3	A student investigated the stretching of a spring.	
	(a) The student used a metre rule to measure the unstretched length $l_{\scriptscriptstyle 0}$ of the spring.	
	(i) The value of l_0 was 5.2 cm.	
	Explain why a metre rule is an appropriate instrument for this measurement.	
		(2)

(ii) The student added a load to the spring and measured the stretched length l of the spring, as shown.

Describe **two** techniques the student should use to make this measurement as accurate as possible.

(b) The student determined the weight W of different loads, and the corresponding values of l. He recorded the results in the following table.

W/N	l/cm
0	5.20
0.2	7.9
0.39	12
0.59	13.4
0.78	16.0

(i) Criticise the recording of these results.

(1)

(ii) The student plotted the graph shown opposite.

Explain which value he should check.

(2)

(iii) The student replaced the load with a small piece of modelling clay, as shown.

He measured l to be 8.4 cm.

Determine the weight W of the piece of modelling clay.

(1)

 $W = \dots$

(c) The student added more modelling clay to the spring and determined the weight W_1 . Then he submerged the clay in a beaker of water and determined the new force F on the spring.

The density of the modelling clay can be determined from the ratio

$$\frac{\text{density of modelling clay}}{\text{density of water}} = \frac{W_1}{W_1 - F}$$

(i) Determine the density of the modelling clay.

$$W_1 = 0.65 \,\text{N}$$

 $F = 0.27 \,\text{N}$
density of water = $1000 \,\text{kg} \,\text{m}^{-3}$

(2)

Density of modelling clay =

(ii)	The student estimated the percentage uncertainty in his calculated value of the	
	density of modelling clay to be 4%.	
	The density of polymer clay is 1760 kg m ⁻³ .	
	Deduce whether the modelling clay could be made from polymer clay.	
		(2)
	(Total for Question $3 = 12$ ma	rks)