Operating Systems and Distributed Systems

2021

Welcome

People:

- Leon Bonde Larsen (Lecturer)
- Ahmad Rzgar Hamid (Lecturer)
- Mikkel Brinchs Larsen (Instructor)
- Oliver Lind Nordestgaard (Instructor)
- Hala Rahim Fadhel Al-Janabi (Instructor)
- Mads Møller Hansen (Instructor)
- Amalie Sander Jensen (Instructor)
- Patrick Hansen (Instructor)

Course contents

You will learn:

- what the OS does for you
 - scheduling
 - memory
 - storage
- how network and the internet works
 - protocols
 - security
 - distributed systems
- to use linux and the command line
- to build cloud native solutions

Philosophy

- Do practical work in class
- Read at home
- Discuss in study groups

It is all about what YOU do!

Structure

- Basic lecture (Thursday 13:00-13:45)
 - Basic topic
- Lab exercises (Thursday 14:00-15:45)
 - In study groups
 - With instructors and teachers
- Advanced lecture (Thursday 16:00-16:45)
 - Advanced stuff
 - Inspiration
 - Future directions

Materials

- No book
- All materials in english
- Laptop
- Ethernet port
- Know your machine

Study groups

- Why study groups?
 - Practical work
 - Discussions
 - Motivation

Study technique

Time

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
8-10							
10-12							
12-14							
14-16							
16-18							
18-20				_			

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
8-10				DES			
10-12	PRO						
12-14	PRO	ССМ	OPN	DES			
14-16	PRO	ССМ	OPN				
16-18							
18-20							

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
8-10				DES			Netflix
10-12	PRO						Netflix
12-14	PRO	ССМ	OPN	DES			Netflix
14-16	PRO	ССМ	OPN				Netflix
16-18					Bar	Party	Netflix
18-20	Karate		Karate		Bar	Party	Netflix

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
8-10	Read	Read	Read	DES	PRO		Netflix
10-12	PRO			Labs	PRO		Netflix
12-14	PRO	ССМ	OPN	DES	PRO		Netflix
14-16	PRO	ССМ	OPN		PRO		Netflix
16-18		Labs		Labs	Bar	Party	Netflix
18-20	Karate	Labs	Karate	Labs	Bar	Party	Netflix

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
8-10		Read	Read	DES	PRO		Netflix
10-12	PRO	Read	Read	Labs	PRO		Netflix
12-14	PRO	ССМ	OPN	DES	PRO		Netflix
14-16	PRO	ССМ	OPN	Labs	PRO		Netflix
16-18	Labs	Labs	Labs		Bar	Party	Netflix
18-20	Karate		Karate		Bar	Party	Netflix

Work done = Time spent x Focus

Exam

- Take home assignment individual pass/fail
- Written exam 2 hours multiple choice grade

Multiple answer

What is the purpose of the DNS protocol?

- A. Connect machines on the data link layer
- B. Associate domain names with various information
- C. Assign IP addresses to hosts in a network
- D. Access distributed file system information

Multiple answer

Lecture plan

Summary

- Lectures and labs on Thursdays
- Be in control of your machine
- Make use of your study groups
- Develop good study habits (schedule + focus)
- Easy take home assignment (if you complete all labs)
- Written exam with lots of kahoot practise
- Check out the plan on itslearning

Introduction to containers

Leon Bonde Larsen et al.

Infrastructure

Operating system

Infrastructure

Operating system

Infrastructure

Program	Program			
Operating system	Operating system			
Infrastructure				

Program	Program			
Operating system	Operating system			
Infrastructure				

Program	Program				
Operating system	Operating system				
Hypervisor					
Infrastructure					

Program	Program				
Operating system	Operating system				
Hypervisor					
Infrastructure					

Virtual Machines

Virtual Machines

Virtual Machines

Containers

Virtual Machines

Containers

Virtual Machines

Containers

Virtual Machines

Containers

Concepts

- Containers
- Images
- Dockerfile
- Docker registry
- Data volumes
- Network

Docker - Images

Docker - Dockerfile

Docker - Docker registry

Docker - Data volumes

Docker - network

Docker - network

Docker - network

Docker commands

```
$ docker run  # run container
$ docker pull <image>  # download image
$ docker build -t <username/imagename> . # build image
$ docker start <containername>  # start container
$ docker stop <containername>  # stop container
```

Diskussion

Diskussion

Hvad kunne være fordele/ulemper ved microservice arkitektur?

Go to group rooms

```
Room A: U165: Mikkel
Room B: U166: Oliver
Room C: U167: Hala og Mads
Room D: U171: Amalie
Room E: U172: Lasse
Room F: U176: Patrick
```

- Work on Lab 1
- Go back at 15:45 and be ready here at 16:00
- Have fun!

Advanced lecture Kubernetes

Ahmad Rzgar Hamid et al.

