Funciones integrables

Sea f una función acotada en [a, b]. Consideremos los conjuntos

$$\{L(f, P) : P \text{ es una partición de } [a, b]\}$$

 $\{U(f, P) : P \text{ es una partición de } [a, b]\}$

Vimos que

•
$$L(f, P) \leq U(f, P)$$
;

Funciones integrables

Sea f una función acotada en [a, b]. Consideremos los conjuntos

$$\{L(f, P) : P \text{ es una partición de } [a, b]\}$$

 $\{U(f, P) : P \text{ es una partición de } [a, b]\}$

Vimos que

- $L(f, P) \leq U(f, P)$;
- La actividad inicial parece indicar que si $P \subset Q$ son dos particiones de [a,b], entonces

$$L(f, P) \le L(f, Q), \quad U(f, P) \ge U(f, Q)$$

Lema 0.1

Sea f una función acotada definida sobre un intervalo [a,b] y sean P y Q dos particiones de [a,b] tales que $P \subset Q$ (es decir, todos los puntos de P están en Q). Entonces

- $L(f,P) \leq L(f,Q),$
- $U(f,P) \geq U(f,Q).$

Lema 0.1

Sea f una función acotada definida sobre un intervalo [a,b] y sean P y Q dos particiones de [a,b] tales que $P \subset Q$ (es decir, todos los puntos de P están en Q). Entonces

- $L(f,P) \leq L(f,Q),$
- $U(f,P) \geq U(f,Q).$

Ideas de la prueba:

Supongamos que
$$Q = P \cup \{u\}$$
, $P = \{t_0 = a, t_1, \dots, t_n = b\}$, $Q = \{t_0 = a, t_1, \dots, t_{k-1}, u, t_k, \dots, t_n = b\}$, o sea,

$$u \in [t_{k-1}, t_k].$$

Sean $m'=\inf\{f(x): t_{k-1}\leq x\leq u\}, \quad m''=\inf\{f(x): u\leq x\leq t_k\}$

Sean $m' = \inf\{f(x) : t_{k-1} \le x \le u\}, \quad m'' = \inf\{f(x) : u \le x \le t_k\}$

Entonces

$$L(f,P) = (t_1-t_0)m_1+(t_2-t_1)m_2+\cdots+\left|(t_k-t_{k-1})m_k\right|+\cdots+(t_n-t_{n-1})m_n$$

$$L(f,Q) = (t_1 - t_0)m_1 + (t_2 - t_1)m_2 + \cdots + (u - t_{k-1})m' + (t_k - u)m'' + \cdots + (t_n - t_{n-1})m_n$$

Para ver que $L(f, P) \leq L(f, Q)$, bastará probar que

$$(t_k - t_{k-1})m_k \le (u - t_{k-1})m' + (t_k - u)m'' \tag{1}$$

Para ver que $L(f, P) \le L(f, Q)$, bastará probar que

$$(t_k - t_{k-1})m_k \le (u - t_{k-1})m' + (t_k - u)m''$$
 (1)

Observemos que $\{f(x): t_{k-1} \le x \le u\} \subset \{f(x): t_{k-1} \le x \le t_k\}$ de donde $m_k \le m'$.

Para ver que $L(f, P) \leq L(f, Q)$, bastará probar que

$$(t_k - t_{k-1})m_k \le (u - t_{k-1})m' + (t_k - u)m'' \tag{1}$$

Observemos que $\{f(x): t_{k-1} \le x \le u\} \subset \{f(x): t_{k-1} \le x \le t_k\}$ de donde $m_k \le m'$.

Análogamente, $m_k \leq m''$ y por lo tanto

$$m'(u-t_{k-1}) + m''(t_k-u) \ge m_k(u-t_{k-1}) + m_k(t_k-u)$$

= $m_k(u-t_{k-1}+t_k-u) = m_k(t_k-t_{k-1})$

lo que prueba (1).

Supongamos ahora que $Q = P \cup \{u_1, \cdots, u_l\}$.

Supongamos ahora que $Q=P\cup\{u_1,\cdots,u_l\}$. Pongamos $Q_1=P\cup\{u_1\}$, $Q_2=P\cup\{u_1,u_2\}=Q_1\cup\{u_2\}$ y, en general, para $j=2,\cdots,l$,

$$Q_j = Q_{j-1} \cup \{u_j\} = P \cup \{u_1, \cdots, u_j\}$$

con lo cual $Q = Q_I$.

