Section 1: Declare the Modules

```
import os
from collections import defaultdict
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, f1_score, precision_score, recall_score, classification_report
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.preprocessing import StandardScaler
import seaborn as sns
import time
import warnings
warnings.filterwarnings('ignore')
```

Section 2: Data Import and Preprocess

```
!pip install wget
import wget
link_to_data = 'https://raw.githubusercontent.com/SIT719/2020-S2/master/data/Week_5_NSL-KDD-Dataset/training_attack_types.txt?raw=true'
DataSet = wget.download(link_to_data)
     Requirement already satisfied: wget in /usr/local/lib/python3.10/dist-packages (3.2)
DataSet
     'training attack types (4).txt'
header_names = ['duration', 'protocol_type', 'service', 'flag', 'src_bytes', 'dst_bytes', 'land', 'wrong_fragment', 'urgent', 'hot', 'num
# Differentiating between nominal, binary, and numeric features
# root_shell is marked as a continuous feature in the kddcup.names
# file, but it is supposed to be a binary feature according to the
# dataset documentation
# training_attack_types.txt maps each of the 22 different attacks to 1 of 4 categories
# file obtained from http://kdd.ics.uci.edu/databases/kddcup99/training_attack_types
col_names = np.array(header_names)
nominal_idx = [1, 2, 3]
binary_idx = [6, 11, 13, 14, 20, 21]
numeric_idx = list(set(range(41)).difference(nominal_idx).difference(binary_idx))
nominal cols = col names[nominal idx].tolist()
binary_cols = col_names[binary_idx].tolist()
numeric_cols = col_names[numeric_idx].tolist()
# training_attack_types.txt maps each of the 22 different attacks to 1 of 4 categories
# file obtained from http://kdd.ics.uci.edu/databases/kddcup99/training_attack_types
category = defaultdict(list)
category['benign'].append('normal')
with open(DataSet, 'r') as f:
    for line in f.readlines():
        attack, cat = line.strip().split(' ')
        category[cat].append(attack)
attack_mapping = dict((v,k) for k in category for v in category[k])
```

```
attack_mapping
     {'normal': 'benign',
  'apache2': 'dos',
       'back': 'dos',
       'mailbomb': 'dos'
       'processtable': 'dos',
'snmpgetattack': 'dos',
       'teardrop': 'dos',
'smurf': 'dos',
       'land': 'dos'
       'neptune': 'dos',
       'pod': 'dos',
'udpstorm': 'dos',
'ps': 'u2r',
       'buffer_overflow': 'u2r',
'perl': 'u2r',
       'rootkit': 'u2r'
       'loadmodule': 'u2r',
       'xterm': 'u2r'
       'sqlattack': 'u2r',
'httptunnel': 'u2r',
       'ftp_write': 'r2l',
       'guess_passwd': 'r2l',
       'snmpguess': 'r2l',
       'imap': 'r21',
'spy': 'r21',
'warezclient': 'r21',
       'warezmaster': 'r21',
'multihop': 'r21',
       'phf': 'r21'
       'named': 'r21'
       'sendmail': 'r2l',
       'xlock': 'r21',
       'xsnoop': 'r2l
       'worm': 'probe'
       'nmap': 'probe',
       'ipsweep': 'probe',
'portsweep': 'probe',
       'satan': 'probe',
'mscan': 'probe',
       'saint': 'probe'}
#Processing Training Data
train_file='https://raw.githubusercontent.com/SIT719/2020-S2/master/data/Week_5_NSL-KDD-Dataset/KDDTrain%2B.txt'
train_df = pd.read_csv(train_file, names=header_names)
train_df['attack_category'] = train_df['attack_type'].map(lambda x: attack_mapping[x])
train_df.drop(['success_pred'], axis=1, inplace=True)
#Processing test Data
test_file='https://raw.githubusercontent.com/SIT719/2020-S2/master/data/Week_5_NSL-KDD-Dataset/KDDTest%2B.txt'
test_df = pd.read_csv(test_file, names=header_names)
test\_df['attack\_category'] = test\_df['attack\_type'].map(lambda \ x: \ attack\_mapping[x])
