TECHIN515 Lab 4: Magic Wand

Pictures of hardware setup and connections

Data collection process

Edge Impulse model architecture and optimization

- Time Series Data
 - Window size
 - Window increase
- Processing Block
 - Spectral analysis
 - Flatten
- Learning Block
 - Classification model
- Classification
 - Neural network architecture
 - Input layer (60 features)
 - Dense layer (20 neurons)
 - Dense layer (10 neurons)
 - Output layer (3 classes)

Performance analysis and metrics

Window size	Window increase	Number of samples	Number of neurons	Accuracy	Precision	Recall
1000ms	1000ms	142	93	69%	74%	69%
500ms	400ms	284	93	84.2%	84%	84%
200ms	400ms	426	93	68.6%	73%	69%

Demo video link

See media/demo.mp4

Discussions

- Why should you use training data collected by multiple students rather than using your own collected data only? Think about the effectiveness and reliability of your wand.
 - Using training data from multiple students makes the model more reliable, effective, and inclusive. It better represents the real-world usage scenario, ensuring the wand can perform accurately across users.
- Add a processing block. Read through the available options and pick one for your impulse. Justify your option.
 - I chose "Spectral Analysis" because it's good for analyzing repetitive motion, such as data from accelerometers. And I also added "Flatten" to get average data.
- Add a learning block. Read through the available options and pick one for your impulse.
 Justify your option.
 - I chose the "Classification" model because my goal is to distinguish between gesture types.
- Discuss the effect of window size.
 - Smaller windows allow more overlapping segments from the same dataset, increasing the total number of training samples, which can lead to better performance.
 - When window increase is less than window size, some data will be missed, resulting in worse performance.

Window size	Window increase	Number of samples	Number of neurons	Accuracy	Precision	Recall
1000ms	1000ms	142	93	69%	74%	69%
500ms	400ms	284	93	84.2%	84%	84%
200ms	400ms	426	93	68.6%	73%	69%

- Take a screenshot of your generated features, and sketch a rough decision boundary between classes. Explain why you believe the generated features are good enough.
 - While there is minor overlap between two of the classes, the majority of data points are well-separated. This suggests that the features extracted by the processing block are informative enough for classification.

Report the learning performance, your choices of hyper-parameters, and architecture.
 Use "Live classification" and "Model testing" in the sidebar to test your model performance. Please clearly document all metrics being used, e.g., accuracy, TP, FP, F1, etc.

Window size	Window increase	Number of samples	Number of neurons	Accuracy	Precision	Recall
1000ms	1000ms	142	93	69%	74%	69%
500ms	400ms	284	93	84.2%	84%	84%
200ms	400ms	426	93	68.6%	73%	69%

Number of training cycles: 30

Learning rate: 0.0005

Neural network architecture

Input layer (60 features)

- Dense layer (20 neurons)
- Dense layer (10 neurons)
- Output layer (3 classes)
- Discussion: Give at least two potential strategies to further enhance your model performance.
 - Tune parameters within the processing block to better capture relevant signal characteristics.
 - Add more training data and collect data under slightly varied conditions to increase robustness.