

THE WEIZMANN SCIENCE PRESS OF ISRAEL

National Council for Research and Development

ISRALL Journal of BOTARY

Volume 34 1985

מוסד ויצמן לפרסומים במדעי הטבע ובטכנולוגיה, ירושלים The Weizmann Science Press of Israel

Publishers of the Following Journals
ISRAEL JOURNAL OF BOTANY; ISRAEL JOURNAL OF CHEMISTRY;
ISRAEL JOURNAL OF EARTH SCIENCES; ISRAEL JOURNAL OF MATHEMATICS;
ISRAEL JOURNAL OF TECHNOLOGY; ISRAEL JOURNAL OF ZOOLOGY;

JOURNAL D'ANALYSE MATHEMATIQUE

(Science for Youth) כרעת מדע לנוער

(Science) בת עתון מדעי לכל

Supporting Institutions

THE NATIONAL COUNCIL FOR RESEARCH AND DEVELOPMENT;

BAR-ILAN UNIVERSITY; BEN GURION UNIVERSITY OF THE NEGEV;

TECHNION—ISRAEL, INSTITUTE OF TECHNOLOGY; TEL AVIV UNIVERSITY;

THE HEBREW UNIVERSITY OF JERUSALEM: THE WEIZMANN INSTITUTE OF SCIENCE

GENERAL EDITORIAL BOARD

D. Abir

A. Dvoretzky

C. Elata

H. Eval-Giladi

M. Jammer

J. Jortner

E. Lenz

L. Reinhold

Acting Executive Editor

Esme Gordon

ISRAEL JOURNAL OF BOTANY

Formerly Bulletin of the Research Council of Israel, Section D

Editorial Board

M. Negbi Editor-in-Chief

A. Blum

A. Danin

B. L. Epel

M. Feldman

Margalit Galun

J. Gressel

Chaia C. Heyn

A. Kaplan

N. Roth-Bejerano

D. Shimshi

F Werker

J. Kigel Editorial Coordinator

Subscriptions are to be addressed to the Weizmann Science Press of Israel, P.O.B. 801, Jerusalem 91007 Israel. Subscription fees per volume: \$45.00 + \$2.00 postage and handling.

Copyright © 1985 by THE WEIZMANN SCIENCE PRESS OF ISRAEL Printed December 1985

Typeset by Israel Wellerstein, P.O.B. 4493, Jerusalem and printed by Hemed Press, Jerusalem

