TD7: formes quadratiques

Exercices * : à préparer à la maison avant le TD, seront corrigés en début de TD.

Exercices ** : seront traités en classe en priorité.

Exercices $\star \star \star \star$: plus difficiles.

Exercice 1: *

Décomposer sous forme de combinaison linéaire de carrés les formes quadratiques réelles suivantes; en déduire leur signature et leur rang.

- a) $f(x, y, z) = x^2 2y^2 + xz + yz$.
- b) $f(x,y,z) = 2x^2 2y^2 6z^2 + 3xy 4xz + 7yz$.
- c) $f(x, y, z) = 3x^2 + 3y^2 + 3z^2 2xy 2xz 2yz$.
- d) f(x, y, z, t) = xy + yz + zt + tx.
- e) $f(x_1, ..., x_n) = \sum_{1 \le i < j \le n} x_i x_j$.
- f) $f(A) = \operatorname{tr}(A^2)$, pour $A \in M_n(\mathbb{R})$.
- g) $f(A) = \operatorname{tr}({}^{t}AA)$, pour $A \in M_n(\mathbb{R})$.
- h) $f(A) = \operatorname{tr}(A)^2$, pour $A \in M_n(\mathbb{R})$.

Exercice 2:

Soit $n \geq 1$ et soit $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes réels de degré inférieur ou égal à n. Pour tous $P, Q \in \mathbb{R}_n[X]$, on pose :

$$B(P,Q) = \int_0^1 tP(t)Q'(t)dt \qquad \text{et} \qquad f(P) = B(P,P).$$

- a) Montrer que B est une forme bilinéaire. Est-elle symétrique? Antisymétrique?
- b) La forme f a-t-elle des vecteurs isotropes non nuls?
- c) Calculer la matrice de f dans la base $(1, X, \ldots, X^n)$.
- d) Pour n=2, déterminer la signature de f. La forme f est-elle positive? Négative?

Exercice 3: *

Soit K un corps de caractéristique différente de 2. Soit P un K-espace vectoriel de dimension 2, muni d'une forme quadratique f. Quelles sont valeurs possibles pour le nombre de droites isotropes de f? Donner un exemple dans chaque cas.

Exercice 4: **

Soit K un corps de caractéristique différente de 2 et soit E un K-espace vectoriel de dimension finie. Soient f et f' des formes quadratiques sur E vérifiant $f^{-1}(0) = (f')^{-1}(0)$.

- a) Supposons K algébriquement clos. Montrer qu'il existe $a \in K^{\times}$ tel que l'on ait f' = af.
- b) Donner un contre-exemple pour $K = \mathbb{R}$ et $E = \mathbb{R}^2$.

Exercice 5: **

Soit K un corps de caractéristique différente de 2, soit E un K-espace vectoriel de dimension finie non nulle et soit H un hyperplan de E. Soient de plus f une forme quadratique non dégénérée sur E et u un élément de $\mathcal{O}(E, f)$ vérifiant $u_{|H} = \mathrm{id}_H$.

a) Si $f_{|H}$ est non dégénérée, montrer que u est soit l'identité, soit la réflexion orthogonale d'hyperplan H.

b) Si $f_{|H}$ est dégénérée, montrer que u est l'identité.

Exercice 6:

Soit $n \geq 1$ et soit $E = \mathbb{R}^{n+1}$ muni de la forme quadratique

$$f(x_0, \dots, x_n) = x_0^2 - (x_1^2 + \dots + x_n^2),$$

de forme bilinéaire b. Un sous-espace F de E est dit elliptique si $f_{|F}$ est définie négative, hyperbolique si $f_{|F}$ est de signature (1, m) avec $m \ge 1$ et parabolique si F est isotrope.

- a) Soit F un sous-espace de dimension au moins 2 tel qu'il existe $x \in F$ avec f(x) > 0. Montrer que F est hyperbolique.
- b) Soit F un sous-espace elliptique de dimension au plus n-1. Montrer que F^{\perp} est hyperbolique.
- c) Soit F un sous-espace parabolique. Montrer que $f|_F$ est de rang dim F-1.

Exercice 7: **

Soient $p \neq q$ deux nombres premiers impairs. On note $\left(\frac{p}{q}\right)$ l'entier qui vaut 1 si p est un carré modulo q et -1 sinon. On note $S := \{(x_1, \dots, x_p) \in \mathbb{F}_q^p : \sum_i x_i^2 = 1\}$.

