Föreläsning 6: Fortsättning på genererande funktioner · 1MA020

Vilhelm Agdur¹

¹vilhelm.agdur@math.uu.se

4 februari 2023

Vi fortsätter förra föreläsningens diskussion om genererande funktioner, och ger fler exempel och sätt att använda sådana för att lösa kombinatoriska problem.

Antal lösningar till en ekvation, med begränsningar

I slutet på förra föreläsningen studerade vi antalet lösningar till ekvationen

$$x_1 + x_2 + x_3 + x_4 + x_5 = k$$

om vi kräver att alla x_i är ickenegativa heltal. Det var ett första exempel på en mer generell kategori av problem med att räkna lösningar på ekvationer. Låt oss börja med ett lite mer invecklat problem:

Exempel 1. Hur många lösningar finns det till

$$x_1 + x_2 + x_3 + x_4 = k$$

om vi kräver att alla x_i är ickenegativa heltal, men också kräver att x_2 är jämnt, att $x_3 \le 10$, och x_4 är udda?

Låt, för varje k, a_k vara antalet sådana lösningar. Låt sedan a_k^1 vara antalet lösningar till $x_1 = k$ i ickenegativa heltal x_1 , a_k^2 vara antalet lösningar till $x_2 = k$ i ickenegativa jämna heltal, a_k^3 vara antalet lösningar till $x_3 = k$ i heltal mellan 0 och 10, och a_k^4 vara antalet lösningar till $x_4 = k$ i udda heltal.

Precis som i förra exemplet studerar vi nu faltningen av dessa fyra följder, och ser att

$$(a^{1} * a^{2} * a^{3} * a^{4})_{k} = \sum_{\substack{k_{1}, k_{2}, k_{3}, k_{4} \ge 0 \\ k_{1} + k_{2} + k_{3} + k_{4} = k}} a_{k_{1}}^{1} a_{k_{2}}^{2} a_{k_{3}}^{3} a_{k_{4}}^{4} = a_{k}.$$

Så precis som i förra exemplet kan vi få fram genererande funktionen för a_k , följden vi faktiskt är intresserade av, genom att plocka fram den genererande funktionen för de enklare följderna.

Vad genererande funktionen för a^1 är vet vi sedan innan – den är bara en följd av ettor, så dess genererande funktion blir $\frac{1}{1-x}$. Likaledes vet vi sedan innan att följden av n stycken ettor och sedan nollor har genererande funktion $\frac{1-x^{n+1}}{1-x}$, så genererande funktionen för a^3 blir $\frac{1-x^{11}}{1-x}$.

Däremot för a^2 behöver vi räkna ut något nytt, nämligen den genererande funktionen för följden 1,0,1,0,1,..., indikatorfunktionen av de jämna talen. Så vi får skriva att

$$F_{a^2}(x) = \sum_{k=0}^{\infty} a_k^2 x^k$$
$$= \sum_{\substack{k \ge 0 \\ k \in 2\mathbb{Z}}} x^k$$
$$= \sum_{i=0}^{\infty} x^{2k}$$
$$= \sum_{i=0}^{\infty} (x^2)^k$$

och sista raden här kan vi känna igen som genererande funktionen av följden (1,1,1,1,...), utvärderad i x^2 . Så detta är lika med $\frac{1}{1-x^2}$.

Så vad som återstår är alltså a^4 , indikatorfunktionen för de udda talen. För att få fram dess genererande funktion kan vi använda vad vi just gjorde för de jämna talen:

$$F_{a^4}(x) = \sum_{k=0}^{\infty} a_k x^k$$

$$= \sum_{\substack{k \ge 1 \\ k \text{ udda}}} x^k$$

$$= x \sum_{\substack{k \ge 1 \\ k \text{ udda}}} x^{k-1}$$

$$= x \sum_{\substack{k \ge 0 \\ k \in 2\mathbb{Z}}} x^k$$

$$= \frac{x}{1 - x^2}.$$

Så, om vi använder att genererande produkten av en faltning är produkten av de genererande funktionerna, ser vi att

$$F_a(x) = \left(\frac{1}{1-x}\right) \left(\frac{1-x^{11}}{1-x}\right) \left(\frac{1}{1-x^2}\right) \left(\frac{x}{1-x^2}\right)$$
$$= \frac{x(1-x^{11})}{(1-x)^2(1-x^2)^2}$$

och ber vi vårt favorit-CAS² att Taylorutvidga detta uttryck så får vi att

$$F_a(x) = x + 2x^2 + 5x^3 + 8x^4 + 14x^5 + 20x^6 + 30x^7 + 40x^8 + \dots$$

så att följden av antalet lösningar är

$$0, 1, 2, 5, 8, 14, 20, 30, 40, 55, 70, 91, 111, 138, 163, \dots$$

² Computer Algebra System, alltså till exempel WolframAlpha eller något av dess öppna alternativ.

Övningar