To	opics covered						
9	SQL						
2)	Nomenclabre						
3) Data Integrity							
4)	Data Normalization						
5)	Data types						
6)	Types of SQL commands						
7)	DDL (Data Definition Language)						
8)) DML (Data Manipulation Language)						
9) DQL (Data Query language)						
,	O) WHERE Clause						
	. Allauddin k	chan					
- 11	1) Operators	MIAII					
- 11	Operators Alladdull III	MIAII					
11	i) Operators	VII AII					
11	Operators - comparision	VII CIII					
) (Denators - Comparision - Arithmetic - Bitwise	VII CIII					
11	Denators - Comparision - Arithmetic - Bitwise	VII CIII					
11	- Comparision - Arithmetic	VII CIII					
	Denators - Comparision - Arithmetic - Bitwise	VII AII					
	Denators - Comparision - Arithmetic - Bitwise	VII CIT					

Introduction to SQL:

SQL is a standard language for accessing and manipulating databases.

what is SQL?

- SQL stands for structured Query language.
- SQL lets you access and manipulate databases.
- SQL is an ANSI (American National standards institute) standards

what can sal do?

Allauddin khan

- SQL can execute queries against adatabase
- SQL can retreive data from database
- SQL can insert records in a database
- SQL can update records in a database
- sal can delete records from a database.
- sal can create new databases
- SQL can create new tables in a database
- sal can create stored procedures in a database
- SQL can create views in a Database

- SQL can set permissions on tables, procedures and views.
- * SQL is standard, but there are different versions of SQL language. However, to be compliant they all support major commands.

* SQL is not case-sensitive language.

what is RDBMS?

RDBMS - Relational Database Management System

-RDBMS is the basis for SQL, and for all modern database systems like MS SQL server,

IBM DB2, Oracle, My SQL, and Microsoft Access.

- RDBMS is a database management system (DBMS) based on the relational model as introduced by E.F. Codd.

*SQL is the only language that can communicate with any RDBMS product

Attributes of RDBMS:

what is a table?

The data in a ROBMS is stored in database objects which are called tables. This table is basically a collection of related data entries and it consists of numerous columns and rows.

- A table is the most common and simplest form of data storage in a relational database.

Customers table

DP	NAME	AGE	ADPRESS	SALARY
2	-	-	: = :	_
्य	-			-
-	- 1	_	-	-
1	-	-	-	-
~	_	-	-	-

what is a field?

Allauddin khan

Every table is broken into smaller entities called fields. The fields in the customers table consist of ID, NAME, AGE, ADDRESS, SALARY. A field is a column in a table that is designed to maintain specific information about every record in the table.

what is a Record or Row?

A record is also called as a now of data and is each individual entry that exists

in a table.

A record is a horizontal entity in a table.

ex:- From customer's table.

1 Ramesh 32 Ahmedabad 2000.0

what is a column?

A column is a vertical entity in a table that contains all information associated with a specific field in a table

ex: - From Customers table

ADDRESS	Allauddin khan
Ahmedabad	
Delhi	
Kolikata Hyderabad	
Hyderabad	
Vizag	
Vizag chennai	

Data Integrity:

The following categories of data Integrity exist with each RDBMS:

- Entity Integrity: There are no duplicate rows in a table.
- Domain Integrity: Enforces valid entries for a given column by restricting the type, the format, or the range of values.
- Referential Integrity: Rows cannot be deleted which are used by other records.
- User defined Integrity: Enforces some specific business rules that do not fall into entry, domain or referential Integrity.

Database Normalization:

- Database Normalization is the process of efficiently organizing data in a database.
- There are two reasons for this normalization process
 - 1) Eliminating redundant data, for example storing the same data in more than one table.
 - 2) Ensuring data dependencies makes sense.
- Normalization reduces the amount of space a database consumes.
- gt also ensures the data is logically stored khan
- Normalization consists a series of guidelines that help us in creating a good database structure.
- Normalization guidelines are divided in to Normal forms.
- form is the way a database is layed out.
- The aim of normal forms is to organize the database structure so that it compiles with the rules of first normal form, then second normal form and finally the third

normal	form	
1 william	40111	

_	9t is	our	choic	e to	take il	t for	ther	and
	go to	fou	rth no	rmal	form,	fifth	nor	mal
	form	and	so on,	but	inger	real	third	normal
	form	is m	one th	ian e	nough.			

