On the Laws of a Metabelian Variety

D. E. COHEN

Imperial College, London, England
Communicated by Graham Higman
Received January 20, 1965

1. Introduction

Many varieties of groups are known to have a finite basis for their laws (for the definition and general properties of varieties, see [6]–[8]). Among such varieties are any variety consisting of nilpotent groups of bounded class [4] and any variety generated by a finite group [9]. It is not known whether all varieties have a finite basis for their laws. In this paper we prove the following theorem.

THEOREM A. Any variety consisting of metabelian groups has a finite basis for its laws.

Because of the relationship between varieties of groups and verbal subgroups of free groups, Theorem A is equivalent to

THEOREM B. The free metabelian group of countable rank has maximum condition on verbal subgroups.

Our main result is stronger than this.

THEOREM C. A free metabelian group of arbitrary rank has maximum condition on characteristic subgroups.

This may be compared with a result of Hall [2], which states that a finitely generated metabelian group has maximum condition on normal subgroups.

The proof uses a matrix representation, due to Magnus [5], to translate the problem to one of ring theory. The ring-theoretic result may be regarded as a generalization to an infinite number of variables of the result that the polynomial ring in a finite number of variables over a Noetherian ring is itself Noetherian. We begin with an interesting proposition on abstract closure relations, communicated to me by G. Higman, which greatly simplifies my original proofs of the ring-theoretic results.

268 COHEN

2. RING THEORY

An algebraic closure relation on a set C is a rule assigning to each subset X of C a subset cl X of C subject to the conditions (i) $X \subseteq \operatorname{cl} X$, (ii) if $X \subseteq Y$, then $\operatorname{cl} X \subseteq \operatorname{cl} Y$, (iii) $\operatorname{cl} X = \operatorname{cl} X$, (iv) if $x \in \operatorname{cl} X$, then $x \in \operatorname{cl} X_0$, for some finite $X_0 \subseteq X$. Such a relation may be defined by giving the closed subsets of C, and the most important example for us occurs when C is a commutative ring and the closed sets are the ideals of C. An algebraic closure relation has *finite basis property* (f.b.p.) if every closed set is the closure of a finite subset. This is equivalent, by the well-known argument, to the maximum condition on closed sets.

A partially ordered set is said to be *partially well-ordered* if every infinite sequence of elements contains a (nonstrictly)-increasing subsequence (see [3] for equivalent definitions).

The following example will be needed. Let V be the set of all finite sequences of nonnegative integers, the empty set being regarded as a sequence of zero length. We define two orderings on V,

 $(i_1,...,i_m) < (j_1,...,j_n)$ if m < n, or m = n and, for some r, $i_r < j_r$ but $i_s = j_s$ for all s > r;

 $(i_1,...,i_m) \leqslant (j_1,...,j_n)$ if $m \leqslant n$, and, for some one-one order preserving map φ of (1,...,m) into (1,...,n), $i_r \leqslant j_{\varphi r}$ for all r. It is easy to check that (V,\leqslant) is well-ordered, and that the identity map is an order-homomorphism from (V,\leqslant) to (V,\leqslant) . By theorem 4.3 of [3], (V,\leqslant) is partially well-ordered.

Now let C be any set with an algebraic closure relation and P any partly ordered set. We define on $C \times P$ an algebraic closure relation, which we say is *induced* by the closure relation on C and the partial ordering on P, by the requirement: $(c, p) \in cl\ X$ iff $\exists (c_1, p_1),..., (c_n, p_n) \in X$ such that

$$c\in\operatorname{cl}(c_1\;,...,\;c_n)$$

and $p_i \leqslant p$, i = 1,...,n. (It is easy to check that this is an algebraic closure relation on $C \times P$.)

PROPOSITION 1. If the closure operation on C has f.b.p., and P is partially well-ordered, then the induced operation on $C \times P$ has f.b.p.

Proof. Let X be any closed subset of $C \times P$. For any $p \in P$, define $X(p) \subseteq C$ by $X(p) \times p = X \cap (C \times p)$. By the definition of the operation in $C \times P$, X(p) is a closed subset of C, and, if p < q then $X(p) \subseteq X(q)$. We order the collection of indexed sets X(p) for all p by X(p) < X(q) iff p < q and X(p) = X(q) as sets.

