

Politécnico de Coimbra

Projeto B

SERVIÇOS DE REDE 2

Diogo Valente a2020144110@isec.pt Alexandre Moreira a2020144214@isec.pt

Licenciatura em Engenharia Informática Ramo de Redes e Administração de Sistemas ISEC

Coimbra, 25 de janeiro 2024

Índice

1	Intr	roduçã	О	1
2	iSC	SI		3
	2.1	Introd	lução ao iSCSI	3
	2.2	Arqui	tetura iSCSI	4
	2.3	Porqu	ê TCP/IP?	4
	2.4	iSCSI	Protocol Data Unit	5
		2.4.1	Operation codes for iSCSI initiators:	6
		2.4.2	Operation codes for iSCSI targets:	6
	2.5	Funcio	onamento iSCSI	7
		2.5.1	Sessão iSCSI	7
		2.5.2	iSCSI Login	8
		2.5.3	Exemplo de Operação de Escrita	10
		2.5.4	Exemplo de Operação de Leitura	10
3	Imp	olemen	itação do iSCSI	11
	3.1	Ambie	ente de Configuração	11
	3.2	Topol	ogia do Switch	12
	3.3	Config	gurar o iSCSI Target	12
	3.4	Config	gurar o iSCSI Initiator	15
4	Aná	alise P	rática 2	23
	4.1	Fase c	le login	23
		4.1.1	Normal Login	25
		4.1.2	Discovery	27

ii	ÍNDICE

4.2	NOP-IN e NOP-OUT	28
4.3	Operação de Escrita	29
4.4	Operação de Escrita	31
4.5	Conclusão	33
Referê	ncias	35

Lista de Figuras

2.1	TCP
2.2	iSCSI PDU
2.3	Fases iSCSI
2.4	Write Operation
2.5	Read Operation
3.1	ESXi Web Interface
3.2	Switch
3.3	Role Target Server
3.4	Diretório do disco Virtual no Target
3.5	CHAP
3.6	Initiators Permitidos
3.7	Tools
3.8	Iniciar o serviço
3.9	Quick Connect
3.10	Connect
3.11	Advanced
3.12	Autenticação CHAP
3.13	Conectado com sucesso
3.14	Disco Virtual iSCSI
3.15	Colocar disco online
3.16	Disco iSCSI
4.1	iSCSI Login
4.2	Primeiro Pacote iSCSI Login

4.3	ESXi VMs	26
4.4	Segundo Pacote iSCSI Login	26
4.5	Value: Discovery	28
4.6	Retorno	28
4.7	NOP-IN e NOP-OUT	29
4.8	Pacotes Operação Write	29
4.9	1^{0} pacote Write	30
4.10	2^{0} pacote Write	30
4.11	3^{o} pacote Write	30
4.12	4^{O} pacote Write	31
4.13	Pacotes Operação Read	31
4.14	$1^{\underline{0}}$ Pacote da Operação Read	32
4.15	$2^{\underline{0}}$ Pacote da Operação Read	32
4.16	$3^{\underline{0}}$ Pacote da Operação Read	33

Acrónimos e Siglas

iSCSI Internet Small Computer System Interface.

IP Internet Protocol.

LUN Logical Unit Number.

OSI Open System Interconnection

SCSI Small Computer System Interface

iSCSI PDU iSCSI protocol data unit

VPN Virtual Private Network

CHAP Challenge-Handshake Authentication Protocol

PDU Protocol Data Unit

Capítulo 1

Introdução

No âmbito do projeto B da disciplina de Serviços de Rede 2, fomos desafiados pelo docente, a explorar um serviço de rede. A escolha recaiu sobre o Internet Small Computer System Interface (iSCSI), um protocolo que permite o acesso a blocos de dados de armazenamento remoto por meio de uma infraestrutura Internet Protocol (IP) existente. Este protocolo é uma das principais tecnologias de armazenamento em rede e é utilizado por uma vasta gama de empresas para aumentar a sua estrutura de armazenamento.

2 Introdução

Capítulo 2

iSCSI

2.1 Introdução ao iSCSI

O Internet Small Computer System Interface (iSCSI) é um protocolo de transporte de nível 2 que permite a transferência de dados pela Internet e a gestão de armazenamento em redes de longa distância, utilizando o protocolo TCP/IP. Desenvolvido no final dos anos 90 e início dos anos 2000 como uma alternativa de baixo custo aos canais de fibra tradicionais, o iSCSI é agora amplamente utilizado em muitas aplicações de armazenamento de dados, incluindo armazenamento em cloud e virtualização. Como é um protocolo de transporte de nível 2, o iSCSI opera na camada de transporte do modelo Open System Interconnection (OSI), responsável pela entrega confiável e sequencial de pacotes de uma origem para um destino, com controle de fluxo, deteção e correção de erros.

