

Course Name:		Machine Learning			Exam Duration:			2 hours		
Dept.: Department of Computer Science and Engineering										
Exam Paper Setter(Signature):										
Question No.	1	2	3	4	5	6	7	8	9	10
Score	20	50	30	10						
This exam paper contains 4 questions and the score is 110 in total. (Please hand in										
your exan	n paper.	answer s	heet, and	d vour sc	rap pape	er to the p	proctor wi	hen the e	exam end	ls.)
y can conain	роро.,	u		. ,					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
Problem I Multiple Choice (20 Points)										
(only one correct answer for each question)										
1. (2 points) Three essential components of a learning system are										
	A. model, gradient descent, learning algorithm									
	B. error function, model, learning algorithm									
	C. accuracy, sensitivity, specificity									
	D. mode	el, error f	function,	cost fund	ction					
2. (2 points) The objective of machine learning is to minimize										
A. the KL divergence between real-world data and the trained probabilistic model										
	B. the KL divergence between training data and the trained probabilistic model									
	C. the KL divergence between real-world data and training data									
	D. the KL divergence between training data and prediction data									
3. (2 pc	oints) Wl	hat is the	loss func	ction mos	st suited f	for linear	regressio	on?		
	A. the entropy function									
	B. the squared error function									
	C. the cross-entropy function									
	D. the n	umber of	f mistake	S						
4 (2)	4a) XX71		1000 for	4:	التائدة ع	Com m 1.	1.010 az 1 - 1	:4 ·· '		1 . 1
_		hat is the	ioss tunc	cuon mos	st suited i	or proba	DHISTIC C	ensity mi	ixture mo	oaei
based clustering?										

A. the entropy function

B. the squared error function

- A. increase the amount of training data
- B. improve the optimization algorithm being used for error minimization
- C. decrease the model complexity
- D. reduce the noise in the training data
- **10.** (2 points) Which of the following statements is NOT true for Bellman equations?
 - A. it can be used to estimate state value functions
 - B. it is can be solved by using dynamic programing, Monti Carlo, and temporal difference approaches
 - C. solving Bellman equation requires environment models
 - D. its fixed point is the optimal policy

Problem II Numerical Calculation (50 Points)

Course Name: Machine Learning

- (1) **Linear Regression** (5 points). For three points $\{(1, 4), (2, 8), (3, 14)\}$, what is the linear regression function for the least squared errors (assuming $y = a_2x^2 + a_1x + a_0$)?
- (2) **Supervised Classification (5 points)**. For class A of two points $\{(1, 2) (2, 1)\}$ and class B of two points $\{(4, 1) (3, 4)\}$, what are the labels for points $\{(2,2) (3,3)\}$ using the K-NN algorithm (*where K*=3)?
- (3) **Maximum margin classifier (5 points)**. For one class of two points {(1, 2) (2, 2)} and another class of two points {(4, 4) (5, 6)}, what are the support vectors and what is the decision boundary's function (*plot your answer*)?
- (4) **Clustering** (**5 points**). For four points with two classes, {(1, 2) (2, 2) (4, 4) (5, 6)}, how to achieve two cluster centers using the K-means algorithm (*outline the algorithm and show the details of one iteration*)?
- (5) **Factor Graph (15 points)**. How to design a factor graph to solve the following linear Gaussian system: $[3\ 3]^T = [1\ 1\ 1;\ 0\ 2\ 1][x_1\ x_2\ x_3]^T$? Assuming the initial Gaussian distributions of X is $\{[m_1,\ \sigma_1],\ [m_2,\ \sigma_2],\ [m_3,\ \sigma_3]\}$, outline the whole computation procedure and show the details of one iteration.
- (6) **Hidden Markov Model (15 points)**. For a HMM, the states of latent variables are {bull, bear}, the states of observation variables are {rise, fall}, the initial state probability distribution π is $[0.5 \ 0.5]^T$, the transition probability distribution A is $[0.4 \ 0.7; \ 0.6 \ 0.3]$, and the observation probability distribution B is $[0.8 \ 0.1; 0.2 \ 0.9]$. If the observation sequence X is {fall fall rise}, please show the computation procedure for $p(z_1|X, \theta)$ and $p(z_1, z_2|X, \theta)$ using the forward-backward algorithm, where z_n is the latent variable at time n and $\theta = {\pi, A, B}$?

Problem III Theoretical Analysis (30 Points)

For a finite-state random sequence $\{Z_t\}$ with the model of $\{\pi, A\}$ and its observation sequence is $\{X_t\}$, the joint distribution of X and Z with the model θ is given by

$$p(X,Z|\theta) = \prod_{i=1}^{K} [p(z_i)p(X|\theta_i)]^{z_i}$$

- (1) Summarize the general forward-backward EM scheme for HMM (E-step and M-step).
- (2) Assuming each observation probability density is Bernoulli, *i.e.* $p(X|\theta_i) = \theta_i^x (1 \theta_i)^{1-x}$, please derive the corresponding model learning procedure under the EM scheme.
- (3) Use message passing to derive the forward-backward algorithms.

Problem IV Expectation-Maximization Learning (Bonus 10 Points)

Course Name: Machine Learning

- (1) What is the EM procedure? When do we need the EM procedure for machine learning? Please give a specific example.
- (2) What is the EM procedure in terms of the Q function? Please give the detailed equations assuming that X is the observed variable, Z is the latent variable and θ is the model parameter.
- (3) What is the EM procedure in terms of likelihood and KL divergence? Please give the detailed equations and plots to illustrate the procedure.
- (4) What is the EM procedure in terms of optimization of non-convex function? Please give a plot to illustrate the procedure.
- (5) What is the EM procedure for the factor graph network model? Please give an example.