

KONTRAK BELAJAR

- Apa yang Anda ketahui tentang Mata Kuliah Pengolahan Sinyal Digital?
- Apa yang dibahas dalam Mata Kuliah Pengolahan Sinyal Digital?
- Apa harapan Anda terhadap perkuliahan Pengolahan Sinyal Digital?
- Untuk mencapai harapan tersebut, apa partisipasi Anda dalam mengikuti perkuliahan Pengolahan Sinyal Digital?
- Apa komitmen yang perlu disepakati bersama di kelas Pengolahan Sinyal Digital?

KOMITMEN BERSAMA

- Mengikuti perkuliahan dengan baik dengan hadir paling lambat 15 menit setelah kuliah dimulai
- Aktif bertanya dan belajar dengan sungguh-sungguh dengan mengembangkan materi yang telah diberikan
- Jujur dalam mengerjakan Tugas dan Ujian. Apabila diketahui mencontek/plagiat akan diberi nilai E.
- Tugas harus dikerjakan dan dikumpulkan tepat pada waktunya. Tidak mengerjakan dan/atau tidak mengumpulkan tugas pada waktunya mendapatkan nilai nol untuk tugas terkait, kecuali sakit dengan surat keterangan dokter.
- Tidak mengikuti presentasi di kelas mengakibatkan nilai terkait presentasi tadi sama dengan nol, kecuali sakit dengan surat keterangan dokter.

CAPAIAN PEMBELAJARAN (LO)

 Mahasisa mampu menerapkan pengolahan sinyal digital 1D, 2D dan 3D untuk berbagai aplikasi di bidang Instrumentasi Fisika

CAPAIAN PEMBELAJARAN (LO)

CAPAIAN PEMBELAJARAN (LO)

BUKU REFERENSI

- Digital Signal Processing Using MATLAB® Third Edition, Robert J. Schilling and Sandra L. Harris, Cengage Learning, 2017
- Digital Signal Processing Using MATLAB® Third Edition, Vinay K. Ingle, John G. Proakis, Cengage Learning, 2012
- Digital Signal Processing with Matlab Examples, Volume 1-3, Jose Maria and Giron-Sierra, Springer, 2017
- Digital Image Processing Using MATLAB, Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, Gatesmark Publishing, 2009

KULIAH PRASYARAT

- Fisika Getaran, Gelombang dan Optik
- Kalkulus
- Aljabar Linier
- Fisika Matematika
- Elektronika
- Komputasi Fisika

INSTRUMEN EVALUASI

- Proyek & Presentasi
- Tugas Mingguan
- Ujian Tengah Semester
- Ujian Akhir Semester

- Penilaian Kelompok
- Penilaian Kelompok
- Penilaian Individu
- Penilaian Individu

KOMPONEN NILAI

KISARAN NILAI

Nilai	Grade	Nilai	Grade
≥ 85	А	60 – 64.9	C+
80 – 84.9	A-	55 – 59.9	С
75 – 79.9	B+	50 – 54.9	D
70 – 74.9	В	40 – 49.9	
65 – 69.9	B-	0 – 40	E

- Signal
 - A signal is a function of independent variables such as time, distance, position, temperature and pressure
 - Signals play an important role in our daily life. Most signals we encounter are generated naturally.
 - However, a signal can also be generated synthetically or by a computer.

- Depending on the nature of the independent variables and the value of the function, we can classify the signals as follows
 - Scalar signal
 - A signal generated by a single source
 - Vector signal (or multichannel signal)
 - A signal generated by multiple sources
 - One dimensional (1-D) signal
 - A function of a single independent variable
 - Multidimensional (M-D) signal
 - A function of more than one independent variables

- Continuous-time signal x(t)
 - The independent variable is continuous
- Discrete-time signal (sequence) x(n)
 - The independent variable is discrete
- Analog signal
 - A continuous-time signal with a continuous amplitude
- Quantized-boxcar signal
 - A continuous-time signal with a discrete-value amplitude
- Digital signal
 - A discrete-time signal with a discrete-value amplitude
- Sampled-data signal
 - A discrete-time signal with a continuous amplitude

- Deterministic signal
 - A signal that can be uniquely determined by a well-defined process, such as a mathematical expression or rule, or table look-up.
- Random signal
 - A single that is generated in a random fashion and cannot be predicted ahead of time.

Periodic signal

 A signal that repeats itself in a periodic fashion from negative to positive infinity.

$$x(t) = x(t + kT)$$
$$x(n) = x(n + kN)$$

Aperiodic signal

 A signal that extends to both positive and negative infinity without repeating in a periodic pattern.

