A. Complete Results of DirLinkBench

A.1. Results on Cora-ML

Table 1. Benchmark Results on Cora-ML. For all methods, F indicates the use of original node features as input, while D indicates the use of in/out degrees as input. Results ranked **first** and **second** are highlighted.

Method	Hits@20	Hits@50	Hits@100	MRR	AUC	AP	ACC
STRAP	67.10±2.55	75.05±1.66	79.09±1.57	30.91±7.48	87.38±0.83	90.46±0.70	78.47±0.77
ODIN	27.10±3.69	40.99±3.10	54.85±2.53	10.75±3.51	85.15±0.84	85.41±0.95	77.16±0.84
ELTRA	70.74 ± 5.47	81.93 ± 2.38	87.45 ±1. 48	19.77±5.22	94.83±0.58	95.37±0.52	85.40±0.45
MLP _F MLP _D	27.16±6.70	44.28±5.72	60.61±6.64	9.02±3.58	89.93±2.09	88.55±2.51	81.32±2.41
	29.84±4.83	44.11±4.73	56.74±2.03	11.84±3.40	86.44±0.74	86.58±0.88	77.95±0.95
GCN _F	37.88±5.60	55.31±4.46	70.15±3.01	14.25±3.49	92.01±1.64	91.45±1.47	82.82±0.86
GCN _D	31.36±3.89	45.03±2.92	58.77±2.96	12.56±2.86	86.12±0.87	86.79±1.01	77.81±0.87
GAT _F	33.42±8.93	58.40±6.55	79.72±3.07	9.30±3.39	94.57±0.45	92.77±0.42	88.95±0.71
GAT _D	30.19±4.23	43.53±2.93	55.09±3.34	11.07±3.68	85.52±1.27	86.19±0.96	77.36±1.13
APPNP _F	55.47±4.63	75.16±4.09	86.02±2.88	22.49±6.33	95.94±0.57	95.82 ± 0.59	89.90±0.73
APPNP _D	32.21±3.65	45.51±3.76	60.02±3.36	11.89±2.65	88.00±1.08	88.01±1.17	79.28±1.13
GPRGNN _F	54.48±7.37	73.72±5.3	86.03±2.73	22.22±4.14	95.76±0.64	95.57±0.69	89.57±0.56
GPRGNN _D	26.04±4.14	38.75±2.91	52.82±2.58	10.33±3.13	82.95±1.10	84.04±0.95	75.09±0.80
DGCN _F	30.86±4.17	41.82±4.43	54.38±4.97	11.01±4.23	85.55±3.40	85.66±2.35	77.82±3.49
DGCN _D	36.30±4.43	50.25±3.42	63.32±2.59	13.98±4.24	87.87±0.96	88.67±0.84	80.26±0.69
DiGCN _F	30.05±5.45	48.87±5.25	63.21±5.72	10.16±4.25	89.48±1.83	89.10±1.99	82.47±0.97
DiGCN _D	34.39±3.69	49.66±4.14	60.10±4.04	12.49±3.83	85.87±1.22	87.13±1.18	77.88±1.01
DiGCNIB _F	45.90±4.97	66.62±3.67	80.57±3.21	17.08±3.90	94.67±0.56	94.21±0.65	87.25±0.58
DiGCNIB _D	37.18±4.60	51.64±3.69	64.72±3.43	12.71±4.08	89.23±0.92	89.36±0.85	81.05±1.05
DirGNN _F	42.48±7.34	59.41±4.00	76.13±2.85	12.01±3.57	93.05 ± 0.87	92.52±0.79	85.83±0.93
DirGNN _D	32.29±2.25	45.53±2.60	58.22±2.50	13.34±5.56	87.06 ± 0.77	87.35±0.80	77.93±1.14
MagNet _F	26.87±3.82	40.58±3.19	53.51±2.00	10.08±3.47	85.21±0.79	85.53±1.00	76.93 ± 0.79
MagNet _D	29.38±3.39	43.28±3.76	56.54±2.95	11.19±3.04	85.23±0.84	86.06±0.94	77.51 ± 0.92
DUPLEX _D	21.73±3.19	34.98±2.37	69.00±2.52	7.74 ± 1.95	88.02±0.95	86.62±1.43	82.28±0.93
	17.48±4.69	32.58±8.33	54.50±7.49	5.46 ± 2.10	82.97±4.47	82.97±2.85	75.59±4.87
DHYPR _F	59.81±4.79	77.45±2.56	86.81±1.60	20.56±5.10	96.13±0.28 80.83±2.64	95.84±0.39	86.04±0.66
DHYPR _D	15.09±4.40	28.96±6.54	42.93±6.63	4.05±1.16		79.97±3.02	72.74±3.50
DiGAE _F	56.13±3.80	72.23±2.51	82.06±2.51	20.53 ± 4.21	92.56±0.66	93.70±0.54	86.25 ± 0.80
DiGAE _D	35.40±4.05	49.12±3.44	61.30±2.70	13.71 ± 4.22	86.82±0.85	87.35±0.84	76.01 ± 1.04
SDGAE _F SDGAE _D	70.89±3.35 35.53±5.41	83.63±2.15 49.34±4.60	90.37±1.33 61.40±3.18	28.45 ± 5.82 14.21±3.71	97.24±0.34 87.38±1.06	97.21±0.17 88.19±1.18	91.36±0.70 78.99±1.34

