In [1]:	<pre>using PyCall; using PyPlot; using Printf;</pre>
	<pre>using StatsBase; using DataFrames, FreqTables using HypothesisTests np = pyimport("numpy"); sns = pyimport("seaborn"); ss = pyimport("scipy.stats"); wrg = pyimport("warnings"); pd = pyimport("pandas"); gs = pyimport("matplotlib.gridspec");</pre>
In [2]:	<pre>ps = pyimport("pyspark.pandas"); pd = pyimport("databricks.koalas"); tree = pyimport("sklearn.tree"); layers = pyimport("keras.layers"); models = pyimport("keras.models"); prepro = pyimport("sklearn.preprocessing"); utils = pyimport("sklearn.utils"); metrics = pyimport("sklearn.metrics"); model_selection = pyimport("sklearn.model_selection");</pre>
In [250	<pre>0.2. Aux Functions 0.2.1. Functions wrg.filterwarnings("ignore") pearson_r(ti, df) = \(\lambda(\text{ti^2} \rangle \text{ti^2} + \text{df} \rangle); glass_delt(x_bari, x_barj, stdi) = (x_bari - x_barj) / stdi; cohen_d(x_bari, x_barj, stdi, stdj) = (x_bari - x_barj) / \(\lambda((stdi^2 + stdj^2) / 2); \) </pre>
	<pre>cohen_d(x_bari, x_barj, stdi, stdj) = (x_bari - x_barj) / √((stdi^2 + stdj^2) / 2); hedge_g(d, ni, nj) = (d * (1 - (3 / (4*(ni + nj - 9))))); function cramer_v(x, y) cm = freqtable(x, y) n = sum(cm) r, k = size(cm) chi2 = ChisqTest(cm).stat chi2corr = max(0, chi2 - (((k-1) * (r-1)) / (n-1)))</pre>
	<pre>kcorr = k - (((k-1)^2) / (n-1)) rcorr = r - (((r-1)^2) / (n-1)) return sqrt((chi2corr / n) / (min(kcorr - 1, rcorr - 1))) end; function permutation(x, n_a, n_b) n = n_a + n_b rand_b = sample(1:n, n_b) rand_a = setdiff(1:n, rand_b) return np.mean(x[rand b]) - np.mean(x[rand a])</pre>
	<pre>end; py""" import numpy as np def test(diff, diff_mean): return np.mean(diff > diff_mean) """</pre>
In [292	
	<pre>ax.set_title(("Correlação Positiva: " * string(round(r, digits=4)))) else ax.set_title(("Correlação Negativa: " * string(round(r, digits=4)))) end end; function spearman_plot(size, power) log_a = [log1p(abs(j-10)) for j in 1:size] log_b = [log1p(j)^power for j in 1:size] cor, _ = ss.spearmanr(log_a, log_b);</pre>
	<pre>fig, ax = plt.subplots(figsize=(5, 5)) ax.plot(log_a, color="b", linestyle="", label="Log - 6") ax.plot(log_b, color="r", linestyle="", label="Negative Log") ax.set_title("Correlação: " * string(round(cor, digits=4))) plt.legend(); end; function plot_density(x, y) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 7)) ax1.hexbin(np.random.randn(x), np.random.randn(y), gridsize=30, cmap="gist_heat");</pre>
	<pre>ax2 = sns.kdeplot(np.random.randn(x), np.random.randn(y)); end; function plot_bootstrap(x, g_type, c) plt.hist(x, color=c, linewidth=2, histtype=g_type, bins=20); plt.vlines(np.mean(x), ymin=n_size-100, ymax=1., color="k", linestyle="", label="Mean"); plt.legend(); end; function plot_three_bn(prob, colors, label) for i in zip([0.1, 0.5, 0.9], ["r", "g", "b"], ["Prob: 10%", "Prob: 50%", "Prob: 90%"])</pre>
	<pre>for i in zip([0.1, 0.5, 0.9], ["r", "g", "b"], ["Prob: 10%", "Prob: 50%", "Prob: 90%"]) res = [ss.binom.pmf(r, 10, i[1]) for r in 0:10] plt.bar(Array(1:11), res, color=i[2], label=i[3]); plt.legend() end end; function plot_poisson(x, c) fig, ax = plt.subplots(figsize=(7, 4)) ax = sns.distplot(x, color=c, hist=false, label="Poisson"); ax.vlines(np.mean(x), 0, 0.27, color="k", linestyle="", label="Média")</pre>
