Η παρούσα εργασία πραγματεύεται την ανάλυση δεδομένων αναφορικά με την διαγνωστική αξιολόγηση ασθενών με Parkinson, σύμφωνα με την κλίμακα UPDRS, χρησιμοποιώντας ένα σύνολο δεδομένων από το UCI ML Repository, συγκεκριμένα το: **Parkinsons Telemonitoring Data Set**: http://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring

Το συγκεκριμένο σύνολο δεδομένων αφορά στη διαγνωστική αξιολόγηση ασθενών με Parkinson, σύμφωνα με την κλίμακα UPDRS. Το σύνολο δεδομένων δημιουργήθηκε από το Πανεπιστήμιο της Οξφόρδης σε συνεργασία με δέκα ιατρικά κέντρα στις ΗΠΑ και την Intel για τον απαραίτητο εξοπλισμό καταγραφής. Τα δεδομένα αφορούν στατιστικά χαρακτηριστικά (16 παραμέτρους) από 5.875 ηχογραφήσεις ομιλίας 42 ατόμων (περίπου 200 από το καθένα) σε μια περίοδο έξι μηνών τηλε-παρακολούθησής τους. Στο σύνολο δεδομένων δίνονται δύο παράμετροι-στόχοι, το motor_UPDRS" τα οποία είναι τα αντίστοιχα UPDRS scores που προέκυψαν από την ιατρική αξιολόγηση (ground truth). Βασικά, θέλουμε να προβλέψουμε τον βαθμό κινητικότητας με βάση το UPDRS score

1. Περιγραφή Data Set

Η φωνητική παρακολούθηση είναι ένα από τις σημαντικότερες διαδικασίες αναφορικά με την νόσο του Parkinson (Parkinson disease-PD), καθώς παρατηρείται πιθανότερη βλάβη σε περίπου 90% των ασθενών στα πρώιμα στάδια της νόσου. Ως εκ τούτου, υπάρχει αυξανόμενο ενδιαφέρον για την κατασκευή PD διαγνωστικών συστημάτων και συστημάτων τηλεπαρακολούθησης που βασίζονται σε φωνητικά χαρακτηριστικά. Τα συστήματα τηλεδιάγνωσης στοχεύουν στη διάκριση των ασθενών με PD από υγιή άτομα και τα συστήματα τηλεπαρακολούθησης στοχεύουν στην πρόβλεψη των μετρήσεων κλινικής αξιολόγησης για την παρακολούθηση της εξέλιξης της νόσου.

Το συγκεκριμένο σύνολο δεδομένων αφορά στη διαγνωστική αξιολόγηση ασθενών με Parkinson, σύμφωνα με την κλίμακα unified Parkinson's disease rating scale (UPDRS). Το αρχείο δεδομένων προς ανάλυση περιλαμβάνει δεδομένα βιοϊατρικών φωνητικών μετρήσεων και δημογραφικά στοιχεία (φύλο, ηλικία) από 42 άτομα που πάσχουν από τη νόσο του Πάρκινσον σε πρώιμο στάδιο. Συνολικά το σύνολο δεδομένων αποτελείται από 5875 εγγραφές, περιλαμβάνοντας περίπου 200 εγγραφές ανά άτομο. Το αρχείο δεδομένων περιλαμβάνει 22 χαρακτηριστικά σε κάθε εγγραφή. Πιο συγκεκριμένα τα χαρακτηριστικά του αντίστοιχου συνόλου δεδομένων είναι τα εξής:

Πίνακας 1: Πεδία συνόλου δεδομένων προς ανάλυση

<u>AA</u>	Όνομα πεδίου	<u>Περιγραφή</u>	<u>Μορφή</u>
<u>1</u>	<u>Subject</u>	<u>Μοναδικό αναγνωριστικό ασθενή</u>	Αριθμητική - Ακέραιος αριθμός
<u>2</u>	<u>Age</u>	<u>Ηλικία ασθενή</u>	<u>Αριθμητική - Ακέραιος</u> <u>αριθμός)</u>
<u>3</u>	<u>Sex</u>	<u>Φύλο ασθενή</u>	Δυαδική (0: Άντρας, 1: Γυναίκα)
4	<u>test time</u>	Χρόνος (ημέρες) από την έναρξη του πειράματος.	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>5</u>	motor UPDRS	<u>Η βαθμολογία UPDRS - κινητική</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>6</u>	total UPDRS	<u>Η βαθμολογία UPDRS – συνολική</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>

