

EXERCISE 4.1

Question 1:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$: $1+3+3^2+...+3^{n-1}=\frac{\left(3^n-1\right)}{2}$

Ans:

Let the given statement be P(n), i.e.,

P(n): 1 + 3 + 3² + ... + 3ⁿ⁻¹ =
$$\frac{(3^n - 1)}{2}$$

For n = 1, we have

P(1):
$$1 = \frac{(3^1 - 1)}{2} = \frac{3 - 1}{2} = \frac{2}{2} = 1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1+3+3^2+...+3^{k-1}=\frac{\left(3^k-1\right)}{2}$$
 ...(i)

We shall now prove that P(k + 1) is true.

$$1 + 3 + 32 + \dots + 3k-1 + 3(k+1)-1$$
$$= (1 + 3 + 32 + \dots + 3k-1) + 3k$$

$$= \frac{\left(3^{k} - 1\right)}{2} + 3^{k}$$
 [Using (i)]
$$= \frac{\left(3^{k} - 1\right) + 2 \cdot 3^{k}}{2}$$

$$= \frac{\left(1 + 2\right)3^{k} - 1}{2}$$

$$= \frac{3 \cdot 3^{k} - 1}{2}$$

$$= \frac{3^{k+1} - 1}{2}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Ouestion 2:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1^3 + 2^3 + 3^3 + ... + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Ans:

Let the given statement be P(n), i.e.,

$$P(n)$$
: $1^3 + 2^3 + 3^3 + ... + n^3 = \left(\frac{n(n+1)}{2}\right)^2$

For n = 1, we have

P(1):
$$1^3 = 1 = \left(\frac{1(1+1)}{2}\right)^2 = \left(\frac{1.2}{2}\right)^2 = 1^2 = 1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} = \left(\frac{k(k+1)}{2}\right)^{2} \qquad \dots (i)$$

We shall now prove that P(k + 1) is true.

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3}$$
$$= (1^{3} + 2^{3} + 3^{3} + \dots + k^{3}) + (k+1)^{3}$$

$$= \left(\frac{k(k+1)}{2}\right)^{2} + (k+1)^{3} \qquad [Using (i)]$$

$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$

$$= \frac{(k+1)^{2}\left\{k^{2} + 4(k+1)\right\}}{4}$$

$$= \frac{(k+1)^{2}\left\{k^{2} + 4k + 4\right\}}{4}$$

$$= \frac{(k+1)^{2}(k+2)^{2}}{4}$$

$$= \frac{(k+1)^{2}(k+1+1)^{2}}{4}$$

$$= \left(\frac{(k+1)^{2}(k+1+1)^{2}}{2}\right)^{2}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural

Question 3:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$: $1 + \frac{1}{(1+2)} + \frac{1}{(1+2+3)} + \dots + \frac{1}{(1+2+3+\dots n)} = \frac{2n}{(n+1)}$

$$1 + \frac{1}{(1+2)} + \frac{1}{(1+2+3)} + \dots + \frac{1}{(1+2+3+\dots n)} = \frac{2n}{(n+1)}$$

Let the given statement be P(n), i.e.,

$$P(n): 1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots n} = \frac{2n}{n+1}$$

For n = 1, we have

P(1):
$$1 = \frac{2.1}{1+1} = \frac{2}{2} = 1$$
 which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1 + \frac{1}{1+2} + \dots + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+k} = \frac{2k}{k+1}$$
 ... (i)

We shall now prove that P(k + 1) is true.

$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+k} + \frac{1}{1+2+3+\dots+k+(k+1)}$$

$$= \left(1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+k}\right) + \frac{1}{1+2+3+\dots+k+(k+1)}$$

$$= \frac{2k}{k+1} + \frac{1}{1+2+3+\dots+k+(k+1)}$$
[Using (i)]

$$= \frac{2k}{k+1} + \frac{1}{\left(\frac{(k+1)(k+1+1)}{2}\right)}$$

$$= \frac{2k}{(k+1)} + \frac{2}{(k+1)(k+2)}$$

$$= \frac{2}{(k+1)} \left(k + \frac{1}{k+2}\right)$$

$$= \frac{2}{k+1} \left(\frac{k(k+2)+1}{k+2}\right)$$

$$= \frac{2}{(k+1)} \left(\frac{k^2 + 2k + 1}{k+2}\right)$$

$$= \frac{2 \cdot (k+1)^2}{(k+1)(k+2)}$$

$$= \frac{2(k+1)}{(k+2)}$$

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Ouestion 4:

Prove the following by using the principle of mathematical induction for all
$$n \in \mathbb{N}$$
:
1.2.3 + 2.3.4 + ... + $n(n + 1)$ $(n + 2) = \frac{n(n+1)(n+2)(n+3)}{4}$

Ans:

Let the given statement be P(n), i.e.,

P(n): 1.2.3 + 2.3.4 + ... +
$$n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

For n = 1, we have

P(1): 1.2.3 = 6 =
$$\frac{1(1+1)(1+2)(1+3)}{4}$$
 = $\frac{1.2.3.4}{4}$ = 6, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.2.3 + 2.3.4 + \dots + k(k+1)(k+2) = \frac{k(k+1)(k+2)(k+3)}{4}$$

We shall now prove that P(k + 1) is true.

$$1.2.3 + 2.3.4 + \dots + k(k+1)(k+2) + (k+1)(k+2)(k+3)$$

$$= \{1.2.3 + 2.3.4 + \dots + k(k+1)(k+2)\} + (k+1)(k+2)(k+3)$$

$$= \frac{k(k+1)(k+2)(k+3)}{4} + (k+1)(k+2)(k+3)$$
 [Using (i)]

$$= (k+1)(k+2)(k+3)\left(\frac{k}{4}+1\right)$$

$$= \frac{(k+1)(k+2)(k+3)(k+4)}{4}$$

$$= \frac{(k+1)(k+1+1)(k+1+2)(k+1+3)}{4}$$

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Question 5:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1.3 + 2.3^{2} + 3.3^{3} + ... + n.3^{n} = \frac{(2n-1)3^{n+1} + 3}{4}$$

Let the given statement be P(n), i.e.,

$$P(n): 1.3 + 2.3^2 + 3.3^3 + ... + n3^n = \frac{(2n-1)3^{n+1} + 3}{4}$$

For n = 1, we have

P(1):
$$1.3 = 3 = \frac{(2.1-1)3^{1+1} + 3}{4} = \frac{3^2 + 3}{4} = \frac{12}{4} = 3$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.3 + 2.3^{2} + 3.3^{3} + \dots + k3^{k} = \frac{(2k-1)3^{k+1} + 3}{4} \qquad \dots (i)$$

We shall now prove that P(k + 1) is true.

Consider

$$1.3 + 2.3^{2} + 3.3^{3} + \dots + k3^{k} + (k+1) 3^{k+1}$$

$$= (1.3 + 2.3^{2} + 3.3^{3} + \dots + k.3^{k}) + (k+1) 3^{k+1}$$

$$= \frac{(2k-1)3^{k+1} + 3}{4} + (k+1)3^{k+1} \qquad [Using (i)]$$

$$= \frac{(2k-1)3^{k+1} + 3 + 4(k+1)3^{k+1}}{4}$$

$$= \frac{3^{k+1} \{2k-1+4(k+1)\} + 3}{4}$$

$$= \frac{3^{k+1} \{6k+3\} + 3}{4}$$

$$= \frac{3^{k+1} \cdot 3\{2k+1\} + 3}{4}$$

$$= \frac{3^{(k+1)+1} \{2k+1\} + 3}{4}$$

$$= \frac{\{2(k+1)-1\}3^{(k+1)+1} + 3}{4}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Question 6:

Prove the following by using the principle of mathematical induction for all
$$n \in \mathbb{N}$$
:
 $1.2 + 2.3 + 3.4 + ... + n.(n+1) = \left\lceil \frac{n(n+1)(n+2)}{3} \right\rceil$

$$P(n)$$
: 1.2+2.3+3.4+...+ n . $(n+1) = \left\lceil \frac{n(n+1)(n+2)}{3} \right\rceil$

For n = 1, we have

P(1):
$$1.2 = 2 = \frac{1(1+1)(1+2)}{3} = \frac{1.2.3}{3} = 2$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

1.2 + 2.3 + 3.4 + + k.(k+1) =
$$\left[\frac{k(k+1)(k+2)}{3}\right]$$
 ... (i)

We shall now prove that P(k + 1) is true.

