પ્રશ્ન 1(અ) [3 ગુણ]

નીચેની મુદ્દાઓ વ્યાખ્યાયિત કરો:

1. **Š**2I

2. માહિતી

3. જ્ઞાન

જવાબ:

ડેટા, માહિતી અને જ્ઞાનની વ્યાખ્યાઓ:

€IG€	વ્યાખ્યા
SZI	કાચા તથ્યો અને આંકડાઓ જેમાં અર્થ અથવા સંદર્ભ નથી
માહિતી	પ્રોસેસ કરેલો ડેટા જે અર્થપૂર્ણ અને ઉપયોગી હોય
হ্যান	અનુભવ અને સમજ સાથે જોડાયેલી માહિતી

• ડેટા: અર્થઘટન વિના મૂળભૂત બિલ્ડિંગ બ્લોક્સ

• માહિતી: અર્થપૂર્ણ સંદર્ભ પ્રદાન કરવા માટે પ્રોસેસ કરેલો ડેટા

• જ્ઞાન: માનવીય અંતર્વૃષ્ટિ અને વિવેક સાથે વધારેલી માહિતી

મેમરી ટીક: "DIK - ડેટા ઈઝ નોલેજના પાયા"

પ્રશ્ન 1(બ) [4 ગુણ]

સંક્ષિપ્તમાં પ્રાથમિક મેમરી સમજાવો.

જવાબ:

પ્રાથમિક મેમરીની લાક્ષણિકતાઓ:

પાસાં	વિવરણ
વ્યાખ્યા	મુખ્ય મેમરી જે સીપીયુ સાથે સીધું કમ્યુનિકેશન કરે
એક્સેસ સ્પીડ	ખૂબ જ ઝડપી એક્સેસ ટાઇમ
વોલેટિલિટી	વોલેટાઇલ (પાવર બંધ થતાં ડેટા ગુમ થાય)
ઉદાહરણો	RAM, કેશ મેમરી

• RAM (રેન્ડમ એક્સેસ મેમરી): વર્તમાન પ્રોગ્રામ્સ માટેની મુખ્ય કાર્યકારી મેમરી

• **કેશ મેમરી**: સીપીયુ અને RAM વચ્ચે અતિ-ઝડપી મેમરી

• **વોલેટાઇલ પ્રકૃતિ**: કમ્પ્યુટર બંધ થતાં ડેટા અવૃશ્ય થઈ જાય

• **સીધું સીપીયુ એક્સેસ**: સીપીયુ સીધું ડેટા વાંચી/લખી શકે

મેમરી ટ્રીક: "પ્રાઇમરી ઈઝ ફાસ્ટ બટ ફોરગેટફુલ"

પ્રશ્ન 1(ક) [7 ગુણ]

ઉદાહરણ સાથે રિયલ ટાઇમ OSના પ્રકારો સમજાવો.

જવાબ:

રિયલ-ટાઇમ ઓપરેટિંગ સિસ્ટમના પ્રકારો:

уѕіг	રિસ્પોન્સ ટાઇમ	ઉદાહરણો	ઉપયોગ
હાર્ડ રિચલ-ટાઇમ	ગેરંટીડ ડેડલાઇન	QNX, VxWorks	મેડિકલ ડિવાઇસ, એરક્રાફ્ટ
સોફ્ટ રિયલ-ટાઇમ	શ્રેષ્ઠ પ્રયાસ ટાઇમિંગ	Windows RT, Linux RT	મલ્ટીમીડિયા, ગેમિંગ
ફર્મ રિયલ-ટાઇમ	ક્યારેક ડેડલાઇન મિસ	Embedded Linux	ઇન્ડસ્ટ્રિયલ કંટ્રોલ

- હાર્ડ રિયલ-ટાઇમ: ડેડલાઇન ચૂકવાથી સિસ્ટમ ફેઇલ થાય
- **સોફ્ટ રિયલ-ટાઇમ**: વિલંબિત રિસ્પોન્સ પરફોર્મન્સ ઘટાડે પરંતુ સિસ્ટમ ચાલુ રહે
- નિર્ધારિત રિસ્પોન્સ: અનુમાનિત ટાઈમિંગ વર્તણૂક આવશ્યક

મેમરી ટ્રીક: "HSF - હાર્ડ, સોફ્ટ, ફર્મ ટાઇમિંગ જરૂરિયાતો"

પ્રશ્ન 1(ક OR) [7 ગુણ]

Linux આર્કિટેક્ચરનું વર્ણન કરો અને Linux ની કામગીરીના મોડની ચર્ચા કરો.

જવાબ:

Linux આર્કિટેક્ચર ડાયાગ્રામ:

Linux ઓપરેશન મોડ્સ:

મોડ	વિવરણ	એક્સેસ લેવલ	ઉદાહરણો
યુઝર મોડ	પ્રતિબંધિત એક્સેસ	મર્યાદિત અધિકારો	એપ્લિકેશન્સ, યુઝર પ્રોગ્રામ્સ
કર્નલ મોડ	સંપૂર્ણ સિસ્ટમ એક્સેસ	સંપૂર્ણ નિયંત્રણ	ડિવાઇસ ડ્રાઇવર્સ, OS ફંક્શન્સ

• લેચર્ડ આર્કિટેક્ચર: યુઝર અને સિસ્ટમ કમ્પોનન્ટ્સ વચ્ચે સ્પષ્ટ અલગીકરણ

• મોડ સ્વિચિંગ: સીપીયુ યુઝર અને કર્નલ મોડ્સ વચ્ચે સ્વિચ કરે

• સિસ્ટમ કોલ્સ: યુઝર પ્રોગ્રામ્સ માટે કર્નલ સેવાઓ એક્સેસ કરવાનું ઇન્ટરફેસ

• સિક્યોરિટી: યુઝર મોડ સીધું હાર્ડવેર એક્સેસ અટકાવે

ਮੇਮરੀ ਟ੍ਰੀs: "LUSK - Linux Uses Safe Kernel protection"

પ્રશ્ન 2(અ) [3 ગુણ]

XOR ગેટ તેના સત્ય કોષ્ટક સાથે વર્ણવો.

