Assignment -2

Python Programming

Assignment Date	26 September 2022
Student Name	Sinthuri S
Student Roll Number	820419106054
Maximum Marks	2 Marks

QuestionS

- 1. Download the dataset: Dataset
- 2. Load the dataset.
- 3. Perform Below Visualizations.
- Univariate Analysis
- Bi Variate Analysis
- Multi Variate Analysis
- 4. Perform descriptive statistics on the dataset.
- 5. Handle the Missing values.
- 6. Find the outliers and replace the outliers
- 7. Check for Categorical columns and perform encoding.
- 8. Split the data into dependent and independent variables.
- 9. Scale the independent variables
- 10. Split the data into training and testing

#import libraries
import pandas as pd
import numpy as np

In []:

df=pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Churn_Modelling.csv")

In []:

df.head()

Out[16]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balanc
0	1	15634602	Hargrave	619	France	Female	42	2	0.0
1	2	15647311	Hill	608	Spain	Female	41	1	83807.8
2	3	15619304	Onio	502	France	Female	42	8	159660.8
3	4	15701354	Boni	699	France	Female	39	1	0.0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.8
_									

In []:

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

In []:

#univariate analysis
df[['CustomerId','Surname','CreditScore','Geography','Age','Tenure']].describe()

Out[17]:

	CustomerId	CreditScore	Age	Tenure
count	1.000000e+04	10000.000000	10000.000000	10000.000000
mean	1.569094e+07	650.528800	38.921800	5.012800
std	7.193619e+04	96.653299	10.487806	2.892174
min	1.556570e+07	350.000000	18.000000	0.000000
25%	1.562853e+07	584.000000	32.000000	3.000000
50%	1.569074e+07	652.000000	37.000000	5.000000
75%	1.575323e+07	718.000000	44.000000	7.000000
max	1.581569e+07	850.000000	92.000000	10.000000

sns.histplot(df.Age,kde=True)

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd927df2c90>

In []:

#plot for the gender column
sns.countplot(df.Gender)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarn ing: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments w ithout an explicit keyword will result in an error or misinterpretation. FutureWarning

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd927a4f1d0>


```
#Bivariate Analysis
df[['CustomerId','Surname','CreditScore','Geography','Gender','Age']].corr()
```

Out[20]:

	CustomerId	CreditScore	Age
CustomerId	1.000000	0.005308	0.009497
CreditScore	0.005308	1.000000	-0.003965
Age	0.009497	-0.003965	1.000000

In []:

```
sns.scatterplot(df.CreditScore,df.Age)
plt.ylim(0,100)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarn ing: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

Out[21]:

(0.0, 100.0)

#Multivariate Analysis
sns.pairplot(data=df[['CustomerId','Geography','Gender','CreditScore','Age','Balance']],hue

Out[22]:

<seaborn.axisgrid.PairGrid at 0x7fd927106990>


```
In [ ]:
```

```
data.describe()
```

Out[4]:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	N
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	

→

```
In [ ]:
```

```
#mode
df['Age'].mode()
```

Out[23]:

0 37
dtype: int64

In []:

```
#calculation of the mean(for Age)
df['Age'].mean()
```

Out[24]:

38.9218

In []:

```
#calculation of the mean and round the result(for Age)
round(df["Age"].mean(),2)
```

Out[25]:

38.92

```
#calculation of the median(for Age)
df["Age"].median()
```

Out[26]:

37.0

In []:

```
#check for missing values
data.isnull().sum()
```

Out[5]:

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

In []:

```
#find the outliers and replace the outliers
import seaborn as sns
sns.boxplot(x=df['Age'])
```

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd922451290>


```
sns.boxplot(x=df['Tenure'])
```

Out[28]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd927106950>

In []:

#encoding

from sklearn.preprocessing import LabelEncoder

In []:

```
le=LabelEncoder()
```

In []:

```
data['Geography']=le.fit_transform(data['Geography'])
data['Gender']=le.fit_transform(data['Gender'])
```

In []:

data.head()

Out[11]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balanc
0	1	15634602	Hargrave	619	0	0	42	2	0.0
1	2	15647311	Hill	608	2	0	41	1	83807.8
2	3	15619304	Onio	502	0	0	42	8	159660.8
3	4	15701354	Boni	699	0	0	39	1	0.0
4	5	15737888	Mitchell	850	2	0	43	2	125510.8
_									
4									

```
In [ ]:
```

```
y=data['EstimatedSalary']
x=data.drop(columns=['EstimatedSalary'],axis=1)
```

```
names=x.columns
```

In []:

```
names
```

Out[17]:

```
'IsActiveMember', 'Exited'],
  dtype='object')
```

In []:

```
#x -Independent
#y -Dependent
x=df.drop('Exited',axis=1)
y=df['Exited']
```

In []:

```
x.head()
```

Out[42]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balanc
0	1	15634602	Hargrave	619	France	Female	42	2	0.0
1	2	15647311	Hill	608	Spain	Female	41	1	83807.8
2	3	15619304	Onio	502	France	Female	42	8	159660.8
3	4	15701354	Boni	699	France	Female	39	1	0.0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.8
_									
4									•

In []:

```
y.head()
```

Out[43]:

```
1
```

0 1

2 1

3 0

Name: Exited, dtype: int64

```
#scale the independent variables
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale=StandardScaler()
```

In []:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
print('X Train shape:{{}}'.format(x_train.shape,y_train.shape))
print('X Test Shape:{{}}'.format(x_test.shape,y_test.shape))
```

```
X Train shape:(8000, 13),Y.Train shape:(8000,)
X Test Shape:(2000, 13),Y Test Shape(2000,)
```

from sklearn.model_selection import train_test_split