Supongamos ahora que $Q=P\cup\{u_1,\cdots,u_l\}$. Pongamos $Q_1=P\cup\{u_1\}$, $Q_2=P\cup\{u_1,u_2\}=Q_1\cup\{u_2\}$ y, en general, para $j=2,\cdots,I$,

$$Q_j = Q_{j-1} \cup \{u_j\} = P \cup \{u_1, \cdots, u_j\}$$

con lo cual $Q = Q_I$.

 Q_j tiene exactamente un punto más que Q_{j-1} , para $j=2,\cdots,l$ de donde $L(f,Q_{j-1})\leq L(f,Q_j)$. Tendremos entonces que

$$L(f, Q_1) \leq L(f, Q_2) \leq \cdots \leq L(f, Q_{l-1}) \leq L(f, Q_l) = L(f, Q).$$

Supongamos ahora que $Q=P\cup\{u_1,\cdots,u_l\}$. Pongamos $Q_1=P\cup\{u_1\}$, $Q_2=P\cup\{u_1,u_2\}=Q_1\cup\{u_2\}$ y, en general, para $j=2,\cdots,l$,

$$Q_j = Q_{j-1} \cup \{u_j\} = P \cup \{u_1, \cdots, u_j\}$$

con lo cual $Q = Q_I$.

 Q_j tiene exactamente un punto más que Q_{j-1} , para $j=2,\cdots,l$ de donde $L(f,Q_{j-1})\leq L(f,Q_j)$. Tendremos entonces que

$$L(f, Q_1) \leq L(f, Q_2) \leq \cdots \leq L(f, Q_{l-1}) \leq L(f, Q_l) = L(f, Q).$$

Por otra parte, $Q_1 = P \cup \{u_1\}$, y por lo tanto tendremos $L(f,P) \leq L(f,Q_1)$, de donde resulta que

$$L(f, P) \leq L(f, Q)$$

Dejamos la prueba de que $U(f, P) \ge U(f, Q)$ como **ejercicio**.

Teorema 0.2

Sea f una función acotada definida sobre [a,b]. Sean P_1 y P_2 particiones cualesquiera de [a,b]. Entonces $L(f,P_1) \leq U(f,P_2)$.

Prueba:

Consideremos $P = P_1 \cup P_2$. Entonces $L(f, P) \leq U(f, P)$ y por el lema anterior

$$L(f, P_1) \leq L(f, P) \leq U(f, P) \leq U(f, P_2)$$
.

Teorema 0.2

Sea f una función acotada definida sobre [a,b]. Sean P_1 y P_2 particiones cualesquiera de [a,b]. Entonces $L(f,P_1) \leq U(f,P_2)$.

Prueba:

Consideremos $P = P_1 \cup P_2$. Entonces $L(f, P) \leq U(f, P)$ y por el lema anterior

$$L(f, P_1) \leq L(f, P) \leq U(f, P) \leq U(f, P_2)$$
. \square

Como consecuencia:

- $\{L(f, P) : P \text{ es una partición de } [a, b]\}$ es acotado superiormente;
- $\{U(f, P) : P \text{ es una partición de } [a, b]\}$ es acotado inferiormente.

Definición 0.3

Sea f una función acotada definida sobre un intervalo cerrado [a,b], y sea $\mathcal{P}_{[a,b]}$ el conjunto de todas las particiones de [a,b]. Decimos que f es **integrable** en [a,b] si

$$\sup\{L(f,P)\,:\,P\in\mathcal{P}_{[a,b]}\}=\inf\{U(f,P)\,:\,P\in\mathcal{P}_{[a,b]}\}=I.$$

En tal caso, el número real I se denomina **integral** de f en [a,b] y se denota

$$\int_a^b f \quad o \quad \int_a^b f(x) dx.$$

Definición 0.4

Sea f una función integrable y no negativa en un intervalo [a,b] y sea R(f) la región comprendida entre la gráfica de la función y el eje x, esto es

$$R(f) = \{(x, y) : a \le x \le b, 0 \le y \le f(x)\}.$$

Entonces la integral de f sobre [a,b] es, por definición, el **área** de R(f).

