1 Upcrossing Inequality

Take any \mathbb{R} -valued $(X_n, n \ge 0)$ and any $a < b \in \mathbb{R}$.

Let $S_1 = \min\{n : X_n \le a\}$, $T_1 = \min\{n : X_n \ge b\}$, $S_2 = \min\{n > T_1 : X_n \le a\}$, $T_2 = \min\{n > S_2 : X_n \ge b\}$, ...

Definition 1.1. Define $U_n = U_n[a,b] = \max\{k : T_k \le n\}$ to be the *number of upcrossings* over [a,b] completed by time n.

Theorem 1.2 (Upcrossing Inequality). *Suppose* (X_n) *is a sub-MG. Then*

$$(b-a)\mathbb{E}U_n \le \mathbb{E}(X_n-a)^+ - \mathbb{E}(X_0-a)^+$$
(1.1)

$$\leq \mathbb{E}X_n^+ + |a| \tag{1.2}$$

Proof. For the second inequality, note $(x - a)^+ \le x^+ + |a|$ so $\mathbb{E}(X - a)^+ \le \mathbb{E}X^+ + |a|$. (*Trick*) When $X_n \ge a \ \forall n$, we will prove

$$(b-a)\mathbb{E}U_n \le \mathbb{E}X_n^+ - \mathbb{E}X_0^+ \tag{1.3}$$

For general MG (X_n) , apply the result to $\max(X_n, a) - a$, which is a sub-MG.

Use the "buy low, sell high" strategy: buy 1 share at S_i (low) and sell at T_i (high). Consider $Y = H \cdot X$, where $H_n = \sum_i 1_{S_i < n \le T_i}$. (H_n) is predictable and $H_n \ge 0$, so (by Durett 2.7) (Y_n) is a sub-MG.

$$Y_n = \sum_{i=1}^{U_n} (\underbrace{X_{T_i} - X_{S_i}}_{\text{profit}}) + \underbrace{(X_n - X_{S_{U_n+1}}) 1_{n > S_{U_n+1}}}_{\text{value of stock if buy at } S_{U_n+1}}$$

$$\underbrace{(1.4)}_{\text{end cell at time } n < T_{S_n}}_{\text{total profit}}$$

$$\geq (b-a)U_n+0 \tag{1.5}$$

$$\mathbb{E}Y_n \ge (b-a)\mathbb{E}U_n \tag{1.6}$$

Consider the opposite strategy K: $K_n = 1 - H_n$ ("Buy high, sell low"). (K_n) is also predictable, $K_n \ge 0$, so

$$(X_n - Y_n) = X_n - (H \cdot X)_n = \sum_{i=1}^n \Delta_i^X + X_0 - \sum_{i=1}^n H_i \Delta_i^X = \sum_{i=1}^n \underbrace{(1 - H_i)}_{=K_i} \Delta_i^X + X_0 = (K \cdot X)_n + X_0$$
(1.7)

is a sub-martingale and

$$\mathbb{E}[X_0 - Y_0] \stackrel{0}{\leq} \mathbb{E}[X_n - Y_n] \tag{1.8}$$

$$\mathbb{E}X_0 \le \mathbb{E}X_n - \mathbb{E}Y_n \tag{1.9}$$

$$(b-a)\mathbb{E}U_n \le \mathbb{E}X_n - \mathbb{E}X_0 \tag{1.10}$$

2 Martingale convergence

Theorem 2.1 (Martingale Convergence Theorem (MCT)). *If* (X_n) *is a sub-MG*, $\sup_n \mathbb{E} X_n^+ < \infty$, then $X_n \stackrel{a.s.}{\to} X_\infty$ for some X_∞ with $\mathbb{E} |X_\infty| < \infty$.

Proof. $U_n[a,b] \uparrow U_\infty[a,b]$ so by monotone convergence theorem, upcrossing inequality, and the assumption $\mathbb{E}X_n^+ < \infty$

$$\mathbb{E}U_{\infty}[a,b] = \lim_{n} \mathbb{E}U_{n}[a,b] \le \frac{\sup_{n} \mathbb{E}X_{n}^{+} + |a|}{b-a} < \infty$$
 (2.1)

This implies that $U_{\infty}[a,b] < \infty$ a.s., hence

$$P(U_n[a,b] < \infty \,\forall a,b \in \mathbb{Q}, a < b) = 1 \tag{2.2}$$

For reals (x_n) , if $\limsup_n x_n > \liminf_n x_n$, then $U_{\infty}[a, b] = \infty$ for some a < b.

