$$\left|f\left(\frac{1}{n}\right)\right| \sim \frac{|f''(0)|}{2!} \frac{1}{n^2} (n \to \infty)$$

由
$$\sum_{n=1}^{\infty} \frac{|f''(0)|}{2} \frac{1}{n^2}$$
 收敛,则 $\sum_{n=1}^{\infty} |f(\frac{1}{n})|$ 收敛。

(2) 若
$$f''(0) = 0$$
, 则 $f\left(\frac{1}{n}\right) = 0\left(\frac{1}{n^2}\right)(n \to \infty)$, 得

$$\lim_{n\to\infty} \frac{\left| f\left(\frac{1}{n}\right) \right|}{\frac{1}{n^2}} = 0$$

比较判别法的极限形式知, $\sum_{n=1}^{\infty} \left| \left[f\left(\frac{1}{n}\right) \right] \right|$ 收敛, 总之 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 绝对收敛。

12. 设偶函数 f(x) 在 x = 0 存在二阶导数,且 f(0) = 1,试证:级数 $\sum_{n=1}^{\infty} \left[f\left(\frac{1}{n}\right) - 1 \right]$ 绝对收敛.

证 由 f(x) 在 x = 0 存在导数,且 f(x) 是偶函数,有

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$$

$$= \lim_{x \to 0} \frac{f(-x) - f(0)}{x} = -\lim_{x \to 0} \frac{f(-x) - f(0)}{-x} = -f'(0)$$

则 f'(0) = 0. 由带有皮亚诺余项的麦克劳林公式,有

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + o(x^2)(x \to 0)$$

或

$$f(x)-1=\frac{f''(0)}{2!}x_2+0(x_2)(x\to 0)$$

把 $x = \frac{1}{n}$ 代入上式,有

$$f\left(\frac{1}{n}\right)-1=\frac{f''(0)}{2!}\frac{1}{n^2}+o\left(\frac{1}{n^2}\right)(n\to 0),$$

与第 11 题证法二讨论相同,可知 $\sum_{n=1}^{\infty} \left[f\left(\frac{1}{n}\right) - 1 \right]$ 绝对收敛。

13. 求下列幂级数的收敛域及和函数:

$$(1)\sum_{n=0}^{\infty}\frac{(-1)^n(n+1)}{(2n+3)!}x^{2n};$$

解法一
$$\sin x = x + \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+3)!} x^{2n+3}$$

丁是
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+3)!} x^{2n+2} = 1 - \frac{\sin x}{x}, x \neq 0.$$

两边求导,得

$$\sum_{n=0}^{\infty} \frac{2(n+1)(-1)^n}{(2n+3)!} x^{2n+1} = -\frac{1}{x^2} (x \cos x - \sin x), x \neq 0,$$

即

$$S(x) = \sum_{n=0}^{\infty} \frac{(n+1)(-1)^n}{(2n+3)!} x^{2n} = \frac{1}{2x^2} (\sin x - x \cos x) x \neq 0.$$

$$x = 0 \text{ B}, S(0) = \frac{1 \cdot (-1)^0}{3!} = 6,$$

因此

$$S(x) = \begin{cases} \frac{1}{2x^3} (\sin x - x \cos x), & x \neq 0, \\ \frac{1}{6}, & x = 0. \end{cases}$$

解法二
$$S(x) = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(2n+3)-1}{(2n+3)!} (-1)^n x^{2n}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+2)!} x^{2n} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+3)!} x^{2n}$$

$$= \frac{1}{2x^2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+2)!} x^{2n+2} - \frac{1}{2x^3} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+3)!} x^{2n+3}$$

$$= \frac{1}{2x^2} (1 - \cos x) - \frac{1}{2x^3} (x - \sin x)$$

 $\exists S(0) = \frac{1}{6}$ 则

$$S(x) = \begin{cases} \frac{1}{2x^3} (\sin x - x \cos x), & x \neq 0, \\ \frac{1}{6}, & x = 0 \end{cases}$$

(3)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$
;

