

图神经网络的并行化

报告人: 王云攀

时间: 2019.10.31

汇报内容

- 一、图神经网络概述
- 二、1stChebNet算法[1]介绍及实现
- 三、下一步工作

1. Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.

1. 什么是图神经网络?

- 输入
 - 图的结构和节点的内容信息
- 输出
 - Node-level,关于节点的回归和分类任务,最后一层为softmax函数或者感知机
 - Edge-level,对边的分类或者预测任务,一个额外的函数用于连接边的表示
 - Graph-level,图的分类任务,最后一层为pooling 层

学习类型

- 半监督学习, Node-level classification, 先学习有标记数据, 再对未标记数据进行分类
- 监督学习, Graph-level classification, 给出图数据集, 预测整个图的类别标签。
- 无监督学习: Graph-embedding, 学习图的表示
- 每层的基本操作
 - 聚集邻居节点的信息产生新的表示
 - 每个节点的表示再表示

1. 什么是图神经网络?

• GNN vs RNN^[1]

[1]. 图片来源于https://www.cnblogs.com/SivilTaram/p/graph_neural_network_1.html

2. 为什么使用图神经网络?

- 背景[1]
 - 深度学习在图像、视频和文本应用广泛,从数据中挖掘出复杂的模式的表达能力已得到公认。
 - 另一方面,Graph在现实世界中无处不在,表示对象以及关系,例如 社交网络、电子商务网络、生物学网络和交通网络。
 - 图具有复杂的结构,包含丰富的基础价值。
- 特点^[2]
 - Each graph has a variable size of unordered nodes
 - Each node in a graph has a different number of neighbors
- [1]. Zhang Z, Cui P, Zhu W. Deep learning on graphs: A survey[J]. arXiv preprint arXiv:1812.04202, 2018.
- [2]. Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks[J]. arXiv preprint arXiv:1901.00596, 2019.

3. 图神经网络的历史

- 萌芽期 (2005~2009)
 - Gori et al.(2005)^[1],基于不动点理论,考虑节点和边的特征,学习节点的表示,想法是通过结点的信息传播使整张图达到收敛,在其基础上进行预测。
 - 问题:试图寻找确定解,达到收敛使得迭代长度无法确定,采用AP算法 进行反向传播,需要对函数进行特别设计,满足收敛性。同时,计算开销 巨大。
 - Scarselli et al.(2008) ^[2], Micheli (2009) ^[3], 在以上的基础上进行改进, 但仍然基于迭代达到稳定状态的想法来做,没有解决计算开销的问题。
- [1]. Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains[C]//Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. IEEE, 2005, 2: 729-734.
- [2]. Scarselli F, Gori M, Tsoi A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80.
- [3]. Micheli A. Neural network for graphs: A contextual constructive approach[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 498-511.

3. 图神经网络的历史

- 蓬勃发展期 (2013至今)
 - Spectral CNN, ICLR 2014^[1], 首次将卷积操作应用到图神经网络中, 基于频域的方法进行考虑
 - Graph Sequence Neural Network, ICLR 2016^[2], 将GRU引入,将
 GNN固定在了T步,并且可以来预测序列任务
 - Graph Attention Network, ICLR 2017[3] 开始考虑了邻居节点的权重
 - Inductive representation learning on large graphs, NIPS 2017^[4]
 提出了GraphSage, 关于图神经网络的一种框架
- [1]. Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs[J]. arXiv preprint arXiv:1312.6203, 2013.
- [2]. Li Y, Tarlow D, Brockschmidt M, et al. Gated graph sequence neural networks[J]. arXiv preprint arXiv:1511.05493, 2015.
- [3]. Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J]. arXiv preprint arXiv:1710.10903, 2017.
- [4]. Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems. 2017: 1024-1034.

