Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones

Conjuntos

1. Dado el conjunto $A = \{1, 2, 3\}$, determinar cuáles de las siguientes afirmaciones son verdaderas

i) $1 \in A$

ii) $\{1\} \subseteq A$ iii) $\{2,1\} \subseteq A$ iv) $\{1,3\} \in A$ v) $\{2\} \in A$

2. Dado el conjunto $A = \{1, 2, \{3\}, \{1, 2\}\}$, determinar cuáles de las siguientes afirmaciones son verdaderas:

i) $3 \in A$

iv) $\{\{3\}\}\subseteq A$ vii) $\{\{1,2\}\}\subseteq A$ x) $\emptyset\subseteq A$

iii) $\{3\} \in A$

3. Determinar si $A \subseteq B$ en cada uno de los siguientes casos

i) $A = \{1, 2, 3\}, B = \{5, 4, 3, 2, 1\}$

ii) $A = \{1, 2, 3\}, B = \{1, 2, \{3\}, -3\}$

iii) $A = \{x \in \mathbb{R} / 2 < |x| < 3\}, B = \{x \in \mathbb{R} / x^2 < 3\}$

iv) $A = \{\emptyset\}, B = \emptyset$

4. Dados los subconjuntos $A = \{1, -2, 7, 3\}, B = \{1, \{3\}, 10\} \text{ y } C = \{-2, \{1, 2, 3\}, 3\} \text{ del conjunto}$ referencial $V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\}$, hallar

i) $A \cap (B \triangle C)$

ii) $(A \cap B) \triangle (A \cap C)$ iii) $A^c \cap B^c \cap C^c$

5. Dados subconjuntos A, B, C de un conjunto referencial V, describir $(A \cup B \cup C)^c$ en términos de intersecciones y complementos, y $(A \cap B \cap C)^c$ en términos de uniones y complementos.

6. Sean A, B y C conjuntos. Representar en un diagrama de Venn

i) $(A \cup B^c) \cap C$

ii) $A \triangle (B \cup C)$

iii) $A \cup (B \triangle C)$

7. Encontrar fórmulas que describan las partes rayadas de los siguientes diagramas de Venn, utilizando únicamente intersecciones, uniones y complementos.

i)

iii)

8. Hallar el conjunto $\mathcal{P}(A)$ de partes de A en los casos

i) $A = \{1\}$

ii) $A = \{a, b\}$

iii) $A = \{1, \{1, 2\}, 3\}$

9. Sean A y B conjuntos. Probar que $\mathcal{P}(A) \subseteq \mathcal{P}(B) \Leftrightarrow A \subseteq B$.

- 10. Sean p,q proposiciones. Verificar que las siguientes expresiones tienen la misma tabla de verdad para concluir que son equivalentes:
 - i) $p \Rightarrow q$, $\sim q \Rightarrow \sim p$, $\sim p \lor q$ y $\sim (p \land \sim q)$.

Cuando para probar $p \Rightarrow q$ se prueba en su lugar $\sim q \Rightarrow \sim p$ se dice que es una demostración por contrarrecíproco, mientras que cuando se prueba en su lugar que suponer que vale $p \land \sim q$ lleva a una contradicción, se dice que es una demostración por reducción al absurdo.

- ii) $\sim (p \Rightarrow q)$ y $p \land \sim q$.
- 11. Hallar contraejemplos para mostrar que las siguientes proposiciones son falsas:
 - i) $\forall a \in \mathbb{N}, \frac{a-1}{a}$ no es un número entero.
 - ii) $\forall x, y \in \mathbb{R} \text{ con } x, y \text{ positivos, } \sqrt{x+y} = \sqrt{x} + \sqrt{y}.$
 - iii) $\forall x \in \mathbb{R}, x^2 > 4 \Rightarrow x > 2.$
- i) Decidir si las siguientes proposiciones son verdaderas o falsas, justificando debidamente:
 - (a) $\forall n \in \mathbb{N}, n \geq 5 \lor n \leq 8$.

(e) $\forall x \in \mathbb{R}, x > 3 \Rightarrow x^2 > 4$.

