TENSEURS

I - Théorie algébrique des tenseurs

- Introduction

Nous avions noté que, pour des systèmes simples, la puissance ou l'énergie apparaissent comme des formes linéaires. Si, maintenant, le modèle du phénomène physique étudié est décrit par q grandeurs vectorielles, dans une approche linéaire, on généralisera le cas à une variable, à l'aide de "fonctionnelles" multilinéaires.

1) Tenseur sur un espace vectoriel

Notations :

- → Si E et F sont deux espaces vectoriels, sur (R), on notera B une forme bilinéaire sur E,F, c'est-à-dire une application qui à (X,Y) ∈ ExF associe B (X,Y) ∈ (R), linéaire par rapport à (X,Y) ∈ (X,Y) ∈
- Si E est un espace vectoriel on notera \mathscr{L} (E), l'espace des formes q linéaires sur E ;on a alors E* = \mathscr{L}_1 (E) ; où E est le dual de E si X \in E et $\mathscr{L} \in \mathscr{L}_1$ (E) on notera $\times \longrightarrow \mathscr{L}_1$ (X)
- Dans la suite E sera un espace vectoriel réel de dimension n.

1a) Tenseurs d'ordre 2.

Ici E ne sera pas considéré comme euclidien (on n'identifiera pas une forme linéaire à un vecteur).

Définition :

Soient Ψ et $\psi \in \mathscr{A}$ (E) deux formes linéaires : la relation :

(1)
$$(\Psi \bullet \Psi) (X, Y) = \Psi(X) \cdot \Psi(Y)$$
 où $(X, Y) \in E \times E$

définit $\Psi\otimes\Psi$ comme un élément de \swarrow (E), c'est-à-dire comme une forme bilinéaire sur E. On l'appelle produit tensoriel de Ψ par Ψ .

Proposition:

Soient (e_i) une base de E, (e^j) la base de E^{*}duale de la base(e_i) (ie e^j (e_i) = \sum_{i}^{j}). L'ensemble des produits tensoriels eⁱ \otimes e^j définis par :

$$(e^{i} \otimes e^{j}) (e_{k}, e_{m}) = 0$$
 sik # i ou m # j (ou inclusif)
1 sik = i et m = j

est une base de \mathcal{L}_{2} (E)

- Si B est un élément de $\frac{1}{2}$ (E) on note (avec la convention d'Einstein). B = b_{ij} e \otimes e \otimes

 $-\mathcal{L}_{2}$ (E) est de dimension n²

Démonstration : 0

Remarquons que :

$$(e^{i} \otimes e^{j}) (e_{k}, e_{m}) = e^{i} (e_{k}) \cdot e^{j} (e_{m})$$
. d'après la définition.

Soient X, Y 2 éléments de E : $X = x^i e_i$, $Y = y^j e_j$ B $(X, Y) = x^i y^j$ b (e_i, e_i)

posons b $(e_i, e_j) = b_{ij}$ et remarquons que si on pose

$$B = b_{ij} e^{i} \otimes e^{j}$$

alors B (X,Y) = $x^iy^jb_{ij}$ ce qui démontre que les $e^i\otimes e^j$ sont générateurs de \checkmark_2 (E).

[l faut montrer qu'ils forment un système indépendant.

Soient n^2 scalaires λ tels que

$$\lambda_{i,j} e^{i} \otimes e^{j} = 0$$
 (forme bilinéaire nulle).

alors

$$(\lambda_{ij} e^{i} \otimes e^{j}) (e_{k}, e_{m}) = \lambda_{km} = 0 \quad \forall k,m$$

Ce qui montre que le système est libre

Définitions

Soient maintenant $E^* = \mathcal{L}_1(E)$ l'espace dual de E on pose par définition $\mathcal{L}^2(E) = \mathcal{L}_2(E^*)$. (en général $\mathcal{L}^q(E) = \mathcal{L}_q(E^*)$). Et X, Y deux vecteurs fixes de E; la relation

définit un élément de $\boldsymbol{\mathcal{L}}^2$ (E) (ie $\boldsymbol{\mathcal{L}}_2$ (E*)) qu'on appelle produit tensoriel de X par Y.

