Optimierung & Numerik — Vorlesung 10

11.7	Linear-implizite Einschrittverfahren	1
	11.7.1 Stabilität von Fixpunkten	1
	11.7.2 Linear-implizite Runge–Kutta-Verfahren	3

11.7 Linear-implizite Einschrittverfahren

Wir haben Verfahren konstruiert, die hohe Ordnung haben, und trotzdem A-stabil sind, z.B. das Gauß-Verfahren; es gibt aber noch andere. Diese Verfahren sind implizit. Zum Berechnen des nächsten Zeitschritts muss ein Gleichungssystem gelöst werden.

- Falls f linear ist, so ist dieses Gleichungssystem linear. Das ist okay.
- lacktriangle Falls f nichtlinear ist, so ist Gleichungssysteme ebenfalls nichtlinear. Das kann ganz schön teuer werden!

Können wir A-stabile Verfahren konstruieren, für die bei jedem Schritt nur ein lineares Gleichungssystem gelöst werden muss, selbst wenn f nichtlinear ist?

11.7.1 Stabilität von Fixpunkten

Wir wollen einen alternativen Stabilitätsbegriff für autonome nichtlineare Differentialgleichungen x' = f(x) untersuchen.

Definition. Ein Zustand $x_* \in \Omega_0$ heißt Fixpunkt der Gleichung, wenn $f(x_*) = 0$, bzw. wenn $\Phi^t x_* = x_*$ für alle t ist.

Definition. Ein Fixpunkt x_* heißt asymptotisch stabil, wenn ein $\epsilon > 0$ existiert, so dass $\lim_{t\to\infty} \Phi^t x_0 = x_*$ für alle $x_0 \in \Omega_0$ mit $||x_* - x_0|| < \epsilon$.

Beispiel.

Man erkennt an den Bildern, dass die asymptotische Stabilität von x_* mit der Ableitung von f in (der Nähe von) x_* zusammenhängt.

Satz 11.16 ([DB08, 3.30]). Sei $x_* \in \Omega_0$ Fixpunkt von x' = f(x), und f sei stetig differenzierbar. Falls

$$\nu(Df(x_*)) < 0$$

so ist x_* asymptotisch stabiler Fixpunkt

Erinnerung: ν ist die Spektralabzisse, der größte Realteil aller Eigenwerte.

Zwischenfazit: Um die asymptotische Stabilität von Fixpunkten zu untersuchen, reicht es, sich die Linearisierung um x_* anzuschauen!

Wir betrachten jetzt zusätzlich die um x_* linearisierte Differentialgleichung

$$(x - x_*)' = x' = Df(x_*)(x - x_*). \tag{11.4}$$

Idee. Wenn $Df(x_*)$ das Stabilitätsverhalten von x_* qualitativ richtig beschreibt, dann enthält die **lineare** Gleichung (11.4) vielleicht schon alle "schwierigen" (im Sinne der Stabilität) Aspekte von x' = f(x) in der Nähe von x_* ?

Betrachte ein beliebiges Einschrittverfahren. Sei

- ullet Ψ^{τ} diskreter Fluss für das Ausgangsproblem
- Ψ_*^{τ} diskreter Fluss für das linearisierte Problem $x' = Df(x_*)(x x_*)$.

Definition. Ein Einschrittverfahren heißt invariant gegen Linearisierung um einen Fixpunkt x_* , wenn

- 1. $\Psi^{\tau}x_* = x_* \ \forall \tau > 0 \ (\tau \ zulässig) \rightarrow der Fixpunkt der Differentialgleichung ist auch Fixpunkt des numerischen Verfahrens für die nichtlineare Gleichung.$
- 2. $\Psi_*^{\tau}x = x_* + R(\tau Df(x_*))(x x_*)$ mit einer rationalen Funktion R, die nur vom Verfahren abhängt; d.h. für das linearisierte Problem degeneriert das Verfahren zu einer rationalen Approximation der Exponentialfunktion.
- 3. $D_x \Psi^{\tau} x|_{x=x_*} = \Psi^{\tau}_*$ für alle zulässigen $\tau \longrightarrow \Psi^{\tau}_*$ ist Linearisierung von Ψ^{τ} .

Zum Beispiel sind alle expliziten RK-Verfahren in diesem Sinne invariant. Solch ein Verfahren heißt A-stabil, falls R A-stabil ist.

Invariante Verfahren retten den Zusammenhang zwischen der asymptotischen Stabilität eines Fixpunkts x_* und der Linearisierung dort ins Diskrete:

Satz 11.17 ([DB08, 6.23]). Sei Ψ^{τ} , Ψ^{τ}_{*} ein gegen Linearisierung invariantes Einschrittverfahren. Sei $\tau_{c} \geq 0$ die maximale Schrittweite, so dass Ψ^{τ}_{*} die asymptotische Stabilität erbt. Dann ist x_{*} asymptotisch stabiler Fixpunkt der Rekursion

$$x_{n+1} = \Psi^{\tau} x_n$$
 $n = 0, 1, 2, \dots$

für alle $\tau < \tau_c$.

Beispiel. Skalare Differentialgleichung $x' = \lambda(1 - x^2)$ $(\lambda > 0)$

■ Fixpunkte: $x_s = 1$ (asymptotisch stabil) und $x_u = -1$ instabil

• Linearisierte Gleichung in x_s :

$$x' = f'(x_s)(x - x_s) = -2\lambda x_s(x - x_s) = -2\lambda (x - 1)$$

- Explizites Euler-Verfahren dafür stabil, wenn $\tau < 1/\lambda$
- \blacksquare Es folgt: x_s ist auch asymptotisch stabiler Fixpunkt des expliziten Euler-Verfahrens für die nichtlineare Gleichung

$$x_{n+1} = x_n + \tau f(x_n) = x_n + \tau \lambda (1 - x_n^2).$$

Aber wie gesagt nur falls $\tau < 1/\lambda$.

