Chapitre 3: Nombres complexes

1 Généralités et rappels

1.1 Définition

Définition 1.1. On définit (provisoirement) l'ensemble des nombres complexes comme

$$\left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$$

On identifie tout réel à un "nombre complexe" $aI_2 = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ et on définit $i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ de telle sorte que tout nombre complexe s'écrit de manière unique sous la forme a+ib, pour un couple $(a,b) \in \mathbb{R}^2$

Proposition 1.2. Soit $z_1, z_2, z_3 \in \mathbb{C}$

- * L'addition est commutative : $z_1 + z_2 = z_2 + z_1$
- * L'addition est associative : $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$
- * La multiplication est commutative : $z_1z_2 = z_2z_1$
- * La multiplication est associative : $z_1(z_2z_3) = (z_1z_2)z_3$
- * La multiplication distribue sur l'addition : $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$

1.2 Conjugaison

Définition 1.3. Soit z = a + ib un nombre complexe sous forme algébrique.

On définit :

- * Son conjugué : $\overline{z} = a ib \in \mathbb{C}$
- * Sa partie réelle : $Re(z) = a \in \mathbb{R}$
- * Sa partie imaginaire : $\operatorname{Im}(z) = b \in \mathbb{R}$

Proposition 1.4. Soit $z_1, z_2 \in \mathbb{C}$ et $n \in \mathbb{N}$

On a:

*
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$* \ \overline{z_1 z_2} = \overline{z_1} \times \overline{z_2}$$

$$* \bar{\overline{z}} = z$$

$$* \overline{z^n} = \overline{z}^n$$

$$*$$
 On a $z_1 \in \mathbb{R} \iff z_1 = \overline{z_1}$

* On a

$$\operatorname{Re}(z_1) = \frac{z_1 + \overline{z_1}}{2}$$
 et $\operatorname{Im}(z_1) = \frac{z_1 - \overline{z_1}}{2i}$

* On a

$$\begin{cases} \operatorname{Re}(z_1 + z_2) = \operatorname{Re}(z_1) + \operatorname{Re}(z_2) \\ \forall t \in \mathbb{R}, \operatorname{Re}(tz_1) = t \operatorname{Re}(z_1) \end{cases}$$

* Et

$$\begin{cases} \operatorname{Im}(z_1 + z_2) = \operatorname{Im}(z_1) + \operatorname{Im}(z_2) \\ \forall t \in \mathbb{R}, \operatorname{Im}(tz_1) = t \operatorname{Im}(z_1) \end{cases}$$

1

(R-linéarité de Re et Im)

Proposition 1.5. Soit $z \in \mathbb{C}$

LASSÉ (Les assertions suivantes sont équivalentes):

- (i) $\exists b \in \mathbb{R} : z = ib$
- (ii) $\overline{z} = -z$
- (iii) Re(z) = 0

Quand elles sont vraies, on dit que z est imaginaire pur.

1.3 Module

Proposition 1.6. Soit $z \in \mathbb{C}$

Alors $z\overline{z}\in\mathbb{R}_+$ et on a $z\overline{z}=0$ si et seulement si z=0

Corollaire 1.7. Tout nombre complexe non nul a un inverse :

$$\forall z \in \mathbb{C}^*, \exists w \in \mathbb{C} : zw = 0$$

Corollaire 1.8. On a la règle du produit nul:

$$\forall z_1, z_2 \in \mathbb{C}, z_1 z_2 = 0 \iff (z_1 = 0 \text{ ou } z_2 = 0)$$

On dit aussi que C est intègre.

Proposition 1.9. Soit $z_1 \in \mathbb{C}$ et $z_2 \in \mathbb{C}^*$

Alors le conjugué de $\frac{z_1}{z_2}$ est $\frac{\overline{z_1}}{\overline{z_2}}$

Définition 1.10. Soit $z \in \mathbb{C}$

Le module de z est $|z| = \sqrt{z\overline{z}}$

Définition 1.11. On note $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$ le cercle unité (ou trigonométrique)

Proposition 1.12. Soit $z_1 \in \mathbb{C}$ et $z_2 \in \mathbb{C}$

On a
$$|z_1 z_2| = |z_1| \cdot |z_2|$$
 et si $z_2 \neq 0$, $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$

1.4 Inégalité triangulaire

Proposition 1.13. Soit $z, w \in \mathbb{C}$

LASSÉ:

- (i) $\overline{z}w \in \mathbb{R}_+$
- (ii) z = 0 ou $(z \neq 0$ et $\frac{w}{z} \in \mathbb{R}_+)$

(iii)
$$\exists u \in \mathbb{C}, \exists \lambda, \mu \in \mathbb{R}_+ : \begin{cases} z = \lambda u \\ w = \mu u \end{cases}$$

Si ces assertions sont vraies, on dit que z et w sont positivement colinéaires.