જવાબ:

XOR ગેટ સિમ્બોલ:

સત્ય કોષ્ટક:

Α	В	આઉટપુટ (A ⊕ B)
0	0	0
0	1	1
1	0	1
1	1	0

• **એક્સક્લુસિવ OR**: જ્યારે ઇનપુટ્સ અલગ હોય ત્યારે આઉટપુટ 1

• લોજિક કંક્શન: A ⊕ B = A'B + AB'

• એપ્લિકેશન્સ: હાફ એડર, પેરિટી ચેકર, એન્ક્રિપ્શન

મેમરી ટ્રીક: "XOR - eXclusive OR અલગ ઇનપુટ્સ માટે 1 આપે"

પ્રશ્ન 2(બ) [4 ગુણ]

નીચેના ઉકેલો.

i) $(4C6)_{16} = (_)_2 = (_)_{10}$

ii) $(186)_{10} = (_)_8 = (_)_2$

જવાબ:

રૂપાંતરણ કોષ્ટક:

રૂપાંતરણ	પગલું	પરિણામ
(4C6) ₁₆	હેક્સ ટુ બાઇનરી	10011000110 ₂
	બાઇનરી ટુ ડેસિમલ	1222 ₁₀
(186) ₁₀	ડેસિમલ ટુ ઓક્ટલ	272 ₈
	ડેસિમલ ટુ બાઇનરી	10111010 ₂

વિગતવાર સોલ્યુશન્સ:

i) $(4C6)_{16} = (10011000110)_2 = (1222)_{10}$

• 4 = 0100, C = 1100, 6 = 0110

• સંયુક્ત: 010011000110 = 10011000110₂

• ડેસિમલ: 1×2¹⁰ + 0×2⁹ + 0×2⁸ + 1×2⁷ + 1×2⁶ + 0×2⁵ + 0×2⁴ + 0×2³ + 1×2² + 1×2¹ + 0×2⁰ = 1222₁₀

ii) $(186)_{10} = (272)_8 = (10111010)_2$

• ઓક્ટલ: 186 ÷ 8 = 23 બાકી 2, 23 ÷ 8 = 2 બાકી 7, 2 ÷ 8 = 0 બાકી 2 → 272₈

• બાઇનરી: 186 = 128 + 32 + 16 + 8 + 2 = 10111010₂

મેમરી ટ્રીક: "HDB - હેક્સ, ડેસિમલ, બાઇનરી કન્વર્શન્સ"

પ્રશ્ન 2(ક) [7 ગુણ]

નીચેના OS ને સમજાવો

i) નેટવર્ક ઓપરેટિંગ સિસ્ટમ

ii) મોબાઇલ ઓપરેટિંગ સિસ્ટમ

જવાબ:

ઓપરેટિંગ સિસ્ટમ સરખામણી કોષ્ટક:

લાક્ષણિકતા	નેટવર્ક OS	મોબાઇલ OS
હેતુ	નેટવર્ક રિસોર્સ મેનેજ કરવું	મોબાઇલ ડિવાઇસ મેનેજમેન્ટ
ઉદાહરણો	Windows Server, Linux Server	Android, iOS, Windows Mobile
મુખ્ય ફીચર્સ	ફાઇલ શેરિંગ, પ્રિન્ટર શેરિંગ	ટચ ઇન્ટરફેસ, બેટરી મેનેજમેન્ટ
યુઝર્સ	મલ્ટિપલ સાથોસાથ યુઝર્સ	સામાન્ય રીતે સિંગલ યુઝર

i) નેટવર્ક ઓપરેટિંગ સિસ્ટમ:

- મલ્ટિ-યુઝર સપોર્ટ: મલ્ટિપલ સાથોસાથ યુઝર્સ હેન્ડલ કરે
- રિસોર્સ શેરિંગ: ફાઇલો, પ્રિન્ટર્સ, એપ્લિકેશન્સ નેટવર્કમાં શેર કરાય
- સિક્યોરિટી મેનેજમેન્ટ: યુઝર ઓથેન્ટિકેશન અને એક્સેસ કંટ્રોલ

ii) મોબાઇલ ઓપરેટિંગ સિસ્ટમ:

- ટચ-ઓપ્ટિમાઇઝ્ડ: આંગળી-આધારિત ઇન્ટરેક્શન માટે ડિઝાઇન
- પાવર મેનેજમેન્ટ: કાર્યક્ષમ બેટરી ઉપયોગ
- એપ ઇક્રોસિસ્ટમ: કેન્દ્રીકૃત એપ વિતરણ અને મેનેજમેન્ટ

મેમરી ટ્રીક: "NOS ફોર નેટવર્ક્સ, MOS ફોર મોબિલિટી"

પ્રશ્ન 2(અ OR) [3 ગુણ]

ફક્ત NAND ગેટનો ઉપયોગ કરીને OR ગેટ અને NOT ગેટનું લોજિક સર્કિટ દોરો.

જવાબ:

NAND ઉપયોગ કરી OR ગેટ:

NAND ઉપયોગ કરી NOT ગેટ:

સત્ય વેરિફિકેશન કોષ્ટક:

A	В	A'	B'	(A'·B')' = A+B
0	0	1	1	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

• NAND યુનિવર્સલ: કોઈ પણ લોજિક ફંક્શન ઇમ્પ્લિમેન્ટ કરી શકે

• ร**ิ ม**าว์าา โายม (A'·B')' = A+B

મેમરી ટ્રીક: "NAND ઈઝ યુનિવર્સલ - બધા ગેટ્સ બનાવી શકે"

પ્રશ્ન 2(બ OR) [4 ગુણ]

i) બાઇનરી સંખ્યાને દશાંશ સંખ્યામાં રૂપાંતરિત કરો: (i) 11101 (ii) 10011

ii) દશાંશ સંખ્યાને બાઇનરી સંખ્યામાં રૂપાંતરિત કરો: (i) 19 (ii) 64

જવાબ:

૩૫ાંતરણ કોષ્ટક:

Reserved	સંખ્યા	પ્રક્રિયા	પરિણામ
બાઇનરી ટુ ડેસિમલ	111012	1×2 ⁴ +1×2 ³ +1×2 ² +0×2 ¹ +1×2 ⁰	29 ₁₀
	100112	1×2 ⁴ +0×2 ³ +0×2 ² +1×2 ¹ +1×2 ⁰	19 ₁₀
ડેસિમલ ટુ બાઇનરી	19 ₁₀	2 વડે ભાગાકાર પદ્ધતિ	100112
	64 ₁₀	2 વડે ભાગાકાર પદ્ધતિ	10000002

વિગતવાર સોલ્યુશન્સ:

i) બાઇનરી ટુ ડેસિમલ:

- $11101_2 = 16 + 8 + 4 + 0 + 1 = 29_{10}$
- $10011_2 = 16 + 0 + 0 + 2 + 1 = 19_{10}$

ii) ડેસિમલ ટુ બાઇનરી:

- $19 \div 2 = 9$ બાકી $1, 9 \div 2 = 4$ બાકી $1, 4 \div 2 = 2$ બાકી $0, 2 \div 2 = 1$ બાકી $0, 1 \div 2 = 0$ બાકી $1 \rightarrow 10011_2$
- 64 ÷ 2 = 32 બાકી 0... → 1000000₂

મેમરી ટ્રીક: "બાઇનરી ટુ ડેસિમલ માટે 2 ની શક્તિઓ"

પ્રશ્ન 2(ક OR) [7 ગુણ]

ઓપન સોર્સ સોફ્ટવેર અને પ્રોપ્રાઇટરી સોફ્ટવેર સમજાવો. બંને પ્રકારના સોફ્ટવેરના ઓછામાં ઓછા પાંચ ઉદાહરણો આપો.