Proposition:

Si (e_i) est une base de E, soit (e^j) la base de E* duale de (e_i) : l'ensemble des éléments e_i \otimes e_j tels que :

$$(e_{i} \otimes e_{j}) (e^{k}, e^{m}) = e^{k}(e_{i}) \cdot e^{m}(e_{j}) = 0 \quad \text{si } k \neq i, m \neq j$$

$$1 \quad \text{si } k = i \neq m = j$$

est une base de \mathcal{L}^2 (E)

Si $\beta \in \mathcal{Z}$ (E) on note

et dim \mathcal{L}^2 (E) = n^2

Définition :

Considérons l'espace des formes bilinéaires sur E X E [★] qu'on note

$$\mathcal{L}_{1}^{1}$$
 (E) , $B^{\epsilon}\mathcal{L}_{1}^{1}$ (E) si $(X, \Psi) \in E \times E^{*} \xrightarrow{B} B (X, \Psi) \in \mathbb{R}$

B est linéaire en X et Y.

La relation où X ∈ E et **¢€**E*

 $(X \otimes Y) (Y, Y) = \Psi(X) \cdot \varphi(Y)$ définit un élément de \mathcal{L}_{A}^{1} (E). qu'on app**e**lle produit tensoriel de X par arphi .

Proposition:

De la même façon les éléments de la forme : $e_i \otimes e^j$ tels que :

$$(e_1 \otimes e^j) (e^k, e_m) = 0$$
 si $k \neq i, m \neq j$

1 si k = i et m = j

forment une base de \swarrow_1^1 (E) et si $B \in \swarrow_1^1$ (E) on note :

$$B = b_j^i \quad e_i \otimes e^j$$

- l'espace \int_{2}^{2} (E) est noté $E^{*}\otimes E^{*}$, on l'appelle produit tensoriel de E^{*} par E^{*} , ses éléments sont les tenseurs deux fois covariants sur E.
- l'espace J^2 (E) est note E \otimes E , on l'appelle produit tensoriel de E par E ses éléments sont les tenseurs deux fois contravariants sur E.
- lespace ∠ 1 (E) est noté E ❷ E , produit tensoriel de E par E, ses éléments sont les tenseurs mixtes 1 fois covariants 1 fois contravariants.

Remarquons que :

E E et E ⊗ E sont isomorphes.

1b) Tenseurs d'ordre quelconque :

Soient (p,q) deux entiers, si \mathcal{L}_{p}^{q} (E) est l'ensemble des formes p + q linéaires sur $\underbrace{\mathsf{EXE}...\mathsf{XE}}_{p}$ X $\underbrace{\mathsf{EXE}^{*}...\mathsf{XE}}_{p}$ c'est-à-dire l'ensemble de T tels que : $(\mathsf{X}_{1},\ldots,\mathsf{X}_{p},\mathsf{Y}^{1},\ldots,\mathsf{Y}^{q}) \leftarrow \mathsf{T}$ $(\mathsf{X}_{1},\mathsf{X}_{2},\ldots,\mathsf{X}_{p},\mathsf{Y}^{1},\ldots,\mathsf{Y}^{q}) \in \mathbb{R}$

linéaires par rapport à chaque variable. Un élément de \mathbf{d}_p^q (E) est un tenseur p'a fois covariant, \mathbf{g}_p fois contravariant.

Proposition

i) l'ensemble des éléments de la forme :

$$e^{i1} \bullet \dots \bullet e^{ip} \bullet e_{j_1} \dots \bullet e_{j_q} \quad \text{tels que}:$$

$$(e^{i1} \bullet \dots \bullet e^{ip} \bullet e_{j_1} \dots \bullet e_{j_q}) \quad (e_{k_1}, \dots, e_{k_p}, e^{m_1}, \dots, e^{m_q})$$

$$= 0 \quad \text{si} \quad k_1 \neq i_1 \quad \text{ou} \quad \dots \quad j_q \neq m_q$$

$$1 \quad \text{si} \quad k_1 = i_1 \quad \text{et} \quad \dots \quad j_q = m_q$$

forment une base de $\begin{pmatrix} q \\ p \end{pmatrix}$ (E).

avec T $i1....ip = T (e_{j1},, e_{jq}, e^{i1},, e^{ip})$ qu'on appelle composantes de T dans la base définie en i)

iii)
$$\angle \frac{q}{p}$$
 (E) est de dimension n $p+q$

- Somme de deux tenseurs

Si $S \in \mathcal{L}_{p}^{q}(E)$ et $T \in \mathcal{L}_{p}^{q}$ (E) on appelle S + T somme de S et T le tenseur tel que :

$$(s + \tau) (x_1, ..., x_p, \varphi^1, ..., \varphi^q) = s(x_1, ..., x_p, \varphi^1, ..., \varphi^q) + \tau(x_1, ..., x_p, \varphi^1, ..., \varphi^q)$$

