模式识别与机器学习大作业

姓名: 黄梓赫

学号: 202428013229070

一. 课程要求

从四类方法中选三类方法,从选定的每类方法中,各选一种具体的方法,从给定的三个数据集中选一个数据集对这三种方法进行测试比较。

第一类方法: 线性方法: 线性 SVM、 Logistic Regression

第二类方法: 非线性方法: Kernel SVM , 决策树

第三类方法: 集成学习: Bagging, Boosting

第四类方法: 神经元网络: 自选结构

实现部分:

在 MNIST 数据集中分别使用 Logistic Regression, 决策树以及 CNN 方法进行实验

二. 实验方法

1. Logistic Regression 方法

方法介绍:逻辑回归通过建立输入特征与输出类别之间的关系来进行分类。 它使用逻辑函数 (sigmoid 函数) 将线性组合的输入映射到 0 到 1 之间的概率值。

实现流程:导入PyTorch 库,定义logisticRg类,创建线性层(输入784维,输出10维)。在 forward 方法中实现前向传播。根据选择的 method 初始化模型并移动到 GPU,同时定义 Adam 优化器和交叉熵损失函数。在训练过程中,遍历训练数据,展平输入,进行前向传播、计算损失、反向传播和参数更新。使用测试数据进行预测,计算准确率并输出结果。最后,输出训练和测试的最终结果。通过这些步骤,可以有效实现逻辑回归模型。

```
import os
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision

torc
```

实验结果:

epoch	batch_size	lr	ACC1	ACC2	ACC3	ACC_aver
1	32	1e-2	91.16%	91.25%	91.20%	91.20%
1	32	1e-3	91.75%	91.46%	91.62%	91.61%
1	32	1e-4	86.68%	86.57%	86.65%	86.63%
1	16	1e-3	91.69%	91.65%	91.94%	91.76%
1	64	1e-3	90.92%	90.91%	90.69%	90.84%
1	128	1e-3	90.11%	89.46%	0.8986	89.81%
•••						
5	32	1e-2	91.20%	91.60%	91.36%	91.39%
5	32	1e-3	92.72%	92.62%	92.77%	92.70%
5	32	1e-4	91.09%	91.13%	91.10%	91.11%
5	16	1e-3	92.57%	92.51%	92.61%	92.56%
5	64	1e-3	92.40%	92.54%	92.39%	92.44%
5	128	1e-3	92.25%	92.28%	92.09%	92.21%
•••	•••	•••	•••	•••	•••	•••

结果分析:实验结果表明,学习率和批量大小是影响模型性能的重要超参数。在第1个epoch中,学习率为1e-3时模型表现最佳,但当学习率降低到1e-4时,准确率显著下降。第5个epoch中,学习率为1e-3和批量大小为32的组合使得准确率超过92%,显示出模型的稳定性和收敛性。整体来看,随着训练的进行,模型准确率逐渐提高,表明模型在不断优化。

2. 决策树方法

方法介绍:决策树是一种常用的监督学习算法,适用于分类和回归任务。它通过将数据集分割成更小的子集,形成树状结构来进行决策。每个内部节点表示一个特征的测试,每个分支代表测试结果,而每个叶子节点则表示最终的类别或预测值。决策树的优点包括易于理解和解释、处理缺失值的能力以及不需要特征缩效等。

实现流程: 首先导入必要的库,如 DecisionTreeClassifier 和 accuracy_score。在主训练代码中,通过判断 method 是否为'tree'来选择决策树模型,并初始化 DecisionTreeClassifier。接着,使用训练数据 X_train 和 y_train 调用 fit 方法训练模型。随后,对测试数据 test_x 进行预测,展平为适合模型输入的格式,并使用 predict 方法获取预测结果。最后,通过 accuracy_score 计算模型在测试集上的准确率,并打印结果以评估模型性能。

```
elif method == 'tree':
    model_method.fit(X_train, y_train) # 训练决策树
    pred_y = model_method.predict(test_x.view(-1,28*28)) # 预测测试数据
    accuracy = accuracy_score(test_y, pred_y) # 计算准确率
    print('Decision Tree | test accuracy: %.4f' % accuracy)
```

