3.10 Model in Matrix Notation

For many purposes, including computation, it is convenient to write the model and statistics in matrix notation. The n linear equations $Y_i = X_i'\beta + e_i$ make a system of n equations. We can stack these n equations together as

$$Y_1 = X'_1 \beta + e_1$$

$$Y_2 = X'_2 \beta + e_2$$

$$\vdots$$

$$Y_n = X'_n \beta + e_n.$$

Define

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \qquad X = \begin{pmatrix} X_1' \\ X_2' \\ \vdots \\ X_n' \end{pmatrix}, \qquad e = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}.$$

Observe that Y and e are $n \times 1$ vectors and X is an $n \times k$ matrix. The system of n equations can be compactly written in the single equation

$$Y = X\beta + e. (3.19)$$

Sample sums can be written in matrix notation. For example

$$\sum_{i=1}^{n} X_i X_i' = \mathbf{X}' \mathbf{X}$$
$$\sum_{i=1}^{n} X_i Y_i = \mathbf{X}' \mathbf{Y}.$$

Therefore the least squares estimator can be written as

$$\widehat{\beta} = (X'X)^{-1}(X'Y).$$

The matrix version of (3.15) and estimated version of (3.19) is

$$Y = X\widehat{\beta} + \widehat{e}$$
.

Equivalently the residual vector is

$$\widehat{\boldsymbol{e}} = \boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}.$$

Using the residual vector we can write (3.16) as

$$X'\widehat{e}=0.$$

It can also be useful to write the sum of squared error criterion as

$$SSE(\beta) = (Y - X\beta)'(Y - X\beta).$$

Using matrix notation we have simple expressions for most estimators. This is particularly convenient for computer programming as most languages allow matrix notation and manipulation.

Theorem 3.2 Important Matrix Expressions

$$\widehat{\beta} = (X'X)^{-1}(X'Y)$$

$$\widehat{e} = Y - X\widehat{\beta}$$

$$X'\widehat{e} = 0.$$

Early Use of Matrices

The earliest known treatment of the use of matrix methods to solve simultaneous systems is found in Chapter 8 of the Chinese text *The Nine Chapters on the Mathematical Art*, written by several generations of scholars from the 10^{th} to 2^{nd} century BCE.

3.11 Projection Matrix

Define the matrix

$$\boldsymbol{P} = \boldsymbol{X} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}'.$$

Observe that

$$PX = X(X'X)^{-1}X'X = X.$$

This is a property of a **projection matrix**. More generally, for any matrix Z which can be written as $Z = X\Gamma$ for some matrix Γ (we say that Z lies in the **range space** of X), then

$$PZ = PX\Gamma = X(X'X)^{-1}X'X\Gamma = X\Gamma = Z.$$

As an important example, if we partition the matrix X into two matrices X_1 and X_2 so that $X = [X_1 \ X_2]$ then $PX_1 = X_1$. (See Exercise 3.7.)

The projection matrix P has the algebraic property that it is **idempotent**: PP = P. See Theorem 3.3.2 below. For the general properties of projection matrices see Section A.11.

The matrix P creates the fitted values in a least squares regression:

$$PY = X(X'X)^{-1}X'Y = X\widehat{\beta} = \widehat{Y}.$$

Because of this property **P** is also known as the **hat matrix**.

A special example of a projection matrix occurs when $X = \mathbf{1}_n$ is an n-vector of ones. Then

$$\boldsymbol{P} = \mathbf{1}_n \left(\mathbf{1}'_n \mathbf{1}_n \right)^{-1} \mathbf{1}'_n = \frac{1}{n} \mathbf{1}_n \mathbf{1}'_n.$$

Note that in this case

$$\mathbf{P}\mathbf{Y} = \mathbf{1}_n \left(\mathbf{1}_n' \mathbf{1}_n\right)^{-1} \mathbf{1}_n' \mathbf{Y} = \mathbf{1}_n \overline{\mathbf{Y}}$$

creates an *n*-vector whose elements are the sample mean \overline{Y} .

The projection matrix P appears frequently in algebraic manipulations in least squares regression. The matrix has the following important properties.

Theorem 3.3 The projection matrix $P = X(X'X)^{-1}X'$ for any $n \times k X$ with $n \ge k$ has the following algebraic properties.

- 1. P is symmetric (P' = P).
- 2. P is idempotent (PP = P).
- 3. tr**P**= k.
- 4. The eigenvalues of P are 1 and 0. There are k eigenvalues equalling 1 and n-k equalling 0.
- 5. rank(**P**) = k.

We close this section by proving the claims in Theorem 3.3. Part 1 holds since

$$P' = \left(X(X'X)^{-1}X'\right)'$$

$$= \left(X'\right)'\left(\left(X'X\right)^{-1}\right)'(X)'$$

$$= X\left(\left(X'X\right)'\right)^{-1}X'$$

$$= X\left(\left(X'X\right)'\left(X'\right)'\right)^{-1}X' = P.$$

To establish part 2, the fact that PX = X implies that

$$\mathbf{P}\mathbf{P} = \mathbf{P}\mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' = \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' = \mathbf{P}$$

as claimed. For part 3,

$$\operatorname{tr} \mathbf{P} = \operatorname{tr} \left(\mathbf{X} \left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}' \right) = \operatorname{tr} \left(\left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{X} \right) = \operatorname{tr} \left(\mathbf{I}_k \right) = k.$$

See Appendix A.5 for definition and properties of the trace operator.

For part 4, it is shown in Appendix A.11 that the eigenvalues λ_i of an idempotent matrix are all 1 and 0. Since $\operatorname{tr} \boldsymbol{P}$ equals the sum of the n eigenvalues and $\operatorname{tr} \boldsymbol{P} = k$ by part 3, it follows that there are k eigenvalues equalling 1 and the remainder n - k equalling 0.

For part 5, observe that P is positive semi-definite since its eigenvalues are all non-negative. By Theorem A.4.5 its rank equals the number of positive eigenvalues, which is k as claimed.

3.12 Annihilator Matrix

Define

$$\mathbf{M} = \mathbf{I}_n - \mathbf{P} = \mathbf{I}_n - \mathbf{X} \left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}'$$

where I_n is the $n \times n$ identity matrix. Note that

$$MX = (I_n - P)X = X - PX = X - X = 0.$$
 (3.21)

Thus M and X are orthogonal. We call M the **annihilator matrix** due to the property that for any matrix Z in the range space of X then

$$MZ = Z - PZ = 0$$
.