Package 'CircNNTSRSymmetric'

February 5, 2025

ype Package	
itle Circular Data using Symmetric NNTS Models	
ersion 0.1.0	
escription The statistical analysis of circular data using distributions based on symmetric Nonneg tive Trigonometric Sums (NNTS). It includes functions to perform empirical analysis and estimate the parameters of density functions. Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2025), ``Multimodal Symmetric Circular Distributions Based on Nonneg tive Trigonometric Sums and a Likelihood Ratio Test for Reflective Symmetry", <doi:10.48550 arxiv.2412.19501="">.</doi:10.48550>	-
epends stats, CircNNTSR	
icense GPL (>= 2)	
ncoding UTF-8	
eedsCompilation no	
uthor Juan Jose Fernandez-Duran [aut], Maria Mercedes Gregorio-Dominguez [aut, cre]	
aintainer Maria Mercedes Gregorio-Dominguez <mercedes@itam.mx></mercedes@itam.mx>	
epository CRAN	
ate/Publication 2025-02-05 18:20:06 UTC	
Contents	
CircNNTSRSymmetric-package nntsmanifoldnewtonestimationgradientstop nntsmanifoldnewtonestimationsymmetry nntsmanifoldnewtonestimationsymmetryknownsymmetryanglemu nntsmeasureslocationdispersion samplecircularskewness	2
ndex	11

CircNNTSRSymmetric-package

CircNNTSRSymmetric: An R Package for the statistical analysis of circular data using symmetric nonnegative trigonometric sums (NNTS) models. Fernández-Durán, J.J., Gregorio-Domínguez, M.M. (2025). Multimodal Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums and a Likelihood Ratio Test for Reflective Symmetry, arXiv:2412.19501 [stat.ME] (available at https://arxiv.org/abs/2412.19501)

Description

The statistical analysis of circular data using distributions based on symmetric Nonnegative Trigonometric Sums (NNTS). It includes functions to perform empirical analysis and estimate the parameters of density functions. Fernández-Durán, J.J. and Gregorio-Domínguez, M.M. (2025) <doi:10.48550/arXiv.2412.19501>.

Details

Package: CircNNTSRSymmetric

Type: Package
Version: 0.1.0

Date: 2025-02-02

License: GLP (>=2)

LazyLoad: yes

The NNTS (Non-Negative Trigonometric Sums) symmetric density around μ is defined as:

$$f(\theta; M, \underline{c}, \mu) = \sum_{k=0}^{M} \sum_{l=0}^{M} \rho_k \rho_l e^{i(k-l)(\theta - \mu)}$$

with ρ_k real numbers for k = 0, ..., M with $\sum_{k=0}^{M} \rho_k^2 = \frac{1}{2\pi}$.

Equivalently, the symmetric NNTS density is:

$$f(\theta; M, \underline{c}, \mu) = \frac{1}{2\pi} \sum_{k=0}^{M} \sum_{l=0}^{M} ||c_k|| ||\bar{c}_l|| e^{i(k-l)(\theta-\mu)} = \frac{1}{2\pi} \sum_{k=0}^{M} \sum_{l=0}^{M} c_{Sk} \bar{c}_{Sl} e^{i(k-l)\theta}$$

. The parameters $c_{Sk}=||c_k||e^{-ik\mu}$ are the parameters of the general (non-symmetric) NNTS model.

The symmetric NNTS model is derived from the general NNTS model (Fernández-Durán, 2004 and Fernández-Durán and Gregorio-Domínguez, 2016) with norms (moduli) of the c parameters equal in both models and arguments of the c parameters equal to $\phi_k = -k\mu$ for $k = 1, 2, \ldots, M$.

Author(s)

Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez

Maintainer: Maria Mercedes Gregorio Dominguez <mercedes@itam.mx>

References

Fernández-Durán, J.J. (2004). Circular Distributions Based on Nonnegative Trigonometric Sums. *Biometrics*, 60, pp. 499-503.

Fernández-Durán, J.J. and Gregorio-Domínguez, M.M. (2016). CircNNTSR: An R Package for the Statistical Analysis of Circular, Multivariate Circular, and Spherical Data Using Nonnegative Trigonometric Sums. *Journal of Statistical Software*, 70(6), 1-19. doi:10.18637/jss.v070.i06

Fernández-Durán, J.J., Gregorio-Domínguez, M.M. (2025). Multimodal Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums and a Likelihood Ratio Test for Reflective Symmetry, arXiv:2412.19501 [stat.ME] (available at https://arxiv.org/abs/2412.19501)

nntsmanifoldnewtonestimationgradientstop

Parameter estimation for NNTS distributions with gradient stop

Description

Computes the maximum likelihood estimates of the NNTS parameters of an NNTS distribution, using a Newton algorithm on the hypersphere and considering a maximum number of iterations determined by a constraint in terms of the norm of the gradient

