Computing isomorphism classes of abelian varieties over finite fields

Marseglia Stefano

MPI/Stockholms University

11 October 2018

Marseglia Stefano 11 October 2018 1 / 13

Introduction

Definition

An **abelian variety** over a field k is a complete connected group variety over k.

eg: AV's of dimension 1 are elliptic curves.

$$Y^2Z = X^3 + AXZ^2 + BZ^3$$
 $4A^3 + 27B^2 \neq 0$

Marseglia Stefano 11 October 2018 2 / 13

Abelian varieties (\mathbb{C} vs \mathbb{F}_q)

- Goal: compute isomorphism classes of abelian varieties over a finite field \mathbb{F}_q .
- in dimension g > 1 is not easy to produce equations.
- for g > 3 it is not enough to consider Jacobians.
- over ℂ:

{abelian varieties
$$/\mathbb{C}$$
} \longleftrightarrow $\left\{ \mathbb{C}^g/L \text{ with } L \simeq \mathbb{Z}^{2g} \right\}$.

• in positive characteristic we don't have such equivalence (on the whole category).

Marseglia Stefano 11 October 2018 3 / 13

Deligne's equivalence

Theorem (Deligne '69)

Let $q = p^r$, with p a prime. There is an equivalence of categories:

$$\left\{ \begin{array}{ll} \textbf{Ordinary abelian varieties over} \; \mathbb{F}_q \right\} & A \\ & \downarrow & \downarrow \\ \\ pairs \; (T,F), \; where \; T \simeq_{\mathbb{Z}} \mathbb{Z}^{2g} \; \text{and} \; T \xrightarrow{F} T \; s.t.} \\ -F \otimes \mathbb{Q} \; \text{is semisimple} \\ -\text{ the roots of } \operatorname{char}_{F \otimes \mathbb{Q}}(x) \; \text{have abs. value } \sqrt{q} \\ -\text{ half of them are } p\text{-adic units} \\ -\exists V: T \to T \; \text{such that } FV = VF = q \\ \end{array} \right\}$$

Remark

- If dim(A) = g then Rank(T(A)) = 2g;
- Frob(A) \rightsquigarrow F(A).

Marseglia Stefano 11 October 2018 4

Deligne's equivalence: square-free case

Fix a **ordinary square-free** characteristic q-Weil polynomial h.

 \rightsquigarrow an isogeny class \mathscr{C}_h (by Honda-Tate).

Put

$$K := \mathbb{Q}[x]/(h)$$
 and $F := x \mod h$.

Deligne's equivalence induces:

Marseglia Stefano 11 October 2018

ICM: Ideal Class Monoid

Let R be an order in a finite étale \mathbb{Q} -algebra K (with ring of integers \mathcal{O}_K). Recall: for fractional R-ideals I and J

$$I \simeq_R J \iff \exists x \in K^\times \text{ s.t. } xI = J$$

Define the ideal class monoid of R as

$$ICM(R) := \{fractional \ R-ideals\}_{\cong R} \supseteq Pic(R)$$

To compute ICM(R):

- (1) tackle the problem **locally** at every \mathfrak{p} of R,
- (2) then consider the action of the invertible ideals.

Marseglia Stefano 11 October 2018

6 / 13

back to AV's: Dual variety/Polarization

- Howe ('95) defined a notion of dual module and of polarization in the category of Deligne modules.
- Concretely, if $A \leftrightarrow I$, then $A^{\vee} \leftrightarrow \overline{I}^t$, and
- ullet a polarization μ of A corresponds to a $\lambda \in K^{\times}$ such that
 - $\lambda I \subseteq \overline{I}^t$ (isogeny);
 - λ is totally imaginary $(\overline{\lambda} = -\lambda)$;
 - λ is Φ -positive, where Φ is a specific CM-type of K. "coming from char p"

Also:
$$\deg \mu = [\overline{I}^t : \lambda I].$$

• if $A \leftrightarrow I$ and S = (I : I) then

7 / 13

and $Aut(A, \mu) = \{torsion units of S\}$

Example

- Let $h(x) = x^8 5x^7 + 13x^6 25x^5 + 44x^4 75x^3 + 117x^2 135x + 81$;
- → isogeny class of an simple ordinary abelian varieties over F₃ of dimension 4;
- Let F be a root of h(x) and put $R := \mathbb{Z}[F, 3/F] \subset \mathbb{Q}(F)$;
- 8 over-orders of R: two of them are not Gorenstein;
- $\#ICM(R) = 18 \rightsquigarrow 18$ isom. classes of AV in the isogeny class;
- 5 are not invertible in their multiplicator ring;
- 8 classes admit principal polarizations;
- 10 isomorphism classes of princ. polarized AV.

