计算机组成原理

PRINCIPLES OF COMPUTER ORGANIZATION

主讲教师: 隋秀峰

中国科学院大学 中国科学院计算技术研究所

计算机革命

- ●计算机技术的进步
 - 摩尔定律的驱动
- "计算机科学幻想"到现实
 - 车载计算机
 - 手机
 - 人类基因组项目
 - www
 - 搜索引擎

计算无所不在,计算机无所不能

计算机的分类

- 个人计算机(PC)
 - _ 通用,运行第三方软件
 - 追求性能功耗比
- 服务器
 - _ 基于网络
 - _ 高性能、高容量、高可靠
 - 力能和价格有很大的伸缩范围
- 超级计算机
 - _ 用于高端科学和工程计算
 - _ 最高的计算能力,但只占服务器很小一部分
- 嵌入式计算机
 - _ 通常和硬件集成在一起以单一系统的方式存在
 - _ 对功耗、性能、成本有严格限制
 - 运行预定义的一个或者一组应用程序

后PC时代

后PC时代

- 个人移动设备(PMD)
 - 由电池供电
 - 通过无线方式连接到网络
 - 价格通常只有几百美元
 - 智能手机、平板电脑
- 云计算
 - Ware-house Scale Computer (WSC)
 - 实现软件即服务 (SaaS)
 - PMD和云上各运行应用的一部分
 - Amazon、Google、BAT等

课程地位

- 计算机系统的层次结构
 - 指令系统(即ISA)是软/硬件的交界面
- 不同用户工作在不同层次,所看到的计算机不一样
- 本课程主要内容处于最核心的部分!

课程目标

- 系统的理解并掌握计算机的运行原理
 - 学习计算机硬件的组成
 - 高级语言程序如何翻译成硬件之间的语言
 - 硬件如何执行程序
 - 理解计算机硬件/软件的协同机制(接口)
 - 影响程序性能的因素、如何改进程序性能 (尤其是硬件设计上)

让你成为懂计算机的人

课程概况

- ●学时分配
 - 理论: 60学时; 实验: 40学时
- 授课教师
 - 主讲教师: 隋秀峰 (suixiufeng@ict.ac.cn)
 - 助课教师:姚治成(yaozhcheng@ict.ac.cn)、 任睿(renrui@ict.ac.cn)
- 考核方式
 - _ 期中+期末考试: 80%; 作业+研讨: 20%

课程大纲

- ●计算机系统的基本概念
- ●计算机中数的表示
- ●指令系统
- ●数据通路及控制部件
- ●存储系统
- ●中断与异常
- ●輸入輸出系统

计算机系统的基本概念

● 解剖计算机

一 计算机软硬件概念;计算机系统的层次结构;计算机的基本组成、冯•诺 依曼计算机的特点;计算机的硬件框图及工作过程;评价CPU性能的主 要技术指标;计算机的发展及应用、计算机基本结构的演变与实现技术

计算机中数的表示

- 理解0和1的魔力
- 例子: (float) 17825792 + 1 = 17825793?
 - 二进制表示为0001 0001 0000 0000 0000 0000 0000
 - _ 二进制浮点表示为1.0001×211000
 - 根据IEEE 754浮点数标准,只能表示24位尾数
 - 故(float) 17825792 + 1,由于计算机表示对精度的影响仍为17825792

 0 1
 8 9

 符号
 阶码

 尾数

指令系统

- ●计算机的语言
- 例子: MIPS-lite Instruction Subset
- ADDU and SUBU
 - addu rd,rs,rt
 - subu rd, rs, rt
- OR Immediate:
 - ori rt, rs, imm16
- LOAD and STORE Word
 - lw rt,rs,imm16
 - sw rt,rs,imm16
- BRANCH:
 - beq rs, rt, imm16

数据通路及控制部件

存储系统

● 数据存放和移动规则

- 存储器分类和存储器的层次结构;主存储器;高速缓冲存储器;虚 拟存储器

输入输出系统

- 例子1: 打字-键盘中断
- 例子2: 网络上下载文件-网卡DMA

教材和参考书

这门课程

- 强度大: 学习基本原理、硬件描述语言、 软件工具、硬件调试、芯片手册
- 态度决定一切(ATTITUDE)
- 奠定你对计算机的认识,铸就你未来成就的基石
- ●期待着你最终能感受到"一览众山小"的 巅峰体验

第1讲 计算机系统概论

1.1 计算机系统简介

1.2 计算机的基本组成

1.3 计算机硬件的主要技术指标

1.4 课程结构

1.1 计算机系统简介

一、计算机的软硬件概念

1. 计算机系统

计算机的实体, 算机、外设等 如主机、外设等 统 软件 由具有各类特殊

软件 由具有各类特殊功能 的信息(程序)组成

·系统软件 用来管理整个计算机系统

语言处理程序

操作系统(处理输入输出;管理内存和存储;调度任务、共享资源)

服务性程序

数据库管理系统

网络软件

软件

应用软件 按任务需要编制成的各种程序 (高级语言编制)

