

RSMP Signal Exchange List for Traffic Light Controllers

Release 1.0.15

Contens

1	Defi	nitions											1
2	Sign	al Exch	ange Lis	st									3
	2.1	Object	Types		 		3						
		2.1.1	Grouped	objects	 		3						
		2.1.2	Single ob	jects	 		3						
	2.2	Aggrega	ated statu	ıs	 		3						
	2.3	Alarms			 		4						
		2.3.1	A0001 .		 		5						
		2.3.2	A0002 .		 		5						
		2.3.3	A0003 .		 		5						
		2.3.4	A0004 .		 		5						
		2.3.5	A0005 .		 		5						
		2.3.6	A0006 .		 		5						
		2.3.7	A0007 .		 		5						
		2.3.8	A0008 .		 		6						
		2.3.9	A0009 .		 		6						
		2.3.10	A0010 .		 		6						
		2.3.11	A0101 .		 		6						
		2.3.12	A0201 .		 		6						
		2.3.13	A0202 .		 		7						
		2.3.14	A0301 .		 		7						
		2.3.15	A0302 .		 		7						
	2.4	Status			 		8						
		2.4.1	S0001 .		 		10						
		2.4.2	S0002 .		 		10						
		2.4.3	S0003 .		 		10						
		2.4.4	S0004 .		 		11						
		2.4.5	S0005 .		 		11						
		2.4.6	S0006 .		 		11						
		2.4.7	S0007 .		 		11						
		2.4.8	S0008 .		 		12						
		2.4.9	S0009 .		 		12						
		2.4.10	S0010 .		 		13						
		2.4.11	S0011 .		 		13						
		2.4.12	S0012 .		 		13						
		2.4.13	S0013 .		 		14						
		2.4.14	S0014 .		 		14						
		2.4.15	S0015 .		 		14						
		2.4.16	S0016 .		 		15						
		2.4.17	S0017 .		 		15						
		2.4.18	S0018 .		 		15						

		2.4.19	S0019		 	 						 										16
		2.4.20	S0020		 	 						 										16
		2.4.21	S0021		 	 						 										16
		2.4.22	S0022		 	 						 										16
		2.4.23	S0023		 	 						 										17
		2.4.24	S0024		 	 						 										17
		2.4.25	S0025		 	 						 										18
		2.4.26	S0026		 	 						 										19
		2.4.27	S0027		 	 						 										20
		2.4.28	S0028		 	 						 										21
		2.4.29	S0029		 	 						 										21
		2.4.30	S0030		 	 						 										21
		2.4.31	S0031		 	 						 										22
		2.4.32	S0091		 	 						 										22
		2.4.33	S0092		 	 						 										22
		2.4.34	S0095		 	 						 										23
		2.4.35	S0096		 	 						 										23
		2.4.36	S0097																			23
		2.4.37	S0098		 	 		-			-	 				-						$\frac{23}{24}$
		2.4.38	S0201			 					-	 					-					25
		2.4.39	S0202			 					-	 					-					26
		2.4.40	S0202		 	 		-			-	 				-						26
		2.4.41	S0204		 	 						 				•						26
		2.4.42	S0204 S0205			 					-	 					-					27
		2.4.43	S0206			 					-	 					-					27
		2.4.44	S0207			 					-	 					-					28
		2.4.45	S0207 S0208		 	 		-			-	 				-						28
	2.5	Comma			 	 		-			-	 				-						30
	2.0	2.5.1	M0001		 	 					-	 					-					30
		2.5.2	M0002			 					-	 					-				•	31
		2.5.3	M0003			 					-	 					-				•	31
		2.5.4	M0004			 					-	 					-					32
		2.5.5	M0005			 					-	 					-					32
		2.5.6	M0006			 					-	 					-					33
		2.5.7	M0007			 					-	 					-					33
		2.5.8	M0008		 	 						 				-				•		33
		2.5.9	M0010		 	 						 				•				•		34
			M0010		 	 				• •	• •	 • •	•	٠.	٠.	•	• •	• •	• •	•		34
		2.5.10 $2.5.11$	3.50040		 • •	 				• •	• •	 • •	•	• •	• •	•	• •	• •		•		35
		2.5.11 $2.5.12$																				37
		2.5.13																				38
		2.5.14	M0014		 	 						 	-									39
		2.5.14																				39
		2.5.16	M0017																			40
		2.5.17																				41
		2.5.18	M0019																			42
		2.5.19																				42
		2.5.19																				42
		2.5.20 $2.5.21$	M0103																			43
		2.5.21 $2.5.22$	M0103																			43
		2.0.22	1/10104		 • •	 	٠.	• •	• •	• •	• •	 	• •	• •		•	• •	• •		•		40
3	Signa	al Grou	ıp statu	ıs																		45
4	Traff	ic data	L																			47

5	Coo		on between traffic light controllers 4	
	5.1		<u>.</u>	19
	5.2	Coordi	nation type "Local coordination"	50
	5.3			51
	5.4			52
	5.5			52
	5.6	Function	onal requirements of the TLC	52
	5.7	Notes a	about JSon	53
	5.8	Commu	ınication establishment	54
	5.9	Initializ	zation sequence for local coordination	54
	5.10	Initializ	zation sequence for coordination with synchronized cycle counter	54
	5.11	Termin	ation sequence	56
	5.12		-	66
	5.13			56
	5.14			56
6	JSon	Exam	ples 5	9
	6.1	Alarms		31
		6.1.1	A0001 Serious hardware error	31
		6.1.2		32
		6.1.3	9	32
		6.1.4	9	33
		6.1.5	0 , 1	33
		6.1.6	V	33
		6.1.7	A0007 Communication error between one or multiple traffic light controllers and	
			V	34
		6.1.8		34
		6.1.9		35
		6.1.10	*	35
		6.1.11		66
		6.1.12	±	66
		6.1.13	1	66
		6.1.14		37
		6.1.15	()	38
	6.2	Statuse	s	68
		6.2.1	0 0 1	38
		6.2.2	S0002 Detector logic status	39
		6.2.3	S0003 Input status	70
		6.2.4		71
		6.2.5	S0005 Traffic Light Controller starting	72
		6.2.6		72
		6.2.7	S0007 Controller switched on	73
		6.2.8	S0008 Manual control	74
		6.2.9	S0009 Fixed time control	74
		6.2.10	S0010 Isolated control	75
		6.2.11	S0011 Yellow flash	76
		6.2.12	S0012 All red	77
		6.2.13	S0013 Police key	78
		6.2.14	S0014 Current time plan	78
		6.2.15	S0015 Current traffic situation	79
		6.2.16	S0016 Number of detector logics	30
		6.2.17	S0017 Number of signal groups	30
		6.2.18	S0018 Number of time plans	31
		6.2.19	S0019 Number of traffic situations	32

	6.2.20	S0020 Control mode
	6.2.21	S0021 Manually set detector logic
	6.2.22	S0022 List of time plans
	6.2.23	S0023 Command table
	6.2.24	S0024 Offset time
	6.2.25	S0025 Time-to-green
	6.2.26	S0026 Week time table
	6.2.27	S0027 Time tables
	6.2.28	S0028 Cycle time
	6.2.29	S0029 Forced input status
	6.2.30	S0030 Forced output status
	6.2.31	S0031 Trigger level sensitivity for loop detector
	6.2.32	S0091 Operator logged in/out OP-panel
	6.2.33	S0092 Operator logged web-interface
	6.2.34	S0095 Version of Traffic Light Controller
	6.2.35	S0096 Current date and time
	6.2.36	S0097 Checksum of traffic parameters
	6.2.37	S0098 Configuration of traffic parameters
	6.2.38	S0201 Traffic Counting: Number of vehicles
	6.2.39	S0202 Traffic Counting: Vehicle speed
	6.2.40	S0203 Traffic Counting: Occupancy
	6.2.41	S0204 Traffic Counting: Number of vehicles of given classification
	6.2.42	S0205 Traffic Counting: Number of vehicles
	6.2.43	S0206 Traffic Counting: Vehicle speed
	6.2.44	S0207 Traffic Counting: Occupancy
	6.2.45	S0208 Traffic Counting: Number of vehicles of given classification
6.3	Comma	ands
	6.3.1	M0001 Sets functional position
	6.3.2	M0002 Sets current time plan
	6.3.3	M0003 Sets traffic situation the controller uses
	6.3.4	M0004 Restarts Traffic Light Controller
	6.3.5	M0005 Activate emergency route
	6.3.6	M0006 Activate input
	6.3.7	M0007 Activate fixed time control
	6.3.8	M0008 Sets manual activation of detector logic
	6.3.9	M0010 Start of signal group
	6.3.10	M0011 Stop of signal group
	6.3.11	M0012 Request start or stop of a series of signal groups
	6.3.12	M0013 Activate a series of inputs
	6.3.13	M0014 Set command table
	6.3.14	M0015 Set Offset time
	6.3.15	M0016 Set week time table
	6.3.16	M0017 Set time tables
	6.3.17	M0018 Set cycle time
	6.3.18	M0019 Force input
	6.3.19	M0020 Force output
	6.3.20	M0021 Set trigger level sensitivity for loop detector
	6.3.21	M0103 Set security code
	6.3.22	M0104 Set clock

Chapter 1

Definitions

The following definitions is provided as information for use in RSMP and may be simplified from their original meanings.

RSMP Nordic takes no responsibility for the correctness of the definitions.

Red rest The signal group has no green demand.

Red rest without start order The signal group isn't allowed to demand green (green demand held back) without a start order.

Red rest with privilege measurement The signal group has no green demand but can turn green when other signal groups in the same phase are turning green (signal group status G/0) or are green (signal groups status 1/2/3/4/5). A green demand which arrives late when other signal groups are green according to the above, results in a change to green.

Red with reservation The signal group is red due to other priority.

Red with request The signal group waits for signal group status 1/2/3/4/5 of conflicting signal groups to end.

Red with start in own stage The signal group waits for signal group status 6/7/8/9/N/O/P of conflicting signal groups to end.

Minimum green The shortest time which can be shown green for each respective signal group, this time can't be shortened.

Max. minimum green The signal groups status "minimum green" should be able to be extended with a traffic controlled variable part up to a maximum "Max. minimum-green". If one or multiple detector logics are programmed to extend signal group status "Max. minimum-green", then the detector logics will extend the minimum green time if they are active during red signal picture. Signal group status "Max. minimum-green" should optionally be able to be shortened or not at prioritization.

Maximum green (extension) The signal group should be able to extend its showing of green through extension, e.g. from detector logics. When the signal group has green demand and status minimum green has ended, the signal group should continue its display of green in status maximum green. Maximum green should be measured in parallel with minimum green up to a maximum "maximum green". Signal group status "maximum green" should optionally be able to be shortened or not at prioritization.

Green rest A signal group continues its display of green due to one or multiple signal group/s in the same traffic pattern has more demand for green (signal group status 1/2/3), The signal group has no conflict. It waits to be changed, by the rest mode.

- **Green passive** A signal group continues its display of green due to other signal groups in the same traffic pattern has more demand for green (signal group status 1/2/3). The signal group has conflict. It waits to change, by conflicting signal group(s).
- **Fixed past-end-green** When the signal group is ordered to change to red it should be able to continue to be green with a configurable fixed time.
- Extra green according to intergreen times Signal groups remains green if possible, according to the conflicting signal groups
- Variable past-end-green When the signal group is ordered to change to red it should be able to continue to be green during a traffic controlled variable time (O function). Signal group status "Past end green" should optionally be shortened or not at prioritization.
- Variable yellow or yellow green Signal group status "fixed yellow" can be extended with a traffic controlled variable part "Variable yellow", the signal group status is usually extended by detector logics. (V function).
- Variable red The fixed red time/intergreen time should be able to be extended with a traffic controlled variable part. It is usually measured in parallel with the fixed time whereby it must be longer to have any effect. (R function)

Chapter 2

Signal Exchange List

2.1 Object Types

2.1.1 Grouped objects

ObjectType	Description	
Traffic Light Controller		

Table 1: Grouped objects

2.1.2 Single objects

ObjectType	Description	
Signal group		
Detector logic		

Table 2: Single objects

2.2 Aggregated status

ObjectType	Status	functionalPosition	functionalState	Description
Traffic Light	See state-bit defini-			
Controller	tions below			

Table 3: Aggregated status

State- Bit nr (12345678)	Description	Comment
1	Local mode	Traffic Light Controller is in local mode. NTS has no control.
2	No Communications	
3	High Priority Fault	Traffic Light Controller is in fail safe mode; e.g. yellow flash or dark mode
4	Medium Priority Fault	Traffic Light Controller has a medium priority fault, but not in fail safe mode. E.g. several lamp faults or detector fault
5	Low Priority Fault	Traffic Light Controller has a low priority fault. E.g. Detector fault
6	Connected / Normal - In Use	
7	Connected / Normal - Idle	Traffic Light Controller dark according to configuration. NOTE! When dark according to configuration the controller is considered to be in use
8	Not Connected	

Table 4: State bits

2.3 Alarms

ObjectType	alarmCodeld	Description	Priority	Category
Traffic Light	A0001	Serious hardware error	2	D
Controller				
Traffic Light	A 0 0 0 2	Less serious hardware error	3	D
Controller				
Traffic Light	A0003	Serious configuration error	2	D
Controller				
Traffic Light	A 0 0 0 4	Less serious configuration error	3	D
Controller				
Traffic Light	A0005	Communication error between traffic light con-	3	D
Controller		trollers / synchronisation error		
Traffic Light	A0006	Safety error	2	D
Controller				
Traffic Light	A0007	Communication error between one or multiple	3	D
Controller		traffic light controllers and central control sys-		
		tem.		
Signal group	A0008	Dead lock error	2	D
Traffic Light	A0009	Other error	3	D
Controller				
Traffic Light	A0010	Door open	3	D
Controller				
Signal group	A0101	Pushbutton error	3	D
Signal group	A0201	Serious lamp error	2	D
Signal group	A 0202	Less serious lamp error	3	D
Detector logic	A 0301	Detector error (hardware)	3	D
Detector logic	A 0302	Detector error (logic error)	3	D

Table 5: Alarms

2.3.1 A0001

Serious hardware error

Is a "major fault" defined according to 3.8 i EN12675 which causes the controller to switch to a "failure mode" according to 3.6 in EN12675.

2.3.2 A0002

Less serious hardware error

Is a "minor fault" defined according to 3.11 in EN12675.

2.3.3 A0003

Serious configuration error

Is a "major fault" defined according to 3.8 in EN12675 which causes the controller to switch to a "failure mode" according to 3.6 in EN12675.

2.3.4 A0004

Less serious configuration error

Is a "minor fault" defined according to 3.11 in EN12675.

2.3.5 A0005

Communication error between traffic light controllers / synchronisation error

Is a "minor fault" defined according to 3.11 in EN12675.

2.3.6 A0006

Safety error

Is a "major fault" defined according to 3.8 in EN12675 which causes the controller to switch to a "failure mode" according to 3.6 in EN12675.

2.3.7 A0007

Communication error between one or multiple traffic light controllers and central control system.

Used for communication errors with the central system. Includes NTP connection loss if the TLC is configured to use NTP.

Is a "minor fault" defined according to 3.11 in EN12675.

2.3.8 A0008

Dead lock error

Used for dead lock errors.

For instance; a signal group has requested green but is unable to switch due to a conflicting signal group for an extended period of time. At some point the request times out and the controller goes failure mode. The cause for this error is due to configuration errors or external sources.

Is a "major fault" defined according to 3.8 in EN12675 which causes the controller to switch to a "failure mode" according to 3.6 in EN12675.

Name	Type	Value	Comment
timeplan	integer	[designation]	Current time plan

Table 6: A0008

2.3.9 A0009

Other error

Used for other errors not covered by any other alarm type

Is a "minor fault" defined according to 3.11 in EN12675.

2.3.10 A0010

Door open

Used for open door (room or cabinet).

