MTH1102D Calcul II

Chapitre 10, section 1: Les surfaces paramétrées et leur aire

Aire d'une surface paramétrée

Introduction

• Construction d'une intégrale calculant l'aire d'une surface paramétrée.

Calculer l'aire de la surface S paramétrée par $\vec{R}(u, v)$, $(u, v) \in D$.

On subdivise D en sous-domaines D_{ij} .

Ceci donne une subdivision de S en sous-régions S_{ij} .

Calculer l'aire de la surface S paramétrée par $\vec{R}(u, v)$, $(u, v) \in D$.

En fixant $u=u_i$ et $v=v_j$ on définit une sous-région S_{ij} . Les courbes $\vec{R}(u_i,v)$ et $\vec{R}(u,v_j)$ forment deux côtés de S_{ij} . Ces courbes se croisent au point $\vec{R}(u_i,v_j)$ de S.

Calculer l'aire de la surface S paramétrée par $\vec{R}(u, v)$, $(u, v) \in D$.

Les dérivées partielles $\vec{R}_u(u_i, v_j)$ et $\vec{R}_v(u_i, v_j)$ sont des vecteurs tangents à S en $\vec{R}(u_i, v_j)$.

- On veut calculer l'aire de la sous-région S_{ij} .
- Si $\vec{R}_u(u_i, v_j)$ et $\vec{R}_v(u_i, v_j)$ sont linéairement indépendants alors ils engendrent le plan tangent à S en $\vec{R}(u_i, v_j)$.

- Soit P_{ij} le parallélogramme engendré par les vecteurs tangents $\vec{R}_u(u_i, v_j)$ et $\vec{R}_v(u_i, v_i)$.
- aire $(P_{ij}) = ||\vec{R}_u(u_i, v_j) \times \vec{R}_v(u_i, v_j)||$
- Si S_{ij} est petit alors on approxime $\operatorname{aire}(S_{ij})$ par $\operatorname{aire}(P_{ij})$ « mise à l'échelle » en multipliant par $\operatorname{aire}(D_{ij}) = \Delta A_{ij}$.
- Cette mise à l'échelle tient compte du fait qu'une subdivision plus fine de D produit des sous-régions S_{ij} plus petites.

- On approxime $\operatorname{aire}(S_{ij}) pprox \operatorname{aire}(P_{ij}) \Delta A_{ij} = ||\vec{R}_u(u_i, v_j) \times \vec{R}_v(u_i, v_j)||\Delta A_{ij}||$
- On a $\mathsf{aire}(S) = \sum_i \sum_j \mathsf{aire}(S_{ij}) \approx \sum_i \sum_j ||\vec{R}_u(u_i, v_j) \times \vec{R}_v(u_i, v_j)||\Delta A_{ij}|$
- Lorsque le nombre de subdivisions de *D* augmente, les approximations deviennent des égalités et la double somme de Riemann tend vers une intégrale.
- Ainsi,

$$\mathsf{aire}(S) = \iint_D ||\vec{R}_u(u,v) \times \vec{R}_v(u,v)|| \, dA$$
 où dA est $du \, dv$ ou $dv \, du$.

Théorème

Si S est une surface paramétrée par $\vec{R}(u,v)$ avec $(u,v)\in D$ et que $\vec{R}_u imes\vec{R}_v
eq \vec{0}$ sur S alors

$$\mathsf{aire}(S) = \iint_D ||\vec{R}_u(u,v) \times \vec{R}_v(u,v)|| \, dA$$

• Les dérivées partielles \vec{R}_u et \vec{R}_v s'obtiennent en dérivant \vec{R} composante à composante selon la variable donnée.

Théorème

Si S est une surface paramétrée par $\vec{R}(u,v)$ avec $(u,v)\in D$ et que $\vec{R}_u\times\vec{R}_v\neq\vec{0}$ sur S alors

$$\operatorname{aire}(S) = \iint_D ||\vec{R}_u(u,v) \times \vec{R}_v(u,v)|| dA$$

- Les dérivées partielles \vec{R}_u et \vec{R}_v s'obtiennent en dérivant \vec{R} composante à composante selon la variable donnée.
- L'expression $||\vec{R}_u(u, v) \times \vec{R}_v(u, v)|| dA$ est un « petit élément d'aire » et est notée dS.

Résumé

- Esquisse de la construction de l'intégrale permettant de calculer l'aire d'une surface.
- Formule pour le calcul de l'aire d'une surface paramétrée.
- Notion de « petit élément d'aire d'une surface ».