NoSQL Use Cases

Jeremy Mikola
@jmikola

10gen Khe MongoDB company

- Develops MongoDB and its drivers as OSS
- Professional support, training, and consulting
- Host and sponsor of conferences, user groups
- Offices: NYC, Palo Alto, London, Dublin, Sidney

http://www.benstopford.com/2012/06/30/thoughts-on-big-data-technologies-part-1/

What is NoSQL?

Key/Value

BigTable

Document

Graph

Key/Value Stores

- Maps arbitrary keys to values
- No knowledge of the value's format
- Completely schema-less
- Implementations
 - Eventually consistent, hierarchal, ordered, in-RAM
- Operations
 - Get, set and delete values by key

BigTable

- Sparse, distributed data storage
- Multi-dimensional, sorted map
- Indexed by row/column keys and timestamp
- Data processing
 - MapReduce
 - Bloom filters

Graph Stores

- Nodes are connected by edges
- Index-free adjacency
- Annotate nodes and edges with properties
- Operations
 - Create nodes and edges, assign properties
 - Lookup nodes and edges by indexable properties
 - Query by algorithmic graph traversals

Document Stores

- Documents have a unique ID and some fields
- Organized by collections, tags, metadata, etc.
- Formats such as XML, JSON, BSON
- Structure may vary by document (schema-less)
- Operations
 - Query by namespace, ID or field values
 - Insert new documents or update existing fields

What's the common thread?

What's the common thread?

All address some limitation(s) of relational DBs

Horizontal scalability, read/write performance, schema limitations, unconventional query patterns, parallel data processing, administration, etc.

What are we looking for?

- Read/write availability and/or performance
- Avoiding a single point of failure
- Flexible schema and data types
- Ease of maintenance, administration
- Parallel computing (e.g. MapReduce)
- Supporting large data sets with room to grow
- Tunable for deployment size or functionality

Some specific needs

- Storing large streams of non-transactional data
 - e.g. log aggregation, ad impressions, web stats
- Syncing on/offline data (CouchBase Mobile)
- Caching results from slower data stores
 - Provide faster in-app response times
 - Denormalize results of expensive join queries
- Real-time systems (games, financial data)

What are the challenges and trade-offs?

CAP Theorem

Consistency

CA CP

Availability AP Partition Tolerance

CAP Theorem

Single-site **RDBMS**

Consistency

CA

CP

Availability

Partition Tolerance

CouchDB Cassandra DynamoDB Riak

10gen

Replicated RDBMS

MongoDB

HBase

Redis

In partitioned databases, trading some consistency for availability can lead to dramatic improvements in scalability.

Dan Pritchett, *BASE: An ACID Alternative* http://queue.acm.org/detail.cfm?id=1394128

MongoDB Philosophy

- Document data models are good
- Non-relational model allows horizontal scaling
- Provide functionality whenever possible
- Strongly consistent, durable (data is important!)
- Minimize the learning curve
 - Easy to setup and deploy anywhere
 - JavaScript and JSON are ubiquitous
 - Automate sharding and replication

Case Study: Craigslist

- 1.5 million new classified ads posted per day
- MySQL clusters
 - 100 million posts in live database
 - 2 billion posts in archive database
- Schema changes
 - Migrating the archive DB could take months
 - Meanwhile, live DB fills with archive-ready data

Case Study: Craigslist

- Utilize MongoDB for archive storage
- Average document size is 2KB
- Designed for 5 billion posts (10TB of data)
- High scalability and availability
 - New shards added without downtime
 - Automatic failover with replica sets

We can put data into MongoDB faster than we can get it out of MySQL during the migration.

Jeremy Zawodny, software engineer at Craigslist and author of *High Performance MySQL*

http://blog.mongodb.org/post/5545198613/mongodb-live-at-craigslist

Case Study: Shutterfly

- 20TB of photo metadata in Oracle
- Complex legacy infrastructure
 - Vertically partitioned data by function
 - Home-grown key/value store
- High licensing and hardware costs

Case Study: Shutterfly

- MongoDB offered a more natural data model
- Performance improvement of 900%
- Replica sets met demand for high uptime
- Costs cut by 500% (commodity hardware)

Case Study: OpenSky

- E-commerce app built atop Magento platform
- Multiple verticals (clothing, food, home, etc.)
- MySQL data model was highly normalized
- Product attributes were not performant

Case Study: OpenSky

- Integrated MongoDB alongside MySQL
- Documents greatly simplified data modeling
 - Product attributes
 - Configurable products, bundles
 - Customer address book
- Purchases utilized MySQL transactions
- Denormalized order history kept in MySQL

Case Study: Gauges

- SaaS for real-time web analytics
- Recording time-series data in documents
 - Aggregate and display by hour, day, month, year
 - Visits, screen size, geo location, search terms, etc.
- MongoDB replica set for scalable storage
- Kestrel distributed, message queue in front
 - Highest availability, never misses a write operation

Additional Case Studies

10gen.com/customers

How Twitter Uses NoSQL

- Facebook's Scribe for log aggregation
- Hadoop for clustered data storage
 - Yahoo's Pig scripting language for querying
- Hbase for low-latency people searches
- FlockDB for social graph queries
 - Real-time, distributed, built upon MySQL
- Cassandra for data-mining and analytics

http://readwrite.com/2011/01/02/how-twitter-uses-nosql

Using the Right Tool for the Job

Questions?

