

LA ESTRUCTURA MATEMÁTICA DEL SERIALISMO MUSICAL

Celia Rubio Madrigal

Dedicado a mis dos grandes pasiones: las matemáticas y la música.

It has been observed that mathematics is the most abstract of the sciences, music the most abstract of the arts.

— David Wright [1]

INTRODUCCIÓN AL TEXTO

Todas las estructuras musicales están basadas en estructuras matemáticas. Los elementos musicales de los que están compuestas las obras, como las notas, las dinámicas o los timbres, están agrupados en conjuntos, y, como tales, cumplen ciertas propiedades al relacionarse consigo mismos o con otros conjuntos.

A lo largo de la historia, los compositores han ido descubriendo e inventando estas propiedades musicales en las piezas que componían; por ejemplo, desde consonancias y disonancias entre notas, hasta la jerarquía según el pulso en el que la nota se encuentra. Las matemáticas son capaces de describir las propiedades de estos elementos musicales como para cualquier otro conjunto matemático.

Por ejemplo, las músicas serialistas se basan en la continua reiteración de secuencias de elementos musicales. Es decir, un compositor serialista tomará una secuencia ordenada de notas, dinámicas o timbres y la usará como único bloque constructivo de su obra. Puede, además, serializar más de un conjunto de elementos musicales, o incluso pretender serializar el máximo número de conjuntos – lo que a mediados del siglo XX se llamaría serialismo integral. Estas músicas se pueden describir matemáticamente por medio de permutaciones y grupos.

Son en estas estructuras en las que se centrará el presente texto, y más específicamente en el dodecafonismo, el primer sistema compositivo serialista. Se explicarán los fundamentos matemáticos que lo posibilitan, las razones históricas por las que surgió y los postulados que lo definieron, proponiendo ejemplos analizados. Además, se investigará sobre el valor artístico del serialismo mediante el uso de escalas no cromáticas en busca de consonancia.

Índice general

0.	INTRODUCCIÓN MATEMÁTICA	1
	0.1. CONJUNTOS Y GRUPOS	1
	0.2. FUNCIONES Y PERMUTACIONES	2
Ι	DODECAFONISMO	5
1.	INTRODUCCIÓN HISTÓRICA DEL DODECAFONISMO	7
	1.1. R. WAGNER Y LA EMANCIPACIÓN DE LA DISONANCIA	7
	1.2. POSROMANTICISMO Y ATONALISMO DE SCHOENBERG	8
	1.3. EL SURGIMIENTO DE UN SISTEMA	10
2.	EL SISTEMA DODECAFÓNICO DE SCHOENBERG	11
	2.1. LOS POSTULADOS DEL DODECAFONISMO	11
	2.2. LAS TRANSFORMACIONES DE UNA SERIE	13
	2.2.1. TRANSPOSICIONES	13
	2.2.2. RETROGRADACIÓN	14
	2.2.3. INVERSIÓN	14
	2.3. MATRICES DODECAFÓNICAS	15
3.	ANÁLISIS DE UNA OBRA DODECAFÓNICA: OP. 25	17
	3.1. SERIES DE LA SUITE OP. 25	17
	3.2. DESCRIPCIÓN DE LA SUITE OP. 25	18
	3.3. ANÁLISIS DE LA MUSETTE	19
4.	EL GRUPO DE LAS TRANSFORMACIONES	21
	4.1. NUEVAS DEFINICIONES Y NUEVAS TRANSFORMACIONES	21
	4.2. DIAGRAMAS DE RELOJ	23
	4.3. EL GRUPO: $D_{12} \times D_{12} \dots \dots$	24
	4.4. CONMUTACIONES ENTRE LOS ELEMENTOS DEL GRUPO .	26

II	ENEFONISMO	31
5.	EL SURGIMIENTO DEL SERIALISMO INTEGRAL 5.1. ALBAN BERG Y ANTON WEBERN	33 33 34 36
6.	MÁS HERRAMIENTAS MATEMÁTICAS6.1. ACCIÓN DE UN GRUPO SOBRE UN CONJUNTO	37 37 38 39
7.	CONTEO DE ESPECTROS SERIALES 7.1. ESPECTROS DEL GRUPO DE SCHOENBERG	41 42 43 44 45
ΙΙ	I MODIFICACIONES	47
8.	EL SERIALISMO EN LA FILOSOFÍA DEL ARTE 8.1. AUX	49 49 49 51
9.	ESTUDIO DE LAS OBRAS Y ESCALAS A MODIFICAR 9.1. Obras a modificar 9.1.1. Schoenberg: Suite para piano, Op. 25 9.1.2. Berg: Lied der Lulu 9.1.3. Berg: Der Wein 9.1.4. Webern: Variations, Op. 27 9.1.5. Webern: 3 Lieder, Op. 18 9.2. Escalas y funciones a utilizar	53 53 54 54 55 55 56 56
10	RESULTADOS DE LAS MODIFICACIONES	59
	10.1. AUX1	59 59 59
A T	NEXOS	61

Apéndice A. Código para el cálculo de matrices dodecafónicas.	63
Apéndice B. Series de la Suite Op. 25.	67
Apéndice C. Análisis serial de la Musette.	71
Apéndice D. Conmutaciones del grupo $\mathbf{D}_{12} \ge \mathbf{D}_{12}$	7 5
Bibliografía	77

Capítulo 0

INTRODUCCIÓN MATEMÁTICA

0.1. CONJUNTOS Y GRUPOS

La teoría de conjuntos es la rama de las matemáticas que estudia las propiedades y relaciones de los *conjuntos*. En matemáticas, un conjunto es una colección de objetos bien definidos y distintos entre sí que se llaman *elementos*.

Se dice que un conjunto está bien definido cuando, dado un elemento cualquiera, éste o pertenece al conjunto o no pertenece a él. Para definir un conjunto se puede o bien listar los objetos uno a uno, o bien describirlos por medio de un predicado: una o varias propiedades que caracterizan a todos los elementos de dicho conjunto.

Por ejemplo, el conjunto K_i, formado por las doce notas de la escala cromática de una misma octava i, está bien definido porque podemos hacer una lista con ellas:

$$K_4 = \{Do_4, Do\#_4, Re_4, Re\#_4, Mi_4, Fa_4, Fa\#_4, Sol_4, Sol\#_4, La_4, La\#_4, Si_4\}$$

Por un lado, aun llamando a las notas de distinta manera, el conjunto, conceptualmente, es el mismo. Además, el hecho de listar algún elemento más de una vez no afecta a su definición. Como $\mathrm{Do}\#_4 = \mathrm{Reb}_4,^1$ K₄ también puede ser listado así:

$$K_4 = \{Do_4, Do\#_4, Re \flat_4, Re \#_4, Mi_4, Fa_4, Fa\#_4, Sol_4, Sol\#_4, La_4, La\#_4, Si_4\}$$

¹En este texto se trabajará siempre con temperamento igual por convenio.

En cambio, el conjunto D, formado por las duraciones rítmicas elementales – sin ligaduras ni puntillos –, es infinito, por lo que no se puede listar de forma completa. Sin embargo, se puede expresar por medio de un predicado:

$$D = \{2^n : n \in \mathbb{Z}, \ n \le 2\} = \{4, \ 2, \ 1, \ \frac{1}{2}, \ \frac{1}{4}, \ \frac{1}{8}, \ \ldots\} = \{., \ \downarrow, \ \rlap{\downarrow}, \ \ldots\}$$

Los elementos de un conjunto pueden combinarse mediante *operaciones* para dar otros objetos matemáticos. Se dice que un conjunto X no vacío y una operación binaria (*) forman un grupo (X, *) cuando cumplen:

- 1. Su operación es interna: Si a y b pertenecen a X, a*b pertenece a X.
- 2. Su operación es asociativa: Si a, b y c pertenecen a X, (a*b)*c = a*(b*c).
- 3. Existe un elemento e en X, llamado elemento identidad, tal que para todo a que pertenece a X se cumple que e*a=a*e=a. Se puede probar que el elemento identidad es único para cada grupo.
- 4. Cada elemento a perteneciente a X tiene asociado otro elemento a^{-1} en X, llamado elemento inverso, tal que $a * a^{-1} = a^{-1} * a = e$. Se puede probar que el elemento inverso de cada elemento es único.

