

Grundbegriffe der Informatik **Tutorium 36** | 26.10.2017

Maximilian Staab, uxhdf@student.kit.edu Lukas Bach, lukas.bach@student.kit.edu

Grundbegriffe **Termine** der Informatik

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Termine

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Vorlesung und Übung

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Termine

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Vorlesung und Übung

Mittwoch 9:45 - 11:15 Vorlesung

■ Freitag 9:45 - 11:15 abwechselnd Vorlesung und Übung

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Termine

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Vorlesung und Übung

Mittwoch 9:45 - 11:15 Vorlesung

■ Freitag 9:45 - 11:15 abwechselnd Vorlesung und Übung

Tutorium

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Termine

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Vorlesung und Übung

Mittwoch 9:45 - 11:15 Vorlesung

■ Freitag 9:45 - 11:15 abwechselnd Vorlesung und Übung

Tutorium

Donnerstags, 09:45 - 11:15

■ 50.34 Informatikbau, -109

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Termine

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Abbildungen

Vorlesung und Übung

- Mittwoch 9:45 11:15 Vorlesung
- Freitag 9:45 11:15 abwechselnd Vorlesung und Übung
- Tutorium
 - Donnerstags, 09:45 11:15
 - 50.34 Informatikbau, -109
- Übungsblätter

Maximilian Staab

Termine

uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Vorlesung und Übung

- Mittwoch 9:45 11:15 Vorlesung
- Freitag 9:45 11:15 abwechselnd Vorlesung und Übung
- Tutorium
 - Donnerstags, 09:45 11:15
 - 50.34 Informatikbau, -109
- Übungsblätter
 - Alle zwei Wochen
 - Ausgabe Mittwochs, Abgabe Donnerstags bis 16:00 zwei Wochen drauf

Maximilian Staab

Termine

uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Vorlesung und Übung

- Mittwoch 9:45 11:15 Vorlesung
- Freitag 9:45 11:15 abwechselnd Vorlesung und Übung
- Tutorium
 - Donnerstags, 09:45 11:15
 - 50.34 Informatikbau, -109
- Übungsblätter
 - Alle zwei Wochen
 - Ausgabe Mittwochs, Abgabe Donnerstags bis 16:00 zwei Wochen drauf
- Klausur
 - Termin am 08.03.2018

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Übungsschein

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Übungsschein

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

min. 50% aller Punkte auf Übungsblättern richtig

Mengen

Alphabete

Übungsschein

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Organisatorisches

Signale und Nachrichten

- min. 50% aller Punkte auf Übungsblättern richtig
- Rückgabe im Tutorium

Menger

Alphabete

Übungsschein

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Abbildungen

- min. 50% aller Punkte auf Übungsblättern richtig
- Rückgabe im Tutorium
- Bestehen ist keine Voraussetzung für die Klausur

Übungsschein

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Abbildungen

- min. 50% aller Punkte auf Übungsblättern richtig
- Rückgabe im Tutorium
- Bestehen ist *keine* Voraussetzung für die Klausur, *aber* fürs Modul!

Übungsschein

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

- min. 50% aller Punkte auf Übungsblättern richtig
- Rückgabe im Tutorium
- Bestehen ist *keine* Voraussetzung für die Klausur, *aber* fürs Modul!
- Gemeinsames Abgeben, Abschreiben verboten

Übungsschein

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

- min. 50% aller Punkte auf Übungsblättern richtig
- Rückgabe im Tutorium
- Bestehen ist keine Voraussetzung für die Klausur, aber fürs Modul!
- Gemeinsames Abgeben, Abschreiben verboten
- Übungsblätter und später auch Musterlösungen im ILIAS

Tutorium

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Alle Tutorienfolien im Ilias (nach dem Tutorium)

Signale und Nachrichten

Mengen

Alphabete

Tutorium

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Alle Tutorienfolien im Ilias (nach dem Tutorium)

Signale und Nachrichten

Bei Fragen:uxhdf@student.kit.edu

Mengen

Alphabete

Tutorium

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Abbildungen

Alle Tutorienfolien im Ilias (nach dem Tutorium)

- Bei Fragen:uxhdf@student.kit.edu
- Oder einfach hier
- Keine Anwesenheitspflicht

Tutorium

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Abbildungen

Alle Tutorienfolien im Ilias (nach dem Tutorium)

- Bei Fragen:uxhdf@student.kit.edu
- Oder einfach hier
- Keine Anwesenheitspflicht
- Möglichkeit andere Tutorien zu besuchen

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Objekt: 101

Mengen

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Objekt: 101

Eins null eins

Mengen

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Objekt: 101

Eins null eins oder 101 als Zahl

Mengen

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Objekt: 101

■ Eins null eins oder 101 als Zahl oder 5 in binär

Mengen

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Objekt: 101

Eins null eins oder 101 als Zahl oder 5 in binär oder zwei merkwürdige Striche mit einem Kreis dazwischen?

Menge

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Objekt: 101

- Eins null eins oder 101 als Zahl oder 5 in binär oder zwei merkwürdige Striche mit einem Kreis dazwischen?
- Vom Kontext abhängig.

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Objekt: 101

- Eins null eins oder 101 als Zahl oder 5 in binär oder zwei merkwürdige Striche mit einem Kreis dazwischen?
- Vom Kontext abhängig.
- Zunächst einfach ein konkretes Objekt.

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Signal

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

Signal

Organisatorisches

lukas.bach@student.kit.edu

Physikalische Veränderung

Signale und Nachrichten

Mengen

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

Signal

Organisatorisches

lukas.bach@student.kit.edu

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.

Signale und Nachrichten

Menger

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

Signal

Organisatorisches

lukas.bach@student.kit.edu

Physikalische Veränderung

Lässt sich verschieden interpretieren.

Beispiele:

Signale und Nachrichten

Menger

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Signal

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Abbildungen

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.
- Beispiele:
 - Notfallalarm in Serverraum

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Signal

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Abbildungen

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.
- Beispiele:
 - Notfallalarm in Serverraum

Für Besucher nur schönes Leuchten

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Signal

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Abbildungen

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.
- Beispiele:
 - Notfallalarm in Serverraum

- Für Besucher nur schönes Leuchten
- Für Security die Information, zu kommen

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Signal

Organisatorische

Signale und Nachrichten

Menger

Alphabete

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.
- Beispiele:
 - Notfallalarm in Serverraum

- Für Besucher nur schönes Leuchten
- Für Security die Information, zu kommen
- Für Techniker die Information, Ausrüstung zu holen

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Signal

Organisatorische

Signale und Nachrichten

Menger

Alphabete

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.
- Beispiele:
 - Notfallalarm in Serverraum

- Für Besucher nur schönes Leuchten
- Für Security die Information, zu kommen
- Für Techniker die Information, Ausrüstung zu holen
- Nachricht

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Signal

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.
- Beispiele:
 - Notfallalarm in Serverraum

- Für Besucher nur schönes Leuchten
- Für Security die Information, zu kommen
- Für Techniker die Information, Ausrüstung zu holen
- Nachricht: Objekt wie oben, das von Signal unabhängig ist

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Signal

Organisatorische

Signale und Nachrichten

Menger

Alphabete

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.
- Beispiele:
 - Notfallalarm in Serverraum

- Für Besucher nur schönes Leuchten
- Für Security die Information, zu kommen
- Für Techniker die Information, Ausrüstung zu holen
- Nachricht: Objekt wie oben, das von Signal unabhängig ist
 - Roter Notfallalarm ist ein anderes Signal als ein blauer Notfallalarm

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Signal

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.
- Beispiele:
 - Notfallalarm in Serverraum

- Für Besucher nur schönes Leuchten
- Für Security die Information, zu kommen
- Für Techniker die Information, Ausrüstung zu holen
- Nachricht: Objekt wie oben, das von Signal unabhängig ist
 - Roter Notfallalarm ist ein anderes Signal als ein blauer Notfallalarm, aber vielleicht dieselbe Nachricht.

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Der interessante Teil:

Signale und Nachrichten

Mengen

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Organisatorisches

Der interessante Teil: Informationen

Signale und Nachrichten

Mengen

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

- Der interessante Teil: Informationen
- Bedeutung einer Nachricht

Signale und Nachrichten

Menger

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Signale und

Nachrichten

- Der interessante Teil: Informationen
- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.

