COOK-BOOK OF NARROWBAND LNA

Report Presented by:

Bishal Paudel

M.TECH in RF and Microwave

Department of Electronics & Electrical Communication Engineering IIT Kharagpur

1. CS Stage with Inductive Degeneration:

In the pursuit to find best design topology for LNA, with good input matching we adopt Inductive degeneration LNA.

Figure 1: CS Amplifier with Inductive Degeneration as LNA

Figure 1 shows CS amplifier with inductive degeneration as LNA which is a Low noise Trans-conductor i.e., we have converted the voltage to the current but the gain of the device shown in Figure 1, doesn't come up to the mark of our LNA requirement.

2. Complete LNA: Cascode Topology:

For contentment of gain requirement, we can have multiple transistors in Cascode Topology.

Why Cascode?

• Reduces Miller effect on M₁. (Miller effect in MOSFET accounts for an increase in input Capacitance i.e., C_{gs} caused by the gain of the amplifier)

- Provides good reverse isolation. (S₁₂ is low)
 - Amplifier is <u>unilateral</u> (signal only flows from input to output)
 - Allows the input match to be independent of the output match.

Our strategy is to, have a cascode device on the drain of M_1 , put a load at the drain of M_2 which will be matched to have a maximum power transferred.

Figure 2: A Complete LNA: Cascode Topology

3. Gain Analysis of Cascode LNA:

Let's divide gain analysis in stages, for easier computation of total gain.

$$|A_v| = \left| \left(\frac{V_{gs1}}{V_s} \right) \left(\frac{V_{d1}}{V_{gs1}} \right) \left(\frac{V_{d2}}{V_{d1}} \right) \left(\frac{V_{out}}{V_{d2}} \right) \right|$$
(a) (b) (c) (d)

(a)
$$\left| \begin{array}{c} V_{as1} \\ V_s \end{array} \right| \Rightarrow \text{Series resonant circuit of input.}$$

$$\left| \begin{array}{c} V_{as1} \\ V_s \end{array} \right| = \frac{1/\omega_0 \, c_{3s}}{R_s + \omega_7 \, L_s + j \omega \, log \, t_{3s}} + \frac{1}{2} \, log \, lo$$

*Q_{in} of input resonance circuit tends to give us voltage amplification. And it sounds like a free gain but it comes with a cost of Bandwidth. But if narrowband is needed we get nice gain characteristics for sure.

(b)
$$\left| \frac{U_{1}}{U_{2S1}} \right| \approx \frac{1}{\frac{g_{m_2} + \frac{1}{3}\omega_o ((g_{S2} + C_p))}{-\frac{1}{g_{m_2}}}} = \frac{g_{m_1}}{g_{m_2}} \left| \delta(\omega) \right|$$

Where,

$$\frac{1}{g_{m_2}} = \frac{1}{g_{m_2}} \left| \delta(\omega) \right|$$

$$\frac{1}{g_{m_2}} =$$

(c)
$$\left| \left(\frac{V_{d2}}{V_{d1}} \right) \right|$$
 $= \frac{1}{2} \frac{Q^2}{V_{d1}} \frac{V_{d2}}{V_{d1}} = \frac{1}{2} \frac{Q}{m_2} \frac{Q^2}{V_{d2}} \frac{V_{d2}}{V_{d1}}$

Where, r_{Ld} is a parasitic resistance of a practical indictor L_d.

*After series parallel conversion of r_{Ld} to Q^2r_{Ld} comparatively it is very small so it become dominant. So, we will match the Load resistance R_L with Q^2r_{Ld} which makes $Z_{Leq} = 0.5 * Q^2r_{Ld}$

(d)
$$\left| \left(\frac{V_{out}}{V_{d2}} \right) \right| = \frac{\frac{R_{L}}{1+j\omega C_{1}R_{L}}}{\frac{R_{L}}{1+j\omega C_{1}R_{L}}} = \frac{j\omega C_{2}R_{L}}{1+j\omega(C_{1}+C_{2})R_{L}} = \frac{1}{n(\omega)}$$

$$\frac{V_{d2}}{V_{d2}} = \frac{\frac{C_{2}}{1+j\omega C_{1}R_{L}}}{\frac{R_{L}}{1+j\omega C_{2}R_{L}}} = \frac{1}{n(\omega)}$$

$$\frac{V_{d2}}{V_{d2}} = \frac{V_{d2}}{1+j\omega(C_{1}+C_{2})R_{L}} = \frac{1}{n(\omega)}$$

$$\frac{V_{d2}}{V_{d2}} = \frac{V_{d2}}{V_{d2}} = \frac{V_{d2}}{1+j\omega(C_{1}+C_{2})R_{L}} = \frac{1}{n(\omega)}$$

$$\frac{V_{d2}}{V_{d2}} = \frac{V_{d2}}{V_{d2}} = \frac{V_{d2}}{V_{d2}$$

Wont the C_1 of capacitive transformer drain all the RF signal to ground? = No, because $n(\omega) \to 1 + \frac{c_1}{c_2}$ when, $\omega \to \infty$ So the capacitive transformer is actually Independent of frequency.

