Tema 7 Sistemas reales Sistemas Dinámicos Discretos y Continuos

Dra. Neus Garrido Sàez

Máster en Ingeniería Matemática y Computación Escuela Superior en Ingeniería y Tecnología

Contenido

- Introducción
- Diagramas de bifurcación
- Oinámica real 1D
 - La familia logística
 - La familia cuadrática
- 4 Dinámica real 2D
 - Atractores de Hénon

1

Introducción

Introducción

Sistemas dinámicos discretos reales

- La variable es real
- Se representan por $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$
 - $n=1 \Rightarrow$ Tema 6 (órbitas, puntos fijos, puntos periódicos,...)
 - $n=2 \Rightarrow \text{Tema 7}$

Familias de funciones

- Conjunto de funciones sujetos a parámetros
- Los valores de los parámetros determinan distintos comportamientos dinámicos
- Puntos de bifurcación: valores del parámetro en los que se modifica el comportamiento dinámico de la función

Diagramas de bifurcación

2

Diagramas de bifurcación

Dinámica de sistemas discretos

Ejemplo 1. Estudia la dinámica de los puntos fijos de $f(x) = x^3$

Puntos fijos:

$$f(x) = x \Leftrightarrow x^3 = x \Leftrightarrow x^3 - x = 0 \Leftrightarrow x(x^2 - 1) = 0 \Leftrightarrow x^* = \{-1, 0, 1\}$$

■ Clasificación:
$$f'(x) = 3x^2 \Rightarrow \left\{ \begin{array}{c} f'(-1) = f'(1) = 3 > 1 \\ f'(0) = 0 < 1 \end{array} \right.$$
 Repulsores Atractor

Dinámica de sistemas discretos

Ejemplo 1. Estudia la dinámica de los puntos fijos de $f(x) = x^3$

Puntos fijos:

$$f(x) = x \Leftrightarrow x^3 = x \Leftrightarrow x^3 - x = 0 \Leftrightarrow x(x^2 - 1) = 0 \Leftrightarrow x^* = \{-1, 0, 1\}$$

Clasificación: $f'(x) = 3x^2 \Rightarrow \begin{cases} f'(-1) = f'(1) = 3 > 1 \\ f'(0) = 0 < 1 \end{cases}$ Repulsores Atractor

Ejemplo 2. Capital e interés simple

Supongamos que ingresamos una cantidad de dinero x_0 en un depósito a plazo fijo que nos ofrece un tipo de interés anual λ . Siendo x_n el capital disponible al inicio del año n, entonces:

$$x_{n+1} = x_n + \lambda x_n = (1+\lambda)x_n \quad \Rightarrow \quad f(x) = (1+\lambda)x$$

- Puntos fijos: $f(x) = x \Leftrightarrow (1 + \lambda)x = x \Leftrightarrow x^* = 0$
- Clasificación: $f'(x) = 1 + \lambda \Rightarrow f'(0) = 1 + \lambda$

$$\begin{split} |f'(0)| < 1 \text{ si } \lambda \in (-2,0) & \Rightarrow \quad x^* = 0 \text{ atractor} \\ |f'(0)| > 1 \text{ si } \lambda \in (-\infty,-2) \cup (0,+\infty) & \Rightarrow \quad x^* = 0 \text{ repulsor} \\ |f'(0)| = 1 \text{ si } \lambda = \{0,-2\} & \Rightarrow \quad x^* = 0 \text{ neutro} \end{split}$$

Diagramas de bifurcación

■ Familia de sistemas dinámicos:

$$x_{n+1} = f(x_n, \lambda) = f_{\lambda}(x_n)$$

Puntos de bifurcación

- \blacksquare Valores de λ en los que se producen cambios en el comportamiento dinámico del sistema
- Los puntos en los que se producen las bifurcaciones satisfacen:
 - (i) $f_{\lambda}(x^*) = x^*$
 - (ii) $|f'_{\lambda}(x^*)| = 1$

Diagramas de bifurcación

Representan el comportamiento a largo plazo del sistema $x_{n+1} = f_{\lambda}(x_n)$ en función de λ .

3

Dinámica real 1D

Contenidos

- Introducción
- Diagramas de bifurcación
- O Dinámica real 1D
 - La familia logística
 - La familia cuadrática
- Dinámica real 2D

$$x_{n+1} = kx_n \left(1 - \frac{x_n}{M} \right)$$

- $x_n \Rightarrow \text{población al final del año } n$
- $M > 0 \Rightarrow$ población máxima
- $k > 0 \Rightarrow$ constante de crecimiento exponencial de la población

