Consider the three degree-of-freedom PPR robot with two prismatic joints q_1 and q_2 , and a revolute joint q_3 , shown in Fig. 1.1. The zero position, i.e., the position of the robot when the joint positions are $\mathbf{q} = [q_1, q_2, q_3] = [0, 0, 0]$ is depicted in Fig. 1.1 b).

- 1. Define the coordinate frames for the three links and centers of mass (c.m.) according to the Distal Denavit-Hartenberg (D-H) convention. The c.m. are depicted in Fig 1.1 as black and white circles. [1p]
- 2. Using the previously defined coordinate frames and the lengths shown in the Fig. 1.1, obtain the D-H tables and parameters for the joints and the centers of mass. [1p]
- 3. Compute the relative Homogeneous Transformations for each link and each c.m. \mathbf{H}_{i}^{i-1} and $\mathbf{H}_{cm_{i}}^{i-1}$, respectively. Determine the transformations for the base and end-effector \mathbf{H}_{0}^{w} and \mathbf{H}_{ef}^{3} , respectively. [1p]
- 4. Compute the absolute Homogeneous Transformations for each link \mathbf{H}_{i}^{w} , each c.m. $\mathbf{H}_{cm_{i}}^{w}$, and the end-effector \mathbf{H}_{ef}^{w} relative to the world coordinate frame (wcf) \mathbf{O}_{w} , depicted in the Fig. 1.1. [1p]
- 5. Finally, compute the Jacobian matrices for the end-effector $\mathbf{J}_{\mathrm{ef}}^{0}(\mathbf{q})$ and for each c.m. $\mathbf{J}_{\mathrm{cm_{i}}}^{0}(\mathbf{q})$ relative to the robot base (link 0). The end-effector pose (6D) is shown in the Fig. 1.1 with the coordinate frame \mathbf{O}_{ef} . [1p]

Figure 1.1

Consider the four degrees-of-freedom RPPR robot composed of an initial revolute joint q_1 , followed by two prismatic joints q_2 and q_3 , an ending with a revolute joint q_4 , shown in Fig. 2.1. The zero position, i.e., the position of the robot when the joint positions are $\mathbf{q} = [q_1, q_2, q_3] = [0, 0, 0]$ is depicted in Fig. 2.1 i). For this exercise, you will assume that one of the joints is broken and no longer moves. In this case, the movable joints are q_1, q_2 , and q_3 . Note that q_4 must be considered fixed in the zero position $q_4 = 0 \forall t$. This condition makes the robot a 3DOF robot (RPP). Consider the origin of the end-effector frame O_{ef} to be located at cm_4 but disregard cm_4 .

- 1. Define the coordinate frames for the three links and centers of mass (c.m.) according to the Distal Denavit-Hartenberg (D-H) convention. The c.m. are depicted in Fig 2.1 as black and white circles. [1p]
- 2. Using the previously defined coordinate frames and the lengths shown in the Fig. 2.1, obtain the D-H tables and parameters for the joints and the centers of mass. [1p]
- 3. Compute the relative Homogeneous Transformations for each link and each c.m. \mathbf{H}_{i}^{i-1} and $\mathbf{H}_{cm_{i}}^{i-1}$, respectively. Determine the transformations for the base and end-effector \mathbf{H}_{0}^{w} and \mathbf{H}_{ef}^{3} , respectively. [1p]
- 4. Compute the absolute Homogeneous Transformations for each link \mathbf{H}_{i}^{w} , the end-effector \mathbf{H}_{ef}^{w} , and each c.m. \mathbf{H}_{cm}^{w} , relative to the world coordinate frame (wcf) \mathbf{O}_{w} , depicted in the Fig. 2.1. [1p]
- 5. Finally, compute the Jacobian matrices for the end-effector $(\mathbf{J}_{ef}^{0}(\mathbf{q}))$ and for each c.m. $(\mathbf{J}_{cm_{i}}^{0}(\mathbf{q}))$ relative to the robot base (link 0). [1p]

Figure 2.1: 3DOF robot (RPP). The movable joints are q_1 , q_2 , and q_3 .

Exercise 3 Consider the three degree-of-freedom PRP robot with one initial prismatic joint q_1 , followed by a revolute joint q_2 , and a prismatic joint q_3 at the end, shown in Fig. 3.1. The zero position, i.e., the position of the robot when the joint positions are $\mathbf{q} = [q_1, q_2, q_3] = [0, 0, 0]$ is depicted in Fig. 3.1.