 $\underline{\mathsf{Remarque}} : \mathsf{Si} \ z = a + ib \ \mathsf{et} \ w = c + id, \ \mathsf{Re}(\overline{z}w) = ac + bd \ \mathsf{est} \ \mathsf{le} \ \mathsf{produit} \ \mathsf{scalaire} \ \mathsf{de} \ \begin{pmatrix} a \\ b \end{pmatrix} \ \mathsf{et} \ \begin{pmatrix} c \\ d \end{pmatrix}$

Théorème 1.14. Soit $z, w \in \mathbb{C}$

- * On a $Re(z) \leq |z|$
 - Il y a égalité si et seulement si $z \in \mathbb{R}_+$
- * Inégalité de Cauchy-Schwarz : On a $\operatorname{Re}(\overline{z}w) \leq |z| \cdot |w|$
 - "Le produit scalaire est inférieure au produit des normes".
- * Inégalité triangulaire : $|z + w| \le |z| + |w|$

Dans les deux derniers cas, il y a égalité si et seulement si z et w sont positivement colinéaires.

Corollaire 1.15. Pour tous $z_1, ..., z_n \in \mathbb{C}$, on a :

$$|z_1 + \dots + z_n| \le |z_1| + \dots + |z_n|$$

Corollaire 1.16 (Inégalité triangulaire "à l'envers"). Pour tous $z, w \in \mathbb{C}$, on a :

$$|z+w| \ge |z| - |w|$$

Encore mieux : $|z + w| \ge ||z| - |w||$

1.5 Distance

Si A et B sont deux points d'affixes z_A et z_B , la distance entre A et B est $d(A,B) = \|\vec{AB}\| = |z_B - z_A|$ On la notera aussi $d(z_A, z_B)$

Proposition 1.17 (Inégalité triangulaire). Soit $z_1, z_2, z_3 \in \mathbb{C}$

Alors
$$d(z_1, z_3) \le d(z_1, z_2) + d(z_2, z_3)$$

Définition 1.18. Soit $z \in \mathbb{C}$ est $r \in \mathbb{R}_+^*$.

On définit:

$$\Gamma(z,r) = \{ w \in \mathbb{C} \mid |z-w| = r \} = \{ w \in \mathbb{C} \mid |z-w|^2 = r^2 \}$$

* Le cercle de centre
$$z$$
 et de rayon r :
$$\Gamma(z,r) = \left\{ w \in \mathbb{C} \mid |z-w| = r \right\} = \left\{ w \in \mathbb{C} \mid |z-w|^2 = r^2 \right\}$$
* Le disque (fermé) de centre z et de rayon r :
$$\Delta(z,r) = \left\{ w \in \mathbb{C} \mid |z-w| \le r \right\} = \left\{ w \in \mathbb{C} \mid |z-w|^2 \le r^2 \right\}$$

Équation du second degré

Racines carrés d'un nombre complexe : résultat théorique

Théorème 2.1 (provisoirement admis). Soit $\Delta \in \mathbb{C}^*$

Alors il existe deux racines carrés de Δ , càd deux nombres complexes dont le carré vaut Δ . Ces deux carrés sont opposés l'une de l'autre.

