Aritmetica

Luca De Paulis

9 agosto 2020

INDICE

1	GRU	PPI 3
	1.1	Introduzione ai gruppi 3
	1.2	Sottogruppi 6
	1.3	Generatori e gruppi ciclici 9
		1.3.1 Il gruppo ciclico $\mathbb{Z}/n\mathbb{Z}$ 13
	1.4	Omomorfismi di gruppi 16
		1.4.1 Isomorfismi 20
		1.4.2 Prodotto diretto di gruppi 23
2	ANE	LLI E CAMPI 25
	2.1	Anelli 25
	2.2	Anello dei polinomi 29

1 GRUPPI

1.1 INTRODUZIONE AI GRUPPI

Definizione Gruppo. Sia $G \neq \emptyset$ un i

Gruppo. Sia
$$G \neq \emptyset$$
 un insieme e sia * un'operazione su G , ovvero

$$*: G \times G \rightarrow G$$

 $(a, b) \mapsto a * b.$

Allora la struttura (G,*) si dice *gruppo* se valgono i seguenti assiomi:

- (G1) L'operazione * è associativa: per ogni $a, b, c \in G$ vale che a*(b*c) = (a*b)*c.
- (G2) Esiste un elemento $e_G \in G$ che fa da *elemento neutro* rispetto all'operazione *:

per ogni $a \in G$ vale che $a * e_G = e_G * a = a$.

(G3) Ogni elemento di G è *invertibile* rispetto all'operazione *: per ogni $\alpha \in G$ esiste $\alpha^{-1} \in G$ tale che $\alpha * \alpha^{-1} = \alpha^{-1} * \alpha = e_G$. Tale α^{-1} si dice *inverso di* α .

Definizione Gruppo abeliano. Sia (G,*) un gruppo. Allora (G,*) si dice *gruppo abeliano* se vale inoltre

(G₄) l'operazione * è commutativa, ovvero

$$\forall a, b \in G \quad a * b = b * a.$$

L'elemento neutro di G si può rappresentare come e_G , id $_G$, 1_G o semplicemente e nel caso sia evidente il gruppo a cui appartiene.

Possiamo rappresentare un gruppo in *notazione moltiplicativa*, come abbiamo fatto finora, oppure in *notazione additiva*, spesso usata quando si studiano gruppi abeliani.

In notazione additiva, ovvero considerando un gruppo $(\mathsf{G},+)$ gli assiomi diventano

(G1) l'operazione + è associativa, ovvero

$$\forall a, b, c \in G.$$
 $a + (b + c) = (a + b) + c$

(G2) esiste un elemento $e_G \in G$ che fa da elemento neutro rispetto all'operazione +:

$$\forall \alpha \in G$$
. $\alpha + e_G = e_G + \alpha = \alpha$

(G₃) ogni elemento di G è invertibile rispetto all'operazione +:

$$\forall \alpha \in G \ \exists (-\alpha) \in G. \ \alpha + (-\alpha) = (-\alpha) + \alpha = e_G.$$

Per semplicità spesso si scrive a - b per intendere a + (-b).

(G₄) l'operazione + è commutativa, ovvero

$$\forall a, b \in G \quad a+b=b+a.$$

П

Facciamo alcuni esempi di gruppi.

Esempio 1.1.3. Sono gruppi abeliani $(\mathbb{Z},+)$ e le sue estensioni $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$, come è ovvio verificare.

Esempio 1.1.4. $(\mathbb{Z}/n\mathbb{Z},+)$ è un gruppo, definendo l'operazione di somma rispetto alle classi di resto.

Еѕемрю 1.1.5. è un gruppo la struttura (μ_n, \cdot) dove

$$\mu_n := \{ x \in \mathbb{C} : x^n = 1 \}.$$

Dimostrazione. Infatti

(Go) \cdot è un'operazione su μ_n . Infatti se $x, y \in \mu_n$, ovvero

$$x^n = y^n = 1$$

allora segue anche che

$$(xy)^n = x^n y^n = 1$$

da cui $xy \in \mu_n$;

- (G1) \cdot è associativa in \mathbb{C} , dunque lo è in $\mu_n \subseteq \mathbb{C}$;
- (G2) $1 \in \mathbb{C}$ è l'elemento neutro $di \cdot e \ 1 \in \mu_n$ in quanto $1^n = 1$;
- (G3) ogni elemento di μ_n ammette inverso. Infatti sia $x\in \mu_n$, dunque $x\neq 0$ (altrimenti $x^n=0\neq 1$) e sia $x^{-1}\in \mathbb{C}$ il suo inverso. Allora

$$(x^{-1})^n = (x^n)^{-1} = 1^{-1} = 1$$

ovvero $x^{-1} \in \mu_n$;

(G4) inoltre \cdot è commutativa in \mathbb{C} , dunque lo è anche in μ_n .

Da ciò segue che μ_n è un gruppo abeliano.

Esempio 1.1.6. $(\mathbb{Z}^{\times},\cdot)$ dove

$$\mathbb{Z}^{\times} := \{ n \in \mathbb{Z} : n \text{ è invertibile rispetto a } \cdot \} = \{ \pm 1 \}$$

è un gruppo abeliano;

Esempio 1.1.7. $(\mathbb{Z}/n\mathbb{Z}^{\times},\cdot)$ dove

$$\mathbb{Z}/n\mathbb{Z}^{\times} := \{ \overline{n} \in \mathbb{Z}/n\mathbb{Z} : \overline{n} \text{ è invertibile rispetto a } \cdot \}$$

è un gruppo abeliano.

Dimostrazione. Infatti

- (Go) · è un'operazione su $\mathbb{Z}/n\mathbb{Z}$. Infatti se $\overline{x}, \overline{y} \in \mathbb{Z}/n\mathbb{Z}$ allora segue anche che \overline{xy} è invertibile in $\mathbb{Z}/n\mathbb{Z}$ e il suo inverso è $\overline{x^{-1}} \cdot \overline{y^{-1}}$, da cui $\overline{xy} \in \mathbb{Z}/n\mathbb{Z}$;
- (G1) · è associativa in $\mathbb{Z}/n\mathbb{Z}$, dunque lo è in $\mathbb{Z}/n\mathbb{Z}^{\times} \subseteq \mathbb{Z}/n\mathbb{Z}$;
- (G2) $1 \in \mathbb{Z}/n\mathbb{Z}$ è l'elemento neutro di \cdot e $1 \in \mathbb{Z}/n\mathbb{Z}^{\times}$ in quanto 1 è invertibile e il suo inverso è 1;
- (G₃) ogni elemento di $\mathbb{Z}/n\mathbb{Z}^{\times}$ ammette inverso per definizione;
- (G4) inoltre \cdot è commutativa in $\mathbb{Z}/n\mathbb{Z}$, dunque lo è in $\mathbb{Z}/n\mathbb{Z}^{\times} \subseteq \mathbb{Z}/n\mathbb{Z}$.

Da ciò segue che $\mathbb{Z}/n\mathbb{Z}$ è un gruppo abeliano. \square

$$S(X) := \{ f: X \to X : f \` e \text{ bigettiva } \}$$

allora $(S(X), \circ)$ è un gruppo (dove \circ è l'operazione di composizione tra funzioni).

Dimostrazione. Infatti

- (Go) se f, $g \in S(X)$ allora $f \circ g : X \to X$ è bigettiva, dunque $f \circ g \in S(X)$;
- (G1) l'operazione di composizione di funzioni è associativa;
- (G2) la funzione

$$id: X \to X$$
$$x \mapsto x$$

è bigettiva ed è l'elemento neutro rispetto alla composizione;

(G₃) Se $f \in S(X)$ allora f è invertibile ed esisterà $f^{-1}: X \to X$ tale che $f \circ f^{-1} = id$. Ma allora f^{-1} è invertibile e la sua inversa è f, dunque f^{-1} è bigettiva e quindi $f^{-1} \in S(X)$.

Dunque S(X) è un gruppo (non necessariamente abeliano).

Esempi di strutture che non rispettano le proprietà di un gruppo sono invece:

- $(\mathbb{N}, +)$ poichè nessun numero ha inverso $(-n \notin \mathbb{N})$;
- (\mathbb{Z},\cdot) , (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) e (\mathbb{C},\cdot) non sono gruppi in quanto 0 non ha inverso moltiplicativo;
- l'insieme

$$\{ x \in \mathbb{C} : x^n = 2 \}$$

in quanto il prodotto due elementi di questo insieme non appartiene più all'insieme.

Definiamo ora alcune proprietà comuni a tutti i gruppi.

Proposizione Proprietà algebriche dei gruppi. Sia (G, \cdot) un gruppo. Allora valgono le seguenti affermazioni:

- (i) l'elemento neutro di G è unico;
- (ii) $\forall g \in G$ l'inverso di g è unico;
- (iii) $\forall g \in G \ (g^{-1})^{-1} = g;$
- (iv) $\forall h, g \in G \ (hg^{-1})^{-1} = g^{-1}h^{-1};$
- (v) Valgono le leggi di cancellazione: $\forall a, b, c \in G$ vale che

$$ab = ac \iff b = c$$
 (sx)

$$ba = ca \iff b = c$$
 (dx)

Dimostrazione. (i) Siano $e_1, e_2 \in G$ entrambi elementi neutri. Allora

$$e_1 = e_1 \cdot e_2 = e_2$$

dove il primo uguale viene dal fatto che e_2 è elemento neutro, mentre il secondo viene dal fatto che e_1 lo è.

(ii) Siano $x, y \in G$ entrambi inversi di qualche $g \in G$. Allora per definizione di inverso

$$xg = gx = e = gy = yg.$$

Ma allora segue che

$$x$$
 (el. neutro)
 $= x \cdot e$ ($e = gy$)
 $= x(gy)$ (per (G1))
 $= (xg)y$ ($xg = e$)
 $= e \cdot y$ (el. neutro)
 $= g$

ovvero $x = y = g^{-1}$.

(iii) Sappiamo che $gg^{-1} = g^{-1}g = e$. Sia x l'inverso di g^{-1} , ovvero $g^{-1}x = xg^{-1} = e$.

Dunque g è un inverso di g^{-1} , ma per 1.1.9: (ii) l'inverso è unico e quindi $(g^{-1})^{-1} = g$.