Consider

$$1.2 + 2.3 + 3.4 + \dots + k.(k+1) + (k+1).(k+2)$$

$$= [1.2 + 2.3 + 3.4 + \dots + k.(k+1)] + (k+1).(k+2)$$

$$= \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$$
 [Using (i)]
$$= (k+1)(k+2)\left(\frac{k}{3}+1\right)$$

$$= \frac{(k+1)(k+2)(k+3)}{3}$$

$$= \frac{(k+1)(k+1+1)(k+1+2)}{3}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Question 7:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$1.3+3.5+5.7+...+(2n-1)(2n+1)=\frac{n(4n^2+6n-1)}{3}$$

$$P(n): 1.3+3.5+5.7+...+(2n-1)(2n+1) = \frac{n(4n^2+6n-1)}{3}$$

For n = 1, we have

$$P(1):1.3=3=\frac{1(4.1^2+6.1-1)}{3}=\frac{4+6-1}{3}=\frac{9}{3}=3$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.3+3.5+5.7+.....+(2k-1)(2k+1)=\frac{k(4k^2+6k-1)}{3} ... (i)$$

We shall now prove that P(k + 1) is true.

Consider

$$(1.3+3.5+5.7+...+(2k-1)(2k+1)+\{2(k+1)-1\}\{2(k+1)+1\}$$

$$=\frac{k(4k^2+6k-1)}{3}+(2k+2-1)(2k+2+1) \qquad \text{[Using (i)]}$$

$$=\frac{k(4k^2+6k-1)}{3}+(2k+1)(2k+3)$$

$$=\frac{k(4k^2+6k-1)}{3}+(4k^2+8k+3)$$

$$=\frac{k(4k^2+6k-1)+3(4k^2+8k+3)}{3}$$

$$=\frac{4k^3+6k^2-k+12k^2+24k+9}{3}$$

$$=\frac{4k^3+18k^2+23k+9}{3}$$

$$=\frac{4k^3+14k^2+9k+4k^2+14k+9}{3}$$

$$=\frac{k(4k^2+14k+9)+1(4k^2+14k+9)}{3}$$

$$=\frac{(k+1)(4k^2+14k+9)}{3}$$

$$=\frac{(k+1)\{4(k^2+2k+1)+6(k+1)-1\}}{3}$$

$$=\frac{(k+1)\{4(k^2+2k+1)+6(k+1)-1\}}{3}$$

$$=\frac{(k+1)\{4(k^2+2k+1)+6(k+1)-1\}}{3}$$

Thus, P(k+1) is true whenever P(k) is true

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Ouestion 8:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$: 1.2 + 2.2² + 3.2² + ... + $n.2^n = (n-1) 2^{n+1} + 2$

$$P(n)$$
: 1.2 + 2.2² + 3.2² + ... + n .2ⁿ = $(n-1)$ 2ⁿ⁺¹ + 2

For n = 1, we have

$$P(1)$$
: 1.2 = 2 = (1 - 1) $2^{1+1} + 2 = 0 + 2 = 2$, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.2 + 2.2^2 + 3.2^2 + \dots + k.2^k = (k-1) 2^{k+1} + 2 \dots$$
 (i)

We shall now prove that P(k + 1) is true.

Consider

$$\begin{aligned} &\left\{1.2 + 2.2^{2} + 3.2^{3} + \dots + k.2^{k}\right\} + \left(k+1\right) \cdot 2^{k+1} \\ &= \left(k-1\right) 2^{k+1} + 2 + \left(k+1\right) 2^{k+1} \\ &= 2^{k+1} \left\{\left(k-1\right) + \left(k+1\right)\right\} + 2 \\ &= 2^{k+1} \cdot 2k + 2 \\ &= k \cdot 2^{(k+1)+1} + 2 \\ &= \left\{\left(k+1\right) - 1\right\} 2^{(k+1)+1} + 2 \end{aligned}$$

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Question 9:

Prove the following by using the principle of mathematical induction for all $n \in N$: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... + \frac{1}{2^n} = 1 - \frac{1}{2^n}$

$$P(n)$$
: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... + \frac{1}{2^n} = 1 - \frac{1}{2^n}$

For n = 1, we have

P(1):
$$\frac{1}{2} = 1 - \frac{1}{2^1} = \frac{1}{2}$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^k} = 1 - \frac{1}{2^k} \qquad \dots (i)$$

We shall now prove that P(k + 1) is true.