Then, for any p, $\exists q$ with X(p) > X(q), and X(q) minimal. For otherwise there would be an infinite sequence $X(p_1) > X(p_2) > \cdots$, which is impossible since P, being partially well-ordered, contains no strictly-decreasing infinite sequence. Also there can be only a finite number of minimal elements. For if there were an infinite number, we could find an infinite sequence $p_1 < p_2 < \cdots$ such that each $X(p_i)$ is minimal. But then, if i < j we have $X(p_i) \subseteq X(p_j)$ because $p_i < p_j$, and also $X(p_i) \neq X(p_j)$ because $X(p_j)$ is minimal. This is impossible since C has f.b.p.

Let, then, $X(p_1),...,X(p_r)$ be the minimal elements. As C has f.b.p. we can find elements c_{ij} , $i=1,...,n_j$, such that $X(p_j)=\operatorname{cl}\{\bigcup_i c_{ij}\}$. Now take any $(c,p)\in X$. Then $c\in X(p)$, and, for some $j,X(p_j)< X(p)$, so that $c\in X(p_j)$. From the definition of the closure operation in $C\times P$, it follows that $X=\operatorname{cl}\{\bigcup_{i,j} c_{ij}\}$, as required.

We can now proceed to the ring theory. Let J denote the positive integers, and let R be a commutative ring and $S = R[x_1, x_2, ...]$. Let Φ denote the set of all one-one order preserving maps of J into itself.

DEFINITION 1. An ideal I of S is called a Φ -ideal if whenever the polynomial $p(x_1, x_2,...) \in I$, then $p(x_{\phi_1}, x_{\phi_2},...) \in I$ for any $\varphi \in \Phi$.

Definition 2. Let M_0 be the free R-module with basis t_1 , t_2 ,.... A submodule N_0 of M_0 is called a Φ -submodule if whenever

$$\sum r_i t_i \in N_0$$
 then $\sum r_i t_{\varphi i} \in N_0$ for any $\varphi \in \Phi$.

DEFINITION 3. Let M be the free S-module with basis t_1 , t_2 ,.... A submodule N of M is called a Φ -submodule if whenever

$$\sum p_i(x_1, x_2, ...) t_i \in N \quad then \quad \sum p_i(x_{m1}, x_{m2}, ...) t_{mi} \in N \quad for \ any \quad \phi \in \Phi.$$

PROPOSITION 2. If R is a Noetherian domain then S has maximum condition on Φ -ideals.

Proof. We define the weight of a monomial $ax_1^{i_1} \cdots x_n^{i_n}$ to be the sequence $(i_1, ..., i_n) \in V$. The leading term of a polynomial is the term of maximal weight in (V, \leq) and the weight of a polynomial is the weight of its leading term. We can define a map $\theta: S \to R \times V$ by $\theta p = (b, wtp)$, where b is the leading coefficient of p. The closure operation on R in which the closed sets are ideals has f.b.p. because R is Noetherian. By Proposition 1, the closure operation on $R \times V$ induced from this operation on R and the ordering \leq on V has f.b.p. It is easy to see that if I is a Φ -ideal of S, then θI is a closed subset of $R \times V$.

270 COHEN

Let $\theta I = \text{cl}\{\theta p_1, ..., \theta p_r\}$. It is easy to check that for any $p \in I$, $\exists q$ in the Φ -ideal spanned by $p_1, ..., p_r$ such that $\theta q = \theta p$, and that this implies wt(p-q) < wtp. Since (V, \leq) is well-ordered it follows by induction that I is the Φ -ideal spanned by $p_1, ..., p_r$. So we have shown any Φ -ideal is finitely spanned as Φ -ideal, which is equivalent to the proposition.

PROPOSITION 3. If R is a Noetherian domain then M has maximum condition on Φ -submodules.

Proof. We define a map $\pi: M \to R \times V \times J$ by $\pi 0 = 0 \times V \times J$, and, if $u = \sum_{i=1}^n p_i t_i$ where $p_n \neq 0$ and p_n has leading coefficient $a, \pi u = (a, wtp_n, n)$. We define two orderings on $V \times J$: 1. $((i_1, ..., i_m), r) \leq ((j_1, ..., j_n), s)$ iff r < s or r = s and $(i_1, ..., i_m) \leq (j_1, ..., j_n)$; 2. $((i_1, ..., i_m), r) \leq ((j_1, ..., j_n), s)$ iff there is a one-one order-preserving map $\varphi: J \to J$ with $\varphi r = s, \varphi m \leq n$, and $i_k \leq j_{\varphi k}$, k = 1, ..., m. It is easy to see that $(V \times J, \leq)$ is well-ordered and that the identity is an order-homomorphism from $(V \times J, \leq)$ to $(V \times J, \leq)$. If we can show that $(V \times J, \leq)$ is partially well-ordered, we can complete the proof exactly as the proof of Proposition 2, with $V \times J$ replacing V.

