

Natural Language Processing

Lecture 4: Probabilistic Language Model

Amirkabir University of Technology

Dr Momtazi

Outline

- Motivation
- Estimation
- Smoothing

Language Modeling

Finding the probability of a sentence or a sequence of words

$$P(S) = P(w_1, w_2, w_3, w_4, w_5, ..., w_n)$$

- Applications:
 - Word prediction
 - Speech recognition
 - Machine translation
 - Spell checker

Word Prediction

"natural language" ⇒ "processing"
"management"

• Speech recognition

Machine translation

```
"The cat eats ..." ⇒ "Die Katze frisst ..."
"Die Katze isst ..."
```

Spell checker

"I want to adver this project." ⇒ "advert" "adverb"

Outline

- Motivation
- Estimation
- Smoothing

Corpus

- Probabilities are based on counting things
- Counting of thing in natural language is based on a corpus (plural: corpora)
- A computer-readable collection of text or speech
 - The Brown Corpus
 - A million-word collection of samples
 - 500 written texts from different genres (newspaper, fiction, non-fiction, academic, ...)
 - Assembled at Brown University in 1963-1964
 - The Switchboard Corpus
 - A collection of 240 hours of telephony conversations
 - 3 million words in 2430 conversations averaging 6 minutes each
 - Collected in early 1990s

Text Corpora I

- American National Corpus
- Bank of English
- British National Corpus
- Bergen Corpus of London Teenage Language (COLT)
- <u>Brown Corpus</u>, forming part of the "Brown Family" of corpora, together with <u>LOB</u>, Frown and F-LOB
- Corpus of Contemporary American English (COCA) 425 million words, 1990–2011. Freely searchable online
- Corpus Resource Database (CoRD), more than 80 English language corpora.

Text Corpora II

- <u>Coruña Corpus</u>, a corpus of late Modern English scientific writing covering the period 1700-1900, developed by the <u>Muste</u> research group at the <u>University of A Coruña</u>
- GUM corpus, the open source Georgetown University Multilayer corpus, with very many annotation layers
- Google Books Ngram Corpus
- <u>International Corpus of English</u>
- Oxford English Corpus
- RE3D (Relationship and Entity Extraction Evaluation Dataset)
- Santa Barbara Corpus of Spoken American English
- Scottish Corpus of Texts & Speech

Text Corpora III

- Apache Software Foundation Public Mail Archives: all publicly available Apache Software Foundation mail archives as of July 11, 2011 (200 GB)
- <u>Blog Authorship Corpus</u>: consists of the collected posts of 19,320 bloggers gathered from blogger.com in August 2004. 681,288 posts and over 140 million words. (298 MB)
- <u>Amazon Fine Food Reviews [Kaggle]</u>: consists of 568,454 food reviews Amazon users left up to October 2012. <u>Paper</u>. (240 MB)
- Amazon Reviews: Stanford collection of 35 million amazon reviews. (11 GB)
- ArXiv: All the Papers on archive as fulltext (270 GB) + sourcefiles (190 GB).

Text Corpora IV

- <u>CLiPS Stylometry Investigation (CSI) Corpus</u>: a yearly expanded corpus of student texts in two genres: essays and reviews. The purpose of this corpus lies primarily in stylometric research, but other applications are possible. (on request)
- <u>ClueWeb09 FACC</u>: <u>ClueWeb09</u> with Freebase annotations (72 GB)
- <u>ClueWeb11 FACC</u>: <u>ClueWeb11</u> with Freebase annotations (92 GB)
- Common Crawl Corpus: web crawl data composed of over 5 billion web pages (541 TB)
- <u>Cornell Movie Dialog Corpus</u>: contains a large metadata-rich collection of fictional conversations extracted from raw movie scripts: 220,579 conversational exchanges between 10,292 pairs of movie characters, 617 movies (9.5 MB)

Word Occurrence

- A language consist of a set of V words (Vocabulary)
- A text is a sequence of the words from the vocabulary

- A word can occur several times in a text
 - Word Token: each occurrence of words in text
 - Word Type: each unique occurrence of words in the text

Word Occurrence

Example:

This is a sample text from a book that is read every day

Word Occurrence

Example:

This is a sample text from a book that is read every day

Word Tokens: 13

Word Types: 11

Counting

- Brown
 - 1,015,945 word tokens
 - 47,218 word types
- Google N-gram
 - 1,024,908,267,229 word tokens
 - 13,588,391 word types

Counting

- Brown
 - 1,015,945 word tokens
 - 47,218 word types
- Google N-gram
 - 1,024,908,267,229 word tokens
 - 13,588,391 word types

That seems like a lot of types...

