Meister Vorbereitungskurs Zusammenfassung

Jens Weißkopf

15. November 2021

Inhaltsverzeichnis

1	Ant	ennent	sechnik	4					
	1.1	.1 Modulationsarten und Frequenzen							
	1.2	DVB-S	5	4					
		1.2.1	Frequenzen	4					
		1.2.2	S/N Signal-Rauschabstand (NM Noise Margin)	4					
		1.2.3	Biterrorrate	4					
		1.2.4	Ebenen	5					
		1.2.5	Sonstiges	5					
		1.2.6	DiSEqC (Digital Satelite Equipment Control	5					
	1.3	DVB-7	Γ2	5					
		1.3.1	Modulation	5					
		1.3.2	S/N Signal-Rauschabstand (NM Noise Margin)	5					
		1.3.3	Biterrorrate	5					
		1.3.4	Öffentlich-rechtliche-Sender	5					
		1.3.5	Modulationskette	6					
		1.3.6	Sonstiges	6					
	1.4		g	6					
		1.4.1	Modulation	6					
		1.4.2	Öffentlich-rechtliche-Sender	6					
	1.5	Messge		7					
		1.5.1		7					
			VAROS 106	9					
2	Digi	Digitaltechnik 10							
		2.0.1		10					
		2.0.2		$\frac{10}{10}$					
		2.0.2	si s Emgangopeger (lide / lanse)						
3	Mat	hemat	ik	11					
	3.1	Winke	lfunktionen	11					
	3.2	Pythag	goras	11					
	3.3			12					
	3.4		'	13					
	3.5			13					
	3.6			13					
	3.7		9	13					
	3.8			14					

4	Phy	sik		15
	4.1	Ohmis	sches Gesetz	15
		4.1.1	Im Gleichstromnetz	15
	4.2	Leistu	ng	15
		4.2.1	Im Drehstromnetz	15
		4.2.2	Im Wechselstromnetz	15
	4.3	Leitur	ngsberechnung	15
	4.4	Magne	etismus	15
		4.4.1	Durchflutung	15
		4.4.2	Feldstärke	16
		4.4.3	Permeabilität	16
		4.4.4	Magnetischer Fluss	16
		4.4.5	Magnetischer Flussdichte	16
		4.4.6	Magnetische Feldkonstante	16
	4.5	Gleich	strom	16
	4.6	Wechs	selstrom	16
	4.7	Drehs	trom	17
	4.8	Konde	ensator	17

1 Antennentechnik

1.1 Modulationsarten und Frequenzen

Radio						
AM	50-70dBμV	87,5-108 MHz				
FM						
DAB	DAB					
COFDM	28-94dBμV	47-68 MHz 174-230 MHz				
DVB-S						
Q(4)PSK	$28\text{-}94\mathrm{dB}\mu\mathrm{V}$	Low 10700-11700 MHz				
8PSK		High 11700-12750 MHz				

1.2 DVB-S

1.2.1 Frequenzen

Oszillator ZF

- Low 9750 MHz
 - High 10600 MHz

Sat ZF

• 950 - 2150 MHz

1.2.2 S/N Signal-Rauschabstand (NM Noise Margin)

- QPSK >= 11 dB
- 8PSK >= 14 dB

1.2.3 Biterrorrate

- CBER $< 1 \cdot 10^{-4}$ vor Fehlerkorrektur
- VBER $< 1 \cdot 10^{-8}$ nach Fehlerkorrektur

FEC z.B. 5/6 5 Nutzbits bei 6 gesendeten bits.

Je kleiner die Zahlenkombination,
desto besser die Fehlerkorrektur,
desto geringer dienutzbare Bitrate

1.2.4 Ebenen

1.2.5 Sonstiges

15-20pW Leistung welche vom Satellitensignal am LNB ankommt

Skew Drehung LNB

Azimut horizontale Ausrichtung Elevation vertikale Ausrichtung

1.2.6 DiSEqC (Digital Satelite Equipment Control

22kHz Rechteck Signal mit $U_{SS} = 0,6V$

DiSEqC 1.0 \rightarrow 4 Satelliten DiSEqC 1.1 \rightarrow 16 Satelliten

1.3 DVB-T2

1.3.1 Modulation

16 QAM $35\text{-}74 \text{ dB}\mu\text{V}$ 64 QAM $39\text{-}74 \text{ dB}\mu\text{V}$

1.3.2 S/N Signal-Rauschabstand (NM Noise Margin)

>=3 dB

1.3.3 Biterrorrate

• CBER $< 1 \cdot 10^{-2}$ vor Fehlerkorrektur

1.3.4 Öffentlich-rechtliche-Sender

K29 / K34 / K42

1.3.5 Modulationskette

Signal > 64QAM > COFDM > Luft

1.3.6 Sonstiges

Orthogonal \approx rechtwinklig $\approx 90^\circ \Rightarrow$ Günstige Filter \Rightarrow Höhere Packdichte der Transponter

