CSCI338 HW4

Brock Ellefson

April 4, 2017

Question 1

Let β be the set of all infinite sequences over $\{a,b\}$. Show that β is uncountable, using a proof by diagonalization.

Assume that β is countable, then we can list them as β_1 , β_2

i		f(i)	
1	b ₁₁	b_{12}	b ₁₃
2	b_{21}	b_{22}	b_{23}
3	b_{31}	b_{32}	b_{33}

Now construct an x such that the ith bit of x is \neq the ith bit of β

Lets define x as x = (b, b, a...) thus making $x \neq \beta$ for any i^{th} sequence in the i^{th} bit. Therefore β is uncountable.

Question 2

Let T = {(i,j,k)| i,j,k ϵ N }. Show that T is countable.

By definition, the set T is countable iff:

If there exists an injective function f from T to the natural numbers

If f is surjective

If T has a one-to-one correspondence with natural numbers

Construct a 1-1 and onto function f: $T \to N$

We know that $A = \{(i,j)|\ i,j\ \epsilon\ N\ \}$ is countable

The function g((i,j),k) = (i+j)(i+j+1)/2 + j is a 1-1 correspondence from T on N

Assume that $f(\langle i,j,k\rangle) = f(\langle i',j',k'\rangle)$

Therefore $g(\langle g(\langle i,j \rangle,k) \rangle) = g(\langle g(\langle i',j' \rangle,k') \rangle)$

This makes g a 1-1, therefore f is 1-1

```
Since n \epsilon N, then g(<m,k>) = n for some m,k that is also in N g(<i,j>) = m for some i,j in N Therefore f(<i,j,k>) = g(<m,k<) = g(<g(<i,j>),k>) Therefore T is countable.
```

Question 3

Show that $INFINITE_{PDA}$ is decidable

To decide INFINITE $_{PDA}$ convert PDA into equivalent CFG, let P be the pumping length. Construct regular language R that accepts strings longer than P. Intersect of CFL and regular languages is a CFL. Test this intersection for emptiness, accept if L of the intersection is empty, reject otherwise.

Question 4

 $ODD_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and L(M) contains only strings of odd length} \}$ Prove that ODD_{TM} is undecidable.

Reduce ALL_{TM} to ODD_{TM}

Assume that ODD_{TM} is decidable. Let R be a decider for ODD_{TM} and have R decide T on w:

if R accepts, accept

if R rejects, reject

O(T) us a decuder for ODD_{TM} . Now build a decider for A_{TM} . This is impossible, therefore ODD_{TM} is undecideable

Question 5

Show that EQ_{CFG} is undecidable.

(This can also be proven via rice's theorem) Assume that EQ_{CFG} is decideable $EQ_{CFG} = \{ \langle G,H \rangle \mid G,H \text{ are CFG's and } L(G) = L(H) \}$

Reduce ALL_{CFG} to EQ_{CFG} Such That:

 $ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG's and } L(G) = \Sigma^* \}$

Let R be a decider for EQ_{CFG} and construct TM S to decide ALL_{CFG} .

Construct CFG T such that $L(T) = \Sigma^*$

- 1. Run R on input $\langle G, T_0 \rangle$
- 2. If R accepts, accept.
- 3. If R rejects, reject

R decides if L(G) = L(T). S decides ALL_{CFG} but it is undecidable, therefore EQ_{CFG} must also be undecidable

Question 6

Show that EQ_{CFG} is co-Turing-recognizable.

A language is co-turning recognizable if and only if its complement is a turning-recognizable language.

Convert G and H into Chomsky normal form. Begin iterating through the strings in Σ^* . If both G or H can generate or not generate the string a TM will continue on the interation of strings, however, if one CFG accepts a string and the other does not, that means that the CFG's are not equivlent and the TM accepts. Therefore EQ $_{CFG}$ is co-turning recognizeable.

Question 7

Post Correspondence Problem.

 $\begin{cases} \left[\frac{ab}{abab}\right], \left[\frac{b}{a}\right], \left[\frac{aba}{b}\right], \left[\frac{aa}{a}\right] \end{cases}$ $\frac{1}{2} \quad \frac{2}{3} \quad \frac{3}{4}$

A working string is: 11132124234244 ababababababababababababaabaaa