## 习 题

1. 解: *CO=AB+BC+AC* 

$$S = ABC + (A + B + C)\overline{CO} = ABC + (A + B + C)\overline{AB + BC + AC}$$

$$= ABC + (A + B + C)\overline{AB} \,\overline{BC} \,\overline{AC}$$

$$= ABC + \overline{AAB} \, \overline{BC} \, \overline{AC} + \overline{BAB} \, \overline{BC} \, \overline{AC} + \overline{CAB} \, \overline{BC} \, \overline{AC}$$

$$= ABC + A\overline{B} \overline{BC} \overline{C} + B\overline{A} \overline{C} \overline{AC} + C\overline{AB} \overline{B} \overline{A}$$

$$= ABC + A\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}C$$

## 真值表

| $\overline{A}$ | В | С | S | СО | A | В | С | S | СО |
|----------------|---|---|---|----|---|---|---|---|----|
| 0              | 0 | 0 | 0 | 0  | 1 | 0 | 0 | 1 | 0  |
| 0              | 0 | 1 | 1 | 0  | 1 | 0 | 1 | 0 | 1  |
| 0              | 1 | 0 | 1 | 0  | 1 | 1 | 0 | 0 | 1  |
| 0              | 1 | 1 | 0 | 1  | 1 | 1 | 1 | 1 | 1  |

电路功能:一位全加器,A、B为两个加数,C为来自低位的进位,S是相加的和,CO是进位。

2. 解:

| 处于工作状 | C、 $D$ 应输入的状态 |   |  |  |  |
|-------|---------------|---|--|--|--|
| 态的译码器 | C             | D |  |  |  |
| 1)    | 0             | 0 |  |  |  |
| 2     | 0             | 1 |  |  |  |
| 3     | 1             | 0 |  |  |  |
| 4     | 1             | 1 |  |  |  |

| A | В | $\overline{Y_{10}}$ | $\overline{Y_{11}}$ | $\overline{Y_{12}}$ | $\overline{Y_{13}}$ |
|---|---|---------------------|---------------------|---------------------|---------------------|
| 0 | 0 | 0                   | 1                   | 1                   | 1                   |
| 0 | 1 | 1                   | 0                   | 1                   | 1                   |
| 1 | 0 | 1                   | 1                   | 0                   | 1                   |
| 1 | 1 | 1                   | 1                   | 1                   | 0                   |

逻辑功能:由 74LS139 构成的 4线—16线译码器

3. 解:由图可见,74HC138的功能扩展输入端必须满足  $E_1$ =1、 $\overline{E_2}$ = $\overline{E_3}$ =0才能正常译码,因此  $E_1$ = $A_3$ =1; $\overline{E_2}$ = $\overline{A_4A_5}$ ,即  $A_4$ =1, $A_5$ =1; $\overline{E_3}$ = $A_6$ + $A_7$ =0,即  $A_6$ =0, $A_7$ =0。所以,该地址译码器的译码地址范围为  $A_7A_6A_5A_4A_3A_2A_1A_0$ =00111 $A_2A_1A_0$ =00111000~

00111111,用十六进制表示即为38H~3FH。输入、输出真值表如表P3.3-1所示。

| 地址输入                       | 译码输出             |                  |                  |                  |                             |                             |                  |                             |
|----------------------------|------------------|------------------|------------------|------------------|-----------------------------|-----------------------------|------------------|-----------------------------|
| $A_7A_6A_5A_4A_3A_2A_1A_0$ | $\overline{Y}_0$ | $\overline{Y}_1$ | $\overline{Y}_2$ | $\overline{Y}_3$ | $\overline{\overline{Y}}_4$ | $\overline{\overline{Y}}_5$ | $\overline{Y}_6$ | $\overline{\overline{Y}}_7$ |
| 38H                        | 0                | 1                | 1                | 1                | 1                           | 1                           | 1                | 1                           |
| 39H                        | 1                | 0                | 1                | 1                | 1                           | 1                           | 1                | 1                           |
| 3AH                        | 1                | 1                | 0                | 1                | 1                           | 1                           | 1                | 1                           |
| 3BH                        | 1                | 1                | 1                | 0                | 1                           | 1                           | 1                | 1                           |
| 3СН                        | 1                | 1                | 1                | 1                | 0                           | 1                           | 1                | 1                           |
| 3DH                        | 1                | 1                | 1                | 1                | 1                           | 0                           | 1                | 1                           |
| 3ЕН                        | 1                | 1                | 1                | 1                | 1                           | 1                           | 0                | 1                           |
| 3FH                        | 1                | 1                | 1                | 1                | 1                           | 1                           | 1                | 0                           |

4. 解:由图写出逻辑函数并化简,得

$$L = \overline{\overline{Y}_0} \overline{\overline{Y}_2} \overline{\overline{Y}_4} \overline{\overline{Y}_6} = Y_0 + Y_2 + Y_4 + Y_6 = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C} = \overline{C}$$

5. 
$$M: F = AB + \overline{BC} = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$