Even large dictionaries of English have only around 500k types.

Why so many here?

Numbers

Misspellings

Names

Acronyms

Bayes Decomposition

Write joint probability as product of conditional probabilities

$$P(w_{1}, w_{2}) = P(w_{1}) \cdot P(w_{2} | w_{1})$$

$$P(w_{1}, w_{2}, w_{3}, w_{4}) = P(w_{1}) \cdot P(w_{2} | w_{1}) \cdot P(w_{3} | w_{1}, w_{2}) \cdot P(w_{4} | w_{1}, w_{2}, w_{3})$$

$$P(w_{1}, w_{2}, ..., w_{n}) = P(w_{1}) \cdot P(w_{2} | w_{1}) \cdot P(w_{3} | w_{1}, w_{2}) \cdot \cdot \cdot P(w_{n} | w_{1}, w_{2}, ..., w_{n-1})$$

$$P(S) = (w_{1}) \cdot P(w_{2} | w_{1}) \cdot P(w_{3} | w_{1}, w_{2}) \cdot \cdot \cdot P(w_{n} | w_{1}, w_{2}, ..., w_{n-1})$$

$$P(S) = \prod_{i=1}^{n} P(w_i | w_1, w_2, ..., w_{i-1})$$

Conditional Probability

$$P(S) = \prod_{i=1}^{n} P(w_i | w_1, w_2, ..., w_{i-1})$$

P(Computer, can, recognize, speech) =

P(Computer)

P(can|Computer)

P(recognize|Computer,can)

P(speech|Computer,can,recognize)

Maximum Likelihood Estimation

P(speech | Computer can recognize)

```
P(speech|Computer can recognize) = \frac{\#(Computer can recognize speech)}{\#(Computer can recognize)}
```

- Too many phrases
- Limited text for estimating the probability
 => Making a simplification assumption

Markov Assumption

$$P(S) = \prod_{i=1}^{n} P(w_i | w_1, w_2, ..., w_{i-1})$$

$$P(S) = \prod_{i=1}^{n} P(w_i \mid w_{i-1})$$

P(Computer; can; recognize; speech) = P(Computer) · P(can/Computer) · P(recognize/can) · P(speech/recognize)

(speech|recognize)=
$$\frac{\#(recognize speech)}{\#(recognize)}$$

N-gram Model

$$P(S) = \prod_{i=1}^{n} P(w_i)$$

$$P(S) = \prod_{i=1}^{n} P(w_i \mid w_{i-1})$$

$$P(S) = \prod_{i=1}^{n} P(w_i | w_{i-2}w_{i-1})$$

$$P(S) = \prod_{i=1}^{n} P(w_i | w_1 w_2, ..., w_{i-1})$$

```
<s> I saw the boy </s>
```

<s> the man is working </s>

<s> I walked in the street </s>

Vocab:

I saw the boy man is working walked in street boy I in is man saw street the walked working

```
<s> I saw the boy </s>
```

