Trabajo práctico: Filtrado digital IIR

1) Filtro Leaking Integrator (LI) con señales senoidales en MATLAB

- a) Genere una señal senoidal con frecuencia fundamental de 100Hz.
- b) Agregue ruido a la señal senoidal tal que la relación señal a ruido entre la señal senoidal y la señal con ruido sea de 15 dB.
 - c) Diseñe un filtro *leaking integrator* (LI) con λ igual a 0.7.
- d) Grafique la respuesta en frecuencia y fase del filtro LI. Use la función freqz(). Determine la frecuencia de corte fco con:

fco = - ln (
$$\lambda$$
) . fs / π

- e) Determine el cero y el polo del filtro con la función zplane(). ¿Es el filtro estable?.
- f) Aplique el filtro LI a la señal con ruido. Utilice la función filter().
- g) Grafique la respuesta en el tiempo de las señales original y filtrada y compare.
- h) Grafique la respuesta en frecuencia de las señales original y filtrada y compare. Utilice la función provista my dft().
 - i) Repita los puntos c) a h) para λ igual a 0.9 y 0.98. Analice el comportamiento de la fco.

2) Filtro Leaking Integrator (LI) con señales de audio.

Repita el ejercicio 1 del punto b) al i) pero:

- a) Utilice el archivo Tchaikovsky.mat.
- b) Agregue ruido a la señal tal que la relación señal a ruido sea de 60 dB.
- c) Reproduzca las señales con el comando sound(signal, Fs).

3) Dimensiones de filtros FIR e IIR para un mismo tipo de filtro

- a) Ejecute la función iir vs fir.m.mlx.
- b) Analice las funciones fir_kaiser_3400_44100.m e iir_elliptic_3400_44100.m ¿Qué tipos de filtros implementan ambas funciones?.
 - c) Observe ambas respuestas en frecuencia. ¿Qué diferencias hay entre ambas respuestas?
- d) Grafique las respuestas en fase y compárelas. ¿Qué diferencias hay entre ambas respuestas?

e) ¿Cuál es la dimensión del numerador del filtro FIR y cuántos coeficientes presenta la matriz SOS del filtro IIR? ¿A qué conclusión puede abordar?

4) Diseño de un filtro IIR con transformada bilineal

Diseñe un filtro digital tipo IIR con la transformada bilineal a partir del diseño de un filtro analógico, utilizando funciones provistas por MATLAB.

- a) Diseñe un filtro IIR:
- Chebyshev Tipo I
- Pasa-banda entre 300 y 3.400 Hz con
- 1 dB de ripple en la banda pasante.
- b) Normalice las frecuencias de corte en radianes según la frecuencia de muestreo:

```
wc1_n = 2*pi*fc1/fs;
wc2_n = 2*pi*fc2/fs;
```

c) Aplique precombado (pre-warping) a las frecuencias analógicas de interés.

```
wc1_p = (2/dt)*tan(wc1_n/2);

wc2_p = (2/dt)*tan(wc2_n/2);
```

d) Diseñe el filtro analógico conlas funciones cheb1ap() y lp2bp():

```
[Z, P, K] = cheb1ap(orden, ripple);

[A, B] = zp2tf(Z, P, K);

freqs(B, A)

w_central = sqrt(wc1_p*wc2_p);

bw = wc2_p - wc1_p;

[num_a, den_a] = lp2bp(A, B, w_central, bw);
```

e) Discretice el filtro analógico:

```
H_analog = tf(num_a, den_a);

H_digital = c2d(H_analog, dt, 'tustin');

num_d = H_digital.numerator{1, 1};

den d = H_digital.denominator{1, 1};
```

f) Grafique la respuesta del filtro digital en el plano Z:

```
zplane(num_d, den_d, 500000) grid on
```

g) Determine la respuesta en frecuencia de ambos filtros:

```
[h_a, w_a] = freqs(num_a, den_a, 1000);
[h_d, w_d] = freqz(num_d, den_d, 1000);
```

h) Grafique la respuesta en frecuencia y fase del filtro digital:

```
mag_a = abs(h_a);
phi_a = phase(h_a);
f_a = w_a/pi/2;
```

```
mag_d = abs(h_d);
phi_d = phase(h_d);
f_d = w_d/pi/2 * fs;

figure
plot (f_a, mag_a, 'b');
hold on
plot (f_d, mag_d, 'g');
title('RESPUESTA EN FRECUENCIA')
grid on
legend('Filtro analogico', 'Filtro digital')

figure
plot (f_a, phi_a, 'b');
hold on
plot (f_d, phi_d, 'g');
title('RESPUESTA EN FASE')
grid on
legend('Filtro analogico', 'Filtro digital')
```

5) Filtros IIR en C, de 2do orden tipo Direct I y Direct II, formato punto flotante

Se pretende ejecutar desde MATLAB una función descripta en C que implementa un filtro IIR (versión online) en el dominio de la frecuencia. Se propone el siguiente ejemplo.

Se cuenta con una señal de entrada compuesta por:

 Tono de 300 Hz, más tono de 600 Hz, más tono de 50 Hz (frecuencia de línea eléctrica).

Se desea diseñar un filtro pasa-banda que rechace la señal de 50 Hz y que deje pasar los dos tonos.

- a) Se diseña un filtro con filterDesigner:
- Filtro IIR
- Pasa banda.
- Elliptc, orden 2.
- Frecuencias de corte 200 Hz y 800 Hz.
- Frecuencia de muestreo de 10 kHz.
- Apass 1, Astop 80.
- b) Exporte el archivo fdacoefs.h. Los coeficientes del filtro IIR se exportan haciendo Targets > Generate C Header, al archivo fdacoefs.h en formato punto flotante, precisión simple.

c) Compile en consola las funciones iir_wrapper.c y iir_filter.c, en este específico orden, con el comando:

>> mex iir_wrapper.c iir_filter.c

iir_wrapper .c construye la interfaz entre las variables del Wokrspace de MATLAB y los argumentos de entrada/salida de las funciones en C.

iir_filter.c contiene la función iir_2nd_df1_float(), la cual integra un filtro IIR Forma Directa 1 de segundo orden y una señal de entrada, todo en formato punto flotante, precisión simple (float).

- d) Analice el código de la funcion iir_2nd_df1_float().
- e) Analice el código de la función iir online.m y ejecútela. ¿Qué observa?
- f) Repita todo el ejercicio pero utilizando la función iir_2nd_df2_float().

6) Filtros IIR en C, de 6to orden tipo Direct I y Direct II, formato punto flotante

Repita el ejercicio 5) pero para un filtro IIR de 6to orden. Utilice las funciones iiir_nth_df1_float() y ir nth df2 float().

NOTA

Si se ejecuta MATLAB bajo Windows, se recomienda usar el compilador TDM-GCC [1] e instalarlo cómo se indica en [2].

- [1] <u>https://sourceforge.net/projects/tdm-gcc/files/TDM-GCC%204.9%20series/4.9.2-tdm64-1/</u>
- [2] "MATLAB Answers" https://www.mathworks.com/matlabcentral/answers/307936-install-mingw-w64-compiler-without-add-on-explorer