- (b) $\exists n \in \mathbb{N} / n \ge 5 \land n \le 8$.
- (c) $\forall n \in \mathbb{N}, \exists m \in \mathbb{N} / m > n$.
- (d) $\exists n \in \mathbb{N} / \forall m \in \mathbb{N}, m > n$.
- (f) Si z es un número real, entonces z es un número complejo.
- ii) Negar las proposiciones anteriores, y en cada caso verificar que la proposición negada tiene el valor de verdad opuesto al de la original.
- iii) Reescribir las proposiciones e) y f) del ítem i) utilizando las equivalencias del ejercicio 10i).
- 13. Determinar cuáles de las siguientes afirmaciones son verdaderas cualesquiera sean los subconjuntos A, B y C de un conjunto referencial V y cuáles no. Para las que sean verdaderas, dar una demostración, para las otras dar un contraejemplo.
 - i) $(A\triangle B) C = (A C)\triangle(B C)$
- iii) $C \subseteq A \Rightarrow B \cap C \subseteq (A \triangle B)^c$
- ii) $(A \cap B) \triangle C = (A \triangle C) \cap (B \triangle C)$
- iv) $A \triangle B = \emptyset \Leftrightarrow A = B$
- 14. Sean A, B y C subconjuntos de un conjunto referencial V. Probar que
 - i) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$
- v) $A \subseteq B \Rightarrow A \triangle B = B \cap A^c$
- ii) $A (B C) = (A B) \cup (A \cap C)$
- vi) $A \subseteq B \Leftrightarrow B^c \subseteq A^c$

iii) $A \triangle B \subseteq (A \triangle C) \cup (B \triangle C)$

- vii) $A \cap C = \emptyset \implies A \cap (B \triangle C) = A \cap B$
- iv) $(A \cap C) B = (A B) \cap C$
- 15. Sean $A = \{1, 2, 3\}, B = \{1, 3, 5, 7\}$. Hallar $A \times A, A \times B, (A \cap B) \times (A \cup B)$.
- 16. Sean A, B y C conjuntos. Probar que
 - i) $(A \cup B) \times C = (A \times C) \cup (B \times C)$
- iii) $(A B) \times C = (A \times C) (B \times C)$
- ii) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- iv) $(A \triangle B) \times C = (A \times C) \triangle (B \times C)$

Relaciones

17. Sean $A = \{1, 2, 3\}$ y $B = \{1, 3, 5, 7\}$. Verificar si las siguientes son relaciones de A en B y en caso afirmativo graficarlas por medio de un diagrama con flechas de A en B, y por medio de puntos en el producto cartesiano $A \times B$.

- i) $\mathcal{R} = \{(1,1), (1,3), (1,7), (3,1), (3,5)\}$
- iii) $\mathcal{R} = \{(1,1), (2,7), (3,7)\}$
- ii) $\mathcal{R} = \{(1,1), (1,3), (2,7), (3,2), (3,5)\}$ iv) $\mathcal{R} = \{(1,3), (2,1), (3,7)\}$
- 18. Sean $A = \{1, 2, 3\}$ y $B = \{1, 3, 5, 7\}$. Describir por extensión cada una de las relaciones siguientes $de\ A\ en\ B$:
 - i) $(a,b) \in \mathcal{R} \iff a \leq b$

iii) $(a,b) \in \mathcal{R} \iff a \cdot b$ es par

ii) $(a,b) \in \mathcal{R} \iff a > b$

- iv) $(a,b) \in \mathcal{R} \iff a+b > 6$
- 19. Sea $A = \{a, b, c, d, e, f, g, h\}$. Para cada uno de los siguientes gráficos describir por extensión la relación en A que representa y determinar si es reflexiva, simétrica, antisimétrica o transitiva.

20. Sea $A = \{1, 2, 3, 4, 5, 6\}$. Graficar la relación

$$\mathcal{R} = \{(1,1), (1,3), (3,1), (3,3), (6,4), (4,6), (4,4), (6,6)\}$$

como está hecho en el ejercicio anterior y determinar si es reflexiva, simétrica, antisimétrica o transitiva.

21. Sea $A = \{a, b, c, d, e, f\}$ y sea \mathcal{R} la relación en A representada por el gráfico

Hallar la mínima cantidad de pares que se deben agregar a \mathcal{R} de manera que la nueva relación obtenida sea

i) reflexiva,

iii) transitiva,

v) simétrica y transitiva,

ii) simétrica,

- iv) reflexiva y simétrica,
- vi) de equivalencia.

- 22. En cada uno de los siguientes casos determinar si la relación \mathcal{R} en A es reflexiva, simétrica, antisimétrica, transitiva, de equivalencia o de orden.
 - i) $A = \{1, 2, 3, 4, 5\}, \mathcal{R} = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (1, 3), (2, 5), (1, 5)\}$
 - ii) $A = \mathbb{N}, \mathcal{R} = \{(a, b) \in \mathbb{N} \times \mathbb{N} / a + b \text{ es par}\}$
 - iii) $A = \mathbb{Z}, \mathcal{R} = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} / |a| \le |b|\}$
 - iv) $A = \mathbb{Z}$, \mathcal{R} definida por $a \mathcal{R} b \Leftrightarrow b$ es múltiplo de a
 - v) $A = \mathcal{P}(\mathbb{R}), \mathcal{R}$ definida por $X \mathcal{R} Y \Leftrightarrow X \cap \{1, 2, 3\} \subseteq Y \cap \{1, 2, 3\}$
 - vi) $A = \mathcal{P}(\{n \in \mathbb{N}/n \leq 30\}), \mathcal{R}$ definida por $X \mathcal{R} Y \iff 2 \notin X \cap Y^c$
 - vii) $A = \mathbb{N} \times \mathbb{N}$, \mathcal{R} definida por $(a, b) \mathcal{R}(c, d) \Leftrightarrow bc$ es múltiplo de ad.
- 23. Sea A un conjunto. Describir todas las relaciones en A que son a la vez
 - i) simétricas y antisimétricas

ii) de equivalencia y de orden

¿Puede una relación en A no ser ni simétrica ni antisimétrica?

