

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

<u>List of Open Electives for UG Programs (w.e.f. Sept. 2021)</u> <u>For students admitted to First Year in AY 2019 Onwards</u>

List of Courses to be "Conducted by the Departments":

Open Electives I and II

Course Code	Name of the Course	Restrictions if any
OECS1	Cloud Computing	Not for COMP/IT if completed as a Program Elective
OECS2	Artificial Intelligence and Machine learning	Not for COMP/IT if completed as a core Not for Students Completing minor in Comp. Engg.
OEIT1	Block chain Technology and Applications	Not for IT if completed as a Program Elective
OEET3	Consumer Electronics	
OEET4	Robotic & Machine Vision Intelligence	
OEEC1	IoT and I ² oT	Not for Students Completing minor in HoT.
OEEC2	Cyber Security & Digital Forensics	Not for COMP/IT if completed as a Program Elective
OECS3	Data Structures and Algorithms	Not for COMP/IT Not for Students Completing minor in Comp. Engg.
OECS4	Human Machine Interaction	
OECS5	User Experience Design	Not for Students Completing Minor in UXD

OEIT2	Software Engineering	Not for COMP/IT
OEIT3	Software Testing	Not for COMP/IT
OEIT4	Data Base Management Systems	Not for COMP/IT, Not for Students Completing minor in Comp. Engg.
OEIT5	Internet Technology	Not for COMP/IT Not for Students Completing minor in Comp. Engg.
OEIT6	Data Analytics	Not for COMP/IT if completed in Program Elective

Open Elective III-Basic Science Electives

Nil

Open Elective III-Engineering Science Electives

Nil

Open Elective IV: Humanities and Management Related

Course Code	Name of the Course	Restrictions if any
ОЕНМ3	IPR & Technology Entrepreneurship	

<u>List of Courses to be taken from MOOCs:</u>

Open Electives I and II

Course Code	Name of the Course	Restrictions if any
OECS1	Cloud Computing	Not for COMP/IT if completed as a Program Elective
OEET1	Industrial Automation and Control	
OECS2	Artificial Intelligence and Machine learning	Not for COMP/IT if completed as a core Not for Students Completing minor in Comp. Engg.
OEIT1	Block chain Technology and Applications	Not for IT if completed as a Program Elective
OEET2	Smart Grid	
OEET3	Consumer Electronics	
OEET4	Computer Vision	
OEEC1	IoT and I ² oT	Not for Students Completing minor in HoT.
OEEC2	Cyber Security & Digital Forensics	Not for COMP/IT if completed as a Program Elective
OECS3	Data Structures and Algorithms	Not for COMP/IT Not for Students Completing minor in Comp. Engg.
OECS4	Human Machine Interaction	
OECS5	User Experience Design	Not for Students Completing Minor in UXD
OEIT2	Software Engineering	Not for COMP/IT
OEIT3	Software Testing	Not for COMP/IT

OEIT4	Data Base Management Systems	Not for COMP/IT, Not for Students Completing minor in Comp. Engg.
OEIT5	Internet Technology	Not for COMP/IT Not for Students Completing minor in Comp. Engg.
OEIT6	Data Analytics	Not for COMP/IT if completed in Program Elective

Open Elective III-Basic Science Electives

Course Code	Name of the Course	Restrictions if any
OEMA1	Descriptive Statistics with R Software	
OEAS2	Climate and Earth Science	
OEMA2	Engineering Optimization	
OEAS3	Environment and Development	
OEAS4	Optical Engineering	
ОЕМА3	Numerical Methods for Engineers	

Open Elective III-Engineering Science Electives

Course Code	Name of the Course	Restrictions if any
OEES1	Fluidization Engineering	
OEES2	Fundamentals of manufacturing processes	

OEES3	Electric Drives	
OEES4	Introduction to Biomedical Imaging Systems	
OEES5	Sensors and Actuators	

Open Elective IV: Humanities and Management Related

Course Code	Name of the Course	Restrictions if any
OEHM1	Principles of Management	
OEHM2	Development Research Methods	
ОЕНМ3	Entrepreneurship and IP Strategy	
ОЕНМ4	Patent Law for Engineers and Scientists	
OEHM5	Organizational Behavior	
ОЕНМ6	Innovation, Business Models and Entrepreneurship	
OEHM7	Project Management	
ОЕНМ8	Economics and Finance	

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	T	P	О	E	L	T	P	Total	
	Cloud Computing	2	0	2	5	10	2	0	1	3	
(OE)		Examination Scheme									
		Component			ISE		MSE		SE	Total	
OECS1		Theory			50		50		50 100		.00
		Laboratory			50				50	100	

Pre-requisite Course Codes, if any.		CS206: Operating Systems, CS207: Computer		
		Communications and Networks, CS304: Distributed		
		Computing		
Course Obje	ective: To get the knowledg	e of Basics of cloud computing, Key concepts of		
virtualization	, Different Cloud Computing	ng services, Cloud Implementation, Programming and		
Mobile cloud	computing			
Course Outo	comes (CO): At the End of	the course students will be able to		
OECS1.1	CS1.1 Illustrate cloud service models, deployment models and mobile cloud computing.			
OECS1.2	Compare different virtualization technologies.			
OECS1.3	Use different cloud computing services for a given scnerios.			
OECS1.4	Analyze the components of	of open stack and Google Cloud platform.		

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO	PO1	PO1	PO1								
	1	2	3	4	5	6	7	8	9	0	1	2
OECS1.		3								2		
1												
OECS1.			2		3							
2												
OECS1.			2							2		2
3												
OECS1.					2							
4												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2
OECS1.1	2				
OECS1.2					
OECS1.3	2				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Damaanahan	I Indonetond	A 1	A malaura ./	Evaluata	Create
Remember	Understand	Apply	Analyze ✓	Evaluate	Create

Module	Unit	Towing	Def	IIma
No.	No.	Topics	Ref.	Hrs.
1	Title	Introduction to Distributed and Cloud Computing	1,2,4	8
	1.1	Distributed Computing: Definition, Models, Goals,		
		Hardware and Software concepts, Client-Server models.		
	1.2	Defining Cloud Computing, Cloud and other similar		
		configurations, Components of Cloud Computing, Cloud		
		types: NIST and Cloud Cube Models, Cloud Deployment		
		Models and Service Models		
	1.2	Cloud computing architecture, Advantages and		
		Disadvantages of Cloud Computing.		
2	Title	Virtualization	1,2	8
	2.1	Virtualization: Characteristics of virtualized environment,		
		Understanding the importance of Hypervisors, Type I & Type		
		II Hypervisors.		
	2.2	Taxonomy of virtualization, Implementation Levels of		
		Virtualization, Virtualization of CPU, Memory and I/O		
		Devices, Virtualization and Cloud Computing		
	2.3	Pros and Cons of virtualization, Technology Examples:		
		KVM, Xen, Vmware and HyperV, VirtualBox,		
		Containers/docker, image building registry ,volumes secrets,		
		networks		
3	Title	Cloud Computing Services	1,2,3	6
	3.1	Exploring Cloud Computing Services: SPI Model: Software		
		as a service, Platform as a service, and Infrastructure as a		
		service.		
	3.2	Anything as a service or Everything as a service (XaaS):		
		Security as a Service, Identity management as a Service,		
		Database as a Service, Storage as a Service, Collaboration as		
		a Service		
	3.3	Compliance as a Service, Monitoring as a Service,		
_		Communication as a Service, Network as a Service		_
4	Title	Cloud Implementation, Programming	2,3,5	6
	4.1	Open Stack Cloud Architecture: Feature of Open stack,		
		Components of Open stack, mode of operations		
	4.2	Programming support for Google apps engine GFS,		
		Bigtables, Chubby, Google APIs.		
5	Self	AWS cloud computing Platform,	1 to	5*
	Study	a) Elastic Compute Cloud(EC2): Compute Basics, Instance	6	
		types, Life cycle of instances.		

