Dimension Reduction Methods

- The methods that we have discussed so far in this chapter have involved fitting linear regression models, via least squares or a shrunken approach, using the original predictors, X_1, X_2, \ldots, X_p .
- We now explore a class of approaches that *transform* the predictors and then fit a least squares model using the transformed variables. We will refer to these techniques as *dimension reduction* methods.

Dimension Reduction Methods: details

• Let Z_1, Z_2, \ldots, Z_M represent M < p linear combinations of our original p predictors. That is,

$$Z_m = \sum_{j=1}^p \phi_{mj} X_j \tag{1}$$

for some constants $\phi_{m1}, \ldots, \phi_{mp}$.

• We can then fit the linear regression model,

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i, \quad i = 1, \dots, n,$$
 (2)

using ordinary least squares.

• Note that in model (2), the regression coefficients are given by $\theta_0, \theta_1, \ldots, \theta_M$. If the constants $\phi_{m1}, \ldots, \phi_{mp}$ are chosen wisely, then such dimension reduction approaches can often outperform OLS regression.

• Notice that from definition (1),

$$\sum_{m=1}^{M} \theta_m z_{im} = \sum_{m=1}^{M} \theta_m \sum_{j=1}^{p} \phi_{mj} x_{ij} = \sum_{j=1}^{p} \sum_{m=1}^{M} \theta_m \phi_{mj} x_{ij} = \sum_{j=1}^{p} \beta_j x_{ij},$$

where

$$\beta_j = \sum_{m=1}^M \theta_m \phi_{mj}. \tag{3}$$

- Hence model (2) can be thought of as a special case of the original linear regression model.
- Dimension reduction serves to constrain the estimated β_j coefficients, since now they must take the form (3).
- Can win in the bias-variance tradeoff.

Principal Components Regression

- Here we apply principal components analysis (PCA) (discussed in Chapter 10 of the text) to define the linear combinations of the predictors, for use in our regression.
- The first principal component is that (normalized) linear combination of the variables with the largest variance.
- The second principal component has largest variance, subject to being uncorrelated with the first.
- And so on.
- Hence with many correlated original variables, we replace them with a small set of principal components that capture their joint variation.

Pictures of PCA

The population size (pop) and ad spending (ad) for 100 different cities are shown as purple circles. The green solid line indicates the first principal component, and the blue dashed line indicates the second principal component.

Pictures of PCA: continued

A subset of the advertising data. Left: The first principal component, chosen to minimize the sum of the squared perpendicular distances to each point, is shown in green. These distances are represented using the black dashed line segments. Right: The left-hand panel has been rotated so that the first principal component lies on the x-axis.

Pictures of PCA: continued

Plots of the first principal component scores z_{i1} versus pop and ad. The relationships are strong.

Pictures of PCA: continued

Plots of the second principal component scores z_{i2} versus pop and ad. The relationships are weak.

Choosing the number of directions M

Left: PCR standardized coefficient estimates on the Credit data set for different values of M. Right: The 10-fold cross validation MSE obtained using PCR, as a function of M.