CS6320, Fall 2020 Dr. Mithun Balakrishna Homework 7

1. Coreference Resolution

Apply the Lappin and Leass pronoun resolution algorithm to resolve the pronouns in the following text passage:

Neil Ferguson is prolific, well-paid and a snappy dresser. Stephen Moss hated him, at least until he spent an hour being charmed in the historian's Oxford study.

The following salience weights can be used for the computation:

Sentence recency	100
Subject emphasis	80
Existential emphasis	70
Accusative (direct object) emphasis	50
Indirect object and oblique complement emphasis	40
Non-adverbial emphasis	50
Head noun emphasis	80

2. Logic and Semantic Representation (25 points)

Bill Gates, the founder of Microsoft, generously donates money to charities every year.

- a. Provide a Davidsonian logic representative of the above sentence.
- b. Identify the semantic relations in the sentence. Write them as semantic triples R(x,y). Consider only the sematic relations in the list below.

Semantic Relation	Definition
agent(X,Y)	X is the agent for Y
beneficiary(X,Y)	X is a beneficiary of Y
cause(X,Y)	X causes Y
instrument(X,Y)	X is an instrument in Y
justification(X,Y)	X is the reason/motive/justification for Y
location(X,Y)	X is the location of Y or where Y take place
manner(X,Y)	X is the manner in which Y happens
part-whole(X,Y)	X is a part of Y
quantity(X,Y)	X is a quantity of Y; Y can be an entity or event
result(X,Y)	X is the result consumed in/from/of Y
synonymy(X,Y)	X is a synonym/name/equal for/to Y
theme(X,Y)	X is the theme consumed in/from/of Y
time(X,Y)	X is the time of Y (when Y take place)
value(X,Y)	X is a value of Y

- c. Provide a new logic representation that includes semantic relations.
- d. Using the basic semantic relations that you identified for Question 4.b, write the semantic calculus rule to create a new semantic relation:

Donates-To(X, Y): X donates to Y