0.2. FUNCIONES Y PERMUTACIONES

Una función es una regla que asocia a cada elemento de un primer conjunto, llamado dominio, un único elemento de un segundo conjunto, llamado codominio. Si la función se llama f, el dominio A y el codominio B, se denota $f : A \to B$. El elemento asociado a un x mediante f se denota f(x).

Todos los $x \in A$ tienen que estar asociados a un $f(x) \in B$, pero no todos los elementos de B tienen un elemento de A asociado. Los elementos de B que sí lo cumplen, es decir, los que se pueden escribir como f(x) para algún x, forman el conjunto imagen de la función: $im(f) = \{ y \in B : \exists x \in A, f(x) = y \}$

Cuando varias funciones se aplican una detrás de la otra decimos que realizamos la operación de composición de funciones. Se representa con el símbolo \circ . La imagen de la primera función será el dominio de la segunda, y así sucesivamente. Por ejemplo, aplicar una función f(x) y después aplicar una función g(x) se denota $g(f(x)) = (g \circ f)(x)$.

Una permutación $\sigma(X)$ es una función sobre un conjunto X que asocia sus elementos biyectivamente a los elementos del mismo conjunto X. Es decir, asocia cada elemento a uno, y solo uno, de los elementos de su mismo conjunto $(\sigma: X \to X)$. [2]

El conjunto de todas las posibles permutaciones sobre un determinado conjunto X, junto con la operación de composición de funciones (\circ) , forma un grupo denotado por S_x . Para probarlo, se debe comprobar que cumple todas las propiedades de los grupos.

- 1. Permutar dos veces es también una permutación.
- 2. La composición de funciones es asociativa.
- 3. La permutación que asigna un elemento a sí mismo es la identidad.
- 4. Como las permutaciones son biyectivas, cada una tiene una inversa que es también una permutación.

Cuando X es el conjunto de números naturales desde 1 hasta n, X = $\{a \in \mathbb{N} : 1 \le a \le n\} = \{1, 2, 3, \ldots, n-1, n\}$, el grupo S_x se representa como S_n y se le denomina el grupo simétrico de orden n. El número de elementos en S_n , es decir, de posibles permutaciones de n números, es n!.

En los ejemplos musicales de este texto, los conjuntos estarán numerados desde 0 hasta n-1, siendo n el número de elementos a permutar, en vez de desde 1 hasta n. Seguirán siendo grupos simétricos de orden n, pero con una numeración distinta.

La notación utilizada para representar una permutación σ perteneciente a S_n con la numeración desde 0 y con $\sigma(m)$ siendo el elemento asociado a m mediante σ , es:

$$\sigma = \begin{pmatrix} 0 & 1 & 2 & n-3 & n-2 & n-1 \\ \sigma(0) & \sigma(1) & \sigma(2) & \cdots & \sigma(n-3) & \sigma(n-2) & \sigma(n-1) \end{pmatrix}$$

Parte I DODECAFONISMO

Capítulo 1

INTRODUCCIÓN HISTÓRI-CA DEL DODECAFONISMO

1.1. RICHARD WAGNER Y LA EMANCI-PACIÓN DE LA DISONANCIA

El periodo de la historia de la música predominante en el siglo XIX, comúnmente llamado Romanticismo, culminó con los dramas musicales de Richard Wagner, en los que todos los elementos de la obra estaban detalladamente estudiados por el compositor. A este concepto lo llamaba Gesamtkunstwerk («obra de arte total»¹), ya que creía poseer la responsabilidad de reunir todas las artes en una misma obra. Wagner se aseguraba personalmente de que en sus óperas las artes escénicas, musicales, poéticas y visuales se combinaran entre sí a la perfección.

Richard Wagner (1813-1883)

La idea del Gesamtkunstwerk la desarrolló alrededor de 1850, y la plasmó en su totalidad en su ciclo de cuatro óperas Der Ring des Nibelungen, estrenado el 16 de agosto de 1876. Wagner controló y creó cada aspecto de la tetralogía, desde la música hasta el libreto, el vestuario y la escenografía. Incluso mandó crear su propia sala de conciertos en Bayreuth, el Festspielhaus, para que el escenario se adecuara a sus ideas sobre el pensamiento y la cultura musical.

¹Richard Wagner, Oper und drama, 1851.

Así, a ojos de compositores posteriores, Wagner había agotado todas las posibilidades de la música tonal, y quizás ya había comenzado el viraje hacia el predominio de la disonancia con su abundante uso del cromatismo, como en el famoso primer acorde del drama musical *Tristan und Isolde* (1865). Consta de las notas Fa, Si, Re# y Sol#, y sus intervalos desde el Fa son una cuarta aumentada, una sexta aumentada y una novena aumentada.

Siguiendo la mentalidad alemana del progreso como un camino ascendente, el paso siguiente para la composición musical debía consistir en deshacerse progresivamente de la tonalidad y desarrollar la «emancipación de la disonancia»². Así fue como Arnold Schoenberg ideó sus teorías del pensamiento musical, y éstas dieron paso a la creación de la atonalidad. [3]

1.2. POSROMANTICISMO Y ATONALIS-MO DE SCHOENBERG

Fuertemente influido por Richard Wagner y Johannes Brahms (1833–1897) desde su adolescencia, Schoenberg comenzó componiendo al estilo posromántico de su época, llevando el cromatismo y la orquestación hasta el extremo. Sin embargo, y no espontáneamente, empezó a buscar en sus composiciones que cada sonido tuviera valor por sí mismo, un valor independiente de su funcionalidad tonal.

Arnold Schoenberg (1874–1951)

Para él, la música no estaba intrínsecamente dirigida a una tónica. En las progresiones, lo importante era el paso de un acorde a otro, y no hacia dónde se dirigían éstos. Además, él opinaba que se debían poder utilizar las notas de los modos eclesiásticos libremente, por lo que consideraba las notas no diatónicas tan válidas como las diatónicas. Esto hacía imposible distinguir unas de otras, no pudiendo identificar apenas la tónica. De esta, y de otras muchas formas, Schoenberg conseguía que la jerarquía tonal quedara desestabilizada. [3]

De esta época es su primera obra importante, *Verklärte Nacht* («Noche transfigurada»), Op. 4. Compuesto en 1899, este sexteto de cuerdas está inspirado por el poema homónimo de Richard Dehmel. La música, según su autor, expresa el paseo de un hombre y una mujer en medio del abrazo de la naturaleza. Aunque en la obra

²Arnold Schoenberg, Composition with twelve tones, en Style and Idea, 1950.

aún prevalece la armonía tradicional basada en acordes, Schoenberg sitúa al oyente en un terreno de indefinición tonal, no sólo en el plano armónico sino también en el melódico. Además, hace uso del acorde de novena invertido, inexistente hasta entonces y, por tanto, rechazado por la crítica. [4]

Tras pasar por la etapa tonal posromántica, y debido a su convicción en la irrevocabilidad histórica de la evolución de la música hacia el cromatismo total [5], en 1908 Schoenberg se desligó de la tonalidad completamente con el ciclo de canciones Das Buch der Hängenden Gärten. A partir de entonces se dedicó a componer fragmentos muy breves cuya estructura era definida por motivos y no por la armonía, como solía ocurrir en formas musicales anteriores³. A este periodo en sus composiciones se le llama atonalidad libre, aunque cabe destacar que Schoenberg rechazaba fervientemente este término:

La expresión "música atonal" es de lo más desafortunada – es como llamar a volar "el arte de no caer" o nadar "el arte de no ahogarse".⁴

A este periodo pertenece también su famoso ciclo de canciones *Pierrot Lunaire*, Op. 21. Su nombre completo es "Tres veces siete poemas de Pierrot Lunaire de Albert Giraud", ya que está dividida en 3 grupos de 7 canciones cada uno, cuyos textos son una selección de 21 poemas del ciclo homónimo de Albert Giraud.