* First Normal Form (INF)

* Second Normal Form (2NF)

* Third Normal Form (3NF)

Allauddin khan

Data types in SQL: There are different types of databases in SQL that we would discuss briefly.

Numeric data types in sal:

m				(TO				
6,854	4,77	5,80	8	9,2	23,37	ر36ر2	854,77	5,807	
3,6	64	8			2,14	7,48	33,6	547	
8					32	,76	.7		
					2	22			
						(
					10	· e_ ·		.1 .1'	
, 685,	5, 47	7.58	208	9	22,33	AII	au GF 57, 4	aair	kha
+30	08				.79				

Date and Time Data Types:

Data Type	From	TO
datetime	Jan 1, 1753 with time	Dec 31,9999 with time
small date time	Jan 1, 1990	June 6,2079
Date	Jan 1, 1753	Dec31,9999

Charac	cler strings Data Types:	
- char	: Maximum length of 8,000 charact	ers:
	(Fixed length non-unicode characters)	
- Varcho	ar: Maximum of 8,000 characters	
	(variable length non-unicode characte	(در
- Varcho	ar (max): Maximum length of 2E+31 chara	1C-
	ters, variable length non-unicode char	ac-
	ters (SQL server 2005 only)	
text:	Maximum length of 2,147,483,647 char	ra-
	cters, (variable length non-unicode ch	a-
	racters)	
	Allauddi	n k

Commands in sal

- SQL commands are instructions. It is used to communicate with the database. It is also used to perform specific tasks, functions, and queries of data.
- SQL can perform various tasks like create a table, add data to tables, drop the table, modify the table, set permissions for users.

I) Data Definition Language (DDL):

- This language commands are used to define, modify or drop an object or database from SQL Server.
- All commands of DDL are auto-committed,

which means it permanently saves all the changes in the database.

* create: Creating a new database or new table in SQL server.

Step1: Create a new database in SQL server.

Syntax: Create database (DB-NAME);

Example: Create database Innomatics;

Step 2: Select the required database from SQL server

Syntax: USE OB_NAME);

Example: Use Innomabics;

Allauddin khan

Step3: (reate new table in database)

Syntax: (reate table < Table-name) (

Cowm11-name) < datatype) (size),

(Size),

1000 columns);

Example: Create table Customers (id int,

Firstname Varchar (50), Lastname Varchar (50),

Address text, City Varchar (50));

Stepy: To view the structure of the table

Syntax: method1: Describe/Desc < Table-name);

method2: SHOW COLUMNS From < Table-name);

Example: Describe Customers;

(or)

show columns from customers;

* ALTER: To change or modify the structure of a table or a database.

By using the Alter command we can perform
the following three operations on existing
Allauddin khan

- 1) ALTER TABLE ADD Column
- 2) ALTER TABLE DROP Column
- 3) ALTER TABLE MODIFY COLUMN ALTER TABLE is also used to add or drop various constraints on an existing table.
- DALTER TABLE ADD COlumn

Syntax: ALTER TABLE < table_name>

ADD < Column_name> < datatype>;

Example: ALTER TABLE Customers

ADD Email varchar (255);

2) ALTER TABLE - DROP COLUMN

Syntax: ALTER TABLE < table_name>

DROP COLUMN < COlumn-name>

Example: ALTER TABLE Customers

DROP COLUMN Email;

3) ALTER TABLE - MODIFY COLUMN

Syntax: ALTER TABLE < table_name>

MODIFY COLUMN < COLUMN-name>

Column-name>

Example: ALTER TABLE Customers

MODIFY COLUMN Address Allauddin khan

*TRUNCATE: Deleting nows from the table,
but not the structure of the table.
By using Truncate we cannot delete a
specific now from the table because it
does not support 'where' clause condition.
Syntax: TRUNCATE table < table-name>
Example: TRUNCATE table Customers

* DROP: Dropping a table from a database permanently.

Dropping a table needs to proceeded with caution as it will result in deleting the table and all the information stored in the table:

Syntax: DROP table <table-name>;

Example: DROP table customers;

II) Data Manipulation Language (DML):

These language commands are used to change or manipulate data in the database table.

*INSERT: The INSERT INTO Statement is

Used to insert new records in a table.

