

REGENERATIVE ENGINE ANALYSIS PROGRAM

P. Schwaar, J. Dale, J. Banks AVCO LYCOMING DIVISION 550 South Main Street Stratford, Conn. 06497

January 1981

Final Report for Period October 1979 - July 1980

Approved for public release; distribution unlimited.

Prepared for

APPLIED TECHNOLOGY LABORATORY

U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM)
Fort Eustis, Va. 23604

BE-FILE COPY

70

O

AD A O

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

The results of previous regenerative engine technology programs have become somewhat obsolete by intervening technology development. In 1980, the Army supported several engine design investigations to update regenerative cycle engine data for helicopter application. Results of this effort will be utilized in conjunction with parallel efforts at other engine companies and in-house to formalize future efforts directly related to small fuel efficient gas turbine engines.

Mr. Albert E. Easterling of the Propulsion Technical Area, Aeronautical Technical Division served as project engineer for this effort.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

		READ INSTRUCTIONS
1	REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
(18)	USAAVRADCOM TR-80-D-29 2. GOVT ACCESSION NO.	3. RECIPIEN'S CATALOG NUMBER
	4. TITLE (and Subtitle)	SETUPE OF REPORT & PERIOD COVERED
	the second secon	Final Study Repert
(6/	REGENERATIVE ENGINE ANALYSIS PROGRAM	October 1079 - July 1080
Y	and the same of th	LYC-80-73
, .	Z. AUTHORES 7	SONTRACT OR GRANT NUMBER(*)
1911	P. Schwaar - (Aerothermodynamics)	DAAK51-79-C-6056 200
- /.[J. Dale (Heat Transfer)	75.000
	J. Banks - (Mechanical Design)	10. PROGRAM LEMENT, PROJECT, TASK
	AVCO Lycoming Division	AREA WORK UNIT NUMBERS
Ì	550 So. Main St.	612209 11.162209AH7600
ł	Stratford, Ct. 06497	305 EK (17)
- 1	11. CONTROLLING OFFICE NAME AND ADDRESS	12 MERORI DATE
ĺ	Applied Technology Laboratory, U. S. Army	January 1981 (999)
	Research and Technology Laboratories (AVRADCOM), Fort Eustis, Virginia 23604	197
}	14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
ł		UNCLASSIFIED
	(12) 199	
ľ		15a. DECLASSIFICATION DOWNGRADING SCHEDULE
,	16. DISTRIBUTION STATEMENT (of this Report)	L
	16. DISTRIBUTION STATEMENT (OF IMPERSON)	
- 1	Approved for public release; distribution unlimited.	. ,
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
	18. SUPPLEMENTARY NOTES	
ļ		
	 KEY WORDS (Continue on reverse side if necessary and identity by block number) 	
ł		
		ľ
$\langle \cdot $		1
ľ	O. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
	A parametric cycle analysis and a preliminary re-	
	were conducted for a 500-hp intermediate rated po	
ſ	helicopter engine. The U-tube recuperator with a	
}	single cross flow gas path was found to be the ligh	
	effectiveness range considered for the cycle analy	sis. An optimum cycle is
l	recommended as a compromise between minimum	mession tuel consumption
Ĺ	and minimum engine + mission fuel weight:	
1		Unclassified SSIFICATION OF THIS PAGE (When Data Entered)

11.111

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20.

60% IRP (300 hp):

Temperature $T_{4,0} = 2520^{\circ} R$ (inlet gas producer

turbine nozzle)

Pressure Ratio PR = 7.4

Recuperator Effectiveness E = .76

100% IRP (500 hp):

$$T_{4.0} = 2750^{\circ} R$$
, PR = 10.8, E = .75

A preliminary mechanical design was completed for a free power turbine engine using the recommended cycle.

With presently available 500 hp engine technology, the recuperative cycle offers 18% fuel savings over the nonregenerative cycle. For a typical 2-hour helicopter mission the engine + mission fuel weight is 3.7% higher than for a nonregenerative engine. The fuel savings compensate for the higher engine acquisition cost if fuel cost is assumed to escalate to approximately \$1.80/gal. (1979 dollars).

On the basis of the results of this preliminary study, it is recommended to proceed with the demonstration of a recuperative helicopter engine of the 500-hp class.

Acces	sion For	
NTIS	GRA&I	X
DTIC	TAB	
1	ounced	
Justi	fication_	
	ibution/	Todos.
	Avail and	
Dist	Special	, 0.
A		

TABLE OF CONTENTS

	Page
LIST OF ILLUSTRATIONS	7
LIST OF TABLES	10
INTRODUCTION	12
PRELIMINARY PARAMETRIC CYCLE	
ANALYSIS	14
REGENERATIVE CYCLE CHARACTERISTICS	14
APPROACH	16
Parametric Cycle Definition	16
Component Efficiencies, Cooling Air, and Loss Assumptions	18
Recuperator Configuration	22
Recuperator and Cycle Selection Criteria	22
Helicopter Mission Profile	25
Engine Weights	25
Constant vs. Variable Cycle Temperature Effect on Compressor Operating Conditions	26
Constant vs. Variable Power Turbine Geometry	29
Recuperator Design Analysis	33
RESULTS OF THE PRELIMINARY CYCLE AND RECUPERATOR ANALYSIS	33
Cycle Analysis	33
Recuperator Analysis	37
Engine + Mission Fuel Weight	50

TABLE OF CONTENTS (Continued)

	Page
REFINED PARAMETRIC ANALYSIS	53
CYCLE MATRIX	53
COMPONENTS PERFORMANCE ASSUMPTIONS	53
Compressor Efficiency	53
Turbine Efficiency	53
Recuperator Off-Design Effectiveness	55
DETERMINATION OF ENGINE WEIGHT	55
Effect of Compressor Weight	55
Effect of Turbine Weight	56
Engine Weight Formula	56
Recuperator Weight	57
ENGINE DEVELOPMENT, ACQUISITION, AND MAINTENANCE COST	57
Engine Development Cost	57
Engine Acquisition Cost	58
Engine Maintenance Cost	59
RESULTS OF THE REFINED CYCLE AND RECUPERATOR ANALYSIS	60
Cycle Analysis	60
Recuperator Design Analysis	65
Mission Fuel and Engine Weights	71
Selection of Engine Cycle	73
Waveplate and Tubular Recuperator Weight	84

TABLE OF CONTENTS

(Continued)

	Page
Comparison with Constant Power Turbine Geometry and Nonregenerative Engines	86
POTENTIAL IMPROVEMENTS OF THE REGENERATIVE ENGINE	91
CERAMIC TURBINE AND IMPROVED MATERIALS	91
COMPRESSOR SURGE MARGIN INCREASE	93
RECUPERATOR BYPASS	94
LIFE-CYCLE COST ASSESSMENT	97
PRELIMINARY MECHANICAL DESIGN	99
ENGINE CONFIGURATION	99
Compressor	99
Turbine Section	99
Single Can Burner	109
Turbine Exit Diffuser	109
Exhaust Collector	112
Inlet Particle Separator	112
Engine Modular Construction	
MECHANICAL DESIGN CONSIDERATIONS	
Gas Producer	114
Inlet Particle Separator	117
Combustor	117
Power Turbing	117
Dower Shaft	117

TABLE OF CONTENTS (Concluded)

		Page
Power Tu	rbine Exit Diffuser	120
Recupera	tor	120
Output Sha	aft	121
Accessor	y Gear Box	122
ENGINE WEI	GHT	122
ENGINE INSTAL	LATION AND INSTALLED PERFORMANCE	125
ENGINE INS	TALLATION	1 2 5
INSTALLED	ENGINE PERFORMANCE	125
Engine Up	oscaling	12 5
	ND FUEL COST BREAK-EVEN NREGENERATIVE ENGINE	129
ENGINE COS	ST	129
FUEL COST	BREAK-EVEN POINT	129
CONCLUSION AN	ID RECOMMENDATIONS	134
APPENDIX A:	CYCLE 5 DATA	136
APPENDIX B.	CYCLE 5 RECUPERATOR DATA	148
APPENDIX C:	SELECTED CYCLE DATA	150
APPENDIX D:	SELECTED CYCLE RECUPERATOR DATA AND OFF-DESIGN PERFORMANCE	174
APPENDIX E:	FLOW CONDITIONS, GAS PRODUCER TURBINE AND TRANSITION DUCT.	177
APPENDIX F:	FLOW CONDITIONS, POWER TURBINE	100

LIST OF ILLUSTRATIONS

Figure		Page
1	Optimum regenerative cycles and preliminary cycle matrix A-L	. 17
2	Basic compressor map with representative points selected for parametric cycle analysis	. 19
3	Turbine cooling air schedule	. 21
4	Cross-counterflow multiwaveplate recuperator core	. 23
5	Crossflow multitube recuperators	. 24
6	Compressor operating line with maximum power range at constant cycle temperature $T_{4.0} = 2600^{\circ}R$, 27
7	Operating lines with cycle temperature T _{4.0} gradually increasing from 2600°R at 275 hp to 2772°R and 2750°R at 500 hp	. 28
8	Operating line for cycle F with variable power turbine geometry	. 30
9	Operating line for constant power turbine geometry and $T_{4.0} = 2770^{\circ}R$ at 500 hp	. 31
10	SFC comparison of cycles with constant and variable power turbine geometry	, 32
11	Waveplate recuperator core modules	. 34
12	Staggered tube arrangements	35
13	Dimpled and finned tube geometries	36
14	SFC comparison of cycles A-L at 300 hp $(60\% \text{ IRP})$. 38
15	Mission fuel consumption, cycles A-L	. 39
16	Waveplate recuperator performance map, preliminary cycle M	. 40
17	Waveplate core weight	41
18	Tubular recuperator performance map, preliminary cycle M	. 43
19	Tubular core weight	. 44
20	Tubular recuperator performance map and core weight, preliminary cycle M	. 45

LIST OF ILLUSTRATIONS

(Continued)

Figure		Page
21	Tubular recuperator performance map, preliminary cycle M	4 6
22	Tubular core weight	47
23	U-tube number	48
24	Recuperator core weights, preliminary cycle M	49
25	Engine + mission fuel weight with tubular recuperator	52
26	Cycle matrix for refined parametric analysis	54
27	SFC comparison of cycles with $T_{4.0} = 2300^{\circ} R$ at $60\% IRP$	6 1
28	SFC comparison of cycles with $T_{4.0} = 2450^{\circ} R$ at $60\% IRP$	62
29	SFC comparison of cycles with $T_{4.0} = 2600^{\circ} R$ at $60\% IRP$	63
30	Operating line, cycle 5	6 4
31	Tubular recuperator performance map, cycle 1	67
32	Tubular recuperator performance map, cycle 5	68
33	Tubular core weight, cycle 5	69
34	U-tube number	70
35	Mission fuel weight, cycles 2-9	72
36	Engine + mission fuel weight, cycles 2-9	74
37	Interpolation of candidate cycles A, E and F $\ldots \ldots$	75
38	Interpolation of candidate cycles B,C and D $\ldots\ldots$	76
39	$Tubular\ recuperator\ performance\ map,\ selected\ cycle\$	78
40	Tubular core weight, selected recuperator	79
41	U-tube number, selected recuperator	80
42	Off-design effectiveness and total pressure loss for selected tubular recuperator	81
43	Operating line, selected cycle	82
44	Selected engine SFC (uninstalled)	83
45	Waveplate recuperator performance map and core weight	85

LIST OF ILLUSTRATIONS

(Concluded)

Figure		Page
46	Power turbine efficiency characteristics	87
47	Potential SFC improvements through ceramic turbine components	92
48	Operating line for a 2C compressor with increased surge margin	95
49	800 hp representative engine cross section	100
50	Recuperative engine cross section	101
51	Assumed temperature profile at entrance of gas producer turbine rotor	103
5 2	Velocity triangles, gas producer turbine	104
53	Meridional flowpath and streamline pattern, gas producer turbine and transition duct	106
54	Assumed temperature profile at entrance of power turbine	107
55	Velocity triangles, power turbine	801
56	Meridional flowpath and streamline pattern, power turbine and diffuser	110
5 7	Performance of annular diffusers	111
58	Engine modular construction	113
5 9	Stator and rotor blade convective cooling schemes	116
60	Inlet particle separator system	118
61	Particle separator principle	119
62	Accessory gearbox module	123
63	Installation drawing	126
64	Compressor operating line for installed conditions	127
65	Engine manufacturing cost	131

LIST OF TABLES

<u>Table</u>		Page
1	POTENTIAL PERFORMANCE OF REGENERATIVE CYCLES	. 15
2	TYPICAL HELICOPTER MISSION	25
3	SFC COMPARISON OF ENGINES WITH VARIABLE AND CONSTANT POWER TURBINE GEOMETRY	29
4	PRELIMINARY PARAMETRIC CYCLE DATA AND ENGINE + MISSION FUEL WEIGHTS	51
5	PARAMETRIC CYCLE CHARACTERISTICS	. 60
6	60% IRP RECUPERATOR DATA FOR REFINED PARAMETRIC ANALYSIS	. 65
7	DESIGN CHARACTERISTICS OF THE TUBULAR RECUPERATORS	66
8	RECUPERATOR OFF-DESIGN PERFORMANCE, CYCLE 5	71
9	ENGINE AND MISSION FUEL WEIGHTS	73
10	COMPARISON OF ENGINES WITH WAVEPLATE AND TUBULAR RECUPERATORS	86
11	FUEL CONSUMPTION OF ENGINES WITH VARIABLE AND CONSTANT POWER TURBINE GEOMETRY AND WITHOUT RECUPERATOR	88
12	COMPARISON OF ENGINE WEIGHTS AND ACQUISITION COSTS	89
13	COMPARISON OF VARIOUS ENGINE TYPES	96
14	ENGINE LIFE CYCLE COST COMPARISON	98
15	REDUCTION GEAR DESIGN PARTICULARS	122

LIST OF TABLES

(concluded)

Table		Page
16	ENGINE WEIGHT BREAKDOWN	124
17	COMPARISON OF UNINSTALLED AND INSTALLED PERFORMANCE OF THE PROPOSED ENGINE	. 128
18	EXPERIMENTAL ENGINE COST BREAKDOWN	. 130
19	ENGINE AND FUEL WEIGHT COMPARISON	132

INTRODUCTION

The escalation of fuel cost and the uncertainty of future fuel availability have reaffirmed the requirement for more efficient gas turbine engines. In the present state of the art, significant component performance improvements are difficult to achieve. Therefore, it appears worthwhile to consider heat recuperation as an alternate means of reducing the fuel consumption of the conventional gas turbine cycle.

The objectives of this study are to identify promising regenerative gas turbine cycles and heat exchanger concepts and to conduct a preliminary design analysis of a fuel-efficient regenerative turboshaft engine of the 500 hp class suitable for helicopter propulsion, including engine performance definition, installation characteristics, and estimated acquisition cost.

The primary design objective is to achieve minimum specific fuel consumption (SFC) at cruise power (40-60% of intermediate rated power (IRP)). In addition, two main mechanical design conditions are imposed: (a) a free power turbine with front power extraction at constant 20,000 rpm over the entire flight power range and (b) modular construction with an integral inlet particle separator and an integral lubrication system. For this preliminary design study, component technology levels consistent with those currently available for a 500 hp demonstrator engine and design conditions consistent with MIL-E-8593 A are assumed.

The analysis was conducted in two phases:

- Phase I Parametric engine cycle and heat exchanger design analyses
 Task 1: Preliminary and refined parametric cycle analyses
 Task 2: Heat exchanger analysis
- Phase II Regenerative engine configuration definition and preliminary design.

The parametric cycle analysis was conducted in sufficient detail to provide SFC variations over the entire engine operating range for standard sea level conditions. The heat exchanger analysis addressed multitube and multiwave plate recuperators and provided the preliminary design data, i.e., air/gas flow path configuration, core surface geometry and density, and core weight used in the parametric cycle analysis. The cycles were compared on the basis of the fuel consumed in a typical helicopter mission, and the most promising cycle and heat exchanger design were selected as a compromise between minimum fuel consumption and minimum engine + mission fuel weight. A preliminary engine life cycle cost assessment involving total mission life fuel cost and

engine development, acquisition, and maintenance cost was carried out to ensure that the fuel economy achievable with the selected cycle was not offset by increases of the other cost items.

The preliminary design effort of Phase II addressed a 500-hp class engine with a single spool gas producer, a free power turbine, and a cylindrical recuperator wrapped around the engine exit diffuser. The compressor was a scaled-down design of an existing nonregenerative 800-hp engine. A complete flow path of the turbine-diffuser section with single-stage gas producer and power turbines was defined and an engine cross section and an installation drawing were produced.

PRELIMINARY PARAMETRIC CYCLE ANALYSIS

REGENERATIVE CYCLE CHARACTERISTICS

The performance characteristics and trends of the open regenerative gas turbine cycle are well known. For each turbine inlet temperature and recuperator effectiveness, there is an optimum cycle pressure ratio that depends mainly upon the polytropic efficiency index of the turbomachinery. The performance trends are illustrated in Table 1, which lists optimum cycle pressure ratio, specific fuel consumption, and specific power for 0.5, 0.65, 0.75 and 0.85 recuperator effectiveness, 2400, 2600 and 2800 R turbine inlet temperature and turbomachinery polytropic efficiency indices of 0.84 and 0.86. A sum of 13% stagnation pressure loss in the burner, the heat exchanger, and the components connecting ducts is assumed.

For constant temperature and polytropic index, the optimum cycle pressure ratio decreases with increasing effectiveness, while it increases with increasing temperature and polytropic index. SFC decreases with increasing temperature, effectiveness, and polytropic index. Specific power increases with temperature and polytropic efficiency index, but decreases slightly with increasing effectiveness as a result of decreasing optimum pressure ratio.

With regard to mechanical design, one of the main performance characteristics is the moderate cycle pressure ratio, which does not exceed 10 except for low effectiveness and high cycle temperature values. Another important characteristic is the effect of temperature increase on SFC and specific power. In the 2400-2600 R range, a 100 temperature rise decreases SFC by 1.5-2% and increases specific power by roughly 10%. In the 2600-2800 R range, the corresponding SFC gain is reduced to 1%, while specific power still increases by roughly 7%. Since low engine weight and compactness is a premium, there is a strong incentive to increase the cycle temperature beyond the point of diminishing SFC return. In the small power class, however, increasing manufacturing difficulties and cost and performance penalties associated with small turbomachinery components oppose the trend toward maximizing specific power.

From Table 1 a specific fuel consumption of the order of 0.4 lb/hp/hr could be anticipated for a cycle temperature of 2600-2800 R, a polytropic efficiency index of .84 (parameters that are characteristic of today's advanced technology in small gas turbines), and a recuperator effectiveness of 0.7.

TABLE 1. POTENTIAL PERFORMANCES OF REGENERATIVE CYCLES

Heat Exchanger Effectiveness	0.50		0.65		0.75		0.85	
Polytropic Efficiency Index	0.84	0.86	0.84	0.86	0.84	0.86	0.84	0.86
$T_{4.0} = 2400^{\circ} R$								
PRopt	10.0	11.0	8.0	8.6	6.8	7.4	5.4	5.9
SFC (lb/hp-hr)	0.458	0.423	0.430	0.397	0.404	0.377	0.372	0.348
Specific Power (hp/lb/sec)	132	145	130	141	128	139	120	136
$T_{4.0} = 2600^{\circ} R$								
PRopt	11.9	13.0	9.3	10.0	7.9	8.4	6.5	7.0
SFC	0.434	0.403	0.412	0.381	0.387	0.362	0.357	0.339
Specific Power	157	171	153	169	151	166	145	162
$T_{4.0} = 2800^{\circ} R$								
PRopt	13-15	15-17	10.8	11.6	9.0	10.0	7.6	7.8
SFC	0.421	0.385	0.400	0.372	0.377	0.355	0.353	0.330
Specific Power	178	195	176	192	174	190	170	183

The selection of a regenerative cycle and its optimization for helicopter application essentially depends upon the type and duration of the mission. Since one of the main requirements of the study is to achieve minimum SFC at cruise part-power, a typical mission with a substantial cruise leg is assumed for the parametric cycle analysis.

APPROACH

Parametric Cycle Definition

The main regenerative cycle parameters are:

- o Pressure Ratio PR
- o Temperature T_{4.0} (Turbine stator inlet)
- o Recuperator Effectiveness E

With a minimum of three discrete values for each parameter, a matrix of 27 cycles would be generated. However, the minimum number of parametric cycles can be reduced to 9 by associating each pair of temperature and recuperator effectiveness with the corresponding optimum pressure ratio. The cycles are then compared on the basis of maximum performance potential, which is of primary interest for the study.

A matrix of twelve cycles with three temperatures, $T_{4.0}$ = 2200, 2400, and 2600°R, and four recuperator effectivenesses, E = .5, .65, .75, and .85, has been selected for preliminary analysis. Those conditions have been tentatively assumed for the 60% IRP points. The matrix is shown on Figure 1 with the optimum cycles labeled A-L.

The optimum pressure ratio exceeds 9 for cycles I', K', L' with low recuperator effectiveness and high temperature values. Assuming those conditions for the design points at 60% of IRP, cycle pressure ratios in excess of 15 would result for the IRP points of cycles K' and L', which would be difficult to achieve efficiently in the 500 np engine size. On the other hand, a substantial departure from the optimum pressure ratio entails only minor SFC penalties for cycles with low recuperator effectiveness and high turbine inlet temperature. The maximum pressure ratio for the part-power design points thus has been tentatively limited to 3.5.

In order to achieve minimum part-power SFC in a regenerative engine, it is necessary to maintain a high part-power cycle temperature. Conversely, once optimum part-power conditions have been selected, the problem is to maintain the temperature constant or to minimize its increase at maximum power. This can be achieved by gradually opening the turbine passage areas from part to full power. For air-cooled stator and rotor bladings, the resulting mechanical difficulties are prohibitive, and variable geometry currently is used only in the stator blading of the

Figure 1. Optimum regenerative cycles and preliminary cycle matrix A-L

power turbine. For the present study, both fixed and variable power turbine stator geometries are considered.

The main difficulty associated with variable turbine geometry lies in the compressor, whose operating line approaches the surge line at part power faster than in a conventional, constant turbine geometry engine. To evaluate and compare the cycle performances over the entire engine power range for constant and variable power turbine geometry, it is therefore necessary to evaluate the operating conditions of the compressor. For that purpose a basic performance map derived from the test results of the 2A + 1C compressor of an existing, nonregenerative 800 hp engine has been selected as representative of the study engines (Figure 2). For each cycle, the map is scaled in pressure ratio and mass flow rate to achieve the required 60% IRP design conditions. Generally, scaling up in pressure ratio tends to result in an overoptimistic surge line prediction. It is therefore desirable for the basic map to permit the highest 60% IRP cycle pressure ratio to be achieved without or with minimum upscaling. The selected map fulfills that condition, since the maximum 8.5 PR can be obtained with an efficiency close to the maximum value.

For each preliminary cycle, constant gas producer turbine efficiency and constant recuperator effectiveness are assumed over the entire operating range. The compressor operating line then is located on the scaled map as a first approximation. This determines cycle mass flows, pressures, and temperatures over the entire engine power range; these are used for preliminary recuperator design analysis.

The pressure ratio and the mass flow scaling factor (i.e., the location of the 60% IRP point in the basic map), are varied until favorable compressor operating conditions are obtained on the scaled map from engine idle (50 hp) to IRP (500 hp). This is done with the aid of a general gas turbine performance analysis code. The program first establishes the 60% IRP performance in the design mode, checks the results in the off-design mode, and then computes the off-design performances with the power turbine geometry specified for each case.

Component Efficiencies, Cooling Air, and Loss Assumptions

For the 60% IRP (300 hp) point, the following assumptions have been made:

- o Compressor polytropic efficiency: $\eta_{p_C} = .84$
- o Gas producer turbine adiabatic efficiency: $\eta_{\mathrm{ad}_{\mathrm{GPT}}} = .86$

Figure 2. Basic compressor map with representative points selected for parametric cycle analysis.

Total pressure losses:

- o Recuperator $\triangle P/P = 2\%$ for the air side 2.5% for the gas side
- o Ducts connecting the recuperator to the compressor, the burner, and the exhaust 1% each

.

o Power turbine exit diffuser 2%

Burner 3.5%

o Burner efficiency $\eta_B = 99\%$

o Mechanical losses .5% of the gas producer and power turbine shaft power

The following total cooling air flow rates are assumed:

For IRP
$$T_{4.0} = 2800^{\circ} R$$
: 11.0%
 $2600^{\circ} R$: 5.5%
 $2400^{\circ} R$: 1.9%

Those air quantities are based on preliminary heat transfer calculations, assuming maximum metal temperatures of 1900°F for the Cl01 nozzle and 1760, 1700 and 1640°F for the tip, mean and hub section, respectively, of the Cl03 rotor bladings. Cooling air is extracted at exit of the compressor and bypasses the recuperator. The distribution between the gas producer turbine stator and rotor is shown on Figure 3.

Power turbine efficiency is assumed as follows:

For constant geometry: $\eta \text{ ad}_{PT} = .88 = \text{const.}$ For variable geometry: $\eta \text{ ad}_{PT} = .88 \text{ (open stator setting)}$.84 (closed stator setting)

A linear variation with power is assumed between the open and the closed positions.

Leakage of compressed air: 1%

The parametric analysis is carried out for uninstalled conditions. Specifically, the pressure losses of the inlet duct and particle separator, and the power of the customer generator, customer hydraulic pump and particle separator scavenge blower are not included in the performance calculations.

Figure 3. Turbine cooling air schedule

Recuperator Configuration

For all parametric cycles, the recuperators are assumed to be designed with a cylindrical core and wrapped around axial flow diffusers with an exit Mach number of . 1 at the 60% IRP point. The recuperator core inner radius is determined as follows:

The diffuser exit area A_d and radius r_d are determined from the mass flow, the power turbine exit conditions, and the diffuser exit Mach number M_d = .1, assuming a 2% total diffuser pressure loss. Provision then is made for a 20% r_d increase of the channel radius to turn the flow 180 degrees back into an axial flow annular duct of equivalent area A_d . A 20% r_d increase of the outer duct radius is provided for the 90 degree turn into the radial direction of the recuperator gas flow.

Recuperator and Cycle Selection Criteria

Two heat exchanger types - a multitube and a multiwave plate recuperator - are evaluated. The multiwave plate type uses the cross-counter-flow path shown on Figure 4, a configuration that has been developed for a vehicular gas turbine. For the multitube recuperator, the two cross-counterflow configurations sketched on Figure 5 are analyzed. For a given parametric cycle point, i.e., for given recuperator effectiveness and SFC performance, the recuperator with the lowest weight results in the best mission performance. This selection is made for the entire

Figure 4. Cross-counterflow multiwave recuperator core

Figure 5. Crossflow multitube recuperators

parametric cycle analysis. The most promising cycle is selected as a compromise between minimum mission fuel consumption and minimum engine + mission fuel weight. A preliminary engine life-cycle cost assessment involving mission life fuel cost and engine development, acquisition, and maintenance cost is carried out to ensure that the fuel economy achievable with the selected cycle is not offset by prohibitive engine cost items.

Helicopter Mission Profile

A mission profile is needed to compare the performance merits of the parametric cycles. The typical helicopter mission shown in Table 2 has been assumed for that purpose. This mission profile is not used for a helicopter mission analysis, but simply for the evaluation of the order of magnitude of the mission fuel quantity as a preliminary cycle comparison basis.

TABLE 2. TYPICAL HELICOPTER MISSION

	Cycle Point	Mode	Time (min.)	Air- speed (kn)	Power (% IRP)	Actual Power (hp)	Fuel Consump- tion Factor
l	a)	Ground Idle	18		10	50	0.15
	b)	Takeoff	6		100	500	0.05
	c)	Climb/Hover	24		75	375	0.20
	d)	Cruise	54	62	55	275	0.45*
	e)	Descent	18		40	200	0.15

Total Mission Time 2 hours

*Average Cruise Conditions

Engine Weights

Engine weights are estimated on the basis of the weight of a representative, nonregeneration 800-hp engine, W_0 , which includes an inlet particle separator, an integral lubrication system, accessories, and an alternator.

The weights W_{e-r} of the basic parametric engines without recuperator are assumed to be directly proportional to the air mass flow rates at the IRP (500 hp) points, which yields the following formula:

$$W_{e-r} = W_o \cdot W_a / W_{a_o} = 43.4 W_a$$
 (1)

(The "square-cube" law, which is often used for gas turbine weight evaluations, is not applicable when scaling down a small engine, since for most of the components at least one dimension, such as blading chord length or sheet metal thickness, cannot be reduced because of manufacturing requirements or other related restrictions.)

The recuperator core weight is calculated from the heat transfer analysis and design data. The recuperator wrap-up hardware consists of an envelope-collector made of 0.04-inch sheet metal with 0.08-inch-thick flanges, the core header and rear support plates, and two baffle plates, all of 0.04-inch thickness.

Constant vs Variable Cycle Temperature Effect on Compressor Operating Conditions

A number of preliminary computations were carried out to achieve favorable compressor operating conditions while maximizing the engine power range at constant temperature. Figure 6 shows the operating line obtained with the following 60% IRP conditions:

$$T_{4.0} = 2600^{\circ} R$$
, E = .65, PR = 8.5 (Cycle I)

using the basic map of Figure 2. Constant cycle temperature was achieved over the range of 275-420 hp with a 7.5% surge margin at the 275 hp point.

The most significant characteristic is the progressively larger mass flow increments needed to achieve a given power increment toward the higher power levels. This is due to the cumulative effects of increasing recuperator pressure losses and decreasing compressor efficiency along the operating line. In this case, the total pressure losses of the recuperator and the connecting ducts increase from 8.5% at 300 hp to 14% at 420 hp, and the adiabatic compressor efficiency decreases from .788 to .744. As a result, the power turbine pressure ratio, which increases from 2.64 at 275 hp to 2.80 at 375 hp, decreases to 2.49 at 420 hp, and the IRP point (500 hp) can only be obtained with an increase of the cycle temperature.

With the matching freedom afforded by variable power turbine geometry, different IRP conditions can be obtained with different passage areas of the power turbine stator, i.e., different evolutions of the cycle temperature over the engine power range. Especially, gradually increasing $T_{4.0}$ from 2600 R at 275 hp to 2772 R at 500 hp yields the operating line shown on Figure 7 with a more favorable compressor match. The

Figure 6. Compressor operating line with maximum power range at constant cycle temperature $T_{4.0}$ =2600 R

Figure 7. Operating lines with cycle temperature $T_{4.0}$ gradually increasing from 2600 R at 275 hp to 2772° R and 2750° R at 500 hp

referred mass flow rate of the power turbine at the 500 hp point has decreased from 3.35 to 2.64 lb/sec, indicating a 21.5% decrease of the stator opening needed to achieve the IRP point. This results in a smaller turbine section, and the smaller variation of stator geometry also minimizes the resulting aerodynamic efficiency penalty.

Constant vs Variable Power Turbine Geometry

The performance of engines with constant and variable power turbine geometry can be compared on the basis of the two extreme cases of equivalent cycle temperature at the 60% IRP design and at the IRP points. In the first case, a large increase of cycle temperature is needed to achieve the IRP point. Conversely, in the second case, part-power conditions are obtained with a large decrease of the cycle temperature, i.e., with a substantial SFC penalty.

Figure 8 shows the operating line obtained for Cycle F ($T_{4.0}$ =2600 R, E = 0.75, PR = 7.9, variable PT geometry). Figure 9 shows the operating line optimized for the constant geometry case with equivalent $T_{4.0}$ =2770 R at the IRP point. The cycle temperature at the 60% IRP point drops to 2387 R, yielding an SFC of .467 that compares with .432 for the cycle with variable power turbine geometry. Figure 10 compares the SFC's over the entire power range. Table 3 lists the SFC's for the various power ratings of the mission assumed in Table 2.

TABLE 3. SFC COMPARISON OF ENGINES WITH VARIABLE AND CONSTANT POWER TURBINE GEOMETRY

Power (hp)	50	200	275	375	500	
SFC (lb/hp-hr) Constant PT Geometry	0.858	0.529	0.479	0.441	0.413	Cycle FC
SFC Variable PT Geometry	0.761	0.476	0.437	0.417	0.413	Cycle F
ΔSFC	-0.097	-0.053	-0.042	-0.024	0	

Since the mission legs are flown at low altitudes, the actual SFC's are essentially equivalent to those at sea level static conditions (for the highest average altitude of 3000 ft. of the cruise leg, the SFC is only 2% smaller than the SLS value). From Table 3, the mission fuel savings for

Figure 8. Operating line for cycle F with variable power turbine geometry

Figure 9. Operating line for constant power turbine geometry and $T_{4.0}^{\rm c}$ = 2770 R at 500 hp

Figure 10. SFC comparison of cycles with constant and variable power turbine geometry

the variable geometry engine consequently is:

This fuel weight savings is higher than the additional weight of the variable power turbine geometry. Moreover, the mission life fuel savings is substantial even for a minimum engine mission life of 5000 hours:

$$W_{f_{tot}} = 18.6 \cdot 5000/2 = 46,500 lb per engine.$$

Assuming a conservative fuel price of \$1 per gallon, the mission life fuel cost savings is \$7000, which substantially exceeds the additional cost of the variable power turbine geometry.

For the parametric study, variable power turbine geometry is assumed for all cycles and constant geometry is reconsidered for the recommended cycle only.

Recuperator Design Analysis

Preliminary heat transfer analysis and design optimization have been conducted for the waveplate and tubular recuperators shown on Figures 4 and 5 using the cycle data of point M of Figure 1, which was initially considered as a candidate with constant temperature between 60% and 100% IRP.

For the waveplate type, the three core configurations shown on Figure 11 have been analyzed. For the tubular type the staggered arrangements shown on Figure 12 have been analyzed, using the dimpled and finned tube configurations shown on Figure 13.

Pressure losses and heat transfer data used in the analysis are based on in-house test results for the friction factors f and the Colburn j-factors of the waveplate recuperator. For the tubular recuperator, in-house test results for the inner air side and published data for the gas side flow and heat transfer conditions are used.

RESULTS OF THE PRELIMINARY CYCLE AND RECUPERATOR ANALYSIS

Cycle Analysis

The compressor operating lines have been defined for the 12 selected parametric cycles. All use the same representative point A (85% of

MODULE NO. 1

- 0.006 in. PLATES
- PLATE HEIGHT
 - "A" 0.0385 in.
 - "B" 0.0335 in.

MODULE NO. 2

- 0.006 in. PLATES
- PLATE HEIGHT
 - "A" 0.040 in.
 - "B" 0.040 in.
- 9.5 PERCENT LESS PLATES
- 19.2 PERCENT INCREASED GAS FLOW AREA (A-A)

015 006 "A" PLATE

MODULE NO. 3

- 0.006 in. PLATES
- PLATE HEIGHT
 - "A" 0.028 in.
 - "B" 0.028 in.
- 26.7 PERCENT MORE PLATES
- 42.8 PERCENT INCREASED GAS FLOW AREA (A-A)

Figure 11. Waveplate recuperator core modules

DIMPLED TUBES

FINNED TUBES

$X_T = 1.5 D_O$	$X_T = 1.25 D_0$	$D_{FIN}/D_0 = 1.25$	$D_{FIN}/D_0 = 2.0$
$X_{L} = 1.0 D_{O}$	$X_{L} = 1.0 D_{O}$	$X_T = 2.0 D_O$	$X_T = 3.0 D_O$
		$X_L = 1.0 D_O$	$X_L = 1.5 D_O$

Figure 12. Staggered tube arrangements

- B Dimple Pitch = 0.1875 in.
- D Tube Diameters = .10, .15, .20, .25 in.
- ⁶/D Dimple Height/Diameter = .0588, .105, .155

Figure 13. Dimpled and finned tube geometries

referred speed for the 60% IRP points) of the basic map. The IRP cycle temperatures $T_{4.0}$ have been selected so that the corresponding compressor operating points lie around 95% of referred design speed, i.e., near the limit past which compressor efficiency rapidly decreases on the operating line. This ensures power turbine expansion pressure ratios that continuously increase with increasing power and also provides for adequate altitude performance margin. For all cycles, $T_{4.0}$ is assumed to increase linearly from 275 hp (55% IRP) to 500 hp (IRP). Figure 8 shows the operating line for Cycle F, which is typical of the compressor operating conditions obtained in the preliminary cycle analysis.

Figure 14 shows plots of SFC at 60% IRP vs cycle temperature. The curves exhibit minimum SFC's in the range $T_{4.0} = 2400-2500^{\circ}R$. The main reason for the SFC increase beyond that temperature level is the detrimental effect of the turbine cooling air bypassing the heat exchanger. Figure 15 shows the fuel quantity consumed for the helicopter mission assumed in Table 2. The trend is similar to that shown on Figure 14, indicating that cycle temperatures below $2300^{\circ}R$ at 60% IRP are not competitive for the moderate recuperator effectiveness levels likely to be used (.6-.8) in helicopter applications.

For the refined parametric study, the cycle matrix will be selected following the calculation of engine + mission fuel weight.

Recuperator Analysis

Recuperator core heat transfer analysis and design optimization have been conducted for the following 60% IRP cycle conditions:

$$T_{4.0} = 2800^{\circ} R$$
, PR = 8.5 (Cycle M of Figure 1)

and with the corresponding inner core diameter of 15.3 inches determined according to the assumptions of Recuperator Configuration.

The calculated performance characteristics determine the weight of a core with 15.3 inch inner diameter for the effectiveness range of .6-.85 and total pressure losses ranging from 2-8%.

a) Waveplate Design

Figures 16 and 17 show the design performance of the best waveplate configuration analyzed in the study. It will be seen that the effectiveness achievable with the total core pressure loss $\Sigma \Delta P/P^{\pm}$ 4.5% assumed in the parametric analysis is .832 with an outer core diameter of 27 inches. The corresponding core length L is 5.4 inches and the core weight 83 pounds. This is not necessarily the minimum core weight, since effectiveness and total core pressure loss can be traded off for equivalent cycle performance. This

Figure 14. SFC comparison of cycles A-L at 300 hp (60% IRP)

Figure 15. Mission fuel consumption, Cycles A-L

WAVEPLATE TYPE, CORE NO. 3, ID = 15.3 in.

Figure 16. Waveplate recuperator performance map, preliminary cycle M

WAVEPLATE TYPE, CORE NO. 3, ID = 15.3 in., PLATE THICKNESS = 0.006 in.,

Figure 17. Waveplate core weight

trade-off varies with the effectiveness level, but it is of the order of 1 effectiveness point for 1 percent total pressure loss; i.e., the effectiveness in this case can be decreased to .822 if the total pressure loss is reduced to 3.5%. This yields a core with 26-inch outer diameter, 6.2-inch length, and 84-pound weight. The design with 27-inch outer diameter and 5.4-inch length thus in this case is close to minimum weight. In general, minimizing core weight through $E - \sum \Delta P/P$ trade-off yields a gain of only a few pounds, which has been disregarded for the parametric study. The wave-plate core weights have been determined in the same manner for the effectivenesses that correspond to $\sum \Delta P/P = 4.5\%$ and outer core diameters of 25, 23, and 22 inches (E = .784, .718 and .68, respectively).

b) Tubular Designs

Similarly, the weights of the tubular cores have been determined for the same cycle point data and 15.3-inch inner diameter. For the entire effectiveness range, the U-tube configuration with single cross-flow gas path has been found to be the lightest design concept. In general, the staggered geometry $X_T = 1.25 D$, $X_1 = 1.0 D$ also yields minimum weight within the range $\overline{\Sigma} \triangle P/P = 3-5\%$. Figures 18 and 19 show the performance and the weight of a core made of . 10-inch diameter U-tubes of . 004 inchthickness and dimple parameter E/D = .105 which yields minimum weight for the highest attainable effectiveness level of .8-.85. The intersection of the line $\Sigma \Delta / P / P = 4.5\%$ with the 21.3-inch outer diameter line gives E = .815, L = 8.5 inches, and 32 pounds. Extrapolation toward the 20.3-inch outer diameter yields E = .80, L = 10 inches, and 27 pounds. For the .75 effectiveness level, a minimum weight of 19 pounds is obtained with . 15-inch diameter tubes and a dimple parameter E/D = .155 (Figure 20), and .15-inchdiameter tubes with $\mathcal{E}/D = .105$ yield a minimum weight of 8-11 pounds for .62 - .68 effectiveness (Figures 21 and 22). corresponding U-tube number is given by Figure 23.

The results are plotted on Figure ?;, which shows the tubular core to be markedly lighter than the waveplate core for the entire effectiveness range. The tubular recuperator thus has been selected for the entire parametric study.

The weights shown on Figure 24 pertain to a series of cores designed for one set of air and gas flow rates at given inlet temperatures and pressures and with a 15.3-inch inner core diameter (reference cores). If the core dimensions are assumed to be essentially determined by the gas mass flow rate, approximate core weights for all parametric cycle points can

DIMPLED U-TUBE TYPE, ID = 15.3 in. TUBE DIAMETER D = 0.10 in., \mathcal{E}/D = 0.105

Figure 18. Tubular recuperator performance map, preliminary cycle M

DIMPLED U-TUBE TYPE, ID = 15.3 in., TUBE DIAMETER D = 0.10 in., ϵ /D = 0.105

Figure 19. Tubular core weight

DIMPLED U-TUBE TYPE - ID = 15.3 in. TUBE DIAMETER D = .15 in. - ϵ /D = .155

Figure 20. Tubular recuperator performance map and core weight, preliminary cycle M

Figure 21. Tubular recuperator performance map, preliminary cycle M

DIMPLED U-TUBE, ID = 15.3 in., TUBE DIAMETER D = 0.15 in., $\epsilon/D = 0.105$

Figure 22. Tubular core weight

RECUPERATOR ID = 15.3 in.

Figure 23. U-tube number

Figure 24. Recuperator core weights, preliminary cycle M

then be calculated by means of a direct proportion of the referred mass flow rates of the actual and the reference cores.

The weight of the envelope is determined according to the assumption of Engine Weights for one reference recuperator, and the ratio of total recuperator to core weight is assumed to remain constant for all parametric recuperators. These calculations have been carried out for a reference recuperator with E = .75 and a core weight of 19 pounds as shown in Figure 24. This yields a wrap-up weight of 33 pounds thus a total recuperator weight of 52 pounds (recuperator/core weight factor of 52/19 = 2.74).

Engine + Mission Fuel Weight

The recuperator weights have been entered in Table 4 together with the basic engine and the mission fuel weights. The sum of total engine plus mission fuel weight is shown in the last column. Figure 25 shows the plots of engine + mission fuel weights vs recuperator effectiveness for the three 60% IRP cycle temperatures. The curves exhibit a minimum in the .5-.6 effectiveness range. Clearly, Cycles J, K and L with E=.5 are not competitive with Cycles G, H and I, respectively, with E=.65, since for practically equivalent engine + mission fuel weights, their life mission fuel consumption according to Figure 15 is of the order of 7% higher, resulting in an additional fuel consumption of $(260-243) \cdot 2500 = 42,500$ pounds for an engine mission life of 5000 hours. On the other hand, effectiveness levels in excess of .8 result in heavy recuperators that prohibitively penalize engine + mission fuel weight for all cycle temperatures.

From the results of the preliminary parametric analysis, it appears that cycles with 60% IRP temperatures below 2300° R and recuperator effectivenesses lower than .6 and higher than .8 are not competitive.

TABLE 4. PRELIMINARY PARAMETRIC CYCLE DATA AND ENGINE + MISSION FUEL WEIGHTS

	Cycle Tem	Temperature	Cycle Pressure	ssure	Recuperator		Weights	hts (lb)	
Cycle	T4.0 60% IRP	(°R) IRP	Ratio 60% IRP	IRP	Effective- ness E	Basic Engine	Recup- erator	Recup-Mission erator Fuel	
Ą	2200	2370	4.3	5.7	0.85	183	230	217	630
В	2400	2570	5.4	7.4		152	187	211	550
U	2600	2770	6.5	9.5	0.85	139	166	217	525
D	2200	2370	5.7	7.8	0.75	173	28	238	489
ᅜᆣ	2400	2570	8.9	9.6		148	99	529	443
ĺΨ	2600	2770	7.9	11.4	0.75	138	19	231	430
ט	2200	2370	8.9	9.5	0.65	172	39	255	466
H	2400	2570	8.0	11.5		148	34	243	425
н	2600	2770	8,5	12.4	0,65	138	32	243	413
Ь	2200	2370	8.2	11,7	0.5	176	15	276	467
X	2400	2570	8,5	12,3	-	149	13	260	422
1	2600	2770	8,5	12.4	0,5	137	13	259	409
FC*	2387	2770	7.0	8.7	0.75	142	73	250	465

* Cycle Optimized for Constant Power Turbine Geometry.

Figure 25. Engine + mission fuel weight with tubular recuperator

REFINED FARAMETRIC ANALYSIS

CYCLE MATRIX

As a result of the preliminary cycle analysis, three 60% IRP temperatures $T_{4.0} = 2300$, 2450 and 2600°R, and three recuperator effectivenesses E = .6, .7 and .8, have been selected for the refined parametric analysis. The matrix of the 9 cycles is shown on Figure 26. The cycles are identified by numbers 1-9. The pressure ratio limitation of 8.5 at 60% IRP has been retained in order to minimize PR upscaling of the basic map. Referring to Figure 2, reference point C has been selected for all cycles in order to increase the surge margin to approximately 10% in the critical 40-60% IRP range.

COMPONENTS PERFORMANCE ASSUMPTIONS

Compressor Efficiency

In general, the polytropic efficiency decreases with increasing pressure ratio. This is especially the case for a small engine, for which the small blade height of the rear stage results in aerodynamic losses that increase markedly beyond a pressure ratio of 7-10. The 60% IRP polytropic efficiency has been assumed to decrease from .85 to 5.5 PR to .83 at 8.5 PR according to:

$$\eta_{p_c} = 0.85 \cdot [1-0.04314 (PR/5.5-1)]$$
(2)

Turbine Efficiency

For constant inlet temperature, the polytropic efficiency of a turbine stage decreases with increasing expansion pressure ratio, so that the adiabatic efficiency tends to remain constant over a substantial range of stage pressure ratio. However, as a result of the aerodynamic blade design compromise necessary to accommodate cooling provisions, the adiabatic efficiency of an air-cooled stage tends to decrease with increasing inlet temperature. Based on current experience, the design adiabatic efficiency of the gas producer turbine stage is assumed to be .87 for $T_{4.0} = 2300^{\circ}R$ at 60% IRP and to decrease linearly to .86 at $2600^{\circ}R$.

It is further assumed that the adiabatic efficiency is essentially a function of the isentropic specific work coefficiency $\Psi = \Delta H_1 / U^2$ and that maximum efficiency occurs at the design point, i.e., with $\Psi_{\rm des}$.

For off-design conditions, performance analysis gives power hp, mass flow rate W_g and rpm with a tentatively assumed efficiency η_{ad} . For each condition, ψ = Const · hp/ W_g η_{ad} rpm 2 is calculated and a reference optimum speed rpm $_{ref}$ = rpm $\sqrt{\psi/\psi_{des}}$ is determined.

Figure 26. Cycle matrix for referred parametric analysis

The off-design efficiency, then, is calculated iteratively from the relation

 $(\eta/\eta_{\text{des}})_{\text{ad}} = 1 - (\text{rpm/rpm}_{\text{ref}} - 1)^2$ (3)

For the gas producer turbine, the excursion from optimum rpm is negligible over the entire operating range. On the other hand, the constant speed power turbine is subjected to large excursions from optimum rpm. Furthermore, its efficiency varies as a result of the additional losses due to the variable stator geometry. It is, therefore, essential to minimize those losses by selecting a design point between part power and IRP. The selected design point is at 375 hp (75% IRP) with an adiabatic efficiency of .88. That value is assumed to decrease linearly to .86 at the closed and the opened stator settings corresponding to 275 hp (55% IRP) and IRP for optimum rpm conditions. Relation (3) then is used to calculate the actual efficiency at constant 20,000 rpm over the entire operating range.

Recuperator Off-Design Effectiveness

The variations of effectiveness from the design values assumed at 60% IRP are calculated for the 50, 150, 275, 400, 500 and 550 hp points, and those refined and interpolated values are input in the performance analysis program. For the selected tubular recuperator type, the effectiveness varies only by $\pm 1-2$ percentage points over the operating range.

DETERMINATION OF ENGINE WEIGHT

Equation (1) for the weight of the engine without recuperator, W_{e-r} , is retained. However, W_o is redefined as the weight of a basic representative 800 hp engine with uncooled gas producer turbine rotor ($T_{4.0}$ =2200°R at IRP point) and the lowest cycle pressure ratio of the parametric engines (PR = 7.93 at IRP point, Cycle 1). The effect of cycle pressure ratio and temperature on compressor and turbine weight then is taken into account for the calculation of the actual parametric engine weights.

Effect of Compressor Weight

It is assumed that the lowest IRP cycle pressure ratio of 7.93 (Cycle 1) can be achieved with a 1A + 1C compressor design. For the representative 800 hp engine with a 2A + 1C configuration, the entire compressor section constitutes approximately 18% of the engine weight. The compressor weight breakdown is as follows: Stage 1: 23.8%, Stage 2: 23.6%, Centrifugal Stage: 52.6%. Removing the second stage thus decreases the engine weight by .18 x .236=4.25%. A linear increase of engine weight with pressure ratio is assumed between the two limits of 7.93 (Cycle 1) and 12.325 (Cycle 6), yielding

$$\Delta W/W_o = 0.967 (PR_{IRP} - 7.930) \%$$
 (4)

Effect of Turbine Weight

Cycle temperature affects the weight of the turbine section only. The weight increase of an existing engine has been determined to be 1.94% for a cycle temperature increasing from 2200°R to 2390°R. An engine weight increase proportional to the square root of the temperature increment gives realistic extrapolated values for the higher temperature levels of the parametric engines. This yields

$$\Delta W/W_{o} = 6.601 \left[\frac{T_{4.0}}{2200} - 1 \right]^{0.5}$$
 (5)

The weight of the gas producer turbine can be expected to increase with cycle pressure ratio. On the other hand, the combustor weight decreases with increasing cycle pressure ratio as a result of the decreasing combustor volume. Those effects are comparatively small, tend to cancel each other, and therefore are disregarded in the engine weight evaluation.

Engine Weight Formula

The weight formula for the parametric engines without recuperator thus is

$$W_{c-r} = W_{o} \left[1 + 0.00967 (PR_{IRP} - 7.930) \right] \left[1 + 0.06601 \left[\frac{T_{4.0}}{2200} - 1 \right]^{0.5} \right]$$
 (6)

Applying this formula to the representative 800 hp engine yields its basic weight W_0 . This weight and the corresponding mass flow rate W_{a_0} define the proportionality factor in Equation (1) which now reads:

$$W_0 = 40.1 W_2$$
 (7)

Introducing this relation into Equation (6) finally gives the weight of the parametric engines

$$W_{e-r} = 40.1W_a \left[1 + 0.00967 (PR_{IRP} - 7.930) \right] \left[1 + 0.06601 \left[\frac{T_{4,0}}{2200} - 1 \right]^{0.5} \right]$$
(8)

in function of mass flow rate W_a , pressure ratio PR, and cycle temperature $T_{4.0}$ at IRP conditions.

