LF Høst 2017

Noregs teknisk-naturvitskaplege universitet

Institutt for Datateknologi og Informatikk

Løsningsforslag

2

- (i) a) Funksjonen er injektiv fordi den kun 1 sendes til x, kun 2 sendes til y og kun 3 sendes til z. b) Den er surjektiv fordi alle verdier av C nås av funksjonen.
 - (ii) a) Funksjonen $h: \mathbb{R} \to \mathbb{R}$ gitt ved $h: x \mapsto$ x^2 . er ikke surjektiv fordi det ikke finnes noen x slik at h(x)-1. b) Den er ikke injektiv fordi $h(-1) = h(1) \text{ men } -1 \neq 1$.
 - (iii) Vi regner ut alle verdier for funksjonen g: $\{0,1,2,3,4\} \rightarrow \{0,1,2,3,4\}$ gitt ved $g: n \mapsto$ $n^3 \% 5.:$

$$g(0) = 0^3 \% 5 = 0 \% 5 = 0$$

 $g(1) = 1^3 \% 5 = 1 \% 5 = 1$
 $g(2) = 2^3 \% 5 = 8 \% 5 = 3$
 $g(3) = 3^3 \% 5 = 27 \% 5 = 2$
 $g(4) = 4^3 \% 5 = 64 \% 5 = 4$

- b) Funksjonen er surjektiv fordi hver verdi i mengden $\{0,1,2,3,4\}$ nås og a) injektiv fordi g(x) = g(y) hvis og bare hvis x = y.
- (iv) Funksjonen $m: \mathcal{P}(\mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$ gitt ved $m:A\mapsto A^c$ er både surjektiv og injektiv. a) Hvis m(A) = m(B) så er $A^c = B^c$. VI tar komplementet på begge sider og får $(A^c)^c = (B^c)^c$. Bruker vi at $(A^c)^c = A$ for alle mengder A så har vi at A = B. Derfor er m injektiv. b) Funskjonen m er også surjektiv fordi for enhver mengde $A \in \mathcal{P}(\mathbb{Z})$ så er $m(A^c) = (A^c)^c = A$.

a) Differensligningen $2a_k + 2a_{k-1}$ $12a_{k-2}$, $a_0 = 5$, $a_1 = 0$ løses ved å løse karakteristisk ligning $2t^2 + 2t = 12$. Divisjon med 2 og samling på venstre side av = tegnet gir $t^2 + t - 6 = 0$. Faktorisering gir (t+3)(t-2) = 0. Røttene er $t_1 = 2$ og $t_2 = -3$. Generell løsning av diferenslikningen er $a_n = A 2^n + B(-3)^n$. Startverdiene gir likningssystemet

$$a_0 = A + B = 5$$

 $a_1 = 2A - 3B = 0$

Løsningen på systemet er A = 3, B = 2.

Svaret er derfor

$$a_n = 32^n + 2(-3)^n$$

for alle $n \geq 2$.

b) Vi sjekker først startverdiene $b_0 = 0 + 3^0 =$ 0+1 som er OK og $b_1 = 1+3^1 = 1+3 = 4$ som også er ok. Vi skekker så om likningen er tilfredstilt: Høyresiden er $4b_{n-1}-3b_{n-2}-2=$ $4(n-1+3^{n-1})-3(n-2+3^{n-2})-2 =$ $4n - 4 + 4 \cdot 3^{n-1} - 3n + 6 - 3 \cdot 3^{n-2}) - 2 =$ $4n - 4 + 4 \cdot 3^{n-1} - 3n + 6 - 3^{n-1}) - 2 =$ $n + (4-1) \cdot 3^{n-1} = n + 3^n$ som er det samme som venstresiden.

- 3 a) (i) Først er $352:151=2 \text{ med } 50 \text{ i rest. } 151:50=3 \text{ med } 1 \text{ i rest. Det betyr at } \gcd(352,151)=1.$ 151 har en multiplikativ invers modulo 352 fordi gcd(352, 151) = 1.
 - (ii) For å finne $244^7 \pmod{391}$ regner vi ut $244^2 = 59536 \equiv 104 \pmod{391}$, $244^4 = \equiv 104^2 =$ $10816 \equiv 259 \pmod{391}$. Da er $244^7 = 244^4 \cdot 244^2 \cdot 244 \equiv 259 \cdot 104 \cdot 244 = 6572384 \equiv 2448 \cdot 244 = 2448 \cdot 244 \cdot 244 = 2448 \cdot 244 = 2448 \cdot 244 = 2448 \cdot 244 = 2448 \cdot 244 = 24$ 65 (mod 391).
 - b) Et RSA-kryptosystem er bassert på primtallene p = 11 og q = 23.
 - (i) Vi har n = pq = 391. Vi kan bruke (391, 151) som privat nøkkel fordi (p-1)(q-1) = 352 og gcd(352, 151) = 1. Den offentlige nøkkelen er den multiplikative inverse til 151 modulo 352.

