# SPMODEL: SPATIAL MODELING IN R - SUPPLEMENTARY MATERIAL

#### A Preprint

#### Michael Dumelle \*

United States Environmental Protection Agency 200 SW 35th St, Corvallis, OR, 97333 Dumelle.Michael@epa.gov

## Matt Higham

Department of Math, Computer Science, and Statistics St. Lawrence University 23 Romoda Drive, Canton, NY, 13617 mhigham@stlawu.edu

## Jay M. Ver Hoef

National Oceanic and Atmospheric Administration Alaska Fisheries Science Center Marine Mammal Laboratory, Seattle, WA, 98115 jay.verhoef@noaa.gov

April 23, 2022

## Abstract

Enter the text of your abstract here.

Keywords Spatial covariance · Linear Model · Autoregressive model

## 1 Covariance Functions

#### 2 Estimation

#### 2.1 Likelihood-based Estimation

Minus twice a profiled Gaussian log-likelihood, denoted  $-2l(\theta|\mathbf{y})$  is given by

$$-2l(\boldsymbol{\theta}|\mathbf{y}) = \ln|\boldsymbol{\Sigma}| + (\mathbf{y} - \mathbf{X}\tilde{\boldsymbol{\beta}})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\tilde{\boldsymbol{\beta}}) + n \ln 2\pi, \tag{1}$$

where  $\tilde{\boldsymbol{\beta}} = (\mathbf{X}^\intercal \mathbf{\Sigma}^{-1} \mathbf{X})^{-1} \mathbf{X}^\intercal \mathbf{\Sigma}^{-1} \mathbf{y}$ . Minimizing Equation 1 yields  $\hat{\boldsymbol{\theta}}_{ml}$ , the maximum likelihood estimates for  $\boldsymbol{\theta}$ . Then a closed for solution exists for  $\hat{\boldsymbol{\beta}}_{ml}$ , the maximum likelihood estimates for  $\boldsymbol{\beta}$ :  $\hat{\boldsymbol{\beta}}_{ml} = \hat{\boldsymbol{\beta}}_{ml}$ , where  $\tilde{\boldsymbol{\beta}}_{ml}$  is  $\tilde{\boldsymbol{\beta}}$  evaluated at  $\hat{\boldsymbol{\theta}}_{ml}$ . Unfortunately  $\hat{\boldsymbol{\theta}}_{ml}$  can be badly biased for  $\boldsymbol{\theta}$  (especially for small sample sizes), which impacts the estimation of  $\boldsymbol{\beta}$  (Patterson and Thompson 1971). This bias occurs due to the simultaneous estimation of  $\boldsymbol{\beta}$  and  $\boldsymbol{\theta}$  To reduce this bias, restricted maximum likelihood estimation (REML) emerged (Patterson and Thompson 1971; Harville 1977; Wolfinger, Tobias, and Sall 1994). It can be shown that integrating  $\boldsymbol{\beta}$  out of a Gaussian likelihood yields the restricted Gaussian likelihood used in REML estimation. Minus twice a restricted Gaussian log-likelihood, denoted  $-2l_R(\boldsymbol{\theta}|\mathbf{y})$  is given by

$$-2l_R(\boldsymbol{\theta}|\mathbf{y}) = -2l(\boldsymbol{\theta}|\mathbf{y}) + \ln|\mathbf{X}^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}\mathbf{X}| - p\ln 2\pi,$$
(2)

where p equals the dimension of  $\beta$ . Minimizing Equation 2 yields  $\hat{\boldsymbol{\theta}}_{reml}$ , the restricted maximum likelihood estimates for  $\boldsymbol{\theta}$ . Then a closed for solution exists for  $\hat{\boldsymbol{\beta}}_{reml}$ , the restricted maximum likelihood estimates for  $\boldsymbol{\beta}$ :  $\hat{\boldsymbol{\beta}}_{reml} = \tilde{\boldsymbol{\beta}}_{reml}$ , where  $\tilde{\boldsymbol{\beta}}_{reml}$  is  $\tilde{\boldsymbol{\beta}}$  evaluated at  $\hat{\boldsymbol{\theta}}_{reml}$ .

