

ESCUELA TECNICA SUPERIOR DE INGENIERIA INFORMATICA Y TELECOMUNICACIONES

Practicas Modelos de Computación

Grupo B3

Juan Luis Torres Ramos

24 Octubre 2023

Practica 1

Encuentra una gramática libre del contexto para generar cada uno de los siguientes lenguajes:

- 1. $L = \{a^i b^j \mid i, j \in \mathbb{N}, i \le j\}.$
- 2. $L = \{a^i b^j a^j b^i \mid i, j \in \mathbb{N}\}.$
- 3. $L = \{a^i b^i a^j b^j \mid i, j \in \mathbb{N}\}.$
- 4. $L = \{a_i b_i \mid i \in \mathbb{N}\} \cup \{b_i a_i \mid i \in \mathbb{N}\}.$
- 5. $L = \{uu^{-1} \mid u \in \{a, b\}^*\}.$
- 6. $L = \{a^i b^j c^{i+j} \mid i, j \in \mathbb{N}\}.$

donde $\mathbb N$ es el conjunto de los numeros naturales incluyendo el 0

Pasos para resolver el ejercicio:

- 1. Determinar los símbolos terminales y no terminales.
- 2. Determinar el símbolo inicial.
- 3. Analizar el lenguaje para determinar qué se pide.
- 4. Determinar las reglas de producción.
- 5. Comprobar con JFLAP

A. $L = \{a^i b^j | i, j \in \mathbb{N}, i \le j\}$.

- 1. Los símbolos terminales serán $\{a,b\}$ y los simbolos no terminales serán S y B.
- 2. El símbolo inicial será S.
- 3. Analizar el lenguaje para determinar qué se pide. En este caso, se pide que la cadena tenga un número de a menor o igual que el número de b. Por ejemplo, aabbb y aabb pertenecen al lenguaje, pero aab no.
- 4. Determino las reglas de producción:
 - $S \rightarrow \epsilon$ (genero la cadena vacía).
 - $S \rightarrow aSb$.
 - $S \to Sb$.
- 5. compruebo con JFLAP que la gramática es correcta.

LHS		RHS
S	\rightarrow	λ
S	\rightarrow	aSb
S	\rightarrow	Sb

(a) la producción

(b) la cadena aaabb

(c) la cadena aabbb

(d) la cadena aabb

B. $L = \{a^i b^j a^j b^i | i, j \in \mathbb{N}\}.$

- 1. Los símbolos terminales serán $\{a,b\}$ y los simbolos no terminales serán S y B.
- 2. El símbolo inicial será S.
- 3. El lenguaje nos pide generar una cadena de 4 caracteres donde primero se generen a^ib^j y luego a^jb^i , es decir en los extremos un numero caracteres i y en los caracteres del centro un numero de caracteres j. Por ejemplo, aababb y ab pertenecen al lenguaje, pero aabbab no.
- 4. Determino las reglas de producción:
 - $S \to aSb$ (genero mismo numero de caracteres en los extremos).
 - $S \rightarrow B$.
 - $B \to bBa$ (genero mismo numero de caracteres en el centro).
 - $B \to \epsilon$ (genero la cadena vacía).
- 5. compruebo con JFLAP que la gramática es correcta.

LHS		RHS
S	\rightarrow	aSb
S	\rightarrow	В
В	\rightarrow	bBa
В	\rightarrow	λ

(a) la producción

(b) la cadena aabbab

(c) la cadena aababb

(d) la cadena ab

C. $L = \{a^i b^i a^j b^j | i, j \in \mathbb{N}\}.$

- 1. Los símbolos terminales serán $\{a,b\}$ y los simbolos no terminales serán S y B.
- 2. El símbolo inicial será S.
- 3. El lenguaje nos pide generar cadenas de 4 caracteres de la forma *abab* donde los dos primeros caracteres tengan el mismo nuemoor de caracteres y para los dos ultimos caracteres tambien tengan la misma cantidad. Ejemplos de cadenas serían *aabbaabb*, *aabbab* pero no acepta *aaba*
- 4. Determino las reglas de producción:
 - $S \to AA$ (simbolo inicial).
 - $A \to aSb$. (genero $\{a^ib^i|i \in \mathbb{N}\}$).
 - $A \rightarrow \epsilon$ (genero la cadena vacía).
- 5. compruebo con JFLAP que la gramática es correcta.