Usage

```
nntsmanifoldnewtonestimationgradientstop(data, M = 0, iter = 1000,
initialpoint = FALSE, cinitial,gradientstop=1e-10)
```

Arguments

data	Vector of angles in radians
М	Number of components in the NNTS symmetric density
iter	Number of iterations
initialpoint	TRUE if an initial point for the optimization algorithm for the general (asymmetric) NNTS density will be used
cinitial	Vector of size M+1. The first element is real and the next M elements are complex (values for \$c_0\$ and \$c_1,,c_M\$). The sum of the squared moduli of the parameters must be equal to 1/(2*pi). This is the vector of parameters for the general (asymmetric) NNTS density
gradientstop	

gradientstop The minimum value of the norm of the gradient to stop the Newton algorithm

on the hypersphere

Value

cestimates Matrix of (M+1)x2. The first column is the parameter numbers, and the second

column is the c parameter's estimators of the NNTS model

loglik Optimum log-likelihood value for the NNTS model

AIC Value of Akaike's Information Criterion
BIC Value of Bayesian Information Criterion
gradnormerror Gradient error after the last iteration

Author(s)

Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez

References

Fernández-Durán, J.J., Gregorio-Domínguez, M.M. (2025). Multimodal Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums and a Likelihood Ratio Test for Reflective Symmetry, arXiv:2412.19501 [stat.ME] (available at https://arxiv.org/abs/2412.19501)

Examples

```
data(Turtles_radians)
resturtles<-nntsmanifoldnewtonestimationgradientstop(data=Turtles_radians, M = 2,
iter=1000,gradientstop=1e-10)
resturtles</pre>
```

nntsmanifoldnewtonestimationsymmetry

Parameter estimation for NNTS symmetric distributions

Description

Computes the maximum likelihood estimates of the NNTS parameters of an NNTS symmetric distribution, using a Newton algorithm on the hypersphere

Usage

```
nnts manifold newton estimation symmetry (data, M = 0, iter=1000, gradient stop=1e-10, peval mu=1000, initial point=FALSE, cinitial)\\
```

Arguments

data Vector of angles in radians

M Number of components in the NNTS symmetric density

iter Number of iterations

gradientstop The minimum value of the norm of the gradient to stop the Newton algorithm

on the hypersphere

pevalmu Number of equidistant points in the interval 0 to 2pi to search for the maxima of

the angle of symmetry

initialpoint TRUE if an initial point for the optimization algorithm for the general (asym-

metric) NNTS density will be used

cinitial Vector of size M+1. The first element is real and the next M elements are com-

plex (values for \$c_0\$ and \$c_1, ...,c_M\$). The sum of the squared moduli of the parameters must be equal to 1/(2*pi). This is the vector of parameters for

the general (asymmetric) NNTS density

Value

cestimatessym Matrix of (M+1)x2. The first column is the parameter numbers, and the second

column is the c parameter's estimators of the symmetric NNTS model

mu Estimate of the angle of symmetry of the NNTS symmetric model logliksym Optimum log-likelihood value for the NNTS symmetric model

AICsym Value of Akaike's Information Criterion for the NNTS symmetric model

Value of Bayesian Information Criterion for the NNTS symmetric model

gradnormerrorsym

Gradient error after the last iteration for the estimation of the parameters of the

NNTS symmetric model

cestimatesnonsym

Matrix of (M+1)x2. The first column is the parameter numbers, and the second

column is the c parameter's estimators of the symmetric NNTS model

logliknonsym Optimum log-likelihood value for the general (non-symmetric) NNTS model

AICnonsym Value of Akaike's Information Criterion for the general (non-symmetric) NNTS

model

BICnonsym Value of Bayesian Information Criterion for the general (non-symmetric) NNTS

model

gradnormerrornonsym

Gradient error after the last iteration for the estimation of the parameters of the

general (non-symmetric) NNTS model

loglikratioforsym

Value of the likelihood ratio test statistic for symmetry

loglikratio for sympvalue

Value of the asymptotic chi squared p-value of the likelihood ratio test statistic

for symmetry

Author(s)

Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez

References

Fernández-Durán, J.J., Gregorio-Domínguez, M.M. (2025). Multimodal Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums and a Likelihood Ratio Test for Reflective Symmetry, arXiv:2412.19501 [stat.ME] (available at https://arxiv.org/abs/2412.19501)

Examples

```
data(Turtles_radians)
resturtlessymm<-nntsmanifoldnewtonestimationsymmetry(data=Turtles_radians, M = 2, iter =1000,
gradientstop=1e-10,pevalmu=1000)
resturtlessvmm
hist(Turtles_radians,breaks=seq(0,2*pi,2*pi/13),xlab="Direction (radians)",freq=FALSE,
ylab="",main="",ylim=c(0,.8),axes=FALSE)
nntsplot(resturtlessymm$cestimatessym[,2],2,add=TRUE)
nntsplot(resturtlessymm$cestimatesnonsym[,2],2,add=TRUE,lty=2)
axis(1,at=c(0,pi/2,pi,6*(pi/4),2*pi),labels=c("0",expression(pi/2),expression(pi),
expression(3*pi/2),expression(2*pi)),las=1)
axis(2)
data(Ants_radians)
resantssymm<-nntsmanifoldnewtonestimationsymmetry(data=Ants_radians, M = 4, iter =1000,
gradientstop=1e-10,pevalmu=1000)
resantssymm
hist(Ants_radians, breaks=seq(0,2*pi,2*pi/13), xlab="Direction (radians)", freq=FALSE,
ylab="",main="",ylim=c(0,.8),axes=FALSE)
nntsplot(resantssymm$cestimatessym[,2],4,add=TRUE)
nntsplot(resantssymm$cestimatesnonsym[,2],4,add=TRUE,lty=2)
axis(1,at=c(0,pi/2,pi,6*(pi/4),2*pi),labels=c("0",expression(pi/2),expression(pi),
expression(3*pi/2),expression(2*pi)),las=1)
axis(2)
```

nntsmanifoldnewtonestimationsymmetryknownsymmetryanglemu

Parameter estimation for NNTS symmetric distributions

Description

Computes the maximum likelihood estimates of the NNTS parameters of an NNTS symmetric distribution with known angle of symmetry mu, using a Newton algorithm on the hypersphere

Usage

```
nnts manifold newton estimation symmetry known symmetry anglemu (data, mu, M = 0, iter=1000, gradient stop=1e-10, initial point=FALSE, cinitial)\\
```

Arguments

data	Vector	of angles	in	radians

mu Known angle of symmetry of the NNTS symmetric modelM Number of components in the NNTS symmetric density

iter Number of iterations

gradientstop The minimum value of the norm of the gradient to stop the Newton algorithm

on the hypersphere

initialpoint TRUE if an initial point for the optimization algorithm for the general (asym-

metric) NNTS density will be used

cinitial Vector of size M+1. The first element is real and the next M elements are com-

plex (values for \$c_0\$ and \$c_1, ...,c_M\$). The sum of the squared moduli of the parameters must be equal to 1/(2*pi). This is the vector of parameters for

the general (asymmetric) NNTS density

Value

cestimatessym Matrix of (M+1)x2. The first column is the parameter numbers, and the second

column is the c parameter's estimators of the symmetric NNTS model

mu Known angle of symmetry of the NNTS symmetric model

logliksym Optimum log-likelihood value for the NNTS symmetric model

AICsym Value of Akaike's Information Criterion for the NNTS symmetric model

BICsym Value of Bayesian Information Criterion for the NNTS symmetric model

gradnormerrorsym

Gradient error after the last iteration for the estimation of the parameters of the

NNTS symmetric model

cestimatesnonsym

Matrix of (M+1)x2. The first column is the parameter numbers, and the second

column is the c parameter's estimators of the symmetric NNTS model

logliknonsym Optimum log-likelihood value for the general (non-symmetric) NNTS model

AICnonsym Value of Akaike's Information Criterion for the general (non-symmetric) NNTS

mode!

BICnonsym Value of Bayesian Information Criterion for the general (non-symmetric) NNTS

mode

gradnormerrornonsym

Gradient error after the last iteration for the estimation of the parameters of the

general (non-symmetric) NNTS model

loglikratioforsym

Value of the likelihood ratio test statistic for symmetry

loglikratioforsympvalue

Value of the asymptotic chi squared p-value of the likelihood ratio test statistic

for symmetry

Author(s)

Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez

References

Fernández-Durán, J.J., Gregorio-Domínguez, M.M. (2025). Multimodal Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums and a Likelihood Ratio Test for Reflective Symmetry, arXiv:2412.19501 [stat.ME] (available at https://arxiv.org/abs/2412.19501)

Examples

```
\label{eq:data-ants-radians} \\ resants symmk nown mu <-nnts manifold new to nest imation symmetry known symmetry angle mu (data-Ants_radians, mu=pi, M = 4, iter =1000, gradient stop=1e-10) \\ resants symmk nown mu \\ hist (Ants_radians, breaks=seq(0,2*pi,2*pi/13), xlab="Direction (radians)", freq=FALSE, ylab="", main="", ylim=c(0,.8), axes=FALSE) \\ nntsplot (resants symmk nown mu $cestimates sym[,2],4, add=TRUE) \\ nntsplot (resants symmk nown mu $cestimates son sym[,2],4, add=TRUE,lty=2) \\ axis(1,at=c(0,pi/2,pi,6*(pi/4),2*pi),labels=c("0",expression(pi/2),expression(pi),expression(3*pi/2),expression(2*pi)),las=1) \\ axis(2) \\ \end{aligned}
```

nntsmeasureslocationdispersion

Moments of an NNTS density

Description

Computes the first moment, second moment, mean direction, dispersion, circular varance, coefficient of asymmetry and kurtosis from the given parameters of an NNTS density.

Usage

nntsmeasureslocationdispersion(cestimates, M=0)

Arguments

cestimates Matrix of (M+1)x2. The first column is the parameter numbers, and the second

column is the c parameter vecto (or c estimates) of the NNTS model

M Number of components in the NNTS density

Value

firstmoment Value of the first trigonometric moment secondmoment Value of the second trigonometric moment

meandirection Value of the mean direction dispersion Value of the dispersion

circularvariance

Value of the circular variance

asymmetrycoefficient

Value of the coefficient of asymmetry

kurtosis Value of the kurtosis

Author(s)

Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez

samplecircularskewness 9

References

Fernández-Durán, J.J., Gregorio-Domínguez, M.M. (2025). Multimodal Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums and a Likelihood Ratio Test for Reflective Symmetry, arXiv:2412.19501 [stat.ME] (available at https://arxiv.org/abs/2412.19501)

Examples

```
data(Ants_radians)
resants<-nntsmanifoldnewtonestimationgradientstop(data=Ants_radians, M = 2, iter=1000,
gradientstop=1e-10)
resants
nntsmeasureslocationdispersion(resants$cestimates,M=2)</pre>
```

samplecircularskewness

Calculation of the Sample Skewness

Description

Computes the skewness for a sample of angles

Usage

samplecircularskewness(data)

Arguments

data Vector of angles in radians

Value

Value of the sample skewness

Author(s)

Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez

References

Fernández-Durán, J.J., Gregorio-Domínguez, M.M. (2025). Multimodal Symmetric Circular Distributions Based on Nonnegative Trigonometric Sums and a Likelihood Ratio Test for Reflective Symmetry, arXiv:2412.19501 [stat.ME] (available at https://arxiv.org/abs/2412.19501)

Examples

```
data(Ants_radians)
samplecircularskewness(data=Ants_radians)
# non-symmetric
cp3a<-c(0.27672975+0.00000000i,-0.04547516-0.00298663i,-0.18680096-0.10457410i,
0.03339396-0.18317526i)
cp3a<-cp3a/sqrt(sum(Mod(cp3a)^2))</pre>
cp3a<-(1/sqrt(2*pi))*cp3a
cp3annts < -cbind(c(0,1,2,3),cp3a)
nntsmeasureslocationdispersion(cp3annts,M=3)
set.seed(1234567890)
datasim3a<-nntssimulation(1000,cp3a,3)$simulations</pre>
samplecircularskewness(datasim3a)
#symmetric
cp3b<-Mod(cp3a)
cp3bnnts<-cbind(c(0,1,2,3),cp3b)
nntsmeasureslocationdispersion(cp3bnnts,M=3)
set.seed(1234567890)
datasim3b<-nntssimulation(1000,cp3b,3)$simulations
samplecircularskewness(datasim3b)
#symmetric bis
cp3c<-c(0.3131489,0.1421822,0.1266749,0.1575766)
cp3c<-cp3c/sqrt(sum(Mod(cp3c)^2))</pre>
cp3c<-(1/sqrt(2*pi))*cp3c
cp3c < -cp3c * exp((0:3)*1i*(-pi))
cp3cnnts < -cbind(c(0,1,2,3),cp3c)
nntsmeasureslocationdispersion(cp3cnnts,M=3)
set.seed(1234567890)
datasim3c<-nntssimulation(1000,cp3c,3)$simulations
samplecircularskewness(datasim3c)
```

Index

```
* package
CircNNTSRSymmetric-package, 2

CircNNTSRSymmetric
(CircNNTSRSymmetric-package), 2

CircNNTSRSymmetric-package, 2

nntsmanifoldnewtonestimationgradientstop,
3

nntsmanifoldnewtonestimationsymmetry,
4

nntsmanifoldnewtonestimationsymmetryknownsymmetryanglemu,
6

nntsmeasureslocationdispersion, 8

samplecircularskewness, 9
```