Criticality in Formal Languages

Jonas Peters

July 26, 2025

Contents

1	Mo	del Framework	2
2	AN	Model with Power-Law Behavior	7
	2.1	A Continuous Model with Power-Law Behavior	7
		2.1.1 A Formula for Mutual Information	7
		2.1.2 Initializing Parameters	8
		2.1.3 Ensure Positive Definiteness	9
	2.2	The Discretized Model	11
		2.2.1 Strong Power-Law Behavior	12
	2.3	Summary	17
3	No	Power-Law in Hidden Markov Models	18
	3.1	Conclusions for Model Selection	25
\mathbf{A}	Tec	hnical Details	27
	A.1	Integrating over the Quadrants of a Normal Distribution	27

1 Model Framework

We are interested in models with asymptotically power-law decay of the mutual information measure with respect to the distance between the tokens in the sequence. So far so good. But what does it *actually* mean?

The tokens, represented by random variables X_t , are elements of a finite alphabet Σ . The distance between X_t and $X_{t+\tau}$ is τ , and for every t and every $\tau > 0$ we want to bound

$$I(X_t; X_{t+\tau}) \in \Omega(\tau^{-\alpha}), \ I(X_t; X_{t+\tau}) \in \mathcal{O}(\tau^{-\beta})$$

for some fixed $\alpha, \beta \in \mathbb{R}_{>0}$. The first condition is the important one, while the latter ensures that $I(X_t; X_{t+\tau}) \xrightarrow{\tau \to \infty} 0$. We also may replace the latter condition by this one.

This was straight forward. The challenging part is to define what a model is. In the case of Markov chains this seems trivial: We define a finite set of parameters (the transition probabilities), and we get a model over the alphabet Σ , that is for every $n \in \mathbb{N}$ the model defines a probability measure over Σ^n . Thus:

Definition 1.1 (Model over Σ). A model S over Σ is a function $S: \mathbb{N} \times \Sigma^* \mapsto [0,1], (n,w) \mapsto p$, for $n \in \mathbb{N}, w \in \Sigma^n, p \in [0,1]$ s.t. $\sum_{w \in \Sigma^n} S(n,w) = 1$. S assigns the probability p to the word w of length n.

But really, we want to restrain S in order to have reasonable time and space complexity, and to ensure the model is reasonable, which means that the language of $S_n(w)$ should look similar to $S_{n+d}(w)$, whatever this might mean, where we used the notation $S_n(w) \equiv S(n, w)$. We also write w_i for X_i . Really, w is a 1-indexed String of X_i .

We present one strict definition for this *similarity* in the following definition:

Definition 1.2. We say S has the bulk marginal property iff for every $n \in \mathbb{N}$, $w \in \Sigma^{n+1}$ it holds true that

$$\sum_{w_{n+1} \in \Sigma} S_{n+1}(w) = S_n(w_{-\{n+1\}}) \quad .$$

Remark 1.1. Markov chains have the bulk marginal property.

Lemma 1.1. For every $d \in \mathbb{N}$, let $I := [n+d] \setminus [n] = \{n+1, \ldots, n+d\}$. Then, if S has the bulk marginal property, we have for every $w \in \Sigma^{n+d}$:

$$\sum_{w_I \in \Sigma^d} S_{n+d}(w) = S_n(w_{-I}) \quad .$$

Proof. We use induction over d. The base case follows directly from the definition of the bulk marginal property. Thus, assume the claim holds for some d := k. Then we have

$$\sum_{w_I \in \Sigma^{k+1}} S_{n+k+1}(w) = \sum_{w_{I \setminus \{k+1\}} \in \Sigma^k} \sum_{w_{k+1} \in \Sigma} S_{n+k+1}(w)$$

$$= \sum_{\text{bulk marginal property}} \sum_{w_{I \setminus \{k+1\}} \in \Sigma^k} S_{n+k}(w_{-\{k+1\}})$$

$$= S_n(w_{-I}) ,$$
inductive hypothesis

which concludes the induction step.

Definition 1.3 (Induced Bulk Marginal Model). Based on the model S, we can construct an *induced bulk marginal* model S^* by defining S_n^* recursively as

• $S_1^* \coloneqq S_1$,

•
$$S_{n+1}^*(w) \coloneqq S_n^*(w_{-\{n+1\}}) \frac{S_{n+1}(w)}{\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)}$$
.

Remark 1.2. If $\sum_{w_{n+1} \in \Sigma} S_{n+1}(w) = 0$, we might set $S_{n+1}^*(w) := S_n^*(w_{-\{n+1\}}) \frac{1}{|\Sigma|}$.

Lemma 1.2. The induced bulk marginal model S^* indeed has the bulk marginal property.

Proof. We have:

$$\sum_{w_{n+1} \in \Sigma} S_{n+1}^*(w) = \sum_{w_{n+1} \in \Sigma} S_n^*(w_{-\{n+1\}}) \frac{S_{n+1}(w)}{\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)}$$

$$= \frac{S_n^*(w_{-\{n+1\}})}{\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)} \sum_{w_{n+1} \in \Sigma} S_{n+1}(w)$$

$$\stackrel{\checkmark}{=} S_n^*(w_{-\{n+1\}}) .$$

Now, we want to look at how we might restrict our model $(S_n)_{n\in\mathbb{N}} \equiv S$. One approach might be to define a model structure for every $n \in \mathbb{N}$. To this end, we define S_n by some finite parameters θ_n over the model space $S(n) \equiv S_n$, which specifies the structure of our models. Thus:

$$S_n \in \{S_n(\boldsymbol{\theta}_n) : \boldsymbol{\theta}_n \in \Theta_n\} =: \mathcal{S}_n$$
,

where Θ_n is the set of all possible parameters of \mathcal{S}_n . We write S_{n,θ_n} for S_n with parameters θ_n . Hence, $(S_n)_{n\in\mathbb{N}}$ is completely defined by $(\mathcal{S}_n,\theta_n)_{n\in\mathbb{N}}$.

Remark 1.3. The parameter space Θ_n may consist of parameter vectors with varying lengths. The same model S_n may be defined by two parameter vectors with very different sizes over the same model space S_n or potentially two different model spaces. Thus, the parametrization complexity depends of the model space S.

Definition 1.4 (Model over Model Space). We say $(S_n)_{n\in\mathbb{N}}$ is a model over the model space S iff $S_n \in S_n$ for every $n \in \mathbb{N}$. As a shorthand, we write $S \in S$.

For our model S, we want power-law decay in the mutual information with respect to τ between any two variables X_t , $X_{t+\tau}$, i.e. it has to hold for every t and every S_n . But what does this actually mean?

Definition 1.5. We define $i_{S_n}(\tau)$ and $I_{S_n}(\tau)$ to be the minimal and maximal mutual information between any two variables of S_n with distance τ . Formally, let $X_t; X_{t+\tau}$ $(t+\tau \leq n)$ be random variables with distributions defined by S_n . Then:

- $i_{S_n}(\tau) := \min_{t \in [n-\tau]} I(X_t; X_{t+\tau})$,
- $I_{S_n}(\tau) := \max_{t \in [n-\tau]} I(X_t; X_{t+\tau})$.

Definition 1.6 (Strong Power-Law Behavior). A model S has strong lower bound power-law behavior iff there exist constants c_{α} , $\alpha \in \mathbb{R}_{>0}$ s.t. for every $n \in \mathbb{N}$ it holds true that $i_{S_n}(\tau) \geq c_{\alpha}\tau^{-\alpha}$. Similarly, S has upper bound power-law behavior iff there exist constants c_{β} , $\beta \in \mathbb{R}_{>0}$ s.t. for every $n \in \mathbb{N}$ it holds true that $I_{S_n}(\tau) \leq c_{\beta}\tau^{-\beta}$. Furthermore, S has decaying behavior iff for every $n \in \mathbb{N}$ we have $I_{S_{n+\tau}}(\tau) \xrightarrow{\tau \to \infty} 0$. Lastly, S has strong power-law behavior iff it has strong lower bound and upper bound power-law behavior (alternatively decaying behavior instead of upper bound power-law behavior).

