## Input-Structure Distance spectrum based on RTZ and Parity-check sequences of weight 2

Kwame Ackah Bohulu

December 23, 2020

## 0.1 Input-Structure Distance spectrum based on RTZ and Paritycheck sequences of weight 2

**5/7 RSC code,** 
$$f(x) = 1 + x^2$$
,  $g(x) = 1 + x + x^2$   
 $f(x)$  is Case3 whiles  $g(x)$  is Case1 if  $a(x) = \frac{h(x)}{f(x)}$ ,  $a(x) = \sum_{i=1}^{I} x^{a-2i}$   
if  $a(x) = \frac{b(x)}{g(x)}$ ,  $a(x) = \sum_{i=1}^{I} x^{b-3i+1} + x^{b-3i}$ 

Table 1: 
$$a(x)$$
,  $b(x)$  for  $h(x) = 1 + x^a$  generated via  $f(x)$ .  $d_{\text{max}} = 8$  
$$\frac{a(x)}{a(x)} \frac{b(x)}{b(x)} \frac{h(x)}{h(x)}$$
 
$$\frac{1}{1 + x^2} \frac{1 + x^2}{1 + x + x^3 + x^4} \frac{1 + x^4}{1 + x^2 + x^4} \frac{1 + x + x^3 + x^5 + x^6}{1 + x^2 + x^4 + x^6} \frac{1 + x + x^3 + x^5 + x^7 + x^8}{1 + x^8}$$

Table 2: 
$$a(x)$$
,  $h(x)$  for  $b(x) = 1 + x^b$  generated via  $g(x)$ .  $d_{\text{max}} = 8$ 

$$\frac{a(x)}{a(x)} \frac{b(x)}{b(x)} \frac{h(x)}{1 + x + x^2 + x^3}$$

$$\frac{1 + x + x^3 + x^4}{1 + x + x^3 + x^4} \frac{1 + x^6}{1 + x + x^2 + x^4 + x^5 + x^6}$$



Figure 0-1: Old Bound vs New Bound for 5/7 RSC Code

**37/21 RSC code,** 
$$f(x) = 1 + x + x^2 + x^3 + x^4$$
,  $g(x) = 1 + x^4$   $f(x)$  is Case2 whiles  $g(x)$  is Case3 if  $a(x) = \frac{h(x)}{f(x)}$ ,  $a(x) = \sum_{i=1}^{I} x^{b-5i+1} + x^{b-5i}$  if  $a(x) = \frac{b(x)}{g(x)}$ ,  $a(x) = \sum_{i=1}^{I} x^{b-4i}$ 



Figure 0-2: Old Bound vs New Bound for 37/21 RSC Code

**23/35 RSC code**, 
$$f(x) = 1 + x + x^4$$
,  $g(x) = 1 + x^2 + x^3 + x^4$   $f(x)$  is Case1 whiles  $g(x)$  is Case4 if  $a(x) = \frac{b(x)}{g(x)}$ ,  $a(x) = \sum_{i=1}^{I} x^{b-7i+3} + x^{b-7i+2} + x^{b-7i}$ 

Table 5: 
$$a(x)$$
,  $b(x)$  for  $h(x) = 1 + x^a$  generated via  $f(x)$ .  $d_{\text{max}} = 10$ 

| Table 6: $a(x)$ , $h(x)$ for         | b(x) = 1 -   | $+x^b$ generated via $g(x)$ . $d_{\text{max}} = 10$ |
|--------------------------------------|--------------|-----------------------------------------------------|
| a(x)                                 | b(x)         | h(x)                                                |
| $1 + x^2 + x^3$                      | $1 + x^7$    | $1 + x + x^2 + x^6 + x^7$                           |
| $1 + x^2 + x^3 + x^7 + x^9 + x^{10}$ | $1 + x^{14}$ | $1 + x + x^2 + x^6 + x^8 + x^9 + x^{13} + x^{14}$   |



Figure 0-3: Old Bound vs New Bound for 23/35 RSC Code

## 0.2 List of Weight3 Parity-Check Sequences

It looks like h(x) has a weight 3 Structure of the form  $1 + x^a + x^b$  iff f(x) has an odd number of terms  $\geq 3$ .

1. f(x) is a single primitive polynomial, eg  $f(x) = 1 + x + x^2$ .

| Table 7: $f(x) = 1$       | $1 + x + x^2$   |
|---------------------------|-----------------|
| a(x)                      | h(x)            |
| 1                         | $1 + x + x^2$   |
| $1 + x + x^2$             | $1 + x^2 + x^4$ |
| $\frac{1+x+x^3}{}$        | $1 + x^4 + x^5$ |
| $1 + x^2 + x^3$           | $1 + x + x^5$   |
| $1 + x + x^2 + x^4 + x^5$ | $1 + x^2 + x^7$ |
| $1 + x + x^3 + x^4 + x^5$ | $1 + x^5 + x^7$ |
| $1 + x + x^3 + x^4 + x^6$ | $1 + x^7 + x^8$ |

| Table 8: $f(x) = 1 + x + x^4$                                                     |                       |
|-----------------------------------------------------------------------------------|-----------------------|
| a(x)                                                                              | h(x)                  |
| 1                                                                                 | $1 + x + x^4$         |
| $\frac{1 + x + x^2 + x^3 + x^5}{1 + x + x^5}$                                     | $1 + x^7 + x^9$       |
| $\frac{1 + x + x^2 + x^3 + x^5 + x^7 + x^8}{1 + x + x^2 + x^3 + x^5 + x^7 + x^8}$ | $1 + x^{11} + x^{12}$ |
| $1 + x + x^4$                                                                     | $1 + x^2 + x^8$       |
| $1 + x + x^2 + x^4 + x^6 + x^7 + x^{10}$                                          | $1 + x^3 + x^{14}$    |
| $1 + x + x^2 + x^3 + x^6$                                                         | $1 + x^5 + x^{10}$    |
| $1 + x + x^2 + x^3 + x^5 + x^6 + x^9$                                             | $1 + x^6 + x^{13}$    |
| $1 + x + x^2 + x^3 + x^4 + x^6 + x^8 + x^9 + x^{12}$                              | $1 + x^4 + x^{16}$    |
| $1 + x + x^2 + x^3 + x^5 + x^7 + x^9 + x^{10} + x^{13}$                           | $1 + x^8 + x^{17}$    |
| $1 + x + x^2 + x^3 + x^5 + x^7 + x^8 + x^{11} + x^{14}$                           | $1 + x^{14} + x^{18}$ |

- 2. f(x) is prime but not a primitive polynomial, eg  $f(x) = 1 + x + x^2 + x^3 + x^4$  Could not find any parity-check bits with weight 3
- 3. f(x) is made up of equal repeated polynomial roots, eg  $f(x) = 1 + x^2 + x^4 = (1 + x + x^2)^2$ .

| Table 9: $f(x) = 1$            | $+x^2+x^4$            |
|--------------------------------|-----------------------|
| a(x)                           | h(x)                  |
| 1                              | $1 + x^2 + x^4$       |
| $1 + x^2 + x^4$                | $1 + x^2 + x^4$       |
| $1 + x^2 + x^6$                | $1 + x^8 + x^{10}$    |
| $1 + x^4 + x^6$                | $1 + x^2 + x^{10}$    |
| $1 + x^2 + x^4 + x^8 + x^{10}$ | $1 + x^4 + x^{14}$    |
| $1 + x^2 + x^6 + x^8 + x^{10}$ | $1 + x^{10} + x^{14}$ |

4. f(x) is made up of unique repeated polynomial roots.