test_df.drop(['success_pred'], axis=1, inplace=True)
train_attack_types = train_df['attack_type'].value_counts()
train_attack_cats = train_df['attack_category'].value_counts()
test_attack_types = test_df['attack_type'].value_counts()
test_attack_cats = test_df['attack_category'].value_counts()
train attack types.plot(kind='barh', figsize=(20,10), fontsize=20)
train_attack_cats.plot(kind='barh', figsize=(20,10), fontsize=30)
train_df[binary_cols].describe().transpose()
train_df.groupby(['su_attempted']).size()
train_df['su_attempted'].replace(2, 0, inplace=True)
test_df['su_attempted'].replace(2, 0, inplace=True)
train_df.groupby(['su_attempted']).size()
train_df.groupby(['num_outbound_cmds']).size()
#Now, that's not a very useful feature - let's drop it from the dataset
train_df.drop('num_outbound_cmds', axis = 1, inplace=True)
test_df.drop('num_outbound_cmds', axis = 1, inplace=True)
numeric_cols.remove('num_outbound_cmds')
```

```
#Data Preparation
train Y = train df['attack category']
train_x_raw = train_df.drop(['attack_category','attack_type'], axis=1)
test_Y = test_df['attack_category']
test_x_raw = test_df.drop(['attack_category','attack_type'], axis=1)
combined_df_raw = pd.concat([train_x_raw, test_x_raw])
combined_df = pd.get_dummies(combined_df_raw, columns=nominal_cols, drop_first=True)
train_x = combined_df[:len(train_x_raw)]
test_x = combined_df[len(train_x_raw):]
# Store dummy variable feature names
dummy variables = list(set(train x)-set(combined df raw))
#execute the commands in console
train x.describe()
train_x['duration'].describe()
# Experimenting with StandardScaler on the single 'duration' feature
from \ sklearn.preprocessing \ import \ StandardScaler
durations = train_x['duration'].values.reshape(-1, 1)
standard_scaler = StandardScaler().fit(durations)
scaled durations = standard scaler.transform(durations)
pd.Series(scaled_durations.flatten()).describe()
# Experimenting with MinMaxScaler on the single 'duration' feature
from sklearn.preprocessing import MinMaxScaler
min_max_scaler = MinMaxScaler().fit(durations)
min_max_scaled_durations = min_max_scaler.transform(durations)
pd.Series(min_max_scaled_durations.flatten()).describe()
# Experimenting with RobustScaler on the single 'duration' feature
from sklearn.preprocessing import RobustScaler
min_max_scaler = RobustScaler().fit(durations)
robust_scaled_durations = min_max_scaler.transform(durations)
pd.Series(robust_scaled_durations.flatten()).describe()
# Experimenting with MaxAbsScaler on the single 'duration' feature
from sklearn.preprocessing import MaxAbsScaler
max_Abs_scaler = MaxAbsScaler().fit(durations)
robust scaled durations = max Abs scaler.transform(durations)
pd.Series(robust_scaled_durations.flatten()).describe()
# Let's proceed with StandardScaler- Apply to all the numeric columns
standard_scaler = StandardScaler().fit(train_x[numeric_cols])
train_x[numeric_cols] = \
    standard_scaler.transform(train_x[numeric_cols])
test x[numeric cols] = \
    standard_scaler.transform(test_x[numeric_cols])
train x.describe()
train_Y_bin = train_Y.apply(lambda x: 0 if x is 'benign' else 1)
test_Y_bin = test_Y.apply(lambda x: 0 if x is 'benign' else 1)
```



```
def evaluate_classifier(class_type, train_x, train_y, test_x, test_y, label_names=None, **kwargs):
    classifier = class_type(**kwargs)
    classifier.fit(train_x, train_Y)
   # Record start time for training
    start train time = time.time()
    classifier.fit(train_x, train_Y)
    end_train_time = time.time()
    train_time = end_train_time - start_train_time # Calculate training time
    # Make predictions on the test data
    start_test_time = time.time()
    y_pred = classifier.predict(test_x)
    end_test_time = time.time()
    test_time = end_test_time - start_test_time # Calculate test time
   y_pred = classifier.predict(test_x)
   class_name = classifier.__class__.__name__
print(f"Classifier: {class_name}")
    print(f"Evaluation Report for {class_name}:")
    show_evaluation_results(test_Y, y_pred, label_names, train_time, test_time)
    print("=" * 40)
performance_metrics = []
def show_evaluation_results(test_Y, y_pred, label_names, train_time, test_time):
    accuracy = accuracy_score(test_Y, y_pred)
    conf_matx = confusion_matrix(test_Y, y_pred)
    f1score = f1_score(test_Y, y_pred, average="macro")
    precision = precision_score(test_Y, y_pred, average="macro")
    recall = recall_score(test_Y, y_pred, average="macro")
    print(f"F-Score: {f1score}")
    print(f"Precision: {precision}")
    print(f"Re-call: {recall}")
    print(f"Accuracy: {accuracy}")
    print(f"Confusion Matrix:\n{conf_matx}")
    clrp = classification_report(test_Y, y_pred, target_names=label_names)
    print(clrp)
    class_far = calculate_false_alarm_rate(conf_matx, label_names)
    for label_name, false_alarm in class_far.items():
        print(f"False Alarm of {label_name}: {false_alarm:.4f} ({false_alarm * 100:.2f}%)")
    overall_far = sum(class_far.values()) / len(class_far)
    print(f"Overall False Alarm Rate: {overall_far:.4f} ({overall_far * 100:.2f}%)")
    print(f"Training Time: {train_time:.4f} seconds") # Print training time
    print(f"Test Time: {test_time:.4f} seconds") # Print test time
    total_time = train_time + test_time
    print(f"Total Time: {total_time:.4f} seconds")
    # Calculate the error rate
    error rate = 1 - accuracy
    print(f"Error Rate: {error_rate:.4f} ({error_rate * 100:.2f}%)")
    # Create the heatmap using Matplotlib
    plt.imshow(conf_matx, interpolation='nearest', cmap='plasma')
```

```
plt.title("Confusion Matrix")
    plt.colorbar()
    # Label the axes with numbers
   for i in range(len(label_names)):
        for j in range(len(label_names)):
            plt.text(j, i, str(conf_matx[i, j]), ha='center', va='center', color='white')
    # Label the axes
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.xticks(np.arange(len(label_names)), label_names, rotation=45)
    plt.yticks(np.arange(len(label_names)), label_names)
    # Append performance metrics to the list
    performance_metrics.append({
        'F-Score': f1score,
        'Precision': precision,
        'Recall': recall,
        'Accuracy': accuracy,
        'Overall FAR': overall_far,
        'Training Time': train_time,
        'Test Time': test_time,
        'Total Time': total_time,
        'Error Rate': error_rate
    })
    plt.show()
def calculate_false_alarm_rate(confusion_matrix, label_names):
    class_far = {}
    for i in range(len(label_names)):
        false_alarms = sum(confusion_matrix[j][i] for j in range(len(label_names)) if j != i)
        class_far[label_names[i]] = false_alarms / sum(confusion_matrix[i])
    return class_far
# Define label_names based on your dataset
label_names = ['normal', 'dos', 'probe', 'r21', 'u2r']
classifiers = [
   DecisionTreeClassifier,
    RandomForestClassifier,
    SVC,
    KNeighborsClassifier,
   LogisticRegression,
# Then, pass label_names as an argument when calling the analysis function
for classifier in classifiers:
    evaluate_classifier(classifier, train_x, train_Y, test_x, test_Y, label_names=label_names)
```