A.2. Results on CiteSeer

Table 2. Benchmark Results on CiteSeer. For all methods, $_{\rm F}$ indicates the use of original node features as input, while $_{\rm D}$ indicates the use of in/out degrees as input. Results ranked **first** and **second** are highlighted.

Model	Hits@20	Hits@50	Hits@100	MRR	AUC	AP	ACC
STRAP ODIN	63.28 ± 1.46 30.74 ± 3.78	67.05±1.32 47.91±2.57	69.32±1.29 63.95±2.98	40.70 ± 6.95 11.05±2.74	81.82±1.44 82.22±1.05	84.15±0.84 81.74±1.10	75.01±1.40 73.63±1.19
ELTRA	72.34 ± 1.76	79.44 ± 1.54	84.97 ± 1.90	27.87 ± 9.03	90.98 ± 0.86	92.71 ± 0.81	80.86 ± 1.15
MLP _F	35.55±4.39	52.31±4.60	70.27±3.40	16.08±4.88	85.47±1.35	85.16±1.29	74.26±1.64
MLP _D	40.27±4.48	56.27±3.64	68.78 ± 2.21	15.94±3.04	84.09±1.02	84.86±1.12	74.81±1.32
GCN_F GCN_D	42.27 ± 7.11 43.96 ± 2.35	62.65 ± 4.22 56.24 ± 3.62	80.36 ± 3.07 66.15 ± 2.07	18.28 ± 6.7 19.36 ± 4.96	89.94±1.04 81.24±1.55	88.88 ± 1.38 84.33 ± 0.90	79.47 ± 1.73 73.92 ± 1.43
${\displaystyle \operatorname{GAT_F}} {\displaystyle \operatorname{GAT_D}}$	48.29 ± 6.04 40.29 ± 3.25	71.86 ± 4.65 55.62 ± 1.92	85.88 ± 4.98 65.82 ± 2.87	16.71 ± 5.56 19.00 ± 4.18	92.90 ± 0.74 82.72 ± 0.67	91.12±1.53 83.96±0.60	85.94±1.21 74.18±1.18
$APPNP_F$ $APPNP_D$	59.86 ± 6.54 45.44 ± 3.38	77.57 ± 5.68 58.18 ± 1.55	83.57 ± 4.90 68.47 ± 3.00	20.91 ± 4.39 20.18 ± 5.50	93.58 ± 0.71 83.48 ± 1.17	93.09 ± 0.68 85.72 ± 1.00	86.23 ± 1.49 74.86 ± 1.19
GPRGNN _F GPRGNN _D	63.66±5.89 44.33±4.92	82.36±2.72 56.68±5.38	88.70±2.96 69.28±3.85	22.88±6.24 18.39±5.43	94.02±0.43 84.41±1.62	93.93±0.76 85.72±1.92	87.78±0.96 74.34±2.34
DGCN _F	39.64±6.53 45.94±3.01	50.85±2.91 58.38±2.85	62.97±4.79 68.97±3.39	19.15±4.34 19.53±4.83	80.60±2.90 83.38±1.41	81.80±1.85 85.44±1.01	74.12±2.49 74.83±1.46
DiGCN _F	38.48±3.50 40.65±4.23	53.30±5.92 52.87±3.85	70.95±4.67 65.46±3.70	15.79±4.05 17.39±4.82	87.41±2.24 83.50±1.12	85.02±2.90 84.75±0.93	80.38±1.17 74.65±1.36
DiGCNIB _F DiGCNIB _D	44.90±7.91 45.68±3.50	69.86±5.13 58.99±3.92	85.32±3.70 70.29±2.39	16.61±5.61 20.22±3.31	92.50±0.57 85.81±0.69	90.35±1.43 86.73±0.85	85.98±1.19 76.54±1.27
DirGNN _F DirGNN _D	44.95±7.31 40.16±4.84	64.00±3.19 53.44±3.38	76.83±4.24 65.62±2.46	16.19±4.51 16.95±5.45	88.44±1.28 83.67±1.08	88.59±1.14 84.59±1.18	80.34±1.52 73.75±1.31
MagNet _F MagNet _D	32.18±5.04 39.35±5.13	47.44±3.24 54.50±3.21	61.55±8.45 65.32±3.26	12.97±1.73 15.31±2.45	82.58±1.31 83.05±1.35	82.70±1.45 84.14±1.31	73.73±1.30 73.28±1.21
DUPLEX _F DUPLEX _D	30.16±5.06 27.98±7.61	50.90±10.69 50.20±7.36	73.39±3.42 63.62±3.90	17.82±4.47 10.95±6.35	84.63±2.20 80.68±1.15	83.01±2.10 81.17±1.20	79.20±1.79 73.75±1.44
DHYPR _F DHYPR _D	77.77±4.10 24.32±8.59	89.35±2.59 41.51±6.55	92.32 ± 3.72 54.27±5.94	32.39 ± 10.14 6.17 ± 2.12	96.61 ± 0.28 77.38±1.79	96.35 ± 0.50 77.35±2.44	87.33 ± 1.39 70.27±1.35
DiGAE _F DiGAE _D	56.12±3.08 44.32±1.85	71.06±2.49 59.91±2.08	83.64±3.21 69.66±2.11	22.88±6.79 20.89±4.81	91.03±1.14 85.28±0.96	91.29±1.04 86.28±0.96	81.85±1.31 74.54±0.91
SDGAE _F SDGAE _D	81.06±4.50 45.03±3.19	91.24 ± 2.55 57.82±2.00	93.69 ± 3.68 68.97±1.70	42.50 ± 9.76 21.41±2.85	97.24±0.60 85.10±0.98	97.13±0.68 86.24±0.47	91.38±0.79 74.83±0.86