INDEX

Baas, P. and M. Gregory. A survey of oil cells in the dicotyledons with comments on		
their replacement by and joint occurrence with mucilage cells	1	167
Backhaus, R.A. Rubber formation in plants – A mini-review		283
Beaumont, J., D.F. Cutler, T. Reynolds and J.G. Vaughan. The secretory tissues of		
aloes and their allies	2	265
Bones, A. and TH. Iversen. Myrosin cells and myrosinase		351
Carde, JP. See C. Cheniclet		
Catesson, A.M. and M. Moreau. Secretory activity in vessel contact cells	1	157
Chaboud, A. See M. Rougier		
Cheniclet, C. and JP. Carde. Presence of leucoplasts in secretory cells and of mono-		
terpenes in the essential oil: A correlative study	2	219
Christ, P. and E. Schnepf. The nectaries of Cynanchum vincetoxicum (Asclepiadaceae)		79
Côme, D., C. Perino and J. Ralambosoa. Oxygen sensitivity of apple (Pyrus malus L.)		
embryos in relation to dormancy		17
Cutler, D.F. See J. Beaumont		
Distelbarth, H. and U. Kull. Physiological investigations of leaf mucilages II. The		
mucilage of Taxus baccata L. and of Thuja occidentalis L.	1	113
Douglas, T.J. See R. Marginson		
Fineran, B.A. Glandular trichomes in Utricularia: A review of their structure and		
function	2	295
Ghersa, C.M., E.H. Sattore and M.L. Van Esso. Seasonal patterns of Johnsongrass		
seed production in different agricultural systems		24
Gregory, M. See P. Baas		
Hadas, A. Water absorption by swelling leguminous seeds as affected by water		
potential and external mechanical constraints		7
Heide-Jørgensen, H.S. See D.M. Joel		
Heinrich, G. and W. Schultze. Composition and site of biosynthesis of the essential		
oil in fruits of Phellodendron amurense Rupr. (Rutaccae)	2	205
Herrera, J. Nectar secretion patterns in southern Spanish Mediterranean scrublands		47
Heslop-Harrison, J. and Y. Heslop-Harrison. The secretory system of the stigma of		
Oenothera organensis Munz: Some developmental and quantitative features		187
Heslop-Harrison, Y. See J. Heslop-Harrison		
Iversen, TH. See A. Bones		
Joel, D.M. and H.S. Heide-Jørgensen. Ultrastructure and development of the pitcher		
epithelium of Sarracenia		331
Jones, R.L. Protein synthesis and secretion by the barley aleurone: A perspective	· ·	377
Karschon, R. and A. Weinstein. Wall flora and vegetation at Qal'at Nimrud, the castle		
of Banyas	59	59
Knox, R.B. See R. Marginson		
Kristen, U. and J. Lockhausen. The leaf glands of Veronica beccabunga L.: Ultra-		
structure and a possible pathway of secretion		147
Kull, U. See H. Distelbarth		
Lee, C.W. and R.A. Sherman. Meiosis in jojoba, Simmondsia chinensis		1
Looperd D.T. San I.W. Oross		

Lockhausen, J. See U. Kristen

Lüttge, U., W. Stichler and H. Ziegler. Isotopes ratios (δ ¹³ C and δD) of nectar in	103
comparison to tissues in C ₃ and CAM plants	103
Mahlberg, P.G. Trichome morphogenesis on leaves of <i>Cyphomandra betacea</i> Sendt. (Solanaceae)	253
Marginson, R., M. Sedgley, T.J. Douglas and R.B. Knox. Structure and secretion of	
the extrafloral nectaries of Australian acacias	91
Moreau, M. See A.M. Catesson	
Oross, J.W., R.T. Leonard and W.W. Thomson. Flux rate and a secretion model for salt glands of grasses	69
Perino, C. See D. Côme	
Putievsky, E. See E. Werker	
Ralambosoa, J. See D. Côme	
Ravid, U. See E. Werker	
Reynolds, T. See J. Beaumont	
Rougier, M. and A. Chaboud. Mucilages secreted by roots and their biological	
function	129
Sattore, E.H. See C.M. Ghersa	
Schnepf, E. See P. Christ	
Schultze, W. See G. Heinrich	
Sedgley, M. See R. Marginson	
Sherman, R.A. See C.W. Lee	
Stichler, W. See U. Lüttge	
Thomson, W.W. See J.W. Oross	
Van Esso, M.L. See C.M. Ghersa	
Vaughan, J.G. See J. Beaumont	
Weinstein, A. See R. Karschon	
Werker, E., U. Ravid and E. Putievsky. Glandular hair and their secretions in the	
vegetative and reproductive organs of Salvia sclarea and S. dominica	239
Werker, E., U. Ravid and E. Putievsky. Structure of glandular hairs and identification of the main components of their secreted material in some species	
of the Labiatae	31

