02/10 (Th)		
· grading: swill on-going		
• PH examples		

- † Normal Approx. to Posterior (1)
 - General Idea: find a Gaussian approximation to $\pi(\theta \mid \mathbf{x})$.
 - Consider a univariate case;

$$\underline{\pi(\theta \mid \mathbf{x})} = \frac{f(\mathbf{x} \mid \theta)\pi(\theta)}{m(\mathbf{x})} \propto \underline{q(\theta)}$$

** We find θ_0 and A such that $\pi(\theta \mid \mathbf{x}) \approx \mathsf{N}(\theta_0, A^{-1})$.

- † Normal Approx. to Posterior (2)
 - θ_0 : a mode of $\pi(\theta \mid \mathbf{x})$, i.e., a mode of $q(\theta)$.

$$\Rightarrow$$
 find θ_0 st $\frac{dq(\theta)}{d\theta} = 0$.

We can use any algorithms including numerical solution (e.g, Newton-Raphson method, R function optim).

- † Normal Approx. to Posterior (3)
 - Compute a truncated Taylor expansion of $log{q(\theta)}$ at mode θ_0 ,

$$\log \left\{q(\theta)
ight\} ~pprox ~\log \left\{q(heta_0)
ight\} + rac{d \log \left\{q(heta)
ight\}}{d heta} \Big|_{ heta= heta_0} (heta / heta_0) + rac{1}{2} rac{d^2 \log \left\{q(heta)
ight\}}{d heta^2} \Big|_{ heta= heta_0} (heta - heta_0)^2.$$

** Let
$$A = -\left(d^2 \log \left\{q(\theta)\right\}/d\theta^2\right)\Big|_{\theta=\theta_0}$$
 and we have

$$\log \left\{ q(\theta) \right\} \approx \log \left\{ q(\theta_0) \right\} - \frac{A}{2} (\theta - \theta_0)^2$$

$$\Rightarrow q(\theta) \approx q(\theta_0) \exp\left\{-\frac{A}{2}(\theta - \theta_0)^2\right\}$$

$$\Rightarrow \pi(\theta \mid \mathbf{x}) \approx N(\theta_0, 1/A).$$

• **Example:** Suppose $\pi(\theta \mid \mathbf{x})$ is Be (α, β) . The Laplace approximation gives us

$$N\left(\frac{\alpha-1}{\alpha+\beta-2},\frac{(\alpha-1)(\beta-1)}{(\alpha+\beta-2)^3}\right),\alpha,\beta>1.$$

$$\pi(\theta) \times$$
 is Be(ω, β), $\theta \in (0, 1)$

$$T(\Theta(x)) = \frac{1}{\beta(\alpha, \beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

$$\frac{d \log (q \log)}{d \Theta} = 0$$
 \Rightarrow find such Θ

$$\theta_0 = \frac{\alpha - 1}{\alpha + \beta - 2}$$

$$\Delta = -\frac{3^2 \log(g(\theta))}{3\theta^2} = \frac{(\alpha + \beta - 2)^3}{(\alpha + \beta - 2)^3}$$

approximate Be(
$$\alpha_1\beta$$
) with $N\left(\frac{\alpha-1}{\alpha+\beta-2},\frac{(\alpha-1)(\beta-1)}{(\alpha+\beta-2)^2}\right)$

• **Example:** Simulate a dataset of size n = 15, $x_i \stackrel{iid}{\sim} C(0, 1)$,

 $i=1,\ldots n$.

Consider the estimation of the location of x and assume that $x_i \mid \theta \stackrel{\text{ind}}{\sim} C(\theta, 1)$ and $\theta \sim N(\mu, \sigma^2)$, with fixed $\mu = 0$ and $\sigma^2 = 25$.

We then approximate the posterior distribution of θ using the Laplace approximation. $\pi(\Theta|\mathbf{x}) \propto \frac{\pi}{\pi} \frac{P(\mathbf{x}_1|\Theta)}{\pi(\Theta)}$

- † Normal Approx. to Posterior (4)
 - Consider a multivariate case with $\theta = (\theta_1, \dots, \theta_p)$;

$$\pi(\boldsymbol{\theta} \mid \boldsymbol{x}) \approx \mathsf{N}(\boldsymbol{\theta}_0, A^{-1}),$$

where

** Find
$$\underline{\theta_0}=(\theta_{0j},j=1,\ldots,p)$$
 such that $\frac{\partial q(\boldsymbol{\theta})}{\partial \theta_{0j}}=0$.

