Digital Electronics

Number system :-

There are jour number systems in authoretic

- 1) Decimal number system.
- 2) Binazy number system.
- 3) Hexadecimal number system.
- 4) Octal number system.

General Rule for representing numbers in any number system is.

an an-1 aza, a = anx + an-1 x -1+....+ qx2+a, x + aoxo

where, $a_n, a_{n-1} \cdot \cdots \cdot a_n \rightarrow Digits$

ao → LSD - Least significant Digit an → MSD - Most Significant Digit r → Base of number system.

Conventions: -

Binary to Decemal conversions-

1)
$$(310111)_{2}$$

 $(310111)_{2} = 1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{4} + 1 \times 2^$

(11101-1011)
=
$$1 \times 2^4 + 1 \times 2^3 + 1 \times 2^4 + 0 \times 2^4 + 1 \times 2^6 +$$

(10)
$$(10)$$
 = $1\times2^4 + 0\times2^3 + 1\times2^2 + 1\times2^4 + 0\times2^0$
= $16 + 0 + 4 + 2 + 0$
= (22) 10

(iv)
$$(10001101)_2 = 1 \times 2^3 + 0 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^5 + 0 \times 2^6 + 0 \times$$

v)
$$(10111 \cdot 1011)_{3} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{3} + 1 \times 2^{4} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{5} + 1 \times 2^{4}$$

 $+ 1 \times 2^{3} + 1 \times 2^{4}$
 $= 16 + 0 + 4 + 2 + 1 + \frac{1}{2} + 0 + \frac{1}{8} + \frac{1}{16}$
 $= 23 + 0.5 + 0.125 + 0.0625$
 $= (23.6875)_{10}$

vi)
$$(0.011011)_3 = 0x\overline{5}^1 + 1x\overline{5}^2 + 1x\overline{2}^3 + 0x\overline{2}^4 + 1x\overline{5}^5 + 1x\overline{5}^6$$

$$= 0 + \frac{1}{4} + \frac{1}{8} + 0 + \frac{1}{32} + \frac{1}{64}$$

$$= 0.25 + 0.125 + 0.03125 + 0.015625$$

$$= (0.421875)_{10}$$

$$V(i) (110111.101) = 1x3^{5} + 1x2^{4} + 0x2^{3} + 1x2^{2} + 1x2^{4} + 1x2^{5} + 1x2^{3} + 1x2^{5} + 1x2^{3} + 1x2^{5} + 1x2^{3} + 1x2^{5} + 1x2^$$

Decimal, Binary, Octal and Hexadecimal numbers.

Deamal.	Binary	octal.	-Hexadecimal
0	0000	0	0
1.	0001	1	1
Q .	0010	a.	۵.
3.	ODL1.	3,	3
A	0100	4	4
5	0101	5	5"
6	0 7 7 0	6	6
7	0 1 1 1	7	7
8	1 0 0 0	10	8
9	1001.	11	9.
10 .	1010.	12	Α
11	1011.	13.	B
ia	1100	14	c.
13	1101.	15	D
14	1110	16	E
15	1111.	14.	F

* Convert (475.25) to 9ts decimal equivalent.

(475.25) =
$$4 \times 8^2 + 7 \times 8' + 5 \times 8^0 + 2 \times 8' + 5 \times 8^2$$

= $256 + 56 + 5 + 2 \times \frac{1}{8} + 5 \times \frac{1}{64}$.

= $(317.32813)_{10}$.

*
$$(982.14)_{4} = (?)_{10}$$

= $9 \times 16^{2} + B(11) \times 16^{1} + 2 \times 16^{2} + 1 \times 16^{1} + A(10) \times 16^{2}$
= $2304 + 176 + 2 + 1 \cdot \frac{1}{16} + 10 \cdot \frac{1}{256}$
= $2304 + 176 + 2 + 0.0625 + 0.039$.
= $(2482.1)_{10}$.

*
$$(3109.10)_{10}$$
 = $(?)_{10}$ = $3\times4^3 + 1\times4^2 + 0\times4^4 + 0\times4^6 + 1\times4^4 + 0\times4^7$ = $190 + 16 + 0 + 0 + 4 + (0) \cdot \frac{1}{16}$ = $(210.375)_{10}$.