જવાબ:

સોફ્ટવેર પ્રકાર સરખામણી કોષ્ટક:

પાસાં	ઓપન-સોર્સ	પ્રોપ્રાઇટરી
સોર્સ કોડ	મુક્તપણે ઉપલબ્ધ	બંધ/છુપાયેલ
કિંમત	સામાન્ય રીતે મફત	કોમર્શિયલ લાઇસન્સ
મોડિફિકેશન	મંજૂર	પ્રતિબંધિત
સપોર્ટ	કમ્યુનિટી-આદ્યારિત	વેન્ડર સપોર્ટ

સોફ્ટવેર ઉદાહરણો:

ઓપન-સોર્સ	પ્રોપ્રાઇટરી
Linux	Microsoft Windows
LibreOffice	Microsoft Office
Firefox	Internet Explorer
GIMP	Adobe Photoshop
MySQL	Oracle Database

ઓપન-સોર્સ લાક્ષણિકતાઓ:

• મોડિફાઇ કરવાની સ્વતંત્રતા: યુઝર્સ સોર્સ કોડ બદલી શકે

• ક્રમ્યુનિટી ડેવલપમેન્ટ: સહયોગી સુધારણા

• પારદર્શિતા: તમામ કોડ દૃશ્યમાન અને ઓડિટ કરી શકાય

પ્રોપ્રાઇટરી લાક્ષણિકતાઓ:

• ક્રોમર્શિયલ મોડેલ: લાઇસન્સિંગ દ્વારા આવક

• પ્રોફેશનલ સપોર્ટ: સમર્પિત કસ્ટમર સેવા

• ગુણવત્તા ખાતરી: કઠોર પરીક્ષણ અને માન્યતા

મેમરી ટ્રીક: "FOSS ઈઝ ફ્રી, ઓપન, શેર્ડ, કમ્યુનિટી દ્વારા સપોર્ટેડ"

પ્રશ્ન 3(અ) [3 ગુણ]

વ્યાખ્યાયિત કરો

1. મોક્યુલેશન

2. મલ્ટિપ્લેક્સિંગ

જવાબ:

વ્યાખ્યા કોષ્ટક:

કાલ્દ	વ્યાખ્યા	હેતુ
મોક્યુલેશન	કેરિયર સિગ્નલના ગુણધર્મો બદલવાની પ્રક્રિયા	લાંબા અંતરનું ટ્રાન્સમિશન સક્ષમ કરવું
મલ્ટિપ્લેક્સિંગ	ટ્રાન્સમિશન માટે મલ્ટિપલ સિગ્નલો જોડવા	કાર્યક્ષમ ચેનલ ઉપયોગ

- મોક્યુલેશન: કેરિયર વેવના એમ્પ્લિટ્યુડ, ફ્રીક્વન્સી અથવા ફેઝ બદલે
- મલ્ટિપ્લેક્સિંગ: મલ્ટિપલ યુઝર્સને એક જ કમ્યુનિકેશન મીડિયમ શેર કરવાની મંજૂરી આપે
- સિગ્નલ પ્રોસેસિંગ: બંને તકનીકો કમ્યુનિકેશન કાર્યક્ષમતા સુધારે

મેમરી ટ્રીક: "MM - મોડ્યુલેશન મોડિફાઇ કરે, મલ્ટિપ્લેક્સિંગ મર્જ કરે"

પ્રશ્ન 3(બ) [4 ગુણ]

સ્ટાર ટોપોલોજી સમજાવો.

જવાબ:

સ્ટાર ટોપોલોજી ડાયાગ્રામ:

```
Computer1
|
Computer4—Hub—Computer2
|
Computer3
```

સ્ટાર ટોપોલોજી ફીચર્સ કોષ્ટક:

ફીયર	વિવરણ
કેન્દ્રીય ડિવાઇસ	હબ/સ્વિય બધા નોડ્સને જોડે
ફોલ્ટ ટોલરન્સ	સિંગલ નોડ ફેઇલ્યૂર અન્યને અસર કરતું નથી
પર્ફોર્મન્સ	દરેક કનેક્શન માટે સમર્પિત બેન્ડવિથ
સ્કેલેબિલિટી	નોંડ્સ ઉમેરવા/હટાવવા સરળ

- કેન્દ્રીય હબ: બધું કમ્યુનિકેશન કેન્દ્રીય ડિવાઇસ દ્વારા પસાર થાય
- સરળ ટ્રબલશૂટિંગ: સમસ્યાઓ વ્યક્તિગત કનેક્શન્સમાં અલગ
- વધુ કિંમત: બસ ટોપોલોજી કરતાં વધુ કેબલ જરૂરી
- સિંગલ પોઇન્ટ ઓફ ફેઇલ્યૂર: હબ ફેઇલ થવાથી આખું નેટવર્ક અસર પામે

મેમરી ટ્રીક: "STAR - સિંગલ પોઇન્ટ, ટ્રબલશૂટિંગ ઇઝી, ઓલ થ્રુ હબ, રિલાયબલ"

પ્રશ્ન 3(ક) [7 ગુણ]

ટાઇમ ડિવિઝન મલ્ટિપ્લેક્સિંગ (TDM) પર ટૂંકી નોંધ તૈયાર કરો

જવાબ:

TDM કન્સેપ્ટ ડાયાગ્રામ:

TDM લાક્ષણિકતાઓ કોષ્ટક:

ફીચર	વિવરણ	
સિદ્ધાંત	વિવિધ યુઝર્સને વિવિધ ટાઇમ સ્લોટ્સ ફાળવાય	
સિન્ક્રોનાઇઝેશન	બધા ડિવાઇસ સિન્ક્રોનાઇઝ હોવા જોઈએ	
કાર્યક્ષમતા	સ્લોટ્સ ભરાયા હોય ત્યારે સંપૂર્ણ બેન્ડવિથ ઉપયોગ	
એપ્લિકેશન્સ	ડિજિટલ ટેલિફોન સિસ્ટમ્સ, T1/E1 લાઇન્સ	