Menger

Alphabete

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und

ivieriger

Alphabete

Abbildungen

Der interessante Teil: Informationen

- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Abbildungen

- Der interessante Teil: Informationen
- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:
 - Rote Alarmleuchte ist ein Signal

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Der interessante Teil: Informationen

- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:
 - Rote Alarmleuchte ist ein Signal (blaue Signalleuchte in Raum nebendran vielleicht auch)

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Abbildungen

Der interessante Teil: Informationen

- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:
 - Rote Alarmleuchte ist ein Signal (blaue Signalleuchte in Raum nebendran vielleicht auch)
 - "Alarm": Nachricht

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

- Der interessante Teil: Informationen
- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:
 - Rote Alarmleuchte ist ein Signal (blaue Signalleuchte in Raum nebendran vielleicht auch)
 - "Alarm": Nachricht
 - Information:

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

- Der interessante Teil: Informationen
- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:
 - Rote Alarmleuchte ist ein Signal (blaue Signalleuchte in Raum nebendran vielleicht auch)
 - "Alarm": Nachricht
 - Information: Security soll herkommen

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Der interessante Teil: Informationen

- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:
 - Rote Alarmleuchte ist ein Signal (blaue Signalleuchte in Raum nebendran vielleicht auch)
 - "Alarm": Nachricht
 - Information: Security soll herkommen, Techniker sollen das Werkzeug bereit halten

Signale und Nachrichten

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Der interessante Teil: Informationen

- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:
 - Rote Alarmleuchte ist ein Signal (blaue Signalleuchte in Raum nebendran vielleicht auch)
 - "Alarm": Nachricht
 - Information: Security soll herkommen, Techniker sollen das Werkzeug bereit halten, Besucher sollten Platz machen.

Grundbegriffe Mengen der Informatik

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Erster wirklich wichtiger Teil.

Mengen

Alphabete

Grundbegriffe Mengen der Informatik

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu
Organisatorisches

Signale und Nachrichten

Zeichnung

Mengen

Alphabete

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorisches

"Unter einer Menge

Signale und Nachrichten

Mengen

Alphabete

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorisches

"Unter einer Menge verstehen wir jede Zusammenfassung

Signale und Nachrichten

Mengen

Alphabete

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorisches

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten

Signale und Nachrichten

Mengen

Alphabete

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen "Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen "Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorisches

Signale und Nachrichten

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens

Mengen

Alphabete

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorisches

Signale und Nachrichten

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden)

Mengen

Alphabete

Abbildungen

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorisches

Signale und Nachrichten

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

Mengen

Alphabete

Mengen

Maximilian Staab. uxhdf@student.kit.edu. Lukas Bach.

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Abbildungen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

Beispiel:

Mengen

Maximilian Staab. uxhdf@student.kit.edu. Lukas Bach.

lukas.bach@student.kit.edu **Definition: Mengen**

Organisatorisches

Signale und

Nachrichten

Mengen

Alphabete

Abbildungen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

Beispiel: $\{a, b, c, d\}$

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorisches

Signale und Nachrichten

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

Mengen

Alphabete

Relationen und Abbildungen $\bullet \text{ Beispiel:} \{a, b, c, d\} =: A,$

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Organisatorisches "11

Signale und

Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Definition: Mengen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

■ Beispiel:
$$\{a, b, c, d\} =: A, \{a, c, 4\} =: B, \{10, 11\} =: C$$

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Definition: Mengen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

- Beispiel: $\{a, b, c, d\} =: A, \{a, c, 4\} =: B, \{10, 11\} =: C$
- Das Objekt c ist in A enthalten

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Abbildungen

Definition: Mengen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

■ Beispiel: $\{a, b, c, d\} =: A, \{a, c, 4\} =: B, \{10, 11\} =: C$

Das Objekt c ist in A enthalten: $c \in A$

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Abbildungen

Definition: Mengen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

■ Beispiel: $\{a, b, c, d\}$ =: $A, \{a, c, 4\}$ =: $B, \{10, 11\}$ =: C

■ Das Objekt c ist in A enthalten: $c \in A$, $c \in B$

Mengen

Maximilian Staah uxhdf@student.kit.edu. Lukas Bach.

lukas.bach@student.kit.edu

Definition: Mengen

Signale und Nachrichten

Mengen

Alphabete

Abbildungen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

- Beispiel: $\{a, b, c, d\} =: A, \{a, c, 4\} =: B, \{10, 11\} =: C$
- Das Objekt c ist in A enthalten: $c \in A$, $c \in B$, $c \notin C$

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

- Beispiel: $\{a, b, c, d\} =: A, \{a, c, 4\} =: B, \{10, 11\} =: C$
- Das Objekt c ist in A enthalten: $c \in A$, $c \in B$, $c \notin C$
- Reihenfolge gleich

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.edu

Definition: Mengen

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen "Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

- Beispiel: $\{a, b, c, d\} =: A, \{a, c, 4\} =: B, \{10, 11\} =: C$
- Das Objekt c ist in A enthalten: $c \in A$, $c \in B$, $c \notin C$
- Reihenfolge gleich: $\{a, b\} = \{b, a\}$

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Definition: Mengen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

- Beispiel: $\{a, b, c, d\} =: A, \{a, c, 4\} =: B, \{10, 11\} =: C$
- Das Objekt c ist in A enthalten: $c \in A$, $c \in B$, $c \notin C$
- Reihenfolge gleich: $\{a, b\} = \{b, a\}$
- Elemente doppelt?

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.edu

oricohoo

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Definition: Mengen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

- Beispiel: $\{a, b, c, d\}$ =: $A, \{a, c, 4\}$ =: $B, \{10, 11\}$ =: C
- Das Objekt c ist in A enthalten: $c \in A$, $c \in B$, $c \notin C$
- Reihenfolge gleich: $\{a, b\} = \{b, a\}$
- Elemente doppelt? $\{a, a, b, a\} = \{a, b\}$

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Kardinalität

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Kardinalität oder Größe

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

Organisatorisches

• $A := \{a, b, c\}$

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

• $A := \{a, b, c\}. |A| = 3$

Organisatorisches
Signale und

Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

• $A := \{a, b, c\}. |A| = 3$

• $B := \{c, d\}$

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

• $A := \{a, b, c\}. |A| = 3$

• $B := \{c, d\}. |B| = 2$

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Organisatorisches

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

- $A := \{a, b, c\}. |A| = 3$
- $B := \{c, d\}. |B| = 2$
- Was ist |{1, 2, 3, 2}|?

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

- $A := \{a, b, c\}. |A| = 3$
- $B := \{c, d\}. |B| = 2$
- Was ist |{1, 2, 3, 2}|? 3!

Mengen

Signale und

Nachrichten

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

- $A := \{a, b, c\}. |A| = 3$
- $B := \{c, d\}. |B| = 2$
- Was ist |{1, 2, 3, 2}|? 3!
- Was ist |{}|?

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

- $A := \{a, b, c\}. |A| = 3$
- $B := \{c, d\}. |B| = 2$
- Was ist |{1, 2, 3, 2}|? 3!
- Was ist |{}|? 0

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

- $A := \{a, b, c\}. |A| = 3$
- $B := \{c, d\}. |B| = 2$
- Was ist |{1, 2, 3, 2}|? 3!
- Was ist |{}|? 0

Mengen

Leere Menge

Alphabete

Die Menge, die nichts enthält, nennen wir die leere Menge

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

• $A := \{a, b, c\}. |A| = 3$

• $B := \{c, d\}. |B| = 2$

■ Was ist |{1, 2, 3, 2}|? 3!

Was ist |{}|? 0

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Leere Menge

Die Menge, die nichts enthält, nennen wir die leere Menge, und schreiben sie als $\{\}$ oder \emptyset .

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

- $A := \{a, b, c\}. |A| = 3$
- $B := \{c, d\}. |B| = 2$
- Was ist |{1, 2, 3, 2}|? 3!
- Was ist |{}|? 0

Mengen

Alphabete

Signale und

Relationen und Abbildungen

Leere Menge

Die Menge, die nichts enthält, nennen wir die leere Menge, und schreiben sie als $\{\}$ oder \emptyset .

Was ist |{{}}|?

