Obsah

Obsah

	Úvod	6
1.	Limity okolo nás	7
2.	Limita funkcie	10
3.	Limity racionálnych funkcií	23
4.	Limity iracionálnych funkcií	28
5.	Limity goniometrických a cyklometrických funkcií	35
6.	Limity exponenciálnych a logaritmických funkcií	44
7.	Limity hyperbolických funkcií	53
8.	L'Hospitalovo pravidlo	58
9.	Nevlastný integrál	66
10.	Limita funkcie dvoch premenných	74
	Literatúra	82

Limity okolo nás

1. Limity okolo nás

<u>Úloha.</u> Druhá kozmická rýchlosť

Akú rýchlosť musí dosiahnuť umelá družica, aby dokázala opustiť gravitačné pole Zeme?

Riešenie.

Rýchlosť, ktorú musíme udeliť družici, aby sa vymanila z gravitačného poľa Zeme, nazývame druhá kozmická rýchlosť. Označme ju symbolom v_{II} .

Ďalej označme T – pohybovú (kinetickú) energiu družice, U – polohovú (potenciálnu) energiu družice. Počas celého letu platí zákon zachovania energie, tj.

$$T + U = konštanta$$
.

Odtiaľ vyplýva, že takisto musí platiť

$$T(\text{začiatočná}) + U(\text{začiatočná}) = T(\text{konečná}) + U(\text{konečná}).$$

Na začiatku pohybu je družica s hmotnosťou m na povrchu Zeme a udelíme jej rýchlosť v. To znamená, že

$$T(\text{začiatočná}) = \frac{1}{2}mv^2$$
, $U(\text{začiatočná}) = 0$.

V konečnej fáze letu (v okamihu zastavenia) zase platí

$$T ext{ (konečná)} = 0, \ U ext{ (konečná)} = mgR^2 \left(\frac{1}{R} - \frac{1}{r_{\text{max}}} \right),$$

kde g – tiažové zrýchlenie ($g \approx 9,81 \text{ m/s}^2$), R – polomer Zeme ($R \approx 6378 \text{ km}$), r_{max} – vzdialenosť družice od povrchu Zeme.

Dosadením do zákona zachovania energie dostávame

$$\frac{1}{2}mv^2 = mgR^2 \left(\frac{1}{R} - \frac{1}{r_{\text{max}}}\right),\,$$

odtial'

$$v = \sqrt{2gR^2 \left(\frac{1}{R} - \frac{1}{r_{\text{max}}}\right)}.$$

Ak družici udelíme druhú kozmickú rýchlosť, unikne z gravitačného poľa Zeme, tj. doletí "nekonečne ďaleko" od planéty Zem. Preto

$$v_{II} = \lim_{r_{\text{max}} \to \infty} \sqrt{2gR^2 \left(\frac{1}{R} - \frac{1}{r_{\text{max}}}\right)}$$
.

Limita funkcie

<u>Veta 9:</u> Nech $\lim_{x \to a} f(x) = \alpha$, $\alpha \in R$; nech pre všetky $x \in V(a)^{**}$ platí $f(x) \ge k$, $k \in R$. Potom $\alpha \ge k$.

<u>Príklad.</u> Nech platí $\lim_{x\to a} f(x) = L$. Zrejme $a \in R \cup \{\pm \infty\}$, a súčasne $L \in R \cup \{\pm \infty\}$. Nájdite príklad pre každú kombináciu čísel a, L. *Riešenie*.

i) $\lim_{x \to a} f(x) = L$; $a \in R$, $L \in R$ $\Rightarrow \lim_{x \to 0} \frac{\sin x}{x} = 1$

ii) $\lim_{x \to a} f(x) = L$; $a \in \mathbb{R}$, $L = \infty$ $\Rightarrow \lim_{x \to 0} \frac{1}{x^2} = \infty$

^{**} Symbolom $\overset{\circ}{V}(a)$ označujeme rýdze (prstencové) okolie bodu a; platí $\overset{\circ}{V}(a) = V(a) - \{a\}$.

Limita funkcie

Doplňme ešte dôkaz pomocou Cauchyho definície limity funkcie. Predpokladajme, že existuje $\lim_{x\to\infty}\sin x=L$. Nech napríklad L>0. Potom ku každému okoliu $U(L)=(L-\epsilon;L+\epsilon),\ \epsilon>0$, musí L>00.

existovať také okolie $V(\infty) = (\delta; \infty)$, $\delta > 0$, že pre všetky $x \in V(\infty)$ platí $g(x) = \sin x \in U(L)$.

Položme $\varepsilon = \frac{1}{2}$. Potom v intervale $(\delta; \infty)$ existuje nekonečne veľa čísel tvaru $\overline{x} = \frac{3\pi}{2} + 2k\pi$, $k \in \mathbb{N}$, pre

ktoré platí
$$g(\overline{x}) = \sin\left(\frac{3\pi}{2} + 2k\pi\right) = -1$$
. Tj. pre všetky $\overline{x} \in V(\infty)$ platí $g(\overline{x}) \notin \left(L - \frac{1}{2}; L + \frac{1}{2}\right)$.

Podobne by sme ukázali, že nemôže nastať ani prípad $L \le 0$. Z vety 9 vyplýva, že nemôže nastať ani možnosť $L = \infty$, resp. $L = -\infty$, teda neexistuje $\lim_{x \to \infty} \sin x$.

