		534	4 Rec'd PCT/PTO 25 SEP 2000				
ORM PTO-13 REV 11-98)	0 US DEPARTMENT C	F COMMERCE PATENT AND TRADEMARK OFFICE	ATTORNEY'S DOCKET NUMBER 117-320				
		R TO THE UNITED STATES	U.S. APPLICATION NO. (if known, see 37 C.F.R. 1.5)				
		CTED OFFICE (DO/EO/US) LING UNDER 35 U.S.C. 371	09464692 5				
VTERNATIO	NAL APPLICATION NO.	INTERNATIONAL FILING DATE	PRIORITY DATE CLAIMED				
PCT/GB99/00935 25 March 1999 25 March 1998							
ITLE OF IN		ON-REVERTING MUTATION IN EACH OF T	HE AROC, OMPF AND OMPC GENES, USEFUL A				
PPLICANT	(S) FOR DO/EO/US	CHATFIELD					
Applicant he	erewith submits to the Unite	ed States Designated/Elected Office (DO/EO	(US) the following items and other information:				
1. 🛛 T	his is a FIRST submission	of items concerning a filing under 35 U.S.C.	371.				
2. 🔲 T	his is a SECOND or SUBS	SEQUENT submission of items concerning a	filing under 35 U.S.C. 371.				
		o begin national examination procedures (35 tion of the applicable time limit set in 35 U.S.					
	A proper Demand for Intern rom the earliest claimed pr	ational Preliminary Examination was made b iority date.	y the 19 th month				
	of the International Applic	ation as filed (35 U.S.C. 371(c)(2)).					
101 A	A has been transmitted	n (required only if not transmitted by the Inter by the International Bureau. application was filed in the United States Re					
4 D A		ional Application into English (35 U.S.C. 371)					
.		of the International Application under PCT Ar					
□ a. [b. [c. [are transmitted herew	ith (required only if not transmitted by the Inte I by the International Bureau. however, the time limit for making such amer	ernational Bureau).				
8 🗓 🗆 🗡	A translation of the amendr	nents to the claims under PCT Article 19 (U.S	S.C. 371(c)(3)).				
950 /	An oath or declaration of th	e inventor(s) (35 U.S.C. 371(c)(4)).					
	A translation of the annexe 35 U.S.C. 371(c)(5)).	s to the International Preliminary Examination	n Report under PCT Article 36				
tems 11. T	o 16. Below concern doc	ument(s) or information included:					
11. 🔲 🗸	An Information Disclosure S	Statement under 37 C.F.R. 1.97 and 1.98.					
	An assignment document for G.F.R. 3.28 and 3.31 is	or recording. A separate cover sheet in compinctuded.	pliance with				
	A FIRST preliminary amend A SECOND or SUBSEQUE	dment. NT preliminary amendment.					
14. 🗆 /	A substitute specification.						
15. 🔲 /	A change of power of attorn	ney and/or address letter.					
16. 🖾 (Other items or information.	PTO1449/International Search Repor	t				

534 Rec'd POT/PTO 25 SEP 2000 U.S. APPLICATION I Q. (I) know a set (To be Assigned) INTERNATIONAL APPLICATION NO PCT/GR99/00935 117-320 17. The following fees are submitted: CALCULATIONS PTO USE ONLY BASIC NATIONAL FEE (37 C.F.R. 1.492(a)(1)-(5): Neither international preliminary examination fee (37 C.F.R. 1.482) nor international search fee (37 C.F.R. 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO International preliminary examination fee (37 C.F.R. 1,482) not paid to USPTO but International Search Report prepared by the EPO or JPO..... International preliminary examination fee (37 C.F.R. 1.482) not paid to USPTO but international search fee (37 C.F.R. 1.445(a)(2) paid to USPTO\$690.00 International preliminary examination fee paid to USPTO (37 C.F.R. 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4)..... International preliminary examination fee paid to USPTO (37 C.F.R. 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4)..... ENTER APPROPRIATE BASIC FEE AMOUNT = 840.00 Surcharge of \$130.00 for furnishing the oath or declaration later than 20 months from the earliest claimed priority date (37 C.F.R. 1.492(e)) \$ 130.00 CLAIMS NUMBER EILED NUMBER EXTRA RATE Total Claims 16 -20 = 0 \$18.00 S 0.00 Independent Claims X \$78.00 0.00 MULTIPLE DEPENDENT CLAIMS(S) (if applicable) \$260,00 s 0.00 TOTAL OF ABOVE CALCULATIONS = 970.00 Reduction by 1/2 for filing by small entity, if applicable. A Small Entity Statement must also be filed (Note 37 C.F.R. 1.9, 1.27, 1.28) 0.00 SUBTOTAL = 970.00 Processing fee of \$130.00, for furnishing the English Translation later than ☐ 20 ☐ 30 menths from the earliest claimed priority date (37 C.F.R. 1.492(f)). 0.00 TOTAL NATIONAL FEE = 970.00 Fee for recording the enclosed assignment (37 C.F.R. 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 C.F.R. 3.28, 3.31). \$40.00 per property 0.00 Fee for Petition to Revive Unintentionally Abandoned Application (\$1210.00 - Small Entity = \$605.00) 0.00 TOTAL FEES ENCLOSED = 970.00 25 Amount to be: refunded s 1.1 Charged A check in the amount of \$970.00 to cover the above fees is enclosed. Please charge my Deposit Account No. 14-1140 in the amount of S_____ to cover the above fees. A duplicate copy of this form is enclosed. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 14-1140. A duplicate copy of this form is enclosed. The entire content of the foreign application(s), referred to in this application is/are hereby incorporated by reference in this application. NOTE: Where an appropriate time limit under 37 C.F.R. 1.494 or 1.495 has not been met, a petition to revive (37 C.F.R. 1.137(a) or (b)) must be filed and granted to restore the application to pending status. SEND ALL CORRESPONDENCE TO: NIXON & VANDERHYE P.C 1100 North Glebe Road, 8th Floor

- 2 -

Mary J. Wilson NAME 32,955

REGISTRATION NUMBER

Arlington, Virginia 22201 Telephone: (703) 816-4000

September 25, 2000

Date

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

534 Rec'd PCT/PTO 25 SEP 2000

CHATFIELD

Attv. Ref.:

Serial No.

(To Be Assigned)

Group:

117-320

National Phase of

PCT/GB99/00935

Filed:

September 25, 2000

Examiner:

For:

BACTERIA ATTENUATED BY A NON-REVERTING

MUTATION IN EACH OF THE AROC, OMPF AND OMPC

GENES, USEFUL AS VACCINES

September 25, 2000

Assistant Commissioner for Patents Washington, DC 20231 Sir:

PRELIMINARY AMENDMENT

Prior to calculation of the filing fee and in order to place the above identified application in better condition for examination, please amend the claims as follows:

IN THE CLAIMS

Claim 6, lines 1-2, change "any one of the preceding claims" to --claim 1--. Claim 8, lines 1-2, change "any one of the preceding claims" to --claim 1--. Claim 9, lines 1-2, change "any one of the preceding claims" to --claim 1--, Claim 10, lines 1-2, change "any one of the preceding claims" to --claim 1--, Claim 12, lines 1-2, change "any one of the preceding claims" to --claim 1--, Claim 13, line 1, change "any one of claims 1 to 11" to --claim 1--, Claim 15, lines 1-2, change "any one of claims 1 to 11" to --claim 1--.

REMARKS

The above amendments are made to place the claims in a more traditional format.

Respectfully submitted.

NIXON & VANDERHYE P.C.

Mary J. Wilson

Reg. No. 32,955

MJW:ms

1100 North Glebe Road, 8th Floor Arlington, VA 22201-4714 Telephone: (703) 816-4000 Facsimile: (703) 816-4100

102 Rec'd PCT/PTO \$57/512792000

BACTERIA ATTENUATED BY A NON-REVERTING MUTATION 019 264 46 THE 250C, OMPF AND OMPC GENES. USEFUL AS VACCINES

The invention relates to attenuated bacteria useful in vaccines.

5

Background to the invention

The principle behind vaccination is to induce an immune response in the host thus providing protection against subsequent challenge with a pathogen. This may be achieved by inoculation with a live attenuated strain of the pathogen, i.e. a strain having reduced virulence such that it does not cause the disease caused by the virulent pathogen.

15 Clasically, live attenuated vaccine strains of bacteria and viruses have been selected using one of two different methodologies. Mutants have been created either by treatment of the organism using mutagenic chemical compounds or by repeated passage of the organism in 20 vitro. However, use of either method gives rise to attenuated strains in which the mode of attenuation is unclear. These strains are particularly difficult to characterise in terms of possible reversion to the wild type strain as attenuation may reflect single (easily 25 reversible) or multiple mutation events. Furthermore, it is difficult to obtain such strains having optimum immunogenic properties because of multiple mutation

30

Using modern genetic techniques, it is now possible to construct genetially defined attenuated bacterial strains in which stable attenuating deletions can be created. A number of site directed mutants of Salmonella have been 35 created using this type of technology (2, 4, 5, 9, 12,

events, and multiple strains may need to be used to

provide protection against the pathogen.

WO 99/49026 PCT/GB99/00935

16, 17, 18). Mutations in a large number of genes have been reported to be attenuating, including the aro genes (e.g. aroA, aroC, aroD and aroE), pur, htrA, ompR, ompF, ompC, galE, cya, crp and phoP.

5

Salmonella aroA mutants have now been well characterised and have been shown to be excellent live vaccines against salmonellosis in several animal species. In addition, in order to reduce the chances of a reversion to virulence

- by a recombination event, mutations have been introduced into two independent genes such as aroA/purA and aroA/aroC. Identical mutations in host adapted strains of Salmonella such as S.typhi (man) and S.dublin (cattle) has also resulted in the creation of a number of
- 15 candidate single dose vaccines which have proved successful in clinial (8, 11) and field trials (10).

A Salmonella typhimurium strain harboring stable mutations in both ompC and ompF is described in Chatfield 20 et al (1991, ref. 21). When administered orally to BALB/c mice the strain was attenuated, with the 50% lethal dose (LD50) reduced by approximately 1,000-fold. However, the intravenous LD50 was reduced only by approximately 10-fold, demonstrating the importance of the porins in

25 confering on the bacteria the ability to infect by the oral route.

Expression of the ompC and ompF genes is regulated by ompR. Pickard et al (1994, ref. 13) describes the cloning

30 of the ompB operon, comprising the ompR and envZ genes, from a Salmonella typhi Ty2 cosmid bank and characterisation by DNA sequence analysis. The DNA sequence data were used to identify appropriate restriction sites for generating a defined deletion of 517 bp within the open reading frame of the ompR gene. This deletion was introduced by homologous recombination into the chromosomes of two *S.typhi* strains which already harbored defined deletions in both the aroC and aroD

- 5 genes. The S.typhi ompR mutants displayed a marked decrease in ompC and ompF porin expression as demonstrated by examination of outer membrane preparations. It was also shown that the ompR-envZ two component regulatory system plays an important role in
- 10 the regulation of Vi polysaccharide synthesis in S. typhi.

In animal studies, attenuated S.typhimurium has been used as a vehicle for the delivery of heterologous antigens to the immune system (3, 6, 15). This raises the potential of the development of multivalent vaccines for use in man (7).

Summary of the Invention

The invention provides a bacterium attenuated by a non-20 reverting mutation in each of the aroC gene, the ompF gene and the ompC gene. The invention also provides a vaccine containing the bacterium.

It is believed that the aroC/ompF/ompC combination of
25 mutations gives a vaccine having superior properties. For
example, it is believed that the aroC/ompF/ompC
combination may be superior to a aroC/ompR combination
for two reasons:

30 1. The ompR mutation may cause higher levels of attenuation than the ompF/ompC combination of mutations because ompR may regulate a number of genes other than ompF and ompC which are important for survival of the bacterium in vivo. Thus, the ompF/ompC combination may allow the bacterium to survive in the vaccinated host for a longer time and at higher levels, resulting in better protection.

5

 The ompR mutation may cause reduced immunogenicity compared to the ompF/ompC combination of mutations because ompR may regulate the expression of antigens important for immunogenicity.

10

Detailed Description of the Invention

Bacteria useful in the Invention

The bacteria that are used to make the vaccines of the

15 invention are generally those that infect by the oral
route. The bacteria may be those that invade and grow
within eukaryotic cells and/or colonise mucosal surfaces.
The bacteria are generally Gram-negative.

- 20 The bacteria may be from the genera Escherichia, Salmonella, Vibrio, Haemophilus, Neisseria, Yersinia, Bordetella or Brucella. Examples of such bacteria are Escherichia coli - a cause of diarrhoea in humans; Salmonella typhimurium - the cause of salmonellosis in
- 25 several animal species; Salmonella typhi the cause of human typhoid; Salmonella enteritidis - a cause of food poisoning in humans; Salmonella choleraesuis - a cause of salmonellosis in pigs; Salmonella dublin - a cause of both a systemic and diarrhoel disease in cattle,
- 30 especially of new-born calves; Haemophilus influenza a cause of meningitis; Neisseria gonorrhoeae a cause of gonorrhoeae; Yersinia enterocolitica the cause of a spectrum of diseases in humans ranging from gastroenteritis to fatal septicemic disease; Bordetella

pertussis - the cause of whooping cough; and Brucella abortus - a cause of abortion and infertility in cattle and a condition known as undulant fever in humans.