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

- $A := \{a, b, c\}. |A| = 3$
- $B := \{c, d\}. |B| = 2$
- Was ist |{1, 2, 3, 2}|? 3!
- Was ist |{}|? 0

Mengen

Alphabete

Signale und

Relationen und Abbildungen Leere Menge

Die Menge, die nichts enthält, nennen wir die leere Menge, und schreiben sie als $\{\}$ oder \emptyset .

Was ist |{{}}|? 1!

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

- $A := \{a, b, c\}. |A| = 3$
- $B := \{c, d\}. |B| = 2$
- Was ist |{1, 2, 3, 2}|? 3!
- Was ist |{}|? 0

Mengen

Alphabete

Signale und

Relationen und Abbildungen

Leere Menge

Die Menge, die nichts enthält, nennen wir die leere Menge, und schreiben sie als $\{\}$ oder \emptyset .

Was ist $\{\{\}\}\}$? 1! $\{\emptyset\}$ enthält eine leere Menge, die selbst ein Element ist.

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Zeichnung

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, white Student .kit .edu, Lukas Bach. Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}$.

Organisatorisches

lukas.bach@student.kit.edu

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas bach@student kit edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

Teilmenge

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas bach@student kit edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

Teilmenge: A ⊆ B

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas bach@student kit edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

■ Teilmenge: $A \subseteq B$, also A ist Teilmenge von B

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

■ Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Organisatorisches Echte Teilmenge

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

- Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$
 - Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.

Organisatorisches

■ Echte Teilmenge: $A \subset B$

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

- Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$
 - Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.

Organisatorisches

■ Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele:

Organisatorisches

Signale und

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: B ⊆ A

Organisatorisches

Signale und

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$.

Organisatorisches

Signale und

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$

Organisatorisches

Signale und

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$

Organisatorisches

Signale und

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B$

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$.

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staah uxhdf@student.kit.edu. Lukas Bach. lukas bach@student kit edu

Organisatorisches

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subseteq A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in A *und* in B sind.
- Vereinigungsmenge

Signale und

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: A ∪ D

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$.
- $A \cap B$ enthält *genau* die Elemente, die in A und in B sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$.

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staah uxhdf@student.kit.edu. Lukas Bach. lukas bach@student kit edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subseteq A$.
- $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in A *und* in B sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in *A oder* in *B* sind.

Mengen

Alphabete

Signale und

Nachrichten

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in *A oder* in *B* sind.
- Mengendifferenz:

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in A oder in B sind.
- Mengendifferenz: A \ B

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in A oder in B sind.
- Mengendifferenz: $A \setminus B = \{a\}$

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in *A oder* in *B* sind.
- Mengendifferenz: $A \setminus B = \{a\}$, also alle Elemente in A, die nicht in B sind.

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in A oder in B sind.
- Mengendifferenz: $A \setminus B = \{a\}$, also alle Elemente in A, die nicht in B sind.
- Komplementärmenge:

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in *A oder* in *B* sind.
- Mengendifferenz: $A \setminus B = \{a\}$, also alle Elemente in A, die nicht in B sind.
- Komplementärmenge: Ā

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in A oder in B sind.
- Mengendifferenz: $A \setminus B = \{a\}$, also alle Elemente in A, die nicht in B sind.
- Nomplementärmenge: \bar{A} enthält alle Elemente des *Universums*, die nicht in A sind.

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in A oder in B sind.
- Mengendifferenz: $A \setminus B = \{a\}$, also alle Elemente in A, die nicht in B sind.
- Nomplementärmenge: \overline{A} enthält alle Elemente des *Universums*, die nicht in A sind. Angenommen, Universum = Lateinisches Alphabet:

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Mehr über Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in A oder in B sind.
- Mengendifferenz: $A \setminus B = \{a\}$, also alle Elemente in A, die nicht in B sind.
- Komplementärmenge: \bar{A} enthält alle Elemente des *Universums*, die nicht in A sind. Angenommen, Universum = Lateinisches Alphabet: $\bar{A} = \{d, e, f, g, \dots, y, z\}$

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge

Signale und Nachrichten

Mengen

Alphabete

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M

Signale und Nachrichten

Mengen

Alphabete

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M einer Menge M

Signale und Nachrichten

Mengen

Alphabete

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale und Nachrichten

Mengen

Alphabete

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale und Nachrichten

Was bedeutet das allgemein?

Mengen

Alphabete

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale und Nachrichten

Was bedeutet das allgemein?

Mengen

 $M \in 2^M$

Alphabete

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale und Nachrichten

Was bedeutet das allgemein?

Mengen

■ $M \in 2^M$

Alphabete

 $\quad \blacksquare \ \emptyset \in 2^M$

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale und Nachrichten

Was bedeutet das allgemein?

Mengen

■ $M \in 2^M$

Alphabete

 $\emptyset \in 2^M$

Relationen un Abbildungen Konkretes Beispiel:

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale und Nachrichten

Was bedeutet das allgemein?

Mengen

■ $M \in 2^M$

Alphabete

Relationen und Abbildungen • Konkretes Beispiel: Was ist 2^M mit $M = \{0, 1\}$?

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale und Nachrichten

Was bedeutet das allgemein?

Mengen

■ $M \in 2^M$

Alphabete

 $\emptyset \in 2^M$ • Kankrataa Pajanjak Waa jat 2^M m

Relationen und Abbildungen • Konkretes Beispiel: Was ist 2^M mit $M = \{0, 1\}$?

■ Natürlich $\emptyset \in 2^M$ und $\{0, 1\} \in 2^M$.

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale und Nachrichten

Was bedeutet das allgemein?

Mengen

 $M \in 2^M$ $\emptyset \in 2^M$

Alphabete

Nonkretes Beispiel: Was ist 2^M mit $M = \{0, 1\}$?

Relationen und Abbildungen ■ Natürlich $\emptyset \in 2^M$ und $\{0, 1\} \in 2^M$.

• $\{0\} \in 2^M$

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale und Nachrichten

Was bedeutet das allgemein?

Mengen

 $M \in 2^M$

Alphabete

∅ ∈ 2^M
Konkretes Beispiel: Was ist 2^M mit M = {0, 1}?

Relationen und Abbildungen Natürlich $\emptyset \in 2^M$ und $\{0,1\} \in 2^M$.

• $\{0\} \in 2^M \text{ und } \{1\} \in 2^M$.

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisches

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale und Nachrichten

Was bedeutet das allgemein?

Mengen

■ $M \in 2^M$

Alphabete

 $\emptyset \in 2^M$ • Kankrataa Pajanjal: Waa jat 2^M n

Relationen und Abbildungen Nonkretes Beispiel: Was ist 2^M mit $M = \{0, 1\}$?

■ Natürlich $\emptyset \in 2^M$ und $\{0,1\} \in 2^M$.

■ $\{0\} \in 2^M \text{ und } \{1\} \in 2^M.$

Weitere?

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisch

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale un Nachrichte

Was bedeutet das allgemein?

Mengen

 $M \in 2^M$ $\emptyset \in 2^M$

Alphabete

Nonkretes Beispiel: Was ist 2^M mit $M = \{0, 1\}$?

Relationen und Abbildungen ■ Natürlich $\emptyset \in 2^M$ und $\{0, 1\} \in 2^M$.

■ $\{0\} \in 2^M \text{ und } \{1\} \in 2^M.$

• Weitere? Nein, diese vier Mengen sind alle möglichen Teilmengen.

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Potenzmenge

Organisatorisch

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Signale un Nachrichte

Was bedeutet das allgemein?

Mengen

■ $M \in 2^M$

Alphabete

∅ ∈ 2^M
Konkretes Beispiel: Was ist 2^M mit M = {0, 1}?

Relationen und Abbildungen Natürlich $\emptyset \in 2^M$ und $\{0, 1\} \in 2^M$.

■ $\{0\} \in 2^M \text{ und } \{1\} \in 2^M$.

• Weitere? Nein, diese vier Mengen sind alle möglichen Teilmengen.

 $\Rightarrow 2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}.$

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.ed $M = \{0, 1\}$

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.ed $M=\{0,1\},\,2^M=\{\{\},\{0\},\{1\},\{0,1\}\}.$

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Potenzmenge

Maximilian Staab.

uxhdf@student.kit.edu,

Was ist 2^{2^M}?

