Tag: Time Division Multiplexing Problems

Time Division Multiplexing | Access Control

► Computer Networks

Access Control in Networking-

Before you go through this article, make sure that you have gone through the previous article on Access Control.

We have discussed-

- · Access Control is a mechanism that controls the access of stations to the transmission link.
- Broadcast links require the access control mechanism.
- · There are various access control methods-

- 1. Time Division Multiplexing
- 2. Polling
- 3. **CSMA / CD**
- 4. Token Passing
- 5. Aloha

In this article, we will discuss about Time Division Multiplexing (TDM).

Time Division Multiplexing-

In Time Division Multiplexing (TDM),

- Time of the link is divided into fixed size intervals called as time slots or time slices.
- Time slots are allocated to the stations in **Round Robin** manner.
- Each station transmit its data during the time slot allocated to it.
- In case, station does not have any data to send, its time slot goes waste.

Example-

Time Division Multiplexing

Size Of Time Slots-

The size of each time slot is kept such that each station gets sufficient time for the following tasks-

- To put its data packet on to the transmission link
- Last bit of the packet is able to get out of the transmission link

Thus,

Size of each time slot =
$$T_t + T_p$$

where-

- Tt = Transmission delay
- Tp = Propagation delay

NOTE-

To keep the size of time slots constant,

- We have assumed that all the stations want to send the packets of same size.
- ullet This keeps T_t constant for all the stations.
- We have considered the worst case when both the stations are present at the two extreme ends.
- ullet This ensures T_p will be maximum and all the stations will get sufficient time to propagate their data.

Efficiency-

Efficiency (η) = Useful Time / Total Time

- Useful time = Transmission delay of data packet = T_t
- Useless time = Propagation delay of data packet = T_p

Thus,

Efficiency (
$$\eta$$
) = $\frac{T_t}{T_t + T_p}$

OR

Efficiency (η) =
$$\frac{1}{1 + a}$$
 where $a = \frac{T_p}{T_t}$

Important Formulas-

- Size of each time slot in Time Division Multiplexing = $T_t + T_p$
- Efficiency (η) = 1 / (1+a) where a = T_p / T_t
- Effective Bandwidth / Bandwidth Utilization / Throughput = Efficiency(η) x Bandwidth
- Maximum Available Effective Bandwidth = Total number of stations x Bandwidth requirement of 1 station

<u>Disadvantage-</u>

- If any station does not have the data to send during its time slot, then its time slot goes waste.
- · This reduces the efficiency.
- This time slot could have been allotted to some other station willing to send data.

PRACTICE PROBLEM BASED ON TIME DIVISION MULTIPLEXING (TDM)-

Problem-

If transmission delay and propagation delay of a packet in Time Division Multiplexing is 1 msec each at 4 Mbps bandwidth, then-

- 1. Find the efficiency.
- 2. Find the effective bandwidth.
- 3. How many maximum stations can be connected to the network if each station requires 2 Kbps bandwidth?

Solution-

Given-

- Transmission delay $(T_t) = 1$ msec
- Propagation delay $(T_p) = 1$ msec
- Bandwidth = 4 Mbps

Part-01:

For a TDM Network,

Efficiency (
$$\eta$$
) = 1 / 1+a where a = T_p / T_t

Calculating Value Of 'a'-

 $a = T_p / T_t$

a = 1 msec / 1 msec

a = 1

Calculating Efficiency-

Efficiency (η)

= 1 / (1+a)

= 1 / (1 + 1)

= 1 / 2

= 0.5

= 50%

Part-02:

We know-

Effective Bandwidth = Efficiency (η) x Bandwidth

Thus,

Effective Bandwidth

- = 0.5 x 4 Mbps
- = 2 Mbps

Part-03:

We know-

Maximum Effective Bandwidth

= Total number of stations x Bandwidth requirement of 1 station

Let the total number of stations that can be connected be N.

Then, we have-

 $2 \text{ Mbps} = N \times 2 \text{ Kbps}$

N = 1000

Thus, maximum 1000 stations can be connected.

To gain better understanding about Time Division Multiplexing (TDM),

Watch this Video Lecture

Next Article- Polling | Access Control Method

Get more notes and other study material of **Computer Networks**.

Watch video lectures by visiting our YouTube channel **LearnVidFun**.