

Modulo 2 Adition (XOR)

+	0	1
0	0	1
1	1	0

Modulo 2 Multiplication (XOR)

*	0	1
0	0	0
1	0	1

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Gated 2 Input XOR Logic

Gated 2 Input XOR Symbol

A	B	A_EN	B_EN	X	Y	O	Notes
-	-	0	0	0	0	0	Block
0	0	1	0	0	0	0	Pass A
0	1	1	0	0	0	0	
1	0	1	0	1	0	1	
1	1	1	0	1	0	1	
0	0	0	1	0	0	0	Pass B
0	1	0	1	0	1	1	
1	0	0	1	0	0	0	
1	1	0	1	0	1	1	
0	0	1	1	0	0	0	$A \wedge B$
0	1	1	1	0	1	1	
1	0	1	1	1	0	1	
1	1	1	1	0	0	0	

Gated 2 Input XOR Truth Table

Figure 6

Figure 7

Polynomial Multiplier

Galois Field Multiplier

Figure 8

Scalar instruction: `crc = crc ^ gf_mult (a, b)`

As used in the example software, a is the feedback term and b is the polynomial term

Figure 9

Figure 10

Figure 11

Figure 12

GF Kernel instruction: $c[3:0] = c[3:0]' \cdot g \cdot m[1[3:0], b[1[5:0]]]$

As used in the example software, a is a set of four byte feedback term and b is a set of sixteen polynomial terms

The set of sixteen polynomial terms should be referenced from a ROM as part of the GF Kernel instruction processor as only a small number of terms are necessary for each Reed-Solomon code type

Figure 13

Figure 14