7. 解:根据下表可得到连线图:

| 7414  | - 741 - 1864   12 4 14 2 4 C 5 7 F 1 |       |                  |          |                  |       |       |       |  |
|-------|--------------------------------------|-------|------------------|----------|------------------|-------|-------|-------|--|
| $G_2$ | $G_1$                                | $G_0$ | 有效输出端            |          | $\bar{I}$        | $B_2$ | $B_1$ | $B_0$ |  |
| 0     | 0                                    | 0     | $\overline{Y_0}$ | <b>→</b> | $\overline{I_7}$ | 0     | 0     | 0     |  |
| 0     | 0                                    | 1     | $\overline{Y_1}$ | <b>→</b> | $\overline{I_6}$ | 0     | 0     | 1     |  |
| 0     | 1                                    | 1     | $\overline{Y_3}$ | <b>→</b> | $\overline{I_5}$ | 0     | 1     | 0     |  |
| 0     | 1                                    | 0     | $\overline{Y_2}$ | <b>→</b> | $\overline{I_4}$ | 0     | 1     | 1     |  |
| 1     | 1                                    | 0     | $\overline{Y_6}$ | <b>→</b> | $\overline{I_3}$ | 1     | 0     | 0     |  |
| 1     | 1                                    | 1     | $\overline{Y_7}$ | <b>→</b> | $\overline{I_2}$ | 1     | 0     | 1     |  |
| 1     | 0                                    | 1     | $\overline{Y_5}$ | <b>→</b> | $\overline{I_1}$ | 1     | 1     | 0     |  |
| 1     | 0                                    | 0     | $\overline{Y_4}$ | <b>→</b> | $\overline{I_0}$ | 1     | 1     | 1     |  |



9. 解: 4选1数据选择器的逻辑表达式为:

$$Y = \overline{A_1} \, \overline{A_0} D_0 + \overline{A_1} A_0 D_1 + A_1 \, \overline{A_0} D_2 + A_1 A_0 D_3$$

将 
$$A_1$$
= $A$ ,  $A_0$ = $B$ ,  $D_0$ = $1$ ,  $D_1$ = $C$ ,  $D_2$ = $\overline{C}$ ,  $D_3$ = $C$ 代入得

$$Y = \overline{AB} + \overline{ABC} + \overline{ABC}$$



10. 解:(1)写出逻辑函数表达式:

$$L = \overline{A} \overline{B} \overline{C} + \overline{A} B \overline{C} + \overline{ABC} + A\overline{B} \overline{C} + AB\overline{C}$$

## (2) 用卡诺图化简



$$L = \overline{C} + \overline{AB}$$

11. **M**:  $L = AB + AC = AB\overline{C} + ABC + ABC + ABC = m_7 + m_6 + m_5$ 



13. 解: 
$$F = \overline{AC} + C\overline{D} + \overline{BCD} = \overline{AC}(D + \overline{D}) + C\overline{D} + \overline{BCD}$$

$$= \overline{ACD} + \overline{ACD} + C\overline{D} + \overline{BCD} = \overline{ABCD} + \overline{ACD} + C\overline{D} + C\overline{D$$



14. 解:



15. 解:对于 LSTTL 集成芯片,某个输入引脚折断后该脚悬空,相当于输入高电平

1。74LS151 的高位地址端  $A_2$  折断后,输出不再响应  $D_0$ , $D_1$ , $D_2$ , $D_3$  输入,8 选 1 数据选择器只相当于一个 4 选 1,此时地址输入为  $A_1A_0$ ,数据输入为  $D_4$ , $D_5$ , $D_6$ , $D_7$ ,输出 Y 等于

$$\begin{split} Y &= \underbrace{A_2}_{A_1} \overline{A_0} D_4 + A_2 \overline{A_1} A_0 D_5 + A_2 A_1 \overline{A_0} D_6 + A_2 A_1 A_0 D_7 \\ &= \overline{A_1} \overline{A_0} D_4 + \overline{A_1} A_0 D_5 + A_1 \overline{A_0} D_6 + A_1 A_0 D_7 \end{split}$$

与函数 F 相比较

$$F(A, B, C) = \sum_{A} m(1, 2, 4, 7)$$
$$= \overline{A} \overline{BC} + \overline{ABC} + A\overline{BC} + ABC$$

不难看出,只要令 AB 为地址,则  $D_4=C$ , $D_5=\overline{C}$  , $D_6=\overline{C}$  , $D_7=C$ 。逻辑图如图所示。



17. 解:三个 4 位二进制数相加,其和应为 6 位。基本电路如图所示。两个加法器产生的进位通过一定的逻辑生成和的高两位。

| $CO_1$ | $CO_2$ | $S_5$ | $S_4$ |
|--------|--------|-------|-------|
| 0      | 0      | 0     | 0     |
| 0      | 1      | 0     | 1     |
| 1      | 0      | 0     | 1     |
| 1      | 1      | 1     | 0     |

$$S_4 = CO_1 \oplus CO_2$$
,  $S_5 = CO_1 \cdot CO_2$ 



18. 解:卡诺图如图 (a) 所示。两个包围圈相切,此函数存在逻辑险象。只要如图所示增加冗余项 $B\overline{C}$ 即可,逻辑式变为:

$$Y = \overline{A} \, \overline{C} + AB + B\overline{C} = \overline{\overline{A}} \, \overline{\overline{C}} \cdot \overline{AB} \cdot \overline{B} \overline{\overline{C}}$$

用与非门构成的相应电路如图 (b)所示。



20. 解:上述代码定义了一个具有使能端的 2 线-4 线译码器。其逻辑符号和真值表如图所示。



图 20-1

在图 20-1 中译码器 的真值表中,输入的顺序是 EN、  $A_1$ 、 $A_0$ ,为了表示这 3 个信号,在 VHDL 代码中定义了 3 位信号 ENA,语句 "ENA<=EN&A"使用了 VHDL 的并置运算符,将 EN 和 A 信号组合为 ENA 信号。因此,ENA(2)=EN,ENA(1)= $A_1$ ,ENA(0)= $A_0$ 。在选择信号的赋值语句中,EN 信号用作选通信号。对于代码中前 4 条 WHEN 语句,EN=1,译码器的输出结果等价于真值表后 4 行;最后一条 WHEN 语句使用了关键字 OTHERS,它表示 EN=0 的情况,此时将译码器的输出设置为 00000.