0.1 Vector Spaces

Definition 0.1.1: Vector Spaces

A vector space consists of the following:

- 1. field *F* of scalars
- 2. a set *V* of objects called vectors
- 3. $\forall \{\alpha, \beta, \gamma\} \subset V$, a rule called vector addition holds:
 - addition is commutative: $\alpha + \beta = \beta + \alpha$
 - addition is associative: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
 - $\exists ! 0 \in V \ (\alpha + 0 = \alpha)$
 - $\exists ! (-\alpha) \in V \ (\alpha + (-\alpha) = 0)$
- 4. $\forall \{\alpha, \beta\} \subset V \ \forall \{c_1, c_2\} \subset F$, a rule called scalar multiplication holds:
 - $1\alpha = \alpha$
 - $(c_1c_2)\alpha = c_1(c_2\alpha)$
 - $c_1(\alpha + \beta) = c_1\alpha + c_1\beta$
 - $(c_1+c_2)\alpha=c_1\alpha+c_2\alpha$

Definition 0.1.2: Linear Combinations

 $\alpha \in V$ is said to be linear combination of the vectors $\alpha_1, \ldots, \alpha_n \in V$ if $\exists c_1, \ldots, c_n \in F$ s.t.

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n = \sum_{i=1}^n c_i \alpha_i$$

0.2 Subspaces

Definition 0.2.1: Subspaces

 $W \subset V$ is called subspace if W satisfies vector space axioms.

Theorem 0.2.1

 $((V:f.d.v.s/F) \land (\{0\} \subsetneq W \subset V)) \Rightarrow (W \text{ is subspace} \iff \forall \{\alpha,\beta\} \in V \ \forall c \in F \ (c\alpha + \beta \in V)).$

Proof. We have to check: $W \neq \emptyset \Rightarrow \exists w \in W \Rightarrow 0 \in W$.

Theorem 0.2.2

 $\{W_i\}:= \text{collection of subspaces of } F\text{-v.s. } V\text{. Let } W:=\cap W_i\text{. then } W \text{ is also subspace.}$

Proof. All W_i has 0, thus $0 \in \cap W_i$, which implies $W \neq \emptyset$. Let $v_1, v_2 \in W$, $c \in F$. Then $\forall v_1, v_2 \in W_i$. Since W_i is subspace, $cv_1 + v_2 \in W_i$ for all i, thus also in W. □

Definition 0.2.2: Span

V: F-v.s. $S \subset V:=$ any nonempty subset. The span(S) is the intersetion of all subspaces of V that contains S.

Theorem 0.2.3

 $\operatorname{span}(S)$ is set of All linear combination of S/F.

Proof. $W := \operatorname{span}(S)$ and let L be set of all lin. comb. of S/F. Then obviously, $L \subset W$ because $S \subset WW$ and W is subspace.

Conversely, note that $S \subset L$. If we prove L is subspace, then since $S \subset L$, $W = \text{span}(S) \subset L$. Then L is apparently a subspace. Thus W = L.

0.3 Bases and Dimensions

Definition 0.3.1: Linearly Independent

V: F-v.s., and take S as subset of V. We say S is linearly independent if $\exists \alpha_1, \ldots, \alpha_n \in S$ and $c_1, \ldots, c_n \in F$, not all zero, s.t. $c_1\alpha_1 + \cdots + c_n\alpha_n = 0$ has nontrivial solution. If S is not linearly dependent, we say it is linearly independent.

Theorem 0.3.1

V: F-v.s. $\alpha_1, \ldots, \alpha_n$ are linearly independent $\iff \forall i \in [n] \ \forall c_i \in F \ ((c_1\alpha_1 + \cdots + c_n\alpha_n = 0) \Rightarrow c_1 = c_2 = \cdots = c_n = 0.$

Proof. Exercise!

Definition 0.3.2: Basis

V: F-v.s. A basis of V is a subset $S \subset V$ s.t. S is lin. indep. and span(S) = V.

Definition 0.3.3: Finite Dimensional

If basis *S* has property $|S| < \infty$, we say *V* is finite dimensional vector space.

Theorem 0.3.2

V: F-v.s. that is spanned by $\{\beta_1, \dots, \beta_n\} \subset V$. Then any lin. indep. set of vec. in V is finite and card. is no bigger than n.

Proof. E.T.S. that every subset S with more than n vec. are lin. dep. Suppose $S = \{\alpha_1, \ldots, \alpha_m\}$, for distinct vec. with $m \ge n$. Since $\{\beta_1, \ldots, \beta_n\}$ spans V, for each $1 \le j \le m$, $\alpha_j = \sum_{i=1}^n A_{ij}\beta_i$. Let $x_1, \ldots, x_m \in F$ be arbitrary chosen. Then $x_1\alpha_1 + \cdots + x_m\alpha_m = \sum_{j=1}^m x_j\alpha_j = \sum_{i=1}^n \left(\sum_{j=1}^m A_{ij}x_j\right)\beta_i$. Consider the system $[A_{ij}][\mathbf{x}^T] = 0$. This has at least 1 free variable, which leads system has nontrivial solution.