Final Grain Enpression

Substituting the previous four expressions.

$$|A_{i}| = (Q_{in}) \left(\frac{g_{m_{i}}}{g_{m_{2}}} | S(\omega) | \right) \left(\frac{1}{2} g_{m_{2}} Q_{i,a}^{2} x_{i,a} \right) \left(\frac{1}{|n(\omega)|} \right)$$

$$= \frac{1}{2} Q_{in} g_{m_{1}} Q_{i,a}^{2} x_{i,a} \left| \frac{S(\omega)}{n(\omega)} \right|$$

Substituting $Q_{in} Q_{in}^{2} Q_{in} Q_{i,a}^{2} x_{i,a} \left| \frac{S(\omega)}{n(\omega)} \right|$

$$|A_{i}| = \frac{1}{2} \left(\frac{\omega_{i} Q_{i,a} Q_{i,a}}{R_{s} + \omega_{i} Q_{i,a}} \right) \left| \frac{S(\omega)}{n(\omega)} \right|$$

Ways to maximize Gain:

- Maximize ω_T
 - We can make ω_T larger by making device larger which improves g_{m1} but Q_{in} is going to degrade because C_{gs} will also increase.
 - So, we will keep the size same but increase the current with biasing then Q_{in} remains the same but g_m goes up so does ω_T
- Maximize inductor quality factor (Q_{Ld})
- Maximize L_d
- Maximize $\delta(\omega)$, meaning resonate out C_p
- Trade-off S₁₁ for increased S₂₁ i.e., reduce value of L_s
 - The purpose of source degenerated inductor L_s is to match with 50Ω which will give me great S_{11} but as a last resort we can decrease L_s as a trade-off between S_{21} and S_{11}

4. Cookbook of Unilateral (Cascode) Source-Degenerated LNA:

This procedure is for Narrow-Band LNA's.

1. Create current mirror circuit with bias-T's and sweep bias to find optimum current for NF_{min}

Where, L and C will be kept as 1H and 1F respectively.

- Bias-Tee is there to block RF with inductor and block DC with capacitor.
- Now simulate single finger FET and sweep bias current to find optimum current density range for minimum noise i.e., plot NF_{min} vs I_{ref}

2. Add cascode(M₂)

- Add cascode device(M_2) nominally of same size as M_1 . You can alter the size for better performance later. We could have gone for cascode in 1^{st} step only but now we can know how much noise is cascode presenting and repeat the same

3. Update bias network (use resistive choke rather than L_{big} in I/P only)

- Finalize bias network design, nominally a cascode current mirror coupled to M_1 through a moderate-value resistor (~5 k Ω).

Wait won't this resistor (R_{choke}) create a noise?

But if you decrease the size of R_{choke} the noise factor will increase.

4. Scale size to get Ropt (Noise Match)

- Scale the number of fingers until Ropt (optimum noise resistance) is close to 50 Ω . The cascoded transistor M_2 is kept as same size as M_1
- Plot fingers vs Ropt plot to find the optimum value for fingers

5. Add L_s to generate real Z_{in} (Power match)

- Add degeneration inductor (L_s) to provide real input impedance close to 50 Ω . Degeneration can be either on-chip spiral or bond wire.
- This step gives me optimum power match i.e., Re $[Z_{in}]$ =50 Ω

6. Add Lg to complete input match

- So, step 4 will bring R_{opt} to constant 50Ω circle and step 5 will bring $Re~[Z_{in}]$ to constant 50Ω circle.
- And finally step 6 will bring both R_{opt} and Re [Z_{in}] to matched condition.

- 7. Design L_d spiral inductor. Add parasitic resistor
- 8. Simulate output impedance Z_{out} and design output matching network (C_1 and C_2).
- 9. Simulate IIP_3 and P_{1dB} and compare with requirement, increase bias current as required.
- 10. Simulate all specifications over process, voltage, temperature (PVT)
 - Note that the PVT simulations can/should be embedded with each step to ensure all along that the design is sufficient. This can be achieved with parametric simulation.