Priklad. Vypočítajte jednostranné limity v bode a, ak **a**) $f(x) = \frac{1}{x-2}$, a = 2; **b**) $f(x) = \frac{1}{1+e^{x}}$,

$$a = 0$$
; **c**) $f(x) = \cos \frac{1}{x}$, $a = 0$; **d**) $f(x) = x^2$, $a = 3$.

Riešenie.

a) Ak $x \to 2$, dostávame limitu typu " $\frac{1}{0}$ ". Podiel "číslo lomeno nula" konverguje do nekonečna (pozri vetu 6), musíme ešte určiť znamienko.

Čitateľ zlomku je kladný. Ak $x \to 2+$, menovateľ je kladný, tj. platí $\lim_{x \to 2+} \frac{1}{x-2} = \infty$.

Ak $x \to 2$ –, rozdiel v menovateli je záporný, tj. platí $\lim_{x \to 2^-} \frac{1}{x-2} = -\infty$.

b) Ak $x \to 0+$, potom $\frac{1}{x} \to +\infty$, d'alej $e^{\frac{1}{x}} \to +\infty$, a dostávame $\lim_{x \to 0+} \frac{1}{1+e^{\frac{1}{x}}} = 0$.

Ak $x \to 0$ -, potom $\frac{1}{x} \to -\infty$, d'alej $e^{\frac{1}{x}} \to 0$, a dostávame $\lim_{x \to 0^{-}} \frac{1}{1 + e^{x}} = 1$.

c) Pre $x \to 0 + \text{plati}$ $\frac{1}{x} \to +\infty$, podobne pre $x \to 0 - \text{plati}$ $\frac{1}{x} \to -\infty$. Limita funkcie kosínus v bodoch

 $+\infty$ resp. $-\infty$ neexistuje, tj. neexistujú ani limity $\lim_{x\to 0+}\cos\frac{1}{x}$, $\lim_{x\to 0-}\cos\frac{1}{x}$.

Limity racionálnych funkcií

b)
$$\lim_{x \to 3} \frac{x^2 + 2x - 15}{x^2 - x - 6} \Big|_{x \to 3}^{t = x - 3} \Rightarrow x = t + 3 \Big|_{t \to 0}^{t = x - 3} = \lim_{t \to 0} \frac{(t + 3)^2 + 2(t + 3) - 15}{(t + 3)^2 - (t + 3) - 6} = \lim_{t \to 0} \frac{t^2 + 8t}{t^2 + 5t} = \lim_{t \to 0} \frac{t(t + 8)}{t(t + 5)} = \lim_{t \to 0} \frac{t(t + 8)}{t(t + 5)} = \lim_{t \to 0} \frac{t(t + 8)}{t(t + 5)} = \lim_{t \to 0} \frac{t(t + 8)}{t(t + 8)} = \lim_{$$

$$= \lim_{t \to 0} \frac{t+8}{t+5} = \frac{8}{5};$$

c)
$$\lim_{x \to 2} \frac{x^3 - 5x^2 + 8x - 4}{x^3 - 2x^2 - 4x + 8} \Big|_{x \to 2}^{t = x - 2} \Rightarrow x = t + 2 \Big|_{t \to 0} = \lim_{t \to 0} \frac{(t + 2)^3 - 5(t + 2)^2 + 8(t + 2) - 4}{(t + 2)^3 - 2(t + 2)^2 - 4(t + 2) + 8} = \lim_{t \to 0} \frac{t^3 + t^2}{t^3 + 4t^2}$$

$$= \lim_{t \to 0} \frac{t^2(t+1)}{t^2(t+4)} = \lim_{t \to 0} \frac{t+1}{t+4} = \frac{1}{4}.$$

X Cvičenia.

Výpočtom ukážte, že pre dané limity platí:

101.
$$\lim_{x \to \infty} \frac{x^3 - x^2 + x}{4x - 2 + 6x^3} = \frac{1}{6}$$

102.
$$\lim_{x \to \infty} \frac{x^4 + 10x - 6}{x - x^2 + x^3} = \infty$$

103.
$$\lim_{x \to \infty} \frac{x^{17} - 2x^{12} + 6}{x^{25}} = 0$$

104.
$$\lim_{x \to \infty} \frac{3x^5 + 6x^4}{7 - x^3 - 2x^5} = -\frac{3}{2}$$

105.
$$\lim_{x \to \infty} \frac{5x^{16} + 7x^9 + 4}{x - 8x^6 - 5x^8} = -\infty$$

106.
$$\lim_{x \to \infty} \frac{3 - 10x^2 - 7x^9}{x^5 - 4x^7 - 2x^9} = \frac{7}{2}$$

107.
$$\lim_{x\to\infty} \frac{3-6x^5}{x+x^2+x^3} = -\infty$$

108.
$$\lim_{x \to \infty} \frac{1000x^5}{x^6 + x^2 + 1} = 0$$

109.
$$\lim_{x \to \infty} \frac{(x-1)(x-2)(x-3)(x-4)}{(2x-1)^4} = \frac{1}{16}$$

110.
$$\lim_{x \to \infty} \frac{(x+1)^2 (3-7x)^2}{(2x-1)^4} = \frac{49}{16}$$

111.
$$\lim_{x \to \infty} \frac{\left(2x^3 + 9x - 1\right)^6}{\left(2x^6 + 19x^4 - x\right)^3} = 8$$