2.3.11 A0101

Pushbutton error

Used for push buttons

2.3.12 A0201

Serious lamp error

Used for lamp errors

Is a "major fault" defined according to 3.8 in EN12675 which causes the controller to switch to a "failure mode" according to 3.6 in EN12675.

Name	Туре	Value	Comment	
color	string	-red	Color of lamp	
		-yellow		
		-green		

Table 7: A0201

2.3.13 A0202

Less serious lamp error

Used for lamp errors

Is a "minor fault" defined according to 3.11 in EN12675.

Name	Туре	Value	Comment	
color	string	-red	Color of lamp	
		-yellow		
		-green		

Table 8: A0202

2.3.14 A0301

Detector error (hardware)

Is a "minor fault" defined according to 3.11 in EN12675.

Name	Туре	Value	Comment
detector	string	[designation]	Designation of the detector (hard-
			ware)
type	string	-loop	Type of detector
		-input	loop: Inductive detector loop
			input: External input
errormode	string	-on	Detector forced on/off while detector
		-off	error
manual	boolean	-True	Manually controlled detector logic
		-False	(True/False)

Table 9: A0301

2.3.15 A0302

Detector error (logic error)

For instance; detector continuously on or off during an extended time.

Is a "minor fault" defined according to 3.11 in EN12675.

Name	Type	Value	Comment
detector	string	[designation]	Designation of the detector (hard-
			ware)
type	string	-loop	Type of detector.
		-input	loop: Inductive detector loop
			input: External input
errormode	string	-on	Detector forced on/off while detector
		-off	error
manual	boolean	-True	Manually controlled detector logic
		-False	(True/False)
logicerror	string	-always_off	Type of logic error
		$-always_on$	always_off: no detection during prede-
		-intermittent	fined max time
			always_on: detection constantly on
			during predefined max time
			intermittent: intermittent logic fault
			(flutter)

Table 10: A0302

2.4 Status

ObjectType	statusCodeld	Description
Traffic Light Controller	S0001	Signal group status
Traffic Light Controller	S0002	Detector logic status
Traffic Light Controller	S0003	Input status
Traffic Light Controller	S0004	Output status
Traffic Light Controller	S0005	Traffic Light Controller starting
Traffic Light Controller	S0006	Emergency stage
Traffic Light Controller	S0007	Controller switched on
Traffic Light Controller	S0008	Manual control
Traffic Light Controller	S0009	Fixed time control
Traffic Light Controller	S0010	Isolated control
Traffic Light Controller	S0011	Yellow flash
Traffic Light Controller	S0012	All red
Traffic Light Controller	S0013	Police key
Traffic Light Controller	S0014	Current time plan
Traffic Light Controller	S0015	Current traffic situation
Traffic Light Controller	S0016	Number of detector logics
Traffic Light Controller	S0017	Number of signal groups
Traffic Light Controller	S0018	Number of time plans
Traffic Light Controller	S0019	Number of traffic situations
Traffic Light Controller	S0020	Control mode
Traffic Light Controller	S0021	Manually set detector logic
Traffic Light Controller	S0022	List of time plans
Traffic Light Controller	S0023	Dynamic bands
Traffic Light Controller	S0024	Offset time
Signal group	S0025	Time-of-Green / Time-of-Red
Traffic Light Controller	S0026	Week time table
Traffic Light Controller	S0027	Time tables
Traffic Light Controller	S0028	Cycle time
Traffic Light Controller	S0029	Forced input status
Traffic Light Controller	S0030	Forced output status
Traffic Light Controller	S0031	Trigger level sensitivity for loop detector
Traffic Light Controller	S0091	Operator logged in/out OP-panel
Traffic Light Controller	S0092	Operator logged in/out web-interface
Traffic Light Controller	S0095	Version of Traffic Light Controller
Traffic Light Controller	S0096	Current date and time
Traffic Light Controller	S0097	Checksum of traffic parameters
Traffic Light Controller	S0098	Configuration of traffic parameters
Detector logic	S0201	Traffic Counting: Number of vehicles
Detector logic	S0202	Traffic Counting: Vehicle speed
Detector logic	S0203	Traffic Counting: Occupancy
Detector logic	S0204	Traffic Counting: Number of vehicles of given classification
Traffic Light Controller	S0205	Traffic Counting: Number of vehicles
Traffic Light Controller	S0206	Traffic Counting: Vehicle speed
Traffic Light Controller	S0207	Traffic Counting: Occupancy
Traffic Light Controller	S0208	Traffic Counting: Number of vehicles of given classification

Table 12: Status

2.4.1 S0001

Signal group status

Provides the status of each signal group, including basic information such as green, yellow and red. But also detailed technical information.

Can be used to draw a live signal group diagram as well provide diagnostic information about the performance of the controller.

Name	Туре	Value	Comment
signalgroupstatus	string	[text]	Signal group status as text field
cyclecounter	integer	[0-999]	Cycle counter
basecyclecounter	integer	[0-999]	Base cycle counter
stage	integer	[0-999]	Current stage (isolated)

Table 13: S0001

2.4.2 S0002

Detector logic status

Provides the status of all detector logics of the controller.

Can be used to draw a live signal group diagram as well provide diagnostic information about the performance of the controller. Can also be used for bus priority, external control systems, and much more.

Name	Туре	Value	Comment	
detectorlogic	statusstring	[text]	Detector logic status as text field	

Table 14: S0002

2.4.3 S0003

Input status

Input (1-255) of the controllers general purpose I/O.

Input is used where the traffic light controller must react to external control. It could be external detectors, bus priority, and much more.

Name	Type	Value	Comment
inputstatus	string	[text]	Input status as text field
extendedinputs	statustring	[text]	Extended input status as text field

Table 15: S0003

2.4.4 S0004

Output status

Output (1-255) of the controllers general purpose I/O.

Can be used for all types of output where the traffic light controller needs to control other equipment. Can be used for bus priority, coordination between traffic controllers, external control systems, and much more.

Name	Type	Value	Comment
outputstatus	string	[text]	Output status as text field
extendedoutput	statusing	[text]	Extended output status as text field

Table 16: S0004

2.4.5 S0005

Traffic Light Controller starting

The traffic signal is starting, e.g. it is in startup mode and has not begun working normally yet.

During startup mode the traffic controller shows dark, red, yellow flash or using the predetermined start cycle (minimum times).

Name	Туре	Value	Comment
status	boolean	-False	False: Controller is not in start up mode
		-True	True: Controller is currently in start up mode

Table 17: S0005

2.4.6 S0006

Emergency stage

The status is active during emergency prioritization.

Used in situations where full priority is given in the emergency vehicle program.

Name	Туре	Value	Comment
status	boolean	-False	False: Emergency stage inactive
		-True	True: Emergency stage active
emergencystage	integer	[1-255]	Number of emergency stage

Table 18: S0006

2.4.7 S0007

Controller switched on

The controller is active and is not in dark mode.

Used to determine if the controller is operating, e.g. it shows red, green or yellow to the vehicles.

During maintenance work the controller might be using dark mode (no output to the signal heads).

Name	Type	Value	Comment
intersection	integer	[0-255]	0: Not applicable (only one intersection exists or appli-
			cable for all intersection of the traffic light controller)
			Other value: Intersection number
status	boolean	-False	False: Traffic Light Controller in dark mode
		-True	True: Traffic Light Controller not in dark mode

Table 19: S0007

2.4.8 S0008

Manual control

Traffic control deactivated in controller

Signal timings is controlled manually by service personnel using the operating panel of the controller.

Name	Туре	Value	Comment
intersection	integer	[0-255]	0: Not applicable (only one intersection exists or appli-
			cable for all intersection of the traffic light controller)
			Other value: Intersection number
status	boolean	-False	False: Manual control inactive
		-True	True: Manual control active

Table 20: S0008

2.4.9 S0009

Fixed time control

Traffic actuated control deactivated and a pre-timed control is used.

Usually only used in case normal detectors can't be used, e.g. during maintenance work.

Name	Type	Value	Comment
intersection	integer	[0-255]	0: Not applicable (only one intersection exists or appli-
			cable for all intersection of the traffic light controller)
			Other value: Intersection number
status	boolean	-False	False: Fixed time control inactive
		-True	True: Fixed time control active

Table 21: S0009

2.4.10 S0010

Isolated control

Isolated control mode indicates that the controller operates independently of any other traffic light controllers. This may different depending on traffic program (time plan).

Used to determine if the controller is operating independently or operating with other controllers (coordination).

Name	Туре	Value	Comment
intersection	integer	[0-255]	0: Not applicable (only one intersection exists or appli-
			cable for all intersection of the traffic light controller)
			Other value: Intersection number
status	boolean	-False	False: Isolated control disabled
		-True	True: Isolated control enabled (Vehicle actuated con-
			trol or Fixed time control)

Table 22: S0010

2.4.11 S0011

Yellow flash

The controller shows yellow flash.

Yellow flash may be used during a serious fault (depending on configuration) or maintenance work. It can also be manually set using M0001.

Name	Type	Value	Comment
intersection	integer	[0-255]	0: Not applicable (only one intersection exists or appli-
			cable for all intersection of the traffic light controller)
			Other value: Intersection number
status	boolean	-False	False: Yellow flash disabled
		-True	True: Yellow flash enabled

Table 23: S0011

2.4.12 S0012

All red

The controller show all red

All red can be manually set using the controllers operating panel during maintenance work.

Name	Туре	Value	Comment
intersection	integer	[0-255]	0: Not applicable (only one intersection exists or appli-
			cable for all intersection of the traffic light controller)
			Other value: Intersection number
status	boolean	-False	False: All red disabled
		-True	True: All red enabled

Table 24: S0012

2.4.13 S0013

Police key

The controller is forced to dark mode or yellow flash.

The "police key" is a external control switch present in some controllers that manually switches the controller to either dark mode or yellow flash.

Name	Туре	Value	Comment
intersection	integer	[0-255]	0: Not applicable (only one intersection exists or applicable for all intersection of the traffic light controller)
			Other value: Intersection number
status	integer	-0	0: disabled
		-1	1: dark mode
		-2	2: yellow flash

Table 25: S0013

2.4.14 S0014

Current time plan

The current time plan (signal program) used in the controller. There may be 1-255 predefined time plans.

The time plan (signal program) may change signal timings, cycle time, control strategy and much more. Typical usage is is scenario based control where change of program is used to change priority etc.

Name	Туре	Value	Comment
status	integer	[1-255]	Current time plan

Table 26: S0014

2.4.15 S0015

Current traffic situation

The current traffic situation used in the controller.

Used for area-based control where a command can be sent to a master traffic light controller about which predefined traffic situation to use (1-255).

Traffic situation is a concept used to divide multiple TLC's into areas and sub-areas. The traffic situation gives the possibility to change the TLC sub-area dynamically depending on the time of day and the traffic flow. Depending on the traffic situation each TLC selects the time plan dynamically.

Name	Туре	Value	Comment
status	integer	[1-255]	Current traffic situation

Table 27: S0015

2.4.16 S0016

Number of detector logics

Can be used by the management system to check the number of detector logics configured in the controller.

Name	Type	Value	Comment
number	long	[1-65025]	Number of detector logics

Table 28: S0016

2.4.17 S0017

Number of signal groups

Can be used for the management system to check the number of signal groups configured in the controller.

Name	Type	Value	Comment
number	long	[1-65025]	Number of signal groups

Table 29: S0017

2.4.18 S0018

Number of time plans

Can be used for the management system to check the number of time plans configured in the controller.

Name	Type	Value	Comment
number	long	[1-65025]	Number of time plans (depreciated)

Table 30: S0018

2.4.19 S0019

Number of traffic situations

Can be used for the management system to check the number of traffic situations configured in the controller.

Name	Туре	Value	Comment
number	long	[1-65025]	Number of traffic situations

Table 31: S0019

2.4.20 S0020

Control mode

Can be used for the management system to check the current control mode (startup, normal, standby, failure, test).

Name	Туре	Value	Comment
intersection	integer	[0-255]	0: Not applicable (only one intersection exists or appli-
			cable for all intersection of the traffic light controller)
			Other value: Intersection number
controlmode	string	-startup	startup: Startup mode
		-control	control: Normal control
		-standby	standby: Standby mode
		-failure	failure: Failure mode
		-test	test: Test mode

Table 32: S0020

2.4.21 S0021

Manually set detector logic

Provides status of detector logic (1-255) regarding if they are either forced to true or false.

Can be used to connect RSMP compatible detection equipment to the traffic light controller. Can also be used for prioritization.

Name	Туре	Value	Comment
detectorlogics	string	[text]	Manually set detector logics $(1/0)$ as text field

Table 33: S0021

2.4.22 S0022

List of time plans

Provides a list of the configured time plans which is possible to use. This status was added due to status S0018 only provides the total number of time plans and not which were possible to use with M0002.

Can be used for the management system to check the number of time plans configured in the controller.

Name	Туре	Value	Comment
status	string	[text]	Comma separated list of configured time plans. E.g. "1 2 3 5"
			"1,2,3,5"

Table 34: S0022

2.4.23 S0023

Dynamic bands

Provides a list of all defined dynamic bands. Dynamic bands moves start of signal groups in the cycle and changes the signal timings.

A typical usage of dynamic bands is scenario based control where changing of signal timings is used for optimal traffic flow.

Name	Туре	Value	Comment
status	string	[text]	Dynamic bands.
			Each dynamic band are written as pp-dd-ee where:
			pp=Time plan
			dd=Dynamic band number (from 1-10)
			ee=Extension in seconds in this band
			Each dynamic band is separated with a comma.
			E.g.
			pp-dd-ee,pp-dd-ee

Table 35: S0023

2.4.24 S0024

Offset time

Offset time is used to define an offset between intersections in coordinated control. It is based on the expected travel time between intersections.

Can be used by the management system to check to fine tune the coordination for optimal traffic flow.

Name	Туре	Value	Comment
status	string	[text]	Offset table Each offset time is written as pp-tt where: pp=time plan
			tt=offset time in seconds Each offset time is separated with a comma
			E.g. pp-tt,pp-tt

Table 36: S0024

2.4.25 S0025

 $\label{time-of-Red} \mbox{Time-of-Red} \ \ \mbox{Time-of-Red}$

Provides predicted signal timings of green and red for each signal group. Max, min and likely time to green and red.

Name	Туре	Value	Comment
minToGEstimate	string	[time stamp]	Time stamp for the minimum time for the signal group to go to green. If the signal group is green, it is the minimum time for the next green.
			Format according to W3C XML dateTime with a res-
			olution of 3 decimal places. All time stamps in UTC. E.g. 2009-10-02T14:34:34.341Z
$\max ToGEstimate$	string	[time stamp]	Time stamp for the maximum time for the signal group
			to go to green. If the signal group is green, it is the maximum time for the next green.
			Format according to W3C XML dateTime with a res-
			olution of 3 decimal places. All time stamps in UTC. E.g. 2009-10-02T14:34:34.341Z
likelyToGEstimate	estring	[time stamp]	Time stamp for the most likely time for the signal
			group to go to green. If the signal group is green, it is
			the most likely time for the next green.
			Format according to W3C XML dateTime with a res-
			olution of 3 decimal places. All time stamps in UTC.
m 00 01		[0.400]	E.g. 2009-10-02T14:34:34.341Z
ToGConfidence	integer	[0-100]	Confidence of the likelyToGEstimate. 0-100%
minToREstimate	string	[time stamp]	Time stamp for the minimum time for the signal group to go to red. If the signal group is red, it is the mini-
			mum time for the next red.
			Format according to W3C XML dateTime with a res-
			olution of 3 decimal places. All time stamps in UTC.
maxToREstimate	atning	[time stamp]	E.g. 2009-10-02T14:34:34.341Z Time stamp for the maximum time for the signal group
max ronestimate	string	[time stamp]	to go to red. If the signal group is red, it is the maxi-
			mum time for the next red.
			Format according to W3C XML dateTime with a res-
			olution of 3 decimal places. All time stamps in UTC. E.g. 2009-10-02T14:34:34.341Z
likelyToREstimate	string	[time stamp]	Time stamp for the most likely time for the signal
		-	group to go to red. If the signal group is red, it is the most likely time for the next red.
			Format according to W3C XML dateTime with a res-
			olution of 3 decimal places. All time stamps in UTC. E.g. 2009-10-02T14:34:34.341Z
ToRConfidence	integer	[0-100]	Confidence of the likelyToREstimate. 0-100%
			<u> </u>

Table 37: S0025

2.4.26 S0026

Week time table

Week time table for signal programs (time plan) to use for each day during a week.

