Généralités sur les fonctions de deux variables

- Déterminer $\inf_{x,y>0} \left(\frac{1}{x} + \frac{1}{y} + xy \right)$.
- Déterminer tous les couples $(\alpha, \beta) \in (\mathbb{R}^{+*})^2$ pour lesquels il existe $M \in \mathbb{R}$ tel que : Exercice 2 $\forall x, y > 0, x^{\alpha} y^{\beta} \le M(x+y)$
- Soit A une partie non vide de \mathbb{R}^2 et x un point de \mathbb{R}^2 . On note $d(x,A) = \inf_{a \in A} \|x a\|$ Exercice 3 Montrer que $d: \mathbb{R}^2 \to \mathbb{R}$ est lipschitzienne.

Limite

Etudier l'existence et la limite éventuelle en (0,0) des fonctions f(x,y) suivantes : Exercice 4

a)
$$\frac{xy}{x^2 + y^2}$$

b)
$$\frac{x^3}{y}$$

c)
$$\frac{xy}{x-y}$$

$$d) \frac{x^2y}{x^2+y^2}$$

e)
$$\frac{x+2y}{x^2-y^2}$$

f)
$$\frac{\sin xy}{\sqrt{x^2+y^2}}$$

g)
$$\frac{1 - \cos(xy)}{xy^2}$$

h)
$$\frac{\sinh x \sinh y}{x+y}$$

i)
$$\frac{x^3 + y^3}{x^2 + y^2}$$
.

Exercice 5 Etudier les limites en (0,0) des fonctions suivantes :

a)
$$f(x,y) = \frac{x^2 + xy + y^2}{x^2 + y^2}$$

b) $f(x,y) = \frac{xy}{x^4 + y^4}$
d) $f(x,y) = \frac{x^3 + y^3}{xy}$
e) $f(x,y) = x^y = e^{y \ln x}$

b)
$$f(x,y) = \frac{xy}{x^4 + y^4}$$

c)
$$f(x,y) = \frac{x^2y^2}{x^2 + y^2}$$

d)
$$f(x,y) = \frac{x^3 + y^3}{xy}$$

e)
$$f(x,y) = x^y = e^{y \ln x}$$

f)
$$f(x,y) = \frac{x^2 + y^2}{|x| + |y|}$$
.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 et $F: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par Exercice 6

$$F(x,y) = \frac{f(x^2 + y^2) - f(0)}{x^2 + y^2}$$
. Déterminer $\lim_{(x,y) \to (0,0)} F(x,y)$.

Continuité

Exercice 7 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \begin{cases} \frac{1}{2}x^2 + y^2 - 1 & \text{si } x^2 + y^2 > 1 \\ -\frac{1}{2}x^2 & \text{sinon} \end{cases}$.

Montrer que f est continue.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 et $F: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par : Exercice 8

$$F(x,y) = \begin{cases} \frac{f(x) - f(y)}{x - y} & \text{si} \quad y \neq x \\ f'(x) & \text{si} \quad y = x \end{cases}.$$

Montrer que F est continue

- Soit $f: \mathbb{R}^+ \times \mathbb{R}^{+*} \to \mathbb{R}$ définie par $f(x,y) = x^y$ pour x > 0 et f(0,y) = 0. Exercice 9
 - a) Montrer que f est une fonction continue.
 - b) Est-il possible de la prolonger en une fonction continue sur $\mathbb{R}^+ \times \mathbb{R}^+$?
- *Exercice 10* Soit A une partie convexe non vide de \mathbb{R}^2 et $f: A \to \mathbb{R}$ une fonction continue. Soit a et b deux points de A et y un réel tels que $f(a) \le y \le f(b)$. Montrer qu'il existe $x \in A$ tel que f(x) = y.

Dérivées partielles

Exercice 11 Calculer les dérivées partielles des fonctions suivantes :

a)
$$f(x,y) = x^y$$
 (avec $y > 0$) b) $f(x,y) = \sqrt{x^2 + y^2}$

b)
$$f(x,y) = \sqrt{x^2 + y^2}$$

c)
$$f(x,y) = x \sin(x+y)$$
.