- 1. Define the coordinate frames for the three links and centers of mass (c.m.) according to the Distal Denavit-Hartenberg (D-H) convention. The c.m. are depicted in Fig 3.1 as black and white circles. [1p]
- 2. Using the previously defined coordinate frames and the lengths shown in the Fig. 3.1, obtain the D-H tables and parameters for the joints and the centers of mass. [1p]
- 3. Compute the relative Homogeneous Transformations for each link and each c.m. \mathbf{H}_{i}^{i-1} and $\mathbf{H}_{cm_{i}}^{i-1}$, respectively. Determine the transformations for the base and end-effector \mathbf{H}_{0}^{w} and \mathbf{H}_{eff}^{3} , respectively. [1p]
- 4. Compute the absolute Homogeneous Transformations for each link \mathbf{H}_{i}^{w} , each c.m. $\mathbf{H}_{cm_{i}}^{w}$, and the end-effector \mathbf{H}_{ef}^{w} relative to the world coordinate frame (wcf) \mathbf{O}_{w} , depicted in the Fig. 3.1. [1p]
- 5. Finally, compute the Jacobian matrices for the end-effector $\mathbf{J}_{\mathrm{ef}}^{0}(\mathbf{q})$ and for each c.m. $\mathbf{J}_{\mathrm{cm_{i}}}^{0}(\mathbf{q})$ relative to the robot base (link 0). The end-effector pose (6D) is shown in the Fig. 3.1 with the coordinate frame \mathbf{O}_{ef} . [1p]

Figure 3.1

Consider the four degrees-of-freedom RPPR robot composed of an initial revolute joint q_1 , followed by two prismatic joints q_2 and q_3 , an ending with a revolute joint q_4 , shown in Fig. 4.1. The zero position, i.e., the position of the robot when the joint positions are $\mathbf{q} = [q_1, q_2, q_3] = [0, 0, 0]$ is depicted in Fig. 4.1 i). For this exercise, you will assume that one of the joints is broken and no longer moves. In this case, the movable joints are q_1, q_2 , and q_4 . Note that q_3 must be considered fixed in the zero position $q_3 = 0 \forall t$. This condition makes the robot a 3DOF robot (RPR). Consider the origin of the end-effector frame O_{ef} to be located at cm_4 and disregard cm_3 .

- 1. Define the coordinate frames for the three links and centers of mass (c.m.) according to the Distal Denavit-Hartenberg (D-H) convention. The c.m. are depicted in Fig 4.1 as black and white circles. [1p]
- 2. Using the previously defined coordinate frames and the lengths shown in the Fig. 4.1, obtain the D-H tables and parameters for the joints and the centers of mass. [1p]
- 3. Compute the relative Homogeneous Transformations for each link and each c.m. \mathbf{H}_{i}^{i-1} and $\mathbf{H}_{cm_{i}}^{i-1}$, respectively. Determine the transformations for the base and end-effector \mathbf{H}_{0}^{w} and \mathbf{H}_{ef}^{3} , respectively. [1p]
- 4. Compute the absolute Homogeneous Transformations for each link \mathbf{H}_{i}^{w} , the end-effector \mathbf{H}_{ef}^{w} , and each c.m. \mathbf{H}_{cm}^{w} , relative to the world coordinate frame (wcf) \mathbf{O}_{w} , depicted in the Fig. 4.1. [1p]
- 5. Finally, compute the Jacobian matrices for the end-effector $(\mathbf{J}_{ef}^{0}(\mathbf{q}))$ and for each c.m. $(\mathbf{J}_{cm_{i}}^{0}(\mathbf{q}))$ relative to the robot base (link 0). [1p]

Figure 4.1: 3DOF robot (RPR). The movable joints are q_1 , q_2 , and q_4 .

Consider the three degree-of-freedom PPR robot with two prismatic joints q_1 and q_2 , and a revolute joint q_3 , shown in Fig. 5.1. The zero position, i.e., the position of the robot when the joint positions are $\mathbf{q} = [q_1, q_2, q_3] = [0, 0, 0]$ is depicted in Fig. 5.1 b).