(iv) Sia $(hq)^{-1}$ l'inverso di hq. Allora per (G₃) sappiamo che

$$(hg)(hg)^{-1} = e \qquad \text{(moltiplico a sx per } h^{-1})$$

$$\iff h^{-1}hg(hg)^{-1} = h^{-1} \qquad \text{(per (G_3))}$$

$$\iff g(hg)^{-1} = h^{-1} \qquad \text{(moltiplico a sx per } g^{-1})$$

$$\iff g^{-1}g(hg)^{-1} = g^{-1}h^{-1} \qquad \text{(per (G_3))}$$

$$\iff (hg)^{-1} = g^{-1}h^{-1}.$$

(v) Legge di cancellazione sinistra:

$$ab = ac$$
 (moltiplico a sx per a^{-1})
 $\iff a^{-1}ab = a^{-1}ac$ (per (G₃))
 $\iff b = c$.

Legge di cancellazione destra:

$$ba = ca$$
 (moltiplico a dx per a^{-1})
 $\iff baa^{-1} = caa^{-1}$ (per (G₃))
 $\iff b = c$.

1.2 SOTTOGRUPPI

Definizione **Sottogruppo.** Sia (G, *) un gruppo e sia $H \subseteq G$, $H \neq \emptyset$.

Allora H insieme ad un'operazione *H si dice sottogruppo di (G,*) se 1.2.1 $(H, *_H)$ è un gruppo.

> Inoltre se l'operazione *H è l'operazione *, ovvero l'operazione del sottogruppo è indotta da G, allora si scrive $H \leq G$.

Condizione necessaria e sufficiente per i sottogruppi. Sia (G,*) un **Proposizione** *gruppo e sia* $H \subseteq G$, $H \neq \emptyset$. 1.2.2 *Allora* $H \leq G$ *se e solo se*

$$a * b \in H$$
 $\forall a, b \in H$

(ii) ogni elemento di H è invertibile (in H), ovvero

$$h^{-1} \in H$$
 $\forall h \in H$

Dimostrazione. Dimostriamo entrambi i versi dell'implicazione.

- (\Longrightarrow) Ovvio in quanto se $H \leqslant G$ allora H è un gruppo.
- (\Leftarrow) Sappiamo che * è associativa poichè lo è in G; dobbiamo quindi mostrare solamente che $e_G \in H$.

Per ipotesi $H \neq \emptyset$, dunque esiste un $h \in H$. Per l'ipotesi 1.2.2: (ii) dovrà esistere anche $h^{-1} \in H$, mentre per l'ipotesi 1.2.2: (i) deve valere che $h * h^{-1} \in H$.

Tuttavia $h * h^{-1} = e_G$, dunque $e_G \in H$ e quindi H è un sottogruppo indotto da G.

Un sottogruppo particolarmente importante di qualsiasi gruppo è il *centro del gruppo*:

Definizione Centro di un gruppo. Sia (G, *) un gruppo. Allora si definisce *centro di* G l'insieme

$$Z(G) := \{ x \in G : g * x = x * g \ \forall g \in G \}.$$

Intuitivamente, il centro di un gruppo è l'insieme di tutti gli elementi per cui * diventa commutativa.

Mostriamo che il centro di un gruppo è un sottogruppo tramite la prossima proposizione.

Proposizione Proprietà del centro di un gruppo. Sia (G,*) un gruppo e sia Z(G) il suo centro.

Allora vale che

- (i) $Z(G) \leq G$;
- (ii) Z(G) = G se e solo se G è abeliano.

Dimostrazione. Mostriamo le due affermazioni separatamente

- Z(G) è un sottogruppo Notiamo innanzitutto che $Z(G) \neq \emptyset$ poichè $e_G \in Z(G)$. Per la proposizione 1.2.2 ci basta mostrare che * è un'operazione su Z(G) e che ogni elemento di Z(G) è invertibile.
 - (1) Siano $x, y \in Z(G)$ e mostriamo che $x * y \in Z(G)$, ovvero che per ogni $g \in G$ vale che g * (x * y) = (x * y) * g.

$$g * (x * y)$$
 (per (G1))
= $(g * x) * y$ (dato che $x \in \mathbb{Z}(G)$)
= $(x * g) * y$ (per (G1))
= $x * (g * y)$ (dato che $x \in \mathbb{Z}(G)$)
= $x * (y * g)$ (per (G1))
= $(x * y) * g$.

$$g * x = x * g$$
 (moltiplico a sinistra per x^{-1})
 $\iff x^{-1} * g * x = x^{-1} * x * g$ (dato che $x^{-1} * x = e$)
 $\iff x^{-1} * g * x = g$ (moltiplico a destra per x^{-1})
 $\iff x^{-1} * g * x * x^{-1} = g * x^{-1}$ (dato che $x^{-1} * x = e$)
 $\iff x^{-1} * g = g * x^{-1}$

da cui $x^{-1} \in Z(G)$.

Per la proposizione 1.2.2 segue che $Z(G) \leq G$.

- Z(G) = G SE E SOLO SE G ABELIANO Dimostriamo entrambi i versi dell'implicazione.
- (\Longrightarrow) Ovvia: Z(G) è un gruppo abeliano, dunque se G=Z(G) allora G è abeliano.
- (\Leftarrow) Ovvia: Z(G) è l'insieme di tutti gli elementi di G per cui * commuta, ma se G è abeliano questi sono tutti gli elementi di G, ovvero Z(G) = G.

Un altro esempio è dato dai sottogruppi di $(\mathbb{Z}, +)$.

Definizione Insieme dei multipli interi. Sia $n \in \mathbb{Z}$. Allora chiamo $n\mathbb{Z}$ l'insieme dei multipli interi di n

$$n\mathbb{Z} := \{ nk : k \in \mathbb{Z} \}.$$

È semplice verificare che $(n\mathbb{Z},+)$ è un gruppo per ogni $n\in\mathbb{Z}$. In particolare vale la seguente proposizione.

Proposizione $n\mathbb{Z}$ è sottogruppo di \mathbb{Z} . Consideriamo il gruppo $(\mathbb{Z}, +)$. Per ogni $n \in \mathbb{Z}$ vale che $n\mathbb{Z} \leq \mathbb{Z}$.

Dimostrazione. Innanzitutto notiamo che $n\mathbb{Z} \neq \emptyset$ in quanto $n \cdot 0 = 0 \in n\mathbb{Z}$.

Mostriamo ora che n $\mathbb{Z} \leq \mathbb{Z}$.

(1) Siano $x,y \in n\mathbb{Z}$ e mostriamo che $x+y \in \mathbb{Z}$. Per definizione di $n\mathbb{Z}$ esisteranno $k,h \in \mathbb{Z}$ tali che x=nk, u=nh.

Allora $x + y = nk + nh = n(k + h) \in n\mathbb{Z}$ in quanto $k + h \in \mathbb{Z}$.

(2) Sia $x \in n\mathbb{Z}$, mostriamo che $-x \in n\mathbb{Z}$. Per definizione di $n\mathbb{Z}$ esisterà $k \in \mathbb{Z}$ tale che x = nk.

Allora affermo che $-x = n(-k) \in n\mathbb{Z}$. Infatti

$$x + (-x) = nk + n(-k) = n(k - k) = 0$$

che è l'elemento neutro di Z.

Dunque per la proposizione 1.2.2 segue che n $\mathbb{Z} \leqslant \mathbb{Z}$, ovvero la tesi.

Corollario Siano $n, m \in \mathbb{Z}$. Allora valgono i due fatti seguenti:

(i)
$$n\mathbb{Z} \subseteq m\mathbb{Z} \iff m \mid n$$
;

(ii)
$$n\mathbb{Z} = m\mathbb{Z} \iff n = \pm m$$
.

Dimostrazione. Dimostriamo le due affermazioni separatamente.

PARTE 1. Dimostriamo entrambi i versi dell'implicazione.

(\Longrightarrow) Supponiamo n $\mathbb{Z}\subseteq m\mathbb{Z}$, ovvero che per ogni $x\in n\mathbb{Z}$ allora $x\in m\mathbb{Z}$.

Sia $k \in \mathbb{Z}$ tale che (k, m) = 1 e sia x = nk.

Per definizione di n \mathbb{Z} segue che $x \in n\mathbb{Z}$, dunque $x \in m\mathbb{Z}$. Allora dovrà esistere $h \in \mathbb{Z}$ tale che

$$x = mh$$
 $\iff nk = mh$
 $\implies m \mid nk$

Ma abbiamo scelto k tale che (k, m) = 1, dunque

$$\implies m \mid n$$
.

(=) Supponiamo che $m \mid n$, ovvero n = mh per qualche $h \in \mathbb{Z}$. Allora

$$n\mathbb{Z} = (mh)\mathbb{Z} \subseteq m\mathbb{Z}$$

in quanto i multipli di mh sono necessariamente anche multipli di m.

PARTE 2. Se $n\mathbb{Z} = m\mathbb{Z}$ allora vale che $n\mathbb{Z} \subseteq m\mathbb{Z}$ e $m\mathbb{Z} \subseteq n\mathbb{Z}$, dunque per 1.2.7: (i) $m \mid n$ e $n \mid m$, ovvero n e m sono uguali a meno del segno.

Proposizione Intersezione di sottogruppi è un sottogruppo. Sia (G, \cdot) un gruppo e siano **1.2.8** $H, K \leqslant G$.

Allora $H \cap K \leq G$.

Dimostrazione. Innanzitutto dato che $e_G \in H$, $e_G \in K$ segue che $e_G \in H \cap K$, che quindi non può essere vuoto.

Per la proposizione 1.2.2 è sufficiente dimostrare che $H \cap K$ è chiuso rispetto all'operazione \cdot e che ogni elemento è invertibile.

- (i) Siano x, y ∈ H ∩ K; mostriamo che xy ∈ H ∩ K.
 Per definizione di intersezione sappiamo che x, y ∈ H e x, y ∈ K. Dato che H è un gruppo varrà che xy ∈ H; per lo stesso motivo xy ∈ K; dunque xy ∈ H ∩ K.
- (ii) Sia $x \in H \cap K$; mostriamo che $x^{-1} \in H \cap K$. Per definizione di intersezione sappiamo che $x \in H$ e $x \in K$. Dato che H è un gruppo varrà che $x^{-1} \in H$; per lo stesso motivo $x^{-1} \in K$; dunque $x^{-1} \in H \cap K$.

Dunque per la proposizione 1.2.2 segue che $H \cap K \leq G$.

1.3 GENERATORI E GRUPPI CICLICI

Innanzitutto diamo una definizione generale di potenze:

Definizione Potenze intere. Sia (G, \cdot) un gruppo e sia $g \in G$ qualsiasi. **1.3.1**

$$g^k := \left\{ \begin{array}{ll} e_G & \text{se } k=0 \\ g \cdot g^{k-1} & \text{se } k>0 \\ (g^{-1})^k & \text{se } k<0. \end{array} \right.$$

Se il gruppo è definito in notazione additiva, le potenze diventano prodotti per numeri interi.