2.2 Racines carrés d'un nombre complexe : calcul en forme algébrique

Définition 2.2. On définit la fonction signe

$$\operatorname{sgn}: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \begin{cases} 1 \operatorname{si} x > 0 \\ 0 \operatorname{si} x = 0 \\ -1 \operatorname{si} x < 0 \end{cases} \end{cases}$$

3

Théorème 2.3. Soit $\Delta \in \mathbb{C}$ et z = x + iy un nombre complexe sous forme algébrique. On a alors:

$$z^{2} = \Delta \iff \begin{cases} \operatorname{Re}(z^{2}) = \operatorname{Re}(\Delta) \\ |z^{2}| = |\Delta| \\ \operatorname{sgn}(\operatorname{Im}(z^{2})) = \operatorname{sgn}(\operatorname{Im}(\Delta)) \end{cases}$$
$$\iff \begin{cases} x^{2} - y^{2} = \operatorname{Re}(\Delta) \\ x^{2} + y^{2} = |\Delta| \\ \operatorname{sgn}(xy) = \operatorname{sgn}(\operatorname{Im}(\Delta)) \end{cases}$$

Résolution de l'équation générale

Théorème 2.4. Soit $a \in \mathbb{C}^*$, $b, c \in \mathbb{C}$

On considère l'équation $az^2 + bz + c = 0$ (E)

Soit $\Delta = b^2 - 4ac$ le discriminant de (E)

* Si $\Delta = 0$: (E) a une unique solution:

$$-\frac{b}{2a}$$

* Si $\Delta \neq 0$: (E) a deux solutions:

$$\frac{-b-\delta}{2a}$$
 et $\frac{-b+\delta}{2a}$

où δ est une racine de Δ

2.4 **Relation coefficient-racines**

Théorème 2.5. Soit $a \in \mathbb{C}^*$, $b, c \in \mathbb{C}$. On note z_1 et z_2 les solutions de $ax^2 + bx + c = 0$ (s'il n'y en a qu'une, notée ζ , on pose $z_1 = z_2 = \zeta$)

* On a $\forall z \in \mathbb{C}$

$$az^2 + bz + c = a(z - z_1)(z - z_2)$$

* Relation coefficients-racines (formules de Viète)

$$z_1 + z_2 = -\frac{b}{a}$$
 et $z_1 z_2 = \frac{c}{a}$

2.5 Système somme-produit

Théorème 2.6. Soit $S, P \in \mathbb{C}$

On considère le système
$$(\Sigma)$$
:
$$\begin{cases} x+y=S \\ xy=P \end{cases}$$
 d'inconnue $(x,y) \in \mathbb{C}^2$

On considère l'équation associée $z^2 - Sz + P = 0$ (ÉA), d'inconnue $z \in \mathbb{C}$

On note z_1 et z_2 les solutions de (ÉA) (en posant $z_1 = z_2 = \zeta$ s'il n'y en a qu'une).

Alors les solutions de (Σ) sont (z_1, z_2) et (z_2, z_1)

Exponentielle complexe

Préliminaires : congruence modulo *T*

Définition 3.1. Soit $T \in \mathbb{C}^*$

On dit que z_1 et $z_2 \in \mathbb{C}$ sont <u>congrus modulo T</u> si $\exists k \in \mathbb{Z} : z_2 - z_1 = kT$ Si c'est la cas, on note $z_1 \equiv z_2 \pmod{T}$

Proposition 3.2. Soit $T \in \mathbb{C}^*$

La congruence modulo *T* est une relation d'équivalence.

- * Elle est réflexive : $\forall z \in \mathbb{C}$, $z \equiv z \pmod{T}$
- * Elle est symétrique : $\forall z, z' \in \mathbb{C}, z \equiv z' \pmod{T} \implies z' \equiv z \pmod{T}$
- * Elle est transitive : $\forall z, z', z'' \in \mathbb{C}$, $(z \equiv z' \pmod{T})$ et $z' \equiv z'' \pmod{T}) \implies z \equiv z'' \pmod{T}$

Proposition 3.3. Soit $T \in \mathbb{C}^*$

* Soit
$$z_1, z_2, z_3 \in \mathbb{C}$$

Si
$$\begin{cases} z_1 \equiv z_2 \pmod{T} \\ z_3 \equiv z_4 \pmod{T} \end{cases}$$
 on a $z_1 + z_3 \equiv z_2 + z_4 \pmod{T}$

* Soit $z_1, z_2 \in \mathbb{C}$ et $\lambda \in \mathbb{C}^*$ Si $z_1 \equiv z_2 \pmod{T}$ alors $\lambda z_1 \equiv \lambda z_2 \pmod{\lambda T}$

3.2 Exponentielle complexe

Théorème 3.4 (provisoirement admis). Il existe une fonction $\exp : \mathbb{C} \to \mathbb{C}$ vérifiant :

