Sepsis Screening and Management for Inpatient Units

Martina Adams, BS, RN, CCRN Froedtert & The Medical College of Wisconsin May 2013

Objectives

Define the three stages of sepsis

Describe the sepsis screening process

Explain early treatment strategies for sepsis

Severe Sepsis Statistics

- □ Mortality rate is 30-50%
- □ The #1 cause of death in the ICU nationally
- □ 7-14 days in ICU plus 10-14 days in hospital following ICU stay
- □ Treat costs hospitals \$17 billion annually

What is sepsis?

- ☐ It is the *response* to an infection
- □ Evolves in phases
 - Infection
 - Sepsis
 - Severe sepsis
 - Septic shock
- Severity determined by specificity and severity of *host* response, more than the causative organism
- □ Cause of death in septic shock is from lack of perfusion, not the bacterium, fungi, parasite, or virus

SIRS: Systemic Inflammatory Response Syndrome

- Widespread inflammatory response to microbial invasion or cell injury
- □ Signs and symptoms: Fever or hypothermia, tachycardia, tachypnea, leukocytosis or leukopenia
- □ "Pure" SIRS typical in trauma, pancreatitis, burns, postoperative patients

Sepsis

Two SIRS criteria plus infection

Severe sepsis

Sepsis plus organ dysfunction or tissue hypoperfusion

(at least one organ system)

Septic shock

Hypotension persisting despite adequate fluid resuscitation

- or

Lactic acidosis with lactate > 4.0 (patient can have normal BP)

Severe sepsis / septic shock pathophysiology

- □ *Abnormal fluid distribution* due to vasodilation, capillary leakage, osmotic pressure changes
- Decreased perfusion to vital organs
- Hypoperfusion leads to anaerobic metabolism, causing increased lactate levels and acidosis
- □ *Coagulation problems* inflammation increases coagulation and inhibits fibrinolysis
- □ Cells die from lack of oxygen

Surviving Sepsis Campaign: Early Goal-Directed Therapy

- **□** Early, routine screening
- **□** Early and aggressive treatment
- Bundled care improves outcomes
- □ NEJM Nov. 2001 published results of study: *Initiating therapy before admission to the ICU*resulted in 16% decrease in mortality compared to patients receiving standard therapy

GENESIS Project

- Multicenter Quality Improvement Collaborative
- □ Studied use of EGDT in community and tertiary hospitals with both treatment and control groups
- □ Published August, 2012
- Patients receiving EGDT experienced in-hospital mortality reduction of 14% and a 5.1 day decrease in LOS

Speed of therapy influences outcome

Approach sepsis like:

- □ Acute MI
- □ Stroke
- Polytrauma

Severe sepsis is an emergency!

Sepsis Screening – Step 1

Are any <u>two</u> of the following signs and symptoms of infection both present and <u>new</u> to the patient?

- \square Temperature > 100.4°F or < 96.8°F
- □ Tachypnea RR > 20 bpm
- □ Tachycardia HR > 90 bpm
- \square WBC > 12,000 or < 4,000 per uL
- Acutely altered mental status

Step 2 - patient must also have a confirmed or suspected infection

- □ Pneumonia; empyema
- □ Urinary tract infection
- □ Bloodstream catheter infection
- Acute abdominal infection
- Meningitis
- □ Skin/soft tissue infection
- □ Wound infection
- □ Implantable device infection
- Endocarditis
- □ Bone/joint infection

Steps 1 + 2 = Sepsis

If patient meets criteria in both steps, they have screened positive for

"simple" sepsis

Assess organ dysfunction - Step 3

- □ Circulatory: SBP < 90 or MAP < 65 or SBP decrease > 40 mmHg
- □ Respiratory: SpO2 < 90% or increasing O2 needs
- □ Central nervous system: Acutely altered mental status
- □ Hypoperfusion: Lactic acid level > 2.0 mmol/L
- □ Renal: U/O < 0.5 mL/kg/hr for > 2 hrs despite adequate fluid resuscitation
- \square Renal: Creatinine > 0.5 mg/dL
- ☐ GI: Ileus (absent bowel sounds)
- \square GI: Bilirubin > 2.0 mg/dL
- ☐ Hematologic: Platelet count < 100,000; INR > 1.5 (non-liver failure patients)
- □ Hepatic: Total bilirubin >

Steps 1+2+3 = Severe Sepsis

☐ If the patient has evidence of a single **new** organ system dysfunction, in addition to screening positive for sepsis, they have

severe sepsis

- □ Risk of death is 30-50%
- □ Without appropriate treatment, patient will progress to the next phase **septic shock**

