What is claimed is:

1. A compound of formula I

$$\begin{array}{c|c}
R_2 & R_3 \\
\hline
A_1 & O \\
\hline
R_1 & O
\end{array}$$
(I)

wherein

Y is oxygen, NR_{4a}, sulfur, sulfonyl, sulfinyl, C(O), C(=NR_{4b}), C(=CR_{6a}R_{6b}) or a C₁-C₄alkylene or C₂-C₄alkenylene chain, which may be interrupted by oxygen, NR_{5a}, sulfur, sulfonyl, sulfinyl, C(O) or C(=NR_{5b}) and/or mono- or poly-substituted by R₆;

A₁ is nitrogen or CR₇;

A₂ is nitrogen or CR₈;

 R_1 , R_2 , R_6 , R_7 and R_8 are each independently of the others hydrogen, hydroxy, mercapto, NO₂, cyano, halogen, formyl, oxyiminomethylene, C₁-C₀alkoxyiminomethylene, C₁-C₀alkyl, $C_1-C_6 haloalkyl,\ C_2-C_6 alkenyl,\ C_2-C_6 haloalkenyl,\ C_2-C_6 alkynyl,\ C_2-C_6 haloalkynyl,\ C_1-C_6 alkoxy,$ C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 oxacycloalkyl, C_3 - C_6 thiacycloalkyl, C_3 - C_6 dioxacycloalkyl, C_3 - C_6 dithiacycloalkyl, C_3 - C_6 oxathiacycloalkyl, C_1 - C_6 alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkoxycarbonyloxy, C₁-C₆alkylcarbonyloxy, C₁-C₆alkylthio, C₁-C₆alkylsulfonyl, C₁-C₆alkylsulfinyl, NR₉R₁₀, C₃-C₆cycloalkyl, tri(C₁-C₆alkyl)silyl, di(C₁-C₆alkyl)phenylsilyl, tri(C₁-C₆alkyl)silyloxy, di(C₁-C₆alkyl)phenylsilyloxy or Ar₁; or R_1 , R_2 , R_8 , R_7 , R_8 are each independently of the others a C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C₂-C₆alkynyl or C₃-C₆cycloalkyl group, which may be interrupted by oxygen, sulfur, sulfonyl, sulfinyl, -NR₁₁- or -C(O)- and/or mono-, di- or tri-substituted by hydroxy, mercapto, NO₂, cyano, halogen, formyl, C₁-C₆alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C₁-C₆haloalkoxy, C_1 - C_2 alkoxy- C_1 - C_2 alkoxy, C_1 - C_4 alkoxycarbonyloxy, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylcarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, $NR_{12}R_{13}$, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, tri(C_1 - C_6 alkyl)silyl, tri(C_1 - C_6 alkyl)silyloxy or Ar₂;

or two substituents R_6 at the same carbon atom together form a $-CH_2O$ - or a C_2 - C_5 alkylene chain, which may be interrupted once or twice by oxygen, sulfur, sulfinyl or sulfonyl and/or mono- or poly-substituted by R_{6c} , with the proviso that two hetero atoms may not be located next to one another;

or two substituents R_6 at different carbon atoms together form an oxygen bridge or a C_1 - C_4 alkylene chain, which may in turn be substituted by R_{6c} ;

or R₇ and R₈ together form a -CH₂CH=CH-, -OCH=CH- or -CH=CH-CH=CH- bridge or a C₃-C₄alkylene chain, which may be interrupted by oxygen or -S(O)_{n1}- and/or mono- or polysubstituted by R_{8d};