Comparativamente, o *Small Computer System Interface* (SCSI) é um protocolo de nível 1 que opera na camada física e permite que múltiplos dispositivos sejam conectados numa única cadeia. A principal diferença entre SCSI e iSCSI reside no fato de que o SCSI é um protocolo de conexão direta que requer um cabo físico, enquanto o iSCSI é um protocolo de rede que permite que os comandos SCSI sejam enviados através de uma rede *Internet Protocol* (IP).

4 iSCSI

2.2 Arquitetura iSCSI

A arquitetura do iSCSI é composta por initiators e um target, que comunicam entre si através do protocolo iSCSI.

- Initiator: São dispositivos que estão localizados do lado do cliente. Estabelecem uma ligação TCP/IP para se conectar aos targets e enviam comandos SCSI para pedir serviços de componentes, as *Logical Unit Number* (LUN), de um servidor, chamado de target.
- Target: O target é um dispositivo de armazenamento remoto que recebe, processa os comandos SCSI enviados pelo initiator e retorna as respostas ao initiator, permitindo o acesso aos dados armazenados.

O que o target partilha é uma área de armazenamento conhecida como LUN que é essencialmente uma área num disco rígido que o initiator procura depois de ter estabelecido a conetividade. O resultado é uma ligação direta entre um cliente a um disco rígido / sistema de armazenamento, como se os mesmos estivessem fisicamente conectados.

2.3 Porquê TCP/IP?

[1] Não ocorre perda de pacotes durante a transferência de dados, se houver alguma perda, é tratada pelo protocolo TCP/IP no sistema operativo. O protocolo iSCSI é uma representação do modelo de invocação de procedimentos remotos SCSI sobre o protocolo TCP. Comandos SCSI são transportados por iSCSI requests, e SCSI responses e os estados são transportados por respostas iSCSI. O iSCSI utiliza o mecanismo de pedido e resposta.

Figura 2.1: TCP

O initiator e o target dividem as suas comunicações em mensagens. As mensagens são transferidas em termos de iSCSI protocol data unit (iSCSI PDU). A comunicação entre o initiator e o target ocorre através de uma ou várias conexões TCP. A conexão TCP transporta mensagens de controlo, comandos SCSI, dados e parâmetros através de Unidades de Dados de Protocolo iSCSI (iSCSI PDUs). O conjunto de conexões TCP que ligam um initiator a um target forma uma sessão.

Um ID de sessão define uma sessão e consiste numa parte do *initiator* e numa parte do *target*. As conexões TCP podem ser adicionadas e removidas de uma sessão. Todas as conexões numa sessão são identificadas através de um ID de conexão.

2.4 iSCSI Protocol Data Unit

A PDU iSCSI é a unidade de informação do iSCSI. A PDU é utilizada para a comunicação entre o *initiator* e o *target*. Esta comunicação inclui a deteção do nó, a ligação e o estabelecimento de sessões, o transporte de comandos iSCSI e a transferência de dados.O segmento tem um comprimento fixo de 48 bytes.

A figura 2.2 representa a estrutura básica do iSCSI PDU.

6 iSCSI

Figura 2.2: iSCSI PDU

2.4.1 Operation codes for iSCSI initiators:

- $0 \times 00 NOP-Out$
- $0 \times 01 SCSI$ Command
- 0×02 SCSI Task Management Function Request
- 0×03 Login Request
- 0×04 Text Request
- $0 \times 05 SCSI Data-Out$
- 0×06 Logout Request
- 0×10 SNACK Request
- $0 \times 1\text{C} 0 \times 1\text{E}$ Vendor specific codes

2.4.2 Operation codes for iSCSI targets:

- $0 \times 20 \text{NOP-In}$
- 0×21 SCSI Response
- 0×22 SCSI Task Management function response

- 0×23 Login Response
- 0×24 Text Response
- $0 \times 25 SCSI Data-In$
- 0×26 Logout Response
- 0×31 Ready To Transfer (R2T)
- 0×32 Asynchronous Message
- $0 \times 3C 0 \times 3E$ Vendor specific codes
- $0 \times 3F$ Reject

2.5 Funcionamento iSCSI

Para o restante deste documento, os termos "initiator" e "target "referem-se, respetivamente, ao nó "iSCSI initiator" e ao nó "iSCSI target".

Por razões de desempenho, o iSCSI permite uma "phase-collapse". Um comando e os dados associados podem ser enviados em conjunto do *initiator* para o *target*, e dados e respostas podem ser enviados em conjunto dos *target*s.

A direção de transferência iSCSI é definida em relação ao *initiator*. Transferências de saída ou de envio são transferências do *initiator* para um *target*, enquanto transferências de entrada ou de receção são do *target* para um *initiator*.

