Verjetnost z mero - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Matija Vidmarja

2021/22

Kazalo

1	Me	rljivost in mera	3
	1.1	Merljive množice	3
	1.2	Mere	4
	1.3	Merljive preslikave in generirane σ -algebre	6
	1.4	Borelove množice na razširjeni realni osi $[-\infty, \infty]$	
		in Borelova merljivost numeričnih funkcij	9
	1.5	Argumenti monotonega razreda	11
	1.6	Lebesgue-Stieltjesova mera	13
2	Integracija na merljivih prostorih		15
	2.1	Lebesgueov integral	15
	2.2	Konvergenčni izreki s posledicami	17
	2.3	Rezultati, ki se tičejo menjave vrsrnega reda	
		integracije	19
	2.4	Nedoločena integracija in absolutna zveznost	21
	2.5	Prostori L in nekaj integralskih neenakosti	23
3	Verjetnost kot normalizirana mera		25
	3.1	Osnovni pojmi	25
	3.2	Neodvisnost	27

1 Merljivost in mera

1.1 Merljive množice

Definicija 1.1. Naj bo $\mathcal{A} \subset 2^{\Omega}$ (t.j. $\mathcal{A} \in 2^{2^{\Omega}}$). Potem rečemo, da je \mathcal{A} zaprta za:

• c^{Ω} (t.j. za komplement v Ω)

$$\stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \forall A: (A \in \Omega \ \Rightarrow \ \Omega \backslash A \in \mathcal{A});$$

 \bullet \cap (t.j. za preseke)

$$\overset{\text{def}}{\Longleftrightarrow} \quad A_1 \cap A_2 \in \mathcal{A} \ \text{ brž ko je } \{A_1,A_2\} \subset A;$$

• ∪ (t.j. za unije)

$$\overset{\text{def}}{\Longleftrightarrow}$$
 $A_1 \cup A_2 \in \mathcal{A}$ brž ko je $\{A_1, A_2\} \subset A$;

• \ (t.j. za razlike)

$$\overset{\text{def}}{\Longleftrightarrow} A_1 \backslash A_2 \in \mathcal{A} \text{ brž ko je } \{A_1, A_2\} \subset A;$$

• $\sigma \cap$ (t.j. za števne preseke)

$$\stackrel{\text{def}}{\Longleftrightarrow} \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A} \text{ za vsako zaporedje } (A_n)_{n \in \mathbb{N}} \text{ iz } \mathcal{A};$$

• $\sigma \cup$ (t.j. za števne unije)

$$\stackrel{\text{def}}{\Longleftrightarrow} \quad \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A} \quad \text{za vsako zaporedje } (A_n)_{n \in \mathbb{N}} \text{ iz } \mathcal{A}.$$

Definicija 1.2. \mathcal{A} je σ -algebra na Ω

$$\stackrel{\mathrm{def}}{\Longleftrightarrow} \quad (\Omega, \mathcal{A}) \; \; \mathrm{je} \; \mathrm{merljiv} \; \mathrm{prostor}$$

$$\stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \varnothing \in \mathcal{A} \; \mathrm{in} \; \mathcal{A} \; \mathrm{je} \; \mathrm{zaprt} \; \mathrm{za} \; \mathrm{c}^{\Omega} \; \mathrm{in} \; \mathrm{za} \; \sigma \; \cup \; .$$

V primeru, da \mathcal{A} je σ-algebra na Ω :

- A je A-merljiva $\stackrel{\text{def}}{\Longleftrightarrow} A \in A$;
- \mathcal{B} je pod- σ -algebra $\overset{\text{def}}{\Longleftrightarrow}$ \mathcal{B} je σ -algebra na Ω in $\mathcal{B} \subset \mathcal{A}$.

Trditev 1.1. Naj bo $\mathcal{A} \subset 2^{\Omega}$ zaprta za \mathfrak{c}^{Ω} in naj bo $\emptyset \in \mathcal{A}$. Potem je \mathcal{A} σ -algebra na Ω , če je \mathcal{A} zaprta za števne preseke, in v tem primeru je \mathcal{A} zaprta za \cap , \cup in \setminus .

1.2 Mere

Definicija 1.3. Naj bo (Ω, \mathcal{F}) merljiv prostor in $\mu : \mathcal{F} \to [0, \infty]$. μ je mera na $(\Omega, \mathcal{F}) \stackrel{\text{def}}{\Longrightarrow}$

- $\bullet \ \mu(\varnothing) = 0;$
- $\mu\left(\bigcup_{n\in\mathbb{N}}\right) = \sum_{n\in\mathbb{N}} \mu(A_n)$ za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} , ki sestoji iz paroma disjunktnih dogodkov.

Lastnosti:

- Mera μ na (Ω, \mathcal{F}) je $kon\check{c}na \stackrel{\mathrm{def}}{\Longleftrightarrow} \mu(\Omega) < \infty$.
- Mera μ na (Ω, \mathcal{F}) je $verjetnostna^1 \stackrel{\text{def}}{\Longleftrightarrow} \mu(\Omega) = 1$
- Mera μ na (Ω, \mathcal{F}) je σ -končna $\stackrel{\text{def}}{\Longleftrightarrow}$ obstaja zaporedje $(A_n)_{n\in\mathbb{N}}$ v \mathcal{F} , da je

$$\bigcup_{n\in\mathbb{N}} \ = \ \Omega \quad \text{in}$$

$$\mu(A_n) \ < \ \infty, \quad \forall n\in\mathbb{N}$$

 $(\Omega, \mathcal{F}, \mu)$ je prostor z mero $\stackrel{\text{def}}{\Longleftrightarrow} \mu$ je mera na (Ω, \mathcal{F}) . Če je μ mera na (Ω, \mathcal{F}) potem je $\mu(\Omega)$ masa mere μ . Če je $A \in \mathcal{F}$, potem je:

• A je μ -zanemarljiv $\stackrel{\text{def}}{\Longleftrightarrow} \mu(A) = 0;$

¹Tudi: μ je verjetnost.

• A je μ -trivialna $\stackrel{\text{def}}{\Longleftrightarrow} A$ ali $\Omega \backslash A$ je μ -zanemarljiva

Če imamo poleg tega še lastnost $P(\omega)$ v $\omega \in A$, potem

• $P(\omega)$ drži μ -skoraj povsod (μ -s.p.) v $\omega \in A \iff def$

$$A_{\neg P} := \{ \omega \in \Omega \mid \neg P(\omega) \in \mathcal{F} \text{ in } \mu(A_{\neg P}) = 0 \};$$

• $P(\omega)$ drži μ -skoraj gotovo (μ -s.g.) $\stackrel{\text{def}}{\Longleftrightarrow} P(\omega)$ drži μ -skoraj povsod in μ je verjetnostna.

Pdrži $\mu\text{-skoraj}$ povsod na $A \iff P(\omega)$ drži $\mu\text{-skoraj}$ povsod v $\omega \in A.$ Podobno za ostale.

Trditev 1.2. Naj bo μ mera na (Ω, \mathcal{F}) . Potem:

(i) μ je aditivna:

$$\mu(A \cup B) = \mu(A) + \mu(B)$$

za vsaki disjunktivni množici $A, B \in \mathcal{F}$.

(ii) μ je monotona:

$$\mu(A) \leqslant \mu(B),$$

če je $A \subset B$ in $A, B \in \mathcal{F}$

(iii) μ je zvezna od spodaj:

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \uparrow - \lim_{n\to\infty}\mu(A_n)$$

za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} , ki je nepadajoče glede na inkluzijo: $A_n\subset A_{n+1}\ \forall n\in\mathbb{N}.$

(iv) μ je števno subaditivna:

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) \leqslant \sum_{n\in\mathbb{N}}\mu(A_n)$$

za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} .

(v) Naj bo μ končna:

$$\mu(\Omega \backslash A) = \mu(\Omega) - \mu(A) \ \forall A \in \mathcal{F}.$$

Naprej, μ je zvezna od zgoraj:

$$\mu\left(\bigcap_{n\in\mathbb{N}}A_n\right) = \downarrow -\lim_{n\to\infty}\mu(A_n)$$

za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} , ki je nenaraščajoča glede na inkluzijo: $A_n\supset A_{n+1}\ \forall n\in N.$

(vi) Za vsak $A \in \mathcal{F}$ je

$$\mathcal{F}|_{A} := \{B \cap A \mid B \in \mathcal{F}\}$$

 σ -algebra na A in $\mu_A := \mu|_{\mathcal{F}|_A}$ je mera na $(A, \mathcal{F}|_A)$.