- Power signal
 - An infinite energy signal with finite average power.

$$P = \lim_{T \to \infty} \frac{1}{T} \int_0^T |x(t)|^2 dt < \infty \qquad P = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2 < \infty$$

- Energy signal
 - A finite energy signal with zero average power.

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt < \infty \qquad E = \sum_{-\infty}^{\infty} |x(n)|^2 < \infty$$

- a periodic sequence power signal
- a finite-length sequence energy signal

- System
 - A system is any process that produces an output signal in response to an input signal.

- Depending on the types of the signal processed, we can classify the systems as follows:
 - Analog input analog output
 - Digital recording of music
 - Analog input digital output
 - Touch tone phone dialing
 - Digital input analog output
 - Text to speech
 - Digital input digital output
 - Compression of a file on computer

- Depending on the types of the signal processed, we can classify the systems as follows:
 - Continuous-time system
 - input and output continuous-time signals
 - Discrete-time system
 - input and output discrete-time signals

- Signal Processing
 - A signal carries information!
- The objective of signal processing:
 - To extract, enhance, store and transmit the useful information carried by the signal.

SIGNAL PROCESSING

- Humans are the most advanced signal processors
 - speech and pattern recognition, speech synthesis,...
- We encounter many types of signals in various applications
 - Electrical signals: voltage, current, magnetic and electric fields,...
 - Mechanical signals: velocity, force, displacement,...
 - Acoustic signals: sound, vibration,...
 - Other signals: pressure, temperature,...
- Most real-world signals are analog
 - They are continuous in time and amplitude
 - Convert to voltage or currents using sensors and transducers

SIGNAL PROCESSING

- Analog circuits process these signals using
 - Resistors, Capacitors, Inductors, Amplifiers,...
- Analog signal processing examples
 - Audio processing in FM radios
 - Video processing in traditional TV sets

LIMITATIONS OF ANALOG SIGNAL PROCESSING

- Accuracy limitations due to
 - Component tolerances
 - Undesired nonlinearities
- Limited repeatability due to
 - Tolerances
 - Changes in environmental conditions
 - Temperature
 - Vibration
- Sensitivity to electrical noise
- Limited dynamic range for voltage and currents

LIMITATIONS OF ANALOG SIGNAL PROCESSING

- Inflexibility to changes
- Difficulty of implementing certain operations
 - Nonlinear operations
 - Time-varying operations
- Difficulty of storing information

DIGITAL SIGNAL PROCESSING

- Represent signals by a sequence of numbers
 - Sampling or analog-to-digital conversions
- Perform processing on these numbers with a digital processor
 - Digital signal processing
- Reconstruct analog signal from processed numbers
 - Reconstruction or digital-to-analog conversion

THE CONSTITUTION OF DSP SYSTEM

Equivalent to an analog signal processor

PrF: antialiasing filtering

PoF: smooth out the staircase waveform

HOW TO IMPLEMENT THE DSP

- To handle the DSP algorithms in a general-purpose microprocessor by means of software programming
- To handle the DSP algorithms in a specifically designed Digital Signal Processors (DSPs)

- The main tasks of DSP
 - Signal Analysis
 - Measurement of signal properties
 - Spectrum (frequency/phase) analysis
 - Target detection, verification, recognition
 - Signal Filtering
 - Signal-in-signal-out, filter
 - Removal of noise/interference
 - Separation of frequency bands
 - Shaping of the signal spectrum

- DSP application examples
 - Telecommunications
 - Multiplexing
 - Compression
 - Echo control
 - Audio Processing
 - Music
 - Speech generation
 - Speech recognition

- DSP application examples
 - Echo Location
 - Radar
 - Sonar
 - Reflection seismology
 - Image Processing
 - Medical
 - Space
 - Commercial Imaging Products

- DSP application examples
 - Digital image processing
 - Deblurring
 - Edge detection
 - Noise reduction

PROS AND CONS OF DIGITAL SIGNAL PROCESSING

- Pros
 - Accuracy can be controlled by choosing word length
 - Repeatable
 - Sensitivity to electrical noise is minimal
 - Dynamic range can be controlled using floating point numbers
 - Flexibility can be achieved with software implementations
 - Non-linear and time-varying operations are easier to implement
 - Digital storage is cheap
 - Digital information can be encrypted for security
 - Price/performance and reduced time-to-market

PROS AND CONS OF DIGITAL SIGNAL PROCESSING

- Cons
 - Sampling causes loss of information
 - A/D and D/A requires mixed-signal hardware
 - Limited speed of processors
 - Quantization and round-off errors

