# Linear Algebra Lecture Notes

#### Rostyslav Hryniv

Ukrainian Catholic University
Business Analytics and Computer Science Programmes

4<sup>th</sup> term Spring 2020



Lecture 6. Linear transformations

## **Outline**

- Coordinates and change of basis
  - Coordinate maps
  - Change of basis
- 2 Linear transformations between  $\mathbb{R}^n$  and  $\mathbb{R}^m$ 
  - Linear transformations
  - Examples
- Further properties
  - Matrix of a linear transformation
  - Change of basis

#### **Outline**

- Coordinates and change of basis
  - Coordinate maps
  - Change of basis
- 2 Linear transformations between  $\mathbb{R}^n$  and  $\mathbb{R}^m$ 
  - Linear transformations
  - Examples
- Further properties
  - Matrix of a linear transformation
  - Change of basis

# Coordinate map

- Fix a basis  $B = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$  of a vector space V
- every  $\mathbf{x} \in V$  gets its unique coordinates  $c_1, c_2, \dots, c_n$  in the basis B:

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$$

## Definition (Coordinate map $T_B: V \to \mathbb{R}^n$ )

$$T_B: \mathbf{x} \mapsto (c_1, c_2, \dots, c_n)^\top =: (\mathbf{x})_B$$

is called the coordinate map of V in the basis B



# Example

- $S = (\mathbf{v}_1 = (1, 2, 0)^\top, \mathbf{v}_2 = (1, 2, 0)^\top, \mathbf{v}_3 = (1, 1, 1)^\top)$
- $T_S \mathbf{x} = \mathbf{c} \iff \mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 \iff$

$$\underbrace{\begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}}_{P_{S \to S'}} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

- $x_1, x_2, x_3$  are coordinates of **x** in the basis  $S' = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$  $c_1, c_2, c_3$  are coordinates of **x** in the basis  $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$
- $(1,2,0)^{\top},(2,1,0)^{\top},(1,1,1)^{\top}$  are coordinate vectors of  $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$  in the basis  $\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3$
- $\mathbf{c} \mapsto \mathbf{x}$  amounts to matrix multiplication by  $P_{S \to S'}$
- ullet  ${f x}\mapsto {f c}$  amounts to matrix multiplication by

$$P_{S'\to S} = (P_{S\to S'})^{-1}$$

# Coordinate map

#### Definition (Linear maps and isomorphisms)

Let V and W be linear vector spaces. A mapping  $T: V \to W$  is

• linear if for all  $\mathbf{x}, \mathbf{y} \in V$  and all  $a, b \in \mathbb{R}$ 

$$T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + bT(\mathbf{y})$$

• an isomorphism of V and W if it is linear, one-to-one, and onto

## Definition (Isomorphic linear vector spaces)

Two linear vector spaces V and W are said to be isomorphic if there is an isomorphism  $T:V\to W$ 

# Isomorphism to $\mathbb{R}^n$

#### Lemma (Properties of $T_S$ )

 $T_S$  is an isomorphism between V and  $\mathbb{R}^n$ 

#### Proof.

 $T_S$  is one-to-one:

$$T_S(\mathbf{x}) = \mathbf{c}$$

$$\mathbf{x} = \sum_{i} c_{i} \mathbf{v}_{i}$$

 $T_S$  is onto:

$$T_S^{-1}\mathbf{c} = \sum_i c_i \mathbf{v}_i$$
 is well defined

 $T_S$  is linear:

$$\mathbf{x} = \sum_{i} c_{i} \mathbf{v}_{j}, \, \mathbf{y} = \sum_{i} d_{i} \mathbf{v}_{j} \implies a\mathbf{x} + b\mathbf{y} = \sum_{i} (ac_{i} + bd_{i}) \mathbf{v}_{i}$$

# Corollary

Any two vector spaces of the same finite dimension are isomorphic

## Corollary

Up to isomorphism,  $\mathbb{R}^n$  is the only n-dimensional vector space

Further properties

## Outline

Coordinates

0000000000

- Coordinates and change of basis
  - Coordinate maps
  - Change of basis
- - Linear transformations
  - Examples
- - Matrix of a linear transformation.
  - Change of basis

- Assume  $\mathbf{x} \in V$  has coordinate vector  $\mathbf{c} = T_{\mathcal{S}}(\mathbf{x}) = (\mathbf{x})_{\mathcal{S}}$  in basis  $S = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$
- Take another basis  $S' = (\mathbf{v}'_1, \mathbf{v}'_2, \dots, \mathbf{v}'_n)$ ; how can one calculate  $\mathbf{c}' = T_{S'}(\mathbf{x}) = (\mathbf{x})_{S'}$ ?

