MPI

Режимы передачи данных:

MPI_Send – стандартный режим.

MPI_Ssend – синхронный режим (ждет ответ о приёме сообщения)

MPI_Rsend – режим передачи по готовности (сработает только при запущенном MPI_Recv)

MPI_Bsend – буферизированный режим (использует дополнительный буфер для отправки)

MPI

Блокирующие функции приостанавливают выполнение процессов до момента завершения работы. (MPI_*Send, MPI_Recv)

```
Неблокирующие функции обмена данными выполняются без блокировки. (MPI_I*send, MPI_Irecv)
int MPI_I*(..., MPI_Request *request);
```

Проверка состояния неблокирующей функции:

```
int MPI_Test( MPI_Request *request, int *flag,

MPI_status *status)

-request - дескриптор операции, определенный при вызове неблокирующей функции

-flag - результат проверки (=true, если операция завершена)

-status - результат выполнения операции обмена (только для завершенной операции)
```

MPI

MPI Testall - проверка завершения всех перечисленных операций обмена MPI Waitall - ожидание завершения всех операций обмена **MPI Testany** - проверка завершения хотя бы одной из перечисленных операций обмена MPI Waitany - ожидание завершения любой из перечисленных операций обмена MPI Testsome - проверка завершения каждой из перечисленных операций обмена MPI Waitsome - ожидание завершения хотя бы одной из перечисленных операций обмена и оценка состояния по всем

Стена Фокса (пример с лекций © М.В. Якобовского)

Проблемы балансировки вычислительной нагрузки:

• структура распределенной задачи неоднородна

• структура вычислительного комплекса (например, кластера) неоднородна

• структура межузлового взаимодействия неоднородна

Статическая балансировка

- отображение задач до начала выполнения задачи
- борьба с неоднородностями при помощи эвристик и опыта предыдущих запусков

Динамическая балансировка

- отображение задач происходит до и во время выполнения задачи
- борьба с неоднородностями при помощи постоянного (пере)распределения задач

Статическая балансировка

Динамическая балансировка

подзадачи

••••• результаты

Динамическая балансировка

RCL – стратегия переноса нагрузки:

•случайный алгоритм (random, R)

•алгоритм, основанный на коммуникациях (communication, C)

•алгоритм, основанный на вычислении нагрузки (load, L)

Длинная арифметика (сложение)

_	21	43	76	54
+	4	55	24	02
			0-	⊢ 56
		1•	— 1 00	
	0	– 99		
	25	99	00	56

Спекулятивные вычисления

	21	43	76	54	53	09	12	94	11	23	08	05
+	4	55	24	45	85	75	25	41	54	25	08	97
,			0•	– 99			1	⊢ 135¸			1	— 1 02
			1•	— 1 00			1	— 1 36			1	— 1 02
		1	— 1 00			0	– 38			0	— 17	
		1	─ 1 01			0	- 38			0	- 17	
	0•	– 99			0+	– 84			0	— 48		
	0+	– 99			0+	- 84			0	— 48		
	25				1 38				65			
	25				138				65			
,	25	99	00	99	38	84	38	35	65	48	17	02
	25	99	01	00	38	84	38	36	65	48	17	02

Суммирование старших разрядов

+	21	43	76	54	53	09	12	94	11	23	08	05
T	4	55	24	45	85	75	25	41	54	25	08	97
			0•	– 99,	1 38		1	<mark>— 1</mark> 35 ॄ	65		1•	— 1 02
			1•	— 1 00	1 37		1	— 1 36	66		1	— 1 02
		1	— 1 00			0	– 38			0<	- 17	
		1	─ 1 01			0	— 38			0	— 17	
	0+	– 99			0<	— 84			0•	– 48		
	0+	- 99			0	- 84			0	- 48		
	25				1 38				65			
	25				1 38				65			
	25	99	00	99	38	84	38	35	65	48	17	02
	25	99	01	00	38	84	38	36	65	48	17	02

Динамическая балансировка

Исполнитель					1	3	3 +	2	1+
Первое число	32 разряда	24 разряда							
Второе число	32 разряда	24 разряда							
Результат (0)							32 разряда		24 разряда
Результат (1)							32 разряда		24 разряда
Остаток (0)							1 разряд		1 разряд
Остаток (1)							1 разряд		1 разряд