Week 2 - Matrix Review, SVD and PCA

Matrix Review

1. Basic concepts and notation

Consider the following system of equations:

$$4x_1 - 5x_2 = -13$$

$$-2x_1 + 3x_2 = 9$$

In matrix notation, we can write the system more compactly as:

$$Ax = b$$

with

$$A=\left[egin{array}{cc} 4 & 5 \ -2 & 3 \end{array}
ight]$$
 , $b=\left[egin{array}{cc} -13 \ 9 \end{array}
ight]$

- $A \in \mathbb{R}^{m \times n}$: a matrix with m rows and n columns, where the entries of A are real numbers.
- $x \in \mathbb{R}^n$: a vector with n entries. By convention, a n-dimensional vector is ofter thought of as a matrix with n rows and 1 column (column vector). If we want to explicitly represent a row vector, we write x^T .

2. Matrix multiplication

 $A \in \mathbb{R}^{m imes n}$ and $B \in \mathbb{R}^{n imes p}$

$$C = AB \in \mathbb{R}^{m \times p}$$

where

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Matrix multiplication is:

- associative: (AB)C = A(BC)
- distributive: A(B+C) = AB + AC
- ullet not commutative: AB
 eq BA

3. Operations and Properties

3.1 Identity matrix

 $I \in \mathbb{R}^{n \times n}$, a square matrix with ones on the diagonal and zeros everywhere else.

For all $A \in \mathbb{R}^{m imes n}$,

$$AI = A = IA$$

3.2 Transpose

Given a matrix $A \in \mathbb{R}^{m imes n}$, its transpose, written $A^T \in \mathbb{R}^{n imes m}$.

Properties:

- \bullet $(A^T)^T = A$
- $\bullet \ (AB)^T = B^T A^T$
- $\bullet (A+B)^T = A^T + B^T$

3.3 Trace

The trace of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted as tr(A), which is the sum of diagonal elements in the matrix:

$$trA = \sum_{i=1}^{n} A_{ii}$$

Properties:

- $ullet \ trA = trA^T$, for $A \in \mathbb{R}^{n imes n}$
- ullet tr(A+B)=trA+trB, for $A,B\in\mathbb{R}^{n imes n}$
- $ullet tr(tA)=t\ trA$, for $A\in\mathbb{R}^{n imes n}, t\in\mathbb{R}$
- $\bullet \ \ trAB = trBA \ \text{for} \ A, B \ \text{such that} \ AB \ \text{is square}.$
- ullet trABC=trBCA=trCAB for A,B,C such that ABC is square.

3.4 Norms

A norm of a vector is informally a measure of the "length" of the vector.

 ℓ_p norms:

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{rac{1}{p}}$$

 ℓ_2 norm (Euclidean):

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

Norms can also be defined for matrices, such as the Frobenius norm,

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{tr(A^TA)}$$

3.5 Rank

A set of vectors $\{x_1, x_2, \dots x_n\} \subset \mathbb{R}^m$ is said to be (linearly) independent if no vector can be represented as a linear combination of the remaining vectors.

For example, the vectors

$$x_1 = egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}, x_2 = egin{bmatrix} 4 \ 1 \ 5 \end{bmatrix}, x_3 = egin{bmatrix} 2 \ -3 \ -1 \end{bmatrix}$$

are linearly dependent because $x_3 = -2x_1 + x_2$

properties:

- For $A \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A) \leq \min(m,n)$. If $\operatorname{rank}(A) = \min(m,n)$, then A is said to be full rank.
- ullet For $A \in \mathbb{R}^{m imes n}$, $\mathrm{rank}(A) = \mathrm{rank}(A^T)$
- For $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $\mathrm{rank}(AB) \leq \min(\mathrm{rank}(A), \mathrm{rank}(B))$
- ullet For $A,B\in\mathbb{R}^{\mathrm{m} imes\mathrm{n}}$, $\mathrm{rank}(A+B)\leq\mathrm{rank}(A)+\mathrm{rank}(B)$

3.6 Inverse

The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted as A^{-1} , and is the unique matrix such that,

$$A^{-1}A = I = AA^{-1}$$

*Note: not all matrices have inverse. e.g. non-square matrices.

We say that A is invertible or non-singular if A^{-1} exists and non-invertible or singular otherwise.

Properties:

•
$$(A^{-1})^{-1} = A$$

•
$$(AB)^{-1} = B^{-1}A^{-1}$$

•
$$(A^{-1})^T = (A^T)^{-1}$$

3.7 Orthogonal Matrices

Two vectors $x,y\in\mathbb{R}^n$ are orthogonal if $x^Ty=0$.

A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all its columns are orthogonal to each other and are normalised (the columns are then referred to as being orthnormal)

$$U^TU=I=UU^T$$

If U is not square ($U \in \mathbb{R}^{m \times n}, n < m$), but its columns are still orthonormal, then $U^TU = I$, but $UU^T \neq I$.

Property:

Operate on a vector with an orthogonal matrix will not change its Euclidean norm, i.e.,

$$||Ux||_2 = ||x||_2$$

3.8 Determinant

The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$, is a function det: $\mathbb{R}^{n \times n} \to \mathbb{R}$, and is denoted |A| or det A.

$$|[a_{11}]| = a_{11}$$

$$igg|egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}igg| = a_{11}a_{22} - a_{12}a_{21}$$

$$egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11}(a_{22}a_{33} - a_{23}a_{32}) + a_{12}(a_{23}a_{31} - a_{21}a_{33}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

3.9 Eigenvalues and Eigenvectors

Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A and $x \in \mathbb{C}^n$ is the corresponding eigenvector if:

$$Ax=\lambda x$$
, $x
eq 0$

which means, multiplying A by the vector x results in a new vector that points in the same direction as x, but scaled by a factor λ .

