KEYENCE 基恩士

彻底掌握 二维码基础知识

VOL.

二维码的种类

目录

第1章

- **1 1** DataMatrix (ECC200) 的构成
- **1 2** DataMatrix 的种类与大小、数据量
- 1-3 GS1 DataMatrix

第2章

- 2-1 QR 码的构成
- 2-2 QR 码的种类与大小、数据量

第3章

- **3 1** PDF417 的构成
- **3-2** PDF417 的种类
- **3-3** MicroPDF417
- 3-4 GS1 合成符号

1-1

DataMatrix (ECC200) 的构成

DataMatrix(二维条码)是矩阵型二维码,于 1987 年由美国国际资料公司发明。作为标准编号 ISO/IEC 16022、JIS X 0512,进行了标准化。

	规格	
最小单元数	10 × 10 单元	
最大单元数	144 × 144 单元	
最大数据量	数字 3116 字符	
取八奴笳里	字母数字 2335 字符	

另外,DataMatrix(ECC200)类型包括正方形与长方形。 DataMatrix 版本包括被称为 ECC000、ECC050、ECC080、 ECC100、ECC140 的旧版和被称为 ECC200 的新版。

正方形类型

长方形类型

ECC000、ECC050、ECC080、ECC100、ECC140

单元数由 $9 \times 9 \cong 49 \times 49$ 的奇数组成,错误纠正方法采用"卷积方式"的 DataMatrix。增大数据容量后,由于轻微失真,识别率将变得极差,作为二维码使用的性能降低,因此不被采用。

ECC200

提高对 DataMatrix 的初始版本中成问题的失真进行错误纠正的功能而形成的版本就是 ECC200。ECC200 的错误纠正采用在一部分代码遭到损坏时,也能够恢复数据的"里所码",不仅修复失真的能力强,而且还减小了代码尺寸。ECC200 已成为国际规格,使用 DataMatrix 时,ECC200 作为标准使用。

要点

ECC000、ECC050、ECC080、ECC100、ECC140与ECC200的简易区分方法是,一边的单元数为奇数的是 "ECC000、ECC050、ECC080、ECC100、ECC140",为偶数的是 "ECC200"。

■定位标识与时钟标识

DataMatrix 的构成如下图所示,在边部分配置 L 字形的定位标识和虚线状的时钟标识,并在其内部放入数据单元。条码读取器通过对定位标识与时钟标识进行图像处理来检测位置,可进行 360° 全方位读取。

■单元数与块数

单元数包括 10×10至 144×144的 24种。(长方形为 6种)

单元数	数据单元数	块数
10×10至26×26	8×8至24×24	1
28 × 28 至 52 × 52	14 × 14 至 24 × 24	4
64×64至104×104	14 × 14 至 24 × 24	16
120 × 120 至 144 × 144	18 × 18 至 22 × 22	36

数据单元为 24×24 单元以上(符号尺寸为 26×26 以上)时,符号被分割,每块达到 24×24 单元以下,纠正符号失真的能力极强。

空白区

指二维码周围的空白部分。 至少要确保 1 单元以上。

■错误纠正符号(里所码)

添加了用里所法生成的符号,以在 DataMatrix 的一部分损坏时也能够自动恢复而不会丢失数据。

■数据与错误纠正符号的配置

按以下顺序配置数据与错误纠正符号。

例如,制作称为 YSK 的数据 DataMatrix 时,错误纠正符号与通过里所法运算的数据部连接,形成如上图所示的 DataMatrix。

DataMatrix 的种类与大小、数据量

DataMatrix(ECC200)类型包括长方形与正方形两种,单元数必须是偶数。

正方形类型

	规格	
最小单元数	10 × 10 单元	
最大单元数	144 × 144 单元	
最大数据量	数字 3116 字符	
取入奴括里	字母数字 2335 字符	
	二进制 1556 字符	

单元数包括 10×10 至 144×144 的 24 种,数据单元为 24×24 单元以上时,分割符号,以防 止每块达到 24 × 24 单元以上。

长方形类型

规格			
最小单元数	8 × 16 单元		
最大单元数	16 × 48 单元		
目上粉択具	数字 98	字符	
最大数据量	字母数字 72	字符	
	二进制 47	字符	

单元数可分为以下6种。

·8×18单元(1块) ·12×36单元(2块)

·8×32单元(2块)

· 16 × 36 单元(1 块)

・12×26単元(1块)

·16×48单元(2块)

注

DataMatrix 会基于单元数、数据量自动决定错误纠正率。无法像 QR 码一样任意设定。

▼大小计算方法

单元数乘以单元尺寸,即可算出 DataMatrix 的大小。

例如,单元尺寸= 0.25 mm 时,大小如下:

