Metody Realizacji Języków Programowania Generacja i ulepszanie kodu

Marcin Benke

MIM UW

21-28 listopada 2016

Generacja i ulepszanie kodu

- Bloki proste, grafy i analiza przepływu
- Zmienne żywe i docierające definicje
- Generacja kodu maszynowego
- Alokacja rejestrów
- Ulepszanie ("optymalizacja") kodu
 - Zwijanie stałych
 - Eliminacja wspólnych podwyrażeń
 - Eliminacja martwego kodu
 - Optymalizacja petli

```
void quicksort(int m, int n)
    int i, j;
    int v,x;
    if (n<=m) return;
// === Początek rozważanego fragmentu ===
    i=m-1; j = n; v = a[n];
    while (1) {
        do i = i+1; while (a[i] < v);
        do j = j-1; while (a[j] > v);
        if (i >= j) break;
        x = a[i]; a[i] = a[i]; a[i] = x;
   x = a[i]; a[i] = a[n]; a[n] = x;
// === K O N I E C ===
quicksort(m, j); quicksort(i+1, n);
```

Kod czwórkowy

```
[16] t7 := 4*i
[1] i := m-1
[2] j := n
                        [17] t8
                                   := 4 * j
[ 31
    t1 := 4*n
                        [18] t9
                                   := a[t8]
[ 4]
                     [19] a[t7] := t9
    v := a[t1]
[5] i := i+1
                        [20] t10 := 4 * j
[ 6] t2 := 4 * i
                        [21] a [t10] := x
[7] t3 := a[t2]
                     [22] qoto 5
[8] if t3 < v \text{ goto } (5)
                     [23] t11 := 4*i
[9] i := i-1
                        [24] x := a[t11]
[10] t4 := 4 * j
                     [25] t12
                                   := 4*i
[11] t5 := a[t4]
                      [26] t13
                                   := 4 * n
[12] if t5 > v goto (9)
                     [27] t14 := a[t13]
[13] if i >= j goto (23)
                      [28] a[t12] := t14
[14] t6 := 4 * i
                        [29] t15 := 4*n
[15] x := a[t6]
                        [30] a[t15] := x
```

Blok prosty

Definicja

Blok prosty jest sekwencją kolejnych instrukcji, do której sterowanie wchodzi wyłącznie na początku i z którego wychodzi wyłącznie na końcu, bez możliwości zatrzymania ani rozgałęzienia wewnątrz.

Rozważmy fragment:

```
[ 1] i := m-1
[ 2] j := n
[ 3] t1 := 4*n
[ 4] v := a[t1]

[ 5] i := i+1
[ 6] t2 := 4*i
[ 7] t3 := a[t2]
[ 8] if t3 < v qoto (5)</pre>
```

Sekwencja 5-8 tworzy blok prosty; sekwencja 1-8 nie.

Blok prosty

Rozważany fragment składa się z dwu bloków prostych:

Graf bloków prostych (przepływu sterowania, CFG)

Analiza żywotności

- Definicja zmiennej instrukcja nadająca wartość tej zmiennej
- Użycie zmiennej instrukcja odwołująca się do wartości tej zmiennej
- Instrukcja x:=y+z definiuje zmienną x, używa zmiennych z oraz y

Definicia

Zmienna jest **żywa** w danym punkcie, jeśli jej obecna wartość może być jeszcze użyta, tzn. istnieje ścieżka od tego punktu do użycia zmiennej, nie zawierająca po drodze definicji tej zmiennej.

Na początku bloku

```
t := a
a := b
b := t
```

żywe są zmienne a, b. Zmienna t nie jest żywa, gdyż jedyna ścieżka od początku bloku do użycia t zawiera jej definicję.

Docierające definicje

Definicja

Definicja dociera do danego punktu, jeśli żadna ścieżka pomiędzy nimi nie zawiera **innej** definicji tej samej zmiennej.

```
[ 2] j := n
[ 3] t1 := 4*n
[ 4] v := a[t1]
[ 5] i := i+1
[ 6] t2 := 4*i
[ 7] t3 := a[t2]
[ 8] if t3 < v goto (5)
[ 9] j := j-1
[10] t4 := 4*j
[11] t5 := a[t4]</pre>
```

Definicja t1 z (3) dociera do (11); definicja j z (2) nie dociera do (10).