<u>7</u>	<u>Jitter(Percent)</u>	<u>Μέτρο μεταβολής βασικής</u> <u>συχνότητας (σε ποσοστό)</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>8</u>	<u>Jitter(Absolute)</u>	<u>Μέτρο μεταβολής βασικής</u> <u>συχνότητας</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>9</u>	<u>Jitter:RAP</u>	<u>Μέτρο μεταβολής βασικής</u> <u>συχνότητας</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>10</u>	<u>Jitter:PPQ5</u>	<u>Μέτρο μεταβολής βασικής</u> <u>συχνότητας</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>11</u>	<u>Jitter:DDP</u>	<u>Μέτρο μεταβολής βασικής</u> <u>συχνότητας</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>12</u>	<u>Shimmer</u>	Μέτρο μεταβολής εύρους	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>13</u>	<u>Shimmer(dB)</u>	<u>Μέτρο μεταβολής εύρους</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>14</u>	Shimmer:APQ3	<u>Μέτρο μεταβολής εύρους</u>	Αριθμητική – <u>Δεκαδικός</u>

<u>15</u>	Shimmer:APQ5	<u>Μέτρο μεταβολής εύρους</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>16</u>	Shimmer:APQ11	<u>Μέτρο μεταβολής εύρους</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>17</u>	<u>Shimmer:DDA</u>	<u>Μέτρο μεταβολής εύρους</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>18</u>	<u>NHR</u>	<u>Λόγος θορύβου προς αρμονία</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>19</u>	<u>HNR</u>	<u>Λόγος αρμονίας προς θόρυβο</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>20</u>	<u>RPDE</u>	Μη γραμμικό δυναμικό μέτρο πολυπλοκότητας	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
21	<u>DFA</u>	Ένδειξη κλασματικής κλίμακας <u>σήματος</u>	<u>Αριθμητική –</u> <u>Δεκαδικός</u>
<u>22</u>	<u>PPE</u>	Μη γραμμικό μέτρο βασικής διακύμανσης συχνότητας	<u>Αριθμητική –</u> <u>Δεκαδικός</u>

Το UPDRS έχει σχεδιαστεί για να παρακολουθεί την ασθένεια Parkinson, το οποίο σχετίζεται σαφώς με το επίπεδο Parkinson του ασθενούς. Η βαθμολογία UPDRS αποτελείται από 4

διαφορετικά μέρη που αναφέρονται στη συνείδηση και τη συμπεριφορά, τη διάθεση και τις δραστηριότητες της καθημερινότητας του ασθενούς, τις διαπλοκές στο μηχάνημα μέτρησης και γενικά λοιπές επιπλοκές που αφορούν την θεραπεία.

Στο σύνολο δεδομένων δίνονται δύο παράμετροι-στόχοι, το "motor_UPDRS" και "total_UPDRS", τα οποία είναι τα αντίστοιχα UPDRS scores που προέκυψαν από την ιατρική αξιολόγηση (ground truth).

Το total_UPDRS εκτείνεται από 0 έως 176, όπου το 0 υποδηλώνει απολύτως υγιή άτομα και το 176 ολική αναπηρία. Αντίθετα, το motor_UPDRS είναι ένα υποσύνολο των συνολικών UPDRS και κυμαίνεται από 0 έως 108, όπου το 0 σημαίνει ότι ο ασθενής δεν έχει συμπτώματα ενώ το 108 ότι έχει σοβαρή κινητική βλάβη. Παρόλα αυτά στο dataset μας, έχουμε βρει τα ακόλουθα στατιστικά αναφορικά με τις δύο παραπάνω στήλες:

Πίνακας 2: Στατιστικά σύμφωνα με dataset

Data Set	MOTOR UPDRS	TOTAL UPDRS
Min	5.0377	7
Мах	39.511	54.992
Range	34.511	47.992
Mean	20.871	27.576
Std.	8.12858964	10.6993726

Classification/regression

Αλγόριθμοι Ταξινόμησης (classification)

Η κατηγοριοποίηση (classification) είναι η πιο γνωστή και πιο δημοφιλής τεχνική εξόρυξης γνώσης (data mining). Είναι η διαδικασία η οποία απεικονίζει ένα σύνολο δεδομένων σε προκαθορισμένες ομάδες. Τις ομάδες αυτές συχνά τις καλούμε κατηγορίες ή κλάσεις (classes). Δηλαδή, έχοντας δεδομένο ένα σύνολο κλάσεων, επιδιώκουμε να προσδιορίσουμε την κλάση ή τις κλάσεις στις οποίες ανήκει ένα αντικείμενο.

