DCP 1206: Probability Lecture 15 — Expected Value of Two Random Variables and Covariance

Ping-Chun Hsieh

November 8, 2019

Announcements

- ► Midterm course evaluation (期中意見調查)
 - Google form: <u>shorturl.at/ixAFP</u> (posted on E3)
 - ▶ 11/8 (Friday) ~ 11/13 (Wednesday)

Unboxing!

•What will we learn in the 2nd half of the course?

1. Sum of Independent Random Variables

Example: Toss "moon blocks"

- 3 possible outcomes: Yes / No / Laughing
- p = P(outcome is "Yes")
- Each toss is independent from other tosses

Question: How to learn p?

- \bullet Idea: Try N tosses and take empirical average
 - Law of Large Numbers: empirical average = p, when $N \to \infty$
 - Concentration inequalities: empirical average $\approx p$, when N large

2. Statistical Inference

Example: Toss "moon blocks"

- 3 possible outcomes: Yes / No / Laughing
- p = P(outcome is "Yes")
- Each toss is independent from other tosses

Question: Estimate *p* with only 10 tosses?

- 2 Major Approaches:
 - Maximum Likelihood Estimation
 - Bayesian Inference (e.g. HW1 Problem 6)
 - Learn when Beta & Gamma distributions are useful

3. Markov Chain and Beyond

Example: Toss "moon blocks"

- 3 possible outcomes: Yes / No / Laughing
- Each toss <u>depends on the previous toss</u>
 (called "Markov")

Question: What happened after many tosses?

Idea: We will study "steady-state" behavior

Quick Review

- Given 2 random variables X, Y: What have we learned so far?
 - 1. Joint CDF
 - 2. Marginal CDF
 - 3. Joint PMF / PDF
 - 4. Marginal PMF / PDF
 - 5. Independence
- Anything else?

Quick Review

- Given 2 random variables X, Y: what have we learned so far?
 - 1. Joint CDF
 - 2. Marginal CDF
 - 3. Joint PMF / PDF
 - 4. Marginal PMF / PDF
 - 5. Independence
 - 6. Expected value involving both X, Y
 - 7. Covariance and correlation
 - 8. Conditional distribution
 - 9. Distribution of X + Y

This Lecture

1. Expected Value Regarding 2 Random Variables

2. Covariance

Reading material: Chapter 8.2 and 10.2

1. Expected Value Regarding Two Random Variables

Recall: LOTUS for 1 Discrete Random Variable

Expected Value of a Function of Discrete R.V.:

- 1. Let X be a discrete random variable with
- the set of possible values S
- PMF of X is $p_X(x)$
- 2. Let $g(\cdot)$ be a real-valued function

The expectation of g(X) is

$$E[g(X)] = \sum_{x \in S} g(x) \cdot p_X(x)$$

LOTUS for 2 Discrete Random Variables

Expected Value of a Function of 2 Discrete RVs:

- 1. Let X, Y be 2 discrete random variables with sets of possible values S_X , S_Y and joint PMF p(x,y)
- 2. Let $g(\cdot, \cdot)$ be a function from $\mathbb{R}^2 \to \mathbb{R}$ The expected value of g(X, Y) is

$$E[g(X,Y)] = \underbrace{\left(g(x,y)\right)\left(p(x,y)\right)}_{\text{xe-Sx}}$$

$$= \underbrace{\sum_{\text{xe-Sx}} g(x,y) \cdot p(x,y)}_{\text{xe-Sx}}$$

Example: Using Joint PMF to Find Expected Value

- Example: Bus #2 (NCTU Mackay Train Station)
 - ullet X = traveling time from NCTU to Mackay
 - Y = traveling time from Mackay to Train Station

Joint PMF	X=10	X=15	X <u>=2</u> 0
Y=10	0.1	0.1	0.05
Y= <u>15</u>	0.1	0.3	0.1
Y=20	0.05	0.1	0.1

$$g(X,Y)$$

$$E[X+Y] = \sum_{\alpha | f(x,y)} (x+y) (p(x,y))$$

$$= (26)(0.1) + (25)(0.1) + (30)(0.07)$$

$$+ (25)(0.1) + (30)(0.7) + (35)(0.1)$$

$$+ (30)(0.65) + (35)(0.1) + (40)(0.1)$$

Recall: LOTUS for 1 Continuous Random Variable

Expected Value of a Function of 1 Continuous RV:

Let X be a <u>continuous</u> random variable with a PDF $f_X(x)$. Let $g(\cdot)$ be a real-valued function. Then,

$$E[g(X)] := \int_{-\infty}^{+\infty} g(x) \cdot f_X(x) dx$$

$$f_{\text{twe-tray}} \text{ PRF}_{\text{Value}}$$

LOTUS for 2 Continuous Random Variables

Expected Value of a Function of 2 Continuous RVs:

1. Let X, Y be 2 continuous random variables with joint $PDF f_{XY}(x,y)$

2. Let $g(\cdot, \cdot)$ be a function from $\mathbb{R}^2 \to \mathbb{R}$

The expected value of g(X, Y) is

$$E[g(X,Y)] = \begin{cases} f_{\alpha}(f_{\alpha}) \\ g(x,y) \\ f_{\alpha}(x,y) \\ f_{\alpha}(x,y) \end{cases} f_{\alpha}(x,y) dx dy$$

Example: Using Joint PDF to Find Expected Value

Example:

$$f(x,y) = \begin{cases} 2 & \text{, if } 0 < y < x < 1 \\ 0 & \text{, otherwise} \end{cases}$$