Route tables, Elastic IP Addresses (EIP).	Total	28
d)Amazon Virtual Private Cloud (Amazon VPC): Subnets,		
Volumes		
c) Elastic Block Storage (EBS):Basics and Types of EBS		
Features, Amazon Glacier, Glacier vs S3.		
b) Simple Storage Service (S3): Basics and Operations,		

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Creating and running virtual machines on Hosted Hypervisors like KVM Type1.
	Vmware Workstation, Oracle Virtualbox
2	Creating and running virtual machines on Bare-Metal Hypervisors Type 0 like
	Xen,Vmware ESXI or HyperV
3	Implement IaaS using your resources.
	Technology: OpenStack / Eucalyptus
4	Installation and Configuration of Ulteo to demonstrate on demand Application
	delivery over web browser to explore SaaS Environment.
5	To demonstrate installation and Configuration of Open stack Private cloud.(MS AZ
	and Google Cloud)
6	Create IAM role in AWS
7	Create EC2 instance How to connect with the instance
8	Demonstrate Platform as a Service using Google app Engine/IBM Blue Mix/t Suru
9,10	Title: Mini Project Objective: Using the concepts studied throughout the semester
	students shall be able to
	1. Create their private cloud for the institute using the available resources.
	2. Apply security concepts to secure a private cloud.
	3. Implement efficient load balancing.
	4. Compare various virtualization technologies with given resources.
	5. Create cloud applications such as messenger, photo editing website, your own
	social media etc.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Enterprise Cloud Computing	First	Gautam Shroff	Cambridge	2010
2	Cloud Computing Principles and Paradigms	Second	Rajkumar Buyya, James Broberg, Andrzej Goscinski	Wiley	2013
3	Distributed and Cloud Computing	First	Kai Hwang Geoffrey C. Fox Jack J. Dongarra	Morgan Kofmann	2012
4	Distributed Systems Principles and Paradigms	Second	Andrew S. Tanenbaum and marten Van Steen	PHI	2004

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
5	Cloud Computing: Web	First	Miller Michael	Pearson	2008
	Based Applications that			Education	
	Change the Way You Work			India	
	and Collaborate Online				
6	Cloud Computing – A	First	Velte T., Velte A.,	Tata	2017
	practical Approach		Elsenpeter R.	McGrawHill	

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	P	0	E	L	T	P	Total
		2	0	2	4	8	2	0	1	3
Open Elective	Artificial	Examination					Scheme			
1	Intelligence and	Component			ISE I		MSE	E	SE	Total
OECS2	Machine Learning	Theory			50		50		.00	200
		Laboratory			50				50	100

Pre-requisite C	ourse Codes, if any.	MA203: Probability and Stochastic Processes				
Course Objectiv	Course Objective: This course covers the fundamental concepts of Artificial Intelligence and					
machine learning	g.					
Course Outcomes (CO): At the End of the course students will be able to						
OECS2.1	Understand AI building	Understand AI building blocks presented in intelligent agents				
OECS2.2	Solve the problems using	g suitable searching methods.				
OECS2.3	Solve the problems using	Solve the problems using suitable reasoning and knowledge representation methods.				
OECS2.4	Apply suitable machine	learning technique for a given problem				
OECS2.5	Design an intelligent sys	stem using different AIML techniques for real life problems.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
OECS2.1	2	3	-	-	2	-	-	-	-	-	2	-
OECS2.2	2	3	2	2	-	-	-	-	-	-	2	-
OECS2.3	2	3	2	2	-	-	-	-	-	1	2	-
OECS2.4	2	3	-	-	2	-	-	-	-	2	2	-
OECS2.5	2	3	2	2	2	-	-	-	-	2	2	2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate \checkmark	Create

Theory Component

Module	Unit	Topics	Ref.	Hrs.
No.	No.	Topics	KCI.	1115.
1	Title	Introduction to Artificial Intelligence	1	04
	1.1	Definition of AI, History and Future of AI, Problem solving		
		Approach to Typical AI problem.		
	1.2	Intelligent Agents and Environment		
		What is an Intelligent Systems, Types of Agents, structure of agent.		
ļ	1.3	Environments and Its Properties, PEAS Representation for an Agent		
2	Title	Problem solving by Searching	1	05
	2.1	Searching: characteristics and issues in the design of search programs		
	2.2	Uninformed search techniques: State Space Search, Depth First		
		Search, Breadth-First Search, Iterative Deepening		
	2.3	Informed Search methods: Heuristic Search.		
3	Title	Knowledge Representation and Reasoning	1	05
	3.1	Reasoning: Representing and Reasoning with Uncertain Knowledge		
	3.2	Knowledge representation: A Knowledge-Based Agent, The		
		Wumpus World.		
	3.3	Propositional Logic, First-order predicate logic		
4	Title	Introduction to Machine Learning		
	4.1	Introduction: What is Machine Learning, History, and overview of	2,3	10
		machine learning,		
	4.2	Types of Machine Learning - Supervised, Unsupervised Semi-		
		Supervised Learning.		
	4.3	Evaluating a hypothesis: Model selection, training/validation/testing		
		procedures, diagnosing bias versus variance and vice versa,		
	TEN 43	regularization and bias/variance, learning curves		
5	Title	Linear Models for Regression	_	
	5.1	Two Simple Approaches to Prediction: Least Squares and Nearest	4	04
	<i>E</i> 2	Neighbors Limon Pagassian		
	5.2	Linear Regression	2.4	4*
6	Self-	Linear model for Classification : Logistic Regression, Multivariate Regression, Subset Selection, Shrinkage Methods, Linear Discriminant	3,4	4*
	Study	Analysis, Perceptron, Support Vector Machines, PCA,		
			 Total	
			ı viai	28

Laboratory Component.

Sr. No	Title of the Experiment
1	Implement an Intelligent agent.
2	Implement a given problem using the searching technique.

3	Implement a given problem using knowledge representation and reasoning rules.						
4	To design and implement an intelligent system, incorporating the matching algorithm and						
	the rule language.						
	1. It should provide a fact base updating function.						
	2. It should provide a function that checks the rules' LHS and return which rules were						
	matched.						
	3. It should support firing RHS according to matches.						
	Using SWISH Prolog or Java or Python or any other open-source tool						
5	Implement supervised learning algorithms.						
6	Minor project covering the concepts of AIML on the real-life problem statements.						

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Artificial Intelligence: A Modern Approach	3rd Edition	Stuart Russell and Peter Norvig	Prentice-Hall	2009
2	Machine Learning A Probabilistic Perspective	First edition	Kevin P. Murphy	Massachusetts Institute of Technology	2012
3	Machine Learning,	First edition	Tom.M.Mitch ell	McGraw Hill International Edition	1997
4	The Elements of Statistical Learning	2nd edition	Trevor Hastie Robert Tibshirani Jerome Friedman	Springer	2009

Sr. No	Title	Edition	Authors	Publisher	Year
1	Artificial	First	Nilakshi Jain	Wiley	2019
	Intelligence:			Publication	
	Making a				
	System				
	Intelligent				
2	Pattern	1st Edition	C. M. Bishop	Springer	2013
	Recognition				
	and Machine				
	Learning,				

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
	Blockchain Technology and	2	0	2	5	10	3	0	1	3
(PE)		Examination					n Scheme			
,		Component			ISE		MSE	E	SE	Total
IT424	Applications	Theory		50			50		.00	200
		Labo	ratory		50				50	100

Pre-requisit	e Course Codes, if any.	IT206:Operating systems				
		IT207:Computer Communications and Networks				
Course Obje	Course Objective: To understand and use the blockchain technology					
Course Outcomes (CO): At the End of the course students will be able to						
IT424.1	Explain the basic concept	s of blockchain technology, Bitcoin and Ethereum.				
IT424.2	Apply a smart contract on	the Ethereum test network				
IT424.3	Build a Decentralized Ap	plication running on a decentralized peer-to-peer network				
IT424.4	Explain the General Data	Protection Regulation for relevant blockchain application				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO	PO1	PO1	PO1								
	1	2	3	4	5	6	7	8	9	0	1	2
IT424.	2	-	-	-	-	-	-	-	-	-	-	2
1												
IT424.	-	2	-	-	2	2	1	-	-	-	-	2
2												
IT424.	-	-	3	2	3	2	1	-	-	-	-	2
3												
IT424.	-	-	-	_	-	2	1	2	-	-	-	2
4												

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
IT424.1	-	-	-	-	-	-	-
IT424.2	2	2	2	2	-	2	2
IT424.3	2	2	2	2	-	2	2
IT424.4	2	-	-	2	-	2	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
		✓	✓	✓	✓

Module	Unit	Topics	Ref.	Hrs.			
No.	No.						
1	Title	Introduction to Blockchain	1,2	6			
	1.1	The consensus problem - Asynchronous Byzantine					
	Agreement - AAP protocol and its analysis - Nakamoto						
		Consensus on permission-less, nameless, peer-to-peer					
		network - Abstract Models for BLOCKCHAIN - GARAY					
		model - RLA Model					
	1.2	Proof of Work (PoW) as random oracle - formal treatment of					
		consistency, liveness and fairness - Proof of Stake (PoS)					
		based Chains - Hybrid models (PoW + PoS).					
2	Title	Consensus	1,2	8			
	2.1	Bitcoin - Wallet - Blocks - Merkle Tree - hardness of mining					
		- transaction verifiability - anonymity - forks - double					
		spending - mathematical analysis of properties of Bitcoin.					
	2.2	Permissioned Blockchain: Basics, Distributed consensus,					
		RAFT Consensus, Byzantine General Problem, Practical					
	750 A 3	Byzantine Fault Tolerance.	4.0	-			
3	Title	Hyperledger Fabric	1,2	8			
	3.1	Transaction Flow. Hyperledger Fabric Details, Fabric -					
		Membership and Identity Management, Hyperledger Fabric					
	2.2	Network Setup, Fabric Demo on IBM Blockchain Cloud.					
	3.2	Hyperledger Composer - Application Development.					
		Hyperledger Composer - Network Administration, Ethereum					
		- Ethereum Virtual Machine (EVM) - Wallets for Ethereum - Solidity - Smart Contracts - some attacks on smart contracts.					
		Blockchain: Enterprise use cases.					
4	Title	Data Protection and applications of blockchain	1,2,3	6			
4	4.1	General Data Protection Regulation (GDPR) and its relevance	1,4,3	U			
	→. 1	for Indian businesses, Internal Policy on management and					
		sharing data, GDPR compliance between multiple					
		organizations. Liability and indemnity under GDPR, GDPR					
		organizations. Liability and indefinity under ODI K, ODI K		<u> </u>			

		for Entrepreneurs.					
	4.2	Applications of blockchain - Uses of Blockchain in E-					
		Governance, Land Registration, Medical Information					
		Systems, and smart cities, smart industries, anomaly					
		detections, FinTech, Shaping the Financial World, IoT.					
6	Self-	Scaling the blockchain: payment channels and state channels					
	study	Scaling the blockchain using optimism and using SNARK					
		Privacy in public blockchain: deanonymizing the blockchain					
		and mixing.					
		Total		28			

