Planche nº 13. Fonctions trigonométriques. Corrigé

Exercice nº 1

1) La fonction f_1 est définie sur \mathbb{R} , 2π -périodique et paire. On l'étudie et on construit son graphe sur $[0,\pi]$. On obtient ensuite son graphe complet par réflexion d'axe (Oy), ce qui fournit son graphe sur $[-\pi,\pi]$, puis par translations de vecteur $(2k\pi,0)$, $k\in\mathbb{Z}$.

La fonction f_1 est dérivable sur $[0,\pi]$ et pour tout x de $[0,\pi]$

$$f_1'(x) = -2\sin(x) - 2\sin(2x) = -2\sin(x) - 4\sin(x)\cos(x) = -2\sin(x)(1 + 2\cos(x)).$$

La fonction sinus s'annule en 0 et π et est strictement positive sur $]0, \pi[$. Donc la fonction f'_1 est du signe de $-1-2\cos(x)$ sur $]0, \pi[$. Ensuite, pour $x \in]0, \pi[$,

$$-1 - 2\cos(x) = 0 \Leftrightarrow \cos(x) = -\frac{1}{2} \Leftrightarrow x = \frac{2\pi}{3}$$

et

$$-1-2\cos(x)>0 \Leftrightarrow \cos(x)<-\frac{1}{2} \Leftrightarrow x>\frac{2\pi}{3} \; (\text{par stricte décroissance de la fonction } \cos \; \sup \; [0,\pi].)$$

Ainsi, la fonction f_1' est strictement négative sur $\left]0,\frac{2\pi}{3}\right[$, strictement positive sur $\left]\frac{2\pi}{3},\pi\right[$ et s'annule en $0,\frac{2\pi}{3}$ et π . On en déduit le tableau de variations de la fonction f_1 sur $[0,\pi]$:

х	0		$\frac{2\pi}{3}$		π		
f'_1(x)	0	_	0	+	0		
f ₁	$\frac{3}{-\frac{3}{2}}$						

Graphe de f₁.

2) Pour tout réel x, $2-\cos(x) \neq 0$ et donc, la fonction f_2 est définie sur \mathbb{R} , 2π -périodique et impaire. On l'étudie sur $[0,\pi]$. La fonction f_2 est dérivable sur $[0,\pi]$ et pour tout x de $[0,\pi]$

$$f_2'(x) = \frac{\cos(x)(2-\cos(x)) - \sin(x)(\sin(x))}{(2-\cos(x))^2} = \frac{2\cos(x) - 1}{(2-\cos(x))^2}.$$

La fonction f_2' est du signe de $2\cos(x)-1$ sur $[0,\pi]$. Ensuite, pour $x\in[0,\pi]$,

$$2\cos(x) - 1 = 0 \Leftrightarrow \cos(x) = \frac{1}{2} \Leftrightarrow x = \frac{\pi}{3}$$

$$2\cos(x)-1>0 \Leftrightarrow \cos(x)>\frac{1}{2} \Leftrightarrow x<\frac{\pi}{3} \text{ (par stricte décroissance de la fonction } \cos \text{ sur } [0,\pi].)$$

Ainsi, la fonction f_2' est strictement positive sur $\left[0, \frac{\pi}{3}\right[$, strictement négative sur $\left[\frac{\pi}{3}, \pi\right]$ et s'annule en $\frac{\pi}{3}$. On note que

$$f_2\left(\frac{\pi}{3}\right) = \frac{\frac{\sqrt{3}}{2}}{2 - \left(\frac{1}{2}\right)} = \frac{\sqrt{3}}{3} = 0,57...$$

On en déduit le tableau de variations de la fonction f_2 :

х	0		$\frac{2\pi}{3}$		π
$f_1'(x)$		+	0	_	
f ₁	0	/	$\sqrt{3}$		0

Graphe de f₂.

3) f_3 est définie sur $D = \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$, paire et 2π -périodique. f_3 est continue sur D en tant que somme de fonctions continues sur D. On étudie f_3 sur $\left[0, \frac{\pi}{2}\right] \left[0, \frac{\pi}{2}\right] \left[0, \frac{\pi}{2}\right]$. Si $x \in \left[0, \frac{\pi}{2}\right]$, $f_3(x) = \tan x + \cos x$ et si $x \in \left[\frac{\pi}{2}, \pi\right]$, $f_3(x) = -\tan x + \cos x$.

Etude en $\frac{\pi}{2}$. $\lim_{x \to \pi/2} |\tan x| = +\infty$ et $\lim_{x \to \pi/2} \cos x = 0$. Donc, $\lim_{x \to \pi/2} f(x) = +\infty$. La courbe représentative de la fonction f_3 admet la droite d'équation $x = \frac{\pi}{2}$ pour droite asymptote.

