Random Permutation Maxout (RPM) transform

Andrew Beng Jin Teoh*, Sejung Cho, Jihyeon Kim

Motivation

- 生物特征是不变的,表达主体丰富的生物信息
- 如果主体的生物特征被盗,可能会发生冒名顶替和隐私入侵的情况

Cancellable biometrics construct

- Pseudonymous Identifier Encoder (PIE)
 - Generate the corresponding protected template T = PIE(B, P)
 - Parameter: a biometric signal or template B, an user-specific parameter P
- Pseudonymous Identifier Comparator (PIC)
 - Compare pairs of Ts during authentication

Methodology description (Overview)

Suppose $x \in \mathbb{R}^d$ be a biometric feature vector with length d, RPM transform is carried out in the following steps:

- 1. Generate p user-specific token-seeded stacked m permutation array $P_i \in \{0,1\}^{d \times d \times m}, i=1,...,p$ where m is the desired length of resulting RPM transformed vector. Note that a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere.
- 2. Multiplying x to P_i , yield a matrix, $V_i = xP_i \in \mathbb{R}^{d \times m}$, i = 1, ..., p.
- 3. Perform Hadamard product (element-wise product) yields $Y = V_1 \circ \cdots \circ V_p = \prod_{i=1}^p V_i \in {}^{d \times m}$ where p is known as Hadamard product order.
- 4. Discard last d-k column vectors from Y, yield $Y' \in \mathbb{R}^{k \times m}$, where we named k as truncation size.
- 5. For each row vectors of Y', the indices of the largest magnitude entry are recorded and form a discrete RPM transformed vector, $z \in [1 \ k]^m$.

Methodology description (Step 0)

Suppose $x \in \mathbb{R}^d$ be a biometric feature vector with length d. d = 5

2.1 -1.2 0.3 1.7

Methodology description (Step 1)

$$p=2$$
 $m=4$

Generate p user-specific token-seeded stacked m permutation array $P_i \in \{0,1\}^{d \times d \times m}, i=1,...,p$ where m is the desired length of resulting RPM transformed vector. Note that a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere.

Methodology description (Step 2)

Multiplying x to P_i , yield a matrix, $V_i = xP_i \in \mathbb{R}^{d \times m}$, i = 1, ..., p.

Methodology description (Step 3)

Perform Hadamard product (element-wise product) yields $Y = V_1 \circ \cdots \circ V_p = \prod_{i=1}^p V_i \in {}^{d \times m}$ where p is known as Hadamard product order.

$$p = 2$$

Methodology description (Step 4)

$$d - k = 5 - 3 = 2$$

k = 3

Discard last d-k column vectors from Y, yield $Y' \in \mathbb{R}^{k \times m}$, where we named k as truncation size.

Methodology description (Step 5)

For each row vectors of Y', the indices of the largest magnitude entry are recorded and form a discrete RPM transformed vector, $z \in [1 \ k]^m$.

Experimental setup (Benchmark)

- AR dataset
 - 99 subjects
 - 6 samples from expression and illumination groups
 - 12 samples from occlusion group
 - Size 128 × 128

- FERET
 - 1196 individuals
 - 5 images
 - Size 128×128

Experimental setup (Indicator)

- Equal Error Rate (EER)
 - Estimate False Acceptance Rate (FAR) and False Rejection Rate (FRR)

Experimental setup (Parameter)

- Discrete Cosine Transform based Region Log-Tied Rank Covariance Matrices (DCT-RLTCM)
 - Filter size k = 11
 - # of filter T = 30
 - Region size r = 16
 - WPCA dimension d = 300

Accuracy performance (m and k fixing p=2)

k 越小,max ranked feature 的信息越少

Accuracy performance (p and m fixing k=2)

p 越大,Hadamard product 的次数越多,引入了噪声,引起失真

Accuracy performance (p and k fixing m = 1000)

Justification

Suppose $x \in \mathbb{R}^d$ be a biometric feature vector with length d, RPM transform is carried out in the following steps:

用户改变用户特定的种子

- 1. Generate p user-specific token-seeded stacked m permutation array $P_i \in \{0,1\}^{d \times d \times m}, i=1,\dots,p$ where m is the desired length of resulting RPM transformed vector. Note that a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere.
 - 2. Multiplying x to P_i , yield a matrix, $V_i = xP_i \in \mathbb{R}^{d \times m}$, i = 1, ..., p. revocation & unlikability
 - 3. Perform Hadamard product (element-wise product) yields $Y = V_1 \circ \cdots \circ V_p = \prod_{i=1}^p V_i \in {}^{d \times m}$ where p is known as Hadamard product order.
 - 4. Discard last d-k column vectors from Y, yield $Y' \in \mathbb{R}^{k \times m}$, where we named k as truncation size.
 - 5. For each row vectors of Y', the indices of the largest magnitude entry are recorded and form a discrete RPM transformed vector, $z \in [1 \ k]^m$.

Non-linkability analysis

Revocability analysis

Justification

Suppose $x \in \mathbb{R}^d$ be a biometric feature vector with length d, RPM transform is carried out in the following steps:

- 1. Generate p user-specific token-seeded stacked m permutation array $P_i \in \{0,1\}^{d \times d \times m}, i=1,\ldots,p$ where m is the desired length of resulting RPM transformed vector. Note that a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere.
- 2. Multiplying x to P_i , yield a matrix, $V_i = xP_i \in \mathbb{R}^{d \times m}$, i = 1, ..., p.
- 3. Perform Hadamard product (element-wise product) yields $Y = V_1 \circ \cdots \circ V_p = \prod_{i=1}^p V_i \in {}^{d \times m}$ where p is known as Hadamard product order. Non-invertibility
- 4. Discard last d-k column vectors from Y, yield $Y' \in \mathbb{R}^{k \times m}$, where we named k as truncation size.
- 5. For each row vectors of Y', the indices of the largest magnitude entry are recorded and form a discrete RPM transformed vector, $z \in [1 \ k]^m$.

Privacy attack (Non-invertibility analysis)

- 假设敌手获取转换后的向量、令牌, RPM 算法及其参数
- 在 min-max 范围内枚举生成伪 RPM 向量

AR	Min value with 4 decimal precision	Max value with 4 decimal precision	(Max-Min)1000	Trial numbers
Expression Illumination Occlusion	-0.1571 -0.1156 -0.1116	0.1561 0.1374 0.1157	$3132 (\approx 2^{12})$ $2530 (\approx 2^{11})$ $2273 (\approx 2^{11})$	$\approx (2^{12})^{300} = 2^{3600}$ $\approx (2^{11})^{300} = 2^{3300}$ $\approx (2^{11})^{300} = 2^{3300}$