

Predicting Emergency Incidents in San Diego

Zachary Barnes, Frank Cipollone, Tyler Romero CS229 Final Project Poster

Motivation

Emergency services respond to millions of calls every year throughout the city of San Diego

- Minutes/seconds in response time difference between life/death
- The ability to effectively predict where emergency incidents will occur could save both lives and money

Figure 1: Burning building

Our goal is to create a model that can effectively predict where incidents are likely to occur over the next several hours.

Data

- 8 years of emergency incident data from the city of San Diego
- Cleaned, and converted to include latitude and longitude

Temporal-spatial correlation but unknown underlying dynamics.

Problem Descriptions

- Generate grid representation of San Diego
- Problem 1:
 - Predict the number of incidents that will happen per day in each grid cell
 - Helpful for staffing decisions
- Problem 2:
 - Identify which exact areas of San Diego are the most high-risk on a specific day
 - Helpful for emergency anticipation

Models

Decision Tree Regression:

- Used month, day, hour, and grid location as covariates
- Effective, but prone to overfitting
- Non-representative of underlying distribution
- Uses categorical data well

Spatial Clustering:

- Identify locations that are both contiguous and similar in nature based
- Use these clusters in order to build better-informed models
- Steps:
 - Generate a model for each cluster
 - Evaluate and update model on cluster
 - Re-cluster based on model performance

Spatial-Temporal Prospective Excitation Model:

 Utilize temporal and spatial difference in determining likelihood at each locations

$$p(\mathbf{x}', \mathbf{y}'|\mathbf{D}, \mathbf{t}; \theta) = \sum_{D_t} G(\mathbf{x}', \mathbf{y}', D_t|\theta)$$

• Choose top x% of points that capture Y% of events in a day.

Results

Problem 1:

Tested our models using 10-fold cross validation

Experimental Model:	RMSE:
Decision Tree Regression	0.7010 (incidents/hour)
Decision Tree Regression with Max Depth 10	0.4827 (incidents/hour)
Spatial Clustering with linear regression	0.4583 (incidents/hour)

Problem 2:

- Tested our model on ten randomly selected days
- Trained model on the weeks leading up to each of those days
- Model selects the top
 1% of at-risk locations

Average Proportion of Daily Incidents Captured:

0.338

Example of selections for a given day:

Discussion

- Small variation and little information returned by solutions to problem 1 leads to the need for a solution to problem 2
- Temporal fluctuations are important, but difficult to anticipate
- Our solution to problem 2 would could effectively inform a dynamic resource allocation model
- Next Steps:
 - Model each type of incident separately
 - Predict type of incident as well

References

[1] Haynes, Hylton JG. "Fire loss in the United States during 2015." National Fire Protection Association. Fire Analysis and Research Division, 2016.
[2] San Diego Open Data Portal. The City

of San Diego, n.d. Web. 21 Oct. 2016.