The week time table determine which predefined signal timings (time plan) to use during the week for optimal traffic flow.

Name	Туре	Value	Comment
status	string	[text]	Week time table. Defines time table to use for each
			week day
			Each day is written as d-t where:
			d=day of week
			t=time table nr
			Day of week legend:
			0=Monday
			1=Tuesday
			2=Wednesday
			3=Thursday
			4=Friday
			5=Saturday
			6=Sunday
			Each segment is separated with a comma
			E.g.
			d-t,d-t

Table 38: S0026

2.4.27 S0027

Time tables

Time of day for when to switch signal program (time plan).

The signal timings (time plan) to use during time of day for optimal traffic flow.

Name	Туре	Value	Comment
status	string	[text]	Time Table. Defines time tables.
			Each time definition is written as t-o-h-m where:
			$t=time\ table\ nr\ (1-12)$
			o=function
			h=hour - switching time
			m=minute - switching minute
			Function legend:
			0=no plan is selected by time table
			1=set plan 1
			•••
			16 = set plan 16
			hour and minute is using local time (not UTC)
			Each time definition is separated with a comma
			E.g.
			t-o-h-m, t -o-h-m

Table 39: S0027

2.4.28 S0028

Cycle time

Cycle time (or cycle length) is the sum of all phases in a time plan (traffic program). This time is fixed when using fixed time control or coordination (except "local coordination"). When the cycle counter reaches this length it is reset back to zero.

Changing the cycle time can be used as part of scenario based control.

Name	Туре	Value	Comment
status	string	[text]	Cycle time table Each cycle time is written as pp-tt where: pp=time plan
			tt=cycle time in seconds
			Each cycle time is separated with a comma
			E.g. pp-tt,pp-tt

Table 40: S0028

2.4.29 S0029

Forced input status

Provide status of input (1-255) regarding if they are forced or not. Can be used for all types of input where the traffic light controller must react to external control.

Can be used for bus priority, coordination between traffic controllers, external control systems, and much more.

Name	Type	Value	Comment
status	string	[text]	Forced input status as text field

Table 41: S0029

2.4.30 S0030

Forced output status

Provide status of output (1-255) regarding if they are forced or not. Can be used for all types of output where the traffic light controller needs to control other equipment.

Can be used for bus priority, coordination between traffic controllers, external control systems, and much more.

Name	Туре	Value	Comment
status	string	[text]	Forced output status as text field

Table 42: S0030

2.4.31 S0031

Trigger level sensitivity for loop detector

The trigger level sensitivity determines at what level the loop detector should trigger. If it set too low then then traffic will not be detected as intended. If it is set too high the detector might give false positives.

Can be used to make sure that the detectors detect traffic as intended.

Name	Туре	Value	Comment
status	string	[text]	Loop detector trigger level sensitivity is written as dd- ss where:
			dd=loop detector number
			ss=sensitivity value
			Each loop detector is separated with a comma. E.g.dd-
			ss,dd-ss.

Table 43: S0031

2.4.32 S0091

Operator logged in/out OP-panel

Provides information if maintenance personnel is currently working on site.

Name	Туре	Value	Comment
user	string	-[username]	[username]: User currently logged in
		-[nobody]	[nobody]: No one logged in
status	string	-login	login: Somebody currently logged in
		-logout	logout: Nobody currently logged in

Table 44: S0091

2.4.33 S0092

Operator logged in/out web-interface

Provides information if maintenance personnel is currently working with the controller.

Name	Туре	Value	Comment
user	string	-[username]	[username]: User currently logged in
		-[nobody]	[nobody]: No one logged in
status	string	-login	login: Somebody currently logged in
		-logout	logout: Nobody currently logged in

Table 45: S0092

2.4.34 S0095

Version of Traffic Light Controller

Provides diagnostic version information.

Name	Туре	Value	Comment
status	string	[text]	Manufacturer, product name and version of traffic
			light controller

Table 46: S0095

2.4.35 S0096

Current date and time

Provides diagnostic information about the current date and time set in the controller.

Name	Туре	Value	Comment
year	integer	YYYY	Year according to format YYYY. NOTE: UTC is used
month	integer	MM	Month (01-12) according to format MM. Note: UTC
			is used
day	integer	DD	Day of month (01-31) according to format DD. Note:
			UTC is used
hour	integer	НН	Hour of day (00-23) according to format DD. Note:
			UTC is used
minute	integer	MM	Minute (00-59) according to format MM. Note: UTC
			is used
second	integer	SS	Second (00-59) according to format SS. Note: UTC is
			used

Table 47: S0096

2.4.36 S0097

Checksum of traffic parameters

Can be used to check if any traffic parameter has been changed.

For instance, depending on controller, maintenance personnel can modify traffic parameters on site

to optimize traffic flow. This status provides the ability to monitor if any traffic parameter has been changed. The traffic parameters may be downloaded with S0098.

Name	Type	Value	Comment
checksum	string	[text]	Checksum of the traffic parameters
			Uses SHA-2 as hashing algorithm
			Includes
			- all signal programs, including program versions
			- signal group settings
			- time plans
			- safety matrix
			- intergreen times
			- detector settings
			It should NOT include:
			- network settings
			- log files
			- software
			- other device settings that are not part of the signal
			program
			Note:
			- The checksum should be calculated using the same
			data as used in S0098
timestamp	string	[time stamp]	Time stamp of the checksum. Format according to
			W3C XML dateTime with a resolution of 3 deci-
			mal places. All time stamps in UTC. E.g. 2009-10-
			02T14:34:34.341Z

Table 48: S0097

2.4.37 S0098

Configuration of traffic parameters

Can be used to download all traffic parameters from the controller.

For instance, depending on controller, maintenance personnel can modify traffic parameters on site to optimize traffic flow. This status provides the ability to downloaded them.

Name	Туре	Value	Comment
config	base64	[binary]	Traffic parameters
			Includes
			- all signal programs, including program versions
			- signal group settings
			- time plans
			- safety matrix
			- intergreen times
			- detector setting
			It should NOT include:
			- network settings
			- log files
			- software
			- other device settings that are not part of the signal
			program
			Note:
			- There is no way to upload this binary file to the TLC using RSMP
			- The format of the binary file is not specified and is
			not expected to be compatible between suppliers
timestamp	string	[time stamp]	Time stamp of the config. Format according to
_		,	W3C XML dateTime with a resolution of 3 deci-
			mal places. All time stamps in UTC. E.g. 2009-10-
			02T14:34:34.341Z
version	string	[text]	Version information of the configuration. Contains ba-
	-	- •	sic information such as controller id, changes to config
			and other information. The format is not specified in
			detail

Table 49: S0098

2.4.38 S0201

Traffic Counting: Number of vehicles

Used for Traffic counting.

Name	Type	Value	Comment
starttime	string	[time stamp]	Time stamp for start of measuring. Format according to W3C XML dateTime with a resolution of 3 decimal places. All time stamps in UTC. E.g. 2009-10-02T14:34:34:341Z
vehicles	long	[number]	Number of vehicles on a given detector logic (since last update)

Table 50: S0201

2.4.39 S0202

Traffic Counting: Vehicle speed

Used for Traffic counting.

Name	Туре	Value	Comment
starttime	string	[time stamp]	Time stamp for start of measuring. Format according to W3C XML dateTime with a resolution of 3 decimal places. All time stamps in UTC. E.g. 2009-10-02T14:34:34.341Z
speed	integer	[speed]	Average speed in km/h

Table 51: S0202

2.4.40 S0203

Traffic Counting: Occupancy

Used for Traffic counting.

Name	Туре	Value	Comment
starttime	string	[time stamp]	Time stamp for start of measuring. Format according
			to W3C XML dateTime with a resolution of 3 deci-
			mal places. All time stamps in UTC. E.g. 2009-10-
			02T14:34:34.341Z
occupancy	integer	[0-100]	Occupancy in percent (0-100%)

Table 52: S0203

2.4.41 S0204

Traffic Counting: Number of vehicles of given classification

Used for Traffic counting.

Name	Туре	Value	Comment
starttime	string	[time stamp]	Time stamp for start of measuring. Format according
			to W3C XML dateTime with a resolution of 3 deci-
			mal places. All time stamps in UTC. E.g. 2009-10-
			02T14:34:34.341Z
P	long	[number]	Number of cars
PS	long	[number]	Number of cars with trailers
L	long	[number]	Number of trucks
LS	long	[number]	Number of trucks with trailers
В	long	[number]	Number of busses
SP	long	[number]	Number of trams
MC	long	[number]	Number of motor cycles
С	long	[number]	Number of bicycles
F	long	[number]	Number of pedestrians

Table 53: S0204

2.4.42 S0205

Traffic Counting: Number of vehicles

This status was introduced to improve performance in case traffic counting is done on all all detectors.

Name	Туре	Value	Comment
start	string	[time stamp]	Time stamp for start of measuring. Format according to W3C XML dateTime with a resolution of 3 decimal places. All time stamps in UTC. E.g. 2009-10-02T14:34:34:341Z
vehicles	string	[0-65535,]	Number of vehicles - Value expressed as an integer with a range of 0-65535. - Contains data from all detector logics. Each detector logic is separated with a comma. - The value is set to "-1" if no data could be measured (e.g. detector fault)

Table 54: S0205

2.4.43 S0206

Traffic Counting: Vehicle speed

This status was introduced to improve performance in case traffic counting is done on all all detectors.

Name	Туре	Value	Comment
start	string	[time stamp]	Time stamp for start of measuring. Format according to W3C XML dateTime with a resolution of 3 decimal places. All time stamps in UTC. E.g. 2009-10-02T14:34:34.341Z
speed	string	[0-65535,]	Average speed in km/h (integer) - Value expressed as an integer with a range of 0-65535. - Contains data from all detector logics. Each detector logic is separated with a comma. - The value is set to "-1" if no data could be measured (e.g. detector fault)

Table 55: S0206

2.4.44 S0207

Traffic Counting: Occupancy

This status was introduced to improve performance in case traffic counting is done on all all detectors.

Name	Туре	Value	Comment
start	string	[time stamp]	Time stamp for start of measuring. Format according
			to W3C XML dateTime with a resolution of 3 deci-
			mal places. All time stamps in UTC. E.g. 2009-10-
			02T14:34:34.341Z
occupancy	string	[0-100,]	Occupancy in percent (%) (0-100)
			- Value expressed as an integer with a range of 0-100.
			- Contains data from all detector logics. Each detector
			logic is separated with a comma.
			- The value is set to "-1" if no data could be measured
			(e.g. detector fault)

Table 56: S0207

2.4.45 S0208

Traffic Counting: Number of vehicles of given classification

This status was introduced to improve performance in case traffic counting is done on all all detectors.

Name	Type	Value	Comment
start	string	[time stamp]	Time stamp for start of measuring. Format according to W3C XML dateTime with a resolution of 3 decimal places. All time stamps in UTC. E.g. 2009-10-02T14:34:34.341Z
P	string	[0-65535,]	Number of cars - Value expressed as an integer with a range of 0-65535 Contains data from all detector logics. Each detector logic is separated with a comma The value is set to "-1" if no data could be measured (e.g. detector fault)
PS	string	[0-65535,]	Number of cars with trailers - Value expressed as an integer with a range of 0-65535. - Contains data from all detector logics. Each detector logic is separated with a comma. - The value is set to "-1" if no data could be measured (e.g. detector fault)
L	string	[0-65535,]	Number of trucks - Value expressed as an integer with a range of 0-65535. - Contains data from all detector logics. Each detector logic is separated with a comma. - The value is set to "-1" if no data could be measured (e.g. detector fault)
LS	string	[0-65535,]	Number of trucks with trailers - Value expressed as an integer with a range of 0-65535. - Contains data from all detector logics. Each detector logic is separated with a comma. - The value is set to "-1" if no data could be measured (e.g. detector fault)
В	string	[0-65535,]	Number of busses - Value expressed as an integer with a range of 0-65535 Contains data from all detector logics. Each detector logic is separated with a comma The value is set to "-1" if no data could be measured (e.g. detector fault)
SP	string	[0-65535,]	Number of trams - Value expressed as an integer with a range of 0-65535. - Contains data from all detector logics. Each detector logic is separated with a comma. - The value is set to "-1" if no data could be measured (e.g. detector fault)
MC	string	[0-65535,]	Number of motor cycles - Value expressed as an integer with a range of 0-65535. - Contains data from all detector logics. Each detector logic is separated with a comma. - The value is set to "-1" if no data could be measured (e.g. detector fault)
С	string	[0-65535,]	Number of bicycles - Value expressed as an integer with a range of 0-65535. - Contains data from all detector logics. Each detector logic is separated with a comma. - The value is set to "-1" if no data could be measured (e.g. detector fault)
F	string	[0-65535,]	Number of pedestrians - Value expressed as an integer with a range of 0-65535 Contains data from all detector logics. Each detector logic is separated with a comma.
			- The value is set to "-1" if no data could be measured (e.g. detector fault)

2.5 Commands

ObjectType	commandCodeld	Description
Traffic Light Controller	M0001	Sets functional position
Traffic Light Controller	M0002	Sets current time plan
Traffic Light Controller	M0003	Sets traffic situation the controller uses.
Traffic Light Controller	M0004	Restarts Traffic Light Controller
Traffic Light Controller	M0005	Activate emergency route
Traffic Light Controller	M0006	Activate input
Traffic Light Controller	M0007	Activate fixed time control
Detector logic	M0008	Sets manual activation of detector logic
Signal group	M0010	Start of signal group. Orders a signal group
		to green.
Signal group	M0011	Stop of signal group. Orders a signal group
		to red.
Traffic Light Controller	M0012	Request start or stop of a series of signal
		groups.
Traffic Light Controller	M0013	Activate a series of inputs
Traffic Light Controller	M0014	Set dynamic bands
Traffic Light Controller	M0015	Set Offset time
Traffic Light Controller	M0016	Set week time table
Traffic Light Controller	M0017	Set time tables
Traffic Light Controller	M0018	Set Cycle time
Traffic Light Controller	M0019	Force input
Traffic Light Controller	M0020	Force output
Traffic Light Controller	M0021	Set trigger level sensitivity for loop detector
Traffic Light Controller	M0103	Set security code
Traffic Light Controller	M0104	Set clock

Table 58: Commands

2.5.1 M0001

Sets functional position

Sets the controller to yellow flash, dark mode or normal control.

Requires security code 2

Name	Command	Туре	Value	Comment
status	setValue	string	-NormalControl	NormalControl: Normal Control
			-YellowFlash	YellowFlash: Enables yellow
			-Dark	flash
				Dark: Enables dark mode
securityCode	setValue	string	[text]	Security code 2
timeout	$\operatorname{setValue}$	integer	[0-1440]	Time in minutes until controller automatically reverts to previous functional position. 0=no automatic return
intersection	$\operatorname{setValue}$	integer	[0-255]	Intersection number

Table 59: M0001

2.5.2 M0002

Sets current time plan

Change of traffic program of the traffic light controller.

Typical usages is scenario based control where change of program is used to change signal timings etc.

This command changes the signal timings for optimal traffic flow.

Requires security code 2

Name	Command	Туре	Value	Comment
status	setPlan	boolean	-False	False: Controller uses time plan
			-True	according to programming
				True: Controller uses time plan
				according to command
securityCode	setPlan	string	[text]	Security code 2
timeplan	setPlan	integer	[1-255]	designation of time plan

Table 60: M0002

2.5.3 M0003

Sets traffic situation the controller uses.