Piu' formalmente, se (G, +) è un gruppo e $g \in G$ qualsiasi, allora definiamo ng per $n \in \mathbb{Z}$ nel seguente modo:

$$ng := \begin{cases} e_G & \text{se } n = 0 \\ g + (n-1)g & \text{se } n > 0 \\ (-n)(-g) & \text{se } n < 0. \end{cases}$$

Le potenze intere soddisfano alcune proprietà interessanti, verificabili facilmente per induzione, tra cui

- (P1) per ogni $n, m \in \mathbb{Z}$ vale che $g^m g^n = g^{n+m}$,
- (P2) per ogni $n, m \in \mathbb{Z}$ vale che $(q^n)^m = q^{nm}$.

 $\textbf{Definizione} \qquad \textbf{Sottogruppo generato.} \quad Sia \; (G, \cdot) \; un \; gruppo \; e \; sia \; g \in G.$

1.3.2 Allora si dice sottogruppo generato da g l'insieme

$$\langle g \rangle := \left\{ \ g^k \, : \, k \in \mathbb{Z} \ \right\}.$$

Proposizione Il sottogruppo generato è un sottogruppo abeliano. Sia (G, \cdot) un gruppo e sia $g \in G$ qualsiasi.

Allora $\langle g \rangle \leqslant G$. Inoltre $\langle g \rangle$ è abeliano.

Dimostrazione. Innanzitutto notiamo che $\langle g \rangle \neq \emptyset$ in quanto $g \in \langle g \rangle$. Mostriamo che $\langle g \rangle$ è un sottogruppo indotto da G.

- (i) Se $g^n, g^m \in \langle g \rangle$ allora $g^n g^m = g^{n+m} \in \langle g \rangle$ in quanto $n+m \in \mathbb{Z}$;
- (ii) Sia $g^n \in \langle g \rangle$. Per definizione di potenza, g^{-n} è l'inverso di g^n e $g^{-n} \in \langle g \rangle$ in quanto $-n \in \mathbb{Z}$.

Dunque per la proposizione 1.2.2 segue che $\langle g \rangle \leqslant G$. Inoltre notiamo che

$$q^nq^m = q^{n+m} = q^{m+n} = q^mq^n$$

dunque $\langle g \rangle$ è abeliano.

Notiamo che, al contrario di quanto succede con i numeri interi, può succedere che $g^h=g^k$ per qualche $h\neq k$.

Supponiamo senza perdita di generalità k > h. In tal caso

$$g^{k-h} = e_G$$

$$\implies g^{k-h+1} = g^{k-h} \cdot g$$

$$= e_G \cdot g$$

$$= g.$$

Dunque il sottogruppo generato da g non è infinito, ovvero

$$|\langle g \rangle| < +\infty$$
.

Questo ci consente di parlare di ordine di un elemento di un gruppo:

Definizione Ordine di un elemento di un gruppo. Sia (G, \cdot) un gruppo e sia $x \in G$. Allora si dice ordine di x in G il numero

$$ord_G(x):=min\left\{\ k>0\ :\ x^k=_Ge\ \right\}.$$

Se l'insieme $\left\{\; k>0 \, : \, \chi^k=e_G \; \right\}$ è vuoto, allora per definizione

$$\operatorname{ord}_{G}(x) := +\infty.$$

Quando il gruppo di cui stiamo parlando sarà evidente scriveremo semplicemente ord(x).

Proposizione Scrittura esplicita del sottogruppo generato. Sia (G, \cdot) un gruppo e sia $x \in G$ tale che $\operatorname{ord}_G(x) = d < +\infty$.

Allora valgono i seguenti due fatti:

(i) Il sottogruppo generato $\langle x \rangle$ è

$$\langle x \rangle = \left\{ e, x, x^2, \dots, x^{d-1} \right\}.$$

Dunque in particolare $|\langle x \rangle| = d$.

(ii)
$$x^n = e \iff d \mid n$$
.

Dimostrazione. Dimostriamo le due affermazioni separatamente.

PARTE 1. Sicuramente vale che

$$\left\{ e, x, \dots, x^{d-1} \right\} \subseteq \langle x \rangle.$$

Dimostriamo che vale l'uguaglianza.

Sia $k \in \mathbb{Z}$ qualsiasi. Allora $x^k \in \langle x \rangle$.

Dimostriamo che necessariamente $x^k \in \{e, x, ..., x^{d-1}\}$.

Per la divisione euclidea esisteranno $q, r \in \mathbb{Z}$ tali che

$$k = qd + r$$
 $con 0 \le r < d$.

Allora sostituendo k = qd + r otteniamo

$$x^{k} = x^{q d + r}$$

$$= x^{q d} x^{r}$$

$$= e^{q} x^{r}$$

$$= x^{r}.$$

Per ipotesi 0 $\leqslant r < d$, dunque $x^r \in \big\{\ e,x,\dots,x^{d-1}\ \big\}.$ Dato che $x^r = x^k$ concludiamo che

$$x^k \in \left\{ e, x, \dots, x^{d-1} \right\}$$

e quindi

$$\langle x \rangle = \left\{ e, x, \dots, x^{d-1} \right\}.$$

Ci rimane da mostrare che $|\langle x \rangle| = d$, ovvero che tutti gli elementi di $\langle x \rangle$ sono distinti.

Supponiamo per assurdo che esistano $a,b\in\mathbb{Z}$ con $0\leqslant a< b< d$ (senza perdita di generalità) tali che $x^a=x^b$.

Da questo segue che $x^{b-a} = e$, ma questo è assurdo poichè b-a < d e per definizione l'ordine è il minimo numero positivo per cui $x^d = e$.

Di conseguenza tutti gli elementi di $\langle x \rangle$ sono distinti, ovvero $|\langle x \rangle| = d$.

(\Longrightarrow) Sia $n \in \mathbb{Z}$ tale che $x^n = e$.

Per divisione euclidea esistono $q, r \in \mathbb{Z}$ tali che

$$n = qd + r$$
 con $0 \le r < d$.

Dunque $x^n = x^{qd+r} = x^r = e$. Ma questo è possibile solo se r = 0, altrimenti andremmo contro la minimalità dell'ordine.

Dunque x = qd, ovvero $d \mid n$.

(\iff) Ovvia: se n = kd per qualche $k \in \mathbb{Z}$ allora

$$x^n = x^{kd} = (x^d)^k = e^k = e.$$

Definizione Gruppo ciclico. Sia (G, \cdot) un gruppo.

1.3.6 Allora G si dice *ciclico* se esiste un $g \in G$ tale che

$$G = \langle g \rangle$$
.

L'elemento g viene detto generatore del gruppo G.

Ad esempio \mathbb{Z} è un gruppo ciclico, in quanto $\mathbb{Z}=\langle 1 \rangle$, come lo è $n\mathbb{Z}=\langle n \rangle$. Questi due gruppi sono anche infiniti, in quanto contengono un numero infinito di elementi.

Un esempio di gruppo ciclico finito è $\mathbb{Z}/n\mathbb{Z}=\langle [1]_n\rangle$, che è finito in quanto $\mathrm{ord}_{\mathbb{Z}/n\mathbb{Z}}([1]_n)=n$.

Teorema Ogni sottogruppo di un gruppo ciclico è ciclico. Sia (G, \cdot) un gruppo ciclico, ovvero $G = \langle g \rangle$ per qualche $g \in G$. Sia inoltre $H \leqslant G$ un sottogruppo.

Allora H è ciclico, ovvero esiste $h \in \mathbb{Z}$ tale che $H = \langle g^h \rangle$.

Dimostrazione. Innanzitutto notiamo che $e_G \in H$.

Se $H = \{ e_G \}$ allora $H \in \text{ciclico}$, $e H = \langle e_G \rangle$.

Assumiamo $\{e\}_G \subset H$. Allora esiste $k \in \mathbb{Z}$, $k \neq 0$ tale che $g^k \in H$. Dato che per (G₃) se $g^k \in H$ allora $g^{-k} \in H$ possiamo supporre senza perdita di generalità k > 0.

Consideriamo l'insieme S tale che

$$S:=\left\{\ h>0\,:\,g^h\in H\ \right\}\subseteq \mathbb{N}.$$

Avendo assunto $k \in S$ sappiamo che $S \neq \emptyset$, dunque per il principio del minimo S ammette minimo.

Sia $h_0 = \min S$. Mostro che $H = \langle g^{h_0} \rangle$.

(⊇) Per ipotesi $g^{h_0} \in H$.

Dato che H è un sottogruppo di G tutte le potenze intere di g^{h_0} dovranno appartenere ad H, ovvero $\langle g^{h_0} \rangle \subseteq H$.

(⊆) Sia $n \in \mathbb{N}$ tale che $g^n \in H$. Dimostriamo che $g^n \in \langle g^{h_0} \rangle$. Per divisione euclidea esistono $q, r \in \mathbb{Z}$ tali che

$$n = qh_0 + r$$
 $con 0 \le r < h_0$.

Dunque

$$g^{n} = g^{qh_0+r}$$
$$= g^{qh_0}g^{r}.$$

Moltiplicando entrambi i membri per g^{-qh₀} otteniamo

$$\iff g^{\mathfrak{n}}g^{-\mathfrak{q}\,h_0}=g^r.$$

Ma $g^n \in H$ e $g^{-qh_0} \in H$ (in quanto è una potenza intera di g^{h_0}), dunque anche il loro prodotto $g^r \in H$.

Se r>0 allora esisterebbe una potenza di g con esponente positivo minore di h_0 contenuto in H, che è assurdo in quanto abbiamo assunto che h_0 sia il minimo dell'insieme S.

Segue che r=0, ovvero $n=qh_0$, ovvero che $g^n\in \langle g^{h_0}\rangle$, ovvero $H\subseteq \langle g^{h_0}\rangle$.

Concludiamo quindi che $H = \langle g^{h_0} \rangle$, ovvero H è ciclico.

Consideriamo i sottogruppi di \mathbb{Z} . Tramite la proposizione 1.2.6 abbiamo dimostrato che per ogni $n \in \mathbb{Z}$ allora $n\mathbb{Z} \leqslant \mathbb{Z}$. La prossima proposizione mostra che i sottogruppi della forma $n\mathbb{Z} = \langle n \rangle$ sono gli unici possibili.

Proposizione Caratterizzazione dei sottogruppi di \mathbb{Z} . I sottogruppi di \mathbb{Z} sono tutti e solo della forma $n\mathbb{Z}$ al variare di $n \in \mathbb{N}$.

