

Anàlisi Matemàtica 1 (AM1) GEMiF

E5.4 Exercicis: Aplicacions de la integral definida

- 1. Calcula l'àrea de la regió delimitada per les corbes $x = y^2$ i x y = 2
 - a) Per integració respecte x
 - b) Per integració respecte y
- 2. Calcula l'àrea de la regió delimitada per les corbes

a)
$$4x = 4y - y^2$$
, $4x - y = 0$

b)
$$x + y = 2y^2, y = x^3$$

c)
$$8x = y^3$$
, $8x = 2y^3 + y^2 - 2y$

d)
$$y = \cos x, y = \sec^2 x, x \in [-\pi/4, \pi/4]$$

e)
$$y = 2\cos x, y = \sin 2x, x \in [-\pi, \pi]$$

f)
$$y = 6 - x^2, y = -|x|$$

g)
$$x^2 = 4py, y^2 = 4px, p > 0$$

- h) Els cercles de radi 2 i centres (0,0) i (2,2)
- 3. Calcula l'àrea dels polígon de vèrtexs

a)
$$(0,0), (1,3), (3,1)$$

c)
$$(-2,-2)$$
, $(1,1)$, $(5,1)$, $(7,-2)$

- 4. La regió delimitada per $y = x^2$ i y = 4 es divideix en dues subregions de la mateixa àrea amb la línia y = c. Troba el valor de c.
- 5. Calcula l'àrea de la regió delimitada per la corba $y = 1 + a ax^2$, a > 0, al primer quadrant. Quin valor d'a fa que l'àrea sigui mínima?
- 6. Volem calcular l'àrea delimitada per les corbes del tipus $f(x) = x^{-\alpha}$, $\alpha > 0$, en el primer quadrant.
 - a) Calcula l'àrea a l'interval $[1, +\infty)$, en funció del paràmetre α
 - b) Calcula l'àrea a l'interval (0,1), en funció del paràmetre α
 - c) Calcula l'àrea a l'interval $(0, +\infty)$, en funció del paràmetre α
- 7. La base d'un sòlid és la regió envoltada per l'el·lipsi

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Troba el volum del sòlid tal que les seccions perpendiculars a l'eix x són triangles isòsceles amb vèrtexs de la base sobre la el·lipsi i alçada la meitat que la base.

1

- 8. Troba el volum del sòlid de revolució obtingut en girar la regió Ω delimitada per les corbes indicades al voltant de l'eix x
 - a) x + y = 3, y = 0, x = 0
 - b) $y = \sqrt{x}, y = x^3$
 - c) $y = x^3, x + y = 10, y = 1$
 - d) $y = \cos x, y = x + 1, y = \pi/2$ e) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, y = 0$
- 9. Troba el volum del sòlid de revolució obtingut en girar la regió Ω delimitada per les corbes indicades al voltant de l'eix y
 - a) $x = y^3, x = 8, y = 0$
 - b) $y = \sqrt{x}, y = x^3$
 - c) y = x, y = 2x, x = 4
 - d) $x = \sqrt{9 y^2}, x = 0$
 - e) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, x = 0$
- 10. Troba el volum del sòlid de revolució obtingut en girar la regió delimitada per x = 1, x = 4, $y = 4x - x^2$ al voltant de l'eix y
- 11. Donat un hemisferi de radi a, se li fa un forat cilíndric de radi r perpendicularment a la base i d'eix que passa pel centre de la base. Calcula el volum que queda:
 - a) Pel Washer method
 - b) Pel Shell method
- 12. Troba el volum del sòlid de revolució obtingut en girar la regió Ω delimitada per les corbes indicades al voltant de l'eix y utilitzant el mètodes de capes
 - a) y = x, x = 1, y = 0
 - b) $y = \sqrt{x}, x = 4, y = 0$
 - c) $v = \sqrt{x}, v = x^3$
- 13. Troba la longitud de les següents corbes

 - a) $y = \frac{1}{6}x^3 + \frac{1}{2x}$, entre x = 1 i x = 2b) $y = a \cosh \frac{x}{a}$, x = -L, y = L (una catenària)
- 14. Troba l'àrea de la superfície generada per una paràbola $y=x^2$ entre x=0 i x=1en girar respecte l'eix y (paraboloide de revolució)

2

- 15. Troba el centroide de les següents regions
 - a) Triangle rectangle de base b i alçada h
 - b) Regió delimitada per $y = x^2$, y = 2x

- 16. Utilitzant el teorema de Pappus, calcula el volum del cos de revolució en fer girar el triangle de l'exercici 15a al voltant del següent eixos
 - a) Eix x
 - b) Eix y
 - c) Recta x = -b
 - d) Recta y = -x
- 17. Calcula el volum del cos de revolució en fer girar les següents regions respecte els eixos x i y
 - a) $y = \sqrt{x}, x = 4, y = 0$ b) $y = x^2, x = y^3$ c) y = 2x, x = 3, y = 2

 - d) $x + y = 1, \sqrt{x} + \sqrt{y} = 1$
 - e) y = x, x + y = 6, y = 1
- 18. Calcula el volum del con de gelat de la figura A, i la coordenada x del centroide de la figura B

19. Calcula el volum de la intersecció entre dos cilindres de radi r amb eixos perpendiculars i que es troben en el mateix pla.