

DIGITAL AUDIO MOSFET

IRFB4019PbF

Features

- Key Parameters Optimized for Class-D Audio Amplifier Applications
- Low R_{DSON} for Improved Efficiency
- Low Q_G and Q_{SW} for Better THD and Improved Efficiency
- Low Q_{RR} for Better THD and Lower EMI
- 175°C Operating Junction Temperature for Ruggedness
- ullet Can Deliver up to 200W per Channel into 8Ω Load in Half-Bridge Configuration Amplifier

Key Parameters						
V _{DS} 150 V						
R _{DS(ON)} typ. @ 10V	80	mΩ				
Q _g typ.	13	nC				
Q _{sw} typ.	5.1	nC				
R _{G(int)} typ.	2.4	Ω				
T _J max	175	°C				

G	D	S
Gate	Drain	Source

Description

This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for ClassD audio amplifier applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	150	V
V_{GS}	Gate-to-Source Voltage	±20	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	17	Α
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	12	
I _{DM}	Pulsed Drain Current ①	51	
P _D @T _C = 25°C	Power Dissipation ④	80	W
P _D @T _C = 100°C	Power Dissipation @	40	
	Linear Derating Factor	0.5	W/°C
T _J	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	200	
	(1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10lb·in (1.1N·m)	

Thermal Resistance

Thornia Hoolotanoo							
	Parameter	Тур.	Max.	Units			
$R_{\theta JC}$	Junction-to-Case ④		1.88				
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W			
$R_{\theta JA}$	Junction-to-Ambient ④		62				

Notes 10 through 5 are on page 2

www.irf.com

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	150			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}/\Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		0.19		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		80	95	mΩ	V _{GS} = 10V, I _D = 10A ③
$V_{GS(th)}$	Gate Threshold Voltage	3.0		4.9	٧	$V_{DS} = V_{GS}$, $I_D = 50\mu A$
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient		-13		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 150V, V_{GS} = 0V$
				250		$V_{DS} = 150V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
g _{fs}	Forward Transconductance	14			S	$V_{DS} = 10V, I_{D} = 10A$
Q_g	Total Gate Charge		13	20		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		3.3			$V_{DS} = 75V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		0.95		nC	V _{GS} = 10V
Q_{gd}	Gate-to-Drain Charge		4.1			I _D = 10A
Q _{godr}	Gate Charge Overdrive		4.7			See Fig. 6 and 19
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		5.1			
R _{G(int)}	Internal Gate Resistance		2.4		Ω	
t _{d(on)}	Turn-On Delay Time		7.0			$V_{DD} = 75V, V_{GS} = 10V$ ③
t _r	Rise Time		13			I _D = 10A
$t_{d(off)}$	Turn-Off Delay Time		12		ns	$R_G = 2.4\Omega$
t _f	Fall Time		7.8			
C _{iss}	Input Capacitance		800			$V_{GS} = 0V$
C _{oss}	Output Capacitance		74		pF	$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance		19			f = 1.0 MHz, See Fig.5
C _{oss}	Effective Output Capacitance		99			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 120V$
L _D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		73	mJ
I _{AR}	Avalanche Current ⑤	See Fig. 14,	Α	
E _{AR}	Repetitive Avalanche Energy ⑤			mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S @ T _C = 25°C	Continuous Source Current			17		MOSFET symbol	
	(Body Diode)				Α	showing the	
I _{SM}	Pulsed Source Current			51		integral reverse	
	(Body Diode) ①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C, I_S = 10A, V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		64	96	ns	$T_J = 25^{\circ}C, I_F = 10A$	
Q_{rr}	Reverse Recovery Charge		160	240	nC	di/dt = 100A/μs ③	

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. ④ R_{θ} is measured at T_J of approximately 90°C.
- ② Starting $T_J = 25$ °C, L = 1.46mH, $R_G = 25\Omega$, $I_{AS} = 10$ A.
- 3 Pulse width \leq 400 μ s; duty cycle \leq 2%.

- ⑤ Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

IRFB4019PbF

International TOR Rectifier

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFB4019PbF

Fig 12. On-Resistance Vs. Gate Voltage

Fig 13. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Typical Avalanche Current Vs. Pulsewidth

Fig 15. Maximum Avalanche Energy Vs. Temperature www.irf.com

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- Safe operation in Avalanche is allowed as long as neither Tjmax nor lav (max) is exceeded
- 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- B_V = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

t_{av =} Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot I_{av} \text{)} = \Delta T / Z_{thJC} \\ I_{av} &= 2\Delta T / \left[1.3 \cdot \text{BV} \cdot Z_{th} \right] \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

Fig 16. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

Fig 17a. Unclamped Inductive Test Circuit

Fig 17b. Unclamped Inductive Waveforms

Fig 18a. Switching Time Test Circuit

Fig 19a. Gate Charge Test Circuit

Fig 18b. Switching Time Waveforms

Fig 19b Gate Charge Waveform

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

E1

e1 H1

L1

øΡ

Q

8.38

5.85

12.70

3 54

2.54

8.89

6.55

14.73

6.35

4 08

3.42

.230

.500

1.39

.100

- 1 DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].

 LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH
 SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE
 MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

5 DIMENSION 61 & c1 APPLY TO BASE METAL ONLY.

- 6 CONTROLLING DIMENSION : INCHES.
- 7 THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- 8 DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.

SYMBOL	MILLIMETERS		INC		
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.82	.140	.190	
A1	0.51	1.40	.020	.055	
A2	2.04	2.92	.080	.115	
b	0.38	1.01	.015	.040	
ь1	0.38	0.96	.015	.038	5
b2	1.15	1.77	.045	.070	
b3	1.15	1.73	.045	.068	
С	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	,355	
D2	12.19	12.88	.480	.507	7
E	9.66	10.66	.380	.420	4,7

LEAD ASSIGNMENTS

HEXFET

.- gate .- drain

IGBTs, CoPACK

1,- GATE 2,- COLLECTOR 3,- EMITTER

DIODES

1.- ANODE/OPEN 2.- CATHODE 3.- ANODE

7

7,8

3

580

.250

161

.135

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789

ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free"

TO-220AB packages are not recommended for Surface Mount Application.

Data and specifications subject to change without notice.

This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 03/06 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.