2.5.1 Sessão iSCSI

- Sessão Operacional Normal [2] uma sessão na qual comandos SCSI, dados e respostas podem ser transferidos entre um *initiator* iSCSI e um *target* iSCSI
- Sessão de Discovery uma sessão aberta apenas para a descoberta de targets.

8 iSCSI

2.5.2 iSCSI Login

Uma sessão iSCSI tem duas fases2.3:

- Fase de Login
- Fase completa com recursos

Figura 2.3: Fases iSCSI

Fase de Login

A Fase de Início de Sessão iSCSI consiste em request e responses de início de sessão. Uma vez concluída a autenticação e definidos os parâmetros operacionais, a sessão transita para a Fase Completa com Recursos, e o *initiator* começa a realizar operações.

Os parâmetros iSCSI são negociados através de pedidos e respostas de início de sessão durante o estabelecimento da sessão. Durante a Fase Completa com Recursos, os parâmetros iSCSI são negociados através de pedidos e respostas de texto. Em ambos os casos, o mecanismo consiste numa troca de pares chaves=valor de texto iSCSI (também referidos como pares key=value pairs).

A Fase de Login ocorre em duas etapas:

• Etapa de Segurança/Autenticação

Esta etapa consiste em trocas de texto utilizando IDs e Certificados, através de pares chave=valor.

Uma das chaves negociadas nesta etapa da Fase de Login é o Auth-Method. Por exemplo:

- key=value AuthMethod=CHAP
- AuthMethod define o método de autenticação.

• Etapa de Negociação de Parâmetros Operacionais

Esta etapa consiste na negociação de strings de texto para os parâmetros operacionais utilizando pares chave=valor em troca de parâmetros de *login*.

Dois dos muitos parâmetros de início de sessão negociados nesta etapa de Negociação de Parâmetros Operacionais da Fase de Início de Sessão são o MaxRecvDataSegmentLength e o FirstBurstLength. Por exemplo:

- key=value MaxRecvDataSegmentLength=<valor-numérico>
- MaxRecvDataSegmentLength define o comprimento máximo do segmento de dados que um iniciador ou destino pode receber num PDU iSCSI (em bytes).
- key=value key=value FirstBurstLength=<valor-numérico>
- FirstBurstLength define a quantidade máxima de dados não solicitados que o iniciador pode enviar ao destino durante a execução de um único comando SCSI (em bytes).
- FirstBurstLength define a quantidade máxima de dados não solicitados que o iniciador pode enviar ao destino durante a execução de um único comando SCSI (em bytes).

10 iSCSI

Fase completa com recursos

Após concluir com sucesso a Fase de Login na primeira ligação da sessão, a sessão entra na Fase Completa com Recursos.

Na Fase Completa com Recursos, o *initiator* envia comandos e dados SCSI para o *target* encapsulando-os em PDUs iSCSI que percorrem a sessão iSCSI (transporte). O *initiator* recebe respostas SCSI incorporadas em PDUs iSCSI do *target*. As operações só ocorrem após o início da Fase Completa com Recursos.

2.5.3 Exemplo de Operação de Escrita

Na imagem 2.4 podemos ver a ordem dos pacotes de escrita.

Initiator Function 🔻	PDU Type 🔻	Target Function 🔻
Command request (write)	SCSI Command (Write)>>>	Receive command and queue it
		Process old Commands
	<<< R2T	Ready to process WRITE
	KK KZ1	command
Send Data	SCSI Data-Out>>>	Receive Data
	<<< R2T	Ready for data
	<<< R2T	Ready for data
Send Data	SCSI Data-Out>>>	Receive Data
Send Data	SCSI Data-Out>>>	Receive Data
	<<< SCSI Response	Send Status and Sense
Command Complete		

Figura 2.4: Write Operation

2.5.4 Exemplo de Operação de Leitura

Na imagem 2.5 podemos ver a ordem dos pacotes de Leitura.

Initiator Function	PDU Type	Target Function 🔻
Command request (read)	SCSI Command (READ)>>>	
		Prepare Data Transfer
Receive Data	<<< SCSI Data-In	Send Data
Receive Data	<<< SCSI Data-In	Send Data
Receive Data	<<< SCSI Data-In	Send Data
	<<< SCSI Response	Send Status and Sense
Command Complete		

Figura 2.5: Read Operation

Capítulo 3

Implementação do iSCSI

3.1 Ambiente de Configuração

A implementação do Internet Small Computer System Interface (iSCSI) envolve várias considerações e etapas. Inicialmente estabelece-se uma Virtual Private Network (VPN) para a rede do ISEC. Após a primeira VPN estar ativa, uma segunda VPN é estabelecida para garantir o acesso ao servidor no ISEC onde irão ser feitas todas as experiências deste projeto. Desta forma, os dois membros do grupo são capazes de participar na experiência e não ter o impacto de estar a gastar recursos das próprias máquinas.