24. Sea $A = \{a, b, c, d, e, f\}$. Dada la relación de equivalencia en A:

$$\mathcal{R} = \{(a,a),(b,b),(c,c),(d,d),(e,e),(f,f),(a,b),(b,a),(a,f),(f,a),(b,f),(f,b),(c,e),(e,c)\}$$

hallar la clase \bar{a} de a, la clase \bar{b} de b, la clase \bar{c} de c, la clase \bar{d} de d, y la partición asociada a \mathcal{R} .

- 25. Sea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Hallar y graficar la relación de equivalencia en A asociada a la partición $\{\{1, 3\}, \{2, 6, 7\}, \{4, 8, 9, 10\}, \{5\}\}$. ¿Cuántas clases de equivalencia distintas tiene? Hallar un representante para cada clase.
- 26. Sean $P = \mathcal{P}(\{1,2,3,4,5,6,7,8,9,10\})$ el conjunto de partes de $\{1,\ldots,10\}$ y \mathcal{R} la relación en P definida por

$$A \mathcal{R} B \iff (A \triangle B) \cap \{1, 2, 3\} = \emptyset$$

- i) Probar que \mathcal{R} es una relación de equivalencia y decidir si es antisimétrica (<u>Sugerencia</u>: usar adecuadamente el ejercicio **14iii**)).
- ii) Hallar la clase de equivalencia de $A = \{1, 2, 3\}$.
- 27. Sean $A = \{n \in \mathbb{N} / n \le 92\}$ y \mathcal{R} la relación en A definida por

$$x \mathcal{R} y \iff x^2 - y^2 = 93x - 93y$$

- i) Probar que \mathcal{R} es una relación de equivalencia ¿Es antisimétrica?
- ii) Hallar la clase de equivalencia de cada $x \in A$. Deducir cuántas clases de equivalencia **distintas** determina la relación \mathcal{R} .
- 28. i) Sea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Consideremos en $\mathcal{P}(A)$ la relación de equivalencia dada por el cardinal (es decir, la cantidad de elementos): dos subconjuntos de A están relacionados si y solo si tienen la misma cantidad de elementos ¿Cuántas clases de equivalencia distintas determina la relación? Hallar un representante para cada clase.
 - ii) En el conjunto de todos los subconjuntos finitos de N, consideremos nuevamente la relación de equivalencia dada por el cardinal: dos subconjuntos finitos de N están relacionados si y solo si tienen la misma cantidad de elementos ¿Cuántas clases de equivalencia distintas determina la relación? Hallar un representante para cada clase.

Functiones

29. Determinar si \mathcal{R} es una función de A en B en los casos

i)
$$A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}, \mathcal{R} = \{(1, a), (2, a), (3, a), (4, b), (5, c), (3, d)\}$$

- ii) $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}, \mathcal{R} = \{(1, a), (2, a), (3, d), (4, b)\}$
- iii) $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}, \mathcal{R} = \{(1, a), (2, a), (3, d), (4, b), (5, c)\}$
- iv) $A = \mathbb{N}, B = \mathbb{R}, \mathcal{R} = \{(a, b) \in \mathbb{N} \times \mathbb{R} \mid a = 2b 3\}$
- v) $A = \mathbb{R}, B = \mathbb{N}, \mathcal{R} = \{(a, b) \in \mathbb{R} \times \mathbb{N} \mid a = 2b 3\}$
- vi) $A = \mathbb{Z}, B = \mathbb{Z}, \mathcal{R} = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a + b \text{ es divisible por 5}\}$
- 30. Determinar si las siguientes funciones son invectivas, sobrevectivas o bivectivas. Para las que sean biyectivas hallar la inversa y para las que no sean sobreyectivas hallar la imagen.
 - i) $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = 12x^2 5$
 - ii) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, f(x,y) = x + y
 - iii) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, f(x, y, z) = (x + y, 2z)
 - iv) $f: \mathbb{N} \longrightarrow \mathbb{N}$, $f(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ es par} \\ n+1 & \text{si } n \text{ es impar} \end{cases}$
 - v) $f: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$, f(a,b) = 3a
 - vi) $f: \mathbb{Z} \longrightarrow \mathbb{N}$, $f(a) = \begin{cases} 2a & \text{si } a > 0 \\ 1 2a & \text{si } a \leq 0 \end{cases}$
- 31. i) Dadas las funciones

$$f: \mathbb{N} \to \mathbb{N}, \ f(n) = \left\{ \begin{array}{ll} \frac{n^2}{2} & \text{si } n \text{ es divisible por 6} \\ 3n+1 & \text{en los otros casos} \end{array} \right. \quad \text{y} \quad g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ g(n,m) = n(m+1),$$

calcular, de ser posible, $(f \circ g)(3,4)$, $(f \circ g)(2,5)$ y $(f \circ g)(3,2)$.