Ziegler, H. See U. Lüttge

PLANT INDEX

Abuta, 175, 179 Abutilon striatum, 103-112 Acacia, 91-102 Acaena, 176, 179 Acanthopanax sessiliflorum, 220 Acetabularia, 205 Achillea millefolium, 220 Adenocarpus telonensis, 53 Adianthum capillus-veneris, 60 Aeluropus litoralis, 76 Agathosma gnidioides, 215 Alectorurus, 266 Aloe, 169, 265-282 A. eru, 103-112 Althaea, 124 Amborella, 173 Anthyllis cytisoides, 53, 56 A. tejedensis, 53, 56 Anthirrhinum majus, 55, 56 Apama, 175 Aptenia cordifolia, 153, 154 Arbutus unedo, 53, 55 Aristolochia, 175 Armeria velutina, 54 Artemisia camphorata, 220 Asarum, 175 Asclepias, 180 A. currasavica, 79, 88, 154 A. subulata, 289 Asparagus aphyllus, 54, 60 Asperula, 177 Asphodeline, 265-282 Asphodelus, 56, 265-282 A. aestivus, 56 A. albus, 56 A. ramosus, 56 Astragalus lusitanicum, 56 Astroloba, 265-282 Atropa baetica, 56 Aulax, 177 Austrobaileya, 173 Avena sterilis, 60 Azospirillum, 139, 142

Ballota hirsuta, 53, 56, 60

B. saxatilis, 60

Batatas, 177 Begonia, 170 Bellevalia flexuosa, 60 Berberis hispanica, 52 Bidens radiata, 22 Borago officinalis, 55 Brachypodium pinnatum, 60 Brasenia schreberi, 147 Brassica, 352, 353, 354 Bromus diandrus, 60 B. tectorum, 60 Bubbia, 172 Bulbine, 265-282 Bulbinella, 266 Bulbinopsis, 266 Bupleurum, 55 Bursera, 176, 179

Cabomba caroliniana, 147 Calamintha sylvatica, 53, 56 Calicotome villosa, 53 Calluna vulgaris, 53 Calycanthus, 174 Cananga, 221, 231 Canella, 173 Cannabis, 253 Capparis spinosa, 55, 60 Carduus argentatus, 60 Carlina lanata, 60 Carrisa, 289 Carum carvi, 220 Cerastium dichotomum, 60 Ceratach officinarum, 60 Ceratocystis ulmi, 158, 163 Cerinthe, 153 Chamaealoe, 265-282 Chamaespartium tridentatus, 53 Cheilanthes fragrans, 60 Chondrilla junceum, 60 Chronanthus biflorus, 53 Cicer arietinum, 7-16 Cinnamomum, 167, 171, 174 C. camphora, 171, 179, 221 C. zeylanicum, 168 Cistus, 52 Citrofortunella mitis, 222, 230, 235

Citrus, 136 C. deliciosa, 206, 208, 214, 215 C. sinensis, 221 Clematis cirrhosa, 54 C. flammula, 54, 60 C. vitalba, 54 Cneorum, 176 Convolvulus althaeoides, 55 Coridothymus capitatus, 31-45 Coris monspelianus, 54 Cornus, 153 Coronilla juncea, 54 C. minima, 54 Crataegus aroma, 60 C. monogyna, 56 Crepis palaestina, 60 Crocus chrysanthus, 154 Croton, 176 Cryptomeria japonica, 220 Cucumis melo, 158 Curcuma longa, 221, 231 Cuscuta, 177 Cymbopogon citratus, 221, 231 Cynanchum acutum, 60 C. vincetoxicum, 79-90 Cynoglossum cheirifolium, 55 Cyphomandra betacea, 253-264 Cynodon dactylon, 69-77

Daphne gnidium, 55 D. laureola, 55 Darlingtonia californica, 346 Daucus bicolor, 60 D. carota, 220 Degenaria, 172 Delphinium nelsonii, 51 Dianthus caryophyllus, 158 D. pendulus, 60 Dictamnus albus, 214 Digitalis obscura, 56 Dionaea, 303, 327 D. muscipula, 154 Distichlis, 69 Dorycnium rectum, 54 Drimys, 172 D. lanceolata, 179

