Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Высшая школа прикладной математики и вычислительной физики

Математическая статистика

Отчёт по лабораторной работе №4

Работу выполнил: П. П. Филиппов Группа: 5030102/10101 Преподаватель: А. Н. Баженов

 ${
m Caнкт-} \Pi {
m erep fypr} \ 2024$

Содержание

1.	Постановка задачи	3
2.	Теория	3
	Результаты 3.1. Изображения	4 5

1. Постановка задачи

Сгенерировать выборки размером 20 и 100 элементов, вычислить параметры положения и рассеяния:

- для нормального распределения
- для произвольного распределения

2. Теория

Промежуток $[\widehat{\theta_1},\widehat{\theta_2}]$ называется **доверительным интервалом для параметра** θ **с** уровнем **доверия** β тогда и только тогда, когда $\mathbb{P}\{\widehat{\theta_1} \leq \theta \leq \widehat{\theta_2}\} \geq \beta$. Под знаком неравенства в выражении выше обычно подразумевают равенство. $\widehat{\theta_1}$ - оценка нижней границы доверительного интервала, $\widehat{\theta_2}$ - оценка верхней границы доверительного интервала.

Дана выборка $(x_i)_{i=1}^n$ нормальной генеральной совокупности. На ее основе строим выборочное среднее \overline{x} и выборочное СКО s. Параметры m и σ нормального распределения неизвестны.

Доверительный интервал матожидания m нормального распределения

Доказано, что cmamucmuka Cmbodehma $T=\frac{\overline{x}-m}{s}\sqrt{n-1}\sim t(x,0,n-1).$ Пусть α - $bufpahhui уровень значимости, и пусть <math>\tau:=t_{1-0.5\alpha}(n-1)$ - соответствующий квантиль распределения Стьюдента, получаемый как результат функции $F_T^{-1}(x)$, тогда:

$$\mathbb{P}\{\overline{x} - \frac{s\tau}{\sqrt{n-1}} < m < \overline{x} + \frac{s\tau}{\sqrt{n-1}}\} = 1 - \alpha$$

Доверительный интервал СКО σ нормального распределения

Доказано, что $\frac{ns^2}{\sigma^2} \sim \chi^2(n-1)$ Тогда, аналогично матожиданию:

$$\mathbb{P}\left\{\frac{s\sqrt{n}}{\sqrt{\chi_{1-0.5\alpha}^2(n-1)}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{0.5\alpha}^2(n-1)}}\right\} = 1 - \alpha$$

Доверительный интервал матожидания m для произвольный генеральной совокупности при большом объеме выборки.

В силу ЦПТ:

$$\frac{\overline{x} - M[\overline{x}]}{\sqrt{D[\overline{x}]}} = \frac{\overline{x} - m}{\sigma} \sqrt{n} \sim N(x, 0, 1)$$

Тогда:

$$\mathbb{P}\left(\overline{x} - \frac{su_{1-0.5\alpha}}{\sqrt{n}} < m < \overline{x} + \frac{su_{1-0.5\alpha}}{\sqrt{n}}\right) = 1 - \alpha,$$

где $u_{1-0.5\alpha}$ - соответствующий квантиль N(x,0,1)

Доверительный интервал для СКО σ произвольной генеральной совокупности при большом объеме выборки

В силу ЦПТ:

$$\frac{s^2 - M[s^2]}{\sqrt{D[s^2]}} \sim N(x, 0, 1),$$

тогда:

$$\mathbb{P}\bigg(s(1-0.5\mathcal{U}) < \sigma < s(1+0.5\mathcal{U})\bigg) = 1 - \alpha,$$

где $\mathcal{U}=u_{1-0.5\alpha}\sqrt{\frac{e+2}{n}},$ а $e=\frac{m_4}{s^4}-3$ - выборочный эксцесс.

3. Результаты

n=20	m	σ
	$-6.577 \times 10^{-01} < m < 4.472 \times 10^{-01}$	$8.977 \times 10^{-01} < \sigma < 1.724$
n = 100	m	σ
	$-1.266 \times 10^{-01} < m < 2.346 \times 10^{-01}$	$7.992 \times 10^{-01} < \sigma < 1.057$

Таблица 3.1

Таблица характеристик нормального распределения

n=20	m	σ
	$-8.076 \times 10^{-01} < m < 3.345 \times 10^{-02}$	$7.633 \times 10^{-01} < \sigma < 1.156$
n = 100	m	σ
	$-1.989 \times 10^{-01} < m < 2.041 \times 10^{-01}$	$9.426 \times 10^{-01} < \sigma < 1.113$

Таблица 3.2

Таблица характеристик равномерного распределения

3.1. Изображения

Поворачиваем страницу, потому что можем.

Рисунок 3.1. Нормальное распределение

Рисунок 3.2. Равномерное распределение