Mathematics Methods for Computer Science

Statistical Motivation

Properties

Spectral Theorem

Other

ODE Theory

Spectral Embedding

Mathematics Methods for Computer Science

Instructor: Xubo Yang

SJTU-SE DALAB

Mathematics Methods for Computer Science

Statistical Motivation

Properties

Spectral Theorem

Other

ODE Theor

Spectral Embedding

Lecture

Eigenproblems I

Setup

Statistical Motivation

Propertie:

Spectral Theore

Other

ODE Theor

Spectral Embedding

Given: Collection of data points \vec{x}_i

- Age
- Weight
- Blood pressure
- Heart rate

Setup

Statistical Motivation

Propertie:

Spectral Theore

Other

ODE Theor

Constant Foots at

Given: Collection of data points \vec{x}_i

- Age
- Weight
- Blood pressure
- Heart rate

Find: Correlations between different dimensions

Simplest Model

Statistical Motivation

Properties

Spectral Theore

Other

ODE Theor

Spectral Embedding

One-dimensional subspace

$$ec{x}_i pprox c_i ec{v}, ec{v}$$
 unknown

Simplest Model

Statistical Motivation

Propertie:

Spectral Theorer

Othei

ODE Theor

Spectral Embedding

One-dimensional subspace

 $\vec{x}_i \approx c_i \vec{v}, \vec{v}$ unknown

Equivalently:

$$\vec{x}_i \approx c_i \hat{v}$$

$$\hat{v}$$
 unknown with $||\hat{v}||_2 = 1$

Variational Idea

Statistical Motivation

Properties

Spectral Theorer

Other

ODE Theor

$$minimize_{\hat{v}}\sum_{i}||\vec{x}_{i}-proj_{\hat{v}}\vec{x}_{i}||_{2}^{2}$$
 such that $||\hat{v}||_{2}=1$

Variational Idea

Statistical Motivation

Properties

Spectral Theoren

Other

ODE Theor

Spectral Embedding

$$minimize_{\hat{v}} \sum_i ||\vec{x}_i - proj_{\hat{v}}\vec{x}_i||_2^2$$
 such that $||\hat{v}||_2 = 1$

What does the constraint do?

Variational Idea

Statistical Motivation

Propertie:

Spectral Theorer

Othei

ODE Theor

Spectral Embedding

$$minimize_{\hat{v}} \sum_i ||\vec{x}_i - proj_{\hat{v}}\vec{x}_i||_2^2$$
 such that $||\hat{v}||_2 = 1$

What does the constraint do?

- ullet Does not affect optimal \hat{v}
- Removes scaling ambiguity

Mathematics Methods for Computer Science

Geometric Interpretation

Statistical Motivation

Properties

Spectral Theorem

Othe

ODE Theor

Review from Last Lecture

Statistical Motivation

Properties

Spectral Theoren

Other

ODE Theor

Spectral Embedding

$$min_{c_i}||\vec{x}_i - c_i\hat{v}||_2$$

What is c_i ?

Review from Last Lecture

Statistical Motivation

Properties

Spectral Theorer

Other

ODE Theor

Spectral Embedding

$$min_{c_i}||\vec{x}_i - c_i\hat{v}||_2$$

What is c_i ?

$$c_i = \vec{x}_i \cdot \hat{v}$$

Equivalent Optimization

Statistical Motivation

Propertie:

Spectral Theorer

Other

ODE Theor

maximize
$$||X^T\hat{v}||_2^2$$
 such that $||\hat{v}||_2^2=1$

End Goal

Statistical Motivation

Properties

Spectral Theore

Other

ODE Theor

Spectral Embedding

Eigenvector of XX^T with largest eigenvalue.

Statistical Motivation

Propertie:

Spectral Theorer

Other

ODE Theor

Spectral Embedding

Eigenvector of XX^T with largest eigenvalue.

"First principal component"

More after SVD!

Definitions

Statistical Motivation

Properties

Spectral Theorer

Othe

ODE Theory

Spectral Embedding

Eigenvalue and eigenvector

An eigenvector $\vec{x} \neq \vec{0}$ of $A \in \mathbb{R}^{n \times n}$ satisfies

 $A\vec{x}=\lambda\vec{x}$ for some $\lambda\in\mathbb{R}$; λ is an eigenvalue.