Den multiplikative inversen fås ved å bruke Euklids utvidede algoritme. $1 = 151 - 3 \cdot 50 = 151 - 3(352 - 2 \cdot 151) = 7 \cdot 151 - 3 \cdot 352$. Den multiplikative inversen til 151 modulo 352 er 7. Den offentlige nøkkelen er (391, 7)

- (ii) Vi dekrypterer 244 ved å bruke den offentlige nøkkelen. Fra deloppgave a,ii) fikk vi $244^7 \equiv 65 \pmod{391}$. Meldingen er 65.
- a) Først regner vi ut gradienten til f(x,y). $\nabla f = -\pi y \sin \pi x y \hat{\mathbf{i}} \pi x \sin \pi x y \hat{\mathbf{j}}$. Gradienten i punktet (1/2,1) er $\nabla f(1/2,1) = -\pi \hat{\mathbf{i}} (\pi/2)\hat{\mathbf{j}}$. Den retningsderiverte er $D_{\mathbf{u}}f = \nabla f(1/2,1) \cdot \mathbf{u} = (-\pi, -\pi/2) \cdot (4/5, 3/5) = -11\pi/10$.
 - b) Funksjonen f(x,y) har størst retningsderivert i punktet (1,1/2) i retningen til $\nabla f(1/2,1) = -\pi \hat{\mathbf{i}} (\pi/2)\hat{\mathbf{j}}$.?
 - c) Den retningsderiverte til funksjonen $f(x,y) = \cos \pi xy$ i punktet (1,1/2) i retnignen til $\nabla f(1/2,1)$ er $|\nabla f(1/2,1)| = \pi \sqrt{5/4}$.
- 5 La $f(x,y) = 3x^2y 6xy + 2y^3 3y$
 - a) Gradienten til f(x,y) er $\nabla f = f_x(x,y) \hat{\bf i} + f_y(x,y) \hat{\bf j} = (6xy 6y) \hat{\bf i} + (3x^2 6x + 6y^2 3) \hat{\bf j}$. De andrederiverte av f(x,y) er $f_{xx}(x,y) = 6y$, $f_{yy}(x,y) = 12y$ og $f_{xy}(x,y) = 6x 6$.
 - b) Man finne de kritiske punkter til f(x,y) til å løse likingen $\nabla f = \mathbf{0}$. Dvs. $f_x(x,y) = 6xy 6y = 0$ og $f_y(x,y) = 3x^2 6x + 6y^2 3$. Fra 6xy 6y = 0 har vi at x = 1 eller y = 0. Første tilfelle (x = 1) gir andre likning $f_y(1,y) = 6y^2 6 = 0$ som er ekivalent med at y = -1 eller y = 1. Andre tilfelle (y = 0) gir andre likning $f_y(x,0) = 3x^2 6x 3 = 0$ som har løsninger $x = 1 \pm \sqrt(2)$. Vi har derfor 4 kritiske punkter (1,-1), (1,1), $(1-\sqrt{2},0)$ og $(1+\sqrt{2},0)$.

punkt	f_{xx}	f_{yy}	f_{xy}	$\int_{xx} f_{yy} - f_{xy}^2$	Type
(1, -1)	-6	-12	0	72	Lokalt Max
(1,1)	6	12	0	72	Lokalt Min
$(1+\sqrt{2},0)$	0	0	$6\sqrt{2}$	-72	Sadel
$(1-\sqrt{2},0)$	0	0	$-6\sqrt{2}$	-72	Sadel

c) Finn største og minste verdi av f(x,y) på området begrenset av sirkelen $x^2 - 2x + y^2 = 0$ med radius 1 og senter i punktet (1,0) La $g(x,y) = x^2 - 2x + y^2$ Vi setter opp Lagrange for problemet. $\nabla f = \lambda \nabla g, \ g(x,y) = 0$. Det gir likningene

$$6xy - 6y = \lambda(2x - 2)$$
$$3x^{2} - 6x + 6y^{2} - 3 = \lambda 2y$$
$$x^{2} - 2x + y^{2} = 0$$

Fra liking 1 har vi at x = 1 eller $\lambda = 3y$.

(x = 1) Innsatt i 3.je likning får vi $1 - 2 + y^2 = 0$ som gir y = 1 eller y = -1.

- $(\lambda = 3y)$ Innsatt i 2.re likning får vi $3x^2 6x + 6y^2 3 = 6y^2$. Opprydning gir $3x^2 6x 3 = 0$. Vi trekker fra 3 ganger 3.je liking og får $-3 y^2 = 0$ som ikke har en reell løsning. Vi har derfor kun to kritiske punkter (1, -1) og (1, 1). Fra deloppgave b har vi de samme punktene. (1, -1) er globalt max og (1, 1) er globalt min. Verdiene er f(1, -1) = 4 og f(1, 1) = -4.
- 6 Eksisterer følgende grense? Regn også ut grenseverdien hvis den eksisterer. Vi skriver om ved å gange

med $\sqrt{x^2 + y^2 + 1} + 1$ oppe og nede i brøken.

$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1} = \lim_{(x,y)\to(0,0)} \frac{(x^2+y^2)(\sqrt{x^2+y^2+1}+1)}{(\sqrt{x^2+y^2+1}-1)(\sqrt{x^2+y^2+1}+1)}$$

$$= \lim_{(x,y)\to(0,0)} \frac{(x^2+y^2)(\sqrt{x^2+y^2+1}+1)}{x^2+y^2} = \lim_{(x,y)\to(0,0)} (\sqrt{x^2+y^2+1}+1) = 2.$$

Grensen eksisterer og grensen er 2.