Convexified Convolutional Neural Networks

Kyle Daruwalla and Akhil Sundararajan

ECE 901 Fall 2016

November 10, 2016

Overview

Background

Convex Relaxations
Linear Activation Functions
Non-Linear Activation Functions

Algorithm

Theoretical Results

Experimental Results

Paper Overview

- 1. Start generic two-layer CNN
- 2. Convex relaxation
 - 2.1 Linear activation optimize for a low-rank matrix A instead of filter weights and coefficients
 - 2.2 Non-linear activation frame problem in terms of RKHS
- 3. Introduce a kernel-based algorithm for CCNNs
- 4. Provide theoretical guarantees on the generalization error
- 5. Explain extensions like pooling and multi-layer CNNs
- 6. Provide experimental results on MNIST and CIFAR-10

Convolutional Neural Networks

For an input vector, $x \in \mathbb{R}^{d_0}$, and output vector, $y \in \mathbb{R}^{d_2}$, define

$$\{z_p(x) \mid z_p(x) \in \mathbb{R}^{d_1}\}_{j=1}^P$$

to be the set of P patches of x.

For a given $\sigma : \mathbb{R} \to \mathbb{R}$, the output of a filter is

$$h_j(z) = \sigma(w_j^T z)$$

The output of a CNN is $f = (f_1(x), f_2(x), \dots, f_{d_2}(x))$ is defined as

$$f_k(x) = \sum_{j=1}^r \sum_{p=1}^P \alpha_{k,j,p} h_j(z_p(x))$$
 (1)

Convolutional Neural Networks

CNNs are described by the class of models:

$$\mathcal{F}_{cnn}(B_1, B_2) = \{ f \text{ of the form Eq. } 1 \mid \max_{j \in [r]} \|w_j\|_2 \le B_1$$
 and
$$\max_{k \in [d_2], j \in [r]} \|\alpha_{k,j}\|_2 \le B_2 \}$$

Given a set of samples $\{(x_i, y_i)\}_{i=1}^n$, we want to solve the ERM:

$$\hat{f}_{cnn} = \arg\min_{f \in \mathcal{F}_{cnn}} \sum_{i=1}^{n} \mathcal{L}(f(x_i), y_i)$$
 (3)

Optimizing For Low-Rank Matrix (Linear Activation)

For $x \in \mathbb{R}^{d_0}$, define

$$Z(x) = \begin{bmatrix} z_1(x)^T \\ \vdots \\ z_P(x)^T \end{bmatrix} \text{ and } \alpha_{k,j} = \begin{bmatrix} \alpha_{k,j,1} \\ \vdots \\ \alpha_{k,j,P} \end{bmatrix}$$

Then rewrite Eq. 1 with activation function, $\sigma(t) = t$, as

$$f_k(x) = \sum_{j=1}^r \alpha_{k,j}^T Z(x) w_j = \operatorname{tr}\left(Z(x) \sum_{j=1}^r w_j \alpha_{k,j}^T\right) = \operatorname{tr}\left(Z(x) A_k\right)$$
(4)

Optimizing For Low-Rank Matrix (Linear Activation)

Figure: Reframing the problem in terms of a low-rank matrix, A_k , allows for convex optimization over a nuclear norm ball

Optimizing For Low-Rank Matrix (Linear Activation)

The CNN class of models is then

$$\mathcal{F}_{\mathsf{cnn}}(B_1,B_2) = \{f \text{ of the form Eq. 4} \mid \max_{j \in [r]} \lVert w_j \rVert_2 \leq B_1 \qquad (5)$$
 and
$$\max_{k \in [d_2], j \in [r]} \lVert \alpha_{k,j} \rVert_2 \leq B_2 \}$$
 and
$$\operatorname{rank}(A) = r$$

Define the CCNN class of models as

$$\mathcal{F}_{\mathsf{ccnn}}(B_1, B_2) = \{ f \text{ of the form Eq. 4 } | \|A\|_* \le B_1 B_2 r \sqrt{d_2} \}$$
 (6) where
$$\mathcal{F}_{\mathsf{cnn}}(B_1, B_2) \subseteq \mathcal{F}_{\mathsf{ccnn}}(B_1, B_2).$$

Reproducing Kernel Hilbert Space (RKHS)

- ► Hilbert Space: a complete inner-product space
- a reproducing kernel Hilbert space is
 - **ightharpoonup** a Hilbert space of functions $f:\mathcal{X}
 ightarrow \mathbb{R}$
 - evaluation functionals are continuous
- ▶ reproducing kernel (associated with Hilbert Space \mathcal{H}): a function $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that
 - $\mathcal{K}(x,\cdot) = \mathcal{K}_x(\cdot) \in \mathcal{H}, \forall x \in \mathcal{X}$
- $ightharpoonup \mathcal{H}$ is an RKHS $\implies \exists$ unique reproducing kernel \mathcal{K}
 - ▶ If \exists reproducing kernel $\mathcal{K} \implies \mathcal{H}$ is an RKHS

Framing Problem Using RKHS

• for certain kernels K and activations σ , Representer Theorem implies that for any patch $z_p(x_i)$

$$h(z_{p}(x_{i})) = \sum_{(i',p')\in[n]\times[p]} c_{i',p'}k(z_{p}(x_{i}),z_{p'}(x_{i'}))$$

- choose kernel matrix $K = \mathbb{R}^{nP \times nP}$
- consider $K = QQ^{\top}$

$$h(z_p(x_i)) = \langle Q_{(i,p)}, w \rangle$$
 where $w := \sum_{(i',p')} c_{(i',p')} Q_{(i',p')}$

CCNN Algorithm

Algorithm 1 CCNN Algorithm

Require: Data $\{(x_i, y_i)\}_{i=1}^n$, kernel function \mathcal{K} , regularization parameter R > 0, number of filters r

- 1. Construct a matrix $K \in \mathbb{R}^{nP \times nP}$ such that the entry at column (i,p) and row (i',p') is $\mathcal{K}(z_p(x_i),z_{p'}(x_{i'})$. Compute the factorization $K=QQ^T$ or an approximation, $K \approx QQ^T$, where $Q \in \mathbb{R}^{nP \times m}$.
- 2. For each x_i , construct a patch matrix $Z(x_i) \in \mathbb{R}^{P \times m}$ whose p-th row is the (i, p)-th row of Q.
- 3. Solve the following optimization problem to obtain a matrix $\hat{A}=(\hat{A}_1,\dots,\hat{A}_{d_2})$

$$\hat{A} = \arg\min_{\|A\|_* \le R} \tilde{\mathcal{L}}(A) \text{ where } \tilde{\mathcal{L}}(A) = \sum_{i=1}^n \mathcal{L}\left(\left(\operatorname{tr}\left(Z(x_i)A_1\right), \dots, \operatorname{tr}\left(Z(x_i)A_{d_2}\right)\right), y_i\right)$$

- 4. Compute a rank-r approximation $\tilde{A} \approx \hat{U}\hat{V}^T$ where $\hat{U} \in \mathbb{R}^{m \times r}$ and $\hat{V} \in \mathbb{R}^{Pd_2 \times r}$.
- 5. **return** The predictor $\hat{f}_{ccnn}(x) = \left(\operatorname{tr}\left(Z(x)\hat{A}_1\right), \dots, \operatorname{tr}\left(Z(x)\hat{A}^{d_2}\right)\right)$ and the convolutional layer output $H(x) = \hat{U}^T(Z(x))^T$.

Solving ERM in CCNN Algorithm

projected gradient descent

$$A^{t+1} = \Pi_R(A^t - \eta^t \nabla_A \tilde{\mathcal{L}}(A^t))$$

- ▶ compute SVD of A, the project singular values onto l_1 ball (Duchi et al)
- proximal adaptive gradient method
- proximal SVRG

Choice of Kernel

kernel functions considered must satisfy notion of richness

$$\begin{split} \mathcal{K}(z,z') &= \frac{1}{2 - \langle z,z' \rangle}, \quad ||z||_2 \leq 1, ||z'||_2 \leq 1 \\ \mathcal{K}(z,z') &= exp(-\gamma||z-z'||_2^2), \quad |z||_2 = ||z'||_2 = 1, \gamma \geq 0 \end{split}$$

Valid Activation Functions

- arbitrary polynomial functions

- lacksquare $\sigma_{\it sh}(t)=rac{1}{2}\int_{-\infty}^t(\sigma_{\it erf}(z)+1)dz$

Figure: approximations to activations which are not smooth enough

Theorem 1: Bound on Generalization Error

- ▶ loss function $\mathcal{L}(;y)$ is L-Lipschitz continuous for every $y \in [d_2]$
- lacktriangleright $\mathcal K$ is the inverse polynomial kernel or the Gaussian RBF kernel
- \triangleright valid activation function σ
- c > 0
- ightharpoonup radius $R:=C_{\sigma}(B_1)B_2r$

$$\exists C_{\sigma}(B_1)$$
 such that

$$\mathbb{E}_{X,Y}[\mathcal{L}(\hat{f}_{ccnn}(X);Y)] \leq$$

$$\inf_{f \in \mathcal{F}_{cnn}} \mathbb{E}_{X,Y}[\mathcal{L}(f(X);Y)] + \frac{cLC_{\sigma}(B_1)B_2r\sqrt{log(nP)}\mathbb{E}_X[||K(X)||_2]}{\sqrt{n}}$$