*
$$(6|4 \cdot 15)_{\frac{1}{4}} = (9)_{10}$$

= $6x = 7^{2} + 1x = 7^{2} + 4x = 7^{2} + 1x = 7^{2} + 5x = 7^{2}$
= $294 + 7 + 4 + \frac{1}{7} + 5 \cdot \frac{1}{49}$
= $294 + 7 + 4 + 0.14 = 2857 + 0.102$
= $(305.24486)_{10}$

Decimal to Octal conversion.

$$\frac{0.12 \times 8}{0.96} = 0$$

to Hexadecemal conversion.

$$16 \ 3509$$
.

 $16 \ 219 - 5. \uparrow$
 $16 \ 13 - 11. \mid B$
 $0 - 13 \mid D.$

The whole number past is converted by repeated. division by 16.

* The praction past is converted by repeated multiplication by 16 and by keeping track of the integer.

Binasy to Octal.

octal number.	Binasy equivalent	
0	000	
1	0 0 1	
a	010	
3	011	
4	100	
5	101	
6	110	
¥-	1 1 1	

- * For binary to octal conversion of whole numbers group. the given binary number in groups of those three starting from the right most [LSB] and replace each group by the octal number shown in above table.
- For conversion of fraction part, make group of three starting with the left most bit.

whole number. 001,110 add 1, 6.

Octal numbers to broasy.

- To convert octal to binary, Simply replace each octal number by the equivalent.
- 1) (424) = (9)
 - : (724) = (119 010 100)2.
- \$ (365.217) = (?) = (011110101.010001111)
- 3) (0.506), = (3) = (0.101000110)

NUMBER SYSTEM.

Integer part.

Fraction part:

$$\begin{array}{c|c}
\hline
0.65 \times 16 \\
\hline
10.4. & \rightarrow 10 = A. & MSD \\
\hline
0.4 \times 16 & \rightarrow 6. \\
\hline
0.4 \times 16 & \rightarrow 6. \\
\hline
0.4 \times 16 & \rightarrow 6. \\
\hline
0.4 \times 16 & \rightarrow 6.
\end{array}$$

$$(384.65)_{0} = (110.466)_{16}$$

+ $(110.466)_{16} = 000,100,011,100.100,100,110$
 $(110.466)_{16} = (0434.5146)_{8}$

11) Convert
$$(ABFE) = (?)_2 = (?)_{10}$$
.
 $(ABFE)_{16} = (1010 1011 1111 1110)_2$.
 $(ABFE)_{16} = (10\times16^3) + (11\times16^2) + (15\times16^1) + (14\times16^0)$
 $(ABFE)_{16} = (44 030)_{10}$.
 $(ABFE)_{16} = (101010111111 1110)_2 = (44030)_{10}$.

June -03,4M

Fraction part.

0.65 × 16.
$$\rightarrow$$
 10

10.4.

0.4 × 16. \rightarrow 6

6.4.

0.4 × 16. \rightarrow 6

LSD.

(0.A66)

$$(.3114.466)_{16} = (3114.466)_{16}.$$

$$(.3114.466)_{16} = (001000010100.1010.0110.0110.0110)_{2}.$$

$$(.32.65)_{10} = (2114.466)_{16} = (001000010100.101001100110)_{2}.$$

%)
$$(ABCD)_{16} = (?)_3 = (?)_8$$

 $(ABCD)_{16} = (1010 1011 1100 1101)_2$.
 $(1,010,101,1 11,00 1,101)_2 = (125715)_8$.
 $(ABCD)_{16} = (1010 1011 1100 1101)_2 = (125715)_8$

```
(193)_{16} = (?)_{8} = (?)_{10}
     (193) = 0001 1001 boll.
    (193)16 = (623)
    (193) = (1x16°)+ (9x16') + (3x16°) = (403)10
    (57.6) = (2F.C) = (403)10.
A) convert i) (526.44) = (?) = (?) = (?) | June -04,6M
    (526.44) = (101010110).100100)g.
    (526.44)_8 = (5x8)^3 + (2x8') + (6x8°) + (4x8') + (4x8')
    (526.44) = (342.5625) 10.
    (526.44) = (101 010 110.100 100) = (342.5625)10.
 1) (48350) 10 = (9)16 = (?)8
   16 48350
              12.
        11 (B).
        MED.
     (48350)10 = (BCDF)16
                            (BCDE) = (1011 1100 1101 1110)
  8 48350
                  LSD
     6043
                                r (136336)
                       OR. (48350) = (136336)
     755
                      (48350) = (BCDE) = (136336)8.
             3.
```

1) Caseyout the following conversion.