Dimostrazione. Nella proposizione 1.2.6 abbiamo mostrato che $n\mathbb{Z} \leq \mathbb{Z}$ per ogni $n \in \mathbb{Z}$. Ora mostriamo che è sufficiente considerare $n \in \mathbb{N}$ e che questi sono gli unici sottogruppi possibili.

Dato che \mathbb{Z} è ciclico (poiché $\mathbb{Z}=\langle 1 \rangle$) per il teorema 1.3.7 ogni suo sottogruppo dovrà essere ciclico, ovvero dovrà essere della forma $\langle n \rangle$ per qualche $n \in \mathbb{N}$.

Per la proposizione 1.2.7: (ii) sappiamo che $n\mathbb{Z} = (-n)\mathbb{Z}$, dunque possiamo considerare (senza perdita di generalità) n positivo o nullo, ovvero $n \in \mathbb{N}$.

Ma $\langle n \rangle = n\mathbb{Z}$, dunque i sottogruppi di \mathbb{Z} sono tutti e solo della forma $n\mathbb{Z}$ al variare di $n \in \mathbb{N}$.

1.3.1 Il gruppo ciclico $\mathbb{Z}/n\mathbb{Z}$

In questa sezione analizzeremo il gruppo ciclico $(\mathbb{Z}/n\mathbb{Z},+)$, anche definito da

$$\mathbb{Z}/n\mathbb{Z} = \langle [1]_n \rangle = \langle \overline{1} \rangle.$$

L'ordine di $\overline{1}$ in $\mathbb{Z}/n\mathbb{Z}$ è n. Infatti

$$x \cdot \overline{1} = \overline{0}$$

$$\iff x \equiv 0 \ (n)$$

$$\iff x = nk$$

con $k \in \mathbb{Z}$. La minima soluzione positiva a quest'equazione è per k = 1, dunque x = n. Per la proposizione 1.3.5: (i) sappiamo quindi che

$$|\mathbb{Z}/n\mathbb{Z}| = |\overline{1}| = \operatorname{ord}_{\mathbb{Z}/n\mathbb{Z}}(\overline{1}) = n. \tag{1}$$

Proposizione Ordine degli elementi di $\mathbb{Z}/n\mathbb{Z}$. Sia $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ qualsiasi. Allora vale che 1.3.9

$$ord(\overline{\mathfrak{a}}) = \frac{\mathfrak{n}}{(\mathfrak{a},\mathfrak{n})}$$

dove $\alpha \in \mathbb{Z}$ è un rappresentante della classe $\overline{\alpha}$.

Dimostrazione. Per definizione di ordine

$$\operatorname{ord}(\overline{a}) = \min \left\{ k > 0 : k\overline{a} = \overline{0} \right\}.$$

Si tratta quindi di trovare la minima soluzione positiva di $ax \equiv 0$ (n). Divido entrambi i membri e il modulo per a, ottenendo

$$x \equiv 0 \left(\frac{n}{(n,a)}\right) \implies x = \frac{n}{(n,a)}t$$

al variare di $t \in \mathbb{Z}$.

Dato che siamo interessati alla minima soluzione positiva, questa \grave{e} ottenuta per t=1, da cui segue che

$$\operatorname{ord}(\overline{\mathfrak{a}}) = \frac{\mathfrak{n}}{(\mathfrak{n},\mathfrak{a})}.$$

Corollario Conseguenze della proposizione 1.3.9. Consideriamo il gruppo $(\mathbb{Z}/n\mathbb{Z}, +)$.

1.3.10 Valgono le seguenti affermazioni:

- (i) $\forall \overline{a} \in \mathbb{Z}/n\mathbb{Z}$. ord $(\overline{a}) \mid n$.
- (ii) $\mathbb{Z}/n\mathbb{Z}$ ha $\varphi(n)$ generatori.
- (iii) Sia $d \in \mathbb{Z}$ tale che $d \mid n$. Allora in $\mathbb{Z}/n\mathbb{Z}$ ci sono esattamente $\phi(d)$ elementi di ordine d.

Dimostrazione. (i) Ovvia in quanto (per la proposizione 1.3.9) $ord(\overline{a}) = \frac{n}{(n,a)} \mid n.$

(ii) Sia $\overline{x} \in \mathbb{Z}/n\mathbb{Z}$. Sappiamo che \overline{x} è un generatore di $\mathbb{Z}/n\mathbb{Z}$ se

$$\langle \overline{\mathbf{x}} \rangle = \mathbb{Z}/n\mathbb{Z}$$

ovvero se la cardinalità di $\langle \overline{x} \rangle$ è n.

Per la proposizione 1.3.9 $\operatorname{ord}(\overline{x}) = \frac{n}{(n,x)}$, dunque \overline{x} è un generatore se e solo se (n,x)=1, ovvero se x è coprimo con n. Ma ci sono $\phi(n)$ numeri coprimi con n, dunque ci sono $\phi(n)$ generatori di $\mathbb{Z}/n\mathbb{Z}$.

(iii) Sia $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ tale che

$$ord(\overline{a}) = \frac{n}{(n, a)} = d.$$

Allora $(n,\alpha) = \frac{n}{d}$, da cui segue che $\frac{n}{d} \mid \alpha$.

Sia $b \in \mathbb{Z}$ tale che $a = \frac{n}{d}b$. Dato che $(n, a) = \frac{n}{d}$ segue che

$$\left(n, \frac{n}{d}b\right) = \frac{n}{d}$$

$$\iff \left(\frac{n}{d}d, \frac{n}{d}b\right) = \frac{n}{d}$$

$$\iff \frac{n}{d}(d, b) = \frac{n}{d}$$

$$\iff (d, b) = 1$$

ovvero se e solo se d e b sono coprimi.

Dunque segue che ho $\phi(d)$ scelte per b, ovvero ho $\phi(d)$ elementi di ordine d.

Questo corollario ci consente di enunciare una proprietà della funzione $\phi(\cdot).$

$$n = \sum_{d \mid n} \phi(d).$$

Dimostrazione. Sia X_d l'insieme

$$X_d := \{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} : ord(\overline{a}) = d \}.$$

Se d |/n per la proposizione 1.3.10: (i) segue che $X_d=\varnothing$. Dunque abbiamo che

$$\mathbb{Z}/n\mathbb{Z} = \bigsqcup_{d \mid n} X_d.$$

Sfruttando la proposizione 1.3.10: (iii) sappiamo che $|X_d|=\phi(d)$, dunque passando alle cardinalità segue che

$$|\mathbb{Z}/n\mathbb{Z}| = n = \sum_{d|n} X_d.$$

Studiamo ora i sottogruppi di $\mathbb{Z}/n\mathbb{Z}$.

Proposizione Caratterizzazione dei sottogruppi di $\mathbb{Z}/n\mathbb{Z}$. Studiamo il gruppo $(\mathbb{Z}/n\mathbb{Z}, +)$.

1.3.12 Valgono i due seguenti fatti:

- (i) Sia $H \leq \mathbb{Z}/n\mathbb{Z}$. Allora $H \in ciclico\ e\ |H| = d\ per\ qualche\ d\ |\ n$.
- (ii) Sia $d \in \mathbb{Z}$, $d \mid n$. Allora $\mathbb{Z}/n\mathbb{Z}$ ammette uno e un solo sottogruppo di ordine d.

Dimostrazione. (i) Sia $H \leq \mathbb{Z}/n\mathbb{Z}$; per il teorema 1.3.7 sappiamo che H deve essere ciclico, ovvero $H = \left\langle \overline{h} \right\rangle$ per qualche $\overline{h} \in \mathbb{Z}/n\mathbb{Z}$.

Sia $d = \operatorname{ord}(\overline{h})$. Allora per il corollario 1.3.10: (i) segue che

$$|H| = \operatorname{ord}(\overline{h}) = d \mid n.$$

(ii) Sia H_d l'insieme

$$H_d = \left\{ \, \overline{0}, \, \frac{\overline{\pi}}{d}, \, 2\frac{\overline{\pi}}{d}, \ldots, \, (d-1)\frac{\overline{\pi}}{d} \, \right\}.$$

Mostriamo innanzitutto che $H_d = \left\langle \frac{\overline{n}}{d} \right\rangle$.

Infatti ovviamente $H_d\subseteq\left\langle \frac{\overline{n}}{d}\right\rangle$. Per mostrare che sono uguali basta notare che

$$\left|\left\langle \frac{\overline{n}}{d}\right\rangle\right|=ord\left(\frac{\overline{n}}{d}\right)=\frac{n}{\left(\frac{n}{d},n\right)}=\frac{n}{\left(\frac{n}{d},\frac{n}{d}d\right)}=\frac{n}{\frac{n}{d}\left(1,d\right)}=d$$

dunque i due insiemi sono finiti, hanno la stessa cardinalità e il primo è incluso nel secondo, da cui segue che sono uguali. Sia ora $H \leqslant \mathbb{Z}/n\mathbb{Z}$ tale che |H|=d. Per il teorema 1.3.7 segue che $H=\langle \overline{x} \rangle$ per qualche $\overline{x} \in \mathbb{Z}/n\mathbb{Z}$ tale che ord $(\overline{x})=d$. Seguendo la dimostrazione di 1.3.10: (iii) possiamo scrivere $\overline{x}=\frac{\overline{n}}{4}b$ con $b \in Z$ tale che (b,d)=1.

Dunque dato che $\overline{x} \in H_d$ segue che $H = \langle \overline{x} \rangle \subseteq H_d$. Ma gli insiemi H e H_d hanno la stessa cardinalità, dunque $H = H_d$, ovvero vi è un solo sottogruppo di ordine d.

1.4 OMOMORFISMI DI GRUPPI

Definizione Omomorfismo tra gruppi. Siano $(G_1, *)$, $(G_2, *)$ due gruppi. Allora la funzione

$$f:G_1\to G_2$$

si dice omomorfismo di gruppi se per ogni $x, y \in G_1$ vale che

$$f(x * y) = f(x) \star f(y).$$

Esempio 1.4.2. Ad esempio la funzione

$$\pi_n: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$
$$\mathfrak{a} \mapsto [\mathfrak{a}]_n$$

è un omomorfismo tra i gruppi Z e Z/nZ. Infatti vale che

$$\pi_n(a+b) = \overline{a+b} = \overline{a} + \overline{b} = \pi_n(a) + \pi_n(b).$$

Questo particolare omomorfismo si dice riduzione modulo n.