- **Exercice 12** Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = \begin{cases} \frac{y^2}{x}, & \text{si } x \neq 0 \\ 0, & \text{si } x = 0 \end{cases}$.
 - a) Montrer que f admet une dérivée au point (0,0) suivant tout vecteur de \mathbb{R}^2 .
 - b) Observer que néanmoins f n'est pas continue en (0,0).
- Exercice 13 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$.

Montrer que f admet une dérivée en (0,0) selon tout vecteur sans pour autant y être continue.

Exercice 14 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \begin{cases} \frac{xy}{|x|+|y|} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$.

Justifier que f est continue en (0,0)

Etudier les dérivées partielles de f en (0,0).

Exercice 15 Soit $\varphi: \mathbb{R} \to \mathbb{R}$ dérivable. On pose $f: \mathbb{R}^* \times \mathbb{R} \to \mathbb{R}$ définie par $f(x,y) = \varphi(y/x)$.

Montrer que
$$f$$
 vérifie la relation : $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = 0$.

Fonctions de classe C¹

Exercice 16 Etudier la continuité, l'existence et la continuité des dérivées partielles premières de f:

a)
$$f(x,y) = \begin{cases} x^2 y^2 \ln(x^2 + y^2) \\ 0 \end{cases}$$

b) $f(x,y) = \begin{cases} 0 & \text{si } (x,y) \neq (0,0) \\ (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$

Exercice 17 Soit $\varphi: \mathbb{R} \to \mathbb{R}$ continue et $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \int_x^y \varphi(t) dt$.

Montrer que f est de classe C^1 et calculer ses dérivées partielles premières.

Dérivées de fonctions composées

Exercice 18 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ partiellement dérivable en ses deux variables x et y. On pose $g: \mathbb{R} \to \mathbb{R}$ définie par $g(t) = f(2t, 1+t^2)$.

Exprimer g'(t) en fonction des dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.

- *Exercice 19* Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par $g(\rho, \theta) = f(\rho \cos \theta, \rho \sin \theta)$.
 - a) Justifier que g est de classe C^1 .
 - b) Exprimer les dérivées partielles de f en fonction de celles de g.
 - c) Exprimer les dérivées partielles de g en fonction de celles de f.
- *Exercice* 20 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 telle que $\forall (x,y) \in \mathbb{R}^2$, f(x,y) = f(y,x). Quelle relation existe-t-il entre les dérivées partielles de f?
- Exercice 21 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 telle que $\forall t \in \mathbb{R}, \forall (x,y) \in \mathbb{R}^2, f(x+t,y+t) = f(x,y)$.

 Montrer que $\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = 0$.
- **Exercice 22** Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 telle que $\forall t \in \mathbb{R}, \forall (x,y) \in \mathbb{R}^2, f(tx,ty) = f(x,y)$. Montrer que $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = 0$.
- *Exercice 23* Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 homogène de degré $n \in \mathbb{N}$ i.e. telle que : $\forall t \in \mathbb{R}$, $\forall (x,y) \in \mathbb{R}^2$, $f(tx,ty) = t^n f(x,y)$.
 - a) Montrer que $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf$.
 - b) On suppose $n \ge 1$. Montrer que $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont elles aussi homogènes, préciser leur degré.
- *Exercice* 24 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par $g(u,v) = f(u^2 + v^2, uv)$.
 - a) Justifier que g est de classe C^1 .
 - b) Exprimer $\frac{\partial g}{\partial u}$ et $\frac{\partial g}{\partial v}$ en fonction des dérivées partielles de la fonction f notées $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.

Fonctions de classe C²

- Exercice 25 Calculer les dérivées partielles d'ordre 2 des fonctions suivantes :
 - a) $f(x,y) = x^2(x+y)$
- b) $f(x,y) = \cos(xy)$.
- **Exercice 26** Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par : $f(x,y) = \frac{xy^3}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0.
 - a) Montrer que f est de classe C^1 sur \mathbb{R}^2 .
 - b) Montrer que $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ existent et diffèrent. Qu'en déduire ?

Exercice 27 On définit une fonction
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 par $f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$.

Montrer que f est de classe \mathcal{C}^1 . Est-elle \mathcal{C}^2 ?