4. 图神经网络的分类[1]

- Graph Convolution Networks: 模拟 传统数据集上的卷积操作,通过自身和 邻居的特征来学习节点的表示
 - Spectral Based 方法: 基于频域的方法
 - Spatial Based 方法: 基于空间的方法

4. 图神经网络的分类[1]

Graph Convolution Networks

	Approach	Inputs		Output Mechanisms		
Category		(allow edge	Outputs			
		features?)		Intermediate	Final	
Spectral Based	Spectral CNN (2014) [21]	X	Graph-level	cluster+max pooling	softmax function	
	ČhebNet (2016) [12]	X	Graph-level	efficient pooling	mlp layer+softmax function	
	1stChebNet (2017) [14]	X	Node-level	activation function	softmax function	
	AGCN (2018) [23]	X	Graph-level	max pooling	sum pooling	
Spatial Based	GNN (2009) [18]	1	Node-level	-	mlp layer+softmax function	
			Graph-level	-	add a dummy super node	
	GGNNs (2015) [19]	Y	Node-level	-	mlp layer/softmax function	
		,	Graph-level	-	sum pooling	
	SSE (2018) [20]	X	Node-level	-	softmax function	
	MPNN (2017) [13]	./	Node-level		softmax function	
		•	Graph-level	-	sum pooling	
	GraphSage (2017) [25]	X	Node-level	activation function	softmax function	
	DCNN (2016) [47]	./	Node-level	activation function	softmax function	
		•	Graph-level	-	mean pooling	
	PATCHY-SAN (2016) [27]	/	Graph-level	-	mlp layer+softmax function	
	LGCN (2018) [28]	X	Node-level	skip connections	mlp layer+softmax function	

4. 图神经网络的分类[1]

• Graph Attention Networks: 跟GCNs 类似,试图融合邻居节点,随机行走 (Random Walk),候选模型来寻找函数。 采用了注意力机制,会分配更大的注意 力权重给更重要的节点、步行或者模型。

(a) Graph Convolution Networks [14] explicitly assign a non-parametric weight $a_{ij} = \frac{1}{\sqrt{deg(v_i)deg(v_j)}}$ to the neighbor v_j of v_i during the aggregation process.

(b) Graph Attention Networks [15] implicitly capture the weight a_{ij} via an end-to-end neural network architecture, so that more important nodes receive larger weights.

4. 图神经网络的分类[1]

- Graph Auto-encoders: 无监督的学习框架,旨在通过编码器学习节点低维表示,并且能够通过解码器重构图形。它是一种流行的学习图形嵌入(Graph Eembedding)的方法。
 - 在化学图中,原子被视为节点,化学键 被视为边缘。任务是发现新的可合成 分子具有某些化学和物理性质。

4. 图神经网络的分类[1]

Graph Generative Networks: 旨在生成合理图形数据的结构。从图的经验分布上产生图本身是个很难的问题,通常的方法是通过探索将产生的因素交替形成节点和边,进行生成式对抗训练。最广阔的应用领域是化合物的合成

4. 图神经网络的分类[1]

 Graph Spatial-temporal Networks: 旨在从时空图中学习看不见的模式,在 交通流量预测和人类活动预测应用越来 越广泛。图是考虑空间依赖性和时间依 赖性。许多当前的方法采用GCN和一 些RNN或CNN来对时空依赖性建模

4. 图神经网络的分类[1]

・其他

Category	Approaches	Inputs			Outputs	Tasks	GCN
Category	Approaches		A D S Outputs		Outputs	14585	Based
Graph	GAT (2017) [15]	✓	✓	X	node labels	node classification	✓
Attention	GAAN (2018) [29]	✓	✓	X	node labels	node classification	✓
Networks	GAM (2018) [60]	√	✓	X	graph labels	graph classification	X
	Attention Walks (2018) [61]	X	X	X	node embedding	network embedding	X
	GAE (2016) [62]	✓	X	X	reconstructed adajacency matrix	network embedding	✓
Graph	ARGA (2018) [64]	✓	X	X	reconstructed adajacency matrix	network embedding	✓
Auto-encoder	NetRA (2018) [65]	Х	×	X	reconstructed sequences of random walks	network embedding	×
	DNGR (2016) [42]	X	X	X	reconstructed PPMI matrix	network embedding	X
	SDNE (2016) [43]	X	✓	X	reconstructed adajacency matrix	network embedding	X
	DNRE (2018) [66]	✓	X	X	reconstructed node embedding	network embedding	X
Graph	MolGAN (2018) [69]	√	X	X	new graphs	graph generation	✓
Generative	DGMG (2018) [68]	X	X	X	new graphs	graph generation	✓
Networks	GraphRNN (2018) [67]	X	X	X	new graphs	graph generation	X
Networks	NetGAN (2018) [70]	X	X	X	new graphs	graph generation	X
Graph	DCRNN (2018) [73]	X	X	✓	node value vectors	spatial-temporal forecasting	1
Spatial-Temporal Networks	CNN-GCN (2017) [74]	X	×	1	node value vectors	spatial-temporal forecasting	1
	ST-GCN (2018) [75]	X	×	✓	graph labels	spatial-temporal classification	1
	Structural RNN (2016) [76]	X	X	1	node labels/value vectors	spatial-temporal forecasting	×

