Deep Learning

Activation Functions

Activation Functions in Deep Learning

- Activation function: gets applied to input vector of values from previous layer
- Includes a weight (w) and bias (b)
- Summed over multiple inputs

Common Activation Functions

Sigmoid/logistic/softmax functions

Hyperbolic tangent (tanh)

Rectified linear unit (ReLU)

Softplus

Sigmoid/logistic/softmax

Logistic sigmoid
$$S(t) = \frac{1}{1 + e^{-t}}$$
.

- Range: (0,1)
- Interpretable as a probability

Softmax
$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

- Generalization for multidimensional vector
- Values sum to 1

Tanh

- Range of (-1, 1)
- Simply a rescaled version of logistic sigmoid

$$anh x = rac{\sinh x}{\cosh x} = rac{e^x - e^{-x}}{e^x + e^{-x}} = \ = rac{e^{2x} - 1}{e^{2x} + 1} = rac{1 - e^{-2x}}{1 + e^{-2x}}$$

Comparing sigmoid and tanh

Centers

- Sigmoid centered at 0.5
- Tanh centered at 0

Gradients

- Sigmoid gradient range is (0,0.25)
- Tanh gradient range is (0,1)

ReLU

- Range of $(0,\infty)$
- Biological justification approximates neuron firing rates
- Mathematical justification $\sum_{i=1}^{inf} \sigma(x-i+0.5)$ approximates a "stepped sigmoid"
- Deep learning justification more efficient and better results

$$f(x) = \max(0, x),$$

Comparing Sigmoid/Tanh and ReLU

- Easier to calculate activation and gradient
 - See activation functions
 - o Gradient: 0 if x < 0, 1 if x > 0
- Sparse neuron activations
 - Simplifies network
 - Can "kill" neurons
- Non-linear near 0

Saturated neurons

- o In sigmoid, gradient "vanishes" far away from 0
- Large absolute values cause "saturation," where the gradient is too small for learning

Softplus

- Range of $(0,\infty)$
- Approximation of "stepped sigmoid"
- Smooth approximation of ReLU

Comparing ReLU and Softplus

- Computational cost
- Sparsity similar to L1 vs L2 regularization

Layers for Activation Functions

Hidden layers

- Considerations: computationally cheap, reliable gradient, sparsity
- Typical choice: ReLU

Output layers

- Considerations: output range, interpretability
- Typical choice: softmax/sigmoid (or linear for continuous outputs)

Gating layers

- Considerations: definite output range
- Typical choice: sigmoid

Other Activation Functions

- Leaky ReLU small slope where x < 0 to avoid dead neurons
- Exponential linear unit (ELU) exponential where x < 0
- Maxout
 - Max of multiple (linear?) activation functions
 - Generalization of ReLU functions

References

CS231n Convolutional Neural Networks for Visual Recognition

Efficient BackProp - Yann LeCun

Rectified Linear Units Improve Restricted Boltzmann Machines

Deep Sparse Rectifier Neural Networks

Rectifier Nonlinearities Improve Neural Network Acoustic Models