WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/12, C07K 14/71, 16/28, A61K 38/17, 39/395, C12N 15/62, G01N 33/566 (11) International Publication Number:

WO 95/28484

A1

(43) International Publication Date:

26 October 1995 (26.10.95)

(21) International Application Number:

PCT/US95/04681

(22) International Filing Date:

14 April 1995 (14.04.95)

(30) Priority Data:

08/229,509

15 April 1994 (15.04.94)

US

(71) Applicant: AMGEN INC. [US/US]; Amgen Center, 1840 Dehavilland Drive, Thousand Oaks, CA 91320-1789 (US).

(72) Inventors: FOX, Gary, M.; 35 West Kelley Road, Newbury Park, CA 91320 (US). WELCHER, Andrew, A.; 1431 Merriman Drive, Glendale, CA 91202 (US). JING, Shuqian; 3254 Bordero Lane, Thousand Oaks, CA 91362 (US).

(74) Agents: ODRE, Steven, M. et al.; Amgen Inc., Amgen Center, 1840 Dehavilland Drive, Thousand Oaks, CA 91320-1789 (US).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HEK5, HEK7, HEK8, HEK11, NEW EPH-LIKE RECEPTOR PROTEIN TYROSINE KINASES

(57) Abstract

Four novel members of the EPH subfamily of receptor protein tyrosine kinases are disclosed. Nucleic acid sequences encoding receptor proteins, recombinant plasmids and host cells for expression, and methods of producing and using such receptors are also disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
вв	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-	•	

HEK5, HEK7, HEK8, HEK11, new EPH-like receptor protein tyrosine kinases

Field of the Invention

5 The invention relates generally to receptor protein tyrosine kinases (PTKs) and particularly to novel Eph-like receptor PTKs, to fragments and analogs thereof, and to nucleic acids encoding same. The present invention also relates to methods of producing and using such receptors.

Background of the Invention

Receptor PTKs are a structurally related family of proteins that mediate the response of cells to 15 extracellular signals (Ullrich et al. Cell 61, 203-212 These receptors are characterized by three major functional domains: an intracellular region containing the sequences responsible for catalytic activity, a single hydrophobic membrane-spanning domain, 20 and a glycosylated extracellular region whose structure determines ligand binding specificity. Signal transduction is initiated by the binding of growth or differentiation factors to the extracellular domain of their cognate receptors. Ligand binding facilitates 25 dimerization of the receptor which can induce receptor autophosphorylation. Both soluble and membraneassociated protein ligands have been shown to function in this manner. This process is the initial step in a cascade of interactions involving the phosphorylation of a variety of cytoplasmic substrates and culminating in a biological response by the cell. The best characterized response to tyrosine kinase receptor activation is cell growth. However, analysis of the role of some growth factors in vivo suggests that differentiation or cell 35

35

survival might also be mediated by tyrosine kinase receptor/ligand interactions.

Receptor PTKs have been grouped into fairly well-defined families on the basis of both sequence homology and shared structural motifs. The amino acid sequence of the portion of the intracellular domain responsible for the catalytic activity is well conserved among all tyrosine kinases and even more closely matched within a receptor sub-family. Comparisons of this 10 portion of the amino acid sequence have been used to construct phylogenetic trees depicting the relatedness of family members to each other and to the tyrosine kinases as a whole (Hanks and Quinn, Methods Enzymol. 200, 38-62 (1991)). This sequence conservation has also 15 been exploited in order to isolate new tyrosine kinases using the polymerase chain reaction (PCR) (Wilks, Proc. Natl. Acad. Sci. USA 86, 1603-1607 (1989)). Oligonucleotides based on the highly conserved catalytic 20 domain of PTKs can be used as PCR primers to amplify related sequences present in the template. These fragments can then be used as probes for isolation of the corresponding full-length receptor clones from cDNA libraries. Anti-phosphotyrosine antibodies have also been used to identify PTK cDNA clones in phage 25 expression libraries (Lindberg and Pasquale, Methods Enzymol. 200, 557-564 (1991)). These strategies have been used by a number of investigators to identify an ever-increasing number of protein tyrosine kinase 30 receptors.

There are now 51 distinct PTK receptor genes that have been published and divided into 14 sub-families One such sub-family is the EPH-like receptors. The prototype member, EPH, was isolated by Hirai et.al. (Science 238, 1717-1720 (1987)) using low

stringency hybridization to a probe derived from the viral oncogene v-fps. EPH-like receptors have been implicated in cell growth based in part on studies which show that overexpression of the gene in NIH3T3 cells causes focus formation in soft agar and tumors in nude mice (Maru et al. Oncogene 5, 199-204 (1990)). Other members of the EPH sub-family which have been identified include the following:

ECK (Lindberg et al. Mol. Cell. Biol. 10,

10 6316-6324 (1990))

Elk (Lhoták et al. Mol. Cell. Biol. <u>11</u>, 2496-2502 (1991))

Ceks 4,5,6,7,8,9, and 10 (Pasquale, Cell Regulation 2, 523-534 (1991); Sajjadi et al. The New Biologist 3, 769-778 (1991); Sajjadi and Pasquale Oncogene 8, 1807-1813 (1993))

HEK2 (Bohme et al. Oncogene 8, 2857-2862 (1993))

Eek, Erk (Chan and Watt, Oncogene 6, 1057-1061

20 (1991))

15

Ehk1, Ehk2 (Maisonpierre et al. Oncogene $\underline{8}$, 3277-3288 (1993))

Homologs for some of these receptors have been 25 identified in other species (Wicks et al. Proc. Natl. Acad. Sci. USA 89, 1611-1615 (1992)); Gilardi-Hebenstreit et al. Oncogene 7, 2499-2506 (1992)). expression patterns and developmental profiles of several family members suggest that these receptors and their ligands are important for the proliferation, 30 differentiation and maintenance of a variety of tissues (Nieto et al. Development 116, 1137-1150 (1992)). Structurally, EPH sub-family members are characterized by an Ig-like loop, a cysteine rich region, and two fibronectin-type repeats in their extracellular domains. 35 The amino acid sequences of the catalytic domains are

- 4 -

more closely related to the SRC sub-family of cytoplasmic PTKs than to any of the receptor PTKs.

Among the catalytic domains of receptor PTKs, the EPH sub-family is most similar in amino acid sequence to the epidermal growth factor receptor sub-family.

It is an object of the invention to identify novel receptors belonging to the EPH sub-family. A directed PCR approach has been used to identify five human EPH-like receptors from a human fetal brain cDNA library. These receptors are designated HEK4, HEK5, HEK7, HEK8, and HEK11. The relationship of these receptors to previously identified EPH-like receptors is as follows:

HEK4 is the human homolog of Cek4 (chicken) and Mek4 (mouse) and is identical to HEK (Boyd et al. J. Biol. Chem. <u>267</u>, 3262-3267 (1992); Wicks et al., 1992) which was previously isolated from a human lymphoid tumor cell line.

20

25

30

35

HEK5 is the human homolog of Cek5, a fulllength eph-like receptor clone from chicken. A portion of the HEK5 sequence was previously disclosed as ERK, a human clone encoding about sixty amino acids (Chan and Watt, 1991)

HEK7 is the human homolog of Cek7 isolated from chicken.

HEK8 is the human homolog of Cek8 a fulllength clone from chicken and Sek, a full-length clone from mouse. (Nieto et al., 1992; Sajjadi et al., 1991)

HEK11 does not have a known non-human homolog. With the addition of the new members HEK5, HEK7, HEK8 and HEK11 and the report of a PCR fragment encoding an eph-like receptor (Lai & Lemke Neuron 6, 691-704 (1991)), a total of twelve distinct sequences that represent EPH-like receptors have been published, making it the largest known sub-family of PTKs.

- 5 -

It is a further object of the invention to generate soluble EPH-like receptors and antibodies to EPH-like receptors. Soluble receptors and antibodies are useful for modulating EPH-like receptor activation.

5

10

15

20

Summary of the Invention

The present invention provides novel EPH-like receptor protein tyrosine kinases. More particularly, the invention provides isolated nucleic acids encoding four novel members of the sub-family of EPH-like receptor PTKs which are referred to collectively as HEKs (human-eph like kinases). Also encompassed are nucleic acids which hybridize under stringent conditions to EPH-like receptor nucleic acids. Expression vectors and host cells for the production of receptor polypeptides and methods of producing receptors are also provided.

Isolated polypeptides having amino acid sequences of EPH-like receptors are also provided, as are fragments and analogs thereof. Antibodies specifically binding the polypeptides of the invention are included. Also comprehended by the invention are methods of modulating the endogenous activity of an EPH-like receptor and methods for identifying receptor ligands.

25

Description of the Figures

Figure 1 shows the nucleotide and predicted amino acid sequence of the HEK5 receptor.

30 Figure 2 shows the nucleotide and predicted amino acid sequence of the HEK7 receptor.

Figure 3 shows the nucleotide and predicted amino acid sequence of the HEK8 receptor.

Figure 4 shows the nucleotide and predicted amino acid sequence of the HEK11 receptor.

Figure 5 shows the comparison of the amino acid sequences of the human EPH receptor sub-family. multiple sequence alignment was done using the LineUp program included in the Genetics Computer Group sequence analysis software package (Genetics Computer Group, (1991), Program Manual for the GCG Package, Version 7, April 1991, Madison, Wisconsin, USA 53711). Dots 10 indicate spaces introduced in order to optimize alignment. The predicted transmembrane domains and signal sequences of each receptor are indicated by underlining and italics, respectively. Cysteine residues conserved throughout the sub-family are 15 indicated with asterisks. Arrows indicate the tyrosine kinase catalytic domain. Amino acid sequences of EPH, ECK and HEK2 were taken from the appropriate literature references.

20

25

Figure 6 shows the molecular phylogeny of the EPH subfamily of receptor protein tyrosine kinases. Catalytic domain sequences were analyzed as described by Hanks and Quinn, 1991. The scale bar represents an arbitrary evolutionary difference unit. The EPH branch, which has been shown with a discontinuity for the sake of compactness, is 23.5 units in length.

Figures 7-11 show Northern blot analyses of the tissue distribution of the HEK receptors. Receptor cDNA probes, labeled with ³²P, were hybridized to either 2 µg of poly A⁺ RNA from human tissues (panel A, Clontech) or 10 µg of total RNA from rat tissues (panel B). Sizes of the transcripts were determined by comparison with RNA molecular weight markers (Bethesda Research Labs,

35

Gaithersburg, MD). Figure 7, HEK4; Figure 8, HEK5; Figure 9, HEK7; Figure 10; HEK8; Figure 11; HEK 11.

Detailed Description of the Invention

The present invention relates to novel 5 EPH-like receptor protein tyrosine kinases. More particularly, the invention relates to isolated nucleic acids encoding four novel members of the sub-family of EPH-like receptor PTKs. These four members are designated herein as HEK (human eph-like kinases). 10 Nucleic acids encoding HEK receptors were identified in a human fetal brain cDNA library using oligonucleotide probes to conserved regions of receptor PTKs and EPHlike receptor PTKs. The predicted amino acid sequences of three HEK receptors had extensive homology in the 15 catalytic domain to previously identified EPH-like receptors Cek5, Cek7 and Cek8 isolated from chicken and, accordingly, are designated HEK5, HEK7 and HEK8. predicted amino acid sequence of the fourth HEK receptor 20 revealed that it was not a homolog of any previously identified EPH-like receptor. It is designated HEK11. It is understood that the term "HEKs" comprises HEK5, HEK7, HEK8 and HEK11 as well as analogs, variants, and mutants thereof which fall within the scope of the 25 invention.

The invention encompasses isolated nucleic acids selected from the group consisting of:

- (a) the nucleic acids set forth in any of SEQ 30 ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, or SEQ ID NO: 16 and their complementary strands;
 - (b) a nucleic acid hybridizing to the coding regions of the nucleic acids in any of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, or SEQ ID NO: 16 under stringent conditions; and

- 8 -

(c) a nucleic acid of (b) which, but for the degeneracy of the genetic code, would hybridize to the coding regions of the nucleic acids in any of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, or SEQ ID NO: 16.

The nucleic acids of the invention preferably hybridize to HEK5, HEK7, HEK8, or HEK11 coding regions under conditions allowing up to about 5% nucleotide mismatch based upon observed nucleic acid identities among known human or nonhuman EPH-like receptors. An example of such a condition is hybridization at 60° in 1M Na+ followed by washing at 60° in 0.2XSSC. Other hybridization conditions may be ascertained by one skilled in the art which allow base pairing with similar levels of mismatch.

15 In a preferred embodiment, the isolated nucleic acids encode polypeptides having the amino acid sequences of HEK5, HEK7, HEK8 or HEK11. A nucleic acid includes cDNA, genomic DNA, synthetic DNA or RNA. Nucleic acids of this invention may encode full-length 20 receptor polypeptides having an extracellular ligand-binding domain, a transmembrane domain, and a cytoplasmic domain, or may encode fragments such as extracellular domains which are produced in a soluble, secreted form. Nucleic acid constructs which produce 25 soluble HEK receptors are described in Example 3. Polypeptides and fragments encoded by the nucleic acids have at least one of the biological activities of an EPH-like receptor protein tyrosine kinase, such as the ability to bind ligand.

30

35

10

The invention also encompasses nucleic acids encoding chimeric proteins wherein said proteins comprise part of the amino acid sequence of a HEK receptor linked to an amino acid sequence from a heterologous protein. One example of such a chimeric protein is an extracellular domain of a HEK receptor

fused to a heterologous receptor cytoplasmic domain. Example 5 describes the construction and expression of a chimeric receptor comprising the HEK8 extracellular domain with the trkB cytoplasmic domain and a second chimeric receptor comprising the HEK11 extracellular domain with the trkB cytoplasmic domain. HEK receptors may also be fused to other functional protein domains, such as an Ig domain which acts as an antibody recognition site.

10

The nucleic acids of the present invention may be linked to heterologous nucleic acids which provide expression of receptor PTKs. Such heterologous nucleic acids include biologically functional plasmids or viral vectors which provide genetic elements for 15 transcription, translation, amplification, secretion, One example of an expression vector suitable for producing EPH-like receptors of the present invention is $pDSR\alpha$ which is described in Example 3. It is understood that other vectors are also suitable for expression of 20 EPH-like receptors in mammalian, yeast, insect or bacterial cells. In addition, in vivo expression of nucleic acids encoding EPH-like receptor PTKs is also encompassed. For example, tissue-specific expression of EPH-like receptors in transgenic animals may be readily 25 effected using vectors which are functional in selected tissues.

Host cells for the expression of EPH-like
receptor PTKs will preferably be established mammalian
cell lines, such as Chinese Hamster Ovary (CHO) cells or
NIH 3T3 cells, although other cell lines suitable for
expression of mammalian genes are readily available and
may also be used. Such host cells are transformed or
transfected with nucleic acid constructs suitable for
expression of an EPH-like receptor. Transformed or

transfected host cells may be used to produce suitable quantities of receptor for diagnostic or therapeutic uses and to effect targeted expression of EPH-like receptors in selected adult tissues, such as brain, kidney, and liver, or in embryonic or rapidly dividing tissues.

The present invention provides purified and isolated polypeptides having at least one of the biological properties of an EPH-like receptor (e.g. 10 ligand binding, signal transduction). The isolated polypeptides will preferably have an amino acid sequence as shown in any of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16. Polypeptides of this invention 15 may be full-length polypeptides having an extracellular domain, a transmembrane domain, and a cytoplasmic domain, or may be fragments thereof, e.g., those having only an extracellular domain or a portion thereof. will be understood that the receptor polypeptides may 20 also be analogs or naturally-occurring variants of the amino acid sequences shown in SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16. Such analogs are generated by amino acid substitutions, deletions and/or insertions using methods available in the art.

Polypeptides of the invention are preferably the product of expression of an exogenous DNA sequences, i.e., EPH-like receptors are preferably produced by recombinant means. Methods of producing EPH-like receptors comprising culturing host cells which have been transformed or transfected with vectors expressing an EPH-like receptor are also encompassed. EPH-like receptors, particularly fragments, may also be produced by chemical synthesis. The polypeptides so produced may be glycosylated or nonglycosylated depending upon the host cell employed, or may have a methionine residue at the amino terminal end. The polypeptides so produced

25

30

35

- 11 -

are identified and recovered from cell cultures employing methods which are conventional in the art.

EPH-like receptors of the present invention are used for the production of antibodies to the receptors. Antibodies to HEK receptors have been described in Example 4. Antibodies which recognize the polypeptides of the invention may be polyclonal or monoclonal and may be binding fragments or chimeric antibodies. Such antibodies are useful in the detection of EPH-like receptors in diagnostic assays in the purification of receptor, and in the modulation of EPH-like receptor activation.

10

As described in co-pending and co-owned U.S. Serial No. 08/145,616, the only known ligand for an 15 EPH-like receptor is a protein which binds to and induces phosphorylation of the eck receptor. receptor ligand was previously identified as B61. (Holzman et al. Mol. Cell. Biol. <u>10</u>, 5830-5838 (1990)). The availability of ECK receptor was important for the 20 identification of a ligand since B61, although known, had not been previously implicated as an ECK receptor Therefore, EPH-like receptors having ligand binding domains are useful for the identification and purification of ligands. Polypeptides of the present 25 invention may be used to identify and purify ligands for HEK5, HEK7, HEK8 and HEK11 receptors. Binding assays for the detection of potential ligands may be carried out in solution or by receptor immobilization on a solid support using methods such as those described in 30 co-pending and co-owned U.S. Serial No. 08/145,616. Such assays may employ an isolated ligand binding domain of a HEK receptor. Alternatively, a HEK ligand binding domain fused to an Ig domain may be used to detect the presence of HEK ligand on cell surfaces. 35

- 12 -

Soluble EPH-like receptors may be used to modulate (i.e., increase or decrease) the activation of the cell-associated receptors, typically by competing with the receptor for unbound ligand. Modulation of EPH-like receptor activation may in turn alter the proliferation and/or differentiation of receptor-bearing cells. For example, based upon the observed tissue distribution of the receptors of this invention (see Table 5), soluble HEK7 receptor is likely to primarily affect proliferation and/or differentiation of brain cells, while soluble HEK5 receptor may affect primarily brain and pancreatic cells, although effects of HEK5 receptor on other tissues may not be excluded.

10

35

Antibodies to EPH-like receptors are useful 15 reagents for the detection of receptors in different cell types using immunoassays conventional to the art. Antibodies are also useful therapeutic agents for modulating receptor activation. Antibodies may bind to the receptor so as to directly or indirectly block ligand binding and thereby act as an antagonist of 20 receptor activation. Alternatively, antibodies may act as an agonist by binding to receptor so as to faciliate ligand binding and bring about receptor activation at lower ligand concentrations. In addition, antibodies of 25 the present invention may themselves act as a ligands by inducing receptor activation. It is also contemplated that antibodies to EPH-like receptors are useful for selection of cell populations enriched for EPH-like receptor bearing cells. Such populations may be useful 30 in cellular therapy regimens where it is necessary to treat patients which are depleted for certain cell types.

The isolated nucleic acids of the present inventions may be used in hybridization assays for the detection and quantitation of DNA and/or RNA coding for HEK5, HEK7, HEK8, HEK11 and related receptors. Such

assays are important in determining the potential of various cell types to express these receptors and in determining actual expression levels of HEK receptors. In addition, the nucleic acids are useful for detecting abnormalities in HEK receptor genes, such as translocations, rearrangements, duplications, etc.

5

Therapeutic regimens involving EPH-like receptors will typically involve use of the soluble form 10 of the receptor contained in a pharmaceutical composition. Such pharmaecutical compositions may contain pharmaceutically acceptable carrier, diluents, fillers, salts, buffers, stabilizers and/or other materials well known in the art. Further examples of such constituents are described in Remington's 15 Pharmaceutical Sciences 18th ed., A.R. Gennaro, ed. (1990). Administration of soluble EPH-like receptor compositions may be by a variety of routes depending upon the condition being treated, although typically administration will occur by intravenous or subcutaneous 20 methods. Pharmaceutical compositions containing antibodies to EPH-like receptors will preferably include mouse-human chimeric antibodies or CDR-grafted antibodies in order to minimize the potential for an · 25 immune response by the patient to antibodies raised in mice. Other components of anti-EPH antibody compositions will be similar to those described for soluble receptor.

The amount of soluble Eph-like receptors or anti-Eph antibody in a pharmaceutical composition will depend upon the nature and severity of the condition being treated. Said amount may be determined for a given patient by one skilled in the art. It is contemplated that the pharmaceutical compositions of the present invention will contain about 0.01 µg to about

- 14 -

100 mg of soluble receptor or anti-Eph antibody per kg body weight.

A method for modulating the activation of an EPH-like receptor PTK is also provided by the invention. 5 In practicing this method, a therapeutically effective amount of a soluble EPH-like receptor or an anti-EPH antibody is administered. The term "therapeutically effective amount" is that amount which effects an increase or decrease in the activation of an EPH-like 10 receptor and will range from about 0.01 μg to about 100 mg of soluble receptor or anti-EPH antibody per kg body weight. In general, therapy will be appropriate for a patient having a condition treatable by soluble receptor or anti-EPH antibody and it is contemplated that such a 15 condition will in part be related to the state of proliferation and/or differentiation of receptor-bearing cells. Based upon the tissue distribution of HEK receptors shown in Table 4, treatment with the pharmaceutical compositions of the invention may be 20 particularly indicated for disorders involving brain, heart, muscle, lung, or pancreas. However, some HEK receptors are displayed on a wide variety of tissues, so it is understood that the effects of modulating receptor activation may not be limited to those tissues described 25 herein.

The following examples are offered to more fully illustrate the invention, but are not to be construed as limiting the scope thereof. Recombinant DNA methods used in the following examples are generally as described in Sambrook et al. Molecular Cloning: A Laboratory Manual Cold Spring Harbor Laboratory Press, 2nd ed. (1989)

30

- 15 -

EXAMPLE 1

Cloning and Sequencing of HEK Receptor cDNA

We have isolated clones for five members of 5 the EPH sub-family of receptor PTKs from a human fetal brain cDNA library. Oligonucleotides were designed based on conserved amino acid sequences within the kinase domain. Primer I was based on the amino acid sequence Trp-Thr-Ala-Pro-Glu-Ala-Ile (SEQ ID NO: 1), 10 which is well-conserved among PTKs of many families. Primer II was based on the sequence Val-Cys-Lys-Val-Ser-Asp-Phe-Gly (SEQ ID NO: 2), which is invariant among EPH sub-family members but, except for the sequence Asp-Phe-Gly, is rarely found in other PTKs. Fully degenerate 15 oligonucleotides corresponding to reverse translations of these protein sequences were synthesized and utilized as primers in a polymerase chain reaction (PCR) with disrupted phage from a human fetal brain cDNA library as the template. The products of this PCR reaction were 20 cloned into the plasmid vector pUC19 and the nucleotide sequence of the inserts was determined. Of the 35 PCR inserts sequenced, 27 were recognizable as portions of PTK genes. Their correspondence to previously published sequences is summarized in Table 1.

An asterisk indicates that different nucleic acid sequences encoded the amino acid sequence shown.

TABLE 1

Number of Clones	* ທ	ω	4	Н	* '0	(4
(SEQ ID NO: 3)	(SEQ ID NO: 4)	(SEQ ID NO: 5)	(SEQ ID NO: 6)	(SEQ ID NO: 7)	(SEQ ID NO: 8)	(SEQ ID NO: 9)
PCR Products VCKVSDFGLSRYLQDDTSDPTYTSSLGGKIPVRWTAPEAI	VCKVSDFGLSRVLEDDPEAAYTT RGGKIPIRWTAPEAI	VCKVSDFGLSRFLEDDTSDPTYTSALGGKIPIRWTAPEAI	VCKVSDFGMSRVLEDDPEAAYTT RGGKIPIRWTAPEAI	VCKVSDFGLSRVIEDDPEAVYTTT GGKIPVRWTAPEAI	VCKVSDFGLAR LIEDNEYTARQ GAKFPIKWTAPEAI	VCKVSDFGLARDIMRDSNYISK GSTFLPLKWTAPEAI
Receptor Elk	HEK4, HEK7	HEK5	некв	HEK11	SRC	PDGF-β

- 17 -

Six PCR inserts predict amino acid sequences which are identical to a portion of SRC, although they comprise two distinct nucleotide sequences. One insert appears to code for the human platelet derived growth factor (PDGF)- β receptor. The remaining 18 PCR inserts consist of 6 distinct nucleotide sequences, all of which appear to be fragments of EPH sub-family members. of the sequence predicts an amino acid sequence identical to the corresponding region of rat Elk (Lhotak 10 et al., 1991)) and is likely to represent its human homolog. Two inserts predict amino acid sequences which match the translation of the PCR fragment tyro-4 (Lai and Lemke, 1991)) but are clearly distinct at the nucleotide level while two others correspond to tyro-1 15 and tyro-5. The sixth PCR insert has a previously unreported EPH-related sequence. Since five of the clones contained portions of potential EPH sub-family members for which full-length sequences had not been reported, each was radiolabeled and used as a probe to 20 screen a human fetal brain cDNA library. Several clones corresponding to each of the five probes were isolated. For each of the five receptors, the nucleotide sequence of the clone containing the largest portion of the predicted coding region was determined.

25

35

A single cDNA clone containing the complete coding region was isolated only for HEK4. The portions of HEK5, HEK7, HEK10 and HEK11 coding for the amino terminus of these receptors were not found in any of the clones. In order to obtain the complete coding sequence, the Rapid Amplification of cDNA Ends (RACE) technique was employed. In some cases, more than one round of RACE was necessary to obtain the missing portion of the coding region. Using this strategy, complete coding sequences were obtained for all clones except HEK7 which lacked the complete leader sequence.

- 18 -

The DNA sequences of HEK5, HEK7, HEK8 and HEK11 are shown in Figures 1-4, respectively, and in SEQ ID NO: 10 (HEK5), SEQ ID NO: 12 (HEK7), SEQ ID NO: 14 (HEK 8) and SEQ ID NO: 16 (HEK11). The amino acid sequences are shown in SEQ ID NO: 11 (HEK5), SEQ ID NO: 13 (HEK7), SEQ ID NO: 15 (HEK8) and SEQ ID NO: 17 (HEK 11).

EXAMPLE 2

10 Analysis of HEK Receptor Sequences

HEK5, HEK7, HEK8 and HEK11 represent novel human EPH sub-family members, although homologs for all except HEK11 have been isolated from other species. We refer to human EPH receptor sub-family members as HEKs (human EPH-like kinases) following the nomenclature of Wicks et al., 1992). We have chosen names and numbers for these receptors to correspond with previously discovered members of the family in chicken (Ceks) and in mouse (Mek) (Sajjadi et al. 1991; Sajjadi and Pasquale, 1993; Pasquale, 1991). Extending the convention of designating the species of origin by the first letter, we refer to the rat homologs of the HEK receptors as Reks (rat EPH-like kinases).

