Integration On Manifolds Example

Figure 1.

I. INTRODUCTION

The purpose of this note is to show an example of integration on manifolds. Let $(M, \mathcal{A}, [\omega])$ be an oriented manifold where $M := \{(m_1, m_2, m_3) \in \mathbb{R}^3\}$, \mathcal{A} is an atlas and $[\omega]$ an equivalence class of volume form with positive orientation. The atlas A contains the charts (U_s,ϕ_s) and (U_c,ϕ_c) where $U_s,U_c=M,\,\phi_s:M\to$ M_s and $\phi_c: M \to M_c$. M_s denotes \mathbb{R}^3 in spherical coordinates and M_c denotes \mathbb{R}^3 in Cartesian coordinates. The spaces TM, TM_s , TM_c are the associated tangent spaces of M, M_s , M_c . The maps $T\phi_s:TM\to TM_s$ and $T\phi_c:TM\to TM_c$ are called the tangent of ϕ_s and ϕ_c . The vector fields on M are denoted by \mathcal{X} , whose push forward is denoted $\phi_{s*}\mathcal{X}$ and $\phi_{c*}\mathcal{X}$. Lastly the push forward of the equivalence class of positive volume form $[\omega]$ is denoted $\phi_{s*}[\omega]$ and $\phi_{c*}[\omega]$. This scenario is depicted in fig 1.

II. ATLAS

In this section we proceed to define the charts (U_s,ϕ_s) and (U_c,ϕ_c) . In order to integrate on manifolds, the charts need to be diffeomorphic so we can construct $T\phi_s$ and $T\phi_c$, and the charts need to be positively oriented for integration to be well defined[1].

Recall that the tangent space of a manifold consists of all of the points on the manifold and all of the vectors tangent at every point. Since $\dim\left(M\right)=3$ the tangents space will have dimension 6 such that $TM=\mathbb{R}^3\times\mathbb{R}^3$. Every element in TM is a tuple of the form (m,\dot{m}) where $m\in M$ and \dot{m} is a tangent vector at point m. The tangent maps $T\phi_s$ and $T\phi_c$ are tuples of the form $(\phi_s,\mathrm{d}\phi_s)$ and $(\phi_c,\mathrm{d}\phi_c)$ where the boldface d denotes the differential of the map, and is the part that maps tangent vectors.

A. First Chart

Let the first chart (U_c, ϕ_c) have the coordinates (x(M), y(M), z(M)) where

$$x: M \to \mathbb{R}; (m_1, m_2, m_3) \mapsto m_1$$

$$y: M \to \mathbb{R}; (m_1, m_2, m_3) \mapsto m_2$$

$$z: M \to \mathbb{R}; (m_1, m_2, m_3) \mapsto m_3$$

which we will simply denote as (x,y,z) with the mappings implied. The inverse mapping $\phi_c^{-1}:M_c\to M$ is

$$m_1: M_c \to \mathbb{R}; (x, y, z) \mapsto x$$

$$m_2: M_c \to \mathbb{R}; (x, y, z) \mapsto y$$

$$m_3: M_c \to \mathbb{R}; (x, y, z) \mapsto z$$

The tangent map $T\phi_c:TM\to TM_c$ is the tuple $(\phi_c, \mathrm{d}\phi_c)$ where $\mathrm{d}\phi_c$ is the differential of ϕ_c which is calculated by taking the partial derivative of ϕ_c w.r.t. m_1, m_2 , and m_3 .

$$dx = \frac{\partial x}{\partial m_1} dm_1 + \frac{\partial x}{\partial m_2} dm_2 + \frac{\partial x}{\partial m_3} dm_3$$

$$= dm_1$$

$$dy = \frac{\partial y}{\partial m_1} dm_1 + \frac{\partial y}{\partial m_2} dm_2 + \frac{\partial y}{\partial m_3} dm_3$$

$$= dm_2$$

$$dz = \frac{\partial z}{\partial m_1} dm_1 + \frac{\partial z}{\partial m_2} dm_2 + \frac{\partial z}{\partial m_3} dm_3$$

$$= dm_2$$

B. Second Chart

Let the second chart (U_s, ϕ_c) have the coordinates $(r(M), \theta(M), \phi(M))$ where

$$r: M \to \mathbb{R}; (m_1, m_2, m_3) \mapsto \sqrt{m_1^2 + m_2^2 + m_3^2}$$

$$\theta: M \to \mathbb{R}; (m_1, m_2, m_3) \mapsto \arccos\left(\frac{m_3}{\sqrt{m_1^2 + m_2^2 + m_3^2}}\right)$$

$$\phi: M \to \mathbb{R}; (m_1, m_2, m_3) \mapsto \arctan\left(\frac{m_2}{m_1}\right)$$

which we will simply denote as (r, θ, ϕ) . The inverse mapping $\phi_s^{-1}: M_s \to M$ is

$$m_1: M_s \to \mathbb{R}; (r, \theta, \phi) \mapsto r \sin(\phi) \cos(\theta)$$

$$m_2: M_s \to \mathbb{R}; (r, \theta, \phi) \mapsto r \sin(\phi) \sin(\theta)$$

$$m_3: M_s \to \mathbb{R}; (r, \theta, \phi) \mapsto r \cos(\phi)$$

1

The tangent map $T\phi_s:TM\to TM_c$ is the tuple $(\phi_s, \mathbf{d}\phi_s)$ where $\mathbf{d}\phi_s$ is the differential of ϕ_s which is calculated by taking the partial derivative of ϕ_s w.r.t. m_1, m_2 , and m_3 .