Und nicht vergessen: x_s ist nur dann Attraktor, wenn man nah genug dran startet. Für dieses Beispiel heißt das:

• Kontinuierlich: $x_0 > -1$

■ Euler: $x_0 \in [0, \frac{5}{4}]$.

11.7.2 Linear-implizite Runge-Kutta-Verfahren

Idee. Behandle nur den linearen Teil von f implizit.

Für festes $\bar{x} \in \Omega_0$ schreibe die Differentialgleichung als

$$x'(t) = Jx(t) + (f(x(t)) - Jx(t))$$
 $J = Df(\bar{x}) \in \mathbb{R}^{d \times d}$

Hier ist \bar{x} beliebig; in der Praxis linearisiert man um den Zustand zum vorigen Zeitschritt.

Wende das implizite Euler-Verfahren auf den ersten Term an, und das explizite Euler-Verfahren auf den Rest.

$$\Psi^{\tau} x = \xi + \tau (f(x) - Jx), \qquad \xi = x + \tau J \xi$$

Das ist das linear-implizite oder **semi-implizite Euler-Verfahren**. Wir haben nur ein *lineares* Gleichungssystem pro Schritt, aber sind trotzdem A-stabil.

Betrachten wir nun allgemein linear-implizite Runge-Kutta-Verfahren

$$\Psi^{\tau} x = x + \tau \sum_{j=1}^{s} b_{j} k_{j}$$

$$k_{i} = J\left(x + \tau \sum_{j=1}^{i} \beta_{ij} k_{j}\right) + \left[f\left(x + \tau \sum_{j=1}^{i-1} \alpha_{ij} k_{j}\right) - J\left(x + \tau \sum_{j=1}^{i-1} \alpha_{ij} k_{j}\right)\right]$$

für $i = 1, \ldots, s$.

Hinweis. Der obere Summationsindex des impliziten Teils ist i, nicht s.

Dadurch kann der Phasenfluss durch wiederholtes Lösen *linearer* Gleichungssysteme berechnet werden.

1.
$$J = Df(x)$$

2.
$$(I - \tau \beta_{ii}J)k_i = \tau \sum_{j=1}^{i-1} (\beta_{ij} - \alpha_{ij})Jk_j + f(x + \tau \sum_{j=1}^{i-1} \alpha_{ij}k_j)$$
 für $i = 1, \dots, s$

3.
$$\Psi^{\tau} x = x + \tau \sum_{j=1}^{s} b_j k_j$$

Solche Verfahren heißen lineare-implizite RK-Verfahren oder Rosenbrock-Verfahren.

Koeffizienten:
$$A = (\alpha_{ij}) \in \mathbb{R}^{s \times s}, \ B = (\beta_{ij}) \in \mathbb{R}^{s \times s}, \ b = (b_1 \dots, b_s)$$

Wählt man die β_{ii} alle gleich, so haben die s Gleichungssysteme in (2) alle die gleiche Matrix und es reicht eine LR-Zerlegung, um alle s Gleichungssysteme zu lösen.

Die Frage, ob sich die linearen Gleichungssysteme tatsächlich immer lösen lassen, ist einfacher als für den allgemeinen impliziten Fall:

Lemma 11.14. Sei $\beta \geq 0$ und $J \in \mathbb{R}^{d \times d}$. Die Matrix $I - \tau \beta J$ ist für alle $0 \leq \tau \leq \tau_*$ invertierbar. Dabei hängt τ_* von der Spektralabzisse $\nu(J)$ ab:

$$\tau_* = \infty \text{ für } \nu(J) \leq 0, \qquad \tau_* = \frac{1}{\beta \nu(J)} \text{ für } \nu(J) > 0.$$

Beweis. Zu zeigen: Unter den gegebenen Voraussetzungen hat $I - \tau \beta J$ nicht den Eigenwert 0. Nach Satz (??) über rationale Funktionen ist aber

$$\sigma(I - \tau \beta J) = 1 - \tau \beta \sigma(J).$$

Deshalb zu zeigen: J hat keinen Eigenwert λ mit $1 - \tau \beta \lambda = 0$.

Fall 1: $\nu(J) \leq 0$, d.h. insbesondere $\text{Re}(\lambda) \leq 0$:

$$\operatorname{Re}(1 - \tau \beta \lambda) = 1 - \tau \beta \operatorname{Re}(\lambda) > 1 \quad \Rightarrow \quad 1 - \tau \beta \lambda \neq 0$$

Fall 2: $0 < \text{Re}(\lambda) \le \nu(J)$:

$$\operatorname{Re}(1 - \tau \beta \lambda) = 1 - \tau \beta \operatorname{Re}(\lambda) \ge 1 - \tau \beta \nu(J)$$

Also > 0 wenn
$$\tau < \frac{1}{\beta \nu(J)}$$

Der Satz sagt also: Die steifen Anteile der Differentialgleichung (d.h. die nichtpositiven Eigenwert von J) beeinflussen nicht die Lösbarkeit des Gleichungssystems.

Für autonome lineare Probleme ist das Verfahren offensichtlich äquivalent zum impliziten Runge-Kutta-Verfahren $(b, (\beta_{ij}))$. Es hat also die selbe Stabilitätsfunktion.

Die Konstruktion der Bedingungsgleichungen funktioniert ähnlich wie bei expliziten RK-Verfahren.

Literaturverzeichnis

[DB08] Peter Deuflhard and Folkmar Bornemann. Numerische Mathematik 2 – Gewöhnliche Differentialgleichungen. de Gruyter, 2008.