Consider

$$\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{k}}\right) + \frac{1}{2^{k+1}}$$

$$= \left(1 - \frac{1}{2^{k}}\right) + \frac{1}{2^{k+1}}$$

$$= 1 - \frac{1}{2^{k}} + \frac{1}{2 \cdot 2^{k}}$$

$$= 1 - \frac{1}{2^{k}} \left(1 - \frac{1}{2}\right)$$

$$= 1 - \frac{1}{2^{k+1}}$$
[Using (i)]
$$= 1 - \frac{1}{2^{k+1}}$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Question 10:

Prove the following by using the principle of mathematical induction for all
$$n \in \mathbb{N}$$
:
$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \ldots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$$

$$P(n): \frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$$

For n = 1, we have

$$P(1) = \frac{1}{2.5} = \frac{1}{10} = \frac{1}{6.1 + 4} = \frac{1}{10}$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3k-1)(3k+2)} = \frac{k}{6k+4}$$
 ... (i)

We shall now prove that P(k + 1) is true.

Consider

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3k-1)(3k+2)} + \frac{1}{\{3(k+1)-1\}\{3(k+1)+2\}}$$

$$= \frac{k}{6k+4} + \frac{1}{(3k+3-1)(3k+3+2)}$$

$$= \frac{k}{6k+4} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{k}{2(3k+2)} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{1}{(3k+2)} \left(\frac{k}{2} + \frac{1}{3k+5}\right)$$

$$= \frac{1}{(3k+2)} \left(\frac{k(3k+5)+2}{2(3k+5)}\right)$$

$$= \frac{1}{(3k+2)} \left(\frac{3k^2+5k+2}{2(3k+5)}\right)$$

$$= \frac{1}{(3k+2)} \left(\frac{(3k+2)(k+1)}{2(3k+5)}\right)$$

$$= \frac{(k+1)}{6k+10}$$

$$= \frac{(k+1)}{6(k+1)+4}$$

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Question 11

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$$

$$P(n): \frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$$

For n = 1, we have

$$P(1): \frac{1}{1 \cdot 2 \cdot 3} = \frac{1 \cdot (1+3)}{4(1+1)(1+2)} = \frac{1 \cdot 4}{4 \cdot 2 \cdot 3} = \frac{1}{1 \cdot 2 \cdot 3}$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{k(k+1)(k+2)} = \frac{k(k+3)}{4(k+1)(k+2)}$$
 ... (i)

We shall now prove that P(k+1) is true

Consider

$$\begin{bmatrix}
\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{k(k+1)(k+2)} \end{bmatrix} + \frac{1}{(k+1)(k+2)(k+3)}$$

$$= \frac{k(k+3)}{4(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)} \qquad [Using (i)]$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+3)}{4} + \frac{1}{k+3} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+3)^2 + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k^2 + 6k + 9) + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k^3 + 6k^2 + 9k + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k^3 + 2k^2 + k + 4k^2 + 8k + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k^2 + 2k + 1) + 4(k^2 + 2k + 1)}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+1)^2 + 4(k+1)^2}{4(k+3)} \right\}$$

$$= \frac{(k+1)^2(k+4)}{4(k+1)(k+2)(k+3)}$$

$$= \frac{(k+1)^2(k+4)}{4(k+1)(k+2)(k+3)}$$

$$= \frac{(k+1)^2(k+4)}{4(k+1)(k+2)(k+3)}$$

$$= \frac{(k+1)^2(k+4)}{4(k+1)(k+2)(k+3)}$$

$$= \frac{(k+1)^2(k+4)}{4(k+1)(k+2)(k+3)}$$

$$= \frac{(k+1)^2(k+4)}{4(k+1)(k+2)(k+3)}$$

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Ouestion 12:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$a + ar + ar^{2} + ... + ar^{n-1} = \frac{a(r^{n} - 1)}{r - 1}$$

$$P(n): a + ar + ar^2 + ... + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$$

For n = 1, we have

$$P(1): a = \frac{a(r^1-1)}{(r-1)} = a$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$a + ar + ar^2 + \dots + ar^{k-1} = \frac{a(r^k - 1)}{r - 1} \dots (i)$$

We shall now prove that P(k + 1) is true.