Analiza przepływu

Informacje dotyczące przepływu danych zwykle wylicza się za pomocą układów równań, które przedstawiają zależności pomiędzy różnymi punktami programu.

Zwykle równanie (dla przepływu "w przód") ma postać:

$$out[S] = gen[S] \cup (in[S] - kill[S])$$

Informacja dostępna na końcu instrukcji jest sumą zbiorów informacji

- przez nią generowanych (gen[S])
- dostępnych na wejściu do niej (in[S])
- bez informacji, które są niszczone przez tę instrukcję (kill[S]).

Analiza przepływu

Ogólne równanie przepływu

$$out[S] = gen[S] \cup (in[S] - kill[S])$$

S może się odnosić do pojedyńczej czwórki lub bloku prostego.

Definicje gen i kill zależą od analizowanej informacji

Dla żywotności informacja płynie "w tył"; obliczamy *in* na podstawie *out*:

$$in[S] = out[S] - kill[S] \cup use[S]$$

$$in[S] = out[S] - kill[S] \cup use[S]$$

```
t := a
a := b
b := t out = \emptyset
```

$$in[S] = out[S] - kill[S] \cup use[S]$$

```
t := a a := b b := t out = \emptyset, kill = \{b\}, use = \{t\}, in = \{t\}
```

$$in[S] = out[S] - kill[S] \cup use[S]$$

```
 \begin{array}{l} \texttt{t} := \texttt{a} \\ \texttt{a} := \texttt{b} \ \textit{out} = \{t\} \\ \texttt{b} := \texttt{t} \ \textit{out} = \emptyset, \ \textit{kill} = \{b\}, \ \textit{use} = \{t\}, \ \textit{in} = \{t\} \\ \end{array}
```

$$in[S] = out[S] - kill[S] \cup use[S]$$

```
t := a
a := b out = \{t\} kill = \{a\}, use = \{b\}, in = \{b, t\}
b := t out = \emptyset, kill = \{b\}, use = \{t\}, in = \{t\}
```

$$in[S] = out[S] - kill[S] \cup use[S]$$

```
t := a out = \{b, t\}
a := b out = \{t\} kill = \{a\}, use = \{b\}, in = \{b, t\}
b := t out = \emptyset, kill = \{b\}, use = \{t\}, in = \{t\}
```

$$\mathit{in}[S] = \mathit{out}[S] - \mathit{kill}[S] \cup \mathit{use}[S]$$

```
t := a out = \{b, t\} kill = \{t\}, use = \{a\}, in = \{a, b\}
a := b out = \{t\} kill = \{a\}, use = \{b\}, in = \{b, t\}
b := t out = \emptyset, kill = \{b\}, use = \{t\}, in = \{t\}
```

Trochę wiekszy przykład, na tablicy:

```
t := a
a := b
b := t
t := a-b
u := a-c
v := t+u
d := v+u
```

na końcu żywe d

Globalna analiza przepływu

Analizę przepływów miedzy blokami przeprowadzamy na podstawie krawędzi wchodzących i wychodzących z bloku.

Na przykład dla analizy żywotności

$$out[B_i] = \bigcup_{j \in succ(B_i)} in[B_j]$$

gdzie $succ(B_i)$ oznacza zbiór następników bloku B_i

Dla docierających definicji

$$in[B_i] = \bigcup_{j \in pred(B_i)} out[B_j]$$

gdzie $pred(B_i)$ oznacza zbiór poprzedników bloku B_i

Graf przepływu z cyklami daje rekurencyjny układ równań Możemy go rozwiązać, iterując do osiągnięcia punktu stałego.

Postać SSA (Static Single Assignment)

Powyższe analizy, jak i późniejsze przekształcenia są łatwiejsze jeśli kod jest w szczególnej postaci: każda zmienna ma tylko jedną definicję.

Taką postać nazywamy postacią SSA: Static Single Assignment — **statycznie** na każdą zmienną jest tylko jedno przypisanie (nic nie stoi natomiast na przeszkodzie by wykonało się wiele razy, np. w pętli)

Problemy analizy przepływu stają sie trywialne, np.

zmienna żywa = zmienna używana docierająca definicja = definicja

Przekształcanie do postaci SSA — blok prosty

W obrębie bloku prostego przekształcenie do postaci SSA jest trywialne: każdą definicję zmiennej zastępujemy przez definicję nowej zmiennej, np.

```
i := n
r := 1
r := r * i
i := i - 1
return r
```

Zastępujemy przez

```
i1 := n
r1 := 1
r2 := r1 * i1
i2 := i1 - 1
return r2
```

Przekształcanie do postaci SSA — graf sterowania

Problem pojawia się gdy ta sama zmienna jest definiowana na dwóch łączących się ścieżkach w grafie sterowania, np.

