

2019-20

MATH216 Mathematics IV – Solutions to Exercise Sheet 2

N. Course

Exercise 8 (Separable Equations). Solve the following initial value problems:

(a)
$$\begin{cases} \frac{dy}{dx} = (1 - 2x)y^2 \\ y(0) = -\frac{1}{6} \end{cases}$$

(b)
$$\begin{cases} x + ye^{-x} \frac{dy}{dx} = 0\\ y(0) = 1 \end{cases}$$

(c)
$$\begin{cases} \frac{dy}{dx} = \frac{2x}{y+x^2y} \\ y(0) = -2 \end{cases}$$

Solution 8.

- (a) Rearrange to $\frac{dy}{y^2}=(1-2x)dx$. Then integrate to get $-\frac{1}{y}=x-x^2+C$, and rearrange to $y=\frac{1}{x^2-x-C}$. To satisfy $y(0)=-\frac{1}{6}$ we must have $y=\frac{1}{x^2-x-6}$. This solution exists for -2 < x < 3.
- (b) First rearrange to $ydy = -xe^x dx$. Integrating gives $\frac{1}{2}y^2 = (1-x)e^x + C$ which rearranges to $y = \pm \sqrt{2(1-x)e^x + 2C}$. Then we use the initial condition to calculate that $1 = y(0) = +\sqrt{2+2C} \implies 2C = -1$. Therefore $y = \sqrt{2(1-x)e^x 1}$.
- (c) We can rearrange the ODE to $ydy=\frac{2x}{1+x^2}dx$ and then integrate to obtain $\frac{1}{2}y^2=\ln(1+x^2)+C$. To satisfy y(0)=-2 we must have C=2. Therefore $y=-\sqrt{2\ln(1+x^2)+4}$.

Exercise 9 (Stable, Unstable and Semi-Stable Equilibrium Solutions). Each of the following problems involve equations of the form y' = f(y). In each problem, (i) sketch the graph of f(y) versus y; (ii) find the equilibrium solutions (critical points) of the ODE; and (iii) classify each equilibrium solution as asymptotically stable, semi-stable, or unstable.

(a)
$$\frac{dy}{dt} = ay + by^2$$
, $a, b > 0$, $y_0 \ge 0$.

(d)
$$\frac{dy}{dt} = y(1-y)^2, -\infty < y_0 < \infty.$$

(b)
$$\frac{dy}{dt} = ay + by^2$$
, $a, b > 0$, $-\infty < y_0 < \infty$.

(e)
$$\frac{dy}{dt} = e^y - 1, -\infty < y_0 < \infty.$$

(c)
$$\frac{dy}{dt} = y(y-1)(y-2), y_0 \ge 0.$$

(f)
$$\frac{dy}{dt} = e^{-y} - 1, -\infty < y_0 < \infty.$$

Solution 9.

(a) y = 0 is unstable,

- (d) y = 0 is unstable, y = 1 is semi-stable,
- (b) y = -a/b is asymptotically stable, y = 0 is unstable,
- (e) y = 0 is unstable,
- (c) y = 1 is asymptotically stable, y = 0 and y = 2 are unstable,
- (f) y = 0 is asymptotically stable.

Exercise 10 (Sick Students).

Suppose that the students of İstanbul Okan Üniversitesi can be divided into two groups; those who have the flu virus and can infect others, and those who do not have it but are susceptible. Let x be the proportion of susceptible individuals and y the proportion of infectious individuals; then x+y=1.

Assume that the disease spreads by contact between sick students and well students, and that the rate of spread $\frac{dy}{dt}$ is proportional to the number of such contacts. So $\frac{dy}{dt} = k_1 \times$ (number of contacts). Further, assume that members of both groups move about freely among each other, so the number of contacts is proportional to the product of x and y. So (number of contacts) = k_2xy . Since x = 1 - y, we obtain the initial value problem

$$\begin{cases} \frac{dy}{dt} = \alpha y(1-y), \\ y(0) = y_0, \end{cases} \tag{1}$$

where $\alpha > 0$ is a constant, and $0 \le y_0 \le 1$ is the initial proportion of infectious individuals.

İstanbul Okan Üniversitesi öğrencilerinin iki gruba ayrıldıklarını varsayın; grip virüsü taşıyan, diğer öğrencilere bulaştırabilecek olanlar ve virüsü taşımayan ancak hastalığa yakalanabilecek olanlar. Hastalığa yakalanabilecek bireylerin oranı x; hastalığı taşıyan ve bulaştırabilecek olanların oranı y'dir. Bu durumda x+y=1.

Hastalığın, hasta öğrencilerle sağlıklı öğrenciler arasında etkileşimle yayıldığını, ve $\frac{dy}{dt}$ olan yayılma hızının etkileşim sayısıyla orantılı olduğunu varsayın. Yani $\frac{dy}{dt}=k_1\times (\text{etkileşim sayısı}).$ Ayrıca, her iki grubun üyelerinin birbirlerinin arasında serbestçe dolaştıklarını varsayın; böylece etkileşim sayısı x ve yenin çarpımları ile orantılıdır. Yani, (etkileş im sayısı) = k_2xy . x=1-yolduğundan, (1)'i elde ederiz. $\alpha>0$ sabit sayıdır, $0\leq y_0\leq 1$ hastalık bulaştırabilecek öğrencilerin en baştaki oranıdır.