•
$$E[X + Y] = ?$$

$$E[X+Y] = \int_{\infty}^{\infty} \int_{\infty}^{\infty} f^{**}(x+y) \left(f(x,y) \right) dy dx$$

$$= \int_{\infty}^{\infty} \left(x+y \right) \left(2 \right) dy dx = \int_{\infty}^{\infty} \left(x+y \right) \left(2 \right) dy dx$$

$$= \int_{\infty}^{\infty} \left(x+y \right) \left(2 \right) dy dx = \int_{\infty}^{\infty} \left(x+y \right) dx$$

Useful Property (I)

Linearity Property:

$$E[\alpha \cdot g_1(X, Y) + \beta \cdot g_2(X, Y)] = \alpha E[g_1(X, Y)] + \beta E[g_2(X, Y)]$$

- Remark: X, Y are NOT required to be independent
- Remark: This results holds for both discrete and continuous cases

Proof:
$$E[x,y] + \beta \cdot \beta_1 = \int_{\infty}^{\infty} \int_{\infty}^{\infty} (xy) dx dy$$

$$= \int_{\infty}^{\infty} \int_{\infty}^{\infty} (xy) dx dy$$

$$+ \int_{\infty}^{\infty} \int_{\infty}^{\infty} (xy) dx dy = \beta \cdot E[y(x,y)]$$

$$+ \int_{\infty}^{\infty} \int_{\infty}^{\infty} (xy) dx dy = \beta \cdot E[y(x,y)]$$

A Corollary of Linearity Property

Corollary: Let X, Y be 2 random variables. Then,

$$E[X+Y] = E[X] + E[Y]$$

Remark: Binomial(2,p) has an expected value of 2p

• How about Binomial (n, p)?

Conjecture X± All

Useful Property (II)

• Property under independence: Suppose X, Y are independent random variables. Then, we have

$$E[g(X) \cdot h(Y)] = E[g(X)] \cdot E[h(Y)]$$

- Remark: This result holds for both discrete and continuous cases
- Proof:

E[XY] = E[X]E[Y] If X, Y Are Independent

Corollary: Let X, Y be 2 independent random variables. Then,

$$E[XY] = E[X]E[Y]$$

Question: How about the reverse argument?

$E[XY] = E[X]E[Y] \Rightarrow X, Y$ Independent

- Example: Let X be a continuous uniform r.v. on [-1,1].
 - ▶ Define Y = -X
 - E[X] = ? E[Y] = ?
 - E[XY] = ?
 - Are X, Y independent?

Example: X, Y Not Independent and $E[XY] \neq E[X]E[Y]$

- **Example:** Let X be a continuous uniform r.v. on [-1,1].
 - ▶ Define Y = X
 - Are X, Y independent?
 - E[X] = ? E[Y] = ?
 - E[XY] = ?

When Do We Need E[XY]?

• Example: Var[X + Y]

More on E[XY]: Cauchy-Schwarz Inequality

Recall: Cauchy Inequality in high school

Cauchy-Schwarz Inequality

 Cauchy-Schwarz Inequality: Let X, Y be two random variables. Then, we have

$$E[X^2] \cdot E[Y^2] \ge (E[XY])^2$$

Question: Under what condition do we have "="?

Proof of Cauchy-Schwarz Inequality

$$E[X^2] \cdot E[Y^2] \ge (E[XY])^2$$

- ▶ Hint: Start from that $E[(tX + Y)^2] \ge 0$
- Proof:

2. Covariance

Motivating Example for "Covariance"

- Example: Bus #2 (NCTU Mackay Train Station)
 - ullet X = traveling time from NCTU to Mackay
 - ightharpoonup Y = traveling time from Mackay to Train Station
 - We want to know Var[X + Y]
 - Question: Given Var[X] and Var[Y], can we get Var[X+Y]?

Covariance and Variance

Property:

$$Var[aX + bY] = a^{2}Var[X] + b^{2}Var[Y] + 2abE[(X - E[X])(Y - E[Y])]$$

Covariance (Formally)

• Covariance: Let X, Y be two random variables. Then, the covariance of X and Y is defined as

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

- $\mathsf{Cov}(X,Y) = 0: X, Y \text{ are said to be } \underline{ }$
- Cov(X, Y) > 0: X, Y are said to be _____
- Cov(X, Y) < 0: X, Y are said to be _____
- Intuition:

A Simplified Expression of Covariance

Let X, Y be two random variables. Then, the covariance of X and Y can also be written as

$$Cov(X, Y) = E[XY] - E[X]E[Y]$$

Question: How to show this?

- Question: If X, Y are independent, then Cov(X, Y) = ?
- Question: How about the reverse argument?

Example: Uncorrelated #> Independence

- Example: The pair of random variables (X, Y) takes the values (1,0), (0,1), (-1,0), (0,-1), each with probability $\frac{1}{4}$
 - Cov(X, Y) = ?
 - Are X, Y independent?

Example

- Example: Let θ be a continuous uniform random variable on $[0,2\pi]$. Define $X=\cos\theta$ and $Y=\sin\theta$
 - $\mathsf{Cov}(X, Y) = ?$
 - ► Are *X*, *Y* independent?

1-Minute Summary

1. Expected Value Regarding 2 Random Variables

- Extend LOTUS for 2 random variables
- Independence: E[g(X)h(Y)] = E[g(X)]E[h(Y)]
- Cauchy-Schwarz Inequality

2. Covariance

- Motivation / definition / simplified expression
- Uncorrelated vs Independence