Se encuentran en ella abundantes referencias al número 7: Schoenberg hace un uso extensivo de motivos de 7 notas a lo largo de la obra, mientras que el conjunto musical que la interpreta, incluyendo al director, consta de 7 miembros. De hecho, a este conjunto de instrumentos – flauta, clarinete, violín, violonchelo, piano y cantante – se le ha dado el nombre de ensemble Pierrot en su honor. Otros números importantes en la obra son el 3 y el 13. Cada poema consiste de 13 líneas, mientras que la primera línea de cada poema aparece 3 veces: en las líneas 1, 7 y 13.

En esta obra no sólo hay una ausencia total de relaciones tonales, sino que el tratamiento vocal evita también cualquier relación estética con las técnicas tradicionales: es un *Sprechgesang*, un canto hablado. De hecho, Schoenberg se refiere a estas piezas no como canciones, sino como melodramas. [4]

³La forma sonata es el ejemplo más destacado de estructura basada en la armonía.

⁴A. Schoenberg, *Hauer's Theories*, en *Style and Idea*, 1923.

1.3. EL SURGIMIENTO DE UN SISTEMA

Schoenberg no estaba satisfecho con la técnica compositiva que utilizaba, ya que admiraba las obras extensas de los músicos románticos y pensaba que su atonalidad no podía sostener una obra de gran envergadura. Es decir, necesitaba un hilo conductor mejor que los motivos para poder componer obras atonales más largas.

Además, por aquella época sufrió una crisis en muchos aspectos de su vida. En lo personal, su mujer Matilde Zemlinsky acababa de abandonarlo por otro hombre, aunque posteriormente volvería junto al compositor. Y, en lo profesional, sus obras no eran del gusto del público, por lo que no contaba con suficiente dinero para mantener a su familia. Todas estas circunstancias, unidas al desarrollo de la Primera Guerra Mundial, no le permitieron componer muchas obras entre 1914 y 1923.

Tras el final de la guerra, en 1919, Schoenberg fundó la Sociedad para Interpretaciones Musicales Privadas junto a sus discípulos y amigos Alban Berg y Anton Webern. Schoenberg, Berg y Webern se autodenominaron la Segunda Escuela de Viena en honor al grupo de compositores del siglo XVIII Haydn, Mozart y Beethoven, quienes formaban la Primera Escuela de Viena. Las carreras compositivas de Berg y Webern se desarrollarán en el apartado 5.1.

En la Sociedad para Interpretaciones Musicales Privadas se presentaban músicas contemporáneas en circunstancias que favorecieran su adecuada apreciación. Así se evitaba que dichas obras, al no ser entendidas por el público, fueran inmediatamente rechazadas. Las obras de compositores como Mahler, Debussy, Bartók, Ravel, Strauss y Stravinsky fueron incluidas en los programas de conciertos organizados por la Sociedad.

En este contexto Schoenberg pudo reflexionar sobre sus técnicas compositivas, y al fin publicó en 1923 su ensayo *Método de composición con doce sonidos*, donde se describían por primera vez los axiomas del dodecafonismo: la solución al problema de la atonalidad libre que le había estado atormentando durante una década.

Su primera obra íntegramente dodecafónica, publicada también en 1923, es la Suite para piano Op. 25. Es la pieza más temprana en la que Schoenberg usa series dodecafónicas en cada uno de los movimientos. En dos obras anteriores a ella usa series dodecafónicas, pero en movimientos aislados: la Op. 23, 5 Stücke (1920–23), en el movimiento de Waltz final; y su Serenata, Op. 24, en su Soneto central.

Las series utilizadas en la Suite Op. 25 servirán de ejemplo en este texto, y su tercer movimiento, Musette, será estudiado y analizado con el fin de entender una obra dodecafónica en toda su extensión.

Capítulo 2

EL SISTEMA DODECAFÓ-NICO DE SCHOENBERG

2.1. LOS POSTULADOS DEL DODECAFON-ISMO

El dodecafonismo es un sistema compositivo que predetermina la melodía y la armonía a partir de una ordenación de las doce notas de la escala cromática, que se llama *serie*. Ésta y algunas de sus transformaciones son los ladrillos con los que se construye la obra: se deben colocar una detrás de otra. Son, por tanto, el único material que se puede utilizar para determinar las alturas de las notas.

El resto de elementos de la pieza, como el número de instrumentos, el ritmo, el carácter, la textura o las dinámicas, se dejan a discreción del compositor. No serializar todos los conjuntos será la principal crítica al dodecafonismo por parte de los compositores serialistas que sucedieron a Schoenberg: los compositores de serialismo integral de mediados del siglo XX, como Pierre Boulez (apartado 5.3). Para los serialistas integrales, aquello restaba cohesión al modelo compositivo; para los dodecafonistas, aportaba libertad.

Precisamente la predeterminación dodecafónica, aunque parece limitante, permite realizaciones musicales y estilos de composición muy diferentes: Schoenberg daba un tratamiento tradicional a sus obras, ya que aún admiraba las formas clásicas; Berg iba más allá al utilizar series que recordaban a las tríadas tonales; y, en cambio, Webern evitaba radicalmente cualquier asociación con la tradición.

Schoenberg definió su sistema musical a partir de cuatro postulados que, en realidad, se basan en principios matemáticos:

- 1. La serie [sobre la que se construye la obra dodecafónica] consta de las doce notas de la escala cromática dispuestas en un orden lineal específico.
- 2. Ninguna nota aparece más de una vez en la serie.

Los dos primeros postulados expresan que una obra dodecafónica fundamenta su estructura sobre una permutación de la escala de doce semitonos. Dicha permutación σ es una biyección del conjunto numerado de las doce notas {Do = 0, Do# = 1, Re = 2, Re# = 3, Mi = 4, Fa = 5, F# = 6, Sol = 7, Sol# = 8, La = 9, La# = 10, Si = 11} consigo mismo, y se representa de esta forma:

$$\sigma = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \sigma(0) & \sigma(1) & \sigma(2) & \sigma(3) & \sigma(4) & \sigma(5) & \sigma(6) & \sigma(7) & \sigma(8) & \sigma(9) & \sigma(10) & \sigma(11) \end{pmatrix}$$

La permutación $\sigma(m)$, con $m \in \mathbb{Z}/(12)^1$, pertenece al grupo simétrico de orden 12: $\sigma \in S_{12}$. Por ejemplo, en la Suite para piano Op. 25 Schoenberg utiliza como serie original en todos los movimientos de la obra la siguiente permutación σ :

$$\sigma = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 4 & 5 & 7 & 1 & 6 & 3 & 8 & 2 & 11 & 0 & 9 & 10 \end{pmatrix}$$

- 3. La serie será expuesta en cualquiera de sus aspectos lineales: original, inversión, retrogradación de la original y retrogradación de la inversión.
- 4. La serie puede usarse en sus cuatro aspectos desde cualquier nota de la escala.

Los dos últimos postulados amplían los recursos compositivos al admitir la transformación de la serie original mediante inversión, retrogradación, inversión retrógrada y transposición². El compositor puede utilizar cualquiera de las transformaciones de una serie al componer su obra dodecafónica. El conjunto de series que puede utilizar, que viene dado por la serie original y todas sus posibles transformaciones, se conoce como espectro serial (ver sección 2.3).

 $^{{}^{1}\}mathbb{Z}/(12) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\},$ el grupo cíclico de orden 12.

²No confundir con un 2-ciclo. Una transposición musical se corresponde con una traslación matemática.

2.2. LAS TRANSFORMACIONES DE UNA SERIE

Transformar una serie es matemáticamente equivalente a aplicar una función sobre la serie que asocie su permutación a la permutación transformada. Por tanto, cualquier función transformativa Ψ se aplica sobre el conjunto de las permutaciones: S_{12} , el grupo simétrico de orden 12 ($\Psi: S_{12} \to S_{12}$).

