10장. 카운터와 레지스터

01. 비동기 카운터

02. 동기 카운터

03. 레지스터

04. 시프트 레지스터 카운터

- ❖ 비동기 카운터는 첫 번째 플립플톱 가 입력되고, 다른 플립플롭은 각 입력으로 사용한다.
- ❖ 비동기 카운터는 **리플(ripple) 카운터**라고도 부른다.
- ❖ 카운터에서 구별되는 상태의 수가 m일 때 modulo-m(간단히 mod-m, m 진)의 카운터이다.
- ❖ J-K 플립플롭 또는 T 플립플롭 사용
- ❖ 상향 카운터(up counter), 하향 카운터(down counter)

m진(mod-m) 카운터: 카운터의 상태의 수가 m개인 카운터

플립플롭 n개를 종속으로 연결하면 0부터 최대 (2^n-1) 까지 계수할 수 있다.

(0)	1	1 2 L	\ 2 \	$\sqrt{\Lambda}$	-/ 5 \	√ 6 \	√ 7 \
_('\ ' 厂	\	7 2 7	~ (+ /	7 3 /	7 0 7	7 /
\smile	\smile	\smile	\smile	\smile	\smile	\smile	$\overline{}$

<u> </u>	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	*
15-(14)-(13)	(12)	(11)	(10)-	(9)	(a)
							$ \bigcirc $

클록펄스	Q_D	Q_C	Q_B	Q_A	10진수
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	2
4	0	0	1	1	3
5	0	1	0	0	4
6	0	1	0	1	5
7	0	1	1	0	6
8	0	1	1	1	7
9	1	0	0	0	8
10	1	0	0	1	9
11	1	0	1	0	10
12	1	0	1	1	11
13	1	1	0	0	12
14	1	1	0	1	13
15	1	1	1	0	14
16	1	1	1	1	15

계수표

□ 비동기식 카운터의 설계 방법

- ① 모든 JK 플립플롭의 입력 J와 K를 1(+5V)에 연결한다.
- ② 첫 번째 플립플롭의 클록 입력에 외부 클록신호(CP)를 연결한다.
- \bigcirc 3 첫 번째 플립플롭의 출력 Q_A 를 두 번째 플립플롭의 클록입력에 연결한다.
- $oldsymbol{4}$ 두 번째 플립플롭의 출력 Q_R 를 세 번째 플립플롭의 클록입력에 연결한다.
- (5) 세 번째 플립플롭의 출력 Q_C 를 네 번째 플립플롭의 클록입력에 연결한다.

01 비

01 비동기식 카운터

□ 2비트, 3비트 비동기식 상향 카운터

2비트 비동기식 상향 카운터

3비트 비동기식 상향 카운터

4비트 비동기식 하향 카운터

클록펄스	Q_D	Q_C	Q_B	Q_A	10진수
1	1	1	1	1	15
2	1	1	1	0	14
3	1	1	0	1	13
4	1	1	0	0	12
5	1	0	1	1	11
6	1	0	1	0	10
7	1	0	0	1	9
8	1	0	0	0	8
9	0	1	1	1	7
10	0	1	1	0	6
11	0	1	0	1	5
12	0	1	0	0	4
13	0	0	1	1	3
14	0	0	1	0	2
15	0	0	0	1	1
16	0	0	0	0	0

계수표

4비트 비동기식 상향/하향 카운터

- $ilde{f \diamondsuit}$ S=1로 하면 MUX의 입력 D_1 과 출력 F가 연결 : 하향 카운터

4비트 비동기식 상향/하향 카운터

비동기식 10진 카운터

- ❖ 비동기식 10진 카운터(BCD 카운터, decade counter, mod-10 counter)
- ❖ 0에서 9까지의 카운트를 반복
- ❖ BCD 카운터를 구성하려면 4개의 플립플롭이 필요
- ❖ 16개의 상태 중에서 10개의 상태만을 사용

상태표

클록펄스	Q_D	Q_C	Q_B	Q_A	10진수
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	2
4	0	0	1	1	3
5	0	1	0	0	4
6	0	1	0	1	5
7	0	1	1	0	6
8	0	1	1	1	7
9	1	0	0	0	8
10	1	0	0	1	9