	<pre>ax.vlines(np.median(x), 0, 0.27, color="c", linestyle="", label="Mediana") ax.vlines(0, -0.05, 0.28, color="#12004f", linewidth=2, linestyle="-") ax.hlines(-0.001, -1.7, 8.5, color="#12004f", linewidth=2, linestyle="-") ax.set_xlabel("Contagem"); ax.set_ylabel("Densidade"); ax.set_title("Distribuição Poisson") ax.legend(); end; function plot_normal(x, sim=true) fig, ax = plt.subplots(figsize=(7, 4))</pre>
	<pre>ax.plot(x, ss.norm.pdf(x), color="b", linewidth=2, label="Normal"); ax.hlines(.003, -4, 4, color="k") ax.vlines(0, 0, 0.4, color="k", linestyle="", label="Média") ax.set_title("Distribuição Normal") fig.legend(); if sim == true [ax.vlines(i, 0, 0.24, color="r") for i in -1:1 if i != 0] [ax.vlines(i, 0, 0.055, color="r") for i in -2:2 if i != 0] [ax.vlines(-i, 0, (0.50/(i*2.0)01), color="r", linestyle="") for i in 1:.1:1.3]; [ax.vlines(-i, 0, (0.50/(i*2.3)01), color="r", linestyle="") for i in 1.3:.1:1.6];</pre>
	<pre>[ax.vlines(-i, 0, (0.50/(i*3)01), color="r", linestyle="")</pre>
	<pre>ss.probplot(x, dist="norm", plot=ax1); ss.probplot(y, dist="norm", plot=ax5); ss.probplot(z, dist="norm", plot=ax3); for i in zip([ax2, ax6, ax4], [x, y, z], ["Normal", "Log", "Skewed"], ["r", "g", "b"]) i[1].hist(i[2], histtype=g_type, linewidth=2, color=i[4], label=i[3]); i[1].legend() i[1].set_ylabel("Density") i[1].set_xlabel("Bins") plt.show() end; end;</pre>
	<pre>function plot_exp(x, c) fig, ax = plt.subplots(figsize=(7, 4)) ax = sns.distplot(x, color=c, hist=false, label="Exponencial"); ax.set_xlabel("Contagem"); ax.vlines(np.mean(x), 0, 0.4, color="k", linestyle="", label="Média") ax.vlines(np.median(x), 0, 0.55, color="c", linestyle="", label="Mediana") ax.vlines(0, 0, 0.7, color="#12004f", linestyle="-") ax.vlines(0, -0.05, 0.28, color="#12004f", linewidth=2, linestyle="-") ax.hlines(-0.001, -1.7, 8.5, color="#12004f", linewidth=2, linestyle="-") ax.set title("Distribuição Exponencial")</pre>
	<pre>ax.legend(); end; function plot_wei(x) fig, ax = plt.subplots(figsize=(7, 4)) ax = sns.distplot(x, color=c, label="Weibull"); ax.hlines(1/(1000*100), 150*150, -200, color="#12004f", linewidth=2, linestyle="-") ax.vlines(1/(1000*100),1/(500*10), .1/(500), color="#12004f", linewidth=2, linestyle="-") ax.set_title("Distribuição Weibull") ax.legend(); end;</pre>
	<pre>function plot_permutation(x, d, c1, c2, ex, with_ex=false) fig, ax = plt.subplots(figsize=(6, 5)) ax.hist(x, histtype="step", color="r", linewidth=2) ax.axvline(x=d, c=c1, lw=1, ls="", label="Diferença"); if with_ex == true ax.vlines(ex, 0, 100, color=c2); plt.legend(); else plt.legend(); end</pre>
	<pre>function plot_page_diff() fig, ax = plt.subplots(figsize=(7, 5)) ax.hist(df[df.Page .== "Page A", 2], histtype="step", linewidth=2, color="r", label="Page A") ax.hist(df[df.Page .== "Page B", 2], histtype="step", linewidth=2, color="b", label="Page B") ax.hlines(y=2.0, xmin=-0, xmax=4., linestyle="", color="k") ax.set_xlabel("Time") ax.set_ylabel("Count") ax.legend();</pre>
	1.0. Capítulo 1 1.1. Correlação 1.1.1. R de Pearson
	O coeficiente de correlação de pearson é muitas vezes o primeiro coeficiente estudado ou abordado em livros. São ditos os dados que são positivamente correlacionados quando os valores de x acompanham os valores de y e negativamente correlacionados se os valores altos de x acompanharem os valores baixos de y . Causalidade a variável x é a causa da variável y , logo por exemplo a correlação entre número de vendas e clientes é positiva, mas não quer dizer que quantos mais clientes existem mais vendas eu tenha. Ex: O número de consumo de margarina e o número de divórcios em Maine. Fórmula do coeficiente de pearson.