Remark 1.4. For a model S^* with the bulk marginal property we can replace "for every $n \in \mathbb{N}$ " in definition 1.6 with "for $n \to \infty$ " thanks to lemma 1.1.

Proposition 1.1. Upper bound power-law behavior implies decaying behavior.

Proof. Assume model S has upper bound power-law behavior. Then there exist constants $c_{\beta}, \beta \in \mathbb{R}_{>0}$ s.t. for every $n \in \mathbb{N}$ it holds true that $I_{S_n}(\tau) \leq c_{\beta}\tau^{-\beta}$, especially for $n := n' + \tau$. Thus, for every $n' \in \mathbb{N}$:

$$I_{S_{n'+\tau}}(\tau) \le c_{\beta} \tau^{-\beta} \xrightarrow{\tau \to \infty} 0$$
.

Definition 1.7. We define $\overline{i_{S_n}}$ to be the minimal mutual information between any two variables over S_n with arbitrary distance τ . Formally, let X_i, X_j $(1 \le i < j \le n)$ be random variables with distributions defined by S_n . Then:

$$\overline{i_{S_n}} \coloneqq \min_{(i,j) \in [n]^2, i < j} I(X_i; X_j) = \min_{\tau \in [n-1]} i_{S_n}(\tau) \quad .$$

Definition 1.8 (Weak Power-Law Behavior). A model S has weak lower bound power-law behavior iff $\overline{i_{S_n}} \in \Omega(n^{-\alpha})$ for some $\alpha \in \mathbb{R}_{>0}$. Additionally, S has weak power-law behavior iff it has weak lower bound and upper bound power-law behavior (alternatively decaying behavior instead of upper bound power-law behavior).

Theorem 1.1 (Every Token has Power-Law Decay in Models with the Bulk Marginal Property and Weak Power-Law Behavior). Let S be a model that satisfies the bulk marginal property and exhibits weak lower bound power-law behavior. Then, there exists an $\alpha \in \mathbb{R}_{>0}$ s.t. for every X_t , $I(X_t; X_{t+\tau}) \in \Omega(\tau^{-\alpha})$ (where X_t and $X_{t+\tau}$ are sampled over $S_{t+\tau}$, or, equivalently, any $S_{t+\tau+k}$).

Proof. Since S has weak lower bound power-law behavior, there exist $\alpha', c' \in \mathbb{R}_{>0}$ s.t. $\overline{i_{S_n}} \geq c' n^{-\alpha'}$. Then, for every $t \in \mathbb{N}$, we have for $n := t + \tau$ by the definition of $\overline{i_{S_n}}$:

$$I(X_t; X_{t+\tau}) \ge \overline{i_{S_{t+\tau}}}$$

$$\ge c'(t+\tau)^{-\alpha'}$$

$$= c'\tau^{-\alpha'}(\frac{t}{\tau}+1)^{-\alpha'}$$

$$\ge c'\tau^{-\alpha'}(t+1)^{-\alpha'}$$

Since S is has the bulk marginal property, this inequality holds when sampling over any $S_{t+\tau+k}$, $k \in \mathbb{N}$. Now, set $\alpha := \alpha'$ and $c := c'(t+1)^{-\alpha'}$. Note that α does not depend on t. Finally, we see that $I(X_t; X_{t+\tau}) \geq c\tau^{-\alpha}$. Thus, we get $I(X_t; X_{t+\tau}) \in \Omega(\tau^{-\alpha})$.

Remark 1.5. If additionally S had decaying behavior, then of course we would also have $I(X_t; X_{t+\tau}) \xrightarrow{\tau \to \infty} 0$.

Remark 1.6. The importance of this implication might depend on the context. However, this theorem proves to be very useful when considering its contraposition. In fact, we will use this contraposition later to disprove weak power-law behavior for Markov chains (and hence also strong power-law behavior).

Remark 1.7. It is crucial for S to have the bulk marginal property in theorem 1.1, or else $I(X_t; X_{t+\tau})$ might depend on S_n , and we cannot exclude $I(X_t; X_{t+\tau}) \xrightarrow{n \to \infty} 0$.

Proposition 1.2. Strong lower bound power-law behavior implies weak lower bound power-law behavior.

Proof. Assume model S has strong lower bound power-law behavior. Thus, it follows that there exist $c_{\alpha}, \alpha \in \mathbb{R}_{>0}$ s.t. for all $n \in \mathbb{N}$ we have that $i_{S_n}(\tau) \geq c_{\alpha}\tau^{-\alpha}$. Hence:

$$\overline{is_n} = \min_{\tau \in [n-1]} is_n(\tau)$$

$$\geq \min_{\tau \in [n-1]} c_\alpha \tau^{-\alpha}$$

$$\geq c_\alpha (n-1)^{-\alpha}$$

$$= c_\alpha n^{-\alpha} (1 - \frac{1}{n})^{-\alpha}$$

$$\geq c_\alpha n^{-\alpha} 1^{-\alpha}$$

$$= c_\alpha n^{-\alpha} .$$

It follows that $\overline{i_{S_n}} \in \Omega(n^{-\alpha})$, and hence S has weak lower bound power-law behavior.

Remark 1.8. Weak lower bound power-law behavior does *not* imply strong lower bound power-law behavior, not even for models with the bulk marginal property. To see this, note that we might have $i_{S_n}(1) \xrightarrow{n \to \infty} 0$ for some models with weak lower bound power-law behavior. $(S_n \text{ may force } i_{S_n}(1) \text{ to decay to } 0 \text{ for } n \to \infty$ because of weak correlations of consecutive tokens very late in the sequence.) The proof of theorem 1.1 fails when defining c, as it depends on t.

Remark 1.9. If S has decaying behavior, we cannot prove that S has strong lower bound power-law behavior by bounding $\overline{i_{S_{t+\tau}}}$ (using $\overline{i_{S_{t+\tau}}} \leq i_{S_{t+\tau}}(\tau)$), as we have for every $\tau \in \mathbb{N}$:

$$0 \le \overline{i_{S_{t+\tau}}} \le I_{S_{t+\tau}}(t) \xrightarrow{t \to \infty} 0$$
.

2 A Model with Power-Law Behavior

Based on our definitions it is very easy to define models without power-law behavior. For example, a single pair of random variables which are independent when marginalizing over the other ones violates every definition of power-law behavior, as it implies a mutual information of zero. Furthermore, hidden Markov models are also incapable of producing power-law behavior, see chapter ??.

This begs the question whether there actually exists a model that satisfies our strong power-law behavior definition.

2.1 A Continuous Model with Power-Law Behavior

Let's consider a multivariate continuous normal distribution. The following two properties of the normal distribution prove to be very helpful for our analysis of pairwise mutual information. They are standard results and thus are stated without proof.

Proposition 2.1 (Marginal Distributions of a Normal Distribution). Let the n-dimensional random vector X follow a multivariate normal distribution, $X \sim \mathcal{N}(\mu, \Sigma)$. We partition X into two sub-vectors, $X_1 \in \mathbb{R}^k$ and $X_2 \in \mathbb{R}^{n-k}$, with the corresponding partitions of the mean vector μ and covariance matrix Σ as:

$$oldsymbol{X} = egin{pmatrix} oldsymbol{X}_1 \ oldsymbol{X}_2 \end{pmatrix} \quad , \quad oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{pmatrix} \quad , \quad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{pmatrix} \quad ,$$

where $\boldsymbol{\mu}_1 \in \mathbb{R}^k$ and $\boldsymbol{\Sigma}_{11}$ is a $k \times k$ matrix.