****** Find A, Hessian matrix evaluated at θ_0 ,

$$A_{ij} = -\frac{\partial^2 \log(q(\theta))}{\partial \theta_i \partial \theta_j} \Big|_{\theta = \theta_0}$$

- The Laplace approximation is only justified asymptotically Smith et al (1985).
- The Laplace approximation seems to perform quite well in most cases (e.g.: the prior is smooth and the sample size is large) and can be useful as a guide to the solution of the problem.
- Normal approximations are not be useful if the posterior distributions are skewed or multimodal.

† Bayesian CLT

- Suppose $x_i \stackrel{iid}{\sim} f(x \mid \theta)$ where θ is a p-dim parameter and that the prior on θ is $\pi(\theta)$.
- Under some regularity conditions, the posterior probability distribution is approximately a normal distribution as sample size grows.

$$\pi(\theta \mid x) \to \mathsf{N}_{\mathsf{p}}(\theta_0, A^{-1}), \text{ as } n \to \infty,$$

where

- $\star\star$ θ_0 : posterior mode and A: Hassian matrix evaluated at θ_0 .
- The prior can be improper, but assume that the posterior is proper.

** Robert and Casella Example 3.16 (Gamma approximation)

As a simple illustration of the Laplace approximation for an integral, consider estimating a Gamma $(\alpha, 1/\beta)$ integral (mean: $\alpha\beta$),

$$\Pr(\alpha < x < b) = \int_{a}^{b} f(x) dx = \int_{a}^{b} \frac{x^{\alpha - 1}}{\Gamma(\alpha)\beta^{\alpha}} e^{-x/\beta} dx.$$

- * check $x_0 = (\alpha 1)\beta$ and $\underline{A} = 1/(\alpha 1)/\beta^2$. $\log(f(x)) \approx \log(f(x_0)) - \frac{A}{2}(x-160)^2$
- * Laplace approx. says

$$f(x) \approx f(x_0) \sqrt{2\pi 1/A} \phi(x_0, 1/A), \quad \sqrt{2\pi Y_A} e^{-\frac{A}{2}(\chi - \chi_0)^2}$$

where $\phi(a,b)$ is the density function of $N(x_0,1/A)$.

$$\Rightarrow \int_a^b f(x)dx \approx \underline{f(x_0)\sqrt{2\pi 1/A}} \left\{ \Phi(\sqrt{A}(b-x_0)) - \Phi(\sqrt{A}(a-x_0)) \right\}.$$

** Robert and Casella Example 3.16 (Gamma approximation – contd) Laplace approx. of a Gamma integral for $\alpha = 5$ and $\beta = 2$.

Interval	Approximation	Exact
(7,9)	0.193351	0.193341
(6, 10)	0.375046	0.37477
(2, 14)	0.848559	0.823349
$(15.987, \infty)$	0.0224544	0.100005

- † Laplace Analytic Approximation (CR 6.2.3)
 - Use the Laplace expansion to directly find

$$\mathbf{E}^{\pi}(g(\theta) \mid x) = \frac{\int_{\Theta} g(\theta) f(x \mid \theta) \pi(\theta) d\theta}{\int_{\Theta} f(x \mid \theta) \pi(\theta) d\theta} \\
= \frac{\int_{\Theta} \exp{\{\tilde{q}^{\star}(\theta)\} d\theta}}{\int_{\Theta} \exp{\{\tilde{q}(\theta)\} d\theta}},$$

where $\tilde{q}^*(\theta) = \log\{g(\theta)f(x \mid \theta)\pi(\theta)\}\$ and $\tilde{q}(\theta) = \log\{f(x \mid \theta)\pi(\theta)\}\$.

• Suppose $\tilde{q}^{\star}(\theta)$ and $\tilde{q}(\theta)$ have unique maxima, θ_0^{\star} and θ_0 , respectively.

** Let
$$A^* = -(d^2\tilde{q}^*(\theta)/d\theta^2)\Big|_{\theta=\theta_0^*}$$
 and $A = -(d^2\tilde{q}(\theta)/d\theta^2)\Big|_{\theta=\theta_0}$

• Then expand each in a second order Taylor expansion.

$$\mathsf{E}^{\pi}(g(\theta) \mid x) = \exp\{\tilde{q}^{\star}(\theta_0^{\star}) - \tilde{q}(\theta_0)\}\frac{\sqrt{A}}{\sqrt{A^{\star}}}.$$

- Can be extended for a multivariate θ .
- Lemma 6.2.4 and Corollary 6.2.5 discuss the Laplace approximation for $\mathsf{E}^\pi(g(\theta)\mid x)$. We skip them.

