EIC0014 — FÍSICA II — 2º ANO, 1º SEMESTRE

23 de janeiro de 2019

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $g = 9.8 \text{ m/s}^2$

- 1. (4 valores). No filtro de frequências representado no diagrama, o sinal de entrada é a tensão $V_{\rm e}$ de uma fonte de tensão alternada, com frequência angular ω , e o sinal de saída é a tensão V medida no condensador, como indica a figura. Encontre a expressão da função de resposta em frequência, em função de ω .
- 2. (4 valores). Duas pequenas esferas condutoras, com cargas $q_1 = +300 \text{ nC}$ e $q_2 = +500 \text{ nC}$, e com a mesma massa m, são coladas a dois fios, cada um com 8 cm de comprimento. Os fios são logo colados numa barra horizontal, em dois pontos a uma distância d=15 cm entre si. A repulsão eletrostática entre as cargas faz com que os dois fios se inclinem um ângulo $\theta=10^\circ$ em relação à vertical. Determine o valor da massa m.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. Determine a intensidade da corrente numa bobina com indutância de 2.8~H e resistência de $762~\Omega$, 1~mili-segundo após ter sido ligada a uma f.e.m. de 5~V.
 - (A) 3.127 mA
- (C) 2.345 mA
- (E) 1.563 mA

- **(B)** 3.908 mA
- (**D**) 0.782 mA

Resposta:

4. No circuito da figura, sabendo que a corrente I é igual a 2.5 A, determine o valor da f.e.m. ε .

- (A) 6 V
- (C) 2 V
- (E) 5 V

- (**B**) 7 V
- (**D**) 10 V

Resposta:

- 5. Ligam-se em série duas resistências idênticas a uma bateria ideal (resistência interna desprezável) e observa-se que a potência dissipada pelas duas resistências é 30 W. Se as mesmas duas resistências fossem ligadas em paralelo à mesma bateria, qual seria a potência total que dissipavam nesse caso?
 - (A) 120.0 W
- (C) 15.0 W
- **(E)** 7.5 W

- **(B)** 60.0 W
- **(D)** 30.0 W

Resposta:

bateria ideal

V = +

Resposta:

(A) 2.61 μN/m(B) 0.44 μN/m

passa pela origem.

(C) $0.37 \,\mu\text{N/m}$

(D) $0.87 \,\mu\text{N/m}$

6. A figura representa três fios condutores retilíneos, muito compri-

dos e paralelos ao eixo dos z, com correntes no sentido positivo

desse eixo. O primeiro fio passa pelo ponto (x, y) = (0, 1 cm) e tem corrente de 0.51 A, o segundo fio passa pelo pela origem e

tem corrente de 0.25 A e o terceiro fio passa pelo ponto (x, y) =

(2 cm, 0) e tem corrente de 0.23 A. Calcule o módulo da força magnética resultante, por unidade de comprimento, no fio que

em kV, se x e y estiverem em mm. Determine o valor da carga pontual no ponto (2,0).

- (A) 2 nC
- (C) 6 nC

7. O potencial no plano xy é dado pela expressão:

(**E**) 4 nC

(E) $0.52 \,\mu\text{N/m}$

- (**B**) -4 nC
- (**D**) -2 nC

Resposta:

