Theorem 1 If $x, y, m \in \mathbb{Z}$ then gcd(x, y) = gcd(x, y - mx)

PROOF Given $m \in \mathbb{Z}$ It must be true that $(y - mx) = (y \mod x)$ Thus we are really trying to prove..

$$gcd(x, y) = gcd(x, y - mx)$$

= $gcd(x, ymodx)$

That being true, there are two cases that must be considered for this proof.

Case 1 where x = y = 0

$$gcd(0,0) = gcd(0,0-0)$$

= $gcd(0,0)$

Case 2 Assume at least one of x,y is non zero Suppose d|x and d|y We now must prove that d|y-mx Since $(d|x \land y)(\exists k_0,k_1)$ such that $(x=d*k_0)(y=d*k_1)$ given $(k_0,k_1\in Z)$

$$gcd(x, y) = gcd(x, y - mx)$$

$$= gcd(x, ymodx)$$

$$= d$$

$$= ax + by$$

$$= ax + y($$