More on Complexity

Natasha Alechina Brian Logan

Utrecht University
n.a.alechina@uu.nl b.s.logan@uu.nl

Time Complexity

- suppose the input to an algorithm has size n (for example, n is the number of variables in a propositional formula)
- suppose on any input, the algorithm always makes the same number of steps, c, regardless of how large n is (for example, it prints c 0s to the screen...). Then the growth rate of the running time as a function of input size is O(1): constant time
- suppose the algorithm takes at most $c_1 \times n + c_2$ steps, where c_1 and c_2 are constants. This is O(n): linear time

Time Complexity continued

- suppose the algorithm generates all triples of variables and then all pairs and iterates over them c_1 times: $c_1 \times n^3 + c_1 \times n^2$. This is $O(n^3)$: polynomial time (generally, $O(n^c)$).
- suppose the algorithm generates and checks all assignments of 0 and 1 to the n variables. There are 2^n assignments, and suppose checking each takes n steps. Then the algorithms takes at most $n \times 2^n$ steps. This is $O(2^n)$: exponential time.
- generally, exponential time is $O(2^{polynomial(n)})$, or $O(2^{n^c})$

Size of the input

- usually the size of the input is characterised by several parameters
- for example, the number of agents k, the number of states n, the number of actions d
- the definition of time complexity is the same
- $O(n^2 \times k \times d)$ is polynomial in the input size
- $O(n \times d^k)$ is exponential (in the number of agents k).

Deterministic time complexity classes

- P, or PTIME, is the set of decision problems that can be solved in time $O(n^c)$, for some constant c
- EXPTIME is the set of decision problems that can be solved in time $O(2^{n^c})$, for some constant c

A closer look at the complexity of ATL model checking

- PTIME complexity result for ATL model checking is relative to the size of the model and the formula
- size of the model is understood as the explicit representation, listing every state and every transition
- the number of states can be exponential in the number of propositional variables
- for |PV| variables, we have $2^{|PV|}$ number of states
- ISPL encoding may have one Evolution clause for each of |PV| variables, but the transition function has to be specified for each of $2^{|PV|}$ states

A closer look at the complexity of ATL model checking

- PTIME complexity result for ATL model checking is relative to the size of the model and the formula
- size of the model is understood as the explicit representation, listing every state and every transition
- the number of transitions can be exponential in the number of agents
- m: transitions, n: states, d: actions k: agents
- $m = O(nd^k)$ (from each state there may be d^k transitions)
- ATL model checking is Δ^P₃-complete with respect to the number of states, agents, actions, and implicit transitions (next slide)
- $\Delta_3^P = P^{NP^{NP}}$ is worse than P^{NP} which is worse than NP (it assumes an NP oracle that can ask another NP oracle)

Implicit representations of transitions

- implicit concurrent game models: (similar to ISPL)
- implicit transition function ô
- for each state q^r , define an ordered set of pairs $(\varphi^r_0, q^r_0), \ldots, (\varphi^r_{t_r}, q^r_{t_r})$, where each φ^r_i is a formula specifying a set of actions that may be executed in q^r , and q^r_i is the resulting state
- φ_i^r is a boolean combination of statements $Agent_1.Action = \alpha$
- ullet $\varphi^{\it r}_{\it tr}$ is \top
- the first φ_i^r formula that holds determines the resulting state q_i^r

Example of implicit representation

- for example, q is the initial state, there are k agents, and each agent has two actions α and β (2^k joint actions)
- if all agents execute action α , the system goes into $q\alpha$ state
- otherwise the system goes into $q\beta$ state
- in $q\alpha$ and $q\beta$, any action loops back to the same state
- from *q*:
 - (Agent₁.Action = $\alpha \wedge ... \wedge Agent_k$.Action = α , $q\alpha$),
 - (Agent₁.Action = $\beta \lor ... \lor Agent_k.Action = \beta$), $q\beta$),
 - (⊤, q)
- from $q\alpha$: $(\top : q_{\alpha})$
- from $q\beta$: $(\top : q_{\beta})$

Complexity is sensitive to how we measure input size

- complexity is very sensitive to the context!
- in particular, the way we define the parameters, and measure their size, is crucial

10