Stwierdzenie 1. $||d\omega||_{k-1}^2 \leq ||\omega_k|^2$

Wniosek 2. $d: A^{k,p} \to A^{k-1,p+1}$ jest ograniczonym operatorem dla każdego $k \ge 1, p \ge 0$.

Definicja 3. Rozważmy kompleks $0 \to A^{t,0} \xrightarrow{d} A^{t-1,1} \xrightarrow{d} \dots \xrightarrow{d} A^{t-N,N} \to 0 \ (N = \dim X = \dim \tilde{X})$ i kohomologie:

$$Z^{k,p} = \{\omega \in A^{k,p} | d\omega = 0\}$$

$$B^{k,p} = \lim_{k \to \infty} d : A^{k+1,p-1} \to A^{k,p}$$

$$H^{k,p} = Z^{k,p} / \overline{B^{k,p}}^{A^{k,p}}$$

Stwierdzenie 4. Przestrzenie $H^{k,p}$ są niezależne od wyboru $k: \forall_{k \geq 0, p \geq 0} H^{k,p}$ jest Γ -izomorficzne $z \mathcal{H}^p(\tilde{X})$.

Definicja 5. $\|\omega\|_m^U = \left(\int_U \left|(\operatorname{Id} + \Delta)^m \omega(x)\right|^2 dV\right)^{\frac{1}{2}}$ dla każdego zbioru otwartego $U \subset \tilde{X}$, $\omega \in A^{k,p}$, $1 \leq m \leq k$.

Lemat 6. Niech (V, x^1, \ldots, x^N) będzie układem współrzędnych w \tilde{X} , U otwarty, relatywnie zwarty zbiór, $\bar{U} \subseteq V$. Dla $k \geqslant \frac{N}{4} + \frac{1}{2}$ oraz każdego $\omega \in A^{k,p}$ forma ω jest klasy C^1 . Ponadto istnieje C > 0 niezależne od ω takie, że

$$\sup_{x \in U} |\omega(x)| \leqslant C(\|\omega\|_k^V + \|\omega\|_0^V),$$

$$\max_{1\leqslant i\leqslant N}\sup_{x\in U}\left|\frac{\partial\omega}{\partial x^i}(x)\right|\leqslant C(\|\omega\|_k^V+\|\omega\|_0^V),$$

 $gdzie \frac{\partial \omega}{\partial x_i}$ to ω ze zróżniczkowanymi współczynnikami.

Niech \tilde{K} – kompleks taki, że $|\tilde{K}| = \tilde{X}$ (gładka triangulacja).

Definicja 7. $\omega \in \Omega^p(\tilde{X})$, definiujemy $\int \omega \in C^p(\tilde{K})$, $\int \omega = \sum (\int_{\sigma} \omega) \sigma$ – suma po p-sympleksach w \tilde{K} .

Lemat 8. Niech $\omega \in A^{k,p}$, $k > \frac{N}{4} + \frac{1}{2}$.

Wówczas $\int \omega \ jest \ L_2$.

Co więcej, $\int: A^{k,p} \to C^p_{(2)}(\tilde{K})$ jest ograniczony oraz $\int B^{k,p} \subseteq d_C C^{p-1}_{(2)}(\tilde{K})$.

Wniosek 9. \int indukuje przekształcenie $H^p(\tilde{X}) \to H^p_{(2)}(\tilde{K})$.

Konstrukcja Whitneya

 $\{U_v\}_{v\in K^0}$ otwarte pokrycie X otwartymi gwiazdami wierzchołków: $U_v=\operatorname{star} v$.

Weźmy gładki rozkład jedności stowarzyszony z tym pokryciem. Zarówno pokrycie, jak i rozkład jedynki możemy podnieść do \tilde{X} : $\{\varphi_v\}_{v\in \tilde{K}^0}$, supp $\varphi_v\subset\operatorname{star} v,\ \varphi_v\gamma=\varphi_{\gamma^{-1}v}$.

Niech $\sigma = [v_0, \ldots, v_p]$ sympleks w \tilde{K} , oznaczamy $\varphi_i = \varphi_{v_i}$.

Definicja 10.
$$W_{\sigma} = \begin{cases} \varphi_0 & \text{dla } p = 0 \\ p! \left(\sum_{i=0}^{p} (-1)^i \varphi_i d\varphi_0 \wedge \ldots \wedge \widehat{d\varphi_i} \wedge \ldots \wedge d\varphi_p \right) & \text{dla } p \geqslant 1 \end{cases}$$

Uwaga 11. $\gamma^* W_{\sigma} = W_{\gamma^{-1}\sigma}$

 $Uwaga 12. \operatorname{supp} W_{\sigma} \subseteq \operatorname{star} \sigma$

Definicja 13. Dla $f = \sum_{\sigma \in \tilde{K}} f_{\sigma} \sigma$ bierzemy

$$W_f = \sum_{\sigma \in \tilde{K}} f_{\sigma} W_{\sigma}.$$

Stwierdzenie 14. • $dW = Wd_C$

- $\int \circ W = \mathrm{Id}$
- $\forall_{f \in C^*(\tilde{K}), \gamma \in \Gamma} \gamma^* W f = W(f\gamma)$

Lemat 15. $\forall_{f \in C^p_{(2)}(\tilde{K}), k \geqslant 0} \ gladka \ forma \ Wf \in A^{k,p}$.

Co więcej, $\forall_{k \geq 0} W : C^p_{(2)}(\tilde{K}) \to A^{k,p}$ jest ograniczony i Γ -ekwiwariantny.

Wniosek 16. W indukuje przekształcenie $W: H^p_{(2)}(\tilde{K}) \to H^p(\tilde{X})$.

Na koniec było trochę o hipotezach itp.