LHS		RHS
S	\rightarrow	AA
A	\rightarrow	aSb
A	\rightarrow	λ

(a) la producción

(b) la cadena aaba

(c) la cadena aabbaabb

(d) la cadena aabbab

D. $L = \{a_i b_i | i \in \mathbb{N}\} \cup \{b_i a_i | i \in \mathbb{N}\}.$

- 1. Los símbolos terminales serán $\{a,b\}$ y los simbolos no terminales serán S , A B.
- 2. El símbolo inicial será ${\cal S}$.
- 3. Combina dos conjuntos de cadenas: el primero contiene cadenas de la forma $\{a_ib_i \mid i \in \mathbb{N}\}$, y el segundo contiene cadenas de la forma $\{b_ia_i \mid i \in \mathbb{N}\}$. Las cadenas $aabb\ bbaa$ lo cumplen mientras abab no lo cumple Lo resolvemos por partes
- 4. Determino las reglas de producción:
 - Podemos generar $\{a_ib_i \mid i \in \mathbb{N}\}.$

$$A \to aAb$$
, $A \to \epsilon$.

• Por otro lado $\{b_i a_i \mid i \in \mathbb{N}\}.$

$$B \to b B a$$
 , $B \to \epsilon$.

 $\bullet\,$ El lenguaje L se puede generar añadiendo .

$$S \to A$$
 , $S \to B$.

5. compruebo con JFLAP que la gramática es correcta.

LHS		RHS
S	\rightarrow	A
S	\rightarrow	В
A	\rightarrow	aAb
A	\rightarrow	λ
В	\rightarrow	bBa
В	\rightarrow	λ

(a) la producción

(c) la cadena aabb

(b) la cadena abab

(d) la cadena bbbaaa

E.
$$L = \{uu^{-1} \mid u \in \{a, b\}^*\}$$
.

- 1. Los símbolos terminales serán $\{a,b\}$ y los simbolos no terminales serán S.
- 2. El símbolo inicial será S.
- 3. Analizar el lenguaje para determinar qué se pide. En este caso, se pide generar cadenas que son palíndromos formados por caracteres 'a' y 'b'. Cadenas que pertenecen al lenguaje son abba y bbaabb pero no bbabb.
- 4. Determino las reglas de producción:
 - $S \rightarrow \epsilon$ (genero la cadena vacía).
 - $\bullet \ S \to aSa.$
 - $S \rightarrow bSb$.
- 5. compruebo con JFLAP que la gramática es correcta.

	LHS		RHS
S		\rightarrow	aSa
S		\rightarrow	bSb
S		\rightarrow	λ

(a) la producción

(b) la cadena bbab

(c) la cadena bbaabb

(d) la cadena abba

F. $L = \{a^i b^j c^{i+j} \mid i, j \in \mathbb{N}\}.$

- 1. Los símbolos terminales serán $\{a,b,c\}$ y los simbolos no terminales serán S.
- 2. El símbolo inicial será S.
- 3. En este caso, se pide generar cadenas donde la cantidad de 'a's y 'b's es igual y la cantidad total de 'c's es la suma de las cantidades de 'a' y 'b' . Cadenas que cumplen la gramatica son abbccc y aaabcccc pero no bacc
- 4. Determino las reglas de producción:
 - $S \to aSc$ (genero la cadena vacía).
 - $S \rightarrow B$.
 - $B \rightarrow bBc$.
 - $B \to \epsilon$.
- 5. compruebo con JFLAP que la gramática es correcta.

LHS		RHS
S	\rightarrow	aSc
S	\rightarrow	В
В	\rightarrow	bBc
В	\rightarrow	λ

(a) la producción

(b) la cadena bacc

(c) la cadena abbccc

(d) la cadena aaabcccc

Practica 2

Analizadores léxicos, problemas de mineria, trabajo Lex, 2 problema

Tareas a realizar

- 1. Formar un grupo de trabajo compuesto por una, dos o tres personas.
- 2. Cada grupo de trabajo debe pensar un problema original de procesamiento de textos. Para la resolución de este problema debe ser apropiado el uso de Lex, o sea, se debe resolver mediante el emparejamiento de cadenas con expresiones regulares y la asociación de acciones a cada emparejamiento.
- 3. Cada grupo debe resolver el problema propuesto usando Lex. Se deberá realizar una memoria donde se presente una descripción del problema y su solución, además de entregar electrónicamente los ficheros de texto con la implementación de la solución.
- 4. Esta práctica deberá ser entregada antes del día 31 de Diciembre de 2020. Se entregará a través de la plataforma PRADO en un fichero .zip conteniendo todos los archivos de esta práctica. Sólo es necesario que lo entregue uno de los componentes del grupo.

Pasos para resolver el ejercicio:

- 1. Descripcion del problema
- 2. solucion
- 3. codigo lex

Problema

Validación de Direcciones IP: Queremos encontrar direcciones IP en un texto. Las direcciones IP pueden estar en formato IPv4 (por ejemplo, 192.168.0.1) o IPv6 (por ejemplo, 2001:0db8:85a3:0000:0000:8a2e:0370:7334). Debes crear una expresión regular que identifique y valide tanto direcciones IPv4 como IPv6 en el texto.