4章 確率要数の変数多換

日的

確空分布のクラスの拡張、

前提条件 X, Fx(x), fx(x); 連続型が配面 r.v. cdf pdf

$$Y = g(X), X = g'(Y)$$

 $Y = g(X), X = g'(Y)$

Fr(y)
$$\in$$
 Fr(y) = P(Y \le y)
Fx(g(y)) \in P(\alpha \times y)
 $=$ P(\alpha \times b \le y)
 $=$ P(\alpha \times b \le y)
 $=$ P(\alpha \times b \le y)
 $=$ Fx(\frac{y-b}{a})
 $=$ Fx(\frac{y-b}{a})
 $=$ Fx(\frac{y-b}{a})
 $=$ Fx(\frac{y-b}{a})
 $=$ Fx(\frac{y-b}{a})

$$= F_{\times} \left(\frac{y-b}{a} \right) \frac{g'(g)}{g'(y)} \times n$$

$$f_{y}(y) = \frac{\partial F_{y}(y)}{\partial y}$$

$$= \frac{\partial F_{x}(\frac{y-b}{a})}{\partial y}$$

$$= \frac{\int (\frac{y-b}{a}) \cdot (\frac{y-b}{a})}{\partial y}$$

$$= \frac{\int (\frac{y-b}{a}) \cdot (\frac{y-b}{a})}{\partial y}$$

$$F_{Y}(y) = P(Y \le y)$$

= $P(a \times +b \le y)$
= $P(x \ge (y - b)/a)$
= $1 - F_{X}((y - b)/a)$ $g(y)$

$$f_{y}(y) = d(F_{y}(y))/dy$$

= $d(1-F_{x}(y-b)/a))/dy$
= $-f_{x}((y-b)/a) \cdot a$

040

$$F_{\mathbf{x}}(\mathbf{x}) = P(\mathbf{x} \leq \mathbf{x})$$
 累積分布 関数 と 確認 定面
$$\frac{d}{d\mathbf{x}} F_{\mathbf{x}}(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{x}) - \mathbf{x}$$

$$\frac{d}{d\mathbf{x}} F_{\mathbf{x}}(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{x}) - \mathbf{x}$$

$$\frac{d}{d\mathbf{x}} F_{\mathbf{x}}(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{x}) - \mathbf{x}$$

$$\frac{d}{d\mathbf{x}} F_{\mathbf{x}}(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{x}) + f_{\mathbf{x}}(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{x})$$

$$\frac{d}{d\mathbf{x}} F_{\mathbf{x}}(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{x}) + f_{\mathbf{x}}(\mathbf{x}) + f_{\mathbf{x}}(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{x})$$

X=g(y)a時,fy(y)13?fx(x)Etc1265)計為できる!

$$F_{\Upsilon}(y) = \left(P(\Upsilon \leq y) \right)$$

$$\frac{d}{dy} F_{\Upsilon}(y) = f_{Y}(y)$$

$$\frac{d}{dy} F_{\Upsilon}(y) = f_{Y}(y)$$

$$\frac{d}{dy} F_{\Upsilon}(y) = f_{Y}(y)$$

X= 3-6 $Y=g(X), \Leftrightarrow X=g'(Y)$

$$P(Y \leq y) = P(g(x) \leq y)$$

$$= P(X \leq g'(y))$$

= F_(g-1(y))

$$\frac{1}{dg} = F_{x}(g'(g))$$

$$\frac{1}{dg} = \frac{1}{f_{x}} \left(\frac{g'(g)}{g'(g)} \right)$$

$$\frac{1}{dg} = \frac{1}{f_{y}} \left(\frac{g'(g)}{g'(g)} \right)$$

$$\frac{1}{g'(g')} = \frac{1}{g'(g')} \left(\frac{g'(g)}{g'(g')} \right)$$

$$\frac{1}{g'(g')} = \frac{1}{g'(g')} \left(\frac{g'(g)}{g'(g')} \right)$$

$$\frac{1}{g'(g')} = \frac{1}{g'(g')} \left(\frac{g'(g')}{g'(g')} \right)$$

0人0の時。

正规分布。绿型多楔。

X~N(µ, o2)a時, Y=aX+bapafia

 $f_{y}(y) = f_{x}\left(\frac{y-b}{a}\right) \frac{1}{1a1}$ $= \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp \left\{-\frac{(y-(an+b))^{2}}{2a^{2}\sigma^{2}}\right\} \frac{1}{1a1}$ $= \frac{1}{\sqrt{2\pi}a^{2}\sigma^{2}} \exp \left\{-\frac{(y-(an+b))^{2}}{2a^{2}\sigma^{2}}\right\}$ $= \frac{1}{\sqrt{2\pi}a^{2}\sigma^{2}} \exp \left\{-\frac{(y-(an+b))^{2}}{2a^{2}\sigma^{2}}\right\}$