ii) Dadas las funciones

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \left\{ \begin{array}{ccc} x^2 & \text{si } x \le 7 \\ 2x - 1 & \text{si } x > 7 \end{array} \right. \quad \text{y} \quad g: \mathbb{N} \to \mathbb{R}, \ g(n) = \sqrt{n},$$

hallar, si existen, todos los $n \in \mathbb{N}$ tales que $(f \circ g)(n) = 13$ y todos los $m \in \mathbb{N}$ tales que $(f \circ g)(m) = 15.$

- 32. Hallar $f \circ g$ y $g \circ f$ (cuando sea posible) en los casos

 - i) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 2x^2 18$ y $g: \mathbb{R} \to \mathbb{R}, \ g(x) = x + 3$ ii) $f: \mathbb{N} \to \mathbb{N}, \ f(n) = \begin{cases} n-2 & \text{si n es divisible por 4} \\ n+1 & \text{si n no es divisible por 4} \end{cases}$ y $g: \mathbb{N} \to \mathbb{N}, \ g(n) = 4n$
 - iii) $f: \mathbb{R} \to \mathbb{R} \times \mathbb{R}$, f(x) = (x+5,3x) y $g: \mathbb{N} \to \mathbb{R}$, $g(n) = \sqrt{n}$
- 33. Hallar dos funciones $f: \mathbb{N} \longrightarrow \mathbb{N}$ y $g: \mathbb{N} \longrightarrow \mathbb{N}$ tales que $f \circ g = \mathrm{id}_{\mathbb{N}}$ y $g \circ f \neq \mathrm{id}_{\mathbb{N}}$, donde $id_{\mathbb{N}}: \mathbb{N} \longrightarrow \mathbb{N}$ denota la función identidad del conjunto \mathbb{N} .
- 34. Sean A, B y C conjuntos. Probar que si $f: B \longrightarrow C$ y $g: A \longrightarrow B$ son funciones entonces valen
 - i) si $f \circ g$ es invectiva entonces g es invectiva.
 - ii) si $f \circ g$ es sobreyectiva entonces f es sobreyectiva
 - iii) si $f \circ q$ son invectivas entonces $f \circ q$ es invectiva
 - iv) si f y g son sobreyectivas entonces $f \circ g$ es sobreyectiva
 - v) si f y g son biyectivas entonces $f \circ g$ es biyectiva
- 35. Sea $\mathcal{F} = \{f : \{1, \dots, 10\} \longrightarrow \{1, \dots, 10\} / f \text{ es una función biyectiva}\}, y sea <math>\mathcal{R}$ la relación en \mathcal{F} definida por

$$f \mathcal{R} g \iff \exists n \in \{1, \dots, 10\} / f(n) = 1 \quad \mathbf{y} \quad g(n) = 1$$

- i) Probar que \mathcal{R} es una relación de equivalencia ¿Es antisimétrica?
- ii) Sea $\mathrm{Id}:\{1,\ldots,10\}\longrightarrow\{1,\ldots,10\}$ la función identidad, o sea, $\mathrm{Id}(n)=n,\ \forall\,n\in\{1,\ldots,10\}.$ Dar tres elementos **distintos** de la clase de equivalencia de Id.

Importante: al exhibir una función es indispensable definirla en todos los elementos de su dominio.

36. Sea $f:\{1,2,3,4\}\longrightarrow\{1,2,3,4\}$ una función. Consideremos el conjunto de **todas** las funciones de $\{1,2,3,4\}$ en $\{1,2,3,4,5,6,7,8\}$, es decir,

$$\mathcal{F} = \left\{ g : \{1, 2, 3, 4\} \longrightarrow \{1, 2, 3, 4, 5, 6, 7, 8\} \right\}$$

y definimos sobre ${\mathcal F}$ la relación dada por

$$g \mathcal{R} h \iff g \circ f = h \circ f$$

- i) Probar que \mathcal{R} es una relación de equivalencia ¿Es siempre antisimétrica (sin importar cómo sea f)?
- ii) Asumiendo que f es sobreyectiva, calcular la clase de equivalencia de cada $g \in \mathcal{F}$.