Suites numériques 1ère STMG

Table des matières

1	Défi	Définitions, notations et représentation graphique					
	1.1	Définition : Fonction	2				
	1.2	Image et antécédent	2				
	1.3	Méthode : Calculer une image ou un antécédent	3				
	1.4	Représentation graphique	4				
2	Réso	olution graphique d'équations et d'inéquations	5				
	2.1	Méthode : Résoudre graphiquement une équation ou une inéquation	5				
	2.2	Remarques : Validité et unicité des résultats	5				
3	Vari	ations d'une fonction	6				
	3.1	Définition : Taux de variation	6				
	3.2	Propriété : Taux de variation et coefficient directeur	6				
	3.3	Méthode : Déterminer un taux de variation d'une fonction	6				
	3.4	Définition : Fonctions monotones					
	3.5	Propriétés : Taux de variation					
	3.6	Méthode : Étudier les variations d'une fonction à l'aide du taux de variation					

1 Définitions, notations et représentation graphique

Exemple

On considère la fonction f qui exprime l'aire d'un rectangle de dimensions 3 et x.

Une expression littérale de f est donc : $f(x) = 3 \times x$.

1.1 Définition : Fonction

Une fonction f associe à tout nombre réel x un unique nombre réel, noté f(x).

On note également : $x \mapsto f(x)$ ou y = f(x).

1.2 Image et antécédent

Pour la fonction f définie plus haut, on a : $f(1) = 3 \times 1 = 3$ et $f(4) = 3 \times 4 = 12$ On dit que :

- l'**image** de 1 par la fonction f est 3. $1 \mapsto 3$
- un antécédent de 3 par f est 1.

Remarques

- Un nombre possède une unique image.
- Cependant, un nombre peut posséder plusieurs antécédents.

1.3 Méthode : Calculer une image ou un antécédent

Soit la fonction f définie par $f(x) = \sqrt{x} + 1$

a) Compléter le tableau de valeurs ci-dessus

\overline{x} 4		10, 24	16	20, 25	
$\overline{f(x)}$					

- b) Compléter alors:
 - L'image de 4 par f est . . .
 - Un antécédent de 5 par f est . . .
 - $-f:\ldots\longmapsto 4,2$
 - $f(20, 25) = \dots$
- c) Calculer f(4,41) et f(1310,44)

(a) Tableau de valeurs

\overline{x}	4	10, 24	16	20, 25	
f(x)	3	4,2	5	5,5	

- (b)
- L'image de 4 par f est $\mathbf 3$
- Un antécédent de 5 par f est ${\bf 16}$
- $f : \mathbf{10,24} \longmapsto 4,2$
- -f(20,25) = 5,5
- (c) Images de 4,41 et 1310,44

$$f(4,41) = \sqrt{4,41} + 1 = 3,1$$

$$f(1310,44) = \sqrt{1310,44} + 1 = 37,2$$

1.4 Représentation graphique

On considère la fonction f définie par $f(x) = 5x - x^2$.

On réalise le tableau de valeurs suivant :

\overline{x}	1	1,5	2	2,5	3	3,5	4	4,5
f(x)	4	5,25	6	6,25	6	5,25	4	2,25

On représente les données du tableau de valeurs dans un repère tel qu'on lise x en abscisse et f(x) en ordonnée. En reliant les points, on obtient la courbe C_f .

FIGURE 1 – Représentation graphique de $f\left(x\right)=5x-x^{2}$

Tous les points de la courbe C_f possèdent donc des coordonnées de la forme (x; f(x)).

La courbe représentative de la fonction f dépasse les limites du tableau de valeurs : la fonction n'est pas limitée aux valeurs de $x \in [1; 4.5]$. C'est pourquoi nous pouvons prolonger la courbe (en pointillé) dans la représentation ci-dessus.