Then the marginal distribution of the sub-vector \mathbf{X}_1 is also a multivariate normal distribution given by:

$$X_1 \sim \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$$
.

Proposition 2.2 (Entropy of a Multivariate Normal Distribution). Let the random vector $\mathbf{X} \in \mathbb{R}^n$ follow a multivariate normal distribution $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with a positive definite covariance matrix $\boldsymbol{\Sigma}$. The entropy of \mathbf{X} is given by

$$H(\mathbf{X}) = \frac{1}{2} \log ((2\pi e)^n \det(\mathbf{\Sigma}))$$
,

where log is the natural logarithm.

2.1.1 A Formula for Mutual Information

With these two propositions at hand, we can derive a formula for mutual information based on the parameters of our normal distribution.

To this end, let (Y_1, \ldots, Y_n) denote the random variables of the n-dimensional normal distribution

$$\mathcal{N}\left(\mathbf{0}, \begin{pmatrix} 1 & \rho_1 & \rho_2 & \dots & \rho_{n-1} \\ \rho_1 & 1 & \rho_1 & \dots & \rho_{n-2} \\ \vdots & & \ddots & & \vdots \\ \rho_{n-1} & \rho_{n-2} & \rho_{n-3} & \dots & 1 \end{pmatrix}\right) .$$

Using proposition 2.1, we get the marginal distribution of Y_i, Y_j :

$$\begin{pmatrix} Y_i \\ Y_j \end{pmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{pmatrix} 1 & \rho_\tau \\ \rho_\tau & 1 \end{pmatrix} \right) \quad ,$$

where we define $\tau := |i - j|$.

Similarly, $Y_i \sim \mathcal{N}(0,1)$ and $Y_j \sim \mathcal{N}(0,1)$. Using proposition 2.2, we have:

$$I(Y_{i}; Y_{j}) = H(Y_{i}) + H(Y_{j}) - H(Y_{i}, Y_{j})$$

$$= \left[\frac{1}{2}\log(2\pi e \cdot 1)\right] + \left[\frac{1}{2}\log(2\pi e \cdot 1)\right] - \left[\frac{1}{2}\log\left((2\pi e)^{2} \det\left(\frac{1}{\rho_{\tau}} - \frac{\rho_{\tau}}{1}\right)\right)\right]$$

$$= \log(2\pi e) - \frac{1}{2}\log\left((2\pi e)^{2}(1 - \rho_{\tau}^{2})\right)$$

$$= \log(2\pi e) - \frac{1}{2}\left(\log((2\pi e)^{2}) + \log(1 - \rho_{\tau}^{2})\right)$$

$$= \log(2\pi e) - \frac{1}{2}\left(2\log(2\pi e) + \log(1 - \rho_{\tau}^{2})\right)$$

$$= \log(2\pi e) - \log(2\pi e) - \frac{1}{2}\log(1 - \rho_{\tau}^{2})$$

$$= -\frac{1}{2}\log(1 - \rho_{\tau}^{2}) . \tag{1}$$

Great, the mutual information $I(Y_i; Y_j)$ is fully specified by the parameter ρ_{τ} , and hence for every pair (Y_i, Y_j) we can fine tune $I(Y_i; Y_j)$ by only changing ρ_{τ} .

2.1.2 Initializing Parameters

We want the mutual information $I(Y_i; Y_i)$ to follow a power-law, i.e.

$$I(Y_i; Y_j) \stackrel{!}{=} c|i-j|^{-\alpha}$$
,

for some $c, \alpha \in \mathbb{R}_{>0}$.

Hence, based on our previous result we have:

$$I(Y_i; Y_j) = c|i - j|^{-\alpha}$$

$$\iff -\frac{1}{2}\log(1 - \rho_{\tau}^2) = c\tau^{-\alpha}$$

$$\iff \log(1 - \rho_{\tau}^2) = -2c\tau^{-\alpha}$$

$$\iff 1 - \rho_{\tau}^2 = e^{-2c\tau^{-\alpha}}$$

$$\iff \rho_{\tau}^2 = 1 - e^{-2c\tau^{-\alpha}}$$

$$\iff \rho_{\tau} = \pm \sqrt{1 - e^{-2c\tau^{-\alpha}}}$$

Thus, upon defining the constants c and α , we can directly calculate the parameters ρ_{τ} , where we choose ρ_{τ} to be positive.

It seems like we are done, but not so fast! In order for our covariance matrix to define a valid normal distribution, we have to ensure its positive definiteness. But, it turns out that this is not an issue:

2.1.3 Ensure Positive Definiteness

Note that we have the freedom to define $c, \alpha \in \mathbb{R}_{>0}$ how we like. Thus, our choice of these constants should imply positive definiteness of the covariance matrix

$$\Sigma_{n} = \begin{pmatrix} 1 & \rho_{1} & \rho_{2} & \dots & \rho_{n-1} \\ \rho_{1} & 1 & \rho_{1} & \dots & \rho_{n-2} \\ \vdots & & \ddots & & \vdots \\ \rho_{n-1} & \rho_{n-2} & \rho_{n-3} & \dots & 1 \end{pmatrix} .$$

Note that $\Sigma \equiv \Sigma_n$ is symmetric, and has positive entries along its diagonal. Thus, it is sufficient for positive definiteness to show that Σ is strictly diagonally dominant, i.e.

$$\forall i \in [n] : |\mathbf{\Sigma}_{ii}| > \sum_{j \neq i} |\mathbf{\Sigma}_{ij}|$$

$$\iff \forall i \in [n] : 1 > \sum_{j \neq i} \rho_{|i-j|} . \tag{2}$$

Note that a specific entry ρ_{τ} can occur two times in the same row. This happens especially in the middle rows of the matrix. However, for a fixed τ , ρ_{τ} can occur

at most two times in the same row. Hence, we derive the following bound:

$$\sum_{j \neq i} \rho_{|i-j|} \le 2\sum_{\tau=1}^{\infty} \rho_{\tau} \quad . \tag{3}$$

It seems like we need an upper bound for ρ_{τ} . Luckily, we can employ a clever bounding technique which relies on $x+1 \le e^x$:

Lemma 2.1. Let $\rho_{\tau} := \sqrt{1 - e^{-2c\tau^{-\alpha}}}$. Then, we have

$$\rho_{\tau} \le \sqrt{2c\tau^{-0.5\alpha}} \quad ,$$

where the inequality holds for all $\tau > (2c)^{\frac{1}{\alpha}}$.

Proof. Note the inequality $x + 1 \le e^x$. For x > -1 it follows that

$$e^{-x} \le \frac{1}{x+1} \quad . \tag{4}$$

Applying equation 6 to $e^{2c\tau^{-\alpha}}$ with $x := -2c\tau^{-\alpha}$ yields

$$e^{2c\tau^{-\alpha}} \le \frac{1}{-2c\tau^{-\alpha} + 1} \quad ,$$

where we have $x > -1 \iff -2c\tau^{-\alpha} > -1 \iff \tau > (2c)^{\frac{1}{\alpha}}$.

Under this assumption, both sides of the inequality are positive, and hence it follows that

$$e^{-2c\tau^{-\alpha}} \ge 1 - 2c\tau^{-\alpha} \quad .$$

Plugging this into the equation for ρ_{τ} gives

$$\rho_{\tau} \le \sqrt{1 - (1 - 2c\tau^{-\alpha})}$$

$$= \sqrt{2c\tau^{-\alpha}}$$

$$= \sqrt{2c\tau^{-0.5\alpha}} .$$

We can directly use our established inequality in equation (3). To this end, set $\alpha := 4$, and $c < \frac{9}{2\pi^4}$, like c := 0.045. For $\tau > (2c)^{\frac{1}{\alpha}}$ we can now use the upper

bound, which translates to all $\tau \in \mathbb{N}_{>0}$. Hence:

$$\sum_{j\neq i} \rho_{|i-j|} \le 2 \sum_{\tau=1}^{\infty} \rho_{\tau}$$

$$\le 2 \sum_{\tau=1}^{\infty} \frac{\sqrt{2 \cdot 0.045}}{\tau^2}$$

$$= 2 \cdot 0.3 \sum_{\tau=1}^{\infty} \frac{1}{\tau^2}$$

$$= 2 \cdot 0.3 \cdot \frac{\pi^2}{6}$$

$$= \frac{\pi^2}{10}$$

$$< 1 ,$$

which proves equation (2), and hence ultimately the positive definiteness of Σ .

