1. 目的

本実験では、超伝導体が示す現象である、ゼロ抵抗とマイスナー効果を実際に確認し、超伝導体の特性を理解することを目的とする。ゼロ抵抗の確認については、室温での抵抗測定のみを行い、低音領域での抵抗測定は実際には行わず、与えられたデータを解析することで、ゼロ抵抗の特性を理解する。マイスナー効果については、磁場中冷却と零磁場冷却の2つの冷却方法で冷却したYBa $_2$ Cu $_3$ O $_7$ を磁石に近づけたり遠ざけたりすることで、磁石にどのような力が働くかを観察することで、マイスナー効果の特性を理解する。最後に、冷却したYBa $_2$ Cu $_3$ O $_7$ を磁石を並べて作ったレール上に乗せて、その時の挙動を観察する。

2. 実験方法

2.1. 電気抵抗測定

ここでは、Pb-In とYB \mathbf{a}_2 C \mathbf{u}_3 O $_7$ (以下、YBCO)の室温での抵抗Rの測定を行った。測定に際し、以下の式を用いた。

$$\begin{cases} R = \frac{V}{I} \\ R = \rho \frac{L}{S} \end{cases} \tag{1}$$

ここで、 ρ は試料の抵抗率、Lは試料の長さ、Sは試料の断面積、Vは試料にかかる電圧、Iは試料を流れる電流を表す。まず、J ギスを用いて試料のL, S を測定した。ここで、S に関しては、試料の高さt と幅w を測定して、S = tw として求めた(今回はt の値は既知であった)。次に、電流計と電圧計を用いて、V, I を測定する前に、電流計のゼロ点調整を行った。Pb-In では、100 mA、YBCO では 20 mAの電流を流すために、精密な抵抗を用いて、F それに電流を流した時の電圧を測定し、所望の電流を得た。その後、実際に試料に電流を流し、電圧を測定した。測定した電圧と流した電流を式 (1) に代入することで、抵抗値、抵抗率を求めた。

次に、室温以外での抵抗測定について与えられたデータから、温度と抵抗率の値をプロットし、そのグラフからゼロ抵抗の特性を確認した。この時、与えられたデータは、熱電対の起電力と試料の電位差を表したもので、熱電対の起電力を温度に換算することで、温度と抵抗率の関係を求めた。

2.2. 超伝導体と磁石の相互作用

ここでは、冷却した YBCO を磁石に近づけたり遠ざけたりすることで、磁石との相互作用を観察した。まず、周りに磁石がない状態で YBCO に液体窒素を流して冷却した(零磁場冷却)。磁石をの上に乗せ、冷却した YBCO を初めは磁石に近づけていき、その時の秤の値を読み取った。次に、磁石を遠ざけていき、また、磁石に近づけていき、それらの時も同様に秤の値を読み取った。

次に、磁石の上でYBCOを冷却した(磁場中冷却)。そして今回は、初めはYBCOを磁石から遠ざけていき、再び磁石に近づけていき、最後にまたYBCOを磁石から遠ざけていった。これらの時に、秤の値を読み取った。そして、読み取った秤の値全てを力に換算した。得られたデータから、

YBCO -磁石間の距離と磁石に働く力の関係をグラフにプロットし、マイスナー効果の特性を確認した。

2.3. 磁場上での超伝導体の運動

最後に、磁石を並べて作ったレール上に冷却した YBCO を乗せ、その時の挙動を観察した。磁石を並べたレール上に零磁場冷却を施された YBCO を乗せ、YBCO を軽く押して動かしたり、強い力で押した時の挙動を観察した。また、磁場中冷却された YBCO をレール上に乗せ、この時の挙動を観察した。そして、磁場中冷却された YBCO をレール上に乗せた状態で、レールの向きを反転させて、その時の挙動を観察した。

3. 実験結果

3.1. 電気抵抗測定

まず、室温 (298 K) での Pb-In の寸法測定、抵抗測定の結果を表 1 に示す。次に、YBCO の寸法 測定、抵抗測定の結果を表 2 に示す。

表 1: Pb-In の寸法測定、抵抗測定の結果

L/mm	t/mm	w /mm	V/mV	I/mA	$R / \mathrm{m}\Omega$	$\rho / \Omega \cdot m$
1.50	0.10	2.40	0.201	100	2.01	3.22×10^{-7}

