Una nota sulle notazioni asintotiche

1

- siano f(n) e g(n) due funzioni a valori positivi
- f(n)=O(g(n)) non implica necessariamente $\lim f(x)/g(x)=0$ (limite per x che va all'infinito)
- f(n)=O(g(n)) implica solo l'esistenza di una costante c>0 e di una costante $n_0\geq 0$ per cui si ha $f(n)/g(n)\leq c$ per ogni $n\geq n_0$
- $\lim f(x)/g(x) = 0$ invece vuol dire che per ogni costante $\varepsilon > 0$ (comunque piccola) esiste una costante $x_0 \ge 0$ (x_0 puo` dipendere solo da x_0) per cui x_0 0 (x_0 0) esiste una costante x_0 2) (x_0 2) esiste una costante x_0 3) esiste una costante x_0 4) esiste una costante x_0 5) esiste una costante x_0 6) esiste una costante x_0 6) esiste una costante x_0 6) esiste una costante x_0 7) esiste una costante x_0 8) esiste una
- Esempio: $3n^2+n=O(n^2)$ ma $\lim(3x^2+x)/x^2 \neq 0$.
- Viceversa lim $f(x)/g(x) = 0 \rightarrow f(n) = O(g(n))$

2

- siano f(n) e g(n) due funzioni a valori positivi
- $f(n)=\Omega(g(n))$ non implica necessariamente $\lim f(x)/g(x)=\infty$ (limite per x che va all'infinito)
- $f(n) = \Omega(g(n))$ implica solo l'esistenza di una costante c > 0 e di una costante $n_0 \ge 0$ per cui si ha $f(n)/g(n) \ge c$ per ogni $n \ge n_0$
- $\lim f(x)/g(x) = \infty$ invece vuol dire che per ogni costante M>0 (comunque grande) esiste una costante $x_0 \ge 0$ (x_0 puo` dipendere solo da M) per cui $f(x)/g(x) > \varepsilon$ per ogni $x \ge x_0$
- Esempio: $3n^2+n=\Omega(n^2)$ ma $\lim(3x^2+x)/x^2\neq\infty$.
- Viceversa lim $f(x)/g(x) = \infty \rightarrow f(n) = \Omega(g(n))$

3

notazione «o piccolo»

- f(n) e g(n): due funzioni a valori positivi
- def: f(n)=o(g(n)) se e solo se $\lim f(x)/g(x)=0$
- si dice che f(n) cresce molto piu`lentamente di g(n)
- esempio: n²=o(n³)
- se f(n)=o(g(n)) allora f(n) non è $\Omega(g(n))$ (o equivalentemente g(n) non è O(f(n))).
- vediamo che **non** vale $f(n) = \Omega(g(n))$
- $\lim f(x)/g(x) = 0 \rightarrow per ogni costante \ \epsilon > 0$ (comunque piccola) esiste una costante $x_0 \ge 0$ (x_0 puo` dipendere solo da ϵ) per cui $f(x)/g(x) < \epsilon$ per ogni $x \ge x_0$
- non è quindi possibile trovare una costante c >0 ed una costante n₀ ≥0 per cui si ha f(n)/g(n) ≥ c per ogni n ≥ n₀

notazione «omega piccolo»

- f(n) e g(n): due funzioni a valori positivi
- **def**: $f(n)=\omega(g(n))$ se e solo se $\lim f(x)/g(x) = \infty$
- si dice che f(n) cresce molto piu` velocemente di g(n)
- Ovviamente $f(n) = \omega(g(n))$ se e solo se g(n) = o(f(n))
- esempio: $n^3 = \omega(n^2)$
- se $f(n) = \omega(g(n))$ allora f(n) non è O(g(n)) (o equivalentemente g(n) non è $\Omega(f(n))$).
- vediamo che non vale f(n) = O(g(n))
 - $\lim_{x \to \infty} f(x)/g(x) = \infty$ per ogni costante M>0 (comunque grande) esiste una costante $x_0 \ge 0$ (x_0 puo` dipendere solo da M) per cui f(x)/g(x) > M per ogni $x \ge x_0$
 - non è quindi possibile trovare una costante c >0 ed una costante n₀ ≥0 per cui si ha f(n)/g(n≤c per ogni n ≥ n₀

5

Esempio visto in classe

- A lezione abbiamo confrontato f(n)=n^{n/2} con g(n)=n!
- Abbiamo prima provato che vale $n!>n^{n/2}$ per ogni n>1 e questo implica che $n^{n/2}=O(n!)$ (cio` è equivalente a dire che $n!=\Omega(n^{n/2})$)
- Un esercizio d'esame pero` chiedeva se n^{n/2}=Ω(n!) o equivalentemente se n!=O(n^{n/2})
- Abbiamo fatto vedere che cio` è falso scrivendo n! (per n≥6) come segue:
- $1*(2*3*...*n/2-1)*(n/2*(n/2+1)*....*n) \ge (2^{n/2-2})(n/2)^{n/2+1} = 1/8 (n^{n/2+1}) = 1/8 (n^{n/2})$
- ★ Da cio` si vede che n! = $\Omega(nn^{n/2})$ (basta prendere c=1/8 e n_0 =6)
- Osserviamo che lim (n $n^{n/2}$)/($n^{n/2}$) = ∞ . In base alle definizioni precedenti, diciamo che la funzione $nn^{n/2}$ è ω ($n^{n/2}$) o equivalentemente la funzione $n^{n/2}$ è o($nn^{n/2}$).
- * Di conseguenza, $nn^{n/2}$ non è $O(n^{n/2})$, o equivalentemente $n^{n/2}$ non è $O(nn^{n/2})$.
- Siccome la \bigstar ci dice che n! = $\Omega(nn^{n/2})$ allora anche n! non è $O(n^{n/2})$ (o equivalentemente $n^{n/2}$ non è $\Omega(n!)$)
 - se per assurdo cosi non fosse allora si avrebbe $n^{n/2}=\Omega(n!)$ e $n!=\Omega(nn^{n/2})$ e per la transitivita` si avrebbe $n^{n/2}=\Omega(nn^{n/2})$ contraddicendo la $\mathfrak Q$