2 Résolution graphique d'équations et d'inéquations

2.1 Méthode : Résoudre graphiquement une équation ou une inéquation

Répondre graphiquement aux questions suivantes :

- a) Résoudre l'équation $5x x^2 = 4$
- b) Résoudre graphiquement l'inéquation $5x x^2 \ge 4$. Donner une interprétation du résultat.
- (a) On considère la fonction f définie par $f(x) = 5x x^2$.

Il s'agit de trouver les antécédents de 4 par la fonction f. Ce qui revient à résoudre l'équation f(x) = 4.

On détermine les abscisses des points d'intersection de la courbe C_f avec la droite Δ parallèle à l'axe des abscisses passant par le point (0 ; 4).

On lit graphiquement que l'équation $5x - x^2 = 4$ admet pour solutions : les nombres 1 et 4.

(b) Résoudre l'inéquation $5x - x^2 \ge 4$ revient à déterminer les abscisses des points de C_f pour lesquels C_f est **au-dessus** la droite Δ .

On lit graphiquement que l'inéquation $5x - x^2 \ge 4$ admet pour solutions tous les nombres de l'intervalle [1; 4].

2.2 Remarques : Validité et unicité des résultats

- Par lecture graphique, les solutions obtenues sont approchées. Il est indispensable de vérifier les résultats par un calcul.
- L'équation f(x) = 7 n'a pas de solution car dans ce cas la droite Δ ne coupe pas la courbe.
- Graphiquement, on ne peut pas être certain que les solutions qui apparaissent sont les seules. Il pourrait y en avoir d'autres au-delà des limites de la représentation graphique tracée.

3 Variations d'une fonction

3.1 Définition : Taux de variation

Le taux de variation de la fonction f entre a et b est le nombre :

$$t = \frac{f(b) - f(a)}{b - a}$$

3.2 Propriété : Taux de variation et coefficient directeur

Le taux de variation de f entre a et b est le **coefficient directeur** ($la\ pente$) de la droite passant par les points d'abscisses a et b de la courbe de f.

3.3 Méthode : Déterminer un taux de variation d'une fonction

Soit f la fonction définie sur \mathbb{R} par : $f(x) = 2x^2 + 1$.

- a) Déterminer le taux de variation entre 1 et 3.
- b) Interpréter géométriquement ce taux de variation.
- (a) Taux de variation entre 1 et 3

$$\frac{f(3) - f(1)}{3 - 1} = \frac{(2 \times 3^2 + 1) - (2 \times 1^2 + 1)}{2}$$
$$= \frac{19 - 3}{2}$$
$$= 8$$

(b) Le taux de variation de f entre 1 et 3 est égal à 8 donc la pente de la droite passant par les points d'abscisses 1 et 3 est égale à 8.

3.4 Définition : Fonctions monotones

On dit qu'une fonction f est **monotone** sur un intervalle I, si f est :

- soit **croissante** sur I,
- soit **décroissante** sur I,
- soit **constante** sur I.

3.5 Propriétés : Taux de variation

Si le taux de variation d'une fonction f entre deux nombres quelconques d'un intervalle I ...

- ... est positif, alors f est strictement croissante sur I.
- ... est **négatif**, f est strictement décroissante sur I.
- ... est **nul**, f est constante sur I.

3.6 Méthode : Étudier les variations d'une fonction à l'aide du taux de variation

Soit f la fonction définie sur \mathbb{R} par : f(x) = 5x - 3.

- a) Démontrer que f est strictement croissante sur \mathbb{R} .
- (a) On considère deux nombres quelconques $a \in \mathbb{R}$ et $b \in \mathbb{R}$.

Le taux de variation de f entre a et b est égal à :

$$\frac{f(b) - f(a)}{b - a} = \frac{(5b - 3) - (5a - 3)}{b - a}$$
$$= \frac{5b - 5a}{b - a}$$
$$= \frac{5(b - a)}{b - a}$$
$$= 5$$

7

Or, 5 > 0 donc $\frac{f(b) - f(a)}{b - a} > 0$ et donc f est **strictement croissante** sur \mathbb{R} .