Lecture 6

Sampling errors for OLS regressions

- 1. review of "classic normal" case from Lecture 5
- 2. more general case "robust" standard errors
- 3. even more general case "clustered" standard errors

Recap: The population regression is:

$$y_i = x_i' \beta^* + u_i.$$

We assume:

- 1. independent sample of size N
- 2. no linear dependency in x_i

Classic normal case:

given the x's each of the u_i are iid normals: $u_i \sim N(0,\sigma_u^2)$

Write:

$$\widehat{\beta} = \left(\frac{1}{N} \sum_{i=1}^{N} x_i x_i'\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} x_i y_i$$

$$= S_{xx}^{-1} \frac{1}{N} \sum_{i=1}^{N} x_i (x_i' \beta^* + u_i)$$

$$= S_{xx}^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} x_i x_i'\right) \beta^* + S_{xx}^{-1} \frac{1}{N} \sum_{i=1}^{N} x_i u_i$$

$$= \beta^* + \sum_{i=1}^{N} a_i(X) u_i$$

where $a_i(X) = \frac{1}{N} S_{xx}^{-1} x_i$. $\hat{\beta} - \beta^*$ is a weighted sum of the $u_i's \Rightarrow$ normal distribution, given X.

$$\widehat{\beta} - \beta^* = \sum_{i=1}^{N} a_i(X)u_i$$

$$E[\hat{\beta} - \beta^* | X] = E[\sum_{i=1}^{N} a_i(X)u_i | X] = \sum_{i=1}^{N} a_i(X)E[u_i | X] = 0$$

so we know

$$E[\widehat{\beta}|X] = \beta^*$$

Now we want to get the matrix of variances and covariances, $V_{\beta} \equiv Var[\widehat{\beta} - \beta^*|X]$. This is a $K \times K$ matrix.

The (r,r) element is:

$$Var[\widehat{\beta}_r - \beta_r^* | X] = E[(\widehat{\beta}_r - \beta_r^*)^2 | X]$$

The (r, s) element is:

$$Cov[\widehat{\beta}_r - \beta_r^*, \widehat{\beta}_s - \beta_s^* | X] = E[(\widehat{\beta}_r - \beta_r^*)(\widehat{\beta}_s - \beta_s^*) | X]$$

We know
$$\hat{\beta} - \beta^* = \sum_{i=1}^N a_i u_i \Rightarrow \hat{\beta_r} - \beta_r^* = \sum_{i=1}^N a_{ri} u_i$$

AND all the $u_i's$ are uncorrelated. So:

$$Var[(\widehat{\beta}_{r} - \beta_{r}^{*})|X] = \sum_{i=1}^{N} a_{ri}^{2} \sigma_{u}^{2} = \sigma_{u}^{2} \sum_{i=1}^{N} a_{ri}^{2}$$

$$Cov[\widehat{\beta}_{r} - \beta_{r}^{*}, \widehat{\beta}_{s} - \beta_{s}^{*}|X] = \sum_{i=1}^{N} a_{ri}a_{si}\sigma_{u}^{2} = \sigma_{u}^{2} \sum_{i=1}^{N} a_{ri}a_{si}$$

$$\Rightarrow Var[\widehat{\beta} - \beta^{*}|X] = \sigma_{u}^{2} \sum_{i=1}^{N} a_{i}a_{i}'$$

So we've shown

$$Var[\widehat{\beta_r} - \beta_r^* | X] = \sigma_u^2 \sum_{i=1}^N a_i a_i'$$

and using $a_i=\frac{1}{N}S_{xx}^{-1}x_i$, $a_i'=\frac{1}{N}x_i'S_{xx}^{-1}$ (since S_{xx} and S_{xx}^{-1} are symm.)

$$Var[\hat{\beta}_r - \beta_r^* | X] = \sigma_u^2 \sum_{i=1}^N \frac{1}{N^2} S_{xx}^{-1} x_i x_i' S_{xx}^{-1}$$
$$= \frac{1}{N} \sigma_u^2 S_{xx}^{-1}$$

In standard regression packages, the reported matrix of samp. errors is:

$$\widehat{V}_{\beta} = \frac{1}{N} \widehat{\sigma}_u^2 S_{xx}^{-1}$$

There are 2 limitations of the "classic normal" model.

