Intro to Annotation

Michael Schatz

October 2, 2024
Lecture I I. Applied Comparative Genomics

Goal: Genome Annotations

atgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctgggaat cgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcg gctatgctaatgcatgcggctatgctaagctcatgcgg

Goal: Genome Annotations

a at g cat g c g g c tat g c ta g c tat g c ta g g at c c g at g a cat g c g g c tat g c ta t g c tat g c tagcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggct atgctaatgaatggtcttgggatt ctatgctaagctgggaatgcatgcg Gene! gctatgctaagctgggatccgat atgcggctatgcaagctgggatccg atgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctgggaat cgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcg gctatgctaatgcatgcggctatgctaagctcatgcgg

What are genome intervals?

- Genetic variation:
 - SNPs: Ibp
 - Indels: I-50bp
 - SVs: >50bp
- Genes:
 - exons, introns, UTRs, promoters
- Conservation
- Transposons
- Origins of replication
- TF binding sites
- CpG islands
- Segmental duplications
- Sequence alignments
- Chromatin annotations
- Gene expression data
- •
- Your own observations and data: put them into context!

BEDTools to the rescue!

BEDTools Intersect

What exons are hit by SVs?

```
$ cat A.bed
chr1    10    20
chr1    30     40

$ cat B.bed
chr1    15     20

$ bedtools intersect -a A.bed -b B.bed -wa
chr1    10     20
```

What parts of exons are hit by SVs?

```
$ cat A.bed
chr1 10 20
chr1 30 40

$ cat B.bed
chr1 15 20

$ bedtools intersect -a A.bed -b B.bed
chr1 15 20
```

BEDTools Merge

What parts of the genome are exonic?

bedtools merge -i exons.bed | head -n 20 chr1 11873 12227 chr1 12612 12721 chr1 13220 14829 chr1 14969 15038 chr1 15795 15947 16606 16765 chr1 chr1 16857 17055 47222 47260

Note input must be sorted!

sort -k1,1 -k2,2n foo.bed > foo.sort.bed

BEDTools commands

annotate

bamtobed

bamtofastq

bed12tobed6

bedpetobam

bedtobam

closest

cluster

complement

coverage

expand

flank

fisher

genomecov

getfasta

groupby

groupby

igv

intersect

jaccard

links

makewindows

map

maskfasta

merge

multicov

multiinter

nuc

overlap

pairtobed

pairtopair

random

reldist

shift

shuffle

slop

sort

subtract

tag

unionbedg

window

http://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html

Goal: Genome Annotations

a at g cat g c g g c tat g c ta g c tat g c ta g g at c c g at g a cat g c g g c tat g c ta t g c tat g c tagcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggct atgctaatgaatggtcttgggatt ctatgctaagctgggaatgcatgcg Gene! gctatgctaagctgggatccgat atgcggctatgcaagctgggatccg atgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctgggaat cgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcg gctatgctaatgcatgcggctatgctaagctcatgcgg

Outline

- I. Alignment to other genomes
- 2. Prediction aka "Gene Finding"
- 3. Experimental & Functional Assays

Outline

- I. Alignment to other genomes
- 2. Prediction aka "Gene Finding"
- 3. Experimental & Functional Assays

Basic Local Alignment Search Tool

- Rapidly compare a sequence Q to a database to find all sequences in the database with a score above some cutoff S.
 - Which protein is most similar to a newly sequenced one?
 - Where does this sequence of DNA originate?
- Speed achieved by using a procedure that typically finds "most" matches with scores > S.
 - Tradeoff between sensitivity and specificity/speed
 - Sensitivity ability to find all related sequences
 - Specificity ability to reject unrelated sequences

Seed and Extend

FAKDFLAGGVAAAISKTAVAPIERVKLLLQVQHASKQITADKQYKGIIDCVVRIPKEQGV FLIDLASGGTAAAVSKTAVAPIERVKLLLQVQDASKAIAVDKRYKGIMDVLIRVPKEQGV

- Homologous sequences are likely to contain a short high scoring word pair, a seed.
 - Smaller seed sizes make the sense more sensitive, but also (much)
 slower
 - Typically do a fast search for prototypes, but then most sensitive for final result
- BLAST then tries to extend high scoring word pairs to compute high scoring segment pairs (HSPs).
 - Significance of the alignment reported via an e-value

Seed and Extend

- Homologous sequences are likely to contain a short high scoring word pair, a seed.
 - Smaller seed sizes make the sense more sensitive, but also (much)
 slower
 - Typically do a fast search for prototypes, but then most sensitive for final result
- BLAST then tries to extend high scoring word pairs to compute high scoring segment pairs (HSPs).
 - Significance of the alignment reported via an e-value

BLAST E-values

E-value = the number of HSPs having alignment score S (or higher) expected to occur by chance.

- → Smaller E-value, more significant in statistics
- → Bigger E-value, less significant
- → Over I means expect this totally by chance (not significant at all!)