Proof Sketch

1. consider a relaxed function class

$$\mathcal{F}_{ccnn} := \left\{ x \mapsto \sum_{j=1}^{r^*} \sum_{p=1}^P \alpha_{j,p} h_j(z_p(x)) : r^* < \infty \right.$$

$$\text{and } \sum_{j=1}^{r^*} ||\alpha_j||_2 ||h_j||_{\mathcal{H}} \le C_{\sigma}(B_1) B_2 d_2 \right\}$$

2. characterize Rademacher complexity of \mathcal{F}_{ccnn} to upper bound generalization error of \hat{f}_{ccnn}

Further Proof Details (1/4)

Lemma 1:

For any valid
$$\sigma(\cdot)$$
, $\exists C_{\sigma}(B_1)$ s.t. $\mathcal{F}_{cnn} \subset \mathcal{F}_{ccnn}$

Lemma 4:

With CCNN hyper-parameter $R = C_{\sigma}(B_1)B_2d_2$,

 \hat{f}_{ccnn} is guaranteed to satisfy $\hat{f}_{ccnn} \in \arg\min_{f \in \mathcal{F}_{ccnn}} \sum_{i=1}^{n} \mathcal{L}(f(x_i); y_i)$

Further Proof Details (2/4)

the Rademacher complexity of $\mathcal{F} = \{f : \mathcal{X} \to \mathbb{R}\}$ with respect to n i.i.d. samples $\{X_i\}_{i=1}^n$ is given by

$$\mathcal{R}_n(\mathcal{F}) := \mathbb{E}_{X,\epsilon} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \right]$$

where $\{\epsilon_i\}_{i=1}^n$ are an i.i.d. sequence of uniform $\{-1,+1\}$ -valued random variables

Further Proof Details (3/4)

Lemma 5:

 \exists universal constant c such that

$$\mathcal{R}_n(\mathcal{F}_{ccnn}) \leq \frac{cC_{\sigma}(B_1)B_2r\sqrt{\log(nP)\mathbb{E}[||K(X)||_2]}}{\sqrt{n}}$$

generalization bound:

$$\mathbb{E}[\mathcal{L}(\mathcal{F}_{ccnn}(X);Y)] \leq \inf_{f \in \mathcal{F}_{ccnn}} \mathbb{E}[\mathcal{L}(f(x);y)] + 2L\mathcal{R}_{n}(\mathcal{F}_{ccnn}) + \frac{c}{\sqrt{n}}$$

Further Proof Details (4/4)

By Lemma 3,

$$\inf_{f \in \mathcal{F}_{ccnn}} \mathbb{E}[\mathcal{L}(f(x); y)] \leq \inf_{f \in \mathcal{F}_{cnn}} \mathbb{E}[\mathcal{L}(f(x); y)]$$

It follows that

$$\begin{split} \mathbb{E}_{X,Y}[\mathcal{L}(\hat{f}_{ccnn}(X);Y)] &\leq \inf_{f \in \mathcal{F}_{cnn}} \mathbb{E}_{X,Y}[\mathcal{L}(f(X);Y)] + \\ &\frac{cLC_{\sigma}(B_1)B_2r\sqrt{log(nP)}\mathbb{E}_X[||K(X)||_2]}{\sqrt{n}} \end{split}$$

Experimental Results

On MNIST dataset:

	basic	rand	rot	img	img+rot
SVM _{rbf}	3.03%	14.58%	11.11%	22.61%	55.18%
NN-1	4.69%	20.04%	18.11%	27.41%	62.16%
CNN-1 (ReLU)	3.37%	9.83%	18.84%	14.23%	45.96%
CCNN-1	2.38%	7.45%	13.39%	10.40%	42.28%
TIRBM	-	-	4.20%	-	35.50%
SDAE-3	2.84%	10.30%	9.53%	16.68%	43.76%
ScatNet-2	1.27%	12.30%	7.48%	18.40%	50.48%
PCANet-2	1.06%	6.19%	7.37%	10.95%	35.48%
CNN-2 (ReLU)	2.11%	5.64%	8.27%	10.17%	32.42%
CNN-2 (Quad)	1.75%	5.30%	8.83%	11.60%	36.90%
CCNN-2	1.38%	4.32%	6.98%	7.46%	30.23%

Table: Classification error with a Gaussian kernel for CCNNs

Experimental Results

On CIFAR-10 dataset:

	Error Rate	
CNN-1	34.14%	
CCNN-1	23.62%	
CNN-2	24.98%	
CCNN-2	20.52%	
$SVM_{Fastfood}$	36.90%	
PCANet-2	22.86%	
CKN	21.70%	
CNN-3	21.48%	
CCNN-3	19.56%	

Table: Error rate with a Gaussian kernel for CCNNs

References

Y. Zhang, et al. (2016, Sept. 4). *Convexified Convolutional Neural Networks* (v1) [Online]. Available: https://arxiv.org/abs/1609.01000

The End