 $extstyle Q_B$ 와 Q_D 출력을 NAND 게이트로 결합하고 그 출력을 모든 플립플롭이 clear 입력에 연결 extstyle 1

□ 비동기식 카운터의 동작속도

$$f_{\max} \le \frac{1}{n \times t_{pd}}$$

 f_{\max} : 최대 클록 주파수, n : 플립플롭 수, t_{pd} : 플립플롭 당 전파지연시간

예를 들어, t_{pd} =20ns, 플립플롭의 수가 4개인 4비트 2진 비동기식 카운터를 설계할 경우 클록 주파수는 12.5[MHz] 이하이어야 한다.

$$f_{\text{max}} \le \frac{1}{n \times t_{pd}} = \frac{1}{4 \times 20 \times 10^{-9}} = 12.5 \,\text{M} \,\text{Hz}$$

3. 다음 중 카운터에 관한 설명으로 틀린 것은?

- ⑦ 토글(T) 플립플롭의 원리를 이용한다.
- ① MOD-N 카운터는 모듈러스가 N이다.
- © 동기식 카운터는 주로 고속에 사용된다.
- 관 플립플롭이 4개라면 계수는 4가지 경우가 존재한다.

4개의 플립플롭으로는 $16(=2^4)$ 가지 상태가 존재한다.

5. modulo-6 계수기를 만들려면 최소 몇 개의 플립플롭이 필요한가?

⑦ 1개

및 2개

및 3개

랭 6개

카운터의 상태 수가 8개이므로 $[\log_2 8] = 3$ 개이다.

8. 10진	카운티	티를구기	성하려.	고한대	ł. 플립플	돌 품을	볓단	으로 하	면가장	} 적절 현	ŀ
가?					•						
∄ 2단		⊕ 3	단		日 4단		a	5단			•

11. 비동기식 99진 리플 카운터를 만들려면 몇 개의 플립플롭이 필요한가?

(a) (a) a a) il	•	ा टच्छो	•		-	<a>	-	-
② 4개	•	델 5개	•	🕒 6개	•	④ 7개	•	•

15. 3개의	플립	活 。	로구성	된키	1운터의	보듈리:	스는?	
⊕ MOD	-3				(J) MOD	-4		
(I) MOD	-8				⊕ MOD	-16		•

24. 비동기식 카운터에 대한	설명중	옳지 (않은 것	<u>e</u> ?	•
② 설계가 쉽다.					
④ ripple counter라고도한다.					
⑤ 동기식에 비하여 속도가 배	르다	•	•		
② 전단의 출력이 다음 단의 tr	rigger 입	력이된	[다.		

32. 다음은리플 카운터(ripple counter)이다. 초기 상태 A=0, B=0, C=0이었다면 클릭 필스가 12개 인가된 후의 상태는?

- ② A=0, B=0, C=1
- 1 A=0, B=1, C=1
- \bigcirc A=1, B=1, C=0
- 1 A=1, B=0, C=0

따라서 CBA = 100이다.

$$0 \xrightarrow{1} 1 \xrightarrow{2} 2 \xrightarrow{3} 3 \xrightarrow{4} 4 \xrightarrow{5} 5 \xrightarrow{6} 6 \xrightarrow{7} 7 \xrightarrow{8} 0 \xrightarrow{9} 1 \xrightarrow{10} 2 \xrightarrow{11} 3 \xrightarrow{12} 4$$

37. 다음카운터의 명칭은?

- 코 비동기식 15진 업카운터
- 데 비동기식 16진 업카운터
- 🗗 동기식 15진 업카운터
- ᠍ 동기식 16진 업카운터

38. BCD	카운터	가 011:	1 상태	에있	ļ다. 카운	터가리	셋된.	幸塻プ	Ⅱ의 펄:	스가
공급	되었는	가 ?								
② 3개		<u>ل</u> 67	 		단 7개		֎ 12	개		

41. 4단 하향 카운터에서 10번째 클록필스가 인가되면 각 단이 나타내는 2진 수를 10진수로 변환하면? 단, 카운터의 초기상태는 0000이라고 가정한다.

