15. ZÁKLADY PLANIMETRIE A KONSTRUKČNÍ ÚLOHY

1 Základní pojmy

- 1. Následující vztahy zapište celými větami:
 - (a) $A \in p$
 - (b) $KL \subset \mapsto STR$
 - (c) $B \in p_1 \cap p_2$
 - (d) k(E; |JK|)
 - (e) $|\triangleleft BGH| = 45^{\circ}$
 - (f) $\mapsto PR \not\subset \mapsto qP$
 - (g) $FG \not\subset \triangleleft MNO$
 - (h) a||b
- 2. Zapište symbolicky:
 - (a) Úsečka c leží na přímce KL.
 - (b) Přímka p se protíná s kružnicí k v bodě H.
 - (c) Polopřímka s vnitřním bodem T a počátečním bodem W není částí poloroviny s hraniční přímkou a a vnitřním bodem N.
 - (d) vektor s koncovým bodem A a počátečním bodem B je kolmý k přímce p.
- 3. Podle následujícího obrázku doplňte ve větách chybějící termíny:

- (a) Polopřímky AE a AC jsou polopřímky
- (b) Přímka JK je rovnoběžek AC a BD.
- (c) Úhly EAB a HAC jsou shodné a
- (d) Úhly ACB a BCF jsou
- (e) Úhly KCF a DBJ jsou shodné a
- (f) Poloroviny ABG a ABD jsou poloroviny
- (g) Úhel BCF obsahující bod G bychom podle jeho velikosti označili jako
- (h) Úhel BCF obsahující bod A bychom podle jeho velikosti označili jako
- 4. Máte v rovině sestrojeny úhel α . Vysvětlete, jak pomocí kružítka a pravítka sestrojit úhly 3α , $150^{\circ} \alpha$ a $\frac{1}{2}\alpha$.

- 5. V rovině je dáno 10 bodů, z nichž právě 6 leží v jedné přímce, žádná jiná trojice z nich na přímce neleží. Určete, kolik určují různých:
 - (a) úseček;
 - (b) přímek;
 - (c) polopřímek;
 - (d) trojúhelníků;
 - (e) kružnic.
- 6. Načrtněte všechny možné vzájemné polohy poloroviny a pravého úhlu.
- 7. Sestrojte osu úhlu, které svírají dvě různoběžky, jestliže:
 - (a) jejich průsečík je dostupný;
 - (b) jejich průsečík dostupný není.

2 Trojúhelníky

- 1. Jestliže v trojúhelníku ABC splývá těžnice na stranu AB s osou této strany, pak je trojúhelník ABC rovnoramenný. Dokažte.
- 2. Je dán trojúhelník ABC a v něm libovolný vnitřní bod U. Dokažte, že pak platí:

$$|AU| + |BU| + |CU| > \frac{1}{2}(|AB| + |BC| + |AC|)$$

- 3. V trojúhelníku KLM s těžištěm T platí: k=7.8 cm, l=11.7 cm, m=13 cm, $t_k=11.7$ cm, $t_l=9$ cm, $t_m=7.5$ cm. Určete obvod trojúhelníku $KS_{KL}T$.
- 4. Vnitřní úhly trojúhelníku jsou v poměru 1 : 4 : 5. V jakém poměru jsou jeho vnější úhly?
- 5. Úsečku AB rozdělte body C, D tak, aby platilo |AC|:|CD|:|DB|=2:3:5.
- 6. Určete délky stran a, b, c trojúhelníku ABC, je-li a b = 4 cm, $v_a = 6$ cm, $v_b = 9$ cm.
- 7. V rovnoramenném trojúhelníku ABC platí: |AC| = |BC| = 13 cm, |AB| = 10 cm. Vypočítejte poloměr kružnice trojúhelníku vepsané a poloměr kružnice trojúhelníku opsané.
- 8. V pravoúhelném trojúhelníku ABC s přeponou c dělí pata výšky na stranu c tuto stranu v poměru 2:5. Určete délky stran trojúhelníku, jestliže v=10 cm.

3 Čtyřúhelníky

- 1. Charakterizujte rovnoběžníky podle délek stran, velikosti vnitřních úhlů, vlastností úhlopříček či možnosti jim vepsat nebo opsat kružnici.
- 2. V obdélníku ABCD úsečky $S_{AB}D$ a BS_{CD} protínají úhlopříčku AC postupně v bodech K, L. Dokažte, že |AK| = |KL| = |LC|.
- 3. Vnitřní úhly čtyřúhelníku ABCD jsou v poměru

$$\alpha : \beta : \gamma : \delta = n : (n+1) : (n+2) : (n+3), \quad n \in \mathbb{N}.$$

Dokažte, že čtyřúhelník *ABCD* je lichoběžník.

4. Je dán deltoid KLMN. Ukažte, že čtyřúhelník $S_{KL}S_{LM}S_{MN}S_{NK}$ je obdélník.

4 Mnohoúhelníky a jejich vlastnosti

- 1. V pravidelném *n*-úhelníku určete:
 - (a) velikost vnitřního úhlu;
 - (b) počet úhlopříček;
 - (c) počet os souměrnosti.
- 2. Pravidelný šestiúhelník má obsah $48\sqrt{3}$ m². Určete délku jeho nejkratší úhlopříčky.
- 3. Je dán čtverec ABCD s délkou hrany a. Je mu opsán pravidelný osmiúhelník jako na následujícím obrázku vrcholy čtverce splývají se středy čtyř stran osmiúhelníku. Vyjádřete délku strany pravidelného osmiúhelníku v závislosti na a.