10 × 10 单元 ——→ 2.5 × 2.5 mm

32 × 32 单元 ——→ 8.0 × 8.0 mm

8 × 18 单元 ______ 2.0 × 4.5 mm。

最大输入字符数

正方形类型

グロロナ	数据容量			错误纠正能力
符号尺寸	数字	字母数字	二进制	相庆纠正能力
 10 × 10 单元	6	3	1	25%
	10	6	3	25%
 14 × 14 单元	16	10	6	28 至 39%
 16 × 16 单元	24	16	10	25 至 38%
 18 × 18 单元	36	25	16	22 至 34%
20 × 20 单元	44	31	20	23 至 38%
	60	43	28	20 至 34%
	72	52	34	20 至 35%
 26 × 26 单元	88	64	42	19 至 35%
	124	91	60	18 至 34%
36 × 36 单元	172	127	84	16 至 30%
	228	169	112	15 至 28%
 44 × 44 单元	288	214	142	14 至 27%
	348	259	172	14 至 27%
	408	304	202	15 至 27%
 64 × 64 单元	560	418	278	14 至 27%
	736	550	366	14 至 26%
 80 × 80 单元	912	682	454	15 至 28%
	1152	862	574	14 至 27%
96×96 单元	1392	1042	694	14 至 27%
	1632	1222	814	15 至 28%
	2100	1573	1048	14 至 27%
132 × 132 单元	2608	1954	1302	14 至 26%
144 × 144 单元	3116	2335	1556	14 至 27%

长方形类型

单元数	数据容量			错误纠正能力
半儿 奴	数字	字母数字	二进制	相庆纠正能 力
8 × 18 单元	10	6	3	25%
8 × 32 单元	20	13	8	24%
12 × 26 单元	32	22	14	23 至 37%
12 × 36 单元	44	31	20	23 至 38%
16 × 36 单元	64	46	30	21 至 38%
16 × 48 单元	98	72	47	18 至 33%

注

上述字符数是可输入的最大字符数,因输入数据的不同构成(例如,混有数字与符号或混有字母的大小写等),少于表中字符数的数据也有可能使单元数增加。

1-3 GS1 DataMatrix

GS1 DataMatrix 是为分发而将 GS1 标准化的二维码符号。符号体系以 DataMatrix ECC200 为基础,为与传统的 DataMatrix 代码区分,规定了如下规则。

GS1 DataMatrix 的主要内容

使用代码	DataMatrix ECC200
FNC1	为定义为 GS1 标准规格,在数据前部配置 [FNC1]
应用识别符(AI)	是添加于信息前部的识别码,以标明此识别码之后的数据是什么信息。应用识别符(AI)由 ISO/IEC15418 规定。
可变长度数据的处理	在数量等信息量发生变化的数据(可变长度数据)之后继续显示下一数据时,在可变长度数据的后面插入 [FNC1],以作为分隔字符。用条码读取器读取到 [FNC1] 时,按规定应输出 [GS](ASCII 码的 1Dh)。 * [GS]:分组符

■GS1 推荐的刻印单元尺寸

关于 GS1 DataMatrix 刻印单元尺寸,GS1 建议以下尺寸。

	推荐单元尺寸	最大单元尺寸	最小单元尺寸
标号刻印	0.300 mm	0.615 mm	0.254 mm
DPM (激光刻印)	0.200 mm	0.300 mm	0.100 mm
DPM(点针)	0.300 mm	0.495 mm	0.200 mm

GS1 DataMatrix 样本

分类	Al	数据
GTIN(14 位固定)	01	04912345678904
数量 (可变长度)	30	100
保证期限	17	120401

■与 GS1-128 的关系

GS1 DataMatrix 的数据构成与 GS1-128 相同。具有在刻印面积受到限制时也能够处理大量数据的特点。另外,在美国及欧洲等多个国家的医疗行业,GS1 DataMatrix 已成为标准。针对直接在手术刀或剪刀等钢制器具刻印,已制定了指导指南。

^{*}钢制器具:在手术及处置中重复使用,并由进行清洗、灭菌等再生处理的不锈钢、铝、铜合金、钛、陶瓷等材质制成的器具。

2-1 QR 码的构成

QR 码(Quick Response 码)作为重视高速读取的矩阵型二维码,于 1994 年由株式会社 Denso Wave 开发。作为标准编号 ISO/IEC 18004、JIS X 0510,进行了标准化。

