

SPLUNK SECURITY FUNDAMENTALS

Ali Alwashali

The SIEM Process

COLLECT DATA

Eevent Logs Registry **Network Activitiy** Firewall deny and permit logging Web server logs IDS logs Application logs

source: teneceblog.wordpress.com

Network Data Collection

Network Security Monitoring
Tool

intrusion detection & intrusion prevention system

Endpoint Logs

Sysmon

Sysmon provides a pretty detailed monitoring of operating system activity, starting from process monitoring, going through monitoring all the network and ending up with a discovery of the different types of exploitation techniques.

Sysmon - Windows Sysinternals

Monitors and reports key system activity via the Windows event log.

docsmsft / markruss

SIEM Agents

Wincollect

Demo splunk>

Download: https://cyberdefenders.org/labs/15

Ransomware Infection

Ransomware Infection

- What is the malware family?
- What caused the infection?
- Where did the malware come from?
- How many files were encrypted?
- How many computers infected?

You have been given only timestamp and hostname 2016-08-24 16:43:00

we8105desk

What is the malware family?

- Ransomware picture
- Suricata signatures

index=botsv1 sourcetype=suricata src_ip=192.168.250.100

How we8105desk was infected?

Know more about the malwre. Start with Google

attack cycle, Exploit Guard provides coverage for most steps of the attack cycle - beginning in this case at the second step.

The most common way to deliver ransomware is via Word documents with embedded macros or a Microsoft Office exploit. FireEye Exploit Guard detects both of these attacks at the initial stage of the attack cycle.

PowerShell Abuse

When the victim opens the attached Word document, the malicious macro writes a small piece of VBScript into memory and executes it. This VBScript executes PowerShell to connect to an attacker-controlled server and download the ransomware (profilest.exe), as seen in Figure 1.

rai

RS

How we8105desk was infected?

Use Sysmon to search for an MS-Word execution

index=botsv1 host=we8105desk winword.exe sourcetype="XmlWinEventLog:MicrosoftWindowsSysmon/O perational" EventCode=1

How we8105desk was infected?

Answer:

User opend malicious file from pen drive

ן פטואו ני	MD/DBCIHV03D3ZDC33ZFDM3BH03HZDB0
Opcode ▼	
ParentCommandLine ▼	"C:\Program Files (x86)\Microsoft Office\Office14\WINWORD.EXE" /n /f "D:\Miranda_Tate_unveiled.dotm"
Parentlmage ▼	C:\Program Files (x86)\Microsoft Office\Office14\WINWORD.EXE
ParentProcessGuid ▼	{0F2D76F0-CEA0-57BD-0000-00108D2B3000}
ParentProcessId ▼	3756
ProcessGuid ▼	{0F2D76F0-CEA9-57BD-0000-001037FE3000}

What is the name of the USB drive?

index=botsv1 sourcetype=winregistry friendlyname | table _time host object data

How many .txt files were encrypted?

We need to know the name of the process responsible for encryption

index=botsv1 host=we8105desk sourcetype="XmlWinEventLog:Microsoft-Windows-Sysmon/Operational" EventCode=1 | table _time process_name cmdline parent_process ParentCommandLine | reverse

wscript.exe

https://attack.mitre.org/techniques/T1059/005/

How many .txt files were encrypted?

Processes of interest: osk, 121214, cmd

index=botsv1 host=we8105desk sourcetype="XmlWinEventLog:Microsoft-Windows-Sysmon/Operational" (process_name="cmd.exe" OR process_name="osk.exe" OR process_name="121214.tmp")

index=botsv1 host=we8105desk sourcetype="XmlWinEventLog:Microsoft-WindowsSysmon/Operational" (process_name="cmd.exe" OR process_name="osk.exe" OR process_name="121214.tmp") | stats count by EventCode process_name | sort count | reverse

Check event ID, path, process name

How many .txt files were encrypted?

index=botsv1 sourcetype=XmlWinEventLog:Microsoft-Windows-Sysmon/Operational host=we8105desk EventCode=2
TargetFilename="C:\\Users\\bob.smith.WAYNECORPINC*.txt"
| stats dc(TargetFilename)

How many computers were infected?

In most cases, ransomware encrypts files shared with the infected machine. We need to know if there are shares available

index=botsv1 sourcetype=winregistry host=we8105desk Mountpoints2

object ▼	##192.168.250.20#fileshare	v
■ object_category ▼	registry	v
object_path ▼	$HKU \s-1-5-21-67332772-3493699611-3403467266-1109 \software \microsoft \windows \current version \explorer \mount points 2 \#192.168.250.20 \#files \mbox{hare} \end{subarray}$	~
pid ▼	3496	~
process_image ▼	c:\Windows\explorer.exe	~

index=botsv1 sourcetype=*win* pdf dest=we9041srv.waynecorpinc.local Source_Address=192.168.250.100 EventCode=5145 action=success *.pdf | stats dc(Relative_Target_Name)

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-5145

Where did the malware come from?

We can check the domain names requests directly after execution of the malware, 2016-08-24 16:43:21

index=botsv1 sourcetype=stream:DNS src=192.168.250.100 record_type=A | table _time query

index=botsv1 source="stream:http"

https://www.netskope.com/blog/anatomy-ransomware-attack-cerber-uses-steganography-hide-plain-sight

imreallynotbatman.com was defaced by a hacker Your job is to find out the root cause of the incident

Answer following question

- What is the vulnerability?
- What is the tool used?

