Fourier Series and PDEs Notes

Sam Lowe

December 13, 2021

Contents

1	Review of 2341 and Preliminaries 1.1 Review of MATH 2341	3
2	Fourier Series	5
3		5
	3.1 Four Standard Cases	. 5
4	The 1-D Homogeneous Heat Equation	6
	4.1 Derivation	. 6
	4.2 Solution	. 6
5	n-Dimensional Heat Equation	6
6	The Wave Equation	6
	6.1 1-Dimensional Case	. 6
	6.1.1 Derivation	. 6
	6.1.2 Homogeneous Solution	
	6.1.3 Non-homogeneous Solution	
	6.2 On a Circular Membrane	
	0.2 011 0 011 0 011 0 110 1110 1 1 1 1 1 1	. 7
		. 7

7	The	Laplace Equation	7
	7.1	2-Dimensional Case	7
		7.1.1 Derivation	7
		7.1.2 Homogeneous Solution	7
		7.1.3 Non-homogeneous Solution	7
	7.2	n-Dimensional Case	7
		7.2.1 Solution	7
8	Oth	er Equations	7
	8.1	Brownian Motion	7
	8.2	Diffusion-Convection Problems	7
	8.3	Black-Scholes Equation	7
	8.4	Schrödinger Equation	8
	8.5	Klein-Gordon Equation	8
	8.6	Telegraph Equation	8
	8.7	Dissipative Waves	8
	8.8	Transverse Vibrations of a Rod	8
	8.9	Helmholtz Equation	8
	8.10	Steady-state Connective Heat	9
	8.11	Plane Problems in Continuum Mechanics	9
	8.12	Euler-Tricomi Equation	9
		Fisher Equation	9
		Boussinesq Equation	9
	8.15	Navier-Stokes Fluid Flow Equations	9
9	The	Laplace Transform	10
10	The	Fourier Transform	10
11	The	Method of Green's Functions	10

1 Review of 2341 and Preliminaries

Lecture 1

We can write an ordinary differential equation to find the temperature at any point on a rod of length L; T(x) could represent the temperature, where x is length. However, we know that the temperature at each point also depends on time, so we have to expand our model to cover two variables.

We need partial derivatives. For our temperature function T = f(x,t), we'll be concerned with $\frac{\partial T}{\partial x}$ and $\frac{\partial T}{\partial t}$.

We have heat equation in one dimension,

$$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2}$$

which can also be written as $T_t = T_{xx}$. This equation has no general solution. However, we can solve it using Fourier series.

Wave equation in one dimension measures displacement u(x,t)

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

Maxwell's equation, which is used in communication.

Navier-Stokes equation which is used in weather forecasting.

In ordinary differential equations, a general solution always exists. In PDEs, there are no general solutions.

1.1 Review of MATH 2341

First order separable differential equations take the form

$$\frac{dy}{dx} = f(x)g(y)$$

with solution

$$\int \frac{1}{g(y)} dy = \int f(x) dx$$

yielding G(y) = F(x) + C which is the implicit general solution, and can typically be rearranged to isolate y and yield an explicit general solution.

Example: y' = xy which yields the explicit solution $|y| = e^{\frac{x^2}{2} + C}$, typically written as $Ce^{\frac{x^2}{2}}$, so y equals either $Ce^{\frac{x^2}{2}}$ or $-Ce^{\frac{x^2}{2}}$.

We also have **first-order linear differential equations** (some of which are separable!). y' + p(x)y = q(x). We find the integrating factor $I(x) = e^{\int p(x)dx}$. Multiplying both sides by I(x) yields I(x)y + p(x)I(x)y = I(x)q(x); the left side resembles the product rule of (I(x)y)'. So we integrate $I(x)y = \int I(x)q(x)dx + C$.

Example: $y' - \frac{1}{x}y = 2x + 1$ for x > 0. We set $p(x) = -\frac{1}{x}$ and get $I(x) = e^{-\ln(x)} = \frac{1}{x}$. We then have $\frac{1}{x}y' - \frac{1}{x^2}y = \left(\frac{1}{x}y\right)' = 2 + \frac{1}{x}$. Integrating yields $\frac{1}{x}y = 2x + \ln(x) + C$ so $y = 2x^2 + x \ln(x) + Cx$.