6	4 7	•	⊕ 8	⊕ 9	•	•
	_		_	_		

$$0 \xrightarrow{1} 15 \xrightarrow{2} 14 \xrightarrow{3} 13 \xrightarrow{4} 12 \xrightarrow{5} 11 \xrightarrow{6} 10 \xrightarrow{7} 9 \xrightarrow{8} 8 \xrightarrow{9} 7 \xrightarrow{10} 6$$

- 플립플롭에서의 전파지연 t_{PD} 인 경우 n개의 플립플롭을 종속 연결한 비동 기식 카운터의 전체 전파지연은 $n \times t_{PD}$ 가 된다.
- 이러한 지연 때문에 입력 클록펄스를 모든 플립플롭에 공통으로 인가하는 동기식 카운터를 사용

□ 동기식 카운터 설계 방법

- ① 클록 신호에 대한 각 플립플롭의 상태 변화(클록 이전 상태와 이후 상태)를 표(상태 여기표)로 작성한다.
- ② 이러한 변화를 일으킬 수 있도록 플립플롭의 제어신호(J, K)를 결정한다. 여기서 플립플롭의 여기표(excitation table)가 필요하다.
- ③ 플립플롭의 제어신호는 카르노 맵을 이용하여 간소화한다.
- 4 카운터 회로를 그린다.

2비트 동기식 카운터

	현재	상태	차기	상태	플립플롭 입력				
	Q_B	Q_A	Q_B	Q_A	J_{B}	K_B	J_A	K_{A}	
•	0	0	0	1	-				
•	0	1	1	0					
•	1	0	1	1					
	1	1	0	0					

(f) Tip

JK 플립플롭의 여기표

Q(t)	Q(t+1)	J	K
0	0	0	×
0	1	1	X
1	0	×	1
1	1	X	0

상태역기표

현 상		차 상		플립플			
Q	Q	Q	Q	J_B	K_B	J_A	K_A
В	\boldsymbol{A}	В	\boldsymbol{A}				
0	0	0	—	0	×	—	X
0	-	-	0	-	×	×	1
1	0	1	1	X	0	1	X
1	1	0	0	X	1	X	1

$$J_B = Q_A$$

$$K_B = Q_A$$

$$J_A = 1$$

 $K_A = 1$

<카르노 맵>

회로도

타이밍도

3비트 동기식 카운터

흔	현재상태			기상	래	플립플롭 입력					
Q_C	Q_B	Q_A	Q_C	Q_B	Q_A	J_C	K_C	J_B	K_B	J_A	K_{A}
0	0	0	0	0	1	0	Χ	0	Χ	1	X
0	0	1	0	1	0	0	Χ	1	Χ	Χ	1
0	1	0	0	1	1	0	Χ	X	0	1	X
0	1	1	1	0	0	1	Χ	X	1	Χ	1
1	0	0	1	0	1	Χ	0	0	Χ	1	X
1	0	1	1	1	0	Χ	0	1	X	X	1
1	1	0	1	1	1	Χ	0	X	0	1	X
1	1	1	0	0	0	Χ	1	X	1	X	1

02

02 동기식 카운터

카르노 맵

$$J_A = 1$$

$$K_A = 1$$

$$J_B = Q_A$$

$$K_B = Q_A$$

$$J_C = Q_B Q_A$$

$$K_C = Q_B Q_A$$

$$J_D = K_D =$$

$$J_E = K_E =$$

4비트 동기식 카운터

	현재 상태				다음	상태		플립플롭 입력							
Q_D	Q_C	Q_B	Q_A	Q_D	Q_C	Q_B	Q_A	J_D	K_D	J_C	K_C	J_B	K_B	J_A	K_A
0	0	0	0	0	0	0	1	0	×	0	×	0	×	1	×
0	0	0	1	0	0	1	0	0	×	0	×	1	×	×	1
0	0	1	0	0	0	1	1	0	×	0	×	×	0	1	×
0	0	1	1	0	1	0	0	0	×	1	×	×	1	×	1
0	1	0	0	0	1	0	1	0	×	×	0	0	×	1	×
0	1	0	1	0	1	1	0	0	×	×	0	1	×	×	1
0	1	1	0	0	1	1	1	0	×	×	0	×	0	1	×
0	1	1	1	1	0	0	0	1	×	×	1	×	1	×	1
1	0	0	0	1	0	0	1	×	0	0	×	0	×	1	×
1	0	0	1	1	0	1	0	×	0	0	×	1	×	X	1
1	0	1	0	1	0	1	1	×	0	0	×	×	0	1	×
1	0	1	1	1	1	0	0	×	0	1	×	×	1	×	1
1	1	0	0	1	1	0	1	×	0	×	0	0	×	1	×
1	1	0	1	1	1	1	0	×	0	×	0	1	×	×	1
1	1	1	0	1	1	1	1	×	0	×	0	×	0	1	×
1	1	1	1	0	0	0	0	X	1	X	1	X	1	X	1