Cytisus, 54

Echinospartum boissieri, 54 Echium albicans, 55 Embothrium, 176 Endiandra, 170 Ephedra campylopoda, 60 Eremocitrus, 215 Eremurus, 265–282 Erica, 53, 55 Erinacea anthyllis, 54 Eriostemon, 215 Eucrotoneae, 176 Euphorbia, 289 Eupomatia, 172 Euxylophora, 176, 179

Fibigia clypeata, 60
Ficus carica, 60
Foeniculum dulce, 220
Fortunella, 228
F. exocorpium, 221
Frangula alnus, 54
Fumana ericoides, 52
F. thymifolia, 52
Fumaria capreolata, 60
Fusarium, 157
F. oxysporum, 158, 163

Gamortega, 174 Gasteria, 265 – 282 G. huttoniae, 272 Genista, 54 Genlisea, 297 Geranium, 345 G. molle, 60 Gladiolus, 99 G. segetum, 55 Glycine max, 132 G. soja, 132 Gnetum, 283 Gomortega, 174 Gomphocarpus, 88 Grabowskia, 178, 179 Grindelia squarrosa, 220 Gyrocarpus, 175

Halimium atriplicifolium, 60 H. commutatum, 52 H. halimifolium, 53 H. lasianthum, 53 Haworthia, 265–282 Hedera helix, 220 Heliamphora nutans, 346 Helianthemum, 53 Helianthus annuus, 135, 158 H. tuberosus, 220 Helichrysum, 180 H. picardii, 53 H. stoechas, 53

Heracleum eminens, 220 Hernandia, 175 Hevea brasilensis, 283-289 Hibiscus esculentus, 170 Himantandra, 172 Hippuris, 180 Holocarpa, 177 Hordeum spontaneum, 60, 388, 389 H. vulgare, 377-395 Hortonia, 174 Houttuynia, 175 Hyoscyamus aureus, 60 Hypericum perforatum, 221 Hyssopus officinalis, 220 Iberis amara, 354 Illicium, 173 I. anisatum, 221, 228 Inula viscosa, 181 Ipomea leari, 221

Jaborandi, 215 Jasminum fruticans, 54, 56, 60 Juniperus, 124

Iris germanica, 221, 228

Isoetes lacustris, 147, 154

Kadsura, 173 Kalanchoe daigremontiana, 103-112 K. tubiflora, 109 Kniphofia, 265-282, 278

Lactoris, 174 Lactuca, 289 L. viminea, 60 Lamium moschatum, 60 Laurus, 174 L. nobilis, 60, 224, 231 Lavandula arborea, 52 L. amplexa, 55 L. lanata, 53, 56

L. latifolia, 47-58, 53, 56 L. stoechas, 53

L. viridis, 53

Lactarius, 283

Lepidium sativum, 354 Licania, 176

Linum, 123, 124 Liquidambar styraciflua, 220

Liriodendrum, 172

Lolium multiflorum, 60 Lomatophyllum, 265-282

Lonicera arborea, 52

L. etrusca, 60 L. periclymenum, 47-58 L. splendida, 52 Lithodora fruticosa, 52, 55 Lotus corniculatus, 135 L. creticus, 54, 56 L. tetragonolobus, 131 Lycopersicum esculentum, 220, 224, 231 L. peruvianum, 202

Magnolia, 172, 231 M. graniflora, 169 M. soulangeana, 221 Majorana syriaca, 31-45, 60 Manglietia, 172 Marrubium supinum, 53 M. vulgare, 60 Matricaria, 178 Medicago scutellata, 60 Melia azedarach, 221 Melissa officinalis, 31-45 Melonis, 158, 163 Mentha piperita, 31 Mercurialis annua, 60 Micromeria fruticosa, 31-45 M. nervosa, 60 Minuartia hybrida, 60 Monimia, 174 Moricandia moricandioides, 55 Morina, 177 Muscari comosum, 60 Myrica, 175 Myristica, 171, 173 M. philippinensis, 171 Myrtus communis, 54, 221, 231

