

# **Professora:** Aline de Oliveira

Contagem, 2020





### LIGAÇÕES QUÍMICAS

#### Observação

Uma substância ou composto químico é considerado molecular quando apresenta somente ligações covalentes. Desde que apresente uma única ligação iônica, o composto já é considerado iônico. Exemplos:





#### Exceções à regra do octeto

Existem compostos que não obedecem a regra do octeto.

1. Moléculas que contêm número ímpar de elétrons.

$$\ddot{N} = \ddot{O} \longrightarrow 11$$
 elétrons

## LIGAÇÃO QUÍMICAS

#### Exceções à regra do octeto

2. Moléculas em que um átomo tem menos de um octeto (compostos de berílio (Be) e boro (B)).

BeH<sub>2</sub>: H⊙Be⊙H

3. Moléculas em que um átomo tem mais de oito elétrons de valência (ocorre geralmente com o fósforo (P) e o enxofre (S)).



Ocorre quando o átomo central é muito grande, para que possa acomodar tantos elétrons ao seu redor. Por isso, essa chamada camada de valência expandida, só aparece em elementos a partir do 3º período da tabela periódica.

# LIGAÇÃO METÁLICA

É a união entre os átomos metálicos por meio do mar de elétrons.

#### Teoria do mar de elétrons (ou teoria da nuvem eletrônica)

Os elétrons de valência dos elementos metálicos circulam livremente entre os cátions fixos.



### Propriedades dos metais:

- Boa condutividade de calor e de eletricidade;
  - Brilho característico (brilho metálico);
    - Alto ponto de fusão;
    - Resistência à tração;
- Maleabilidade (facilidade para fazer lâminas);
  - Ductibilidade (facilidade para fazer fios).

### LIGAÇÕES QUÍMICAS

### Energia envolvida em processos de formação ou rompimento de ligações

O que acontece se dois átomos a uma distância infinita forem aproximados para formar uma ligação?

#### Lembre-se que:

$$E_{p} = \frac{1}{4\pi\varepsilon} \frac{q_{1} \cdot q_{2}}{r}$$

 $E_p$  = energia potencial elétrica;  $q_1$  e  $q_2$  = cargas elétricas (em Coloumb); r = distância entre as cargas;  $\epsilon$  = constante dielétrica ou permissividade do meio.

Frequentemente, esse processo é ilustrado com o  $\rm H_2$ , porque com dois elétrons e dois núcleos, esse é o composto molecular mais simples.

# LIGAÇÕES QUÍMICAS

### Energia envolvida em processos de formação ou rompimento de ligações

