Heat Transfer: Radiation

View factors

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning goals

Principle of view factors:

Understanding of radiated to incident radiation

Diffuse Radiation in 3-D Space:

Radiation: View factors

 Understanding of the distribution of radiation irradiating from a surface using an enclosing hemisphere

Radiation transfer between two surfaces:

Ability to determine the View Factors between two surfaces at determined angles

Principle of View Factors

Principle of view factors:

▶ Which fraction of the diffuse radiation emitted by Body ① hits Body ②?

Dependencies of the View Factors

Principle of view factors:

- 1. Definition of the local fraction of the total radiation: β/π
- Integration over the Surface of Body 1

Dependencies of the View Factors

Next step:

General definition for the 3-D case

Question:

Which proportion of the Radiation emitted by **dA** passes through the area element **da** on the hemisphere?

Radiation: View factors

Radiation from surface da and da:

$$\mathrm{d}x = r \cdot \sin(\varphi) \cdot \mathrm{d}\Psi$$

$$dy = r \cdot d \varphi$$

Solid angle:

$$d\Omega(\varphi, \Psi) = \frac{r \cdot sin(\varphi) \cdot d\Psi \cdot r \cdot d\varphi}{r^2}$$

Radiation from **dA** to **da**:

$$\mathrm{d}\dot{Q}(\varphi, \Psi)_{\mathrm{d}A \to \mathrm{d}a} = \overset{\text{in Radiation}}{\tilde{L}} \cdot \mathrm{d}\Omega \cdot \overset{\text{in Radiation}}{\mathrm{d}A \cdot cos(\varphi)}$$

$$\int_{\text{Hemisph.}} \frac{d\dot{Q}}{dA} = \int \underbrace{\mathbf{L} \cdot \cos(\varphi)}_{\text{Hemisph.}} \cdot d\Omega$$

Emitted Radiation of a surface in 3-D space

Radiation from surface dA and da:

$$dx = r \cdot \sin(\varphi) \cdot d\Psi$$
$$dy = r \cdot d\varphi$$

Solid angle:

$$d\Omega(\varphi, \Psi) = \frac{r \cdot sin(\varphi) \cdot d\Psi \cdot r \cdot d\varphi}{r^2}$$

Radiation from **dA** to **da**:

$$\mathrm{d}\dot{Q}(\varphi,\Psi)_{\mathrm{d}A\to\mathrm{d}a} = \overset{\mathrm{in Radiation}}{L} \cdot \mathrm{d}\Omega \cdot \overset{\mathrm{direction}}{\mathrm{d}A} \cdot \cos(\varphi)$$

$$\int_{\mathrm{Hemisph.}} \frac{\mathrm{d}\dot{Q}}{\mathrm{d}A} = \overset{\mathrm{in Radiation}}{L} \cdot \mathrm{d}\Omega \cdot \overset{\mathrm{diffuse radiation}}{\mathrm{d}A}$$

$$\equiv \dot{q}_{Hem}^{\prime\prime} = L \int_{\Psi=0}^{2\pi} \int_{\varphi=0}^{\pi/2} \sin(\varphi)\cos(\varphi)\mathrm{d}\varphi\mathrm{d}\Psi$$

Emitted Radiation of a surface in 3-D space

Radiation from Area dA and da:

$$\equiv \dot{q}_{Hem}^{"} = L \int_{\Psi=0}^{2\pi} \int_{\varphi=0}^{\pi/2} \sin(\varphi)\cos(\varphi)d\varphi d\Psi$$

$$\int_{\varphi=0}^{\pi/2} \sin(\varphi)\cos(\varphi)d\varphi = \frac{1}{2} \cdot \sin^{2}(\varphi)\Big|_{0}^{\frac{\pi}{2}} = \frac{1}{2}$$

$$\int_{\Psi=0}^{2\pi} \frac{1}{2} d\Psi = \frac{1}{2} \Psi \Big|_{0}^{2\pi} = \pi$$