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Implementation of symmetric key cryptosystems – I
2	Implementation of asymmetric key cryptosystems – I
3	To implement Merkle Tree and genesis block
4	Demonstration of Bootstrapping
5	Demonstration of Hyperledger Fabric
6	Demonstration of Hyperledger Fabric – Ethereum
7	Implementation of Bitcoin
8	To implement the application: Land Registration
9	To implement the application: Smart Contract
10	To implement the application: FinTech

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Bitcoin and	Illustrated	Arvind Narayanan,	Princeton	2016
	Cryptocurrency		Joseph Bonneau,	University	
	Technologies: A		Edward Felten,	Press	
	Comprehensive		Andrew Miller and		
	Introduction		Steven Goldfeder		
2	Blockchain: Blueprint for	First	Melanie Swa	O'Reilly	2015
	a New Economy	Edition			
3	Building-Blocks of a	First	Shraddha Kulhari	Nomos	2018
	Data Protection	Edition			
	Revolution: The Uneasy				
	Case for Blockchain				
	Technology to Secure				
	Privacy and Identity				

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The Bitcoin Standard: The	First	Saifedean Ammous	Wiley	2018
	Decentralized Alternative				
	to Central Banking				
2	Blockchain For Dummies	Second	Tiana Laurence	Wiley	2019

Course		Teach	(Hrs/v	Credits Assigned						
(Category) Code	Course Name	L	T	P	О	E	L	T	P	Total
	Consumer Electronics	2	-	2	3	7	2	-	1	3
		Examination					tion Scheme			
OEET3		Component			ISE		MSE	F	SE	Total
		The	Theory		50		50	1	100	200
		Laboratory		50					50	100

Pre-	Basics of E	lectrical and Electronics Engineering							
requisite									
Course									
Codes									
	At the end of	of the successful completion of the course students will be able to							
	OEET3.1	List and classify devices used in consumer products based on their							
		specifications, identify sub-systems of consumer electronic products, also							
		choose and use proper interface standard for a given consumer electronic							
		product							
Course	OEET3.2	ustrate working principle of consumer electronic products and carry out							
Outcomes		asic tests to identify their correct operation							
	OEET3.3	Experiment with Haptics, Multitouch devices, Device interconnects and							
		peripherals and also suggest modification in consumer electronic product							
		using modern tools to enhance user experience							
	OEET3.4	Assemble subsystem of Television set and analyze technology used in audio							
		systems.							
	OEET3.5	Demonstrate working principal of Healthcare and home electronics							
		consumer products.							
	OEET3.6	Demonstrate working principal consumer electronic products used in							
		Occupational safety.							

Module No.	Unit No.	Topics	СО	Ref.	Total Hrs.
1	1.1	Introduction to consumer Electronic Haptics and Multi-touch Devices: Introduction to Touch panel, Capacitive Touch screen, Light pen. Displays for Consumer Electronics: OLED Display, Alphanumeric Display, LED Display, LCD Display.	CO1, CO3	4	04
2	2.1	Device Interconnects and Peripherals Introduction to Serial Interfaces, RS-232, I2C, SPI, USB. Introduction to ZIG-BEE Standards, WI-FI, Bluetooth, Thunderbolt, JTAG and various Interconnection standards	CO3	3	04
3	3.1	Interactive and Immersive TV Introduction to PAL TV System, NTSC TV System, SECAM TV System. Advanced Television System: High Definition TV, 3D TV.	CO4	1	04
4	4.1 4.2	Audio System Technologies and Home electronics Introduction to Audio system and major components of Audio System. Introduction to Home Electronics, Microwave Oven, Refrigerator, AirConditioning System, Washing Machine.	CO2, CO4	1	04
5	5.1 5.2 5.3	Healthcare Electronics Wearable Devices: Activity Trackers Smart Watch, Smart Glass. Fitness Devices: Blood Pressure Monitor, Digital Weighing Scale, Digital Glucometer. Biomedical Devices: ECG Sensor, EKG Sensor, EMG Sensor, Respirators.	CO5	5	06
6	6.1 6.2 6.3	Consumer Electronics used in Occupational Safety Printers, Scanners, Projection System. Bio-metric Devices: Finger Print Scanner, IRIS Scanner. Security Devices: CCTV, Electronics Lock, Video Intercom System, Doorbell.	CO6	2	06
	*Self study	Study of Virtual Reality, Digital Satellite TV, 4K TV, Microphone, Loudspeaker, Noise Cancelling Headphones.			
		Total (*	Not inc	luded)	28

Teaching Learning Methodology in Laboratory: Role Play Model

a) Instructor:

Responsibilities: Explanation of theoretical background

To provide required sample formats

To guide students in identification of appropriate online

material.

Supervision and assessment of the overall activity

b) First Group of students : Customer

Responsibilities: To finalize specifications of instrument to

be purchased Prepare request for

quotations Prepare the comparative statement Preparation for purchase order

c) Second Group of students: Manufacturer/Vendor

Responsibilities: To maintain the specifications of the

manufactured instruments To submit quotations

including all applicable taxes

To prepare Invoice as per purchase order

d) Third Group of Students: Sales/Service Engineer

Responsibilities: To demonstrate capabilities of various instruments

and convince customer to purchase a particular

instrument

To prepare Delivery Challan Install the instruments and prepare Installation Report, Demonstrate all the functions and uses of the instrument

Expt. No.	Suggested list of Experiments								
1	Experiment on Haptics and Multi-touch devices.								
2	Experiment on Device interconnects and Peripherals (USB and Bluetooth).								
3	Experiment on assembly of parts used in Television set.								
4	Experiment on Audio system technology.								
5	Experiment on Home electronics Consumer products.								
6	Experiment on Wearable and fitness devices.								
7	Experiment on Biomedical data acquisition devices.								
8	Experiment on occupational safety in electronic devices.								

References:

- 1. S. P. Bali, "Consumer Electronics", Pearson Education, 1st Edition, 2005.
- 2. Peter H. Gregory, "Biometrics for Dummies", Wiley Publishing Inc., 2008.
 - 3. N. Mathivanan, "PC Based Instrumentation: Concepts and Practices", Prentice Hall Learning India Pvt. Ltd., 1st Edition, 2007.
 - 4. Deborah Morley, "Understanding Computers: Today and Tomorrow", Course

Technology,16th Edition, 2016.

5. Sanjay Mishra, "Wearable Android: Android Wear and Google FIT App Development", Wiley Blackwell publication, 1st Edition, 2015.

Course(Category)	Course Name	Т	ieme k)	Credits Assigned						
Code		L	T	P	О	E	L	T	P	Total
		2	0	2	4	8	2	0	1	3
(OE)	Robotics & Machine Vision	Examination					Scheme			
		Comp		ISE		MSE	E	SE	Total	
OPET4	Intelligence	Theory			50		50		00	200
OEET4		Laboratory			50				50	100

Pre-reg	uisite Course Codes, if any. Microprocessor						
Course	Outcomes (CO): At the End of the course students will be able to						
CO.1	Classify different types of robot and evaluate coordinate frame transformation						
CO.2	Perform direct kinematics analysis of Robot Systems.						
CO.3	Relate the electric drive system and smart sensors						
CO.4	Extract object features for Representation Description						
CO.5	Demonstrate Vision Guided System						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO.1	2	2										
CO.2	3	3										
CO.3					2							
CO.4	3	3										
CO.5			3						2	2		1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CO.1							

CO.2				
CO.3				
CO.4				
CO.5				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create	
---------------------	---------	-----------	------------	--------	--

Module No.	Unit No.	Topics	Ref.	Hrs.	
1	Title				
	1.1	Robot Classification, Robot Components, Degrees of freedom		04	
	1.2	Coordinate frames Fundamental rotation Matrices. Coordinate			
		Frames Transformation, Screw Transformation			
2	Title	Direct Kinematics Analysis	1	08	
	2.1	Description of links and joints, Link co-ordinates, Kinematic Modeling of the manipulator, Denavit- Hartenberg Parameters, Manipulator Transformation Matrix: The Arm Matrix.			
	2.2	Direct kinematic analysis of Two axis, Three axis and Four Axis articulated Robots.			
3	Title	Electric Drives and Sensors	1	04	
	3.1	Electric Drives: Introduction, Types, DC electric motor, AC electric motor, stepper motors, half step mode operation, micro step mode. Types of stepper motors, Direct drive actuation.			
	3.2	Sensors: Introduction: An Introduction to sensors and transducers, Need of sensors in Robotics, Position sensors - optical, non-optical, Velocity sensors, Accelerometers, Proximity Sensors - Contact, non-contact, Range Sensing, touch and Slip Sensors, Force and Torque Sensors.			
4	Title	Image Formation and Camera Models	2	04	
	4.1	Pinhole camera model, Perspective projection, Camera model, Camera Calibration, Stereo Vision.			
	4.2	3D reconstruction: Active Method, Passive Method, Stereo vision, Epipolar geometry.			