112.
$$\lim_{x \to \infty} \frac{(x+1)^5 + (x+2)^5 + (x+3)^5}{x^5 + 4} = 3$$

113.
$$\lim_{x \to \infty} \frac{(2x+1)^5 + (3x+1)^6 + (4x+1)^7}{x^8 + 8} = 0$$

114.
$$\lim_{x \to \infty} \frac{(x+1)^{10} + (x+2)^{10} + \dots + (x+50)^{10}}{x^{10} + 100^{100}} = 50$$

115.
$$\lim_{x \to \infty} \left(\frac{x^2}{2x+1} + \frac{x^3 + 4x^2 - 2}{1 - 2x^2} \right) = -\frac{9}{4}$$

116.
$$\lim_{x \to \infty} \frac{\left(x - 1\right)^{10} \left(x - 2\right)^{20} \left(x - 3\right)^{30}}{\left(4x^3 + 5\right)^{20}} = \frac{1}{4^{20}}$$

117.
$$\lim_{x \to \infty} \frac{(2x-3)^{20} (3x-4)^{30}}{(2x+1)^{50}} = \left(\frac{3}{2}\right)^{30}$$

118.
$$\lim_{x \to \infty} \frac{\left(4x - 1\right)^{100} \left(3x + 1\right)^{200}}{\left(6x + 5\right)^{300}} = 6^{-100}$$

119.
$$\lim_{x \to \infty} \frac{(x+1)(x^2+1)...(x^n+1)}{\left[(nx)^n+1\right]^{\frac{n+1}{2}}} = \frac{1}{\sqrt{n^{n(n+1)}}};$$

 $n \in N$

120.
$$\lim_{x \to -\infty} \frac{3x^2 + 8x - 1}{x^2 - x + 9} = 3$$

121.
$$\lim_{x \to -\infty} \frac{200x^6 + 300x^{12}}{4 - x^{18}} = 0$$

122.
$$\lim_{x \to -\infty} \frac{2x^6 + x^4 + 34}{5x^2 - 23x} = \infty$$

123.
$$\lim_{x \to -\infty} \frac{45x^7 - 6x^5}{x^4 + x^3 + x^2} = -\infty$$

Limity iracionálnych funkcií

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} \begin{vmatrix} t = \sqrt{x} \Rightarrow x = t^2 \\ x \to 4 \Rightarrow t \to 2 \end{vmatrix} = \lim_{t \to 2} \frac{t - 2}{t^2 - 4} = \lim_{t \to 2} \frac{t - 2}{(t - 2)(t + 2)} = \lim_{t \to 2} \frac{1}{t + 2} = \frac{1}{4}.$$

b) Daná limita je opäť typu "0/0", postupovať budeme teda analogicky ako v predošlom – snažíme sa o odstránenie iracionálnych výrazov konvergujúcich k nule. Zatiaľ čo v čitateli opäť využijeme formulu $(a-b)(a+b) = a^2 - b^2$, v menovateli použijeme vzorec $(a-b)(a^2 + ab + b^2) = a^3 - b^3$. Potom:

$$\lim_{x \to 64} \frac{\sqrt{x} - 8}{\sqrt[3]{x} - 4} \left| \frac{0}{0} \right| = \lim_{x \to 64} \frac{\sqrt{x} - 8}{\sqrt[3]{x} - 4} \cdot \frac{\sqrt{x} + 8}{\sqrt{x} + 8} \cdot \frac{\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16}{\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16} = \lim_{x \to 64} \frac{\left(x - 64\right) \left[\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16\right]}{\left(x - 64\right) \left(\sqrt{x} + 8\right)} = \lim_{x \to 64} \frac{\sqrt{x} - 8}{\sqrt{x} - 4} \cdot \frac{\sqrt{x} + 8}{\sqrt{x} + 8} \cdot \frac{\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16}{\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16} = \lim_{x \to 64} \frac{\left(x - 64\right) \left[\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16\right]}{\left(x - 64\right) \left(\sqrt[3]{x} + 8\right)} = \lim_{x \to 64} \frac{\sqrt{x} - 8}{\sqrt{x} - 4} \cdot \frac{\sqrt{x} + 8}{\sqrt{x} + 8} \cdot \frac{\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16}{\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16} = \lim_{x \to 64} \frac{\left(x - 64\right) \left[\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16\right]}{\left(x - 64\right) \left(\sqrt[3]{x} + 8\right)} = \lim_{x \to 64} \frac{\sqrt{x} - 8}{\sqrt{x} - 4} \cdot \frac{\sqrt{x} + 8}{\sqrt{x} + 8} \cdot \frac{\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16}{\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16} = \lim_{x \to 64} \frac{\left(x - 64\right) \left(\sqrt[3]{x} + 8\right)}{\left(x - 64\right) \left(\sqrt[3]{x} + 8\right)} = \lim_{x \to 64} \frac{\sqrt{x} - 8}{\sqrt{x} - 4} \cdot \frac{\sqrt{x} - 8}{\sqrt{x$$

$$= \lim_{x \to 64} \frac{\left(\sqrt[3]{x}\right)^2 + 4\sqrt[3]{x} + 16}{\sqrt{x} + 8} = 3.$$