Second order constant-coefficient differential equations take the form ay'' + by' + cy = 0 for $a \neq 0$. The solution is $y = e^{rx} \rightarrow y' = re^{rx} \rightarrow y'' = r^2e^{rx}$ where each r is the roots of the characteristic equation (polynomial) $at^2 + bt + c = 0$.

- If $b^2 4ac > 0$, $r_1 \neq r_2$ and both are real. Our solution is $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$, which we call a **superposition**
- If $b^2 = 4ac$ then $r_1 = r_2$ and our solution is $y = C_1 e^{r_1 x} + x e^{r_1 x}$
- Finally, if $b^2-4ac < 0$, both r_1 and r_2 are complex. Setting $q = 4ac-b^2$, our solution take the form

$$y(x) = e^{\beta x} \left[c_1 \cos(qx) + c_2 \sin(qx) \right]$$

If p > 0, the sine wave's amplitude increases; if p < 0, it decreases.

We also should summarize some basic facts about the trigonometric functions:

- $\sin(x)$ has period 2π radians with zeroes located at $n\pi$ for $n \in \mathbb{Z}$.
- In general, $\sin(\beta x)$ and $\cos(\beta x)$ have period $\frac{2\pi}{\beta}$.
- For L > 0 and real, if we have $\sin(\frac{n\pi x}{L})$ and $\cos(\frac{n\pi x}{L})$, the period is $\frac{2\pi}{n\pi} = \frac{2L}{n}$ so 2L is the common period for any function of this form.

If we want to compute

$$I = \int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx$$

integrating by parts¹ with

$$u = \cos\left(\frac{n\pi x}{L}\right)$$

$$dv = \cos\left(\frac{m\pi x}{L}\right)$$

$$du = -\frac{n\pi}{L}\sin\left(\frac{n\pi x}{L}\right)$$

$$v = \int\cos\left(\frac{m\pi x}{L}\right)dx = \frac{L}{m\pi}\sin\left(\frac{m\pi x}{L}\right)$$

$$I = uv\Big|_{-L}^{L} - \frac{L}{m\pi}\int_{-L}^{L}\sin\left(\frac{m\pi x}{L}\right)\frac{-n\pi}{L}\sin\left(\frac{m\pi x}{L}\right)dx$$

$$= \frac{n}{m}\int_{-L}^{L}\sin\left(\frac{n\pi x}{L}\right)\sin\left(\frac{m\pi x}{L}\right)dx = \frac{n}{m}\int_{-L}^{L}udv$$

$$= \frac{n^{2}}{m^{2}}\int_{-L}^{L}\cos\left(\frac{n\pi x}{L}\right)\cos\left(\frac{m\pi x}{L}\right) = \frac{n^{2}}{m^{2}}I$$

So $I = \frac{n^2}{m^2} I$ implying $(m^2 - n^2) I = 0$. Either m = n or I = 0, so

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) = 0$$

for n = 1, 2, 3, ..., m = 1, 2, 3, ..., and $m \neq n$

2 Fourier Series

$$f(x) \sim \frac{a_0}{2} \sum_{n=1}^{\infty}$$

3 Sturm-Liouville Problems

3.1 Four Standard Cases

1.

 $[\]int u dv = uv - \int v du$

3.

4.

4 The 1-D Homogeneous Heat Equation

$$u_t = k u_{xx}$$

4.1 Derivation

4.2 Solution

5 n-Dimensional Heat Equation

$$u_t = k(\Delta u)$$

where Δ is the Laplacian operator given by

$$(\Delta v)(x_1, ..., x_n) = \sum_{i=1}^{n} v_{x_i x_i}$$

6 The Wave Equation

6.1 1-Dimensional Case

$$u_{tt} = c^2 u_{xx} + q(x,t)$$

6.1.1 Derivation

6.1.2 Homogeneous Solution

When q(x,t) is identically zero, we have the homogeneous equation

$$u_{tt} = c^2 u_{xx}$$

6.1.3 Non-homogeneous Solution

When q(x,t) is not identically zero, the solution to

$$u_{tt} = c^2 u_{xx} + q(x,t)$$

is

- 6.2 On a Circular Membrane
- 6.2.1 Solution
- 6.3 n-Dimensional Case

 $u_{tt} =$

6.3.1 Solution

7 The Laplace Equation

7.1 2-Dimensional Case

$$u_{xx} + u_{yy} = 0$$

- 7.1.1 Derivation
- 7.1.2 Homogeneous Solution
- 7.1.3 Non-homogeneous Solution
- 7.2 n-Dimensional Case
- 7.2.1 Solution
- 8 Other Equations
- 8.1 Brownian Motion

