Campus Network Analysis and Security Assessment

1. Network Topology Analysis

To analyze your college campus network topology:

- 1. Gather information:
 - Obtain network documentation if available
 - Interview IT staff
 - Conduct a physical walkthrough of the campus
- 2. Identify key components:
 - Core routers and switches
 - Distribution switches
 - Access switches
 - Firewalls
 - Wireless access points
 - Servers (web, email, database, etc.)
 - Client devices (computers, printers, IoT devices)
- 3. Map out connections:
 - Determine how devices are interconnected
 - Identify VLANs and subnets
 - Note the types of connections (Ethernet, fiber, wireless)
- 4. Document IP addressing scheme and routing protocols

2. Cisco Packet Tracer Network Mapping

Use Cisco Packet Tracer to create a simplified model of your campus network:

- 1. Place core routers and switches
- 2. Add distribution and access layer switches
- 3. Include firewalls and other security devices
- 4. Add representative end devices (servers, computers, etc.)
- 5. Connect devices using appropriate cable types
- 6. Configure IP addresses, VLANs, and routing protocols to match your actual network

3. Attack Surface Mapping

Conduct an attack surface mapping exercise:

- 1. External attack vectors:
 - Internet-facing services (web servers, email servers)
 - VPN endpoints
 - Wireless networks
- 2. Internal vulnerabilities:
 - Unpatched systems

- Misconfigured devices
- Weak access controls
- Insecure protocols
- 3. Physical security risks:
 - Unsecured network closets
 - Public access areas with network ports
- 4. Social engineering risks:
 - Phishing susceptibility
 - Insider threats
- 5. Data flow analysis:
 - Identify sensitive data repositories
 - Map data transmission paths

Security Assessment Report

Identified Security Risks:

- 1. Unauthorized Access:
 - Weak passwords on network devices
 - Unencrypted wireless networks
 - Open network ports in public areas
- 2. Data Breaches:
 - Unencrypted data transmission
 - Inadequate access controls on sensitive servers
 - Lack of data loss prevention measures
- 3. Network Availability:
 - Single points of failure in core infrastructure
 - Lack of redundancy in internet connections
 - Insufficient DDoS protection

Proposed Solutions and Countermeasures:

- 1. Implement strong password policies and multi-factor authentication
- 2. Encrypt all wireless networks with WPA3
- 3. Disable or secure unused network ports in public areas
- 4. Implement end-to-end encryption for sensitive data transmission
- 5. Enhance access controls with principle of least privilege
- 6. Deploy data loss prevention (DLP) solutions
- 7. Introduce redundancy in core network infrastructure
- 8. Establish backup internet connections
- 9. Implement DDoS mitigation services
- 10. Regularly update and patch all systems and devices
- 11. Conduct ongoing security awareness training for all users
- 12. Implement network segmentation to isolate sensitive systems
- 13. Deploy and maintain next-generation firewalls
- 14. Establish a robust incident response plan