In [191	$ $$ r = \frac{n(\sum_{x})(\sum_{x})}{(n\sum_{x})^2} - (\sum_{x})^2} - (\sum_{x})^2 $
	10 -
	-10 - -20 -
In [8]:	-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 plot_linear(-5, 40, 50, -13, 140); Correlação Negativa: -0.9792
	-200 -
	-400 - -600 -
In [96]:	1.1.2. Rho de spearman Robusto contra outliers e calculado em relação ao ranqueamento ou ordens dos dados, também mede relações lineares e não lineares. $r_s = 1 - \frac{6\sum_{j=0}^{n} 100, -3}{100, -3};$
	Correlação: -0.9932 Log - 6 Negative Log
	2 -
In [97]:	1
2 [37].	Correlação: 0.9997 Log - 6 Negative Log
	125 - 100 - 75 -
	50 - 25 - 0 - 0 50 100 150 200 250 300
	<pre>1.1.4. V de Cramér O V de cramér basicamente serve para calcular a correlação entre variaveis categoricas. Existe a versão corrigida da fórmula de cramér que esta abaixo, k e r são as dimensões da matriz. \$\$V = \sqrt{\frac{\varphi^{2}~ou~X^2 / n}{min(k-1, r-1)}}\$\$ \$\$\varphi^2 = max(0, \varphi^2 - \frac{(k-1) - (r-1)}{n-1}\$\$ \$\$cor~k = k - \frac{(k-1)^2}{n-1}\$\$ \$\$cor~r = r - \frac{(r-1)^2}{n-1}\$\$</pre>
In [226	<pre>df = batarrame(csv.rife(data/stole.csv /) df = hcat(df[:, 2:3], df.StoreType) df = rename(df, Dict("x1" => "State")); # Rename Rows df.Assortment = [replace(i, "a" => "BASIC") for i in df.Assortment]; df.Assortment = [replace(i, "b" => "EXTRA") for i in df.Assortment]; df.Assortment = [replace(i, "c" => "EXTENDED") for i in df.Assortment];</pre>
	<pre># Generate FataFrame results = [] data = DataFrame() for i in ["StoreType", "Assortment", "State"] a = cramer_v(Array(df.StoreType), Array(df[:, i])) b = cramer_v(Array(df.Assortment), Array(df[:, i])) c = cramer_v(Array(df.State), Array(df[:, i])) corr = Dict(i => [a, b, c]) append! (results, corr)</pre>
Out[226	end df2 = DataFrame(results) # Plotar um Mapa de Calor / Heatmap 3 rows × 3 columns StoreType Assortment State Float64 Float64 Float64
	 1 1.00135 0.54068 1.00135 2 0.54068 1.0009 0.54068 3 1.00135 0.54068 1.00135 1.2. Dois Gráficos de Densidade Hexagonal Binning relaciona as duas variaveis aleatorias normais em hexágonos, mesma coisa que o Histograma.
In [160	Kernel Density Estimate, Análogo análogo ao Hexagonal, porem em densidades com curvas. plot_density(20000, 20000) plt.savefig("Density.png")
	 2.0. Capítulo 2 2.1. Distribuição de Amostragem de uma Estatística A distribuição de uma estatística amostral como a média costuma ser mais regular e campanular do que a distribuição dos proprios dados quanto maior a amostra em que a estatística se baseia. Além disso, quanto maior a amostra, mais estreita é a distribuição da estatística amostral. "Tende a Normal"
In [15]: In [16]:	<pre>df = pd.read_csv("data/loans_income.csv");</pre>
In [21]:	<pre>"type" => "mean_of_10")) sample_of_20 = pd.DataFrame(Dict("income" => [df["x"].sample(20).mean() for _ in 1:1000],</pre>
	<pre>plt.subplot(2, 1, 2); sns.histplot(sample_of_5, kde=true, element="step"); 125 100 75 50</pre>
	25 - 25000 50000 75000 100000 125000 150000 175000 200000 100 - income
In [20]:	60 40 20 40000 60000 80000 1000000 1200000
(20)·	<pre>sns.histplot(sample_of_10, kde=true, element="step"); plt.subplot(2, 1, 2); sns.histplot(sample_of_20, kde=true, element="step"); 100 -</pre>
	75 - 25 - 25 - 40000 50000 60000 70000 80000 90000 100000 110000 income
	80 60 40 20 50000 60000 70000 80000 90000
	 2.2. O Bootstrap O bootstrap é uma forma eficiente e eficaz de estimar a distribuição amostral de uma estatística ou de parâmetros de modelo. Conceitualmente pode-se imaginar o Bootstrap como uma replicação da amostra original várias vezes de modo a ter uma população hipotética que representa todo o conhecimento da amostra original só que maior. Logo amostramos com reposição, dessa forma cria-se efetivamente uma população infinita na qual a probabilidade de um elemento ser extraído continua a mesma de extração por extração.
In [24]:	Com os resultados é possível encontrar um intervalo de confiança. 2.2.1. Sem Bootstrap # Load and Prepare Dataset df = DataFrame (CSV.File ("data/diabetes.csv")); x = df[:, 1:8]; x = hcat(x[:, 1], x[:, 2], x[:, 3], x[:, 4], x[:, 5], x[:, 6], x[:, 7]);
	<pre>y = df[:, 9]; # Transform Variables mms = prepro.MinMaxScaler() x = mms.fit_transform(x); # Split Dataset x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y, train_size=0.9);</pre>
In [21]: In [22]:	<pre>model = models.Sequential() model.add(layers.Dense(1, activation="sigmoid")) model.compile(optimizer="sgd", loss="binary_crossentropy", metrics=["accuracy"]) history = model.fit(x_train, y_train, epochs=2000, verbose=0); test = model.evaluate(x_test, y_test);</pre>
In [117	3/3 [===================================
	0.65 -
	0.55 - 0.50 - 0.
In [116 In [25]:	<pre>@printf "Accuracy %.2f%%" maximum(history.history["accuracy"])*100 Accuracy if 77.71% 2.2.1. Com Bootstrap # Configuration of Bootstrap n_inter = 1000</pre>
	<pre>n_inter = 1000 n_size = trunc(Int, (768 * 0.5)) stats = [] # Set Up Data df = hcat(df[:, 1], df[:, 2], df[:, 3], df[:, 4], df[:, 5], df[:, 6], df[:, 7], df[:, 8], df[:, 9]) for i in 1:n_inter sample = utils.resample(df, n_samples=n_size); y = sample[:, 9]; x = sample[:, 1:8];</pre>
	<pre>x = sample[., 1.0], x = mms.fit_transform(x); # Split Dataset x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y, train_size=0.9); model = tree.DecisionTreeClassifier() # Decision Tree, dont NN. model.fit(x_train, y_train) prediction = model.predict(x_test) score = metrics.accuracy_score(y_test, prediction)</pre>
In [106	append!(stats, score) end
	250 - 200 - 150 -
	100 - 50 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
In [110	0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 Conclusão $\alpha = 0.95$ $p = ((1.0 - \alpha)/2.0)*100$ $lower = np.percentile(stats, p)*100$ $p = (\alpha + (1.0 - \alpha)/2.0) *100$
	<pre>p = (α + (1.0 - α)/2.0) *100 max = np.percentile(stats, p)*100 @printf "%.0f%% Confidence Intervals %.2f%% and %.2f%%" α*100 lower max 95% Confidence Intervals 66.67% and 92.31% 2.3. Distribuições 2.3.1 Distribuição Binomial</pre>
In [17]:	A distribuição Binomial é, vamos dizer assim uma continuação da distribuição de Bernoulli, onde a distribuição de Bernoulli trabalha somente com duas possibilidades, ou 1 geralmente chamado de evento de sucesso ou 0 de fracasso contendo as probabilidades desses eventos ao lado.
Out[17]:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	 * r: Eventos de Interesse. * n: Repetições. * p: Probabilidade do Evento. A média da distribuição binomial é dada pela formula: \$n \cdot p\$ A variáncia da distribuição binomial é dada pela formula: \$\sqrt{n \cdot p \cdot(1-p)}\$ Na formula da distribuição Binomial também pode se trabalhar com um conceito chamado de "Complementar", que nada mais é que uma forma mais rápida para calcular a binomial quando se tem um intervalo de eventos maior que um.
	forma mais rápida para calcular a binomial quando se tem um intervalo de eventos maior que um.
In [16]:	P(x=2) + P(x=3) + P(x=4) + P(x=5) + P(x=6) Porém, aplicando a regrazinha, inverte-se, logo: 1 - (P(x=0) + P(x=1))
In [18]:	\$\$ P(2 / 4,\frac{1}{2}) = 6 \cdot (\frac{1}{2})^2 \cdot (\frac{1}{2})^2 = \frac{6}{16}\$\$\$ @printf "A probabilidade de sair três caras em quatro jogadas é: %.3f%% " P(2, 4, .5) *100 A probabilidade de sair três caras em quatro jogadas é: 37.500% Qual é a chance de 3 pessoas que eu ligar das 10 entrarem em churn sabendo que a probabilidade de uma pessoa em churn na base de dados é 0.15%?
In [19]: In [194	<pre>@printf "A probabilidade de 3 das 10 pessoas ligadas entrarem em churn é: %.3f%%" P(3, 10, .15)*100</pre> A probabilidade de 3 das 10 pessoas ligadas entrarem em churn é: 12.983% Confome a probabilidade tende a o equilibrio, ou seja, .5% de cair cara ou coroa, logo a distribuição parece uma Normal.
	0.40 - Prob: 10% Prob: 50% Prob: 90% Prob: 90%
	0.20 - 0.15 - 0.10 -
	2.3.2 Distribuição de Poisson Alta concentração de eventos próximos ao eixo y, uma das principais características é que não tem repetições como na distribuição
	binomial trabalha em um intervalo continuo. Ex: Em um estudo de chuva ou cliques em um site, no exemplo da chuva, qual é a chance de uma chuva, só que não existe o evento "não chuva" entre duas chuvas. Imagine um intervalo, que começa e 0 até uma variável W por exemplo. E eu divido em n intervalos muito pequenos, onde n tende ao infinito., logo a probabilidade está tendendo a 0 pois existem n intervalinhos, com essa quantidade de intervalos, virou uma binomial, ou seja, choveu ou não por exemplo. \$\$P(r\\frac{\lambda}{r}, n) = \lim_{n\to\infty}(n\to\infty)^r. (1-\frac{\lambda}{n})^n. \frac{n-r}. \frac{n!}{r!(n-r)!}\$\$
In [11]:	Distribuição de Poisson, logo \$\lambda\$ (Quantidade de Chuva) = p * n, então p = \$\frac{\lambda}{n}\$. No Limite que n tende ao infinito, o produto de n e r não vai mudar pois r sempre vai ficar menor e n sempre vai ficando maior. \$\$P(r/\lambda) = \frac{e^{-\lambda} \cdot \lambda^{r}}{r}}{r}\$ A média e a variância da distribuição binomial é dada pelo: \$\lambda\$ E o Desvio Padrão é \$\sqrt{\lambda}\$
In [11]: In [15]: In [140	Dado que eu esperava em média 35 carros entrando no shopping, qual a probabilidade de aparecer 20? @printf "A probabilidade de somente uma chuva no mês é de: %.3f%%" P(35, 20)*100 A probabilidade de somente uma chuva no mês é de: -0.000% # Julia tem problema com elevar x a o espoente y function f(x, y)
Out[140	<pre>function f(x, y) [x*=x for _ in 1:y] end</pre>
	1500625 2251875390625 6616016035436858689 7865930784382691969
	20-element Vector{Int64}:
In [14]:	20-element Vector{Int64}: 1225 1500625 2251875390625 6616016035436838689 7865930784382691969 -4822766768660441855 -1652024524321314303 450275795304469505 -6392656039275616255 7551947002216534017 3654036140188672001 8358544585278177281 4785494631104806913 -2679742982427181055 2893676706708193281 8010019347241369601 -48246705104617471 -5786811055723249663 -8394158839848501247 541221425122377729 Logo em Python, aplicando a mesma função irá retornar a probabilidade de 0.0019
In [14]: In [895 In [896	20-element Vector(Int64):

Distribuição Poisson 0.30 Poisson Média 0.25 Mediana 0.20 Densidade 0.15 0.10 0.05 0.00 -0.052 8 Contagem 2.3.5 Distribuição Normal A distribuição Normal e simétrica a média e as outras distribuições são geralmente moldadas de forma normal. Em uma distribuição normal 68% dos dados ficam dentro de um desvio-padrão da média e 90% dos dados em dois desvios-padrões. A diferença entre a distribuição normal das outras distribuições (binomial e poisson) é que na noção de distribuição discreta e continua, ambas são distribuições discretas pois as possibilidades dos eventos eram discretos, agora x pode assumir uma probabilidade, logo a função é chamada de densidade de probabilidade. Onde para calcular a área em baixo da curva usa-se a ferramenta de Integral. \$\int_{0}^{1}f(x) \,dx\$ Ou utiliza a tabela da normal. Na Integral, o primeiro valor de baixo (0) é o primeiro valor da esquerda para direita na distribuição, e o valor de cima (1) é justamente até aonde vai a área. In [97]: range = np.arange(-3, 3, 0.1)plot_normal(range, true) Normal Distribuição Normal Média Simétrica 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 -3 0 1 2 3 -2 $^{-1}$ Função densidade de probabilidade $f(x) = \frac{1}{\sqrt{2 \pi^2}} \$ In [290. plot_normal(range, true); Normal Distribuição Normal Média 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 -3 -2 -1 0 1 2 3 Como a variável x é continua, sendo assim pode assumir infinitos valores, e tamém toda a area da curva gaussiana é 1*. Logo para calcular a área entre 1 e 2 da normal: $p = \int_{1}^{2}\frac{1}{\sqrt{2}} \ e^{\frac{1}^2} \ e^{\frac{2\pi^2}}\ dx$ 2.3.6. QQ Plot QQ plot nada mais é que um plot para visualizar como está o shape da distribuição, se tem skewness ou kurtosis. Skewness: Geralmente se fala em Skewness quando a distribuição está tombada para algum dos lados, uma Skewness positiva significa que a distribuição está mais deslocada para a esquerda, e uma skewness negativa quando está mais deslocada a direita, o exemplo na imagem da distribuição exponencial abaixo. Kurtosis: Mede o quanto a distribuição está esticada para cima ou com formação de longas caldas, quando mais pontuda, maior a kurtosis e quando mais normal, menor a kurtosis, o exemplo é a distribuição exponencial que tem uma certa kurtosis positiva. In [161... # Existe um pacote chamado Plots que faz a mesma função de plotar o QQ Plot. x = np.random.randn(200);y = [log(abs(p)) for p in np.random.random(200)];z = ss.skewnorm.rvs(a=10, loc=50, size=200)plot_qq(x, y, z, "step") plt.savefig("QQplot.png") Probability Plot **Probability Plot** Probability Plot 52.5 52.0 Ordered Values Ordered Values Ordered Values 51.5 0 51.0 50.5 50.0 49.5 -1 Ó -2 -1 Ó -1 Theoretical quantiles Theoretical quantiles Theoretical quantiles 50 Normal Skewed 40 60 40 50 30 Density o Density & 05 20 20 10 10 10 52.0 -2.0 -1.5 -1.02.3.7. Normalização A normalização é um conceito utilizado principalmente para treinar modelos de machine learning que consiste em movimentar a distribuição para o centro com média 0, resumidamente subtrair a média de todos os dados. Se reparar nos gráficos da distribuição normal, logo a média já está no 0. Se eu somar a média da distribuição em toda a distribuição ela vai ser deslocada para direita, se subtrair ela é deslocada a esquerda. E quando se divide por \$\sigma\$, logo a média e 0 e a dispersão é 1. Quando esta normalizada é possível utilizar a tabela da normal padrão paara calcular a área em baixo da curva. Exemplo, dado uma média de 200 e desvio padrão de 4, qual é a \$P(x>210)\$? • 1° Passo, calcular o Z, que nada mais é que subtrair a média e dividir pelo desvio padrão. Ou seja $z = \frac{210 - 200}{4} = 2.5$, esse é o resultado que deve ser encontrado a área, para isso so checara tabela, onde são 2,5 os dois primeiros números e 0 o terceito número, o resultado vai ser \$0.4938\$ 2° Passo, Realizar a seguinte expressão \$(.5 - .4938) \cdot 100\$ Subtrair pela metade da distribuição normal o resultado para pegar somente a probabilidade de ser maior que 210, e multiplicar por 100 para deixar em porcentagem, logo o resultado final é: \$0.62%\$. 2.3.8 Distribuição Exponencial Usa o mesmo parâmetro \$\lambda\$ da distribuição de Poisson, esse parâmetro permanece constante ao longo do período sendo considerado. É utilizado na engenharia para modelar falhas, tempo de visitas de sites, etc. x = ss.expon.rvs(0.2, size=1000);plot exp(x, "r") Distribuição Exponencial 0.7 Exponencial Média 0.6 Mediana 0.5 0.4 Density 0.3 0.2 0.1 0.0 2 0 6 -2 8 Contagem 2.3.9 Distribuição Weibull É uma extensão da distribuição Exponencial, na qual a taxa de evento pode mudar de acordo ocm um "parâmetro de forma" β Se β > 1, a probabilidade de um evento aumenta com o tempo. Se β < 1, a probabilidade de um evento diminui com o tempo. Quando o \$\alpha\$ da distribuição de Weibull é 1, retorná a distribuição exponencial. Sendo assim, pode ser utilizada na análise de sobrevivência & confiabilidade, e sua função é: $Comulativa: \$f(x, \alpha, \beta) = 1 - e^{-(\frac{x}{\beta})^{alpha}}$ $Densidade \ de \ Probabilidade: \$f(x, \alpha) = \frac{\alpha^{\alpha}} \ x^{a -1}\cdot e^{-(\frac{x}{\beta})^{\alpha}} \$$$ $f(x, a, b) = (a / (b^a)) * (x^(a-1)) * e^(-(x/b)^a)$ f(3, 3, 3)0.36787944117144233 20^30 # não é possível utilizar numéros grandes pois o mesmo problema. -8070450532247928832 x = ss.weibull min.rvs(1.5, scale=5000, size=100)plot wei(x, "r") Distribuição Weibull 0.00020 Weibull 0.00015

Ö

Log

In [870.. In [871.. In [276... Out[276... In [275... Out[275... In [86]:

0.00010 0.00005 0.00000 3.0. Capítulo 3 3.1. Teste de Hipóteses Os testes de hipóteses são um dos pilares da estatística, o objetivo desses testes são rejeitar ou confirmar hipóteses, os testes de hipóteses também são chamados de testes de significância, em outras palavras, nos permite rejeitar ou não uma hipótese estatística com base nos resultados de uma amostra. Os testes de hipóteses são importantes pois dado a tendência humana em reagir a eventos incomuns e interpretá-los como algo significativo e real, em experimentos requer provas de que esses eventos são realmente diferentes e não eventos aleatórios. Hipótese Nula: Nada mais é que o esperado, ou seja, o que já está acontecendo, o comum. • Hipótese Alternativa: O fenômeno que está sendo analisado, o contraponto da hipótese nula. • **Teste Unilateral**: Ou também chamado de teste Unicaldal, onde as possibilidades estão em uma direção. Teste Bilateral: Ou também chamado de teste Bicaldal, onde as possibilidades estão em duas direções.

0

hipótese, logo ele evidência que:

página A é menor que a B}\$\$\$\alpha = .05\$\$

3.1. Reamostragem

5000

10000

15000

Nível de Significância: É a probabilidade máxima permissível para cometer um erro de tipo I, em outras palavras é o limite para

• P-Valor: Trabalha junto com o Nível de Significância e com a Ho sendo verdadeira, nada mais é que o valor para concluir o teste de

Se o p-valor for maior que o α, aceita a Hipótese Nula, por não ter evidências o suficiente para aceitar a Hipótese Alternativa.

Se o p-valor for menor ou igual ao nível de significância, rejeita-se a Hipótese Nula, pois realmente surtiu efeito o teste.

@printf "Diferença do tempo de sessão entre a página A e B: %.2f%%" (mean_page_b - mean_page_a)*100

\$\$H_o: \text{A média do tempo de sessão para a página A é maior ou igual que a B}\$\$\$\$H_a: \text{A média do tempo de sessão para a

1. Separar o grupo de controle e o grupo de tratamento, o de tratamento que vai ser o grupo que irá receber o teste.

1. Amostragem aleatória de diferentes indivíduos dessa base de dados e calcular a mesma estatística e armazenar o resultado.

1. Calcula a quantidade de vezes que os valores maior que a média sairam durante o processo de amostragem e divide pela

quantidade de vezes que foi realizado a amostragem, logo esse é o p-valor, o valor da aleatoriedade na escolha dos grupos.

---- Diferença

aceitar ou rejeitar a hipótese, esses limites estão entre (1%, 5% e 10%), também chamado de α .

• Teste Estatístico: Uma operação com dois grupos, ex subtrair a média de dois grupos.

Agora a pergunta é: Esse tempo foi gerado pelo acaso ou pela característica da página?

O teste de permutação nada mais é que um teste para verificar se tem realmente um significado estatístico.

1. Depois do teste, calcular alguma estatística, exemplo a média da diferença dos dois grupos.

1. Juntar em uma base de dados o grupo de controle e o grupo de tratamento.

Existem várias ferramentas para validar hipóteses, como o teste de permutação, teste t...

df = DataFrame(CSV.File("data/web_page_data.csv"));

mean_page_a = np.mean(df[df.Page .== "Page A", 2]) mean_page_b = np.mean(df[df.Page .== "Page B", 2])

Diferença do tempo de sessão entre a página A e B: 35.67%

3.1.1. Teste de Permutação em tempos de sessão.

diff = [permutation(df.Time, 21, 15) for _ in 1:1000];

1. Montar uma distribuição com os resultados.

plot_permutation(diff, diff_mean, "k", "g");

p valor = py"test"(diff, diff mean);

20000

In [3]: In [50]:

In [219...

In [246...

200

175

150

125

100

75

50

25

Out[118... 2 rows × 3 columns

2

.05\$\$

250

200

150

100

50

In [304..

In [308...

In [314...

In [5]:

-0.3

Então aceita a Ho.

Outras formas

plot_page_diff()

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

In [43]:

0.0

for i in list

end

end

In [189...

In []:

if i == "less"

P-Value One Sided 0.141 T-Statistic: -1.098

P-Value Two Sided 0.282 T-Statistic: -1.098

gl = glass delt(mean a, mean b, std a)

d = cohen_d(mean_a, mean_b, std_a, std_b)

as variáveis ou da diferença entre as médias dos grupos.

Hedge's g: $g = d \cdot 1 - \frac{3}{4 \cdot (n_1 + n_2 - 9)}$

IGOR SOARES Correlação não implica em Causalidade.

annahaensch Número de Casos de Divórcio em Maine

Link: https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V

Link: https://discourse.julialang.org/t/qqnorm-and-qqplot/6118/8

BURKEYACADEMY What are Skewness and Kurtosis? Link: https://www.youtube.com/watch?v=IK7nLzxiAQQ

Link: https://professorguru.com.br/tabela-normal.html

Cohen's d: $d = \frac{x}_1 - \frac{x}_2}{\sqrt{2}}$

DAVID MATOS 8 Conceitos Estatísticos Fundamentais Para Data Science.

Link: https://blogs.ams.org/blogonmathblogs/2017/04/10/divorce-and-margarine/

 $r = pearson_r(t_test[1], 34)$

• Hedge's g: Correção do D de Cohen.

Glass: $gl = \frac{x}_1 + \frac{x}_2}{Sd_1}$

Pearson: $r = \sqrt{t^{2}}{t^{2}} + df}$

x.0. Referências

Wikipédia Cramer's_V

(Discourse) qqnorm & qqplot

Professor Guru Tabela Normal Padrão

g = hedge g(d, n1, n2)

@printf "Glass ▲: %.4f" gl @printf "\nPearson ρ : %.4f" r @printf "\nCohen's d: %.4f" d @printf "\nHedge's g: %.4f" g

Glass **∆**: -0.4131 Pearson ρ: 0.1851 Cohen's d: -0.3869 Hedge's g: -0.3761

0.5

list = ["less", "two-sided"]

Chi2: 0.15 P-Value: 0.70 -0.2

p valor = py"test"(per, obs diff);

3.2. Teste T de Student

-0.1

@printf "Chi2: %.2f\nP-Value: %.2f" chi2 p_value

0.0

Em relação aos preços, com uma significância de 0.05, o p-valor foi: 32.60%

chi2, p_value, df, _ = ss.chi2_contingency([[200, 23739 - 200], [182, 22588 - 182]])

O teste T de Student nada mais é que um teste de comparação de dois grupos em relação a sua média.

1.5

@printf "P-Value One Sided %.3f\n" t_test[2] @printf "T-Statistic: %.3f\n" t_test[1]

@printf "\nP-Value Two Sided %.3f\n" t_test[2]

Glass ▲: É a diferença média entre os dois grupos dividido pelo desvio padrão do grupo controle.

PETER BRUCE & ANDREW BRUCE Estatística prática para cientistas de dados: 50 conceitos essenciais. Link: https://www.amazon.com.br/Estat%C3%ADstica-Pr%C3%A1tica-Para-Cientistas-Dados/dp/855080603X

Link: https://medium.com/@felipemaiapolo/correla%C3%A7%C3%A3o-n%C3%A3o-implica-em-causalidade-8459179ad1bc.

Link: https://www.cienciaedados.com/8-conceitos-estatisticos-fundamentais-para-data-science/

• Pearson ρ: Pearson / Rosenthal serve para calcular a correlação utilizando o P Value e os Graus de Liberdade.

• Cohen's d: Diferença das médias, é uma formula do "tamanho do efeito", que resumidamente mede o tamanho das associações entre

@printf "T-Statistic: %.3f\n" t_test[1]

1.0

mean_a = np.mean(df[df.Page .== "Page A", 2]) mean_b = np.mean(df[df.Page .== "Page B", 2]) std_a = np.std(df[df.Page .== "Page A", 2]) std_b = np.std(df[df.Page .== "Page B", 2]) n1 = length(df[df.Page .== "Page A", 2]) n2 = length(df[df.Page .== "Page B", 2])

2.0

Time

2.5

3.0

t_test = ss.ttest_ind(df[df.Page .== "Page A", 2], df[df.Page .== "Page B", 2], equal_var=false, alternati

3.5

Nas quais os dados são numéricos, mas para que seja utilizado é necessário usar uma forma padronizada de estatística de teste.

Page A Page B

4.0

Int64

200

182

In [302...

In [118...

In [122...

In [228...

In [293..

-1.00 -0.75 -0.50 -0.25

Cliques No Cliques Resultado

Int64

23539

22406

String

Preço A

Preço B

A diferença do Preço A e do Preço B é: 0.037%

plot_permutation(per, obs_diff, "k", "r");

Realize o teste de permutação \$n\$ vezes.

obs diff = ((200/(23539+200)) - (182/(22406+182)))*100

a = append! (vec(zeros(1, (45945))), vec(ones(1, 382)));

@printf "A diferença do Preço A e do Preço B é: %.3f%%" obs diff

Uma das formas de responder essa pergunta é realizando um teste de permutação.

per = [(permutation(a, 23739, 22588)*100) for in 1:1 000];

0.00

Logo a quantidade de vezes que excedeu o limite foi de 15.70%

3.1.2. Teste de permutação em taxas de conversão.

0.25

0.50

0.75

@printf "Logo a quantidade de vezes que excedeu o limite foi de %.2f%%\nEntão aceita a Ho." p valor*100

Nesse exemplo existe +20000 visualizações de um determinado preço e foi mensurado a quantidade de cliques em ambos os preços.

\$\$H_o: \text{Não há diferença entre as taxas de A e B}\$\$\$H_a: \text{A conversão da taxa A é diferente em relação a taxa B}\$\$\$\alpha =

• Crie um vetor com todos os dados, ou seja, 45945 vezes foram realizados 0 cliques, logo um vetor com 45945 zeros, e um vetor com

-- Diferença

382 que tiveram 1 clique, logo esse vetor vai ter um tamanho de 46327, contendo o total de zeros e o total de 1 cliques.

0.1

@printf "Em relação aos preços, com uma significância de 0.05, o p-valor foi: %.2f%%\nEntão aceita a Ho." p val

DataFrame(Dict("Resultado" => ["Preço A", "Preço B"], "Cliques" => [200, 182], "No Cliques" => [23539, 22406]))

1.00