2.2.1. TRANSPOSICIONES

La transposición, mencionada en el cuarto postulado, consiste en subir o bajar la serie original un número determinado de semitonos. Por tanto, no se modifican los intervalos entre las notas, sino solamente la altura a la que está la serie. Ya que consideraremos todas las octavas equivalentes, debemos trabajar módulo 12.

La serie transportada k semitonos, $T^{k}(\sigma)$, se construye sumando k a σ (mod. 12):

$$\forall m \in \mathbb{Z}/(12) : T^{k}(\sigma(m)) = \sigma(m) + k$$
 con k constante;

$$T^{k} = \begin{pmatrix} 0 & 1 & 2 & 9 & 10 & 11 \\ \sigma(0) + k & \sigma(1) + k & \sigma(2) + k & \cdots & \sigma(9) + k & \sigma(10) + k & \sigma(11) + k \end{pmatrix}$$

A su vez, T^k se forma al componer k transposiciones de 1 semitono, T^1 : $T^k = T^1 \circ T^1 \circ \dots \circ T^1$, k veces. Debido a que k es en realidad el exponente en la potencia de T, se coloca este número como superíndice.

Históricamente, la notación Ψ_k , Ψ^k o $\Psi(k)$ se ha usado en sustitución de la composición de la transposición T^k y otra función Ψ , en el respectivo orden: $\Psi^k = \Psi \circ T^k = \Psi(T^k)$. Sin embargo, esta notación es especialmente ambigua y confusa. Por ello, es preferible ceñirse a la notación estrictamente matemática; es decir, a la composición de funciones, aun omitiendo el símbolo \circ .

Una posible serie transportada sobre la permutación σ de la Suite para piano Op. 25, con k = 6, es la siguiente serie T⁶:

$$T^6 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 10 & 11 & 1 & 7 & 0 & 9 & 2 & 8 & 5 & 6 & 3 & 4 \end{pmatrix}$$

2.2.2. RETROGRADACIÓN

La retrogradación consiste en leer la serie original desde la nota final hacia atrás, es decir, aplicar a la serie una simetría especular. De este modo, la primera nota irá al último puesto, la segunda al penúltimo, y así sucesivamente.

La serie retrógrada se construye de esta forma:

$$\forall m \in \mathbb{Z}/(12) : \mathrm{R}\left(\sigma\left(m\right)\right) = \sigma\left(-1 - m\right)$$

$$R = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \sigma(11) & \sigma(10) & \sigma(9) & \sigma(8) & \sigma(7) & \sigma(6) & \sigma(5) & \sigma(4) & \sigma(3) & \sigma(2) & \sigma(1) & \sigma(0) \end{pmatrix}$$

La serie retrógrada sobre la permutación σ de la Suite Op. 25 es la siguiente serie R:

$$R = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 10 & 9 & 0 & 11 & 2 & 8 & 3 & 6 & 1 & 7 & 5 & 4 \end{pmatrix}$$

2.2.3. INVERSIÓN

La inversión consiste en cambiar la dirección —de ascendente a descendente, y viceversa— de los intervalos entre cada nota de la serie. Si el primer intervalo en la serie original σ es de +k, el primer intervalo en la serie invertida I será de -k (mod. 12), por lo que debemos cambiar el signo de σ para construir I. Además, queremos que la primera nota de ambas series, I(0) y σ (0), coincidan, así que debemos transportar la serie $-\sigma$ un número λ de semitonos para que esta condición se cumpla:

$$I(0) = -\sigma(0) + \lambda = \sigma(0) \implies \lambda = 2\sigma(0)$$

Por tanto, la serie invertida se construye de esta forma:

$$\forall m \in \mathbb{Z}/(12) : \mathcal{I}(\sigma(m)) = -\sigma(m) + 2\sigma(0)$$

$$I = \begin{pmatrix} 0 & 1 & 2 & 10 & 11 \\ \sigma(0) & -\sigma(1) + 2\sigma(0) & -\sigma(2) + 2\sigma(0) & \dots & -\sigma(10) + 2\sigma(0) & -\sigma(11) + 2\sigma(0) \end{pmatrix}$$

La serie invertida sobre la permutación σ de la Suite Op. 25 es la siguiente serie I:

$$I = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 4 & 3 & 1 & 7 & 2 & 5 & 0 & 6 & 9 & 8 & 11 & 10 \end{pmatrix}$$

En total, obtendremos 48 series – aunque no obligatoriamente distintas entre sí – pertenecientes a un solo espectro serial. Hay 12 series originales sobre cada una de las doce notas, 12 series retrógradas, 12 invertidas y 12 series sobre las que se aplica tanto la retrogradación como la inversión. A continuación se muestra la nomenclatura histórica junto a la matemática:

Nomenclatura histórica	Nomenclatura matemática
$T_0,T_1,T_2.\dots$	$\mathrm{T}^0,\mathrm{T}^1,\mathrm{T}^2.\dots$
$R_0, R_1, R_2 \dots$	R, RT^1, RT^2
$I_0, I_1, I_2 \dots$	I, IT^1, IT^2
IR_0, IR_1, IR_2	IR, IRT_1, IRT_2

2.3. MATRICES DODECAFÓNICAS

El espectro serial de cualquier serie es, al fin y al cabo, el material compositivo del que se dispone para la composición de una obra concreta. Este conjunto de series puede ordenarse para formar una *matriz dodecafónica*, la cual contiene en una sola tabla todo el material que el compositor puede utilizar.

He creado un programa informático que devuelve en formato LATEX la matriz dodecafónica correspondiente a cualquier serie que se introduzca en teclado. Además, genera la nomenclatura histórica de cada serie. El código, escrito en lenguaje C++, está incluido en el Anexo A, página 63, y está creado en base a las fórmulas de construcción de series y a la propiedad de invariancia de intervalos en las transportaciones.

A continuación se incluye la matriz dodecafónica de la serie σ de la Suite Op. 25 de Schoenberg. Mientras que la mayoría de tablas tienen dos filas inferiores, que se corresponden con las distintas nomenclaturas de RI e IR para una misma serie –

CAPÍTULO 2

ya que normalmente no conmutan –, en la matriz de la serie σ sí coinciden, por lo que solamente se incluye una de las dos (más información sobre la conmutación de las transformaciones en el apartado 4.4).

La matriz se lee en la dirección en la que aparece el nombre de la serie. Las series T se leen de izquierda a derecha, mientras que las series R de derecha a izquierda. Las series I se leen de arriba a abajo y las IR/RI de abajo a arriba.

	I_0	${ m I}_1$	I_3	I_9	I_2	I_{11}	${ m I}_4$	I_{10}	I_7	I_8	I_5	I_6	
T_0	4	5	7	1	6	3	8	2	11	0	9	10	R_0
T_{11}	3	4	6	0	5	2	7	1	10	11	8	9	R_{11}
T_9	1	2	4	10	3	0	5	11	8	9	6	7	R_9
T_3	7	8	10	4	9	6	11	5	2	3	0	1	R_3
T_{10}	2	3	5	11	4	1	6	0	9	10	7	8	R_{10}
T_1	5	6	8	2	7	4	9	3	0	1	10	11	R_1
T_8	0	1	3	9	2	11	4	10	7	8	5	6	R_8
T_2	6	7	9	3	8	5	10	4	1	2	11	0	R_2
T_5	9	10	0	6	11	8	1	7	4	5	2	3	R_5
T_4	8	9	11	5	10	7	0	6	3	4	1	2	R_4
T_7	11	0	2	8	1	10	3	9	6	7	4	5	R_7
T_6	10	11	1	7	0	9	2	8	5	6	3	4	R_6
	IR_0	IR_1	IR_3	IR_9	IR_2	IR_{11}	IR_4	IR_{10}	IR_7	IR_8	IR_5	IR_6	

