§6. Преобразование прямоугольных координат на плоскости

Поскольку выбор прямоугольной системы координат произволен, то принципиальное значение имеет задача отыскания формул, осуществляющих переход от одной декартовой прямоугольной системы координат к другой. Эту задачу можно решить с помощью скалярного произведения.

Рассмотрим на плоскости две прямоугольные декартовы системы координат: старую O, \vec{i}, \vec{j} и новую O', \vec{i}', \vec{j}' . Обозначим координаты

произвольной точки M плоскости в этих системах через x, y и x', y' соответственно, а координаты точки O' в старой системе координат через a, b (рис. 6.1). Имеем

$$\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M} . \tag{6.1}$$

Заменив в (6.1) векторы \overrightarrow{OM} и $\overrightarrow{OO'}$ на их разложения в старом базисе, а вектор $\overrightarrow{O'M}$ – на его разложение в новом базисе, получим:

$$x\vec{i} + y\vec{j} = a\vec{i} + b\vec{j} + x'\vec{i}' + y'\vec{j}'.$$
 (6.2)

Далее, умножив обе части равенства (6.2)

Рис. 6.1. Старый и новый прямоугольные базисы на

скалярно на орты старой системы, приходим к соотношениям:

$$x(\vec{i} \cdot \vec{i}) = a(\vec{i} \cdot \vec{i}) + x'(\vec{i}' \cdot \vec{i}) + y'(\vec{j}' \cdot \vec{i}),$$

$$y(\vec{j} \cdot \vec{j}) = b(\vec{j} \cdot \vec{j}) + x'(\vec{i}' \cdot \vec{j}) + y'(\vec{j}' \cdot \vec{j}),$$

или
$$x = a + x'(\vec{i}' \cdot \vec{i}) + y'(\vec{j}' \cdot \vec{i}),$$

$$y = b + x'(\vec{i}' \cdot \vec{j}) + y'(\vec{j}' \cdot \vec{j}),$$
(6.3)

так как $(\vec{i} \cdot \vec{i}) = (\vec{j} \cdot \vec{j}) = 1$. Введём ориентированный как в тригонометрии угол α поворота вектора \vec{i} до совмещения с вектором \vec{i}' (рис. 6.1). Для векторов \vec{i}' , \vec{j}' в силу определений тригонометрических функций синус, косинус и формул приведения имеем следующие разложения по базису \vec{i} , \vec{j} :

$$\begin{split} \vec{i}' &= \vec{i} \cos \alpha + \vec{j} \sin \alpha, \\ \vec{j}' &= \vec{i} \cos \left(\alpha + \frac{\pi}{2} \right) + \vec{j} \sin \left(\alpha + \frac{\pi}{2} \right) = -\vec{i} \sin \alpha + \vec{j} \cos \alpha. \end{split}$$

Вычислим теперь скалярные произведения из правых частей равенств (6.3):

$$\vec{i}' \cdot \vec{i} = \cos\alpha, \ \vec{j}' \cdot \vec{i} = -\sin\alpha, \ \vec{i}' \cdot \vec{j} = \sin\alpha, \ \vec{j}' \cdot \vec{j} = \cos\alpha.$$

От системы (6.3) приходим к следующим равенствам:

$$\vec{j}$$
 \vec{i}
 \vec{j}'
 \vec{i}
 \vec{j}'

Рис. 6.2. Случай параллельного переноса

$$x = x'\cos\alpha - y'\sin\alpha + a,$$

$$y = x'\sin\alpha + y'\cos\alpha + b.$$

(6.4)

Система (6.4) — решение поставленной задачи, в ней старые координаты x, y произвольной точки M плоскости выражаются через её новые координаты

x', y'. Можно также получить формулы, выражающие новые координаты этой точки через старые. Во-первых, эти формулы можно получить, разрешая систему (6.4) относительно x', y'. Во-вторых, они также получаются в результате последовательного умножения обеих частей равенства (6.2) скалярно на орты \vec{i}', \vec{j}' нового прямоугольного базиса. Имеем

 $x' = x\cos\alpha + y\sin\alpha - a\cos\alpha - b\sin\alpha$ $y' = -x\sin\alpha + y\cos\alpha + a\sin\alpha - b\cos\alpha$.