- Produit tensoriel de deux tenseurs

Soient T
$$\epsilon m{\mathcal{L}}_{p}^{q}$$
 (E) et S $\epsilon m{\mathcal{E}}_{r}^{s}$ (E) la relation

$$(T \bullet S) (X_1, ..., x_{p+r}, y^1, ..., y^{q+s}) = T (X_1, ..., x_p, y^1, ..., y^q) S(X_{p+1}, ..., x_{p+r}, y^{q+1}, ..., y^{q+s})$$

définit un élément de \int_{p+r}^{q+s} (E) qu'on appelle produit tensoriel de T et de S. On a alors :

$$[T \otimes S] \qquad = T \qquad j_1 \cdot \dots \cdot j_q \cdot S \qquad j_{q+1} \cdot \dots \cdot j_{q+s}$$

$$\vdots_1 \cdot \dots \cdot i_{p+r} \qquad \vdots_1 \cdot \dots \cdot i_p \qquad \vdots_{p+1} \cdot \dots \cdot i_{p+r}$$

Chaque composante de T est multipliée par chaque composante de S.

On a donc

$$-\mathcal{L}_{p}^{q} (E) \otimes \mathcal{L}_{r}^{s} (E) = \mathcal{L}_{p+r}^{q+s} (E)$$

➡ la multiplication est distributive par rapport à l'addition

$$(T + S) \otimes R = T \otimes R + S \otimes R$$

 $R \otimes (T + S) = R \otimes T + R \otimes S$

- La multiplication est associative

Cependant le produit tensoriel n'est en général pas commutatif

- Exemple dans R²

$$\begin{cases} x = x^{1}e_{1} + x^{2}e_{2} \\ y = y^{1}e_{1} + y^{2}e_{2} \end{cases}$$

$$x \otimes y = x^{1}y^{1}e_{1} \otimes e_{1} + x^{1}y^{2}e_{1} \otimes e_{2} + x^{2}y^{1}e_{2} \otimes e_{1}$$

$$+ x^{2}y^{2}e_{2} \otimes e_{2}$$

ET

$$Y \otimes X = x^{1}y^{1} e_{1} \otimes e_{1} + x^{2}y^{1} e_{1} \otimes e_{2} + x^{1}y^{2} e_{2} \otimes e_{1} + x^{2}y^{2} e_{2} \otimes e_{2}$$
 et en général $x^{2}y^{1} \neq x^{1}y^{2}$

Notation :

On convient d'identifier l'ensemble des tenseurs de type (0,0) avec les scalaires

- Formule; de changement de base

Soient $T \in \mathcal{L}^q$ (E), (e_i) une base de E, (e^j) base duale de (e_i) dans E*, soit (E_I) une nouvelle base E, (E^J) la base duale de (E_I) on peut écrire

(1)
$$\begin{cases} E_{I} = \alpha_{\dot{I}}^{\dot{I}} e_{\dot{I}} & \text{ou } e_{\dot{I}} = \beta_{\dot{I}}^{\dot{I}} & E_{I} \\ E^{\dot{J}} = \beta_{\dot{J}}^{\dot{J}} e^{\dot{J}} & \text{ou } e^{\dot{J}} = \alpha_{\dot{J}}^{\dot{J}} & E^{\dot{J}} \end{cases}$$

les matrices ≺ et β sont inverses l'une de l'autre

écrivons T dans les bases (e,) et $(E^{\hat{1}})$

$$J1....Jq$$
 $T = T'$
 $E_{JI} \otimes E_{J2}.... \otimes E_{Jq} \otimes E^{\dot{1}1} \otimes \otimes E^{\dot{1}p}$

Il vient

d'où

Proposition

Si on se donne un changement de base dans E par les formules (1) alors les composantes du tenseur se transforment par les formules (2). (composantes du tenseurs dans la nouvelle base en fonction des composantes dans l'ancienne).

Réciproquement

Si on se donne n^{p+q} scalaires qui se transforment par un changement de base par les formules (2), il leur est associé une forme p+q linéaire de ✔q (E) c'est¬à¬dire un tenseur.

(La formule (2) porte aussi le nom de "critère de tensorialité").

- Contraction - produit contracté

Soit $T \in \mathcal{L}_p^q$ (E) en tant que forme p+q linéaire on écrit : $T(x_1, x_2, \dots, x_p; \varphi^1, \dots, \varphi^q)$.