- (i) $\exp(0) = 1$
- (ii) Propriété fondamentale : $\forall x, y \in \mathbb{C}$, $\exp(x + y) = \exp(x) \exp(y)$
- (iii) On a $\forall z \in \mathbb{C}$, $\exp(\overline{z}) = \overline{\exp(z)}$
- (iv) $\forall z \in \mathbb{C}, \frac{\exp(tz)-1}{t} \xrightarrow[t \to 0]{} z$
- (v) Tout $w \in \mathbb{C}^*$ s'écrit $w = \exp(z)$ pour un certain $z \in \mathbb{C}$
- (vi) Pour tous $z, z' \in \mathbb{C}$, on a $\exp(z) = \exp(z') \iff z \equiv z' \pmod{2i\pi}$

Remarque : À la fin de l'année, on définira l'exponentielle de z comme

$$\exp(z) = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{z^{k}}{k!}$$

Définition 3.5. On définit les fonctions

$$\cos: \begin{cases} \mathbb{R} \to \mathbb{R} \\ \theta \mapsto \mathrm{Re}(e^{i\theta}) \end{cases} \qquad \qquad \sin: \begin{cases} \mathbb{R} \to \mathbb{R} \\ \theta \mapsto \mathrm{Im}(e^{i\theta}) \end{cases}$$

Proposition 3.6. Soit $z \in \mathbb{C}$

On a : $|e^z| = e^{\text{Re}(z)}$

3.3 U et exponentielle

Théorème 3.7.

- * Pour tout $\theta \in \mathbb{R}$, on a $e^{i\theta} \in \mathbb{U}$
- * Pour tout $z \in \mathbb{U}$, on peut trouver $\theta \in \mathbb{R}$ tel que $z = e^{i\theta}$
- * Pour tout $\theta, \theta' \in \mathbb{R}$, on a $e^{i\theta} = e^{i\theta'} \iff \theta \equiv \theta' \pmod{2\pi}$

Théorème 3.8 (Formules d'Euler). Soit $\theta \in \mathbb{R}$

On a

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Proposition 3.9 (Formules de De Moivre). Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{Z}$

On a

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$$

Proposition 3.10 (Factorisation par l'arc moitié). Soit $\alpha, \beta \in \mathbb{R}$

On a

$$e^{i\alpha} + e^{i\beta} = e^{i\frac{\alpha+\beta}{2}} \left(e^{i\frac{\alpha-\beta}{2}} + e^{i\frac{\beta-\alpha}{2}} \right) = 2\cos\left(\frac{\alpha-\beta}{2}\right) e^{i\frac{\alpha+\beta}{2}}$$

Et

$$e^{i\alpha} - e^{i\beta} = e^{i\frac{\alpha+\beta}{2}} \left(e^{i\frac{\alpha-\beta}{2}} - e^{i\frac{\beta-\alpha}{2}} \right) = 2i \sin\left(\frac{\alpha-\beta}{2}\right) e^{i\frac{\alpha+\beta}{2}}$$

Arguments d'un nombre complexe

Proposition 3.11.

* Soit $z \in \mathbb{C}$ On peut trouver $\theta \in \mathbb{R}$ tel que $z = |z|e^{i\theta}$

* Pour tous $r, r' \in \mathbb{R}_+^*$ et tous $\theta, \theta' \in \mathbb{R}$, on a $re^{i\theta} = r'e^{i\theta'} \iff \begin{cases} r = r' \\ \theta \equiv \theta' \pmod{2\pi} \end{cases}$

Définition 3.12. Soit $z \in \mathbb{C}^*$

- * Tout nombre $\theta \in \mathbb{R}$ tel que $z = |z|e^{i\theta}$ est un argument de z
- * On appelle argument principal de z et on note $\arg(z)$ l'unique argument de z qui appartient à $]-\pi,\pi[$
- * On appelle forme exponentielle de z toute écriture de la forme $z=|z|e^{i\theta}$, où θ est un argument de z

Proposition 3.13. Soit $z_1, z_2 \in \mathbb{C}^*$

On a:

- $* \arg(z_1 z_2) \equiv \arg(z_1) + \arg(z_2) \pmod{2\pi}$
- * $\forall n \in \mathbb{Z}$, $\arg(z_1^n) \equiv n \arg(z_1) \pmod{2\pi}$ * $\arg\left(\frac{z_1}{z_2}\right) \equiv \arg(z_1) \arg(z_2) \pmod{2\pi}$

Compléments de trigonométrie 4

Valeurs 4.1

Proposition 4.1.