The expected number of HSPs with the score at least S is:

$$E = K*n*m*e^{-\lambda S}$$

K, λ are constant depending on model
 n, m are the length of query and sequence
 E-values quickly drop off for better alignment bits scores

Very Similar Sequences

Quite Similar Sequences

```
Query: HBA HUMAN Hemoglobin alpha subunit
Sbjct: MYG HUMAN Myoglobin
Score = 51.2 bits (121), Expect = 1e-07,
Identities = 38/146 (26%), Positives = 58/146 (39%), Gaps = 6/146 (4%)
Ouerv 2 LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-----DLSHGSAOV
                               +G E L R+F
         LS +
                 V
                     WGKV A
                                           PT
                                                                     62
Sbict 3 LSDGEWOLVLNVWGKVEADIPGHGOEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL
Ouerv 56 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA
                                                                     115
         K HG V AL
                                 + L+ HA K ++
                                                   + +S C++ L + P
Sbjct 63 KKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPG
                                                                     122
Query 116 EFTPAVHASLDKFLASVSTVLTSKYR
                                     141
          +F
                  +++K L
                              + S Y+
Sbjct 123 DFGADAQGAMNKALELFRKDMASNYK
```

Not similar sequences

```
Query: HBA HUMAN Hemoglobin alpha subunit
Sbjct: SPAC869.02c [Schizosaccharomyces pombe]
 Score = 33.1 \text{ bits } (74), Expect = 0.24
 Identities = 27/95 (28%), Positives = 50/95 (52%), Gaps = 10/95 (10%)
Query 30 ERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAH 89
           ++M ++P
                        P+F+ +H +
                                        + +A AL N
                                                    ++DD+
                                                           +LSA D
      59 QKMLGNYPEV---LPYFNKAHQISL--SQPRILAFALLNYAKNIDDL-TSLSAFMDQIVV 112
Sbjct
Query 90 K---LRVDPVNFKLLSHCLLVTLAAHLPAEF-TPA 120
              L++
                    ++ ++ HCLL T+
                                    LP++ TPA
Sbjct 113 KHVGLQIKAEHYPIVGHCLLSTMQELLPSDVATPA 147
```

Blast Versions

Program	Database	Query	
BLASTN	Nucleotide	Nucleotide	
BLASTP	Protein	Protein	
BLASTX	Protein	Nucleotide translated into protein	
TBLASTN	Nucleotide translated into protein	Protein	
TBLASTX	Nucleotide translated into protein	Nucleotide translated into protein	

NCBI Blast

Nucleotide Databases

- nr:All Genbank
- refseq: Reference organisms
- wgs:All reads

Protein Databases

- nr:All non-redundant sequences
- Refseq: Reference proteins

Outline

- I. Alignment to other genomes
- 2. Prediction aka "Gene Finding"
- 3. Experimental & Functional Assays

Bacterial Gene Finding and Glimmer

(also Archaeal and viral gene finding)

Arthur L. Delcher and Steven Salzberg
Center for Bioinformatics and Computational Biology
Johns Hopkins University

Genetic Code

Second letter

	U	С	Α	G	
U	UUU } Phe UUA } Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	UCAG
С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIN CAG	CGU CGC CGA CGG	UCAG
Α	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU } Asn AAC } Lys AAG } Lys	AGU }Ser AGC }Arg AGG }Arg	UCAG
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG	GGU GGC GGA GGG	UCAG

First letter

Start:

- AUG

Stop:

- UAA
- UAG
- UGA

Third letter

Step One

• Find open reading frames (ORFs).

Step One

Find open reading frames (ORFs).

But ORFs generally overlap ...

All ORFs longer than 100bp on both strands shown - color indicates reading frame Longest ORFs likely to be protein-coding genes

Note the low GC content

All genes are ORFs but not all ORFs are genes

Note what happens in a high-GC genome

P(heads) = 61/64 (95.4%) P(tails) = 3/64 (4.6%)

How many flips until my first tail?

\$./coinflip.pl 0.046875 1000

```
15
0:
  НННННННННННТ
1:
  HHHHHHT7
  НННННННННТ
            12
3:
  НННННННННННННННННН 24
4.
  HT 2
5:
  HHHHHHHHHHHHT 14
6:
  HHHHHHHHHT 10
7:
  НННННННННННТ 14
8:
  HHHHHT 6
9:
  ННННННННТ
            11
10:
  11:
  12:
  НННННННННННННННННННННННННННННННННННННН
13:
  HHHT
       4
  НННННННННННТ
               15
14·
15:
  ННННННННННННННННННННННННННННННННННН
16:
  HHHHHT 6
  17·
  ННННННННННННННННННННН
18:
                       26
19.
  НННННННННТ
            12
```

P(heads) = 61/64 (95.4%) P(tails) = 3/64 (4.6%)

How many flips until my first tail?

P(heads) = 61/64 (95.4%) P(tails) = 3/64 (4.6%)

How many flips until my first tail?

Geometric Distribution: $P(X=x) = p_{heads}^{x-1}p_{tails}$

P(heads) = 61/64 (95.4%) P(tails) = 3/64 (4.6%)

How many flips until my first tail?

Geometric Distribution: $P(X=x) = p_{heads}^{x-1}p_{tails}$

P(heads) = 61/64 (95.4%) P(tails) = 3/64 (4.6%)

How many flips until my first tail?

Geometric Distribution: $P(X=x) = p_{heads}^{x-1}p_{tails}$

Stop Codon Frequencies

If the sequence is mostly A+T, then likely to form stop codons by chance!

In High A+T (Low G+C):

Frequent stop codons; Short Random ORFs; long ORFs likely to be true genes

In High G+C (Low A+T):

Rare stop codons; Long Random ORFs; harder to identify true genes

A relationship between GC content and coding-sequence length. Oliver & Marín (1996) J Mol Evol. 43(3):216-23.

Temporal Convolutional Network

Balrog: A universal protein model for prokaryotic gene prediction

Sommer, MJ, Salzberg, SL (2021) PLOS Comp. Bio. doi: 10.1371/journal.pcbi.1008727

Probabilistic Methods

- Create models that have a probability of generating any given sequence.
 - Evaluate gene/non-genome models against a sequence
- Train the models using examples of the types of sequences to generate.
 - Use RNA sequencing, homology, or "obvious" genes
- The "score" of an orf is the probability of the model generating it.
 - Most basic technique is to count how kmers occur in known genes versus intergenic sequences
 - More sophisticated methods consider variable length contexts, "wobble" bases, other statistical clues