Lecture 16: Detection + Segmentation

Reminder: A4

A4 due Wednesday, November 13, 11:59pm

A4 covers:

- PyTorch autograd
- Residual networks
- Recurrent neural networks
- Attention
- Feature visualization
- Style transfer
- Adversarial examples

Last Time: Computer Vision Tasks

Classification

Semantic Segmentation

Object Detection

Instance Segmentation

GRASS, CAT, TREE, **CAT** SKY

DOG, DOG, CAT

DOG, DOG, CAT

No spatial extent

No objects, just pixels

Multiple Objects

Last Time: Object Detection

Classification

Semantic Segmentation

Object Detection

Instance Segmentation

DOG, DOG, CAT

No objects, just pixels

Multiple Objects

No spatial extent

Object Detection: Impact of Deep Learning

Last Time: Object Detection Methods

"Slow" R-CNN: Run CNN independently for each region

Fast R-CNN: Apply differentiable cropping to shared image features

Recap: Slow R-CNN Training

"Slow" R-CNN: Run CNN independently for each region

Fast R-CNN: Apply differentiable cropping to shared image features

Input Image

Ground-Truth boxes

Input Image

Ground-Truth boxes

Region Proposals

Input Image

Categorize each region proposal as positive, negative, or neutral based on overlap with ground-truth boxes

GT Boxes

Positive

Neutral

Negative

Input Image

GT Boxes

Neutral

Negative

Positive

Crop pixels from each positive and negative proposal, resize to 224 x 224

Input Image

GT Boxes

Positive

Neutral

Negative

Run each region through CNN. For positive boxes predict class and box offset; for negative boxes just predict background class

Class target: Background

Box target: None

Fast R-CNN Training

Crop features for each region, use them to predict class and box targets per region

Input Image

Image Features

Positive

Negative

Class target: Dog

Box target: ——

Class target: Background

Box target: None

This image is CCO public domain

GT Boxes

Neutral

Fast<u>er</u> R-CNN: Learnable Region Proposals

Jointly train with 4 losses:

- RPN classification: anchor box is object / not an object
- **2. RPN regression**: predict transform from anchor box to proposal box
- 3. Object classification: classify proposals as background / object class
- **4. Object regression**: predict transform from proposal box to object box

Anchor -> Region Proposal -> Object Box (Stage 1) (Stage 2)

Faster R-CNN Training: RPN Training

RPN predicts Object / Background for each anchor, as well as regresses from anchor to object box

Input Image

Image Features

Class target: Obj Box target: —

GT Boxes

Neutral

Positive

Negative

Backbone CNN

Class target: Obj

Box target: -

Class target: Obj

Box target: —

RPN gives lots of anchors which we classify as pos / neg / neutral by matching with ground-truth

Class target: Background

Box target: None

Justin Johnson November 11, 2019 Lecture 16 - 15

Faster R-CNN Training: Stage 2

Crop features for each proposal, use them to predict class and box targets per region

Input Image

Image Features

Class target: Cat Box target: -

GT Boxes Positive

Neutral Negative Now proposals come from RPN rather than selective search, but otherwise this works the same as Fast R-CNN training

Class target: Background

Box target: None

This image is CCO public domain

November 11, 2019 Justin Johnson Lecture 16 - 16

Recap: Fast R-CNN Feature Cropping

"Slow" R-CNN: Run CNN independently for each region

Fast R-CNN: Apply differentiable cropping to shared image features

Cropping Features

Goal: Crop features for region proposal, and resize to a fixed size for downstream processing, in a differentiable way

Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7)

Girshick, "Fast R-CNN", ICCV 2015.

(e.g. 3 x 640 x 480)

(e.g. 512 x 20 x 15)

Cropping Features: Rol Pool

"Snap" to grid cells Project proposal onto features **CNN**

Input Image (e.g. 3 x 640 x 480)

Image features (e.g. 512 x 20 x 15)

Divide into 2x2 grid of (roughly) equal subregions

Max-pool within each subregion

Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7)

Region features always the same size even if input regions have different sizes!

