TD 2 – Formes linéaires

1. À TRAVAILLER EN CLASSE

Exercice 1. Déterminer l'unique forme linéaire f sur \mathbb{R}^3 vérifiant f(1,1,1)=0, f(2,0,1)=1 et f(1,2,3)=4. Donner une base du noyau de f.

Exercice 2. Soit $E = \mathbb{R}^2$ et soit f_1, f_2 des éléments de E^* définis en $(x, y) \in \mathbb{R}^2$ par :

$$f_1(x, y) = x + y,$$
 $f_2(x, y) = x - y.$

- 1. Exprimer f_1 et f_2 dans la base canonique de E^* .
- 2. Montrer de deux façons différentes que (f_1,f_2) est une base de E^* :
 - (a) en utilisant son expression en les points (x, y) de \mathbb{R}^2 ,
 - (b) en utilisant le résultat de la question précédente.
- 3. Exprimer les formes linéaires g et h dans la base (f_1, f_2) , où g et h sont définies en $(x, y) \in \mathbb{R}^2$ par :

$$g(x,y) = x, h(x,y) = 2x - 6y.$$

Exercice 3 (Exemple de base duale). Soit (e_1^*, e_2^*, e_3^*) , la base canonique de $(\mathbb{R}^3)^*$. Montrer que les vecteurs $u_1 = (1, -1, 2)$, $u_2 = (2, 0, 2)$ et $u_3 = (1, 1, 1)$ forment une base de \mathbb{R}^3 , puis exprimer la base duale de (u_1, u_2, u_3) au moyen de (e_1^*, e_2^*, e_3^*) .

Exercice 4. Soit $E = \mathbb{R}_n[X]$. Soit $\mathscr{B} = (1, X, \dots, X^n)$ la base canonique de E, et soit $\mathscr{B}^* = (f_0, \dots, f_n)$ la base duale de \mathscr{B} .

- 1. Soit $P = a_0 + \cdots + a_n X^n$. Pour tout $i \in \{0, \dots, n\}$, exprimer $f_i(P)$ en fonction de a_0, \dots, a_n .
- 2. Soit ϕ et ψ les deux éléments de E^* définis par :

$$\forall P \in E \quad \phi(P) = P(1), \qquad \forall P \in E \quad \psi(P) = P'(0).$$

Déterminer les coordonnées de ϕ et de ψ dans la base \mathscr{B}^* .

Exercice 5. Soit $E = \mathbb{R}_2[X]$, l'espace vectoriel des polynômes réels de degré inférieur ou égal à 2. Pour $P \in E$, on pose :

$$\phi_1(P) = P(1)$$
 $\phi_2(P) = P'(1)$ $\phi_3(P) = P(0)$

- 1. Montrer que (ϕ_1, ϕ_2, ϕ_3) est une base de E^* .
- 2. Déterminer la base dont elle est duale.
- 3. Mêmes questions avec (ϕ_1, ϕ_2, ϕ_4) où $\phi_4(P) = P''(1)$.

Exercice 6 (Critère pour une base de E^*). Soit E un espace vectoriel de dimension finie égale à n et soient $\ell_1, \ell_2, \dots, \ell_n$ des formes linéaires sur E. On suppose que :

$$\bigcap_{1 \le k \le n} \operatorname{Ker} \ell_k = \{0\}.$$

On considère l'application linéaire $L: E \to \mathbb{R}^n$ définie en $x \in E$ par

$$L(x) = \begin{pmatrix} \ell_1(x) \\ \ell_2(x) \\ \vdots \\ \ell_n(x) \end{pmatrix}$$

- 1. Montrer que L est un isomorphisme d'espace vectoriel.
- 2. En déduire l'existence d'une base (e_1, \ldots, e_n) de E telle que :

$$\forall j, k \in \{1, \dots, n\}$$
 $\ell_k(e_j) = \delta_{j,k}$.

