

LINEAR FUNCTIONALS

Definition

A linear functional on a vector space V over a field \mathbf{F} is a linear function from V to \mathbf{F} . In other words, a linear function is an element of $\mathcal{L}(V, \mathbf{F})$.

Notation

We tend to denote linear functionals by $\phi:V\to \mathbf{F}$, a mnemonic for functional.

Examples

1. Define $\phi: \mathbf{R}^3 \to \mathbf{R}$ by

$$\phi(x, y, z) = 4x - 5y + 2z$$

 ϕ is a linear function on \mathbb{R}^3

2. Define $\phi: \mathbf{C}^n \to \mathbf{C}$ by

$$\phi(x_1, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

where $c_1, \ldots, c_n \in \mathbf{C}$. ϕ is a linear functional on \mathbf{C}^n .

3. Let $(c_n)_{n\in\mathbb{N}}\in\ell^{\infty}$. Define $F_c:\ell^1\to\mathbf{C}$ by

$$F_c((x_n)_{n\in\mathbb{N}}) = \sum_{n=1}^{\infty} c_n x_n.$$

4. As usual, denote the set of real polynomials by $\mathcal{P}(\mathbf{R})$. Define $\phi: \mathcal{P}(\mathbf{R}) \to \mathbf{R}$ by

$$\phi(p) = 3p''(5) + 7p(4)$$

 ϕ is a linear functional on $\mathcal{P}(\mathbf{R})$.

5. As usual, denote the set of real polynomials by $\mathcal{P}(\mathbf{R})$. Define $\phi: \mathcal{P}(\mathbf{R}) \to \mathbf{R}$ by

$$\phi(p) = \int_{[0,1]} p$$

 ϕ is a linear functional on $\mathcal{P}(\mathbf{R})$.