- 1. Define the coordinate frames for the three links and centers of mass (c.m.) according to the Distal Denavit-Hartenberg (D-H) convention. The c.m. are depicted in Fig 5.1 as black and white circles. [1p]
- 2. Using the previously defined coordinate frames and the lengths shown in the Fig. 5.1, obtain the D-H tables and parameters for the joints and the centers of mass. [1p]
- 3. Compute the relative Homogeneous Transformations for each link and each c.m. \mathbf{H}_{i}^{i-1} and $\mathbf{H}_{cm_{i}}^{i-1}$, respectively. Determine the transformations for the base and end-effector \mathbf{H}_{0}^{w} and \mathbf{H}_{ef}^{3} , respectively. [1p]
- 4. Compute the absolute Homogeneous Transformations for each link \mathbf{H}_{i}^{w} , each c.m. $\mathbf{H}_{cm_{i}}^{w}$, and the end-effector \mathbf{H}_{ef}^{w} relative to the world coordinate frame (wcf) \mathbf{O}_{w} , depicted in the Fig. 5.1. [1p]
- 5. Finally, compute the Jacobian matrices for the end-effector $\mathbf{J}_{\mathrm{ef}}^{0}(\mathbf{q})$ and for each c.m. $\mathbf{J}_{\mathrm{cm_{i}}}^{0}(\mathbf{q})$ relative to the robot base (link 0). The end-effector pose (6D) is shown in the Fig. 5.1 with the coordinate frame \mathbf{O}_{ef} . [1p]

Figure 5.1

$$\begin{array}{c} L_1 = 0.1 \\ L_2 = 0.3 \\ L_3 = 0.23 \\ L_4 = 0.42 \\ L_5 = 0.1 \\ L_6 = 0.35 \\ L_7 = 0.07 \\ L_8 = 0.5 \\ \beta = 45^{\circ} \\ L_9 = \frac{L_6}{2} \\ L_{10} = \frac{L_2}{2} \\ L_{11} = \frac{L_4}{2} \end{array}$$

Consider the four degrees-of-freedom RPPR robot composed of an initial revolute joint q_1 , followed by two prismatic joints q_2 and q_3 , an ending with a revolute joint q_4 , shown in Fig. 6.1. The zero position, i.e., the position of the robot when the joint positions are $\mathbf{q} = [q_1, q_2, q_3] = [0, 0, 0]$ is depicted in Fig. 6.1 i). For this exercise, you will assume that one of the joints is broken and no longer moves. In this case, the movable joints are q_1 , q_3 , and q_4 . Note that q_2 must be considered fixed in the zero position $q_2 = 0 \forall t$. This condition makes the robot a 3DOF robot (RPR). Consider the origin of the end-effector frame O_{ef} to be located at cm_4 and disregard cm_2 .

- 1. Define the coordinate frames for the three links and centers of mass (c.m.) according to the Distal Denavit-Hartenberg (D-H) convention. The c.m. are depicted in Fig 6.1 as black and white circles. [1p]
- 2. Using the previously defined coordinate frames and the lengths shown in the Fig. 6.1, obtain the D-H tables and parameters for the joints and the centers of mass. [1p]
- 3. Compute the relative Homogeneous Transformations for each link and each c.m. \mathbf{H}_{i}^{i-1} and $\mathbf{H}_{cm_{i}}^{i-1}$, respectively. Determine the transformations for the base and end-effector \mathbf{H}_{0}^{w} and \mathbf{H}_{ef}^{3} , respectively. [1p]
- 4. Compute the absolute Homogeneous Transformations for each link \mathbf{H}_{i}^{w} , the end-effector \mathbf{H}_{ef}^{w} , and each c.m. \mathbf{H}_{cm}^{w} , relative to the world coordinate frame (wcf) \mathbf{O}_{w} , depicted in the Fig. 6.1. [1p]
- 5. Finally, compute the Jacobian matrices for the end-effector $(\mathbf{J}_{ef}^{0}(\mathbf{q}))$ and for each c.m. $(\mathbf{J}_{cm_{i}}^{0}(\mathbf{q}))$ relative to the robot base (link 0). [1p]

Figure 6.1: 3DOF robot (RPR). The movable joints are q_1 , q_3 , and q_4 .