- *Exercice 28* Soit f et $\varphi: \mathbb{R} \to \mathbb{R}$ deux applications de classe \mathcal{C}^2 et $F: \mathbb{R}^2 \to \mathbb{R}$ définie par $F(x,y) = f(x+\varphi(y))$.
 - a) Justifier que F est de classe C^2 .

b) Vérifier l'égalité :
$$\frac{\partial^2 F}{\partial x^2} \frac{\partial F}{\partial y} - \frac{\partial^2 F}{\partial x \partial y} \frac{\partial F}{\partial x} = 0 \; .$$

- *Exercice* 29 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^2 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par $g(u, v) = f(uv, u^2 + v^2)$.

 a) Justifier que g est de classe C^2 .
 - b) Exprimer les dérivées partielles d'ordre 2 de g en fonction des dérivées partielles de f.

Exercice 30 Soit
$$f:(x,y)\mapsto f(x,y)$$
 de classe \mathcal{C}^2 et $g:(r,\theta)\mapsto f(r\cos\theta,r\sin\theta)$.

Justifier que g est \mathcal{C}^2 et exprimer $\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}$ en fonction des dérivées partielles de g .

Extremum de fonctions de deux variables

Exercice 31 Déterminer les extrema locaux des fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ suivantes :

a)
$$f(x,y) = x^2 + xy + y^2 - 3x - 6y$$

b)
$$f(x,y) = x^2 + 2y^2 - 2xy - 2y + 5$$

c)
$$f(x,y) = x^3 + y^3$$

d)
$$f(x,y) = (x-y)^2 + (x+y)^3$$

e)
$$f(x,y) = x^3 + y^3 - 3xy$$
.

Equations aux dérivées partielles d'ordre 1

- **Exercice 32** En réalisant le changement de variables $\begin{cases} u=x+y \\ v=2y+3y \end{cases}$, déterminer les fonctions $f:\mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 solution de l'équation aux dérivées partielles : $3\frac{\partial f}{\partial x} 2\frac{\partial f}{\partial y} = 0$.
- **Exercice 33** En réalisant le changement de variables $\begin{cases} u=x \\ v=y-x \end{cases}$, déterminer les fonctions $f:\mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 solution de l'équation aux dérivées partielles : $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = f$.

$$\textit{Exercice 34} \quad \text{R\'esoudre } \frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = f(x,y) \ \text{sur } \mathbb{R}^2 \ \text{via } \begin{cases} u = x+y \\ v = x-y \end{cases}.$$

Exercice 35 Résoudre $y \frac{\partial f}{\partial x} - x \frac{\partial f}{\partial y} = 0$ sur $\mathbb{R}^2 \setminus \{(0,0)\}$ en passant en coordonnées polaires.

- *Exercice 36* En passant en coordonnées polaires, déterminer les fonctions $f: \mathbb{R} \times \mathbb{R}^{+*} \to \mathbb{R}$ de classe \mathcal{C}^1 solution de l'équation aux dérivées partielles : $y \frac{\partial f}{\partial x} - x \frac{\partial f}{\partial y} = f$.
- *Exercice 37* En passant en coordonnées polaires, déterminer les fonctions $f: \mathbb{R}^{+*} \times \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 solution de l'équation aux dérivées partielles : $x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial u}=\sqrt{x^2+y^2}$.

Equations aux dérivées partielles d'ordre 2

- *Exercice 38* Soit c>0. En réalisant le changement de variables $\begin{cases} u=x+ct \\ v=x-ct \end{cases}$, déterminer les fonctions $f:(x,t)\mapsto f(x,t)$ de classe \mathcal{C}^2 sur \mathbb{R}^2 solution de l'équation aux dérivées partielles : $\frac{\partial^2 f}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2}.$
- **Exercice 39** En réalisant le changement de variables $\begin{cases} u=x \\ v=x+y \end{cases}$, déterminer les fonctions $f:\mathbb{R}^2 \to \mathbb{R}$ de classe C^2 solution de l'équation aux dérivées partielles : $\frac{\partial^2 f}{\partial x^2} - 2 \frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} = 0$.
- **Exercice 40** En réalisant le changement de variables $\begin{cases} u = xy \\ v = x/y \end{cases}$, déterminer les fonctions $f: \mathbb{R}^{+*} \times \mathbb{R}^{+*} \to \mathbb{R}$ de classe C^2 solution de l'équation aux dérivées partielles : $x^2 \frac{\partial^2 f}{\partial x^2} - y^2 \frac{\partial^2 f}{\partial y^2} = 0$.

