COMP3278B Introduction to Database Management Systems 2020

Assignment 2: Relational Algebra

Due Date: 23:59 April 9, 2021

Question 1 (70%). Given the background information of Question 1 in Assignment 1 and the tables above, we could write a SQL query to achieve a task as shown below.

"Find the internal transaction(s), which is(are) produced by 'Alice' and the transferred token value is smaller than 100."

```
SELECT IT.internal_id, To.value
FROM Account A, Token To, InternalTransaction IT
WHERE IT.token_id = To.token_id AND A.account_num = To.account_num
AND To.value < 100 AND A.user name = 'Alice'
```

- (a) Please transform the above SQL query to relational algebra expression, and draw the corresponding expression tree. (*Hint: you do not need to apply equivalence rules at this stage.*)
- (b) Please apply at least 4 equivalence rules to optimize your relational algebra expression in (a). Write the final relational algebra expression after optimization, and draw the final optimized expression tree.
 - 1) Describe clearly your results and list the equivalence rules used step by step;
 - 2) Use the example tables above to explain clearly the computational complexity of the relational algebra expression before and after optimization.

Question 2 (30%). When we introduced the "division operator" in Lecture 6, we have the following tables and use "division" to answer a question, "find the IDs of all students who have taken all CS courses (dpt_id = 1)". The corresponding relational algebra expression is

 $\text{``$\pi_{student_id, course_id}$ (Takes) \div π_{course_id} ($\sigma_{dpt_id=1}(Course)$)"}.$

Student

Takes

Course

student_id	name	dpt_id
1	Peter	1
2	Sharon	1
3	David	2
4	Joe	3

student_id	course_id	Grade
1	1	Α
1	2	В
1	3	A+
2	3	B-
3	3	В
4	1	С
4	2	A-

course_id	title	dpt_id	credit
1	Intro to DB	1	6
2	Programming I	1	6
3	Accounting	2	6

(a) Please write three different SQL queries, which correspond to the above relational algebra expression.

[End of Paper]