	目次 第61巻1号~12号(平成23年(2011年)1月~1			-
<u>頁</u>	題目	著者	号	頁
頂言	新年のご挨拶	里達雄		(]
	会長就任のご挨拶	山内重德		(23
	創立60周年を迎えるにあたって アルミニウム合金粉末と陽極酸化処理スラッジの放	山内重德		(58
的論文	電プラズマ焼結体のころがり摩耗特性	神田康行・福本 功	1	(2
	Al-Si系合金鋳造材の時効硬化に及ぼすMg添加	古井光明・石川達也・池野 進・三浦正		l
	の影響	樹・才川清二・酒井信行	1	(9
	2024アルミニウム合金摩擦攪拌接合継手の機械的			
	性質	高橋正詞・加藤数良・時末 光	1	(1
	アルミニウム薄板の電磁シーム圧接における衝突	宮﨑 忠・佐々木邦哲・岡田昌樹	1	(2
	挙動シミュレーション		1	. (4
	MOCVD法を用いたTi-29%Nb-13%Ta-4.6%Zr合金	堤晴美・新家光雄・仲井正昭・後沢達	1	(2
	へのハイドロキシアパタイト膜合成*	哉・赤堀俊和・齋藤壱実・塗 溶・後藤		\ _
	アルミニウム合金板の曲げ加工性に及ぼす板厚方	伊川慎吾・浅野峰生・黒田充紀・吉田	,	
	向の集合組織分布の影響	健吾	2	(5
	Mg-Li-Y合金の耐食性に対するアノード酸化処理			
	条件の影響	小野幸子・鈴木弥生・阿相英孝	2	(6
	Al-4.5mass%Cu合金の固液共存域での変形挙動	坂口信人・常川雅功・渡辺良夫	2	(6
	5182アルミニウム合金の高温単軸圧縮変形におけ			
	る{001}集合組織マップ*	鄭 鉉默・岡安和人・福富洋志	2	(7
	摩擦攪拌プロセスによる6061アルミニウム合金への	休期 十 加蒸粉点 味士 V	0	(0
	アルミナ粒子の複合化に及ぼすプローブ形状の影	仲間 大・加藤数良・時末 光	3	(9
	工具を水平方向に移動させる新しいせん断加工と			
	従来のせん断加工との加工力および切口面の比	路 大涛・村田 眞・久保木孝・金 英俊	3	(10
	5052アルミニウム合金板のダイヤモンド工具による			(10
	無潤滑深絞り加工 その場観察によるアルミニウム合金の固液共存温	古閑伸裕・許 昌龍 千葉浩行・植木 徹・鳥山隆成・遠藤	3	(10
	度域における力学的特性の取得	丁栗信打・他不 低・局口座成・遠藤 至・小林昂光・吉田 誠	1	(13
	アルミニウムーすず合金からのウィスカ発生・成長	村上浩二・日野 実・水戸岡豊・金谷輝		(14
	超音波照射による過共晶Al-Si合金の初晶Si微細			
	化とダイカストへの適用	織田和宏・コマロフ セルゲイ・石渡保生	4	(14
	微粒子ピーニングにより工業用純アルミニウムの表	由牡奴土, 克士島,	1	(15
	面近傍に形成されたナノ複合組織*	中村紀夫・高木眞一	4	11)
	高周波誘導加熱を用いたAl-Mg系合金の半溶融	座間淳志・中澤 嵩・利光万弘・吉田	5	(18
	状態の力学特性取得法の開発	誠 古田 [5] 「		(1)
	ショットブラスト加工表面の表面性状評価パラメータ	吉田 瞬・大竹佳織・川邉和宏・香川美仁・磯野宏秋・杉林俊雄	5	(18
	グ MA-SPSプロセスで作製したチタン-ハイドロキシア	1. 一、「「「「「」」」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「		
	パタイト複合材料の特性	久保田正広・大野卓哉	5	(19
	原子識別透過電子顕微鏡法で評価したMg-	齋藤嘉一・安原 聡・西嶋雅彦・平賀賢		ļ ,
	4at%Dy合金の時効析出物の構造変化*	一	5	(19
	新しい高速固相接合法による2024アルミニウム合	能共享发 社田鹿社 海浪港 港	_	(20
	金製スタッドと5052アルミニウム合金板の接合*	熊井真次・林田慶祐・渡邉満洋	Э	(20
	A356アルミニウム合金鋳物の組織と引裂靭性に及	原田陽平・田村信一・熊井真次	5	(21
	ぼす高温溶体化処理の影響*	水田陽十 田刊旧 無月来民	·	(2)
	5083-Oアルミニウム合金板材の引張変形における	中山栄浩・前田雅大	6	(24
	変形帯形成と直前に生じる不均一変形の関係 医療用Ti-10%Cr-(0,3,6)%Al合金の諸特性に及	木下貴裕・畑中尚太・川野 塁・上田正		
	ぼす表面修飾の影響	人・池田勝彦・小川道治	6	(24
	合金元素を含んだ6000系アルミニウム合金/鋼異			
	種金属接合における界面反応層のナノインデン	小椋智・上田佳祐・斎藤雄一・廣瀬明	6	(25
	テーション測定*	夫		
	5000系および6000系アルミニウム合金板における	田村翔平・澄川智史・上森 武・濱崎	6	(25
	弾塑性挙動の実験観察*	洋・吉田総仁	Ü	(20
	Al-5.5%Mg-2.3%Si-0.6%MnおよびAl-13%Mg2Si擬	下坂大輔・熊井真次・		(0)
	二元系合金の第二相粒子形態と引裂靭性に及ぼ	Federico CASAROTTO·渡邉修一郎	6	(26
	す凝固中の冷却速度の影響* 6061および7075アルミニウム合金の引張変形過程	山田浩之・堀川敬太郎・松本武史・小	-	1
	6061および7075アルミニリム合金の引張変形適程における水素放出挙動	田田浩之・堀川敬太郎・松本武史・小 林秀敏・小笠原永久	7	(29