With that we have successfully defined a model where the pairwise mutual information perfectly follows a power-law! Now, we would like to extend this family of normal distributions so it fits our model definition 1.1. The only thing needed is a finite domain of our random variables.

2.2 The Discretized Model

The central idea is to discretize our probability space by integrating over the quadrants. Thus, we effectively created a probability measure S_n over $\{-1,1\}^n$, where for example $S_2(11)$ is defined as the integral over the first quadrant, $S_2(-11)$ as the integral over the second quadrant, and so on. This leads to our formal definition:

Definition 2.1 (The Model). Let $(\mathcal{N}(\mathbf{0}, \Sigma_n))_{n=1}^{\infty}$ be a family of normal distributions with a positive definite parameter matrix Σ_n for all $n \in \mathbb{N}_{>0}$, and let $p_n(\boldsymbol{x})$ denote the associated probability density functions. We define a model S_{n,Σ_n} over $\{-1,1\}$ with

$$S_{n,\Sigma_n}(w) = \int_{Q_w} p_n(\boldsymbol{x}) d\boldsymbol{x} \quad ,$$

where Q_w is the quadrant

$$Q_w = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \forall i \in [n] : w_i \boldsymbol{x}_i \ge 0 \} .$$

By defining our model this way, we ensure that S_n is a valid probability measure over $\{-1,1\}^n$ for every $n \in \mathbb{N}$. Thus, we can dive right into the analysis of pairwise mutual information:

2.2.1 Strong Power-Law Behavior

In this section we will prove that our model has the desired property of strong power-law behavior according to definition 1.6.

Another way to think about our model is that the continuous normal distribution has an associated vector $(Y_1, \ldots, Y_n) \in \mathbb{R}^n$ of random variables, and in order to get the random variables $(X_1, \ldots, X_n) \in \{-1, 1\}^n$ of our model, we process each Y_i in the following manner:

$$X_i = \begin{cases} 1 & \text{if } Y_i \ge 0 \\ -1 & \text{else} \end{cases} .$$

We can make use of the data processing inequality to derive that

$$I(X_i; X_j) \le I(X_i; Y_j) \le I(Y_i; Y_j) = c \cdot |i - j|^{-\alpha}$$
,

i.e. the model has upper bound power-law behavior.

The final step is to prove strong lower bound power-law behavior. This one is a bit trickier, as we will use multiple bounds in our calculation.

In order to calculate and bound $I(X_i; X_j)$, we need the joint distribution of these two variables when marginalizing over the other ones.

Here is the clever part: Instead of discretizing the continuous normal distribution first and then marginalizing our distribution, we can also marginalize the continuous distribution first and only then transition to our discretized model by integrating. Thus, we can use proposition 2.1 again in order to analyze

$$\begin{pmatrix} Y_i \\ Y_j \end{pmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{pmatrix} 1 & \rho_\tau \\ \rho_\tau & 1 \end{pmatrix} \right)$$
.

Thus, in order to calculate the joint distribution of (X_i, X_j) , we need a formula for integrating a two dimensional normal distribution over the quadrants.

As it turns out there is a closed formula:

$$P(Y_i > 0, Y_j > 0) = \frac{1}{4} + \frac{1}{2\pi} \arcsin(\rho)$$
.

The derivation of this fact is rather technical and can be found in section A.1 of the appendix.

Now, set $\delta_{\tau} := \frac{\arcsin(\rho_{\tau})}{2\pi}$ for the sake of clarity. Note that since $\rho_{\tau} \in (0,1)$, we have $\delta_{\tau} \in (0,\frac{1}{4})$. Based on our formula, and using the symmetry of the normal distribution, we derive the joint probability distribution of (X_i,X_i) :

$$\begin{array}{c|cccc} & X_i = 1 & X_i = -1 \\ \hline X_j = 1 & \frac{1}{4} + \delta_\tau & \frac{1}{4} - \delta_\tau \\ X_j = -1 & \frac{1}{4} - \delta_\tau & \frac{1}{4} + \delta_\tau \end{array}$$

Now that we know the joint probability distribution, we can finally compute the mutual information $I(X_i; X_j)$. First, note that the marginalized distribution of a single X_i is just the uniform distribution on $\{-1,1\}$, and hence $H(X_i) = H(X_j) = \log 2$. Furthermore, let's substitute $f: (0,\frac{1}{2}) \to \mathbb{R}, x \mapsto x \log x$, where log is the natural logarithm. Thus:

$$\begin{split} I(X_i; X_j) &= H(X_i) + H(X_j) - H(X_i, X_j) \\ &= \log 2 + \log 2 - \left[-\sum_{(x_i, x_j) \in \{-1, 1\}^2} p(x_i, x_j) \log p(x_i, x_j) \right] \\ &= \log 4 + 2 \cdot f(\frac{1}{4} - \delta_\tau) + 2 \cdot f(\frac{1}{4} + \delta_\tau) \quad . \end{split}$$

Using that $\log 4 = -\log \frac{1}{4} = -4 \cdot f(\frac{1}{4})$, we arrive at

$$I(X_i; X_j) = 2 \cdot f(\frac{1}{4} - \delta_\tau) + 2 \cdot f(\frac{1}{4} + \delta_\tau) - 4 \cdot f(\frac{1}{4})$$

$$= 4 \cdot \left[\frac{1}{2} \cdot f(\frac{1}{4} - \delta_\tau) + \frac{1}{2} \cdot f(\frac{1}{4} + \delta_\tau) - f(\frac{1}{4}) \right] . \tag{5}$$

This expression has a very peculiar form: It looks like it measures how *convex* the function f is at the point $\frac{1}{4}$. Hence, we might guess that we can lower bound the expression by substituting a less convex function g for f. This idea is formalized in the following lemma:

Lemma 2.2. Let $I \subseteq \mathbb{R}$ be an interval, and let $f, g \in C^2(I, \mathbb{R})$ be two functions that are twice differentiable s.t. $f''(x) \ge g''(x)$ for all $x \in I$. Then the following inequality holds for all $\delta \in \mathbb{R}_{>0}, x_0 \in \mathbb{R}$ s.t. $[x_0 - \delta, x_0 + \delta] \subseteq I$:

$$\frac{1}{2} \cdot f(x_0 - \delta) + \frac{1}{2} \cdot f(x_0 + \delta) - f(x_0) \ge \frac{1}{2} \cdot g(x_0 - \delta) + \frac{1}{2} \cdot g(x_0 + \delta) - g(x_0) \quad .$$

Proof. First, note that $[x_0 - \delta, x_0 + \delta] \subseteq I$ implies $x_0 \in I$. Now, define a new function $h: I \to \mathbb{R}$ as

$$h(x) \coloneqq f(x) - g(x)$$
.

