TD ACCQ 201

Julien Béguinot, Duong Hieu Phan

Télécom Paris

1 Reminder

Definition 1. A ring $(A, +, \times)$ is a set A equiped with two operations + and \times such that

- (A, +) is an Abelian group
- there exists a neutral element 1_A in A for \times
- \bullet × is associative
- × is distributive on +

If \times is commutative the ring is said to be a **commutative ring**.

Definition 2. A left (resp right) **ideal** \mathcal{I} of the ring A is an additive subgroup of A stable by multiplication by an element of A on the left (resp right). If \mathcal{I} is both a right and a left ideal it is an ideal.

An ideal \mathcal{I} is said to be **principal** if there exists an element $x \in A$ such that $\mathcal{I} = AxA$. We use the notation (x) to designate the corresponding ideal.

More generally (x_1, \ldots, x_n) is the smallest ideal containing (x_i) for $i = 1, \ldots, n$. An ideal that can be expressed this way is said to be of **finite type**.

Definition 3. A **field** is a commutative ring with no non-trivial ideal. In other words every non-zero elements of the ring is invertible.

Definition 4. An **integral ring** is a commutative ring verifying the zero product rule i.e.

$$ab = 0 \implies a = 0 \text{ or } b = 0.$$

Definition 5. An integral ring is said to be **principal** if all its ideals are principal.

Theorem 1. $(\mathbb{Z}, +, \times)$ is a principal ring.

Definition 6. Let A be an integral ring and $a, b \in A$.

- a is said to be **irreducible** if it is non zero, non invertible and for all decomposition a = uv then either v or u is invertible.
- a and b are said to be **associated** if there exists an invertible element u such that a = ub.
- $p \in A$ is said to be **prime** if it is non zero, non invertible and for all product ab if p|ab then p|a or p|b.

The integral ring A is said to be a **factorial** ring if every elements of A which is non-zero and non invertible is a product of prime elements of A.

Definition 7. The ideal I of the commutative ring A is said to be prime if

$$\forall (a,b) \in A^2, ab \in I \implies (a \in I \text{ or } b \in I).$$

This is equivalent to say that the quotient ring A/I is integral.

2 TD ACCQ 201

Definition 8. An **Euclidean** ring A is an integral ring that can be endowed with a function $f: A \setminus \{0\} \mapsto \mathbb{N}$ such that

- f(a) = 0 if and only if a = 0
- $\forall a \in A, \forall b \in A \setminus \{0\}, \exists q, r \in A^2, f(r) < f(b), a = bq + r$

Definition 9. The commutative ring A is said to be **Noetherian** if every ideal of A is of finite type. This is equivalent to say that every sequence of ideal of A increasing for the inclusion is stationary.

Definition 10. An ideal I of the ring A is **maximal** if and only if A/I is a field. Equivalently it is contained in exactly two ideals: itself and the whole ring.

Definition 11. Let A be a ring. Let $f : n \in \mathbb{Z} \mapsto n \cdot 1_A \in A$. The f is a ring morphism from the principal ring \mathbb{Z} to A. The **charachteristic** of A is defined as:

- if $Ker(f) = \{0\}$ then it is zero;
- else there exists a unique natural integer c such that $Ker(f) = c\mathbb{Z}$ and it is c.

Proposition 1. If A is a ring and I an ideal of A then A/I is integral if and only if I is prime i.e. $\forall a, b \in A, ab \in I \implies (a \in I \text{ or } b \in I)$.

Theorem 2. A finite field is commutative.

Theorem 3. Let $G \subset K^*$ be a finite subgroup of the group of invertible of the field K. Then G is a cyclic group. As a consequence \mathbb{Z}_p^* is cyclic.

Theorem 4 (Euler). Let φ be Euler indicator function and n > 1. If k is coprime with n then $k^{\varphi(n)} = 1 \pmod{n}$.