$$dr = \frac{\partial r}{\partial m_1} dm_1 + \frac{\partial r}{\partial m_2} dm_2 + \frac{\partial r}{\partial m_3} dm_3$$
 and
$$d\phi_c \circ d\phi_s^{-1} \text{ in matrix form is}$$

$$= \frac{m_1}{r} dm_1 + \frac{m_2}{r} dm_2 + \frac{m_3}{r} dm_3$$

$$d\theta = \frac{\partial \theta}{\partial m_1} dm_1 + \frac{\partial \theta}{\partial m_2} dm_2 + \frac{\partial \theta}{\partial m_3} dm_3$$

$$= \frac{m_1 m_3}{r \sqrt{m_1^2 + m_2^2}} dm_1 + \frac{m_2 m_3}{r \sqrt{m_1^2 + m_2^2}} dm_2 - \frac{\sqrt{m_1^2 + m_2^2}}{\sqrt{m_1^2 + m_2^2}} dm_2}{r^2} dm_3$$

$$= \frac{\partial \phi}{\partial m_1} dm_1 + \frac{\partial \phi}{\partial m_2} dm_2 + \frac{\partial \phi}{\partial m_3} dm_3$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_2}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_1}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_1}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_1}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2} dm_2$$

$$= \frac{m_1}{m_1^2 + m_2^2} dm_1 - \frac{m_1}{m_1^2 + m_2^2$$

The inverse tangent map $T\phi_s^{-1}:TM_c\to TM$ is the tuple $\left(\phi_s^{-1},\mathbf{d}\phi_s^{-1}\right)$ where $\mathbf{d}\phi_s^{-1}$ is the differential of ϕ_s^{-1} which is calculated by taking the partial derivative of ϕ_s^{-1} w.r.t. r, θ , and ϕ .

$$dm_{1} = \frac{\partial m_{1}}{\partial r}dr + \frac{\partial m_{1}}{\partial \theta}d\theta + \frac{\partial m_{1}}{\partial \phi}d\phi$$

$$= \cos\theta\sin\phi dr - r\sin\theta\sin\phi d\theta + r\cos\theta\cos\phi d\phi$$

$$dm_{2} = \frac{\partial m_{2}}{\partial r}dr + \frac{\partial m_{2}}{\partial \theta}d\theta + \frac{\partial m_{2}}{\partial \phi}d\phi$$

$$= \sin\theta\sin\phi dr + r\cos\theta\sin\phi d\theta + r\cos\theta\cos\phi d\phi$$

$$dm_{3} = \frac{\partial m_{3}}{\partial r}dr + \frac{\partial m_{3}}{\partial \theta}d\theta + \frac{\partial m_{3}}{\partial \phi}d\phi$$

$$= \cos\phi dr - r\sin\phi d\phi$$

C. Representative Chart

The charts on a manifold by definition must be bijective. This allows us to create maps between M_c and M_s over the intersection of $\phi_c^{-1}(M_c) \cap \phi_s^{-1}(M_s)$. In this example that intersection is all of M, and the two maps are defined as

$$\phi_s \circ \phi_c^{-1} : M_c \to M_s$$

$$(x, y, z) \mapsto \left(r, \arccos\left(\frac{z^2}{r}\right), \arctan\left(\frac{y}{z}\right)\right)$$

where
$$r = \sqrt{x^2 + y^2 + z^2}$$
, and

$$\phi_c \circ \phi_s^{-1} : M_s \to M_c$$

$$(r, \theta, \phi) \mapsto (r \sin(\phi) \cos(\theta), r \sin(\phi) \sin(\theta))$$

The corresponding tangent maps are defined as

$$(\phi_s \circ \phi_c^{-1}, \mathbf{d}\phi_s \circ \mathbf{d}\phi_c^{-1}) : TM_c \to TM_s$$
$$(\phi_c \circ \phi_s^{-1}, \mathbf{d}\phi_c \circ \mathbf{d}\phi_s^{-1}) : TM_s \to TM_c$$

where $\mathbf{d}\phi_s \circ \mathbf{d}\phi_c^{-1}$ in matrix form is

$$\begin{bmatrix} \frac{x}{r} & \frac{y}{r} \\ \frac{xz}{r\sqrt{x^2+y^2}} & \frac{yz}{r\sqrt{x^2+y^2}} & -\frac{\frac{z}{r}}{r^2} \\ \frac{x}{r^2+y^2} & -\frac{x}{x^2+y^2} & 0 \end{bmatrix}$$

and $\mathbf{d}\phi_c \circ \mathbf{d}\phi_s^{-1}$ in matrix form is

$$\begin{bmatrix} \cos\theta\sin\phi & -r\sin\theta\sin\phi & r\cos\theta\cos\phi\\ \sin\theta\sin\phi & r\cos\theta\sin\phi & r\cos\theta\cos\phi\\ \cos\phi & -r\sin\phi \end{bmatrix}$$

find the tangent maps.