Girshick, "Fast R-CNN", ICCV 2015.

Cropping Features: Rol Pool

"Snap" to grid cells Project proposal onto features CNN Image features Input Image (e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Divide into 2x2 grid of (roughly) equal subregions

Max-pool within each subregion

Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7)

Problem #1: Misaligned features due to snapping

Cropping Features: Rol Pool

Input Image (e.g. 3 x 640 x 480)

Image features (e.g. 512 x 20 x 15)

Region Features = f(image features, box coordinates)

Divide into 2x2 grid of (roughly) equal subregions

Max-pool within each subregion

Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7)

Problem #1: Misaligned features due to snapping

Problem #2: Can't backprop to box coordinates

Divide into equal-sized subregions (may not be aligned to grid!)

Sample features at regularly-spaced points in each subregion using bilinear interpolation

He et al, "Mask R-CNN", ICCV 2017

Divide into equal-sized subregions (may not be aligned to grid!)

Sample features at regularly-spaced points in each subregion using bilinear interpolation

 $f_{x,y} = \sum_{i,j} f_{i,j} \max(0, 1 - |x - i|) \max(0, 1 - |y - j|)$ $i \in \{ \lfloor x \rfloor - 1, \dots, \lceil x \rceil + 1 \}$

 $j \in \{ \lfloor y \rfloor - 1, \dots, \lceil y \rceil + 1 \}$

CNN

 $f_{6.5,5.8} = (f_{6,5} * 0.5 * 0.2) + (f_{7,5} * 0.5 * 0.2)$

 $+ (f_{6.6} * 0.5 * 0.8) + (f_{7.6} * 0.5 * 0.8)$

Divide into equal-sized subregions (may not be aligned to grid!)

Sample features at regularly-spaced points in each subregion using bilinear interpolation

 $\mathbf{f}_{6.5,5.8} = (\mathbf{f}_{6,5} * 0.5 * 0.2) + (\mathbf{f}_{7,5} * 0.5 * 0.2) + (\mathbf{f}_{6,6} * 0.5 * 0.8) + (\mathbf{f}_{7,6} * 0.5 * 0.8)$

 $f_{x,y} = \sum f_{i,j} \max(0, 1 - |x - i|) \max(0, 1 - |y - j|)$

 $\mathbf{f}_{6.5,5.8} = (\mathbf{f}_{6,5} * 0.5 * 0.2) + (\mathbf{f}_{7,5} * 0.5 * 0.2) + (\mathbf{f}_{6,6} * 0.5 * 0.8) + (\mathbf{f}_{6,6} * 0.5 * 0.8)$

Divide into equal-sized subregions (may not be aligned to grid!)

$$f_{x,y} = \sum f_{i,j} \max(0, 1 - |x - i|) \max(0, 1 - |y - j|)$$

$$\mathbf{f}_{6.5,5.8} = (\mathbf{f}_{6,5} * 0.5 * 0.2) + (\mathbf{f}_{7,5} * 0.5 * 0.2) + (\mathbf{f}_{6,6} * 0.5 * 0.8) + (\mathbf{f}_{7,6} * 0.5 * 0.8)$$

Feature f_{xy} for point (x, y) is a linear combination of features at its four neighboring grid cells:

0.2 0.5

†_{7,5}

6.5,5.8

 $+ (f_{6.6} * 0.5 * 0.8) + (f_{7.6} * 0.5 * 0.8)$

Divide into equal-sized subregions (may not be aligned to grid!)

 $f_{x,y} = \sum_{i=1}^{n} f_{i,j} \max(0, 1 - |x - i|) \max(0, 1 - |y - j|)$

CNN

This is differentiable! Upstream gradient for sampled feature will flow backward into each of the four nearest-neighbor gridpoints

Feature f_{xy} for point (x, y) is a linear combination of features at its four neighboring grid cells:

6.5,5.8

Divide into equal-sized subregions (may not be aligned to grid!)

