LoGAN: Attention-based GAN Vocoder using Longformer

Anonymous submission to Interspeech 2025

Supplementary Material

A0. Pre-Processing and Post-Processing (Volume normalisation)

4 As shown in Algorithm 1 and 2, it refers to the input folder containing generated files, O=original folder containing original files, and N=output folder to store normalized files. x_{gen}, sr_{gen} refers to generated audio data and its sampling rate, x_{orig}, sr_{orig} original audio data and its sampling rate. μ_{orig} mean volume of the original audio. μ_{gen} Mean volume of generated audio, n and x_{norm} are normalization factors and normalized audio signal, respectively.

1. In-distribution (ID) data scenario:

Algorithm 1 Volume Normalization Algorithm

```
1: Input: I, O, N

2: Output: Normalized files in N

3: for f \in I do

4: x_{gen}, sr_{gen} \leftarrow \text{Load}(f, I)

5: x_{orig}, sr_{orig} \leftarrow \text{Load}(f, O)

6: \mu_{orig} \leftarrow \frac{1}{N} \sum_{i=1}^{N} |x_{orig}(i)|

7: \mu_{gen} \leftarrow \frac{1}{N} \sum_{i=1}^{N} |x_{gen}(i)|

8: n \leftarrow \frac{\mu_{orig}}{\mu_{gen}}

9: x_{norm}(i) \leftarrow x_{gen}(i) \times n, \forall i

10: Save(x_{norm}, N)

11: end for
```

2. Out-of-distribution Data (OOD) data scenario:

Algorithm 2 OOD Volume Normalization Algorithm

```
1: Input: I, N, threshold
2: Output: Normalized files in N
3: for f \in I do
4: x_{gen}, sr_{gen} \leftarrow \text{Load}(f, I)
5: \mu_{gen} \leftarrow \frac{1}{N} \sum_{i=1}^{N} |x_{gen}(i)|
6: if \mu_{gen} > threshold then
7: n \leftarrow \frac{threshold}{\mu_{gen}}
8: x_{norm}(i) \leftarrow x_{gen}(i) \times n, \forall i
9: Save(x_{norm}, N)
10: end if
11: end for
```

A1. Hyperparameters and Training Setup

Parameter	Value	
fmin	0	
fmax	8000 Hz	
Sampling rate	22050 Hz	
Number of sub-bands	80	
Number of FFT	1024	
Global Attention Tokens	N (input sequence)	
Local Attention Window Size	$\{T_i, T_{i+1}, T_{i+2}, T_{i+3}\}$ from N	
Learning Rate	0.001	
Batch Size	8	
Optimizer	Adam	
Upsampling configuration	[8,8,2,2]	
Kernel size	[16,16,4,4]	
Training iterations	1.5×10^{5}	

A2. Evaluation Matrices

Objective Matrices

Perceptual Evaluation of Speech Quality (PESQ (↑))
 It predicts the perceived quality of speech based on a perceptual model. It is computed as a weighted sum of disturbance metrics:

$$PESQ = \alpha \cdot D_{sym} + \beta \cdot D_{asym} + \gamma \tag{1}$$

16

17

18

20

21

23

24

25

26

27

28

29

30

31

32

where D_{sym} and D_{asym} are symmetric and asymmetric disturbances, and α , β , and γ are empirically determined constants.

2. Short-Time Objective Intelligibility (STOI (†))

It measures the intelligibility of degraded speech with respect to clean speech by computing correlations between shorttime envelope segments:

$$STOI = \frac{1}{N} \sum_{n=1}^{N} corr(\mathbf{x}_n, \hat{\mathbf{x}}_n)$$
 (2)

where \mathbf{x}_n and $\hat{\mathbf{x}}_n$ are short-time temporal envelopes of the clean and degraded speech, and $\operatorname{corr}(\cdot)$ denotes the Pearson correlation coefficient.

