Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления

Кафедра Интеллектуальных информационных технологий

ОТЧЁТ

Лабораторная работа №2 "Решение многокритериальных задач"

Выполнил:	Колтович Д.С.
Проверил:	Гракова Н. В.

Минск 2022

Цель: построение алгоритма и разработка программы сведения многокритериальной задачи к однокритериальной.

Система: вафельница.

Сведение многокритериальной задачи к однокритериальной

Nº	Наименование критерия, q _i	Единица	Коэффициент	Коэффициент b _i
		Измерения q _i	a _i	
q1	Мощность	Вт	0,3	0,7
q 3	Вместимость	шт.	0,2	0,5
Q4	Bec	Г	0,1	0,3
q 5	Стоимость	бел. руб.	0,25	0,6
q 6	Количество температурных режимов	шт.	0,15	0,4

	Количество температурных режимов	Вместимость	Мощность	Bec	Стоимость
Atlanta ATH- 1078	1	2	750	4	5
	2	1	750	3	4
Sakura SA-7400					
	3	2	920	3	3
Kitfort KT-1620					
Rommelsbacher	5	5	1000	3	1
WA 1000/E					
	1	4	1200	1	2
Brayer BR2303 Aresa AR-2803	4	2	1100	2	4
S_0	5	5	1200	4	5

Балл	Стоимость, бел. руб.
5	39
4	95
3	101
2	124
1	353

Балл	Вес, г
4	1237
3	1700
2	2350
1	3400

Аддитивный суперкритерий:

$$q_0 = \sum_{q}^{p} \frac{a_i * q_i}{s_i}$$

$$q_0(1) = \frac{1*0.15}{5} + \frac{2*0.2}{5} + \frac{750*0.3}{1200} + \frac{4*0.1}{4} + \frac{5*0.25}{5} = 0.6475$$

$$q_0(2) = \frac{2*0.15}{5} + \frac{1*0.2}{5} + \frac{750*0.3}{1200} + \frac{3*0.1}{4} + \frac{4*0.25}{5} = 0.5625$$

$$q_0(3) = \frac{3*0.15}{5} + \frac{2*0.2}{5} + \frac{920*0.3}{1200} + \frac{3*0.1}{4} + \frac{3*0.25}{5} = 0.625$$

$$q_0(4) = \frac{5*0.15}{5} + \frac{5*0.2}{5} + \frac{1000*0.3}{1200} + \frac{3*0.1}{4} + \frac{1*0.25}{5} = 0.725$$

$$q_0(5) = \frac{1*0.15}{5} + \frac{4*0.2}{5} + \frac{1200*0.3}{1200} + \frac{1*0.1}{4} + \frac{2*0.25}{5} = 0.615$$

$$q_0(6) = \frac{4*0.15}{5} + \frac{2*0.2}{5} + \frac{1100*0.3}{1200} + \frac{2*0.1}{4} + \frac{4*0.25}{5} = 0.725$$

$$x^* = \arg \max_{x \in X} g_0(q(1), q(2), q(3), q(4), q(5), q(6));$$
 $x^* = \arg \max_{x \in X} g_0(0.6475, 0.5625, 0.625, 0.725, 0.615, 0.725);$
 $x^* = 0.725;$

Лучшими альтернативами являются вафельницы «Rommelsbacher WA 1000/E» и «Aresa AR-2803».

