Discontinuous Growth Modeling

KELCIE GRENIER SPRING 2018

Recap Growth Modeling

Juan

Discontinuity

Discontinuity

Pre-Transition

Pre-Transition

Pre-Transition

Transition

Pre-Transition

Transition

Pre-Transition

Transition

Recovery

Pre-Transition

Transition

Recovery

Data and analyses Data management
Brief note on analyses
Research question and interpretation
examples

Age	TIME	TRANS	RECOV	SCORE (Delinquency)
13	0	0	0	40
14	1	0	0	50
15	2	0	0	60
16	3	0	0	70
17	4	0	0	80
18	5	0	0	90
19	6	1	0	20
20	7	1	1	10
21	8	1	2	10
22	9	1	3	10

Λαο	TIME	TRANS	RECOV	SCORE
Age	IIIVIE	INANO	NECOV	(Delinquency)
13	0	0	0	40
14	1	0	0	50
15	2	0	0	60
16	3	0	0	70
17	4	0	0	80
18	5	0	0	90
19	6	1	0	20
20	7	1	1	10
21	8	1	2	10
22	9	1	3	10

Λαο	TIME	TRANS	RECOV	SCORE
Age	IIIVIE	INANS	NECUV	(Delinquency)
13	0	0	0	40
14	1	0	0	50
15	2	0	0	60
16	3	0	0	70
17	4	0	0	80
18	5	0	0	90
19	6	1	0	20
20	7	1	1	10
21	8	1	2	10
22	9	1	3	10

Λαο	TIME	TRANS	RECOV	SCORE
Age	IIIVIE	INANS	NECUV	(Delinquency)
13	0	0	0	40
14	1	0	0	50
15	2	0	0	60
16	3	0	0	70
17	4	0	0	80
18	5	0	0	90
19	6	1	0	20
20	7	1	1	10
21	8	1	2	10
22	9	$\begin{bmatrix} 1 \end{bmatrix}$	3	10

Age	TIME	TRANS	RECOV	SCORE
Aye	IIIVIC	INANS	NECUV	(Delinquency)
13	0	0	0	40
14	1	0	0	50
15	2	0	0	60
16	3	0	0	70
17	4	0	0	80
18	5	0	0	90
19	6	1	0	20
20	7	1	1	10
21	8	1	2	10
22	9	1	3	10

Analyses Steps

Bliese & Ployhart (2002)

Build Level-1 Model

- **Step 1: Estimate the ICC**
 - Step 2: Examine Fixed Effects for:
 - TIME
 - TRANS
 - RECOV
 - Step 3: Examine Variability in Growth Parameters
 - Step 4: Model autocorrelation
 - Step 5: Contrast Alternative Models

Build Level-2 Model (step 6)

Add level-2 predictors (Level-2)

What is the slope and intercept of the pre-transition phase? (Juan's delinquency before transition)

What is the slope and intercept of the pre-transition phase? (Juan's delinquency before transition)

Data

Ago	TIME	ge TIME TRANS	RECOV	SCORE
	IIIVIE	INANS		(Delinquency)
13	0	0	0	40
	1	0		50
	2	0		60
	3	0		70
	4	0		80
	5	0		90
	6			20
	7			10
	8			10
	9			10

What is the slope and intercept of the pre-transition phase? (Juan's delinquency before transition)

Data

	TIME	TRANS		SCORE
	IIIVIE	INANO		(Delinquency)
13	0	0	0	40
	1	0		50
	2	0		60
	3	0		70
	4	0		80
	5	0		90
	6			20
	7			10
	8			10
	9			10

Parameters

	Estimate
(Intercept)	40
TIME	10
RECOV	XXX

How will the transition (intervention) affect Juan's delinquency scores?

Data

Ago TIME	TIME	TRANS	TRANS RECOV	SCORE
	IIIVIC	INANS		(Delinquency)
13	0	0	0	40
	1			50
	2			60
	3			70
	4			80
	5			90
	6	1		20
	7	1		10
	8	1		10
	9	1		10

How will the transition (intervention) affect Juan's delinquency scores?

Data

Age TIME	TRANS		SCORE	
	IIIVIL	IIIANS		(Delinquency)
13	0	0	0	40
	1			50
	2			60
	3			70
	4			80
	5			90
	6	1		20
	7	1		10
	8	1		10
	9	1		10

Parameters

	Estimate
(Intercept)	40
TIME	10
TRANS	-80
RECOV	XXX

Future Directions

Flexibility

Future Directions

- Flexibility
- Calls in literature

The first block of Table 4 presents paramete estimates from standard coding. In this mode the estimate of the intercept (0.996) represe the value of the dependent variable in the referent group (pre-transition) at TIME 0 (the occasion)

The second block of Table 4 reflects parame estimates when TIME is held at 9 at the tran point in the coding we refer to as TIME.A.

Finally, the third block represents coding where the TIME vector continues the sequence through the first transition point (TIME.R).

Figure 1. Structure of data with one discontinuity and equal slopes.

Table 4. Parameter Estimates From Basic Discontinuous Model.

	Estimate
(Intercept)	0.996
TIME	0.998
TRANS	4.008
RECOV	0.006
(Intercept)	0.996
TIME.A	0.998
TRANS	5.007
RECOV	1.004
(Intercept)	0.996
TIME.R	0.998
TRANS	4.008
RECOV	1.004

Questions

Example Resources on Github

Activity

Complete Exercises (Advanced).doc

Data

- Discontinuous Growth State gdp 1997 to 2011.xlsx
- Discontinuous Growth Sleep Actigraph 26 day

References

Bliese P. D. 2000. Within-group agreement, non-interdependence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations—Foundations, extensions, and new directions: 349–381. San Francisco, CA: Jossey-Bass.

Bliese P. D., Ployhart R. E. 2002. Growth modeling using random coefficient models: Model building, testing, and illustrations. Organizational Research Methods, 5: 362–387.

Bliese PD, Wesensten NJ, Balkin TJ. Age and inter-individual variability in performance during sleep restriction. J Sleep Res 2006;15:376–385.

Bliese, P. D., & Lang, J. W. (2016). Understanding relative and absolute change in discontinuous growth models: coding alternatives and implications for