Trigonometric Coefficients for Regular S-Sided Polygons Eli Ruminer

Table of Contents

1	Introduction	2
2	Trigonometric Equations 2.1 Identities	3 4
3	Shape Equations	4
4	Proof	5

1 Introduction

This paper derives a function that generates a coefficient that transforms sine and cosine into calculating points for any s-sided regular polygon. This is done through using inverse trigonometric functions to create a periodic function that increases and decreases linearly over each period, allowing the creation of a coefficient which when multiplied by sine and cosine serves to transform them into an equivalent function for non-circle polygons.

After deriving the equation we then prove that it represents a point on the perimeter of a unit n-gon by simplifying the slope-intercept form of a constructing line of the unit n-gon and two points between the modified sine and cosine showing they are the same.

Through this, we can derive a general formula for any shape using the sign function and the newly proven coefficient function. This general function requires the use of an "input" angle, which is calculated using x and y for each point, and due to this can be rotated by simply adding or subtracting a constant from the angle calculation inside the coefficient function's input.

2 Trigonometric Equations

Let $s = \{x : x \in \mathbb{Z}^+ \text{ and } x \ge 3\}$, and

$$\begin{aligned} d_s(\theta) &= \cos(\frac{\pi}{s}) \sec(\frac{\pi - \arccos(\cos(s\theta))}{s}) \\ &\cos_s(\theta) = d_s(\theta) \cos(\theta) \\ &\sin_s(\theta) = d_s(\theta) \sin(\theta) \end{aligned}$$

This is derived through the original functions:

$$\begin{aligned} h_s(\theta) &= \sin(\frac{\pi}{2} - \frac{\pi}{s} + (\theta \mod \frac{2\pi}{s})) - \sin(\frac{\pi}{2} - \frac{\pi}{s}) \\ d_s(\theta) &= \frac{h_s(\theta)}{\sin(\frac{\pi}{2} - \frac{\pi}{s} + (\theta \mod \frac{2\pi}{s}))} \\ \cos_s(\theta) &= (1 - d_s(\theta))\cos(\theta) \\ \sin_s(\theta) &= (1 - d_s(\theta))\sin(\theta) \end{aligned}$$

These functions follow the premise that any s-sided regular polygon (P_s) centered at (0,0) has a circumcircle where each vertex touches the circumference of the circumcircle.

Arc a can be constructed which is $\frac{1}{s^{th}}$ of the circumcircle, its diameter is the same length as any line which constructs P_s , and it's circumference equals to the circumference of the section of the circumcircle spanning from adjacent vertices on P_s .

Thus, the height of a at a given point on a circle subtracted from the radius of the circle will result in the distance from the center of P_s to the point on the perimeter of P_s which intersects the ray of angle θ drawn in standard position.

 $h_s(\theta)$ serves to find the height of a at a position by splitting the circumcircle into s^{ths} (resulting in a period of $\frac{2\pi}{s}$), finding the height of a point on a through sine and changing from the "left" vertex to the "right" vertex over the period of $\frac{2\pi}{s}$ (the length of a). The use of mod makes the function periodic. It then subtracts by the height of a vertex so that $h_s(\theta) = 0$ when $\theta = 0$

 $d_s(\theta)$ divides the height, $h_s(\theta)$, by the angle between the assumed intersection point on P_s and the intersection point on the circumcircle to get the actual distance.

These functions then simplify to:

$$d_s(\theta) = \cos(\frac{\pi}{s}) \sec(\frac{\pi}{s} - (\theta \mod \frac{2\pi}{s}))$$
$$\cos_s(\theta) = d_s(\theta) \cos(\theta)$$
$$\sin_s(\theta) = d_s(\theta) \sin(\theta)$$

Which is not algebraic due to modulo, yet it can be noted that due to the nature of the original $h_s(\theta)$, $\theta \mod \frac{2\pi}{s}$ can be substituted for an equivalent function which has an equal

period of $\frac{2\pi}{s}$, increases linearly from 0 to $\frac{\pi}{s}$ over $\left[0, \frac{\pi}{s}\right]$ and decreases linearly at the same rate over $\left[\frac{\pi}{s}, \frac{2\pi}{s}\right]$.

