로봇인지멋지능제에 Midterm

[970030 바구아

1. 에에 9-5 oum 가시하수 식은 내용과 "답다.

$$V_{\pi}(S_{\epsilon}) = V_{\pi}(S_{t}) + \rho((r_{t+1} + \gamma V_{\pi}(S_{t+1})) - V_{\pi}(S_{t}))$$

그 하는 우=0.1 , 왕인물 /=1.0 , 1만나 16만을 제고하는 나의 보사를 받는다.

				ž	초기기	치함=	ት
1	2	3	4		0	0	0
5	6	7	8	0	0	0	0
9	10	11	12	0	0	0	0
13	14	15	16	 0	0	0	
(a) 예저	격자 5	10		(b) 7	디함수	초기호	

14 이피소드에 대한 상태가서 양식은 거에보면 다음과 같다.

$$V_{\pi}(0) = V_{\pi}(0) + 0 \cdot ((-|+|\cdot V_{\pi}(0)) - V_{\pi}(0)) = -0.1$$

$$\mathcal{N}_{\pi}(II) = \mathcal{N}_{\pi}(II) + 0 \cdot I((-|+| \cdot \mathcal{N}_{\pi}(1)) - \mathcal{N}_{\pi}(II)) = -0 \cdot I$$

$$V_{\pi}(\eta) = V_{\pi}(\eta) + 0 \cdot \left(\left(-|+|\cdot V_{\pi}(\theta)| - V_{\pi}(\eta)\right) = -0 \cdot 1\right)$$

$$V_{\pi}(8) = V_{\pi}(8) + 0 \cdot ((-|+|.V_{\pi}(4)) - V_{\pi}(8)) = -0.1$$

$$V_{\pi}(4) = V_{\pi}(4) + 0 \cdot ((-1 + 1 \cdot V_{\pi}(3)) - V_{\pi}(4)) = -0.1$$

$$V_{\pi}(3) = V_{\pi}(3) + 0 \cdot ((-1 + 1 \cdot V_{\pi}(3)) - V_{\pi}(3)) = -0.1$$

$$V_{\pi}(3) = V_{\pi}(3) + 0 \cdot ((-1 + 1 \cdot V_{\pi}(2)) - V_{\pi}(3)) = -0.19$$

$$V_{\pi}(2) = V_{\pi}(2) + 0.1((5 + |.V_{\pi}(1)) - V_{\pi}(2)) = 0.5$$

기준나는 73가에 풀시하면 나음과 같다.

	0.5	-0.19	-0-(
0	0	- 0.l	-0.1
0	-0-l	-0.1	0
0	0	0	

이에 이의로 사게하는 그 에피스트에 대한 상태가나 함수는 것이보면 다음과 같다.

コトシンタトト

<u>.</u>				
	0.5	-0.19	-0-1	
O	0	-0 .l	-0.1	
0	-0-l	-0.1	0	
0	0	0		

$$V_{\pi}(13) = V_{\pi}(13) + 0.1((-1 + 1.V_{\pi}(9)) - V_{\pi}(13)) = -0.1$$

$$V_{\pi}(q) = V_{\pi}(q) + 0 \cdot I((-|+|\cdot V_{\pi}(0)|) - V_{\pi}(q)) = -0.11$$

2rd 可阻左至

$$V_{\pi}(10) = V_{\pi}(10) + 0.1((-|+|.V_{\pi}(1)) - V_{\pi}(0))$$

$$= -0.1 + 0.1(-1.1 + 0.1) = -0.2$$

$$V_{\pi}(11) = V_{\pi}(11) + 0.1((-1 + |.V_{\pi}(12)|) - V_{\pi}(11))$$

$$V_{\pi}(12) = V_{\pi}(12) + 0 \cdot I((5 + | V_{\pi}(16)) - V_{\pi}(12)) = 0.5$$

小儿的午

	0.5	-0.19	-0-1
O	0	-0 .l	-0.1
-0-11	-0.2	- 0.19	0.5
-0-1	0	0	

합니이트 811년 가치 8 남아는 왼쪽 기구나 같다.