## Theorem (Change of basis)

$$(\mathbf{x})_{S'} = P_{S 
ightarrow S'}(\mathbf{x})_S$$

where the transition matrix  $P_{S \to S'}$  is a square matrix with columns

$$T_{S'}(\mathbf{v}_1), T_{S'}(\mathbf{v}_2), \ldots, T_{S'}(\mathbf{v}_n)$$

#### Proof.

$$\begin{aligned} (\mathbf{x})_{S'} &= T_{S'}(\mathbf{x}) = T_{S'}\left(\sum_k c_k \mathbf{v}_k\right) = \sum_k c_k \mathbf{T}_{S'}(\mathbf{v}_k) \\ &= \mathbf{P}_{S \to S'} \mathbf{c} = P_{S \to S'}(\mathbf{x})_S \end{aligned}$$

Recall the Euler formulae ( $i := \sqrt{-1}$ )

$$e^{iX} = \cos X + i \sin X \qquad \Longleftrightarrow \qquad \cos X = \frac{e^{iX} + e^{-iX}}{2}, \quad \sin X = \frac{e^{iX} - e^{-iX}}{2i}$$

In the linear space V of trigonometric polynomials spanned by  $B := (1, \cos x, \sin x)$  another basis is  $B' := (1, e^{ix}, e^{-ix})$ 

Then every trigonometric polynomial  $a_0 + a_1 \cos x + a_2 \sin x$  can also be written as  $b_1 + b_1 e^{ix} + b_2 e^{-ix}$ , where

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2i} \\ 0 & \frac{1}{2} & \frac{-1}{2i} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \iff \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & i & -i \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix}$$

- We have an "old" basis  $S = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$  and a "new" basis  $S' = (\mathbf{v}'_1, \mathbf{v}'_2, \dots, \mathbf{v}'_n)$
- matrix *B* has columns  $\mathbf{v}_k$  (in the standard basis  $S_0 = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ )
- ullet matrix B' has columns  $oldsymbol{v}_k'$  (in the standard basis  $S_0=(oldsymbol{e}_1,\ldots,oldsymbol{e}_n)$ )
- use elementary row transformations to get

$$(B'\mid B)\sim (I_n\mid P_{S\rightarrow S'})$$

mnemonic rule:

("new basis" | "old basis") 
$$\sim (\mathit{I}_{\mathit{n}} \mid \mathit{P}_{\mathcal{S} \rightarrow \mathcal{S}'})$$

• reason:  $B' = P_{S' \to S_0}$ , so that

$$(B')^{-1}B = (P_{S'\to S_0})^{-1}P_{S\to S_0} = P_{S_0\to S'}P_{S\to S_0} = P_{S\to S'}$$

yet another reason:

$$P_{S'\to S_0}(\mathbf{x})_{S'}=\mathbf{x}=P_{S\to S_0}(\mathbf{x})_S\iff (\mathbf{x})_{S'}=(P_{S'\to S_0})^{-1}P_{S\to S_0}(\mathbf{x})_S$$

# Example in $\mathbb{R}^2$

- Old basis S:  $\mathbf{v}_1 = (1,1)^{\top}, \mathbf{v}_2 = (1,-1)^{\top}$
- new basis S':  $\mathbf{v}'_1 = (1,2)^{\top}$ ,  $\mathbf{v}'_2 = (2,-1)^{\top}$
- find the transition matrix  $P_{S \to S'}$ :

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & -1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{3}{5} & -\frac{1}{5} \\ 0 & 1 & \frac{1}{5} & \frac{3}{5} \end{pmatrix}$$