Corollary 0.3.1

V: *F*-v.s. that has finite spanning set. Then any two basis of *V* have same card.

. Apply Theorem 0.3.2 to both side of two different basis.

Lemma 0.3.1

 $W \subsetneq V$ be finite dim. v.s. Then dim $(W) < \dim(V)$.

Proof. Let S_0 be a basis of W. S_0 is lin. indep., so can enlarged it to get a basis of V. Since W is propersubset of V, $\exists v \in V \setminus W$. Take $S_1 = S_0 \cup \{v\}$, and repeat this. finite dimensional condition of V implies this algorithm terminates in finite times, and thus we can conclude $\dim(W) < \dim(V)$.

Theorem 0.3.3

 $W_1,W_2\subset V$: finite v.s. Then W_1+W_2 is a finite dim. v.s. and $\dim(W_1)+\dim(W_2)=\dim(W_1+W_2)-\dim(W_1\cap W_2)$.

Proof. Choose $\{\alpha_1, ..., \alpha_d\}$ a basis for $W_1 \cap W_2$. We can extend this into W_1 and W_2 's basis. Take $\{\alpha_1, ..., \alpha_d, \beta_{d+1}, ..., \beta_a\}$ be basis for W_1 and $\{\alpha_1, ..., \alpha_d, \gamma_{d+1}, ..., \gamma_b\}$ be basis for W_2 .

Claim 0.3.1

 $\alpha_1, \ldots, \alpha_d, \beta_{d+1}, \ldots, \beta_a, \gamma_{d+1}, \ldots, \gamma_b$ is a basis for $W_1 + W_2$.

Proof. Suppose for arbitrary lin. indep. set B, span $(B) = W_1 + W_2$. Let $x \in W_1 + W_2$. Then $x = w_1 + w_2$ where $w_1 \in \text{span}\{\alpha, \beta\}$ and $w_2 \in \text{span}\{\alpha, \gamma\}$, thus $x \in \text{span}\{\alpha, \beta, \gamma\}$. On the other hand, each vec. in B is already in $W_1 + W_2$. Thus $\text{span}(B) = W_1 + W_2$.

Claim 0.3.2

This B is lin. indep.

Proof. Suppose we have $\sum a_i \alpha_i + \sum b_j \beta_j + \sum c_k \gamma_k = 0$ for alal scalars are 0. Then $\sum a_i \alpha_i + \sum b_j \beta_j = -\sum c_k \gamma_k$. Thus $\sum c_k \gamma_k \in W_1 \cap W_2$ where $\{\alpha_1, \ldots, \alpha_d\}$ is basis for $W_1 \cap W_2$ and γ are indep. with α . Thus $\forall k \in \mathbb{N}$ ($c_k = 0$). Simarly, we can see that all scalars are 0. Thus B is indep.

This two claim leads $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$.

0.4 Coordinates

Definition 0.4.1: Coordinates (Ordered Basis)

An ordered basis for *F*-v.s. *V* is a sequence of vec. that forms a basis.

Lemma 0.4.1

V: f.d.v.s./F. Suppose $B = \{v_1, \dots, v_n\}$ is an ordered basis of V. Then for each $x \in V$, $\exists !$ expression of the form $x = x_1v_1 + \dots + x_nv_n$ for some $x_i \in F.$

Proof. Existence of expression of form is trivial since B is basis of V.

For uniqueness, suppose we have two expression. Then indepence condition of each v_i leads these expression have exactly same coefficients.

Definition 0.4.2: Coordinate Matrix

V: f.d.v.s./F, B be ordered basis. We define $[x]_B = [x_1 x_2 \cdots x_n]^T$ the coordinate matrix of x w.r.t. the basis B.

Theorem 0.4.1

V: f.d.v.s./F, B and B' be two different ordered basis of V. Then $\exists!$ invertible mat. P s.t. $\forall x \in B$, $[x]_B = P[x]_{B'}$, also $[x]_{B'} = P^{-1}[x]_B$.

Proof. Let $B := \{\alpha_1, \dots, \alpha_n\}$ and $B' := \{\beta_1, \dots, \beta_n\}$. For $\beta_j \in B'$, since B is a basis, $\beta_j = \sum_{i=1}^n P_{ij}\alpha_i$ and this P_{ij} are uniquely decided. Let $P := [P_{ij}]$. Let $x \in V$. Write $[x]_B = [x_1 \dots x_n]^T$, $[x]_{B'} = [x'_1 \dots x'_n]^T$. Then $x = \sum_i \left(\sum_j x'_j P_{ij}\right) \alpha$. By uniqueness, we can derive $[x]_B = P[x']_B$. Since B and B' are lin. indep., x = 0 implies $[x]_B = [x]_{B'} = 0$. Thus P is invertible. \square

0.5 Summary of Row-Equivalence

This Chapter is Intentionally Skipped at Lectures

0.6 Computations Concerning Subspace

This Chapter is Intentionally Skipped at Lectures