MANAGEMENT AND ANALYSIS OF PHYSICS DATASET (MOD. A)

Memory Elements Sequential Circuits

• If both inputs are at 1, the circuit keep memory of the previous state

A	B	Q_2	Q_1
0	0	1	1
1	0	1	0
0	1	0	1
1	1	X	\overline{X}

Latch

- Flip-flop set-reset (S-R)
 - A synchronization input t is added
 - If t is not present the output doesn't change

S^n	R^n	Q^{n+1}	\overline{Q}^{n+1}
0	0	Q^n	\overline{Q}^n
1	0	1	0
0	1	0	1
1	1	-	-

$$Q^{n+1} = (Q \overline{S} \overline{R} + S \overline{R})^n = (S + Q \overline{R})^n$$

$$SR = 0$$

- Flip-flop J-K
 - It removes the forbidden state
- Flip-flop D
 - Only one input
- How to build J-K and D?

J^n	K ⁿ	Q^{n+1}	\overline{Q}^{n+1}
0	0	Q^n	\overline{Q}^n
1	0	1	0
0	1	0	1
1	1	\overline{Q}^n	Q^n

$$Q^{n+1} = \left(Q\,\overline{J}\,\overline{K} + J\,\overline{K} + \overline{Q}\,J\,K\right)^n = \left(Q\,\overline{K} + \overline{Q}\,J\right)^n$$

D^n	Q^{n+1}	\overline{Q}^{n+1}
0	0	1
1	1	0

$$O^{n+1} = D^n$$

Usually, memory elements are controlled by logic functions

a_0^n	a_1^n	Q^n	Q^{n+1}	S^n	R^n	J^n	K ⁿ	D^n
0	0	0	0	0	Χ	0	X	0
1	0	0	0	0	Χ	0	Χ	0
0	1	0	1	1	0	1	Χ	1
1	1	0	1	1	0	1	Χ	1
0	0	1	0	0	1	Χ	1	0
1	0	1	1	X	0	Χ	0	1
0	1	1	0	0	1	Χ	1	0
1	1	1	1	Χ	0	Χ	0	1

$$S = a_1 \overline{Q} \qquad J = a_1 \qquad \qquad S = J \overline{Q} \\ R = \overline{a_0} Q \qquad K = \overline{a_0} \qquad \qquad R = KQ$$

$$J = a_1 K = \overline{a_0}$$

$$D = a_0 Q + a_1 \overline{Q}$$

$$K = \overline{D}$$

Exercises

- Make a J-K flip-flop from a D flip-flop
- Find the truth table of the flip-flop with the following equation $Q^{n+1} = [Q \oplus (M \oplus N)]^n$
- Make the above flip-flop from a J-K flip-flop

Counters and registers

Decimal counter

- Design a 0-9 counter
- $A^{n+1} = [\overline{A}]^n$
- $B^{n+1} = [B(\overline{A}) + \overline{B}(A\overline{D})]^n$
- $C^{n+1} = \left[C(\overline{A} + \overline{B}) + \overline{C}(AB) \right]^n$
- $D^{n+1} = \left[D(\overline{A}) + \overline{D}(ABC)\right]^n$
- 4 FF J-K and 3 logic ports
 (assuming the complement of each variable is available)

D^n	C^n	B^n	A^n	D^{n+1}	C^{n+1}	B^{n+1}	A^{n+1}
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0

Johnson counter

- It is a counter without switching incertitude because it changes only one bit at a time
- m-bit Johnson counter -> sequence of 2m numbers
- If we use the redundant terms, we get

$$A^{n+1} = \overline{C^n}$$

$$B^{n+1} = A^n$$

$$C^{n+1} = B^n$$

- It nicely corresponds to a D flip-flop chain, but if the system starts by chance from a redundant term, it never get out!
- We need to avoid that making the schematics a little bit more complex

$$A^{n+1} = \overline{C^n}$$

$$B^{n+1} = [A(B + \overline{C})]^n$$

$$C^{n+1} = B^n$$

A^n	B^n	C^n	A^{n+1}	B^{n+1}	<i>C</i> ⁿ⁺¹
0	0	0	1	0	0
1	0	0	1	1	0
1	1	0	1	1	1
1	1	1	0	1	1
0	1	1	0	0	1
0	0	1	0	0	0

Shift register

- It is used to shift a signal
- Its design can be obtained by the sequential table
- Without feedback can be used to access in parallel to a serial data or to serialize a parallel data

Each cell can have a multiplexer to choose if shifting the bit or loading

a new bit

Memory

- It can be seen as an array of FF
- A decoder is used for addressing the data row
- A tristate allows read/write operation
- Memory size = data width x 2^{address width}
- Random Access Memory (RAM)
 - If Read Only is called ROM
 - It can contain a truth table -> It implements any combinatorial function (one for each data bit)

Exercises

- Design a 4-bit down counter
- Design an n-bit shift register that starts from a state where all the bits are equal to zero: $00...0 \rightarrow 10...0$, etc.

- A general schema for functions that control sequential logic take into account external signals ${\cal C}$ and produce control signals ${\cal P}$
 - Mealey state machine: P is function of C and Q
 - Moore state machine: P is only function of Q
- Moore outputs are synchronous

• Find the transition (1,0) -> (0,1) of two bits (M,N)

M	N	A^n	B^n	A^{n+1}	B^{n+1}	Z
0	0	0	0	0	0	0
1	0	0	0	1	0	0
0	1	0	0	0	0	0
1	1	0	0	0	0	0
0	0	1	0	0	0	0
1	0	1	0	1	0	0
0	1	1	0	0	1	1
1	1	1	0	0	0	0
0	0	0	1	0	0	0
1	0	0	1	1	0	0
0	1	0	1	0	0	0
1	1	0	1	0	0	0

• Find the transition (1,0) -> (0,1) of two bits (M,N)

$$A^{n+1} = (M \overline{N})^n$$

$$B^{n+1} = (A \overline{M} N)^n$$

$$Z = B$$

• Find the sequence ...011010... on a data line *M*

M	A^n	B^n	C^n	A^{n+1}	B^{n+1}	C^{n+1}
0	0	0	0	1	0	0
1	0	0	0	0	0	0
0	1	0	0	1	0	0
1	1	0	0	0	1	0
0	0	1	0	1	0	0
1	0	1	0	1	1	0
0	1	1	0	0	0	1
1	1	1	0	0	0	0
0	0	0	1	1	0	0
1	0	0	1	1	0	1
0	1	0	1	0	1	1
1	1	0	1	1	1	0
0	0	1	1	1	0	0
1	0	1	1	0	0	0

Exercises

- Complete the previous example designing the state machine circuit with the use of J-K flip-flops
- Design a controller for an elevator
 - The elevator can be at one of the three floors: Ground, First and Second
 - There is a button that controls the elevator, and it has two possible values: up and down
 - The elevator goes up one floor every time you set the button to "up", and goes down one floor every time you set the button to "down"
 - There are two lights in a row in the elevator that indicate the current floor: both lights off (00) indicates the ground floor; the left light off and right light on (01) indicates the first floor; the right light off and left right on (10) indicates the second floor