	塩化物イオン水溶液中における1050アルミニウム	島村 亮・杉本明義・藤原賢彰・世利修	 	
	の分極挙動とその解析	美	7	(30
	SiO2/Mg間の燃焼反応および反応浸透により製造	1. 接 5. 几 5. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		//
	SIO2/Mg间の燃焼及応ねよび反応夜透により製造された複合材料組織に及ぼす反応熱量の影響	小橋 眞・山田裕磨・金武直幸 小椋 智・廣澤渉一・廣瀬明夫・里 達	7	(31

	西田太一・小椋 智・藤本光生・廣瀬明 夫	7	(322
衝撃圧着時のメタルジェット放出および接合界面	柿崎正悟・渡邉満洋・熊井真次	7	(328
電気化学インピーダンス法による陽極酸化皮膜の	本川幸翁・水谷高大・兒島洋一・興戸正純	8	(383
放電プラズマ焼結法で固化成形されたマグネシウ	青木 翔・久保田正広	8	(389
自動車熱交換器用アルミニウム合金フィン材の耐	吉野路英・江戸正和・黒田 周	8	(396
不整変形拘束ダイを用いた回転引曲げ加工にお	奥出裕亮・坂木修次・吉原正一郎	9	(435
アルミニウム基磁性材料の特性に及ぼす放電プラ	青木 翔・渡辺 唯・久保田正広	9	(440
半溶融および半凝固状態のAl-Mg系合金の力学	座間淳志・利光万弘・渡部智也・千葉	9	(44
高速衝撃圧縮を作用させた急冷凝固Al-Zn-Mg系	堀川敬太郎・大宮聡太・小林秀敏	9	(45:
急冷凝固Al-Cr合金からの水素放出速度*	Iya I. TASHLYKOVA-BUSHKEVICH・ 伊藤吾朗・Vasiliy G. SHEPELEVICH・ 鹿川隆島	9	(45)
6022アルミニウム合金板/めっき鋼板摩擦攪拌スポット接合材のミクロ組織と接合強度*	馮 科研, 渡邉満洋, 熊井真次	9	(46
Al-9%Si-0.3%Mgダイカスト合金のT5熱処理挙動に	井上達也・後藤真英・山口篤司・大竹哲 生・里田明浩・吉田 誠	10	(50
マグネシウム合金とチタン合金の接着強度と振動	高橋芳弘・金刺貴之・坂本幸弘・高谷松	10	(51
降温多軸鍛造AZ91マグネシウム合金の組織と機	三浦博己•劉 恒喆	10	(51
八分割しわ抑え板を用いたアルミニウム板の摩擦	畑中伸夫・末永 亮・飯塚高志・高倉章	10	(52
重力鋳造したAM60マグネシウム合金の時効硬化	古井光明・高野浩史・池野 進・山口友	10	(53
7075-T6アルミニウム合金の水素脆化感受性に及	中島優太郎・春山繁之・上西 研・大崎	10	(53
AM60マグネシウム合金砂型鋳造材のミクロ組織と	古井光明·江端祐平·池野 進·榊原勝	12	(69
ミクロ組織制御による次世代航空機用Ti-Al-Cr-	赤堀俊和・新家光雄・仲井正昭・堤 晴	12	(70
次世代航空機用Ti-4.5%Al-2%Mo-1.6%V-0.5%Fe-	赤堀俊和・新家光雄・仲井正昭・堤 晴	12	(71
7N01アルミニウム合金の時効特性に及ぼす化学		12	(71
アルミニウムにおけるポリマコーティングの自己修			(72
AC4CHアルミニウム合金鋳物材の共晶Si粒子形態			(72
析出物配向制御による時効硬化型アルミニウム合			(40
アルミニウム合金における先駆析出相上への不均			(3
一核生成機構による遷移元素の析出 コンピュータ支援3D計量形態学			(78
レーザプロセッシングによる軽金属材料の高機能	日野 実・水戸岡豊か・村上浩二・金谷		(11
小山田記念賞	輝人		
導体用冷却器の開発	森 昌吾・藤 敬司・柳本 茂・古川裕一		(11)
金属材料による細菌の増殖制御 超音波振動による軽金属材料の凝固組織制御	大澤嘉昭		(16) (22)
マグネシウム合金板材のプレス成形技術	西野創一郎		(23)
ティック・エミッション検知方法の発展	植木 徹・遠藤 至・松下 彬・吉田 誠		(33
軽金属へのマイクロ波加熱の高度利用技術	吉川 昇		(40
アルミニウム合金の鍛造技術 軽金属学会賞	 	9	(46
	摩擦スタッド接合継手におけるミクロ組織と機械的 衝撃圧着時のメタルジェット放出および接合界面 形態に関する数値解析ならびに実験的検討* 電気化学インビーダンス法による陽極酸化皮膜の 耐アルカリ性評価 が電ブラズで焼結法で固化成形されたマグネシウム基強磁性材料の特性 自動車熱交換器用アルミニウム合金フィン材の耐食性に及ぼす鋳造時の冷却速度の影響 不整変形拘束ダイを用いた回転引曲げ加工における非対称チャンネル材の変形特性 アルミニウム基磁性材料の特性に及ぼす放電ブラズマ焼結条件の影響 半溶融および半凝固状態のAl-Mg系合金の力学特性の比較 高速衝撃圧縮を作用させた急冷凝固Al-Zn-Mg系アルミニウム合金の強度 急冷凝固Al-Cr合金からの水素放出速度* 6022アルミニウム合金板/めっき鋼板摩擦攪拌スポット接合材のミクロ組織と接合強度* Al-9%Si-0.3%Mgダイカスト合金のT5熱処理挙動における予備時効条件の影響 マグネシウム合金とチタン合金の接着強度と振動減衰特性に及ぼす陽極酸化処理の影響降温多軸般造AZ91マグネシウム合金の組織と機械的性質 人分割しわ抑え板を用いたアルミニウム板の摩擦提用突後り加工 重力鋳造したAM60マグネシウム合金の時効硬化に及ぼす結晶粒径の影響 