5	Title	Object Representation and Description	2	04
	5.1	Feature Extraction from images		
		Interest points * Harris detector, Hessian detector, Histogram of		
		Gradient (LoG), Local Binary Pattern(LBP).		
	5.2	Projection vectors, Edge features, Boundary detection, Boundary		
		Descriptors, Regional Descriptors,		
		Chain Code, Fourier descriptors, Statistical Features.		
6	Title	Design of Vision Guided System	2	04
	6.1	Industrial applications of Vision-controlled robotic systems.		
	6.2	Object Detection, Object Classification, Object Recognition,		
		Surveillance, Real Time Monitoring, Human Motion Recognition		
		and Tracking.		
7	Self	Direct Kinematics of SCARA Robot, Inverse Kinematics,		
	Study	Robotic operating System (ROS)		
			Total	28

Laboratory Component

Sr. No	Title of the Experiment
1	Coordinate frame transformation
2	Obstacle detection and avoidance*
3	Direct Kinematics
4	Motion Planning*
5	Boundary feature descriptors
6	Hybrid Feature Descriptor : HOG, LBP
7	Sensor based robot system development*
8	Object Detection & Recognition*
9	Object Classification*
10	Guided Vision System Development*

*Real time implementation using Microcontroller Based System/ TI DSP Boards/Rasberry Pi Boards/ e-Yantra Boards.

Text Books:

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Fundamentals of Robotics	1 st	Robert J. Schilling	PHI Learning	1990
	Analysis and Control				
2	Computer Vision	1 st	Richard Szeliski	Springer	2010
	Algorithm and				
	Applications				

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Robotics Engineering an,	1 st	Richard D. Klafter,	Prentice Hall of	1989
	Integrated Approach		Thomas. A,	India Pvt. Ltd.,	
			Chmielewski, Michael		
			Negin		
2	Engineering foundation of	1 st	DFrancis N-Nagy	Prentice Hall	1987
	Robotics		AndrasSiegler	Inc.	
3	Robotics and Image	1 st	P.A. Janaki Raman	Tata McGraw	1995
	Processing an Introduction			Hill Pblishing	
				company Ltd.	
4	Robot Operating System	1 st	Lentin Joseph	Apress	2018
	for Absolute Beginners:		_	_	
	Robotics Programming				
	Made Easy				

Course (Category)	Course Name	ŗ	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
_		2	0	2	2	6	2	0	1	3
Open		Examination Scheme								
Elective	Cyber Security and Digital Forensics	Comp	onent]	ISE]	MSE	E	ESE To	Total
OFFICA	Digital Forelisics	Theory			50		50	1	.00	200
OEEC2		Labor	ratory		50			,	P 1	100

Pre-requisi	te Course Codes, if any.						
Course Objective: Perform end to end forensic investigations, Collect evidence from log files,							
Understand	the importance of time synchronization, How to use typical forensic investigation tools,						
Follow a sci	entific approach to investigate network security events and incidents						
Course Out	Course Outcomes (CO): At the End of the course students will be able to						
OEEC2.1	Classify different cybercrimes and cyber attacks						
OEEC2.2	Analyze the risk involved in the critical infrastructures.						
OEEC2.3	Create evidence centric procedures and processes						
	To analyze the hardware, software, firmware and tools etc for forensic investigation						
	processes.						
OEEC2.4	Develop digital forensics is part of the incident response (IR) capability, as an integral						
	part of information Assurance (IA) and Forensic readiness.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
OEEC2.1	2		2									
OEEC2.2			2									
OEEC2.3					3							
OEEC2.4					3							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
OEEC2.1							
OEEC2.2							
OEEC2.3							
OEEC2.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand Apply Analyze Evaluate	Create ✓
--	----------

	omponen	լ ւ		**
Modul e No.	Unit No.	Topics	Ref.	Hrs
1	Title	Fundamentals of Cybersecurity	1,2,3	7
	1.1	Introduction to cyber security - Tenets of Cybersecurity-CIA, Cybercrime, classification of cybercrimes, cyber criminals, various cybercrimes - Phishing, DoS/DDoS, Malware, Ransomware, Virus, Website defacement, scanning & sniffing, SQL injection, Buffer overflow, Session Hijacking, evil twin, wardriving, bluesnarfing, bluebugging, insecure cloud API, Data Breaches in cloud, Abuse of Cloud Services, cyber terrorism etc.		
	1.2	Introduction to critical infrastructure and protection. Classical and Modern Cryptography, Hash functions, MAC, HMAC, Digital Signature, PKI and use cases, Identity and Access Management (IAM), Biometric security, Multi factor authentication. Intrusion detection and prevention - IDS, IPS, Honeypots, Firewall		
2	Title	Cybersecurity Risk Assessment and Management	1,2,3	7
	2.1	Defining security risk, Security risk, Vulnerability assessment (VA), Penetration testing (PT), Network VAPT, Web VAPT, Cloud VAPT.		
	2.2	IT infrastructure and inventory management, threats analysis, risk residue, Risk appetite, computation of risk matrix, Use cases		
3	Title	Introduction to Digital Forensics	4	7
	3.1	Digital Forensics Science (DFS), Forensics and Legal perspective, Phases of Digital Forensics, Cardinal rules of forensics, Chain of custody (CoC), Forensic standards and guidelines,		
	3.2	Computer/Host Forensics, Network Forensics, Memory Forensics (Hard drives, RAM, flash memory, diskettes etc.), Mobile/Portable Device Forensics (PDAs, Servers etc.), Live forensics Vs. Traditional forensics, Write blocking, Data imaging and hashing, Device and data acquisition guidelines and best practices, Code Analysis: Review of software for malicious signatures, Network Analysis: Scrutinize network traffic and logs to identify and locate.		

4	Title	Advance Forensics: Incident Response Methodology and advance network forensic	4	7
	4.1	Preparation, Detection, Containment, Analysis, Eradication, Recovery		
		and Follow up. Evidence Acquisition and Preservation, Drive and		
		partition recognition in Linux, Maintaining evidence integrity,		
	4.2	Cloud forensics: Access control within three cloud computing service		
		models, Methodology and Evaluation Criteria Catalogue for Digital		
		Forensics in SaaS, PaaS and IaaS, Cloud forensic challenges and Law		
		enforcement (All these contents should be covered through published		
		research papers)		
6	Self	Cybersecurity and Digital Forensic Standards		4*
	Study			
			Total	28

• Hrs are not counted in total

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr.	
No.	Title of the Experiment
	Preparatory Laboratory:
	[a] Install and configure Virtual Environment- Virtual Box
	[b] Select Intrusion Dataset
1	Lab-1A: Network Scanning (nmap), Web Server Vulnerability Scanning (Nikto) and Host
	scanning (fping)
	Lab-1B: Network Sniffing (TCPDUMP/Wireshark/tshark/Ettercap), Vulnerability
	Scanning (nmap ad CVE) and Security Visualization (Etherape)
2	Lab-2A: Infosec Coding using Python Network Socket Programming (Build the port
	scanner)
	Lab-2B: Network Scanning, Packet manipulation, Network Attacks using Scapy
3	Lab-3: Backdoor- Network Socket/ File Transfer and Reverse Shell using Netcat
4	Lab-4: Vulnerability Assessment and System Hacking (VAPT)
	VA-Nessus/OpenVAS and Penetration Testing using Metasploit
5	Lab-5A: Cyber Security and Machine Learning-Intrusion Detection
	KDDCUP99/NSL-KDD/CIC-IDS2017 dataset
	Lab5B: Anomaly detection- network traffic analysis using tshark
6	Lab-6: Cryptosystems- PKI using Openssl and pycrypto
7	Lab-7A:Intrusion Detection System (IDS) and Firewalls
	Snort-NIDS, Logwatch-HIDS, Design and Development Anomaly detection using
	Simple Event Correlator (SEC) and Integration with Email (Postfix/Sendmail Server)
	Lab-7B: Security Operation Center (SOC) and Security Event Information Event
	Management (SIEM):
	Prelude-SIEM, Snort-NIDS, Suricata-NIDS, Logwatch-HIDS, OSSEC-HIDS,
	IPTABLES-Firewall and Syslog
8	Digital Forensics: Part-I
	Lab-8A: Network Forensics using Xplico and tshark
	Lab-8B: Digital Forensics (Host/Disk) with TCT/Sleuthkit