• enough to check for  $\binom{1}{0}$  and  $\binom{0}{1}$  that are coefficient vectors in S of  $\mathbf{v}_1$  and  $\mathbf{v}_2$  respectively:

$$T_{S}(\mathbf{v}_{1}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \qquad T_{S'}(\mathbf{v}_{1}) = P_{S \to S'} T_{S}(\mathbf{v}_{1}) = \begin{pmatrix} \frac{3}{5} \\ \frac{1}{5} \end{pmatrix}$$
$$\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{3}{5} \mathbf{v}'_{1} + \frac{1}{5} \mathbf{v}'_{2} = \frac{3}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} 2 \\ -1 \end{pmatrix};$$

similarly for  $\mathbf{v}_2$ 

- Coordinates and change of basis
  - Coordinate maps
  - Change of basis
- 2 Linear transformations between  $\mathbb{R}^n$  and  $\mathbb{R}^m$ 
  - Linear transformations
  - Examples
- Further properties
  - Matrix of a linear transformation
  - Change of basis

# Linear transformations = matrix multiplications

• Recall that a mapping  $T: \mathbb{R}^n \to \mathbb{R}^m$  is called linear if  $\forall \alpha_1, \alpha_2 \in \mathbb{R}, \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ 

$$T(\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2) = \alpha_1 T(\mathbf{x}_1) + \alpha_2 T(\mathbf{x}_2)$$

- In particular,  $T(\mathbf{0})$  is a zero vector of  $\mathbb{R}^m$
- Let  $\mathbf{e}_1, \ldots, \mathbf{e}_n$  be the standard basis of  $\mathbb{R}^n$  and  $\mathbf{u}_i := T(\mathbf{e}_i)$
- Denote by A the  $m \times n$  matrix with columns  $\mathbf{u}_1, \dots, \mathbf{u}_n$

#### **Theorem**

For every  $\mathbf{x} \in \mathbb{R}^n$ ,

 $T(\mathbf{x}) = A\mathbf{x}$ 

#### Proof.

$$T(\mathbf{x}) = T(x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n)$$
  
=  $x_1T(\mathbf{e}_1) + \dots + x_nT(\mathbf{e}_n) = x_1\mathbf{u}_1 + \dots + x_n\mathbf{u}_n = A\mathbf{x}$ 

## Corollary

$$T = T_A \leftrightarrow A$$

## **Outline**

- Coordinates and change of basis
  - Coordinate maps
  - Change of basis
- 2 Linear transformations between  $\mathbb{R}^n$  and  $\mathbb{R}^m$ 
  - Linear transformations
  - Examples
- Further properties
  - Matrix of a linear transformation
  - Change of basis

# Linear transformations of the plane

## Example (Mirror symmetry w.r.t. x = y)

$$T(\mathbf{e}_1) = \mathbf{e}_2, \ T(\mathbf{e}_2) = \mathbf{e}_1 \implies A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

## Example (Rotation on angle $\theta$ )

$$T(\mathbf{e}_1) = (\cos \theta, \sin \theta)^{\top}, T(\mathbf{e}_2) = (-\sin \theta, \cos \theta)^{\top} \implies$$

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

# Example (Shear translation along $e_1$ )

$$T(\mathbf{e}_1) = \mathbf{e}_1, \ T(\mathbf{e}_2) = s\mathbf{e}_1 + \mathbf{e}_2 \implies A = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$$

# Linear transformations between vector spaces

• A linear mapping  $T: V \to W \iff \forall \alpha_1, \alpha_2 \in \mathbb{R}, \mathbf{u}_1, \mathbf{u}_2 \in V$ 

$$T(\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2) = \alpha_1T(\mathbf{u}_1) + \alpha_2T(\mathbf{u}_2) \in W$$

- In particular,  $T(\mathbf{0}_V)$  is a zero vector  $\mathbf{0}_W$  of W
- Let  $\mathbf{v}_1, \ldots, \mathbf{v}_n$  be a basis of V and  $\mathbf{w}_1, \ldots, \mathbf{w}_m$  a basis of W
- Set  $\mathbf{u}_j := (T(\mathbf{v}_j))_W$  and enote by A the  $m \times n$  matrix with columns  $\mathbf{u}_1, \dots, \mathbf{u}_n$