Considérons la Kième variable X_k dans le p-uple (X_1, \dots, X_p) et la Y ième variable Y dans le q-uple (Y^1, \dots, Y^q)

(on suppose $k \leq p$ et $\ell \leq q$).

L'expression suivante définit un élément S de (E) p-1

(3)
$$s(x_1,...,x_{p-1}, \varphi^1,..., \varphi^{q-1}) = T(x_1,...,x_{k-1}, e_1, x_{k+1},...,x_p, \varphi^1,..., \varphi^{\ell-1}, e^1, \varphi^{\ell+1},..., \varphi^q)$$

Les composantes de S dans une base (e,) sont alors

(4)
$$s^{j_1...j_{q-1}} = T^{j_1...j_{e-1}} i^{j_{e+1}...j_{q}}$$

$$i_{1}...i_{p-1} i_{1}...i_{k-1} i^{j_{k+1}...i_{p}}$$

c'est⇒à⊶dire sous forme développée

$$\frac{j_1...j_{q-1}}{s} = \sum_{i=1}^{n} j_1,..., j_{q-1,i}, j_{q+1,...j_q}$$
 $\frac{j_1...j_{q-1}}{s} = \sum_{i=1}^{n} j_1,..., j_{q-1,i}, j_{q+1,...j_q}$

Ce nouveau tenseur S est dit être obtenu par contraction du $e^{i = me}$ indice supérieur et du kième indice inférieur.

Produit contracté de deux tenseurs

Soit S et T deux tenseurs $S \in \mathcal{L}_{p}^{q}$ (E) $T \in \mathcal{L}_{p}^{q}$ (E) Soit R le tenseur de \mathcal{L}_{p+r}^{q+s} (E) produit tensoriel de T et S

On choisit un indice supérieur (resp inférieur) de rang $\mathcal C$ dans T, un indice inférieur (resp supérieur) de rang k dans S et on peut contracter par rapport à ces deux indices le tenseur R, on obtient un nouveau tenseur

$$U \in \mathcal{L}_{p+r-1}^{q+s-1} (E)$$

U est appelé produit contracté de T par S pour le kième indice supérieur (respinférieur) de T et le ℓ ième indice inférieur (resp supérieur de S)

On note parfois :

2) Tenseurs en espace Euclidien

On prend dans ce paragraphe $E = \mathbb{R}^{n}$ muni du produit scalaire habituel, on identifie E^* avec \mathbb{R}^n , la base (ej) duale de la base (ej) étant définie (comme précédemment) par :

$$e^{j}(e_{i}) = e^{j} \cdot e_{i} = \delta^{j}$$

De plus on s'intéresse tout spécialement dans ce paragraphe aux tenseurs d'ordre 2.

Passage des composantes covariantes aux composantes contravariantes (et inverse).

On a vu que si on posait $g^{ij} = e^i \cdot e^j$ et $g_{ij} = e_i \cdot e_j$

Considérons un tenseur T deux fois contravariant

$$T = t^{k\ell} e_k \otimes e_p$$

passons à la base duale

$$e_k = g_{kj} e^j, e_{\rho} = g_{\ell i} e^i$$

Il vient :

$$t^{k\ell} e_k \otimes e_{\ell} = t^{k\ell} g_{kj} g_{\ell i} e^{i} \otimes e^{j} - t_{ij} e^{i} \otimes e^{j}$$

On peut donc écrire T sous la forme d'un tenseur 2 fois covariant

Remarquons que :

Si la base (e_i) est orthonormée alors e_i = eⁱ et l'on peut plus faire de différence entre les composantes covariantes et contravariantes.

On a:
$$t_{ij} = t^{ij} = t^{j}$$

Contraction :

Sauf en repère orthonormé on ne peut contracter qu'un tenseur mixte du deuxième ordre.

Soit T =
$$t_j^i e_i \otimes e^j$$

On ne peut contracter que sur les indices i et j, on obtient alors un scalaire qu'on appelle trace de T.

Trace (T) =
$$t_{i}^{1}$$

Cependant à un tenseur deux fois contravariant on peut associer ces composantes mixtes et prendre sa trace :

$$T = t_{k_{\ell}} e^{k \otimes e \ell} \quad \text{or } e^{k} = g^{ki} e_{i}$$

$$T = t_{\ell}^{i} e_{i} \otimes e^{\ell} = t_{k_{\ell}} g^{ki} e_{i} \otimes e^{\ell}$$

d'où

trace (T) =
$$t_{ki}$$
 g^{ki}