Recuperator Weight

The core weights have been calculated for all nine tubular recuperators designed in the refined parametric study. Wrap-up weight also has been calculated for each core design. The total recuperator weight is added to W_{e-r} to yield the full engine weight W_e .

ENGINE DEVELOPMENT, ACQUISITION, AND MAINTENANCE COST

Simple formulas also are used to calculate the cost of development, acquisition, and maintenance of the parametric engines. The cost functions can be most conveniently expressed in terms of basic costs and incremental costs that are functions of the differences between the actual and the basic parameters. The latter functions can be quite generally expressed as exponentials. The basic and incremental costs are evaluated from existing engines. All costs are quoted in 1979 dollars.

Engine Development Cost

Development cost is broken down in components and full engine development cost. Components development cost is estimated on the basis of current test rig experience. Full engine development cost is estimated on the basis of the cost assessed for the basic representative 800 hp engine.

a) Compressor development cost is estimated to be \$700 K for the lowest IRP cycle pressure ratio of 7.93 (Cycle 1) and it escalates linearly to \$1 M for the highest pressure ratio of 12.325 (Cycle 6). This yields

$$C_{d_c} = 0.7[1+0.0975(PR_{IRP}^{-7.930})]$$
 \$M (9)

b) Turbine development cost for each stage is estimated to be \$450 K for T=2200°R and it escalates quadratically to \$900 K at 2800°R. Thus.

$$C_{d_t} = 0.45 \left[1 + 13.444 (T/2200-1)^2 \right]$$
 \$M (10)

In this formula $T = T_{4.0}$ for the gas producer turbine and $T = T_{4.5}$ for the power turbine (stator inlet temperatures).

c) Burner development cost is estimated to be \$500 K for $T_{4.0} = 2200^{\circ}R$ and escalates quadratically to \$750 K for $T_{4.0} = 2800^{\circ}R$. This yields

$$C_{d_b} = 0.5 \left[1 + 6.77 (T_{4.0} / 2200 - 1)^2 \right]$$
 \$M (11)

- d) Recuperator development cost C_{d_r} is estimated to be \$500 K for all engines.
- e) The development cost C_{d_m} of mechanical components (gears, bearings, seals) and accessories and the inlet particle separator is estimated to be \$1 M for all engines.
- f) Engine development cost strongly depends upon the cycle temperature, and it has been estimated to be \$30 M for the basic 800 hp representative engine with $T_{4.0}$ =2200°R. IRP $T_{4.0}$ is known for the actual representative engine, and assuming a quadratic escalation with temperature yields

$$C_{d_e} = 30 \left[1 + 12.653 \left[{^T}_{4.0} {_{IRP}} / {_{2200}}^{-1} \right]^2 \right]$$
 \$M (12)

Engine Acquisition Cost

Acquisition cost is estimated on the basis of the cost of the 100th representative 800 hp nonregenerative engine determined for 2500 engines at a production rate of 250 per year. The estimated recuperator cost then is added to yield the full regenerative engine cost.

For a given cycle temperature, the acquisition cost of the engine without recuperator is assumed to be directly proportional to its weight:

$$C_{a_{e-r}} = k \cdot W_{e-r}$$
 (13)

where W_{e-r} is given by Equation (8). Incremental costs are determined in function of the cycle temperature increments.

The incremental cost of an existing engine has been determined to be 3.18% for a cycle temperature increase of 190°R. The incremental engine cost is assumed to be proportional to the square root of the temperature increment. This yields

$$\Delta C_a = 10.81 \left[{}^{\text{T}}_{4.0} {}_{\text{IRP}} / {}_{2200} - 1 \right] {}^{0.5}$$
 (14)

Applying this formula to an engine with $T_{4.0}$ = 2750 R results in an extrapolated incremental cost ΔC_a =5.41%, which is considered realistic. Factoring Equation (14) in Equation (8) yields the acquisition cost of the parametric engines without recuperator. The cost of Cycle 1 engine with $T_{4.0}$ =2480 R, PR=7.93, and W_a =3.704 lb/sec at IRP has been estimated to be \$120,000.00. Introducing this value in the cost formula yields the

proportionality factor k = 0.760. Thus, finally:

$$C_{a_{e-r}} = 30.5W_{a} \left[1 + 0.00967 (PR_{IRP} - 7.930) \right] \left[1 + 0.0660 \left[^{T}4.0_{IRP} / _{2200} - 1 \right] ^{0.5} \right]$$

$$\times \left[1 + 0.1081 \left[^{T}4.0_{IRP} / _{2200} - 1 \right] ^{0.5} \right] \qquad \text{K} \qquad (15)$$

Recuperator cost has been estimated for Cycle 5 with a core of 6.7-inch length, 2520 U-tubes, and 22-pound weight using standard materials and labor cost estimates for one unit and applying a learning curve slope of 80%. Inconel 625 material has been selected for the tubular core because of its outstanding corrosion resistance. Recuperator factored material cost is \$3174.00 and factored labor \$21,686.00. These costs include the exhaust gas collector. Cycle 5 recuperator cost thus is \$24,860.00.

For all parametric cycles, materials cost is assumed to be proportional to core weight and labor proportional to the number of tubes. The recuperator cost is added to $C_{a_{n-n}}$ to yield engine acquisition cost C_{a_n} .

Engine Maintenance Cost

Maintenance cost is assumed to be a function of IRP cycle temperature alone. It has been established for engines with Cycle 4 (IRP T_{4.0} = 2500°R) and Cycle 6 (T_{4.0} = 2845°R) and with the following assumptions:

Engine Total Production	2000 + 500 spar	es
Production Rate	250/yea r	
Production Start	1985 (Calendar	Year l)
Engine Maturity	1990 (Calendar	Year 5)
Mean Engine Life	5000 h r	
Duration of Program	1985-2005	
TBO during Maturing Period	Engine Cycle 4	Engine Cycle 6
(Calendar Year 1-5)	600 - 1000 hr	300 - 500 hr
	CY 1-5	1-5

On-Condition Maintenance for engines in operation beyond CY 5.

Engine Fleet during CY 1-5: 70% of operational engines Engine Fleet during CY 6-15. 90% of operational engines

Engine Utilization: 500 hr/yr

With those assumptions, maintenance cost has been calculated as follows:

Engine Cycle 4 \$104,044.00/engine Engine Cycle 6 \$111,889.00/engine

Assuming a quadratic escalation with temperature increase, this yields

$$C_{\rm m} = 104.044 \left[1 + 3.959 \left(T_{4.0} / 2500 - 1 \right)^2 \right]$$
 \$ K (16)

where T_{4.0} is the cycle temperature at IRP.

RESULTS OF THE REFINED CYCLE AND RECUPERATOR ANALYSIS

Cycle Analysis

Table 5 lists the main characteristics of Cycles 1-9.

TABLE 5. PARAMETRIC CYCLE CHARACTERISTICS

	60% IRP (300 hp)				IRP (500 hp)				
Cycle	W _a (lb/sec)	PR	T _{4.0}	E	W _a (lb/sec)	PR	T _{4.0} (°R)	E	
1	2.674	5 ,5 00	2300	0.800	3.704	7.930	2480	0.800	
2	2,417	6.300	2450	0.805	3.351	9.186	2655	0.803	
3	2.297	7.200	2600	0.817	3.167	10.401	2835	0.813	
4	2.615	6.800	2300	0.701	3.641	9.897	2500	0.682	
5	2.415	7.700	2450	0.702	3.350	11.189	2675	0.683	
6	2.307	8.500	2600	0.694	3.188	12.325	2845	0.672	
7	2.661	7.000	2300	0.633	3.685	10, 162	2515	0,612	
8	2.472	8.500	2450	0.591	3,382	12,229	2695	0.568	
9	2.321	8.500	2600	0,613	3.194	12.286	2850	0.592	

Figures 27-29 show the SFC's over the entire operating range for parametric Cycles 2-9. Figure 30 shows the compressor operating line for Cycle 5 as a typical example of the conditions obtained for the entire cycle matrix. Detailed Cycle 5 data are listed in Appendix A. All cycles use the compressor map consistently; i.e., all 60% IRP points correspond to point C of the basic map of Figure 2 with a 10% surge margin, and all IRP points fall between 94.5 and 95.5% of referred design speed. Variable power turbine stator geometry is used between 275 hp (55% IRP) and 500 hp (IRP) and cycle temperature $T_{4.0}$ increases linearly with power between those limits.

Figure 27. SFC comparison of cycles with $T_{4.0} = 2300^{\circ}R$ at 60% IRP

Figure 28. SFC comparison of cycles with $T_{4.0} = 2450^{\circ} R$ at 60% IRP

Figure 29. SFC comparison of cycles with $T_{4.0} = 2600^{\circ} R$ at 60% IRP

Figure 30. Operating line, cycle 5

Recuperator Design Analysis

Table 6 lists the 60% IRP aerodynamic design data. The calculation of the inner core diameters yielded values between 16.8 inches (Cycles 3, 5, 8) and 17.6 inches (Cycle 1). A common inner core diameter ID=17.2 inches was selected for the nine recuperators. In sizing the recuperator for Cycle 1, it was found that as a result of the low heat transfer coefficient on the comparatively low pressure air side, the required .8 effectiveness level could not be achieved without prohibitive core dimensions and weight.

TABLE 6. 60% IRP RECUPERATOR DATA FOR REFINED PARAMETRIC ANALYSIS

Core ID=17.2 inches

	A	IR SIDE		GAS SIDE				
Cycle	P _{in} (psia)	T _{in}	W a (lb/sec)	Pout (psia)	T. in (^O R)	W g (lb/sec)		
1	80.02	91 5. 6	2.564	15.00	1636.3	2.681		
2	92.39	963.8	2.236		1662.7	2.448		
3	104.75	1008.1	2.032		1666.8	2.403		
4	98.93	987.1	2.502		1565.0	2.630		
5	112.03	1033.8	2.225		1599.0	2.455		
6	123.67	1072.4	2.067		1615.5	2.470		
7	101.84	998.0	2.500		1555.1	2.636		
8	123.67	1072.4	2.243		1468.8	2.483		
9	123.67	1072.4	2.065	15.00	1613.6	2.477		

For E = 0.80 (Points 1, 2, 3), tube diameter D = 0.1 inch and dimple factor $\mathcal{E}/D = 0.105$ are optimum. Optimum design conditions for E = 0.70 (Points 4, 5, 6) are D = 0.15 inch and $\mathcal{E}/D = 0.105 + 0.155$, and D = 0.15 inch and $\mathcal{E}/D = 0.105$ for E = 0.60 (Points 7, 8, 9).

Table 7 lists the design characteristics of the eight recuperators (Cycles 2-9) retained for the parametric comparison.

TABLE 7. DESIGN CHARACTERISTICS OF THE TUBULAR RECUPERATORS

Core ID = 17.2 inches

Cycle	2	3	4	5	6	7	8	9
Effectiveness	0.8	0.8	0.7	0.7	0.7	0.6	0.6	0.6
Core Length (in)	12.5	10.0	8.2	6.7	6.5	6.0	5.4	6.0
Core OD (in.)	25.2	24.0	23.7	23.6	22.9	22.7	22.0	21.7
Tube Diameter (in)	0.1	0.1	0.15	0.15	0.15	0.15	0.15	0.15
Tube Number	8100	6150	2500	2520	2100	1900	1500	1375
Core Weight (lb)	79.0	52.0	25.5	22.0	17.0	16.0	11.0	9.0
Recuperator Weight (lb)	131.8	97.6	65.5	59.1	52.2	49.9	42.7	40.8

Figure 31 shows the recuperator performance map for Cycle 1, which was deleted. Figures 32-34 show the recuperator performance map, core weights and tube number for Cycle 5 as a typical example. Detailed Cycle 5 recuperator design data are listed in Appendix B.

The required effectiveness E = .70 can be obtained with $\Sigma \Delta P/P=4.5\%$, a core outer diameter of 23.8 inches, and a core length of 6.7 inches (point A), yielding a weight of 22 pounds with 2520 U-tubes. Equivalent cycle performance can be obtained with E = .695, $\Sigma \Delta P/P = 4.0\%$, yielding a core outer diameter of 23.3 inches, a core length of 7.2 inches (point B), a weight of 21 pounds, and 2480 U-tubes. The differences are insignificant for the purpose of parametric comparison.

Similarly, recuperator designs have been determined for the other cycles from the performance charts generated with the 60% IRP design data of Table 6. Based on the cycles with E=constant over the entire operating range, recuperator off-design effectiveness and total pressure loss have been calculated and the values used for refined cycle analysis. Table 8 shows the recuperator off-design performance for Cycle 5.

DIMPLED U-TUBE TYPE, ID = 17.2 in., TUBE DIAMETER D = 0.10 in., $\xi/D = 0.105$

Figure 31. Tubular recuperator performance map, cycle 1

Figure 32. Tubular recuperator performance map, cycle 5

DIMPLED U-TUBE TYPE, ID = 17.2 in., TUBE DIAMETER D = 0.15 in., E/D = 0.105, TUBE THICKNESS = 0.004 in.,

Figure 33. Tubular core weight, cycle 5

RECUPERATOR ID = 17.2 in., TUBE DIAMETER D = 0.15 in., ϵ/D = 0.105

Figure 34. U-tube number

TABLE 8. RECUPERATOR OFF-DESIGN PERFORMANCE CYCLE 5

Power (hp)	50	150	275	300	400	500	550
E	0.7117	0.7060	0.7042	0.7017	0.6926	0.6825	0.6819
ΣΔΡ/P %	2,08	3.25	4.27	4.53	5.69	7.35	7.94

Mission Fuel and Engine Weights

Taking the SFC data of Cycle 5 as an example, the following mission fuel consumption is calculated:

$$W_f = 0.15 \cdot 50 \cdot 0.787 + 0.15 \cdot 200 \cdot 0.502 + 0.45 \cdot 275 \cdot 0.449$$

+ 0.20 \cdot 375 \cdot 0.421 + 0.05 \cdot 500 \cdot 0.432
= 118.9 \text{ lb/hr} = 237.8 \text{ lb/mission}

The mission fuel weights have been plotted on Figure 35 for Cycles 2-9. The curve joining Cycles 7, 8 and 9 exhibits an inconsistent trend. This is due to the fact that, as a result of the recuperator design analysis, Cycles 8 and 9 were computed with E = .5912, $\Sigma \triangle P/P = 5.24\%$ and E = .6133, $\Sigma \triangle P/P = 4.72\%$, respectively, while the remaining cycles essentially retained the originally assumed effectiveness and pressure loss values.

Engine weight has been calculated as described in DETERMINATION OF ENGINE WEIGHT for Cycles 2-9. As a typical example, Cycle 5 yields the following IRP data:

$$W_a = 3.3497 \text{ lb/sec}, PR = 11.189, T_{4.0} = 2675^{\circ} R$$

The weight of the engine without recuperator follows from equation (8):

$$W_{e-r} = 40.1 \cdot 3.349 \left[1 + 0.00967 (11.189-7.930) \right]$$

 $\times \left[1 + 0.06601 (2675/2200-1)^{0.5} \right] \approx 142.8 \text{ lb}$

Recuperator core weight is 22 pounds, and a wrap-up weight of 37.1 pounds

Figure 35. Mission fuel weight, cycles 2-9

has been calculated. Recuperator weight thus is 59.1 pounds and engine total weight $W_e = 201.9$ pounds.

Figure 36 shows the engine + mission fuel weight for Cycles 2-9. The engine and mission fuel weights also have been entered in Table 9, which shows that the lower mission fuel consumptions are obtained with the heavier engines (Cycles 2 and 3 with . 8 effectiveness recuperators).

TABLE 9. ENGINE AND MISSION FUEL WEIGHTS

		WEIGI	HTS (lb)		
Cycle	Engine minus Recup- erator	Recup- erator	Total Engine	Mission Fuel	Engine plus Mission Fuel
1	-	-	-	-	-
2	140.1	131.8	271.9	217.3	489.2
3	134.6	97.6	232.2	223.1	455.3
4	152.4	65.5	217.9	235.5	453.4
5	142.8	59.1	201.9	237.7	439.6
6	138.0	52.2	190.2	243.7	433.9
7	154.7	49.9	204.6	248.9	453.5
8	145.7	42.7	188.4	256.2	444.6
9	141.3	40.8	182.1	253.5	435.6

Selection of Engine Cycle

In selecting the final cycle, a compromise must be made between minimum fuel consumption and minimum engine + mission fuel weight. For that purpose, a mission fuel weight window $W_f = 225-235$ pounds with a 60% IRP cycle temperature $T_{4.0}$ ranging from 2450 to 2600 R and an engine + mission fuel weight window $W_{e+f} = 432-450$ pounds with an effectiveness range E = .68-.80 have been drawn in Figures 35 and 36. Candidate Cycles A, B, C, D, E, and F have been defined and located in both windows with the help of the interpolation curves of Figures 37 and 38. Cycles A,

Figure 36. Engine + mission fuel weight, cycles 2-9

6 B

Figure 37. Interpolation of candidate cycles A, E and F

Figure 38. Interpolation of candidate cycles B, C and D

E and F lie on a line joining cycle points 3, 5, and 7, i.e., a line of decreasing cycle temperature and effectiveness. Cycles B, C, and D lie on a line joining points 2, 5 and 8, i.e., a line of constant $T_{4.0}$ and decreasing E, on which point B defines a cycle with $W_f = 231$ pounds equivalent to A. Cycle A is favored because of the lower engine + mission fuel weight. Cycles D and E with essentially equivalent W_{e+f} both have higher mission fuel weights W_f than A. Finally, the curve $W_f = 231$ pounds has a minimum slightly to the right of point A, showing that Cycle A achieves the desired compromise with minimum cycle temperature. Cycle A with the following 60% IRP characteristics

$$T_{4.0} = 2520^{\circ} R$$
, PR = 7.4 (Figure 26), E = 0.75

thus has been selected for final recuperator design and cycle analysis.

Figures 39-41 show the performance characteristics of the tubular recuperator and the selected final design data, i.e., E=.76, $\Sigma \Delta P/P=3\%$ (60% IRP), ID = 16.5 inches, OD = 23.5 inches, core length L = 10.0 inches, tube diameter D = .15 inch, dimple factor E/D=.105, core weight $W_c=35/53$ pounds for .004/.006-inch tube thickness and 2750 U-tubes. Figure 42 shows the recuperator performance characteristics over the entire operating range. Detailed cycle and recuperator design and off-design data are listed in Appendices C and D.

Figure 43 shows the final compressor operating line. Figure 44 shows the engine SFC over the entire operating range, together with the mission fuel weight $W_{\rm f}$.

With the IRP cycle data:

 $W_a = 3.1909 \text{ lb/sec}$, PR = 10.809, $T_{4.0} = 2750^{\circ}$ R, Equation (8) yields $W_{e-r} = 135.9 \text{ lb}$.

Recuperator core weight is 35 lb, wrap-up weight 42.3 lb, and total engine weight $W_{\rho} = 213.2$ lb.

Engine + mission fuel weight is $W_{e+f} = 213.2 + 229.5 = 442.7$ lb.

Engine Acquisition cost $C_{a_{e-r}}$ is calculated with equation (15):

$$C_{a_{e-r}} = 30.5 \cdot 3.1909 \left[1 + 0.00967 (10.809-7.930) \right]$$

$$\times \left[1 + 0.06601 (2750/2200 - 1)^{0.5} \right] \left[1 + 0.1081 (2750/2200 - 1)^{0.5} \right]$$

$$= $108,918.00$$

DIMPLED U-TUBE TYPE, ID = 16.5 in., TUBE DIAMETER D = 0.15 in., ϵ/D = 0.105

Figure 39. Tubular recuperator performance map, selected cycle

DIMPLED U-TUBE TYPE, ID = 17.2 in., TUBE DIAMETER D = 0.15 in., ϵ/D = 0.105, TUBE THICKNESS = 0.004 in.

Figure 40. Tubular core weight, selected recuperator

RECUPERATOR ID = 16.5 in., TUBE DIAMETER D = 0.15 in., ϵ /D = 0.105

Figure 41. U-tube number, selected recuperator

Figure 42. Off-design effectiveness and total pressure loss for selected tubular recuperator

Figure 43. Operating line, selected cycle

MISSION FUEL = = 229.5 lb28.32 + 14.65 + 105.65 + 60.21 +20.61 T-0 CRUISE C/H IDLE DESCENT 46.0% 26.2% 9.0% 6.4% 12.3%

Figure 44. Selected Engine SFC (uninstalled)

Recuperator acquisition cost according to Engine Acquisition Cost is:

Materials 3174 · 35/22 = \$ 5,050.00

Labor $21686 \cdot 2750/2520 = $23,666.00$

Recuperator acquisition cost C_{a_r} = \$28,716.00

and the total engine acquisition cost is $C_{a_p} = $137,634.00$

The main characteristics of the selected engine are summarized as follows:

Cycle Data:

60% IRP (300 hp): $T_{4.0} = 2520^{\circ} R$, PR = 7.4,

 $W_a = 2.289 \text{ lb/sec}, E = .76.$

IRP (500 hp): $T_{4.0} = 2750^{\circ} R$, PR = 10.81

 $W_a = 3.191 \text{ lb/sec}, E = .75.$

Weights:

Turbomachinery W_{e-r} = 135.9 lb

Tubular recuperator $W_r = \frac{77.3 \text{ lb}}{}$

Engine W_e = 213.2 lb

Acquisition cost, 100th Engine (1979 dollars)

Turbomachinery $C_{a_{n-r}} = $108,918.00$

Tubular recuperator $C_{a_r} = $28,716.00$

Engine C_{a_0} = \$137,634.00

The above weights and costs are reevaluated in ENGINE WEIGHT and ENGINE COST on the basis of the engine preliminary design.

Waveplate and Tubular Recuperator Weight Comparison

The waveplate recuperator has been sized for the final cycle. Figure 45 shows the performance map and core weight for $\Sigma \Delta P/P = 3.0\%$ and E = .76 at 60% IRP, i.e., recuperator performance data equivalent to those of the selected tubular design. The maps yield a diameter OD=24.8 inches, a core length L = 8.15 inches, and a core weight $W_C = 96$ pounds (Point A). Essentially equivalent cycle performance can be obtained with the following set of design parameters:

E = .75,
$$\Sigma \triangle P/P = 2.5\%$$
, OD = 24.1 inches, L = 9.2 (Point B)
.77 3.5 25.5 7.3 (Point C)
.78 4.0 26.2 6.8 (Point D)

WAVEPLATE TYPE, CORE NO. 3, ID = 16.5 in.

Figure 45. Waveplate recuperator performance map and core weight

yielding core weights of 99, 95 and 94.5 pounds, respectively.

Wrap-up weight is substantially influenced by the design of the core end plates that maintain the waveplates under compression to prevent cross-flow leakage. Assuming end plates of .08-inch thickness reinforced by ribs and tied by four 1/4-inch bolts, a wrap-up weight of 42.5 pounds is calculated; thus $W_r = 94.5 + 137.0$ pounds. Table 10 compares the weights of the engine with tubular and waveplate recuperators.

TABLE 10. COMPARISON OF ENGINES WITH WAVEPLATE AND TUBULAR RECUPERATORS

All weights in pounds.

Recuperator Type	Core Weight	Wrap-up Weight	Recuperator Weight	Turbo- Machinery Weight	Engine Weight
Waveplate 0.006 in.	94.5	42.5	137	135	272
Tubular 0.004/0.006 in.	35/53	42	77/95	135	212/230

For identical payload and mission capability, the lighter engine with tubular recuperator yields a fuel savings that should be evaluated on the basis of a detailed helicopter mission analysis.

Comparison with Constant Power Turbine Geometry and Nonregenerative Engines

For this comparison, the regenerative cycle of the constant geometry engine has been optimized with E = .75 and $T_{4.0} = 2750$ R at IRP. The recuperator is sized at 60% IRP with $\Sigma \Delta P/P = 3.0\%$, i.e., for the same conditions as for the selected variable geometry engine. Figure 46 shows the power turbine efficiency variation for constant rpm over the entire operating range. At the design point, the efficiency of the constant geometry turbine has been assumed 1 percentage point higher, i.e.,

 $\eta_{\rm ad}$ =.89 vs.88, for the variable geometry case. Furthermore, the design point of the constant geometry turbine is set at 60% IRP. This is possible because the referred inlet flow remains constant from 300 to 500 hp and the referred exit flow increases by only 21%, entailing a small performance penalty for the IRP point. The same compromise cannot be made for the power turbine with variable geometry since the

Figure 46. Power turbine efficiency characteristics

additional efficiency penalty that would result from opening the nozzle would require an undesirable cycle temperature increase at IRP, in turn requiring an increase of cooling air flow that would further penalize engine performance. For the selected 375 hp design point, the stator area increases by 13.4% at 500 hp and decreases by 5.6% at 275 hp, indicating a design compromise already strongly favoring part-power operation.

The nonregenerative cycle has been selected with equivalent $T_{4.0}$ at IRP and a pressure ratio PR = 14.0 that can be achieved by a 2A + 1C compressor.

Table 11 compares the SFC's at the various mission power points and the mission fuel weights.

TABLE 11. FUEL CONSUMPTION OF ENGINES WITH VARIABLE AND CONSTANT POWER TURBINE GEOMETRY AND WITHOUT RECUPERATOR

Pow	er	50	200	275	: 5	500	Mission Fuel (lb)
Variable PT Geometry	SFC* (lb/hp-hr)	0. 9883	0.4748	0.4293	0.4026	0.4120	230.6
Constant PT Geometry	SFC*	1.0434	0.5071	0.4544	0.4215	0.4015	241.8
Nonregen- erative Engine	SFC	1.3158	0.5855	0.5248	0.4865	0.4651	281.0

^{*}E = 0.75 = constant

Table 12 compares the various weights and the acquisition costs of the three engines.

For the variable vs constant power turbine geometry engine, the mission fuel savings for equivalent helicopter gross weight are 11.2 pounds, i.e., 28,000 pounds for a 5000-hour mission life and \$4,200.00 at a conservative cost of \$.15 per pound. Those savings are higher for equivalent payload and mission capability. The savings are based on the power turbine efficiency characteristics shown on Figure 46 which

TABLE 12. COMPARISON OF ENGINE WEIGHTS AND ACQUISITION COSTS

Engine	60% IRP	Ð,	IRP		Mission Fuel Weight	Recup- erator Weight	Engine Weight We	Engine + Mission Fuel	7
Туре	T4.0(R)	PR	T _{4.0} (°R) PR	PR	Wf (1b)	W _r (1b)	(1b)	Weight W _{e+f} (lb)	С _а (\$)
Variable PT Geometry	2520	7.40	2750	10,81	10,81 230,6*	77.3	213.2	443.8	139,936
Constant PT Geometry	2322	6.50	2750	8.20	8,20 241.8*	8.96	229.5	471.3	149,274
Nonregen- erative Engine	2374	10,91	2750	14,00	14.00 281.0	ļ	127.1	408, 1	84,852

*E = 0.75 = Const.

require careful design of the variable stator assembly to minimize the additional blading mismatch and clearance losses.

For the recuperative vs the nonregenerative engine, the mission fuel savings for equivalent gross weight are 50.4 pounds, i.e., 126,000 pounds for the mission life and \$18,900.00, while the additional acquisition cost of the recuperative engine is \$55,084.00, leaving an engine acquisition + mission life fuel cost differential of \$36,184.00 in favor of the nonregenerative engine.

The above savings are reevaluated on the basis of the preliminary engine design.

POTENTIAL IMPROVEMENTS OF THE REGENERATIVE ENGINE

Table 1 indicates the SFC improvement that can be achieved through components efficiency improvements. For an optimum cycle with .75 recuperator effectiveness, 2400-2600°R 60% IRP temperature and .84 polytropic efficiency index, a 1 percentage point increase of the compressor and turbine sections efficiencies yields an SFC improvement of roughly 3%. The development of rotor tip clearance control offers the most promising means to improve components efficiency for small gas turbines. As a result, the polytropic efficiency index can be expected to increase from .84 to .86 during the next decade, yielding a 6% improvement of the regenerative engine SFC.

Improvements of turbomachinery components obviously benefit the conventional as well as the regenerative cycle and do not substantially alter their performance comparison. The performance of the regenerative engine, however, is affected by two inherent penalties:

- (a) Recuperator pressure losses
- (b) Cooling air bypassing the recuperator

Reducing those penalties results in an intrinsic performance improvement of the regenerative cycle.

Recuperator pressure loss can be minimized only at the cost of additional weight. For the selected cycle, the total recuperator pressure loss of 3% constitutes a favorable compromise between weight and SFC. The second penalty could be eliminated by introducing turbine hardware that needs no cooling. Ceramics offer the most promising solution of the problem.

For the foreseeable future, cooling air quantities can be minimized by:

- (a) Using a ceramic gas producer nozzle and improved heat resistant materials, among which single-crystal alloys with MCrAlY coating presently offers the best potential improvement over C101 and C103.
- (b) Improving the part-speed compressor surge margin
- (c) Bypassing the recuperator gas side at the higher engine ratings.

CERAMIC TURBINE AND IMPROVED MATERIALS

Figure 47 shows the SFC improvements achievable for Cycles 4,5, and 6 (60% IRP T4.0 = 2300, 2450, 2600°R and E=.7) by introducing uncooled ceramic gas producer nozzle and rotor components. The effect of the ceramic nozzle is to shift minimum SFC from $T_{4.0}$ = 2350 toward 2500°R, i.e., to the temperature level selected as compromise between minimum SFC and minimum engine + mission fuel weight for the proposed engine.

Figure 47. Potential SFC improvements through ceramic turbine components

The SFC gain at that temperature is approximately 3.4%. Adding a ceramic rotor reverses the SFC-temperature trend, and an additional 8.4% or a total 11.8% SFC gain can be achieved by going to $T_{4.0} = 2600^{\circ}R$ at IRP.

The introduction of a ceramic gas producer nozzle can be confidently considered within a 5-10-year development period. A ceramic gas producer turbine rotor is not considered practically feasible within the next decade. From Figure 47, introducing improved heat resistant materials for the rotor in addition to the ceramic nozzle can be expected to yield an additional 3-5% SFC improvement.

The ceramic nozzle reduces the mission fuel consumption of the selected regenerative engine by 5.2% to 218.7 pounds, the engine weight to 204.2 pounds, and the acquisition cost to \$131,723.00. For the nonregenerative engine, the ceramic nozzle reduces the mission fuel consumption by 1.7% only, i.e., to 276.2 pounds, the engine weight to 120.3 pounds, and the acquisition cost to \$80,286.00. On the basis of equivalent gross weight, the mission fuel savings for the recuperative engine are 57.5 pounds, i.e., 143,750 pounds for the 5,000-hour mission life, and \$21,562.00, while the additional cost of the regenerative engine is \$51,437.00. The cost differential in favor of the nonregenerative engine has been reduced from \$36,184.00 to \$29,875.00.

COMPRESSOR SURGE MARGIN INCREASE

A 10% increase of the part-speed surge pressure can be obtained by replacing the combined axial-centrifugal by a two-stage centrifugal compressor. For the basic 2A + 1C map used in this analysis, this corresponds to shifting the 60% IRP matching point to its surge line. Representative point E (Figure 2) has been selected for the 60% IRP condition with cycle data essentially equivalent to those of the proposed engine. Provided that the efficiency contours are not drastically shifted together with the surge line, the effect of the increased surge margin is to minimize the efficiency degradation toward IRP. This minimizes the IRP temperature and permits a decrease of the cooling air quantity, which in turn yields an improved SFC.

The decrease of IRP cycle temperature, however, also results in a decrease of specific power and an increase of engine weight that tends to offset the mission fuel savings. In order to assess this trade-off, two IRP temperatures have been investigated: $T_{4.0}=2600^{\circ}R$, which is the lowest value achievable without running off the compressor map, and $T_{4.0}=2675^{\circ}R$, midway between the lowest and the actual 2750 R value of the selected cycle.

Figure 48 shows the operating line obtained for the case of the lower IRP temperature level of 2600° R, assuming an engine with a ceramic gas producer turbine nozzle. The rotor cooling air has been decreased from 5.7% to 3.3%. For the case with $T_{4.0}$ = 2675° R at IRP, the cooling air is reduced to 4.4%.

Table 13 compares the calculated performance characteristics of engines fitted with a ceramic gas producer turbine nozzle. It will be seen that keeping the lowest possible cycle temperature increase toward IRP penalizes engine specific power to the extent that the mission fuel savings are more than offset by the increase of engine weight. By allowing the IRP cycle temperature to increase to 2675 R, the engine with a 2C compressor configuration achieves an engine + mission fuel weight W_{e+f} that is equivalent to that of the proposed engine with a 2A + 1C design and a slight advantage in mission life fuel savings. The additional benefit of a 75 R decrease of the IRP cycle temperature is not considered significant for the comparatively moderate turbine inlet temperature level considered in this study.

The higher part-speed surge margin achievable with a 2C compressor thus cannot be used to substantially improve the overall economy of a regenerative engine configured with a combined axial-centrifugal compressor.

RECUPERATOR BYPASS

Bypassing the recuperator gas side at the higher power ratings eliminates the gas side pressure loss and permits an IRP temperature decrease without specific power loss. This trade-off is materialized for a temperature decrease of 50° R, i.e., $T_{4.0} = 2700^{\circ}$ R at IRP, which enables a reduction of the rotor cooling air quantity from 5.7% to 4.8%. With this minor improvement, the performance calculation shows no reduction of the mission fuel consumption, the higher IRP consumption without regenerator offsetting the part-power gain for the assumed mission.

An improvement might be achieved if bypassing were used to design a smaller recuperator, trading off the resulting engine weight savings and the SFC penalty due to the higher recuperator pressure losses. Such a trade-off, however, has not been investigated in this study.

Figure 48. Operating line for a 2C compressor with increased surge margin

TABLE 13. COMPARISON OF VARIOUS ENGINE TYPES

(All Engines Fitted with a Ceramic Gas Producer Turbine Nozzle)

Engine	9	60% IRP			IRP		Mission	Engine Weight	ί.	Mission Life	Life
Tvne	PR	٦,٠	W	ad.		W	Weight	M	` }		29
		(^o R)			⁻ 4.0 (^o R)	"a (1b/sec)		(1b)	" e+f (1b)	Wf**(1b)	***\$
Nonregen- erative	10.88	2371	2,304	14.00 2750		2,742	276.2	120.3	396.5	ı	ı
2A + 1C* Selected Recuperative Cycle	7.40	2520	2.173	10.44 2750	2750	2, 929	218.7	204.2	422.9	422.9 143,750	21,562
2C* Lower IRP T4.0	7.40	2520	2.076	12,10 2600	2600	3, 331	215.0	217.0	432.0	432.0 153,000	22,950
2C* Middle IRP T4.0	7.40	2520	2.117	11.08 2675	2675	3.067	216.8	206.1	422.9	206.1 422.9 148,500	22,275

^{*} E = 0, 75 = Const. ** Fixed helicopter gross weight *** At \$1,00/gal.

LIFE-CYCLE COST ASSESSMENT

A preliminary life-cycle cost assessment has been undertaken to ensure that the fuel economy achievable with the selected cycle is not offset by prohibitive overall operating cost penalties. Only engine development, acquisition, and maintenance costs have been considered in addition to mission life fuel cost. Those costs have been alculated in 1979 dollars and with a fuel cost of \$1.00 per gallon. Table 14 lists the various cost items for Cycles 2-9 retained in the refined parametric analysis and for the selected engine without ceramic nozzle.

Engine life-cycle cost remains practically constant over the 0.6-0.75 recuperator effectiveness range. It increases substantially at higher effectiveness levels essentially as a result of sharply increasing recuperator acquisition cost.

The selected cycle thus achieves an optimum engine performance and life-cycle cost compromise.

TABLE 14. ENGINE LIFE-CYCLE COST (LCC) COMPARISON

						TCC	$= C_d + C_a$	$LCC = C_d + C_a + C_m + C_f$	
Cycle Characteristics at IRP	haracte	ristics	at IRP			COST	COST (1979 K\$)		
Cycle	PR	T4.0	<u> </u>	Develop-	Acquisi-	Mainte-	Mission	Engine Life	D ICC
		(⁰ R)		ment C _d	tion Ca	nance C _m	Fuel Cf*	Cycle LCC	
1	7.93	2480	0.800	•	•	•	•	,	ı
2	9.19	2655	0.803	20.031	192.88	105.627	81.488	400.027	45.922
٣	10.40	2835	0.813	26.473	178.789	111.440	83, 663	400,365	45.260
4	9.90	2500	0.682	16.388	145.729	104.044	88.313	354.474	-0.631
5	11.19	2675	0.683	20.784	138.934	106.062	89,138	354.918	-0.187
9	12.33	2845	0.672	27.008	131.642	111.889	91.388	361.927	6.822
7	10.16	2515	0,612	16.692	141.146	104.059	93.338	355, 235	0.130
∞	12.23	2692	0.568	21.438	130.990	106.550	96.075	355.053	-0.052
6	12.29	2850	0.592	27.144	123.480	112.117	95.063	357.804	2.699
Selected	10.81	2750	0,750	23.245	137.634	108.163	86.063	355.105	0.0

*At \$1,00 per gallon

PRELIMINARY MECHANICAL DESIGN

ENGINE CONFIGURATION

As many as possible of the design concepts and features of the 800 hp representative engine have been retained for the proposed engine. Figure 49 shows a photograph of the representative engine. Figure 50 shows a cross section of the proposed recuperative engine with the following main design features:

- (a) Single spool 66,280 rpm gas producer with a 2A+1C compressor and a single-stage axial turbine
- (b) Single can combustor with 360 degree scroll
- (c) Free single-stage axial power turbine with constant 44,000 rpm and variable stator geometry
- (d) Axial exit diffuser followed by partial flow path reversal into the recuperator entrance collector
- (e) Cylindrical U-tube recuperator wrapped around the power turbine/diffuser section with air inside the tubes and gas flowing over the tubes in a single cross flow path
- (f) Modular construction with integrated inlet particle separator and oil system.

Compressor

The inlet particle separator and the compressor are scaled-down designs of the representative 800 hp engine. Based on the uninstalled data of the selected cycle, the scale factor of the compressor section is determined by the referred flows $W_a\sqrt{\theta}/\delta$ of the proposed and the representative engines at the corresponding 95% of design speed. This yields a rotational speed of the proposed engine gas producer N = 66,280 rpm.

Because of the comparatively large blade chords of the representative compressor, the axial and the radial dimensions are scaled down in the same proportion.

Turbine Section

The turbine section is new and the flow path has been optimized for

Figure 49, 800 hp representative engine cross section

Figure 50. Recuperative engine cross section

single-stage gas producer and power turbines with minimum radial transition between the two stages.

(a) Gas Producer Turbine

The gas producer turbine is designed for the IRP conditions with the following data:

W_{4.1} = 3.035 lb/sec (rotor inlet)

P_{4.0} = 148.8 psia (stator inlet)

T_{4.1} = 2692^oR

η_{ad_{GPT}} = .863

N = 66,280 rpm

Power = 703.5 hp

A preliminary calculation showed that favorable rotor flow conditions can be obtained with forced vortex flow conditions corresponding to a constant absolute stator exit angle α_1 . For the final design, a comparatively small angle ($\alpha_1 = 19^{\circ}$) has been selected in order to maximize blade height and minimize the supersonic stator exit Mach level.

Channel wall cooling generates a total temperature profile with lower temperatures at the hub and the tip sections. This is used especially at the hub section to minimize blade and disk metal temperature and to maintain high material strength. The radial temperature profile shown on Figure 51 has been assumed for design analysis. Accordingly, the work output of the rotor is not constant radially but varies linearly with the total inlet temperature. Figure 52 shows the velocity triangles for the hub, 50% mass flow, and the tip sections. The turbine is designed with constant rotor tip radius which, together with the forced vortex flow (Vu'r)tip larger than (Vu'r)hub, keeps the relative rotor exit flow conditions below the critical transonic level at the tip section ($M_{W_2} = .957$). The rotor hub conicity is prolonged upstream through the stator section in order to generate a meridional flow path curvature that minimizes absolute and relative hub Mach number levels at rotor entrance.

Figure 51. Assumed temperature profile at entrance of gas producer turbine rotor

Figure 52. Velocity triangles, gas producer turbine

The turbine is designed with substantial hub reaction $(W_2/W_1 = 1.2)$ and practically no exit swirl, which minimizes the losses of the transition duct to the power turbine.

The flow conditions have been calculated with a preliminary design analysis code that solves the complete radial equilibrium equation along discrete channel stations. The printout of the input and output data is attached in Appendix E. Figure 53 shows the gas producer turbine flowpath.

(b) Power Turbine

The power turbine is designed for the 75% IRP condition with the following data:

W_{4.5} = 2.582 lb/sec (stator inlet)
P_{4.5} = 41.0 psia
T_{4.5} = 2020°R
η ad_{PT} = .88
N = 44,000 rpm
Power = 376.9 hp

Figure 54 shows the assumed inlet temperature profile. Figure 55 shows the design velocity triangles obtained with an average stator exit angle $\alpha_3 = 20.7^{\circ}$ and N = 44,000 rpm. Stator exit flow angle variation $\Delta \alpha_3$ is -1.2° for the 275 hp closed and + 2.9° for the 500 hp opened stator positions. Although this variation is comparatively small, it is necessary to minimize the stator blading hub and tip clearances. This is done by providing a blading that moves between concentric spherical inner and outer walls. The clearance then remains constant for all stator setting angles. This, however, imposes an essentially constant annulus area across the stator blading, resulting in a large acceleration of the axial velocity component. Since the turbine has to be designed with minimum exit Mach level to minimize downstream diffuser losses, the transition duct between the gas producer and the power turbine in this case would have to be designed with a larger flow deceleration than otherwise necessary. The proposed compromise is to

Figure 53. Meridional flowpath and streamline pattern, gas producer turbine and transition duct

Figure 54. Assumed temperature profile at entrance of power turbine

Figure 55. Velocity triangles, power turbine

1557.1

1526.8

design the stator in two separate sections: (a) a fixed blading that generates part of the tangential flow momentum in a channel of increasing annulus area, with a deceleration of the axial velocity component, followed by (b) a movable blading that increases the momentum to its final value with minimum axial velocity acceleration.

Figure 56 shows the meridional flow path. The flow data are listed in the program input and output printout shown in Appendix F.

With the above design provisions, the meridional velocity on the 50% streamline decreases from 550 to 480 ft/sec across the fixed stator blading (Program stations 7-9) and it increases to 668 ft/sec at exit of the variable stator (Program station 10, velocity triangles station 3). The average rotor exit Mach level (Program station 11, velocity triangles station 4) is .409 at the 375 hp design point, below .4 for the lower mission power ratings, and increases to .5 at 500 hp. The hub reaction has been selected high enough ($W_4/W_3 = 1.321$) to remain positive at the closed stator position for the 200 hp rating.

Single Can Burner

The burner has an air-assisted atomizing injector, and the flame tube and scroll designs are similar to those developed for a 1500 hp vehicular engine. The can volume is determined by a heat release rate of 6 · 10⁶ Btu/hr.atm·ft³ assumed at the 500 hp design conditions.

Turbine Exit Diffuser

There is sufficient axial space between the power turbine and the recuperator rear face to design an efficient diffuser without additional increase of the engine length. Thus, only part of the flow has to be reversed by 180 degrees before entering the recuperator. This has been used to decrease the curvature of the outer diffuser wall turn. Within the available length, it is possible to design an optimum annular diffuser with one splitter wall only. For the outer diffuser section (60% of the flow), the outer cone angle is 5.7 degrees and the inner core angle (average slope of the 40% streamline) is -2.2 degrees. With a total divergence angle of 7.9 degrees, and an aspect ratio $L/h_i = 16$, Figure 57 gives a static pressure coefficient $2\Delta P/\rho_i V_i^2 = .72$. This results in a total pressure loss of 2.4% for the diffusion from the turbine exit Mach level of .40 down to .1. For the inner diffuser section (40% of the flow),

Figure 56. Meridional flowpath and streamline pattern, power turbine and diffuser.

Figure 57. Performance of annular diffusers

the total divergence angle is 10.5 degrees and a slightly higher total pressure loss would be calculated. However, the inner diffuser configuration substantially departs from that with equal and opposite inner and outer core angles for which the results of Figure 57 apply. Since the overall passage area and aspect ratios are essentially identical and the wetted area per unit of mass flow is only 10% larger, the lower diffuser section is assumed to have a 10% higher total pressure loss. The overall conical diffuser pressure loss thus is 2.5% and an additional .3% has been charged for downstream flow turning, resulting in a total diffuser pressure loss of 2.8% at the 375 hp power turbine design point, which reduces to 2.3% at 60% IRP.

Exhaust Collector

Originally, an exhaust collector with sideward exit was envisioned. This collector type was found to be heavier than an annular design with axial exit and it is also less favorable for engine installation. Since the flow exits radially and must be turned toward the axial direction with minimum upstream interference, the recuperator baffle plates are extended radially beyond the outer core diameter and curved backward to provide for favorable exit conditions. The recuperator exit velocity is of the order of 20 ft/sec and the 90-degree turn results in a negligible total pressure loss.

Inlet Particle Separator

The total pressure loss of the inlet particle separator is evaluated from the value measured at the corresponding 95% design speed of the representative engine and corrected in ratio of the square of the referred mass flow rates. This yields a total pressure loss of 4.6 inches of water, which constitutes a 1.2% loss that reduces to .6% at 60% IRP.

Engine Modular Construction

Figure 58 shows an exploded cross section illustrating the main engine assembly and modular construction. Nine modules are defined as functional engine subassemblies:

- 1. The Gas Producer Module, which is comprised of the compressor with housing and diffuser, the forward main frame, the gas producer turbine with the hot gas scroll, and the accessory drive gears.
- 2. The Inlet Particle Separator Module.

Figure 58. Engine modular construction

- 3. The Combustor Module.
- 4. The Power Turbine Module, which is comprised of the rotor disk and blade assembly and the support frame with two bearings and one seal.
- 5. The Power Shaft Module with forward support frame, two bearings, and the sun gear.
- 6. The Power Turbine Exit Diffuser Module.
- 7. The Recuperator Module.
- 8. The Output Shaft Module, which is comprised of the reduction gear with planet gear carrier and three planet gears, the output shaft with one gear, two bearings and one seal, the inner and outer support housings, and the torquemeter sensor.
- 9. The Accessory Gearbox Module, which is comprised of the gearbox, the fuel and oil pumps, the fuel control, the starter/generator, the alternator/exciter/regulator group, and the particle separator scavenge blower.

MECHANICAL DESIGN CONSIDERATIONS

Gas Producer

The compressor is scaled from the 800-hp representative engine. Its rotational speed, however, is lower than the scaled speed, so that all stresses are lower than those of the representative compressor.

The first compressor rotor is an integrally forged blade-disk of Ti (6A1-4V) material. The highest stress is in the axial spacer under the exit guide vane and is 80,000 psi. The material has a 2% yield strength of 96,000 psi. The disk has a life in excess of 80,000 cycles.

The second rotor is an integrally cast Custom 450 alloy design. The highest stress is at the disk bore and is 114,000 psi. The material .2% yield strength is 127,000 psi. The disk has a life in excess of 50,000 cycles.

The centrifugal compressor is machined from a forging of Ti (6 Al-2 Sn-4Zr-6Mo). The maximum stress in the disk is 62,000 psi. The material has a .2% yield strength of 100,000 psi. The disk life is

in excess of 100,000 cycles. The stages are designed so that the blades fail before the disks, with failure occurring above 130% of design speed. The engine casing is designed to contain the blades.

The axial and centrifugal rotors and the conical spacer are mounted on the compressor shaft and clamped axially by a nut at the back face of the centrifugal rotor. The balanced rotor assembly is not disassembled for engine buildup.

The forward main frame consists of an outer casing connected to an inner casing by six radial struts. This is a single casting of MAG AZ 91 alloy. The outer casing provides the attachment points for the particle separator at the forward face, the accessory groups on top, and the compressor casing at the rear phase. The inner casing provides the attachment points for the output shaft assembly at the forward face, the power shaft assembly and the accessory gear drive at the inner flanges, and the forward end of the gas producer rotor at the rear face.

The compressor casing is a double layer structure. The inner housing supports the variable inlet, variable first stage, and fixed exit guide vanes. It is split axially to fit over the assembled rotor. The outer casing is a full cylinder which slides over the inner assembly. Both casings are of Ti (6 Al-4V) material. The variable vanes are of cast Custom 450 alloy and the fixed exit guide vanes are of Steel 321.

The air diffuser, which provides the rear main frame for the engine, is a cast/sheet metal welded/brazed assembly of Inco 718 alloy. The vane assembly is cast and fits into the vertical wall of the housing. After the diffuser, the inner and outer walls of the assembly are connected by struts which form passages for oil to and from the rear bearing package. The rear main frame provides the support for the single can combustor and the hot gas collector scroll.

The air-cooled gas producer turbine nozzle is an integral casting which is brazed to a support structure. The stator cooling scheme is shown on Figure 59.

The turbine wheel has cooled blades of DSMM 247 alloy secured by a root fastening to a forged disk of LC Astroloy. The blade cooling scheme is shown on Figure 59. The peak disk stress is 132,000 psi. The .2% yield strength of LC Astroloy is 125,000 psi. The disk life is estimated to be 6000 cycles, which is adequate for engine demonstration purposes but not sufficient for a production engine. The 360-degree scroll is made of .032 in Hastalloy-X sheet metal with spot-welded M956 cooling air louvers.

Figure 59. Stator and rotor blade convective cooling schemes

Rotor

Inlet Particle Separator

The separator system consists of a fully anti-iced annular separator, a scavenge flow collecting manifold, and a self-bypassing scavenge blower. The scavenge blower is mounted on the accessory gearbox and connects to the separator with a flexible elastomer tube. System arrangement is shown on Figure 60. The self-cleaning particle separator is shown on Figure 61. It uses the inertial principle with an inner and an outer capture area. The flow divider is supported by six hollow radial struts which are used to scavenge the inner capture area outboard to a wraparound manifold. Anti-icing is accomplished by conductive heating of critical flow-path elements by means of gas bleed from the power turbine section.

Combustor

The combustor is a single can located at the top left side of the engine. The liner, igniter, and fuel nozzle are supported by the combustor chamber cover. All three components are withdrawn together for ease of inspection and replacement.

The combustor liner is made of .032-in. Hastalloy-X sheet metal and fitted with spot-welded M956 cooling air louvers.

Power Turbine

The power turbine wheel has individually cast C101 alloy blades secured to an LC Astroloy forged disk. The peak disk stress is 132,000 psi. The .2% yield strength of LC Astroloy is 127,000 psi. The estimated disk life is 25,000 cycles.

The wheel is supported on two preloaded ball bearings at the rear end of the power turbine shaft. The drive spline has 17 teeth with 30-degree pressure angle, fillet root side fit, 24/48 pitch, .7-inch pitch diameter, and a 5-inch length. The assembly is bolted to the rear face of the main support frame.

Power Shaft

The power shaft fits into two pilot diameters inside the power turbine rotor shaft. The drive spline has 24 teeth with 30-degree pressure angle, fillet root side fit, 48/96 pitch, .5-inch pitch diameter, and 1.00-inch length.

Figure 60, Inlet particle separator system

Figure 61. Particle separator principle

The critical speed conditions can be evaluated on the basis of the representative engine. In general, the natural bending frequency of a shaft can be calculated with the following formula:

$$f = kD\sqrt{1+\beta^2}/L^2$$
 (17)

where D is the outer shaft diameter, L the shaft length, and β the ratio of the shaft inner and outer diameters. For similar shafts, the frequency is inversely proportional to their lengths. The critical speed margin thus is retained if the rotational speed is varied in the same proportion. For the representative engine, the critical speed margin is 38.3%. For the proposed engine, the critical speed margin would be retained with a similar shaft of 14.17-inch length and a rotational speed of 36,720 rpm. The natural frequency then would be 50,796 cpm. The actual shaft length is 13.55 inches, which yields f = 55,550 cpm. With an actual rotational speed of 44,000 rpm, the critical speed margin is reduced to 26.3%, which is considered adequate for engine demonstration purposes but not sufficient for a production engine.

An analytical investigation indicates that the natural frequency of a hollow shaft can be increased by 10-15% by applying a boron fiber layer inside the shaft. An experimental manufacturing program is presently underway at Lycoming for composite shafts. Figure 50 thus indicates such an application for the proposed engine.

Power Turbine Exit Diffuser

The PT exit diffuser is a welded Hastalloy-X sheet metal assembly.

Conceivably the diffuser could be made part of the recuperator module. This, however, would require a sliding ring seal joint between the diffuser outer wall and the power turbine outer casing, and the gas forces would be transmitted to the recuperator header. The flange attachment is simpler and structurally sounder.

Recuperator

The recuperator core consists of 2750 U-tubes of Inco 625 alloy with .15-inch outside diameter and .004-.006-inch wall thickness. The inner core section has 9 rows of tubes with a tangential spacing $X_T = 1.213$ D = .182 inch. The outer core section has 8 rows of tubes with a tangential spacing $X_T = 1.373$ D = .206 inch. Radial spacing of the rows is $X_L = 1.0D = .15$ inch. The tubes are brazed into a forward

header and three flow guiding and support baffles. The rear baffle extends radially inward to be bolted to the inner flange of the exhaust diffuser. The main support is at the forward outer flange, which is bolted to the main engine frame. There is enough flexibility in the rear baffle wall to accommodate differential axial expansions of the recuperator/diffuser assembly.

The exhaust collector is a Hastalloy-X sheet metal structure bolted to the recuperator header.

Output Shaft

With 20,000 rpm, the output torque at IRP (500 hp) is 1575 inch-pounds. The output shaft is designed for a nominal torque of 1890 inch-pounds. The shaft spline has 25 teeth with 30-degree pressure angle, fillet root side fit, 20/40 pitch, 1.25-inch pitch diameter, and .5-inch length. The tooth bearing stress is 4838 psi.

The reduction gear is a double planetary design with fixed planets. The arrangement and gear design particulars are shown on the following sketch and Table 15.

TABLE 15. REDUCTION GEAR DESIGN PARTICULARS

Gear	Transmitted Load (lb)	Face Width (in)	Pitch Dia. (in)	Pitch (in ⁻¹)	Numbe r of Teeth	Bending Stress (psi)	Hertz Stress (psi)
1	481	0.75	1.1905	21	25	31,338	123,452
2	481	0.75	2.0952	21	44	31,338	123,452
3	686	0.85	1.4706	17	25	30,693	133,665
4	686	0.85	1.8235	17	31	30,693	133,665

Gear ratio = $44/25 \cdot 31/25 = 2.1824$

Accessory Gearbox

The engine accessories are mounted on top of the engine to reduce vulnerability and provide maximum accessibility. Drive pads are located on both forward and aft faces of the gearbox to minimize weight, cost and bulk.

A top view of the gearbox arrangement is shown schematically on Figure 62. The accessory gear set is driven by a bevel gear at the forward end of the gas generator.

ENGINE WEIGHT

Engine weight has been estimated on the basis of components and parts similarity with existing engines. The weight of new components and parts has been calculated from the dimensions and materials defined by the preliminary design.

Table 16 shows the weight of the engine broken down in components and modules. This calculated weight is 38.4 pounds heavier than estimated on the basis of the parametric study assumptions (213.2 pounds). The latter, however, did not include 18.5 pounds for the output gear and shaft assembly. The remaining 19.9 pounds are essentially due to heavier midframe and recuperator connecting duct assemblies than initially estimated.

Figure 62. Accessory gearbox module

TABLE 16. ENGINE WEIGHT BREAKDOWN

	ITEM	Weight (lb)
1.	Compressor (includes Inlet Housing, Front Bearing and Accessory Drive Gear Packages)	21.14
2,	Burner (includes 360-degree Scroll and Mid-frame Assembly)	23.90
3.	Gas Producer Turbine (includes Rear Frame Assembly and Bearing Package)	26.14
4.	Power Turbine (includes Power Shaft with Boron Insert, Variable Stator Actuator Sys- tem, and Front and Rear Bearing Packages)	18.50
5.	Recuperator (includes Exhaust Gas Collector)	77.30
6.	Gas Diffuser and Recuperator Connecting Ducts	4.88
7.	Output Gear and Shaft Assembly	18.47
8.	Inlet Particle Separator and Scavenge Blower	19.20
9.	Accessory Gearbox Module (includes Fuel Control, Fuel and Oil Pumps, and Alternator/Exciter/Regulator)	32.10
10.	Piping and Miscellaneous	10.00
	Engine Weight (excluding Starter/Generator and Customer Hydraulic Pump)	251.63

ENGINE INSTALLATION AND INSTALLED PERFORMANCE

ENGINE INSTALLATION

Figure 63 shows the installation drawing of the proposed engine. There are two pairs of mounting pads located on the lower engine half, 45 degrees either side of bottom center. The first pair is on the engine inlet housing. The second pair is on the outer periphery of the compressor diffuser wall near the engine gravity center plane and is used for all installations. Only one optional forward mount is used. The other provides a nonredundant support for safe mount failure.

INSTALLED ENGINE PERFORMANCE

To calculate the installed engine performance, the pressure loss of the inlet particle separator (.6% at 60% IRP) is added to the cycle losses. Furthermore, the 2% diffuser pressure loss has been increased to 2.3% at 60% IRP. The mechanical loss of the power turbine shaft has been increased from .5% to 1.5% to account for the output reduction gear. Inlet particle separator and customer accessory power has been estimated as follows:

Inlet Particle Separator Blower	8,2 hp
Customer Hydraulic Pump	6,5 hp
Generator	6.5 hp
Total	21,2 hp (40-100% IRP)

This power is assumed to drop to 10.6 hp at idle (50 hp) and to increase gradually to 21.2 hp at 40% IRP (200 hp).

Finally, a minimum 2% of customer bleed extracted at exit of the compressor and .05 lb/s anti-icing gas extracted at exit of the power turbine, have been assumed.

With those installation losses and bleed flow and accessory power requirements, the engine power achievable with IRP $T_{4.0} = 2750^{\circ} R$ is reduced to 460 hp. Figure 64 shows the compressor operating line determined by assuming $T_{4.0} = 2520^{\circ} R$ and the same surge margin at 60% IRP, which requires a slight resetting of the gas producer turbine nozzle. Uninstalled operating points for 50, 200, 300, and 500 hp have been added for comparison.

Engine Upscaling

If the installed engine has to deliver 500 hp at the IRP point, the maximum cycle temperature must be raised to a level that is substantially beyond the present state-of-the-art for a 500-hp engine (2750-2800°R). Therefore, it is necessary to scale up the engine.

Figure 63. Installation drawing

Figure 64. Compressor operating line for installed conditions

Optimum 60% IRP conditions $T_{4.0} = 2520^{\circ}R$ and PR = 7.4 result in a flow scaling factor of 1.150. Table 17 lists the uninstalled and installed performances for the mission ratings. Complete installed performance data are given in Appendix C.

TABLE 17. COMPARISON OF UNINSTALLED AND INSTALLED PERFORMANCE OF THE PROPOSED ENGINE

Por	wer (hp)	50	200	275	375	500	Mission Fuel Weight (1b)
SFC	Uninstalled	0.977	0.472	0.427	0.401	0.412	229.5
(1b/h p- h r)	Installed*	1.141	0.542	0.482	0.444	0.448	257. 9 (+12. 4%)

^{*} Engine scaled up for 15% mass flow increase.

Inlet particle separator system and customer power and bleed requirements cause a substantial decrease of the engine SFC performance and specific power. Those effects must be taken into account by specifying the required installed power at the design stage.

For the upscaled engine, the components weights given in Table 16 must be modified. It is assumed that the radial dimensions only will be increased in the ratio $\sqrt{1.150}$ = 1.072. The weight of components 1 - 6 and 8 thus increases by 15%, while the weight of components 7 (output gear and shaft assembly), 9 (accessories), and 10 (piping and miscellaneous) remains unchanged.

The engine weight thus goes up from 251.6 to 280.3 lbs., and the radial dimensions quoted in Figures 50 and 63 increase by 7.2% for installed 500 hp at IRP.

ENGINE COST AND FUEL COST BREAK-EVEN POINT WITH NON-REGENERATIVE ENGINE

ENGINE COST

Engine cost has been estimated on the basis of components and parts similarity with existing engines. For new items, standard experimental costing procedures have been used.

Cost reduction for the smaller engine size takes into account the fact that the resulting materials savings tend to be offset by the smaller manufacturing tolerances required. Table 18 lists the manufacturing cost in 1979 dollars of one experimental engine broken down in major components. Components similarity with existing engines or standard experimental hardware costing procedure is indicated in the last column.

Figure 65 shows engine manufacturing cost versus engine number with an assumed 80% learning curve slope. The cost of the 100th engine is \$140,942.00. Based on a vendor quotation, the cost of the hydromechanical fuel control for a production rate of 250 engines per year is \$8,708.00. The cost of the starter/generator is \$800.00. Engine inspection, assembly and testing cost has been estimated on the basis of T53 experience and is \$4,504.00. Finally, engineering support cost is estimated to be 5% of the engine manufacturing cost, i.e., \$7,047.00. The total cost of the 100th engine thus is 140,942 + 8,708 + 800 + 4,504 + 7,047 = \$162,001.00 (1979 dollars). This cost does not include packing and shipping, G and A and profit.

FUEL COST BREAK-EVEN POINT

With the above engine cost estimate, an approximate fuel cost figure for helicopter system + mission life fuel cost break-even point with a non-regenerative engine has been calculated on the basis of equivalent gross weight. The cost of the nonregenerative engine is taken from Table 18 to be that of the proposed engine minus the recuperator and the gas diffuser and recuperator connecting ducts, corrected for the smaller size by a factor 84.852/90.706 = .9355 and for estimated .85 factored inspection, assembly, testing, and engineering support costs. Thus:

(Items 1, 2, 3, 4, 7, 8)	\$384,219.00
Adjustment for Second Gas Producer Turbine Stage	25,710.00
Adjusted Cost	409,929.00

TABLE 18. EXPERIMENTAL ENGINE COST BREAKDOWN (1979 \$K)

ITEM		1.1 Fact. Material Cost	3.51 Fact. Labor Cost at \$32.00/hr	Total Cost	Engine Similarity or Standard Costing
1. Compressor (includes Inlet Housing, Front Bearing, and Accessory Drive Gear Packages)	ront ckages)	74.540	15.898	90.438	800 hp Repr. Engine
2. Burner (includes 360 degree Scroll and Mid- frame Assembly)	Mid-	22.709	38.242	60.951	1500 hp Regen. Engine
3. Gas Producer Turbine (includes Rear Frame Assembly and Bearing Package)	rame	29.141	40.441	69.582	600 hp Engine
4. Power Turbine (includes Power Shaft with Boron Insert, Variable Stator Actuator System, and Front and Rear Bearing Packages)	ith ckages)	21.943	34.363	56.306	800 hp Repr. and 1500 hp Regen. Engines
5. Recuperator (includes Exhaust Gas Collector)	lector)	22.241	104.226	126.467	Standard Costing
6. Gas Diffuser and Recuperator Connecting Ducts	g Ducts	7.078	8.660	15.738	Standard Costing
7. Output Gear and Shaft Assembly		61.821	2.291	64.112	Standard Costing
8. Inlet Particle Separator and Scavenge Blower	lower	6.641	36.189	42.830	800 hp Regen. Engine
9. Accessory Gearbox Module (includes Fuel and Oil Pumps and Alternator/Exciter/Regulator)	uel and lator)	72.181	13.243	85.424	800 hp Repr. Engine
10. Piping and Miscellaneous		3.226	5.651	8.877	800 hp Repr. Eng.
Engine Manufacturing Cost (excluding Fuel Control and Starter/Generator)	uel	321, 521	299.204	620.725	

Figure 65. Engine manufacturing cost

0.9355 Factored Cost	\$383,489.00
Accessory Gearbox Module	85,424.00
Piping	8,877.00
Total	\$477,790.00
100th Engine Cost with 80%	
Learning Curve Slope	\$108,487.00
Fuel Control + Starter/Generator	9,508.00
0.85 Factored Engine Inspection, Assembly, Testing, and Engineer-	
ing Support	9,918.00
Nonregenerative Engine Cost	\$127,913.00
Recuperative Engine Cost	\$162,001.00
Cost Differential	\$ 34,088.00

The weight of the nonregenerative engine is taken from Table 16 and corrected by the size factor, 9355:

Table 19 compares the consumed mission fuel, the embarked fuel with 25% reserve, the engine, and the engine + mission fuel weights.

TABLE 19. ENGINE AND FUEL WEIGHT COMPARISON

Engine Type	Consumed	Embarked	Engine	Engine +
	Mission Fuel	Fuel Weight	Weight	Mission Fuel
	Weight (lb)	(lb)	(lb)	Weight (lb)
Recuperative	229.5	286.9	251.6	538.5
Nonregenerative	281.0	351.3	167.9	519.2

The mission life fuel savings of the recuperative engine is 2500 (281.0 - 229.5) = 128,750 pounds. With the engine acquisition cost differential of \$34,088.00 in favor of the nonregenerative engine, the fuel break-even cost is 34,088/128,750 = \$.265/pound, or \$1.78/gallon. This figure applies for a helicopter of fixed gross weight that has a payload penalty of 38.6 pounds with two recuperative engines. On the basis of equivalent mission capability, the fuel break-even cost would be slightly higher.

The above fuel break-even cost indicates that a 500 hp recuperative helicopter engine of current state-of-the-art technology will become competitive with a nonregenerative engine within the 1980-85 time period.

The fuel break-even cost figure obviously is very sensitive to the actual cost of the recuperator hardware. With the 80% learning curve slope used above, the tubular recuperator cost for the 100th engine is \$28,716.00. The cost of the waveplate recuperator of the 1500 hp vehicular engine constitutes 12.5% of the entire engine cost. The engine has a more complex two-spool gas generator and a two-stage power turbine, but does not have an inlet particle separator system. This only partly compensates for the higher turbomachinery cost. Consequently, a 15% waveplate recuperator cost factor can be assumed for the 500 hp engine. From Table 18, the basic cost of the turbomachinery is \$494,258.00 (Items 1-4, 6-10). The full experimental engine cost thus is 494,258/.85 =581,480.00 and with the 80% learning curve slope C_e = 132,031 + 8,708 + 800 + 4,504 + 7,047 = \$153,090.00.

The nonregenerative engine cost is \$127,913.00, and the engine cost differential \$25,177.00. The fuel break-even cost thus is 25,177/128.750 = \$.196/pound, or \$1.31/gallon on the basis of fixed helicopter gross weight. This reflects the lower cost of the waveplate recuperator - \$19,805.00. On the other hand, the mission payload penalty as compared to the helicopter powered by engines with tubular recuperators of .004-inch tube thickness is 2 (137 -77) = 120 pounds (Table 10).

CONCLUSION AND RECOMMENDATIONS

For a 500-hp engine of present state-of-the-art technology, the recuperative cycle offers an 18% fuel savings over the nonregenerative cycle. For a typical 2-hour helicopter mission, the engine + mission fuel weight is 3.7% higher than for a nonregenerative engine. The fuel savings compensate for the higher engine acquisition cost if fuel cost is assumed to escalate to approximately \$1.80/gallon (1979 dollars).

The 500-hp recuperative helicopter engine thus will become competitive with the nonregenerative engine within the 1980-1985 time period.

The development of a 2300°F, 1650-1700 ft/sec tip speed, single-stage ceramic gas producer turbine and of a low cost tubular recuperator core manufacturing technique are the two essential means of improving the overall economy of the recuperative engine. In the foreseeable future, the use of a ceramic nozzle assembly will increase the fuel savings over the nonregenerative engine to 21%.

The fuel savings afforded by variable power turbine stator geometry are substantial, but their realization requires a design with minimum additional aerodynamic losses. This problem has been addressed in the present study by (a) allowing a substantial increase of cycle temperature from part to full power, thereby minimizing the stator setting angle variation; (b) designing the power turbine for the 75% IRP condition, i.e., opening the stator toward IRP and closing toward part power, thereby minimizing the aerodynamic stator-rotor blading mismatch; and (c) designing a stator with concentric spherical inner and outer channel walls, thereby minimizing stator hub and tip clearances.

Efficient gas diffusion between power turbine exit and recuperator entrance is necessary. An axial diffuser with one gas flow splitter and a 0.1 exit Mach level has been designed with 97.7% total pressure recovery at 60% IRP.

The problem of the varying power turbine exit swirl has been minimized by designing the turbine with zero exit swirl at 75% IRP, which results in negative swirl at IRP and positive swirl at part-power condition. The exit swirl must be at least partly removed by the diffuser struts in order to allow for a diffuser with a substantial decrease of the inner wall radius without swirling flow separation. This minimizes the diffuser exit diameter and the outer diameter of the wraparound recuperator, resulting in a compact engine configuration.

Finally, inlet particle separator blower and customer power and bleed requirements must be taken into account during the early engine design phase.

On the basis of the results of this preliminary design study, it is recommended that the program be continued with the demonstration of a recuperative helicopter engine of the 500-hp class.

APPENDIX A: CYCLE 5 DATA

REGENERATIVE PROPOS COMPONENT PERFORMAN	REGENERATIVE PROPOSAL ÈNGINE COHPONENT PERFORMANCE DATA	· 딸	OFF-DES 1/29/80 POINT R COMPONENT INTERFACE	O POINT R5J INTERFACE TOL	75J TOLERANCE = 0.0100	00 PERCENT	COH	COMPONENT ERROR SIGNAL	SIGNAL = 0
WTFLOW 0.14184E+01 0.14184E+01 0.14184E+01 0.12992E+01 0.12992E+01 0.135992E+01 0.14151E+01 0.14151E+01 0.14151E+01 0.14131E+01 0.14131E+0	10686 116696 116696 116696 10 10 10 10 10 10 10 10 10 10 10 10 10	E E E E E E E E E E E E E E E E E E E	TOTEMP 0.51869E+03 0.51869E+03 0.62879E+03 0.62879E+03 0.11320E+04 0.11320E+04 0.11550E+04 0.1550E+04 0.1550E+04 0.1559E+04 0.15548E+04 0.15548E+04 0.15548E+04 0.03362E+03	THETA 0.10000E+01 0.10000E+01 0.15979E+01 0.15979E+01 0.15979E+01 0.21823E+01 0.21823E+01 0.2645E+01 0.2645E+01 0.2649E+01 0.264191E+01 0.24191E+01 0.18967E+01	FUEL/AIR 0.0 0.0 0.0 0.0 0.0 0.84066E-02 0.7782E-02 0.77782E-02 0.77782E-02 0.77782E-02	CORFLO 0.21981E+01 0.21981E+01 0.67738E+00 0.0 0.81046E+00 0.82957E+00 0.106C4E+01 0.106C4E+01 0.24983E+01 0.24983E+01 0.24983E+01 0.24983E+01 0.3476E+01 0.3506E+01	VMACH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	STPRES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	50 hp
RAM DRA 0.0 HORSEPC	ORAG F O EPOWER 26 E+03 0	FLT VEL KTS 0.0 ACTUAL RPM 0.68815E+02	LT VEL KTS ANB TEMP .0 0.51869E+03 ACTUAL RPM PRESS RATIO .68815E+02 0.37573E+01	AMB PRESS 03 0.14696E+02 00 ADIAB EFF 01 0.76392E+00	EFFICIENCY 2 0.10000E+01 JP2 BLDFRAC 0 0.64000E-01	RECOVERY 0.10000E+01 TABLE R 0.14857E+01	ALTITUDE 1 0.0 TABLE CORRPM 1 0.39225E+05	THETA RAM 0.10000E+01 TABLE PR 0.38396E+01	DELTA RAM 0.10000E+01 TABLE CORFLO
DELTA P/PT 0.2325F-01 0.23040E-01 0.0 0.0 0.58939E-02		C1 FACTOR 0.0 0.0 0.0 0.0	C2 FACTOR 0.0 0.0 0.0 0.0 0.0	C3 FACTOR 0 506.17E-01 0.35077E-01 0.0 0.0 0.85609E-03	TBIN2-TBIN1 1 0.0 1 0.0 0.0 0.0 3 0.0	TBIN2 0.0 0.0 0.0 0.0 0.0	MBIN2/MBIN 0.0 0.0 0.0 0.0 0.0	MBIN/MBAV 0.0 0.0 0.35714E+00 0.0	MBGUT/MBUCT 0.0 0.0 0.0 0.0
EXIT TEMP 0.16938E+04 HORSEPOWER 0.15102E+03		TEMP RISE 0.56186E+03 ACTUAL RPM 0.68815E+02 0.20000E+05	TEMP RISE DELTA P/PT .56186E+03 0.35000E-01 ACTUAL RPM PRESS RATIO .68835E+02 0.24424E+01 .20000E+05 0.13904E+01	FT FUEL FLOW 01 0.39320E+02 01 0.39320E+02 10 ADIAB EFF 01 0.86500E+00		EFFICIENCY BURNR THETA COMB LDG 1 0.99000E+00 0.0 0.69700E+06 WBIN/WBTOT WBSTAT/WBIN TABLE CORRPM 0.52381E+00 0.0 0.97297E+00	COMB LDG 1 0.69700E+06 TABLE CORRPM 0.97297E+00 0.11915E+01	COMB LDG 2 0.25821E+06 TABLE PR 7 0.24424E+01 0.13304E+01	COMB LDG 3 0.36176E+00 TABLE CORFLO 0.35630E+01 0.31619E+01

EFFECTVNESS EFFT SCL F. LIMIT IND	0.69349E+00 0.33801E+01 0.0 0.0 0.71170E+00 0.71170E+00 0.0
T JM2 DELP/PT	0.0
JHZ CORFLO JMI DELP/I	0.11320E+04 0.98383E+03 0.69349E+00 0.33801E+01 0.0
JM1 CORFLO	0.69349E+00 0
JP2 TEMP	0.98383E+03
JP1 TEMP	0.11320E+04
(STATIONS	5 13 6 14
HT EX	4

NOZZLE TYPE	
VEL COEF 0.99000E+00	
DISCHG COEF 0.10000E+01	
PTIN/PAMB 0.10028E+01	
IDL VEL PR 1.10028E+01	
JL JET VEL 1 .96650E+02 0	
T JET VEL 10 95684E+02 0	
UST NDZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF +01 0.52900E+02 0.95684E+02 0.96650E+02 0.10028E+01 0.10028E+01 0.10000E+01 0.99000E+00	
GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE TYPE 0.42629E+01 0.52900E+02 0.95684E+02 0.96650E+02 0.10028E+01 0.10028E+01 0.10000E+01 0.99000E+00 CONV	
NOZZL STATIONS G 13 15 0 16 0	
NOZZL 13 15	

TORQUE NON-TURB HP SUM ABS HP/2	0.38781E+00-0.15026E+03 0.15027E+03	1.13126E+02 0.0 0.24992E+02
F JP2 MCH EFF		0.0
EFF JP1 MCH EF	0.10000E+01 0.0	0.0
ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF TORQUE	-02 0.68815E+02 0.99500E+00 0.0	+02 0.20000E+05 0.99500E+00 0.0
NET HP	0.50812E-02	0.49984E+02
SHAFT COMPONENTS	14 8 0 2 0	15 10 0 0 0

	DEPEND ERR	0.50812E-02	0.15594E-01	0.0	0.0	0.0	0.0	0.0	0.0
	ABS DEP ACT	0.15027E+03	0.24992E+02-	0.0	0.0	0.0	0.0	0.0	0.0
	DEPEND DES	0.68815E+02 0.40000E+02 0.11500E+03 0.0 0.15027E+03 0.50812E-02	0.16938E+04 0.12000E+04 0.40000E+04 0.50000E+02 0.24992E+02-0.15594E-01	0.0	.10000E+00 0.30000E+01 0.50000E+02 0.0	0.50000E+00 0.10000E+02 0.30000E+03 0.0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	10000E-04 0.10000E-01 0.16500E-01 0.0	
	MAX LIMIT	0.11500E+03	0.40000E+04	0.10000E+00 0.20000E+01 0.0	0.30000E+01	0.10000E+02	0.10000E-01	0.10000E-01	.10000E+00 0.20000E+01 0.0
	MIN LIMIT	0.40000E+02	0.12000E+04	0.10000E+00	0.10000E+00	0.50000E+00	0.10000E-04	0.10000E-04	0.10000E+00
	INDEP VAR	0.68815E+02	0.16938E+04	0.0	0.0	0.0	0.0	0.0	0.0
	CONTR SMITCH	8	8	OFF	OFF	0F.F	OFF	OFF	0FF
DS.	DAT	~	ţ	7	Ŋ	-	м	м	^
VARIABLE NOS. DEPEND IND	PER	0	0	0	0	0	0	0	0
PEND	STA	0	0	Ó	0	0	0	0	0
2 2	VAR	7	-	-	-	~	N	8	-
REFERENCE NOS. DEPEND INDEP	TA CPT	0 14	9 0	01 0	0 10	7 0	11 0	0 12	91
REFER DEPEN	PT S	<u>*</u>	15	91	15	15	===	21	\$2
CONTR	_				50				

		ARG2 TBL	0.0	0.0
		ARG2 ACT	0.0	0.0
		ARG1 TBL	0.14151E+01	0.49984E+02
		ARG1 ACT	0.14151E+01	0.49984E+02
		SCHDVAR TBL	1.88000E+00 (0.86000E+00 1
		DAT VAR STA VAR STA SCHDVAR ACT SCHDVAR TBL ARG1 ACT	0 8 0 0 1 0 0 0.86000E+00 0.88000E+00 0.14151E+01 0.14151E+01 0.0	0.86000E+00 0.86000E+00 0.49984E+02 0.49984E+02 0.0
	ARG2	STA	0	0 8 0 1 0 0 0
	⋖	VAR	0	0
NOS	ARGI	STA	-	0
BLE	¥	VAR	0	-
VARIABLE NOS.	2	STA	0	0
_	SCHDVAR	VAR	æ	80
	ഗ്	DAT	0	0
	ટ્ટ	STA	0	0
Š.	ARG2	CPT	0	0
REFERENCE NOS.	ARGI	STA	=	0
RENC	AR	CPT	0	0 15 0
REFE	VAR	STA	0	0
_	SCHO	CPT STA CPT STA CPT STA	10	20
SCHED			18	5,5

OVERALL ENGINE PERFORMANCE DATA

AIR.LB/SEC FUEL,LB/HR GRS.JET THT NET JET THT PROP.THRUST *TOT.NET THŢ FUEL/TOTTHT TOTTHT/AIR OVERBRD BLEED 0.14184E+01 0.39320E+02 0.42629E+01 0.42629E+01 0.042629E+01 0.92237E+01 0.30055E+01 0.14184E-01

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIY.SH.HP FUEL/ESHP ESHP/AIR 0.49984E+02 0.78664E+00 0.35241E+02 BRAKE SH.HP PROP. HP 0.49984E+02 0.0

POINT RSJ
1/29/80
OFF-DES
ENGINE
PROPOSAL
TIVE
REGENERA
80

SIGNAL = 0	200 hp	DELTA RAM 0.10000E+01	TABLE CORFLO 0.30479E+01	MBOUT /MDUCT 0.0 0.0 0.0 0.0	COMB LDG 3 0.17787E+00 TABLE CORFLO 0.35630E+01
COMPONENT ERROR	STPRES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	THETA RAM 0.10000E+01	TABLE PR T 0.67274E+01	MBIN/WBAV 0.0 0.0 0.35714E+00 0.0	COMB LDG 2 0.23959E+06 1 TABLE PR T. 0.27767E+01 0.20768E+01 0
COM	VMACH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALTITUDE 0.0	TABLE CORRPM 0.46957E+05	WBIN2/WBIN 0.0 0.0 0.0 0.0 0.0	COMB LDG 1 0.10142E+07 TABLE CORRPM 0.10106E+01
100 PERCENT	CCGFLO 0.33278E+01 0.64021E+00 0.64021E+00 0.05959E+00 0.76959E+00 0.76959E+00 0.76959E+00 0.76959E+00 0.76959E+00 0.76959E+00 0.76959E+01 0.5025E+01 0.50256E+01 0.50256E+01	. RECOVERY	TABLE R 0.14993E+01	TBIN2 0.0 0.0 0.0 0.0	EFFICIENCY BURNR THETA COMB LDG 1 0.99000E+00 0.0 0.10142E+07 WBIM/WBTOT WBSTAT/WBIN TABLE CORRPM 0.52381E+00 0.0 0.10426E+01
RANCE = 0.0100	FUEL/AIR 0.0 0.0 0.0 0.0 0.0 0.14177E-01 0.13117E-01 0.13117E-01 0.13117E-01 0.13117E-01	EFFICIENCY	JP2 BLOFRAC 0.84000E-01	TBIN2-TBIN1 0.0 0.0 0.0 0.0 0.0	
COMPONENT INTERFACE TOLERANCE	HETA 100000E+01 100000E+01 100000E+01 100000E+01 100000E+01 10000E+01 26310E+01 43424E+01 43424E+01 43424E+01 26370E+01 26370E+01 26370E+01 26350E+01 26350E+01	AMB PRESS 0.14696E+02	ADIAB EFF 0.78117E+00	C3 FACTOR 0.50617E-01 0.35077E-01 0.0 0.85609E-03 0.70128E-03	FUEL FLOW 0.10039E+03 ADIAB EFF 0.86500E+00
COMPONENT IN	707EMP 10.51869E+03 0.51869E+03 0.98487E+03 0.98487E+03 0.98487E+03 0.98487E+03 0.13647E+04 0.25185E+04 0.25185E+04 0.15234E+04 0.15234E+04 0.15906E+04 0.11906E+04 0.11906E+0	. AMB TEMP 0.51869E+03	ACTUAL RPM PRESS RATIO .82380E+02 0.65614E+01	C2 FACTOR 0.0 0.0 0.0 0.0 0.0	DELTA P/PT 0.35000E-01 PRESS RATIO 0.27767E+01 0.20788E+01
ıTA	TOPRES 0.14696E+02 0.5 0.14696E+02 0.5 0.14696E+02 0.9 0.94425E+02 0.9 0.94425E+02 0.9 0.9227E+02 0.9 0.9227E+02 0.9 0.32134E+02 0.9 0.1566E+02 0.9	FLT VEL KTS 0.0	0	C1 FACTOR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TEMP RISE 0.88768E+03 ACTUAL RPM 0.82580E+02 0.20000E+05
COMPONENT PERFORMANCE DATA		RAM DRAG 0.0	HORSEPOWER -0.34415E+03	DELTA P/PT 0.20747E-01 0.20775E-01 0.0 0.25319E-01 0.17063E-01	EXIT TEMP 0.22524E+04 0.22524E+03 0.34594E+03 0.20100E+03
COMPONENT PE		STATIONS 1 0 2 0	STATIONS 2 0 3 4	STATIONS 3 0 5 0 3 4 9 0 4 11 0 5 0 13 0 5 0 15 0	STATIONS 7 0 8 0 8 10 0 4 10 0 1 4 12 0
•	STATION 1 1 2 4 4 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1	INLET 1 1	COMPR 2 2	5 6 7 8 9 10 9 10 11 12 14 12 14	BUPNR 7

LIMIT IND 0.0	NOZZLE TYPE CONV	HP ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF TORQUE NON-TURB HP SUM ABS HP/2 32E-01 0.82380E+02 0.99500E+00 0.0 0.10000E+01 0.0 0.40313E+01-0.3441SE+03 0.34418E+03 99E+03 0.20000E+05 0.99500E+00 0.0 0.0 0.0 0.52519E+02 0.0
EFFECTWNESS EFFT SCL F. LIMI 0.70530E+00 0.70530E+00 0.0	VEL COEF 0.99000E+00	NON-TURB HP -0.34415E+03 0.0
EFFECTVNESS 0,70530E+00	DISCHG COEF 0.10000E+01	TORQUE NON-TI 0,40313E+01-0.344; 0,52519E+02 0.0
JM2 DELP/PT 0.0	PTIN/PAMB 0.10077E+01	JP2 MCH EFF 0.0 0.0
JPI TEMP JP2 TEMP JM1 CORFLO JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND 0.13647E+04 0.11906E+04 0.65378E+00 0.55795E+01 0.0 0.0 0.0 0.70530E+00 0.70530E+00 0.0	GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE TYPE 0.11674E+02 0.52900E+02 0.17417E+03 0.17592E+03 0.10077E+01 0.10077E+01 0.10000E+01 0.99000E+00 CDNV	JP1 MCH EFF JP2 0.10000E+01 0.0 0.0
JH2 CORFLO	. IDL JET VEL ; 0.17592E+03	. JM2 MCH EFF
JM1 CORFLC	. ACT JET VEL : 0.17417E+03	1 JM1 MCH EFF 0.99500E+00
JP2 TEMP \$ 0.11906E+04	r NOZZLE AREA 2 0.52900E+02	ACTUAL RPN 1 0.82380E+02 3 0.20000E+05
JP1 TEMP 0.13647E+04	GRSS THRUST 0.11674E+06	NET HP 0.63232E-01 0.19999E+01
HT EX STATIONS 4 5 13 6 14	HOZZL STATIONS 13 15 0 16 0	SHAFT COMPONENTS NET HP ACTUAL RPM JM1 MCH EFF JM2 14 8 0 2 0 0.63232E-01 0.82380E+02 0.99500E+00 0.0 15 10 0 0 0 0.19999E+03 0.20000E+05 0.9950GE+00 0.0
F EX	NOZZL 13]	SHAFT 14 15 1

		MAX LIMIT DEPEND DES ABS DEP ACT DEPEND ERR	E+03 0.63232E-01	0.22524E+04 0.12000E+04 0.40000E+04 0.20000E+03 0.99996E+02-0.83923E-02	0.0	0.0	0.0	0.0	0.0	0.0	
		ES ABS DEP	0.34418	196666.0 £0	0.0	0.0 50	03 0.0	01 0.0	01 0.0	0.0	
		DEPEND D	0.0	0.20000E+	0.0	0.20000E+	0.30000E+	0.16500E-	0.16500E-	0.0	
		MAX LIMIT	0.82380E+02 0.40000E+02 0.11500E+03 0.0	0.40000E+04	0.10000E+00 0.20000E+01 (0.10000E+00 0.30000E+01 0.20000E+03 0.0	.50000E+00 0.10000E+02 0.30000E+03 0.0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	1.10000E-04 0.10000E-01 0.16500E-01 0.0).10000E+00 0.20000E+01 0.0	
		MIN LIMIT	0.40000E+02	0.12000E+04	0.10000E+00	0.10000E+00	0.50000E+00	0.10000E-04	0.10000E-04	0.10000E+00	
		INDEP VAR	0.82380E+02	0.22524E+04	0.0	0.0	0.0	0.0	0.0	0.0	
		CONTR SWITCH INDEP VAR	8	8	OFF	OFF	OFF	OFF	OFF	OFF	
08.	INDEP	DAT	~	J	~	ស	-	m	м	7	
ב ענ	_	PER	0	0	0	0	0	0	0	0	
RIAE	물	STA	0	0	0	0	0	0	0	0	
5	OE.	VAR	1 0 0 1	, -1	-4	-	-	Ç,	8	~	
E MOS.	INDEP	CPT	14 0 14	•	10	10	-	11	12	10	
	웊	STA	0	0	0	0	0	0	0	0	
REF	OEP	CPT	14	15	18	15	15	11	12	54	
CONTR			16								

		ARG2 TBL	0.0	0.0
		ARG2 ACT	0.0	0.0
		ARG1 TBL ARG2 ACT	0.21537E+01	0.19999E+03
		ARG1 ACT	0.21537E+01	0.19999E+03
		SCHDVAR TBL	1.88000E+00	0.81700E+00
		DAT VAR STA VAR STA SCHDVAR ACT SCHDVAR TBL ARGI ACT	0 8 0 0 1 0 0 0.81700E+00 0.88000E+00 0.21537E+01 0.21537E+01 0.0	0 8 0 1 0 0 0.81700E+00 0.81700E+00 0.19999E+03 0.19999E+03 0.0
	ARG2	STA	0	0
		VAR	0	0
NOS		STA	-	0
BLE	ARGI	VAR	0	~
VARIABLE NOS.	œ	STA	0	0
	SCHOVAR	VAR	ø	80
	ĸ	DAT	0	0
	ARG2	STA	0	0
Š.	¥	CPT	0	0
2	5	STA	11	0
RENC	ARG1	CPT	0	15
REFERENCE NOS.	VAR	STA	0	0
_	SCHO	CPT	10 0 0 11 0 0	10 0 15 0 0
SCHED			18	5 2

OVERALL ENGINE PERFORMANCE DATA

AIR,LB/SEC FUEL,LB/HR GRS.JET THT NET JET THT PROP.THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERBRD BLEED 0.21473E+01 0.10039E+01 0.54366E+01 0.54366E+01 0.54366E+01 0.21473E-01

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.19999E+03 0.50199E+00 0.93135E+02 BRAKE SH.HP PROP. HP 0.19999E+03 0.0

RSJ
POINT
1/29/80
OFF-DES
ENGINE
PROPOSAL
REGENERATIVE
ş

R SIGNAL = 0	275 hp	DELTA RAM 1 0.10000E+01	TABLE CORFLO 1 0.32862E+01	MBOUT/MDUCT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2 COMB LDG 3 6 0.15291E+00	TABLE CORFLO 1 0.35630E+01 1 0.35630E+01
COMPONENT ERROR	STPRES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	THETA RAM 0.10000E+01	TABLE PR '0.75265E+01	MBIN/WBAV 0.0 0.0 0.35714E+00 0.0	COMB LDG 2 0.24016E+06	TABLE PR 0.27728E+01
СОМ	VMACH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALTITUDE 0.0	TABLE CORRPH 0.47850E+05	MBIN2/MBIN 0.0 0.0 0.0 0.0 0.0	COMB LDG 1	MBIN/WBTOT WBSTAT/WBIN TABLE CORRPM 0.52381E+00 0.0 0.99336E+00 0.0 0.10043E+01
00 PERCENT	CORFLO 0.35879E+01 0.5281E+00 0.6281E+00 0.64090E+00 0.75832E+00 0.77393E+00 0.10614E+01 0.28152E+01 0.28152E+01 0.59562E+01 0.59562E+01 0.54180E+01 0.54180E+01 0.55303E+01	RECOVERY 0.10000E+01	TABLE R 0.13960E+01	TBIN2 0.0 0.0 0.0 0.0 0.0	BURNR THETA 0.0	WBSTAT/WBIN .0.0
RANCE = 0.0100	FUEL/AIR 0.0 0.0 0.0 0.0 0.0 0.16160E-01 0.16953E-01 0.14953E-01 0.14953E-01 0.14953E-01 0.14953E-01	EFFICIENCY 0.10000E+01	JP2 BLDFRAC 0.84000E-01	18IN2-18INI 0.0 0.0 0.0 0.0 0.0	EFFICIENCY 0.99000E+00	
INTERFACE TOLERANCE	THETA 0.10000E+01 0.10000E+01 0.19663E+01 0.19663E+01 0.19663E+01 0.27530E+01 0.45693E+01 0.46693E+01 0.36661E+01 0.3661E+01 0.3635E+01 0.3035E+01 0.23987E+01 0.23987E+01 0.23987E+01	AMB PRESS 0.14696E+02	ADIAB EFF 0.78173E+00	C3 FACTOR 0.50617E-01 0.35077E-01 0.0 0.0 0.85609E-03 0.70128E-03	FUEL FLOW 0.12337E+03	ADIAB EFF 0.86500E+00 0.85400E+00
COMPONENT IN	TOTEMP 10.51869E+03 0.51869E+03 0.0199E+04 0.10199E+04 0.14280E+04 0.24219E+04 0.24219E+04 0.15994E+04 0.15994E+04 0.12442E+04	0.51869E+03	PRESS RATIO 0.73373E+01	C2 FACTOR 0.0 0.0 0.0 0.0 0.0	DELTA P/PT 0.35000E-01	PRESS RATIO 0.27728E+01 0.23070E+01
DATA	TOPRES 0.14696E+02 0.5 0.10783E+03 0.1 0.10783E+03 0.1 0.10568E+03 0.1 0.10568E+03 0.1 0.10568E+03 0.1 0.10568E+03 0.1 0.10568E+03 0.1 0.99220E+02 0.2 0.99220E+02 0.2 0.36036E+02 0.1 0.15620E+02 0.1 0.15620E+02 0.1 0.15631E+02 0.1 0.16831E+02 0.1 0.14831E+02 0.1	FLT VEL KTS 0.0	ACTUAL RPM 0.83948E+02	C1 FACTOR	TEMP RISE 0.99393E+03	ACTUAL RPM 0.83948E+02 0.20000E+05
μį		RAM DRAG 0.0	HORSEPOWER -0.39963E+03	DELTA P/PT 0.19969E-01 0.20171E-01 0.0 0.30371E-01 0.20586E-01	EXIT TEMP 0.24219E+04	HORSEPOWER 0.40168E+03 0.27633E+03
COMPONENT PERFORMANC	_	STATIONS L 0 2 0	STATIONS 2 0 3 4	STATIONS 3 0 5 0 5 0 7 0 6 4 9 0 6 11 0 1 0 15 0	STATIONS 7 0 8 0	STATIONS 9 4 10 0 1 4 12 0
J	STATION 1 2 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	INLET 1 1	COMPR 2 2	DUCT 3 3 3 7 8 7 8 9 10 11 12	BURNR 6	TURBN 8 9 10 11

HT EX STATIONS	JP1 TEMP	JP2 TEMP	JM1 CORFLO	JM2 CORFLO	JM1 DELP/PT	JM2 DELP/PT	JP1 TEMP JP2 TEMP JM1 CORFLO JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND	LIMIT IND
4 5 13 6 14	0.14280E+04	0.12442E+04	0.64090E+00	0.61429E+01	0.0	0.0	0.14280E+04 0.12442E+04 0.64090E+00 0.61429E+01 0.0 0.0 0.0 0.70420E+00 0.70420E+00 0.0	
HOZZL STATIONS	GRSS THRUST	NOZZLE AREA	ACT JET VEL	IDL JET VEL	IDL VEL PR	PTIN/PAMB	GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE TYPE 0.14179E+02 0.52900E+02 0.19617E+03 0.19815E+03 0.10094E+01 0.10094E+01 0.10000E+01 0.99000E+00 CONV	NOZZLE TYPE
13 15 0 16 0	0.14179E+02	0.52900E+02	0.19617E+03	0.19815E+03	0.10094E+01	0.10094E+01		CONV
SHAFT COMPONENTS	NET HP	ACTUAL RPM	NET HP ACTUAL RPH JM1 MCH EFF JH2	JN2 MCH EFF	JP1 MCH EFF	JP2 MCH EFF	NET HP ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF TORQUE NON-TURB HP SUM ABS HP/2	2 SUM ABS HP/2
14 8 0 2 0	0.33691E-01	0.83948E+02	0.33691E-01 0.83948E+02 0.99500E+00 0.0	0.0	0.10000E+01	0.0	0.33691E-01 0.83948E+02 0.99500E+00 0.0 0.10000E+01 0.0 0.21079E+01-0.39963E+03 0.39965E+03	5 0.39965E+03
15 10 0 0 0	0.27495E+03	0.20000E+05	0.27495E+03 0.20000E+05 0.99500E+00 0.0	0.0	0.0	0.0	0.27495E+03 0.20000E+05 0.99500E+00 0.0 0.0 0.0 0.72203E+02 0.0 0.13747E+03	0.13747E+03
CONTR REFERENCE NOS. DEPEND INDEP CPT STA CPT		VARIABLE NOS. DEPEND INDEP VAR STA PER DAT	CONTR SWITCH	INDEP VAR	MIN LIMIT	MAX LIMIT	CONTR SWITCH INDEP VAR HIN LIMIT MAX LIMIT DEPEND DES ABS DEP ACT DEPEND ERR	r DEPEND ERR

											鱼		
DEND GOD	MIN LIMI NAX LIMI DEFEND DES ADS DET AL STATES	0.39965E+03 0.35691E-01	_	_	0.79012E+00 0.10000E+00 0.30000E+01 0.27500E+03 0.13747E+03-0.51270E-01	_	_	_					•
2	3	5 O S	0.0	0.	5-0.5	0.0	0.0	0.	0		ACT		
74 030	100	965E+03			1747E+0						ARG2 ACT).85400E+00 0.88000E+00 0.23264E+01 0.23264E+01 0.0	0.85400E+00 0.85399E+00 0.2/495E+03 0.2/495E+03 0.0
700		9	0.0	0.0	0.13	0.0	0.0	0.0	0.0		TB1	£ +07	2 + O.
0	220		E+03		E+03	E+03	E-01	E-01			ARGI TBL	2326	(t / 2
	5		7500	_	7500	0000	6500	6500	_		⋖ ,	<u>.</u>	
č	֓֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֓֓֡֓֜֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡	0.0	20	0.0	2.0 1	9.3	1.0.1	.0.1	0.0		ACT	24E+0	λ>Ε+U
1	747	0E+03	0E+04	0E+03	0E+0]	0E+0%	0E-03	06-0]	0E+0]		ARG1	. 2326	.274
	X	1150	4000	2000	3000	1000	1000	1000	2000		BE	8	000
3	E -	32 O.	0.12000E+04 0.40000E+04 0.27500E+03 0.0	0.10000E+00 0.20000E+01 0.0	000	0.50000E+00 0.10000E+02 0.30000E+03 0.0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	0.10000E+00 0.20000E+01 0.0		VAR 1	300E	399E+
	LIMI	00E+()+300	00E+(00E+()+300	00E-1)-300	00E+(SCHD	9.88	0.85
	Z	.400	.120	.100	1.100	.500	1.100	1.100	.100		ACT	00+	00+
!	5	0.83948E+02 0.40000E+02 0.11500E+03 0.0	0	0	001		٥		•		SCHOVAR ACT SCHOVAR TBL ARGI ACT	2400E	24005
;	2	948E.			OLZE						ν,		_
!	CONTR SWITCH INDEP VAR	0.83	0.0	0.0	0.79	0.0	0.0	0.0	0.0	APG?	DAT VAR STA VAR STA	0	8.0 1 0 0 0
į	D L		14			14					A VA.	0	0
	14 SI	8	0FF	OFF	3	6	OF	OFF	OFF	BLE NOS	R ST	_	0
	50									VARIABLE NOS	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	_
INDEP	DAT	-4	J	7	. L	,	М	m	7	VARIA	AR SI	8	@
Ħ	2	0	0				۰		0	בר אינוייייייייייייייייייייייייייייייייייי	AT V	0	0
SEND SEND	STA P	0) C	, a			0				_
DE	VAR	-	-	-	• ~	. ~	١٨	۰ م	0		PT S		•
										SON .	TAC	-	0
INDE	CPT	14	•	5	2 5	? -	' =	- 2	2	RENCE	PT S	0	15
EKO	STA	0			,	•	• •	o c	24 0	REFE	STA (0	0
DEP	CPT	2	, <u>,</u>	9	9 4	12	? :	1 2	2, 2,	FCUSAGE ADES		2	20
		2			, ,	3 7	2 6	3 %	52	SCHED		18	

OVERALL ENGINE PERFORMANCE DATA

NET JET THT PROP.THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERBRD BLEED 0.14179E+02 0.0 0.14179E+02 0.87014E+01 0.61241E+01 0.23152E-01 *TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.27495E+03 0.44872E+00 0.11876E+03 0.27495E+03 0.44872E+00 0.11876E+03 AIR,LB/SEC FUEL,LB/HR GRS.JET THT 0.23152E+01 0.12337E+03 0.14179E+02 BRAKE SH.HP PROP. HP 0.27495E+03 0.0

COMPONENT PERFORMANCE	ERFORMAN	ICE DATA			COMPONENT IN	INTERFACE TOLERANCE	#	0.0100	PERCENT	COMP	COMPONENT ERROR SIGNAL	SIGNAL = 0
MTFLOM 0.24151 0.24151 0.22122 0.22122 0.22122 0.22122 0.22122 0.22122 0.22122 0.24276 0.24276 0.24276 0.24276 0.24276	MTFLOM 0.24151E+01 0.24151E+01 0.22122E+01 0.22122E+01 0.22122E+01 0.22122E+01 0.22122E+01 0.22122E+01 0.24277E+01 0.24276E+01 0.24276E+01 0.24276E+01 0.24276E+01 0.24276E+01	TOPRES 0.14696E+02 0.14696E+02 0.11316E+03 0.0 0.0 0.11090E+03 0.10487E+03 0.37123E+02 0.37123E+02 0.37123E+02 0.37123E+02 0.37123E+02 0.37123E+02 0.37123E+02		TOTEMP 0.51869E+03 0.51869E+03 0.10338E+04 0.10338E+04 0.14328E+04 0.14328E+04 0.14328E+04 0.14328E+04 0.14328E+04 0.16024E+04 0.16024E+04 0.16024E+04 0.16024E+04 0.16024E+04		THETA 0.10000E+01 0.10000E+01 0.19931E+01 0.27624E+01 0.27624E+01 0.46453E+01 0.46453E+01 0.46453E+01 0.3697E+01 0.3697E+01 0.3697E+01 0.3697E+01 0.3697E+01	FUEL/AIR 0.0 0.0 0.0 0.0 0.0 0.1658E-01 0.15344E-01 0.15344E-01 0.15344E-01 0.15344E-01	000111111	CORFLO 0.37427E+01 0.37427E+01 0.62858E+00 0.0 0.76141E+00 0.75511E+00 0.7552E+00 0.7552E+00 0.10614E+01 0.28638E+01 0.28638E+01 0.61898E+01 0.61898E+01 0.61898E+01 0.61898E+01	VMACH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	STPRES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	300 hp 60% IRP 60% 300
STATIONS O 2 0 STATIONS	RAH DRA 0.0 HORSEPO -0.42872E	G F 6 F 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	FLT VEL KTS 0.0 ACTUAL RPH 0.85000E+02		AMB TEMP 0.51869E+03 PRESS RATIO 0.77000E+01	AMB PRESS 0.14696E+02 ADIAB EFF 0.78416E+00	S EFFICIENCY 02 0.10000E+01 F JP2 BLDFRAC 00 0.84000E-01		RECOVERY 0.10000E+01 TABLE R 1 0.14000E+01	ALTITUDE 0.0 TABLE CORRPH 0.48450E+05	THETA RAM 0.10000E+01 TABLE PR	DELTA RAM 0.10000E+01 TABLE CORFLO
STATIONS 0 5 0 0 7 0 4 9 0 4 11 0 0 13 0	DELTA P 0.20000E 0.20001E 0.0 0.0 0.32800E	-010	C1 FACTOR 0.0 0.0 0.0 0.0	000000	C2 FACTOR	C3 FACTOR 0.50617E-01 0.35077E-03 0.0 0.0 0.85609E-03	R TBIN2-TBIN1 01 0.0 01 0.0 0.0 0.0 03 0.0		TBIN2 0.0 0.0 0.0 0.0 0.0	MBIN2/MBIN 0.0 0.0 0.0 0.0 0.0	MBIN/WBAV 0.0 0.0 0.35714E+00 0.0	MBOUT/MDUCT 0.0 0.0 0.0 0.0 0.0 0.0
STATIONS 0 8 0 0 8 0 STATIONS 0 4 10 0	EXIT TEMP 0.24500E+04 HORSEPOWER 0.43088E+03	0 0	TEMP RISE 0.10172E+04 ACTUAL RPM 0.85000E+02		0.35000E-01 0.35000E-01 PRESS RATIO	FUEL FLOW 1 0.13207E+03 ADIAB EFF 1 0.86500E+00		E+00 0	EFFICIENCY BURNR THETA 0.99000E+00 0.0 WBIN/WBTOT WBSTAT/MBIN 0.52381E+00 0.0	COMB LDG 1 0.11351E+07 TABLE CORRPM 0.10000E+01	CCMB LDG 2 0.23564E+06 TABLE PR 7 0.28250E+01	COMB LDG 3 0.14480E+00 TABLE CORFLO

LIMIT IND	NOZZLE TYPE
0.0	CONV
JP1 TEMP JP2 TEMP JM1 CORFLO JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND	GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE TYPE
).14328E+04 0.12554E+04 0.64141E+00 0.63997E+01 0.0 0.0 0.70170E+00 0.70170E+00 0.0	0.15591E+02 0.52900E+02 0.20662E+03 0.20870E+03 0.10100E+01 0.10100E+01 0.10000E+01 0.99000E+00 CONV
EFFECTVNESS	DISCHG COEF
0,70170E+00	0.10000E+01
JMZ DELP/PT	PTIN/PAMB
0.0	0.10100E+01
DELP/PT	. VEL PR
E 0.1	2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
JM2 CORFL().63997E+0]	IDL JET VEI).20870E+0]
JP1 TEMP JP2 TEMP JM1 CORFLO JM2 CORFLO JM1 0.14328E+04 0.12554E+04 0.64141E+00 0.63997E+01 0.0	ACT JET VEL :
JP2 TEMP	NOZZLE AREA
0.12554E+04	0.52900E+02
JP1 TEMP	GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE 1
0.14328E+04	0.15591E+02 0.52900E+02 0.20662E+03 0.20870E+03 0.10100E+01 0.10100E+01 0.10000E+01 0.99000E+00 CONV
HT EX STATIONS	NOZZL STATIONS
4 5 13 6 14	13 15 0 16 0
HT EX	NOZZL 13 15

NON-TURB HP SUM ABS HP/2	E+03 0.42873E+03	0.15000E+03
TORQUE NON-TUR	0.30171E+00-0.42872E+03 0.42873E+03	0.78779E+02 0.0
IPI MCH EFF JP2 MCH EFF	0.10000E+01 0.0	0.0
ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF TORQUE	:-02 0.85000E+02 0.99500E+00 0.0	E+03 0.20000E+05 0.99500E+00 0.0
NET HP ACTUA	0.48828E-02 0.8500	0.29999E+03 0.2000
SHAFT COMPONENTS	14 8 0 2 0	15 10 0 0 (

		ERR	-05							
		DEPEND	0.48828E	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		S DEP ACT	0.42873E+03 0.48828E-02	0	0	8	0	0	0	0
		S30 ON		20000E+03 0.	0.0	30000E+03 0.	30000E+03 0.	16500E-01 0.	16500E-01 0.	
			.11500E+03 0.0	.12000E+04 0.40000E+04 0.20000E+03 0.0	.10000E+00 0.20000E+01 0.0	1.10000E+00 0.30000E+01 0.30000E+03 0.0	.50000E+00 0.10000E+02 0.30000E+03 0.0	.10000E-01 0.	.10000E-01 0.	.20000E+01 0.
		MIN LIMIT	0.40000E+02 0.11500E+03 (0.12000E+04 0	0.10000E+00 0	0.10000E+00 0	0.50000E+00 0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	0.10000E+00 0
			0.85000E+02		0.0	0.0				
		CONTR SWITCH INDEP VAR	8	OFF	OFF	OFF	OFF	OFF	OFF	OFF
os.	INDEP	DAT	~	Ŧ	7	ĸ	-	m	м	7
LE N	_	PER	0	0	0	0	0	0	0	0
ARIAE	EPEN	2.5 2.1	0	0	0	0	0	0	0	0
. VARIABLE NOS.	٥	VAR	-	H	H	-	-	8	~	-
CE NOS.	INDEP	CPT	14	•	10	15 0 10		ជ	12	10
FEREN	PEND	T STA	0	0	0	0	0	0	٥	0
RE	DE	ß	14	15	18	15	15	11	12	57
CONTR			16	17	73	20	23	22	23	22

		ARG2 TBL	0.0	0.0
		ARG2 ACT	0.0	3 0.0
		ARG1 TBL	0 8 0 0 1 0 0 0.86200E+00 0.88000E+00 0.24277E+01 0.0	0 8 0 1 0 0 0.86200E+00 0.86200E+00 0.29999E+03 0.29999E+03 0.0
		DAT VAR STA VAR STA SCHDVAR ACT SCHDVAR TBL ARG1 ACT	0.24277E+0]	0.29999E+03
		SCHDVAR TBL	0.88000E+00	0.86200E+00
		SCHDVAR ACT	0.86200E+00	0.86200E+00
	ARG2	STA	0	0
	⋖	VAR	0	0
VARIABLE NOS.	3 61	STA	~	0
ABLE	₹	VAR	0	-
VARI	ğ	STA	0	0
•	SCHDVAR ARG1	VAR	æ	ø
	Ñ	DAT	0	0
	29	CPT STA CPT STA CPT STA	0	0
Š.	¥	ᄗ	0	0 15 0 0 0
REFERENCE NOS.	ទ	STA	=	0
RENC	ARGI	CPT	0	15
REFE	CHDVAR	STA	0	0
	SCH	CPT	10 0 0 11 0 0	20
SCHED			18	5,5

OVERALL ENGINE PERFORMANCE DATA

AIR.LB/SEC FUEL,1B/HR GRS.JET THT NET JET THT PROP.THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERBRD BLEED 0.24151E+01 0.13207E+03 0.15591E+02 0.24151E-01

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.29999E+03 0.44025E+00 0.12421E+03 0.29999E+03 0.44025E+00 0.12421E+03 BRAKE SH.HP PROP. HP 0.29999E+03 0.0

TABLE PR TABLE CORFLO 0.29502E+01 0.35630E+01 0.25230E+01 THETA RAM DELTA RAM 0.10000E+01 0.10000E+01 HORSEPOWER ACTUAL RPM PRESS RATIO ADIAB EFF JP2 BLDFRAC TABLE R TABLE CORRPM TABLE PR TABLE CORFLO -0.51302E+03 0.87521E+02 0.87275E+01 0.78978E+00 0.84000E-01 0.14426E+01 0.49887E+05 0.89582E+01 0.38172E+01 COMPONENT ERROR SIGNAL 0.0 0.35714E+00 (0.0 0.0 0.14696E+02 0.14696E+02 COMB LDG 2 0.22459E+06 WBIN/WBAV 0.0 COMB LDG 1 0.11963E+07 0.10123E+01 0.98655E+00 0.14972E+00 0.14822E+00 WBINS/MBIN TABLE CORRPM ALTITUDE VMACH AMB TEMP AMB PRESS EFFICIENCY RECOVERY AL1 0.51869E+03 0.14696E+02 0.10000E+01 0.10000E+01 0.0 000000 THETA 0.41677E+01 0.41677E+01 WBIN/WBTOT WBSTAT/WBIN 0.52381E+00 0.0 0.0 0.62862E+00 0.64145E+00 0.74672E+00 0.76162E+00 PERCENT 0.10514E+01 0.10865E+01 0.29803E+01 0.29803E+01 0.68237E+01 0.71070E+01 0.63414E+01 0.65329E+01 0.65346E+01 TBIN2 CORFLO BURNE 0.0 00000 0.0 TOLERANCE = 0.0100 66666 EFFICIENCY 0.99000E+00 TBIN2-TBIN1 0.17797E-01 0.17233E-01 0.16467E-01 0.16467E-01 0.16467E-01 0.16467E-01 0.16467E-01 000000 0000000 FUEL FLOW 0.15784E+03 .85609E-03 PRESS RATIO ADIAB EFF 0.29502E+01 0.86500E+00 0.25261E+01 0.88000E+00 0.50617E-01 0.35077E-01 C3 FACTOR POINT R5 THETA 0.10000E+01 0.10000E+01 0.20652E+01 0.20652E+01 0.20652E+01 0.27985E+01 0.27985E+01 0.48862E+01 0.48057E+01 0.37990E+01 0.37990E+01 0.31209E+01 0.31209E+01 0.24846E+01 24846E+01 INTERFACE 0.0 600 DELTA P/PT 0.35000E-01 OFF-DES 1/29/80 FACTOR COMPONENT 0.10712E+04 0.10712E+04 0.10712E+04 0.14516E+04 0.14516E+04 0.2534E+04 0.2536E+04 0.19705E+04 0.19705E+04 0.16188E+04 0.12887E+04 0.51869E+03 0.51869E+03 2 000000 HORSEPOWER ACTUAL RPM 0.51560E+03 0.87521E+02 0.37671E+03 0.20000E+05 KTS TEMP RISE 0.10828E+04 FACTOR FLT VEL 1 0.0 0.12569E+03 0.12569E+03 0.12324E+03 0.11892E+03 0.40310E+02 0.40310E+02 0.15957E+02 0.15921E+02 0.14696E+02 0.14696E+02 0.14889E+02 0.12826E+03 ជ 0.20002E-01 0.0 0.19559E-01 0.0 REGENERATIVE PROPOSAL ENGINE TOPRES 0000 DATA EXIT TEMP 0.25344E+04 0.39862E-01 0.28201E-01 DELTA P/PT DRAG COMPONENT PERFORMANCE 0.22590E+00 0.24634E+01 0.24634E+01 0.24635E+01 0.24635E+01 0.25074E+01 0.25880E+01 0.27064E+01 0.27064E+01 0.27064E+01 0.27064E+01 0.26893E+01 0.26893E+01 RAH 0 đ 00 00 STATIONS 1 0 2 0 STATIONS 2 0 3 4 STATIONS STATIONS 113 0.27 N P t t STATION ~ ^ • COMPR INLET BURNE 500 ~ M 10 P 0 • H 8 2 8

TABLE CORFLO

MBOUT AND UCT

000000

0

375 hp

COMB LDG 3

		•	
9	YPE	HP/ +03 +03	ERR -02
E	ZLE 7 CONV	ABS 302E 741E	END 521E 773E
E o	NOZZLE TYPE CONV	NON-TURB HP SUH ABS HP/2 -0.51302E+03 0.51302E+03 0.0	ABS DEP ACT DEPEND ERR 0.51302E+03 0.36621E-02 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
		Ξ Ó E N	F 6 6
SCL 10£+	COEF 00E+	URB 02E+	6P A 02E+ 41E+
FFT .695	VEL .	7-NO .513	ABS D 0.513 0.0 0.0 0.0 0.187 0.0
EFFECTVNESS EFFT SCL F. LII 0.69510E+00 0.69510E+00 0.0	PTIN/PAMB DISCHG COEF VEL COEF 0.10131E+01 0.10000E+01 0.99000E+0		HIN LIMIT MAX LIMIT DEPEND DES ABS DEP ACT DEPEND ERR 0.40000E+02 0.11500E+03 0.0 0.51302E+03 0.36621E-02 0.12000E+04 0.40000E+04 0.37500E+03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
VNE	CO E+	TORQUE .21976E+00 .98430E+02	00 E + + 00 E + 00
FECT 6951	3CHG 1000	1089 2197 9843	EPEN 0 3750 3750 3000 1650 0
∓ 0.	DI 1 0.	. 6.9	60000000000000000000000000000000000000
LP/P	PAMB 1E+0	# #	
DE	IN.	Ď.	700000000000000000000000000000000000000
0.0	E .:	0.0 0.0	5.0000000
P/PT	PR E+01	JP1 MCH EFF JP2 0.10000E+01 0.0 0.0	MIN LIMIT MAX LIMIT DEPE 0.40000E+02 0.11500E+03 0.0 0.12000E+04 0.40000E+04 0.375 0.10000E+00 0.20000E+01 0.0 0.20000E+00 0.375 0.2000E+00 0.10000E+00 0.300 0.10000E+00 0.10000E+00 0.105 0.10000E+00 0.20000E+00 0.105 0.10000E+00 0.20000E+00 0.105 0.10000E+00 0.20000E+00 0.105
DEL	VEL	300 HCH	MIN LIMIT40000E+0212000E+0610000E+0610000E+0610000E-0410000E-04
E 0.	10L 0.10	2.0 1.0 0.0	£ 000000000000000000000000000000000000
P JP2 TEMP JM1 CORFLO JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND +04 0.12885E+04 0.64145E+00 0.71070E+01 0.0 0.0	GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF 0.19922E+02 0.52900E+02 0.23655E+03 0.23894E+03 0.10131E+01 0.10131E+01 0.10000E+01 0.99000E+00	ACTUAL RPH JH1 HCH EFF JH2 HCH EFF JP1 HCH EFF JP2 HCH EFF .87521E+02 0.99500E+00 0.0 0.10000E+01 0.0 .20000E+05 0.99500E+00 0.0 0.0	INDEP VAR HIN LIMIT HAX LIMIT DEPEND DES ABS DEP ACT DEPEND ERR 0.87521E+02 0.40000E+02 0.11500E+03 0.0 0.51302E+03 0.36621E-02 0.0 0.12000E+04 0.40000E+04 0.37500E+03 0.0 0.0 0.0 0.0000E+04 0.37500E+03 0.0 0.0 0.0 0.0000E+00 0.37500E+03 0.0 0.0 0.0 0.0000E+00 0.37500E+03 0.0 0.0 0.0 0.0 0.0000E+04 0.10000E+02 0.30000E+03 0.0 0.0 0.0 0.0 0.0 0.10000E-04 0.10000E+01 0.16500E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10000E+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
070 9070	JET 894E	즆	647E
JH2 0.71	IDL 0.23	0.0 0.0	INDEP VAR 0.87521E+02 0.0 0.0 0.83647E+00 0.0
FL0 00 10	VEL +03	ACTUAL RPM JM1 MCH EFF JM2 -02 0.87521E+02 0.99500E+00 0.0 +03 0.20000E+05 0.99500E+00 0.0	CONTR SMITCH INDEP VAR ON 0.87521E+02 OFF 0.0
COR.	JET .	1CH 500E	SMI ON OFF OFF OFF
E . 6.	. 23(141 r 1.99: 1.99:	ET S
9	EA 4	₩ 20 ₩ 05 05	
TEMP 85E+	E AR	AL R 21E+ 00E+	0S. INDEP 1 1 4 7 7 7 7 7
JP2 TEMP .12885E+0	022L .529	ACTU .875	
0 70	ST N	0 2 0	TABLE NOS. STA PER INC. STA PER INC. O O O O O O O O O O O O O O O O O O O
	THRU:	HP 21E- 32E+1	VAR SEP
JPI TEMP 0.14518E+	1992	NET HP 0.36621E- 0.37482E+	
, ė	20 0		INDEP CPT CPT 14 10 10 11 11 12
72 A3	SN O	S L O	REFERENCE NOS. DEPEND INDEP 14 0 14 15 0 10 15 0 10 15 0 1 11 0 1 11 0 1 12 0 0 24 0 0 0
AT10	AT10	PONE 0 2	REFERENC DEPEND DEPEND 14 0 15 0 15 0 15 0 11 0 11 0 12 0
ST. 8	ST.	0 0 0	
HT EX STATIONS 4 5 13 6 14	4022L STATIONS 13 15 0 16 0	SHAFT COMPONENTS 14 8 0 2 0 15 10 0 0 0	CONTR 16 17 19 22 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25
Ξ	ž ~	\$ C .	

AIR,LB/SEC FUEL,LB/HR GRS.JET THT NET JET THT PROP.THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERBRD BLEED 0.26893E+01 0.15784E+03 0.19922E+02 0.19922E+02 0.79230E+01 0.74076E+01 0.26893E-01 BRAKE SH.HP PROP. HP 0.37482E+03 0.0 AIR, LB/SEC

ARG2 TBL 0.0 0.0

SCHDVAR ACT SCHDVAR TBL ARG1 ACT ARG1 TBL ARG2 ACT 0.88000E+00 0.88000E+00 0.27064E+01 0.27064E+01 0.37482E+03 0.37482E+03 0.0

18 24

REFERENCE NOS.

SCHED

OVERALL ENGINE PERFORMANCE DATA

STATION WTFLOM TOPRES TOTER							
1 0.33497E+01 0.14696E+02 0.51 2 0.33497E+01 0.14696E+02 0.51 3 0.30681E+01 0.16446E+03 0.11 5 0.30681E+01 0.16106E+03 0.11 6 0.30683E+01 0.16106E+03 0.15 7 0.30683E+01 0.15796E+03 0.15 10 0.31760E+01 0.15796E+03 0.20 11 0.33760E+01 0.15796E+02 0.20 12 0.33760E+01 0.15796E+02 0.13 14 0.33760E+01 0.15704E+02 0.13 15 0.33760E+01 0.15704E+02 0.13 16 0.33760E+01 0.15704E+02 0.13 17 STATIONS RAM DRAG FLT VEL KTS 18 0.30683E+01 0.15704E+02 0.13 19 0.30685E+01 0.15704E+02 0.13 10 0.31686E+01 0.15704E+02 0.13 11 0 2 0 0.0 0.0 0.0 11 0 2 0 0.0 0.0 11 0 2 0 0.0 0.0 11 0 0.0 0.0 0.0 0.0 11 0 0.0 0.0 0.0 0.0 11 0 0.0 0.0 0.0 0.0 11 0 0.0 0.0 0.0 0.0 11 0 0.0 0.0 0.0 0.0 0.0 11 0 0.0 0.0 0.0 0.0 0.0 0.0 11 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TOTEMP THETA		FUELZAIR	CORFLO	VMACH	STPRES	
2 0.33497E+01 0.14696E+02 0.51 3 0.30681E+01 0.16446E+03 0.11 5 0.20138E+00 0.0 0.10681E+01 0.16106E+03 0.11 6 0.30683E+01 0.16106E+03 0.15 7 0.30683E+01 0.15106E+03 0.15 0.30683E+01 0.15796E+03 0.15 0.31766E+01 0.15796E+03 0.20 0.31766E+01 0.15796E+02 0.20 0.31760E+01 0.15796E+02 0.15 0.31760E+01 0.15704E+02 0.15 0.31760E+01 0.15704E+02 0.13 0.31760E+01 0.15704E+02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		0.10000E+01 0.0		0.51911E+01	0.0	0.0	
## 0.30681E+01 0.16444E+03 0.11 9 0.28138E+00 0.0 1.01.0683E+01 0.16106E+03 0.11 6 0.30683E+01 0.16106E+03 0.15 7 0.30683E+01 0.15798E+03 0.25 1 0 0.31760E+01 0.15798E+03 0.25 11 0 0.33760E+01 0.1579E+02 0.20 12 0.33760E+01 0.15706E+02 0.15 14 0.33760E+01 0.15706E+02 0.15 15 0.33760E+01 0.15706E+02 0.13 16 0.33760E+01 0.15706E+02 0.13 16 0.33760E+01 0.15701E+02 0.13 16 0.33760E+01 0.15701E+02 0.13 17 STATIONS RAH DRAG FLT VEL KTS 18 0 5 0 0.20556E+01 0.0 10 4 11 0 0.0 10 4 11 0 0.0 10 4 11 0 0.0 11 0 0.0 11 0 0.0 12 0 13 0 0.26750E+01 0.0 14 0 15 0 0.26750E+04 0.11729E+04 17 STATIONS EXIT TEMP TEMP RISE 18 0 5 0 0.44322E-01 0.0 19 0 0.0 0.00 10 4 11 0 0.0 0.00 10 4 11 0 0.0 0.00 10 4 11 0 0.0 0.00 10 4 11 0 0.0 0.00 10 4 11 0 0.0 0.00 10 5 0 0.26750E+04 0.11729E+04	51869E+03			0.51911E+01	0.0	0.0	
## 0.281366+00 0.0 ## 0.281366+00 0.0 ## 0.30681E+01 0.16106E+03 0.15 ## 0.30683E+01 0.15245E+03 0.26 ## 0.31281E+01 0.15245E+03 0.26 ## 0.31286E+01 0.15245E+03 0.26 ## 0.33760E+01 0.15704E+02 0.10 ## 0.33760E+01 0.15704E+02 0.15 ## 0.33760E+01 0.15704E+02 0.15 ## 0.33760E+01 0.15704E+02 0.15 ## 0.33760E+01 0.15704E+02 0.13 ## 374710NS RAH DRAG FLT VEL KTS ## 374710NS RAH DRAG FLT VEL KTS ## 374710NS DELTA P/PT CI FACTOR ## 4 9 0 0.0 ## 0 0.0 ## 0 0.0 ## 0 0 0.0 ## 0	_			0.63726E+00	0.0	0.0	
S	_			0.0	0.0	0.0	
0				0.65063E+00	0.0	0.0	
7 0.306835+01 0.157968+03 0.155 1 9 0.31281E+01 0.15245E+03 0.20 1 0 0.33760E+01 0.15245E+03 0.20 22286E+01 0.15245E+03 0.20 23760E+01 0.44919E+02 0.20 23760E+01 0.16474E+02 0.10 13 0.33760E+01 0.15704E+02 0.13 14 0.33757E+01 0.15704E+02 0.13 15 0.3368E+01 0.15704E+02 0.13 16 0.3368E+01 0.15704E+02 0.13 17 STATIONS RAM DRAG FLT VEL KTS 17 STATIONS HORSEPOWER ACTUAL RPM 22 0 3 4 -0.75287E+03 0.94845E+02 23 0 5 0 0.20556E-01 0.0 24 0 7 0 0.19123E-01 0.0 25 4 0 0 0.0 26 4 9 0 0.0 27 0 0.44322E-01 0.0 28 4 9 0 0.0 28 4 9 0 0.0 28 14 0 15 0 0.44322E-01 0.0 28 14 0 15 0 0.44322E-01 0.0 29 14 0 15 0 0.26750E+04 0.11729E+04				0.73836E+00	0.0	0.0	100
0				0.75276E+00	0.0	0.0	du nac
9				0.10613E+01	0.0	0.0	IRP
10 0.33760E+01 0.44919E+02 0.20 11 0.33760E+01 0.44919E+02 0.20 12 0.33760E+01 0.1676E+02 0.16 13 0.33760E+01 0.15704E+02 0.16 14 0.33757E+01 0.15704E+02 0.13 15 0.3368E+01 0.15704E+02 0.13 16 0.3368E+01 0.15001E+02 0.13 16 0.3368E+01 0.15001E+02 0.13 17 STATIONS RAM DRAG FLT VEL KTS 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_		0.10865E+01	0.0	0.0	
11				0.33876E+01	0.0	0.0	
12				0.33876E+01	0.0	0.0	
13 0.33760E+01 0.15704E+02 0.16 14 0.33757E+01 0.15704E+02 0.13 15 0.33686E+01 0.15704E+02 0.13 16 0.33686E+01 0.15001E+02 0.13 16 0.33686E+01 0.15001E+02 0.13 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0.82450E+01	0.0	0.0	
0				0.87547E+01	0.0	0.0	
STATIONS RAH DRAG FLT VEL KTS 1 0 2 0 0.33666E+01 0.15001E+02 0.13 1 0 2 0 0.0 0.0				0.79499E+01	0.0	0.0	
STATIONS RAH DRAG FLT VEL KTS 1 0 2 0 0.0 0.0 0.0 STATIONS HORSEPOWER ACTUAL RPH 2 0 3 4 -0.7528/Te+03 0.94845E+02 STATIONS DELTA P/PT CI FACTOR 3 0 5 0 0.20556E-01 0.0 8 4 9 0 0.0 0 4 11 0 0.0 0 4 11 0 0.0 2 0 13 0 0.581,97E-01 0.0 2 0 13 0 0.4322E-01 0.0 STATIONS EXIT TEMP TEMP RISE 7 0 8 0 0.26750E+04 0.11729E+04	0.13677E+04 0.26	0.26368E+01 0.1	0.18091E-01 0	0.83012E+01	0.19159E+00	0.14696E+02	۵.
STATIONS RAH DRAG FLT VEL KTS 1 0 2 0 0.0 0.0 STATIONS HORSEPDWER ACTUAL RPM 2 0 3 4 -0.7528/E+03 0.94845E+02 3 0 5 0 0.20556E-01 0.0 8 4 9 0 0.0 0 4 11 0 0.0 0 4 11 0 0.0 0 4 11 0 0.0 12 0 13 0 0.58197E-01 0.0 14 0 15 0 0.44322E-01 0.0 15 TATIONS EXIT TEMP TEMP RISE 15 0 8 0 0.26750E+04 0.11729E+04 STATIONS HORSEPOWER ACTUAL POPP.	0.13677E+04 0.26	0.26368E+01 0.1	0.18091E-01 0	0.83047E+01	0.18967E+00	0.14696E+0	A.
STATIONS HORSEPOWER ACTUAL RPM STATIONS HORSEPOWER ACTUAL RPM STATIONS DELTA P/PT CI FACTOR 3 0 5 0 0.205566-01 0.0 6 4 7 0 0.191236-01 0.0 2 0 13 0 0.0 2 0 13 0 0.581976-01 0.0 3 15 0 0.443226-01 0.0 STATIONS EXIT TEMP TEMP RISE STATIONS ACTUAL PPH.	AMS TEMO	AMR DOFEE	YURTUTED3	DECOVEDY	A! TTT! ME	THETA DAM	DEL TA DAN
STATIONS HORSEPOWER ACTUAL RPM 2 0 3 4 -0.7528/E+03 0.94845E+02 STATIONS DELTA P/PT CI FACTOR 3 0 5 0 0.20556E-01 0.0 6 0 7 0 0.19123E-01 0.0 6 4 11 0 0.0 10 4 11 0 0.0 12 0 13 0 0.58197E-01 0.0 14 0 15 0 0.44322E-01 0.0 STATIONS EXIT TEMP TEMP RISE 7 0 8 0 0.26750E+04 0.11729E+04	0.51869E+03	96E+02		7	0.0	0.10000E+01	0.10000E+01
STATIONS DELTA P/PT CI FACTOR 3 0 5 0 0.20556E-01 0.0 6 4 9 0 0.0 0 4 11 0 0.0 0 4 11 0 0.0 0 4 11 0 0.0 0 4 15 0 0.58197E-01 0.0 0 4 0 15 0 0.44322E-01 0.0 STATIONS EXIT TEMP TEMP RISE 7 0 8 0 0.26750E+04 0.11729E+04	ACTUAL RPM PRESS RATIO	ADIAB EFF J	JP2 BLDFRAC	TABLE R T	TABLE CORRPM	TABLE PR 1	TABLE CORFLO
STATIONS DELTA P/PT 3 0 5 0 0.20556E-01 0 8 4 9 0 0.19123E-01 0 10 4 11 0 0.0 12 0 13 0 0.58197E-01 0 14 0 15 0 0.44322E-01 0 R STATIONS EXIT TEMP 7 0 8 0 0.26750E+04 0	0.11189E+02	0		0.15980E+01 0.54062E+05	0.54062E+05	8	0.47546E+0I
3 0 5 0 0.20556E-01 0 6 0 7 0 0.19123E-01 0 8 4 9 0 0.0 10 0.0 10 4 11 0 0.0 11 0 0.	C2 FACTOR	C3 FACTOR 1	TBIN2-TBIN3	TBINZ	WBIN2/WBIN	WBIN/WBAV	WBOUT/WDUCT
6 0 7 0 0.19123E-01 0 8 4 9 0 0.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	0.0	_	0-0	0.0	0.0	0.0	0 0
8 4 9 0 0.0 10 4 11 0 0.0 12 0 13 0 0.58197E-01 0 14 0 15 0 0.44322E-01 0 STATIONS EXIT TEMP 7 0 8 0 0.26750E+04 0 STATIONS HODSEPONED			0.0	0.0	0.0	0.0	0.0
10 4 11 0 0.0 12 0 13 0 0.58197E-01 0 14 0 15 0 0.44322E-01 0 STATIONS EXIT TEMP 7 0 8 0 0.26750E+04 0 STATIONS HODSEPOWED			0.0	0.0	0.0	0.35714E+00	0.0
12 0 13 0 0.58197E-01 0 14 0 15 0 0.44322E-01 0 STATIONS EXIT TEMP 7 0 8 0 0.26750E+04 0 STATIONS HODSEPONED			0.0	0.0	0.0	0.0	0.0
14 0 15 0 0.44322E-01 0 STATIONS EXIT TEMP 7 0 8 0 0.26750E+04 0 STATIONS HODSEPONED		5609E-03	0.0	0.0	0.0	0.0	0.0
STATIONS EXIT TEMP 7 0 8 0 0.26750E+04 0 STATIONS HODSEPONED	0.0	0.70128E-03 0	0.0	0.0	0.0	0.0	0.0
7 0 8 0 0.26750E+04 0	DELTA P/PT			BURNR THETA		COMB LDG 2	COMB LOG 3
STATIONS HODSEDONED	0.35000E-01	0.21597E+03 0	0.99000E+00	0.0	0.12769E+07	0.19653E+06	0.95045E-01
EUROLUGE 0004.4.0	PRESS RATIO		BIN/WBTOT W	WBIN/WBTOT WBSTAT/WBIN TABLE COPRPM	ABLE COPRPM	TABLE PR 1	TABLE COPFLO
9 4 10 0 0.75639E+03 0.94845E+02	0.33939E+01		2381E+00	0.0	0.10676E+01	0.33939E+01	0.35630E+01
10 11 4 12 0 0.50253E+03 0.20000E+05 0.	0.26939E+01	0.85900E+00 D	0.0	0.0	0.97160E+00	0.26939E+01	0.35630E+01

		A)										<u>1</u>
MIT IND	NOZZLE TYPE CONV	SUM ABS HP/2 0.75274E+03 0.25001E+03	DEDENS FEED	6660E+00	_	_	1973E-01	_	_	_	_	ARG2 TBL 0.0 0.0
7.5		8.0 2.0	<u>ت</u>	2.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	ACT
JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND 0.87547E+01 0.0 0.0 0.68250E+00 0.68250E+00 0.0	PTIN/PAMB DISCHG COEF VEL COEF 0.10212E+01 0.10000E+01 0.99000E+00	TORQUE NGN-TURB HP SUM ABS HP/2 -0.14763E+02-0.75267E+03 0.75274E+03 0.13131E+03 0.0	DEDENN DES ARS DED ACT	0.75274E+03-0.26660E+00	٥	0	0.25001E+03 0.21973E-01	0	0	0		ARG2 ACT 01 0.0 03 0.0
S EF 0 0.	F H	3 -0 ×	8	, ,	ы 0	0.0	m Ö	o o	20.	ц 9	0.0	TB1 60E+ 02E+
FECTVNES 68250E+0	DISCHG COEF 0.10000E+01	TORQUE NGN. 0.14763E+02-0.70 0.13131E+03 0.0	10 CM 10 1		0.40000E+04 0.50000E+03 0.0	•	0.50000E+03	0.30000E+03 0.0	0.16500E-01 0.0	0.16500E-01 0.0		SCHDVAR ACT SCHDVAR TBL ARG1 ACT ARG1 TBL 0.55900E+00 0.88000E+00 0.33760E+01 0.85900E+00 0.85900E+00 0.50002E+03 0.50002E+03
⊢ 9.	1 0.	ို့ ဝှ		0	4 0.	1 0.0		0	1 0.	۵.	1 0.0	ACT 60E+ 02E+
DELP/P	PTIN/PAMB .10212E+01	MCH EF	MAX - TMT	0.11500E+03	0000E+0	0.20000E+01	0.10000E+00 0.30000E+01	0.10000E+02	0.10000E-04 0.10000E-01	0.10000E-04 0.10000E-01	0.10000E+00 0.20000E+01	SCHDVAR ACT SCHDVAR TBL ARG1 ACT 0.45900E+00 0.88000E+00 0.33760E+01 0.85900E+00 0.85900E+00 0.50002E+03
JM2 0.0		JP2 0.0	Σ			9.5	0	5		3	9.5	R TB 0E+0
DELP/PT	VEL PR 212E+01	MCH EFF 000E+01	TAT : NTM	0.40000E+02	0.12000E+04	0.10000E+00	000E+00	0.50000E+00	000E-04	000E-04	000E+00	SCHDVA 0.8800
£ 0.	10L 0.10	0.0	2	40.40	0.12	0.10	0.10	0.50	0.10	0.10	0.10	ACT E+00 E+00
JP1 TEMP JP2 TEMP JM1 CORFLO JM2 CORFLO JM1 0.15021E+04 0.13677E+04 0.65063E+00 0.87547E+01 0.0	GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR 0.32614E+02 0.52900E+02 0.31149E+03 0.31464E+03 0.10212E+01	MCH EFF	TWOFE	N			5077E+00					•• -
£ 8.	10L 0.3	0.0 0.0			0.0	0.0	6.0	0.0	0.0	0.0	9	ARG2 R STA 0
RFLO E+00	. VEL	EFF E+00 E+00	A CEL	5								VAR O
JM1 CORFLO	ACT JET 0.31149	ACTUAL RPM JM1 MCH EFF JM2 00 0.94845E+02 0.99500E+00 0.0 03 0.20000E+05 0.99500E+00 0.0	HOLLING GENERAL	8	OFF	OFF	중	956	OFF	750	OFF	VARIABLE NOS. SCHOVAR ARGI ARG2 DAT VAR STA VAR STA 0 8 0 0 4 0 0 0 8 0 1 0 0
. \$	PEA /	PH - 02 - 05 - 05 - 05 - 05 - 05 - 05 - 05		3								ARIAE STA
JP2 TEMP	LE AI	UAL 1 845E 000E	OS. INDEP	Š ~	4	7	υń	-	M	m	7	VAI SCHDVAR T VAR S
JP2 0.13	NOZZ 0.52	ACT 0.94 0.20	VARIABLE NOS. DEPEND IND	ž o	0	0	0	0	0	0	0	SC DAT 0
45 + 04	7UST E+02	E+03	VARIABI DEPEND	-	0	0	0	0	0	0	0	ARG2 F STA 0
JP1 TEMP	GRSS THRU9 0.32614E+(NET HP -0.26660E+ 0.50002E+	VAR	ž	_	H	7	-	N	8	-	
7.	0 G	00	NOS.			0	0	_	-4	۲.		CE NOS. RG1 A STA CPT 11 0
2 4 A	SX O	2 0 0	REFERENCE NOS. DEPEND INDEP	بة ز د	_	Ä	Ä			H	Ä	REFERENCE NOS. SCHDVAR ARGI CPT STA CPT STA CP 10 0 11 0
STATIONS 5 13 6 14	ATIO 0 16	PONE 0 0	REFEREI DEPEND	, o	0	0	0	0	0	0	٥	REF DVAR STA 0
5 1	ST.	10 8 10 10 10 10 10 10 10 10 10 10 10 10 10		, ,	15	18	15	15	=	12	54	
# EX	MOZZL STATIONS 13 15 0 16 (SHAFT COMPONENTS 14 8 0 2 0 15 10 0 0 0	CONTR	16	17	19	20	21	22	23	25	SCHED 18 24

AIR.LB/SEC FUEL,LB/HR GRS.JET THT NET JET THT PROP.THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERBRD BLEED 0.33497E+01 0.21597E+03 0.32614E+02 0.32614E+02 0.32614E+01 0.33497E-01

OVERALL ENGINE PERFORMANCE DATA

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.50002E+03 0.43192E+00 0.14927E+03 0.50002E+03 0.43192E+00 0.14927E+03

BRAKE SH.HP PROP. HP 0.50002E+03 0.0

APPENDIX B: CYCLE 5 RECUPERATOR DATA

2 in.	0.5630	135.5 86.9 51.8		0.5630	136.0 72.9 46.5		0.5630	36.3 63.6 42.6		0.5630	rὐοινί
22.2	66	135.5 86.9 51.8			136.0 72.9 46.5		66	136.3 63.6 42.6			136.5 57.0 39.5
CD =	SIGT	HS U		SIGT	H HS U		SIGT	F S 2		SIGT SIGS	H H S
	0.01183	6635.2 764.4 3356.3		0.01183	6594.8 576.2 4021.0		0.01183 0.00398	6567.8 462.5 4602.7		0.001183 0.00398	6547.6 386.4 5124.1
TUBES 1 2PASS A	DHT DHS	RET RES UA	TUBES 1 2PASS A	DHS DHS	RET RES UA	TUBES I 2PASS A	DHT DHS	RET RES UA	TUBES I 2PASS A	OHT OHS	RET RES UA
16,18	2.0	573.8 1139.0 829.7		2.0	573.8 1139.0 810.5		2.0	573.8 1139.0 797.3		1.0	573.8 1139.0 787.6
SERED D1 0,12,14,	PSTU PSSH	T17 T1S 1 T2S	GERED D) 0,12,14,	PSTU PSSH	11T 71S J	GERED D] 0,12,14,	PSTU PSSH	117 118 J	SERCD D) 0,12,14,	PSTU PSSH	T1T T1S 1 T2S
CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES REG ENG CYL=RS ,E/D=.105 ,GFLO=2.5CORE LENGTH=6,8,10,12,14,16,18 2PASS	0.1500.	7.49 1.02 927.2	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED REG ENG CYL=RS ,E/D=.105 ,GFLO=2.5CORE LENGTH=6,8,10,12,14,16,18	0.1500	7.45 1.02 948.2	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES REG ENG CYL=RS .E/D=.105 ,GFLO=2.5CORE LENGTH=6,8,10,12,14,16,18 2PASS	0.1500	7.41 1.02 962.5	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERCD DIMPLED TUBES REG ENG CYL=RS ,E/D=.105 ,GFLO=2.5CORE LENGTH=6,8,10,12,14,16,18 2PASS	0.1500	7.37 1.02 973.2
ION- AI	DTO	P2T P2S T2T	ION- AI	DTO WALL	P2T P2S T2T	ION- AI DRE LEN	DTO WALL	P2T P2S T2T	ION- AI	DTO WALL	P2T P2S T2T
CALCULAT:	1.250	7.621 1.055	CALCULAT:	1.250	7.621	CALCULAT: SFL0=2.5C	1.250	7.621	CALCULAT: FLO=2.5C	1.250	7.621
HANGER .105 ,6	* *	P1T P1S	HANGER	¤×	P1T P1S	HANGER	k ¾	P1T P1S	HANGER .105 ,6	⋩⋠	PIT
HEAT EXC -R5 , E/D=	3300.00 64.79 8.00	2.225 2.461 1.643	I HEAT EXC .=R5 ,E/D=	3300.00 86.39 10.67	2.22 5 2.461 1.965	HEAT EXC	3300.00 107.99 13.33	2.225 2.461 2.248	I HEAT EXC .=R5 ,E/D=	3300.00 129.59 16.00	2.225 2.461 2.500
SS-FLOW	N AS FAR	WT1 WS1 NTU	SS-FLOW	N AS	MT1 KS1 NTU	SS-FLOW	N AS FAR	WT1 WS1 NTU	SS-FLOW ENG CYL	N AS FAR	WT1 WS1 NTO
CRO!	17.20 19.70 22.20	1.67	CRO	17.20 19.70 22.20	2.20 1.97 4.17	CRO!	17.20 19.70 22.20	2.74 1.31 4.05	CPO:	17.20 19.70 22.20	3.27
	X X X	707 705 05		X X X	707 708 09		O C C C C C C C C C C C C C C C C C C C	707 708 70		X X X	707 705 09
	6.00 12.61 0.66	0.6252 0.8752 1 TUSE		8.00 16.03 0.84	0.6625 0.8773 I TUBE		10.00 19.45 1.02	0.6879 0.8788 1 TUBE		12.00 22.87 1.20	0.7065 0.8799 I TU3E
	LGT WGT	e CG CHIN		LGT WGT VOL	n CHIN		LGT	n CHIN		LGT WGT VOL	C C C N I N

0.01163 0.01183 DHT 0.01183 DHS 0.00398 6521.0 290.8 6037.4 6511.5 258.8 6445.4 6532.7 331.8 5599.1 DHT CH3 RET RES UA RES UA RET RES UA CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES 1 REG ENG CYL=R5 ,E/D=.105 ,GFLO=2.5CORE LENGTH=6,8,10,12,14,16,18 2PASS A CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES I REG ENG CYL=R5 ,E/D=.105 ,GFLO=2.5CORE LENGTH=6,8,10,12,14,16,18 2PASS A CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES I REG ENS CYL=RP ,16,16,18 2PASS A TIT 573.8 TIS 1139.0 T2S 774.4 TIT 573.8 TIS 1139.0 T2S 769.7 TIT 573.8 TIS 1139.0 T2S 780.3 2.0 2.0 2.0 PSTU PSSH PSTU PSSH PSTU PSSH DTO 0.1500 WALL 0.0040 7.25 1.02 992.5 7.29 1.02 987.4 0.1500 DTO 0.1500 WALL 0.0040 P2T 7.33 P2S 1.02 T2T 981.1 DTO WALL P2T P2S T2T P2T P2S T2T 1.250 7.621 7.621 1.250 7.621 1.250 PIT PIS P1T P1S P1T P1S Ϋ́ Ϋ́ 旋속 3500.00 172.78 21.33 3300.00 151.18 18.67 2.225 2.461 2.731 3300.00 194.38 24.00 2.225 2.461 2.943 2.225 2.461 3.141 N AS FAR N AS FAR MS1 NTU MS1 NTU N AS FAR HS1 NTU 17.20 19.70 22.20 4.91. 0.45 5.36 17.20 19.70 22.20 3.81 0.71 4.53 4.36 0.56 4.92 17.20 19.70 22.20 F05 505 로 로 로 로 로 로 로 PDT FDS X 등 등 705 705 705 0.7318 0.8314 TUBE 0.7408 14.00 26.29 1.38 0.7206 0.8307 TUBE 18.00 33.13 1.73 16.00 29.71 1.56

SIGT 0.5630 SIGS 0.2000

136.8 47.8 34.9

₩ SH O

SIGT 0.5630 SIGS 0.2000

136.9 44.6 33.2

HS O

TUBE

CHIN

16T

SIGT 0.5630 SIGS 0.2000

136.7 51.9 37.0

HR 5

LGT KST VOL

G G G

LGT WOL

CHIN CHIN

APPENDIX C: SELECTED CYCLE DATA

POINT FI16

2/21/80

OFF-DES

REGENERATIVE PROPOSAL ENGINE

98

MBOUT/WDUCT 0.0 0.0 0.0 0.0 HCPSEPCWER ACTUAL RPM PRESS RATIO ADIAB EFF WBIN/WBTOT WBSTAT/WBIN TABLE CORRPM TABLE FR TABLE CORFLO 0.19483E+C3 0.75013E+02 0.25606E+01 0.86300E+00 0.54286E+00 0.0 0.10135E+01 0.25606E+01 0.35630E+01 0.50260E+02 0.20000E+05 0.15752E+01 0.5130E+00 0.0 0 TABLE PR TABLE CORFLO 0.47069E+01 0.23672E+01 COMB LDG 2 CCMB LDG 3 0.23260E+06 0.27561E+00 THETA RAM DELTA RAM 0.10000E+01 Uninstalled COMPONENT ERROR SIGNAL 50 hp 00 0.14696E+02 0.14696E+02 0.0 0.36190E+00 0.0 0.0 WBIN/WBAV 0.0 JP2 BLDFRAC TABLE R TABLE CORRPM 0.10500E+00 0.15648E+01 0.42757E+05 .81908E-01 WBIN2/WBIN COMB LDG 1 0.72435E+06 ALTITUDE 0.0 000000 BURNR THETA AMB TEMP AMB PRESS EFFICIENCY RECOVERY 0.51869E+03 0.14696E+02 0.10000E+01 0.10000E+01 CORFLO 0.24501E+01 0.24501E+01 0.34482E+01 0.34457E+01 0.64249E+00 0.65368E+00 PERCENT 0.79124E+00 0.80513E+00 0.10263E+01 0.25713E+01 0.25711E+01 0.39337E+01 0.39858E+01 0.10585E+01 0.34459E+0] TBINZ 00000 0.0 00000 = 0.0100 0.48853E+02 0.99000E+00 EFFICIENCY TBIN2-TBINI 0.86704E-02 0.86704E-02 0.86704E-02 0.86704E-02 0.86704E-02 0.86704E-02 0.95906E-02 0.92000E-02 TOLERANCE 000 000 0000000 0.0 0.84405E-03 0.70022E-03 PRESS RATIO ADIAB EFF 0.44383E+01 0.76212E+00 FUEL FLOW THETA 0.10000E+01 0.10000E+01 0.28827E+01 0.28827E+01 0.16907E+01 0.16907E+01 0.16907E+01 0.24772E+01 0.24772E+01 0.36773E+01 0.36024E+01 0.27198E+01 0.27198E+01 0.20355E+01 .20355E+01 .20355E+01 COMPONENT INTERFACE EXIT TEMP TEMP RISE DELTA P/PT 0.19074E+04 0.62247E+03 0.35000E-01 FACTOR 0.18685E+04 0.14952E+04 0.14107E+04 0.14107E+04 0.51869E+03 0.87697E+03 0.87697E+03 0.87697E+03 0.51869E+03 0.12849E+04 0.12849E+04 0.19074E+04 0.14952E+04 0.10558E+04 0.10558E+04 0.10558E+04 0.00000 -0.19384E+03 0.75013E+02 KTS FACTOR FLT VEL 8 0.0 0.64108E+02 0.64108E+02 0.63002E+02 0.60797E+02 0.14696E+02 0.14696E+02 0.14877E+02 0.14753E+02 0.65225E+02 0.15073E+02 0.14752E+02 0.23743E+02 0.23743E+02 0.14877E+02 J 0 0 0 0 0 0 0 DATA DELTA P/PT 0.17121E-01 0 0.17251E-01 0 0.0 0.13061E-01 .83255E-02 DRAG COMPONENT PERFORMANCE 0.16600E+00 0.14151E+01 0.14151E+01 0.14151E+01 0.14286E+01 0.14887E+01 0.15783E+01 0.15787E+01 0.15810E+01 0.14151E+01 0.15787E+01 0.15810E+01 0.157872+01 0.15787E+01 0.15644E+01 0 ŧ 00 0000 0 00 STATIONS 1 0 2 0 STATIONS 2 0 3 4 STATIONS 7 0 8 0 STATIONS STATIONS ø 10 2 O 11111 t t 00 0 -N ~ 6 11 **もちょうちゃきょ** INLET COMPR 2 BURNE TUZBN DUCT 3 5 7 8 01 4.5 Φ 4.1 4.

HT EX STATIONS JP1 TEMP JP2 TEMP JH1 CORFLO JH2 CORFLO JH1 DELP/PT JH2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND 4 5 13 6 14 0.12851E+04 0.10560E+04 0.65368E+00 0.39858E+01 0.0 0.0 0.76460E+00 0.76460E+00 0.76460E+00 0.0	JP1 TEMP 0.12851E+04	JP2 TEMP 0.10560E+04	JM1 CORFLO 0.65368E+00	JM2 CORFLO 0.39858E+01	JM1 DELP/PT 0.0	JM2 DELP/PT 0.0	EFFECTVNESS EFFT SCL F. LIM 0.76460E+00 0.76460E+00 0.0	T SCL F.	LIMIT IND
NOZZL STATIONS 13 15 0 16 0	GRSS THRUST 0.57131E+01	NOZZLE AREA 0.50472E+02	ACT JET VEL :	IDL JET VEL 0.11867E+03	IDL VEL PR 0.10039E+01	PTIN/PAMB 0.10039E+01	GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE TYPE 0.57131E+01 0.50472E+02 0.11749E+03 0.11867E+03 0.10039E+01 0.10039E+01 0.10000E+01 0.99000E+00 CONV	1 COEF N	IOZZLE TYPE CONV
SHAFT COMPONENTS NET HP ACTUAL RPM JM1 MCH EFF JM2 14 8 0 2 0 0.23804E-01 0.75013E+02 0.99500E+00 0.0 15 10 0 0 0.50008E+02 0.20000E+05 0.99500E+00 0.0	NET HP 0.23804E-01 0.50008E+02	ACTUAL RPM 0.75013E+02 0.2000E+05	JM1 MCH EFF . 0.99500E+00	JM2 MCH EFF 0.0 0.0	. JP1 MCH EFF JP2 0.10000E+01 0.0 0.0	JP2 MCH EFF 0.0 0.0	ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF TORQUE NON-TURB HP SUM ABS HP/2 75013E+02 0.99500E+00 0.0 0.10000E+01 0.0 0.16666E+01-0.19384E+03 0.19385E+03 20000E+05 0.99500E+00 0.0 0.0 0.0	1-TURB HP S .9384E+03 0	P SUM ABS HP/2 3 0.19385E+03 0.25004E+02
CONTR REFERENCE NOS.		VARIABLE NOS.							

												TBL		
		DEPEND DES ABS DEP ACT DEPEND ERR	0.19385E+03 0.23804E-01	2092E-02								ARG2	0.0	0.0
		30 _	3 0.2	2 0.8	0.0	0.0	0.0	0.0	0.0	0.0		ACT		
		DEP ACT	9385E+03	5004E+02								ARG2 ACT	1 0.0	2 0.0
		. ABS	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0		TBL	7E+0	8E+0
		PEND DES		0000E+02		0000E+02	3000E+03	5500E-01	5500E-01			ARG1 TBL	1 0.15787E+01	2 0.5000
			0.0	0.5	0.0	0.5	0.3	0.14	0.16	0.0		ACT	7E+0.	8E+0;
		MAX LIMIT	1500E+03	0000E+04	3000E+01	1000E+01	3000E+02	3000E-01	1000E-01	1000E+01		. ARG1 ACT	0.1578	0.5000
			0.1.	0.4	0.2	0.3	0.10	0.1	0.10	0.20		R 181	0E+0(0E+0(
		MIN LIMIT	0.75013E+02 0.40000E+02 0.11500E+03 0.0	0.19074E+04 0.12000E+04 0.40000E+04 0.50000E+02 0.2504E+02 0.82092E-02	0.10000E+00 0.20000E+01 0.0	0.10000E+00 0.30000E+01 0.50000E+02 0.0	0.50000E+00 0.10000E+02 0.30000E+03 0.0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	0.10000E+00 0.20000E+01		SCHDVAR ACT SCHDVAR TBL	51300E+00 0.88000E+00 0.15787E+01	1.51300E+00 0.86000E+00 0.50008E+02 0.50008E+02 0.0
			02 0.	040	ö	6	ö	0	0	ö		AR A	300E+	300E+
		CONTR SWITCH INDEP VAR	75013E+(19074E+	0	0	0	0	0	0			0.513	0.51
	٠	3	ö	ö	0.0	0.0	0.0	0.0	0.0	0.0	ARG2	AR ST	0	0
		SMIT	z	공	OFF	OFF	0FF	OFF	OFF	OFF	ios.	TA V.	_	- 0
		ONTR	O	O	O	U	U	0	0	0	VARIABLE NOS. AR ARGI	DAT VAR STA VAR STA VAR STA	0	н
	TNDEP	DAT		_			_			_	VARIA Var	STA	0	0
NOS	품	_	_	•	-	ω,	_	,,,,	ויח	-	VAF SCHDVAR	T VAR	Ø	Ø
TABLE NOS	오	TA PER	0	٥	٥	0	0	0	0	0	•	Ď	0	0
VARI	DEPEND	/AR ST		•	•			0	0	•	ARG2	STA	0	0
		>		_	_	_	_	α	N	-	dos.	CPT	0	0
REFERENCE NOS	INDEP	CPT	14	•	10	9	-	11	12	10	REFERENCE NOS. VAR ARGI	T STA CPT STA CPT	0 11	0 51
EREN	CN CN CN CN CN CN CN CN CN CN CN CN CN C	CPT STA	0	0	0	0	0	0	0	0	REFEI	STA (0	0
	DEP	CPT	14	15	18	15	15	11	12	54	REFI SCHDVAR	CPT	10	01
CONTR			16	17	19	20	21	22	23	52	SCHED		18	54

OVERALL ENGINE PERFORMANCE DATA

AIR.LB/SEC FUEL,LB/HR GRS.JET THT NET JET THT PROP.THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERBRD BLEED 0.15410E+01 0.4645456E+02 0.57131E+01 0.057131E+01 0.57131E+01 0.15610E-01

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.50008E+02 0.97700E+00 0.31631E+02 0.50008E+02 0.97700E+00 0.31631E+02 BRAKE SH.HP P20P. HP 0.50008E+02 0.0

POINT FI16
2/21/80
OFF-DES
ENGINE
PROPOSAL
REGENERATIVE
98

COMPONENT ERROR SIGNAL = 0	STPRES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	THETA RAM DELTA RAM 0.10000E+01 0.10000E+01 TABLE PR TABLE CORFLO 0.66976E+01 0.30476E+01	WBIN/WBAV WBOUT/WDUCT 0.0 0.0 0.0 0.36190E+00 0.0 0.0 0.0 0.0 0.0	COMB LDG 2 COMB LDG 3 0.23886E+06 0.17581E+00 TABLE PR TABLE COFFLO 0.26650E+01 0.35630E+01
COMPONE	VMACH 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ALTITUDE 0.0 FABLE CORRPM 0.46945E+05	MBIN2/MBIN WB. 0.0 0.0 0.0 0.3 0.0 0.3 0.0 0.0	COMB LDG 1 0.98505E+06 TABLE CORRPH 0.10131E+01 0.10455E+01
00 PERCENT	CORFLO 0.3154CE+01 0.51542E+01 0.61413E+00 0.62389E+00 0.75212E+00 0.76403E+00 0.10270E+01 0.26722E+01 0.26722E+01 0.534CE+01 0.4746E+01 0.47349E+01	RECOVERY 0.100006+01 TABLE R '	TBIN2 0.0 0.0 0.0 0.0 0.0	BURNR THETA 0.0 WBSTAT/WBIN 0.0
RANCE = 0.0100	FUEL/AIR 0.0 0.0 0.0 0.0 0.14393E-01 0.13012E-01 0.13012E-01 0.13012E-01 0.13012E-01 0.13012E-01	EFFICIENCY 0.10000E+01 JP2 BLDFRAC 0.10500E+00	TBIN2-TBIN1 0.0 0.0 0.0 0.0 0.0	
INTERFACE TOLERANCE	THETA 0.10000E+01 0.10000E+01 0.18693E+01 0.18693E+01 0.27167E+01 0.27167E+01 0.4542E+01 0.45472E+01 0.45472E+01 0.45472E+01 0.45472E+01 0.45472E+01 0.45472E+01 0.45472E+01 0.45472E+01 0.45472E+01 0.29820E+01 0.22567E+01 0.22567E+01 0.22567E+01 0.22567E+01	AMB PRESS 0.14696E+02 ADIAB EFF 0.78440E+00	C3 FACTOR 0.41475E-01 0.27555E-01 0.0 0.0 0.84405E-03	FUEL FLOW 0.94386E+02 ADIAB EFF 0.86300E+00
COMPONENT IN	TOTEMP 0.51869E+03 0. 0.51869E+03 0. 0.96956E+03 0. 0.96956E+03 0. 0.14091E+04 0. 0.14091E+04 0. 0.23043E+04 0. 0.23043E+04 0. 0.256E+04 0. 0.18001E+04 0.	S AMB TEMP 0.51869E+03 1 PRESS RATIO	C2 FACTOR 0.0 0.0 0.0 0.0 0.0	DELTA P/PT 3 0.35000E-01 4 PRESS RATIO 2 0.26650E+01 5 0.21065E+01
DATA	TOPRES 0.14696E+02 0.14696E+02 0.00.14696E+02 0.00.00.00.00.00.00.00.00.00.00.00.00.0	FLT VEL KTS 0.0 0.0 ER ACTUAL RPM 03 0.82360E+02	PT C1 FACTOR 01 0.0 01 0.0 0.0 0.0 01 0.0	P TEMP RISE 04 0.89520E+03 0.80520E+03 0.805360E+05 0.20000E+05
ų	HTFLCH 0.20352E+01 0. 0.20353E+01 0. 0.18216E+01 0. 0.21371E+00 0. 0.21371E+00 0. 0.18216E+01 0. 0.18216E+01 0. 0.18216E+01 0. 0.20412E+01 0. 0.20412E+01 0. 0.20412E+01 0. 0.20412E+01 0.	RAM DRAG 0.0 HORSEPOWER -0.31526E+03	0ELTA P/PT 0.15643E-01 0.15587E-01 0.0 0.22960E-01 0.15115E-01	EXIT TEMP 0.23043E+04 HORSEPOWER 0.31686E+03 0.20100E+03
COMPONENT PERFORMANC	STATICN WT 90.2 2 90.2 3 90.1 4 4 90.2 10 90.2	INLET STATIONS 1 1 0 2 0 COMPR STATIONS 2 2 0 3 4	DUCT STATIONS 3 3 0 5 0 5 6 0 7 0 7 8 4 9 0 9 10 4 11 0 11 12 0 13 0 12 14 0 15 0	BURNS STATIONS 6 7 0 8 0 7 10 8 0 7 1 2 9 4 10 0 10 11 4 12 0

_	
NI LI	
LIR	0.0
SCL F.	+0E+00
EFFT S	0.7604
NESS	E+00
FFECTV	.76040
VPT EI	0
2 DELP	_
Ĕ	0
MP JM1 CORFLO JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND	
Ę	0.0
ORFLO	5E+01
JM2 C	0.14084E+04 0.11703E+04 0.62389E+00 0.53405E+01 0.0
RFLO	E+00 (
JH1 CG	. 62389
,	0 40
JP2 TEMP	703E+
365	6.5
EMP	4E+04
JP1 TEMP	1.1408
STATIONS	5 13 6 14
STA	2 13
H EX	3

NOZZLE TYPE CONV	TORQUE NON-TURB HP SUM ABS HP/2 .46707E+00-0.31526E+03 0.31527E+03 .52520E+02 0.0
VEL COEF 0.99000E+00	TORQUE NON-TURB HP SUM ABS HP/2 .46707E+00-0.31526E+03 0.31527E+03 .52520E+02 0.0
DISCHG COEF 0.10000E+01	00
PTIN/PAMB 0.10074E+01	JP2 MCH EFF 0.0 0.0
GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE TYPE 0.10855E+02 0.50472E+02 0.17048E+03 0.17220E+03 0.10074E+01 0.10074E+01 0.10000E+01 0.99000E+00 CONV	ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF J. 82350E+02 0.99500E+00 0.0 0.10000E+01 0.0 0.0 0.0 0.0
ACT JET VEL IDL J 0.17048E+03 0.172	NET HP ACTUAL RPM JM1 MCH EFF JM2 M 0.73242E-02 0.82350E+02 0.99500E+00 0.0 0.19999E+03 0.2000dE+05 0.99500E+00 0.0
NOZZLE AREA 0.50472E+02	ACTUAL RPM 0.82350E+02 0.20000E+05
GRSS THRUST 0.10855E+02	NET HP 0.73242E-02 0.19999E+03
NOZZL STATIONS 13 15 0 16 0	SHAFT COMPONENTS 14 8 0 2 0 15 10 0 0

		DEPEND DES ABS DEP ACT DEPEND ERR	0.31527E+03 0.73242E-02	0.23043E+04 0.12000E+04 0.40600E+04 0.20000E+03 0.99997E+02-0.57831E-02	0.0	0.0	0.0	0.0	0.0	0.0
		DES ABS DEP	0.31527E	+03 0.99997E	0.0	103 0.0	103 0.0	-01 0.0	-01 0.0	0.0
		DEPEND	3 0.0	4 0.2000E	2 0.0	1 0.2000E	2 0.3000E.	1 0.16500E	1 0.16500E	0.0
		MAX LIMIT	0.11500E+0	0.40000E+0	0.20000E+0	0.30000E+0	0.10000E+0	0.10000E-0	1.10000E-04 0.10000E-01 0.16500E-01	0.20000E+0
		MIN LIMIT	0.82350E+02 0.43000E+02 0.11500E+03 0.0	0.12000E+04	0.10000E+00 0.20000E+01 0.0	0.10000E+00 0.30000E+01 0.20000E+03 0.0	0.50000E+00 0.10000E+02 0.30000E+03 0.0	0.10000E-04 0.10000E-01 0.16500E-01	0.10000E-04	0.10000E+00 0.20000E+01 0.0
		CONTR SWITCH INDEP VAR	0.82350E+02	0.23043E+04	0.0	0.0	0.0	0.0	0.0	0.0
		CONTR SWITCH	z	z	955	OFF	OFF	OFF	OFF	0FF
, 108.	INDEP	DAT	,i	¢	^	'n	-	м	in	^
318	_	STA PER	0	0	0	0	0	0	0	0
VARIABLE NOS.	PEN	STA	0	ø	0	0	0	0	Ö	ن ن
>	ã	VAR	-	н	~	~	-4	7	7	-
CE NOS.	INDEP	CPT	14	•	18 0 10	10	-1	11	12	97
EPER	8	STA	0	0	0	0	0	0	0	0
REF	DIFE	CPT	14	15	18	15	15	11	12	54
CONTR					19					

		ARG2 TBL	0.0	0.0
		ARON ACT	0.0	0.0
		ARG1 TBL	0.20412E+01	0.199995+03
		ARGI ACT	0.20412E+01	0.19999E+03
		SCHDVAR TBL	0.88000E+00	0.81700E+00
		DAT VAR STA VAR STA VAR STA SCHDVAR ACT SCHDVAR TBL ARGI ACT	0 8 0 0 1 0 0 0.83100E+00 0.88000E+00 0.20412E+01 0.20412E+01 0.0	0 8 0 1 0 0 0.83100E+00 0.81700E+00 0.19999E+03 0.19999E+03 0.0
	ARG2	R STA	0	0
		3	٥	٥
Š	IRGI	ST	H	0
BLE	⋖	ZAR	0	-
ARIABLE NOS.	œ	STA	0	0
_	SCHOVAR	242	Ø	œ
	ပ္တ	DAT	0	0
	ç	4:	۵	0
:	ARG2	H	0	0 15 0 0 0
Š	, d	¥ 1	~	0
ENCE	ARG1	PT S		rv.
REFERENCE NOS.	œ	2	_	ri 6
ã	SCHOVAR	PT S	10 0 0 11 0 0	0
SCHED	S	U	18 1	24 1

OVERALL ENGINE PERFORMANCE DATA

AIR:LB/SEC FUEL,LB/KR GRS.JET THT NET JET THY PROP.THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERBPD BLEED 0.20353E+01 0.94386E+02 0.10855E+02 0.10855E+02 0.00855E+02 0.86953E+01 0.53332E+01 0.20353E-01 *TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.19999E+03 0.47194E+00 0.98261E+02 0.19999E+03 0.47194E+00 0.98261E+02 24KE SH.HP PROP. HP 0.19999E+03 0.0

POINT FI16
2/21/80
: OFF-DES
L ENGINE
PROPOSA
REGENERATIVE
8

SIGNAL = 0	275 hp Chinstalled	DELTA RAM 0.10000E+01	TABLE CORFLO . 0.33008E+01	WBOUT/KDUCT 0.0 0.0 0.0 0.0 0.0	COMB LDG 3 0.14961E+00 TABLE COPFLO 0.35630E+01 0.35630E+01
COMPONENT ERROR S	STPRES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	THETA RAM (0.10000E+01.0	TABLE PR TAE 0.75574E+01 0	WBIN/WBAV WE 0.0 0.0 0.36190E+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	COMB LDG 2 (0.23910E+06 0 TABLE PR TAP 0.25619E+01 0
COMP	VMACH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALTITUDE 0.0	TABLE CORRPM . 0.47904E+05	MBIN2/MBIN 0.0 0.0 0.0 0.0 0.0	COMB LDG 1 0.10859E+07 TABLE CCPRPM 0.99444E+00 0.10045E+01
100 PERCENT	CORFLO 0.34164E+01 0.34163E+01 0.60127E+00 0.0 0.74119E+00 0.74119E+00 0.75258E+00 0.10274E+01 0.10274E+01 0.26722E+01 0.26722E+01 0.26722E+01 0.57598E+01 0.57598E+01 0.57598E+01 0.57598E+01 0.57598E+01 0.57598E+01 0.57598E+01	r RECOVERY	TABLE R 0.13998E+01	TBIN2 0.0 0.0 0.0 0.0	EFFICIENCY BURNR THETA COMB LDG 1 0.99000E+00 0.0 0.10859E+07 WBIN/WBTOT WBSTAT/WBIN TABLE CCPRPM 0.54286E+00 0.0 0.10045E+01
ERANCE = 0.0100	FUEL/AIR 0.0 0.0 0.0 0.0 0.0 0.16527E-01 0.16541E-01 0.14941E-01 0.14941E-01 0.14941E-01	EFFICIENCY 2 0.10000E+01	JP2 BLDFRAC 0 0.10500E+00	TBIN2-TBIN1 1 0.0 1 0.0 0.0 0.0 3 0.0	
COMPONENT INTERFACE TOLERANCE	THETA 0.10000E+01 0.10000E+01 0.19397E+01 0.19397E+01 0.19397E+01 0.28600E+01 0.4697E+01 0.37597E+01 0.37597E+01 0.31502E+01 0.31502E+01 0.31502E+01 0.31502E+01 0.31502E+01	AMB PRESS 3 0.14696E+02	O ADIAB EFF 1 0.78580E+00	C3 FACTOR 0.41475E-01 0.27555E-01 0.0 0.0 0.84405E-03	T FUEL FLOW 1 0.11738E+03 0 ADIAB EFF 11 0.86300E+00
COMPONENT I	07EMP 51869E+03 51869E+03 10061E+04 10061E+04 14334E+04 14334E+04 14334E+04 16346E+04 19501E+04 19501E+04 112378E+04 112778E+04 112778E+04	S AMB TEMP 0.51869E+03	M PRESS RATIO	C2 FACTOR	: DELTA P/PT 04 0.35000E-01 PRESS RATIO 12 0.2549E+01
E DATA	98 E S 46 96 E + 02 46 96 E + 02 46 96 E + 02 90 92 E + 03 74 34 E + 02 74 34 E + 02 76 03 E	FLT VEL KTS 0.0	R ACTUAL RPM 33 0.84043E+02	or C1 FACTOR 11 0.0 0.0 0.0 0.0 11 0.0	TEHP RISE 04 0.10079E+04 12 0.10079E+04 13 0.84043E+02 13 0.20000E+05
	MFFLOM 0.22045E+01 0.1 0.22044E+01 0.1 0.19730E+01 0.1 0.21730E+01 0.1 0.19729E+01 0.1 0.19729E+01 0.1 0.2055E+01 0.2 0.22149E+01 0.3 0.22147E+01 0.1	RAM DRAG 0.0	HORSEPOWER -0.36977E+03	0ELTA P/PT 0.14934E-01 0.15138E-01 0.0 0.0 0.22002E-01 0.1845E-01	EXIT TEMP 0.24913E+04 HOSEPDHEP 0.37162E+03 0.27637E+03
COMPONENT PERFORMANC	M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r STATIONS 1 0 2 0	STATIONS 2 0 3 4	STATIONS 3 0 5 0 6 0 7 0 8 4 9 0 10 4 11 0 112 0 13 0 14 0 15 0	R STATIONS 7 0 8 0 8 STATIONS 9 4 10 0
	ž	INLET 1	COMPR 2	55 7 6 11 11 12 12 12 12 12 12 12 12 12 12 12	8UPNR 6 1UPBN 10 1

154

0.76030E+00 0.76030E+00 0.0 JM2 DELP/PT EFFECTVNESS EFFT SCL F. JP1 TEMP JP2 TEMP JM1 CORFLO JM2 CORFLO JM1 DELP/PT 0.14835E+04 0.12273E+04 0.61042E+00 0.59258E+01 0.0 JM1 CORFLO JP2 TEMP JP1 TEMP 5 13 6 14 HT EX STATIONS

NOZZLE TYPE GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF 0.13299E+02 0.50472E+02 0.19319E+03 0.19514E+03 0.10091E+01 0.10091E+01 0.10000E+01 0.99000E+00 1022L STATIONS 13 15 0 16 0

NON-TURB HP SUM ABS HP/2 -0.32040E+00-0.36977E+03 0.36976E+03 0.72214E+02 0.0 NET HP ACTUAL RPH JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF TORQUE -0.51270E-02 0.84043E+02 0.99500E+00 0.0 0.10000E+01 0.0 -0.32040E+0 0.0 0.0 0.0 0.0 0.0 0.72214E+ 00 SHAFT COMPONENTS N 0 00 8 01

DEPEND DES ABS DEP ACT DEPEND ERR MAX LIMIT MIN LIMIT INDEP VAR CONTR SWITCH INDEP DAT 4 M M M M M M M VARIABLE NOS. STA PER 00000 DEPEND REFERENCE NOS. DEPEND INDEP CPT CONTR

ARG2 TBI ARG2 ACT SCHDVAR ACT SCHDVAR TBL ARG1 ACT ARG1 TBL ARG 0.8560nE+00 0.880000E+00 0.22149E+01 0.22149E+01 0.0 0.85500E+00 0.85400E+00 0.27499E+03 0.27499E+03 0.0 DAT VAR STA VAR STA VAR STA 00 VARIABLE NOS. ARG1 SCHDVAR ထတ CPT STA CPT STA CPT STA **ARG2** REFERENCE NOS. SCHDVAR 9 2 SCHED

OVERALL ENGINE PERFORMANCE DATA

GRS. JET THT

FUEL, LB/HR

AIR, LB/SEC

0.13299E+02 0.88262E+01 0.60329E+01 0.22044E-01 0.0 0.13299E+02 0.22044E+01 0.11738E+03 0.13299E+02

NET JET THI PROP. THRUSI *TOT.NET THI FUEL/TOTTHI TOTTHI/AIR OVERBRD BLEED

TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.12474E+03 0.27499E+03 0.42685E+00 0.12474E+03 TOTSHP/AIR *IOT.SHFT HP FUEL/TOTSHP 1 0.27499E+03 0.42685E+00 BRAKE SH. HP PROP. HP 0.27499E+03 0.0

FI16
 POINT
 2/21/80
OFF-DES
 ENCINE
 PROPOSAL
REGENERATIVE
8

ROR SIGNAL = 0 300 hp 60% IRP Uninstalled E+02	AM DELTA RAM +0. 0.100005+01 R TABLE CORFLO +01 0.34280E+01	AV WBOUT/MBUCT 0.0 0.0 0.0 0.0 0.0 0.0	G 2 COMB LDG 3 +06 0.14228E+00 R TABLE CORFLO +01 0.35630E+01
STRRES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	THETA RAM 0.10000E+0. TABLE PR 0.79000E+01	MBIN/WBAV 0.0 0.1 0.36190E+00 0.0	COMB LDG 2 0.23557E+06 TABLE PR 0.27032E+01 0.24122E+01
VMACH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALTITUDE 0.0 TABLE CORRPH 0.48450E+05	MBIN2/MBIN 0.0 0.0 0.0 0.0 0.0	EFFICIENCY BURNR THETA CCMB LDG I 0.99000E+00 0.0 0.11082E+07 WBIN/WBIOT WBSTAT/WBIN TABLE CORRFM 0.54286E+00 0.0 0.10000E+01
CORFLO 0.35479E+01 0.35479E+01 0.55479E+00 0.0 0.61053E+00 0.73781E+00 0.73781E+00 0.73781E+01 0.54678E+01 0.54678E+01	RECOVERY 0.10000E+01 TABLE R 0.14000E+01	TBIN2 0.0 0.0 0.0 0.0 0.0	BURNR THETA 0.0 WBSTAT/WBIN 0.0
FRANCE = 0.0100 FUEL/AIR 0.0 0.0 0.0 0.0 0.0 0.0 0.16260E-01 0.15343E-01	EFFICIENCY 0.10000E+01 JP2 BLDFRAC 0.10500E+00	TBIN2-TBIN1 0.0 0.0 0.0 0.0 0.0	
THETA FUEL/. 0.100005+01 0.0 0.100005+01 0.0 0.19641E+01 0.0 0.19641E+01 0.0 0.19641E+01 0.0 0.26635E+01 0.0 0.28631E+01 0.1623 0.47521E+01 0.1623 0.37937E+01 0.1524 0.37937E+01 0.1534 0.31550E+01 0.1534 0.23853E+01 0.1534	AMB PRESS 0.14696E+02 ADIAB EFF 0.78795E+00	C3 FACTOR 0.41475E-01 0.27555E-01 0.0 0.0 0.84405E-03	0.12519E+03 0.12519E+03 ADIAB EFF 0.86300E+00
TOTEMP 0.51869E+03 0.10188E+04 0.10188E+04 0.10188E+04 0.14878E+04 0.14878E+04 0.25200E+04 0.25200E+04 0.1635E+04 0.1635E+04 0.16355E+04 0.16355E+04 0.15372E+04	AMB TEMP 0.51869E+03 PRESS RATIO 0.74000E+01	C2 FACTÓR 0.0 0.0 0.0 0.0 0.0	DELTA P/PT 0.35000E-01 PRESS RATIO 0.27032E+01 0.24122E+01
	FLT VEL KTS 0.0 ACTUAL RPM 0.85000E+02	C1 FACTOR 0.0 0.0 0.0 0.0	TEMP RISE 0.10322E+04 ACTUAL RPM 0.85000E+05
CPMANCE DATA TCPRES E+01 0.14696 E+01 0.14696 E+01 0.10875 E+01 0.10712 E+01 0.15147 E+01 0.15147 E+01 0.15444 E+01 0.14344	RAM DRAG 0.0 HORSEPOWER -0.39425E+03	DELTA P/PT 0.15000E-01 0.0 0.0 0.0 0.30000E-01 0.20001E-01	EXIT TEMP 0.25200E+04 HGRSEPOWER 0.39623E+03
ION HTFLCH 10 0.22894E+01 0.22894E+01 0.22894E+01 0.22894E+01 0.24033E+01 0.24033E+01 0.24038E+01 0.20490E+01 0.20490E+01 0.23013E+01 0.23012E+01 0.23012E+01 0.23012E+01 0.23012E+01 0.23012E+01 0.23012E+01 0.2	STATIONS 1 0 2 0 0 5 1 0 2 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	STATIONS 0 5 0 0 4 9 0 4 11 0 0 13 0 0 0 15 0 0	STATICHS 7 0 8 0 0 8 0 0 STATICHS 9 4 10 0 0
STATION 1	INLET STA 1 1 0 COMPR STA 2 2 0	3 3 3 5 6 6 7 8 4 9 10 6 9 10 6 11 12 14 0	ATS STATE ST

JM1 CORFLO JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND	0.75930E+00 0.75930E+00 0.0
JM2 DELP/PT	0.0
LO JM2 CORFLO JM1 DELP/PT	78E+04 0.12372E+04 0.61053E+00 0.61462E+01 0.0
	34 0.61053E+
JP2 TEMP	0.12372E+0
JP1 TEMP	0.14878E+04
HT EX STATIONS	5 13 6 14
HT EX	4

Ä	13.2
NOZZLE TYPE CONV	HP SUM ABS HP/2 03 0.39425E+03 0.14994E+03
VEL COEF 0.99000E+00	NON-TURB HP 0.39425E+03 0.0
DISCHG COEF 0.10000E+01	TORQUE NON-TURB HP SUM ABS HP/2 0.27154E+00-0.39425E+03 0.39425E+03 0.78753E+02 0.0
PTIN/PAMB 0.10100E+01	F JP2 MCH EFF 1 0.0 0.0
15T NOZZLE AREA ACT JET VEL 1DL JET VEL 1DL VEL PR PTIN/PAMB DISCHG COEF VEL COEF •02 0.50472E+02 0.20281E+03 0.20486E+03 0.10100E+01 0.10100E+01 0.10000E+01 0.99000E+00	ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF TORQUE NON-TURB HP SUM ABS HP/2 .85000E+02 0.99500E+00 0.0 0.10000E+01 0.0 0.27154E+00-0.39425E+03 0.39425E+03 0.29425E+03 0.0900E+03 0.09500E+00 0.0
IDL JET VEL 0.20486E+03	JM2 MCH EFF 0.0 0.0
ACT JET VEL :	JA1 MCH EFF . 0.99500E+00 0.99500E+00
022LE AREA 0.50472E+02 (ACTUAL RPM JM1 HCH EFF JM2 -02 0.35000E+02 0.99500E+00 0.0 +03 0.20000E+05 0.99500E+00 0.0
GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF 0.14542E+02 0.50472E+02 0.2028IE+03 0.20486E+03 0.10100E+01 0.10100E+01 0.10000E+01 0.99000E+00	NET HP 0.43945E-02 (0.29989E+03 (
NOZZL STATIONS 13 15 0 16 0	SHAFT COMPONENTS 14 8 0 2 0 15 10 0 C 0
N3ZZL 13 15	SHAFT (14 8 15 10

	DEPEND DES ABS DEP ACT DEPEND ERR	0.39425E+03 0.43945E-02	0.0	0.0	0.11035E+00	0.0	0.0	0.0	0.0
	S DEP ACT	39425E+03	0	0	14994E+03-	0			
	SAB	ö	3 0.	6	3 0.	J. 0.	10.	1 0.	0.0
	DEPEND DE	0.0	0.30000E+0	0.0	0.30000E+0	0.3000E+0	0.16500E-0	0.16500E-0	0.0
	MIN LIMIT MAX LIMIT	0.11500E+03	0.12000E+04 0.40000E+04 0.30000E+03 0.0	0.10000E+00 0.20000E+01 0.0 0.0	0.30000E+01	0.50000E+00 0.10000E+02 0.30000E+03 0.0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	.10000E+00 0.20000E+01 0.0
	MIN LIMIT	0.85000E+02 0.40000E+02 0.11500E+03 0.0	0.12000E+04	0.10000E+00).76064E+00 0.10000E+00 0.30000E+01 0.30000E+03 0.14994E+03-0.11035E+00	0.50000E+00	0.10000E-04	0.10000E-04	0.10000E+00
	INDEP VAR	0.85000E+02	0.0	0.0	0.76064E+00	0.0	0.0	0.0	0.0
	CONTR SWITCH INDEP VAR	8	OFF	OFF	8	OFF	OFF	OFF	OFF
OS. INDEP	DAT	-	4	7	ĸ	7	m	m	7
ABLE NOS. NO IND	PER	0	0	0	0	0	0	٥	0
VARIA	VAR STA	0	0	0	0	0	0	٥	0
	-								
REFERENCE NOS. DEPEND INDEP	L CPT	14	9	10	70	~	11	12	10
FERE	T ST	0	0	0	0	0	0	0	
9. 3.3.	Ç	7,	15	13	15	15	11	12	24
CONTR		16	17	19	50	21	33	23	52

		TBL		
		ARG2 TBL		0.0
		ACT		
		ARG2 ACT	0.0	0.0
		DAT VAR STA VAR STA SCHDVAR ACT SCHDVAR TBL ARGI ACT ARGI TBL	0 8 0 0 1 0 0 0.86800E+00 0.88000E+00 0.23013E+01 0.23013E+01 0.0	0 8 0 1 0 0 0.86800E+00 0.86196E+00 0.29989E+03 0.29989E+03 0.0
		ARG1 ACT	0.23013E+01	0.29989E+03
		SCHDVAR TBL	0.88000E+00	0.86196E+00
		ACT	E+00	E+00
		SCHDVAR	0.86800	0.86800
	ARG2	STA	0	0
	₹	VAR	0	0
'ARIABLE NOS.	ARGI	STA	~	0
ABLE		VAR	0	-
VARI	Ä	STA	0	0
	SCHDVAR	VAR	α)	œ
	Š		0	0
	ARG2	STA	0	0
S.	¥	CPT	0	0
PEFERENCE NOS.	361	STA	=	0
EPEN	ARGI	CPT	0	15 0
REF	SCHDVAR	CPT STA CPT STA CPT STA	10 0 0 11 0	0
	SCH	CPT	10	ដ
SCHED			18	5,7

OVERALL ENGINE PERFORMANCE DATA

FUEL,LB/HR GRS.JET THT NET JET THT PROP.THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERBRD BLEED 0.12519E+03 0.1454E+02 0.14542E+02 0.00 0.12519E+01 0.63519E+01 0.22894E-01 AIR, LB/SEC 0.22894E+01

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.29989E+03 0.41745E+00 0.13099E+03 0.29989E+03 0.41745E+00 0.13099E+03 BRAKE SH.HP PROP. HP 0.29989E+03 0.0

COMPONENT INTERFACE TOLERANCE = 0.0100 PERCENT CORFLO FUEL/AIR OFF-DES 2/21/80 POINT F116 THETA TOTEMP REGENERATIVE PROPOSAL ENGINE TOPRES COMPONENT PERFORMANCE DATA WTFLOW STATION 9

0

COMPONENT ERROR SIGNAL =

STPRES	0.	0.	0.	0.	.o 375 hp	.0 Tiningtolled	.0 Cittistatied	0.	0.	0.	0.	0.	0.	0.	0.14696E+02).14696E+02
VMACH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.14870E+00 0	0.14721E+00 0
CORFLO	0.39757E+01	0.39757E+01	0.60193E+00	0.0	0.61111E+00	0.72965E+00	0.74052E+00	0.10274E+01	0.10585E+01	0.28300E+01	0.28300E+01	0.66184E+01	0.68725E+01	0.60257E+01	0.61945E+01	0.61961E+01
FUEL/AIR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.18214E-01	0.17472E-01	0.16466E-01	0.16466E-01	0.16466E-01	0.16466E-01	0.16466E-01	0.16466E-01	0.16466E-01
THETA	0.10000E+01	0.10000E+01	0.20390E+01	0.20390E+01	0.20390E+01	0.29065E+01	0.29065E+01	0.50248E+01	0.49154E+01	0.38948E+01	0.38948E+01	0.31864E+01	0.31864E+01	0.24497E+01	0.24497E+01	0.24497E+01
TOTEMP	0.51869E+03	0.51869E+03	0.10576E+04	0.10576E+04	0.10576E+04	0.15076E+04	0.15076E+04	0.26063E+04	0.25496E+04	0.20202E+04	0.20202E+04	0.165282+04	0.16528E+04	0.12706E+04	0.12706E+04	0.12706E+04
TOPRES	0.14696E+02	0.14696E+02	0.12405E+03	0.0	0.12219E+03	0.12219E+03	0.12039E+03	0.116185+03	0.11618E+03	0.41003E+02	0.41003E+02	0.15858E+02	0.15272E+02	0.15272E+02	0.14884E+02	0.14880E+02
WTFLOW	0.25654E+01	0.25654E+01	0.22961E+01	0.26937E+00	0.22961E+01	0.22962E+01	0.22962E+01	0.23330E+01	0.24355E+01	0.25817E+01	0.25817E+01	0.25817E+01	0.25917E+01	0.25816E+01	0.25865E+01	0.25865E+01
TION		~	~	ŧ	r,	•	^	۵	Φ	20	=======================================	12	13	14	15	16

DUCT						
WBOUT //	0.0	0.0	0.0	0.0	0.0	0.0
WBIN/WBAV	0.0	0.0	0.36190E+00 0	0.0	0.0	0.0
WBIN2/WBIN	0.0 0.0 0.0	0.0				
TBINZ	0.0	0.0	0.0	0.0	0.0	0.0
TBIN2-TBIN1	0.41475E-01 0.0 0.0	0.0	0.0	0.0	0.0	0.0
C3 FACTOR	0.41475E-01	0.27555E-01	0.0 0.0	0.0	0.84405E-0	0.70022E-03
C2 FACTOR	0.0	0.0	0.0	0.0	0.0	0.0
FACTOR						
DELTA P/PT	0.15027E-01 0.0	0.14670E-01 0	0.0	0.0	0.36972E-01 0	0.25424E-01 0
STATIONS	3050	5 6 0 7 0	0 6 7 8	10 4 11 0	12 0 13 0	14 0 15 0
DUCT	m	'n	7	•	1	12 3

HORSEPOWER ACTUAL RPM PRESS RATIO ADIAB EFF JP2 BLDFRAC TABLE R TABLE CORRPM TABLE PR TABLE CORFLO -0.47698E+03 0.87696E+02 0.84411E+01 0.79363E+00 0.10500E+00 0.14463E+01 0.49987E+05 0.90225E+01 0.38413E+01

FLT VEL KTS AMB TEMP. AMB PRESS EFFICIENCY RECOVERY ALTITUDE 0.0 0.51869E+03 0.14696E+02 0.10000E+01 0.10000E+01 0.0

RAM DRAG 0.0

THETA RAM DELTA RAM 0.10000E+01

OWER ACTUAL RPM PRESS RATIO ADIAB EFF WBIN/WBTOT WBSTAT/WBIN TABLE CORRPM TABLE PR TABLE CORFLO	0.10144E+01 0.28335E+01 0.35630E+01	0.98693E+00 0.25855E+01 0.35630E+01
ADIAB EFF WBIN/WBTOT WBSTAT/WBIN	0.47937E+03 0.87696E+02 0.28335E+01 0.86300E+00 0.54286E+00 0.0	.8SJ00E+00 0.0
ACTUAL RPM PRESS RATIO	0.87696E+02 0.28335E+01 0.	5E+03 0.20000E+05 0.25855E+01 0.88300E+00 0.0
HORSEPOWER	0.47937E+03	0.3769
TUREN STATIONS	8 9 4 10 0	10 11 4 12 0

EXIT TEMP TEMP RISE DELTA P/PT FUEL FLOW EFFICIENCY BURNR THETA COMB LDG 1 CCMB LDG 2 COMB LDG 3 0.260632+04 0.10987E+04 0.35000E-01 0.15056E+03 0.99000E+00 0.0

JM1 CORFLO JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND	0.75650E+00 0.75650E+00 0.0
PT JM2 DELP/P	0.0
CORFLO JM2 CORFLO JM1 DELP/F	78E+04 0.12703E+04 0.61111E+00 0.68725E+01 0.0
JP1 TEMP JP2 TEMP JM1	E+04 0.12703E+04 0.611
	13 6 14 0.15078
HT EX STATIONS	4 5 1

F NOZZLE TYPE +00 CONV	HP SUM ABS HP/2 +03 0.47698E+03 0.18753E+03
DISCHG COEF VEL COE 0.10000E+01 0.99000E	TORQUE NON-TURB HP SUM ABS HP/: -0.96502E+00-0.47696E+03 0.47698E+03 0.98494E+02 0.0
PTIN/PAMB . 0.10128E+01	JP2 MCH EFF 0.0
VEL IDL VEL PR +03 0.10128E+01	EFF JP1 MCH EFF JP2 0.10000E+01 0.0 0.0
GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE TYPE 0.18761E+02 0.50472E+02 0.23336E+03 0.23572E+03 0.10128E+01 0.10128E+01 0.10000E+01 0.99000E+00 CONV	SHAFT COMPONENTS NET HP ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF TORQUE NON-TURB HP SUM ABS HP/2 14 8 0 2 0 -0.16113E-01 0.87696E+02 0.99500E+00 0.0 0.10000E+01 0.0 -0.96502E+00-0.47698E+03 0.47698E+03 15 10 0 0 0 0.98494E+03 0.0 0.18753E+03 0.18753E+03
GRSS THRUST 0.18761E+02	NET HP -0.16113E-01 0.37507E+03
NOZZL STATIONS 13 15 0 16 0	SHAFT COMPONENTS 14 8 0 2 0 15 10 0 0 0

		DEPEND DFS ABS DEP ACT DEPEND ERR	0.47698E+03-0.16113E-01	0.0	0.0	0.65674E-01	0.0	0.0	0.0	0.0
		S DEP ACT	+7698E+03-	_		18753E+03	_	•		
		S AB	ò	3 0.0	0.0	3 0.	3 0.0	10.0	1 0.0	0.0
		DEPEND DF	0.0	0.37500E+0	0.0	0.37500E+0	0.30000E+0	0.16500E-0	0.16500E-0	0.0
		MAX LIMIT	0.11500E+03	0.40000E+04	0.20000E+01	0.30000E+01	0.10000E+02	0.10000E-01	1.10000E-04 0.10000E-01 0.16500E-01 0.0	.10000E+00 0.20000E+01 0.0
		MIN LIMIT	1.87696E+02 0.40000E+02 0.11500E+03 0.0	0.12000E+04 0.40000E+04 0.37500E+03 0.0	0.10000E+00 0.20000E+01 0.0	0.10000E+00	0.0 0.50000E+00 0.10000E+02 0.30000E+03 0.0 0.0	0.10900E-04 0.10000E-01 0.16500E-01 0.0	0.10000E-04	0.10000E+00
		INDEP VAR	0.87696E+02	0.0	0.0	0.79428E+00	0.0	0.0	0.0	0.0
		CONTR SWITCH INDEP VAR HIN LIMIT MAX LIMIT	8	OFF	OFF	8	OFF	OFF	OFF	OFF
tos.	INDEP	DAT	-	4	7	ĸΛ	H	м	м	7
VARIABLE NOS.	a	PER	0	0	0	0	0	0	2 0 0	0
ARIA	EPEN	STA	0	0	0	۵	0	0	0	0
ICE NOS.	INDEP	CPT	14	•	01	10	-	11	12 0 12	10
FERE	PEND	T STA	0	0	0	0	0	0	0	0
P.E	<u> </u>	ů	14	15	13	15	15	11	12	54
CONTR			16	17	61	50	21	22	23	52

ARG2 ACT SCHDVAR ACT SCHDVAR TBL ARGI ACT ARG1 TBL ARG 0.88000E+00 0.88000E+00 0.25817E+01 0.25817E+01 0.0 0.88000E+00 0.87999E+00 0.37507E+03 0.37507E+03 0.0 SCHDVAR ARGI ARG2 CPT STA CPT STA 10 0 0 11 0 0 10 0 15 0 0 0 REFERENCE NOS. SCHED 18

ARG2 TBL

0.0

OVERALL ENGINE PERFORMANCE DATA

AIR.LB/SEC FUEL,1B/HR GRS.JET THT NET JET THT PROP.THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERBRD BLEED 0.25654E+01 0.15056E+03 0.1876IE+02 0.1876IE+02 0.1876IE+02 0.25654E-01

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.37507E+03 0.40141E+00 0.14620E+03 0.37507E+03 0.40141E+00 0.14620E+03 BRAKE SH.HP PROP. HP 0.37507E+03 0.0

STATION												TOTAL CHARACTER STORY	0 - 141616
		WTFLCW	TOPRES	Ç.	TOTEMP	Q.	THETA	FUE! ZATE	/ATP	COPFIO	HUAMA	STODES	
~		0.31909E+01	0.1465	0.14696E+02	0.518	E+03	0.10000E+01	0.0		0.49450E+01	0.0	0.0	
7	6	0.31909E+01	0.1465	0.14696E+02	0.518		0.10000E+01	0.0	Ü	0.49450E+01	0.0	0.0	
M		0.23561E+01	0.1588	0.15884E+03	0.115	0.11516E+04 (0.22203E+01	0.0	J	0.61018E+00	0.0	0.0	
4	0.3	0.33504E+00	0.0		0.115	_	0.22203E+01	0.0	•	0.0	0.0	0.0	
Ŋ		0.28561E+01	0.156	0.15639E+03	0.115	_	0.22203E+01	0.0	0	0.61975E+00	0.0		500 hn
•	3.0	23563E+01	0.1563	0.15639E+03	0.155		0.30032E+01	0.0		0.72082E+00	0.0		1
7	ý. 0	0.28563E+01	0.154]	0.15415E+03	0.155		0.30032E+01	0.0	_	0.73129E+00	0.0	0.0	IRP
0		0.29137E+01	0.1437	0.14876E+03	0.275	_	0.53018E+01	0.200		0.10271E+01	0.0		
۰ ا		0.30349E+01	0.1487	0.14876E+03	0.269		0.51894E+01	0.192	0.19231E-01 C	0.10585E+01	0.0	 	Uninstalled
2		0.32168E+01	0.4575	0.457532+02	0.208	0.20848E+04 (0.40193E+01	0.181		0.32102E+01	0.0	0.0	
11		0.32168E+01	0.4575	0.45753E+02	0.208	0.20848E+04 (0.401935+01	0.181	0.18124E-01 (0.32102E+01	0.0	0.0	
5 12		0.3216SE+01	0.1653	0.16531E+02	0.169	0.16946E+04 (0.32670E+01	0.181		0.80104E+01	0.0	0.0	
13		0.32165E+01	0.1563	0.15635E+02	0.169		0.32670E+01	0.181		0.84685E+01	0.0	0.0	
14		0.32165E+01	0.1563	0.15635E+02	0.135		0.26033E+01	0.181;		0.75603E+01	0.0	0.0	
15		0.32089E+01	0.1501	1.15010E+02	0.135	_	0.26038E+01	0.181;		0.78566E+01	0.19007E+00		•
16		.32089E+01	0.1500	1.15004E+02	0.135		0.26038E+01	0.181		0.78599E+01	0.18817E+00	0.14696E+02	
	CTATTORIC	3	9	214 137 113			9		>0.144.04.04.04.04.04.04.04.04.04.04.04.04.0	> 0	901244	***************************************	***************************************
_	2 0 2 0	0.0	9	0.0		0.51869E+03	0		0.10000E+01	0.10000E+01	0.0	0.10000E+01	0.10000E+01
COMPR	STATIONS	HORSEPOWER		ACTUAL	APA P	ACTUAL RPM PRESS RATIO	TO ADIAB EFF		JP2 BLDFRAC	TABLE R	TABLE CORRPM	TABLE PR	TABLE CORFLO
2 2	0	4 -0.70014E+03	0	0.95040E+02	E+02 0	0.10809E+02	0		0.10500E+00	0.15956E+01	0.54173E+05	0.11575E+02	0.47778E+01
5	STATIONS	DF1 TA	P/PT	C. FACTOR		C2 FACTOR	S C3 FACTOR		TNTAT-2NTAT	TRINS	LIBITA? ALBIA	WBTN/WBAV	LIBOUT /LIBI ICT
*		0 0 15442			-		-		•			-	
. 40	^		10-1	0.0		0.0	0.27555F-01			•			
8	4			0.0		0.0	0.0					0.36190F+00	
9 10	4 11	0.0		0.0	•	0.0	0.0	0.0		0.0	0.0	0.0	0.0
1 12	0 13		E-01	0.0	•	0.0	0.84405E-03			0.0	0.0	0.0	0.0
12 14			E-01	0.0	0	0.0	0.70022E-03			0.0	0.0	0.0	0.0
BURNE	STATIONS	EXIT 1	TEMP	TEMP RISE		DELTA P/PT	PT FUEL FLOW		EFFICIENCY	BURNR THETA	COMB LDG 1	COMB LDG 2	COMB LDG 3
6 7	8	0 0.27500E+04		0.11923E+04		0.35000E-01	01 0.20614E+03	0	0.99000E+00	0.0	0	0	0.92922E-0
Z.	Ω			ACTUAL RPM		PRESS RATIO			4/WBTOT .	WBIN/WBTOT WBSTAT/WBIN TABLE CORRPM	TABLE CORRPM	TABLE PR	TABLE CORFLO
8	4 10 0			0.95040E+02		0.32513F+01	OT A AKKONFADO		O CONTRACTO		1070010	0 205135.01	LOTSOLTSL O
									1005		0.10/001-01		1010000000

JM1 CORFLO JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTVWESS EFFT SCL F. LIMIT IND	0,74800E+00 0.74800E+00 0.0
PT JM2 DELP	0.0
JM2 CORFLO JM1 DELP,	7E+04 0.13506E+04 0.61975E+00 0.84685E+01 0.0
JM1 CORFLO	0.61975E+00 0
JP2 TEMP	0.13506E+04 (
JP1 TEMP	0.15577E+04
HT EX STATIONS	5 13 6 14
HT EX	J.

GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE TYPE	CONV
VEL COEF	0.99000E+00
DISCHG COEF	0.10000E+01
PTIN/PAMB	:+02 0.50472E+02 0.30712E+03 0.31022E+03 0.10213E+01 0.10213E+01 0.10000E+01 0.99000E+00
IDL VEL PR	0.10213E+01
IDL JET VEL	0.31022E+03
ACT JET VEL	30712E+03
OZZLE AREA	.50472E+02 (
SRSS THRUST A	3.30630E+02 0
SS	13 15 0 16 0 0
NOZZL	11 11

RB HP SUM ABS HP/2	4E+03 0.70004E+03	0.25008E+03
TORQUE NON-TUR	-0.11293E+02-0.70014E+03 0.70004E+03	0.13135E+03 0.0
ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF TORQUE NON-TURB HP SUM ABS HP/2	0.10000E+01 0.0 -	0.0
EFF JM2 MCH EFF JS	_	E+00 0.0 0.
ACTUAL RPM JMI MCH	00 0.95040E+02 0.99500E+00 0.0	03 0.20000E+05 0.99500E+00 0.0
NET HP	-0.20435E+	0.50016E+03
SHAFT COMPONENTS	14 8 0 2 0	15 10 0 0 0

		MIN LIMIT MAX LIMIT DEPEND DES ABS DEP ACT DEPEND ERR	0.70004E+03-0.20435E+00	0.0	0.0	0.90098E+00 0.10000E+00 0.30000E+01 0.50000E+03 0.25008E+03 0.16357E+00	0.0	0.0	0.0	0.0	
		ABS DEP AC	0.70004E+0	0.0		0.25008E+0	0.0	0.0	0.0	0.0	
		DEPEND DES	0.0	3.50000E+03	0.0	0.50000E+03	3000CE+03	1.16500E-01	1.16500E-01	0.0	
		MAX LIMIT	0.95040E+02 0.40000E+02 0.11500E+03 0.0	0.12000E+04 0.40000E+04 0.50000E+03 0.0	0.10000E+00 0.20000E+01 0.0	0.30000E+01 (0.50000E+00 0.10000E+02 0.3000CE+03 0.0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	0.10000E-04 0.10000E-01 0.16500E-01 0.0	1.10000E+00 0.20000E+01 0.0	
		MIN LIMIT	0.40000E+02	0.12000E+04	0.10000E+00	0.10000E+00	0.50000E+00	0.10000E-04	0.10000E-04	0.10000E+00	
		INDEP VAR	0.95040E+02	0.0	0.0	0.90098E+00	0.0	0.0	0.0	0.0	
		CONTR SWITCH INDEP VAR	8	0F.F	OFF	8	OFF	OFF	0FF	OFF	
	INDEP	DAT	-	4	7	ιŲ	-	м	m	7	
ž		PER	0	0	0	0	0	0	0	0	
KIKB	PEND	STA		0	0	0	0	0	0	0	
>	80	VAR	-	7	н	-	н	8	84	~ 4	
K NOS.	INDEP	CPT	14	•	18 0 10 1 0 0 7	10	н	11	12	10	
KKE	SNO	STA	0	٥	0	0	٥	0	0	0	
¥	DEP	CPT	14	15	18	15	15	1	12	54	
מבוצ			16	17	13	20	21	22	23	25	

		ARG2 TBL	0.0	0.0
		ARG2 ACT	0.0	0.0
		ARG1 TBL	0.32168E+01	3.50016E+03
			32168E+01).50016E+03 (
		CHDVAR TBL	.88000E+00 (.85899E+00 0
		DAT VAR STA VAR STA SCHDVAR ACT SCHDVAR TBL ARGI ACT	0 8 0 0 1 0 0 0.85300E+00 0.88000E+00 0.32168E+01 0.32168E+01 0.0	0 8 0 1 0 0 0.85800E+00 0.85899E+00 0.50016E+03 0.50016E+03 0.0
	ARG2	STA	0	0
_	¥	VAR	0	0
Š	19	STA	-	0
BLE	ARGI	VAR	0	7
VARIABLE NOS.		STA	0	0
_	SCHDVAR	VAR	ထ	Φ
	မှ	DAT	0	0
	25	STA	0	0
ć,	ARGS	CPT	0	0
욷	ឲ្យ	STA	11	0
RENC	ARGI	CPT	0	15
REFERENCE NOS.	SCHOVAR	CPT STA CPT STA CPT STA	10 0 0 11 0	0
	SCHO	CPT	10	10
SCHED			18	57

OVERALL ENGINE PERFORMANCE DATA

AIR.LB/SEC FUEL,LB/HR GRS.JET THT NET JET THT PROP.THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERBRD BLEED 0.31909E-01 0.320614E+03 0.30630E+02 0.30630E+02 0.31909E-01

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.50016E+03 0.41214E+00 0.15675E+03 0.50016E+03 0.41214E+00 0.15675E+03 BRAKE SH.HP PROP. HP 0.50016E+03 0.0

FOINT FIIS
12/9/80
INSTALLED
PROP. ENG.
REGEN. P
ø

	COMPO	COMPONENT PERFORMANC	CRMANC	E DATA		Ö	HFONENT I	COHFONENT INTERFACE TOLERANCE	OLERA	ANCE = 0.0100	00 PERCENT	COMP	COMPOVENT ERROR	SIGNAL = 0
24. 4. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	STATION 2 2 3 3 4 4 6 0 0 8 1 1 10 11 15 11 16 11 16 11 16 11 16 11 16 11 16 11 16 11 16 11 16 11 16 11 16 11 16 11 16 11 16 16	UFFLOW 0.18213E+01 0.1893E+01 0.2276E+00 0.1893EE+01 0.1593EE+01 0.1593EE+01 0.1593EE+01 0.17824E+01 0.17824E+01 0.1782E+01 0.1732E+01 0.1732E+01 0.1732E+01 0.1732E+01 0.1732E+01 0.1732E+01 0.1732E+01 0.1732E+01 0.1732E+01		70FRES 0.14696E+02 0.514656E+02 0.05472E+02 0.0 0.64369E+02 0.64369E+02 0.6326E+02 0.6326E+02 0.6326E+02 0.15074E+02 0.15074E+02 0.1695E+02 0.14695E+02 0.14695E+02	13.00 13	0.5059	MMM6M4444444444	THETA 0.10000E+01 0.16910E+01 0.16910E+01 0.16910E+01 0.25006E+01 0.25006E+01 0.25006E+01 0.25006E+01 0.2605E+01 0.2605E+01 0.27496E+01 0.20262E+01 0.20262E+01 0.20262E+01 0.20262E+01		EL/AIR 9430E-02 9692E-02 9692E-02 9692E-02 9692E-02 9692E-02 9692E-02	CORFLO 0.2836E+01 0.2836E+01 0.72082E+00 0.0 0.73317E+00 0.89158E+00 0.90709E+00 0.11610E+01 0.11610E+01 0.11610E+01 0.11610E+01 0.37665E+01 0.37665E+01 0.37665E+01 0.37665E+01 0.37665E+01 0.37665E+01 0.37665E+01 0.37665E+01	VMACH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	STFFES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	50 hp Installed 96E+02 96E+02
INLET	STATIONS 1 0 17		RAM DRAG 0.0		FLT VEL 0.0	KTS	AMB TEMP 0.51869E+03	AMB PRESS 3 0.14696E+02		EFFICIENCY 0.10000E+01	RECOVERY 0.10000E+01	ALTITUDE 0.0	THETA RAM 0.10000E+01	DELTA RAM O.10030E+01
COMFR	STATIONS 2 0 3	•	HOPSEPOWER -0.22333E+03	OWER SE+03	4CTUAL RPM 0.75024E+02		PRESS RATIO 0.44679E+01	O ADIAB EFF 1 0.76599E+00		JP2 BLDFRAC 0.12500E+00	TABLE R 1	TABLE CORRPM 0.42764E+05	TABLE PR 0.47383E+01	TABLE CORFLO 0.23637E+01
5 5 7 7 9 11 12 26	STATIONS 3 0 5 6 0 7 8 4 9 10 4 11 12 0 13 1 14 0 15	000000	DELTA P/PT 0.16341E-01 0.17104E-01 0.0 0.14564E-01 0.40976E-02	600000	C1 FACTOR 0.0 0.0 0.0 0.0 0.0		C2 FACTOR 0.0 0.0 0.0 0.0 0.0 0.0	C3 FACTOR 0.32412E-01 0.21517E-01 0.0 0.0 0.73046E-03 0.28445E-03		TBIN2-TBIN1 0.0 0.0 0.0 0.0 0.0	TBIN2 0.0 0.0 0.0 0.0 0.0	MBIN2/WBIN 0.0 0.0 0.0 0.0 0.0	KBIN/LDAV 0.0 0.0 0.32400E+30 0.0 0.0	M30UT/MBUCT 0.0 0.0 0.0 0.0 0.26652E-01 0.0
BURES 6 TURBN 10	7 0 8 7 0 8 8 STATIONS 9 4 10		EXIT TEMP 0.19400E+0+ HORSEPOWER 0.23518E+03	0 00	TEMP RISE 0.64237E+03 ACTUAL RFM 0.75024E+02 0.20000E+05		DELTA P/PT 0.35300E-01 0.35300E-01 0.27105E+01 0.14943E+01	T FUEL FLOW 1 0.57040E+02 0 ADIAB EFF 1 0.65300E+00		EFFICIENCY 0.99000E+00 WBIN/WBTOT 1 0.45600E+00	BURNR THETA 0.0 WBSTAT/WBIN 0.0 0.0	COMB LDG 1 0.8420%E+06 TASLE CORRFH 0.10055E+01	COMB LDG 2 0.26947E+05 TABLE PR 7 0.27105E+01 0.14943E+01	COMB LDG 3 0.30776E+00 TABLE CORFLO 0.35630E+01 0.33473E+01

HT EX STATIONS 4 5 13 6 14	JP1 TEMP 0.12970E+04	JP2 TEMP 0.10519E+04	JP1 TEMP JP2 TEMP JM1 CORFLO JM2 CORFLO JM1 DELP/FT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND 0.12970E+04 0.10519E+04 0.73317E+00 0.44041E+01 0.0 0.0 0.0 0.76460E+00 0.76460E+00 0.0	JM2 CORFLO J 0.44041E+01 0	M1 DELP/FT	JM2 DELP/PT 0.0	EFFECTVNESS 0.76460E.00	EFFT SCL F. 0.76460E+00	LIMIT IND 0.0
NOZZL STATIONS 13 15 0 16 0		NOZZLE AREA 0.42360E+02	GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL FR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE TYPE 0.82627E+01 0.42360E+02 0.15392E+03 0.15547E+03 0.10066E+01 0.10066E+01 0.10000E+01 0.9900E+00 CCNV	IOL JET VEL I 0.15547E+03 0	.DL VEL FR	PTIN/PAMB 0.10066E+01	DISCHG COEF 0.10000E+01	VEL COEF 0.93000E+00	NOZZLE TYPE CC:IV
SHAFT COMPONENTS 14 8 0 2 18 15 10 0 0	NET HP 0.22940E-01 0.49992E+02	ACTUAL RFM 0.75024E+02 0.20030E+05	NET HP ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF 0.22940E-01 0.75024E+02 0.99500E+00 0.0 0.0 0.0 0.0 0.0 0.0	JM2 MCH EFF J 0.0 0.0	PI MCH EFF .10000E+01 .0	JP2 MCH EFF 0.10000E+01 0.0	TORQUE NON- 0.16059E+01-0.23 0.13128E+02 0.0	JPI MCH EFF JP2 MCH EFF TORQUE NON-TURB HP SUM ABS HP// 0.10000E+01 0.10000E+01 0.16059E+01-0.2339CE+03 0.23399E+03 0.0 0.0 0.13128E+02 0.0 0.24996E+02	TORQUE NON-TURB HP SUM ABS HP/2 0.16059E+01-0.2339CE+03 0.13128E+02 0.0
LOAD 18	HORSEPCHER -0.10600E+02	HP FACTOR 0.10600E+02	HORSEPCWER HP FACTOR ACTUAL RFM RFM FACTOR -0.10600E+02 0.10600E+02 0.75024E+02 0.10000E+01	FFM FACTOR 0.10000E+01					
CONTR REFERENCE NOS.		VARIABLE NOS.							

۶

		MAX LIMIT DEPEND DES ASS DEP ACT DEPEND ERR	0.23399E+03 0.22540E-01	0.19400E+04 0.12000E+04 0.40000E+04 0.50000E+02 0.24996E+02-0.83466E-02	0.28052E-01 0.10000E-03 0.99000E+00 0.50000E-01 0.4998E-01-0.43178E-05	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		DEPEND DES ASS DI		0.50000E+02 0.249	0.50000E-01 0.499	0.10000E+00 0.30000E+01 0.50000E+02 0.0	0.50000E+00 0.10000E+02 0.30000E+03 0.0	0.10000E+00 0.33000E-01 0.0	1.10000E+00 0.10000E-01 0.0	0.0 0.0	0.10000E+00 0.60000E-02 0.0	1.10000E+00 0.10000E-01 0.0
			1.75024E+02 0.40000E+02 0.11500E+03 0.0	0.40000E+04	0.99000E+00	0.30000E+01	0.10000E+02	0.10000E+00	0.10000E+00	0.20000E+01	0.10000E+00	0.10000E+00
		MIN LIMIT	0.40000E+02	0.12000E+04	0.10000E-03	0.10000E+00	0.50000E+00	0.0	0.0	0.10000E+00	0.0	0.0
		INDEP VAR	0.75024E+02	0.19400E+04	0.28052E-01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		CONTR SUITCH	ફ	8	3	OFF	OFF	OFF	OFF	OFF	OFF	0F.F
03.	INDEP	CAT	-	4	σ	ហ	-	м	m	7	м	m
N 378	_	STA PER	0	0	0	0	0	0	0	0	0	6
ARIABLE NOS.	DEPEND	STA	0	0	-	0	0	0	0	0	0	0
>	20	VAR	-	-	0	H	-	~	ď	H	7	~
CE NOS.	DEPEND INDEP	CPT	14	9	11	10	н	11	12	10	9	o
EREN	웊	STA	0	0	13	0	0	0	0	0	0	0
REF	DEPL	CPT	14	15	0	15	15	11	12	54	56	0
CONTR						20						

SCHDVAR ACT SCHDVAR TBL ARG1 ACT ARG1 TBL ARG2 ACT 0.51300E+00 0.86900E+00 0.49992E+02 0.4992E+02 0.4992E+ REFERENCE NOS. VARIABLE NOS. SCHDVAR ARGI ARG2 CPT. STA CPT STA CPT STA DAT VAR STA VAR STA VAR STA 10 0 15 0 0 0 0 0 8 0 1 0 0 0 SCHED 24

ARG2 TBL

OVERALL ENSINE PERFORMANCE DATA

AIR, LB/SEC FUEL, LB/HR GRS. JET THT NET JET THT FROP. THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERERD BLEED 0.18213E+01 0.57040E+02 0.82627E+01 0.82627E+01 0.69032E+01 0.45368E+01 0.10463E+00

*IOT.SHFT HP FUEL/IOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHD/AIR 0.49992E+02 0.11410E+01 0.27439E+02 BRAKE SH. HP FROP. HP 0.49992E+02 0.0

FIIS
POINT
12/9/60
INSTALLED
ENG.
FROP.
REGEN.
86

COMPONENT ERROR SIGNAL = 0	VMACH STFFES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	THETA PAM 0.10030E+01 TABLE FR T	7413E+01 IN/F/3AV	0.0 0.0 0.0 0.21494E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PERCENT				0.0 0.0 0.0 THETA COM 0.11 0.10
0.0100 PER	CORFLO 0.36358E+01 0.05522E+01 0.0 0.0 0.70244E+00 0.66292E+00 0.66292E+00 1.1619E+01 0.11619E+01 0.32624E+01 0.32624E+01 0.32624E+01 0.32624E+01 0.32624E+01 0.32624E+01 0.5252E+01 0.5252E+01 0.5525E+01 0.56457E+01 0.51458E+01 0.51458E+01 0.51458E+01 0.51458E+01 0.51458E+01 0.51458E+01			0.0 0.0 0.0 0.0 0.0
TOLERANCE = 0	FUEL/AIR 0.0 0.0 0.0 0.0 0.0 0.14655E-01 0.13219E-01 0.13219E-01 0.13219E-01 0.13219E-01 0.13219E-01 0.13219E-01			
INTERFACE TOL	THETA 0.10000E+01 0.10000E+01 0.18724E+01 0.18724E+01 0.27391E+01 0.27391E+01 0.4394E+01 0.4394E+01 0.34914E+01 0.34914E+01 0.2540E+01 0.34914E+01 0.3540E+01 0.30122E+01 0.22542E+01 0.22542E+01 0.22542E+01 0.22542E+01 0.22542E+01	AMB PRESS 0.14696E+02 ADIAB EFF	0.78494E+00 C3 FACTOR 0.32412E-01 0.21517E-01 0.0	0.73046E-03 0.28649E-03 0.36034E-03 0.36034E-03 FUEL FLCM 0.10830E+03 ADIAB EFF 0.853100E+00
COMPONENT IN	101EMP 0.51869E+03 0.1 0.5122E+03 0.1 0.97122E+03 0.1 0.97122E+03 0.1 0.97122E+03 0.1 0.17207E+04 0.2 0.1728E+04 0.2 0.1728E+04 0.2 0.1728E+04 0.2 0.1768E+04 0.2			0.0 0.0 0.0 0.0 0.0 0.5000E-01 0.35000E-01 0.35000E-01 0.35000E-01
DATA	##ES #696E+02 #676E+02 #676E+02 #679E+02 #665E+02 #665E+02 #655E+02 #695E+02 #695E+02 #695E+02 #695E+02 #695E+02 #695E+02 #695E+02 #695E+02 #695E+02			1 0.0 2 0.0 2 0.0 TEMP RISE 4 0.90839E+03 A ACTUAL RPM A ACTUAL RPM 3 0.82403E+02 3 0.20000E+05
		RAM DRAG 0.0 Horsefower	-0.36476E+03 DELTA P/PT 0.1550E-01 0.0	0.25616E-01 0.75780E-02 0.47633E-02 EXIT TEMP 0.23256E+04 HORSEFOWER 0.38792E+03
COMPONENT PERFORMANCE		STATIONS 0 17 0 STATIONS	0 3 4 STATIONS 0 5 0 0 7 0 4 9 0 4 11 0	STATIONS STATIONS STATIONS STATIONS STATIONS
ŭ	STATION 1 2 2 4 4 4 7 7 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	INLET 1 1 1 COMPR	2 F	11 12 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15

JMI CORFLO JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND	9.76040E+00 0.76040E+00 0.0
7 JH2	0.0
DELP/PT	
	0.0
JM2 CORFLO	0.59457E+01
JPI TEMP JP2 TEMP JM1 CORFLO JM2 CORFLO JM1 D	0.702446+00
JP2 TEMP	0.11693E+04
TEMP	.207E+04
JP1	0.14
	5 13 6 14 0.14

CCHG COEF VEL COEF NOZZIE TYPE (0000E+01 0.95000E+00 CCNV	JF1 MCH EFF JP2 MCH EFF TORQUE KON-TURB HP SUM £85 HP/2 0.10000E+01 0.10000E+01 0.85292E+00-0.33596E+03 0.35597E+03 0.0 0.0 0.0 0.52516E+02 0.0 0.99991E+02
PTIN/PAMB DI: 0.10126E+01 0.3	JP2 HCH EFF 0.100006+01 0.0
L IDL VEL FR 3 0.10126E+01	F JF1 MCH EFF 0.10000E+01 0.0
GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL FR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE ' 0.15550E+02 0.42360E+02 0.22267E+03 0.22492E+03 0.10126E+01 0.10126E+01 0.10000E+01 0.9900E+00	ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF J01 0.32403E+02 0.99500E+00 0.0 0.10000E+01 0.10000E+01 0.0 0.0
GRSS THRUS1 0.15550E+02	NET HP 0.13382E-01 0.19993E+03
NOZZL STATIOHS 13 15 0 16 0	SHAFT COMPONENTS 14 8 0 2 18 15 10 0 0 0

HORSEPOWER HP FACTOR ACTUAL RFM RFM FACTOR -0.212005+02 0.212005+02 0.100005+01

		ID ERR	32E-01	:0E-01	12E-05							
		DEPE	0.133	0.175	0.520	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		P ACT	7E+03	1E+02-	5E-01-							
		DEPEND DES ANS DEP ACT DEPEND ERR	0.38597E+03 0.13382E-01	0.9999	0.4999	0.0	0.0	0.0	0.0	0.0	0.0	٥.٥
		D DES		0E+03	0E-01	0E+03	0E+03	0E-01	0E-01		0E-02	0E-07
			0.0	0.2000	0.5000	0.2000	0.3000	0.3300	0.1000	0.0	0.6000	0.1000
		MAX LIMIT	0E+03	10E+04	0E+00	10 E + 0.1	10E+02	0.10000E+00 0.33000E-01 0.0	.10000E+00 0.10000E-01 0.0	0E+01	.10000E+00 0.60000E-02 0.0	0.10000E+00 0.10000E-01 0.0
			0.1150	0.4000	0.9900	0.3000	0.1000	0.1000	0.1000	0.2000	0.1000	0.1000
		MIN LIMIT	30E+02	30E+04	30E-03	0.100565+00 0.30000E+01 0.20000E+03 0.0	50000E+00 0.10000E+02 0.30000E+03 0.0			1.10000E+00 0.20000E+01 0.0		
			0.400	0.120	0.100	0.100	0.500	0.0	0.0	0.100	0.0	0.0
		INDEP VAR	0.82403E+02 0.40000E+02 0.11500E+03	9.23296E+04 0.12000E+04 0.40000E+04 0.20000E+03 0.99991E+02-0.17960E-01	3.21634E-01 0.10000E-03 0.99000E+00 0.50000E-01 0.49995E-01-0.52042E-05							
		P. I	0.85	0.23	0.216	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		CONTR SHITCH	8	8	ક	OFF	0F.F	OFF	OFF	OFF	OFF	OFF
.50	INDEP	PAT	~	· †	٥	ιn	-1	m	m	7	m	m
ARIABLE NOS.	_	STA PER	0	0	0	0	0	0	0	0	0	0
ARIA	EPEND		0	0	7	0	0	0	0	0	0	0
						-					7	8
REFERENCE NOS.	INDEP	CPT	14	•	11	10	~	11	12	01	5 6	٥
EREN	ē	STA	٥	0	18	0	0	0	0	0	0	0
	DEP D	CPI	14	15	0	15	15	11	12	54	56	0
CONTR			16	17	19	50	21	22	23	52	27	58

		ARGI TBL ARG2 ACT ARG2 TBL	0.0 0.0 0.0
		ARGI ACT AL	0.199985+03 0.
		DAT VAR STA VAR STA VAR STA SCHDVAR ACT SCHDVAR TBL ARGI ACT	0 8 0 1 0 0 0 0.83100E+00 0.85000E+00 0.19998E+03 0.19996E+03 0.0
	APG2	AR STA	0
VARIABLE NOS.	APG1	AR STA V	0 1
VARIABI	SCHDVAR APG1	STA V.	0
	SCHO	DAT VA	0
ě,	ARG2	CPT STA	0
REFERENCE NOS.	AFG1	PT STA	0
REFER	SCHDVAR AFG1	CPT STA CPT STA CPT STA	10 0 15 0
SCHED	Ñ	ت	24 1

OVERALL ENGINE FERFORMANCE DATA

AIR,LB/SEC FUEL,LB/HR GRS.JET THT NET JET THT PROP.THRUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVERED ELEED 0.23461E+01 0.10830E+03 0.15580E+02 0.15580E+02 0.05580E+02 0.15580E+03 0.15038E+03 0.15580E+03 0.15580

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.1999@E+03 0.54157E+00 0.65240E+02 0.1999@E+03 0.54157E+00 0.65240E+02 BRAKE SH.HP PROP. HP 0.19998E+03 0.0

And the second s

FIIS
POINT
12/9/80
INSTALLED
ENG.
PROP.
REGEN.
စ္ဆ

SIGNAL = 0	275 hp Installed E+02 E+02	DELTA RAM O.10000E+01 TABLE CORFLO	MBGUT/MBUCT 0.0 0.0 0.0 0.0 0.19959E-01	COMB LDG 3 0.16964E+00 TABLE CORFLO 0.35630E+01 0.35630E+01
COMPONENT ERFOR	STPRES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	THETA RAM 0.10000E+01 TABLE PR T. 0.75329E+01	HEIN/HEAV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	COMB LDG 2 0.070%E+06 TABLE FR T 0.255+3E+01 0.21400E+01
COMP	VTACH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALTITUDE 0.0 TABLE CORRPH 0.47949E+05	HBINZ/WBIN 0.0 0.0 0.0 0.0 0.0	1 COMB LDG 1 0.12283E+07 TABLE CORPPY 0.99515E+00 0.10049E+01
00 PERCENT	CORFLO 0.39438E401 0.3961E+01 0.68049E+00 0.03352E+00 0.33552E+00 0.11621E+01 0.11621E+01 0.32653E+01 0.5519E+01 0.5519E+01 0.55916E+01 0.55916E+01 0.55916E+01 0.55916E+01	RECOVERY 0.10000E+01 TABLE R 0.14018E+01	TBINZ 0.0 0.0 0.0 0.0 0.0	BURNR THETA 0.0 WBSTAT/KBIN 0.0
TOLERANCE = 0.0100	FUEL/AJR 0.0 0.0 0.0 0.0 0.0 0.16525E-01 0.14906E-01 0.14906E-01 0.14906E-01 0.14906E-01 0.14906E-01	EFFICIENCY : 0.10000E+01 JP2 BLDFRAC	TBIN2-TBIN1 0.0 0.0 0.0 0.0 6.00	
VTERFACE TOLI	THETA 0.10000E+01 0.10000E+01 0.19415E+01 0.19415E+01 0.26502E+01 0.26502E+01 0.48031E+01 0.48031E+01 0.48031E+01 0.48031E+01 0.48031E+01 0.3499E+01 0.31499E+01 0.23525E+01 0.23525E+01 0.23525E+01 0.23525E+01 0.31499E+01	AMB PRESS 0.14696E+02 0.14696E+02 0.14696E+02	C3 FACTOR 0.32412E-01 0.21517E-01 0.0 0.73046E-03 0.26645E-03	FUEL FLOW 0.13247E+03 0.13247E+03
COMPONENT INTERFACE	107EMP 0.51869E+03 0 0.51869E+03 0 0.10071E+04 0 0.10071E+04 0 0.14036E+04 0 0.24915E+04 0 0.24915E+04 0 0.24915E+04 0 0.16338E+04 0	S AMB TEMP 0.51269E+03 H PRESS RATIO	C2 FACTOR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DELTA P/PT 4 0.35000E-01 4 0.25000E-01 7 PPESS RATIO 2 0.28543E+01 5 0.21600E+01
ATA	TCPRES 0.14696E+02 0.14614E+02 0.1034E+03 0.10228E+03 0.10228E+03 0.10074E+03 0.97212E+02 0.97212E+02 0.97212E+02 0.97212E+02 0.1550E+02 0.1550E+02 0.1550E+02 0.1550E+02 0.1550E+02 0.1560E+02 0.1560E+02 0.1669E+02	FLT VEL KTS 0.0 ACTUAL RPH 3 0.84100E+02	T C1 FACTOR 1 0.0 0.0 0.0 1 0.0 2 0.0	TEMP RISE 4 0.10077E+04 ACTUAL BFM 3 0.84120E+02 3 0.20200E+05
RFORMANCE DATA		RAM DRAG 0.0 HORSEPO4ER -0.42774E+03	DELTA P/PT 0.15009E-01 0.15129E-01 0.0 0.30975E-01 0.92792E-02	EXIT TEMP 0.249135+04 HORSEFCUER 0.451165+03
COMPONENT PERFORMA		STATIONS 1 0 17 0 STATIONS 2 0 3 4	STATIONS 3 0 5 0 6 0 7 0 8 4 9 0 0 4 11 0 2 0 13 18 4 0 15 0	STATIONS 7 0 8 0 STATIONS 9 4 10 0 1 4 12 0
-	STATION 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	INLET 1 COMPR 2	5 6 5 7 8 9 10 11 12 14 26 17	BURNR 6 TURBN 8 8 10 13

*101.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.2/+97E+03 0.48176E+00 0.10305E+03 0.27497E+03 0.0

1

BRAKE SH. HP FROP. HP

AIR,LB/SEC FUEL,LE/HR GRS.JET THI NET JET THI PROP.THRUST *TOT.NET THI FUEL/TOTTHI TOTTHI/AIR OVERED BLEED 0.25449E+01 0.13247E+03 0.19444E+02 0.19444E+02 0.19444E+02 0.68128E+01 0.76405E+01 0.12635E+00 OVERALL ENGINE PERFORMANCE DATA

ARG2 TBL 0.0 SCHDVAR ACT SCHDVAR TBL ARG1 ACT ARG1 TBL ARG2 ACT 0.05600E+00 0.06000E+00 0.27497E+03 0.27497E+03 0.07497E+03 0.0 SCHOVÁR AFGI APG2 SCHOVÁR APG1 ARG2 CPT STA CPT STA DAT VAR STA VAR STA 10 0 15 0 0 0 0 8 0 1 0 0 0 VARIABLE NOS. SCHOVAR ARGI REFERENCE NOS. SCHED 5

		DEPEND DES ABS DEP ACT DEPEND EFR	0.44092E+03-0.33981E-01	0.12000E+04 0.40000E+04 0.27500E+03 0.0	0.19959E-01 0.10000E-03 0.99000E+00 0.50000E-01 0.50000E-01-0.10053E-06	0.91645E+00 0.10000E+00 0.30000E+01 0.27500E+03 0.13745E+03-0.33437E-01		7E-01 0.0 0.0		0.0		
		. HAX LIMIT DEPEND	0.84120E+02 0.40000E+02 0.11500E+03 0.0	4 0.40000E+04 0.27500	3 0.99000E+00 0.50000	0 0.30000E+01 0.27500	0.50000E+00 0.10000E+02 0.30000E+03 0.0	0.10000E+00 0.33000E-01 0.0	0.10000E+00 0.10000E-01 0.0	1.10000E+00 0.20000E+01 0.0	0.10000E+00 0.60000E-02 0.0	C C LO-MACACL O CO. MOCACL O
		IN HIN LIMIT	102 0.40000E+0	0.12000E+0	01 0.10000E-0	·00 0.10000E+0	0.50000E+0	0.0	0.0	0.10000E+0	0.0	•
		INDEP VA	0.84120E+	0.0	0.19959E-	0.91645E+	0.0	0.0	0.0	0.0	0.0	•
		CONTP SWITCH INDEP VAR	Š	OFF	8	8	OFF	GTF	OFF	OFF	OFF	210
08.	11:00EP	DAT	~	J	o	2	-	m	m	7	m	•
DS. VARIABLE HOS.	C	PER	0	0	0	0	0	0	0	0	0	•
ARIA	EFER	STA	0	0	~	0	0	0	0	0	0	c
>	0	VAR	~	~	0	-	-	2	N	-	N	·
REFERENCE NOS.	INDEP	CPT	14	•	11	10	-	11	12	10	92	a
EPEN		STA	0	0	18	0	0	0	0	0	0	•
REF	9	CP	41	15	0	15	15	11	12	54	56	0
CONTR									23			

14 8 15 10	8 0 0 0 0 0	9 0	-0.3393IE-01 0.8%I20E+02 0.99500E+00 0.0 0.27497E+03 0.20000E+05 0.98500E+00 0.0	593IE-01 0.84I20E+02 0.99500E+00 0.0 7497E+03 0.20000E+05 0.98500E+00 0.0	0.10000E+01 0.0	0.10000E+01- 0.0	0.10000E+01 0.10000E+01-0.21216E+01-0.41634E+03 0.44892E+0 0.0 0.0 0.13778E+0	0.44892E+0 0.13748E+0
10AD 18			HORSEPOWER HP FAC	HORSEPONER HP FACTOR ACTUAL RFH RFH FACTOR -0.21200E+02 0.21200E+02 0.84120E+02 0.10000E+01				
	6	,						

NOZŻLE TYPE CC'VV GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAMB DISCHG COEF 'VEL COEF 0.19444E+02 0.42360E+02 0.25402E+03 0.25659E+03 0.10158E+01 0.10158E+01 0.10000E+01 0.99000E+00 NOZZL STATIONS 13 15 0 16 0

ACTUAL RPM JMI MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF TORQUE

NET HP

SHAFT COMPONENTS

NON-TURB HP SUM ABS HP/2

JPI TEMP JP2 TEMP JM1 CORFLO JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTYNESS EFFT SCL F, LIMIT IND 0.14636E+04 0.12202E+04 0.69086E+00 0.65859E+01 0.0 HT EX STATIONS 4 5 13 6 14

167

PT FIIS
12/9/80 F
INST DES PT
ENGINE IN
E PROPOSAL
PEGENERATIVE
•

_	COMPONE	COMPONENT PERFORMA	NCE DATA	COMPONENT	COMPONENT INTERFACE TOLERANCE	ERANCE = 0.0100	00 PERCENT	C0:16	COMPONENT ERPOR SIGNAL	SIGNAL = 0
STATION	20	HTFLOW	TOPPES	TOTEMP	THETA	FUEL/AIR	CORFLO	VMACH	STURES	
7		0.26331E+01	0.14696E+02	0.51869E+03	0.10000E+01	0.0	0.40806E+01	0.0	0.0	
2		0.26331E+01	0.14608E+02	0.51869E+03	0.10000E+01	0.0	0.41052E+01	0.0	0.0	
r1	_	0.230396+01	0.10810E+03	0.10+38E+04	0.19641E+01	0.0	0.68028E+00	0.0	0.0	
•		0.32913E+00	0.0	0.10165E+04	0.19641E+01	0.0	0.0	0.0	0.0	
S		0.23039E+01	0.10648E+03	0.10188E+04	0.19641E+01	0.0	0.69064E+00	0.0		•
•		0.23040E+01	0.10643E+03	0.14889E+04	0.28705E+01	0.0	0.83497E+00	0.0		300 hp
	_	0.23040E+01	0.1048E+03	0.14389E+04	0.28705E+01	0.0	0.84765E+00	0.0		1% IRP
•		0.23430E+01	0.10121E+03	0.25230E+04	0.48584E+01	0.16953E-01	0.11621E+01	0.0		! !
•		0.24431E+01	0.10121E+03	0.24536E+04	0.47498E+01	0.16248E-01	0.11981E+01	0.0		Installed
10		0.2593CE+01	0.34569E+02	0.19355E+04	0.37316E+01 (0.15293E-01	0.33002E+01	0.0	0.0	
11		0.25932E+01	0.34569E+02	0.19355E+04	_	0.15293E-01	0.33002E+01	0.0	0.0	
12		0.25932E+01	0.15615E+02	0.163S0E+04 (0.31579E+01 (0.15293E-01	0.67211E+01	0.0	0.0	
13		0.25432E+01	0.15100E+02	0.16380E+04 (0.31579E+01 (0.15293E-01	0.68165E+01	0.0	0.0	
14		0.25433E+01	0.15100E+02	0.12396E+04 (0.23725E+01 (0.15293E-01	0.59085E+01	0.0	0.0	
15		0.25462E+01	0.14949E+02	0.12306E+04 (0.23725E+01 (0.15293E-01	0.59752E+01	0.17136E+00	0.14696E+02	
16		0.25462E+01	0.14943E+02	0.12306E+04 (_	0.15293E-01	0.59773E+01	0.16964E+C0	0.14696F+02	
17		0.26331E+01	0.14596E+02	0.51869E+03 (0.0	0.40806E+01	0.0	0.0	
18		3.50000E-01	0.15100E+02	0.16380E+04	0.31579E+01 (0.15293E-01	0.13402E+00	0.0	0.0	
INLET	STATIONS	4S RAM (DRAG FLT VEL KTS	KTS AMB TEMP	AMB PRESS	EFFICIENCY	RECOVERY	ALTITUDE	THETA RAM	DELTA RAM
1	0 17	0.0	0.0	0.51869E+03	0	0	0.10000E+01	0.0	_	0.10000E+01
COMPR	STATIONS	HORS	FPOWER ACTUAL RPM	RPM PRESS RATIO	TO ADIAB EFF	JP2 BLDFRAC	TABLE R	TABLE CORREM	TABLE FR T	TABLE CORFLO
2 2	0	4 -0.4534	3E+03 0		0		5	0.48450E+05	10	0.34280E+01
DUCT	STATIONS	4S DELTA	A P/PT CI FACTOR	TOR C2 FACTOR	2 C3 FACTOR	TRIN2-TBIN1	TRINZ	WBIN2/1/BIN	PBIN/RBAV	WSOUT AUDUCT
m	9	0 0.1500	O TO-30	0.0	0.32412E-01		0.0	0.0		0.0
	0		1E-01	0.0	0.21517E-01	0.0	0.0	0.0		9.0
	•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00+300v	0.0
	4			0.0	Ö. Ö.		0.0			0.0
	D (7E-01 0.	0.0	0.73046E-03		0.0			0.19782E-01
12 14	T 0		OE-01 O.	0.0	0.28645E-03		0.0	0.0	0.0	0.0
26 17	., D	0 0.6000	00E-02 0.0	0.0	0.36034E-03	0.0	0.0			0.0
ž	SIAIL		EMP	SE DELTA P/PT	T FUEL FLOW	EFFICIENCY	BURNE THETA	COMB LDG 1		COMB LDG 3
6 7	6 0	0 0.2520	30E+04 0.13311E+04	E+04 0.35000E-01)1 0.14062E+03	\$ 0.9900E+00	0.0	0.12524E+07	0.26749E+06 (0.16193E+00
MODIL	STATTOMS	190CH		C1110 2000 PUR						
o	3 6	-	25,040		O AUTAB EFF		BSIAI/WEIN		TABLE PR T	TABLE CORFLO
	4 12	,	75.404				5.6			0.35550E+01
		•	50.3				0.0	0.100005+01	0.22159E+01 (0.35630E+01

JMI CORFLO JM2 CORFLO JMI DELP/PT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND	0.75930E+00 0.75930E+00 0.0
JM2 DELP/P	0.0
CORFLO JM2 CORFLO JM1 DELP/PT	E+84 0.12386E+04 0.69064E+03 0.68165E+01 0.0
JP2 TEMP JM1	.12306E+04 0.690(
JP1 TEMP	0.14889E+84 0
HT EX STATIONS	4 5 13 6 14

NOZZLE TYPE CCNV DISCHG COEF VEL COEF 0.10000E+01 0.99000E+00 GRSS THRUST NNZZLE AREA ACT JET VEL INL JET VEL IDL VEL PR PTIN/PAMB 0.20955E+02 0.42360E+02 0.26478E+03 0.26746E+03 0.10172E+01 0.10172E+01 NOZZL STATIONS 13 15 0 16 0

5UM 485 HP/2 0.47453E+03 0.15030E+03 TORQUE NON-TURB HP 0.34413E+00-0.47453E+03 0.70783E+02 0.0 JP2 MCH EFF 0.10000E+01 (JP1 MCH EFF U 0.10000E+01 0 0.0 EFF ¥ 0.0 0.0 NET HP ACTUAL RFH JHI MCH EFF 0.55695E-02 0.85000E+02 0.99500E+00 0.30000E+03 0.20000E+05 0.98500E+00 CC+PONENTS 8 0 2 18 10 0 0 0 SHAFT 12

+ + CPSEPOHER HP FACTOR ACTUAL RFM RFM FACTOR - 0.21200E+02 0.21200E+02 0.10000E+01 18

SWITCH CONTR VARIABLE NOS. DEPEND INDEP VAR STA PER DAT 4 O M M M M M M M M 00000000 E NOS. INDEP CPT REFERENCE I DEPEND IN CONTR

ARG2) ACT. SCHDVAR ACT SCHDVAR TBL ARGI ACT ARGI TBL ARG2 0.86800E+00 0.86500E+00 0.30000E+03 0.30000E+03 0.000 SCHDVAR APG1 ARG2 DAT VAR STA VAR STA 0 & 0 1 0 0 VAFIABLE NOS. STA CPT STA CPT STA APG2 0 REFERENCE NOS. SCHDVAR CPT STA CI SCHED 5

181

OVERALL ENGINE PERFCRMANCE DATA

AIR, LB/SEC

101.NET THT FUEL/TOTTHT TOTTHT/AIR OVERE90 BLEED 0.20955E+02 0.67106E+01 0.79534E+01 0.12899E+00 NET JET THT PROP. THRUST *10T. NET THT 0.0 .IR.LB/SEC FUEL,LB/HR GRS.JET THT NET JET THT P 0.26331E+01 0.14062E+03 0.20955E+02 0.20955E+02

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.30000E+03 0.46873E+00 0.11394E+03 PROP. HP BRAKE SH.HP PROP. 0.30000E+03 0.0

98 REGEN. PROP. ENG. INSTALLED 12/9/50 FOINT FIIS

E00	FONENT F	COMPONENT PERFORMANCE DATA	CE DATA	υ	CHPOKENT IN	COMPOSENT INTERFACE TOLERANCE	ERANCE = 0.0100	00 PERCENT	นผอว	COMPONENT EFFOR	SIGNAL = 0
STATION 1 2 4 4 4 7 7 7 7 11 11 11 11 11 11 11 11 11 11 1	_	WTFLOW 0.2915E+01 0.25475E+01 0.25475E+01 0.25475E+01 0.25476E+01 0.25476E+01 0.25476E+01 0.25476E+01 0.25476E+01 0.25476E+01 0.25476E+01 0.25476E+01 0.28705E+01 0.28705E+01 0.28705E+01 0.28705E+01 0.28705E+01 0.28705E+01	10986 0.14696 0.14586 0.12166 0.12166 0.13166 0.139		10536E403 10536E403 10536E404 10536E404 10536E404 10536E404 10536E404 12505E404 12505E404 11505E404	THETA 10000E+01 2013E+01 2013E+01 2013E+01 29129E+01 29129E+01 502429E+01 3912FE+01 31974E+01 31974E+01 31974E+01 31974E+01 31974E+01 31974E+01 31974E+01 31974E+01 31974E+01 31974E+01 31974E+01	FUEL/AIR 0.0 0.0 0.0 0.0 0.0 0.18160E-01 0.1832E-01 0.16382E-01 0.16382E-01 0.16382E-01 0.16382E-01	CCRFLC 0.45120E+01 0.45453E+01 0.0 0.0 0.67970E+00 0.52635E+00 0.3356E+00 0.1162CE+01 0.34021E+01 0.34021E+01 0.34021E+01 0.3502E+01 0.55972E+01 0.66897E+01 0.66897E+01	VMACH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	51PRES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	375 hp Installed SE+02
INLET ST 1 1	STATIONS 0 17 0	RAM D	9 &	FLT VEL KTS	AMO TEMP: 0.51869E+03	ANB PRESS	: EFFICIENCY 2 0.10030E+01	RECOVERY 0.10000E+01	ALTITUDE 0.0	THETA RAM 0.10000E+01	DELTA RAH 0.10C00E+01
COMPR ST	STATIONS 0 3 4	HORSE -0.5372	POWER 4E+03 0	ACTUAL RFM 0.87324E+02	PPESS RATIO 0.83396E+01) ADIAB EFF : 0.79370E+00	JP2 BLDFRAC 0 0 12500E+00	TABLE R 0.14348E+01	TABLE CORRPH 0.49809E+05	TABLE PR T 0.69130E+01	TABLE CORFLO 0.37°55E+01
5 5 6 7 8 10 11 12 14 26 17 26 10 17 26 10 17 26 10 17 26 17	STATIONS 0 5 0 4 7 0 4 11 0 0 13 18 0 15 0	DELTA P/PT 0.14974E-01 0.14692E-01 0.0 0.0 0.39832E-01 0.12467E-01	20000000	FACTOR	C2 FACTCR 0.0 0.0 0.0 0.0 0.0	C3 FACTOR 0.32412E-01 0.21517E-02 0.0 0.73046E-03 0.26645E-03	TBIN2-TBIN1 10.0 10.0 0.0 0.0 30.0 30.0	18IN2 0.0 0.0 0.0 0.0 0.0	WBINZ/FBIN 0.0 0.0 0.0 0.0 0.0	KBIN: WBAV 0.0 0.0 0.3 c.0 E+00 0.0	USOUT/MBUCT 0.0 0.0 0.0 0.0 0.17416E-01 0.0
BURNE ST	STATIONS 0 8 0 STATIONS 4 10 0	0.26063E+0¢ 0.26063E+0¢ HORSEPCHER 0.56124E+03	0 00	TEMP RISE 0.10959E+04 ACTUAL RPH 1 0.87354E+02 0.20000E+05	DELTA P/PT 0.35C00E-01 PPESS RATIO 0.30255E+01 0.23791E+01	FUEL FLOW 0.16655E+03 0.16655E+03 0.85300E+00 0.88000E+00		BURNR THETA 0.0 0.0 UBSTAT/WBIN 0.0	0.13175E+07 TABLE COPRFM 0.10105E+01 0.98559E+00	CCHB LDS 2 0.25F96E+06 TABLE FR T 0.30C55E+01 0.23791E+01	COMB LDG 3 0.141?6E+00 TABLE CORFLO 0.35639E+01 0.35630E+01

JMI CORFLO JM2 CORFLO JM1 DELP/PT JM2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND	0.75650E+00 0.75650E+00 0.0
JM2 DELP/P	0.0
JM2 CORFLO JM1 DELP/PI	12E+04 0.12637E+04 0.69004E+00 0.75567E+01 0.0
JM1 CORFLO	0.69004E+00 0
JP2 TEMP	0.12637E+04
JPI TEMP	0.15112E+04
STATIONS	5 13 6 14
HT EX	•

NCZZLE TYPE CC'IV GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL PR PTIN/PAHB DISCHG COEF VEL COEF 0.26432E+02 0.42360E+02 0.30323E+03 0.30427E+03 0.10214E+01 0.10214E+01 0.10000E+01 0.99003E+00 0 STATIONS 0 16 13 15

A35 HP/2 JPI MCH EFF JP2 MCH EFF TORQUE NON-TURB HP SUM A35 HP/2 0.10000E+01 0.10000E+01-0.51634E+00-0.55844E+03 0.55844E+03 0.0 0.9450E+02 0.0 EFF 끞 -0.85907E-02 0.87384E+02 0.99500E+00 0.0 0.37490E+03 0.20000E+05 0.96500E+00 0.0 COMPONENTS 8 0 2 18 10 0 0 0 SHAFT 12 52

LOAD HORSEFOWER HP FACTOR ACTUAL RFH PFM FACTOR 18 -0.21200E+02 0.21200E+02 0.87334E+02 0.10000E+01

DEPEND DEPEND DES ABS DEP ACT MAX LIMIT MIN LIMIT INDEP VAR SMITCH 05.F CCNTR VARIABLE MOS. hfpend indep M 4 O M H M M C M C 00000 INDÉP REFEPENCE STA DEPEND CONIR 16 117 117 119 120 22 22 23 25 25 27 28

更 ARG2 ACT ARGS SCHDVAR ACT SCHDVAR TBL ARG1 ACT APG1 TBL ARG 0.88000E+00 0.87992E+00 0.37490E+03 0.37497F+03 0.0 SCHOVAR AFGI AFG2 DAT VAR STA VAR STA 0 0 VARIABLE NOS 0 0 CPT STA CPT STA CPT STA 0 APG2 REFERENCE NOS. 0 ARGI SCHDVAR 0 9 SCHED 58

OVERALL ENGINE PERFORMANCE DATA

OVERETD BLEED 1 0.13734E+00 0.00737E+01 TOTTHT/AIR 0.63013E+01 FUEL/TOTTHT 0.26432E+02 FROP. THPUST *TOT.NET THT 0.0 0.16655E+03 0.26432E+02 0.26432E+02 HET JET THT CRS. JET THT FUEL, LB/HR 0.29115E+01 AIP, LB/SEC

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHP/AIR 0.37490E+03 0.4440GBE+00 0.12876E+03 0,37490E+03 0.4440BE+00 0.12876E+03 PROP. HP 0.37490E+03 0.0 BRAKE SH. HP

FIIS
POINT
12/5/80
INSTALLED
ENG.
FROP.
PEGEN.
93

COMPO	COMPONENT PERFORMANC	RMANCE DATA	TA	COMPONENT	COMPONENT INTEPFACE TOLERANCE	ERANCE = 0.0100	00 PERCENT	COMP	COMPONEUT EPROR SIGNAL = 0
STATION 2 1 1 2 4 4 1 1 9 4 4 5 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	WTFLOM 0.35578E+01 0.3537E+01 0.44473E+01 0.44473E+01 0.31131E+01 0.3173E+01 0.3173E+01 0.3173E+01 0.35135E+01 0.35135E+01 0.35135E+01 0.35135E+01 0.35135E+01 0.35135E+01 0.35135E+01 0.35135E+01 0.3557E+01 0.34632E+01 0.34632E+01			TOTEMP 0.516696403 0.516696403 0.1140466404 0.1140466404 0.1156146404 0.125146404 0.265006404 0.265406404 0.265466404 0.170356404 0.170356404 0.170356404 0.134236404 0.134236404	THETA 0.10000E+01 0.21000E+01 0.21000E+01 0.21000E+01 0.2100E+01 0.30103E+01 0.30103E+01 0.30103E+01 0.30103E+01 0.30103E+01 0.30103E+01 0.30103E+01 0.30103E+01 0.30103E+01 0.20100E+01 0.201000E+01 0.201000E+01	FUEL/AIR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.19538E-01 0.19538E-01 0.19536E-01 0.19030E-01 0.18030E-01 0.18030E-01 0.18030E-01 0.18030E-01 0.18030E-01 0.18030E-01	CORFLO 0.55137E+01 0.68705E+00 0.68705E+00 0.69772E+00 0.82630E+00 0.11620E+01 0.17627E+01 0.37657E+01 0.37657E+01 0.37657E+01 0.37657E+01 0.63202E+01 0.63202E+01 0.63202E+01 0.63269E+01	VMACH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	SIFRES 0.0 0.0 0.0 0.0 1RP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
INLET STAT	STATIONS PAN	PAH DRAG .0	FLY VEL K 0.0	KTS AMB TEMP 0.51869E+03	AMB PRESS 33 0.14696E+02	S EFFICIENCY	RECOVERY 0.10000E+01	ALTITUDE 0.0	THETA RAM DELTA RAM 0.10000E+01 0.10000E+01
COMPR STAT	STATIONS H	HORSEPCWER -0.76640E+03	ACTUAL RPM 0.94123E+02	PH PRESS RATIO 02 0.10527E+02	IO ADIAB EFF 32 0.78242E+00	JP2 BLDFRAC 0 0.12500E+00	TABLE R 0.15712E+01	TABLE CORRPH 0.53650E+05	TABLE PR TABLE CORFLO 0.11072E+00 0.46551E+01
DUCT STATE 3 3 0 5 6 0 7 8 4 9 10 4 11 12 0 12 14 0 26 17 0	STATIONS DE 0 11 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0	DELTA P/PT 0.15300E-01 0.14342E-01 0.0 0.0 0.5624E-01 0.19354E-01	C1 FACTOR 0.0 0.0 0.0 0.0 0.0	R C2 FACTOR 0.0 0.0 0.0 0.0 0.0 0.0	r C3 FACTOR 0.32412E-01 0.21517E-01 0.0 0.0 0.73646E-03 0.26645E-03	18142-18141 10.0 10.0 0.0 0.0 30.0 30.0	TBIN2 0.0 0.0 0.0 0.0 0.0	HBIN2/15IN	1:SIM/KEAV MPCUT/KDUCT 0.0 0.0 0.33400E+30 0.0 0.0 0.1425E-01 0.0 0.0
BURNE STAT 6 7 0 TURBN STAT 8 9 4	STATIONS 6 0 STATIONS H 4 10 0 0 4 12 0 0	0.27500E+04 0.27500E+04 HORSEPQWER 0.79174E+03	TEMP RISE 0.116%6E+04 ACTUAL PFM 0.94123E+02 0.20000E+05	E DELTA P/PT 04 0.35000E-01 04 0.35000E-01 05 0.3597E+01 05 0.25648E+01	T FUEL FLOW 11 0.22401E+03 10 ADIAB EFF 11 0.86300E+00		EFFICIENCY BURNE THETA COMB LDG 1 0.99000E+00 0.0 0.1408EE+07 W51N/W5TOT WBSTAT/WBIN TABLE CORRPH 0.45600E+00 0.0 0.10597E+01 0.0 0.0 0.96829E+00		COMPS LDG 2 COMPS LDG 3 0.22701E+06 0.10411E+00 TABLE FR TABLE CORFLO 0.35537E+01 0.35530E+01 0.255:3E+01 0.35530E+01

HT EX STATIONS JP1 TEMP JP2 TEMP JP2 TEMP JP3 CORFLO JM2 CORFLO JM2 CORFLO JM2 DELP/PT JM2 DELP/PT FFECTIVESS EFFT SCL F. LIMIT IND 4 5 13 6 14 0.15616E+04 0.134C5E+04 0.69772E+00 0.92183E+01 0.0 NOZZL STATIONS GRSS THRUST NOZZLE AREA ACT JET VEL IDL JET VEL IDL VEL FR PTIN/PAMB DISCHG COEF VEL COEF NOZZLE TYPE 13 15 0 16 0 0.42076E+02 0.42350E+02 0.39113E+03 0.39508E+03 0.10350E+01 0.10350E+01 0.95000E+00 C.C. IV SHAFT COMPONENTS NET HP ACTUAL RPM JM1 MCH EFF JM2 MCH EFF JP1 MCH EFF JP2 MCH EFF TORQUE 14 8 0 2 18 0.18203E+00 0.4123E+02 0.9950G+00 0.0 0.10000E+01 0.10160E+02-0.78750E+03 0.78759E+03 15 10 0 0 0 0.49957E+03 0.20060E+05 0.9550G+00 0.0 10.0	JP2 TEMP JH1 CORFLO JH2 CORFLO JH1 DELP/PT JH2 DELP/PT EFFECTVNESS EFFT SCL F. LIMIT IND 0.134CSE+C4 0.69772E+00 0.92163E+01 0.0 0.00 0.74800E+00 0.74800E+00 0.0 0.42350E+02 0.3913E+03 0.39508E+03 0.10350E+01 0.10350E+01 0.10000E+01 0.99500E+00 CC IV ACTUAL RFM JH1 MCH EFF JH2 MCH EFF JP1 MCH EFF JD2 MCH EFF TORQUE NON-TURB HP SUM ABS HP/2 0.942350E+02 0.9950GE+00 0.0 0.10000E+01 0.10000E+01 0.10160E+02 0.38760E+03 0.78769E+03 0.20000E+05 0.9950GE+00 0.0 0.00 0.13127E+03 0.0 0.2493E+03
--	--

	α	0		•	c						
	CEPEND ERI	0.18208E+0	0.0	0.19655E-0	-0.13403E+0	0.0	0.0	0.0	0.0	0.0	0.0
	ABS DEP ACT	0.78769E+53 0.18208E+00	0.0	0.49930E-01-	0.24935E+03-			0.0	0.0		
	DEPEND DES ABS DEP ACT DEPEND ERR	0.0	0.50000E+03	0.50000E-01	0.50000E+03	0.30000E+03	0.10000E+00 0.33000E-01 0.0	0.10000E+00 0.10000E-01	0.0	0.10030E+00 0.60000E-02 0.0	.10000E+00 0.10000E-01 0.0
	MAX LIMIT	.94123E+02 0.40000E+02 0.11500E+03 0.0	0.12000E+04 0.40000E+04 0.50000E+03 0.0 0.0	0.14225E-01 0.100000E-03 0.99000E+00 0.50000E-01 0.4930E-01-0.19655E-04	0.10625E+01 0.10000E+00 0.30000E+01 0.50000E+03 0.24993E+03-0.13403E+00	0.50000E+00 0.10000E+02 0.30000E+03 0.0	0.10000E+00	0.10000E+00	0.19000E+00 0.20000E+01 0.0	0.10000E+00	0.10000E+00
	MIN LIMIT	0.40000E+02	0.12000E+04	0.10000E-03	0.10000E+00	0.50000E+00	0.0	0.0	0.19000E+00	0.0	0.0
	TNDEP VAR	0.94123E+02	0.0	0.14225E-01	0.10625E+01	0.0	0.0	0.0	0.0	0.0	0.0
	CCNTR SHITCH INDEP VAR	Š	08.6	70	સ	OFF	J JO	ÜEF	UFF	OFF	OFF
es. Indep	DAT	-	đ	σ	'n	-	~	~	7	M	m
IABLE NOS. END IND	TA PER	0	0	0	0	0	0	٥	0	0	0
VARIA DEPEN	ST	0	0	-	0	0	0	0	0	0	0
> 0	VAR	7	,1	0	~	~	8	0	Н	2	8
			\$	11	10	~	11	12	10	56	0
ZEFEREN JEPEND	r STA	٥	0	18	6	0	0	0	0	0	0
	D	14	15	0	15	15	11	12	54	5 8	•
CONTR		91	17	13	20	23	23	23	55	27	28

VARIABLE NOS. SCHOVAR ARGI ADG2 DAT VAR STA VAR STA SCHOVAR ACT SCHOVAR TBL ARGI ACT ARGI TDL APG2 ACT O R O I O. O O O.85800E+0O O.8600E+OO O.4998F+O3 O.4999F+F3 O.0 SCHOVAR AFGI APG2 CPT STA CPT STA CPT STA D 10 0 15 0 0 0 SCHED 54

ARG2 TBL

OVERALL ENSINE PERFORMACE DATA

#IP.LB/SEC FUEL, LB/HR GRS, JET THT NET JET THT FPOP.THFUST *TOT.NET THT FUEL/TOTTHT TOTTHT/AIR OVEREYD BLEED 0.35578E+01 0.22401E+03 0.42096E+02 0.42096E+02 0.015672E+00 0.53513E+01 0.11812E+02 0.15672E+00

*TOT.SHFT HP FUEL/TOTSHP TOTSHP/AIR EQUIV.SH.HP FUEL/ESHP ESHF/AIR 0.49937E+03 0.44013E+00 0.1<050E+03 BRAKE SH.HP PROP. HP 0.49987E+03 0.0

APPENDIX D: SELECTED CYCLE RECUPERATOR DATA AND OFF-DESIGN PERFORMANCE

a) Selected Cycle Recuperator Data

			CROS REG E	IS-FLOW NG CYL	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES REG ENG CYL=F ,E/D=.105, FPL=3.5 CORE LENGTH=6,8,10,12,14,16,18 2PASS /	HANGER 105, FP	CALCULATI	ION- AII RE LENG	R IN STAGE TH=6,8,10,	GERED OIP ,12,14,16	IPLED T.	JBES 1 ASS A	= QO	= 23 . 5 in.	in.
161 161	6.00 22.98 1.00	S E S	16.44 19.99 23.54	AS FAR	5695.00 111.82 4.71	* *	1.250	0T0 WALL	0.1500	PSTU	2.0	DHS	0.01183	SIGT	0.5630
n Co	00	P01 P05 P0	0.59 4.98 5.58	WT1 WS1 NTU	2.0% 2.360 2.474	PIT	7.250	P2T P2S T2T	P2T 7.21 P2S 1.02 T2T 1002.4	117 11817 728	558.8 1184.0 801.6	RET UA	3559.6 718.9 4779.9	# ¥ n	89.0 86.8 42.7
			CROS REG E	SS-FLOG	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES 1 REG ENG CYL=F ,E/D=.105, FPL=3.5 CORE LENGTH=6,8,10,12,14,16,18 2PASS A	HANGER 105, FP	CALCULAT	ION- AI	R IN STAG	GERED DI ,12,14,10	1PLED TO 5,18 2P,	UBES 1 ASS A			
LGT HGT VOL	8.00 28.88 1.26	X X X	16.44 19.99 23.54	N AS FAR	5695.00 149.09 6.27	ᅔᅕ	1.250	DTO WALL	0.1500	PSTU PSSH	2.0	DHT	0.00183	SIGT SIGS	0.5630
₽ 0 9 Si Si S	00	707 809 80	9.78 3.02 3.80	MS1 NTU	2.096 2.360 3.012	P1T P1S	7.250	P2T P2S T2T	P2T 7.19 P2S 1.02 T2T 1021.4	TIT 558.8 TIS 1184.0 T2S 784.2	558.8 184.0 784.2	RET RES UA	3540.3 541.6 5827.0	t s o	69.1 72.8 39.1
			CRO!	SS-FLOI ENG CYI	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES REG ENG CYL=F ,E/D=.105, FPL=3.5 CORE LENGTH=6,8,10,12,14,16,18 2PASS A	HANGER 105, FF	CALCULAT	ION- AI RE LENG	R IN STAG TH=6,8,10	GERED DI ,12,14,10	MPLED T 6,18 2P	UBES 1 ASS A			
LGT MGT VOL	10.00 34.78 1.52	X X X S S S S S S S S S S S S S S S S S	16.44 19.99 23.54	N AS FAR	5695.00 186.36 7.84	Ϋ́	1.250	DTO WALL	0.1500	PSTU PSSH	2.0	DHS	0.01183 0.00398	SIGT	0.5630
E CC CMIN	00	707 209 09	0.96 2.03 3.00	WT1 WS1 NTU	2.096 2.360 3.492	P1T P1S	7.250	P2T P2S T2T	P2T 7.18 P2S 1.02 T2T 1033.5	T17 T15 1: T25	558.8 1184.0 773.1	RET RES UA	3528.2 434.5 6759.6	H HS D	89.2 63.6 36.3
			CRO!	SS-FLOI ENG CYI	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES / IEG ENG CYL=F ,E/D=.105, FPL=3.5 CORE LENGTH=6,8,10,12,14,16,18 2PASS /	HANGER 105, FF	CALCULAT PL=3.5 CO	TION- AT	R IN STAG	GERED DI	MPLED T 6,18 2P	TUBES 1			
LGT WGT VOL	12.00 40.68 1.78	ot X ob S	16.44 19.99 23.54	N A3 FAR	5695.00 223.63 9.41	* *	1.250	DTO WALL	0.1500	PSTU PSSH	1.0	DHS	0.01183 0.00398	SIGS	0.5630
m CO Si	0.7725 0.8663 N TUSE	907 908 90	1.15	HASI UTN	2.096 2.360 3.927	P1T	7.250	P2T P2S T2T	P2T 7.17 P2S 1.02 T2T 1041.7	T1T T1S 1 T2S	558.8 1184.0 765.6	RET RES UA	3520.0 362.8 7606.5	# SH D	89.2 57.0 34.0

CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES I REG ENG CYL=F ,E/D=.105, FPL=3.5 CORE LENGTH=6,8,10,12,14,16,18 2PASS A

	SIGT 0.5630 SIGS 0.2000	89.2	51.9	32.1		SIGT 0.5630	0.2000	0	67.6	30.6		SIGT 0.5630	SIGS 0.2000		89.3	9.44	29.5
	SIGT SIGS		H2			SIGT	SIGS		SH			SIGT	SIGS			HS	
	DHT 0.01183 DHS 0.00398	3514.2	311.4	8386.0		0.01183	DHS 0.00398	4500 0	272.8	9110.6		DHT 0.01183	0.00398		3506.6	242.6	9789.7
¥ 22 ¥	DHT	RET	RES		UBES 1	DHT	DHS	130	RES	Ą	UBES 1 ASS A	DHT	DHS		RET		š
12 81,01	1.0	558.8	1184.0	760.3	IMPLED T 16,18 2P	2.0		8 877	1184.0	756.3	IMPLED T 16,18 2P		1.0		558.8	1184.0	753.2
,,12,14,	PSTU PSSH	717	T15	T2S	GERED D 7,12,14,	PSTU	PSSH	111	T15	T25	GERED D	PSTU	PSSH		TIT	T13	T2S
T (9 '0 - 1)	DTO 0.1500 Wall 0.0040	7.15	1.02	T2T 1047.6	Z IN STA(DTO 6.1500	0.0040	7 16	1.02	T2T 1051.9	IN STAC	DTO 0.1500	0.0040		P2T 7.13	1.02	.055.2
ואב ובמט	DTO	P2T	P2S	T2T .	ION- AIR RE LENG	DTO	MALL	T%0	P25	T2T 1	ION- AIR RE LENGI	OTO	WALL		T24	PES	T2T 1
L-3.5 CU	1.250	7.250	1.031		CALCULAT	1.250	1.000	7 250	1.029		CALCULAT L=3.5 CO	1.250	1.000		7.250	1.027	
. 105, FP	¥¥	P1T	P1S		CHANGER 105, FP	×	×	710	PIS		HANGER 105, FP	×	×		PIT	SId	
REG ENG CIL=F ,E/U=.105, FPC=5.9 CURE LENGIN=0,6,10,12,14,16,18 CFA33 A	260.90	10.98	2.360	4.328	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES I REG ENG CYL=F ,E/D=.105, FPL=3.5 CORE LENGTH=6,8,10,12,14,16,18 2PASS A	5695.00	298.18 12.55	2.096	2.360	4.701	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES 1 REG ENG CYL=F ,E/D=.105, FPL=3.5 CORE LENGTH=6,8,10,12,14,16,18 2PASS A	5695.00	335.45	14.12	2.096	2.360	5.050
ENG CT	N N	FAR WT1	MSI	D.X	SS-FLOW	z	AS FAR	127	MS1	NTC	SS-FLOW	z	AS	FAR	MT.	MS1	NT.
REG	16.44	23.54	1.11	2.45	CRO	16.44	19.99 23.54		0.87	2.40	CRO REG	16.44	19.99	23.54	1.71	- 0.71	2.45
	X X	0 × 0	Pos	5		XIO	ž š	F	POS	8		OIX	Š	00×	POT	PDS	2
		2.04 0.7818					52.48 2.30							2.55			
	LGT WGT	70	ខ	CHIN		LGT	154 VO L	14	, 2	CHIN		LGT	MGT	VO Vo	ш	ខ	CMIN

b) Recuperator Off-Design Performance

50 hp	SIGT 0.5630 SIGS 0.2000	HT 50.7 HS 41.6 U 22.3
ES 1	DHT 0.01183 DHS 0.00398	RET 2429.9 RES 301.4 UA 4151.9
CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES REG ENG FINAL CYCLE ,E/D=.105,0FF DESIGN POINTS 2PASS A	PSTU 2.0 PSSH 1.0	T1T 357.1 T1S 826.0 T2S 511.4
AIR IN STAGGER V POINTS 2PASS	DTO 0.1500 WALL 0.0040	P2T 3.48 P2S 1.01 T2T 715.6
CALCULATION-	1.250	3.523
HEAT EXCHANGER L CYCLE ,E/D=.	5695.00 XT 186.36 XL 7.84	1.231 PIT 1.376 PIS 3.768
SS-FLOW ENG FINA	N AS FAR	MT1 MS1 NTU
CRO	16.44 19.99 23.54	1.16 0.61 1.77
	OLX ONX OOX	707 708 708
		0.7646 0.8775 1 TUBE
	LGT MGT VOL	m CMIN SMIN

150 hp	SIGT 0.5630 SIGS 0.2000	HT 72.0 HS 53.9 U 30.1	300 h p 60% IRP	SIGT 0.5630 SIGS 0.2000	HT 89.2 HS 63.6 U 36.3	400 hp	SIGT 0.5630 SIGS 0.2000	HT 104.1 HS 70.4 U 41.1	500 h p IRP	SIGT 0.5630 SIGS 0.2000	HT 118.1 HS 79.2 U 46.4																	
	0.01183 0.00398	3088.0 382.3 5609.4		0.01183 0.00398	3528.2 434.5 6759.6		0.01183 0.00398	4010.3 497.2 7653.4		0.01183 0.00398	4610.0 576.2 8641.0																	
TUBES 1	DHS	RES UA	rubes 1	DHS	RES UA	JBES 1	DHT	RES UA	TUBES 1	DHT	RET RES UA																	
IMPLED	1.0	477.2 1015.9 658.9	IMPLED .	2.0	558.8 1184.0 773.1	IMPLED 1	2.0	612.2 1208.2 818.7	DIMPLED TUBES	1.0	687.0 1243.0 863.2																	
SGERED D	PSTU PSSH	T17 T18 T28	GERED D	PSTU PSSH	T11 T18 T28	GERED D	PSTU PSSH	T11 T15 T25	GERED D SS A	PSTU PSSH	T1T T1S T2S																	
R IN STAC	0.1500	5.42 1.01 887.2	IN STAG	DTO 0.1500 Wall 0.0040	P2T 7.18 P2S 1.02 T2T 1033.5	IN STAGINTS SPA	0.1500	8.55 1.03 1062.4	HANGER CALCULATION- AIR IN STAGGE ,-/b105,0FF DESIGN POINTS 2PASS	0.1500 0.0040	P2T 10.38 P2S 1.04 T2T 1102.9																	
TION- AI DESIGN P	DTO WALL	P2T P2S T2T	CPOSS-FLOW HEAT EXCHANGER CALCULATION- AIR REG ENG FINAL CYCLE ,E/D=.105,OFF DESIGN PC	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES REG ENG FINAL CYCLE ,E/D=.105,OFF DESIGN POINTS 2PASS A	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR REG ENG FINAL CYCLE ,E/D=.105,OFF DESIGN PO	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR REG ENG FINAL CYCLE ,E/D=.105,OFF DESIGN PO	DTO	P2T P2S T2T]	ION- AIR Esign Po	DTO WALL	P2T P2S T2T 1	ION- AIR ESIGN PC	DTO WALL	P2T P2S T2T 1														
CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES REG ENG FINAL CYCLE ,E/D=.105,OFF DESIGN POINTS 2PASS A	1.250	5.473					CROSS-FLOW HEAT EXCHANGER CALCULAT REG ENG FINAL CYCLE ,E/D=.105,0FF D	CALCULAT	CALCULA 105,0FF	1.250	7.250	CALCULAT 05,0FF D	1.250	8.633 1.055	CALCULAT 05,0FF D	1.250	PIT 10.472 PIS 1.077											
	Ϋ́Χ	P1T P1S						* *	PIT PIS	HANGER ,E/D=.1	۲×	PIT	HANGER ,E/D=.1	<u> </u>	P1T P1S													
	5695.00 186.36 7.84	1.716						CROSS-FLOW HEAT EXC REG ENG FINAL CYCLE	CROSS-FLOW HEAT EXC REG ENG FINAL CYCLE	5695.00 136.36 7.84	2.096 2.360 3.492	CROSS-FLOW HEAT EXCHANGER CALCULATION- AIR IN STAGGERED DIMPLED TUBES 1 REG ENG FINAL CYCLE ,E/D=.105,OFF DESIGN POINTS 2PASS A	5695.00 186.36 7.84	2.438 2.749 3.381	CROSS-FLOM HEAT EXCHANGER CALCULATION- AIR IN STAGGERED REG ENG FINAL CYCLE ,E/D=.105,0FF DESIGN POINTS 2PASS A	5695.00 186.36 7.84	2.892 3.265 3.196											
SS-FLOA	N AS TAR	LTW WS1 UTN								CROSS-FLOW REG ENG FIN	CROSS-FLOW REG ENG FINA	CROSS-FLOW REG ENG FINA	CROSS-FLOW REG ENG FIN	CROSS-FLOW REG ENG FIN	CROSS-FLOW REG ENG FIN	CROSS-FLOW	SS-FLOW ENG FIN	SS-FLOW ENG FIN	SS-FLOW ENG FIN	SS-FLOW	N AS FAR	WT1 WS1 NTU	S-FLOW NG FIN	N AS FAR	WT1 WS1 NTU	S-FLOW NG FIN	A S FAR	MT1 WS1 NTU
CRO	16.44 19.99 23.54	1.28															16.44 19.99 23.54	0.96 2.03 3.00	CROS REG E	16.44 19.99 23.54	0.94 2.70 3.63	CROS REG E	16.44 19.99 23.54	9.93 3.71 4.63				
	XXXX	P05 P08									X X X X COX	707 809 80		X X X	F07 P08		O X X X X DO X	P05										
	10.00 34.78 1.52	0.7611 0.8708 TUBE		10.00 34.78 1.52	0.7593 0.8655 Tube		10.00 34.78 1.52	0.7554 0.8652 TUBE		10.00 34.78 1.52	0.7480 0.8652 TUBE																	
	LGT WGT	CHIN		LGT WGT VOL	S S S S S S S S S S S S S S S S S S S		LGT WGT VOL	CC CMIN		LGT MGT VOL	CC CAIN																	

APPENDIX E: FLOW CONDITIONS, GAS PRODUCER TURBINE AND TRANSITION DUCT

REGENERATIVE ENGINE STUDY GPT

PLOT				i,					
EXIT OF INLET GUIDE VANE = STATION 5		Prēssures in bar	Temperatures in K	l bar = 14.5 psi 1 K = 1.8 R			Stator Entrance	Stator Exit Rotor Inlet	
ET GUIDE		Pre	Ter	10.259 463.70 0.0					9.823
IT OF INL		./SEC.	RPM 66280.0	10.259 1492.70 1 0.0	RPM 66280.0	RPM 66280.0	RPM 66280.0	RPM 66280.0	9.823 729.40
		LOCITIES ARE M	1 - STATOR MASS FLOW 1.3766	10.259 10.259 26.70 1513.70 0.0 0.0	2 - DUMMY MASS FLOW 1.3766	3 - DUMMY MASS FLOW 1.3766	4 - DUMMY MASS FLOW 1.3766	5 - STATOR MASS FLOW 1.3766	9.823 9.823 756.00 743.60
INLET WF/WA = 0.01920		ETERS, VE	STATION MACH NO. 0.3000	10.259 .531.70 15 0.0	STATION MACH NO. 0.3000	STATION MACH NO. 0.3000	STATION MACH NO. 0.3000	STATION MACH NO. 1.0000	
		DISTANCES ARE IN METERS, VELOCITIES ARE M./SEC.	INPUT TO AXIAL STATION TIP STATION MACH NO.	10.259 10	INPUT TO AXIAL STATION TIP STATION MACH NO. -1.0200 0.3000	INPUT TO AXIAL STATION TIP STATION MACH NO.	INPUT TO AXIAL STATION TIP STATION MACH NO. 0.0 0.3000	INPUT TO AXIAL STATION TIP STATION MACH ND. 0.0200 1.0000	9.823 9.823 9.823 781.90 775.30 766.60
NO. OF STREAMLINES = 11	18: 4 - 7	IO STIN	TIP RADIUS	10,259 10,259 771,70 1498,70 1 0.0 0.0	TIP RADIUS 0.0820	TIP RADIUS 0.0800	TIP RADIUS 0.0780	TIP RADIUS 0.0740	9.823 9.823 788.60 786.40
_	SPCOL STATIONS:	_	HUB STATION -0.0300	10.259 435.70 14 0.0	HUB STATION -0.0200	HUB STATION -0.0100	HUB STATION 0.0	HUB STATION 0.0200	9.823 788.10 7
NO. OF STATIONS = 14	SPCO	INPUT IS IN MKS		TOT PRESS .0.259 10.259 TOT TEMP 1393.70 1435.70 1 VU 0.0 0.0	HUB				9.823 785.80
OF STAT	1 SP00L	Ħ	HUB RADIUS 0.0670	F PRESS T TEMP 1:	HUB RADIUS 0.0670	HUB RADIUS 0.0670	HUB RADIUS 0.0670	HUB RADIUS 0.0640	PRESS
Š	5		E E	5 53	HOE HOE	HUB	3	HVB	₽3

Rotor Exit		Transition Duct					Transition Duct			
RРМ 66280.0	90.88 89.12 0.8760 0.8760	RPM 66280.0	МРМ 0.0	ярн 0.0	яри 0.0	ř. 0.0	7. 0.0	۲. 0.0	۳. ٥.٥	
6624	ů.	R)	ž	88	8	я 0	MGR.	ВРМ 0.	RPM 0.	
6 - ROTOR MASS FLOW 1.4591	92.95 92.17 0.8760 0.8760	7 - DUMMY MASS FLOW 1.4591	8 - DUMMY MASS FLOW 1.4591	9 - DUMMY MASS FLOW 1.4591	10 - DUMMY MASS FLOW 1.4591	11 - DUMMY MASS FLOW 1.4591	12 - DUMMY MASS FLOW 1.4591	13 - DUMMY MASS FLOW 1.4591	14 - DUMMY MASS FLOW 1.4591	
INPUT TO AXIAL STATION IP STATION MACH NO. 0.0400 0.5000	93.05 93.25 0.8760 0.8760	INPUT TO AXIAL STATION IP STATION MACH NO. 0.0500 0.4한자리	IAL STATION Mach No. 0.4000	IAL STATION MACH NO. 0.3900	IAL STATION MACH NO. 0.3800	IAL STATION Mach No. 0.3700	IAL STATION Mach NO. 0.3600	CAL STATION MACH NO. 0.3500	IAL STATION MACH NO. 0.3500	
INPUT TO AX TIP STATION 0.0400	92.40 0.8760	INPUT TO AX TIP STATION 0.0500	INPUT TO AXIAL STATION TIP STATION MACH NO. 0.0600 0.4000	INPUT TO AXIAL STATION TIP STATION MACH NO. 0.0700 0.3900	INPUT TO AXIAL STATION 10 - DUMHY TIP STATION MACH NO. MASS FLL 0.0600 0.3800 1.455	INPUT TO AXIAL STATION TIP STATION MACH NO. 0.0900 0.3700	INPUT TO AXIAL STATION 12 TIP STATION MACH NO. 0.1000 0.5600	INPUT TO AXIAL STATION 13 TIP STATION MACH NO. 0.1100 0.3500	INPUT TO AXIAL STATION 14 - DUMMY TIP STATION MACH ND. MASS FLO 0.1200 0.3500 1.45	
TIP RADIUS 0.0740	89.59 91.22 0.8760 0.8760	TIP RADIUS 0.0745	TIP RADIUS 0.0760	TIP RADIUS 0.0790	TIP RADIUS 0.0840	TIP RADIUS 0.0890	TIP RADIUS 0.0940	TIP RADIUS 0.0980	TIP RADIUS 0.1005	
HUB STATION 0.0400	87.43 0.8760	HUB STATION 0.0500	HUB STATION 0.0600	HUS STATION 0.0700	STATION 0.0800	STATION 0.0900	HUB STATION 0.1600	STATION 0.1100	HUB STATION 0.1200	
HUB	84.82 0.8760	нив	HCB	HUS	HUB STA1	HUB STAT	HUB	HUB STAT	HUB B	
HUB RADIUS 0.0610	DELTA H 8 ETA POLY	HUB RADIUS 0.0595	HUB RADIUS 0.0595	HUB RADIUS 0.0615	HUB RADIUS 0.0660	HU3 RADIUS 0.0720	HUB RADIUS 0.0771	HUB RADIUS 0.0866	HUB RADIUS 3.0824	
E S	DEL	HUB	#CB	HUB	HUB	HU3	HUB	HUB	HUB	

0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1 000

STREAMLINE DEFINITION: 0.0

178

STATION NUMBER 4 DOKNSTREAM OF REMOTE

A/S	-5.85546	-8.03048	-10.15339	-12.21149	~14.19655	-16.09866	-17.91370	-19.63417	-21.23932	-22.72466	-24.06721	MVM		0.16213	0.16143	0.16076	0.16006	0.15933	0.15855	0.15772	0.15684	0.15586	0.15482	0.15366	RHO	KG/CU.M	2.5297832	2.4560547	2.3962317	2.3533239	2.3241329	2.3076944	2.3034763	2.3113365	2.3315420	2.3647261	2.4120083
W W	116.56059	117.69130	118.57231	119.06837	119.22733	119.04526	118.53241	117.69701	116.49715	114.96906	113.06815	¥		0.66683	0.66827	0.67105	0.67566	0.68180	0.68943	0.69356	0.70924	0.72155	0.73562	0.75162	DEPS/DM	RAD/M	-8.25385	-7.03353	-5.92407	-4.91857	-4.01247	-3.19884	-2.47455	-1.83583	-1.27846	-0.79743	-0.39075
> M S/N	116.56059	117.69130	118.57281	119.06837	119.22733	119.04526	118.53241	117.69701	116.49715	114.96906	113.06815	ΥΛW		0.16192	0.16105	0.16017	0.15921	0.15820	0.15709	0.15591	0.15465	0.15325	0.15177	0.15014	EPS	DEG	-2.87949	-3.91253	-4.91225	-5.88653	-6.83851	-7.77201	-8.69237	-9.60295	-10.50471	-11.40010	-12.28977
BETA BAR Deg	165.92873	166.02139	166.13959	166.29672	166.48552	166.70464	166.95145	167.22394	167.52524	167.85046	168.20334	٤		0.16213	0.16143	0.16076	0.16006	0.15933	0.15855	0.15772	0.15684	0.15586	0.15482	0.15366	% AREA		0.0	9.45169	9.63153	9.78895	9.92278	10.03722	10.12971	10.20259	10.25373	10.28597	10.29578
BETA DEG	165.94582	166.05264	166.18849	166.36629	166.57819	166.82243	167.09630	167.39722	167.72791	168.08324	168.46632	24	M/S	-465.03516	-472.78589	-480.55371	-488.31885	-496.06567	-503.77881	-511.44434	-519.04932	-526.58252	-534.03125	-541.38452	TOT TEMP	×	1393.69995	1435.69995	1471.69995	1498.69995	1517.69995	1528.69995	1531.69995	1526.69995	1513.69995	1492.69995	1463.69995
A TOTAL M/S	720.26538	730.38062	738.89355	745.19458	749.58569	752.11304	752.80078	751.65454	748.66382	743.80005	737.01367	3	M/S	479.42041	487.21411	494.96606	502.62549	510.19238	517.65308	525.00000	532.22632	539.31494	546.26660	553.06567	TOT PRESS	BARS	10.25900	10.25900	10.25900	10.25900	10.25900	10.25900	10.25900	10.25900	10.25900	10.25900	10.25900
ALPHA DEG	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89,99997	89.99997	89.99997	89.99997	٩	M/S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	STAT TEMP	¥	1388.29272	1430.22070	1466.16846	1493.14502	1512.14624	1523.17261	1526.22266	1521.29541	1503.39453	1487.51636	1458.66406
ALPHA BAR Deg	89.99997	89.99997	89.99997	89.99997	89.59997	89.99997	89.99997	89.99997	89.99997	89.99997	26566.68	×	M/S	116.41342	117.41701	118.13730	118.44052	118.37910	117.95171	117.17094	116.04776	114.54465	112.70082	110.47702	STAT PRESS	BARS	10.08502	10.08779	10.08946	10.09111	10.09276	10.39445	10.09617	10.09793	10.09932	10.10178	10.10390
A STATIC M/S	718.95093	729.07080	737.59448	743.90356	748.30566	750.84448	751.54492	750.41284	747.43921	742.59253	735.82764	% SPAN		0.0	10.14310	20.31134	30.47968	40.62512	50.72842	60.77078	70.73482	80.66463	96592.05	100.00000	ສ	W/S	465.03516	472.76589	430.55371	488,31835	459.06567	503.77881	511.44434	519.04932	526.58252	534.03125	541.38452
RADIUS	0.06700	0.06812	0.06923	0.07035	0.07147	0.07258	0.07368	0.07473	0.07587	96940.0	0.07800	S-VALUE	£	0.0	0.00112	0.00223	0.00335	0.00447	0.00558	0.00668	0.00778	0.03887	76600.0	0.01160	X-VALUE	£	0.0	0.0000.0	0.0000	0.0000	0.00000	0.0000	0.0000	0.00000	0.0000	0.0000	0.0

STATION NUMBER 5 DOWNSTREAM OF NOZZLE 1

N K S/E	-46.44614	-43.89240	-41.45929	-39.13870	-36.91660	-34.80626	-32.85320	-31.01074	-29.26390	-27.60909	-26.04602	MVM		0.42470	0.41795	0.41169	0.40595	0.40033	0.39490	0.39012	0.38553	0.38093	0.37636	0.37188	RHO	KG/CU.M	1.1701469	1.1577034	1.1499557	1.1494284	1.1550989	1.1666527	1.1841402	1.2077503	1.2379513	1.2754602	1.3212252
W. S/F	275.05664 -	•	275.42310 -	274.74146 -	273.34399 -	271.28101 -	268.91064 -	265.94653	262.26880 -	257.91650 -	252.95120	ž		0.67716	0.65971	0.64197	0.62324	0.60352	0.58310	0.56226	0.54092	0.51903	0.49663	0.47387	DEPS/DM	RAD/M	-2.94525	-1.76330	-0.60224	0.53693	1.66276	2.77674	3.88535	4.99557	6.10853	7.22668	8.35305
> M S/M	832.54907	834.85815	835.31299	833.01123	828.30200	821.39136	812.39673	801.41357	788.49609	773.65698	756.91724	MVX		0.41860	0.41261	66905.0	0.40181	0.39666	0.39163	0.38720	0.38290	0.37855	0.37419	0.36990	EPS	DEG	-9.72156	-9.16822	-8.65762	-8.19002	-7.76183	-7.37156	-7.01744	-6.69622	-6.40640	-6.14510	-5.91014
BETA BAR DEG	38.84209	39.31129	39.88774	40.64343	41.55370	42.62862	43.93469	45.45760	47.21704	49.27165	51.69858	£		1.28549	1.26664	1.24857	1.23083	1.21310	1.19568	1.17857	1.16177	1.14525	1.12893	1.11279	Z AREA		0.0	10.05018	10.11497	10.14844	10.15033	10.12900	10.07798	9.99754	9.89932	9.78374	9.64196
BETA DEG	38.43788	38.95067	39.56499	40.35335	41.29207	42.39175	43.71945	45.26152	47.03807	49.10831	51.54997	D#	M/S	341.58716	336.42896	329.54541	320.05493	308.37622	294.72021	279.10107	261.73169	242.71826	222.06494	199.77881	TOT TEMP	¥	1393.69995	1435.69995	1471.69995	1498.69995	1517.69995	1528.69995	1531.69995	1526.69995	1513.69995	1492.69995	1463.69995
A TOTAL M/S	720.26538	730.38062	738.89355	745.19458	749.53569	752.11304	752.80078	751.65454	748.66382	743.80005	737.01367	3	H/S	438.56348	434.82275	459.48584	421.80322	412.08350	400.56641	387.56958	373.13672	357.34717	340.34351	322.32886	TOT PRESS	BARS	9.82300	9.82300	9.82300	9.82300	9.82300	9.82300	9.82300	9.82300		9.82300	
ALPHA DEG	19.03479	19.03839	19.04855	19.07552	19.10539	19.13741	19.19585	19.25845	19.31549	19.37007	19.42706	3	H/S	785.80005	788.10010	788.60010	786.39990	781.89990	775.30005	766.60010	756.00000	743.60010	729.39990	713.39990	STAT TEMP	¥	1111.95996	1154.12036	1191.37573	1221.15967	1244.14917	1260.23267	1269.31299	1271.30640	1266.14795	1253.78735	1234.17822
ALPHA BAR DEG	19.29176	19.26671	19.25204	19.25768	19.26909	19.28516	19.33002	19.38091	19.42781	19.47363	19.52304	×	M/S	271.10669	271.95557	272.28467	271.93921	270.83960	269.03882	266.85624	264.13232	260.63386	256.43433	251.60667	STAT PRESS	BARS	3.73667	3.83710	3.93446	4.03097	4.12712	4.22228	4.31645	4.40943	4.50136	4.59247	4.68285
A STATIC M/S	647.65259	659.11279	669.01318	676.79034	682.79736	686.96582	689.30615	639.81860	653.49146	685.29907	680.19300	% SPAN		0.0	10.74530	21.38333	31.83789	42.23212	52.40057	62.37169	72.12581	81.65331	64876.05	100.0000	5	M/S	444.21289	451.67114	459.05469	465.34497	473.52368	480.57983	487.49902	494.26831	500.88184	507.33496	513.62109
RADIUS	0.06430	0.06507	0.06614	0.06719	0.06822	0.06924	0.07024	0.07121	0.07217	0.07309	0.07400	S-VALUE	E	0.0	0.00107	0.00214	0.00319	0.00422	0.00524	9.00624	0.00721	0.00317	6.03939	0.01000	X-VALUE	I	0.02000	0.02000	0.02000	0.02000	0.02000	0.02000	0.02000	0.02000	0.0200	0.02000	0.02000

STATION NUMBER 6 DOWNSTREAM OF ROTOR 1

× R S/M	-48.20180	-41.41299	-34.85094	-28.37666	-21.93408	~15.69698	-9.59624	-3.68849	1.99562	7.41700	12.53089	MVM		0.46520	0.47098	0.47804	0.48450	0.48923	9.49474	0.49355	0.50218	0.50472	0.50678	0.50749	RHO	KG/CU.M	0.8952293	0.8654479	0.8439843	0.8229864	0.8102190	0.8023650	0.7991945	0.8005599	0.8068436	0.8179936	0.8344718
VH M/S	295.65186	303.63062	311.86475	318.82349	323.85498	328.57153	331.33325	333,12793	333,35228	332.32178	329.52222	Ŧ		0.83109	0.85061	0.86810	0.88361	9,768.0	0.90999	0.92130	0.93154	0.94073	0.94910	0.95679	DEPS/DM	RAD/M	3.21201	3.94964	4.48965	4.86483	5.10866	5.23928	5.26742	5.20234	5.05002	4.81637	4.50328
> %	295.99780	304.51880	313.26147	320.58081	325.84717	330.54028	333.15430	334.62842	334.42334	332.96338	329.78076	MVX		0.45897	0.46658	0.47505	0.48257	0.48811	0.49418	0.49834	0.50215	0.50472	0.50665	0.50712	EPS	DEG	-9.38315	-7.83916	-6.41622	-5.10633	-3.88351	-2.73826	-1.65966	-0.63441	0.34303	1.27887	2.17934
BETA BAR DEG	145.96194	146.37848	146.53655	146.74825	146.96626	147.06560	147.23903	147.37848	147.55257	147.72670	147.96718	Ä		0.46574	0.47236	0.48018	0.48717	0.49224	17764.0	0.50129	0.50444	0.50538	0.50776	0.50788	% AREA		0.0	10.13825	10.15021	10.12961	10.11327	10.07718	10.02476	9.96617	9.89145	9.80463	9.70444
BETA DEG	146.31903	146.62611	146.75185	146.85260	147.02641	147.09549	147,25002	147,38005	147.55299	147.73320	147.96581	אַנ	M/S	-437.69531	-456.62915	-472.72681	-486.25415	-498.05127	-507.22705	-514.89541	-520.46704	-524.28760	-526.22485	-526.67455	TOT TEMP	¥	1104.85156	1139.60522	1169.77368	1192.47070	1208.32935	1217.66260	1220.11499	1215.91357	1204.94653	1187.33911	1163.03760
A TOTAL M/S	645.69971	655.19434	663.30347	669.30078	673.45337	675.88232	676.51904	675.42798	672.57007	667.95093	661.50635	3	M/S	528.19238	548.36279	566.33057	581.45630	594.08496	604.34961	612.29321	617.94824	621.27930	622.37476	621.26562	TOT PRESS	BARS	3.16047	3.16097	3.16435	3.16708	3.16705	3.16886	3.16817	3.16788	3.16651	3,16545	3.16327
ALPHA DEG	92.80766	94.41795	95.44635	96.02583	96.35313	96.26369	95.99583	95.42854	94.62968	93.55827	92.27022	3	H/S	-14.30506	-23.23932	-29.55074	-33.52127	-35.97481	-36.02242	-34.78520	-31.65518	-26:99225	-20.65967	-13.05364	STAT TEMP	×	1068.28491	1101.11963	1129.23901	1150.17236	1164.74414	1172.88037	1174.63843	1169.99829	1159.00098	1141.65747	1118.05005
ALPHA BAR DEG	92.77013	94.37682	95.41292	96.00212	96.33865	96.25659	95.99332	95.42822	94.62958	93.55740	92.26357	×	M/S	291.65604	300,79297	309,91113	317.55811	323,11133	328,19629	331,19409	333,10742	333,32517	332.23877	329,28369	STAT PRESS	BARS	2.74648	2.73672	2.72727	2.71838	2.71011	2.70259	2.69595	2.69022	2.63552	2.68189	2.67934
A STATIC M/S	635.54126	644.67187	652.37366	658.04980	661.96313	664.12817	664.59448	663,36328	660,42432	655.75000	649.32324	% SPAN		0.0	11.08757	21,93790	32.53203	42.89003	53.00726	62.88133	72.51831	81.91753	91.07809	100.00000	5	#/S	423.39038	433,38989	443.17627	452.73291	452.07665	471.20483	480.11426	488.81201	497.29541	505.56519	513.62109
RADIUS	0.06100	0.06244	0.06385	0.06523	0.06653	0.06789	0.06917	0.07043	0.07165	0.07284	0.07400	S-VALUE	r	0.0	0.00144	0.00285	0.00423	3.00558	9.00689	0.00517	0.00943	0.01065	0.01184	0.01300	X-VALUE	1:	0.04000	0.04900	3.04030	0.04000	0.04000	0.04000	0.04000	0.04030	0.04000	0.04000	0.04000

N N S	-22.07408	-15.49180	-9.33536	-3.54143	1.89639	6.93054	11.50113	15.62484	19.23833	22.35487	24.90839	MVM		0.36893	0.37924	0.39055	0.40073	0.40850	0.41693	0.42315	0.42906	0.43363	0.43762	0.44007	RHO	KG/CU.M	0.9309361	0.8989245	0.8726239	0.8531588	0.8392298	0.8304605	0.8265864	0.8275259	0.8333451	0.8442751	0.8606693
NA S/M	235.83928	245.858%	256.17627	265.09546	271.79565	278.27466	282.60034	285.98853	287.73218	288.30225	287.05615	Σ		0.76396	0.78931	0.81169	0.83134	0.84880	0.86452	0.87870	0.89159	0.90327	0.91405	0.92412	DEPS/DM	RAD/M	13.04653	12.72679	12.30725	11.82570	11.29992	10.74086	10.15308	9.53558	8.89146	8.22279	7.52739
> <u>M</u>	236.29485	246.99799	257.92529	267.25146	274.19971	280.61523	284.73877	287.73145	288.98755	289.03418	287.34838	ΜVX		0.36731	0.37848	0.39029	0.40070	0.40849	0.41680	0.42280	0.42842	0.43266	0.43630	0.43841	EPS	DEG	-5.37064	-3.61266	-2.08839	-0.76544	0.39977	1.42712	2.33244	3.13189	3.83377	4.44717	4.97792
BETA BAR DEG	151.12393	151.28430	151.23868	151.18179	151.23190	151.16661	151.21207	151.23404	151.31009	151.39507	151.56194	£		0.36964	0.38099	0.39322	0.40399	0.41211	0.42043	0.42636	0.43168	0.43552	0.43873	0.44052	% AREA		0.0	10.48958	10.38415	10.25956	10.16448	10.06235	9.95300	9.84959	9.73486	9.61495	9.46744
BETA DEG	151.23042	151.33228	151.25475	151.18393	151.23250	151,17409	151.23212	151.27016	151.36414	151.46768	151.65253	3	M/S	-427.64478	-448.77881	-466.72925	-481.84424	-495.04785	-505.48193	-514.30542	-520.94434	-525.77417	-528.67627	-530.05762	TOT TEMP	¥	1104.85156	1139.60522	1169.77368	1192.47070	1208.32935	1217.66260	1220.11499	1215.91357	1204.94653	1187.33911	1163.03760
A TOTAL M/S	645.69971	655.19434	663.30347	669.30078	673.45337	675.88232	676.51904	675.42798	672.57007	667.95093	661.50635	3	W/S	488.36475	511.71191	532.41187	549.95386	564.75244	577.01709	586.83301	594.28296	599.35645	602.17651	602.79541	TOT PRESS	BARS	3.16047	3.16097	3.16435	3.16708	3.16705	3.16886	3.16817	3.16788	3.16651	3.16545	3.16327
ALPHA DEG	93.57407	95.51549	96.68066	97.28336	97.59300	97.40756	97.03233	96.31905	95.35440	94.09059	92.59604	2	M/S	-14.66569	-23.69330	-29.98593	-33.87791	-36.23033	-36.16750	-34.83165	-31.62218	-26.90720	-20.55576	-12.96603	STAT TEMP	¥	1081.57422	1114.31299	1142.32373	1163.10718	1177.49976	1185.42163	1136.93066	1182.00146	1170.67163	1152.94873	1128.91211
ALPHA BAR DEG	93.55840	95.50461	96.67628	97.28270	97.59279	97.40532	97.02554	96.30969	95.34248	94.07831	92.58626	×	H/S	234.80397	245.37039	256.03610	265.07178	271.78882	278.18823	282.35621	285.56128	287.06613	287.43408	265.97339	STAT PRESS	BARS	2.89155	2.87664	2.86267	2.84973	2.83790	2.82713	2.81753	2.80902	2.80166	2.79543	2.79030
A STATIC M/S	639.25537	648.29883	655.93042	661.52490	665.35254	667.44531	667.84326	666.54272	663.54199	658.79736	652.28979	% SPAN		0.0	11.64097	22.84738	33.63196	44.05634	54.13957	63.89584	73.35091	82.51311	91.39339	100.00000	Þ	M/S	412.97925	425.08569	436.74341	447.96655	458.81763	469.31445	479.47388	489.32227	498.86719	508.12061	517.09180
RADIUS	0.05950	0.06125	0.06293	0.06454	0.06611	0.06762	0.06908	0.07050	0.07188	0.07321	0.07450	S-VALUE	E	0.0	3.00175	0.00343	0.00504	0.00661	0.00812	0.00558	0.01100	0.01239	0.01371	0.01500	X-VALUE	I	0.05030	0.05000	0.05000	0.05300	0.05030	0.05000	0.05000	0.05000	0.65000	0.05000	0.05000

046.000 04.0000 04.000 04.000 04.000 04.000 04.000 04.000 04.000 04.000 04.0000	94.25568 94.44444 97.67798 98.55832	645.69971	DEG 94.25568	056	M/S 198.48906	M/S 197.94652	#/S 18.40909
94.23730 96.40335 97.61328 98.11348 98.10347 97.60672 96.75826 96.75826 96.75826 96.75826 97.60672 97.60672 97.60672 97.6067232 97.6067232	94.25568 96.44444 97.67798 98.25832 98.51634	645.69971	94.25558	C+++C /(198.48906	197.94652	18.40909
96.40335 97.61328 98.17238 98.19148 98.10347 97.60672 96.75826 96.75826 96.75826 97.60672 97.60672 197.08362 208.84087 220.67232	96.44444 97.67798 98.25832 98.51634			94.23750			
97.61328 98.17238 98.1148 98.41148 96.75626 96.75626 94.27573 92.66106 VX WX M/S 197.08362 208.84087 220.67232	97.67798 98.25832 98.51634	655.19434	\$5555.96	96.40335	211.51221	210.19267	23.80020
98.17238 98.41148 98.41148 97.60672 96.75826 95.66258 94.27573 92.68106 197.08362 208.84087 220.67232	98.25832 98.51634 98.21634	663.30347	97.67798	97.61328	224.54944	222.57002	29.00255
98.41148 98.10347 97.60672 96.75826 95.66258 94.27573 92.68106 VX NX NX NX NX 197.08362 208.84087 220.67232 230.92340	98.51634	669.30078	98.25832	98.17238	235.77942	233.38507	33.80786
98.10347 97.60672 96.75826 95.66258 94.56258 94.56258 94.66368 197.08362 200.67232 230.92340	47010 90	673.45337	98.51634	98.41148	244.47154	241.84180	38.10507
97.60672 96.75826 95.66258 94.27573 92.68106 VX M/S 197.08362 208.84087 220.67232	10.11.00	675.88232	98.21974	98.10347	252,78355	250.25957	42.22681
96.75826 95.66258 94.27573 92.68106 VX N/S 197.08362 2208.84087 220.67232 230.92340	97.72955	676.51904	97.72955	97.60672	258.84937	256.57129	45.82771
95.66258 94.27573 92.68106 VX W/S 197.08362 208.84087 220.67232 230.92340	96.87906	675.42798	96.87906	96.75826	264.01172	262.17725	49.14005
94.27573 92.68106 VX W/S 197.08362 208.84087 220.67232 230.92340	95.77306	672.57007	95.77306	95.66258	267.66797	266.36182	52.02557
92.68106 VX M/S 197.08362 208.84087 220.67232 230.92340	94.36577	667.95093	94.36577	94.27573	270.41772	269.66504	54.58444
VX M/S 197.08362 208.84087 220.67232 230.92340	92.74139	661.50635	92.74139	92.68106	271.72510	271.42773	56.67464
M/S 197.08362 208.84087 220.67232 230.92340	Ŋ	3	3	£	MVX	Ē	MVM
197.08362 208.84087 220.67232 230.92340	H/S	M/S	M/S				
208.84087 220.67232 230.92340	-14.66569	198.48904	-14.66569	0.30958	0.30739	0.30958	0.30873
220.67232 230.92340	-23.58919	211.51219	-23.58919	0.32533	0.32122	0.32533	0.32330
230.92340	-29.74953	224.54942	-29.74953	0.34140	0.33551	0.34140	0.33839
	-33.51631	235.77940	-33.51631	0.35548	0.34816	0.35548	0.35187
238.82097	-35.76137	244.47153	-35.76137	0.36651	0.35804	0.36651	0.36257
246.67134	-35.63249	252.78354	-35.63249	0.37782	0.36369	0.37782	0.37405
252,44533	-34.26424	258.84912	-34.26424	0.38671	0.37714	0.38671	0.38331
257.53076	-31.06883	264.01172	-31.06883	0.39525	0.38555	0.39525	0.39250
261.23145	-26.41061	257.66772	-26.41061	0.40261	0.39293	0.40261	0.40064
254.08276	-20.16121	270.41748	-20.16121	0.40975	0.40015	0.40975	0.40861
265.44482	-12.71013	271.72510	-12.71013	0.41594	0.40633	0.41594	0.41549
STAT FRESS	STAT TEMP	TOT PRESS	TOT TEMP	% AREA	EPS	DEPS/DM	RHO
BARS	¥	BARS	¥		DEG	RAD/M	KG/CU.M
2.96884	1088.43628	3.16047	1104.85156	0.0	5.33624	21.43896	0.9497915
2.55048	1121.06836	3.16097	1139.60522	10.92114	6.50157	20.02423	0.9164432
2.93359	1148.97949	3.16435	1169.77368	10.68206	7.48737	18.87151	0.8890622
2.91788	1169.62842	3.16708	1192.47070	10.44116	8.32910	17.95149	0.8686899
2.93316	1183.83569	3.16705	1208.32935	10.25687	9.06542	17.23193	0.8539357
2.83929	1191.51367	3.16886	1217.66260	10.07359	9.71411	16.69876	0.8443798
2.87615	1192.70459	3.16817	1220.11499	9.88830	10.28916	16.34293	0.8397003
2.86357	1187.37549	3.16788	1215.91357	9.71451	10.80288	16.15608	0.8397784
2.85144	1175.55469	3.16651	1204.94653	9.53123	11.26337	16.13551	0.8445297
2.83966	1157.24731	3.16545	1187.33911	9.34361	11.67827	16.27576	0.8544478
2.82809	1132.53101	3.16327	1163.03760	9.14749	12.05216	16.57713	0.8695364
	2.9316 2.88929 2.87615 2.86357 2.55144 2.83966		1183.83569 1191.51367 1192.70459 1187.37549 1175.55469 1157.24731	1183.85569 3.16/05 1191.51367 3.16886 1192.70459 3.16817 1187.37549 3.16/78 1175.55469 3.16/51 1157.24/731 3.16545 1132.53101 3.16327	1183.83569 3.16/05 1208.32935 11 1191.51367 3.16886 1217.66260 11 1187.70549 3.16817 1220.11499 1187.37549 3.16788 1215.91357 1175.55469 3.16651 1204.94653 1157.24731 3.16545 1187.33911 1132.53101 3.16327 1163.03760	1183.83569 3.16/05 1208.32935 10.25687 1191.51367 3.16886 1217.66260 10.07359 1197.370459 3.16686 1217.66260 9.88830 1187.3755469 3.16/58 1215.91357 9.71451 1175.55469 3.16/58 1204.94653 9.53123 1157.24731 3.16545 1187.33911 9.34361 1132.53101 3.16327 1163.03760 9.14749	1183.83569 3.16.705 1208.32935 10.25687 9.06542 1191.51367 3.16886 1217.66260 10.07359 9.71411 1192.70459 3.16817 1220.11499 9.68630 10.28916 1187.37549 3.16788 1215.91357 9.71451 10.80288 1175.55469 3.16651 1204.94653 9.53123 11.26337 1157.24731 3.16545 1187.33911 9.34361 11.67827 1132.53101 3.16327 1163.03760 9.14749 12.05216

A VE	57,37291	62.12267	67.06601	71.66058	75.65689	79.85571	83.53650	87.18903	90.53812	93.75648	96.56758	MVM		0.29132	0.30613	0.32120	0.33431	0.34430	0.35491	0.36295	0.37066	0.37696	0.38270	0.38691	RHO	KG/CU.M	0.9547159	0.9213769	0.8940990	0.8739250	0.8594527	0.8502637	0.8460529	0.8467245	0.8523238	0.8630830	0.8793415
ξŽ	186.92670	199.18579	211.43488	221.93219	229.86935	237,68782	243.21002	247.88376	250.94316	252.93657	253.17674	3		0.29216	0.30813	0.32415	0.33785	0.34815	0.35860	0.35628	0.37336	0.37889	0.38383	0.38736	DEPS/DM	RAD/M	21,42619	19.72159	18.37459	17.31827	16.48776	15.84735	15.36631	15.02022	14.78644	14.64280	14.57235
> \	187.46643	200.48660	213.37862	224.27834	232.44475	240.15930	245.44281	249.68495	252.22899	253.67999	253.47185	Ϋ́		0.27726	0.29086	0.30461	0.31641	0.32511	0.33428	0.34087	0.34698	0.35157	0.35544	0.35766	EPS	DEG	17.87415	18.17274	18.49335	18.83803	19.21597	19.63147	20.08871	20.59338	21.14830	21.75705	22.42189
BETA BAR	94, 34081	96.53033	97.73950	98.29477	98.53694	98.22702	97.73425	96.88634	95.78787	94.38757	92.76505	ž		0.29216	0.30813	0.32415	0.33785	0.34815	0.35860	0.36628	0.37336	0.37689	0.38383	0.38736	% AREA		0.0	10.91414	10.64385	10.38536	10.20052	10.02492	9.85780	9.71129	9.56402	9.42024	9.27781
BETA	94.56003	96.87000	98.15538	98.75710	99.03259	98.72714	98.22859	97.35138	96.20271	94.72258	92.99063	3	M/S	-14.16876	-22.80113	-28.73540	-32.35542	-34.50560	-34.36551	-33.03108	-29.93690	-25.43597	-19.40689	-12.22746	TOT TEMP	¥	1104 7156	1139.60522	1169.77368	1192.47070	1208.32935	1217.66260	1220.11499	1215.91357	1204.94653	1187.33911	1163.03760
A TOTAL	645,69971	655.19434	663.30347	669.30078	673.45337	675.88232	676.51904	675.42798	672.57007	667.95093	661.50635	3	#/S	187.46443	200.48657	213.37860	224.27832	232.44473	240.15929	245.44279	249.68494	252.22897	253.67998	253.47183	TOT PRESS	BARS	3.16047	3.16097	3.16435	3.16708	3.16705	3.16886	3.16817	3.16788	3.16651	3. 6545	3.16327
ALPHA	94.56003	96.87000	98.15538	98.75710	99.03259	98.72714	98.22859	97.35138	96.20271	94.72258	92.99083	2	M/S	-14.18876	-22.80113	-28.73540	-32.35542	-34.50560	-34.36551	-33.03108	-29.93690	-25.43597	-19.40689	-12.22746	STAT TEMP	×	1090.21143	1122.95312	1151.00000	1171.80640	1186.19092	1194.06543	1195.47632	1190.39526	1178.85498	1160.86523	1136.50049
ALPHA BAR	94, 34081	96.53033	97.73950	98.29477	98.53594	98.22702	97.73425	96.83534	95.73787	94.38757	92.76505	š	H/S	177.90430	189.25050	200.51646	210.04440	217.06209	223.87175	228.41357	232.04402	234.04128	234.91333	234.03567	STAT PRESS	BARS	5.98909	2.97135	2.95540	2.94093	2.92773	2.91566	2.90465	2.85460	2.88549	2.87733	2.87300
A STATIC	641,65552	650.66436	653.27271	663.84326	667.64819	669.71997	670.09058	668.75537	665.71094	660.92407	654.35229	X SPAN		0.0	12.25349	23.81834	34.76862	45.22945	55.24869	64.86554	74.12708	83.05511	91.67328	100.00000	5	M/S	9.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RADIUS	0 06150	0.06364	0.06567	0.06758	0.06942	0.07117	0.07285	0.07447	0.07603	0.07754	0.07930	S-VALUE	I	0.0	0.00214	0.00417	0.00608	0.00792	0.00957	0.01135	0.01297	0.01453	0.01604	0.01759	X-VALUE	E	0.0700	0.0200	0.0200	0.0700	0.0220	0.0200	0.0700	0.07000	0.0700	0.07003	0.07000

STATION NUMBER 10 DUMMY

VR M/S 95.65250 97.46567 99.72090 101.53561	103.74971 104.22554 104.58864 104.43840 104.01982 102.93074	MVM 0.30543 0.31456	0.32412 0.33166 0.33585 0.34045 0.34220 0.34341	0.34183 0.33895 RHO KG/CU.M	0.9190721 0.9913709 0.8748093 0.8546033 0.8546033 0.854528 0.8549508 0.8549508
957. 997. 101.	1004.	2 00	000000	60 ¥6	
VM M/S 195.86351 204.59862 213.33571 220.19971 224.32330	228.17155 229.54689 229.97581 228.70117 226.40414 222.35312	MM 0.30613 0.31626	0.32559 0.33479 0.33933 0.34384 0.34532 0.34597	0.34294 0.33941 DEFS/DM RAD/M	9.84858 8.61607 7.52786 6.54672 5.64805 4.00279 3.21459 1.62871
V M/S 196.30923 205.70514 215.02652 222.28198 226.65279	230.44771 231.64041 231.69469 229.95030 227.13922 222.65030	MVX 0.26653 0.27658	0.28653 0.29429 0.29373 0.3052 0.30584 0.30584	0.30361 0.30045 EPS DEG	28.44891 27.86803 27.45856 27.19110 27.04565 27.04565 27.05084 27.17171 27.35117
BETA BAR DEG 93.86182 95.94557 97.18997 97.64868	98.05959 97.70901 96.98347 95.97479 94.61078	MV 0.30613 0.31626	0.32669 0.33479 0.33933 0.34384 0.34532 0.34597	0.34294 0.33941 % AREA	10.45192 10.28676 10.12685 10.03979 9.96487 9.86028 9.86028 9.8206 9.78854
BETA DEG 94.42331 96.75508 98.12134 98.83031	99.03369 98.63884 97.83124 96.70956 95.18313 93.33922	MU M/S -13.22134 -21.30753	-26.91248 -30.35403 -32.41200 -32.30922 -31.07253 -28.17000	-18.25879 -11.49963 -10T TEMP K	1139, 60522 1169, 77368 1192, 47070 1203, 32935 1217, 6626 1220, 11499 1225, 91357 1206, 74653 1187, 33911
A TOTAL M/S 645.6971 655.19434 663.30347 669.30078 673.45337	675.88232 676.51904 675.42798 672.57007 667.95093	M M/S 196.30923 205.70514	215.02652 222.28198 226.65277 230.44769 231.64040 231.69467 229.95029	227.13921 222.65027 TOT PRESS BARS 1,6067	3.16435 3.16435 3.16435 3.16708 3.16886 3.16886 3.16788 3.16788 3.16581 3.16581
ALPHA DEG 94.42331 96.75508 98.12134 99.22658	99.03369 98.63834 97.83124 96.70956 95.18813	VU M/S -13.22134 -21.30753	-26.91248 -30.35403 -32.41200 -32.30922 -31.07253 -28.17000 -23.93562	-18.25879 -11.49963 -STAT TEMP K K	1152 07373 1150 17334 1172 17334 1187 28247 1195 93872 1193 94678 1193 24678 1183 26830 1166 12451
ALPHA BAR DEG 93.86182 95.94557 97.18997 97.84868	98.05959 97.70931 96.58347 95.97479 94.61078	VX M/S 170.91843 179.89171	183.59444 195.39301 199.53271 205.21970 204.52092 204.81720 203.46213	201.09378 197.09431 STAT FRESS BARS	2.9524 2.9524 2.9524 2.94483 2.93918 2.93918 2.93140 2.91155 2.91155 2.93280
A STATIC M/S 641.26294 650.42407 658.19409 663.94067	673.21191 670.79810 669.68872 666.3720 662.33252 655.99756	% SPAN 0.0 11.69090	22.85443 33.54063 43.86029 53.85257 63.54%7 72.99591 82.20766	91.20393 130.03003 U M/S	
PADIUS H 0.06600 0.07204 0.07389	0.07569 0.07744 0.07914 0.08030 0.08242	S-VALUE M 0.0 0.00210	0.00411 0.00504 0.00733 0.00969 0.01144 0.01314	0.01642 0.01830 X-VALUE H	

With the William of the Control of t

2	M/S	83.82837	82.08693	81.29623	80.59558	79.55086	79.10138	78.23111	77.55516	76.66658	75.82631	74.63687	H/H		0.33008	0.32234	0.31736	0.31239	0.30566	0.30090	0.29432	0.28828	0.28132	0.27441	0.26610	RHO	KG/CU.M	0.9435320	0.9169543	0.8954604	0.8803821	0.8705062	0.8655637	0.8653625	0.8699081	0.8793308	0.8939494	0.9141923
¥	M/S	211.42639	209.58768	208.95486	207.59987	204.45360	202.03909	197.86224	193.54149	188.12106	182.29575	175.12033	Ē		0.33055	0.32358	0.31935	0.31495	0.30863	0.30390	0.29716	0.29069	0.28312	0.27551	0.26656	DEPS/DM	RAD/M	-14.96236	-13.21025	-11.73193	-10.51452	-9.51290	-8.71407	-8.10476	-7.66839	-7.40297	-7.30547	-7.37581
>	M/S	211.72871	210.39479	210.26559	209.29816	206.43861	204.05138	199.77541	195.15826	189.32774	183.02322	175.42159	ΧΛ₩		0.30302	0.29659	0.29235	0.28789	0.28153	0.27688	0.27034	0.26412	0.25689	0.24955	0.24072	EPS	DEG	23.35890	23.05777	22.89610	22.84413	22.89789	23.04881	23.28978	23.62294	24.05029	24.57928	25.22665
BETA BAR	DEG	93.06224	95.02032	96.40033	97.30396	97.95200	98.05325	97.93584	97.38029	96.47231	95.11021	93.35840	È		0.33055	0.32358	0.31935	0.31495	0.30863	0.30390	0.29716	0.29069	0.28312	0.27551	0.26656	% AREA		0.0	8.99017	9.26041	9.47032	9.70632	9.92192	10.12008	10.32973	10.52880	10.73070	10.04151
BETA	DEG	93.33507	95.45369	96.94316	97.91801	98.62241	98.74152	98.62967	98.04680	97.08162	95.61630	93.71149	3	M/S	-11.31054	-18.41124	-23.44096	-26.60849	-28.55922	-28.58606	-27.58162	-25.06873	-21.34137	-16.30212	-10.27627	TOT TEMP	¥	1104.85156	1139.60522	1169.77368	1192.47070	1208.32935	1217.66260	1220.11499	1215.91357	1204.94653	1187.33911	1163.03760
A TOTAL	M/S	645.69971	655.19434	663.30347	669.30078	673.45337	675.88232	676.51904	675.42798	672.57607	667.95093	661.50635	3	M/S	211.72870	210.39479	210.26556	209.29814	206.43861	204.05135	190,77539	195.15825	189.32771	183.02321	175.42159	TOT PRESS	BARS	3.16047	3.16097	3.16435	3.16708	3.16705	3.16886	3.16817	3.16788	3.16651	3.16545	3.16327
ALPHA	DEG	93.33507	95.45369	96.94316	97.91801	93.62241	93.74152	98.62567	98.04680	97.08162	95.61630	93.71149	Ş	M/S	-11.31054	-18.41124	-23.44096	-26.60849	-28.55922	-23.58606	-27.58162	-25.06873	-21.34137	-16.30212	-10.27627	STAT TEMP	×	1086.16992	1121.26416	1151.54468	1174.47900	1190.87451	1200.63721	1203.80347	1200.33716	1190.26025	1173.57397	1150.34131
ALPHA BAR	056	93.05224	95.02032	96.40083	97.30396	97.95200	98.05325	97.93584	97.38029	96.47231	95.11021	93.35840	×	W/S	194.09770	192.84378	192.49170	191.31664	183.34258	185.91063	181.73981	177.32315	171.78989	165.77727	158.41864	STAT PRESS	BARS	2.94313	2.95264	2.56130	2.96942	2.97710	2.98446	2.99163	2.99369	3.00572	3.01286	3.02009
A STATIC	H/S	640.53394	650.20289	658.41943	664.55225	663.83159	671.44312	672 27148	671.36475	668.71973	664.31226	658.09521	% SPAN		0.0	9.86577	19.81516	29,77995	39.78596	49.81056	59.83534	69.87152	79.90375	89.94361	100.00000	ב	M/S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RADIUS	E	0.07715	0.07881	0.08049	0.08217	0.08335	0.08554	0.08723	0.08892	0.09061	0.09231	0.09430	S-VALUE	r	0.0	0.00166	0.00334	0.00502	0.00670	0.00839	0.01003	0.01177	0.01346	0.01516	0.01685	X-VALUE	Ξ	0.10000	0.10000	0.10000	0.10000	0.10000	0.10000	0.10000	0.10000	0.10000	0.10000	0.10000

APPENDIX F: FLOW CONDITIONS, POWER TURBINE AND DIFFUSER

REGENERATIVE ENGINE STUDY PT

EXIT OF INLET GUIDE VANE = STATION 8		Pressures in bar
EXIT OF INLE		ARE M./SEC.
INLET WF/WA = 0.01920		DISTANCES ARE IN HETERS, VELOCITIES ARE M./SEC.
NO. OF STREAMLINES = 11	- 12	DISTANCES
NO. OF	STATIONS: 7 - 12	#S UNITS
NO. OF STATIONS = 21	SPOOL ST	INPUT IS IN P
NO. OF S	1 SPOOL	

Temperatures in K	1 bar = 14.5 psi 1 K = 1.8° R						Fixed Stator Entrance
	2.828 104.60 0.0						
RPM 44000.0	2.828 1121.30 1: 0.0	RPM 44000.0	RPM 44000.0	RPM 44000.0	RPM 44000.0	RPM 44000.0	RPH 44000.0
1 - STATOR MASS FLOW 1.1711	2.828 2.828 40.80 1133.40 0.0 0.0	2 - DUMMY MASS FLOW 1.1711	3 - DUMMY MASS FLOW 1.1711	4 - DUMMY MASS FLOM 1.1711	S - DUMMY MASS FLOW 1.1711	6 - DUMMY MASS FLOW 1.1711	7 - DUMMY MASS FLOW 1.1711
STATION MACH NO. 0.4000	2.828 1143.60 11 0.0	STATION MACH NO. 0.4000	STATION MACH NO. 0.4000	STATION MACH ND. 0.3900	STATION MACH NO. 0.3800	STATION MACH NO. 0.3700	STATION MACH NO. 0.3600
INPUT TO AXIAL STATION TIP STATION MACH NO.	TOT PRESS 2.828 2.	INPUT TO AXIAL STATION TIP STATION MACH NO. -0.0500 0.4000	INPUT TO AXIAL STATION TIP STATION MACH NO.	INPUT TO AXIAL STATION TIP STATION MACH NO. -0.0300 0.3900	INPUT TO AXIAL STATION TIP STATION MACH NO. -0.0200 0.3800	INPUT TO AXIAL STATION TIP STATION MACH NO. -0.0100 0.3700	INPUT TO AXIAL STATION TIP STATION MACH NO. 0.0 0.3600
TIP RADIUS 0.0740	2.828 2.828 108.10 1124.00 1 0.0 0.0	TIP RADIUS 0.0745	TIP RADIUS 0.0760	TIP RADIUS 0.0790	TIP RADIUS 0.0840	TIP RADIUS 0.0890	TIP RADIUS 0.0940
HUB STATION -0.0600	2.828 2.828 2.50 1087.60 11 0.0 0.0	HUB STATION -0.0500	HUB STATION -0.0400	HUB STATION -0.0300	HUB STATION -0.0200	HUB STATION -0.0100	HUB STATION
HUB RADIUS 0.0610	TOT PRESS TOT TEMP 106 VU	HUB RADIUS 0.0595	HUB RADIUS 0.0595	HUB RADIUS 0.0615	HUB RADIUS 0.0660	HUB RADIUS	HUB RADIUS

		Fixed Stator Exit Variable Stator Entrance		tor Exit ace		Exit		er		
	2.791 70.00	Fixed Stator Exit Variable Stator E	2.754 195.00	Variable Stator Exit Rotor Entrance	2.717 507.70	Rotor Exit	56.43 0.9000	Diffuser		
RPH 44000.0	2.791 82.10	RPM 44000.0	2.754 204.00	RPM 44000.0	2.717 523.40	RPM 44000.0	57.28 0 0.9000	RPM 44000.0	RPM 44000.0	RPM 44000.0
8 - STATOR MASS FLOW 1.1711	2.791 2.791 98.20 91.30	9 - STATOR MASS FLOW 1.1711	2.754 2.754 217.00 211.00	10 - STATOR MASS FLOW 1.1711	2.717 2.717 551.60 538.10	11 - ROTOR MASS FLOW 1.1711	58.42 58.28 57.90 0.9000 0.9000	12 - DUMMY MASS FLOW 1.1711	13 - DUMMY MASS FLOW 1.1711	14 - DUMMY MASS FLOW 1.1711
L STATION MACH NO. 0.3500	2.791 103.60	L STATION MACH NO. 0.3500	2.754 222.20	L STATION MACH NO. 0.9000		L STATION MACH NO. 0.5000	58.42 0 0.9000	L STATION MACH NO. 0.4000	MACH NO.	L STATION MACH NO. 0.3000
INPUT TO AXIAL STATION TIP STATION MACH NO. 0.0100 0.3500	2.791 2.791 2.791 111.30 108.00 103.60	INPUT TO AXIAL STATION TIP STATION MACH NO. 0.0200 0.3500	2.754 2.754 232.00 227.30	INPUT TO AXIAL STATION 10 - STATOR TIP STATION MACH NO. MASS FLOI 0.0300 0.9000 1.171	2.717 2.717 2.717 583.10 574.40 563.90	INPUT TO AXIAL STATION 11 TIP STATION MACH NO. 0.0500 0.5000	57.99 58.32 i	INPUT TO AXIAL STATION 12 TIP STATION MACH NO. 0.0600 0.4000	INPUT TO AXIAL STATION 13 TIP STATION MACH NO.	INPUT TO AXIAL STATION 14 - DUMMY TIP STATION MACH NO. MASS FLC 0.0900 0.3000 1.17
TIP RADIUS 0.0980	2.791 2.791 116.00 114.00	TIP RADIUS 0.1005	2.754 2.754 241.00 236.50	TIP RADIUS 0.1010	7.717 2.717 593.90 589.70	TIP RADIUS 0.1030	56.61 57.42 0.9000 0.9000	TIP RADIUS 0.1030	TIP RADIUS 0.1040	TIP RADIUS 0.1060
HUB STATION 0.0100	2.791	HUB STATION 0.0200	2.754	HUB STATION. 0.0300	2.717 595.50	HUB STATION 0.0500	55.56	HUB STATION 0.0600	HUB STATION 0.0700	HUB STATION 0.0900
35 35	2.791 120.00		2.754 250.00	HUB	2.717 594.20	HUB	54.28 0.9000	HUB	HUB	HUB
HUB RADIUS 0.0806	TOT PRESS WU 1	HUB RADIUS 0.0824	TOT PRESS	RADIUS 0.0830	TOT PRESS	HUB RADIUS 0.0806	DELTA H ETA POLY	HUB RADIUS 0.0784	HUB RADIUS 0.0761	HUB RADIUS 0.0716
97	53	HUB.	53	5	ρž	#CB	DEL' ETA	EN EN	HUB	HUB.

					·	Diffuser
8 PH 0.0	MPH 0.0	878 0.0	я 0.0	MPM 0.0	ж 6.0	RPM 0.0
.5 - DUMMY	16 - DUMMY	17 - DUMMY	16 - DUMY	19 - DUMMY	20 - DUMMY	21 - DUMMY
MASS FLOW	MASS FLOW	MASS FLOW	MASS FLOW	MASS FLOW	MASS FLOW	MASS FLOW
1.1711	1.1711	1.1711	1.1711	1.1711	1.1711	1.1711
NL STATION 1	AL STATION 1	MACH NO.	AL STATION :	AL STATION	AL STATION	AL STATION
Mach No.	MACH NO.		MACH NO.	MACH NO.	Mach no.	MACH NO.
0.2500	0.2500		0.2000	0.2000	0.2000	0.2000
INPUT TO AXIAL STATION 15 - DUMMY TIP STATION MACH NO. MASS FLU 0.1100 0.2500 1.17	INPUT TO AXIAL STATION 16 - DUMNY	INPUT TO AXIAL STATION 17 - DUMMY	INPUT TO AXIAL STATION 16 - DUMNY	INPUT TO AXIAL STATION 19 - DUMMY	INPUT TO AXIAL STATION 20 - DUMMY	INFUT TO AXIAL STATION 21 - DUMMY
	TIP STATION MACH NO. MASS FLO	TIP STATION MACH NO. MASS FLI	TIP STATION MACH NO. MASS FU	TIP STATION MACH NO. MASS FU	TIP STATION MACH NO. MASS FLI	TIP STATION MACH NO. MASS FLU
	0.1300 0.2500 1.17	0.1500 0.2000 1.17	0.1700 0.2000 1.17	0.1900 0.2000 1.17	0.2100 0.2000 1.17	0.2500 0.2000 1.17
TIP RADIUS	TIP RADIUS 0.1100	TIP RADIUS	TIP RADIUS	TIP RADIUS 0.1160	TIP RADIUS	TIP RADIUS 0.1220
HUB STATION	HUB STATION	HUB STATION	HUB STATION	HUB STATION	HUB STATION	HUB STATION
6.1100		0.1500	0.1700	0.1900	0.2100	0.2500
HUB RADIUS	*HUB RADIUS 0.0626	HUB RADIUS 0.0580	HUB RADIUS 0.0535	HUB RADIUS	HUB RADIUS	HUB RADIUS

0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 STREAMLINE DEFINITION: 0.0

STATION NURBER 7 DOWNSTREAM OF REMOTE

X X	₹/S	70.21997	68.70956	67.64771	66.91167	66.41411	66.05669	65.76193	65.43211	65.00714	64.42085	63.61238	MVM		0.28262	0.27688	0.27156	0.26650	0.26161	0.25683	0.25218	0.24767	0.24335	0.23925	0.23538	2	W 113/13/1	1 8907443	0.8715715	0.8566794	0.8456994	0.8384273	0.8346762	0.8342667	0.8372487	0.8436034	0.8535427	0.8672369
¥	₩/S	178.10179	176.45467	174.64143	172.57716	170.23468	167.60970	164.73253	161.62746	158.33969	154.91068	151.34918	£		0.63094	0.63357	0.63752	0.64267	0.64901	0.65653	0.66524	0.67522	0.68652	0.69927	0.71354	MC/ 9030	W/ CV C	74 43854	-12.16236	-10.43875	-9.11969	-8.10627	-7.30359	-6.65069	-6.06918	-5.50958	-4.98617	-4.59597
>	H/S	178.10179	176.45467	174.64143	172.57716	170.23468	167.60970	164.73253	161.62746	158.33969	154.91068	151.34918	W.X		0.25973	0.25502	0.25036	0.24566	0.24088	0.23604	0.23122	0.22647	0.22189	0.21758	0.21358	0	2 2	91 92017	22.91650	22.78983	22.81271	22.96275	23.21048	23.52844	23.88066	24.23970	24.57336	24.85367
BETA BAR	DEG	153.38838	154.08681	154.78786	155.50099	156.22887	156.97107	157.72304	158.48129	159.23961	159.99252	160.73860	¥		0.28262	0.27688	0.27156	0.26650	0.26161	0.25683	0.25218	0.24767	0.24335	0.23925	0.23538	4304 /		9	9,02931	9.27952	9.51463	69052.6	9.95680	10.16103	10.35079	10.52092	10.66663	10.77965
BETA	DEG	155.27718	155.89096	156.53590	157.21477	157.92499	158,66101	159.41376	160.17409	160.93213	161.67827	162.40746	3	¥/s	-355.48169	-363.18164	-370.92798	-378.70386	-386.50098	-394.31006	-402.12085	-409.92285	-417.70190	-425.44116	-433.12085	TOT TEMB		1062 50000	1087.60010	1108.10010	1124.00000	1135.19995	1141.69995	1143.60010	1140.80005	1133.39990	1121.30005	1104.60010
A TOTAL	A/S	633.91602	640.93091	646.59302	650.94995	653.99951	655.76147	656.27539	655.51807	653.51074	650.21240	645.63062	3	M/S	397.60205	403.77856	409.98437	416.17236	422.33032	428.45459	434.55469	440.63599	446.70605	452.76636	458.80298	TOT DDESC	BADS	2 82800	2.82800	2.82800	2.82800	2.82800	2.82800	2.82800	2.82800	2.82800	2.82800	2.82600
ALPHA	DEG	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	3	H/S	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	CTAT TEMD		1040 10214	1074.59302	1095.40332	1111.63452	1123,18994	1130.07007	1132.36987	1129,98486	1123.00806	1111.33423	1095.06104
ALPHA BAR	950	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89.99997	89.9997	š	7.5	163.67468	162.52765	161.00751	159.07767	156.74504	154.04388	151.03699	147.79062	144.37979	140.88033	137.33185	CTAT DDECC	BADS	2 ARTAR	2.68969	2.69493	2.69981	2.70442	2.70881	2.71299	2.71695	2.72067	2.72411	2.72729
A STATIC	#/S	630.17310	637.30737	643.09326	647.56348	650.72876	652.60498	653.23047	652.58179	650.67944	647.480%	642.99854	% SPAN		0.0	9.90830	19.87714	29.88663	39.92578	49.98233	60.04402	70.09654	80.12196	90.09859	100.00000	=	Y X	155 48160	363.18164	370.92798	378.70386	386.50098	394.31006	402.12085	409.92285	417.70190	425.44116	433.12085
RADIUS	E	0.07715	0.07882	0.08050	0.08219	0.08388	0.08557	0.08727	0.08896	0.09065	0.09233	0.09400	S-VALUE	£	0.0	0.00167	0.00335	0.00504	0.00673	0.00842	0.01012	0.01181	0.01350	0.01518	0.01685		Σ	· e	0.0000	0.00000	0.0000	0.0000	0.0000	0.0000	0000000	0.00000	00000.0	0.0

VR M/S 40.56691 42.59262 43.78914 44.38466	44.65370 44.70454 44.69641 44.67589 44.75519 44.98796	MVM 0.25977 0.25402 0.24804 0.24168	0.23624 0.23097 0.22652 0.2266 0.21961 0.21800	RHO KG/CU.M 0.8687471 0.8567696 0.856922 0.8270161 0.8177341 0.8181049 0.8218479 0.8289754 0.8589754
VM M/S 163.41351 161.62433 159.27400 156.41968	153.54288 150.57161 147.63289 145.16365 142.80571 141.08578 139.98366	MM 0.47631 0.48250 0.48948	0.50737 0.51943 0.53440 0.55209 0.57341 0.5980	DEPS/DH RAD/H -13.80823 -13.59480 -13.45024 -13.453919 -13.453919 -13.95500 -14.48808 -15.24677 -16.24677
V H/S 202.74117 200.11603 197.03859	189.63940 185.29924 180.52016 175.25902 169.49678 163.23483	MVX 0.25164 0.23848 0.23194	0.22603 0.22056 0.21592 0.20855 0.20662	EPS DEG 14.37380 15.27954 16.48436 16.48436 17.27144 17.27144 17.27144 17.92465 18.59457 18.59457
BETA BAR DEG 146.94926 148.23285 149.55315	152.24965 153.59789 154.91988 156.21942 157.48065 158.68730	MV 0.32229 0.31452 0.30685 0.29930	0.29178 0.28424 0.27661 0.26878 0.26066 0.25223	2. AREA 0.0 0.0 0.0 0.0033 9.20833 9.50712 9.7936 10.05164 10.27414 10.57614 10.653142 10.653142
BETA DEG 147.77681 149.14825 150.52725 151.90913	153.27971 154.63602 155.95801 157.25362 158.5034 159.70697	MV M/S -251.14795 -261.00757 -270.96826 -281.01514	-291.83301 -303.29687 -315.87524 -329.43237 -344.43457 -361.62988 -361.55176	TOT TEMP K 1062.50000 1067.60010 1106.10010 11135.19995 11141.69995 11143.60010 11133.39990 11131.30005 11131.30005
A TOTAL M/S 613.91602 640.93091 646.59202	653.99951 656.27539 655.51807 653.51074 650.21240 645.63062	M M/S 299.63184 306.99731 314.31177	329.76025 338.61572 348.75732 359.99731 372.86523 388.17700	DARS BARS 2.79100 2.79100 2.79100 2.79100 2.79100 2.79100 2.79100 2.79100 2.79100 2.79100
ALPHA DEG 52.83556 52.88004 52.85622 52.76335	52.85146 53.08842 53.67667 54.58765 56.04965 58.45143	VU H/S 120.60000 118.00000 116.00000	111.30000 108.00000 103.60001 96.20000 91.30000 82.10001 70.00000	STAT TEMP K 1045.24878 1070.86572 1091.93311 1100.494165 1112.46291 1130.11182 1112.23340 11094.39893
ALPHA BAR DEG 53.70889 53.46723 53.91508	54.06241 54.34937 54.97754 55.9250 57.40794 59.80414 63.43224	VX MVS 158.29814 155.91116 153.13626 149.99039	146.90630 143.78217 140.91412 138.11787 135.61136 133.72090	STAT PRESS BAPS 2.60776 2.62466 2.62466 2.64026 2.64775 2.66248 2.66248 2.66248 2.66248
A STATIC H/S 629.06348 636.26440 642.13281	649, 93701 651, 90039 652, 6621 652, 06348 650, 26465 647, 178,1	2 SPAN 0.0 9.76129 19.65190 29.65474	39.74989 49.90425 60.07889 70.22934 60.31239 90.26392	U H/S 371.14795 356.96826 395.01514 403.13306 411.29687 419.47534 427.63257 443.72996 451.55176
RADIUS H 0.08055 0.08228 0.08398 0.08398	0.08749 0.08926 0.09103 0.09456 0.09456	S-VALUE M 0.0 0.00170 0.00343	0.00694 0.00871 0.01048 0.01226 0.01401 0.01575	X-VALUE 7 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

STATION NUMBER 9 DOWNSTREAM OF NOZZLE 2

VR M/S	17.97859	18.29976	18.85118	19.51369	20.15494	20.64366	20.86685	20.56485	19.77182	18.53102	17.09299	MVM		0.23949	0.23912	0.23720	0.23418	0.23029	0.22614	0.22230	0.21797	0.21479	0.21320	0.21560	RHO	KG/CU.M	0.8107896	0.7957273	0.7844903	0.7766703	0.7721162	0.7706767	0.7722158	0.7768359	0.7845663	0.7956435	0.8102162
VM M/S	149.40445	150.93169	151.15451	150.33484	148.62769	146.42177	144.12724	141.22920	138.81079	137.15166	137.78114	£		0.31711	0.32920	0.34071	0.35214	0.36381	0.37645	0.39072	0.40588	0.45378	0.44490	0.47165	DEPS/DM	RAD/H	-12.46886	-13.94544	-14.61982	-14.76321	-14.57178	-14.25195	-13.94399	-13.84370	-14.05764	-14.55134	-15.10348
> M S/S	291.24170	288.18506	284.47974	280.23706	275.52539	270.37866	264.84985	258.91064	252.56570	245.81818	238.76483	W.X		0.23775	0.23736	0.23535	0.23220	0.22817	0.22388	0.21995	0.21564	0.21260	0.21124	0.21394	EPS	DEG	6.91144	6.96398	7.16428	7.45813	7.79372	8.10501	8.32459	8.37280	8.18890	7.76518	7.12642
BETA BAR DEG	130.95558	133.41707	135.87671	138.31607	140.72696	143.07922	145.32396	147.51906	149.54660	151.36670	152.79803	£		0.46684	0.45657	0.44643	0.43653	0.42692	0.41758	0.40849	0.39959	0.39081	0.38212	0.37363	% AREA		0.0	9.43373	9.53006	9.66701	9.82579	9.99740	10.14898	10.29133	10.39879	10.42490	10.28199
BETA DEG	131.16257	133.62892	136.10112	138.55775	140.98727	143.35506	145.60733	147.79659	149.80254	151.58817	152.97830	2	#/S	-129.67212	-142.81421	-155.85254	-168.82764	-181.76196	-194.86845	-208.33223	-221.84863	-236.09302	-251.20679	-268.07080	TOT TEMP	¥	1062.50000	1087.60010	1108.10010	1124.00000	1135.19995	1141.69995	1143.60010	1140.80005	1133.39990	1121.30005	1104.60010
A TOTAL M/S	633.91602	640.93091	646.59302	650.94995	653.99951	655.76147	656.27539	655.51807	653.51074	650.21240	645.63062	3	M/S	197.82959	207.78899	217.11217	226.06046	234.79266	243.74791	253.32780	262.98755	273.87646	286.20874	301.40601	TOT PRESS	BARS	2.75400	2.75400	2.75400	2.75400	2.75400	2.75400	2.75400	2.75400	2.75400	2.75400	2.75400
ALPHA DEG	30.67960	31.39392	31.89401	32.22270	32.40405	32.52744	32.69247	32.77702	33.07068	33.66943	35.03473	8	H/S	250.00000	245.50000	241.00000	236.50000	232.00000	227.30000	222.20000	217.00000	211.00000	204.00000	195.00000	STAT TEMP	¥	1026.83789	1052.84204	1074.35034	1091.33911	1103.66945	1111.39087	1114.52979	1113.00903	1106.92529	1096.17383	1080.83154
ALPHA BAR DEG	30.86328	31.58290	32.09581	32.44269	32.64510	32.78876	32.96895	33.05711	33,33975	33.91341	35.24387	¥	#/S	148.31877	149.81819	149.97440	149.06300	147.25478	144.95921	142.60869	139.72392	137.39545	135.89400	136.71677	STAT PRESS	BARS	2.39092	2.40593	2.42038	2.43417	2.44728	2.45977	2.47164	2.48304	5.49404	2.50468	2.51486
A STATIC H/S	623.85132	631.19800	637.23950	641.96826	645.37964	647.49634	648.35815	647.94092	646.27002	643.30640	639.04834	% SPAN		0.0	10.35220	20.58168	30.73766	40.84782	50.92728	60.95825	70.93460	80.82675	90.56384	100.00000	>	H/S	379.67212	388.31421	396.85254	405.32764	413.76196	422.16846	430.53223	438.84863	447.09302	455.20679	463.07080
RADIUS M	0.08240	0.08427	0.08613	0.08796	0.08979	0.09162	0.09343	0.09524	0.09703	0.09879	0.10050	S-VALUE	E	0.0	0.00187	0.00373	0.00556	0.00739	0.00922	0.01103	0.01284	0.01463	0.01639	0.01810	X-VALUE	E	0.02000	0.02000	0.0000	0.02000	0.02000	0.02000	0.02000	0.02000	0.02000	0.02000	0.02000

STATION NUMBER 10 DOWNSTREAM OF NOZZLE 3

₹ ¥	-1.47867	-1.282%	0.22152	2.37260	4.76657	7.06155	9.08130	10.59150	11.39103	11.52297	11.28009	H.		6.44015	60605.0	0.38268	0.36103	0.34441	0.33263	0.32586	0.32506	0.32824	0.33537	0.34530	RHO	KG/CU.M	0.5052887	0.5045161	0.5059751	0.5094485	0.5148310	0.5220295	0.5308961	0.5414174	0.5535865	0.5676153	0.5837256
W. M/S	255, 96362	241.46170	228.71188	217.98451	209.61095	203.60777	200.18398	199.97343	201.77246	205.53178	210.50282	£		0.57126	0.53648	0.50264	0.47021	0.43984	0.41219	0.38839	0.37030		0.35184	0.35221	DEPS/DM	RAD/H	-12.54411	-11.22702	-10.14881	-9.26733	-8.53069	-7.86389	-7.17281	-6.35405	-5.31533	-4.02327	-2.45563
> X S	646.98608	642.59155	636.41675	628.69971	619.63086	609.41895	598.37842	586.72998	574.68579	562.30835	549.60962	MVX		0.44014	0.40908	0.38268	0.36100	0.34432	0.33243	0.32552	0.32460	0.32771	0.33484	0.34480	EPS	DEG	-0.33099	-0.30443	0.05549	0.62363	1.30302	1.98754	2.60010	3.03607	3.23635	3.21392	3.07175
BETA BAR Deg	50.39841	49.68808	49.58174	50.15718	51.53851	53.80168	57.03404	61.38268	66.54515	72.39857	78.63126	È		1.11255	1.08868	1.06484	1.04125	1.01811	0.99559	0.97404	0.95374	0.93488	0.91752	0.90156	% AREA		0.0	9.00785	9.52254	9.95772	10.30618	10.52968	10.61055	10.50932	10.24848	9.87933	9.42829
BETA DEG	50.39795	49.68767	49.58171	50.15552	51.53131	53.78525	57.00710	61.34886	66.51172	72.37256	78.61530	3	#/S	211.76318	204.86060	194.77466	181.89380	166.50195	149.00903	129.83179	109.10718	87.54395	65.20386	42.32520	TOT TEMP	¥	1062.50000	1087.60010	1108.10010	1124.00000	1135.19995	1141.69995	1143.60010	1140.80005	1133.39990	1121.30005	1104.60010
A TOTAL M/S	633.91602	640.93091	646.59302	650.94995	653.99951	655.76147	656.27539	655.51807	653.51074	650.21240	645.63062	3	7.5	332.20630	316.65674	300.41016	283.90601	267.69312	252.30898	238.59990	227.80199	219.94560	215.62666	214.71576	TOT PRESS	BARS	2.71700	2.71700	2.71700	2.71700	2.71700	2.71700	2.71700	2.71700	2.71700	2.71700	2.71700
ALPHA DEG	23.30458	22.07114	21.06177	20.28589	19.76761	19.50705	19.52621	19.90149	20.52458	21.40857	22.49075	3	H/S	594.19995	595.50000	593.89990	589.69995	583.10010	574.39990	563.89990	551.60010	538.10010	523.39990	507.69995	STAT TEMP	¥	884.02148	912.45215	937.04102	957.64087	974.02661	986.05054	993.66553	996.65088	995.00244	988.58887	977.48486
ALPHA BAR DEG	23.30493	22.07143	21.06177	20.28699	19.77232	19.51790	19.54482	19.92726	20.55463	21.43922	22.51988	š	A/S	255.95937	241.45830	228.71178	217.97160	209.55675	203.48528	199.97787	199.69275	201.45065	205.20851	210.20038	STAT PRESS	BARS	1.28279	1.32203	1.36158	1.40106	1.44009	1.47825	1.51497	1.54964	1.58185	1.61148	1.63860
A STATIC M/S	581.53540	590.24683	597.66406	603.79126	608.61084	612.11792	614.32690	615.19019	614.71362	612.85547	609.62207	% SPAN		0.0	9.87905	20.10175	30.56430	41.16371	51.76685	62.23401	72.39896	82.12834	91.34523	100.00000	5	M/S	382.43677	390.63940	399.12524	407.80615	416.59814	425.39087	434.06812	442.49292	450.55615	458.19604	465.37476
RADIUS M	0.08300	0.08478	0.08662	0.08850	0.09041	0.09232	0.09420	0.09603	0.09778	9.09944	0.10100	S-VALUE	E	0.0	0.00178	0.00362	0.00550	0.00741	0.00932	0.01120	0.01303	0.01478	0.01644	0.01800	X-VALUE	Σ	0.03000	0.03000	0.03000	0.03000	0.03000	0.03000	0.03000	0.03000	0.03000	0.03000	0.03000

STATION NUMBER 11 DOMNSTREAM OF ROTOR 1

ᅼ	C ALPHA BAR	_	A TOTAL	BETA	BETA BAR	>	£	*
Ŧ,	DEG	930	H/S	DEG	DEG	#/s	K/S	₹/s
569.206	79 90.00270	90.00276	576.69897	148.33694	147.79648	233.90814	233.90814	-47.45406
.768	07 89.99336	89.99326	583.31885	148.57819	148.23766	236.97789	236.97789	-38.42163
.081	54 89.97446	89.97423	588.68652	148.93761	148.72729	239.18987	239.18983	-30.67128
191	41 89.94997	89.94969	592.81128	149.38480	149.25853	240.62764	240.62755	-24.05975
1.087	16 89.93063	89.93047	595.69775	149.89433	149.82161	241.41707	241.41690	-18.43205
.775	•	89.91228	597.36621	150.44556	150.40675	241.64731	241.64702	-13.56630
3.292		89,90326	597.85327	151.03197	151.01421	241.33949	241.33914	-9.23610
9.616		89.95473	597.13574	151.66624	151.66072	240.44543	240.44534	-5.16782
587.77271	-	89.98297	595.23462	152.33141	152.33113	238.92436	238.92435	-1.17874
584.729		90.00052	592.11328	153.04037	153.03873	236.67610	236.67610	2.77741
580.510	20	89,98871	587,77417	153.80223	153.79317	233.57492	233.57491	6.61252
% SPA	×	3	3	3	≩	ΥΛ	ž	HVH
	H/S	H/S	<u> </u>	M/S				
0.0	229.04395	-0.01077	438.91113	-371.38916	0.41094	0.40239	0.77109	0.41094
1.060	•	0.02727	450.18896	-382.76831	0.41159	0.40614	0.78189	0.41159
21.84398	98 237.21519	0.10646	460.76733	-393.82080	0.41163	0.40823	0.79295	0.41163
2.382	97 239.42169	0.20996	470.74316	-404.59570	0.41119	0.40913	0.80443	0.41119
2.693		0.29200	480.24658	-415.15625	0.41051	0.40931	0.81662	0.41051
2.783		0.36910	489.32324	-425.49268	0.40973	0.40908	0.82968	0.40973
62.65511	-	0.40700	498.02466	-435.64209	0.40885	0.40855	0.84369	0.40885
72.310	32 240.38980	0.18974	506.53003	-445.82373	0.40780	0.4071	0.85908	0.40780
1.750	64 238.92143	0.07076	514.52271	-455.68506	0.40649	0.40649	0.87538	0.40649
0.978	182 236.65981	-0.00188	522.01733	-465.28125	0.40476	0.40473	0.89275	0.40476
100.00000	00 233.48129	0.04570	528.91333	-474.54419	0.40236	0.40220	0.91112	0.40236
>	STAT PRESS	STAT TEMP	TOT PRESS	TOT TEMP	Z AREA	EPS	DEPS/DM	RHO
Ş	BARS	¥	BARS	¥		930	RAD/M	KG/CU.N
371.37842	9526 0.97546	844.50757	1.09023	868.39868	0.0	-11.70512	-4.97487	0.4022095
12.795	65 0.97573	865.40894	1.09073	889.81860	9.86026	-9.33065	-4.24456	0.3926024
13.927	25 0.97618	882.54883	1.09112	907.32593	9.90067	-7.36732	-3.56245	0.3851565
4.805	191 0.97677	895.90454	1.09142	920.91211	9.95058	-5.73845	-2.92706	0.3796446
415.44824	124 0.97737	905.36206	1.09162	930.48608	6.99705	-4.37877	-2.33530	0.3759069
5.061	.82 0.97792	910.90308	1.09174	936.04712	10.03400	-3.21833	-1.80047	0.3738320
6.049		912.60181	1.09177	937.67334	10.05774	-2.19326	-1.35275	0.3733273
6.013		910.37964	1.09172	935.27734	10.06697	-1.23153	-1.03345	0.3744218
5.755		904.33252	1.09158	928,94653	10.06317	-0.28267	-0.88405	0.3771219
5.279	54 0.98005	894.40234	1.09137	918.60449	10.04686	0.67238	-0.93614	0.3815563
4.590		880.69800	1.09106	904.33716	10.02268	1.62226	-1.23539	0.3878308

VR M/S	-45.37480	-38.24303	-31.33038	-24.76344	-18.59167	-12.85863	-7.58532	-2.81017	1.43718	5.13993	8.28569	MVM MVM		0.35386	0.35866	0.36245	0.36559	0.36831	0.37089	0.37340	0.37593	0.37851	0.38118	0.38390	ВНО	KG/CU.M	0.4108825	0.4005013	0.3923873	0.3862715	0.3819909	0.3794096	0.3784178	0.3790170	0.3811866	0.3850247	0.3905894
YY X/S	202.09422	207.14755	211.22171	214.51736	217.13823	219.24191	220.87694	222.07338	222.84882	223.20181	223.10323	£		0.72443	0.74058	0.75633	0.77205	0.78809	0.80470	0.82204	0.84063	0.86007	0.88063	0.90230	DEPS/DM	RAD/H	-0.10418	-0.17172	0.03795	0.46254	1.05604	1.76690	2.55005	3.34726	4.12736	4.89302	5.69336
> W	202.09422	207.14755	211.22174	214.51747	217.13843	219.24223	220.87732	222.07347	222.84883	223.20181	223.10324	MVX		0.34482	0.35249	0.35844	0.36315	0.36696	0.37025	0.37318	0.37590	0.37850	0.38108	0.38363	EPS	DEG	-12.97484	-10.63883	-8.53013	-6.62889	-4.91176	-3.36235	-1.96803	-0.72505	0.36951	1.31953	2.12836
BETA BAR DEG	150.76056	151.03372	151.36566	151.73613	152.13808	152.55466	152.98421	153.43597	153.89021	154.35127	154.81978	₹		0.35386	0.35866	0.36245	0.36559	0.36831	0.37089	0.37340	0.37593	0.37851	0.38118	ć.38390	% AREA		0.0	10.25884	10.19651	10.15034	10.10876	10.06334	10.00917	9.94233	9.86109	9.76325	9.64633
BETA DEG	151.38791	151.45271	151.63292	151.89612	152.22507	152.59505	152.99791	153.43777	153.89070	154.35724	154.83502	3	H/S	-361.02197	-374.22388	-386.85620	-399.00488	-410.76294	-422.14307	-433.20068	-444.16675	-454.69482	-464.84424	-474.54419	TOT TEMP		868.39868	889.81860	907.32593	920.91211	930.48608	936.04712	937.67334	935.27734	928.94653	918.60449	91717 900
A TOTAL M/S	576.69897	583.31885	588.68652	592.81128	595.69775	597.36621	597.85327	597.13574	595.23462	592.11328	587.77417	3	H/S	413.73779	427.73071	440.76318	453.01489	464.62378	475.68042	486.26050	496.58911	506.36841	515.65405	524.37305	TOT PRESS	BARS	1.09023	1.09073	1.09112	1.09142	1.03162	1.09174	1.09177	1.09172	1.09158	1.09137	1 09106
ALPHA	90.00325	89.99210	89.97025	89.94270	89.92178	89.90254	89.89369	89.95079	89.98172	90.00052	89.98622	3	H/S	-0.01108	0.02789	0.10838	0.21292	0.29512	0.37203	0.40935	0.19044	0.07092	-0.00188	0.04570	STAT TEMP	¥	850.57617	871.17896	888.01538	901.04736	910.17114	915.35889	916.68164	914.04687	907.54004	897.08521	882,77490
ALPHA BAR Deg	90.00319	89.99250	89.97057	89.94308	89.92206	89.90271	89.89375	89.95079	89.98172	90.00052	89.98822	×	M/S	196.93451	203.58678	208.88518	213.08325	216.34084	218.86450	220.74664	222.05559	222.84419	223.14261	222.94931	STAT PRESS	BARS	1.00366	1.00200	1.00067	0.99953	0.99846	0.99737	0.99620	0.99491	0.99348	0.99192	0.99021
A STATIC M/S	571.12109	577.56348	582.76367	586.76831	589.55322	591.12964	591.53076	590.73145	588.75171	585.55371	581.15112	% SPAN		0.0	11.65898	22.85188	33.64018	44.06470	54.15260	63.92169	73.38435	82.54869	91.42000	100.00000	5	M/S	361.01099	374.25195	386.96460	399.21802	411.05811	422.51514	433.61011	444.35718	454.76587	464.84253	624 59009
RADIUS	0.07835	0.08122	0.08398	0.08664	0.08921	0.09170	0.09411	0.09644	0.09870	0.10068	0.10300	S-VALUE	E	0.0	0.00287	0.00563	0.00829	0.01086	0.01335	0.01576	0.01809	0.02035	0.02254	0.02465	X-VALUE	E	0.06000	0.06000	0.06000	0.06000	0.0000	0.06000	0.06000	0.06000	0.06000	0.06000	0.06000

PADIUS	A STATIC	ALPHA BAR	ALPHA	A TOTAL	BETA	BETA BAR	>	₹	*
I	M/S	DEG	DEG	M/S	DEG	DEG	M/S	M/S	M/S
0.03549	576.21021	90.02341	90.02396	576.69897	90.02396	90.02341	60.03233	60.03232	-13.20479
0.05181	582.78809	89.96019	89.95992	583.31885	89.95992	89.96019	63.04822	63.04820	-7.62933
0.05379	588.12207	89.87500	89.87468	588.68652	89.87468	89.87500	65.42917	65.42900	-4.48126
0.07370	592.22266	89.78648	89.78638	592.81128	89.78638	89.78648	67.19534	64.19489	-2.17325
0.09234	595.09351	89.73184	89.73184	595.69775	89.73184	89.73184	68.33368	68.33292	-0.30354
0.09012	596.75317	89.68556	89.68550	597.36621	89.68550	89.68556	68.99660	68.99556	1.27431
0.09727	597.23804	89.67184	89.67157	597.85327	89.67157	89.67184	69.15771	69.15656	2.63233
0.10394	596.52563	89.85277	89.85254	597.13574	89.85254	89.85277	68.79783	68.79765	3.80817
0.11023	594.63696	89.94643	89.94626	595.23462	89.94626	89.94643	67.93549	67.93546	4.82732
0.11623	591.53345	90.00145	90.00145	592.11328	90.00145	90.00145	66.64177	66.64177	5.70658
0.12200	587.21997	89.96582	89.96565	587.77417	89.96565	89.96582	64.76723	64.76720	6.44470
S-VALUE	% SPAN	×	3	3	2	2	XX	₹	MVM
E		M/S	M/S	M/S	M/S				
0.0	0.0	58.56204	-0.02446	60.03232	-0.02446	0.10418	0.10163	0.10418	0.10418
0.01632	18.86320	62.58488	0.04373	63.04822	0.04373	0.10818	0.10739	0.10818	0.10818
0.02830	32.71503	65.27536	0.14270	65.42914	0.14270	0.11125	0.11099	0.11125	0.11125
0.03821	44.16351	67.15973	0.25035	67.19534	0.25035	0.11346	0.11340	0.11346	0.11346
0.04685	54.15456	68.33223	0.31978	68.33365	0.31978	0.11483	0.11483	0.11483	0.11483
0.05463	63.14893	68.98378	0.37856	68.99658	0.37856	0.11562	0.11560	0.11562	0.11562
0.06178	71.41179	69.10643	0.39605	69.15768	0.39605	0.11530	0.11571	0.11580	0.11579
0.06845	79.11940	68.69217	0.17671	68.79782	0.17671	0.11533	0.11515	0.11533	0.11533
9.07474	86.39702	67.76373	0.06349	67.93546	0.06349	0.11425	0.11396	0.11425	0.11425
0.08074	93.33157	66.39699	-0.00163	66.64177	-0.00163	0.11266	0.11225	0.11266	0.11266
0.08651	100.00000	92545.49	0.03858	64.76720	0.03858	0.11029	0.10975	0.11029	0.11029
X-VALUE	כ	STAT PRESS	STAT TEMP	TOT PRESS	TOT TEMP	% AREA	EPS	DEPS/DM	RHO
r	M/S	BARS	¥	BARS	¥		DEG	RAD/M	KG/CU.M
0.25000	0.0	1.08237	866.82861	1.09023	868.39868	0.0	-12.70676	0.0	0.4347991
0.25000	0.0	1.08227	888.09497	1.09073	889.81860	10.45610	-6.95027	0.0	0.4243471
0.25000	0.0	1.08218	905.47607	1.09112	907.32593	10.16744	-3.92729	0.0	0.4161677
0.25000	0.0	1.08213	918.96631	1.09142	920.91211	9.99446	-1.85341	0.0	0.4100403
0.25000	0.0	1.08211	928.47778	1.09162	930.48608	9.89868	-0.25451	0.0	0.4058304
0.25000	0.0	1.08210	934.00195	1.09174	936.04712	9.84927	1.05828	0.0	0.4034278
0.25000	0.0	1.09211	935.61914	1.09177	937.67334	9.83152	2.18140	0.0	0.4027337
0.25000	0.0	1.08213	933.24365	1.09172	935.27734	9.84703	3.17313	0.0	0.4037673
0.25000	0.0	1.08217	956.96094	1.09158	928.94653	9.89671	4.07472	0.0	0.4065176
0.25000	0.0	1.08221	916.68994	1.09137	918.60449	9.97158	4.91230	0.0	0.4110889
0.25000	0.0	1.08227	902.52344	1.09106	904.33716	10.08720	5.71070	0.0	0.4175636