Esempio 1.4.3. Un altro esempio è la funzione

$$f: (\mathbb{R}, +) \to (\mathbb{R}^+, \cdot)$$

 $x \mapsto e^x$.

Infatti vale che

$$f(x+y) = e^{x+y} = e^x e^y = f(x)f(y).$$

Proposizione Composizione di omomorfismi. Siano $(G_1,*)$, $(G_2,*)$, (G_3,\cdot) tre gruppi e siano $\phi:G_1\to G_2$ e $\psi:G_2\to G_3$ omomorfismi.

Allora la funzione $\psi \circ \varphi : G_1 \to G_3$ è un omomorfismo tra i gruppi G_1 e G_3 .

Dimostrazione. Siano $h, k \in G_1$ e dimostriamo che

$$(\psi \circ \phi)(h * k) = (\psi \circ \phi)(h) \cdot (\psi \circ \phi)(k).$$

Infatti vale che

$$\begin{split} (\psi \circ \phi)(h * k) &= \psi(\phi(h * k)) & (\phi \text{ omo.}) \\ &= \psi(\phi(h) * \phi(k)) & (\psi \text{ omo.}) \\ &= \psi(\phi(h)) \cdot \psi(\phi(k)) \\ &= (\psi \circ \phi)(h) \cdot (\psi \circ \phi)(k) \end{split}$$

che è la tesi. □

Dato che un omomorfismo è una funzione, possiamo definire i soliti concetti di immagine e controimmagine.

Siano $H \leq G_1$, $K \leq G_2$. Allora definiamo l'insieme

$$f(H) := \{\ f(h) \in G_2 \ : \ h \in H \ \} \subseteq G_2$$

detto immagine di f attraverso H, e l'insieme

$$f^{-1}(K) := \{ g \in G_1 : f(g) \in K \} \subseteq G_1$$

detto controimmagine di f attraverso K.

Definiamo inoltre l'immagine dell'omomorfismo f come

Im
$$f := f(G_1) = \{ f(g) \in G_2 : g \in G_1 \}.$$

Per gli omomorfismi definiamo inoltre un concetto nuovo, il *nucleo* o *kernel* dell'omomorfismo.

Definizione Kernel di un omomorfismo. Siano $(G_1,*)$, $(G_2,*)$ due gruppi e sia f: $G_1 \to G_2$ un omomorfismo.

Allora si dice kernel o nucleo dell'omomorfismo f l'insieme

$$\ker f := \{ g \in G_1 : f(g) = e_2 \} \subseteq G_1.$$

Osserviamo che possiamo anche esprimere il nucleo di un omomorfismo in termini della controimmagine del sottogruppo banale $\{e_2\}$:

$$\ker f = f^{-1}(\{e_2\}).$$

Proposizione Proprietà degli omomorfismi. Siano (G_1,\cdot) , (G_2,\star) due gruppi e sia f: 1.4.7 $G_1 \to G_2$ un omomorfismo.

Allora valgono le seguenti affermazioni.

(i)
$$f(e_1) = e_2$$
;

(ii)
$$f(x^{-1}) = f(x)^{-1}$$
;

(iii)
$$\forall H \leqslant G_1$$
. $f(H) \leqslant G_2$;

(iv)
$$\forall K \leqslant G_2$$
. $f^{-1}(K) \leqslant G_1$;

(v)
$$f(G_1) \leq G_2 e \ker f \leq G_1$$
;

(vi) f è iniettivo se e solo se $\ker f = \{ e_1 \}$.

Dimostrazione. (i) $f(e_1) \stackrel{\text{(el. neutro)}}{=} f(e_1 \cdot e_1) \stackrel{\text{(omo.)}}{=} f(e_1) \star f(e_1)$. Applicando la legge di cancellazione 1.1.9: (v) otteniamo

$$e_2 = f(e_1).$$

(ii) Sfruttando il punto 1.4.7: (i) sappiamo che

$$e_2 = f(e_1) = f(x \cdot x^{-1}) = f(x) \star f(x^{-1})$$

 $e_2 = f(e_1) = f(x^{-1} \cdot x) = f(x^{-1}) \star f(x).$

Dalla prima segue che $f(x^{-1})$ è inverso a destra di f(x), dalla seconda che $f(x^{-1})$ è inverso a sinistra di f(x).

Dunque concludiamo che $f(x^{-1})$ è inverso di f(x), ovvero

$$f(x)^{-1} = f(x^{-1}).$$

(iii) Sia $H \leqslant G_1$. Dato che $H \neq \emptyset$ esisterà un $h \in H$, dunque f(H) non puo' essere vuoto in quanto dovrà contenere f(h)(sicuramente $e_2 \in f(H)$).

Dunque per la proposizione 1.2.2 basta mostrare che f(H) è chiuso rispetto al prodotto e che l'inverso di ogni elemento di f(H) è ancora in f(H).

(1) Mostriamo che se $x, y \in f(H)$ allora $x \star y \in f(H)$.

Per definizione di f(H) dovranno esistere $h_x, h_u \in H$ tali che $x = f(h_x)$ e $y = f(h_y)$. Allora

$$x \star y = f(h_x) \star f(h_y)$$
 (f è omo)
= $f(h_x \cdot h_y)$ H è sottogr. di G_1
 $\in f(H)$.

(2) Mostriamo che se $x \in f(H)$ allora $x^{-1} \in f(H)$.

Per definizione di f(H) dovrà esistere $h \in H$ tale che x = f(h). Dato che $H \leq G_1$ allora $h^{-1} \in H$.

Dunque $f(h^{-1}) \in f(H)$, ma per il punto 1.4.7: (ii) sappiamo che

$$f(h^{-1}) = f(h)^{-1} = x^{-1} \in f(H).$$

Dunque $f(H) \leq G_2$.

(iv) Sia $K \leq G_2$. Dato che $e_2 \in K$, sicuramente $f^{-1}(K) \neq \emptyset$, in quanto $e_1 = f^{-1}(e_2) \in f^{-1}(K)$.

Dunque per la proposizione 1.2.2 basta mostrare che $f^{-1}(K)$ è chiuso rispetto al prodotto e che l'inverso di ogni elemento di $f^{-1}(K)$ è ancora in $f^{-1}(K)$.

(1) Mostriamo che se $x, y \in f^{-1}(K)$ allora $x * y \in f^{-1}(K)$.

Per definizione di $f^{-1}(K)$ sappiamo che

$$x \in f^{-1}(K) \iff f(x) \in K$$

 $y \in f^{-1}(K) \iff f(y) \in K.$

Dato che $K \leqslant G_2$ allora segue che

$$f(x) \star f(y) = f(x * y) \in K$$

ovvero $x * y \in f^{-1}(K)$.

(2) Mostriamo che se $x \in f^{-1}(K)$ allora $x^{-1} \in f^{-1}(K)$.

Per definizione di $f^{-1}(K)$ sappiamo che

$$x \in f^{-1}(K) \iff f(x) \in K.$$

Dato che K \leq G₂ segue che f(x)⁻¹ \in K, ma per il punto 1.4.7: (ii) sappiamo che $f(x)^{-1} = f(x^{-1})$, dunque

$$f(x^{-1}) \in K \implies x^{-1} \in f^{-1}(K).$$

Dunque $f^{-1}(K) \leqslant G_1$.

(v) Dato che $G_1 \leqslant G_1$ per il punto 1.4.7: (iii) segue che $\operatorname{Im} f =$ $f(G_1) \leqslant G_2$.

Per definizione $\ker f = f^{-1}(\{e_2\})$; inoltre $\{e_1\} \leqslant G_2$, dunque per il punto 1.4.7: (iv) segue che ker $f \leq G_1$.

(vi) Dimostriamo entrambi i versi dell'implicazione.

(\Longrightarrow) Supponiamo che f sia iniettivo. Allora $|f^{-1}(\{e_2\})| =$

Tuttavia sicuramente $e_1 \in f^{-1}(\{e_2\}) = \ker f$ (in quanto $f(e_1) = e_2$), dunque dovrà necessariamente essere ker f = $\{e_1\}.$

(\iff) Supponiamo che ker f = { e_1 }.

Siano $x, y \in G_1$ tali che f(x) = f(y). Moltiplicando entrambi i membri (ad esempio a destra) per $f(y)^{-1} \in G_2$ otteniamo

$$f(x) \star f(y)^{-1} = f(y) \star f(y)^{-1} \qquad \text{(per la 1.4.7: (ii))}$$

$$\iff f(x) \star f(y^{-1}) = e_2 \qquad \qquad \text{(f è omomorf.)}$$

$$\iff f(x * y^{-1}) = e_2 \qquad \qquad \text{(def. di ker f)}$$

$$\iff x * y^{-1} \in \ker f \qquad \qquad \text{(ipotesi: ker f = { e_1 })}$$

$$\iff x * y^{-1} = e_1 \qquad \qquad \text{(moltiplico a dx per y)}$$

$$\iff x = y.$$

Dunque f(x) = f(y) implica che x = y, ovvero f è iniettivo.

Omomorfismi e ordine. Siano $(G_1,*)$, $(G_2,*)$ due gruppi e sia $f:G_1\to G_2$ **Proposizione** omomorfismo. 1.4.8

Allora valgono le seguenti due affermazioni

- (i) per ogni $x \in G$ vale che $ord_{G_2}(f(x)) \mid ord_{G_1}(x)$;

Innanzitutto diciamo che se ord $(x) = +\infty$ allora Dimostrazione. $\operatorname{ord}(f(x)) \mid \operatorname{ord}(x)$ qualunque sia $\operatorname{ord}(f(x))$ (anche se è $+\infty$).

(i) Sia $x \in G_1$. Se ord $(x) = +\infty$ allora abbiamo finito, dunque supponiamo ord(x) = n per qualche $n \in \mathbb{Z}$, n > 0.

Per definizione di ordine questo significa che $x^n = e_1$. Allora

$$f(x)^{n} = f(x) \star \cdots \star f(x)$$
 (f è omo.)

$$= f(x^{n})$$

$$= f(e_{1})$$
 (prop. 1.4.7: (i))

$$= e_{2}.$$

Dunque $f(x)^n = e_2$, quindi per la proposizione 1.3.5: (ii) segue che

$$\operatorname{ord}(f(x)) \mid n = \operatorname{ord}(x)$$
.

(ii) Dimostriamo entrambi i versi dell'implicazione.

(\Longrightarrow) Supponiamo f iniettiva.

