Linear Function in

Coordinate System

Hung-yi Lee

Outline

- Describing a function in a coordinate system
 - A complex function in one coordinate system can be simple in other systems.
- Reference: Textbook Chapter 4.5

Basic Idea

Sometimes a function can be complex

• Example: reflection about a line ${\mathcal L}$ through the origin in ${\mathcal R}^2$

Sometimes a function can be complex

• Example: reflection about a line ${\mathcal L}$ through the origin in ${\mathcal R}^2$

special case: \mathcal{L} is the *horizontal axis*

Describing the function in another coordinate system

• Example: reflection about a line ${\mathcal L}$ through the origin in ${\mathcal R}^2$

In another coordinate system ${\mathcal B}$

Describing the function in another coordinate system

ullet Example: reflection about a line $oldsymbol{\mathcal{L}}$ through the origin in \mathcal{R}^2 $[T]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

In another coordinate system ${\mathcal B}$

Input and output are both in
$$\mathcal{B}$$

$$[b_2]_{\mathcal{B}} = e_2$$

$$[T]_{\mathcal{B}} = b_1$$

$$[T]_{\mathcal{B}} ([b_1]_{\mathcal{B}}) = [b_1]_{\mathcal{B}}$$

$$[T]_{\mathcal{B}} (e_1) = e_1$$

$$[T]_{\mathcal{B}} ([b_2]_{\mathcal{B}}) = [-b_2]_{\mathcal{B}}$$

$$[T]_{\mathcal{B}} (e_2) = -e_2$$

Flowchart

$$[T]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
(\$\mathcal{B}\$ matrix of T)
$$[T(v)]_{\mathcal{B}}$$

12

reflection about the horizontal line

T(v)

reflection about a line $oldsymbol{\mathcal{L}}$

• Example: reflection operator T about the line y = (1/2)x

• Example: reflection operator T about the line y = (1/2)x

$$A = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$C_{2} = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}$$

$$C_{1} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$D_{2} = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}$$

$$C_{3} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$D_{4} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{5} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{7} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{8} = \begin{bmatrix} 0.4 & 0.2 \\ -0.2 & 0.4 \end{bmatrix}$$

$$D_{7} = \begin{bmatrix} 0.4 & 0.2 \\ -0.2 & 0.4 \end{bmatrix}$$

$$D_{7} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$D_{7} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$D_{7} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{7} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{7} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{7} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{8} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{8} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{8} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{8} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{8} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

$$D_{8} = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{bmatrix}$$

Example 2 (P279)

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + x_3 \\ x_1 + x_2 \\ -x_1 - x_2 + 3x_3 \end{bmatrix} \quad \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\}$$

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & -1 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 3 & 1 \end{bmatrix}$$

$$[T]_{\mathcal{B}} = \begin{bmatrix} 3 & -9 & 8 \\ -1 & 3 & -3 \\ 1 & 6 & 1 \end{bmatrix}$$

Example 3 (P279) Determine T

$$T\left(\begin{bmatrix} 1\\1\\0 \end{bmatrix}\right) = \begin{bmatrix} 1\\2\\1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 1\\0\\1 \end{bmatrix}\right) = \begin{bmatrix} 3\\-1\\1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\1\\1 \end{bmatrix}\right) = \begin{bmatrix} 2\\0\\1 \end{bmatrix}$$

$$\mathbf{b_1} \qquad \mathbf{c_1} \qquad \mathbf{b_2} \qquad \mathbf{c_2} \qquad \mathbf{b_3} \qquad \mathbf{c_3}$$

Example 3 (P279) Determine T

$$[T]_{\mathcal{B}} = [B^{-1}c_1 \quad B^{-1}c_2 \quad B^{-1}c_3] = B^{-1}C$$

$$A = B[T]_{\mathcal{B}}B^{-1} = BB^{-1}CB^{-1} = CB^{-1}$$

Inception

ℜ coordinate system

夢境

Cartesian coordinate system

現實

小開的父親說:

"I'm disappointed that

you're trying so hard to 小開有了不要繼 be me." $[T]_{\mathbf{R}}$ 承父業的念頭

B 清醒

 B^{-1}

 υ

做夢

說服小開解散公司

T(v)

計

小開解散公司