EPREUVE DE MATHEMATIQUES 2003

Durée: 4 heures

Thème de la préparation :

La réussite, c'est un peu de savoir, un peu de savoirfaire et beaucoup de faire-savoir.

[Jean Nohain]

EXERCICE 1

- 1. Soit la fonction définie sur $[1; +\infty[par f(x) = ln(1+x) ln x \frac{1}{x}]$
- (a) Etudier les variations de f.
- (b) En déduire que, pour tout entier naturel n non nul, $l_n \ln(n+1) \ln(n) \le \frac{1}{n}$
- (c) Démontrer de même que, pour tout entier n non nul, $\ln(n+1) \ln(n) \ge \frac{1}{n+1}$
- 2. Soit la suite définie pour tout entier n non nul par $u_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$
- (a) Montrer que, pour tout entier n non nul, $u_n \ge \ln(n+1)$
- (b) Etudier la convergence de la suite (u_n)
- 3. Soit (v_n) la suite définie pour tout entier n non nul par $v_n = u_n \ln(n)$.
- (a) Etudier le sens de variation $de(v_n)$.
- (b) En déduire que la suite (v_n) est convergente.
- 4. Pour tout entier $n \ge 2$, on définie la suite (w_n) par $w_n = \frac{u_n}{\ln(n)}$
- (a) Montrer que, pour tout entier $n \ge 2, 1 \le w_n \le 1 + \frac{1}{\ln(n)}$
- (b) Déterminer la limite de la suite (w_n)

EXERCICE 2

Le plan complexe est rapporté au repère ortho normal $(O; \stackrel{\rightarrow}{u}, \stackrel{\rightarrow}{v})$; unité graphique :2 cm . Soient

 A_0 le point d'affixe 2, A_0 le point d'affixe 2i et A_1 le milieu du segment $\begin{bmatrix} A_0A_0 \end{bmatrix}$. Plus généralement ,si A_n le point d'affixe z_n , on désigne par A_n le point d'affixe $z_n = iz_n$ et par A_{n+1} le milieu du segment $\begin{bmatrix} A_nA_n \end{bmatrix}$. On note ρ_n et θ_n le module et l'argument de z_n .

- 1. Déterminer les affixes des points A_0 , A_0 , A_1 , A_1 , A_2 , A_2 et A_3 . Placer ces points sur une figure.
- 2. Calculer ρ_0, ρ_1, ρ_2 et ρ_3 ainsi que $\theta_0, \theta_1, \theta_2$ et θ_3 .
- 3. Pour tout entier n, exprimer z_{n+1} en fonction de z_n . En déduire z_n en fonction de n
- 4. Etablir les expressions de ρ_n et θ_n en fonction de n.
- 5. Déterminer la limite de ρ_n quand n tend vers $+\infty$
- 6. Comparer les modules et les arguments de z_n et z_{n+8}
- 7. Etablir que $A_n A_{n+1} = \frac{1}{\sqrt{2}} A_{n-1} A_n$

8. Après avoir exprimer $A_n A_{n+1}$ en fonction de n, déterminer en fonction de n, la longueur de la ligne brisée $A_0 A_1 A_2 ... A_n$. Déterminer la limite de l_n quand n tend vers $+\infty$

EXERCICE 3

Soient 3 points de l'espace A, B et C non alignés et soit k un réel de l'intervalle [-1;1]. On note G_k le barycentre du système $\{(A, k^2 + 1), (B, k), (c, -k)\}$.

- 1. Représenter trois points non alignés A, B, C le milieu I de [BC] et les points G_1 et G_{-1} correspondant
- 2. Montrer que, pour tout réel k de l'intervalle [-1;1], on a : $\overrightarrow{AG_k} = \frac{-k}{k^2 + 1} \overrightarrow{BC}$
- 3. Etablir le tableau de variation de la fonction f définie sur [-1;1] par $f(x) = \frac{-x}{x^2 + 1}$.
- 4. En déduire l'ensemble des points G_k quand k décrit l'intervalle [-1;1]
- 5. déterminer l'ensemble E des points M de l'espace tels que : [AC]

$$\|2\overrightarrow{MA} + \overrightarrow{MB} - \overrightarrow{MC}\| = \|2\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC}\|$$

6. Déterminer l'ensemble F des points de l'espace tels que

$$\|2\overline{MA} + \overline{MB} - \overline{MC}\| = \|2\overline{MA} - \overline{MB} - \overline{MC}\|$$

- 7. L'espace est maintenant rapporté à un repère ortho normal $(O; \vec{i}, \vec{j}, \vec{k})$.les points A,B,C ont pour coordonnées respectives (0;0;2),(-1;2;1),(-1;2;5).le point G_k et les ensembles E et F sont définis comme ci-dessus.
- (a) Calculer les coordonnées de G_1 et G_{-1} . Montrer que les ensembles E et F sont sécants.
- (b)Calculer le rayon du cercle C intersection de E et F.