降温多軸般造AZ91マグネシウム合金の時効硬化に及ぼす結晶粒径の影響 7の75下16アルミニウム合金の水素脆化感受性に及ぼす起潤空気温度の影響と粒界割れの発生基準AM60マグネシウム合金砂型鋳造材のミクロ組織と時効硬化学動ミクロ組織制御による次世代航空機用Ti-Al-Cr-Fe-C系合金の高力学機能化次世代航空機用下i-Al-Gr-Fe-C系合金の高力学機能化次数形式の発生基準AM60マグネシウム合金の影響と粒界割れの発生基準AM60マグネシウム合金の影響と粒界割れの発生基準AM60マグネシウム合金の記分の出織と機械的性質に及ぼす影響を放分の影響アルミニウム合金の記分の影響アルミニウム合金のまが特性向上 アルミニウム合金における先駆析出相上への不均一核生成機構による運移元素の析出コンピュータ支援3D計量形態学 レーザプロセッシングによる軽金属材料の高機能化技術、小山田記念質新型プリウスに搭載されたアルミニウム合金の報力を発展を属材料の高機能化技術アルミニウム合金の凝固過程におけるアコース 事体用冷却器の開発金属材料の高度相相を音な振動による経色域材のブレス成形技術でルミニウム合金の凝固過程におけるアコース 事体用冷却器の開発金属材料の凝固組織制御マグネシウム合金を板材のブレス成形技術。アルミニウム合金の凝固過程におけるアコース 事体用冷却器の開発	爾擎圧著時のメタルジェント放出まじび食骨類の 簡繁に関する数値解析とのに実験的検討を 電気化学インピーゲンス法による陽極酸化皮膜の 防電ブラスマ焼結法で固化成形されたマグネシウ ム島磁磁性材料の特性 自動車熟交券器用アルミラム合金フイタが耐 食性に及ぼす静造時の冷却速度の影響 下ルミラムム基磁性材料の新特性に及ぼす放電ブラ ズマ煙結条件の影響 半溶酸および半起極が大力を影響と 半溶酸および半臓機が使用させた急冷凝固Al-Zn-Mg系 アルミラム合金の施力をの強度を 傷地質整圧を作用させた急冷凝固Al-Zn-Mg系 アルミラム合金の施力をの強度を 傷が強固Al-Cr合金からの水素放出速度* (8022アルミーウム合金が、かっき鋼板摩擦機件ス ボシト接合材のミクロ結縦と接合強度* Al-PSS1-0.3%Mgダイカへ合金の15熱処理挙動に おける子値時効条件の影響 でブネンウム合金を板があらかは機と接合強度を 場所と見ばす場極機化処理の影響 降温多軸酸治な291マグネシウム合金の超級と機 被的性質 所入到別しわ抑え板を用いたアルミンウム的金型に はず上室調空気温度の影響と放射的の第二 電力時造したAM60マグネシウム合金の複数と機 機の特性質 アクスロ組織と超を形を 野の別に 電力時造したAM60マグネシウム合金の時効硬化 に近ばす結晶を経の影響 を持入の影響 アクスシウム合金の表が対力の発生基準 を特別したAM6のでグネシウム合金の時効硬化 と対していたしたの表で表が出る を対していたしたの表で表が出る を持入の影響 アクスに着などの影響と放解剤しい発生基準 を中間といたが、中間により、中により、大手により、大手に関・大手に関・ボールで を中にないたが、中により、大手に関・大手に関・大手に関・大手に関・大手に関・ボールで を中にないたが、中により、大手に関・大手に関・大手に関・大手に関・大手に関・大手に関・ボールで、大手に関・大手に関・大手に関・大手に関・ボールを表が、大手に関・ボールに対したが、大手に関・ボールを表が、大手に関・ボールに関・ボ	整成スタルド会合継手におけるシアロ組織と機械的 大師正任・腰邊廣洋・熊井真次 7

		· 中国委主 医北和宁 山土洋人 柳彩短		
	放射光を利用したアルミニウム合金の凝固現象の 解明	安田秀幸·野北和宏·山本洋介·柳楽知也·吉矢真人·上杉健太朗·梅谷啓二· 竹内晃久·鈴木芳生	12	(736)
	アルミニウム単結晶・双結晶の変形・再結晶 (1) 変形帯のない多重すべり<001>, <112>および <111>引張方位の単結晶	猪子富久治·樫原惠蔵·田上 稔·岡田 達也	8	(410)
	アルミニウム単結晶・双結晶の変形・再結晶(2) 変形帯(キンク帯およびSBSS)を形成する単結晶	猪子富久治•樫原恵蔵•田上 稔•岡田	9	(475)
	アルミニウム単結晶・双結晶の変形・再結晶 (3) 双結晶における粒界近傍の変形・再結晶 (<111> 軸回転再結晶核とひずみ誘起粒界移動: SIBM)	猪子富久治	10	(553)
車載講座	放射光を用いた材料の観察と解析	戸田裕之·佐藤眞直·奥田浩司·小林正 和	1	(38)
材料解	中性子および高エネルギーX線による材料組織の 評価	奥田浩司·友田 陽·落合庄治郎	2	(85)
バ評価技 別	電丁頭似鏡法による軽金属の似倪的組織解析	松田健二·川畑常真·中村純也·上谷保 裕·池野 進		(125)
	アルミニウムの腐食挙動の電気化学的解析	兒島洋一		(167)
一子での国	高純度アルミニウム	遠藤昌也・渡辺英雄	5	(226)
立60周 記念連		小菅張弓・岡田 浩	6	(274)
→記念堡 战講座「	Al-Cu系合金	廣澤渉一	7	(341)
プルミニ	Al-Mn系合金	鈴木 覚		(421)
ルカおよ				
ドアルミ	Al-Si系合金	北岡山治		(485)
ニウム合 との諸性	Al-Mg系合金(1)	吉田英雄•内田秀俊	10	(568)
えいがま 【」	Al-Mg系合金(2)	吉田英雄•内田秀俊	11	(684)
