Geometria Computacional - Triangulação

Nico I. G. Ramos

GRR20210574

Julho 2023

1 Introdução

O problema da triangulação de polígonos consiste em achar uma divisão em triângulos de um polígono, essa divisão possuí diversas aplicações, como achar uma determinada região em um mapa e representar objetos em animações e jogos.

2 Problema

Para este trabalho, o objetivo era implementar uma estrutura de dados para representar a triangulação de um polígono. Nessa estrutura, cada triângulo deveria conter o índice de cada vértice e o índice do triângulo oposto a cada um de seus vértices.

3 Modelagem

Para realizar a triangulação, foi escolhido um algoritmo recursivo no qual se procura dividir o polígono em dois e, para cada parte, a triangulação é feita até que a parte dividida seja um triângulo.

Para achar onde dividir o polígono, é feito uma busca pelo seu vértice mais a esquerda, a partir do qual se traça uma aresta entre o vértice anterior e o próximo a ele. Com isso, é formado um triângulo com vértices nesses três pontos e, para cada outro vértice do polígono, é verificado se ele está dentro desse triângulo ou não.

Caso algum vértice esteja dentro do triângulo, é pego o mais a esquerda dentre os que são interiores a ele e a aresta é trocada para ser formada pelo vértice mais a esquerda do polígono e o vértice mais a esquerda interior ao triângulo.

Tendo achado a aresta, é feito duas chamadas recursivas, uma para cada parte do polígono, e, após o retorno delas, para cada um dos triângulos retornados, é feita uma busca para saber qual das arestas é a diagonal que chamou a recursão e o índice dela é atribuída ao vértice oposto no outro triângulo.

Por fim, é feita uma busca nos dois triângulos para saber qual deles ficou com a diagonal da recursão anterior a eles e é retornado o índice do triângulo que a contém.

4 Implementação

Para implementar esse algoritmo, foram necessárias três bibliotecas, uma de triangulação, uma para construir e operar com figuras geométricas e outra para realizar operações de geometria, como intersecção e verificar o sentido de um polígono.

Para garantir a padronização entre as triangulações e facilitar a implementação do algoritmo, antes de realizar a triangulação é verificado se o polígono é horário, caso não seja, seu sentido é alterado e o índice dos seus vértices também.

Para realizar a triangulação, duas variáveis globais foram utilizadas: um vetor de polígonos e um contador de índices. A cada chamada recursiva, dois parâmetros são passados: um polígono formado por pontos do polígono pai, o que preserva os índices entre as chamadas, e a di-

agonal que deu origem a ele. Além disso, a divisão do polígono é feita de maneira que ele continue horário.

Caso ao chamar a função de triangulação o polígono passado como parâmetro possuir tamanho três, isso significa que um triângulo foi achado e ele deve ser adicionado ao vetor global da triangulação. Para isso, é incrementado o índice global, é criado um triângulo de índice i sem nenhum vizinho e ele é adicionado ao vetor da triangulação no índice i.

A estrutura escolhida para representar os triângulos consiste em um vetor de vértices e um vetor de vizinhos - no qual cada um consiste de uma aresta e o índice do triângulo com o qual faz divisa. Assim, o vértice i é oposto ao vizinho i e ao triângulo com índice no vizinho i.

O Algoritmo 1 e o Algoritmo 2, apresentam os pseudocódigos para os dois algoritmos mais importantes para esse trabalho, respectivamente: a triangulação em si e a busca pela diagonal.

A Triangulação(P, D), que é recursiva e recebe como parâmetro um polígono e a diagonal que deu origem a ele, e a Diagonal(P), que recebe como parâmetro o polígono para o qual se deseja achar uma orelha formada pelo vértice mais a esquerda e seus vizinhos ou, caso não seja possível, uma aresta que o divida entre o vértice interior à orelha que seja o mais a esquerda da aresta formada pelos vizinhos do vértice mais a esquerda do polígono.

5 Resultados

Para verificar se os algoritmos escolhidos e a implementação realizada resolvem o problema corretamente, as seguintes triangulações foram feitas: polígono horário não convexo, quadrado horário e anti-horário, um "L"anti-horário, polígono com diagonais colineares, um único corte que não permite orelha, espiral anti-horária, estrela anti-horária, triagulóide anti-horário e "U"anti-horário.

Os testes tiveram como objetivo verificar se a triangulação é realizada de maneira correta tanto para polígonos

Algoritmo 1: Triangulação(P, D)

```
if size(P) == 3 then
   indice + +;
   Crie o triângulo t;
   T[i] \leftarrow t;
   Retorne indice;
else
   diagonal \leftarrow Diagonal(P);
   Divida P em dois polígonos na diagonal;
   for Para cada divisão de P do
       Faça \ a \ Triangulação(P, diagonal)
   for Para cada índice i retornado pelas
     triangulações do
       t \leftarrow T[i];
       Ache no triângulo t o índice do vizinho que
        ficou com a diagonal;
       Adicione o índice do vizinho no vértice
        oposto do outro triângulo retornado:
   end
   Ache a diagonal D entre os triângulos
    retornados;
   Retorne o índice do triângulo que ficou com
     a diagonal D;
end
```

Algoritmo 2: Diagonal(P)

```
l \leftarrow ponto \ mais \ esquerda(P);
dig \leftarrow Aresta(proximo(l), anterior(l));
esq \leftarrow oo;
for para cada vértice v em P do
    if v != l \ e \ v \ n\~ao \ est\'a \ na \ diagonal \ {\bf then}
        if v está no triângulo(l, dig) then
            if v está mais a esquerda do que esq
              then
                esq \leftarrow v;
            end
        end
    end
end
if esq!= oo then
    dig \leftarrow Aresta(l, esg);
end
Retorne dig;
```

horários como para anti-horários, se o corte na orelha é correto e se o corte quando não é possível dividir na orelha também é correto.