Caracterización de la integral

Teorema 0.5

Sea f una función acotada sobre el intervalo [a,b]. Entonces f es integrable si y sólo si para cada $\varepsilon>0$ existe una partición P_ε de [a,b] tal que

$$U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon.$$

En ese caso, $\int_a^b f(x)dx$ es el único número real I que verifica

$$L(f, P_{\varepsilon}) \leq I \leq U(f, P_{\varepsilon})$$

para cada $\varepsilon > 0$.

Sea $f:[a,b]\to\mathbb{R}$ dada por f(x)=c y $P=\{t_0=a,\cdots,t_n=b\}$ una partición de [a,b]. Entonces para todo $i=1,\cdots,n,\ m_i=M_i=c.$

Sea $f:[a,b]\to\mathbb{R}$ dada por f(x)=c y $P=\{t_0=a,\cdots,t_n=b\}$ una partición de [a,b]. Entonces para todo $i=1,\cdots,n$, $m_i=M_i=c$. Luego

$$L(f,P) = \sum_{i=1}^{n} (t_i - t_{i-1}) m_i = c \sum_{i=1}^{n} (t_i - t_{i-1})$$

$$= c (t_1 - a + t_2 - t_1 + t_3 - t_2 + \dots + t_{n-1} - t_{n-2} + b - t_{n-1})$$

$$= c (b - a).$$

Sea $f:[a,b]\to\mathbb{R}$ dada por f(x)=c y $P=\{t_0=a,\cdots,t_n=b\}$ una partición de [a,b]. Entonces para todo $i=1,\cdots,n$, $m_i=M_i=c$. Luego

$$L(f, P) = \sum_{i=1}^{n} (t_i - t_{i-1}) m_i = c \sum_{i=1}^{n} (t_i - t_{i-1})$$

$$= c (t_1 - a + t_2 - t_1 + t_3 - t_2 + \dots + t_{n-1} - t_{n-2} + b - t_{n-1})$$

$$= c (b - a).$$

Analogamente U(f, P) = c(b - a).

Sea $f:[a,b]\to\mathbb{R}$ dada por f(x)=c y $P=\{t_0=a,\cdots,t_n=b\}$ una partición de [a,b]. Entonces para todo $i=1,\cdots,n$, $m_i=M_i=c$. Luego

$$L(f,P) = \sum_{i=1}^{n} (t_i - t_{i-1}) m_i = c \sum_{i=1}^{n} (t_i - t_{i-1})$$

$$= c (t_1 - a + t_2 - t_1 + t_3 - t_2 + \dots + t_{n-1} - t_{n-2} + b - t_{n-1})$$

$$= c (b - a).$$

Analogamente U(f, P) = c(b - a). Luego f es integrable y

$$\int_a^b c\ dx = c(b-a)$$

Sea $f:[0,b]
ightarrow \mathbb{R}$, f(x)=x. Para $P=\{t_0=0,t_1,\cdots,t_n=b\}$ resultan

$$L(f,P) = \sum_{i=1}^{n} (t_{i-1} - t_i)t_{i-1}, \quad U(f,P) = \sum_{i=1}^{n} (t_{i-1} - t_i)t_i.$$

Sea $f:[0,b]
ightarrow \mathbb{R}$, f(x)=x. Para $P=\{t_0=0,t_1,\cdots,t_n=b\}$ resultan

$$L(f,P) = \sum_{i=1}^{n} (t_{i-1} - t_i)t_{i-1}, \quad U(f,P) = \sum_{i=1}^{n} (t_{i-1} - t_i)t_i.$$

Luego
$$U(f, P) - L(f, P) = \sum_{i=1}^{n} (t_{i-1} - t_i)^2$$
.