Complex eigenvalues and eigenvectors instead have

 $\lambda \in \mathbb{C}$ and $\vec{x} \in \mathbb{C}^n$.

Definitions

Statistical Motivation

Properties

Spectral Theorer

Other

ODE Theor

Spectral Embedding

Eigenvalue and eigenvector

An eigenvector $\vec{x} \neq \vec{0}$ of $A \in \mathbb{R}^{n \times n}$ satisfies $A\vec{x} = \lambda \vec{x}$ for some $\lambda \in \mathbb{R}$; λ is an eigenvalue. Complex eigenvalues and eigenvectors instead have $\lambda \in \mathbb{C}$ and $\vec{x} \in \mathbb{C}^n$.

Scale doesn't matter!

$$\rightarrow$$
 can constrain $||\vec{x}||_2 \equiv 1$

Eigenproblems in the Wild

Statistical Motivation

Properties

Spectral Theore

Othe

ODE Theor

Spectral Embedding

• Optimize $||A\vec{x}||_2$ such that $||\vec{x}||_2 = 1$ (important!)

Eigenproblems in the Wild

Statistical Motivation

Properties

Spectral Theore

Othe

ODE Theor

- Optimize $||A\vec{x}||_2$ such that $||\vec{x}||_2 = 1$ (important!)
- \bullet ODE/PDE problems: Closed solutions and approximations for $\vec{y}'=B\vec{y}$

Eigenproblems in the Wild

Statistical Motivation

Properties

Spectral Theore

Othe

ODE Theor

- Optimize $||A\vec{x}||_2$ such that $||\vec{x}||_2 = 1$ (important!)
- \bullet ODE/PDE problems: Closed solutions and approximations for $\vec{y}'=B\vec{y}$
- Critical points of Rayleigh quotient:

$$\frac{\vec{x}^T A \bar{x}}{||\vec{x}||_2^2}$$

Two Basic Properties

Proved in textbook

Statistical Motivation

Properties

Spectral Theoren

Other

ODE Theor

Spectral Embedding

Lemma

Every matrix $A \in \mathbb{R}^{n \times n}$ has at least one (complex) eigenvector.

Two Basic Properties

Proved in textbook

Statistical Motivation

Properties

Spectral Theorer

Other

ODE Theory

Spectral Embeddin

Lemma

Every matrix $A \in \mathbb{R}^{n \times n}$ has at least one (complex) eigenvector.

Lemma

Eigenvectors corresponding to distinct eigenvalues must be linearly independent.

Two Basic Properties

Proved in textbook

Statistical Motivation

Properties

Spectral Theorer

Other

ODE Theor

Spectral Embeddin

Lemma

Every matrix $A \in \mathbb{R}^{n \times n}$ has at least one (complex) eigenvector.

Lemma

Eigenvectors corresponding to distinct eigenvalues must be linearly independent.

 \rightarrow at most n eigenvalues

Diagonalizability

Statistical Motivation

Properties

Spectral Theorer

Othe

ODE Theor

.

Nondefective

 $A \in \mathbb{R}^{n \times n}$ is nondefective or diagonalizable if its eigenvectors span \mathbb{R}^n .

Diagonalizability

Statistical Motivation

Properties

Spectral Theore

Othe

ODE Theory

Spectral Embeddin

Nondefective

 $A \in \mathbb{R}^{n \times n}$ is nondefective or diagonalizable if its eigenvectors span \mathbb{R}^n .

$$D = X^{-1}AX$$

A is diagonalized by a similarity transformation $A \to X^{-1}AX$

Definitions

Statistical Motivation

Propertie:

Spectral Theorem

Othe

ODE Theor

Spectral Embedding

Spectrum and spectral radius

The spectrum of A is the set of eigenvalues of A. The spectral radius $\rho(A)$ is the eigenvalue λ maximizing $|\lambda|$.

Extending to $\mathbb{C}^{n\times n}$

Statistical Motivation

Properties

Spectral Theorem

Othe

ODE Theor

Spectral Embedding

Complex conjugate

The complex conjugate of a number

$$z = a + bi \in \mathbb{C}$$
 is $\overline{z} \equiv a - bi$.

