Data Science

April 21, 2023. **Neural networks** 



Dr. Roland Molontay

#### Schedule of the semester

|                     | Monday midnight             | Tuesday class         | Friday class          |
|---------------------|-----------------------------|-----------------------|-----------------------|
| W1 (02/06)          |                             |                       |                       |
| W2 (02/13)          |                             | HW1 out               |                       |
| W3 (02/20)          |                             |                       |                       |
| W4 (02/27)          | <b>HW1 deadline + TEAMS</b> | HW2 out               |                       |
| W5 (03/06)          |                             |                       | PROJECT PLAN          |
| W6 (03/13)          | <b>HW2 deadline</b>         | HW3 out               |                       |
| W7 (03/20)          |                             |                       | MIDTERM               |
| <b>SPRING BREAK</b> |                             | SPRING BREAK          | SPRING BREAK          |
| W8 (04/03)          | HW3 deadline                |                       | GOOD FRIDAY           |
| W9 (04/10)          | MILESTONE 1                 |                       |                       |
| W10 (04/17)         |                             | HW4 out               |                       |
| W11 (04/24)         |                             |                       |                       |
| W12 (05/01)         | HW4 deadline                |                       |                       |
| W13 (05/08)         | MILESTONE 2                 |                       |                       |
| W14 (05/15)         |                             | FINAL                 | PROJECT presentations |
| W15 (05/22)         |                             | PROJECT presentations |                       |



- It can be used for approximating any function
  - So it can solve both classification and regression problems
- The algorithm mimics the functioning of interconnected neurons



#### Machine learning with neural networks

The three main steps of machine learning (in general):

- 1. Hypothesis: non-linear hypothesis function
- Cost function: Usual cost (error) function for classification/regression – misclassification error, logarithmic error, hinge, squared error, absolute error
- 3. Optimization: Gradient descent, stochastic gradient descent, other minimization methods
  - For neural network the cost function is usually non-convex → it is possible to get stuck in local minima

#### Feature extraction

- Until now we defined the features by hand
  - Linear:  $x_i$
  - Polynomial:  $x_i^2$ ,  $x_j^3 x_i^2$
  - Other non-linear functions (pl. radial function, logarithm etc.):  $log(x_i)$  etc.
  - Then the model learned linear hypothesis, the weights  $\theta$  (or w):

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \theta^T \phi(\boldsymbol{x}) \quad \phi : \mathbb{R}^n \to \mathbb{R}^k$$

- where  $\phi$  is a function that transforms the variables, if k>n: transformation to higher dimension
- Goal: having an algorithm that is able to extract features automatically

Expert-defined features for hand-written digit recognition, e.g.:

- number of "on" pixels
- average of the vertical coordinates of the "on" pixels
- variance of the horizonal coordinates
- correlation between the horizontal and vertical positions of "on" pixels

• •••

#### Biological motivation: neuron

- Neurons receive signals via dendrites (usually more dendrites), if the intensity of the stimuli is above a threshold then the neuron generate and propagate an electrical signal (an action potential) and the potential travels along the axon to its connections
  - There are inputs (signals via dendrites)
  - The cell body "process" the inputs
  - The output is the action potential that is transmitted along the axon



#### Perceptron

- Input nodes: where the input arrives
  - They correspond to the attributes
  - Special input node is the constant ( $x_0 = 1$ , bias)
- Weights of the inputs
  - These weights should be learned by the algorithm
- Summing
  - Summation of the weighted inputs
- Activation
  - We apply the activation function to the weighted sum of the inputs
- Output
  - The result of the activation function
  - It corresponds to the class label / target variable





