IT214 Database Project

Project Title: OTT

Group id:- T211

ld:

- Rushi Makadiya 202201117
- Dhruv Dhangar 202201144
- Kishan Patel 202201159
- Jyot Vasava 202201169
- Jay Patel 202201187

❖ ER Diagram

❖ Relational Schema Diagram

❖ Proof that all relations are in Boyce-Codd Normal Form

1. "Content" Relation:

Attributes:

```
Content { Content_ID, Title, Content_type, Release_date, Age rating, IMDB rating, Production ID}
```

Minimal set of Functional dependencies:

```
Content ID → Title
```

Content_ID → Content_type

Content_ID → Release_date

Content ID \rightarrow Age rating

Content ID → IMDB rating

Content_ID → Production_ID

let X= Content ID,

X⁺ = { Content_ID, Title, Content_type, Release_date, Age_rating, IMDB_rating, Production_ID}

Thus, The primary key is Content ID.

The left side of all the FDs in the minimal set of FDs for the relation 'Content' is Content_ID, which is the primary key of this relation, **So "Content" is in BCNF.**

2. "Content Subtitle" Relation:

• Attributes:

Content Subtitle {Content ID, Subtitle}

Here Primary key = {Content_ID, Subtitle}

According to theorem, all attribute primary key relation is always in BCNF.

Hence "Content_Subtitle" is in BCNF.

3. "Content Genre" Relation:

• Attributes:

Content_Genre {Content_ID, Genre}

Here Primary key = {Content_ID, Genre}

According to theorem, all attribute primary key relation is always in BCNF.

Hence "Content Genre" is in BCNF.

4. "Content_Audio" Relation:

Attributes:

Content_Audio {Content_ID, Audio}

Here Primary key = {Content_ID, Audio}

According to theorem, all attribute primary key relation is always in BCNF.

Hence "Content Audio" is in BCNF.

5. "Streams" Relation:

• Attributes:

Streams {Stream_ID, Stream_date, Stream_Start_time, Duration, Content ID, User ID}

Minimal set of Functional dependencies:

```
Stream_ID → Stream_date

Stream_ID → Stream_Start_time

Stream_ID → Duration

Stream_ID → Content_ID

Stream_ID → User ID
```

```
Take X = Stream_ID,

X<sup>+</sup> = {Stream_ID, Stream_date, Stream_Start_time, Duration,

Content ID, User ID}
```

That's why, The primary key is Stream_ID.

The left side of all the FDs in the minimal set of FDs for the relation 'Streams' is Stream_ID, which is the primary key of this relation, So "Streams" is in BCNF.

6. "Watchlist" Relation:

Attributes:

Watchlist {User ID, Watchlist}

Here Primary key = {User_ID, Watchlist}

According to theorem, all attribute primary key relation is always in BCNF.

Hence "Watchlist" is in BCNF.

7. "Statistics" Relation:

• Attributes:

Statistics (Content ID, Total views, Revenue, Budget)

• Minimal set of Functional dependencies:

```
Content_ID → Total_views
Content_ID → Revenue
Content_ID → Budegt
```

```
Take X = Content_ID,
X<sup>+</sup>= {Content_ID, Total_views, Revenue, Budegt}
```

That's why, **The primary key is Content_ID.**

The left side of all the FDs in the minimal set of FDs for the relation 'Statistics' is Content_ID, which is the primary key of this relation, **So "Statistics" is in BCNF.**

8. "Related_Shows" Relation:

• Attributes:

Related_Shows {Show_ID,Content_ID, Similarity}

• Minimal set of Functional dependencies:

```
{ Show_ID,Content_ID} → Similarity
```

That's why, **The key is {Show_ID, Content_ID}.**

The left side of all the FDs in the minimal set of FDs for the relation 'Related_Shows' is {Show_ID, Content_ID}, which is the key of this relation,

So "Related_Shows" is in BCNF.

9. "Production" Relation:

• Attributes:

Production {Production ID, Name, PAN No, Location}

• Minimal set of Functional dependencies:

Production ID → Name

Production ID → PAN No

Production_ID → Location

Take X = Production ID

X⁺ = {Production_ID, Name, PAN_No, Location}

That's why, **The primary key is Production_ID.**

The left side of all the FDs in the minimal set of FDs for the relation 'Production' is Production_ID, which is the primary key of this relation, **So "Production" is in BCNF.**

10. "Advertisement" Relation:

• Attributes:

Advertisement {Advertise_ID, Product_Name, Company_Name, AD_cost, Views, Revenue}

Minimal set of Functional dependencies:

Advertise_ID → Product_name

Advertise_ID → Company_name

Advertise ID → AD cost

Advertise ID → Views

Advertise_ID → Revenue

Take X = Advertise ID

X⁺ = {Advertise_ID, Production_Name, Company_Name,AD_cost,
Views, Revenue}

That's why, **The primary key is Advertise_ID.**

The left side of all the FDs in the minimal set of FDs for the relation 'Advertisement' is Advertise_ID, which is the primary key of this relation, **So "Advertisement" is in BCNF.**

11. "Advertisement_Genre" Relation:

Attributes:

Advertisement_Genre {Advertise_ID, Genre}

Here Primary key = {Advertise_ID, Genre}

According to theorem, all attribute primary key relation is always in BCNF.