Pongamos $P_{arepsilon}=\{t_0,\cdots,t_n\}$ con

$$t_0 = 0, \ t_k = k \frac{b}{n} = t_{k-1} + \frac{b}{n}, k = 1, \dots, n.$$

Pongamos $P_{\varepsilon} = \{t_0, \cdots, t_n\}$ con

$$t_0 = 0, \ t_k = k \frac{b}{n} = t_{k-1} + \frac{b}{n}, k = 1, \dots, n.$$

Entonces $t_k - t_{k-1} = \frac{b}{n}$ y por lo tanto

$$U(f, P_n) - L(f, P_n) = \sum_{k=1}^n \left(\frac{b}{n}\right)^2 = \frac{b^2}{n} < \varepsilon$$

Pongamos $P_{\varepsilon} = \{t_0, \cdots, t_n\}$ con

$$t_0 = 0, \ t_k = k \frac{b}{n} = t_{k-1} + \frac{b}{n}, k = 1, \dots, n.$$

Entonces $t_k - t_{k-1} = \frac{b}{n}$ y por lo tanto

$$U(f, P_n) - L(f, P_n) = \sum_{k=1}^n \left(\frac{b}{n}\right)^2 = \frac{b^2}{n} < \varepsilon$$

Conluimos que f es integrable en [0, b].

Pongamos $P_{arepsilon}=\{t_0,\cdots,t_n\}$ con

$$t_0 = 0, \ t_k = k \frac{b}{n} = t_{k-1} + \frac{b}{n}, k = 1, \dots, n.$$

Entonces $t_k - t_{k-1} = \frac{b}{n}$ y por lo tanto

$$U(f, P_n) - L(f, P_n) = \sum_{k=1}^n \left(\frac{b}{n}\right)^2 = \frac{b^2}{n} < \varepsilon$$

Conluimos que f es integrable en [0, b].

¿Cómo podemos encontrar la integral de f?

$$L(f, P_n) = \sum_{k=1}^n \frac{b}{n} \left((k-1) \frac{b}{n} \right) = \left(\frac{b}{n} \right)^2 \sum_{k=1}^n (k-1).$$

$$L(f, P_n) = \sum_{k=1}^n \frac{b}{n} \left((k-1) \frac{b}{n} \right) = \left(\frac{b}{n} \right)^2 \sum_{k=1}^n (k-1).$$

Recordemos que $1+2+\cdots+N=\frac{N(N+1)}{2}$ y por lo tanto

$$L(f, P_n) = \frac{b^2}{n^2} \frac{(n-1)n}{2} = \frac{n-1}{n} \frac{b^2}{2}$$

$$L(f, P_n) = \sum_{k=1}^n \frac{b}{n} \left((k-1) \frac{b}{n} \right) = \left(\frac{b}{n} \right)^2 \sum_{k=1}^n (k-1).$$

Recordemos que $1+2+\cdots+{\it N}=\frac{{\it N}({\it N}+1)}{2}$ y por lo tanto

$$L(f, P_n) = \frac{b^2}{n^2} \frac{(n-1)n}{2} = \frac{n-1}{n} \frac{b^2}{2}$$

De manera análoga, obtenemos que $U(f,P_n)=\sum_{k=1}^n \frac{b}{n}\left(k\frac{b}{n}\right)=\frac{n+1}{n}\frac{b^2}{2}$

$$L(f, P_n) = \sum_{k=1}^n \frac{b}{n} \left((k-1) \frac{b}{n} \right) = \left(\frac{b}{n} \right)^2 \sum_{k=1}^n (k-1).$$

Recordemos que $1+2+\cdots+N=\frac{N(N+1)}{2}$ y por lo tanto

$$L(f, P_n) = \frac{b^2}{n^2} \frac{(n-1)n}{2} = \frac{n-1}{n} \frac{b^2}{2}$$

De manera análoga, obtenemos que $U(f, P_n) = \sum_{k=1}^n \frac{b}{n} \left(k \frac{b}{n} \right) = \frac{n+1}{n} \frac{b^2}{2}$ Como $\frac{n-1}{n} < 1$, resulta $L(f, P_n) < \frac{b^2}{2}$. Del mismo modo $U(f, P_n) > \frac{b^2}{2}$.

$$L(f, P_n) = \sum_{k=1}^n \frac{b}{n} \left((k-1) \frac{b}{n} \right) = \left(\frac{b}{n} \right)^2 \sum_{k=1}^n (k-1).$$

Recordemos que $1+2+\cdots+{\it N}=\frac{{\it N}({\it N}+1)}{2}$ y por lo tanto

$$L(f, P_n) = \frac{b^2}{n^2} \frac{(n-1)n}{2} = \frac{n-1}{n} \frac{b^2}{2}$$

De manera análoga, obtenemos que $U(f,P_n)=\sum_{k=1}^n \frac{b}{n}\left(k\frac{b}{n}\right)=\frac{n+1}{n}\frac{b^2}{2}$

Como $\frac{n-1}{n} < 1$, resulta $L(f, P_n) < \frac{b^2}{2}$. Del mismo modo $U(f, P_n) > \frac{b^2}{2}$.

