Backpacker

มานะเป็นนักท่องเที่ยวแบบแบ็คแพ็คตัวยง โดยเฉพาะการท่องเที่ยวทางรถไฟที่มีค่าโดยสารราคาประหยัด และมานะมักเลือกเดินทางด้วยรถไฟด้วยวิธีที่ประหยัดที่สุดเสมอ

การเดินทางโดยรถไฟจากสถานีต้นทางไปยังสถานีจุดหมายปลายทางของมานะมักจะผ่านสถานีอื่น ๆ ด้วย เสมอ และค่าโดยสารแต่ละสถานีไปยังสถานีถัดไปก็มีราคาที่แตกต่างกัน เช่น จากสถานีต้นทางถึงปลายทาง ประกอบด้วย 4 สถานี มีอัตราค่าโดยสารดังตารางต่อไปนี้

สถานีต้นทาง	000	สถานีปลายทาง	
0	15	80	90
	0	40	50
		0	70
			0

จากสถานีต้นทางไปยังสถานีที่ 2, 3 และ 4 จะเสียค่าโดยสาร 15, 80 และ 90 บาท ตามลำดับ จากสถานีที่ 2 เดินทางไปยังสถานีที่ 3 และ 4 จะเสียค่าโดยสาร 40 และ 50 บาท ตามลำดับ จากสถานีที่ 3 ไปยังสถานีปลายทางจะเสียค่าโดยสาร 70 บาท

หากมานะเดินทางจากสถานีต้นทางไปยังสถานีปลายทางโดยแวะที่สถานีที่ 3 มานะจะต้องจ่ายค่าโดยสารรวม 150 บาท (80 + 70)

มานะสามารถเดินทางด้วยราคาประหยัดที่สุดโดยเดินทางจากสถานีต้นทาง ลงสถานีที่ 2 ราคา 15 บาท แล้ว ต่อรถไฟไปยังสถานีปลายทางด้วยราคา 50 บาท รวม 65 บาท

จงเขียนโปรแกรมเพื่อช่วยมานะคำนวณค่าโดยสารที่ประหยัดที่สุดจากสถานีต้นทางไปยังสถานีปลายทาง

Input : บรรทัดที่ 1 คือ จำนวนสถานีทั้งหมดจากต้นทางไปยังปลายทาง (n)

n บรรทัดถัดไป คือ อัตราค่าโดยสารจากสถานีที่ขึ้นไปยังสถานีถัดไป

Output : ค่าโดยสารที่ประหยัดที่สุดจากสถานีต้นทางไปยังสถานีปลายทาง

Sample:

Input	Output	
3	90	
0 50 90		
0 0 50		
0 0 0		
4	65	
0 15 80 90		
0 0 40 50		
0 0 0 70		
0 0 0 0		

สนามเด็กเล่น (Playground)

นายกเทศมนตรี เมืองอิตาเตะ ประเทศญี่ปุ่น ต้องการสร้างสนามเด็กจำนวน 1 สนาม โดยสนามเด็ก เล่นจะที่สร้างมีขนาด $h \times w$ ตารางเมตร ที่ความสูง k เมตรจากระดับน้ำทะเล แต่เนื่องจากลักษณะพื้นที่ของ เมืองอิตาเตะที่มีขนาด $m \times n$ ตารางเมตร เป็นภูเขาและที่ราบสลับกัน ทำให้ในการสร้างสนามเด็กเล่น จะต้องมีการปรับพื้นที่ก่อนที่จะสร้าง ซึ่งอาจจะเป็นการทลายภูเขาหรือการถมพื้นที่ราบ โดยทั้งการทลายภูเขา หรือการถมพื้นที่ราบไม่มีค่าใช้จ่ายในส่วนนี้

สำหรับการทลายภูเขาจะต้องนำดินที่ได้ไปถมพื้นที่ที่จะใช้สร้างสนามเด็กเล่นเท่านั้น และกรณีที่ ปรับพื้นที่แล้วความสูงของพื้นที่ยังไม่ได้ตามต้องการ นายกเทศมนตรีเมืองอิตาเตะอนุญาตให้ซื้อดินจาก ภายนอกเมืองมาถมเพิ่มได้ โดยดินที่ซื้อมีค่าใช้จ่าย 1 เยนต่อ 1 ลูกบาสก์เมตร และเพื่อให้สิ้นเปลืองค่าใช้จ่าย ในการซื้อดินน้อยที่สุด นายกเทศมนตรีเมืองอิตาเตะจึงมีนโยบายให้พวกเราเขียนโปรแกรมเพื่อหาตำแหน่งที่ เหมาะสมในการสร้างสนามเด็กเล่น

1	4	5	6	3	4
7	8	2	4	6	4
1	2	1	8	1	1
3	1	9	1	7	1
2	9	2	1	5	2
		7 8 1 2 3 1	7 8 2 1 2 1 3 1 9	7 8 2 4 1 2 1 8 3 1 9 1	7 8 2 4 6 1 2 1 8 1 3 1 9 1 7