Compting

$$h''(x) = f''(x) - g''(x) \ge 0 \quad \forall x \in I$$

shows that h is convex on I. Hence, we conclude:

$$\frac{1}{2}h(x_0 - \delta) + \frac{1}{2}h(x_0 + \delta) \ge h(x_0) \quad .$$

Now, after substituting the definition of h(x) = f(x) - g(x) back into this inequality

$$\frac{1}{2}[f(x_0 - \delta) - g(x_0 - \delta)] + \frac{1}{2}[f(x_0 + \delta) - g(x_0 + \delta)] \ge f(x_0) - g(x_0)$$

and rearranging the terms to separate the functions f and g, we arrive at the desired result:

$$\frac{1}{2}f(x_0 - \delta) + \frac{1}{2}f(x_0 + \delta) - f(x_0) \ge \frac{1}{2}g(x_0 - \delta) + \frac{1}{2}g(x_0 + \delta) - g(x_0) \quad .$$

Remember, we defined $f:(0,\frac{1}{2})\to\mathbb{R},\ x\mapsto x\log x.$ Hence:

$$f'(x) = \log x + 1$$

$$f''(x) = \frac{1}{x} \quad .$$

Note that $f''(x) \geq 2$ for all $x \in (0, \frac{1}{2})$. Thus, when we define $g:(0, \frac{1}{2}) \rightarrow$

 \mathbb{R} , $x \mapsto x^2$, where $g''(x) \equiv 2$, we can use lemma 2.2 in equation (5):

$$\begin{split} I(X_i; X_j) &= 4 \cdot \left[\frac{1}{2} \cdot f(\frac{1}{4} - \delta_\tau) + \frac{1}{2} \cdot f(\frac{1}{4} + \delta_\tau) - f(\frac{1}{4}) \right] \\ &\geq 4 \cdot \left[\frac{1}{2} \cdot g(\frac{1}{4} - \delta_\tau) + \frac{1}{2} \cdot g(\frac{1}{4} + \delta_\tau) - g(\frac{1}{4}) \right] \\ &= 4 \cdot \left[\frac{1}{2} \left(\frac{1}{4} - \delta_\tau \right)^2 + \frac{1}{2} \left(\frac{1}{4} + \delta_\tau \right)^2 - \left(\frac{1}{4} \right)^2 \right] \\ &= 2 \left[\left(\frac{1}{16} - \frac{1}{2} \delta_\tau + \delta_\tau^2 \right) + \left(\frac{1}{16} + \frac{1}{2} \delta_\tau + \delta_\tau^2 \right) \right] - 4 \left(\frac{1}{16} \right) \\ &= 2 \left[\frac{2}{16} + 2 \delta_\tau^2 \right] - \frac{4}{16} \\ &= 2 \left[\frac{1}{8} + 2 \delta_\tau^2 \right] - \frac{1}{4} \\ &= \frac{1}{4} + 4 \delta_\tau^2 - \frac{1}{4} \\ &= 4 \delta_\tau^2 \quad . \end{split}$$

Since $\delta_{\tau} = \frac{\arcsin(\rho_{\tau})}{2\pi}$, we conclude

$$I(X_i; X_j) \ge 4 \frac{\arcsin(\rho_\tau)^2}{4\pi^2}$$

 $\ge \frac{\rho_\tau^2}{\pi^2}$,

since $\arcsin(x) \ge x$ for $x \in (0,1)$.

This is looking very promising! We only need to bound ρ_{τ} again, but this time from below:

Lemma 2.3. Let $\rho_{\tau} := \sqrt{1 - e^{-2c\tau^{-\alpha}}}$. Then, we have

$$\sqrt{\frac{2c}{2c+1}}\tau^{-0.5\alpha} \le \rho_{\tau}$$

for all $\tau \in \mathbb{N}_{>0}$.

Proof. Note the inequality $x + 1 \le e^x$. For x > -1 it follows that

$$e^{-x} \le \frac{1}{x+1} \quad . \tag{6}$$

Applying equation 6 to $e^{-2c\tau^{-\alpha}}$ with $x := 2c\tau^{-\alpha}$ yields

$$e^{-2c\tau^{-\alpha}} \le \frac{1}{2c\tau^{-\alpha} + 1} \quad ,$$

where we have $x > -1 \iff 2c\tau^{-\alpha} > -1 \iff \tau \in \mathbb{N}_{>0}.$

Plugging this into the equation for ρ_{τ} gives

$$\begin{split} \rho_{\tau} & \geq \sqrt{1 - \frac{1}{2c\tau^{-\alpha} + 1}} \\ &= \sqrt{\frac{2c\tau^{-\alpha}}{2c\tau^{-\alpha} + 1}} \\ &= \sqrt{2c\tau^{-0.5\alpha}} \sqrt{\frac{1}{2c\tau^{-\alpha} + 1}} \\ & \geq \sqrt{2c\tau^{-0.5\alpha}} \sqrt{\frac{1}{2c1^{-\alpha} + 1}} \\ &= \sqrt{\frac{2c}{2c + 1}} \tau^{-0.5\alpha} \quad . \end{split}$$

Finally, we use the lower bound of ρ_{τ} provided by lemma 2.3 to arrive at

$$I(X_i; X_j) \ge \frac{2c}{(2c+1) \cdot \pi^2} \tau^{-\alpha} \quad .$$

This proves the strong lower bound power-law behavior property of our model.

2.3 Summary

Let's summarize our findings in a concise theorem:

Theorem 2.1 (A Model with Strong Power-Law Behavior). Define $\alpha := 4$, and c := 0.045. Furthermore, let $\rho_{\tau} := \sqrt{1 - e^{-2c\tau^{-\alpha}}}$. We define the matrix

$$\Sigma_{n} = \begin{pmatrix} 1 & \rho_{1} & \rho_{2} & \dots & \rho_{n-1} \\ \rho_{1} & 1 & \rho_{1} & \dots & \rho_{n-2} \\ \vdots & & \ddots & & \vdots \\ \rho_{n-1} & \rho_{n-2} & \rho_{n-3} & \dots & 1 \end{pmatrix} .$$

We use Σ_n as the parameter covariance matrix of the model defined in definition 2.1. It follows that S_{n,Σ_n} is a valid model over $\{-1,1\}$, since Σ_n is positive definite especially. Furthermore, S has strong power-law behavior according to definition 1.6. Specifically, for any random variables X_i, X_j sampled from S, we have:

$$\frac{2c}{(2c+1)\cdot \pi^2}|i-j|^{-\alpha} \le I(X_i; X_j) \le |i-j|^{-\alpha} .$$

Proof. The proof directly follows from our preliminary considerations. \Box

3 No Power-Law in Hidden Markov Models

When modelling *natural language*, we generate the next token(s) based on the previous tokens (and hence not based on future tokens; we generate text from left to right). Thus, when disregarding the future tokens, i.e. when marginalizing over them, we can determine the Markov blanket of the current token, i.e. determine the minimal set of tokens that infuluence the current one.

Naturally, we can think of natural language modelling as $Bayesian\ networks$ over the characters in the text. Because we generate text from left to right, we naturally assume all arrows to go from previous tokens to future tokens (because this is also the modus operandi for token generation). For example, Markov chains up to character position t have the following simple representation:

$$X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_t$$

Figure 1: Bayesian network of Markov chains. All arrows go from previous tokens to future tokens.

But really, in Markov chains $P(X_{t+1} = a \mid X_t = b)$ is independent of t and hence is constant over time. So really, all the arrows in figure 1 represent the same transition, this is very important to note.

From a modelling perspective, it is very reasonable to reuse the same transitions over time, as we cannot have infinitely many "hard-coded" transitions (but we can use different models whith implicitly infitite transitions). Furthermore, for the same *mode of transition*, which we define as the "arrow structure" of all ingoing edges into the current node in the Bayesian network (in figure 1 the mode of transition would be from the current token to the next), it seems reasonable to assume invariance in time, i.e. fixed transition probabilities. We call such transitions to be *constant*.

Now, the question is, can we achieve power law decay with only one constant (hard-coded) mode of transition? Well, for Markov chains it did not work, so maybe we just have to augment the context window and create new modes of transition.