- † Monte Carlo Method (PH 4)
 - Suppose that we have $\theta^{(1)}, \ldots, \theta^{(M)}$ iid samples from $\pi(\theta \mid x)$.
 - The law of large numbers implies that as $M \to \infty$,
 - ** Posterior mean

$$\bar{\theta} = \frac{1}{M} \sum_{m=1}^{M} \theta^{(m)} \to \mathsf{E}(\theta \mid \mathbf{x}).$$

** Posterior variance

$$\frac{1}{M-1}\sum_{m=1}^{M}(\theta^{(m)}-\bar{\theta})^2\to \mathsf{Var}(\theta\mid \boldsymbol{x}).$$

** Posterior probabilities

$$\frac{1}{M}\#(\theta^{(m)}\leq c)\to \mathsf{P}(\theta\leq c\mid \boldsymbol{x}).$$

** Posterior distribution function

the empirical distribution of $\{\theta^{(1)}, \dots, \theta^{(M)}\} \to \pi(\theta \mid \mathbf{x})$.

** Posterior percentile

the α -percentile of $\{\theta^{(1)}, \dots, \theta^{(M)}\} \to \theta_{\alpha}$.

****** Suppose
$$g(\theta) = \log(\theta/(1-\theta))$$
 for $0 < \theta < 1$

$$\frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{\theta^{(m)}}{1 - \theta^{(m)}} \right) \to \mathsf{E} \left(\log \left(\frac{\theta}{1 - \theta} \right) \mid \mathbf{x} \right).$$

Similarly,

the empirical distribution of $\{g(\theta^{(1)}), \ldots, g(\theta^{(M)})\} \to \pi(g(\theta) \mid \mathbf{x}).$

Posterior predictive distribution
$$= \int P(x^{\text{new}} \mid x) d\theta$$
sample $x_m^{\text{new}} \sim f(x \mid \theta^{(m)})$

The sequence of $\{x_m^{new}, \dots, x_M^{new}\}$ constitutes M independent samples from the *marginal* posterior distribution of x.

** Go over Chapter 4 of PH for your practice.

- † An illustration of Monte Carlo approximation: simulation study
 - Suppose we have a dataset of size n=10 with $x_i \in \mathbb{R}$, $i=1,\ldots,n$.
 - ** We consider the estimation problem of the mean of x. For the inference, we use a model that assumes

$$x_i \mid \theta \stackrel{iid}{\sim} N(\theta, \sigma^2)$$
 with fixed $\sigma^2 = 9$,

and consider

$$\theta \sim N(\mu, \tau^2)$$
 with $\mu = 0$ and $\tau^2 = 2$

for unknown θ .

- † An illustration of Monte Carlo approximation: (contd)
 - ** We can analytically obtain the posterior distributions of θ and of x^{new}

$$\theta \mid \mathbf{x} \sim N(\mu_1, \tau_1^2), \quad \text{and} \quad \mathbf{x}^{\text{new}} \mid \mathbf{x} \sim N(\mu_1, \tau_1^2 + \sigma^2),$$
where $\tau_1^2 = (n/\sigma^2 + 1/\tau^2)^{-1}$ and $\mu_1 = \tau_1^2 (n\bar{x}/\sigma^2 + \mu/\tau^2).$

⇒ For our dataset, we obtained

** Let's numerically approximate posterior quantities using the Monte Carlo method.

Simulate $\theta^{(m)}$ independently from $N(\mu_1, \tau_1^2)$ and x_m^{new} from $N(\theta^{(m)}, \sigma^2)$ $m = 1, \ldots, M$.

- † An illustration of Monte Carlo approximation: (contd)
 - ** The empirical distribution of $\{\theta^{(1)}, \dots, \theta^{(M)}\}$ is a Monte Carlo approximation to $\pi(\theta \mid \mathbf{x})$.

