

Model Development Phase Template

Date	21 June 2024
Team ID	740002
Project Title	Life Style Change Due To Covid Prediction
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial Random Forest model shows promising results for predicting lifestyle changes due to COVID-19 based on demographic and behavioral attributes. Further refinement of the model, including hyperparameter tuning and feature engineering, may enhance its predictive performance.

Initial Model Training Code:

```
from sklearn.ensemble import RandomForestClassifier
# Initialize the Random Forest Classifier
model2 = RandomForestClassifier()

# Fit the model
model2.fit(X_train, y_train)

# Make predictions on the test set
y_pred = model2.predict(X_test)

# Model Accuracy
accuracy = accuracy_score(y_test, y_pred)

# Evaluate the model
print("Accuracy: ", accuracy * 100)
print("\nClassification Report: \n", classification_report(y_test, y_pred))
```



```
from sklearn.tree import DecisionTreeClassifier
# Initialize the Decision Tree Classifier
model3 = DecisionTreeClassifier(random_state=42)
# Fit the model
model3.fit(X_train, y_train)
# Make predictions on the test set
y_pred = model3.predict(X_test)
# Model Accuracy
accuracy = accuracy_score(y_test, y_pred)
# Evaluate the model
print("Accuracy: ", accuracy * 100)
print("\nClassification Report: \n", classification_report(y_test, y_pred))
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
model1=LogisticRegression()
model1.fit(X_train,y_train)
▼ LogisticRegression
LogisticRegression()
```

		F1 Scor e	
Model	Classification Report		Confusion Matrix

Model Validation and Evaluation Report:

Logistic Regression	<pre>print('Accuracy:',accuracy*100) print('\nClassification Report:',classification_report(y_test,y_pred))</pre>							82% # Plot the confusion matrix (y_test, y_pred) # Plot the confusion matrix as a heatmap plt.figure(figsize=(8, 6)) sns.heatmap(y_anont=rue_fmt='d', cmap='slues', xticklabels=['o', '1'], yti					
	Accuracy: 82.978		32	precision	recall	f1-score	support		<pre>plt.xlabel('Predicted') plt.ylabel('Actual') plt.title('Confusion Matu plt.show()</pre>	rix')			
	0 1	0.82 0.84	0.68 0.91	0.74 0.87	85 150						Confusi	ion Matrix	
	accuracy macro avg weighted avg	0.83 0.83	0.80 0.83	0.83 0.81 0.83	235 235 235					o -	58	27	- 120
										Actual	13	137	- 80 - 60 - 40
											O Pres	dicted	-20