Jan -05,6M

$$F = 15$$
, $A = 10$ $C = 12$, $D = 13$.
 $(F9AC.508B)_{16} = (15 \times 16^3) + (9 \times 16^2) + (10 \times 16^4) + (12 \times 16^4)$
 $(5 \times 16^4) + (13 \times 16^2) + (8 \times 16^3) + (1 \times 16^4)$
 $= (63916.36532)_{10}$

(i)
$$(457.248)_{16} = (?)_{10}$$
.
 $= (4x8^2) + (5x8') + (7x8') + (2x8') + (2x8') + (2x8') + (3x8^2) + (8x8^3)$
 $(457.248)_{16} = (303.32226)_{10}$

5) convert
$$\frac{1}{2}(2AB.8)_{10} = (9)_{10} = (9)_{8}$$
 $(2AB.8)_{16} = (9)_{1} + 10\times16^{1} + (11\times16^{0}) + (9\times16^{1})$
 $(2AB.8)_{16} = (683.5)_{10}$
 $= 001,0 \cdot 10,10 \cdot 1,011 \cdot 1.00,0$
 $= 1 \cdot 2 \cdot 5 \cdot 3 \cdot 4 \cdot 0$
 $(2AB.8)_{16} = (683.5)_{0} = (1253.40)_{8}$
 $(2AB.8)_{16} = (683.5)_{0} = (1253.40)_{8}$

(164.35a)₈ = (?)₁₆ = (?)₈

$$(764.35a)8 = (11 190 100.011 101 010.$$

$$= 1F4.75.$$

$$(764.35a)8 = (1F4.75)16
$$(764.35a)8 = (1F4.75)16 = (111110 100.011 101 010)a.$$$$

$$= (1 \times 2^{5}) + (0 \times 2^{4}) + (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{5}) + (0 \times 2^{6}) + (1 \times 2^{6}) + (1 \times 2^{6}) + (1 \times 2^{6})$$

$$+ (0 \times 2^{6}) + (1 \times 2^{6}) + (0 \times 2^{6}) + (1 \times 2^{6})$$

$$(A38)_{16} = (10 \times 16^{9}) + (3 \times 16^{1}) + (11 \times 16^{9})$$
 $A=10$, $B=11$
 $(A38)_{16} = (Q619)_{10}$

11)
$$(2F3)_{16} = (?)_{10}$$

= $(2\times16^2) + (15\times16^1) + (3\times16^2)$
 $(2F3)_{16} = (755)_{10}$.

June -08,6 M

```
91)
   (ADGCB) = (?)
                = (10,10 1,101,011,011,001,011),
    (ADGCB) = (255 3313)
m) (11011.1011) = (9)q.
                 3 3 5 4.
    (11011.1011) = (33,54)
(19) (1011.11001) = (?)
                 = (1 \times a^3) + (0 \times a^3) + (1 \times a^6) + (1 \times \overline{a}^6) + (1 \times \overline{a}^6)
                    +(1x\bar{a}^2)+(0x\bar{a}^3)+(0x\bar{a}^4)+(1x\bar{a}^5)
                 =(13,78125)10.
    (1011.11001) = (18.78125)10.
11) Convert (10110011010), into octal decimal & hexadecimal.
                                              June -09, 8M
        (10110011010) = (?) = (?) = (?) /4
   → 10,110,011,010 = (2632)2.
       2632
   + 101, 1001, 1010 = (59A)16
   → (1x2°) + (°cx0) + (°cx1) + (°cx0) + (°cx1) + (°cx1)
      + (1x24) + (1x23) + (0x23) + (1x2) + (0x2)
    =(1434)_{m}
  : (10110011010) = (2632) = (59A) = (1434).
```

1)
$$(1101)_{2} = (1xa^{3}) + (1xa^{2}) + (0xa^{4}) + (1xa^{5}).$$

$$= (13)_{10}.$$

(10001) =
$$(1 \times 2^4) + (0 \times 2^3) + (0 \times 2^3) + (0 \times 2^4) + (1 \times 2^6)$$

= $(17)_{10}$.

(iii)
$$(10101)_{2} = (1xa^{4}) + (0xa^{3}) + (1xa^{2}) + (1xa^{3}) + (0xa^{1}) + (1xx^{2})$$

$$= (21)_{10}.$$