Capítulo 3

ANÁLISIS DE UNA OBRA DODECAFÓNICA: OP. 25

3.1. SERIES DE LA SUITE OP. 25

Lo primero que hará un compositor dodecafónico antes de empezar a componer será escoger su serie original. Su elección nunca es una simple cuestión de azar; al contrario, ya que las singularidades de la serie darán un carácter especial a toda la obra. Por ejemplo, el compositor puede escoger una serie con simetrías, y así tendrá series repetidas entre su espectro serial. También puede tener simetrías internas solo en un fragmento de tres o cuatro notas, y de este modo podrá el compositor oscilar entre varias series del espectro que se parezcan entre sí.¹

En la Suite para Piano Op. 25, Schoenberg escoge su serie σ para resaltar el intervalo de tritono (6 semitonos). A continuación se observan en negrita los intervalos entre las notas de esta serie, en unidad de semitono:

$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 4 & \mathbf{1} & 5 & \mathbf{2} & 7 & \mathbf{6} & 1 & \mathbf{5} & 6 & \mathbf{9} & 3 & \mathbf{5} & 8 & \mathbf{6} & 2 & \mathbf{9} & 11 & \mathbf{1} & 0 & \mathbf{9} & \mathbf{9} & \mathbf{1} & 10 & \mathbf{6} \end{pmatrix}$$

Presenta repeticiones triples de los intervalos de tritono (6), de sexta mayor (9) y de segunda menor o semitono (1): los intervalos más disonantes; una repetición doble de cuarta justa (5), y un intervalo de segunda mayor (2); además de una

¹Para un estudio completo de las relaciones de similitud entre series se recomienda *On the Similarity of Twelve-Tone Rows*, de Tuukka Ilomäki. [15]

consecución de intervalos repetida: 9-1-9-1. Como se forma el intervalo de tritono al enlazar la serie original con una serie que empiece por la misma nota, se tiene en cuenta el intervalo de tritono (6) al final. En el dodecafonismo se evitan deliberadamente los intervalos de tercera mayor (4), ya que estos son la base de la eludida armonía tonal.

El intervalo de tritono tiene la particularidad de no modificarse en la inversión y transportación k=6, por lo que estos intervalos aparecen en los lugares originales, mientras que en los procedimientos de retrogradación y retrogradación inversa ocupan sus lugares en retrógrado. En particular, Schoenberg utiliza entre los seis movimientos de la Suite solamente las ocho series de todo el espectro serial que cumplen estos requisitos: T^0 , T^6 , I, IT^6 , R, RT^6 , RI y RIT^6 , que podemos observar en el Anexo B, página 67.

Estas series tienen muchos elementos en común: todas comienzan o acaban por Mi‡ o por Sib, lo que permite enlazar unas series con otras por medio del unísono o del tritono; se mantienen los intervalos de tritono en sus lugares originales o retrógrados, y coinciden en las dos primeras y las dos últimas notas dos a dos.

Se han realizado estudios – como el de Martha Hyde [11] – en los que se limitan las series utilizadas en la Suite a cuatro: T^0 , T^6 , I e IT^6 , pero ya que el objetivo de este texto no es analizar la obra entera se dejará esta cuestión para análisis posteriores.

3.2. DESCRIPCIÓN DE LA SUITE OP. 25

Schoenberg realiza en la serie σ una partición triple; es decir, la serie se divide en tres tetracordios, y cada uno de ellos contiene un intervalo de tritono. El último tetracordio, si se retrograda, consta de las notas 10-9-0-11, que en notación germánica es la secuencia BACH. Esto puede ser un homenaje al compositor Johann Sebastian Bach (1685—1750), ya que Schoenberg admiraba a los grandes compositores anteriores a él por las estructuras formales de sus obras. [7]

Otro posible homenaje a Bach y sus contemporáneos barrocos es precisamente la forma de la obra: es una Suite, género cultivado durante los siglos XVII y XVIII que se compone de una variedad de danzas. La Suite de Schoenberg está formada por seis danzas: un Preludio, una Gavota, una Musette, un Intermezzo – que no tiene influencia barroca sino más bien de Brahms, otro modelo para Schoenberg –, un Minueto con Trío y una Giga. Además, el estilo, la textura – contrapuntística, típicamente barroca – y la estructura de cada danza se corresponden con los estilos, texturas y estructuras de las danzas homónimas del periodo bachiano.

Por ser ésta su primera obra totalmente dodecafónica, Schoenberg la utilizó como una muestra al mundo de las posibilidades de su nuevo método compositivo. Fue también por lo que tomó un formato tan variado como una Suite: así podía en una misma obra componer con estilos tan distintos como los de las distintas danzas.

Al componer la obra, Schoenberg trata cada tetracordio como una subunidad individual. Los superpone contra otras series del espectro también divididas, o utiliza sus notas como un solo acorde cuatríada. Estas divisiones no sólo sirven para hacer la serie más reconocible o añadir cohesión a la obra, sino que además facilitan el desarrollo de la serie específicamente en el estilo de cada danza.

3.3. ANÁLISIS DE LA MUSETTE

En el tercer movimiento de la Suite, la Musette, Schoenberg recrea la danza barroca que toma su nombre del instrumento homónimo: la cornamusa, de la familia de la gaita. La música compuesta para estos instrumentos suele consistir en una melodía acompañada por una nota pedal, que se traduce aquí en la presencia de un bordón sobre el Sol‡ (nota 7). Esta nota se extrae de cada una de las series utilizadas y se forma con ella un ostinato rítmico en la mano izquierda del piano. Con el resto de sonidos de cada serie, Schoenberg vuelve a emular el estilo de la danza barroca y articula un discurso polifónico a dos voces con ritmos esencialmente cortos.

A partir de la doble barra del compás 9, el Reb (nota 1) acompaña a Sol\(\pi\) y ambos crean un doble bordón en la mano izquierda. La elección de esas dos notas está estrechamente relacionada con la tradicional relación de quinta justa formada por Sol\(\pi\) y Re\(\pi\) en la música tonal. Schoenberg sustituye las quintas justas tonales por los tritonos dodecafónicos, subrayando aún más su «emancipación de la disonancia».

Además de las similitudes texturales, rítmicas y armónicas, la Musette de Schoenberg comparte estructura formal con las danzas barrocas. Y esta semejanza es quizás la más notable, ya que fue la búsqueda de estructura formal lo que inspiró a Schoenberg a desarrollar su método compositivo. La Musette barroca, como todos los movimientos de danza, presenta una estructura binaria con simetría tonal: empieza y acaba por la misma tonalidad, mientras que el centro es zona de desarrollo. Schoenberg despoja de funcionalidad tonal a esa simetría, madre de la forma sonata, y la aplica a su composición dodecafónica.

En este movimiento se pueden diferenciar a simple vista tres secciones, divididas en los compases 9 y 20, debido a cambios de textura, figuración y tempo. En la segunda sección se le añade melodía a la mano izquierda del piano, dejando más

camuflado el bordón que en la primera sección, además de que éste se vuelve doble, mientras que vuelve a aparecer claramente en la tercera sección. También en la segunda sección aparece una nueva figuración, que es la semicorchea; y, por último, en los dos compases de división aparecen dos *a tempo*, que marcan el final de las dos primeras secciones tras dos zonas de variabilidad rítmica. [8]

Para que esta estructura tríptica sea una forma binaria, la primera y la última parte deben mantener un parecido, que se observa a través del análisis de las series utilizadas en el movimiento. Estas series son T^0 , T^6 , I e IT^6 .

En la Musette, Schoenberg hace un uso casi absoluto de la tripartición serial, hasta el punto de individualizar los tetracordios por separado y concederles privilegios seriales, como la retrogradación. Por ejemplo, en el compás 7, en la voz inferior de la mano derecha aparece el tetracordio 4-5-2-3, que es o bien el primer tetracordio de RIT⁶ o la retrogradación del tercer tetracordio de IT⁶, mientras que los otros dos tetracordios de IT⁶, $10-9-7^2-1$ en la voz superior y 8-11-6-0 en la mano izquierda, aparecen en el orden correcto. Entonces no se puede analizar el compás como RIT⁶, sino indicar que hay una alteración puntual de IT⁶.