Kubernetes

Kubectl Manifest files Nodes Pods Containers Evt. side-car pattern Services ClusterIp Nodeport LB Deployments Stateful deployments Cron jobs etc Storage (Logging?) Overview of components Controllers API servers Schedulers ETCD Kubelet

- cloud-managerSemester project system
 - Ingress controller (nginx)
 - Nginx frontend LB

Kube-proxy

Evt. Opsummering af containers samt k8s?

Containers in Production

- Containers propose several advantages
 - Isolation
 - Portable
 - Maintainable
 - Deployable
- Is that good enough in a Production Environment?

How to handle a dead application or container?

How to handle a dead application or container?

How to handle a dead host machine?

How to handle a dead host machine?

How to handle a dead host machine?

How to handle a full host machine, with no free resources?

Multi Machine Setup

Multi Machine Setup

What is Missing?

- Scalability
- Availability
- Reliability
- Recoverability
- Robustness

- Program that manages
 - Configuration
 - Coordination
 - Container Life Cycle
- Consist of a Cluster all running a Container Runtime (Read: Docker)*

Container orchestrator

Container Runtime

Host OS

Host #1

Container Runtime

Host OS

Host #2

Container Runtime

Host OS

Host #3

Container Runtime

Host OS

Container Runtime

Host OS

Host #1

Container Runtime

Host OS

Host #2

Container Runtime

Host OS

Host #3

Container Runtime

Host OS

Container orchestrator

Container #1

Container Runtime

Host OS

Host #1

Container Runtime

Host OS

Host #2

Container Runtime

Host OS

Host #3

Container Runtime

Host OS

Container orchestrator

Container #1

Container Runtime

Host OS

Host #1

Container #2

Container Runtime

Host OS

Host #2

Container Runtime

Host OS

Host #3

Container Runtime

Host OS

Container orchestrator

Container #1

Container Runtime

Host OS

Host #1

C #2 C #3

Container Runtime

Host OS

Host #2

Container Runtime

Host OS

Host #3

Container Runtime

Host OS

Container orchestrator

Container #1

Container Runtime

Host OS

Host #1

C #2 C #3

Container Runtime

Host OS

Host #2

Container #4

Container Runtime

Host OS

Host #3

Container Runtime

Host OS

Host #4

Container orchestrator

Container #1

Container Runtime

Host OS

Host #1

C #2 C #3

Container Runtime

Host OS

Host #2

Container #4

Container Runtime

Host OS

Host #3

Container #5

Container Runtime

Host OS

Host #4

Container orchestrator

Container #1
Container
Runtime
Host OS
Host #1

C #2 C #3

Container
Runtime

Host OS

Host #2

Container #4
Container Runtime
Host OS
Host #3

Container #5
Container Runtime
Host OS
Host #4

Container Runtime Host OS Host #1

Kubernetes

A platform for managing containerised workloads and services. Runs a Container Runtime (Read: Docker)* underneath.

- Scalability
- Availability
- Reliability
- Recoverability
- Robustness

Kubernetes Nodes

A worker machine in the Kubernetes cluster.

Kubernetes	Kubernetes	Kubernetes
Docker	Docker	Docker
Node #1	Node #2	Node #3

Kubernetes Resources

Pods

Deployments

Services

Kubernetes Resources: Pods

Smallest deployable units.

Wrapper around container(s).

Popular model: "One-container-per-Pod"

Sidecar pattern.

Kubernetes Resources: Deployments

Resource that manages a replicated application, a Pod.

Each replica is represented by a Pod.

Distributes Pods among the cluster nodes.

Kubernetes Resources: Services

Way to expose an application running on a set of Pods as a network service.

Makes sure that network traffic can be directed to the current set of Pods for the workload.

Kubernetes Resources: Services

ClusterIP

Exposes the Service on a internal IP.

Makes the service reachable from within the cluster.

NodePort

Kubernetes allocates a port in the 30.000 - 32.767 range.

Each node proxies the (same) port into the Service.

Kubernetes Resources: Services

LoadBalancer

External load balancers that balance load between replicas.

Ingress

Not a Service type. Works with the "ClusterIP"-type.

Points to internal controllers that exposes the service.

Kubernetes Manifests

YAML or JSON files, defining creation, modification and deletion of Kubernetes resources.