Por simplicidad trabajaremos con valores relativos: $0 \le x_n \le 1$. Entonces:

$$x_{n+1} = \lambda x_n \left(1 - x_n \right), \qquad \lambda > 0$$

Familia logística

$$f_{\lambda}(x) = \lambda x(1-x), \qquad \lambda > 0$$

Familia logística

$$f_{\lambda}(x) = \lambda x(1-x), \qquad \lambda > 0$$

Puntos fijos:

$$f_{\lambda}(x) = x \Leftrightarrow \lambda x(1-x) = x \Leftrightarrow \begin{cases} x_1^* = 0 \\ x_2^* = \frac{\lambda - 1}{\lambda} \end{cases}$$

Familia logística

$$f_{\lambda}(x) = \lambda x(1-x), \qquad \lambda > 0$$

Puntos fijos:

$$f_{\lambda}(x) = x \Leftrightarrow \lambda x(1-x) = x \Leftrightarrow \begin{cases} x_1^* = 0 \\ x_2^* = \frac{\lambda - 1}{\lambda} \end{cases}$$

Dinámica de los puntos fijos:

$$f'_{\lambda}(x) = \lambda(1 - 2x) \Rightarrow \begin{cases} |f'_{\lambda}(x_1^*)| = \lambda \\ |f'_{\lambda}(x_2^*)| = |2 - \lambda| \end{cases}$$

Familia logística

$$f_{\lambda}(x) = \lambda x(1-x), \qquad \lambda > 0$$

Puntos fijos:

$$f_{\lambda}(x) = x \Leftrightarrow \lambda x(1-x) = x \Leftrightarrow \begin{cases} x_1^* = 0 \\ x_2^* = \frac{\lambda - 1}{\lambda} \end{cases}$$

Dinámica de los puntos fijos:

$$f'_{\lambda}(x) = \lambda(1 - 2x) \Rightarrow \begin{cases} |f'_{\lambda}(x_1^*)| = \lambda \\ |f'_{\lambda}(x_2^*)| = |2 - \lambda| \end{cases}$$

$$x_1^*$$

- Atractor si $\lambda \in (0,1)$
- Repulsor si $\lambda > 1$
- Neutro si $\lambda = 1$

Familia logística

$$f_{\lambda}(x) = \lambda x(1-x), \qquad \lambda > 0$$

Puntos fijos:

$$f_{\lambda}(x) = x \Leftrightarrow \lambda x(1-x) = x \Leftrightarrow \begin{cases} x_1^* = 0 \\ x_2^* = \frac{\lambda - 1}{\lambda} \end{cases}$$

Dinámica de los puntos fijos:

$$f_{\lambda}'(x) = \lambda(1 - 2x) \Rightarrow \begin{cases} |f_{\lambda}'(x_1^*)| = \lambda \\ |f_{\lambda}'(x_2^*)| = |2 - \lambda| \end{cases}$$

$$x_1^*$$

 x_2^*

- Atractor si $\lambda \in (0,1)$
- Repulsor si $\lambda > 1$
- Neutro si λ = 1

- Atractor si $\lambda \in (1,3)$
- Repulsor si $\lambda \in (0,1) \cup (3,+\infty)$
- Neutro si $\lambda = \{1, 3\}$

Familia logística

$$f_{\lambda}(x) = \lambda x(1-x), \qquad \lambda > 0$$

Puntos 2-periódicos:

$$f_{\lambda}^{2}(x) = x \Leftrightarrow \begin{cases} x_{1}^{*} &= 0 \\ x_{2}^{*} &= \frac{\lambda - 1}{\lambda} \end{cases}$$

$$x_{1}^{P} &= \frac{\lambda + 1 + \lambda^{2} \sqrt{(\lambda + 1)(\lambda - 3)}}{2\lambda}$$

$$x_{2}^{P} &= \frac{\lambda + 1 - \lambda^{2} \sqrt{(\lambda + 1)(\lambda - 3)}}{2\lambda}$$

Figura: Diagrama de bifurcación de la función logística

 x_1^*

- At ractor si $\lambda \in (0,1)$
- \blacksquare Repulsor si $\lambda > 1$
- Neutro si $\lambda = 1$

 x_2^*

- Atractor si $\lambda \in (1,3)$
- Repulsor si $\lambda \in (0,1) \cup (3,+\infty)$
- Neutro si $\lambda = \{1, 3\}$

Figura: Diagrama de bifurcación de la función logística (ampliación)

- $\lambda = 3 \Rightarrow$ órbita de periodo 2
- $\lambda \approx 3.45 \Rightarrow$ órbita de periodo 4
- $\lambda \approx 3.54 \Rightarrow$ órbita de periodo 8
- . . .