Przekształcanie do postaci SSA — graf sterowania

Ponumerowanie zmiennych spowoduje problem

```
entry:
      i0 := n
      r0 := 1
      goto L1
L1:
i1 := ?; r1 := ?
if i1 <= 1 goto L3 else L2
      L2:
      i2 := i1+1
      r2 := r1 * i2
      goto L1
      L3:
           return r1
```

Wartości zmiennych w bloku L1 zależą od tego, którą krawędzią do niego wejdzie sterowanie.

Przekształcanie do postaci SSA — funkcja ϕ

możemy odsunąć problem przy użyciu (hipotetycznej) funkcji ϕ , która wybiera odpowiedni wariant zmiennej:

```
entry:
      i0 := n
      r0 := 1
      goto L1
T.1:
i1 := \phi(entry:i0,L2:i2)
r1 := \phi(entry:r0, L2:r2)
if i1 <= 1 goto L3 else L2
      T.2:
      i2 := i1+1
      r2 := r1*i2
      goto L1
      L3:
            return r1
```

Wierzchołki ϕ w LLVM

```
phi type [val_1, inedge_1] \dots [val_n, inedge_n]
```

- może odwoływać się do bieżącego bloku (pętle!), może wybierać undef dla pewnych krawędzi
- musi być na początku bloku
- kolejność nie ma znaczenia
- musi mieć jedną pozycję dla każdego poprzednika

Wstawianie funkcji ϕ

Prosty algorytm:

- dla każdego bloku o poprzednikach B_1, \ldots, B_n (n > 1)
- dla każdej zmiennej żywej v
- na początku bloku
- **4** wstaw $v = \phi(B_1 : v, ..., B_n : v)$ (sic!)
- ona koniec systematycznie ponumeruj zmienne

[Braun, Buchwald, Hack, Leißa, Mallon, Zwinkau 2013] Dla bloku prostego: budujemy mapowanie zmienne → wartości, np.

```
a := 42 v_0: 42 a \mapsto v_0
```

b := a

a := a + b

[Braun, Buchwald, Hack, Leißa, Mallon, Zwinkau 2013] Dla bloku prostego: budujemy mapowanie zmienne → wartości, np.

```
a := 42 v_0: 42 a \mapsto v_0
b := a b \mapsto v_0
a := a + b
```

[Braun, Buchwald, Hack, Leißa, Mallon, Zwinkau 2013] Dla bloku prostego: budujemy mapowanie zmienne → wartości, np.

```
a := 42 v_0 : 42 a \mapsto v_0

b := a b \mapsto v_0

a := a + b v_1 : v_0 + v_0

c := a + d
```

[Braun, Buchwald, Hack, Leißa, Mallon, Zwinkau 2013] Dla bloku prostego: budujemy mapowanie zmienne → wartości, np.

```
a := 42 v_0: 42

b := a b \mapsto v_0

a := a + b v_1: v_0 + v_0 a \mapsto v_1

c := a + d
```

[Braun, Buchwald, Hack, Leißa, Mallon, Zwinkau 2013] Dla bloku prostego: budujemy mapowanie zmienne → wartości, np.

```
a := 42 v_0: 42

b := a b \mapsto v_0

a := a + b v_1 : v_0 + v_0 a \mapsto v_1

c := a + d v_2 : v_1 + v_7 c \mapsto v_2
```

Wartości niezdefiniowanych szukamy rekurencyjnie wśród poprzedników i dodajemy do ϕ ; potem trywialne ϕ eliminujemy.

[Braun, Buchwald, Hack, Leißa, Mallon, Zwinkau 2013] Dla bloku prostego: budujemy mapowanie zmienne → wartości, np.

$$v_?: \phi()$$
 $d \mapsto v_?$
a := 42 $v_0: 42$
b := a $b \mapsto v_0$
a := a + b $v_1: v_0 + v_0$ $a \mapsto v_1$
c := a + d $v_2: v_1 + v_?$ $c \mapsto v_2$

Wartości niezdefiniowanych szukamy rekurencyjnie wśród poprzedników i dodajemy do ϕ ; potem trywialne ϕ eliminujemy.