Remark 2. The differential of a function ϕ is related to the gradient of the function by $\nabla \phi = \mathbb{G}^{\sharp}(\mathbf{d}\phi)$ where G is the metric tensor. This is an important subtle difference.

III. PUSH-FORWARD

Let the volume form ω on M be the standard volume form defined as $\omega := dm_1 \wedge dm_2 \wedge dm_3$. In order to integrate on M_c and M_s we need to push forward the volume form ω from M to M_c and M_s . This is really easy since we have the tangent maps $T\phi_s$ and $T\phi_c$.

$$\phi_{s*}\omega := \omega \circ T\phi_s^{-1}$$

$$\phi_{c*}\omega := \omega \circ T\phi_c^{-1}.$$

What these maps are showing is that if we have tangent vectors in TM_s and TM_c we can map them back to TM using the tangent maps and then use the volume form ω that is defined on M.

IV. INTEGRATION

Definition 3. Let $f \in C^{\infty}(M, \mathbb{R})$ then we call $\int_{M} f\omega$ the integral of f with respect to $\omega[1]$.

Theorem 4. Riesz Representation Theorem Let (M, ω) be a volume manifold. Let \mathcal{B} denote the Borel sets of M, the σ – algebra generated by the open (or closed, or compact) subsets of M. Then there is a unique measure m_u on $\mathcal B$ such that for every continuous function of compact support

$$\int_{M} f dm_{\omega} = \int_{M} f \omega.$$

This is saying that a volume form gives rise to a $(r,\theta,\phi)\mapsto (r\sin(\phi)\cos(\theta),r\sin(\phi)\sin(\theta)$ measure dyr.t. which functions can be integrated by the appropriate Legesgue integral. Honestly I don't fully understand this but according to [2] we have (And I copy this right from the book)

$$\int_{D} f(p) \nu(dp) = \int_{Dx} f(p) \nu\left(\frac{\partial p}{\partial x}\right) dx.$$

On the right side p=p(x) is considered a function of x, D_x is the point-set in the space of coordinates x corresponding to $D\subset M$. We have to show that the value of the integral is independent of the coordinate system x. So suppose \tilde{x} is another coordinate system defined on D. Since in matrix notation $\frac{\partial p}{\partial \tilde{x}} = \frac{\partial x}{\partial \tilde{x}} \frac{\partial p}{\partial x}$, one finds

$$\int_{D\tilde{x}} f\left(p\right) \nu\left(\frac{\partial p}{\partial \tilde{x}}\right) d\tilde{x} = \int_{D\tilde{x}} f\left(p\right) \nu\left(\frac{\partial p}{\partial x}\right) \left|\det\frac{\partial x}{\partial \tilde{x}}\right| d\tilde{x} = \int_{Dx} f\left(p\right) \nu\left(\frac{\partial p}{\partial x}\right) dx.$$

(End of copy)

Remark 5. The function ν is the volume form that we have denoted as ω .

A. Application

Let's apply this concept of integration to our problem. Lets start with the integral

$$\int_{U} f(m) \,\omega\left(dm\right)$$

where $m \in M$, f is a continuous function on M, U is the region of integration, and dm are the unit basis vectors of the tangent space at point m.

Let's push the integral onto M_c using the push forward. This is done by

$$\int_{\phi_c(U)} f\left(\phi^{-1}\left(p_c\right)\right) \omega\left(T\phi_c^{-1}dp_c\right) dc$$

where $U_c = \phi_c(U)$ is the image of U mapped by ϕ_c , $p_c \in M_c$, dp_c are the unit basis vectors of the tangent space at p_c , and dc is just a symbol denoting the small area of integration and should not be confused with the differential. The part that is most interesting to us is

$$\omega \left(T\phi_c^{-1} dp_c \right)$$

Since $T\phi_c^{-1}$ is the identity function, $\omega\left(T\phi_c^{-1}dp_c\right)$ evaluates to 1. I will stop here because I'm confused.

Remark 6. If f and ω have compact support, then $\phi_{s*}f$, $\phi_{s*}\omega$, $\phi_{c*}f$, and $\phi_{c*}\omega$ have compact support.

REFERENCES

- Ralph Abraham, Jerrold Mardsen, and Tudor Ratiu. Manifolds, Tensor Analysis, and Applications. Springer-Verlag, New York, first edition, 1998.
- [2] Wulf Rossmann. Lie Groups: An Introduction Through Linear Groups. Oxford University Press Inc., 2002.