Aufgabe 2

Betrachten Sie die folgende Grammatik $G = (\{S,A\},\{0,1,2\},P,S)$ mit $P = \{$

$$S \rightarrow 0S0 \,|\, 1S1 \,|\, 2A2 \,|\, 0 \,|\, 1 \,|\, \epsilon$$

$$A \rightarrow A2$$
 }

flaci.com/Gf6scqja9

Konstruieren Sie für die Grammatik G schrittweise eine äquivalente Grammatik in Chomsky-Normalform. Geben Sie für jeden einzelnen Schritt des Verfahrens das vollständige Zwischenergebnis an und erklären Sie kurz, was in dem Schritt getan wurde.

Die Regeln $\{S \to 2A2\}$ und $\{A \to A2\}$ können gelöscht werden, da es keine Regel $\{A \to \epsilon\}$ oder $\{A \to S\}$ gibt. So erhalten wir: $P = \{$

$$S \rightarrow 0S0 \,|\, 1S1 \,|\, 0 \,|\, 1 \,|\, \epsilon$$
 }

(a) Elimination der ϵ -Regeln

— Alle Regeln der Form $A \to \epsilon$ werden eliminiert. Die Ersetzung von A wird durch ϵ in allen anderen Regeln vorweggenommen.

falls $S \to \varepsilon \in P$ neuen Startzustand S_1 einführen

$$P = \{$$

$$S \to 0S0 \,|\, 1S1 \,|\, 0 \,|\, 1 \,|\, 00 \,|\, 11$$

$$S_1 \to \epsilon \,|\, S$$

}

(b) Elimination von Kettenregeln

— Jede Produktion der Form $A \to B$ mit $A, B \in S$ wird als Kettenregel bezeichnet. Diese tragen nicht zur Produktion von Terminalzeichen bei und lassen sich ebenfalls eliminieren. —

☑ Nichts zu tun

(c) Separation von Terminalzeichen

— Jedes Terminalzeichen σ , das in Kombination mit anderen Symbolen auftaucht, wird durch ein neues Nonterminal S_σ ersetzt und die Menge der Produktionen durch die Regel $S_\sigma \to \sigma$ ergänzt.

N = Null E = Eins
$$P = \{$$

$$S \to NSN \mid ESE \mid 0 \mid 1 \mid NN \mid EE$$

$$S_1 \to \epsilon \mid S$$

$$A \to AZ$$

$$N \to 0$$

$$E \to 1$$

}

$(d) \ \ \textbf{Elimination von mehrelementigen Nonterminalketten}$

— Alle Produktionen der Form $A \to B_1B_2 \dots B_n$ werden in die Produktionen $A \to A_{n-1}B_n$, $A_{n-1} \to A_{n-2}B_{n-1}, \dots$, $A_2 \to B_1B_2$ zerteilt. Nach der Ersetzung sind alle längeren Nonterminalketten vollständig heruntergebrochen und die Chomsky-Normalform erreicht.

$$P = \{$$

$$S \rightarrow NS_N \mid ES_E \mid 0 \mid 1 \mid NN \mid EE$$

$$S_1 \rightarrow \epsilon \mid S$$

$$S_N \rightarrow SN$$

$$S_E \rightarrow SE$$

$$N \rightarrow 0$$

 $E \rightarrow 1$

}