#### **Activation functions**

- Sign function
- Piecewise linear function
- Tangent hyperbolic (K=2)

$$y = \begin{cases} 1, & s > 0 \\ -1, & s \le 0 \end{cases}$$

$$y = \begin{cases} 1, & s > 1 \\ s, & -1 \le s \le 1 \\ -1, & s \le -1 \end{cases}$$

$$y = \frac{1 - e^{-Ks}}{1 + e^{-Ks}}; K > 0$$





• Hinge

$$y = \frac{1}{1 + e^{-Ks}}; \ K > 0$$

$$y = \max(0, s)$$



### Many other possible activation function

| Identity                      |                                        | f(x) = x                                                                                                                                                                                                                       | f'(x) = 1                                                                                                                                        |
|-------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Binary step                   |                                        | $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$                                                                                                                                            | $f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$                                                            |
| Logistic (a.k.a<br>Soft step) |                                        | $f(x) = \frac{1}{1 + e^{-x}}$                                                                                                                                                                                                  | f'(x) = f(x)(1 - f(x))                                                                                                                           |
| TanH                          |                                        | $f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$                                                                                                                                                                                  | $f'(x) = 1 - f(x)^2$                                                                                                                             |
| ArcTan                        |                                        | $f(x) = \tan^{-1}(x)$                                                                                                                                                                                                          | $f'(x) = \frac{1}{x^2 + 1}$                                                                                                                      |
| Rectified Linear              |                                        | $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$                                                                                                                                            | $f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$                                                             |
| SoftPlus                      |                                        | $f(x) = \log_e(1 + e^x)$                                                                                                                                                                                                       | $f'(x) = \frac{1}{1 + e^{-x}}$                                                                                                                   |
| Bent identity                 |                                        | $f(x) = \frac{\sqrt{x^2 + 1} - 1}{2} + x$                                                                                                                                                                                      | $f'(x) = \frac{x}{2\sqrt{x^2 + 1}} + 1$                                                                                                          |
| SoftExponential               |                                        | $f(\alpha, x) = \begin{cases} -\frac{\log_{\epsilon}(1 - \alpha(x + \alpha))}{\alpha} & \text{for } \alpha < 0 \\ x & \text{for } \alpha = 0 \\ \frac{e^{\alpha x} - 1}{\alpha} + \alpha & \text{for } \alpha > 0 \end{cases}$ | $f'(\alpha, x) = \begin{cases} \frac{1}{1 - \alpha(\alpha + x)} & \text{for } \alpha < 0 \\ e^{\alpha x} & \text{for } \alpha \ge 0 \end{cases}$ |
| Sinusoid                      | $\wedge \wedge \vee$                   | $f(x) = \sin(x)$                                                                                                                                                                                                               | $f'(x) = \cos(x)$                                                                                                                                |
| Sinc                          | \\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\ | $f(x) = \begin{cases} 1 & \text{for } x = 0\\ \frac{\sin(x)}{x} & \text{for } x \neq 0 \end{cases}$                                                                                                                            | $f'(x) = \begin{cases} 0 & \text{for } x = 0\\ \frac{\cos(x)}{x} - \frac{\sin(x)}{x^2} & \text{for } x \neq 0 \end{cases}$                       |
| Gaussian                      |                                        | $f(x) = e^{-x^2}$                                                                                                                                                                                                              | $f'(x) = -2xe^{-x^2}$                                                                                                                            |

# The connection of perceptron to other algorithms

- If the activation function is the sigmoid function then the perceptron algorithm agrees with logistic regression
  - Providing that the cost function is the logarithmic loss
- If the activation function is the identity, then it is the same as linear regression
- Perceptron (with usual activation functions) is a linear algorithm, thus it creates linear decision boundary



#### Training perceptron to learn logical function

| X <sub>1</sub> | $X_2$ | $X_3$ | Υ |
|----------------|-------|-------|---|
| 1              | 0     | 0     | 0 |
| 1              | 0     | 1     | 1 |
| 1              | 1     | 0     | 1 |
| 1              | 1     | 1     | 1 |
| 0              | 0     | 1     | 0 |
| 0              | 1     | 0     | 0 |
| 0              | 1     | 1     | 1 |
| 0              | 0     | 0     | 0 |



