On va comparer dans ce TP la « force » de différents acides dans l'eau.

Solution d'acide sulfamique	Solution d'acide	Solution d'acide	Solution de chlorure
	chlorhydrique	éthanoïque	d'ammonium
Préparer par dissolution 100 mL de solution aqueuse avec 0,97 g d'acide sulfamique NH ₂ SO ₃ H _(s) , puis diluer la solution au dixième.	Solution aqueuse obtenue par dissolution dans l'eau du chlorure d'hydrogène HC _(g)	Solution aqueuse obtenue par dissolution dans l'eau de l'acide éthanoïque CH ₃ COOH _(ℓ)	Solution aqueuse obtenue par dissolution dans l'eau du chlorure d'ammonium $\mathrm{NH_4C\ell_{(s)}}$ puis réaction entre $\mathrm{NH_4^+_{(aq)}}$ et l'eau.
Concentration apportée en acide sulfamique: C = 1,0·10-2 mol.L-1	Concentration	Concentration	Concentration
	apportée en chlorure	apportée en acide	apportée en ion
	d'hydrogène HCl :	éthanoïque :	ammonium NH ₄ + :
	C = 1,0·10-2 mol.L-1	C = 1,0·10 ⁻² mol.L ⁻¹	C = 1,0·10 -2 mol.L -1

Préparer la solution d'acide sulfamique avec le matériel à disposition.

1. Vérifier la concentration apportée C en acide sulfamique.

Donnée: $M = 97,0 \text{ g·mol}^{-1}$

pН

Étalonner le pH-mètre avec les solutions de tampon pH = 7 et pH = 4.

Solution d'acide sulfamique	Solution d'acide chlorhydrique	Solution d'acide éthanoïque	Solution de chlorure d'ammonium

Mesurer le pH des 4 solutions :

- 2. Établir la relation entre pH et C pour un acide fort.
- 3. Des 4 acides testés, lesquels peuvent-ils être qualifiés de fort ? On considèrera que l'incertitude-type sur les pH est : $\mathfrak{u}(pH) = 0.05$.
- 4. Montrer que la constante d'acidité peut s'exprimer comme :

$$K_{\rm A} = \frac{[{\rm H_3O^+}]^2}{c^{\rm o} (C - [{\rm H_3O^+}])}$$

5. Montrer que le taux d'avancement de la réaction entre l'acide faible et l'eau peut s'exprimer comme :

$$\tau = \frac{10^{-\text{pH}}}{C}$$

- 6. Pour chacun des acides identifiés comme faibles :
 - a. indiquer le couple acide-base auquel il appartient ;
 - b. déterminer la valeur du taux d'avancement τ de sa réaction avec l'eau ;
 - c. déterminer la valeur de la constante d'acidité $K_{\rm A}$ puis celle du p $K_{\rm A}$.
- 7. Conclure quant au lien entre la force d'un acide et les grandeurs calculées.