Συχνά μία κλάση αφορά μία πολύ γενικότερη θεματική περιοχή, σ' αυτήν την περίπτωση ονομάζονται θέματα (topics) και έτσι υφίσταται αντίστοιχη εργασία ταξινόμησης. Μία προσέγγιση στην ταξινόμηση βασίζεται στην μηχανική μάθηση (machine learning). Αφορά δηλαδή, το σύνολο των κανόνων ή γενικότερα, το κριτήριο απόφασης του ταξινομητή, όπου

αυτό μαθαίνεται αυτόματα από τον μηχανισμό του ταξινομητή μέσω δεδομένων εκπαίδευσης (training documents). Παρόλα αυτά, η μη αυτόματη ταξινόμηση εξακολουθεί να υφίσταται, αφού έγγραφα εκπαίδευσης καθορίζονται από κάποιον άνθρωπο που έχει αναλάβει τον χαρακτηρισμό τους (labels). Το labeling είναι ουσιαστικά η διαδικασία της επισημείωσης κάθε εγγράφου με το όνομα της κλάσης του.

Αναφορικά με το σύνολο δεδομένων της εργασίας εργαστήκαμε ως εξής. Αρχικά βρήκαμε το μέσο όρο για κάθε ασθενή (42 στο σύνολο) σύμφωνα με όλες τις μετρήσεις του:

oubject	average motor_UPDRS per subje	
1	33,18075168	33.18075168
2	13.81253793	13.81253793
3	27.12478472	27.12478472
4	15.79082482	15.79082482
5	31.63260256	31.63260256
6	27.53169231	27.53169231
7	16.04706211	16.04706211
8	19.88702	19.88702
9	18.31236184	18.31236184
10	13.42441892	13.42441892
11	18.98756522	18.98756522
12	16.88828037	16.88828037
13	19.51676786	19.51676786
14	13.01445	13.01445
15	13.96458671	13.96458671
16	8.705965942	8.705965942
17	26,43229861	26.43229861
18	5.82345873	5.82345873
19	17.61122481	17.61122481
20	11.18345522	11.18345522
21	29.09265854	29.09265854
22	9.7997125	9.7997125
23	13.47463043	13.47463043
24	13.75973077	13.75973077
25	28.7325625	28.7325625
26	25.04024615	25.04024615
27	10.79183566	10.79183566
28	29.1673806	29.1673806
29	24.63122619	24.63122619
30	25.91511905	25.91511905
31	26.40428462	26.40428462
32	9.944266337	9.944266337
33	26.36831111	26.36831111
34	24.6808882	24,6808882
35	35.98981212	35.98981212
36	23.39494574	23.39494574
37	31.86064286	31.86064286
38	19.7725906	19.7725906
39	29.87755944	29.87755944
40	16.50746479	16.50746479
41	34,40492121	34.40492121
42	22.84406667	22.84406667

Παρατηρήθηκε σύμφωνα με τα ακόλουθα διαγράμματα πως ο μέσος όρος της τιμής του motor UPDRS κυμαίνεται στην τιμή '20.9839753915603' για το σύνολο των 42 ασθενών.

Πιο συγκεκριμένα, αν θεωρήσουμε δύο κλάσεις (άνδρες γυναίκες, δηλ. sex 0,1) οι τιμές του motor_UPDRS για τον άνδρα χωρίζονται στην τιμή '20.3260462643673'. Η διαδικασία να για να ορίσουμε το συγκεκριμένο threshold για τους άντρες αλλά και η αντίστοιχη για τις γυναίκες είναι:

- χωρίσαμε το συνολικό δείγμα σε άντρες και γυναίκες
- επιλέξαμε τις μετρήσεις μόνο των αντρών και για κάθε έναν από τους άντρες ασθενείς βρήκαμε τον μέσο όρο της τιμής motor UPDRS
- τέλος, υπολογίσαμε τον μέσο όρο του motor_UPDRS όλων των ασθενών/αντρών και ορίσαμε αυτή την τιμή ως threshold για να κάνουμε την "σύγκριση" στην συνέχεια και να βγάλουμε το πόρισμα ("result"), αν δηλαδή ο ασθενής πάσχει ή δεν πάσχει από την νόσο.