TDM પ્રકારો:

- સિન્ક્રોનસ TDM: ડેટા ઉપલબ્ધતાને ધ્યાનમાં લીધા વિના નિશ્ચિત ટાઇમ સ્લોટ્સ
- **એસિન્ક્રોનસ TDM**: માંગના આધારે ડાયનેમિક સ્લોટ કાળવણી
- સ્ટેટિસ્ટિકલ TDM: આંકડાકીય આધારે સ્લોટ્સ ફાળવાય

કાયદાઓ:

- ન્યાયી શેરિંગ: બધા યુઝર્સ માટે સમાન ટાઇમ ફાળવણી
- કોઈ સિગ્નલ ઇન્ટરફેરન્સ નહીં: ટાઇમ-આધારિત અલગીકરણ સંઘર્ષ અટકાવે

મેમરી ટ્રીક: "TDM - ટાઇમ ડિવાઇડ્સ મીડિયમ ન્યાયથી"

પ્રશ્ન 3(અ OR) [3 ગુણ]

એમ્પ્લિટ્યુડ મોડ્યુલેશન (AM) સમજાવો.

જવાબ:

AM સિગ્નલ ડાયાગ્રામ:

Message Signal:	~~~~~~~~~~~~~~
Carrier Signal:	
AM Output:	~~ ~~~ ~~ ~~~

AM લાક્ષણિકતાઓ કોષ્ટક:

પેરામીટર	વિવરણ	
વ્યાખ્યા	મેસેજ સિગ્નલ સાથે કેરિયરનું એમ્પ્લિટ્યુડ બદલાય	
ફ્રીક્વન્સી રેન્જ	535-1605 kHz (AM રેડિયો)	
બેન્ડવિથ	મેસેજ સિગ્નલ ફ્રીક્વન્સીથી બમણું	

- **કેરિયર વેવ**: માહિતી વહન કરતું હાઇ ફ્રીક્વન્સી સિગ્નલ
- મોક્યુલેશન ઇન્ડેક્સ: એમ્પ્લિટ્યુડ વેરિએશનની ઊંડાઈ નક્કી કરે
- **એપ્લિકેશન્સ**: AM રેડિયો બ્રોડકાસ્ટિંગ, એરક્રાફ્ટ કમ્યુનિકેશન

મેમરી ટ્રીક: "AM - એમ્પ્લિટ્યુડ મેસેજ સાથે મોડિફાઇ થાય"

પ્રશ્ન 3(બ OR) [4 ગુણ]

DNS વર્ણવો.

જવાબ:

DNS હાયરાર્કી:

DNS કમ્પોનન્ટ્સ કોષ્ટક:

કમ્પોનન્ટ	ફંક્શન
ડોમેઇન નેમ	માનવ-વાંચી શકાય તેવું વેબ એડ્રેસ
IP એડ્રેસ	સર્વરનું સંખ્યાકીય એડ્રેસ
DNS સર્વર	નામોને IP એડ્રેસમાં ટ્રાન્સલેટ કરે
રેકોર્ડ્સ	વિવિધ પ્રકારો (A, MX, CNAME)

• **નેમ રિઝોલ્યુશન**: ડોમેઇન નામોને IP એડ્રેસમાં કન્વર્ટ કરે

• **હાયરાર્કિકલ સ્ટ્રક્ચર**: રૂટ, TLD, સેકન્ડ-લેવલ ડોમેઇન્સ

• ડિસ્ટ્રિબ્યુટેડ ડેટાબેસ: કોઈ સિંગલ પોઇન્ટ ઓફ ફેઇલ્યૂર નથી

• **કેશિંગ**: તાજેતરના લુકઅપ્સ સ્ટોર કરીને પર્ફોર્મન્સ સુધારે

મેમરી ટ્રીક: "DNS - ડોમેઇન નેમ સિસ્ટમ એડ્રેસ ટ્રાન્સલેટ કરે"

પ્રશ્ન 3(ક OR) [7 ગુણ]

નીચેનું વર્ણન કરો.

1. સીરિયલ કમ્યુનિકેશન

2. સિન્ક્રોનસ ટ્રાન્સમિશન

જવાબ:

કમ્યુનિકેશન પ્રકારો ડાયાગ્રામ:

કમ્યુનિકેશન સરખામણી કોષ્ટક:

увіг	વિવરણ	ટાઇમિંગ	ઉદાહરણો
સીરિયલ કમ્યુનિકેશન	ડેટા બિટ્સ એક પછી એક મોકલાય	ધીમું પરંતુ વિશ્વસનીય	RS-232, USB, ઇથરનેટ
સિન્કોનસ ટ્રાન્સમિશન	ક્લોક સિગ્નલ સેન્ડર/રિસીવર સિન્ક કરે	યોક્કસ ટાઇમિંગ	HDLC, SDLC

1. સીરિયલ કમ્યુનિકેશન:

• સિંગલ વાયર: ડેટા સિંગલ ચેનલ પર બિટ બાય બિટ ટ્રાન્સમિટ થાય

• કોસ્ટ ઇફેક્ટિવ: પેરેલલ કરતાં ઓછા વાયર જરૂરી

• લાંબો અંતર: નોઇઝ અને ઇન્ટરફેરન્સને ઓછું સંવેદનશીલ

• એસ્ટ ડિટેક્શન: ડેટા ઇન્ટેગ્રિટી માટે બિલ્ટ-ઇન મેકેનિઝમ

2. સિન્ક્રોનસ ટ્રાન્સમિશન:

• કલોક સિન્કોનાઇઝેશન: અલગ ક્લોક સિગ્નલ અથવા એમ્બેડેડ ટાઇમિંગ

• બ્લોક ટ્રાન્સમિશન: ડેટા સતત બ્લોક્સમાં મોકલાય

• વધુ કાર્યક્ષમતા: સ્ટાર્ટ/સ્ટોપ બિટ્સની જરૂર નથી

• કોમ્પ્લેક્સ હાર્ડવેર: સિન્ક્રોનાઇઝ્ડ ક્લોક્સ જરૂરી

મેમરી ટ્રીક: "સીરિયલ ઈઝ સિક્વેન્શિયલ, સિન્ક્રોનસ ઈઝ સાયમલ્ટેનિયસ"

પ્રશ્ન 4(અ) [3 ગુણ]

મેશ અને બસ ટોપોલોજીમાં તફાવત કરો.

