Planning under Uncertainty in RoboCup Soccer Simulation 2D

Aijun Bai

http://home.ustc.edu.cn/~baj/

University of Science and Technology of China

September 12, 2014

Outline

- 1 Introduction to RoboCup 2D
- 2 Hierarchical Online Planning
- 3 Bayesian Monte-Carlo Planning
- **4** Summary

Outline

- 1 Introduction to RoboCup 2D
- 2 Hierarchical Online Planning
- 3 Bayesian Monte-Carlo Planning
- 4 Summary

The RoboCup 2D domain - introduction

- Simulated soccer game
- Two teams of 11 players
- Independently controlled
- In each cycle (100ms)
 - Receive perception
 - Make decision
 - Send action(s)
- Normally 6,000 cycles

Figure 1: RoboCup 2D.

The RoboCup 2D domain - model

- State:
 - Ball state, player states and game information
- Observation:
 - Visual information (within field of view):
 - Simulated ball, landmark, and player detections
 - Aural information: $msg \ (|msg| \le 10)$
- Action (with parameters):
 - $turn, dash, kick, tackle, say, [catch], \dots$

The RoboCup 2D domain - model (cont'd)

- Transition model: game rules, physical laws with noise
- Observation model: noise and hidden information
- Key feature:
 - · Abstraction made by the simulator
 - High-level planning, learning and cooperation
 - No need to handle robot hardware issues
- Key challenges:
 - Fully distributed multi-agent stochastic system
 - Continuous state, observation and action spaces
- Demonstration before Q&A session

WrightEagle 2D soccer simulation team

- Have participated in RoboCup 2D, since 2000
- 5 world champions: 2006, 2009, 2011, 2013 and 2014
- Have been the main contributor since 2007
- Key components:
 - 1 Belief update via particle filtering (Bai et al., 2012a,c)
 - 2 Hierarchical online planning (Bai et al., 2012a,b, 2013b)
 - 3 Monte-Carlo planning (Bai et al., 2013a, 2014b)
 - 4 Multi-agent decision-making (Bai et al., 2011, 2012c)

Belief update via particle filtering

- Particle filter based self-localization and multi-object tracking (Bai et al., 2012a,c)
- Belief state is useful in:
 - Information gathering
 - State estimation
 - 3 Probability estimation
 - 4 Future state prediction

Figure 2: Local views.

Belief state via particle filtering - example

Figure 3: Unobservable real state.

Belief state via particle filtering - example (cont'd)

Figure 4 : Updated belief state of player #7.

Multi-object tracking in joint belief space

Figure 5: Multi-object tracking in joint belief space (Bai et al., 2014a).

Hierarchical online planning

Decision tree:

• Hierarchical online planning:

```
\begin{aligned} & \text{PlanAttack()} \; \{ \\ & \dots \\ & \text{shoot} \leftarrow \text{PlanShoot()} \\ & \text{pass} \leftarrow \text{PlanPass()} \\ & \text{dribble} \leftarrow \text{PlanDrrible()} \\ & \dots \\ & \text{\textbf{return}} \; \max\{\text{shoot, pass,} \\ & \text{dribble,} \dots \} \\ \} \end{aligned}
```

Hierarchical task graph in WrightEagle

Figure 6: Hierarchical structure in WrightEagle (Bai et al., 2012b).

Hierarchical online planning - example

Figure 7: Hierarchical planning of pass behavior.

Heuristic search in action space

- Efficiently search in huge (macro-)action spaces
 - Enumeration is impossible and not necessary
 - Behavior dependent: hill climbing, best-first-search, pruning, . . .

Figure 8 : Search in shoot.

Monte-Carlo planning

- Explicit transition matrix $Pr(s' \mid s, a)$ is unavailable
- State sampling rules $s' \sim \Pr(s' \mid s, a)$ given by the simulator
- Monte-Carlo tree search (Bai et al., 2013a, 2014b)
- Low-level skills: NavTo, KickTo, . . .
- Embedded in the overall hierarchical framework

Figure 9 : Search tree in *NavTo*.

