

Métricas e Indicadores de Avaliação para Modelos de Classificação

Professor Rodrigo Signorini

Métricas e Indicadores de Avaliação para Modelos de Classificação

A **Matriz de Confusão** é muito utilizada para avaliações de modelos de classificação em *Machine Learning* e, sem dúvida, é o primeiro conjunto de métricas que temos que observar. É composta por quatro delas: **True Positive (TP)**, **False Negative (FN)**, **False Positive (FP)** e **True Negative (TN)**:

True Positive (TP)	False Negative (FN)		
150	99		
	True Negative (TN)		
False Positive (FP)	True Negative (TN)		

A **Matriz de Confusão** é uma tabela que mostra as frequências de classificação de cada registro para cada classe do modelo e é a partir dela que iremos obter demais indicadores.

Métricas e Indicadores de Avaliação para Modelos de Classificação

True Positive (TP): indica a quantidade de registros que foram classificados como positivos corretamente, ou seja, a resposta do classificador foi que o evento era positivo e o evento realmente era positivo.

True negative (TN): indica a quantidade de registros que foram classificados como negativos de maneira correta, ou seja, a resposta do classificador foi que o evento era negativo e o evento realmente era negativo.

False positive (FP): indica a quantidade de registros que foram classificados como positivos de maneira incorreta, ou seja, a resposta do classificador foi que o evento era positivo, mas o evento era negativo.

False negative (FN): indica a quantidade de registros que foram classificados como negativos de maneira incorreta, ou seja, a resposta do classificador foi que o evento era negativo, mas o evento era positivo.

Através dessas quatro métricas pode-se calcular indicadores como a **Accuracy**, **Precision**, **Recall**, **F1-Score**, **Sensibility**, **Specificity**, etc.

Métricas e Indicadores de Avaliação para Modelos de Classificação

Accuracy

O **Accuracy** é a relação entre as previsões positivas e negativas realizadas corretamente (*True Positives e True Negatives*) e todas as previsões (*True e False Positives e True e False Negatives*).

True Positive (TP)	False Negative (FN)
150	99
F-1 D:4: (FD)	T Al(TAI)
raise Positive (FP)	True Negative (TN)

$$(TP + TN) / (TP + FP + TN + FN)$$

O **Accuracy** nos informa o quanto o modelo acerta das previsões possíveis, isto é, o quão frequente o classificador está correto.

Métricas e Indicadores de Avaliação para Modelos de Classificação

Considerações sobre uma alta pontuação do **Accuracy**

Esse indicador pode comprometer uma correta avaliação de um modelo. Para essa pontuação realmente significar algo, é necessário que a base de dados utilizada esteja razoavelmente balanceada.

IMPORTANTE:

Suponha que temos um problema de negócio em que estamos querendo prever se um paciente possui uma doença ou não e que nossa base de dados está composta por 95% de registros em que a doença a ser classificada não ocorre e que apenas 5% ocorre. Obviamente que o modelo tenderá a aprender quando a doença não ocorre e, sendo assim, irá apresentar um valor de **Accuracy** de ~95%!

Pelo resultado, o modelo está informando que pode prever pessoas doentes em ~95% das vezes, mas, no entanto, está fazendo o oposto. Está prevendo pessoas que não estão doentes em ~95%!

Seria esse um indicador correto para o nosso problema de negócio?

Métricas e Indicadores de Avaliação para Modelos de Classificação

Precision

O **Precision** é a relação entre as previsões positivas realizadas corretamente (*True Positives*) e todas as previsões positivas (*True Positives* e *False Positives*).

$$TP / (TP + FP)$$

O **Precision** é a capacidade do modelo de não classificar como positivo um evento negativo. A principal utilização desse indicador é para modelos onde seja necessário minimizar os **Falsos Positivos**. Quanto mais perto de 1, melhor.

Métricas e Indicadores de Avaliação para Modelos de Classificação

Recall

O **Recall** é a relação entre as previsões positivas realizadas corretamente (*True Positives*) e todos os eventos **que realmente** são positivos (*True Positives e False Negatives*).

True Positive (TP)	False Negative (FN)
150	99
False Positive (FP)	True Negative (TN)

Accuracy	Precision
0,7804	0,7143
Recall	
0,6024	

$$TP / (TP + FN)$$

O **Recall** é a capacidade do modelo de não classificar como negativo um evento positivo, assim como informar o quanto se está identificando corretamente os eventos positivos.

A principal utilização desse indicador é para modelos onde seja necessário minimizar os **Falsos Negativos**, especialmente em medicina onde o custo de classificar incorretamente um paciente doente como sadio para uma dada doença grave é muito maior do que classificar um paciente sadio como doente. Quanto mais perto de 1, melhor.

Métricas e Indicadores de Avaliação para Modelos de Classificação

F1 Score

O **F1 Score** mede o balanço entre o **Precision** e o **Recall** e é obtido através do cálculo da média harmônica entre eles.

True Positive (TP)	(TP) False Negative (FN)		Accuracy	Precision
150	99		0,7804	0,7143
False Positive (FP) True Negative (TN)		Recall	F1 Score	
60	415		0,6024	0,6536

(2*Precision*Recall) / (Precision + Recall)

O **F1 Score** pode ser uma excelente alternativa em relação ao uso do **Accuracy** para muitos problemas de negócio onde **falsos positivos** e **falsos negativos** possam ser relevantes. Mas atentese ao fato de que também não temos total capacidade para uma correta interpretabilidade, pois não temos visão suficiente sobre o que está sendo maximizado, se o **Precision** ou o **Recall**. Portanto, o uso combinado com outras métricas e indicadores de avaliação são cruciais.

Métricas e Indicadores de Avaliação para Modelos de Classificação

Area Under the ROC Curve (ROC-AUC)

Seu cálculo utiliza como base o **Sensitivity** (*True Positive Rate*) e o **Spesificity** (*True Negative Rate*).

Sensitivity = (TP) / (TP + FN) = Recall

Spesificity = (TN) / (TN + FP)

Métricas e Indicadores de Avaliação para Modelos de Classificação

Area Under the ROC Curve (ROC-AUC)

Geralmente, o cálculo da **ROC-AUC** é obtido com o auxílio de funções pré-programadas em plataformas de programação, mas quando estamos tratando de problemas de classificação binária e assumindo que o ponto de corte (*treshold*) está definido como 0.5 (um outro parâmetro para o cálculo da mesma), podemos obter seu resultado utilizando a seguinte fórmula (como iremos comprovar durante o desenvolvimento em classe):

ROC-AUC = (Sensitivity + Spesificity) / 2

O **ROC-AUC** é uma ferramenta útil e poderosa para a avaliação de modelos de classificação, particularmente em domínios nos quais existe uma grande desproporção entre as classes (desbalanceamento).

Para um dado indivíduo doente e outro saudável, a **ROC-AUC** é uma medida que permite aferir qual a probabilidade do indivíduo doente obter um resultado **True Positive** e do indivíduo saudável obter um resultado **True Negative**. Quanto mais perto de 1, melhor.

CENTRO DE EDUCAÇÃO EM SAÚDE ABRAM SZAJMAN