## České vysoké učení technické v Praze



# Semestrální práce z předmětu Lineární obvody a systémy Standardní zadání č.9-PP

Vypracoval: Kamil Tichý V Praze 5.5. 2005

## Zadání a požadavky

- 1. Pro standardní pásmovou propust PP č.9, zobrazte výchozí toleranční schema.
- 2. Zobrazte toleranční schema normované dolní propusti NDP (tj. a<sub>min</sub>, a<sub>max</sub>, normovaný kmitočet meze nepropustného pásma).
- 3. Navrhněte schema LC filtru pro jednotlivé aproximace (Butterworthova, Čebyševova, Inverzní Čebyševova, Cauerova).
- 4. Tabulkově zpracujte přehled hodnot součástek pro jednotlivé aproximace se zaměřením na porovnání rozptylu hodnot realizací pro jednotlivé aproximace.
- 5. Porovnejte hodnoty zlomového kmitočtu omega<sub>0</sub> a činitele jakosti Q pro dílčí přenosové funkce při kaskádní syntéze pro jednotlivé aproximace. (Tvar jmenovatele dílčí přenosové funkce:  $p^2 + p\omega_0/Q + \omega_0^2$ ).
- 6. V jednom grafu orientačně zakreslete průběhy modulu přenosu v logaritmickém měřítku pro jednotlivé aproximace pro ideální součástky a s uvažováním činitele jakosti Q cívek. (Resp. ve dvou grafech celkový průběh, t.j. orientace na nepropustné pásmo a detail propustného pásma.) Stejně zpracujte průběh skupinového zpoždění.
- 7. Zobrazte schema filtru realizovaného kaskádní syntézou pro Čebyševovu aproximaci.
- 8. Závěr, ve kterém bude provedeno porovnání jednotlivých aproximací, s ohledem na výše uvedené body.

## Zadané toleranční schema pásmové propusti

#### 1. Toleranční schema pásmové propusti PP



#### 2. Zadané parametry standardní PP č.9

Filtr oboustranně zakončete impedanci Z=300Ω a zvolte strukturu T filtru.

| Útlum        | Útlum               | Dolní mez     |             |             | Horní mez     |
|--------------|---------------------|---------------|-------------|-------------|---------------|
| v propustném | v nepropustném      | nepropustného | Meze propus | tného pásma | nepropustného |
| pásmu        | pásmu               | pásma         |             |             | pásma         |
| $a_p[dB]$    | a <sub>s</sub> [dB] | fs[Hz]        | fp[Hz]      | $f_p[Hz]$   | $f_s[Hz]$     |
| 2            | 18                  | 260           | 730         | 2800        | 4970          |

## **VYPRACOVÁNÍ**

#### Toleranční schema normované dolní propusti

#### 1. Toleranční schema normované dolní propusti NDP



#### 2. Vypočítané hodnoty pro NDP

| Útlum        | Útlum          | Horní mez                | Horní mez                |
|--------------|----------------|--------------------------|--------------------------|
| v propustném | v nepropustném | normovaného              | normovaného              |
| pásmu        | pásmu          | propustného pásma        | nepropust. pásma         |
| $a_p[dB]$    | $a_s[dB]$      | $\Omega_{ m p}[	ext{-}]$ | $\Omega_{ m s}[	ext{-}]$ |
| 2            | 18             | 1                        | 2,202                    |

#### 3. Výpočty pro NDP

$$\Delta f = f_p - f_{-p} = 2800 - 730 = \underline{2070 \text{ Hz}}$$

$$f_m = \sqrt{f_p \cdot f_{-p}} = \sqrt{2800 \cdot 730} = \underline{1429,69 \text{ Hz}}$$

#### Primární parametry NDP

$$\Omega_{p} = \frac{f_{s}^{2} - f_{m}^{2}}{\Delta f \cdot f_{s}} = \frac{2800^{2} - 1429,69^{2}}{2070 \cdot 2800} = \frac{1}{2}$$

$$\Omega_{-p} = \frac{f_{-s}^{2} - f_{m}^{2}}{\Delta f \cdot f_{-p}} = \frac{260^{2} - 1429,69^{2}}{2070 \cdot 730} = \frac{1}{2070 \cdot 730}$$

$$\Omega_{s} = \frac{f_{s}^{2} - f_{m}^{2}}{\Delta f \cdot f_{s}} = \frac{4970^{2} - 1429,69^{2}}{2070 \cdot 4970} = \frac{2,202}{2070 \cdot 4970}$$

$$\Omega_{-s} = \frac{f_{-s}^{2} - f_{m}^{2}}{\Delta f \cdot f_{-s}} = \frac{260^{2} - 1429,69^{2}}{2070 \cdot 260} = \frac{-3,672}{2070 \cdot 260}$$