5. 图神经网络未来的方向[1]

- Go Deep: 根据^[2], 图形卷积的影响推动相邻节点的表示彼此更靠近, 因此, 理论上, 随着无限次的卷积, 所有节点的表示将收敛到单个点。这就提出了一个问题, 即深入学习图形结构化数据是否仍是一个不错的策略
- Receptive Field:观察一个节点时,考虑更远的邻居;
- Scalability:将图扩展到更大规模的图上,现有办法:快采样和子 图训练
- Dynamics and Heterogeneity: 现有的图都是静态的同质的图, 考虑图的结构变化,节点和边的来源不同的情况
- [1]. Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks[J]. arXiv preprint arXiv:1901.00596, 2019.
- [2]. Q. Li, Z. Han, and X.-M. Wu, "Deeper insights into graph convolutional networks for semi-supervised learning," in Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

1. 算法介绍

- 该论文属于Graph Convolution
 Network中Spectral Based的方法,实验结果只使用了三层网络就取得了很好的实验结果。
- 所属类型:
 - 半监督学习
 - inductive learning
 - Node-level, 学习节点的类别
- 该三层网络结构也可以很容易的扩展到 多层 (n+1层) 网络结构,表达式如下 所示:

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf} \,,$$

$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$
.

(a) Graph Convolutional Network

$$Z = f(X, A) = softmax(\hat{A} \ ReLU(\hat{A} \ ReLU(...ReLU(\hat{A} \ X \ W^{(0)})...) \ W^{(n-1)}) \ W^{(n)})$$

1. 算法介绍

• 关键矩阵

1.
$$ilde{A}=A+I_N$$

2.
$$ilde{D}_{ii} = \sum_j ilde{A}_{ij}$$

3.
$$\hat{A}= ilde{D}^{-rac{1}{2}} ilde{A} ilde{D}^{-rac{1}{2}}$$

$$a_{ij} = rac{1}{\sqrt{d_i}\sqrt{d_j}}$$

解释

- A是邻接矩阵 (对称,要求无向图)
- 第1步,添加自身的权重
- 第2步,统计每个节点的度数
- 第3步, 考虑边

• 实际意义

• 减少度数多的节点对自己的影响

2. 算法实现——前向传播(整个过程)

2. 算法实现——前向传播(图的角度)

从实际图的角度看,实际上几层网络结构,就是当前节点收集几跳邻居节点的信息

2. 算法实现——前向传播(矩阵角度)

2. 算法实现——反向传播(梯度下降,矩阵角度)

- 对于反向传播,正向传播转换为了矩阵 相乘的操作,所以试图从矩阵的角度概 括反向传播,经过学习总结如下:
 - 链式法则:连接各个layer
 - 标量对矩阵的求导loss layer
 - 矩阵对矩阵的求导 hidden layer和 input layer
- 正确性检验
 - 导数的定义

$$egin{align} loss &= f(Y_{(n,m)}) \ Y_{(n,m)} &= X_{(n,f)} W_{(f,m)} \ &\{ rac{dloss}{dX} \}_{(n,f)} = \{ rac{dloss}{dY} \}_{(n,m)} * W_{(m,f)}^T \ &\{ rac{dloss}{dW} \}_{(f,m)} = X_{(f,n)}^T \{ rac{dloss}{dY} \}_{(n,m)} \ &f'(x_0) = \lim_{x o x_0} rac{f(x) - f(x_0)}{x - x_0} \ &[1]:154 \ \ \end{cases}$$

$$\begin{split} &\{\frac{dloss}{dZ}\}_{(n,f)} = softmax(Z_{(n,f)}) - Y_{(n,f)} \\ &\{\frac{dloss}{dW^1}\}_{(h,f)} = \tilde{H}_{(h,n)}^T * (softmax(Z_{(n,f)}) - Y_{(n,f)}) \\ &\{\frac{dloss}{dW^0}\}_{(c,h)} = \tilde{X}_{(c,n)}^T * ((softmax(Z_{(n,f)}) - Y_{(n,f)}) * (W^1)_{(f,h)}^T) \end{split}$$