Generacja kodu maszynowego

- Stan maszyny: zawartość zasobów pamięciowych (rejestrów, stosu, pamięci).
- Podstawowa technika: symulacja zachowania maszyny docelowej (ciągu stanów).
- Korzystamy z wzajemnie powiązanych opisów zasobów (głównie rejestrów) oraz opisów zmiennych i wartości.
- Każda wartość wyliczana przez program i każdy zasób są określone przez opisy.

Opisy

Opis rejestru

- Stan: wolny, zablokowany, etc
- Co zawiera (być może wiele wartości)

Opis wartości

- typ, rozmiar
- Gdzie jest wartość (być może w wielu miejscach)
- Aliasy (np zmienna może być dostępna zarówno bezpośrednio jaki poprzez wskaźnik)
- Opis wartości jest interesujący tylko dla zmiennych żywych

Założenia co do maszyny docelowej

W trakcie wykładu zakładamy, że maszyna posiada n rejestrów ogólnego przeznaczenia: R_0, \ldots, R_{n-1} , oraz instrukcje

- LOAD a, Ri (lub MOV a, Ri) sprowadź wartość spod adresu a (pamięci) do Ri
- STORE Ri, a zapisz zawartość Ri (do pamięci) pod adresem a
- Adresy mogą być postaci:
 - stała (adres zmiennej globalnej),
 - stała+Rj (miejsce w tablicy),
 - stała+FP (zmienna lokalna lub argument, ale przeważnie będziemy używać nazw symbolicznych, nie czyniąc rozróżnienia między zmiennymi lokalnymi a globalnymi).
- op Ri, Rj o znaczeniu Rj := Ri op Rj, gdzie op operacja arytmetyczna
- op a, R analogicznie dla komórki pamięci a
- op \$c, Ri analogicznie dla stałej c

Generacja kodu dla bloku prostego

- Wyznaczamy bloki proste
- Określamy zmienne żywe na końcu bloku
- Wyznaczamy następne użycie dla każdego argumentu i wyniku czwórki
- Generujemy kod dla kolejnych czwórek, w biegu przydzielając im rejestry, odkładając zapis do pamięci, o ile sie da
- Na końcu bloku zapisujemy wszystkie żywe, a nie zapisane dotad wartości.

Generacja kodu dla pojedynczej czwórki

Niech bieżącą czwórką będzie A := B op C

- Wybieramy instrukcję
- Wybieramy rejestr L do przeprowadzenia operacji
- Korzystając z opisów, badamy gdzie jest B i w razie potrzeby generujemy MOV B, L
- Wybieramy C' jedno z miejsc zawierających C (najlepiej rejestr)
- Generujemy OP C', L
- Poprawiamy opisy A,L (wartość A jest tylko w L)
- Jeśli C nie jest żywe, to poprawiamy jego opis, zwalniając rejestr

Przykład symulacji z opisami rejestrów i wartości

Zakładamy, że na końcu bloku *d* jest żywe. Opisy wartości przechowujemy tylko dla zmiennych żywych w danym punkcie.

Czwórki	Asembler	R0	R1	а	b	С	d	t	u	٧
		-	-	а	b	С	-	-	-	-
t = a				а	b	С		а		
a = b				b	b	С		а		
b = t				b	а	С		-		
t = a-b	R0 := b	а		R0,b	а	С				
	R0 -= a	t		b	а	С		R0		
u= a-c	R1 := b	t	а	R1,b		С		R0		
	R1 -= c	t	u			С		R0	R1	
v = t + u	R0 += R1	v	u			-			R1	R0
d = v+u	R0 += R1	d	u				R0			
	d := R0	d	u				R0,d			

Co zrobić, jeśli nie ma wolnego rejestru (spilling)

Algorytm MIN [Belady 1966] (oryginalnie dla zwalniania stron pamięci wirtualnej)

- Wybieramy rejestr, przechowujący wartość, której użycie leży najdalej w przyszłości
- Odsyłamy do pamięci (spilling)
- Jeśli rejestr przechowywał więcej niż jedną wartość, musimy odesłać wszystkie

Wiele różnych możliwości, pole do wielorakich optymalizacji i heurystyk.

