Chapitre 1 : Notion d'algorithme et programme

La démarche d'analyse d'un problème

Afin de résoudre un problème, il faut suivre les étapes suivantes :

- 1. Comprendre l'énoncé du problème
- 2. Décomposer le problème en sous problèmes plus simple à résoudre
- 3. Associer à chaque sous problème, une spécification :
 - Les données nécessaires (données d'entrées)
 - Les données résultantes (données de sorties)
 - La démarche à suivre pour arriver au résultat en partant d'un ensemble de données (traitement à réaliser)
- 4. Écrire l'algorithme

La démarche d'analyse d'un problème

Exemple : Réaliser l'addition de deux nombres entiers.

- Entrées : deux nombres entiers
- Sorties: un nombre entier
- Traitement : L'opération d'addition arithmétique (+)

Structure générale d'un algorithme

Un algorithme se compose de trois parties :

- L'entête
- Les déclarations
- Les instructions

```
Algorithme addition;
Variable a,b, res: Entier;
Début
res = a+b;
Fin
```

L'entête

L'entête permet de définir ou de donner un nom à l'algorithme.

Syntaxe

Algorithme <nom de l'algorithme>;

Exemple:

Algorithme addition;

Exemple

- 1. Écrire un algorithme qui permet de faire la soustraction de deux entiers
 - Algorithme soustraction;

- 2. Écrire un algorithme qui permet de faire la moyenne de trois valeurs entières
 - Algorithme moyenne;

- La partie déclaration comprend une liste d'entités qui sont utilisées et manipulées dans la partie instruction
- Cette partie permet d'identifier :
 - Les entrées
 - Les sorties
- Elle comprend principalement deux types de déclarations :
 - Déclaration des variables
 - Déclaration des constantes

Déclaration des constantes

Syntaxe:

```
Constante NomConstante : [Type] = Valeur;
```

Exemples:

```
Constante pi : Réel = 3.141559;
Constante Nombre_Etudiant: Entier = 10;
```

Déclaration des variables

Syntaxe:

Variable NomVariable: [Type];

Exemples:

Variable Rayon : Réel;

Variable Compteur : Entier;

Variable Lettre : Caractère;

Types standards:

- Entier: 13, 26
- Réel : 3.14, 2.5
- Booléen : Vrai, Faux
- Caractère : 'a', 'B', 'c'
- Chaine de caractère : "Mouloud Mammeri"

Écrire un algorithme qui permet de calculer la surface d'un cercle.

Écrire un algorithme qui permet de calculer la surface d'un cercle.

```
Algorithme surfaceCercle;
Constante pi : Réel = 3.141559;
Variable r, surface : Réel;
Début
surface = r*r*pi;
Fin
```

Identificateur

- Il sont formés d'une suite de lettres, de chiffres et du signe souligné (_)
- Les lettres formant les identificateurs peuvent être majuscules ou minuscules
- Le premier caractère ne peut pas être un chiffre

Sélectionner les entêtes correctes :

- Algorithme somme_deux_nombres;
- Algorithme somme_2_nombres;
- Algorithme somme 2 nombres;
- Algorithme 2_nombres_somme;

Sélectionner les entêtes correctes :

- Algorithme somme_deux_nombres;
- Algorithme somme_2_nombres;
- Algorithme somme 2 nombres;
- Algorithme 2_nombres_somme;

Sélectionner les identificateurs correctes :

- A
- a
- rayon
- nbr
- Un_nombre
- 1_nombre
- a+b
- somme_a_b
- a.c
- longueur
- Largeur
- coté

Sélectionner les identificateurs correctes :

- A
- a
- rayon
- nbr
- Un_nombre
- 1_nombre
- a+b
- somme_a_b
- a.c
- longueur
- Largeur
- coté

Les instructions

IL existe plusieurs types d'instructions :

L'affectation de variables
 x <- 2: ou x=2:

```
    La lecture / écriture
        Lire (a);
        Écrire ("veuillez introduire une valeur);
        Écrire ("le résultat= ", res);
```

Les opérations

Les instructions : affectation des variables

L'instruction d'affectation permet d'attribuer une valeur à une variable ou une constante

Une variable peut recevoir :

1) Une valeur

Exemple: Syntaxe:

a = 2; NomVariable=valeur;

2) Une constante

Exemple: Syntaxe:

a = pi; NomVariable=NomConstante;

3) Une autre variable

Exemple: Syntaxe:

a = b; NomVariable= NomVariable;

Les instructions : la lecture / écriture

• L'opération de lecture permet de lire une valeur à partir du clavier, cette valeur est saisie par l'utilisateur :

```
Exemple

Lire (note math):

Syntaxe:

Lire(NomVariable);
```

- L'opération de d'écriture permet d'afficher du texte à l'écran :
- Cette opération permet d'afficher :
- Un résultat

```
Exemple: Syntaxe: Écrire ("le résultat= ", moyenne); Écrire ("Message", NomVariable);
```

- Un message

```
Exemple: Syntaxe: Écrire ("veuillez introduire votre note "); Écrire ("Message");
```

Écrire un algorithme qui permet de faire la soustraction de deux entiers saisis par l'utilisateur puis d'afficher les deux nombres ainsi que le résultat.

```
Algorithme soustraction;
Variable a, b, res: Entier;
Début
  Écrire ("Veuillez saisir une valeur");
  Lire (a);
  Écrire ("Veuillez saisir une valeur");
  Lire (b);
  res = a-b;
  Écrire ("Les deux nombres saisis sont : ", a, "et ", b);
  Écrire ("le résultat de l'opération de soustraction est : ", res);
Fin
```

Les opérations

IL existe plusieurs types d'opérations, dont principalement :

1 - Les opérations Arithmétiques : Exemple :

2-4

2-4 2*a

2 - Les opérations logiques : Exemple :

1 ET 0

a OU B

3 - Les opérations de comparaison : Exemple :

A>B

5 > 3

Les opérations arithmétiques

Variable utilisées	Notation	Signification
Entier Réel	+	Addition
	-	Soustraction
	*	Multiplication
	/	Division (réelle)
	DIV	Division entière
	MOD	Reste de la division entière

Les opérations logiques

Variable utilisées	Notation	Signification
Booléen	ET	Fonction de « ET » logique
Entier	ΟU	Fonction de « OU » logique
	NON	Fonction de « Non » logique

Les opérations de comparaison

Variable utilisées	Notation	Signification
Booléen	=	Egal
Entier	≠	Différent
Réel Caractère	<	Inférieur
Chaîne de	>	Supérieur
caractère	≤	Inférieur ou égal
	<u>></u>	Supérieur ou égal

Priorités des opérateurs

Niveau de priorité	Opérateur
1	()
2	NON
3	* , /, DIV, MOD
4	+, -
5	<, >, ≤, ≥
6	==, ≠
7	ET
8	OU

Écrire un algorithme qui permet de calculer et afficher, à partir d'un prix hors taxe saisi, la TVA ainsi que le prix TTC Le montant TTC dépend de :

- Du prix HT
- Du taux de TVA de 20,6

```
Algorithme montantTTC;
Constante TVA: Réel = 20.6;
Variable prix, prixTVA, prixTTC : Réel;
Début
 Écrire ("Veuillez saisir le prix");
 Lire (prix);
 prixTVA= prix * TVA / 100;
 prixTTC = prix + prixTVA;
 Écrire ("Le prix de la TVA = ", prixTVA);
 Écrire ("Le prix TTC = ", prixTTC);
Fin
```