마시아으로 3rd 에비소드는 사업하고 상태가시하다는 26r면 다음하 같다.

$$V_{\pi}(5) = V_{\pi}(5) + 0.1((-1 + 1.V_{\pi}(6)) - V_{\pi}(5)) = -0.1$$

$$V_{\pi}(b) = V_{\pi}(b) + 0.1((-1 + 1.V_{\pi}(0)) - V_{\pi}(b)) = 0.1x(-1.2) = -0.12$$

$$V_{\pi}((0) = V_{\pi}(0) + 0 \cdot ((-|+| \cdot V_{\pi}(0)) - V_{\pi}(0)) = -0.2 + 0.1 (-|+0.2)$$

$$V_{\pi}(|4) = V_{\pi}(|4) + 0.1((-|+|.V_{\pi}(|5)) - V_{\pi}(|4)) = -0.1$$

かれるよう

	0.5	-0.19	-0-(
-0.	-0.12	-0 .l	-0.1
-0-11	-0.28	- 0.19	0.5
-01	-01	0.5	

$$V_{\pi}(|5) = V_{\pi}(|5) + 0 \cdot ((5 + | \cdot V_{\pi}(|b|)) - V_{\pi}(|5)) = 0.5$$

합니이트 80원 가치하는 왼쪽먹자나 같다.

2.

	1	2	3	4
. 1	S	F	F	F
2	F	X	F	X
3	F	F	F	Н
4	\times	F	F	G

문제에 대해 정한 기준들은 다음과 같다.

- Down, Right, Up, Left의 순서로 Q테이블을 작성해준다.
- 환경의 바깥으로 나가는 행동은 포함하지 않는다.
- Hole로 이동하는 경우 가치를 0.1, Goal에 도착하는 경우 가치를 0.8, 나머지는 모두 0.5로 부여한다.
- 입실론-그리디 정책에서 액션을 선택할 때 동일한 최대값이 여러 개인 경우, Q테이블에서 가장 먼저 나오는 액션을 취한다.
- 멈춤조건은 update 될 수 있는 행동들의 가치가 모두 바뀌고 더 이상 가치함수의 갱신으로 인해 선택하는 행동이 바뀌지 않는 경우로 한다.

OLM 对对 7503 QEIIO분 设元 神科민 哈米里可 对对现状.

행동	가치
Down	0.5
Right	0.5
Down	0.1
Right	0.5
Left	0.5
Down	0.5
Right	0.5
Left	0.5
Down	0.1
Left	0.5
	Down Right Down Right Left Down Right Left Down Right Left

상태	행동	가치
(2,1)	Down	0.5
(2,1)	Right	0.1
(2,1)	Up	0.5
(2,3)	Down	0.5
(2,3)	Right	0.1
(2,3)	Up	0.5
(2,3)	Left	0.1

	상태	행동	가치	
	(3,1)	Down	0.1	
	(3,1)	Right	0.5	
	(3,1)	Up	0.5	
	(3,2)	Down	0.5	
	(3,2)	Right	0.5	
	(3,2)	Up	0.1	
	(3,2)	Left	0.5	
	(3,3)	Down	0.5	
	(3,3)	Right	0.1	
	(3,3)	Up	0.5	
ı	(2.2)	1 - 64	0.5	ĺ

상태	행동	가치
(4,2)	Right	0.5
(4,2)	Left	0.1
(4,2)	Up	0.5
(4,3)	Right	0.8
(4,3)	Left	0.5
(4,3)	Up	0.5
(4,4)	Lef+	0.5

1st loop 与ET 性细细地 시작规则 (1,1)主 对处化。

(ben (1,1) のME Right of Down がるます たこ たんき フトタ 見かける Down がるる うしとして

$$= 0.5 + 0.1(0.3 + 6.5 - 0.5) = 0.53$$

$$q[(2,1), Down] = q[(2,1), Down] + 0-1(0.3 + 1 - max[(3,1), action] - q[(2,1), Down])$$

$$0.5 \qquad 0.5, Right \qquad 0.5$$

$$= 0.5 + 0.1(0.3 + 0.5 - 0.5) = 0.53$$

$$q = \frac{1}{3.2}$$
, $p_{own} = \frac{1}{9} = \frac{1}{3.2}$, $p_{own} = \frac{1}{1} + 0.1$ $\frac{1}{0.5} = \frac{1}{0.5}$ $\frac{1}{0.5} = \frac{1}{0.5}$ $\frac{1}{0.5} = \frac{1}{0.5}$ $\frac{1}{0.5} = \frac{1}{0.5}$