9	Digital Forensics: Part-II
	Lab-9A: Memory Forensics using Volatility
	Lab-9B: Email Forensics using Online utilities
10	Incident Handling and Threat Hunting using ELK

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Security in Computing	Fifth	Charles Pfleeger Shari Pfleeger Jonathan Margulies	Prentice- Hall	2015
2	Effective Cybersecurity Understanding and Using Standards and Best Practices	First	William Stallings	Addison- Wesley	2019
3	Cybersecurity – Attack and Defense Strategies	Second	Yuri Diogenes Erdal Ozkaya	Packt Publications	2019
4	Digital Forensics with Kali Linux Second Edition	Second	Shiva V. N. Parasram	Packt Publications	2020

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Digital Forensics and Incident	Second	Gerard Johansen	Packt	2020
	Response			Publications	
	Second Edition				
2	A Practical Guide to Digital	Second	Darren R. Hayes	Pearson	2020
	Forensics Investigations				

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
OE	Data Structures and Algorithms	2	0	2	5	9	2	0	1	3
		Examination Scheme								
		Component			ISE]	MSE ESE To			Total
OECS3		The	Theory		50		50		.00	200
OECS3		Laboratory			50			:	50	100

Pre-requisi	te Course Codes, if any.	1. Problem-solving using imperative programming					
Course Ob	Course Objective:						
Course Outcomes (CO): At the End of the course students will be able to							
OECS3.1	Apply various operations of	Apply various operations of linear and non-linear data structures to given problems.					
OECS3.2	Apply the concepts of Tree	es and Graphs to a given problem.					
OECS3.3	Analyze the algorithm for give	Analyze the algorithm for given Problem statement					
OECS3.4	Apply the Divide and Conque problems.	er, Greedy method, Dynamic Programming strategy to solve given					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
OECS3.1	1	2	2					2				2
OECS3.2	1	2	2					2				2
OECS3.3	1	2	2					2				2
OECS3.4	1	2	2					2				2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

		•	· · ·			•	
	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3

	EXTC	ETRX												
OECS3.1	1	1			1	1					1	1		
OECS3.2	1	1			1	1					1	1		
OECS3.3	1	1			1	1					1	1		
OECS3.4	1	1			1	1					1	1		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to Data Structures		8
	1.1	Concept of Linear and Non-linear Data Structures	1,2	4
		Stack: Stack as ADT, operations on the stack,		
		Queue: Queue as ADT, Operations on Queue,		
	1.2	Linked List: Linked List as ADT, Operations on Singly Linked List.	1,2	4
		Types of the linked list- Linear and circular linked lists, Doubly		
		Linked List		
2	Title	Trees		4
	2.1	Trees as ADT, General tree v/s Binary Tree Terminology, Traversal	1,2	4
		of Binary Tree, Operations on Binary tree, Binary Search Tree and		
		its operations		
3	Title	Graphs		3
	3.1	Graph as ADT, Introduction To Graph, Representation of Graph-	1,2	3
		Adjacency Matrix, Adjacency List, Graph Traversal Technique		
4		Introduction to Analysis of algorithm		7
	4.1	Role of Algorithms in Computing, Performance analysis-space and	1,2	3
		time complexity, Growth of Functions: Asymptotic Notation,		
		Analysis of sorting algorithms Such as Selection sort and insertion		
		sort.		
	4.2	Divide and Conquer Approach – General Method, Analysis of	1,2	4
		Merge Sort, Analysis of Quick sort, Analysis of Binary search,		
		Master Method		
5		Greedy and Dynamic Programming Approach		6
	5.1	Greedy Approach: Basic strategy, Knapsack problem,	1,2	3
		single-source shortest path-Dijkstra's algorithm.		
		Minimum cost spanning trees-Kruskal algorithm		

	5.2	Dynamic Programming: Assembly-line scheduling, Longest	1,2	3
		common subsequence		
6	Self	Hashing Introduction to Hash Table, Hash functions, Collision		5
	Study	Resolution Technique		
	topic	Backtracking and Branch-and-bound: General Method 8 queen		
		problem (N-queen problem) Sum of subsets. Traveling Salesman proble		
	•		Total	28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Implement a given problem statement using Stack.
2	Implement a given problem statement using Queue
3	Implement a given problem statement using Linked List.
4	Implement a given problem statement using Doubly Linked List.
5	Implement a given problem statement using Binary Trees.
6	Apply Graph Traversal Technique on a given problem statement to solve the problem
7	Implement and analyze insertion sort selection sort
8	Implement and analyze problem based on Divide and Conquer strategy - Merge and Quick
	sort
9	Implement a given problem statement using Greedy Strategy.
10	Implement a given problem statement using Dynamic Programming.

Text Books

Sr. No.	Title Edition		Authors	Publisher	Year
1	Introduction to Algorithms	Third Edition	Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest,	MIT Press	2009
2	Fundamentals of Computer Algorithms	Second Edition	Clifford Stein Horowitz E, Sahni S and S.Rajasekaran	Galgotia Publications	2010

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Classic Data Structures	Second	Samanta Debasis	PHI	2009
2	Data Structures With C	First	Seymour Lipschutz	Schaum's Outline Series	2010

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code	,	L	T	P	0	E	L	T	P	Total
	Human Machine Interaction (HMI)	2	0	2	4	8	2	0	1	3
Open		Examination Scheme								
Elective		Comp	onent		ISE]	MSE	E	SE	Total
OECC4		Theory			50		50	1	00	200
OECS4		Laboratory			50				50	100

Pre-requis	site Course Codes, if any.	CS302,CS305				
Course O	Course Objective:					
Course Outcomes (CO): At the End of the course students will be able to						
OECS4.1	4.1 Identify the various design principles used for interacting between human and machine.					
OECS4.2	Apply human psychology of everyday actions and UI design process for real world applications.					
OECS4.3	Implement mobile, windows, ar	nd web-based application				
OECS4.4	Evaluate and justify UI design					
OECS4.5	Create application for social and technical task.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO5
OECS4.1	2	-	2	-
OECS4.2	2	-	2	-
OECS4.3	2	3	-	2
OECS4.4	2	-	2	-
OECS4.5	2	3	-	-

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2
OECS4.1	1	-	-	-	-
OECS4.2	1	-	-	-	-
OECS4.3	-	2	-	2	-
OECS4.4	-	2	-	-	-
OECS4.5	-	2	-	2	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply ✓	Analyze	Evaluate	Create

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction	1-6	06
	1.1	Introduction to Human Machine Interface, Hardware, software and operating environment to use HMI in various fields.		
	1.2	The psychopathology of everyday things – complexity of modern devices; human-centered design; fundamental principles of interaction;		
	1.3	Psychology of everyday actions- how people do things; the seven stages of action and three levels of processing; human error;		
2	Title	Understanding Goal Directed Design	1-6	06
	2.1	Goal directed design; Implementation models and mental models; Beginners, experts and intermediates – designing for different experience levels		
	2.2	Understanding users; Modeling users – personas and goals.		
3	Title	Design Guidelines	1-6	04
	3.1	perception, Gesalt principles, visual structure, reading is unnatural, color, vision, memory, six behavioral patterns, recognition and recall, learning, factors affecting learning, time.		
4	Title	Graphical User Interface and Web Interface	2,4	06
	4.1	The Graphical User Interface: Popularity of graphics, the concept of direct manipulation, characteristics of GUI, Web user Interface: Interface popularity, characteristics. Principles of user interface design.		
5	Title	Interaction Styles and Communication:	2,4	06

5.1	Interaction Styles: Menus, Windows, Device-based and		
	Screen-based Controls.		
5.2	Communication: Text messages, Feedback and Guidance,		
	Icons, Multimedia and colors.		
Self	UX tools: Figma, Just In Mind and any open source tool for		
Study	prototype designing		
	Mobile Ecosystem: Platforms, Application frameworks:		
	Types of Mobile Applications: Widgets, Applications.		
		Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr.							
No.	Title of the Experiment						
1	To Study of open source UX tools (Just in mind Prototype, Pidoco, Marvel Prototype) and create						
	a simple design for a given problem definition.						
2	Know your client						
	a. Design an app that can teach mathematics to children of 4-5 years age in schools in Rural Sector.						
	b. Design an app that can teach mathematics to children of 4-5 years age in schools in Urban Sector.						
	 Design a site that can help people to sell their handmade products in metro cities. 						
	d. Design a site that can connect housewives and keep them engaged.						
3	Goal oriented design - Design an experience for passengers whose flight /train is delayed.						
4	Design Principles - Understand principles of good UI design by heuristic evaluation.						
	Design UI that would connect all college students to the online events happening on-campus during the college festival. User should be able to browse all events sorted on time, category and place. The user should also be able to subscribe to events and get notified about their start time and also be able to send invites to friends to attend an event with them						
5	Menus & Navigation – Redesign of a user interface (Suggest and implement changes in						
	Existing User Interface)						
6	Windows & Screen controls –						
	a. Design a navigator for a student new in your Institute.						
	b. Design a navigator for a person new in tourist city/ village.						
	 Motor paralysis for differently able people. 						
	d. Vaccination App design with localization						
7	Icons - Design appropriate icons pertaining to a given domain.(Eg. Greeting cards)						
8	Colors – Design a personal website for any socio technical problem						
	Use statistical graphics for better visualization.						
9	Design a Map based UI(Web User) for Mumbai Dabbawalas with localization feature.						
10	To calculate screen complexity of existing Graphical User Interface and redesign the interface to minimize the screen complexity.						