ਉ T	Ϊp					
JK 플립플롭의 여기표						
Q(t)	Q(t+1)	J	K			
0	0	0	×			
0	1	1	\times			
1	0	×	1			
1	1	×	0			

상태역기표

$$J_D = Q_C Q_B Q_A$$

$$J_C = Q_B Q_A$$

Q_B	Q_A			
Q_DQ_C	00	01	11	10
00	Χ	Χ	Χ	Χ
01	Х	Χ	X	Х
11			1	
10				

$$K_D = Q_C Q_B Q_A$$

$$K_C = Q_B Q_A$$

카르노 맵

$$J_B = Q_A$$

카르노	맵

$$K_B = Q_A$$

 $K_A = 1$

타이밍도

4비트 동기식 카운터의 계수표

클록펄스	Q_D	Q_C	Q_B	Q_A	10진수
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	2
4	0	0	1	1	3
5	0	1	0	0	4
6	0	1	0	1	5
7	0	1	1	0	6
8	0	1	1	1	7
9	1 🗸	0	0	0	8
10	1	0	0	1	9
11	1	0	1	0	10
12	1	0	1	1	11
13	1	1	0	0	12
14	1	1	0	1	13
15	1	1	1	0	14
16	1	1	1	1	15
17	04	0	0	0	0

□ n-비트 동기식 카운터

- ❖ 상태표로부터 플립플롭의 입력함수를 추정할 수 있다.
- ❖ 하위의 모든 출력이 1일 때, 각 출력은 0은 1로, 1은 0으로 변화한다.
- ❖ 토글동작이 필요할 때, J와 K 입력은 모두 1이 되어야 한다.
- ❖ 따라서 플립플롭의 입력 함수는 간단하게 하위비트의 논리적 AND이다.

$$J_A = K_A = 1$$

$$J_B = K_B = Q_A$$

$$J_C = K_C = Q_B Q_A$$

$$J_D = K_D = Q_C Q_B Q_A$$

$$J_E = K_E = Q_D Q_C Q_B Q_A$$

$$J_E = K_E = Q_D Q_C Q_B Q_A$$

3비트 동기식 상향/하향 카운터

• 외부 입력 *x*=0 : 상향 카운터

• 외부 입력 *x*=1 : 하향 카운터

현재 상태	입력	다음 상태		플립플롭 입력					
$Q_CQ_BQ_A$	x	$Q_CQ_BQ_A$	J_C	K_C	J_B	K_B	J_A	K_A	
0 0 0	0	0 0 1	0	×	0	×	1	×	
0 0 0	1	1 1 1	1	×	1	×	1	×	
0 0 1	0	0 1 0	0	×	1	×	×	1	
0 0 1	1	0 0 0	0	×	0	×	×	1	
0 1 0	0	0 1 1	0	×	×	0	1	×	
0 1 0	1	0 0 1	0	×	×	1	1	×	
0 1 1	0	1 0 0	1	×	×	1	×	1	
0 1 1	1	0 1 0	0	×	×	0	×	1	
1 0 0	0	1 0 1	×	0	0	×	1	×	
1 0 0	1	0 1 1	×	1	1	×	1	X	
1 0 1	0	1 1 0	×	0	1	×	×	1	
1 0 1	1	1 0 0	×	0	0	×	×	1	
1 1 0	0	1 1 1	×	0	×	0	1	X	
1 1 0	1	1 0 1	×	0	×	1	1	×	
111	0	0 0 0	×	1	×	1	×	1	
1 1 1	1	1 1 0	×	0	×	0	×	1	

ं T	Ϊp						
JK 플립플롭의 여기표							
Q(t)	Q(t+1)	J	K				
0	0	0	×				
0	1	1	X				
1	0	×	1				
1	1	×	0				

