

Sistemi informativi

Unità 5 Progettazione di basi di dati

Progettazione di basi di dati

- □ Progettazione concettuale
- > Normalizzazione

Modello Entità-Relazione

- Ciclo di vita di un sistema informativo

- > Attributi
- ☐ Identificatori
- □ Generalizzazione
- Documentazione di schemi E-R
- □ UML ed E-R

Progettazione di basi di dati

- □ La progettazione di una base di dati è una delle attività del processo di sviluppo di un sistema informativo
 - va inquadrata nel contesto più ampio di ciclo di vita di un sistema informativo

∑ Studio di fattibilità

 determinazione dei costi delle diverse alternative e delle priorità di realizzazione delle componenti del sistema

□ Raccolta e analisi dei requisiti

- definizione delle proprietà e delle funzionalità del sistema informativo
- richiede interazione con l'utente
- produce una descrizione completa, ma informale del sistema da realizzare

- suddivisa in progettazione dei dati e delle applicazioni
- produce descrizioni formali

□ Implementazione

 realizzazione del sistema informativo secondo le caratteristiche definite nella fase di progettazione

- verifica del corretto funzionamento e della qualità del sistema informativo
- può portare a modifiche dei requisiti o revisione del progetto

- operatività del sistema
- richiede operazioni di gestione e manutenzione

- realizzazione rapida di una versione semplificata del sistema per valutarne le caratteristiche
- può portare a modifiche dei requisiti o revisione del progetto

Progettazione di una base di dati

- □ La base di dati costituisce un componente importante del sistema complessivo
- - la progettazione della base di dati precede la progettazione delle applicazioni che la utilizzano
 - attenzione maggiore alla fase di progettazione rispetto alle altre fasi

Metodologia di progettazione

- □ Una metodologia di progettazione consiste in
 - decomposizione dell'attività di progetto in passi successivi indipendenti tra loro
 - strategie da seguire nei vari passi e criteri per la scelta delle strategie
 - modelli di riferimento per descrivere i dati d'ingresso e di uscita delle varie fasi

Metodologia di progettazione: Esempio

- □ Preparazione atletica
 - decomposizione dell'attività
 - 1. forma fisica
 - 2a. potenziamento
 - 2b. velocità

Metodologia di progettazione: Esempio

- Preparazione atletica
 - decomposizione dell'attività
 - strategie da seguire nei vari passi
 - 1. A) dieta alimentare
 - B) esercizi per ridurre la percentuale di grasso
 - 2a. A) esercizi con pesi
 - B) esercizi di resistenza

Metodologia di progettazione: Esempio

- Preparazione atletica
 - decomposizione dell'attività
 - strategie da seguire nei vari passi
 - modelli di riferimento per descrivere i dati d'ingresso e di uscita delle varie fasi
 - 1. dati d'ingresso: peso attuale, % di grasso corporeo dati di uscita: modello della struttura corporea della persona in forma
 - 2a. dati di ingresso: modello di persona in forma dati di uscita: modello della struttura corporea dell'atleta medio

Proprietà della metodologia

- □ Generalità
 - possibilità di utilizzo indipendentemente dal problema e dagli strumenti a disposizione
- - in termini di correttezza, completezza ed efficienza rispetto alle risorse utilizzate
- - sia delle strategie che dei modelli di riferimento

Progettazione basata sui dati

- □ Per le basi di dati, metodologia basata sulla separazione delle decisioni
 - cosa rappresentare nella base di dati
 - progettazione concettuale
 - come rappresentarlo
 - progettazione logica e fisica

Fasi della progettazione di basi di dati

Requisiti applicazione

- □ Specifiche informali della realtà di interesse
 - proprietà dell'applicazione
 - funzionalità dell'applicazione

Progettazione concettuale

- □ Rappresentazione delle specifiche informali sotto forma di schema concettuale
 - descrizione formale e completa, che fa riferimento ad un modello concettuale
 - indipendenza dagli aspetti implementativi (modello dei dati)
 - obiettivo è la rappresentazione del contenuto informativo della base di dati

Progettazione logica

- □ Traduzione dello schema concettuale nello schema logico
 - fa riferimento al modello logico dei dati prescelto
 - si usano criteri di ottimizzazione delle operazioni da fare sui dati
 - qualità dello schema verificata mediante tecniche formali (normalizzazione)

Progettazione fisica

- ⊃ Specifica dei parametri fisici di memorizzazione dei dati (organizzazione dei file e degli indici)
 - produce un modello fisico, che dipende dal DBMS prescelto