Z uvedeného je zřejmé, že propustné pásmo se nám přetransformovalo do intervalu (-1,1). Rovněž je vidět, že nám vyšly u normované dolní propusti dvě meze nepropustného pásma. $(\Omega_{s1}=2,202 \text{ a } \Omega_{s2}=3,672)$ . Rozdílnost je dána z důvodu nesymetrického zadání filtru. Bereme však v úvahu tvrdší podmínku meze nepropustného pásma, tedy  $\Omega_s$ = 2,202. Aby bylo zadání symetrické, muselo by platit:  $f_p.f_{-p} = f_s.f_{-s}$ , což po dosazení neplatí. Výsledné toleranční schema normované dolní propusti jsem uvedl výše.

## NÁVRH BUTTERWORTHOVA FILTRU

Butterworthova aproximace normované dolní propusti

$$\varepsilon = \sqrt{10^{0,1a_p} - 1} = \sqrt{10^{0,1\cdot 2} - 1} = 0,76478$$

Sekundární parametry: 
$$k = \frac{1}{\Omega} = \frac{1}{2,202} = \frac{0,45413}{2}$$

$$k_{1} = \sqrt{\frac{10^{\frac{a_{p}/10}} - 1}{10^{\frac{a_{s}/10}} - 1}} = \sqrt{\frac{10^{0,1\cdot 2} - 1}{10^{0,1\cdot 18} - 1}} = \underline{0,0971}$$

Řád filtru: 
$$n \ge \frac{\log \frac{1}{k_1}}{\log \frac{1}{k}} = \frac{2,954}{1000}$$
, po zaokrouhlení  $n = 3$ 

Pro n=3 dále provedeme přepočet  $k_1$  a  $a_s$  dosazením do :

$$k_1 = k^n = 0.45413^3 = 0.09366$$

$$a_s = 10 \cdot \log \left( 1 + \frac{\varepsilon^2}{k_1^2} \right) = 10 \cdot \log \left( 1 + \frac{0.76478^2}{0.09366^2} \right) = 18.3 dB$$

Póly přenosové funkce jsou v levé polorovině  $s = \sum + j\Omega$  a leží na kružnici o poloměru :

$$r = \frac{1}{\varepsilon^{\frac{1}{n}}} = \frac{1}{0,76478^{\frac{1}{3}}} = \underline{1,0935}$$

Dále potřebujeme určit póly přenosové funkce ze vztahu:

$$s_{\mu} = \frac{1}{\varepsilon^{\frac{1}{n}}} \left[ -\sin\frac{(2\mu - 1)\pi}{2n} + j\cos\frac{(2\mu - 1)\pi}{2n} \right] = \alpha_{\mu} + j\beta_{\mu}$$

, kde n = 4 a 
$$\mu$$
=1,2 ... n.

Po dosazení nám vyjdou tyto póly přenosové funkce:

$$S_1 = -0.546752 + j0.947004$$
  
 $S_2 = -1.093506 + j0$   
 $S_3 = -0.546752 - j0.947004$ 

Přenosová funkce NDP: - pro n-liché

$$H(s) = \frac{H_0}{(s - \alpha_0) \prod_{\mu=1}^{m} (s^2 - 2\alpha_{\mu} s + \alpha_0^2)}; \quad H_0 = \frac{1}{\varepsilon} = \frac{1}{0,76478} = 1,307566, \quad \alpha_0 = -\frac{1}{\varepsilon^{\frac{1}{n}}}$$

$$\alpha_{\mu} = -\frac{1}{\varepsilon^{\frac{1}{n}}}\sin(2\mu - 1)\frac{\pi}{2n}; m = \frac{n-1}{2} = \frac{2}{2} = \underline{1}$$

po dosazení

$$H(s) = \frac{1,307566}{s^3 + s^2(2 \cdot 0,546752 + 1,0935) + s(1,0935)^2 + 2 \cdot 0,546752 \cdot 1,0935) + 1,0935}$$

Charakteristická funkce  $\varphi(s) = \varepsilon \cdot s^n = 0,76478 \cdot s^3$ 

#### Schéma LC filtru-NDP pro Butterworthovu aproximaci

Schéma filtru pro Butterworthovi aproximaci určíme metodou odštěpení pólů v nekonečnu z imitance. Tuto metodu lze použít právě v případech Butterworthových a Čebyševových NDP, jejichž přenosové funkce H(s) mají všechny nulové body v  $s=\infty$ .