Dérivabilité et dérivée. f_3 est dérivable sur $\left[0,\frac{\pi}{2}\right[\cup\left]\frac{\pi}{2},\pi\right]$ en vertu de théorèmes généraux et pour $x\in\left[0,\frac{\pi}{2}\right[,f_3'(x)=\frac{1}{\cos^2x}-\sin x$ et pour $x\in\left[\frac{\pi}{2},\pi\right]$, $f_3'(x)=-\frac{1}{\cos^2x}-\sin x$.

De même, f_2 est dérivable à gauche et à droite en π avec $(f_3)_g'(\pi) = -1$ et $(f_3)_d'(\pi) = 1$, et n'est donc pas dérivable en π .

 $\textbf{Variations}. \ f_3 \ \text{est strictement décroissante sur } \left] \frac{\pi}{2}, \pi \right] \ \text{en tant que somme de deux fonctions strictement décroissantes sur } \right]$ $\left|\frac{\pi}{2},\pi\right|$. Puis, pour x élément de $\left|0,\frac{\pi}{2}\right|$,

$$f_3'(x) = \frac{1}{\cos^2 x} - \sin x > 1 - 1 = 0.$$

 $\text{La fonction } f_3' \text{ est strictement positive sur } \left] 0, \frac{\pi}{2} \right[\text{ et donc la fonction } f_3 \text{ est strictement croissante sur } \left[0, \frac{\pi}{2} \right[. \right.$

Graphe de f₃.

4) La fonction f_4 est 2π -périodique. On l'étudie sur $[-\pi, \pi]$. Pour $x \in [-\pi, \pi]$,

$$2\cos(x) + 1 = 0 \Leftrightarrow \cos(x) = -\frac{1}{2} \Leftrightarrow x = -\frac{2\pi}{3} \text{ ou } x = \frac{2\pi}{3}.$$

Pour $x \in [-\pi, \pi]$, $f_4(x)$ existe si et seulement si $x \neq -\frac{2\pi}{3}$ et $x \neq \frac{2\pi}{3}$. On étudie la fonction f_4 sur $D = \left[-\pi, -\frac{2\pi}{3}\right] \cup \left[-\frac{2\pi}{3}, \frac{2\pi}{3}\right] \cup \left[\frac{2\pi}{3}, \pi\right]$.

Etude en $\frac{2\pi}{3}$. Quand x tend vers $\frac{2\pi}{3}$ par valeurs inférieures, $2\cos(x) + 1$ tend vers 0 par valeurs supérieures et quand x tend vers $\frac{2\pi}{3}$ par valeurs supérieures, $2\cos(x) + 1$ tend vers 0 par valeurs inférieures. D'autre part, quand x tend vers $\frac{2\pi}{3}$, $2\sin(x) + 1$ tend vers $\sqrt{3} + 1$ qui est strictement positif. On en déduit que

$$\lim_{x\to\frac{2\pi}{4}^-}f_4(x)=+\infty \ \mathrm{et} \ \lim_{x\to\frac{2\pi}{4}^+}f_4(x)=-\infty.$$

Etude en $-\frac{2\pi}{3}$. Quand x tend vers $-\frac{2\pi}{3}$ par valeurs inférieures, $2\cos(x) + 1$ tend vers 0 par valeurs inférieures et quand x tend vers $\frac{2\pi}{3}$ par valeurs supérieures, $2\cos(x) + 1$ tend vers 0 par valeurs supérieures. D'autre part, quand x tend vers $-\frac{2\pi}{3}$, $2\sin(x) + 1$ tend vers $-\sqrt{3} + 1$ qui est strictement négatif. On en déduit que

$$\lim_{x\to -\frac{2\pi}{3}^-}f_4(x)=+\infty \ \mathrm{et} \ \lim_{x\to -\frac{2\pi}{3}^+}f_4(x)=-\infty.$$

Dérivée. La fonction f₄ est dérivable sur D et pour tout x de D,

$$\begin{split} f_4'(x) &= \frac{(2\cos(x))(2\cos(x)+1)-(2\sin(x)+1)(-2\sin(x))}{(2\cos(x)+1)^2} = \frac{4+2\cos(x)+2\sin(x)}{(2\cos(x)+1)^2} \\ &= \frac{4+2\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos(x)+\frac{1}{\sqrt{2}}\sin(x)\right)}{(2\cos(x)+1)^2} = \frac{4+2\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)}{(2\cos(x)+1)^2}. \end{split}$$

