MA 111

Tutorial 5 Solutions

D1 T5

GYANDEV GUPTA

February 17, 2021

IIT BOMBAY

QUESTION 1 QUESTION 2 QUESTION 3 QUESTION 4 QUESTION 5 QUESTION 6 QUESTION 12

QUESTION 1(i)

Green's Theorem:

- 1. Let D be a bounded region in \mathbb{R}^2 with a positively oriented boundary C consisting of a finite number of non-intersecting simple closed piecewise continuously differentiable curves.
- 2. Let Ω be an open set in R^2 such that $D \cup C \subset \Omega$ and let $F1 : \Omega \to R$ and $F2 : \Omega \to \text{be } C^1$ functions.

Then the following holds: $\int_C F_1 dx + F_2 dy = \iint_D (\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}) dx dy$

QUESTION 1(i)

Verfiy Green's Theorem:-

To evaluate: $\int_{\partial D} F_1(x, y) dx + F_2(x, y) dy$ Here, $F_1(x, y) = -xy$, $F_2(x, y) = xy$ on $D =: \{(x, y) \mid 0 \le y \le 1 - x^2 \text{ and } 0 \le x\}$ let ∂D (positively oriented) = $C_1 + C_2 + C_3$ where, $C_1(t): x(t) = t, \ y(t) = (1 - t^2) \ [t = 1 \to 0].$ $C_2(t): x(t) = 0, \ v(t) = t \ [t = 1 \to 0] \ \text{and} \ C_3(t): x(t) = t, \ y(t) = 0 \ [t = 0 \to 1]$ $\therefore \int_{\partial D} (F_1(x, y) dx + F_2(x, y) dy) = \int_{C_1} (F_1(x, y) dx + F_2(x, y) dy) + \int_{C_2} (F_1(x, y) dx + F_2(x, y) dy) + \int_{C_2} (F_1(x, y) dx + F_2(x, y) dy) dx$ $\int_{C_2} (F_1(x,y) dx + F_2(x,y) dy) + \int_{C_2} (F_1(x,y) dx + F_2(x,y) dy)$ $\int_{2D} (F_1(x,y) dx + F_2(x,y) dy) = \int_1^0 (-t(1-t^2)(1) + t(1-t^2)(-2t)) dt +$ $\int_{1}^{0} (0+0) dt + \int_{0}^{1} (0+0) dt = \frac{31}{60} \Rightarrow \boxed{1}$

QUESTION 1(i)

To evaluate:
$$\int_{D} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y}\right) dx dy$$
We know,
$$\frac{\partial F_{2}}{\partial x} = \frac{\partial (xy)}{\partial x} = y \text{ and } \frac{\partial F_{1}}{\partial y} = \frac{\partial (-xy)}{\partial y} = -x$$

$$\therefore \int_{D} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y}\right) dx dy = \int_{D} (y - (-x)) dx dy = \int_{0}^{1} \left[\int_{0}^{1-x^{2}} (x + y) dy\right] dx$$

$$\therefore \int_{D} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y}\right) dx dy = \int_{0}^{1} \left[(xy)|_{y=0}^{y=1-x^{2}} + (\frac{y^{2}}{2})|_{y=0}^{y=1-x^{2}}\right] dx$$

$$\therefore \int_{D} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y}\right) dx dy = \int_{0}^{1} \left[0.5 - x^{2} + \frac{x^{4}}{2} + x - x^{3}\right] dx = \frac{31}{60} \Rightarrow \boxed{2}$$
from $\boxed{1}$ and $\boxed{2}$,
$$\int_{\partial D} F_{1}(x, y) dx + F_{2}(x, y) dy = \int_{D} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y}\right) dx dy$$
Hence, Green's theorem is verified.

QUESTION 2a

QUESTION 2b

QUESTION 2c

We must ensure that the curve is positively oriented to apply Green's theorem. Thus, paramaterise the boundary of the disk as :

$$\partial D = (2cost(t), 2sin(t))|t \in [0, 2\pi]$$

Thus ∂D is positively oriented. Further, we may claim that:

$$\int_{\partial D} y^2 dx + x dy = -\int_{\partial R} y^2 dx + x dy$$

Now applying Green's theorem yields: $(\int_{\partial R} y^2 dx + x dy) = \int \int_{x^2 + y^2 \le 4} (1 - 2y) dx dy$

$$\int_{0}^{2\pi} \int_{r=0}^{2} (1 - 2r sin(\theta)) r = -4\pi$$

QUESTION 3a

We define area as: $\int \int dA = \int_D \int 1 dx dy$

Observe that applying Green's Theorem on F = (-y, x) yields:

$$\int_{\partial D} (x \, dy - y \, dx) = \int \int 2 \, dx \, dy = 2 \int \int dA$$

$$\implies \int \int dA = \frac{1}{2} \int_{\partial D} (x \, dy - y \, dx)$$

Now, to evaluate line integral, we paramaterise ∂D as follows c(t) = (x(t), y(t)) where:

$$x(t) = r(t)cos(\theta(t))$$

$$y(t) = r(t)sin(\theta(t))$$

QUESTION 3a Contd.

