The group G is isomorphic to the group labelled by [60, 11] in the Small Groups library. Ordinary character table of $G \cong C10 \times S3$:

1	a $2a$	2b	5a	3a	2c	10a	10b	6a	5b	15a	10c	10d	10e	30a	5c	15b	10 <i>f</i>	10g	10h	30b	5d	15c	10i	10j	10k	30c	15d	10l	30d
1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1 - 1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	1	-1
3	1 - 1	1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	1	1	-1	-1	1	1	1	-1	1
4	1 1	-1	1	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1	-1	-1
5	1 - 1	-1	$E(5)^{4}$	1	1	$-E(5)^4$	$-E(5)^4$	-1	$E(5)^{3}$	$E(5)^{4}$	$E(5)^{4}$	$-E(5)^{3}$	$-E(5)^3$	$-E(5)^4$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{3}$	$-E(5)^2$	$-E(5)^2$	$-E(5)^{3}$	E(5)	$E(5)^{2}$	$E(5)^{2}$	-E(5)	-E(5)	$-E(5)^2$	E(5)	E(5)	-E(5)
6	1 - 1	-1	$E(5)^{3}$	1	1	$-E(5)^3$	$-E(5)^{3}$	-1	E(5)	$E(5)^{3}$	$E(5)^{3}$	-E(5)	-E(5)	$-E(5)^{3}$	$E(5)^{4}$	E(5)	E(5)	$-E(5)^4$	$-E(5)^4$	-E(5)	$E(5)^{2}$	$E(5)^{4}$	$E(5)^{4}$	$-E(5)^2$	$-E(5)^2$	$-E(5)^4$	$E(5)^{2}$	$E(5)^{2}$	$-E(5)^2$
7	1 - 1	-1	$E(5)^{2}$	1	1	$-E(5)^2$	$-E(5)^2$	-1	$E(5)^{4}$	$E(5)^{2}$	$E(5)^{2}$	$-E(5)^4$	$-E(5)^4$	$-E(5)^2$	E(5)	$E(5)^{4}$	$E(5)^{4}$	-E(5)	-E(5)	$-E(5)^4$	$E(5)^{3}$	E(5)	E(5)	$-E(5)^{3}$	$-E(5)^{3}$	-E(5)	$E(5)^{3}$	$E(5)^{3}$	$-E(5)^3$
8	1 - 1	-1	E(5)	1	1	-E(5)	-E(5)	-1	$E(5)^{2}$	E(5)	E(5)	$-E(5)^2$	$-E(5)^2$	-E(5)	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{2}$	$-E(5)^{3}$	$-E(5)^{3}$	$-E(5)^2$	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{3}$	$-E(5)^4$	$-E(5)^4$	$-E(5)^{3}$	$E(5)^{4}$	$E(5)^{4}$	$-E(5)^4$
9	1 - 1	1	$E(5)^{4}$	1	-1	$-E(5)^4$	$E(5)^{4}$	1	$E(5)^{3}$	$E(5)^{4}$	$-E(5)^4$	$-E(5)^{3}$	$E(5)^{3}$	$E(5)^{4}$	$E(5)^{2}$	$E(5)^{3}$	$-E(5)^{3}$	$-E(5)^2$	$E(5)^{2}$	$E(5)^{3}$	E(5)	$E(5)^{2}$	$-E(5)^2$	-E(5)	E(5)	$E(5)^{2}$	E(5)	-E(5)	E(5)
10	1 - 1	1	$E(5)^{3}$	1	-1	$-E(5)^3$	$E(5)^{3}$	1	E(5)	$E(5)^{3}$	$-E(5)^{3}$	-E(5)	E(5)	$E(5)^{3}$	$E(5)^{4}$	E(5)	-E(5)	$-E(5)^4$	$E(5)^{4}$	E(5)	$E(5)^{2}$	$E(5)^{4}$	$-E(5)^4$	$-E(5)^2$	$E(5)^{2}$	$E(5)^{4}$	$E(5)^{2}$	$-E(5)^2$	$E(5)^2$
11	1 -1	1	$E(5)^{2}$	1	-1	$-E(5)^2$	$E(5)^{2}$	1	$E(5)^{4}$	$E(5)^{2}$	$-E(5)^2$	$-E(5)^4$	$E(5)^{4}$	$E(5)^{2}$	E(5)	$E(5)^{4}$	$-E(5)^4$	-E(5)	E(5)	$E(5)^{4}$	$E(5)^{3}$	E(5)	-E(5)	$-E(5)^{3}$	$E(5)^{3}$	E(5)	$E(5)^{3}$	$-E(5)^{3}$	$E(5)^3$
12	1 -1	1	E(5)	1	-1	-E(5)	E(5)	1	$E(5)^{2}$	E(5)	-E(5)	$-E(5)^2$	$E(5)^{2}$	E(5)	$E(5)^{3}$	$E(5)^{2}$	$-E(5)^{2}$	$-E(5)^{3}$	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{4}$	$E(5)^{3}$	$-E(5)^{3}$	$-E(5)^4$	$E(5)^4$	$E(5)^{3}$	$E(5)^{4}$	$-E(5)^4$	$E(5)^4$
