Đại học Quốc gia Thành phố Hồ Chí Minh Đại học Khoa Học Tự Nhiên Khoa Công nghệ thông tin

[HỆ ĐIỀU HÀNH] TÌM HIỂU VÀ LẬP TRÌNH LINUX KERNEL MODULE

[GIÁO VIÊN HƯỚNG DẪN]

Lê Viết Long

Phạm Tuấn Sơn

[SINH VIÊN]

Trần Xuân Sơn – 19127321

I. Tổng quan về đồ án

STT	Tên thành phần	Hoàn thành
1	Viết linux kernel module tạo số ngẫu nhiên	100%

Thành phần của bài làm gồm:

- Random.c: Source code của kernel module tao số ngẫu nhiên
- testRandom.c: Source code chương trình test module Random.
- README.md: File README dang markdown. README được hiển thị ở
 đây (https://github.com/txuanson/linux_rand_module#readme).
- Report: File báo cáo của đồ án.

II. Chi tiết:

- 1. Cấu hình biên dịch:
- Để tiện cho quá trình biên dịch, thay vì phải viết những câu lệnh dài thì ta tạo ra các script để biên dịch:
 - o Makefile:
 - Để chương trình có thể thực thi trong linux, ta cần biên dịch chương trình và Makefile là 1 dạng script dùng để biên dịch chương trình.
 - o Kbuild:
 - Kbuild là chương trình được dùng bởi Linux kernel để build các module và chọn các flag gcc để biên dịch.
- 2. Khởi tao module:
- Gồm 4 bước, với mỗi bước nếu gặp lỗi thì sẽ phải hủy các thay đổi (tương tự với việc hủy module) đã tạo ra (theo thứ tự ngược lại) cho kernel ở các bước trước đó và trả lại mã lỗi là số âm (ở đây ta dùng -1 làm mặc định).
 - Đăng ký số hiệu file thiết bị:
 - Sử dụng hàm

```
int alloc_chrdev_region(dev_t *first, unsigned int firstminor,
unsigned int cnt, char *name);
```

- Hàm này giúp đăng ký một cặp số <major, minor> là số hiệu cho file thiết bị và được lưu vào biến first.
- *Firstminor* là số bắt đầu cho số hiệu minor trong số hiệu file.
- Cnt là số lượng số minor cần thiết.
- *Name* là tên device.
- Nếu hàm trả ra giá trị bé hơn 0 thì có nghĩa là đã có lỗi trong khi tạo số hiệu file.
- Khi muốn hủy đăng ký số hiệu ta dùng:

```
unregister chrdev region(first, cnt);
```

- Tạo lớp thiết bị
 - Sử dụng hàm

```
cl = class_create(THIS_MODULE, DEVICE_CLASS_NAME)
```

- Hàm trả ra một con trỏ trỏ tới lớp thiết bị vừa tạo
- Hàm trả về **NULL** nếu gặp phải lỗi.
- Khi muốn hủy lớp thiết bị ta dùng:

```
class destroy(cl);
```

- o Tao file thiết bi
 - Sử dụng hàm

```
device create(cl, NULL, deviceNumber, NULL, DEVICE NAME)
```

- Hàm sử dụng lớp thiết bị cl để tạo file thiết bị.
- Hàm sẽ trả về NULL nếu gặp lỗi.
- Khi muốn xóa file thiết bị ta dùng:

```
device destroy(cl, first);
```

- O Định nghĩa các thao tác với file thiết bị:
 - Các thao tác với file thiết bị được gói lại vào một cấu trúc gồm:
 - .open: Thao tác mở file
 - .read: Thao tác đọc file

- .release: Thao tác đóng file
- Mỗi thuộc tính trong cấu trúc trên là một con trỏ trỏ tới hàm xử
 lý file riêng biệt cho từng thao tác.
- Khởi tao các thao tác:

```
cdev_init(&c_dev, &fops);
```

• Thêm thiết bị vào hệ thống và khởi động device:

```
cdev_add(&c_dev, first, cnt)
```

- *cdev_add* trả về số âm nếu gặp lỗi
- 3. Hàm xử lý thao tác mở file:

Vì module này khá đơn giản nên việc mở file ta không phải làm gì ngoài việc in log.

- Hàm xử lý thao tác đóng file:
 Tương tự thao tác mở file
- 5. Hàm xử lý thao tác đọc file:
- Hàm nhận vào một buffer chuỗi được đưa vào từ userspace, ta sẽ sử dụng nó để đưa kết quả ra userspace.
- Ngoài ra hàm nhận vào len (length) độ dài tối đa của buffer.
- Trong trường hợp này, ta sẽ tạo số ngẫu nhiên trong khoảng *int* (4 bytes 32 bit) bằng hàm *get_random_bytes* trong thư viện *linux/random.h>*.
- Vì output sẽ là một chuỗi nên ta phải chuyển số random thành chuỗi:
 - Nếu số là âm thì ta phải thêm '-' ở trước rồi đảo dấu cho số thành số dương.
 - Lần lượt lấy các số hàng bên phải cho vào chuỗi ta được chuỗi đảo ngược của số random.
 - O Lật ngược chuỗi 1 lần nữa ta được chuỗi chuyển từ số random.
- Sử dụng hàm copy_to_user để copy chuỗi đó từ kernelspace ra userspace.
- 6. Chương trình testRandom:
- Trước tiên ta mở file:

- Sau đó đọc file bằng cách truyền 1 buffer char[] và độ dài tối đa của buffer vào.
- Buffer lúc này sẽ là chuỗi số random. Ta có thể dùng hàm atoi() để chuyển buffer đó thành số trở lại.

III. Tài liệu tham khảo

Tài liệu hướng dẫn của thầy Phạm Tuấn Sơn