5.11. Sean $f, g : \mathbb{R} \to \mathbb{R}$ dos funciones continuas y supóngase que f(r) = g(r) para todo $r \in \mathbb{Q}$. ¿Es cierto que f = g?

Solución. En efecto, resultará cierto que f = g. Para comprobarlo, empleamos que para cada $x_0 \in \mathbb{R}$ existe una sucesión $\{r_n : n \in \mathbb{N}\} \subseteq \mathbb{Q}$ de forma que $r_n \to x_0$ cuando $n \to \infty$. Dado que f y g son continuas, $f(r_n) \to f(x_0)$ y $g(r_n) \to g(x_0)$ cuando $n \to \infty$, y dado que $f(r_n) = g(r_n)$ para cada $n \in \mathbb{N}$, dada la unicidad del límite, se tiene que $f(x_0) = g(x_0)$. Concluimos así, dada la arbitrariedad de x_0 , que f = g en \mathbb{R} .

Este resultado se puede generalizar, obviamente, a cualquier conjunto denso en \mathbb{R} , no necesariamente solo \mathbb{Q} ; incluso, en topología abstracta, a cualquier espacio topológico Hausdorff.

5.14.a. Demostrar que la ecuación $x2^x = 1$ tiene al menos una solución positiva no mayor que 1.

Solución. Definimos la función $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) := x2^x - 1$. Que $x_0 \in \mathbb{R}$ sea solución de la ecuación $x2^x = 1$ es equivalente a que x_0 sea un cero de f, y como f(0) = -1 < 0 mientras que $f(1) = 1 \cdot 2^1 - 1 = 1 > 0$, en virtud del Teorema de Bolzano ha de existir $c \in (0,1)$ tal que f(c) = 0.

El resto de apartados del Ejercicio 5.14 son análogos.

5.15. Sea \vec{d} una dirección en el plano y sea T un triángulo. Probar que existe una recta con dirección \vec{d} que divide al triágulo en dos partes de igual área.

Solución. Supongamos que $\vec{d} \not\propto (1,0)$ es un vector fijo. Entonces, para cada $x \in \mathbb{R}$ definimos por $\Phi(x)$ el área de la parte del triángulo que queda a la derecha de la recta con dirección \vec{d} y que corta al eje de abscisas en x. Dado que T es acotado, podemos encontrar $x_0, x_1 \in [0,1]$ de forma que $\Phi(x) = 0$ para todo $x > x_0$ y $\Phi(x) = \text{Área}(T)$ para todo $x < x_1$. Así, dado que Φ es continua, pues en particular es Lipschitz*, deducimos que, en virtud del Teorema de los Valores Intermedios, existe $c \in (x_1, x_0)$ de forma que $\Phi(c) = \frac{1}{2}\text{Área}(T)$, como se detalla en la Figura

 $\Phi(x-h) - \Phi(x) =$ Área sombreada \leq Área rayada = base · altura \leq diam $(C_{T,\vec{d}})$ | sen $(\theta_{\vec{d}})$ | h donde $\theta_{\vec{d}} = \arctan(d_2/d_1)$ si $d_1, d_2 \neq 0$, cuyo seno no escribimos ya que es menor o igual que 1,

donde θ_d^- = arctan(a_2/a_1) si $a_1, a_2 \neq 0$, cuyo seno no escribinios ya que es menor o iguar que 1, y estamos mayorando la expresión, con lo que la función es Lipschitz, y por ende continua. Si $d_2 = 0$ se razona análogamente pero en el eje de ordenadas.

^{*}Para ver que es Lipschitz, aunque la rigurosidad en esta solución no sea exhaustiva, fijado el triángulo T y la dirección $\vec{d}=(d_1,d_2)$, construyamos un paralelogramo $C_{T,\vec{d}}$ cualquiera (obviamente acotado), que contenga a T, entonces, como se puede observar en la figura,

FIGURA 1. Representación de la función Φ en tres ocasiones distintas, antes de «barrer» el triángulo (izquierda), cuando ha «barrido» la mitad del triángulo (centro), y una vez ha «barrido» la totalidad del triángulo (derecha).