Além disso, os testes também buscarem verificar a corretude da divisão quando o polígono é particionado em dois polígonos com mais de três vértices, o que poderia causar problemas na atribuição dos vizinhos.

5.1 Divisão em polígono simples

Nos dois próximos polígonos, o objetivo foi verificar se a divisão seria correta em um polígono simples, seja ele horário ou anti-horário.

Figura 1: Quadrado horário

Figura 2: Quadrado anti-horário

Em ambos, tanto a divisão quanto a atribuição dos vizinhos foi correta.

5.2 Divisão sem orelha

Os testes tiveram como objetivo assegurar que a divisão quando a orelha não é possível foi implementada sem erros.

Figura 3: Polígono anti-horário sem orelha

Figura 4: "L"anti-horário

Os testes também foram satisfatórios e a implementação atribuiu corretamente os vizinhos e gerou uma triangulação válida.

5.3 Divisão de polígonos anti-horários

Aqui, objetivou-se verificar se a transformação dos polígonos anti-horários em horários geraria uma triangulação válida.

Figura 5: "U"anti-horário

Figura 6: Triagulóide anti-horário

Em ambos os polígonos a triangulação e a atribuição dos vizinhos foi correta.

5.4 Divisão com vários pontos

O objetivo principal com esses testes foi verificar se o algoritmo não iria se perder com polígonos com vários pontos e que não fossem convexos, tendo que alternar entre dividir na orelha e fora dela.

Nesse polígono, o objetivo também foi testar se o algoritmo encontrava da maneira esperada o vértice a esquerda quando mais de um compartilha o mesmo x, se ele considera que o mais a esquerda é o de menor y.

Figura 7: Polígono horário não convexo

O algoritmo selecionou corretamente o menor x entre os vértices 1 e 7, o que gerou a aresta entre os vértices 6 e 4.

Na estrela, o objetivo foi verificar a divisão em um polígono com várias quinas, o que talvez pudesse confundir o algoritmo. É possível observar que foi gerada uma triangulação válida.

Figura 8: Estrela anti-horária

Na espiral, o objetivo foi verificar que o algoritmo não se perderia com um polígono que fizesse curvas e que não seria gerada arestas que passassem por fora do polígono.

Nos três casos, além da triangulação ser válida, os vizinhos foram atribuídos corretamente.

5.5 Corte em pontos colineares

Com esse polígono, o objetivo foi verificar a atribuição dos vizinhos com diagonais com vértices colineares.

Figura 10: Polígono horário com cortes colineares

Para alguns triângulos, é difícil dizer qual deveria ser o triângulo oposto para cada vértice.

No triângulo formado pelos vértices 1, 5 e 6 o oposto

ao vértice 1 pode ser tanto nenhum, quanto o triângulo formado pelos vértices 3, 4 e 5 ou o formado pelos vértices 2, 3 e 5.

E, tanto no triângulo formado pelos vértices 1, 2 e 5 e no formado pelos vértices 2, 3 e 5 o oposto ao vértice 2 também pode ser nenhum, o triângulo formado pelos vértices 1, 5 e 6 ou o formado pelos vértices 3, 4 e 5.

Entretanto, para o triângulo formado pelos vértices 3, 4 e 5 o oposto ao vértice 4 é o triângulo formado pelos vértices 2, 3 e 5 e, para o triângulo formado pelos vértices 1, 5 e 6 o oposto ao vértice 6 é o triângulo formado pelos vértices 1, 2 e 5.

Com isso, embora a divisão gerada tenha sido correta, o algoritmo atribuiu de maneira errônea os vizinhos. No triângulo formado pelos vértices 3, 4 e 5, atribuiu o oposto ao vértice 4 o triângulo formado pelos vértices 1, 2 e 5 ao invés de atribuir o formado pelos vértices 2, 3 e 5.

6 Conclusão

Os algoritmos implementados resolvem o problema de gerar a triangulação. Contudo, em alguns casos, eles falham em atribuir os triângulos opostos corretamente.

O principal motivo disso ocorrer é que, na chamada recursiva, é buscado nos dois índices retornados para ela o triângulo que contém a diagonal que deu origem àquela chamada.

Entretanto, nem sempre um dos dois triângulos retornados irá conter a diagonal que criou aquela sub-divisão do polígono. O algoritmo foi implementado dessa maneira na tentativa de evitar ter de procurar a diagonal em todos os triângulos.

Uma alternativa pensada, mas não implementada, foi a de representar a diagonal por uma aresta e as duas faces que ela divide, passando essa informação na descida da recursão ao invés de pega-la no retorno. Com isso, seria preciso cuidar na divisão de um polígono que já possuí uma aresta marcada.