New output variables in SIMC

Reynier Cruz Torres May 31, 2017

simc version: "simc_gfortran.12"

Momentum variables

h_spec_p: hadron spectrometer central momentum [MeV/c]

h_pfi: hadron generated momentum [MeV/c]

h_pf: hadron reconstructed momentum [MeV/c]

e_spec_p: electron spectrometer central momentum [MeV/c]

e_pfi: electron generated momentum [MeV/c]

e_pf: electron reconstructed momentum [MeV/c]

Angular variables

h_spec_th: hadron spectrometer central angle

theta_pi: hadron generated in-plane angle

theta_p: hadron reconstructed in-plane angle

e_spec_th: electron spectrometer central angle [degrees]

theta_ei: electron generated in-plane angle [degrees]

theta_e: electron reconstructed in-plane angle [degrees]

theta_rq: recoil-q angle [degrees]

Other variables

xB: Bjorken scaling variable

Generated and reconstructed, proton and electron in-plane angles (theta_pi, theta_p, theta_ei, theta_e)

$$\cos \theta_{\text{LHRS}} = \frac{\cos \theta_c - \text{e_yptar} \cdot \sin \theta_c}{\sqrt{1 + \text{e_xptar}^2 + \text{e_yptar}^2}}$$

$$\cos \theta_{RHRS} = \frac{\cos \theta_c + h_y ptar \cdot \sin \theta_c}{\sqrt{1 + h_x ptar^2 + h_y ptar^2}}$$

Generated and reconstructed, proton and electron momenta (h_pfi, h_pf, e_pfi, e_pf)

$$p = p_c \cdot [1 + \delta/100]$$

- All the variables with subscript C denote spectrometer central parameters.
- All the variables starting with e_ (h_) denote electron (hadron) arm variables

Recoil – q angle (theta_rq)

$$\theta rq = acos(-PmPar/Pm)$$

Pm: Missing momentum magnitude

PmPar: Missing momentum component parallel

to the q vector

Approximation for the in-plane angle equation

$$\cos \theta_{\text{LHRS}} = \frac{\cos \theta_c - e_{\text{yptar}} \cdot \sin \theta_c}{\sqrt{1 + e_{\text{xptar}}^2 + e_{\text{yptar}}^2}}$$

$$\cos \theta_{RHRS} = \frac{\cos \theta_c + h_y ptar \cdot \sin \theta_c}{\sqrt{1 + h_x ptar^2 + h_y ptar^2}}$$

In the limit where xptar and yptar are small (as is the case most of the time), the denominator can be neglected. Also: yptar≈sin(yptar) and 1≈cos(yptar). Thus:

$$\cos \theta_{\text{LHRS}} \approx \cos \theta_c - \text{e_yptar} \cdot \sin \theta_c \approx \cos \theta_c \cos \text{e_yptar} - \sin \text{e_yptar} \sin \theta_c$$

 $\cos \theta_{\text{RHRS}} \approx \cos \theta_c + \text{h_yptar} \cdot \sin \theta_c \approx \cos \theta_c \cos \text{h_yptar} + \sinh_{\text{yptar}} \sin \theta_c$

$$\cos \theta_{\rm LHRS} \approx \cos (\theta_c + e_{\rm yptar})$$

$$\cos \theta_{\rm RHRS} \approx \cos (\theta_c - h_{\rm yptar})$$

$$heta_{LHRS} = heta_c + e_yptar$$
 $heta_{RHRS} = heta_c - h_yptar$

$$\theta_{\rm RHRS} = \theta_c - h_{\rm yptar}$$