2nd seminar

Antipsychotics, AntiParkinson agents

Balázs Varga Pharm.D., PhD

Department of Pharmacology and Pharmacotherapy

University of Debrecen

Dopaminergic neurotransmission

- Dopamin metabolism:
 - Phe → Tyr → di-OH-Phe (DOPA) → dopamin (enzymes: Phe-hydroxylase, Tyr-hydroxylase, DOPA-decarboxylase)
 - the released Dopamine may be reuptaken back to the presynaptic nerve ending OR
 - it may be broken down by COMT (Catechol-O-methyl transferase) or MAO (Monoamine oxidases) (primarily MAO-B)

Dopaminergic neurotransmission

Dopamine receptors:

D₁-like, D₂-like

- (μ M) D₁:Gs \rightarrow AC \rightarrow cAMP \uparrow putamen, cortex, nucleus accumbens
 - $D_2:Gi\rightarrow cAMP\downarrow$, seen above
- - $D_4:Gi \rightarrow cAMP \downarrow cortex$
 - (μ M) D₅:Gs \rightarrow AC \rightarrow cAMP \uparrow , hippocampus, hypothalamus

Dopaminergic pathways

Dopaminergic systems

- nigrostriatal pathway
 - substantia nigra→corpus striatum
 - coordination of voluntary movement
 - deficiency!→Parkinson's disease
- mesolimbic-mesocortical pathway
 - mesencephalon→limbic system/cortex
 - cognitive functions, self-reward system, perception, feelings
 - overstimulation! → side effects of antiParkinson agents can be cognitive and behavioural neuropsychiatric disturbances
 - Mesolimbic overactivity = positive symptoms
 - Mesocortical dysfunction = negative symptoms
- hypothalamo-hypophyseal (tuberoinfundibular) pathway
 - hypothalamus \rightarrow hypophysis
 - endocrine functions
 - dopamin = PIF, prolactin secretion↓ →
 side effects of antipsychotics may be hyperprolactinaemia
 - → galactorrhea (milk leakage) (even in male patients)
- medullary-periventricular pathway
 - around III.-IV. ventricle
 - eating behavior → antipsychotics may provoke obesity
- area postrema
 - chemosensitive trigger zone
 - antpsychotics → antiemetic effects

Ac: nucleus accumbens Am: amygdaloid nucleus

C: cerebellum

Hip: Hippocampus Hyp: Hypothalamus

P: pituitary gland

Sep: Septum

SN: substantia nigra Str: Corpus striatum

VTA: ventral tegmental area

(Rang&Dale 7th Ed.)

Schizophrenia

- psychiatric disease
- □ etiology:
 - dopamine hypothesis
 - □ hyperfunction of mesolimbic dopaminergic pathway
 - □ primarily described (development of typical antipsychotics-D2R antagonism)
 - \Box D₂ R blocking drugs reduce psychotic symptoms
 - □ D₂ R activating drugs (levodopa, bromocriptine) produce psychosis
 - \square post-mortem study increased D_2 R density in midbrain (mesencephalon)
 - □ increased dopamine levels in putamen, nucleus accumbens
 - serotonin hypothesis
 - □ indole hallucinogenes (LSD), mescalin provoke psychotic symptoms
 - □ $5HT_{2A}R$ agonism hallucinations
 - □ inverse agonists of 5HT_{2A} R (AAP-clozapine, queitapine) reduce sch. sympt.
 - glutamate hypothesis
 - □ hypofunction of NMDA R located on GABAerg neurons provoke schizphr.

Schizophrenia

Symptoms:

- positive symptoms:
 - □ illusions / delusions (irreal)
 - □ auditory/visual hallucinations
 - □ thinking disorders
 - motoric excitement (agitation), agressive behaviour
- negative symptoms:
 - □ blunted reactions and emotions
 - poverty of speech (alogia)
 - □ inability to experience pleasure (anhedonia)
 - □ lack of motivation
 - □ lack of social relationships
 - □ nonchalance, indifference (apathia)

Antipsychotics (neuroleptics)