#### **Theorem**

For every  $\mathbf{v} \in V$ ,

$$(T(\mathbf{v}))_W = A(\mathbf{v})_V$$

#### Proof.

With 
$$\mathbf{c} := (\mathbf{v})_V$$
,

$$T(\mathbf{v}) = T(c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n) = c_1T(\mathbf{v}_1) + \cdots + c_nT(\mathbf{v}_n);$$
  
 $(T(\mathbf{v}))_W = c_1\mathbf{u}_1 + \cdots + c_n\mathbf{u}_n = A\mathbf{c} = A(\mathbf{v})_V$ 

# Linear transformations between vector spaces

#### Problem

Assume T is a linear mapping from a 2-dim vector space V to a 3-dim vector space W whose matrix in bases  $(\mathbf{v}_1, \mathbf{v}_2)$  of V and  $(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)$  of W is

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}$$

- © Express the vector  $T\mathbf{v}_1$  in terms of the basis vectors  $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ . If  $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2$  and  $T\mathbf{v} = d_1\mathbf{w}_1 + d_2\mathbf{w}_2 + d_3\mathbf{w}_3$ , find the relation between c's and d's
- Identify the nullspace  $Nul(T) = \{ \mathbf{v} \in V \mid T\mathbf{v} = \mathbf{0} \}$  of T and find its dimension
- On Describe the range  $Ran(T) = \{ \mathbf{w} = T\mathbf{v} \mid \mathbf{v} \in V \}$
- Find a basis of Ran(T)
- $\odot$  Is the mapping T an isomorphism between the spaces V and W?

# Linear mappings in $\mathcal{P}_n$

#### Example (Shift)

The mapping  $T_a: \mathcal{P}_n \to \mathcal{P}_n$  given by  $(T_a p)(x) := p(x+a)$  is linear. Since

$$(x+a)^k = \sum_{j=0}^k \binom{k}{j} a^{k-j} x^j,$$

in the standard basis  $B_0 = \{1, x, \dots, x^n\}$  the matrix  $M_a$  of  $T_a$  is

$$M_{a} = \begin{pmatrix} 1 & a & \dots & a^{k} & \dots & a^{n} \\ 0 & 1 & \dots & ka^{k-1} & \dots & na^{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & \dots & \binom{n}{k-1}a^{n-k+1} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

 $T_a$  is a homeomorphism; its inverse is given by  $(T_a)^{-1} = T_{-a}$ , so that  $M_{-a}M_a = I_{n+1}$ 

## **Outline**

- Coordinates and change of basis
  - Coordinate maps
  - Change of basis
- 2 Linear transformations between  $\mathbb{R}^n$  and  $\mathbb{R}^m$ 
  - Linear transformations
  - Examples
- Further properties
  - Matrix of a linear transformation
  - Change of basis

# Composition of linear transformations

#### Definition

If  $T_1: \mathbb{R}^m \to \mathbb{R}^k$  and  $T_2: \mathbb{R}^k \to \mathbb{R}^n$  are linear transformations, then their composition  $T_2 \circ T_1: \mathbb{R}^m \to \mathbb{R}^n$  is given by

$$(T_2 \circ T_1)(\mathbf{x}) = T_2(T_1(\mathbf{x}))$$

#### Theorem (Matrix of composition mapping)

If  $T_1$  has matrix  $A \in M_{k \times m}(\mathbb{R})$  and  $T_2$  has matrix  $B \in M_{n \times k}(\mathbb{R})$ , then the matrix of  $T_2 \circ T_1$  is BA

#### Proof.

- The matrix of  $T := T_2 \circ T_1$  has columns  $T(\mathbf{e}_1), \ldots, T(\mathbf{e}_m)$ ;
- 0

$$T(\mathbf{e}_j) = T_2(T_1(\mathbf{e}_j)) = BT_1(\mathbf{e}_j)$$

- $j^{th}$  column of the matrix of T is equal to B times  $j^{th}$  column of A
- thus the matrix of T is equal to BA

## General linear transformation

- Assume that  $\mathbf{u}_1, \dots, \mathbf{u}_n$  are linearly independent vectors in  $\mathbb{R}^n$  (thus a basis S)
- $\mathbf{v}_1, \dots, \mathbf{v}_n$  are arbitrary vectors in  $\mathbb{R}^m$

#### Theorem

There exists a unique linear transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  s.t.  $T(\mathbf{u}_j) = \mathbf{v}_j$  for all j = 1, ..., n.