Conluimos que cada $\varepsilon>0$ tiene asociada una partición P_n tal que

$$L(f,P_n)<\frac{b^2}{2}< U(f,P_n) \Rightarrow \left[\int_0^b x\,dx=\frac{b^2}{2}\right].$$

Otros ejemplos

• Con los mismos métodos que antes, puede probarse que la función

$$f(x) = x^2$$
 es integrable en $[0, b]$ y que $\int_0^b x^2 dx = \frac{b^3}{3}$.

Otros ejemplos

• Con los mismos métodos que antes, puede probarse que la función

$$f(x) = x^2$$
 es integrable en $[0, b]$ y que
$$\int_0^b x^2 dx = \frac{b^3}{3}.$$

• Consideremos ahora $f:[0,2] \to \mathbb{R}$ tal que f(x)=0 si $x \neq 1$, f(1)=1, y una partición $P=\{t_0,\cdots,t_n\}$ tal que $1\in(t_{k-1},t_k)$ p.a. k. Entonces

•
$$m_i = 0, \forall i = 1, \cdots, n$$

•
$$M_i = 0 \ \forall \ i \neq k$$
.

•
$$M_k = 1$$
.

$$L(f, P) = 0, \quad U(f, P) = t_k - t_{k-1}.$$

$$L(f, P) = 0, \quad U(f, P) = t_k - t_{k-1}.$$

Como para cada $\varepsilon > 0$ es posible elegir una partición con $t_k - t_{k-1} < \varepsilon$, resulta $U(f,P) - L(f,P) < \varepsilon$ y por lo tanto f es integrable.

$$L(f, P) = 0, \quad U(f, P) = t_k - t_{k-1}.$$

Como para cada $\varepsilon > 0$ es posible elegir una partición con $t_k - t_{k-1} < \varepsilon$, resulta $U(f,P) - L(f,P) < \varepsilon$ y por lo tanto f es integrable.

Más aún, para cualquier partición se verifica $L(f,P) \leq 0 \leq U(f,P)$, con

lo cual
$$\int_0^1 f(x) dx = 0$$
.

ullet Consideremos finalmente $f:[0,1] o\mathbb{R}$ dada por

$$f(x) = \begin{cases} 0 & \text{si } x \text{ es racional} \\ 1 & \text{si } x \text{ es irracional} \end{cases}.$$

$$L(f, P) = 0, \quad U(f, P) = t_k - t_{k-1}.$$

Como para cada $\varepsilon > 0$ es posible elegir una partición con $t_k - t_{k-1} < \varepsilon$, resulta $U(f,P) - L(f,P) < \varepsilon$ y por lo tanto f es integrable.

Más aún, para cualquier partición se verifica $L(f,P) \leq 0 \leq U(f,P)$, con

lo cual
$$\int_0^1 f(x) dx = 0$$
.

ullet Consideremos finalmente $f:[0,1] o\mathbb{R}$ dada por

$$f(x) = \begin{cases} 0 & \text{si } x \text{ es racional} \\ 1 & \text{si } x \text{ es irracional} \end{cases}.$$

Entonces

$$\inf\{\mathit{U}(\mathit{f},\mathit{P})\,:\,\mathit{P}\in\mathcal{P}_{[\mathsf{a},\mathit{b}]}\}=1,\ \sup\{\mathit{L}(\mathit{f},\mathit{P})\,:\,\mathit{P}\in\mathcal{P}_{[\mathsf{a},\mathit{b}]}\}=0$$

para cualquier partición, con lo cual f no es integrable.

Propiedades de la integral

Teorema 0.6

Si f es continua en [a, b], entonces f es integrable en [a, b].

Propiedades de la integral

Teorema 0.6

Si f es continua en [a, b], entonces f es integrable en [a, b].

