IMPORTANT FORMULAES

CLASS - 10

1. Polynomials Formulas

$$(x+y)^2 = x^2 + y^2 + 2xy$$

$$(x-y)^2 = x^2 + y^2 - 2xy$$

$$(x+y)(x-y) = x^2 - y^2$$

$$(x+y)(x+z) = x^2 + x(y+z) + yz$$

$$(x+y)(x-z) = x^2 + x(y-z) - yz$$

$$x^2 + y^2 = (x+y)^2 - 2xy$$

$$(x+y)^3 = x^3 + y^3 + 3xy(x+y)$$

$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

$$(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

$$(x-y-z)^2 = x^2 + y^2 + z^2 - 2xy + 2yz - 2zx$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

$$\overline{x^3-y^3}=(x-y)\left(x^2+xy+y^2
ight)$$

$$egin{aligned} x^4 - y^4 &= \left(x^2
ight)^2 - \left(y^2
ight)^2 \ &= \left(x^2 + y^2
ight) \left(x^2 - y^2
ight) \ &= \left(x^2 + y^2
ight) \left(x + y
ight) \left(x - y
ight) \end{aligned}$$

$$\overline{(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx}$$

$$\overline{{(x+y-z)}^2 = x^2 + y^2 + z^2 + 2xy - 2yz - 2zx}$$

$$(x - y + z)^2 = x^2 + y^2 + z^2 - 2xy - 2yz + 2zx$$

$$(x-y-z)^2 = x^2 + y^2 + z^2 - 2xy + 2yz - 2zx$$

$$x^3 + y^3 + z^3 - 3xyz$$

$$=\left[egin{array}{c} (x+y+z) \ (x^2+y^2+z^2-xy-yz-zx) \end{array}
ight]$$

2. Arithmetic Progression Formulas

n th Term of an Arithmetic Progression	$a_n = a + (n-1) \times d$
Sum of 1 st n Terms of an Arithmetic Progression	$S_n=rac{n}{2}[2a+\left(n-1 ight)d]$

3. Coordinate Geometry Formulas

Distance Formula	$AB = \sqrt{\left(x_2 - x_1 ight)^2 + \left(y_2 - y_1 ight)^2}$
Section Formula	$\left(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}\right)$
Mid-point Formula	$\left(\frac{x_1+x_2}{2},\;\frac{y_1+y_2}{2}\right)$
Area of Triangle	$ ext{ar}(\Delta ABC) = rac{1}{2} imes egin{bmatrix} x_1(y_2 - y_3) + \ x_2(y_3 - y_1) + \ x_3(y_1 - y_2) \end{bmatrix}$

4. Trigonometry Formulas

Trigonometric Identities	$\sin^2 A + \cos^2 A = 1$
	$\tan^2 A + 1 = \sec^2 A$
	$\cot^2 A + 1 = \csc^2 A$
	$\tan A = \frac{\sin A}{\cos A}$
	$\cot A = \frac{\cos A}{\sin A}$
Relations between Trigonometric Identities	_
	$\csc A = \frac{1}{\sin A}$
	$\sin A$
	$\sec A = \frac{1}{\cos A}$
	$\sin(90^\circ-A)=\cos A$
Trigonometric Ratios of Complementary Angles	$\cos(90^\circ-A)=\sin A$
	$ an(90^\circ-A)=\cot A$
	$\cot(90^\circ-A)= an A$
	$\sec(90^{\circ}-A)=\csc A$
	$\csc\left(90^{\circ} - A\right) = \sec A$

Values of Trigonometric Ratios of 0° and 90°					
$\angle A$	0°	30°	45°	60°	90°
$\sin A$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos A$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan A$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not Defined
$\sec A$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not Defined
$\operatorname{cosec} A$	Not Defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\cot A$	Not Defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

5. Circles Formulas

Area of circle	πr^2	
Diameter of circle	2r	
Circumference of circle	$2\pi r$	
Sector angle of circle	$ heta = rac{(180 imes l)}{(\pi r)}$	
Area of the sector	$=\left(rac{ heta}{2} ight) imes r^2$	
Area of the circular ring	$=\pi imes \left(R^2-r^2 ight)$	
$\theta = $ Angle between two radii		
R = Radius of outer circle		
r = Radius of inner circle		

6. Statistics Formulas

Mean	$a_m = rac{a_1 + a_2 + a_3 + a_4}{4} = rac{\sum\limits_{0}^{n} a}{n}$
Median	$\mathrm{Median} = l + \left(rac{rac{n}{2} - cf}{f} ight)h$
Mode	$M_o = l + \left(rac{f_1 - f_0}{2f_1 - f_0 - f_2} ight) h$

7. Quadratic Equations Formulas

	$ax^2 + bx + c = 0$	
Quadratic Equations	where $a \neq 0$	
Overdontic Baharanial	$P(x) = ax^2 + bx + c$	
Quadratic Polynomial	where $a \neq 0$	
Zeroes of the Polynomial $P(x)$	The Roots of the Quadratic Equations are zeroes	
One Real Root	$b^2 - 4ac = 0$	
Two Distinct Real Roots	$b^2-4ac>0$	
No Real Roots	$b^2 - 4ac < 0$	

8. Triangles Formulas

Six elements of triangle	Three sides and three angles	
Angle sum property of triangle	Sum of three angles: $\angle A + \angle B + \angle C = 180^{\circ}$	
Right angled triangle	Adjacent Side Opposite Side Hypotenuse	
Pythagoras Theorem	$H^2 = AS^2 + OS^2$	
H = Hypotenuse		
AS = Adjacent Side		
OS = Opposite Side		
Equilateral Triangles	All sides are equal	
Isosceles Triangle	Two sides are equal	

Congruent Triangles	Their corresponding parts are equal	
SSS Congruence of two triangles	Three corresponding sides are equal	
SAS Congruence of two triangles	Two corresponding sides and an angle are equal	
ASA Congruence of two triangles	Two corresponding angles and a side are equal	

Right Pyramid		
Volume of Right Pyramid	$egin{array}{c} rac{1}{3} imes egin{bmatrix} ext{Area of} \ ext{the Base} \end{bmatrix} imes h \end{array}$	
Lateral Surface Area of Right Pyramid (LSA)	$rac{1}{2} imes p imes L$	
Total Surface Area of Right Pyramid (TSA)	$ ext{LSA} + \left[egin{array}{c} ext{Area of} \\ ext{the Base} \end{array} ight]$	
Right Circular Cone		
Volume of Right Circular Cone	$\left rac{1}{3} imes\left(\pi r^2h ight) ight $	
Lateral Surface Area of Right Circular Cone (LSA)	$\pi r l$	
Total Surface Area of Right Circular Cone (TSA)	$\pi r imes (r+L)$	
Hemisphere		
Volume of Hemisphere	$egin{array}{c} rac{2}{3} imes \left(\pi r^3 ight) \ 2\pi r^2 \end{array}$	
Lateral Surface Area of Hemisphere (LSA)	$2\pi r^2$	
Total Surface Area of Hemisphere (TSA)	$3\pi r^2$	
Prism		
Volume of Prism	$B \times h$	

9. Surface Area and Volume Formulas

Cuboid		
Volume of Cuboid (LSA)	l imes b imes h	
Lateral Surface Area of Cuboid (LSA)	$2h\left(l+b ight)$	
Total Surface Area of Cuboid (TSA)	$2\left(lb+bh+hl ight)$	
Cube		
Volume of Cube	x^3	
Lateral Surface Area of Cube (LSA)	$4x^2$	
Total Surface Area of Cube (TSA)	$6x^2$	
Sphere		
Volume of Sphere	$rac{4}{3} imes\pi r^3$	
Lateral Surface Area of Sphere (LSA)	$4\pi r^2$	
Total Surface Area of Sphere (TSA)	$4\pi r^2$	
Right Circular Cylinder		
Volume of Right Circular Cylinder	$\pi r^2 h$	
Lateral Surface Area of Right Circular Cylinder (LSA)	$2 imes(\pi rh)$	
Total Surface Area of Right Circular Cylinder (TSA)	$2\pi r imes (r+h)$	