Probability I: Assignment 6

Yogeshwaran D.

November 19, 2021

Submit solutions to Problems 2, 6, 7 and 9 on Moodle by 30th November, 10 PM. Write down the probability space in all questions clearly before writing down the solutions.

- 1. A string of n bits needs to be sent across a noisy communication channel. Any bit sent across the channel is corrupted with probability p independently. To minimize the error, the sender replicates each bit k times (say k is an odd number) and sends it across the channel. The receiver decodes the message by choosing the majority in each block of k bits. For any $1 \le m \le n$, compute the probability that there are exactly m wrongly decoded bits.
- 2. Suppose that A_1, \ldots, A_n are independent events. Let I_1, \ldots, I_k be a partition of [n] i.e., $[n] = \bigcup_{j=1}^k I_j$. For each $1 \leq j \leq k$, let $B_j = \bigcup_{i \in I_j} A_i$. Show that B_1, \ldots, B_k are independent events.
- 3. In the above problem, define $B_j = \bigcap_{i \in I_j} A_i$, j = 1, ..., k. Show again that $B_1, ..., B_k$ are independent events.
- 4. There is a parallel system with n components. Each component works independently with probability p. The system is said to work if at least one of the components work. Find the conditional probability that there are at least k components working given that the system is working.
- 5. Suppose that there are m different types of coupons. A coupon of type i (i = 1, ..., m) is chosen with probability p_i . You select n coupons independently. What is the probability that the nth coupon is new i.e., not selected before?
- 6. There is a class of n students. Each pair of students become friends with probability p and independently of other pairs of students. A group of k students are said to form a a clique if all of them are friends with each other. Compute the probabilities that (i) a group of k students form a clique and (ii) a group of k students form a clique and are not part of any larger clique.
- 7. POPULATION GENETICS: Suppose there are two types of genes, say A, a. Genes appear in (unordered) pairs in each individual i.e., AA, Aa, aa. This

 $^{^{1}\}mathbf{Extra}$: Can you find n to make this probability very small.

is called as genotype of an individual. 2 . In the first generation, the proportion of the three gene types are u, 2v, w respectively where $u, v, w \ge 0$ and u + 2v + w = 1. A child is born to two randomly chosen individuals from the first generation. The child choses one gene at random from each individual. Let $u_1, 2v_1, w_1$ be the probabilities that the child has genotype AA, Aa, aa respectively. Compute $u_1, 2v_1$ and w_1 . 3

- 8. In the Urn model with c=-1, d=0 compute the probabilities of selection of red and black balls i.e., compute $\mathbb{P}(w)$ for $w \in \{0,1\}^n$ where n=r+b and 0,1 denoting red and black balls respectively.
- 9. In Polya's Urn model compute $\mathbb{P}(B_m \cap B_n)$ for any m < n.

 $^{^2}$ For ex., A could cause blue-eyes and a could cause black-eyes. Then AA is white, Aa is brown and aa is black.

³Extra: $u_1, 2v_1, w_1$ are interpreted as proportion of gene types in the second generation. Now compute the proportion of gene types in the third generation i.e., $u_2, 2v_2, w_2$.