Teorema 0.7

Sea f integrable en [a, b], $c \in [a, b]$ entonces:

f es integrable en [a,b] si y sólo si f es integrable en [a,c] y [c,b]. En este caso vale

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$$

Ideas de la prueba:

 \Rightarrow) Supongamos que f es integrable en [a,b] y tomemos $\varepsilon > 0$. Por la Caracterización de la integral, existirá una partición $P = \{t_0, \cdots, t_n\}$ de [a,b] tal que

$$U(f,P)-L(f,P)<\varepsilon.$$

Ideas de la prueba:

 \Rightarrow) Supongamos que f es integrable en [a,b] y tomemos $\varepsilon>0$. Por la Caracterización de la integral, existirá una partición $P=\{t_0,\cdots,t_n\}$ de [a,b] tal que

$$U(f,P)-L(f,P)<\varepsilon.$$

Podemos suponer que existe j tal que $t_j=c$ (si no tomamos la partición $Q=P\cup\{c\}$).

Ideas de la prueba:

 \Rightarrow) Supongamos que f es integrable en [a,b] y tomemos $\varepsilon>0$. Por la Caracterización de la integral, existirá una partición $P=\{t_0,\cdots,t_n\}$ de [a,b] tal que

$$U(f,P)-L(f,P)<\varepsilon.$$

Podemos suponer que existe j tal que $t_j = c$ (si no tomamos la partición $Q = P \cup \{c\}$). Sean $P' = \{t_0 = a, t_1, \cdots, t_j = c\}$ y $P'' = \{t_j = c, \cdots, t_n = b\}$. Entonces P' es una partición de [a, c] y P'' es una partición de [c, b].

Entonces

$$L(f, P) = L(f, P') + L(f, P''), \quad U(f, P) = U(f, P') + U(f, P'').$$

Restando miembro a miembro las igualdades anteriores, tenemos

$$[U(f,P') - L(f,P')] + [U(f,P'') - L(f,P'')] = U(f,P) - L(f,P) < \varepsilon.$$

Entonces

$$L(f, P) = L(f, P') + L(f, P''), \quad U(f, P) = U(f, P') + U(f, P'').$$

Restando miembro a miembro las igualdades anteriores, tenemos

$$[U(f,P') - L(f,P')] + [U(f,P'') - L(f,P'')] = U(f,P) - L(f,P) < \varepsilon.$$

Como ambos sumandos del primer término son no negativos,

$$U(f,P')-L(f,P')<\varepsilon, \quad U(f,P'')-L(f,P'')<\varepsilon.$$

Luego f integrable en [a, c] y en [c, b].

Entonces

$$L(f, P) = L(f, P') + L(f, P''), \quad U(f, P) = U(f, P') + U(f, P'').$$

Restando miembro a miembro las igualdades anteriores, tenemos

$$[U(f,P') - L(f,P')] + [U(f,P'') - L(f,P'')] = U(f,P) - L(f,P) < \varepsilon.$$

Como ambos sumandos del primer término son no negativos,

$$U(f,P')-L(f,P')<\varepsilon, \qquad U(f,P'')-L(f,P'')<\varepsilon.$$

Luego f integrable en [a, c] y en [c, b].

Además

$$L(f,P') \leq \int_a^c f(x)dx \leq U(f,P'), \quad L(f,P'') \leq \int_c^b f(x)dx \leq U(f,P'').$$

y entonces

$$L(f,P) \le \int_a^c f(x)dx + \int_c^b f(x)dx \le U(f,P)$$

Teorema 0.8

Sea $c \in \mathbb{R}$. Si f es integrable en [a, b], entonces cf es integrable en [a, b] y vale

$$\int_a^b cf(x)dx = c \int_a^b f(x)dx.$$

Teorema 0.8

Sea $c \in \mathbb{R}$. Si f es integrable en [a, b], entonces cf es integrable en [a, b] y vale

$$\int_a^b cf(x)dx = c \int_a^b f(x)dx.$$

Teorema 0.9

Sean f y g funciones integrables en [a,b]. Entonces f+g es integrable en [a,b] y vale

$$\int_a^b (f+g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx.$$

Extendiendo la noción de integral

Definición 0.10

Sea f una función. Donde tenga sentido, se define:

- si b < a, $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$.

Extendiendo la noción de integral

Definición 0.10

Sea f una función. Donde tenga sentido, se define:

- si b < a, $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$.

