TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA75458P, TA75458S, TA75458F, TA75458FB

DUAL OPERATIONAL AMPLIFIER

FEATURES

- Pair of Internally Compensated High Performance **Amplifier**
- No Frequency Compensation Required
- No Latch-up
- Short Circuit Protection
- Side Common Mode and Differential Voltage Range
- Low Power Consumption

TA75458P DIP8-P-300-2.54A TA75458S SIP9-P-2.54A TA75458F SOP8-P-225-1.27 TA75458FB SOP8-P-225-1.27B

Weight

DIP8-P-300-2.54A : 0.5g (Typ.) SIP9-P-2.54A : 0.9g (Typ.) SOP8-P-225-1.27 : 0.1g (Typ.) SOP8-P-225-1.27B : 0.1g (Typ.)

2001-06-19

PIN CONNECTION (TOP VIEW)

TA75458P

TA75458S

TA75458F

TA75458FB

EQUIVALENT CIRCUIT

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TA75458P	TA75458S	TA75458F TA75458FB	UNIT
Supply Voltage	V _{CC} , V _{EE}	+ 18, - 18	+ 18, - 18	+ 18, - 18	V
Differential Input Voltage	DVIN	± 30	± 30	± 30	V
Input Voltage	VIN	V _{CC} ~V _{EE}	V _{CC} ~V _{EE}	V _{CC} ~V _{EE}	٧
Power Dissipation	PD	500	400	240	mW
Operating Temperature	T _{opr}	- 40∼85	- 40~85	- 30~75	°C
Ambient Temperature	T _{stg}	- 55∼125	- 55∼125	- 55∼125	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 15V$, $V_{EE} = -15V$, $T_{a} = 25^{\circ}C$)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Input Offset Voltage		V _{IO}	1	$R_g \le 10k\Omega$	_	1	5	mV	
Input Offset Current		lio	2		_	20	200	nA	
Input Bias Current		Ц	2		_	80	500	nA	
Common Mode Input Voltage		CMV _{IN}	3		± 12	± 13	_	V	
Maximum Output Voltage		Vом	4	$R_L = 10k\Omega$	± 12	± 14		V	
		VOMR	4	$R_L = 2k\Omega$	± 10	± 13			
Source Current		I _{source}	4			20	_	mA	
Sink Current		l _{sink}	4		_	20	_	mA	
Differential Input Impedance	Parallel Input Resistance	z _{Di}	_	f=20Hz Open Loop	0.3	1.0	_	МΩ	
	Parallel Input Capacitance	Ci	_	T = 20112 Open Loop		6.0	_	pF	
Output Impedance		Zo	_	f = 20Hz	_	75	_	Ω	
Voltage Gain (Open Loop)		GV	7	$V_{OUT} = \pm 10V$, $R_L = 2k\Omega$	86	100		dB	
Common Mode Input Signal Rejection Ratio		CMRR	3	f = 100Hz	70	90	_	dB	
Supply Voltage Rejection Ratio		SVRR	1	$R_g \le 10 k\Omega$	_	30	150	μ V / V	
Power Bandwidth		fW	_	$G_V = 1$, $R_L = 2k\Omega$ $V_{OUT} = 20V_{p-p}$	_	14	_	kHz	
Slew Rate		SR	6	$G_V = 1$, $R_L = 2k\Omega$	_	0.8	_	V / μ s	
Unity Gain Cross Frequency		f _T	7	Open Loop	_	1.1	_	MHz	
Power Dissipation		PD	5	V _O = 0V		70	170	mW	
Input Offset Voltage Drift ΔV		$\Delta V_{IO}/\Delta T$	1	$R_g \le 10 k\Omega$, $Ta = -30 \sim 75$ °C	_	_	50	μ V / °C	
Supply Current		ICC, IEE	5		_	2.3	5.6	mA	

TEST CIRCUIT

(1) V_{IO} , ΔV_{IO} / ΔT , SVRR

$$\begin{split} &V_{\text{IO}} = V_{\text{OUT}} / 100 \text{ (V)} \\ &\Delta V_{\text{IO}} / \Delta T = \left\{ V_{\text{IO}} (25^{\circ}\text{C}) - V_{\text{IO}} (-30^{\circ}\text{C}) \right\} / 55 \text{ (V/°C)} \\ &\Delta V_{\text{IO}} / \Delta T = \left\{ V_{\text{IO}} (75^{\circ}\text{C}) - V_{\text{IO}} (25^{\circ}\text{C}) \right\} / 50 \text{ (V/°C)} \end{split}$$

 V_{IO1} : V_{CC} , AT $V_{EE} = \pm 17.5V$ V_{IO2} : V_{CC} , At $V_{EE} = \pm 12.5V$

 $SVRR = (V_{IO1} - V_{IO2}) / 5 (\mu V / V)$

(2) | |, |10

$$|IO = |II(+) - II(-)|$$

(3) CMV_{IN}, CMRR

 $CMV_{IN}: V_{OUT} = \pm 1V (DC)$

V_{IN} = MEASURE

CMRR: RATIO OF Gdiff vs GCM

 $CMRR = 20 \ell og \frac{G_{diff}}{G_{CM}} (dB)$

(4) VOM, VOMR, Isink, Isource

V_{OM}(+) : SW1 IS SIDE B, SW2 OFF, SW3 OFF V_{OM}(-) : SW1 IS SIDE A, SW2 OFF, SW3 OFF V_{OMR}(+) : SW1 IS SIDE B, SW2 ON, SW3 OFF V_{OMR}(-) : SW1 IS SIDE A, SW2 ON, SW3 OFF I_{sink} : SW1 IS SIDE A, SW2 OFF, SW3 ON I_{source} : SW1 IS SIDE B, SW2 OFF, SW3 ON

(5) I_{CC}, I_{EE}, P_D

 $P_D = V_{CC} \cdot I_{CC} + V_{EE} \cdot I_{EE} (W)$

(6) SR

(7) G_V, f_T

 G_V

 $R \gg 1 / WC_1$

C₁: COUPLING CONDENSER

C2: HIGH FREQUENCY BYPASS CONDENSER

 ${\rm 0.1}\mu{\rm F}$

 $G_V = 20 \ell og e_O / e_i (dB)$

 f_T INPUT FREQUENCY AT $e_i = e_o$

CHARACTERISTICS

 $V_{Op-p} - f$

PACKAGE DIMENSIONS

DIP8-P-300-2.54A Unit: mm

Weight: 0.5g (Typ.)

PACKAGE DIMENSIONS

SIP9-P-2.54A Unit: mm

Weight: 0.9g (Typ.)

Weight: 0.1g (Typ.)

PACKAGE DIMENSIONS

SOP8-P-225-1.27B Unit: mm

Weight: 0.1g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.