Logistic Regression

January 8, 2021

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     %matplotlib inline
[2]: ad_data=pd.read_csv('advertising.csv')
[3]:
     ad_data.head()
[3]:
        Daily Time Spent on Site
                                                      Daily Internet Usage
                                   Age
                                        Area Income
     0
                            68.95
                                    35
                                           61833.90
                                                                    256.09
     1
                            80.23
                                    31
                                           68441.85
                                                                    193.77
     2
                            69.47
                                    26
                                           59785.94
                                                                    236.50
     3
                            74.15
                                    29
                                           54806.18
                                                                    245.89
                            68.37
                                    35
                                           73889.99
                                                                    225.58
                                 Ad Topic Line
                                                           City Male
                                                                           Country
     0
                                                                    0
                                                                           Tunisia
           Cloned 5thgeneration orchestration
                                                    Wrightburgh
                                                      West Jodi
     1
           Monitored national standardization
                                                                             Nauru
     2
             Organic bottom-line service-desk
                                                       Davidton
                                                                    0
                                                                       San Marino
     3
        Triple-buffered reciprocal time-frame
                                                West Terrifurt
                                                                    1
                                                                             Italy
                Robust logistical utilization
                                                   South Manuel
                                                                    0
                                                                           Iceland
                  Timestamp Clicked on Ad
        2016-03-27 00:53:11
                                          0
     1 2016-04-04 01:39:02
     2 2016-03-13 20:35:42
                                          0
     3 2016-01-10 02:31:19
                                          0
     4 2016-06-03 03:36:18
                                          0
[4]: ad_data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000 entries, 0 to 999
    Data columns (total 10 columns):
    Daily Time Spent on Site
                                 1000 non-null float64
```

```
1000 non-null int64
Age
Area Income
                             1000 non-null float64
Daily Internet Usage
                             1000 non-null float64
Ad Topic Line
                             1000 non-null object
                             1000 non-null object
City
Male
                             1000 non-null int64
                             1000 non-null object
Country
                             1000 non-null object
Timestamp
Clicked on Ad
                             1000 non-null int64
```

dtypes: float64(3), int64(3), object(4)

memory usage: 78.2+ KB

```
[5]: ad_data.describe()
```

[5]:		Daily Time Spent on Site	Age Area Income	\
	count	1000.000000 10	000.000000 1000.000000	
	mean	65.000200	36.009000 55000.000080	
	std	15.853615	8.785562 13414.634022	
min		32.600000	19.000000 13996.500000	
	25%	51.360000	29.000000 47031.802500	
	50%	68.215000	35.000000 57012.300000	
	75%	78.547500	42.000000 65470.635000	
	max	91.430000	61.000000 79484.800000	
		Daily Internet Usage	Male Clicked on Ad	
	count	1000.000000 1000.0	000000 1000.00000	

	Daily	internet opage	mare	CIICKEU OII AU
count		1000.000000	1000.000000	1000.00000
mean		180.000100	0.481000	0.50000
std		43.902339	0.499889	0.50025
min		104.780000	0.000000	0.00000
25%		138.830000	0.000000	0.00000
50%		183.130000	0.000000	0.50000
75%		218.792500	1.000000	1.00000
max		269.960000	1.000000	1.00000

0.0.1 Exploratory Data Analysis

Histogram of the Age

```
[6]: sns.set_style('whitegrid')
     ad_data['Age'].hist(bins=30)
     plt.xlabel('Age')
```

[6]: Text(0.5, 0, 'Age')

Create a jointplot showing Area Income versus Age.

- [7]: sns.jointplot(x='Age',y='Area Income',data=ad_data)
- [7]: <seaborn.axisgrid.JointGrid at 0x21f58f13808>

Jointplot showing the kde distributions of Daily Time spent on site vs. Age

```
[8]: sns.jointplot(x='Age',y='Daily Time Spent on on Site',data=ad_data,color='red',kind='kde');
```


Jointplot of 'Daily Time Spent on Site' vs. 'Daily Internet Usage

```
[9]: sns.jointplot(x='Daily Time Spent on Site',y='Daily Internet

→Usage',data=ad_data,color='green')
```

[9]: <seaborn.axisgrid.JointGrid at 0x21f5922e388>

Pairplot with the hue defined by the 'Clicked on Ad'

```
[10]: sns.pairplot(ad_data,hue='Clicked on Ad',palette='bwr')

C:\Users\rajar\Anaconda3\lib\site-packages\statsmodels\nonparametric\kde.py:487:
RuntimeWarning: invalid value encountered in true_divide
   binned = fast_linbin(X, a, b, gridsize) / (delta * nobs)
C:\Users\rajar\Anaconda3\lib\site-
   packages\statsmodels\nonparametric\kdetools.py:34: RuntimeWarning: invalid value
   encountered in double_scalars
   FAC1 = 2*(np.pi*bw/RANGE)**2
```

[10]: <seaborn.axisgrid.PairGrid at 0x21f5921f948>

0.0.2 Training and Testing the Data

```
[15]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, u →random_state=42)
```

Training the Model

```
[16]: from sklearn.linear_model import LogisticRegression
```

```
[17]: logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)
```

C:\Users\rajar\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

FutureWarning)

Predicting the Test Data

```
[19]: predictions = logmodel.predict(X_test)
```

Evaluating the model

```
[20]: from sklearn.metrics import classification_report
```

[21]: print(classification_report(y_test, predictions))

	precision	recall	f1-score	support
0	0.87	0.96	0.91	162
1	0.96	0.86	0.91	168
accuracy			0.91	330
macro avg	0.91	0.91	0.91	330
weighted avg	0.91	0.91	0.91	330