A.3. Results on Photo

Table 3. Benchmark Results on Photo. For all methods, $_{\rm F}$ indicates the use of original node features as input, while $_{\rm D}$ indicates the use of in/out degrees as input. Results ranked **first** and **second** are highlighted.

Model	Hits@20	Hits@50	Hits@100	MRR	AUC	AP	ACC
STRAP	38.54±5.20	55.21±2.19	69.16±1.44	12.08 ± 3.15 1.78 ± 0.66 2.22 ± 0.59	98.54±0.04	98.65±0.05	94.61 ± 0.10
ODIN	5.28±1.36	9.38±1.54	14.13±1.92		88.15±0.21	87.34±0.30	80.60 ± 0.20
ELTRA	7.09±1.23	12.86±1.58	20.63±1.93		96.89±0.06	95.84±0.13	91.84 ± 0.12
MLP_{D}	8.83±2.06 7.88±1.56	$14.07 \pm 2.87 \\ 12.90 \pm 0.81$	20.91±4.18 18.04±1.35	3.18 ± 1.06 2.53 ± 0.40	95.29±0.37 85.90±0.44	93.60±1.06 86.44±0.21	88.31±0.50 77.25±0.51
GCN_F GCN_D	29.44±3.90	44.12±3.49	57.55±2.54	9.85±2.78	99.04±0.06	98.66±0.10	95.90±0.18
	31.47±3.71	44.93±3.34	58.77±2.96	12.56 ± 2.86	86.12±0.87	86.79±1.01	77.71±1.01
$\begin{array}{c} GAT_F \\ GAT_D \end{array}$	25.97±4.22 11.96±1.60	42.85±4.90 21.83±2.98	58.06±4.03 31.51±2.16	8.62±3.07 3.61±0.94	99.13±0.09 94.41±0.19	98.93 ± 0.11 94.37±0.19	96.17±0.20 87.00±0.25
APPNP _F	22.13±2.60	35.30±2.04	47.51±2.51	6.56±1.14	98.54±0.09	98.26±0.12	94.71±0.29
APPNP _D	12.92±1.06	19.42±2.24	26.66±2.14	4.63±1.10	93.29±0.42	92.86±0.40	85.36±0.39
GPRGNN _F	23.47±4.25	35.30±4.74	47.60±5.09	7.28±1.42	98.28±0.40	98.01±0.45	94.10±0.91
GPRGNN _D	13.03±1.49	19.04±1.37	25.85±1.42	4.83±1.00	92.49±1.74	92.22±1.44	84.44±1.97
$DGCN_F$ $DGCN_D$	22.61±4.58	37.09±5.38	51.61±6.33	6.38±1.49	98.74±0.39	98.49±0.45	95.27±0.94
	15.96±3.35	26.88±2.91	35.56±3.52	5.83±1.16	96.26±0.70	95.94±0.76	90.02±1.00
DiGCN _F	$18.47 \pm 1.89 \\ 17.00 \pm 1.84$	29.63±2.28	40.17±2.38	6.41±2.41	98.10±0.10	97.69 ± 0.14	93.86 ± 0.23
DiGCN _D		25.51±1.39	33.73±1.95	5.71±1.32	95.21±0.19	95.09 ± 0.21	88.29 ± 0.26
DiGCNIB _F	21.42 ± 2.77	34.97±2.67	48.26±3.98	6.82 ± 1.53	98.67±0.14	98.39±0.16	95.05±0.27
DiGCNIB _D	16.00 ± 1.67	24.63±1.84	33.20±2.17	6.11 ± 1.50	96.71±0.07	96.38±0.09	91.30±0.17
DirGNN _F	22.59±2.77	34.65±3.31	49.15±3.62	8.42±2.90	98.76±0.09	98.47±0.13	95.34±0.17
DirGNN _D	21.57±2.11	30.87±2.35	43.21±2.19	8.72±2.08	97.53±0.09	97.26±0.08	92.41±0.20
MagNet _F	5.35±0.50	8.52±0.85	12.66±1.03	1.62±0.39	87.92±0.22	87.19±0.32	80.16±0.23
MagNet _D	5.14±0.54	9.04±0.52	13.89±0.32	1.61±0.31	88.11±0.21	87.48±0.21	80.31±0.14
DUPLEX _F	7.84±1.17	12.64±1.22	17.94±0.66	2.53±0.66	94.22±0.76	93.37±0.91	87.68±0.52
DUPLEX _D	6.97±2.14	9.08±4.95	13.28±6.14	2.26±1.17	87.41±7.05	86.40±5.89	79.73±6.87
DHYPR _F	10.18±1.21	13.66±1.47	20.93±2.41	3.15±0.57	87.35±1.54	88.83±0.95	76.94±0.63
DHYPR _D	0.16±0.14	0.52±0.83	1.63±1.23	0.28±0.06	58.85±1.39	56.65±0.62	53.91±0.66
DiGAE _F	27.79±3.85	43.32±3.36	55.05±2.36	9.38±2.47	97.98±0.08	97.99±0.10	91.77±0.18
DiGAE _D	16.55±1.20	26.17±2.03	34.60±2.09	5.36±1.66	93.14±0.14	93.76±0.11	83.23±0.34
SDGAE _F SDGAE _D	40.89±3.86 24.76±3.46	55.76±4.08 38.5±1.66	68.84±2.35 50.96±2.32	14.82±4.22 9.16±1.99	99.25 ± 0.05 98.07±0.15	99.16±0.06 97.98±0.12	96.16±0.14 93.57±0.35