<s> the man is working </s>

<s> I walked in the street </s>

boy	1	In	Is	Man	saw	Street	The	Walke d	workin g
1	2	1	1	1	1	1	3	1	1

Boy	l I	In	Is	Man	saw	Street	The	Walked	working
1	2	1	1	1	1	1	3	1	1

	Boy	1	In	Is	Man	saw	Street	The	Walked	working
Воу										
- 1						1			1	
in								1		
is										1
man				1						
saw								1		
street										
the	1				1		1			
walked			1							
working										

$$P(S) = P(I) \cdot P(saw|I) \cdot P(the|saw) \cdot P(man|the)$$

$$P(S) = \frac{\#(I)}{\#}$$
 . $\frac{\#(I saw)}{\#(I)}$. $\frac{\#(saw the)}{\#(saw)}$. $\frac{\#(the man)}{\#(the)}$

$$P(S) = \frac{2}{13}$$
 . $\frac{1}{2}$. $\frac{1}{3}$

Outline

- Motivation
- Estimation
- Smoothing

$$P(S) = P(I) \cdot P(saw|I) \cdot P(the|saw) \cdot P(man|the)$$

$$P(S) = \frac{\#(I)}{\#} \cdot \frac{\#(I saw)}{\#(I)} \cdot \frac{\#(saw the)}{\#(saw)} \cdot \frac{\#(the man)}{\#(the)}$$

$$P(S) = \frac{2}{13}$$
 . $\frac{1}{2}$. $\frac{1}{1}$. $\frac{1}{3}$

Zero Probability

<s> I saw the man in the street </s>

boy		in	is	man	saw	street	the	walked	working
1	2	1	1	1	1	1	3	1	1

	boy		in	is	man	saw	street	the	walked	working
boy	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	1	0	0	1	0
in	0	0	0	0	0	0	0	1	0	0
is	0	0	0	0	0	0	0	0	0	1
man	0	0	0	1	0	0	0	0	0	0
saw	0	0	0	0	0	0	0	1	0	0
street	0	0	0	0	0	0	0	0	0	0
the	1	0	0	0	1	0	1	0	0	0
walked	0	0	1	0	0	0	0	0	0	0
working	0	0	0	0	0	0	0	0	0	0

<s> I saw the man in the street </s>

 $P(S) = P(I) \cdot P(saw|I) \cdot P(the|saw) \cdot P(man|the) \cdot P(in|man) \cdot P(the|in) \cdot P(street|the)$

$$P(S) = \frac{\#(I)}{\#} \cdot \frac{\#(I \ saw)}{\#(I)} \cdot \frac{\#(saw \ the)}{\#(saw)} \cdot \frac{\#(the \ man)}{\#(the)} \cdot \frac{\#(man \ in)}{\#(man)} \cdot \frac{\#(in \ the)}{\#(in)} \cdot \frac{\#(the \ street)}{\#(the)}$$

$$P(S) = \frac{2}{13} \cdot \frac{1}{2} \cdot \frac{1}{1} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{1} \cdot \frac{1}{3} \cdot \frac{1}{3}$$

Smoothing

Giving a small probability to all as unseen n-grams

Laplace Smoothing

Add one to all counts (Add-one)

Laplace Smoothing

Add one to all counts (Add-one)

	boy		in	is	man	saw	street	the	walked	working
boy	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	1	0
in	0	0	0	0	0	0	0	1	0	0
is	0	0	0	0	0	0	0	0	0	1
man	0	0	0	1	0	0	0	0	0	0
saw	0	0	0	0	0	0	0	1	0	0
street	0	0	0	0	0	0	0	0	0	0
the	1	0	0	0	1	0	1	0	0	0
walked	0	0	1	0	0	0	0	0	0	0
working	0	0	0	0	0	0	0	0	0	0

Laplace Smoothing

	boy		in	is	man	saw	street	the	walked	working
boy	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	1	0	0	1	0
in	0	0	0	0	0	0	0	1	0	0
is	0	0	0	0	0	0	0	0	0	1
man	0	0	0	1	0	0	0	0	0	0
saw	0	0	0	0	0	0	0	1	0	0
street	0	0	0	0	0	0	0	0	0	0
the	1	0	0	0	1	0	1	0	0	0
walked	0	0	1	0	0	0	0	0	0	0
working	0	0	0	0	0	0	0	0	0	0

	boy		in	is	man	saw	street	the	walked	working
boy	1	1	1	1	1	1	1	1	1	1
I	1	1	1	1	1	2	1	1	2	1
in	1	1	1	1	1	1	1	2	1	1
is	1	1	1	1	1	1	1	1	1	2
man	1	1	1	2	1	1	1	1	1	1
saw	1	1	1	1	1	1	1	2	1	1
street	1	1	1	1	1	1	1	1	1	1
the	2	1	1	1	2	1	2	1	1	1
walked	1	1	2	1	1	1	1	1	1	1
working	1	1	1	1	1	1	1	1	1	1