Z funkcí H(s) a  $\varphi(s)$  sestavíme normovanou vstupní impedanci filtru  $\mathbf{z}_{vst}(\mathbf{s})$  podle vztahu

$$z_{vst} = \frac{H(s)^{-1} - \varphi(s)}{H(s)^{-1} + \varphi(s)}$$
: pro **PI** článek
$$z_{vst} = \frac{H(s)^{-1} + \varphi(s)}{H(s)^{-1} - \varphi(s)}$$
: pro **T** článek

Pro volbu T článku symetricky zakončený obdržíme:

$$z_{vst} = \frac{1,529559 \text{ s}^3 + 1,672583 \text{ s}^2 + 1,828979\text{s} + 1}{1,672583 \text{ s}^2 + 1,828979\text{s} + 1}$$

Po rozvedení výrazu z<sub>vst</sub>(s) pro T článek dostáváme řetězový zlomek:

$$z_{vst} = 0.91449 \, s + \frac{1}{1,828981s + \frac{1}{0.914481 \, s + 1}}$$

#### • Hodnoty součástek a schema zapojení pro LC realizace Butterworthova filtru-PP

Řetězovému zlomku  $Z_{\text{vst}}$  (Cauer 1) odpovídá zapojení LC filtru pro NDP. Ze schematu normované dolní propusti kmitočtovým odnormováním dostaneme hledané schema Butterwortovských filtrů pásmové propusti. Všechny induktory nahradíme sériovým zapojením induktoru a kapacitoru podle vztahů:  $L = \frac{R_0 l}{\Delta \omega}$  a  $C = \frac{\Delta \omega}{R_0 l \omega_m^2}$ , kde l je indukčnost normované dolní propusti. Obdobně nahradíme všechny kondenzátory paralelním zapojením induktoru a kapacitoru,podle vztahů:  $L = \frac{\Delta \omega R_0}{\omega_m^2 c}$  a  $C = \frac{c}{R_0 \Delta \omega}$ . Z těchto vztahů dostaneme následující zapojení.

#### • Schema zapojení, hodnoty a rozptyl hodnot součástek pro Butterworthovský filtr



| Součástky    | $R_i=R_Z[\Omega]$ | $L_1[mH]$ | $C_1[nF]$ | $L_2[mH]$ | $C_2[nF]$ | L <sub>3</sub> [mH] | C <sub>3</sub> [nF] |
|--------------|-------------------|-----------|-----------|-----------|-----------|---------------------|---------------------|
| Hodnoty sou. | 300               | 21,094    | 587,50    | 26,438    | 468,764   | 21,094              | 587,50              |

<u>Rozptyl hodnot součástek:</u> L= (21,094÷26,438)mH, C= (468,764÷587,50)nF

### • Graf průběhu modulu přenosu |H(jω)| i s uvažováním Q=30 cívek





## • Graf průběhu skupinového zpoždění τ(ω) i s uvažováním Q=30 cívek





#### • Graf rozložení pólů a nul NDP



## NÁVRH FILTRU S IZOEXTREMÁLNÍ APROXIMACÍ (ČEBYŠEV)

#### • Základní vztahy pro Izotermální aproximaci

$$\varepsilon = \sqrt{10^{0.1a_p} - 1} = \sqrt{10^{0.1\cdot 2} - 1} = \underline{0,76478}$$
 Sekundární parametry:  $k = \frac{1}{\Omega_s} = \frac{1}{2,202} = \underline{0,45413}$  
$$k_1 = \sqrt{\frac{10^{\frac{a_p}{10}} - 1}{10^{\frac{a_s}{10}} - 1}} = \sqrt{\frac{10^{0.1\cdot 2} - 1}{10^{0.1\cdot 18} - 1}} = \underline{0,0971}$$