Definicija 1.4. $\mu_A:=\mu\big|_{\mathcal{F}\big|_A}$ rečemo $mera\ \mu\ zožana\ na\ A$ oz. $zožitev\ \mu\ na\ A.$

1.3 Merljive preslikave in generirane σ -algebre

Definicija 1.5. Naj bo $\mathcal{A} \subset 2^{\Omega}$:

$$\sigma_{\Omega}(\mathcal{A}) \;:=\; \bigcap \{\mathcal{F} \in 2^{2^{\Omega}} \mid \mathcal{F} \text{ σ-algebra na } \Omega \text{ in } \mathcal{F} \supset \mathcal{A}\},$$

rečemo σ -algebra z A na Ω . Če sta \mathcal{B}_1 in \mathcal{B}_2 obe σ -algebri na Ω , potem definiramo

$$\mathcal{B}_1 \vee \mathcal{B}_2 := \sigma_{\Omega}(\mathcal{B}_1 \cup \mathcal{B}_2)$$

in ji rečemo skupek \mathcal{B}_1 in \mathcal{B}_2 . Bolj splošno, če imamo družino σ -algebr $(B_{\lambda})_{\lambda \in \Lambda}$ na Ω , potem postavimo

$$\bigvee_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \ := \ \sigma_{\Omega} \left(\bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \right).$$

Definicija 1.6. Naj bo $f:\Omega\to\Omega'$. Če je dana σ -algebra \mathcal{F}' na Ω' , potem definiramo

$$\sigma^{\mathcal{F}'}(f) := \{ f^{-1}(A'); A' \in \mathcal{F}' \}.$$

Začetno strukturo f glede na \mathcal{F}' (tudi, σ -algebra generirana s f glede na \mathcal{F}'). Če je dana σ -algebra \mathcal{F} na Ω , potem definiramo

$$\sigma_{\mathcal{F}}^{\Omega'}(f) := \{ A' \in 2^{\Omega'} \mid f^{-1}(A') \in \mathcal{F} \}$$

končno strukturo f na Ω' glede na \mathcal{F} . Če sta dani σ -algebri \mathcal{F} na Ω in σ -algebra \mathcal{F}' na Ω , potem rečemo: f je \mathcal{F}/\mathcal{F}' -merljiva $\stackrel{\mathrm{def}}{\Longleftrightarrow}$

$$f^{-1}(A') \in \mathcal{F}, \quad \forall A' \in \mathcal{F}'.$$

Definicija 1.7. Če je $\mathcal F$ σ -algebra na Ω in je $\mathcal F'$ σ -algebra na Ω' , potem označimo

$$\mathcal{F}/\mathcal{F}' := \{ f \in \Omega'^{\Omega} \mid f \text{ je } \mathcal{F}/\mathcal{F}'\text{-merljiva} \}.$$

Definicija 1.8. Za $A \subset \Omega$ definiramo $\mathbb{1}_{A_{\Omega}} : \Omega \to \{0, 1\},$

$$\mathbb{1}_{A_{\Omega}}(x) \ := \ \begin{cases} 1 \, ; & x \in A, \\ 0 \, ; & x \notin A, \end{cases}, \quad x \in \Omega,$$

ki ji rečemo $indikatorska funkcija A na ambientnem prostoru<math display="inline">\Omega.^2$

Trditev 1.3. Za σ -algebre $\mathcal{F}, \mathcal{G}, \mathcal{H}$, kjer $f \in \mathcal{F}/\mathcal{G}$ in $g \in \mathcal{G}/\mathcal{H}$ je

$$g \circ f \in \mathcal{F}/\mathcal{H}$$
.

Trditev 1.4. Naj bo $f: \Omega \to \Omega'$:

(i) Za σ -algebro \mathcal{F}' na Ω' je $\sigma^{\mathcal{F}'}(f)$ σ -algebra na Ω ; ona je najmanjša (glede na inkluzijo) σ -algebra \mathcal{G} na Ω , da je $f \in \mathcal{G}/\mathcal{F}'$.

 $^{^2}$ Ponavadi namesto $\mathbbm{1}_{A_\Omega}$ pišemo le $\mathbbm{1}_A.$

- (ii) Za σ -algebro $\mathcal F$ na Ω je $\sigma_F^{\Omega'}(f)$ σ -algebra na Ω' ; ona je največja (glede na inkluzijo) σ -algebra $\mathcal G'$ na Ω , da je $f \in \mathcal F/\mathcal G$.
- (iii) Za σ -algebro $\mathcal F$ na Ω in σ -algebro $\mathcal F'$ na Ω' je

$$f \in \mathcal{F}/\mathcal{F}' \iff \sigma^{\mathcal{F}'}(f) \subset \mathcal{F} \iff \mathcal{F}' \subset \sigma^{\Omega'}_{\mathcal{F}}(f).$$

(iv) Naj bo $\mathcal{A}'\sigma 2^{\Omega'}$ ter \mathcal{F} σ -algebra na Ω . Potem je

$$f \in \mathcal{F}/\sigma_{\Omega'}(\mathcal{A}') \iff (f^{-1}(A') \in \mathcal{F}, \ \forall A' \in \mathcal{A}').$$

Velja tudi

$$\sigma^{\sigma_{\Omega'}(\mathcal{A}')}(f) = \sigma_{\Omega}(\{f^{-1}(A') \mid A' \in \mathcal{A}'\}).$$

Definicija 1.9. Sled \mathcal{A} na A definiramo kot

$$\mathcal{A}|_{A} := \{B \cap A \mid B \in \mathcal{A}\}.^{3}$$

Trditev 1.5 (Sledi komutirajo v generirani σ -algebri). Naj bo $\mathcal{A} \subset 2^{\Omega}$ in $A \subset \Omega$. Potem je

$$\sigma_A(\mathcal{A}|_A) = \sigma_\Omega(\mathcal{A})|_A.$$

Trditev 1.6. Naj bo $f: \Omega \to \Omega'$ in naj bo \mathcal{F} σ -algebra na Ω ter \mathcal{F}' σ -algebra na Ω' .

(i) Če je $A' \subset \Omega'$ in $f: \Omega \to A'$, potem je

$$f \in \mathcal{F}/\mathcal{F}' \iff f \in \mathcal{F}/(\mathcal{F}'|_{A'}).$$

(ii) Če je $A \in \Omega$ in $f \in \mathcal{F}/\mathcal{F}'$, potem

$$f|_A \in (\mathcal{F}|_A)/\mathcal{F}'$$
.

(iii) Če je $(A_i)_{i\in\mathbb{N}}$ zaporedje v \mathcal{F} in $\Omega = \bigcup_{i\in\mathbb{N}} A_i$ in je $f\big|_{A_i} \in (\mathcal{F}\big|_{A_i})/\mathcal{F}'$ $\forall i\in\mathbb{N},$ potem je

$$f \in \mathcal{F}/\mathcal{F}'$$

.

³Zapis je isti kot za zožitev, vendar ne pomeni isto.

1.4 Borelove množice na razširjeni realni osi $[-\infty, \infty]$ in Borelova merljivost numeričnih funkcij

Definicija 1.10. Definirajmo razširjeno realno os:

$$[-\infty, \infty] := \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$$
$$[-\infty, a] := \{-\infty\} \cup (-\infty, a] \quad \text{za } a \in \mathbb{R} \cup \{-\infty\}$$

Relacijo \leq na $\mathbb R$ razširimo na $[-\infty, \infty]$ kot sledi:

$$-\infty \leqslant x \leqslant \infty \quad \forall x \in [-\infty, \infty].$$

Temu ustrezno imamo " $(<) := (\leqslant) \setminus (=)$ ", itd.

Definicija 1.11. Borelovo σ -algebro na $[-\infty, \infty]$ definiramo kot

$$\mathcal{B}_{[-\infty,\infty]} := \sigma_{[-\infty,\infty]}(\{[-\infty,a] \mid a \in \mathbb{R}\}).$$

Za $A \subset [-\infty, \infty]$ je

$$\mathcal{B}_A := \mathcal{B}_{[-\infty,\infty]}|_A$$

Borelova σ -algebra na A. Elementom Borelovih σ -algebr pravimo Borelove množice.