Por tanto, es muy complicado analizar esta obra en su totalidad, ya que la flexibilidad en la ordenación de los tetracordios puede generar situaciones muy ambiguas. Debido a estas fragmentaciones y a las variadas combinaciones de tetracordios originales y retrógrados, se escucha un área de desarrollo hacia la sección media del movimiento. En cambio, las series al principio y al final de la pieza se presentan casi íntegramente, como una exposición y reexposición. He aquí un vínculo con la simetría de las formas binarias tonales. [8]

Es más, incluso el orden de las series utilizadas en la primera y en la última sección coinciden, exceptuando dos repeticiones consecutivas y las series T^0 finales, que actúan como una cadencia serial:

En el Anexo C, página 71, se encuentra el análisis serial completo de la Musette, y en la pista 1 su reproducción con el programa Musescore.

 $^{^2{\}rm La}$ nota 7 aparece como bordón y no en la misma voz que el resto del tetracordio, por lo que su posición es también excepcional.

Capítulo 4

EL GRUPO DE LAS TRANSFORMACIONES

4.1. NUEVAS DEFINICIONES Y NUEVAS TRANSFORMACIONES

Las fórmulas de las transformaciones del apartado 2.2 quedaron de esta manera:

$$\mathbf{T}^{\mathbf{k}}(\sigma(m)) = \sigma(m) + \mathbf{k} \qquad \mathbf{R}(\sigma(m)) = \sigma(-1 - m) \qquad \mathbf{I}(\sigma(m)) = -\sigma(m) + 2\sigma(0)$$

Sin embargo, la importancia de estas definiciones radica en qué espectro serial forman, y no en cómo se nombra cada serie específica. No es distinguible a un nivel musical y, de hecho, hay más de un convenio para ello.

Han surgido a lo largo de la historia dos métodos para nombrar las series. El primero, el método tradicional, se ha usado desde al menos 1945, y es el método llamado *histórico* en este texto. El segundo, el método de tonos absolutos, fue concebido por George Perle en su libro *Twelve Tone Tonality* (1977).

En el método tradicional, T_0 se usa para la primera serie que se encuentra en la composición; es decir, la serie original. En cambio, el método de tonos absolutos nombra las series T basándose solamente en la nota en la que comienzan: T_0 se usa para la serie que comienza por un Do, y así sucesivamente. Estas nomenclaturas no caracterizan adecuadamente el objeto matemático que deben representar, es decir, funciones aplicadas a las series. Son nombres arbitrarios que además producen ambigüedad al añadir otras funciones o al intentar describirlo matemáticamente.

En todo caso, cualquier convenio de notación tendrá fórmulas matemáticas distintas al resto, pero todas preservan el material compositivo de la obra. Eso quiere decir que se pueden redefinir algunas de las transformaciones, siempre que preserven el sentido musical.

Por ejemplo, la inversión puede prescindir de ser transportada para que la primera nota coincida con la original. Para distinguirla de la primera definición, ésta se llamará S de simetría: $S(\sigma(m)) = -\sigma(m)$.

E igual que la inversión es el cambio de signo por fuera, la retrogradación puede convertirse simplemente en el cambio de signo por dentro. Ésta se llamará V de volteo: $V(\sigma(m)) = \sigma(-m)$.

Así quedan dos transformaciones que se asemejan a reflexiones: una por dentro y otra por fuera; y una adición por fuera. Aquí dentro significa antes de aplicar σ y fuera significa después de aplicar σ , ya que no se debe olvidar que σ , la permutación, es una función en sí misma. Y ahora surge una cuestión consecuentemente: ¿cuál sería entonces el resultado de sumar dentro, es decir, antes?

Esta nueva transformación, cuya aparición resulta natural tras las otras tres, se llama desplazamiento cíclico. Inventada y usada tan solo por Alban Berg, y en algunas obras primerizas de Schoenberg, C^k desplaza el comienzo de la serie k posiciones más allá: $C^k(\sigma(m)) = \sigma(m+k)$.

$$C^{k} = \begin{pmatrix} 0 & 1 & 2 & 9 & 10 & 11 \\ \sigma\left(k\right) & \sigma\left(k+1\right) & \sigma\left(k+2\right) & \cdots & \sigma\left(k+9\right) & \sigma\left(k+10\right) & \sigma\left(k+11\right) \end{pmatrix}$$

La serie 4-cíclica sobre la permutación P de la Suite Op. 25 es la siguiente serie C⁴:

$$C^{4} = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 6 & 3 & 8 & 2 & 11 & 0 & 9 & 10 & 4 & 5 & 7 & 1 \end{pmatrix}$$

En resumen, se puede trabajar con un nuevo sistema de definiciones que mantienen el significado musical del serialismo pero varían la notación con la que se trabaja.

$$S(\sigma(m)) = -\sigma(m)$$

$$V(\sigma(m)) = \sigma(-m)$$

$$T^{k}(\sigma(m)) = \sigma(m) + k$$

$$C^{k}(\sigma(m)) = \sigma(m + k)$$

4.2. DIAGRAMAS DE RELOJ

Para visualizar mejor cómo actúan las distintas transformaciones, las series se pueden representar mediante diagramas de reloj: una sucesión de aristas con una orientación establecida que conecta los vértices de un dodecágono en el orden de la serie. Ya que el desplazamiento cíclico actúa como si la serie fuese circular, hay añadida una arista desde la última nota a la primera. El comienzo de la serie y su orientación se marcan con una flecha.

A la derecha se incluye el diagrama de la serie original σ de la Suite Op. 25. Se pueden distinguir las características de la serie ya comentadas en el apartado 3.1, como las tres diagonales, que son los tres intervalos de tritono. A continuación se incluyen los diagramas de las transformaciones del apartado 2.2: la transposición, la inversión y la retrogradación; así como el nuevo desplazamiento cíclico.

La transposición es una rotación en el sentido en el que apunta la flecha; la inversión es una reflexión con el eje de simetría en la diagonal que pasa por la flecha; la retrogradación es un cambio de orientación de la flecha; y el desplazamiento cíclico es el avance interno de la flecha por el recorrido de la serie.

La diferencia entre las inversiones I y S es precisamente la transposición de $2\sigma(0) = 8$ semitonos. Comparando S con T⁰ se puede además observar que S es una reflexión con el eje de simetría en 0, en vez de que el eje dependa de la propia permutación.

Por otro lado, la comparación entre las retrogradaciones R y V muestra que, aunque en principio más arbitraria, V es una transformación más natural, ya que deja fija la flecha. La diferencia entre ellas es en realidad un desplazamiento cíclico de -1.

4.3. EL GRUPO: $D_{12} \times D_{12}$

El conjunto de transformaciones {S, T, V, C} está compuesto por dos parejas con semejanzas entre sí. S es una reflexión y T una rotación de orden 12 – es decir, que al aplicarla 12 veces se vuelve a la identidad – y ambas se aplican a la figura entera; es como mover el diagrama por el papel. En cambio, V es una reflexión de la flecha en sí, y C una rotación – también de orden 12 – de la flecha sobre la línea; ambas aplicadas al interior de la figura.

Cada pareja genera un grupo muy conocido: el grupo diédrico o diedral. Se denota por $\mathrm{D}_{12}{}^1$ y representa el grupo de simetrías de un polígono regular; en este caso, un dodecágono. Por ejemplo, aquí se muestran todas las simetrías de un octógono, que son los 16 elementos de D_8 , aplicados a una señal de STOP.

De igual manera, el conjunto de series de un espectro serial se consigue aplicando a la serie las distintas funciones transformativas; se obtiene entonces un grupo diédrico para ambas parejas de funciones.

 $^{^{1}}$ En otros ámbitos, D_{n} también se denota por D_{2n} , ya que 2*n es el número de elementos que tiene el grupo.

Al haber dos parejas distintas que actúan por separado dentro y fuera de la figura, el grupo completo que forman las cuatro transformaciones es el producto directo de dos copias del diédrico: $D_{12} \times D_{12}$.

