G53FUZ Fuzzy Sets and Systems

Fuzzy Modelling and Tuning

Bob John

ASAP
Research Group

Model Tuning

Overview

- Fuzzy model identification
 - structure & parameters
 - evaluation
 - tuning example
- Tuning methods
 - · exhaustive search
 - monte carlo
 - hill climbing and stochastic local search
 - · simulated annealing and simplex method

Fuzzy Model Identification

- Finding a good fuzzy model can be formulated in terms of searching for a candidate solution from a (very) wide range of possibilities
 - model identification
 - model optimisation
 - model tuning
- There are very many design parameters in any fuzzy model
 - perhaps this is the 'secret' of success?

Structure or Parameters?

- Some people divide problem into two parts
 - structure identification
 - finding the number of linguistic variables, fuzzy terms (membership functions) in each, form of rules, etc.
 - parameter tuning
 - finding the exact values of the m.f. parameters, rule weights, defuzzification parameters, etc.
- All parts of the process can be parameterised and tuned
 - with the possibility of automatic methods

Direct Objective Function

- Consider the restaurant tipper
 - two inputs
 - (quality of) service
 - (quality of) food
 - one output
 - (amount of) tip
- In some situations, it might be a simple matter of maximising or minimising the output (tip)
 - maximise the tips given (good for waiters!)
 - minimise the tips given (good for customers!?)

Selecting the 'Best'

- Usually, each candidate fuzzy model has associated with it some measure of how good it is
 - objective function
 - cost function
 - error measure, RMS error (RMSE), error
- The structure and parameters can be altered and the performance measure either maximised or minimised
 - maximise objective functions / performance
 - minimise cost functions / error

Direct Cost Function

- It is more usual to have a fixed or pre-specified idea of the outputs desired
 - set the target output(s) for given input(s)

service	food	target tip
0	0	0
0	10	15
10	0	15
10	10	30
5	5	15

Direct Cost Function

- It is more usual to have a fixed or pre-specified idea of the outputs desired
 - set the target output(s) for given input(s)
 - calculate the root-mean-squared error

service	food	target tip	actual tip	error (= target-actual)	error ²
0	0	0	5.07	-5.07	25.7
0	10	15	15	0	0
10	0	15	15	0	0
10	10	30	24.92	5.07	25.7
5	5	15	15	0	0
				Σ	51.4
			Mean Squared Error $\Sigma/5$		10.3
Root-mean-squared error		(RMSE)	=sqrt(10.3)	3.2	

FIS Structure

- Two inputs
 - FTSE index
 - three terms (m.f.s): falling, stable, rising
 - exchange rate
 - three terms (m.f.s): down, unchanged, up
- One output
 - advice
 - three terms: sell, hold, buy
- Three rules
 - 1. If exchange is falling and ftse is up then advice is buy
 - 2. If exchange is rising and ftse is down then advice is sell
 - 3. If exchange is stable or ftse is unchanged then advice is hold

Complex Example

- We want to create a system to advise on buying or selling shares
 - inputs
 - FTSE index (UK stock market price)
 - pound / dollar exchange rate
 - actually the daily change in each of these
 - output
 - advice on whether to sell/hold/buy Microsoft shares
 - daily advice to sell/hold/buy

FIS Parameters

• Each of the two inputs has three triangular m.f.s with one shared control parameter

cp= 75 three-quarters along (on a scale of 0 to 100)

Indirect Objective Function

- Produces advice on buying/selling shares
 - there is no obvious error to minimise
 - we have no pre-specified target output
 - the output itself is not an objective function
 - we have no objective measure of goodness of advice
- A suitable indirect objective function can be created by using the advice to buy/sell shares
 - trade shares (unseen data) over a certain period
 - how much money does one end up with?

Search Methodologies

Fuzzy Model Example

```
evalmodel <- function(ms, out) {
    cash= 1000
    shares= 0

n= length(out)

for ( i in 1:n ) {
    if ( out[i] >= 55 && cash >= ms[i] ) {
        # buy
        shares= shares + 1
        cash= cash - ms[i]
    } else if ( out[i] <= 45 && shares > 0 ) {
        # sell
        shares= shares - 1
        cash= cash + ms[i]
    }
}

value= cash + shares * ms[i]
}
```

Exhaustive Search

 Evaluate each combination in turn using some systematic method, e.g.

```
- start (1,1) \rightarrow (1,99)
(2,1) \rightarrow (2,99)
...
(99,1) \rightarrow (99,99)
```

- sometimes called the 'brute-force' approach
- This cannot be done for most real problems
 - there are too many combinations
 - too computationally expensive

Fuzzy Model Example

Fuzzy Model Example

```
tune_mc <- function(inp, msr) {
    vmax= 0

for ( L in 1:50 ) {
    cp= sample(99, 2, replace=T)
    fis= makefis('shares', cp)
    out= evalfis(inp, fis)
    v= evalmodel(msr, out)
    if ( v > vmax ) {
        vmax= v
        opt= fis
    }
    rm(fis)
}

return(list('fis'= opt,'vmax'= vmax))
}
```

Monte Carlo

- Suppose we just guess random set of parameters
- The Monte Carlo algorithm
 - generate a random starting position
 - evaluate the starting position and store it as best
 - repeat
 - · generate a new random position
 - evaluate the new position
 - if the new position is better than the best found so far
 - store the new position as the best
 - until we decide to stop (e.g. not improved for 20 goes)
- This may or may not find the global maximum

