$$\vec{w}_1^{(1)} = \vec{w}_1^{(0)} - \frac{\partial E_{in}}{\partial \vec{w}_1} = (0,0,0)^T - \left(-\frac{2}{3}, -5, -3\right)^T = (\frac{2}{3}, 5, 3)^T$$

$$\vec{w}_2^{(1)} = \vec{w}_2^{(0)} - \frac{\partial E_{in}}{\partial \vec{w}_2} = (0,0,0)^T - \left(\frac{1}{3},1,0\right)^T = (-\frac{1}{3},-1,0)^T$$

$$\vec{w}_3^{(1)} = \vec{w}_3^{(0)} - \frac{\partial E_{in}}{\partial \vec{w}_3} = (0,0,0)^T - \left(\frac{1}{3},4,3\right)^T = (-\frac{1}{3},-4,-3)^T$$

根据 $\vec{w}_1^{(1)}$, $\vec{w}_2^{(1)}$ 和 $\vec{w}_3^{(1)}$, 我们用式 (1) 得到:

对于
$$\vec{x}_1$$
, 我们有: $s_1 = \vec{w}_1^T \vec{x}_1 = \left(\frac{2}{3}, 5, 3\right) \begin{pmatrix} 1\\3\\0 \end{pmatrix} = 15.67$, $s_2 = \vec{w}_2^T \vec{x}_1 = \left(-\frac{1}{3}, -1, 0\right) \begin{pmatrix} 1\\3\\0 \end{pmatrix} = -3.33$, $s_3 = \vec{w}_3^T \vec{x}_1 = \left(-\frac{1}{3}, -4, -3\right) \begin{pmatrix} 1\\3\\0 \end{pmatrix} = -12.33$

利用式(2),我们可以得到: $\hat{y}_1 = \frac{e^{s_1}}{e^{s_1} + e^{s_2} + e^{s_3}} = 1.00$, $\hat{y}_2 = \frac{e^{s_2}}{e^{s_1} + e^{s_2} + e^{s_3}} = 0.00$, $\hat{y}_3 = \frac{e^{s_3}}{e^{s_1} + e^{s_2} + e^{s_3}} = 0.00$,即, $\vec{\hat{Y}}_1 = (1.00, 0.00, 0.00)^T$,对照 $\vec{Y}_1 = (1, 0, 0)^T$,此时对于样本 \vec{x}_1 分类是正确的。

同理: 对于 \vec{x}_2 ,我们有 $s_1=33.67$, $s_2=-3.33$, $s_3=-30.33$,对应的我们可以计算出 $\vec{\hat{Y}}_2=(1.00,0.00,0.00)^T$,对照 $\vec{Y}_2=(1,0,0)^T$,此时对于样本 \vec{x}_2 分类是正确的。

对于 \vec{x}_3 ,我们有 $s_1=9.67$, $s_2=-0.33$, $s_3=-9.33$,对应的我们可以计算 出 $\vec{Y}_3=(1.00,0.00,0.00)^T$,对照 $\vec{Y}_3=(0,1,0)^T$,此时对于样本 \vec{x}_3 分类是错误的。 对于 \vec{x}_4 ,我们有 $s_1=-14.33$, $s_2=2.67$, $s_3=11.67$,对应的我们可以计算出 $\vec{Y}_4=(0.00,0.00,1.00)^T$,对照 $\vec{Y}_4=(0,0,1)^T$,此时对于样本 \vec{x}_4 分类是正确的。 第三个样本错分,计算 $E_{in}=(-ln1-ln1-ln0-ln1)/4=\infty$

第二次迭代: 我们需要按照式(6) 重新计算梯度去得到新的 \vec{v}_k , 仍以计算 \vec{v}_1 为例, 先用式(6) 计算梯度: