

EVENT BASED SIMULATION SYSTEM
Powered by python3 and SimPy

Mgr. Jiří Fišer, Ph.D.

Pavel Hronek

Josef Šenfeld

Jiří Škvára

Presentation outline

- SimPy
 - Pros
 - cons
- ETOS
 - Description
 - Basic Objects
- Sample model
 - Actor, transaction
 - Expected results
 - Sub-models
- Results

SimPy simulation language

- Object-oriented, process-based discrete event simulation language for Python
- Written in Python
- Latest Release is 2.3
- Comes with data collection capabilities, GUI and plotting packages

SimPy: pros and cons

Pros

- Natural model based on coroutines
- Support of basic simulation objects and mechanisms
- Plenty of Python libraries

Cons

- Behaviour of simulated object is modeled by single coroutine
- Complicated declarative parametrization of models

ETOS description

- Declarative extension of SimPy
- Models based on mixture of procedural and declarative code
- Procedural
 - Elementary actions
 - Data processing
- Declarative
 - Flow of elementary actions and their parameters, logging, statistics, XML representation

ETOS main objects

- Entity
 - Basic actions and its states
- Transaction
 - Defined processes
- Shared Objects
 - Shared resources
- Actors
 - Active objects
- Simulations
 - Defines simulation time, collects data

Mail goal of ETOS project

 Separations of roles during design and implementation of simulation model

Innovative contributions

- Context model
 - Configurable context
- Subtransactions
 - Independent SimPy processes
- Data collectors
 - Collectors with support for counting, basic statistics and logging

Sample model

- Actor
 - E-car (battery powered)
- Transaction
 - Daily route from home to work and back
 - Sometimes includes route to shopping center
 - Two types of charging (slow,fast)
- Expected results
 - Frequence of out-of-battery events
 - Fast / Slow charging ratio
 - Utilization of fast charging stations
 - Etc.

Transaction

Submodels

- E-car
 - Battery capacity and fixed consumption per km
- Charging
 - More sophisticated model
 - CC constant charging current
 - CV current gradually declines
- Out-of-battery events
 - Energy levels drops below the limit

Škoda Octavia Green-E-Line

Batteries specification

- Technology
 - Li-Ion
 - Cylindrical cells
- Electrical parameters
 - Energy 26kWh (324V x 80Ah)
 - Nominal Voltage 324V
 - Discharge Current 400A peak / 200A cont.
 - Capacity 80Ah
- Mechanical parameters
 - Weight 315kg
 - Volume 250l

Charge characteristics

t (hour)

Model parameters

- Fixed parameters
 - Car count = 150
 - Traffic days simulated = 20
 - Simulations count = 500
 - Total e-car*days = 1 500 000
- Variable parameters
 - Ammount of stations in range of 1 to 50
 - Propability of shopping center visit

XML model (fragment)

```
<infinity_loop>
 <transaction>
   <set property="a.batteryOutEvent">
     <value>
       0.0
     </value>
   </set>
   <route id="City">
     <distance context="transaction">
       <pnormal mu="20" sigma="5"/>
     </distance>
   </route>
   <pause>
     <duration>
       8:30:00
     </duration>
   </pause>
```

Fast to home charging ratio

Out-of-battery events

Sources

- SimPy homesite: http://simpy.sourceforge.net/
- Our project subversion repository: <u>http://code.google.com/p/etos/</u>
- Skoda Octavia specification sheet: http://k616.fd.cvut.cz/vyuka/mgr/16PDP/pred nasky/07c_Skoda_Octavia_Green_e_line_Jez_ 120418.pdf