~ 1	Al-Mg-Si系合金	大堀紘一	12	(743)
植想	愛する富山とアルミニウム産業	新瀬 誠		(179)
	草薙剣の材質	松尾 守		(237)
	計測鋳造技術による健全鋳物作製法への取組み	山本善章		(355)
- ハノナ-	運根鈍と至誠通神	難波圭三		(504)
tぐくむ Mコラム	構造材料の立場からみたNHK大学ロボコン2010 札幌市と深谷市の相違点	平尾桂一·西 聖二 竹田博貴		(433)
VIJJA	研究を通じた出会い	大野卓哉		(49) (94)
	技術と美術で思うこと	森下 誠	6	
	革新的深化を遂げる軽金属材料と加工プロセス技術への挑戦	野田雅史		(758)
F究室紹 〉	名古屋大学大学院工学研究科マテリアル理工学 専攻	金武直幸·興戸正純	3	(133)
	ようこそ早稲田大学へ	吉田 誠	9	(506)
際会議 り	第7回環太平洋先端材料とプロセシング国際会議 (PRICM-7)に参加して	上杉徳照		(50)
	第12回チタン世界会議報告書	仲井正昭		(583)
	先端材料のプロセスおよび製造に関する国際会議 (THERMEC'2011)に参加して	小椋 智	12	(759)
北海道支 部編集特 集	北海道アルミニウム利用技術研究会の設立	竹花奎一	7	(359)
	アルミニウムアノード酸化研究と私	高橋英明	7	
	トヨタ自動車北海道株式会社		7	(361)
	アイシン北海道株式会社 ホクダイ株式会社		7 7	(361)
	ケーアイーシ株式会社		7	(363)
	株式会社木下合金		7	(363)
	室蘭工業大学大学院工学研究科	斎藤英之	7	(364)
	北海道工業大学創生工学部機械システム工学科	高島敏行·齋藤 繁·堀内寿晃·見山克 己·吉田 協	7	(364)
	北海道工業大学 創生工学部 機械システム工学科 マテリアルデザイン研究室(堀内ゼミ)	堀内寿晃	7	` ′
	北見工業大学大学院工学研究科	鞘師 守 京孫並明	7	(365)
	旭川高専における教育と研究	高橋英明	7	(366)
	苫小牧工業高等専門学校 釧路工業高等専門学校 機械工学科 機械材料 研究室	高澤幸治 岩渕義孝·小林 勲	7 7	(366)
	北海道大学工学研究院 物質化学部門 電子材料科学研究室	安住和久	7	(368)
	室蘭工業大学	境 昌宏		(369)

	セラミックスフィルタ透過再生によるFe元素低減に	高島敏行	7	(370)
	関する試み AZ31Bマグネシウム合金集合組織材の塑性変形	三浦誠司		(372)
	挙動と双晶活動のEBSD解析 アノード酸化皮膜のマイクロ・ナノテクノロジー	菊地竜也・坂入正敏・高橋英明		(373)
	アルミニウムの腐食と陽極酸化	坂入正敏 - 同個英明	7	(374)
	北海道大学工学研究院 材料科学部門環境材料 学研究室 大塚·上田研究室	大塚俊明・上田幹人		(375)
	チタン-アルミニウム系マイクロチャンネル内壁への ナノポーラス陽極酸化皮膜の形成	大参達也·石田真士·坂入正敏·井口 学	7	(376)
	廃乾電池由来酸化物粉末(電池滓)を用いたアル ミニウム合金用フラックスの開発	高橋英徳·板橋孝至	7	(377)
	地方独立行政法人北海道立総合研究機構 産業技術本部 工業試験場	高橋英徳	7	(378)
	社団法人北見工業技術センター運営協会	進藤覚弥	7	(379)
	財団法人十勝圏振興機構 十勝産業振興セン		7	(380)
	北海道立工業技術センター			(381)
	釧路工業技術センター	原田隆行	7	(381)
	苦小牧市テクノセンター	中津正志		(382)
創立60周	私の軽金属学会の思い出と感謝	村上陽太郎		(586)
年記念特	軽金属学会への期待一軽金属学会60周年に寄せ III M 60th anniversary address for the Janean	尚 杉馬 夫	11	(587)
集号	JILM 60th anniversary address, for the Japan Institute of Light Metals	Jürgen HIRSCH		(588)
	軽金属学会の歩み	浅見重則		(589)
	研究部会の歩み	堀田善治		(594)
	この20年の春秋大会	本保元次郎		(598)
	北海道支部のあゆみ	高橋英徳·世利修美		(603)
	東北支部のあゆみ	新家光雄·成島尚之		(605)
	関東支部 この20年の歩みと最近の活動	小野幸子		(607)
	北陸支部「これまでとこれから」	松田健二		(610)
	東海支部 この20年の歩みと最近の活動	吉田英雄		(614)
	関西支部,この20年の活動記録	杉本隆史		(616)
	中国四国支部20年の歩み この20年間の九州支部活動	金谷輝人 長谷部光弘		(618) (621)
	若手の会の活動の記録	西田進一		(623)
	「女性会員の会」活動記録	関 史江		(626)
	軽金属学会との関わり	朝比奈敏勝		(629)
	軽金属学会への思い	池野 進		(629)
	軽金属学会60周年に際して	石山 喬		(629)
	還暦の軽金属学会に寄せて	小川 誠		(630)
	GIFA(ギーファ)と私	北岡山治		(630)
	軽金属学会と私	小林俊郎	11	(630)
