Correction S1PA B2 PIELD

Exercice 1 : calculs de primitives et intégrales

1. Remplir le tableau ci-dessous (sans se soucier du domaine de définition des fonctions). f désigne la fonction et F est une primitive de f.

f(x) =	$\ln(2)$	$x^4 + 2x$	e^x	$\sin(x)$	$1 + \tan^2(x)$	$\frac{1}{x^2}$	\sqrt{x}	$\frac{2}{x}$
F(x) =	$x \ln(2)$	$\frac{x^5}{5} + x^2$	e^x	$-\cos(x)$	$\tan(x)$	$-\frac{1}{x}$	$\frac{2}{3}x^{\frac{3}{2}}$	$2\ln(x)$

2. Donner une primitive F sur I de :

(a)
$$x \mapsto 6e^x - \frac{2}{3\sqrt{x}}, I =]0, +\infty[.$$

$$F(x) = 6e^x - \frac{4\sqrt{x}}{3}$$

(b)
$$x \longmapsto \frac{3x}{(x^2+1)^2}$$
, $I = \mathbb{R}$.

$$F(x) = -\frac{3}{2(x^2 + 1)}$$

3. Donner la primitive sur \mathbb{R} de $f: x \longmapsto \sin(x)\cos^3(x)$ qui vaut 2 en $\frac{\pi}{4}$.

Les primitives de f sur $\mathbb R$ sont de la forme $F(x)=-\frac{\cos^4(x)}{4}+c$ avec $c\in\mathbb R.$ Or

$$F\left(\frac{\pi}{4}\right) = 2 \Longleftrightarrow -\frac{\left(\frac{\sqrt{2}}{2}\right)^4}{4} + c = 2 \Longleftrightarrow -\frac{1}{16} + c = 2 \Longleftrightarrow c = \frac{33}{16}$$

La réponse est donc la fonction $x \mapsto -\frac{\cos^4(x)}{4} + \frac{33}{16}$

4. Calculer $I = \int_{0}^{1} e^{2u+1} du$.

$$I = \left[\frac{e^{2u+1}}{2}\right]_0^1 = \frac{e^3 - e}{2}.$$

5. Calculer $J = \int_0^1 \frac{1}{3t+1} dt$.

$$J = \left\lceil \frac{\ln(3t+1)}{3} \right\rceil_0^1 = \frac{\ln(4)}{3} = \frac{2\ln(2)}{3}.$$

6. Calcular $K = \int_0^{\sqrt{\frac{\pi}{6}}} x \cos(x^2) dx$.

$$K = \left[\frac{1}{2}\sin(x^2)\right]_0^{\sqrt{\frac{\pi}{6}}} = \frac{1}{2}\sin\left(\frac{\pi}{6}\right) = \frac{1}{4}.$$

Exercice 2: aire sous la courbe

On considère la fonction
$$f$$
 définie $sur [-2,3]$ par $f(x) = \begin{cases} 1 & \text{si} \quad x \in [-2,0] \\ x+1 & \text{si} \quad x \in]0,1] \\ -x+3 & \text{si} \quad x \in]1,3] \end{cases}$

1. Construire ci-dessous la courbe représentative de f sur [-2,3].

2. La fonction f est-elle continue sur [-2,3]? f admet-elle une primitive sur [-2,3]? Justifier.

Il est clair que la fonction f est continue sur [-2,3]. Toute fonction continue sur un intervalle I admet une primitive sur I. Donc f admet bien une primitive sur [-2,3].

3. Déterminer graphiquement $\int_{-2}^{3} f(t) dt$. Vous expliquerez en vous servant de votre dessin.

$$\int_{-2}^{3} f(t) dt = A1 + A2 + A3 + A4 \text{ car } f \text{ est positive sur } [-2, 3]. \text{ Ainsi, } \int_{-2}^{3} f(t) dt = 2 \times 1 + 1 \times 1 + \frac{1 \times 1}{2} + \frac{2 \times 2}{2} = \frac{11}{2}.$$

4. Retrouver le résultat précédent par un calcul de l'intégrale que vous détaillerez.

On utilise la relation de Chasles:

$$\int_{-2}^{3} f(x) dx = \int_{-2}^{0} f(x) dx + \int_{0}^{1} f(x) dx + \int_{1}^{3} f(x) dx$$

$$= \int_{-2}^{0} 1 dx + \int_{0}^{1} (x+1) dx + \int_{1}^{3} (-x+3) dx$$

$$= [x]_{-2}^{0} + \left[\frac{x^{2}}{2} + x\right]_{0}^{1} + \left[-\frac{x^{2}}{2} + 3x\right]_{1}^{3}$$

$$= 2 + \frac{1}{2} + 1 - \frac{9}{2} + 9 + \frac{1}{2} - 3 = \frac{11}{2}$$

Exercice 3 : propriétés des intégrales

Les questions sont indépendantes.