- 5 Strains of E.coli and Salmonella are particularly useful in the invention. As well as being vaccines in their own right against infection by Salmonella, attenuated Salmonella can be used as carriers of heterologous antigens from other organisms to the immune system via 10 the oral route. Salmonella are potent immunogens and are able to stimulate systemic and local cellular and antibody responses. Systems for driving expression of heterologous antigens in Salmonella in vivo are known;
- for example the nirB and htrA promoters are known to be 15 effective drivers of antigen expression in vivo.
 - The invention may be applied to enterotoxigenic E.coli ("ETEC"). ETEC is a class of E.coli that cause diarrhoea. They colonise the proximal small intestine.
- 20 A standard ETEC strain is ATCC H10407.
 - Infections of ETEC are the single most frequent cause of travellers diarrhoea, causing 3-9 million cases per year amongst visitors to developing countries. In endemic
- 25 areas, ETEC infections are an important cause of dehydrating diarrhoea in infants and young children, resulting in 800,000 deaths a year in the under fives world-wide. In developing countries, the incidence of ETEC infections leading to clinical disease decreases
- 30 with age, indicating that immunity to ETEC infection can be acquired. In contrast, naive adults from industrialized countries who visit endemic areas are highly susceptible to ETEC infections. However, with prolonged or repeated visits to endemic areas
- 35 susceptibility to ETEC infections diminishes, suggesting

20

that a live attenuated approach to ETEC vaccination may prove successful.

The inventors chose to work on a non-toxigenic strain of ETEC called E1392/75/2A. E1392/75/2A arose spontaneously from a toxic mutant by deletion of toxin genes. In human studies, oral vaccination with live E1392/75/2A gave 75% protection against challenge with toxin-expressing ETEC from a different serotype. However, approximately 15% of vaccinees experienced diarrhoea as a side effect of the vaccine. The strain needs further attenuation to reduce the side effects before it can be considered as a potential vaccine and the invention gives a means of achieving such attenuation.

Seq Id No. 1 shows the sequence of the E.coli aroC gene, Seq Id No. 3 shows the sequence of the E.coli ompC gene and Seq. Id No. 5 shows the sequence of the E.coli ompF gene.

Further mutations

One or more further mutations may be introduced into the bacteria of the invention to generate strains containing 25 mutations in addition to those in aroC, ompC and ompF. Such a further mutation may be (i) an attenuating mutation in a gene other than aroC, ompC and ompF, (ii) a mutation to provide in vivo selection for cells maintaining a plasmid (e.g. a plasmid expressing a 30 heterologous antigen), or (iii) a mutation to prevent expression of a toxin gene.

The further attenuating mutation may be a mutation that is already known to be attenuating. Such mutations

include mutations in aro genes (e.g. aroA, aroD and aroE), pur, htrA, ompR, galE, cya, crp, phoP and surA (see e.g. refs 2, 4, 5, 9, 12, 13, 16, 17 and 18).

- 5 A mutation to provide selection for maintenance of a plasmid may be made by mutating a gene that is essential for the bacterium to survive. A plasmid carrying the essential gene is then introduced into the bacterium, so that only cells carrying the plasmid can survive. This
- 10 may be useful where the plasmid contains, for example, a heterologous antigen to be expressed by the bacterium.

A mutation to prevent expression of a toxin gene may be made to reduce any side-effects caused by vaccination

15 with the bacterium. For example, in the case of vaccination with E.coli strains such as ETEC it may be desirable to mutate the heat labile toxin (LT) or heat stable toxin (ST) genes so that they are not expressed.

20 The nature of the mutations

The mutations introduced into the bacterial vaccine generally knock-out the function of the gene completely. This may be achieved either by abolishing synthesis of

- 25 any polypeptide at all from the gene or by making a mutation that results in synthesis of non-functional polypeptide. In order to abolish synthesis of polypeptide, either the entire gene or its 5'-end may be deleted. A deletion or insertion within the coding
- 30 sequence of a gene may be used to create a gene that synthesises only non-functional polypeptide (e.g. polypeptide that contains only the N-terminal sequence of the wild-type protein).

PCT/GB99/00935

The mutations are non-reverting mutations. These are mutations that show essentially no reversion back to the wild-type when the bacterium is used as a vaccine. Such mutations include insertions and deletions. Insertions and deletions are preferably large, typically at least 10 nucleotides in length, for example from 10 to 600 nucleotides. Preferably, the whole coding sequence is deleted.

- 10 The bacterium used in the vaccine preferably contains only defined mutations, i.e. mutations which are characterised. It is clearly undesirable to use a bacterium which has uncharacterised mutations in its genome as a vaccine because there would be a risk that 15 the uncharacterised mutations may confer properties on the bacterium that cause undesirable side-effects.
- The attenuating mutations may be introduced by methods well known to those skilled in the art (see ref. 14).

 20 Appropriate methods include cloning the DNA sequence of
 - the wild-type gene into a vector, e.g. a plasmid, and inserting a selectable marker into the cloned DNA sequence or deleting a part of the DNA sequence, resulting in its inactivation. A deletion may be
- 25 introduced by, for example, cutting the DNA sequence using restriction enzymes that cut at two points in or just outside the coding sequence and ligating together the two ends in the remaining sequence. A plasmid carrying the inactivated DNA sequence can be transformed
- 30 into the bacterium by known techniques such as electroporation and conjugation. It is then possible by suitable selection to identify a mutant wherein the inactivated DNA sequence has recombined into the chromosome of the bacterium and the wild-type DNA
- 35 sequence has been rendered non-functional by homologous

recombination.

Expression of heterologous antigens

The attenuated bacterium of the invention may be

5 genetically engineered to express an antigen that is not
expressed by the native bacterium (a "heterologous
antigen"), so that the attenuated bacterium acts as a
carrier of the heterologous antigen. The antigen may be
from another organism, so that the vaccine provides

10 protection against the other organism. A multivalent
vaccine may be produced which not only provides immunity
against the virulent parent of the attenuated bacterium
but also provides immunity against the other organism.
Furthermore, the attenuated bacterium may be engineered

15 to express more than one heterologous antigen, in which case the heterologous antigens may be from the same or different organisms.

The heterologous antigen may be a complete protein or a 20 part of a protein containing an epitope. The antigen may be from another bacterium, a virus, a yeast or a fungus. More especially, the antigenic sequence may be from E.coli (e.g. ETEC), tetanus, hepatitis A, B or C virus, human rhinovirus such as type 2 or type 14, herpes 25 simplex virus, poliovirus type 2 or 3, foot-and-mouth disease virus, influenza virus, coxsackie virus or Chlamydia trachomatis. Useful antigens include non-toxic components of E.coli heat labile toxin, E.coli K88 antigens, ETEC colonization factor antigens, P.69 protein

30 from B.pertussis and tetanus toxin fragment C.

The ETEC colonization factors and components thereof are prime candidates for expression as heterologous antigens. To instigate diarrhoeal disease, pathogenic strains of SETEC must be able to colonize the intestine and elaborate

enterotoxins. For most strains of ETEC colonization factors (CF) that are required for adhesion to the intestinal mucosa have been identified. In almost all cases CFs are expressed as fimbrae on the outer surface of the bacteria. A large number of CFs have been identified, the most prevalent being CFAI, CRAII (includes CS1, CS2, CS3) and CFAIV (includes CS4, CS5, CS6).

- 10 A vaccine to ETEC will ideally give protection against a range of colonization factor antigens to ensure that protection against different strains is obtained. In order to achieve this, it would be possible to express several colonization factors in one strain.
- 15 Alternatively, the same attenuations could be made in a range of different ETEC strains, each with a different colonization factor. This would involve deleting the toxins from such strains.
- 20 The DNA encoding the heterologous antigen is expressed from a promoter that is active in vivo. Two promoters that have been shown to work well in Salmonella are the nirB promoter (19, 20) and the htrA promoter (20). For expression of the ETEC colonization factor antigens, the 25 wild-type promoters could be used.
 - A DNA construct comprising the promoter operably linked to DNA encoding the heterologous antigen may be made and transformed into the attenuated bacterium using
- 30 conventional techniques. Transformants containing the DNA construct may be selected, for example by screening for a selectable marker on the construct. Bacteria containing the construct may be grown in vitro before being formulated for administration to the host for vaccination
- 35 purposes.

WO 99/49026 PCT/GB99/00935

Formulation of the vaccine

The vaccine may be formulated using known techniques for formulating attenuated bacterial vaccines. The vaccine is advantageously presented for oral administration, for example in a lyophilised encapsulated form. Such capsules may be provided with an enteric coating comprising, for example, Eudragate "S" (Trade Mark), Eudragate "L" (Trade Mark), cellulose acetate, cellulose phthalate or

10 hydroxypropylmethyl cellulose. These capsules may be used as such, or alternatively, the lyophilised material may be reconstituted prior to administration, e.g. as a suspension. Reconstitution is advantageously effected in a buffer at a suitable pH to ensure the viability of the bacteria. In order to protect the attenuated bacteria and the vaccine from gastric acidity, a sodium bicarbonate preparation is advantageously administered before each administration of the vaccine. Alternatively, the vaccine may be prepared for parenteral administration, intranasal

20 administration or intramuscular administration.

The vaccine may be used in the vaccination of a mammalian host, particularly a human host but also an animal host. An infection caused by a microorganism, especially a 25 pathogen, may therefore be prevented by administering an effective dose of a vaccine prepared according to the invention. The dosage employed will ultimately be at the discretion of the physician, but will be dependent on various factors including the size and weight of the host 30 and the type of vaccine formulated. However, a dosage comprising the oral administration of from 107 to 1011 bacteria per dose may be convenient for a 70 kg adult human host.

Examples

The Examples described in this section serve to illustrate the invention.

5 Brief description of the drawings

<u>Figure 1</u> shows a system for constructing defined deletions in target genes using splicing by overlay extension PCR mutagenesis.

10

Figure 2 shows the expected sequences of target genes after recombination and selection for deletions.

 $\underline{\text{Figure 3}}$ shows the cloning of deletion cassettes into 15 plasmid pCVD442.

Figure 4 shows an SDS-PAGE analysis of outer membranes prepared from ETEC strains under conditions of low (no salt L-broth) and high (no salt L-broth + 15% sucrose)

20 osmolarity. M = markers; Sample 1 = PTL010; Sample 2 = PTL002; Sample 3 = PTL003; Sample 4 = ΔaroCΔompC; Sample 5 = ΔompF.

Figure 5 shows expression of CS1 and CS3 in deletion

25 strains after growth on CFA agar. Equal numbers of cells
from each strain were loaded on a 15% SDS-PAGE gel and
Western blotted with monospecific anti-CS1 or anti-CS3
polycional antibodies. Controls for antibody specificity
were whole cesl1 lysates of TG1 cells expressing the

30 majore pilin protein of CS1, or purified major pilin
protein from CS3. Lane M, rainbow low molecular mass
markers; lane 1, induced TG1 cells harbouring pKK223;
lane 2, induced TG1 cells harbouring pKKCS1; lane 3, CS1ETEC strain; lane 4, PTL010; lane 5, PTL001; lane 6,

95 PTL002; lane 7, PTL003; lane 8, purified CS3 major pilin

protein.

Figure 6 shows a Southern blot of mutant loci.

Chromosomal DNA was extracted from the wild-type ETEC

5 (E1392/75-2A), PTL001 (htrA aroC), PTL002 (aroC ompR) and
PTL003 (aroC ompC ompF) as indicated, digested with
restriction endonuclease EcoRV, and pulsed field
electrophoresed through 1% agarose. DNA was blotted from
the gel onto Hybond N+ nylon membranes (Amersham) and

10 hybridised with DNA probes derived from the aroC, htrA, ompR, ompC, or ompF loci as shown. The banding patterns are consistent with the mutant loci being deletions.

<u>Figure 7</u> shows the IgA responses in volunteers
15 administered a vaccine according to the invention.

EXAMPLE 1: CONSTRUCTION AND CHARACTERISATION OF STRAIN ACCORDING TO THE INVENTION

20 <u>Design of deletions and construction of plasmids</u> <u>pCVDΔAroC, pCVDΔOmpC and pCVDΔOmpF</u>

Deletions were designated to remove the entire open reading frame of the target gene. Using the *E.coli* genome sequence as a template, PCR primers were designed to

- 25 amplify fragments of 500-600 base pairs flanking the target open reading frame (see Table 1 for primer sequences). Splicing by overlap extension using PCR was used to fuse the two flanking sequences, creating a PCR product with the entire gene deleted (Figure 1). The
- 30 wild-type sequences around the deletion site and the predicted sequences after deletion are depicted in Figure 2.

