7.5 **Řady**

Ukazuje se účelné zobecnit součet na nekonečný počet sčítanců.

Definice 7.5.1

Nekonečnou řadou nazveme symbol
$$a_1 + a_2 + a_3 + ... + a_n + ... = \sum_{n=1}^{\infty} a_n$$
,

kde a_i , i = 1,2,3,... nazýváme členy řady.

Řadě $\sum_{n=1}^{\infty} a_n$ je přiřazena tzv. posloupnost částečných součtů $\{s_n\}_{n=1}^{\infty}$, kde

$$s_1 = a_1$$

$$s_2 = a_1 + a_2$$

$$s_n = a_1 + a_2 + \dots + a_n$$

Definice 7.5.2

Součtem řady $\sum_{n=1}^{\infty} a_n$ rozumíme limitu posloupnosti částečných součtů $\{s_n\}_{n=1}^{\infty}$.

Součet řady lze označit stejně jako samotnou řadu, tudíž $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = s$.

Pokud má posloupnost částečných součtů vlastní limitu, říkáme, že řada konverguje. Pokud tomu tak není, říkáme, že řada diverguje.

Věta 7.5.1 Nutná podmínka konvergence

konverguje, pak se členy řady blíží nule, tj. $\lim_{n\to\infty} a_n = 0$. Jestliže řada

Pro řady platí komutativní, asociativní a distributivní zákon pouze do jisté míry.

Aritmetická řada

Věta 7.5.2

Aritmetická řada, tj.
$$\sum_{n=1}^{\infty} a_n = a_1 + (a_1 + d) + (a_1 + 2 \cdot d) + \dots = \sum_{n=1}^{\infty} (a_1 + (n-1) \cdot d)$$

konverguje právě tehdy, když diference mezi členy řady je nulová a první člen též.

Tudíž platí, že
$$s = \sum_{n=1}^{\infty} a_n = 0$$

Poznámka

Pro diferenci d > 0 řada diverguje $k + \infty$, pro diferenci d < 0 diverguje $k - \infty$.

Sylabus

Věta 7.5.3

Geometrická řada, tj.
$$\sum_{n=1}^{\infty} a_n = a_1 + a_1 \cdot q + a_1 \cdot q^2 + \dots = \sum_{n=1}^{\infty} a_1 \cdot q^{n-1} \text{ konverguje právě tehdy,}$$

$$\text{když} \quad |q| < 1 \text{ a pro součet pak platí} \quad s = \sum_{n=1}^{\infty} a_n = \frac{a_1}{1-q} \quad .$$

když
$$|q| < 1$$
 a pro součet pak platí $s = \sum_{n=1}^{\infty} a_n = \frac{a_1}{1-q}$

Pokud $|q| \ge 1$ řada diverguje.