• The output (Y) is 1, if and only if at least two input parameters are 1

#### Training perceptron to learn logical function II.

| X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | Υ |
|----------------|----------------|----------------|---|
| 1              | 0              | 0              | 0 |
| 1              | 0              | 1              | 1 |
| 1              | 1              | 0              | 1 |
| 1              | 1              | 1              | 1 |
| 0              | 0              | 1              | 0 |
| 0              | 1              | 0              | 0 |
| 0              | 1              | 1              | 1 |
| 0              | 0              | 0              | 0 |



$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$
where  $I(z) = \begin{cases} 1 & \text{if } z \text{ true} \\ 0 & \text{otherwise} \end{cases}$ 

### Examples – other logical functions

 Similarly to the previous slide, let's find the perceptron that is able to represent AND and OR functions for two input variables

- $x_1$  AND  $x_2$
- *x*<sub>1</sub> OR *x*<sub>2</sub>
- It is enough to find the equation of the separating line

AND

OR









#### Example – XOR function

- We have seen that XOR is not linearly separable
  - One neuron is not able to represent is
  - Using AND and OR functions, it can be represented
    - Let us combine AND and OR to build a neural network by combining the neurons

#### XOR

$$x_1 \oplus x_2 = (x_1 \vee x_2) \wedge \overline{(x_1 \wedge x_2)}$$



### Example—XOR function II. – feature extraction

- One neuron was not enough but by using a socalled hidden layer we were able to represent XOR function
- The hidden layer can be considered as new features  $(x_1 \lor x_2, \overline{x_1} \land x_2)$  extracted from original features  $(x_1, x_2)$ 
  - Neural networks with hidden layer(s) are able to extract new features automatically



#### Example – XOR function III.

- XOR function can be represented by other neural networks as well (with the help of a different logical identity)
- The principle is the same



#### Problem

Represent the following logical functions with a perceptron or show that it is not possible to do so. In the latter case, construct a neural network with one hidden layer.

- a) A AND B AND C
- b) (A XOR B) AND (A OR B)

#### Multi-layer neural networks

- Having more perceptrons (neurons) in multiple layers
- First layer: input nodes
- Last layer: output nodes (one or more)
- Hidden layers: perceptrons
- Perceptrons of neighboring layers are connected
  - The connectedness depends on the architecture of the network (normally: fully connected)
- All perceptrons receive their inputs from the previous layers and propagate their outputs the to the next layer
- Weights correspond to the links (edges)
  - These weights should be adjusted by the learning procedure to minimize the cost function



#### Feed-forward neural network

- Assume that the network is already trained (the weights are set)
- A record arrives to the input nodes and it propagates through the network in a forward direction (from the left to the right) on a layer-by-layer basis
  - The layers process the data
  - It can be considered as extracting new features in each layer
- Finally we obtain the result on the output node(s)



#### Universal approximation theorem

- A feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions in compact subsets of  $\mathbb{R}^n$ , under mild assumptions on the activation function
  - It is important to note that the theorem states that simple neural networks can represent a wide variety of functions, however, it does not touch upon the algorithmic learnability of the parameters
    - Non-constructive



#### Multi-class problem

- If there are more possible class labels (number of labels c)
- There are more output nodes: the same number as the number of possible labels (c)
- An input is assigned to label i if the ith output is 1 and the others are 0
  - if the possible output values are continuous then we assign the label with largest value on the corresponding output node
- E.g. for character recognition, the number of outputs corresponds to the number of characters



#### Architecture of the network

- Number of input nodes arises from the nature of the problem
  - Number of attributes, e.g. for character recognition it is the number of pixels
- Number of output nodes arises from the nature of the problem
- The other parameters can be set freely
  - Number of hidden layers
  - Number of neurons in each layer
- The more complex the network is, the more possible that the network will overfit the data
  - Sometimes it is enough to have a simpler network

