# VAE 송용호

#### PDF 정의

$$p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$$

X는 iid, 동일 분포 따른다고 가정 세타는 파라미터 세타가 주어졌을 때, x가 나올 확률 이걸 최대화 하는게 목표. Latent 변수 Z를 사용해서 나타내면 위 식과 같음. 이거 미분해서 SGD 할거임.

근데 z에서 샘플링하는거잖 분포는 가우시안이나 베르누이로 설정(다루기 쉬워서) 근데 모든 z에 대해 적분해야해 -> 못해 근데 MLE 문제를 풀라면 미분 해야해 이걸론 못함.

#### Latent variable



#### 문제 2개



We want to estimate the true parameters  $\theta^*$  of this generative model.

#### How to train the model?

Remember strategy for training generative models from FVBNs. Learn model parameters to maximize likelihood of training data

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

Q: What is the problem with this?

Intractable!

Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

#### 2. 적분을 어떻게 해결?

이거 다 계산 하 말고 Monte-Carlo estimatio로 하자.

근데 대부분 0값 가지니까, 많이 해야해.

가뜩이나 딥러닝 오래 걸리는데 많이 할 여유 없음

데이터에 종속적으로 z를 샘플링하자.(2)

1. Z변수를 어떻게 구성?

가우시안 분포로부터 샘플링함 디코더는 z로 부터 데이터 생성

여러층의 레이어가 있으면

앞층은 Nomal을 latent로 바꿔주고 되에는 이거 가지고 sampling 할 수 있는 pdf를 만들어내는것.

$$p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz pprox rac{1}{N} \sum_{i=1}^N p_{ heta}(x|z^{(i)})$$
 (2)

# 새로운 함수 정의

$$p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz pprox rac{1}{N} \sum_{i=1}^N p_{ heta}(x|z^{(i)}) ~~(2)$$

Posterior density also intractable:  $p_{ heta}(z|x) = p_{ heta}(x|z)p_{ heta}(z)/p_{ heta}(x)$  Intractable data likelihood

그래서 z given x 를 생각해보자 이거야.

근데 X는 추적 불가능하잖

그니까 저 빨간 저것도 계산이 안돼

그래서 approximate하는 새로운 함수를 정의

$$q_{\phi}(z|x)$$

#### 새로운 함수 정의2





- $q_{\phi}(z|x)$  요건 원래 posterior를 근사했기 때문에 오류 존재 따라서 Object functio에 lower bound 정의 할거임.
  - 그 전에 VAE 구조부터 봐보자.
  - 1. X 받아서 latent에 분포 만듬
  - 2. 가우시안이라 가정하고, data dependent한 가우시안 분포로부터 z 샘플링
  - 3. 샘플링된 z가지고 다시 가정한 분포로 디코더가 분포를 뱉어냄
  - 4. X를 이 분포로부터 샘플링.

### ELBO(Evidence Lower Bound)

https://velog.io/@thdfydgh/ELBO

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \qquad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)}|z)p_{\theta}(z)}{p_{\theta}(z|x^{(i)})}\right] \qquad \text{Make approximate}$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)}|z)p_{\theta}(z)}{p_{\theta}(z|x^{(i)})} \frac{q_{\phi}(z|x^{(i)})}{q_{\phi}(z|x^{(i)})}\right] \qquad \text{Multiply by constant)} \qquad \text{close to prior}$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z|x^{(i)})}{p_{\theta}(z)}\right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z|x^{(i)})}{p_{\theta}(z|x^{(i)})}\right] \qquad \text{(Logarithms)}$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - D_{KL}(q_{\phi}(z|x^{(i)})|p_{\theta}(z)) + D_{KL}(q_{\phi}(z|x^{(i)})|p_{\theta}(z|x^{(i)}))$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - D_{KL}(q_{\phi}(z|x^{(i)})|p_{\theta}(z)) + D_{KL}(q_{\phi}(z|x^{(i)})|p_{\theta}(z|x^{(i)}))$$

$$\geq 0$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] \qquad \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] \qquad \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] \qquad \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - D_{KL}(q_{\phi}(z|x^{(i)})|p_{\theta}(z)) + D_{KL}(q_{\phi}(z|x^{(i)})|p_{\theta}(z|x^{(i)}))\right] \qquad \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] \qquad \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i$$

의미:

1항 : q의 x로부터 sample한 z가 있음. Z가지고 p가 x를 생성할 likelihood 1,2항만 가지고 하한 설정 가능,

미분 가능해짐, MLE를 위해 backpropa 가능

2항: prior인 z와 approximate된 q 사이의 KLD

3항: z given x는 추적 불가능, 상수취급

#### train



X를 넣으면, latent space상의 mean, var 뱉음 : dim당 하나씩

그럼 mean과 var이 posterio를 나타내게 됨.