$$= 0.5 + 0.1(0.3 + 6.5 - 0.5) = 0.53$$

$$\frac{q[(4,2), Right] = q[(4,2), Right] + 0.1(0.3 + 1. max[(4,3), action] - q[(4,2), Right])}{0.5}$$

$$= 0.5 + 0.1(0.3 + 0.8 - 0.5) = 0.56$$

$$q[(4,3), Right] + 0.1(0.3 + 1. max[(4,4), action] - q[(4,3), Right]) = 0.8$$

(4,4)는 马亚丛巨柳门 四色에 77100克 四色化

771/2 72/73 HFT5 = 2 Q-table STOPE SUPPL VEST EUT.

상태	행동	가치
(1,1)	Down	0.53
(1,1)	Right	0.5
(1,2)	Down	0.1
(1,2)	Right	0.5
(1,2)	Left	0.5
(1,3)	Down	0.5
(1,3)	Right	0.5
(1,3)	Left	0.5
(1,4)	Down	0.1
(1,4)	Left	0.5

1 0		
상태	행동	가치
(2,1)	Down	0.53
(2,1)	Right	0.1
(2,1)	Up	0.5
(2,3)	Down	0.5
(2,3)	Right	0.1
(2,3)	Up	0.5
(2,3)	Left	0.1

상태	행동	가치
(3,1)	Down	0.1
(3,1)	Right	0.53
(3,1)	Up	0.5
(3,2)	Down	0.53
(3,2)	Right	0.5
(3,2)	Up	0.1
(3,2)	Left	0.5
(3,3)	Down	0.5
(3,3)	Right	0.1
(3,3)	Up	0.5
(3,3)	Left	0.5

상태	행동	가치
(4,2)	Right	0.56
(4,2)	Left	0.1
(4,2)	Up	0.5
(4,3)	Right	0.8
(4,3)	Left	0.5
(4,3)	Up	0.5

(4,4) Left 0.5

2nd loop 는 선행에보면 이번지 시작에서를 건덩하게 (1,2) 3 254분나.

$$q[(1,2), Right] = q[(1,2), Right] + 0.1(0.3 + 1. max[(1.3), action] - q[(1,2), Right])$$

$$= 0.5 + 0.1(0.3 + 0.5 - 0.5) = 0.53$$

$$Q[(1,3), Down] = Q[(1,3), Down] + 0.1(0.3 + 1. max[(2,3), action] - Q[(1,3), Down])$$

$$0.5 0.5, Down 0.5$$

$$= 0.5 + 0.1(0.3 + 0.5 - 0.5) = 0.53$$

$$\frac{q[(2,3), Down] = \frac{q[(2,3), Down] + 0.1(0.3 + 1. max[(3,3), action] - q[(2,3), Down])}{0.5} = 0.5 + 0.1(0.3 + 0.5 - 0.5) = 0.53$$

$$q = \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) \right] + 0 - 1 \left(\frac{1}{2} \right) +$$

$$q[(4,3), Right] = q[(4,3), Right] + 0-1(0.3 + 1) max[(4,4), action] - q[(4,3), Right]) = 0.8$$

(4,4)는 导致从巨岭门 肛边에 771处是 四色化

MINE MITE HETE Q-table STOPE SHEEL YEST LEY.

