网络药理学 +Mandenol 与 piezo1 分子对接

2024-01-16

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1	摘要	1
2	前音	1
3	材料和方法 3.1 材料	
4	分析结果	2
5	结论	2
6	附:分析流程 6.1 网络药理学 6.1.1 三七总皂苷 (panax notoginseng saponins, PNS) 成分 6.1.2 成分靶点 6.1.3 Disease 6.1.4 成分-靶点-疾病 6.1.5 PIEZO1 的转录因子分析 6.2 富集分析 6.3 分子对接	. 2 . 2 . 4 . 5 . 6 . 8
Re	ference	10
\mathbf{L}^{i}	st of Figures	
	SuperPred results Network pharmacology visualization All diseases Overall targets number of datasets Targets intersect with targets of diseases Network pharmacology with disease Intersection of TFs with queried Candidates The genes and related TFs Ids KEGG enrichment Uds GO enrichment Overall combining Affinity Mandenol combine PIEZO1	. 4 . 4 . 5 . 6 . 7 . 8 . 8 . 9
\mathbf{L}^{i}	st of Tables	
	1 PNS compounds	. 2

1 摘要

- 三七总皂苷 panax notoginseng saponins 中有效成分
 - 使用来源于文献 (PMID: 29673237)1 以及附件文档中表格的化合物 (Tab. 1)
- 结合疾病骨折愈合(软骨内骨化,血管生成)做网络药理学分析
 - 成分的靶点由 Super-Pred 预测 (Fig. 1) (SwissTarget 限制太多, 速度慢, 大分子无法预测, 今后 将以 Super-pred 替代)。
 - 先单独分析成分靶点 (Fig. 2), 后再与疾病交集过滤 (Fig. 4)。
 - 疾病相关基因来源见 (Fig. 3)
- 候选基因的功能通路富集分析
 - 结果见 6.2
- 分子对接,与 piezo1 (如果 Mandenol 与 piezo1)
 - 分子对接见 Fig. 10
- 2 前言
- 3 材料和方法
- 3.1 材料
- 3.2 方法

Mainly used method:

- R package ClusterProfiler used for gene enrichment analysis².
- Databses of DisGeNet, GeneCards, PharmGKB used for collating disease related targets³⁻⁵.
- R package PubChemR used for querying compounds information.
- Web tool of Super-PRED used for drug-targets prediction⁶.
- The Transcription Factor Target Gene Database (https://tfbsdb.systemsbiology.net/) was used for discovering relationship between transcription factors and genes..⁷
- AutoDock vina used for molecular docking⁸.
- Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

5 结论

6 附:分析流程

6.1 网络药理学

6.1.1 三七总皂苷 (panax notoginseng saponins, PNS) 成分

来源于文献 (PMID: 29673237)1 以及附件文档中表格的化合物。

Table 1 (下方表格) 为表格 PNS compounds 概览。

(对应文件为 Figure+Table/PNS-compounds.csv)

注:表格共有 18 行 3 列,以下预览的表格可能省略部分数据;表格含有 13 个唯一'No.'。

Table 1: PNS compounds

No.	Name	Structure
PNS-1	Ginsenoside Rg1	
PNS-2	Ginsenoside Rg3	
PNS-3	Ginsenoside $Rg5$	
PNS-4	Ginsenoside Rb1	
PNS-5	Ginsenoside Rb3	
PNS-6	Ginsenoside Re	
PNS-7	Ginsenoside Rh1	
PNS-8	Ginsenoside Rh2	
PNS-9	Pseudoginsenoside-F11	
PNS-10	Ginsenoside Ro	
PNS-11	Ginsenoside K	
PNS-12	Notoginsenoside R1	
NA	Mandenol	NA
NA	DFV	NA
NA	Diop	NA

6.1.2 成分靶点

使用 Super-Pred 预测化合物靶点。

Figure 1 (下方图) 为图 SuperPred results 概览。

(对应文件为 Figure+Table/SuperPred-results.pdf)

Figure 1: SuperPred results

Figure 2 (下方图) 为图 Network pharmacology visualization 概览。

(对应文件为 Figure+Table/Network-pharmacology-visualization.pdf)

Figure 2: Network pharmacology visualization

6.1.3 Disease

Figure 3 (下方图) 为图 All diseases Overall targets number of datasets 概览。

(对应文件为 Figure+Table/All-diseases-Overall-targets-number-of-datasets.pdf)

Figure 3: All diseases Overall targets number of datasets

6.1.4 成分-靶点-疾病

Figure 4 (下方图) 为图 Targets intersect with targets of diseases 概览。

(对应文件为 Figure+Table/Targets-intersect-with-targets-of-diseases.pdf)

Figure 4: Targets intersect with targets of diseases

Intersection:

ABCB1, FLT3, MAP4K4, VDR, STAT3, ESR1, TGFBR2, F13A1, NTRK1, MMP2, SER-PINE1, TLR4, MMP1, HIF1A, CTSK, GBA1, ENPP1, CXCR4, ITGB1, SCN9A, IDH1, PDGFRB, TTR, PTGS2, NOS2, PIK3CA, NOS3, NFKB1, ESR2, PTPN11, MMP7, TERT, P2RX7, MMP8, TGM2, PDGFRA, CREBBP, HDAC4, KDR, ALOX5, AR, MTOR, STAT1, F2R, PIK3CG...