HEK4 is the human homolog of the chicken receptor Cek4 (91% amino acid identity in the catalytic domain) and the mouse receptor Mek4 (96% amino acid identity in the catalytic domain). The amino acid sequence of HEK5 is very closely related (96% amino acid identity in the catalytic domain) to the chicken receptor Cek5 (Pasquale et al. J. Neuroscience 12, 3956-3967 (1992); Pasquale, 1991). HEK7 is probably the human homolog of the recently reported Cek7 (Sajjadi and Pasquale, 1993). HEK8 is likewise very closely related to Sek (Gilardi-Hebenstreit et al., 1992)) and Cek8 (95% amino acid identity in the catalytic domain) (Sajjadi

PCT/US95/04681

- 19 -

and Pasquale, 1993)). The human homologs for Cek6 and Cek9 have yet to be reported, while the human homolog of Cek10 has just recently been published. One of our human receptors has no close relatives in other species and apparently represents a novel member of the EPH subfamily. We have designated this receptor HEK11, assuming that human homologs for Cek 9 and 10 will be named HEK9 and HEK10, respectively. A summary of known EPH sub-family members is shown in Table 2.

10

30

WO 95/28484

TABLE 2 EPH receptor sub-family members

15	Human	Non-human homologs
	ЕРН	None identified
٤.	ECK	None identified
	None identified#	Eek
	HEK4*	Cek4, Mek4
20	HEK5	Cek5, Nuk, ERK
	None identified#	Cek6, Elk
	нек7	Cek7, Ehk1
	HEK8	Cek8, Sek
	None identified#	Cek9
25	HEK2	Cek10
	HEK11	None identified
	None identified	Ehk2

*published by Wicks et.al., 1992 as HEK

#Using the present nomenclature, the predicted human
homolog of Eek is designated HEK3. For Cek6, the
predicted human homolog is designated HEK6; For Cek9,
the predicted human homolog is designated HEK9.

- 20 -

The predicted amino acid sequences of the four novel receptor clones and the previously known EPH sub-family members ECK (SEQ ID NO: 18), EPH (SEQ ID NO: 19), HEK2 (SEQ ID NO: 20) and HEK4 (SEQ ID NO: 21) were aligned as shown in Fig. 5. The four clones are closely related to each other and to the known EPH sub-family members. The extracellular domain sequences of all four novel receptors contain the Ig-loop, fibronectin-type III repeats, and cysteine-rich region characteristic of 10 EPH sub-family members. The positions of the 20 cysteine residues are conserved among all sub-family members. Also completely conserved is the portion of the catalytic domain used as the basis for the EPH sub-15 family specific primer (Val-Cys-Lys-Val-Ser-Asp-Phe-Gly, SEQ ID NO: 2, amino acids 757-764 in Fig. 5). Table 3 summarizes the percentage of sequence identity between pairs of human EPH sub-family members. The lower portion of the table shows percent amino acid identity in the catalytic domain while the upper half shows 20 percent amino acid identity in the extracellular region. The amino acid sequences of the EPH-like receptors are extremely well-conserved (60-89% amino acid identity) in the catalytic region but not as highly conserved in the 25 extracellular region (38-65% amino acid identity), as would be expected for members of the same receptor subfamily.

- 21 -

TABLE 3

Eph family amino acid sequence comparison

	extracellular domains							
	EPH	ECK	HEK4	HEK5	HEK7	HEK8	HEK2	HEK11
EPH	*	47	42	38	40	43	40	42
ECK	62	*	47	41	45	46	41	46
HEK4	62	76	*	53	65	61	51	59
HEK5	60	74	81	*	52	53	63	51
нек7	61	76	89	83	*	62	48	61
HEK8	62	76	86	85	88	*	52	57
HEK2	61	74	81	89	82	83	*	48
HEK11	60	74	83	83	85	85	80	*

Catalytic domains

5

Numbers shown are precent identity

10 Pairwise comparisons of amino acid sequences can be used to construct phylogenetic trees depicting the evolutionary relatedness of a family of molecules. Figure 6 is such a tree, which summarizes the relationships among the EPH sub-family members. 15 one family member is shown from each group of crossspecies homologs and the human representative was used whenever possible (refer to Table 2 for a summary of cross-species homologs). The branch lengths represent the degree of divergence between members. It has been shown previously that the EPH sub-family lies on a 20 branch evolutionarily closer to the cytoplasmic PTKs than to other receptor PTKs (Lindberg and Hunter, 1993). Interestingly, the further one moves up the tree, the more closely related the receptors become and expression becomes more localized to the brain. 25

- 22 -

EXAMPLE 3

Construction and Expression of HEK Receptor Extracellular Domains

Soluble extracellular forms of HEK receptor proteins were constructed by deletion of DNA sequences encoding transmembrane and cytoplasmic domains of the receptors and introduction of a translation stop codon at the 3' end of the extracellular domain. A construct of the HEK5 extracellular domain had a stop codon introduced after lysine at position 524 as shown in Figure 1; the HEK7 extracellular domain was constructed with a stop codon after glutamine at position 547 as shown in Figure 2; the HEK 8 extracellular domain was constructed with a stop codon after threonine at position 547 as shown in Figure 3.

HEK extracellular domain was amplified from a human fetal brain cDNA library by PCR using primers 5' and 3' to the extracellular domain coding region.

For HEK5, the primers

- 5' CTGCTCGCCGCGTGGAAGAAACG (SEQ ID NO: 22) and;
- 5' GCGTCTAGATTATCACTTCTCCTGGATGCTTGTCTGGTA (SEQ ID NO: 23)

25

30

20

were used to amplify the extracellular domain and to provide a restriction site for cloning into plasmid pDSR α . In addition, the following primers were used to provide a translational start site, the elk receptor signal peptide for expression; and a restriction site for cloning into pDSR α :

- 23 -

5! GCGGTCGACGCCGCCATGGCCCTGGATTGCCTGCTGTTCCTCCTG (SEQ ID NO: 24) and;

The resulting construct resulted in fusion of DNA encoding the elk signal sequence Met-Ala-Leu-Asp-Cys-Leu-Leu-Phe-Leu-Leu-Ala-Ser (SEQ ID NO: 26) to the first codon of the HEK5 receptor.

The resulting HEK5 extracellular domain was cloned into pDSR α after digestion with SalI and XbaI and transfected into CHO cells for expression.

HEK8 extracellular domain was amplified from a human fetal brain cDNA library by PCR using primers 5' and 3' to the extracellular domain coding region. For HEK8, the primers

- 5' GAATTCGTCGACCCGGCGAACCATGGCTGGGAT and
- 20 5' GAATTCTCTAGATTATCATGTGGAGTTAGCCCCATCTC

5

10

30

were used to amplify the extracellular domain and to provide restriction sites for cloning into plasmid $pDSR\alpha$.

25 The resulting HEK8 extracellular domain was cloned into pDSR α after digestion with SalI and XbaI and transferred CHO cells for expression.

HEK7 extracellular domain was amplified from a human fetal brain cDNA library by PCR using primers 5' and 3' to the extracellular domain coding region. For HEK7, the primers

- 5'TTCGCCCTATTTTCGTGTCTCTTCGGGATTTGCGACGCTCTCCGGACCCTCCTG
- 35 5' GAATTCTCTAGATTATCACTGGCTTTGATCGCTGGAT

15

25

30

35

were used to amplify the extracellular domain. In addition, the following primers were used to provide a translational start site, the HEK8 receptor signal peptide sequence, and restriction site for cloning into plasmid pDSR α .

5 '
GAATTCGTCGACCCGGCGAACCATGGCTGGGATTTTCTATTTCGCCCTATTTTCGT
GTCT

10 5' GAATTCTCTAGATTATCACTGGCTTTGATCGCTGGAT

The resulting construct resulted in fusion of DNA incoding HEK8 signal sequence Met-Ala-Gly-Ile-Phe-Tyr-Phe-Ala-Leu-Phe-Ser-Cys-Leu-Phe-Gly-Ile-Cys-Asp to the first codon of the HEK7 receptor.

The resulting HEK7 extracellular domain was cloned into pDSR α after digestion with SalI and XbaI and transfected into CHO cells for expression.

20 EXAMPLE 4

Antibodies to HEK Receptors

Antibodies to HEK receptor proteins were generated which recognize the extracellular domain by using bacterial fusion proteins as the antigen.

Antibodies were also generated which recognize the cytoplasmic domain by using synthetic peptides as the antigen.

The methodology employed has been previously described (Harlow and Lane, In <u>Antibodies: A Laboratory Manual, 1988)</u>. For the extracellular domain antibodies, cDNAs were inserted into the pATH vector (see Table 4 for the regions of each receptor encoded by this construct). These constructs were expressed in bacteria and the resultant TrpE-fusion proteins were purified by SDS-polyacrylamide gel electrophoresis. For the

PCT/US95/04681

- 25 -

cytoplasmic domain anti-peptide antibodies, peptides were synthesized (see Table 4 for the sequences) and covalently coupled to keyhole limpet hemocyanin. The fusion proteins and coupled peptides were used as antigens in rabbits and antisera were generated and characterized as described (Harlow and Lane, 1988). Anti-peptide antibodies were affinity purified by using a SulfoLink kit (Pierce, Rockford IL).

10

TABLE 4

HEK Receptor Antigens

15	Receptor	Peptide Sequences	Amino Acids in Fusion Protein	
	HEK4	CLETQSKNGPVPV	22-159	
	HEK5	CRAQMNQIQSVEV	31-168	
	HEK7	CMKVQLVNGMVPL	335-545	
20	HEK8	CMRTQMQQMHGRMVPV	27-188	
	HEK11	CQMLHLHGTGIQV	187-503	

EXAMPLE 5

25

30

35

HEK/TrkB Chimeric Receptors

1. Generation of pSJA1 encoding rat trkB cytoplasmic domain.

All of the chimeric receptors are composed of the extracellular domain and the transmembrane region of one of the HEK receptors and the intracellular portion of rat trkB. To simplify each individual construction, an intermediate or parental plasmid, called RtrkB/AflII (or pSJA1), was generated. First, without altering the coded peptide sequence, an AflII site (CTTAAG) was introduced into position 2021 (cytosine at position 2021

25

(C2021) to guanine at position 2026 (G2026, CTCAAG) of the rat trkB cDNA (Middlemas, et al., Mol. Cell. Biol. 11, 143-153 (1991)) by PCR aided mutagenesis. Briefly, PCR primers were synthesized based on the rat trkB cDNA sequence. Primer I encompassed C2003 to G2034 of the This primer contained two mutations, a cytosine to thymine(T) substitution at position 2023 (C2023T) and an insertion of an adenine (A) in between T2013 and These mutations created the AflII site at position C2021 and an additional XhoI site flanking the 10 AflII site. Primer II was in the reverse direction encompassing T2141 to A2165 of the cDNA which bore an Apal site. The PCR fragment produced with these primers and the rat trkB cDNA template was digested with XhoI and ApaI enzymes and sub cloned into the XhoI and ApaI 15 sites of an expression vector, pcDNA3 (InVitroGen), to generate pSJA1-b. Following, pSJA1-b was linearized with ApaI and ligated with a BanII digested rat trkB cDNA fragment (G2151 to G4697) to reconstitute a larger fragment (C2021 to G4697) including the coding sequence 20 of the whole intracellular domain of the rat trkB protein (L442 to G790) and 1571 residues (A3131 to G4697) of the 1627 nucleotide 3'-end non-coding region of the cDNA.

Generation of HEK8/rat trkB (pSJA5) chimera.

HEK8/rat trkB chimera was generated with a similar strategy as mentioned above. A SalI/BsaI cDNA fragment was first isolated from plasmid TK10/FL13.

30 This fragment included the nucleotide sequence from the beginning to T1689 of the HEK8 cDNA (Figure 3). Then, a pair of oligonucleotides was synthesized based on the HEK8 cDNA sequence. The sequence of the first oligonucleotide was the same as G1690 to C1740 of the Hek8 cDNA, with an additional C residue added to its 3'-end. The second oligonucleotide was in the reverse

10

chimerical construct.

orientation of the HEK8 cDNA. It contained C1694 to C1740 of the HEK8 cDNA sequence and an additional five residue motif, TTAAG, at its 5'-end. These two oligonucleotides were kinased and annealed with equal molar ratio, to create a double strand DNA fragment with the sequence of G1690 to C1740 of the HEK8 cDNA and with the BsaI and the AflII cohesive ends at its 5' and 3' ends, respectively. This fragment was ligated together with the SalI/BsaI cDNA fragment into XhoI/AflII linearized pSJA1 to generate the HEK8/RtrkB (pSJA5)

Generation of HEK11/rat trkB (pSJA6)

To generate the HEK11/rat trkB chimera, a 15 SalI/AccI fragment covering the sequence of nucleotide C1 to T1674 of the HEK11 cDNA (Figure 4) was first isolated from plasmid TK19T3. Then, a pair of oligonucleotides was synthesized based on the HEK11 cDNA sequence. The first oligonucleotide had the same sequence as from nucleotide A1666 to T1691 of the HEK11 20 cDNA, which contained the AccI site. The second oligonucleotide was in the reverse orientation of the HEK11 cDNA. It encompassed G1895 to T1919 of the HEK11 cDNA sequence. An additional ten residue motif, CCCGCTTAAG, was added to the 5'-end of this 25 oligonucleotide to introduce an AflII site, which would be used to link the external domain and the transmembrane region of the HEK11 receptor to the intracellular domain of the rat trkB cDNA cloned in pSJA1 in the same reading frame. PCR was performed with 30 these oligonucleotides as primers and the HEK11 cDNA as template. The PCR fragment was digested with AccI and AflII enzymes and ligated with the SalI/AccI cDNA fragment and the XhoI/AflII linearized pSJA1 to generate the HEK11/rat trkB (pSJA6) chimerical construct. 35

- 28 -

EXAMPLE 6

Tissue Distribution of HEK Receptors

5

35

Figures 7-11.

The distribution of mRNA expression for HEK4, HEK5, HEK7, HEK8 and HEK11 receptors in human and rat tissues was examined by Northern blot hybridization.

Rat total RNA was prepared from tissues using the method of Chomczynski and Sacchi (Anal. Biochem 162, 10 156-159 (1987)). The RNA was separated by formaldehydeagarose electrophoresis and transferred to Hybond-N membranes (Amersham, Arlington Heights, IL) using 20X SSC (Maniatis et al. 1982). The membrane was dried at 80°C in vacuo for 30 minutes, then crosslinked for 3 15 minutes on a UV transilluminator (Fotodyne, New Berlin, The membrane was prehybridized for 2 hours at 42°C in 50% formamide, 5X SSPE, 5X Denhardt's, 0.2% SDS, and 100 μg/ml denatured herring sperm DNA (Maniatis et al. 1982). Northern blots of human tissue were purchased 20 from Clontech (Palo Alto, CA). Probes were prepared by labeling the fragment of cDNA which encoded the extracellular domain of the receptor with 32p-dCTP using a hexanucleotide random priming kit (Boehringer Mannheim, Indianapolis, IN) to a specific activity of at least $1x10^9$ cpm/ug. The probe was hybridized to the 25 membrane at a concentration of 1-5 ng/ml at 42°C for 24 to 36 hours in a buffer similar to the prehybridization buffer except that 1X Denhardt's was used. After hybridization, the membranes were washed 2 times for 5 minutes each in 2X SSC, 0.1% SDS at room temperature 30 followed by two 15 minute washes in 0.5% SSC, 0.1% SDS at 55°C. Blots were exposed for 1-2 weeks using Kodak XAR film (Kodak, Rochester, NY) with a Dupont Lightning Plus intensifying screen. The results are shown in

Homologs for HEK4 have been previously identified from mouse, chicken, and rat. In the adult mouse, expression is detected primarily in the brain and testis (Sajjadi et al. 1991). A slightly different pattern was found in adult chicken tissues, with the main sources of expression being the brain, liver, and kidney. Lower levels of expression were detectable in the lung and heart (Marcelle & Eichmann, Oncogene 1, 2479-2487 (1992)). A fragment of the Rek4 gene (tyro-4) 10 has been isolated and used to look at tissue expression in the adult rat (Sajjadi et al. 1991). The brain was the only tissue that expressed Rek4 mRNA. However, RNA from lung or testis were not examined. Previous studies on HEK4 only looked at the expression of the mRNA in cell lines, where it was found in one pre-B cell line 15 and two T-cell lines (Wicks et al. 1992). significance of this with regard to in vivo expression remains to be determined. In this study we have looked at the HEK4 expression in human tissues, and also the expression of Rek4 in rat tissues. The HEK4 mRNA 20 corresponds to a single transcript with a size of about 7 kb (Fig 7A). HEK4 mRNA was most abundantly expressed in placenta, with lower levels present in heart, brain, lung, and liver. On prolonged exposures, trace amounts 25 of mRNA were detectable in kidney and pancreas. Expression in the rat was more similar to that detected in the mouse and chicken. Rek4 was expressed at the lowest levels of any of the family members characterized herein. A transcript of about 7 kb was detectable in rat lung, with a lower amount detectable in brain (Fig. 30 7B). Also, a 4 kb transcript was expressed in rat testis. Because the transcripts were barely detectable using total RNA, some of the other rat tissues may contain amounts of Rek4 below the level of detection.

```
The expression of HEK5 in adult tissues has
                                                                                                                                                                           The expression of HERD in adult tissues has in the expression of chicken and rat.

The expression of chicken and rat.

The expression of chicken and rat.

The expression of the chicken and rat.
                                                                                                                                                                                             been previously studied in chicken and rat. in the liber protein in the chicken have identified the cratein detected in the chicken have with a smaller protein detected in the chicken have with a smaller protein detected in the chicken have with a smaller protein detected in the chicken have with a smaller protein and limit the chicken have with a smaller protein and rat.
                                                                                                                                                                                                             the chicken have with a smaller protein and liver the brain and liver the rate the formal transfer the chicken have with a smaller protein fragment detected in the brain and liver the rate the first protein and liver the rate that the first protein in the first protein in the first protein in the first protein in the smaller protein in the first protein detected in the first protein dete
WO 95/28484
                                                                                                                                                                                                                                                  intestine. In the rat, the tyro-b tragment detection only in the adult brain, though now, and romer against against and romer against 
                                                                                                                                                                                                                                                                                        intestine was not examined (Lai and Lenke, at much higher eavera)

intestine was not examined (Lai and Lenke, at much higher at much higher found as transcripts of eaveral

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher

intestine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (Lai and Lenke, at much higher)

intertine was not examined (L
                                                                                                                                                                                                                                                                     mRNA expression only in the adult brain, though 1991).

intestine was not examined (Lai and Lenke, armong a month of the contract of the contr
                                                                                                                                                                                                                                                                                                       results show that HEK4 and was found as transcripts of annrowimately levels than HEK4 and was found as were of annrowimately and was found as transcripts annrowimately and was found as transcripts annrowimately annotated where of annrowimately annotated where of annrowimately annotated annotated
                                                                                                                                                                                                                                                                                                                                                sizes. The most abundant menas were of approximately molecular amounts of higher molecular on with lesser amounts of higher on make abundant menas amounts of higher on make abundant menas weight amounts of higher on make abundant menas weight amounts of higher on make abundant menas weight amounts of higher on make abundant menas were of approximately
                                                                                                                                                                                                                                                                                                                                                            4.0 and 4.4 kD, with lesser amounts of nigner molecular and longer (Fig. 8A).

Weight transcripts of 9.5 kD and longer in nigner and in nigner
                                                                                                                                                                                                                                                                                                                                                                                  weight transcripts of 9.5 kb and Longer (Fig. 8A). but expressed in placenta, but head transcripts abundantly have a narroac vidne.
                                                                                                                                                                                                                                                                                                                                                                                                     REKS mena was most abundantly expressed in placenta, b brain, pancreas, kidney, brain, bra
                                                                                                                                                                                                                                                                                                                                                                                                                                       muscle; and lung. Longer exposures in heart and liver transcripts in heart and rate rate named of transcripts in heart and revealed the presence of transcripts in heart and revealed the presence of transcripts in heart and liver
                                                                                                                                                                                                                                                                                                                                                                                                                    was also nignly expressed in prain, pancreas, kid blots

muscle, and lung.

respectively the presence of transportate in hours of the plots.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         as well. similar pattern followed his horse in interine followed his horse in interine followed his horse in interine somewhat in interine shundari in inter
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               somewhat similar pattern of expression. Rek5 was most lung, kidney, lung, kidney, was a somewhat similar pattern of expression was followed by brain, was followed by brain, was abundant in intestine, and ovary (Fig. 88).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           abundant in intestine, and ovary (Fig. heart or liver thymus, stomach, in teetie, muccle thymus, aetectable in teetie, muccle heart or liver thymus, at a teetie, muccle heart or liver thymus, at a teetie, muccle heart or liver the thymus, at a teetie, muccle heart or liver the thymus, and the teetie, 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              tnymus; stomach; and ovary muscle; meart; on liver.

not detectable in testis; not detectable in
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             not detectable in testis, muscle, heart, or liver, that encode not detectable in testis, wart. Josi likely encode this family, josi likely encode this family, josi likely encode that the frament (chan & wart.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   During our analysis of this & Watt Fre evarage of the Reks recentar
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   the rat Erk tragment (chan & wattr Erk expression in the a portion of the Reks rat traceree and found only in the a portion of the rate of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      as well.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      a portion of the Rekb receptor. and found only that tissues and found in herman that the dierronance herman the dierronance has examined in several rat the dierronance has the dierronanc
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        The reason for the discrepancy between that have lung.

The reason for the discrepancy Lenke, 1991) have report and what we and others (Lai & Lenke, 1991) have
                                                                                                                                                                                                                                                                                                                                                                                                                                                   20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Homologs for HEK8 have been identified from
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Homologs for HEKB have been identified a single

Homologs for HEKB have been identified a single

Homologs for In the adult chicken, a single

Homologs for In the adult chicken, a single

received at high laws a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     chicken, mouse, and rat.

In the adult chicken, a single

In t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Ceke transcript was round to be expressed at high ke was round to be expressed at high ke with expression also mro amoral. The brain with expression also mro amoral. The brain with expression also wro amoral.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    in the brain, with expression also detected in the and thymus. The expression of the hair, muscle, and thymus her detected in the kidney, homolog of HEKR.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          found is unclear.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Inud.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       kidney homolog of HEK8, animaant avnraceinn in the mouse homolog of right with animaant avnraceinn in the mouse
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             mouse homolog or with abundant expression in the adult single transcript with abundant expression in the adult
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     30
```

- 31 -

brain and lower expression in the heart, lung and kidney. A fragment of Rek8 (tyro-1) was used to look at expression in rat tissues, with expression found only in the brain (Lai & Lemke, 1991). We found that HEK8 mRNA was expressed at levels comparable to that of HEK5. Multiple transcripts were also observed, the most abundant at 7 kb and 5 kb. The highest level of mRNA expression was seen in the brain, although substantial levels were detected in other tissues including heart, 10 lung, muscle, kidney, placenta, and pancreas. Expression in liver was much lower than in the other tissues. The only difference in expression patterns between human and mouse was expression in human muscle, also seen for Cek8 in chicken. Among the rat tissues, 15 Rek8 was most highly expressed in the brain, followed by the lung, heart, and testis (Fig. 10B). In contrast to HEK8, expression of Rek8 appeared to be lower in muscle and kidney, two tissues where HEK8 was readily detectable. In addition, Rek8 was not expressed as a 20 5.0 kb transcript, as it was not visible even on prolonged exposures.

During the analysis of this family, we deduced that HEK7 is the human homolog of Cek7. The only 25 expression seen in adult chicken was an 8.5 kb transcript found in the brain (Sajjadi & Pasquale, 1993). Of the five EPH sub-family members described · here, HEK7 was the most restricted in its expression pattern. Analysis of human mRNA revealed significant expression only in the brain, with a much lower level 30 detectable in the placenta (Fig. 9A). Prolonged exposures did not reveal expression in any other tissue examined. Two prominent transcripts were found in brain, the most highly expressed with a size of 6 kb and the other with a length of 9 kb. In the placenta, however, only the 9 kb transcript was detected. Rek7

mRNA was expressed in a pattern similar to HEK7. The highest level of expression was found in brain, with a much lower level in ovary (Fig. 9B). The transcripts were of similar size as for HEK7, with the 6 kb transcript detected only in brain.

HEK11 was expressed as several transcripts, with major mRNAs of length 7.5, 6.0 and 3.0 kb and minor transcripts of 4.4 and 2.4 kb (Fig. 11A). All five

10 mRNAs were expressed at the highest levels in brain, followed by heart. Placenta, lung and kidney had significant amounts of four of the five transcripts, with lower expression seen in muscle. Pancreas had barely detectable amounts of HEK11 mRNA, while liver had no detectable HEK11 transcript. Rek11 had a similar pattern of expression, with four transcripts (10, 7.5, 3.5 and 3.0 kb) detected in brain (Fig. 11B).

The relative level of mRNA expression for each of the five receptors in all tissues studied is summarized in Table 5.

HEK5

HEK4

TABLE 5
Tissue Distribution of HEK Receptors

HEK7

HEK8

- 33 -

	Brain	++	++	++	+++	++
	Heart	+	+	bd	++	+
	Kidney	+	+ 、	bd	+	+
	Liver	+	+	bd	+	bd
	Lung	+	+	bd	++	+
	Muscle	+	+	bd	++	+
	Pancreas	+	++	bd	+	bd
	Placenta	+++	+++	bd	++	+
5						
	Rat	HEK4	HEK5	нек7	HEK8	HEK11
	Brain	+	++	+++	+++	++
	Heart	bd	bd	bd	+	bd
	Intestine	bd	+++	bd	bd ·	bd
	Kidney	bd	++	bd	bd	bd
	Liver	bd	bd	bd	bd	bd .
	Lung	+	+	bd	++	bd
	Muscle	bd	bd	bd	bd	bd
	Ovary	bd	+	+	· bd /	bd
	Stomach	bd	+	bd	bd	bd
	Testis	+	bd	bd	+	bd
	Thymus	bd .	+	bd	bd	bd

bd= below detection

- 34 -

The transcripts for HEKs 4,5,8, and 11 were rather widely distributed in human tissue while HEK7 was specific for brain. Expression patterns between rat and human tissue were roughly comparable given that the rat blots were less sensitive due to the use of total RNA rather than polyA⁺. As was found for the Cek mRNAs by Sajjadi and Pasquale (Sajjadi & Pasquale, 1993), often there were several different size transcripts detected for a single receptor. The size distribution of the transcripts appears to be both tissue and species specific. Previous work has shown that the smaller transcript of Mek4 encodes a potentially secreted receptor (Sajjadi et al. 1991).

The following sections describe Materials and Methods used to carry out experiments described in Example 1.