The intuition of smoothing

When we have sparse statistics:

```
P(w | denied the)
3 allegations
2 reports
1 claims
1 request
---
7 total
```

Steal probability mass to generalize better

```
P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
```


Laplace Smoothing

Add one to all counts (Add-one)

•
$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i)}{\#(w_{i-1})} \implies P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i)+1}{\#(w_{i-1})+V}$$

Smoothing

- Interpolation and Back-off Smoothing
 - Use a background probability

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i)}{\#(w_{i-1})}$$

Back-off

$$P(w_{i}|w_{i-1}) = \begin{cases} \frac{\#(w_{i-1},w_{i})}{\#(w_{i-1})} & \text{if } \#(w_{i-1},w_{i}) > 0 \\ P_{BG} & \text{Otherwise} \end{cases}$$

Smoothing

- Interpolation and Back-off Smoothing
 - Use a background probability

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i)}{\#(w_{i-1})}$$

Interpolation

$$P(w_{i}|w_{i-1}) = \lambda_{1} \frac{\#(w_{i-1},w_{i})}{\#(w_{i-1})} + \lambda_{2}P_{BG}$$

$$\sum \lambda = 1$$

$$\frac{Parameter}{Tuning}$$

$$\frac{Parameter}{Tuning}$$

$$\frac{Parameter}{Tuning}$$

$$\frac{Parameter}{Tuning}$$

- Lower levels of n-gram can be used as background probability
- trigram → bigram
- bigram → unigram
- unigram \rightarrow zerogram (1/V)

- Lower levels of n-gram can be used as background probability
- trigram → bigram
- bigram → unigram
- unigram → zerogram (1/V)

Back-off

$$P(w_i|w_{i-1}) = \begin{cases} \frac{\#(w_{i-1},w_i)}{\#(w_{i-1})} & \text{if } \#(w_{i-1},w_i) > 0 \\ P_{BG} & \text{Otherwise} \end{cases}$$

Back-off

$$P(w_{i}|w_{i-1}) = \begin{cases} \frac{\#(w_{i-1},w_{i})}{\#(w_{i-1})} & \text{if } \#(w_{i-1},w_{i}) > 0 \\ P_{BG} & \text{Otherwise} \end{cases}$$

$$P(w_i) = \begin{bmatrix} \frac{\#(w_i)}{N} & \text{if } \#(w_i) > 0 \\ \\ 1/V & \text{Otherwise} \end{bmatrix}$$

Interpolation

$$P(w_i|w_{i-1}) = \lambda_1 \frac{\#(w_{i-1},w_i)}{\#(w_{i-1})} + \lambda_2 P_{BG}$$

$$P(w_i) = \lambda_1 \frac{\#(w_i)}{N} + \lambda_2 \cdot (1/V)$$

Advanced Smoothing

- Bayesian Smoothing with Dirichlet Prior
- Absolute Discounting
- Kneser-Ney Smoothing
- Bayesian Smoothing based on Pitman-Yor Processes

Bayesian Smoothing with Dirichlet Prior

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i)+1}{\#(w_{i-1})+V}$$

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i)+k}{\#(w_{i-1})+kV}$$

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i) + \mu(\frac{1}{v})}{\#(w_{i-1}) + \mu} \qquad \mu = \mathsf{kv}$$

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i) + \mu P_{BG}}{\#(w_{i-1}) + \mu}$$

Absolute Discounting

$$P(w_i|w_{i-1}) = \begin{cases} \frac{\#(w_{i-1},w_i)}{\#(w_{i-1})} & \text{if } \#(w_{i-1},w_i) > 0 \\ P_{BG} & \text{Otherwise} \end{cases}$$

$$P(w_{i}|w_{i-1}) = \begin{cases} \frac{\#(w_{i-1},w_{i})-\delta}{\#(w_{i-1})} & \text{if } \#(w_{i-1},w_{i})>0\\ \alpha P_{BG} & \text{Otherwise} \end{cases}$$