Hill Climbing

- · The hill climbing algorithm
 - start at either a fixed or random position
 - evaluate the current position
 - at each step
 - evaluate in each of the surrounding directions
 - up, down, left, right
 - move in direction of greatest improvement
 - stop if all moves are lower than current position
- This is guaranteed to find the peak (maximum)
 - but only if there is just one (global) maximum

Local Maxima

- Suppose the quality grid changes to this
- If the hill-climbing starts at e.g. (1,5) and heads right first
 - the global maximum at (5,5) is found
- However, if the hillclimbing starts at e.g. (1,5) and heads up first
 - a local maxima at (1,3) is found

Fuzzy Model Example

Stochastic Local Search

- The performance of local hill climbing is very dependent on the shape of the landscape
 - if the landscape has very many local maxima, the chance of finding the global maximum is small
- Why not combine Monte Carlo + Hill Climbing?
 - repeat
 - generate a random starting position
 - · hill climb to the local maximum
 - · store best local maximum
 - until stopping_criteria
- Stochastic: 'random'
- Local search: moves in the local neighbourhood

Simulated Annealing

Simulated Annealing

- · Search algorithm inspired by physical annealing
 - adaptation of hill climbing which allows some downhill steps
 - · accept all uphill steps
 - start by allowing all downhill steps and then gradually reduce the likelihood (depending on the size of the downhill step)
- In the simulated annealing algorithm
 - a temperature parameter controls the algorithm
 - initially, at high temperatures
 - all downhill steps are allowed
 - the temperature is gradually reduced
 - (step size / temperature) governs the chances of acceptance

Downhill Steps

- The equation for accepting downhill steps comes from the physical annealing process
 ρ -(ΔΕ/Τ)
 - where ΔE is the energy change
- If the energy change is small (i.e. a small downhill move) or the temperature is high

$$e^{-(\Delta E/T)} \rightarrow e^{-0} \approx 1$$
, move probably accepted

 If the energy change is large (i.e. a large downhill move) or the temperature is low

$$e^{-(\Delta E/T)} \rightarrow e^{-\infty} \approx 0$$
, move probably rejected

SA Outline

- SA algorithm is usually implemented as a refinement of the basic hill climbing algorithm
 - initialise temperature, T
 - generate random solution, i
 - repeat
 - generate a new (nearby) solution, j
 - if fitness(j) is higher than fitness(i) then accept the move
 - if fitness(i) is lower than fitness(i) then
 - accept the move according to a probability which decreases with the size of the difference in fitness and increases with temperature, T
 - reduce the temperature, T
 - until stopping criteria

SA Parameters

- Need to choose an initial temperature T such that
 - almost all moves are accepted (uphill & probably downhill)
 - the search is a 'random walk'
- The decrease the temperature T gradually, until
 - only uphill moves are accepted
 - the search is now a hill climb to the (local) optimum
- Can let the algorithm repeat a number of times at each T, rather than decreasing T after every step
 - the length parameter, L, specifies the number of steps to be repeated at each temperature, T

Fuzzy Model Example

```
tune_sa <- function(inp, msr) {</pre>
     vmax= 0
     cp= sample(99, 2, replace=T)
     dp= rbind(c(-1,0),c(1,0),c(0,-1),c(0,1))
fis= makefis('shares', cp)
     out= evalfis(inp, fis)
     vmax= v= evalmodel(msr, out)
     for ( X in 1:50 ) {
          for ( L in 1:10 ) {
             np = pmin(pmax(cp + dp[sample(4,1),], 1), 99)
             fis= makefis('shares', np)
out= evalfis(inp, fis)
              vnew= evalmodel(msr, out)
              if ( vnew >= v \mid runif(1) < exp((vnew-v) / Temp) ) {
              if ( v > vmax ) {
               vmax= v
               opt= fis
             rm(fis)
         Temp = Temp / 1.1
     return(list('fis'= opt,'vmax'= vmax))
```

Real-Valued Parameters

- So far we have only considered integer values
 - only a fixed number of combinations of parameters
 - combinatorial optimisation
- Suppose one or more parameters are *reals*
 - what step length should be used in e.g. hill climbing?
- Too big?
 - might step right over a sharp peak
- Too small?
 - might spend too long searching uninteresting areas

SA Problems

The Solution

- Dynamic step length dependent on terrain
- Ideally using the shape of the terrain
- But gradients are not (usually) available
- Need a gradient-free dynamic algorithm
- Solution: Nelder-Mead simplex

"A simplex method for function minimization"

J.A. Nelder and R. Mead

The Computer Journal

Vol. 7: pp. 308-313, 1965

The Simplex Method

- A shape of with *N*+1 vertices is used where *N* is the dimensionality of the problem
 - e.g. a triangle in 2D
 - the shape starts at a random position
- Certain transformations of the shape are allowed
 - reflection of the lowest vertex through the opposite face
 - a reflection of the lowest with expansion
 - a contraction of the lowest towards the opposite face
 - a contraction along all faces towards the highest vertex
- If new point is higher, the new shape is accepted

Simplex Method with SA

A Simplex Illustrated

Summary

- Lecture summary
 - fuzzy model identification comprises finding the structure and parameters of a fuzzy system
 - the distinction is arbitrary as both can be tuned
 - fuzzy model space is vast, so exhaustive search impractical
 - there are various (semi-) automatic algorithmic approaches that can be used to tune systems
 - in general, any optimisation method may be used
- Next lecture
 - ANFIS: adaptive neuro-fuzzy inference system