Organisatorisches

■ Also 2^{{{},{0},{1},{0,1}}}

Signale und Nachrichten

Mengen

Alphabete

Potenzmenge

Maximilian Staab.

uxhdf@student.kit.edu,

Lukas Bach, lukas bach@student.kit.edu = $\{0, 1\}$, $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}$.

Was ist 2^{2^M} ?

Organisatorisches

■ Also 2^{{{},{0},{1},{0,1}}}

Signale und Nachrichten ■ Natürlich $\emptyset \in 2^M$ und $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$.

Mengen

Alphabete

Potenzmenge

Maximilian Staab. uxhdf@student.kit.edu,

Lukas Bach, lukas bach@student.kit.edu = $\{0, 1\}$, $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}$. Was ist 2^{2^M} ?

Organisatorisches

■ Also 2^{{{},{0},{1},{0,1}}}

Signale und Nachrichten ■ Natürlich $\emptyset \in 2^M$ und $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$.

2^{2M}

Mengen

Alphabete

Potenzmenge

Maximilian Staab. uxhdf@student.kit.edu,

Lukas Bach, lukas bach@student.kit.edu = $\{0, 1\}$, $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}$. Was ist 2^{2^M} ?

Organisatorisches

■ Also 2^{{{},{0},{1},{0,1}}}

Signale und Nachrichten ■ Natürlich $\emptyset \in 2^M$ und $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$.

$$2^{2^M} = \{$$

Mengen

Alphabete

Potenzmenge

Maximilian Staab. uxhdf@student.kit.edu,

Lukas Bach, lukas bach@student.kit.edu = $\{0, 1\}$, $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}$. Was ist 2^{2^M} ?

Organisatorisches

■ Also 2^{{{},{0},{1},{0,1}}}

Signale und Nachrichten

Mengen

■ Natürlich $\emptyset \in 2^M$ und $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$.

 $2^{2^M} = \{$

Alphabete

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu,

Lukas Bach, lukas bach@student.kit.edu
$$M = \{0, 1\}, 2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}.$$
 Was ist 2^{2^M} ?

Organisatorisches

• Also 2^{{{},{0},{1},{0,1}}}.

Signale und Nachrichten

■ Natürlich $\emptyset \in 2^M$ und $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$.

Mengen

$$2^{2^{M}} = \{ \{ \}, \{ \{0\}\}, \{ \{1\}\}, \{ \{0, 1\} \}, \{ \{0,$$

Alphabete

Potenzmenge

Maximilian Staab uxhdf@student.kit.edu.

Lukas Bach, lukas bach@student.kit.edu
$$M = \{0, 1\}, 2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}.$$
 Was ist 2^{2^M} ?

Organisatorisches

■ Also 2^{{{},{0},{1},{0,1}}}

Signale und

■ Natürlich $\emptyset \in 2^M$ und $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$.

Mengen

Alphabete

$$2^{2^{M}} = \{ \\ \{ \}, \\ \{ \{ \} \}, \{ \{ 0 \} \}, \{ \{ 1 \} \}, \{ \{ 0, 1 \} \}, \\ \{ \{ \}, \{ 0 \} \}, \{ \{ \}, \{ 1 \} \}, \{ \{ \}, \{ 0, 1 \} \}, \{ \{ 0 \}, \{ 1 \} \}, \\ \{ \{ 0 \}, \{ 0, 1 \} \}, \{ \{ 1 \}, \{ 0, 1 \}, \\ \}, \}$$

Potenzmenge

Maximilian Staab, uxhdf@student.kit.edu,

Lukas Bach, lukas bach@student.kit.edu
$$M = \{0, 1\}, 2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}.$$
 Was ist 2^{2^M} ?

Organisatorisches

 $2^{2^M} = {$

Signale und Nachrichten

■ Natürlich
$$\emptyset \in 2^M$$
 und $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$.

Mengen

Alphabete

$$\{\{\},\{0\},\{1\}\},\{\{\},\{0\},\{0,1\}\},\{\{\},\{1\},\{0,1\}\},\{\{0\},\{1\},\{0,1\}\},$$

Potenzmenge


```
Maximilian Staab
uxhdf@student.kit.edu.
```

■ Also 2^{{{},{0},{1},{0,1}}}

Signale und

■ Natürlich $\emptyset \in 2^M$ und $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$.

```
Mengen
```

Alphabete

```
2^{2^M} = {
   {{}}, {{0}}, {{1}}, {{0, 1}},
   {{}, {0}}, {{}}, {1}}, {{}}, {{0}, 1}}, {{{0}}, {1}},
      {{0}, {0, 1}}, {{1}, {0, 1}},
   {{}, {0}, {1}}, {{}}, {{0}}, {0, 1}}, {{}}, {{1}}, {{0}}, {1}}, {{0, 1}}},
   {{}, {0}, {1}, {0, 1}}
```

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Ein Alphabet ist eine *endliche*, *nichtleere* Menge von Zeichen.

Organisatorisches

Was davon sind Alphabete?

Signale und Nachrichten

Mengen

Alphabete

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Organisatorisches

Was davon sind Alphabete? $\{d, 34, \pi, \%\}$

Signale und Nachrichten

Mengen

Alphabete

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Organisatorisches

Was davon sind Alphabete? $\{d, 34, \pi, \%\}, \{a, b, c, \dots, y, z\}$

Signale und Nachrichten

Mengen

Alphabete

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Organisatorisches

Was davon sind Alphabete? $\{d, 34, \pi, \%\}, \{a, b, c, \dots, y, z\}, \emptyset$

Signale und Nachrichten

Mengen

Alphabete

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Organisatorisches

Was davon sind Alphabete? $\{d, 34, \pi, \%\}, \{a, b, c, \dots, y, z\}, \emptyset, \mathbb{N}$.

Signale und Nachrichten

Mengen

Alphabete

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Was davon sind Alphabete? $\{d, 34, \pi, \%\}, \{a, b, c, \dots, y, z\}, \emptyset, \mathbb{N}$.

• $\{d, 34, \pi, \%\}$ und $\{a, b, c, \dots, y, z\}$ sind Alphabete.

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Organisatorisches

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

 $\{d, 34, \pi, \%\}$ und $\{a, b, c, \ldots, y, z\}$ sind Alphabete.

Signale und Nachrichten

Was davon sind Alphabete? $\{d, 34, \pi, \%\}, \{a, b, c, \dots, y, z\}, \emptyset, \mathbb{N}$.

Ø ist leer und damit kein Alphabet.

Mengen

Alphabete

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Organisatorisch

Ein Alphabet ist eine *endliche*, *nichtleere* Menge von Zeichen.

Was davon sind Alphabete? $\{d, 34, \pi, \%\}, \{a, b, c, \dots, y, z\}, \emptyset, \mathbb{N}$.

Signale und Nachrichten

• $\{d, 34, \pi, \%\}$ und $\{a, b, c, \dots, y, z\}$ sind Alphabete.

Menger

 $lack \emptyset$ ist leer und damit kein Alphabet.

Alphabete

■ $\mathbb{N} = \{1, 2, 3, ...\}$ enthält alle natürlichen Zahlen und ist damit nicht endlich, also kein Alphabet.

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Organisatorisch

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Signale une Nachrichte

Was davon sind Alphabete? $\{d, 34, \pi, \%\}, \{a, b, c, \dots, y, z\}, \emptyset, \mathbb{N}$.

Menger

• $\{d, 34, \pi, \%\}$ und $\{a, b, c, \dots, y, z\}$ sind Alphabete.

Alphabete

 $lack \emptyset$ ist leer und damit kein Alphabet.

Relationen und Abbildungen ■ $\mathbb{N} = \{1, 2, 3, ...\}$ enthält alle natürlichen Zahlen und ist damit nicht endlich, also kein Alphabet.

• {0, 1} ist das Alphabet, das alle Binärzahlen enthält.

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Organisatorische

Ein Alphabet ist eine *endliche*, *nichtleere* Menge von Zeichen.

Signale une Nachrichte

Was davon sind Alphabete? $\{d, 34, \pi, \%\}, \{a, b, c, \dots, v, z\}, \emptyset, \mathbb{N}$.

Menger

• $\{d, 34, \pi, \%\}$ und $\{a, b, c, \dots, y, z\}$ sind Alphabete.