Com as VPNs ativas, coloca-se o endereço IP privado do servidor e é inserido no browser para aceder ao VMware ESXi Host Client. O VMware ESXi Host Client é uma interface em Web(figura 3.1) que permite gerir o host ESXi e as máquinas virtuais que está a executar.

Figura 3.1: ESXi Web Interface

3.2 Topologia do Switch

O switch(figura3.2) utilizado em todas as maquinas virtuais, nele foi configurado a network NetLab e servia para comunicação entre elas e para comunicação com o exterior.

Figura 3.2: Switch

3.3 Configurar o iSCSI Target

Este servidor utiliza o sistema operativo Windows Server 2022 - Desktop Experience, e foi atribuído o IP 172.16.0.12 na interface ligada a network NetLab.

Para começar foi instalada a Role *iSCSI Target Server* (fig 3.3), o intuito de criar um disco virtual que viria a ser partilhado e acessível nos *initiators*.

Figura 3.3: Role Target Server

De seguida, foi escolhido o diretório para localização dos ficheiros do disco Virtual (3.4).

Figura 3.4: Diretório do disco Virtual no Target

Após a configuração do disco virutal, foi configurada a autenticação, neste caso foi utilizado *Challenge-Handshake Authentication Protocol* (CHAP)(fig 3.5).

Figura 3.5: CHAP

Neste momento foi configurado os *initiator* com permissões para se conectarem ao target(fig 3.6).

Figura 3.6: Initiators Permitidos

3.4 Configurar o iSCSI Initiator

Apesar de todas as versões de Windows, a partir do Windows 2008, o serviço iSCSI initiator estar disponível, o grupo decidiu inicialmente configurar o iSCSI initiator no Windows Server 2022. Para isso foi adicionada mais uma máquina virtual com o Sistema Operativo Windows Server 2022 - Desktop Experience.

Para configurar o iSCSI initiator tem de se no server manager abrir as tools e selecionar o iSCSI initiator.

Figura 3.7: Tools

Figura 3.8: Iniciar o serviço

Colocar o IP do iSCSI target e depois clicar em Quick Connect.

Figura 3.9: Quick Connect

Agora o target já aparece mas ainda não foi possível efetuar o login, para isso, clica-se no *connect* da figura 4.9 e em *advanced* da figura 4.10.

Figura 3.10: Connect

Figura 3.11: Advanced

Nesta página, ativa-se o CHAP e coloca-se o username e password que foram configurados no $\it target$.

Figura 3.12: Autenticação CHAP

Figura 3.13: Conectado com sucesso

No server manager já é possível ver o novo disco virtual iSCSI, sendo apenas necessário colocá-lo online.

Figura 3.14: Disco Virtual iSCSI

Figura 3.15: Colocar disco online

Agora já é possível ver o disco iSCSI.

Figura 3.16: Disco iSCSI

Como referido anteriormente é possível também usar as nossas próprias máquinas para serem um iSCSI initiator. Para isso basta barra de pesquisas, pesquisar *iniciador iSCSI* e seguir exatamente os mesmos passos. No entanto não é necessário colocar um disco online, uma vez que o Sistema Operativo faz isso automaticamente.

Capítulo 4

Análise Prática

Para este capítulo e após o *Internet Small Computer System Interface* (iSCSI) estar devidamente implementado o grupo decidiu fazer uma série de experiências de forma a perceber como o protocolo funciona atrvés de capturas Wireshark.

4.1 Fase de login

Segundo a RFC 3720 ([3]) o iSCSI a fase de login do iSCSI é quando um initiator estabelece uma ligação com o target. Nesta fase também são definidos os parâmetros do protocolo iSCSI, os parâmetros de segurança e autentica o iniciador e o alvo entre si

Para melhor compreensão destas sessões reiniciamos o initiator que já estava previamente conectado ao target e fizemos uma captura Wireshark no target. Nesta experiência é feita uma ligação do *initiator* (172.16.0.16) para o target (172.16.0.12). Esta análise é efetuda através dos pacotes presentes na imagem 4.1 e utilizando um filtro "tcp.port == 3260"e não o filtro "iscsi" para ser possível observar todo o tráfego que está a passar pela porta 3260, que é a porta usada pelo iSCSI