For each gene two different restriction sites were

introduced into the splice region (see Table 2 below).

These were used for identification of deletion clones.

The PCR primers at either end of the PCR fragment introduced unique restriction sites that were used to clone the fragment into the multiple cloning site of pCVD442 (Figure 3).

PCR products were gel purified using a Qiagen (Trade Name) gel extraction kit and digested with the relevant

- 10 restriction enzymes prior to ligation to the suicide plasmid pCVD442(22) digested with the same enzyme and treated with alkaline phosphatase to prevent vector self-ligation (Figure 3). The ligation mix was transformed into SY327 λpir and plated on L-Ampicillin (100 $\mu g/ml$)
- 15 plates. Plasmids from Ampicillin resistant transformants were screened for the presence of the deletion cassettes by restriction digestion. The following plasmids were generated:
- 20 pCVDAAroC pCVDAOmpC pCVDAOmpF

The suicide plasmid pCVD442 can only replicate in cells
25 harboring the pir gene. On introduction into non-pir
strains, pCVD442 is unable to replicate, and the
Ampicillin resistance conferred by the plasmid can only
be maintained if the plasmid is integrated in the
chromosome by a single homologous recombination event.

- 30 The plasmid also has a sacB gene, encoding levan sucrase, which is toxic to gram negative bacteria in the presence of sucrose. This can be used to select clones that have undergone a second recombination event, in which the suicide plasmid is excised. Such cells will be resistant
- 35 to sucrose, but Ampicillin sensitive.

25

Construction and characterisation of AAroCAOmpCAOmpF strain

This section outlines the chronology of construction and history of a $\Delta AroC\Delta OmpC\Delta OmpF$ strain. In the section,

5 "ETEC" refers specifically to strain E1392/75/2A or its derivatives.

 $\triangle AroC \triangle OmpC \triangle OmpF$ deletions were introduced into E1392/75/2A in the following order:

10 ΔΑroC→ΔAroCΔOmpC→ΔAroCΔOmpCΔOmpF

Construction of ETEC/AroC

- E1392/75/2A from original microbanked stock was plated onto L-Agar.
- 15 2) Electroporation competent cells were prepared from these cells. 100 μl aliquots were frozen.
 - 3) pCVD∆AroC was purified from SY327pir cells using a Qiagen Qiafilter (Trade Name) midiprep. The plasmid was concentrated about 10-fold by ethanol
 - precipitation. The construction of $pCVD\Delta AroC$ is described above.
 - 4) 5 μ l of concentrated plasmid was mixed with 100 μ l defrosted cells and electroporated. The whole transformation was plated on an L-Ampicillin plate (50 μ g/ml) and incubated overnight at 37°C.
- A single Ampicillin resistant colony grew.
 - 6) The colony was streaked onto an L-Ampicillin plate (100 μg/ml) and grown overnight at 37°C ("merodiploid plate").
- 30 7) PCR using primers TT19 and TT20 (specific for the aroC gene) and a colony picked from the merodiploid plate amplified two bands, with sizes corresponding to that of the wild-type and \(\textit{\Delta} aroC \) genes. The sequences of the primers are shown in Table 1

15

25

30

below.

- 8) A colony from the merodiploid plate was grown up for 7 hr in a) L-Ampicillin broth (100 µg/ml) and b) L-Broth. The colony grown on L-Ampicillin was microbanked.
- 9) Serial dilutions of the L-broth culture were set up on:
 - a) No salt L-agar
 - b) No salt L-agar + 5% sucrose.
- 10 The plates were incubated overnight at 30°C.
 - 10) Colony counts showed that 10^4 more colonies grew on L-agar than on L-agar + 5% sucrose, showing sucrose selection worked.
 - 11) Sucrose resistant colonies were screened for the presence of \(\textit{AaroC} \) gene by PCR. Colonies chosen for screening were picked onto an L-agar plate and grown overnight at 37°C. This plate was stored at 4°C, whilst further tests were carried out.
 - 12) 50% of 90 colonies tested had AaroC only.
- 20 13) Colonies were tested for growth on:
 - a) M-9 minimal media plates
 - b) M-9 minimal media + Aromix plates
 - c) L-Amp (100 µg/ml)

daroC colonies should not grow on M-9 minimal media without Aromix or on L-Amp.

Aromix is a mix of aromatic compounds as follows:

Substance	Final concentration					
•	(% w/v)					
Phenylalanine	0.004					
Tryptophan	0.004					
Tyrosine	0.004					
p-aminobenzoic acid	0.001					
dihydroxybenzoic acid	0.001					

These compounds are made in wild-type bacteria, but the arcC mutation prevents their synthesis.

- 14) 13/14 putative $\Delta AroC$ colonies required Aromix for growth on M-9 minimal media and were susceptible to Ampicillin.
- 15) 3 colonies (No. 1,2,3) were tested for the presence of the CS1 major pilin protein gene by PCR using primers MGR169 and MGR170. All 3 colonies gave PCR products of the expected size (700 bp.). The
- sequences of the primers are shown in Table 1. $16) \hspace{0.5in} \hbox{Colonies 1, 2 and 3 from screening master plate} \\$
 - were streaked onto L-Agar and grown overnight at 37°C. Cells from these plates were used to inoculate microbank tubes.
- 15 17) Colony 1, stored in a microbank, was used for further work.
- 18) For permanent storage, a bead from the microbank tray was inoculated into 1 ml L-broth, grown for 4 hr with shaking at 37°C and used to make agar 20 slopes which were used to make freeze dried stocks. The freeze dried stock of E1392/75/2AAAroC was designated PTL004. 20 ml of L-broth was added to the rest of the 1 ml culture and the culture was incubated overnight at 30°C. 1 ml of the overnight
- 25 culture was transferred to each of three cryovials and stored in liquid nitrogen.

Construction of ETECAAroCAOmpr

- Preparation of pCVD40mpC plasmid DNA for
- 30 electroporation:

A colony of SY327 λ pir harbouring pCVD Δ OmpC was grown overnight at 37°C in 100 ml L-Ampicillin broth

(100 µg/ml). Plasmid DNA was purified using 2
35 Qiagen Qiafilter (Trade Name) midipreps. DNA was

15

20

further concentrated by ethanol precipitation. The construction of pCVDAOmpC is described above.

- Preparation of electrocompetent cells: ETECAAroC cells from the microbank tray produced in step 17 of the preceding section were streaked on L-agar, grown at 37°C overnight and then stored at 4°C for no more than 1 week before being used to inoculate cultures for preparing electrocompetent cells.
- 10 3) ETECAAroC cells were electroporated with 5 μl of concentrated pCVDAOmpC DNA, and each transformation plated on a single L-Ampicillin plate (50 μg/ml) and grown overnight at 37°C.
 - 17 Ampicillin resistant colonies (putative ΕΤΕCΔΑroC/ pCVDΔOmpC merodiploids) were obtained.
 - 5) These colonies were spotted onto a master L-Ampicillin (100 μg/ml) plate and used as templates for PCR with primers TT7/TT8. The master plate was grown at room temperature over the weekend. The sequences of the primers are given in Table 1 below.
 - A single colony (No. 7) had the ΔompC gene.
 - 7) The colony was grown for 5 hr in L-broth.
- 8) Serial dilutions of the L-broth culture were set up on:
 - a) No salt L-agar
 - o) No salt L-agar + 5% sucrose.

The plates were incubated overnight at 30°C.

- Colony counts showed that 10⁴ more colonies grew on
 L-agar than on L-agar + 5% sucrose, showing sucrose selection worked.
 - 10) 45 sucrose resistant colonies were screened for $\Delta ompC$ by PCR using primers TT7 and TT8. 9 colonies had the $\Delta ompC$ gene, but most had traces of w.t.
- 35 ompC gene. The sequences of the primers are given

20

in Table 1 below.

- 11) To further characterise putative ETECAAroCAOmpC colonies, they were grown in 1 ml L-Broth for 5 hr and plated on:
- 5 a) L-Agar + 100 μg/ml Ampicillin
 - b) L-Agar
 - c) L-Agar + 5% sucrose

 $\triangle OmpC$ colonies should be resistant to sucrose and sensitive to Ampicillin.

- 10 12) Only 1 colony (No. 1) was Ampicillin sensitive and sucrose resistant.
 - 13) Colony 1 was checked for the presence of $\triangle aroC$, $\triangle ompC$ and CS1 genes by PCR with primers TT19/TT20, TT7/TT8 and MGR169 and 170. The sequences of the primers are given in Table 1 below.
 - 14) Colony 1 gave single PCR products of the expected size for $\triangle aroC$, $\triangle ompC$ and CS1 genes.
 - 15) The colony was microbanked.
 - 16) For permanent storage, a bead from the microbank was inoculated into 1 ml L-broth, grown for 4 hr with shaking at 37°C and used to make agar slopes which were freeze dried. The freeze dried stock of E1392/75/2AAAroCAOmpC was designated PTL008. 20 ml of L-broth was added to the rest of the 1 ml culture and the culture was incubated overnight at
- 25 culture and the culture was incubated overnight at 30°C. 1 ml of the overnight culture was transferred to each of three cryovials and stored in liquid nitrogen.

30 Construction of ETECAAroCAOmpCAOmpF

Conjugation was used to introduce pCVD40mpF into E1392/75/2h4AroC40mpC.

1) Conjugation donor cells ${\rm SM10}\lambda pir$ were transformed with pCVD40mpF. The construction of plasmid

 $pCVD\Delta OmpF$ is described above.

- ETECΔAroCΔOmpC cells were conjugated with SM10λpir/ 21 pCVD40mpF cells. The pCVD442 plasmid includes a transfer origin which allows the plasmid to be transferred from a donor strain containing the RP4 5 transfer genes (e.g. SM10\pir) to a recipient strain (e.g. ETEC). ETECAaroCAompC cells and E.coli strain SM10λpir harbouring the PcvdΔompF recombinant were cross-streaked on L-agar plates so as to cover an area of approximately 10 cm2. 10 Plates were incubated at 37° C for 20 h, then the growth washed off using 4 ml L-broth and the suspension plated onto McConkey agar (Difco) containing streptomycin at $20\mu g\ ml^{-1}$ and ampicillin at 300 µg ml-1. Plates were incubated overnight at 15 37°C and resulting colonies were checked for merodiploidy by PCR using appropriate oligonucleotides as primers.
- 3) Putative ETEC transconjugants were screened. 10 20 colonies were picked from McConkey agar plates and grown overnight on L-Ampicillin (100 μg/ml) agar. The presence of ΔοmpF gene was checked for by PCR with primers TT1/TT2. The sequences of the primers are given in Table 1 below.
- 25 4) The colonies were grown for 5 hr in L-broth.
 - 5) Serial dilutions of the L-broth culture were set up on:
 - a) No salt L-agar
 - b) No salt L-agar + 5% sucrose.
- 30 The plates were incubated overnight at 30°C.
 - 6) Colony counts showed 10^5 more colonies grew on L-agar than on L-agar + 5% sucrose, showing sucrose selection worked.
- 7) Sucrose resistant colonies were screened for $\Delta ompF$ gene by PCR with primers TT1/TT2. The sequences of

1.5

20

25

WO 99/49026 PCT/GB99/00935

the primers are given in Table 1 below. The screened colonies were grown overnight on L-Agar. 3 colonies out of 47 had the $\triangle ompF$ gene with no evidence of the wild-type ompF gene.

- 5 8) To further characterise putative ETECΔΑroCΔOmpCΔOmpF colonies, they were plated on:
 - a) L-Agar + 100 μg/ml Ampicillin
 - b) L-Agar
 - c) L-Agar + 5% sucrose
- 10 $\triangle ompF$ colonies should be resistant to sucrose and sensitive to Ampicillin.
 - All three ∆ompF colonies were Ampicillin sensitive and sucrose resistant.
 - 10) The colonies were microbanked and one colony was chosen as a master stock.
 - 11) For permanent storage, a bead from the master stock was inoculated into 1 ml L-broth, grown for 4 hr with shaking at 37°C and used to make agar slopes which were used to make freeze dried stocks. The freeze dried stock of E1392/75/ 2AdaroCdompCdompF was designated PTL003. 20 ml of L-broth was added to the rest of the 1 ml culture and the culture was incubated overnight at 30°C. 1 ml of the overnight culture was transferred to each of three cryovials and stored in liquid nitrogen.

Characterisation of E1392/75/2A/AroCAOmpCAOmpF

- 1) Growth requirements:
- Cells taken from the master stock produced in step

 10 of the preceding section were streaked on L-Agar
 plate. At the same time 8 ml L-broth was inoculated
 for a chromosomal DNA prep for Southern blots. Both
 plate and liquid culture were grown overnight at
 37°C.
- 35 Cells from the grown plate were streaked onto the

20

25

WO 99/49026

following media and grown overnight at 37oc.

