Applications of QM (Tutorial)

Horizon Summer School

July 2021

Question 1

Prove $[\hat{a}, \hat{a}^{\dagger}] = 1$ using $[\hat{x}, \hat{p}] = i\hbar$

Question 2

If we consider $\hbar = \omega = m = 1$, the Hamiltonian reduces to,

$$\mathcal{H} = \frac{1}{2}(\hat{X}^2 + \hat{P}^2)$$

 \hat{X} and \hat{P} can be written in terms of \hat{a} and \hat{a}^{\dagger} as,

$$\hat{X} = \frac{1}{2}(\hat{a} + \hat{a}^{\dagger}) \quad \hat{P} = \frac{1}{2i}(\hat{a} - \hat{a}^{\dagger})$$

For the number state $|n\rangle$, calculate $(\Delta \hat{X})^2$ and $(\Delta \hat{P})^2$ and verify the Uncertainty relation.

Note:
$$(\Delta \hat{X})^2 = \langle \hat{X}^2 \rangle - \langle \hat{X} \rangle^2$$

Question 3

Prove the Baker-Hausdorf lemma, i.e. for two operators \hat{A} and \hat{B}

$$e^{\lambda \hat{A}}\hat{B}e^{-\lambda A} = \hat{B} + \lambda[\hat{A}, \hat{B}] + \frac{\lambda^2}{2!}[\hat{A}, [\hat{A}, \hat{B}]] + \dots$$

Question 4

For the case when $[\hat{A}, \hat{B}] \neq 0$ and $[\hat{A}, [\hat{A}, \hat{B}]] = [\hat{B}, [\hat{A}, \hat{B}]] = 0$, prove the disentanglement theorem,

$$e^{\hat{A}+\hat{B}} = \exp\left\{\left(-\frac{1}{2}[\hat{A},\hat{B}]\right)\right\}e^{\hat{A}}e^{\hat{B}}$$

Question 5

Show that $|\xi\rangle$ is a squeezed state by calculating ΔX and ΔP in this state. Find the values of θ for which it is squeezed in the X quadrature and the values for which it is squeezed in the P quadrature.

Hint: You need to calculate $\langle \xi | X | \xi \rangle$ and $\langle \xi | X^2 | \xi \rangle$. (Similarly for P)

$$\langle \xi | X | \xi \rangle = \frac{1}{2} \langle 0 | S^{\dagger} (\hat{a} + \hat{a}^{\dagger}) S | 0 \rangle = \frac{1}{2} (\langle 0 | S^{\dagger} \hat{a} S | 0 \rangle + \langle 0 | S^{\dagger} \hat{a}^{\dagger} S | 0 \rangle)$$

You need to calculate the quantities $S^{\dagger}\hat{a}S$ and $S^{\dagger}\hat{a}^{\dagger}S$ (Use Baker-Hausdorf formula.)

$$\langle \xi | X^2 | \xi \rangle = \frac{1}{4} \langle 0 | S^{\dagger} (\hat{a}^2 + \hat{a}^{\dagger 2} + 2\hat{a}^{\dagger} \hat{a} + 1) S | 0 \rangle$$

You have terms like $S^{\dagger}\hat{a}^2S=S^{\dagger}\hat{a}SS^{\dagger}\hat{a}S$

Submission

Link: https://forms.gle/4yoKZ1NrAd5Gpgiq5

Submit it on or before Sunday, 11:59 pm