Řád filtru: 
$$n = \frac{\arg \cosh \frac{1}{k_1}}{\arg \cosh \frac{1}{k}} = 2,119$$
, po zaokrouhlení  $n = 3$ 

Přenosová funkce pro NDP:

$$H_0 = \frac{1}{\varepsilon 2^{2m}}$$

$$H(s) = \frac{H_0}{(s+a) \prod_{\mu=1}^{m} (s^2 - 2\alpha_{\mu} + \alpha_{\mu}^2 + \beta_{\mu}^2)} = \frac{0,32689}{s^3 + 0,7378 s^2 + 1,02219 s + 0,32688}$$

Charakteristická funkce: 
$$\varphi(s) = 2^{2 \cdot m} s \prod_{\mu=1}^{m} (s^2 + \Omega_{0\mu}^2) = 4s^3 + 3s$$

Z funkcí H(s) a  $\varphi(s)$  sestavíme normovanou vstupní impedanci filtru  $\mathbf{z}_{vst}(\mathbf{s})$  podle vztahu pro T článek:

$$z_{vst} = \frac{H(s)^{-1} + \varepsilon \varphi(s)}{H(s)^{-1} - \varepsilon \varphi(s)} = \frac{6,118 \, s^3 + 2,257 \, s^2 + 5,421 \, s + 1}{2,257 \, s^2 + 0,8326 \, s + 1}$$

Po rozvedení výrazu z<sub>vst</sub>(s) pro T článek dostáváme řetězový zlomek:

$$z_{vst} = 2,7107 s + \frac{1}{0,,8327 s + \frac{1}{2,7103 s + 1}}$$

Stejným postupem jako u Butterwortova filtru obdržíme shema NDP, ze které se kmitočtovým odnormováním obdrží odnormované shema PP.

## • Schema zapojení, hodnoty a rozptyl hodnot součástek pro Čebyševovský filtr



| Součástky    | $R_i=R_Z[\Omega]$ | $L_1[mH]$ | $C_1[nF]$ | $L_2[mH]$ | $C_2[nF]$ | $L_3[mH]$ | $C_3[nF]$ |
|--------------|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Hodnoty sou. | 300               | 62,524    | 198,203   | 58,071    | 213,403   | 62,524    | 198,203   |

<u>Rozptyl hodnot součástek:</u> L= (58,071÷62,524)mH, C= (198,203÷213,403)nF

## • Graf průběhu modulu přenosu |H(jω)| i s uvažováním Q=50 cívek



f [Hz]



## • Graf průběhu skupinového zpoždění τ(ω) i s uvažováním Q=50 cívek





## Graf rozložení pólů a nul NDP



#### • Filtru realizovaný kaskádní syntézou

#### o Schema filtru



Filtr je realizován třemi bloky viz obr.1 řazenými sériově postupně za sebou. X zde znamená pořadí bloku.

obr. 1 Blok pro ARC

#### o Hodnoty součástek pro tři bloky řazeny sériově

| Blok 1. | $R_{111}[k\Omega]$ | $R_{121}[k\Omega]$ | $R_{21}[k\Omega]$ | $C_{11}[nF]$ | $C_{21}[nF]$ | $R_{31}[\Omega]$ |
|---------|--------------------|--------------------|-------------------|--------------|--------------|------------------|
| DIUK 1. | 280,95             | 25,24              | 1886              | 1            | 1            | infinity         |
| Blok 2. | $R_{112}[k\Omega]$ | $R_{122}[k\Omega]$ | $R_{22}[k\Omega]$ | $C_{12}[nF]$ | $C_{22}[nF]$ | $R_{32}[\Omega]$ |
| DIOK 2. | 79,71              | 7,16               | 535,09            | 1            | 1            | infinity         |
| Blok 3. | $R_{113}[k\Omega]$ | $R_{123}[k\Omega]$ | $R_{23}[k\Omega]$ | $C_{13}[nF]$ | $C_{23}[nF]$ | $R_{33}[\Omega]$ |
| DIOK 3. | 62,09              | 57,04              | 416,83            | 1            | 1            | infinity         |