જવાબ:

ટોપોલોજી સરખામણી કોષ્ટક:

ફીચર	મેશ ટોપોલોજી	બસ ટોપોલોજી
કનેક્શન	દરેક નોડ બીજા દરેક સાથે જોડાયેલ	બધા નોડ્સ સિંગલ કેબલ પર
ફોલ્ટ ટોલરન્સ	ખૂબ વધારે	ઓછું (સિંગલ પોઇન્ટ ઓફ ફેઇલ્યૂર)
કિંમત	ખૂબ મોંઘું	આર્થિક
પર્ફોર્મન્સ	 ਰਿਜ਼ਮ	વધુ નોડ્સ સાથે ઘટે

મેશ ટોપોલોજી:

બસ ટોપોલોજી:

• મેશ ફાયદાઓ: રિડન્ડન્ટ પાથ, ઉચ્ચ વિશ્વસનીયતા

• બસ ફાયદાઓ: સરળ ઇન્સ્ટોલેશન, કોસ્ટ-ઇફેક્ટિવ

• **કેબલ જરૂરિયાતો**: મેશને n(n-1)/2 કનેક્શન્સ જરૂરી, બસને સિંગલ કેબલ

મેમરી ટ્રીક: "મેશ ઈઝ મેની કનેક્શન્સ, બસ ઈઝ બેસિક સિંગલ લાઇન"

પ્રશ્ન 4(બ) [4 ગુણ]

FDM અને TDM ની સરખામણી કરો.

જવાબ:

FDM vs TDM સરખામણી કોષ્ટક:

પેરામીટર	FDM	TDM
કુલ ફોર્મ	ફ્રીક્વન્સી ડિવિઝન મલ્ટિપ્લેક્સિંગ	ટાઇમ ડિવિઝન મલ્ટિપ્લેક્સિંગ
વિભાજન આધાર	ફ્રીક્વન્સી બેન્ડ્સ	ટાઇમ સ્લોટ્સ
સિગ્નલ પ્રકાર	એનાલોંગ	ડિજિટલ
ક્રોસટોક	ચેનલો વચ્ચે શક્ય	કોઈ ક્રોસટોક નથી
સિન્ક્રોનાઇઝેશન	જરૂરી નથી	જરૂરી
કાર્યક્ષમતા	ગાર્ડ બેન્ડ્સને કારણે ઓછી	વધુ કાર્યક્ષમતા

FDM લાક્ષણિકતાઓ:

- ફ્રીકવન્સી સેપેરેશન: દરેક સિગ્નલને અલગ ફ્રીક્વન્સી બેન્ડ ફાળવાય
- સાથોસાથ ટ્રાન્સમિશન: બધા સિગ્નલો એક જ સમયે ટ્રાન્સમિટ થાય
- ગાર્ડ બેન્ડ્સ: યેનલો વચ્ચે ઇન્ટરફેરન્સ અટકાવે

TDM લાક્ષણિકતાઓ:

- ટાઇમ સેપેરેશન: દરેક સિગ્નલને અલગ ટાઇમ સ્લોટ ફાળવાય
- ક્રમિક ટ્રાન્સમિશન: સિગ્નલો એક પછી એક ટ્રાન્સમિટ થાય
- **યોક્કસ ટાઇમિંગ**: સિન્ક્રોનાઇઝ્ડ ક્લોક્સ જરૂરી

મેમરી ટ્રીક: "FDM ફ્રીક્વન્સી ઉપયોગ કરે, TDM ટાઇમ ઉપયોગ કરે"

પ્રશ્ન 4(ક) [7 ગુણ]

OSI રેફરન્સ મોડેલ દોરો અને સમજાવો.

જવાબ:

OSI મોડેલ ડાયાગ્રામ:

OSI લેયર ફંક્શન્સ કોષ્ટક:

લેયર	નામ	ફંક્શન	ઉદાહરણો
7	એપ્લિકેશન	યુઝર ઇન્ટરફેસ	HTTP, FTP, SMTP
6	પ્રેઝન્ટેશન	ડેટા ફોર્મેટિંગ	એન્ક્રિપ્શન, કમ્પ્રેશન
5	સેશન	સેશન મેનેજમેન્ટ	NetBIOS, RPC
4	ટ્રાન્સપોર્ટ	એન્ડ-ટુ-એન્ડ ડિલિવરી	TCP, UDP
3	નેટવર્ક	રાઉટિંગ	IP, ICMP
2	ડેટા લિંક	ફ્રેમ ડિલિવરી	ઇથરનેટ, PPP
1	ફિઝિકલ	બિટ ટ્રાન્સમિશન	કેબલ્સ, હબ્સ

મુખ્ય ફીચર્સ:

• લેયર્ડ આર્કિટેક્ચર: દરેક લેયરની ચોક્કસ જવાબદારીઓ

• **પ્રોટોકોલ ઇન્ડિપેન્ડન્સ**: લેયર્સ સ્વતંત્ર રીતે મોડિફાઇ કરી શકાય

• સ્ટાન્ડર્ડાઇઝેશન: નેટવર્ક કમ્યુનિકેશન માટે સામાન્ય ફ્રેમવર્ક

• **એન્કેપ્સુલેશન**: દરેક લેચર પોતાનું હેડર ઉમેરે

મેમરી ટ્રીક: "All People Seem To Need Data Processing"

પ્રશ્ન 4(અ OR) [3 ગુણ]

સંક્ષિપ્તમાં હબનું વર્ણન કરો.

જવાબ:

હબ ડાયાગ્રામ:

```
PC1
|
PC4—HUB—PC2
|
PC3
```

હબ લાક્ષણિકતાઓ કોષ્ટક:

ફીચર	વિવરણ
ફંક્શન	ડિવાઇસ માટે કેન્દ્રીય કનેક્શન પોઇન્ટ
หลเร	ફિઝિકલ લેયર ડિવાઇસ (લેયર 1)
ડેટા હેન્ડલિંગ	બધા કનેક્ટેડ ડિવાઇસમાં બ્રોડકાસ્ટ
કોલિઝન ડોમેઇન	બધા પોર્ટ્સ એક જ કોલિઝન ડોમેઇન શેર કરે

- શેર્ડ બેન્ડવિથ: બધા કનેક્ટેડ ડિવાઇસ કુલ બેન્ડવિથ શેર કરે
- હાફ-ડુપ્લેક્સ: સાથોસાથ મોકલી અને મેળવી શકતું નથી
- સિક્યોરિટી ઇશ્યૂઝ: બધા ડિવાઇસ બધો ટ્રાન્સમિટ થયેલો ડેટા મેળવે
- અપ્રચલિત ટેકનોલોજી: આધુનિક નેટવર્ક્સમાં સ્વિચ દ્વારા બદલાયું

મેમરી ટ્રીક: "હબ ઈઝ હાફ-ડુપ્લેક્સ, શેર્સ બેન્ડવિથ"

પ્રશ્ન 4(બ OR) [4 ગુણ]

STP અને UTP ની સરખામણી કરો.

