Électricité et magnétisme Chapitre 5 - Potentiel électrique

Loïc Séguin-Charbonneau

Cégep Édouard-Montpetit

29 septembre 2021

On considère deux grandes plaques parallèles connectées à une source de tension. Chacune des plaques a une surface A. Si on applique une différence de potentiel ΔV entre les deux plaques, quelle charge sera emmagasinée sur chacune des plaques?

On considère deux grandes plaques parallèles connectées à une source de tension. Chacune des plaques a une surface A. Si on applique une différence de potentiel ΔV entre les deux plaques.

Quelle expression décrit le champ électrique entre les plaques?

- A. $\vec{E} = \frac{\sigma}{\varepsilon_0}$ vers le haut
- B. $\vec{E} = \frac{\sigma}{\varepsilon_0}$ vers le bas
- C. $\vec{E} = \frac{\sigma}{2\varepsilon_0}$ vers le haut
- D. $ec{E}=rac{\sigma}{2arepsilon_0}$ vers le bas

On considère deux grandes plaques parallèles connectées à une source de tension. Chacune des plaques a une surface A. Si on applique une différence de potentiel ΔV entre les deux plaques.

Quelle expression décrit le champ électrique entre les plaques?

- A. $\vec{E} = \frac{\sigma}{\varepsilon_0}$ vers le haut
- B. $\vec{E} = \frac{\sigma}{\varepsilon_0}$ vers le bas
- C. $\vec{E}=rac{\sigma}{2arepsilon_0}$ vers le haut
- D. $ec{E}=rac{\sigma}{2arepsilon_0}$ vers le bas

On considère deux grandes plaques parallèles connectées à une source de tension. Chacune des plaques a une surface A. Si on applique une différence de potentiel ΔV entre les deux plaques.

Si la charge accumulée sur la plaque positive est Q, quelle expression décrit la grandeur du champ électrique entre les plaques?

A.
$$E = \frac{Q}{A\varepsilon_0}$$

B.
$$E = \frac{2Q}{A\varepsilon_0}$$

C.
$$E = \frac{A}{Q\varepsilon_0}$$

D.
$$E = \frac{A}{2Q\varepsilon_0}$$

On considère deux grandes plaques parallèles connectées à une source de tension. Chacune des plaques a une surface A. Si on applique une différence de potentiel ΔV entre les deux plaques.

Si la charge accumulée sur la plaque positive est Q, quelle expression décrit la grandeur du champ électrique entre les plaques?

A.
$$E = \frac{Q}{A\varepsilon_0}$$

B.
$$E = \frac{2Q}{A\varepsilon_0}$$

C.
$$E = \frac{A}{Q\varepsilon_0}$$

D.
$$E = \frac{A}{2Q\varepsilon_0}$$

On considère deux grandes plaques parallèles connectées à une source de tension. Chacune des plaques a une surface A. Si on applique une différence de potentiel ΔV entre les deux plaques.

Quelle est la différence de potentiel si on passe de la plaque négative à la plaque positive ?

A.
$$\Delta V = \frac{-Q}{dA\varepsilon_0}$$

B.
$$\Delta V = \frac{Q}{dA\varepsilon_0}$$

C.
$$\Delta V = \frac{-Qd}{A\varepsilon_0}$$

D.
$$\Delta V = \frac{Qd}{A\varepsilon_0}$$

On considère deux grandes plaques parallèles connectées à une source de tension. Chacune des plaques a une surface A. Si on applique une différence de potentiel ΔV entre les deux plaques.

Quelle est la différence de potentiel si on passe de la plaque négative à la plaque positive ?

A.
$$\Delta V = \frac{-Q}{dA\varepsilon_0}$$

B.
$$\Delta V = \frac{Q}{dA\varepsilon_0}$$

C.
$$\Delta V = \frac{-Qd}{A\varepsilon_0}$$

D.
$$\Delta V = \frac{Qd}{A\varepsilon_0}$$

On considère deux grandes plaques parallèles connectées à une source de tension. Chacune des plaques a une surface A. Si on applique une différence de potentiel ΔV entre les deux plaques.

Quel est le lien entre la charge emmagasinée sur la plaque positive et la différence de potentiel?

A.
$$Q = \frac{A}{d\varepsilon_0} \Delta V$$

B.
$$Q = \frac{\varepsilon_0 d}{A} \Delta V$$

C.
$$Q = \frac{\varepsilon_0 A}{d} \Delta V$$

D.
$$Q = \frac{d\varepsilon_0}{A} \Delta V$$

On considère deux grandes plaques parallèles connectées à une source de tension. Chacune des plaques a une surface A. Si on applique une différence de potentiel ΔV entre les deux plaques.

Quel est le lien entre la charge emmagasinée sur la plaque positive et la différence de potentiel?

A.
$$Q = \frac{A}{d\varepsilon_0} \Delta V$$

B.
$$Q = \frac{\varepsilon_0 d}{A} \Delta V$$

C.
$$Q = \frac{\varepsilon_0 A}{d} \Delta V$$

D.
$$Q = \frac{d\varepsilon_0}{A} \Delta V$$

Capacité

Un condensateur de 50 µF est connecté à une source de tension de 10 V. Quelle est la charge sur son armature positive ?