	Resposta:	(D) $\ddot{V} + 5\dot{V} + 6V = V_e$
9.	Quando uma bobina de $0.521~\mathrm{H}$ é ligada a uma fonte de tensão alternada, com tensão máxima $12~\mathrm{V}$ e frequência $f=20~\mathrm{Hz}$, a corrente máxima nela é $3.62~\mathrm{mA}$. Determine o valor da resistência	(E) $\ddot{V} + 5\dot{V} + 6V = 2\dot{V}_e + 5V_e$ Resposta:
	dessa hohina	15. No circuito da figura, o condensador encontra-se descarregado
	(A) $3.31 \text{ k}\Omega$ (C) $1.99 \text{ k}\Omega$ (E) 688Ω	no instante $t = 0$. Se I_1 for a corrente na resistência R_1 , I_2 a
	(B) 4.61 kΩ (D) 2.76 kΩ	corrente na resistência R_2 e I_3 a corrente no condensador C_3 ,
	Resposta:	quais dessas três correntes são representadas corretamente pelo gráfico da figura?
10.	Numa região existe campo elétrico uniforme, com módulo de 6 kN/C. Determine o valor absoluto do fluxo elétrico através dum quadrado com 4 cm de aresta, colocado nessa região, sabendo que o plano do quadrado faz um ângulo de 60° com o campo.	$\varepsilon \stackrel{R_1}{\longrightarrow} R_2 \underset{C_3}{\longleftarrow} I_0$
	(A) $0.48 \text{ kN} \cdot \text{m}^2/\text{C}$ (D) $0.831 \text{ kN} \cdot \text{m}^2/\text{C}$	
	(B) $8.31 \text{ N} \cdot \text{m}^2/\text{C}$ (E) $9.6 \text{ N} \cdot \text{m}^2/\text{C}$	
	(C) $4.8 \text{ N} \cdot \text{m}^2/\text{C}$	
	Resposta:	t
11	Qual das seguintes afirmações é verdadeira?	(A) unicamente I_2 e I_3 (D) unicamente I_1 e I_3
11.		(B) unicamente I_1 (E) unicamente I_2
	(A) Dentro de um condutor isolado o campo elétrico é sempre nulo.	(C) unicamente I_3
	(B) O campo elétrico na superfície de um condutor isolado é nulo.	Resposta: 16. Qual das 5 curvas no gráfico representa melhor a indutância L
	(C) Numa região do espaço, se não existir carga o campo elétrico será nulo.	de uma bobina, em função da sua corrente <i>I</i> ?
	(D) O campo elétrico dentro de uma esfera oca é sempre nulo.	
	(E) Se a carga total num condutor isolado for nula, não haverá carga em nenhuma parte da sua superfície.	4
	Resposta:	5
12.	Calcule a potência média fornecida por uma pilha com f.e.m. de 1.5 V, durante um intervalo de 4 segundos, sabendo que o número de eletrões de condução que sairam do elétrodo negativo durante esse intervalo foram 2×10^{16} .	
	(A) 1.2 mW (C) 0.6 mW (E) 3.0 mW	$_{0}$
	(B) 0.96 mW (D) 0.12 mW	(A) 5 (C) 1 (E) 2
	Resposta:	(B) 4 (D) 3
13.	O coeficiente de temperatura do chumbo a 20° C, é igual a 0.0043 . Duas resistências de chumbo têm valores de $1.1~\text{k}\Omega$ e $3.2~\text{k}\Omega$,	Resposta:
	quando a temperatura é de 20° C. Determine o valor da resistência equivalente, quando essas duas resistências são ligadas em paralelo e a temperatura aumenta até 65° C.	17. Ligam-se dois condensadores com capacidades 8 μF e 16 μF , em série, a uma f.e.m. de 30 V. Determine a carga no condensador de 8 μF .
	(A) $1.12 \text{ k}\Omega$ (C) $1.05 \text{ k}\Omega$ (E) $0.98 \text{ k}\Omega$	(A) $200 \mu\text{C}$ (C) $160 \mu\text{C}$ (E) $120 \mu\text{C}$
	(B) $0.82 \text{ k}\Omega$ (D) $0.89 \text{ k}\Omega$	(B) $80 \mu\text{C}$ (D) $40 \mu\text{C}$
	Resposta:	Resposta:

8. Determine o módulo do campo elétrico no ponto x = 1.0 m, no 14. Sabendo que a função de transferência de um circuito é:

(E) $29.25 \text{ mN/}\mu\text{C}$

eixo dos x, produzido por duas cargas pontuais: a primeira, com 3 μ C, encontra-se no eixo dos x em x = -1.0 m, e a segunda, de

(C) $42.75 \text{ mN/}\mu\text{C}$

(**D**) 2.25 mN/μC

−4 µC, encontra-se na origem.

(A) $49.5 \text{ mN/}\mu\text{C}$

(**B**) 22.5 mN/μC

Resposta:

 $\frac{1}{s+2} + \frac{1}{s+3}$ determine a equação diferencial desse circuito.

