NAME:MALLA SAILESH

ROLL NUMBER: 2021101106

GROUP NUMBER: 6

LAB 4 DIGITAL SYSTEM AND MICROCONTROLLERS

AIM:

To design an Arithmetic and Logic Unit (ALU) capable of performing 8 arithmetic and logic functions using 1 bit operands.

F) F	1 F2	ALU function	Y1	Υ0
0	0	0	Zero	-	0
0	0	1	A OR B	-	A+B
0	1	0	A AND B	-	A.B
0	1	1	A XOR B	-	A (+) B
1	0	0	A PLUS B	Carry	Sum
1	0	1	A MINUS B	Carry	Difference
1	1	0	A PLUS B PLUS C	Carry	Sum
1	1	1	A MINUS B MINUS C	Carry	Difference

Note: First 4 are Logic Functions generating output Y0 and next 4 are Arithmetic functions generating output Y1Y0 in two bits.

ELECTRONIC COMPONENTS:

- 1) Arduino
- 2) LED
- 3) Resistor
- 4) BreadBoard
- 5) Logic Gates

LINK TO THE REFERENCE CIRCUIT:

https://crcit.net/c/8d54bd3a06ed4af6b18412a69416554e

PROCEDURE:

- 1) There are two output bits Y0 and Y1 which are generated using Multiplexers MUX0 and MUX1 respectively .
- 2) Here, MUX 0 is enabled always and MUX 1 is enabled only when F2 = 1 i.e for Arithmetic functions only because Carry and Borrow are only there for Arithmetic functions.
- 3) Verify theoretically that MUX 0 and MUX1 generate outputs Y0 and Y1 respectively.

- 4) Give F0,F1,F2,A,B,C as inputs to circuit from the arduino .
- 5) Apply all the combinations of the Function select inputs F2F1F0 one by one and tabulate the observed outputs Y0 and Y1 for as many combinations of the data inputs A, B, C as possible.

```
6) Code:
   int F2,F1,F0,A,B,C;
   void setup()
    pinMode(2, OUTPUT);
    pinMode(3, OUTPUT);
    pinMode(4, OUTPUT);
    pinMode(5, OUTPUT);
    pinMode(6, OUTPUT);
    pinMode(7, OUTPUT);
    Serial.begin(96000);
   }
   void loop()
    Serial.print("F2=");
    while(Serial.available()==0){};
    F2 = Serial.read();
    F2=F2-'0';
    Serial.println(F2);
    digitalWrite(2,F2);
    Serial.print("F1=");
    while(Serial.available()==0){};
    F1 = Serial.read();
    F1=F1-'0';
    Serial.println(F1);
    digitalWrite(3,F1);
    Serial.print("F0=");
    while(Serial.available()==0){};
    F0 = Serial.read();
    F0=F0-'0';
    Serial.println(F0);
    digitalWrite(4,F0);
    Serial.print("A=");
    while(Serial.available()==0){};
    A = Serial.read();
    A=A-'0';
```

```
Serial.println(A);
 digitalWrite(5,A);
 Serial.print("B=");
 while(Serial.available()==0){};
 B = Serial.read();
 B=B-'0';
 Serial.println(B);
 digitalWrite(6,B);
 Serial.print("C=");
 while(Serial.available()==0){};
 C = Serial.read();
 C=C-'0';
 Serial.println(C);
 digitalWrite(7,C);
 Serial.println("Enter the values again");
}
```

CONCLUSION:

F2F1F0	AB	: 00	01	10	11
000		Y0=0	Y0=0	Y0=0	Y0=0
001		Y0=0	Y0=1	Y0=1	Y0=1
010		Y0=0	Y0=0	Y0=0	Y0=1
011		Y0=0	Y0=1	Y0=1	Y0=0
100		Y0=0	Y0=1	Y0=1	Y0=0
		Y1=0	Y1=0	Y1=0	Y1=1
101		Y0=0	Y0=1	Y0=1	Y0=0
		Y1=0	Y1=1	Y1=0	Y1=0
110	C=0	Y0=0	Y0=1	Y0=1	Y0=0
		Y1=0	Y1=0	Y1=0	Y1=1

	C=1	Y0=1	Y0=0	Y0=0	Y0=1
		Y1=0	Y1=1	Y1=1	Y1=1
111	C=0	Y0=0	Y0=1	Y0=1	Y0=0
		Y1=0	Y1=1	Y1=0	Y1=0
	C=1	Y0=1	Y0=0	Y0=0	Y0=1
		Y1=1	Y1=1	Y1=0	Y1=1

LINK TO THE TINKERCAD SIMULATION:

https://www.tinkercad.com/things/heOO7IHws7v-copy-of-2-81-mux/editel?sharecode=6kH 5di6OBxZyapiKgIRBEeLNwK0Tx3I6MNuiv1f5Hgc

SCREENSHOTS OF OUTPUTS:

1)

2)

3)

4)