Nelumba nucifera, 153 Nepeta grandiflora, 220 Nerium oleander, 52 Nicotiana, 188 N. tabacum, 202 Nomaphila stricta, 147 Nymphoides peltata, 150

Ocimum basilicum, 220 Oenothera drummondii, 194 O. organensis, 187-204 Oldenlandia corymbosa, 21 Opuntia, 124, 180 Origanum virens, 53, 56 O. vulgare, 239 Ornithogalum narbonense, 60 Osyris alba, 55, 60

O. quadripartita, 55

Parietaria judaica, 60

P. lusitanica, 60

Paronychia argentea, 60

Parthenium argentatum, 283-293

P. tomentosum, 289

Pentanisia, 177

Periploca, 88

Persea, 174, 202

Peperomia, 175

Petunia hybrida, 198, 202

Peziza, 283

Phagnalon rupestre, 60

P. saxatile, 53

Pharbitis, 100, 177

Pharbitis nil, 153

Phaseolus vulgaris, 135

Phebalium, 215

Phellodendrum amurense, 205-217

Phialophora, 161

P. asteris, 158, 163

P. cinerescens, 157, 158, 164

Phlomis crinita, 53, 56

P. lychnitis, 53

P. purpurea, 53, 56

Physalis alkekengi, 220, 224, 231

Phytophtora cinnamoni, 140

Picrodendron, 176

Pimpinella peregrina, 60

Pinguicola, 297

Pinus maritima, 214

P. pinaster, 205, 206

P. pinea, 214

Piper, 175, 231

P. cubeba, 221, 231

Piptatherum miliaceaum, 60

Pistacia palaestina, 60

P. lentiscus, 220

Pisum sativum, 7-16, 74

Pittosporum tabira, 220

Plectranthus, 178

Poa bulbosa, 60

Poellnitzia, 267, 279

P. rubriflora, 267, 272, 278

Pogostemon, 178

Polypomphlox, 297

Poncirus, 208, 211

P. trifoliatus, 221

Prasium majus, 60

Pseudo wintera, 172

Psidium guajava, 221, 231

Psoralea bituminosa, 54, 56

Psychotria bacteriophyla, 147, 154

Putoria calabrica, 54, 56

Pyrus bourgaeana, 56

P. malus, 17-23

Quercus calliprinos, 60

Ranunculus asiaticus, 60

Raphanus sativus, 354

Retama monosperma, 54

R. sphaerocarpa, 54

Rhamnus alaternus, 54, 60

R. lycioides, 54

R. palaestina, 60

Rhizobium, 139, 140, 142

Rhus cotinus, 220

Rosmarinus officinalis, 31-45, 47-58, 221

Rosularia libanotica, 60

Roupala, 176

Rubia tenuifolia, 60

Ruscus aculeatus, 54

Ruta chalepensis, 60, 215

R. montana, 221, 228, 231

Salvia alata, 333

S. dominica, 239-252

S. fruticosa, 31–45

S. glutinosa, 31, 33

S. graveolens, 240

S. leucophylla, 332

S. minor, 332

S. officinalis, 31-45, 220, 228

S. pratensis, 31, 33

S. psittacina, 332

S. purpurea, 332-346

S. sclarea, 239-252

Sansevieria, 103-112

Santolina pinnata, 220

S. rosmarinifolia, 53

Sarracenia, 331-349

Sassafras, 174

Saururus, 175

Satureja thymbra, 31-45

Schizandra, 173

Scandix iberica, 60

Scilla peruviana, 56

Sclerophylax, 178

Scrophularia sambucifolia, 56

Sedum pallidum, 60

Silene colorata, 55, 60

Simmondsia chinensis, 1-6

Sinapis alba, 354

S. arvensis, 60

Smilax aspera, 54
Sonchus oleraceus, 60
Sorghum halepense, 24–30
Spartina, 69
Spartium junleum, 54
Sporobolus, 76
Stachys circinata, 53, 56
Stauracanthus, 54
Stellaria media, 60
Stemmadenia, 174, 177
Stramonium, 289
Styrax officinalis, 60
Sympnytum palaestinum, 60
Tamus communis, 60
Taxus baccata, 113–128