* Soit $\theta \in \mathbb{R}$ On a

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

* Soit $a, b \in \mathbb{R}$ tels que $a^2 + b^2 = 1$

Alors on peut trouver $\theta \in \mathbb{R}$ tel que $\begin{cases} a = \cos(\theta) \\ b = \sin(\theta) \end{cases}$

4.2 Périodicité et (im)parité

Proposition 4.2.

- * cos est 2π -périodique et paire.
- * sin est 2π -périodique et impaire.

Proposition 4.3. Soit
$$\theta_1, \theta_2 \in \mathbb{R}$$
 tels que
$$\begin{cases} \cos(\theta_1) = \cos(\theta_2) \\ \sin(\theta_1) = \sin(\theta_2) \end{cases}$$
 Alors $\theta_1 \equiv \theta_2 \pmod{2\pi}$

4.3 Formules d'addition

Proposition 4.4. Soit α , $\beta \in \mathbb{R}$

On a:

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$
$$\sin(\alpha - \beta) = -\cos \alpha \sin \beta + \sin \alpha \cos \beta$$

Corollaire 4.5. Soit $\theta \in \mathbb{R}$

On a:

$$\cos(\theta + \pi) = -\cos(\theta) \qquad \qquad \sin(\theta + \pi) = -\sin(\theta)$$

$$\cos(\pi - \theta) = -\cos(\theta) \qquad \qquad \sin(\pi - \theta) = \sin(\theta)$$

$$\cos(\theta + \frac{\pi}{2}) = -\sin(\theta) \qquad \qquad \sin(\theta + \frac{\pi}{2}) = \cos(\theta)$$

$$\cos(\frac{\pi}{2} - \theta) = \sin(\theta) \qquad \qquad \sin(\frac{\pi}{2} - \theta) = \cos(\theta)$$

Proposition 4.6. Soit $\theta_1, \theta_2 \in \mathbb{R}$

On a:

$$\cos(\theta_1) = \cos(\theta_2) \iff \theta_1 \equiv \theta_2 \pmod{2\pi} \text{ ou } \theta_1 \equiv -\theta_2 \pmod{2\pi}$$

 $\sin(\theta_1) = \sin(\theta_2) \iff \theta_1 \equiv \theta_2 \pmod{2\pi} \text{ ou } \theta_1 \equiv \pi - \theta_2 \pmod{2\pi}$

Corollaire 4.7 (de formules d'addition). Soit $\theta \in \mathbb{R}$

On a:

$$cos(2\theta) = cos^{2}(\theta) - sin^{2}(\theta)$$
$$= 2 cos^{2}(\theta) - 1$$
$$= 1 - 2 sin^{2}(\theta)$$
$$sin(2\theta) = 2 cos(\theta) sin(\theta)$$

4.4 Transformation produit \rightarrow somme (linéarisation)

Proposition 4.8. Soit α , $\beta \in \mathbb{R}$

On a:

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha + \beta) + \cos(\alpha - \beta))$$
$$\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$
$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha + \beta) + \sin(\alpha - \beta))$$

Remarque: On peut vouloir "délinéariser" une expression.

La clef est la formule de De Moivre.

Par exemple, $cos(3t) + i sin(3t) = (cos(t) + i sin(t))^3$

On développe l'expression et on prend partie réelle / imaginaire.

4.5 Transformation somme \rightarrow produit (factorisation)

Proposition 4.9. Soit $p, q \in \mathbb{R}$

On a:

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$
$$\sin(p) + \sin(q) = 2\cos\left(\frac{p-q}{2}\right)\sin\left(\frac{p+q}{2}\right)$$

Exemple de calcul important : Soit $t \in \mathbb{R}$

Calculons $\sum_{k=0}^{n} \cos(kt)$ et $\sum_{k=0}^{n} \sin(kt)$

Si
$$e^{it} = 1$$
, on a $\sum_{k=0}^{n} \cos(kt) = \sum_{k=0}^{n} 1 = n+1$ et $\sum_{k=0}^{n} \sin(kt) = \sum_{k=0}^{n} 0 = 0$