Surviving Sepsis Campaign 3-hour Bundle

Goal: Start immediately and complete within 3 hours of recognition

- Measure lactate level
- □ Obtain blood cultures prior to administration of antibiotics (unless > 45 min. delay)
- □ Administer broad spectrum antibiotics
 (1st dose within 1 hr. of sepsis recognition)
- □ Administer 30 mL/kg crystalloid for hypotension or lactate ≥ 4 mmol/L

SSC 6-hour Bundle

Goal: To be completed within 6 hours (in ICU)

- □ Vasopressors for hypotension not responding to initial fluid resuscitation to maintain $MAP \ge 65$ mmHg
- □ For persistent hypotension despite volume resuscitation (septic shock) **or**

initial lactate $\geq 4 \text{ mmol/L}$:

- Measure CVP
- Measure ScvO₂
- Re-measure lactate if initial lactate was elevated

Lactic acid level

- □ Reflects global tissue hypoxia
- □ Not specific to sepsis (liver failure, metformin, anemia may cause increased lactate level)
- □ A standard, early step in sepsis screening
- Document when it was drawn in relation to IV fluid resuscitation – may show a diluted result after IV fluids
- □ Patient can have a normal lactate level and still have regional hypoperfusion (to kidneys, brain, or gut, for example), requiring fluids to improve perfusion to vital organs

Surgical patients

- □ Screening sensitivity patient can have "pure SIRS" for 24-48 hrs. post-op (SIRS positive, without infection)
- Sepsis and septic shock are more prevalent than PE and MI in the general surgery patient
- □ 10% of all cancer deaths are attributable to sepsis

Sepsis is a clinical diagnosis

- □ Symptoms can be vague
- Many high-risk patients already look very ill
- Development of sepsis does not require bacteremia
- □ > 50% of patients with severe sepsis have negative blood culture results
- □ Patients on antibiotics can become septic

Need to develop a high index of suspicion ~ screen every patient ~

Best practice

- □ Screen your patient for sepsis at the start of your shift
- □ Notify the RRT RN if you have any concerns about your patient having severe sepsis, or sepsis without current treatment
- □ Trust your routine vital signs, and count respirations with your Timex! Tachypnea is a frequent, reliable sign
- □ The patient with actual or imminent septic shock requires emergent ICU transfer

Become an expert

- □ Know the sepsis screening process and use it consistently
- □ Journal articles, contact hours
- Orient new staff to sepsis screening & support your peers
- □ Questions? Call the RRT RN

Sepsis screening saves lives

Early, routine screening

Early and aggressive treatment

References

- Cannon, C. M., & Holthaus, C. V., Zubrow, M. T., Posa, P., Gunaga, S., Kella, V., . . . Rivers, E. P. (2012, August). The GENESIS project: A multicenter quality improvement collaborative. *Journal of Intensive Care Medicine*. doi:10.1177/0885066612453025
- Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. M., . . . Moreno, R. (2013). Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock. *Critical Care Medicine*, 41(2), 580-637.
- Marini, J., & Wheeler, A. (2010). Critical care medicine: The Essentials (4th ed.). Philadelphia, PA: Lippincott, Williams & Wilkins.
- Mato, A. R., Fuchs, B. D., Heitjan, D. F., Mick, R., Halpern, S. D., Shah, P. D., . . . Luger, S. (2009, June). Utility of the systemic inflammatory response syndrome (SIRS) criteria in predicting the onset of septic shock in hospitalized patients with hematologic malignancies. *Cancer Biology and Therapy*, 8(12), 1095-1100.
- Moore, L. J., Moore, F. A, Todd, S. R., Jones, S. L., Turner, K. L., & Bass, B. L. (2010). Sepsis in general surgery. *Archives of Surgery*, 145(7), 695-700.
- Nelson, D. P., Lemaster, T. H., Plost, G. N., & Zahner, M. L. (2009). Recognizing sepsis in the adult patient. *American Journal of Nursing*, 109(3): 40-45. doi:10.1097/01.NAJ.0000346928.90369.10
- Rivers, E., Nyguyen, B., Havstad, S., Riessler, J., Muzzin, A., Knoblich, B., Peterson, E., & Tomlanovich, M. (2001, November). Early-goal directed therapy in the treatment of severe sepsis and septic shock. *New England Journal of Medicine*, *345*(19), 1368-1377. doi:10.1056/NEJMoa010307
- Tazbir, J. (2012). Early recognition and treatment of sepsis in the medical-surgical setting. *MEDSURG Nursing Journal*, 21(4): 205-208.