- a) Montrer que $\left(\frac{q}{p}\right) \equiv q^{\frac{p-1}{2}} \ [p].$
- b) En considérant une action de groupe, montrer que $|S| \equiv 1 + \left(\frac{p}{q}\right)$ [p].
- c) Montrer qu'il existe une base de \mathbb{F}_q^p dans laquelle la forme quadratique $\sum_i X_i^2$ admet pour matrice diag $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, (-1)^{\frac{p-1}{2}} \end{pmatrix}$.
- d) En déduire que $|S| = q^{\frac{p-1}{2}} (q^{\frac{p-1}{2}} + (-1)^{\frac{p-1}{2} \frac{q-1}{2}}).$
- e) Conclure que $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$ (c'est la loi de réciprocité quadratique).

Exercice 8: $\star\star\star$

Soient $a, b, c \in \mathbb{Z}$ sans facteurs carrés. On considère la forme quadratique $f(x, y, z) := ax^2 + by^2 + cz^2$ sur \mathbb{O}^3 .

- a) À quelle condition sur a, b, c la forme f est-elle isotrope sur \mathbb{R} ?
- b) On suppose a, b > 0 et c = -1 et on note d le pgcd de a et b. Montrer que la forme quadratique f est isotrope sur \mathbb{Q} si et seulement si les trois conditions suivantes sont satisfaites
 - i) a est un carré modulo b.
 - ii) b est un carré modulo a.
 - iii) $-\frac{ab}{d^2}$ est un carré modulo d.
- c) On suppose désormais a, b, c deux-à-deux premiers entre eux. Montrer que f est isotrope sur \mathbb{Q} si et seulement si f est isotrope sur \mathbb{R} et les trois conditions suivantes sont satisfaites
 - i) -ab est un carré modulo c.
 - ii) -ac est un carré modulo b.
 - iii) -bc est un carré modulo a.
- d) Sous les hypothèses de la question c), montrer que f est isotrope sur \mathbb{Q} si et seulement si f est isotrope sur \mathbb{R} et pour tout nombre premier p, pour tout entier $m \geq 1$, il existe $(x, y, z) \in \mathbb{Z}^3$ non tous divisibles par p tels que $f(x, y, z) \equiv 0$ $[p^m]$.
- e) Vérifier que dans l'équivalence précédente, il suffit de prendre p|abc et m=2.
- f) Soit q une forme quadratique non dégénérée sur \mathbb{Q}^3 . Donner un algorithme permettant de décider si q est isotrope.

Exercice 9: $\star \star \star$

Soit K un corps. On définit son niveau $s(K) \in \mathbb{N} \cup \{\infty\}$ et, si la caractéristique de K n'est pas 2, son u-invariant $u(K) \in \mathbb{N} \cup \{\infty\}$ par

$$s(K) := \inf\{n \ge 1 \mid \exists (x_1, \dots, x_n) \in K^n \mid x_1^2 + \dots + x_n^2 = -1\}$$

et

$$u(K) := \sup \{ \dim(q) : q \text{ forme quadratique anisotrope sur } K \},$$

avec la convention que l'infimum de l'ensemble vide est ∞ .

a) Montrer que $u(K) \ge s(K)$.

forme quadratique

- b) Calculer s(K) et u(K) si K est algébriquement clos.
- c) Donner un exemple de corps K avec $s(K) = \infty$ et un exemple avec $u(K) = \infty$ et $s(K) < \infty$.
- d) Montrer que des corps isomorphes ont même niveau et même u-invariant. Les réciproques sontelles vraies?
- e) Montrer que le niveau d'un corps fini est égal à 1 ou 2. Montrer que le u-invariant d'un corps fini vaut 2.
- f) Montrer l'égalité s(K)=s(K(X)).On suppose désormais que K de caractéristique différente de 2. Pour $n\geq 1$, on considère la

$$f_n(x_1,\ldots,x_n) = \sum_{i=1}^n x_i^2.$$

- g) Montrer que f_n admet un vecteur isotrope si et seulement si on a $s(K) \leq n-1$.
- h) Supposons $n=2^k$ avec $k \in \mathbb{N}$. Montrer que pour tout $x=(x_1,\ldots,x_n) \in K^n$ non nul, il existe une matrice T_x de première ligne (x_1,\ldots,x_n) vérifiant

$${}^tT_xT_x = T_x^tT_x = f_n(x_1, \dots, x_n)I_n.$$

- i) En déduire que l'ensemble des sommes non nulles de 2^k carrés d'éléments de K est un groupe multiplicatif.
- j) Montrer que le niveau d'un corps est soit infini, soit une puissance de 2.