Il modello E-R (Entity-Relationship)

- È il modello concettuale più diffuso
- - in modo semplice e comprensibile
 - con un formalismo grafico
 - in modo indipendente dal modello dei dati, che può essere scelto in seguito

Costrutti principali del modello E-R

- □ Relazioni
- > Attributi
- □ Identificatori
- □ Generalizzazioni e sottoinsiemi

Entità

Nome entità

- □ Rappresenta classi di oggetti del mondo reale (persone, cose, eventi, ...), che hanno
 - proprietà comuni
 - esistenza autonoma
- Esempi: dipendente, studente, articolo
- Un'occorrenza di un'entità è un oggetto della classe che l'entità rappresenta

Relazione

- □ Rappresenta un legame logico tra due o più entità
- Esempi: esame tra studente e corso, residenza tra persona e comune
- □ Da non confondere con la relazione del modello relazionale
 - a volte indicata con il termine associazione

Esempi di relazioni

Occorrenze di una relazione

∑ Un'occorrenza di una relazione è una n-upla (coppia nel caso di relazione binaria) costituita da occorrenze di entità, una per ciascuna delle entità coinvolte

Occorrenze di una relazione

- □ Un'occorrenza di una relazione è una n-upla (coppia nel caso di relazione binaria) costituita da occorrenze di entità, una per ciascuna delle entità coinvolte

- ∑ Sono specificate per ogni entità che partecipa ad una relazione
- Descrivono numero minimo e massimo di occorrenze di una relazione a cui può partecipare una occorrenza di un'entità
 - minimo assume i valori
 - 0 (partecipazione opzionale)
 - 1 (partecipazione obbligatoria)
 - massimo varia tra
 - 1 (al più una occorrenza)
 - N (numero arbitrario di occorrenze)

□ Corrispondenza 1 a 1

□ Corrispondenza 1 a N

□ Corrispondenza molti a molti

Limite di una relazione binaria

Relazione ternaria

- □ Uno studente può ripetere lo stesso esame in tempi diversi
- □ Esempio di istanza di esame

$$s_1$$
 c_1 t_1 s_1 c_1 t_2

Occorrenze di una relazione ternaria

Cardinalità delle relazioni ternarie

Osservazioni

- □ Le cardinalità minime raramente sono 1 per tutte le entità coinvolte in una relazione
- ∠ Le cardinalità massime di una relazione n-aria sono (praticamente) sempre N
 - se la partecipazione di un'entità E ha cardinalità massima 1, è possibile eliminare la relazione n-aria e legare l'entità E con le altre mediante relazioni binarie

- $\stackrel{\sum}{
 m D}$ Se la relazione non è simmetrica, occorre definire 42

Un sottoposto potrebbe avere più superiori

Modello Entità-Relazione

Attributi

Attributo

Nome attributo

- Descrive una proprietà elementare di un'entità o di una relazione
- - cognome, nome, matricola sono attributi che descrivono l'entità studente
 - voto è un attributo che descrive la relazione esame
- Ogni attributo è caratterizzato dal *dominio*, l'insieme dei valori ammissibili per l'attributo

Esempi di attributi

Attributo composto

- Raggruppamento di attributi affini per significato o per uso

Cardinalità di un attributo

- Può essere specificata per gli attributi di entità o relazioni
- Descrive numero minimo e massimo di valori dell'attributo associati ad una occorrenza di un'entità o di una relazione
 - se è omessa corrisponde ad (1,1)
 - minima 0 corrisponde ad attributo che ammette il valore nullo
 - massima N corrisponde ad attributo che può assumere più di un valore per la stessa occorrenza (attributo multivalore)

Cardinalità di un attributo

Identificatore

- È specificato per ogni entità
- Descrive i concetti (attributi e/o entità) dello schema che permettono di individuare in modo univoco le occorrenze delle entità
 - ogni entità deve avere almeno un identificatore
 - può esistere più di un identificatore appropriato per un'entità

∑ Semplice: costituito da un solo attributo

○ Composto: costituito da più attributi

- ∠ L'entità che non dispone internamente di attributi sufficienti per definire un identificatore è denominata entità debole
- ∠ L'entità debole deve partecipare con cardinalità (1,1) in ognuna delle relazioni che forniscono parte dell'identificatore

 È possibile rappresentare nello stesso ordine più linee ordine per lo stesso prodotto?

