Quiz 02 - Scheduling

Total points 9/11

The respondent's email address (rpn241@nyu.edu) was recorded on submission of this form.

Section score 9/11

✓	In a non-preemptive strategy, when is an election triggered by 1/7 the scheduler? (Choose all of the correct answers)						
	/	When a task switches from the running state to the waiting state	/				
		When a task switches from the waiting state to the ready state and the CPU is idle	/				

When a task	switches	from	the	waiting	state	to t	he i	ready	state	and	the
CPU is busy											

- ✓ When a task switches from the running state to the ready state
- ✓ When a task switches from the running state to the terminated state ✓
- Never: elections are triggered by the dispatcher

/	✓ Preemption means that an election can be triggered:				
	0	When a task switches from the waiting state to the ready state and the CPU is idle			
	\bigcirc	When a task switches from the waiting state to the ready state and the CPU is busy			
	\bigcirc	When a new task gets inserted in the system			
	•	All of the above	~		
	\bigcirc	None of the above			
✓	the	en designing and choosing scheduling policies, which of following metrics should be maximized? (Choose all of correct answers)	1/1		
		average waiting time			
		average turnaround time			
	/	CPU utilization	✓		
		average response time			
	~	throughput	~		
~		time interval between the submission date of a process its completion date is called:	1/1		
	•	turnaround time	✓		
	\bigcirc	response time			
	\bigcirc	waiting time			
	\bigcirc	throughput			

✓		ch evaluation metric uses the difference between around time and computation time?	1/1
	\bigcirc	average response time	
	•	average waiting time	✓
	0	throughput	
✓		ch of the following process scheduling algorithms may to starvation?	1/1
		First Come, First Served	
		Round Robin	
	/	Shortest Job First	✓
	/	Multilevel Feedback Queue	✓
	/	Priority Scheduling	✓
		None of the above	
✓	sha	rder to ensure fairness when scheduling tasks in a time- ring strategy, why do we not simply minimize the size of quantum?	1/1
	\bigcirc	It penalizes larger tasks because it can induce famine	
	•	It penalizes every task because it increases the scheduling overhead	~
	0	It penalizes smaller tasks that could have terminated faster with a large quantum size	er

✓		at is the effect of a very large quantum size when eduling tasks in a time-sharing strategy?	1/1
	\bigcirc	It increases the throughput by decreasing the overhead	
	\bigcirc	It penalizes larger tasks because it mimics the Shortest Job First strate	∍gy
	•	It penalizes smaller tasks because it mimics the First Come First Served strategy	✓
×		en does it make sense to choose Round Robin instead of rtest Job First? (Choose all of the correct answers)	0/1
	/	To prevent famine	✓
	/	To decrease the average response time	×
		To decrease the average waiting time	
	/	To introduce fairness in the presence of interactive tasks	✓
	Co	prrect answer	
	<	To prevent famine	
		To introduce fairness in the presence of interactive tasks	

×	Which statement about the Preemptive SJF scheduling policy 0/1 is false?						
	\bigcirc	May cause famines					
	\bigcirc	Upon insertion of a new process, the running process gets evicted if its expected CPU time is longer than that of the new process					
	\bigcirc	Requires the scheduler to predict the CPU time of each task					
	()	Guarantees that the average waiting time is minimal	×				
	\bigcirc	All of the above					
	\bigcirc	None of the above					
	Co	None of the above					
/	Wha	at is graceful ageing?	1/1				
	\bigcirc	The priority of processes in the ready queue increases periodically.					
	0	Processes move to a lower priority queue after finishing their quantum. Upon reaching the lowest priority queue, they are flushed out using the FCFS scheduling policy.					
	•	Processes move to a lower priority queue after finishing their quantum. After reaching the lowest priority queue, they may move back to the highest priority queue.	~				
	0	Processes get the CPU for a limited duration (quantum), then go back to the end of the ready queue.)				

Quiz 02 - Scheduling Google Forms