Exercício 1

Modelo I = b0 + b1 V + eicom b0 = 0com b1 = 1/R

Regression

Descriptive Statistics

	Mean	Std. Deviation	N
I (intensidade de corrente)	1,5460	,72807	5
V (dif. Potencial)	1,3600	,61074	5

Correlations

		I (intensidade de corrente)	V (dif. Potencial)
Pearson Correlation	I (intensidade de corrente)	1,000	,994
	V (dif. Potencial)	,994	1,000
Sig. (1-tailed)	I (intensidade de corrente)	•	<mark>,000</mark>
	V (dif. Potencial)	,000	•
N	I (intensidade de corrente)	5	5
	V (dif. Potencial)	5	5

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	V (dif. Potencial) ^a	•	Enter

- a. All requested variables entered.
- b. Dependent Variable: I (intensidade de corrente)

Indica qual a variável dependente (I) e independente (V)

Prof^a Ana Cristina Braga Coeficiente de correlação - mede a associação linear (0.994 é positiva e forte). Mødel Summary^b Adjusted R Std. Error of Model R Square **Square** the Estimate .994a .987 .983 .09515 a. Predictors: (Constant), V (dif. Potencial) Coeficiente de determinação, indica que 98,7% da variável dependente pode ser b. Dependent Variable: I (intensidade de corrente) explicada pela variação da variável Nesta tabela ANOVA é independente testada a H0: O modelo em estudo não é válido ANOVA^b Model Sum of Squares df Mean Square \mathbf{F} Sig. 231,210 Regression 2,093 2,093 $,001^{\circ}$.009 Residual ,027 3 Total 2.120 a. Predictors: (Constant), V (dif. Potencial) b. Dependent Variable: I (intensidade de corrente) Como Sig=0.001 < 0.05então leva à rejeição de H0, b0 = -0.065. pelo que o modelo é representa a estatisticamente significativo Coefficients^a estimativa pontual para a ordenada Standardized na origem Coefficients **Unstandardized Coefficients** Model Std. Error Beta Sig. (Constant) -,065 <u>,610</u> ,114 -,568 V (dif. Potencial) 1.184 ,078 .994 15,206 .001 a. Dependent Variable: I (intensidade de corrente) b1=1.184, representa estimativa pontual do Coefficients^a declive = (1/R)95,0% Confidence Interval for B Teste de H0: b0 = 0**Upper Bound** Model **Lower Bound** Como Sig=0.610>0/05 ,298 (Constant) -,428 então Não Rej H0, belo que b0 = 0V (dif. Potencial) ,937 1,432 a. Dependent Variable: I (intensidade de corrente) Teste de H0: b1 = 0Como Sig=0.01<0.05 então Teste de H0: b0 = 0Rej H0, pelo que b1 dif 0 Como IC a 95% inclui 0 então Não Rej H0, pelo que b0 = 0Teste de H0: b1 = 0

Como IC a 95% não inclui 0

então Rej H0, pelo que b1 dif 0 IC para b1 = [0.937,1.432]

gina **2** de **5**

ESTUDO DAS CONDIÇÕES DE APLICABILIDADE DOS PRESSUPOSTOS

Graph

Pressupostos para a análise dos resíduos ei ~N(0,signa^2): - independentes

- são normalmente distribuídos
- média zero
- variância (sigma^2) constante
- não existem outliers

Explore

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Studentized Residual	5	100,0%	0	,0%	5	100,0%

Descriptives Statistic Std. Error ,48184425 Studentized Residual ,0353615 Mean 95% Confidence Interval for Lower Bound -1,3024526 Estimativa pontual para Mean o valor médio dos Upper Bound 1,3731756 resíduos 5% Trimmed Mean ,0224441 Median -,1404695 Variance 1,161 IC a 95% permite avaliar que o valor médio dos Std. Deviation 1,07743649 resíduos pode ser zero Minimum -1,08794 (verifica o pressuposto de que os resíduos têm Maximum 1,39117 média zero) 2,47911 Range Interquartile Range 2,10873 Skewness ,313 ,913

NPar Tests

One-Sample Kolmogorov-Smirnov Test

Kurtosis

		Studentized Residual
	N	5
Normal Parameters ^{a,,b}	Mean	,0353615
	Std. Deviation	1,07743649
Most Extreme Differences	Absolute	,198
	Positive	,198
	Negative	-,182
	Kolmogorov-Smirnov Z	,442
	Asymp. Sig. (2-tailed)	<mark>,990</mark>

Testa a H0: Os resíduos seguem uma distribuição Normal (teste KS para a Normal com a correção de Lilliefors). Como Sig=0.990 > 0.05 então não Rej H0

2,000

-2,322

a. Test distribution is Normal.

b. Calculated from data.