$12n_{0850} (K12n_{0850})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{10} - 5u^9 - 4u^8 + 8u^7 - u^6 - 16u^5 + 19u^4 + 20u^3 - 15u^2 + 2b + 5u + 4, \\ &- 3u^{10} - 10u^9 - u^8 + 14u^7 - 17u^6 - 17u^5 + 47u^4 + 13u^3 - 25u^2 + 2a + 18u + 7, \\ &u^{11} + 5u^{10} + 6u^9 - 4u^8 - 3u^7 + 14u^6 - 5u^5 - 30u^4 - u^3 + 9u^2 - 10u - 4 \rangle \\ I_2^u &= \langle -u^5 + 4u^3 + b - 3u, \ u^5 - 5u^3 + u^2 + a + 6u - 3, \ u^7 - u^6 - 5u^5 + 5u^4 + 6u^3 - 7u^2 + u + 1 \rangle \\ I_3^u &= \langle b, \ a + 1, \ u + 1 \rangle \\ I_4^u &= \langle -a^3 + b + a + 1, \ a^4 + a^3 - 2a - 1, \ u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 23 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{10} - 5u^9 + \dots + 2b + 4, -3u^{10} - 10u^9 + \dots + 2a + 7, u^{11} + 5u^{10} + \dots - 10u - 4 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \left(\frac{3}{2}u^{10} + 5u^{9} + \dots - 9u - \frac{7}{2} \\ \frac{1}{2}u^{10} + \frac{5}{2}u^{9} + \dots - \frac{5}{2}u - 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{4}u^{10} + \frac{3}{4}u^{9} + \dots - \frac{5}{4}u - 1 \\ -\frac{1}{2}u^{10} - \frac{3}{2}u^{9} + \dots + \frac{5}{2}u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{9} - \frac{1}{2}u^{8} + \dots + \frac{1}{2}u + \frac{3}{2} \\ \frac{5}{2}u^{10} + \frac{17}{2}u^{9} + \dots - \frac{23}{2}u - 6 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{4}u^{10} - \frac{3}{4}u^{9} + \dots - \frac{3}{4}u^{2} + \frac{5}{4}u \\ -\frac{1}{2}u^{10} - \frac{3}{2}u^{9} + \dots + \frac{5}{2}u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{10} - \frac{5}{2}u^{9} + \dots + \frac{7}{2}u + \frac{5}{2} \\ -\frac{1}{2}u^{10} - \frac{5}{2}u^{9} + \dots + \frac{7}{2}u + \frac{5}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
=
$$-7u^{10} - 25u^9 - 6u^8 + 36u^7 - 35u^6 - 50u^5 + 113u^4 + 43u^3 - 65u^2 + 46u + 2$$

Crossings	u-Polynomials at each crossing
c_1	$u^{11} - 7u^{10} + \dots - 2u + 2$
$c_2, c_3, c_7 \ c_9$	$u^{11} + 14u^9 + 4u^8 + 46u^7 + 67u^6 - 66u^5 - 7u^4 - 30u^3 - 9u^2 - 3u - 1$
c_4, c_8	$u^{11} + u^{10} + \dots - 4u - 1$
c_5, c_6, c_{10} c_{11}	$u^{11} + 5u^{10} + \dots - 10u - 4$
c_{12}	$u^{11} - 3u^{10} + \dots - 3192u - 576$

Crossings	Riley Polynomials at each crossing
c_1	$y^{11} - 31y^{10} + \dots + 200y - 4$
c_2, c_3, c_7 c_9	$y^{11} + 28y^{10} + \dots - 9y - 1$
c_4, c_8	$y^{11} + 17y^{10} + \dots + 24y - 1$
$c_5, c_6, c_{10} \\ c_{11}$	$y^{11} - 13y^{10} + \dots + 172y - 16$
c_{12}	$y^{11} + 67y^{10} + \dots + 7508160y - 331776$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.18814		
a = 0.348347	-5.45154	-15.3520
b = -0.566087		
u = 0.651462 + 1.063750I		
a = 1.81578 + 0.65642I	12.65630 - 3.45618I	-10.65599 + 2.10885I
b = -1.77237 + 0.06609I		
u = 0.651462 - 1.063750I		
a = 1.81578 - 0.65642I	12.65630 + 3.45618I	-10.65599 - 2.10885I
b = -1.77237 - 0.06609I		
u = 0.496165 + 0.539201I		
a = -1.042860 - 0.661841I	2.08534 - 1.86536I	-10.69284 + 5.33447I
b = 1.138470 - 0.357731I		
u = 0.496165 - 0.539201I		
a = -1.042860 + 0.661841I	2.08534 + 1.86536I	-10.69284 - 5.33447I
b = 1.138470 + 0.357731I		
u = -1.53157 + 0.15203I		
a = -0.354779 + 0.587363I	-4.66784 + 4.30939I	-14.0390 - 6.9085I
b = 1.12977 + 1.06011I		
u = -1.53157 - 0.15203I		
a = -0.354779 - 0.587363I	-4.66784 - 4.30939I	-14.0390 + 6.9085I
b = 1.12977 - 1.06011I		
u = -0.330126		
a = 0.768686	-0.487897	-20.3390
b = -0.139205		
u = -1.64929 + 0.39522I		
a = 0.914271 - 0.873133I	5.23140 + 8.93346I	-13.21655 - 3.59394I
b = -1.77328 - 0.21395I		
u = -1.64929 - 0.39522I		
a = 0.914271 + 0.873133I	5.23140 - 8.93346I	-13.21655 + 3.59394I
b = -1.77328 + 0.21395I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.79155		
a = 0.218139	-16.4464	-7.09980
b = -0.739878		