Kubernetes Manifests: Deployment

```
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
spec:
  selector:
    matchLabels:
      app: nginx
  replicas: 2
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.14.2
        ports:
        - containerPort: 80
```

Kubernetes Manifests: Service

```
apiVersion: v1
kind: Service
metadata:
  name: nginx-service
spec:
  type: NodePort
  selector:
    app: nginx
  ports:
    - port: 80
       targetPort: 80
       nodePort: 30007
```

Kubectl

```
$ kubectl create -f [FILE]
$ kubectl apply -f [FILE]
$ kubectl delete -f [FILE]
$ kubectl get [RESOURCE] [NAME]
$ kubectl describe [RESOURCE] [NAME]
$ kubectl exec --stdin --tty [NAME] -- [COMMAND]
```


Kubernetes: Features

- Name spacing
- Load Balancing
- Auto Scaling
- Health-checks
- Rollout (and Rollback) Strategies

K8S

- On-premise
- Cloud
 - AWS
 - GCP
 - Azure
 - ...
- Cloud features:
 - Load balancer
 - Monitoring
 - Scalability
 - •

Scaling

Kubernetes Setup

Kubernetes Setup

Kubernetes Setup

Kubernetes Setup

Kubernetes Setup

#random, #odw

Do read #random on slack!

- Nothing important
- Links
- Tips'n tricks

#odw

A place for you to ask questions to us/students

Link will be on blackboard later today

Group presentations

	IT3/SB3 Fall 2019: Assignments and mandatory activities						
Week	CCM	DES	IAS	OPN	DM547	Project	Evaluation
36	Announced Assignment 1 handed out					Group formation. Matching of expectations. Semester and project take off	
37	No class			Lab presentations by groups 1-4		Project proposal submission and approval, Friday Sep 13th	
38				Lab presentations by groups 5-8			
39				presentations	Assignment 1*, due Friday afternoon	Project foundation submission, Friday Sep 27th	
40		Assignment 1: Due in Class	Due	Lab presentations by groups 12-16		Project foundation review and approval. Reviews done by Oct. 4th. See blackboard for more.	

Group presentations

	IT3/SB3 Fall 2019: Assignments and mandatory activities						
Week	CCM	DES	IAS	OPN	DM547	Project	Evaluation
36	Announced Assignment 1 handed out					Group formation. Matching of expectations. Semester and project take off	
37	No class			Lab presentations by groups 1-4		Project proposal submission and approval, Friday Sep 13th	
38				by 6 g			
39				Lab groups 9-	Assignment 1*, due Friday ternoon	Project foundation submission, Friday Sep 27th	
40		Assignment 1: Due in Class	Due	Lab presentations by groups 12-16		Project foundation review and approval. Reviews done by Oct. 4th. See blackboard for more.	

Group presentations

Lecture	Contents	Preparation before lecture		
01 - Introductions Week 36 2019-09-04 13:00 - 17:00 Lecture: U45 Labs:	Basic lecture:	Go through both linux tutorials (shell and shell scripts) Register your ambition level Watch video about docker (12 min) Read blogpost about virtual machines vs. containers Presentations None		
02 - Linux Week 37 2019-09-11 13:00 - 17:00 Lecture: U45 Labs:	Basic lecture: • Linux operating system Lab exercise: • Docker compose Advanced lecture: • Load balancing	Read The Linux Command Line ch 2-4 Read the Overview for docker-compose Read the Quickstart Make sure your understand the functionality docker-compose provides Presentations Groups 1, 8, 15 and 23		
03 - Network Week 38 2019-09-18 13:00 - 18:30 Lecture: U45 Labs:	Basic lecture: • Models, IP, routing Lab exercise: • Network setup, routing Advanced lecture: • Firewall	 Study and play with iproute2 (ip) html or pdf Fx. ip addr show Presentations Groups 2,9, 16 and 24 		
04 - Protocols Week 39 2019-09-25 13:00 - 17:00 Lecture: U45 Labs:	Basic lecture: Protocols Lab exercise: REST APIs Advanced lecture: DNS DNSSEC	 Study API Presentations Groups 3, 10, 17 and 25 		

What is an operating system and what does it do?

You = processor

You = processor

Door bell = interrupt

Pizza = dinner!

Pizza = dinner! (actually it's a high priority task)

Context switch

Time available for homework

Scheduling

Time available for homework

Time slicing

Time slicing

Time available for homework

Time slicing Overhead

Strategy

Once upon a pi squared equals time in a magic 9.869604

Once upon a pi squared equals time in a magic 9.869604

Mutual exclusion (mutex)

TO-DO: CLEAN UNDER THE BED BUY GROCERIES DO HOMEWORK PICK UP SISTER FROM SCHOOL PLAY FORTNITE WITH FRIENDS

Analogy

Analogy

Strategy

Registers		
L1 cache		
L2 cache		
RAM		
Hard disk		

Registers	
L1 cache	
L2 cache	
RAM	
Hard disk	
	Access time

Registers			
L1 cache			
L2 cache			
RAM			
Hard disk			
		Acce	ss time
		Size	

Strategy

Storage

Summary

Primary responsibilities of the OS

- Resource management
 - Processing
 - Memory
 - Storage

Homework

Study chapter 1 (43 pages) in Silberschatz

Homework

Read chapter 1 (43 pages) in Silberschatz

Have fun and see you next week!