Physiklabor für Anfänger*innen Ferienpraktikum im Sommersemester 2018

Versuch 31: Mischungsmethode in der Kalorimetrie

(durchgeführt am 12.09.2018 bei Nico Strauß) Andréz Gockel, Patrick Münnich 18. September 2018

Inhaltsverzeichnis

1	Aufbau		2	
2			2	
3	Aus	wertur	ng und Fehleranalyse	2
	3.1	Teil A	- Kalibrierung des Messfühlers	2
		3.1.1	Durchführung	2
		3.1.2	Ergebnisse	2
	3.2	Teil B	- Bestimmung von der Wärmekapazität des Kalorimeters: C_{kal}	3
		3.2.1	Durchführung	3
		3.2.2	Theorie	3
		3.2.3	Auswertung	4
		3.2.4	Diskussion	4
3.	3.3	Teil C	- Bestimmung von der Spezifischen Wärmekapazität von Festkörpern	4
		3.3.1	Durchführung	4
		3.3.2	Theorie	5
		3.3.3	Auswertung	5
		3.3.4	Diskussion	5
4	Anl	nang		5

1 Ziel des Versuchs

Der Versuch ist in drei Teile geteilt, welche dazu dienen, mit Hilfe einer geeigneten Wärmeenergiebilanz die Wärmekapazität zu bestimmen. Im Teil A kalibriert man das Messgerät und stellt das Programm, LabVIEW, ein. Im Teil B wird mittels Extrapolationsverfahren die Wärmekapazität des Kalorimeters bestimmt. Für die Messungen wurde ein Temperaturmessfühler, der durch einen DAQ zu einem Komputer verbunden wurde verwendet, dadurch konnten die Messdaten mittels dem Programm LabVIEW gespeichert werden. Im Teil C wurde die Wärmekapazität von zwei Festkörpern bestimmt.

2 Aufbau

Der Messfühler ist per Kabel an den PC gebunden, an dem LabVIEW läuft. Zwei mit Wasser gefüllte Behälter sind vorhanden. Eins davon ist auf einer Heizplatte, das andere besteht aus Eiswasser.

Abbildung B1: Der Aufbau

3 Auswertung und Fehleranalyse

3.1 Teil A - Kalibrierung des Messfühlers

3.1.1 Durchführung

Zuerst vervollständigt man LabVIEW, sodass die Temperatur und die Zeit nach der MEssung in eine Datei abgespeichert wird.

Zur Kalibrierung wird das Ende des Messfühlers, an dem gemessen wird, in das behitzte Wasserbad gesteckt und die Temperatur in LabVIEW an 100°Cangepasst. Ist dies geschehen, so steckt man den Messfühler in das Eiswasser und stellt dies auf 0°Cein.

3.1.2 Ergebnisse

Bei der Kalibrierung wurden Schwankungen festgestellt. Bei dem kochenden Wasser lagen diese bei etwa 0.5° C, bei dem Eiswasser jedoch circa 2° C.

REASONING AND SHIT

3.2 Teil B - Bestimmung von der Wärmekapazität des Kalorimeters: C_{kal}

3.2.1 Durchführung

Da genug Eiswasser nicht vorhanden ist, muss hier lauwarmes Wasser verwendet werden. Zuerst misst man die Temperaturen der beiden Wassermengen und wiegt sie, dann werden sie nacheinander in das Kalorimeter gefüllt und der Temperaturverlauf wird gemessen. Dies notiert man dann in ein Diagramm und eine Ausgleichskurve wird erstellt, mit der man die ware Mischtemperatur berechnet.

3.2.2 Theorie

Da das Kalorimeter und das Mischverfahren nicht vollkommen adiabatisch sind, also zur gleichen Zeit auch ein zusätzlicher Energieaustausch stattfindet und das Kalorimeter auch Wärme aufnimmt, ist die Temperatur, die am Ende gemessen wird, nicht die wahre Mischtemperatur.

Zum Finden der wahren Mischtemperatur sucht man den Punkt, an dem man eine vertikale Gerade ziehen könnte, welche die Flächen zwischen der Kurve und den Geraden von jeweils der warmen und der kalten Wassermenge in zwei gleich große Flächen teilt.