#### Deep learning

Deep learning refers to machine learning with deep neural networks,
 i.e. neural networks with many hidden layers



#### Training a perceptron

- Perceptron is a simple linear model, the training procedure is similar to the usual one:
  - We choose a cost function (MSE, logistic cost)
  - The cost function is minimized (gradient descent, stochastic gradient descent or other optimization method)



#### Forward propagation for ANNs

- 1. The training record arrives on the input nodes
- 2. Using the current weights on the edges, the record propagates through the network (from the left to the right)
- 3. We calculate the result on the output node(s) and we compare the output(s) with the actual target value
- 4. We calculate the cost (e.g. squared error, logarithmic error) based on the difference between the output and the actual target value



#### Backpropagation

- 1. Initializing the weights
- Choosing a (random) record from the training data
- 3. Using the forward propagation algorithm, the output and the error is calculated
- 4. Calculating the gradient with respect to the weights
  - See next slides!
- Updating the weights according to gradient method
- 6. Start the procedure again with another (random) record and repeat the procedure "until convergence"



### Calculating the gradient – using chain rule

Reminder: how it worked for simple linear regression:

$$F = (\hat{y} - y)^{2}$$

$$\hat{y} = \sum_{j=1}^{m} w_{j}x_{j} + w_{0}$$

$$\frac{\partial F}{\partial w_{j}} = \frac{\partial F}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_{j}}$$



#### Training a multi-layer neural network

- The output of a layer is the input of the following layer
- The weights on the edges should be learned by the model
- Activation function: g
- Weights on edges: w
- The output of the neurons (nodes) are denoted by x and calculated as:

$$x_i^{l+1} = g\left(\sum_{j=1}^n w_{ji}^l x_j^l + w_0^l\right)$$



# Calculating the gradient for a multi-layer neural netwok

• Using chain-rule:



$$\frac{\partial F}{\partial w_{11}^3} = \frac{\partial F}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_{11}^3} = 2 \cdot (\hat{y} - y) \cdot g'(w_{01}^3 + w_{11}^3 x_1^3 + w_{21}^3 x_2^3) \cdot x_1^3$$

where g is the activation function,  $w_{jk}^l$  is the weight on the edge from  $x_j^l$  to  $x_k^{l+1}$ 

# Calculating the gradient for a multi-layer neural network II.

 For "deeper" edges, i.e., for edges that do not effect the output directly, the derivatives calculated recursively



$$\frac{\partial F}{\partial w_{11}^2} = \frac{\partial F}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial x_1^3} \frac{\partial x_1^3}{\partial w_{11}^2}$$

# Calculating the gradient for a multi-layer neural network III.



$$\frac{\partial F}{\partial w_{11}^1} = \frac{\partial F}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial x_1^3} \frac{\partial x_1^3}{\partial x_1^2} \frac{\partial x_1^2}{\partial w_{11}^1} + \frac{\partial F}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial x_2^3} \frac{\partial x_2^3}{\partial x_1^2} \frac{\partial x_1^2}{\partial w_{11}^1}$$

# Calculating the gradient for a multi-layer neural network IV.

• Generally, we have to sum up the derivatives for all the possible paths that starts from the end node of the examined edge and terminated in the output node



$$\frac{\partial F}{\partial w_{jk}^{l}} = \sum_{mn...q} \frac{\partial F}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial x_{m}^{L}} \frac{\partial x_{m}^{L}}{\partial x_{n}^{L-1}} \dots \frac{\partial x_{q}^{l+2}}{\partial x_{k}^{l+1}} \frac{\partial x_{k}^{l+1}}{\partial w_{jk}^{l}}$$

• Where: L is the number of layers,  $m, n, \ldots q$  run through the possible values (i.e. number the possible values are the number of neurons in each layer)

#### Problem

Consider a chain of two neurons. The input of the first neuron is  $x_1$  and the output is  $y_1 = ax_1 + b$ . The input of the other neuron is  $x_2$  and the output is  $y_2 = cx_2 + d$  (the activation function is the identity function in both cases). Connect the two neurons so that the second neuron's input is  $y_1$ , i.e.  $x_2=y_1$ .