2. 计算机的解题过程

1.1

计算机

3、计算机的语言

- ●机器语言
 - 二进制(位)
 - 指令和数据编码
- ●汇编语言
 - 机器指令的最直接表示
- ●高级语言
 - 与问题领域最接近的抽象层次
 - 效率和可移植性

二、计算机系统的层次结构

高级语言

汇编语言

操作系统

机器语言

微指令系统

用编译程序翻译成汇编语言程序

用汇编程序翻译成机器语言程序

用机器语言解释操作系统

要际机器件微程序机器

用微指令解释机器指令

由硬件直接执行微指令

三、计算机体系结构和计算机组成 1.1

有无乘法指令

计算机体系结构

程序员所见到的计算机系统的属性概念性的结构与功能特性

(指令系统、数据类型、寻址技术、I/0机理)

计算机 组成 实现计算机体系结构所体现的属性

(具体指令的实现)

如何实现乘法指令

1.2 计算机的基本组成

- 一、冯·诺依曼计算机的特点
 - 1. 计算机由五大部件组成
 - 2. 指令和数据以同等地位存于存储器, 可按地址寻访
 - 3. 指令和数据用二进制表示
 - 4. 指令由操作码和地址码组成
 - 5. 存储程序
 - 6. 以运算器为中心

冯·诺依曼计算机硬件框图

1.2

1.2

冯·诺依曼计算机硬件框图

二、计算机硬件框图

1. 以存储器为中心的计算机硬件框图

2. 现代计算机硬件框图

1.2

三、计算机的工作步骤

1. 上机前的准备

- 建立数学模型
- 确定计算方法

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

$$\sqrt{x} = \frac{1}{2} (y_n + \frac{x}{y_n}) (n = 0, 1, 2, \cdots)$$

• 编制解题程序

程序 —— 运算的 全部步骤 指令 —— 每 一个步骤

计算 $ax^2 + bx + c = (ax + b)x + c$ 取x 至运算器中 乘以x 在运算器中 乘以a在运算器中 $存ax^2$ 在存储器中 取b 至运算器中 乘以x 在运算器中 max^2 在运算器中 在运算器中 加c

取x 至运算器中 乘以a 在运算器中 加力 在运算器中 乘以x 在运算器中 加c 在运算器中

指令格式举例

操作码	地址码	
取数	α	$[\alpha] \rightarrow ACC$
000001	000001000	
存数	β	$[ACC] \rightarrow \beta$
加	γ	$[ACC]+[\gamma] \longrightarrow ACC$
乘	δ	$[ACC] \times [\delta] \longrightarrow ACC$
打印	σ	[σ] → 打印 <mark>机</mark>
停机		

计算 $ax^2 + bx + c$ 程序清单

1.2

指令和数据存于	指令		注释
主存单元的地址	操作码	地址码	<i>七</i> 二十
0	000001	0000001000	取数x至ACC
1	000100	0000001001	乘a得ax,存于ACC中
2	000011	0000001010	加b得ax+b,存于ACC中
3	000100	0000001000	乘x得 (ax+b)x,存于ACC中
4	000011	0000001011	
5	000010	0000001100	将 $ax^2 + bx + c$,存于主存单元
6	000101	0000001100	打印
7	000110		停机
8		x	原始数据x
9		a	原始数据a
10		b	原始数据 b
11		c	原始数据c
12			存放结果

1.2

(1) 主存储器的基本组成

存储体

MAR MDR

主存储器

存储体 - 存储单元 - 存储元件 (0/1)

大楼 - 房间 - 床位 (无人/有人)

存储单元 存放一串二进制代码

存储字 存储单元中二进制代码的组合

存储字长 存储单元中二进制代码的位数

每个存储单元赋予一个地址号

按地址寻访

(1)存储器的基本组成

存储体

MAR MDR

主存储器

MAR 存储器地址寄存器 反映存储单元的个数

MDR 存储器数据寄存器 反映存储字长

设 MAR=4位

MDR = 8 位

存储单元个数 16

存储字长8

(2)运算器的基本组成及操作过程

	ACC	MQ	X
加法	被加数 和		加数
减法	被减数 差		减数
乘法	乘积高位	乘数 乘积低位	被乘数
除法	被除数 余数	商	除数

ACC: Accumulator; MQ: Multiplier-Quotient Register

① 加法操作过程

② 减法操作过程

③ 乘法操作过程

指令 乘 M 初态 ACC 被乘数 $[M] \longrightarrow MQ$ $[ACC] \longrightarrow X$ $0 \longrightarrow ACC$ $[X] \times [MQ] \longrightarrow ACC //MQ$

④ 除法操作过程

指令 除 M 初态 被除数 ACC $[M] \longrightarrow X$ $[ACC] \div [X] \longrightarrow MQ$ 余数在ACC中