- 4. Pomocí pravítka a kružítka sestrojte:
 - (a) pravidelný šestiúhelník;
 - (b) pravidelný pětiúhelník;
 - (c) pravidelný osmiúhelník.

5 Kružnice, kruh

- 1. Je dán kružnicový oblouk, u kterého není znám jeho střed. Sestrojte ho.
- 2. Je dán pravidelný šestiúhelník ABCDEF. Z bodu A je opsána kružnice, která prochází bodem B. Z bodu C k ní veď te tečny.
- 3. Jsou dány kružnice $k(S_1; 5 cm)$ a $l(S_2; \sqrt{65} cm)$, kde délka středné je 10 cm. Určete vzdálenost jejich průsečíků.
- 4. Určete poloměr kruhové dráhy, kterou musí běžec uběhnout pětkrát, aby uběhl celkem 2 km.
- 5. Na ciferníku hodin vyznačíme spojnice bodů 5–2 a 4–12. Jaký úhel spojnice svírají?
- 6. Je dán deltoid ABCD vepsaný do kružnice, který je souměrný podle úhlopříčky AC. Jestliže $| \triangleleft BDC | = 15^{\circ}$, vypočítejte velikosti všech vnitřních úhlů deltoidu.
- 7. Rovnoramennému lichoběžníku ABCD (AB||CD) je vepsána kružnice. Dále víme, že |AB|=5 cm, |CD|=8 cm. Vypočítejte délky zbývajících stran.

6 Obvody a obsahy

- 1. V pravoúhlém trojúhelníku ABC s přeponou c je b=8 cm, $t_b=5$ cm. Určete obvod a obsah trojúhelníku ABC.
- 2. Čtyřúhelník má délky stran v poměru 1 : 2 : 4 : 5 a odvod 60 mm. Jak dlouhá je jeho nejdelší strana?
- 3. Lichoběžník ABCD se základnami AB, CD má obsah $S=32~{\rm cm}^2$, dále $|AB|=6~{\rm cm},\,|CD|=10~{\rm cm}.$ Vypočítejte obsah trojúhelníku ABC.
- 4. Vypočítejte obsah kosočtverce, kterému je vepsána kružnice s poloměrem 5 cm a jedna úhlopříčka má délku 18 cm.
- 5. V rovnoramenném trojúhelníku ABC se základnou AC platí: b=8 cm, $v_b=10$ cm. Vypočítejte obsah trojúhelníku a délku v_a .
- 6. Je dána kruhová výseč se středovým úhlem 60° a obvodem 32 dm. Určete její obsah.
- 7. Jsou dány čtverec a pravidelný šestiúhelník, kde úhlopříčka čtverce je shodná s nejkratší úhlopříčkou šestiúhelníku. Jaký je poměr obsahů čtverce a šestiúhelníku?

7 Konstrukční úlohy

- 1. Vysvětlete rozdíl mezi polohovými a nepolohovými úlohami a jak se u nich určuje počet řešení.
- 2. V rovině ϱ je dán rovnostranný trojúhelník ABC. Sestrojte následující množiny bodů:

$$\begin{array}{lll} A & = & \{X \in \varrho; \, |AX| = |BX|\} \\ B & = & \{X \in \varrho; \, \leftrightarrow AX \perp AC\} \\ C & = & \{X \in \varrho; \, |AX| = |BC|\} \\ D & = & \{X \in \varrho; \, | \sphericalangle AXB| = | \sphericalangle BCA|\} \\ E & = & \{X \in \varrho; \, |X, \leftrightarrow AB| = |X, \leftrightarrow BC|\} \\ F & = & \{X \in \varrho; \, |X, \leftrightarrow CB| = \frac{1}{2}|AB|\} \\ G & = & \{X \in \varrho; \, |\sphericalangle ABX| = |\sphericalangle CAB|\} \end{array}$$

3. Jsou dány úsečky délek a, b, c, kde a < b < c. Pomocí pravítka a kružítka sestrojte úsečky délek:

$$\frac{3}{5}c$$
, $\frac{5}{3}b$, $a+b$, $\frac{ab}{c}$, $\sqrt{b^2-a^2}$, \sqrt{bc} , $\sqrt{3}a$.

4. Jsou dány úsečky a, b a úsečka délky 1. Pomocí pravítka a kružítka sestrojte úsečky délek:

$$\frac{b}{a}$$
, \sqrt{c} , $\sqrt{a^2+1}$

- 5. Jsou dány rovnostranný trojúhelník ABC a Thaletova kružnice τ nad průměrem AB. Sestrojte tečny z bodu C ke kružnici τ .
- 6. Sestrojte trojúhelník ABC, je-li dáno: c=4 cm, $t_c=6$ cm, $v_b=3.5$ cm.
- 7. Je dána úsečka AB, |AB| = 5 cm. Sestrojte trojúhelník ABC, je-li $v_c = 3$ cm, $\gamma = 50^\circ$.
- 8. Sestrojte trojúhelník ABC, je-li b=5 cm, $v_c=4$ cm a poloměr kružnice vepsané $\rho=1$ cm.
- 9. Je dána úsečka AX délky 5 cm. Sestrojte čtverec ABCD tak, aby bod X byl středem strany BC.
- 10. Sestrojte lichoběžník KLMN se základnami LM, KN, ve kterém platí: |KL|=4 cm, |LM|=3 cm, |LN|=6 cm, v=3 cm.

4

11. Sestrojte tětivový čtyřúhelník ABCD, ve kterém a=5 cm, $\beta=120^{\circ}, e=7$ cm, f=7 cm.