Velegapudi Ramakrishna Siddhartha Engineering College::Vijayawad (Autonomous)

II /IV B Tech Degree Examinations(November 2021)

VR20

Third Semester

Department of Information Technology 20IT3305: OPERATING SYSTEMS

Time:3Hrs	MODEL QUESTION PAPER	Max Marks:70

Part – A is Compulsory

Answer one (01) question from each unit of Part – B

Answers to any single question or its part shall be written at one place only

Cognitive Levels(K): K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Create

		Create	1	1	
Q. No		Question	Mark	Course	Cog.
			S	Outco	Leve
				me	l
Pa	rt - A	A			
			10X1=	:10M	
1	a	What is a system call?	1	CO1	K1
	b	Differentiate between user mode and kernel mode.	1	CO1	K2
	c	List different types of schedulers.	1	CO1	K1
	d	What are mutex locks?	1	CO2	K1
	e	Compare preemptive and non- preemptive scheduling	1	CO2	K2
	f	Specify the techniques to recover from a deadlock.	1	CO3	K1
	g	Differentiate between Best fit and worst fit strategies for	1	CO3	K2
		memory allocation.			
	h	Write the causes for thrashing	1	CO3	K2
	I	List the attributes of a file	1	CO4	K1
	j	Define Latency time and Seek time.	1	CO4	K1
Pa	rt - 1	3			
			4X15 = 60M		
		UNIT - I		G0.1	770
2	a	List and explain different services provided by Operating	8	CO1	K2
	1	System.	7	GO2	17.4
	b	There are two processes: Producer and Consumer. The	7	CO3	K4
		producer produces some items and the Consumer consumes			
		that item. The two processes share a common space or			
		memory location known as a buffer where the item produced by the Producer is stored and from which the Consumer			
		consumes the item if needed.			
		Identify the suitable IPC mechanism for the above scenario			
		and explain the process.			
	L	(OR)	<u> </u>		<u> </u>
3	a	Differentiate between process and thread. Explain various	8	CO1	K2
•		multithreading models with neat diagrams.			
	b	Draw process state diagram.	7	CO1	K2
		For each of the following transitions between processes states			
		indicate whether the transition is possible. If it is possible, give			
		an example of one thing that would cause it			
		i) Run → Wait			
		,			
		ii) Wait → Ready			
		iii) Run →New			

		iv) Wait ->	run						
		v) Run→ready								
		UNIT - II								
4	a								CO2	K3
		CPU-burst time given in milli seconds								
		_					-			
			Process	Arrival Burst priority						
				Time						
			P1	0	7	3				
			P2	1	2	1				
			P3 P4	3	3	3 4				
			P5	4	6	2				
		Draw the		· -	ŭ	e execution	of these			
						and Non Pr				
		-	_			average wai	-			
		for each a			1	υ	υ			
	b	List and	explain t	he criteria	for evaluating	ng the perfor	mance of	5	CO2	K2
		schedulin	_							
					(OI	R)				
5	a			-		vrite simple	software	7	CO2	K2
					tion problem					
	b					file shared		8	CO2	K3
			-	-	-	liting the file.				
						at the sai him/her. Ho				
			_							
		some person is reading the file, then others may read it at the same time.								
		Provide Semaphore solution satisfying the conditions specified								
		in the abo	ve scena	rio.						
		Ι			UNIT				1	
6						ns for the	5	CO3	K2	
	1.	deadlock			for the cire		110004:04	10	CO2	IZ A
	b	_	пі вапкеі	rs algorium	m for the giv	en resource a	illocation	10	CO3	K4
		state.								
			Mov	Allocation	Available					
			Max							
			A B C	АВС	A B C					
		P_0	0 0 1	0 0 1						
		\mathbf{P}_{1}	1 7 5	1 0 0						
		P ₂	2 3 5	1 3 5						
		P_3	0 6 5	0 6 3						
		Total		2 9 9	1 5 2					
		 How many resources are there of type (A,B,C)? What are the contents of the Need matrix? 								
		• Is the system in a safe state? Why?								

П					
		Give the safe sequence.			
		• If a request from process P1 arrives for additional			
		resources of (0,5,2), can the Banker's algorithm grant			
		the request immediately?			
		• What would be the new system state after the			
		allocation?			
		(OR)			T
7	a	Paging avoids external fragmentation whereas segmentation	8	CO3	K4
		does not. Justify the statement.			
	b	Computer no of page faults for the given reference string using	7	CO2	K3
		FIFO, Optimal and LRU page replacement algorithm.			
		Analyze the algorithms when the no. of frames are 3, 4, 5 for			
		the reference string			
		1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,4,1,3,5,6			
		UNIT - IV	<u> </u>		
8	a	Write short notes on the following file allocation methods:	9	CO4	K2
		Contiguous Allocation			
		Lined Allocation			
		Free Space management Techniques			
	b	List and explain any two directory structures with examples	6	CO1	K2
ı		(OR)			L
9	a	Implement FIFO, SSTF, SCAN and C-SCAN disk scheduling	8	CO4	K3
		algorithms for the given request of tracks in the order			
		55, 58, 37, 18, 90, 160,150, 38,184			
	b	Compare the throughput achieved by a RAID level 5	7	CO1	K2
		organization with that achieved by a RAID level 1			
		organization for the following:			
		a. Read operations on single blocks			
		b. Read operation on multiple contiguous blocks			

Designation	Name in Capitals	Signature with Date
Course Coordinator	Dr.T.ANURADHA	
	Dr.K.SITA KUMARI	
Program	Dr.G.KALYANI	
Coordinator		
Head of the	Dr.M.SUNEETHA	
Department		