An Introduction To Bayesian **Statistics**

Simon Thornewill von Essen

Data Analyst, Goodgame Studios

@sthornewillve 🐍

How do we estimate the probability?

- Classical: By considering equal outcomes
- Frequentist: Relative Frequency over time
- Bayesian: By updating our beliefs for each obs.

Coin Toss: Classical Est.

```
Coin
|
|-----
| |
H T
0.5 0.5
```

Dice: Classical Est.

Classical Stats

- Requirements
 - All Outcomes are known
 - Outcomes are assumed to be equally likely
- Advantages
 - Fast Estimation
 - Easy to understand
- Disadvantages
 - o High Bias
 - Outcomes must be known
 - Cannot create sophisticated (high variance) models

How do we estimate the probability?

- Classical
- Frequentist
- Bayesian

Thermometer Calibration: Frequentist Est.

- Calibrating Thermometer to show accurate values
- Follows a Normal Distribution

Frequentist Approach:

Take many readings and use the expectation value (mean) to find value over time.

Thermometer Calibration: Frequentist Est.

Confidence Interval:

- From sample mean and standard deviation, calculate an interval
- "Interval that contains the true parameter some percent of the time"

Probability of Rain: Frequentist Est.

P-value:

- Probability of data given a parameter
- "The probability that outcome is due to random chance given that there is no difference between experimental groups"
- P(X | μ)

Thermometer Calibration: Test

1. Mean thermometer temp is higher than assumed param,P-value = 0.001 (highly significant),

Does this mean that the probability of mean thermometer temp is 0.999? 🗶

2 2. 95% Confidence interval is [98°C, 102 °C] and mean = 100°C,

Does this mean that 100°C will fall inside this interval 95% of the time?

Thermometer Calibration: Test

? 1. Mean thermometer temp is higher than assumed param,P-value = 0.001 (highly significant),

Probability of getting this result given no difference in experimental groups is 0.001

② 2. 95% Confidence interval is [98°C, 102 °C] and mean = 100°C,

Interval will contain the parameter 95% of the time

Thermometer Calibration: Test Learnings

Frequentism expects that parameters exist and are fixed, the probabilities are the likelihood of our data given these expectations

Thermometer Calibration: Test Learnings

Child doesn't move, but you will only take a picture of them 95% of the time

Frequentist Stats

Requirements

- Possibility to perform experiments indefinitely
- Parameters are assumed to be specific values
- Able to estimate params given enough experiments

Advantages

- Works well for simulations
- "Objective"

Disadvantages

- Requires large sample size
- Does not allow for integration of domain knowledge
- P-values and confidence intervals are unintuitive
- o Difficult to communicate

Frequentist Stats Disav. Cont.

What if?

- Amount of data you have is limited?
- You have relevant and applicable prior information
- "Infinite" experiments are not possible? (Cost, feasibility) 🗸
- Stakeholders have a hard time understanding frequentist logic? 🗸
- Children never stay still and assuming they don't is blasphemy

How do we estimate the probability?

- Classical
- Frequentist
- Bayesian

Bayes Theorem

• Goal:

Invert a likelihood

$$p(B | A) = \frac{p(A | B) p(B)}{p(A)}$$

Bayes Theorem: Derivation

$$P(A|B) = \frac{P(A \cap B)}{P(A)} \quad P(B|A) = \frac{P(B \cap A)}{P(B)}$$

$$\therefore p(B \mid A) = \frac{p(A \mid B) p(B)}{p(A)}$$

Bayes Theorem: Alternate View

 θ = Parameter,

X = Data

- $p(\theta \mid X)$: Prob. Param given Dat.
- p(B): Prior
- p(A | B): Freq. Likelihood
- p(A): Normalisation Const.

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)}$$

- ? Problem:
 - How to calculate p(X)
 - How to calculate $p(\theta)$

Bayes Theorem: How to Calculate P(X)?

- 1. What is p(X)?
- 2. Sum of all possible numerators
- 3. Yes, this can get difficult

$$p(X) = \sum_{i=0}^{n} p(X|\theta_i)p(\theta_i)$$

$$p(X) = \int p(X|\theta)p(\theta)d\theta$$

Bayes Theorem: How to Calculate $P(\theta)$?

- 1. Create Your Own
- 2. Take Previous $P(\theta \mid X)$

Bayes Theorem: How to Calculate $P(\theta)$?

1. Are you Baking your biases into your model?

How!?: Part 1 - Discrete Case

- The Monty Hall Problem:
 - You Pick Door 1
 - o Monty opens door 2 to reveal a goat
 - Should you switch to door 3?

How!?: Part 1 - Priors

Hypothesis i	Prior $p(\theta_i)$
Car Behind 1	1/3
Car Behind 2	1/3
Car Behind 3	1/3

How!?: Part 1 - Likelihoods Given Priors

Hypothesis i	Prior $p(\theta_i)$	Likelihood p(X θ_i)
Car Behind 1	1/3	1/2
Car Behind 2	1/3	0.0
Car Behind 3	1/3	1.0

How!?: Part 1 - Likelihoods Given Priors

Hypothesis i	Prior $p(\theta_i)$	Likelihood p(X θ_i)	Prior * Likelihood
Car Behind 1	1/3	1/2	1/6
Car Behind 2	1/3	0.0	0.0
Car Behind 3	1/3	1.0	1/3

$$P(X) = \sum_{i=0}^{n} p(X|\theta_i)p(\theta_i) = 1/6 + 0 + 2/6$$
$$= 3/6$$
$$= 1/2$$