1. The classic case says that $E[y_i|x_i] = x_i'\beta^*$. When that is not true, the error for the i^{th} observation is

$$u_i = y_i - E[y_i|x_i] + E[y_i|x_i] - x_i'\beta^*$$

= $\varepsilon_i + v_i$

and $v_i \equiv E[y_i|x_i] - x_i'\beta^*$ (the specification error) depends on x_i .

2. In lots of cases $u_i \sim Normal$ is not appropriate (e.g., $y_i = 1[z_i > 0]$ discrete)

So in this lecture we "tech up" our sampling errors!

We need 4 results from statistics. Suppose we have an iid sample of size N; A_N is $K \times K$ matrix of sample statistics with property $plim\ A_N = A$

- 1. If A is invertible then $plim(A_N)^{-1} = (plim A_N)^{-1} = A^{-1}$
- 2. If b_N is $K \times 1$ vector with $plim \, b_N = 0$, then $plim \, A_N b_N = 0$.
- 3. (vector CLT). If z_i i.i.d $(K \times 1)$ vector with $E[z_i] = 0$, $Var[z_i] = V$ then:

$$\sqrt{N}\overline{z}_N = \frac{1}{\sqrt{N}} \sum_{i=1}^N z_i \xrightarrow{a} N(0, V)$$

4. If
$$\sqrt{N}b_N \xrightarrow{a} N(0, V)$$
 then $\sqrt{N}A_Nb_N \xrightarrow{a} N(0, AVA')$

Using these results:

$$\widehat{\beta} = \left(\frac{1}{N} \sum_{i=1}^{N} x_i x_i'\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} x_i y_i$$

$$= S_{xx}^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} x_i x_i'\right) \beta^* + S_{xx}^{-1} \frac{1}{N} \sum_{i=1}^{N} x_i u_i$$

$$= \beta^* + S_{xx}^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} x_i u_i\right)$$

$$\Rightarrow \widehat{\beta} - \beta^* = S_{xx}^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} x_i u_i \right)$$

$$\Rightarrow \widehat{\beta} - \beta^* = S_{xx}^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} x_i u_i \right)$$

Let $z_i = x_i u_i$. We know $E[z_i] = E[x_i u_i] = 0$ (FOC for β^*).

Let $E[(z_i - E[z_i])(z_i - E[z_i])'] = V$ (the variance of the r.v. z_i)

We know from w.l.l.n that $plim \frac{1}{N} \sum_{i=1}^{N} z_i = E[z_i] = 0$

We know from vector CLT that $\left(\frac{1}{\sqrt{N}}\sum_{i=1}^{N}z_i\right) \xrightarrow{a} N(0,V)$

Assume: $plim S_{xx} = plim \left(\frac{1}{N} \sum_{i=1}^{N} x_i x_i'\right) = S_{xx}^*$ exists and is invertible

and $Var[x_iu_i] = V$

Then

$$p\lim \widehat{\beta} - \beta^* = 0 \tag{1}$$

$$\sqrt{N}(\widehat{\beta} - \beta^*) \xrightarrow{a} N(0, [S_{xx}^*]^{-1} V [S_{xx}^*]^{-1})$$
 (2)

How to prove (1): $plim \hat{\beta} - \beta^* = 0$?

$$plim \, \hat{\beta} - \beta^* = plim \, S_{xx}^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} x_i u_i \right)$$
$$= [S_{xx}^*]^{-1} \, plim \, \frac{1}{N} \sum_{i=1}^{N} x_i u_i = 0$$

How to prove (2): $\sqrt{N}(\hat{\beta} - \beta^*) \xrightarrow{a} N(0, [S_{xx}^*]^{-1} V[S_{xx}^*]^{-1})$?

$$\sqrt{N}(\widehat{\beta} - \beta^*) = S_{xx}^{-1} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_i u_i$$

Now $plim\ S_{xx}^{-1}=[S_{xx}^*]^{-1}$. And by vecCLT, $\frac{1}{\sqrt{N}}\sum_{i=1}^N x_iu_i \xrightarrow{a} N(0,V)$. So using "result 4" we're done!

