Handy Formulas

Primary units in this guide are metric (SI – the International System of units):

Length - m - (meter)

Mass - g - (gram)

Force - mN - (millinewton)

Torque - mN·m - (millinewton meter)

Inertia - g·m² - (gram meter²)

In this system, mass is always in kilograms or grams. Force, or weight, is always in newtons or millinewtons.

Force (or weight) = Mass x Acceleration

F = ma

when $a = 9.81 \text{ m/sec}^2$ (acceleration due to gravity), then F would be the weight in newtons.

How to measure Mass or Force.

A spring scale reading of 1 kg means that you are measuring a mass of 1 kg.

A spring scale reading of 2.2 lb also is measuring a mass of 1 kg.

If you use that same spring scale to measure a force, the 1 kg reading must be multiplied by 9.8 to give a force of 9.8 newtons.

The reading of 2.2 lb is a force and is equal to 9.8 newtons.

If the same scale is used to measure torque (T = FR) at a one meter radius, the reading of

1 kilogram x 1 meter = 1 kgm

must be multiplied by 9.8 to give a torque of 9.8 newton meters $(N \cdot m)$.

					Units Used in this Manual
	Given Unit				(Metric SI)
Length	1 inch	=	2.54 cm	=	2.54 X 10 ⁻² m
Force	1 oz	=		=	278 mN
	1 lb	=	4.45 N	=	4,450 mN
	1 g•cm	=		=	9.8 mN
Mass	1 lb	=		=	454g
	1oz	=		=	28.4g
	1kg	=		=	1,000g
	1 slug	=	14.6 kg	=	14,600g
Inertia	1 g•cm²	=		=	10 ⁻⁴ g•m ²
	1 oz-in-sec ²	=		=	7.06 g•m²
	1 slug ft ²	=		=	.29 g•m²
Torque	1 oz-in	=	72.01 g•cm	=	7.06 mN•m
	1 lb-ft	=		=	1.356 x N•m
	1 g•cm	=		=	9.8 x 10 ⁻² mN•m
			10.2 g•cm	=	1 mN•m
			141.6 oz-in	=	1 N•m

1. Torque (mN·m) = Force (mN) x Radius (m)

Torque = FR

2. Torque required to accelerate inertial load

T (mN•m) = J α

 $J = Inertia in g \cdot m^2$

 α = Acceleration in radians/sec²

EXAMPLE:

If a rotor inertia plus load inertia = $J = 2 \times 10^{-3} \text{ g} \cdot \text{m}^2$, and the motor is to be accelerated at 6,000 radians per sec, what torque is required?

$$T = J\alpha = 2 \times 10^{-3} \times 6000$$

 $T = 12 \text{ mN} \cdot \text{m}$

For stepper motors, α can be converted to radians/sec $^{\!2}$ from steps/sec $^{\!2}.$

$$\alpha \text{ (radians/sec)} = \frac{\Delta v \text{ (steps/sec)}}{\Delta t \text{ (accel. time)}} x \frac{2\pi}{\text{steps/rev}}$$

TORQUE =
$$J \frac{\Delta v}{\Delta t} \times \frac{2\pi}{\text{steps/rev}}$$

EXAMPLE:

For a 48-step per revolution motor accelerating from zero to steps/sec running rate v in Δt seconds.

TORQUE =
$$J \frac{V}{\Delta t} \times \frac{\pi}{24}$$

For information or to place an order in North America: 1 (203) 271-6444 Europe: (44) 1276-691622 Asia: (65) 7474-888

If no acceleration time is provided, then a maximum 2-step lag can occur.

 Δt (sec) = $\frac{2 \text{ (steps)}}{\text{v (steps/sec)}}$ giving the following equation.

TORQUE = J
$$\frac{V^2}{2}$$
 x $\frac{2 \pi}{\text{steps/rev}}$

3. Moment of Inertia

Disc or shaft

M = Mass in grams

R = Radius in meters

$$\frac{J (g \cdot m^2) = \frac{MR^2}{2}}{Cylinder}$$

$$J (g \cdot m^2) = \frac{M^2}{2} (R_1^2 + R_2^2)$$

4. Reflected loads when using gears or pulleys

Torque required of motor =
$$\frac{\text{Load Torque}}{\text{GR}}$$

gear or pulley ratio $GR = \frac{\text{motor shaft revolutions}}{\text{load shaft revolutions}}$

Inertia reflected to motor = $\frac{\text{Load intertia}}{(GR)^2}$

Equivalent Inertial Load For a pulley and weight or a rack and pinion

$$J eqv. (g \cdot m^2) = MR^2$$

M = Mass of load in grams

R = Radius of pulley in meters

6. Total Load

Note: Be sure to include all load components.

 J_T = Rotor Inertia + all J Loads

 T_F = Frictional and Forces

Note: In the pulley example above, the total load would be:

 $J_T = J \text{ rotor } + J \text{ pulley } + J \text{ eqv.}$

 $T_F = T \text{ frictional} + Load Weight x Radius}$

Total T = $J_T \alpha + T_F$

The load weight = mass x 9.8 millinewtons.

7. Axial Force of Lead Screw

$$F = \frac{2 \pi x T}{L} x \text{ eff.}$$

F(mN) when T = Torque in mN • m

L = Lead of screw in meters

F (oz) when T = Torque in oz-in

L = Lead of screw in inches

efficiency = from .9 for ballnut to .3 for Acme

Inertia of lead screw load

J steel screw =
$$D^4$$
 x / x $\frac{\pi}{32}$ x Density

Density for steel = $7.83 \times 106 \text{ g/m}^3$

then

$$J (g \cdot m^2) = D^4 / x 7.7 x 10^5$$

The reflected inertia of the load is:

$$J \text{ reflected } (q \cdot m^2) = M (load) L^2 \times .025$$

Total Torque Load from lead screw (T) in mN·m

 $T = (J rotor + J screw + J reflected) \alpha + T friction$

8. Motor watts output

Watts out = Torque output x speed in radians/sec

1 watt = 1 Nm/sec

For a given output Torque (mN • m) and converting v (steps/sec) to radians/sec

Watts out = Torque (mN·m) x v
$$\frac{\text{(motor step angle)}}{57.3}$$
 x 10^{-3}

If the speed is in RPM then:

Watts out = $1.05 \times 10^{-4} \times \text{torque (mN} \cdot \text{m)} \times \text{RPM}$

9. Steps/sec to RPM

RPM =
$$\frac{\text{v (steps/sec) x 60}}{\text{motor steps/rev}}$$

For information or to place an order in North America: 1 (203) 271-6444 Europe: (44) 1276-691622 Asia: (65) 7474-888