A.4. Results on Computers

Table 4. Benchmark Results on Computers. For all methods, F indicates the use of original node features as input, while D indicates the use of in/out degrees as input. Results ranked **first** and **second** are highlighted.

Model	Hits@20	Hits@50	Hits@100	MRR	AUC	AP	ACC
STRAP	24.35±3.75	38.14±3.77	51.87±2.07	7.44±1.98	98.19±0.03	98.32±0.03	93.43±0.07
ODIN	$4.42{\pm}1.18$	8.41 ± 1.27	12.98 ± 1.47	1.46 ± 0.63	89.35 ± 0.09	89.15 ± 0.35	81.73 ± 0.10
ELTRA	4.82 ± 0.75	8.66 ± 1.38	14.74 ± 1.55	1.61 ± 0.52	95.63 ± 0.10	95.11 ± 0.14	89.30 ± 0.15
MLP_{F}	5.51 ± 0.72	9.31 ± 0.90	14.26 ± 0.88	1.63 ± 0.42	92.83 ± 0.36	91.86 ± 0.39	85.33 ± 0.57
MLP_D	6.97 ± 1.22	12.2 ± 0.88	17.57 ± 0.85	2.76 ± 0.75	87.48 ± 0.16	88.69 ± 0.15	78.75 ± 0.36
GCN_F	19.32 ± 2.69	31.47 ± 1.81	43.77 ± 1.75	7.26 ± 1.64	98.97 ± 0.06	98.80±0.06	95.69±0.13
GCN_D	10.59 ± 1.40	17.48 ± 1.07	24.59 ± 1.01	$4.33{\pm}1.26$	94.41 ± 0.10	94.25 ± 0.12	87.00 ± 0.13
$\overline{\text{GAT}_{\text{F}}}$	14.89±3.24	27.53±2.48	40.74±3.22	3.37±0.92	98.99±0.11	98.76±0.15	95.78±0.26
GAT_D	7.16 ± 1.53	14.49 ± 1.54	21.98 ± 1.04	2.36 ± 0.69	95.20 ± 0.44	94.81 ± 0.47	88.14 ± 0.67
$\overline{\text{APPNP}_{\text{F}}}$	12.40±1.24	21.71±1.13	32.24±1.40	4.86±1.06	98.21±0.08	97.90±0.11	94.01±0.16
$APPNP_D$	$9.54{\pm}1.53$	15.36 ± 1.20	21.92 ± 1.32	3.99 ± 0.83	93.84 ± 0.35	93.49 ± 0.38	85.76 ± 0.52
GPRGNN _F	17.08±2.31	26.98±2.82	38.39±2.64	5.66±1.36	98.46±0.20	98.26±0.20	94.48±0.38
$GPRGNN_D$	10.94 ± 1.33	16.33 ± 0.95	21.16 ± 1.53	$4.05{\pm}1.09$	92.78 ± 2.17	92.74 ± 1.78	82.40 ± 4.17
DGCN _F	17.74±2.16	27.81±1.84	39.92±1.94	6.51±1.53	98.78±0.10	98.59±0.11	95.22±0.20