- Se ord(f(x)) = $+\infty$ allora per il punto 1.4.8: (i) sappiamo che $+\infty$ | ord(x), dunque ord(x) = $+\infty$ = ord(f(x)).
- Se ord(f(x)) = $m < +\infty$ allora

$$\mathsf{f}(\mathsf{x})^{\mathfrak{m}} = e_2 \iff \mathsf{f}(\mathsf{x}) \star \dots \star \mathsf{f}(\mathsf{x}) = e_2 \iff \mathsf{f}(\mathsf{x}^{\mathfrak{m}}) = e_2,$$

ovvero $x^m \in \ker f$.

$$ord(x) \mid m = ord(f(x))$$
.

Inoltre per il punto 1.4.8: (i) sappiamo che $\operatorname{ord}(f(x)) | \operatorname{ord}(x)$, dunque $\operatorname{ord}(f(x)) = \operatorname{ord}(x)$.

(\Leftarrow) Sia $x \in \ker f$, ovvero $f(x) = e_2$. Allora

$$1 = \operatorname{ord}_{G_2}(e_2) = \operatorname{ord}(f(x)) \stackrel{hp.}{=} \operatorname{ord}_{G_1}(x).$$

Ma ord(x) = 1 se e solo se x = e_1 , ovvero ker f = { e_1 }, dunque per la proposizione 1.4.7: (vi) f è iniettiva.

1.4.1 Isomorfismi

Gli omomorfismi bigettivi sono particolarmente importanti e vanno sotto il nome di *isomorfismi*.

Definizione 1.4.9

Isomorfismo. Siano $(G_1,*)$, $(G_2,*)$ due gruppi e sia $\phi:G_1\to G_2$ un omomorfismo.

Allora se φ è bigettivo si dice che φ è un *isomorfismo*. Inoltre i gruppi G_1 e G_2 si dicono *isomorfi* e si scrive $G_1 \cong G_2$.

Corollario 1.4.10 Transitività della relazione di isomorfismo. Siano $(G_1,*)$, $(G_2,*)$, $(G_3,*)$ tre gruppi tali che $G_1\cong G_2$ e $G_2\cong G_3$. Allora $G_1\cong G_3$.

Dimostrazione. Dato che $G_1\cong G_2$ e $G_2\cong G_3$ dovranno esistere due isomorfismi $\phi:G_1\to G_2$ e $\psi:G_2\to G_3$.

Per la proposizione 1.4.4 la funzione $\psi \circ \phi$ è ancora un isomorfismo; inoltre la composizione di funzioni bigettive è ancora bigettiva, da cui segue che $\psi \circ \phi$ è un isomorfismo tra G_1 e G_3 e quindi $G_1 \cong G_3$.

Due gruppi isomorfi sono sostanzialmente lo stesso gruppo, a meno di "cambiamenti di forma". In particolare gli isomorfismi inducono naturalmente una bigezione sui sottogruppi dei due gruppi isomorfi, come ci dice la seguente proposizione.

Proposizione 1.4.11

Bigezione tra i sottogruppi di gruppi isomorfi. Siano $(G_1,*)$, $(G_2,*)$ due gruppi e sia $\phi:G_1\to G_2$ un isomorfismo.

Siano inoltre H e K tali che

$$\mathcal{H} = \{ H : H \leqslant G_1 \}, \quad \mathcal{K} = \{ K : K \leqslant G_2 \}.$$

Allora la funzione

$$f: \mathcal{H} \to \mathcal{K}$$

$$H \mapsto \phi(H)$$

è bigettiva.

Definiamo ora una seconda funzione

$$g: \mathcal{K} \to \mathcal{H}$$

$$K \mapsto \phi^{-1}(K).$$

Anch'essa ben definita per la proposizione 1.4.7: (iv).

Consideriamo ora le funzioni $g \circ f$ e $f \circ g$. Per la bigettività di ϕ vale che

$$(g \circ f)(H) = \varphi^{-1}(\varphi(H)) = H \qquad \forall H \in \mathcal{H}$$

$$(f \circ g)(K) = \varphi(\varphi^{-1}(K)) = K \qquad \forall K \in \mathcal{K}$$

ovvero la funzione f è bigettiva e definisce quindi una bigezione tra l'insieme dei sottogruppi di G_1 e l'insieme dei sottogruppi di G_2 .

Teorema

Isomorfismi di gruppi ciclici. Sia (G, \cdot) un gruppo ciclico. Allora

- (i) se $|G| = +\infty$ segue che $G \cong \mathbb{Z}$;
- (ii) se $|G| = n < +\infty$ segue che $G \cong \mathbb{Z}/n\mathbb{Z}$.

Dimostrazione. Per ipotesi $G = \langle g \rangle = \{ g^k : k \in \mathbb{Z} \}$ per qualche $g \in G$.

(i) Se $|G| = +\infty$ allora $|\langle g \rangle| = +\infty$, ovvero per ogni k, h $\in \mathbb{Z}$ con $k \neq h$ segue che $g^k \neq g^h$. Sia allora

$$\varphi: \mathbb{Z} \to G$$

$$k \mapsto a^k.$$

Per definizione di $G=\langle g\rangle$ questa funzione è surgettiva. Dato che G ha ordine infinito segue che questa funzione è iniettiva. Mostriamo che è un omomorfismo.

$$\phi(k+h)=g^{k+h}=g^kg^h=\phi(k)\phi(h).$$

Dunque φ è un isomorfismo e $G \cong \mathbb{Z}$.

(ii) Dato che |G| = n per la proposizione 1.3.5 sappiamo che ord(g) = n, ovvero che $g^n = e_G$. Sia allora

$$\phi: \mathbb{Z}/n\mathbb{Z} \to G$$

$$\overline{\alpha} \mapsto g^\alpha$$

dove a è un generico rappresentante della classe $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$.

• Mostriamo che φ è ben definita. Siano $a, b \in \overline{a}$ e mostriamo che $\varphi(\overline{a}) = \varphi(\overline{b})$, ovvero che $g^{\alpha} = g^{b}$.

Per ipotesi $a \equiv b \ (n)$, ovvero a = b + nk per qualche $k \in \mathbb{Z}.$ Dunque

$$q^a = q^{b+nk} = q^b(q^n)^k = q^b$$

poiché $g^n = e_G$.

• Mostriamo che φ è un omomorfismo.

$$\varphi(\overline{a} + \overline{b}) = g^{a+b} = g^a g^b = \varphi(\overline{a})\varphi(\overline{b}).$$

П

• Mostriamo che φ è surgettiva.

$$\text{Im}(\phi) = \phi(\mathbb{Z}/n\mathbb{Z}) = \left\{ \ g^0, g^1, \ldots, g^n \ \right\} = \langle g \rangle = G.$$

Ma $|\mathbb{Z}/n\mathbb{Z}| = |G|$, dunque per cardinalità φ è anche iniettiva e dunque è bigettiva. Quindi φ è un isomorfismo e $G \cong \mathbb{Z}/n\mathbb{Z}$.

Corollario Sottogruppi del gruppo ciclico. Sia (G, ·) un gruppo ciclico.

- (i) Se G è infinito e H \leqslant G allora segue che H = $\langle g^n \rangle$ per qualche $g \in G$, $n \in \mathbb{Z}$.
- (ii) Se G ha ordine n finito, allora G ammette uno e un solo sottogruppo per ogni divisore di n. Inoltre se $H \leq G$ allora $H \nmid ciclico$.

Dimostrazione. Ricordiamo che

- 1. i sottogruppi di $\mathbb Z$ sono tutti e soli della forma n $\mathbb Z$ al variare di n $\in \mathbb N$ per la Proposizione 1.3.8,
- i sottogruppi di Z/nZ hanno tutti cardinalità che divide n per la punto 1.3.12: (i). Inoltre, per ogni d che divide n vi è uno e un solo sottogruppo di Z/nZ di cardinalità d, per la punto 1.3.12: (ii).
- 3. per la Proposizione 1.4.11 sappiamo che se $f: G_1 \to G_2$ è un isomorfismo, allora

$$\{ K : K \leq G_2 \} = \{ f(H) : H \leq G_1 \}.$$

Mostriamo le due affermazioni separatamente.

(i) Se G è ciclico ed infinito allora per il Teorema 1.4.12 segue che esiste un isomorfismo

$$\phi: \mathbb{Z} \to G$$

$$k \mapsto g^k.$$

Per la bigezione tra i sottogruppi di \mathbb{Z} e G allora ogni sottogruppo di G dovrà essere scritto come immagine di qualche sottogruppo di \mathbb{Z} , ma come abbiamo osservato sopra i sottogruppi di \mathbb{Z} sono tutti e solo della forma $n\mathbb{Z}$ per qualche $n \in \mathbb{N}$.

Dunque i sottogruppi di G sono

$$\{ K : K \leqslant G \} = \{ \phi(n\mathbb{Z}) = \langle g^n \rangle : n \in \mathbb{N} \}.$$

(ii) Se G è ciclico ed è finito, allora $G = \langle g \rangle$ per qualche $g \in G$, e inoltre |G| = ord(g) = n per qualche n finito.

Allora per il Teorema 1.4.12 esiste un isomorfismo

$$\psi: \mathbb{Z}/n\mathbb{Z} \to G$$

$$\overline{\alpha} \mapsto g^{\alpha}.$$

Per l'osservazione 2) sopra i sottogruppi di $\mathbb{Z}/n\mathbb{Z}$ sono tutti e solo della forma $\langle \overline{d} \rangle$, dunque per l'osservazione 3) segue che

$$\{\;K\,:\,K\leqslant G\;\}=\left\{\;\psi(\left\langle \overline{d}\right\rangle)=\left\langle g^{\,d}\right\rangle \,:\,d\mid\mathfrak{n}\;\right\}.\qquad \qquad \Box$$

Definizione 1.4.14 Siano $(\mathsf{G}_1,*),\,(\mathsf{G}_2,\star)$ due gruppi. Consideriamo il loro prodotto cartesiano

$$G_1 \times G_2 = \{ (g_1, g_2) : g_1 \in G_1, g_2 \in G_2 \}$$

e un'operazione \cdot su $G_1 \times G_2$ tale che

$$: (G_1 \times G_2) \times (G_1 \times G_2) \to (G_1 \times G_2)$$
$$((x, y), (z, w)) \mapsto (x * z, y * w).$$

La struttura $(G_1 \times G_2, \cdot)$ si dice prodotto diretto dei gruppi G_1 e G_2 .

Proposizione 1.4.15

Il prodotto diretto di gruppi è un gruppo. Siano $(G_1,*)$, $(G_2,*)$ due gruppi. Allora il prodotto diretto $(G_1 \times G_2, \cdot)$ è un gruppo.

Dimostrazione. Sappiamo già che \cdot è un'operazione su $G_1 \times G_2$, quindi basta mostrare i tre assiomi di gruppo.