(A) $\ddot{V} + 2\dot{V} + 6V = \dot{V}_e + 3V_e$

(B) $\ddot{V} + 2\dot{V} + V = \dot{V}_e + 3V_e$

(C) $\dot{V} + 2V = \dot{V}_e + 3V_e$

Regente: Jaime Villate

Resolução do exame de 23 de janeiro de 2019

Problema 1. Usando unidades de μC para a capacidade e H para a indutância, como $LC = Z_L/(Z_C s^2)$ tem unidades de tempo ao quadrado, então o tempo deverá ser medido em ms e a frequência em kHz. As impedâncias ($Z_L = L s$) deverão então ser medidas em kΩ. Nessas unidades, os valores das impedâncias das resistências, do indutor e do condensador no circuito são:

$$Z_R = 0.21 \qquad Z_L = s \qquad Z_C = \frac{1}{2 s}$$

No ramo onde está o condensador, encontram-se em série o condensador, o indutor e uma das resistências, com impedância total:

$$Z = 0.21 + s + \frac{1}{2s} = \frac{2s^2 + 0.42s + 1}{2s}$$

A transformada da voltagem nesse ramo é a propria transformada da voltagem de entrada, $\widetilde{V}_{\rm e}$. Como tal, a transformada da corrente através desse ramo é:

$$\widetilde{I} = \frac{\widetilde{V}_{e}}{Z} = \frac{2 \, s \, \widetilde{V}_{e}}{2 \, s^2 + 0.42 \, s + 1}$$

e a transformada da voltagem no condensador (sinal de saída) é:

$$\widetilde{V} = Z_C \, \widetilde{I} = \frac{\widetilde{V}_e}{2 \, s^2 + 0.42 \, s + 1}$$

A função de transferência do circuito é,

$$H(s) = \frac{\widetilde{V}}{\widetilde{V}_e} = \frac{1}{2 s^2 + 0.42 s + 1}$$

Finalmente, a função de resposta em frequência é:

$$H(i\omega) == \frac{1}{1 - 2\omega^2 + i \cdot 0.42\omega}$$

em que a frequência angular ω é dada em kHz.

Problema 2. Os diagramas de corpo livre das duas esferas são os seguintes:

onde \vec{T}_1 e \vec{T}_2 são as tensões nos dois fios, \vec{F}_{21} é a força elétrica da esfera 2 sobre a esfera 1 e \vec{F}_{12} é a força elétrica da esfera 1 sobre a esfera 2.

Realmente basta um dos diagramas para determinar o valor de m. E como a soma das 3 forças externas sobre cada esfera é nula, por estarem em repouso, e os módulos das forças elétricas \vec{F}_{21} e \vec{F}_{12} são iguais, os módulos das duas tensões são iguais e os dois diagramas são equivalentes.

A distância entre as duas esferas (em metros) é,

$$r = 0.15 + 2 \times 0.8 \times \sin(10^{\circ}) = 0.1778$$

E, usando a lei de Coulomb,

$$F_{21} = F_{12} = \frac{9 \times 10^9 \times 3 \times 10^{-7} \times 5 \times 10^{-7}}{0.1778^2} = 0.0427 \text{ (N)}$$

A soma das 3 forças igual a zero implica que a soma das suas componentes, ao longo de qualquer direção, é nula. Em particular, a soma das componentes na direção tangente indicada na figura é igual a:

$$m g \cos(80^\circ) - F_{21} \cos(10^\circ) = 0 \implies m = \frac{F_{21} \cos(10^\circ)}{g \cos(80^\circ)} = \frac{0.0427 \cos(10^\circ)}{9.8 \cos(80^\circ)} = 4.78 \times 10^{-2} \text{ (kg)}$$

A massa das esferas é de 47.8 gramas.

Perguntas

3. E

6. A

9. A

12. A

15. C

4. A

7. E

10. B

13. E

16. A

5. A

8. E

11. A

14. E

17. C

Critérios de avaliação

Problema 1

Cálculo da impedância do ramo do condensador, com unidades compatíveis	0.8
Cálculo da corrente no condensador	0.8
Cálculo da voltagem no condensador	0.8
Determinação da função de transferência	0.8
• Substituição da frequência ω e obtenção da função pedida, indicando as unidades usadas.	0.8
Problema 2	
Cálculo da distância entre as cargas	0.4
Cálculo do módulo da força elétrica	0.8
Diagrama de corpo livre indicando as direções das forças	1.2
Equação (ou equações) da soma das componentes das forças igual a zero	0.8
• Obtenção do valor da massa, com ordem de grandeza correta e indicando as suas unidades	0.8