13	1 1	-1	$E(5)^{4}$	1	-1	$E(5)^{4}$	$-E(5)^4$	-1	$E(5)^{3}$	$E(5)^{4}$	$-E(5)^4$	$E(5)^{3}$	$-E(5)^{3}$	$-E(5)^4$	$E(5)^{2}$	$E(5)^{3}$	$-E(5)^{3}$	$E(5)^{2}$	$-E(5)^2$	$-E(5)^{3}$	E(5)	$E(5)^{2}$	$-E(5)^2$	E(5)	-E(5)	$-E(5)^2$	E(5)	-E(5)	-E(5)
14	1 1	-1	$E(5)^{3}$	1	-1	$E(5)^{3}$	$-E(5)^{3}$	-1	E(5)	$E(5)^{3}$	$-E(5)^{3}$	E(5)	-E(5)	$-E(5)^{3}$	$E(5)^{4}$	E(5)	-E(5)	$E(5)^{4}$	$-E(5)^4$	-E(5)	$E(5)^{2}$	$E(5)^{4}$	$-E(5)^4$	$E(5)^{2}$	$-E(5)^2$	$-E(5)^4$	$E(5)^{2}$	$-E(5)^2$	$-E(5)^2$
15	1 1	-1	$E(5)^{2}$	1	-1	$E(5)^{2}$	$-E(5)^2$	-1	$E(5)^{4}$	$E(5)^{2}$	$-E(5)^{2}$	$E(5)^{4}$	$-E(5)^4$	$-E(5)^2$	E(5)	$E(5)^{4}$	$-E(5)^4$	E(5)	-E(5)	$-E(5)^4$	$E(5)^{3}$	E(5)	-E(5)	$E(5)^{3}$	$-E(5)^{3}$	-E(5)	$E(5)^{3}$	$-E(5)^{3}$	$-E(5)^3$
16	1 1	-1	E(5)	1	-1	E(5)	-E(5)	-1	$E(5)^{2}$	E(5)	-E(5)	$E(5)^{2}$	$-E(5)^2$	-E(5)	$E(5)^{3}$	$E(5)^{2}$	$-E(5)^{2}$	$E(5)^{3}$	$-E(5)^{3}$	$-E(5)^2$	$E(5)^{4}$	$E(5)^{3}$	$-E(5)^{3}$	$E(5)^{4}$	$-E(5)^4$	$-E(5)^{3}$	$E(5)^{4}$	$-E(5)^4$	$-E(5)^4$
17	1 1	1	$E(5)^{4}$	1	1	$E(5)^{4}$	$E(5)^{4}$	1	$E(5)^{3}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{4}$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{3}$	E(5)	$E(5)^{2}$	$E(5)^{2}$	E(5)	E(5)	$E(5)^{2}$	E(5)	E(5)	E(5)
18	1 1	1	$E(5)^{3}$	1	1	$E(5)^{3}$	$E(5)^{3}$	1	E(5)	$E(5)^{3}$	$E(5)^{3}$	E(5)	E(5)	$E(5)^{3}$	$E(5)^{4}$	E(5)	E(5)	$E(5)^{4}$	$E(5)^{4}$	E(5)	$E(5)^{2}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{4}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^2$
19	l 1	1	$E(5)^{2}$	1	1	$E(5)^{2}$	$E(5)^{2}$	1	$E(5)^{4}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^{2}$	E(5)	$E(5)^{4}$	$E(5)^{4}$	E(5)	E(5)	$E(5)^{4}$	$E(5)^{3}$	E(5)	E(5)	$E(5)^{3}$	$E(5)^{3}$	E(5)	$E(5)^{3}$	$E(5)^{3}$	$E(5)^3$
20	1 1	1	E(5)	1	1	E(5)	E(5)	1	$E(5)^{2}$	E(5)	E(5)	$E(5)^{2}$	$E(5)^{2}$	E(5)	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{3}$	$E(5)^{4}$	$E(5)^4$	$E(5)^{3}$	$E(5)^{4}$	$E(5)^{4}$	$E(5)^4$
21	2 0	-2	2	-1	0	0	-2	1	2	-1	0	0	-2	1	2	-1	0	0	-2	1	2	-1	0	0	-2	1	-1	0	1
1	2 0	2	2	-1	0	0	2	-1	2	-1	0	0	2	-1	2	-1	0	0	2	-1	2	-1	0	0	2	-1	-1	0	-1
23			(-)	-1	0	0	$-2*E(5)^4$	1	$2 * E(5)^3$	$-E(5)^4$	0	0	$-2*E(5)^3$	$E(5)^{4}$	$2*E(5)^2$	$-E(5)^{3}$	0	0	$-2*E(5)^2$	$E(5)^{3}$	2 * E(5)	$-E(5)^{2}$	0	0	-2 * E(5)	$E(5)^{2}$	-E(5)	0	E(5)
24	2 0	-2	$2 * E(5)^3$	-1	0	0	$-2*E(5)^3$	1	2 * E(5)	$-E(5)^{3}$	0	0	-2*E(5)	$E(5)^{3}$	$2*E(5)^4$	-E(5)	0	0	$-2*E(5)^4$	E(5)	$2 * E(5)^2$	$-E(5)^4$	0	0	$-2*E(5)^2$	$E(5)^{4}$	$-E(5)^2$	0	$E(5)^2$
25	2 0	-2	$2 * E(5)^2$	-1	0	0	$-2 * E(5)^2$		$2*E(5)^4$	$-E(5)^2$	0	0	$-2*E(5)^4$	$E(5)^{2}$	2 * E(5)	$-E(5)^4$	0	0	-2*E(5)	\ /	$2 * E(5)^3$	-E(5)	0	0	$-2*E(5)^3$	E(5)	$-E(5)^{3}$	0	$E(5)^3$