상태	행동	가치
(1,1)	Down	0.53
(1,1)	Right	0.5
(1,2)	Down	0.1
(1,2)	Right	0.53
(1,2)	Left	0.5
(1,3)	Down	0.53
(1,3)	Right	0.5
(1,3)	Left	0.5
(1,4)	Down	0.1
(1,4)	Left	0.5

상태	행동	가치
(2,1)	Down	0.53
(2,1)	Right	0.1
(2,1)	Up	0.5
(2,3)	Down	0.53
(2,3)	Right	0.1
(2,3)	Up	0.5
(2,3)	Left	0.1

상태	행동	가치
(3,1)	Down	0.1
(3,1)	Right	0.53
(3,1)	Up	0.5
(3,2)	Down	0.53
(3,2)	Right	0.5
(3,2)	Up	0.1
(3,2)	Left	0.5
(3,3)	Down	0.56
(3,3)	Right	0.1
(3,3)	Up	0.5
(3.3)	Left	0.5

상태	행동	가치
(4,2)	Right	0.56
(4,2)	Left	0.1
(4,2)	Up	0.5
(4,3)	Right	0.8
(4,3)	Left	0.5
(4,3)	Up	0.5

(4,4) Left 0.5

3rd 1000는 선생생보면 이번지 시작했는 건덩하게 (1,4) 3 254분나.

$$q[(1,4), Left] = q[(1,4), Left] + 0.1(0.3 + 1. max[(1,3), action] - q[(1,4), Left])$$
0.5

0.53 Pown
0.5

= 0.5 + 0.1(0.3 + 0.03) = 0.533

$$Q = (1,3), Down = Q = (1,3), Down = 1 + 0 -$$

$$Q = \frac{1}{2} \left[\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right] + 0.1 \left[\frac{1}{3} + 1 - \frac{1}{3} \right] + 0.5 \left[\frac{1}{3}, \frac{1}{3} \right] + 0.5 \left[\frac{1}{$$

$$= 0.53 + 0.1(0.3 + 0.03) = 0.563$$

$$q[(3,3), Down] = q[(3,3), Down] + 0.1(0.3 + 1. max[(4,3), action] - q[(3,3), Down])$$

$$0.56$$

$$0.8, Right$$
0.56

$$= 0.96 + 0.1 (1.1 - 0.56) = 0.614$$

$$q[(4:3), Right] = q[(4:3), Right] + 0.1(0.3 + 1. max[(4:4), action] - q[(4:3), Right]) = 0.8$$
0.8
0.8

(4,4)는 导生外医的门 肛觉에 河处党 四色化.
771八十 721十号 目标的2 Q-table은 四时间三分时间 对各种证状.

상태	행동	가치	
(1,1)	Down	0.53	
(1,1)	Right	0.5	
(1,2)	Down	0.1	
(1,2)	Right	0.53	
(1,2)	Left	0.5	
(1,3)	Down	0.56	
(1,3)	Right	0.5	
(1,3)	Left	0.5	
(1,4)	Down	0.1	
(1,4)	Left	0.533	

상태	행동	가치
(2,1)	Down	0.53
(2,1)	Right	0.1
(2,1)	Up	0.5
(2,3)	Down	0.563
(2,3)	Right	0.1
(2,3)	Up	0.5
(2,3)	Left	0.1

상태	행동	가치	
(3,1)	Down	0.1	
(3,1)	Right	0.53	
(3,1)	Up	0.5	
(3,2)	Down	0.53	
(3,2)	Right	0.5	
(3,2)	Up	0.1	
(3,2)	Left	0.5	
(3,3)	Down	9,5 0.6	١
(3,3)	Right	0.1	
(3,3)	Up	0.5	
(3,3)	Left	0.5	

상태	행동	가치
(4,2)	Right	0.56
(4,2)	Left	0.1
(4,2)	Up	0.5
(4,3)	Right	0.8
(4,3)	Left	0.5
(4,3)	Up	0.5

(4,4) Left 0.5

가당까지 loop를 통해 작년 기32는 생용과 같다.

체위인 기가를 보면 이번 시작합니는 건덩하게 고그더가도 1,2,3 번째 1000의 732를 따라가게 된다. 그니는 그번째 732를 지의 따라가게 되는 3번째 1000의 Q-table Update을 확인해보면 이제하게 가치들이 update 회에 그가지 7기는 7분 일수 있다. IT나서 1000를 반복하면 항상하면 항상하면 하성공들의 가치는 update를 반복하여 가지되만 그로 인하게 건덩하는 시작위네데서 항상공인 선트자에는 더 이상 영화하이 있는 것을 확인하는 수 있다. IL나서 3번째 1000에서 엄청 작건은 만듯하였다는 및은 이따의 사단나 항공 가비하다를 기사하시는다.