Ceros de ecuaciones

Juan Pablo Pinasco (jpinasco@dm.uba.ar//gmail.com)

Departamento de Matemática e IMAS, FCEyN, UBA - CONICET

2020

Hoy:

- Ec no lineales
- bisec
- Newton Raph

Próxima:

- Convergencia NR: 71-76
- Punto Fijo: 76-79

Parte I

Ceros

1.- Problema

Dada $f: \mathbb{R} \to \mathbb{R}$, hallar r tal que f(r) = 0.

Veradero problema: no hay recetas ni fórmulas que permitan encontrar el cero. Ni siguiera para polinomios de grado 5 en adelante.

Existen diferentes métodos pero ninguno que sirva siempre, todos tienen algún detalle.

En general, se determina un intervalo donde haya una raíz, por ejemplo buscando $a,\,b$ donde tenga distinto signo por prueba y error, después Bolzano garantiza que ahí hay un cero.

2.- Bisección

Este es un gran método, y es la demostración de Bolzano. Uno parte de [a,b], con f(a)>0 y f(b)<0, divide el intervalo a la mitad y evalúa la f. Ahora, se queda con un nuevo intervalo según el signo de f en el punto medio.

```
def bizexion(f, a, b, epsilon)
     while b-a > epsilon:
          c = 0.5 * (a + b)
          if f(c) >= 0:
\# si no saben meter f, en esa línea piden la cuenta explícita.
# por ejemplo: "Mozo, la cuenta".
# o si f(x) = 3 * x * *7 - x + 10, ponen if 3 * c * *7 - c + 10 >= 0.
# recuerden import numpy as np. si usan np.e, np.sin, etc., hay
# muchas funciones en numpy pero hay que importar el módulo.
               a = c
          else:
               b = c
     return (a, b)
```

3.- Bisección

Si ponemos epsilon = 0 generamos una sucesión infinita de intervalos $[a_i, b_i]$, con $a_0 = a$, $b_0 = b$. Se cumple

$$a_1 \le a_2 \le \dots \le b,$$

 $b_1 \ge b_2 \le \dots \ge a,$
 $b_i - a_i = \frac{b - a}{2^i}$

Son sucesiones monótonas y acotadas, así que convergen, y lo hacen a lo mismo, un punto ${\it r}$ tal que

$$a_i \leq r \leq b_i$$
.

Como $0 \le f(a_i) \to f(r)$, tenemos $0 \le f(r)$.

Como $0 \ge f(g_i) \to f(r)$, tenemos $0 \ge f(r)$.

No queda otra que f(r) = 0.

4.- Bisección

Teorema

Sea $f:[a,b]\to\mathbb{R}$ continua, f(a)f(b)<0. Entonces, el método de bisección genera una sucesión $\{x_n\}_{n\geq 1}$ que converge a una raíz r de f, y el error $e_n=|x_n-r|\leq (b-a)/2^n$.

Dem: Por todo lo anterior, si llamamos $x_n=(a_{n-1}+b_{n-1})/2$, como la raíz está dentro del intervalo, tenemos

$$|r - x_n| \le \frac{b_{n-1} - a_{n-1}}{2} = \frac{b - a}{2^n}$$

5.- Regula falsi

Este método es algo intermedio entre bisección y Newton-Raphson.

Dados a, b y f con f(a)f(b) < 0, definimos la recta

$$y - f(a) = \frac{f(b) - f(a)}{b - a}(x - a)$$

que tiene un cero

$$x_1 = a - \frac{f(a)}{f(b) - f(a)}(b - a)$$
$$= \frac{af(b) - bf(a)}{f(b) - f(a)}$$

Evaluando $f(x_1)$, redefinimos a o b, e iteramos. Esta sucesión converge a la raíz (pero la longitud del intervalo no necesariamente tiende a cero).

En general es mejor que bisección, pero a veces tarda más (en los casos en los cuales Newton-Raphson falla)

Ventaja: no hay cancelaciones catastróficas que nos hagan dividir por cero.

En este método se comienza con un punto x_0 , se utiliza la recta tangente a f en el punto para definir un nuevo punto x_1 , y se continúa iterando.

Se basa en la esperanza de que la recta tangente se parezca a la función y corte al eje en el mismo lugar.

Hay muchos casos donde falla, depende del x_0 inicial, de que la raíz sea simple, que f' no se anule, etc.

A cambio, sirve para sistemas de ecuaciones, o para buscar raíces complejas.

Necesitamos f derivable. Conociendo x_n , definimos x_{n+1} como el cero de la recta tangente,

$$f(x_n) + f'(x_n)(x_{n+1} - x_n) = 0$$

Es decir,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Por razones obvias, conviene que f' no se anule cerca de la raíz.

Aunque $f' \neq 0$, si toma valores demasiado chicos, el cociente puede irse a infinito.

Teorema

Sea $f \in C^1(\mathbb{R})$, y $\{x_n\}_{n\geq 1}$ una sucesión construída con este método. Si $x_n \to r$, entonces f(r) = 0.

Dem: Tenemos $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Entonces,

$$f(x_n) = f'(x_n)(x_n - x_{n+1}) \to 0 \qquad n \to \infty.$$

* * *

Para garantizar la convergencia y acotar el error necesitamos unas cuantas hipótesis y una definición:

Def: un cero r de f se dice *simple* si $f'(r) \neq 0$.

Teorema

Sea $f \in C^2([a,b])$, y r un cero simple de f. Sea $I = [r-\alpha,r+\alpha]$, y sean δ , M positivos tales que para todo $x \in I$,

- $|f'(x)| \geq \delta$,
- $\bullet |f''(x)| \le M.$

Sea $\{x_n\}_{n\geq 1}$ una sucesión construida con este método, y $e_n=x_n-r$.

Entonces existe $\varepsilon > 0$ tal que $I_{\varepsilon} = [r - \varepsilon, r + \varepsilon] \subset I$, y se tiene $|e_n| \to 0$ si $x_0 \in I_{\varepsilon}$.

Más aún,

$$|e_{n+1}| \le \frac{1}{2} \frac{M}{\delta} |e_n|^2.$$

10.- Comentarios

Un caso importante:

Teorema

Si $f \in C^2(R)$, con f'' > 0 (convexa), cambia de signo, y f no alcanza su mínimo en x_0 , entonces el método de Newton Raphson comenzando en x_0 converge.

En el primer teorema conseguimos

$$e_{n+1} = Ce_n^2.$$

Si f es C^2 , y la raíz es simple, sale de hacer Taylor y acotar f' y f''. Lo importante es que esto dice que la convergencia es *cuadrática*, y en cada iteración duplicamos el número de cifras correctas.

La contra es que necesitamos empezar cerca de la raíz, y no tenemos cómo saber qué tan cerca estamos.

11.- Más comentarios

Si la función tiene k raíces, podemos clasificar cada x_0 en k+1 grupos: k corresponden a los puntos que convergen a la respectiva raíz, y el último son aquellos x_0 para los cuales el algoritmo no converge a ninguna.

En dimensión 2 (o mayor), con $F: \mathbb{R}^2 \to \mathbb{R}^2$, o en los complejos, tenemos

$$z_{k+1} = z_k - DF(z_k)^{-1}F(z_k)$$

La teoría es igual, pero hay fenómenos lindos.