જવાબ:

STP vs UTP કેબલ સરખામણી કોષ્ટક:

ફીચર	STP (શિલ્કેડ ટ્વિસ્ટેડ પેર)	UTP (અનશિલ્કેડ ટ્વિસ્ટેડ પેર)
શિલ્કિંગ	મેટલ ફોઇલ/બ્રેઇડ પ્રોટેક્શન	કોઈ શિલ્ડિંગ નથી
કિંમત	વધુ મોંઘું	ઓછું મોંઘું
ઇન્સ્ટોલેશન	ગ્રાઉન્ડિંગને કારણે જટિલ	સરળ ઇન્સ્ટોલેશન
EMI રેઝિસ્ટન્સ	ઉત્તમ પ્રોટેક્શન	મધ્યમ પ્રોટેક્શન
એપ્લિકેશન્સ	ઇન્ડસ્ટ્રિયલ વાતાવરણ	ઓફિસ વાતાવરણ

કેબલ સ્ટ્રક્ચર:

UTP: |wire1 wire2 | |wire3 wire4 |

STP: |Shield|wire1 wire2|Shield|

|Shield|wire3 wire4|Shield|

STP કાયદાઓ:

• બેહતર નોઇઝ ઇમ્યુનિટી: શિલ્ડ ઇલેક્ટ્રોમેગ્નેટિક ઇન્ટરફેરન્સ બ્લોક કરે

• **હાયર ડેટા રેટ્સ**: ઝડપી ટ્રાન્સમિશન સ્પીડ સપોર્ટ કરે

• સિક્યોર ટ્રાન્સમિશન: ઇવ્સડ્ડોપિંગ માટે ઓછું સંવેદનશીલ

UTP ફાયદાઓ:

• **કોસ્ટ ઇફેક્ટિવ**: STP કરતાં સસ્તું

• ઇઝી ઇન્સ્ટોલેશન: ગ્રાઉન્ડિંગ જરૂરિયાતો નથી

• ફ્લેક્સિબિલિટી: વધુ લવચીક અને હેન્ડલ કરવામાં સરળ

મેમરી ટ્રીક: "STP ઈઝ શિલ્કેડ બટ પ્રાઇસી, UTP ઈઝ અનશિલ્કેડ બટ પોપ્યુલર"

પ્રશ્ન 4(ક OR) [7 ગુણ]

LAN, MAN, WAN મા લેદ પાડો.

જવાબ:

નેટવર્ક સાઇઝ સરખામણી:

નેટવર્ક પ્રકાર સરખામણી કોષ્ટક:

પેરામીટર	LAN	MAN	WAN
કવરેજ	બિલ્ડિંગ/કેમ્પસ	શહેર/મેટ્રોપોલિટન વિસ્તાર	દેશ/ખંડ
સ્પીડ	10 Mbps - 1 Gbps	1-100 Mbps	56 Kbps - 100 Mbps
કિંમત	ઓછી	મધ્યમ	વદ્યારે
માલિકી	પ્રાઇવેટ	પ્રાઇવેટ/પબ્લિક	પબ્લિક/લીઝ્ડ
ટેકનોલોજી	ઇથરનેટ, Wi-Fi	ફાઇબર ઓપ્ટિક, WiMAX	સેટેલાઇટ, લીઝ્ડ લાઇન્સ
એરર રેટ	ખૂબ ઓછો	ઓછો	વધારે

વિગતવાર લાક્ષણિકતાઓ:

LAN (લોકલ એરિયા નેટવર્ક):

• હાઇ સ્પીડ: નાના વિસ્તારમાં ઝડપી ડેટા ટ્રાન્સમિશન

• લો કોસ્ટ: સેટ અપ અને મેન્ટેઇન કરવા માટે સસ્તું

• પ્રાઇવેટ ઓનરશિપ: સામાન્ય રીતે સિંગલ સંસ્થાની માલિકી

MAN (મેટ્રોપોલિટન એરિયા નેટવર્ક):

• સિટી-વાઇડ કવરેજ: મેટ્રોપોલિટન વિસ્તારમાં ફેલાયેલું

• મીડિયમ સ્પીડ: મધ્યમ ટ્રાન્સમિશન સ્પીડ

• મિક્સ્ડ ઓનરશિપ: પબ્લિક અથવા પ્રાઇવેટ હોઈ શકે

WAN (વાઇડ એરિયા નેટવર્ક):

• ગ્લોબલ કવરેજ: દેશો અને ખંડોમાં ફેલાયેલું

• વેરિયેબલ સ્પીડ: કનેક્શન પ્રકાર પર આધાર રાખે

• પબ્લિક ઇન્ફ્રાસ્ટ્રક્ચર: પબ્લિક ટેલિકમ્યુનિકેશન નેટવર્ક્સ ઉપયોગ કરે

મેમરી ટ્રીક: "LAN ઈઝ લોકલ, MAN ઈઝ મેટ્રોપોલિટન, WAN ઈઝ વાઇડ"

પ્રશ્ન 5(અ) [3 ગુણ]

ડિનાયલ ઓક સર્વિસ અટેક સમજાવો.

જવાબ:

DoS અટેક ડાયાગ્રામ:

DoS અટેક પ્રકારો કોષ્ટક:

уѕіг	વિવરણ
વોલ્યુમ-બેસ્ક	ટ્રાફિક સાથે બેન્ડવિથ ફ્લડ કરે
પ્રોટોકોલ-બેસ્ડ	પ્રોટોકોલ નબળાઈઓનો ફાયદો લે
એપ્લિકેશન-બેસ્ડ	એપ્લિકેશન રિસોર્સને ટાર્ગેટ કરે

• ઉદ્દેશ્ય: કાયદેસર યુઝર્સ માટે સેવાઓ અનઉપલબ્ધ બનાવવી

• પદ્ધતિઓ: ટ્રાફિક ફ્લડિંગ, રિસોર્સ એક્ઝોશન, નબળાઈઓનો ફાયદો

• અસર: સર્વિસ ડિસરપ્શન, ફાઇનાન્શિયલ લોસ, રેપ્યુટેશન ડેમેજ

• **પ્રિવેન્શન**: ફાયરવોલ્સ, લોડ બેલેન્સર્સ, ઇન્ટ્રુઝન ડિટેક્શન સિસ્ટમ્સ

મેમરી ટીક: "DoS ડિનાયઝ અધર્સ સર્વિસ"

પ્રશ્ન 5(બ) [4 ગુણ]

i) ડેટા ટ્રાન્સમિશનનું વર્ગીકરણ કરો.

ii) બસ ટોપોલોજીમાં ટર્મિનેટરનો ઉપયોગ લખો.