Iný postup: Zložkami danej iracionálnej funkcie sú aj druhá a tretia odmocnina. Najmenším spoločným násobkom čísel 2 a 3 je číslo 6, to znamená, že pri výpočte môžeme použiť substitúciu $t = \sqrt[6]{x}$. Totiž pomocou $\sqrt[6]{x}$ možno vyjadriť \sqrt{x} aj $\sqrt[3]{x}$ v tvare $\sqrt{x} = \left(\sqrt[6]{x}\right)^3$, resp. $\sqrt[3]{x} = \left(\sqrt[6]{x}\right)^2$, čo nám umožní pretransformovať danú limitu na limitu racionálnej funkcie. Počítajme:

$$\lim_{x \to 64} \frac{\sqrt{x} - 8}{\sqrt[3]{x} - 4} \left| t = \sqrt[6]{x} \Rightarrow x = t^6 \\ x \to 64 \Rightarrow t \to 2 \right| = \lim_{t \to 2} \frac{\sqrt{t^6} - 8}{\sqrt[3]{t^6} - 4} = \lim_{t \to 2} \frac{t^3 - 8}{t^2 - 4} \left| \frac{0}{0} \right| = \lim_{t \to 2} \frac{(t - 2)(t^2 + 2t + 4)}{(t - 2)(t + 2)} = \lim_{t \to 2} \frac{t^2 + 2t + 4}{t + 2} = 3.$$

c) Našou snahou opäť bude získať vhodnými úpravami limitu racionálnej funkcie. Tento krát budeme substituovať jediný iracionálny výraz nachádzajúci sa v našom zlomku. Potom:

$$\lim_{x \to 0} \frac{\sqrt[n]{1+x}-1}{x} \left| a = \sqrt[n]{1+x} \Rightarrow x = a^n - 1 \right| = \lim_{a \to 1} \frac{a-1}{a^n - 1} \left| \frac{0}{0} \right| = \lim_{a \to 1} \frac{a-1}{(a-1)(a^{n-1} + a^{n-2} + \dots + 1)} = \lim_{a \to 1} \frac{1}{a^{n-1} + a^{n-2} + \dots + 1} = \frac{1}{n}.$$

d) V predchádzajúcich prípadoch sme si pomocou vzorcov na rozklad výrazu $a^n - b^n$, $n \in \mathbb{N}$, dokázali poradiť s druhou, treťou i n – tou odmocninu. Keďže teraz sa v čitateli nachádzajú dve rôzne odmocniny s rôznymi základmi, musíme sa dostať do predošlej situácie. Preto daný čitateľ upravíme odčítaním a pričítaním čísla 1 (limita totiž musí zostať typu "0/0"). Ďalší postup je zrejmý:

$$\lim_{x \to 1} \frac{\sqrt{x} - \sqrt[4]{3x - 2}}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x} - 1 + 1 - \sqrt[4]{3x - 2}}{x - 1} = \lim_{x \to 1} \left(\frac{\sqrt{x} - 1}{x - 1} + \frac{1 - \sqrt[4]{3x - 2}}{x - 1} \right) =$$

$$= \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} \cdot \frac{\sqrt{x} + 1}{\sqrt{x} + 1} + \lim_{x \to 1} \frac{1 - \sqrt[4]{3x - 2}}{x - 1} \cdot \frac{\left(\sqrt[4]{3x - 2}\right)^3 + \left(\sqrt[4]{3x - 2}\right)^2 + \sqrt[4]{3x - 2} + 1}{\left(\sqrt[4]{3x - 2}\right)^3 + \left(\sqrt[4]{3x - 2}\right)^2 + \sqrt[4]{3x - 2} + 1} =$$

Limity goniometrických funkcií

Keďže |OB| = 1, $|AC| = \sin x$, $|BD| = \operatorname{tg} x$, z uvedených nerovností dostávame $\sin x \le x \le \operatorname{tg} x$,

resp. po úpravách

$$\cos x \le \frac{\sin x}{x} \le 1.$$

Potom pre $x \rightarrow 0 + \text{máme}$

$$\lim_{x\to 0+} \cos x = 1, \text{ a taktiež } \lim_{x\to 0+} 1 = 1.$$

Z vety o limite troch funkcií (pozri vetu 4) už vyplýva, že $\lim_{x\to 0+} \frac{\sin x}{x} = 1$.

Ďalej využitím nepárnosti funkcie sínus dostávame

$$\lim_{x \to 0^{-}} \frac{\sin x}{x} \begin{vmatrix} x = -u \Rightarrow u = -x \\ x \to 0^{-} \Rightarrow u \to 0^{+} \end{vmatrix} = \lim_{u \to 0^{+}} \frac{\sin(-u)}{-u} = \lim_{u \to 0^{+}} \frac{-\sin u}{-u} = \lim_{u \to 0^{+}} \frac{\sin u}{u} = 1.$$

Záver:
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
.

Príklad. Dokážte, že platí $\lim_{x \to \infty} \frac{\sin x}{x} = 0$.

Riešenie.

Keďže funkcia sínus je ohraničená, okamžite dostávame $-\frac{1}{r} \le \frac{\sin x}{r} \le \frac{1}{r}$; x > 0.

Ďalej platí $\lim_{x \to \infty} \left(-\frac{1}{x} \right) = \lim_{x \to \infty} \frac{1}{x} = 0$, odkiaľ už vyplýva (veta 4), že $\lim_{x \to \infty} \frac{\sin x}{x} = 0$.

Priklad. Vypočítajte limity funkcií **a**) $\lim_{x\to 0} \frac{\sin 5x}{x}$; **b**) $\lim_{x\to 0} \frac{\operatorname{tg} 3x}{\operatorname{tg} 8x}$; **c**) $\lim_{x\to 0} \frac{1-\cos x}{x}$;

d)
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
.