QR 码的规格

构成 QR 码的最小单位(黑白正方形)称为单元。QR 码由位置检测标识(位置探测标识)、定时标识、包含错误纠正等级或掩膜号等信息的格式信息,以及数据及错误纠正符号(里所符号)构成。

规格			
最小单元数	21 × 21 单	!元	
最大单元数	177 × 177	単元	
最大数据量	数字	7089 字符	
	字母数字	4296 字符	
	二进制	2953 字节	
	汉字	1817 字符	

【位置探测标识(分隔符号)

指配置在 QR 码 3 个角落的 3 个(微型 QR 为 1 个)位置检测标识。首先通过探测该标识,即可识别 QR 码的位置,能够进行高速读取。在 A、B、C 的任何位置,白单元与黑单元的比率均为 1:1:3:1:1,经过旋转后也可检测位置或根据位置关系识别旋转角度。没有方向性,从 360°全方位都能读取,可有效提高作业效率。

定位标识

校正因失真导致的各单元(像素)位置偏移。从模式2开始采用。

空白区

指二维码符号周围的空白部分。QR 码模式 1 与模式 2 需要 4 个空白单元,微型 QR 码需要 2 个空白单元。

定时标识

白单元与黑单元交替配置,用于确定符号内的模块坐标。

格式信息

含有用于 QR 码符号的错误纠正率与掩膜标识相关信息。进行解码时,首先会读取此处。

■错误纠正符号(里所符号)

指用里所法生成的符号,以在 QR 码的一部分损坏时也能够自动恢复而不会丢失数据。按照符号损坏程度,恢复率分为 4 个等级。

错误纠正等级	相对符号的面积
L	7%
М	15%
Q	25%
Н	30%

模糊

脏污

■数据与错误纠正符号的配置

数据与错误纠正符号的配置如下。(模式 2、版本 2、错误纠正等级 M 时的示例)为避免此处出现与位置探测标识相同形状的标记,使用掩膜来形成 QR 码。

2-2

QR 码的种类与大小、数据量

QR 码包括"模式 1"、"模式 2"、"微型 QR" 3 种。版本表示 QR 码的大小,随着数据量增加,版本也随之变大。(尺寸也会变大。)

版本 1 由 21 × 21 单元 (微型 QR 为 11 × 11 单元)构成,每上升一个版本,将增大 4 单元 (微型 QR 为 2 单元)。

模式 1

成为模式 2 与微型 QR 码原型的代码。将版本 1 至 14 作为 AIMI 规格。

模式 2

对模式 1 进行功能扩展,支持大容量数据。通过追加定位标识,提升了位置校正功能。将版本 1 至 40 作为 AIMI 规格。版本 40 可包含多达 7089 个数字字符。

最大数据容量

数字	: 1167 字符
字母数字	: 707 字符
二进制	: 468 字节
汉字	: 299 字符

·提升1个版本时,在纵横方向增加4单元。

最大数据容量

数字	: 7089 字符
字母数字	: 4296 字符
二进制	: 2953 字节
汉字	: 1817 字符

·提升1个版本时,在纵横方向增加4单元。

* 模式 1、2 共通

微型 QR

将 QR 码分隔符号保留 1 个,以提高刻印面积率的代码。最小的单元构成为 11 × 11,可在小刻印空间进行刻印。

最大数据容量

数字	: 35 字符
字母数字	: 21 字符
二进制	: 15 字节
汉字	: 9 文字

·提升1个版本时,在纵横方向增加2单元。

▼大小计算方法

QR 码的大小由版本与单元尺寸决定。

决定版本(单元数)

由数据容量 / 字符类型、错误纠正等级决定版本。参照各版本的最大输入字符数(第 13 页)。

决定单元尺寸

考虑打印机的分辨率、扫描器性能来决定单元尺寸。

确定大小

单元数乘以单元尺寸,即可算出 QR 码的大小。 计算需确保的刻印空间时,在此还应加上空白区。模式 1、2 需要 4 单元,微型 QR 需要 2 单元。

例如,

单元尺寸 = 0.25 mm 时, QR 码大小为:

版本 1 (21 × 21) 5.25 × 5.25 mm 版本 4 (33 × 33) 8.25 × 8.25 mm

需确保的空间(含空白区)为:

版本 1 (29×29) 7.25×7.25 mm 版本 4 为 (41×41) 10.25×10.25 mm。

▋各版本的最大输入字符数

模式 2

版本		数字			字母数字			二进制			汉字					
(单元数)	L	М	Q	Н	L	М	Q	Н	L	М	Q	Н	L	М	Q	Н
1 (21)	41	34	27	17	25	20	16	10	17	14	11	7	10	8	7	4
2 (25)	77	63	48	34	47	38	29	20	32	26	20	14	20	16	12	8
3 (29)	127	101	77	58	77	61	47	35	53	42	32	24	32	26	20	15
4 (33)	187	149	111	82	114	90	67	50	78	62	46	34	48	38	28	21
5 (37)	255	202	144	106	154	122	87	64	106	84	60	44	65	52	37	27
6 (41)	322	255	178	139	195	154	108	84	134	106	74	58	82	65	45	36
7 (45)	370	293	207	154	224	178	125	93	154	122	86	64	95	75	53	39
8 (49)	461	365	259	202	279	221	157	122	192	152	108	84	118	93	66	52
9 (53)	552	432	312	235	335	262	189	143	230	180	130	98	141	111	80	60
10 (57)	652	513	364	288	395	311	221	174	271	213	151	119	167	131	93	74
11 (61)	772	604	427	331	468	366	259	200	321	251	177	137	198	155	109	85
12 (65)	883	691	489	374	535	419	296	227	367	287	203	155	226	177	125	96
13 (69)	1022	796	580	427	619	483	352	259	425	331	241	177	262	204	149	109
14 (73)	1101	871	621	468	667	528	376	283	458	362	258	194	282	223	159	120
15 (77)	1250	991	703	530	758	600	426	321	520	412	292	220	320	254	180	136
16 (81)	1408	1082	775	602	854	656	470	365	586	450	322	250	361	277	198	154
17 (85)	1548	1212	876	674	938	734	531	408	644	504	364	280	397	310	224	173
18 (89)	1725	1346	948	746	1046	816	574	452	718	560	394	310	442	345	243	191
19 (93)	1903	1500	1063	813	1153	909	644	493	792	624	442	338	488	384	272	208
20 (97)	2061	1600	1159	919	1249	970	702	557	858	666	482	382	528	410	297	235
21 (101)	2232	1708	1224	969	1352	1035	742	587	929	711	509	403	572	438	314	248
22 (105)	2409	1872	1358	1056	1460	1134	823	640	1,003	779	565	439	618	480	348	270

微型 QR

版本(单元数)	错误纠正	数字	字母数字	二进制	汉字
M1 (11)	_	5	_	_	_
M2 (13)	L	10	6	_	_
IVIZ (13)	М	8	5	_	_
M3 (15)	L	23	14	9	6
M3 (15)	М	18	11	7	4
	L	35	21	15	9
M4 (17)	М	30	18	13	8
	Q	21	13	9	5

上述字符数是可输入的最大字符数,因输入数据的不同构成(例如,混有数字与符号或混有字母的大小写等),少于表中字符数的数据量也有可能使版本(单元数)增加。

注

3-1 PDF417 的构成

PDF417 是于 1989 年由美国讯宝科技公司开发的堆叠式二维符号。作为标准编号 ISO/IEC15438、JIS X 0508, 进行了标准化。

规格						
数据码字尺寸	横向	每行最小: 1 最大: 30				
数加19十八寸	纵向	最小: 3 行 最大: 90 行				
	最大数据码字容量	925 码字				
最大数据量	字母数字	1850 字符				
	数字	2710 字符				

PDF417 对字母数字或数字以及二进制数据均能进行信息化。最大信息量为字母数字 1850 字符、数字 2725 位、二进制数据 1108 字节。

PDF417 的名称取自

- · Portable Data File 的首字母组成为 PDF
- ·由4个条形·4个空白共17个模块构成取名为417。

PDF417 的符号为最小 3 行、最大 90 行的堆叠式符号。由开始标识、左行指示符、数据码字、右行指示符、停止标识构成。

空白区

指 PDF417 周围的空白部分。在上下左右需要 2 模块以上的空白。

■开始标识、停止标识

表示打标的开始与结束。

■指示符(指示符号)

显示每行的各个参数。通过指示符(指示符号)表达的内容是将行编号、行数、列数、错误纠正等级符号化的内容。

错误纠正等级

PDF417 错误纠正等级可在制作符号时用 0 至 8 的 9 阶段指定。错误纠正等级对应的可恢复数据码数如下。

错误纠正等级	0	1	2	3	4	5	6	7	8
错误纠正码字总数	2	4	8	16	32	64	128	256	512

- ·不设定错误纠正等级,也可修正最少2个数据码量。
- ·推荐错误纠正等级为2至5。

■数据码字

数据码字是符号信息的基本单位,由 1 至 30 个构成。1 个数据码由 17 个模块构成。条形与空白各为 4 个,必须从条形开始。以字母数字 2 字符约为 1 个数据码,仅含数字时 3 字符约为 1 个数据码,汉字等 2 字节字符的 1 字符约为 2 个数据码来表示。