Definicija 1.12. Funkcija f je numerična, če je $\mathcal{Z}_f \in [-\infty, \infty]$.

Definicija 1.13. Če je funkcija f numerična:

- $\bullet \ \sigma(f) := \ \sigma^{\mathcal{B}_{[-\infty,\infty]}}(f);$
- če je $\mathcal F$ σ -algebra na domeni f, je f $\mathcal F$ -merljiva $\stackrel{\mathrm{def}}{\Longleftrightarrow} f$ je $\mathcal F/\mathcal B_{[-\infty,\infty]}$ -merljiva;
- če je $g: \mathcal{D}_f \to [-\infty, \infty]$, je

$$g \mathrel{\wedge} f \; := \; \min\{g,f\}^4$$

$$g \vee f := \max\{g, f\}.$$

Definiramo pozitivni in negativni del f:

$$f^+ \;:=\; f \mathrel{\vee} 0$$

$$f^- := (-f) \vee 0$$

Opomba.

$$\bullet \ f = f^+ - f^-$$

•
$$|f| = f^+ + f^-$$

Definicija 1.14. Dogovorimo se

$$0 \cdot (\pm \infty) := 0 =: (\pm \infty) \cdot 0$$

$$\infty + (-\infty) := 0 =: (-\infty) + \infty.$$

Preostanek aritmetike na $[-\infty, \infty]$ definiramo na naraven način, npr.

$$a \cdot \infty := \operatorname{sgn}(a) \cdot \infty \quad \operatorname{za} \ a \in [-\infty, \infty] \setminus \{0\}$$

$$a + \infty := \infty \quad \operatorname{za} \ a \in (-\infty, \infty]$$

$$\infty - \infty := \infty + (-\infty) = 0$$

$$itd.$$

Trditev 1.7. Če je $A \subset [-\infty, \infty]$ in je $f : A \to [-\infty, \infty]$ zvezna, potem je $f \in \mathcal{B}_A/\mathcal{B}_{[-\infty,\infty]}$. Če je $\{f,g\} \subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$ za σ -algebro \mathcal{F} , potem je

$$\{f+g,f\cdot g\}\subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$$

in

$$\{\{f \leqslant g\}, \{f = g\}, \{f < g\}\} \subset \mathcal{F}$$

.

Trditev 1.8. Naj bo \mathcal{F} σ -algebra in $(f_n)_{n\in\mathbb{N}}$ zaporedje v $\mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$. Potem je

$$\{\sup_{n\in\mathbb{N}} f_n, \inf_{n\in\mathbb{N}} f_n, \limsup_{n\to\infty} f_n, \liminf_{n\to\infty} f_n\} \subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}.$$

Če je $f_n \ge 0 \ \forall n \in \mathbb{N}$, potem je

$$\sum_{n \in \mathbb{N}} f_n \in \mathcal{F}/\mathcal{B}_{[0,\infty]}.$$

Definicija 1.15. Naj bo \mathcal{F} σ -algebra. Za $\{f,g\} \subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$ je

$$\{f \vee g, f \wedge g, f^+, f^-, |f|\} \subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}.$$

Za zaporedje $(f_n)_{n\in\mathbb{N}}$ v $\mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$ je

 $\{\{f_n \text{ konverg., ko } n \to \infty\}, \{f_n \text{ konverg. v } \mathbb{R}, \text{ ko } n \to \infty\}, \{\lim_{n \to \infty} f_n = f_\infty\}\} \ \subset \ \mathcal{F}.$

1.5 Argumenti monotonega razreda

Definicija 1.16. Naj bo \mathcal{F} σ -algebra na Ω in $f:\Omega \to [0,\infty)$:

f je \mathcal{F} -enostavna $\stackrel{\text{def}}{\Longleftrightarrow} f \in \mathcal{F}/\mathcal{B}_{[0,\infty)}$ in \mathcal{Z}_f je končna.

Trditev 1.9. Naj bo (Ω, \mathcal{F}) merljiv prostor in $f : \Omega \to [0, \infty]$. Potem je f \mathcal{F} -enostavna \iff

$$f = \sum_{i=1}^{n} c_i \mathbb{1}_{A_i},$$

za neke c_i , $i \in [n]$, iz $[0, \infty)$, neke A_i , $i \in [n]$, iz \mathcal{F} in nek $n \in \mathbb{N}$. Naprej; če je $f \in \mathcal{F}/\mathcal{B}_{[0,\infty]}$, potem je

$$\left((2^{-n} \lfloor 2^n f \rfloor) \wedge n \right)_{n \in \mathbb{N}}$$

zaporedje \mathcal{F} -enostavnih funkcij, ki ne padajo kf (celo enakomerno na vsaki množici na kateri je f omejena).

Posledica (Izrek o monotonem razredu). Naj bo \mathcal{F} σ -algebra na Ω in $\mathcal{M} \subset \mathcal{F}/\mathcal{B}_{[0,\infty]}$. Če je

$$\mathbb{1}_A \in \mathcal{M} \quad \forall A \in \mathcal{F}$$

in je ${\mathcal M}$ zaprta za nenegativne linearne kombinacije (je stožec)^5 in je ${\mathcal M}$

$$\{m_1, m_2\} \subset \mathcal{M}, \{c_1, c_2\} \subset (0, \infty) \Rightarrow c_1 m_1 + c_2 m_2 \in \mathcal{M}$$

 $^{^5}$ Pomeni:

zaprta za nepadajoče limite⁶ potem je

$$\mathcal{M} = \mathcal{F}/\mathcal{B}_{[0,\infty]}.$$

Trditev 1.10 (Doob-Dynkinova faktorizacijska lema). Naj bo $X:\Omega\to A,$ (A,\mathcal{A}) merljiv prostor. Potem je

$$Y \in \sigma^{\mathcal{A}}(X)/\mathcal{B}_{[-\infty,\infty]} \iff \exists h \in \mathcal{A}/\mathcal{B}_{[-\infty,\infty]}, \text{ da je } Y = h \circ X = h(X).$$

Definicija 1.17. Naj bo $\mathcal{D} \subset 2^{\Omega}.$ D je Dynkinov sistem (tudi $\lambda\text{-sistem})$ na $\Omega \ensuremath{\iff}$

- $\Omega \in \mathcal{D}$,
- $B \setminus A \in \mathcal{D}$ brž ko je $\mathcal{D} \ni A \subset B \in \mathcal{D}$,
- če je $(A_i)_{i\in\mathbb{N}}$ je nepadajoče zaporedje v \mathcal{D} je tudi $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{D}$.

 \mathcal{D} je π -sistem $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ \mathcal{D} je zaprt za \cap .

Trditev 1.11. Naj bo $\mathcal{D} \subset 2^{\Omega}$. Potem je \mathcal{D} Dynkinov sistem \iff

- $\Omega \in \mathcal{D}$,
- \mathcal{D} zaprta za c^{Ω} ,
- $(A_i)_{i\in\mathbb{N}}$ zaporedje iz \mathcal{D} , $A_i \cap A_j = \emptyset$ za $i \neq j$ iz $\mathbb{N} \Longrightarrow \bigcup_{n\in\mathbb{N}} A_i \in \mathcal{D}$.

 \mathcal{D} je σ -algebra na $\Omega \iff \mathcal{D}$ je λ -sistem na Ω in π -sistem.

Definicija 1.18. Za $L \subset 2^{\Omega}$ postavimo

$$\lambda_{\Omega}(L) := \bigcap \{ \mathcal{D} \in 2^{2^{\Omega}} \mid \mathcal{D} \text{ je } \lambda \text{-sistem in } \mathcal{D} \supset L \}.$$

$$\lim_{n\to\infty} f_n \in \mathcal{M}$$

⁶Pomeni: $(f_n)_{n\in\mathbb{N}}$ nepadajoče zaporedje iz \mathcal{M} , potem je

Trditev 1.12. Naj bo L π -sistem in $L \subset 2^{\Omega}$. Potem je

$$\lambda_{\Omega}(L) = \sigma_{\Omega}(L).$$

Posledica (π - λ izrek/Dynkinova lema). Naj bo L π -sistem in \mathcal{D} λ -sistem na Ω , $L \subset \mathcal{D}$. Potem je

$$\sigma_{\Omega}(L) \subset \mathcal{D}.$$

Trditev 1.13. Naj bosta μ, ν meri na merljivem prostoru $(E, \mathcal{E}), L \subset \mathcal{E}$ π -sistem, $\sigma_E(L) = \mathcal{E}$. Predpostavimo, da je $\mu|_L = \nu|_L$ in da obstaja zaporedje $(L_n)_{n \in \mathbb{N}}$ iz L, ki je nepadajoče ali sestoji iz paroma disjunktnih množic, in za katerega je

- $\bullet \ \mu(L_n) = \nu(L_n) < \infty,$
- $\bullet \bigcup_{n \in \mathbb{N}} L_n = E.$

Potem je

$$\mu = \nu$$

.