Если $\alpha = 0$, то получаем случай так называемого параллельного переноса (рис. 6.2). Равенства (6.4) тогда принимают вид:

$$x = x' + a,$$

 $y = y' + b.$ (6.5)

Пример 6.1. Даны две точки $M_1(1,-7)$ и $M_2(3,-3)$. Новая ось абсцисс проходит через точку M_1 , а новая ось ординат – через точку M_2 . при этом старые и новые оси сонаправлены. Написать формулы преобразования координат и найти новые координаты этих точек.

▶В системе координат Oxy построим точки M_1 и M_2 , затем через них проведём оси новой системы координат O'x'y'(рис. 6.3). Старые абсциссы точек O' и M_2 совпадают, старые ординаты точек O' и M_1

поэтому O' (1, -3). Теперь, совпадают, соотношения используя (6.5),напишем формулы преобразования координат:

$$x = x' + 1,$$

 $y = y' - 3.$

Подставим в эти равенства поочередно старые координаты точек M_1 и M_2 . Для координат точки M_1 имеем 3 = x' + 1, -3 = y' - 3, из которой получаем x' = 2,

Рис. 6.3. К примеру 6.1

 $y'=0, M_1(2, 0)$. Для координат точки M_2 имеем систему: 1=x'+1, -7=y'-3,откуда следует: x' = 0, y' = -4, $M_2(0, -4)$.

Пример 6.2. Даны две точки $M_1(2,-1)$ и $M_2(5,3)$. Начало координат перенесено в точку M_1 , а оси координат повернуты так, что положительная часть новой оси абсцисс проходит через

2

точку M_2 . Написать формулы преобразования координат и найти координаты точки M_2 в

новой системе координат.

►В системе координат *Оху* построим точки M_1 и M_2 , за начало новой системы примем точку M_1 и построим оси новой согласно системы координат условиею задачи (рис. 6.4). Система координат $M_1x'y'$ получена из системы координат Оху с помощью параллельного переноса старых

Рис. 6.4. К примеру 6.2

осей в точку M_1 и последующего поворота на некоторый угол α . Координаты одних и тех же точек в этих системах связаны соотношениями (6.4), причём координаты нового начала известны: a=2,b=-1, остаётся найти синус и косинус угла поворота, т.е. $\sin\alpha$ и $\cos\alpha$. В прямоугольном треугольнике M_1M_2N найдём длины катетов M_1N , NM_2 и гипотенузы M_1M_2 :

$$M_1N=5-2=3$$
, $NM_2=3-(-1)=4$,
 $M_1M_2=\sqrt{M_1N^2+NM^2}=\sqrt{3^2+4^2}=5$.

Теперь вычислим $\sin \alpha$ и $\cos \alpha$:

$$\sin \alpha = \frac{NM_2}{M_1M_2} = \frac{4}{5}, \cos \alpha = \frac{M_1N}{M_1M_2} = \frac{3}{5}.$$

Соотношения (6.4) в данном случае принимают вид: $\begin{cases} x = \frac{3}{5}x' - \frac{4}{5}y' + 2, \\ y = \frac{4}{5}x' + \frac{3}{5}y' - 1. \end{cases}$

Подставим в эти равенства старые координаты точки M_2 , получим:

$$\begin{cases} 5 = \frac{3}{5}x' - \frac{4}{5}y' + 2, \\ 3 = \frac{4}{5}x' + \frac{3}{5}y' - 1, \end{cases}$$
 или
$$\begin{cases} \frac{3}{5}x' - \frac{4}{5}y' = 3, \\ \frac{4}{5}x' + \frac{3}{5}y' = 4. \end{cases}$$

Разрешив последнюю систему относительно x', y' имеем: x' = 5, y' = 0. ◀