Consider the three degree-of-freedom PPR robot with two prismatic joints q_1 and q_2 , and a revolute joint q_3 , shown in Fig. 7.1. The zero position, i.e., the position of the robot when the joint positions are $\mathbf{q} = [q_1, q_2, q_3] = [0, 0, 0]$ is depicted in Fig. 7.1 b)-c).

- 1. Define the coordinate frames for the three links and centers of mass (c.m.) according to the Distal Denavit-Hartenberg (D-H) convention. The c.m. are depicted in Fig 7.1 as black and white circles. [1p]
- 2. Using the previously defined coordinate frames and the lengths shown in the Fig. 7.1, obtain the D-H tables and parameters for the joints and the centers of mass. [1p]
- 3. Compute the relative Homogeneous Transformations for each link and each c.m. \mathbf{H}_{i}^{i-1} and $\mathbf{H}_{cm_{i}}^{i-1}$, respectively. Determine the transformations for the base and end-effector \mathbf{H}_{0}^{w} and \mathbf{H}_{ef}^{3} , respectively. [1p]
- 4. Compute the absolute Homogeneous Transformations for each link \mathbf{H}_{i}^{w} , each c.m. $\mathbf{H}_{cm_{i}}^{w}$, and the end-effector \mathbf{H}_{ef}^{w} relative to the world coordinate frame (wcf) \mathbf{O}_{w} , depicted in the Fig. 7.1. [1p]
- 5. Finally, compute the Jacobian matrices for the end-effector $\mathbf{J}_{\mathrm{ef}}^{0}(\mathbf{q})$ and for each c.m. $\mathbf{J}_{\mathrm{cm_{i}}}^{0}(\mathbf{q})$ relative to the robot base (link 0). The end-effector pose (6D) is shown in the Fig. 7.1 with the coordinate frame \mathbf{O}_{ef} . [1p]

Figure 7.1

Exercise 8 Consider the four degrees-of-freedom RPPR robot composed of an initial revolute joint q_1 , followed by two prismatic joints q_2 and q_3 , an ending with a revolute joint q_4 , shown in Fig. 8.1. The zero position, i.e., the position of the robot when the joint positions are $\mathbf{q} = [q_1, q_2, q_3] = [0, 0, 0]$ is depicted in Fig. 8.1 i). For this exercise, you will assume that one of the joints is broken and no longer moves. In this case, the movable joints are q_2 , q_3 , and q_4 . Note that q_1 must be considered fixed in the zero position $q_1 = 0 \forall t$. This condition makes the robot a 3DOF robot (PPR). Consider the origin of the end-effector frame O_{ef} to be located at cm_4 and disregard cm_1 .

- 1. Define the coordinate frames for the three links and centers of mass (c.m.) according to the Distal Denavit-Hartenberg (D-H) convention. The c.m. are depicted in Fig 8.1 as black and white circles. [1p]
- 2. Using the previously defined coordinate frames and the lengths shown in the Fig. 8.1, obtain the D-H tables and parameters for the joints and the centers of mass. [1p]
- 3. Compute the relative Homogeneous Transformations for each link and each c.m. \mathbf{H}_{i}^{i-1} and $\mathbf{H}_{cm_{i}}^{i-1}$, respectively. Determine the transformations for the base and end-effector \mathbf{H}_{0}^{w} and \mathbf{H}_{eff}^{3} , respectively. [1p]
- 4. Compute the absolute Homogeneous Transformations for each link \mathbf{H}_{i}^{w} , the end-effector \mathbf{H}_{ef}^{w} , and each c.m. $\mathbf{H}_{cm_{i}}^{w}$, relative to the world coordinate frame (wcf) \mathbf{O}_{w} , depicted in the Fig. 8.1. [1p]
- 5. Finally, compute the Jacobian matrices for the end-effector $(\mathbf{J}_{ef}^{0}(\mathbf{q}))$ and for each c.m. $(\mathbf{J}_{cm_{i}}^{0}(\mathbf{q}))$ relative to the robot base (link 0). [1p]

Figure 8.1: 3DOF robot (PPR). The movable joints are q_2 , q_3 , and q_4 .

Exercise 9 Consider the three degree-of-freedom PPR robot with two prismatic joints q_1 and q_2 , and a revolute joint q_3 , shown in Fig. 9.1. The zero position, i.e., the position of the robot when the joint positions are $\mathbf{q} = [q_1, q_2, q_3] = [0, 0, 0]$ is depicted in Fig. 9.1 b)-c).