Used for area-based control where a command can be sent to a master traffic light controller about which predefined traffic situation to use (1-255).

Traffic situation is a concept used to divide multiple TLC's into areas and sub-areas. The traffic situation gives the possibility to change the TLC sub-area dynamically depending on the time of day and the traffic flow. Depending on the traffic situation each TLC selects the time plan dynamically.

Name	Command	Туре	Value	Comment
status	$\operatorname{setTrafficSituation}$	boolean	-False -True	False: Controller uses traffic sit- uation according to own pro- gramming True: Controller uses traffic sit- uation according to command
securityCode	setTrafficSituation	string	[text]	Security code 2
traficsituation	setTrafficSituation	integer	[1-255]	designation of traficsituation

Table 61: M0003

2.5.4 M0004

Restarts Traffic Light Controller

Used in the event of serious faults in the device where a restart is considered to be able to remedy a problem.

Requires security code 2

Name	Command	Type	Value	Comment
status	setRestart	boolean	-False	True: Restart controller
			-True	
securityCode	setRestart	string	[text]	Security code 2

Table 62: M0004

2.5.5 M0005

Activate emergency route

The function is made for emergency prioritization. Works in the same way as the M0006 and M0008 where the traffic light controller responds to an input.

Should be used in situations where full priority is given in the emergency vehicle program.

Name	Command	Туре	Value	Comment
status	setEmergency	boolean	-False	False: Activate emergency route
			-True	True: Deactivate emergency
				route
securityCode	setEmergency	string	[text]	Security code 2
emergencyroute	setEmergency	integer	[1-255]	Number of emergency route

Table 63: M0005

2.5.6 M0006

Activate input

Set given input (1-255) of the controllers general purpose I/O to either true or false.

The function can provide an input to the traffic light controller on which a predefined action can be taken.

Can be used for all types of input where the traffic light controller must react to external control.

Typical usages are bus priority, coordination between traffic controllers, external control systems, and much more.

Requires security code 2

Name	Command	Туре	Value	Comment
status	setInput	boolean	-False	False: Deactivate input
			-True	True: Activate input
securityCode	setInput	string	[text]	Security code 2
input	setInput	integer	[1-255]	Number of Input

Table 64: M0006

2.5.7 M0007

Activate fixed time control

Deactivates the traffic actuated control using detectors and activates pre-timed control.

Can be used in case normal detectors can't be used, e.g. during maintenance work.

Requires security code 2.

Name	Command	Туре	Value	Comment
status	setFixedTime	boolean	-False	False: Deactivate fixed time con-
			-True	trol
				True: Activate fixed time control
securityCode	$\operatorname{setFixedTime}$	string	[text]	Security code 2

Table 65: M0007

2.5.8 M0008

Sets manual activation of detector logic

Set given detector logic (1-255) to either true or false.

Can e.g. be used to connect RSMP compatible detection equipment to the traffic light controller. Can also be used for prioritization.

Requires security code 2

Name	Command	Туре	Value	Comment
status	$\operatorname{setForceDetectorLogic}$	boolean	-False	False: Deactivate manual con-
			-True	trol of detector logic
				True: Activate manual control of
				detector logic
securityCode	$\operatorname{setForceDetectorLogic}$	string	[text]	Security code 2
mode	$\operatorname{setForceDetectorLogic}$	boolean	-False	False: Deactivate detector logic
			-True	True: Activate detector logic

Table 66: M0008

2.5.9 M0010

Start of signal group. Orders a signal group to green.

Although this command is intended to be used with coordination it is not actually specified to be used for this yet. It is reserved in the SXL for possible future use.

Intended for use with coordination of signaling systems where a traffic light controller communicates with neighboring controllers. Only used when a primary controller orders signal group of other controller to green or red (Coordination with external control bits).

Requires security code 2

Name	Command	Туре	Value	Comment
status	setStart	boolean	-False	False: No command (default)
			-True	True: Order a signal group to
				green
securityCode	setStart	string	[text]	Security code 2

Table 67: M0010

2.5.10 M0011

Stop of signal group. Orders a signal group to red.

Although this command is intended to be used with coordination it is not actually specified to be used for this yet. It is reserved in the SXL for possible future use.

Intended for use with coordination of signaling systems where a traffic light controller communicates with neighboring controllers. Only used when a primary controller orders signal group of other controller to green or red (Coordination with external control bits).

Name	Command	Туре	Value	Comment
status	$\operatorname{setStop}$	boolean	-False	False: No command (default)
			-True	True: Order a signal group to
				red
securityCode	$\operatorname{setStop}$	string	[text]	Security code 2

Table 68: M0011

2.5.11 M0012

Request start or stop of a series of signal groups.

Starts or stops several signal groups.

This command was introduced due to coordination requirements needing to set many signal groups to green and red at the same time and M0010 and M0012 being to slow to send a message for each signal group individually.

Although this command is intended to be used with coordination it is not actually specified to be used for this yet. It is reserved in the SXL for possible future use.

Intended for use with coordination of signaling systems where a traffic light controller communicates with neighboring controllers.

Only used when a primary controller orders signal group of other controller to green or red (Coordination with external control bits).

May also include purposes for adaptive control where a UTC system or a local traffic light controller takes over the phase control (stage control).

Name	Command	Туре	Value	Comment
status	setStart	string	[text]	Orders signal groups to green or red. Sets a block of 16 signal groups at a time. Can be repeated to set several blocks of 16 signal groups. Values are separated with comma. Blocks are separated with semicolon. Since semicolon breaks the SXL csv-format, colon is used in example below.
				1=Order signal group to green 0=Order signal group to red
				Format: [Offset],[Bits to set],[Bits to unset]:
				Offset sets where the 16 inputs starts from followed by two 16 bit values telling which bit to set and unset in binary format, i.e. first bit have value 1 and last bit have value 32768.
				Example 1: "5, 4134, 65" sets input 6,7,10,17 = on and 5,11 = off (Input starts from no. 5 and bit 1,2,5,12 = 1 and bit $0,6 = 0$)
				Example 2: "22, 1, 4" sets input $22 = \text{ on}$ and $24 = \text{ off}$ (Input starts from no. 22 and bit $0 = 1$ and bit $2 = 0$)
				And both these examples could be sent in the same message as: "5,4143,65:22,1,4"
				Such a message would order signal group 6,7,10,17,22 to green and signal group 5,11,24 to red
securityCode	setStart	string	[text]	Security code 2

Table 69: M0012

2.5.12 M0013

Activate a series of inputs

Set given inputs (1-255) of the controllers general purpose I/O to either true or false.

This command was introduced due to coordination requirements needing to set many inputs to true/false at the same time and M0006 being to slow to send a message for each input individually. With this command many inputs can be set to true/false at the same time using a single RSMP message.

Can be used for all types of input where the traffic light controller must react to external control. Typical usages are bus priority, coordination between traffic controllers, external control systems, and much more.

Name	Command	Туре	Value	Comment
status setInput	setInput	string	[text]	Sets/Unsets a block of 16 inputs at a time. Can be repeated to set several blocks of 16 inputs. Values are separated with comma. Blocks are separated with semicolon. Since semicolon breaks the SXL csv-format, colon, ":" is used in example below.
				Format: [Offset],[Bits to set],[Bits to unset]:
				Offset sets where the 16 inputs starts from followed by two 16 bit values telling which bit to set and unset in binary format, i.e. first bit have value 1 and last bit have value 32768.
				Example 1: "5, 4134, 65" sets input 6,7,10,17 = on and 5,11 = off (Input starts from no. 5 and bit $1,2,5,12 = 1$ and bit $0,6 = 0$)
				Example 2: "22, 1, 4" sets input $22 = \text{ on}$ and $24 = \text{ off}$ (Input starts from no. 22 and bit $0 = 1$ and bit $2 = 0$)
				And both thease examples could be sent in the same message as: "5,4143:65:22,1,4"
				Such a message would activate input 6,7,10,17,22 and deactivate input 5,11,24
securityCode	setInput	string	[text]	Security code 2

Table 70: M0013

2.5.13 M0014

Set dynamic bands

Can be used to change between predefined signal timings. Moves the start of signal groups in the cycle.

This command can be used to change the split of green time during the cycle. A typical usage is scenario based control where changing of signal timings is used for optimal traffic flow.

Requires security code 2

Name	Command	Type	Value	Comment
plan	setCommands	integer	[0-255]	Plan to be changed
status	$\operatorname{setCommands}$	string	[text]	Dynamic bands. Each dynamic band are written as dd-ee where: dd=Dynamic band number (from 1-10) ee=Extension in seconds in this band
				Each dynamic band is separated with a comma. E.g.
				dd-ee,dd-ee
securityCode	setCommands	string	[text]	Security code 2

Table 71: M0014

2.5.14 M0015

Set Offset time

Offset time is used to define an offset between intersections in coordinated control. It is based on the expected travel time between intersections.

This command can be used to fine tune the coordination for optimal traffic flow.

Requires security code 2.

Name	Command	Туре	Value	Comment
status	setOffset	integer	[0-255]	Set offset time in seconds
plan	setOffset	integer	[0-255]	Time plan nr
securityCode	setOffset	string	[text]	Security code 2

Table 72: M0015

2.5.15 M0016

Set week time table

Set which time table for signal programs to use for each day during a week.

This command changes the signal timings during the week for optimal traffic flow.

Name	Command	Туре	Value	Comment
status	setWeekTable	string	[text]	Week time table. Defines time table to use for each week day Each segment is written as d-t where: d=day of week t=time table nr
				Day of week legend: 0=Monday 1=Tuesday 2=Wednesday 3=Thursday 4=Friday 5=Saturday 6=Sunday
				Each segment is separated with a comma E.g.
				d-t,d-t
securityCode	setWeekTable	string	[text]	Security code 2

Table 73: M0016

2.5.16 M0017

Set time tables

Set time of day for when to automatically switch signal program (time plan).

This command changes the signal timings according to time of day for optimal traffic flow.

Name	Command	Туре	Value	Comment
Name status	Command setTimeTable	Type string	Value [text]	Comment Time Table. Defines time tables. Each time definition is written as t-o-h-m where: t=time table nr (1-12) o=function h=hour - switching time m=minute - switching minute Function legend: 0=no plan is selected by time table 1=set plan 1 16= set plan 16 hour and minute is using local time (not UTC) Each time definition is separated with a comma.
				E.g.
gogypity/Cods	setTimeTable	atnin ~	[torrt]	t-o-h-m,t-o-h-m
securityCode	setrinerable	string	[text]	Security code 2

Table 74: M0017

2.5.17 M0018

Set Cycle time

Cycle time (or cycle length) is the sum of all phases in a time plan (traffic program). This time is fixed when using fixed time control or coordination (except "local coordination"). When the cycle counter reaches this length it is reset back to zero.

This command provides the ability to change the cycle time when using coordinated or fixed time control. It changes the timings for optimal traffic flow. Can be used with scenario based control.

Name	Command	Type	Value	Comment
status	setCycleTime	integer	[1-255]	Set cycle time in seconds
plan	setCycleTime	integer	[0-255]	Time plan nr
securityCode	setCycleTime	string	[text]	Security code 2

Table 75: M0018

2.5.18 M0019

Force input

Force a given input (1-255) of the controllers general purpose I/O to either True or False. Can be used for all types of input where the traffic light controller must react to external control.

Can be used for bus priority, coordination between traffic controllers, external control systems, and much more.

Requires security code 2.

Name	Command	Туре	Value	Comment
status	setInput	boolean	-False	False: Force input
			-True	True: Release input
securityCode	setInput	string	[text]	Security code 2
input	setInput	integer	[1-255]	Number of Input
inputValue	setInput	boolean	-False	False: input forced to False
			-True	True: input forced to True

Table 76: M0019

2.5.19 M0020

Force output

Force a given output (1-255) of the controllers general purpose I/O to either True of False. Can be used for all types of output where the traffic light controller needs to control other equipment.

Can be used for bus priority, coordination between traffic controllers, external control systems, and much more.

Requires security code 2.

Name	Command	Type	Value	Comment
status	setOutput	boolean	-False	False: Force output
			-True	True: Release output
securityCode	setOutput	string	[text]	Security code 2
output	setOutput	integer	[1-255]	Number of Output
outputValue	setOutput	boolean	-False	False: output forced to False
			-True	True: output forced to True

Table 77: M0020

2.5.20 M0021

Set trigger level sensitivity for loop detector

The trigger level sensitivity determines at what level a loop detector should trigger. If it set too low then then traffic will not be detected as intended. If it is set too high the detector might give false positives.

This command provides the ability to fine tune loop detectors to make sure they detect traffic as intended.

Requires security code 2

Name	Command	Type	Value	Comment
status	$\operatorname{setLevel}$	string	[text]	Loop detector trigger level sensitivity is written as dd-ss where: dd=loop detector number ss=sensitivity value
securityCode	setLevel	string	[text]	Security code 2

Table 78: M0021

2.5.21 M0103

Set security code

Change the security code to use when sending commands

Security codes are used as an extra layer of security in many commands. They need to match between the supervision system and the traffic light controller in order for the commands to be executed.

Name	Command	Туре	Value	Comment
status	setSecurityCode	string	-Level1	Level1: Change security code 1
			-Level2	Level2: Change security code 2
oldSecurity	Code setSecurityCode	string	[text]	Previous security code
newSecurity	yCode setSecurityCode	string	[text]	New security code

Table 79: M0103

2.5.22 M0104

Set clock

Can be used to manually set the clock of the traffic light controller if automatic time synchronization (NTP or watchdog sync) is not available. For instance, during maintenance work.

Name	Command	Туре	Value	Comment
securityCode	setDate	string	[text]	Security code 1
year	setDate	integer	[YYYY]	Changes internal clock. Note:
				UTC is used
				Year according to YYYY
month	setDate	integer	[MM]	Changes internal clock. Note:
				UTC is used
				Month according to MM $(01-12)$
day	setDate	integer	[DD]	Changes internal clock. Note:
				UTC is used
				Day in month according to DD
				(01-31)
hour	setDate	integer	[HH]	Changes internal clock. Note:
				UTC is used
				Hour according to HH (00-23)
minute	setDate	integer	[MM]	Changes internal clock. Note:
				UTC is used
				Minute according to MM $(00-23)$
second	setDate	integer	[SS]	Changes internal clock. Note:
				UTC is used
				Second according to SS $(00-59)$

Table 80: M0104

Signal Group status

Signal groups status (S0001) is defined as a text string where each character represents the current status for each signal group. Each character has the following definition:

ASCII	Definition	Output	Green
			request
a	Disabled	Dark	
b	Manual control to dark	Dark	
С	Manual control to flashing yellow	Yellow flash	
d	Manual control to flashing red	Red flash	
e	Start-up interval 1	Dark or yellow flash	
f	Start-up interval 2	Vehicles: yellow, Pedestrians: red	
g	Start-up interval 3	Red	
h	Manual control to red	Red	
A	Red rest without start order	Red	N
В	Red rest	Red	N
С	Red rest with privilege measurement	Red	N
D	Red with reservation	Red	Y/N
Е	Red with request and without start	Red	Y
	order		
F	Red with request	Red	Y
G	Red with start in own stage	Red	Y
0	Red-yellow	Red/Yellow	Y
1	Minimum green	Green	Y
2	Max. minimum green	Green	Y/N
3	Maximum green (extension)	Green	Y
4	Green rest	Green	N
5	Green passive	Green	N
6	Fixed past-end-green	Green	Y/N
7	Extra green according to intergreen	Green	Y/N
	times		
8	Variable past-end-green	Green	Y
9	Flashing green	Green	Y/N
N	Fixed yellow or yellow-green	Yellow	Y/N
О	Variable yellow or yellow green	Yellow	Y
Р	Variable red	Red	Y

Table 1: Signal group status

Traffic data

Traffic data (S0201-S0208) needs additional requirements in order to work correctly.