$DGCN_D$	11.12 ± 1.50	17.79 ± 1.66	$25.20{\pm}1.87$	4.06 ± 0.70	95.54 ± 0.50	95.30 ± 0.53	88.72 ± 0.74
DiGCN _F	11.68 ± 1.84	19.02 ± 2.06	27.51 ± 1.67	4.61 ± 0.71	97.87 ± 0.24	97.47 ± 0.27	93.44 ± 0.54
$DiGCN_D$	10.98 ± 1.53	17.76 ± 1.37	24.46 ± 1.51	4.69 ± 1.09	94.86 ± 0.11	94.75 ± 0.12	87.59 ± 0.17
DiGCNIB _F	13.41 ± 2.95	22.54 ± 1.79	32.44 ± 1.85	$4.86{\pm}0.80$	98.46 ± 0.14	98.15 ± 0.17	94.61±0.31
$DiGCNIB_D$	10.70 ± 0.84	16.69 ± 1.41	24.74 ± 1.41	5.10 ± 1.08	96.50 ± 0.09	96.19 ± 0.11	90.77 ± 0.15
DirGNN _F	13.95±1.66	23.94±1.26	35.65±1.30	5.02±0.60	98.56±0.05	98.28±0.07	94.68±0.14
$DirGNN_D$	13.09 ± 0.90	21.84 ± 1.54	30.70 ± 0.98	$6.14{\pm}1.58$	96.70 ± 0.08	96.64 ± 0.07	91.08 ± 0.13
MagNet _F	5.02±0.60	8.49±0.48	12.66±0.62	1.74±0.66	89.18±0.08	88.99±0.10	81.43±0.08
$MagNet_D$	4.50 ± 0.76	$8.15{\pm}0.89$	$12.85 {\pm} 0.59$	$0.97{\pm}0.22$	89.37 ± 0.03	89.25 ± 0.05	81.61 ± 0.11
DUPLEX _F	7.36±0.85	13.19±0.97	17.90±0.71	2.27±0.63	92.05±0.22	91.45±0.29	85.65±0.27
$DUPLEX_D$	$5.92{\pm}1.83$	$9.04{\pm}4.80$	14.56 ± 5.51	$1.48 {\pm} 0.55$	87.00 ± 4.97	86.79 ± 4.33	78.90 ± 5.65
DiGAE _F	19.65±1.33	31.16±1.62	41.55±1.62	5.34±1.18	97.29±0.13	97.12±0.44	89.52±0.15
$DiGAE_D$	11.94 ± 0.96	19.38 ± 1.60	26.53 ± 1.20	$3.58{\pm}1.20$	92.86 ± 0.28	93.51 ± 0.20	82.11 ± 0.32
SDGAE _F	27.07±2.34	41.37±1.61	53.79±1.56	8.41±1.89	99.07±0.04	99.00±0.03	95.66±0.12
$SDGAE_D$	15.18 ± 2.22	24.02 ± 1.53	33.51 ± 1.16	5.73 ± 1.33	97.44 ± 0.12	97.32 ± 0.11	92.26 ± 0.24

A.5. Results on WikiCS

Table 5. Benchmark Results on WikiCS. For all methods, F indicates the use of original node features as input, while D indicates the use of in/out degrees as input. Results ranked **first** and **second** are highlighted.