3. En déduire que (ℓ_1, \dots, ℓ_n) est une base de E^* .

Exercice 7 (Polynômes de Lagrange). Soient $E = \mathbb{R}_n[X]$. On se donne une famille de n+1 réels (a_0,\cdots,a_n) deux à deux distincts. On définit pour $k\in\{0,\ldots,n\}$ la forme linéaire $f_k:E\to\mathbb{R}$ par $f_k(P) = P(a_k)$, pour tout $P \in E$.

- 1. En utilisant le résultat de l'exercice 6, montrer que $(f_k)_{0 \le k \le n}$ est une base de E^* .
- 2. Déterminer la base dont elle est duale. Indication: ou pourra introduire les polynômes d'interpolation de Lagrange définis par :

$$L_k(X) = \prod_{\substack{0 \le j \le n \\ j \ne k}} \frac{X - a_j}{a_k - a_j}.$$

- 3. En déduire que tout polynôme de degré inférieur ou égal à n est déterminé par sa valeur en n+1 points distincts de \mathbb{R} .
- 4. Exemple d'application. On pose $E = \mathbb{R}_3[X]$, et on considère la famille $f = (f_0, f_1, f_2, f_3)$ d'éléments de E^* définie par :

$$\forall i \in \{0, 1, 2, 3\} \quad \forall P \in E \quad f_i(P) = P(i).$$

- (a) Montrer que f est une base de E^* .
- (b) Déterminer la base antéduale de f.

Exercice 8. Soit $E = M_2[\mathbb{R}]$, l'espace des matrices carrées à coefficients réels de taille 2, muni de sa base canonique $(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ où $E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_{2,2} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. On note $(E_{1,1}^*, E_{1,2}^*, E_{2,1}^*, E_{2,2}^*)$ la base duale de $(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$.

- 1. Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ un élément de E. Donner les valeurs de $E_{i,j}^*(M)$, pour $(i,j) \in \{1,2\}^2$ en fonction des coefficients a, b, c, d.
- 2. On considère les matrices $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $A_4 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Montrer que (A_1, A_2, A_3, A_4) est une famille libre de E
- 3. Déterminer la base duale $(A_1^*, A_2^*, A_3^*, A_4^*)$ de (A_1, A_2, A_3, A_4) en l'exprimant dans la base duale cano-
- 4. Exprimer la trace d'une matrice dans cette base duale $(A_1^*, A_2^*, A_3^*, A_4^*)$
 - 2. A TRAVAILLER CHEZ SOI: APPLICATIONS DIRECTES DES DÉFINITIONS

Exercice 9. Parmi les applications suivantes, déterminer lesquelles sont des formes linéaires.

- 2) $\ell_2 : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x + 3y$ 3) $\ell_3 : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto xy$ 5) $\ell_5 : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^2$ 6) $\ell_6 : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto -x$ 8) $\operatorname{tr} : M_2(\mathbb{R}) \to \mathbb{R}$ 9) $\det : M_2(\mathbb{R}) \to \mathbb{R}$

- 1) $\ell_1 : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x + y$ 4) $\ell_4 : \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (x + y, x y)$ 7) $\ell_7 : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto \exp(x) + y$

Exercice 10. Soit E un espace vectoriel de dimension finie.

1. Rappeler la définition de l'espace dual E^* . Quelle est la dimension de E^* ?

- 2. Soit (e_1, e_2, \ldots, e_n) une base de E. Quelle est la définition de la base duale de (e_1, e_2, \ldots, e_n) ? Dans le cas où $E = \mathbb{R}^3$ et $e_1 = (1, 0, 0), e_2 = (1, 1, 0), e_3 = (1, 1, 1),$ déterminer (e_1^*, e_2^*, e_3^*) .
- 3. Soit $(f_1, f_2, ..., f_n)$ une base de E^* . Quelle est la définition de la base antéduale de $(f_1, f_2, ..., f_n)$? Dans le cas où $E = \mathbb{R}^3$ et $f_1(x, y, z) = x, f_2(x, y, z) = x + y, f_3(x, y, z) = x + y + z$, montrer que (f_1, f_2, f_3) est une base de E^* et déterminer (e_1, e_2, e_3) la base antéduale de (f_1, f_2, f_3) .
- 4. Que signifie H est un hyperplan de E? Une droite vectorielle dans \mathbb{R}^2 est-elle un hyperplan? Une droite vectorielle dans \mathbb{R}^3 est-elle un hyperplan?