II. $I_2^u = \langle -u^5 + 4u^3 + b - 3u, \ u^5 - 5u^3 + u^2 + a + 6u - 3, \ u^7 - u^6 - 5u^5 + 5u^4 + 6u^3 - 7u^2 + u + 1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} + 5u^{3} - u^{2} - 6u + 3 \\ u^{5} - 4u^{3} + 3u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{6} + u^{5} + 4u^{4} - 5u^{3} - 2u^{2} + 7u - 4 \\ u^{4} - 3u^{2} + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{6} + 2u^{5} + 10u^{4} - 10u^{3} - 11u^{2} + 14u - 4 \\ u^{6} - 5u^{4} + u^{3} + 6u^{2} - 3u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{6} + u^{5} + 5u^{4} - 5u^{3} - 5u^{2} + 7u - 3 \\ u^{4} - 3u^{2} + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} + 5u^{3} - u^{2} - 6u + 4 \\ -u^{3} + 2u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2u^6 2u^5 12u^4 + 5u^3 + 16u^2 3u 10$

Crossings	u-Polynomials at each crossing
c_1	$u^7 - 6u^6 + 12u^5 - 11u^4 + 7u^3 - 3u^2 - 1$
c_2, c_9	$u^7 - u^6 + u^5 - 2u^4 - u^2 + 1$
c_3, c_7	$u^7 + u^6 + u^5 + 2u^4 + u^2 - 1$
c_4, c_8	$u^7 - u^5 - 2u^3 + u^2 - u + 1$
c_5, c_6	$u^7 + u^6 - 5u^5 - 5u^4 + 6u^3 + 7u^2 + u - 1$
c_{10}, c_{11}	$u^7 - u^6 - 5u^5 + 5u^4 + 6u^3 - 7u^2 + u + 1$
c_{12}	$u^7 - 5u^6 + 7u^5 - 5u^4 - 4u^3 - 7u^2 + 5u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^7 - 12y^6 + 26y^5 + 11y^4 - 29y^3 - 31y^2 - 6y - 1$
$c_2, c_3, c_7 \ c_9$	$y^7 + y^6 - 3y^5 - 6y^4 - 2y^3 + 3y^2 + 2y - 1$
c_4, c_8	$y^7 - 2y^6 - 3y^5 + 2y^4 + 6y^3 + 3y^2 - y - 1$
$c_5, c_6, c_{10} \\ c_{11}$	$y^7 - 11y^6 + 47y^5 - 97y^4 + 98y^3 - 47y^2 + 15y - 1$
c_{12}	$y^7 - 11y^6 - 9y^5 - 141y^4 + 26y^3 - 79y^2 + 39y - 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.602602 + 0.366097I		
a = -0.802378 - 0.958802I	3.42389 - 1.23175I	-6.47743 + 5.11160I
b = 1.74200 - 0.23095I		
u = 0.602602 - 0.366097I		
a = -0.802378 + 0.958802I	3.42389 + 1.23175I	-6.47743 - 5.11160I
b = 1.74200 + 0.23095I		
u = 1.50894		
a = 1.02523	-10.4234	-15.1670
b = -1.39324		
u = -1.59539 + 0.14916I		
a = -0.285687 + 0.511963I	-4.17528 + 3.26775I	-10.72162 - 1.02180I
b = 1.59460 + 0.65214I		
u = -1.59539 - 0.14916I		
a = -0.285687 - 0.511963I	-4.17528 - 3.26775I	-10.72162 + 1.02180I
b = 1.59460 - 0.65214I		
u = -0.293328		
a = 4.54991	-4.14361	-7.95280
b = -0.781203		
u = 1.76997		
a = -0.399006	-16.8289	-28.4820
b = 0.501243		

III.
$$I_3^u=\langle b,\; a+1,\; u+1 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -24

Crossings	u-Polynomials at each crossing
c_1	u-2
c_2, c_4, c_8 c_9, c_{10}, c_{11} c_{12}	u+1
c_3, c_5, c_6 c_7	u-1

Crossings	Riley Polynomials at each crossing
c_1	y-4
c_2, c_3, c_4 c_5, c_6, c_7 c_8, c_9, c_{10} c_{11}, c_{12}	y-1

