Subjectul D. OPTICA

Nr. item	Soluţie/Rezolvare
III.a.	
	$\lambda = \frac{c}{v}$
	$\lambda = \frac{c}{\nu}$ $\frac{\nu_1}{\nu_2} = \frac{\lambda_2}{\lambda_1}$
	rezultat final: $\frac{v_1}{v_2} \cong 1,54$
b.	
	$hc/\lambda_1 = L_e + eU_{s1}$
	$hc/\lambda_2 = L_e + eU_{s2}$
	$hc/\lambda_1 = L_e + eU_{s1}$ $hc/\lambda_2 = L_e + eU_{s2}$ $U_{s1} = fU_{s2}$
	$L_{e} = \frac{hc}{(f-1)}(\frac{f}{\lambda_{2}} - \frac{1}{\lambda_{1}})$
	rezultat final: $L_{\text{ex}} \cong 2.2 \cdot 10^{-19} J$
C.	$hc/\lambda_2 = L_e + E_{c2}$
	$hc/\lambda_2 = L_e + E_{c2}$ $E_{c2} = \frac{hc}{\lambda_2} - L_e$
	rezultat final: $E_{c2} \cong 6.9 \cdot 10^{-20} J$
d.	
	$\frac{v_1}{v_2} = \sqrt{\frac{E_{c1}}{E_{c2}}}$
	rezultat final: $\frac{v_1}{v_2} \cong 1,81$