9t is possible to write the INSERT INTO

statement in two ways:

1) Explicit method:

specify both the column names and the values to be inserted:

Syntax: INSERT INTO < table-name>(
Column1, Column2,...)

VALUES (Value 1, Valuez,...);

Example: INSERT INTO Customers (9D, firstname, lastname, Address, city)

VALUES (6, Bhupathiraju, Subhadra, Kukatpally, Hyderabad);

2) Implicit method:

If we are adding values for all the columns of the table, we do not need to specify the column names in the SQL query. However, we need to make sure the order of the values is same as the columns khan the table.

Syntax: INSERT INTO <table_name>
VALUES (Value1, value2,...);

Example: INSERT INTO Customers

VALUES (G, Subhadra, Bhupathiraju,

Kukatpally, Hyderabad);

* UPDATE: Updating all records in a table at a time or a specific record in a table by using 'where' condition.

of we do not mention 'where' condition then all the records in the table will get updated.

Syntax: UPDATE <table-name>

SET Column1 = Value 1, Column2 =

Value 2,

WHERE < Condition>;

Example: UPDATE Customers SET firstname = 'Shuba'

WHERE ID= 6;

* DELETE: Deleting all the rows from the table khan at a time or a specific record by using the 'where' condition.

of we do not mention 'where' condition then all the records in the table will get updated.

SYNTAM: DELETE FROM Ctable-name>
WHERE < Condition>;

Example: DELETE FROM customers

WHERE ID=6;

Differences between DELETE & TRUNCATE

	DELETE	TRUNCATE
1)	It is a DML operation	It is a DDL operation
2)	It can delete a	It cannot delete one
	specific record from	specific record from
	the table	the table
3)	It supports the	It does not support
	'where' condition.	'where' condition.
4)	It is temporary	It is a permanent
	data deletion	data deletion.
5)	we can restore the	we cannot restore the
85	deleted data using	deleted data by using kha
	noll back	roll back.
6)	Execution speed is	Execution speed is
	slow	Fast.

DCL + TCL commands we will not discuss in detail here.

II) Data Control Language (DCL):

These commands deal with the nights, permissions, and other controls of the database.

- *GRANT: This command gives user's access privileges to the database.
- *REVOKE: This command withdraws the user's access privileges given by using the GRANT command.

IV) Transaction control language (TCL)

Transactions group a set of tasks in to a Single execution unit. Each transaction begins with a specific task and ends when all the tasks in the group successfully complete. If any of the tasks fail, the transaction fails. Therefore, a transaction has only two results: success or failure.

* COMMIT: Commits a Transaction Syntax: COMMIT;

- * ROLLBACK: ROllsback a transaction in case

 of any errors

 Syntax: ROLLBACK;
- * SAVEPOINT: Sets a savepoint within a transaction.

SYNTAX: SAVEPOIN (Savepoint-name);

I) Data Query Language (DQL):

These language commands are used to get some data from the table based on the query passed to it, and imposing Allayddin khan on it.

*SELECT: The SELECT Statement is used to select data from a database. The data returned is stored in a result table, called the result-set.

Syntax: SELECT Column 1, column 2,....

FROM < table-name>; > for selected columns

(or)

SELECT * FROM < table_name>;

y for all columns

Example: SELECT Firstname

FROM Customers;

(or)

SELECT * FROM Customers;

* SELECT DISTINCT: The SELECT DISTINCT
statement is used to return only
distinct (different or unique) values.

gnside a table, a column often contains many duplicate values; But sometimes we only want the distinct values.

Syntax: SELECT DISTINCT column1, column2,....

Example: SELECT DISTINCT Fintname
FROM Customers;

SQL WHERE clause:

The WHERE clause is used to filter records. i.e it is used to extract only the records that fulfill a specific condition.

Syntax: SELECT column1, column2,...

FROM < table-name>

WHERE < Condition>;

* WHERE Clause can be used in SELECT, UPDATE, DELETE Statements etc.

* Please note compansion is case-Allauddin khan

Example: SELECT Firstname
FROM Customers

WHERE ID>3;

Text fields vs Numerical fields:

* SQL requires quotes around text values.