10

20

25

30

35

Isolation, cloning and sequencing of HEK receptor cDNAs

Fragments containing a portion of the catalytic domain of EPH sub-family receptors were generated using a polymerase chain reaction (PCR) with disrupted phage from a human fetal brain cDNA library as a template. A 10µl aliquot of the cDNA library (Stratagene, La Jolla, CA) was treated at 70°C for 5 minutes to disrupt the phage particles, then cooled on wet ice. The disrupted phage were added to 10ul of 10x Tag polymerase buffer, 8ul of 2mM each dNTP, 100 picomoles of each primer, and 1.5 μl of Tag polymerase (Promega, Madison, WI) in a total volume of 100μl. reaction was run for 35 cycles, each consisting of 1 minute at 96°C, 1 minute at 50°C, and 2 minutes at 72°C. A 5 minute, 72°C incubation was added at the end to ensure complete extension. The primers used were degenerate mixtures of oligonucleotides based on amino

WO 95/28484 PCT/US95/04681

- 35 -

acid sequences which are highly conserved among EPH sub-family members.

5'AGGGAATTCCAYCGNGAYYTNGCNGC' (SEQ ID NO: 27); 5'AGGGGATCCRWARSWCCANACRTC'(SEQ ID NO: 28).

The products of the PCR reaction were digested with EcoRI and BamHI and cloned into M13mp19 (Messing, Methods Enzymol. (1983)) for sequence analysis. five clones which were identified as fragments of EPH 10 receptor sub-family members were labeled with 32p-dCTP by random priming and each was used to screen Genescreen nitrocellulose filters (NEN, Boston, MA) containing plaques from the human fetal brain cDNA library. Phage stocks prepared from positively screening plaques were 15 plated and rescreened with the same probe in order to obtain single clones. cDNA inserts were transferred into pBluescript using the in vivo excision protocol supplied with the cDNA library (Stratagene, La Jolla, 20 CA). Nucleotide sequences were determined using Tag DyeDeoxy Terminator Cycle Sequencing kits and an Applied Biosystems 373A automated DNA sequencer (Applied Biosystems, Foster City, CA).

25 <u>5' Race</u>

30

35

The 5' ends of the cDNAs were isolated using a 5' RACE kit (GIBCO/BRL, Gaithersburg, MD) following the manufacturer's instructions. Excess primers were removed after first strand cDNA synthesis using ultrafree-MC cellulose filters (30,000 molecular weight cutoff, Millipore, Bedford, MA). Amplified PCR products were digested with the appropriate restriction enzymes, separated by agarose gel electrophoresis, and purified using a Geneclean kit (Bio101, La Jolla, CA). The purified PCR product was ligated into the plasmid vector pUC19 (Yanisch-Perron et al. Gene 33, 103-119 (1985))

WO 95/28484 PCT/US95/04681

- 36 -

which had been digested with appropriate restriction enzymes and the ligation mixture was introduced into host bacteria by electroporation. Plasmid DNA was prepared from the resulting colonies. Those clones with the largest inserts were selected for DNA sequencing.

While the present invention has been described in terms of preferred embodiments, it is understood that variations and modifications will occur to those skilled in the art. Therefore, it is intended that the appended claims cover all such equivalent variations which come within the scope of the invention as claimed.

PCT/US95/04681

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Amgen Inc.
 - (ii) TITLE OF INVENTION: EPH-Like Receptor Protein Tyrosine Kinases
 - (iii) NUMBER OF SEQUENCES: 28
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Amgen Patent Operations/RBW
 - (B) STREET: 1840 Dehavilland Drive
 - (C) CITY: Thousand Oaks
 - (D) STATE: California
 - (E) COUNTRY: USA
 - (F) ZIP: 91320
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Winter, Robert B.
 - (C) REFERENCE/DOCKET NUMBER: A-287
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Trp Thr Ala Pro Glu Ala Ile

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Val Cys Lys Val Ser Asp Phe Gly 1 5

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: \(\single \)
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Tyr Leu Gln Asp Asp 1 5 10 15

Thr Ser Asp Pro Thr Tyr Thr Ser Ser Leu Gly Gly Lys Ile Pro Val 20 25 30

Arg Trp Thr Ala Pro Glu Ala Ile 35 40

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp 1 5 10 15

Pro Glu Ala Ala Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile Arg Trp

Thr Ala Pro Glu Ala Ile

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Phe Leu Glu Asp Asp

Thr Ser Asp Pro Thr Tyr Thr Ser Ala Leu Gly Gly Lys Ile Pro Ile

Arg Trp Thr Ala Pro Glu Ala Ile 35

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Val Cys Lys Val Ser Asp Phe Gly Met Ser Arg Val Leu Glu Asp Asp

Pro Glu Ala Ala Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile Arg Trp 20

Thr Ala Pro Glu Ala Ile 35

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Ile Glu Asp Asp 1 5. 10 15

Pro Glu Ala Val Tyr Thr Thr Thr Gly Gly Lys Ile Pro Val Arg Trp 20 25 30

Thr Ala Pro Glu Ala Ile 35

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Val Cys Lys Val Ser Asp Phe Gly Leu Ala Arg Leu Ile Glu Asp Asn 1 5 10 15

Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala 20 25 30

Pro Glu Ala Ile 35

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 37 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein

CTG Leu 1

GCT Ala

AGT Ser

AAC

CGG

Arg 65 CGT

	(xi)	SEQ	UENC	E DE	SCRI	PTIC	n: s	EQ I	D NC	9:							
	Val 1	. Cys	Lys	Val	Ser 5	. Asp	Phe	Gly	Leu	Ala 10	Arg	ı Asp	Ile	Met	Arg 15	Asp	
	Ser	: Asn	Туг	11e 20	Ser	Lys	Gly	Ser	25	Phe	Leu	Pro	Lev	1 Lys 30	Trp	Thr	
	Ala	Pro	Glu 35	Ala	Ile	:	-		*								
(2)	INFO	RMAT	поп	FOR	SEQ	ID N	10:10	:									
	(i)	(E	.) LE 3) TY :) SI	NGTH PE: RAND	: 29 nucl		ase acid sing	pair l	rs.								
	(ii)	MOL	ECUI	E TY	PE:	CDNA	7										
	(ix)) NA	ME/K		CDS 12	2913										
	(xi)	SEÇ	UENC	E DE	SCRI	PTIC)N: S	EQ I	D NC	:10:				•			
	CTC Leu																48
	GAG Glu																96
	GGC Gly																144
	GTG Val 50																192
	CGC Arg																240
	GAC Asp																288
TTC	AAC.	CTC	TAT	TAC	TAT	GAG	GCT	GAC	ттт	GAC	TCG	GCC	ACC	AAG	ACC		336

Phe Asn Leu Tyr Tyr Glu Ala Asp Phe Asp Ser Ala Thr Lys Thr
100 105 110

						GAT Asp 125		GCA Ala	384
						CGC Arg			432
						CGC Arg			480
						CTC Leu			528
						AAT Asn			576
						CTG Leu 205			624
						GTA Val			672
						ATC Ile			720
						ACC Thr			768
						GAT Asp			816
						GGG Gly 285			864
						GAC Asp			912
						GTG Val			960
						CCC Pro			1008

												AAG Lys				1	056
												GTA Val 365				1	104
												ATC Ile				1	152
												GTG Val				1	200
												GTG Val				1:	248
												CAT His				1:	296
Arg	Thr	Val 435	Asp	Ser	Ile	Thr	Leu 440	Ser	Trp	Ser	Gln	CCG Pro 445	Asp	Gln	Pro	1	344
Asn	Gly 450	Val	Ile	Leu	Asp	Tyr 455	Glu	Leu	Gln	Tyr	Tyr 460	GAG Glu	Lys	Glu	Leu	13	392
Ser 465	Glu	Tyr	Asn	Ala	Thr 470	Ala	Ile	Lys	Ser	Pro 475	Thr	AAC Asn	Thr	Val	Thr 480	1	440
Gly	Leu	Lys	Ala	Gly 485	Ala	Ile	Tyr	Val	Phe 490	Gln	Val	CGG Arg	Ala	Arg 495	Thr	1.	488
Val	Ala	Gly	Tyr 500	Gly	Arg	Tyr	Ser	Gly 505	Lys	Met	Tyr	TTC	Gln 510	Thr	Met	1!	536
Thr	Glu	Ala 515	Glu	Tyr	Gln	Thr	Ser 520	Ile	Gln	Glu	Lys	TTG Leu 525	Pro	Leu	Ile	15	584
Ile	Gly 530	Ser	Ser	Ala	Ala	Gly 535	Leu	Val	Phe	Leu	11e 540	GCT Ala	Val	Val	Val	16	632
ATC Ile 545	GCC Ala	ATC Ile	GTG Val	TGT Cys	AAC Asn 550	AGA Arg	CGG Arg	GGG Gly	TTT Phe	GAG Glu 555	CGT Arg	GCT Ala	GAC Asp	TCG Ser	GAG Glu . 560	16	580

ACG Thr									1728
AAG Lys									1776
CGG [.] Arg									1824
GTG Val 610									1872
CTG Leu									1920
GGC Gly									1968
 ATG Met									2016
 ACC Thr	_								2064
TCC Ser 690									2112
CAG Gln									2160
GCA Ala									2208
GTC Val									2256
TTT Phe									2304
GGA Gly 770									2352

											GGC Gly				2400
											GAC Asp				2448
											CTG Leu				2496
											GAC Asp 845				2544
											GTC Val				2592
											ATG Met				2640
											ATC Ile				2688
											ATC Ile		_		2736
											TCC Ser 925				2784
											GGG Gly				2832
											GTG Val				2880
			CAG Gln						TGA	CATTO	CAC (CTGCC	CTCG	GC	2930
TCA	CCTC	TTC (CTCC	AAGC	cc c	GCCC	CTC	r GC							2962

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 970 amino acids

 (B) TYPE: amino acid

 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Leu Leu Ala Ala Val Glu Glu Thr Leu Met Asp Ser Thr Thr Ala Thr Ala Glu Leu Gly Trp Met Val His Pro Pro Ser Gly Trp Glu Glu Val Ser Gly Tyr Asp Glu Asn Met Asn Thr Ile Arg Thr Tyr Gln Val Cys Asn Val Phe Glu Ser Ser Gln Asn Asn Trp Leu Arg Thr Lys Phe Ile Arg Arg Arg Gly Ala His Arg Ile His Val Glu Met Lys Phe Ser Val Arg Asp Cys Ser Ser Ile Pro Ser Val Pro Gly Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Glu Ala Asp Phe Asp Ser Ala Thr Lys Thr Phe Pro Asn Trp Met Glu Asn Pro Trp Val Lys Val Asp Thr Ile Ala Ala Asp Glu Ser Phe Ser Gln Val Asp Leu Gly Gly Arg Val Met Lys 135 Ile Asn Thr Glu Val Arg Ser Phe Gly Pro Val Ser Arg Ser Gly Phe Tyr Leu Ala Phe Gln Asp Tyr Gly Gly Cys Met Ser Leu Ile Ala Val Arg Val Phe Tyr Arg Lys Cys Pro Arg Ile Ile Gln Asn Gly Ala Ile Phe Gln Glu Thr Leu Ser Gly Ala Glu Ser Thr Ser Leu Val Ala Ala Arg Gly Ser Cys Ile Ala Asn Ala Glu Glu Val Asp Val Pro Ile Lys 215 Leu Tyr Cys Asn Gly Asp Gly Glu Trp Leu Val Pro Ile Gly Arg Cys Met Cys Lys Ala Gly Phe Glu Ala Val Glu Asn Gly Thr Val Cys Arg 250 Gly Cys Pro Ser Gly Thr Phe Lys Ala Asn Gln Gly Asp Glu Ala Cys

Thr His Cys Pro Ile Asn Ser Arg Thr Thr Ser Glu Gly Ala Thr Asn 275 280 285

Cys	Val 290	Суз	Arg	Asn	Gly	Tyr 295	Tyr	Arg	Ala	Asp	Leu 300	Asp	Pro	Leu	Asp
Met 305	Pro	Суз	Thr	Thr	Ile 310	Pro	Ser	Ala	Pro	Gln 315	Ala	Val	Ile	Ser	Ser 320
Val	Asn	Glu	Thr	Ser 325	Leu	Met	Leu	Glu	Trp 330	Thr	Pro	Pro	Arg	Asp 335	Ser
Gly	Gly	Arg	Glu 340	Asp	Leu	Val	Туг	Asn 345	Ile	Ile	Суз	Lys	Ser 350	Суз	Gly
Ser	Gly	Arg 355	Gly	Ala	Cys	Thr	Arg 360	Суз	Gly	Asp	Asn	Val 365	Gln	Tyr	Ala
Pro	Arg 370	Gln	Leu	Gly	Leu	Thr 375	Glu	Pro	Arg	Ile	Tyr 380	Ile	Ser	Asp	Leu
Leu 385	Ala	His	Thr	Gln	Tyr 390	Thr	Phe	Glu	Ile	Gln 395	Ala	Val	Asn	Gly	Val 400
Thr	Asp	Gln	Ser	Pro 40 5	Phe	Ser	Pro	Gln	Phe 410	Ala	Ser	Val	Asn	Ile 415	Thr
Thr	Asn	Gln	Ala 420	Ala	Pro	Ser	Ala	Vai 425	Ser	Ile	Met	His	Gln 430	Val	Ser
Arg	Thr	Val 435	Asp	Ser	Ile	Thr	Leu 440	Ser	Trp	Ser	Gln	Pro 445	Asp	Gln	Pro
Asn	Gly 450	Val	Ile	Leu	Asp	Tyr 455	Glu	Leu	Gln	туг	Tyr 460	Glu	Lys	Glu	Leu
Ser 465	Glu	Tyr	Asn	Ala	Thr 470	Ala	Ile	Lys	Ser	Pro 475	Thr	Asn	Thr	Val	Thr 480
Gly	Leu	Lys	Ala	Gly 485	Ala	Ile	Tyr	Val	Phe 490	Gln	Val	Arg	Ala	Arg 495	Thr
Val	Ala	Gly	Tyr 500	Gly	Arg	Tyr	Ser	Gly 505	Lys	Met	Tyr	Phe	Gln 510	Thr	Met
Thr	Glu	Ala 515	Glu	Tyr	Gln	Thr	Ser 520	Ile	Gln	Glu	Lys	Leu 525	Pro	Leu	Ile
Ile	Gly 530	Ser	Ser	Ala	Ala	Gly 535	Leu	Val	Phe	Leu	11e 540	Ala	Val	Val	Val
Ile 545	Ala	Ile	Val	Cys	Asn 550	Arg	Arg	Gly	Phe	Glu 555	Arg	Ala	Asp	Ser	Glu 560
Tyr	Thr	Asp	Lys	Leu 565	Gln	His	Tyr	Thr	Ser 570	Gly	His	Ile	Thr	Pro 575	Gly
Met	Lys	Ile	Tyr 580	Ile	Asp	Pro	Phe	Thr 585	Tyr	Glu	Asp	Pro	Asn 590	Glu	Ala

Val Arg Glu Phe Ala Lys Glu Ile Asp Ile Ser Cys Val Lys Ile Glu Gln Val Ile Gly Ala Gly Glu Phe Gly Glu Val Cys Ser Gly His Leu Lys Leu Pro Gly Lys Arg Glu Ile Phe Val Ala Ile Lys Thr Leu Lys Ser Gly Tyr Thr Glu Lys Gln Arg Arg Asp Phe Leu Ser Glu Ala Ser 650 645 Ile Met Gly Gln Phe Asp His Pro Asn Val Ile His Leu Glu Gly Val 665 Val Thr Lys Ser Thr Pro Val Met Ile Ile Thr Glu Phe Met Glu Asn Gly Ser Leu Asp Ser Phe Leu Arg Gln Asn Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asp Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile 725 Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Phe Leu Glu Asp Asp Thr Ser Asp Pro Thr Tyr Thr Ser Ala Leu 760 Gly Cly Lys Phe Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Gln Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Thr Asn Gln Asp Val Ile Asn Ala Ile Glu Gln Asp Tyr Arg Leu Pro Pro Pro 825 Met Asp Cys Pro Ser Ala Leu His Gln Leu Met Leu Asp Cys Trp Gln 840 Lys Asp Arg Asn His Arg Pro Lys Phe Gly Gln Ile Val Asn Thr Leu Asp Lys Met Ile Arg Asn Pro Asn Ser Leu Lys Ala Met Ala Pro Leu Ser Ser Gly Ile Asn Leu Pro Leu Leu Asp Arg Thr Ile Pro Asp Tyr 890

WO 95/28484 PCT/US95/04681

- 49 -

Thr	Ser	Phe	Asn 900	Thr	Val	Asp	Glu	Trp 905	Leu	Glu	Ala	Ile	Lys 910	Met	Gly
Gln	Tyr	Lys 915	Glu	Ser	Phe	Ala	Asn 920	Ala	Gly	Phe	Thr	Ser 925	Phe	Asp	Val
Val	Ser 930	Gln	Met	Met	Met	Glu 935	Asp	Ile	Leu	Arg	Val 940	Gly	Val	Thr	Leu
Ala 945	Gly	His	Gln	Lys	Lys 950	Ile	Leu	Asn	Ser	Ile 955	Gln	Val	Met	Arg	Ala 960
Gln	Met	Asn	Gln	Ile 965	Gln	Ser	Val	Glu	Val 970						
(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:12	:							

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3162 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
 (B) LOCATION: 1..2976

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

							CCC Pro 15	 48
							GCC Ala	 96
						_	GGG Gly	 144
							GGT Gly	 192
							AAA Lys	240
						-	TCC Ser 95	 288

												ACC Thr			GAC Asp	336
												GAA Glu 125				384
												AAC Asn				432
												GAA Glu				480
												ACA Thr				528
Asp	Val	Gly	Pro 180	Leu	Ser	Lys	Lys	Gly 185	Phe	Туг	Leu	GCT Ala	Phe 190	Gln	Asp	576
Val	Gly	Ala 195	Cys	Ile	Ala	Leu	Val 200	Ser	Val	Arg	Val	TAC Tyr 205	Tyr	Lys	Lys	624
Суз	Pro 210	Ser	Val	Val	Arg	His 215	Leu	Ala	Val	Phe	Pro 220	GAC Asp	Thr	Ile	Thr	672
Gly 225	Ala	Asp	Ser	Ser	Gln 230	Leu	Leu	Glu	Val	Ser 235	Gly	TCC Ser	Cys	Val	Asn 240	720
His	Ser	Val	Thr	Asp 245	Glu	Pro	Pro	Lys	Met 250	His	Суѕ	AGC Ser	Ala	Glu 255	Gly	768
Glu	Trp	Leu	Val 260	Pro	Ile	Gly	Lys	Cys 265	Met	Cys	Lys	GCA Ala	Gly 270	Tyr	Glu	816
Glu	Lys	Asn 275	Gly	Thr	Суз	Gln	Val 280	Cys	Arg	Pro	Gly	TTC Phe 285	Phe	Lys	Ala	864
Ser	Pro 290	His	Ile	Gln	Ser	Cys 295	Gly	Lys	Суѕ	Pro	Pro 300	CAC His	Ser	Tyr	Thr	912
CAT His 305	GAG Glu	GAA Glu	GCT Ala	TCA Ser	ACC Thr 310	TCT Ser	TGT Cys	GTC Val	TGT Cys	GAA Glu 315	AAG Lys	GAT Asp	TAT Tyr	TTC Phe	AGG Arg 320	960

AGA Arg	GAG Glu	TCT Ser	GAT Asp	CCA Pro 325	CCC Pro	ACA Thr	ATG Met	GCA Ala	TGC Cys 330	ACA Thr	AGA Arg	CCC Pro	CCC Pro	TCT Ser 335	GCT Ala		1008
	CGG Arg																1056
	ATT Ile																1104
	GCA Ala 370																1152
	GGT Gly																1200
	GTC Val															·	1248
	GAG Glu																1296
	GTG Val		-														1344
	AAT Asn 450																1392
	CAA Gln																1440
	CAT His																1488
	GAG Glu																1536
	TTC Phe																1584
	AGA Arg 530																1632

CAA Gln 545	AGC Ser	CAG Gln	ATT Ile	CCT Pro	GTA Val 550	ATT Ile	GCT Ala	GTG Val	TCT Ser	GTG Val 555	ACA Thr	GTA Val	GGA Gly	GTC Val	ATT Ile 560	1680
								CTC Leu								1728
								GAA Glu 585								1776
								GTA Val								1824
								GTC Val								1872
								AGA Arg								1920
								AAA Lys								1968
								GTA Val 665								2016
								ATC Ile								2064
								GTG Val								2112
								GGC Gly							AAG Lys 720	2160
								ATT Ile								2208
								CTT Leu 745								2256
								TTA Leu								2304

			GAC Asp													2352
			ACC Thr													2400
			ATA Ile													2448
			ATA Ile 820													2496
			ATG Met													2544
			CCA Pro													2592
			TGC Cys													2640
			AAC Asn													2688
			GTT Val 900													2736
			CTA Leu													2784
			AAG Lys													2832
			ATG Met													2880
			GTG Val													2928
		GAA	ATG	AAG	GTG	CAG	CTG	GTA	AAC	GGA	ATG	GTG	CCA	TTG	TAACTTCAT	rG
2983 Leu			Met 980	Lys	Val	Gln	Leu	Val 985	Asn	Gly	Met	Val	Pro 990	Leu		
TAAA	TGTC	GC I	TCTI	CAAC	T GA	ATGA	TTCI	GC#	CTTT	GTA	AACA	GCAC	TG A	.GATT	TATTT	3043

3103

3162

TAAC	AAAA	LAA, A	GGGG	GAAA	A GO	GAAA	ACAG	TGA	TTTC	CTAA	ACCI	TAG	AAA	CAT	TGCCT
CAGO	CACA	AGA A	ATTTG	TAAT	C AI	GGTT	TTAC	TGA	AGTA	TCC	AGTT	CTT	AGT (CTT	AGTCT
(2)	INFO	RMAT	CION	FOR	SEQ	ID N	10:13	3:				•			
	٠ ((i) S	(A) (B)	LEN TYP	GTH:	ACTE 991 minc GY: 1	ami aci	.no a .d	cids	i					•
	()	li) M	OLEC	ULE	TYPE	: pr	otei	n							
	(3	(i) S	EQUE	NCE	DESC	RIPI	: NOI	SEÇ	D	NO:1	3:				
Pro 1	Ala	Ser	Leu	Ala 5	Gly	Cys	Tyr	Ser	Ala 10	Pro	Arg	Arg	Ala	Pro 15	Leu
Trp	Thr	Cys	Leu 20	Leu	Leu	Cys	Ala	Ala 25	Leu	Arg	Thr	Leu	Leu 30	Ala	Ser
Pro	Ser	Asn 35	Glu	Val	Asn	Leu	Leu 40	Asp	Ser	Arg	Thr	Val 45	Met	Gly	Asp .
Leu	Gly 50	Trp	Ile	Ala	Phe	Pro 55	Lys	Asn	Gly	Trp	Glu 60	Glu	Ile	Gly	Glu
Val 65	Asp	Glu	Asn	Tyr	Ala 70	Pro	Ile	His	Thr	Tyr 75	Gln	Val	Cys	Lys	Val 80
Met	Glu	Gln	Asn	Gln 85	Asn	Asn	Trp	Leu	Leu 90	Thr	Ser	Trp	Ile	Ser 95	Asn
Glu	Gly	Ala	Ser 100	Arg	Ile	Phe	Ile	Glu 105	Leu	Lys	Phe	Thr	Leu 110	Arg	Asp
Суѕ	Asn	Ser 115	Leu	Pro	Gly,	Gly	Leu 120	Gly	Thr	Cys	Lys	Glu 125	Thr	Phe	Asn
Met	Tyr 130	Tyr	Phe	Glu	Ser	Asp 135	Asp	Gln	Asn	Gly	Arg 140	Asn	Ile	Lys	Glu
Asn 145	Gln	Tyr	Ile	Lys	11e 150	Asp	Thr	Ile	Ala	Ala 155	Asp	Glu	Ser	Phe	Thr 160
Glu	Leu	Asp	Leu	Gly 165	Asp	Arg	Val	Met	Lys 170	Leu	Asn	Thr	Glu	Val 175	Arg
Asp	Val	Gly	Pro 180	Leu	Ser	Lys	Lys	Gly 185	Phe	Tyr	Leu	Ala	Phe 190	Gln	Asp
Val	Gly	Ala 195	Суѕ	Ile	Ala	Leu	Val 200	Ser	Val	Arg	Val	Tyr 205	Tyr	Lys	Lys
Cys	Pro	Ser	Val	Val	Arg	His	Leu	Ala	Val	Phe	Pro	Asp	Thr	Ile	Thr

215

Gly 225	Ala	Asp	Ser	Ser	Gln 230	Leu	Leu	Glu	Val	Ser 235	Gly	Ser	Суз	Val	Asn 240
His	Ser	Val	Thr	Asp 245	Glu	Pro	Pro	ГÀЗ	Met 250	His	Сув	Ser	Ala	Glu 255	Gly
Glu	Trp	Leu	Val 260	Pro	Ile	Gly	Lys	Cys 265	Met	Cys	Lys	Ala	Gly 270	Tyr	Glu
Glu	Lys	Asn 275	Gly	Thr	Cys	Gln	Val 280	Суѕ	Arg	Pro	Gly	Phe 285	Phe	Lys	Ala
Ser	Pro 290	His	Ile	Gln	Ser	Суз 295	Gly	Lys	Cys	Pro	Pro 300	His	Ser	Tyr	Thr
His 305	Glu	Glu	Ala	Ser	Thr 310	Ser	Суѕ	Val	Cys	Glu 315	Lys	Asp	Tyr	Phe	Arg 320
Arg	Glu	Ser	Asp	Pro 325	Pro	Thr	Met	Ala	Cys 330	Thr	Arg	Pro	Pro	Ser 335	Ala
Pro	Arg	Asn	Ala 340	Ile	Ser	Asn	Val	Asn 345	Glu	Thr	Ser	Val	Phe 350	Leu	Glu
Trp	Ile	Pro 355	Pro	Ala	Asp	Thr	Glу 360	Gly	Arg	Lys	Asp	Val 365	Ser	Tyr	Tyr
Ile	Ala 370	Суз	Lys	Lys	Суѕ	Asn 375	Ser	His	Ala	Gly	Val 380	Суз	Glu	Glu	Cys
Gly 385	Gly	His	Val	Arg	Tyr 390	Leu	Pro	Arg	Gln	Ser 395	Gly	Leu	Lys	Asn	Thr 400
Ser	Val	Met	Met	Val 405	Asp	Leu	Leu	Ala	His 410	Thr	Asn	Tyr	Thr	Phe 415	Glu
Ile	Glu	Ala	Val 420	Asn	Gly	Val	Ser	Asp 425	Leu	Ser	Pro	Gly	Ala 430	Arg	Gln
Tyr	Val	Ser 435	Val	Asn	Val	Thr	Thr 440	Asn	Gln	Ala	Ala	Pro 445	Ser	Pro	Val
Thr	Asn 450	Val	Lys	Lys	Gly	Lys 455	Ile	Ala	Lys	Asn	Ser 460	Ile	Ser	Leu	Ser
Trp 465	Gln	Glu	Pro	Asp	Arg 470	Pro	Asn	Gly	Ile	Ile 475	Leu	Glu	Tyr	Glu	Ile 480
Lys	His	Phe	Glu	Lys 485	Asp	Gln	Glu	Thr	Ser 490	Tyr	Thr	Ile	Ile	Lys 495	Ser
Lys	Glu	Thr	Thr 500	Ile	Thr	Ala	Glu	Gly 505	Leu	Lys	Pro	Ala	Ser 510	Val	Tyr
Val	Phe	Gln 515	Ile	Arg	Ala	Arg	Thr 520	Ala	Ala	Gly	Tyr	Gly 525	Val	Phe	Ser