Typical Antipsychotics

- \square D₂R antagonism
- anti-cholinerg effect (obstipation)
- anti-adrenerg effect (orthostatic hypotension)
- □ reduction of the positive symptoms of schizophrenia (⇔negatives rise)
- broad side effect profile
 - Extrapyramidal symptoms (dopamine depletion of nigrostriatal pathway)
 - □ acute
 - achatisia (uncontrolled restlessness)
 - acute dystonic reactions (spastic retrocollis/torticollis)
 - □ chronic
 - MNS (malignant neuroleptic syndrome: fever, sweating, muscle rigidity, confusion, altered consciousness) - therapy: bromocriptin, danthrolen
 - pseudo Parkinson syndrome (bradykinesia, rigidity, tremor)
 - perioral tremor (,,rabbit syndrome")
 - tardive dyskinesia (choreo-athetoid movements (video))
 - •(cont.)

Tardive dyskinesia, retrocollis 2:52-3:25

Perioral tremor (rabbit-syndrome)

choreo-athetosis

Typical Antipsychotics

- □ broad side effect profile (cont.)
 - endocrine effects (dopamine depletion of tuberoinfundibular pathway)
 - hyperprolactinaemia, galactorrhea, amenorrhea
 - gynecomastia, impotence
 - antiemetic effects (D₂R blocking in area postrema)
 - □ Promethazine (Pipolphen)
 is a phenothiazine in structure, but rather an anti-histamine (H₁R-blocker)
 with antiemetic effect and weak antipsychotic effect
 - cardiac toxicity
 - □ thioridazine
 - QT prolongation, arrhythmias

Typical (1st gen.) antipsychotics in Hungary

Levomepromazine

Fluphenazine

Haloperidol

Droperidol

butyrophenons

phenothiazines

zuclopenthixol

flupenthixol

thioxanthenes

chlorprothixen

Atypical Antipsychotics

- \square expanded receptor profile (not just D_2R)
- reduction both of the positive and negative symptoms of schizophrenia
- □ reduced side effect profile
- ☐ Dibenzo-diazepine derivatives
 - Clozapine (Leponex®)
 - \Box blocking $D_4 R > D_2 R = 5HT_{2A}R > D_1 R$
 - □ central adrenerg effect
 - □ mesolimbic selectivity
 - □ side effects
 - obesity, insulin resistance
 - agranulocytosis (occurs in about 1% of patients)
 - myocarditis
 - olanzapine (Zyprexa®)
 - \Box 5HT_{2A}R > H1R > D₄R > D2R
 - mesolimbic selectivity
 - □ side effects
 - obesity,
 - insulin resistance
 - Similar: quetiapine, clotiapine

Atypical Antipsychotics

- □ Benzioxazole-derivatives
 - risperidone (Risperdal®)
 - □ blocking $D_2R > 5HT_{2A}R > H_1R$
 - mesolimbic selectivity
 - □ side effects
 - Extrapyramidal symptoms
 - hyperprolactinaemia
 - sedation
 - headache
 - malignant neuroleptic syndrome
 - 9-OH-risperidone = Paliperidon (Invega, Xeplion)
 - sertindole (Serdolect®), ziprasidone (Zeldox), lurasidone
 - $\square D_2R > 5HT_{2A}R > \alpha 1$
 - □ side effects
 - QT prolongation

Atypical Antipsychotics

- □ Dichlorphenylpiperazine-derivatives
 - aripiprazole (Abilify®)
 - □ D₂R partial agonist (!)5HT_{2A}R antagonist
- ☐ Benzamid-derivatives
 - Sulpiride (Depral®), tiapride (Tiapridal®), amisulpride (Amipride®, Amitrex®)
 - $D_2R = D_3R > D_4R$
 - □ side effects
 - Extrapyramidal symptoms
 - hyperprolactinaemia

Development of obesity and insulin resistance during Atypical Anti-Psychotic treatment

weight gain

- \square blocking H_1R in hypothalamus
- □ TNF-α hypersecretion
- \square α_2 adrenergic agonism
- □ decreased leptin levels, leptin resistance

insulin resistance

- \square 5HT_{1A}R antagonism \rightarrow decreased response of pancreatic β cells
- \square M₃R antagonism \rightarrow decreased response of pancreatic β cells
- □ inhibitory effect on GLUT transporters in skeletal muscle