	極低温におけるアルミニウム合金の機械的性質研究の思い出	佐治重興	11	(631)
	軽金属学会創立60周年に寄せて	佐藤史郎	11	(631)
	表面偏析	椿野晴繁		(631)
	軽金属学会と私	************************************		(632)
	還暦の軽金属学会	時末 光		(632)
	マグネ展伸材の活用は	戸澤康壽		(632)
	成形部会の思い出	西村 尚	11	(633)
	アルミニウム合金の時効と微量添加元素	馬場義雄		(633)
	新製錬法の思い出	増子 曻		(633)
	地球資源を大切にする材料研究を! よい製品はよい素材からそしてよい研究から一軽	増本 健		(634)
	金属研究の思い出と期待と―	茂木徹一		(634)
	軽金属と超塑性研究の思い出 アルミニウム鍛造と固液共存加工技術の研究と若	本橋嘉信本村 貢		(634) (635)
	手の活動を期待する 一般社団法人軽金属学会創立60周年を迎えて,			
	思い出と現在	山根壽己		(635)
	研究事始	吉永日出男		(635)
	軽金属学会研究発表講演会のこと	小原嗣朗		(636)
	これまでを振り返って思いつくままに	神尾彰彦 小菅張弓		(637) (638)
	この20年間を振り返って 時効か老化か熟成か?	小官張与 小松伸也		(639)
	研究開発の思い出	大堀紘一		(640)
	組織制御	井上博史•伊原健太郎•櫻井健夫•廣澤		(641)
	腐食・表面改質・切削・接合等	渉一・松田健二 加藤数良・難波江元広		(645)
	网尺 《四以月 》的"次日守	// / / / / / / / / / / / / / / / / / /	11	(040)

力学特性·成形加工·潤滑	戸田裕之・鶴田淳人・細見和弘・伊藤吾	11 (649)
溶解•凝固•鋳造	熊井真次	11 (655)
展伸材プロセス技術開発の動向	相浦 直·武林慶樹·内田秀俊·加藤勝 也·新倉昭男·菱川 滋	11 (664)
マグネシウム合金 一ここ20年間の歩み一	鎌土重晴	11 (669)
チタンおよびチタン合金	新家光雄·池田勝彦·成島尚之	11 (673)
粉末材料・複合材料・ポーラス材料	金武直幸·近藤勝義·久保田正広·佐々 木元·小橋 眞·北薗幸一·鈴木進補	11 (678)

*オリジナルは"Materials Transactions"に掲載

Materials Transactions, Vol.52, No.1-12(2011) 掲載論文総目次

	Transactions, Vol.52, No.1-12(2011) 掲載論文総[T	
分類	題目	著者	号	頁
Regular	Thermal Desorption Spectroscopy Study on the	Takahiro Izumi and Goroh Itoh	2	(130-
Article	Hydrogen Trapping States in a Pure Aluminum		۷	134)
	Prediction Method of Crack Sensitivity During DC	Makoto Morishita, Mitsuhiro Abe,	2	(166-
	Casting of Al-Mn and Al-Mg Alloys*	Kenji Tokuda and Makoto Yoshida	۷	172)
	Near-Surface Nanocomposite Structure on			(380-
	Commercial Purity Aluminum Induced by Fine		3	385)
	Particle Bombardment	Norio Nakamura and Shin-ichi Takagi		303)
	Structural Changes of Precipitates by Aging of an Mg-4at%Dy Solid Solution Studied by Atomic-Scaled Transmission Electron Microscopy	Kaichi Saito, Akira Yasuhara, Masahiko Nishijima and Kenji Hiraga	5	(1009- 1015)
	Effect of Aluminum Surface State on Laser Joining between 1050 Aluminum Sheet and Polypropylene	Makoto HINO, Yutaka MITOOKA, Koji MURAKAMI, Kazuto URAKAMI,	5	(1041- 1047)
	Resin Sheet Using Insert Materials*	Hiroyuki NAGASE and Teruto		1011)
	Effect of Pre-deformation on Mechanical Response of an Artificially Aged Al-Mg-Si Alloy	Michal Kolar, Ketill Olav Pedersen, Sverre Gulbrandsen-Dahl, Katharina Teichmann and Knut Marthinsen	7	(1356- 1362)