Extending to $\mathbb{C}^{n\times n}$

Statistical Motivation

Propertie

Spectral Theorem

Othe

ODE Theor

Spectral Embedding

Complex conjugate

The complex conjugate of a number

$$z = a + bi \in \mathbb{C}$$
 is $\overline{z} \equiv a - bi$.

Complex transpose

The conjugate transpose of $A \in \mathbb{C}^{m \times n}$ is

$$A^H \equiv \overline{A}^T$$
.

Hermitian Matrix

Statistical Motivation

Properties

Spectral Theorem

Other

ODE Theor

$$A = A^H$$

Mathematics Methods for Computer Science

Properties

Statistical Motivation

Propertie

Spectral Theorem

Other

ODE Theor

Spectral Embedding

Lemma

All eigenvalues of Hermitian matrices are real.

Properties

Statistical Motivation

Propertie

Spectral Theorem

Othe

ODE Theory

Spectral Embeddin

Lemma

All eigenvalues of Hermitian matrices are real.

Lemma

Eigenvectors corresponding to distinct eigenvalues of Hermitian matrices must be orthogonal.

Spectral Theorem

Statistical Motivation

Propertie

Spectral Theorem

Othe

ODE Theory

Spectral Embedding

Spectral Theorem

Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian (if $A \in \mathbb{R}^{n \times n}$, suppose it is symmetric). Then, A has exactly n orthonormal eigenvectors $\vec{x}_1, \dots, \vec{x}_n$ with (possibly repeated) eigenvalues $\lambda_1, \dots, \lambda_n$.

Spectral Theorem

Statistical Motivation

Propertie

Spectral Theorem

Othe

ODE Theory

Spectral Embedding

Spectral Theorem

Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian (if $A \in \mathbb{R}^{n \times n}$, suppose it is symmetric). Then, A has exactly n orthonormal eigenvectors $\vec{x}_1, \cdots, \vec{x}_n$ with (possibly repeated) eigenvalues $\lambda_1, \cdots, \lambda_n$.

Full set:
$$D = X^T A X$$

Matrix Inverse

Statistical Motivation

Properties

Spectral Theorem

Other

ODE Theory

$$\vec{b} = c_1 \vec{x}_1 + \dots + c_k \vec{x}_k$$
$$A\vec{x} = \vec{b}$$

Matrix Inverse

Statistical Motivation

Properties

Spectral Theorem

Other

ODE Theory

$$\vec{b} = c_1 \vec{x}_1 + \dots + c_k \vec{x}_k$$
$$A\vec{x} = \vec{b}$$

$$\Rightarrow \vec{x} = \frac{c_1}{\lambda_1} \vec{x}_1 + \dots + \frac{c_n}{\lambda_n} \vec{x}_n$$

Statistical Motivation

Properties

Spectral Theorer

Other

ODE Theory

$$\vec{b} = c_1 \vec{x}_1 + \dots + c_k \vec{x}_k$$
$$A\vec{x} = \vec{b}$$

$$\Rightarrow \vec{x} = \frac{c_1}{\lambda_1} \vec{x}_1 + \dots + \frac{c_n}{\lambda_n} \vec{x}_n$$

$$A = XDX^{-1} \Rightarrow A^{-1} = XD^{-1}X^{-1}$$

Matrix Square Root

Statistical Motivation

Propertie

Spectral Theore

Other

ODE Theor

- \bullet Given symmetric positive semi-definite (PSD) matrix, U
- ullet Can compute matrix square root, $U^{1/2}$

Application: Polar decomposition

- ullet Given real n-by-n matrix, A
- There exists a unique factorization called the Polar Decomposition

$$A = RU$$

where R is an n-by-n orthogonal matrix, and U is an n-by-n symmetric PSD right "stretch" matrix.

- Also a left stretch matrix, W, such that A = WR.
- Geometric interpretation.

