Closure

Definition: Closure

Let E be a normed space and $S\subseteq E$. The *closure* of S, denoted $\mathrm{cl}(S)$ or \overline{S} , is the intersection of all closed subsets $V\subseteq E$ that contain S:

$$\operatorname{cl}(S) = \bigcap \{ V \subseteq E \mid V \text{ is closed and } S \subseteq V \}$$

Properties

Let E be a normed space and $S \subseteq E$:

- 1). cl(S) is closed.
- 2). cl(S) is the smallest closed subset of E containing S.

Proof

1). By definition, $\operatorname{cl}(S)$ is an intersection of closed sets.

Therefore, cl(S) is closed.

2). Assume $S \subseteq V \subseteq E$ such that V is closed.

By definition, $\operatorname{cl}(S) \subseteq \operatorname{cl}(S) \cap V$.

$$\therefore$$
 cl $(S) \subseteq V$.

Theorem

Let E be a normed space and $S \subseteq E$. The closure of S is the set of all limit points of S in E.

Proof

Let $\overline{(S)}$ be the closure of S and S' be the set of all limit points of S.

$$\mathsf{WTS}: \overline{(S)} = S'$$

$$(\subset)$$
 ABC: $\overline{S} \not\subseteq S'$.

There exists elements in \overline{S} that are not limit points of S.

Let T be the set of all such non-S limit points in \overline{S} .

Let
$$V = \overline{S} \setminus T$$
.

V is still closed, but $S \subseteq V \subset \overline{S}$.

CONTRADICTION! (of the minimality of \overline{S})

$$\therefore \overline{S} \subseteq S'$$

 (\supset) Assume $\vec{x} \in S'$

But $S\subseteq \overline{S}$ and \overline{S} is closed.

So
$$\vec{x} \in \overline{S}$$
.

$$\therefore S' \subseteq \overline{S}.$$

Examples

- 1). $\operatorname{cl}(\mathbb{Q}) = \mathbb{R}$
- 2). $\operatorname{cl}(\mathcal{P}[a,b]) = \mathcal{C}[a,b]$

Definition: Dense

Let E be a normed space and $S \subseteq E$. To say that S is *dense* in E means:

$$cl(S) = E$$

Theorem

Let E be a normed space and $S \subseteq E$. TFAE:

- 1). S is dense in E.
- 2). $\forall \vec{x} \in E, \exists (\vec{x}_n) \text{ in } S \text{ such that } \vec{x}_n \to \vec{x}.$
- 3). Every non-empty, open subset of E contains an element of S.

In summary, every element in E is arbitrarity close to some element in S.

Proof

$$(1 \iff 2)$$

 $S \text{ is dense in } E \quad \Longleftrightarrow \quad \text{Every element in } E \text{ is a limit point of } S$ \iff $\forall \vec{x} \in E, \exists (\vec{x}_n) \text{ in } S \text{ such that } \vec{x}_n \to \vec{x}$

 $(2 \implies 3)$ Assume $\forall \vec{x} \in E, \exists (\vec{x}_n) \text{ in } S \text{ such that } \vec{x}_n \to \vec{x}.$

Assume U is a non-empty, open subset of E.

Assume $\vec{x} \in U$.

Since U is open, $\exists \epsilon > 0, B(\vec{x}, \epsilon) \subseteq U$.

By assumption: $\exists (\vec{x}_n)$ in S such that $\vec{x}_n \to \vec{x}$.

So $\exists N > 0$ sufficiently large such that $\|\vec{x}_N - \vec{x}\| < \epsilon$.

And so $\vec{x}_N \in B(\vec{x}, \epsilon)$.

$$\vec{x}_N \in U$$
.

 $(3 \implies 2)$ Assume that every non-empty, open subset of E contains an element of S.

Assume $\vec{x} \in E$.

Construct a sequence (\vec{x}_n) in S such that $\vec{x}_n \in B(\vec{x}, \frac{1}{n})$.

Assume
$$\epsilon > 0$$
.
 Let $N = \frac{1}{\epsilon}$, and so $\frac{1}{N} = \epsilon$.
 Assume $n > N$.
 $\|\vec{x}_n - \vec{x}\| < \frac{1}{N} = \epsilon$.

$$\|\vec{x}_n - \vec{x}\| < \frac{1}{N} = \epsilon$$

$$\vec{x}_n \rightarrow \vec{x}$$
.