ASSOCIATIVITÀ Siano $(x,y),(z,w),(h,k) \in G_1 \times G_2$. Mostriamo che vale la proprietà associativa.

$$(x,y) \cdot ((z,w) \cdot (h,k))$$
 (def. di ·)
= $(x,y) \cdot (z*h, w*k)$ (def. di ·)
= $(x*(z*h), y*(w*k))$ (ass. di * e *)
= $((x*z)*h, (y*w)*k)$
= $(x*z, y*w) \cdot (h,k)$
= $((x,y) \cdot (z,w)) \cdot (h,k)$.

ELEMENTO NEUTRO Siano $e_1 \in G_1, e_2 \in G_2$ gli elementi neutri dei due gruppi. Mostro che (e_1, e_2) è l'elemento neutro del prodotto diretto.

Sia $(x,y) \in G_1 \times G_2$ qualsiasi. Allora

$$(x,y) \cdot (e_1, e_2) = (x * e_1, y * e_2) = (x,y)$$

 $(e_1, e_2) \cdot (x,y) = (e_1 * x, e_2 * y) = (x,y).$

INVERTIBILITÀ Sia $(x,y) \in G_1 \times G_2$. Mostriamo che (x,y) è invertibile e il suo inverso è $(x^{-1},y^{-1}) \in G_1 \times G_2$, dove x^{-1} è l'inverso di x in G_1 e y^{-1} è l'inverso di y in G_2 .

$$(x,y) \cdot (x^{-1}, y^{-1}) = (x * x^{-1}, y \star y^{-1}) = (e_1, e_2)$$

 $(x^{-1}, y^{-1}) \cdot (x, y) = (x^{-1} * x, y^{-1} \star y) = (e_1, e_2).$

Dunque il prodotto diretto $(G_1 \times G_2, \cdot)$ è un gruppo.

Proposizione 1.4.16

Il centro del prodotto diretto è il prodotto diretto dei centri. Siano $(G_1,*)$, $(G_2,*)$ due gruppi e sia $(G_1\times G_2,\cdot)$ il loro prodotto diretto. Allora vale che

$$Z(G_1 \times G_2) = Z(G_1) \times Z(G_2).$$

Dimostrazione. Per definizione di centro sappiamo che

$$\begin{split} Z(G_1 \times G_2) = \{ \ (x,y) \in G_1 \times G_2 \ : \\ (g_1,g_2) \cdot (x,y) = (x,y) \cdot (g_1,g_2) \quad \forall (g_1,g_2) \in G_1 \times G_2 \ \}. \end{split}$$

Sia $(x,y)\in Z(G_1\times G_2).$ Allora per ogni $(g_1,g_2)\in G_1\times G_2$ vale che

$$\begin{split} (g_1,g_2)\cdot(x,y) &= (x,y)\cdot(g_1,g_2)\\ \Longleftrightarrow (g_1*x,g_2*y) &= (x*g_1,y*g_2)\\ \Longleftrightarrow g_1*x &= x*g_1 \ e \ g_2*y = y*g_2\\ \Longleftrightarrow x \in \mathsf{Z}(\mathsf{G}_1) \ e \ y \in \mathsf{Z}(\mathsf{G}_2)\\ \Longleftrightarrow (x,y) \in \mathsf{Z}(\mathsf{G}_1) \times \mathsf{Z}(\mathsf{G}_2). \end{split}$$

Seguendo la catena di equivalenze al contrario segue la tesi.

2 | ANELLI E CAMPI

2.1 ANELLI

Definizione Anello. Sia A un insieme e siano + (*somma*), \cdot (*prodotto*) due operazioni su A, ovvero

$$+: A \times A \rightarrow A,$$
 $: A \times A \rightarrow A.$ $(a,b) \mapsto a + b,$ $(a,b) \mapsto a \cdot b.$

Allora la struttura $(A, +, \cdot)$ si dice *anello* se valgono i seguenti assiomi:

- (S) La struttura (A, +) è un gruppo abeliano, ovvero:
 - (S1) Vale la proprietà commutativa della somma: per ogni $a, b \in A$ vale che a + b = b + a.
 - (S2) Vale la *proprietà associativa della somma*: per ogni $a,b,c\in A$ vale che (a+b)+c=a+(b+c).
 - (S3) Esiste un elemento $0 \in A$ che è *elemento neutro* per la somma: per ogni $\alpha \in A$ vale che $\alpha + 0 = 0 + \alpha = \alpha$. Tale elemento si chiama zero dell'anello.
 - (S₄) Ogni elemento di A è *invertibile* rispetto alla somma: per ogni $a \in A$ esiste $(-a) \in A$ (detto *opposto di* a) tale che a + (-a) = 0.
- (P) Vale il seguente assioma per il prodotto:
 - (P1) Vale la proprietà associativa del prodotto: $per \ ogni \ a,b,c \in A \ vale \ che \ (a \cdot b) \cdot c = a \cdot (b \cdot c).$
- (D) Vale la *proprietà distributiva del prodotto rispetto alla somma* sia a destra che a sinistra:

per ogni $a, b, c \in A$ vale che a(b+c) = ab + ac e che (a+b)c = ac + bc.

Definizione Anello commutativo. Sia $(A, +, \cdot)$ un anello. Allora $(A, +\cdot)$ si dice anello commutativo se vale inoltre il seguente assioma:

(P2) Vale la proprietà commutativa del prodotto: per ogni $a,b \in A$ vale che $a \cdot b = b \cdot a$.

Definizione Anello con unità. Sia $(A, +, \cdot)$ un anello. Allora $(A, +\cdot)$ si dice anello con unità se vale inoltre il seguente assioma:

(P2) Esiste un elemento $1 \in A$ che è *elemento neutro* per il prodotto: per ogni $a \in A$ vale che $a \cdot 1 = 1 \cdot a = a$. Tale elemento si dice *unità dell'anello*.

Esempio 2.1.4. Le strutture $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$ sono tutti esempi di anelli commutativi con unità.

Esempio 2.1.5. L'insieme delle matrici quadrate $\mathrm{Mat}_{n\times n}(\mathbb{R})$ (con $n\geqslant 2$) è un esempio di anello non commutativo con unità.

Esempio 2.1.6. L'insieme dei numeri pari insieme alle operazioni di somma e prodotto, ovvero $(2\mathbb{Z}, +, \cdot)$, è un anello commutativo ma non ha l'identità.

Definizione Insieme degli invertibili. Sia $(A, +, \cdot)$ un anello con identità. Allora si dice *insieme degli invertibili di* A l'insieme

$$A^{\times} = \{ x \in A : \exists y \in A \text{ tale che } xy = yx = 1 \}.$$

Osservazione. La struttura (A^{\times}, \cdot) forma sempre un gruppo rispetto al prodotto. Esso viene detto *gruppo moltiplicativo dell'anello* A.

Definizione Divisori di zero. Sia $(A, +, \cdot)$ un anello. Allora $a \in A$ si dice *divisore di zero* se esiste $b \in A$, $b \neq 0$ tale che

$$ab = 0$$
.

Proposizione Proprietà degli anelli. Sia $(A, +, \cdot)$ un anello con unità. Allora valgono le seguenti affermazioni:

- (i) Per ogni $a \in A$ vale che $a \cdot 0 = 0 \cdot a = 0$.
- (ii) (A^{\times}, \cdot) è un gruppo. In particolare, se A è commutativo allora è un gruppo abeliano.
- (iii) Nessun $a \in A$ è contemporaneamente divisore dello zero e invertibile.

Dimostrazione. Dimostriamo separatamente le varie affermazioni.

(i) $a \cdot 0 \stackrel{\text{(S3)}}{=} a \cdot (0+0) \stackrel{\text{(D)}}{=} a \cdot 0 + a \cdot 0$. Siccome (A, +) è un gruppo, valgono le leggi di cancellazione, dunque segue che

$$0 = a \cdot 0$$
.

- (ii) Mostriamo che (A^{\times}, \cdot) è un gruppo.
 - (G1) Mostriamo che il prodotto di due elementi invertibili di A è ancora in A^{\times} , ovvero è ancora invertibile.

Siano $x, y \in A^{\times}$ (ovvero essi sono invertibili e i loro inversi sono rispettivamente x^{-1} e y^{-1}); mostro che il loro prodotto $xy \in A$ è invertibile e il suo inverso è $y^{-1}x^{-1}$.

$$(xy) \cdot (y^{-1}x^{-1})$$
 (per (P1))
= $x(yy^{-1})x^{-1}$ (per definizione di inverso)
= $x \cdot x^{-1}$ (per definizione di inverso)
= 1.

Passaggi analoghi mostrano che $(y^{-1}x^{-1}) \cdot xy = 1$, ovvero $y^{-1}x^{-1}$ è l'inverso di xy e quindi $xy \in A^{\times}$.

- (G2) Vale la proprietà associativa del prodotto in quanto vale in A
- (G₃) L'elemento neutro del prodotto è 1 ed è in A^{\times} in quanto $1 \cdot 1 = 1$ (ovvero 1 è l'inverso di se stesso).
- (G4) Se l'anello è commutativo, allora · è commutativa su ogni suo sottoinsieme, dunque in particolare lo sarà anche su A[×].

Da ciò segue che (A^{\times}, \cdot) è un gruppo.

(iii) Supponiamo per assurdo esista $x \in A$ che è invertibile e divisore dello zero. Dato che è un divisore dello zero segue che

$$\exists z \neq 0, z \in A. \quad xz = 0.$$

Siccome è invertibile segue che

$$\exists y \in A. \quad xy = 1.$$

Ma allora

$$z = z \cdot 1$$

 $= z \cdot (xy)$ (per (P1))
 $= (zx) \cdot y$
 $= 0 \cdot y$ (per il punto (i))
 $= 0$.

Tuttavia ciò è assurdo, in quanto abbiamo supposto $z \neq 0$, dunque non può esistere un divisore dello zero invertibile.

Osservazione. Notiamo che per il punto 2.1.9: (i) 0 è sempre un divisore dello zero.

Definizione Dominio di integrità. Sia $(A, +, \cdot)$ un anello commutativo con identità. Esso si dice *dominio di integrità* (o semplicemente *dominio*) se l'unico divisore dello zero è 0.

Proposizione Annullamento del prodotto. Sia $(A, +, \cdot)$ un dominio. Allora vale la legge di annullamento del prodotto, ovvero per ogni $a, b \in A$ vale che

$$ab = 0 \implies a = 0$$
 oppure $b = 0$.