- The supervision system uses **StatusSubscribe** and **StatusUpdate** to continuously receive traffic data from the TLC using subscriptions.
- **starttime** is the time stamp of start of measuring. E.g. if a subscription update is sent at 15:05 using a subscription update rate of 300 (5 minutes), **starttime** would be set to 15.00 and **vehicles** (S0201) would contain the number of vehicles between 15:00 and 15:05.
- Traffic counting must be made at even time intervals. For instance; if **updateRate=300** (every 5 minutes) is set at the status subscription, the traffic counter must start at 15:00:00, 15:05:00, 15:10:00 and so on.
- No initial status update should be sent directly after receiving status subscription. Status updates should only be sent at even time intervals and not contain partial counting, e.g. 15:01-15:03 if updateRate=300
- The traffic counter must not reset its traffic counter after receiving a new subscription request. The traffic counter may only reset its traffic counter at even time intervals.
- Buffering of traffic data during connection interruptions should be possible to enable/disable in the equipment. If buffering is enabled it means that active subscriptions of traffic data (S0201-S0208) should remain active and not be canceled at connection interruption or at reestablishment.
- The traffic data must be buffered according to the time interval as determined by the status subscription if buffering is enabled.

Coordination between traffic light controllers

5.1 General concepts

Coordination between Traffic Light Controllers (TLC) implies that several intersections are controlled together in a coordinated control mode at local or central level. Regardless of operational mode, prerequisites are - among other things, that TLC:s must use the same time plan and must be in synchronous operation.

Local coordination can be applied in minor systems (up to 4 intersections). Control will in these systems be made with a common and variable cycle depending on the traffic.

Central coordination can be applied in major systems (up to some 20 intersections or more). In central coordination a special master (M), a combination of master/controller (M/C) or a system of cableless linking is used. Within the system control bits should be sent according to time plans designed in advance with selected and fixed cycle times for different traffic levels. In the individual intersection a certain smaller degree of traffic adaption should be allowed, however, only within the framework of the fixed and given cycle time.

The two coordination levels should be possible to combine. During peak hours should e.g. the entire traffic signal area be coordinated at central level while a split in locally coordinated sub areas should be possible during normal off-peak hours.

Fig. 1: Types of coordination

Since there are variants of coordination which are not strictly centralized but still uses the same principles of communication, the term *coordination with synchronized cycle counter* is used rather than *central coordination* here on after.

Fig. 2: Coordination

5.2 Coordination type "Local coordination"

Local coordination is achieved by supplementing the TLC:s control bits of the signal groups with special control bits from signal group(s) in another intersection.

This can be achieved with the following status modes:

- "Front edge of green wave", which is normally sent when conflicting signal group in downstream traffic lights turns yellow
- "Rear edge of green wave", which is normally sent when demand for green ends or yellow is sent to downstream TLC.

Front edge of green wave normally prevents signal groups in other TLC:s to start and rear edge of green wave normally extends signal groups in green, normally when demand for green ends, or yellow.

Commands should be able to be sent from an optional change in signal group status and should additionally be able to be supplemented with a timer which initiates counts from these changes.

Variation in programming to achieve desired functionality according to specifications may vary without having any impact on coordination communication.

5.3 Coordination with synchronized cycle counter

Coordination with synchronized cycle counter should typically be possible to operate in multiple time plans with optional signal group sequence split and/or cycle time.

The cycle time of the time plans should be possible to select in increments of one second up to at least 180 seconds.

Signal group(s) should typically be able to have green 2 times per cycle.

Change between time plans should typically be possible at optional points in the cycle, at different points in different time plans. Change must not follow so that fixed times such as red/yellow, minimum green, pedestrian green and green/yellow will be reduced or excluded. Coordination should be achieved by exchanging the normal start bits against special control bits which should be possible to send per one second steps.

If control bits to the local TLC is missing for 120 seconds, the TLC should automatically revert to a predetermined back up or safety mode. If/when the control bits returns, the TLC should automatically return to coordination.

The control bits, arranged and time distributed within the framework of the cycle of the time plan, should give the coordinated installation a certain signal group sequence, split and offset between TLC'S.

The control bits should be possible to use internally in a TLC or be possible to send externally to another TLC which consequently also should be able to receive externally incoming control bits. Together with new

control bits, the internal logic of the TLC should in other aspects proceed normally, among other things, for communication between the signal groups.

5.4 Coordination with control bits

Coordination with internal control bits

With internal control bits, only information about time plan/traffic situation, initialization and clock sync needs to be sent and received.

Coordination with external control bits

In addition to the control bits in the previous paragraph, start bits and stop bits must be sent and received.

TLC:s should also be able to receive external start/stop bits. If the active time plan is controlled by the other TLC, it must also be able to receive subscription/request of e. g traffic data, detector logic and signal groups status etc.

5.5 General RSMP requirements

Communication must be established directly between TLC:s. This demands the following general requirements:

- In every TLC, it must be possible to connect to other TLC:s and to receive connections from other TLC:s (client-server).
- The TLC must have a list with every connected and communicating TLC with editable communication parameters for each individual unit.
- The mentioned list above includes IP-addresses and signal exchange lists for every connected TLC.
- The TLC must be configurable with signal exchange lists for every TLC that communication is intended with. The signal exchange lists contain important information such as **siteId** and **component-id** which are needed to establish communication. Relevant parts of signal exchange lists must therefore be easily editable, in particular **siteId**, **component-id**, etc.
- The TLC must be able to communicate with the supervision system at the same as communicating between TLC:s.

5.6 Functional requirements of the TLC

To establish coordination, it is required that both TLC:s use suitable time plan/traffic situation and synchronize their cycle timers.

- It must be possible to configure TLC:s as leader/follower
- One leader TLC should be able to communicate with up to 20 follower TLC:s.

The following input/output is needed

Command types	Description
M0002	Time plan
M0006/M0013 (Input)	Coordination can continue (local coordination) (true/false)
M0006/M0013 (Input)	Synchronization pulse (coordination with synchronized cycle counter) (true/false)
M0006/M0013 (Input)	START/STOP bit (true/false)

Table 1: Input needed

Status types	Description
S0004 (Output)	Coordination is possible (true/false)
S0004 (Output)	Synchronization step (local coordination) (true/false)
S0004 (Output)	START/STOP bit (true/false)

Table 2: Output needed

Please note:

- securityCode is ignored at TLC-TLC-communication. Fields for securityCode still must be sent at communication exchange but contents can be empty.
- M0010 (Start/Stop) also exists in SXL but is not used in coordination.

5.7 Notes about JSon

Every field must be present in every message at communication exchange according to the signal exchange list. This applies even if the fields are empty. In the example below "securityCode" is included in a command despite that "securityCode" is ignored at TLC-TLC communication. The field is empty for this reason.

```
{
     "mType": "rSMsg",
     "type": "CommandRequest",
     "mId": "E68A0010-C336-41ac-BD58-5C80A72C7092",
     "nts0Id": "",
     "xNId": "",
     "cId": "KK+AG9998=001TC000",
     "arg": [{
             "cCI": "M0002",
             "n": "status",
             "c0": "setPlan",
             "v": "True"
     },{
             "cCI": "M0002",
             "n": "securityCode",
             "c0": "setPlan",
             "v": ""
     },{
             "cCI": "M0002",
             "n": "timeplan",
             "cO": "setPlan",
             "v": "5"
```

(continues on next page)

(continued from previous page)

}]

5.8 Communication establishment

Follower TLC's acts server and waits for a leader TLC to connect. Should communication fail, it is the responsibility of the leader TLC to connect again.

When the leader TLC has connected, messages between the TLC's are sent according the initialization sequence.

Communication is continuously established even if coordination is not active.

The handshake sequence is defined in the RSMP specification, section Communication establishment between sites.

5.9 Initialization sequence for local coordination

- 1. Leader verifies that coordination is possible through subscription on output (S0004) coordination is possible in all followers. If coordination isn't possible, coordination is terminated.
- 2. Leader switches to coordinated time plan in its own TLC.
- 3. Leader sends command to all followers to switch to coordinated time plan.
- 4. Leader waits at own synchronisation step until synchronisation step is active in all followers. Leader must subscribe to S0004 Synchronisation step in all followers to verify this.
- 5. Leader activates input (S0013) coordination can continue in all followers about continued coordination.
- 6. Coordination active. Leader continuously checks that coordination still is possible in all followers (see step 1) through subscription on output (S0004) *coordination is possible*. Coordination is terminated if it turns false in any follower.
- 7. Leader sends START/STOP order using M0006 or M0013 to followers during each cycle.
- 8. Leader receives START/STOP order using output (M0004) from followers during each cycle.

5.10 Initialization sequence for coordination with synchronized cycle counter

- 1. Leader verifies that coordination is possible through subscription on output (S0004) coordination is possible in all followers. There needs to be a per site configuration possibility for each follower whether coordination should proceed regardless if a single follower can't activate coordination.
- 2. Leader switches to coordinated time plan in its own TLC.
- 3. Leader sends command to all followers to switch to coordinated time plan. Followers switch time plan when their cycle counters reaches zero.
- 4. Leader sends synchronization pulse when its base cycle counter reaches zero. Synchronization pulse means that the cycle counter should be set to zero. Followers adds any configured offset time on their own.

Fig. 5: Sequence for local coordination

- 5. Coordination active. Leader continuously checks that coordination still is possible in all followers (see step 1) through subscription on output (S0004) coordination is possible. Coordination is terminated if output (S0004) coordination is possible turns false is any follower TLC.
- 6. If external control bits are used: Leader sends START/STOP order to followers during each cycle
- 7. If external control bits are used: Leader receives START/STOP order using output (M0004) from followers during each cycle.

5.11 Termination sequence

- 1. If using local coordination, the leader TLC deactivates input (S0013) coordination can continue in all followers.
- 2. The leader TLC sends a command to followers to change time plan according to own programming, this command can also come from a supervision system.

5.12 Message priority

At simultaneous communication TLC-TLC and TLC-supervision system – then TLC-supervision system has higher priority.

5.13 Error handling

If a command or status request refers to a signal group or detector logic which does not exist, then only MessageNotAck will be sent as answer. No response on command (CommandResponse / StatusUpdate / StatusResponse) needs to be sent because no command is executed.

A command should be acknowledged when received using CommandResponse, but for certain commands this is no guarantee that the command really is executed. To confirm command execution, Leader TLC needs to subscribe to corresponding statuses and check whether expected statues changes according to command.

MessageNotAck terminates coordination, but communication continues to be active.

If an error occurs which causes MessageNotAck to be sent, then alarm A0005 must continuously be activated in the TLC.

- Alarm is activated at first received MessageNotAck. The TLC should not try to send the same command
 multiple times as an effect of MessageNotAck with the intention of later succeeding with the command.
- Alarm is activated in both of the TLC:s sending MessageNotAck as well as the TLC the message.
- Alarm A0005 is sent to the supervision system.
- The next message which leads to MessageAck deactivates alarm A0005

5.14 Error codes for MessageNotAck

In order to standardize contents in MessageNotAck ("reason"), use this common error code list

Fig. 6: Sequence for coordination with synchronized cycle timer

Error code (Content of "Reason")	Description
0001	SXL mismatch. Command does not exist
0002	SXL mismatch. Status does not exist
0003	SXL mismatch. Wrong number of arguments
0004	SXL mismatch. Argument out of range
0005	SXL mismatch. Argument improperly formatted
0006	I/O out of range or not found
0007	I/O cannot be modified
0008	Plan does not exist
0009	Plan cannot be changed due to higher priority command
0010	CPU error
0011	Invalid message

Table 3: Error codes

JSon Examples

This document contains examples for all message types.

Alarms

- A0001 Serious hardware error
- A0002 Less serious hardware error
- A0003 Serious configuration error
- ullet A0004 Less serious configuration error
- A0005 Communication error between traffic light controllers / synchronisation error
- A0006 Safety error
- A0007 Communication error between one or multiple traffic light controllers and central control system
- A0008 Dead lock error
- A0009 Other error
- A0010 Door open
- A0101 Pushbutton error
- ullet A0201 Serious lamp error
- A0202 Less serious lamp error
- A0301 Detector error (hardware)
- A0302 Detector error (logic error)

Statuses

- S0001 Signal group status
- S0002 Detector logic status
- \bullet S0003 Input status
- S0004 Output status
- S0005 Traffic Light Controller starting
- S0006 Emergency stage
- S0007 Controller switched on

- S0008 Manual control
- S0009 Fixed time control
- S0010 Isolated control
- S0011 Yellow flash
- S0012 All red
- S0013 Police key
- S0014 Current time plan
- ullet S0015 Current traffic situation
- S0016 Number of detector logics
- S0017 Number of signal groups
- S0018 Number of time plans
- S0019 Number of traffic situations
- S0020 Control mode
- S0021 Manually set detector logic
- S0022 List of time plans
- S0023 Command table
- \bullet S0024 Offset time
- S0025 Time-to-green
- S0026 Week time table
- S0027 Time tables
- S0028 Cycle time
- S0029 Forced input status
- S0030 Forced output status
- S0031 Trigger level sensitivity for loop detector
- S0091 Operator logged in/out OP-panel
- S0092 Operator logged web-interface
- S0095 Version of Traffic Light Controller
- S0096 Current date and time
- S0097 Checksum of traffic parameters
- S0098 Configuration of traffic parameters
- S0201 Traffic Counting: Number of vehicles
- S0202 Traffic Counting: Vehicle speed
- S0203 Traffic Counting: Occupancy
- S0204 Traffic Counting: Number of vehicles of given classification
- S0205 Traffic Counting: Number of vehicles
- S0206 Traffic Counting: Vehicle speed

- S0207 Traffic Counting: Occupancy
- S0208 Traffic Counting: Number of vehicles of given classification

Commands

- M0001 Sets functional position
- M0002 Sets current time plan
- M0003 Sets traffic situation the controller uses
- M0004 Restarts Traffic Light Controller
- M0005 Activate emergency route
- M0006 Activate input
- M0007 Activate fixed time control
- M0008 Sets manual activation of detector logic
- M0010 Start of signal group
- M0011 Stop of signal group
- M0012 Request start or stop of a series of signal groups
- M0013 Activate a series of inputs
- M0014 Set command table
- M0015 Set offset time
- M0016 Set week time table
- M0017 Set time tables
- \bullet M0018 Set cycle time
- M0019 Force input
- M0020 Force output
- M0021 Set trigger level sensitivity for loop detector
- M0103 Set security code
- M0104 Set clock

6.1 Alarms

6.1.1 A0001 Serious hardware error

```
{
    "mType":"rSMsg",
    "type":"Alarm",
    "mId":"f9b27ba1-c342-4018-baf9-b7629d8df0af",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001TC000",
    "aCId":"A0001",
    "xACId":"ERROR GROUP #4 MISSING",
    "xNACId":"",
```

(continues on next page)

(continued from previous page)

```
"aSp":"Issue",
    "ack":"notAcknowledged",
    "aS":"Active",
    "sS":"notSuspended",
    "aTs":"2019-09-26T12:43:49.889Z",
    "cat":"D",
    "pri":"2",
    "rvs":[]
}
```

6.1.2 A0002 Less serious hardware error

```
"mType":"rSMsg",
     "type": "Alarm",
     "mId": "ee6c1417-a376-4401-8bc0-120faaef5962",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "aCId": "A0002",
     "xACId": "ERROR IO #1 MISSING",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS":"Active",
     "sS": "notSuspended",
     "aTs": "2019-09-26T12:47:16.683Z",
     "cat":"D",
     "pri":"3",
     "rvs":[]
}
```

6.1.3 A0003 Serious configuration error

```
{
     "mType":"rSMsg",
     "type": "Alarm",
     "mId": "843d9fd4-29a6-40c5-b325-d3ba430cc679",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "aCId": "A0003",
     "xACId": "ERROR IO #1 ERROR",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS": "Active",
     "sS": "notSuspended",
     "aTs": "2019-09-26T12:48:00.285Z",
     "cat":"D",
     "pri":"2",
     "rvs":[]}
```