Alphabete

 $lack \emptyset$ ist leer und damit kein Alphabet.

Relationen und Abbildungen ■ $\mathbb{N} = \{1, 2, 3, ...\}$ enthält alle natürlichen Zahlen und ist damit nicht endlich, also kein Alphabet.

• {0, 1} ist das Alphabet, das alle Binärzahlen enthält.

• $\{\cdot, +, -, /\}$ =: R ist ein Alphabet von Rechenzeichen.

Alphabete

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Alphabet

Organisatorisch

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Signale un Nachrichte Was davon sind Alphabete? $\{d, 34, \pi, \%\}, \{a, b, c, \dots, v, z\}, \emptyset, \mathbb{N}$.

Menger

• $\{d, 34, \pi, \%\}$ und $\{a, b, c, \dots, y, z\}$ sind Alphabete.

Alphabete

 $lack \emptyset$ ist leer und damit kein Alphabet.

Relationen und Abbildungen ■ $\mathbb{N} = \{1, 2, 3, ...\}$ enthält alle natürlichen Zahlen und ist damit nicht endlich, also kein Alphabet.

• {0, 1} ist das Alphabet, das alle Binärzahlen enthält.

• $\{\cdot,+,-,/\}$ =: R ist ein Alphabet von Rechenzeichen. $R \cup \{0,1,\ldots,9\}$ ist ein Alphabet, das ein Taschenrechner als Eingabealphabet benutzen könnte.

Paare und Tupel

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Paare und Tupel

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Paar

Signale und Nachrichten

Ein Paar ist eine geordnete Menge der Kardinalität 2.

Mengen

Alphabete

Paare und Tupel

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Paar

Signale und Nachrichten

Ein Paar ist eine geordnete Menge der Kardinalität 2.

Schreibweise mit runden Klammern ().

Menger

Alphabete

Paare und Tupel

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Paar

Signale und Nachrichten

Ein Paar ist eine geordnete Menge der Kardinalität 2.

Schreibweise mit runden Klammern ().

Menger

Beispiel: (a, 4)

Alphabete

Paare und Tupel

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Paar

Signale und Nachrichten

Ein Paar ist eine geordnete Menge der Kardinalität 2.

Schreibweise mit runden Klammern ().

Menger

• Beispiel: $(a, 4) \neq (4, a)$

Alphabete

Paare und Tupel

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Paar

Nachrichte

Ein Paar ist eine geordnete Menge der Kardinalität 2.

Menger

Schreibweise mit runden Klammern ().

Alphabete

■ Beispiel: (a, 4) ≠ (4, a)

Relationen und Abbildungen Beispiel für eine Menge aus Tupeln: {("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "Shooter")}

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Tupel

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Tupel

Signale und Nachrichten

Ein Tupel ist eine geordnete Menge.

Mengen

Alphabete

Tupel

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Tupel

Signale und Nachrichten

Ein Tupel ist eine geordnete Menge. Konkret ist ein *n*-Tupel ein Tupel der Kardinalität *n*.

Menger

Alphabete

Tupel

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Tupel

Signale und Nachrichten

Ein Tupel ist eine geordnete Menge. Konkret ist ein *n*-Tupel ein Tupel der Kardinalität *n*.

Menger

Also wie ein Paar, nur mit beliebiger Kardinalität.

Alphabete

Tupel

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Signale und

Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Tupel

Ein Tupel ist eine geordnete Menge. Konkret ist ein n-Tupel ein Tupel der Kardinalität n.

Also wie ein Paar, nur mit beliebiger Kardinalität. Ein Paar ist spezifisch ein 2-Tupel.

Tupel

Maximilian Staab. uxhdf@student.kit.edu. Lukas Bach, lukas bach@student kit edu

Signale und

Nachrichten

Alphabete

Relationen und Abbildungen

Tupel

Ein Tupel ist eine geordnete Menge. Konkret ist ein n-Tupel ein Tupel der Kardinalität n.

Also wie ein Paar, nur mit beliebiger Kardinalität. Ein Paar ist spezifisch ein 2-Tupel.

Beispiel: (4tb, 512gb, 128gb, 4mb)

Tupel

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorische

Signale und

Nachrichter

Menger

Alphabete

Relationen und Abbildungen

Tupel

Ein Tupel ist eine geordnete Menge. Konkret ist ein *n*-Tupel ein Tupel der Kardinalität *n*.

Also wie ein Paar, nur mit beliebiger Kardinalität. Ein Paar ist spezifisch ein 2-Tupel.

Beispiel: $(4tb, 512gb, 128gb, 4mb) \neq (512gb, 4mb, 4tb, 128gb)$.

Kartesisches Produkt

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches Zwei Mengen: $A := \{a, b, c\}$

Signale und Nachrichten

Mengen

Alphabete

Kartesisches Produkt

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Organisatorisches Zwei Mengen: $A := \{a, b, c\}$ und $B := \{1, 2, 3\}$.

Signale und Nachrichten

Mengen

Alphabete

Kartesisches Produkt

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Organisatorisches

Zwei Mengen: $A := \{a, b, c\}$ und $B := \{1, 2, 3\}$. Wir wollen alle Tupel

Signale und

Menger

Alphabete

Kartesisches Produkt

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Zwei Mengen: $A := \{a, b, c\}$ und $B := \{1, 2, 3\}$. Wir wollen alle Tupel mit erstem Element aus A

Signale und

Menger

Alphabete

Kartesisches Produkt

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Zwei Mengen: $A := \{a, b, c\}$ und $B := \{1, 2, 3\}$.

Wir wollen alle Tupel mit erstem Element aus A und zweiten Element aus B.

Signale und Nachrichten

Menger

Alphabete

Kartesisches Produkt

Maximilian Staah uxhdf@student.kit.edu. Lukas Bach. lukas bach@student kit edu

Organisatorisches

Zwei Mengen: $A := \{a, b, c\}$ und $B := \{1, 2, 3\}$. Wir wollen alle Tupel mit erstem Element aus A und zweiten Element aus B.

Signale und Nachrichten

(a,1),(a,2),(a,3), (b,1),(b,2),(b,3), (c,1),(c,2),(c,3)

Alphabete

Kartesisches Produkt

Maximilian Staah uxhdf@student.kit.edu. Lukas Bach. lukas bach@student kit edu

Organisatorisches

Zwei Mengen: $A := \{a, b, c\}$ und $B := \{1, 2, 3\}$.

Signale und Nachrichten

Wir wollen alle Tupel mit erstem Element aus A und zweiten Element aus B. $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(c,1),(c,2),(c,3)\}$

 $= A \times B$

Alphabete

Kartesisches Produkt

Maximilian Staab uxhdf@student.kit.edu. Lukas Bach. lukas bach@student kit edu

Organisatorisches

Zwei Mengen: $A := \{a, b, c\}$ und $B := \{1, 2, 3\}$.

Signale und

Wir wollen alle Tupel mit erstem Element aus A und zweiten Element aus B. $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(c,1),(c,2),(c,3)\}$

 $= A \times B$

Kreuzprodukt von zwei Mengen

Alphabete

Zu zwei Mengen A und B ist das Kreuzprodukt definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Kreuzprodukt

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Kreuzprodukt von zwei Mengen

Organisatorisches

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Signale und Nachrichten

Kreuzprodukt von n Mengen

Menge

Zu n Mengen M_1, M_2, \ldots, M_n

Alphabete

Kreuzprodukt

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Kreuzprodukt von zwei Mengen

Organisatorisches

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Signale und Nachrichten

Kreuzprodukt von n Mengen

Menge

Zu *n* Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$

Alphabete

Kreuzprodukt

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Kreuzprodukt von zwei Mengen

Organisatorisches

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Signale un Nachrichte

Kreuzprodukt von n Mengen

Menge

Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n)

Alphabete

Kreuzprodukt

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Kreuzprodukt von zwei Mengen

Organisatorisches

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Signale un Nachrichte

Kreuzprodukt von n Mengen

Menge

Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n) mit $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$.

Alphabete

Kreuzprodukt

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Kreuzprodukt von zwei Mengen

Organisatorisches

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Nachrichte

Kreuzprodukt von n Mengen

Menge

Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n) mit $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$.