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Human Computer	3 rd	Alan Dix, J. E. Finlay,	Peason, Prentice	2003
	Interaction		G. D. Abowd, R. Beale	Hall	
2	The Essential Guide to	3 rd	Wilbert O. Galitz,	Wiley publication	2007
	User Interface Design				
3	Design of everyday	2 nd	Donald A. Normann	Basic Books;	2013
	things			Reprint edition	
4	Galitz's Human	1st	Kalbande,Kanade,Iyer	Wiley	2015
	Machine Interaction		_	Publications	

Sr. No.	Title	Edition	Authors	Publisher	Year
5	Interaction Design:	5th	Rogers Sharp	Wiley publications	2019
	Beyond Human		Preece		
	Computer Interaction				
6	Mobile Design and	1 st	Brian Fling	O'Reilly Media	2009
	Development			Inc.,	

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code	,	L	T	P	O	E	L	T	P	Total
		2	0	2	4	8	2	0	1	3
Open		Examination					on Scheme			
Elective	User Experience Design	Comp		ISE		MSE		SE	Total	
OECS5	Design	The	eory	50			50	1	00	200
OECS5		Labor	ratory		50				50	100

Pre-requis	site Course Codes	Software Engineering					
Course Ou	itcomes: At the End of	the course students will be able to					
OECS5.1	Analyze UX design life	cycle and its process for users.					
OECS5.2	Apply UX design proces	ss for the given scenario					
OECS5.3	OECS5.3 Create real life application with end-to-end understanding of User experience practices.						
OECS5.4	Evaluate UX design prod	cess for best experience.					

Module No.	Unit No.	Topics	Ref.	Hrs.
		UX Design and Life Cycle		
1	1.1	What is UX (User Experience), Ubiquitous interaction, A UX process lifecycle template, The system complexity space, Meet the user interface team	1,2	4
		The UX Design Process – Understand Users		
2	2.1	Contextual Inquiry: Introduction, the system concept statement, User work	1	8
	2.1	activity gathering, Abridged contextual inquiry process		

	2.2	Contextual analysis: Introduction, Creating and managing work activity]	
	2.2	notes, Constructing your WAAD (Work Activity Affinity Diagram)		
	2.3	Extracting Design Interaction requirements: Formal Requirements		
	2.3	Extraction, Abridged method for requirement extraction		
	2.4	Design Informing Model: User Model (Social Model), Usage Model (Flow		
	2.4	Model, Task Interaction Model), Work Environment Model.		
		The UX Design Process-Design Thinking, Ideation and Sketching		
	3.1	Design Paradigm, Design thinking, Design perspective, User personas,		
3	3.1	Ideation, Sketching	1,3	8
	3.2	Mental Models and Conceptual Design		
	3.3	Storyboards, Wireframes		
		The UX Design Process- Prototyping, Evaluation and Agile development		
	4.1	Fidelity of Prototype, To make effective paper prototype,		
4	4.2	UX Evaluation and Improve UX Goals, Metrics and Targets	1,3,	8
4	4.3	UX Evaluation Techniques- Formative vs Summative	5	0
	4.4	UX Method for Agile Development: Introduction, Basics of agile SE		
	4.4	methods, drawbacks of agile SE methods from UX perceptive.		
5		Self-Learning		4
5	5.1	Affordance, Integration of UX into agile SE methods		4
			Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	To Study of open source UX tools (Justinmind Prototype, Pidoco, Marvel Prototype) and create UX design for a given problem definition.
2	Design Mobile/Web UI for your own Travelling agent considering adding map and localization feature along with descriptions if required. (e.g, Make my Trip,Tripadvisor,thrillophilia etc.)
3	Design a Map based UI(Web User) for Mumbai Dabbawalas with localization feature.
4	Pick a website/app that you use on a daily basis (eg. facebook, gmail, whatsapp, zomato, etc). Evaluate the product based on user experience principles and give suggestions for improvement. Explain usability testing process for the same.
5	Analyze and redesign the (IRCTC/Indian Rail) website for better User Experience and create the heuristic report using Nielsen's Heuristic
6	Design UI for student to teach mathematics in rural areas/ to sell the products of farmers directly to consumers.
7	Design UI for student to sell the products of farmers directly to consumers.
8	Design UI/UX Mobile App along with making logo for the same for your own newly opened restaurant. (Consider all the UX Parameters while designing).
9	Design UI for any differently abled users.

10	Design UI for analysis of number of children suffering from juvenile diabetic children in India. The
	design aims at providing solutions for improving quality treatment and making the treatment affordable.

Note: All the experiments need to be tested for usability.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The UX Book	1 st	Rex Hartson and	MK	2012
			Pardha Pyla	Publication	
2	A Project Guide to UX Design: For user experience designers in the field or in the making.	2 nd	Russ Unger and Carolyn Chandler	O'reilly, Series Editor	2012
3	UI Design: Key to captivate user understanding	1st	Jain, Kalbande,	SybGen Publications	2021

Reference Books

Sr.

No.		Title	Editio	n		Auth	ors		Pub	lisher	. J	(ear
4	Smashi	ng UX Design	1 st		Jesmond Allen and James			John W	Viley &	ž 2	2012	
				-	Chudley				Sons			
5	Agile E	xperience	1 st		Brian Fl	ing			O'Rei	lly	2	2009
	Design					_			Media	Inc		
	ourse egory)				Teaching Scheme (Hrs/week)					Credits Assigne		
C	ode		L	T	P	O	\mathbf{E}	L	T	P	Total	
				2	0	2	4	8	2	0	1	3
	pen				Examinatio				n Schen	ne		
Ele	ective	Software Engineering			Component ISE				MSE	ESE		Total
	EIT?			Tl	heory		50		50]	100	200
OEIT2				Lab	oratory		50				50	100

Pre-requi	site Course Codes, if any.	CS102: Problem Solving using OOP					
Course O	Course Objective: To understand the best practices in software engineering and develop the						
necessary	skills to handle projects.						
Course O	Course Outcomes (CO): At the end of the course students will be able to						
OEIT2.1	Illustrate various software pr	ocess models					
OEIT2.2	Analyze software requirement	nts					
OEIT2.3	OEIT2.3 Design system models with respect to function and object oriented approach.						
OEIT2.4	Apply the basics of software	testing methods for the given scenario.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO	PO1	PO1	PO1								
	1	2	3	4	5	6	7	8	9	0	1	2
OEIT2.	2											
OEIT2.	1	2							1			
OEIT2.	1	2	2		2				1			
OEIT2.					2				1			

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
OEIT2.1							
OEIT2.2							
OEIT2.3							
OEIT2.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze✓	Evaluate	Create

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction	1,2	5
	1.1	Software Life Cycle models and Processes: Waterfall model		
		and its Extensions, Rapid Application Development, Spiral		
		Model,		
	1.2	Agile Development Models		
	1.3	Requirement Analysis and Specification		
2	Title	Software Design	2	4
	2.1	Overview of the Design Process		
	2.2	Cohesion and Coupling		
	2.3	Approaches to Software Design: Function Oriented Design,		
		Object Oriented Design		
3	Title	Function Oriented Software Design	1,2	4
	3.1	Overview of Structured Analysis and Structured Design		
		Methodology		
	3.2	Developing the DFD Model of the System		

	3.3	Structured Design						
4	Title	Object Modeling Using UML	3,4	8				
	4.1	Use Case Model						
	4.2	Class Diagram						
	4.3	Interaction Diagram						
	4.4	Activity Diagram						
	4.5	State Chart Diagram						
5	Title	Software Testing	1,2	7				
	5.1	Testing: Basic Concepts and Terminologies						
	5.2	Unit Testing, Integration Testing, System Testing						
	5.3	Black-Box Testing, White-Box Testing						
	5.4	Testing Object Oriented Programs						
6	Self	Software Project Management: Project Planning, Project		5*				
	Study	Estimation Techniques						
		Total (*Not included)		28				