26	2 0		\ /.	-1	0	0	-2 * E(5)		$2 * E(5)^2$	-E(5)	0	0	$-2*E(5)^2$	E(5)	$2*E(5)^3$	$-E(5)^2$	0	0	$-2*E(5)^3$	$E(5)^{2}$	$2 * E(5)^4$	$-E(5)^{3}$	0	0	$-2*E(5)^4$	$E(5)^{3}$	$-E(5)^4$	0	$E(5)^4$
27			(-)	-1	0	0	$2*E(5)^4$		$2 * E(5)^3$	$-E(5)^4$	0	0	$2 * E(5)^3$	$-E(5)^4$	$2 * E(5)^2$	$-E(5)^{3}$	0	0	$2 * E(5)^2$	$-E(5)^{3}$	2 * E(5)	$-E(5)^{2}$	0	0	2 * E(5)	$-E(5)^{2}$	-E(5)	0	-E(5)
28	2 0		()	-1		0	$2 * E(5)^3$		2 * E(5)	$-E(5)^{3}$	0	0	2 * E(5)	\ /		-E(5)	0	0	$2 * E(5)^4$	\ /	$2 * E(5)^2$	$-E(5)^4$	0	0	(/	$-E(5)^4$	$-E(5)^{2}$	0	$-E(5)^{2}$
29			$2 * E(5)^2$			0	$2 * E(5)^2$		$2 * E(5)^4$	$-E(5)^2$	0	0	$2 * E(5)^4$. ,	2 * E(5)	$-E(5)^4$	0	0	2 * E(5)	(/	$2 * E(5)^3$	-E(5)	0	0	$2 * E(5)^3$	-E(5)	$-E(5)^{3}$	0	$-E(5)^{3}$
30	2 0	2	2 * E(5)	-1	0	0	2 * E(5)	-1	$2 * E(5)^2$	-E(5)	0	0	$2 * E(5)^2$	-E(5)	$2 * E(5)^3$	$-E(5)^{2}$	0	0	$2 * E(5)^3$	$-E(5)^2$	$2 * E(5)^4$	$-E(5)^{3}$	0	0	$2 * E(5)^4$	$-E(5)^{3}$	$-E(5)^4$	0	$-E(5)^4$

Normalisers N_i		-	V_1				N_2		
p-subgroups of G up to conjugacy in G			$\overline{P_1}$				$\overline{P_2}$		
Representatives $n_j \in N_i$	1a 2	a = 2b	3a 2	2c - 6a	1a :	2b $2a$	3a	2c	6
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	5 5	5	5	5 5	0	0 0	0	0	(
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	$_{0} \mid 5 -$	5 - 5	5	5 -5	0	0 0	0	0	(
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	$_{0} \mid 5 -$	5 5	5 -	-5 5	0	0 0	0	0	(
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	$_{0}$ \mid 5 \mid 5	-5	5 -	-5 -5	0	0 0	0	0	(
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	10 (-10	-5	0 5	0	0 0	0	0	(
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot \chi_{28} + 1 \cdot \chi_{29} + 1 \cdot \chi_{31} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	10 (10	-5	0 - 5	0	0 0	0	0	(
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $	1 1	. 1	1	1 1	1	1 1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $) 1 –	1 1	1 -	-1 1	1	1 - 1	. 1	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $) 1 1	1	1 -	-1 -1	1 -	-1 1	1	-1	_
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $		1 - 1	1	1 - 1	1 -	-1 -1	. 1	1 -	_
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $) 2 (2	-1	0 - 1	2	2 0	-1	0 -	_
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot $								0	1

 $P_2 = Group([(1,4,11,22,34)(2,7,16,28,40)(3,9,19,31,43)(5,12,23,35,46)(6,14,25,37,48)(8,17,29,41,51)(10,20,32,44,53)(13,24,36,47,55)(15,26,38,49,56)(18,30,42,52,58)(21,33,45,54,59)(27,39,50,57,60)]) \cong C5$

 $N_1 = Group([(1,2)(3,6)(4,7)(5,18)(8,13)(9,14)(15,23)(3,44)(15,23)(15,24)(15,23)(15,24)(15,23)(15,24)(15,23)(15,24)(15,$