Figura: Órbitas de $x_0=0.5$. Función logística $f_\lambda(x)=\lambda x(1-x)$ para distintos valores de λ

Contenidos

- Introducción
- Diagramas de bifurcación
- O Dinámica real 1D
 - La familia logística
 - La familia cuadrática
- Dinámica real 2D

Familia cuadrática

$$f_{\lambda}(x) = x^2 + \lambda$$

Familia cuadrática

$$f_{\lambda}(x) = x^2 + \lambda$$

■ Puntos fijos:

$$x^* = \frac{1 \pm \sqrt{1 - 4\lambda}}{2}$$

Familia cuadrática

$$f_{\lambda}(x) = x^2 + \lambda$$

Puntos fijos:

$$x^* = \frac{1 \pm \sqrt{1 - 4\lambda}}{2}$$

Puntos de bifurcación:

$$f'_{\lambda}(x) = 2x \quad \Rightarrow \quad f'_{\lambda}(x^*) = 1 \pm \sqrt{1 - 4\lambda}$$
$$|f'_{\lambda}(x^*)| = 1 \Leftrightarrow \lambda = \left\{ -\frac{3}{4}, \frac{1}{4} \right\}$$

Familia cuadrática

$$f_{\lambda}(x) = x^2 + \lambda$$

Familia cuadrática

$$f_{\lambda}(x) = x^2 + \lambda$$

Figura: Órbitas de $x_0=0$. Familia cuadrática para distintos valores de λ

4

Dinámica real 2D

Dinámica real 2D

$$F:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$

- \blacksquare Punto fijo de $F\colon (x,y)^*\in\mathbb{R}^2$ tal que $F(x,y)^*=(x,y)^*$
- Dinámica de los puntos fijos:

$$J_F(x,y)^* \Rightarrow \lambda_1, \lambda_2$$

- $lacksquare |\lambda_1|, |\lambda_2| < 1 \Rightarrow (x,y)^*$ atractor
- $|\lambda_1|, |\lambda_2| > 1 \Rightarrow (x,y)^*$ repulsor
- ullet $|\lambda_1|<1$, $|\lambda_2|>1$ \Rightarrow $(x,y)^*$ punto de silla

Contenidos

- Introducción
- Diagramas de bifurcación
- 3 Dinámica real 1D
- 4 Dinámica real 2D
 - Atractores de Hénon

$$H_{a,b}(x,y) = (1 + y - ax^2, bx)$$

$$H_{a,b}(x,y) = (1 + y - ax^2, bx)$$

$$H_{a,b}(x,y) = (1 + y - ax^2, bx)$$

Puntos fijos: $\begin{cases} x = 1 + y - ax^2 \\ y = bx \end{cases}$

$$\Leftrightarrow (x,y)_1^* = \left(\frac{b-1+\sqrt{4a+(b-1)^2}}{2a}, \frac{b\left(b-1+\sqrt{4a+(b-1)^2}\right)}{2a}\right)$$
$$(x,y)_2^* = \left(\frac{b-1-\sqrt{4a+(b-1)^2}}{2a}, \frac{b\left(b-1-\sqrt{4a+(b-1)^2}\right)}{2a}\right)$$

$$H_{a,b}(x,y) = (1 + y - ax^2, bx)$$

$$\Leftrightarrow (x,y)_1^* = \left(\frac{b-1+\sqrt{4a+(b-1)^2}}{2a}, \frac{b\left(b-1+\sqrt{4a+(b-1)^2}\right)}{2a}\right)$$
$$(x,y)_2^* = \left(\frac{b-1-\sqrt{4a+(b-1)^2}}{2a}, \frac{b\left(b-1-\sqrt{4a+(b-1)^2}\right)}{2a}\right)$$

Dinámica de los puntos fijos:

$$J_H(x,y) = \begin{bmatrix} -2ax & 1 \\ b & 0 \end{bmatrix} \Rightarrow \lambda_1 = -ax + \sqrt{ax^2 + b}, \quad \lambda_2 = -ax - \sqrt{ax^2 + b}$$

$$H_{a,b}(x,y) = (1 + y - ax^2, bx)$$

Puntos fijos: $\begin{cases} x = 1 + y - ax^2 \\ y = bx \end{cases}$

$$\Leftrightarrow (x,y)_1^* = \left(\frac{b-1+\sqrt{4a+(b-1)^2}}{2a}, \frac{b\left(b-1+\sqrt{4a+(b-1)^2}\right)}{2a}\right)$$
$$(x,y)_2^* = \left(\frac{b-1-\sqrt{4a+(b-1)^2}}{2a}, \frac{b\left(b-1-\sqrt{4a+(b-1)^2}\right)}{2a}\right)$$

Dinámica de los puntos fijos:

$$J_H(x,y) = \begin{bmatrix} -2ax & 1 \\ b & 0 \end{bmatrix} \Rightarrow \lambda_1 = -ax + \sqrt{ax^2 + b}, \quad \lambda_2 = -ax - \sqrt{ax^2 + b}$$

- $(x,y)_1^*$ punto de silla
- $(x,y)_2^*$ attractor hasta un determinado valor

$$H_{a,b}(x,y) = (1 + y - ax^2, bx)$$

Figura: Diagramas de bifurcación de la primera coordenada del sistema discreto

Para finalizar...

■ Lección magistral: Función logística ⇒ Aula Virtual

...Y por supuesto:

TEST DE APRENDIZAJE!!