Con estas nociones vale, donde tenga sentido,

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

sin importar qué relación existe entre a, b y c.

Ejemplos

Sea f(x) = x y sean $0 \le a < b$. Entonces f es integrable en [0, a] y en [0, b], y como $a \in [0, b]$ también es integrable en [a, b]. Además vale:

$$\int_0^a f(x)dx = \frac{a^2}{2}, \quad \int_0^b f(x)dx = \frac{b^2}{2}$$

y por lo tanto

$$\int_{a}^{b} f(x)dx = \int_{a}^{0} f(x)dx + \int_{0}^{b} f(x)dx = -\int_{0}^{a} f(x)dx + \int_{0}^{b} f(x)dx = \frac{b^{2}}{2} - \frac{a^{2}}{2}$$

Ejemplos

Sea f(x) = x y sean $0 \le a < b$. Entonces f es integrable en [0, a] y en [0, b], y como $a \in [0, b]$ también es integrable en [a, b]. Además vale:

$$\int_0^a f(x) dx = \frac{a^2}{2}, \quad \int_0^b f(x) dx = \frac{b^2}{2}$$

y por lo tanto

$$\int_{a}^{b} f(x)dx = \int_{a}^{0} f(x)dx + \int_{0}^{b} f(x)dx = -\int_{0}^{a} f(x)dx + \int_{0}^{b} f(x)dx = \frac{b^{2}}{2} - \frac{a^{2}}{2}$$

De manera análoga, si $0 \le a \le b$, $f(x) = x^2$ es integrable en [a, b] y se tiene

$$\int_{a}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3}.$$

Consideremos la región

$$R = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 2, \ -2x^2 + 6x - 4 \le y \le 4x^2 - 12x + 10\}$$

R es la región comprendida entre las graficas de las funciones

$$f(x) = -2x^2 + 6x - 4$$
 y $g(x) = 4x^2 - 12x + 10$.

Consideremos la región

$$R = \{(x,y) \in \mathbb{R}^2 : 1 \le x \le 2, -2x^2 + 6x - 4 \le y \le 4x^2 - 12x + 10\}$$

R es la región comprendida entre las graficas de las funciones $f(x) = -2x^2 + 6x - 4$ y $g(x) = 4x^2 - 12x + 10$. f y g son continuas y entonces son integrables en [1,2]. El área de la región R se obtiene de restar al área de la región R(g) el área de la región R(f). Tenemos entonces

$$Area(R) = \int_{1}^{2} (g - f)(x) dx = \int_{1}^{2} (6x^{2} - 18x + 14) dx = ?$$

Consideremos la región

$$R = \{(x,y) \in \mathbb{R}^2 : 1 \le x \le 2, -2x^2 + 6x - 4 \le y \le 4x^2 - 12x + 10\}$$

R es la región comprendida entre las graficas de las funciones $f(x) = -2x^2 + 6x - 4$ y $g(x) = 4x^2 - 12x + 10$. f y g son continuas y entonces son integrables en [1,2]. El área de la región R se obtiene de restar al área de la región R(g) el área de la región R(f). Tenemos entonces

$$Area(R) = \int_{1}^{2} (g - f)(x) dx = \int_{1}^{2} (6x^{2} - 18x + 14) dx = 1$$

Alguna propiedades más

Lema 0.11

Sea f una función integrable en [a,b]. Si g es una función acotada en [a,b] tal que g(x)=f(x) para todo $x\in [a,b]$ salvo para un número finito de puntos x_1,\dots,x_n , entonces g es integrable en [a,b] y $\int_a^b g(x)dx=\int_a^b f(x)dx.$

Alguna propiedades más

Lema 0.11

Sea f una función integrable en [a,b]. Si g es una función acotada en [a,b] tal que g(x)=f(x) para todo $x\in [a,b]$ salvo para un número finito de puntos x_1,\dots,x_n , entonces g es integrable en [a,b] y $\int_a^b g(x)dx=\int_a^b f(x)dx$.

Teorema 0.12

Sea f integrable en [a,b] y supongamos que $m \le f(x) \le M$ para todo x en [a,b]. Entonces

$$m(b-a) \leq \int_a^b f(x)dx \leq M(b-a).$$