	Microstructure and Joint Strength of Friction Stir Spot Welded 6022 Aluminum Alloy Sheets and Plated Steel Sheets	Keyan Feng, Mitsuhiro Watanabe and Shinji Kumai	7	(1418- 1425)
	Slip Deformation Analysis Based on Full Constraints Model for α -Titanium Alloy at Low Temperature*	Motoaki MORITA and Osamu	8	(1595– 1602)
	Friction and Wear Properties on AZ91D Magnesium Alloy Treated by Anodizing from Phosphate Electrolytic Solution*	Makoto Hino, Koji Murakami, Atsushi Saijo, Shuji Hikino and Teruto Kanadani	9	(1752– 1758)
	Effect of Aging Treatment on Ultra-Fine Grains and Si-Phase in Al-0.5%Si Alloy Fabricated by ARB Process	Keiyu Nakagawa, Teruto Kanadani, Nobuhiro Tsuji Daisuke Terada, Toshiaki Masui and Yasuhiko Sato	10	(1853– 1859)
	Application of High-Frequency Induction Heating Apparatus to Heat Treatment of 6061 Aluminum	Fang-ni Shang, Eiji Sekiya and Yoshihiro Nakayama	11	(2052- 2060)
	Elastic and Damping Properties of AZ31 Magnesium Alloy Sheet Processed by High-	Kazutaka Suzuki, Yasumasa Chino,Xinsheng Huangand Mamoru	11	(2040- 2044)
	Effect of Eutectic Si Particle Morphology on ECAP Formability and Mechanical Properties of AC4CH Aluminum Casting Alloys	Yoshihiro Nakayama and Tetsuya Miyazaki	11	(2045- 2051)
Special	PREFACE		5	(817)
Issue "Aluminiu m Alloys 2010"		Jurgen Hirsch	5	(818- 824)
	Change in Crystal Orientations of a {100} <001> Pure Aluminum Single Crystal during Accumulative Roll Bonding	D. Terada, and N. Tsuji	5	(825- 829)
	Refinement Factors of Mechanical Vibrations on Microstructure of Al-7 mass% Si Alloys	Takuya Tamura, Toshiro Matsuki and Kenji Miwa	5	(830- 833)
	Semi-Solid Microstructure Control of Wrought Al- Mg-Si Based Alloys with Fe and Mn Additions in Deformation-Semi-Solid- Forming Process	ChakkristPhongphisutthinan, Hiroyasu Tezuka and Tatsuo Sato	5	(834- 841)
	Grain Morphology of As-Cast Wrought Aluminium Alloys	Mark Easton, Cameron Davidson and David StJohn	5	(842- 847)
	Effects of High-Temperature Solutionizing on Microstructure and Tear Toughness of A356 Cast Aluminum Alloy	Yohei Harada, Shinichi Tamura and Shinji Kumai	5	(848- 855)

Effect of C. Content on Chain Thickness and	Г		
Effect of Si Content on Strip Thickness and	Min-Cook Kim and Chinii Kumai	5	(856-
Solidified Structure in High-Speed Twin-Roll Cast Al-Si Alloy Strips	Min-Seok Kiin and Shinji Kumai	θ	861)
