Exercises Week 10

Information Theory

- 1. For the following code, do the following:
 - a. compute the minimum Hamming distance and indicate how many errors it can detect and how many errors it can correct, with the nearest neighbor decoding algorithm;
 - b. Give an example of errors the code cannot detect, and another example of errors it can detect but it cannot correct, using the nearest neighbor decoding algorithm.

Message	Codeword
s_1	$c_1 = 00000$
s_2	$c_2 = 10011$
s_3	$c_3 = 11100$
s_3	$c_4 = 00111$

- 2. Design a block code consisting of 4 codewords, with minimum codeword length, which is able to detect 3 errors in a codeword.
- 3. Design a block code consisting of 4 codewords, with minimum codeword length, which is able to correct 2 errors in a codeword.
- 4. If we send one codeword of the previous code from exercise 3 over a Binary Symmetric Channel with error probability p = 0.1%, what is the probability that nearest neighbor error correction algorithms fails?

Hint: compute the probability that we get 3, 4 or more errors in codeword.

5. Prove the following property of Hamming distance:

$$d_H(\mathbf{a}, \mathbf{b}) + d_H(\mathbf{b}, \mathbf{c}) \ge d_H(\mathbf{a}, \mathbf{c}),$$

where $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are sequences of N bits.