1.4 DVB-C

1.4.1 Modulation

 $64 \text{ QAM} => 39\text{-}74 \text{ dB}\mu\text{V}$

1.4.2 Öffentlich-rechtliche-Sender

S39

1.5 Messgerät

1.5.1 AMA 300

Abbildung 1: AMA 300

ANA/DIG Umschaltung Analog Digital

RANGE Sat, UHF, etc.

LNB 14/18V, 0/22, DiSEqC (mit Taste 1 o. 2)

ANALYZE Spektrumanalyzer

RESET Falls Gerät sich aufhängt

Beispiel Aufgabe:

Frequenz 12545MHz

Lage H Sympolrate 22000

• ANA/DIG?

- RANGE Wählen SAT ...
- LNB Horizontal / Vertikal? Low oder Highband? Sympolrate (22000 o. 27500)?

- DiSEqC Satellit 1 oder Satellit 2?
- \bullet Signalstärke, S/N, CBER, VBER, Bild, NIT (welcher Satelit? Eutel o. ASTRA?)
- auswerten und beurteilen (gut, schlecht?)

1.5.2 VAROS 106

Abbildung 2: VAROS 106

ANALYZE Spektrumanalyzer

Viele Transponter ersichtlich \rightarrow DVB-C Wenige Transponter ersichtlich \rightarrow DVB-T2 Rot = digitale Transponter Grün = Analoge Transponter

2 Digitaltechnik

 $egin{array}{lll} 10 & = & \operatorname{Dezimal} \ 16 & = & \operatorname{Hexadezimal} \end{array}$

4 Byte = Doubleword

MSB = Most significant bit (linkes bit) BCD Code = 4 Bit, Dezimal 0-9 kodierbar

 $\begin{array}{ll} {\rm Tetraden} & 0000-1001\ 0-9 \\ {\rm Pseudotetraden} & 1010-1111\ 10\text{-}15 \end{array}$

2.0.1 Zahlenformate SPS

Bool 1 bit INT Integer 16 bit UINT 16 bit WORD 16 bit REAL 32 bit

2.0.2 SPS Eingangspegel (True / False)

-3 - 5V Logisch "0"

5 – 11V nicht definierter Bereich

11 – 30V Logisch "1"

3 Mathematik

Winkelfunktionen 3.1

Eselsbrücke

G Α G Α

GΗ Η Α

SINCOS TAN COT

G = Gegenkathete

A = Ankathete

H = Hypotenuse

3.2 Pythagoras

$$c = \sqrt{a^2 + b^2}$$
$$a = \sqrt{c^2 - b^2}$$
$$b = \sqrt{c^2 - a^2}$$

$$b = \sqrt{c^2 - a^2}$$

Abbildung Rechtwinkliges 3: Dreieck

3.3 Polarkoordinaten / kartesischen Koordinaten

Rechnet man die Polarkoordinaten in kartesischen Koordinaten um, so lässt sich die jeweilige X Koordinate und Y Koordinate addieren. Das Ergenis lässt sich mit der tan Funktion einfach wieder in Polarkoordinaten umrechnen. Mit diesem Verfahren lässt sich relativ einfach der Nennleiterstrom in einem unsymetrisch belasteten Drehstromsystem berechnen.

3.4 Binomische Formeln

$$(x+y)^2 = x^2 + 2xy + y^2$$

(x-y)2 = x^2 - 2xy + y^2

3.5 Dezimale Vielfache

Piko	p	10^{-12}
Nano	$\mid n \mid$	10^{-9}
Mikro	μ	10^{-6}
Milli	m	10^{-3}
Zenti	c	10^{-2}
Dezi	d	10^{-1}
		10^{-0}
Deka	da	10^{1}
Hekto	h	10^{2}
Kilo	k	10^{3}
Mega	M	10^{6}
Giga	G	109
Tera	T	10^{12}