* Numerical values should not be enclosed in quotes

Example: ID>3 or Lastname = (Bhupathiraju'

Operators in SQL:

My SQL comparision operators:

operator	Description
=	Equal to
>	Greater than
<	Less than
<=	Less than equal to
>=	Greater than equal to
<>	Not equal to

Few Examples:

LAUITIES.	
SELECT *	SELECT *

Allauddin khan

FROM	customers	FROM	Customers

MYSQL Arithmetic Operators:

Operator	Description
+	Add
<u>-</u>	Subtract
*	multiply
1	Divide
%	Modulo

Few Examples:

SELECT Customer_name, Opening_ant,
receive_amt, (opening_amt + receivedality khan

FROM Customers

WHERE (Opening_amt+ receive_amt) > 15000;

SELECT Customer_name, Opening_ant,
Payment_amt, outstanding_amt

FROM Customers

WHERE (Outstanding-amt-payment-amt)

= receive_amt;

MysQL Bitwise Operators: on Binary Values

Operator	Description
4	Bitwise AND
(Bitwise OR
^	Bitwise exclusive or
~	Bitwise NOT
<<	Bitwise left shift
>>	Bitwise right shift

Few Examples:

SELECT 12 89; -.. Result 8 Allauddin khan

- - Binary representation 1100 & 1001 = 1000

SELECT 12/9; _.. Result 13

- - Binary representation 1100 | 1001 = 1101

SELECT 1279; ... Result 5

-- Binary representation 1100 x 1001 = 0101

SELECT N12; _.. Result -13

-- Binary representation ~1100 =-1101

SELECT 12<<2; -.. Result 48

-- Binary representation 1100 << 2 = 110000

SELECT 12>>2; __ Result 3

-- Binary representation 1100 >> 2 = 0011

My SQL Compound operators:

Allauddin khan

d equals tract equals
tract equals
ltiply equals
ride equals
dulo equals
wise AND equals
sise exclusive ezuals
sise or equals

```
few Examples:
   SET X=5;
   SET X+=3; __ Equivalent to: SET X = X+3;
   -- Result: x=8
   SET X = 10
  SET X -= 4) __ Equivalent to: SET x = x - 4)
   -- Result: x=6
   SET X=3;
   SET X = 4; _ Equivalent to: SET X = X + 4;
                                    Allauddin khan
    -- Result: X= 12
   SET X = 20;
   SET X/= 5; __ Equivalent to: SET X= X/5;
     -- Result: X= 4
   SET X = 15)
   SET X 1 = 7 : -- Equivalent to: SET X = X 1;
     -- Result: X=1
```

SET X= 12

SET X4=9 -- Equivalent to: SET x=x49

-- Result: X=8

SET X=12

SET X1=9; _ Equivalent to: SET x=x19

-- Result: x= 13

SETX=12;

SET X =9; _ Equivalent to: SET X= X 19

-- Result: X= 5

Allauddin khan

My SQL Logical operators:

Operator	Description
ALL	TRUE if all of Subquery Values
	meet the condition
AND	TRUE if all conditions seperated
	by AND are TRUE
ANY	TRUE if any of the subquery
	Values meet the condition
BETWEEN	TRUE if the operand is within
	the range of companision
EXISTS	TRUE if the subquery returns. Allauddin k
IN	TRUE if the operand is equal
	to one of the list of expressions
LIKE	TRUE if the operand matches
_ ==1	a pattern
NOT	Displays a record if the
	Condition(s) is NOT TRUE
OR	TRUE if any of the conditions
= 11	seperated by or is TRUE
SOME	TRUE if any of the subquery Values meet the Condition

khan

we will see a little more of AND, or and NOT operators which are commonly used.

AND Syntax

SELECT Column 1, column 2, ...

FROM (table-name)

WHERE CONDI AND CONDE AND;

OR syntax

SELECT Column 1, column 2, ...

FROM (table-name)

WHERE CONDI OR CONDE OR;

Allauddin khan

NOT Syntax

SELECT Column 1, column 2, ...

FROM Ctable-name)

WHERE NOT condition;

- * we can also combine AND, OR and NOT
- * Always better to use parenthesis to form Complex expressions.

For the purpose of Examples let us consider a table customers with below table structure: CREATE TABLE customers (9d INT. name VARCHAR(50), country VARCHAR (50), city VARCHAR (50)); AND Example: SELECT * Allauddin khan FROM Customers WHERE Country = 'India' AND City= 'Hyderabod'; OR Example: SELECT * FROM Customers WHERE City = 'Chennai' OR City= Hyderabad'; NOT Example: SELECT * FROM Customers WHERE NOT Country = 'India';

Combination Example:

SELECT *

FROM Customers

WHERE Country = 'India' AND

(city='chennai' or city='Hyderabad');

Explanation: This SQL statement selects all fields from Customers where country is 'India' and City must be Chennai or Hyderabad.