Output features now aligned to input box! And we can backprop to box coordinates!

Object Detection Methods

Both of these rely on anchor boxes. Can we do detection without anchors?

"Slow" R-CNN: Run CNN independently for each region

Fast R-CNN: Apply differentiable cropping to shared image features

Faster R-CNN:
Compute proposals
with CNN

Single-Stage: Fully convolutional detector

Detection without Anchors: CornerNet

Represent bounding boxes by pairs of corners

Upper left corners Heatmap: C x H x W Embeddings: D x H x W

Matching corners are trained to have similar embeddings

Lower right corners Heatmap: C x H x W Embeddings: D x H x W

Law and Deng, "CornerNet: Detecting Objects as Paired Keypoints", ECCV 2018

Computer Vision Tasks: Object Detection

Classification

Semantic Segmentation

Object Detection

Instance Segmentation

GRASS, CAT, TREE, SKY

DOG, DOG, CAT

DOG, DOG, CAT

No spatial extent

No objects, just pixels

Multiple Objects

Computer Vision Tasks: Semantic Segmentation

Classification

Semantic Segmentation

Object Detection

Instance Segmentation

DOG, DOG, CAT

DOG, DOG, CAT

No spatial extent

CAT

No objects, just pixels

Multiple Objects

Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

Semantic Segmentation Idea: Sliding Window

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation Idea: Sliding Window

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

between overlapping patches

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Long et al, "Fully convolutional networks for semantic segmentation", CVPR 2015

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Input: 3 x H x W **Problem #1**: Effective receptive field size is linear in number of conv layers: With L 3x3 conv layers, receptive field is 1+2L

Long et al, "Fully convolutional networks for semantic segmentation", CVPR 2015

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Input: 3 x H x W **Problem #1**: Effective receptive field size is linear in number of conv layers: With L 3x3 conv layers, receptive field is 1+2L

Problem #2: Convolution on high res images is expensive!
Recall ResNet stem aggressively downsamples

Long et al, "Fully convolutional networks for semantic segmentation", CVPR 2015

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Input: 3 x H x W

High-res: L D₁ x H/2 x W/2

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Downsampling: Pooling, strided convolution

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling: ???

Input: 3 x H x W

High-res: $D_1 \times H/2 \times W/2$

'' High-res: D₁ x H/2 x W/2

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

In-Network Upsampling: "Unpooling"

Bed of Nails

Input C x 2 x 2

Output C x 4 x 4

In-Network Upsampling: "Unpooling"

Bed of Nails

Input C x 2 x 2

Output C x 4 x 4

Nearest Neighbor

Input C x 2 x 2

Output C x 4 x 4

In-Network Upsampling: Bilinear Interpolation

Input: C x 2 x 2

Output: C x 4 x 4

$$f_{x,y} = \sum_{i,j} f_{i,j} \max(0,1-|x-i|) \max(0,1-|y-j|) \quad i \in \{\lfloor x \rfloor -1, \ldots, \lceil x \rceil +1\}$$
 Use two closest neighbors in x and y
$$j \in \{\lfloor y \rfloor -1, \ldots, \lceil y \rceil +1\}$$
 to construct linear approximations

In-Network Upsampling: Bicubic Interpolation

Input: C x 2 x 2 Output: C x 4 x 4

Use **three** closest neighbors in x and y to construct **cubic** approximations (This is how we normally resize images!)

In-Network Upsampling: "Max Unpooling"

Max Pooling: Remember which position had the max

Max Unpooling: Place into remembered positions

1	2	6	3								0	0	2	0
3	5	2	1	—	5	6	Rest	1	2	→	0	1	0	0
1	2	2	1		7	8	→ or → net	3	4		0	0	0	0
7	3	4	8				•			•	3	0	0	4

Pair each downsampling layer with an upsampling layer

Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Dot product between input and filter

Input: 4 x 4

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Dot product between input and filter

Input: 4 x 4

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Convolution with stride > 1 is "Learnable Downsampling" Can we use stride < 1 for "Learnable Upsampling"?