24 Análise Prática

No.	Time	Source	Destination	Protocol	Length Info
- 1183	45 111.967148	172.16.0.16	172.16.0.12	TCP	66 49669 → 3260 [SYN, ECE, CWR] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
1183	46 111.967492	172.16.0.12	172.16.0.16	TCP	66 3260 → 49669 [SYN, ACK, ECE] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM
1183	47 111.967798	172.16.0.16	172.16.0.12	TCP	60 49669 → 3260 [ACK] Seq=1 Ack=1 Win=262656 Len=0
1183	48 111.968730	172.16.0.16	172.16.0.12	iscsi	266 Login Command
1183	49 111.972291	172.16.0.12	172.16.0.16	iscsi	174 Login Response (Success)
1183	50 111.972715	172.16.0.16	172.16.0.12	iscsi	114 Login Command
1183	51 111.973373	172.16.0.12	172.16.0.16	iscsi	258 Login Response (Success)
1183	52 111.973677	172.16.0.16	172.16.0.12	iSCSI	162 Login Command
1183	53 111.973957	172.16.0.12	172.16.0.16	iscsi	102 Login Response (Success)
1183	54 111.974176	172.16.0.16	172.16.0.12	iscsi	402 Login Command
	55 111.974527	172.16.0.12	172.16.0.16	iscsi	386 Login Response (Success)
	56 111.984813	172.16.0.16	172.16.0.12	TCP	60 49669 → 3260 [ACK] Seq=729 Ack=705 Win=261888 Len=0
	57 111.985056	172.16.0.16	172.16.0.12	iscsi	102 SCSI: Report LUNs LUN: 0x00
1183	58 111.985335	172.16.0.12	172.16.0.16	iscsi	118 SCSI: Data In LUN: 0x00 (Report LUNs Response Data) SCSI: Response LUN: 0x00 (Report LUNs) (Good)
	59 111.985719	172.16.0.16	172.16.0.12	iscsi	102 SCSI: Inquiry LUN: 0x00
	60 111.985999	172.16.0.12	172.16.0.16	iscsi	138 SCSI: Data In LUN: 0x00 (Inquiry Response Data) [SCSI transfer limited due to allocation_length too small]
	61 111.986445	172.16.0.16	172.16.0.12	iSCSI	102 SCSI: Inquiry LUN: 0x00 Supported Vital Product Data Pages
	62 111.986714	172.16.0.12	172.16.0.16	iSCSI	110 SCSI: Data In LUN: 0x00 (Inquiry Response Data) SCSI: Response LUN: 0x00 (Inquiry) (Good)
	63 111.987019	172.16.0.16	172.16.0.12	iscsi	102 SCSI: Inquiry LUN: 0x00 Device Identification Page
	64 111.987289	172.16.0.12	172.16.0.16	iscsi	358 SCSI: Data In LUN: 0x00 (Inquiry Response Data) SCSI: Response LUN: 0x00 (Inquiry) (Good)
1183	65 111.987673	172.16.0.16	172.16.0.12	iscsi	102 SCSI: Inquiry LUN: 0x00 Device Identification Page
1183	66 111.987970	172.16.0.12	172.16.0.16	iSCSI	526 SCSI: Data In LUN: 0x00 (Inquiry Response Data) SCSI: Response LUN: 0x00 (Inquiry) (Good)
	67 111.988921	172.16.0.16	172.16.0.12	iSCSI	102 SCSI: Inquiry LUN: 0x00 Unit Serial Number Page
	68 111.989154	172.16.0.12	172.16.0.16	iscsi	142 SCSI: Data In LUN: 0x00 (Inquiry Response Data) SCSI: Response LUN: 0x00 (Inquiry) (Good)
	69 111.989419	172.16.0.16	172.16.0.12	iscsi	102 SCSI: Inquiry LUN: 0x00
	70 111.989700	172.16.0.12	172.16.0.16	iscsi	198 SCSI: Data In LUN: 0x00 (Inquiry Response Data) SCSI: Response LUN: 0x00 (Inquiry) (Good)
	71 112.000706	172.16.0.16	172.16.0.12	TCP	60 49669 → 3260 [ACK] Seq=1065 Ack=1917 Win=262400 Len=0
	72 112.002229	172.16.0.16	172.16.0.12	iscsi	102 SCSI: Read Capacity(10) LUN: 0x00
	73 112.002448	172.16.0.12	172.16.0.16	iscsi	110 SCSI: Data In LUN: 0x00 (Read Capacity(10) Response Data) SCSI: Response LUN: 0x00 (Read Capacity(10)) (Good)
	74 112.003036	172.16.0.16	172.16.0.12	iscsi	102 SCSI: Mode Sense(6) LUN: 0x00
	75 112.003240	172.16.0.12	172.16.0.16	iscsi	106 SCSI: Data In LUN: 0x00 (Mode Sense(6) Response Data) SCSI: Response LUN: 0x00 (Mode Sense(6)) (Good)
	76 112.003469	172.16.0.16	172.16.0.12	iSCSI	102 SCSI: Inquiry LUN: 0x00 Supported Vital Product Data Pages
	77 112.003673	172.16.0.12	172.16.0.16	iscsi	110 SCSI: Data In LUN: 0x00 (Inquiry Response Data) SCSI: Response LUN: 0x00 (Inquiry) (Good)
	78 112.003916	172.16.0.16	172.16.0.12	TCP	60 49669 → 3260 [ACK] Seq=1209 Ack=2081 Win=262400 Len=0
1183	79 112.004668	172.16.0.16	172.16.0.12	iscsi	102 SCSI: Mode Sense(6) LUN: 0x00

Figura 4.1: iSCSI Login

Graças a este filtro é possível observar o 3-Way Handshake que inicia a fase de login do iSCSI entre os pacotes 118345 ao 118347.