- (a) Find the equilibrium points for the differential equation and determine whether each is asymptotically stable, semi-stable, or unstable.
- (b) Draw the graphs of some solutions.
- (c) Solve (1).
- (d) Suppose that $y_0 > 0$. Show that $\lim_{t \to \infty} y(t) = 1$, which means that ultimately all students catch the disease.

Solution 10.

- (a) y = 0 is unstable, y = 1 is asymptotically stable.
- (b) omitted.
- (c) $y(t) = \frac{y_0}{y_0 + (1 y_0)e^{-\alpha t}}$.
- (d) $\lim_{t \to \infty} y(t) = \lim_{t \to \infty} \frac{y_0}{y_0 + (1 y_0)e^{-\alpha t}} = \frac{y_0}{y_0 + 0} = 1.$

Exercise 11 (Exact Equations). Determine if each of the following ODEs is an exact equation. If it is exact, find the solution.

(a)
$$(2x+4y)+(2x-2y)y'=0$$

(b) (2x+3) + (2y-2)y' = 0

(c)
$$(3x^2 - 2xy + 2) + (6y^2 - x^2 + 3)\frac{dy}{dx} = 0$$

(d)
$$(2xy^2 + 2y) + (2x^2y + 2x)y' = 0$$

(e)
$$(e^x \sin y - 2y \sin x) + (e^x \cos y + 2\cos x) \frac{dy}{dx} = 0$$

(f)
$$(e^x \sin y + 2y)dx + (3x - e^x \sin y)dy = 0$$

Solution 11.

- (a) The ODE is not exact.
- (b) The ODE is exact and has solution $x^2 + 3x + y^2 2y = c$.
- (c) The ODE is exact and has solution $x^3 x^2y + 2x + 2y^3 + 3y = c$.
- (d) The ODE is exact and has solution $x^2y^2 + 2xy = c$.
- (e) The ODE is exact and has solution $e^x \sin y + 2y \cos x = c$.
- (f) The ODE is not exact.

Exercise 12 (Exact Equations). The following equations are not exact. For each one, (i) find an integrating factor $(\mu(x))$ or $\mu(y)$ which changes the equation into an exact equation; and (ii) solve the equation.

(a)
$$(3x^2y + 2xy + y^3) + (x^2 + y^2)y' = 0$$

(c)
$$dx + \left(\frac{x}{y} - \sin y\right) dy = 0$$

(b)
$$y' = e^{2x} + y - 1$$

(d)
$$y + (2xy - e^{-2y})y' = 0$$

Solution 12.

(a)
$$\mu(x) = e^{3x}$$
; $(3x^2y + y^3)e^{3x} = c$

(c)
$$\mu(y) = y$$
; $xy + y \cos y - \sin y = c$

(b)
$$\mu(x) = e^{-x}$$
; $y = ce^x + 1 + e^{2x}$

(d)
$$\mu(y) = \frac{e^{2y}}{y}$$
; $xe^{2y} - \ln|y| = c$

Exercise 13 (Homogeneous Equations). Use the substitution $v(x) = \frac{y}{x}$ (or equivalently y = v(x)x and then y' = v'(x)x + v(x)) to solve the following ODEs:

(a)
$$(x^2 + 3xy + y^2)dx - x^2dy = 0$$

(b)
$$\frac{dy}{dx} = \frac{x^2 - 3y^2}{2xy}$$

(c)
$$x \frac{dy}{dx} = y + \sqrt{x^2 - y^2}$$

Solution 13.

(a)
$$\frac{x}{x+y} + \ln|x| = c$$

(b)
$$|x|^3 |x^2 - 5y^2| = c$$

(c)
$$y = x \sin(\ln x + C)$$

Exercise 14 (Bernoulli Equations). We can use the substitution $v(x) = y^{1-n}$ to solve $y' + p(t)y = q(t)y^n$. Use this technique to solve the following ODEs:

(a)
$$t^2y' + 2ty - y^3 = 0$$

(b)
$$y' = ry - ky^2$$
 (where $r > 0$ and $k > 0$ are constants). This is an autonomous equation called the Logistic Equation.

(c)
$$y' = \varepsilon y - \sigma y^3$$
 (where $\varepsilon > 0$ and $\sigma > 0$ are constants). This equation occurs in the study of the stability of fluid flow.

Solution 14.

(a)
$$y = \pm \sqrt{\frac{5t}{2 + 5ct^5}}$$

(b)
$$y = \frac{r}{k + cre^{-rt}}$$

(c)
$$y = \pm \sqrt{\frac{\varepsilon}{\sigma + c\varepsilon e^{-2\varepsilon t}}}$$