## NÁVRH INVERZNÍ ČEBYŠEVOVY APROXIMACE

## • Základní vztahy pro Inverzní Čebyševovu aproximaci

Řád filtru: 
$$n = \frac{\arg \cosh \frac{1}{k_1}}{\arg \cosh \frac{1}{k}} = 2,119$$
, po zaokrouhlení  $n = 3$ 

Přenosová funkce pro NDP:

$$H_{0} = \frac{1}{\sqrt{1 + \frac{\varepsilon^{2}}{k_{1}^{2}}}}$$

$$H(s) = \frac{H_{0}}{s - \frac{1}{a \cdot k}} \prod_{\mu=1}^{m} \frac{s^{2} + \Omega_{0\mu}^{2}}{s^{2} - 2\alpha_{\mu}s + \alpha_{\mu}^{2} + \beta_{\mu}^{2}} = \frac{0,239184 \ p^{2} + 1,546744}{p^{3} + 2,244735 \ p^{2} + 2,490813 \ p + 1,546744}$$

$$k = \frac{1}{\cosh\left[\arg\cosh\left(\frac{1}{k_{1}}\right)/4\right]} = 0,76959$$

Charakteristická funkce:

$$\varphi(s) = \frac{(-1)^m k}{nk_1} s^n \prod_{\mu=1}^m \frac{1}{s^2 + \Omega_{0\mu}^2} = \frac{-0.76959 \cdot s^3}{3 \cdot 0.0971 \left( s^2 + \left( \frac{1}{0.76959 \cdot \cos \frac{\pi}{6}} \right) \right)}$$

• Schema zapojení, hodnoty a rozptyl součástek pro Inverzní Čebyševovskou aproximaci



| Součástky    | $R_i=R_Z[\Omega]$ | $L_1[mH]$ | $C_1[nF]$ | $L_2[mH]$ | $C_2[nF]$ | $L_3[mH]$ | $C_3[\mu F]$ | L <sub>4</sub> [mH] | C <sub>4</sub> [nF] |
|--------------|-------------------|-----------|-----------|-----------|-----------|-----------|--------------|---------------------|---------------------|
| Hodnoty sou. | 300               | 18,57     | 667,26    | 30,027    | 412,72    | 2,215     | 5,595        | 18,572              | 667,26              |

<u>Rozptyl hodnot součástek:</u> L=(2,215÷30,027)mH, C=(412,72÷5595)nF

Graf průběhu modulu přenosu |H(jω)| i s uvažováním Q=30 cívek





## • Graf průběhu skupinového zpoždění $\tau(\omega)$ i s uvažováním Q=30 cívek



• Graf rozložení pólů a nul NDP



## NÁVRH STEJNOMĚRNÉ APROXIMACE (CAUER)

• Základní vztahy pro Caerovu aproximaci

Přenosová funkce pro NDP: 
$$H(s) = \frac{0,100399 \ p^2 + 0,379017}{p^3 + 0,726752 \ p^2 + 1,045962 \ p + 0,379017}$$

• Schema zapojení a hodnoty součástek pro Stejnosměrnou aproximaci



| Součástky    | $R_i=R_Z[\Omega]$ | $L_1[mH]$ | $C_1[nF]$ | $L_2[mH]$ | $C_2[nF]$ | $L_3[mH]$ | $C_3[\mu F]$ | $L_4[mH]$ | $C_4[nF]$ |
|--------------|-------------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|
| Hodnoty sou. | 300               | 55,77     | 222,20    | 70,75     | 175,16    | 8,94      | 1,384        | 55,77     | 222,20    |

<u>Rozptyl hodnot součástek:</u> L=(8,94÷70,75)mH, C=(175,16÷1384)nF

## Graf průběhu modulu přenosu |H(jω)| i s uvažováním Q=65 cívek





#### • Graf průběhu skupinového zpoždění τ(ω) i s uvažováním Q=65 cívek





## • Graf rozložení pólů a nul NDP



## <u>ŘEHLEDNÉ SROVNÁNÍ JEDNOTLIVÝCH TYPŮ APROXIMACÍ</u>

#### • Přehled rozptylu hodnot součástek pro všechny aproximace

| Butterworthova aproximace  | $L = (21,094 \div 26,438) \text{mH}$ | $C = (468,764 \div 587,50) \text{nF}$ |
|----------------------------|--------------------------------------|---------------------------------------|
| Čebyševova aproximace      | $L = (58,071 \div 62,524) \text{mH}$ | $C = (198,203 \div 213,403) nF$       |
| Inverzní Čebyševova aprox. | L=(2,215÷30,027)mH                   | C=(412,72÷5595)nF                     |
| Cauerova aproximace        | L=(8,94÷70,75)mH                     | C=(175,16÷1384)nF                     |