1.6 Lebesgue-Stieltjesova mera

Izrek 1.1 (Lebesgue-Stieltjesov izrek). Naj bo $F : \mathbb{R} \to \mathbb{R}$, nepadajoča in zvezna z desne (ca'd). Potem obstaja natanko ena mera μ na $\mathcal{B}_{\mathbb{R}}$, da je

$$\mu([a,b]) = F(b) - F(a) \quad \forall a \leq b \in \mathbb{R}.$$

Definicija 1.19. μ iz prejšnjega izreka rečemo mera prirejena F v Lebesgue-Stieltjesovem smislu in jo označimo z dF. V posebne primernu primeru, ko je $F = \mathrm{id}_{\mathbb{R}}$ ji rečemo Lebesgueva mera in jo označimo

$$\mathscr{L} := d(\mathrm{id}_{\mathbb{R}}).$$

Trditev 1.14. Naj bo $F: \mathbb{R} \to \mathbb{R}$ ca'd, nepadajoča. Potem je dF:

 $\bullet \ \sigma$ -končna \iff je Fomejena:

$$dF(\mathbb{R}) = \lim_{n \to \infty} dF((-n, n])$$

• verjetnostna $\iff \lim_{\infty} F - \lim_{-\infty} F = 1.$

Za $x \in \mathbb{R}$ je

$$dF(\{x\}) = F(x) - F(x^{-}),$$

$$\{x\} = \bigcap_{n \in \mathbb{N}} (x - \frac{1}{n}, x].$$

2 Integracija na merljivih prostorih

2.1 Lebesgueov integral

Definicija 2.1. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero $f \in \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$.

(a) Za f, ki je \mathcal{F} -enostavna postavimo

$$\int f \, d\mu \ := \ \sum_{a \in \mathcal{Z}_f} d\mu (\{f = a\}) \ = \ \sum_{a \in \mathcal{Z}_f} d\mu (f^{-1}(\{a\})).$$

(b) Za $f \ge 0$, ki ni \mathcal{F} -enostavna postavimo

$$\int f \, d\mu := \sup \{ \int g \, d\mu \mid g \leqslant f, \ g \ \mathcal{F}\text{-enostavna} \}.$$

(c) Za $\neg (f \geqslant 0)$, ki ni \mathcal{F} -enostavna postavimo

$$\int f \, d\mu \ := \ \int f^+ \, d\mu - \int f^- \, d\mu.$$

Dogovor.

$$\mu[f] = \mu^x[f(x)] := \int f(x) \, \mu(dx) := \int f \, d\mu$$

Če je še $A \in \mathcal{F}$, potem označimo še

$$\mu[f;A] := \mu^x[f(x); x \in A] := \int_A f(x) \, \mu(dx) := \int_A f \, d\mu := \int f \mathbb{1}_A \, d\mu.$$

Integral f proti μ je dobro definiran $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\int f^+ d\mu \wedge \int f^- d\mu < \infty;$$

f je μ -integrabilna $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\int f^+ d\mu \vee \int f^- d\mu < \infty.$$

Definicija 2.2. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero:

$$L^1(\mu) := \{ f \in \mathcal{F}/\mathcal{B} \mid f \text{ je } \mu\text{-integrabilna} \}.$$

Za $g:\Omega\to\mathbb{C}$ z $\{\Re(g),\Im(g)\}\subset L^1(\mu)$ je

$$\int g \, d\mu \ := \ \int \mathfrak{R}(g) \, d\mu + i \int \mathfrak{I}(g) \, d\mu.$$

Izrek 2.1. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero. Integral ima naslednje lastnosti:

(i) Aditivnost:

$$\int f + g \, d\mu = \int f \, d\mu + \int g \, d\mu,$$

za $\{f,g\}\subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$ z $\mu[f^-]\vee \mu[g^-]<\infty$

(ii) Integral indikatorja:

$$\int \mathbb{1}_A \, d\mu = \mu(A), \quad \forall A \in \mathcal{F}.$$

V posebnem primeru je $\mu[0] = 0$ in torej $\mu[f^+] - \mu[f^-] = \mu[f] \ \forall f \in \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$.

(iii) Integrali, ki so 0 in so končni: za $f \in \mathcal{F}/\mathcal{B}_{[0,\infty]}$:

•
$$\mu[f] = 0 \iff f = 0 \text{ s.p.-}\mu$$

•
$$\mu[f] < \infty \Longrightarrow f < \infty \text{ s.p.-}\mu.$$

(iv) Trikotniška neenakost:

$$\left| \int f \, d\mu \right| \leqslant \int |f| \, d\mu, \quad \forall f \in \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}.$$

- (v) Integral "ne vidi" množic z mero 0: če je $\{f,g\} \subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$ in je f=g s.p.- μ , potem je $\mu[f]=\mu[g]$ in je $\mu[f]$ d.d. $\iff \mu[g]$ je d.d.
- (vi) Monotonost: če je $\{f,g\} \subset \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}, g \leqslant f$ in $\mu[g^-] < \infty$, potem je

$$\int g \, d\mu \, \leqslant \, \int f \, d\mu.$$

(vii) Homogenost:

$$\int cf \, d\mu = c \int f \, d\mu$$

za vse $f \in \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$ za katere je $\mu[cf^-] \wedge \mu[cf^+] < \infty$, za $\forall c \in [-\infty,\infty]$.

Vsi integrali v (i),(ii),(iii),(vi) so d.d. Enako velja za (vii), razen, ko je c=0 in $\mu[f^+]=\mu[f^-]=\infty$.

Trditev 2.1. Naj bosta $a \leq b$ realni števili in $f : [a, b] \to \mathbb{R}$. Če je f zvezna, potem je \mathcal{L} -integrabilna in

$$\int_{[a,b]} f \, d\mathscr{L} = \int_a^b f(x) \, dx.$$

2.2 Konvergenčni izreki s posledicami

Izrek 2.2. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero in $(f_n)_{n \in \mathbb{N}}$ zaporedje iz $\mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$.

- (i) Naj bo $g \in \mathcal{F}/\mathcal{B}_{[0,\infty]}$ z $\mu[g] < \infty$ in $f_n^- \leq g \ \forall n \in \mathbb{N}$. Potem velja:
 - (a) Polzveznost od spodaj (Fatou):

$$\int \liminf_{n \to \infty} f_n \, d\mu \leq \liminf_{n \to \infty} \int f_n \, d\mu$$

(b) Monotona konvergenca (Lévy):

$$\int \lim_{n \to \infty} f_n \, d\mu = \uparrow - \lim_{n \to \infty} \int f_n d\mu$$

(ii) Naj bo $g \in \mathcal{F}/\mathcal{B}_{[0,\infty]}$ μ -integrabilna z $|f_n| \leq g \ \forall n \in \mathbb{N}$. Potem velja dominirana konvergenca (Lebesgue):

$$\lim_{n \to \infty} \int |f_n - \lim_{m \to \infty} f_m| \, d\mu = 0$$

in v posebnem je

$$\lim_{n\to\infty} \int f_n \, d\mu = \int \lim_{n\to\infty} f_n \, d\mu,$$

če seveda $\exists \lim_{m\to\infty} f_m$ (povsod).

Posledica. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero in $(f_n)_{n \in \mathbb{N}}$ zaporedje iz $\mathcal{F}/\mathcal{B}_{[0,\infty]}$. Potem je

$$\int \sum_{n \in \mathbb{N}} f_n \, d\mu = \sum_{n \in \mathbb{N}} \int f_n \, d\mu,$$

kjer so integrali d.d.