EXERCICE 4

On pose $I_0 = \int_0^{\pi/6} \sin(3x) dx$ et, pour tout entier naturel n non nul $I_n = \int_0^{\pi/6} x^n \sin(3x) dx$

- 1. Calculer I_0
- 2. En utilisant une intégration par parties, calculer I_1
- 3. En utilisant deux intégrations par parties successives, déterminer, lorsque $n \ge 1$, I_{n+2} en fonction de I_n
- 4. Vérifier que $I_3 = \frac{\pi^3}{108} \frac{2}{27}$
- 5. Sans calculer l'intégrale I_n

- (a) Montrer que la suite (I_n) est monotone
- (b) Pour tout entier naturel n non nul, comparer I_n à $\int_0^{\pi/6} x^n dx$
- (c) Déterminer $\lim_{n\to+\infty} I_n$

EXERCICE 5

PARTIE A

On appelle (E) l'équation différentielle y'' - y = 0, où y est une variable numérique définie et deux fois dérivable sur l'ensemble IR des nombres réels.

- 1. Déterminer les nombres réels r tels que la fonction h, définie par $h(x) = e^{rx}$, soit solution de (E)
- 2. Vérifier que les fonctions φ définies par $\varphi(x) = \alpha e^x + \beta e^{-x}$, où α et β sont deux nombres réels ,sont les solutions de (E). On admet qu'on obtient ainsi toutes les solutions de (E)
- 3. Déterminer la solution particulière de (E) dont la courbe représentative passe par le point de coordonnées $\left(\ln 2; \frac{3}{4}\right)$ et admet en ce point une tangente dont le coefficient directeur est 5/4

PARTIE B

On appelle f la fonction définie sur l'ensemble des nombres réels par $f(x) = \frac{1}{2} (e^x - e^{-x})$. On désigne par C la courbe représentative de f dans le plan rapporté à un repère ortho normal $(0; \vec{i}, \vec{j})$.

- 1. Soit μ un nombre réel. Montrer que, pour tout nombre réel x, $f(x) = \mu$ est équivalent à $e^{2x} 2\mu e^x 1 = 0$. En déduire que l'équation $f(x) = \mu$ a une unique solution dans IR et déterminer sa valeur en fonction de μ .
- 2. Déterminer les limites de f en $+\infty$ et en $-\infty$.
- 3. Calculer f'(x) pour tout nombre réel x et en déduire le sens de variation de f sur IR.
- 4. Déterminer une équation de la tangente (T) à la courbe (C) au point d'abscisse 0.
- 5. En étudiant le sens de variation de la fonction d définie sur IR par d(x) = f(x) x, préciser la position de (C) par rapport à (T).
- 6. Tracer (C) et (T) (unité graphique 2cm)
- 7. Soit D la partie représentant sur le graphique l'ensemble des points M de coordonnées (x, y) tels que $0 \le x \le 1$ et $x \le y \le f(x)$. Calculer, en cm², l'aire de D.

Partie C

On cherche à caractériser les fonctions Φ , dérivables sur l'ensemble des nombres réels, telles que, pour tout nombre réel x, $\Phi(x) - \int_{0}^{x} (x-t)\Phi(t)dt = x$. Notons (H) cette relation .

- 1. On suppose qu'il existe une telle fonction Φ .
- (a) Justifier que, pour tout nombre réel x, $\Phi(x) = x + x \int_{0}^{x} \Phi(t) dt \int_{0}^{x} t \Phi(t) dt$ Calculer $\Phi(0)$
- (b) Démontrer que, pour tout nombre réel x, $\Phi'(x) = 1 + \int_0^x \Phi(t) dt$. Calculer $\Phi'(0)$
 - (c) Vérifier que Φ est une solution de l'équation différentielle (E) de la partie A. Déterminer laquelle, parmi toutes les solutions explicitées dans la question A.
- 2. A l'aide d'une intégration par parties, calculer $\int_0^x (e^t e^{-t}) dt$
- 3. Démontrer que la fonction trouvée à la question C.1.c vérifie la relation (H).