CUSTOMER SEGMENTATION FOR MARKETING STRATEGY: AN UNSUPERVISED LEARNING APPROACH

Unsupervised Learning Final Project

THE PROBLEM

- Retail businesses struggle to understand diverse customer behaviors
- Generic marketing strategies waste 40-60% of marketing budgets
- One-size-fits-all approaches fail to engage key customer segments
- Need to identify natural customer groupings not apparent through conventional analysis

My Goal: Develop data-driven, targeted marketing strategies for distinct customer segments

DATASET OVERVIEW

Mall Customer Dataset:

- 200 customer records with 5 features:
 - CustomerID: Unique identifier for each customer
 - Gender: Male or Female
 - Age: Customer's age
 - Annual Income (k\$): Customer's annual income in thousands of dollars
 - Spending Score (1-100): Score assigned based on customer spending behavior and purchasing data

Data Quality:

- No missing values
- Age range: 18-70 years (mean: 38.85)
- Income range: \$15K-\$137K (mean: \$60.56K)
- Spending Score range: 1-99 (mean: 50.2)
- · Gender distribution: 56% female, 44% male

KEY INSIGHTS FROM EDA

Feature Distributions:

- Age shows bimodal distribution with peaks around late 20s and late 40s
- Annual income has relatively normal distribution with some high-income outliers
- Spending score is uniformly distributed across the range

Feature Relationships:

- Weak correlation between age and spending score (-0.44)
- No significant correlation between income and spending score (0.01)
- Clear visual patterns in Income vs. Spending score scatter plot
- Gender differences exist in purchasing behaviors

MACHINE LEARNING APPROACH

Data Preparation

- Feature Engineering: Converted categorical variables to numeric
- Feature Scaling: Applied StandardScaler to normalize all features
- Dimensionality Reduction: Used PCA to understand data structure

Algorithms Implemented

- K-Means Clustering: Partitional clustering with centroid-based groups
- · Hierarchical Clustering: Agglomerative approach with Ward's linkage method

Model Selection

- **Elbow Method:** Plotted inertia vs. number of clusters
- Silhouette Analysis: Measured cluster cohesion and separation
- Dendrogram Visualization: Confirmed optimal clusters for hierarchical

Evaluation Strategy

- PCA Visualization: Examined clusters in reduced-dimensional space
- Feature Importance: Analyzed PCA component loadings
- Statistical Profiling: Characterized clusters by feature distributionss

RESULTS

Optimal Clustering Solution:

- 5 distinct customer segments identified
- K-Means with k=5 achieved silhouette score of 0.4981
- PCA captured 75.15% of variance with 2 components
 - PC1 (47.88%): Primary axis separating income and spending behaviors
 - _o PC2 (27.27%): Primarily influenced by age and gender

Cluster Validation:

- Hierarchical clustering confirmed 5-cluster solution
- Clear separation between segments in feature space
- Minimal overlap between identified segments

Feature Importance:

- Spending Score and Annual Income: Primary drivers of segmentation
- Age: Secondary factor with significant influence
- Gender: Tertiary factor with moderate influence

CUSTOMER SEGMENTS IDENTIFIED

Five Distinct Customer Groups:

Segment	Size	Demographics	Income	Spending Score	Key Characteristics
Budget-Conscious	29%	56% female, avg age 44	~\$55k	50	Value-sensitive, practical
Affluent Conservative	16%	45% female, avg age 42	~\$88k	17	Quality-focused, deliberate
Young Enthusiasts	19%	59% female, avg age 28	~\$26k	82	Trend-sensitive, experience-oriented
High-Value Prime	17%	63% female, avg age 33	~\$87k	82	Premium-oriented, brand-conscious
Disengaged Seniors	19%	37% female, avg age 57	~\$53k	20	Price-sensitive, traditional

CONCLUSION

- Effective Segmentation: Unsupervised learning successfully identified 5 distinct customer groups
- **Data-Driven Insights**: Analysis revealed counterintuitive patterns (e.g., income-spending disconnect)
- Actionable Strategies: Each segment has clear, tailored marketing approaches
- **Expected Impact**: Projected 15-30% improvements in key metrics across segments
- **Business Value**: More efficient marketing spend, improved customer engagement, and increased revenue potential