- 1. Pacote 118345: Este pacote é um pacote TCP SYN (sincronização) enviado pelo *initiator* (172.16.0.16) para o *target* (172.16.8.12). Este pacote indica ao *target* que estão a fazer um pedido de sincronização por parte do *initiator*.
- 2. Pacote 118346: Este pacote é um pacote TCP SYN/ACK enviado pelo target (172.16.8.12) para o initiator (172.16.0.16). O target envia também um pedido de sincronização ao initiator e confirma o pedido de sincronização enviado pelo initiator foi aceite
- 3. Pacote 118347: Este pacote é um pacote TCP ACK enviado pelo *initiator* (172.16.0.16) para o *target* (172.16.8.12). Este pacote confirma o pedido de sincronização do *target*.

Desta forma a ligação tcp é estabelecida entre o *initiator* e começa a fase de login para ganhar mais acesso ao target. Basicamente há dois tipos de sessões de login. A normal e a discovery. Nesta captura vamos ver o normal que é uma sessão estabelecida entre o initior realiza o login para ligar-se ao target.

4.1.1 Normal Login

Antes de analisarmos os pacotes vamos var decode aos pacotes para permitir que possamos analisar com mais detalhe o protocolo iSCSI e mais fácil de o entender.

4. Pacote 118348: Este pacote é um pacote iSCSI login enviado pelo *initiator* (172.16.0.16) para o *target* (172.16.8.12). Este pacote contém informações sobre o *initiator*, como o seu endereço IP, o seu nome de utilizador e o tipo de sessão que se pretende fazer, que neste caso é **Normal**. Podemos ver isso nas figuras 4.2 e 4.3.

Figura 4.2: Primeiro Pacote iSCSI Login

26 Análise Prática

Figura 4.3: ESXi VMs

5. Pacote 118349: Este pacote é um pacote iSCSI login response enviado pelo target (172.16.8.12) para o initiator (172.16.0.16). Este pacote contém informações sobre o estado do login. Como podemos ver na figura 4.4 o CSG, current stage, informa o initiator que é a negociação de segurança e método de autenticação.

Figura 4.4: Segundo Pacote iSCSI Login

Após o sucesso do login, o *initiator* e o *target* podem trocar dados usando pacotes iSCSI. Estes pacotes iSCSI são utilizados para enviar comandos SCSI entre o *initiator* e o *target*.

Na imagem 4.1, os seguintes pacotes SCSI são enviados:

- 6. Pacote 118357: Este pacote é um pacote iSCSI SCSI Report LUNs enviado pelo *initiator* (172.16.0.16) para o *target* (172.16.8.12). Este pacote é utilizado para solicitar uma lista de LUNs disponíveis no *target*.
- 7. Pacote 118358: Este pacote é um pacote iSCSI SCSI Report LUNs response enviado pelo target (172.16.8.12) para o initiator (172.16.0.16). Este pacote contém uma lista de LUNs disponíveis no target.
- 8. Pacote 118359: Este pacote é um pacote iSCSI SCSI Inquiry enviado pelo *initiator* (172.16.0.16) para o *target* (172.16.8.12). Este pacote é utilizado para solicitar informações sobre uma LUN específica.
- 9. Pacote 118360: Este pacote é um pacote iSCSI SCSI Inquiry response enviado pelo *target* (172.16.8.12) para o *initiator* (172.16.0.16). Este pacote contém informações sobre a LUN específica.

Os pacotes 118357 e 118358 são utilizados para obter uma lista de LUNs disponíveis no *target*. O pacote 118359 é utilizado para obter informações sobre uma LUN específica.

Após receber o pacote SCSI response, o *initiator* pode usar as informações obtidas para realizar operações de leitura, gravação ou outro tipo de operação no armazenamento.

4.1.2 Discovery

Como já anteriormente mencionado, existem dois tipos de sessões, o *Normal* e o *discovery* sendo este apenas usado para a descoberta dos target disponiveis. Fomos capazes de verificar o sucessido quando, ao fazer a configuração do initiator estamos no passo 3.9 e na captura que estávamos a realizar no *target* após a ligacção TCP estar concluída, o initiator(172.16.10.18) enviar como Discovery e o target lhe responder com as informações.