SELECT *

FROM Customers

WHERE NOT Country = 'India' AND NOTAllauddin khan
Country = 'USA';

Explanation: This SQL statement selects all fields from Customers where country is NOT 'India' and not 'USA'.

* Let us consider additional columns (age INT, SALARY INT) in customers table.

BETWEEN SYNTAX:

SELECT Column1, column2, ...

FROM Ctable-name>

WHERE COLUMN 1 BETWEEN CONDI AND COND2;

Example:

SELECT *

FROM customers

WHERE age BETWEEN 25 AND 35;

ANY syntax:

SELECT Column 1, column 2, ...

FROM Ctable-name>

Allauddin khan

WHERE COLUMN 1 = ANY (Cond1, Cond2) i

Example:

SELECT *

FROM customers

WHERE country = ANY ('India', 'USA');

SQL LIKE Operator:

The LIKE operator is used in a WHERE clause to search for a specified pattern in a column.

SQL Wildcard Characters:

- * A wildcard character is used to substitute any other character(s) in a string.
- * Wildcard characters are wed with UKE operator.
- * % percent and underscore are wild characters.
- * % The percent sign represents zero, and in khan or multiple characters
- * _ The underscore represents a single character
 Note: Ms Access use (?) instead of (-).

The percent and underscore can also be used in combinations.

LIKE Syntax:

SELECT COlumn 1, Column 2,

FROM <table-name>

where column-name LIKE pattern;

* we can also combine other conditions using

AND or OR operators.

EMPLES: SELECT * FROM Customers WHERE Customer_name LIKE 'a:/; 'a:/ -> Starts with a '/a' -> ends with a '/a' -> contains or '-r:/ -> has r in second position	
FROM Customers WHERE Customer_name LIKE 'a./; 'a./.' -> starts with a '/.a' -> ends with a '/.or-/.'-> contains or	
WHERE Customer_name LIKE 'a./.'; 'a/.' -> starts with a '/.a' -> ends with a (/.or-/.'-) contains or	
'a/.' -> starts with a '/.a' -> ends with a '/.or-/.' -> contains or	
'/a' -> ends with a '/.or-/.'-> contains or	
1/. or 1/> contains or	
1 _ r. 1 - has r in second position	
	50.01
A	lauddin

SQL IN operator:

The IN operator allows us to specify multiple Values in a where clause

* The IN Operator is short hand for multiple OR Conditions.

IN syntax:

SELECT column1, columnz,...

FROM < table-name>

WHERE Column-name IN (value1, value2,...);

(01)

SELECT column1, columnz,...

FROM < table-name>

Sob Atlauddin khan

WHERE COlumn-name IN (SELECT STATEMENT);

Example:

SELECT *

FROM Customers

WHERE Country IN ('India', 'USA', 'UK');

SELECT *

FROM Customers

WHERE COUNTY NOT IN ('India', 'USA', 'UK');

SELECT *	
FROM Customers	
WHERE Country IN	(SELECT Country
	From Suppliers);
	different table (Sub query)
	(Sus query)
	Allauddin khan

SQL BETWEEN Operator:

The BETWEEN operator selects values within a given range. The values can be numbers, text, or dates.

* The BETWEEN Operator is inclusive: begin and end values are included.

BETWEEN Syntax:

SELECT Column 1, column 2, ...

FROM < table-name>

WHERE COlumn-name BETWEEN Value 1 AND

value2;

Example:

Allauddin khan

SELECT *

FROM Customers

WHERE Salary BETWEEN 10000 AND 20000;

SELECT *

FROM Customers

WHERE Salary NOT BETWEEN 20000 AND

40000;

SELECT *	
FROM Customers	
WHERE (Salary BETWEEN 10000 AND 20000)	
AND NOT ID IN (1,2,3);	
SELECT *	
FROM customers	
WHERE Customer_name BETWEEN	
"XXX" AND "YYY"	
Dates Examples Using a random table	
FROM ORDERS Allauddin k	kha
WHERE OrderDate Between # 07/04/2020#	
AND # 09/29/2022#;	