Rewrite the equation to state that (λ, x) is an eigenvalue-eigenvector pair of A if

$$(\lambda I - A)x$$
, $x \neq 0$

But $(\lambda I - A)x = 0$ has a non-zero solution to x if and only if $(\lambda I - A)$ has a non-empty nullspace, which is only the case if $(\lambda I - A)$ is singular, i.e.,

$$|(\lambda I - A)| = 0$$

Properties:

- ullet The trace of A is equal to the sum of its eigenvalues, $trA = \sum_{i=1}^n \lambda_i$
- ullet The determinant of A is equal to the product of its eigenvalues, $|A|=\prod_{i=1}^n\lambda_i$
- The rank of A = the number of non-zero eigenvalues of A

http://cs229.stanford.edu/summer2019/cs229-linalg.pdf

Singular Value Decomposition (SVD)

Assume $A \in \mathbb{R}^{n \times p}$

SVD is a method of decomposing a matrix into three other matrices:

$$A = USV^T$$

where:

$$U \in \mathbb{R}^{n imes n}$$
 , $S \in \mathbb{R}^{n imes p}$, $V \in \mathbb{R}^{p imes p}$

$$U^T U = I$$
, $V^T V = I$ (i.e. U and V are orthogonal)

Where the columns of U are the left singular vectors. S is diagonal, and V^T has rows that are the right singular vectors. The SVD represents an expansion of the original data in a coordinate system where the covariance matrix is diagonal.

Calculate SVD:

- finding eigenvalues and eigenvectors of AA^T and A^TA
- The eigenvectors of A^TA make up the columns of V.
- The eigenvectors of AA^T make up the columns of U.
- The singular values in S are square roots of eigenvalues from AA^T or A^TA . The singular values are the diagonal entries of the S and are arranged in descending order.

Principal Component Analysis (PCA)

PCA is a technique widely used for dimension reduction, data compression, feature extraction and data visualisation.

Two equivalent definitions of PCA:

- Maximum Variance Formulation:
 project the data onto a lower dimensional space such tat the variance of the projected data is maximised.
- Minimum Error Formulation:
 project the data onto a lower dimensional space such that the mean squared distance
 between data points and their projections (average projection cost) is minimised.

Algorithm

- Step 1: substract the mean data $ar{x}$ from original data, i.e. $m{z} = m{x} ar{m{x}}$
- ullet Step 2: compute the scatter matrix $m{S} = rac{1}{n} \sum_{i=1}^n m{z}_i m{z}_i^T$
- Step 3: compute the eigenvectors u_1, u_2, \ldots, u_k and eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ by using SVD of S. Then $U = [u_1, u_2, \ldots, u_k]$ is the projection matrix
- Step 4: $y_i = \boldsymbol{U}^T \boldsymbol{x}_i$

How to determine k?

ullet Percentage of variance retained: $P(k) = rac{\sum_{i=1}^k \lambda_i}{\sum_{i=1}^n \lambda_i} \geq t$

^{*}Proof in the formulation of Maximum variance formulation

Let $\pmb{X} = \{\pmb{x}_i \in \mathbb{R}^d\}_{1 \leq i \leq n}$ be a set of observations.

Goal: project \boldsymbol{X} onto a k dimensional subspace (k < d) such that the variance of the projected data is maximised.

Proof for k = 1:

Let
$$ar{m{x}}=rac{1}{n}\sum_{i=1}^nm{x}_i$$
 and $m{S}=rac{1}{n}\sum_{i=1}^n(m{x}_i-ar{m{x}})(m{x}_i-ar{m{x}})^T$

Let $m{u}_1$ be the basis of the 1 dimensional subspace, and $m{u}_1^Tm{u}_1=1$

$$\hat{ ext{VAR}} = rac{1}{n} \sum_{i=1}^n (m{u}_1^T (m{x}_i - ar{m{x}}))^2 = rac{1}{n} \sum_{i=1}^n m{u}_1^T (m{x}_i - ar{m{x}}) (m{x}_i - ar{m{x}})^T m{u}_1 = m{u}_1^T m{S} m{u}_1$$

The problem becomes:

$$\max_{\boldsymbol{u}_1} \boldsymbol{u}_1^T \boldsymbol{S} \boldsymbol{u}_1$$

s.t.
$$oldsymbol{u}_1^Toldsymbol{u}_1=1$$

This is equivalent to:

$$\min_{\boldsymbol{u}_1} \ - \boldsymbol{u}_1^T \boldsymbol{S} \boldsymbol{u}_1$$

s.t.
$$oldsymbol{u}_1^Toldsymbol{u}_1=1$$

Rewrite into Lagrangian function:

$$\mathcal{L} = -oldsymbol{u}_1^T oldsymbol{S} oldsymbol{u}_1 + \lambda_1 (oldsymbol{u}_1^T oldsymbol{u}_1 - 1)$$

According to KKT conditions,

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{u}_1} = -\boldsymbol{S}\boldsymbol{u}_1 + \lambda_1 \boldsymbol{u}_1 = 0$$

$$Su_1 = \lambda_1 u_1$$

Thus, ${m u}_1$ is a eigenvector of ${m S}$ and λ_1 is its eigenvalue. Note that

$$-oldsymbol{u}_1^Toldsymbol{S}oldsymbol{u}_1 = -\lambda_1oldsymbol{u}_1^Toldsymbol{u}_1 = -\lambda_1$$

 λ_1 is the largest eigenvalue of ${m S}$.