PCT/GB99/00935

Medium Growth 5 L-Amp No M9 minimal media No M9 minimal + Aromix Yes M9 + sulfathiazole (100 µg/ml) No 10 M9 + sulfathiazole (100 μg/ml) + Aromix Yes L-Agar + 50 µg/ml streptomycin Yes L-Agar + 5% sucrose Yes

As expected, the cells were Amp sensitive. The cells were resistant to sucrose, streptomycin and sulfathiazole, but required Aromix to grow on minimal media.

- 2) LPS analysis of PTL003:
 - a) A freeze dried vial of PTL003 was broken open. The culture was resuspended in L-Broth and plated on L-Agar for growth. Some cells were scraped off and stored in microbank.
 - b) More cells were scraped off and the LPS profile was analysed. There was no visible difference between the LPS profile of PTL003 and original E1392/75/2A strain.
- 3) Confirmation of deletions by PCR:
- a) A scrape of cells was taken from the plate
 made in in 2a and streaked onto L-Agar and
 grown overnight.
 - b) Freshly grown cells were used for PCR with primers that flank the following genes: aroC, htrA, ompC, ompF, ompR.
- 35 c) PTL003 was shown to have deletions in aroC,

10

15

ompC and ompF genes, but not in htrA or ompR.

4) Analysis of outer membrane protein profile of PTL003:

Outer membrane protein fractions were prepared from strains PTL010 (E1392/75/2A) and the deletion strains PTL002 and PTL003. A strain with a single ompF deletion and a strain with both aroC and ompC deletion were also analysed. Strains were grown under conditions of low osmolarity (no salt L-broth) and high osmolarity (no salt L-broth+15% sucrose). The OmpF protein product is normally expressed at low osmolarity whereas the OmpC product is expressed at high osmolarity. The OmpC and OmpF proteins have similar electroporetic mobilities. At both high and low osmolarities, the strain PTL003 lacks proteins in the OmpC/OmpF region when compared to the wild-type E1392/75/2A strain or to the \triangle AroC \triangle OmpC or \triangle OmpF deletion

20

5)

Expression of CS1 and CS3 pili on CFA agar:
The expression of CS1 and CS3 pili in the deletion strains was examined. Equal numbers (2 A_{500mm} units) of bacteria strains PTL010, PTL001, PTL002 and PTL003 grown overnight at 37°C on CFA agar were subjected to SDS PAGE and analysed by Western blotting with monospecific polyclonal antibodies against CS1 or CS3. CS1 and CS3 pili were expressed equally well in four strains (Figure 5).

strains. The results are shown in Figure 4.

30

35

25

A CFAII-negative derivative of E1392/75/2A was constructed for use as a control. This was done by specific curing of the CS encoding plasmids from ETEC strain E1392/75-2A. A short fragment of DNA was amplified from the *cooB* gene using PCR with

10

1.5

2.0

25

oligonucleotides CSA01 and CSA02 as primers and ligated into pGEM-T Easy plasmid vector (Trade Name, Promega) designed for the cloning of PCR products. The fragment was subcloned into pCVD442 by virtue of the Sall and SphI restriction enzyme sites. The pCVD442-cooB derivative was introduced into ETEC strain E1392/75/2A by conjugation from SM10Apir. Ampicillin resistant transconjugants are most likely to be the result of fusion of the pCVD442-cooB derivative with cooB-bearing plasmid. Such transconjugates were then grown on L-agar supplemented with 5% sucrose to select for loss of the sacB gene of pCVD442. Resulting colonies were tested for ampicillin sensitivity, and by PCR using CSA01 and CSA02 as primers. Three colonies of E1392/75/2A were included as positive controls among these PCRs. Two sucrose resistant colonies that gave no product with the PCR were streaked out onto fresh L-agar supplemented with 5% sucrose to obtain pure cultures. These were then grown in Lbroth at 37°C for approximately 16 h and microbanked at -70°C. Loss of the CS1 encoding plasmid was confirmed by analysis of the plasmid profiles of the derivatives using agarose gel electrophoresis. Two derivatives were confirmed as

PCT/GB99/00935

6) Southern blotting of PTL003:

Structure of deletion mutations. Total DNA was

extracted from cultures of the three deletion
mutants grown from the microbanked stocks, digested
with restriction endonuclease EcoRV, and the
digested DNA subjected to pulsed field agarose gel
electrophoresis. DNA was blotted from the gels

onto Hybond N+ (Trade Name) nylon membranes and

CS1 negative, but were still CS3+.

10

1.5

20

25

30

35

hybridised with appropriate DNA probes according to standard procedures. Results (Figure 6) show that the hybridising chromosomal DNA fragments of the mutants are shorter than the wild-type, consistent with the mutations being deletions.

Confirmation of absence of Heat-Stable (ST) and Heat-Labile (LT) toxin genes in E.coli strain E1392/75-2A. For this the ST and LT-AB genes were used as DNA probes against total DNA from E1392/75-2A. Total DNA from the toxin positive ETEC strain E1393/75 was included as a positive control, while that from the laboratory E.coli strain JM109 was included as a negative. Hybridised membranes were left under Hyperfilm-ECL (Trade Name) for 1 h to obtain the maximum amount of signal. Probes were prepared using PCR with plasmid DNA extracted from E1392/75-2A as template and oligonucleotides EST01 and EST02 as primers for ST, or LT-R1 and LT-03 for LT-AB. There was no significant hybridisation with total DNA using either the LT-AB or the ST probe. despite obtaining a very intense signal from the positive control total DNA.

Confirmation of absence of pCVD442 sequences from the chromosome of deletion mutants. The plasmid pCVD442 was labelled and hybridised to total DNA from deletion mutants PTL001, PTL002 and PTL003 digested with EcoRV. Total DNA from ETEC strain E1392/75-2A was included as a control. A complex pattern of hybridising DNA fragments was obtained. But, there was no significant difference between the pattern obtained for the wild-type and that for the mutants, indicating that probably no residual pCVD442 nucleotide sequences were left in the genomes of the mutants. The complex pattern of

PCT/GB99/00935

hybridising fragments was most likely due to the pCVD442 probe hybridising with the plasmid DNA components of the E1392/75-2A strain and mutant derivatives.

5

10

Table 1 - PCR primer:

Name	Target	Use	Sequence (5'-3')
TT1	отрЕ	Primer A for cloning	ATC TGT TTG TTG AGC
			CAA CC
TT2	ompF	Primer B for cloning	TTT TTT GCC AGC ATG
			CCG GCA GCC ACG CGT
			AGT G
TT 3	ompF	Primer C for cloning	CTC GAG GCT TAG CTC
			TAT TTA TTA CCC TCA
			TGG
TT4	ompF	Primer D for cloning	GAG CTA AGC CTC GAG
			TAA TAG CAC ACC TCT
			TTG
TT7	ompC	Primer A for cloning	TTG CTG GAA AGT CGA
			CGG ATG TTA ATT ATT
			TGT G
TT8	ompC	Primer B for cloning	GGC CAA AGC CGA GCT
			CAT TCA CCA GCG GCC
			CGA CG
TT 9	ompC	Primer C for cloning	GCT AAG CCT CGA GTA
			ATC TCG ATT GAT ATC
			CG
TT10	ompC	Primer D for cloning	CTC GAG GCT TAG CGT
			TAT TAA CCC TCT GTT
		1	A

15

		TT21
		TT22
in in	5	MGR1
On		MGR1
O N N		LT-R
0131		LT-0
		EST0
	10	EST0
		CSA0
		CSA0

	γ	
aroC	Primer A for cloning	CCG CGC TCG CTC
		TAG AGT GAA CTG ATC
	D. C. D. C.	AAC AAT A
aroc	Primer B for cloning	ATG CGC GCG AGA GCT
		CAA CCA GCG TCG CAC
2000	Drimon C for alanian	1
aroc	Primer C for cloning	CTC GAG GCA TGC TGA
3200	Briman D fan alenin-	ATA AAA CCG CGA TTG
aroc	Primer D for Cloning	GCA TGC CCT CGA GGG
		CTCC GTT ATT GTT
CSI	Binds in CC1 coguence	TGA TTC CCT TTG TTG
631	bilids ill CSI Sequence	
CC1	Dinds is CC1	CGA AGG CGA A
CSI	binds in CSI sequence	ATT AAG ATA CCC AAG
LT-AB	See text	GCT TTT AAA GGA TCC
		TAG TT
LT-AB	See text	GGT TAT CTT TCC GGA
		TTG TC
ST	See text	CAT GTT CCG GAG GTA
		ATA TGA A
ST	See text	AGT TCC CTT TAT ATT
		ATT AAT A
CS1	See text	TGG AGT TTA TAT GAA
		ACT AA
CS1	See text	TGA CTT AGT CAG GAT
		AAT TG
CS3	See text	ATA CTT ATT AAT AGG
		TCT TT
CS3	See text	TTG TCG AAG TAA TTG
	DOC CEAL	TTA TA
	aroC aroC cs1 cs1 LT-AB ST cs1 cs1 cs1	aroC Primer B for cloning aroC Primer C for cloning aroC Primer D for cloning CS1 Binds in CS1 sequence CS1 Binds in CS1 sequence LT-AB See text LT-AB See text ST See text CS1 See text CS1 See text CS3 See text

Table 2

10

20

Target gene	Sites us cloning pCVD442		Sites introduced for screening purposes		
	Site 1	Site 2	Site 3	Site 4	
aroC	XbaI	SacI	XhoI	SphI	
htrA	SalI	SphI	XhoI	XbaI XhoI	
ompC	SalI	SacI	BlpI		
omp F	SacI	SacI SphI SalI SacI		XhoI	
ompR	SalI			SphI	

EXAMPLE 2: SAFETY AND IMMUNOGENICITY OF ATTENUATED VACCINE STRAIN OF ENTEROTOXIGENIC E. COLI

5 (ΔατοC/ΔοπρC/ΔοπρF) IN HUMAN VOLUNTEERS

The study was designed to evaluate a candidate live attenuated vaccine strain of enterotoxigenic E. coli, namely the $\Delta aroC/\Delta ompC/\Delta ompF$ PTL003 described above.

Preparation of the vaccine seed lots

The bacterial strain was plated onto MacConkey agar for purity and for confirmation of identity, and 5 colonies used to inoculate a flask containing 200 ml of luria broth. After 8 hours incubation at +37°C, 30 ml of sterile glycerol was added to the broth culture and aliquots prepared (1 ml per vial). One hundred such vials were forzen at -70°C. These vials constituted the seed lot for the vaccine strain.

Purity of the seed lot was ensured by selecting ten random vials, and testing them for bacterial purity and freedom from fungi. An additional three vials were tested to determine the number of bacteria in the vials using 5 standard plate count methods with serial dilutions of the culture broth.

Preparation of the vaccine

10 The vaccine was prepared fresh prior to each vaccination and all steps in the preparation of the inoculum carried out in a safety cabinet. The day prior to vaccination, 0.2 ml was spread onto the surface of luria agar plates using sterile cotton swabs to prepare the lawn of bacteria. The 15 same culture broth was streaked onto MacConkev and luria agar plates for purity. The agar plates were incubated at 37°C for 18 hours in a sealed container with tamperresistant indicator tape to ensure that the plates were not tampered with during incubation. After incubation, the lawn 20 of bacteria was harvested with 5 ml of sterile phosphate buffered saline (PBS), and the optical density of the suspension measured. The appropriate volume of this suspension, corresponding to the desired dose, was then placed into unit dose bottles with 30 ml of bicarbonate 25 buffer and administered to the volunteers. An extra dose of vaccine was prepared and left in the laboratory, and immediately after the volunteers had been vaccinated the actual number of bacteria in each dose of vaccine was validated using standard colony count procedures with ten 30 fold dilutions of vaccine.

The procedure for diluting the bacteria was established during preliminary studies using lawn cultures prepared and incubated exactly as done for the vaccine preparations administered to volunteers. Suspensions were made and the

WO 99/49026 PCT/GB99/00935

number of viable bacteria enumerated by colony counts of serial dilutions and related to the determined optical density. Based on these preliminary studies, a standard procedure was developed for preparing and validating the correct dilutions of bacteria in order to give the doses stated.

Preparation of buffer

10 A buffer consisting of sodium bicarbonate in water was used. For each dose of vaccine 150 ml of deionised water containing 2 gram of sodium bicarbonate was prepared and filter sterilised. 30 ml of the buffer was placed into 50 ml sterile vials and the dose of vaccine bacteria was added 15 to these vials. The remaining 120 ml of buffer was placed into separate sterile bottles. At the time of vaccination, the volunteers were first administered 120 ml of buffer, then a minute later, 30 ml of buffer containing the vaccine.

2.0

Vaccination schedule

Groups of volunteers were studied in a dose escalation manner. The first group of volunteers received a dose of approximately 5X10⁷ bacteria, the second a dose of approximately 5X10⁹ and the third group a dose of approximately 5X10⁸.