▋其他

- ·相对最小模块宽度, 高度应为 3 倍以上。
- ・整体符号的纵横比可根据显示字符数、印刷空白部分来任意设定。

3-2 PDF417 的种类

PDF417 可使用以下特殊代码。

■ 紧凑型 PDF417

最重要的是确保刻印区域,极难发生符号本身的损坏时,可使用省略右行指示符,并将停止标识缩短为 1 个模块 宽度条形的符号。将此类省略右行指示符并缩小停止标识的 PDF417 称为紧凑型 PDF417。

*注: 紧凑型 PDF417 以往被称为"缩短 PDF417"或"缩短模式"。本资料参照 JIS X508: 2010,记述为"紧凑型 PDF417"。

Macro PDF417

可将无法用单一 PDF417 表示的大容量数据分隔成多个 PDF417,作为连续的数据表示。将这种分隔而成的多个 PDF417 作为 1 个数据进行编码的方法称为 Macro PDF417。Macro PDF417 可将最多 99,999 个不同 PDF417 按任意顺序读取,并正确表示源信息。

3-3 MicroPDF417

MicroPDF417 是于 1992 年由美国讯宝科技公司开发的堆叠式二维码。作为标准编号 ISO/IEC 24728,进行了标准化。MicroPDF417 是在 PDF417 的基础上,省略开始 / 停止代码,将 1 模块高度增加至 2 倍,以提升信息化密度并节省空间的符号。

NEPPERMIN

规格					
柱数	1 至	4			
行数	4至4	4 行			
最大数据量	字母数字	250 字符			
	数字	366 字符			

■最大輸入字符数

柱数	行数		信息量				
	1丁奴	数字	字母数字	二进制	代码数		
	11	8	6	3	7		
	14	17	12	7	7		
	17	26	18	10	7		
1	20	32	22	13	8		
	24	44	30	18	8		
	28	55	38	22	8		
	8	20	14	8	8		
	11	35	24	14	9		
	14	52	36	21	9		
2	17	67	46	27	10		
	20	82	56	33	11		
	23	93	64	38	13		
	26	105	72	43	15		
	6	14	10	6	12		
	8	26	18	10	14		
	10	38	26	15	16		
	12	49	34	20	18		
0	15	67	46	27	21		
3	20	96	66	39	26		
	26	132	90	54	32		
	32	167	114	68	38		
	38	202	138	82	44		
	44	237	162	97	50		
	4	20	14	8	8		
	6	32	22	13	12		
	8	49	34	20	14		
	10	67	46	27	16		
4	12	85	58	34	18		
	15	111	76	45	21		
	20	155	106	63	26		
	26	208	142	85	32		
	32	261	178	106	38		
	38	313	214	128	44		
	44	366	250	150	50		

[·]最小模块高度为最小模块宽度的2倍以上。

[·]空白区在符号的上下左右需要最小模块宽度的 1 倍以上空间。

3-4│ GS1 合成符号

GS1 合成符号是由 GS1 为化妆品、医药品、医疗材料、文具、贵金属等小件流通商品而开发的符号。作为标准编号 ISO/IEC 24723,进行了标准化。

该符号为 2 层构造,下段使用 GS1 DataBar、GS1-128、JAN/EAN/UPC 中的任一一维符号,上段由 PDF417 或 MicroPDF417 的二维符号构成。因将一维符号与二维符号上下合成而被称为"合成符号"。

GS1 合成符号包括 CC-A、CC-B、CC-C 3 种。

* CC··· Composite Component 的简称。

▋符号示例

●合成符号的主要规格

类型名	最大显示位数	二维符号	一维符号
CC-A	56	MicroPDF417	GS1 DataBar、JAN/EAN/UPC、GS1-128
СС-В	338	MicroPDF417	GS1 DataBar、JAN/EAN/UPC、GS1-128
CC-C	2361	PDF417	GS1-128

www.keyence.com.cn

基恩士(中国)有限公司

最新发售情况,请咨询就近的基恩士

200120 上海市浦东新区世纪大道100号上海环球金融中心7楼 电话:+86-21-5058-6228 传真:+86-21-5058-7178

【关于产品的咨询,请致电】

电话:+86-21-3357-1001 传真:+86-21-6496-8711

咨询热线 4007-367-367 E-mail:info@keyence.com.cn

日本語ダイヤル +86-21-5058-7128

最新信息 登录微信关注 基恩士公众号