Marseglia Stefano 11 October 2018 8 / 13

Example

Concretely:

$$\begin{split} I_1 = & 2645633792595191\mathbb{Z} \oplus (F + 836920075614551)\mathbb{Z} \oplus (F^2 + 1474295643839839)\mathbb{Z} \oplus \\ & \oplus (F^3 + 1372829830503387)\mathbb{Z} \oplus (F^4 + 1072904687510)\mathbb{Z} \oplus \\ & \oplus \frac{1}{3}(F^5 + F^4 + F^3 + 2F^2 + 2F + 6704806986143610)\mathbb{Z} \oplus \\ & \oplus \frac{1}{9}(F^6 + F^5 + F^4 + 8F^3 + 2F^2 + 2991665243621169)\mathbb{Z} \oplus \\ & \oplus \frac{1}{27}(F^7 + F^6 + F^5 + 17F^4 + 20F^3 + 9F^2 + 68015312518722201)\mathbb{Z} \end{split}$$

principal polarizations:

$$\begin{aligned} x_{1,1} &= \frac{1}{27} \big(-121922F^7 + 588604F^6 - 1422437F^5 + \\ &\quad + 1464239F^4 + 1196576F^3 - 7570722F^2 + 15316479F - 12821193 \big) \\ x_{1,2} &= \frac{1}{27} \big(3015467F^7 - 17689816F^6 + 35965592F^5 - \\ &\quad - 64660346F^4 + 121230619F^3 - 191117052F^2 + 315021546F - 300025458 \big) \\ &\text{End}(I_1) &= R \\ \# \operatorname{Aut}(I_1, x_{1,1}) &= \# \operatorname{Aut}(I_1, x_{1,2}) = 2 \end{aligned}$$

Marseglia Stefano 11 October 2018

9 / 13

Example

$$\begin{split} I_7 = & 2\mathbb{Z} \oplus (F+1)\mathbb{Z} \oplus (F^2+1)\mathbb{Z} \oplus (F^3+1)\mathbb{Z} \oplus (F^4+1)\mathbb{Z} \oplus \frac{1}{3}(F^5+F^4+F^3+2F^2+2F+3)\mathbb{Z} \oplus \\ & \oplus \frac{1}{36}(F^6+F^5+10F^4+26F^3+2F^2+27F+45)\mathbb{Z} \oplus \\ & \oplus \frac{1}{216}(F^7+4F^6+49F^5+200F^4+116F^3+105F^2+198F+351)\mathbb{Z} \end{split}$$

principal polarization:

$$\begin{split} x_{7,1} &= \frac{1}{54} (20F^7 - 43F^6 + 155F^5 - 308F^4 + 580F^3 - 1116F^2 + 2205F - 1809) \\ &\text{End}(I_7) = \mathbb{Z} \oplus F \mathbb{Z} \oplus F^2 \mathbb{Z} \oplus F^3 \mathbb{Z} \oplus F^4 \mathbb{Z} \oplus \frac{1}{3} (F^5 + F^4 + F^3 + 2F^2 + 2F) \mathbb{Z} \oplus \\ &\quad \oplus \frac{1}{18} (F^6 + F^5 + 10F^4 + 8F^3 + 2F^2 + 9F + 9) \mathbb{Z} \oplus \\ &\quad \oplus \frac{1}{108} (F^7 + 4F^6 + 13F^5 + 56F^4 + 80F^3 + 33F^2 + 18F + 27) \mathbb{Z} \\ \# \operatorname{Aut}(I_7, x_{7,1}) &= 2 \end{split}$$

 I_1 is invertible in R, but I_7 is not invertible in End(I_7).

Marseglia Stefano 11 October 2018

10 / 13

some results from computations

	isogeny cl.	isom.cl.	isom.cl. no p.pol.	isom.cl. w/p.pol.	isom.w/ End = \mathcal{O}_K	isom.cl. no p.pol. End = \mathcal{O}_K
$\mathbb{F}_2, g=2$	14/34	21	7	15	15	3
$\mathbb{F}_3, g=2$	36/62	76	23	59	43	6
$\mathbb{F}_5, g=2$	94/128	457	203	290	159	34
$\mathbb{F}_7, g=2$	168/207	1324	636	797	387	88
$\mathbb{F}_{11}, g = 2$	352/400	4925	2675	2797	1476	459
$\mathbb{F}_2, g = 3$	82/210	226	102	142	112	16
$\mathbb{F}_3, g = 3$	390/670	2564	1292	1548	922	190
$\mathbb{F}_5, g = 3$	2274/2994	65500	40094	32582	17588	4998
$\mathbb{F}_7, g=3$	325/7968	35822	29063	7723	909	236
$\mathbb{F}_{11}, g = 3$	259/30530	35974	29027	8049	965	264

black = all ordinary squarefree isogeny classes have been computed red = computation in progress

Marseglia Stefano 11 October 2018 11 / 13

Final remarks

- Using Centeleghe-Stix '15 we can compute the isomorphism classes in \mathscr{C}_h over \mathbb{F}_p where h is square-free and without real roots. much larger subcategory!!! ... but no polarizations in this case.
- we can also deal with the case \mathscr{C}_{h^d} (with h square-free) when $\mathbb{Z}[F,q/F]$ is Bass.
- base field extensions (ordinary case).
- period matrices (ordinary case) of the canonical lift.

Marseglia Stefano 11 October 2018 12 / 13

Thank you!