Figura 4.5: Value: Discovery

Figura 4.6: Retorno

4.2 NOP-IN e NOP-OUT

O NOP-IN e NOP-OUT, pedido e resposta, é usado como se fosse um mecanismo de ping entre o *target* e o *initiator* para verificarem se a sessão/conexão

ainda estão ativos. Segundo a RFC, tanto pode ser desencadiado pelo *target* ou *initiator*, porém no nosso caso observamos apenas ao processo ser desancadeado pelo *target* como podemos observar nos pacotes 1129 e 1130 e os pacotes 2919 e 2920 de uma captura feita posterior à fase e login.

1129 13.699099	172.16.0.12	172.16.0.16	iscsI	102 NOP In
1130 13.700188	172.16.0.16	172.16.0.12	iSCSI	102 NOP Out
2919 38.699205	172.16.0.12	172.16.0.16	iSCSI	102 NOP In
2920 38.699873	172.16.0.16	172.16.0.12	iSCSI	102 NOP Out

Figura 4.7: NOP-IN e NOP-OUT

4.3 Operação de Escrita

Na imagem 4.8 podemos ver marcados a vermelho os pacotes utilizados para a escrita de um bloco de dados. Como descrito no capitulo 3, neste processo, o initiator faz um request write para o target em comandos Small Computer System Interface (SCSI) (fig: 4.9) e depois espera receber do target o pacote "Ready to Transfer" (fig:4.10). De seguida existe a operação SCSI Data-Out (fig: 4.11), do initiator para o target. No final é obtida uma resposta de transferência concluída (fig:4.12).

3312 109.990101	1/2.16.0.12	1/2.31.0.5	15C51	102 Ready to Transfer
™ 3432 110.004329	172.31.0.5	172.16.0.12	iscsI	590 SCSI: Write(10) LUN: 0x00 (LBA: 0x000114b0, Len: 512)SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
3433 110.004598	172.16.0.12	172.31.0.5	iscsI	102 Ready To Transfer
3555 110.012683	172.31.0.5	172.16.0.12	iscsi	590 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
3677 110.028411	172.31.0.5	172.16.0.12	iscsi	590 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
3800 110.037036	172.31.0.5	172.16.0.12	iscsI	590 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
3829 110.039941	172.16.0.12	172.31.0.5	iscsi	102 SCSI: Response LUN: 0x00 (Write(10)) (Good)
3923 110.052264	172.31.0.5	172.16.0.12	iscsi	590 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
4045 110.063869	172.31.0.5	172.16.0.12	iscsI	590 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
4168 110.078797	172.31.0.5	172.16.0.12	iscsI	590 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
4194 110.081223	172.16.0.12	172.31.0.5	iscsi	102 SCSI: Response LUN: 0x00 (Write(10)) (Good)
4291 110.088634	172.31.0.5	172.16.0.12	iscsi	590 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
4413 110.108367	172.31.0.5	172.16.0.12	iscsi	590 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
4536 110.114408	172.31.0.5	172.16.0.12	iscsI	590 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
4574 110.116696	172.16.0.12	172.31.0.5	iscsi	102 SCSI: Response LUN: 0x00 (Write(10)) (Good)
4659 110.134418	172.31.0.5	172.16.0.12	iscsi	590 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
4782 110.191424	172.31.0.5	172.16.0.12	iscsi	590 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
4904 110.201453	172.31.0.5	172.16.0.12	iscsI	254 SCSI: Data Out LUN: 0x00 (Write(10) Request Data)
4905 110.204271	172.16.0.12	172.31.0.5	iscst	102 SCST: Response LIN: 0x00 (Write(10)) (Good)

Figura 4.8: Pacotes Operação Write

30 Análise Prática

Figura 4.9: 1° pacote Write

```
> Frame 3433: 102 bytes on wire (816 bits), 102 byt
> Ethernet II, Src: VMware_6e:49:26 (00:0c:29:6e:49
> Internet Protocol Version 4, Src: 172.16.0.12, Ds
> Transmission Control Protocol, Src Port: 3260, Ds

v iSCSI (Ready To Transfer)
...11 0001 = Opcode: Ready To Transfer (0x31)
```

Figura 4.10: 2^{Ω} pacote Write

Figura 4.11: 3^{o} pacote Write

```
> Frame 4905: 102 bytes on wire (816 bits), 102 byte
> Ethernet II, Src: VMware_6e:49:26 (00:0c:29:6e:49:
> Internet Protocol Version 4, Src: 172.16.0.12, Dst
> Transmission Control Protocol, Src Port: 3260, Dst

viscsi (SCSI Response)
...10 0001 = Opcode: SCSI Response (0x21)
Response: Command completed at target (0x00)
Status: Good (0x00)
```

Figura 4.12: 4º pacote Write

4.4 Operação de Escrita

Na imagem 4.13 podemos ver marcados a verde os pacotes utilizados para a operação de escrita de um bloco de dados. Como descrito no capitulo 3, neste processo, o *initiator* faz um request read para o target em comandos SCSI (fig: 4.14). De seguida existe a operação SCSI Data-In (fig: 4.15), do target para o initiator. No final, a flag de ultima Protocol Data Unit (PDU) desta operação esta ativa e flag de estado também esta ativada e é obtida uma resposta de transferência concluída (fig:4.16).