So let us take an infinite sequence (α_i, r_i) in $V \times J$. Taking a subsequence if necessary, we may assume that $r_1 \leqslant r_2 \leqslant \cdots$ and that either α_k contains fewer than r_k elements for all k or that α_k contains at least r_k elements for all k. In the former case, a subsequence (α_{k_n}, r_{k_n}) such that α_{k_n} is an increasing subsequence of (V, \leqslant) [which can be found, since (V, \leqslant) is partially well-ordered] will be an increasing subsequence of $V \times J$. For the latter case, when we have an element (α, r) where $\alpha = (i_1, ..., i_m)$ with $m \geqslant r$, we shall call $(i_1, ..., i_{r-1})$ the initial part of (α, r) , $(i_{r+1}, ..., i_m)$ the final part (the initial and final parts may be empty), and i_r the pivotal element. Then, given a sequence (α_k, r_k) of the second kind, we can take a subsequence such that the initial parts form an increasing sequence in (V, \leqslant) ; then a subsequence of this latter such that the final parts form an increasing sequence in (V, \leqslant) . The resulting subsequence of our original sequence is an increasing sequence in (V, \leqslant) , as required.

COROLLARY. If R is a Noetherian domain, M_0 has maximum condition on Φ -submodules.

Let N_0 be a Φ -submodule of M_0 . Then SN_0 is a Φ -submodule of M, and $M_0 \cap SN_0 = N_0$ (retracting S onto R and M onto M_0 by mapping x_i to 1, all i), whence the result. The corollary can also be proved directly, using a map $M_0 \to R \times J$.

Proposition 1 can also be used to give a variant of the standard proof that R[x] is Noetherian if R is, or to prove various extensions of Proposition 2.

3. GROUP THEORY

Let F be a free group, A = F/F', and B = F/F'' the corresponding free abelian and free metabelian groups. We will use X to denote a basis of F, A, or B.

We proceed to the proof of Theorem C. When B has finite rank, the theorem is an immediate consequence of Hall's theorem so we need only consider the case when X is infinite. Suppose X is not countable and let X_0 be a countable subset of X. Let K be a characteristic subgroup of B, and let B_0 be the subgroup of B generated by X_0 . Any $k \in K$ is of form $k = \theta k_0$ with $k_0 \in K \cap B_0$ and θ an automorphism of B induced by a permutation of X, i.e., K is determined by $K \cap B_0$. Now $K \cap B_0$ is a characteristic subgroup of B_0 , since any automorphism of B_0 can be extended to an automorphism of B mapping $X-X_0$ identically. Hence the theorem is true for B if it is true for B_0 , and we shall assume for the remainder of the proof that X is countable.

Magnus [5] shows that if R is a normal subgroup of F, and G = F/R, $\Gamma = ZG$ the integral group ring of G, and T the free Γ -module with basis t_1 , t_2 ,..., then F/R' is isomorphic to a group of matrices of the form $\begin{bmatrix} g & t \\ 0 & 1 \end{bmatrix}$ with $g \in G$, $t \in T$, namely to that subgroup of the group of all such matrices which is generated by the matrices

$$\begin{bmatrix} \bar{x}_i & t_i \\ 0 & 1 \end{bmatrix},$$

where \bar{x}_i is the image in G of x_i in F. Under this isomorphism an element is in R/R' if and only if its image is of form $\begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$ for some $t \in T$. The matrix representation is just a convenient way of expressing F/R' as an extension of R/R' by F/R. Magnus states the result in full generality, but only proves a special case. However, in the language of the free differential calculus [I], a homomorphism of F into the matrix groups is defined by

$$f \to \begin{bmatrix} f & \sum \frac{\overline{\partial f}}{\partial x_i} t_i \\ 0 & 1 \end{bmatrix},$$

where $f \in G$ is the image of $f \in F$, and R' is the kernel of this homomorphism ([1], Proposition 4.9).

