

Analysis of Heat Transfer in a Geothermal Cooling System

Patrick Geneva

Background

- Normal refrigeration / heat pump cycle
- Functions on the vapor compression cycle from thermodynamics
- Summer time Heat is removed from the house and expelled outside
- Winter time Heat is absorbed from the underground soil environment and added inside the house

Geothermal Heat Pump

- Geothermal pump replaces a section of the normal heat pump cycle with a heat exchanger
- A secondary loop acts as either a "cold sink" or "hot sink"
- The basic principle is to use the constant temperature ground to cool or heat year around

Problem Formulation

- Loops run through the ground with a water antifreeze fluid being pumped through it
- Different systems have different layouts:
 - Vertical
 - Horizontal
 - Slinky
- Vertical is great for small areas but both horizontal and slinky have cheaper install rates

Problem Formulation

- Thermal circuit can be constructed
- For working fluid convection coefficient can be calculated
- Radial heat transfer through pipe wall and through the ground (k=0.461)
- Modeled as constant temperature ground with little variance along the pipe
- Assumed that soil becomes constant temperature after a foot (k=1.25)

$$R_{inner}^{"}$$
 $R_{pipe}^{"}$ $R_{soil}^{"}$

$$Nu_D = \frac{(f/8) \left(Re_D - 1000\right) Pr}{1 + 12.7 (f/8)^{1/2} \left(Pr^{2/3} - 1\right)}$$

$$Nu_D = \frac{hD_h}{k} \to h = \frac{Nu_D k_{water}}{D_h}$$

$$R_{total} = \frac{1}{hA_s} + \frac{ln(r_o/r_i)}{2\pi L k_{pipe}} + \frac{ln(r_\infty/r_o)}{2\pi L k_{soil}}$$

Type	Thermal Conductivity (W/mK)
HDPE Pipe	0.461-0.502
PVC Pipe	0.147 - 0.209
CPVC Pipe	0.133 - 0.144
Sandy Soil (Dry)	0.30
Sandy Soil (Wet)	2.20
Clay Soil (Dry)	0.25
Clay Soil (Wet)	1.58

Measured in Fahrenheit

Department of Mechanical Engineering

1" HDPE Pipe

- Ground Temp 12°C
- Inlet Temp -3°C
- Series 60m
- Parallel 3x20m

Department of Mechanical Engineering

Results

- 1" HDPE Pipe
- Ground Temp 12°C
- Inlet Temp -3°C
- Series 60m
- Parallel 3x20m

Department of Mechanical Engineering

Summary

- Series configuration has better heat transfer per length
- Parallel limits the transition to turbulence
- Choice of pipe with good conduction coefficient is important
- When sizing a system the total heat transferred can be used to judge the length of pipe needed
- Parallel offers the ability to use a smaller circulation pump
- Soil thermal resistance is the largest limiting factor

Questions?