Model	Hits@20	Hits@50	Hits@100	MRR	AUC	AP	ACC
STRAP	64.97±1.52	71.10±1.13	76.27±0.92	37.29±9.42	98.66±0.03	98.91±0.02	94.57±0.06
ODIN	3.41 ± 0.60	$6.24{\pm}0.63$	$9.83 {\pm} 0.47$	1.17 ± 0.35	92.86 ± 0.04	91.90 ± 0.10	86.39 ± 0.08
ELTRA	3.84 ± 0.49	6.62 ± 0.55	$9.88{\pm}0.70$	1.42 ± 0.33	92.66 ± 0.19	92.19 ± 0.23	85.73 ± 0.28
$\overline{\text{MLP}_{\text{F}}}$	0.24±0.09	0.71±0.40	1.21±0.25	0.15±0.07	71.90±0.54	70.86 ± 0.68	66.26±0.67
MLP_D	4.04 ± 0.72	7.92 ± 0.61	12.99 ± 0.68	1.63 ± 0.20	92.12 ± 0.10	91.90 ± 0.19	84.65 ± 0.22
GCN _F	6.10±1.85	11.25±1.86	18.05±1.43	2.07±0.49	95.86±0.27	95.41±0.45	89.85±0.35
GCN_D	18.15 ± 2.49	30.21 ± 2.51	38.37 ± 1.51	$6.09{\pm}2.16$	95.97 ± 0.08	96.23 ± 0.08	89.58 ± 0.09
$\overline{\text{GAT}_{\text{F}}}$	1.83±0.54	3.52±2.21	5.60±1.17	0.83±0.31	73.18±3.59	74.81±4.19	54.16±6.34
GAT_D	24.13 ± 4.10	34.32 ± 4.41	40.47 ± 4.10	7.67 ± 2.07	95.72 ± 0.27	96.06 ± 0.33	88.90 ± 0.36
$\overline{\text{APPNP}_{\text{F}}}$	3.71±0.46	6.66±0.76	11.11±1.09	1.64±0.33	92.76±0.63	92.11±0.63	85.56±0.08
$APPNP_D$	7.60 ± 1.75	12.76 ± 3.01	20.23 ± 1.72	2.75 ± 0.70	94.12 ± 0.09	93.89 ± 0.12	87.51 ± 0.14
GPRGNN _F	6.79±0.78	10.80±1.15	14.92±1.19	1.81±0.29	92.00±0.05	91.11±0.08	71.28±0.11
$GPRGNN_D$	5.67 ± 1.67	14.07 ± 2.14	20.87 ± 3.15	2.02 ± 0.41	93.53 ± 0.58	93.47 ± 0.66	86.59 ± 0.56
DGCN _F	5.84±1.79	10.12±3.32	15.88±5.12	2.04±0.50	95.98±0.65	95.45±0.80	89.95±0.96
$DGCN_D$	$8.35{\pm}3.46$	16.51 ± 2.99	25.91 ± 4.10	$2.88 {\pm} 1.11$	96.22 ± 0.32	96.04 ± 0.43	90.13 ± 0.37
DiGCN _F	3.63±0.69	6.77±0.98	10.24 ± 0.88	1.58±0.46	92.55±1.53	91.63±1.62	82.60±2.14
$DiGCN_D$	10.08 ± 1.33	16.32 ± 2.16	25.31 ± 1.84	$3.85{\pm}0.98$	95.59 ± 0.12	95.57 ± 0.12	88.89 ± 0.14
DiGCNIB _F	5.36±0.58	8.28±1.20	13.61±1.18	1.81±0.48	94.00±0.33	93.31±0.39	84.49±1.62
$DiGCNIB_D$	12.01 ± 2.95	20.99 ± 1.75	28.28 ± 2.44	$3.96{\pm}1.16$	96.36 ± 0.07	96.30 ± 0.08	90.72 ± 0.10
DirGNN _F	11.76±3.31	23.90±3.31	33.28±2.84	4.82±1.77	97.09±0.13	97.04±0.16	91.55±0.25
$DirGNN_D$	28.16 ± 2.09	$40.94{\pm}1.19$	50.48 ± 0.85	12.08 ± 2.05	97.13 ± 0.09	97.33 ± 0.09	91.28 ± 0.14
MagNet _F	3.41±0.35	6.10±0.45	9.25±0.57	1.42±0.22	92.57±0.08	91.54±0.10	86.06±0.11
$MagNet_D$	4.13 ± 0.46	6.57 ± 0.34	10.81 ± 0.46	1.26 ± 0.37	93.06 ± 0.06	92.18 ± 0.07	86.59 ± 0.06
DUPLEX _F	2.97±0.52	5.54±0.63	8.52±0.60	0.89±0.22	90.92±0.12	90.06±0.45	83.82±0.23
$DUPLEX_D$	1.09 ± 0.92	1.53 ± 3.12	5.45 ± 0.19	1.03 ± 0.08	90.93 ± 0.04	90.37 ± 0.23	83.81 ± 0.11
DiGAE _F	7.01±1.78	11.54±1.11	18.17±1.27	2.18±0.78	93.47±1.04	93.20±1.16	76.38±0.21
$DiGAE_D$	10.6 ± 1.89	19.69 ± 1.98	29.21 ± 1.36	4.59 ± 0.88	93.46 ± 0.22	94.47 ± 0.15	82.53 ± 0.48
SDGAE _F	8.54±3.42	19.60±5.04	29.95±5.80	2.35±0.91	96.64±1.23	96.58±1.20	90.98±1.52
$SDGAE_D$	33.04±3.27	47.62±1.74	54.67±2.50	11.78 ± 4.11	97.23±0.07	97.58±0.06	92.24±0.12

A.6. Results on Slashdot

Table 6. Benchmark Results on Slashdot. For all methods, R indicates the use of random node features as input, while R indicates the use of in/out degrees as input. Results ranked **first** and **second** are highlighted.