The volunteers were given Ciprofloxacin 500 mg BID for 30 three days beginning on day 4. They were discharged on day 6, having had a haematology and chemistry screen for safety. Serum was saved for antibody measurement.

On days 9 and 14 the volunteers returned for follow-up 35 outpatient visits at which time an interval history was

WO 99/49026 PCT/GB99/00935

done and a blood sample was obtained for serological assays. In total, blood (40 ml) was collected for serology three times, prior to vaccination and on day 9 and day 14 after vaccination.

5

Laboratory Assay Procedures

Up to two faecal specimens were cultured each day while the volunteers were in hospital. For qualitative cultures, a faecal swab was placed into Cary Blair transport media and taken to the laboratory where it was inoculated directly onto MacConkey agar and onto MacConkey agar containing antibiotics selective for the vaccine strain. Up to five colonies were shown to be agglutinated using antisera specific for the vaccine strain. For quantitative culture (first specimen each day only) faecal specimens were weighed and diluted in PBS, with serial 10-fold dilutions up to 10-4, and then 100 µl of each dilution was spread onto MacConkey agar with antibiotics. Suspected colonies were confirmed by agglutination with anti-0 serum.

Serum was collected and saved for subsequent assay for antibody against CFA II antigens by ELISA and bactericidal antibody against the vaccine strain.

25

Peripheral blood mononuclear cells were separated from whole blood collected into citrate and washed. These cells were cultured at a density of 107 cells per ml in RPMI tissue culture medium at 37°C for 48 hours. After 48 hours the supernatant was transferred to a cryovial and frozen at -20°C until it could be assayed for IgG and IgA antibody to CFA II by ELISA.

Table 3 - Summary of the procedures of the protocol

	Day (Vaccination day is day 0)	pre	-1	0	1	2	3	4	5	6	9	14
5	Recruitment / screening	×										
	HCG (urine)	х				x						
	Training/ consent	x										
10	Inpatient stay		×	×	×	х	x	x	×	х		
	Vaccination			×								
	Outpatient visit	х									×	×
	Stool cultures - quantitative		х	х	х	×	х	х	x	x	х	×
15	Stool cultures - qualitative		х	х	x	x	х	x	×	x	x	х
	Serology		х								x	x
	CBC/Chem panel	x								х		
20	Ciprofloxacin 500mg BID for 3d							х	х	х		

Results:

No symptoms were seen at all actual doses of 6.8 x 10⁷ and 3.7 x 10⁸ cfu. At the higher dose of 4.7 x 10⁹ 1/6 volunteers experienced diarrhoea and 2/6 had mild abdominal cramps. Bacterial shedding was seen in all volunteers at the 5X10⁹ cfu dose level form day 1 post vaccination until, as per protocol, ciprofloxacin was started on day 4 after vaccination. This indicates good intestinal colonisation, which is indicative of the potential to induce a good immune response. At the two lower doses, vaccine strain was recovered from all volunteers on at least one time point following vaccination but the duration of the excretion was reduced compared to that seen at the highest dose.

At the time of filing the application, the analysis of the 40 immune responses generated by the vaccine was incomplete.

However, the IgA anti-CFA II responses in the culture supernatants of PBMNC purified from the blood of recipients of the highest dose of vaccine at day 0 (before vaccination) and days 7 and 10 post vaccination have been analysed (see Figure 7). Supernatants were analysed by ELISA on assay plates coated with purified CFA II antigen. The OD values observed from the day 7 and day 10 samples were significantly higher than those from the prevaccination samples, demonstrating the induction of a specific IgA response at these time points. As expected, the responses show a peak at day 7 and are reduced at day 10, consistent with the homing of primed IgA secreting B-cells from the blood to the mucosal effector sites of the Gut Associated Lymphoid Tissue.

15

Conclusions:

The attenuated live strain of ETEC (\(\Delta aroC/\(\Delta ompC/\(\Delta ompC)\(\Delta ompC)\) has been shown to be well tolerated in healthy adult volunteers and to colonise the intestine in a manner consistent with its utility as an oral vaccine to protect against travellers diarrhoea. It has also been demonstrated to elicit a specific mucosal immune response.

25

References

- · 1. Bacon, G.A., Burrows, T.W. and Yates, M. (1950) Br.J.Exp. Pathol., 31, 714-24
 - 5 2. Chatfield, S.N., Charles, I.G., Makoff, A.J. et al (1992a) Biotech. 10, 888-892
 - Chatfield, S.N., Strahan, K., Pickard, D., Charles, I.G., Hormaeche, C.E. and Dougan, G. (1992b) Microbiol. Pathog., 12, 145-151
- 10 4. Curtiss III, R. and Kelly, S.M. (1987) Infect.Immun. 55, 3035-3043
 - Dougan, G., Chatfield, S., Pickard, D., Bester, J., O'Callaghan, D. and Maskell, D. (1988) J.Inf.Dis. 158, 1329-1335
- Fairweather, N.F., Chatfield, S.N., Makoff, A.J. et al (1990) Infect.Immun. 58, 1323-1329
 - Gomaz-Duarte, O.G., Galen, J., Chatfield, S.N. (1995) Vaccine, 13:1596-1602
 - 8. Hohmann, E.L., Oletta, C.A., Killeen, K.P. and
 - Miller, S.I. (1996) Vaccine 14, 19-24
 - Hone, D., Morona, R., Attridge, S. and Hackett, J. (1987) J.Infect.Dis., 156, 167-1
 - Jones, P.W., Dougan, G., Haywood, C., MacKensie,
 N., Collins, P. and Chatfield, S.N. (1991) Vaccine
- 25 9, 29-36
 - Levine, M.M., Galen, J., Barry, E. et al (1995)
 J. Biotech, 44, 193-196
 - Miller, S.I., Kukral, A.M. and Mekalanos, J.J. (1989), Proc.Nat.Acad.Sci., USA 86, 5054-5058
- 30 13. Pickard, D., Li, J.L., Roberts, M., Maskell, D.,

DOSTRONS DISTRI

Hone, D., Levine, M., Dougas, G. and Chatfield, S. (1994) Infection and Immunity 62, 3984-3993

- 14. Sambrook, J., Fritsch, E.F. and Maniatis, T., (1989)
- Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
 - Strugnell, R.A., Dougan, G., Chatfield, S.N. et al (1992) Infect.Immun., 60, 3994-4002
 - 16. EP-B-0322237 (Dougan et al)
- 10 17. EP-B-0400958 (Dougan et al)
 - 18. EP-B-0524205 (Dougan et al)
 - 19. WO 92/15689 (Charles et al)
 - Everest, P., Allen, J., Papakonstantinopoulou, A., Mastroeni, P., Roberts, M. and Dougan, G. (1995)
- 15 FEMS Microbiol. Letts., 126, 97-101
 - Chatfield, S.N., Dorman, C.J., Hayward, C. and Dougan, G. (1991) Infection & Immunity 59, 449-452
 - Donnenberg, M.S. and Kaper, J.B. (1991) Infection and Immunity 59, 4310-4317

CLAIMS

- A bacterium attenuated by a non-reverting mutation in each of the aroC gene, the ompF gene and the ompC gene.
- A bacterium according to claim 1 which infects by the oral route.
- 10 3. A bacterium according to claim 1 which is from the genera Escherichia, Salmonella, Vibrio, Haemophilus, Neisseria, Yersinia, Bordetella or Brucella.
- 15 4. A bacterium according to claim 3 which is a strain of Escherichia coli, Salmonella typhimurium, Salmonella typhi, Salmonella enteritidis, Salmonella choleraesuis, Salmonella dublin, Haemophilus influenzae, Neisseria gonorrhoeae,

 20 Yersinia enterocolitica, Bordetella pertussis or Brucella abortus.
 - A bacterium according to claim 4 which is a strain of enterotoxigenic E.coli (ETEC).

25

 A bacterium according to any one of the preceding claims which is further attenuted by a mutation in a fourth gene.

- A bacterium according to claim 6 wherein the fourth gene is aroA, aroD, aroE, pur, htrA, galE, cya, crp, phoP or surA.
- 5 8. A bacterium according to any one of the preceding claims, wherein the mutation in each gene is a defined mutation.
- 9. A bacterium according to any one of the preceding 10 claims, wherein the mutation in each gene is deletion of the entire coding sequence.
 - 10. A bacterium according to any one of the preceding claims which has been genetically engineered to express a heterologous antigen.
 - 11. A bacterium according to claim 10, wherein expression of the antigen is driven by the nirB promoter or the htrA promoter.

- 12. A vaccine comprising a bacterium as defined in any one of the preceding claims and a pharmaceutically acceptable carrier or diluent.
- 25 13. A bacterium as defined in any one of claims 1 to 11 for use in a method of vaccinating a human or animal.
- 14. An enterotoxigenic E.coli cell attenuated by a non-30 reverting mutation in each of the aroC gene, the

ompF gene and the ompC gene, for use in a method of vaccinating a human or animal against diarrhoea.

- 15. Use of a bacterium as defined in any one of claims 5 1 to 11 for the manufacture of a medicament for vaccinating a human or animal.
- 16. A method of raising an immune response in a mammalian host, which comprises administering to the host a bacterium attenuated by a non-reverting mutation in each of the aroC gene, the ompF gene and the ompC gene.

1/6

Fig.1.

- Primer A. includes restriction site 1
- Primer B. includes restriction site 2
- Primer C. includes restriction sites 3 and 4

AAACACAACAATAACGGAGCCCTCGAGGCATGCTGAATAAAATGAATAAAACCGCGATTG CG AAACACAACAATAACGGAGCGTGATG---TAAAAATGAATAAAACCGCGATTG CG deletion ¥. ×

htrA *

aroc

IGTTAATCGAGAXTGAAATACATGAA---AGTAATCTCCCTCAACCCCTTCCT GAA TGTTAATCGAGAXTGAAATACCTCGAGTCTAGACTCCCTCAACCCCTTCCTGAA deletion

ompC

ATATAACAGAGGGTTAATAACATGAAA---CAGTTCTAA TCTCGATTGATATCGAAC ATATAACAGAGGGTTAATAACGC7AAGCC7CGAGTAA TCTCGATTGATATCGAAC

deletion ₹.

AAACCATGAGGGTAATAAAATAgaGCTAAGCCTCGAGCAGTTCTAA TAGCACACCTCTTTGTTA AAACCATGAGGGTAATAAAATAATGATGAAGCGC---CCAGTTCTAA TAGCACACCTCTTTGTTA deletion ompF

... ≥

ompR

CGAACCTTTGGGAGTACAAACAATGCAA---AAGCATGA GGCGATTGCGCTTCTCGCCA CGAACCTTTGGGAGTACAAACAGCTAAGCGCATGCGA GGCGATTGCGCTTCTCGCCA deletion

Bold - Stop and start codons

Italics – restriction enzyme sites introduced Underlined - primer binding sites

-ower case - extra n.t added to primers to avoid primer dimer formation

— wild type gene

N.B. aroC deletion removes 16 n.t. 3' to the stop codon

Fig.4.

Fig.5.

Anti-CS3 antibody

SUBSTITUTE SHEET (RULE 26)

Fig.7.