Logical step is to study what data available about imreallynotbatman.com

index=botsv1 imreallynotbatman.com

Narrow down the search to website ip and domain name only

index=botsv1 dest=imreallynotbatman.com OR dest_ip="192.168.250.70"

Suricata alerts

Top 10 Values	Count	%
ET WEB_SERVER Script tag in URI, Possible Cross Site Scripting Attempt	103	19.656%
GPL WEB_SERVER 403 Forbidden	51	9.733%
ET WEB_SERVER Onmouseover= in URI - Likely Cross Site Scripting Attempt	48	9.16%
ET WEB_SERVER Possible XXE SYSTEM ENTITY in POST BODY.	41	7.824%
SURICATA HTTP Host header invalid	35	6.679%
ET WEB_SERVER Possible SQL Injection Attempt SELECT FROM	33	6.298%
ET WEB_SERVER SQL Injection Select Sleep Time Delay	32	6.107%
ET WEB_SERVER Possible CVE-2014-6271 Attempt	18	3.435%
ET WEB_SERVER Possible CVE-2014-6271 Attempt in Headers	18	3.435%
ET WEB_SERVER PHP tags in HTTP POST	13	2.481%

From above alerts, probably, an automated attack using a scanner

Aks me Why?

What type of web Applicatin

index=botsv1 sourcetype=stream:http dest_ip="192.168.250.70"

index=botsv1 sourcetype=stream:http dest_ip="192.168.250.70" status=200

```
/joomla/index.php/component/search/

/joomla/administrator/index.php

/joomla/index.php

/
/joomla/agent.php

/windows/win.ini
/joomla/media/jui/js/jquery-migrate.min.js

/joomla/media/jui/js/jquery-noconflict.js

/joomla/media/jui/js/bootstrap.min.js

/joomla/media/system/js/html5fallback.js

/joomla/templates/protostar/js/template.js
```


From what we know about web apps, joomla particularly, the HTTP requests are anomalous

Web traffic anomaly investigation

index=botsv1 sourcetype=stream:http dest_ip="192.168.250.70" http_method=pd

index=botsv1 sourcetype=stream:http dest_ip="192.168.250.70" http_method=post form_data=*username*passwd*

index=botsv1 sourcetype=stream:http dest_ip="192.168.250.70" http_method=post form_data=*username*passwd* | rex field=form_data "passwd=(?<userpassword>\w+)" | table userpassword

Move backword and forward in the cyber kill chain to find the messing pieces

Process execution on the server

index=botsv1 sourcetype="XmlWinEventLog:Microsoft-Windows-Sysmon/Operational" host=we1149srv signature_id=1

index=botsv1 sourcetype="XmlWinEventLog:Microsoft-Windows-Sysmon/Operational" host=we1149srv signature_id=1 | stats count by process_name index=botsv1 sourcetype="XmlWinEventLog:Microsoft-Windows-Sysmon/Operational" host=we1149srv signature_id=1 | table _time process_name process_id cmdline ParentCommandLine parent_process_id | reverse

WmiPrvSE.exe	3668	C:\Windows\system32\wbem\wmiprvse.exe -Embedding	C:\Windo
cmd.exe	2896	cmd.exe /c "3791.exe 2>&1"	"C:\Prog cgi.exe"
conhost.exe	3680	\??\C:\Windows\system32\conhost.exe 0xfffffff	cmd.exe .
3791.exe	3880	3791.exe	cmd.exe
cmd.exe	3620	C:\windows\system32\cmd.exe	3791.exe
conhost.exe	2248	\ ??\C:\Windows\systq m32\conhost.exe	C:\Windo
net.exe	3900	net view /domain	C:\Windo
whoami.exe	3808	whoami	C:\Windo
net.exe	612	net share	C:\Windo
net1.exe	1984	C:\Windows\system32\net1 share	net sha
net.exe	2656	net session	C:\Windo
net1.exe	2608	C:\Windows\system32\net1 session	net ses

index=botsv1 3791.exe sourcetype="stream:http"

File responsible for defacing the web site

index="botsv1" src=192.168.250.70 sourcetype=stream:http

Values	Count	%	
http://prankglassinebracket.jumpingcrab.com:1337:1 337/poisonivy-is-coming-for-you-batman.jpeg	2	25%	
http://update.joomla.org/core/list.xml	2	25%	
http://update.joomla.org/jed/list.xml	×	25%	
http://update.joomla.org/core/extensions /com_joomlaupdate.xml	1	12.5%	
http://update.joomla.org/language /translationlist_3.xml	1	12.5%	I

Attack Scenario

wayncorpinc.com, waynecorinc.com, waynecrpinc.com, wayneorpinc.com, www.po1s0n1vy.com, wanecorpinc.com, po1s0n1vy.com Clues Pertaining to the Adversary

Linkages Between Email and Infrastructure:

lillian.rose@po1s0n1vy.com

Identifying the First Password Attempted in a Brute Force Attack **Extracting Passwords from Events** Using Lookups to Correlate Events Identifying the Password Used To Gain Access: 40,80,148,42 Finding the Average Length of the Passwords During the Brute Force Attack **Determining The Elapsed Time Between Events** Identifying the Number of Unique Passwords Attempted During the Brute Force Attack

System that Defaced the Web Server: prankglassinebracket.jumpingcrab.com

Resources:

https://cyberpolygon.com/materials/threat-hunting-why-might-you-need-it/

https://cyberpolygon.com/materials/threat-hunting-in-action/

https://cyberpolygon.com/materials/hunting-for-advanced-tactics-techniques-and-procedures-ttps/