Практика 4: оракулы, сложность по памяти

- 1. Покажите, что существует язык $B \in \text{EXP}$, такой что $\text{NP}^B \neq \text{P}^B$.
- 2. Покажите, что язык L, состоящий из слов, в которых чётное число единиц, лежит в классе SPACE(1).
- 3. Пусть функции $f,g:\{0,1\}^* \to \{0,1\}^*$ можно посчитать с использованием $O(\log(n))$ памяти (напомним, что память считается только на рабочих лентах, входная лента доступна только для чтения, а по выходной ленте головка машины Тьюринга движется только слева направо). Докажите, что функцию f(g(x)) можно также посчитать с использованием $O(\log(n))$ памяти.
- 4. Покажите, что существует язык, который разрешим алгоритмом, использующим $O(n^{10})$ памяти, но при этом не существует алгоритма, который бы разрешал данный язык и использовал при этом O(n) памяти.
- 5. Покажите, что SPACE(S(n)) = SPACE(0), при $S(n) = \log(\log(n))$.
- 6. Покажите, что $SPACE(n) \neq NP$.
- 7. Покажите, что существует такой язык A и $L \in \mathbb{NP}^A$, такие что язык L не сводится за полиномиальное время к 3-SAT, даже если МТ, вычисляющей сведение, дать оракульный доступ к языку A.
- 8. Покажите, что любой PSPACE-трудный язык также является и NP-трудным языком.
- 9. Покажите, что PSPACE замкнут относительно операций объединения, дополнения и * .
- 10. Покажите, что язык
 - $\{< M, w, 1^n > | \text{ MT } M$ принимает w используя не более n памяти $\},$ является PSPACE-трудным.
- 11. Докажите, что если есть унарный NP-полный язык, то P = NP.