解 设
$$S(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, S'(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{(2n-1)!},$$
有
$$S(x) + S'(x) = \sum_{n=0}^{\infty} \frac{x^n}{n} = e^x, S(x) - S'(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n = e^{-x},$$

从而

$$S(x) = \frac{e^x + e^{-x}}{2}, x \in (-\infty, +\infty)$$

$$(2) \sum_{n=0}^{\infty} \frac{n^2 + 1}{2^n n!} x^{2n}$$

$$\Re \sum_{n=0}^{\infty} \frac{n^2 + 1}{2^n n!} x^n = \sum_{n=1}^{\infty} \frac{n}{(n-1)!} \left(\frac{x}{2}\right)^n + \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{x}{2}\right)^n \\
= \frac{x}{2} \sum_{n=1}^{\infty} \frac{n}{(n-1)!} \left(\frac{x}{2}\right)^{n-1} + e^{\frac{x}{2}} = x \left[\sum_{n=1}^{\infty} \frac{1}{(n-1)!} \left(\frac{x}{2}\right)^n\right]' + e^{\frac{x}{2}} \\
= x \left(\frac{x}{2} e^{\frac{x}{2}}\right)' + e^{\frac{x}{2}} = x \left(\frac{1}{2} e^{\frac{x}{2}} + \frac{x}{4} e^{\frac{x}{2}}\right) + e^{\frac{x}{2}}$$

$$=\left(\frac{x^2}{4}+\frac{x}{2}+1\right)e^{\frac{x}{2}}, x\in(-\infty,+\infty)$$

$$(4) \sum_{n=0}^{\infty} \frac{(n-1)^2}{(n+1)x^n};$$

解 设
$$y=\frac{1}{x}$$
,则

$$S(y) = \sum_{n=0}^{\infty} \frac{(n-1)^2}{(n+1)x^n} = \sum_{n=0}^{\infty} \frac{[(n+1)-2]^2}{n+1} y^n$$
$$= \sum_{n=0}^{\infty} (n+1)y^n - 4 \sum_{n=0}^{\infty} y^n + 4 \sum_{n=0}^{\infty} \frac{1}{n+1} y^n$$

而

$$\sum_{n=0}^{\infty} (n+1) y^{n} = \left(\sum_{n=0}^{\infty} y^{n+1}\right)' = \left(\frac{y}{1-y}\right)' = \frac{1}{(1-y)^{2}},$$

$$\sum_{n=0}^{\infty} y^{n} = \frac{1}{1-y},$$

$$\sum_{n=0}^{\infty} \frac{y^{n}}{n+1} = \frac{1}{y} \sum_{n=0}^{\infty} \frac{y^{n+1}}{n+1} = \frac{1}{y} \int_{0}^{y} \left(\sum_{n=0}^{\infty} y^{n}\right) dy = \frac{1}{y} \int_{0}^{y} \frac{1}{1-y} dy = -\frac{\ln(1-y)}{y},$$

从而

$$S(y) = \frac{1}{(1-y)^2} - \frac{4}{1-y} - \frac{4\ln(1-y)}{y}, 0 < |y| < 1.$$

于是

$$\sum_{n=0}^{\infty} \frac{(n-1)^2}{(n+1)x^n} = \frac{1}{\left(1-\frac{1}{x}\right)^2} - \frac{4}{1-\frac{1}{x}} - \frac{4\left(1-\frac{1}{x}\right)}{\frac{1}{x}} = \frac{4x-3x^2}{(x-1)^2} - 4x\ln\frac{x-1}{x}, |x| > 1.$$

$$(5)1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} x^n;$$

解法一 熟悉二项级数的读者不难看出和函数为 $\frac{1}{\sqrt{1-x}}$

解法二 设
$$S(x) = 1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} x^n$$
,则

$$S'(x) = \frac{1}{2} + \sum_{n=2}^{\infty} \frac{(2n-1)!!n}{(2n)!!} x^{n-1}, \qquad (1)$$

$$xS'(x) = \frac{1}{2}x + \sum_{n=2}^{\infty} \frac{(2n-1)!!n}{(2n)!!} x^n = \sum_{n=1}^{\infty} \frac{(2n-1)!!n}{(2n+2)!!} x^n$$
 (2)