Arg	Arg 530	Phe	Glu	Phe	Glu	Thr 535	Thr	Pro	Val	Phe	Ala 540	Ala	Ser	Ser	Asp
Gln 545	Ser	Gln	Ile	Pro	Val 550	Ile	Ala	Val	Ser	Val 555	Thr	Val	Gly	Val	Ile 560
Leu	Leu	Ala	Val	Val 565	Ile	Gly	Val	Leu	Leu 570	Ser	Gly	Arg	Arg	Cys 575	Gly
Tyr	Ser	Lys	Ala 580	Lys	Gln	Asp	Pro	Glu 585	Glu	Glu	Lys	Met	His 590	Phe	His
Asn	Gly	His 595	Ile	Lys	Leu	Pro	Gly 600	Val	Arg	Thr	Tyr	11e 605	Asp	Pro	His
Thr	Tyr 610	Glu	Asp	Pro	Asn	Gln 615	Ala	Val	His	Glu	Phe 620	Ala	Lys	Glu	Ile
Glu 625	Ala	Ser	Суз	Ile	Thr 630	Ile	Glu	Arg	Val	Ile 635	Gly	Ala	Gly	Glu	Phe 640
Gly	Glu	Val	Cys	Ser 645	Gly	Arg	Leu	Lys	Leu 650	Pro	Gly	Lys	Arg	Glu 655	Leu
Pro	Val	Ala	Ile 660	Lys	Thr	Leu	Lys	Val 665	Gly	Tyr	Thr	Glu	Lys 670	Gln	Arg
Arg	Asp	Phe 675	Leu	Gly	Glu	Ala	Ser 680	Ile	Met	Gly	Gln	Phe 685	Asp	His	Pro
Asn	11e 690	Ile	His	Leu	Glu	Gly 695	Val	Val	Thr	Lys	Ser 700	Lys	Pro	Val	Met
11e 705	Val	Thr	Glu	Tyr	Met 710	Glu	Asn	Gly	Ser	Leu 715	Asp	Thr	Phe	Leu	Lys 720
Lys	Asn	Asp	Gly	Gln 725	Phe	Thr	Val	Ile	Gln 730	Leu	Val	Gly	Met	Leu 735	Arg
Gly	Ile	Ser	Ala 740	Gly	Met	Lys	Tyr	Leu 745	Ser	Asp	Met	Gly	Туr 750	Val	His
Arg	Asp	Leu 755	Ala	Ala	Arg	Asn	11e 760	Leu	Ile	Asn	Ser	Asn 765	Leu	Val	Суѕ
Lys	Val 770	Ser	Asp	Phe	Gly	Leu 775	Ser	Arg	Val	Leu	Glu 780	Asp	Asp	Pro	Glu
Ala 785	Ala	Tyr	Thr	Thr	Arg 790	Gly	Gly	Lys	Ile	Pro 795	Ile	Arg	Trp	Thr	Ala 800
Pro	Glu	Ala	Ile	Ala 805	Phe	Arg	Lys	Phe	Thr 810	Ser	Ala	Ser	Asp	Val 815	Trp
Ser	Tyr	Gly	Ile 820	Val	Met	Trp	Glu	Val 825	Val	Ser	Tyr	Gly	Glu 830	Arg	Pro

Tyr	Trp	Glu 835	Met	Thr	Asn	Gln	Asp 840	Val	Ile	Lys	Ala	Val 845	Glu	Glu	Gly
Tyr	Arg 850	Leu	Pro	Ser	Pro	Met 855	Asp	Суз	Pro	Ala	Ala 860	Leu	Tyr	Gln	Leu
Met 865	Leu	Asp	Суз	Trp	Gln 870	Lys	Glu	Arg	Asn	Ser 875	Arg	Pro	Lys	Phe	Asp 088
Glu	Ile	Val	Asn	Met 885	Leu	Asp	Lys	Leu	Ile 890	Arg	Asn	Pro	Ser	Ser 895	Lev
Lys	Thr	Leu	Val 900	Asn	Ala	Ser	Суз	Arg 905	Val	Ser	Asn	Leu	Leu 910	Ala	Glu
His	Ser	Pro 915	Leu	Gly	Ser	Gly	Ala 920	Tyr	Arg	Ser	Val	Gly 925	Glu	Trp	Leu
Glu	Ala 930	Ile	Lys	Met	Gly	Arg 935	Tyr	Thr	Glu	Ile	Phe 940	Met	Glu	Asn	Gly
Tyr 945	Ser	Ser	Met	qeA	Ala 950	Val	Ala	Gln	Val,	Thr 955	Leu	Glu	Asp	Leu	Arg 960
Arg	Leu	Gly	Val	Thr 965	Leu	Val	Gly	His	Gln 970	Lys	Lуз	Ile	Met	Asn 975	Ser
Leu	Gln	Glu	Met 980	ГЛЗ	Val	Gln	Leu	Val 985	Asn	Gly	Met	Val	Pro 990	Leu	

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3116 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: 34..2994
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AAGCGGCAGG AGCAGCGTTG GCACCGGCGA ACC ATG GCT GGG ATT TTC TAT TTC 54 Met Ala Gly Ile Phe Tyr Phe 1

GCC CTA TTT TCG TGT CTC TTC GGG ATT TGC GAC GCT GTC ACA GGT TCC 102 Ala Leu Phe Ser Cys Leu Phe Gly Ile Cys Asp Ala Val Thr Gly Ser 10

		Tyr													GTT Val	150
						Ile					Glu				GAG Glu 55	198
															CAA Gln	246
GTG Val	TGC Cys	AAT Asn	GTG Val 75	ATG Met	GAA Glu	CCC Pro	AGC Ser	CAG Gln 80	AAT Asn	AAC Asn	TGG Trp	CTA Leu	CGA Arg 85	ACT Thr	GAT Asp	294
												GAG Glu 100				342
ACC Thr	TTG Leu 105	AGG Arg	GAC Asp	TGC Cys	AAT Asn	AGT Ser 110	CTT Leu	CCG Pro	GGC Gly	GTC Val	ATG Met 115	GGG Gly	ACT Thr	TGC Cys	AAG Lys	390
GAG Glu 120	ACG Thr	TTT Phe	AAC Asn	CTG Leu	TAC Tyr 125	TAC Tyr	TAT Tyr	GAA Glu	TCA Ser	GAC Asp 130	AAC Asn	GAC Asp	AAA Lys	GAG Glu	CGT Arg 135	438
TTC Phe	ATC Ile	AGA Arg	GAG Glu	AAC Asn 140	CAG Gln	TTT Phe	GTC Val	AAA Lys	ATT Ile 145	GAC Asp	ACC Thr	ATT	GCT Ala	GCT Ala 150	GAT Asp	486
GAG Glu	AGC Ser	TTC Phe	ACC Thr 155	CAA Gln	GTG Val	GAC Asp	ATT Ile	GGT Gly 160	GAC Asp	AGA Arg	ATC Ile	ATG Met	AAG Lys 165	CTG Leu	AAC Asn	534
ACC Thr	GAG Glu	ATC Ile 170	CGG Arg	GAT Asp	GTA Val	GGG Gly	CCA Pro 175	TTA Leu	AGC Ser	AAA Lys	AAG Lys	GGG Gly 180	TTT Phe	TAC Tyr	CTG Leu	582
GCT Ala	TTT Phe 185	CAG Gln	GAT Asp	GTG Val	GGG Gly	GCC Ala 190	TGC Cys	ATC Ile	GCC Ala	CTG Leu	GTA Val 195	TCA Ser	GTC Val	CGT Arg	GTG Val	630
												GCC Ala				678
GAC Asp	ACC Thr	ATC Ile	ACA Thr	GGG Gly 220	GCT Ala	GAT Asp	ACG Thr	TCT Ser	TCC Ser 225	CTG Leu	GTG Val	GAA Glu	GTT Val	CGA Arg 230	GGC Gly	726
TCC Ser	TGT Cys	GTC Val	AAC Asn 235	AAC Asn	TCA Ser	GAA Glu	GAG Glu	AAA Lys 240	GAT Asp	GTG Val	CCA Pro	AAA Lys	ATG Met 245	TAC Tyr	TGT Cys	774

									•								
									ATT Ile								822
									TGC Cys								870
									ACC Thr								918
CAC His	AGC Ser	TAC Tyr	TCT Ser	GTC Val 300	TGG Trp	GAA Glu	GGA Gly	GCC Ala	ACC Thr 305	TCG Ser	TGC Cys	ACC Thr	TGT Cys	GAC Asp 310	CGA Arg		966
									GCC Ala								1014
									TCA Ser						TCT Ser	•	1062
GTG Val	AAC Asn 345	TTG Leu	GAA Glu	TGG Trp	AGT Ser	AGC Ser 350	CCT Pro	CAG Gln	AAT Asn	ACA Thr	GGT Gly 355	GGC Gly	CGC Arg	CAG Gln	GAC Asp		1110
									TGT Cys								1158
									CAC His 385								1206
GGC Gly	TTG Leu	AAG Lys	ACC Thr 395	ACC Thr	AAA Lys	GTC Val	TCC Ser	ATC Ile 400	ACT Thr	GAC Asp	CTC Leu	CTA Leu	GCT Ala 405	CAT His	ACC Thr		1254
AAT Asn	TAC Tyr	ACC Thr 410	TTT Phe	GAA Glu	ATC Ile	TGG Trp	GCT Ala 415	GTG Val	AAT Asn	GGA Gly	GTG Val	TCC Ser 420	AAA Lys	TAT Tyr	AAC Asn		1302
CCT Pro	AAC Asn 425	CCA Pro	GAC Asp	CAA Gln	TCA Ser	GTT Val 430	TCT Ser	GTC Val	ACT Thr	GTG Val	ACC Thr 435	ACC Thr	AAC Asn	CAA Gln	GCA Ala		1350
GCA Ala 440	CCA Pro	TCA Ser	TCC Ser	ATT Ile	GCT Ala 445	TTG Leu	GTC Val	CAG Gln	GCT Ala	AAA Lys 450	GAA Glu	GTC Val	ACA Thr	AGA Arg	TAC Tyr 455		1398
AGT Ser	GTG Val	GCA Ala	CTG Leu	GCT Ala 460	TGG Trp	CTG Leu	GAA Glu	CCA Pro	GAT Asp 465	CGG Arg	CCC Pro	AAT Asn	GGG Gly	GTA Val 470	ATC Ile		1446

			TAT Tyr							1494
	_		GCT Ala	_					CTG	1542
			GTT Val 510							1590
			GAG Glu							1638
			GAT Asp							1686
			GTG Val							1734
			AGT Ser							1782
			AAT Asn 590							1830
			AAC Asn							1878
			AAG Lys							1926
			GGG Gly							1974
 _	 	 _	ACT Thr	_	_	 	 _			2022
			GAG Glu 670							2070
			GAA Glu							2118

WO 95/28484 PCT/US95/04681

- 61 -

														TTC Phe 710		2166
														ATG Met		2214
														TAT Tyr		2262
_														TTG Leu		2310
														GAT Asp		2358
Glu	Ala	Ala	Tyr	Thr 780	Thr	Arg	Gly	Gly	Lys 785	Ile	Pro	Ile	Arg	TGG Trp 790	Thr	2406
														GAT Asp		2454
Trp	Ser	Tyr 810	Gly	Ile	Val	Met	Trp 815	Glu	Val	Met	Ser	Tyr 820	Gly	GAG Glu	Arg	2502
Pro	Tyr 825	Trp	Asp	Met	Ser	Asn 830	Gln	Asp	Val	Ile	Lys 835	Ala	Ile	GAG Glu	Glu	2550
Gly 840	Tyr	Arg	Leu	Pro	Pro 845	Pro	Met	Asp	Суз	Pro 850	Ile	Ala	Leu	CAC His	Gln 855	2598
														AAA Lys 870		2646
Gly	Gln	Ile	Val 875	Asn	Met	Leu	Asp	198 198 198	Leu	Ile	Arg	Asn	Pro 885	AAC Asn	Ser	2694
Leu	Lys	Arg 890	Thr	Gly	Thr	Glu	Ser 895	Ser	Arg	Pro	Asn	Thr 900	Ala	TTG Leu	Leu	2742
														GAT Asp		2790

		GCC Ala														2838
		ACC Thr														2886
		ATT														2934
		CAG Gln 970														2982
	CCC Pro 985	GTC Val	TGA	GCCAC	STA (CTGA	KAATA	AC TO	CAAAI	ACTC:	r TG2	TAAL	ragt			3031
TTA	CCTC	ATC (CATGO	CACTI	T A	ATTG!	AAGA	A CTO	CAC	TTTT	TTT	CTTC	CGT (CTTCC	SCCCTC	3091
TGA	AATT	AAA (SAAA:	rgaa?	LA AZ	AAA										3116
(2)	INF	ORMAT	rion	FOR	SEQ	ID N	10:15	5:								
		(i) S	(A)	LEN TYE	GTH:		ami aci	ino a id	: acids	3						
	(:	ii) M	OLEC	CULE	TYPE	: pr	otei	n								
	()	ki) S	EQUE	ENCE	DESC	RIPI	ON:	SEÇ) ID	NO:1	15:					
Met 1	Ala	Gly	Ile	Phe 5	Tyr	Phe	Ala	Leu	Phe 10	Ser	Cys	Leu	Phe	Gly 15	Ile	
Cys	Asp	Ala	Val 20	Thr	Gly	Ser	Arg	Val 25	Tyr	Pro	Ala	Asn	Glu 30	Val	Thr	
Leu	Leu	Asp 35	Ser	Arg	Ser	Val	Gln 40	Gly	Glu	Leu	Gly	Trp 45	Ile	Ala	Ser	
Pro	Leu 50	Glu	Gly	Gly	Trp	Glu 55	Glu	Val	Ser	Ile	Met 60	Asp	Glu	Lys	Asn	

Thr Pro Ile Arg Thr Tyr Gln Val Cys Asn Val Met Glu Pro Ser Gln 65 70 75 80

Asn Asn Trp Leu Arg Thr Asp Trp Ile Thr Arg Glu Gly Ala Gln Arg

Val Tyr Ile Glu Ile Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu Pro

105

Gly Val Met Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Glu 120 Ser Asp Asn Asp Lys Glu Arg Phe Ile Arg Glu Asn Gln Phe Val Lys Ile Asp Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Val Asp Ile Gly 155 Asp Arg Ile Met Lys Leu Asn Thr Glu Ile Arg Asp Val Gly Pro Leu Ser Lys Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys Ile Ala Leu Val Ser Val Arg Val Phe Tyr Lys Lys Cys Pro Leu Thr Val Arg Asn Leu Ala Gln Phe Pro Asp Thr Ile Thr Gly Ala Asp Thr Ser 215 Ser Leu Val Glu Val Arg Gly Ser Cys Val Asn Asn' Ser Glu Glu Lys Asp Val Pro Lys Met Tyr Cys Gly Ala Asp Gly Glu Trp Leu Val Pro Ile Gly Asn Cys Leu Cys Asn Ala Gly His Glu Glu Arg Ser Gly Glu Cys Gln Ala Cys Lys Ile Gly Tyr Tyr Lys Ala Leu Ser Thr Asp Ala 280 Thr Cys Ala Lys Cys Pro Pro His Ser Tyr Ser Val Trp Glu Gly Ala Thr Ser Cys Thr Cys Asp Arg Gly Phe Phe Arg Ala Asp Asn Asp Ala 315 Ala Ser Met Pro Cys Thr Arg Pro Pro Ser Ala Pro Leu Asn Leu Ile Ser Asn Val Asn Glu Thr Ser Val Asn Leu Glu Trp Ser Ser Pro Gln 345 Asn Thr Gly Gly Arg Gln Asp Ile Ser Tyr Asn Val Val Cys Lys 360 Cys Gly Ala Gly Asp Pro Ser Lys Cys Arg Pro Cys Gly Ser Gly Val His Tyr Thr Pro Gln Gln Asn Gly Leu Lys Thr Thr Lys Val Ser Ile 395 Thr Asp Leu Leu Ala His Thr Asn Tyr Thr Phe Glu Ile Trp Ala Val

Asn Gly Val Ser Lys Tyr Asn Pro Asn Pro Asp Gln Ser Val Ser Val Thr Val Thr Thr Asn Gln Ala Ala Pro Ser Ser Ile Ala Leu Val Gln Ala Lys Glu Val Thr Arg Tyr Ser Val Ala Leu Ala Trp Leu Glu Pro Asp Arg Pro Asn Gly Val Ile Leu Glu Tyr Glu Val Lys Tyr Tyr Glu 470 Lys Asp Gln Asn Glu Arg Ser Tyr Arg Ile Val Arg Thr Ala Ala Arg Asn Thr Asp Ile Lys Gly Leu Asn Pro Leu Thr Ser Tyr Val Phe His Val Arg Ala Arg Thr Ala Ala Gly Tyr Gly Asp Phe Ser Glu Pro Leu Glu Val Thr Thr Asn Thr Val Pro Ser Arg Ile Ile Gly Asp Gly Ala 535 Asn Ser Thr Val Leu Leu Val Ser Val Ser Gly Ser Val Val Leu Val 550 Val Ile Leu Ile Ala Ala Phe Val Ile Ser Arg Arg Arg Ser Lys Tyr Ser Lys Ala Lys Gln Glu Ala Asp Glu Glu Lys His Leu Asn Gln Gly Val Arg Thr Tyr Val Asp Pro Phe Thr Tyr Glu Asp Pro Asn Gln Ala Val Arg Glu Phe Ala Lys Glu Ile Asp Ala Ser Cys Ile Lys Ile Glu 615 Lys Val Ile Gly Val Gly Glu Phe Gly Glu Val Cys Ser Gly Arg Leu Lys Val Pro Gly Lys Arg Glu Ile Cys Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Asp Lys Gln Arg Arg Asp Phe Leu Ser Glu Ala Ser Ile Met Gly Gln Phe Asp His Pro Asn Ile Ile His Leu Glu Gly Val Val Thr Lys Cys Lys Pro Val Met Ile Ile Thr Glu Tyr Met Glu Asn 695 Gly Ser Leu Asp Ala Phe Leu Arg Lys Asn Asp Gly Arg Phe Thr Val

Ile Gln Leu Val Gly Met Leu Arg Gly Ile Gly Ser Gly Met Lys Tyr Leu Ser Asp Met Ser Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Met Ser 760 Arg Val Leu Glu Asp Asp Pro Glu Ala Ala Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ala Tyr Arg Lys 790 795 Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Ser Asn Gln Asp Val Ile Lys Ala Ile Glu Glu Gly Tyr Arg Leu Pro Pro Met Asp 840 Cys Pro Ile Ala Leu His Gln Leu Met Leu Asp Cys Trp Gln Lys Glu Arg Ser Asp Arg Pro Lys Phe Gly Gln Ile Val Asn Met Leu Asp Lys Leu Ile Arg Asn Pro Asn Ser Leu Lys Arg Thr Gly Thr Glu Ser Ser Arg Pro Asn Thr Ala Leu Leu Asp Pro Ser Ser Pro Glu Phe Ser Ala 900 905 Val Val Ser Val Gly Asp Trp Leu Gln Ala Ile Lys Met Asp Arg Tyr 920 Lys Asp Asn Phe Thr Ala Ala Gly Tyr Thr Thr Leu Glu Ala Val Val His Val Asn Gln Glu Asp Leu Ala Arg Ile Gly Ile Thr Ala Ile Thr His Gln Asn Lys Ile Leu Ser Ser Val Gln Ala Met Arg Thr Gln Met Gln Gln Met His Gly Arg Met Val Pro Val

121	INFORMATION	TOD.	SEO	TD	NO - 16 -
(2)	THEORMATION	FUR	SEQ	$_{\rm LD}$	MO: TO:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4529 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 186..3182

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CGGTGCGAGC GAACAC	GGAGT GGGGGGGAA	A TTAAAAAAAG C	TAAACGTGG AGCAGO	CCGAT 60
CGGGGACCGA GAAGGG	GGAAT CGATGCAAG	G AGCACACTAA A	ACAAAAGCT ACTTCG	GGAAC 120
AAACAGCATT TAAAAA	ATCCA CGACTCAAG	A TAACTGAAAC C	таааатааа асстбо	CTCAT 180
GCACC ATG GTT TTT Met Val Phe			Ile Ile Leu Cys	
TAC ATC TGG CTG C Tyr Ile Trp Leu I 15				
AAG GAA GTA CTA C Lys Glu Val Leu I				
TGG ATT TCC TCT C Trp Ile Ser Ser F 50				
GAG AAC TAT ACC C Glu Asn Tyr Thr F 65		Tyr Gln Val Cy		
CCC AAC CAA AAC A Pro Asn Gln Asn A 80		Thr Asn Trp II		
GCA CAA AGG ATT TALA Gln Arg Ile P			eu Arg Asp Cys A	
AGT CTT CCT GGA G Ser Leu Pro Gly V			}	

			GAC Asp						611
			ATT Ile						659
			ATG Met 165						7 07
			GGA Gly						755
			TCT Ser						803
			GCT Ala					_	851
			GAG Glu						899
			GCC Ala 245						947
			GGA Gly						995
			GAA Glu		Arg		_		1043
			TGC Cys						1091
			AGA Arg						1139
			TAC Tyr 325						1187
 	-		AAC Asn						1235

						GTG Val		AGA Arg	1283
 	 				-	TGT Cys	 		1331
						TTA Leu 395			1379
						TAT Tyr			1427
						TCC Ser			1475
 	 					CCC Pro	 		1523
						GTC Val			1571
						GAA Glu 475			1619
						TCA Ser			1667
						CCA Pro			1715
						TAT Tyr			1763
						ACA Thr			1811
						GTT Val 555			1859
						TTC Phe		TTT Phe	1907

•																	
GGC Gly 575	TTC Phe	ATC Ile	ATT Ile	GGG Gly	AGA Arg 580	AGG Arg	CAC His	TGT Cys	GGT Gly	TAT Tyr 585	AGC Ser	AAA Lys	GCT Ala	GAC Asp	CAA Gln 590	. 1	1955
GAA Glu	GGC Gly	GAT Asp	GAA Glu	GAG Glu 595	CTT Leu	TAC Tyr	TTT Phe	CAT His	TTT Phe 600	AAA Lys	TTT Phe	CCA Pro	GGC Gly	ACC Thr 605	AAA Lys	2	2003
ACC Thr	TAC Tyr	ATT Ile	GAC Asp 610	CCT Pro	GAA Glu	ACC Thr	TAT Tyr	GAG Glu 615	GAC Asp	CCA Pro	AAT Asn	AGA Arg	GCT Ala 620	GTC Val	CAT His	2	2051
													GAG Glu			2	2099
													TTG Leu			2	2147
													AAA Lys			2	2195
TAC Tyr	ACA Thr	GAA Glu	AAA Lys	CAA Gln 675	AGG Arg	AGA Arg	GAC Asp	TTT Phe	TTG Leu 680	TGT Cys	GAA Glu	GCA Ala	AGC Ser	ATC Ile 685	ATG Met	2	2243
													GTT Val 700			2	2291
													AAT Asn			2	2339
													GTC Val			2	2387
													TAT Tyr			2	2435
													ATT Ile			2	2483
													TCC Ser 780			2	2531
ATA Ile	GAG Glu	GAT Asp 785	GAT Asp	CCA Pro	GAA Glu	GCT Ala	GTC Val 790	Tyr	ACA Thr	ACT Thr	ACT Thr	GGT Gly 795	GGA Gly	AAA Lys	ATT Ile	2	2579

															ACA Thr	2627
						AGC Ser										2675
						TAT Tyr										2723
						TAT Tyr									CCA Pro	2771
						ATG Met										2819
						CAG Gln 885										2867
						AAA Lys										2915
						CAA Gln										2963
						CAA Gln										3011
						TAC Tyr										3059
						AGT Ser 965										3107
						ATT Ile		Thr		Arg						3155
						CAA Gln		TGAT	ATGO	T TA	TCTC	сстт	T TA	AGGG	GAGAT	3209
TACA	GACI	GC A	AGAG	AACA	G TA	CTGG	CCTI	CAG	TATA	TGC	ATAG	AATG	CT G	CTAG	SAAGAC	3269
AAGI	'GATC	STC C	TGGG	TCCI	T CC	AACA	.GTGA	AGA	GAAG	ATT	TAAG	AAGC	AC C	TATA	GACTT	3329
GAACTCCTAA GTGCCACCAG AATATATAAA AAGGGAATTT AGGATCCACC ATCGGTGGCC											3389					

- 71 -

AGGAAAATAG	CAGTGACAAT	AAACAAAGTA	CTACCTGAAA	AACATCCAAA	CACCTTGAGC	3449
TCTCTAACCT	CCTTTTTGTC	TTATAGACTT	TTTAAAATGT	ACATAAAGAA	TTTAAGAAAG	3509
AATATATTTG	TCAAATAAAA	TCATGATCTT	ATTGTTAAAA	TTAATGAAAT	ATTTTCCTTA	3569
AATATGTGAT	TTCAGACTAT	TCCTTTTTAA	AATCATTTGT	GTTTATTCTT	CATAAGGACT	3629
TTGTTTTAGA	AAGCTGTTTA	TAGCTTTGGA	CCTTTTTAGT	GTTAAATCTG	TAACATTACT	3689
ACACTGGGTA	CCTTTGAAAG	AATCTCAAAT	TTCAAAAGAA	ATAGCATGAT	TGAAGATACA	3749
TCTCTGTTAG	AACATTGGTA	TCCTTTTTGT	GCCATTTTAT	TCTGTTTAAT	CAGTGCTGTT	3809
TTGATATTGT	TTGCTAATTG	GCAGGTAGTC	AAGAAAATGC	AAGTTGCCAA	GAGCTCTGAT	3869
AAATTTTTAAA	AAGAATTTTT	TTGTAAAGAT	CAGACAACAC	ACTATCTTTT	CAATGAAAA	3929
AGCAATAATG	ATCCATACAT	ACTATAAGGC	ACTTTTAACA	GATTGTTTAT	AGAGTGATTT	3989
TACTAGAAAG	AATTTAATAA	ACTCGAAGTT	TAGGTTTATG	AGTATATAAA	CAAATGAGGC	4049
ACTTCATCTG	AAGAATGTTG	GTGAAGGCAA	GTCTCTGAAA	GCAGAACTAT	CCAGTGTTAT	4109
CTAAAAATTA	ATCTGAGCAC	ATCAAGATTT	TTTCATTCTC	GTGACATTAG	GAAATTTAGG	4169
ATAAATAGTT	GACATATATT	TTATATCCTC	TTCTGTTGAA	TGCAGTCCAA	ACATGAAAGG	4229
AAATAATTGT	TTTATATTAT	AACTCTGAAG	CATGATAAAG	GGGCAGTTCA	CAATTTTCAC	4289
CATTTAAACA	CAAATTTGCT	GCACAGAATA	TCACCATTGC	AGTTCAAAAC	AAAACAAAAC	4349
AAAAAGTCTT	TTGTTTGTGA	ACACTGATGC	AAGAAACTTG	TTAAATGAAA	GGACTCTTTA	4409
CCCTAGAAGG	AAGAGGTGAA	GGATCTGGCT	TGTTTTTAAA	GCTTTATTTA	TTAAACCATA	4469
FTATTTGATT	ACTGTGTTAG	AATTTCATAA	GCAATAATTA	AATGTGTCTT	TATGGAATTC	4529