Definition 12 (Legendre Symbol). Let p be a prime odd number. The Legendre symbol (n/p) is defined as

$$\left(\frac{n}{p}\right):\begin{cases} 0 \text{ if } p \text{ divides } n\\ +1 \text{ if } p \text{ does not divide } n \text{ and } n \text{ is a square mod } p\\ -1 \text{ if } p \text{ is not a square mod } p \end{cases}.$$

Theorem 5 (Quadratic Residuosity). Let $a \in \mathbb{Z}$, $p \not| a$, p odd prime.

$$a^{\frac{p-1}{2}} = \left(\frac{a}{p}\right) \pmod{p}.$$

Definition 13 (Jacobi Symbol). Let $a \in \mathbb{Z}$ and $n \in 2\mathbb{N} + 1$. We assume that $n = \prod_{i=1}^k p_i$. Then the Jacobi symbol generalizes the Legendre symbol as

$$\left(\frac{a}{n}\right) = \prod \left(\frac{a}{p_i}\right).$$

It verifies the following properties:

- it is zero if and only if a and n are not co-prime
- it is multiplicative in a and in n
- if $a = b \pmod{n}$ then (a/n) = (b/n).

$$\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = (-1)^{\frac{(m-1)(n-1)}{4}} \qquad \left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}} \qquad \left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}}$$

Theorem 6 (Krull). Let \mathcal{I} be a non trivial ideal of the commutative ring A. There exists at least one maximal ideal of A that contains \mathcal{I} . This property is a consequence of the axiom of choice.

 $^{^{1}}$ Termed stathme in French

2 Exercices

Exercice 1. Let A be a commutative ring.

- If A contains only the two trivial ideal then it is a field.
- If A is integral and contains a finite number of ideals then it is a field.

Exercice 2. Let A be a principal ring.

- Show that if every sequence of ideal of A deacreasing for the inclusion is stationary then A is a field.
- Show that every increasing sequence of ideal of A is stationnary.

Exercice 3. Is the ring of function from \mathbb{R} to \mathbb{R} an integral ring? Is the ring of continuous function from \mathbb{R} to \mathbb{R} a Noetherian ring?

Exercice 4. Let $n \ge 2$, show that every ideal of \mathbb{Z}_n is principal. Is \mathbb{Z}_n principal?

Exercice 5. Let A be a ring and P a polynomial in A[X]. $a \in A$ is said to be a zero/root of P if P(a) = 0. Show that a is a zero of P if and only if X - a|P. Show that if A is integral then any non zero polynomial P of degree n admits at most n zero in A.

Exercice 6. Let A be an integral ring. If $p \in A$ is prime then it is irreducible.

Exercice 7 (Characteristic of a Ring). Let A be a ring of finite characteristic N. Show that:

- $\forall a \in A, N \cdot a = 0.$
- If A is integral then N is prime.
- If A is integral then $X \mapsto x^N$ is ring morphism.

Exercice 8. Let A be a principal ring. p irreducible \implies p prime and p irreducible \implies (p) maximal \implies A/(p) field \implies p prime.

Exercice 9. Let A be a ring and $\mathcal{Z}(A)$ be the set of elements of A that commutes with all elements of A. Show that $\mathcal{Z}(A)$ called the center of A is a subring of A.

Exercice 10. We investigate some properties of the famoius Gauss integer ring.

- Show that $\mathbb{Z}[i]$ is a ring
- Let $N: z \in \mathbb{C} \mapsto z\bar{z} \in \mathbb{R}^+$.
 - Show that N is multiplicative.
 - Show that if $z \in \mathbb{Z}[i]$ then $N(z) \in \mathbb{N}$.
 - Let $z \in \mathbb{Z}[i]$ be invertible. Show that N(z) = 1.
 - List the invertible elements of $\mathbb{Z}[i]$.
- Show that if $z \in \mathbb{C}$ then there exists $w \in Z[i]$ such that |z w| < 1.
- Let $u, v \in \mathbb{Z}[i]$ show that there exists $q, r \in Z[i]$ such that u = qv + r with |r| < |v|. Is $\mathbb{Z}[i]$ euclidean?
- Show that $\mathbb{Z}[i]$ is principal.