又(1)式可写成

$$S'(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{(2n+1)!!(n+1)}{(2n+2)!!}$$
 (3)

(3)-(2)得

$$S'(x) - xS'(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \left[\frac{(2n+1)!!(n+1)}{(2n+2)!!} - \frac{(2n-1)!!n(2n+2)}{(2n+2)!!} \right] x^n$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} x^n = \frac{1}{2} S(x),$$
得 $(1-x)S' = \frac{1}{2}S$, 即 $(1-x)\frac{ds}{dx} = \frac{1}{2}s(x)$, 有 $\frac{ds}{s(x)} = \frac{1}{2(1-x)}dx$,
有 $\ln S = -\frac{1}{2}\ln(1-x) + \ln c$, $S = \frac{c}{\sqrt{1-x}}$ 由 $S(0) = 1$, 得 $C = 1$, 故
$$S(x) = \frac{1}{\sqrt{1-x}}, -1 < x < 1$$

14. 把下列函数展成克麦劳林级数:

$$(1)f(x) = \frac{12 - 5x}{6 - 5x - x^2}; (2)f(x) = e^x \cos x; (3)f(x) = x \arcsin x + \sqrt{1 - x^2};$$

$$(4) f(x) = (1 + x^2) \arctan x; (5) f(x) = (\arctan x)^2$$

解 (1) 设
$$\frac{12-5x}{6-5x-x^2} = \frac{A}{1-x} + \frac{B}{6+x}$$
, 由待定系数法得 $A = 1, B = 6$

故

$$\frac{12-5x}{6-5x-x^2} = \frac{1}{1-x} + \frac{1}{1+\frac{x}{6}} = \sum_{n=0}^{\infty} x^n + \sum_{n=0}^{\infty} (-1)^n \left(\frac{x}{6}\right)^n$$
$$= \sum_{n=0}^{\infty} \left[1 + \frac{(-1)^n}{6}\right] x^n, |x| < 1.$$

解 (2)由 $e^x \cos x$ 为 $e^x (\cos x + i \sin x)$ 的实部,由于 $e^x (\cos x + i \sin x) = e^x \cdot e^{ix} = e^{(1+i)x}$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left[(1+i)x \right]^n = \sum_{n=0}^{\infty} \frac{x^n}{n!} (1+i)^n$$

$$= \sum_{n=0}^{\infty} \frac{x^n}{n!} \left[\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right]^n = \sum_{n=0}^{\infty} \frac{x^n}{n!} 2^{\frac{2}{n}} \left(\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right)$$

$$= \sum_{n=0}^{\infty} \frac{2^{\frac{2}{n}} \cos \frac{n\pi}{4}}{n!} x^n + i \sum_{n=0}^{\infty} \frac{2^{\frac{2}{n}} \sin \frac{n\pi}{4}}{n!} x^n,$$

比较上式两端的实部,得 $e^x \cos x = \sum_{n=0}^{\infty} \frac{2^n \cos \frac{n\pi}{4}}{n!} x^n$, $|x| < + \infty$.

于是

$$f'(x) = f'(0) + \int_0^x f''(x) dx = \int_0^x \frac{1}{\sqrt{1 - x^2}} dx$$

$$= \int_0^x \left[1 + \sum_{n=1}^\infty \frac{(2n-1)!!}{(2n)!!} x^{2x} dx \right] = x + \sum_{n=1}^\infty \frac{(2n-1)!!}{(2n)!!} \cdot \frac{x^{2n+1}}{2n+1}$$

$$f(x) = f(0) + \int_0^x f'(x) dx = 1 + \frac{x^2}{2} + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \cdot \frac{x^{2n+2}}{(2n+1)(2n+2)}$$
$$= 1 + \frac{x^2}{2} + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n+2)!!} \cdot \frac{x^{2n+2}}{(2n+1)}, |x| < 1.$$

$$(4) \Re f(x) = (1+x^2) \int_0^x \frac{1}{1+x^2} dx = (1+x^2) \int_0^x \left[\sum_{n=0}^\infty (-1)^n x^{2n} \right] dx$$