 $R_3 \text{ is hydroxy, halogen, mercapto, } C_1\text{-}C_8\text{alkylthio, } C_1\text{-}C_8\text{alkylsulfinyl, } C_1\text{-}C_8\text{alkylsulfinyl, } C_1\text{-}C_8\text{alkylsulfinyl, } C_1\text{-}C_8\text{alkylsulfinyl, } C_1\text{-}C_8\text{haloalkylsulfinyl, } C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkoxy-}C_1\text{-}C_4\text{alkylthio, } C_1\text{-}C_4\text{alkylsulfinyl, } C_1\text{-}C_4\text{alkylsulfonyl, } C_3\text{-}C_8\text{alkenylthio, } C_3\text{-}C_8\text{-}\text{alkynylthio, } C_1\text{-}C_4\text{alkylthio, } C_1\text{-}C_4\text{alkylthio, } C_1\text{-}C_4\text{alkylthio, } C_1\text{-}C_4\text{alkylthio, } C_1\text{-}C_4\text{alkylsulfinyl, } C_1\text{-}C_4\text{alkylsulfinyl, } C_1\text{-}C_4\text{alkoxycarbonyl-} C_1\text{-}C_4\text{alkylsulfonyl, } C_3\text{-}C_8\text{cycloalkylthio, } C_3\text{-}C_8\text{cycloalkylsulfinyl, } C_3\text{-}C_8\text{cycloalkylsulfonyl, } phenyl\text{-}C_1\text{-}C_4\text{alkylthio, } phenyl\text{-}C_1\text{-}C_4\text{alkylsulfinyl, } phenyl\text{-}C_1\text{-}C_4\text{alkylsulfonyl, } S(O)n_1\text{-}Ar_3, phenylthio, phenylsulfinyl, phenylsulfonyl, it being possible for the phenyl-containing groups to be substituted by one or more <math>C_1\text{-}C_3\text{alkyl, } C_1\text{-}C_3\text{haloalkyl, } C_1\text{-}C_3\text{alkoxy, } C_1\text{-}C_3\text{haloalkoxy, } C_1\text{-}C_4\text{alkoxycarbonyl, halogen, cyano, hydroxy or nitro groups;}$

or R₃ is O M⁺, wherein M⁺ is an alkali metal cation or an ammonium cation;

Q is a radical

$$(Z_1)m_1$$
 (Q_1) , (Q_2) or (Q_2) or (Q_2) or (Q_2) (Q_3) (Q_4)

$$(Z_3)m_3$$
 (Q_3) , wherein X_3

p₁, p₂ and p₃ are 0 or 1;

m₁, m₂ and m₃ are 1, 2 or 3;

 X_1 , X_2 and X_3 are hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl or C_1 - C_6 haloalkylsulfonyl;

 Z_1 , Z_2 and Z_3 are C_1 - C_6 alkyl which is substituted by the following substituents: C_3 - C_4 cycloalkyl or C_3 - C_4 cycloalkyl substituted by halogen, C_1 - C_6 alkyl, C_1 - C_3 alkoxy or C_1 - C_3 alkoxy-

C₁-C₃alkyl; oxiranyl or oxiranyl substituted by C₁-C₆alkyl or C₁-C₃alkoxy-C₁-C₃alkyl; 3oxetanyl or 3-oxetanyl substituted by C₁-C₆alkyl, C₁-C₃alkoxy or C₁-C₃alkoxy-C₁-C₃alkyl; 3oxetanyloxy or 3-oxetanyloxy substituted by C₁-C₆alkyl, C₁-C₃alkoxy or C₁-C₃alkoxy-C₁-C₃alkyl; C₃-C₆cycloalkyloxy or C₃-C₄cycloalkyloxy substituted by halogen, C₁-C₆alkyl, C₁-C₃alkoxy or C_1 - C_3 alkoxy- C_1 - C_3 alkyl; C_1 - C_6 haloalkoxy; C_1 - C_6 alkylsulfonyloxy; C_1 - C_6 haloalkylsulfonyloxy; phenylsulfonyloxy; benzylsulfonyloxy; benzoyloxy; phenoxy; phenylthio; phenylsulfinyl; phenylsulfonyl; Ar₁₀; OAr₁₂; tri(C₁-C₆alkyl)silyl or tri(C₁-C₆alkyl)silyloxy, it being possible for the phenyl-containing groups to be mono- or poly-substituted by C₁-C₃alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano, hydroxy or nitro; or Z_1 , Z_2 and Z_3 are 3-oxetanyl; 3-oxetanyl substituted by C_1 - C_3 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_6 alkyl; C_3 - C_6 cycloalkyl substituted by halogen, C_1 - C_3 alkyl or C_1 - C_3 alkoxy- C_1 - C_3 alkyl; tri(C_1 - C_6 alkyl)silyl; tri(C_1 - C_6 alkyl)silyloxy or CH=P(phenyl)₃; or Z_1 , Z_2 and Z_3 are a C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl group, which is interrupted by oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R_{14})O-, -ONR₁₅-, sulfur, sulfinyl, sulfonyl, -SO₂NR₁₆-, -NR₁₇SO₂- or -NR₁₈- and is mono- or poly-substituted by L₁; it also being possible for L_1 to be bonded at the terminal carbon atom of the C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C2-Cealkynyl group;