Riešenie.

a) Snažíme sa využiť základnú goniometrickú limitu $\lim_{\alpha(x)\to 0} \frac{\sin\alpha(x)}{\alpha(x)}$, tj. vo všeobecnosti v čitateli

potrebujeme sínus funkcie konvergujúcej k nule, tj. sin $\alpha(x)$, zatiaľ čo v menovateli potrebujeme práve túto funkciu $\alpha(x)$. Preto píšeme:

$$\lim_{x \to 0} \frac{\sin 5x}{x} = \lim_{x \to 0} \frac{5 \cdot \sin 5x}{5 \cdot x} = 5 \cdot \lim_{x \to 0} \frac{\sin 5x}{5x} \begin{vmatrix} \alpha = 5x \\ x \to 0 \Rightarrow \alpha \to 0 \end{vmatrix} = 5 \lim_{\alpha \to 0} \frac{\sin \alpha}{\alpha} = 5 \cdot 1 = 5$$

(v ďalších príkladoch nebudeme túto substitúciu vyznačovať).

b) Opäť ide o limitu goniometrickej funkcie, tj. budeme sa snažiť získať základnú goniometrickú limitu. Využitím definičného vzťahu funkcie tangens dostávame:

Limity exponenciálnych funkcií

Priklad. Vypočítajte limitu funkcie
$$\lim_{x\to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)}$$
; $a\in R$, $b\neq 0$.

Riešenie.

Daná limita je typu "0/0". Pri riešení si pomôžeme "vytvorením" čísla e v čitateli i menovateli zlomku. Potom máme:

$$\lim_{x \to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)} = \lim_{x \to 0} \frac{\ln(1 + \cos ax - 1)}{\ln(1 + \cos bx - 1)} = \lim_{x \to 0} \frac{\ln\left[\left(1 + (\cos ax - 1)\right)^{\frac{1}{\cos ax - 1}}\right]^{\cos ax - 1}}{\ln\left[\left(1 + (\cos bx - 1)\right)^{\frac{1}{\cos bx - 1}}\right]^{\cos bx - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos bx - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos bx - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos bx - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos bx - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos bx - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x \to 0} \frac{\ln e^{\cos ax - 1}}{\ln e^{\cos ax - 1}} = \lim_{x$$

$$= \lim_{x \to 0} \frac{\cos ax - 1}{\cos bx - 1} = \lim_{x \to 0} \frac{\cos ax - 1}{\cos bx - 1} \cdot \frac{\cos ax + 1}{\cos ax + 1} \cdot \frac{\cos bx + 1}{\cos bx + 1} = \lim_{x \to 0} \frac{\cos^2 ax - 1}{\cos^2 bx - 1} = \lim_{x \to 0} \frac{\left(-\sin^2 ax\right)}{\left(-\sin^2 bx\right)} = \lim_{x \to 0} \frac{\cos^2 ax - 1}{\cos^2 bx - 1} = \lim_{x \to 0} \frac{\cos^2 ax - 1}{$$

$$= \lim_{x \to 0} \frac{\frac{\sin^2 ax}{(ax)^2} \cdot (ax)^2}{\frac{\sin^2 bx}{(bx)^2} \cdot (bx)^2} = \lim_{x \to 0} \frac{(ax)^2}{(bx)^2} = \frac{a^2}{b^2}.$$

X Cvičenia.

Výpočtom ukážte, že pre dané limity platí:

401.
$$\lim_{x\to 0} \frac{e^{6x}-1}{x} = 6$$

402.
$$\lim_{x \to 1} \frac{e^x - e}{x - 1} = e$$

403.
$$\lim_{x\to 0} \frac{e^{mx}-1}{nx} = \frac{m}{n}$$
; $m, n \in \mathbb{N}$

404.
$$\lim_{x \to 0} \frac{10^x - 1}{2^x - 1} = \frac{\ln 10}{\ln 2}$$

405.
$$\lim_{x\to 0} \frac{5^{tg} 2x - 1}{x} = 2 \ln 5$$

406.
$$\lim_{x\to 0} \frac{e^{7x} - e^{5x}}{2x} = 1$$

407.
$$\lim_{x \to 0} \frac{\sqrt[5]{32x^5 + x^8}}{e^{3x} - 1} = \frac{2}{3}$$

408.
$$\lim_{x \to \infty} x \left(\sqrt[x]{a} - 1 \right) = \ln a \; ; \; a > 0$$

409.
$$\lim_{x \to \infty} x^2 \left(4^{\frac{1}{x}} - 4^{\frac{1}{x+1}} \right) = \ln 4$$

410.
$$\lim_{x \to c} \frac{a^x - a^c}{x - c} = a^c \ln a$$
; $a > 0, c \in \mathbb{R}$

411.
$$\lim_{x \to 0} \frac{a^x - b^x}{x} = \ln \frac{a}{b}$$
; $a, b > 0$

412.
$$\lim_{x\to 0} \frac{a^x - a^{-x}}{\sin bx} = \frac{2\ln a}{b}$$
; $a > 0, b \ne 0$

413.
$$\lim_{x \to \infty} \frac{a^x}{a^x + 1} = \begin{cases} 1; & a > 1 \\ 0; & 0 < a < 1; a > 0 \\ \frac{1}{2}; & a = 1 \end{cases}$$

414.
$$\lim_{x\to 0} \frac{e^{ax} - e^{bx}}{\sin ax - \sin bx} = 1$$
; $a, b \in R$

415.
$$\lim_{x \to 0} \frac{e^{\sin 9x} - e^{\sin x}}{\ln(1 + 2x)} = 4$$

416.
$$\lim_{x \to \infty} x \left(\ln \left(1 + \frac{x}{2} \right) - \ln \frac{x}{2} \right) = 2$$

L'Hospitalovo pravidlo

Potom platí

$$\lim_{x \to 0+} (\sin x)^{\operatorname{tg} x} = \lim_{x \to 0+} e^{\operatorname{tg} x \ln \sin x} = e^{\lim_{x \to 0+} \operatorname{tg} x \ln \sin x} = e^{0} = 1.$$

Priklad. Vypočítajte limitu
$$\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}}$$
.