Pour tout x de D, $4+2\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\geqslant 4-2\sqrt{2}>0$ et donc la fonction f_4' est strictement positive sur D. La fonction f_4 est donc strictement croissante sur $\left[-\pi,-\frac{2\pi}{3}\right[$ et sur $\left]-\frac{2\pi}{3},\frac{2\pi}{3}\right[$ et sur $\left]\frac{2\pi}{3},\pi\right]$ (mais pas sur $\left[-\pi,-\frac{2\pi}{3}\right[\cup\left]-\frac{2\pi}{3},\frac{2\pi}{3}\right[\cup\left]-\frac{2\pi}{3},\frac{2\pi}{3}\right[\cup\left]-\frac{2\pi}{3},\frac{2\pi}{3}\right]$).

Exercice nº 2

1) Pour x réel, on a :

$$\begin{split} \cos^4 x \sin^6 x &= \left(\frac{1}{2} \left(e^{ix} + e^{-ix}\right)\right)^4 \left(\frac{1}{2i} \left(e^{ix} - e^{-ix}\right)\right)^6 \\ &= -\frac{1}{2^{10}} (e^{4ix} + 4e^{2ix} + 6 + 4e^{-2ix} + e^{-4ix}) (e^{6ix} - 6e^{4ix} + 15e^{2ix} - 20 + 15e^{-2ix} - 6e^{-4ix} + e^{-6ix}) \\ &= -\frac{1}{2^{10}} (e^{10ix} - 2e^{8ix} - 3e^{6ix} + 8e^{4ix} + 2e^{2ix} - 12 + 2e^{-2ix} + 8e^{-4ix} - 3e^{-6ix} - 2e^{-8ix} + e^{-10ix}) \\ &= -\frac{1}{2^9} (\cos 10x - 2\cos 8x - 3\cos 6x + 8\cos 4x + 2\cos 2x - 6) \\ &= -\frac{1}{512} (\cos 10x - 2\cos 8x - 3\cos 6x + 8\cos 4x + 2\cos 2x - 6). \end{split}$$

(Remarque. La fonction proposée était paire et l'absence de sinus était donc obligatoire. Cette remarque guidait aussi les calculs intermédiaires : les coefficients de e^{-2ix} , e^{-4ix} ,... étaient les mêmes que ceux de e^{2ix} , e^{4ix} ,...) Par suite,

$$I = -\frac{1}{512} \left(\left[\frac{\sin 10x}{10} - \frac{\sin 8x}{4} - \frac{\sin 6x}{2} + 2\sin 4x + \sin 2x \right]_{\pi/6}^{\pi/3} - 6\left(\frac{\pi}{3} - \frac{\pi}{6} \right) \right)$$
$$= -\frac{1}{512} \left(-\frac{1}{4} \times \sqrt{3} + 2\left(-\sqrt{3} \right) - \pi \right) = \frac{9\sqrt{3} + 4\pi}{2048}.$$

2) Pour x réel, on a

$$\begin{split} \cos^4 x \sin^7 x &= \cos^4 x \sin^6 x \times \sin x = \cos^4 x (1 - \cos^2 x)^3 \sin x \\ &= \cos^4 x \sin x - 3 \cos^6 x \sin x + 3 \cos^8 x \sin x - \cos^{10} x \sin x. \end{split}$$

Par suite,

$$\begin{split} J &= \left[-\frac{\cos^5 x}{5} + \frac{3\cos^7 x}{7} - \frac{\cos^9 x}{3} + \frac{\cos^{11} x}{11} \right]_{\pi/6}^{\pi/3} \\ &= -\frac{1}{5} \times \frac{1}{32} (1 - 9\sqrt{3}) + \frac{3}{7} \times \frac{1}{128} (1 - 27\sqrt{3}) - \frac{1}{3} \times \frac{1}{512} (1 - 81\sqrt{3}) + \frac{1}{11} \times \frac{1}{2048} (1 - 243\sqrt{3}) \\ &= \frac{1}{2^{11} \times 3 \times 5 \times 7 \times 11} (-14784 (1 - 9\sqrt{3}) + 7920 (1 - 27\sqrt{3}) - 1540 (1 - 81\sqrt{3}) + 105 (1 - 243\sqrt{3})) \\ &= \frac{1}{236540} (-8299 + 18441\sqrt{3}). \end{split}$$

Exercice nº 3

La fonction f est deux fois dérivable sur \mathbb{R} n et pour tout réel x,

$$f''(x) - 2f'(x) + 2f(x) = \left((1+i)^2 - 2(1+i) + 2\right)e^{(1+i)x} = (1+2i-1-2-2i+2)e^{(1+i)x} = 0.$$