or Z_1 , Z_2 and Z_3 are hydrogen, hydroxy, mercapto, NO₂, cyano, halogen, formyl, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylthio, C₁-C₆alkylsulfonyl, C₁-C₆alkylsulfinyl, NR₂₂R₂₃, phenyl which may be mono- or poly-substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃haloalkoxy, halogen, cyano, hydroxy or nitro, C₃-C₆cycloalkyl, C₅-C₆cycloalkyl, C₅-C₆cycloalkyl substituted by C₁-C₃alkoxy, C₁-C₃alkoxy-C₁-C₃alkyl or C₁-C₆alkyl, or Ar₅, O-Ar₆, N(R₂₄)Ar₇ or S(O)n₆Ar₈;

 $L_1 \text{ is hydrogen, halogen, hydroxy, amino, formyl, nitro, cyano, mercapto, carbamoyl, } P(O)(OC_1-C_6alkyl)_2, C_1-C_6alkoxy, C_1-C_6haloalkoxy, C_1-C_6alkoxycarbonyl, C_2-C_6alkenyl, } C_2-C_6haloalkenyl, C_2-C_6haloalkynyl, C_3-C_6cycloalkyl, halo-substituted } C_3-C_6cycloalkyl, C_3-C_6alkenyloxy, C_3-C_6alkenyloxy, C_3-C_6haloalkenyloxy, cyano-C_1-C_6alkoxy, C_1-C_6alkoxy, C_1-C_6alkylsulfinyl-C_1-C_6alkylsulfinyl-C_1-C_6alkylsulfinyl, C_1-C_6alkylsulfinyl, c_1-C_6alkyl, C_1-C_6alkylsulfinyl, c_1-C_6alkyl, c_1-C_3alkoxy or C_1-C_3alkoxy-C_1-C_3alkyl, or (3-oxetanyl)-oxy, which may in turn be substituted by C_1-C_6alkyl, C_1-C_6alkyl, C_1-C_3alkoxy or C_1-C_3alkoxy-C_1-C_3alkyl, or benzoyloxy, benzyloxy, benzylthio, benzylsulfinyl, benzylsulfonyl, C_1-C_6alkylamino, di(C_1-C_6alkyl)amino, R_{10}S(O)_2O_1, R_{20}N(R_{21})SO_2-, rhodano, phenyl, phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl, Ar_4 or$

OAr₁₁, it being possible for the phenyl-containing groups in turn to be substituted by one or more C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano, hydroxy or nitro groups;

 R_{4a} and R_{5a} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, cyano, formyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl, carbamoyl, C_1 - C_6 alkylamino)carbonyl, di(C_1 - C_6 alkylamino)sulfonyl, C_3 - C_6 cycloalkylcarbonyl, C_1 - C_6 -alkylsulfonyl, phenylcarbonyl, phenylaminocarbonyl or phenylsulfonyl, it being possible for the phenyl groups to be mono- or poly-substituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro;

 R_{4b} and R_{5b} are each independently of the other hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy or benzyloxy, it being possible for the benzyl group to be mono- or polysubstituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro;

 R_9 , R_{11} , R_{13} , R_{16} , R_{17} , R_{18} , R_{20} , R_{23} and R_{24} are each independently of the others hydrogen, C_1 - C_6 alkyl, Ar_9 , C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylsulfonyl, phenyl, it being possible for the phenyl group in turn to be mono- or poly-substituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro; R_{6a} is hydrogen, C_1 - C_6 alkyl or C_1 - C_6 alkylcarbonyl; or together with R_{6b} is a C_2 - C_5 alkylene chain;