This is an interesting approach, which we will investigate on. Since we already established interesting results for Markov chains, we would like to reduce any constant mode of transition to a Markov chain. But how do we do this for a larger context window, where we have many random variables influencing the current one?

The idea is to employ a hidden variable $Y \in \Sigma^s$, where Σ is the alphabet, and s is the size of the context window, which we define as the length of the longest arrow in the mode of transition (for Markov chains s=1). Clearly, Y captures the entire state at time t of our model, and we can model the transitions $Y_t \to Y_{t+1}$ as simple Markov chain transitions (and hence independent of time). And, of course, once we know Y_t , we also know X_t (which of course can be modelled with Markov chain transitions as well). Thus, we have the following Bayesian network:

Figure 2: Bayesian network of a hidden Markov model.

These models are known as *hidden Markov models*. Unfortunately, there is no free lunch, as we will see in the following. But first, we will prove some lemmas.

Lemma 3.1. Let M be the transition matrix for an irreducible Markov chain with period p. Then the chain described by M^p consists of exactly p aperiodic, closed communication classes.

Proof. A key property of an irreducible Markov chain with period p is that its state space S can be uniquely partitioned into p disjoint nonempty sets, called cyclic classes:

$$S = C_0 \cup C_1 \cup \cdots \cup C_{p-1} \quad .$$

These classes are defined such that a one-step transition from any state in class C_k can only lead to a state in the next class, $C_{(k+1) \pmod{p}}$.

Proving there are p Closed Classes

Let's consider the chain governed by the transition matrix M^p , which represents taking steps of size p. If we start in any state $s \in C_k$, after one step of the new chain (which is p steps in the original chain), we will transition from $C_k \to C_{(k+1) \pmod{p}} \to \cdots \to C_{(k+p) \pmod{p}}$.

Since $(k+p) \pmod{p} = k$, any transition of length p starting in C_k must end in a state that is also in C_k . This means that for any state $s \in C_k$ and any state $t \notin C_k$, the transition probability is $(\mathbf{M}^p)_{st} = 0$.

Since transitions under M^p from C_k can only lead to states within C_k , each cyclic class is a closed communication class in the new chain. Furthermore, the partition gives us exactly p such classes: Because the original chain is irreducible, every state must belong to one of these classes, and each class must be able to reach the next, ensuring all p classes are part of the overall structure and are non-empty.

Proving Aperiodicity

Now we must show that each of these p classes is aperiodic in the M^p chain. Based on lemma ??, we know that for every state i there exists an $\ell \in \mathbb{N}$ s.t. ℓp and $(\ell+1)p$ are both return times in M. Hence, ℓ and $\ell+1$ are return times in M^p , and thus state i is aperiodic in M^p .

Lemma 3.2. Let M describe an irreducible aperiodic Markov chain. Then, for every $n \in \mathbb{N}_{>0}$, the Markov chain described by M^n is also irreducible and aperiodic.

Proof. Since M is irreducible and aperiodic, there exists an $m \in \mathbb{N}_{>0}$ s.t. $M^m > 0$ based on theorem ??. Hence, $0 < M^{mn} = (M^n)^m$. Finally, using corollary ??, it follows that M^n is irreducible and aperiodic.

Lemma 3.3 (Hidden Markov Models have the Bulk Marginal Property). Every hidden Markov model with finite state spaces (S_Y, S_X) for its latent variable Y and observable variable X with transition matrices (M_Y, M_X) complies with the bulk marginal property.

Proof. Let $w_i := X_{i-1}$ for $n \in [n+1]$. Then we have:

$$\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)$$

$$= \sum_{\text{Bayesian network}} \sum_{w_{n+1} \in \Sigma} \sum_{q_1, \dots, q_{n+1} \in S_Y} \left[P(q_1) \prod_{i=2}^{n+1} P(q_i \mid q_{i-1}) \cdot \prod_{i=1}^{n+1} P(w_i \mid q_i) \right]$$

$$= \sum_{q_1, \dots, q_{n+1} \in S_Y} \sum_{w_{n+1} \in \Sigma} \left[P(q_1) \prod_{i=2}^{n+1} P(q_i \mid q_{i-1}) \cdot \prod_{i=1}^{n+1} P(w_i \mid q_i) \right]$$

$$= \sum_{q_1, \dots, q_{n+1} \in S_Y} \left[P(q_1) \prod_{i=2}^{n+1} P(q_i \mid q_{i-1}) \cdot \prod_{i=1}^{n} P(w_i \mid q_i) \sum_{w_{n+1} \in \Sigma} P(w_{n+1} \mid q_{n+1}) \right]$$

$$= \sum_{q_1, \dots, q_{n+1} \in S_Y} \left[P(q_1) \prod_{i=2}^{n+1} P(q_i \mid q_{i-1}) \cdot \prod_{i=1}^{n} P(w_i \mid q_i) \right]$$

$$= \sum_{q_1, \dots, q_n \in S_Y} \sum_{q_{n+1} \in S_Y} P(q_{n+1} \mid q_n) \left[P(q_1) \prod_{i=2}^{n} P(q_i \mid q_{i-1}) \cdot \prod_{i=1}^{n} P(w_i \mid q_i) \right]$$

$$= \sum_{q_1, \dots, q_n \in S_Y} \left[P(q_1) \prod_{i=2}^{n} P(q_i \mid q_{i-1}) \cdot \prod_{i=1}^{n} P(w_i \mid q_i) \sum_{q_{n+1} \in S_Y} P(q_{n+1} \mid q_n) \right]$$

$$= \sum_{q_1, \dots, q_n \in S_Y} \left[P(q_1) \prod_{i=2}^{n} P(q_i \mid q_{i-1}) \cdot \prod_{i=1}^{n} P(w_i \mid q_i) \right]$$

$$\leq S_n(w_{-\{n+1\}}) .$$

Lemma 3.4. Let

$$M\coloneqqegin{bmatrix}A&B\0&C\end{bmatrix}$$

be a matrix consisting of submatrices $A \in \mathbb{R}^{k \times k}$, $B \in \mathbb{R}^{k \times \ell}$, and $C \in \mathbb{R}^{\ell \times \ell}$. Let A be an irreducible aperiodic Markov transition matrix, and let $C^n \xrightarrow{n \to \infty} \mathbf{0}$ with exponential decay. Then, M^n decays exponentially in n towards a matrix M'.

Proof. Using induction, it is easy to show that

$$oldsymbol{M}^n = egin{bmatrix} oldsymbol{A}^n & \sum_{i=0}^{n-1} oldsymbol{A}^{n-1-i} oldsymbol{B} oldsymbol{C}^i \ oldsymbol{O}^n \end{bmatrix}$$
 .

We aim to show that this sum converges to a finite matrix:

$$\lim_{n o\infty}\sum_{i=0}^{n-1} A^{n-1-i}BC^i\eqqcolon D_\infty$$
 .

Let us denote:

$$oldsymbol{D}_n := \sum_{i=0}^{n-1} oldsymbol{A}^{n-1-i} oldsymbol{B} oldsymbol{C}^i \quad .$$

We want to show that $\|D_{n+1} - D_n\| \le ce^{-\alpha n}$ for some $\alpha \in \mathbb{R}_{>0}$. Note that the exponentially fast convergence of D_n is equivalent to exponentially fast convergence of every entry in the matrix.

Since A is irreducible and aperiodic, it follows that $\lambda_1 = 1$ and $|\lambda_2| < 1$ based on theorem ??. Hence, it converges exponentially fast with a basis of $|\lambda_2|$.