Multi-agent decision-making

- Formation and role system
 - Formation: $\Pr(x_1, y_1, \dots, x_{22}, y_{22} \mid x_b, y_b)$
 - Role classification: forward, midfielder, defender
 - Task allocation (particularly in defense behavior)
- Plan for the team
 - $oldsymbol{1}$ Pass the ball to teammate t
 - **2** Recursively plan *t*'s future actions after receiving the ball
 - 3 Evaluate the pass behavior
- Communicate whenever possible
 - Share information
 - 2 Propose future plans
 - 3 Emergence

Outline

- 1 Introduction to RoboCup 2D
- 2 Hierarchical Online Planning
- 3 Bayesian Monte-Carlo Planning
- 4 Summary

MAXQ hierarchical decomposition

- Decompose an MDP into a set of sub-MDPs (Dietterich, 1999)
 - $M = \{M_0, M_1, \dots, M_n\}$
 - $M_i = \langle S_i, G_i, A_i, R_i \rangle$

 - **2** Goal states G_i
 - **3** Available actions A_i
 - **4** Local reward function R_i
 - Local policy: $\pi_i: S_i \to A_i$
 - Solving M_0 solves the original MDP M
- Focus on undiscounted and goal-directed MDPs: $\gamma = 1$

Figure 10: MAXQ hierarchy.

MAXQ hierarchical decomposition (cont.)

- Hierarchical policy
 - $\pi = \{\pi_0, \pi_1, \dots, \pi_n\}$
 - A set of local policies for each subtask
 - Recursively optimal policy π^*
 - Each subtask is optimal given the policies of its descendants
 - Local optimality following the tree structure
 - Contribution: MAXQ-OP approximately finds π^* online (Bai et al., 2012b)

Figure 11: MAXQ hierarchy.

Recursively optimal policy

• Value function V^* of π^* satisfies

$$V^*(i,s) = \begin{cases} R(s,i) & \text{if } M_i \text{ is primitive} \\ \max_{a \in A_i} Q^*(i,s,a) & \text{otherwise} \end{cases}$$
 (1)

$$Q^*(i, s, a) = V^*(a, s) + C^*(i, s, a)$$
 (2)

$$C^*(i, s, a) = \sum_{s', N} \Pr(s', N \mid s, a) V^*(i, s')$$
 (3)

π* satisfies

$$\pi_i^*(s) = \operatorname*{argmax}_{a \in A_i} Q^*(i, s, a) \tag{4}$$

Completion function approximation

- Computing completion function implies solving the entire problem
- Introduce terminating distribution

$$\Pr(s' \mid s, a) = \sum_{N} \Pr(s', N \mid s, a)$$
 (5)

Rewrite complete function as

$$C^*(i, s, a) = \sum_{s'} \Pr(s' \mid s, a) V^*(i, s')$$
 (6)

- Approximate $Pr(s' \mid s, a)$ either online or offline
 - $oldsymbol{0}$ Offline: NavTo terminates at its target with probability 1
 - 2 Online: terminating distributions of Intercept, Pass, Shoot,

..

Main structure of MAXQ-OP

For non-primitive subtasks

$$V^*(i,s) \approx \max_{a \in A_i} \left\{ V^*(a,s) + \sum_{s'} \Pr(s' \mid s, a) V^*(i,s') \right\}$$
 (7)

• Introduce search depth array d, maximal search depth array D and heuristic function H(i,s)

$$V(i,s,d) \approx \left\{ \begin{array}{ll} H(i,s) & \text{if } d[i] \geq D[i] \\ \max_{a \in A_i} \{V(a,s,d) + \\ \sum_{s'} \Pr(s' \mid s,a) V(i,s',d[i] \leftarrow d[i] + 1) \} & \text{otherwise} \\ (8) \end{array} \right.$$

• Call $V(0, s, [0, 0, \dots, 0])$ to find the value of s in task M_0

Comparing to traditional online search algorithms

- Traditional online search algorithms
 - Search only in state space
 - Search path:

$$[s_1 \to s_2 \to s_3 \to \cdots \to s_H] \leadsto g \tag{9}$$

- MAXQ-OP algorithm
 - Search both in task hierarchy and state space
 - Search path:

$$[s_1 \to \cdots \to s_{H_1}] \leadsto [g_1/s_1' \to \cdots \to s_{H_2}'] \leadsto [g_2/s_1'' \to \cdots \to s_{H_3}''] \cdots \leadsto g \quad (10)$$

• MAXQ-OP can search deeper by utilizing the task hierarchy

The Taxi domain

- States: $25 \times 5 \times 4 = 400$
 - **1** Taxi location: (x, y)
 - 2 Passenger location: R, Y, B, G and In
 - 3 Destination location: R, Y, B, G
- Actions: 6
 - North, South, East, West
 - 2 Pickup, Putdown
- Probability of 0.8 to succeed
- Probability of 0.2 to fail

Figure 12: Taxi domain.