Si $e^{it} \neq 1$ on va calculer

$$\begin{split} \sum_{k=0}^{n} e^{ikt} &= \frac{e^{i(n+1)t} - 1}{e^{it} - 1} \\ &= \frac{e^{i\frac{n+1}{2}t} \left(e^{i\frac{n+1}{2}t} - e^{-i\frac{n+1}{2}t} \right)}{e^{i\frac{t}{2}} \left(e^{i\frac{t}{2}} - e^{-i\frac{t}{2}} \right)} \\ &= e^{i\frac{n}{2}t} \frac{2i \sin\left(\frac{n+1}{2}t\right)}{2i \sin\left(\frac{t}{2}\right)} \\ &= e^{i\frac{n}{2}t} \frac{\sin\left(\frac{n+1}{2}t\right)}{\sin\left(\frac{t}{2}\right)} \end{split}$$

On a donc

$$\sum_{k=0}^{n} \cos(kt) = \operatorname{Re}\left(\sum_{k=0}^{n} e^{ikt}\right) = \frac{\sin\left(\frac{n+1}{2}t\right)}{\sin\left(\frac{t}{2}\right)} \cos\left(\frac{n}{2}t\right)$$

Et

$$\sum_{k=0}^{n} \sin(kt) = \operatorname{Im}\left(\sum_{k=0}^{n} e^{ikt}\right) = \frac{\sin\left(\frac{n+1}{2}t\right)}{\sin\left(\frac{t}{2}\right)} \sin\left(\frac{n}{2}t\right)$$

4.6 Déphasage

Proposition 4.10. Soit $u, v \in \mathbb{R}$ non tous les deux nuls (càd $(u, v) \neq (0, 0)$)

On écrit le nombre complexe u + iv sous forme exponentielle.

On a $u + iv = Ae^{i\psi}$, où $A = \sqrt{u^2 + v^2}$ et $\psi \in \mathbb{R}$ est un argument de u + ivOn a alors $\forall x \in \mathbb{R}$, $u \cos(x) + v \sin(x) = A \cos(x - \psi)$

5 Cyclotomie

Définition 5.1. Soit $n \in \mathbb{N}$

- * Un nombre $z \in \mathbb{C}$ est une racine n-ième de l'unité si $z^n = 1$
- * L'ensemble des racines n-ièmes de l'unité est noté \mathbb{U}_n

Théorème 5.2. Soit $n \in \mathbb{N}^*$ On a

$$\mathbb{U}_n = \left\{ e^{i2\pi\frac{k}{n}} \mid k \in \mathbb{Z} \right\} = \left\{ e^{i2\pi\frac{k}{n}} \mid k \in \llbracket 0, n-1 \rrbracket \right\}$$

5.1 Équations $z^n = a$

Théorème 5.3. Soit $a \in \mathbb{C}^*$, que l'on écrit sous forme exponentielle $a = |a|e^{i\theta}$

- * Alors $\sqrt[n]{|a|}e^{i\frac{\theta}{n}}$ est une solution de $z^n = a$
- * Si z_0 est une solution de $z^n = a$, l'ensemble des solutions est

$$\left\{z_0\omega\mid\omega\in\mathbb{U}_n\right\}=\left\{z_0e^{i2\pi\frac{k}{n}}\mid k\in\llbracket0,n-1\rrbracket\right\}$$

5.2 Somme

Proposition 5.4. Soit $n \ge 2$

Alors la somme des racines *n*-ièmes de l'unité est nulle.

$$\sum_{\omega\in\mathbb{U}_n}\omega=0$$

6 Géométrie plane

6.1 Rappels sur les angles

Étant donné trois points O, A, B du plan tels que $O \neq A$ et $O \neq B$, on dispose de l'angle géométrique \widehat{AOB} entre les demi-droites [OA) et [OB). C'est un élément de $[0,\pi]$

Deux vecteurs non nuls \vec{u} et \vec{v} du plan définissent un angle oriente (\vec{u}, \vec{v})

Sa mesure principale appartient à $]-\pi,\pi]$

On la notera simplement (\vec{u}, \vec{v})

Proposition 6.1. Soit \vec{u} , \vec{v} , \vec{w} trois vecteurs non nuls du plan.