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 998 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met Val Phe Gln Thr Arg Tyr Pro Ser Trp Ile Ile Leu Cys Tyr Ile

Trp Leu Leu Arg Phe Ala His Thr Gly Glu Ala Gln Ala Ala Lys Glu 20

Val	Leu	Leu 35	Leu	Asp	Ser	Lys	Ala 40	Gln	Gln	Thr	Glu	Leu 45	Glu	Trp	Ile
Ser	Ser 50	Pro	Pro	Asn	Gly	Trp 55	Glu	Glu	Ile	Ser	Gly 60	Leu	Asp	Glu	Asn
Tyr 65	Thr	Pro	Ile	Arg	Thr 70	Tyr	Gln	Val	Cys	Gln 75	Val	Met	Glu	Pro	Asn 80
Gln	Asn	Asn	Trp	Leu 85	Arg	Thr	Asn	Trp	Ile 90	Ser	Lys	Gly	Asn	Ala 95	Gln
Arg	Ile	Phe	Val 100	Glu	Leu	Lys	Phe	Thr 105	Leu	Arg	Asp	Cys	Asn 110	Ser	Leu
Pro	Gly	Val 115	Leu	Gly	Thr	Cys	Lys 120	Glu	Thr	Phe	Asn	Leu 125	Tyr	Tyr	Tyr
Glu	Thr 130	Asp	Tyr	Asp	Thr	Gly 135	Arg	Asn	Ile	Arg	Glu 140	Asn	Leu	Tyr	Val
Lys 145	Ile	Asp	Thr	Ile	Ala 150	Ala	Asp	Glu	Ser.	Phe 155	Thr	Gln	Gly	Asp	Leu 160
Gly	Glu	Arg	Lys	Met 165	Lys	Leu	Asn	Thr	Glu 170	Val	Arg	Glu	Ile	Gly 175	Pro
Leu	Ser	Lys	Lys 180	Gly	Phe	Tyr	Leu	Ala 185	Phe	Gln	Asp	Val	Gly 190	Ala	Суз
Ile	Ala	Leu 195	Val	Ser	Val	Lys	Val 200	Tyr	Tyr	Lys	Lys	Cys 205	Trp	Ser	Ile
Ile	Glu 210	Asn	Leu	Ala	Ile	Phe 215	Pro	Asp	Thr	Val	Thr 220	Gly	Ser	Glu	Phe
Ser 225	Ser	Leu	Val	Glu	Val 230	Arg	Gly	Thr	Cys	Val 235	Ser	Ser	Ala	Glu	Glu 240
Glu	Ala	Glu	Asn	Ala 245	Pro	Arg	Met	His	Cys 250	Ser	Ala	Glu	Gly	Glu 255	Trp
Leu	Val	Pro	Ile 260	Gly	Lys	Cys	Ile	Cys 265	Lys	Ala	Gly	Tyr	Gln 270	Gln	Lys
Gly	Asp	Thr 275	Cys	Glu	Pro	Cys	Gly 280	Arg	Gly	Phe	Tyr	Lys 285	Ser	Ser	Ser
Gln	Asp 290	Leu	Gln	Cys	Ser	Arg 295	Cys	Pro	Thr	His	Ser 300	Phe	Ser	Asp	Lys
Glu 305	Gly	Ser	Ser	Arg	Cys 310	Glu	Cys	Glu	Asp	Gly 315	Tyr	Tyr	Arg	Ala	Pro 320
Ser	Asp	Pro	Pro	Tyr 325	Val	Ala	Суѕ	Thr	Arg 330	Pro	Pro	Şer	Ala	Pro 335	Gln

WO 95/28484

- 73 -

Asn Leu Ile Phe Asn Ile Asn Gln Thr Thr Val Ser Leu Glu Trp Ser 345 Pro Pro Ala Asp Asn Gly Gly Arg Asn Asp Val Thr Tyr Arg Ile Leu 360 Cys Lys Arg Cys Ser Trp Glu Gln Gly Glu Cys Val Pro Cys Gly Ser Asn Ile Gly Tyr Met Pro Gln Gln Thr Gly Leu Glu Asp Asn Tyr Val 395 Thr Val Met Asp Leu Leu Ala His Ala Asn Tyr Thr Phe Glu Val Glu Ala Val Asn Gly Val Ser Asp Leu Ser Arg Ser Gln Arg Leu Phe Ala Ala Val Ser Ile Thr Thr Gly Gln Ala Ala Pro Ser Gln Val Ser Gly 440 Val Met Lys Glu Arg Val Leu Gln Arg Ser Val Glu Leu Ser Trp Gln Glu Pro Glu His Pro Asn Gly Val Ile Thr Glu Tyr Glu Ile Lys Tyr 470 Tyr Glu Lys Asp Gln Arg Glu Arg Thr Tyr Ser Thr Val Lys Thr Lys Ser Thr Ser Ala Ser Ile Asn Asn Leu Lys Pro Gly Thr Val Tyr Val Phe Gln Ile Arg Ala Phe Thr Ala Ala Gly Tyr Gly Asn Tyr Ser Pro Arg Leu Asp Val Ala Thr Leu Glu Glu Ala Thr Gly Lys Met Phe Glu 535 Ala Thr Ala Val Ser Ser Glu Gln Asn Pro Val Ile Ile Ala Val 555 Val Ala Val Ala Gly Thr Ile Ile Leu Val Phe Met Val Phe Gly Phe Ile Ile Gly Arg Arg His Cys Gly Tyr Ser Lys Ala Asp Gln Glu Gly 585 Asp Glu Glu Leu Tyr Phe His Phe Lys Phe Pro Gly Thr Lys Thr Tyr 600 Ile Asp Pro Glu Thr Tyr Glu Asp Pro Asn Arg Ala Val His Gln Phe 615 Ala Lys Glu Leu Asp Ala Ser Cys Ile Lys Ile Glu Arg Val Ile Gly

Ala Gly Glu Phe Gly Glu Val Cys Ser Gly Arg Leu Lys Leu Pro Gly 650 Lys Arg Asp Val Ala Val Ala Ile Lys Thr Leu Lys Val Gly Tyr Thr Glu Lys Gln Arg Arg Asp Phe Leu Cys Glu Ala Ser Ile Met Gly Gln Phe Asp His Pro Asn Val Val His Leu Glu Gly Val Val Thr Arg Gly 695 Lys Pro Val Met Ile Val Ile Glu Phe Met Glu Asn Gly Ala Leu Asp 715 Ala Phe Leu Arg Lys His Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Arg Tyr Leu Ala Asp Met Gly Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Ile Glu Asp Asp Pro Glu Ala Val Tyr Thr Thr Thr Gly Gly Lys Ile Pro Val Arg Trp Thr Ala Pro Glu Ala Ile Gln Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Ser Asn Gln Asp Val Ile Lys Ala 840 Ile Glu Glu Gly Tyr Arg Leu Pro Ala Pro Met Asp Cys Pro Ala Gly Leu His Gln Leu Met Leu Asp Cys Trp Gln Lys Glu Arg Ala Glu Arg 870 875 Pro Lys Phe Glu Gln Ile Val Gly Ile Leu Asp Lys Met Ile Arg Asn 890 Pro Asn Ser Leu Lys Thr Pro Leu Gly Thr Cys Ser Arg Pro Ile Ser Pro Leu Leu Asp Gln Asn Thr Pro Asp Phe Thr Thr Phe Cys Ser Val 920 Gly Glu Trp Leu Gln Ala Ile Lys Met Glu Arg Tyr Lys Asp Asn Phe 935

PCT/US95/04681

WO 95/28484

- 75 -

Thr Ala Ala Gly Tyr Asn Ser Leu Glu Ser Val Ala Arg Met Thr Ile

Glu Asp Val Met Ser Leu Gly Ilé Thr Leu Val Gly His Gln Lys Lys

Ile Met Ser Ser Ile Gln Thr Met Arg Ala Gln Met Leu His Leu His 985

Gly Thr Gly Ile Gln Val 995

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 976 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Glu Leu Gln Ala Ala Arg Ala Cys Phe Ala Leu Leu Trp Gly Cys

Ala Leu Ala Ala Ala Ala Ala Gln Gly Lys Glu Val Val Leu Leu

Asp Phe Ala Ala Ala Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr

Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile

Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp 65 70 75 80

Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Asn Asn Phe

Glu Leu Asn Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala 105

Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu

Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr 135

Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His

Val	Ьуз	Leu	Asn	Val 165	Glu	Glu	Arg	Ser	Val 170		Pro	Leu	Thr	Arg 175	Lys
Gly	Phe	Tyr	Leu 180	Ala	Phe	Gln	Asp	Ile 185	Gly	Ala	Cys	Val	Ala 190		Leu
Ser	Val	Arg 195	Val	Tyr	Tyr	Lys	Lys 200	Cys	Pro	Glu	Leu	Leu 205		Gly	Leu
Ala	His 210		Pro	Glu	Thr	Ile 215	Ala	Gly	Ser	Asp	Ala 220	Pro	Ser	Leu	Ala
Thr 225	Val	Ala	Gly	Thr	Cys 230	Val	Asp	His	Ala	Val 235		Pro	Pro	Gly	Gly 240
Glu	Glu	Pro	Arg	Met 245	His	Суз	Ala	Val	Asp 250		Glu	Trp	Leu	Val 255	Pro
Ile	Gly	Gln	Cys 260	Leu	Cys	Gln	Ala	Gly 265	Tyr	Glu	Lys	Val	Glu 270	Asp	Ala
Cys	Gln	Ala 275	Суѕ	Ser	Pro	Gly	Phe 280	Phe	Lys	Phe	Glu	Ala 285	Ser	Glu	Ser
Pro	Cys 290	Leu	Glu	Cys	Pro	Glu 295	His	Thr	Leu	Pro	Ser 300	Pro	Glu	Gly	Ala
305		Суѕ			310					315					320
	•	Met	_	325					330					335	
		Gly	340					345					350		
		Gly 355	÷				360					365			
	370	Pro				375					380				-
385		Glu			390					395					400
		Glu		405					410					415	
		Ser	420					425					430		
		Asn 435					440					445		_	
Thr	Thr 450	Ser	Leu	Ser		Ser 455	Trp	Ser	Ile	Pro	Pro 460	Pro	Gln	Gln	Ser

Arg 465	Val	Trp	Lys	Tyr	Glu 470	Val	Thr	Tyr	Arg	Lys 475		Gly	Asp	Ser	480
Ser	Tyr	Asn	Val	Arg 485	Arg	Thr	Glu	Gly	Phe 490		Val	Thr	Leu	Asp 495	
Leu	Ala	Pro	Asp 500	Thr	Thr	Tyr	Leu	Val 505		Val	Gln	Ala	Leu 510		Glr
Glu	Gly	Gln 515	Gly	Ala	Gly	Ser	Lys 520	Val	His	Glu	Phe	Gln 525	Thr	Leu	Sei
Pro	Glu 530	Gly	Ser	Gly	Asn	Leu 535	Ala	Val	Ile	Gly	Gly 540	Val	Ala	Val	Gly
Val 545	Val	Leu	Leu	Leu	Val 550	Leu	Ala	Gly	Val	Gly 555	Phe	Phe	Ile	His	Arg 560
Arg	Arg	Lys	Asn	Gln 565	Arg	Ala	Arg	Gln	Ser 570	Pro	Glu	Asp	Val	Tyr 575	Phe
Ser	Lys	Ser	Glu 580	Gln	Leu	Lys	Pro	Leu 585	Lys	Thr	Tyr	Val	Asp 590	Pro	His
		Glu 595					600					605			
	610	Ser				615					620				
625		Val			630					635					640
		Val		645					650					655	
		Asp	660					665					670		
		Ile 675					680					685			
	690	Ile				695					700				
705		Lys			710					715	-				720
		Ile		725					730					735	
		Asp	740					745					750		
Cys	Lys	Val 755	Ser	Asp	Phe	Gly	Leu 760	Ser	Arg	Val		Glu 765	Asp	Asp	Pro

- Glu Ala Thr Tyr Thr Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp Thr 775 Ala Pro Glu Ala Ile Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val 790 Trp Ser Phe Gly Ile Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu Ser Asn His Glu Val Met Lys Ala Ile Asn Asp 825 Gly Phe Arg Leu Pro Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln Leu Met Met Gln Cys Trp Gln Gln Glu Arg Ala Arg Arg Pro Lys Phe 855 Ala Asp Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser 870 Leu Lys Thr Leu Ala Asp Phe Asp Pro Arg Val Ser Ile Arg Leu Pro 885 890 Ser Thr Ser Gly Ser Glu Gly Val Pro Phe Arg Thr Val Ser Glu Trp 905 Leu Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu His Phe Met Ala Ala 915 920 Gly Tyr Thr Ala Ile Glu Lys Val Val Gln Met Thr Asn Asp Asp Ile Lys Arg Ile Gly Val Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr 950 Ser Leu Leu Gly Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile
- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 984 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
 - Met Glu Arg Arg Trp Pro Leu Gly Leu Gly Leu Val Leu Leu Cys 1 5 10 15

Ala Pro Leu Pro Pro Gly Ala Arg Ala Lys Glu Val Thr Leu Met Asp Thr Ser Lys Ala Gln Gly Glu Leu Gly Trp Leu Leu Asp Pro Pro Lys Asp Gly Trp Ser Glu Gln Gln Gln Ile Leu Asn Gly Thr Pro Leu Tyr Met Tyr Gln Asp Cys Pro Met Gln Gly Arg Arg Asp Thr Asp His Trp Leu Arg Ser Asn Trp Ile Tyr Arg Gly Glu Glu Ala Ser Arg Val His Val Glu Leu Gln Phe Thr Val Arg Asp Cys Lys Ser Phe Pro Gly Gly 105 Ala Gly Pro Leu Gly Cys Lys Glu Thr Phe Asn Leu Leu Tyr Met Glu Ser Asp Gln Asp Val Gly Ile Gln Leu Arg Arg Pro Leu Phe Gln Lys Val Thr Thr Val Ala Ala Asp Gln Ser Phe Thr Ile Arg Asp Leu Ala 150 Ser Gly Ser Val Lys Leu Asn Val Glu Arg Cys Ser Leu Gly Arg Leu Thr Arg Arg Gly Leu Tyr Leu Ala Phe His Asn Pro Gly Ala Cys Val 185 Ala Leu Val Ser Val Arg Val Phe Tyr Gln Arg Cys Pro Glu Thr Leu Asn Gly Leu Ala Gln Phe Pro Asp Thr Leu Pro Gly Pro Ala Gly Leu Val Glu Val Ala Gly Thr Cys Leu Pro His Ala Arg Ala Ser Pro Arg Pro Ser Gly Ala Pro Arg Met His Cys Ser Pro Asp Gly Glu Trp Leu Val Pro Val Gly Arg Cys His Cys Glu Pro Gly Tyr Glu Glu Gly Gly 265 Ser Gly Glu Ala Cys Val Ala Cys Pro Ser Gly Ser Tyr Arg Met Asp Met Asp Thr Pro His Cys Leu Thr Cys Pro Gln Gln Ser Thr Ala Glu 295 Ser Glu Gly Ala Thr Ile Cys Thr Cys Glu Ser Gly His Tyr Arg Ala

Pro Gly Glu Gly Pro Gln Val Ala Cys Thr Gly Pro Pro Ser Ala Pro 325 330 Arg Asn Leu Ser Phe Ser Ala Ser Gly Thr Gln Leu Ser Leu Arg Trp Glu Pro Pro Ala Asp Thr Gly Gly Arg Gln Asp Val Arg Tyr Ser Val Arg Cys Ser Gln Cys Gln Gly Thr Ala Gln Asp Gly Gly Pro Cys Gln Pro Cys Gly Val Gly Val His Phe Ser Pro Gly Ala Arg Ala Leu Thr Thr Pro Ala Val His Val Asn Gly Leu Glu Pro Tyr Ala Asn Tyr Thr 410 Phe Asn Val Glu Ala Gln Asn Gly Val Ser Gly Leu Gly Ser Ser Gly His Ala Ser Thr Ser Val Ser Ile Ser Met Gly His Ala Glu Ser Leu 440 Ser Gly Leu Ser Leu Arg Leu Val Lys Lys Glu Pro Arg Gln Leu Glu 455 Leu Thr Trp Ala Gly Ser Arg Pro Arg Ser Pro Gly Ala Asn Leu Thr Tyr Glu Leu His Val Leu Asn Gln Asp Glu Glu Arg Tyr Gln Met Val Leu Glu Pro Arg Val Leu Leu Thr Glu Leu Gln Pro Asp Thr Thr Tyr 505 Ile Val Arg Val Arg Met Leu Thr Pro Leu Gly Pro Gly Pro Phe Ser Pro Asp His Glu Phe Arg Thr Ser Pro Pro Val Ser Arg Gly Leu Thr Gly Gly Glu Ile Val Ala Val Ile Phe Gly Leu Leu Gly Ala Ala 545 Leu Leu Gly Ile Leu Val Phe Arg Ser Arg Arg Ala Gln Arg Gln 570 Arg Gln Gln Arg His Val Thr Ala Pro Pro Met Trp Ile Glu Arg Thr 585 Ser Cys Ala Glu Ala Leu Cys Gly Thr Ser Arg His Thr Arg Thr Leu 600 His Arg Glu Pro Trp Thr Leu Pro Gly Gly Trp Ser Asn Phe Pro Ser

Arg 625	Glu	Leu	Asp	Pro	Ala 630	Trp	Leu	Met	Val	Asp 635	Thr	Val	Ile	Gly	Glu 640
Gly	Glu	Phe	Gly	Glu 645	Val	Tyr	Arg	Gly	Thr 650	Leu	Arg	Leu	Pro	Ser 655	Gln
Asp	Суз	Lys	Thr 660	Val	Ala	Ile	Lys	Thr 665	Leu	Lys	Asp	Thr	Ser 670	Pro	Gly
Gly	Gln	Trp 675	Trp	Asn	Phe	Leu	Arg 680	Glu	Ala	Thr	Ile	Met 685	Gly	Gln	Phe
Ser	His 690	Pro	His	Ile	Leu	His 695	Leu	Glu	Gly,	Val	Val 700	Thr	Lys	Arg	Lys
Pro 705	Ile	Met	Ile	Ile	Thr 710	Glu	Phe	Met	Glu	Asn 715	Ala	Ala	Leu	Asp	Ala 720
Phe	Leu	Arg	Glu	Arg 725	Glu	Asp	Gln	Leu	Val 730	Pro	Gly	Gln	Leu	Val 735	Ala
Met	Leu	Gln	Gly 740	Ile	Ala	Ser	Gly	Met 745	Asn	Tyr	Leu	Ser	Asn 750	His	Asn
Tyr	Val	His 755	Arg	Asp	Leu	Ala	Ala 760	Arg	Asn	Ile	Leu	Val 765	Asn	Gln	Asn
Leu	Cys 770	Суз	Lys	Val	Ser	Asp 775	Phe	Gly	Leu	Thr	Arg 780	Leu	Leu	Asp	qeA
Phe 785	Asp	Gly	Thr	Tyr	Glu 790	Thr	Gln	Gly	Gly	Lys 795	Ile	Pro	Ile	Arg	Trp 800
Thr	Ala	Pro	Glu	Ala 805	Ile	Ala	His	Arg	Ile 810	Phe	Thr	Thr	Ala	Ser 815	Asp
Val	Trp	Ser	Phe 820	Gly	Ile	Val	Met	Trp 825	Glu	Val	Leu	Ser	Phe 830	Gly	Asp
Lys	Pro	Tyr 835	Gly	Glu	Met	Ser	Asn 840	Gln	Glu	Val	Met	Lys 845	Ser	Ile	Glu
Asp	Gly 850	Tyr	Arg	Leu	Pro	Pro 855	Pro	Val	Asp	Cys	Pro 860	Ala	Pro	Leu	Tyr
Glu 865	Leu	Met	Lys	Asn	Cys 870	Trp	Ala	Tyr	Asp	Arg 875	Ala	Arg	Arg	Pro	His 880
Phe	Gln	Lys	Leu	Gln 885	Ala	His	Leu	Glu	Gln 890	Leu	Leu	Ala	Asn	Pro 895	His
Ser	Leu	Arg	Thr 900	Ile	Ala	Asn	Phe	Asp 905	Pro	Arg	Val	Thr	Leu 910	Arg	Leu
Pro	Ser	Leu 915	Ser	Gly	Ser	Asp	Gly 920	Ile	Pro	Tyr	Arg	Thr 925	Val	Ser	Glu

Trp Leu Glu Ser Ile Arg Met Lys Arg Tyr Ile Leu His Phe His Ser 930 935 940

Ala Gly Leu Asp Thr Met Glu Cys Val Leu Glu Leu Thr Ala Glu Asp 945 950 955 960

Leu Thr Gln Met Gly Ile Thr Leu Pro Gly His Gln Lys Arg Ile Leu 965 970 975

Cys Ser Ile Gln Gly Phe Lys Asp 980

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 998 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met Ala Arg Ala Arg Pro Pro Pro Pro Pro Ser Pro Pro Pro Gly Leu
1 5 10 15

Leu Pro Leu Leu Pro Pro Leu Leu Leu Leu Pro Leu Leu Leu Pro 20 25 30

Ala Gly Cys Arg Ala Leu Glu Glu Thr Leu Met Asp Thr Lys Trp Val $35 \ \ 40 \ \ 45$

Thr Ser Glu Leu Ala Trp Thr Ser His Pro Glu Ser Gly Trp Glu Glu 50 55 60

Val Ser Gly Tyr Asp Glu Ala Met Asn Pro Ile Arg Thr Tyr Gln Val 65 70 75 80

Cys Asn Val Arg Glu Ser Ser Gln Asn Asn Trp Leu Arg Thr Gly Phe $^{-85}$ 90 95

Ile Trp Arg Arg Asp Val Gln Arg Val Tyr Val Glu Leu Lys Phe Thr

Val Arg Asp Cys Asn Ser Ile Pro Asn Ile Pro Gly Ser Cys Lys Glu 115 120 125

Thr Phe Asn Leu Phe Tyr Tyr Glu Ala Asp Ser Asp Val Ala Ser Ala 130 135 140

Ser Ser Pro Phe Trp Met Glu Asn Pro Tyr Val Lys Val Asp Thr Ile 145 150 155 160

Ala Pro Asp Glu Ser Phe Ser Arg Leu Asp Ala Gly Arg Val Asn Thr 165 170 175

WO 95/28484

Lys Val Arg Ser Phe Gly Pro Leu Ser Lys Ala Gly Phe Tyr Leu Ala 185 Phe Gln Asp Gln Gly Ala Cys Met Ser Leu Ile Ser Val Arg Ala Phe Tyr Lys Lys Cys Ala Ser Thr Thr Ala Gly Phe Ala Leu Phe Pro Glu Thr Leu Thr Gly Ala Glu Pro Thr Ser Leu Val Ile Ala Pro Gly Thr 230 235 Cys Ile Pro Asn Ala Val Glu Val Ser Val Pro Leu Lys Leu Tyr Cys Asn Gly Asp Gly Glu Trp Met Val Pro Val Gly Ala Cys Thr Cys Ala 265 Thr Gly His Glu Pro Ala Ala Lys Glu Ser Gln Cys Arg Pro Cys Pro 280 Pro Gly Ser Tyr Lys Ala Lys Gln Gly Glu Gly Pro Cys Leu Pro Cys Pro Pro Asn Ser Arg Thr Thr Ser Pro Ala Ala Ser Ile Cys Thr Cys His Asn Asn Phe Tyr Arg Ala Asp Ser Asp Ser Ala Asp Ser Ala Cys Thr Thr Val Pro Ser Pro Pro Arg Gly Val Ile Ser Asn Val Asn Glu 345 Thr Ser Leu Ile Leu Glu Trp Ser Glu Pro Arg Asp Leu Gly Val Arg Asp Asp Leu Leu Tyr Asn Val Ile Cys Lys Lys Cys His Gly Ala Gly 375 Gly Ala Ser Ala Cys Ser Arg Cys Asp Asp Asn Val Glu Phe Val Pro Arg Gln Leu Gly Leu Ser Glu Pro Arg Val His Thr Ser His Leu Leu Ala His Thr Arg Tyr Thr Phe Glu Val Gln Ala Val Asn Gly Val Ser Gly Lys Ser Pro Leu Pro Pro Arg Tyr Ala Ala Val Asn Ile Thr Thr Asn Gln Ala Ala Pro Ser Glu Val Pro Thr Leu Arg Leu His Ser Ser Ser Gly Ser Ser Leu Thr Leu Ser Trp Ala Pro Pro Glu Arg Pro Asn 475

Gly Val Ile Leu Asp Tyr Glu Met Lys Tyr Phe Glu Lys Ser Glu Gly Ile Ala Ser Thr Val Thr Ser Gln Met Asn Ser Val Gln Leu Asp Gly 500 505 Leu Arg Pro Asp Ala Arg Tyr Val Val Gln Val Arg Ala Arg Thr Val 520 Ala Gly Tyr Gly Gln Tyr Ser Arg Pro Ala Glu Phe Glu Thr Thr Ser Glu Arg Gly Ser Gly Ala Gln Gln Leu Gln Glu Gln Leu Pro Leu Ile 555 Val Gly Ser Ala Thr Ala Gly Leu Val Phe Val Val Ala Val Val Ile Ala Ile Val Cys Leu Arg Lys Gln Arg His Gly Ser Asp Ser Glu 585 Tyr Thr Glu Lys Leu Gln Gln Tyr Ile Ala Pro Gly Met Lys Val Tyr lle Asp Pro Phe Thr Tyr Glu Asp Pro Asn Glu Ala Val Arg Glu Phe 615 Ala Lys Glu Ile Asp Val Ser Cys Val Lys Ile Glu Glu Val Ile Gly Ala Gly Glu Phe Gly Glu Val Cys Arg Gly Arg Leu Lys Gln Pro Gly Arg Arg Glu Val Phe Val Ala Ile Lys Thr Leu Lys Val Gly Tyr Thr Glu Arg Gln Arg Arg Asp Phe Leu Ser Glu Ala Ser Ile Met Gly Gln 680 Phe Asp His Pro Asn Ile Ile Arg Leu Glu Gly Val Val Thr Lys Ser Arg Pro Val Met Ile Leu Thr Glu Phe Met Glu Asn Cys Ala Leu Asp 710 Ser Phe Leu Arg Leu Asn Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ser Glu Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser 760 Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Phe Leu Glu

