the iris is a setosa or not.
- Plot two regression lines on the plot, one for the setosa iris and one for non-setosa iris. Hint: Use geom_abline(intercept, slope).