武汉大学测绘学院 2022-2023 第一学期《高等数学 A1》期中考试试题

1. (共18分,每小题6分)求极限:

A.
$$\lim_{x\to 0} \frac{1}{x^2} [(1+\sin x)^{2x}-1];$$

B.
$$\lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right)^{\frac{2}{n}}$$
;

C.
$$\Re \lim_{x \to 0} \frac{e^x + e^{-x} - x^2 - 2}{x^2(\sqrt{1 + \tan^2 x} - 1)}$$

- 2. (8分) 设 $y = \ln \left[\tan \frac{x}{2} \right]^{s}$, 求 dy.
- 3. (8 分) 求由方程 $z_0 + e' = e$ 所确定的隐函数 y 的二阶幂数值 y''(0).
- 5. (8 分) 设 $y = (3x-2)^2 \sin 2x$, 求 $y^{(100)}(0)$.
- 7. $(8\,

 eta)$ 求极限 $\lim_{t \to x} \left(\frac{\sin t}{\sin x} \right)^{\frac{x}{\sin t \sin x}}$,记此极限为 f(x),求函数 f(x) 的间断点并指出其类型.
- 8. (8分) 设函数 y = f(x) 由方程 $y^3 + xy^2 + x^2y + 6 = 0$ 确定,求 y = f(x) 的极值.
- 9. (6 分)设 f(x) 在 [0,1] 上具有二阶导数,且 f(0)=f(1),证明:在 (0,1) 至少存在一点 ξ ,使得 $f'(\xi)+\xi f''(\xi)=0$.
- 11. (6分) 设 f(x) 在 $\{0,a\}$ 上三阶可导,且 f(0)=0 , f''(x)<0 ,证明: $\frac{f(x)}{x}$ 在 $\{0,a\}$ 上单调减少.
- 12. (6分) 讨论方程 $4\arctan x x + \frac{4}{3}\pi \sqrt{3} = 0$ 实根的个数.