Εικόνα 4.2: Δ ιάγραμμα απεικόνισης του μέσου όρου του motor_UPDRS καθενός από τους 28 άντρες συγκριτικά με το threshold

Στο παραπάνω διάγραμμα παρατηρούμε ότι στον άξονα x είναι ο συνολικός αριθμός των subjects (28 άντρες) ενώ στον άξονα ψ παρατηρούμε τον μέσο όρο της τιμής motor_UPDRS για τον κάθε άντρα. Η μπλε γραμμή αποτελεί το threshold μας.

Παράλληλα, οι τιμές του motor_UPDRS για την γυναίκα χωρίζονται στην τιμή '21.3129399551569'. Ομοίως το παρακάτω διάγραμμα και για τις 14 γυναίκες:

Εικόνα 4.3:Διάγραμμα απεικόνισης του μέσου όρου του motor_UPDRS καθενός από τις 14 γυναίκες συγκριτικά με το threshold

Έτσι δημιουργήσαμε μία νέα στήλη στο dataset μας με όνομα 'result'. Αυτή η στήλη είναι τύπου boolean. Με '1' θεωρείται ότι από το σύνολο το δεδομένων μας και σύμφωνα με τη στήλη motor_UPDRS ο ασθενής έχει περισσότερες πιθανότητες να πάσχει από Parkinson, ενώ με '0' το αντίθετο.

Για παράδειγμα και με βάση την παραπάνω παραδοχή που κάναμε, ο πρώτος ασθενής που είναι άντρας πιθανότατα πάσχει από την νόσο, αφού όλες του οι μετρήσεις είναι πάνω από το threshold, όπως φαίνεται και στο παρακάτω διάγραμμα:

Εικόνα 4.4: Διάγραμμα απεικόνισης του αποτελέσματος του motor_UPDRS του 1ου ασθενή συγκριτικά με το threshold

Μια επιπλέον συνθήκη για το 'labeling', δηλαδή ο προσδιορισμός του result, είναι ο περιορισμός του φύλου. Δηλαδή, αν οι μετρήσεις των γυναικών με τιμές άνω της τιμής '21.312939' του motor_UPDRS τότε η αντίστοιχη τιμή του result θα πάρει την τιμή '1'. Σε αντίθετη περίπτωση θα πάρει την τιμή '0'. Αντίστοιχα και για τους άνδρες με τιμή κατωφλίου '20.32.6046'.

4.2 Support Vector Machine

Στη συνέχεια, ετοιμάζουμε το train set (80% των δεδομένων και label) και το test set (20% label) και περνάμε στην διαδικασία το cross validation. Αυτή η διαδικασία, αναφέρεται στην ακρίβεια πρόβλεψης σ' ένα σύνολο "μη επισημασμένων" (unlabeled) δεδομένων ώστε να εκτιμήσουμε πόσο καλά είναι τα αποτελέσματά μας μετά την υλοποίηση και απόδοση ενός ταξινομητή. Στόχος, δηλαδή, του cross validation είναι να οριστεί ένα σύνολο δεδομένων για να «δοκιμαστεί» το μοντέλο μας στη φάση του training προκειμένου να περιοριστούν προβλήματα όπως το overfitting.

Εκπαιδεύουμε τον classifier με το μοντέλο 'Support Vector Machine' που όπως υποδηλώνει και το όνομα του είναι μία διανυσματική μέθοδος μάθησης και υποστηρίζει μηχανική μάθηση σε δεδομένα. Στόχο έχει τον εντοπισμό ενός ορίου απόφασης μεταξύ των κλάσεων, το οποίο να βρίσκεται στη μέγιστη δυνατή απόσταση από οποιοδήποτε σημείο των δεδομένων εκπαίδευσης.

Στο προγραμματιστικό μέρος, έχοντας προεπεξεργαστεί τα δεδομένα μας σύμφωνα με την ενότητα 2 και έχοντας χωρίσει τα δεδομένα μας σε train και test περνάμε τα αντίστοιχα δεδομένα στον classifier:

Κώδικας σε python

#Create a svc Classifier clf =
svm.SVC(kernel='linear') # Linear Kernel
#Train the model using the training sets
clf.fit(X_train, y_train)

#Predict the response for test dataset y pred

= clf.predict(X test)