<sup>\*</sup>Corresponding Author

Generally the overall variance,  $\sigma^2$ , can be profiled out of Equation 1 and Equation 2. This reduces the number of parameters requiring optimization by one, which can dramatically reduce estimation time. For example, profiling  $\sigma^2$  out of Equation 1 yields

$$-2l^*(\boldsymbol{\theta}^*|\mathbf{y}) = \ln|\mathbf{\Sigma}^*| + n\ln[(\mathbf{y} - \mathbf{X}\tilde{\boldsymbol{\beta}})^{\mathsf{T}}\mathbf{\Sigma}^{-1}(\mathbf{y} - \mathbf{X}\tilde{\boldsymbol{\beta}})] + n + n\ln 2\pi/n.$$
(3)

After finding  $\hat{\boldsymbol{\theta}}_{ml}^*$  a closed form solution for  $\hat{\sigma}_{ml}^2$  exists:  $\hat{\sigma}_{ml}^2 = [(\mathbf{y} - \mathbf{X}\tilde{\boldsymbol{\beta}})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{y} - \mathbf{X}\tilde{\boldsymbol{\beta}})]/n$ . Then  $\hat{\boldsymbol{\theta}}_{ml}^*$  is combined with  $\hat{\sigma}_{ml}^2$  to yield  $\hat{\boldsymbol{\theta}}_{ml}$  and subsequently  $\hat{\boldsymbol{\beta}}_{ml}$ . A similar result holds for REML estimation. Profiling  $\sigma^2$  out of Equation 2 yields

$$-2l_R^*(\boldsymbol{\theta}^*|\mathbf{y}) = \ln|\mathbf{\Sigma}^*| + (n-p)\ln[(\mathbf{y} - \mathbf{X}\tilde{\boldsymbol{\beta}})^{\mathsf{T}}\mathbf{\Sigma}^{-1}(\mathbf{y} - \mathbf{X}\tilde{\boldsymbol{\beta}})] + (n-p) + (n-p)\ln 2\pi/(n-p). \tag{4}$$

After finding  $\hat{\boldsymbol{\theta}}^*_{reml}$  a closed form solution for  $\hat{\sigma}^2_{reml}$  exists:  $\hat{\sigma}^2_{reml} = [(\mathbf{y} - \mathbf{X}\tilde{\boldsymbol{\beta}})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{y} - \mathbf{X}\tilde{\boldsymbol{\beta}})]/(n-p)$ . Then  $\hat{\boldsymbol{\theta}}^*_{reml}$  is combined with  $\hat{\sigma}^2_{reml}$  to yield  $\hat{\boldsymbol{\theta}}_{reml}$  and subsequently  $\hat{\boldsymbol{\beta}}_{reml}$ .

#### 2.2 Semivariogram-based Estimation

An alternative approach to likelihood-based estimation is semivariogram-based estimation. The semivariogram of a constant-mean process  $\mathbf{y}$  is the expectation of the squared half-difference between two observations h distance units apart. More formally, the semivariogram is denoted  $\gamma(h)$  and defined as

$$\gamma(h) = \mathcal{E}(y_i - y_j)^2 / 2,\tag{5}$$

where  $||y_i - y_j||_2 = h$  (the Euclidean distance). When the process  $\mathbf{y}$  is second-order stationary, the semivariogram and covariance function are intimately connected:  $\gamma(h) = \text{Cov}(0) - \text{Cov}(h)$ , where Cov(0) is the covariance function evaluated at 0 (which is the overall variance,  $\sigma^2$ ) and Cov(h) is the covariance function evaluated at h.