Since $U_{\infty}[a,b] < \infty$ for all rational a < b, the contrapositive implies $\limsup x_n = \liminf x_n \in [-\infty,\infty]$. Therefore, $X_n \to X_{\infty}$ a.s..

We have so far $X_{\infty} \in [-\infty, \infty]$, but we would like $\mathbb{E}|X_{\infty}| < \infty$. To show this, recall Fatou's Lemma: If $Y_n \ge 0$, then $\mathbb{E} \liminf_n Y_n \le \liminf_n \mathbb{E} Y_n$.

 $X_n^+ \to X_\infty^+$ a.s. implies (by Fatou's Lemma) that $\mathbb{E} X_\infty^+ \le \liminf_n \mathbb{E} X_n^+ < \infty$. Also

$$\mathbb{E}X_n^- = \mathbb{E}X_n^+ - \mathbb{E}X_n \le \mathbb{E}X_n^+ - \mathbb{E}X_0 \tag{2.3}$$

since (X_n) a sub-MG means $\mathbb{E} X_0 \leq \mathbb{E} X_n$. As $X_n^- \to X_\infty^-$ a.s., by Fatou's Lemma

$$\mathbb{E}X_{\infty}^{-} \le \liminf_{n} \mathbb{E}X_{n}^{-} \le \sup_{n} \mathbb{E}X_{n}^{+} - \mathbb{E}X_{0} < \infty \tag{2.4}$$

Since $\mathbb{E}X_{\infty}^+ < \infty$ and $\mathbb{E}X_{\infty}^- < \infty$, we have $\mathbb{E}|X_{\infty}| < \infty$.

Corollary 2.2. If (X_n) is a super-MG, $X_n \ge 0$ a.s., then $X_n \stackrel{a.s.}{\to} X_\infty$ and $0 \le \mathbb{E} X_\infty \le \mathbb{E} X_0$.

Proof. Apply MCT to $-X_n$, so $X_n \stackrel{\text{a.s.}}{\to} X_\infty$. Use Fatou's Lemma: $\mathbb{E} X_\infty \leq \liminf_n \mathbb{E} X_n \leq \mathbb{E} X_0$.

Example 2.3 (WARNING: MCT does not imply $\mathbb{E}X_n \to \mathbb{E}X_\infty$). Consider a simple random walk $X_0 = 1$, stopped at $T = \min\{n : X_n = 0\}$. Let $Y_n = X_{\min(T,n)}$. Then $Y_n \to 0 = Y_\infty$ a.s., but $\mathbb{E}Y_n = 1 \ \forall n$ which differs from $\mathbb{E}Y_\infty = 0$.

This is similar to *uniform convergence*: if continuous f_n converge uniformly to f, then f is continuous. Not necessarily true for pointwise convergence.

For sequences of expectations to converge, we need uniform integrability.

3 Facts about Uniform (Equi-)Integrability

Consider \mathbb{R} -valued RVs (Y_{α})

Definition 3.1. A family (Y_{α}) is uniformly integrable (UI) if

$$\lim_{b \to \infty} \sup_{\alpha} \mathbb{E}\left[|Y_{\alpha}|1_{|Y_{\alpha}| \ge b}\right] = 0 \tag{3.1}$$

"We have integrability *uniformly over all* RVs Y_{α} in the family"

If
$$\mathbb{E}|Y| < \infty$$
, then $\lim_{b \to \infty} \mathbb{E}\left[|Y|1_{|Y| > b}\right] = 0$

Facts relating to UI (see Durrett or Bilingsley)

- 1. If $\sup_{\alpha} \mathbb{E}|Y_{\alpha}|^q < \infty$ for some q > 1, then (Y_{α}) is UI, which implies that $\sup_{\alpha} \mathbb{E}|Y_{\alpha}| < \infty$
- 2. If $Y_n \stackrel{\text{a.s.}}{\to} Y_\infty$ and (Y_n) is UI, then $\mathbb{E}|Y_\infty| < \infty$ and $\mathbb{E}|Y_n Y_\infty| \to 0$ (i.e. $Y_n \to Y_\infty$ in L^1)
- 3. If $Y_n \to Y_\infty$ in L^1 , then (Y_n) is UI.
- 4. If $\mathbb{E}|Y| < \infty$, the family $\{\mathbb{E}[Y \mid \mathcal{G}] : \forall \mathcal{G} \subset \mathcal{F}\}$ is UI.