Exercice 11 (Supplémentaire d'un hyperplan). Soit E un \mathbb{R} -espace vectoriel de dimension finie et soit φ une forme linéaire non nulle sur E. Montrer que pour tout $u \in E \setminus \text{Ker}(\varphi)$, $\text{Ker}(\varphi)$ et Vect(u) sont supplémentaires dans E.

3. À TRAVAILLER CHEZ SOI : EXERCICES D'ENTRAÎNEMENT

Exercice 12. Soit $E = \mathbb{R}_2[X]$, l'espace des polynômes à coefficients réels et de degré au plus 2, et soit u et v deux réels distincts et non nuls. On considère les trois formes linéaires f_1 , f_2 , f_3 définies par :

$$f_1(P) = P(u)$$
 $f_2(P) = P(v)$ $f_3(P) = P(0).$

- 1. Soit (e_1, e_2, e_3) la base canonique de E, définie par $e_1 = 1$, $e_2 = X$, $e_3 = X^2$, et soit (e_1^*, e_2^*, e_3^*) la base duale canonique. Quelle est la valeur de $e_i^*(e_j)$, pour $i, j \in \{1, 2, 3\}$?
- 2. Soit $P = a + bX + cX^2$ un élément de E. Donner les valeurs de $e_1^*(P)$, $e_2^*(P)$ et $e_3^*(P)$ en fonction des coefficients a, b, c.
- 3. Donner les coefficients de la forme linéaire f_1 dans la base duale canonique.
- 4. Montrer que (f_1, f_2, f_3) est une famille libre de E^* .
- 5. Déterminer trois polynômes P_1, P_2, P_3 par leurs coefficients, tels que (f_1, f_2, f_3) est la base duale de (P_1, P_2, P_3) .

Exercice 13. Soit $E = \mathbb{R}_n[X]$, avec n > 0. On fixe deux réels a < b, et pour tout $P \in E$, on définit l'application $\Phi_P : E \to \mathbb{R}$ par :

$$\Phi_P(Q) = \int_a^b P(t)Q(t) dt.$$

- 1. Montrer que, pour tout $P \in E$, Φ_P est une forme linéaire sur E.
- 2. Soit (P_1, \ldots, P_k) une famille de E.

Établir l'implication suivante : $\left(\sum_{i=1}^{k} \lambda_i \Phi_{P_i} = 0\right) \implies \left(\sum_{i=1}^{k} \lambda_i P_i = 0\right)$.

Indication. On pourra utiliser le fait que pour toute fonction f continue et positive sur [a, b], on a:

$$\int_a^b f(t) dt = 0 \implies f = 0.$$

3. En déduire que (P_1, \ldots, P_k) est une famille libre de E si et seulement si $(\Phi_{P_1}, \ldots, \Phi_{P_k})$ est une famille libre de E^* .

Exercice 14 (Polynômes de Taylor). Soit $E = \mathbb{R}_n[X]$ et soit $x_0 \in \mathbb{R}$. Pour k = 0, ..., n et $P \in E$ on pose $g_k(P) = P^{(k)}(x_0)$.

- 1. Montrer que la famille $(g_k)_{0 \le k \le n}$ est une base de E^* .
- 2. De quelle base la famille $(g_k)_{0 \le k \le n}$ est-elle duale? Indication : on pourra introduire les polynômes

$$Q_k(X) = \frac{(X - x_0)^k}{k!}.$$

4. À TRAVAILLER CHEZ SOI : EXERCICES D'APPROFONDISSEMENT

Exercice 15. Soient E un \mathbb{R} -espace vectoriel de dimension n et soit (f_1, f_2, \dots, f_n) une famille de n formes linéaires sur E.

