Ingineria Reglarii Automate (IRA) *Laborator*

Regulatoare PID

Concept

Scop: prescrie comanda (u) pentru a anula eroarea (e \rightarrow 0)

AID

Proportional: comanda este direct proportionala cu eroarea

Integrativ: comanda este direct proportionala cu cantitatea de eroare acumulata

Derivativ: comanda este direct proportionala cu viteza de variatie a erorii

se insumeaza aceste 3 efecte

Legea de reglare de tip P

Proportional: comanda este direct proportionala cu eroarea

Expresia comenzii: $u(t) = K_R \cdot \varepsilon(t)$

Functia de transfer: $H_{R_P}(s) = K_R$

 K_R - coeficientul de proportionalitate

Raspunsul regulatorului P la o treapta de referinta de amplitudine Δr

Legea de reglare de tip PI

Proportional: comanda este direct proportionala cu eroarea

Integrativ: comanda este direct proportional cu cantitatea de eroare acumulata

Expresia comenzii: $u(t) = K_R \cdot \varepsilon(t) + \frac{K_R}{T_i} \cdot \int_0^t \varepsilon(\tau) d\tau$

Functia de transfer: $H_{R_{PI}}(s) = K_R \left(1 + \frac{1}{T_i \cdot s}\right)$

 K_R - coeficientul de proportionalitate T_I - constanta de integrare

Raspunsul regulatorului PI la o treapta de referinta de amplitudine Δr

Legea de reglare de tip PD (ideala)

Proportional: comanda este direct proportionala cu eroarea

Derivativ: comanda este direct proportionala cu viteza de variatie a erorii

Expresia comenzii: $u(t) = K_R \cdot \varepsilon(t) + K_R \cdot T_d \cdot \frac{d\varepsilon(t)}{dt}$

Functia de transfer: $H_{R_{PD}}(s) = K_R(1 + T_d \cdot s)$

 K_R - coeficientul de proportionalitate

 T_D - constanta de derivare

!!! Nu este implementabil fizic datorita componentei derivative

Raspunsul regulatorului PD la o treapta de referinta de amplitudine Δr

Legea de reglare de tip PID (ideala)

Proportional: comanda este direct proportionala cu eroarea

Integrativ: comanda este direct proportional cu cantitatea de eroare acumulata

Derivativ: comanda este direct proportionala cu viteza de variatie a erorii

Expresia comenzii:
$$u(t) = K_R \cdot \varepsilon(t) + \frac{K_R}{T_i} \cdot \int_0^t \varepsilon(\tau) d\tau + K_R \cdot T_d \cdot \frac{d\varepsilon(t)}{dt}$$

Functia de transfer:
$$H_{R_{PID}}(s) = K_R \left(1 + \frac{1}{T_i \cdot s} + T_d \cdot s \right)$$

 K_R - coeficientul de proportionalitate

 T_I - constanta de integrare

 T_D - constanta de derivare

!!! Nu este implementabil fizic datorita componentei derivative

Legi de reglare de tip PID implementabile fizic

Legea de reglare de tip PD_f (PD cu filtrare)

Functia de transfer:
$$H_{R_{PDf}}(s) = K_R \left(1 + \frac{T_d \cdot s}{\alpha \cdot T_d \cdot s + 1} \right)$$

Legea PID_f (PID cu filtrare) paralel

Functia de transfer:
$$H_{R_{PIDf}}^{P}(s) = K_{R} \left(1 + \frac{1}{T_{i} \cdot s} + \frac{T_{d} \cdot s}{\alpha \cdot T_{d} \cdot s + 1} \right)$$

 $\alpha \ll 1$ - pozitiv

Legea PID_f (PID cu filtrare) serie

Functia de transfer:
$$H_{R_{PIDf}}^{S}(s) = K_{R}\left(\left(1 + \frac{1}{T_{i} \cdot s}\right) \cdot \frac{T_{d} \cdot s + 1}{\alpha \cdot T_{d} \cdot s + 1}\right)$$

Proiectare (acordare) regulator PID

Determinarea unui set de valori pentru K_R , T_I , T_D care indeplinesc cerintele impuse in proiectare (performante, constrangeri)

Parametri de acord ai regulatorului PID

Implementare regulator PID

Regulatorul PID este doar un concept generic ce poate fi pus in practica in multiple moduri

Circuit electronic analogic cu Amplificatoare Operationale

Microcontroller

PID Industrial

PLC

PC Industrial

Placa DAQ+C

Implementare regulator PID in Simulink

Kr, Ti, Td, a – variabile definite in workspace