Part 1: Short Answer Questions

1. Problem Definition:
Hypothetical AI Problem: Predicting employee turnover in a tech company.
Objectives:
- Identify employees likely to resign within 6 months.
- Understand key factors contributing to turnover.
- Help HR make data-driven retention decisions.
Stakeholders:
- Human Resources Department
- Company Executives
Key Performance Indicator (KPI):
- Recall on the positive class (correctly identifying employees who leave)
2. Data Collection & Preprocessing:
Data Sources:
- Internal HR records (attendance, performance reviews, tenure)
- Employee surveys (job satisfaction, work-life balance)
Potential Bias:
Survey data may underrepresent unhappy employees who choose not to respond.

Preprocessing Steps:

- Handle missing data using imputation.

- Encode categorical variables.

- Normalize numerical features.

3. Model Development:
Model: Random Forest (handles mixed data types and is interpretable).
Data Split:
- 70% Training
- 15% Validation
- 15% Test
Hyperparameters:
- n_estimators: Number of trees
- max_depth: Limit tree depth to avoid overfitting
4. Evaluation & Deployment:
Evaluation Metrics:
- Precision: Avoid false positives.
- Recall: Ensure high true positive rate.
Concept Drift:
Change in data distribution over time.
Monitoring: Use drift detectors, periodic retraining.

Deployment Challenge:

Scalability in real-time prediction environments.

Part 2: Case Study Application

Problem Scope:

Objective: Predict hospital readmissions within 30 days.

Stakeholders: Administrators, doctors, nurses.

Data Strategy:

Sources: EHRs, demographics, medication logs.

Ethical Concerns: Patient privacy, bias against age/economic status.

Preprocessing: Clean missing data, encode features, engineer (e.g., length of stay).

Model Development:

Model: Logistic Regression (transparent and interpretable).

Confusion Matrix:

Pred Yes Pred No

Actual Yes 50 20

Actual No 30 100

Precision: 0.625

Recall: 0.714

Deployment:
Steps: API integration, flagging high-risk patients.
Compliance: Encrypt data, audit access, de-identify training data.
Optimization:
Regularization or Cross-validation to reduce overfitting.
Part 3: Critical Thinking
Ethics & Bias:
Bias in training data can neglect high-risk groups, worsening outcomes.
Mitigation: Fair sampling and reweighting underrepresented groups.
Trade-offs:
Interpretability vs. Accuracy: Deep models may outperform but lack transparency.
Resource Limits: Lightweight models preferred in constrained environments.
Part 4: Reflection & Workflow Diagram
Reflection:
Most challenging: Addressing bias fairly.
Improvement: Stakeholder input and model retraining cycles.
Workflow Diagram:
Problem Definition -> Data Collection -> Preprocessing -> Modeling -> Evaluation -> Deployment ->

Monitoring

References

- 1. IBM AI Fairness 360 Toolkit: https://aif360.mybluemix.net/
- 2. Kaggle Breast Cancer Dataset: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
- 3. Scikit-learn Documentation: https://scikit-learn.org/
- 4. Testim.io: https://www.testim.io/