8.8 Fisher Information

Consider X_1 vs \bar{X}_n as estimators for the mean μ .

 $ar{X}_n$ is more *efficient* than X_1 (smaller variance among unbiased estimators)

Relative Efficiency

Relative Efficiency of \bar{X}_n with respect to X_1

$$\frac{Var[X_1]}{Var[\bar{X}_n]} = \frac{\sigma^2}{\sigma^2/n} = n$$

There are an infinite number of unbiased estimators for μ : $\delta(X_1,...,X_n)=\alpha_1X_1+\alpha_2X_2+...+\alpha_nX_n$ where $\sum \alpha_i=1$

Which is the "Best" unbiased estimator?

Fisher Information

- We want to describe the amout of information contained in sample data about the unknown parameter.
- Intuititvely:
 - The more data, the more information,
 - ▶ The more precise the data, the more information.

Assume:

- 1. $X \sim f(x|\theta)$
- 2. $X: f(x|\theta) > 0$ doesn't depend on θ (e.g. no $X \sim \textit{Unif}(0,\theta)$)
- 3. $f(x|\theta)$ is a twice differentiable function of θ

Define:

$$\lambda(x|\theta) = \log(f(x|\theta)); \ \lambda'(x|\theta) = \frac{d}{d\theta}\log(f(x|\theta));$$
$$\lambda''(x|\theta) = \frac{d^2}{d\theta^2}\log(f(x|\theta))$$

Fisher Information

Then, the Fisher Information, $I(\theta)$, in the random varible X is

$$I(\theta) = E_{\theta} \{ [\lambda'(x|\theta)]^{2} \}$$
$$= \int_{S} [\lambda'(x|\theta)]^{2} f(x|\theta) dx$$

If we also assume:

- 4. $\int f'(x|\theta)dx = 0 \quad \forall \theta$
- 5. $\int f''(x|\theta)dx = 0 \quad \forall \theta$

Then

- a. $I(\theta) = Var_{\theta} [\lambda'(x|\theta)]$
- b. $I(\theta) = -E_{\theta} \left[\lambda''(x|\theta) \right]$

Example

Assume $X \sim \mathit{N}(\mu, \sigma^2)$ where σ^2 is known

- 1. Find Fisher Information for μ using (a) and (b)
- 2. Confirm assumptions (4) and (5)