Add a squared and b squared to get c squared. Or, using a more mathematical approach: $a^2+b^2=c^2$

Add a squared and b squared to get c squared

$$a^2 + b^2 = c^2 (1)$$

Einstein says

$$E = mc^2 (2)$$

This is a reference to (2).

It's wrong to say

$$1 + 1 = 3 \tag{dumb}$$

or

$$1 + 1 = 4$$

Again...

$$a^2 + b^2 = c^2$$

or you can type less for the same effect:

$$a^2 + b^2 = c^2$$

or if you like the long one:

$$a^2 + b^2 = c^2$$

In text: $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k^2}=\frac{\pi^2}{6}.$ In display:

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k^2}=\frac{\pi^2}{6}$$

f''(x)

In display style:

$$3/8 \qquad \frac{3}{8} \qquad \frac{3}{8}$$

In text style: $1\frac{1}{2}$ hours

$$1\frac{1}{2}$$
 hours

Pascal's rule is

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

 $\neq \leq \geq \approx \neq \leq \geq$

$$f_n(x) \stackrel{*}{\approx} 1$$

 $\times \div \cdot \pm \mp \nabla \partial$

ker dim hom deg $\lim\sup\lim\inf\sup\det\Pr$ gcdamod b

 $x \equiv a \pmod{b}$

$$\operatorname{argh} 3 = \operatorname{Nut}_{x=1} 4x$$

In text:
$$\sum_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \oint_{0}^{\frac{\pi}{2}} \prod_{\epsilon} \prod_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \oint_{0}^{\frac{\pi}{2}} \prod_{\epsilon} \prod_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \oint_{0}^{\frac{\pi}{2}} \prod_{\epsilon} \prod_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \prod_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \prod_{\epsilon} \prod_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \prod_{\epsilon} \prod_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \prod_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \prod_{i=1}^{n} \prod_{i=$$

= j + k + l + m + n= o + p + q + r + s

 $= t + u + v + x + z \quad (3)$

$$a = b + c \tag{4}$$

$$=d+e+f+g+h+i+j+k+l$$

$$+ m + n + o \tag{5}$$

$$= p + q + r + s \tag{6}$$

$$a = b + c \tag{7}$$

$$d = e + f + g \tag{8}$$

$$h+i=j+k$$

$$l + m = n \tag{9}$$

$$a = b + c$$

$$d = e + f + g$$

$$h + i = j + k$$

$$l + m = n$$

$$(10)$$

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix}$$

$$|x| = \begin{cases} -x & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ x & \text{if } x > 0. \end{cases}$$
 (11)

$$|x| = \begin{cases} -x & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ x & \text{if } x > 0. \end{cases}$$
 (12)

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

 \mathcal{R} \mathfrak{R} \mathbb{R}

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

 $\mathfrak{su}(2)$ and $\mathfrak{so}(3)$ Lie algebra

$$P = \frac{\sum_{i=1}^{n} (x_i - x)(y_i - y)}{\left[\sum_{i=1}^{n} (x_i - x)^2 \sum_{i=1}^{n} (y_i - y)^2\right]^{1/2}}$$

 $\mu, M \quad \mu, M$

My Theorem 0.1. The light speed in vaccum is 299,792,458 m/s.

My Theorem 0.2 (Energy). The relationship of energy, momentum and mass is

$$E^2 = m_0^2 c^4 + p^2 c^2$$

where c is the light speed described in theorem 0.1.

Law 1. Don't hide in the witness box.

Jury 2 (The Twelve). It could be you! So beware and see law 1.

Jury 3. You will disregard the last statement.

Margaret. No, No, No

Margaret. Denis!

Proof. For simplicity, we use

$$E = mc^2$$

That's it. □

Proof. For simplicity, we use

$$E = mc^2$$