- a) Draw this neural network!
- b) Give the final output  $y_2$  as a function of  $x_1$ !
- c) Let the input of the ANN be x and the output be y. Using the gradient descent method, show how the weights (a, b, c, d) are updated after one training step if the squared error is minimized.

### Advantages/disadvantages of neural networks

- They make it possible to extract features automatically
- They mean significant advancement in:
  - Image recognition
  - Speech recognition
  - Text mining
- They can be parallelized
- Potential room for improvement
  - Increasing amount of data
  - Faster computers

- For good performance (very) big data is necessary
- Computationally expensive
- It is difficult to set the (hyper)parameters, i.e. choose the proper architecture
  - Number of hidden layers, number of neurons, number of edges
- The result is not easily interpretable
  - Difficult to understand what the reason of the prediction is

### Deep learning and amount of data



#### Avoiding overfitting neural networks

- Adding regularization term to cost function
  - Usually the sum of the squared weights (as before)
- Reducing the number of hidden layers
- Avoiding too complex architectures
- Dropout algorithm (dropping out certain nodes from the network)



(a) Standard Neural Net



(b) After applying dropout.

#### Neural network as a feature extractor

- We can think of the values on the hidden layers as new extracted attributes
- It is also possible to use these new features as inputs of another machine learning algorithm

Machine Learning

Car
Not Car
Output

Deep Learning



#### Types of neural networks

- Fully connected feed-forward neural networks
  - The simplest but not the most popular architecture
  - There are a lot of parameters (edge weights) that we have to optimize for
  - Danger of overfitting
- Recurrent Neural Network RNN
  - For sequential data it is able to learn the temporal nature of the data
    - E.g. time series prediction, audio mining
  - There is a directed cycle in the network
  - RNN is able to use its own inner memory
- Convolutional Neural Networks CNN
  - Not all of the connections are drawn, the "proximity", of the data is also taken into consideration
  - Mainly used for image classification



# Fully connected vs. convolutional neural networks



### Change in search interest



# For which problems is it not so practical to use deep learning?

- If we have "traditional" attributes (features that can be easily interpreted by humans), then it is better to start with "traditional" algorithms
  - If we are not satisfied with the results, we can use deep learning to possibly achieve 1-2% performance improvement

# For which problem is it practical to use deep learning?

- If the data have attributes that are not easily interpretable (e.g. text, image, audio files) then using deep learning has great potential
  - Image recognition
  - Text mining
  - Audio mining
  - Language processing
- It is practical to use an already trained network for the given problem instead of experimenting with the proper architecture



Try it out: <a href="http://deeplearning.cs.toronto.edu">http://deeplearning.cs.toronto.edu</a>



### Softwares for deep learning

- Keras
  - Based on Python, Theano and TensorFlow backend, easily readable code, originates from Google



- TensorFlow
- Working with Python (and with some other programming languages as well)



### Acknowledgement

- András Benczúr, Róbert Pálovics, SZTAKI-AIT, DM1-2
- Krisztián Buza, MTA-BME, VISZJV68
- Bálint Daróczy, SZTAKI-BME, VISZAMA01
- Judit Csima, BME, VISZM185
- Gábor Horváth, Péter Antal, BME, VIMMD294, VIMIA313
- Lukács András, ELTE, MM1C1AB6E
- Tim Kraska, Brown University, CS195
- Dan Potter, Carsten Binnig, Eli Upfal, Brown University, CS1951A
- Erik Sudderth, Brown University, CS142
- Joe Blitzstein, Hanspeter Pfister, Verena Kaynig-Fittkau, Harvard University, CS109
- Rajan Patel, Stanford University, STAT202
- Andrew Ng, John Duchi, Stanford University, CS229