Clinical use

- **Behavioural emergencies** (e.g. violent patients with a range of psychopathologies including mania, toxic delirium, schizophrenia and others):
 - antipsychotic drugs (e.g. chlorpromazine, <u>haloperidol</u>, olanzepine, <u>risperidone</u>)
 can rapidly control hyperactive psychotic states

Schizophrenia:

- — most chronic schizophrenic patients are treated with first-generation antipsychotic drugs. Depot injections (decanoate) may be useful → increasing compliance
- ► newer antipsychotic drugs (e.g. amisulpride, olanzapine, risperidone) are used if extrapyramidal symptoms are troublesome or if symptom control is inadequate
- clozapine can cause *agranulocytosis but is* especially effective against 'negative' features of schizophrenia.
- ► Other indications: nausea/vomiting, hiccups, premedication before surgeries, tic, Tourette sy, Huntington chorea

Tic (1:13-) (complex 4:15-) (vocal 6:58-) (complex vocal 8:45-)

Antiparkinson drugs

English physician, geologist, and palaeontologist, was educated for the medical profession, and practised in Hoxton, from about the year 1785.

The best known of his works is *Essay on the Shaking Palsy*, which is the first profile of the disease which now bears his name, Parkinson's.

Extrapyramidal movement disorde

akinetic/hypokinetic rigid syndromes

Parkinson's disease,

hyperkinetic rigid syndromes chorea, tic, athetosis, ballismus

Parkinsonism:

- Etiology:
 - □ dopamine depletion of nigrostriatal dopaminergic pathway→disbalance of dopamin/ACh
 - □ uncontrolled function of GABAergic neurons (c.striatum→ substantia nigra, globus pallidus, cortex)
 - □ background:
 - exogenous:
 - MPTP (neurotoxin) a contamination in a pethidin-analogue
 →MAO-B→MPP+ (selective destruction of dopaminerg neurons) → new age in therapy, role of MAO inhibitors
 - □ drugs: dopamin receptor antagonists (antipsychotic drugsbutyrophenone/phenotiazine), reserpine (depletes dopamine stores)
 - □ injury, viral encephalitis, carbon-monoxyde intoxication
 - endogenous:
 - □ tumor, metabolic disturbances, stroke, inflammation, circulatory disturbances, oxigendeficit,
 - \square mutation of α -synuclein, Leucine-rich repeat kinase 2 (LRRK2) proteins

Parkinson's disease

Symptoms:

- impaired motorium
 - □ hypo/bradykinesis
 - starting hezitation, freezing
 - writing-spasm (mogigraphia)
 - □ rigor (stiffness)
 - □ tremor (trembling)
- impaired cognitive functions
 - □ cognitive slowing
 - □ dementia
 - □ aphasia
- autonomic symptoms
 - □ hypersalivation
 - obstipation
 - hypotension

Characteristic symptoms of Parkinson's disease (1:08-1:34), (2:25-3:20)

Parkinson's disease

Pharmacological ways

- 1. dopamine substitution:
 - □ levodopa
- 2. dopamine R agonism:
 - □ bromocriptin
 - pergolide
 - □ pramipexole ropinirole
 - apomorphine
 - rotigotine
- 3. MAO/COMT inhibition:
 - □ selegilin
 - □ tolcapone/entacapone
- 4. acetylcholine blocking drugs:
 - □ benztropine mesylate
 - □ biperiden

