

LABORATÓRIO DE CIRCUITOS ELÉTRICOS III EXPERIÊNCIA 03

Carga Equilibrada e Desiquilibrada em Delta

1. Objetivos:

Familiarizar ao aluno com o sistema trifásico.

Verificar a circulação de correntes no neutro.

Sequência de fases

2. Introdução Teórica:

Ligação em ∆ (delta)

Para uma ligação em Δ ou triangulo ou delta, a tensão de linha (fase-fase) e a tensão de fase (V_{AC}) tem o mesmo valor, tal como pode-se observar na Figura 1. A corrente de linha ($I_{\alpha A}$, I_{bB} , I_{cC} ,) será $\sqrt{3}$ vezes maior que a corrente de fase (I_{AB} , I_{CA} , I_{BC}).

Figura 1- Ligação em ∆ (delta)

A Figura 2 mostra a transformação delta — estrela (Δ -Y) a qual é muito utilizado na análise de circuitos.

Figura 2- Transformação delta-estrela.

A sequência de fases de uma linha trifásica.

Em particular, quando se necessita interligar redes trifásicas é de suma importância que a sequência de fases de ambas as redes seja a mesma (positiva ou negativa).

Experimentalmente é possível determinar a sequência de fases examinando o sentido de rotação de um motor trifásico ou examinando o comportamento de uma carga desequilibrada.

A Figura 3 mostra um circuito desequilibrado, com duas lâmpadas e uma bobina. Nesta Figura 3, se a lâmpada " α " for mais brilhante que a lâmpada " β ", a sequência é ABC ou positiva; se a lâmpada " β " for mais brilhante que a lâmpada " α " a sequência é CBA ou negativa.

Figura 3 – Determinação da sequência de fases.

Responder no PREPARATÓRIO: Se no lugar do indutor da Figura 4 for trocado por um capacitor, a conclusão sobre a sequência de fases seria exatamente a contrária do anterior?

A Figura 4 apresenta outra alternativa para determinar a sequência de fases em um sistema trifásico. Primeiro, na montagem do circuito atribui-se arbitrariamente a marcação "A" à fase que está ligada ao capacitor e procura-se determinar qual das outras duas fases (B ou C) sucede a fase A no tempo. Conectar um voltímetro entre os terminais 1 e 2 e o valor da resistência deverá ser igual ou bem próximo à reatância capacitiva (R = Xc; Xc = 1/wC). Se leitura do voltímetro for maior que a tensão de fase-fase, a sequência será: ABC; se for menor, será ACB.

Figura 4. – Circuito trifásico com carga desequilibrada

3. Material

- Barramento da Bancada energizada de forma trifásica;
- 3 reostatos de 230 Ω de 1,5 A ou maior.
- 1 bobina de 500 (2,5 Ω , 0,011 H, 2,5 A) ou 1000 (2,5 Ω , 0,044 H, 1,25 A) espiras. Usar com núcleo¹
- 1 voltímetro ferro móvel 400 V.
- 1 amperímetro HB ca. 0/5/25 A
- 1 amperímetro tipo alicate HB, escala 10 A.
- Multímetro digital Tektronix DM250;

¹ L 1000 espiras com núcleo aprox. 1H; L 500 espiras com núcleo aprox. 0,23H; L 250 espiras com núcleo aprox. 0,052H

4. Parte Experimental

- A) Ligação Delta Estrella
- 4.1 Ligar os três reostatos (pode usar valor menor de 230 Ω , só tenha cuidado com o valor da corrente) em delta e medir: as 3 correntes de fase, as 3 correntes de linha e as três tensões de fase-fase ou linha. Preencher a tabela 1.