Classifier: DecisionTreeClassifier

Evaluation Report for DecisionTreeClassifier:

F-Score: 0.5307001870846837 Precision: 0.8143330644602192 Re-call: 0.5095817847363824 Accuracy: 0.7644606103619588

Confusion Matrix: [[9440 59 210

[1422 6119 95 0 0] [684 247 1492 0 0] [2388 4 9 164 9] [175 0 2 4 19]]

	precision	recall	f1-score	support
normal	0.67	0.97	0.79	9711
dos	0.95	0.80	0.87	7636
probe	0.83	0.62	0.71	2423
r21	0.97	0.06	0.12	2574
u2r	0.66	0.10	0.17	200
accuracy			0.76	22544
macro avg	0.81	0.51	0.53	22544
weighted avg	0.82	0.76	0.73	22544

False Alarm of normal: 0.4808 (48.08%)
False Alarm of dos: 0.0406 (4.06%)
False Alarm of probe: 0.1304 (13.04%)
False Alarm of r2l: 0.0019 (0.19%)
False Alarm of u2r: 0.0500 (5.00%)
Overall False Alarm Rate: 0.1408 (14.08%)

Training Time: 6.0219 seconds Test Time: 0.0220 seconds Total Time: 6.0440 seconds Error Rate: 0.2355 (23.55%)

Classifier: RandomForestClassifier

Evaluation Report for RandomForestClassifier:

F-Score: 0.48520134547757243 Precision: 0.7794255669285004 Re-call: 0.4782819951803451 Accuracy: 0.7468506032647267 Confusion Matrix:

[[9447 67 196 0 1] [1706 5813 117 0 0] [797 162 1464 0 0] [2460 0 2 111 1]

Ī	194	0	0	4	2]]			
-			prec	ision	recal	11	f1-score	support
	noi	rmal		0.65	0.9	97	0.78	9711
		dos		0.96	0.7	76	0.8	7636
	рі	robe		0.82	0.6	50	0.70	2423
		r21		0.97	0.6	94	0.08	3 2574
		u2r		0.50	0.6	91	0.0	2 200
	accui	racy					0.7	5 22544
	macro	avg		0.78	0.4	48	0.49	22544
ie:	ighted	avg		0.81	0.7	75	0.73	L 22544

False Alarm of normal: 0.5310 (53.10%)
False Alarm of dos: 0.0300 (3.00%)
False Alarm of probe: 0.1300 (13.00%)

False Alarm of r21: 0.0016 (0.16%) False Alarm of u2r: 0.0100 (1.00%) Overall False Alarm Rate: 0.1405 (14.05%)

Training Time: 27.4886 seconds Test Time: 0.5240 seconds Total Time: 28.0126 seconds Error Rate: 0.2531 (25.31%)

Classifier: SVC

Evaluation Report for SVC: F-Score: 0.5061406287985528 Precision: 0.8868031619708534 Re-call: 0.48511142759360626 Accuracy: 0.7462739531582683

Confusion Matrix:

[[9462	62	187	0	0]
[1882	5693	61	0	0]
[836	175	1412	0	0]
[2318	0	4	252	0]
[177	0	15	3	5]]

[177	0	15	3	5]]		
		prec	ision	recal:	l f1-score	support
noi	rmal		0.64	0.9	7 0.78	9711
	dos		0.96	0.7	5 0.84	7636
рі	robe		0.84	0.58	8 0.69	2423
	r2l		0.99	0.10	0.18	2574
	u2r		1.00	0.03	3 0.05	200
accui	racy				0.75	22544
macro	avg		0.89	0.49	9 0.51	22544
weighted	avg		0.82	0.7	5 0.71	22544

False Alarm of normal: 0.5368 (53.68%)
False Alarm of dos: 0.0310 (3.10%)
False Alarm of probe: 0.1102 (11.02%)
False Alarm of r21: 0.0012 (0.12%)
False Alarm of u2r: 0.0000 (0.00%)
Overall False Alarm Rate: 0.1358 (13.58%)
Training Time: 141.4420 seconds

Test Time: 14.0296 seconds Total Time: 155.4716 seconds Error Rate: 0.2537 (25.37%)

Confusion Matrix normal 62 187 8000 1882 61 0 0 dos 6000 1412 836 175 0 probe 4000 2318 252 0 0 r2l 2000

Classifier: KNeighborsClassifier

Evaluation Report for KNeighborsClassifier:

F-Score: 0.5196654360220211 Precision: 0.8601556370245385 Re-call: 0.5063574671667119 Accuracy: 0.7619322214336409

Accuracy: 0.7619322214336409
Confusion Matrix:
[[9444 54 207 5 1]
[1630 5925 81 0 0]
[614 180 1629 0 0]
[2362 2 40 170 0]

-				-		
[2362	2	40	170	0]		
[170	0	17	4	9]]		
		pre	cision	recall	f1-score	support
noi	rmal		0.66	0.97	0.79	9711
	dos		0.96	0.78	0.86	7636
рі	robe		0.83	0.67	0.74	2423
	r21		0.95	0.07	0.12	2574
	u2r		0.90	0.04	0.09	200
accui	racy				0.76	22544
macro	avg		0.86	0.51	0.52	22544
weighted	avg		0.82	0.76	0.73	22544

False Alarm of normal: 0.4918 (49.18%)
False Alarm of dos: 0.0309 (3.09%)
False Alarm of probe: 0.1424 (14.24%)
False Alarm of r2l: 0.0035 (0.35%)
False Alarm of u2r: 0.0050 (0.50%)
Overall False Alarm Rate: 0.1347 (13.47%)

Training Time: 0.3045 seconds Test Time: 35.9046 seconds Total Time: 36.2091 seconds Error Rate: 0.2381 (23.81%)

Confusion Matrix 54 207 normal 8000 1630 0 81 dos 6000 614 180 0 0 probe 1629 4000 2362 40 170 r2l 2000 0 17 9 u2r probe 325 3 Predicted

Classifier: LogisticRegression

Evaluation Report for LogisticRegression:

F-Score: 0.5070502281065372 Precision: 0.8141604993873506 Re-call: 0.5100569661036316 Accuracy: 0.7530606813342796

Confusion Matrix: [[8993 90 624 2] [1560 6052 24 0 0] [496 99 1825 3 0] 2471 2 2 99 0] [184 0 3 8]]

	precision	recall	f1-score	support
normal	0.66	0.93	0.77	9711
dos	0.97	0.79	0.87	7636
probe	0.74	0.75	0.75	2423
r21	0.91	0.04	0.07	2574
u2r	0.80	0.04	0.08	200

```
accuracy
                                            0.75
                                                     22544
                        0.81
                                 0.51
                                                     22544
        macro avg
                                           0.51
     weighted avg
                        0.80
                                 0.75
                                           0.72
                                                     22544
     False Alarm of normal: 0.4851 (48.51%)
     False Alarm of dos: 0.0254 (2.54%)
     False Alarm of probe: 0.2683 (26.83%)
     False Alarm of r21: 0.0039 (0.39%)
     False Alarm of u2r: 0.0100 (1.00%)
     Overall False Alarm Rate: 0.1585 (15.85%)
metrics_names = ['F-Score', 'Precision', 'Recall', 'Accuracy', 'FAR', 'Training Time', 'Test Time', 'Error Rate']
metrics_values = [list(metric.values()) for metric in performance_metrics]
plt.figure(figsize=(12, 12)) # Increase the figure size to accommodate additional charts
for i, metric_name in enumerate(metrics_names):
    plt.subplot(4, 2, i + 1)
    # Special handling for Time and Error Rate metrics
    if metric_name in ['Training Time', 'Test Time', 'Error Rate']:
       plt.bar([classifier.__name__ for classifier in classifiers], [values[i] for values in metrics_values])
       plt.plot([classifier.__name__ for classifier in classifiers], [values[i] for values in metrics_values], marker='o')
    plt.title(metric_name)
   plt.xlabel('Classifier')
    plt.xticks(rotation=45)
    plt.ylabel(metric_name)
   plt.grid(True)
plt.tight_layout()
plt.show()
С→
```

https://colab.research.google.com/drive/1dCW1uEWEKCPQiY5SCQyBpEt5G3exaWUD#scrollTo=uoYK4e4SO2Sa&printMode=true

Coloh noid products Consol contracts have

✓ 2s completed at 6:18 PM

• ×