Аннотация

Курсовая работа на тему: Алгоритм восстановления невыпуклой триангулированной поверхности по облаку точек.

Работу выполнил: **Лютенков Артем Вадимович**, 3 курс Научный руководитель: **Преображенская М.М.**

В данной курсовой работе рассматривается задача построения поверхности по заданному множеству точек S в \mathbb{R}^2 или \mathbb{R}^3 . Вводятся такие понятия, как триангуляция Делоне, клетка Вороного, симплициальный помплекс, α -комплекс, α -shapes; алгоритм Эдельсбруннера построения поверхности по облаку точека.

Алгоритм Эдельсбруннера:

- 1. Вычислить триангуляцию Делоне (DT(S)), зная, что граница нашей α -shape содержится в ней.
- 2. Затем мы определяем $C_{\alpha}(S)$ путем проверки всех симплексов Δ_T в DT (S): если σ_T -шар вокруг μ_T пуст и $\sigma_T < \alpha$ (это альфа-тест), мы принимаем Δ_T , как член $C_{\alpha}(S)$, вместе со всеми его гранями
- 3. Все d-симплексы $C_{\alpha}(S)$ составляют внутренность S_{α} . Все симплексы на границе ∂C_{α} составляют границу α -shape ∂S_{α} .

Также в работе рассмотрен вопрос об интеграции функционала, предоставляемого пакетами (alphashapes, alphahull, geometry)языка программирования R, в программу для построения 3D-моделей и стереометрических чертежей 3dSchoolEdit. Для интеграции в 3dSchoolEdit будет использоваться RCaller. RCaller — библиотека для вызова R кода из Java. RCaller преобразует структуры данных в R код, отправляет их внешнему R процессу, возвращает сгенерированные результаты XML формате. Структура XML анализируется и возвращает значения доступные непосредственно в Java.