Empirical results in the Taxi domain

Figure 13: Task graph for Taxi.

Table 1 : Empirical results in Taxi.

Algorithm		Avg. Reward*	1	Online Time (ms)
MAXQ-OP	1	3.93 ± 0.16		0.20 ± 0.16
LRTDP		3.71 ± 0.15		64.88 ± 3.71
AOT		3.80 ± 0.16		41.26 ± 2.37
UCT		-23.10 ± 0.84		102.20 ± 4.24

^{*}The upper bound of Average Rewards is 4.01 ± 0.15 .

Outline

- 1 Introduction to RoboCup 2D
- 2 Hierarchical Online Planning
- 3 Bayesian Monte-Carlo Planning
- 4 Summary

Monte-Carlo Planning

- Impossible to give explicit transition models for large domains
 - Rules of chess (32 pieces, 64 squares, ~100 moves)
- Easy to have a Bayesian network
 - Sampling rules $s' \sim T(s' \mid s, a)$
 - A simulator for planning problem
- Monte-Carlo tree search (MCTS)
 - Online planning algorithm
 - Build a best-first search tree
 - Take advantage of Monte-Carlo simulations
- Contributions: Posterior sampling approaches to MCTS for MDPs and POMDPs (Bai et al., 2013a, 2014b)

MCTS procedure

Figure 14: Outline of Monte-Carlo tree search (Chaslot et al., 2008).

Rollout policy + Tree policy → Constantly improving policy

Resulting asymmetric search tree

Figure 15: Asymmetric search tree (Coquelin & Munos, 2007).

Multi-armed bandit problem

- Multi-armed bandit:
 - N slot machines
 - Stochastic rewards
 - Unknown distributions
- Cumulative regret (CR):

$$R_T = \mathbb{E}\left[\sum_{t=1}^{T} (X_{a^*} - X_{a_t})\right]$$
 (11)

- Policy
 - Action-reward history → Action
 - Optimal policy: minimize CR

Figure 16: MAB.

The exploration vs. exploitation dilemma

- A fundamental problem in MAB (also in MCTS):
 - 1 Must not only select the action that currently seems best
 - 2 Should also keep exploring for possible higher future outcomes
- Upper confidence bound (UCB) heuristic:

$$UCB(a) = \bar{R}(a) + c\sqrt{\frac{\log T}{N(a)}},$$
(12)

where:

- **1)** $\bar{R}(a)$ is the mean reward of applying action a
- $\mathbf{2}$ T is the total times of acting so far
- 3 N(a) is the times of performing action a
- $oldsymbol{4}$ c is the exploration constant
- Asymptotic optimality in MABs

UCT algorithm

 Upper confidence over trees (UCT) (Kocsis & Szepesvári, 2006):

$$UCB(s, a) = \bar{Q}(s, a) + c\sqrt{\frac{\log N(s)}{N(s, a)}}$$
 (13)

- Find the best action for root node with probability 1
- With suitable choice of c
- No principled ways to determine c

Thompson sampling

- Select an action based on its posterior probability of being optimal (Thompson, 1933)
 - 2-armed bandit: a* and b
 - Initially: 50% vs. 50%
 - Normally: 60% vs. 40%
 - Finally: 100% vs. 0%
- Can efficiently be approached by sampling method
 - \bullet Z: the observed history
 - **2** θ_a : the hidden parameters of the distribution of X_a
 - **3** Poster distribution of θ_a : $\Pr(\theta_a \mid Z)$
 - **4** Sample a set of hidden parameters $\theta_a \sim \Pr(\theta_a \mid Z)$
 - **5** Select the action with highest expectation $\mathbb{E}\left[X_a \mid \theta_a\right]$