6.1.4 A0004 Less serious configuration error

```
"mType":"rSMsg",
     "type": "Alarm",
     "mId": "13889d3e-a1ca-400b-8212-276d15bcfa5b",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "aCId":"A0004",
     "xACId": "ERROR INSTRUCTION #5",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS": "Active",
     "sS": "notSuspended",
     "aTs": "2019-09-26T12:48:38.277Z",
     "cat":"D",
     "pri":"3",
     "rvs":[]
}
```

6.1.5 A0005 Communication error between traffic light controllers / synchronisation error

```
{
     "mType":"rSMsg",
     "type": "Alarm",
     "mId": "9d29620a-0432-4eeb-826c-b9e4b08892a3",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "aCId":"A0005",
     "xACId": "ERROR: COMM ERROR 4",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS":"Active",
     "sS": "notSuspended",
     "aTs": "2019-09-26T12:49:05.721Z",
     "cat":"D",
     "pri":"3",
     "rvs":[]
```

6.1.6 A0006 Safety error

```
{
    "mType":"rSMsg",
    "type":"Alarm",
    "mId":"625dc28c-4f91-4218-81c4-3094c438688d",
    "nts0Id":"KK+AG0503=001TC000",
    "xNId":"",
```

(continues on next page)

(continued from previous page)

```
"cId":"KK+AG0503=001TC000",
    "aCId":"A0006",
    "xACId":"ERROR MAINS #4",
    "xNACId":"",
    "aSp":"Issue",
    "ack":"notAcknowledged",
    "aS":"Active",
    "sS":"notSuspended",
    "aTs":"2019-09-26T12:49:47.590Z",
    "cat":"D",
    "pri":"2",
    "rvs":[]
}
```

6.1.7 A0007 Communication error between one or multiple traffic light controllers and central control system

```
{
     "mType": "rSMsg",
     "type": "Alarm",
     "mId": "82f80c09-5320-4465-a45d-a8931bfc223d",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "aCId":"A0007",
     "xACId": "ERROR COMM ERROR #9",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS": "Active",
     "sS": "notSuspended",
     "aTs": "2019-09-26T12:50:12.402Z",
     "cat":"D",
     "pri":"3",
     "rvs":[]
}
```

6.1.8 A0008 Dead lock error

```
{
    "mType":"rSMsg",
    "type":"Alarm",
    "mId":"148c4a38-d0ca-4a5e-81d4-951bcfc14df8",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001SG001",
    "aCId":"A0008",
    "xACId":"ERROR DELAY #10",
    "xNACId":"",
    "aSp":"Issue",
    "ack":"notAcknowledged",
    "aS":"Active",
```

(continues on next page)

(continued from previous page)

6.1.9 A0009 Other error

```
"mType":"rSMsg",
     "type": "Alarm",
     "mId": "46d837c5-846b-43bb-adf9-e97e1c22bf08",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "aCId": "A0009",
     "xACId": "ERROR NO PLANS",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS":"Active",
     "sS": "notSuspended",
     "aTs": "2019-09-26T12:50:37.701Z",
     "cat":"D",
     "pri":"3",
     "rvs":[]
}
```

6.1.10 A0010 Door open

```
{
     "mType":"rSMsg",
     "type": "Alarm",
     "mId": "48630a74-e8c1-4179-9e89-47d01ee27800",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001D0001",
     "aCId":"A0010",
     "xACId": "ERROR DOOR #5 OPEN",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS": "Active",
     "sS": "notSuspended",
     "aTs": "2019-09-30T13:20:58.183Z",
     "cat":"D",
     "pri":"3",
     "rvs":[]
```

6.1.11 A0101 Pushbutton error

```
"mType":"rSMsg",
     "type": "Alarm",
     "mId": "3dca0e6e-beab-47af-8860-bcc2699b6d06",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001SG001",
     "aCId":"A0101",
     "xACId": "ERROR PUSH BUTTON #3",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS": "Active",
     "sS": "notSuspended",
     "aTs": "2019-09-26T12:53:03.836Z",
     "cat":"D",
     "pri":"3",
     "rvs":[]
}
```

6.1.12 A0201 Serious lamp error

```
{
     "mType":"rSMsg",
     "type": "Alarm",
     "mId": "34a3f91b-e5b7-42ae-aee3-c9ce8577358a",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001SG001",
     "aCId":"A0201",
     "xACId": "ERROR LAMP OFF RED #1",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS": "Active",
     "sS": "notSuspended",
     "aTs": "2019-09-26T12:54:03.598Z",
     "cat":"D",
     "pri":"2",
     "rvs":[{
              "n": "color",
             "v":"red"
     }]
}
```

6.1.13 A0202 Less serious lamp error

```
{
    "mType":"rSMsg",
    "type":"Alarm",
    "mId":"6b4bfd63-4aee-4a58-b58a-7c1c0d6a7b7f",
```

(continues on next page)

```
"ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001SG001",
     "aCId":"A0202",
     "xACId": "ERROR LAMP E4 RED #1",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS":"Active",
     "sS": "notSuspended",
     "aTs": "2019-09-26T12:54:54.066Z",
     "cat":"D",
     "pri":"3",
     "rvs":[{
             "n":"color",
             "v":"red"
     }]
}
```

6.1.14 A0301 Detector error (hardware)

```
{
     "mType":"rSMsg",
     "type":"Alarm",
     "mId": "ebeae300-c074-4658-a000-243265c3398f",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001DL001",
     "aCId":"A0301",
     "xACId": "ERROR LOOP OPEN #1",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS": "Active",
     "sS": "notSuspended",
     "aTs": "2019-09-26T12:56:09.935Z",
     "cat":"D",
     "pri":"3",
     "rvs":[{
              "n": "detector",
              "v":"1"
     },{
              "n":"type",
             "v":"loop"
     },{
             "n": "errormode",
              "v":"on"
     },{
              "n": "manual",
              "v":"True"
     }]
}
```

6.1.15 A0302 Detector error (logic error)

```
"mType":"rSMsg",
     "type": "Alarm",
     "mId": "b8ec9178-fe18-4386-9570-225a8e690b50",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001DL001",
     "aCId":"A0302",
     "xACId": "ERROR DETECTOR LOGIC OPEN #1",
     "xNACId":"",
     "aSp":"Issue",
     "ack": "notAcknowledged",
     "aS": "Active",
     "sS": "notSuspended",
     "aTs": "2019-09-26T12:56:40.387Z",
     "cat":"D",
     "pri":"3",
     "rvs":[{
              "n": "detector",
             "v":"1"
     },{
             "n":"type",
              "v":"loop"
     },{
              "n": "errormode",
              "v":"on"
     },{
              "n": "manual",
              "v":"True"
     },{
             "n":"logicerror",
              "v": "always_off"
     }]
}
```

6.2 Statuses

6.2.1 S0001 Signal group status

Status Request

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "e8c14802-e4a0-47b7-b360-c0e611718387",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-26T13:00:51.642Z",
     "sS":[{
              "sCI":"S0001",
              "n": "signalgroupstatus",
              "s":"FF3FFF0",
              "q": "recent"
     },{
              "sCI":"S0001",
              "n": "cyclecounter",
              "s":"76",
              "q": "recent"
     },{
              "sCI": "S0001",
              "n": "basecyclecounter",
              "s":"0",
              "q":"recent"
     },{
              "sCI": "S0001",
              "n":"stage",
              "s":"2",
              "q":"recent"
     }]
}
```

6.2.2 S0002 Detector logic status

Status Request

```
{
    "mType":"rSMsg",
    "type":"StatusRequest",
    "mId":"09204009-3853-49c9-a204-6955a7d752e3",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001TC000",
```

Status Response

6.2.3 S0003 Input status

Status Request

Status Response

```
{
    "mType":"rSMsg",
    "type":"StatusResponse",
    "mId":"830c5261-b5d1-41f9-abf9-a7653d9af8f2",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001TC000",
    "sTs":"2019-09-26T13:04:14.310Z",
    "sS":[{
```

6.2.4 S0004 Output status

Status Request

Status Response

```
{
    "mType":"rSMsg",
    "type": "StatusResponse",
    "mId": "3d7bc8ea-d658-47cb-b7a3-07b6d6842934",
    "ntsOId": "KK+AG0503=001TC000",
    "xNId":"",
    "cId": "KK+AG0503=001TC000",
    "sTs": "2019-09-26T13:05:52.387Z",
    "sS":[{
            "sCI": "S0004",
            "n":"outputstatus",
            "q": "recent"
    },{
            "sCI":"S0004",
            "n": "extendedoutputstatus",
            "s":"0",
            "q":"recent"
    }]
}
```

6.2.5 S0005 Traffic Light Controller starting

Status Request

Status Response

6.2.6 S0006 Emergency stage

Status Request

Status Response

```
"mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "8f1cc2aa-06fa-45e6-9448-3d6207e12ece",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-26T13:08:27.792Z",
     "sS":[{
              "sCI":"S0006",
             "n":"status",
             "s":"True",
              "q": "recent"
     },{
             "sCI": "S0006",
              "n": "emergencystage",
             "s":"0",
              "q":"recent"
     }]
}
```

6.2.7 S0007 Controller switched on

Status Request

Status Response

```
},{
    "sCI":"S0007",
    "n":"status",
    "s":"True",
    "q":"recent"
}]
```

6.2.8 S0008 Manual control

Status Request

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "aa74fdc8-4e3e-40c0-a05d-9034b67e27c6",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-26T13:11:16.262Z",
     "sS":[{
             "sCI": "S0008",
             "n": "intersection",
              "s":"1",
              "q":"recent"
     },{
             "sCI":"S0008",
             "n":"status",
              "s":"True",
              "q": "recent"
     }]
}
```

6.2.9 S0009 Fixed time control

Status Request

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "3cf01c8f-2faa-4db1-9fb7-9c3323a9c66c",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs":"2019-09-26T13:12:26.610Z",
     "sS":[{
              "sCI": "S0009",
              "n": "intersection",
             "s":"1",
              "q":"recent"
     },{
             "sCI": "S0009",
              "n": "status",
              "s":"True",
              "q":"recent"
     }]
}
```

6.2.10 S0010 Isolated control

Status Request

```
}]
}
```

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "01cc4a27-2d6b-403b-9b99-c8eaa00fa8e9",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-26T13:13:49.966Z",
     "sS":[{
              "sCI":"S0010",
              "n": "intersection",
              "s":"1",
              "q": "recent"
     },{
             "sCI": "S0010",
              "n":"status",
              "s":"True",
              "q":"recent"
     }]
}
```

6.2.11 S0011 Yellow flash

Status Request

Status Response

```
{
    "mType":"rSMsg",
    "type":"StatusResponse",
    "mId":"477b4aef-84dc-441d-89c3-7635e548326b",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001TC000",
```

6.2.12 S0012 All red

Status Request

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "5a203ef7-7608-47ac-b41e-cc1e55438334",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-26T13:16:49.285Z",
     "sS":[{
             "sCI":"S0012",
             "n": "intersection",
             "s":"0",
             "q":"recent"
     },{
             "sCI":"S0012",
             "n":"status",
             "s":"True",
             "q":"recent"
```

```
}
```

6.2.13 S0013 Police key

Status Request

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "b014e57b-d00e-4ac1-9b91-57b85153c887",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId":"KK+AG0503=001TC000",
     "sTs":"2019-09-26T13:18:04.612Z",
     "sS":[{
              "sCI": "S0013",
              "n": "intersection",
             "s":"0",
              "q":"recent"
     },{
             "sCI": "S0013",
              "n": "status",
              "s":"1",
             "q":"recent"
     }]
}
```

6.2.14 S0014 Current time plan

Status Request

```
{
    "mType":"rSMsg",
    "type":"StatusRequest",
```

Status Response

6.2.15 S0015 Current traffic situation

Status Request

Status Response

```
{
    "mType":"rSMsg",
    "type":"StatusResponse",
    "mId":"823f2eb2-176b-4bcf-9b86-0c70297eb777",
    "nts0Id":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001TC000",
    "sTs":"2019-09-26T13:21:45.239Z",
```

6.2.16 S0016 Number of detector logics

Status Request

Status Response

6.2.17 S0017 Number of signal groups

Status Request

```
{
    "mType":"rSMsg",
    "type":"StatusRequest",
    "mId":"cb23e177-c16d-4de0-b843-355170176d3d",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
```

Status Response

6.2.18 S0018 Number of time plans

Status Request

Status Response

6.2.19 S0019 Number of traffic situations

Status Request

Status Response

6.2.20 S0020 Control mode

Status Request

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "063906d5-ecfd-44df-8b39-136d1b8d8214",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-26T13:27:42.844Z",
     "sS":[{
              "sCI": "S0020",
              "n": "intersection",
              "s":"0",
              "q":"recent"
     },{
             "sCI":"S0020",
             "n": "controlmode",
              "s":"startup",
              "q":"recent"
     }]
}
```

6.2.21 S0021 Manually set detector logic

Status Request

Status Response

```
{
    "mType":"rSMsg",
    "type":"StatusResponse",
    "mId":"e5688e53-c51e-408a-8075-c3c018a67f56",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
```

6.2.22 S0022 List of time plans

Status Request

Status Response

6.2.23 S0023 Command table

Status Request

```
{
    "mType":"rSMsg",
    "type":"StatusRequest",
    "mId":"481da9fe-b1af-4043-9868-61d26d325d71",
```

Status Response

6.2.24 S0024 Offset time

Status Request

Status Response

```
{
    "mType":"rSMsg",
    "type":"StatusResponse",
    "mId":"097edc53-cd4c-4fb8-9ed7-59c77869704b",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001TC000",
    "sTs":"2016-05-11T13:00:56.432Z",
    "sS":[{
```

6.2.25 S0025 Time-to-green

Status Request

```
"mType":"rSMsg",
     "type": "StatusRequest",
     "mId": "4bd1b76d-4be2-4b07-9a3f-48768c960951",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001SG002",
     "sS":[{
             "sCI":"S0025",
              "n": "minToGEstimate"
     },{
              "sCI":"S0025",
              "n": "maxToGEstimate"
     },{
              "sCI":"S0025",
              "n":"likelyToGEstimate"
     },{
              "sCI":"S0025",
              "n": "ToGConfidence"
     },{
              "sCI":"S0025",
              "n": "minToREstimate"
     },{
              "sCI": "S0025",
              "n": "maxToREstimate"
     },{
              "sCI":"S0025",
              "n":"likelyToREstimate"
     },{
              "sCI": "S0025",
              "n": "ToRConfidence"
     }]
}
```

Status Response

```
{
    "mType":"rSMsg",
    "type":"StatusResponse",
    "mId":"18e1f203-c2aa-4fb8-b7fe-5babf93f46f8",
    "ntsOld":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001SG002",
    "sTs":"2016-05-11T19:58:02.487Z",
```

```
"sS":[{
             "sCI":"S0025",
             "n": "minToGEstimate",
             "s":"2016-05-11T21:55:10.231Z",
             "q":"recent"
     },{
             "sCI":"S0025",
             "n": "maxToGEstimate",
             "s":"2016-05-11T21:56:08.231Z",
             "q":"recent"
     },{
             "sCI":"S0025",
             "n":"likelyToGEstimate",
             "s":"2016-05-11T21:55:13.231Z",
             "q":"recent"
     },{
             "sCI":"S0025",
             "n": "ToGConfidence",
             "s":"87",
             "q": "recent"
     },{
             "sCI":"S0025",
             "n": "minToREstimate",
             "s":"2016-05-11T21:57:45.231Z",
             "q":"recent"
     },{
             "sCI":"S0025",
             "n": "maxToREstimate",
             "s":"2016-05-11T21:57:55.231Z",
             "q":"recent"
     },{
             "sCI":"S0025",
             "n": "likelyToREstimate",
             "s":"2016-05-11T21:57:45.231Z",
             "q":"recent"
     },{
             "sCI": "S0025",
             "n": "ToRConfidence",
             "s":"75",
             "q": "recent"
     }]
}
```

6.2.26 S0026 Week time table

Status Request