1. Calcular
$$I = \int_2^3 \sqrt{e^{t^2} + 1} \, dt + \int_3^2 \sqrt{e^{x^2} + 1} \, dx$$

$$I = \int_2^3 \sqrt{e^{t^2} + 1} \, dt - \int_2^3 \sqrt{e^{x^2} + 1} \, dx = 0$$

2. Soit f une fonction continue sur \mathbb{R} . On suppose que :

$$\int_{1}^{8} f(t) dt = \ln(8), \quad \int_{1}^{5} f(t) dt = \ln(2e^{3}) \text{ et } \int_{3}^{5} f(t) dt = \ln(\sqrt{2}) + 3$$

Donner $I = \int_3^8 f(t) dt$ en fonction de $\ln(2)$.

$$I = \int_3^5 f(t) dt + \int_5^8 f(t) dt = \int_3^5 f(t) dt + \int_1^8 f(t) dt - \int_1^5 f(t) dt \text{ par Chasles.}$$

Ainsi,
$$I = \ln(\sqrt{2}) + 3 + \ln(8) - \ln(2e^3) = \frac{1}{2}\ln(2) + 3 + 3\ln(2) - \ln(2) - 3 = \frac{5\ln(2)}{2}$$
.

3. Montrer que pour tout $t \in [2,4]$, $2t^2 - t^3 \le 0$. En déduire, sans calcul que $\int_2^4 2t^2 dt \le \int_2^4 t^3 dt$.

Pour tout $t \in [2, 4], \ 2t^2 - t^3 = t^2(2 - t) \le 0$. Ainsi, $\forall t \in [2, 4], \ 2t^2 \le t^3$. D'où le résultat.

4. Soit $f: x \longmapsto (x+2)^2$ dont la courbe est représentée ci-dessous.

(a) Déterminer l'aire de la surface hachurée.

Il faut calculer $A = \int_{-1}^{1} f(x) dx$.

On a
$$A = \int_{-1}^{1} (x+2)^2 dx = \left[\frac{(x+2)^3}{3} \right]_{-1}^{1} = \frac{3^3}{3} - \frac{1}{3} = 9 - \frac{1}{3} = \frac{26}{3}$$

(b) Calculer la valeur moyenne de f sur [-1, 1]

$$\mu = \frac{1}{1 - (-1)}A = \frac{13}{3}.$$

Exercice 4 : équations différentielles

- 1. Résoudre dans]0, + ∞ [l'équation différentielle (E) : $4y' \frac{2}{x}y = -\frac{1}{x}$.
 - Étape 1 : résolution de (E_0) : $4y' \frac{2}{x}y = 0$ sur $]0, +\infty[$.

On a $y_0(x) = ke^{-\int \frac{-2}{4}} dx = ke^{\int \frac{1}{2x}} dx = ke^{\frac{1}{2}\ln(x)} = k\sqrt{x}$ avec $k \in \mathbb{R}$.

- Étape 2 : solution particulière de (E). La fonction $y_p: x \longmapsto \frac{1}{2}$ est une solution évidente.
- Étape 3 : conclusion

$$S = \left\{ \begin{array}{ccc}]0, +\infty[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & k\sqrt{x} + \frac{1}{2} \end{array} ; k \in \mathbb{R} \right\}$$

- 2. Résoudre dans $[0, +\infty[$ l'équation différentielle (E): $(x+1)y'-y=(x+1)^2\sin(x)$.
 - Étape 1 : résolution de (E_0) : (x+1)y'-y=0 sur $]0,+\infty[$.

On a $y_0(x) = ke^{-\int \frac{-1}{(x+1)}} dx = ke^{\int \frac{1}{x+1}} dx = ke^{\ln(x+1)} = k(x+1)$ avec $k \in \mathbb{R}$.

• Étape 2 : solution particulière de (E). On utilise la méthode de variation de la constante. On cherche y_p sous la forme $y_p(x) = k(x)(x+1)$.

On a $y'_p(x) = k'(x)(x+1) + k(x)$. Ainsi

 y_p SP de $(E) \iff (x+1)y_p'(x) - y_p(x) = (x+1)^2 \sin(x) \iff k'(x)(x+1)^2 + (x+1)k(x) - k(x)(x+1) = (x+1)^2 \sin(x) \iff k'(x) = \sin(x)$.

Choisissons par exemple $k(x) = -\cos(x)$. On obtient $y_p(x) = -\cos(x)(x+1)$

• Étape 3 : conclusion

$$S = \left\{ \begin{array}{ccc} [0, +\infty[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & k(x+1) - \cos(x)(x+1) \end{array} ; k \in \mathbb{R} \right\}$$

- 3. Résoudre dans \mathbb{R} l'équation différentielle (E): $y'' 2y' + y = xe^x$.
 - Étape 1 : résolution de (E_0) : y'' 2y' + y = 0 sur $]0, +\infty[$.

L'équation caractéristique associée est (C) $r^2 - 2r + 1 = 0$ c'est-à-dire $(r-1)^2 = 0$. Ainsi, $y_0(x) = (k_1x + k_2)e^x$, avec $(k_1, k_2) \in \mathbb{R}^2$.

• Étape 2 : solution particulière de (E). On la cherche sous la forme $y_p(x) = Q(x)e^x$. On a $y_p'(x) = (Q' + Q)e^x$ et $y_p''(x) = (Q'' + 2Q' + Q)e^x$. Ainsi,

$$y_p$$
 SP de $(E) \iff y_p''(x) - 2y_p'(x) + y_p(x) = xe^x \iff (Q'' + 2Q' + Q - 2Q' - 2Q + Q)e^x = xe^x \iff Q'' = x$
En primitivant, on peut prendre $Q' = \frac{x^2}{2}$ ainsi, $Q = \frac{x^3}{6}$. On en déduit : $y_p(x) = \frac{x^3}{6}e^x$.

• Étape 3 : conclusion

$$S = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & (k_1 x + k_2) e^x + \frac{x^3}{6} e^x \end{array} ; (k_1; k_2) \in \mathbb{R}^2 \right\}$$