Devoir Maison

30 septembre 2016

1 Treillis et compagnie

Question 1 Parmis les ordres ci-dessous, lesquels sont des treillis complets? L'ensemble vide est-il un treillis?

Question 2 Montrer que si (P, \leq) a tous les suprema, alors P est un treillis complet.

Question 3 Soit $f: P \to P'$ une fonction entre treillis complets. Si f préserve tous les suprema, f préserve-t-elle nécessairement tous les infima?

Question 4 Soit X un ensemble quelconque, P un treillis complet et $f: X \to P$ une application. Montrer qu'il existe une unique application $\tilde{f}: \mathcal{P}(X) \to P$ tel que $\tilde{f}(\bigcup A) = \sup\{f(x) \mid x \in A\}$ et $f(x) = \tilde{f}(\{x\})$.

Question 5 Rappeler la preuve du théorème de Knaster-Tarski.

2 Relations bien fondées

Définition 1 Soit $R \subseteq A \times A$ une relation arbitraire.

x est un élément minimal de $X\subseteq A$ pour R si pour tout $y\in X,$ y R x implique x=y.

Une relation $R\subseteq A\times A$ est bien fondée dès que toute partie $X\subseteq A$ admet un élément minimal.

 ${\bf Question} \ \ {\bf 6} \quad {\bf Donner} \ \ {\bf un} \ \ {\bf exemple} \ \ {\bf et} \ \ {\bf un} \ \ {\bf contre-exemple} \ \ {\bf de} \ \ {\bf relation} \ \ {\bf bien}$ fondée.

Question 7 Montrer que toutes les relations bien fondées sont irréflexives.

Question 8 Montrer que la cloture transitive d'une relation bien fondée est une relation bien fondée.

Soit $R \subseteq A \times A$ une relation. On définit $Acc(R) \subseteq A$ l'ensemble des éléments de a accessibles par R par la règle inductive suivante (x est fixé) :

Si pour tout y tel que y R x on a $y \in Acc(R)$, alors $x \in Acc(R)$.

Question 9 Expliquer comment légitimer cette définition via le théorème de Knaster-Tarski. Quel est le principe d'induction associé?

Question 10 Instancier cette définition sur \mathbb{N} muni de la relation $\{(x, x+1), x \in \mathbb{N}\}$. Que remarquez-vous sur le principe d'induction associé?

Question 11 Montrer que si Acc(R) = A si et seulement si R est une relation bien fondée.

3 Induction up-to

4 Un énième théorème de point fixe

Définition 2 Soit (A, \leq) un ordre partiel.

Une partie $X\subseteq A$ est dirigée si tout $x,y\in A$ admettent un majorant commun.

On appelle A un dCPO si toutes les parties dirigées de A admettent un supremum.

Le but de cet exerice est de démontrer le théorème suivant (qui est une généralisation du théorème de Knaster-Tarski).

Théorème 1 Soit (U, \leq) un dCPO et $f: U \to U$ une fonction monotone. f admet un plus petit point fixe.

Pour le restant de l'exercice, supposons que (U, \leq) est un dCPO.

Question 12 Remarquer que tout dCPO admet un plus petit élément \bot .

Définition 3 Si (P, \leq) est un ordre, une fonction $f: P \to P$ sera appelée gonflante $si \ \forall x \in P \ x \leq f(x)$.

Question 13 Montrer que la composée de deux fonctions monotones et gonflantes est une fonction monotone et gonflante.

Définition 4 X est un dCPO induit par (U, \leq) si $X \subseteq U$, $\bot \in X$ et que les suprema dans X et U pour \leq sont les mêmes.

Question 14 Démontrer que $A := \{x \in U \mid x \le f(x)\}$ est un dCPO induit par U. Que remarquez-vous sur l'ensemble Fix(f) des points fixes de f?

À l'aune de cette dernière remarque, on se ramène au cas où A=U. En conséquence, f sera désormais supposée gonflante sur U. Quêtons des points fixes.

Question 15 Montrer que U^U est un dCPO pour l'ordre point à point (que l'on notera aussi \leq).

Question 16 Posons G l'ensemble des fonctions de U^U qui sont à la fois monotones et gonflantes. Montrer que G est un dCPO induit par U^U . Quel est son plus petit élément?

Question 17 Montrer que G est dirigée. En conclure qu'il existe un plus grand élément $T \in G$.

Question 18 Montrer que pour tout $x \in U$, T(x) est un point fixe de f.

Question 19 Exhiber un exemple où $\top(x)$ n'est pas le plus petit point fixe de f, et ce quelque soit le x choisi.

C'est frustrant. Mais retenons que l'on a quand même prouvé le lemme suivant.

Lemme 1 Toute fonction monotone sur un dCPO admet un point fixe.

Question 20 Appelons $\mathcal{D}(U)$ l'ensemble des dCPO induits par U. Montrer que $\mathcal{D}(U)$ est stable par intersection (et donc un treillis complet).

U est trop gros.

Question 21 Montrer qu'il existe un plus petit dCPO que l'on nommera S induit par U et stable par f (c'est à dire $f(S) \subseteq S$). Appliquer notre lemme à S et conclure.