상태역기표

$$J_C = Q_B Q_A x + \overline{Q}_B \overline{Q}_A x$$

Q_CQ_B Q_A	<i>x</i> 00	01	11	10
00	Χ	X	Χ	Χ
01	Χ	Χ	Χ	X
11				1
10		1		

$$K_C = Q_B Q_A x + Q_B Q_A x$$

Q_CQ_B Q_A	<i>x</i> 00	01	11	10	
00		1		1)
01	Χ	Х	Χ	X	Ī
11	Χ	Х	Χ	X	
10		1		1	

$$J_B = Q_A x + \overline{Q}_A x$$

$$K_B = Q_A \overline{x} + \overline{Q}_A x$$

$$J_A = 1$$

Q_CQ_B Q_A	<i>x</i> 00	01	11	10
00	X	X	1	1
01	Х	Х	1	1
11	Х	Х	1	1
10	Х	Χ	1	1

$$K_A = 1$$

카르노 맵

$$J_{A} = 1$$

$$J_{B} = Q_{A} x + Q_{A} x$$

$$J_{C} = Q_{B} Q_{A} x + Q_{B} Q_{A} x$$

$$K_{B} = Q_{A} x + Q_{A} x$$

$$K_{C} = Q_{B} Q_{A} x + Q_{B} Q_{A} x$$

동기식 BCD 카운터

	현재 상태				다음	상태		플립플롭 입력							
Q_D	Q_C	Q_B	Q_A	Q_D	Q_C	Q_B	Q_A	J_D	K_D	J_C	K_C	J_B	K_B	J_A	K_A
0	0	0	0	0	0	0	1	0	×	0	×	0	×	1	×
0	0	0	1	0	0	1	0	0	×	0	×	1	×	×	1
0	0	1	0	0	0	1	1	0	×	0	×	×	0	1	×
0	0	1	1	0	1	0	0	0	×	1	×	×	1	×	1
0	1	0	0	0	1	0	1	0	×	×	0	0	×	1	×
0	1	0	1	0	1	1	0	0	×	×	0	1	×	×	1
0	1	1	0	0	1	1	1	0	×	×	0	×	0	1	×
0	1	1	1	1	0	0	0	1	×	×	1	×	1	×	1
1	0	0	0	1	0	0	1	×	0	×	×	0	×	1	×
1	0	0	1	0	0	0	0	×	1	0	×	0	×	×	1

상태역기표

JK :	<u> </u>	여기	丑
		_	_

Q(t)	Q(t+1)	J	K
0	0	0	×
0	1	1	X
1	0	×	1
1	1	×	0

$Q_{B}Q$	Q_A				$Q_{B}Q$	Q_A				$Q_{B}Q$	Q_A			
Q_DQ_C	00	01	11	10	Q_DQ_C	00	01	11	10	Q_DQ_C	00	01	11	10
00	Χ	Χ	X	Χ	00		1	X	Χ	00	Χ	X	1	
01			1		01		1	Χ	Χ	01	Χ	X	1	
11	Χ	Χ	Х	Х	11	Χ	Χ	Χ	Χ	11	Χ	Χ	Χ	Х
10	Χ	Χ	X	Х	10			Χ	Χ	10	Χ	Х	Х	Х
	1	$K_C = Q$	$Q_B Q_A$			j	$V_B = Q$	$_{_D}Q_{_A}$,	K	$X_B = Q$	$Q_D Q_A$	

카르노 맵

$ eg Q_B Q_A$									
00	01	11	10						
1	Χ	Χ	1						
1	Χ	Χ	1						
Х	Χ	Χ	Х						
1	Х	Х	X						
	1 1	00 01 1 X 1 X X X	00 01 11 1 X X 1 X X X X X						

$$J_A = 1$$

Q_BQ_A									
Q_DQ_C	00	01	11	10					
00	X	1	1	X					
01	X	1	1	Х					
11	Х	Χ	Χ	Х					
10	X	1	Χ	X					

$$K_A = 1$$

카르노 맵

$$J_A = 1$$
 $J_B = \overline{Q}_D Q_A$ $J_C = Q_B Q_A$ $J_D = Q_C Q_B Q_A$ $K_A = 1$ $K_B = \overline{Q}_D Q_A$ $K_C = Q_B Q_A$ $K_D = Q_A$

48. 다음 그림의 카운터는 어떠한 카운터인가?

- ② 동기식 6진 카운터
- ☞ 동기식 8진 카운터
- 🕒 비동기식 5진 카운터
- 의 비동기식 7진 카운터

49. 아래의 회로가 $A_2A_1A_0$ =011 의 상태에 있다고 가정하자. 이 때 두 개의 CP(count pulse)를 입력시키면 각 펄스에 의해 상태가 어떻게 변화하겠는가?