જવાબ:

i) ડેટા ટ્રાન્સમિશન વર્ગીકરણ:

ii) બસ ટોપોલોજીમાં ટર્મિનેટર:

ટર્મિનેટર ફંક્શન્સ કોષ્ટક:

ફંક્શન	વિવરણ
સિગ્નલ એલ્સોર્પ્શન	સિગ્નલ રિફ્લેક્શન અટકાવે
ઇમ્પીડન્સ મેચિંગ	કેબલ ઇમ્પીડન્સ મેચ કરે
નેટવર્ક ઇન્ટેગ્રિટી	સિગ્નલ ગુણવત્તા જાળવે

- **રિફલેક્શન પ્રિવેન્શન**: સિગ્નલને વાપસ બાઉન્સ થવાથી રોકે
- સિગ્નલ ક્વોલિટી: સ્વચ્છ સિગ્નલ ટ્રાન્સમિશન જાળવે
- બંને છેડે જરૂરી: બસ ટોપોલોજીને કેબલના બંને છેડે ટર્મિનેટર જોઈએ
- રેઝિસ્ટન્સ વેલ્યુ: ઇથરનેટ નેટવર્ક્સ માટે સામાન્ય રીતે 50 ઓહ્ય

મેમરી ટ્રીક: "ટર્મિનેટર સ્ટોપ્સ સિગ્નલ ટ્રાવેલ"

પ્રશ્ન 5(ક) [7 ગુણ]

CIA ટ્રાઇડ વર્ણવો.

જવાબ:

CIA ટ્રાઇડ ડાયાગ્રામ:

CIA ટ્રાઇડ કમ્પોનન્ટ્સ કોષ્ટક:

કમ્પોનન્ટ	વ્યાખ્યા	ઇમ્પ્લિમેન્ટેશન	જોખમો
કોન્ફિડેન્શિયાલિટી	માહિતીની ગુપ્તતા	એન્ક્રિપ્શન, એક્સેસ કંટ્રોલ	અનધિકૃત ડિસક્લોઝર
ઇન્ટેગ્રિટી	ડેટાની ચોકસાઈ અને સંપૂર્ણતા	હેશ ફંક્શન્સ, ડિજિટલ સિગ્નેચર્સ	ડેટા મોડિફિકેશન
અવેઇલેબિલિટી	માહિતીની પહોંચ યોગ્યતા	રિડન્ડન્સી, બેકઅપ સિસ્ટમ્સ	સર્વિસ ડિસરપ્શન

વિગતવાર સમજૂતી:

કોન્ફિડેન્શિયાલિટી:

• ડેટા પ્રોટેક્શન: ફક્ત અધિકૃત યુઝર્સ જ માહિતી એક્સેસ કરી શકે

• પ્રા**ઇવસી પગલાં**: એન્ક્રિપ્શન, ઓથેન્ટિકેશન, એક્સેસ કંટ્રોલ્સ

• ઉદાહરણો: પાસવર્ડ પ્રોટેક્શન, ફાઇલ પરમિશન્સ

ઇન્ટેગ્રિટી:

• ડેટા એક્યુરસી: ટ્રાન્સમિશન/સ્ટોરેજ દરમિયાન માહિતી બદલાતી નથી

• વેરિફિકેશન પદ્ધતિઓ: ચેકસમ્સ, ડિજિટલ સિગ્નેચર્સ, વર્ઝન કંટ્રોલ

• ઉદાહરણો: હેશ ફંક્શન્સ, ડેટાબેસ કન્સ્ટ્રેઇન્ટ્સ

અવેઇલેબિલિટી:

• સિસ્ટમ એક્સેસિબિલિટી: જરૂર પડે ત્યારે માહિતી અને સેવાઓ ઉપલબ્ધ

• **રિલાયબિલિટી પગલાં**: રિડન્ડન્સી, ફોલ્ટ ટોલરન્સ, ડિઝાસ્ટર રિકવરી

• **ઉદાહરણો**: લોડ બેલેન્સિંગ, બેકઅપ સિસ્ટમ્સ, UPS

મેમરી ટ્રીક: "CIA પ્રોટેક્ટ્સ - કોન્ફિડેન્શિયાલિટી, ઇન્ટેગ્રિટી, અવેઇલેબિલિટી"

પ્રશ્ન 5(અ OR) [3 ગુણ]

વ્યાખ્યાયિત કરો

1. ક્રિપ્ટોગ્રાફી

2. ડિક્રિપ્શન

જવાબ:

વ્યાખ્યા કોષ્ટક:

શબ્દ	વ્યાખ્યા	હેતુ
ક્રિપ્ટોગ્રાફી	એન્કોડિંગ દ્વારા માહિતી સુરક્ષિત કરવાનું વિજ્ઞાન	ડેટા કોન્ફિડેન્શિયાલિટી સુરક્ષિત કરવી
ડિક્રિપ્શન	એન્ક્રિપ્ટેડ ડેટાને મૂળ સ્વરૂપમાં પાછું કન્વર્ટ કરવાની પ્રક્રિયા	મૂળ માહિતી પુનઃપ્રાપ્ત કરવી

- **ક્રિપ્ટોગ્રાફી**: વાંચી શકાય તેવા ડેટાને વાંચી ન શકાય તેવા ફોર્મેટમાં ટ્રાન્સફોર્મ કરવા માટે ગાણિતિક અલ્ગોરિધમ્સ ઉપયોગ કરે
- **ડિક્રિપ્શન**: કીઝ ઉપયોગ કરીને મૂળ ડેટા પુનઃસ્થાપિત કરવાની વિપરીત પ્રક્રિયા
- કી-બેસ્ડ સિક્યોરિટી: બંને પ્રક્રિયાઓ ક્રિપ્ટોગ્રાફિક કીઝ પર આધાર રાખે

મેમરી ટ્રીક: "ક્રિપ્ટો કન્સીલ્સ, ડિક્રિપ્શન ડિસ્ક્લોઝ"

પ્રશ્ન 5(બ OR) [4 ગુણ]