An example of Thompson sampling

- 2-armed bandit: a and b
- Bernoulli reward distributions
- Hidden parameters p_a and p_b
- Prior distributions:
 - $\mathbf{1}$ $p_a \sim Uniform(0,1)$
 - **2** $p_b \sim Uniform(0,1)$
- History: a, 1, b, 0, a, 0, ?
- Posterior distributions:
 - $\mathbf{0}$ $p_a \sim Beta(2,2)$
 - **2** $p_b \sim Beta(1,2)$
- Sample p_a and p_b
- Compare $\mathbb{E}[X_a \mid p_a]$ and $\mathbb{E}[X_b \mid p_b]$

(b) Beta(1,2).

Figure 17 : Posteriors.

Motivation

- Thompson sampling
 - 1 Theoretically achieves asymptotic optimality
 - 2 Empirically outperforms UCB
 - 3 Utilize more informative models in terms of prior knowledge
- Basic idea for our methods:
 - Model the distribution of action reward
 - 2 Update the posterior reward distribution
 - 3 Use Thompson sampling to guide the action selection

DNG-MCTS algorithm

- DNG-MCTS: Dirichlet-NormalGamma MCTS (Bai et al., 2013a)
- $X_{s,\pi}$: the cumulative reward of following policy π starting from state s
- $X_{s,a,\pi}$: the cumulative reward of first performing action a in state s and following policy π thereafter
- By definition:

$$X_{s,a,\pi} = R(s,a) + \gamma X_{s',\pi},$$
 (14)

where $s' \sim T(s' \mid s, a)$

DNG-MCTS algorithm (cont'd)

- Basic assumptions:
 - **1** $X_{s,\pi}$ follows a Normal distribution (CLT on Markov chains)
 - 2 $X_{s,a,\pi}$ follows a mixture of Normal distributions
- Bayesian modelling and inference:
 - 1 $X_{s,\pi} \sim \mathcal{N}(\mu_s, 1/\tau_s);$ $(\mu_s, \tau_s) \sim NormalGamma(\mu_{s,0}, \lambda_s, \alpha_s, \beta_s)$
 - 2 $T(\cdot \mid s, a) \sim Dirichlet(\boldsymbol{\rho}_{s,a})$
- Action selection: Thompson sampling
- Find the best action for the root node with probability 1

DNG-MCTS - experiments

- MDP benchmark problems (cost based):
 - 1 Canadian traveler problem
 - 2 Race track problem
 - Sailing problem
- Evaluation:
 - Run from current state for a number of iterations
 - 2 Apply the best action according to the returned values
 - 3 Repeat the loop until termination conditions
 - 4 Report the total discounted cost

Canadian traveler problem

- A path finding problem
- Imperfect information
- Edges may be blocked with given prior probabilities
- Modeled as an MDP
- State space size: $n \times 3^m$

Figure 18: CTP.

Canadian traveler problem (cont'd)

Table 2: CTP problems with 20 nodes.

		random rollout policy		optimistic rollout policy	
ins.	#state	UCT	DNG	UCT	DNG
20-1	20×3^{49}	216.4±3	223.9±4	180.7±3	177.1±3
20-2	20×3^{49}	178.5±2	178.1 ± 2	160.8 ± 2	155.2 ± 2
20-3	20×3^{51}	169.7 ± 4	159.5 ± 4	144.3±3	140.1 ± 3
20-4	20×3^{49}	264.1±4	266.8±4	238.3±3	242.7 ± 4
20-5	20×3^{52}	139.8±4	133.4 ± 4	123.9±3	122.1 ± 3
20-6	20×3^{49}	178.0 ± 3	169.8 ± 3	167.8 ± 2	141.9 ± 2
20-7	20×3^{50}	211.8 ± 3	214.9 ± 4	174.1 ± 2	166.1 ± 3
20-8	20×3^{51}	218.5±4	202.3 ± 4	152.3±3	151.4 ± 3
20-9	20×3^{50}	251.9 ± 3	246.0 ± 3	185.2±2	180.4 ± 2
20-10	20×3^{49}	185.7±3	188.9±4	178.5 ± 3	170.5 ± 3
total		2014.4	1983.68	1705.9	1647.4

Race track problem

- A set of initial states
- Move towards the goal
- Accelerate in one of the eight directions
- Probability of 0.9 to succeed
- Probability 0.1 to fail
- State space size: 22,534

Figure 19: Race track.