- ② 011→010→001
- ⊕ 011→100→101

- \bigcirc 011 \rightarrow 101 \rightarrow 111
- ₽ 011→001→111

□ 4자리 10진 카운터의 블록도

• 4자리 10진수인 0000~9999까지 카운트할 수 있는 카운터

불규칙한 순서를 갖는 카운터

□3비트 그레이 코드 카운터

Ċ	현재 상태 다음 상태			플립플롭 입력							
Q_C	Q_B	Q_A	Q_C	Q_B	Q_A	J_C	K_C	J_{B}	K_B	J_A	K_{A}
0	0	0	0	0	1	0	×	0	×	1	×
0	0	1	0	1	1	0	×	1	×	×	0
0	1	0	1	1	0	1	×	×	0	0	×
0	1	1	0	1	0	0	×	×	0	×	1
1	0	0	0	0	0	×	1	0	×	0	×
1	0	1	1	0	0	×	0	0	×	×	1
1	1	0	1	1	1	×	0	×	0	1	×
1	1	1	1	0	1	×	0	×	1	×	0

Tip JK 플립플롭의 여기표									
Q(t)	Q(t+1)	J	K						
0	0	0	×						
0	1	1	×						
1	0	×	1						
4	4		0						

상태역기표

Q_C	Q_A	01	11	10
0	X	X	Х	Х
1	1			
		$K_C =$	$\overline{Q}_{B}\overline{Q}$	- A

Q_C	Q_A	01	11	10			
0		1	X	Х			
1			Х	Х			
$K_C = \overline{Q}_B \overline{Q}_A$							

Q_C	Q_A	01	11	10
0	X	X		
1	Χ	X	1	
		$K_B =$	$=Q_CQ$	A

$$Q_{C} = \begin{bmatrix} Q_{B}Q_{A} & & & \\ Q_{C} & 00 & 01 & 11 & 10 \\ 0 & 1 & X & X & \\ 1 & X & X & 1 \end{bmatrix}$$

$$J_{A} = \begin{bmatrix} \overline{Q}_{C} & \overline{Q}_{B} + Q_{C}Q_{B} \end{bmatrix}$$

 $= Q_C \in Q_B$

$$J_A = Q_C \in Q_B$$

$$J_B = \overline{Q}_C Q_A$$

$$J_C = Q_B \overline{Q}_A$$

$$K_A = Q_C \oplus Q_B$$

$$K_B = Q_C Q_A$$

$$K_C = \overline{Q}_B \overline{Q}_A$$

주파수 분할

16진 카운터 블록도

 $(m \times n)$ 분주회로 개념도

예제 10-1 다음 그림에서 입력 클록(CP) 주파수가 1MHz일 때 출력 주파수를 구하여라.

풀이

첫 번째 단은 5진 카운터, 두 번째 단은 8진 카운터, 4 번째 단은 10진 카운터이므로 입력 주파수가 1MHz이면 출력 주파수는 2.5KHz이다.

$$\frac{10^6}{5 \times 8 \times 10} = 2.5 \times 10^3 \,\mathrm{Hz} = 2.5 \,\mathrm{KHz}$$

End of Example

레지스터의 분류

- ❖ 레지스터(register): 플립플롭 여러 개를 일렬로 배열하여 적당히 연결함으로써 여러 비트로 구성된 2진수를 저장할 수 있게 한 것.
- ❖ 레지스터는 외부로부터 들어오는 **데이터를 저장하거나 이동**하는 목적으로 사용하며, 상태의 순서적인 특성을 갖는 것이 아니다.
- ❖ 레지스터는 다양한 종류의 카운터를 구성하는 데 사용될 뿐만 아니라 여러 비트를 일시적으로 저장하거나 저장된 비트를 좌측으로 또는 우측으로 하나씩 시프트 (shift)할 때도 사용된다.
- ❖ 레지스터는 CPU 내부에서 연산의 중간 결과를 임시 저장하는 경우나 어떤 2 진수의 보수를 구한다든지, 곱셈 또는 나눗셈을 하는 경우에도 사용.

01 레지스터의 분류

· 레지스터의 종류

직렬입력-직렬출력

병렬입력-직렬출력

직렬입력-병렬출력

병렬입력-병렬출력

직렬입력-직렬출력 레지스터

직렬입력-병렬출력 레지스터

• 레지스터에 저장되어 있는 데이터의 출력은 새로운 4비트 데이터가 레지스터에 차게 되는 4번째 클록펄스, 8번째 클록펄스, 12번째 클록펄스 등에서 출력 버퍼를 인에이블($\overline{RD}=0$)하여 동시에 읽어내면 된다.