- i) ટ્વિસ્ટેડ પેર કેબલ્સમાં વાયરો શા માટે ટ્વિસ્ટેડ રાખવામાં આવે છે તેનું કારણ જણાવો.
- ii) OSI મોડેલના સ્તરને ઓળખો કે જેના પર નીચેના નેટવર્ક ઉપકરણો સપોર્ટ કરે છે 1. રાઉટર 2. બ્રિજ

જવાલ:

i) ટ્વિસ્ટેડ પેર કેબલ ડિઝાઇન:

Normal Wires:	 (પેરેલલ ઇન્ટરફેરન્સ)
Twisted Wires:	\/\/\/\/ /\/\/\/\ (કેન્સલેશન ઇફેક્ટ)

વાયર ટ્વિસ્ટિંગ ફાયદાઓ કોષ્ટક:

ફાયદો	વિવરણ
નોઇઝ રિડક્શન	ઇલેક્ટ્રોમેગ્નેટિક ઇન્ટરફેરન્સ કેન્સલ કરે
ક્રોસટોક પ્રિવેન્શન	પેર્સ વચ્ચે સિગ્નલ ઇન્ટરફેરન્સ ઘટાડે
સિગ્નલ ક્વોલિટી	બેહતર સિગ્નલ ઇન્ટેગ્રિટી જાળવે

ii) OSI લેયર આઇડેન્ટિફિકેશન:

નેટવર્ક ડિવાઇસ અને OSI લેચર્સ કોષ્ટક:

ડિવાઇસ	OSI લેચર	ફંક્શન
રાઉટર	લેયર 3 (નેટવર્ક)	વિવિધ નેટવર્ક્સ વચ્ચે રાઉટિંગ
બ્રિજ	લેયર 2 (ડેટા લિંક)	નેટવર્ક સેગમેન્ટ્સ કનેક્ટ કરવા

- વાયર ટ્વિસ્ટિંગ: દરેક ટ્વિસ્ટ બાજુના વાયરમાંથી ઇલેક્ટ્રોમેગ્નેટિક ઇન્ટરફેરન્સ કેન્સલ કરે
- **ઇન્ટરફેરન્સ કેન્સલેશન**: નોઇઝ બંને વાયરને સમાન રીતે પરંતુ વિપરીત દિશામાં અસર કરે
- **રાઉટર ફંક્શન**: IP એડ્રેસના આધારે રાઉટિંગ નિર્ણયો લે
- **બ્રિજ ફંક્શન**: MAC એડ્રેસના આધારે ફ્રેમ્સ ફોરવર્ડ કરે

મેમરી ટ્રીક: "ટ્વિસ્ટેડ વાયર્સ રિક્યુસ ઇન્ટરફેરન્સ, રાઉટર એટ લેયર 3, બ્રિજ એટ લેયર 2"

પ્રશ્ન 5(ક OR) [7 ગુણ]

સાયબર એટેકને વ્યાખ્યાયિત કરો અને વિવિદ્ય સાયબર હુમલાઓને સંક્ષિપ્તમાં સમજાવો

જવાબ:

સાયબર એટેક વ્યાખ્યા:

સાયબર એટેક એ કમ્પ્યુટર સિસ્ટમ્સ, નેટવર્ક્સ અથવા ડિજિટલ ડિવાઇસને કમ્પ્રોમાઇઝ કરવાનો ઇરાદાપૂર્વકનો પ્રયાસ છે જેથી ડેટા ચોરી, બદલાવ અથવા નાશ કરી શકાય.

સાયબર હુમલાઓના પ્રકારો:

સાયબર એટેક પ્રકારો કોષ્ટક:

હુમલાનો પ્રકાર	વિવરણ	અસર	પ્રિવેન્શન
મેલવેર	દુર્ભાવનાપૂર્ણ સોફ્ટવેર (વાયરસ, વોર્મ, ટ્રોજન)	સિસ્ટમ કરપ્શન, ડેટા ચોરી	એન્ટીવાયરસ, અપડેટ્સ
ફિશિંગ	ક્રેડેન્શિયલ્સ ચોરવા માટે ફ્રોડ ઇમેઇલ્સ/ વેબસાઇટ્સ	આઇડેન્ટિટી થેફ્ટ, ફાઇનાન્શિયલ લોસ	યુઝર જાગૃતિ, ઇમેઇલ ફિલ્ટર્સ
DoS/DDoS	ટાર્ગેટને ટ્રાફિક સાથે ઓવરવ્હેલ્મ કરવું	સર્વિસ અનઉપલબ્ધતા	ફાયરવોલ્સ, લોડ બેલેન્સર્સ
મેન-ઇન- મિડલ	પક્ષો વચ્ચે કમ્યુનિકેશન ઇન્ટરસેપ્ટ કરવું	ડેટા ઇવ્સડ્રોપિંગ	એન્ક્રિપ્શન, સિક્યોર પ્રોટોકોલ્સ
SQL ઇન્જેક્શન	ડેટાબેસ ક્વેરીમાં દુર્ભાવનાપૂર્ણ કોડ દાખલ કરવો	ડેટાબેસ કમ્પ્રોમાઇઝ	ઇનપુટ વેલિડેશન, પેરામીટરાઇઝ્ડ ક્વેરીઝ

વિગતવાર હુમલાઓની સમજૂતી:

મેલવેર એટેક્સ:

• વાયરસ: ફાઇલોમાં જોડાતો સ્વ-પ્રતિકૃતિ કોડ

• વોર્મ: નેટવર્ક્સમાં ફેલાતો સ્ટેન્ડઅલોન મેલવેર

• ટ્રોજન: કાયદેસર દેખાતો છુપાયેલો મેલવેર

સોશિયલ એન્જિનીયરિંગ:

• ફિશિંગ: સંવેદનશીલ માહિતી માંગતી નકલી ઇમેઇલ્સ

• સ્પીયર ફિશિંગ: યોક્કસ વ્યક્તિઓ પર ટાર્ગેટેડ હુમલાઓ

• બેઇટિંગ: મેલવેર પહોંચાડવા માટે આકર્ષક ઓફર્સનો ઉપયોગ

નેટવર્ક એટેક્સ:

• પેકેટ સ્નિફિંગ: વિશ્લેષણ માટે નેટવર્ક ટ્રાફિક કેપ્યર કરવું

• **સેશન હાઇજેકિંગ**: યુઝર સેશન્સ કબજે કરવા

• **પાસવર્ડ એટેક્સ**: બ્રુટ ફોર્સ, ડિક્શનરી એટેક્સ

મેમરી ટ્રીક: "MPDMS - મેલવેર, ફિશિંગ, DoS, મેન-ઇન-મિડલ, SQL ઇન્જેક્શન"