SEQUENCE LISTING

(1) GENERAL INFORMATION: 5 (i) APPLICANT: (A) NAME: PEPTIDE THERAPEUTICS LIMITED (B) STREET: 100 Fulbourn Road (C) CITY: Cambridge 10 (D) STATE: not applicable (E) COUNTRY: United Kingdom (F) POSTAL CODE (ZIP): CB1 9PT (ii) TITLE OF INVENTION: ATTENUATED BACTERIA USEFUL IN VACCINES 15 (iii) NUMBER OF SEQUENCES: 6 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk 20 (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO) (v) CURRENT APPLICATION DATA: 25 APPLICATION NUMBER: (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 1690 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 35 (ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

(A) ORGANISM: aroC of E.coli

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 492..1562

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

	GTCGACGCGG TGGATATCTC TCCAGACGCG CTGGCGGTTG CTGAACAGAA CATCGAAGAA	60
10	CACGGTCTGA TCCACAACGT CATTCCGATT CGTTCCGATC TGTTCCGCGA CTTGCCGAAA	120
	GTGCAGTACG ACCTGATTGT CACTAACCCG CCGTATGTCG ATGCGAAGAT ATGTCCGACC	180
	TGCCAAACAA TACCGCCACG AGCCGGAACT GGGCCTGGCA TCTGGCACTG ACGGCCTGAA	240
	ACTGACGCGT CGCATTCTCG GTAACGCGGC AGATTACCTT GCTGATGATG GCGTGTTGAT	300
	TTGTGAAGTC GGCAACAGCA TGGTACATCT TATGGAACAA TATCCGGATG TTCCGTTCAC	360
15	CTGGCTGGAG TTTGATAACG GCGGCGATGG TGTGTTTATG CTCACCAAAG AGCAGCTTAT	420
	TGCCGCACGA GAACATTTCG CGATTTATAA AGATTAAGTA AACACGCAAA CACAACAATA	480
	ACGGAGCCGT G ATG GCT GGA AAC ACA ATT GGA CAA CTC TTT CGC GTA ACC	530
	Met Ala Gly Asn Thr Ile Gly Gln Leu Phe Arg Val Thr	
	1 5 10	
20		
	ACC TTC GGC GAA TCG CAC GGG CTG GCG CTC GGC TGC ATC GTC GAT GGT	578
	Thr Phe Gly Glu Ser His Gly Leu Ala Leu Gly Cys Ile Val Asp Gly	
	15 20 25	
25	GTT CCG CCA GGC ATT CCG CTG ACG GAA GCG GAC CTG CAA CAT GAC CTC	626
	Val Pro Pro Gly Ile Pro Leu Thr Glu Ala Asp Leu Gln His Asp Leu	
	30 35 40 45	
	GAC CGT CGT CGC CCT GGG ACA TCG CGC TAT ACC ACC CAG CGC CGC GAG	674
30	Asp Arg Arg Arg Pro Gly Thr Ser Arg Tyr Thr Thr Gln Arg Arg Glu	
	50 55 60 -	
	CCG GAT CAG GTC AAA ATT CTC TCC GGT GTT TTT GAA GGC GTT ACT ACC	722
	Pro Asp Gln Val Lys Ile Leu Ser Gly Val Phe Glu Gly Val Thr Thr	
35	65 70 75	

GGC ACC AGC ATT GGC TTG TTG ATC GAA AAC ACT GAC CAG CGC TCT CAG

PCT/GB99/00935 WO 99/49026 Gly Thr Ser Ile Gly Leu Leu Ile Glu Asn Thr Asp Gln Arg Ser Gln GAT TAC AGT GCG ATT AAG GAC GTT TTC CGT CCA GGC CAT GCC GAT TAC 5 Asp Tyr Ser Ala Ile Lys Asp Val Phe Arg Pro Gly His Ala Asp Tyr ACC TAC GAA CAA AAA TAC GGT CTG CGC GAT TAT CGC GGC GGT GGA CGT Thr Tyr Glu Gln Lys Tyr Gly Leu Arg Asp Tyr Arg Gly Gly Gly Arg 1.0 TCT TCC GCC CGC GAA ACC GCC ATG CGC GTG GCG GCA GGA GCT ATT GCC Ser Ser Ala Arg Glu Thr Ala Met Arg Val Ala Ala Gly Ala Ile Ala AAA AAA TAT CTC GCC GAG AAA TTT GGT ATT GAA ATC CGT GGC TGC CTG Lys Lys Tyr Leu Ala Glu Lys Phe Gly Ile Glu Ile Arg Gly Cys Leu 20 ACC CAG ATG GGC GAC ATT CCG CTG GAT ATC AAA GAC TGG TCG CAG GTC Thr Gln Met Gly Asp Ile Pro Leu Asp Ile Lys Asp Trp Ser Gln Val GAG CAA AAT CCG TTT TTT TGC CCG GAC CCC GAC AAA ATC GAC GCG TTA 25 Glu Gln Asn Pro Phe Phe Cys Pro Asp Pro Asp Lys Ile Asp Ala Leu GAC GAG TTG ATG CGT GCG CTG AAA AAA GAG GGC GAC TCC ATC GGC GCT

Asp Glu Leu Met Arg Ala Leu Lys Lys Glu Gly Asp Ser Ile Gly Ala

AAA GTC ACC GTT GTT GCC AGT GGC GTT CCT GCC GGA CTT GGC GAG CCG Lys Val Thr Val Val Ala Ser Gly Val Pro Ala Gly Leu Gly Glu Pro

GTC TIT GAC CGC CTG GAT GCT GAC ATC GCC CAT GCG CTG ATG AGC ATC Val Phe Asp Arg Leu Asp Ala Asp Ile Ala His Ala Leu Met Ser Ile

	AAC	GCG	GTG	AA.	GGC	GTG	GAA	ATT	GGC	GAC	GGC	ш	GAC	GTG	GTG	GCG	1250
	Asn	Ala	Val	Lys	G1y	Va1	Glu	Пe	Gly	Asp	G1 y	Phe	Asp	Va1	۷a۱	Ala	
5			240					245					250				
	CTG	CGC	GGC	AGC	CAG	AAC	CGC	GAT	GAA	ATC	ACC	AAA	GAC	GGT	TTC	CAG	1298
	Leu	Arg	G1 y	Ser	Gln	Asn	Arg	Asp	Glu	IJе	Thr	Lys	Asp	G1 y	Phe	G1n	
		255					260					265					
10																	
	AGC	AAC	CAT	GCG	GGC	GGC	ATT	СТС	GGC	GGT	ATC	AGC	AGC	GGG	CAG	CAA	1346
	Ser	Asn	His	Ala	G1 y	Gly	IJе	Leu	G1 y	Gly	Пe	Ser	Ser	G1 y	G1n	G1n	
	270					275					280					285	
15	ATC	ATT	GCC	CAT	ATG	GCG	CTG	AAA	CCG	ACC	TCC	AGC	ATT	ACC	GTG	CCG	1394
	Пe	Пe	Ala	His	Met	Ala	Leu	Lys	Pro	Thr	Ser	Ser	Пe	Thr	Val	Pro	
					290					295					300		
	GGT	CGT	ACC	ATT	AAC	CGC	ПТ	GGC	GAA	GAA	GTT	GAG	ATG	ATC	ACC	AAA	1442
20	Gly	Arg	Thr	Пe	Asn	Arg	Phe	G1 y	Glu	G1u	Va1	G1u	Met	Пe	Thr	Lys	
				305					310					315			
	GGC	CGT	CAC	GAT	CCC	TGT	GTC	GGG	ATC	CGC	GCA	GTG	CCG	ATC	GCA	GAA	1490
	Gly.	Arg	His	Asp	Pro	Cys	Val	G 1 y	Пe	Arg	Ala	Va1	Pro	Пe	Ala	G1u	
25			320					325					330				
	GCG	AAT	GCT	GGC	GAT	CGT	Ш	AAT	GGA	TCA	ССТ	GTT	ACG	GCA	ACG	GGC	1538
	Ala .	Asn	Ala	G1y	Asp	Arg	Phe	Asn	G1 y	Ser	Pro	۷a٦	Thr	Ala	Thr	G1 y	
	:	335					340					345					
30																	
	GCA A	AAA	TGC	CGA	TGT	GAA	GAC	TGA	TATT	CCAC	GC T	GGTA	AAAA	A TG	AATA	AAAC	1592 -
	Ala I	_ys	Cys	Arg	Cys	G1u	Asp	*									
	350					355											
35	CGCG	ATTG	CG C	TGCT	GGCT	C TG	CTTG	CCAG	TAG	CGCC	AGC	CTGG	CAGC	GA C	GCCG	TGGCA	1652
	AAAA	ATAA	сс с	AACC	TGTG	C CG	GGTA	GCGC	CAA	ATCG	Ą						1690

(2) INFORMATION FOR SEQ ID NO: 2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 356 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- 10 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 2:

Met Ala Gly Asn Thr Ile Gly Gln Leu Phe Arg Val Thr Thr Phe Gly $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

15 $\,$ Glu Ser His Gly Leu Ala Leu Gly Cys Ile Val Asp Gly Val $\,$ Pro Pro $\,$ 20 $\,$ 25 $\,$ 30 $\,$

Gly Ile Pro Leu Thr Glu Ala Asp Leu Gln His Asp Leu Asp Arg Arg 35 40 45

20

Arg Pro Gly Thr Ser Arg Tyr Thr Thr Gln Arg Arg Glu Pro Asp Gln \$50\$ \$60\$

Val Lys Ile Leu Ser Gly Val Phe Glu Gly Val Thr Thr Gly Thr Ser 25 65 70 75 80

Ile Gly Leu Leu Ile Glu Asn Thr Asp Gln Arg Ser Gln Asp Tyr Ser 85 90 95

30 Ala Ile Lys Asp Val Phe Arg Pro Gly His Ala Asp Tyr Thr Tyr Glu 100 105 110

Gln Lys Tyr Gly Leu Arg Asp Tyr Arg Gly Gly Gly Arg Ser Ser Ala 115 120 125

35

Arg Glu Thr Ala Met Arg Val Ala Ala Gly Ala Ile Ala Lys Lys Tyr 130 135 140

w	O 99/	4902	6													
	Leu 145		ı Glu	Lys	Phe	Gly 150		Glu	Ile	Arg	Gly 155	Cys	Leu	Thr	G1n	Met 160
5	G1 y	Asp	Ile	Pro	Leu 165	Asp	Ile	Lys	Asp	Trp 170	Ser	G1n	Va1	Glu	G1n 175	Asn
	Pro	Phe	Phe	Cys 180	Pro	Asp	Pro	Asp	Lys 185	Ile	Asp	Ala	Leu	Asp 190	G1u	Leu
10	Met	Arg	Ala 195	Leu	Lys	Lys	Glu	G1 y 200	Asp	Ser	Ile	Gly	A1 a 205	Lys	Va1	Thr
15	Val	Val 210	Ala	Ser	G1 y	Val	Pro 215	Ala	Gly	Leu	G1 <i>y</i>	G1u 220	Pro	Val	Phe	Asp
13	Arg 225	Leu	Asp	Ala	Asp	Ile 230	Ala	His	Ala	Leu	Met 235	Ser	Ile	Asn	Ala	Va1 240
20	Lys	Gly	Va1	Glu	I1e 245	G1 y	Asp	G1 y	Phe	Asp 250	Val	Val	Ala	Leu	Arg 255	Gly
	Ser	Gln	Asn	Arg 260	Asp	Glu	Ile	Thr	Lys 265	Asp	Gly	Phe	G1n	Ser 270	Asn	His
25	Ala	G1 y	G1 <i>y</i> 275	Ile	Leu	Gly	Gly	I1e 280	Ser	Ser	Gly	Gln	G1n 285	Ile	Ile	A1 a
30	His	Met 290	Ala	Leu	Lys	Pro	Thr 295	Ser	Ser	Пе		Va1 300	Pro	Gly	Arg	Thr
,	I1e 305	Asn	Arg	Phe		G1u 310	G1 u	Val	Glu	Met	Ile 315	Thr	Lys	Gly		His 320

PCT/GB99/00935

35 Asp Pro Cys Val Gly Ile Arg Ala Val Pro Ile Ala Glu Ala Asn Ala 325 330 335

3

ν	VO 99/49026	I/GD77
	Gly Asp Arg Phe Asn Gly Ser Pro Val Thr Ala Thr Gly Ala Lys Cys 340 345 350	
5	Arg Cys Glu Asp * 355	
	(2) INFORMATION FOR SEQ ID NO: 3:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: ompC of E.coli	
20	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:4911594	
25	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	GTTAACAAGC GTTATAGTTT TTCTGTGGTA GCACAGAATA ATGAAAAGTG TGTAAAGAAG	60
30	GGTAAAAAAA ACCGAATGCG AGGCATCCGG TTGAAATAGG GGTAAACAGA CATTCAGAAA	120
30	TGAATGACGG TAATAAATAA AGTTAATGAT GATAGCGGGA GTTATTCTAG TTGCGAGTGA	180
	AGGTTTTGTT TTGACATTCA GTGCTGTCAA ATACTTAAGA ATAAGTTATT GATTTTAACC	240
35	TTGAATTATT ATTGCTTGAT GTTAGGTGCT TATTTCGCCA TTCCGCAATA ATCTTAAAAA	300

GTTCCCTTGC ATTTACATTT TGAAACATCT ATAGCGATAA ATGAAACATC TTAAAAGTTT

WO 99/49026

•	. 6 33.1362	
	TAGTATCATA TICGTGTTGG ATTATTCTGC ATTTTTGGGG AGAATGGACT TGCCGACTGA	420
	TTAATGAGGG TTAATCAGTA TGCAGTGGCA TAAAAAAGCA AATAAAGGCA TATAACAGAG	480
5		
	GGTTAATAAC ATG AAA GTT AAA GTA CTG TCC CTC CTG GTC CCA GCT CTG Met Lys Val Lys Val Leu Ser Leu Leu Val Pro Ala Leu	529
	360 365 370	
10	CTG GTA GCA GGC GCA GCA AAC GCT GCT GAA GTT TAC AAC AAA GAC GGC	577
	Leu Val Ala Gly Ala Ala Asn Ala Ala Glu Val Tyr Asn Lys Asp Gly	377
	375 380 385	
	AAC AAA TTA GAT CTG TAC GGT AAA GTA GAC GGC CTG CAC TAT TTC TCT	625
15	Asn Lys Leu Asp Leu Tyr Gly Lys Val Asp Gly Leu His Tyr Phe Ser	
	390 395 400	
	GAC AAC AAA GAT GTA GAT GGC GAC CAG ACC TAC ATG CGT CTT GGC TTC	673
20	Asp Asn Lys Asp Val Asp Gly Asp Gln Thr Tyr Met Arg Leu Gly Phe 405 410 415	
20	400 410 415	
	AAA GGT GAA ACT CAG GTT ACT GAC CAG CTG ACC GGT TAC GGC CAG TGG	721
	Lys Gly Glu Thr Gln Val Thr Asp Gln Leu Thr Gly Tyr Gly Gln Trp	
25	420 425 430	
	GAA TAT CAG ATC CAG GGC AAC AGC GCT GAA AAC GAA AAC AAC TCC TGG	769
	Glu Tyr Gln Ile Gln Gly Asn Ser Ala Glu Asn Glu Asn Asn Ser Trp	
	435 440 445 450	
30	ACC CGT GTG GCA TTC GCA GGT CTG AAA TTC CAG GAT GTG GGT TCT TTC	817
	Thr Arg Val Ala Phe Ala Gly Leu Lys Phe Gln Asp Val Gly Ser Phe	
	455 460 465	
	GAC TAC GGT CGT AAC TAC GGC GTT GTT TAT GAC GTA ACT TCC TGG ACC	865
35	Asp Tyr Gly Arg Asn Tyr Gly Val Val Tyr Asp Val Thr Ser Trp Thr	
	470 475 480	

