TRIGONOMETRY

Tomo 3
Sesion 2

Advisory

1) Una persona que mide 1,90 m de estatura observa la parte más alta de un edificio con un ángulo de elevación de 30°. Si la persona se encuentra a $15\sqrt{3}$ m de su base ¿Cuál es la altura del edificio?

RESOLUCIÓN

1. Con los datos, graficamos:

2. Determinamos "x":

3. Determinamos la altura (H):

2) Desde un punto en tierra se divisa lo alto de una torre con un ángulo de elevación α . Si el observador se acerca 30 m, el nuevo ángulo de elevación sería β . Halle la altura de la torre si además se sabe que cot α – cot β = 1,50

Determinamos "x":

$$\cot \alpha - \cot \beta = 1,50$$

$$\frac{30 + d}{x} - \frac{d}{x} = \frac{3}{2}$$

$$\Rightarrow \frac{30}{x} = \frac{3}{2}$$

$$\therefore$$
 x = 20 m

3)Un avión vuela en línea horizontal paralela al suelo. En cierto instante el piloto observa en tierra una ciudad con un ángulo de depresión de 53° y luego de 4 minutos observa nuevamente dicha ciudad con un ángulo de depresión de 45° ¿A qué altura vuela el avión si viaja a 21km/min?

Determinamos "d":

$$\Rightarrow$$
 d = 4n + 3n = 84
7n = 84
n = 12

4) Del gráfico, calcule la distancia PQ si:

RESOLUCIÓN

1. Hallamos las coordenadas de P , con el dato del punto medio:

$$-7 = \frac{-12 + x}{2}$$
 $2 = \frac{-7 + y}{2}$

2. Calculamos la distancia entre P y Q:

d(P; Q) =
$$\sqrt{(6-(-2))^2 + ((-4)-11)^2}$$

$$d(P; Q) = \sqrt{64 + 225}$$

$$d(P; Q) = \sqrt{289}$$

d(P; Q) = 17u

5) Tres motocicletas salen de un estacionamiento y se ubican en los puntos A, B y C; tal como muestra la figura. Si al unir las tres ubicaciones se forma un triángulo, ¿ Cuál es la coordenada del baricentro (G) ?

RESOLUCIÓN

$$x = \frac{(3) + (-1) + (4)}{3}$$

$$x = \frac{6}{3} \implies x = 2$$

$$y = \frac{(7) + (2) + (0)}{3}$$

$$y = \frac{9}{3}$$
 $y = 3$

∴ G(2;3)

6) Del gráfico, calcule x + y

RESOLUCIÓN

1. Hallamos las coordenadas de M , con el dato del punto medio:

$$M(\frac{1+7}{2};\frac{-3-1}{2}) \Rightarrow M(4;-2)$$

2. Calculamos el punto P:

$$x = \frac{(4) \cdot (k) + (-5) \cdot (2k)}{2k + k} \qquad y = \frac{(1) \cdot (k) + (4) \cdot (2k)}{2k + k}$$

$$x = \frac{-6k}{3k} \qquad y = \frac{9k}{3k}$$

$$x = -2 \qquad y = 3$$

$$x + y = (-2) + (3) \implies \therefore x + y = 1$$

7) Del gráfico, efectúe E = 3 tan - sec -

RESOLUCIÓN

OP y OQ son perpendiculares, por lo tanto: Q(24;-7)

r es el radio vector del punto Q:

$$r = \sqrt{(24)^2 + (-7)^2}$$
 $r = 25$

Reemplazando en: E = 3tan ⊕ - sec ⊕

$$T = 3\left(\frac{-7}{24}\right) - \left(\frac{25}{24}\right)$$

$$T = \left(-\frac{21}{24}\right) - \left(\frac{25}{24}\right) = \frac{-46}{24}$$

$$\mathsf{E} = -\frac{23}{12}$$

8) Del gráfico, calcule el valor de $\cot \alpha$.

RESOLUCIÓN

Del gráfico:
$$tan\alpha = \frac{5}{n-2} = \frac{3}{n+2}$$

$$5(n + 2) = 3(n - 2)$$

$$5n + 10 = 3n - 6$$

$$2n = -6 - 10$$

$$n = -8$$

Piden :
$$\cot \alpha = \frac{-8+2}{3}$$

9) A partir del gráfico, calcule tan θ .

RESOLUCIÓN

En el \triangle PMN: Triángulo rectángulo de 37° y 53°

Por condición: MP=OP

Las coordenadas del punto M(-8n;4n)

$$tan\theta = \frac{4\pi}{-8\pi}$$

$$\therefore \quad \frac{1}{\tan \theta} = -\frac{1}{2}$$

10)En la figura, la región triangular sombreada representa el plano de un terreno. Si todas las medidas están dadas en kilómetros, ¿cuánto pagará un comprador, si le cuesta 10 soles el metro cuadrado?

RESOLUCIÓN

Luego:

Área =
$$1000x1000 \text{ m}^2$$

Precio a pagar: 10x1000000

: 10 millones de soles