Dimostrazione. Se a = 0 la tesi è verificata. Supponiamo allora $a \neq 0$ e dimostriamo che deve essere b = 0.

Dato che $a \neq 0$ segue che a non è un divisore dello zero (poiché A è un dominio), dunque se ab = 0 l'unica possibilità è b = 0.

Dall'annullamento del prodotto seguono le leggi di cancellazione del prodotto:

Corollario Leggi di cancellazione per il prodotto. *Sia* $(A, +, \cdot)$ *un dominio di integrità* **2.1.12** *e siano* $a, b, x \in A$ *con* $x \neq 0$. *Allora*

$$ax = bx \implies a = b$$
.

Dimostrazione. Aggiungiamo ad entrambi i membri l'opposto di bx:

$$ax - bx = bx - bx$$

$$\iff ax - bx = 0 \qquad \text{(per (D))}$$

$$\iff (a - b)x = 0 \qquad \text{(per 2.1.11)}$$

$$\iff a - b = 0 \text{ oppure } x = 0.$$

Ma per ipotesi $x \neq 0$, dunque deve seguire che a - b = 0, ovvero a = b.

Definizione Campo. Sia $(\mathbb{K}, +, \cdot)$ un anello commutativo con identità. Allora \mathbb{K} si dice campo se $\mathbb{K}^{\times} = \mathbb{K} \setminus \{0\}$.

Osservazione. Un campo è una struttura ($\mathbb{K}, +, \cdot$) tale che:

- (S) La struttura (\mathbb{K} , +) è un gruppo abeliano.
- (P) La struttura ($\mathbb{K} \setminus \{0\}, \cdot$) è un gruppo abeliano.
- (D) Vale la proprietà distributiva del prodotto rispetto alla somma: per ogni $a, b, c \in \mathbb{K}$ vale che a(b+c) = ab + ac.

Proposizione Ogni campo è un dominio. Sia ($\mathbb{K},+,\cdot$) un campo. Allora \mathbb{K} è anche un dominio di integrità.

Dimostrazione. Per 2.1.9: (iii) i divisori dello zero non possono essere invertibili, quindi devono essere un sottoinsieme di $\mathbb{K} \setminus \mathbb{K}^{\times}$. Ma per definizione di campo $\mathbb{K}^{\times} = \mathbb{K} \setminus \{0\}$, dunque l'unico possibile divisore dello zero è 0, ovvero \mathbb{K} è un dominio.

Proposizione Ogni dominio finito è un campo. $Sia(A, +, \cdot)$ un dominio di integrità con un numero finito di elementi. Allora A è un campo.

Dimostrazione. Sia $x \in A \setminus \{0\}$. Devo mostrare che x è invertibile. Costruisco la mappa

$$\phi_x:A\to A$$

$$a\mapsto ax.$$

Ora mostro che φ_x è bigettiva.

 φ_x **È** INIETTIVA Supponiamo che per qualche $a,b\in A$ valga che $\varphi_x(a)=\varphi_x(b)$ e mostriamo che segue che a=b.

Per definizione di φ_x l'ipotesi equivale ad affermare che $\alpha x = bx$, ma siccome $x \neq 0$ e A è un dominio possiamo applicare la legge di cancellazione per il prodotto, da cui segue che $\alpha = b$, ovvero φ_x è iniettiva.

 ϕ_x è surgettiva Poiché la cardinalità del dominio e del codominio di ϕ_x è la stessa ed è finita segue che ϕ_x è anche surgettiva.

Dunque ϕ_x è bigettiva. Dato che $1 \in A = \phi_x(A)$ segue che esiste un $y \in A$ tale che

$$xy = 1(= yx),$$

ovvero x è invertibile e A è un campo.

Definizione Omomorfismo di anelli. Siano $(A, +, \cdot)$, (B, \oplus, \odot) anelli con unità. Allora **2.1.16** la funzione $\varphi : A \to B$ si dice omomorfismo di anelli se

- (i) $\varphi(1_A) = 1_B$.
- (ii) Per ogni $a, b \in A$ vale che $\varphi(a + b) = \varphi(a) \oplus \varphi(b)$.
- (iii) Per ogni $a, b \in A$ vale che $\varphi(a \cdot b) = \varphi(a) \odot \varphi(b)$.

2.2 ANELLO DEI POLINOMI

Definizione 2.2.1

Polinomi a coefficienti in un anello. Sia $(A,+,\cdot)$ un anello commutativo con identità e consideriamo una successione (a_i) di elementi di A che sia definitivamente nulla, ovvero tale che esista un $n \in \mathbb{N}$ tale che

$$a_m = 0$$
 per ogni $m > n$.

Allora si dice polinomio nell'indeterminata X la scrittura formale

$$p=p(X)=\sum_{i=0}^\infty \alpha_i X^i.$$

Gli ai si dicono coefficienti del polinomio.

L'insieme dei polinomi a coefficienti in A si indica con A[X].

Dato che la successione che definisce il polinomio è definitivamente nulla, possiamo scrivere il polinomio come una sequenza finita di termini: basta prendere i termini fino al massimo indice per cui \mathfrak{a}_i è diverso da 0. Diamo però alcune definizioni preliminari.

Innanzitutto d'ora in avanti $(A, +, \cdot)$ è un anello commutativo con identità a meno di ulteriori specifiche.

Definizione 2.2.2

Polinomio nullo. Si dice *polinomio nullo in* A[X] il polinomio definito dalla successione costantemente nulla, e lo si indica come p(X) = o.

Definizione 2.2.3

Grado di un polinomio. Sia $p \in A[X]$, $p(X) \neq \mathbf{o}$. Allora si dice grado di p il numero

$$\deg p = \max\{ n \in \mathbb{N} : a_n \neq 0 \}.$$

Il polinomio o non ha grado.

Notiamo che i polinomi di grado 0 sono tutti e solo della forma $p(X) = a_0$ per qualche $a_0 \in A$; ovvero sono tutte e sole le costanti dell'anello A.

Definizione 2.2.4

Uguaglianza tra polinomi. Siano p, $q \in A[X]$. Allora i polinomi p e q sono uguali se e solo se tutti i loro coefficienti sono uguali.

Definiamo ora le operazioni di somma e prodotto tra polinomi.

Definizione 2.2.5

Somma tra polinomi. Siano $p, q \in A[X]$. Allora definisco l'operazione di somma

$$+: A[X] \times A[X] \rightarrow A[X]$$

 $(p,q) \mapsto p+q$

nel seguente modo:

$$se \ p(X) = \sum_{i=0}^{\infty} \alpha_i X^i, \ \ q(X) = \sum_{i=0}^{\infty} b_i X^i, \ allora \ (p+q)(X) = \sum_{i=0}^{\infty} (\alpha_i + b_i) X^i.$$

Definizione 2.2.6

Prodotto tra polinomi. Siano $p, q \in A[X]$. Allora definisco l'operazione di prodotto tra polinomi

$$\cdot : A[X] \times A[X] \rightarrow A[X]$$

 $(p,q) \mapsto p \cdot q$

nel seguente modo:

$$se \ p(X) = \sum_{i=0}^{\infty} \alpha_i X^i, \quad q(X) = \sum_{j=0}^{\infty} b_j X^j, \ allora \ (p \cdot q)(X) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \alpha_i b_j X^{i+j}.$$

Teorema L'insieme dei polinomi è un anello. La struttura $(A[X], +, \cdot)$ è un anello commutativo con identità (dove l'identità è il polinomio $\mathbf{1}(X) = \mathbf{1}_A$).

Proposizione Grado della somma e del prodotto. Siano $p, q \in A[X] \setminus \{o\}$. Allora vale 2.2.8 che

- (i) $deg(p+q) \leq max\{deg p, deg q\}$.
- (ii) se A è un dominio, allora deg(pq) = deg p + deg q.

Dimostrazione. Siano i due polinomi

$$p(X) = \sum_{i=0}^{\infty} a_i X^i, \quad q(X) = \sum_{i=0}^{\infty} b_i X^i.$$

e siano $n = \deg p$, $m = \deg q$.

GRADO DELLA SOMMA Sia $k=\max n, m.$ Allora per ogni i>k varrà che $a_i=b_i=0$, ovvero $a_i+b_i=0$, da cui $deg(p+q)\leqslant k.$

GRADO DEL PRODOTTO Il termine di grado massimo di (pq)(X) deve essere quello in posizione n+m.

Mostriamo che per ogni i > n, j > m vale che il coefficiente del termine di grado i+j è uguale a 0. Infatti per definizione di grado segue che $a_i, b_j = 0$ se i > n o j > m, dunque il prodotto $a_i \cdot b_j$ sarà 0, ovvero il coefficiente di grado i+j sarà nullo. Da ciò segue che $deg(pq) \le n+m$.

Inoltre essendo A un dominio il termine $a_n b_m$ deve essere diverso da 0, in quanto altrimenti uno tra a_n e b_m dovrebbe essere 0, contro la definizione di grado.

Dunque
$$deg(pq) = deg p + deg q$$
.

Corollario

Se A è un dominio, allora A[X] è un dominio.

Dimostrazione. Siano $p, q \in A[X] \setminus \{o\}$, con deg $p = n \ge 0$, deg $q = m \ge 0$. Allora per la Proposizione 2.2.8 vale che

$$deg(pq) = deg p + deg q = n + m \ge 0.$$

Dunque il polinomio (pq)(X) non può essere il polinomio nullo (che non ha grado), da cui segue che in A[X] non vi sono divisori dello zero.

Corollario 2.2.10

Se A è un dominio, allora gli invertibili di A[X] sono tutti e soli gli elementi invertibili di A, ovvero

$$A[X]^{\times} = A^{\times}.$$

Dimostrazione. Sia $p \in A[X]^{\times}$ e sia $q \in A[X]$ il suo inverso, ovvero tale che $(pq)(X) = 1_A$.

Notiamo che $p, q \neq o$. Infatti se uno dei due fosse il polinomio nullo per la punto 2.1.9: (i) il loro prodotto dovrebbe essere il

polinomio nullo e non l'unità. Allora esistono deg p, deg q \geqslant 0 e vale che

$$deg(pq) = deg p + deg q \stackrel{!}{=} deg 1 = 0.$$

Dato che i gradi di p e q sono positivi o nulli, il grado del prodotto è 0 se e solo se entrambi i polinomi p e q sono di grado zero, ovvero se e solo se sono elementi dell'anello A.

Siano $a,b \in A$ tali che $f(X) = ae \ q(X) = b$. Allora (pq)(X) = $a \cdot b = 1$, ovvero a è invertibile, cioè $a \in A^{\times}$.