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Gather requirements and write a project proposal for case study.
	Prepare SRS document. (Use IEEE template)
2	Prepare User Stories
3	Design Use Case model and prepare its specification
4	Design Data flow diagram for the case study.
5	Design Class diagram
6	Draw Activity diagram
7	Draw State Chart diagram
8	Design UML diagram -Interaction diagrams
9	Study Selenium automation tool and run the test cases
10	To execute different Selenium commands –selenese and matching text pattern

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year	
1	Software Engineering: A	9 th	Roger S. Pressman	McGraw-Hill	2019	
	Practitioner's Approach		and Bruce Maxim			
2	Fundamentals of Software	5 th	Rajib Mall	PHI Learning	2018	
	Engineering					

Sr.	Title	Edition	Authors	Publisher	Voor
No.	Title	Edition	Authors	i ublisher	Year

3	UML for Java Programmers		Robert C. Martin	Pearson	2006
4	UML Distilled: A Brief Guide to	3 rd	Martin Fowler	Addition Wesley	2003
	the Standard Object Modeling			-	
	Language				

Course (Category)	Course Name	Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
Category)	Course Manie	L	T	P	О	E	L	T	P	Total	
_	Software Testing	2	0	2	4	8	2	0	1	3	
Open		Examination					on Scheme				
Elective		Component			ISE		MSE		SE	Total	
OEIT3		Theory			50		50		.00	200	
		Laboratory			50				50	100	

Pre-requisi	te Course Codes, if any				
Course Objective: To understand the best practices of Industry in Software Testing					
Course Outcomes (CO): At the end of the course students will be able to					
OEIT3.1	Illustrate the role of Testing Lifecycle and Testing types				
OEIT3.2	Apply Static and dynamic Testing techniques to find bugs in the Software				
OEIT3.3	Make use of Test management to improve Test strategy				
OEIT3.4	Categorize the different test cases suitable in testing.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

PO1 PO2	PO3 PO4	PO5 PO6	PO7 PO8	PO9	PO10 PO	11 PO12
---------	---------	-----------	-----------	-----	---------	---------

OEIT3.1	1								
OEIT3.2	2		1	1				1	
OEIT3.3		1	1	1	2			1	
OEIT3.4		2		1	2				

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
OEIT3.1							
OEIT3.2							
OEIT3.3							
OEIT3.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply ✓	Analyze ✓	Evaluate	Create

Module	Unit	Topics	Ref.	Hrs.
No.	No.	•		1115.
1	Title	Fundamentals of Software Testing	1,2	4
	1.1	Evolution of Software Testing		
	1.2	Principles of Software Testing		
	1.3	Testing and Debugging		
	1.4	Errors & Testing		
2	Title	Software Testing Methodology and Levels	1,2	6
	2.1	Software Testing Lifecycle		
	2.2	Verification & Validation		
	2.3	Unit Testing, Integration Testing		
	2.4	System Testing		
	2.5	Non -Functional Testing and its types		
3	Title	Static Testing Techniques	2.3	4
	3.1	Structured Group Examinations – Reviews, types of reviews		
	3.2	General process, Roles and responsibilities		
	3.3	Selection criteria. The compiler as a static analysis tool		
4	Title	Dynamic Testing Techniques	2,3,4	8
	4.1	Equivalence Class Partitioning & Boundary Value Analysis		
	4.2	Decision Table Technique		
	4.3	Cause Effect Graphing		
	4.4	Basis Path Testing		
	4.5	Graph Matrices		
	4.6	Loop Testing		
5	Title	Test Management	1,2	6
	5.1	Test organization, Test Planning, Test plan hierarchy		
	5.2	Detailed test design and test specifications.		
	5.3	Incident Management – Test Log, Incident Reporting		
	5.4	Test Classification, Status, Test Cases		
6	Self	Software Quality Assurance: Role of SQA Team, difference		5*
	Study	between Quality Assurance and Software Testing.		
		Total (*Not included)	·	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Write and test a program using Equivalence Partitioning and Boundary value Analysis
2	Write and test a program using Decision Tree Table Testing
3	Write and test a program using Path Coverage
4	Perform Static Testing on given Scenario
5	Study of Test automation tool (Selenium)
6	Run test cases and use Base URL to run test cases in different domains, Cross Browser Testing
7	Perform Web Driver Implicit & Explicit Wait with help of Test tool
8	Perform Load Testing for any given website with automated tool
9	Use of Test Management tool
10	Use of Mobile Apps testing tool

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Software Testing Foundations	Fourth edition	Andreas Spillner	Shoff	2014
2	Software Testing :Principles and	First edition	Naresh Chauhan	Oxford	2010
	Practices			University Press	

Reference Books

Sr. No.		Title	Edition		Authors		Publisher			Year	
3	Foundat	tions of Software Testing	Second edition		Adity	Aditya P. Mathur		Pearson Education			2013
4	Softwar	re Testing: A Craftsman's	Fourth E	dition	Paul	C. Jorg	gensen	CRC F	ress		2013
	Approa	ch									
	ourse tegory)	Course Name	Teaching Scheme (Hrs/week)					Credits Assign			ned
C	code			T	P	0	E	L	T	P	Total
				0	2			2	0	1	3
	pen		Examination			n Scheme					
Ele	ective	ve Database Management Systems		Component		ISE		MSE	E	SE	Total
01	EIT4	bystems	The	ory	50			50		100	200
l O	C114	14		atory		50				50	100

Pre-requisite	Course Codes, if any					
Course Objective: To understand the fundamentals of database systems.						
Course Outcomes (CO): At the end of the course students will be able to						
OEIT4.1	Analyze given system to construct a database model.					
OEIT4.2	Apply various SQL commands for data manipulation.					
OEIT4.3	Apply normalization on relational database.					
OEIT4.4	Illustrate transaction processing and query processing techniques on a database.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO	PO1	PO1	PO1								
	1	2	3	4	5	6	7	8	9	0	1	2
OEIT4.	1	2	2									
OEIT4.		1			2							
OEIT4.			2		2							
OEIT4. 4			2		2							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
OEIT4.1							
OEIT4.2							
OEIT4.3							
OEIT4.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze✓	Evaluate	Create

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction and E R Modeling	1,2	8
	1.1	Introduction to basic concept of Database, Characteristics of		
		databases, File system V/s Database system, Users of Database system, Database Administrator, Data		
		Independence, Codd's Rule, DBMS system architecture.		
	1.2	Introduction to ER model, Benefits of Data Modeling, Types		
		of data Models, Phases of Database Modeling, The Entity-		
		Relationship (ER) Model, Extended Entity-Relationship		
		(EER) Model		
	1.3	Mapping the ER and EER Model to the Relational Model		
2	Title	Structured Query Language	3,4	8
	2.1	Overview of SQL, Data Definition Commands, Data		
		Manipulation commands, Data Control commands, Set		
		operations		
	2.2	Aggregate function, Null values, Views in SQL, Trigger		
3	Title	Normalization	1,2	4
	3.1	Design guidelines for relational schema, Functional		
		dependencies, Properties of Decomposition		
	3.2	Normal Forms- 1NF, 2 NF, 3NF, BCNF		
4	Title	Transaction Processing and Recovery	1,2	5
	4.1	Transaction concept, Transaction states, ACID properties		

	4.2	Implementation of atomicity and durability, Concurrent		
		Executions, Serializability		
	4.3	Recoverability		
5	Title	Introduction to Query Processing	1,2	3
	5.1	Basics of Query Processing, Phases of Query processing,		
		Query Optimization		
6	*Self	1. NO SQLData type, Database creation, Basic command		5*
	Study	for creation, updating and querying the database.		
		Total (*Not included)		28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Formulate a case study and create an E-R Diagram. (Conceptual design for a relational
	database)
2	To create Logical design for a relational database.
3	To create a database using SQL commands (With constraints)
	Data Definition Language- Create, Alter, Drop, Rename, Truncate
	Constraints-Not Null, Unique Key, Primary Key, Foreign Key, Check, Dropping a Constraint.
4	To populate and manipulate database using SQL commands.
	Data Manipulation Language- Insert, Update, Delete, Select
5	To perform DCL, TCL commands
	Data Control Language: Grant, Revoke, Roles
	Transaction Control Language: Commit, Rollback, Save point
6	To perform Date, Time, Arithmetic and Set operation on database.
7	To perform Aggregate function and Group by- Having clause on database
8	To perform Join operations on database.
	Equijoins, Non-Equijoins, Self Joins, Outer Join, cross Join
9	To Create a different view of database.
10	To examine integrity of database using Triggers.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Database System Concepts	7 th	, , ,	McGraw – Hill	2019
			Sudarshan		
2	Fundamentals of Database	7 th	Elmasri and	PEARSON	2015
	Systems		Navathe	Education	

Sr. No.	Title	Edition	Authors	Publisher	Year
3	"SQL & PL/SQL for Oracle	1 st	Dr. P.S.	Dreamtech	2011
	11g"		Deshpande	Press	