Για την εύρεση της μετρικής 'Accuracy' παρατίθεται ο ακόλουθος κώδικας: print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Αρχικά παρατηρείται ο διαχωρισμός των δεδομένων σύμφωνα με το 80% ως train set και 20% ως test set και τέλος η τιμή του accuracy όπου βρέθηκε περίπου '92.6%'. Το accuracy αφορά τον αριθμό του test συνόλου που χαρακτηρίστηκε ως 1 προς τον αριθμό του train συνόλου που χαρακτηρίστηκε ως 0. Όπως φαίνεται και στο παρακάτω sceenshot, από το 20% των μετρήσεων που είναι ίσο με 1175 μετρήσεις, τα 607 χαρακτηρίστηκαν ως "0" και τα 568 ως "1" σύμφωνα με το support. Παράλληλα, στον ίδιο πίνακα παρατηρούνται και τα αποτελέσματα και κάποιων σύνηθων μετρικών:

PI	recision	recall	f1-score	support
0	0.90	0.94	0.92	607
1	0.93	0.89	0.91	568

Εικόνα 4.6: Screenshot αποτελεσμάτων μετρικών

Ο παρακάτω πίνακας θα μας βοηθήσει να καταλάβουμε το ποσοστό των μετρικών αυτών:

True Positive	False Negative
False Positive	True Negative

Στην περίπτωση μας ο πίνακας αυτός ισούται με τον ακόλουθο, με τις τιμές να αντιστοιχούν στα αντίστοιχα πεδία του πάνω πίνακα:

Πίνακας 4: Πίνακας TP, FP, TN, FN δεδομένων εργασίας

	,	,	 	<u> </u>	 , ,	,	
_				_			
1570				1 27			
370				37			

62	506

- Αληθώς θετικό (True Positive -TP): εκτιμάται ότι ανήκει σε μία κατηγορία και πράγματι ανήκει σε αυτήν, στην περίπτωση μας είναι 570 μετρήσεις ασθενών.
- Ψευδώς θετικό (False Positive FP): εκτιμάται ότι ανήκει σε μία κατηγορία ενώ στην πραγματικότητα δεν ανήκει σε αυτήν, στην περίπτωση μας είναι 62 μετρήσεις ασθενών.
- Αληθώς αρνητικό (True Negative -TN): εκτιμάται ότι δεν ανήκει σε μία κατηγορία και πράγματι δεν ανήκει σε αυτήν, στην περίπτωση μας είναι 506 μετρήσεις ασθενών.
- Ψευδώς αρνητικό (False Negative -FN): εκτιμάται ότι δεν ανήκει σε μία κατηγορία ενώ στην πραγματικότητα ανήκει σε αυτήν, στην περίπτωση μας είναι 37 μετρήσεις ασθενών.

Σε μια ταξινόμηση, το **precision** για μια κλάση είναι ο αριθμός των True-positives (δηλ. ο αριθμός των μετρήσεων που έχουν σωστά επισημανθεί ότι ανήκουν στην positive class) διαιρούμενο με το συνολικό αριθμό των μετρήσεων που επισημάνθηκαν πως ανήκουν στη positive class.

Ενώ, το **recall** ορίζεται ως ο αριθμός των True Positives που διαιρούνται με τον συνολικό αριθμό των στοιχείων που πράγματι ανήκουν στη positive class (δηλαδή το άθροισμα των True Positives και των False Negative, τα οποία δεν έχουν επισημανθεί ότι ανήκουν στη positive class αλλά έπρεπε).

Αναφορές - Βιβλιογραφία για

- [1] https://www.cs.upc.edu/~ayamaui/documents/Report Busquet Yamaui.pdf
- [2] https://github.com/NicolasAG/MachineLearningproject4/blob/master/Final report.p df
- [3] https://machinelearningmastery.com/rescaling-data-for-machine-learning-inpythonwith-scikit-learn/
- [4] https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/ https://github.com/jakevdp/PythonDataScienceHandbooks/ https://github.com/jakevdp/PythonDataScienceHandbooks/ https://github.com/jakevdp/PythonDataScienceHand
- [5] https://github.com/NicolasAG/MachineLearning-project4
- [6] https://stackabuse.com/association-rule-mining-via-apriori-algorithm-in-python/
- [7] https://www.techopedia.com/definition/30306/association-rule-mining
- [8] Raghavan Hinrich Schütze, "An Introduction to Information Retrieval", Cambridge University Press Cambridge, England 2009
- [9] https://www.datacamp.com/community/tutorials/svm-classification-scikitlearnpython

- [10] https://medium.com/@tomernahshon/spectral-clustering-fromscratch38c68968eae0
- [11] https://www.kaggle.com/dhanyajothimani/basic-visualization-and-clusteringinpython
- [12] https://www.kaggle.com/datatheque/association-rules-mining-market-basketanalysis