(3)控制器的基本组成

 完成
 取指令
 PC

 一条
 分析指令
 IR

 指令
 执行指令
 CU
 执行 访存

PC 存放当前欲执行指令的地址, 具有计数功能(PC)+1→PC

IR 存放当前欲执行的指令

CU 控制单元

(4) 主机完成一条指令的过程以取数指令为例

(4) 主机完成一条指令的过程以存数指令为例

(5) $ax^2 + bx + c$ 程序的运行过程

- 将程序通过输入设备送至计算机
- 程序首地址 —→ PC
- 启动程序运行
- 取指令 $PC \rightarrow MAR \rightarrow M \rightarrow MDR \rightarrow IR$, $(PC)+1 \rightarrow PC$
- 分析指令 OP(IR) → CU
- 执行指令 Ad(IR) → MAR → M → MDR → ACC
 - •
- 打印结果
- 停机

1.3 计算机硬件的主要技术指标

1. 机器字长

CPU一次能处理数据的位数 与 CPU 中的 寄存器位数 有关

主频

2. 运算速度

吉普森法 $T_{\rm M} = \int_{i=1}^{n} f_i t_i$ 比例 执行时间

MIPS 每秒执行百万条指令

CPI 执行一条指令所需时钟周期数

FLOPS 每秒浮点运算次数

Operation of digital hardware governed by a constant-rate clock

- Clock period: duration of a clock cycle
 - e.g., $250ps = 0.25ns = 250 \times 10^{-12}s$
- Clock frequency (rate): cycles per second
 - e.g., 4.0GHz = 4000MHz = 4.0×10^9 Hz

CPI

```
Clock Cycles = Instruction Count \times Cycles per Instruction

CPU Time = Instruction Count \times CPI \times Clock Cycle Time

= \frac{Instruction Count \times CPI}{Clock Rate}
```

- Instruction Count for a program
 - Determined by program, ISA and compiler
- Average cycles per instruction
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

CPI例子

- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- Which is faster, and by how much?

```
\begin{aligned} \text{CPUTime}_{A} &= \text{Instruction Count} \times \text{CPI}_{A} \times \text{Cycle Time}_{A} \\ &= \text{I} \times 2.0 \times 250 \text{ps} = \text{I} \times 500 \text{ps} & & \text{A is faster...} \end{aligned} \begin{aligned} \text{CPUTime}_{B} &= \text{Instruction Count} \times \text{CPI}_{B} \times \text{Cycle Time}_{B} \\ &= \text{I} \times 1.2 \times 500 \text{ps} = \text{I} \times 600 \text{ps} \end{aligned} \begin{aligned} &= \text{CPUTime}_{B} \\ &= \text{CPUTime}_{A} \end{aligned} = \frac{\text{I} \times 600 \text{ps}}{\text{I} \times 500 \text{ps}} = 1.2 & & \text{...by this much} \end{aligned}
```

深入理解CPI

 If different instruction classes take different numbers of cycles

Clock Cycles =
$$\sum_{i=1}^{n} (CPI_i \times Instruction Count_i)$$

Weighted average CPI

$$CPI = \frac{Clock Cycles}{Instruction Count} = \sum_{i=1}^{n} \left(CPI_i \times \frac{Instruction Count_i}{Instruction Count} \right)$$

Relative frequency

CPI例子

 Alternative compiled code sequences using instructions in classes A, B, C

Class	А	В	С
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

- Sequence 1: IC = 5
 - Clock Cycles = 2×1 + 1×2 + 2×3 = 10
 - Avg. CPI = 10/5 = 2.0

- Sequence 2: IC = 6
 - Clock Cycles = 4×1 + 1×2 + 1×3 = 9
 - Avg. CPI = 9/6 = 1.5

MIPS与CPI

- MIPS: Millions of Instructions Per Second
 - Doesn't account for
 - Differences in ISAs between computers
 - Differences in complexity between instructions

$$\begin{aligned} \text{MIPS} &= \frac{\text{Instruction count}}{\text{Execution time} \times 10^6} \\ &= \frac{\text{Instruction count}}{\frac{\text{Instruction count} \times \text{CPI}}{\text{Clock rate}}} = \frac{\text{Clock rate}}{\text{CPI} \times 10^6} \end{aligned}$$

CPI varies between programs on a given CPU

MIPS与CPI

例:某计算机的主频为1.2GHz,其指令分为4类, 他们在某程序中所占的比例及CPI如下表所示。 该机器的MIPS数是多少?

指令类型	所占比例	CPI
А	50%	2
В	20%	3
С	10%	4
D	20%	5

■ 解: CPI=2×0.5+3×0.2+4×0.1+5×0.2=3 MPIS=1200/3=400

3. 存储容量 存放二进制信息的总位数

存储单元个数×存储字长 容量 MAR MDR 如 1 K×8位 10 主存容量 32 64 K×32位 16 $1K = 2^{10}$ 字节数 $2^{13} = 1 \text{ KB}$ 如 $1B = 2^3b$ $2^{21} = 256 \text{ KB}$

辅存容量

字节数

80 GB

 $1GB = 2^{30}b$

计算机

第1篇 概论

第2篇 计算机系统的硬件结构

存储器 I/O 系统总线 CPU

第3篇 CPU

中央处理器
ALU CU
CPU
内部互连
指令系统

存储器 I/O 系统总线 CPU

第4篇 CU

中央处理器
ALU CU
CPU
内部互连
指令系统

控制单元 组合 逻辑 数据通路 控制 控制 存储器

作业

● 习题: 1.7, 1.9, 1.10