Tabela 1.- Tabela de corrente e Tensão

Corrente de linha	Corrente de fase	Tensão de fase-fase ou linha
I _A =	I _{AB} =	V _{ab} =
I _B =	I _{BC} =	V _{ac} =
Ic =	I _{CA} =	V _{bc} =

Subíndice A, B e C: lado da carga; subíndice a, b e c: lado da fonte;

- 4.2 Desequilibrar o circuito, atuando em dois reostatos, de maneira que um deles aumente a sua corrente para 1,2 A e o outro para 1,5 A. Refazer as medidas de tensão e corrente do item anterior A).
- B) Sequência de fase
- 4.3 Monte o circuito mostrado na Figura 5, onde a reatância, $X_L = \omega L$, deverá ter o mesmo

valor que as resistências, R. usar a bobina de 500 espiras ou de 1000 espiras com núcleo.

Se a tensão V_{AN} for maior que a tensão V_{CN} então a sequência da fonte será positiva ou direta, caso contrário a sequência da fonte será negativa ou inversa.

Figura 5. – Circuito trifásico – sequência de fase

Meça as correntes e tensões para preencher a Tabela 2. Como parte experimental, teste trocando A com B da saída da fonte

Tabela 2.- Tabela de Tensão

	Corrente de linha	Tensão de fase-neutro
I _A =		V _{AN} =
<i>I</i> _B =		V _{BN} =
Ic =		V _{CN} =

5. Relatório:

5.1. Fazer os diagramas fasoriais das tensões e correntes para os casos (A) a 4.3) do item anterior → Parte Experimental.

5.2. Resultados Analítico:

- 5.2.1. Com os valores encontrados no laboratório, monte o circuito como é indicado no item A), solucione o circuito e determine os valores solicitados para preencher a Tabela 1.
- 5.2.2. Com as informações do item 4.2 solucione o circuito e determine os valores para preencher a Tabela 1.
- 5.2.3. Com as informações do item 4.3 solucione o circuito e determine os valores para preencher a Tabela 2.

5.3. Resultados Programação:

Realize os scripts de acordo com o solicitado no item A) a 4.3, pode-se auxiliar com as equações do item 5.2.

5.4. Resultados Simulação:

Mediante a utilização de um simulador (bancada virtual) obtenha as medições solicitadas no item A) a 4.3.

- 5.5. Com os resultados das tabelas 1 Experimentais, Analítico, Programação e Simulação
 - 5.5.1. Utilizando os valores de tensão e corrente, nos circuitos equilibrados e desiquilibrado dos resultados Experimentais, calcule o valor da resistência da carga.
 - 5.5.2. Utilizando as leituras dos voltímetros e amperímetros (tensão e corrente) e usando o valor real dos reostatos da Tabela 1, calcule a potência trifásica aparente e ativa para os dois circuitos (itens A) e 4.2)
 - 5.5.3. Utilizando as leituras dos voltímetros e amperímetros (tensão e corrente) da Tabela 2 (item 4.3), encontre a sequência de fase.
- 5.6. Compare os resultados Experimentais, Analíticos, Programação e de Simulação das tabelas (medições) e do item 4 (Parte Experimental), assim como os resultados do item 5.5 anterior, analise-los, mostre as diferencias e ressalte os erros mais grosseiros. Explique o porquê dessas diferenças.
- 5.7. Explique por que no item 4.2 não é válida a relação $I_{\scriptscriptstyle L}=I_{\scriptscriptstyle f}\times\sqrt{3}$
- 5.8. Conclusões e comentários, procurando relacionar os valores obtidos com os valores teóricos esperados, tudo em base ao item anterior.

PREPARATÓRIO:

- (a) Pesquise sobre sistemas trifásico equilibrado e desiquilibrado em delta, fornecer exemplos de cargas em delta equilibrada e desequilibrada. Relate a sua pesquisa em no máximo duas páginas. (colocar no Relatório) Assim como outras formas de encontrar a sequência de fase de um sistema trifásico.
- (b) De acordo com o item 4 (Parte Experimental), determine analiticamente todas as partes que é solicitado nesse item (de 4.1 a 4.3).
- (c) Num simulador de circuitos elétricos, realize mediante medidor o indicado do item 4 parte experimental.

CUIDADOS GERAIS: Após montar o circuito teste, verifique se as conexões estão fixas e seguras. Lembre os cuidados de segurança num laboratório de circuitos elétricos. Aguarde o professor verificar a montagem do circuito antes de ligar a fonte.