CS 97SI: INTRODUCTION TO PROGRAMMING CONTESTS

Last Lecture on Graph Algorithms

- Network Flow Problems
 - Maximum Flow
 - Minimum Cut
- Ford-Fulkerson Algorithm
- Application: Bipartite Matching
- Min-cost Max-flow Algorithm

Network Flow Problems

- A type of network optimization problem
- Arise in many different contexts (CS 261):
 - Networks: routing as many packets as possible on a given network
 - Transportation: sending as many trucks as possible, where roads have limits on the number of trucks per unit time
 - Bridges: destroying (?!) some bridges to disconnect S from t, while minimizing the cost of destroying the bridges

Network Flow Problems

- □ Settings: Given a directed graph G = (V, E), where each edge e is associated with its capacity c(e) > 0. Two special nodes source s and sink t are given $(s \neq t)$
- $\hfill \hfill \hfill$
 - \blacksquare Flow on edge e doesn't exceed c(e)
 - For every node $v \neq s, t$, incoming flow is equal to outgoing flow

Network Flow Example (from CLRS)

Capacities

■ Maximum Flow (of 23 units)

Alternate Formulation: Minimum Cut

- We want to remove some edges from the graph such that after removing the edges, there is no path from S to t
- lacksquare The cost of removing e is equal to its capacity c(e)
- The minimum cut problem is to find a cut with minimum total cost

- □ Theorem: (maximum flow) = (minimum cut)
 - Take CS 261 if you want to see the proof ⊕

Minimum Cut Example

■ Minimum Cut (red edges are removed)

Flow Decomposition

Any valid flow can be decomposed into flow paths and circulations

- \square $s \rightarrow a \rightarrow b \rightarrow t$: 11
- \square $s \rightarrow c \rightarrow a \rightarrow b \rightarrow t$: 1
- \square $s \rightarrow c \rightarrow d \rightarrow b \rightarrow t: 7$
- \square $s \rightarrow c \rightarrow d \rightarrow t$: 4

Ford-Fulkerson Algorithm

- A simple and practical max-flow algorithm
- Main idea: find valid flow paths until there is none left, and add them up
- □ How do we know if this gives a maximum flow?
 - Proof sketch: Suppose not. Take a maximum flow f^* and subtract our flow f. It is a valid flow of positive total flow. By the flow decomposition, it can be decomposed into flow paths and circulations. These must have been found by Ford-Fulkerson. Contradiction.

Back Edges

- We don't need to maintain the amount of flow on each edge but work with capacity values directly
- \square If f amount of flow goes through $u \to v$, then:
 - lacktriangle Decrease $c(u \rightarrow v)$ by f
 - Increase $c(v \rightarrow u)$ by f
- Why do we need to do this?
 - Sending flow to both directions is equivalent to canceling flow

Ford-Fulkerson Pseudocode

- \square Set $f_{\text{total}} = 0$
- \square Repeat until there is no path from S to t:
 - lacksquare Run DFS from s to find a flow path to t
 - lacksquare Let f be the minimum capacity value on the path
 - $lue{}$ Add f to $f_{
 m total}$
 - \blacksquare For each edge $u \rightarrow v$ on the path:
 - Decrease $c(u \rightarrow v)$ by f
 - Increase $c(v \rightarrow u)$ by f

Analysis

- Assumption: capacities are integer-valued
- \square Finding a flow path takes $\Theta(n+m)$ time
- We send at least 1 unit of flow through the path
- □ If the max-flow is f^* , the time complexity is $O\left((n+m)f^*\right)$
 - "Bad" in that it depends on the output of the algorithm
 - Nonetheless, easy to code and works well in practice

- We know that max-flow is equal to min-cut
- And we now know how to find the max-flow

- Question: how do we find the min-cut?
- Answer: use the residual graph

"Subtract" the max-flow from the original graph

Only the topology of the residual graph is shown.

Don't forget to add the back edges!

- Mark all nodes reachable from S
 - Call the set of reachable nodes A

- Now separate these nodes from the others
 - $lue{}$ Edges go from A to V-A are cut

Look at the original graph and find the cut:

 \square Why isn't $b \rightarrow c$ cut?

Bipartite Matching

- Settings:
 - $ldsymbol{\square}$ n students and d dorms
 - Each student wants to live in one of the dorms of his choice
 - Each dorm can accommodate at most one student (?!)
 - Fine, we will fix this later...

 Problem: find an assignment that maximizes the number of students who get a housing

Flow Network Construction

- Add source and sink
- Make edges between students and dorms
 - All the edge weights are 1

Flow Network Construction

- Find the max-flow
- □ Find the optimal assignment from the chosen edges

Related Problems

- \square A more reasonable variant of the previous problem: dorm j can accommodate c_j students
 - lacksquare Make an edge with capacity c_j from dorm j to the sink
- Decomposing a DAG into nonintersecting paths
 - lacksquare Split each vertex v into $v_{
 m left}$ and $v_{
 m right}$
 - \blacksquare For each edge $u \to v$ in the DAG, make an edge from $u_{\rm left}$ to $v_{\rm right}$
- And many others...

Min-Cost Max-Flow

- A variant of the max-flow problem
- \square Each edge e has capacity c(e) and cost cost(e)
- $\ \square$ You have to pay $\mathrm{cost}(e)$ amount of money per unit flow flowing through e
- Problem: find the maximum flow that has the minimum total cost
- A lot harder than the regular max-flow
 - But there is an easy algorithm that works for small graphs

Simple (?) Min-Cost Max-Flow

- Forget about the costs and just find a max-flow
- □ Repeat:
 - Take the residual graph
 - Find a negative-cost cycle using Bellman-Ford
 - If there is none, finish
 - Circulate flow through the cycle to decrease the total cost, until one of the edges is saturated
 - The total amount of flow doesn't change!
- □ Time complexity: very slow

Notes on Max-Flow Problems

- Remember different formulations of the max-flow problem
 - \square Again, (maximum flow) = (minimum cut)!
- Often the crucial part is to construct the flow network
- We didn't cover fast max-flow algorithms
 - Refer to the Stanford Team notebook for efficient flow algorithms