Riešenie.

Opäť ide o limitu typu " 1^{∞} ", tento krát však postup z predošlého príkladu trochu modifikujeme. Totiž ak označíme $y=f^g$, potom zrejme platí $\ln y = \ln f^g = g \ln f$. Počítajme teraz $\lim_{x \to a} g \ln f$, tj. v našom prípade

$$\lim_{x \to 0} \frac{1}{1 - \cos x} \ln \frac{\sin x}{x} \Big| \infty \cdot 0 \Big| = \lim_{x \to 0} \frac{\ln \frac{\sin x}{x}}{1 - \cos x} \Big| \frac{0}{0} \Big| = \lim_{x \to 0} \frac{\frac{x \cos x - \sin x}{\sin x}}{\sin x} = \lim_{x \to 0} \frac{x \cos x - \sin x}{x^2 \sin x} \Big| \frac{0}{0} \Big| = \lim_{x \to 0} \frac{\cos x + x(-\sin x) - \cos x}{2x \sin x + x^2 \cos x} = \lim_{x \to 0} \frac{-x \sin x}{2x \sin x + x^2 \cos x} \Big| \frac{0}{0} \Big| = \lim_{x \to 0} \frac{-\sin x - x \cos x}{2\sin x + 4x \cos x - x^2 \sin x} \Big| \frac{0}{0} \Big| = \lim_{x \to 0} \frac{-2 \cos x + x \sin x}{6 \cos x - 6x \sin x - x^2 \cos x} = -\frac{1}{3}.$$

Keďže platí
$$\lim_{x\to 0} \ln y = -\frac{1}{3}$$
, odtiaľ už vyplýva, že $\lim_{x\to 0} y = \lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}} = e^{-\frac{1}{3}}$.

Priklad. Vypočítajte limitu
$$\lim_{x \to \infty} \frac{2x \int_{0}^{x} e^{t^{2}} dt}{e^{x^{2}}}$$
.

Riešenie.

Daná limita je typu "0/0", preto môžeme pri jej výpočte použiť l'Hospitalovo pravidlo. Dostávame:

$$\lim_{x \to \infty} \frac{2x \int_{0}^{x} e^{t^{2}} dt}{e^{x^{2}}} = \lim_{x \to \infty} \frac{2 \int_{0}^{x} e^{t^{2}} dt + 2xe^{x^{2}}}{2xe^{x^{2}}} = \lim_{x \to \infty} \left(\frac{\int_{0}^{x} e^{t^{2}} dt}{xe^{x^{2}}} + 1 \right) = \lim_{x \to \infty} \left(\frac{e^{x^{2}}}{e^{x^{2}} + 2x^{2}e^{x^{2}}} \right) + 1 = \lim_{x \to \infty} \frac{1}{1 + 2x^{2}} + 1 = 1.$$

$$\frac{d}{dx} \int_{a}^{g(x)} f(t)dt = f\left[g(x)\right]g'(x), \text{ resp. } \frac{d}{dx} \int_{h(x)}^{g(x)} f(t)dt = f\left[g(x)\right]g'(x) - f\left[h(x)\right]h'(x).$$

^{*} Nech f(x) je spojitá funkcia definovaná na R, nech g(x), h(x) sú diferencovateľné funkcie na R. Potom platí: $d \int_{0}^{g(x)} f(x) dx = f[g(x)]g'(x) \quad \text{resp.} \quad d \int_{0}^{g(x)} f(x) dx = f[g(x)]g'(x) \quad f[h(x)]h'(x)$

Nevlastný integrál

ix)
$$\int \frac{1}{\sin^2 x} dx = -\cot x + c \; ; \; x \neq k\pi, \, k \in \mathbb{Z} \quad \text{xv}) \qquad \int \frac{1}{\sinh^2 x} = -\cot x + c \; ; \; x \neq 0$$

x)
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$
; $|x| < 1$ **xvi)** $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + c$; $a \ne 0$, $|x| < a$

xi)
$$\int \frac{1}{x^2 + 1} dx = \arctan x + c \; ; \; x \in \mathbb{R}$$
 xvii) $\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + c \; ; \; a \neq 0, \; x \in \mathbb{R}$

xii)
$$\int \sinh x \, dx = \cosh x + c \; ; \; x \in \mathbb{R}$$
 xviii)
$$\int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c \; ; \; a \neq 0, \; x \in \mathbb{R}$$

xiii)
$$\int \cosh x \, dx = \sinh x + c \; ; \; x \in R$$
 xix)
$$\int \frac{1}{\sqrt{x^2 + \alpha}} \, dx = \ln \left| x + \sqrt{x^2 + \alpha} \right| + c \; ; \; \alpha > 0, \; x \in R$$

$$\mathbf{xiv}) \qquad \int \frac{1}{\cosh^2 x} = \operatorname{tgh} x + c \; ; \; x \in R \qquad \qquad \mathbf{xx}) \qquad \int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + c \; ; \; f > 0$$

Veta (Newtonov – Leibnizov vzorec):

Nech funkcia f je integrovateľná na intervale $\langle a;b\rangle$. Nech funkcia f má na intervale (a;b) primitívnu funkciu F, ktorá je spojitá na intervale $\langle a;b\rangle$. Potom platí $\int_a^b f(x)dx = \left[F(x)\right]_a^b = F(b) - F(a)$.

