Exercise 8 Answer Sheet — Axiomatic Set Theory, 80650

January 30, 2025

Definition 0.1. Let X be a set. A tree T is set such that,

- 1. For every $\eta \in T$, η is a function from an ordinal α to X.
- 2. If $\eta \in T$ and dom $\eta = \alpha > \beta$ then $\eta \upharpoonright \beta \in T$.

If X = 2 then we say that T is binary tree.

The height of T is the least ordinal α such that $\forall \eta \in T, \text{dom } \eta < \alpha$. We define $\text{Lev}(\eta) = \text{dom } \eta$ (the level of η), and we denote $T_{\alpha} = \{ \eta \in T \mid \text{Lev}(\eta) = \alpha \}$. For $\eta, \eta' \in T$ we define $\eta \leq_T \eta'$ if $\eta = \eta' \upharpoonright \text{dom } \eta$.

Definition 0.2. Let κ be a regular cardinal, we say that a tree T is a κ -tree if the height of T is κ and for every $\alpha < \kappa$, $|T_{\alpha}| < \kappa$.

Definition 0.3. Let T be a tree of height α . A function $b: \alpha \to X$ is a cofinal branch in T if for every $\beta < \alpha, b \upharpoonright \beta \in T$. We would also use the term cofinal branch for the set $\{b \upharpoonright \beta \mid \beta < \alpha\}$.

Let κ be an infinite regular cardinal. Let T be a binary κ -tree.

We will prove that there is $T' \subseteq T$ of height κ such that for every $\alpha < \beta < \kappa$ and $x \in T'$ with $\text{Lev}(x) = \alpha$, there is $y \in T'$ with $\text{Lev}(y) = \beta$ and $x \leq_T y$.

Proof. Let us define $T_0 = \{x \in T \mid \forall \text{Lev}(x) < \alpha < \kappa, \exists y \in T, y \in T_\alpha, x \leq_T y\}$. If T_0 is a κ -tree then it satisfies the required property, then we will show it is indeed a tree of height κ .

For every $x \in T_0$, $x \in T$, hence is a map from an ordinal to X. Assume $y \in T_0$, and let $x = y \upharpoonright \beta$ for $\beta < \kappa$. For every $\beta < \gamma < \kappa$ there is $x \leq_T y \leq_T z$ such that the given property is satisfied. We assume $\alpha < \gamma < \beta$, then $y \upharpoonright \gamma \in T_\gamma$ as $y \in T$. We can conclude $x \in T_0$, meaning T_0 satisfies definition, namely T_0 is a tree.

We move to proving T_0 is of height κ . For certain $x \in T_0$ for every dom $x < \alpha$ there is $y_\alpha \in T_0$ such that dom $y_\alpha = \alpha$ for evert such ordinal, then $\sup_{\alpha < \kappa} y_\alpha = \kappa$ as intended. The claim is not about T' being κ -tree (I hope), but we know that each level of T_0 must be bounded by the equivalent level in T, meaning it is bounded by κ .

Lastly, we will check if T_0 in not empty, fulfilling our claims stated above. By the definition of T, if we select $\alpha = 0$, by the height of T the statement is indeed true, indicating $\emptyset \in T_0$.

We showed that there is such $T' = T_0$.

We will show that every binary ω -tree has a cofinal branch.

Proof. From the last question, we can assume $T'\subseteq T$ fulfills the property of arbitrary elements, then we will define recursively the function $b:\omega\to X$ by the following,

- 1. $b(0)=\eta(0),$ when η is any branch $\in T$ (the root of ordered tree is unique).
- 2. If $b \upharpoonright n$ is already set, then $b(n) \in T_n$ such that $b(n-1) \leq_T b(n)$, there exists such in T'.

The result is indeed $b:\omega\to X$ such that $b\upharpoonright n\in T'\subseteq T$ for all $n<\omega$, meaning b is cofinal branch of T as desired. \square

We will prove that if there is some cardinal μ such that $\mu^+ < \kappa$ and $|T_{\alpha}| \le \mu$ for all α , then T has a cofinal branch.

Proof. We assume such μ exists, as well without loss of generality the arbitrary height of branches is fulfilled. For each $x \in T$ such that $\alpha = \operatorname{Lev}(x)$, we let β_x be the largest ordinal such that there is no other $y \in T_\alpha$ such that $y \upharpoonright \beta_x = x \upharpoonright \beta_x$. In other words, we get the highest level in which x is the only continuation (as of branch) of some branch of that level. For each level α we define $f(\alpha) = \sup_{x \in T_\alpha} \beta_x$, f mapping each level to the least level below it such that there is uniquely-extendable branch between the levels. Let dom $f = S = \{\alpha < \kappa \mid \mu^+ < \alpha\}$, then S is stationary in κ , and $f: S \to \kappa$. By the definition, $f(\alpha) \le \alpha$. For every $x \in T_\alpha$ for $\alpha \in S$, we know that $|T_\alpha| \le \mu$, then there cannot be more than μ levels such that there are more continuations to the restricted branch of x, but cf $\alpha \ge \mu^+$, meaning the set of such levels is bounded by $\beta < \mu^+$, in particular $\beta_x < \alpha$, then $f(\alpha) < \alpha$, namely f is regressive. By Fodors lemma there is $T \subseteq S$ stationary in κ such that $\forall x \in T$, $f(x) = \gamma$ for $\gamma < \kappa$. For some arbitrary $\alpha \in T$, let $x \in T_\alpha$ be a branch for which $\beta_x = \gamma$. For each $\alpha \in T$, we can conclude $\beta_x = \gamma$. T is stationary therefore unbounded in κ , then for every $\delta < \kappa$, there is $\delta < \delta' \in T$. For this δ' there is a branch $x \in T$ by the arbitrary height claim, and $x \in T$ as well. We can define then $x \in T$ by setting $x \in T$ for each $x \in T$ for each x

Let us assume that there is a cardinal $\mu < \kappa$ and a function $f: T \to \mu$ such that for all $x, y \in T$, if $x <_T y$ then $f(x) \neq f(y)$. We will prove that there is no cofinal branch in T.

Proof. We assume by contradiction that $b:\kappa\to X$ is a cofinal branch of T. By transitivity of $<_T$ it follows that $f(b\upharpoonright\alpha)\neq f(b\upharpoonright\beta)$ for all $\alpha<\beta<\kappa$. We can deduce that for $X=f''\{b\upharpoonright\alpha\mid\alpha<\kappa\}, |X|=\kappa$, in contradiction to $X\subseteq\operatorname{rng} f=\mu<\kappa$.

Let κ be a measurable cardinal.

We will prove that every κ -tree has a cofinal branch.

Proof. If $\kappa \leq 2^{\aleph_0}$ then we already know that every κ -tree has cofinal branch. We assume that $2^{\aleph_0} < \kappa$, then the measure is κ -complete and we can assume that κ is inaccessible (strong?).

By the inaccessibility and κ being regular we can deduce there is no mapping from $\alpha < \kappa$ to $|T_{\alpha}|$ such that $|T_{\alpha}| = \kappa$. Then there is an ordinal μ , by the inaccessibility of κ , such that $|T_{\alpha}| \leq \mu$ for all $\alpha < \kappa$. Then we can use the previous question to deduce that there is a cofinal branch in T.