3.6 Quadratische Gleichung

$$ax^{2} + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

3.7 Potenzen, Wurzeln, Logarithmen

$$a^n = c$$

$$\sqrt[n]{c} = a$$

$$log_a c = n$$

$$log_{10} c = lg \ c \ (Zehnerlogarithmus)$$

$$log_e c = ln \ c \ (Natuerlicher Logarithmus, e = 2,781...)$$

$$log_2 c = lb \ c \ (Zweier Logarithmus)$$

3.8 Komplexe Zahlen

Abbildung 4: Komplexe Zahlen

 $X \text{ Achse (Abszisse)} \Rightarrow \text{Realteil a}$

Y Aches (Ordinate) ⇒ Imaginärteil b (i [ENG] Taste auf dem Taschenrechner)

 φ = Winkel zwischen a und b (\angle Taste auf dem Taschenrechner in RAD)

Umrechnung zwischen Komplexen Zahlen und Polarkoordinaten mit Taste [OPTN] danach Pfeil nach unten und $r \angle 0$

4 Physik

4.1 Ohmisches Gesetz

4.1.1 Im Gleichstromnetz

$$U = R \cdot I \ [V]; \quad R = \frac{U}{I} \ [\Omega]; \quad I = \frac{U}{R} \ [A]$$

4.2 Leistung

$$P = U \cdot I;$$
 $P = I^2 \cdot R;$ $P = U^2 \cdot T [W]$

4.2.1 Im Drehstromnetz

$$P = U \cdot I \cdot \cos \varphi \cdot \sqrt{3} \ [W]$$

4.2.2 Im Wechselstromnetz

$$P = U \cdot I \cdot \cos \varphi \ [W]$$

4.3 Leitungsberechnung

$$A = \frac{2 \cdot l \cdot I \cdot \cos \, \varphi}{\gamma \cdot \Delta u}$$

$$\Delta u = \frac{2 \cdot l \cdot I \cdot \cos \, \varphi}{\gamma \cdot A}$$

$$A = \frac{\sqrt{3} \cdot l \cdot I \cdot \cos \varphi}{\gamma \cdot \Delta u}$$

$$\Delta u = \frac{\sqrt{3} \cdot l \cdot I \cdot cos \ \varphi}{\gamma \cdot A}$$

4.4 Magnetismus

Ferromagnetische Stoffe:

Eisen

Nickel

Cobalt

4.4.1 Durchflutung

$$\Theta = l \cdot N \quad \Theta = Theta$$

4.4.2 Feldstärke

$$H \sim \frac{1}{l}$$
 l=Feldlinienlänge

$$H = \frac{\Theta}{I} \quad [\frac{A}{m}]$$

4.4.3 Permeabilität

$$\Phi \sim \mu$$

$$\mu = \mu_0 \cdot \mu_r$$
 $r = \text{relative Permeabilität}$

4.4.4 Magnetischer Fluss

$$\Phi \sim A$$
 Fläche

$$\Phi \sim H$$
 Feldstärke

$$\Phi = \mu \cdot A \cdot H$$
 $[Vs] = [Wb]Weber$ $\Phi = Phi$

4.4.5 Magnetischer Flussdichte

$$B = \frac{\Phi}{A} \quad \left[\frac{Vs}{mm^2}\right] = [T]Tesla$$

$$B = \mu \cdot H$$

$$\mu = \frac{B}{H} \quad \left[\frac{Vs}{Am}\right]$$

4.4.6 Magnetische Feldkonstante

$$\mu_0 = 4 \cdot \pi \cdot 10^{-7} \quad [Am]$$

$$\mu_0 = 1,257 \cdot 10^{-6} \quad [Am]$$

4.5 Gleichstrom

4.6 Wechselstrom

$$U = Z \cdot I$$

$$P = U \cdot I \cdot cos\varphi$$

$$S = U \cdot I$$

$$Z = \sqrt{R^2 + X^2}$$

R = Wirkwiderstand

 $X \widehat{=} Blindwiderstand$

 $Z \widehat{=} Scheinwiderstand$

$$S = \sqrt{P^2 + Q^2}$$

P = Wirkleistung[W]

 $Q \widehat{=} Blindleistung[var]$

 $S \widehat{=} Scheinleistung[VA]$

$$cos\varphi = \frac{R}{Z}$$

$$X_L = 2 \cdot \pi \cdot f \cdot L$$

$$X_C = \frac{1}{2 \cdot \pi \cdot f \cdot C}$$

4.7 Drehstrom

$$S = U \cdot I \cdot \sqrt{3} \cdot \cos\varphi$$

$$P = U \cdot I \cdot cos\varphi$$

4.8 Kondensator

asdasda