

Maticový LED displej

TYTO ZDÁNLIVĚ JEDNODUCHÉ DISPLEJE MAJÍ I V DNEŠNÍ DOBĚ SVÉ VYUŽITÍ PRO SVOU ČITELNOST, TECHNICKOU NENÁROČNOST A POMĚRNĚ SNADNÉ PROGRAMOVÁNÍ.

Otázka pro vás

Kde jste se setkali s maticovým displejem?

Např. ve veřejné dopravě, venkovní reklamě, na stadionu při zobrazení výsledků..

V čem byste spatřovali výhody maticového displeje?

Jednoduchost, čitelnost, cena.

Princip displeje

Víte jak pracuje maticový displej?

LED displeje jsou nejčastěji reprezentovány jako matice LED diod, uspořádaných v řadách a sloupcích. Řady představují běžné anody a sloupce společné katody nebo naopak.

Chcete-li ovládat jednotlivé LED diody displeje, musí se nastavit ve jejím sloupci hodnota LOW a řádek na HIGH. Má-li být ovládáno několik LED diod za sebou, musí se nastavit řádek na HIGH, poté konkrétní sloupec na LOW nebo HIGH; sloupec LOW zapne odpovídající LED a ve sloupci HIGH jej vypne.

Tabulka pinů

Tabulka rozložení pinů

Matice pin	Řádek	Sloupec	Arduino pin
1	5	-	13
2	7	-	12
3	-	2	11
4	-	3	10
5	8	-	A2
6	-	5	A3
7	6	-	A4
8	3	-	A5
9	1	-	2
10	-	4	3
11	-	6	4
12	4	-	5
13	-	1	6
14	2	-	7
15	-	7	8
16	-	8	9

Sestavení obvodu

Co budeme potřebovat?

Ko nta ktní pole

Elektronický obvod

Schéma zapojení

Programový kód

```
int pinA=2;
int pinB=6;
void setup() {
  pinMode(pinA,OUTPUT);
  pinMode(pinB,OUTPUT);
  digitalWrite(pinA,HIGH);
 digitalWrite(pinB,HIGH);
void loop() {
  digitalWrite(pinB,LOW);
  delay(200);
 digitalWrite(pinB,HIGH);
 delay(200);
```


Úkol pro vás

Upravte obvod zapojení displeje a programový kód předchozího příkladu tak, aby blikaly i diody ve všech rozích stejně jako dioda první.

Úkol pro vás

```
int pinA=2;
int pinB=6;
int pinC=9;
int pinD=A2;
void setup() {
  pinMode(pinA,OUTPUT);
  pinMode(pinB,OUTPUT);
  digitalWrite(pinA,HIGH);
  digitalWrite(pinB,HIGH);
  pinMode(pinC,OUTPUT);
  pinMode(pinD,OUTPUT);
  digitalWrite(pinC,HIGH);
  digitalWrite(pinD,HIGH);
void loop() {
  digitalWrite(pinB,LOW);
  digitalWrite(pinD,HIGH);
  delay(200);
  digitalWrite(pinB,LOW);
  digitalWrite(pinD,HIGH);
  delay(200);
```


Úkol pro vás

Změňte programový kód předchozího příkladu tak, aby diody v protilehlých rozích blikali střídavě.

```
int pinA=2;
int pinB=6;
int pinC=9;
int pinD=A2;
void setup() {
  pinMode(pinA,OUTPUT);
  pinMode(pinB,OUTPUT);
  digitalWrite(pinA,HIGH);
  digitalWrite(pinB,HIGH);
  pinMode(pinC,OUTPUT);
  pinMode(pinD,OUTPUT);
  digitalWrite(pinC,HIGH);
  digitalWrite(pinD,HIGH);
```

```
void loop() {
  digitalWrite(pinB,HIGH);  // změna na HIGH
  digitalWrite(pinD,LOW);  // změna na LOW
  delay(200);

  digitalWrite(pinB,LOW);
  digitalWrite(pinD,HIGH);
  delay(200);
}
```