```
{
    "mType":"rSMsg",
    "type":"StatusRequest",
    "mId":"2af769ea-d715-44aa-af72-cfb666795a46",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001TC000",
    "sS":[{
```

Status Response

6.2.27 S0027 Time tables

Status Request

Status Response

```
}]
}
```

6.2.28 S0028 Cycle time

Status Request

Status Response

6.2.29 S0029 Forced input status

Status Request

Status Response

6.2.30 S0030 Forced output status

Status Request

Status Response

6.2.31 S0031 Trigger level sensitivity for loop detector

Status Request

Status Response

6.2.32 S0091 Operator logged in/out OP-panel

Status Request

Status Response

```
{
   "mType":"rSMsg",
```

```
"type": "StatusResponse",
     "mId": "a58b40b3-ba7f-4f09-8be5-bbf4598caafe",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-26T13:34:31.402Z",
     "sS":[{
             "sCI":"S0091",
             "n":"user",
             "s":"admin",
             "q":"recent"
     },{
             "sCI": "S0091",
             "n":"status",
             "s":"login",
             "q":"recent"
     }]
}
```

6.2.33 S0092 Operator logged web-interface

Status Request

Status Response

6.2.34 S0095 Version of Traffic Light Controller

Status Request

Status Response

6.2.35 S0096 Current date and time

Status Request

```
{
    "mType":"rSMsg",
    "type":"StatusRequest",
    "mId":"66a6f25e-930a-40c7-9957-04075716e2e8",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001TC000",
```

```
"sS":[{
             "sCI":"S0096",
              "n":"year"
     },{
              "sCI":"S0096",
              "n": "month"
     },{
              "sCI":"S0096",
              "n":"day"
     },{
             "sCI":"S0096",
              "n":"hour"
     },{
             "sCI":"S0096",
              "n": "minute"
     },{
              "sCI":"S0096",
              "n": "second"
     }]
}
```

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "b9c8a436-f8ae-4d45-9af4-264032c0a0a1",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-26T13:40:30.826Z",
     "sS":[{
             "sCI":"S0096",
             "n":"year",
             "s":"2017",
             "q":"recent"
     },{
             "sCI": "S0096",
             "n": "month",
             "s":"5",
             "q":"recent"
     },{
             "sCI": "S0096",
             "n":"day",
             "s":"12",
             "q":"recent"
     },{
             "sCI":"S0096",
             "n": "hour",
             "s":"10",
             "q":"recent"
     },{
             "sCI":"S0096",
             "n": "minute",
             "s":"16",
             "q": "recent"
```

```
},{
          "sCI":"S0096",
          "n":"second",
          "s":"31",
          "q":"recent"
}]
```

6.2.36 S0097 Checksum of traffic parameters

Status Request

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "f18f2032-39e8-4397-bc82-d5355c76caf4",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-30T12:21:30.640Z",
     "sS":[{
             "sCI": "S0097",
             "n": "timestamp",
             "s":"2019-09-29T10:00:00.510Z",
             "q":"recent"
     },{
             "sCI": "S0097",
             "n": "checksum",
             "s": "63b417a713575c7838e4a915b92c617e7b5957bf",
             "q": "recent"
     }]
```

6.2.37 S0098 Configuration of traffic parameters

Status Request

```
"mType":"rSMsg",
     "type": "StatusRequest",
     "mId": "b4e70a7e-12ca-4619-98af-419ecf2a74da",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sS":[{
              "sCI": "S0098",
              "n": "config"
     },{
              "sCI": "S0098",
              "n":"timestamp"
     },{
              "sCI": "S0098",
              "n":"version"
     }]
}
```

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "f18f2032-39e8-4397-bc82-d5355c76caf4",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-30T12:21:30.640Z",
     "sS":[{
             "sCI":"S0098",
             "n":"config",
             "s": "63b417a713575c7838e4a915b92c617e7b5957bf",
             "q":"recent"
     },{
             "sCI": "S0098",
             "n":"timestamp",
             "s":"2019-09-29T10:00:00.510Z",
             "q":"recent"
     },{
             "sCI": "S0098",
             "n":"version",
             "s": "Controller 1234. Version 5. Added SG3",
             "q":"recent"
     }]
}
```

6.2.38 S0201 Traffic Counting: Number of vehicles

Status Request

```
{
    "mType":"rSMsg",
    "type":"StatusRequest",
    "mId":"af196dee-bc6b-449e-96bd-8794acea95b2",
    "ntsOId":"KK+AG0503=001TC000",
```

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "84c4b90f-142e-416c-8656-17d720be0791",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001DL001",
     "sTs":"2019-09-30T12:24:10.904Z",
     "sS":[{
             "sCI":"S0201",
             "n": "starttime",
             "s":"2019-03-12T12:00:00.000Z",
             "q":"recent"
     },{
             "sCI":"S0201",
             "n": "vehicles",
             "s":"20",
             "q":"recent"
     }]
}
```

6.2.39 S0202 Traffic Counting: Vehicle speed

Status Request

Status Response

```
"mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "36d04216-d85e-41bf-9012-84698d286a37",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001DL001",
     "sTs": "2019-09-30T12:28:21.855Z",
     "sS":[{
              "sCI":"S0202",
              "n":"starttime",
              "s":"2019-03-12T12:00:00.000Z",
              "q":"recent"
     },{
             "sCI": "S0202",
              "n": "speed",
              "s":"54",
              "q":"recent"
     }]
}
```

6.2.40 S0203 Traffic Counting: Occupancy

Status Request

Status Response

```
},{
    "sCI":"S0203",
    "n":"occupancy",
    "s":"23",
    "q":"recent"
}]
}
```

6.2.41 S0204 Traffic Counting: Number of vehicles of given classification

Status Request

```
{
     "mType":"rSMsg",
     "type": "StatusRequest",
     "mId": "e497a551-60ba-42b5-911c-f107d0cbc84d",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001DL001",
     "sS":[{
             "sCI":"S0204",
             "n": "starttime"
     },{
             "sCI": "S0204",
             "n":"P"
     },{
             "sCI": "S0204",
             "n":"PS"
     },{
             "sCI": "S0204",
             "n":"L"
     },{
             "sCI":"S0204",
             "n":"LS"
     },{
             "sCI":"S0204",
             "n":"B"
     },{
             "sCI":"S0204",
             "n":"SP"
     },{
             "sCI":"S0204",
             "n":"MC"
     },{
             "sCI":"S0204",
             "n":"C"
     },{
             "sCI":"S0204",
             "n":"F"
     }]
}
```

Status Response

```
"mType":"rSMsg",
"type": "StatusResponse",
"mId": "ad4d10dc-7a0b-4417-9714-931bfb71bc5d",
"ntsOId": "KK+AG0503=001TC000",
"xNId":"",
"cId":"KK+AG0503=001DL001",
"sTs": "2019-09-30T12:48:44.730Z",
"sS":[{
        "sCI":"S0204",
        "n":"starttime",
        "s":"2019-03-12T12:00:00.000Z",
        "q":"recent"
},{
        "sCI":"S0204",
        "n":"P",
        "s":"2",
        "q":"recent"
},{
        "sCI":"S0204",
        "n":"PS",
        "s":"43",
        "q":"recent"
},{
        "sCI":"S0204",
        "n":"L",
        "s":"9",
        "q":"recent"
},{
        "sCI":"S0204",
        "n":"LS",
        "s":"3",
        "q":"recent"
},{
        "sCI":"S0204",
        "n":"B",
        "s":"2",
        "q":"recent"
},{
        "sCI":"S0204",
        "n":"SP",
        "s":"3",
        "q":"recent"
},{
        "sCI":"S0204",
        "n":"MC",
        "s":"4",
        "q":"recent"
},{
        "sCI":"S0204",
        "n":"C",
        "s":"6",
        "q":"recent"
},{
        "sCI":"S0204",
        "n":"F",
        "s":"2",
```

```
"q":"recent"
}]
```

6.2.42 S0205 Traffic Counting: Number of vehicles

Status Request

Status Response

```
"mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "dd704047-6996-4ada-b953-78b9e13ce8ae",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-29T17:57:55.993Z",
     "sS":[{
              "sCI":"S0205",
              "n": "start",
              "s":"2019-03-12T12:00:00.000Z",
              "q":"recent"
     },{
             "sCI": "S0205",
             "n": "vehicles",
              "s":"32,31,24,41,41,32",
              "q":"recent"
     }]
}
```

6.2.43 S0206 Traffic Counting: Vehicle speed

Status Request

```
{
    "mType":"rSMsg",
```

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "c2d3b89f-c684-483d-a548-dc85099229f2",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-29T18:01:08.571Z",
     "sS":[{
             "sCI":"S0206",
             "n":"start",
             "s":"2019-03-12T12:00:00.000Z",
             "q":"recent"
     },{
             "sCI": "S0206",
             "n":"speed",
             "s":"32,31,24,41,41,32",
             "q":"recent"
     }]
}
```

6.2.44 S0207 Traffic Counting: Occupancy

Status Request

```
}]
}
```

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "8d10ad23-407f-4ddd-8d2a-4d69af883e72",
     "ntsOId":"KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs": "2019-09-29T18:05:06.776Z",
     "sS":[{
              "sCI":"S0207",
             "n":"start",
              "s":"2019-03-12T12:00:00.000Z",
              "q": "recent"
     },{
             "sCI": "S0207",
              "n": "occupancy",
              "s":"32,31,24,41,41,32",
              "q": "recent"
     }]
}
```

6.2.45 S0208 Traffic Counting: Number of vehicles of given classification

Status Request

```
{
     "mType":"rSMsg",
     "type": "StatusRequest",
     "mId": "78219ac2-80ff-46df-a9e8-4051909311bf",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sS":[{
             "sCI":"S0208",
             "n":"start"
     },{
             "sCI":"S0208",
             "n":"P"
     },{
             "sCI":"S0208",
             "n":"PS"
     },{
             "sCI":"S0208",
             "n":"L"
     },{
             "sCI":"S0208",
             "n":"LS"
     },{
             "sCI": "S0208",
             "n":"B"
```

Status Response

```
{
     "mType":"rSMsg",
     "type": "StatusResponse",
     "mId": "4c7a1249-a189-460f-a44d-5547fa706c08",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "sTs":"2019-09-29T18:08:34.230Z",
     "sS":[{
             "sCI":"S0208",
             "n":"start",
             "s":"2019-03-12T12:00:00.000Z",
             "q":"recent"
     },{
             "sCI":"S0208",
             "n":"P",
             "s":"2,3,2,1,1,2",
             "q":"recent"
     },{
             "sCI": "S0208",
             "n":"PS",
             "s":"9,3,5,1,1,2",
             "q":"recent"
     },{
             "sCI":"S0208",
             "n":"L",
             "s":"3,5,2,1,1,2",
             "q":"recent"
     },{
             "sCI":"S0208",
             "n":"LS",
             "s":"2,3,2,1,1,2",
             "q":"recent"
     },{
             "sCI":"S0208",
             "n":"B",
             "s":"8,3,2,1,1,2",
             "q":"recent"
     },{
```

```
"sCI":"S0208",
             "n":"SP",
             "s":"1,1,2,1,1,2",
             "q":"recent"
     },{
             "sCI": "S0208",
             "n":"MC",
             "s":"4,3,3,1,1,2",
             "q":"recent"
     },{
             "sCI":"S0208",
             "n":"C",
             "s":"8,3,2,1,1,2",
             "q":"recent"
     },{
             "sCI":"S0208",
             "n":"F",
             "s":"5,3,2,1,1,2",
             "q":"recent"
     }]
}
```

6.3 Commands

6.3.1 M0001 Sets functional position

Command Request

```
{
     "mType":"rSMsg",
     "type": "CommandRequest",
     "mId": "c7fb8423-8232-43e1-b632-68c299ce4360",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "arg":[{
             "cCI":"M0001",
             "n": "status",
             "cO": "setValue",
             "v": "NormalControl"
     },{
             "cCI":"M0001",
             "n": "securityCode",
             "c0":"setValue",
             "v":"1234"
     },{
             "cCI":"M0001",
             "n":"timeout",
             "cO":"setValue",
             "v":"0"
     },{
             "cCI":"M0001",
             "n":"intersection",
```

Command Response

```
{
     "mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "8dc16a94-d200-439a-a0f9-75020fd96530",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2019-09-30T07:03:33.360Z",
     "rvs":[{
              "cCI":"M0001",
              "n": "status",
              "v": "NormalControl",
              "age": "recent"
     },{
              "cCI":"M0001",
              "n": "securityCode",
              "v":"1234",
              "age": "recent"
     },{
              "cCI": "M0001",
              "n":"timeout",
              "v":"0",
              "age": "recent"
     },{
              "cCI": "M0001",
              "n": "intersection",
              "v":"0",
              "age": "recent"
     }]
}
```

6.3.2 M0002 Sets current time plan

Command Request

Command Response

```
"mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "84038dc5-fefd-4984-aec2-41aba312b43b",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2019-09-30T07:35:08.934Z",
     "rvs":[{
              "cCI":"M0002",
              "n": "status",
              "v":"False",
              "age": "True"
     },{
              "cCI":"M0002",
              "n": "securityCode",
              "v":"1234",
              "age": "recent"
     },{
              "cCI": "M0002",
              "n": "timeplan",
              "v":"1",
              "age": "recent"
     }]
}
```

6.3.3 M0003 Sets traffic situation the controller uses

Command Request

Command Response

```
"mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "c5640a4c-93c3-4928-9e9b-f6bb9060d126",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2019-09-30T07:39:14.978Z",
     "rvs":[{
              "cCI":"M0003",
              "n":"status",
              "v":"True",
              "age": "recent"
     },{
              "cCI": "M0003",
              "n": "securityCode",
              "v":"1234",
              "age": "recent"
     },{
              "cCI": "M0003",
              "n": "trafficsituation",
              "v":"1",
              "age": "recent"
     }]
}
```

6.3.4 M0004 Restarts Traffic Light Controller

Command Request

Command Response

```
{
     "mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "ddc41905-5c8b-4aad-91ec-71d2ae8b4e2b",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2019-09-30T07:46:44.187Z",
     "rvs":[{
             "cCI":"M0004",
             "n": "status",
             "v":"True",
             "age": "recent"
     },{
             "cCI":"M0004",
             "n": "securityCode",
             "v":"1234",
             "age": "recent"
     }]
```

6.3.5 M0005 Activate emergency route

Command Request

```
"mType":"rSMsg",
"type": "CommandRequest",
"mId": "b5517db0-ec6f-4bef-ad18-05673cbeecde",
"ntsOId": "KK+AG0503=001TC000",
"xNId":"",
"cId": "KK+AG0503=001TC000",
"arg":[{
        "cCI":"M0005",
        "n":"status",
        "cO": "setEmergency",
        "v":"False"
},{
        "cCI":"M0005",
        "n": "securityCode",
        "cO": "setEmergency",
        "v":"1234"
```

```
},{
    "cCI":"M0005",
    "n":"emergencyroute",
    "cO":"setEmergency",
    "v":"1"
}]
}
```

Command Response

```
{
     "mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "0ea1da9d-675a-4059-8bb6-015152399b72",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2019-09-30T07:52:11.612Z",
     "rvs":[{
              "cCI": "M0005",
              "n":"status",
              "v":"False",
              "age": "recent"
     },{
              "cCI": "M0005",
              "n": "securityCode",
              "v":"1234",
              "age": "recent"
     },{
              "cCI":"M0005",
              "n": "emergencyroute",
              "v":"1",
              "age": "recent"
     }]
}
```

6.3.6 M0006 Activate input

Command Request

Command Response

```
"mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "f34dc677-3d05-418c-9496-db73deb248e3",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2019-09-30T08:12:02.519Z",
     "rvs":[{
              "cCI":"M0006",
              "n":"status",
              "v":"True",
              "age": "recent"
     },{
              "cCI": "M0006",
              "n": "securityCode",
              "v":"1234",
              "age": "recent"
     },{
              "cCI": "M0006",
              "n": "input",
              "v":"1",
              "age": "recent"
     }]
}
```

6.3.7 M0007 Activate fixed time control

Command Request

Command Response