Posledica. Naj bo $(\mu_n)_{n\in\mathbb{N}}$ zaporedje mer na merljivem prostoru (Ω, \mathcal{F}) . Potem je $\sum_{n\in\mathbb{N}} \mu_n$ mera na (Ω, \mathcal{F}) :

$$\left(\sum_{n\in\mathbb{N}}\mu_n\right)(A) = \sum_{n\in\mathbb{N}}\mu_n(A), \quad A\in\mathcal{F}.$$

Poleg tega je za $\forall f \in \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$:

$$\int f d(\sum_{n \in \mathbb{N}} \mu_n) \text{ je d.d. } \iff \left(\sum_{n \in \mathbb{N}} \int f^+ d\mu_n\right) \wedge \left(\sum_{n \in \mathbb{N}} \int f^- d\mu_n\right) < \infty$$

in tedaj je

$$\int f \, d(\sum_{n \in \mathbb{N}} \mu_n) = \sum_{n \in \mathbb{N}} \int f \, d\mu_n.$$

Definicija 2.3. Naj bo $(\Omega, \mathcal{F}, \mu)$ porostor z mero, (Ω', \mathcal{F}') merljiv prostor, $f \in \mathcal{F}/\mathcal{F}'$. Potem definiramo

$$f *_{\mathcal{F}'} \mu$$
 oz. $\mu \circ_{\mathcal{F}'} f^{-1}$ oz. $\mu_{f_{\mathcal{F}'}}$

kot preslikavo $f *_{\mathcal{F}'} \mu : \mathcal{F}' \to [0, \infty]$, dano s predpisom

$$(f *_{\mathcal{F}'} \mu)(A') := \mu(f^{-1}(A')), \quad A' \in \mathcal{F}'.$$

To preslikavo imenujemo potisk mere μ naprej pod f glede na \mathcal{F}' . Če je μ verjetnostna, rečemo temu porazdelitev.

Posledica (Izrek o sliki mer). Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero, (Ω', \mathcal{F}') merljiv prostor, $f \in \mathcal{F}/\mathcal{F}'$. Potem je $f * \mu$ mera na \mathcal{F}' , verjetnostna, če je μ verjetnostna. Če je $g \in \mathcal{F}'/\mathcal{B}_{[-\infty,\infty]}$, je

$$\int g \, d(f * \mu) = \int g \circ f \, d\mu,$$

pri čemer je integral na levi d.d. ⇔ je to res za integral na desni.

Posledica (Odvajanje pod integralskim znakom). Naj bo $(\mathcal{X}, \Sigma, \mu)$ prostor z mero, \mathcal{O} odprt v \mathbb{R} . $F: \mathcal{X} \times \mathcal{O} \to \mathbb{R}$ in naj velja:

- $\forall t \in \mathcal{O} \text{ je } \mathcal{F}(\cdot, t) \in L^1(\mu);$
- $\forall x \in \mathcal{X}$ je $\mathcal{F}(x, \cdot)$ odvedljiva.

Naj naprej $\exists g \in \Sigma/\mathcal{B}_{[0,\infty]}$ z $\mu[g] < \infty$ tako, da je

$$\left|\frac{\partial F}{\partial t}(x,t)\right| \;\leqslant\; g(x), \quad \forall (x,t) \in \mathcal{X} \times \mathcal{O}.$$

Potem velja:

- (a) $\forall t \in \mathcal{O} \text{ je } (\mathcal{X} \ni x \mapsto \frac{\partial F}{\partial t}(x,t)) \in L^1(\mu);$
- (b) $(\mathcal{O} \ni t \mapsto \int F(x,t) \mu(dx))$ je odvedljiva;
- (c) $t \in \mathcal{O}$:

$$\frac{d}{dt} \int F(x,t) \, \mu(dx) \; = \; \int \frac{\partial F}{\partial t}(x,t) \, \mu(dx).$$

2.3 Rezultati, ki se tičejo menjave vrsrnega reda integracije

Definicija 2.4. Naj bosta (Ω, \mathcal{F}) in (Ω', \mathcal{F}') merljiva prostora. Potem definiramo

$$\mathcal{F} \otimes \mathcal{F}' := \sigma_{\Omega \times \Omega'} \left(\{ A \times A' \mid (A, A') \in \mathcal{F} \times \mathcal{F}' \} \right),$$

in ji rečemo produktna σ -algebra \mathcal{F} in \mathcal{F}' .

Trditev 2.2. Če je $A \subset \mathbb{R}^2$ in $f: A \to [-\infty, \infty]$ zvezna, potem je

$$f \in \mathcal{B}_A/\mathcal{B}_{[-\infty,\infty]}$$
.

Trditev 2.3. Naj bosta (Ω, \mathcal{F}) in (Ω', \mathcal{F}') merljiva prostora. Potem je $\mathcal{F} \otimes \mathcal{F}'$ najmanjša (glede na inkluzijo) σ -algebra na $\Omega \times \Omega'$ glede na katero sta merljivi kanonični projekciji, tj. $\mathcal{F} \otimes \mathcal{F}'$ je najmanjša σ -algebra \mathcal{G} na $\Omega \times \Omega'$, da je:

- $(\Omega \times \Omega' \ni (\omega, \omega') \mapsto \omega) \in \mathcal{G}/\mathcal{F};$
- $(\Omega \times \Omega' \ni (\omega, \omega') \mapsto \omega') \in \mathcal{G}/\mathcal{F}'$.

Naprej, če je $f \in \mathcal{F} \otimes \mathcal{F}'/\mathcal{B}_{[-\infty,\infty]}$, potem je $f(\omega,\cdot) \in \mathcal{F}'/\mathcal{B}_{[-\infty,\infty]}$, $\forall \omega \in \Omega$ in $f(\cdot,\omega') \in \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$, $\forall \omega' \in \Omega'$. Obratno, naj bo (G,\mathcal{G}) merljiv prostor; potem je

$$(f, f') \in \mathcal{G}/\mathcal{F} \otimes \mathcal{F}' \iff f \in \mathcal{G}/\mathcal{F} \text{ in } f' \in \mathcal{G}/\mathcal{F}'.$$

Izrek 2.3. Naj bosta $(\Omega, \mathcal{F}, \mu)$ in $(\Omega', \mathcal{F}', \mu')$ prostora z mero, μ in μ' σ -končni.

(i) Obstaja natanko ena mera ν na $\mathcal{F}\otimes\mathcal{F}'$, ki jo označimo $\mu\times\mu'$, za katero velja

$$\nu(A \times A') = \mu(A)\mu'(A'), \quad \forall (A, A') \in \mathcal{F} \times \mathcal{F}'.$$

- (ii) Naj bo $f\in (\mathcal{F}\otimes\mathcal{F}')/\mathcal{B}_{[-\infty,\infty]}$ in naj velja
 - (a) $f \ge 0$ (Tonelli) ali
 - (b) $\int |f| d(\mu \times \mu') < \infty$ (Fubini) ali
 - (c) $\iint f^{-}(\omega, \omega') \, \mu(d\omega) \, \mu'(d\omega') \wedge \iint f^{-}(\omega, \omega') \, \mu'(d\omega') \, \mu(d\omega) < \infty$

Potem je

- $(\Omega' \ni \omega' \mapsto \int f(\omega, \omega') \mu(d\omega)) \in \mathcal{F}'/\mathcal{B}_{[-\infty,\infty]};$
- $(\Omega \ni \omega \mapsto \int f(\omega, \omega') \, \mu'(d\omega')) \in \mathcal{F}/\mathcal{B}_{[-\infty,\infty]};$
- $\int f^-(\omega, \omega') \, \mu(d\omega) < \infty$ s.p.- μ' v ω' ;
- $\int f^-(\omega, \omega') \, \mu'(d\omega') < \infty \text{ s.p.-}\mu \text{ v } \omega;$

in

$$\int f d(\mu \times \mu') = \iint f(\omega, \omega') \, \mu(d\omega) \, \mu'(d\omega')$$
$$= \iint f(\omega, \omega') \, \mu'(d\omega') \, \mu(d\omega).$$

Vsi zunanji integrali zgoraj so d.d.

Definicija 2.5. Notacijo $\mu \times \mu'$ zadržimo, $\mu \times \mu'$ rečemo produkt μ in μ' .

