IoT Track: Comprehensive Training & Application

Design, Implement, & Monitor Real-World IoT Solutions

Agnes

Phase 1: Foundational & Core Concepts (Month 1)

Week 1: IoT & Architecture

- Explore the IoT Landscape
- Understand Core Architecture
 - Identify Key Components

Week 2: Sensors & Data

Dive into the physical layer, exploring sensor types, actuators, and data acquisition methods.

Week 3: Microcontrollers

Master the brains of IoT devices with hands-on programming on platforms like Arduino/ESP32.

Week 4: Interfacing

Bridge software and hardware by connecting microcontrollers with various sensors and actuators.

Core Skills Developed

Embedded Software

Wireless Networks

Network Protocols

Embedded Systems

Device Programming

Key Platforms Explored

Arduino Ecosystem

Raspberry Pi Platform

ESP32 Microcontrollers

Phase 1: Communication & Cloud Integration (Month

Goal: Understand communication protocols, integrate devices with cloud platforms, and grasp security principles.

IoT Communication Protocols

Week 5

Diverse Protocols Explore various protocols to enable seamless data exchange between devices,

gatoways and the cloud

accete at scale

Real-Time Monitoring

Week 7 (Firebase)

Data Visualization Develop skills in setting up dashboards for realtime monitoring of device data and system performance.

Sources: Cognixia, Microsoft Azure, Coursera

IoT Security & Advanced Programming

IoT Security: Basics & Best Practices

VULNERABILITIES

Understanding IoT Vulnerabilities

Explore security challenges in interconnected devices, from network vulnerabilities to data breaches and device tampering.

BEST PRACTICES

Implementing Robust Security Measures

Learn best practices for securing IoT ecosystems, including device provisioning, data encryption, and access control.

Advanced Programming: Python & C++

PYTHON

Python for IoT Applications

Master Python for rapid prototyping, data processing, and cloud integration, leveraging its extensive libraries.

C++

C++ for Embedded Systems

Dive into C++ for low-level embedded software development, critical for performance and direct hardware interaction.

Phase 2: Capstone Mini-Project Kick-off (Month 3)

Embarking on Your Capstone Project

Month 3 marks the pivotal transition from foundational concepts to practical application. This Capstone Mini-Project is your opportunity to consolidate knowledge in embedded systems, cloud integration, and secure communication, culminating in a tangible product for your portfolio.

Smart Agriculture

Optimizing Farm Productivity: Implement IoT sensors for realtime data on soil moisture, temperature, and nutrients to enable automated irrigation and smart climate management.

Sustainability

Data-Driven

Home Automation

Enhancing Smart Living: Design systems for automated control of lighting and appliances, integrated with smart security monitoring and energy efficiency solutions.

Smart Living

Convenience

Security

System Integration & Advanced Development

Microcontroller Programming & Logic (Week 10)

- > Master programming microcontrollers (ESP32, Arduino) with advanced techniques for efficient, robust embedded software.
- > Develop sophisticated control algorithms and operational logic ondevice for autonomous functions and real-time decisions.

Embedded Software

Device Intelligence

Real-time Logic

Real-Time Monitoring & Control Dashboard (Week 11)

- > Design intuitive dashboards for real-time insights and data visualization from IoT device streams.
- > Implement command-and-control features to remotely manage devices and trigger actions from the dashboard.

Data Visualization

Remote Control

User Interface

Robust Cloud Integration & Data Reliability (Week 10)

Automation, Alerts & System Testing (Week 11)

Project Showcase & Career Readiness

Final Project Presentation & Documentation

Showcase Your Innovations

Formally present your functional IoT solutions, demonstrating practical application of your knowledge in embedded systems, clo integration, and data management to peers and industry professionals.

Comprehensive Documentation

Compile a robust portfolio with detailed design documents, code repositories, system schematics, and testing methodologies. This fully documented capstone project is an invaluable asset for your career advancement.

Graduation & Certification