5. 向量的混合积

定义3 已知三向量 \vec{a} , \vec{b} , \vec{c} , 称数量 (\vec{a} \vec{b}) \vec{c} 为

 \vec{a} , \vec{b} , \vec{c} 的混合积, 记作 $[\vec{a} \ \vec{b} \ \vec{c}]$

几何意义: 记 $\theta = (\vec{a} \times \vec{b}, \vec{c})$

θ 为锐角时,

$$\begin{pmatrix} \vec{a} & \vec{b} \end{pmatrix} \vec{c} = \| \vec{a} \times \vec{b} \| (\vec{c})_{\vec{a} \times \vec{b}}$$

$$= \|\vec{a} \times \vec{b}\| \|\vec{c}\| \cos \theta = V_{\stackrel{\cdot}{\sim} \text{in } \Phi}$$

θ 为钝角时.

$$-\left(ec{a} \quad ec{b}
ight) \ ec{c} = V_{
ightarrow \, \mathrm{im} \, \, \mathrm{im}}$$

混合积的坐标表示

设
$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$
, $\vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}$, $\vec{c} = c_x \vec{i} + c_y \vec{j} + c_z \vec{k}$, 则 $[\vec{a} \ \vec{b} \ \vec{c}] = (\vec{a} \ \vec{b}) \ \vec{c}$

$$= \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} c_x + \begin{vmatrix} a_z & a_x \\ b_z & b_x \end{vmatrix} c_y + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} c_z$$

$$= \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}.$$

6. 混合积的性质

- (1) $(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b}$. $\mathbb{P} [\vec{a} \ \vec{b} \ \vec{c}] = [\vec{b} \ \vec{c} \ \vec{a}] = [\vec{c} \ \vec{a} \ \vec{b}]$
- (2) 互换混合积中任意两个向量的位置,则混合积变号,例 如, $[\vec{b}\ \vec{a}\ \vec{c}\] = -[\vec{a}\ \vec{b}\ \vec{c}\]$

(3)
$$\vec{a}$$
, \vec{b} , \vec{c} 共面 \Leftrightarrow
$$\begin{vmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ a_z & b_z & c_z \end{vmatrix} = 0 \Leftrightarrow \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = 0$$

$$\Leftrightarrow [\vec{a} \ \vec{b} \ \vec{c}] = 0.$$