INPUT

บรรทัดแรกจะแสดงจำนวนเต็ม 2 ตัว คือ m,n เมื่อ $2 \le m,n \le 2000$ บรรทัดที่สองจะแสดงจำนวนเต็ม 3 จำนวน คือ h,w,k เมื่อ $2 \le h,w \le 1000$ และ $2 \le k \le 1000$ m บรรทัดถัดไปจะแสดงจำนวนเต็ม n จำนวน ซึ่งเป็นค่าความสูงของระดับน้ำทะเลขในแต่ละตารางเมตร

OUTPUT

จำนวนเต็ม 2 จำนวน เพื่อแสดงค่าใช้จ่ายที่น้อยที่สุดในการซื้อดินสำหรับการปรับพื้นที่ในการสร้างสนามเด็ก เล่น 1 สนาม และจำนวนตำแหน่งที่สามารถปรับพื้นที่ในการสร้างสนามเด็กเล่นด้วยค่าใช้จ่ายที่น้อยที่สุด

INPUT	OUTPUT
5 6	1 3
2 2 4	
145634	
782464	ค่าใช้จ่ายในการซื้อดินที่น้อยที่สุดต่อ 1 สนาม คือ 1 เยน
121811	และมีตำแหน่งที่สามารถปรับพื้นที่สำหรับสร้างสนามเด็ก
319171	เล่นด้วยค่าใช้จ่ายที่น้อยที่สุด ได้จำนวน 3 ตำแหน่ง
292152	

นักโทษ (Prisoners)

กำหนดอาร์เรย์ห้องขัง (cell) ขนาด N โดยค่าที่เก็บในอาร์เรย์ แทนตำแหน่งห้องขังในคุกที่ว่าง งานที่ต้องทำ คือจัดนักโทษจำนวน P คนเข้าห้องขังที่ว่างตามตำแหน่งที่กำหนดให้ โดยมีเงื่อนไขว่าให้จัดนักโทษทั้งหมดลง ในห้องขัง ให้นักเรียนเขียนโปรแกรมเพื่อหาว่าระยะห่างที่น้อยที่สุดระหว่างนักโทษสองคนที่ให้เว้นระยะห่างกัน มากที่สุดเท่าที่จะจัดได้เป็นเท่าใด

ข้อมูลน้ำเข้า บรรทัดที่ 1 จำนวนเต็ม T แทนจำนวนชุดทดสอบ โดยที่ $1 \leq T \leq 5$ สำหรับแต่ละชุดทดสอบ

บรรทัดที่ 1 จำนวนเต็มสองจำนวน N และ P แทนจำนวนห้องขังที่ว่างและจำนวนนักโทษ โดยที่ $2 \leq N \leq 100$, $2 \leq P \leq 100$ และ $P \leq N$

บรรทัดที่ 2 จำนวนเต็ม pos_i ทั้งหมด N จำนวน แต่ละจำนวน แทน ตำแหน่งของห้อง ขังที่ว่าง โดยที่ $1 \leq pos_i \leq 1000$ และ $1 \leq i \leq N$

<u>ข้อมูลนำออก</u> ระยะห่างที่น้อยที่สุดระหว่างนักโทษสองคนที่ให้เว้นระยะห่างกันมากที่สุดเท่าที่จะจัดได้ ตั**วอย่าง**

Input	Output
2 N D	3
53-1	8
1 2 8 4 9	
3 2 10 12 18	
10 12 18	2
5 4	
3 5 10 12 20	

ตัวอย่างที่ 1 ชุดทดสอบที่ 1 สามารถจัดนักโทษลงในห้องขังตำแหน่ง 1 4 และ 8 (ระยะห่าง [1 4] = 3 และ ระยะห่าง [4 8] = 4) เพราะฉะนั้นระยะห่างน้อยสุดที่สามารถจัดนักโทษให้ห่างกันมากที่สุด คือ 3 ตัวอย่างที่ 1 ชดทดสอบที่ 2 สามารถจัดนักโทษลงในห้องขังได้ 3 แบบ คือ

(1) ตำแหน่ง 10 12

(2) ตำแหน่ง 10 18

(3) ตำแหน่ง 12 18

แบบที่ 2 ให้ระยะห่างดีที่สุดและระยะห่างระหว่างนักโทษที่น้อยที่สุดคือ 8

ตัวอย่างที่ 1 ชุดทดสอบที่ 1 สามารถจัดนักโทษลงในห้องขังได้ 2 แบบ คือ

(1) ตำแหน่ง 3 5 10 20

(2) ตำแหน่ง 3 10 12 20

ทั้งสองแบบให้ให้ระยะห่างดีที่สุดระหว่างนักโทษและระยะห่างระหว่างนักโทษที่น้อยที่สุดคือ 2