Now
$$\int \int dA = \frac{1}{2} \int_{\partial D} (x \, dy - y \, dx) = \frac{1}{2} \int_{\partial D} (x(t)y'(t) - y(t)x'(t)) \, dt$$

$$\implies \int \int dA = \frac{1}{2} \int_{\partial D} r^2 \, d\theta$$

QUESTION 3b

Area =

$$\frac{1}{2}\int_{\partial D}r^2\,d\theta=\frac{1}{2}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}(a)^2cos(2\theta)\,d\theta=\frac{a^2}{2}$$

QUESTION 4a

QUESTION 4b

QUESTION 4c

Consider $F_1 = xe^{-y^2}$ and $F_2 = -x^2ye^{-y^2} + \frac{1}{x^2+y^2}$

Now applying Green's Theorem to get:

$$I = \int \int_{D} -2xy^{2}e^{-y^{2}} - \frac{2x}{(x^{2} + y^{2})^{2}} + 2xye^{-y^{2}}.dA$$
 (1)

$$I = \int_{a}^{b} \int_{-\pi}^{\pi} r.(r^{2} \sin 2\theta e^{-r^{2} \cos^{2}\theta} - 2r^{3} \sin \theta \cos^{2}\theta e^{-r^{2} \cos^{2}\theta} - 2\sin \theta r^{-3}).d\theta.dr$$
 (2)

Since integrand is an odd function,

$$I = \int_{a}^{b} 0.dr = 0 \tag{3}$$

$$\mathbf{F} = \nabla(x^2 - y^2) = (2x\hat{i} - 2y\hat{j})$$

Thus

$$div(\mathbf{F}) = \frac{\partial 2x}{\partial x} - \frac{\partial 2y}{\partial y} = 2 - 2 = 0$$

Applying Flux-Divergence Theorem:

$$\int_{\partial D} \mathbf{F} \cdot \mathbf{n} \, dS = \int \int_{D} di \nu(\mathbf{F}) \, d(x, y) = 0$$

QUESTION 9a

QUESTION 9b

2.51	(11) All de - (10 (04) dess
cii)	To Priore:
-	IS V' & dury = & De de
-	90 000
	Carolin Carolin St. 19
San	d is a scalar
The same of	$\nabla^2 \phi = \nabla \cdot (\nabla \phi)$
-	ter F = Vp
-	By Divergence theorem for F In b.
-	
-	Sf v. P d(x,4) = S P. P ds
	0,00
1000	4
	\$ \(\forall \nu \rangle \rangl
-	=) () D D d d(x, u) = =>) Joh d()
-	1,38
	(: Vø. n = dg)
	6 must have been covered in Mo 109
	1710)

QUESTION 9c

(iii)
$$\oint \frac{\partial t}{\partial n} dt = \iint \nabla \cdot (\nabla \phi) dx dy$$

$$d = e^{x} ciny$$

$$\nabla \phi = e^{x} ciny$$

$$\nabla (\nabla \phi) = e^{x} ciny$$

$$\nabla (\nabla \phi$$

QUESTION 10a

10) (i)
$$\int_{C} \frac{x_1 dy}{x_1 dy} = \frac{y_1}{y_1}$$

L = $\left\{ (x_1 y_1) \mid x_1 + y_2 > 1 \right\}$

Set C be a closed aware in \mathcal{L} enclosing the origin.

Now, let $f(x_1 y_1) = \frac{y_1}{x_1 y_1}$ (in it also the origin $\frac{y_1}{y_1}$ (in it also that $\frac{y_1}{y_1}$) (in also completely and $\frac{y_1}{y_1}$) (in also completely and $\frac{y_1}{y_1}$) (in also completely and $\frac{y_1}{y_1}$).

QUESTION 10a Contd.

QUESTION 10a Contd.

QUESTION 10b

$$\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\implies \frac{\partial F_1}{\partial y} - \frac{\partial F_2}{\partial x} = 0$$

Since, any closed curve Ω not enclosing the origin constitues a simply-connected closed curve, we may apply Green's Theorem:

$$\int_{C} F_{1} dx + F_{2} dy = \iint_{D} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dx dy$$

$$\implies \frac{-y}{x^{2} + y^{2}} dx + \frac{x}{x^{2} + y^{2}} dy = 0$$

QUESTION 10c

Consider
$$F=(F_1,F_2)$$
 and $F_1=\frac{\partial ln(r)}{\partial y}$ and $F_2=-\frac{\partial ln(r)}{\partial x}$.
Here $r=\sqrt{x^2+y^2}$ $\Longrightarrow F_1=\frac{\partial ln(r)}{\partial y}=\frac{\partial ln(\sqrt{x^2+y^2})}{\partial y}\Longrightarrow F_1=\frac{y}{x^2+y^2}$
Similarly $F_2=\frac{-x}{x^2+y^2}$ Thus, now you may use results derive

Similarly $F_2 = \frac{-x}{x^2 + y^2}$ Thus, now you may use results derived from parts (a) and (b) to arrive at the answer.

QUESTION 11a

QUESTION 11b

$$curl(\mathbf{F}) = (\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z})\hat{i} + (\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x})\hat{j} + \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y})\hat{k}$$
Here $F = (F_1, F_2, F_3)$; $F_1 = f(x), F_2 = g(y), F_3 = h(z)$

$$\therefore \frac{\partial f(x)}{\partial y} = \frac{\partial f(x)}{\partial z} = 0$$

Thus clearly the \hat{k} component of $curl(\mathbf{F})=0$. By symmetry, other components are also $0 \implies curl(\mathbf{F})=\mathbf{0}$

$$div(\mathbf{F}) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$
Here $F = (F_1, F_2, F_3)$; $F_1 = f(y, z), F_2 = g(x, z), F_3 = h(x, y)$

$$div(\mathbf{F}) = \frac{\partial f(y, z)}{\partial x} + \frac{\partial g(x, z)}{\partial y} + \frac{\partial h(x, y)}{\partial z} = 0$$