## Proof.

- Any  $\mathbf{x} \in \mathbb{R}^n$  has the form  $\mathbf{x} = c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n$  for a unique coefficient vector  $(c_1, \dots, c_n)^\top =: T_S(\mathbf{x})$
- Existence: Denote by A the matrix with columns  $\mathbf{v}_1, \dots, \mathbf{v}_n$ ; Then  $T_A \circ T_S$  is the required transformation:

$$(T_A \circ T_S)(\mathbf{u}_k) = T_A(T_S(\mathbf{u}_k)) = T_A(\mathbf{e}_k) = A\mathbf{e}_k = \mathbf{v}_k$$

• Uniqueness: such a T must satisfy

$$T(\mathbf{x}) = T(c_1\mathbf{u}_1 + \cdots + c_n\mathbf{u}_n) = c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n = A\mathbf{c}$$

• Its standard matrix is  $AP_{S_0 \to S_1}$ 

# Example

- Take  $\mathbf{u}_1 = (1,1)^{\top}$  and  $\mathbf{u}_2 = (2,-1)^{\top}$  in  $\mathbb{R}^2$ ;
- $\mathbf{v}_1 = (1,0,1)^{\top}$  and  $\mathbf{v}_2 = (0,1,1)^{\top}$  in  $\mathbb{R}^3$ ;
- our task is to construct a linear mapping  $T: \mathbb{R}^2 \to \mathbb{R}^3$  such that  $T\mathbf{u}_1 = \mathbf{v}_1$  and  $T\mathbf{u}_2 = \mathbf{v}_2$
- The standard matrix B of T satisfies

$$B\begin{pmatrix}1&2\\1&-1\end{pmatrix}=\begin{pmatrix}1&0\\0&1\\1&1\end{pmatrix}$$

so that

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 2 \\ 1 & -1 \\ 2 & 1 \end{pmatrix}$$

• it can be checked that  $B\mathbf{u}_1 = \mathbf{v}_1$  and  $B\mathbf{u}_2 = \mathbf{v}_2$ 

## Outline

- Coordinates and change of basis
  - Coordinate maps
  - Change of basis
- $oxed{2}$  Linear transformations between  $\mathbb{R}^n$  and  $\mathbb{R}^m$ 
  - Linear transformations
  - Examples
- Further properties
  - Matrix of a linear transformation
  - Change of basis

## Transformation in different bases

- Assume that T is a linear transformation in  $\mathbb{R}^n$  that has matrix  $A_0$  in the standard basis  $S_0 = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$
- In particular,  $j^{th}$  column of  $A_0$  is just  $T(\mathbf{e}_i)$
- What is the matrix A of T in a different basis  $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ ?
- Clearly,  $i^{\text{th}}$  column of A is just the coordinate vector of  $T(\mathbf{v}_i)$  relative to basis S
- Thus

$$A = P_{S_0 \to S} A_0 P_{S \to S_0}$$

• Another reason: as  $T\mathbf{x} = A_0\mathbf{x}$  and  $(T\mathbf{x})_S = A(\mathbf{x})_S$ , we see that

$$A(\mathbf{x})_S = (T\mathbf{x})_S = P_{S_0 \to S}(T\mathbf{x}) = P_{S_0 \to S}(A_0\mathbf{x}) = P_{S_0 \to S}A_0P_{S \to S_0}(\mathbf{x})_S$$

# Example

- In  $\mathbb{R}^2$ , set  $T(\mathbf{e}_1) = \mathbf{e}_2$  and  $T(\mathbf{e}_2) = \mathbf{e}_1$
- its transformation matrix in the basis  $\mathbf{e}_1$ ,  $\mathbf{e}_2$  is  $A_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- Take the basis  $\mathbf{v}_1 = (1, 1)^{\top}$ ,  $\mathbf{v}_2 = (1, -1)^{\top}$ ; then

$$P_{\mathcal{S} \rightarrow \mathcal{S}_0} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \qquad P_{\mathcal{S}_0 \rightarrow \mathcal{S}} = \tfrac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$A = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