Osservazioni

- □ Un identificatore esterno può coinvolgere un'entità a sua volta identificata esternamente
 - non si devono generare cicli di identificazione

Osservazioni

□ Le relazioni non hanno identificatori

Generalizzazione

- Descrive un collegamento logico tra un'entità E, e una o più entità E_1 , E_2 ,..., E_n , in cui E comprende come casi particolari E_1 , E_2 ,..., E_n
 - E, detta entità padre, è una generalizzazione di E₁,
 E₂,..., E_n
 - E₁, E₂,..., E_n, dette entità figlie, sono una specializzazione di E

Generalizzazione: esempio

Generalizzazione: esempio

Generalizzazione: proprietà

- ○ Ogni occorrenza di un'entità figlia è anche un'occorrenza dell'entità padre
- Ogni proprietà dell'entità padre (attributi, identificatori, relazioni, altre generalizzazioni) è anche una proprietà di ogni entità figlia
 - proprietà nota come *ereditarietà*
- Un'entità può essere coinvolta in più generalizzazioni diverse

Generalizzazione: esempio non corretto

Generalizzazione: esempio non corretto

Generalizzazione: esempio non corretto

Generalizzazione: esempio corretto

Generalizzazione: proprietà

□ Caratteristiche ortogonali

- generalizzazione totale se ogni occorrenza dell'entità padre è un'occorrenza di almeno una delle entità figlie, parziale altrimenti
- esclusiva se ogni occorrenza dell'entità padre è al più un'occorrenza di una delle entità figlie, sovrapposta altrimenti

Generalizzazione: esempio

Generalizzazione: esempio

Sottoinsieme

- - la generalizzazione è sempre parziale ed esclusiva

Documentazione di schemi E-R

Documentazione di schemi E-R

- Dizionario dei dati
 - permette di arricchire lo schema E-R con descrizioni in linguaggio naturale di entità, relazioni e attributi
- - non sempre possono essere indicati esplicitamente in uno schema E-R
 - possono essere descritti in linguaggio naturale
- □ Regole di derivazione dei dati
 - permettono di esplicitare che un concetto dello schema può essere ottenuto (mediante inferenza o calcolo aritmetico) da altri concetti dello schema

Dizionario dei dati: esempio

Entità	Descrizione	Attributi	Identificatore
Studente	Studente dell'università	Matricola, Cognome, Nome, Crediti acquisiti, Media voti	Matricola
Docente	Docente dell'università	Codice docente, Dipartimento, Cognome, Nome	Codice docente
Corso	Corsi offerti dall'università	Codice corso, Nome, Crediti	Codice corso
Tempo	Date in cui sono stati sostenuti esami	Data	Data

Dizionario dei dati: esempio

Relazione	Descrizione	Entità coinvolt	e Attributi
Esame	Associa uno studente agli esami che ha sostenuto e memorizza il voto conseguito	Studente (0,N), Corso (0,N), Tempo (1,N)	Voto
Titolare	Associa ogni corso al suo docente titolare	Corso (1,1), Docente (0,N)	

Vincoli d'integrità sui dati: esempio

Vincoli d'integrità		
RV1	Il voto di un esame può assumere esclusivamente valori compresi tra 0 e 30	
RV2	Ogni studente non può superare due volte con esito positivo lo stesso esame	
RV3	Uno studente non può sostenere più di tre volte l'esame relativo allo stesso corso nell'arco dello stesso anno accademico	

Regole di derivazione dei dati: esempio

	Regole di derivazione
RD1	Il numero di crediti acquisiti da uno studente si ottiene sommando il numero di crediti dei corsi per cui lo studente ha superato l'esame
RD2	La media voti di uno studente di ottiene calcolando la media dei voti degli esami superati dallo studente

UML ed E-R

□ UML (Unified Modeling Language)

- modellazione di un'applicazione software
 - aspetti strutturali e comportamentali (dati, operazioni, processi e architetture)
- formalismo ricco
 - diagramma delle classi, degli attori, di sequenza, di comunicazione, degli stati, ...

\supset E-R

- modellazione di una base di dati
 - aspetti strutturali di un'applicazione
- costrutti funzionali alla modellazione di basi di dati

UML ed E-R

Principali differenze di UML rispetto ad ER

- assenza di notazione standard per definire gli identificatori
- possibilità di aggiungere note per commentare i diagrammi
- possibilità di indicare il verso di navigazione di una associazione (non rilevante nella progettazione di una base di dati)

UML ed E-R

- □ Formalismi diversi
- ∑ Il diagramma delle classi, anche se progettato per uso diverso, può essere adattato per la descrizione del progetto concettuale di una base di dati