4	SQL, PL/SQL programming	4 th	Ivan Bayross	BPB	2010
	language of ORACLE				

Course (Category)			Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
	Data Analytics	2	0	2	4	8	2	0	1	3	
Open				Examination			ı Scheme				
Elective		Comp	Component		ISE		MSE	E	SE	Total	
OEIT6		Theory			50		50	1	100	300	
		Laboratory			50				50	100	

Pre-requis	site Course Codes, if any.							
Course Ol	Course Objective: To bring the awareness about data processing and data analysis technique							
Course O	Course Outcomes (CO): At the End of the course students will be able to							
OEIT6.1	Apply different techniques of data preprocessing.							
OEIT6.2	Apply rules and theorems in statistics to analyze the data.							
OEIT6.3	Apply different algorithms like regression, classification on a given data							
OEIT6.4	Apply different algorithms like clustering and Association Rule Mining on a given data							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
OEIT6.1			2		2							
OEIT6.2			2		2							
OEIT6.3			2		2							
OEIT6.4			2		2							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
OEIT6.1							
OEIT6.2							
OEIT6.3							
OEIT6.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze √	Evaluate	Create

Module No.	Unit No.	Topics	Ref	Hrs			
1	Title	Data Preprocessing	3	2			
	1.1	Data Cleaning, Data Integration, Data Reduction: Attribute subset					
		selection, Histograms, Clustering and Sampling					
	1.2	Data Transformation & Data Discretization: Normalization, Binning,					
		Histogram Analysis and Concept hierarchy generation					
2	2 Title Test of Hypothesis and Significance		1	7			
	2.1	Statistical hypothesis, Null and Alternate hypothesis, test of hypothesis					
		and significance, Type I and Type II errors, Level of Significance, Tests					
		involving the Normal distribution, One-Tailed and Two-Tailed tests, P					
		value.					
	2.2	Special tests of significance for Large samples and Small samples (F,					
		chi- square, z, t- test), ANOVA.					
3	Title	Correlation and Regression	1	7			
	3.1	Correlation, Rank correlation, Regression Analysis, Linear and Non-					
		linear Regression, Multiple regressions, Curve fitting by method of least					
		squares, fitting of straight lines, Polynomials, Exponential curves,					
		Nearest neighbour- Linear Discriminant Analysis					
4	Title	Classification and Association Rule Mining	2	7			
	4.1	Naive bayes classification, CART, Support Vector Machines, Bagging,					
		Boosting, Random forests					
	4.2	Market Basket Analysis, Frequent Item sets, Closed Item sets, and Association Rules, The Apriori Algorithm, The FP Growth algorithm, Introduction to Mining Multilevel Association Rules and multidimensional Association Rules, Hidden Markov models					
5	Title	Clustering	2	5			
		Introduction to unsupervised learning,					
		Hierarchical Clustering : Agglomerative, Divisive, BIRCH					
		partitioning methods: k means algorithm, K-Medoids Density Resed Methods: DRSCAN, OPTICS					
6	Self	Density-Based Methods: DBSCAN, OPTICS Applications of data analytics using Neural Networks, Deep Learning		4			
0	study	Applications of data analytics using ficular fictworks, Deep Learning		_			
		Total (*Not inch	ided)	28			

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Perform EDA such as number of data samples, number of features, number of classes, number
	of data samples per class, removing missing values, conversion to numbers, using seaborn
	library to plot different graphs.
2	Analyze statistical data using R programming
3	Use of SAS software to analyze statistical data
4	To perform classification on a dataset
5	To perform association rule mining on a dataset
6	To perform clustering on a dataset
7	Microsoft Excel Programming I - use of functions like vlookup, macros
8	Use of Google fusion tables for data analysis
9	Explore and present interactive data insights from real world dataset (Dashboards) using Power
	BI.
10	Explore and present interactive data insights from real world dataset (Dashboards) using
	Tableau

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Python Data Science Handbook: Essential Tools for Working with	1 st	Jake VanderPlas	O'Reilly	2016
	Data				
2	Learning From Data	1 st	Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Husan-Tien Lin	AML Book	2012
3	Doing Data Science	1 st	First Cathy O'Neil, Rachel Schutt	O'Reilly	2013

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Data streams: Algorithms and	2nd	Muthukrishnan. S.	now	2005
	applications.			publishers Inc	

Course (Category)	Course Name		Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
	IPR & Technology Entrepreneurship	2	-	2	5	8	2	-	1	3	
Open		Examination Scheme									
Elective		Comp	ponent		ISE		MSE	F	SE	Total	
OFHIM2		Theory			50		50	1	.00	200	
ОЕНМ3		Laboratory		,	50				50	100	

Pre-requisi	Pre-requisite Course Codes, if any.						
Course Outcomes (CO): At the end of the successful completion of the course students will be able							
	to						
OEHM3.1	Perform prior art and create intellectual asset						
OEHM3.2	Validate idea and evaluate opportunity						
ОЕНМ3.3	Develop Budget and Profit and Loss Statement						
OEHM3.4	Develop Business Model and Plan						

CO-PO Correlation Matrix: (1-Weak, 2-Medium 3-Strong)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
OEHM3.1				3								2
OEHM3.2		2	2									2
ОЕНМ3.3				1							3	2
OEHM3.4			3									2

CO-PEO/PSO Correlation Matrix: (1-Weak, 2-Medium, 3-Strong)

CO/PEO/PSO	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
OEHM3.1						1
OEHM3.2						2
OEHM3.3						
OEHM3.4	1					2

Module No.	Unit No.	Topics	СО	Ref.	Total Hrs.
1		Intellectual Property Rights(IPR)	CO1	3	04
	1.1	Introduction, Types of IPR, Difference between Tangible property and Intangible property			
	1.2	Indian Copyright Laws, Indian Trademark Laws, Indian Patent Laws, Industrial Design Laws, Geographical Indications Laws of India			

2	2.1	The Patents Anatomy of Patents, Patent filing process, Overview of Requirements and Limitations of Patentability, Patent Infringement, Addressing Prior Art	CO1	3	06
,	2.2	Patent Drafting: Fundamental Principles of patent drafting, Introduction to detailed description, Drafting independent and dependent Claims, PCT filing.			
3	3.1	Basics of Entrepreneurship Introduction to Business	CO2	1,2	4
		Business basics, Components of a Business, Types of Business,			
		Functions within a Business, Metrics of Successful Business, Difference between Entrepreneurship & Entrepreneurship.			
	3.2	Myth of Entrepreneurship, What makes an Entrepreneur, Steps to starting a Business, Skills needed to be Successful in Business			
4	4.1	Idea Validation & Opportunity Analysis Idea Generation: Brainstorming, Focus Group, Checklist Methods, Problem Inventory Analysis, Scenario Thinking, Notebook Method, Reverse Brainstorming.	CO2	1,2	04
	4.2	Opportunity Identification: Changing Demographics, Emerging Markets, New technologies, Social Changes, Opportunity Evaluation :Market Analysis, Competition Analysis, Technical Feasibility, Financial Viability, Risk Analysis, Resource Optimization			
5		Financial Literacy	CO3	1,2	05
	5.1	Business Finance and Arithmetic: Income and Expenditure Statement, Cash flow Projections, Break Even Analysis - for single product or service, Taxes, Budgeting and managing the finances, Computation of working capital, Financial Business			
	5.2	Case Study Financing Stages; Sources of Finance; Venture Capital; Criteria for evaluating new-venture proposals & Capital-process			
6	6.1	Venture Creation	CO4	1,2	05
	6.2	Market Research, Feasibility Analysis, Developing the Business Model Business Plan: Purpose, Benefits, Essential components of Business plan, SWOT Analysis			
	*Sel f Stud y	Managing and Growing the Venture, Social impact of the business, Social Entrepreneurship, Human Centered Design for business case, The need and Wants analysis by Mas Lows hierarchy			
		Total (*)	Not inc	eluded)	28

Laboratory Assignment

Sr. No.	Title of the Experiment
1.	Case Study Analysis of Successful Business
2.	Case Study Analysis of Failed Business
3.	Idea Generation and opportunity evaluation
4.	Prior Art Search of emerging Technology Idea
5.	IPR Creation
6.	Financial Projection of a Venture
7.	Business Model Canvas
8.	Business Plan
9.	Making the Business case for Human Centered Design
10.	New Venture Creation

Text Book

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Entrepreneurship: New venture creation	1st	David Holt,	Prentice Hall of India	
	venture creation				
2	Entrepreneurship;	1st	Robert Hisrich,	Tata McGraw Hill	
			Michael Peters;	Publication	
3	Intellectual Property Rights in	1st	Neeraj Pandy, Dharni	PHI	2014
	India		Khushdeep		

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Law relating to Intellectual Property Rights		V. K. Ahuja	LexisNexis	2017
2	Case Studies in International Entrepreneurship: Managing and Financing Ventures in the Global Economy.		Walter Kuemmerle,	McGraw- Hill/Irwin ,	2004
3	Business Driven Technology		Haag/Baltzan/Philips	Tata McGraw Hill Publication	