Podemos observarlo claramente si representamos la serie de una segunda forma: como la correspondencia entre vértices de dos dodecágonos. La serie original, que es en realidad una permutación de 12 elementos, se representa como una función: los vértices del dodecágono interno se envían biyectivamente a los vértices externos. Así, $m \mapsto \sigma(m)$. Este diagrama es similar al matricial pero enroscado en sí mismo, de tal forma que se aprecia la permutación escogida mediante las flechas, que son fijas, y facilita un significado del antes y el después de aplicarla.

Las dos primeras figuras describen esto mismo: la representación de la serie original y la representación de la permutación mediante las flechas, que se mantendrán constantes en el resto de figuras.

Las cuatro siguientes figuras representan las cuatro funciones transformativas, que son en realidad la reflexión y la rotación del grupo diédrico de cada dodecágono. Aplicarlo al de dentro es aplicarlo antes de las flechas; antes de la permutación. Aplicarlo fuera es transformar después de las flechas; después de la permutación.

4.4. CONMUTACIONES ENTRE LOS ELE-MENTOS DEL GRUPO

La rotación (r) y la reflexión (s) de un grupo diédrico no conmutan, sino que cumplen esta relación: $r \cdot s = s \cdot r^{-1}$. Por otro lado, en los productos directos los elementos de un lado conmutan con los del otro. De esta forma, {S, T} no conmutan y {V, C} tampoco, pero el resto de parejas de transformaciones deben conmutar. Las verificaciones de estas afirmaciones, que confirman que el grupo formado es $D_{12} \times D_{12}$, se encuentran en el Anexo D, página 75.

Volviendo a las definiciones originales, al conjunto de transformaciones {I, T, R, C}, la estructura interna es bien distinta. El problema de I, a un nivel matemático, es que depende de la permutación escogida, por lo que a veces tiene unas propiedades y a veces otras. En cambio, la definición de V con respecto a R es meramente estética. Ya que no depende de la permutación, sus conmutaciones se mantienen invariantes.

Viendo cómo conmutan los elementos de este sistema se aprecia la dificultad definitoria de I. Curiosamente, las conmutaciones de {I, R} e {I, C} se pierden, pero se gana la de {I, T}. Así, T conmuta con todo en el sistema original de Schoenberg.

I y R no conmutan:

$$\begin{split} &\mathrm{I}\circ\mathrm{R}(\sigma(m))=\mathrm{I}(\mathrm{R}(\sigma(m)))=-\mathrm{R}(\sigma(m))+2\mathrm{R}(\sigma(0))=-\sigma(-1-m)+2\sigma(-1-0)=\\ &-\sigma(-1-m)+2\sigma(-1) \end{split}$$

$$R \circ I(\sigma(m)) = R(I(\sigma(m))) = R(-\sigma(m) + 2\sigma(0)) \stackrel{2}{=} R(-\sigma(m)) + 2\sigma(0) = -\sigma(11 - m) + 2\sigma(0)$$

Los únicos casos en los que podrían conmutar ocurrirían cuando $2\sigma(0) \equiv 2\sigma(11)$ (mod. 12): $12 + 2\sigma(0) = 2\sigma(11) \implies 6 + \sigma(0) = \sigma(11) \implies \sigma(11) - \sigma(0) = 6$. Es decir, cuando la primera y la última nota de la serie original se distancian en 6 semitonos, como es el caso de la permutación en la Suite Op. 25:

$$IR = RI = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 10 & 11 & 8 & 9 & 6 & 0 & 5 & 2 & 7 & 1 & 3 & 4 \end{pmatrix}$$

I y C no conmutan:

$$\mathrm{I}\circ\mathrm{C}(\sigma(m))=\mathrm{I}(\sigma(m+1))=-\sigma(m+1)+2\sigma(1)$$

$$\mathbf{C} \circ \mathbf{I}(\sigma(m)) = \mathbf{C}(-\sigma(m) + 2\sigma(0)) \stackrel{3}{=} \mathbf{C}(-\sigma(m)) + 2\sigma(0) = -\sigma(m+1) + 2\sigma(0)$$

Los únicos casos en los que podrían conmutar ocurrirían cuando $2\sigma(0) \equiv 2\sigma(1)$ (mod. 12): $12 + 2\sigma(0) = 2\sigma(1) \implies 6 + \sigma(0) = \sigma(1) \implies \sigma(1) - \sigma(0) = 6$. Es decir, cuando la primera y la segunda nota de la serie original se distancian en 6 semitonos.

CAPÍTULO 4

Si se echan las cuentas con C^k en vez de con C^1 , pueden conmutar si $\sigma(k) - \sigma(0) = 6$. Como σ es una permutación, devuelve todos los valores de 0 a 11 y solamente una vez cada uno. Por tanto, también devuelve $6 + \sigma(0)$, así que siempre existe un único k para el que I y C^k conmutan. En el caso de la permutación de la Suite Op. 25, como $\sigma(0) = 4$ hay que encontrar el m para el que $\sigma(m) = 4 + 6 = 10$. En este caso, m = 11, pero depende por completo de la permutación original.

I y T conmutan:

$$I \circ T(\sigma(m)) = I(\sigma(m) + 1) = -(\sigma(m) + 1) + 2(\sigma(0) + 1) = -\sigma(m) - 1 + 2\sigma(0) + 2 = -\sigma(m) + 2\sigma(0) + 1$$

$$T \circ I(\sigma(m)) = T(-\sigma(m) + 2\sigma(0)) = -\sigma(m) + 2\sigma(0) + 1$$

R y C no conmutan:

$$R \circ C(\sigma(m)) = R(\sigma(m+1)) = \sigma(-(m+1)-1) = \sigma(-m-2)$$

$$C \circ R(\sigma(m)) = C(\sigma(-m-1)) = \sigma(-m-1+1) = \sigma(-m)$$

T y R conmutan:

$$T \circ R(\sigma(m)) = T(\sigma(-m-1)) = \sigma(-m-1) + 1$$

$$R \circ T(\sigma(m)) = R(\sigma(m) + 1) = \sigma(-m - 1) + 1$$

T y C conmutan:

$$T \circ C(\sigma(m)) = T(\sigma(m+1)) = \sigma(m+1) + 1$$

$$C \circ T(\sigma(m)) = V(\sigma(m) + 1) = \sigma(m+1) + 1$$

Parte II ENEFONISMO

Parte III MODIFICACIONES

Anexos

Apéndice A

Código para el cálculo de matrices dodecafónicas.

```
1 #include <iostream>
   using namespace std;
3
   const int N = 12;
4
5
   int main() {
6
       int s[N + 3][N + 2];
9
       for (int i = 1; i < N + 1; ++i) {
10
           cin \gg s[1][i];
11
           s[i][0] = (N - s[1][i] + s[1][1]) \%N;
12
           s[i][N + 1] = s[i][0];
13
           s[0][i] = (N - s[i][0]) \%N;
14
          s[N + 1][i] = s[0][i];
15
           s[N + 2][i] = (N + s[0][i] + 2 * (s[1][N] - s[1][1])) %N;
16
       }
17
18
       for (int i = 2; i < N + 1; ++i) {
19
           for (int j = 1; j < N + 1; ++j) {
20
              s[i][j] = (s[1][j] + s[i][0]) \%N;
21
22
       }
23
24
       \operatorname{cout} \ll \text{"} \operatorname{s} \operatorname{array} \{1 \mid \text{"};
25
26
       for (int i = 0; i < N; ++i) {
27
           cout << 'c';
28
29
30
       cout << " | r \} \&";
31
32
       for (int i = 1; i < N + 1; ++i){
33
          cout << " \setminus text{I}_{-}{"} << s[0][i] << "}\&";
34
       }
35
36
       cout << "\\\\ hline";</pre>
37
38
       for (int i = 1; i < N + 1; ++i) {
39
           cout << " \setminus text{T}_{-}" << s[i][0] << "}&";
40
41
           for (int j = 1; j < N + 1; +++j) {
42
              cout << s[i][j] << "&";
43
44
45
```

```
cout << "\\text{R}_{-}{" << s[i][N + 1] << "}\\\\";
46
      }
47
48
      cout << "\\hline&";</pre>
^{49}
50
      for (int i = 1; i < N + 1; ++i) {
51
          cout << "\\text{IR}_{"} << s[N + 1][i] << "}&";
52
53
54
      cout << "\\\\\hline&";</pre>
55
56
      for (int i = 1; i < N + 1; ++i) {
57
          cout << "\\text{RI}_{"} << s[N + 2][i] << "}&";
58
      }
60
      cout \ll " \setminus end{array}$$\n";
61
62
      system("PAUSE");
63
64
       return 0;
65
66
```

