Problema expresie - 100p – clasele XI-XII Descrierea soluției Cristian Vîntur - Universitatea "Al.I.Cuza" Iași

Vom construi un arbore al expresiei in felul urmator: fiecare operator va avea asociat un nod intern, iar fiecare numar un nod frunza. Un nod care contine un operator poate avea oricati fii (spre deosebire de exact 2 la arborele clasic) pentru a trata cazurile care folosesc asociativitatea operatorilor. Pentru o expresie de tipul (a1 op a2 op ... op an) maximala (nu poate fi extina la stanga / dreapta cu operatorul op), pentru care operatorul op este asociativ, arborele arata in felul urmator:

unde nodurile a1, a2, ..., an reprezinta arborii corespunzatori expresiilor. Se observa ca arborele construit astfel este unic pentru o expresie.

Solutia este sa calculam urmatoarea dinamica: **dp[node]** = numarul de moduri de a evalua expresia corespunzatoare subarborelui cu radacina in nodul node.

Aratam mai intai cum aflam raspunsul daca radacina are 2 fii. Presupunem ca expresia din primul fiu poate fi evaluata in \mathbf{x} moduri si contine \mathbf{a} operatori, iar cea din al doilea fiu in \mathbf{y} moduri si contine \mathbf{b} operatori. Evident nu putem evalua operatorul din radacina pana cand nu am evaluat ambele expresii din fii. Avem $\mathbf{x}^*\mathbf{y}$ moduri de alege modurile de evaluare pentru cei doi fii si $\mathbf{C}(\mathbf{a}+\mathbf{b},\mathbf{a})$ moduri de a interclasa operatiile efectuate, unde $\mathbf{C}(\mathbf{n},\mathbf{k})$ reprezinta combinari de n luate cate \mathbf{k} .

Consideram acum cazul general, cand radacina are n fii. Vom construi o alta dinamica: $\mathbf{nr[i][j]}$, numarul de moduri de a evalua expresia formata din fiii i, i+1, ..., j, adica (a_i op a_{i+1} op ...,op a_j). Raspunsul va fi $\mathbf{nr[0][n-1]}$. Pentru a rezolva aceasta dinamica, fixam k cu semnificatia ca expresia va fi evaluata astfel: (a_i op a_{i+1} op ...,op a_k) op (a_{k+1} op ...,op a_j). Pentru un k fixat, avem nevoie de valorile $\mathbf{nr[i][k]}$, $\mathbf{nr[k+1][j]}$, de numarul de operatori din expresiile din cele doua paranteze (se pot mentine in dinamica), iar combinarea lor se face ca in cazul cu radacina cu 2 fii. Facand suma pentru $\mathbf{k}=\mathbf{i}$, $\mathbf{i+1}$,..., $\mathbf{j-1}$, obtinem $\mathbf{nr[i][j]}$.

Complexitate:

Pot exista cel mult m noduri, unde $m \le 1000$ este lungimea expresiei, iar fiecare dinamica se afla in n^3 , unde n este numarul de noduri fii, complexitatea este $O(m^3)$ (fiecare nod 'participa' la cel mult o dinamica).

PS. o sa incerc sa arat ca in cel mai rau caz sunt 500^3 operatii, deci ar trebui sa intre intr-o secunda.