Race track problem (cont'd)

Figure 20: Racetrack-barto-big with random policy.

Sailing problem

- A sailboat navigates in a 100×100 grid world
- Direction of the wind changes over time
- Move to a neighbor grid at each localization
- Reach the destination as fast as possible
- State space size: 80,000

Figure 21: Sailing boat.

Sailing problem (cont'd)

Figure 22 : Sailing- 100×100 with random policy.

Extend to POMDPs

• POMCP (Silver & Veness, 2010):

$$UCB(h, a) = \bar{Q}(h, a) + c\sqrt{\frac{\log N(h)}{N(h, a)}}$$
 (15)

Search in the tree of histories

D²NG-POMCP algorithm

- D²NG-POMCP: Dirichlet-Dirichlet-NormalGamma partially observable Monte-Carlo planning (Bai et al., 2014b)
- ullet $X_{b,a}$: the immediate reward of performing action a in belief b
- $X_{s,b,\pi}$: the cumulative reward of following policy π from $\langle s,b \rangle$
- $X_{b,\pi}$: the cumulative reward of following policy π in belief b
- By definition:

$$\Pr(X_{b,a} = r) = \sum_{s \in S} \mathbf{1}[R(s,a) = r]b(s),$$
 (16)

$$f_{X_{b,\pi}}(x) = \sum_{s \in S} b(s) f_{X_{s,b,\pi}}(x)$$
(17)

D²NG-POMCP algorithm (cont'd)

- Basic assumptions:
 - **1** $X_{b,a}$ follows a Multinomial distribution
 - 2 $X_{s,b,\pi}$ follows a Normal distribution (CLT on Markov chains)
 - 3 $X_{b,\pi}$ follows a mixture of Normal distributions
- Bayesian modelling and inference:
 - 1 $X_{b,a} \sim Multinomial(\mathbf{p}_{b,a}); \ \mathbf{p}_{b,a} \sim Dirichlet(\psi_{b,a})$
 - 2 $X_{s,b,\pi} \sim \mathcal{N}(\mu_{s,b}, 1/\tau_{s,b});$ $(\mu_{s,b}, \tau_{s,b}) \sim NormalGamma(\mu_{s,b,0}, \lambda_{s,b}, \alpha_{s,b}, \beta_{s,b})$
 - 3 $\Omega(\cdot \mid b, a) \sim Dirichlet(\boldsymbol{\rho}_{b,a})$
- Action selection: Thompson sampling
- Find the best action for the root node with probability 1

Experiments

- POMDP benchmark problems:
 - RockSample problem
 - 2 PocMan problem
- Evaluation:
 - 1 Run the algorithms for a number of iterations for current belief
 - 2 Apply the best action based on the resulting action-values
 - 3 Repeat until termination conditions
 - 4 Report the total discounted reward

RockSample problem

- Rover exploration
- Navigate in a grid world
- Sample rocks
- Noisy sensors
- RockSample[7,8]
 - 12,545 states
 - 2 13 actions
 - 3 2 observations

Figure 23: RockSample[7,8].

RockSample problem (cont'd)

Table 3: Comparison in RockSample (given exactly 1 second per action).

RockSample	[7, 8]	[11,11]	[15,15]
States $ s $	12,544	247,808	7,372,800
AEMS2	21.37 ± 0.22	N/A	N/A
HSVI-BFS	21.46 ± 0.22	N/A	N/A
SARSOP	21.39 ± 0.01	21.56 ± 0.11	N/A
POMCP	20.71 ± 0.21	20.01 ± 0.23	15.32 ± 0.28
D ² NG-POMCP	20.87 ± 0.20	21.44 ± 0.21	20.20 ± 0.24

PocMan problem

- PocMan finding food
- 17×19 maze world
- 4 ghosts roaming
- Die when touching ghosts
- Size:
 - 10^{56} states
 - 2 4 actions
 - 3 1,024 observations

Figure 24: PocMan.