# 2.2.1 Weighted Least Squares

The empirical semivariogram is a moment-based estimate of the semivariogram denoted by  $\hat{\gamma}(h)$  and defined as

$$\hat{\gamma}(h) = \frac{1}{2|N(h)|} \sum_{N(h)} (y_i - y_j)^2, \tag{6}$$

where N(h) is the set of observations in  $\mathbf{y}$  that are h units apart (distance classes) and |N(h)| is the cardinality of N(h) (Cressie 1993). Often the set N(h) contains observations that are  $h \pm \alpha$  apart – this approach is known as "binning" the empirical semivariogram. Equation (6) is viewed as the average squared half-distance between two observations in  $\mathbf{y}$ . Cressie (1985) proposed estimating  $\boldsymbol{\theta}$  by minimizing an objective function that involves  $\gamma h$  and  $\hat{\gamma}(h)$  and is based on a weighted least squares criterion. This criterion is defined as

$$\sum_{i} w_i [\hat{\gamma}(h)_i - \gamma(h)_i]^2, \tag{7}$$

where  $w_i$ ,  $\hat{\gamma}(h)_i$ , and  $\gamma(h)_i$  are the weights, empirical semivariogram, and semivariogram for the *i*th distance class. Cressie (1985) recommended setting  $w_i = |N(h)|/\gamma(h)_i^2$ , which gives more weights to distance classes with more observations (|N(h)|) and semivariances at shorter distances ( $1/\gamma(h)_i^2$ ). The default in spmodel is to use these  $w_i$  – the type of  $w_i$  is changed via the weights argument to splm(). Table 2.2.1 contains all  $w_i$  available in spmodel.

Recall that the semivariogram is defined for a constant-mean process. Typically in linear models,  $\mathbf{y}$  does not have a constant mean. So the empirical semivariogram and  $\hat{\boldsymbol{\theta}}_{wls}$  are actually constructed using the residuals from an ordinary least squares regression of  $\mathbf{y}$  on  $\mathbf{X}$  – these residuals are assumed to have mean zero.

#### 2.2.2 Composite Likelihood

(Curriero and Lele 1999)

| $w_i$ Name                          | $w_i$ Form             | weight =                |
|-------------------------------------|------------------------|-------------------------|
| Cressie                             | $ N(h) /\gamma(h)_i^2$ | "cressie"               |
| Cressie (Denominator) Root          | $ N(h) /\gamma(h)_i$   | "cressie-droot"         |
| Cressie No Pairs                    | $1/\gamma(h)_i^2$      | "cressie-nopairs"       |
| Cressie (Denominator) Root No Pairs | $1/\gamma(h)_i$        | "cressie-droot-nopairs" |
| Pairs                               | N(h)                   | "pairs"                 |
| Pairs Inverse Distance              | $ N(h) /h^2$           | "pairs-invd"            |
| Pairs Inverse (Root) Distance       | N(h) /h                | "pairs-invsd"           |
| Ordinary Least Squares              | 1                      | ols                     |
| Table 1. spmodel table weights      |                        |                         |

Table 1: spmodel table weights

- 3 Hypothesis Testing
- 3.1 The General Linear Hypothesis Test
- 3.2 Contrasts
- 4 Random Effects
- 4.1 BLUPs

## References

Cressie, Noel. 1985. "Fitting Variogram Models by Weighted Least Squares." *Journal of the International Association for Mathematical Geology* 17 (5): 563–86.

——. 1993. Statistics for Spatial Data. John Wiley & Sons.

Curriero, Frank C, and Subhash Lele. 1999. "A Composite Likelihood Approach to Semivariogram Estimation." *Journal of Agricultural, Biological, and Environmental Statistics*, 9–28.

Harville, David A. 1977. "Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems." *Journal of the American Statistical Association* 72 (358): 320–38.

Patterson, H Desmond, and Robin Thompson. 1971. "Recovery of Inter-Block Information When Block Sizes Are Unequal." *Biometrika* 58 (3): 545–54.

Wolfinger, Russ, Randy Tobias, and John Sall. 1994. "Computing Gaussian Likelihoods and Their Derivatives for General Linear Mixed Models." SIAM Journal on Scientific Computing 15 (6): 1294–1310.