Furthermore, note that every entry α in every matrix for every n is bounded by $\alpha \in [0, 1]$. Hence, we can argue about their element-wise deviation in big \mathcal{O} notation where the hidden constants remain bounded:

$$\begin{split} &D_{n+1} - D_n \\ &= \sum_{i=0}^n A^{n-i}BC^i - \sum_{i=0}^{n-1} A^{n-1-i}BC^i \\ &= BC^n + \sum_{i=0}^{n-1} \left[A^{n-i}BC^i - A^{n-1-i}BC^i \right] \\ &= BC^n + \sum_{i=0}^{\frac{n}{2}-1} \left[\left(A^{n-i} - A^{n-1-i} \right) BC^i \right] + \sum_{\frac{n}{2}}^{n-1} \left[\left(A^{n-i} - A^{n-1-i} \right) BC^i \right] \\ &= \pm \mathcal{O}(e^{-\alpha_1 n}) + \sum_{i=0}^{\frac{n}{2}-1} \left[\left(A^{n-i} - A^{n-1-i} \right) BC^i \right] + \sum_{\frac{n}{2}}^{n-1} \left[\left(A^{n-i} - A^{n-1-i} \right) B \cdot \mathcal{O}(e^{-\alpha_1 \frac{n}{2}}) \right] \\ &= \pm \mathcal{O}(e^{-\alpha_1 n}) + \sum_{i=0}^{\frac{n}{2}-1} \left[\left(A^{n-i} - A^{n-1-i} \right) BC^i \right] \pm \mathcal{O}(ne^{-\alpha_1 \frac{n}{2}}) \\ &= \pm \mathcal{O}(e^{-\alpha_1 n}) + \sum_{i=0}^{\frac{n}{2}-1} \left[\left(A^{n-i} - A^{\infty} + A^{\infty} - A^{n-1-i} \right) BC^i \right] \pm \mathcal{O}(ne^{-\alpha_1 \frac{n}{2}}) \\ &= \pm \mathcal{O}(e^{-\alpha_1 n}) + \sum_{i=0}^{\frac{n}{2}-1} \left[\left(\pm \mathcal{O}(e^{-\alpha_2 (n-1-i)}) \right) BC^i \right] \pm \mathcal{O}(ne^{-\alpha_1 \frac{n}{2}}) \\ &= \pm \mathcal{O}(e^{-\alpha_1 n}) \pm \mathcal{O}(ne^{-\alpha_2 \frac{n}{2}}) \pm \mathcal{O}(ne^{-\alpha_1 \frac{n}{2}}) \\ &= \pm \mathcal{O}(e^{-\alpha_n}) \quad . \end{split}$$

It is easy to see that $(D_n)_{n=1}^{\infty}$ is a Cauchy sequence and hence D_{∞} exists. And of course

$$\|D_{\infty} - D_n\| \le \sum_{i=n}^{\infty} ce^{-\alpha i}$$

$$= c \sum_{i=n}^{\infty} (e^{-\alpha})^i$$

$$= c \left(\frac{1}{1 - e^{-\alpha}} - \frac{1 - e^{-\alpha n}}{1 - e^{-\alpha}}\right)$$

$$= c \frac{e^{-\alpha n}}{1 - e^{-\alpha}} \in \mathcal{O}(e^{-\alpha n}) .$$

From here, the claim follows trivially.

Theorem 3.1 (No Hidden Markov Model with Power-Law Behavior). There is no hidden Markov model (M_Y, M_X) with with weak power-law behavior (and hence also strong power-law behavior).

Proof. Since hidden Markov models satisfy the bulk marginal property, we can use the contraposition of theorem 1.1 to show that hidden Markov models are incapable of weak power-law behavior. Note that we can chose our starting referencing random variable freely. Hence, we may analyze $I(X_0; X_\tau)$.

First, note that we can construct the following Bayesian network with adjusted transitions depicted in figure 3.

Figure 3: Adjusted Bayesian network of a hidden Markov model.

We see that
$$P(X_{\tau} = a \mid X_0 = b) = (\mathbf{M}_{\mathbf{X}} \mathbf{M}_{\mathbf{Y}}^{\tau} \mathbf{M}_{\mathbf{R}})_{ab}$$
.

Now, for the sake of contradiction, assume that there exists a model (M_Y, M_X) with weak power-law behavior. It follows that $I(X_0; X_\tau) \xrightarrow{\tau \to \infty} 0$. We will show that for certain $m \in \mathbb{N}$ we have $M_X M_Y^{m\tau} M_R \xrightarrow{\tau \to \infty} M'$ with exponential decay. Now, either M' implies a mutual information greater than zero, but then we don't have decay towards zero and hence no power-law behavior, or we indeed have mutual information of zero, but since we converge with exponential decay, the mutual information cannot be lower bounded by a power-law (see corollary ??).

Note that if $M_Y^{m\tau}$ converges to any matrix with exponential decay for $\tau \to \infty$, then $M_X M_Y^{m\tau} M_R$ will be forced to converge with exponential decay as well.

We differentiate the following cases based on the properties of M_Y :

Case 1: Irreducible and Aperiodic

If M_Y is irreducible and aperiodic, then we have based on theorem ?? that

$$I(X_0; X_\tau) \leq I(Y_0; Y_\tau)$$
.

But we have already proven that $I(Y_0; Y_\tau)$ decays exponentially in theorem ??.

Case 2: Irreducible and Periodic

Assume M_Y has periodicity p. Let's analyze M_Y^p : Based on lemma 3.1, it must decompose into p aperiodic closed blocks (when ordering the states accordingly):

Since all blocks represent irreducible aperiodic Markov chains, $M_Y^{p\tau}$ must converge exponentially fast. But this means that $I(X_0; X_\tau)$ converges exponentially fast for $\tau = n \cdot p$, $n \in \mathbb{N}$, and hence it cannot be lower bounded by a power-law assuming convergence to 0.

Case 3: Multiple Closed Aperiodic Communication Classes

In this case, we can order the states such that M_Y is block diagonal, i.e.

$$M_Y = egin{bmatrix} B_1 & 0 & \cdots & 0 \ 0 & B_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & B_k \end{bmatrix}$$

It follows that

$$M_Y^ au = egin{bmatrix} B_1^ au & 0 & \cdots & 0 \ 0 & B_2^ au & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & B_k^ au \end{bmatrix}$$

Hence, M_Y^{τ} converges to a certain block diagonal matrix with exponential decay since all the blocks B_i are irreducible and aperiodic.

Case 4: Multiple Closed Communication Classes

Now assume M_Y consists of many closed communication classes that can be either periodic or aperiodic. But we know that all the aperiodic classes converge with exponential decay, and the periodic ones as well if we restrict $\tau \equiv_{m_i} 0$ for a specific m_i associated with block B_i . By calculating the smallest common multiple of all m_i defined as m_I , we see that M_Y^{τ} converges with exponential decay for $\tau = n \cdot m_I$, $n \in \mathbb{N}$.

Case 5: The Generic Case

Finally, we allow M_Y to consist of multiple closed and open communication classes. Let S_C denote the set of all states that are in a closed communication class, and let S_O denote the set of states in open communication classes. We also use them to refer to certain submatrices (see below). After ordering states appropriately, we have:

$$M_Y = egin{bmatrix} S_C & S_O' \ 0 & S_O \end{bmatrix} \quad ,$$

where the blocks S_C and S_O are square. Hence:

$$M_Y^ au = egin{bmatrix} S_C^ au & S_O'^{(au)} \ 0 & S_O^ au \end{bmatrix} \quad .$$

Thus, the block described by S_C will converge with exponential decay for $\tau = n \cdot m$, $n \in \mathbb{N}$ for some $m \in \mathbb{N}$ based on Case 4, and S_O^{τ} decays to $\mathbf{0}$ with exponential decay as well.

