DEEP LEARNING TO DETECT AND COUNT PEOPLE IN VIDEO SEQUENCES

PRESENTÉ PAR : Patrick Audriaz

SUPERVISEURS: Houda Chabbi, Jean Hennebert

EXPERTS: Julien Bégard, Emeka Mosanya

COLLABORATEURS: Flavia Pittet, Matthieu Jourdan

PLAN

- 1 ~ Contexte
- 2 ~ Objectifs
- 3 ~ Conception
- 4 ~ Analyse
- 5 ~ Réalisation
- 6 ~ Tests et Evaluations
- 7 ~ Démo
- 8 ~ Conclusion

CONTEXTE

PROJET CITY PULSE

- Modéliser les «pulsations» de la ville
- Outils statistiques (capteurs IoT, Big Data)
- BUT : Optimisations des aménagements

OBJECTIFS PROBLEMATIQUE et BUT

Pas d'informations sur les flux de personnes

Solution de comptage des personnes utilisant du Deep Learning et sur du hardware bon marché

CONCEPTION INTEGRATION dans CITY PULSE

AUTONOMOUS CAMERA-BASED PEOPLE COUNTING SYSTEM

ANALYSE TECHNOLOGIES et ARCHITECTURE

SYSTEME DE CAPTURE (flux vidéo)

- Caméra basique (budget)
- Hardware bon marché

SYSTEME DE TRAITEMENT DES DONNEES (Deep Learning)

- Comment faire voir un ordinateur ?
- Détection des personnes
- Suivi de ces dernières

ANALYSE OBJECT DETECTION

ANALYSE

INTRO AU DEEP LEARNING

ANALYSE

CONVOLUTIONAL NEURAL NETWORK (CNN)

- State-of-the-art en classification d'images
- Inspiré par le fonctionnement du cortex visuel
- Extraction autonome des features (traits)
- Assignation des poids et biais

The neural network itself learns how to build important features from the simple lines

ANALYSE TRANSFER LEA

Utilisation de modèle CNN généraux pré-entrainés

Transfer de con

Nécessite moin 80-

REALISTION ENVIRONNEMENT

kaggle

Plateforme web de data science Datasets et Notebook Jupyter GPU Nvidia P100

Librairie Python haut niveau Développement de modèles de DL Intuitif grâce à l'abstraction

REALISATION

- Données d'entrainement de e-sculape inutilisables
- Dataset existant dédié à la classification de documents
- «Proof of concept» ré-entrainable

REALISATION

ENTRAINEMENT

TESTS

FIABILITE et TEMPS D'ENTRAINEMENT

CNN Model	Top Accuracy	Loss	Différence
VGG-16	84.7 %	0.98	$+\ 10.1\ \%$
ResNet-50	80.9 %	0.94	+ 5.2 $%$
InceptionV3	80.4 %	0.81	+ 4.5 $%$
Xception	76.9 %	0.96	+ 0 %

CNN Model	# trainable	# epochs	$\mathbf{Time/epoch}$	Total Training
	weights			Time
ResNet-50	216	40	19 sec	760 sec (12.6 min)
InceptionV3	192	40	27 sec	1'080 sec (18 min)
VGG-16	30	100	19 sec	1'900 sec (31.6 min)
Xception	158	50	$65 \mathrm{sec}$	3'250 sec (54.2 min)

CONCLUSION

Validation des objectifs

Problèmes et solutions

Perspectives futures

Conclusion personnelle

MERCI POUR VOTRE ATTENTION

gitlab.forge.hefr.ch/patrick.audriaz/tb-audriaz

patrick-audriaz.com/work

linkedin.com/in/audriazp

