6.003: Signals and Systems

Signals and Systems

February 2, 2010

6.003: Signals and Systems

Today's handouts: Single package containing

• Slides for Lecture 1

• Subject Information & Calendar

Lecturer: Denny Freeman Instructors: Peter Hagelstein

Rahul Sarpeshkar

Website: mit.edu/6.003

Text: Signals and Systems - Oppenheim and Willsky

6.003: Homework

Doing the homework is essential for understanding the content.

- where subject matter is/isn't learned
- equivalent to "practice" in sports or music

Weekly Homework Assignments

- Conventional Homework Problems plus
- Engineering Design Problems (Python/Matlab)

Open Office Hours!

- Stata Basement (32-044)
- Mondays and Tuesdays, afternoons and early evenings

6.003: Signals and Systems

Collaboration Policy

- Discussion of concepts in homework is encouraged
- Sharing of homework or code is not permitted and will be reported to the COD

Firm Deadlines

- Homework must be submitted in recitation on due date
- Each student can submit one late homework assignment without penalty.
- Grades on other late assignments will be multiplied by 0.5 (unless excused by an Instructor, Dean, or Medical Official).

6.003 At-A-Glance

	Tuesday	Wedne	esday	Thursday	Friday
Feb 2	L1: Signals and Systems		R1: Continuous & Discrete Systems	L2: Discrete-Time Systems	R2: Difference Equations
Feb 9	L3: Feedback, Cycles, and Modes	HW1 due	R3: Feedback, Cycles, and Modes	L4: CT Operator Representations	R4: CT Systems
Feb 16	Presidents Day: Monday Schedule	HW2 due	R5: CT Operator Representations	L5: Second-Order Systems	R6: Second-Order Systems
Feb 23	L6: Laplace and Z Transforms	HW3 due	R7: Laplace and Z Transforms	L7: Transform Properties	R8: Transform Properties
Mar 2	L8: Convolution; Impulse Response	EX4	Exam 1 no recitation	L9: Frequency Response	R9: Convolution and Freq. Resp.
Mar 9	L10: Bode Diagrams	HW5 due	R10: Bode Diagrams	L11: DT Feedback and Control	R11: Feedback and Control
Mar 16	L12: CT Feedback and Control	HW6 due	R12: CT Feedback and Control	L13: CT Feedback and Control	R13: CT Feedback and Control
Mar 23	Spring Week				
Mar 30	L14: CT Fourier Series	HW7	R14: CT Fourier Series	L15: CT Fourier Series	R15: CT Fourier Series
Apr 6	L16: CT Fourier Transform	EX8 due	Exam 2 no recitation	L17: CT Fourier Transform	R16: CT Fourier Transform
Apr 13	L18: DT Fourier Transform	HW9 due	R17: DT Fourier Transform	L19: DT Fourier Transform	R18: DT Fourier Transform
Apr 20	Patriots Day Vacation	HW10	R19: Fourier Transforms	L20: Fourier Relations	R20: Fourier Relations
Apr 27	L21: Sampling	EX11 due	Exam 3 no recitation	L22: Sampling	R21: Sampling
May 4	L23: Modulation	HW12 due	R22: Modulation	L24: Modulation	R23: Modulation
May 11	L25: Applications of 6.003	EX13	R24: Review	Breakfast with Staff	Study Period
May 18	Final Examination Period				

6.003: Signals and Systems

Weekly meetings with class representatives

- help staff understand student perspective
- learn about teaching

One representative from each section (4 total)

Tentatively meet on Thursday afternoon

Interested?

The Signals and Systems Abstraction Describe a system (physical, mathematical, or computational) by the way it transforms an input signal into an output signal. Signal signal out

Lecture 1

Signals and Systems: Hierarchical

Representations of component systems are easily combined.

Example: cascade of component systems

Composite system

Component and composite systems have the same form, and are analyzed with same methods.

Signals and Systems

Signals are mathematical functions.

- independent variable = time
- dependent variable = voltage, flow rate, sound pressure

Signals and Systems

continuous "time" (CT) and discrete "time" (DT)

Many physical systems operate in continuous time.

- · mass and spring
- leaky tank

Digital computations are done in discrete time.

• state machines: given the current input and current state, what is the next output and next state.

Signals and Systems

Sampling: converting CT signals to DT

T =sampling interval

Important for computational manipulation of physical data.

- digital representations of audio signals (e.g., MP3)
- digital representations of pictures (e.g., JPEG)

Signals and Systems

Reconstruction: converting DT signals to CT

zero-order hold

T =sampling interval

commonly used in audio output devices such as CD players

Signals and Systems

Reconstruction: converting DT signals to CT

piecewise linear

T =sampling interval

commonly used in rendering images

Example System: Leaky Tank

Formulate a mathematical description of this system.

Assume linear leaking: $r_1(t) \propto h_1(t)$

 $\frac{dh_1(t)}{dt} \propto r_0(t) - r_1(t)$ Assume water is conserved:

 $\frac{dr_1(t)}{dt} \propto r_0(t) - r_1(t)$ Solve:

Check Yourself

What are the dimensions of constant of proportionality C?

$$\frac{dr_1(t)}{dt} = C\Big(r_0(t) - r_1(t)\Big)$$

Check Yourself

Which of the following tanks has the largest time constant

Analysis of the Leaky Tank

Call the constant of proportionality $1/\tau$.

Then τ is called the **time constant** of the system.

$$\frac{dr_1(t)}{dt} = \frac{r_0(t)}{\tau} - \frac{r_1(t)}{\tau}$$

Assume that the tank is initially empty, and then water enters at a constant rate $r_0(t) = 1$. Determine the output rate $r_1(t)$.

Explain the shape of this curve mathematically.

Explain the shape of this curve physically.

Leaky Tanks and Capacitors

Although derived for a leaky tank, this sort of model can be used to represent a variety of physical systems.

Water accumulates in a leaky tank.

Charge accumulates in a capacitor.

 $\frac{dv}{dt} = \frac{i_i - i_o}{C} \propto i_i - i_o \qquad \text{analogous to} \qquad \frac{dh}{dt} \propto r_0 - r_1$

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.