Factor Analysis of Retailers

```
##Install packages
  options(repos = c(CRAN = "https://cran.r-project.org"))
  install.packages('nFactors')
The downloaded binary packages are in
    /var/folders/_f/jxf6gqq91bg2n4kxz46lwv200000gn/T//RtmpgRumxh/downloaded_packages
  #install.packages('dplyr')
  install.packages('GPArotation')
The downloaded binary packages are in
    /var/folders/_f/jxf6gqq91bg2n4kxz46lwv20000gn/T//RtmpgRumxh/downloaded_packages
  install.packages('gplots')
The downloaded binary packages are in
    /var/folders/_f/jxf6gqq91bg2n4kxz46lwv20000gn/T//RtmpgRumxh/downloaded_packages
  install.packages('RColorBrewer')
The downloaded binary packages are in
    /var/folders/_f/jxf6gqq91bg2n4kxz46lwv200000gn/T//RtmpgRumxh/downloaded_packages
```

```
## load packages and set seed
  library(nFactors)
Loading required package: lattice
Attaching package: 'nFactors'
The following object is masked from 'package:lattice':
    parallel
  library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  library(GPArotation)
  library(gplots)
Attaching package: 'gplots'
The following object is masked from 'package:stats':
    lowess
```

```
library(RColorBrewer)
  set.seed(1)
  ## Read in Factor Analysis Data
  retailer_survey <- read.table(file = "../data/retailersurvey.csv", header = TRUE, sep = ",</pre>
  head(retailer_survey)
  Quality Last Fit Latest Trends Stylish Value Bargain Worth Satisfied Purchase
                        7
                               7
                                       5
                                              3
                                                      3
1
2
                 7
                        3
                               4
                                       3
                                              1
                                                      1
                                                                      2
                                                                                1
                                                                               2
3
                 2
                        3
                               3
                                       5
                                              6
                                                      7
                                                            6
                                                                      2
        3
                        7
                               7
                                       7
                                                            2
                                                                      7
                                                                               7
        4
             5
                 3
                                              1
5
                 4
                        3
                               3
                                       3
                                             1
                                                     1
                                                          1
                                                                               6
                 3
                               5
                                             1
                                                      1
                                                                               3
 Recommend Retailer
1
         7
                  CR
2
          3
                  CR
3
          1
                  CR
                  CR
          6
5
          6
                  CR
          2
                  CR
  dim(retailer_survey)
[1] 600 13
  table(retailer_survey$'Retailer')
     B C CR D
100 100 100 100 100 100
  retailer.factor.mean <- aggregate(.~Retailer, data=retailer_survey, mean)</pre>
  retailer.factor.mean
```

```
Retailer Quality Last Fit Latest Trends Stylish Value Bargain Worth
            5.07 5.02 4.83
                                  3.47
                                         3.50 2.56
                                                     2.75 2.57
1
       Α
                           3.31
2
                                 5.57
       В
            3.06 3.18 3.15
                           5.79
                                        5.61 1.97
                                                     2.29 2.17
3
       C 4.61 4.57 4.48
                           2.65 2.81
                                        2.78 5.52
                                                     5.36 5.29
4
       CR
            5.03 4.88 4.85
                           4.63 4.63 4.53 3.00
                                                     3.11 3.12
                           2.85 3.23 3.11 4.00
5
       D
            4.17 4.10 4.22
                                                     4.10 3.98
       Ε
            2.79 2.82 2.96
6
                           4.03 4.14 3.89 2.79
                                                     5.47 2.91
 Satisfied Purchase Recommend
      4.74
             4.62
                      4.60
1
2
      3.46
              3.55
                       3.58
3
     3.84
             3.84
                      3.80
     4.60 4.52
4
                      4.50
     3.52
              3.52
5
                       3.54
6
      5.41
              5.22
                       5.28
```

```
## Determine the Number of Factors
# chekcing the eigenvalues of the factors
retailer_factors <- select(retailer_survey, -Retailer) # this removes the retailer column
eigen(cor(retailer_factors))$values</pre>
```

- [1] 3.27396254 2.90493678 2.66726790 2.04691003 0.29372650 0.17848047
- [7] 0.17199170 0.15689070 0.08864872 0.07600663 0.07177044 0.06940759

There are 4 factor values over 1, so I want to do a 4-factor solution.

```
## Run 4 Factor Analysis
factanal(retailer_factors, factors = 4)
```

Call:

factanal(x = retailer_factors, factors = 4)

Uniquenesses:

Quality	Last	Fit	Latest	Trends	Stylish	Value	Bargain
0.014	0.183	0.178	0.021	0.157	0.163	0.014	0.354
Worth	Satisfied	Purchase	Recommend				
0.170	0.024	0.178	0.166				

Loadings:

Factor1 Factor2 Factor3 Factor4

Quality		0.992		
Last		0.904		
Fit		0.906		
Latest	0.983			-0.109
Trends	0.913			
Stylish	0.908			-0.105
Value	-0.110			0.981
Bargain				0.793
Worth				0.903
Satisfied			0.987	
Purchase			0.905	
Recommend			0.911	

Factor1 Factor2 Factor3 Factor4 2.656 SS loadings 2.641 2.638 2.442 Proportion Var 0.221 0.220 0.220 0.203 Cumulative Var 0.221 0.441 0.661 0.865

Test of the hypothesis that 4 factors are sufficient. The chi square statistic is 22.86 on 24 degrees of freedom. The p-value is 0.528

The 12 factors seem to load well on the 4 factors and are sufficient for the data. The positive loading are used with the Factors. Since there are partial loading, I need to see if items load better on single factors using rotation.

```
## 4 Factor Analysis and Oblique Rotation
retailer.fa <- factanal(retailer_factors, factors = 4, rotation = 'oblimin', scores = 'Bar
#oblimin = oblique
#bartlette is saving the previous scores

## Heatmap of Factor Loadings
# analyze using a heatmap of factor scores
heatmap.2(retailer.fa$loadings, col = brewer.pal(9, 'Reds'), trace = 'none', key = FALSE,</pre>
```

actor Loadings from Survey

The heat map shows that the Oblique rotation strengthened the factor loadings and reduced cross loading. I need to name the factors by identifying statements that load highly on each factor. (name is subjective)

Factor 1: Innovative; Factor 2: High Quality; Factor 3: Service; Factor 4: Budget

```
## Aggregate Factor Scores by Retailer
retailer.scores <- data.frame(retailer.fa$scores)
retailer.scores$retailer <- retailer_survey$Retailer
retailer.fa.mean <- aggregate(. ~ retailer, data = retailer.scores, mean)
rownames(retailer.fa.mean) <- retailer.fa.mean[,1]
retailer.fa.mean <- select(retailer.fa.mean, -retailer)
names(retailer.fa.mean) <- c('Innovative', 'High Quality', 'Service', 'Budget')
retailer.fa.mean</pre>
```

These are the average factor scores for each retailer (Scores are standardized with mean = 0 and std dev = 1). If > 0 = higher than average, < 0 lower than average

Factor Score by Retailer

(Darker Blue means higher factor scores) CR rates high in consumer perceptions with Innovation and High Quality. B is most Innovative. A and C seem to have high quality products. E ranks highest in Service followed by CR and A. C is ranked highest on Budget.