Globalna alokacja rejestrów

- Wydzielamy pewną pulę r rejestrów; w pewnym fragmencie programu wybrane wartości będziemy przechowywać na stałe w rejestrach.
- Tworzymy graf kolizji: wierzchołkami są zmienne, jeśli przy definicja a, zmienna b jest żywa, to dodajemy krawędź (a, b)
- 3 Kolorujemy graf *r* kolorami (uwaga: NP-trudne)
- Alokacja rejestrów jest NP-trudna [Chaitin 1981]...
- ... ale dla postaci SSA algorytm $\mathcal{O}(n^2)$ [Hack,Grund,Goos 2006].

Wykład 2

Optymalizacja "przez dziurkę od klucza" (peep-hole)

 Definiujemy zbiór wzorców krótkich sekwencji kodu, które łatwo ulepszyć, np. w sekwencji

```
MOV Ri, a
MOV a, Ri
druga instrukcja jest zbędna.
```

 Przesuwamy się wzdłuż wygenerowanego kodu małym "okienkiem" (zwykle 2–3 instrukcje), jeśli kod w okienku pasuje do któregoś z wzorców — ulepszamy.

Przykład

Dla instrukcji x = x + 7 może zostać wygenerowany kod

```
iload x
bipush 7
iadd
istore x
```

(gdzie x — liczba odpowiednia dla położenia x) Optymalizator moze potem rozpoznać taki fragment kodu i zastapić go

iinc x 7

Można unikać generowania takiego kodu, ale to niepotrzebnie komplikuje generator. Optymalizacja peephole jest szybka i prosta w implementacji (zwykle wyszukiwanie wzorców).

Optymalizacje niezależne od maszyny docelowej

- Zwijanie stałych
- Eliminacja wspólnych podwyrażeń
- Eliminacja martwego kodu
- Optymalizacja pętli

Zwijanie stałych

Jeśli na zmienną przypisywana jest stała, możemy wszystkie użycia tej zmiennej w zasięgu definicji zastąpić wystąpieniami tej stałej, ewentualnie obliczając wyrażenia w czasie kompilacji. Na przykład sekwencję

$$t1 := 7$$
 $t2 := t1 - 1$
 $t3 := t2 * t2$
 $a := b + t3$

Możemy zastąpić przez

$$a := b + 36$$

NB dla maszyny stosowej można to zrobić na etapie peephole.

Zwijanie stałych

```
entry:
      i0 := n
      r0 := 1
      goto L1
L1:
i1 := \phi(\text{entry:}i0, L2:i2)
r1 := \phi(entry:r0, L2:r2)
if i1 <= 1 goto L3 else L2
      L2:
      i2 := i1+1
      r3 := r2*i
      goto L1
      L3:
           return r1
```

Zwijanie stałych

```
entry:
      i0 := n
      r0 := 1
      goto L1
L1:
i1 := \phi(\text{entry:}i0, L2:i2)
r1 := \phi(entry:1,L2:r2)
if i1 <= 1 goto L3 else L2
      L2:
      i2 := i1+1
      r3 := r2*i
      goto L1
      L3:
           return r1
```

Propagacja kopii

Podobnie jeśli występuje kopiowanie x=y wszystkie użycia x do których dociera ta definicja można zastąpić przez y (SSA pomaga)

```
entry:
      i0 := n
      goto L1
L1:
i1 := \phi (entry: i0, L2: i2)
r1 := \phi(entry:1, L2:r2)
if i1 <= 1 goto L3 else L2
      L2:
      i2 := i1+1
      r3 := r2*i
      goto L1
      L3:
            return r1
```

Propagacja kopii

Podobnie jeśli występuje kopiowanie x=y wszystkie użycia x do których dociera ta definicja można zastąpić przez y (SSA pomaga)

```
entry:
      i0 := n
      goto L1
L1:
i1 := \phi(entry:n ,L2:i2)
r1 := \phi(entry:1, L2:r2)
if i1 <= 1 goto L3 else L2
      L2:
      i2 := i1+1
      r3 := r2*i
      goto L1
      L3:
            return r1
```

Kod dla LLVM

Stąd wziął się kod dla LLVM z jednego z poprzednich wykładów:

```
define i32 @fact(i32 %n) {
entry: br label %L1
L1:
        %i.1 = phi i32 [%n, %entry], [%i.2, %L2]
        r.1 = phi i32 [1, %entry], [%r.2, %L2]
        %c0 = icmp sle i32 %i.1, 1
        br i1 %c0, label %L3, label %L2
L2:
        %r.2 = mul i32 %r.1, %i.1
        %i.2 = sub i32 %i.1, 1
        br label %L1
L3:
        ret i32 %r.1
}
```


Czy zamiast t14 := a[t1], możemy użyć v?