Alphabete
Relationen und
Abbildungen

Mengenpotenz

 $\underbrace{A\times A\times \cdots \times A}=A^{n}.$

 $n \times ma$

Kreuzprodukt: Beispiele

Maximilian Staab. uxhdf@student.kit.edu. Lukas Bach. lukas bach@student kit edu

Signale und Nachrichten

Alphabete

Relationen und Abbildungen

Kreuzprodukt von zwei Mengen

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Kreuzprodukt: Beispiele

Maximilian Staah uxhdf@student.kit.edu. Lukas Bach. lukas bach@student kit edu

Signale und Nachrichten

Alphabete

Relationen und Abbildungen

Kreuzprodukt von zwei Mengen

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

$$A := \{a, b\}, B := \{1, 2\}.$$

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Mengen

Alphabete

Kreuzprodukt von zwei Mengen

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

 $A := \{a, b\}, B := \{1, 2\}. A \times B$

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Kreuzprodukt von zwei Mengen

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

 $A := \{a, b\}, B := \{1, 2\}. \ A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}.$

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Kreuzprodukt von n Mengen

Signale und Nachrichten

Zu n Mengen M_1, M_2, \ldots, M_n

Menger

Alphabete

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Organisatorisches

Kreuzprodukt von n Mengen

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen Zu n Mengen $M_1,\,M_2,\,\ldots,\,M_n$ ist das Kreuzprodukt $M_1\times M_2\times\cdots\times M_n$

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Kreuzprodukt von n Mengen

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n)

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Kreuzprodukt von n Mengen

Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n) mit $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$.

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Kreuzprodukt von n Mengen

Nachrichten

Menge

Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n) mit $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$.

Alphabete

$$A := \{a, b\}, B := \{1, 2\}, C := \{\omega\}. A \times B \times C$$

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichter

Menger

Alphabete

Relationen und Abbildungen

Kreuzprodukt von n Mengen

Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n) mit $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$.

$$A := \{a, b\}, B := \{1, 2\}, C := \{\omega\}. A \times B \times C$$

= $\{(a, 1, \omega), (a, 2, \omega), (b, 1, \omega), (b, 2, \omega)\}.$

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Organisatorisches

$$\underbrace{A \times A \times \cdots \times A}_{n} = A^{n}.$$

Mengenpotenz

Signale und Nachrichten

Menger

Alphabete

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

$$\underbrace{A\times A\times \cdots \times A}_{nmal}=A^{n}.$$

Mengen

•
$$A := \{a, b\}.$$

Alphabete

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

$$\underbrace{A \times A \times \cdots \times A}_{nmal} = A^{n}.$$

Mengen

•
$$A := \{a, b\}. A^2$$

Alphabete

Kreuzprodukt: Beispiele

Maximilian Staab. uxhdf@student.kit.edu. Lukas Bach,

lukas bach@student kit edu

Organisatorisches

Signale und

Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Mengenpotenz

$$\underbrace{A \times A \times \cdots \times A}_{nmal} = A^{n}.$$

•
$$A := \{a, b\}. A^2 = \{(a, b), (b, a), (a, a), (b, b)\}$$

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Organisatorisches

$$\underbrace{A \times A \times \cdots \times A}_{nmal} = A^n.$$

Mengenpotenz

Signale und Nachrichten

Menger

A.

Alphabete

Relationen und Abbildungen • $A := \{a, b\}. A^2 = \{(a, b), (b, a), (a, a), (b, b)\}$ $A^3 = \{(a, a, a), (a, a, b), (a, b, b), \dots\}.$

Kreuzprodukt: Beispiele

Maximilian Staah uxhdf@student.kit.edu. Lukas Bach. lukas.bach@student.kit.edu

Mengenpotenz Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

 $\underbrace{A \times A \times \cdots \times A} = A^n.$

- $A := \{a, b\}. A^2 = \{(a, b), (b, a), (a, a), (b, b)\}$ $A^3 = \{(a, a, a), (a, a, b), (a, b, b), \ldots\}.$
- A beliebige Menge.

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

o und

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Mengenpotenz

$$\underbrace{A \times A \times \cdots \times A}_{nmal} = A^{n}.$$

- $A := \{a, b\}. A^2 = \{(a, b), (b, a), (a, a), (b, b)\}$ $A^3 = \{(a, a, a), (a, a, b), (a, b, b), \ldots\}.$
- A beliebige Menge. A⁰?

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Organisatorisches

Menger

Alphabete

Relationen und Abbildungen

Mengenpotenz

$$\underbrace{A \times A \times \cdots \times A}_{nmal} = A^{n}.$$

- $A := \{a, b\}. A^2 = \{(a, b), (b, a), (a, a), (b, b)\}$ $A^3 = \{(a, a, a), (a, a, b), (a, b, b), \dots\}.$
- A beliebige Menge. A^0 ? = \emptyset

Kreuzprodukt: Beispiele

Maximilian Staah uxhdf@student.kit.edu. Lukas Bach. lukas.bach@student.kit.edu

Organisatorisches

Mengenpotenz

Signale und

Alphabete

Relationen und Abbildungen

 $A \times A \times \cdots \times A = A^n$.

- $A := \{a, b\}, A^2 = \{(a, b), (b, a), (a, a), (b, b)\}$ $A^3 = \{(a, a, a), (a, a, b), (a, b, b), \dots\}.$
- A beliebige Menge. A^0 ? = \emptyset
- Achtung! $2^M \neq M^2$.

Kreuzprodukt: Beispiele

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Organisatorisches

Mengenpotenz $A \times A \times \cdots \times A = A^n.$

Signale und Nachrichten

Menger

Alphabete

•
$$A := \{a, b\}$$
. $A^2 = \{(a, b), (b, a), (a, a), (b, b)\}$
 $A^3 = \{(a, a, a), (a, a, b), (a, b, b), \dots\}$

- A beliebige Menge. A^0 ? = \emptyset
- Achtung! $2^M \neq M^2$. Potenzmengen nicht mit Mengenpotenz verwechseln!

Grundbegriffe Relation der Informatik

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relation

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Binäre Relation

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relation

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Binäre Relation

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Relation

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

Binäre Relation

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen Für die Mengen
M_{Spiele} = {"Battlefield", "AgeOfEmpires", "SeriousSam"},
M_{Genre} = {"Shooter", "Strategie"} sind folgendes mögliche
Relationen:

• {("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "Shooter")}

Relation

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Binäre Relation

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

- {("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "Shooter")}
- {("AgeOfEmpires", "Strategie"), ("AgeOfEmpires", "Shooter")

Relation

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Binäre Relation

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

- {("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "Shooter")}
- {("AgeOfEmpires", "Strategie"), ("AgeOfEmpires", "Shooter")
- Ø

Relation

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Binäre Relation

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

- {("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "Shooter")}
- $\blacksquare \ \{(``AgeOfEmpires'', ``Strategie''), (``AgeOfEmpires'', ``Shooter'')$
- "Kleinergleichrelation" auf $M = \{1, 2, 3\}$

Relation

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Binäre Relation

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

- {("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "Shooter")}
- $\blacksquare \ \{(``AgeOfEmpires'', ``Strategie''), (``AgeOfEmpires'', ``Shooter'')$
- Ø
- "Kleinergleichrelation" auf $M = \{1, 2, 3\}$: $R_{<} = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$

Relation

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Binäre Relation

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

- {("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "Shooter")}
- $\blacksquare \ \{(``AgeOfEmpires'', ``Strategie''), (``AgeOfEmpires'', ``Shooter'')$
- Ø
- "Kleinergleichrelation" auf $M = \{1, 2, 3\}$: $R \le \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\} \in M \times M$

Relation

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Binäre Relation

Organisatorisches Eine binäre Rela

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Signale und Nachrichten

Menger

Alphabete

Relation

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Binäre Relation

Organisatorisches Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Signale und Nachrichten

Ternäre Relation

Eine ternäre Relation auf drei Mengen A, B und C ist eine Menge $B \subseteq A \times B \times C$.

Alphabete

Relation

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Binäre Relation

Organisatorisches Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Nachrichten Ternäre Relation

Eine ternäre Relation auf drei Mengen A, B und C ist eine Menge

 $R \subseteq A \times B \times C$.

Alphabete n-äre Relation

Relationen und Eine n-äre Relation auf n Mengen M_1 , M_2 ... M_n ist eine Menge $R \subseteq M_1 \times M_2 \times \cdots \times M_n$.