So in the "general case", we have

$$(\widehat{\beta} - \beta^*) \approx N(0, \frac{1}{N} [S_{xx}^*]^{-1} V [S_{xx}^*]^{-1})$$

where $V = Var[x_iu_i]$

In the classic normal case, we have (conditional on X)

$$(\widehat{\beta} - \beta^*) \sim N(0, \frac{1}{N} [S_{xx}]^{-1} \sigma_u^2)$$

where $\sigma_u^2 = Var[u_i]$.

$$N(0, \frac{1}{N} [S_{xx}^*]^{-1} V [S_{xx}^*]^{-1})$$
 vs. $N(0, \frac{1}{N} [S_{xx}]^{-1} \sigma_u^2)$

What's the difference?

- -approx. vs exact distribution
- -we aren't conditioning on \boldsymbol{X}
- -we don't assume $E[u_i|x_i] = 0$, only $E[x_iu_i] = 0$

$$N(0, \frac{1}{N} [S_{xx}^*]^{-1} V [S_{xx}^*]^{-1}) \quad vs. \quad N(0, \frac{1}{N} [S_{xx}]^{-1} \sigma_u^2)$$

How do we actually estimate the var-cov, \widehat{V}_{eta} in the general case?

- a) Approximate $S_{xx}^* = S_{xx}$. so estimate of $[S_{xx}^*]^{-1}$ is $[S_{xx}]^{-1}$
- b) estimate

$$\widehat{V} = \frac{1}{N} \sum_{i} (x_i \widehat{u}_i) (x_i \widehat{u}_i)' = \frac{1}{N} \sum_{i} \widehat{u}_i^2 (x_i x_i')$$

c) form $\hat{V}_{\beta} = \frac{1}{N} S_{xx}^{-1} \hat{V} S_{xx}^{-1}$

We are estimating: $\hat{V} = \frac{1}{N} \sum_{i} \hat{u}_{i}^{2}(x_{i}x_{i}')$. In the 3×3 case:

$$\widehat{V} = \frac{1}{N} \sum_{i} \begin{pmatrix} \widehat{u}_{i}^{2} & \widehat{u}_{i}^{2} x_{2i} & \widehat{u}_{i}^{2} x_{3i} \\ \widehat{u}_{i}^{2} x_{2i} & \widehat{u}_{i}^{2} x_{2i}^{2} & \widehat{u}_{i}^{2} x_{3i} x_{2i} \\ \widehat{u}_{i}^{2} x_{3i} & \widehat{u}_{i}^{2} x_{3i} x_{2i} & \widehat{u}_{i}^{2} x_{3i}^{2} \end{pmatrix}$$

What happens if \hat{u}_i^2 and $x_i x_i'$ are uncorrelated across obs?

USEFUL FACTOID:

If two random variables a_i and b_i are uncorrelated in a sample then

$$\frac{1}{N}\sum_{i}a_{i}b_{i} = \frac{1}{N}\sum_{i}a_{i}\frac{1}{N}\sum_{i}b_{i} = \bar{a}\bar{b}$$

Proof: write: $a_i = \bar{a} + a_i - \bar{a}$; $b_i = \bar{b} + b_i - \bar{b}$. Finish as an exercise.

So if \hat{u}_i^2 and $x_i x_i'$ uncorrelated in the sample,

$$\widehat{V} = \frac{1}{N} \sum_{i} \widehat{u}_{i}^{2}(x_{i}x_{i}') = \frac{1}{N} \sum_{i} \widehat{u}_{i}^{2} \frac{1}{N} \sum_{i} x_{i}x_{i}'$$

In the uncorrelated case

$$\widehat{V}_{\beta} = \frac{1}{N} S_{xx}^{-1} \widehat{V} S_{xx}^{-1} = \frac{1}{N} \left(\frac{1}{N} \sum_{i} \widehat{u}_{i}^{2} \right) S_{xx}^{-1}$$

$$\Rightarrow \hat{V}_{\beta} = \frac{1}{N} \tilde{\sigma}_u^2 S_{xx}^{-1}$$

which is the same as the classic normal except $\tilde{\sigma}_u^2$ does not correct for d.f.!