PCT/US95/04681

WO 95/28484

- 85 -

Asp Asp Pro Ser Asp Pro Thr Tyr Thr Ser Ser Leu Gly Gly Lys Ile

Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ala Tyr Arg Lys Phe Thr 805 810

Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met 825

Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Ser Asn Gln Asp Val Ile

Asn Ala Val Glu Gln Asp Tyr Arg Leu Pro Pro Pro Met Asp Cys Pro

Thr Ala Leu His Gln Leu Met Leu Asp Cys Trp Val Arg Asp Arg Asn

Leu Arg Pro Lys Phe Ser Gln Ile Val Asn Thr Leu Asp Lys Leu Ile

Arg Asn Ala Ala Ser Leu Lys Val Ile Ala Ser Ala Gln Ser Gly Met 905

Ser Gln Pro Leu Asp Arg Thr Val Pro Asp Tyr Thr Thr Phe Thr

Thr Val Gly Asp Trp Leu Asp Ala Ile Lys Met Gly Arg Tyr Lys Glu

Ser Phe Val Ser Ala Gly Phe Ala Ser Phe Asp Leu Val Ala Gln Met

Thr Ala Glu Asp Leu Leu Arg Ile Gly Val Thr Leu Ala Gly His Gln

Lys Lys Ile Leu Ser Ser Ile Gln Asp Met Arg Leu Gln Met Asn Gln

Thr Leu Pro Val Gln Val 995

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 983 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Asp Cys Gln Leu Ser Ile Leu Leu Leu Ser Cys Ser Val Leu

Asp Ser Phe Gly Glu Leu Ile Pro Gln Pro Ser Asn Glu Val Asn Leu Leu Asp Ser Lys Thr Ile Gln Gly Glu Leu Gly Trp Ile Ser Tyr Pro Ser His Gly Trp Glu Glu Ile Ser Gly Val Asp Glu His Tyr Thr Pro 55 Ile Arg Thr Tyr Gln Val Cys Asn Val Met Asp His Ser Gln Asn Asn Trp Leu Arg Thr Asn Trp Val Pro Arg Asn Ser Ala Gln Lys Ile Tyr Val Glu Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Ile Pro Leu Val Leu Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Met Glu Ser Asp 120 Asp Asp His Gly Val Lys Phe Arg Glu His Gln Phe Thr Lys Ile Asp 135 Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Met Asp Leu Gly Asp Arg Ile Leu Lys Leu Asn Thr Glu Ile Arg Glu Val Gly Pro Val Asn Lys 170 Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys Val Ala Leu Val Ser Val Arg Val Tyr Phe Lys Lys Cys Pro Phe Thr Val Lys Asn 200 Leu Ala Met Phe Pro Asp Thr Val Pro Met Asp Ser Gln Ser Leu Val Glu Val Arg Gly Ser Cys Val Asn Asn Ser Lys Glu Glu Asp Pro Pro 230 Arg Met Tyr Cys Ser Thr Glu Gly Glu Trp Leu Val Pro Ile Gly Lys Cys Ser Cys Asn Ala Gly Tyr Glu Glu Arg Gly Phe Met Cys Gln Ala Cys Arg Pro Gly Phe Tyr Lys Ala Leu Asp Gly Asn Met Lys Cys Ala Lys Cys Pro Pro His Ser Ser Thr Gln Glu Asp Gly Ser Met Asn Cys Arg Cys Glu Asn Asn Tyr Phe Arg Ala Asp Lys Asp Pro Pro Ser Met 310 315

Ala Cys Thr Arg Pro Pro Ser Ser Pro Arg Asn Val Ile Ser Asn Ile 330 Asn Glu Thr Ser Val Ile Leu Asp Trp Ser Trp Pro Leu Asp Thr Gly 345 Gly Arg Lys Asp Val Thr Phe Asn Ile Ile Cys Lys Lys Cys Gly Trp 360 Asn Ile Lys Gln Cys Glu Pro Cys Ser Pro Asn Val Arg Phe Leu Pro 375 Arg Gln Phe Gly Leu Thr Asn Thr Thr Val Thr Val Thr Asp Leu Leu Ala His Thr Asn Tyr Thr Phe Glu Ile Asp Ala Val Asn Gly Val Ser 405 Glu Leu Ser Ser Pro Pro Arg Gln Phe Ala Ala Val Ser Ile Thr Thr Asn Gln Ala Ala Pro Ser Pro Val Leu Thr Ile Lys Lys Asp Arg Thr Ser Arg Asn Ser Ile Ser Leu Ser Trp Gln Glu Pro Glu His Pro Asn 455 Gly Ile Ile Leu Asp Tyr Glu Val Lys Tyr Tyr Glu Lys Gln Glu Gln Glu Thr Ser Tyr Thr Ile Leu Arg Ala Arg Gly Thr Asn Val Thr Ile Ser Ser Leu Lys Pro Asp Thr Ile Tyr Val Leu Gln Ile Arg Ala Arg Thr Ala Ala Gly Tyr Gly Thr Asn Ser Arg Lys Phe Glu Phe Glu Thr Ser Pro Asp Ser Phe Ser Ile Ser Gly Glu Ser Ser Gln Val Val Met 535 Ile Ala Ile Ser Ala Ala Val Ala Ile Ile Leu Leu Thr Val Val Ile 550 Tyr Val Leu Ile Gly Arg Phe Cys Gly Tyr Lys Ser Lys His Gly Ala Asp Glu Lys Arg Leu His Phe Gly Asn Gly His Leu Lys Leu Pro Gly Leu Arg Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Thr Gln Ala 600 Val His Glu Phe Ala Lys Glu Leu Asp Ala Thr Asn Ile Ser Ile Asp 610 615

Lys Val Val Gly Ala Gly Glu Phe Gly Glu Val Cys Ser Gly Arg Leu Lys Leu Pro Ser Lys Lys Glu Ile Ser Val Ala Ile Lys Thr Leu Lys Val Gly Tyr Thr Glu Lys Gln Arg Arg Asp Phe Leu Gly Glu Ala Ser 665 Ile Met Gly Gln Phe Asp His Pro Asn Ile Ile Arg Leu Glu Gly Val 680 Val Thr Lys Ser Lys Pro Val Met Ile Val Thr Glu Tyr Met Glu Asn Gly Ser Leu Asp Ser Phe Leu Arg Lys His Asp Ala Gln Phe Thr Val 710 Ile Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ser Gly Met Lys Tyr Leu Ser Asp Met Gly Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile 745 Leu Ile Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Ala Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile Arg Trp Thr Ser Pro Glu Ala Ile Ala Tyr Arg Lys 795 Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Leu Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Glu Met Ser Asn Gln Asp Val Ile Lys Ala Val Asp Glu Gly Tyr Arg Leu Pro Pro Pro Met Asp Cys Pro Ala Ala Leu Tyr Gln Leu Met Leu Asp Cys Trp Gln Lys Asp 855 Arg Asn Asn Arg Pro Lys Phe Glu Gln Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Asn Pro Gly Ser Leu Lys Ile Ile Thr Ser Ala Ala Ala Arg Pro Ser Asn Leu Leu Leu Asp Gln Ser Asn Val Asp Ile Ser Thr 905 Phe Arg Thr Thr Gly Asp Trp Leu Asn Gly Val Arg Thr Ala His Cys 915 920

- 89 -

															-		
	Lys	Glu 930	Ile	Phe	Thr	Gly	Val 935	Glu	Tyr	Ser	Ser	Cys 940	Asp	Thr	Île	Ala	
	Lys 945	Ile	Ser	Thr	Asp	Asp 950	Met	Lys	Lys	Val	Gly 955	Val	Thr	Val	Val	Gly 960	
	Pro	Gln	Lys	Lys	11e 965	Ile	Ser	Ser	Ile	Lys 970	Ala	Leu	Glu	Thr	Gln 975	Ser	
	Lys	Asn	Gly	Pro 980	Val	Pro	Val										
(2)	INFO	RMATI	ON I	FOR :	SEQ :	ID NO	22:	:									
	(i)	(B) (C)	LEI TYI STI	NGTH PE: 1 RAND	ARACT 24 nucle EDNES	base eic a SS: s	e pai acid singl	irs									
	(ii)	MOLE	ECULI	E TY	PE: o	DNA		a.									
	(xi)	SEQU	JENCI	E DE	SCRII	PTIO	1: SI	EQ II	ONO:	22:							
CTGC	TCGC	cg co	CGTG	GAAG	A AAO	CG											2
(2)	INFO	RMATI	ON I	FOR :	SEQ :	ID N	0:23	:									
	(i)	(B) (C)	LEI TYI STI	NGTH PE: 1 RAND	ARACT : 39 nucle EDNES	base eic a SS: s	e par acid sing:	irs									
	(ii)	MOLE	CULI	E TY	PE: 0	DNA						*					
	(xi)	SEQU	JENCI	E DE	SCRI	OITS	N: SI	EQ II	0 00:	23:							
GCG1	CTAG	AT T	ATCA	CTTC'	r cc	rgga:	rgct	TGT	CTGG	ra		٠					3
(2)	INFO	RMATI	ои і	FOR :	SEQ :	ID NO	0:24	:	•								
	(i)	(B)	LEI TYI	NGTH PE: 1 RAND	ARAC: : 48 nucle EDNE: GY:	base eic a SS: s	e pai acid sing	irs									

(ii) MOLECULE TYPE: cDNA

	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:24:	
GCG	GACGC	CG CCGCCATGGC CCTGGATTGC CTGCTGCTGT TCCTCCTG	48
(2)	INFO	RMATION FOR SEQ ID NO:25:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 54 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:25:	
CGTI	TCTT	CC ACGGCGGCGA GCAGAGTGC CAGGAGGAAC AGCAGCAGGC AATC	54
(2)	INFO	RMATION FOR SEQ ID NO:26:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: protein	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:26:	
	Met 1	Ala Leu Asp Cys Leu Leu Leu Phe Leu Leu Ala Ser 5 10	
(2)	INFO	RMATION FOR SEQ ID NO:27:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
•	(11)	MOLECULE TYPE: CDNA	

AGGGAATTCC AYCGNGAYYT NGCNGC

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

AGGGGATCCR WARSWCCANA CRTC

- 92 -

WHAT IS CLAIMED IS:

- 1. An isolated nucleic acid encoding a polypeptide having at least one of the biological activities of an EPH-like receptor protein tyrosine kinase, the nucleic acid selected from the group consisting of:
- (a) the nucleic acids set forth in any of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16 and their complementary strands;
- (b) a nucleic acid hybridizing to the coding regions of the nucleic acids in any of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16; and
- (c) a nucleic acid of (b) which, but for the degeneracy of the genetic code, would hybridize to the coding regions of the nucleic acids in any of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16.
- A polypeptide product of expression of a
 nucleic acid of Claim 1 in a procaryotic or eucaryotic host cell.
 - 3. A nucleic acid of Claim 1 which is of human origin.

25

10

4. A nucleic acid of Claim 1 which encodes a polypeptide having part or all of the amino acid sequence as shown in any of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16.

- 5. A nucleic acid of Claim 1 encoding a fragment comprising an EPH-like receptor extracellular domain.
- 35 6. A nucleic acid of Claim 1 which is cDNA, genomic DNA, synthetic DNA or RNA.

- 93 -

7. A nucleic acid of Claim 1 which includes one or more codons preferred for expression in E. coli host cells.

5

- 8. A nucleic acid of Claim 1 which includes one or more codon preferred for expression in mammalian cells.
- 9. A nucleic acid encoding amino acids 6-524 as set forth in SEQ ID NO: 10, and optionally encoding an amino terminal methionyl residue.
- 10. A nucleic acid encoding amino acids 1-547
 15 as set forth in SEQ ID NO: 12, and optionally encoding an amino acid terminal methionyl residue.
- 11. A nucleic acid encoding amino acids 21-547 as set forth in SEQ ID NO: 14, and optionally20 encoding an amino terminal methionyl residue.
 - 12. A nucleic acid encoding amino acids 23-553 as set forth in SEQ ID NO: 16, and optionally encoding an amino terminal methionyl residue.

25

13. A nucleic acid encoding a chimeric protein, wherein the protein comprises an EPH-like receptor extracellular domain fused to a heterologous receptor cytoplasmic domain.

30

14. A nucleic acid of Claim 13 wherein the extracellular domain is selected from the group consisting of HEK5, HEK7, HEK8 and HEK11 extracellular domains.

- 94 -

- 15. A biologically functional plasmid or viral DNA vector including a nucleic acid of Claim 1.
- 16. A procaryotic or eucaryotic host cell 5 stably transformed or transfected with the plasmid of Claim 15.
- 17. A method of producing an EPH-like receptor protein tyrosine kinase comprising culturing the host cell of Claim 16 to allow the host cell to express the EPH-like receptor protein tyrosine kinase.
- 18. An isolated polypeptide having an amino acid sequence as shown in any of SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 or SEQ ID NO: 16, or a fragment or analog thereof, wherein the polypeptide has at least one of the biological activities of an EPH-like receptor protein tyrosine kinase.
- 20 19. Purified and isolated HEK5 receptor.

25

- 20. Purified and isolated HEK7 receptor.
- 21. Purified and isolated HEK8 receptor.
- 22. Purified and isolated HEK11 receptor.
- 23. A polypeptide of Claim 18 wherein the biological activity is the binding of a ligand.
- 24. A polypeptide of Claim 18 which is of human origin.
- 25. A polypeptide of Claims 18 characterized 35 by being the product of procaryotic or eucaryotic expression of an exogenous DNA sequence.

PCT/US95/04681

- 26. A polypeptide of Claim 25 wherein the exogenous DNA is a cDNA.
- 5 27. A polypeptide of Claim 25 wherein the exogenous DNA is a genomic DNA.
 - 28. An antibody or fragment thereof specifically binding a polypeptide of Claim 18.

- 29. An antibody of Claim 28 which is a monoclonal antibody.
- 30. A pharmaceutical composition comprising a therapeutically effective amount of a polypeptide of Claim 18 in a mixture with a pharmaceutically acceptable adjuvant, carrier, solubilizer or diluent.
- 31. A pharmaceutical composition comprising a therapeutically effective amount of an antibody of Claim 28 in a mixture with a pharmaceutically acceptable adjuvant, carrier, solubilizer or diluent.
- 32. A method for modulating the endogenous activation of an EPH-like receptor protein tyrosine kinase comprising administering an effective amount of a polypeptide of Claim 18.
- 33. A method for modulating the synthesis of an EPH-like receptor protein tyrosine kinase comprising hybridizing an antisense oligonucleotide to a nucleic acid of Claim 1.

- 96 -

- 34. A method of identifying a ligand that binds to a receptor polypeptide of Claim 18 comprising the steps of:
- a) exposing at least one molecule to the 5 receptor polypeptide for a time sufficient to allow formation of a receptor/ligand complex;
 - b) removing non-complexed molecules; and
 - c) detecting the presence of the molecule bound to the receptor polypeptide.

1/33 FIG. IA

			F	- 10	5. I	А				
								GCG Ala 15		48
								GAG Glu		96
								GTG Val		144
								TTT Phe		192
								TCG Ser		240
								GAG Glu 95		288
								AAG Lys		336
								ATT Ile		384
								ATG Met		432
								GGC Gly		480
								GCC Ala 175		528
								GCC Ala		576

2 / 33 FIG. IB

								- 1(
TTC Phe	CAG Gl.n	GAA Glu 195	Thr	CTG	TCG Ser	GGG Gly	GCT Ala 200	Glu	AGC Ser	ACA Thr	TCG Ser	Leu 205	Val	GCT Ala	GCC Ala	624
CGG Arg	GGC Gly 210	AGC Ser	TGC Cys	ATC Ile	GCC Ala	AAT Asn 215	GCG Ala	GAA Glu	GAG Glu	GTG Val	GAT Asp 220	GTA Val	CCC Pro	ATC	AAG Lys	672
															TGC Cys 240	72 [.] 0
ATG Met	TGC Cys	AAA Lys	GCA Ala	GGC Gly 245	TTC Phe	GAG Glu	GCC Ala	GTT Val	GAG Glu 250	AAT Asn	GGC Gly	ACC Thr	GTC Val	TGC Cys 255	CGA Arg	768-
			TCT Ser 260													816
			CCC Pro													864
			CGC Arg													912
ATG Met 305	CCC Pro	TGC Cys	ACA Thr	ACC Thr	ATC Ile 310	CCĊ Pro	TCC Ser	GCG Ala	CCC Pro	CAG Gln 315	GCT Ala	GTG Val	ATT Ile	TCC Ser	AGT Ser 320	960
			ACC Thr													1008
GGA Gly			GAG Glu 340													1056
			GGT Gly													1104
			CTA Leu													1152
CTG Leu 385					Туг 390	Thr	Phe	Glu	Ile	G1n 395	Ala					1200
						SUBS	,,,,,	LON	ווייין (ו	VULE	20)					

3 / 33 FIG. IC ACT GAC CAG AGC CCC TTC TCG CCT CAG TTC GCC TCT GTG AAC ATC ACC 1248 Thr Asp Gln Ser Pro Phe Ser Pro Gln Phe Ala Ser Val Asn Ile Thr 405 410 ACC AAC CAG GCA GCT CCA TCG GCA GTG TCC ATC ATG CAT CAG GTG AGC 1296 Thr Asn Gln Ala Ala Pro Ser Ala Val Ser Ile Met His Gln Val Ser 420 425 CGC ACC GTG GAC AGC ATT ACC CTG TCG TGG TCC CAG CCG GAC CAG CCC 1344 Arg Thr Val Asp Ser Ile Thr Leu Ser Trp Ser Gln Pro Asp Gln Pro 435 AAT GGC GTG ATC CTG GAC TAT GAG CTG CAG TAC TAT GAG AAG GAG CTC 1392 Asn Gly Val Ile Leu Asp Tyr Glu Leu Gln Tyr Tyr Glu Lys Glu Leu 455 AGT GAG TAC AAC GCC ACA GCC ATA AAA AGC CCC ACC AAC ACG GTC ACG 1440 Ser Glu Tyr Asn Ala Thr Ala Ile Lys Ser Pro Thr Asn Thr Val Thr 465 470 GGC CTC AAA GCC GGC GCC ATC TAT GTC TTC CAG GTG CGG GCA CGC ACT 1488 Gly Leu Lys Ala Gly Ala Ile Tyr Val Phe Gln Val Arg Ala Arg Thr 485 GTG GCA GGC TAC GGG CGC TAC AGC GGC AAG ATG TAC TTC CAG ACC ATG 1536 Val Ala Gly Tyr Gly Arg Tyr Ser Gly Lys Met Tyr Phe Gln Thr Met 505 500 ACA GAA GCC GAG TAC CAG ACA AGC ATC CAG GAG AAG TTG CCA CTC ATC 1584 Thr Glu Ala Glu Tyr Gln Thr Ser Ile Gln Glu Lys Leu Pro Leu Ile 520 ATC GGC TCC TCG GCC GCT GGC CTG GTC TTC CTC ATT GCT GTG GTT GTC 1632 Ile Gly Ser Ser Ala Ala Gly Leu Val Phe Leu Ile Ala Val Val 530 535 ATC GCC ATC GTG TGT AAC AGA CGG GGG TTT GAG CGT GCT GAC TCG GAG 1680 Ile Ala Ile Val Cys Asn Arg Arg Gly Phe Glu Arg Ala Asp Ser Glu 550 545 TAC ACG GAC AAG CTG CAA CAC TAC ACC AGT GGC CAC ATA ACC CCA GGC 1728 Tyr Thr Asp Lys Leu Gln His Tyr Thr Ser Gly His Ile Thr Pro Gly 565 ATG AAG ATC TAC ATC GAT CCT TTC ACC TAC GAG GAC CCC AAC GAG GCA 1776 Met Lys Ile Tyr Ile Asp Pro Phe Thr Tyr Glu Asp Pro Asn Glu Ala 580 585 GTG CGG GAG TTT GCC AAG GAA ATT GAC ATC TCC TGT GTC AAA ATT GAG 1824 Val Arg Glu Phe Ala Lys Glu Ile Asp Ile Ser Cys Val Lys Ile Glu 600 595

SUBSTITUTE SHEET (RULE 26)

4/33

FIG. ID CAG GTG ATC GGA GCA GGG GAG TTT GGC GAG GTC TGC AGT GGC CAC CTG 1872 Gln Val Ile Gly Ala Gly Glu Phe Gly Glu Val Cys Ser Gly His Leu 615 610 AAG CTG CCA GGC AAG AGA GAG ATC TTT GTG GCC ATC AAG ACG CTC AAG 1920 Lys Leu Pro Gly Lys Arg Glu Ile Phe Val Ala Ile Lys Thr Leu Lys 630 625 TCG GGC TAC ACG GAG AAG CAG CGC CGG GAC TTC CTG AGC GAA GCC TCC 1968 Ser Gly Tyr Thr Glu Lys Gln Arg Arg Asp Phe Leu Ser Glu Ala Ser 650 ATC ATG GGC CAG TTC GAC CAT CCC AAC GTC ATC CAC CTG GAG GGT GTC 2016 Ile Met Gly Gln Phe Asp His Pro Asn Val Ile His Leu Glu Gly Val 660 GTG ACC AAG AGC ACA CCT GTG ATG ATC ATC ACC GAG TTC ATG GAG AAT 2064 Val Thr Lys Ser Thr Pro Val Met Ile Ile Thr Glu Phe Met Glu Asn 675 680 685 GGC TCC CTG GAC TCC TTT CTC CGG CAA AAC GAT GGG CAG TTC ACA GTC 2112 Gly Ser Leu Asp Ser Phe Leu Arg Gln Asn Asp Gly Gln Phe Thr Val 695 ATC CAG CTG GTG GGC ATG CTT CGG GGC ATC GCA GCT GGC ATG AAG TAC 2160 Ile Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr 710 715 CTG GCA GAC ATG AAC TAT GTT CAC CGT GAC CTG GCT GCC CGC AAC ATC 2208 Leu Ala Asp Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile 725 730 CTC GTC AAC AGC AAC CTG GTC TGC AAG GTG TCG GAC TTT GGG CTC TCA 2256 Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser 740 CGC TTT CTA GAG GAC GAT ACC TCA GAC CCC ACC TAC ACC AGT GCC CTG 2304 Arg Phe Leu Glu Asp Asp Thr Ser Asp Pro Thr Tyr Thr Ser Ala Leu 755 GGC GGA AAG TTC CCC ATC CGC TGG ACA GCC CCG GAA GCC ATC CAG TAC 2352 Gly Gly Lys Phe Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Gln Tvr 775 770 CGG AAG TTC ACC TCG GCC AGT GAT GTG TGG AGC TAC GGC ATT GTC ATG 2400 Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met 790 795 TGG GAG GTG ATG TCC TAT GGG GAG CGG CCC TAC TGG GAC ATG ACC AAC 2448 Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Thr Asn 805 810 SUBSTITUTE SHEET (RULE 26)

5 / 33 FIG. IE

							Г	10	7. I							
						ATT Ile										2496
						CTG Leu										2544
						CCC Pro 855										2592
						CCC Pro										2640
						CCG Pro										2688
						GAC Asp										2736
						GCC Ala										2784
						GAG Glu 935										2832
						ATC Ile										2880
						TCT Ser				TGAC	CATTO	CAC (TGCC	TCGG	SC	2930
TCAC	CCTCI	TTC C	CTCCA	AAGC	cc co	GCCC	CTCT	r GC								2962

6/33

FIG 2A

						•	H	- 10	j. 'c	2 A						
		TCC Ser														48
		TGC Cys														96
		AAC Asn 35													GAC Asp	144
		TGG Trp														192
		GAA Glu														240
		CAG Gln														288
		GCT Ala														336
		AGC Ser 115														384
		TAC Tyr														432
AAC Asn 145	CAA Gln	TAC Tyr	ATC Ile	AAA Lys	ATT Ile 150	GAT Asp	ACC Thr	ATT Ile	GCT Ala	GCC Ala 155	GAT Asp	GAA Glu	AGC Ser	TTT Phe	ACA Thr 160	480
		GAT Asp														528
GAT Asp	GTA Val	GGA Gly	CCT Pro 180	CTA Leu	AGC Ser	AAA Lys	AAG Lys	GGA Gly 185	TTT Phe	TAT Tyr	CTT Leu	GCT Ala	TTT Phe 190	CAA Gln	GAT Asp	576
GTT Val	GGT Gly	GCT Ala 195	TGC Cys	Ile	Ala	Leu	Val 200	Ser	Val	Arg	GTA Val	TAC Tyr 205	TAT Tyr	AAA Lys	AAA Lys	624
					CARIL	THIT	F SHF	ET (R	ULE 2	(6)						

SUBSTITUTE SHEET (RULE 26)

7/33

FIG. 2B

						Г), <i>(</i>	$\subseteq D$					
													ACT Thr	672
					TTG Leu									720
					CCT Pro									768
					GGG Gly						1			816
					CAA Gln									864
					TGC Cys 295									912
					TCT Ser									960
					ACA Thr									1008
					AAT Asn									1056
Ile	Pro	Pro	Ala	Asp	ACT Thr	Gly	Gly	Arg	Lys	Asp	Val	Ser		1104
					AAC Asn 375									1152
					CTT Leu									1200
			Val 405	Asp	CTA Leu	Leu	Ala	His 410	Thr					1248
			5	SUBST	rituti	E SHE	ET (R	ULE 2	(6)					

8 / 33 FIG. 2C ATT GAG GCA GTG AAT GGA GTG TCC GAC TTG AGC CCA GGA GCC CGG CAG 1296 Ile Glu Ala Val Asn Gly Val Ser Asp Leu Ser Pro Gly Ala Arg Gln 420 425 TAT GTG TCT GTA AAT GTA ACC ACA AAT CAA GCA GCT CCA TCT CCA GTC 1344 Tyr Val Ser Val Asn Val Thr Thr Asn Gln Ala Ala Pro Ser Pro Val 435 ACC AAT GTG AAA AAA GGG AAA ATT GCA AAA AAC AGC ATC TCT TTG TCT 1392 Thr Asn Val Lys Lys Gly Lys Ile Ala Lys Asn Ser Ile Ser Leu Ser 455 460 TGG CAA GAA CCA GAT CGT CCC AAT GGA ATC ATC CTA GAG TAT GAA ATC 1440 Trp Gln Glu Pro Asp Arg Pro Asn Gly Ile Ile Leu Glu Tyr Glu Ile 465 470 AAG CAT TTT GAA AAG GAC CAA GAG ACC AGC TAC ACG ATT ATC AAA TCT 1488 Lys His Phe Glu Lys Asp Gln Glu Thr Ser Tyr Thr Ile Ile Lys Ser 485 490 AAA GAG ACA ACT ATT ACT GCA GAG GGC TTG AAA CCA GCT TCA GTT TAT 1536 Lys Glu Thr Thr Ile Thr Ala Glu Gly Leu Lys Pro Ala Ser Val Tyr 500 505 GTC TTC CAA ATT CGA GCA CGT ACA GCA GCA GGC TAT GGT GTC TTC AGT 1584 Val Phe Gln Ile Arg Ala Arg Thr Ala Ala Gly Tyr Gly Val Phe Ser 515 520 CGA AGA TTT GAG TTT GAA ACC ACC CCA GTG TTT GCA GCA TCC AGC GAT 1632 Arg Arg Phe Glu Phe Glu Thr Thr Pro Val Phe Ala Ala Ser Ser Asp 530 535 540 CAA AGC CAG ATT CCT GTA ATT GCT GTG TCT GTG ACA GTA GGA GTC ATT 1680 Gln Ser Gln Ile Pro Val Ile Ala Val Ser Val Thr Val Gly Val Ile 545 550 TTG TTG GCA GTG GTT ATC GGC GTC CTC CTC AGT GGA AGG CGG TGT GGC 1728 Leu Leu Ala Val Val Ile Gly Val Leu Leu Ser Gly Arg Arg Cys Gly 565 570 TAC AGC AAA GCA AAA CAA GAT CCA GAA GAG GAA AAG ATG CAT TTT CAT 1776 Tyr Ser Lys Ala Lys Gln Asp Pro Glu Glu Glu Lys Met His Phe His 580 585 AAT GGG CAC ATT AAA CTG CCA GGA GTA AGA ACT TAC ATT GAT CCA CAT 1824 Asn Gly His Ile Lys Leu Pro Gly Val Arg Thr Tyr Ile Asp Pro His 600 ACC TAT GAG GAT CCC AAT CAA GCT GTC CAC GAA TTT GCC AAG GAG ATA 1872 Thr Tyr Glu Asp Pro Asn Gln Ala Val His Glu Phe Ala Lys Glu Ile 610 615 620 SUBSTITUTE SHEET (RULE 26)

9 / 33 FIG. 2D GAA GCA TCA TGT ATC ACC ATT GAG AGA GTT ATT GGA GCA GGT GAA TTT 1920 Glu Ala Ser Cys Ile Thr Ile Glu Arg Val Ile Gly Ala Gly Glu Phe 630 GGT GAA GTT TGT AGT GGA CGT TTG AAA CTA CCA GGA AAA AGA GAA TTA 1968 Gly Glu Val Cys Ser Gly Arg Leu Lys Leu Pro Gly Lys Arg Glu Leu 645 · 650 CCT GTG GCT ATC AAA ACC CTT AAA GTA GGC TAT ACT GAA AAG CAA CGC 2016 Pro Val Ala Ile Lys Thr Leu Lys Val Gly Tyr Thr Glu Lys Gln Arg 660 AGA GAT TTC CTA GGT GAA GCA AGT ATC ATG GGA CAG TTT GAT CAT CCT 2064 Arg Asp Phe Leu Gly Glu Ala Ser Ile Met Gly Gln Phe Asp His Pro 680 AAC ATC ATC CAT TTA GAA GGT GTG GTG ACC AAA AGT AAA CCA GTG ATG 2112 Asn Ile Ile His Leu Glu Gly Val Val Thr Lys Ser Lys Pro Val Met 690 695 ATC GTG ACA GAG TAT ATG GAG AAT GGC TCT TTA GAT ACA TTT TTG AAG 2160 Ile Val Thr Glu Tyr Met Glu Asn Gly Ser Leu Asp Thr Phe Leu Lys 705 710 720 AAA AAC GAT GGG CAG TTC ACT GTG ATT CAG CTT GTT GGC ATG CTG AGA 2208 Lys Asn Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly Met Leu Arg 725 730 GGT ATC TCT GCA GGA ATG AAG TAC CTT TCT GAC ATG GGC TAT GTG CAT 2256 Gly Ile Ser Ala Gly Met Lys Tyr Leu Ser Asp Met Gly Tyr Val His 740 745 AGA GAT CTT GCT GCC AGA AAC ATC TTA ATC AAC AGT AAC CTT GTG TGC 2304 Arg Asp Leu Ala Ala Arg Asn Ile Leu Ile Asn Ser Asn Leu Val Cys 760 AAA GTG TCT GAC TTT GGA CTT TCC CGG GTA CTG GAA GAT GAT CCC GAG 2352 Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro Glu 770 775 GCA GCC TAC ACC ACA AGG GGA GGA AAA ATT CCA ATC AGA TGG ACT GCC 2400 Ala Ala Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala 785 800 CCA GAA GCA ATA GCT TTC CGA AAG TTT ACT TCT GCC AGT GAT GTC TGG 2448 Pro Glu Ala Ile Ala Phe Arg Lys Phe Thr Ser Ala Ser Asp Val Trp 805 810 815 AGT TAT GGA ATA GTA ATG TGG GAA GTT GTG TCT TAT GGA GAG AGA CCC 2496

SUBSTITUTE SHEET (RULE 26)

820

Ser Tyr Gly Ile Val Met Trp Glu Val Val Ser Tyr Gly Glu Arg Pro

				1	0 /	33	F	-10	3 3	2E						
TAC Tyr	TGG Trp	GAG Glu 835	ATG Met	ACC Thr	AAT Asn	CAA Gln	GAT	GTG	ATT	AAA	GCG	GTA Val 845	GÀG Glu	GAA Glu	GGC Gly	2544
TAT Tyr	CGT Arg 850	CTG Leu	CCA Pro	AGC Ser	CCC Pro	ATG Met 855	GAT Asp	TGT Cys	CCT Pro	GCT Ala	GCT Ala 860	CTC Leu	ТАТ Туг	CAG Gln	TTA Leu	2592
ATG Met 865	CTG Leu	GAT Asp	TGC Cys	TGG Trp	CAG Gln 870	AAA Lys	GAG Glu	CGA Arg	AAT Asn	AGC Ser 875	AGG Arg	CCC Pro	AAG Lys	TTT Phe	GAT Asp 880	2640
			AAC Asn													2688
AAG Lys	ACG Thr	CTG Leu	GTT Val 900	AAT Asn	GCA Ala	TCC Ser	TGC Cys	AGA Arg 905	GTA Val	TCT Ser	AAT Asn	TTA Leu	TTG Leu 910	GCA Ala	GAA Glu	2736
CAT His	AGC Ser	CCA Pro 915	CTA Leu	GGA Gly	TCT Ser	GGG Gly	GCC Ala 920	TAC Tyr	AGA Arg	TCA Ser	GTA Val	GGT Gly 925	GAA Glu	TGG Trp	CTA Leu	2784
		Ile	AAG Lys													2832
			ATG Met											Leu		2880
			GTG Val													2928
СТТ 2983		GAA	ATG	AAG	GTG	CAG	CTG	GTA	AAC	GGA	ATG	GTG	CCA	TTG	TAACTTCA	rg
Leu	Gln	Glu	Met 980	Lys	Val	Gln		Val 985	Asn	Gly	Met		Pro 990	Leu		
TAAA	TGTC	GC I	TCTT	'CAAG	T GA	ATGA	TTCT	' GCA	CTTT	GTA	AACA	GCAC	TG A	GATT	TATTT	3043
TAACAAAAA AGGGGGAAAA GGGAAAACAG TGATTTCTAA ACCTTAGAAA ACATTTGCCT													3103			
CAGC	CACA	GA A	ጥጥጥር	יי א א יי	ר איז	'GGጥጥ	ጥጥልሮ	тса	аста	ጥርር	ልርጥጥ	מיויים	വന വ	ርጥጥ አ	CTCT	3162

11/33

FIG. 3A AAGCGGCAGG AGCAGCGTTG GCACCGGCGA ACC ATG GCT GGG ATT TTC TAT TTC 54 Met Ala Gly Ile Phe Tyr Phe GCC CTA TTT TCG TGT CTC TTC GGG ATT TGC GAC GCT GTC ACA GGT TCC 102 Ala Leu Phe Ser Cys Leu Phe Gly Ile Cys Asp Ala Val Thr Gly Ser 10 15 AGG GTA TAC CCC GCG AAT GAA GTT ACC TTA TTG GAT TCC AGA TCT GTT 150 Arg Val Tyr Pro Ala Asn Glu Val Thr Leu Leu Asp Ser Arg Ser Val 30 CAG GGA GAA CTT GGG TGG ATA GCA AGC CCT CTG GAA GGA GGG TGG GAG 198 Gln Gly Glu Leu Gly Trp Ile Ala Ser Pro Leu Glu Gly Gly Trp Glu GAA GTG AGT ATC ATG GAT GAA AAA AAT ACA CCA ATC CGA ACC TAC CAA 246 Glu Val Ser Ile Met Asp Glu Lys Asn Thr Pro Ile Arg Thr Tyr Gln 60 GTG TGC AAT GTG ATG GAA CCC AGC CAG AAT AAC TĞG CTA CGA ACT GAT 294 Val Cys Asn Val Met Glu Pro Ser Gln Asn Asn Trp Leu Arg Thr Asp 75 TGG ATC ACC CGA GAA GGG GCT CAG AGG GTG TAT ATT GAG ATT AAA TTC 342 Trp Ile Thr Arg Glu Gly Ala Gln Arg Val Tyr Ile Glu Ile Lys Phe 90 95 ACC TTG AGG GAC TGC AAT AGT CTT CCG GGC GTC ATG GGG ACT TGC AAG 390 Thr Leu Arg Asp Cys Asn Ser Leu Pro Gly Val Met Gly Thr Cys Lys 105 110 GAG ACG TTT AAC CTG TAC TAC TAT GAA TCA GAC AAC GAC AAA GAG CGT 438 Glu Thr Phe Asn Leu Tyr Tyr Tyr Glu Ser Asp Asn Asp Lys Glu Arg 120 TTC ATC AGA GAG AAC CAG TTT GTC AAA ATT GAC ACC ATT GCT GCT GAT 486 Phe Ile Arg Glu Asn Gln Phe Val Lys Ile Asp Thr Ile Ala Ala Asp 140 145 GAG AGC TTC ACC CAA GTG GAC ATT GGT GAC AGA ATC ATG AAG CTG AAC 534 Glu Ser Phe Thr Gln Val Asp Ile Gly Asp Arg Ile Met Lys Leu Asn 155 160 165 ACC GAG ATC CGG GAT GTA GGG CCA TTA AGC AAA AAG GGG TTT TAC CTG 582 Thr Glu Ile Arg Asp Val Gly Pro Leu Ser Lys Lys Gly Phe Tyr Leu 170 175 180

WO 95/28484 PCT/US95/04681

12/33 FIG. 3B GCT TTT CAG GAT GTG GGG GCC TGC ATC GCC CTG GTA TCA GTC CGT GTG 630 Ala Phe Gln Asp Val Gly Ala Cys Ile Ala Leu Val Ser Val Arg Val 185 190 TTC TAT AAA AAG TGT CCA CTC ACA GTC CGC AAT CTG GCC CAG TTT CCT 678 Phe Tyr Lys Lys Cys Pro Leu Thr Val Arg Asn Leu Ala Gln Phe Pro 200 205 GAC ACC ATC ACA GGG GCT GAT ACG TCT TCC CTG GTG GAA GTT CGA GGC 726 Asp Thr Ile Thr Gly Ala Asp Thr Ser Ser Leu Val Glu Val Arg Gly 220 225 TCC TGT GTC AAC AAC TCA GAA GAG AAA GAT GTG CCA AAA ATG TAC TGT 774 Ser Cys Val Asn Asn Ser Glu Glu Lys Asp Val Pro Lys Met Tyr Cys GGG GCA GAT GGT GAA TGG CTG GTA CCC ATT GGC AAC TGC CTA TGC AAC 822 Gly Ala Asp Gly Glu Trp Leu Val Pro Ile Gly Asn Cys Leu Cys Asn 255 GCT GGG CAT GAG GAG CGG AGC GGA GAA TGC CAA GCT TGC AAA ATT GGA 870 Ala Gly His Glu Glu Arg Ser Gly Glu Cys Gln Ala Cys Lys Ile Gly 265 270 TAT TAC AAG GCT CTC TCC ACG GAT GCC ACC TGT GCC AAG TGC CCA CCC 918 Tyr Tyr Lys Ala Leu Ser Thr Asp Ala Thr Cys Ala Lys Cys Pro Pro 280 295 CAC AGC TAC TCT GTC TGG GAA GGA GCC ACC TCG TGC ACC TGT GAC CGA 966 His Ser Tyr Ser Val Trp Glu Gly Ala Thr Ser Cys Thr Cys Asp Arg 300 305 GGC TTT TTC AGA GCT GAC AAC GAT GCT GCC TCT ATG CCC TGC ACC CGT 1014 Gly Phe Phe Arg Ala Asp Asn Asp Ala Ala Ser Met Pro Cys Thr Arg 315 320 CCA CCA TCT GCT CCC CTG AAC TTG ATT TCA AAT GTC AAC GAG ACA TCT 1062 Pro Pro Ser Ala Pro Leu Asn Leu Ile Ser Asn Val Asn Glu Thr Ser 335 GTG AAC TTG GAA TGG AGT AGC CCT CAG AAT ACA GGT GGC CGC CAG GAC 1110 Val Asn Leu Glu Trp Ser Ser Pro Gln Asn Thr Gly Gly Arg Gln Asp 350 345 ATT TCC TAT AAT GTG GTA TGC AAG AAA TGT GGA GCT GGT GAC CCC AGC 1158 Ile Ser Tyr Asn Val Val Cys Lys Cys Gly Ala Gly Asp Pro Ser 360 365 375 AAG TGC CGA CCC TGT GGA AGT GGG GTC CAC TAC ACC CCA CAG CAG AAT 1206

SUBSTITUTE SHEET (RULE 26)

Lys Cys Arg Pro Cys Gly Ser Gly Val His Tyr Thr Pro Gln Gln Asn

380

13 / 33 FIG. 3C

							ŀ	- [(j	3C							
GGC Gly	TTG Leu	AAG Lys	ACC Thr 395	Thr	AAA Lys	GTC Val	TCC	ATC	ACT Thr	GAC	CTC Leu	CTA Leu	GCT Ala 405	His	ACC Thr		1254
AAT Asn	TAC Tyr	ACC Thr 410	Phe	GAA Glu	ATC Ile	TGG Trp	GCT Ala 415	GTG Val	AAT Asn	GGA Gly	GTG Val	TCC Ser 420	AAA Lys	TAT Tyr	AAC Asn		1302
CCT Pro	AAC Asn 425	CCA Pro	GAC Asp	CAA Gln	TCA Ser	GTT Val 430	TCT Ser	GTC Val	ACT Thr	GTG Val	ACC Thr 435	ACC Thr	AAC Asn	CAA Gln	GCA Ala	. · ·	1350
GCA Ala 440	CCA Pro	TCA Ser	TCC Ser	ATT Ile	GCT Ala 445	TTG Leu	GTC Val	CAG Gln	GCT Ala	AAA Lys 450	GAA Glu	GTC Val	ACA Thr	AGA Arg	TAC Tyr 455		1398
AGT Ser	GTG Val	GCA Ala	CTG Leu	GCT Ala 460	TGG Trp	CTG Leu	GAA Glu	CCA Pro	GAT Asp 465	CGG Arg	CCC Pro	AAT Asn	GGG Gly	GTA Val 4 70	ATC Ile		1446
CTG Leu	GAA Glu	TAT Tyr	GAA Glu 475	GTC Val	AAG Lys	TAT Tyr	TAT Tyr	GAG Glu 480	AAG Lys	GAT Asp	CAG Gln	AAT Asn	GAG Glu 485	CGA Arg	AGC Ser		1494
TAT Tyr	CGT Arg	ATA Ile 490	GTT Val	CGG Arg	ACA Thr	GCT Ala	GCC Ala 495	AGG Arg	AAC Asn	ACA Thr	GAT Asp	ATC Ile 500	AAA Lys	GGC Gly	CTG Leu		1542
AAC Asn	CCT Pro 505	CTC Leu	ACT Thr	TCC Ser	TAT Tyr	GTT Val 510	TTC Phe	CAC His	GTG Val	CGA Arg	GCC Ala 515	AGG Arg	ACA Thr	GCA Àla	GCT Ala		1590
GGC Gly 520	TAT Tyr	GGA Gly	GAC Asp	TTC Phe	AGT Ser 525	GAG Glu	CCC Pro	TTG Leu	GAG Glu	GTT Val 530	ACA Thr	ACC Thr	AAC Asn	ACA Thr	GTG Val 535		1638
	TCC Ser																1686
	GTC Val																1734
	ATC Ile																1782
	GAA Glu 585			His	Leu	Asn 590	Gln	Gly									1830
				CH	DOTIN												

14/33 FIG. 3D TTT ACG TAC GAA GAT CCC AAC CAA GCA GTG CGA GAG TTT GCC AAA GAA 1878 Phe Thr Tyr Glu Asp Pro Asn Gln Ala Val Arg Glu Phe Ala Lys Glu 605 ATT GAC GCA TCC TGC ATT AAG ATT GAA AAA GTT ATA GGA GTT GGT GAA 1926 Ile Asp Ala Ser Cys Ile Lys Ile Glu Lys Val Ile Gly Val Gly Glu 620. TTT GGT GAG GTA TGC AGT GGG CGT CTC AAA GTG CCT GGC AAG AGA GAG 1974 Phe Gly Glu Val Cys Ser Gly Arg Leu Lys Val Pro Gly Lys Arg Glu 640 ATC TGT GTG GCT ATC AAG ACT CTG AAA GCT GGT TAT ACA GAC AAA CAG 2022 Ile Cys Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Asp Lys Gln 655 AGG AGA GAC TTC CTG AGT GAG GCC AGC ATC ATG GGA CAG TTT GAC CAT 2070 Arg Arg Asp Phe Leu Ser Glu Ala Ser Ile Met Gly Gln Phe Asp His 670 675 CCG AAC ATC ATT CAC TTG GAA GGC GTG GTC ACT AAA TGT AAA CCA GTA 2118 Pro Asn Ile Ile His Leu Glu Gly Val Val Thr Lys Cys Lys Pro Val 680 685 ATG ATC ATA ACA GAG TAC ATG GAG AAT GGC TCC TTG GAT GCA TTC CTC 2166 Met Ile Ile Thr Glu Tyr Met Glu Asn Gly Ser Leu Asp Ala Phe Leu 700 AGG AAA AAT GAT GGC AGA TTT ACA GTC ATT CAG CTG GTG GGC ATG CTT 2214 Arg Lys Asn Asp Gly Arg Phe Thr Val Ile Gln Leu Val Gly Met Leu 715 720 CGT GGC ATT GGG TCT GGG ATG AAG TAT TTA TCT GAT ATG AGC TAT GTG 2262 Arg Gly Ile Gly Ser Gly Met Lys Tyr Leu Ser Asp Met Ser Tyr Val CAT CGT GAT CTG GCC GCA CGG AAC ATC CTG GTG AAC AGC AAC TTG GTC 2310 His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val 750 745 TGC AAA GTG TCT GAT TTT GGC ATG TCC CGA GTG CTT GAG GAT GAT CCG 2358 Cys Lys Val Ser Asp Phe Gly Met Ser Arg Val Leu Glu Asp Asp Pro 760 765 770 GAA GCA GCT TAC ACC ACC AGG GGT GGC AAG ATT CCT ATC CGG TGG ACT 2406 Glu Ala Ala Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile Arg Trp Thr 789 GCG CCA GAA GCA ATT GCC TAT CGT AAA TTC ACA TCA GCA AGT GAT GTA 2454

800 SUBSTITUTE SHEET (RULE 26)

Ala Pro Glu Ala Ile Ala Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val

795

					1 :	5 /	3 3	=10	<u>.</u>	3E						
							TGG	GAA	GTG	ATG	TCG	TAC Tyr 820				2502
												GCC Ala				2550
												GCG Ala				2598
												AGG Arg				2646
												AAC Asn				2694
												ACT Thr 900				2742
												GTG Val				2790
												TTC Phe				2838
			Thr					Val				CAG Gln				2886
GCA Ala							Ile									2934
												CAC His 980			_	2982
GTT Val			TGAG	GCCA(STA (CTGAI	ATAA?	AC TO	CAAA!	ACTCT	TGA	l'TAA/	AGT			3031
TTAC	CTC	ATC C	CATGO	CACTI	T A	ATTG <i>I</i>	\AGA/	A CTO	GCACT	TTTT	TTT	ACTTO	CGT C	TTCG	CCCTC	3091
TGAA	ATTA	AAA G	TAAAE	GAA	AA AA	AAAA										3116

16/33 FIG. 4A

				•			•	- I (J. '	44							
CGG	rgcg.	AGC (GAAC	AGGA	GT G	GGGG			-			AACG	TGG .	AGCA	GCCGA'	r	60
CGGC	GAC	CGA (GAAG	GGGA	AT C	GATG(CAAG	G AG	CACA	CTAA	AAC.	AAAA	GCT .	ACTT	CGGAA(2	120
AAA(CAGC	ATT '	TAAAI	AATC	CA C	GACT	CAAG	A TA	ACTG.	AAAC	CTA	AAAT.	AAA .	ACCT	GCTCA!	r :	180
GCAC			rr r al Pi							er T						2	227
			CTG Leu													2	275
			CTA Leu													3	323
			TCT Ser 50													3	371
			ACC Thr													4	119
			AAC Asn													4	167
			ATT Ile													5	515
			GGA Gly													5	63
			ACA Thr 130													6	511
			ATA Ile													6	559
			GAA Glu													7	707

17/33 FIG. 4B

					- 1	- (-	j. Z	ŧВ				
					TTC	TAT	CTT	GCC			GGG Gly 190	755
		GCT Ala									TGG Trp	803
											TCA Ser	851
		TCT Ser										899
		GCG Ala										947
		GTG Val										995
		GAC Asp										1043
		GAT Asp 290										1091
		GGC Gly										1139
GCT Ala		GAC Asp										1187
		CTC Leu										1235
		CCT Pro										1283
		AAG Lys 370		Ser	Trp		Gln	Gly	Glu			1331
				~~D	.,,,	I L OF	irri (INCLE	20)			

18/33 FIG. 4C

					r	- 10	3. ⁴	#C				
AGT Ser												1379
GTC Val 400	Thr											1427
GAA Glu												1475
GCT Ala												1523
GGA Gly												1571
CAG Gln												1619
TAT Tyr 480												1667
AAG Lys												1715
GTT Val												1763
CCC Pro												1811
GAA Glu												1859
GTG Val 560												1907
TTC Phe			Arg 580	Arg	His	Cys	Gly		Ser			1955

19/33 FIG 4D

					19	/ 3	³ F	-10	3 4	1D						
				GAG	CTT		TTT	CAT	TTT	AAA					AAA Lys	2003
						ACC Thr										2051
						GAT Asp						,				2099
						GGT Gly 645										2147
						GCA Ala										2195
						AGA Arg										2243
						AAT Asn										2291
						ATA Ile										2339
						AAA Lys 725										2387
TTA Leu 735	GTA Val	GGA Gly	ATG Met	CTG Leu	AGA Arg 740	GGA Gly	ATT Ile	GCT Ala	GCT Ala	GGA Gly 745	ATG Met	AGA Arg	TAT Tyr	TTG Leu	GCT Ala 750	2435
GAT Asp	ATG Met	GGA Gly	TAT Tyr	GTT Val 755	CAC His	AGG Arg	GAC Asp	CTT Leu	GCA Ala 760	GCT Ala	CGC Arg	AAT Asn	ATT Ile	CTT Leu 765	GTC Val	2483
AAC Asn	AGC Ser	AAT Asn	CTC Leu 770	GTT Val	TGT Cys	AAA Lys	GTG Val	TCA Ser 775	GAT Asp	TTT Phe	GGC Gly	CTG Leu	TCC Ser 780	CGA Arg	GTT Val	2531
ATA Ile	GAG Glu	GAT Asp 785	GAT Asp	CCA Pro	Glu	GCT Ala IBSTI	Val 790	Tyr	Thr	Thr	Thr	GGT Gly 795	GGA Gly	AAA Lys	ATT Ile	2579
					ĢU	ווטטו	UIL	J. 155			•					

^{20/33} FIG. 4E CCA GTA AGG TGG ACA GCA CCC GAA GCC ATC CAG TAC CGG AAA TTC ACA 2627 Pro Val Arg Trp Thr Ala Pro Glu Ala Ile Gln Tyr Arg Lys Phe Thr 805 810 800 TCA GCC AGT GAT GTA TGG AGC TAT GGA ATA GTC ATG TGG GAA GTT ATG 2675 Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met 815 TCT TAT GGA GAA AGA CCT TAT TGG GAC ATG TCA AAT CAA GAT GTT ATA 2723 Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Ser Asn Gln Asp Val Ile 840 845 835 2771 AAA GCA ATA GAA GAA GGT TAT CGT TTA CCA GCA CCC ATG GAC TGC CCA Lys Ala Ile Glu Glu Gly Tyr Arg Leu Pro Ala Pro Met Asp Cys Pro 850 GCT GGC CTT CAC CAG CTA ATG TTG GAT TGT TGG CAA AAG GAG CGT GCT 2819 Ala Gly Leu His Gln Leu Met Leu Asp Cys Trp Gln Lys Glu Arg Ala 870 865 2867 GAA AGG CCA AAA TTT GAA CAG ATA GTT GGA ATT CTA GAC AAA ATG ATT Glu Arg Pro Lys Phe Glu Gln Ile Val Gly Ile Leu Asp Lys Met Ile 885 880 CGA AAC CCA AAT AGT CTG AAA ACT CCC CTG GGA ACT TGT AGT AGG CCA 2915 Arg Asn Pro Asn Ser Leu Lys Thr Pro Leu Gly Thr Cys Ser Arg Pro 900 905 ATA AGC CCT CTT CTG GAT CAA AAC ACT CCT GAT TTC ACT ACC TTT TGT 2963 Ile Ser Pro Leu Leu Asp Gln Asn Thr Pro Asp Phe Thr Thr Phe Cys 920 915 TCA GTT GGA GAA TGG CTA CAA GCT ATT AAG ATG GAA AGA TAT AAA GAT 3011 Ser Val Gly Glu Trp Leu Gln Ala Ile Lys Met Glu Arg Tyr Lys Asp 935 930 AAT TTC ACG GCA GCT GGC TAC AAT TCC CTT GAA TCA GTA GCC AGG ATG 3059 Asn Phe Thr Ala Ala Gly Tyr Asn Ser Leu Glu Ser Val Ala Arg Met 955 950 945 ACT ATT GAG GAT GTG ATG AGT TTA GGG ATC ACA CTG GTT GGT CAT CAA 3107 Thr Ile Glu Asp Val Met Ser Leu Gly Ile Thr Leu Val Gly His Gln 965 960 AAG AAA ATC ATG AGC AGC ATT CAG ACT ATG AGA GCA CAA ATG CTA CAT 3155 Lys Lys Ile Met Ser Ser Ile Gln Thr Met Arg Ala Gln Met Leu His 985 980 TTA CAT GGA ACT GGC ATT CAA GTG TGATATGCAT TTCTCCCTTT TAAGGGAGAT 3209 Leu His Gly Thr Gly Ile Gln Val 995

21/33

FIG. 4F

ΤA	CAGACTGC	AAGAGAACAG	TACTGGCCTT	CAGTATATGC	ATAGAATGCT	GCTAGAAGAC	3269
AΑ	GTGATGTC	CTGGGTCCTT	CCAACAGTGA	AGAGAAGATT	TAAGAAGCAC	CTATAGACTT	3329
GA	ACTCCTAA	GTGCCACCAG	ААТАТАТААА	AAGGGAATTT	AGGATCCACC	ATCGGTGGCC	3389
ĄG	GAAAATAG	CAGTGACAAT	AAACAAAGTA	CTACCTGAAA	AACATCCAAA	CACCTTGAGC	3449
тC	TCTAACCT	CCTTTTTGTC	TTATAGACTT	TTTAAAATGT	ACATAAAGAA	TTTAAGAAAG	3509
AΑ	TATATTTG	TCAAATAAAA	TCATGATCTT	ATTGTTAAAA	TTAATGAAAT	ATTTTCCTTA	3569
AΑ	TATGTGAT	TTCAGACTAT	TCCTTTTTAA	AATCATTTGT	GTTTATTCTT	CATAAGGACT	3629
ΓT	GTTTTAGA	AAGCTGTTTA	TAGCTTTGGA	CCTTTTTAGT	GTTAAATCTG	TAACATTACT	3689
AC.	ACTGGGTA	CCTTTGAAAG	AATCTCAAAT	TTCAAAAGAA	ATAGCATGAT	TGAAGATACA	3749
rc'	TCTGTTAG	AACATTGGTA	TCCTTTTTGT	GCCATTTTAT	TCTGTTTAAT	CAGTGCTGTT	3809
ΓT	GATATTGT	TTGCTAATTG	GCAGGTAGTC	AAGAAAATGC	AAGTTGCCAA	GAGCTCTGAT	3869
ΑT	TTTTTAAA	AAGAATTTTT	TTGTAAAGAT	CAGACAACAC	ACTATCTTT	CAATGAAAAA	3929
AG(CAATAATG	ATCCATACAT	ACTATAAGGC	ACTTTTAACA	GATTGTTTAT	AGAGTGATTT	3989
ΓA	CTAGAAAG	ААТТТААТАА	ACTCGAAGTT	TAGGTTTATG	AGTATATAAA	CAAATGAGGC	4049
AC'	TTCATCTG.	AAGAATGTTG	GTGAAGGCAA	GTCTCTGAAA	GCAGAACTAT	CCAGTGTTAT	4109
CT	AAAATTA	ATCTGAGCAC	ATCAAGATTT	TTTCATTCTC	GTGACATTAG	GAAATTTAGG	4169
AΤ	AAATAGTT	GACATATATT	TTATATCCTC	TTCTGTTGAA	TGCAGTCCAA	ACATGAAAGG	4229
λA	ATAATTGT	TTTATATTAT	AACTCTGAAG	CATGATAAAG	GGGCAGTTCA	CAATTTTCAC	4289
CA	ITTAAACA	CAAATTTGCT	GCACAGAATA	TCACCATTGC	AGTTCAAAAC	AAAACAAAAC	4349
λA	AAAGTCTT	TTGTTTGTGA	ACACTGATGC	AAGAAACTTG	TTAAATGAAA	GGACTCTTTA	4409
CC	CTAGAAGG	AAGAGGTGAA	GGATCTGGCT	TGTTTTTAAA	GCTTTATTTA	ТТАААССАТА	4469
гта	ATTTGATT	ACTGTGTTAG	AATTTCATAA	GCAATAATTA	AATGTGTCTT	TATGGAATTC	4529

FIG. 5A

FIG. 5B

..VIDEPPKMHCSAEGEWLVPIGKCMCKAGYEEK.NGT.CQVCR SGTFKANQGDEACTHCPINSRTTSEGATNCVCRNGYYRADLDPLDMPCTTIPSAPQAVISSVNETSLMLEWTPPRDSGGREDLVYNIICKSCGSGR....G AFgdvGaC.aLvsVrv.ykkCpstv.nlA.FpdT.tgadsssLvevrG.Cvnna....e...pp.m.CsadGEwlVPiGkC.CkaGyee...gtaCqaCp AFHNPGACVALVSVRVFYQRCPETLNGLAQFPDTLPG. PA. GLVEVAGTCLPHARASPRPSGAPRMHCSPDGEWLVPVGRCHCEPGYEEGGSGEACVACP AFQDIGACVALLSVRVYYKKCPELLQGLAHFPETIAGSDAPSLATVAGTCVDHA.VVPPGGEEPRMHCAVDGEWLVPIGQCLCQAGYEKVED..ACQACS ..KEEDPPRMYCSTEGEWLVPIGKCSCNAGYEER,.GFMCQACR .. EEVDVPIKLYCNGDGEWLVPIGRCMCKAGFEAVENGTVCRGCP .. EEKDVPKMYCGADGEWLVPIGNCLCNAGHEER...SGECQACK AFQDQGACMSLISVRAFYKKCASTTAGFALFPETLTGAEPTSLVIAPGTCIPNA...VEVSVPLKLYCNGDGEWMVPVGACTCATGHEPAAKESQCRPCP AFQDVGACIALVSVKVYYKKCWSIIENLAIFPDTVTGSEFSSLVEVRGTCVSSA..EEEAENAPRMHCSAEGEWLVPIGKCICKAGYQQK..GDTCEPCG pGfyka..gd.pClkCPphs.ttsegatsCtCengy.RadsdppsmaCTrpPSaPrnlisnvnetsv.LeWspPadtGgR.Dv.yn.iCkkCg.ga...g SGSYRMDMDTPHCLTCPQQSTAESEGATICTCESGHYRAPGEGPQVACTGPPSAPRNLSFSASGTQLSLRWEPPADTGGRQDVRYSVRCSQCQGTAQDGG PGFFKFEASESPCLECPEHTLPSPEGATSCECEEGFFRAPQDPASMPCTRPPSAPHYLTAVGMGAKVELRWTPPQDSGGREDIVYSVTCEQCWPES...G PGFYKALDGNMKCAKCPPHSSTQEDGSMNCRCENNYFRADKDPPSMACTRPPSSPRNVISNINETSVILDWSWPLDTGGRKDVTFNIICKKCGWNI...K PGFFKASPHIQSCGKCPPHSYTHEEASTSCVCEKDYFRRESDPPTMACTRPPSAPRNAISNVNETSVFLEWIPPADTGGRKDVSYYIACKKCNSHA...G IGYYKALSTDATCAKCPPHSYSVWEGATSCTCDRGFFRADNDAASMPCTRPPSAPLNLISNVNETSVNLEWSSPQNTGGRQDISYNVVCKKCGAGD..PS PGSYKAKQGEGPCLPCPPNSRTTSPAASICTCHNNFYRADSDSADSACTTVPSPPRGVISNVNETSLILEWSEPRDLGVRDDLLYNVICKKC.HGAGGAS RGFYKSSSQDLQCSRCPTHSFSDKEGSSRCECEDGYYRAPSDPPYVACTRPPSAPQNLIFNINQTTVSLEWSPPADNGGRNDVTYRIİCKRCSWEQ...G AFQDYGGCMSLIAVRVFYRKCPRIIQNGAIFQETLSGAESTSLVAARGSCIANA. AFQDVGACIALVSVRVYYKKCPSVVRHLAVFPDTITGADSSQLLEVSGSCVNHS. AFQDVGACIALVSVRVFYKKCPLTVRNLAQFPDTITGADTSSLVEVRGSCVNNS. AFQDVGACVALVSVRVYFKKCPFTVKNLAMFPDTVP.MDSQSLVEVRGSCVNNS. HEK11 HEK5 HEK8 CONS HEK2 HEK4 HEK7 CONS HEK4 HEK5 TEK8 HEK7 TEK2 EPH ECK EPH ECK SUBSTITUTE SHEET (RULE 26)

F1G. 5C

LEYEVKYYEKDQNERSYRIVRTAARNTDIKGLNPLTSYVFHVRARTAAGYGDFSEPLEVTTNTVPSRIIGDGANSTVLLVSVSGSVVLVVILIAAFVIS [TEYEIKYYEKDQRERTYSTVKTKSTSASINNLKPGTVYVPQIRAFTAAGYGNYSPRLDVATLEEATGKMFEATAVSSEQNPVIIIAVVXVAGTIILVFM NLTYE....LHVLNQDEERYQMVLEPRVLLTELQPDTTYIVRVRMLTPLGPGPFSPDHEFRTSPPVSRGLTGGEIVAVIFGLLGAALLLGILVFRSRRA ILDYEVKYYEKQEQETSYTILRARGINVTISSLKPDTIYVLQIRARTAAGYGTNSRKFEFETSPDSFSISGESSQVVMIAISAAVAIILLTVVIYVLIGR :LDYELQYYEKELSEYNATAIKSPTNTVTVQGLKAGAIYVFQVRARTVAGYGRYSGKMYFQTMTEAEYQTSIQEKLPLIIGSSAAGLVFLIAVVVIAIVC LEYEIKHFEKDQETSYTII.KSKETTITAEGLKPASVYVFQIRARTAAGYGVFSRRFEFETTPVFAASSDQSQIPVIAVSVTVGVILLAVVIGVLLSGR LDYEMKYFEK,,SEGIASTVTSQMNSVQLDGLRPDARYVVQVRARTVAGYGQYSRPAEFETTSERGSGAQQLQEQLPLIVGSATAGLVFVVAVVVIAIV il. YEvkyyekdq. ersy. iv..k. tsvt. dgLkpdt. YvfqvrarTaaGyG.. Sr.. efeT. pea. sgsg \dots ivvviivs. aga \dots ll $vv\dots$ v \dots l \dots r MKYEV. TYRKKGDSNSYNVRRTEGFSVTLDDLAPDTTYLVQVQALTQEGQGAGSKVHEFQTLSPEGSGNLAVIGGVAVGVVLLLVLAGVGFFIHRRKKN ECGPCEASVRYSEPPHGLTRTSVTVSDLEPHMNYTFTVEARNGVSGLVTSRSFR.TASVS..I..NQ...TEPPKVRLEGRSTTSLSVSW.SIPPPQQSR ECVPCGSNIGYMPQQTGLEDNYVTVMDLLAHANYTFEVEAVNGVSDL....SRSQRLFAAVSITTGQAA PSQVSGVMKERVLQRSVELSW.QEPEHPNGV PCQPCGVGVHFSPGARALTTPAVHVNCLEPYANYTFNVEAQNGVSGLGSSGHAS..TSVSISMGHAESLS..GLSLRLVKKEPRQLELTWAGSRPRSPGA YCEPCSPNVRFLPRQFGLTNTTVTVTDLLAHTNYTFEIDAVNGVSEL..SSPPRQFAAV..SITTNQAAPSPVLTIKKDRTSRNSISLSW.QEPEHPNGI ACTRCGDNVQYAPRQLGLTEPRIYISDLLAHTQYTFEIQAVNGVTD..QSPFSPQFASV..NITTNQAAPSAVSIMHQVSRTVDSITLSW.SQPDQPNGV /CEECGGHVRYLPRQSGLKNTSVMMVDLLAHTNYTFEIEAVNGVSDL....SPGARQYVSVNVTTNQAAPSPVTNVKKGKIAKNSISLSW.QEPDRPNGI acsrcddnvefvprolglseprvhtshllahtrytfevoavngvsgk....splppryaavnittnqaapsevptlrlhsssgssltlsw.apperpngv CepCg.nvry.prq1gLt.t.vtvsdLlahtnYtFe.eAvNGVs.l....sp.q.asvsv.ittnqaaps.v.tvr....sr.s.s1sW.qep.rpngv KCRPCGSGVHYTPQQNGLKTTKVSITDLLAHTNYTFEIWAVNGVSK....YNPNPDQSVSVTVTTNQAAPSSIALVQAKEVTRYSVALAW.LEPDRPNGV HEX11 CONS HEK2 HEK4 HEK5 HEK7 HEK8 HEK2 HEK4 HEK5 HEK7 JEK8 CONS ECK SUBSTITUTE SHEET (RULE 26)

F16, 5[

?RQRQQRHVTAPPMWIERTSCAEALCGTSRHTRTLHREPWTL..PGGWSNFPSRELDPAWLMVDTVIGEGEFGEVYRGTLRLPS.QDCKTVAIKTLKDTS PGGQWWNFLREATIMGQFSHPHILHLEGVVTKRKPIMIITEFMENAALDAFLREREDQLVPGQLVAMLQGIASGMNYLSNHNYVHRDLAARNILVNQNLC EKQRVDFLGEAGIMGQFSHHNIIRLEGVISKYKPMMIITEYMENGALDKFLREKDGEFSVLQLVGMLRGIAAGMKYLANMNYVHRDLAARNILVNSNLV EKQRRDFLGEASIMGQFDHPNIIRLEGVVTKSKPVMIVTEYMENGSLDSFLRKHDAQFTVIQLVGMLRGIASGMKYLSDMGYVHRDLAARNILINSNLV: $\tt 'EKQRRDFLSEASIMGQFDHPNVIHLEGVVTKSTPVMIITEFMENGSLDSFLRQNDGQFTVIQLVGMLRGIAAGMKYLADMNYVHRDLAARNILVNSNLV$ FEKQRRDFLGEASIMGQFDHPNIIHLEGVVTKSKPVMIVTEYMENGSLDTFLKKNDGQFTVIQLVGMLRGISAGMKYLSDMGYVHRDLAARNILINSNLV IDKQRRDFLSEASIMGQFDHPNIIHLEGVVTKCKPVMIITEYMENGSLDAFLRKNDGRFTVIQLVGMLRGIGSGMKYLSDMSYVHRDLAARNILVNSNLV $\tt FRQRRDFLSEASIMGQFDHPNIIRLEGVVTKSRPVMILTEFMENCALDSFLRLNDGQFTVIQLVGMLRGIAAGMKYLSEMNYVHRDLAARNILVNSNLV$ ${\tt TEKQRRDFLCEASIMGQFDHPNVVHLEGVVTRGKPVMIVIEFMENGALHAFLRKHDGQFTVIQLVGMLRGIAAGMRYLADMGYVHRDLAARNILVNSNLV$klpg.ktyidP.TyedPnqav.efakEidascikiekviGaGEFGEVcsGrLklp.gkre..VAIKTLKvgyLKPLKTYVDPHTYEDPNQAVLKFTTEIHPSCVTRQKVIGAGEFGEVYKGMLKTSSGKKEVPVAIKTLKAGY °CGYKSKHGADEKRLHFGNG.....HLKLPGLRTYVDPHTYEDPTQAVHEFAKELDATNISIDKVVGAGEFGEVCSGRLKLPS.KKEISVAIKTLKVGY RRGFERADSEYTDKLQHYT.....SGHITPGMKIYIDPFTYEDPNEAVREFAKEIDISCVKIEQVIGAGEFGEVCSGHLKLP.GKREIFVAIKTLKSGY RCGYSKAKQDPEEEKMHFHN.....GHIKLPGVRTYIDPHTYEDPNQAVHEFAKEIEASCITIERVIGAGEFGEVCSGRLKLP.GKRELPVAIKTLKVGY RRRSKYSKAKQEADEEKHLN............QGVRTYVDPFTYEDPNQAVREFAKEIDASCIKIEKVIGVGEFGEVCSGRLKVP.GKREICVAIKTLKAGY CLRKQRHGSDSEYTEKLQQY......IAPGMKVYIDPFTYEDPNEAVREFAKEIDVSCVKIEEVIGAGEFGEVCRGRLKQP.GRREVFVAIKTLKVGY VFGFIIGRRHCGYTKADQEGDEELYFHFKFPGTKTYIDPETYEDPNRAVHQFAKELDASCIKIERVIGAGEFGEVCSGRLKLP.GKRDVAVAIKTLKVGY cekQrrdFL.EAsIMGQFdHpniihLEGVvtkskPvMIitE.MENg.Ld.FLrkndgqftviQLVgMLrGIaaGMkYLsdmnYVHRDLAARNILvNsNLvr..gsr.dd.ey.keg..... DRARQSPEDVYFSKSEQ. HEK11 CONS HEK4 HEK5 HEK8 HEK2 CONS HEK7 HEK4 1EK5 TEK7 1EK8 IEK2 ECK EPH ECK SUBSTITUTE SHEET (RULE 26)

FIG. 5E

CKVSDFG1sRv1eDD.pea.yT.trGGkiPiRWTaPEAIayRkFTsASDVWSyGIVmWEVmsyGerPYw.msNqdVikaieegyRLPpPmDCPaal.qLM CKVSDFGLTRLL. DDFDGTYET.. QGGKIPIRWTAPEAIAHRIFTTASDVWSFGIVMWEVLSFGDKPYGEMSNQEVMKSIEDGYRLPPPVDCPAPLYELM :KVSDFGLSRVLEDD. PEATYT. TSGGKIPIRWTAPEAISYRKFTSASDVWSFGIVMMEVMTYGERPYWELSNHEVMKAINDGFRLPTPMDCPSAIYQLM :KVSDFGLSRVLEDD.PEAAYT.TRGGKIPIRWTSPEAIAYRKFTSASDVWSYGIVLWEVMSYGERPYWEMSNQDVIKAVDEGYRLPPPMDCPAALYQLM lkvsdfglsrfleddtsdptytsalggkfpirwtapeaiqyrkftsasdvwsygivmwevmsygerpywdmtngdvinaieqdyrlpPpmdcPsalhQlm KVSDFGLSRVLEDD. PEAAYT. TRGGKIPIRWTAPEAIAFRKFTSASDVWSYGIVMWEVVSYGERPYWEMTNQDVIKAVEEGYRLPSPMDCPAALYQLM CKVSDFGMSRVLEDD. PEAAYT. TRGGKI PIRWTA PEAIA YRKFTSA SDVWSYGIVMWEVMSYGER PYWDMSNQDVIKA I EEGYRL PPPMDCPIALHQLM CKVSDFGLSRFLEDDPSDPTYTSSLGGKIPIRWTAPEAIAYRKFTSASDVWSYGIVMWEVMSYGERPYWDMSNQDVINAVEQDYRLPPPMDCPTALHQLM CKVSDFGLSRVIEDD. PEAVYT. TTGGKIPVRWTAPEAIQYRKFTSASDVWSYGIVMWEVMSYGERPYWDMSNQDVIKAIEEGYRLPAPMDCPAGLHQLM HEK11 CONS HEK4 HEK5 HEK7 HEK8 HEK2 EPH

IQCWQQERARRPKFADIVSILDKLIRAPDSLKTLADFDPRVSIRLPSTSGSEGVPFRTVSEWLESIKMQQYTEHFWAAGYTAIEKVVQMTNDDIKRIGVR JDCWQKERNSRPKFDEIVMMLDKLIRNPSSLKTLVNASCRVSNLLAEHSPLGSGAYRSVGEWLEAIKMGRYTEIFMENGYSSMDAVAQVTLEDLRRLGVT LDCWQKERAERPKFEQIVGILDKMIRNPNSLKTPLGTCSRPISPLLDQNTPDFTTFCSVGEWLQAIKMERYKDNFTAAGYNSLESVARMTIEDVMSLGIT .dCWqk.RnrRPkF.givniLdklirnpnSLktia.assr.s.pLld.sgpd.ttfrtvgeWLeaikmgryke.Ftaagyts..avaqmtaeDl.riGvt ONCWAYDRARRPHFQKLQAHLEQLLANPHSLRTIANFDPRVTLRLPSLSGSDGIPYRTVSEWLESIRMKRYILHFHSAGLDTMECVLELTAEDLTQMGIT JDCWQKDRNNRPKFEQIVSILDKLIRNPGSLKIITSAAARPSNLLLDQSNVDISTFRTTGDWLNGVRTAHCKEIFTGVEYSSCDTIAKISTDDMKKVGVT JDCWQKDRNHRPKFGQIVNTLDKMIRNPNSLKAMAPLSSGINLPLLDRTIPDYTSFNTVDEWLEAIKMGQYKESFANAGFTSFDVVSQMMMEDILRVGVT JDCWQKERSDRPKFGQIVNMLDKLIRNPNSLKRTGTESSRPNTALLDPSSPEFSAVVSVGDWLQAIKMDRYKDNFTAAGYTTLEAVVHVNQEDLARIGIT .DCWVRDRNLRPKFSQIVNTLDKLIRNAASLKVIASAQSGMSQPLLDRTVPDYTTFTTVGDWLDAIKMGRYKESFVSAGFASFDLVAQMTAEDLLRIGVT CONS HEK4 **JEK5** 1EK8 1EK2 HEK7 ECK

27/33

F1G. 5F

CONS lvghQkkilsSiq.mr.Qmnqgh.p.v.V
EPH LPGHQKRILCSIQGFKD
ECK LPGHQKRIAYSLLGLKDQVNTVGIPI
HEK4 VVGPQKKIISSIKALETQSKNGPVPV
HEK5 LAGHQKKILNSIQVMRAQMNQIQSVEV
HEK7 LVGHQKKIMNSLQEMKVQLVNGMVPL
HEK8 AITHQNKILSSVQAMRTQMQQMHGRMVPV
HEK2 LAGHQKKILSSIQDMRLQMNQTLPVQV
HEK11 LVGHQKKIMSSIQTMRAQMLHLHGTGIQV

28/3**3** FIG. 6

FIG. 7A

<u>Human</u>

Hear air ceirig

FIG. 7B

Rat

9.5 kb — 7.5 — 4.4

SUBSTITUTE SHEET (RULE 26)

FIG. 8A

<u>Human</u>

the of dia central that the step of the state of

FIG. 8B

Rat

Ovary ests that the theat states the Thing The Kidney bran

SUBSTITUTE SHEET (RULE 26)

31/33

FIG. 9A

<u>Human</u>

the of state of the state of th

FIG. 9B

Rat

Ovaly ests that whisters stornach live the kidney

32/33

FIG. IOA

<u>Human</u>

FIG. IOB

Rat

Ovary sestis triuting theat statuarity lines that the train

FIG. 11A

<u>Human</u>

FIG. IIB

<u>Rat</u>

INTERNATIONAL SEARCH REPORT

Interr al Application No PCT/US 95/04681

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/12 C07K14/71 C07K16/28 A61K39/395 A61K38/17 C12N15/62 G01N33/566 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K A61K G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X WO-A-93 00425 (INST MEDICAL W & E HALL) 7 1-8,10, 15-18, January 1993 20,23, 25-32,34 see the whole document X 1-9, DE-A-42 33 782 (CHEMOTHERAPEUTISCHES 15-19, FORSCHUNG) 14 April 1994 23, 25-32,34 see the whole document X CA-A-2 083 521 (MOUNT SINAI HOSPITAL CORP 1-7,13, 15-18,) 1 October 1993 23-32,34 see the whole document -/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance invention E. earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 15. 09. 95 6 September 1995 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax (+31-70) 340-3016 Nauche, S

Form PCT/ISA/218 (second sheet) (July 1992)

3,

Interr al Application No PCT/US 95/04681

		PC1/US 95/U4681
C.(Continua Category	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	or action of actions, with a appropriate, or actionally passages	Relevant to Gain 110.
X	ONCOGENE, vol. 7, no. 12, December 1992 pages 2499-2506, HEBENSTREIT-GILARDI, P. ET AL.; 'An Eph-related receptor tyrosine kinase gene segmentally expressed in the developing mouse hindbrain.' see the whole document	1-8,11, 15-18, 21,23, 25-27,34
x	BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 194, 1993 ORLANDO, FL US, pages 698-705, IWASE T., TANAKA M., SUZUKI M., NAITO Y., SUGIMURA H.; 'Identification of protein-tyrosine kinase genes preferentially expressed in embryo stomach and gastric cancer' see the whole document	1-9, 15-19, 23, 25-27, 32,34
x	CELL REGULATION, vol. 2, July 1991 pages 523-534, PASQUALE, E.B.; 'Identification of chicken embryo kinase 5, a developmentally regulated receptor-type tyrosine kinase of the Eph family' see the whole document	1-9, 15-19, 23, 25-29, 32,34
x	ONCOGENE, vol. 8, 1993 pages 1807-1813, SAJJADI F.G., PASQUALE E.B.; 'Five novel avian Eph-related tyrosine kinases are differentially expressed' see the whole document	1-11, 15-21, 23, 25-27, 32,34
(BRITISH JOURNAL OF CANCER, vol. 69, no. 3, March 1994 pages 417-421, TUZI NL;GULLICK WJ; 'eph, the largest known family of putative growth factor receptors.' see the whole document	1-11, 13-21, 23-27, 32,34
	ONCOGENE, vol. 8, no. 12, December 1993 pages 3277-3288, MAISONPIERRE PC;BARREZUETA NX;YANCOPOULOS GD; 'Ehk-1 and Ehk-2: two novel members of the Eph receptor-like tyrosine kinase family with distinctive structures and and neuronal expression.' cited in the application see the whole document	1-8,10, 15-18, 20,23, 25-27, 32,34
	-/	

3

INTERNATIONAL SEARCH REPORT

Interr nal Application No
PCT/US 95/04681

CICcordo	DOCUMENTS CONSIDERED TO BE BELEVANT	PC1/03 93/04001	
C.(Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to clai	m No.
X	ONCOGENE, vol. 6, no. 6, 1991 pages 1057-1061, CHAN, J.; WATT, V.M.; 'eek and erk, new members of the eph subclass of receptor protein-tyrosine kinases' cited in the application see the whole document	1-9, 15-16 23, 25-2 32,36	7,
X	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 5, 1 March 1992 WASHINGTON US, pages 1611-1615, WICKS IP; WILKINSON D; SALVARIS E; BOYD AW; 'Molecular cloning of HEK, the gene encoding a receptor tyrosine kinase expressed by human lymphoid tumor cell lines.' cited in the application see the whole document	1-8, 15-16 22-2 32,36	3, 7,
P,X	ONCOGENE, vol. 10, no. 5, 2 March 1995 pages 897-905, FOX GM;HOLST PL;CHUTE HT;LINDBERG RA;JANSSEN AM;BASU R;WELCHER AA; 'cDNA cloning and tissue distribution of five human eph-like receptor protein-tyrosine kinases' see the whole document	1-34	
			;

3,

ernational application No.

INTERNATIONAL SEARCH REPORT

PCT/US 95/04681

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: X
because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 32 is directed to a method of treatment of the human/animal body (Rule 39.1(1v)) PCT), the search has been carried out and based on the alleged effects of the compound/composition. Claims Nos: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: 3. Claims Nos: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: 3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. 2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report
This International Searching Authority found multiple inventions in this international application, as follows: 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. 2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report
2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report
2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report
As only some of the required additional search fees were timely paid by the applicant, this international search report
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
·
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

information on patent family members

Inten and Application No
PCT/US 95/04681

Patent document cited in search report	Publication date	Patent memi		Publication date
WO-A-9300425	07-01-93	AU-B- EP-A- JP-T-	655299 0590030 6508747	15-12-94 06-04-94 06-10-94
DE-A-4233782	14-04-94	NONE		
CA-A-2083521		NONE		

Form PCT/ISA/210 (patent family annex) (July 1992)