

Energy Performance of Heterogeneous LTE Networks

Henrik Forssell, Gunther Auer, Daniel Dianat Ericsson AB Stockholm, Sweden

Third ETSI Workshop on ICT Energy Efficiency and Environmental Sustainability 3-5 June 2015 Sophia Antipolis

Outline

- -Problem formulation
- –EARTH base station power model
- -Scenario
- -Simulation results
- -Conclusion

Het Net Scenario

Problem Formulation

- How does het net deployment affect the energy performance?
- Elaborate trade-off between small cell transmit power and node density?
- What is the potential for energy savings using sleep modes?

Energy Performance Assessment Methodology

EARTH Base Station Power Model

 $P(u) = P_0 + \Delta_P P_{max} u$

 $-P_{\max}$

 $-P_0$

 $-P_{\text{sleep}}$

 $-\Delta_P$

maximum transmit power (per transmit antenna)

consumed power at zero load

consumed power when in sleep mode

slope of load dependent power consumption

Discontinuous Transmission

Discontinuous Transmission

- Micro DTX
- MBSFN DTX
- Lean Carrier DTX

41%

MBSFN: Multi-cast and Broadcast Single Frequency Network

59%

Small Cell Sleep Modes

Small Cell Sleep Modes

Simulation Scenario

Simulation Scenario

> Asian Scenario

 Dense urban (inspired by Tokyo and Seoul)

Macro deployment (3-sector sites)

- Surrounding macro ISD = 400m

- Center macro ISD = 200m

10 largest buildings

- Small cell deployment¹ ⅓ ¼

Small Cell Deployment

Small Cell Deployment

Deployment Type	Dense
Coverage area per node	600 m ²
Number of nodes	X

Result Evaluation

- Center area polygon
 - Area: 1 km²
 - Contains high-rise center area

Simulation Results

Deployment	Sparse Pico
Transmit power	100, 200 and 500mW
Capacity	285-388 Mbps

Total power consumption

10th percentile DL user throughput

Simulation Results

Deployment	Sparse Pico
Transmit power	100, 200 and 500mW
Capacity	285-388 Mbps

DTX Energy Savings

Sleep Mode Energy Savings

Sleep Mode Energy Savings

Conclusion

- The deployment of small cells increases the performance of the network, but without energy saving techniques the power consumption is up to 3x higher than that of the macro reference.
- With energy saving techniques such as DTX and small cell sleep modes, the energy consumption of the HetNets can be reduced.
- From an energy performance perspective, dense low power pico deployment vs a sparse high power pico deployment are equally efficient. Micro DAS however, have shown to be a deployment of poor energy efficiency due to high feeder losses in the cables

Conclusion

- The results also show that the total daily energy consumption of the HetNets can be reduced by 10-20% with DTX.
- Introducing longer sleep periods also show potential for energy savings. The result shows that with a sparse pico deployment, the power consumption at low traffic loads can be reduced by 33%.

ERICSSON