

Provas de ingresso específicas para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica,

Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA ELETROTÉCNICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

SOLUÇÃO PROVA MODELO 2016

Apenas são apresentadas as soluções. Respostas que exijam demonstrações ou desenvolvimento não são apresentadas.

Grupo 1

- 1. (C)
- **2.** (C)
- **3.** (D)

Grupo 2

a) Recorrendo à regra de Ruffini

$$(x^3 - 3x^2 - 9x + 27) = (x - 3)(x^2 - 9)$$

logo os zeros são -3 e 3 (3 com multiplicidade 2).

b)

$$p(x)$$
 é crescente em:] $-\infty$, -1] \cup [3, $+\infty$ [

$$p(x)$$
 é decrescente em: $[-1,3]$

Grupo 3

- 1. Gráfico C
- **2.** (C)
- **3.** (D)

Grupo 4

- a) entre as duas cargas a igual distância de cada carga
- b) $F=2.25\times10^9$ N
- c) $F=5,625\times10^9$ N

Grupo 5

$$a) R = \frac{U}{I} = \frac{18}{2} = 9 \Omega$$

b)
$$P_{dissipada} = U \times I = 18 \times 2 = 36 \text{ W}$$

ou

$$P_{dissipada} = \frac{U^2}{R} = \frac{18^2}{9} = \frac{324}{9} = 36 \text{ W}$$

$$W_{consumida} = P_{dissipada} \times t = 36 \times 6,25 = 225 \text{ Wh} = 0,225 \text{ kWh}$$

ou

$$W_{consumida} = P_{dissipada} \times t = 36 \times 6,25 \times 3600 = 810000 \text{ J}$$

$$aU = R_2 \times I_2 = 3 \times 2 = 6 \text{ V}$$

$$b)R_1 = \frac{U}{I_1} = \frac{6}{3} = 2 \Omega$$

$$R_{total} = \frac{R_1 \times R_2}{R_1 + R_2} = \frac{2 \times 3}{2 + 3} = 1,2 \ \Omega$$

ou

$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$$

$$R_{total} = \frac{6}{5} = 1, 2 \Omega$$

Grupo 6

(Desenvolvimento)