Problem 7.1 PL Concepts

Answer:

1. Every satisfiable formula is valid [False]

```
Let, model M:=\langle U,I\rangle, then A \text{ satisfiable in } M \text{, iff } I_{\varphi}(A) = T \text{ for some assignment } \varphi A \text{ valid in } M \text{, iff } M \vDash^{\varphi} A \text{ for all assignments } \varphi
```

Therefore, if a formula is satisfiable for some assignment, that doesn't mean it will be valid for all assignments.

2. Every valid formula is satisfiable [True]

Considering the previous model $M := \langle U, I \rangle$, if a formula already valid for all the assignments, then it will certainly satisfiable.

3. If A is satisfiable, then $\neg A$ is unsatisfiable [True]

Let's say, A = T (satisfiable) then $\neg A = F$ (unsatisfiable), but if A = F (unsatisfiable) then $\neg A = T$ (satisfiable).

4. If $A \models B$, then $A \land C \models B \land C$ [True]

 $A \models B$ means all assignments that make A true also make B true, if that is the case then, if $(A \land C)$ is true for C then $(B \land C)$ will also be true for same value of C, thus the statement is true.

5. Every admissible inference rule is derivable [True]

As the admissible rules are those inference rules which can be consistently employed in derivations in a given system, admissible inference rule is derivable.

6. If \vdash is sound for \vDash and $\{A, B\} \vdash C$, then C is satisfiable if A and B are [True]

As C can be derived from A and B, that means it is sound, therefore C is satisfiable if A and B are satisfiable.