Statistical Analysis for Influence of Factors on			
Morphological Evolution in Semi-Solid Al-6Zn-	Sung-Yong Shim, Dae-Hwan Kim,	5	(862-
2.5Mg-0.5Cu Alloy by Cooling Plate Method	Young-Rok Seong and Su-Gun Lim	J	867)
Experimental Observation of Elasto-Plasticity	Shohei Tamura, Satoshi Sumikawa,		
		5	(868-
Behavior of Type 5000 and 6000 Aluminum Alloy	Takeshi Uemori, Hiroshi Hamasaki and	υ	875)
Sheets	Fusahito Yoshida		
Changes in Microstructures during Annealing after	Atsushi Yamamoto, Masaaki Tsukamoto	_	(876-
Cold-Rolling at 30% and 50 % Reduction on Al-	and Daisuke Okai	5	881)
Mg-Si Alloy			
Development of Ultra-Fine Grained Structure in	Ilya Nikulin, Alla Kipelova, Sergey	_l	(882-
an Al-5.4%Mg-0.5%Mn Alloy Subjected to Severe	Malopheyev, Rustam Kaibyshev	5	889)
Plastic Deformation	iviaiopiicyev, Rustain Raibysiiev		003)
Low-Cycle Fatigue of Ultrafine-Grained Aluminum	Yukito Nakanishi, Toshiyuki Fujii,	5	(890-
at Low Temperatures	Susumu Onaka and Masaharu Kato	J	894)
Winds CH I Down C Down	Iya I. Tashlykova-Bushkevich, Goroh		(005
Kinetics of Hydrogen Desorption from Rapidly	Itoh, &Vasiliy G. Shepelevich and	5	(895–
Solidified Al-Cr Alloys	Takahiro Shikagawa	-	899)
Effects of Microalloying Tin and Combined			,
Addition of Silver and Tin on the Formation of	Tomo Ogura, Shoichi Hirosawa, Akio	5	(900-
	Hirose and Tatsuo Sato	J	905)
Precipitate Free Zones and Mechanical Properties Effects of Cu Addition on Behavior of	JaeHwang Kim, Equo Kobayashi and	_	(906-
		5	
Nanoclusters during Multi-Step Aging in Al-Mg-Si			913)
Relating Quench Sensitivity to Microstructure in	Katharina Strobel, Mark A. Easton, Lisa	_l	(914-
6000 Series Aluminium Alloys	Sweet, Malcolm J. Couper and Jian-Feng	5	919)
•	Nie		010)
Effect of Cooling Rates during Solidification of Al-	Daisuke Shimosaka, Shinji Kumai,		
5.5%Mg-2.3%Si-0.6%Mn♂and Al-13%Mg2Si		_	(920-
Pseudo-Binary Alloys on Their Secondary-Particle	Federico Casarotto and Shuichiro	Э	927)
Morphology and Tear Toughness	Watanabe		
Fluidity and Microstructure Evolution of Al-	Zhan Zhang, Ken Fortin, Andre		(928-
12%B ₄ C Composites Containing Magnesium	Charette, Xiao-Guang Chen	5	933)
	Makoto Kobashi, Masato Noguchi and		
Observation of Foaming Behavior for Rolled Sheet		5	(934-
Precursors Made of Various Aluminum Powders	Naoyuki Kanetake	_	938)