PocMan problem (cont'd)

Figure 25: Performance of D²NG-POMCP in PocMan.

Outline

- 1 Introduction to RoboCup 2D
- 2 Hierarchical Online Planning
- 3 Bayesian Monte-Carlo Planning
- 4 Summary

Summary

- 1 RoboCup soccer simulation 2d domain
 - Fully-distributed multi-agent stochastic system
 - Continuous state, observation and action spaces
- WrightEagle soccer simulation team
 - Planning and sensing in belief space
 - Utilizing MAXQ hierarchical structure
 - Various heuristic and Monte-Carlo techniques
- 3 Hierarchical online planning MAXQ-OP
 - Exploit MAXQ hierarchical structure online
 - Completion function approximation
- A Bayesian Monte-Carlo tree search DNG-MCTS and D²NG-POMCP
 - Maintain posterior distributions of action rewards
 - Select an action according to its probability of being optimal

References I

- Bai, A., Chen, X., MacAlpine, P., Urieli, D., Barrett, S., & Stone, P. (2012a). Wright Eagle and UT Austin Villa: RoboCup 2011 simulation league champions. In T. Roefer, N. M. Mayer, J. Savage, & U. Saranli (Eds.) RoboCup-2011: Robot Soccer World Cup XV, vol. 7416 of Lecture Notes in Artificial Intelligence. Berlin: Springer Verlag.
- Bai, A., Lu, G., Zhang, H., & Chen, X. (2011). WrightEagle 2D soccer simulation team description 2011. In RoboCup Soccer Simulation 2D Competition, Istanbul, Turkey.
- Bai, A., Simmons, R., Veloso, M., & Chen, X. (2014a). Intention-aware multi-human tracking for human-robot interaction via particle filtering over sets. In AAAI Fall Symposium: AI for Human-Robot Interaction (AI-HRI 2014). Arlington, United States.
- Bai, A., Wu, F., & Chen, X. (2012b). Online planning for large MDPs with MAXQ decomposition. In Proc. of 11th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2012).
- Bai, A., Wu, F., & Chen, X. (2013a). Bayesian mixture modelling and inference based Thompson sampling in Monte-Carlo tree search. In Advances in Neural Information Processing Systems 26 (NIPS 2013), (pp. 1646–1654).
- Bai, A., Wu, F., & Chen, X. (2013b). Towards a principled solution to simulated robot soccer. In X. Chen, P. Stone, L. E. Sucar, & T. V. der Zant (Eds.) RoboCup-2012: Robot Soccer World Cup XVI, vol. 7500 of Lecture Notes in Artificial Intelligence. Berlin: Springer Verlag.
- Bai, A., Wu, F., Zhang, Z., & Chen, X. (2014b). Thompson sampling based Monte-Carlo planning in POMDPs. In Proceedings of the 24th International Conference on Automated Planning and Scheduling (ICAPS 2014). Portsmouth, United States.
- Bai, A., Zhang, H., Lu, G., Jiang, M., & Chen, X. (2012c). WrightEagle 2D soccer simulation team description 2012. In RoboCup Soccer Simulation 2D Competition, Mexico City, Mexico.
- Chaslot, G., Bakkes, S., Szita, I., & Spronck, P. (2008). Monte-carlo tree search: A new framework for game Al. In C. Darken, & M. Mateas (Eds.) Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference, October 22-24, 2008, Stanford, California, USA. The AAAI Press. URL http://www.aaai.org/Library/AIIDE/2008/aiide08-036.php
- Coquelin, P.-A., & Munos, R. (2007). Bandit algorithms for tree search. arXiv preprint 0703062.

References II

- Dietterich, T. G. (1999). Hierarchical reinforcement learning with the maxq value function decomposition. *Journal of Machine Learning Research*, 13(1), 63.
- Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In European Conference on Machine Learning, (pp. 282–293).
- Russell, S. (2013). Unifying logic and probability; a new dawn for ai? Presented at Colloquium Sorbonne-Universits.
- Silver, D., & Veness, J. (2010). Monte-Carlo planning in large POMDPs. In Advances in Neural Information Processing Systems, (pp. 2164–2172).
- Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25, 285–294.