Aliasing

Między v := a[t1] a t14 := a[t1] nie zmienia się v ani t1.

Ale czy nie zmieniło się a [t1]?

Mogliśmy dostać się do tej komórki za posrednictwem innego indeksu.

Na przykład w bloku L14 mamy a [t2] := t9

Takie zjawisko nazywamy *aliasingiem*: różne ściezki dostepu (aliasy) dla jednej komórki pamięci.

Znacznie utrudnia analizy i ulepszanie kodu.

Propagacja kopii

```
i := m-1
Zamiast x:=y;z:=x lepiej
                          i := n
                          t1 := 4*n
X:=V;Z:=V
                          v := a[t1]
                          L5:
                          i := i+1
                          t.2 := 4 * i
                          t3 := a[t2]
                          if t3<v goto L5
L14:
x := t3
                          L9:
t9 := t5
                                                      L23:
a[t2] := t9 // t5
                          j := j-1
                                                      x := t3
a[t4] := x // t3
                          t4 := 4 * j
                                                      t14 := a[t1]
goto L5
                          t5 := a[t4]
                                                      a[t2] := t14
                          if t5>v goto L9
                                                      a[t1] := x // t3
                          if i>=j goto L23
```

Eliminacja martwego kodu

Wysunięcie kodu przed pętlę

Obliczenia wyrażeń, które nie zmieniają swej wartości w trakcie pętli możemy wysunąć przed pętlę.

```
while(i<=n-3) {
   s += a[i];
   i++;
}</pre>
```

Możemy zastąpić przez

```
t = n-3;
while(i<=t) {
   s += a[i];
   i++;
}</pre>
```

Redukcja mocy i zmienne indukcyjne

- Redukcja mocy (strength reduction) polega na zamianie droższej operacji (np. mnożenie) przez tańszą (np. dodawanie).
- Jest to mozliwe i pożyteczne w stosunku do tzw. zmiennych indukcyjnych, czyli takich które są zwiększane (ew. zmniejszane) o stałą (zwykle 1) za każdym obrotem pętli.

Przykład

Zamiast

```
i := 0;
goto L2
L1: i := i+1
    t2 := 4*i
    t3 := a[t2]
    s := s + t3
L2: t4 := 4*i
    if(a[t4]<=k) goto L1</pre>
```

można

```
t2 := 0;

goto L2

L1: t2 := t2 + 4

t3 := a[t2]

s := s + t3

L2: if(a[t2]<=k) goto L1
```

Redukcja mocy i zmienne indukcyjne

Konkluzja

- Zaczynaliśmy od 30 czwórek, po optymalizacjach 20 i to tańszych.
- Po generacji kodu maszynowego możemy jeszcze wykonać peephole.
- Uzyskujemy mniejszy i szybszy kod.
- Cena: większy i dłużej działający kompilator.
- Łatwo popełnić trudny do wykrycia błąd.

Wywołania końcowe (tail calls)

```
int factorial(int n) {
  return _factorial(n, 1);
}
int _factorial(int n, int result) {
  if (n <= 0)
    return result;
  else
    return _factorial(n - 1, n * result);
}</pre>
```

Jeśli ostatnią instrukcją jest wywołanie funkcji, mozemy je zastąpić skokiem.