Trditev 2.4. $(\Omega, \mathcal{F}, \mu)$ prostor z mero, (Ω', \mathcal{F}') merljiv prostor, $X \in \mathcal{F}/\mathcal{F}'$, (A, \mathcal{A}) še en merljiv prostor, da je

$$D_A := \{(x, x) \mid x \in A\} \in \mathcal{A} \otimes \mathcal{A}$$

in $\{f,g\} \subset \mathcal{F}'/\mathcal{A}$. Potem je f(X) = g(X) s.p.- $\mu \iff f = g$ s.p.- $X_*\mu$.

2.4 Nedoločena integracija in absolutna zveznost

Definicija 2.6. Naj bosta $(\Omega, \mathcal{F}, \mu)$ prostor z mero, $f \in \mathcal{F}'/\mathcal{B}_{[-\infty,\infty]}$ in naj bo integral f pod μ d.d. Potem preslikavi

$$f \cdot \mu := \left(\mathcal{F} \in A \mapsto \int_A f \, d\mu \right)$$

rečemo nedoločeni integral f proti μ^7 , ali tudi tudi μ -nedoločeni integral f.

Definicija 2.7. Naj bosta μ in ν dve meri na merljivem prostoru (Ω, \mathcal{F}) . μ je absolutno zvezna glede na ν (pišemo $\mu \ll \nu$) $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\nu(A) = 0 \implies \mu(A), \quad \forall A \in \mathcal{F}.$$

 μ je ekvivalentna ν , (pišemo $\mu \sim \nu$) $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\mu \ll \nu$$
 in $\nu \ll \mu$.

Trditev 2.5. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero in $f \in \mathcal{F}/\mathcal{B}_{[0,\infty]}$. Potem je $f \cdot \mu$ mera, ki je absolutno zvezna glede na μ ; naprej

$$\int g \, d(f \cdot \mu) = \int g \, f(d\mu)$$

 $^{^7 \}text{Beri: glede na } \mu.$

za vse $g \in \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$, pri čemer je integral na levi d.d. \iff je integral na desni d.d. in v slednjem primeru je

$$g \cdot (f \cdot \mu) = (gf) \cdot \mu.$$

Če je f > 0 s.p.- μ , potem je $f \cdot \mu \sim \mu$.

Trditev 2.6. Naj bo (X, \mathcal{A}, μ) prostor z mero, $\{f, g\} \subset \mathcal{A}/\mathcal{B}_{[-\infty, \infty]}$.

(a) Denimo, da je $\int_{\{f>g\}} f^+ d\mu \vee \int_{\{f>g\}} g^- d\mu < \infty$ in $\int_{\{f>g\}} f d\mu \leqslant \int_{\{f>g\}} g d\mu$. Potem je

$$f < g$$
 s.p.- μ .

(b) Denimo, da je μ σ -končna, $\left(\int f^+ d\mu \wedge \int f^- d\mu\right) \vee \left(\int g^+ d\mu \wedge \int g^- d\mu\right) < \infty$ in $\int_A f d\mu \leqslant \int_A g d\mu$, $\forall A \in \mathcal{A}$. Potem je

$$f \leqslant g$$
 s.p.- μ .

Posledica. Naj bo (X, \mathcal{A}, μ) prostor z mero, $\{f, g\} \subset \mathcal{A}/\mathcal{B}_{[-\infty, \infty]}$. Denimo, da je $\int_A f d\mu = \int_A g d\mu$, $A \in \mathcal{A}$, pri čemer sta $\mu[f]$ in $\mu[g]$ d.d. Če je f (ali/torej g) μ -integrabilna ali če je μ σ -končna, potem je

$$f = g$$
 s.p.- μ .

V primeru, ko sta f in g μ -integrabilna, potem je, ceteris paribus, enakost $\int_A f \, d\mu = \int_A g \, d\mu$ dovolj preveriti za $A \in \Pi \cup \{X\}$, kjer je Π nek π -sistem, ki generira $\mathcal A$ na X.

Izrek 2.4 (Radon-Nikodym). Naj bosta μ in ν σ -končni meri na istem merljivem prostoru $(\Omega, \mathcal{F}), \mu \ll \nu$. Potem obstaja $f \in \mathcal{F}/\mathcal{B}_{[0,\infty]}$, enolična do enakosti s.p.- μ , za katero je

$$\mu = f \cdot \nu$$

f > 0 s.p.- μ .

Definicija 2.8. Funkcijo f iz zgornjega izreka označimo z

$$\frac{d\mu}{d\nu}$$
.

Rečemo ji Radon-Nikodymov odvod.

Posledica. Naj bodo $\mu\ll\nu\ll\lambda$
 $\sigma\text{-končne}$ mere na $\sigma-algebri.$ Potem j
e $\mu\ll\lambda$ in

$$\frac{d\mu}{d\lambda} = \frac{d\mu}{d\nu} \cdot \frac{d\nu}{d\lambda} \quad \text{s.p.-}\lambda.$$

Torej, če je $\mu \sim \nu$,

$$1 = \frac{d\mu}{d\nu} \frac{d\nu}{d\mu} \quad \text{s.p.-}\mu \text{ in s.p.-}\nu.$$

2.5 Prostori L in nekaj integralskih neenakosti

Definicija 2.9. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero, $p \in [1, \infty)$ in $f \in \mathcal{F}/\mathcal{B}_{[-\infty, \infty]}$, definiramo:

• prostor L^p :

$$||f||_{p_{\mu}} := \left(\int |f|^{p} d\mu \right)^{\frac{1}{p}},$$

$$L^{p}(\mu) := \{ f \in \mathcal{F}/\mathcal{B}_{\mathbb{R}}; ||f||_{p_{\mu}} < \infty \},$$

• prostor L^{∞} :

$$||f||_{\infty_{\mu}} := \inf\{M \in [0, \infty]; |f| \leqslant M \text{ s.p.-}\mu\},$$

$$L^{\infty}(\mu) := \{f \in \mathcal{F}/\mathcal{B}_{\mathbb{R}}; ||f||_{\infty_{\mu}} < \infty\}.$$

Za zaporedje $(f_n)_{n\in\mathbb{N}_0}$ v $L^q(\mu),\ q\in[1,\infty],$ rečemo da $f_n\xrightarrow{n\to\infty} f_0$ v $L^q(\mu)$ $\stackrel{\text{def}}{\Longleftrightarrow}$

$$||f_n - f_0||_{q_\mu} \xrightarrow{n \to \infty} 0.$$

Za $\{f,g\} \subset L^2(\mu)$,

$$\langle f, g \rangle = \int f g \, d\mu.$$

Trditev 2.7. Naj bo μ končna mera in $p \leq q$, $\{p,q\} \subset [1,\infty]$. Potem je

$$L^q(\mu) \subset L^p(\mu).$$

Trditev 2.8. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero, $\{f, g\} \subset \mathcal{F}/\mathcal{B}_{[-\infty, \infty]}$. Imamo sledeče neenakosti:

(i) Markov:

$$\mu[f; f \geqslant a] \geqslant a \cdot \mu(f \geqslant a), \quad \forall a \in [-\infty, \infty];$$

torej $\mu[f] \geqslant a\mu(f \geqslant a)$ za $\forall a \in [0, \infty]$, brž ko je $f \geqslant 0$.

(ii) Minkowski:

$$||f + g||_p \le ||f||_p + ||g||_p, \quad \forall p \in [1, \infty]$$

(iii) Hölder:

$$||fg||_1 \leqslant ||f||_p ||g||_q, \quad \forall \{p,q\} \subset [1,\infty], \ p^{-1} + q^{-1} = 1.$$

V posebnem p = q = 2, Cauchy-Schwartzova neenakost.

(iv) Jensen:

naj bo μ verjetnostna, $f \in L^1(\mu)$, $\varphi : I \to \mathbb{R}$ konveksna, I odprt interval, $f : \Omega \to I$. Potem je $\varphi \in \mathcal{B}_I/\mathcal{B}_{\mathbb{R}}$, $\int (\varphi \circ f)^- d\mu < \infty$, $\int f d\mu \in I$ in

$$\int \varphi \circ f \, d\mu \ \geqslant \ \varphi \left(\int f \, d\mu \right).$$

Najprej, za $\forall p \in [1, \infty]$ je $\|\cdot\|_p$ seminorma na $L^p(\mu)$, ki je realni linearen prostor, in v njem je $\|\cdot\|_p$ -limita zaporedje, če obstaja, s.p.- μ enolično določena; obstaja *čee* je dano zaporedje Cauchyjevo v seminormi $\|\cdot\|_p$. Končno, $\langle\cdot,\cdot\rangle$ je skalarni semiprodukt na $L^2(\mu)$.