表 2: YBCO の寸法測定、抵抗測定の結果

L/mm	t/mm	w/mm	V/mV	I/mA	$R / \mathrm{m}\Omega$	$\rho / \Omega \cdot m$
1.20	0.80	3.15	0.182	20.0	9.1	1.91×10^{-5}

次に、室温以外での抵抗測定について、与えられたデータから求めた Pb-In、YBCO における温度と低効率の値を表 3 に示す。ここで、温度の換算方法については、熱電対の起電力の小数第 2 位までの値だけだと、起電力の値は異なるが温度の値が同じになる場合があったため、小数第 3 位までの値と、小数第 2 位まで見た時の温度とその隣の温度の差から、温度を換算した。そして、表 1、表 2、表 3 から、Pb-In、YBCO それぞれの温度と抵抗率の値をプロットし、そのグラフからゼロ抵抗の特性を確認した。その結果を図 1、図 2 に示す。

表 3: 室温以外での抵抗測定における Pb-In、YBCO それぞれの温度と抵抗率の値

Pb-In		YBCO		
温度 /K	抵抗率 $/\Omega \cdot m$	温度 /K	抵抗率 $/\Omega \cdot m$	
78.7	2.82×10^{-7}	177.6	3.00×10^{-5}	
69	2.73×10^{-7}	172	2.96×10^{-5}	
59	2.62×10^{-7}	167.8	2.95×10^{-5}	
48	2.53×10^{-7}	164.3	2.91×10^{-5}	
38.8	2.50×10^{-7}	153.4	2.86×10^{-5}	
26.3	2.45×10^{-7}	141.1	2.78×10^{-5}	
15	2.45×10^{-7}	113.3	2.65×10^{-5}	
8.6	2.38×10^{-7}	90.6	2.53×10^{-5}	
8.4	2.36×10^{-7}	77.6	2.36×10^{-5}	
7.1	5.46×10^{-8}	66	2.23×10^{-5}	
7.1	3.87×10^{-9}	60.5	2.18×10^{-5}	
6.4	2.82×10^{-9}	55.5	2.09×10^{-5}	
6.4	2.46×10^{-9}	43.9	0	
5.7	2.64×10^{-9}	37.7	0	
5.2	2.99×10^{-9}	30.9	2.52×10^{-7}	
4.8	2.82×10^{-9}	29.3	1.26×10^{-7}	
4.4	2.82×10^{-9}	23	1.26×10^{-7}	
4.3	3.17×10^{-9}	12.9	1.26×10^{-7}	
4.2	3.17×10^{-9}	4.2	1.26×10^{-7}	

図 1: Pb-In の温度と抵抗率の値

図 2: YBCO の温度と抵抗率の値

3.2. 超伝導体と磁石の相互作用

まず、零磁場冷却における、磁石と YBCO の距離に対する磁石にかかる力の関係を表 4 に示す。 そして、表 4 から、距離と磁石にかかる力の関係をプロットした結果を図 3 に示す。

表 4: 零磁場冷却における、磁石と YBCO の距離に対する磁石にかかる力の関係

近づける向	可き (1回目)	遠ざける「	句き(1 回目)	近づける[句き(2 回目)
距離 /cm	力 /N	距離 /cm	力 /N	距離 /cm	力 /N
11.8	0	0.1	0.499	10.05	0
10.8	0	0.2	0.365	9.05	0
9.8	0	0.3	0.261	8.05	0
8.8	0	0.4	0.208	7.05	0
7.8	0	0.5	0.154	6.05	-9.80×10^{-4}
6.8	0	0.6	0.120	5.05	-1.96×10^{-3}
5.8	0	0.7	8.92×10^{-2}	4.05	-2.94×10^{-3}
4.8	9.80×10^{-4}	0.8	6.47×10^{-2}	3.05	-3.92×10^{-3}
4.3	1.96×10^{-3}	0.9	5.19×10^{-2}	2.55	-2.94×10^{-3}
3.8	2.94×10^{-3}	1	3.43×10^{-2}	2.05	3.92×10^{-3}
3.3	6.86×10^{-3}	1.5	9.80×10^{-4}	1.55	2.25×10^{-2}
2.8	1.27×10^{-2}	2	-6.86×10^{-3}	1.05	7.94×10^{-2}
2.3	2.45×10^{-2}	2.5	-8.82×10^{-3}	0.95	9.41×10^{-2}
1.8	5.00×10^{-2}	3	-7.84×10^{-3}	0.85	0.122
1.3	0.102	4	-4.90×10^{-3}	0.75	0.153
0.8	0.219	5	-2.94×10^{-3}	0.65	0.182
0.7	0.256	6	-9.80×10^{-4}	0.55	0.230
0.6	0.299	7	-9.80×10^{-4}	0.45	0.286
0.5	0.349	8	0	0.35	0.347
0.4	0.397	9	0	0.25	0.436
0.3	0.483	10	0	0.15	0.540
0.2	0.553			0.05	0.651
0.1	0.630				
0	0.745				