Hence "Advertisement_Genre" is in BCNF.

12. "Actor" Relation:

• Attributes:

Actor {Actor_ID, Name, DOB, Gender, Nationality}

Minimal set of Functional dependencies:

Actor_ID → Name

Actor ID → DOB

Actor ID → Gender

Actor_ID → Nationality

Take X = Actor ID

X⁺ = {Actor_ID, Name, DOB, Gender, Nationality}

That's why, **The primary key is Actor_ID.**

The left side of all the FDs in the minimal set of FDs for the relation 'Actor' is Actor_ID, which is the primary key of this relation,

So "Actor" is in BCNF.

13. "Tv_Series" Relation:

• Attributes:

TV_Series {Content_ID, First_Air_Date, Total_seasons, End_Date}

• Minimal set of Functional dependencies:

Content_ID → First_Air_Date

Content_ID → Total_seasons

Content ID → End Date

Take X = Content ID

X⁺ = {Content_ID, First_Air_Date, Total_seasons, End_Date}

That's why, The primary key is Content_ID.

The left side of all the FDs in the minimal set of FDs for the relation 'TV_Series' is Content_ID, which is the primary key of this relation, **So "TV_Series" is in BCNF.**

14. "Episodes" Relation:

• Attributes:

Episodes {Episode_No, Season_No, Title, Release_Date, Discription, Rating, Duration, Content ID}

• Minimal set of Functional dependencies:

```
{ Episode_No, Season_No, Content_ID} → Release_Date 
{ Episode_No, Season_No, Content_ID } → Discription 
{ Episode_No, Season_No, Content_ID } → Rating 
{ Episode_No, Season_No, Content_ID } → Duration 
{ Episode_No, Season_No, Content_ID } → Title 
Take X = { Episode_No, Season_No, Content_ID }
```

X⁺ = {Episode_No, Season_No, Title, Release_Date, Discription, Rating, Duration, Content_ID}

That's why, **The key is = { Episode_No, Season_No, Content_ID }.**

The left side of all the FDs in the minimal set of FDs for the relation 'Episodes' is = { Episode_No, Season_No, Content_ID }, which is the key of this relation,

So "Episodes" is in BCNF.

15. "Cast" Relation:

• Attributes:

Cast {Role, Actor_ID,Content_ID}

Here Primary key = { Role, Actor_ID,Content_ID }

According to theorem, all attribute primary key relation is always in BCNF.

Hence "Cast" is in BCNF.

16. "Shows" Relation:

• Attributes:

Shows {Content_ID, Duration}

• Minimal set of Functional dependencies:

Content_ID → Duration

That's why, **The primary key is Content_ID.**

The left side of all the FDs in the minimal set of FDs for the relation 'Shows' is Content_ID, which is the primary key of this relation, So "Shows" is in BCNF.

17. "Movies" Relation:

• Attributes:

Movies {Content_ID, Duration}

• Minimal set of Functional dependencies:

Content_ID → Duration

That's why, **The primary key is Content_ID.**

The left side of all the FDs in the minimal set of FDs for the relation 'Movies' is Content_ID, which is the primary key of this relation, **So "Movies"** is in BCNF.

18. "Ott_User" Relation:

Attributes:

Ott_User {User_ID, Name, Gender, DOB, Email, Contact_No, Street, City, Start_date, Subscription_type, Duration}

Minimal set of Functional dependencies:

User ID → Name

User_ID → Gender

User ID → DOB

User ID → Email

User_ID → Contact_No

User_ID → Street

User_ID → City

User ID → Start date

User_ID → Subscription_type

User_ID → Duration

Take X = User_ID

X⁺ = {User_ID, Name, Gender, DOB, Email, Contact_No, Street,
City, Start_date, Subscription_type, Duration}

That's why, **The primary key is User_ID.**

The left side of all the FDs in the minimal set of FDs for the relation 'Ott_User' is User_ID, which is the primary key of this relation, so "Ott_User" is in BCNF.

19. "Starred_in" Relation:

Attributes:

Starred_in {Actor_ID,Content_ID}

Here Primary key = { Actor_ID,Content_ID }

According to theorem, all attribute primary key relation is always in BCNF.

So "Starred in" is in BCNF.

20. "Displayed_in" Relation:

• Attributes:

Displayed_in {Advertise_ID,Content_ID}

Here Primary key = { Actor_ID,Content_ID }

According to theorem, all attribute primary key relation is always in BCNF.

So "Displayed_in" is in BCNF.

21. "Coming_soon" Relation:

Attributes:

Coming_soon {Content_ID}

Here Primary key = { Content_ID }

According to theorem, all attribute primary key relation is always in BCNF.

So "Coming_soon" is in BCNF.