Model	Hits@20	Hits@50	Hits@100	MRR	AUC	AP	ACC
STRAP	19.10±1.06	25.39±1.43	31.43±1.21	9.82±1.82	94.74±0.05	95.13±0.05	88.19±0.08
ODIN	14.97 ± 1.40	24.91 ± 1.19	34.17 ± 1.19	4.44 ± 1.59	96.58 ± 0.07	96.75 ± 0.06	90.39 ± 0.10
ELTRA	18.02 ± 2.11	26.31 ± 0.95	33.44 ± 1.00	5.53 ± 1.77	94.65 ± 0.03	95.23 ± 0.04	88.11±0.11
MLP_R	$4.25{\pm}0.71$	7.26 ± 0.74	11.31 ± 0.70	$1.28 {\pm} 0.33$	$72.86 {\pm} 0.37$	76.72 ± 0.21	66.16 ± 0.26
MLP_D	14.16 ± 5.22	24.01 ± 0.79	32.97 ± 0.51	4.14 ± 1.71	95.84 ± 0.07	96.21 ± 0.05	89.62±0.11
GCN_R	12.52 ± 1.30	21.03 ± 1.62	29.04 ± 0.95	3.03 ± 0.73	95.58 ± 0.13	95.69 ± 0.13	89.46 ± 0.12
GCN_D	16.28 ± 1.59	24.51 ± 1.63	33.16 ± 1.22	5.54 ± 2.04	95.90 ± 0.07	96.17 ± 0.06	89.75 ± 0.17
GAT_R	14.82 ± 2.70	22.19 ± 2.78	30.16 ± 3.11	5.11 ± 1.53	96.26 ± 0.18	$96.45{\pm}0.20$	87.14 ± 1.03
GAT_D	12.39 ± 1.47	19.54 ± 1.89	26.65 ± 1.98	4.53 ± 0.78	95.01 ± 0.34	95.25 ± 0.45	88.01 ± 0.49
$APPNP_R$	14.83 ± 1.18	22.75 ± 1.45	$31.25{\pm}1.14$	$4.56{\pm}1.37$	95.36 ± 0.07	95.72 ± 0.06	88.76±0.09
$APPNP_D$	15.00 ± 5.47	24.34 ± 1.47	33.76 ± 1.05	5.86 ± 2.78	96.21 ± 0.06	96.43 ± 0.05	90.07 ± 0.10
$GPRGNN_R$	15.19 ± 1.58	23.41 ± 1.15	$32.28{\pm}1.27$	$4.82{\pm}1.54$	95.64 ± 0.05	95.95 ± 0.05	88.62±0.28
$GPRGNN_D$	12.46 ± 2.17	22.05 ± 1.98	32.61 ± 1.05	$4.84{\pm}2.37$	95.73 ± 0.15	96.00 ± 0.10	89.08±0.18
DirGNN _R	18.72 ± 1.93	28.52 ± 1.09	37.41 ± 1.37	6.19 ± 2.04	96.67 ± 0.05	96.89 ± 0.04	90.24±0.12
DirGNN _D	20.55 ± 2.85	31.20 ± 1.18	41.74 ± 1.15	7.52 ± 3.24	96.95 ± 0.05	97.14±0.06	90.65 ± 0.13
MagNet _R	$9.16{\pm}1.26$	19.58 ± 1.37	28.50 ± 1.78	1.98 ± 0.25	96.31 ± 0.06	96.38 ± 0.06	90.04 ± 0.13
MagNet _D	12.55 ± 0.75	22.34 ± 0.42	31.98 ± 1.06	2.83 ± 0.51	96.57 ± 0.09	96.69 ± 0.10	90.45±0.09
$DUPLEX_R$	5.67 ± 1.85	11.49 ± 3.36	18.42 ± 2.59	$1.81 {\pm} 0.83$	94.36 ± 3.25	$94.48{\pm}2.76$	85.42 ± 3.42
$DUPLEX_D$	2.51 ± 0.64	5.95 ± 1.11	$9.39{\pm}2.71$	0.51 ± 0.01	80.57 ± 3.85	86.52 ± 1.50	77.67 ± 2.24
DiGAE _R	18.89±1.71	27.69±1.41	36.57±1.32	5.49±2.96	95.26±0.29	96.13±0.19	84.27±0.26
$DiGAE_D$	23.68±0.94	33.97±1.06	41.95±0.93	5.54 ± 1.51	94.30 ± 0.29	95.80 ± 0.12	85.67 ± 0.28
$\overline{\text{SDGAE}_{R}}$	18.24±2.05	28.47±1.97	37.34±0.68	5.51±1.65	95.96±0.07	96.31±0.03	90.11±0.11
SDGAE _D	23.57±2.11	33.75±1.48	42.42±1.15	8.41±3.80	96.70±0.10	97.06±0.08	91.05±0.20

A.7. Results on Epinions

Table 7. Benchmark Results on Epinions. For all methods, R indicates the use of random node features as input, while D indicates the use of in/out degrees as input. Results ranked **first** and **second** are highlighted.