Jeśli skok jest do tej samej funkcji (nie musi być!), jest to tzw. rekursja ogonowa.

gcc -O1

```
factorial:
      pushl %ebp
      movl %esp, %ebp
       subl $8, %esp
      movl 8(\%ebp), \%edx; edx = n
      movl 12(%ebp), %eax; eax = result
      testl %edx, %edx
       jle .L2
                       ; if n <= 0
       imull %edx, %eax; eax = n * result
      movl %eax, 4(%esp); na stos
       leal -1(%edx), %eax; eax = n-1
      movl %eax, (%esp); na stos
       call factorial
.L2:
       leave ; przywroc wskaznik ramki
       ret
```

gcc -O1 -foptimize-sibling-calls

```
pushl %ebp
      movl %esp, %ebp
      movl 8(%ebp), %edx
      movl 12(%ebp), %eax
      testl %edx, %edx
      jle .L3
.L6:
      imull %edx, %eax
      subl $1, %edx
      jne .L6
.L3:
      popl %ebp
      ret
```

Jeszcze jeden przykład wywołań końcowych

```
int even(int n)
{
  if(!n) return 1; else return odd(n-1);
}
int odd(int n)
{
  if(n==1) return 1; else return even(n-1);
}
```

W tym wypadku mamy do czynienia z wywołaniami końcowymi, które trudno zoptymalizować na JVM.

gcc -O1

```
even:
        pushl
                    %ebp
        movl
                    %esp, %ebp
        subl
                    $8, %esp
        movl
                    8(%ebp), %edx
        movl
                    $1, %eax
        testl
                   %edx, %edx
        jе
                    .L9
        leal
                   -1 (%edx), %eax
                    %eax, (%esp)
        movl
        call
                    odd
.L9:
        leave
        ret
```

gcc -O1 -foptimize-sibling-calls

```
even:
                     %ebp
        pushl
        movl
                    %esp, %ebp
        movl
                    8(%ebp), %eax
                     %eax, %eax
        testl
        jе
                  .L12
        subl
                    $1, %eax
        movl
                    %eax, 8(%ebp)
        popl
                    %ebp
                   odd
        jmp
.L12:
        movl
                    $1, %eax
        popl
                    %ebp
        ret
```

. . .

```
-falign-functions[=n] -falign-jumps[=n] -falign-labels[=n] -falign-loops[=n]
-fassociative-math -fauto-inc-dec -fbranch-probabilities -fbranch-target-load-optimize
-fbranch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves -fcheck-data-deps
-fcprop-registers -fcrossjumping -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range -fdata-sections -fdce -fdce -fdelayed-branch -fearly-inlining
-fdelete-null-pointer-checks -fdse -fexpensive-optimizations -ffast-math
-ffinite-math-only -ffloat-store -fforward-propagate -ffunction-sections
-fqcse -fqcse-after-reload -fqcse-las -fqcse-lm -fqcse-sm -fif-conversion -fif-conversion2
-finline-functions -finline-functions-called-once -finline-limit=n -finline-small-functions
-fipa-cp -fipa-marix-reorg -fipa-pta -fipa-pure-const -fipa-reference -fipa-struct-reorg
-fipa-type-escape -fivopts -fkeep-inline-functions -fkeep-static-consts
-fmerge-all-constants -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
-fmove-loop-invariants -fmudflap -fmudflapir -fmudflapth -fno-branch-count-req
-fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls
-fpeel-loops -fpredictive-commoning -fprefetch-loop-arrays -freciprocal-math
-freqmove -frename-registers -freorder-blocks -freorder-blocks-and-partition
-freorder-functions -frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -frtl-abstract-sequences -fsched2-use-superblocks -fsched2-use-traces
-fsched-spec-load -fsched-spec-load-dangerous -fsched-stalled-insns-dep[=n]
-fsched-stalled-insns[=n] -fschedule-insns -fschedule-insns2 -fsection-anchors -fsee
-fsignaling-nans -fsingle-precision-constant -fsplit-ivs-in-unroller
-fsplit-wide-types -fstack-protector -fstack-protector-all
-fstrict-aliasing -fstrict-overflow -fthread-jumps -ftracer -ftree-ccp
-ftree-ch -ftree-copy-prop -ftree-copyrename -ftree-dce
-ftree-dominator-opts -ftree-dse -ftree-fre -ftree-loop-im -ftree-loop-distribution
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-parallelize-loops=n -ftree-pre -ftree-reassoc -ftree-sink -ftree-sra
-ftree-store-ccp -ftree-ter -ftree-vect-loop-version -ftree-vectorize -ftree-vrp
-funit-at-a-time -funroll-all-loops -funroll-loops -funsafe-loop-optimizations
-funsafe-math-optimizations -funswitch-loops -fvariable-expansion-in-unroller
-fvect-cost-model -fvpt -fweb -fwhole-program
-0 -00 -01 -02 -03 -0s
```