These requirements can be met by $\frac{\arccos(\cos(n\theta))}{n}$, which is periodic over $\frac{2\pi}{s}$, has a domain of $n\theta \in \mathbb{R}$, and thus $\theta \in \mathbb{R}$, and a range of $[0, \frac{\pi}{s}]$, thus the above equations can be changed to:

$$d_{s}(\theta) = \cos(\frac{\pi}{s}) \sec(\frac{\pi - \arccos(\cos(s\theta))}{s})$$
$$\cos_{s}(\theta) = d_{s}(\theta) \cos(\theta)$$
$$\sin_{s}(\theta) = d_{s}(\theta) \sin(\theta)$$

2.1**Identities**

Identity 1.1 Let $n = \mathbb{Z}$:

$$\cos_s(\theta + n\frac{2\pi}{s}) = d_s(\theta)\cos(\theta + n\frac{2\pi}{s})$$
$$\sin_s(\theta + n\frac{2\pi}{s}) = d_s(\theta)\sin(\theta + n\frac{2\pi}{s})$$

Identity 1.2 When $0 \le \theta \le \frac{2\pi}{s}$ then $d_s(\theta) = \cos(\frac{\pi}{s}) \sec(\frac{\pi}{s} - \theta)$ When θ only spans one period, $\frac{\arccos(\cos(s\theta))}{s}$ is not required to make the function periodic.

Identity 1.3 Let $n = \mathbb{Z}$ then:

$$\cos_s(n\frac{2\pi}{s}) = (1)\cos(n\frac{2\pi}{s}) = \cos(n\frac{2\pi}{s})$$
$$\sin_s(n\frac{2\pi}{s}) = (1)\sin(n\frac{2\pi}{s}) = \sin(n\frac{2\pi}{s})$$

This is true because $\arccos(\cos(s\theta))$ evaluates to 0 whenever $\theta = n\frac{2\pi}{s}$, which means $\sec(\frac{\pi - \arccos(\cos(s\theta))}{s}) \text{ simplifies to } \sec(\frac{\pi}{s}) \text{ so } d_s(n\frac{2\pi}{s}) = \sec(\frac{\pi}{s})\cos(\frac{\pi}{s}) = 1$

3 Shape Equations

From these formulas, the equation for any regular polygon can be derived. The equation is found through a mutation of the ellipse equation by $d_s(\theta)$:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = d_s(\theta)^2 * 1$$

To derive theta, one would start with $\theta = \arctan(\frac{(y-k)a}{(x-h)b})$, which would find the angle at the correct point offset from the center, but due to x being squared, the shape is mirrored over x = h, which will work for even sided polygons as they are symmetric over x = h, but not for odd sided polygons due to their anti-symmetry (this is also the case over the line y=k but all shapes, regardless of side parity, are mirrored over y=k). This can be fixed by noting that the angle is calculated correctly in Quadrants I and IV (relative to (h,k) as the origin), and π radians off from the expected angle in Quadrants II and III. Thus when x < h, π must be added to θ . Using the sign function and modifying it to equal 1 when x < h and 0 when $x \ge h$ results in the formula:

$$-\frac{1}{2}(\frac{x-h}{|x-h|}-1)$$

which when multiplied by π and added to θ becomes:

$$\arctan(\frac{(y-k)a}{(x-h)b}) - \frac{\pi}{2}(\frac{x-h}{|x-h|} - 1)$$

meaning that the standard equation is:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = d_s(\arctan(\frac{(y-k)a}{(x-h)b}) - \frac{\pi}{2}(\frac{x-h}{|x-h|} - 1))^2$$

As d_s takes an angle, a constant value can be added to θ to make any shape rotate, allowing for easy rotation calculations.