PCT/GB99/00935

wo	99/4	19020	5														PCT/GB99/00935
	GAC	GTA	CTG	CCA	GAA	ттс	GGT	GGT	GAC	ACC	TAC	GGT	TCT	GAC	AAC	TTC	913
	Asp	Va1	Leu	Pro	Glu	Phe	Gly	Gly	Asp	Thr	Tyr	Gly	Ser	Asp	Asn	Phe	
			485					490					495				
5	ΔTG	CAG	CAG	CGT	GGT	AAC	GGC	TTC	GCG	۸۲۲	TAT	CGT	ΔΔΓ	ΔCT	GAC	TTC	961
3					Gly												301
	1100	500	٠	n, g	u.,	71311	505	1110	,,,u			510	,,,,,,,,	••••	пор	1110	
		500					505					310					
	TTC	GGT	CTG	GTT	GAC	GGC	CTG	AAC	Ш	GCT	GTT	CAG	TAC	CAG	GGT	AAA	1009
10	Phe	G1 y	Leu	Val	Asp	Gly	Leu	Asn	Phe	Ala	Va1	Gln	Tyr	G1n	G1y	Lys	
	515					520					525					530	
	AAC	GGC	AAC	CCA	TCT	GGT	GAA	GGC	Ш	ACT	AGT	GGC	GTA	ACT	AAC	AAC	1057
	Asn	Gly	Asn	Pro	Ser	Gly	Glu	Gly	Phe	Thr	Ser	Gly	Va1	Thr	Asn	Asn	
15					535					540					545		
	GGT	CGT	GAC	GCA	CTG	CGT	CAA	AAC	GGC	GAC	GGC	GTC	GGC	GGT	TCT	ATC	1105
	Gly	Arg	Asp	A٦a	Leu	Arg	GIn	Asn	Gly	Asp	Gly	Val	Gly	G1 y	Ser	Ile	
				550					555					560			
20																	
					GAA												1153
	Thr	Tyr		Tyr	Glu	G1 y	Phe		Пe	Gly	Gly	Ala		Ser	Ser	Ser	
			565					570					575		۸.		
																	
25					GCT												1201
	Lys		inr	ASP	Ala	GIN		inr	Ala	AId	ıyr		GIY	ASN	ыу	ASP	
		580					585					590					
	CGT	GCT	GAA	ACC	TAC	ACT	GGT	GGT	CTG	AAA	TAC	GAC	GCT	AAC	AAC	ATC	1249
30					Tyr												
	595				,	600		•			605					610	
	TAC	CTG	GCT	GCT	CAG	TAC	ACC	CAG	ACC	TAC	AAC	GCA	ACT	CGC	GTA	GGT	1297
	Tyr	Leu	Ala	Ala	Gln	Tyr	Thr	G1 n	Thr	Tyr	Asn	Αla	Thr	Arg	Va1	Gly	
35					615					620					625		

TCC CTG GGT TGG GCG AAC AAA GCA CAG AAC TTC GAA GCT GTT GCT CAG

	Ser Leu	Gly	Trp 630	Ala	Asn	Lys	Ala	G1n 635	Asn	Phe	G1u	Ala	Va1 640	Ala	G1n	
	TAC CAG	TTC	GAC	TTC	GGT	CTG	CGT	CCG	TCC	CTG	GCT	TAC	CTG	CAG	TCT	1393
5	Tyr Gln	Phe	Asp	Phe	G1 y	Leu	Arg	Pro	Ser	Leu	Ala	Tyr	Leu	G1n	Ser	
		645					650					655				
	AAA GGT		***	CTC	сст	ССТ	ccc	TAC	CAC	CAC	CAA	CAT	ATC	CTC	***	1441
	Lys Gly															1441
10	660	Lys	ASII	Leu	ыу	665	GIY	ı yı	ASP	АЅР	670	ASP	rie	Leu	Lys	
10	000					003					0/0					
	TAT GTT	GAT	GTT	GGT	GCT	ACC	TAC	TAC	ттс	AAC	AAA	AAC	ATG	TCC	ACC	1489
	Tyr Val	Asp	Va1	G1 y	Ala	Thr	Tyr	Tyr	Phe	Asn	Lys	Asn	Met	Ser	Thr	
	675				680					685					690	
15																
	TAC GTT	GAC	TAC	AAA	ATC	AAC	CTG	CTG	GAC	GAC	AAC	CAG	TTC	ACT	CGT	1537
	Tyr Val	Asp	Tyr	Lys	Пe	Asn	Leu	Leu	Asp	Asp	Asn	G1 n	Phe	Thr	Arg	
				695					700					705		
															T10	1505
20	GAC GCT										-					1585
	Asp Ala	ыу	710	ASII	1141	АЗР	ASII	715	Vai	АТА	Leu	GIY	720	Val	Tyr	
			710					713					120			
	CAG TTC	TAA	тсто	GAT	rga 1	TATCO	AACA	AA GO	GCCT	rgcgg	GCC	стт	ПП			1634
25	Gln Phe	*														
		725														
	CATTGTT	TTC #	AGCG1	ACA/	VA CT	CAG	Ш	TG6	TGT/	ACTC	TTGC	GAC	CGT	rcgc/	TGAGG	1694
2.0																1710
30	ATAATCA	JGT A	ACGG/	VAAT/	A.											1713

- (2) INFORMATION FOR SEQ ID NO: 4:
- 35 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 367 amino acids
 - (B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

5

Met Lys Val Lys Val Leu Ser Leu Leu Val Pro Ala Leu Leu Val Ala $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Gly Ala Ala Asn Ala Ala Glu Val Tyr Asn Lys Asp Gly Asn Lys Leu 10 20 25 30

Asp Leu Tyr Gly Lys Val Asp Gly Leu His Tyr Phe Ser Asp Asn Lys

15 Asp Val Asp Gly Asp Gln Thr Tyr Met Arg Leu Gly Phe Lys Gly Glu 50 60

Thr Gln Val Thr Asp Gln Leu Thr Gly Tyr Gly Gln Trp Glu Tyr Gln 65 70 75 80

Ile Gin Gly Asn Ser Ala Glu Asn Glu Asn Asn Ser Trp Thr Arg Val

Ala Phe Ala Gly Leu Lys Phe Gln Asp Val Gly Ser Phe Asp Tyr Gly 25 100 105 110

Arg Asn Tyr Gly Val Val Tyr Asp Val Thr Ser Trp Thr Asp Val Leu
115 120 125

30 Pro Glu Phe Gly Gly Asp Thr Tyr Gly Ser Asp Asn Phe Met Gln Gln
-130 135 140

35
Val Asp Gly Leu Asn Phe Ala Val Gln Tyr Gln Gly Lys Asn Gly Asn
165
170
175

PCT/GB99/00935 WO 99/49026

Pro Ser Gly Glu Gly Phe Thr Ser Gly Val Thr Asn Asn Gly Arg Asp Ala Leu Arg Gln Asn Gly Asp Gly Val Gly Gly Ser Ile Thr Tyr Asp Tyr Glu Gly Phe Gly Ile Gly Gly Ala Ile Ser Ser Ser Lys Arg Thr Asp Ala Gln Asn Thr Ala Ala Tyr Ile Gly Asn Gly Asp Arg Ala Glu Thr Tyr Thr Gly Gly Leu Lys Tyr Asp Ala Asn Asn Ile Tyr Leu Ala Ala Gln Tyr Thr Gln Thr Tyr Asn Ala Thr Arg Val Gly Ser Leu Gly Trp Ala Asn Lys Ala Gln Asn Phe Glu Ala Val Ala Gln Tyr Gln Phe Asp Phe Gly Leu Arg Pro Ser Leu Ala Tyr Leu Gln Ser Lys Gly Lys Asn Leu Gly Arg Gly Tyr Asp Asp Glu Asp Ile Leu Lys Tyr Val Asp Val Gly Ala Thr Tyr Tyr Phe Asn Lys Asn Met Ser Thr Tyr Val Asp Tyr Lys Ile Asn Leu Leu Asp Asp Asn Gln Phe Thr Arg Asp Ala Gly Ile Asn Thr Asp Asn Ile Val Ala Leu Gly Leu Val Tyr Gln Phe *

W	/O 99/49026	PCT/GB99/00935
	(2) INFORMATION FOR SEQ ID NO: 5:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1808 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic) (vi) ORIGINAL SOURCE:	
15	(A) ORGANISM: ompF of E.coli (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 4571545	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: AAAACTAATC CGCATTCTTA TTGCGGATTA GTTTTTTCTT AGCTAATAGC ACAATTTICA	60
	TACTATTTTT TGGCATTCTG GATGTCTGAA AGAAGATTTT GTGCCAGGTC GATAAAGTTT	120
25	CCATCAGAAA CAAAATTTCC GTTTAGTTAA TTTAAATATA AGGAAATCAT ATAAATAGAT	180
	TAAAATTGCT GTAAATATCA TCACGTCTCT ATGGAAATAT GACGGTGTTC ACAAAGTTCC	240
30	TTAAATTITA CTTTTGGTTA CATATTTTTT CTTTTTGAAA CCAAATCTTT ATCTTTGTAG	300
30	CACTITICACG GTAGCGAAAC GTTAGTTTGA ATGGAAAGAT GCCTGCAGAC ACATAAAGAC	360
	ACCAMACTCT CATCAMTAGT TCCGTAMATT TTTATTGACA GAACTTATTG ACGGCAGTGG	420
35	CACCTCTCAT AAAAAAAAACC ATGAGGCTAA TAAATA ATG ATG AAG CCC AAT ATT	474

Met Met Lys Arg Asn Ile

w	O 99	/490:	26														PCT/GB99/00935
	CTG	GCA	G TG	ATC	GTC	ССТ	GCT	CTG	TTA	GTA	GCA	GGT	ACT	GCA	AAC	GCT	522
	Leu	Ala	Va1	Ile	۷a٦	Pro	A۱a	Leu	Leu	۷a٦	A1 a	G1 y	Thr	Αla	Asn	Ala	
				10					15					20			
5	GCA	GAA	ATC	TAT	AAC	AAA	GAT	GGC	AAC	AAA	GTA	GAT	CTG	TAC	GGT	AAA	570
	Ala	Glu		Tyr	Asn	Lys	Asp		Asn	Lys	Val	Asp		Tyr	G1 y	Lys	
			25					30					35				
	GCT	GTT	GGT	CTG	CAT	TAT	Ш	TCC	AAG	GGT	AAC	GGT	GAA	AAC	AGT	TAC	618
10	Ala	Va1	Gly	Leu	His	Tyr	Phe	Ser	Lys	Gly	Asn	G1y	G1 u	Asn	Ser	Tyr	
		40					45					50					
	GGT	GGC	AAT	GGC	GAC	ATG	ACC	TAT	GCC	CGT	CTT	GGT	Ш	AAA	GGG	GAA	666
	Gly	G1 y	Asn	Gly	Asp	Met	Thr	Tyr	Ala	Arg	Leu	Gly	Phe	Lys	Gly	Glu	
15	55					60					65					70	
	ACT	CAA	ATC	AAT	TCC	CAT	CTC	400	CCT	TAT	сст	CAC	TCC	CAA	TAT	***	714
				Asn													714
	1111	GIII	116	ASII	75	дәр	Leu		uly	80	uly	um	пр	uiu	85	АЗП	
20					,,					•••					00		
	ПС	CAG	GGT	AAC	AAC	TCT	GAA	GGC	GCT	GAC	GCT	CAA	ACT	GGT	AAC	AAA	762
	Phe	Gln	G1 y	Asn	Asn	Ser	Glu	Gly	Αla	Asp	Ala	Gln	Thr	Gly	Asn	Lys	
				90					95					100			
25				GCA													810
	Thr	Arg		Ala	Phe	Ala	Gly		Lys	Tyr	Ala	Asp		Gly	Ser	Phe	
			105					110					115				
	GAT	TAC	GGC	CGT	AAC	TAC	GGT	GTG	GTT	TAT	GAT	GCA	CTG	GGT	TAC	ACC	858
30				Arg													555
		120					125					130					
	GAT	ATG	CTG	CCA	GAA	Ш	GGT	GGT	GAT	ACT	GCA	TAC	AGC	GAT	GAC	πс	906
	Asp	Met	Leu	Pro	Glu	Phe	Gly	G1 y	Asp	Thr	A٦a	Tyr	Ser	Asp	Asp	Phe	
35	135					140					145					150	
		CTT	007	007		000	000					ООТ		Toc			054
	HU	ull	uu l	CGT	GII	UUU	حاماما	ull	ul I	ALC	IAI	Util	AAC	100	AAC	TIC	954