(上述信息框内容已保存至 Figure+Table/Targets-intersect-with-targets-of-diseases-content)

Figure 5 (下方图) 为图 Network pharmacology with disease 概览。

(对应文件为 Figure+Table/Network-pharmacology-with-disease.pdf)

Figure 5: Network pharmacology with disease

6.1.5 PIEZO1 的转录因子分析

The Transcription Factor Target Gene Database (https://tfbsdb.systemsbiology.net/) was used for discovering relationship between transcription factors and genes.

Table 2 (下方表格) 为表格 Transcription Factor binding sites 概览。

(对应文件为 Figure+Table/Transcription-Factor-binding-sites.csv)

注: 表格共有 238 行 10 列,以下预览的表格可能省略部分数据;表格含有 1 个唯一'target'。

1. Start: 起始点

Table 2: Transcription Factor binding sites

target	TF_symbol	Motif	Source	Strand	Start	Stop	PValue	MatchS	Overla
PIEZO1	HOXD12	HOXD12	SELEX	+	88856337	88856345	6.0E-06	GTGATAAAA	9
PIEZO1	HSF2	HSF2 H	SELEX	_	88856344	88856356	2.0E-06	TTCCAG	13

target	TF_symbol	Motif	Source	Strand	Start	Stop	PValue	MatchS	Overla
PIEZO1	SOX21	SOX21	SELEX	+	88856312	88856326	2.0E-06	AACAGT	15
PIEZO1	FOXA2	Foxa2	JASPAR	-	88847053	88847064	9.0E-06	TGTTTA	12
PIEZO1	NF-KAPPAB	NF-kap	JASPAR	+	88851187	88851196	1.0E-06	GGGAAT	10
PIEZO1	TBX1	TBX1_T	SELEX	+	88848269	88848288	6.0E-06	GTGACA	20
PIEZO1	SOX4	SOX4_H	SELEX	+	88856311	88856326	2.0E-06	TAACAG	16
PIEZO1	RXRB	$Rxrb_n$	SELEX	+	88846744	88846757	1.0E-06	GAGCTC	14
PIEZO1	ESRRA	${\rm ESRRA}\$	SELEX	+	88846750	88846768	8.0E-06	AAAGGT	19
PIEZO1	CREB3L2	Creb3l	SELEX	+	88848344	88848355	7.0E-06	TGCCAC	12
PIEZO1	IRF7	IRF7_I	SELEX	+	88850912	88850925	3.0E-06	CCGAAA	14
PIEZO1	IRF7	IRF7_I	SELEX	-	88851996	88852009	3.0E-06	AGCAAA	14
PIEZO1	IRF7	IRF7_I	SELEX	-	88856323	88856336	1.0E-05	CCCAAA	14
PIEZO1	target	SRY_HM	SELEX	-	88856312	88856326	7.0E-06	AACTCT	15
PIEZO1	SOX2	SOX2_H	SELEX	+	88847416	88847432	9.0E-06	${\rm GAAGAC}$	17

Figure 6 (下方图) 为图 Intersection of TFs with queried Candidates 概览。

(对应文件为 Figure+Table/Intersection-of-TFs-with-queried-Candidates.pdf)

Figure 6: Intersection of TFs with queried Candidates

Intersection:

NFKB1, RXRA, NFE2L2, PPARA

(上述信息框内容已保存至 Figure+Table/Intersection-of-TFs-with-queried-Candidates-content)

Figure 7 (下方图) 为图 The genes and related TFs 概览。

(对应文件为 Figure+Table/The-genes-and-related-TFs.pdf)

Figure 7: The genes and related TFs

6.2 富集分析

Figure 8 (下方图) 为图 Ids KEGG enrichment 概览。

(对应文件为 Figure+Table/Ids-KEGG-enrichment.pdf)

Figure 8: Ids KEGG enrichment

Figure 9 (下方图) 为图 Ids GO enrichment 概览。

(对应文件为 Figure+Table/Ids-GO-enrichment.pdf)

Figure 9: Ids GO enrichment

6.3 分子对接

Figure 10 (下方图) 为图 Overall combining Affinity 概览。

(对应文件为 Figure+Table/Overall-combining-Affinity.pdf)

Figure 10: Overall combining Affinity

Figure 11 (下方图) 为图 Mandenol combine PIEZO1 概览。

(对应文件为 Figure+Table/5282184_into_piezo1.png)

Figure 11: Mandenol combine PIEZO1

Reference

- 1. Xie, W. et al. Panax notoginseng saponins: A review of its mechanisms of antidepressant or anxiolytic effects and network analysis on phytochemistry and pharmacology. *Molecules (Basel, Switzerland)* 23, (2018).
- 2. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 3. Piñero, J. et al. The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Research (2019) doi:10.1093/nar/gkz1021.
- 4. Stelzer, G. et al. The generards suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics **54**, 1.30.1–1.30.33 (2016).
- 5. Barbarino, J. M., Whirl-Carrillo, M., Altman, R. B. & Klein, T. E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley interdisciplinary reviews. Systems biology and medicine 10, (2018).
- 6. Nickel, J. et al. SuperPred: Update on drug classification and target prediction. Nucleic acids research 42, W26–W31 (2014).
- 7. Plaisier, C. L. et al. Causal mechanistic regulatory network for glioblastoma deciphered using systems

genetics network analysis. $Cell\ systems\ {\bf 3},\ 172–186\ (2016).$

8. Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. *Journal of Chemical Information and Modeling* **61**, 3891–3898 (2021).