図 3: 零磁場冷却における、磁石と YBCO の距離に対する磁石にかかる力の関係

次に、磁場中冷却における、磁石と YBCO の距離に対する磁石にかかる力の関係を表 5 に示す。そして、表 5 から、距離と磁石にかかる力の関係をプロットした結果を図 4 に示す。

表 5: 磁場中冷却における、磁石と YBCO の距離に対する磁石にかかる力の関係

遠ざける[句き(1 回目)	近づける[句き (1 回目)	遠ざける[句き (2 回目)
距離 /cm	力 /N	距離 /cm	力 /N	距離 /cm	力 /N
0	1.18×10^{-2}	10	0	0	0.204
0.1	-0.112	9	0	0.1	1.57×10^{-2}
0.2	-0.184	8	-9.80×10^{-4}	0.2	-7.94×10^{-2}
0.3	-0.220	7	-1.96×10^{-3}	0.3	-0.128
0.4	-0.240	6	-4.90×10^{-3}	0.4	-0.164
0.5	-0.245	5	-9.80×10^{-3}	0.5	-0.184
0.6	-0.243	4	-1.96×10^{-2}	0.6	-0.191
0.7	-0.236	3	-3.82×10^{-2}	0.7	-0.194
0.8	-0.225	2.5	-5.49×10^{-2}	0.8	-0.190
0.9	-0.216	2	-7.64×10^{-2}	0.9	-0.185
1	-0.200	1.5	-0.123	1	-0.176
1.5	-0.140	1	-0.123	1.5	-0.128
2	-9.31×10^{-2}	0.9	-0.123	2	-8.82×10^{-2}
2.5	-6.37×10^{-2}	0.8	-0.120	2.5	-6.08×10^{-2}
3	-4.41×10^{-2}	0.7	-0.115	3	-4.21×10^{-2}
4	-2.16×10^{-2}	0.6	-0.101	4	-2.06×10^{-2}
5	-1.08×10^{-2}	0.5	-8.23×10^{-2}	5	-9.80×10^{-3}
6	-5.88×10^{-3}	0.4	-5.19×10^{-2}	6	-4.90×10^{-3}
7	-2.94×10^{-3}	0.3	-1.76×10^{-2}	7	-1.96×10^{-3}
8	-1.96×10^{-3}	0.2	2.94×10^{-2}	8	-9.80×10^{-4}
9	0	0.1	0.116	9	0
10	0	0	0.215	10	0

図 4: 磁場中冷却における、磁石と YBCO の距離に対する磁石にかかる力の関係

3.3. 磁場上での超伝導体の運動

まず、零磁場冷却をした YBCO をレールに乗せると、YBCO はレール上を浮遊した。そして、ある程度の力で YBCO を押してみると、YBCO は押された方向に動いた。この時、YBCO はレール上を滑り、レールから外れることはなかった。しかし、ある一定の力を超えた力で押してみると、YBCO はレールから外れてしまった。次に、磁場中冷却をした YBCO をレールに乗せると、YBCO はレールに引っ付いていて、持ち上げようとすると、YBCO がレールに引っ付こうとする引力を感じることができた。そして、YBCO がレールに引っ付いている状態でレールを反転させると、YBCO はレールから少し離れた位置で浮遊し、YBCO を押してみると、YBCO は押された方向に動いた。この時、運動の速さは零磁場冷却をした時よりも速く、軽い力でより簡単に動いた。

4. 考察

4.1. Pb ではなく、Pb-In を用いた理由

本実験では、Pbではなく、Pb-Inを用いた。Pb-Inを用いた理由は、Pbは超伝導転移温度が7.2 K (実験動画を参照)であるが、その時の抵抗率が非常に小さく、今回の実験系では測ることが難しいからではないかと考えられる。まず、7.2 Kにおける Pb の抵抗率を求めてみる。[1] より、

参考文献

[1] 八光電機, "各種物質の性質: 金属の電気抵抗," URL: https://www.hakko.co.jp/library/qa/qakit/html/h01100.htm.