4 Proof

Let $n, s = \mathbb{Z}, s \geq 3$. Shape P_s is made of s vertices and s line segments with the n^{th} vertex (n_i) at the point $(\cos(n\frac{2\pi}{s}), \sin(n\frac{2\pi}{s}))$. The n^{th} line segment, L_n , spans between v_n and v_{n+1} and is represented by the equation

$$L_{n} = \frac{\sin((n+1)\frac{2\pi}{s}) - \sin(n\frac{2\pi}{s})}{\cos((n+1)\frac{2\pi}{s}) - \cos(n\frac{2\pi}{s})} x + \sin(n\frac{2\pi}{s}) - \frac{\sin((n+1)\frac{2\pi}{s}) - \sin(n\frac{2\pi}{s})}{\cos((n+1)\frac{2\pi}{s}) - \cos(n\frac{2\pi}{s})} \cos(n\frac{2\pi}{s})$$

which simplifies to

$$L_{n} = -\cot((2 n + 1) \frac{\pi}{s})x + \sin(n \frac{2\pi}{s}) + \cot((2 n + 1) \frac{\pi}{s})\cos(n \frac{2\pi}{s})$$

Let $0 \le a < b \le \frac{2\pi}{s}$, $\alpha = a + n \frac{2\pi}{s}$, and $\beta = b + n \frac{2\pi}{s}$: a "modified" line can be drawn with the equation $\sin_s(\theta)$ and $\cos_s(\theta)$ which would be written as

$$y_m = \frac{\sin_s(\beta) - \sin_s(\alpha)}{\cos_s(\beta) - \cos_s(\alpha)} x + \sin_s(\alpha) - \frac{\sin_s(\beta) - \sin_s(\alpha)}{\cos_s(\beta) - \cos_s(\alpha)} \cos_s(\alpha)$$

the slope of y_m can be expanded to

$$\frac{\sin(\beta)(\cos(a) + \tan(\frac{\pi}{s})\sin(a)) - \sin(\alpha)(\cos(b) + \tan(\frac{\pi}{s})\sin(b))}{\cos(\beta)(\cos(a) + \tan(\frac{\pi}{s})\sin(a)) - \cos(\alpha)(\cos(b) + \tan(\frac{\pi}{s})\sin(b))}$$

Which simplifies to

$$\frac{\sin(a-b)(\sin(n\frac{2\pi}{s})\tan(\frac{\pi}{s})-\cos(n\frac{2\pi}{s}))}{\sin(a-b)(\cos(n\frac{2\pi}{s})\tan(\frac{\pi}{s})+\sin(n\frac{2\pi}{s}))} = -\cot((2n+1)\frac{\pi}{s})$$

thus the equation of the "modified" line becomes:

$$y_m = -\cot((2 + 1) \frac{\pi}{s})x + \sin_s(\alpha) + \cot((2 + 1) \frac{\pi}{s})\cos_s(\alpha)$$

This leads to the conclusion that when $n \frac{2\pi}{s} \le a < b \le (n+1) \frac{2\pi}{n}$ the slopes of y_m and L_n are equal.

If a = 0, due to **Identity 1.3**, then for any applicable value of b, y_m becomes:

$$y_m = -\cot((2 n + 1) \frac{\pi}{s})x + \sin(n \frac{2\pi}{s}) + \cot((2 n + 1) \frac{\pi}{s})\cos(n \frac{2\pi}{s})$$

Meaning that $y_m = L_n$ when a = 0 (denoted $y_{m,a=0}$) and due to **Identity 1.3**: $\sin_s(a + n\frac{2\pi}{s}) = \sin(n\frac{2\pi}{s})$ and $\cos_s(a + n\frac{2\pi}{s}) = \cos(n\frac{2\pi}{s})$ thus the point $A(\cos_s(a + n\frac{2\pi}{s}), \sin_s(a + n\frac{2\pi}{s}))$, is equal to v_n .

Because $y_{m,a=0} = L_n$, the point $B(\cos_s(b + n\frac{2\pi}{s}), \sin_s(b + n\frac{2\pi}{s})))$ is always on line segment L_n , thus when $a \neq 0$, A must also always be on line segment L_n .

This means that for any value x where $0 \le x \le \frac{2\pi}{s}$, the point $X(\cos_s(x + n\frac{2\pi}{s}), \sin_s(x + n\frac{2\pi}{s}))$, falls on line L_n of P_s , and since $n \in \mathbb{Z}$, any point $P(\cos_s(\theta), \sin_s(\theta))$, will always be on the perimeter of P_s .