Y= aX+b 2N(ap+b,(00)2)

正规分布 is 稀型变换 LZt 正规分布

 $Z=\frac{\nabla}{\Delta}$, $\Rightarrow a=\frac{1}{2}$, $b=-\frac{M}{\Delta}$

 $\sim N(0,1)$

といいのかは メニルカラのかがは メール(1,0)ハハダ

J&),

多次元の緑形多葉

NL次元

 $\dot{x} \sim f_{\dot{x}}(\hat{x})$, 連続型

正规正方行引人, ~~~ 1-よ3 又《辖形变物 外况元八"クトレ 方

真出は4.4.1

$$\sim f \neq (\vec{y}) = f_{\vec{x}} (\vec{A} (\vec{y} - \vec{b})) \frac{1}{|A|}$$

加次正规分布内貌形变换

$$f_{\vec{x}}(\vec{x}) = \frac{1}{\sqrt{(\vec{x} - \vec{\mu})^n |\vec{x}|^n |\vec{x}|$$

$$\times \exp\{-\frac{1}{2}(A^{-1}(\vec{y}-b)-\vec{\mu})^{\frac{1}{2}}]$$
 $A^{-1}[(\vec{y}-b)-A\vec{\mu}]$

stat4 4.1-5

$$(A^{-1}(\hat{y}-\hat{b})-A^{-1}A\hat{\mu})^{t}$$

 $[A^{-1}(\hat{y}-\hat{b})-A\hat{\mu}]^{t}$
 $\{(\hat{y}-\hat{b})-A\hat{\mu}\}^{T}[A^{-1}]^{t}$

$$= \frac{1}{(2\pi)^{n} |A \sum A^{t}|^{1/2}}$$

$$\exp \left\{ -\frac{1}{2} \left\{ (\vec{y} - \vec{b}) - A \vec{\mu} \right\} \left(A \sum A^{t} \right)^{-1} + (\vec{y} - \vec{b}) - A \vec{\mu} \right\} \right\}$$

 $\vec{T} \sim N_n(A\vec{\mu} + \vec{b}, A\Sigma A')$

• -

部 多数 多报

多数の支援

11年 p49 -1

文庫由上の分布 P(X),
リーチョン 当軸上に移立れる分布 8(X)

「文を中(y) (ヤーナー)

 $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}$

分布 P(X) 2"、事象力(xx, xx+dx)a1面に西岛
不管字は、中(xx) dx

oce yの対応4f(x), x=の(y)

同じ事家ととはでき換する を(yo) dy = p(xo) dx/ 知=f(xo) xo=v(知) 命題 2.7

ソーチ(x)の逆関数を スパータ、(y)とし、 の(y)は有限個の兵を徐いて 連続を奪用数でもっているとする。

X軸上の徐P(X)をソーティンルかって サックのはりに行す。

 $g(y) = \sum_{i} p(\varphi_{i}(y)) \varphi_{i}(y)$

配殖

正面 (y, y+dy) 医考之。 (y) 8日 (4) 8日 (4) 8日 (4) 8日 (5) (5)

文動止の圧的に対抗させると
(ゆこ(y)、ゆこ(y)+ゆこ(y)dy)
(dx)

. Σ P(φ=(y)) φ=(g)dy

 $= \sum_{i} p(\alpha_i) d\alpha_i$

4.2 独立中确学多数的和的分布

4.2.1 pdf に基プルた和の確等分布の算出

131

管器到

$$X=x \in GS$$
事象の定義:

$$\chi = \{\chi = (\chi_1, ..., \chi_m); \chi_i = 0,1; \Sigma \chi_i = \chi_i^{\lambda}\}$$

$$f(x) = P(X=x)$$

$$= \sum_{x \in x} f(\vec{x})$$

$$= \sum_{x \in x} f_{i}(x_{i}) \cdots f_{m}(x_{m})$$

$$= \sum_{x \in x} p^{x_{i}}(1-p^{1-x_{i}}) \cdots p^{x_{m}}(1-p^{1-x_{m}})$$

$$= \sum_{x \in x} p^{x_{i}}(1-p^{n-x_{i}}) = n C_{x} p^{x_{i}}(1-p^{n-x_{i}})$$

$$X = \sum_{i=1}^{\infty} X_{i} \text{ on } \hat{A} \hat{A} \hat{B} \hat{D}_{i} \hat{a}$$

$$F(x) = P(X \leq x) = \int_{-\infty}^{\infty} f(\hat{x}) dx, d\hat{x}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x - \hat{\Sigma} \hat{x}_{i}) d\hat{x}$$