Dopamine substitution

- levodopa (Dopaflex®)
 - □ metabolic precursor of dopamine
 - ☐ Metabolises to active form in CNS by DOPA decarboxylase
 - rapidly absorbed from small intestine
 - □ half-time:1-3 hours
 - only 3% of administered levodopa enters CNS (first pass metab., peripheral decarboxylase)
 - peripheral DOPA decarboxylase inhibitor
 - carbidopa
 - benserazid
 - □ adverse effects:
 - vomiting, nausea (area postrema D2R agonism)
 - cardiac arrhytmias (tachycardia, VES), hypotension
 - dyskinesias (choreoathetosis)
 - hallucinations, nightmares, euphoria (therapy:clozapine)
 - fluctuation in response, probably due to fluctuation in drug plasma-levels
 - □ "end of dose akinesia" / "wearing off" phenomenon = drug's effect decreases by morning → solution: retard formulations
 - □ "on/off" phenomenon (unrelated to timing of doses) = sudden cessation of drug effect = akinesia, then it comes back; during on-period, mobility is improved, but psychosis may occur
 - clinical use
 - levodopa (100 mg) + carbidopa/benserazid Sinement®/Madopar®
 - levodopa+carbidopa+COMT inhibitor (entacapone) (see later slide)
 - tolerance in 3-4 years
 - decrease gradually! (abrupt cessation may cause akinetic state)
 - Contraindications
 - psychotic patients
 - patients taking MAO-Ainhibitor

Dopamine R agonists

- bromocriptine
 - ergot derivative
 - \Box D₂R agonist
 - □ adverse effect: nausea, vomiting
 - □ indication: akinetic crisis, hyperprolactinaemia
 - □ therapeutic dose: 7,5 30 mg
- pergolide
 - ergot derivative
 - \Box D₁R and D₂R
 - □ more effective, than bromcriptine (for combination therapy/in refractory cases)
 - □ adverse effect: cardiac valvulopathy, cardiac arrhythmias
- pramipexole, ropinirole
 - \square D₃R agonism (not ergot derivative)
 - □ as monotherapy first line drug in management of early PD
 - □ alternative route in case of levodopa therapy fluctuation
- apomorphine
 - \square D₂R agonism
 - ☐ For temporary relief of ,,off phenomenon", akinetic crisis
 - □ adverse effect: nausea, dyskinesias, drowsiness
 - □ dosage: 3-6 mg / max. 10 mg subcutaneous injection
- rotigotine
 - □ skin patch
 - □ early treatment of Parkinson's disease

MAO inhibitors

- selegiline (Deprenyl®, Jumex®)
 - ☐ irreversible inhibitor of MAO-B (at higher dose: MAO-A as well)
 - □ adjunctive therapy
 - prolonged effect/reduced dose of levodopa
 - reduce on/off, end of dose phenomenon
 - \Box th. dose: 2x5mg/day
 - □ adverse effect: insomnia
- rasagiline
 - □ more potent (1mg/day)
 - contraindications: SSRI, tricyclic antidepressants
 - → serotonin syndrome

COMT inhibitors

- compensatory activation of COMT (due to inhib. of DOPA decarb.)
 - □ Level of 3-O-Methyl-Dopa increases, competition with levodopa for transport (in intestinal mucosa and blood brain barrrier)
- tolcapone, entacapone
 - selective COMT inhibitors
 - □ rapidly absorbed
 - □ half-life: 2 hours
 - □ effects:
 - reduces levodopa dose
 - adverse effects:
 - prolong "on" period
 - abdominal pain
 - dyskinesias
 - diarrhea
 - hepatotoxicity (tolcapone)
 - □ therapeutical dose:
 - entacapone 3x200mg/day
 - tolcapone 5x100 mg/day

Pramipexole Ropinirole

Rotigotine Bromocriptine

Apomorphine

Amantadine (Viregyt®, PK-Merz®)

- antiviral agent
- pharmacodynamic effects:
 - ☐ facilitating dopamine synthesis, release
 - \square antagonism on $\alpha_{2A}R \rightarrow$ potentiating dopaminergic function
 - □ Blocks NMDA (glutamate) R
 - □ Anticholinergic property
- clinical use:
 - □ acute application
 - □ beneficial effects in rigor, tremor, akinesia
 - \square 2x100mg/day p.o.
- adverse effects:
 - □ depression, irritability, insomnia, agitation, confusion
 - □ acute toxic psychosis
- contraindications:
 - seizures
 - □ heart failure

Ach blocking drugs

- central acting antimuscarinic preparations
 - benztropine mesylate
 - biperiden
 - orphenadrine
 - procyclidine.
 - trihexyphenidyl

- antimuscarinic effect (blocking M_1R , M_3R)
- adverse effects:
 - tachycardia
 - mydriasis
 - dry mouth/skin
 - obstipation
 - agitation/agression