† An illustration of Monte Carlo approximation: (contd)

$$\star\star$$
 Let $g(\theta) = |\theta|$.


```
(a) \pi(|\theta| | \mathbf{x})
```

† An illustration of Monte Carlo approximation: (contd)

** PH Chapter 4 has a thorough example of a gamma distribution.

- † Simulating Samples from Distributions
 - Most statistical packages provide random number generators to simulate from common families of distributions, e.g.,
 - > runif(1, 0, 1) [1] 0.985409

- † Simulating Samples from Distributions (contd)
 - Starting with samples from the uniform distribution Unif(0,1), we can generate samples from various distributions through transformations. e.g.,
 - ** If $\underline{U} \sim \text{Unif}(0,1)$, then $W = -\log(U) \sim \underline{\text{Exp}(1)}$ and $V = \underline{\lambda W} \sim \text{Gamma}(1,\lambda)$.
 - ** If $U_1, U_2 \stackrel{iid}{\sim} \text{Unif}(0,1)$, we obtain a pair of indep. standard normal random variables $(Z_1, Z_2) = (\sqrt{-2 \log(U_1)} \cos(2\pi U_2), \sqrt{-2 \log(U_1)} \sin(2\pi U_2))$ by the Box-Muller transformation.

- † Simulating Samples from Distributions (contd)
 - Inverse CDF Method: Use the probability integral transform $U = F(X) = \int_{-\infty}^{x} f(s) ds$.
 - ** We can easily see U have a Unif(0,1) distribution.
 - ** So generate X having cdf F via $X = F^{-1}(U)$ (works nicely when F^{-1} has a simple analytic form).
 - e.g., let X have $\text{Exp}(\lambda)$, i.e., $F(x) = 1 e^{-\lambda x}$.
 - ****** Generate $U \sim \text{Unif}(0,1)$ and let $X = -\log(1-U)/\lambda$.
 - Also, check rejection sampling, adaptive rejection sampling...

- † Monte Carlo Integration Importance Sampling
 - Recall that we have a problem of approximating $\pi(e)$

$$\underline{\mathsf{E}}(g(\theta) \mid \mathbf{x}) = \frac{\int_{\Theta} g(\theta) f(\mathbf{x} \mid \theta) \pi(\theta) d\theta}{\int_{\Theta} f(\mathbf{x} \mid \theta) \pi(\theta) d\theta}.$$

- We can actually generate $(\theta^{(1)}, \dots, \theta^{(M)})$ from a density other than the distribution function of interest and approximate the integral.
- Suppose h is a probability density function with $\underline{\operatorname{supp}(h)}$ including the support of $g(\theta)f(x\mid\theta)\pi(\theta)$.

We have

$$\mathsf{E}(g(\theta) \mid \mathbf{x}) = \frac{\int_{\Theta} g(\theta) f(\mathbf{x} \mid \theta) \pi(\theta) d\theta}{\int_{\Theta} f(\mathbf{x} \mid \theta) \pi(\theta) d\theta}$$

We express

$$\frac{\int_{\Theta} g(\theta) f(x \mid \theta) \pi(\theta) d\theta}{\int_{\Theta} f(x \mid \theta) \pi(\theta) d\theta} = \int_{\Theta} \underbrace{\frac{g(\theta) f(x \mid \theta) \pi(\theta)}{h(\theta)}}_{h(\theta)} h(\theta) d\theta.$$

(a) y (m)

• The method of *importance sampling* is an evaluation of the integral based on generating a sample $\underline{\theta^{(1)}, \ldots, \theta^{(M)}}$ from a given distribution $h(\theta)$ and approximating

$$\int_{\Theta} g(\theta) f(\mathbf{x} \mid \theta) \pi(\theta) d\theta \approx \frac{1}{M} \sum_{m=1}^{M} g(\theta^{(m)}) \frac{f(\mathbf{x} \mid \theta^{(m)}) \pi(\theta^{(m)})}{h(\theta^{(m)})}$$

$$= \frac{1}{M} \sum_{m=1}^{M} g(\theta^{(m)}) w_{m},$$

$$\int_{\Theta} f(\mathbf{x} \mid \theta) \pi(\theta) d\theta \approx \frac{1}{M} \sum_{m=1}^{M} w_{m}.$$

**
$$h(\theta)$$
: importance function
** $w_m = w(\theta^{(m)}) = f(\mathbf{x}|\theta^{(m)})\pi(\theta^{(m)})$: weights

$$\Rightarrow \underline{\mathsf{E}(g(\theta) \mid \mathbf{x})} = \frac{\int_{\Theta} g(\theta) f(\mathbf{x} \mid \theta) \pi(\theta) d\theta}{\int_{\Theta} f(\mathbf{x} \mid \theta) \pi(\theta) d\theta} \approx \frac{\frac{1}{M} \sum_{m=1}^{M} g(\theta^{(m)}) w_m}{\frac{1}{M} \sum_{m=1}^{M} w_m}.$$