$$f(x) = \int_{-\infty}^{\infty} f(x - \hat{\Sigma} \hat{x}_{i}) d\hat{x}$$

大心供かして

をはたべ

$$f(x) = \int_{\infty}^{\infty} f_1(x - \sum x_i) f(x_i) \cdot f(x_i) dx$$

$$\frac{d}{dx} \int_{-\infty}^{x-d} f(x_1, y_1, y_2) dx_1$$

$$= f(y_1-\alpha, y_2-\alpha)$$

並31三ステム 我重力 の寿命 ミステム全体の寿命X= SXi~ ~ 「Cn,2) [(n,)] Xi~ expx(2) N=20世最后的石庫記 $f(x) = \int_{0}^{\infty} f_{1}(x-x_{2}) f_{2}(x_{2}) dx_{2}$ 2(1+1)c 2(2)C 3(2)C 3(2)C $= \int_{-\infty}^{\infty} f_1(x-x_2) \cdot f(x_2) dx_2$ $= \int_{0}^{\infty} (\lambda e^{-\lambda(\lambda l - \lambda l_{2})}) (\lambda e^{-\lambda l_{2}^{2}}) d\lambda \geq$ = \(\lambda^2 e^{-Ax} dx_2 下统後2

4.2.2 モーメント母関数に基づいた和の 確率分布の導出

原理

準備

$$X_1, \dots, X_n \sim f_1(x), \dots, f_n(x) \in \mathcal{E}_2$$

$$\sim \gamma_1(t), \dots, \gamma_m(t)$$

JL

X= Sxir Xin 独立性から、

ものモナナ

$$\psi_{x(t)} = E[e^{tX}]$$

$$= E[e^{t(X_1 + \dots \times n)}]$$

$$= E[e^{tX_1} e^{tX_2} e^{tX_m}]$$

$$= E[e^{tX_1} \cdot E[e^{tX_2}] \cdot E[e^{tX_n}]$$

$$= \psi_{x(t)} \cdot \psi_{x(t)}$$

名を扱い モナン田国数の積

二項分布の131

$$X_{i} = 1:n \sim B(M_{i}, P) = 1:n$$

$$B(m_{i}, \theta) \circ \psi(t) = \{(1-p)+pe^{t}\}^{m}$$

$$X = \sum X_{i} \circ \psi(t) = 1$$

$$\psi_{x}(t) = \psi_{x}(t) - \psi_{x}(t)$$

$$= \{(-p)+pe^{t}\}^{\sum m_{i}}$$

stat 4.2 4.2.2 - 2

Yx(t)= f(I-p)+pet ら wi B(Sm;;p) 二項合所の母院数 二項分布のネロの分布は二項分布になる

かになる布の場合

 $X_i \sim \Gamma(m_i, \lambda)$ $\Sigma_{X_i = X} \sim \Gamma(\Sigma_{m_i, \lambda})$

X2分布。場合

 $Y=\sum_{i}^{n}X_{i}^{2}$, $X_{i=1,n}\sim N(0,1)$ 是数额 $X_{i}^{2}\sim \Gamma(1/2,1/2)$ [A.4.4] a. [D.8]

Y~ [(1/2, 1/2)

正规分布内和内分布

前堤

 $Xiin \sim N(\mu_i, G_i^2)$

 $V(\mu,\sigma^2)$ $o \in -1$ 中国数は $Y(t) = \exp\{\mu t + (\frac{\sigma^2}{2})t^2\}$

额形影合になて考える

X = SaiXi

$$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}$$

海生性

確率分布の再生性 (veproductivity)

同一の一種率分析に基づく、 为生立な 確率変数の和 「「Xi, 」 u(Xi) の分布が、 同じ確等分布に従かうこと

$$V_{\Sigma \times}(t) = F[e^{t\Sigma \times}]$$

$$= \prod F[e^{tX_i}]$$

$$= \prod V_{X_i}(t)$$

$$= V_{X_i}(t)$$

$$= V_{X_i}(t)$$

面生作Eto合布。性質。

置みなみ海岸について、川でといる。

和生性でも)分布

へき氣?

正现分布 P(\(\SN\), \(\SN\), \(\S\)\)
工项分布 P(\(\S\)\), \(\S\)\)
大学分布 Po(\(\S\)\)
大学分布 Po(\(\S\)\)
文学分布 \(\chi\)
文学分布 \(\chi\)
文学分布 \(\chi\)
如度

4.3 確率変数の最大値と最小値の分布

131、多種ミステムの寿命(直引と近か1)

coscad series paralle111 11311 paralle1

Serieson

拉引到社会

一台でも動いていれば、 ミステム金をして稼動(みから対(よりかごる)

Xn = Xmax = max { Xi: i=1:n}

三人一人全个的 唐长久

文語 きzid B、C、 X にご動から

 $P(X_{max} \leq x)$ $= P(\max_{x \in X} \{x : i=1:n\} \leq x)$ $= P(X_{i} \leq x, ..., X_{n} \leq x) \qquad \text{xtiff}$ $= P(X_{i} \leq x) \cdot P(X_{2} \leq x) \cdot P(X_{m} \leq x)$ $= F(x) \cdot F_{2}(x) \cdot F_{n}(x)$