Priklad. Vypočítajte nevlastné integrály: **a**)
$$\int_{2}^{\infty} \frac{1}{x^2 + 4} dx$$
; **b**)
$$\int_{0}^{\frac{\pi}{2}} \cot x \, dx$$
; **c**)
$$\int_{0}^{\infty} \sin x \, dx$$
.

Riešenie.

a) Prvý integrál je nevlastný, pretože integrujeme danú funkciu na intervale nekonečnej dĺžky (so singulárnou hornou hranicou). Počítajme:

$$\int_{2}^{\infty} \frac{1}{x^2 + 4} dx = \lim_{\xi \to \infty} \int_{2}^{\xi} \frac{1}{x^2 + 4} dx = \lim_{\xi \to \infty} \left[\frac{1}{2} \operatorname{arctg} \frac{x}{2} \right]_{2}^{\xi} = \frac{1}{2} \lim_{\xi \to \infty} \left(\operatorname{arctg} \frac{\xi}{2} - \operatorname{arctg} 1 \right) = \frac{1}{2} \left(\frac{\pi}{2} - \frac{\pi}{4} \right) = \frac{\pi}{8}.$$

Výsledkom je vlastné reálne číslo – hovoríme, že nevlastný integrál $\int_{2}^{\infty} \frac{1}{x^2 + 4} dx$ konverguje.

b) V tomto prípade hovoríme o nevlastnom integráli, pretože integrujeme neohraničenú funkciu (tento raz so singulárnou dolnou hranicou). Počítajme:

$$\int_{0}^{\frac{\pi}{2}} \cot x \, dx = \lim_{\lambda \to 0+} \int_{\lambda}^{\frac{\pi}{2}} \cot x \, dx = \lim_{\lambda \to 0+} \int_{\lambda}^{\frac{\pi}{2}} \frac{\cos x}{\sin x} \, dx = \lim_{\lambda \to 0+} \left[\ln \sin x \right]_{\lambda}^{\frac{\pi}{2}} = \lim_{\lambda \to 0+} \left(\ln \sin \frac{\pi}{2} - \ln \sin \lambda \right) = \infty.$$

Limita funkcie dvoch premenných

Postup 1. Zvýrazniť, že sa k bodu W blížime v rôznych smeroch, napr. po priamkach, môžeme substitúciou y = kx, $k \in \mathbb{R}$.* Potom platí:

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 - y^2}{x^2 + y^2} | y = kx | = \lim_{x \to 0} \frac{x^2 - (kx)^2}{x^2 + (kx)^2} = \frac{1 - k^2}{1 + k^2}.$$

Keďže náš výsledok závisí od smeru, v ktorom sme sa "blížili" k bodu W, $\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^2 - y^2}{x^2 + y^2}$ neexistuje.

Postup 2. Neexistenciu tejto limity môžeme ukázať analogickou substitúciou $x = \alpha t$, $y = \beta t$; α , $\beta \in R$.**
Potom:

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 - y^2}{x^2 + y^2} \begin{vmatrix} x = \alpha t \\ x = \beta t \\ t \to 0 \end{vmatrix} = \lim_{t \to 0} \frac{(\alpha t)^2 - (\beta t)^2}{(\alpha t)^2 + (\beta t)^2} = \frac{\alpha^2 - \beta^2}{\alpha^2 + \beta^2}.$$

Argumentácia je rovnaká – výsledok závisí od smeru, v akom sme sa blížili k bodu W, tj. $\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^2 - y^2}{x^2 + y^2}$

neexistuje.

Postup 3. V prípade výskytu súčtu $x^2 + y^2$ býva často výhodná substitúcia do polárnych súradníc.***

Počítajme:

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 - y^2}{x^2 + y^2} \left| \begin{array}{l} x = r \cos \varphi \\ x = r \sin \varphi \\ r \to 0 \end{array} \right| = \lim_{r \to 0} \frac{\left(r \cos \varphi\right)^2 - \left(r \sin \varphi\right)^2}{\left(r \cos \varphi\right)^2 + \left(r \sin \varphi\right)^2} = \frac{\cos^2 \varphi - \sin^2 \varphi}{\cos^2 \varphi + \sin^2 \varphi} = \cos 2\varphi.$$

Výsledok závisí od smeru (uhla φ), v akom sme sa "blížili" k bodu W, tj. $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 - y^2}{x^2 + y^2}$ neexistuje.

Postup 4. Ukázať, že uvedená limita neexistuje, môžeme aj pomocou Heineho definície limity. Označme

$$f\left(x.y\right) = \frac{x^2 - y^2}{x^2 + y^2}, \quad \textit{W}[0; \ 0]. \quad \text{Zvoľme dve postupnosti} \quad X_n \left[\frac{1}{n}; \frac{1}{n}\right], \quad Y_n \left[\frac{2}{n}; \frac{1}{n}\right]. \quad \text{Zrejme platí}$$

$$\lim_{n \to \infty} X_n = \lim_{n \to \infty} Y_n = \textit{W} \; .$$

^{*} Všeobecne v prípade počítania limity $\lim_{\substack{x \to a \\ y \to b}} f(x,y)$ má táto substitúcia tvar y = k(x-a) + b, $x \to a$.