Consider

$$\left\{ a + ar + ar^{2} + \dots + ar^{k-1} \right\} + ar^{(k+1)-1}$$

$$= \frac{a(r^{k} - 1)}{r - 1} + ar^{k}$$
[Using(i)]

Let the given statement be P(n), i.e.,

$$P(n): a + ar + ar^2 + ... + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$$

For n = 1, we have

$$P(1): a = \frac{a(r^1 - 1)}{(r - 1)} = a$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$a + ar + ar^2 + \dots + ar^{k-1} = \frac{a(r^k - 1)}{r - 1}$$
 ... (i)

We shall now prove that P(k + 1) is true.

Consider

Question 13:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$\left(1 + \frac{3}{1}\right)\left(1 + \frac{5}{4}\right)\left(1 + \frac{7}{9}\right)...\left(1 + \frac{(2n+1)}{n^2}\right) = (n+1)^2$$

Ans:

Let the given statement be P(n), i.e.,

$$P(n): \left(1 + \frac{3}{1}\right) \left(1 + \frac{5}{4}\right) \left(1 + \frac{7}{9}\right) ... \left(1 + \frac{(2n+1)}{n^2}\right) = (n+1)^2$$

For n = 1, we have

$$P(1): (1+\frac{3}{1}) = 4 = (1+1)^2 = 2^2 = 4$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)...\left(1+\frac{(2k+1)}{k^2}\right)=\left(k+1\right)^2 \qquad ... (1)$$

We shall now prove that P(k + 1) is true.

Consider

$$\left[\left(1 + \frac{3}{1} \right) \left(1 + \frac{5}{4} \right) \left(1 + \frac{7}{9} \right) \dots \left(1 + \frac{(2k+1)}{k^2} \right) \right] \left\{ 1 + \frac{\left\{ 2(k+1) + 1 \right\}}{(k+1)^2} \right\}
= (k+1)^2 \left(1 + \frac{2(k+1) + 1}{(k+1)^2} \right) \qquad \left[\text{Using}(1) \right]
= (k+1)^2 \left[\frac{(k+1)^2 + 2(k+1) + 1}{(k+1)^2} \right]
= (k+1)^2 + 2(k+1) + 1
= \left\{ (k+1) + 1 \right\}^2$$

Thus, P(k+1) is true whenever P(k) is true

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Question 14:

Prove the following by using the principle of mathematical induction for all $n \in N$: $\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{n}\right)=(n+1)$

Ans:

Let the given statement be P(n), i.e.,

$$P(n): \left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{n}\right) = (n+1)$$

For n = 1, we have

$$P(1): (1+\frac{1}{1})=2=(1+1)$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k): \left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{k}\right) = (k+1)$$
 ... (1)

We shall now prove that P(k + 1) is true.

$$\left[\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{k}\right)\right]\left(1+\frac{1}{k+1}\right)$$

$$=\left(k+1\right)\left(1+\frac{1}{k+1}\right) \qquad \left[\text{Using (1)}\right]$$

$$=\left(k+1\right)\left(\frac{(k+1)+1}{(k+1)}\right)$$

$$=\left(k+1\right)+1$$

Thus, P(k+1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.

Question 15:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}$$

Ans

Let the given statement be P(n), i.e.,

$$P(n) = 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

For n = 1, we have

$$P(1) = 1^2 = 1 = \frac{1(2.1-1)(2.1+1)}{3} = \frac{1.1.3}{3} = 1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k) = 1^2 + 3^2 + 5^2 + \dots + (2k-1)^2 = \frac{k(2k-1)(2k+1)}{3} \qquad \dots (1)$$

We shall now prove that P(k + 1) is true.

Consider

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., n.