Taxus baccata, 113–128
Teline, 54
Teucrium, 53, 56
Thuja occidentalis, 113–128
Thymelaea hirsuta, 55
Thymus baeticus, 53
T. capitatus, 31–45, 53
Trachyandra, 265–282
Tragia, 176
Trapa, 180
Trifolium, 202
Tsoongiodendron, 172

Tussilago farfara, 220, 234

Ulex eurapaeus, 131 U. minor, 54 U. parviflorus, 54 Ulmus campestris, 158 Umbilicus intermedius, 60 Utricularia, 295–330

Valeriana, 177, 180
Venosa, 333
Verbascum, 114, 124, 125
Veronica beccabunga, 147–156
V. cymbalaria, 60
V. hederifolia, 60
Verticillium, 157, 162
V. dahliae, 158, 161, 164
Viburnum tinus, 53, 220
Vicia faba, 7–16, 74
Vinca difformis, 52, 55
Vitex agnus-castus, 220
Voacanga, 177

Xanthoxylum, 215

Zea mays, 130, 132, 134, 140 Zygogynum, 172

SUBJECT INDEX

aleurone, secretion in, 377-395	seed production, 24-30
aloesin, 275	mucilage production, 113-128
aloin cells, 265 –282	epidermis,
α-amylase, in aleuron; 37,7–395	gland hairs, 239-252
anethole, 226	secretory hairs, 31-45
anthraquinone, 265–282	essential oils,
	in <i>Labiatae</i> , 31–45
anthrone, glycosides, 265–282	in Phellodendron fruits, 205–218
arabinose, in leaf mucilage, 114-128	in <i>Salvia</i> , 239–252
barbaloin, 274	and leucoplasts, 219–238
bisabolene, 226	Eucalyptol, 40, 226
bundle sheath, scretory cells, 265-282	eugenol, 226
borneol, 40	
	farnesene, 227
CAM plants, nectar composition, 103-112	flora, wall flora, 59-64
camphene, 40	flower morphology, nectar production,
camphor, 40, 226	47-58
contact cells, xylem, secretion in, 157-167	frost resistance, leaf mucilage, 113–128
carnivorous plants, 295-330, 331-349	fruit, essential oils, Phellodendron,
caryophyllene, 40, 226, 249	205-218
caruacrol, 40	
chromones, 275	galactose, in leaf mucilage, 114-128
chromosomes, in Simmondsia, 1-6	geobotany, wall flora, 59-64
chrysophanol, 275	geraniol, 40, 207, 249
cineole, 249	geranyl acetate, 207, 249
citronellol, 40	germacrene, 226
cubbene, 227	germination,
cuticle,	O ₂ effects, 17-23
in extrafloral nectaries, 91-102	seed swelling, 7–16
in pitcher epithelium, 331-349	gibberellin, in aleurone, 377–395
in secretory hairs, 31–45	gland cells,
in stigma secretion, 187–204	in Acacia nectaries, 91–102
cymene, 40, 249	in Cynanchrum nectaries, 79–90
cytochemistry,	in <i>Cyphomandra</i> , 239–252, 253–264
of leaf gland cells, 147–156	in <i>Labiatae</i> , 31–45
of extrafloral nectaries, 91–102	in Phellodendron fruits, 205–217
of stigma tissues, 187–204	
of stigina tissues, 167–204	in <i>Salvia</i> , 239–252, 253–264
dayanana 227	in Sarracenia pitcher, 331–349
davanone, 227	in Utricularia, 295–330
dormancy, O ₂ effects in seeds, 17-23	in Veronica leaves, 147–156
	glucose, in leaf mucilage, 114-128, 194
elemene, 227	grasses, salt glands, 69–78
embryo, dormancy, O ₂ effects, 17-23	glucosinolates, 352
emodin, 275	
endosperm, in barley, 377-395	hairs, see trichomes
onring name at affact an	hamanatalain 276