Da unsere Werte einer e-Funktion ähneln, aber die Temperaturänderung linear verlaufen sollte, teilen wir unsere Ausgleichskurve in zwei Geraden auf, welche linear verlaufen. Zum Berechnen dieses Punktes wird die folgende Gleichung genutzt:

$$\int_{t_0}^{t_2} f_M \, dt - \int_{t_0}^{t_2} f_K \, dt + f_{Add} = \int_{t_1}^{t_0} f_H \, dt - \int_{t_1}^{t_0} f_M \, dt.$$
 (1)

 f_K steht für die Gerade der Temperatur des kalten Wassers, f_H für die Gerade der Temperatur des heißen Wassers, f_M für die Gerade der Mischung, welche f_H schneidet, und f_Add ist das Integral von der unteren Ausgleichsgerade der Mischung, welche f_K schneidet. Die Integralgrenzen sind Zeiten, t_0 die gesuchte halbierende Zeit, t_1 der Schnittpunkt von f_M mit f_H und t_2 der Schnittpunkt von f_M mit f_K . Da f_{Add} wesentlich kleiner ist als die rechte Seite, wenn f_{Add} bei t_0 wäre, nehmen wir f_{Add} als konstant an. Dies erleichtet uns später das Auflösen des Integrals. Alle Geraden sind in Form eines Polynoms ersten Grades:

$$f = ax + b \tag{2}$$

 f_{Add} sieht folgendermaßen aus:

$$f_{Add} = \int_{t_2}^{t_4} f_A dt - \int_{t_2}^{t_4} f_K dt,$$
 (3)

wobei t_3 und t_4 in diesem Fall 5 s und 10 s sind.

Integrieren wir und bringen die Gleichung in Form einer quadratischen Gleichung bezüglich dem gesuchten t_0 , so können wir folgendermaßen nach t_0 auflösen:

$$t_{0_{1/2}} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A},\tag{4}$$

Hier sind unsere Variablen

$$A = \frac{a_K}{2} - \frac{a_H}{2}$$

$$B = b_K - b_H$$

$$C = a_M \frac{t_2^2}{2} + b_M t_2 - a_K \frac{t_2^2}{2} - b_K t_2 + f_{Add} + a_H \frac{t_1^2}{2} + b_H t_1 - \frac{a_m}{2} t_1^2 - b_m t_1.$$

Die wahre Mischungstemperatur T_M kann dann einfach von den Werten von f_M abgelesen werden. Um hieraus die Wärmekapazität C_{Kal} des Kalorimeters zu bestimmen wird

$$C_{Kal} = c_w(m_K \beta - m_H) \tag{5}$$

mit

$$\beta = \frac{T_M - T_K}{T_H - T_M}$$

verwendet. Die Variablen stehen für folgende Werte:

- \bullet c_w die Wärmekapazität von Wasser
- m_K die Masse des kalten Wassers
- m_H die Masse des warmen Wassers
- T_M die Mischungstemperatur
- \bullet T_K die Temperatur des kalten Wassers
- \bullet T_H die Temperatur des warmen Wassers

3.2.3 Auswertung

Aufgrund eines Messfehlers, aufgrund dessen die Messung zwischen der Temperaturmessung des warmen Wassers und des Kalorimeters unterbrochen wurde, wurde angenommen, dass ein 15 s Zeit zwischen den Messungen stattfand.

Mithilfe von (4) bekommen wir zwei Ergebnisse für t_0 . Das größere Ergebnisse ist klar das sinnvollere, da REASONING.

Unser T_M liegt also bei $(59 \pm 2)^{\circ}$ C.

Die Temperatur des kalten Wassers vor dem Eintauchen betrag $(22 \pm 1)^{\circ}$ C und die des warmen Wassers $(80 \pm 1)^{\circ}$ C. Die Masse des warmen Wassers war (339.84 ± 0.05) g und die des kalten Wassers (221.80 ± 0.05) g. Mit (5) bekommen wir als Wert für C_{Kal} (190 ± 90) J/K.

Die Berechnung des Fehlers wird durchgeführt mit:

$$s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 (6)

3.2.4 Diskussion

3.3 Teil C - Bestimmung von der Spezifischen Wärmekapazität von Festkörpern

3.3.1 Durchführung

Ein Festkörper wird im Wasserbad erhitzt, die Temperatur gemessen, und dann ins mit kalten Wasser gefülltes Kalorimeter gefüllt. Dort wird wieder die Temperatur gemessen. Wie beim vorherigen Versuch wird hier wieder ein Diagram aufgezeichnet und mit einer Ausgleichskurve die Mischtemperatur gefunden.

3.3.2 Theorie

Die Theorie hier gleicht der des vorherigen teils. Jedoch ist es hier aufgrund der Form der Messwerte im Diagram möglich, in der Gleichung () den Term f_{Add} wegzulassen. Dadurch ist in C in (4) nicht mehr nötig, den f_{Add} Term hinzu zu addieren.

Um aus der Mischtemperatur die Wärmekapazität des Kalorimeters zu bestimmen, wird die Formel (7) verwendet.

$$c_K = \frac{m_F c_F + C_{Kal}}{m_K} \beta \tag{7}$$

Hier ist β definiert als:

$$\beta = \frac{T_M - T_F}{T_K - T_M}$$

Mit T_M die Mischungstemperatur, T_F die Temperatur der Flüssigkeit und T_K die Temperatur des Festkörpers.

- 3.3.3 Auswertung
- 3.3.4 Diskussion
- 4 Anhang