Problème de primitivation

Exercice 41 Déterminer les fonctions f de classe C^1 solutions des systèmes suivants :

a)
$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = xy^2 \\ \frac{\partial f}{\partial y}(x,y) = x^2y \end{cases}$$

a)
$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = xy^2 \\ \frac{\partial f}{\partial y}(x,y) = x^2y \end{cases}$$
 b)
$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2 + y^2}} \\ \frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2 + y^2}} \end{cases}$$
 c)
$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = \frac{x}{x^2 + y^2} \\ \frac{\partial f}{\partial y}(x,y) = \frac{-y}{x^2 + y^2} \end{cases}$$

c)
$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = \frac{x}{x^2 + y^2} \\ \frac{\partial f}{\partial y}(x,y) = \frac{-y}{x^2 + y^2} \end{cases}$$

Analyse vectorielle

- *Exercice 42* On appelle laplacien d'un champ scalaire F de classe C^2 le champ scalaire défini par $\Delta F = \operatorname{div} \, \overrightarrow{\operatorname{grad}} \, F$.
 - a) Montrer que $\Delta F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial u^2}$.
 - b) Exprimer $\frac{\partial F}{\partial a}(M)$ et $\frac{\partial F}{\partial \theta}(M)$ en fonction de $\frac{\partial F}{\partial x}(M)$ et $\frac{\partial F}{\partial u}(M)$
 - c) Exprimer ΔF en fonction de $\frac{\partial^2 F}{\partial a^2}$, $\frac{\partial F}{\partial a}$ et $\frac{\partial^2 F}{\partial \theta^2}$.

Exercice 43 Soit F un champ scalaire de classe C^1 de l'espace. Exprimer $\overrightarrow{\operatorname{grad}} F(M)$ en fonction $\frac{\partial F}{\partial \rho}(M)$, $\frac{\partial F}{\partial \varphi}(M)$, $\frac{\partial F}{\partial z}(M)$ et des vecteurs du repère cylindrique associé au point M.

Exercice 44 Soit \vec{F} le champ de vecteurs du plan défini par $\vec{F}(M) = \frac{\overrightarrow{OM}}{OM}$

- a) Calculer div $\vec{F}(M)$
- b) Le champ de vecteurs \vec{F} dérive-t-il d'un potentiel ?

Exercice 45 Soit \vec{F} le champ de vecteurs de l'espace défini par $\vec{F}(M) = \frac{\overrightarrow{OM}}{OM^3}$.

- a) Ce champ de vecteur dérive-t-il d'un potentiel ?
- b) Calculer div $\vec{F}(M)$ et Rot $\vec{F}(M)$.

Exercice 46 Soit $\vec{\omega}$ un vecteur de l'espace et \vec{F} le champ de vecteurs de l'espace défini par $\vec{F}(M) = \vec{\omega} \wedge \overrightarrow{OM}$.

a) Calculer div $\vec{F}(M)$ et Rot $\vec{F}(M)$.

b) Le champ de vecteur \vec{F} dérive-t-il d'un potentiel ?

Exercice 47 Fonctions harmoniques

Une fonction de classe C^2 est dite harmonique si et seulement si son laplacien $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$ est nul.

a) Montrer que si f est harmonique et de classe \mathcal{C}^3 alors $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ et $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$ le sont aussi.

On suppose que $f: \mathbb{R}^2 \setminus \{(0,0)\}$ est radiale i.e. qu'il existe une fonction $\varphi: \mathbb{R}^{+*} \to \mathbb{R}$ de classe \mathcal{C}^2 telle que $f(x,y) = \varphi(x^2 + y^2)$.

- b) Montrer que f est harmonique ssi φ' est solution d'une équation différentielle qu'on précisera.
- c) En résolvant cette équation, déterminer f.

david Delaunay http://mpsiddl.free.fr