\overline{E}	입력	출력
0	0	0
0	1	1
1	0	High-Z
1	1	High-Z

병렬입력-직렬출력 레지스터

□ MUX의 동작

• S=0 : 입력 A와 출력 F가 연결

• S=1 : 입력 B와 출력 F가 연결

□ 레지스터 동작

- SH/\overline{LD} =0 : 입력 데이터(I_A , I_B , I_C , I_D)가 각 플립플롭의 입력에 각각 연결되므로 클록펄스의 하강에지에서 입력 데이터의 각 비트가 동시에 샘플되어 대응하는 플립플롭의 출력 Q에 저장
- SH/\overline{LD} =1 : 클록펄스의 하강에지마다 레지스터 내용이 오른쪽으로 시프트

병렬입력-병렬출력 레지스터

- WR=1이면 I_A , I_B , I_C , I_D 의 병렬 데이터는 각 AND 게이트를 통하여 동시에 각 플립플롭의 D 입력에 전송.
- \overline{RD} =0이면 각 플립플롭의 출력 데이터는 버퍼를 통하여 동시에 O_A,O_B,O_C,O_D 에 출력되며, \overline{RD} =1이면 출력되지 않는다.

양방향 시프트 레지스터

- $R/ar{L}=1$: 데이터를 SRI에 입력시켜 오른쪽으로 시프트하면서 SRO에서 출력
- R/\bar{L} =0: 데이터를 SLI에 입력시켜 왼쪽으로 시프트하면서 SLO에서 출력

□ 제어 입력에 따른 쌍방향 시프트 레지스터 동작

03 레지스터

시프트 동작에 따른 레지스터 값의 변화

이동한 결과값 = 이동하기 전의 값 \div 2^N

① N비트 오른쪽 시프트의 경우(빈 자리에는 0이 들어감) ② N비트 왼쪽 시프트의 경우(빈 자리에는 0이 들어감)

이동한 결과값 = 이동하기 전의 값 \times 2^N

시프트 동작 및 순환 동작 비교

• 오른쪽 시프트 동작

• 오른쪽 순환 시프트(회전) 동작

• 왼쪽 시프트 동작

• 왼쪽 순환 시프트(회전) 동작

시프트 레지스터의 응용

□ 직렬 데이터 통신

- 시프트 레지스터는 음성통신을 위한 시스템에서 광범위하게 사용
- 전자 교환기는 각 전화가입자의 아날로그 음성신호를 ADC(Analog to Digital Converter)를 통하여 디지털 신호로 변환
- ADC는 입력 아날로그 신호를 매초 8000번 샘플링(sampling)하여 8비트 병렬데이 터로 변환(8000×8=64Kbps)
- 이것은 다시 병렬입력-직렬출력 시프트 레지스터를 통해서 직렬데이터로 변환
- 중계선(trunk)의 전송방식에는 T1 방식과 E1 방식이 있음

• 중계선의 전송속도

T1 방식 24×64Kbps+8Kbps=1544Kbps=1.544Mbps
E1 방식 32×64Kbps=2048Kbps=2.048Mbps

- 수신측의 전자교환기에서는 이 직렬데이터를 직렬입력-병렬출력 시프트 레지스 터로 병렬 데이터로 변환
- 24채널(또는 32채널)로 디멀티플렉스하고 각 채널의 8비트 병렬데이터를 64kHz의 DAC(Digital to Analog Converter)에 의하여 원래의 아날로그 신호를 재생
- 비트 전송의 타이밍 기준을 제공하기 위한 클록을 보내는 선과 또 직렬데이터의 형 태(format)를 정의하기 위한 동기신호를 보내는 선이 필요

ㅁ 디지털 금고

- 비밀번호가 "3, 1, 9, 0"인 경우를 가정
- 키 패드상의 키 3, 1, 9, 0은 각 플립플롭의 클록입력에 연결
- 기타 키들은 NOR 게이트의 입력에 연결
- 비밀번호를 순서적으로 누르면 각 데이터가 오른쪽으로 시프트
- 마지막 키 0을 누르면 Q_{D} =1이 되어서 금고문이 열림