On a:

- * Antisymétrie : $(\vec{v}, \vec{u}) \equiv -(\vec{u}, \vec{v}) \pmod{2\pi}$
- * Relation de Chasles : $(\vec{u}, \vec{w}) \equiv (\vec{u}, \vec{v}) + (\vec{v}, \vec{w}) \pmod{2\pi}$

6.2 Angles et arguments

Dans toute la suite, on notera \vec{Z} , \vec{W} , etc... les vecteurs d'affixe z, w, etc... On notera \vec{H} le vecteur(horizontal) d'affixe 1

Point-clef : "L'angle" (\vec{H}, \vec{Z}) est "l'argument" de z

Plus précisement, toute mesure de (\vec{H}, \vec{Z}) est un argument de z

Proposition 6.2.

* Soit $z, w \in \mathbb{C}^*$

On a
$$(\vec{Z}, \vec{W}) \equiv \arg\left(\frac{w}{z}\right) \pmod{2\pi}$$

* Soit A, B, C trois points distincts, d'affixes a, b, c

Alors
$$(\vec{AB}, \vec{AC}) \equiv \arg\left(\frac{c-a}{b-a}\right) \pmod{2\pi}$$

Corollaire 6.3. Soit $z, w \in \mathbb{C}^*$

- * Critère de colinéarité :
 - On a \vec{Z} et \vec{W} colinéaires ssi $\frac{w}{z}$ est réel.
 - Soit *A*, *B*, *C* trois points distincts.

Alors A, B, C sont alignés ssi $\frac{c-a}{b-a}$ est un réel.

* Critère d'orthogonalité : Soit $z, w \in \mathbb{C}^*$

Alors \vec{Z} et \vec{W} sont orthogonaux ssi $\frac{w}{z}$ est imaginaire pur.

6.3 Similitudes directes : définition et classification

Définition 6.4.

* On appelle similitude directe toute application de la forme

$$f_{a,b}: \begin{cases} \mathbb{C} \to \mathbb{C} \\ z \mapsto az + b \end{cases}$$

où $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$

- * On dit que a est le rapport de la similitude $f_{a,b}$
- * On note $sim_+(\mathbb{C})$ l'ensemble des similitudes directes.

Théorème 6.5. Soit $a \in \mathbb{C}^*$ que l'on écrit $a = |a|e^{i\theta}$ pour un certain $\theta \in \mathbb{R}$ et $b \in \mathbb{C}$

- * Si a = 1, $f_{a,b}$ est la translation de vecteur b
- * Si $a \neq b$, $f_{a,b}$ a un unique point fixe $w = \frac{b}{1-a}$ et:
 - $-- \forall z \in \mathbb{C}, f_{a,b}(z) w = a(z w)$
 - On peut obtenir $f_{a,b}$ en composant l'homothétie de centre w et de rapport |a| et la rotation de centre w et d'angle θ

Remarque : Si $a \in \mathbb{R} \setminus \{1\}$, on dit que $f_{a,b}$ est une homothétie de centre w et de rapport a

Remarque : Deux similitudes de même centre w commutent.

Proposition 6.6. Soit $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$

* $f_{a,b}$ "dilate les distances d'un facteur |a|"

$$\forall z_1, z_2 \in \mathbb{C}, |f_{a,b}(z_2) - f_{a,b}(z_1)| = |a||z_2 - z_1|$$

* $f_{a,b}$ "préserve les angles" : pour tous $z_1,z_2,z_3\in\mathbb{C}$ distincts, on a

$$\arg\left(\frac{f_{a,b}(z_3) - f_{a,b}(z_1)}{f_{a,b}(z_2) - f_{a,b}(z_1)}\right) \equiv \arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right) \pmod{2\pi}$$

6.4 Structure de $sim_+(\mathbb{C})$

Proposition 6.7 ($sim_+(\mathbb{C})$ est un groupe).

- * $sim_+(\mathbb{C})$ est stable par composition : $\forall f, g \in sim_+(\mathbb{C}), g \circ f \in sim_+(\mathbb{C})$
- * Tout $f \in sim_+(\mathbb{C})$ est bijectif, et on a $f^{-1} \in sim_+(\mathbb{C})$

Proposition 6.8 $(sim_+(\mathbb{C})$ agit exactement 2-transitivement sur \mathbb{C}). Soit $z_1 \neq z_2$ et $w_1 \neq w_2 \in \mathbb{C}$ Alors il existe un unique $f \in sim_+(\mathbb{C})$ tel que $f(z_1) = w_1$ et $f(z_2) = w_2$