IsayevDanS 17092024-193749

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.6	0.481	-137.6	17.321	95.0	0.031	50.4	0.392	-66.2
1.7	0.477	-141.2	16.400	92.8	0.032	50.5	0.376	-67.9
1.8	0.476	-144.1	15.511	90.9	0.033	50.8	0.362	-69.6
1.9	0.475	-147.3	14.763	89.0	0.034	50.8	0.349	-71.5
2.0	0.473	-149.7	14.054	87.3	0.035	51.0	0.338	-72.9
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
2.2	0.471	-155.0	12.813	83.7	0.037	51.2	0.318	-76.5
2.3	0.470	-157.3	12.285	82.3	0.038	51.4	0.309	-78.2
2.4	0.470	-159.6	11.766	80.7	0.039	51.5	0.301	-79.9
2.5	0.470	-161.8	11.306	79.3	0.040	51.6	0.294	-81.7
2.6	0.471	-164.0	10.854	77.7	0.041	51.7	0.288	-83.6

и частоты $f_{\mbox{\tiny H}}=1.8$ $\Gamma\Gamma\mbox{\scriptsize II},$ $f_{\mbox{\tiny B}}=2.5$ $\Gamma\Gamma\mbox{\scriptsize II}.$

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 1.4 дБ 2) 2.7 дБ 3) 4.1 дБ 4) 1.0 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
5.9	0.502	154.7	4.719	42.2	0.083	46.3	0.206	-119.8
6.0	0.504	153.6	4.645	41.1	0.084	45.8	0.204	-121.2
6.1	0.505	152.3	4.569	40.1	0.085	45.3	0.201	-122.8
6.2	0.507	151.1	4.495	39.1	0.086	44.8	0.198	-124.4
6.3	0.508	149.8	4.422	38.1	0.087	44.3	0.196	-126.0
6.4	0.510	148.5	4.351	37.0	0.089	43.9	0.193	-127.7
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
6.6	0.515	146.1	4.212	34.9	0.091	43.0	0.186	-130.8
6.8	0.519	143.8	4.077	32.9	0.093	42.3	0.177	-133.4
7.0	0.525	141.5	3.947	30.8	0.096	41.6	0.169	-136.4
7.2	0.530	139.6	3.824	29.0	0.098	40.9	0.158	-139.2

и частоты $f_{\scriptscriptstyle \rm H}=6.4$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=7.2$ $\Gamma\Gamma$ ц.

Найти модуль $s_{12}\;$ в дБ на частоте $f_{\scriptscriptstyle \mathrm{H}}\;$.

Варианты ОТВЕТА:

- 1) 12.8 дБ
- 2) -14.3 дБ
- 3) -5.8 дБ
- 4) -21.0 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.458	-126.8	27.453	105.6	0.022	55.5	0.461	-58.8
2.1	0.458	-163.7	13.813	82.1	0.034	57.7	0.271	-79.4
3.2	0.474	177.9	9.002	68.2	0.048	57.5	0.227	-98.8
4.3	0.490	165.1	6.664	56.6	0.063	55.2	0.211	-110.5
5.4	0.498	155.4	5.213	45.9	0.078	51.7	0.191	-121.1
6.5	0.514	143.5	4.342	35.0	0.094	45.3	0.171	-138.2
8.6	0.597	125.7	3.137	14.6	0.122	33.5	0.142	154.5

Найти точку (см. рисунок 2), соответствующую s_{11} на частоте 2.1 $\Gamma\Gamma$ ц.

Рисунок 2 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=0.21\text{-}1.15\mathrm{i}$.

Рисунок 3 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Задан двухполюсник на рисунке 4, причём $R1 = 208.53 \, \text{Ом}$.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.512	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
1.8	0.476	-144.1	15.511	90.9	0.033	50.8	0.362	-69.6
2.6	0.471	-164.0	10.854	77.7	0.041	51.7	0.288	-83.6
3.4	0.478	-177.4	8.281	68.1	0.050	52.1	0.261	-95.0
4.2	0.487	172.2	6.706	59.3	0.060	51.3	0.244	-102.7
5.0	0.503	163.5	5.568	50.6	0.070	49.4	0.224	-112.1
5.8	0.500	155.8	4.794	43.2	0.081	46.9	0.209	-118.5
6.6	0.515	146.1	4.212	34.9	0.091	43.0	0.186	-130.8
8.2	0.576	131.1	3.305	19.1	0.113	35.9	0.124	-172.4

и частоты $f_{\scriptscriptstyle \rm H}=1.0$ ГГц, $f_{\scriptscriptstyle \rm B}=8.2$ ГГц.

Найти развязку на $f_{\scriptscriptstyle \mathrm{B}}$.

Варианты ОТВЕТА:

1) 16.0 дБ 2) 18.9 дБ 3) 37.9 дБ 4) 32.0 дБ