1. Si $\vec{d} \propto (1,0)$, podemos hacer el mismo razonamiento, pero considerando $\Phi(x)$ el área de la parte del triángulo que queda abajo de la recta con dirección (1,0) y que corta al eje de ordenadas en x.

¡Ojo! El ejercicio 5.16 dice:

5.16. Un coche recorre 100 kilómetros en 50 minutos sin detenerse. Demostrar que hubo un minuto en el cual recorrió exactamente 2 kilómetros

es decir, existe un intervalo $[c,c+1]\subset [0,50], c\in [0,49]$, de forma que el recorrido hecho en dicho intervalo es de 2 kilómetros exactamente. Lo resolveremos en las siguientes clases.

5.17. Sea $f:[0,1] \to \mathbb{R}$ una función continua satisfaciendo f(0) = f(1). Demostrar la existencia de un punto $c \in [0,1/2]$ en el que f(c) = f(c+1/2). Concluir que existen, en cualquier momento, puntos opuestos en el ecuador terrestre que tienen la misma temperatura.

Indicación: considérese la función g(x) := f(x) - f(x + 1/2).

Solución. Consideremos, como se nos indica, la función $g:[0,1/2]\to\mathbb{R}$ dada por g(x):=f(x)-f(x+1/2). Entonces, g(0)=f(0)-f(1/2) y

$$g(1/2) = f(1/2) - f(1) = -g(0).$$

Así, si g(0) = 0, elegimos simplemente c = 0, mientras que si $g(0) \neq 0$, sabemos que g(0) = -g(1/2), de forma que los signos de ambas imágenes son opuestos y en virtud del Teorema de Bolzano, existe $c \in (0, 1/2)$ de forma que g(c) = 0, como queríamos demostrar.

5.18. Demostrar el Teorema del Punto Fijo de Brouwer: sea I un intervalo cerrado y acotado y sea $f: I \to I$ una función continua, existe un punto $c \in I$ tal que f(c) = c.

Solución. Denotemos I:=[a,b] para ciertos $a,b\in\mathbb{R}$ con a< b. Si f(a)=a o f(b)=b, ya estaría, sin más que tomar c:=a o c:=b, respectivamente, de modo que supongamos que no es así. Dado que $f([a,b])\subset [a,b]$, necesariamente se tiene que f(a)>a y f(b)< b. Consideremos la función auxiliar $h:[a,b]\to\mathbb{R}$ dada por h(x):=f(x)-x, la cual es continua y satisface h(a)=f(a)-a>0 y h(b)=f(b)-b<0. Como consecuencia del Teorema de Bolzano, debe existir $c\in (a,b)$ tal que 0=h(c)=f(c)-c, esto es, debe existir un punto fijo por f. \square

5.19. Pruébese que si I es un intervalo real, $f: I \to \mathbb{R}$ una función continua y $t_1, ..., t_n \in I$ son puntos arbitrarios, existe $c \in I$ tal que

$$f(c) = \frac{f(t_1) + \dots + f(t_n)}{n}.$$

Solución. Supongamos, sin pérdida de generalidad, que $f(t_1) \leq \cdots \leq f(t_n)$, tras un posible reordenamiento de t_1, \ldots, t_n . Entonces,

$$f(t_1) = \frac{f(t_1) + \cdots + f(t_1)}{n} \le \frac{f(t_1) + \cdots + f(t_n)}{n} \le \frac{f(t_n) + \cdots + f(t_n)}{n} = f(t_n),$$

de forma que por el Teorema de los Valores Intermedios de Bolzano, ha de existir $c \in I$ verificando la condición enunciada.

También se podría probar por inducción sobre n.