homonataloin, 276

environment, effects on,

leaf,	pinocamphone, 226
gland cells, in Veronica, 147-156	polysacharides,
mucilages, in Taxus, 113-128	in leaf glands, 147-156
salt glands, in grasses, 69-78	in root mucilages, 129-146
secretory cells, 265-282	proteins,
secretory hairs, 31-45, 239-252	in leaf mucilage, 113-128
water content, mucilages, 113-128	in stigma secretion, 187-204
lectins, in root mucilage, 129-146	synthesis, in aleurone, 377-395
leucoplasts, and monoterpene production, 219-238	pulegone, 40
limonene, 40, 207, 226	rhamnose, in mucilage, 114-128
linalool, 40, 207, 226, 227, 249	rhizosphera, root mucilages, 129–146 root, mucilages, 129–146
lipids,	rubber, biosynthesis, 283–293
in nectar, 79–90, 91–102	20001, 0100, 11110010, 200 2,0
in stigma secretion, 187–204	sabinene, 207, 226
meiosis, in Simmondsia, 1–6	salt glands, in grasses, 69-78
monoterpenes,	scrublands, nectar production, 47-58
in essential oils, 219–238	scuttelum, in barley, 377-395
in <i>Labiatae</i> , 31–45	secretion,
morphology, of extrafloral nectaries,	bundle sheath, 265-282
91–102	leaf glands, 147–156
mucigel, in roots, 129–146	leaf hairs, 31-45
mucilage cells, 113-128, 167-186	stigma, 187–204
mucilage,	xylem contact cells, 157–167
in leaf glands, 147–156	seeds,
in roots, 129–146	dormancy, O ₂ effects, 17-23
in Taxus leaves, 113–128	production, 24-30
in Utricularia, 295 –330	swelling, 7-16
muurolene, 227	sinigrin, 352
myrcene, 40, 207, 226, 227, 249	stigma, secretion, 187-204
myrosin cells, 351-376	sucrose, 195
myrosinase, 351-376	sugars,
	in leaf mucilage, 113–128
nectar,	in nectar, 47–58
$\delta^{13}/\delta D$, in CAM plants, $103-112$	in stigma secretion, 187–204
composition, 80-90, 91-102	tanning loof glands 147, 156
secretion, 47-58	tannins, leaf glands, 147–156
nectaries	terpenes, in Labiatae, 31-45
in Cynanchum, 80–90	in <i>Salvia</i> , 234–252
extrafloral, in Acacia, 91-102	
neridol, 227	terpinene, 40, 249
nerol, 40, 249	terpineol, 249
neryl acetate, 249	thujone, 40
nonanone, 207	thymol, 40
,	thrychomes,
O ₂ , effects on seed dormancy, 17-23	morphogenesis, 253–264
ocimene, 207, 226	secretory, 31–46, 69–78, 147–156,
oil cells, 167–186	239–252, 295–330 tridecanone, 207
	tridecanone, 207
phellandrene, 207, 226	ultrastructure,
pinene, 40, 207, 226, 249	aleurone cells, 377-395

gland cells, 205–218, 219–238 gland hairs, 147–156, 295–330 mucilage cells, 167–186 myrosin cells, 351–376 nectaries, 80–90, 91–102 oil cells, 167–186 pitcher epithelium, 331–349 rubber cells, 283–293 salt glands, 69–78 stigma, 187–204 xylem contact cells, 157–167 undecanone, 207

vegetation, wall flora, 59-64

water.

excretion, gland hairs, 295-330 uptake, in seeds, 7-16 weeds, seed production, 24-30

xylem, contact cells, 157-167 xylose, in mucilage, 114-128