Code ▼

推測統計(検定)

inferential statistics

推測統計

少ない data から大きな集団の特徴を掴む

母集団と標本とサンプリング

 \downarrow

推定・検定

母集団と標本

- 母集団 → 情報を得たい対象全体
- 標本 → 母集団の一部

標本抽出のサンプリング

 母集団
 標本

 母平均: μ
 標本平均: X̄

 母分散: σ²
 標本分散: s²

 母標準偏差: σ
 標本標準偏差: s

仮説検定

ある仮説が偶然起こった事なのか 統計学的 に判断する方法

推定と同様に 標本分布 を元に考える

 \downarrow

仮説

検定の考え方

- 1. 帰無仮説 : H_0
- 本当は 対立仮説 を言いたいが, 逆の仮説を立てる
 - 2. 対立仮説 : H₁
- 本来自分が言いたい仮説
 - 3. 有意水準の決定(危険率, 棄却率)
- ・ よくある事と珍しい事の%
 - 。 珍しい事が起これば **帰無仮説** が棄却 **対立仮説** を採択
 - 。 よくある事が起これば **対立仮説** が棄却 **帰無仮説** を採択
 - 。 帰無仮説 H_0 : 正規分布の 95% の範囲に入るはず
 - 。 対立仮説 H_1 : 正規分布の 5% の範囲に入るはず

上記の仮説 (検定)の仕方は 片側検定

 \downarrow

正規分布のグラフの片側の面積

違う仮説の立て方て 両側検定 もある

1

正規分布のグラフの両側の面積

標準化 =
$$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

仮定

近所の酒屋でお酒の量り売りをしているが、最近お酒の量が減った気がする。 100gのお酒を 30日間買って量を測ったところ、平均値が 98g、標準偏差が 5g だった。

Hide

xb <- 98 s <- 5 m <- 100 n <- 30 z <- (xb - m)/(s/sqrt(n)) z

[1] -2.19089

• \overline{X} : 98 | μ : 100 | σ : 5 | \sqrt{n} : 30

標準化 =
$$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

- pnorm(): 正規分布の面積を求める
 - 。 マイナス記号の場合は片側検定の面積

Hide

pnorm(-1.64, mean = 0, sd = 1)

[1] 0.05050258

• qnorm(): 上記の%となる点を見つけてくれる

Hide

qnorm(0.05, mean = 0, sd = 1)

[1] -1.644854

推定と検定のまとめ

統計量が異なるとそれぞれ異なる 標本分布 が必要

上記のような基準を常に意識して区間推定をする

	sample数小	sample数大
母平均	<i>t</i> 分布	正規分布 (<i>t</i> 分布)
母分散 (母標準偏差)	x^2 分布 (カイ二乗分布)	x^2 分布 (カイ二乗分布)
	F分布	

t分布を使用した検定

- 同時に区間推定もしてくれる
 - 。 95%の信頼区間: 95.68908 ~ 99.91539

Hide

```
x <- rnorm(30, mean = 98, sd = 5)
```

t.test(x, conf.level = 0.95)

One Sample t-test

data: x

t = 94.659, df = 29, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

95.68908 99.91539

sample estimates:

mean of x

97.80224

t分布検定

• 母平均が 100 の時に片側検定(下側)

Hide

t.test(x, mu = 100, alternative = "less")

One Sample t-test

data: x

t = -2.1271, df = 29, p-value = 0.02102

alternative hypothesis: true mean is less than 100

95 percent confidence interval:

Inf 99.55779

sample estimates:

mean of x

97.80224

両側検定

Hide

t.test(x, mu = 100)

```
One Sample t-test

data: x
t = -2.1271, df = 29, p-value = 0.04204
alternative hypothesis: true mean is not equal to 100
95 percent confidence interval:
95.68908 99.91539
sample estimates:
mean of x
```

sample数の変化と区間の関係

• r = 推定区間

97.80224

• nn1 = sample数

nn1 <- c(1:600) r <- 1.96*(10/sqrt(nn1)) plot(nn1, r, type = "l")

sample数が増えるに従って推定区間が

plot 拡大

Hide

Hide

plot(nn1, r, type = "I", xlim = c(0, 20))

ある程度母集団の標準偏差が推定される場合は sample数を求める為に区間を基準に決めることが出来る