3 Verjetnost kot normalizirana mera

3.1 Osnovni pojmi

Definicija 3.1. *Verjetnostni prostor* je prostor z mero $(\Omega, \mathcal{F}, \mathbb{P})$ pri čemer je \mathbb{P} verjetnostna. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor; A je \mathbb{P} -skoraj gotov $(\mathbb{P}$ -s.g.) $\stackrel{\text{def}}{\Longleftrightarrow} A \in \mathcal{F}$ in $\mathbb{P}(A) = 1$.

Če je (E, \mathcal{E}) merljiv prostor, potem elementom \mathcal{F}/\mathcal{E} rečemo slučajni elementi z vrednostmi v (E, \mathcal{E}) ; v posebnem primeru, ko je $(E, \mathcal{E}) = (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ jim rečemo slučajne spremenljivke.

Za slučajni element $X: X \sim_{\mathbb{P}} Q \iff X$ ima zakon Q pod \mathbb{P} , t.j. $X_*\mathbb{P} = Q$. Za dva slučajna elementa, ki imata vrednosti v istem merljivem prostoru rečemo, da sta enako porazdeljena \iff imata isti zakon. Porazdelitvena funkcija slučajne spremenljivke X je preslikava $F_X: \mathbb{R} \to [0,1]$ dana z $F_X(x) = \mathbb{P}(X \leqslant x)$ za $x \in \mathbb{R}$.

Slučajna spremenljivka X je $diskretna \stackrel{\text{def}}{\Longleftrightarrow} \exists C$ števna podmnožica \mathbb{R} , da je $\mathbb{P}(X \in C) = 1$. Slučajna spremenljivka X je $absolutno zvezna \stackrel{\text{def}}{\Longleftrightarrow} \mathbb{P}_X \ll \mathscr{L}$. Slučajna spremenljivka X je $zvezna \stackrel{\text{def}}{\Longleftrightarrow} F_X$ je zvezna.

Bivarianten slučajni vektor je element $\mathcal{F}/\mathcal{B}_{\mathbb{R}^2}$, torej slučajen vektor z vrednostmi v $(\mathbb{R}^2,\mathcal{B}_{\mathbb{R}^2})$; (X,Y) je absolutno zvezen $\stackrel{\text{def}}{\Longleftrightarrow} \mathbb{P}_{(X,Y)} \ll \mathcal{L}^2$, itd.

Trditev 3.1. Naj bo X slučajni element na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ z vrednostmi v merljivem prostoru (E, \mathcal{E}) in $f \in \mathcal{E}/\mathcal{B}_{[-\infty,\infty]}$. Potem je

$$\mathbb{P}[f(X)] = \mathbb{P}_X[f],$$

pri čemer je upanje na levi strani d.d. čee je d.d upanje na desni strani.

Za slučajno spremenljivko X je F_X ca'd, \uparrow in $\lim_{\infty} F_X = 0$, $\lim_{\infty} F_X = 1$.

Če je X diskretna slučajna spremenljivka, potem obstaja najmanjša števna množica $C \subset \mathbb{R}$, da $\mathbb{P}(X \in C) = 1$, ki ji rečemo podpora X, označimo

s supp(X):

$$supp(X) = \{x \in \mathbb{R}; \ \mathbb{P}(X = x) > 0\},\$$

narprej, za $f \in \mathcal{B}_{\mathbb{R}}/\mathcal{B}_{[-\infty,\infty]}$ je

$$\mathbb{P}[f(X)] = \sum_{x \in \text{supp}(X)} f(x) \mathbb{P}(X = x),$$

če je le
$$\sum_{x \in \mathrm{supp}(X)} f^+(x) \mathbb{P}(X=x) \wedge \sum_{x \in \mathrm{supp}(X)} f^-(x) \mathbb{P}(X=x) < \infty.^8$$

Če je X absolutno zvezna, potem je zvezna in obstaja do \mathcal{L} -s.p. natančno enolična funkcija $f \in \mathcal{B}_{\mathbb{R}}/\mathcal{B}_{[0,\infty]}$ za katero je $\mathbb{P}_X = f \cdot \mathcal{L}$; ta f označimo f_X in ji rečemo gostota X; naprej za $g \in \mathcal{B}_{\mathbb{R}}/\mathcal{B}_{[-\infty,\infty]}$ je

$$\mathbb{P}[g(X)] = \int g(x) f_X(x) \mathcal{L}(dx),$$

pri čemer so integrali d.d. brž ko je $\int g^+ f d\mathcal{L} \wedge \int g^- f d\mathcal{L} < \infty$.

Končno, za to da je slučajna spremenljivka X absolutno zvezna je posebno in zadostno, da $\exists f \in \mathcal{B}_{\mathbb{R}}/\mathcal{B}_{[0,\infty]}$, da je

$$\mathbb{P}(X \leqslant x) = \int_{[-\infty, x]} f \, d\mathcal{L}, \quad \forall x \in \mathbb{R}$$

in v tem primeru je f gostota za X. 9 10

Definicija 3.2. Zadržimo notacijo za gostoto f_X , supp(X); za diskretno slučajno spremenljivko X. Definiramo $verjetnostno \ masno \ funkcijo \ X$ kot

$$p_X := (\operatorname{supp}(X) \ni x \mapsto \mathbb{P}(X = x)).$$

Trditev 3.2.

(1) Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor. Če je X slučajna spremenljivka, potem je $F_X \in \mathcal{B}_{\mathbb{R}}/\mathcal{B}_{[0,1]}$ in $\mathcal{F}_X(x) \sim_{\mathbb{P}} \mathcal{L}_{[0,1]}$ čee je X zvezna.

⁸Potem je tudi $\mathbb{P}[f(X)]$ d.d.

 $^{^9}$ Bolj splošno je ekvivalentno preveriti $\mathbb{P}(X\in A)=\int_A f\,d\mathscr{L}$ za $A\in\Pi\cup\{\mathbb{R}\},$ kjer je Π nek $\pi\text{-sistem},$ ki generira $\mathcal{B}_{\mathbb{R}}$ na $\mathbb{R}.$

 $^{^{10}\}mathbb{P}_X = dF_X$

(2) Obratno, naj bo $U \sim_{\mathbb{P}} \mathscr{L}_{[0,1]}$. Če je $F : \mathbb{R} \to \mathbb{R}$ porazdelitvena funkcija (ca'd, \uparrow , $\lim_{-\infty} F = 0$, $\lim_{\infty} F = 1$) in če vpeljemo

$$F^{\leftarrow}(x) := \inf\{v \in \mathbb{R}; \ F(v) > u\}, \quad x \in (0, 1),$$

potem je

$$F^{\leftarrow}(U) \sim_{\mathbb{P}} dF.^{11}$$

Definicija 3.3. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor, $(X_n)_{n \in \mathbb{N}}$ zaporedje v $\mathcal{F}/\mathcal{B}_{\mathbb{R}}$ in $X \in \mathcal{F}/\mathcal{B}_{\mathbb{R}}$. $(X_n)_{n \in \mathbb{N}}$ konvergira k X v \mathbb{P} -verjetnosti $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\forall \varepsilon \in (0, \infty) : \mathbb{P}(|X_n - X| \geqslant \varepsilon) \xrightarrow{n \to \infty} 0.$$

Trditev 3.3. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor. Če je $(X_n)_{n \in \mathbb{N}}$ zaporedje v $\mathcal{F}/\mathcal{B}_{\mathbb{R}}$, ki konvergira k $X \in \mathcal{F}/\mathcal{B}_{\mathbb{R}}$ s.g.- \mathbb{P} ali v $L^q(\mathbb{P})$ za nek $q \in [1, \infty]$, potem konvergira tudi v \mathbb{P} -verjetnosti.

