

Tabea Bacher, Ben Hollering

Nov 24th, 2022

MOM Workshop, Berlin

What is research data?

What is research data?

"We define research data as all digital and analog objects that are generated or handled in the process of doing research"*

developing services and guidelines/best practices for handling research data

* T.Boege, R. Fritze, C. Görgen et al. (2022) Research-Data Management Planning in the German Mathematical Community. arXiv:2211.12071 [math.HO]

How to handle research data

Mark Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gaby Appleton, et al. The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3(160018), 2016.

GitHub/GitLab

GitHub/GitLab

Versionsverwaltungsplattform GitLab plant wohl, inaktive Repositories zu löschen

Offenbar will das Unternehmen mit dem Löschen von Accounts, die länger als ein Jahr ohne Änderung sind, bis zu einer Million US-Dollar jährlich sparen.

heise.de 04.08.2022

GitHub/GitLab

Zenodo

GitHub/GitLab

Zenodo

MathRepo

- run by the MPI MiS in Leipzig
- based on the institutes GitLab
- planned to be maintained at least for the next decade
- blog-style entries, high flexibility in how you display your content
- no hard quality control

2022

D-Algebraic Functions

Real Circles Tangent to 3 Conics

An algorithm for the identifiability of rank-3 tensors

Crossing the transcendental divide: from translation surfaces to algebraic curves

Combinatorics of Correlated Equilibria

Identifiability in Continuous Lyapunov Models

Four-Dimensional Lie Algebras Revisited

Vector Spaces of Generalized Fuler Integrals

Sampling from a p-adic manifold

Tropical invariants for binary forms and reduction types of Picard curves

Classifying one-dimensional discrete models with maximum likelihood degree one

Recovery of Plane Curves from

* > 2022 » Four-Dimensional Lie Algebras Revisited

Four-Dimensional Lie Algebras Revisited

This page contains auxiliary files to the paper:

Laurent Manivel, Bernd Sturmfels and Svala Sverrisdóttir: Four-Dimensional Lie Algebras Revisited ARXIV: http://arxiv.org/abs/2208.14631 CODE: https://mathrepo.mis.mpg.de/Lie4

ABSTRACT: The projective variety of Lie algebra structures on a 4-dimensional vector space has four irreducible components of dimension 11. We compute their prime ideals in the polynomial ring in 24 variables. By listing their degrees and Hilbert polynomials, we correct an earlier publication and we answer a 1987 question by Kirillov and Neretin.

Verifications of Theorems 1 and 2

We used Macaulay2 (version 1.20) to verify Theorems 1 and 2 from the paper.

The file $\stackrel{1}{\sim}$ Lie 4 Component includes the explicit generators of the irreducible components C_1, C_2, C_3, C_4 which are explained in Section 3 of our paper. We calculate the dimension, degree, Betti numbers and the Hilbert polynomial of each of these component. We also verify that our idels for C_1 , C_3 , C_4 are prime. To show that C_1 and C_3 are prime it is enough to run the isPrime command in Macaulay2. To show C_4 is prime we run

minimalPrimes C4; radical C4 == C4

Since we get the output 1 and true we see that C_4 is prime. Finally we take the intersection of these components to get the radical ideal of Lie, and calculate its dimension, degree and Betti numbers.

In the file $\stackrel{1}{\sim}$ C2 prime we verify that our ideal for C_2 is prime. We do this by representing the birational

collected metadata:

- Project page created
- Project contributors
- Corresponding author of this page with email address
- Software used with version
- System setup used

eventually:

- Code written by Jupyter notebook written by
- Last updated

* » 2022 » Four-Dimensional Lie Algebras Revisited

Four-Dimensional Lie Algebras Revisited

Lyapunov Models

Four-Dimensional Lie Algebras Revisited

Vector Spaces of Generalized Euler Integrals

Sampling from a p-adic manifold

Tropical invariants for binary forms and reduction types of Picard curves

minimalPrimes C4;
radical C4 == C4

Vector Spaces of Generalized Euler Integrals

Sampling from a p-adic manifold

Tropical invariants for binary forms and reduction types of Picard curves

Classifying one-dimensional discrete models with maximum likelihood degree one

Recovery of Plane Curves from

polynomial of each of these component. We also verify that our idels for C_1 , C_3 , C_4 are prime. To show that C_4 and C_3 are prime it is enough to run the *isPrime* command in Macaulay2. To show C_4 is prime we run

minimalPrimes C4;
radical C4 == C4

Since we get the output 1 and true we see that C_4 is prime. Finally we take the intersection of these components to get the radical ideal of Lie_4 and calculate its dimension, degree and Betti numbers.

In the file $\stackrel{1}{\sim}$ C2 prime we verify that our ideal for C_2 is prime. We do this by representing the birational

* » 2022 » Four-Dimensional Lie Algebras Revisited

Four-Dimensional Lie Algebras Revisited

Lyapunov Models

Four-Dimensional Lie Algebras Revisited

Vector Spaces of Generalized Euler Integrals

Sampling from a *p*Tropical invariants and reduction type curves

nts /pc	Name	Last commit	Las
	C2prime.m2	Variety of 4 dimensional Lie algebras	2 mg
	M+ index.rst	arxiv link to Lie4	2 mc
	lie4.m2	Variety of 4 dimensional Lie algebras	2 mc

How FAIR is MathRepo?

Findable

URL stable for the foreseeable future

findable in google search e.g.

some metadata

no DOI

metadata is not indexed in a (machine-) searchable resource

Accessible

no pay walls

no sign-up process for readers

low barrier for new contributions

no automated retrieval of (meta) data

Interoperable

maths with explanatory text, link to articles

code annotated with software name, version, date, hardware setup

very case specific, reproducibility might

Reusable

 $oldsymbol{Y}$ author names for contact

 $oldsymbol{V}$ often a lot of detail provided

no license information

C. Fevola and Ch. G. (2022). The mathematical research-data repository MathRepo. Computer Algebra Rundbrief, Nummer 70. Preprint on arxiv:2202.04022[math.HO].

- Increase of user friendliness: "How to contribute" button on the main page
- more automation, less manual changes -> less mistakes
- for reusability: licenses

Future Improvements - Licenses

 Different types of data require different licenses -> mixed permissive licenses

MathRepo suggested license statement

License for Code: MIT License (https://spdx.org/licenses/MIT.html)

License for all other content (Text, Images, numerical data, ...): Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

- next: add to template
- Any license is better than no license!

- embedding into the MaRDI Portal
 - with Lars Kastner (TU Berlin)
 - automated extraction of metadata
 - upload to wikidata
- "launch your own MathRepo"
 - we can not provide a repository for everyone,
 but you can start your own MathRepo

Nonlinear Algebra

Algebraic Geometry

Commutative Algebra

Group Theory

Differential Algebra

Combinatorics

Number Theory

Algebraic Topology

Discrete Geometry

Multilinear Algebra

Convex Geometry

Representation Theory

Computations

* Credit to Claudia Fevola for creating this slide

What Can You Do With MathRepo?

- Host Code
 - https://mathrepo.mis.mpg.de/correlated-equilibrium/index.html
- Visualization
 - https://mathrepo.mis.mpg.de/intersection-bodies/index.html
- Teaching
 - https://mathrepo.mis.mpg.de/ToricGeometry/index.html

Who is the FAIRest of them all?

Imaged by Heritage Auctions, HA.com

Who is the FAIRest of them all?

The prize: fame and honor, 1kg of FAIR chocolate for the contributing team, a badge on the MathRepo Page

The criteria: Compliance with FAIR principles, good documentation and description, reproducible results

The jury: You!

The deadline: tomorrow at noon

https://t1p.de/usern