 R_{6b} , R_{6d} , R_{10} , R_{12} and R_{22} are each independently of the others hydrogen or C_1 - C_6 alkyl; R_{6c} , R_{14} , R_{15} , R_{19} and R_{21} are each independently of the others C_1 - C_6 alkyl or C_1 - C_6 haloalkyl; Ar₁, Ar₂, Ar₃, Ar₄, Ar₅, Ar₆, Ar₇, Ar₈, Ar₉, Ar₁₀, Ar₁₁ and Ar₁₂ are each independently of the others a five- to ten-membered, monocyclic or fused bicyclic ring system, which may be aromatic, partially saturated or fully saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen, sulfur, C(O) and C(=NR₂₅), and each ring system may contain not more than two oxygen atoms, not more than two sulfur atoms, not more than two C(O) groups and not more than one C(=NR₂₅) group, and each ring system may itself be mono- or poly-substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, $C_2-C_6 alkynyl,\ C_2-C_6 haloalkynyl,\ C_1-C_6 alkoxy,\ C_1-C_6 haloalkoxy,\ C_3-C_6 alkenyloxy,\ C_3-C_6 alkynyl-C_6 haloalkynyloxy,\ C_6-C_6 alkynyl-C_6 haloalkynyloxy,\ C_7-C_6 haloalkynyloxy,\ C_8-C_6 alkynyloxy,\ C_8-C_6 alkynyloxy,$ oxy, mercapto, amino, hydroxy, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C_3 - C_6 alkynylthio, C_1 - C_3 alkoxy- C_1 - C_3 alkylthio, C_1 - C_4 alkylcarbonyl- C_1 - C_3 alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_3 alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 haloalkylsulfinyl, C₁-C₀alkylsulfonyl, C₁-C₀haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, N,N-di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro or phenyl, it being possible for the phenyl group in turn to be substituted by hydroxy, C₁-C₆alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 alkynylthio,

 C_1 - C_3 alkylthio, C_1 - C_4 alkylcarbonyl- C_1 - C_3 alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_3 -alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, N, N-di(C_1 - C_2 alkyl)aminosulfonyl, di(C_1 - C_4 alkyl)amino, halogen, cyano or nitro, and the substituents at the nitrogen atom in the heterocyclic ring being other than halogen, and two oxygen atoms not being located next to one another;

 R_{25} is hydrogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkylsulfonyl; and n_1 is 0, 1 or 2; and n_6 is 0, 1 or 2; or an agronomically acceptable salt/isomer/enantiomer/tautomer of such a compound.

2. A compound of formula Da

wherein Y, R₁, R₂, A₁ and A₂ are as defined for formula I in claim 1.

3. A compound of formula Db

$$R_2$$
 A_2
 A_1
 A_1
 A_1
 A_1
 A_1
 A_1
 A_2
 A_3
 A_4
 A_1
 A_2
 A_3
 A_4
 A_5
 A_5

wherein A_1 , A_2 , R_1 , R_2 and Y are as defined for formula I in claim 1, Xa is hydrogen, chlorine or bromine and R_3 is hydroxy or C_1 - C_6 alkoxy, with the exception of the compounds 3-chloro-8-oxa-bicyclo[3.2.1]oct-6-ene-2,4-dione; 3-chloro-bicyclo[3.2.1]oct-6-ene-2,4-dione; 3-chloro-4-hydroxy-bicyclo[3.2.1]octa-3,6-dien-2-one; 3,4-dibromo-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one; 3,4-dibromo-1,5-dimethyl-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one; 3,4-dibromo-bicyclo[3.2.1]octa-3,6-dien-2-one; 3,4-dichloro-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one; 3,4-dichloro-bicyclo[3.2.1]octa-3,6-dien-2-one and 7,8-dibromo-5,9-dihydro-5,9-methano-benzo-cyclohepten-6-one.

4. A compound of formula VII

$$R_3$$
a R_3 a

wherein A_1 , A_2 , R_1 , R_2 , Y are as defined for formula I in claim 1, Xa is hydrogen, chlorine or bromine and R_3 a is C_1 - C_6 alkyl or two R_3 a together are $-CH_2CH_2$ -.

- 5. A herbicidal and plant-growth-inhibiting composition, comprising a herbicidally effective amount of a compound of formula I according to claim 1 on an inert carrier.
- 6. A method of controlling undesired plant growth, which method comprises applying a compound of formula I according to claim 5, or a composition comprising such a compound, in a herbicidally effective amount to a plant or to the locus thereof.
- 7. A method of inhibiting plant growth, which method comprises applying a compound of formula I according to claim 5, or a composition comprising such a compound, in a herbicidally effective amount to a plant or to the locus thereof.