2. 算法实现——后向传播 (矩阵角度)

2. 算法实现——其他

- 基于Numpy重写
 - 优化器Adam
 - 权重矩阵初始化
 - Weight Decay损失
- 结果 (未考虑dropout)
 - 因为Numpy数据保存的是float64, Tensorflow是float32, 所以复现时取得了略好的结果

数据集	Paper	Local
Cora	0.80999	0.81000
Citeseer	0.70899	0.71100
Pubmed	0.79400	0.79399

3. 进一步思考

- 通过对论文的复现,发现图神经网络都基于以下的模式
 - 在图上进行多步传播信息,反映在隐藏层的个数的设置上
 - 每步做两个操作
 - T^{t-1} = AH^{t-1}: 基于图结构的信息,用来自 邻居节点的信息更新自己
 - H^t = T^{t-1}W: 对每个节点进行一系列复杂的 操作
 - 对于GGNNs^[1],该论文属于Graph Convolution Network中Spatial Based 的方法
 - A: 右上图, 来自论文[1]
 - W: 图片来源^[2]

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

[1]. Li Y, Tarlow D, Brockschmidt M, et al. Gated graph sequence neural networks[J]. arXiv preprint arXiv:1511.05493, 2015.

[2]. https://www.yunaitong.cn/understanding-lstm-networks.html

3. 进一步思考

- 通过对论文的复现和提取,发现,所谓的图神经网络都基于以下的模式
 - 在图上进行多步传播信息
 - 每步做两个操作
 - T^{t-1} = AH^{t-1}: 基于图结构的信息,用来 自邻居节点的信息更新自己
 - H^t = T^{t-1}W: 对每个节点进行一系列复 杂的操作
 - 对于GGNNs^[1], 可概括为右图:

1. 初始化
$$H^{(0)}=[X_v,P] \ A_v=[A_{in},A_{out}]$$

2. 图操作 $T^{(t-1)} = A_v(H^{(t-1)}W^A)$

```
3. 节点操作 H^{(t)} = \delta(T^{(t-1)}W^{z_a}) \odot tanh(T^{(t-1)}W_{h_a}) + \delta(T^{(t-1)}W^{z_a}) \odot tanh\{\delta[(T^{t-1)}W^{r_a}\odot H^{(t-1)})W^h]\} + \delta(T^{(t-1)}W^{z_a}) \odot tanh\{\delta[(H^{(t-1)}W_r)\odot H^{(t-1)}] + H^{(t-1)}\} + tanh(T^{(t-1)}W^{h_a}) \odot \delta(H^{t-1}W^{z_h}) + tanh\{\delta[(T^{(t-1)}W^{r_a}\odot H^{(t-1)})W^h)]\} \odot \delta(H^{(t-1)}W^{z_a}) + \delta(H^{(t-1)}W^{z_h}) \odot tanh\{\delta[(H^{(t-1)}W^{r_h}\odot H^{(t-1)})W^h] - H^{(t-1)}\} + H^{(t-1)}
```

[1]. Li Y, Tarlow D, Brockschmidt M, et al. Gated graph sequence neural networks[J]. arXiv preprint arXiv:1511.05493, 2015.

三、下一步工作

三、下一步工作

> 2019.08-2019.09 (已完成)

完成GNN调研,并阅读单机式并行化NeuGraph论文

> 2019.09-2019.10 (已完成)

完成Numpy复现Graph Convolution Neural Network中的Semi-GNN

> 2019.10-2019.11 (进行中)

阅读了Communication Neural Network,发现对于每个节点的邻居选择实际上不确定,放弃了该论文;现已阅读了Gated graph sequence neural network论文,正计划进行Numpy复现

> 2019.11-2020.3

实验NeuGraph论文中的代码,提出想法

谢谢