#### • Graf průběhu modulu přenosu |H(jω)| pro všechny aproximace



#### • Graf průběhu modulu přenosu |H(jω)| i s uvažováním Q pro všechny aproximace



#### Graf průběhu skupinového zpoždění τ(ω)pro všechny aproximace



## - Graf průběhu skupinového zpoždění $\tau(\omega)$ i s uvažováním Q pro všechny aproximace





- Porovnání hodnot zlomového kmitočtu omega<sub>0</sub> a činitele jakosti Q pro dílčí přenosové funkce při kaskádní syntéze pro jednotlivé aproximace.
  - o Butterworthova aproximace

| ω [Hz] | 4587  | 17591 | 8983   |
|--------|-------|-------|--------|
| Q[-]   | 1,559 | 1,559 | 0,6316 |

o Čebyševova aproximace

| ω [Hz] | 4785  | 16865 | 8983  |
|--------|-------|-------|-------|
| Q[-]   | 4,512 | 4,512 | 1,872 |

o Inverzní Čebyševova aproximace

| ω [Hz] | 4477  | 18025 | 8983  |
|--------|-------|-------|-------|
| Q[-]   | 1,725 | 1,725 | 0,905 |

o Cauerova aproximace

| ω [Hz] | 4728  | 17066 | 8983 |
|--------|-------|-------|------|
| Q[-]   | 5,351 | 5,351 | 1,67 |

## ZÁVĚR

Z uvedených realizací se dá usoudit, že při návrhu LC filtru pro aproximaci Butterworth a Chebyschev, ušetříme počet součástek oproti zbývajícím aproximacím. Tyto zmíněné aproximace mají také minimální rozptyl hodnot, viz přehled rozptylu součástek pro jednotlivé aproximace. Z toho plyne výhoda použití těchto aproximací pro realizaci filtru s využitím součástek L a C.

Při porovnání filtrů LC a filtrů realizovaných pomocí kaskádní syntézy, jsou filtry realizované kaskádní syntézou výhodnější. Jejich výhoda spočívá v použitých součástkách R a C. Hlavní výhoda je, že nepoužívají cívky, které se musí složitě vyrábět na danou hodnotu a jejich jakost bývá v řádu desítek.

Já si zvolil pro realizaci kaskádní syntézy Chebyschevovský filtr. Z návrhu je patrné, že kondenzátory mají jednu hodnotu a ta je v řadě vyráběných hodnot, nevýhodou kondenzátorů je ale jejich odchylka od jmenovité hodnoty. U rezistorů se vyrábí větší počet hodnot odporů a mohou se jednoduše i sestavit. Rezistory mají obecně minimální odchylky hodnot od jmenovité hodnoty. Pro větší stabilitu a spolehlivost je výhodnější filtr realizovaný kaskádní syntézy.

U jednotlivých filtrů byla vykreslena závislost modulu přenosu. Zde byla do grafů vykreslena závislost jakosti cívek na vlastnostech modulu přenosu. Z jednotlivých charakteristik je patrné, že jakost cívek se pohybuje kolem mezi hodnotami 30÷65. Jakost Q pro cívky L u jednotlivých aproximací byla volena tak, aby daný filtr ještě vyhověl zadaným podmínkám.

Při porovnání zlomového kmitočtu kaskádních prvků je pozorovatelné, že jsou si velice podobné u všech aproximací, jediná odlišnost je jen u jakosti Q jednotlivých členů.

U aproximace Cauer mi vyšel řád filtru 2. Sudý řád není vhodný pro tuto realizaci. Proto jsem zvolil řád filtru 3 a tím zpřísnil parametry propusti.

Z rozložení pólů je patrné, že všechny přenosové funkce jsou stabilní.

Také jsem uvedl v jednom grafu závislosti pro modul přenosu  $|H(j\omega)|$  a pro skupinové zpoždění pro všechny aproximace. Tyto grafy slouží ke zpřehlednění rozdílnosti jednotlivých aproximací.