 Modulation Spectra Distance (MSD (↓)): It calculates the likeness or disparity between two signals through modulation spectra. As given in Eq.(3),

$$MSD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(s(y)_{i}^{t} - s(y)_{i}^{\hat{t}} \right)^{2}}.$$
 (3)

4. **Mel Cepstral Distortion (MCD** (\downarrow)): It is used to quantify

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Subjective Matrices

5. Subjective Mean Opinion Score (SMOS (†))

34

35

36

37

38

39

40

41

It is a subjective metric obtained from human listeners who rate the naturalness, or speech quality on a scale, from 1 to 5:

$$SMOS = \frac{1}{N} \sum_{i=1}^{N} Rating_i$$
 (5)

where ${\sf Rating}_i$ is the score given by the i-th listener, and N is the number of raters or utterances evaluated.

A3. Recipes of the baseline systems

	Application	Dataset Used	Opensource
	Speech synthe-	Google internal TTS	No
	sis (TTS)	dataset (English and Man-	
		darin, high-quality 48 kHz	
[1]		recordings)	
	Unconditional	TIMIT dataset (clean pho-	Yes
	speech genera-	netic speech corpus) [2]	
	tion		
	Music genera-	Custom internal piano mu-	No
	tion	sic corpus)	
	Vocoder for	LJSpeech [4], VCTK [5],	Yes
	TTS	JSUT [6]	
	Fine-tuned au-	Custom internal corpora	No
Ξ	dio synthesis		
	[7] Vocoder	LJSpeech [4], VCTK [5],	Yes
	TTS	LibriTTS [8]	
	[Proposed]	LJSpeech [4], VCTK [5]	-
	Vocoder for		
	TTS		

Table 1: Datasets used for training baseline systems across different vocoder models.

A4. Additional Statistical Analysis

Figure 1: Distributions and characteristics Analysis of proposed LoGAN with existing baseline systems, such as BigVGAN [9], HiFiGAN [7], and Parallel WaveGAN [1] across four metrics: Duration, RMS, ZCR, and Spectral Centroid, using box plots.

1. References

- [1] A. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu, G. Driessche, E. Lockhart, L. Cobo, F. Stimberg et al., "Parallel wavenet: Fast high-fidelity speech synthesis," in *International Conference on Machine Learning*. PMLR, 2018, pp. 3918–3926.
- [2] J. S. Garofolo, L. F. Lamel, W. M. Fisher, D. S. Pallett, N. L. Dahlgren, V. Zue, and J. G. Fiscus, "Timit acoustic-phonetic continuous speech corpus," (*No Title*), 1993.
- [3] R. Yamamoto, E. Song, and J.-M. Kim, "Parallel wavegan: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram," in *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 6199–6203, 2020, Barcelona, Spain.
- [4] K. Ito and L. Johnson, "The LJ Speech Dataset," https://keithito. com/LJ-Speech-Dataset/ {Last Accessed: August 18th, 2024}.
- [5] J. Yamagishi, C. Veaux, and K. MacDonald, "CSTR VCTK Corpus: English multi-speaker corpus for CSTR voice cloning toolkit (version 0.92)," 2019 {Last Accessed: August 18^{th} , 2024}.
- [6] R. Sonobe, S. Takamichi, and H. Saruwatari, "Jsut corpus: free large-scale japanese speech corpus for end-to-end speech synthesis," arXiv preprint arXiv:1711.00354, 2017.
- [7] J. Kong, J. Kim, and J. Bae, "Hifi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis," Advances in Neural Information Processing Systems (NIPS), Vol. 33, pp. 17022–17033, 2020, Virtual-only Conference.
- [8] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen, and Y. Wu, "Libritts: A corpus derived from librispeech for text-tospeech," arXiv preprint arXiv:1904.02882, 2019.
- [9] S.-g. Lee, W. Ping, B. Ginsburg, B. Catanzaro, and S. Yoon, "Bigygan: A universal neural vocoder with large-scale training," arXiv preprint arXiv:2206.04658, 2022 {Last Accessed: August 18th, 2024}.