GUÍA DE PRÁCTICAS DE APLICACIÓN Y /O EXPERIMENTACIÓN DE LOS APRENDIZAJES (PAE O APE)

Datos Informativos

Facultad: CIENCIAS ADMINISTRATIVAS GESTIÓN EMPRESARIAL E INFORMÁTICA

Carrera: SOFTWARE

Asignatura: ESTRUCTURAS DISCRETAS

Ciclo: PRIMERO 1^{RO}

Docente: DARWIN PAUL CARRIÓN BUENAÑO

Título de la práctica: GRAFOS

No. de la práctica: 1 No. de horas: 48 Fecha: 15 de abril al 7 de junio 2024

Escenario o ambiente de aprendizaje de la práctica: Laboratorio

Introducción:

Los grafos son estructuras discretas que aparecen ubicuamente en cada disciplina donde se requiere modelar algo.

Los grafos son una composición interesante de conjuntos de objetos que denominamos nodos. En ellos se almacena diferentes tipos de elementos o datos que podemos utilizar para procesar o conocer con fines específicos; La Teoría de grafos es una mezcla impresionante de cultura, historia, soluciones matemáticas y retos que llevaron un buen tiempo para ser resueltos con fórmulas matemáticas.

	Firma del docente	
	, ,	
	en el que se visitan (igual que se había hecho para árboles).	
	en el que se visitan (igual que se	

GUÍA DE PRÁCTICAS DE APLICACIÓN Y /O EXPERIMENTACIÓN DE LOS APRENDIZAJES (PAE O APE)

Datos Informativos

Facultad: CIENCIAS ADMINISTRATIVAS GESTIÓN EMPRESARIAL E INFORMÁTICA

Carrera: **SOFTWARE**

Asignatura: ESTRUCTURAS DISCRETAS

Ciclo: PRIMERO 1^{RO}

Docente: **DARWIN PAUL CARRIÓN BUENAÑO** Título de la práctica: **NOTACIÓN O GRANDE**

No. de la práctica: 2 No. de horas: 48 Fecha: 10 de junio al 26 de julio 2024

Escenario o ambiente de aprendizaje de la práctica: Laboratorio

Introducción:

la notación Big O es una notación matemática que nos sirve para poner nota a la velocidad de procesamiento de un algoritmo atendiendo a cómo se comporta conforme aumenta el tamaño del trabajo a procesar, por lo que nos sirve para clasificar la eficacia de los mismos. Útil tanto para valorar las necesidades de procesamiento como de espacio necesario para llevar a cabo el algoritmo, y en definitiva valorar qué tan bueno es un algoritmo dado para resolver problemas muy grandes.

Objetivo	Materiales		Procedimiento		Resultados	Evaluación
Describir la notación Big O,		•	O(1) - Tiempo constante: es			Se evalúa acorde a la
lo cual es una forma	Computador		el mejor resultado, y quiere	•	Qué: la notación Big O	rúbrica establecida por
matemática básica de	Herramientas UML		decir que el tiempo de		es una forma de poner	el proyecto.
expresar cuánto tarda un	Procesador de texto		ejecución no varía conforme		nota a la eficiencia de	
algoritmo en ejecutarse	Hojas de calculo		aumenta el tamaño de los		un algoritmo	
atendiendo sólo a grandes			datos de entrada, y la	•	Cuánto: sólo	
rasgos su eficiencia y así			respuesta siempre tarda lo		necesitamos simplificar	
poder compararlo con			mismo sin importar la		a si es constante, lineal,	
otros. En definitiva evaluar			magnitud de entrada.		logarítmica o	
su complejidad y poner		•	O(n) - Tiempo lineal: el		cuadrática	
nota a su eficiencia.			crecimiento es lineal en	•	Dónde: en el análisis de	
			tanto el tiempo de ejecución		algoritmos de	
			es cada vez mayor de modo		programación, tanto	
			proporcional a cómo se		tiempo como espacio	
			incrementa el tamaño de la		necesario	
			entrada. Por lo que si	•	Cuándo: queremos	
			tenemos el doble de		evaluar y/o comparar la	
			elementos de entrada,		eficacia de un	
			tardará el doble, aunque		algoritmo, estructura	
			despreciamos realmente la		de datos,	

pendiente de la misma y sólo • Cómo: comparando la
nos quedamos con que velocidad de
O(log n) - tiempo magnitud (tiempo)
logarítmico: una forma de respecto la otra
crecimiento que crece al (tamaño entrada)
inicio pero tiende a • Por qué: necesitamos
estabilizarse conforme valorar la viabilidad de
aumentan el tamaño de nuestras soluciones en
entrada, por lo que es una determinadas
buena nota para un situaciones
algoritmo ya que no tiende a
resentirse.
O(n2) - tiempo cuadrático: el
crecimiento es de forma
exponencial por lo que será
un algoritmo a evitar ya que
para valores pequeños de
entrada el tiempo será
asumible, pero conforme
aumente el tamaño de los
datos de entrada el tiempo
tenderá a ser muy elevado y
es probable que el
procesador se quede
inoperativo.
O(n!) - tiempo factorial: el
crecimiento es factorial, por
lo que rápidamente tiende a
valores imposibles de tratar,
en lo que sería una recta
vertical