ФИО	Группа	1	2	3	4	5	6	Σ	Оценка	Подпись

Вариант 1

Контрольный вопрос: Дать определение нормы матрицы, согласованной с нормой вектора.

1. (4) Дана сеточная функция:

x	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
y	6.0	6.3	6.6	6.9	7.3	7.7	8.0	8.5	8.9	9.4	9.8

Используя формулу с центральной разностью (второго порядка), вычислить производную y'(0.25) с максимальной возможной точностью. Известно, что относительная ошибка округления $\varepsilon=0.01$ и $M_3=\max_{x\in[0,5]}|y'''(x)|\leq 10.$

2. (5) Дана система линейных алгебраических уравнений $A\vec{u} = f$:

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \vec{u} = \begin{pmatrix} 4 \\ 0 \\ -4 \end{pmatrix}$$

Произвести две первых итерации метода минимальных невязок. За начальное приближение взять вектор правой части $(\vec{u}_0 = \vec{f})$.

3. (6) Построить функцию Лебега и вычислить константу Лебега для сетки $\{x_n\}_{n=0}^2 = \{0, \frac{1}{3}, 1\}.$

4. (5) Функция f(x) задана таблично:

$$\begin{array}{c|cccc} x & \frac{\pi}{4} & \frac{\pi}{3} & \frac{\pi}{2} \\ \hline f(x) & \frac{\sqrt{2}}{2} & \frac{1}{2} & 1 \\ \end{array}$$

Найти численно значение интеграла $\int_{\pi/4}^{\pi/2} f(x) dx$ с максимально возможной точностью.

5. (4) Дана система уравнений:

$$\begin{cases} x^2 + y^2 - 25 = 0\\ y - \frac{x^3}{3} + x - 1 = 0 \end{cases}$$

Предложить метод простой итерации для нахождения корней системы. Доказать его сходимость.

6. (6) Для решения ОДУ $\dot{y} = ay$ используется линейный многошаговый метод:

$$\frac{3y_{n+1} - 4y_n + y_{n-1}}{2h} = ay_{n+1}$$

Доказать сходимость метода.

ФИО	Группа	1	2	3	4	5	6	Σ	Оценка	Подпись

Вариант 2

Контрольный вопрос: Формулировка основной теоремы вычислительной математики.

1. (4) Дана сеточная функция:

x	0	1/3	1
y	1	1.11	2.72

Вычислить y'(1/3) с максимально возможной точностью.

2. (5) Для решения системы линейных алгебраических уравнений $A\vec{u} = f$:

$$\begin{pmatrix} 4 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 4 \end{pmatrix} \vec{u} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$$

построить итерационный процесс поиска решения методом Зейделя. Записать метод в компонентах. Доказать сходимость метода.

3. (6) Дана сеточная функция:

x	0	1/2	1
y	2	1	$e^{-1} + 1$

Построить интерполяцию обобщенным полиномом по системе функций $\phi_0=1,\ \phi_1=\sin(\pi x)$ и $\phi_2=e^{-x^2}.$

4. (5) Функция f(x) задана таблично:

x	0	0.1	0.2	0.3	0.4
f(x)	0	1	$\sqrt{2}$	$\sqrt{3}$	2

Используя формулу Симпсона, найти численно значение интеграла $\int_0^{0.4} f(x) dx$ с максимально возможной точностью.

- 5. (4) Нелинейное уравнение $1 \ln(1 + x^2) = 0$ решается методом Ньютона. Выписать расчетные формулы метода. При каких начальных приближениях метод сходится?
- 6. (6) Задача Коши для ОДУ $\dot{y}=f(t,y),\,y(0)=y^0$ решается явным методом Рунге-Кутты. Исследовать метод на устойчивость, если его таблица Бутчера:

$$\begin{array}{c|cccc}
0 & & & & \\
1/2 & 1/2 & & & \\
1 & 2 & -1 & & \\
\hline
& 1/6 & 2/3 & 1/6
\end{array}$$

ФИО	Группа	1	2	3	4	5	6	Σ	Оценка	Подпись

Вариант 3

Контрольный вопрос: Теорема о существовании решения задачи алгебраической интерполяции.

1. (4) Дана сеточная функция:

x	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
y	0.00	0.99	1.9	2.9	3.9	4.9	5.9	6.8	7.7	8.6	9.5

Используя формулу первого порядка, вычислить производную y'(0.25) с максимальной возможной точностью. Известно, что относительная ошибка округления $\varepsilon = 0.01$ и $M_2 = \max_{x \in [0,5]} |y''(x)| \le 10$.

2. (5) Итерационный процесс метода Якоби задается следующей системой уравнений:

$$\begin{cases} x_{n+1} &= -\frac{1}{3}y_n - z_n + \frac{1}{3} \\ y_{n+1} &= -\frac{1}{2}x_n - \frac{1}{2}z_n + 1 \\ z_{n+1} &= -\frac{1}{2}x_n - \frac{1}{4}y_n + \frac{1}{4} \end{cases}$$

Записать итерационный процесс в каноническом виде и доказать сходимость метода. (Указание: один из корней характеристического уравнения $\lambda = -1$).

3. (6) Дана сеточная функция:

Построить интерполяционный многочлен третьего порядка, если известно что f'(1/3) = 0.

4. (5) Функция f(x) задана таблично:

x	0	0.1	0.2	0.3	0.4
f(x)	0	0.5	2	4.5	8

Найти численно значение интеграла $\int_0^{0.4} f(x) dx$. Оценить погрешность интегрирования.

5. (4) Дана система уравнений:

$$\begin{cases} x^2 + y^2 - 25 = 0\\ y - \frac{x^3}{3} + x - 1 = 0 \end{cases}$$

Выписать формулы метода Ньютона.

6. (6) Используя условия аппроксимации третьего порядка и условие Кутты, дописать в таблицу Бутчера недостающие коэфициенты: