SOLUTIONS

Practical: RISK PREDICTION Advanced Statistical Analysis

- 2. Change working directory
- 3. Open the dataset "Prediction-data.dta"

[click 'File > Open' then choose "Prediction-data.dta"]

Data exploration

4. Have a look at the data.

summarize

	Variable	Obs	Mean	Std. Dev.	Min	Max
_	id	2,000	1000.5	577.4946	1	2000
	age	2,000	60.451	11.54423	40	80
	sbp	2,000	120.3289	10.18013	76.6	152.2
	bmi	2,000	25.188	2.982409	15.5	35.6
	sex	2,000	.511	.500004	0	1
	dead	2 , 000	.2545	.4356887	0	1

How many participants die?

tab dead

event	Freq.	Percent	Cum.
Alive Dead	1,491 509	74.55 25.45	74.55 100.00
Total	2 , 000	100.00	

What proportion are female?

tab sex

sex	Freq.	Percent	Cum.
Female	978	48.90	48.90

Male	1,022	51.10	100.00
Total	2,000	100.00	

What ages are these participants?

summ age

Variable	Obs	Mean	Std. Dev.	Min	Max
age	2 , 000	60.451	11.54423	40	80

Randomly split data into training and validation parts

5. Create a variable S = 0/1 that separates the data into two equal halves:

set seed 1111
gen rvar = runiform()
sort rvar
gen S = 0
replace S = 1 if _n > 1000

(1,000 real changes made)

[No output, except a newly created indicator variable S]

Fit model in training data and predict risks

6. For the S=0 dataset, estimate the model using logistic regression. Include all measured variables as predictors.

logistic dead c.age i.sex c.sbp c.bmi if S==0

Logistic regre		4		Number of LR chi2(Prob > of Pseudo F	(4) = chi2 =	1,000 205.31 0.0000 0.1848
·	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
age		.0088335	11.08	0.000	1.076438	1.111066
sex						
Male	1.076061	.177804	0.44	0.657	.7783727	1.487599
sbp	1.066765	.0094303	7.31	0.000	1.048441	1.085409
bmi	1.044692	.0286565	1.59	0.111	.9900095	1.102395
_cons	1.43e-07	2.13e-07	-10.60 	0.000	7.76e-09	2.64e-06

Note: _cons estimates baseline odds.

7. Predict the risk of death for all individuals (i.e. those with S=0 and those with S=1).

predict m2pr

bysort dead: summ m2pr

-> dead = Alive

Variable	Obs	 Std. Dev	Max
	1,491		.8920841

-> dead = Dead

Variable	Obs	Mean	Std. Dev	. Min	Max
	+				
m2pr	509	.3901502	.2043112	.0158026	.8791203

graph box m2pr, over(dead)

Validation

8. Draw an ROC curve in the S=0 dataset.

roctab dead m2pr if S==0, graph specificity

What is the AUC? Interpret this number.

In the training set, the ROC is 79%. This means that a person who did die has a 79% probability of having a higher predicted risk (of dying) than someone who did not. This shows the model has fairly good discrimination (ability to separate those who did and did not experience the event of interest).

Now repeat for the S=1 dataset.

roctab dead m2pr if S==1, graph specificity

Are the two ROC curves very different?

9. Create a Hosmer-Lemeshow goodness of fit table for the S=0 and the S=1 datasets.

estat gof if S==0, group(10) table

Logistic model for dead, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

+						+
Group	Prob	Obs_1	Exp_1	Obs_0	Exp_0	Total
+	+	+	+	+	+-	
1	0.0470	3	3.1	97	96.9	100
2	0.0725	5	6.0	95	94.0	100
3	0.0992	11	8.6	89	91.4	100
4	0.1327	12	11.4	88	88.6	100
5	0.1813	14	15.5	86	84.5	100
+	+	+	+	+	+-	
6	0.2422	23	21.3	77	78.7	100
7	0.3230	27	28.0	73	72.0	100
8	0.4272	32	36.9	68	63.1	100
9	0.5374	48	47.8	52	52.2	100
10	0.8791	69	65.2	31	34.8	100
+						+

```
\begin{array}{lll} \text{number of observations} = & 1000 \\ \text{number of groups} = & 10 \\ \text{Hosmer-Lemeshow chi2(8)} = & 2.99 \\ \text{Prob > chi2} = & 0.9348 \\ \end{array}
```

estat gof if S==1, group(10) table

Logistic model for dead, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

Group Prob Obs_1 Exp_1 Obs_0 Exp_0 Total	+							_						+
1 0.0449 10 3.0 90 97.0 100 2 0.0777 8 6.2 92 93.8 100 3 0.1081 4 9.3 96 90.7 100 4 0.1507 15 13.0 85 87.0 100 5 0.1960 25 17.1 75 82.9 100 1 1 1 1 1 1 1 1	Group		Prob		_				_				Total	
	2 3 4	 	0.0777 0.1081 0.1507	 	10 8 4 15	 	3.0 6.2 9.3 13.0	 	90 92 96 85	1 1 1	97.0 93.8 90.7 87.0	 	100 100 100	
		· + 	0.2596 0.3316 0.4249 0.5390	-+ 	21 32 36 49	+- 	22.7 29.9 37.5 47.4	+	79 68 64 51	· + 	77.3 70.1 62.5 52.6	- 	100 100 100 100	

10. Draw a bar graph comparing the predicted and observed risks in the S=0 data.

```
egen m2prg0 = cut(m2pr) if S==0, group(10)
graph bar (sum) m2pr (sum) dead, over(m2prg0)
```

Repeat for the S=1 dataset.

```
egen m2prg1 = cut(m2pr) if S==1, group(10)
graph bar (sum) m2pr (sum) dead, over(m2prg1)
```


11. If you have time, see if you can write a short do-file to repeatedly split the data, calculate the AUC from the S=0 and S=1 datasets and store the results.