Мультипликативный суперкритерий:

$$1 - q_0 = \prod_{i=1}^{p} \left(1 - \frac{\beta_i \cdot q_i}{S_i} \right)$$

$$1 - q_0(1) = \left(1 - \frac{1 * 0.4}{5}\right) * \left(1 - \frac{2 * 0.5}{5}\right) * \left(1 - \frac{750 * 0.7}{1200}\right) * \left(1 - \frac{4 * 0.3}{4}\right) * \left(1 - \frac{5 * 0.6}{5}\right) = 0.11592$$

$$1 - q_0(2) = \left(1 - \frac{2 * 0.4}{5}\right) * \left(1 - \frac{1 * 0.5}{5}\right) * \left(1 - \frac{750 * 0.7}{1200}\right) * \left(1 - \frac{3 * 0.3}{4}\right) * \left(1 - \frac{4 * 0.6}{5}\right) = 0.17138$$

$$1 - q_0(3) = \left(1 - \frac{3 * 0.4}{5}\right) * \left(1 - \frac{2 * 0.5}{5}\right) * \left(1 - \frac{920 * 0.7}{1200}\right) * \left(1 - \frac{3 * 0.3}{4}\right) * \left(1 - \frac{3 * 0.6}{5}\right) = 0.13973$$

$$1 - q_0(4) = \left(1 - \frac{5 * 0.4}{5}\right) * \left(1 - \frac{5 * 0.5}{5}\right) * \left(1 - \frac{1000 * 0.7}{1200}\right) * \left(1 - \frac{3 * 0.3}{4}\right) * \left(1 - \frac{1 * 0.6}{5}\right) = 0.08525$$

$$1 - q_0(5) = \left(1 - \frac{1 * 0.4}{5}\right) * \left(1 - \frac{4 * 0.5}{5}\right) * \left(1 - \frac{1200 * 0.7}{1200}\right) * \left(1 - \frac{1 * 0.3}{4}\right) * \left(1 - \frac{2 * 0.6}{5}\right) = 0.11642$$

$$1 - q_0(6) = \left(1 - \frac{4 * 0.4}{5}\right) * \left(1 - \frac{2 * 0.5}{5}\right) * \left(1 - \frac{1100 * 0.7}{1200}\right) * \left(1 - \frac{2 * 0.3}{4}\right) * \left(1 - \frac{4 * 0.6}{5}\right) = 0.08616$$

 $q_0(1) = 0.88408;$

$$q_0(2) = 0.82862;$$

$$q_0(3) = 0.86027;$$

$$q_0(4) = 0.91475;$$

$$q_0(5) = 0.88358;$$

$$q_0(6) = 0.91384;$$

$$x^* = \underset{x \in X}{\operatorname{arg \, max}} \quad g_0(q(1), \ q(2), \ q(3), \ q(4), \ q(5), \ q(6));$$
 $x^* = \underset{x \in X}{\operatorname{arg \, max}} \quad g_0(0.88408 \ , \ 0.82862, \ 0.86027, \ 0.91475, \ 0.88358, \ 0.91384);$

 $x^* = 0.91475;$

 $x \in X$

Лучшей альтернативой является вафельница «Rommelsbacher WA 1000/E».

Метод подтягивания "отстающего":

$$x^* = \arg \max_{x \in X} \{\min \frac{a_i * q_i}{S_i}\};$$
 $\min(q(1)) = 0.03;$
 $\min(q(2)) = 0.04;$

```
\begin{aligned} &\min(q(3)) = 0,075; \\ &\min(q(4)) = 0,005; \\ &\min(q(5)) = 0,04; \\ &\min(q(6)) = 0,025; \\ &x^* = \arg\max_{x \in X} \{\min(q(1)) \ , \ \min(q(2)) \ , \ \min(q(3)) \ , \ \min(q(4)) \ , \ \min(q(5)) \ , \ \min(q(6))\}; \\ &x^* = 0,005; \end{aligned}
```

Следовательно, лучшей альтернативой является вафельница «Rommelsbacher WA 1000/E»

Граф предпочтений:

Граф предпочтений антирефлексивен и транзитивен, т.е. многокритериальная задача сведена к однокритериальной.

Вывод:

Исходя из подходов, рассматриваемых в лабораторной работе №2, делаем вывод, что лучшей альтернативой из рассматриваемых в системе "Вафельница" является вафельница «Rommelsbacher WA 1000/E»