Dot product between input and filter

Input: 4 x 4

3 x 3 convolution transpose, stride 2

3 x 3 convolution transpose, stride 2

3 x 3 convolution transpose, stride 2

Filter moves 2 pixels in <u>output</u> for every 1 pixel in <u>input</u>

Weight filter by input value and copy to output

Input: 2 x 2

3 x 3 convolution transpose, stride 2

Sum where output overlaps

Filter moves 2 pixels in <u>output</u> for every 1 pixel in <u>input</u>

Weight filter by input value and copy to output

Input: 2 x 2

3 x 3 convolution transpose, stride 2

Sum where output overlaps

This gives 5x5 output – need to trim one pixel from top and left to give 4x4 output

Weight filter by input value and copy to output

Input: 2 x 2

Transposed Convolution: 1D example

Transposed Convolution: 1D example

This has many names:

- Deconvolution (bad)!
- Upconvolution
- Fractionally strided convolution
- Backward strided convolution
- <u>Transposed Convolution</u> (best name)

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & x & 0 & 0 & 0 \\ 0 & x & y & x & 0 & 0 \\ 0 & 0 & x & y & x & 0 \\ 0 & 0 & 0 & x & y & x \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1

We can express convolution in terms of a matrix multiplication Transposed convolution multiplies by the transpose of the same matrix:

 $\vec{x} *^T \vec{a} = X^T \vec{a}$

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & x & 0 & 0 & 0 \\ 0 & x & y & x & 0 & 0 \\ 0 & 0 & x & y & x & 0 \\ 0 & 0 & 0 & x & y & x \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix} \begin{bmatrix} x & 0 & 0 & 0 \\ y & x & 0 & 0 \\ z & y & x & 0 \\ 0 & z & y & x \\ 0 & 0 & z & y \\ 0 & 0 & 0 & z \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ax \\ ay + bx \\ az + by + cx \\ bz + cy + dx \\ cz + dy \\ dz \end{bmatrix}$$

$$egin{bmatrix} x & 0 & 0 & 0 \ y & x & 0 & 0 \ z & y & x & 0 \ 0 & z & y & x \ 0 & 0 & z & y \ 0 & 0 & 0 & z \end{bmatrix} \, egin{bmatrix} a \ b \ c \ d \end{bmatrix} = egin{bmatrix} ax \ ay + bx \ az + by + c \ bz + cy + c \ cz + dy \ dz \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1 When stride=1, transposed conv is just a regular conv (with different padding rules)

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X \vec{a}$$

$$\begin{bmatrix} x & y & x & 0 & 0 & 0 \\ 0 & 0 & x & y & x & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=2, padding=1

Transposed convolution multiplies by the transpose of the same matrix:

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

We can express convolution in terms of a matrix multiplication

 $\vec{x} *^T \vec{a} = X^T \vec{a}$

$$\begin{bmatrix} x & y & x & 0 & 0 & 0 \\ 0 & 0 & x & y & x & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix} \qquad \begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az + bx \\ by \\ bz \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az + bx \\ by \\ bz \\ 0 \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=2, padding=1

When stride>1, transposed convolution cannot be expressed as normal conv

Downsampling: Pooling, strided convolution

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling: linterpolation, transposed conv

Input: 3 x H x W

High-res: $D_1 \times H/2 \times W/2$

High-res: D₁ x H/2 x W/2

Predictions: H x W

Loss function: Per-Pixel cross-entropy

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Computer Vision Tasks

Object Detection: Detects individual object instances, but only gives box

Semantic Segmentation: Gives perpixel labels, but merges instances

Things and Stuff

Things: Object categories that can be separated into object instances (e.g. cats, cars, person)

Stuff: Object categories that cannot be separated into instances (e.g. sky, grass, water, trees)

Computer Vision Tasks

Object Detection: Detects individual object instances, but only gives box (Only things!)