Linkstotalität

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.e

Linkstotale Relation

'Eine Relation $R \subseteq A \times B$ heißt linkstotal

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Linkstotalität

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Linkstotale Relation

Eine Relation $R \subseteq A \times B$ heißt linkstotal, wenn für jedes $a \in A$ ein $b \in B$ existiert mit $(a, b) \in R$.

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Linkstotalität

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Linkstotale Relation

Eine Relation $R \subseteq A \times B$ heißt linkstotal, wenn für jedes $a \in A$ ein $b \in B$ existiert mit $(a, b) \in R$.

Organisatorisches

Die linke Seite der Relation ist also "total" aufgefüllt.

Signale und Nachrichten

Menger

Alphabete

Linkstotalität

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Linkstotale Relation

Eine Relation $R \subseteq A \times B$ heißt linkstotal, wenn für jedes $a \in A$ ein $b \in B$ existiert mit $(a, b) \in R$.

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen Die linke Seite der Relation ist also "total" aufgefüllt.

Rechtstotalität

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Rechtstotale Relation

, Eine Relation $R \subseteq A \times B$ heißt rechtstotal

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Rechtstotalität

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Rechtstotale Relation

Eine Relation $R \subseteq A \times B$ heißt rechtstotal, wenn für jedes $b \in B$ ein $a \in A$ existiert mit $(a, b) \in R$.

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Rechtstotalität

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Rechtstotale Relation

Eine Relation $R \subseteq A \times B$ heißt rechtstotal, wenn für jedes $b \in B$ ein $a \in A$ existiert mit $(a, b) \in R$.

Organisatorisches

Die rechte Seite der Relation ist also "total" aufgefüllt.

Signale und Nachrichten

Menger

Alphabete

Rechtstotalität

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, Rechtstotale Relation

Eine Relation $R \subseteq A \times B$ heißt rechtstotal, wenn für jedes $b \in B$ ein $a \in A$ existiert mit $(a, b) \in R$.

Organisatorisches

Die rechte Seite der Relation ist also "total" aufgefüllt.

Signale und Nachrichten

Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann surjektiv.

Menger

Alphabete

Rechtstotalität

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Rechtstotale Relation

Eine Relation $R \subseteq A \times B$ heißt rechtstotal, wenn für jedes $b \in B$ ein $a \in A$ existiert mit $(a, b) \in R$.

Organisatorisches

Signale und

Die rechte Seite der Relation ist also "total" aufgefüllt.

Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann surjektiv.

Menger

Alphabete

Linkseindeutigkeit

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

Linkseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Linkseindeutigkeit

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.e

Linkseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt:

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Linkseindeutigkeit

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

Linkseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $a \neq b$, dann Organisatorisches gilt auch $\alpha \neq \beta$.

Signale und

Nachrichter

Menger

Alphabete

Linkseindeutigkeit

Maximilian Staab,
uxhdf@student.kit.edu,
Lukas Bach,
lukas bach@student.kit.

Linkseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $a \neq b$, dann Organisatorisches gilt auch $\alpha \neq \beta$.

Signale und

Also: Keine zwei Elemente der linken Seite der Relation haben dasselbe rechte Element.

Nachrichte

Menger

Alphabete

Linkseindeutigkeit

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Linkseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $a \neq b$, dann Organisatorisches gilt auch $\alpha \neq \beta$.

Signale und

Also: Keine zwei Elemente der linken Seite der Relation haben dasselbe rechte Element.

Menge

Angenommen, $a \neq b$ und $\alpha = \beta$.

Alphabete

Linkseindeutigkeit

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Linkseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $a \neq b$, dann gilt auch $\alpha \neq \beta$.

Organisatorisches

Signale und Nachrichten

Also: Keine zwei Elemente der linken Seite der Relation haben dasselbe rechte Element.

Menge

Angenommen, $a \neq b$ und $\alpha = \beta$. \Rightarrow offenbar nicht linkseindeutig.

Alphabete

Linkseindeutigkeit

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

Linkseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $a \neq b$, dann gilt auch $\alpha \neq \beta$.

Organisatorisches

Signale und Nachrichten Also: Keine zwei Elemente der linken Seite der Relation haben dasselbe rechte Element.

Menge

Angenommen, $a \neq b$ und $\alpha = \beta$. \Rightarrow offenbar nicht linkseindeutig. Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann injektiv.

Alphabete

Linkseindeutigkeit

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Linkseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $a \neq b$, dann gilt auch $\alpha \neq \beta$.

Organisatorisches

Signale und Nachrichten

Also: Keine zwei Elemente der linken Seite der Relation haben dasselbe rechte Element.

Menge

Angenommen, $a \neq b$ und $\alpha = \beta$. \Rightarrow offenbar nicht linkseindeutig. Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann injektiv.

Alphabete

Rechtseindeutig

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Rechtseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Rechtseindeutig

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Rechtseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt:

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Rechtseindeutig

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

Rechtseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $\alpha \neq \beta$, dann gilt auch $a \neq b$.

Signale und

Organisatorisches

Nachrichten

Menger

Alphabete

Rechtseindeutig

Maximilian Staab,
uxhdf@student.kit.edu,
Lukas Bach,
lukas bach@student.kit.

Organisatorisches

Rechtseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $\alpha \neq \beta$, dann gilt auch $a \neq b$.

Signale und Nachrichten

Also: Keine zwei Elemente der rechten Seite der Relation haben dasselbe linke Element.

Menger

Alphabete

Rechtseindeutig

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Organisatorisches

Rechtseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $\alpha \neq \beta$, dann gilt auch $a \neq b$.

Signale und Nachrichten

Also: Keine zwei Elemente der rechten Seite der Relation haben dasselbe linke Element.

Menger

Alphabete

Grundbegriffe Ab

Abbildung

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Abbildung

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

Organisatorisches

Abbildung

Eine Relation *R* heißt eine Abbildung, wenn sie linkstotal *und* rechtseindeutig sind.

Signale und Nachrichten

Menger

Alphabete

Abbildung

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Organisatorisches

Abbildung

Eine Relation R heißt eine Abbildung, wenn sie linkstotal und rechtseindeutig sind.

Signale und Nachrichten

Injektive Funktion:

Menge

Alphabete

Abbildung

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Organisatorisches

Abbildung

Eine Relation R heißt eine Abbildung, wenn sie linkstotal und rechtseindeutig sind.

Signale und Nachrichten

Injektive Funktion: linkstotal, rechtseindeutig, linkseindeutig

Menge

Alphabete

Abbildung

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Organisatorisches

Abbildung

Eine Relation R heißt eine Abbildung, wenn sie linkstotal und rechtseindeutig sind.

Signale und Nachrichten

Injektive Funktion: linkstotal, rechtseindeutig, linkseindeutig

Surjektive Funktion:

Menger

Alphabete

Abbildung

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Organisatorisches

Abbildung

Eine Relation *R* heißt eine Abbildung, wenn sie linkstotal *und* rechtseindeutig sind.

Signale und Nachrichten

Injektive Funktion: linkstotal, rechtseindeutig, linkseindeutig

Surjektive Funktion: linkstotal, rechtseindeutig, rechtstotal

Menge

Alphabete

Abbildung

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Organisatorisches

Abbildung

Eine Relation *R* heißt eine Abbildung, wenn sie linkstotal *und* rechtseindeutig sind.

Signale und Nachrichten

Injektive Funktion: linkstotal, rechtseindeutig, linkseindeutig

Menger

Surjektive Funktion: linkstotal, rechtseindeutig, rechtstotal

Alphabete

Bijektivität

Eine Relation heißt bijektiv, wenn sie injektiv und surjektiv ist.

Abbildung

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Organisatorisches

Abbildung

Eine Relation *R* heißt eine Abbildung, wenn sie linkstotal *und* rechtseindeutig sind.

Signale un Nachrichte

Injektive Funktion: linkstotal, rechtseindeutig, linkseindeutig

Mengen

Surjektive Funktion: linkstotal, rechtseindeutig, rechtstotal

Alphabete

Bijektivität

Eine Relation heißt bijektiv, wenn sie injektiv und surjektiv ist.

Relationen und Abbildungen

Damit ist sie linkstotal und rechtseindeutig (weil es eine Abbildung ist) und linkseindeutig (injektiv) und rechtstotal (surjektiv).