3.2 Neodvisnost

Definicija 3.4. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor. Za družino $\mathcal{C} = (\mathcal{C}_{\lambda})_{\lambda \in \Lambda}$ podmnožic \mathcal{F} rečemo, da je neodvisnost (pod \mathbb{P}) $\stackrel{\text{def}}{\Longleftrightarrow}$ za vsako končno neprazno $I \subset \Lambda, \ \forall C_{\lambda} \in \mathcal{C}_{\lambda}, \ \lambda \in I$

$$\mathbb{P}\left(\bigcap_{\lambda\in I}C_{\lambda}\right) = \prod_{\lambda\in I}\mathbb{P}(C_{\lambda}).$$

Za neodvisni podmnožici \mathscr{B} in \mathscr{C} σ -algebre \mathcal{F} je \mathscr{B} neodvisna od \mathscr{C} (pod \mathbb{P}) $\stackrel{\text{def}}{\Longleftrightarrow}$ $(\mathscr{B},\mathscr{C})$ je neodvisnost (pod \mathbb{P}). Za dogodka B in C iz \mathcal{F} je B neodvisen od C $\stackrel{\text{def}}{\Longleftrightarrow}$ $\{B\}$ je neodvisna od $\{C\}$.

 $^{^{11}}F^{\leftarrow}$ je desni inverz F oz. kvantilna funkcija F.

Za slučajni element Z z vrednostmi v merljivem prostoru (E, \mathcal{E}) in za $\mathscr{B} \subset \mathcal{F}$ je \mathscr{B} neodvisna od Z (pod \mathbb{P} glede na \mathcal{E}) $\stackrel{\text{def}}{\Longleftrightarrow} \mathscr{B}$ je neodvisna od $\sigma^{\mathcal{E}}(Z)$. 12

Trditev 3.4. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor, X slučajni element z vrednostmi v (E, \mathcal{E}) , Y slučajni element t vrednostmi v (A, \mathcal{A}) . Potem je $(X, Y) \in \mathcal{F}/\mathcal{E} \otimes \mathcal{A}$. Najprej, X in Y sta neodvisna od \mathbb{P} čee $P_{(X,Y)} = \mathbb{P}_X \times \mathbb{P}_Y$; v tem primeru je za $f \in (\mathcal{E} \otimes \mathcal{A})/\mathcal{B}_{[-\infty,\infty]}$

$$\mathbb{P}[f(X,Y)] = \mathbb{P}_{(X,Y)}[f] = \int \mathbb{P}[f(x,Y)]\mathbb{P}_X(dx),$$

če je le $\mathbb{P}[f^-(X,Y)] \wedge \mathbb{P}[f^+(X,Y)] < \infty$; v posebnem, za $g \in \mathcal{E}/\mathcal{B}_{[-\infty,\infty]}$, $h \in \mathcal{A}/\mathcal{B}_{[-\infty,\infty]}$ je

$$\mathbb{P}[g(X)h(Y)] = \mathbb{P}[g(X)]\mathbb{P}[h(Y)].$$

Trditev 3.5. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor in $(\mathcal{C}_{\lambda})_{\lambda \in \Lambda}$ družina π -sistemov, $\mathcal{C}_{\lambda} \subset \mathcal{F} \ \forall \lambda \in \Lambda$. Če je $(\mathcal{C}_{\lambda})_{\lambda \in \Lambda}$ neodvisnost, potem je tudi $(\sigma_{\Omega}(\mathcal{C}_{\lambda}))_{\lambda \in \Lambda}$ neodvisnost.

Trditev 3.6. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor in (X, Y) absolutno zvezen bivariantni slučajni vektor. Označimo

$$f_{(X,Y)} := \frac{d\mathbb{P}_{(X,Y)}}{d\mathcal{L}^2}.$$

Potem sta X in Y absolutno zvezni slučjni spremenljivki;

$$\begin{split} f_X(x) &= \int f_{(X,Y)}(x,y)\,\mathcal{L}(dy) \quad \text{s.p.-}\mathcal{L} \text{ v } x, \\ f_Y(y) &= \int f_{(X,Y)}(x,y)\,\mathcal{L}(dx) \quad \text{s.p.-}\mathcal{L} \text{ v } y \end{split}$$

ter sta X in Y neodvisni $\check{c}ee$

$$f_{(X,Y)} = f_X(x)f_Y(y)$$
 s.p.- \mathcal{L}^2 v (x,y) .

 $^{^{12}}$ Nasploh, neodvisnost slučajnih elementov pomeni neodvisnost $\sigma\text{-algebr},$ ki so generirane z njimi.

Če sta X in Y neodvisni, potem je

$$\mathbb{P}[g(X,Y)] = \iint g(x,y)f_X(x)f_Y(y)\,\mathcal{L}(dx)\,\mathcal{L}(dy)$$

za $\forall g \in \mathcal{B}_{\mathbb{R}^2}/\mathcal{B}_{[-\infty,\infty]}$ z $\mathbb{P}[g^+(X,Y)] \wedge \mathbb{P}[g^-(X,Y)] < \infty$.

Definicija 3.5. Ohranimo notacijo $f_{(X,Y)}$ za gostoto slučajnega vektorja (X,Y).

Definicija 3.6. Naj bo $((\Omega_{\lambda}, \mathcal{F}_{\lambda}))_{\lambda \in \Lambda}$ družina merljivih prostorov. Definiramo

$$\bigotimes_{\lambda \in \Lambda} \mathcal{F}_{\lambda} \; := \; \bigvee_{\lambda \in \Lambda} \sigma^{\mathcal{F}_{\lambda}}(\operatorname{pr}_{\lambda}),$$

kjer so

$$\operatorname{pr}_{\lambda}: \prod_{\mu \in \Lambda} \Omega_{\mu} \to \Omega_{\lambda}, \quad \lambda \in \Lambda$$
$$(\omega_{\mu})_{\mu \in \Lambda} \mapsto \omega_{\lambda}$$

kanonične projekcije. Za σ -algebro \mathcal{F} in množico Λ je

$$\mathcal{F}^{\otimes \Lambda} := \bigotimes_{\lambda \in \Lambda} \mathcal{F}.$$

Trditev 3.7. Naj bo $((\Omega, \mathcal{F}_{\lambda}))_{\lambda \in \Lambda}$ družina merljivih prostorov.

- (i) $\bigotimes_{\lambda \in \Lambda} \mathcal{F}_X$ je najmanjša σ -algebra na $\prod_{\lambda \in \Lambda} \Omega_{\lambda}$ glede na katero so merljive vse kanonične projekcije $\operatorname{pr}_{\lambda}$, $\lambda \in \Lambda$.
- (ii) Za merljiv prostr (Ω, \mathcal{F}) in družino funkcij $f_{\lambda} : \Omega \to \Omega_{\lambda}, \lambda \in \Lambda$, je

$$(f_{\lambda})_{\lambda \in \Lambda} \in \mathcal{F}/(\bigotimes_{\lambda \in \Lambda} \mathcal{F}_{\lambda}) \quad \Longleftrightarrow \quad f_{\lambda} \in \mathcal{F}/\mathcal{F}_{\lambda}, \ \forall \lambda \in \Lambda.$$

(iii) Naj bo μ_{λ} verjetnost na $(\Omega_{\lambda}, \mathcal{F}_{\lambda})$, $\forall \lambda \in \Lambda$. Potem obstaja na $(\prod_{\lambda \in \Lambda} \Omega_{\lambda}, \bigotimes_{\lambda \in \Lambda} \mathcal{F}_{\lambda})$ natanko ena verjetnost μ za katero so $(\operatorname{pr}_{\lambda})_{\lambda \in \Lambda}$ neodvisni pod μ in

$$(\operatorname{pr}_{\lambda})_*\mu = \mu_{\lambda}.$$

Trditev 3.8. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor in naj bo f_{λ} slučajni element z vrednostmi v $(E_{\lambda}, \mathcal{E}_{\lambda}), \ \lambda \in \Lambda$. Potem je $(f_{\lambda})_{\lambda \in \Lambda}$ neodvisnost pod \mathbb{P} *čee*

$$((f_{\lambda})_{\lambda \in \Lambda})_{* \otimes_{\lambda \in \Lambda} \mathcal{E}_{\lambda}} \mathbb{P} = \underset{\lambda \in \Lambda}{\times} (f_{\lambda *} \mathbb{P}).$$

Definicija 3.7. μ iz točke (iii) v trditvi 3.7 označimo z

$$\underset{\lambda \in \Lambda}{\times} \mu_{\lambda},$$

 $produkt \ verjetnostnih \ mer \ \mu_{\lambda}, \ \lambda \in \Lambda.$ Za verjetnost μ in množico Λ velja

$$\mu^{\times \Lambda} := \underset{\lambda \in \Lambda}{\times} \mu_{\lambda}.$$