			********	*********		VV 1999 - SERV INCH SER ESTE TO THE TEXT OF THE SERVICE CO.
				172.16.0.12	iscsī	102 SCSI: Read(10) LUN: 0x00 (LBA: 0x00008018, Len: 256)
+	118480	112.073475	172.16.0.12	172.16.0.16	iscsI	119774 SCSI: Data In LUN: 0x00 (Read(10) Response Data)
	118481	112.073886	172.16.0.16	172.16.0.12	TCP	60 49669 → 3260 [ACK] Seq=19465 Ack=207373 Win=262656 Len=0
+	118482	112.073902	172.16.0.12	172.16.0.16	iscsI	11502 SCSI: Data In LUN: 0x00 (Read(10) Response Data) SCSI: Response LUN: 0x00 (Read(10)) (Good)

Figura 4.13: Pacotes Operação Read

32 Análise Prática

```
> Frame 118479: 102 bytes on wire (816 bits), 102 bytes
> Ethernet II, Src: VMware_14:15:46 (00:0c:29:14:15:46),
> Internet Protocol Version 4, Src: 172.16.0.16, Dst: 17
> Transmission Control Protocol, Src Port: 49669, Dst Po

✓ iSCSI (SCSI Command)

     ..00 0001 = Opcode: SCSI Command (0x01)
     .0.. .... = I: Queued delivery
     TotalAHSLength: 0 (0x00)
     DataSegmentLength: 0 (0x00000000)
  > LUN
     InitiatorTaskTag: 0x00000031
     ExpectedDataTransferLength: 131072 (0x00020000)
     CmdSN: 49 (0x00000031)
     ExpStatSN: 53 (0x00000035)
     Data In in: 118480
     Response in: 118482

✓ Flags: 0xc1, F, R, Attr: Simple
     1... = F: Final PDU in sequence
     .1.. .... = R: Data will be read from target
     ..0. .... = W: No data will be written to target
     .... .001 = Attr: Simple (0x1)
```

Figura 4.14: 1º Pacote da Operação Read

```
> Frame 118480: 119774 bytes on wire (958192 bits), 119774 bytes
> Ethernet II, Src: VMware 6e:49:26 (00:0c:29:6e:49:26), Dst: VMw
> Internet Protocol Version 4, Src: 172.16.0.12, Dst: 172.16.0.16
> Transmission Control Protocol, Src Port: 3260, Dst Port: 49669,

✓ iSCSI (SCSI Data In)

     ..10 0101 = Opcode: SCSI Data In (0x25)

✓ Flags: 0x00
        0... = F: Not final PDU in sequence
        .0.. .... = A: Acknowledge not requested
        .... .0.. = 0: No residual overflow occurred
        .... ..0. = U: No residual underflow occurred
        .... ...0 = S: Response does not contain SCSI status
     TotalAHSLength: 0 (0x00)
     DataSegmentLength: 65536 (0x00010000)
     InitiatorTaskTag: 0x00000031
     StatSN: 0 (0x00000000)
     ExpCmdSN: 50 (0x00000032)
     MaxCmdSN: 303 (0x0000012f)
     DataSN: 0 (0x00000000)
     BufferOffset: 0 (0x00000000)
     ResidualCount: 0 (0x00000000)
```

Figura 4.15: 2º Pacote da Operação Read

4.5 Conclusão 33

Figura 4.16: 3º Pacote da Operação Read

4.5 Conclusão

A realização do projeto foi concluído com êxito, apesar de algumas dificuldades encontradas no início devido a problemas de configuração com Windows Server 2022 CLL.

Através da ferramenta Wireshark foram capturados os pacotes essenciais para entender a sequência e a troca de mensagens entre o *initiator* e o *target*, e estes foram detalhados no decorrer do relatório.

Este projeto permitiu expandir os nossos conhecimentos e aprimorar as nossas técnicas de pesquisa.

34 Análise Prática

Referências

- [1] $Introdução\ iSCSI$. URL: https://calsoftinc.com/blogs/2017/03/iscsi-introduction-steps-configure-iscsi-initiator-target. html (acedido em 21/01/2024).
- [2] iSCSI. URL: http://www.3kranger.com/HP3000/mpeix/en-hpux/T1452-90011/ch01s05.html?btnNext=next%A0%BB (acedido em 21/01/2024).
- [3] iSCSI. URL: https://datatracker.ietf.org/doc/html/rfc3720. html#section-1 (acedido em 21/01/2024).