### **FIXED EFFECTS**

FELIPE BUCHBINDER





# IS UNEMPLOYMENT RELATED TO CRIME RATE?

Crime  $Rate_{it} = \beta_0 + \beta_1 \cdot Unemployment_{it} + U_i + \epsilon_{it}$ 



#### IS UNEMPLOYMENT RELATED TO CRIME RATE?

FIRST DIFFERENCE MODELS COMPARE t WITH t-1 TO ELIMINATE  $U_i$ 

Crime 
$$Rate_{it} = \beta_0 + \beta_1 \cdot Unemployment_{it} + \mathcal{U}_i + \epsilon_{it}$$
  
Crime  $Rate_{it-1} = \beta_0 + \beta_1 \cdot Unemployment_{it-1} + \mathcal{U}_i + \epsilon_{it-1}$ 

 $\Delta$ Crime Rate =  $\beta_1 \cdot \Delta$ Unemployment<sub>it-1</sub> +  $\Delta \epsilon_{it}$ 



WHAT IF THE ERRORS ARE SERIALLY INDEPENDENT, IN WHICH CASE A FIRST DIFFERENCE WON'T WORK?





### LET'S COMPARE EACH CITY'S CRIME RATE WITH THE CITY'S HISTORICAL (AVERAGE) CRIME RATE

In other words, we can use deviations from historical averages



## LET'S COMPARE CRIME RATE WITH THE CITY'S HISTORICAL (AVERAGE) CRIME RATE

IN OTHER WORDS, WE CAN USE DEVIATIONS FROM HISTORICAL AVERAGES

Crime 
$$Rate_{it} = \beta_0 + \beta_1 \cdot Unemployment_{it} + \cancel{y}_i + \epsilon_{it}$$
  
Average Crime  $Rate_{it} = \beta_0 + \beta_1 \cdot Average Unemployment_{it} + \cancel{y}_i$ 

$$\begin{pmatrix} \text{Crime Rate}_{it} \\ - \\ \text{Average Crime Rate}_i \end{pmatrix} = \beta_1 \begin{pmatrix} \text{Unemployment}_{it} \\ - \\ \text{Average Unemployment}_i \end{pmatrix} \cdot + \epsilon_{it}$$

### E CAN ALSO COISPARE CRIME RATE WITH THE CITY'S VERACEERIME RATE DELY WORDS, WE CAN USE DEVIATIONS FROM HISTORICAL AVERAGES RIME RATE WITH THE CITY'S HISTORICAL

Crime 
$$Rate_{it} = \beta_0 + \beta_1 \cdot Unemployment_{it} + \nu_i + \epsilon_{it}$$
  
Average Crime  $Rate_{it} = \beta_0 + \beta_1 \cdot Average Unemployment_{it} + \nu_i$ 

$$\begin{pmatrix} \text{Crime Rate}_{it} \\ - \\ \text{Average Crime Rate}_i \end{pmatrix} = \beta_1 \begin{pmatrix} \text{Unemployment}_{it} \\ - \\ \text{Average Unemployment}_i \end{pmatrix} \cdot + \epsilon_{it}$$

In this context, the  $U_i$  are called fixed effects because they does not change through time and are thus eliminated by considering all values relative to their historical averages for each entity









## WITHIN TRANSFORMATION

- Transforming a variable by subtracting its historical mean
- $Y_{it} \xrightarrow{\text{within transformation}} Y_{it} \overline{Y}_i$
- $X_{it} \xrightarrow{\text{within transformation}} X_{it} \bar{X}_i$
- within transformation  $\epsilon_{it}$



# REDUCED EQUATION

The equation relating withintransformed variables

$$\ddot{Y}_{it} = \beta \ddot{X}_{it} + \epsilon_{it}$$



# REDUCED EQUATION

The equation relating withintransformed variables

$$\ddot{Y}_{it} = \beta \ddot{X}_{it} + \epsilon_{it}$$

Note that it doesn't have an intercept. Why?



## A FIXED EFFECTS MODEL WORKS JUST LIKE OLS REGRESSION BUT WITH WITHIN-TRANSFORMED VARIABLES, RATHER THAN ACTUAL VARIABLES

#### **OLS Regression**

• 
$$Y = X\beta + \epsilon$$

$$\beta = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

#### **Fixed Effects Regression**

$$\ddot{\mathbf{Y}} = \ddot{\mathbf{X}}\mathbf{\beta} + \boldsymbol{\epsilon}$$

**HOW ARE THE RESIDUALS OF** THE REDUCED **EQUATION RELATED TO THE RESIDUALS OF** THE ORIGINAL **EQUATION?** 



**HOW SHOULD THE SERIAL CORRELATION OF** THE RESIDUALS IN THE ORIGINAL **EQUATION BE SO THAT FIXED EFFECTS WORK** WELL?



# IS INVESTMENT DETERMINED BY COMPANY VALUE? THE GRUNFELD DATASET

#Pooled regression

pooled <- plm(invest ~ value +
capital, index=c("firm", "year"),
data=Grunfeld, model='pooling')</pre>

#Fixed Effects model

fe <- plm(invest ~ value + capital,
index=c("firm", "year"),
data=Grunfeld, model="within")</pre>

|                                         | Pooled<br>(1)           | invest<br>First Differences<br>(2) | Fixed Effects<br>(3)     |
|-----------------------------------------|-------------------------|------------------------------------|--------------------------|
| value                                   | 0.115***                | 0.090***                           | 0.110***                 |
|                                         | (0.006)                 | (0.008)                            | (0.011)                  |
| capital                                 | 0.228***                | 0.291***                           | 0.310***                 |
|                                         | (0.024)                 | (0.051)                            | (0.017)                  |
| Constant                                | -38.410***<br>(8.413)   | -1.654<br>(3.200)                  |                          |
| Observations R2 Adjusted R2 F Statistic | 220                     | 209                                | 220                      |
|                                         | 0.818                   | 0.411                              | 0.767                    |
|                                         | 0.816                   | 0.405                              | 0.753                    |
|                                         | 487.284*** (df = 2; 217 | ) 71.756*** (df = 2; 206)          | 340.079*** (df = 2; 207) |

## EVEN THOUGH FIXED EFFECTS VANISH, WE CAN STILL ESTIMATE THEM

WE'LL HAVE TO USE THE HISTORICAL AVERAGE EQUATION

Historical Average of  $y_{it} = \hat{\beta}$  · Historical Average of  $X_{it} + \widehat{U}_i$  :

 $\widehat{U_i} = \text{Historical Average of } y_{it} - \hat{\beta} \cdot \text{Historical Average of } X_{it}$ 

### **KEY TAKEAWAYS**

- 1. Fixed Effects Models are a way to eliminate the unobserved effect  $U_i$  in panel data regression
- 2. In Fixed Effects models, rather than using  $X_{it}$  to explain  $y_{it}$ , we use deviations from historical averages in  $X_{it}$  to explain deviations from historical averages in  $y_{it}$ .
- 3. In other words, we regress  $y_{it} \frac{1}{T} \sum_{t=1}^{T} y_{it}$  on  $X_{it} \frac{1}{T} \sum_{t=1}^{T} X_{it}$
- 4. Fixed effects models work well when the idiosyncratic error of  $y_{it}$  follow the assumptions of normality, homoskedasticity and no serial correlation that are required by classical OLS regression.