$$\dot{q}_{Hem}^{\prime\prime}=\pi\cdot L$$

diffuse radiation

$$L = \frac{\dot{q}''}{\pi}$$

Radiation transfer between two surfaces

Radiation from Area dA_1 and dA_2 :

$$d\dot{Q}_{1\to 2} = L_1 \, \cos \phi_1 \, dA_1 d\Omega$$

$$d\Omega = \frac{dA_2 \, \cos \phi_2}{r^2}$$

$$diffuse \qquad L_1 = \frac{\dot{q}_1''}{\pi}$$

$$\dot{Q}_{1\to 2} = \frac{\dot{q}_1''}{\pi} \int \int \frac{\cos \phi_1 \, \cos \phi_2}{r^2} \, dA_1 \, dA_2$$

$$\dot{Q}_{2\to 1} = \frac{\dot{q}_2''}{\pi} \int \int \frac{\cos \phi_2 \, \cos \phi_1}{r^2} \, dA_2 \, dA_1$$
 Geometrical component identical

Radiation transfer between two surfaces

$$d_{2} = \frac{\dot{q}_{1}^{\prime\prime}}{\pi} \int \int \frac{\cos \varphi_{1} \cos \varphi_{2}}{r^{2}} dA_{1}$$

on view factor:

$$_{2} = \frac{\begin{pmatrix} \text{Radiation sent from 1} \\ \text{in direction 2} \end{pmatrix}}{\begin{pmatrix} \text{Total Radiation} \\ \text{emitted from 1} \end{pmatrix}} = \frac{\dot{Q}_{1}}{\dot{q}_{1}^{"}}$$

Radiation from Area 1 to Area 2:

$$\dot{Q}_{1\to 2} = \frac{\dot{q}_1''}{\pi} \int \int \frac{\cos \varphi_1 \, \cos \varphi_2}{r^2} \, dA_1 \, dA_2$$

Definition view factor:

$$\phi_{12} = \frac{\text{(Radiation sent from 1)}}{\text{(Total Radiation emitted from 1)}} = \frac{\dot{Q}_{1 \to 2}}{\dot{q}_{1}^{"} A_{1}}$$

$$\phi_{12} = \frac{1}{A_1} \int \int \frac{\cos \varphi_1 \, \cos \varphi_2}{\pi r^2} \, dA_1 \, dA_2$$

Radiation transfer between two surfaces

Radiation exchange of Area 1 and Area 2:

$$\dot{Q}_{1\to 2} = \frac{\dot{q}_1''}{\pi} \int \int \frac{\cos \varphi_1 \, \cos \varphi_2}{r^2} \, dA_1 \, dA_2$$

$$\dot{Q}_{2\to 1} = \frac{\dot{q}_2''}{\pi} \int \int \frac{\cos \varphi_2 \, \cos \varphi_1}{r^2} \, dA_2 \, dA_1$$

Geometrical component identical

$$\frac{\dot{Q}_{1\to 2}}{\dot{Q}_{2\to 1}} = \frac{\dot{q}_{1}''}{\dot{q}_{2}''}$$
 and $\phi_{12} = \frac{\dot{Q}_{1\to 2}}{\dot{q}_{1}'' A_{1}}$

$$\phi_{12}A_1 = \frac{\dot{Q}_{1\rightarrow 2}}{\dot{q}_1^{"}} = \frac{\dot{Q}_{2\rightarrow 1}}{\dot{q}_2^{"}} = \phi_{21}A_2$$

Reciprocal rule: $\phi_{12}A_1 = \phi_{21}A_2$

View Factors of rectangular surfaces (formulary)

View Factors of opposite surfaces (formulary)

Comprehension questions

Which parameters of radiation emerging from a surface are included in/ described by the view factor concept?

Calculation of radiation exchange by using visual factors ⇒ valid also, if the bodies radiate directionally?

In general, what are view factors depending on?

