

in granffity of f.

S.t.
$$d = p \circ \widetilde{\alpha}$$
 and $\beta = p \circ \widetilde{\beta}$.

(i) Since $\widetilde{\alpha}(1) = \widetilde{\beta}(1)$, $\widetilde{\alpha} * \widetilde{\beta}$ is well-defined.

(ii) Since $\widetilde{\alpha}(1) = \widetilde{\beta}(1)$, $\widetilde{\alpha} * \widetilde{\beta}$ is well-defined.

(iii) Define $f = \alpha \times \beta = \begin{cases} \alpha(2c) & s \in \mathbb{D}_{r}^{1/2} \\ \beta(2c) & s \in \mathbb{D}_{r}^{1/2} \end{cases}$ and $g = \widetilde{\alpha} * \widetilde{\beta} = \begin{cases} \widetilde{\alpha}(2s) & s \in \mathbb{D}_{r}^{1/2} \\ \widetilde{\beta}(2c-1) & s \in \mathbb{D}_{r}^{1/2} \end{cases}$.

Show $f = p \circ \alpha$

The $s \in \mathbb{D}_{r}^{1/2}$, $(p \circ q)(s) = p(g(s)) = p(\widetilde{\alpha}(s)) = \alpha(s)$

The $s \in \mathbb{D}_{r}^{1/2}$, $(p \circ q)(s) = p(g(s)) = p(\widetilde{\alpha}(s)) = \beta(s)$.

JASONRANDA MTH 532 Topology, II Homework 1.

Problem 1.

Recall that $\alpha = p \circ \widetilde{\alpha}$ and $\beta = p \circ \widetilde{\beta}$ by definition of lifting. Since $\alpha(1) = \beta(0)$, $\alpha * \beta$ is well-defined. Similarly, $\widetilde{\alpha} \circ \widetilde{\beta}$ is well-defined. Define $f = \alpha * \beta = \begin{cases} \alpha(2t) & t \in [0, \frac{1}{2}] \\ \beta(2t-1) & t \in [\frac{1}{2}, 1] \end{cases}$ and $g = \widetilde{\alpha} \circ \widetilde{\beta} = \begin{cases} \widetilde{\alpha}(2t) & t \in [0, \frac{1}{2}] \\ \beta(2t-1) & t \in [\frac{1}{2}, 1] \end{cases}$. To show that $g: I \to E$ is a lifting of $f: I \to B$, it suffices to show that $f = p \circ g$. For $t \in [0, \frac{1}{2}]$, $(p \circ g)(t) = p(g(t)) = p(\widetilde{\alpha}(2t)) = \alpha(2t) = f(t)$. For $t \in [\frac{1}{2}, 1]$, $(p \circ g)(t) = p(g(t)) = p(\widetilde{\beta}(2t-1)) = \beta(2t-1) = f(t)$. $\therefore g$ is a lifting of f.

Problem 2.

Part (1). Sketch what f books like on S'xS' and on D.

ONSIXSI:

O × O

Here, the path loops around the first circle once and avand the second circle twice.

ON D:

OR Chataide

DOUG

Part (2). Find a lifting f of f from IRXIR.

From Theorem 53.1, $p: R \rightarrow S'$ is given by $x \mapsto (\cos(2\pi x), \sin(2\pi x))$.

We dain that f: I → R×R given by t → (t, 2t) is a lifting of f.

And so, $((p \times p) \circ \widehat{f})(t) = (p \times p)(\widehat{f}(t)) = (p \times p)(t, \partial t) = (\cos(2\pi t), \sin(2\pi t)) \times (\cos(4\pi t), \sin(4\pi t)) = f(t)$.

Athough, F': I - IR x IR given by t - (t+a, 2t+b) with a, b & IL also works in general

Part (3). Sketch of J.

fix $x_0 = e^D = 1 \in S'$ to be the base point. Part(1). Consider the map $g(x) = 2^D$. Then, $g_{x}: \pi_{x}(S', 1) \to \pi_{x}(S', 1)$ is given by $[f] \mapsto [g \circ f]$.

Recall that $\pi_i(S',1) \cong \mathbb{Z}$ given by the covering map $p: \mathbb{R} \to S'$ given by $x \mapsto e^{i2\pi x}$ and its lifting correspondence $\phi: \pi_i(S',1) \to p'(1) \cong \mathbb{Z}$ given by $\phi(tf) = f(1)$ where f is the lifting of f. To compute g_x , we'll map $\mathbb{Z} \cong p'(1) \xrightarrow{\phi^{-1}} \pi_i(S',1) \xrightarrow{g_x} \pi_i(S',1) \xrightarrow{\phi} p'(1) \cong \mathbb{Z}$.

Also, recall that $\pi_i(S^1,1)\cong \mathbb{Z}$ is an infinite cyclic group. So, $\mathbb{Z}=\langle 1\rangle$ and $\pi_i(S^1,1)=\langle f\rangle$ with $f\colon I\to S^1$ given by $t\mapsto e^{2\pi i t}$. Since g_* is a homomorphism, it suffices to show what $g_*(\mathbb{Z}f)$ is to compute g_* .

So, $g_{\mathbf{X}}([f]) = [g \circ f]$ and $(g \circ f)(t) = g(e^{i\lambda nt}) = e^{i\lambda ntn}$ with $t \in I$ and $g \circ f : I \to S'$. Observe that $g \circ f : I \to \mathbb{R}$ given by $t \mapsto nt$ is a lifting of $g \circ f$. Then, $\phi([g \circ f]) = g \circ f(I) = n$. $g_{\mathbf{X}}([f]) = g_{\mathbf{X}}([f]) = n$.

 $\therefore \forall a \in \mathbb{Z}$, $g_*(a) = an$. That is, if f is a loop based at 1 on S^n , $g \circ f$ is the loop repeated n times.

Part CD. Consider the way $h(3) = \frac{1}{2}n = 2^{-n}$.

By a similar argument, $\forall a \in \mathbb{Z}$, $h_{\frac{1}{2}}(a) = -an$.

That is, if f is a loop based at 1 on 5^{1} , h of is the reversed loop repeated in times.