Semantic Segmentation: Gives perpixel labels, but merges instances (Both things and stuff)

Computer Vision Tasks: Instance Segmentation

Classification

Semantic Segmentation

Object Detection

Instance Segmentation

CAT

GRASS, CAT, TREE,
SKY

DOG, DOG, CAT

No spatial extent

No objects, just pixels

Multiple Objects

Computer Vision Tasks: Instance Segmentation

Instance Segmentation:

Detect all objects in the image, and identify the pixels that belong to each object (Only things!)

This image is CCO public domain

Computer Vision Tasks: Instance Segmentation

Instance Segmentation:

Detect all objects in the image, and identify the pixels that belong to each object (Only things!)

Approach: Perform object detection, then predict a segmentation mask for each object!

This image is CCO public domain

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NeurIPS 2015

Instance Segmentation: Mask R-CNN

Classification Bounding-box regression loss

Mask Prediction

Object Detection

DOG, DOG, CAT

Classification

loss

Instance

DOG, DOG, CAT

He et al, "Mask R-CNN", ICCV 2017

Predict a mask for each of C classes: C x 28 x 28

He et al, "Mask R-CNN", ICCV 2017

Mask R-CNN: Very Good Results!

Beyond Instance Segmentation

Instance Segmentation: Separate object instances, but only things

Semantic Segmentation: Identify both things and stuff, but doesn't separate instances

Beyond Instance Segmentation: Panoptic Segmentation

Label all pixels in the image (both things and stuff)

For "thing" categories also separate into instances

Kirillov et al, "Panoptic Segmentation", CVPR 2019
Kirillov et al, "Panoptic Feature Pyramid Networks", CVPR 2019

Beyond Instance Segmentation: Panoptic Segmentation

Kirillov et al, "Panoptic Feature Pyramid Networks", CVPR 2019

Beyond Instance Segmentation: Human Keypoints

Represent the pose of a human by locating a set of **keypoints**

e.g. 17 keypoints:

- Nose
- Left / Right eye
- Left / Right ear
- Left / Right shoulder
- Left / Right elbow
- Left / Right wrist
- Left / Right hip
- Left / Right knee
- Left / Right ankle

Person image is CCO public domain

Ground-truth has one "pixel" turned on per keypoint. Train with softmax loss

He et al, "Mask R-CNN", ICCV 2017

Joint Instance Segmentation and Pose Estimation

He et al, "Mask R-CNN", ICCV 2017

Dense Captioning: Predict a caption per region!

Johnson, Karpathy, and Fei-Fei, "DenseCap: Fully Convolutional Localization Networks for Dense Captioning", CVPR 2016

Dense Captioning

Johnson, Karpathy, and Fei-Fei, "DenseCap: Fully Convolutional Localization Networks for Dense Captioning", CVPR 2016

Dense Captioning

Johnson, Karpathy, and Fei-Fei, "DenseCap: Fully Convolutional Localization Networks for Dense Captioning", CVPR 2016

3D Shape Prediction: Predict a 3D triangle mesh per region!

Classification

loss

Mesh

predictor

Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

3D Shape Prediction: Mask R-CNN + Mesh Head

Mask R-CNN:

2D Image -> 2D shapes

2D Image -> **3D** shapes

More details next time!

Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

He, Gkioxari, Dollár, and Girshick, "Mask R-CNN", ICCV 2017

Summary: Many Computer Vision Tasks!

Classification

Semantic Segmentation

Object Detection

Instance Segmentation

CAT

GRASS, CAT, TREE, SKY

DOG, DOG, CAT

DOG, DOG, CAT

No spatial extent

No objects, just pixels

Multiple Objects

nis image is CCO public domai

Next Time: 3D Vision