But what about the states in S'_{O} ? Well, based on lemma 3.2 and the previous discussion, we know there exists an $m \in \mathbb{N}$ s.t. S^{m}_{C} is block diagonal with every block being irreducible and aperiodic:

$$M_Y^m = egin{bmatrix} B_1 & 0 & \cdots & 0 & \uparrow \ 0 & B_2 & \cdots & 0 & S_O^{\prime(m)} \ dots & dots & \ddots & dots & dots \ 0 & 0 & \cdots & B_k & \downarrow \ 0 & 0 & \cdots & 0 & S_O^m \end{bmatrix} \quad.$$

Let's consider the submatrix M_i consisting of the states in B_i and S_O :

$$m{M_i} = egin{bmatrix} m{B_i} & (m{S_O^{\prime(m)}})_i \ m{0} & m{S_O^m} \end{bmatrix}$$
 .

We see that the columns of the states in S_O match for M_i^l and M_Y^{ml} in the associated rows. Hence, we may focus on analyzing M_i^l .

Since B_i is irreducible and aperiodic and $(S_O^m)^{\tau} \xrightarrow{\tau \to \infty} \mathbf{0}$ with exponential decay, we can apply lemma 3.4, and see that M_i^{τ} converges with exponential decay, and hence so must all entries in $M_V^{m\tau}$.

3.1 Conclusions for Model Selection

Since we are interested in natural language modelling, we should choose a model with power-law decay in the mutual independence measure. And since a constant mode of transition is not sufficient for this purpose, we should instead look at alternatives.

- 1. Change Transition Tables over Time. This is a simple approach, but it assumes a prior about the character distribution based on their position, but this non-characteristic of natural language. Instead, we should change the transitions based on what we have seen (or generated) thus far, but this is equivalent of augmenting the context window at each step. Of course, we now must have a dynamic model capable of processing arbitrary large sentences.
- 2. Augmenting Context Window Dynamically. This is a very natural approach. We can choose whether we want to read in the entire previous text, or maybe every second character, or so on, but the context window should keep growing indefinitely (or else we would have the same mode of transition at two points, and we assume that the same mode of transition stays constant over time, and it would be strange to alternate between finite modes of transition, because this assumes a prior based on the character position again).

Intuitively, we should base our token guess based on the entire previous text, as we humans operate in similar manner. Or, alternatively, the context window should grow really large, until there will only be minor differences, at which point it may stay constant (in theory we might have some exponential decay, but this would only be noticeable over very large distances, where the mutual information naturally already decayed to almost zero).

Theoretically, however, we can always construct counter examples where the mutual information stays relatively high over large distances. Thus, such models may serve only as heuristics—albeit very capable ones.

A Technical Details

In this appendix we provide some further details of our arguments.

A.1 Integrating over the Quadrants of a Normal Distribution

In order to derive the formula, we first have to prove an auxiliary lemma:

Lemma A.1. Let X and Y have a bivariate normal distribution where X and Y are standard normal variables, $X, Y \sim \mathcal{N}(0, 1)$, with correlation ρ . The variable $Z = \frac{Y - \rho X}{\sqrt{1 - \rho^2}}$ is a standard normal variable, and X and Z are independent.

Proof. First, we show that Z is a standard normal variable. Since Z is a linear combination of the jointly normal variables X and Y, Z is also a normal variable. We compute its mean and variance.

The mean of Z is:

$$E[Z] = E\left[\frac{Y - \rho X}{\sqrt{1 - \rho^2}}\right] = \frac{E[Y] - \rho E[X]}{\sqrt{1 - \rho^2}} = \frac{0 - \rho \cdot 0}{\sqrt{1 - \rho^2}} = 0$$
.

The variance of Z is:

$$Var(Z) = Var\left(\frac{Y - \rho X}{\sqrt{1 - \rho^2}}\right) = \frac{1}{1 - \rho^2} Var(Y - \rho X)$$
$$= \frac{1}{1 - \rho^2} \left(Var(Y) + \rho^2 Var(X) - 2\rho Cov(X, Y)\right)$$

Since X and Y are standard normal variables, Var(X) = 1, Var(Y) = 1, and their covariance Cov(X, Y) is equal to their correlation ρ . Hence:

$$Var(Z) = \frac{1}{1 - \rho^2} (1 + \rho^2(1) - 2\rho(\rho)) = \frac{1 - \rho^2}{1 - \rho^2} = 1 \quad .$$

Thus, Z is a standard normal variable, $Z \sim \mathcal{N}(0, 1)$.

To show that X and Z are independent, we compute their covariance. Since

they are jointly normal, zero covariance implies independence.

$$\begin{aligned} \operatorname{Cov}(X,Z) &= \operatorname{Cov}\left(X,\frac{Y-\rho X}{\sqrt{1-\rho^2}}\right) = \frac{1}{\sqrt{1-\rho^2}}\operatorname{Cov}(X,Y-\rho X) \\ &= \frac{1}{\sqrt{1-\rho^2}}\left(\operatorname{Cov}(X,Y) - \rho \operatorname{Cov}(X,X)\right) \\ &= \frac{1}{\sqrt{1-\rho^2}}\left(\rho - \rho \operatorname{Var}(X)\right) = \frac{1}{\sqrt{1-\rho^2}}(\rho - \rho \cdot 1) = 0 \quad . \end{aligned}$$

Since Cov(X, Z) = 0 and they are jointly normal, X and Z are independent. \square

Now we can prove our proposition of interest:

Proposition A.1. For bivariate standard normal variables X and Y with correlation ρ ,

$$P(X > 0, Y > 0) = \frac{1}{4} + \frac{1}{2\pi}\arcsin(\rho)$$
.

Proof. Define the random variable Z like in the previous lemma. Then, the event $\{X>0,Y>0\}$ is the same as the event $\{X>0,Z>\frac{-\rho}{\sqrt{1-\rho^2}}X\}$, where X and Z are independent standard normal variables as shown above. Writing $a:=\frac{-\rho}{\sqrt{1-\rho^2}}$ for brevity, the desired probability is expressible as a double integral involving the joint density of (X,Z):

$$\begin{split} P(X>0,Y>0) &= P(X>0,Z>aX) \\ &= \int_{x=0}^{\infty} \int_{z=ax}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \, dz \, dx \quad . \end{split}$$

Switching to polar coordinates $(x = r \cos \theta, z = r \sin \theta)$, the integral becomes:

$$\int_{\theta = \arctan(a)}^{\pi/2} \int_{r=0}^{\infty} \frac{1}{2\pi} e^{-r^2/2} r \, dr \, d\theta = \int_{\theta = \arctan(a)}^{\pi/2} \frac{1}{2\pi} \left[-e^{-r^2/2} \right]_0^{\infty} \, d\theta \quad .$$

This equals:

$$\int_{\theta=\arctan(a)}^{\pi/2} \frac{1}{2\pi} d\theta = \frac{1}{2\pi} \left(\frac{\pi}{2} - \arctan(a) \right) = \frac{1}{4} - \frac{1}{2\pi} \arctan\left(\frac{-\rho}{\sqrt{1-\rho^2}} \right)$$

Using the fact that the arctan function is odd, i.e. $\arctan(-u) = -\arctan(u)$, we get:

$$\frac{1}{4} + \frac{1}{2\pi} \arctan\left(\frac{\rho}{\sqrt{1-\rho^2}}\right)$$
.

To finish, we use the identity $\arcsin(\rho) = \arctan\left(\frac{\rho}{\sqrt{1-\rho^2}}\right)$. To see this, let $\phi = \arcsin(\rho)$ for $\phi \in [-\pi/2, \pi/2]$. Then $\sin(\phi) = \rho$ and $\cos(\phi) = \sqrt{1-\rho^2}$. Thus, $\tan(\phi) = \frac{\sin(\phi)}{\cos(\phi)} = \frac{\rho}{\sqrt{1-\rho^2}}$, which implies $\phi = \arctan\left(\frac{\rho}{\sqrt{1-\rho^2}}\right)$. Substituting this into our expression gives the final result:

$$P(X > 0, Y > 0) = \frac{1}{4} + \frac{1}{2\pi}\arcsin(\rho)$$
.