Important extension - samples with group-level dependence

- many data sets have a "grouped" design
- for example: we might have observations from people who all live in the same state
- we are often concerned that their errors are correlated ⇒noni.i.d. sample!
- we will sketch a way to deal with this

Assume:

- data are from G groups (g = 1, 2, ... G)
- in each group there are m observations (so N = Gm)
- u_i and u_j may be correlated if i,j are in same group
- we can label each observation by 2 subscripts (so $i \rightarrow gj$):

$$y_{gj} = x_{gj}\beta^* + u_{gj}$$

$$\widehat{\beta} - \beta^* = S_{xx}^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} x_i u_i \right)$$

so lets look at the sum term:

$$\frac{1}{N} \sum_{i=1}^{N} x_i u_i = \frac{1}{Gm} \sum_{g=1}^{G} \sum_{j} x_{gj} u_{gj}$$
$$= \frac{1}{G} \sum_{g=1}^{G} \left(\frac{1}{m} \sum_{j} x_{gj} u_{gj} \right)$$

Let's call $z_g = \frac{1}{m} \sum_j x_{gj} u_{gj}$. Then we can write the sum term as:

$$\frac{1}{N} \sum_{i=1}^{N} x_i u_i = \frac{1}{G} \sum_{g=1}^{G} z_g$$

So we have that:

$$\widehat{\beta} - \beta^* = S_{xx}^{-1} \left(\frac{1}{G} \sum_{g=1}^{G} z_g \right)$$

Each of the z_g terms is independent (from separate groups) and $E[z_g] = 0$, so we apply a CLT to

$$\sqrt{G}(\widehat{\beta} - \beta^*) = S_{xx}^{-1} \left(\frac{1}{\sqrt{G}} \sum_{g=1}^{G} z_g \right)$$

And if we knew $V(z_g) = \Omega$ then we could say that

$$\sqrt{G}(\widehat{\beta} - \beta^*) \xrightarrow{a} N(0, [S_{xx}^*]^{-1} \Omega [S_{xx}^*]^{-1}).$$

The "trick" is how to get an estimate of $V(z_g) = \Omega$. Lets consider the case where m=2

$$z_g = \frac{1}{m} \sum_{j} x_{gi} u_{gi}$$
$$= \frac{1}{2} (x_{g1} u_{g1} + x_{g2} u_{g2})$$

The variance of this is a $k \times k$ matrix:

$$V(z_g) = \frac{1}{4}E[(x_{g1}x'_{g1})u_{g1}^2 + (x_{g1}x'_{g2} + x_{g2}x'_{g1})u_{g1}u_{g2} + (x_{g2}x'_{g2})u_{g2}^2]$$

So we can estimate this using the estimated OLS residuals:

$$\widehat{\Omega} = \frac{1}{4G} \sum_{g} [(x_{g1} x'_{g1}) \widehat{u}_{g1}^2 + (x_{g1} x'_{g2} + x_{g2} x'_{g1}) \widehat{u}_{g1} \widehat{u}_{g1} + (x_{g2} x'_{g2}) \widehat{u}_{g2}^2]$$

Couple of points:

- need large number of groups or "clusters" at least 30
- our "degrees of freedom" are the number of clusters
- classical standard errors: $\hat{V}_{\beta}=\frac{1}{N}\hat{\sigma}_{u}^{2}S_{xx}^{-1}$
- robust standard errors: $\hat{V}_{\beta} = \frac{1}{N} S_{xx}^{-1} \hat{V} S_{xx}^{-1}$
- clustered standard errors: $\hat{V}_{\beta} = \frac{1}{N} S_{xx}^{-1} \hat{\Omega} S_{xx}^{-1}$

Clustered s.e.'s are good when we have "mis-specification" across groups of observations, as in the baby-weight example. The mis-specification means that the residuals for all observations with the same weight contain a shared error component

For the mom-baby linear regression (restricting to $200 \leq momweight \leq$ 200) we have:

$$-\hat{\beta}_2 = 3.733$$

- classical standard errors: $\hat{V}_{\beta}=\frac{1}{N}\hat{\sigma}_{u}^{2}S_{xx}^{-1}=.086056$
- robust standard errors: $\hat{V}_{\beta}=\frac{1}{N}S_{xx}^{-1}\hat{V}S_{xx}^{-1}=.087817$
- clustered standard errors: $\hat{V}_{\beta}=\frac{1}{N}S_{xx}^{-1}\hat{\Omega}S_{xx}^{-1}=.14617$

Baby's birth weight verus mother's weight

