

Année universitaire : 2018/2019 2^{ième} année licence – Informatique module : Théorie des langages

Epreuve de Moyenne Durée

le 04/09/2019 – Durée 1h 30mn – documents non autorisés

EXERCICE 1: (7 pts)

- I) En utilisant les règles « $S \rightarrow aSbS \mid \varepsilon$ », trouver une dérivation du mot 'abaabb' à partir de S. (1 pt)
- II) Soit la grammaire g, de type 1, définie par :

$$g = \langle \{a, b\}, \{S, A, B\}, S, \{S \to AB; AB \to BA; A \to a; B \to b\} \rangle.$$

- II-1) Trouver L(g). (1 pt)
- II-2) Montrer que L(g) est régulier en trouvant une grammaire régulière g' qui le génère. (1 pt)
- II-3) Trouver une grammaire g'' équivalente à g, et qui soit à contexte lié et pas de type 2. (1 pt)
- III) Soit L un langage régulier défini sur un alphabet fini V.

On défini le langage \sqrt{L} comme suit : $\sqrt{L} = \{ u \in V^* / u.u \in L \}$.

III-1) Soit L = {
$$a^n.b^m / n, m \ge 0$$
 }. Trouver \sqrt{L} . (1 pt)

III-2) Soit L un langage régulier quelconque. Montrer que \sqrt{L} est régulier. (2 pts)

EXERCICE 2: (7 pts)

- I) Trouver:
 - I-1) une grammaire de type 3 pour $L_1 = \{ w \in \{a, b\}^* / |w|_a \text{ impair et } |w|_b = 1 \}$; (2 pts)
 - I-2) une grammaire de type 2 pour $L_2 = \{ a^n . b^{2.n+1} . c^{2.m-1} / n \ge 0, m \ge 1 \} ; (2 pts)$
 - I-3) une grammaire de type 1 ou 0 pour $L_3 = \{a^n.b^{\lceil \log_2 n \rceil} / n \ge 1\}$. ([x] : partie entière de x) (1,5 pts)
- II) Construire un automate d'états finis simple pour le langage L_1 de I-1). (1,5 pts)

EXERCICE 3: (6 pts)

Soit A l'automate d'états finis généralisé défini par : $< V^{\ast},\,S,\,F,\,S_0,\,I>$; où $\,:\,$

$$V = \{a, b, c\}, S = \{S_0, S_1, S_2, S_3\}, F = \{S_1, S_3\} \text{ et } I = \{(ab, S_0, S_0), (a, S_0, S_1), (\epsilon, S_0, S_2), (b, S_1, S_1), (\epsilon, S_0, S_2), (b, S_1, S_2), (c, S_0, S_2), (c, S_0,$$

- $(b, S_1, S_2), (c, S_2, S_3), (c, S_3, S_3)$.
- 1) Dessiner le graphe représentant l'automate A. (1,5 pts)
- 2) Donner l'automate simple As équivalent à A. (1,5 pts)
- 3) Construire l'automate déterministe Ad équivalent à As. (1,5 pts)
- 4) Construire l'automate qui accepte le complémentaire de L(Ad). (1,5 pts)

Bon courage!