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	-6.57974	-24.0000
b = 0		

IV.
$$I_4^u = \langle -a^3 + b + a + 1, \ a^4 + a^3 - 2a - 1, \ u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{25} = \begin{pmatrix} a \\ a^{3} - a - 1 \end{pmatrix}$$

$$a_{25} = \begin{pmatrix} -a^{3} - a^{2} + a + 2 \\ a^{3} - 1 \end{pmatrix}$$

$$a_{35} = \begin{pmatrix} -a^{3} + a + 2 \\ -a^{3} - a^{2} + a + 2 \end{pmatrix}$$

$$a_{45} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{45} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

$$a_{45} = \begin{pmatrix} -1 \\ -1 \\ 2a^{3} - a - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -14

Crossings	u-Polynomials at each crossing
c_1	$(u^2 + u - 1)^2$
c_2, c_3, c_7 c_9	$u^4 - u^3 + 2u^2 - 4u + 1$
c_4, c_8	$u^4 + u^3 - 2u - 1$
$c_5, c_6, c_{10} \\ c_{11}$	$(u-1)^4$
c_{12}	$(u+1)^4$

Crossings	Riley Polynomials at each crossing
c_1	$(y^2 - 3y + 1)^2$
c_2, c_3, c_7 c_9	$y^4 + 3y^3 - 2y^2 - 12y + 1$
c_4, c_8	$y^4 - y^3 + 2y^2 - 4y + 1$
c_5, c_6, c_{10} c_{11}, c_{12}	$(y-1)^4$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.15372	-5.59278	-14.0000
b = -0.618034		
u = 1.00000		
a = -0.809017 + 0.981593I	2.30291	-14.0000
b = 1.61803		
u = 1.00000		
a = -0.809017 - 0.981593I	2.30291	-14.0000
b = 1.61803		
u = 1.00000		
a = -0.535687	-5.59278	-14.0000
b = -0.618034		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-2)(u^{2}+u-1)^{2}(u^{7}-6u^{6}+12u^{5}-11u^{4}+7u^{3}-3u^{2}-1)$ $\cdot (u^{11}-7u^{10}+\cdots-2u+2)$
c_2, c_9	$(u+1)(u^4 - u^3 + 2u^2 - 4u + 1)(u^7 - u^6 + u^5 - 2u^4 - u^2 + 1)$ $\cdot (u^{11} + 14u^9 + 4u^8 + 46u^7 + 67u^6 - 66u^5 - 7u^4 - 30u^3 - 9u^2 - 3u - 1)$
c_3, c_7	$(u-1)(u^4 - u^3 + 2u^2 - 4u + 1)(u^7 + u^6 + u^5 + 2u^4 + u^2 - 1)$ $\cdot (u^{11} + 14u^9 + 4u^8 + 46u^7 + 67u^6 - 66u^5 - 7u^4 - 30u^3 - 9u^2 - 3u - 1)$
c_4, c_8	$(u+1)(u^4+u^3-2u-1)(u^7-u^5-2u^3+u^2-u+1)$ $\cdot (u^{11}+u^{10}+\cdots-4u-1)$
c_5, c_6	$(u-1)^{5}(u^{7} + u^{6} - 5u^{5} - 5u^{4} + 6u^{3} + 7u^{2} + u - 1)$ $\cdot (u^{11} + 5u^{10} + \dots - 10u - 4)$
c_{10}, c_{11}	$(u-1)^{4}(u+1)(u^{7}-u^{6}-5u^{5}+5u^{4}+6u^{3}-7u^{2}+u+1)$ $\cdot (u^{11}+5u^{10}+\cdots-10u-4)$
c_{12}	$(u+1)^{5}(u^{7}-5u^{6}+7u^{5}-5u^{4}-4u^{3}-7u^{2}+5u+1)$ $\cdot (u^{11}-3u^{10}+\cdots-3192u-576)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-4)(y^2 - 3y + 1)^2(y^7 - 12y^6 + \dots - 6y - 1)$ $\cdot (y^{11} - 31y^{10} + \dots + 200y - 4)$
$c_2, c_3, c_7 \ c_9$	$(y-1)(y^4+3y^3-2y^2-12y+1)$ $\cdot (y^7+y^6+\cdots+2y-1)(y^{11}+28y^{10}+\cdots-9y-1)$
c_4, c_8	$(y-1)(y^4 - y^3 + 2y^2 - 4y + 1)(y^7 - 2y^6 + \dots - y - 1)$ $\cdot (y^{11} + 17y^{10} + \dots + 24y - 1)$
c_5, c_6, c_{10} c_{11}	$(y-1)^{5}(y^{7}-11y^{6}+47y^{5}-97y^{4}+98y^{3}-47y^{2}+15y-1)$ $\cdot (y^{11}-13y^{10}+\cdots+172y-16)$
c_{12}	$(y-1)^{5}(y^{7}-11y^{6}-9y^{5}-141y^{4}+26y^{3}-79y^{2}+39y-1)$ $\cdot (y^{11}+67y^{10}+\cdots+7508160y-331776)$