```
{
     "mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "ba308115-06ae-4813-ba19-fb95ffc36907",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2019-09-30T08:15:54.862Z",
     "rvs":[{
              "cCI":"M0007",
              "n": "status",
             "v":"True",
             "age": "recent"
     },{
             "cCI":"M0007",
              "n": "securityCode",
              "v":"1234",
              "age": "recent"
     }]
}
```

6.3.8 M0008 Sets manual activation of detector logic

Command Request

```
{
     "mType":"rSMsg",
     "type": "CommandRequest",
     "mId": "756914f6-51c1-4407-8dbd-328b2f9dbc2b",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001DL001",
     "arg":[{
             "cCI":"M0008",
             "n":"status",
             "c0":"setForceDetectorLogic",
             "v":"True"
    },{
             "cCI":"M0008",
             "n": "securityCode",
             "cO": "setForceDetectorLogic",
             "v":"1234"
     },{
             "cCI": "M0008",
             "n": "mode",
             "c0": "setForceDetectorLogic",
```

```
"v":"True"
}]
```

Command Response

```
"mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "9cd20b07-267a-4746-8882-d61de2a7318c",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001DL001",
     "cTS": "2019-09-30T08: 18:57.492Z",
     "rvs":[{
              "cCI": "M0008",
              "n":"status",
              "v":"True",
              "age":"recent"
     },{
              "cCI":"M0008",
              "n": "securityCode",
              "v":"1234",
              "age": "recent"
     },{
              "cCI":"M0008",
              "n": "mode",
              "v":"True",
              "age": "recent"
     }]
}
```

6.3.9 M0010 Start of signal group

Command Request

```
{
     "mType":"rSMsg",
     "type": "CommandRequest",
     "mId": "6da0f9d7-9ee7-4055-9368-1c737da785d2",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001SG001",
     "arg":[{
              "cCI":"M0010",
             "n":"status",
              "cO": "setStart",
              "v":"True"
     },{
              "cCI":"M0010",
              "n": "securityCode",
             "c0":"setStart",
             "v":"1234"
     }]
}
```

Command Response

```
"mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "fbc4cc9e-9175-4608-8c75-c12603ad3aa4",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001SG001",
     "cTS": "2019-09-30T08: 23: 57. 132Z",
     "rvs":[{
              "cCI": "M0010",
              "n":"status",
              "v":"True",
              "age": "recent"
     },{
              "cCI":"M0010",
              "n": "securityCode",
              "v":"1234",
              "age": "recent"
     }]
}
```

6.3.10 M0011 Stop of signal group

Command Request

```
{
     "mType": "rSMsg",
     "type": "CommandRequest",
     "mId": "ec458c36-6af8-4908-be29-0bd5391dd27d",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001SG001",
     "arg":[{
              "cCI": "M0011",
              "n": "status",
              "cO":"setStop",
              "v":"True"
     },{
              "cCI": "M0011",
              "n": "securityCode",
              "c0":"setStop",
              "v":"1234"
     }]
}
```

Command Response

```
{
    "mType":"rSMsg",
    "type":"CommandResponse",
    "mId":"4965db4d-03bb-4a2c-93d7-f89c563f65f2",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001SG001",
```

6.3.11 M0012 Request start or stop of a series of signal groups

Command Request

```
"mType": "rSMsg",
     "type": "CommandRequest",
     "mId": "128e056d-67ba-4506-98be-6bca01e3b5c8",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "arg":[{
              "cCI":"M0012",
              "n": "status",
              "cO": "setStart",
              "v":"5,4134,65;5,11"
     },{
              "cCI": "M0012",
              "n": "securityCode",
              "cO": "setStart",
              "v":"1234"
     }]
}
```

Command Response

6.3.12 M0013 Activate a series of inputs

Command Request

```
"mType":"rSMsg",
     "type": "CommandRequest",
     "mId": "486d9574-7816-41db-9cb9-561b54d23b1e",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "arg":[{
              "cCI":"M0013",
              "n":"status",
              "cO": "setInput",
              "v": "5,4134,65;511"
     },{
              "cCI": "M0013",
              "n": "securityCode",
              "cO": "setInput",
              "v":"1234"
     }]
}
```

```
{
     "mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "7fe7e4bf-5116-406b-a757-7b83d38727ac",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2019-09-30T11:30:52.851Z",
     "rvs":[{
              "cCI": "M0013",
              "n": "status",
              "v":"5,4134,65;511",
              "age": "recent"
     },{
              "cCI": "M0013",
              "n": "securityCode",
             "v":"1234",
             "age": "recent"
     }]
}
```

6.3.13 M0014 Set command table

Command Request

```
{
     "mType":"rSMsg",
     "type": "CommandRequest",
     "mId": "2840c768-1005-4b2b-a59e-a123b063c430",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId":"KK+AG0503=001TC000",
     "arg":[{
              "cCI": "M0014",
              "n":"plan",
              "cO": "setCommands",
              "v":"1"
     },{
              "cCI": "M0014",
              "n": "status",
              "c0": "setCommands",
              "v":"01-01,02-02"
     },{
              "cCI": "M0014",
              "n": "securityCode",
              "cO": "setCommands",
              "v":"2312"
     }]
}
```

```
{
     "mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "2e8e7ef7-488c-43d9-beac-b7a9cea66cc6",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2016-05-12T12:04:25.199Z",
     "rvs":[{
              "cCI": "M0014",
              "n":"plan",
              "v":"1",
              "age": "recent"
     },{
              "cCI": "M0014",
              "n":"status",
              "v":"01-01,02-02",
              "age": "recent"
     },{
              "cCI": "M0014",
              "n": "securityCode",
              "v":"2312",
              "age": "recent"
     }]
}
```

6.3.14 M0015 Set Offset time

Command Request

```
{
     "mType":"rSMsg",
     "type": "CommandRequest",
     "mId": "a00cbdc3-65a9-42e4-9658-0af2eb92db60",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "arg":[{
              "cCI": "M0015",
              "n":"status",
              "cO": "setOffset",
              "v":"30"
     },{
              "cCI": "M0015",
              "n": "plan",
              "cO": "setOffset",
              "v":"1"
     },{
              "cCI":"M0015",
              "n": "securityCode",
              "cO": "setOffset",
              "v":"2314"
     }]
}
```

```
{
     "mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "77291dd5-468c-42b4-96aa-f1553cf57466",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2016-05-12T12:05:57.558Z",
     "rvs":[{
              "cCI": "M0015",
              "n":"status",
              "v":"30",
              "age": "recent"
     },{
              "cCI":"M0015",
              "n": "plan",
              "v":"1",
              "age": "recent"
     },{
              "cCI": "M0015",
              "n": "securityCode",
              "v":"2314",
              "age": "recent"
     }]
}
```

6.3.15 M0016 Set week time table

Command Request

```
"mType":"rSMsg",
     "type": "CommandRequest",
     "mId": "7fe05b51-1436-4bf4-a1e8-54c946395e95",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "arg":[{
              "cCI": "M0016",
              "n":"status",
              "c0": "setWeekTable",
              "v": "0-2,1-3,2-1,3-1,4-1,5-4,6-4"
     },{
              "cCI": "M0016",
              "n": "securityCode",
              "c0": "setWeekTable",
              "v":"2314"
     }]
}
```

Command Response

```
{
     "mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "3c635519-c745-44e5-ab1d-8da0d0cabb84",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2016-05-12T12:09:47.574Z",
     "rvs":[{
              "cCI": "M0016",
              "n":"status",
              v": 0-2, 1-3, 2-1, 3-1, 4-1, 5-4, 6-4"
              "age": "recent"
     },{
              "cCI": "M0016",
              "n": "securityCode",
              "v":"2314",
              "age": "recent"
     }]
}
```

6.3.16 M0017 Set time tables

Command Request

```
{
    "mType":"rSMsg",
    "type":"CommandRequest",
    "mId":"0e05974d-223b-47a0-9992-fbe00dd352bd",
    "nts0Id":"KK+AG0503=001TC000",
```

Command Response

```
{
     "mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "25b1947b-284a-4fff-b723-448f7c1b80b4",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2016-05-12T12:11:14.105Z",
     "rvs":[{
              "cCI":"M0017",
              "n":"status",
              "v": "1-1-6-30,1-0-9-0,1-1-15-30,1-0-18-0,2-1-7-0,2-0-9-0",  
              "age": "recent"
     },{
              "cCI": "M0017",
              "n": "securityCode",
              "v":"2321",
              "age": "recent"
     }]
}
```

6.3.17 M0018 Set cycle time

Command Request

Command Response

```
"mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "25b1947b-284a-4fff-b723-448f7c1b80b4",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2016-05-12T12:11:14.105Z",
     "rvs":[{
              "cCI":"M0018",
             "n": "status",
              "v":"2",
             "age":"recent"
     },{
              "cCI":"M0018",
              "n": "plan",
              "v":"80",
              "age": "recent"
     },{
              "cCI":"M0018",
              "n": "securityCode",
             "v":"2321",
              "age": "recent"
     }]
}
```

6.3.18 M0019 Force input

Command Request

```
"v":"True"
     },{
              "cCI":"M0018",
              "n": "securityCode",
              "cO": "setInput",
              "v":"2321"
     },{
             "cCI":"M0018",
              "n":"input",
             "c0":"setInput",
              "v":"2"
     },{
              "cCI":"M0018",
              "n":"inputValue",
              "cO": "setInput",
              "v":"True"
     }]
}
```

Command Response

```
{
     "mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "25b1947b-284a-4fff-b723-448f7c1b80b4",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2016-05-12T12:11:14.105Z",
     "rvs":[{
              "cCI":"M0018",
              "n":"status",
              "v":"True",
              "age": "recent"
     },{
              "cCI": "M0018",
              "n": "securityCode",
              "v":"2321",
              "age": "recent"
     },{
              "cCI":"M0018",
              "n":"input",
              "v":"2",
              "age": "recent"
     },{
              "cCI":"M0018",
              "n": "input Value",
              "v":"2321",
              "age": "True"
     }]
}
```

6.3.19 M0020 Force output

Command Request

```
"mType":"rSMsg",
     "type": "CommandRequest",
     "mId":"1caf4fed-6182-431e-a88e-fa537ac00c8e",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId":"KK+AG0503=001TC000",
     "arg":[{
              "cCI":"M0020",
              "n": "status",
             "cO": "setOutput",
              "v":"True"
     },{
              "cCI":"M0020",
              "n": "securityCode",
              "cO": "setOutput",
              "v":"1234"
     },{
             "cCI":"M0020",
             "n": "output",
              "cO": "setOutput",
              "v":"1"
     },{
             "cCI":"M0020",
              "n": "output Value",
              "cO": "setOutput",
             "v":"True"
     }]
}
```

Command Response

```
"mType":"rSMsg",
"type": "CommandResponse",
"mId": "7e008cd8-e51f-487c-bd66-87993059eb8c",
"ntsOId":"KK+AG0503=001TC000",
"xNId":"",
"cId": "KK+AG0503=001TC000",
"cTS": "2019-09-30T13:23:54.049Z",
"rvs":[{
        "cCI":"M0020",
        "n":"status",
        "v":"True",
        "age": "recent"
},{
        "cCI":"M0020",
        "n": "securityCode",
        "v":"1234",
        "age":"recent"
},{
        "cCI":"M0020",
        "n": "output",
        "v":"1",
        "age":"recent"
},{
        "cCI":"M0020",
```

6.3.20 M0021 Set trigger level sensitivity for loop detector

Command Request

```
"mType":"rSMsg",
     "type": "CommandRequest",
     "mId": "a6697f11-4f62-4349-8325-857beb150d8a",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "arg":[{
              "cCI":"M0021",
             "n":"status",
              "cO": "setLevel",
              "v":"01=54"
     },{
             "cCI": "M0021",
              "n": "securityCode",
              "cO": "setLevel",
              "v":"1234"
     }]
}
```

```
"mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "332bfbc4-67b2-4047-a718-a3d10f129214",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId":"KK+AG0503=001TC000",
     "cTS": "2019-09-30T13:32:18.840Z",
     "rvs":[{
              "cCI": "M0021",
              "n": "status",
             "v":"01=54",
              "age": "recent"
     },{
             "cCI": "M0021",
              "n": "securityCode",
             "v":"1234",
              "age": "recent"
     }]
}
```

6.3.21 M0103 Set security code

Command Request

```
{
     "mType":"rSMsg",
     "type": "CommandRequest",
     "mId": "1b1d9227-d566-4ff2-8bbb-c3f18f9ac846",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "arg":[{
              "cCI": "M0103",
              "n":"status",
              "cO": "setSecurityCode",
              "v":"Level1"
     },{
              "cCI": "M0103",
              "n": "oldSecurityCode",
              "cO": "setSecurityCode",
              "v":"1234"
     },{
              "cCI":"M0103",
              "n": "newSecurityCode",
              "cO": "setSecurityCode",
              "v": "5678"
     }]
}
```

```
{
     "mType":"rSMsg",
     "type": "CommandResponse",
     "mId": "605c1029-a948-45e7-a98a-11e83cbcc41a",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "cTS": "2019-09-30T13:34:54.635Z",
     "rvs":[{
              "cCI": "M0103",
              "n":"status",
              "v": "Level1",
              "age": "recent"
     },{
              "cCI":"M0103",
              "n": "oldSecurityCode",
              "v":"1234",
              "age": "recent"
     },{
              "cCI": "M0103",
              "n": "newSecurityCode",
              "v":"5678",
              "age": "recent"
     }]
}
```

6.3.22 M0104 Set clock

Command Request

```
{
     "mType":"rSMsg",
     "type": "CommandRequest",
     "mId": "c9584b41-e2ad-4eb4-bca4-c3847af4e78d",
     "ntsOId": "KK+AG0503=001TC000",
     "xNId":"",
     "cId": "KK+AG0503=001TC000",
     "arg":[{
              "cCI": "M0104",
              "n": "securityCode",
              "cO": "setDate",
              "v":"1234"
     },{
              "cCI": "M0104",
              "n": "year",
              "cO":"setDate",
              "v":"2019"
     },{
              "cCI": "M0104",
              "n": "month",
              "cO":"setDate",
              "v":"09"
     },{
              "cCI": "M0104",
              "n":"day",
              "cO": "setDate",
              "v":"30"
     },{
              "cCI":"M0104",
              "n": "hour",
              "cO": "setDate",
              "v":"11"
     },{
              "cCI":"M0104",
              "n": "minute",
              "cO": "setDate",
              "v":"30"
     },{
              "cCI":"M0104",
              "n": "second",
              "cO":"setDate",
              "v":"34"
     }]
}
```

Command Response

```
{
    "mType":"rSMsg",
    "type":"CommandResponse",
    "mId":"a37bd105-4f01-4e16-aaa9-7922c6732337",
    "ntsOId":"KK+AG0503=001TC000",
    "xNId":"",
    "cId":"KK+AG0503=001TC000",
```

```
"cTS":"2019-09-30T13:40:56.551Z",
     "rvs":[{
             "cCI":"M0104",
             "n": "securityCode",
             "v":"1234",
             "age":"recent"
     },{
             "cCI":"M0104",
             "n":"year",
             "v":"2019",
             "age":"recent"
     },{
             "cCI":"M0104",
             "n": "month",
             "v":"09",
             "age":"recent"
     },{
             "cCI": "M0104",
             "n":"day",
             "v":"30",
             "age":"recent"
     },{
             "cCI":"M0104",
             "n":"hour",
             "v":"11",
             "age":"recent"
     },{
             "cCI":"M0104",
             "n": "minute",
             "v":"30",
             "age":"recent"
     },{
             "cCI":"M0104",
             "n": "second",
             "v":"34",
             "age": "recent"
     }]
}
```