그럼 piror과 KLD를 구할 수 있어.

Z로부터 decoder는 data space상의 mean과 var을 뱉어

그럼 ELBO 1항(recon) 구할 수 있음

Backprop화면 VAE 학습 완료.

#### Monte carlo estimation

$$\mathcal{L}(x^{(i)}, \theta, \phi) = \mathbb{E}_z[\log p_{\theta}(x^{(i)}|z)] - D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z))$$

$$abla_{\phi}\mathbb{E}_{q_{\phi}(z)}[f(z)] = \int 
abla_{\phi}q_{\phi}(z)f(z)dz$$

$$=\int q_{\phi}(z)rac{
abla_{\phi}q_{\phi}(z)}{q_{\phi}(z)}f(z)dz$$

$$= \mathbb{E}_{q_{\phi}(z)}[f(z)
abla_{\phi}\log q_{\phi}(z)]$$

#### 근데 1항에 파이에 대해 미분하는건 문제가 있음

 $\phi$ 에 대해서 미분하는 것은 문제가 있습니다. 그 이유는 첫 번째 항인  $\mathbb{E}_{z\sim q_\phi(z|x)}[\log p_\theta(x|z)]$ 의 기 댓값을 구하기 위해서는,  $\mathbb{E}_{q_\phi(z|x)}$ 의 형태로 되어 있어야 합니다. 그러나  $\log p_\theta(x|z)$ 의 기댓값을 구하기 위해서는 z를  $q_\phi(z|x)$ 로부터 샘플링해야 합니다. 이러한 샘플링 과정에서는 그라디언트가  $\phi$ 에 대해 직접적으로 전달되지 않습니다. 따라서 미분이 어려워집니다.

근데 1항에 파이에 대해 미분하는건 문제가 있음

그래서 Monte carlo estimatio을 사용

Sample해서 평균 때리잔건데,

그냥 1번 뽑는걸로 퉁 침.(여기서 L=1)

$$rac{1}{L}\sum_{l=1}^{L}f(z^{(l)})
abla_{\phi}\log q_{\phi}(z^{(l)})$$

## Reparameterization trick



근데 몬테 카를로는 분산이 너무 커서 gradient 전달이 안됨.

그래서 reparm trick을 사용.

다들 알거라 생각하고 skip

# Auto Encoding Variational Bayes



reparameterization trick을 그림으로 보자면

encoder로부터 구한 data dependent한 mean과 variance를 가지고 posterior를 만듬

그 posterior로부터 z를 샘플링한 다음에 그 z를 가지고 decoder는 data를 generation

하지만 reparametization을 하면

computation graph 내의 sampling 과정이

noise sampling이 되어 옆으로 빠져

따라서 Back propagation을 통해 decoder output으로부터 encoder까지 gradient가 전달

**Algorithm 1** Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two SGVB estimators in section 2.3 can be used. We use settings M = 100 and L = 1 in experiments.

```
oldsymbol{	heta}, \phi \leftarrow 	ext{Initialize parameters}

repeat

\mathbf{X}^M \leftarrow 	ext{Random minibatch of } M 	ext{ datapoints (drawn from full dataset)}

oldsymbol{\epsilon} \leftarrow 	ext{Random samples from noise distribution } p(oldsymbol{\epsilon})

\mathbf{g} \leftarrow \nabla_{oldsymbol{\theta}, \phi} \widetilde{\mathcal{L}}^M(oldsymbol{\theta}, \phi; \mathbf{X}^M, oldsymbol{\epsilon}) 	ext{ (Gradients of minibatch estimator (8))}

oldsymbol{\theta}, \phi \leftarrow 	ext{Update parameters using gradients } \mathbf{g} 	ext{ (e.g. SGD or Adagrad [DHS10])}

until convergence of parameters (oldsymbol{\theta}, \phi)

return oldsymbol{\theta}, \phi
```