Genetiniai algoritmai dirbtiniams neuronų tinklams

(Genetic Algorithms for Artificial Neural Networks)

Laimonas Beniušis Kompiuterių Mokslas 1g

Vadovas: Linas Litvinas

Tikslas

- Išanalizuoti, realizuoti ir pritaikyti NEAT bei HyperNEAT algoritmus
- Pritaikyti skirtingus pajėgumo matavimo algoritmus, tarp jų ir koevoliuciją
- Realizuoti aplinką (programą), kuri yra tinkama eksperimentams

Neuro-Evoliucija Augančioms Topologijoms (NEAT)

Pagrindiniai bruožai:

- Genas yra lankas, turintis inovacijos žymę
- Inovacijos žymės leidžia suporuoti vienodus genus kryžminimo metu
- Konkuravimas išskirstomas rasėmis
- Visos evoliucijos metu tinklas išlaiko minimalią topologiją, ją didindamas

CPPN

(Compositional Pattern Producing Networks)

- Koduoja erdvinės struktūras
- Aktyvacijos funkcijų kompozicija

CPPN + NEAT = HyperNEAT

Erdvės dėsningumų transformavimas į DNT lankus

HyperNEAT (Hyper-Cube based NEAT)

Pagrindiniai bruožai:

- Netiesioginis kodavimas
- Užduoties erdvinis suvokimas
- Lengvai plečiamas į aukštesnes dimensijas
- Efektyviai koduoja didelio masto DNT

Koevoliucija

- Klasikinis apibrėžimas skirtingų rasių priešiškas elgesys, verčiantis nuolat keistis ir adaptuotis
- Pritaikyta konkurencinga (angl. Competitive) vienos ir dviejų populiacijų koevoliucija

Koevoliucija. Privalumai

- Nereikia kurti dirbtinio priešininko
- Sprendimo kokybė kyla kartu su užduoties sudėtingumu. Gaunamas automatiškai balansuojamas mokymosi gradientas
- Kartais įmanomas pajėgumo įvertis tik pagal pergales (nereikia rinkti užduoties sprendimo kokybės informacijos)

Koevoliucija. Trūkumai

- Ribota panaudojimo sritis (dvikovos tipo)
- Prarandamas absoliutaus progreso matas.
 Reikalingas išorinis progreso patikrinimo būdas
- Didelis testų kiekis

Eksperimetai

Eksperimetai taikomi video žaidimui "Pong":

- Paprasta aplinka
- Lengvai sunkinamas
- Dvikovos tipo
- Lengvai patikrinimas žaidžiant prieš sieną

"Pong" versijos

- Kamuoliuko greitis didėja
- Kamuoliuko atsimušimo taškas daro įtaką jo trajektorijai
- Didesnis kamuoliukų kiekis

"Pong" NEAT konfiguracija

NEAT: 2+2B įvedimo, 3 išvedimo neuronai, kur B – kamuoliukų kiekis. Pirmi 2 neuronai atitinka lentelių vertikalias pozicijas, likusieji – kiekvieno kamuoliuko koordinates.

"Pong" HyperNEAT konfiguracija

Vidinis CPPN iš 4 įvedimo ir 3 (A, B, C) išvedimo neuronų, kurie naudojami sujungti atitinkamiems sluoksniams. Visi sluoksniai yra 2-jų dimensijų.

Išvados. Teorija

- NEAT apjungia DNT auginimą, nedestruktyvų kryžminimą bei paskirstymą rasėmis
- HyperNEAT išnaudoja geometrinius dėsnius, naudoja netiesioginį DNT kodavimą
- Koevoliucija leidžia gauti natūraliai kylančią sudėtingumo kreivę, tačiau prarandamas absoliutus pajėgumas ir pritaikymo sritis yra siaura

Išvados. Rezultatai

- Realizuoti algoritmai ir eksperimentinė "Pong" aplinka
- NEAT:
 - Standartinis pajėgumo įvertis, paprastoms "Pong" versijoms
 - Koevoliucija (1 ir 2 populiacijų) greitėjantis ir kampą keičiantis kamuoliukas
 - Koevoliucija (2 populiacijų) 2 greitėjantys ir kampą keičiantys kamuoliukai
- HyperNEAT su standartiniu pajėgumo įverčiu, sudėtingiausiai "Pong" versijai (2 greitėjantys, kampą keičiantys kamuoliukai)