THE UNIVERSITY OF CALGARY Schulich School of Engineering

ENGG 202 – Engineering Statics First Midterm Exam February 10, 2011 (Thursday) 18:40 – 20:00 (80 minutes)

- 1. The examination is closed textbook
- 2. There are 6 short answer questions and 2 comprehensive questions. Answer all questions directly on the question sheets. For the short answer questions, write your answer in the space provided, only the answer will be marked
- 3. Only the SSE sanctioned, non-programmable, scientific calculator is permitted.
- 4. Free body diagrams are required on all comprehensive equilibrium questions to obtain full marks.

DO NOT OPEN THE EXAM BOOKLET UNTIL INSTRUCTED TO DO SO

Student's	Last name:		
Student's	First name:		
Lecture S	ection (Circle O	ne):	
L01	Tu Th	13:00	Lissel
L02	Tu Th	11:00	Grozic/Lissel
L03	Tu Th	09:30	Grozic

USEFUL FORMULAE:

Sine Law:
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Cosine Law:
$$c^2 = a^2 + b^2 - 2ab\cos C$$

Question	Maximum mark	Mark
1 – 6	15	
7	15	
8	15	
Total	45	

All figures modified from: "Engineering Mechanics, Statics", 5th Edition in SI Edition, Bedford and Fowler, Prentice Hall, 2008.

Q1. The airplane's engines exert a total thrust force **T** with a magnitude of of 200 kN. The angle between **T** and the y axis is 120° , and the angle between **T** and the z axis is 130° . The x component of **T** is positive.

- (a) What is the angle between T and the x axis?
- (b) Express **T** in Cartesian vector format.

ANSWER: angle = _____ degrees /1.5 marks
$$T =$$
_____ kN /1.5 marks

Q2.
$$\mathbf{A} = 20\mathbf{i} + 10\mathbf{j} - 15\mathbf{k}$$
 N, and $\mathbf{B} = -1\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ m.
If $\mathbf{A} \times \mathbf{B} = \mathbf{C}$, what is $\mathbf{A} \cdot \mathbf{C}$?

ANSWER:	/1 mark

Q3. The tension in cable AC is 1000 N. Determine the magnitudes of the components of **T** that are parallel and perpendicular to line AB.

ANSWER:
$$T_{//AB} =$$
 ______ N /2 marks
$$T_{LAB} =$$
 _____ N /1 mark

Q4. Collar A slides on the smooth vertical bar. Draw the FBD(s) that would be required to determine the spring constant k. Do NOT perform any calculations. Given: $m_A = 20 \text{ kg}$, $m_B = 10 \text{ kg}$ and when the system is in the equilibrium position shown the change in length in the spring is 0.2 m.

ANSWER (draw in the space below):

/3 marks

Q5. The mass $m_1 = 50$ kg. Neglecting the masses of the pulleys, determine the value of the mass m_2 necessary for the system to be in equilibrium.

Q6. The length of the bar AB is 350 mm. The moments about points B and C due to the vertical force **F** are $M_B = -1.75$ kN·m and $M_C = -4.20$ kN·m. Determine the magnitude of the force **F** and the length of bar AC.

ANSWER: $F = \underline{kN}$ /1.5 marks

Length of AC = mm /1.5 marks

Q7. The tent is supported by an assembly of four ropes. To support the tent, the tension in the rope AB, parallel to the *y* axis, must be 400 N. What are the magnitudes of the forces in the ropes AC, AD, and AE?

/15 marks

Q8. A cable extends from point C to point E. It exerts a 75 N force **T** on the plate at C that is directed along the line from C to E. Points A, B, and E lie in the x-z plane.

Determine the moment of the force **T** about the straight line that passes through the hinges A and B. Express your answer in Cartesian vector format.

/15 marks