• **Example** (Example 6.1.1 with some changes)

** Consider a dataset $\mathbf{x} = (x_1, \dots, x_n)$ with n = 10, where x_i 's are simulated from N(0, 9).

 $\star\star$ We consider the estimation problem of the mean of x. For the inference, we use a model that assumes

$$x_i \mid \theta \stackrel{iid}{\sim} N(\theta, \sigma^2)$$
 with fixed $\sigma^2 = 9$,

and consider

$$heta \sim \mathsf{N}(\mu, au^2)$$
 with $\mu = \mathsf{0}$ and $au^2 = \mathsf{2}$

for unknown θ .

****** Suppose we use the Bayes estimator of $g(\theta) = \theta$ under the squared error loss

$$\delta^{\pi}(\mathbf{x}) = \mathsf{E}(\theta \mid \mathbf{x}) = \left(\frac{1}{\sigma^2/n} + \frac{1}{\tau^2}\right)^{-1} \left(\frac{\bar{\mathbf{x}}}{\sigma^2/n} + \frac{\mu}{\tau^2}\right).$$

- Example (contd)
 - For my simulated dataset, the exact value of $\delta^{\pi}(\mathbf{x}) = 0.38349$
 - Let's use the importance sampling method to numerically approximate $\delta^{\pi}(\mathbf{x})$;
 - $\star\star$ Case 1: $h(\theta) = \mathbb{N}(0, 2^2)$
 - ** Case 2: $h(\theta) = N(6, 2^2)$

• Generate
$$\theta^{(m)}$$
, $m=1,\ldots,M$ from $N(a,v^2)$ for large enough M .

h (0)

Compute

$$\rightarrow \hat{\delta}^{\pi}(\mathbf{x}) = \frac{\sum_{m=1}^{M} \theta^{(m)} w_m}{\sum_{m=1}^{M} w_m},$$

where $w_m = w(\theta^{(m)}) = \frac{f(\boldsymbol{x}|\theta^{(m)})\pi(\theta^{(m)})}{h(\theta^{(m)})}$.

• Example (contd)

(37) (メンタンガ

* Repeat 5000 times and make histograms of approximated $\delta^{\pi}(\mathbf{x})$ 60,..., 0(m) ~ h(0) for the same dataset.

(b)
$$h(\theta) = N(6, 2^2)$$

- **Example** Case 1: $h(\theta) = N(0, 2^2)$
- > summary(imp_v)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.000e+00 7.821e-14 9.000e-13 1.343e-12 2.580e-12 3.594e-12
- Case 2: $h(\theta) = N(6, 2^2)$
- > summary(imp_v)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.000e+00 0.000e+00 0.000e+00 1.592e-12 0.000e+00 3.743e-10
- ** Recall: $w_m = w(\theta^{(m)}) = \frac{f(x|\theta^{(m)})\pi(\theta^{(m)})}{h(\theta^{(m)})}$: weights.

Remarks

- $\star\star$ Simulation according to h must be easily implemented, requiring a fast and reliable pseudo-random generator.
- $\star\star$ h can be almost any density but the choice of the importance function h is crucial.
- ** The function $h(\theta)$ must be close enough to $g(\theta)\pi(\theta)$ to reduce the variability of $\hat{E}^{\pi}(g(\theta) \mid x)$.
- $\star\star$ Obviously there are some choices that are better than others, and it is natural to try to compare different distinctions h for the evaluation of $\mathsf{E}^\pi(g(\theta)\mid x)$.

- † Markov chain Monte Carlo (MCMC) methods (CR 6.3)
 - A more general Monte Carlo method that approximates the generation of random variables from $\underline{\pi(\theta \mid x)}$.
 - A Markov chain is a sequence of random variables $\theta^{(1)}, \theta^{(2)}, \dots$ where for any t, the distribution of $\theta^{(t)}$ given all previous θ 's depends only on the most recent value, $\theta^{(t-1)}$.

 i.e., draw $\theta^{(t)}$ from a transition distribution (the transition kernel of the Markov chain), $K(\theta^{(t)} | \theta^{(t-1)})$.
 - If $K(\cdot | \cdot)$ satisfies certain conditions (detailed balance condition), the distribution of $\theta^{(t)}$ converges to a unique stationary distribution that is the posterior distribution as t grows, regardless of where the chain was initiated.