Preparation of Unidirectional Carbon Fiber	Moonhee Lee, Yongbum Choi, Kenjiro	5	(939-
Preform for Aluminium Matrix Composites	Sugio, Kazuhiro Matsugi and Gen Sasaki	Ŭ	942)
Effect of Compaction Temperature on Sinterability			(943-
of Magnesium and Aluminum Powder Mixtures by	Taku Iwaoka and Mitsuru Nakamura	5	947)
Warm Compaction Method			341)
Dissimilar Metal Joining of 2024 and 7075	M 1 . A 1 IZ 1 N 1	_	(948-
Aluminum Alloys to Titanium Alloys by Friction	Masayuki Aonuma and Kazuhiro Nakata	5	952)
Growth Manner of Intermetallic Compound Layer			
Produced at Welding Interface of Friction Stir	Mitsuhiro Watanabe, Keyan Feng,	5	(953-
Spot Welded Aluminum/Steel Lap Joint	Yoshio Nakamura and Shinji Kumai	Ŭ	959)
Microstructure and Mechanical Property of 5000			
Series Aluminum Stud Joint with Zinc Insert Using	Taichi Nishida, Tomo Ogura, Mitsuo	5	(960-
-	Fujimoto and Akio Hirose	J	966)
Friction Welding			
Effects of Zn-Based Alloys Coating on Mechanical	Keisuke Ueda, Tomo Ogura, Shumpei		(007
Properties and Interfacial Microstructures of Steel	Nishiuchi, Kenji Miyamoto, Toshikazu	5	(967-
/Aluminum Alloy Dissimilar Metals Joints Using	Nanbu and Akio Hirose	Ŭ	973)
Resistance Spot Welding			
Interfacial Microstructure and Mechanical	Ki-sang Bang, Kwang-Jin Lee, Han-Sur		(974-
Properties of Dissimilar Friction Stir Welds		5	978)
between 6061-T6 aluminum and Ti-6%Al-4%V	Bang and Hee-Sun Bang		910)
Nanoindentation Measurement of Interfacial	T 0 V: 1 U 1 V: 1:		(070
Reaction Layers in 6000 Series Aluminum Alloys	Tomo Ogura, Keisuke Ueda, Yuichi	5	(979-
and Steel Dissimilar Metal Joints with Alloying	Saito and Akio Hirose		984)
	Sergio T. Amancio-Filho, Ana P.C.		
Preliminary Investigation of the Microstructure	Camillo, Luciano Bergmann, Jorge F.		(985-
and Mechanical Behaviour of 2024 Aluminium		5	991)
Alloy Friction Spot Welds	dos Santos, Sebastiao E. Kury and		<i>331)</i>
	Nelson.G.A. Machado	_	(000
Advanced High-Speed Solid-State Joining of 2024	Shinji Kumai, Keisuke Hayashida and	5	(992-
Aluminum Alloy Studs to 5052 Aluminum Alloy	Mitsuhiro Watanabe	Ŭ	998)
Joining of Aluminum to Steel Pipe by Magnetic	Ji-Yeon Shim, Ill-Soo Kim, Moon-Jin		(999-
Pulse Welding	Kang, In-Ju Kim, Kwang-Jin Lee, Bong-	5	1002)
i and welaning	Yong Kang		1004)

*オリジナルは「軽金属」に掲載