- 1. Define the coordinate frames for the three links and centers of mass (c.m.) according to the Distal Denavit-Hartenberg (D-H) convention. The c.m. are depicted in Fig 9.1 as black and white circles. [1p]
- 2. Using the previously defined coordinate frames and the lengths shown in the Fig. 9.1, obtain the D-H tables and parameters for the joints and the centers of mass. [1p]
- 3. Compute the relative Homogeneous Transformations for each link and each c.m. \mathbf{H}_{i}^{i-1} and $\mathbf{H}_{cm_{i}}^{i-1}$, respectively. Determine the transformations for the base and end-effector \mathbf{H}_{0}^{w} and \mathbf{H}_{eff}^{3} , respectively. [1p]
- 4. Compute the absolute Homogeneous Transformations for each link \mathbf{H}_{i}^{w} , each c.m. $\mathbf{H}_{cm_{i}}^{w}$, and the end-effector \mathbf{H}_{ef}^{w} relative to the world coordinate frame (wcf) \mathbf{O}_{w} , depicted in the Fig. 9.1. [1p]
- 5. Finally, compute the Jacobian matrices for the end-effector $\mathbf{J}_{\mathrm{ef}}^{0}(\mathbf{q})$ and for each c.m. $\mathbf{J}_{\mathrm{cm_{i}}}^{0}(\mathbf{q})$ relative to the robot base (link 0). The end-effector pose (6D) is shown in the Fig. 9.1 with the coordinate frame \mathbf{O}_{ef} . [1p]

Figure 9.1

Exercise 10 Consider the three degree-of-freedom PRP robot with one initial prismatic joint q_1 , followed by a revolute joint q_2 , and a prismatic joint q_3 at the end, shown in Fig. 10.1. The zero position, i.e., the position of the robot when the joint positions are $\mathbf{q} = [q_1, q_2, q_3] = [0, 0, 0]$ is depicted in Fig. 10.1.

- 1. Define the coordinate frames for the three links and centers of mass (c.m.) according to the Distal Denavit-Hartenberg (D-H) convention. The c.m. are depicted in Fig 10.1 as black and white circles. [1p]
- 2. Using the previously defined coordinate frames and the lengths shown in the Fig. 10.1, obtain the D-H tables and parameters for the joints and the centers of mass. [1p]
- 3. Compute the relative Homogeneous Transformations for each link and each c.m. \mathbf{H}_{i}^{i-1} and $\mathbf{H}_{cm_{i}}^{i-1}$, respectively. Determine the transformations for the base and end-effector \mathbf{H}_{0}^{w} and \mathbf{H}_{eff}^{3} , respectively. [1p]
- 4. Compute the absolute Homogeneous Transformations for each link \mathbf{H}_{i}^{w} , each c.m. $\mathbf{H}_{cm_{i}}^{w}$, and the end-effector \mathbf{H}_{ef}^{w} relative to the world coordinate frame (wcf) \mathbf{O}_{w} , depicted in the Fig. 10.1. [1p]
- 5. Finally, compute the Jacobian matrices for the end-effector $\mathbf{J}_{\mathrm{ef}}^{0}(\mathbf{q})$ and for each c.m. $\mathbf{J}_{\mathrm{cm_{i}}}^{0}(\mathbf{q})$ relative to the robot base (link 0). The end-effector pose (6D) is shown in the Fig. 10.1 with the coordinate frame \mathbf{O}_{ef} . [1p]

Figure 10.1

1 Appendix A: Figures

1.a Robot Exercise 1

1.b Robot Exercise 2, 4, 6, and 8

1.c Robot Exercise 3

1.d Robot Exercise 5

$$egin{array}{l} L_1=0.1 \\ L_2=0.3 \\ L_3=0.23 \\ L_4=0.42 \\ L_5=0.1 \\ L_6=0.35 \\ L_7=0.07 \\ L_8=0.5 \\ \beta=45^\circ \\ \beta=45^\circ \\ L_{10}=\frac{L_6}{2} \\ L_{10}=\frac{L_6}{2} \\ L_{11}=\frac{L_4}{2} \end{array}$$

1.e Robot Exercise 7

1.f Robot Exercise 9

1.g Robot Exercise 10