Theorem 3.2. For a MG (not sub-MG!) (X_n) , TFAE:

- (a) (X_n) is UI
- (b) X_n converges in L^1
- (c) There exists a RV X_{∞} with $\mathbb{E}|X_{\infty}| < \infty$ such that $X_k = \mathbb{E}[X_{\infty} \mid \mathcal{F}_k] \ \forall k$ If any of these conditions hold, then $\exists X_{\infty}$ such that $X_n \to X_{\infty}$ both a.s. and in L^1 .

Proof. (c) \Longrightarrow (a), item 4..

(a) implies (by item 1.) that $\sup_n \mathbb{E}|X_n| < \infty$, which by MCT implies X_n converges to some X_∞ a.s., which implies by 2. that $X_n \to X_\infty$ in L^1 i.e. (b).

Given (b), $X_n \to X_\infty$ in L^1 , which means that $\mathbb{E}|X_n - X_\infty| \to 0$ with $\mathbb{E}|X_\infty| < \infty$. We need to prove that $\mathbb{E}X_\infty 1_A = \mathbb{E}X_k 1_A$ for any $A \in \mathcal{F}_k$. Fix A and k. By the MG property, for n > k, $\mathbb{E}[X_n \mid \mathcal{F}_k] = X_k$ so $\mathbb{E}X_n 1_A = \mathbb{E}X_k 1_A$. Hence

$$|\mathbb{E}X_{\infty}1_A - \mathbb{E}X_n1_A| \le \mathbb{E}|X_{\infty} - X_n| \to 0 \tag{3.2}$$

as
$$n \to \infty$$
, so $|\mathbb{E} X_{\infty} 1_A - \mathbb{E} X_k 1_A| = 0$.

Using UI with MCT leads to a convergence property for conditional expectations.

Theorem 3.3 (Levy 0-1 Law). Let $(Y_n)_{n\geq 0}$ be any process, \mathcal{F}_n the natural filtration $\sigma(Y_k, 0 \leq k \leq n)$. Let Z be any RV with $\mathbb{E}|Z| < \infty$ and $Z \in \mathcal{F}_{\infty}$.

Then $X_n = \mathbb{E}[Z \mid \mathcal{F}_n]$ is a UI martingale, so theorem 3.2 implies $X_n \to X_\infty$ both a.s. and in L^1 . In terms of Z

$$\mathbb{E}[Z \mid \mathcal{F}_n] \to \mathbb{E}[Z \mid \mathcal{F}_\infty] \quad as \ n \to \infty \tag{3.3}$$

In fact, $X_{\infty} = Z$ *because*

$$\mathbb{E}[X_{\infty} \mid \mathcal{F}_n] = X_n = \mathbb{E}[Z \mid \mathcal{F}_n] \qquad MG \text{ property} \qquad (3.4)$$

$$0 = \mathbb{E}[X_{\infty} - Z \mid \mathcal{F}_n] = X_{\infty} - Z \qquad X_{\infty} - Z \text{ is } \mathcal{F}_{\infty}\text{-meas} \qquad (3.5)$$

Remark 3.4. In particular, take $Z = 1_A$ for some event A. Then

$$P(A \mid \mathcal{F}_n)(\omega) \stackrel{\text{a.s.}}{\to} 1_A(\omega)$$
 (3.6)

for all $A \in \sigma(Y_n, n \ge 0)$.

In English:

If we are learning gradually all the information that determines the outcome of an event, then we will become gradually certain what the outcome will be.

For independent (Y_n) , let $A \in \mathcal{F}_{\infty}$ be some tail event. Then

$$P(A \mid \mathcal{F}_n)(\omega) = P(A) \stackrel{\text{a.s.}}{\to} 1_A \quad \text{as } n \to \infty$$
 (3.7)

which implies that 1_A is a constant a.s. and hence $P(A) \in \{0,1\}$. This is Kolmogorov's zero-one law.