Model	Hits@20	Hits@50	Hits@100	MRR	AUC	AP	ACC
STRAP	44.66±1.68	53.48±0.86	58.99±0.82	21.18±6.31	96.62 ± 0.06	97.60±0.04	91.89±0.06
ODIN	11.85 ± 3.33	25.99 ± 1.79	36.91 ± 0.47	3.22 ± 0.80	97.72 ± 0.03	97.91 ± 0.03	92.42 ± 0.07
ELTRA	16.89 ± 1.27	28.37 ± 1.53	41.63 ± 2.53	5.81 ± 1.10	96.19 ± 0.04	97.47 ± 0.03	90.40 ± 0.13
MLP_R	$3.84{\pm}0.65$	7.02 ± 0.40	10.18 ± 0.67	1.18 ± 0.36	$78.44 {\pm} 0.25$	80.67 ± 0.14	67.83 ± 1.93
MLP_D	15.84 ± 3.61	34.11 ± 2.04	44.59 ± 1.62	4.35 ± 1.64	97.85 ± 0.08	98.02 ± 0.07	92.56 ± 0.45
GCN_R	18.26 ± 2.56	30.18 ± 1.71	40.64 ± 1.53	$4.04{\pm}1.10$	96.90 ± 0.04	97.54 ± 0.03	92.10±0.24
GCN_D	12.40 ± 7.59	30.79 ± 9.24	46.10 ± 1.37	3.12 ± 0.71	97.83 ± 0.09	98.15 ± 0.05	94.17±0.08
GAT_R	19.65 ± 3.52	31.90 ± 3.56	43.65 ± 4.88	$6.04{\pm}2.16$	98.35 ± 0.11	98.50 ± 0.11	$92.05{\pm}1.30$
GAT_D	18.18 ± 4.11	27.18 ± 3.95	36.76 ± 5.74	7.98 ± 1.92	97.61 ± 0.29	97.81 ± 0.22	92.92 ± 0.37
$APPNP_R$	17.86 ± 2.53	27.89 ± 1.24	39.06 ± 1.26	$4.88 {\pm} 4.14$	97.70 ± 0.04	97.92 ± 0.02	$92.84{\pm}0.06$
$APPNP_D$	18.46 ± 3.51	30.84 ± 1.84	41.99 ± 1.23	6.41 ± 3.73	98.36±0.06	98.48 ± 0.06	94.17 ± 0.16
$GPRGNN_R$	19.05 ± 1.86	29.51 ± 1.60	39.22 ± 1.56	5.44 ± 1.97	97.85 ± 0.02	98.02 ± 0.02	92.53 ± 0.06
$GPRGNN_D$	18.43 ± 5.03	29.62 ± 3.28	41.14 ± 2.10	4.74 ± 1.45	98.02 ± 0.05	98.24 ± 0.05	94.14 ± 0.09
$DirGNN_R$	25.66 ± 3.33	$39.28{\pm}1.96$	50.10 ± 2.06	7.03 ± 2.70	98.25 ± 0.03	98.46 ± 0.03	93.99 ± 0.05
DirGNN _D	21.35 ± 2.89	34.06 ± 2.53	46.01 ± 2.07	6.12 ± 2.54	98.03 ± 0.03	98.26 ± 0.02	93.48±0.06
$MagNet_R$	$6.41{\pm}1.57$	12.95 ± 1.51	$22.12{\pm}1.27$	1.62 ± 0.35	97.60 ± 0.03	97.69 ± 0.03	92.79 ± 0.05
MagNet _D	7.68 ± 1.00	16.30 ± 2.36	28.01 ± 1.72	2.53 ± 0.57	97.71 ± 0.03	97.86 ± 0.04	92.92±0.05
$DUPLEX_R$	3.76 ± 1.94	$8.38{\pm}4.39$	16.50 ± 4.34	$1.85{\pm}0.39$	92.11 ± 2.25	93.78 ± 3.69	88.20 ± 3.86
DUPLEX _D	2.43 ± 0.86	6.74 ± 0.45	12.35 ± 2.64	0.46 ± 0.08	90.61 ± 1.76	88.72 ± 3.26	81.82 ± 3.74
DiGAE _R	29.11 ± 3.51	$43.25{\pm}1.68$	53.27±1.17	$8.85{\pm}2.81$	97.11 ± 0.19	97.78 ± 0.11	89.16±0.24
DiGAE _D	22.56 ± 9.23	43.19 ± 2.97	55.14 ± 1.96	5.33 ± 1.78	96.47 ± 0.18	97.37 ± 0.10	90.17±0.14
$SDGAE_R$	21.88±2.17	35.28±2.35	45.04±2.18	6.54±1.94	98.11±0.03	98.35±0.03	93.83±0.07
SDGAE _D	32.81±2.67	45.61±1.92	55.91±1.77	11.62±2.86	98.43±0.07	98.64±0.04	94.33±0.11