Statistical Motivation

Propertie

Spectral Theore

Other

ODE Theor

Application: Shape Matching

Statistical Motivation

Properties

Spectral Theore

Other

ODE Theo

- Fast Lattice Shape Matching (Fast LSM)
- SIGGRAPH 2007 [Rivers and James 2007]
- http://www.alecrivers.com/fastlsm
- Need to compute orientation, R, of local particle groups
- Millions of polar decompositions (and eigenvalue decomps) per second

Physics (in one slide)

Statistical Motivation

Properties

Spectral Theorem

Othe

ODE Theory

Spectral Embedding

Newton:

$$\vec{F} = m \frac{d^2 \vec{x}}{dt^2}$$

Physics (in one slide)

Statistical Motivation

Properties

Spectral Theorem

Othei

ODE Theory

Spectral Embedding

Newton:

$$\vec{F} = m \frac{d^2 \vec{x}}{dt^2}$$

Hooke:

$$\vec{F_s} = k(\vec{x} - \vec{y})$$

First-Order System

Statistical Motivation

Properties

Spectral Theorer

Othe

ODE Theory

$$M\vec{X}'' = K\vec{X}$$

$$\longrightarrow \frac{d}{dt} \begin{pmatrix} \vec{X} \\ \vec{V} \end{pmatrix} = \begin{pmatrix} 0 & I_{3n \times 3n} \\ M^{-1}K & 0 \end{pmatrix} \begin{pmatrix} \vec{X} \\ \vec{V} \end{pmatrix}$$

General ODE

Statistical Motivation

Properties

Spectral Theoren

Other

ODE Theory

$$\vec{Y}' = B\vec{Y}$$

Eigenvector Solution

Statistical Motivation

Properties

Spectral Theoren

Othe

ODE Theory

$$\vec{y}' = B\vec{y}$$

$$B\vec{y}_i = \lambda_i \vec{y}_i$$

$$\vec{y}(0) = c_1 \vec{y}_1 + \dots + c_k \vec{y}_k$$

Eigenvector Solution

Statistical Motivation

Properties

Spectral Theorem

Othei

ODE Theory

$$\vec{y}' = B\vec{y}$$

$$B\vec{y}_i = \lambda_i \vec{y}_i$$

$$\vec{y}(0) = c_1 \vec{y}_1 + \dots + c_k \vec{y}_k$$

$$\rightarrow \vec{y}(t) = c_1 e^{\lambda_1 t} \vec{y}_1 + \dots + c_k e^{\lambda_k t} \vec{y}_k$$

Application: Modal Sound Synthesis

Statistical Motivation

Propertie:

Spectral Theorer

Othe

ODE Theory

Spectral Embedding

Major role in physics-based sound synthesis https://www.youtube.com/watch?v=dMUHp8i6E5E

Organizing a Collection

Statistical Motivation

Propertie

Spectral Theorem

Othe

ODE Theo

(a) Database of photos

(b) Spectral embedding

Setup

Statistical Motivation

Propertie:

Spectral Theorer

Othei

ODE Theory

Spectral Embedding

Have: n items in a dataset

 $w_{ij} \geq 0$ similarity of items i and j

$$w_{ij} = w_{ji}$$

Want: x_i embedding on \mathbb{R}

Quadratic Energy

Statistical Motivation

Properties

Spectral Theorer

Othe

ODE Theory

$$E(\vec{x}) = \sum_{i,j} w_{ij} (x_i - x_j)^2$$

Optimization

Statistical Motivation

Properties

Spectral Theore

Other

ODE Theory

Spectral Embedding

 $\text{minimize } E(\vec{x})$

Optimization

Statistical Motivation

Properties

Spectral Theorer

Othe

ODE Theor

$$\begin{array}{c} \text{minimize } E(\vec{x}) \\ \text{such that } ||\vec{x}||_2^2 = 1 \end{array}$$

Optimization

Statistical Motivation

Properties

Spectral Theoren

Othei

ODE Theory

minimize
$$E(\vec{x})$$
 such that $||\vec{x}||_2^2 = 1$ $\vec{1}\vec{x} = 0$

Simplification

Statistical Motivation

Propertie:

Spectral Theorem

Other

ODE Theory

$$E(\vec{x}) = 2\vec{x}^T (A - W)\vec{x}$$

Statistical Motivation

Properties

Spectral Theorem

Othe

ODE Theor

Spectral Embedding

Eigenvector of A - W with **second** smallest eigenvalue.