Apéndice B

Series de la Suite Op. 25.

$$T_0 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 4 & 5 & 7 & 1 & 6 & 3 & 8 & 2 & 11 & 0 & 9 & 10 \end{pmatrix}$$

$$T_6 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 10 & 11 & 1 & 7 & 0 & 9 & 2 & 8 & 5 & 6 & 3 & 4 \end{pmatrix}$$

$$I_0 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 4 & 3 & 1 & 7 & 2 & 5 & 0 & 6 & 9 & 8 & 11 & 10 \end{pmatrix}$$

$$I_6 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 10 & 9 & 7 & 1 & 8 & 11 & 6 & 0 & 3 & 2 & 5 & 4 \end{pmatrix}$$

$$R_0 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 10 & 9 & 0 & 11 & 2 & 8 & 3 & 6 & 1 & 7 & 5 & 4 \end{pmatrix}$$

$$R_6 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 4 & 3 & 6 & 5 & 8 & 2 & 9 & 0 & 7 & 1 & 11 & 10 \end{pmatrix}$$

$$IR_0 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 10 & 11 & 8 & 9 & 6 & 0 & 5 & 2 & 7 & 1 & 3 & 4 \end{pmatrix}$$

$$IR_6 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 4 & 5 & 2 & 3 & 0 & 6 & 11 & 8 & 1 & 7 & 9 & 10 \end{pmatrix}$$

Apéndice C

Análisis serial de la Musette.

T_0 T_6 I_0 I_6

Apéndice D

Conmutación del grupo $D_{12} \times D_{12}$

S y T no conmutan:

$$\mathrm{S}\circ\mathrm{T}(\sigma(m))=\mathrm{S}(\sigma(m)+1)=-(\sigma(m)+1)=-\sigma(m)-1$$

$$T \circ S(\sigma(m)) = T(-\sigma(m)) = -\sigma(m) + 1$$

$$S \circ T^{-1}(\sigma(m)) = S(\sigma(m) - 1) = -(\sigma(m) - 1) = -\sigma(m) + 1 = T \circ S(\sigma(m))$$

V y C no conmutan:

$$V \circ C(\sigma(m)) = V(\sigma(m+1)) = \sigma(-(m+1)) = \sigma(-m-1)$$

$$\mathrm{C} \circ \mathrm{V}(\sigma(m)) = \mathrm{C}(\sigma(-m)) = \sigma(-m+1)$$

$$V \circ C^{-1}(\sigma(m)) = V(\sigma(m-1)) = \sigma(-(m-1)) = \sigma(-m+1) = C \circ V(\sigma(m))$$

S y V conmutan:

T y V conmutan:

$$S \circ V(\sigma(m)) = S(\sigma(-m)) = -\sigma(-m)$$

$$S \circ V(\sigma(m)) = S(\sigma(-m)) = -\sigma(-m)$$
 $T \circ V(\sigma(m)) = T(\sigma(-m)) = \sigma(-m) + 1$

$$V \circ S(\sigma(m)) = V(-\sigma(m)) = -\sigma(-m)$$

$$\operatorname{V} \circ \operatorname{S}(\sigma(m)) = \operatorname{V}(-\sigma(m)) = -\sigma(-m) \qquad \operatorname{V} \circ \operatorname{T}(\sigma(m)) = \operatorname{V}(\sigma(m)+1) = \sigma(-m)+1$$

S y C conmutan:

T y C conmutan:

$$\mathbf{S} \circ \mathbf{C}(\sigma(m)) = \mathbf{S}(\sigma(m+1)) = -\sigma(m+1) \quad \mathbf{T} \circ \mathbf{C}(\sigma(m)) = \mathbf{T}(\sigma(m+1)) = \sigma(m+1) + 1$$

$$T \circ C(\sigma(m)) = T(\sigma(m+1)) = \sigma(m+1) + 1$$

$$C \circ S(\sigma(m)) = C(-\sigma(m)) = -\sigma(m+1)$$

$$C \circ S(\sigma(m)) = C(-\sigma(m)) = -\sigma(m+1)$$
 $C \circ T(\sigma(m)) = C(\sigma(m)+1) = \sigma(m+1)+1$

Bibliografía

- [1] WRIGHT, DAVID. Mathematics and Music, American Mathematical Society (2009).
- [2] Armstrong, M. A. Chapter 6: "Permutations", Chapter 17: "Actions, Orbits, and Stabilizers", Chapter 18: "Counting Orbits", Groups and Symmetry, New York: Springer-Verlag (1988)
- [3] KINNEY, JAMES P. Twelve-tone Serialism: Exploring the Works of Anton Webern, Undergraduate Honors Theses. Paper 1 (2015)
- [4] DÍAZ DE LA FUENTE, ALICIA. Estructura y significado en la música serial y aleatoria, Universidad Nacional de Educación a Distancia. Tesis Doctoral en Filosofía (2005)
- [5] Clases y material de Historia de la Música, 5° y 6° de Enseñanzas Profesionales del Conservatorio Profesional de Música Arturo Soria, cursos 2014-15 y 2015-16. Prof. Fernando Delgado García.
- [6] Domínguez Romero, Manuel. Las Matemáticas en el Serialismo Musical, Sigma n.24 (2004).
- [7] XIAO, JUNE. Bach's Influences in the Piano Music of Four 20th Century Composers, Indiana University Jacobs School of Music. Doctoral Theses in Music (2014)
- [8] CLERCQ, TREVOR DE. A Window into Tonality via the Structure of Schoenberg's "Musette" from the Piano Suite, op. 25, Theory/Analysis of 20th-Century Music. Prof. David Headlam (2006)
- [9] BASOMBA GARCÍA, DANIEL. El último Bach y el dodecafonismo como ideal musical: una lectura estética y sociológica, Universidad Carlos III de Madrid. Tesis Doctoral en Ciencia Política y Sociología (2013)

- [10] Bhalerao, Rasika. The Twelve-Tone Method of Composition, Math 336. Prof. Jim Morrow (2015)
- [11] Hyde, Martha. Chapter 4: "Dodecaphonism: Schoenberg", Models of Musical Analysis: Early Twentieth-century Music, Ed. Mark Everist and Jonathan Dunsby. Oxford: Blackwell (1993)
- [12] MORRIS, ROBERT. Mathematics and the Twelve-Tone System: Past, Present, and Future, Perspectives of New Music 45.2 (2007)
- [13] COOK, NICHOLAS. Chapter 9: "Analyzing Serial Music", A Guide to Musical Analysis, New York: G. Braziller (1987)
- [14] ROBERTS, GARETH E. Composing with Numbers: Arnold Schoenberg and His Twelve-Tone Method, Math/Music: Aesthetic Links (2012).
- [15] Ilomäki, Tuukka. On the Similarity of Twelve-Tone Rows, Sibelius Academy (2008).
- [16] HUNTER, DAVID J.; VON HIPPELA, PAUL T. How Rare Is Symmetry in Musical 12-Tone Rows?, The American Mathematical Monthly, Vol. 110, No. 2 (2003).
- [17] Reiner, David L. *Enumeration in Music Theory*, The American Mathematical Monthly, Vol. 92, No. 1 (1985).
- [18] LONDON, J., VON HIPPEL, P., HURON, D., CARTANO, J., KINGERY, K., OLSEN, B., SANTELLI, T. Row forms in the serial works of Schoenberg, Berg, and Webern [Computer database.] Stanford, CA: Center for Computer Assisted Research in the Humanities (www.ccarh.org/publications/data/humdrum/tonerow/) (2000/2001).