^{*} This is the Dot Product of $p(\theta_i)$ and $p(X \mid \theta_i)$

How!?: Part 1 - Likelihoods Given Priors

Hypothesis i	Prior $p(\theta_i)$	Likelihood p(X θ_i)	Prior * Likelihood	Posterior
Car Behind 1	1/3	1/2	1/6	1/3
Car Behind 2	1/3	0.0	0.0	0
Car Behind 3	1/3	1.0	1/3	2/3

$$P(X) = \sum_{i=0}^{n} p(X|\theta_i)p(\theta_i) = 1/6 + 2/6$$

= 3/6
= 1/2

^{*} This is the Dot Product of $p(\theta_i)$ and $p(X \mid \theta_i)$

How!?: Part 1 - Discrete Case Recap

• Steps:

- Pick Prior (Often Uniform)
- Multiply by Frequentist Likelihood
- O Divide by Normalisation constant

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{\sum_{i=0}^{n} p(X|\theta_i)p(\theta_i)}$$

- 1. AB Testing Revisited:
 - a. Two variants
 - b. What is the probability of the parameters for each variant given the data?
- 2. Time for Bayesian Statistics!

AB Test:

- For people randomly placed in control/test
- Track conversions (1/0)
- What is our Likelihood?
 - o Bernoulli

$$P(X|\theta) = \theta^{\sum y_i} (1-\theta)^{n-\sum y_i}$$

Prior?:

- Uninformed Prior
- Uniform distribution
- Represented by Indicator Function

$$P(\theta) = I_{\{0 \le \theta \le 1\}}$$

$$P(\theta|X) \propto \theta^{\sum y_i} (1-\theta)^{n-\sum y_i} \times I_{\{0 \le \theta \le 1\}}$$

$$P(\theta|X) = \frac{\theta^{\sum y_i} (1 - \theta)^{n - \sum y_i} I_{\{0 \le \theta \le 1\}}}{\int_0^1 \theta^{\sum y_i} (1 - \theta)^{n - \sum y_i} I_{\{0 \le \theta \le 1\}} d\theta}$$

$$P(\theta|X) = \frac{\theta^{\sum y_i} (1 - \theta)^{n - \sum y_i} I_{\{0 \le \theta \le 1\}}}{A^{-1} \int_0^1 A \theta^{\sum y_i} (1 - \theta)^{n - \sum y_i} I_{\{0 \le \theta \le 1\}} d\theta}$$

$$A = \frac{\Gamma(\sum n + 2)}{\Gamma(\sum y_i + 1)\Gamma(\sum n - y_i + 1)}$$

$$P(\theta|X) = A(\theta^{\sum y_i}(1-\theta)^{n-\sum y_i}I_{\{0 \le \theta \le 1\}})$$
$$= Beta(\alpha, \beta)$$

$$P(\theta|X) = Beta(\alpha, \beta)$$

$$\alpha = 1 + \sum y_i,$$

$$\beta = n - 1 + \sum y_i$$

Conjugate Priors

- Beta distribution is example of conj.
 Prior
- Use it and you will get the same distribution in posterior
- Once the math is done, never do it again
- Update functions using data as it appears

$$P(\theta|X) = Beta(\alpha, \beta)$$

Conjugate Priors

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive ^[note 2]
Bernoulli	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \beta + n - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{(note 1)}}$	$p(ilde{x}=1)=rac{lpha'}{lpha'+eta'}$

https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions (Just Google "conjugate priors table wikipedia")

Conjugate Priors

Poisson	111			k, θ	$k+\sum_{i=1}^n x_i,\;rac{ heta}{n heta+1}$	k total occurrences in $\frac{1}{\theta}$ intervals		$ ext{NB}(ilde{x} \mid k', heta')$ (negative binomial)
	λ (rate)		Gamma	$lpha,eta^{ ext{[note 3]}}$	$\alpha + \sum_{i=1}^n x_i, \ \beta + n$	lpha total occurrences in eta intervals		$\mathrm{NB}\Big(ilde{x} \mid lpha', rac{1}{1+eta'}\Big)$ (negative binomial)
Exponential	Λ (rate)	Gamma	α , β ^[note 3]	$lpha+n,\ eta+\sum_{i=1}^n x_i$	αο	observations that sum to $oldsymbol{eta}^{ [6]}$	$\operatorname{Lomax}(ilde{x} \mid eta', lpha \ ilde{(Lomax distribution)}$	88

https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions (Just Google "conjugate priors table wikipedia")

Posteriors - What Now?

- Estimation of Parameters
- Credible Intervals
- Check priors

$$P(\theta|X) = Beta(\alpha, \beta)$$

Demo: Conjugate Priors

Foreshadow: MCMC

• Integrating is hard

Bayesian Stats

Advantages

- Incorporation of Domain Knowledge
- Estimation in the case of little data (specific circumstances)
- Allows for models of as little or high complexity as necessary
- Parameters are distributions
- Easier to communicate

Disadvantages

- o Steeper learning curve
- Mathematics can be difficult in continuous case
- Workarounds can be computationally expensive
- Criticisms of being less "objective"
- Estimations become the same as frequentist estimations with high sample sizes (redundant)

Conclusion and "Call to Action"

- Remember differences between F and B to understand both
- Understand that it's not as difficult as it looks.
- Practice makes perfect
- Sources to get started
- Remember when you should consider it
- Might not be necessary

Resources for further learning

Resources for further learning

• Mathematical Understanding:

"Bayesian Stats: From Concept to Data Analysis", *U of Santa Cruz*

• Intuition between Bayesianism & Frequentism:

"Frequentism and Bayesianism", Scipy - Jake Vander Plas

Find Slides on Github

https://cutt.ly/zGqux9

Find me on Social Media!

@sthornewillve

000