Abbildung

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.

Organisatorisches

Abbildung

Eine Relation R heißt eine Abbildung, wenn sie linkstotal und rechtseindeutig sind.

Signale une Nachrichte

Injektive Funktion: linkstotal, rechtseindeutig, linkseindeutig

Surjektive Funktion: linkstotal, rechtseindeutig, rechtstotal

Menge

Bijektivität

Alphabete

Eine Relation heißt bijektiv, wenn sie injektiv und surjektiv ist.

Relationen und Abbildungen

Damit ist sie linkstotal und rechtseindeutig (weil es eine Abbildung ist) und linkseindeutig (injektiv) und rechtstotal (surjektiv).

Tolle Eigenschaft:

Abbildung

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Organisatorisches

Abbildung

Eine Relation *R* heißt eine Abbildung, wenn sie linkstotal *und* rechtseindeutig sind.

Signale un Nachrichte

Injektive Funktion: linkstotal, rechtseindeutig, linkseindeutig

Surjektive Funktion: linkstotal, rechtseindeutig, rechtstotal

Menger

Bijektivität

Alphabete

Relationen und Abbildungen Eine Relation heißt bijektiv, wenn sie injektiv und surjektiv ist.

Damit ist sie linkstotal und rechtseindeutig (weil es eine Abbildung ist) und linkseindeutig (injektiv) und rechtstotal (surjektiv).

Tolle Eigenschaft: Für jedes Element $(a, b) \in R$ der bijektiven Relation R ist jedem a genau ein b zugeordnet.

Abbildungen Schreibweise

Maximilian Staab. uxhdf@student.kit.edu, Lukas Bach,

Seien $A = B = \mathbb{R}$, $f \subseteq A \times B$.

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Abbildungen Schreibweise

Maximilian Staab. uxhdf@student.kit.edu. Lukas Bach,

Seien $A=B=\mathbb{R}$, $f\subseteq A imes B$. Wir suchen Relation, die für jedes $a\in A$ ein Element $(a, b) \in f$ enthält mit $b = a^2$.

Organisatorisches

Signale und Nachrichten

Alphabete

Abbildungen Schreibweise

Maximilian Staab. uxhdf@student.kit.edu. Lukas Bach.

Seien $A=B=\mathbb{R}$, $f\subseteq A imes B$. Wir suchen Relation, die für jedes $a\in A$ ein

Organisatorisches

Element $(a, b) \in f$ enthält mit $b = a^2$.

 $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Signale und

Alphabete

Abbildungen Schreibweise

Maximilian Staab. uxhdf@student.kit.edu. Lukas Bach.

Seien $A=B=\mathbb{R}$, $f\subseteq A imes B$. Wir suchen Relation, die für jedes $a\in A$ ein

Organisatorisches

Element $(a, b) \in f$ enthält mit $b = a^2$. $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Signale und

Unendlich viele Elemente, und unmöglich alle zu nennen.

Alphabete

Abbildungen Schreibweise

Maximilian Staah uxhdf@student.kit.edu. Lukas Bach.

Seien $A=B=\mathbb{R}$, $f\subseteq A imes B$. Wir suchen Relation, die für jedes $a\in A$ ein

Organisatorisches

Element $(a, b) \in f$ enthält mit $b = a^2$. $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Unendlich viele Elemente, und unmöglich alle zu nennen.

(Mathematischere) Schreibweise für Abbildungen:

Alphabete

Abbildungen Schreibweise

Maximilian Staab uxhdf@student.kit.edu. Lukas Bach.

Seien $A=B=\mathbb{R}$, $f\subseteq A imes B$. Wir suchen Relation, die für jedes $a\in A$ ein

Element $(a, b) \in f$ enthält mit $b = a^2$.

 $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Unendlich viele Elemente, und unmöglich alle zu nennen.

(Mathematischere) Schreibweise für Abbildungen:

 $f: A \rightarrow B, a \mapsto a^2$

Alphabete

Abbildungen Schreibweise

Maximilian Staab uxhdf@student.kit.edu. Lukas Bach.

Seien $A=B=\mathbb{R}$, $f\subseteq A imes B$. Wir suchen Relation, die für jedes $a\in A$ ein Element $(a, b) \in f$ enthält mit $b = a^2$.

 $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Unendlich viele Elemente, und unmöglich alle zu nennen.

(Mathematischere) Schreibweise für Abbildungen: $f: A \to B$, $a \mapsto a^2$, also Quadratfunktion.

Alphabete

Abbildungen Schreibweise

Maximilian Staab uxhdf@student.kit.edu. Lukas Bach.

Seien $A=B=\mathbb{R}$, $f\subseteq A imes B$. Wir suchen Relation, die für jedes $a\in A$ ein

Element $(a, b) \in f$ enthält mit $b = a^2$.

 $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Unendlich viele Elemente, und unmöglich alle zu nennen.

(Mathematischere) Schreibweise für Abbildungen: $f: A \to B$, $a \mapsto a^2$, also Quadratfunktion.

Ist diese Funktion injektiv oder surjektiv?

Alphabete

Abbildungen Schreibweise

Maximilian Staab uxhdf@student.kit.edu. Lukas Bach.

Seien $A=B=\mathbb{R}$, $f\subseteq A imes B$. Wir suchen Relation, die für jedes $a\in A$ ein Element $(a, b) \in f$ enthält mit $b = a^2$.

 $f = \{(0,0), (0.1,0.01), (2,4), \ldots\}$

Unendlich viele Elemente, und unmöglich alle zu nennen.

(Mathematischere) Schreibweise für Abbildungen: $f: A \rightarrow B$, $a \mapsto a^2$, also Quadratfunktion.

Ist diese Funktion injektiv oder surjektiv?

Alphabete

Nicht injektiv, da z.B. f(1) = f(-1)

Abbildungen Schreibweise

Maximilian Staab uxhdf@student.kit.edu. Lukas Bach.

Seien $A=B=\mathbb{R}$, $f\subseteq A imes B$. Wir suchen Relation, die für jedes $a\in A$ ein Element $(a, b) \in f$ enthält mit $b = a^2$.

 $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Unendlich viele Elemente, und unmöglich alle zu nennen.

(Mathematischere) Schreibweise für Abbildungen: $f: A \rightarrow B$, $a \mapsto a^2$, also Quadratfunktion.

Ist diese Funktion injektiv oder surjektiv?

Alphabete

Nicht iniektiv, da z.B. f(1) = f(-1), also $(1,1) \in f$ und $(-1,1) \in f$.

Abbildungen Schreibweise

Maximilian Staab uxhdf@student.kit.edu. Lukas Bach.

Seien $A=B=\mathbb{R}$, $f\subseteq A imes B$. Wir suchen Relation, die für jedes $a\in A$ ein Element $(a, b) \in f$ enthält mit $b = a^2$.

 $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Unendlich viele Elemente, und unmöglich alle zu nennen.

(Mathematischere) Schreibweise für Abbildungen:

 $f: A \rightarrow B$, $a \mapsto a^2$, also Quadratfunktion. Ist diese Funktion injektiv oder surjektiv?

Alphabete

Nicht injektiv, da z.B. f(1) = f(-1), also $(1,1) \in f$ und $(-1,1) \in f$.

Relationen und Abbildungen

Nicht surjektiv, da z.B. -1 nie als Funktionswert angenommen wird

Abbildungen Schreibweise

Maximilian Staab uxhdf@student.kit.edu. Lukas Bach.

Seien $A=B=\mathbb{R}$, $f\subseteq A imes B$. Wir suchen Relation, die für jedes $a\in A$ ein Element $(a, b) \in f$ enthält mit $b = a^2$.

 $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Unendlich viele Elemente, und unmöglich alle zu nennen.

(Mathematischere) Schreibweise für Abbildungen: $f: A \rightarrow B, a \mapsto a^2$, also Quadratfunktion.

Ist diese Funktion injektiv oder surjektiv?

Alphabete

Nicht injektiv, da z.B. f(1) = f(-1), also $(1,1) \in f$ und $(-1,1) \in f$.

Relationen und Abbildungen

Nicht surjektiv, da z.B. −1 nie als Funktionswert angenommen wird, daher $(a, -1) \notin f$ für beliebige $a \in A$.

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.ed

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