安拟变换工小下。宿李安拉《邓学分布

玄紋変換する → 合成皮質を作る → 新い確学分布を得る。

青洁理

 $\times \sim f_{\kappa}(x) \in \mathcal{E}$

多数变换 g(x):狭秦单调啼如, 連稅 秋分可能_同公分。

表れなと

Y= 星(X)。確等分布E表現すること。

(一般的)

$$P(Y \leq y) = P(g(Y) \leq y)$$

$$= P(x \leq g'(y))$$

$$= \int_{-\infty}^{g'(y)} f_{x}(x) dx$$

$$F_{Y}(y) = F_{X}(g'(y))$$

$$F_{Y}(y) = F_{X}(g'(y))$$

$$f_{Y}(y) = f_{X}(g'(y)) (g'(y))'$$

$$f_{X}(y) = f_{X}(g'(y)) (g'(y))'$$

線形变換目的に

$$g(x) = ax+b$$
 $ca \neq 0$
 $x = g'(y) = (y-b)/a$
 $dg'(y)/ay = 1/a$

$$f_{Y}(y) = f_{X}(\frac{y-b}{a}) \frac{1}{|a|}$$

今次元での表現

前堤

$$X = \begin{pmatrix} X_1 \\ X_m \end{pmatrix}$$
 は連続型、

础率分布度数证fx(定) E もつ、

被接換原的 g(克): R~→ R~

$$\begin{pmatrix} x_1 \\ x_m \end{pmatrix} \rightarrow \begin{pmatrix} g_1(\vec{x}) \\ g_2(\vec{x}) \end{pmatrix}$$

多で考えよう 2019.9.10 夏江)の行引表现

$$P(\overrightarrow{Y} \in \overrightarrow{y}) = P(\overrightarrow{g}(\overrightarrow{X}) \leq \overrightarrow{y})$$

$$= \int_{\overrightarrow{g}(\overrightarrow{X}) \leq \overrightarrow{y}} \overrightarrow{f_{\overrightarrow{X}}}(\overrightarrow{X}) d\overrightarrow{X}$$

$$= \int_{\overrightarrow{z} \leq \overrightarrow{y}} \overrightarrow{f_{\overrightarrow{X}}}(\overrightarrow{g}(\overrightarrow{z})) | J(\overrightarrow{g}(\overrightarrow{z})) | d\overrightarrow{z}$$

$$\overrightarrow{z} = \overrightarrow{g}(\overrightarrow{x})$$

$$P(\overrightarrow{Y} \leq \overrightarrow{y}) = F_{\overrightarrow{Y}}(\overrightarrow{y})$$

$$F_{\overrightarrow{Y}}(\overrightarrow{y}) = \int_{\overrightarrow{z} \leq \overrightarrow{y}} \overrightarrow{f_{\overrightarrow{X}}}(\overrightarrow{g}(\overrightarrow{z})) | J(\overrightarrow{g}(\overrightarrow{z})) |$$
How the continues th

fg(y) = fz(g'(y)) [J(g(y))]

多数ベクトル値関数の句配

$$\vec{J}_{\vec{t}} = \vec{D}_{\vec{x}} \cdot \vec{f}, \quad \vec{f} = (f, (\vec{x}))$$

$$\vec{\partial}_{\vec{x}_1} \cdot \vec{\partial}_{\vec{x}_2} \cdot \vec{\partial}_{\vec{x}_3}$$

$$\vec{\partial}_{\vec{x}_1} \cdot \vec{\partial}_{\vec{x}_3}$$

$$\vec{\partial}_{\vec{x}_1} \cdot \vec{\partial}_{\vec{x}_2} \cdot \vec{\partial}_{\vec{x}_3}$$

$$\vec{\partial}_{\vec{x}_1} \cdot \vec{\partial}_{\vec{x}_3} \cdot \vec{\partial}_{\vec{x}_3}$$

Wikipediao 老記 催日之12 CTLU。

ずはおる東、

七分布の密度子の尊出

前堤

$$\times, \sim N(0,1)$$

X,と Xzは独立

多数转换 人

$$\vec{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \vec{g}(\vec{x}) = \begin{pmatrix} x_1/\sqrt{x_2/m} \\ x_2 \end{pmatrix}$$

苍豺蝇

$$\vec{x} = \vec{g}(\vec{y}) = (\vec{y}_1 \sqrt{y_2/n})$$

$$J(\vec{g}'(\vec{y})) = \det\left(\frac{\partial \vec{g}'(\vec{y})}{\partial \vec{y}^t}\right)$$

= det