Modeling and control of cyber-physical systems Project Activity I

Sophie M. Fosson

March 13, 2025

In this project, we apply the mathematical models and algorithms discussed in class to estimate the state of a system, possibly in the presence of sensors attacks. In particular, we consider problems of target localization, in a two-dimensional indoor area.

The work is conceived for groups of 3-4 students. The choice of the programming language is free; we suggest MATLAB or Python.

Students are required to write a report (\sim 4-5 pages) with the analysis of the obtained results.

Objectives

The goal of this activity is to learn to

- 1. implement algorithms for CPSs
- 2. enhance the algorithms to improve the performance (e.g., by a suitable tuning of the hyperparameters)
- 3. analyse the obtained results
- 4. write a technical report

Requirements

- 1. Implement the algorithms and solve the proposed problems
- 2. Write a report (\sim 4-5 pages) that illustrates the analysis of the obtained results

3. Upload the report and the code in the delivery page of the course, at least one week before the oral examination

Task 1: Secure state estimation of a static CPS with sparse sensor attacks

 Consider P-Lasso to estimate the state of CPS under sparse sensors attacks, according to the model

$$y = C\widetilde{x} + \widetilde{a} + \eta$$

where $\widetilde{x} \in \mathbb{R}^n$ is the unknown state vector, $\widetilde{a} \in \mathbb{R}^q$ is the unknown sparse attack vector and $\eta \in \mathbb{R}^q$ a possible measurement noise. We aim at estimating the state and estimate which sensors are under attack

Implement IJAM and ISTA to solve P-Lasso and compare their performance.

Suggested data and hyperparameters:

- 1. n = 15, q = 30, h = 2 sensor attacks
- 2. Generate the components of C according to a standard normal distribution $\sim \mathcal{N}(0,1)$
- 3. Support of the attack vector a: uniform distribution
- 4. Attack: $\widetilde{a}_i \in [-5, -4] \cup [4, 5]$, uniformly distributed
- 5. State: $\widetilde{x}_i \in [-3, -2] \cup [2, 3]$, uniformly distributed
- 6. Measurement noise $\eta \sim \mathcal{N}(0, \sigma^2)$, $\sigma = 10^{-2}$
- 7. Stop criterion: $T_{max}=$ first step such that $\|x(T_{max}+1)-x(T_{max})\|_2^2<\delta$, $\delta=10^{-10}$.
- 8. $\lambda = 0.1$
- 9. For ISTA: $\nu = \frac{0.99}{\|G\|_2^2}$ where $G = \begin{pmatrix} C & I \end{pmatrix}$
- 10. For IJAM: $\nu = 0.7$

Repeat the experiment for at least 20 runs and analyse the mean results, by considering the following recovery performance metrics:

- 1. State estimation error, defined as $\frac{\|x(k)-\widetilde{x}\|_2}{\|\widetilde{x}\|_2}$, which measures the accuracy of the estimated state x(k) with respect to the true state
- 2. Support attack error, calculated as $\sum_j |\mathbf{1}(\hat{a}_j \neq 0) \mathbf{1}(a_j \neq 0)|$, where $\mathbf{1}(v) = 1$ if v is true, and 0 otherwise, assessing the correctness of the attack support estimation.
- 3. The results should be averaged over the number of runs.

Questions:

- 1. Verify if ISTA and IJAM achieve the same recovery performance metrics
- 2. Analyze the convergence rate of ISTA and IJAM
- 3. Test several values of λ and comment the results
- 4. Test several values of ν and comment the results
- 5. Resilience to attacks: increase h and comment the results