^{**} Všeobecne v prípade počítania limity $\lim_{\substack{x \to a \\ y \to b}} f\left(x,y\right)$ má táto substitúcia tvar $x = a + \alpha t$, $y = b + \beta t$, $t \to 0$.

^{***} Všeobecne v prípade počítania limity $\lim_{\substack{x \to a \\ y \to b}} f(x,y)$ má táto substitúcia tvar $x = a + r \cos \varphi$, $y = b + r \sin \varphi$, $r \to 0$.

Limita funkcie dvoch premenných

840.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \left(e^{xy} \right)^{\frac{1}{x^3 y^3}} = \infty$$

841.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \left(x^2 + y^2 \right)^{x^2 y^2} = 1$$

842.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \sqrt{x^2 + y^2} \ln(x^2 + y^2) = 0$$

843.
$$\lim_{\substack{x \to 0 \\ y \to 0}} (1 + xy) \frac{1}{|x| + |y|} = 1$$

844.
$$\lim_{\substack{x \to \infty \\ y \to \infty}} (x^2 + y^2) e^{-x - y} = 0$$

845.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \left(\cos \sqrt{x^2 + y^2}\right)^{\frac{-1}{x^2 + y^2}} = \sqrt{e}$$

Výpočtom overte, že pre dané dvojnásobné limity platí:

846.
$$\lim_{x \to 0} \left[\lim_{y \to 0} \frac{x - y}{x + y} \right] = 1$$

847.
$$\lim_{y \to 0} \left[\lim_{x \to 0} \frac{x - y}{x + y} \right] = -1$$

848.
$$\lim_{x \to 0} \left[\lim_{y \to 0} \frac{x^4}{x^4 + y^2} \right] = 1$$

849.
$$\lim_{y \to 0} \left[\lim_{x \to 0} \frac{x^4}{x^4 + y^2} \right] = 0$$

850.
$$\lim_{x \to 0} \left[\lim_{y \to 0} \frac{x^2 + xy + y^2}{x^2 - xy + y^2} \right] = 1$$

851.
$$\lim_{y \to 0} \left[\lim_{x \to 0} \frac{x^2 + xy + y^2}{x^2 - xy + y^2} \right] = 1$$

852.
$$\lim_{x \to 0} \left[\lim_{y \to 0} \frac{x^8 + x^5 + x^4 + y^4 - y^5 - y^8}{x^4 + y^4} \right] = 1$$

853.
$$\lim_{y \to 0} \left[\lim_{x \to 0} \frac{x^8 + x^5 + x^4 + y^4 - y^5 - y^8}{x^4 + y^4} \right] = 1$$

854.
$$\lim_{x \to \infty} \left[\lim_{y \to \infty} \frac{x^2 + y^2}{x^2 + y^3} \right] = 0$$

855.
$$\lim_{y \to \infty} \left[\lim_{x \to \infty} \frac{x^2 + y^2}{x^2 + y^3} \right] = 1$$

856.
$$\lim_{x \to \infty} \left[\lim_{y \to \infty} \arcsin \frac{x^2 + y^2}{x^2 + y^4} \right] = 0$$

857.
$$\lim_{y \to \infty} \left[\lim_{x \to \infty} \arcsin \frac{x^2 + y^2}{x^2 + y^4} \right] = \frac{\pi}{2}$$

858.
$$\lim_{x \to \infty} \left[\lim_{y \to \infty} \frac{x^3 + xy^2}{x^2 + y^4} \right] = 0$$

859.
$$\lim_{y \to \infty} \left[\lim_{x \to \infty} \frac{x^3 + xy^2}{x^2 + y^4} \right] = \infty$$

860.
$$\lim_{x \to 2} \left[\lim_{y \to 1} \frac{x^2 - 4y^2}{x^2 + 2x - 2xy - 4y} \right] = 1$$

861.
$$\lim_{y \to 1} \left[\lim_{x \to 2} \frac{x^2 - 4y^2}{x^2 + 2x - 2xy - 4y} \right] = 1$$

862.
$$\lim_{x \to \infty} \left[\lim_{y \to \infty} \sin \frac{\pi x}{2x + y} \right] = 0$$

863.
$$\lim_{y \to \infty} \left[\lim_{x \to \infty} \sin \frac{\pi x}{2x + y} \right] = 1$$

864.
$$\lim_{x \to \infty} \left[\lim_{y \to \infty} \sin \frac{\pi y^2}{x^2 + 6y^2} \right] = \frac{1}{2}$$

865.
$$\lim_{y \to \infty} \left[\lim_{x \to \infty} \sin \frac{\pi y^2}{x^2 + 6y^2} \right] = 0$$

866.
$$\lim_{x \to \infty} \left[\lim_{y \to \infty} \frac{\left(x^2 + y^2\right)^{\alpha}}{e^{x^2 + y^2}} \right] = 0; \ \alpha \in \mathbb{R}$$

867.
$$\lim_{y \to \infty} \left[\lim_{x \to \infty} \frac{\left(x^2 + y^2\right)^{\alpha}}{e^{x^2 + y^2}} \right] = 0; \ \alpha \in \mathbb{R}$$

868.
$$\lim_{x \to \infty} \left[\lim_{y \to 0+} \frac{x^y}{x^y + 1} \right] = \frac{1}{2}$$