	Phe	Val	Gly	Arg	Va1	G1 y	Gly	Val	Ala	Thr	Tyr	Arg	Asn	Ser	Asn	Phe	
					155					160					165		
	Ш	GGT	CTG	GTT	GAT	GGC	CTG	AAC	TTC	GCT	GTT	CAG	TAC	CTG	GGT	AAA	1002
5	Phe	Gly	Leu	Val	Asp	G1 y	Leu	Asn	Phe	Ala	Val	Gln	Tyr	Leu	Gly	Lys	
				170					175					180			
	AAC	GAG	CGT	GAC	ACT	GCA	CGC	CGT	TCT	AAC	GGC	GAC	GGT	GTT	GGC	G GT	1050
	Asn	Glu		Asp	Thr	Ala	Arg	-	Ser	Asn	Gly	Asp	-	Val	G1 y	Gly	
10			185					190					195				
												GTT					1098
	Ser		Ser	ıyr	Glu	ıyr		GIY	Pne	GIY	He	Val	Gly	Ala	ıyr	Gly	
1.5		200					205					210					
15	CCA	CCT	GAC	ССТ	٨٥٥	۸۸۲	стс	CAA	CAA	CCT	CVV	CCT	CTT	ccc	AAC	CCT	1146
												Pro					1140
	215	Міа	Мэр	Ai g	****	220	Leu	u i ii	uiu	Ald	225	710	Leu	uly	ASII	230	
	213															230	
20	AAA	AAA	GCT	GAA	CAG	TGG	GCT	ACT	GGT	CTG	AAG	TAC	GAC	GCG	AAC	AAC	1194
	Lys	Lys	A1a	Glu	G1n	Trp	Ala	Thr	Gly	Leu	Lys	Tyr	Asp	Ala	Asn	Asn	
					235					240					245		
	ATC	TAC	CTG	GCA	GCG	AAC	TAC	GGT	GAA	ACC	CGT	AAC	GCT	ACG	CCG	ATC	1242
25	Пe	Tyr	Leu	A1a	A1a	Asn	Tyr	Gly	G1u	Thr	Arg	Asn	Ala	Thr	Pro	Ile	
				250					255					260			
												AAC					1290
	Thr	Asn	-	Phe	Thr	Asn	Thr		G1 y	Phe	Ala	Asn	-	Thr	G1n	Asp	
30			265					270					275				
		0.00			000	٠.,	T.C		TT C	CAT	TT 0	-	CTC	COT	•	T00	1000
												GGT G1y					1338
	401	280	Leu	va i	HId	4111	285	am	riie	vsh	rite	290	Leu	Arg	210	261.	
35		200					200					250					
55	ATC:	GCT	TAC	ACC:	AAA	тст	AAA	GCG	AAA	GAC	GTA	GAA	GGT	ATC:	GGT	GAT	1386
					•		1		1								_300

Ile Ala Tyr Thr Lys Ser Lys Ala Lys Asp Val Glu Gly Ile Gly Asp

WO 99/49026 PCT/GB99/00935 295 300 305 310 GTT GAT CTG GTG AAC TAC TIT GAA GTG GGC GCA ACC TAC TAC TTC AAC 1434 Val Asp Leu Val Asn Tyr Phe Glu Val Gly Ala Thr Tyr Tyr Phe Asn 5 315 320 325 AAA AAC ATG TCC ACC TAT GTT GAC TAC ATC ATC AAC CAG ATC GAT TCT 1482 Lys Asn Met Ser Thr Tyr Val Asp Tyr Ile Ile Asn Gln Ile Asp Ser 330 335 340 10 GAC AAC AAA CTG GGC GTA GGT TCA GAC GAC ACC GTT GCT GTG GGT ATC 1530 Asp Asn Lys Leu Gly Val Gly Ser Asp Asp Thr Val Ala Val Gly Ile 345 350 355 15 GTT TAC CAG TTC TAA TAGCACACCT CTTTGTTAAA TGCCGAAAAA ACAGGACTTT 1585 Val Tyr Gln Phe * 360 GGTCCTGTTT TTTTTATACC TTCCAGAGCA ATCTCACGTC TTGCAAAAAC AGCCTGCGTT 1645 20 TTCATCAGTA ATAGTTGGAA TTTTGTAAAT CTCCCGTTAC CCTGATAGCG GACTTCCCTT 1705 CTGTAACCAT AATGGAACCT CGTCATGTTT GAGAACATTA CCGCCGCTCC TGCCGACCCG 1765 25 ATTCTGGGCC TGGCCGATCT GTTTCGTGCC GATGAACGTC CCG 1808 (2) INFORMATION FOR SEQ ID NO: 6: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 362 amino acids. (B) TYPE: amino acid

- 35 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

(D) TOPOLOGY: linear

	Met 1	Met	Lys	Arg	Asn 5	Ile	Leu	Ala	Va1	Ile 10	Val	Pro	Ala	Leu	Leu 15	Val
5	Ala	Gly	Thr	A1 a 20	Asn	Ala	Ala	Glu	Ile 25	Tyr	Asn	Lys	Asp	G1 y 30	Asn	Lys
	Val	Asp	Leu 35	Tyr	G1 y	Lys	Ala	Va1 40	Gly	Leu	His	Tyr	Phe 45	Ser	Lys	Gly
10	Asn	G1 y 50	Glu	Asn	Ser	Tyr	G1 y 55	Gly	Asn	G1 y	Asp	Met 60	Thr	Tyr	Ala	Arg
	Leu 65	Gly	Phe	Lys	G1 y	G 1u 70	Thr	G1n	Ile	Asn	Ser 75	Asp	Leu	Thr	Gly	Tyr 80
15	Gly	Gln	Trp	Glu	Tyr 85	Asn	Phe	Gln	Gly	Asn 90	Asn	Ser	Glu	G1 <i>y</i>	A1 a 95	Asp
20	Ala	Gln	Thr	Gly 100	Asn	Lys	Thr	Arg	Leu 105	Ala	Phe	Ala	G1 y	Leu 1 1 0	Lys	Tyr
	Ala	Asp	Val 115	Gly	Ser	Phe	Asp	Tyr 120	G1 y	Arg	Asn	Tyr	Gly 125	Val	Val	Tyr
25	Asp	Ala 130	Leu	Gly	Tyr	Thr	Asp 135	Met	Leu	Pro	Glu	Phe 140	Gly	G1y	Asp	Thr
	A1 a 145	Tyr	Ser	Asp	Asp	Phe 150	Phe	Val	G1 y	Arg	Va1 155	G 1 y	G1 y	Val	Ala	Thr 160
30	Tyr	Arg	Asn	Ser	Asn 165	Phe	Phe	G1 y	Leu	Va1 170	Asp	G1 y	Leu	Asn	Phe 175	Ala
35	Va1	Gln	Tyr	Leu 180	Gly	Lys	Asn	G1u	Arg 18 5	Asp	Thr	Ala	Arg	Arg 190	Ser	Asn
	G1 y	Asp	G1 y	Va1	G1 y	G1 y	Ser	IJе	Ser	Tyr	G1 u	Tyr	Glu	G1 y	Phe	Gly

Ile Val Gly Ala Tyr Gly Ala Ala Asp Arg Thr Asn Leu Gln Glu Ala Gin Pro Leu Gly Asn Gly Lys Lys Ala Glu Gin Trp Ala Thr Gly Leu Lys Tyr Asp Ala Asn Asn Ile Tyr Leu Ala Ala Asn Tyr Gly Glu Thr Arg Asn Ala Thr Pro Ile Thr Asn Lys Phe Thr Asn Thr Ser Gly Phe Ala Asn Lys Thr Gln Asp Val Leu Leu Val Ala Gln Tyr Gln Phe Asp Phe Gly Leu Arg Pro Ser Ile Ala Tyr Thr Lys Ser Lys Ala Lys Asp Val Glu Gly Ile Gly Asp Val Asp Leu Val Asn Tyr Phe Glu Val Gly Ala Thr Tyr Tyr Phe Asn Lys Asn Met Ser Thr Tyr Val Asp Tyr Ile

The Asn Gln Tie Asp Ser Asp Asn Lys Leu Gly Val Gly Ser Asp Asp

30 Thr Val Ala Val Gly Ile Val Tyr Gln Phe *

Nixon & Vanderhye P.C. (6/92)

RULE 63 (37 C.F.R. 1.63) DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

As a below named inventor, I hereby declare that my residence, post office address and citizenship are as stated below next to my name, and I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plaral names are listed below) of the subject metair which is claimed and for which a patent is sought on the invention entailed <u>BACTERIA ATTENUATED</u>

BY A NON-REVERTING MUTATION IN EACH OF THE AROC, OMPF AND OMPC GENES, USEFUL AS VACCINES

BY A NON-REVERTING THE AROCH OF THE AROC, OMPF AND OMPC GENES, USEFUL AS VACCINES

The resultance of whethe (News Lepische More(A)).

[] is attached hereto			
was filed on			
[x] was filed as PCT international application No. PC and (if applicable to U.S. or PCT application) was at		March 1999	
I hereby state that I have reviewed and understand the amendment referred to above. I acknowledge the di	contents of the above identified sp		
accordance with 37 C.F.R. 1.56(a). I hereby claim fo			
or inventor's certificate listed below and have also ide			
date before that of the application on which priority i	s claimed or, if no priority is clair	med, before the filing date of this appl	ication.
Prior Foreign Application(s):			
Application Number	Country		th/Year Filed
9806449.6	United Kingdom	25 ^u N	Aarch 1998
Thereby claim the benefit under 35 U.S.C. 120/365 c insofar as the subject matter of each of the claims of the first paragraph of 35 U.S.C. 112, I acknowledge the between the filling date of the prior applications and the Prior U.S./PCT Application(s):	nis application is not disclosed in st duty to dislose material informati	uch prior applications in the manner pr ion as defined in 37 C.F.R. 1.56(a) where	ovided by the
	/Month/Year Filed		itus patented,
PCT/GB 99/00935	25th March 1999	pendin	g, abandoned
I hereby declare that all statements made herein of melieved to be true; and further that these statements panishable by fine or imprisonment, or both, under S may jeopardize the validity of the application or any And I hereby appoint Nixon & Vandertye P.C., 110 (703) 816-400 (to whom all communications are to I collectively my attorneys to prosecute this application	were made with the knowledge the ection 1001 of Title 18 of the Unit patent issued thereon. North Glebe Road, 8th Floor, 2 be directed), and the following atta- and to transact all business in the	nat willful false statements and the like ed States Code and that such willful fa Arlington, Virginia 22201-4714, telep orneys thereof (of the same address) inc e Patent and Trademark Office connec	so made are lse statements hone number dividually and sted therewith
and with the resulting patent: Arthur R. Crawford, 25 Robert W. Faris, 31352; Richard G. Besha, 22770; Stanley C. Spooner, 27393; Leonard C. Mitchard, 25	Mark E. Nusbaum, 32348; Mich	ael J. Keenan, 32106; Bryan H. Dav	idson, 30251;
R. Lastova, 33149: H. Warren Burnam, Jr. 29366;		terry ri. Neison المهاميري; Terry ri. Neison	, JUNE JOHN
		A	
1) Inventor's Signature	De Colonello Di	ate 15-01-0	s \
7		CILAMETER	
Inventor's Name (typed) Steven	Neville Middle Initial	CHATFIELD Fermity Name	Cetrzenship
PRO		t many reason	6.1
Residence (City) Wokingham	(State/Foreign	Country) Berkshire, United Kingdom	9
Post Office Address 545 Eskdale Road, Winnersh	Triangle, Wokingham, Berkshire	United Kingdom Zip Code RG41 5T	U
2) Inventor's Signature	D:	ate	
Impartor's Nama (toned)			
Inventor's Name (typed)	Middle Initial	Family Name	Citizenship
Residence (City)	(State/Foreign	Country)	
	, and the state of		
Post Office Address		Zip Code	

POCKSOPT PISION