We apply this with R = F'. Let $S^* = Z[x_1, x_1^{-1},...]$ be the group ring of A, M^* the free S^* -module with basis t_1 , t_2 ,..., $S = Z[x_1, x_2,...]$, and M the S-submodule of M^* spanned by t_1 , t_2 ,.... Then we will regard B as a group of matrices of form $\begin{bmatrix} a & u \\ 0 & 1 \end{bmatrix}$ with $a \in A = B/B'$, $u \in M^*$, and the matrices $\begin{bmatrix} a^* & t^* \\ 0 & 1 \end{bmatrix}$ form a basis of B.

272 COHEN

Let K be a characteristic subgroup of B. Then $K \cap B'$ consists of matrices $\begin{bmatrix} 1 & u \\ 0 & 1 \end{bmatrix}$. Let $N^* = \{u \in M^*; \begin{bmatrix} 1 & u \\ 0 & 1 \end{bmatrix} \in K \cap B'\}$. Then N^* is an S^* -submodule of M^* because $K \cap B'$ is normal in B. Let N consist of those elements of N^* containing only positive powers of the x_i . Plainly N is an S-submodule of M with $N^* = S^*N$. Now any permutation of the basis elements of B defines an automorphism of B. Since $K \cap B'$ is characteristic in B, and any $\varphi \in \Phi$ has the same effect on any finite set of natural numbers as some permutation of the natural numbers, we see easily that N is a Φ -submodule of M.

Suppose $K_1\subseteq K_2\subseteq \cdots$ is an increasing sequence of characteristic subgroups of B. Then $N_1\subseteq N_2\subseteq \cdots$ is an increasing sequence of Φ -submodules of M. By Proposition 3, this sequence is ultimately constant, i.e., the sequence $K_1\cap B'\subseteq K_2\cap B'\subseteq \cdots$ is ultimately constant. Also B/B' is a free Z-module with basis x_1 , x_2 ,..., and $K_1B'/B'\subseteq K_2B'/B'\subseteq \cdots$ is an increasing sequence of Φ -submodules of B/B', so is ultimately constant by the corollary to Proposition 3. Hence the sequence $K_1\subseteq K_2\subseteq \cdots$ is ultimately constant, and Theorem C is proved.

- **Remark** 1. When B has finite rank, a simplification of the above argument shows that B (and hence any finitely generated metabelian group) has maximal condition for normal subgroups. This proof is not significantly different from that of Hall.
- **Remark** 2. It is plainly possible to define Φ -subgroups of B with respect to a basis X, and show that B has maximum condition on normal Φ -subgroups. However, characteristic subgroups are Φ -subgroups with respect to any basis, whereas, in general, a Φ -subgroup for one basis will not be a Φ -subgroup for a different basis.
- Remark 3. I do not know if Theorems B and/or C apply to free-Abelian-by-nilpotent groups. The methods of this paper do not extend directly, since the free-Abelian-by-class-two group does not have maximum condition on Φ -subgroups.
- Remark 4. The laws of a nilpotent variety may be chosen from a particularly simple infinite set. I do not know if such a set can be found for metabelian varieties. There is a metabelian variety which cannot be defined by a finite number of the laws n:

$$x_1^{\ n}=1, [[x_1^{\ },x_2^{\ }],[x_3^{\ },x_4^{\ }]]=1, \qquad \text{and} \qquad [x_1^{n_1},x_2^{n_2},x_{i_1}^{n_3},x_{i_2}^{n_4},...]^r=1$$

for arbitrary i_1 , i_2 ,..., n_1 , n_2 ,..., r.

REFERENCES

- 1. Fox, R. H. Free differential calculus I. Ann. Math. 57 (1953), 547-560.
- HALL, P. Finiteness conditions for soluble groups. Proc. London Math. Soc. 4 (1954), 419-436.
- 3. HIGMAN, G. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2 (1952), 326-336.
- LYNDON, R. C. Two notes on nilpotent groups. Proc. Am. Math. Soc. 3 (1952), 579-583.
- 5. Magnus, W. On a theorem of Marshall Hall. Ann. Math. 40 (1939), 764-876.
- 6. NEUMANN, B. H. Identical relations in groups. Math. Ann. 114 (1937), 506-525.
- Neumann, H. On varieties of groups and their associated near-rings. Math. Zeit. 65 (1956), 36-69.
- Neumann, H. Varieties of groups. (Duplicated lecture notes). Manchester College of Science and Technology, Manchester, England, 1963.
- OATES, S. AND POWELL, M. B. Identical relations in finite groups. J. Algebra 1 (1964), 11-59.