Interpolation space

Kexing Ying

February 24, 2025

Notes taken during the *Introduction to SPDEs* lectures given by Martin Hairer (2024 Spring at EPFL).

Throughout this note, we take L the generator of a analytic semigroup S on the Banach space \mathscr{B} which satisfies $||S(t)|| \leq Me^{-wt}$ for some w > 0 so that the resolvent of L, $\rho(L)$ contains the right half of the complex plane (recall $R_{\lambda} = \int_{0}^{\infty} e^{-\lambda t} S(t) dt$ which is well-defined for all $\lambda \in \mathbb{C}$. Re(λ) > 0).

For $\alpha > 0$, by viewing the formal expression $S(t) = e^{tL}$, by making an appropriate substitution, we have the following computation

$$\int_0^\infty t^{\alpha-1}e^{tL}dt = (-L)^{-\alpha}\int_0^\infty t^{\alpha-1}e^{-t}dt = (-L)^{-\alpha}\Gamma(\alpha).$$

This motivates the following definition:

$$(-L)^{-\alpha} = \frac{1}{\Gamma(\alpha)} \int_0^{\infty} t^{\alpha - 1} S(t) dt.$$

In the case where $\alpha = 1$, we see that the above definition coincides with $R_0 = (-L)^{-1}$ as expected. Moreover, by observing

$$(-L)^{-1} = (-L)^{-1+\alpha}(-L)^{-\alpha}$$

as $(-L)^{-1}$ is injective, it follows that $(-L)^{-\alpha}$ is injective for $\alpha \in (0,1]$. This argument can be extended in the case where $\alpha > 1$ and we have that $(-L)^{-\alpha}$ is injective for all $\alpha > 0$. Consequently, we can define $(-L)^{\alpha}$ to be the inverse of $(-L)^{-\alpha}$ for $\alpha > 0$ where $\mathcal{D}((-L)^{\alpha}) = \mathcal{R}((-L)^{-\alpha})$. With this, we define the interpolation spaces.

Definition. For $\alpha > 0$, we define the interpolation space

$$\mathscr{B}_{\alpha} = \mathscr{D}((-L)^{\alpha}) = \mathscr{R}((-L)^{-\alpha})$$

equipped with the norm $||x||_{\alpha} = ||(-L)^{\alpha}x||$. On the other hand, we define $\mathscr{B}_{-\alpha}$ to be the completion of \mathscr{B} under the norm $||x||_{-\alpha} = ||(-L)^{-\alpha}x||$.

We have the following useful properties.

Proposition. • For all $\alpha \ge \beta$ (regardless of sign), we have $\mathscr{B}_{\alpha} \subseteq \mathscr{B}_{\beta}$.

• For all $\alpha > 0, t > 0, S(t) \mathcal{B} \subseteq \mathcal{B}_{\alpha}$ and

$$\|(-L)^{\alpha}S(t)\|_{\mathscr{B}\to\mathscr{B}} = \|S(t)\|_{\mathscr{B}\to\mathscr{B}_{\alpha}} \le \frac{C_{\alpha}}{t^{\alpha}}.$$

For this, first consider integer α and use the "identity"

$$\frac{1}{2\pi i} \int_{\gamma_{\phi,b}} e^{tz} R_z dz = \int_{\gamma_{\phi,b}} \frac{e^{tz}}{z - L} dz = e^{tL} = S(t).$$

• For all $t \in (0,1], \alpha \in (0,1)$ and $x \in \mathcal{B}_{\alpha}$,

$$||S(t)x - x|| \le C_{\alpha}t^{\alpha}||x||_{\alpha}.$$