$$u_t(x,t) = au_{xx}(x,t) - bu_x(x,t)$$

8.2 Diffusion-Convection Problems

$$u_t(x,t) = ku_{xx}(x,t) - au_x(x,t)bu(x,t)$$

8.3 Black-Scholes Equation

$$V_t(S,t) + \frac{1}{2}\sigma^2 S^2 V_{SS}(S,t) + rSV_S(S,t) - rV(S,t) = 0$$

8.4 Schrödinger Equation

Evolution of a Quantum State

$$ih\psi_t(x,t) = -\frac{\hbar^2}{2m}$$

8.5 Klein-Gordon Equation

Motion of a Quantum Scalar Field

$$\psi_{tt}(x, y, z, t) = c^2 \Delta \psi(x, y, z, t) - \frac{m^2 c^4}{\hbar^2} \psi(x, y, z, t)$$

With $i^2 = -1$ and c being the speed of light. In one dimension,

$$u_{tt}(x,t) = c^2 u_{xx}(x,t) - au(x,t)$$

for constant a > 0.

8.6 Telegraph Equation

$$au_{tt}(x,t) + bu_t(x,t) + cu(x,t) = u_{xx}(x,t)$$

8.7 Dissipative Waves

$$u_{tt}(x,t)+au_t(x,t)+bu(x,t)=c^2u_{xx}(x,t)-du_x(x,t)$$
 $a,b,d\geq 0$ not all 0 and $c>0$

8.8 Transverse Vibrations of a Rod

$$u_{tt}(x,t) + c^2 u_{xxxx}(x,t) = 0$$

8.9 Helmholtz Equation

$$\Delta u(x, y, z) + k^2 u(x, y, z) = 0$$

$$\Delta u(x, y, z) - k^2 u(x, y, z) = 0$$

8.10 Steady-state Connective Heat

$$\Delta u(x,y) - au_x(x,y) - bu_y(x,y) + cu(x,y) = 0$$

8.11 Plane Problems in Continuum Mechanics

$$\Delta \Delta u(x,y) = u_{xxxx}(x,y) + 2u_{xxyy}(x,y) + u_{yyyy}(x,y) = 0$$

8.12 Euler-Tricomi Equation

Plane Transonic Flow

$$u_{xx}(x,t) = xu_{xx}(x,t)$$

where u(x,t) is a function of speed.

8.13 Fisher Equation

Advance of advantageous genes in a population

$$u_t(x,t) = Du_{xx}(x,t) + ru(x,t)(1 - u(x,t))$$

8.14 Boussinesq Equation

Fluid dynamics

$$\eta_{tt}(x,t) - gh\eta_{xx}(x,t) - gh\left(\frac{2}{3h}\eta^2(x,t) + \frac{h^2}{3}\eta_{xx}(x,t)\right)_{xx} = 0$$

8.15 Navier-Stokes Fluid Flow Equations

The Navier-Stokes fluid-flow equations are the system of partial differential equations given by

$$\nabla \cdot u = 0$$

$$\rho \left(\frac{\partial u}{\partial t} + (u \cdot \nabla)u \right) = -\nabla p + u \nabla^2 u + \rho F$$

which model every known fluid. The first equation in the system represents the conservation of mass, and the second represents the conservation of momentum.

Millenium Problem (Navier-Stokes Existence and Smootheness) Prove or give a counterexample to the following statement: in three space dimensions and time, given an initial velocity field, there exists a vector velocity and a scalar pressure field, which are both smooth and globally defined, that solve the Navier-Stokes equations.

9 The Laplace Transform

The Laplace transform can be used to "suppress" the time variable t > 0 in a PDE; for one-dimensional equations, this yields an ordinary differential equation in U(x, s) where s is a constant.

10 The Fourier Transform

The Fourier transform can be used to "suppress" spatial variables $-\infty < x, y, z, \dots < \infty$ much the same way that the Laplace transform "suppresses" the time variable.

11 The Method of Green's Functions