□ 시간 지연회로

- n비트 직렬입력-직렬출력 레지스터를 사용하면 입력에 가해진 펄스보다 (n-1)T(T)는 클록의 주기)만큼 지연되어 출력에서 펄스가 나온다.
- 4비트 레지스터를 쓴 경우, 클록 주파수가 1 MHz이면 $T=1 \mu s$ (= $1/10^6$), 따라서 $3 \mu s$ 지연되어 펄스가 나온다.
- 시간지연(time delay)을 더욱 증가하려면 레지스터를 필요한 개수만큼 직렬연결 하고, 클록펄스를 공통으로 사용

□ 난수발생회로

- 임의의 랜덤(random)한 수열을 발생하는 회로
- $\overline{PR}=0$ 후, $\overline{PR}=1$ 하면, $Q_AQ_BQ_CQ_D=1$ 111
- 펄스를 입력함에 따라 상태도와 같이 동작

링 카운터

- ❖ 임의의 시간에 한 개의 플립플롭만 논리 1이 되고 나머지 플립플롭은 논 리 0이 되는 카운터
- ❖ 논리 1은 입력펄스에 따라 그 위치가 한쪽 방향으로 순환

□ 상태도

□ 상태 여기표

현재상태				차기상태				플립플롭 입력			
Q_A	Q_B	Q_C	Q_D	Q_{A}	Q_B	Q_C	Q_D	D_{A}	D_B	D_C	D_D
1	0	0	0	0	1	0	0	0	1	0	0
0	1	0	0	0	0	1	0	0	0	1	0
0	0	1	0	0	0	0	1	0	0	0	1
0	0	0	1	1	0	0	0	1	0	0	0

D 플립플롭의 여기표

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

□ 카르노 맵

$$D_A = Q_D$$

$$D_C = Q_B$$

$$D_B = Q_A$$

$$D_D = Q_C$$

A C

04 시프트 레지스터 카운터

- 처음에 INIT 단자를 논리 0으로 하면 첫 번째 플립플롭만 출력이 0이 되고, 나머지 플립플롭의 출력은 0이 된다. INIT 단자를 다시 논리 1로 하면 링 카운터의 최초의 출력은 Q_AQ_B $Q_CQ_D=1000$ 이다.
- 이 후부터 클록펄스가 입력될 때마다 클록펄스의 상승에지에서 오른쪽으로 한 자리씩 이동을 하며, Q_D 의 출력은 다시 D_A 로 입력된다.

$$D_A = Q_D$$

$$D_B = Q_A$$

$$D_C = Q_B$$

$$D_D = Q_C$$

존슨 카운터

- n개의 플립플롭으로 구성된 링 카운터는 n 가지의 서로 다른 상태를 출력
- 존슨 카운터는 2n 가지의 서로 다른 상태를 출력

4비트 존슨 카운터의 계수표

클록펄스	Q_A	Q_B	Q_C	Q_D	10진수
1	1	0	0	0	8
2	1	1	0	0	12
3	1	1	1	0	14
4	1	1	1	1	15
5	0	1	1	1	7
6	0	0	1	1	3
7	0	0	0	1	1
8	0	0	0	0	0

 존슨 카운터의 단점은 사용되지 않는 초기상태가 주어지면 사용되지 않는 계수의 순서만이 계속하여 반복하게 된다. 이 단점은 회로에서 세 번째 플립 플롭의 입력을 다음 불 함수로 수정하면 해결할 수 있다.

$$D_C = (Q_A + Q_C)Q_B$$

55. 다음 카운터의 명칭은?

- ② 링 카운터
- ⊕ 4진 카운터
- 母 6진 카운터
- 母 8진 카운터

56. 다음 그림과 같이 구성된 회로는 무슨 카운터인가?

- ② 동기식 카운터
- □ 비동기식 카운터
- © 존슨 카운터
- 의 링 카운터

4비트 링 카운터의 각 플립플롭에서 출력파형의 주파수와 듀티 사이클을 구하여라. 에제 10-2 []단, 클록[]CP] 주파수가 []1]1]1]1]2 []2 []5 []5 []6 []7 []7 []7 []7 []7 []7 []8 []9 []하역라.

물이 링 카운터 주파수	CP Q_A
듀티 사이클 :	$egin{array}{c} Q_B & & & & & & & & & & & & & & & & & & &$
존슨 카운터 주파수	CP Q_A Q_B
듀티 사이클 :	$egin{array}{c} Q_C & & & & & & & & & & & & & & & & & & &$

End of Example