Metody Numeryczne – sprawozdanie

Szybka transformata sinusowa

Laboratorium nr 11

Adam Młyńczak 410702, Informatyka Stosowana

1. Cel ćwiczenia

Na zajęciach laboratoryjnych naszym zadaniem było odszumienie sygnału. Mieliśmy tego dokonać przy pomocy algorytmu szybkiej transformaty sinusowej.

2. Opis problemu

Mamy dany sygnał okresowy:

$$y_0(i) = \sin(\omega i) + \sin(2\omega i) + \sin(3\omega i)$$

gdzie i to numer próbki sygnału, parametr ω obliczamy ze wzoru (zależy od ilości próbek):

$$\omega = 2 \, \frac{2\pi}{n}.$$

Sygnał "zaszumiamy" tworząc zmienną losową, która imituje ten szum:

$$a = 2 \cdot sign \cdot X$$

gdzie X to liczba pseudolosowa w przedziale (0,1). Znak tego szumu określany jako sign losujemy poprzez losowanie dodatkowej zmiennej Y i ustalenie znaku przez wzór:

$$sign = \begin{cases} 1, Y > \frac{1}{2} \\ -1, Y \le \frac{1}{2} \end{cases}$$

Ostatecznie sygnał zaszumiony otrzymujemy w sposób:

$$y(i) = y_0(i) + a.$$

3. Teoria

Transformata Fouriera jest określona na pewnych przestrzeniach funkcyjnych, elementami których mogą być funkcje zmiennych rzeczywistych. Opisuje ona rozkład tych funkcji w bazie ortogonalnej funkcji trygonometrycznych.

FFT to algorytm szybkiej transformaty Fouriera, która charakteryzuje się małą złożonością obliczeniową (w stosunku do innych metod).

W naszym przypadku mieliśmy zaimplementować transformatę używając funkcji **sinft(float data [], int n)** z *Numerical Recipes in C* oraz dokonać dyskryminacji na poziomie 25% wartości maksymalnej.

4. Wyniki obliczeń

4.1. Wykres sygnału zaszumionego dla k=10

4.2. Wykres transformaty dla k = 10

4.3. Wykres transformaty po dyskryminacji

4.4. Wykresy sygnałów niezaszumionych y_0 i sygnałów po odszumieniu.

4.4.1. k = 6

4.4.2. k = 8

4.4.3. k = 10

5. Interpretacja wyników

Jak można zauważyć na wykresach, przy mniejszej ilości próbek wykresy są do siebie bardziej zbliżone. W każdym z przypadków funkcja odszumiona zachowuje okresowe wzrastanie i opadanie, jednak występują duże różnice lokalne. Można zauważyć duże niedoszacowania w tych miejscach.

6. Podsumowanie

Szybka transformata Fouriera to bardzo ważny oraz przydatny algorytm. Może on służyć do wielu rzeczy – w tym do odszumiania sygnałów. Należy jednak pamiętać, że ten sygnał nie będzie się pokrywał z pierwotnym sygnałem (w prawie każdym przypadku).