Lab8-Report

RollNo-190020021

Kushagra Khatwani

Answers-

Q1-


```
Certain proper
For stability z = 0
      2 = N-P= 0
        We know P = 0 (as no poles in RHP)

SO

K = 1 (cuitical realize)
            0.745
 In simulink -
    Done in MATLAB
```

Code Fragment for K=1-

```
clear all;
clc;
clf;
numg=[1 -3 2];
deng=[1 4 3];
G=tf (numg, deng);
nyquist(G);
grid on;
pause;
```

Plot for K=1

As K<1.34 for stable system so-

Simulink for K=1.25-

Plot from scope-

We can see from the above plot that for controller value of K=1.25 system is stable.

Code for Gain and Phase margins-

K = 1000

```
clf;
clear all;
clc;
K = 1000;
numg = [K -3*K 2*K]; % Define numerator of G(s).
deng=[1 4 3];
                    % Define denominator of G(s).
G=tf(numg, deng);
                   % Create and display G (s).
nyquist(G)
                   % Make a Nyquist diagram.
grid on;
title('Open-Loop Frequency Response');
[Gm,Pm,Wcg,Wcp]=margin(G); % Find margins and margin frequencies.
fprintf('\n gain margin = %f',20*log10(Gm));
fprintf('\n phase margin = %f \n',Pm);
```

Output-

```
gain margin = -57.501231
phase margin = Inf
```

Plot for K=1000

K = 100

Output-

```
gain margin = -37.501231
phase margin = Inf
```

Plot for K=100

K = 0.1

```
clf;
clear all;
clc;
K = 0.1;
numg = [K -3*K 2*K]; % Define numerator of G(s).
deng = [1 \ 4 \ 3];
                    % Define denominator of G(s).
G=tf(numg, deng);
                   % Create and display G (s).
nyquist(G)
                    % Make a Nyquist diagram.
grid on;
title('Open-Loop Frequency Response');
[Gm,Pm,Wcg,Wcp]=margin(G); % Find margins and margin frequencies.
fprintf('\n gain margin = %f',20*log10(Gm));
fprintf('\n phase margin = %f \n',Pm);
```

Output-

```
gain margin = 22.498769 phase margin = Inf
```

Plot for K=0.1

Extra Problems on next page.

Extra Problems Answers-

Q1-

$ \frac{Camlin Page}{Date 1} $ $ \frac{C_{1}}{Date 1} = 20 \left(\frac{1}{3}\omega + 2\right)\left(-3 - \frac{1}{3}\omega\right)\left(5 - \omega^{2} - 2\frac{1}{3}\omega\right) $ $ \frac{C_{2}}{Date 1} = \frac{1}{3}\omega $ $ \frac{C_{3}}{Date 1} = \frac{1}{3}\omega $ $ \frac{C_{4}}{Date 1} = \frac{1}{3}\omega $ $ \frac{C_{5}}{Date 1} = \frac{1}{3}\omega $
$\frac{(7(4))_{4}-y_{1}}{(3+w^{2})} = \frac{20(\omega^{2}-30-\omega^{4})+jw(3\omega^{2}-13)}{(3+w^{2})[(5-w^{2})^{2}+(2\omega)^{2}]}$
$4m(G_1) = 0$ at $\omega = 0$, $\omega = 1$ $\sqrt{13}$
At $w = 0$ $c_1 = -8/3$ $c_2 = -3.75$
At $w < \sqrt{13}$, $3m(4) < 0$ At $w > \sqrt{13}/3$, $4m(h) > 0$
For all co, re(9) 20
$\frac{9n A \rightarrow B - angle dange -}{= 90^{\circ} - (153.4 + 21.6) + 90^{\circ}}$ $= 0^{\circ}$
25 In B → P - angle change -
$(-180^{\circ}) + (3\times180^{\circ})$ = 360°
D > A and B > A and symmetric

	Ca	TTIIIT [rage
	Date	1 1
	1.000	
4	Stability -	
-		
	Z=P-N	
	of (146H) of (9H)	
5		
	P=1 (pole in RHP)	
	· / /	0 0
	N = -1 (one en chock	well
	enriedense	it around
10		/
		1 110
) of 1-1 0-1
	Z = 2 (No 3)	n RHP
	Hene system is unstable.	
	7 (00)	
15		
	<i>,</i>	