- A. $0.2 \mu C$
- B. 50 μC
- C. 500 µ C
- D. 2×10^{5} C

Capacité

Un condensateur de $50\,\mu\text{F}$ est connecté à une source de tension de $10\,\text{V}$. Quelle est la charge sur son armature positive ?

- A. $0.2 \mu C$
- B. 50 μC
- C. 500 µ C
- D. 2×10^{5} C

- A. Si l'aire des plaques augmente, la capacité diminue.
- B. La charge accumulée sur un condensateur plan augmente proportionnellement à la différence de potentiel entre les plaques.
- C. Si on augmente la distance entre les plaques, l'énergie potentielle du condensateur diminue.

- A. Si l'aire des plaques augmente, la capacité diminue.
- B. La charge accumulée sur un condensateur plan augmente proportionnellement à la différence de potentiel entre les plaques.
- C. Si on augmente la distance entre les plaques, l'énergie potentielle du condensateur diminue.

- A. Plus la distance entre les plaques est grande, plus la différence de potentiel doit être élevée pour maintenir la même charge sur les plaques.
- B. Si la densité surfacique de charge augmente et que la différence de potentiel demeure la même, c'est parce que la distance entre les plaques a diminué.
- C. Pour un condensateur donné, plus la différence de potentiel entre les plaques augmente, plus la capacité diminue.

- A. Plus la distance entre les plaques est grande, plus la différence de potentiel doit être élevée pour maintenir la même charge sur les plaques.
- B. Si la densité surfacique de charge augmente et que la différence de potentiel demeure la même, c'est parce que la distance entre les plaques a diminué.
- C. Pour un condensateur donné, plus la différence de potentiel entre les plaques augmente, plus la capacité diminue.

Rigidité diélectrique

Rigidité diélectrique (V/cm)
30 000
100 000
197 000
500 000
20 000 000

Explosion de condensateurs

https://youtu.be/XBoaBwMRbnk?t=30

Explosion de condensateurs

Dans un des cas, on voit un condensateur de 470 µF qui explose. Supposons qu'il a explosé à une tension de 200 V. Quelle est la quantité d'énergie qui peut être relâchée durant cette explosion?

On a deux condensateurs identiques. Le condensateur A porte une charge de $100\,\mu F$ et le condensateur B porte une charge de $50\,\mu F$. Quel énoncé est vrai?

- A. La capacité du condensateur A est deux fois plus grande que celle du condensateur B.
- B. Le champ électrique entre les armatures du condensateur A est deux fois plus grand que celui de B.
- C. La différence de potentiel du condensateur A est deux fois plus petite que celle de B.
- D. Il y a deux fois plus d'énergie emmagasinée dans le condensateur A que le B.

On a deux condensateurs identiques. Le condensateur A porte une charge de $100\,\mu F$ et le condensateur B porte une charge de $50\,\mu F$. Quel énoncé est vrai?

- A. La capacité du condensateur A est deux fois plus grande que celle du condensateur B.
- B. Le champ électrique entre les armatures du condensateur A est deux fois plus grand que celui de B.
- C. La différence de potentiel du condensateur A est deux fois plus petite que celle de B.
- D. Il y a deux fois plus d'énergie emmagasinée dans le condensateur A que le B.

On a deux condensateurs identiques sauf pour le diélectrique. Dans le condensateur A, le diélectrique est du papier (constante diélectrique de 3). Dans le condensateur B le diélectrique est du mica (constante diélectrique de 6). Les deux condensateurs portent la même charge. Lequel des énoncés est vrai.

- A. La capacité du condensateur A est deux fois plus grande que celle du condensateur B.
- B. Le champ électrique entre les armatures du condensateur A est deux fois plus grand que celui de B.
- C. La différence de potentiel du condensateur A est deux fois plus petite que celle de B.
- D. Il y a deux fois plus d'énergie emmagasinée dans le condensateur A que le B.

On a deux condensateurs identiques sauf pour le diélectrique. Dans le condensateur A, le diélectrique est du papier (constante diélectrique de 3). Dans le condensateur B le diélectrique est du mica (constante diélectrique de 6). Les deux condensateurs portent la même charge. Lequel des énoncés est vrai.

- A. La capacité du condensateur A est deux fois plus grande que celle du condensateur B.
- B. Le champ électrique entre les armatures du condensateur A est deux fois plus grand que celui de B.
- C. La différence de potentiel du condensateur A est deux fois plus petite que celle de B.
- D. Il y a deux fois plus d'énergie emmagasinée dans le condensateur A que le B.

Exercice circuit avec condensateur

On construit le circuit suivant avec une pile de 9 V. Le condensateur 1 a une capacité $C_1=45\,\mu\text{F}$ et ses armatures sont séparées par du vide. Les condensateurs 2 et 3 sont construits de la même façon que le condensateur 1 sauf que l'espace entre leurs armatures est rempli par du germanium et du papier, respectivement. La constante diélectrique du germanium est 16 alors que celle du papier est 3.

- 1. Déterminer la capacité équivalente à ces trois condensateurs.
- 2. Déterminer la charge accumulée sur la plaque positive du condensateur 2.
- 3. Déterminer l'énergie accumulée dans le condensateur 3.