Absolute Discounting

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) - \delta}{\#(w_{i-1})} + \alpha P_{BG}$$
$$\alpha = \frac{\delta}{\#(w_{i-1})} B$$

B: the number of times $\#(w_i, w_{i-1}) > 0$ (the number of times that we applied discounting)

$$P(w_i|w_{i-1}) = \frac{\max(\#(w_{i-1},w_i) - \delta,0)}{\#(w_{i-1})} + \alpha P_{BG}$$

Kneser-Ney Smoothing

Estimation base on the lower-order n-gram

"I cannot see without my reading ..." ⇒ "Francisco" "glasses"

- Observations:
 - "Francisco" is more common than "glasses"
 - But "Francisco" always follows "San"
 - "Francisco" is not a novel continuation for a text
- Solution:
 - Instead of P(w): "How likely is w to appear in a text"
 - $P_{continuation}(w)$: "How likely is w to appear as a novel continuation"
 - Count the number of words types that w appears after them

$$P_{continuation}(w) \propto |w_{i-1}: \#(w_{i-1}; w_i) > 0|$$

Kneser-Ney Smoothing

• How many times does w appear as a novel continuation $P_{continuation}(w) \propto |w_{i-1}: \#(w_{i-1}, w_i) > 0|$

Normalized by the total number of bigram types

$$P_{continuation}(w) = \frac{|w_{i-1}: \#(w_{i-1}, w_i) > 0|}{|(w_{j-1}, w_j): \#(w_{j-1}, w_j) > 0|}$$

Alternatively: normalized by the number of words preceding all words

$$P_{continuation}(w) = \frac{|w_{i-1}: \#(w_{i-1}, w_i) > 0|}{\sum_{w'} |w'_{i-1}: \#(w'_{i-1}, w'_i) > 0|}$$

Kneser-Ney Smoothing

$$P(w_i|w_{i-1}) = \frac{\max(\#(w_{i-1}, w_i) - \delta, 0)}{\#(w_{i-1})} + \alpha P_{BG}$$

$$P(w_i|w_{i-1}) = \frac{\max(\#(w_{i-1}, w_i) - \delta, 0)}{\#(w_{i-1})} + \alpha P_{continuation}$$

$$\alpha = \frac{\delta}{\#(w_{i-1})} B$$

B: the number of times $\#(w_{i-1}, w_i) > 0$

- Improving the Dirichlet prior by using a discounting parameter deriving from absolute discounting method
- Dirichlet prior

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i) + \mu P_{BG}}{\#(w_{i-1}) + \mu}$$

Absolute discounting

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) - \delta + (\delta.B)P_{BG}}{\#(w_{i-1})}$$

Combined

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) - \delta + (\mu + \delta \cdot B)P_{BG}}{\#(w_{i-1}) + \mu}$$

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) - \delta t + (\mu + \delta t)P_{BG}}{\#(w_{i-1}) + \mu}$$

- t: discounting weight
- t.: total amount of applied discounting

Using different discounting value for each word based on the frequency of that word

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) - \delta t + (\mu + \delta t)P_{BG}}{\#(w_{i-1}) + \mu}$$

- t: discounting weight
- t.: total amount of applied discounting
- $t = 1 \rightarrow basic combined model$
- $\mu = 0 \rightarrow absolute discounting method$

- Calculating parameter t is the most important and computationally expensive part of the formula
- Idea for a near optimum estimation of t: Generating a power-law distribution in the language model, which is one of the statistical properties of word frequencies in natural language

T=0 if
$$\#(w_{i-1}, w_i) = 0$$

t= $f(\#(w_{i-1}, w_i)) = (\#(w_{i-1}, w_i))^{\delta}$ if $\#(w_{i-1}, w_i) > 0$

Further Reading

- Speech and Language Processing (3rd ed. draft)
 - Chapter 3