实验结果:

Decision Tree	ACC1	ACC2	ACC3	ACC4	ACC5	ACC_avg
	87.91%	87.74%	88.03%	88.10%	87.90%	87.73%

结果分析:在本次实验中,决策树模型的表现通过多个准确率指标评估,最终得出平均准确率为87.73%。各个准确率指标均在87%至88%之间,显示出模型在不同测试集上的稳定性和良好的分类性能。

3. CNN 方法

方法介绍: 卷积神经网络 (CNN) 是一种深度学习模型,广泛应用于图像处理和计算机视觉任务。CNN 通过卷积层、激活层和池化层的组合,能够自动提取图像特征,减少手动特征工程的需求。其主要优点包括对局部特征的敏感性、参数共享和空间不变性,使得 CNN 在图像分类、目标检测等任务中表现优异。

实现流程: 首先导入必要的 PyTorch 库,并创建一个名为 CNN 的类,继承自 nn.Module。在__init__方法中,构建两个卷积层,第一层接收 1 个输入通道,输出 16 个通道,卷积核大小为 5,步幅为 1,填充为 2,后接 ReLU 激活函数和 2x2 的最大池化层;第二层接收 16 个输入通道,输出 32 个通道,结构相似。接着,定义一个全连接层,将卷积层的输出展平后连接到 10 个输出节点。最后,在 forward 方法中,依次通过卷积层进行前向传播,展平输出并通过全连接层得到最终结果。通过这些步骤,CNN 模型能够有效地进行图像分类任务,自动提取特征并进行分类。

实验结果:

A transfer						
epoch	batch_size	lr	ACC1	ACC2	ACC3	ACC_avg
1	32	1e-2	98.01%	97.35	97.59%	97.65%
1	32	1e-3	98.22%	98.14%	98.50%	98.28%
1	32	1e-4	94.41%	94.26%	94.13%	94.26%
1	16	1e-3	98.59%	98.43%	98.75%	98.59%

1	64	1e-3	98.19%	98.08%	97.96%	98.07%
1	128	1e-3	97.86%	97.22%	97.50%	97.52%
•••	•••	•••	•••	•••	•••	•••
5	32	1e-2	98.08%	97.96%	97.76%	97.93%
5	32	1e-3	99.06%	98.97%	99.11%	99.04%
5	32	1e-4	98.16%	98.15%	98.12%	98.14%
5	16	1e-3	99.02%	99.12%	99.26%	99.13%
5	64	1e-3	99.07%	98.88%	98.95%	98.96%
5	128	1e-3	99.02%	98.91%	98.79%	98.90%
•••	•••	•••	•••	•••	•••	•••

结果分析: 卷积神经网络 (CNN) 在 MNIST 数据集上表现优异, 主要得益于其局部连接和权重共享特性,有效捕捉图像局部特征并减少参数数量; 多层结构使得模型逐层提取特征; 非线性激活函数 (如 ReLU) 增强了模型的表达能力; 池化层降低特征图维度,提高计算效率并增强平移不变性。此外, MNIST 数据集的简单性和丰富的训练样本 (60,000 个) 为模型提供了充足的学习数据,现代优化算法加速了收敛过程。在实验中,学习率和批量大小显著影响模型性能,较高的学习率 (如 1e-2) 能快速收敛,而过低的学习率 (如 1e-4) 则导致准确率下降。批量大小为 32 时,学习率为 1e-3 的情况下,平均准确率达到 98.28%。随着epoch 的增加,模型准确率逐渐提高,尤其在第 5 个 epoch 中超过 99%。尽管 CNN表现优异,但仍有优化空间,如数据增强和正则化技术。