1. On suppose que (f_1, \ldots, f_n) est une famille libre. Montrer la propriété suivante :

$$\forall x \in E \quad (\forall i \in \{1, \dots, n\} \quad f_i(x) = 0) \implies x = 0. \tag{4.1}$$

- 2. On suppose maintenant que (f_1, \ldots, f_n) satisfait la propriété (4.1) ci-dessus. Reformuler la propriété (4.1) en termes d'intersection des noyaux des formes linéaires f_1, \ldots, f_n . En utilisant le résultat de l'exercice 6, en déduire que (f_1, \ldots, f_n) est une famille libre.
- 3. Déduire des questions précédentes le résultat suivant : il existe un vecteur $x \in E$ non nul tel que $f_i(x) = 0$ pour tout i = 1, ..., n si et seulement si la famille $(f_1, f_2, ..., f_n)$ est liée dans E^* .

Exercice 16. Soient n > 0 un entier et soit $e = (e_1, \dots, e_n)$ une famille de vecteurs d'un espace vectoriel réel E de dimension n. On suppose que :

$$\forall f \in E^*$$
 $f(e_1) = \dots = f(e_n) = 0 \implies f = 0.$

Montrer que e est une famille libre de E. Indication : par l'absurde, on pourra considérer une forme linéaire $f \neq 0$ dont le noyau contient n-1 vecteurs qu'on aura choisis parmi (e_1, \ldots, e_n) , obtenir une contradiction et conclure.

Exercice 17 (Intersection d'hyperplans). Soit E un espace vectoriel de dimension finie égale à n, et soit f_1, \ldots, f_k des formes linéaires sur E. On veut montrer la propriété suivante :

$$\forall f \in E^* \qquad (f \in \operatorname{Vect}(f_1, \dots, f_k) \iff \bigcap_{i=1}^k \operatorname{Ker}(f_i) \subseteq \operatorname{Ker}(f)).$$
 (4.2)

- 1. Pour $f \in E^*$ fixée, montrer le sens (\Longrightarrow) de l'équivalence dans (4.2).
- 2. On se fixe $f \in E^*$, et on suppose que l'hypothèse de droite de l'équivalence dans (4.2) est réalisée.
 - (a) On extrait une famille libre maximale de (f_1, \ldots, f_k) , et quitte à renuméroter les formes linéaires (f_1, \ldots, f_k) , on suppose que cette famille libre maximale est (f_1, \ldots, f_p) . Montrer que :

$$\bigcap_{i=1}^{k} \operatorname{Ker}(f_i) = \bigcap_{i=1}^{p} \operatorname{Ker}(f_i).$$

- (b) On complète la famille libre (f_1, \ldots, f_p) en une base $(f_1, \ldots, f_p, g_1, \ldots, g_{n-p})$ de E^* , et on en considère la base antéduale (e_1, \ldots, e_n) . Montrer que $e_i \in \text{Ker}(f)$ pour tout i tel que $p+1 \leq i \leq n$.
- (c) En conclure que $f \in \text{Vect}(f_1, \dots, f_k)$.
- 3. Conclure.

Exercice 18 (Application linéaire transposée). Soit E un espace vectoriel de dimension finie. Pour toute partie P de E, on pose :

$$P^{\perp} = \{ \varphi \in E^* : \forall x \in P \quad \varphi(x) = 0 \}.$$

On se donne un autre espace vectoriel F, et une application linéaire $f: E \to F$. On considère la transposée $f^*: F^* \to E^*$ de f.

- 1. Montrer que : $\operatorname{Ker}(f^*) = (\operatorname{im}(f))^{\perp}$.
- 2. On cherche à montrer l'égalité $\operatorname{im}(f^*) = (\operatorname{Ker}(f))^{\perp}$.
 - (a) Montrer l'inclusion $\operatorname{im}(f^*) \subseteq (\operatorname{Ker}(f))^{\perp}$.
 - (b) Soit G un supplémentaire de Ker(f) dans E, et soit (e_1, \ldots, e_q) une base de G.
 - i. Montrer que $(f(e_1), \dots, f(e_q))$ est une base de $\operatorname{im}(f)$.
 - ii. Soit $h \in (\text{Ker}(f))^{\perp}$. Montrer qu'il existe $g \in F^*$ tel que $g(f(e_i)) = h(e_i)$ pour tout $i \in \{1, \ldots, q\}$. En déduire que $h = g \circ f$ et conclure.