$$= (1+x^2) \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^\infty (-1)^n \cdot \frac{x^{2n+1}}{2n+1} + \sum_{n=0}^\infty (-1)^n \frac{x^{2n+3}}{2n+1}$$

$$= \sum_{n=0}^\infty (-1)^n \cdot \frac{x^{2n+1}}{2n+1} + \sum_{n=1}^\infty (-1)^{n-1} \frac{x^{2n+1}}{2n-1}$$

$$= x + \sum_{n=1}^\infty (-1)^{n+1} \left[\frac{1}{2n-1} - \frac{1}{2n+1} \right] x^{2n+1}$$

$$= x + \sum_{n=1}^\infty (-1)^{n+1} \frac{2}{4n^2-1} x^{2n+1} = x + 2 \sum_{n=1}^\infty \frac{(-1)^{n+1}}{4n^2-1} x^{2n+1}, |x| \le 1$$

$$f(x) = \left(\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}\right) \cdot \left(\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}\right)$$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \left[\left(\frac{1}{2n-1} + \frac{1}{1} \right) \frac{1}{2n} + \left(\frac{1}{2n-3} + \frac{1}{3} \right) \frac{1}{2n} + \dots + \left(\frac{1}{1} + \frac{1}{2n-1} \right) \frac{1}{2n} \right] x^{2n}$$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} \right) \frac{x^n}{n}, |x| \leq 1.$$

15.设 f(x) 幂级数的和, |x| < R, |x| < R,

证 由 f(x) 是幂级数的和,则由函数展开唯一性定理

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n, |x| < R$$

$$g(x) = f(x^2) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{2n} = \sum_{m=0}^{\infty} \frac{f^{(m)}(0)}{m!} x^{2m},$$

$$\exists \frac{g^{(n)}(0)}{n!} = a_n, \, \text{由 } a_{2m+1} = 0, \, a_{2m} = \frac{f^{(m)}(0)}{m!}, \, m = 0, 1, 2, \cdots, \, \text{则}$$

$$\frac{g^{(2m+1)}(0)}{(2m+1)!} = a_{2m+1} = 0, \, \text{fig}^{(2m+1)}(0) = 0$$

$$\frac{g^{(2m)}(0)}{(2m)!} = a_{2m} = \frac{f^{(m)}(0)}{m!}, \notin g^{(2m)}(0) = (2m)! \frac{f^{(m)}(0)}{m!}$$

由
$$n = 2m, m = \frac{n}{2}, g^{\binom{n}{1}}(0) = \frac{n!}{\left(\frac{n}{2}\right)!} f^{\left(\frac{n}{2}\right)}(0), n$$
 为偶数, $g^{\binom{n}{1}}(0) = 0, n$ 为奇

数。

$$16. 求级数 \sum_{n=0}^{\infty} \frac{(n+1)^2}{n!}$$
的和

$$\frac{\sum_{n=0}^{\infty} \frac{(n+1)^2}{n!} = \sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{n!} = \sum_{n=0}^{\infty} \frac{n^2}{n!} + 2\sum_{n=0}^{\infty} \frac{n}{n!} + \sum_{n=0}^{\infty} \frac{1}{n!} \\
= \sum_{n=1}^{\infty} \frac{n}{(n-1)!} + 2\sum_{n=0}^{\infty} \frac{1}{(n-1)!} + e = \sum_{n=0}^{\infty} \frac{n+1}{n!} + 2\sum_{n=0}^{\infty} \frac{1}{n!} + e \\
= \sum_{n=1}^{\infty} \frac{1}{(n-1)!} + \sum_{n=0}^{\infty} \frac{1}{n!} + 2e + e = 5e.$$

17. 证明:当|x|<1时, $\sqrt[3]{1+x} \approx 1 + \frac{1}{3}x - \frac{1}{9}x^2$, 利用上述公式近似计算 $\sqrt[3]{9}$, 并估计误差.

(1)解 当1x1<1时

$$\sqrt[3]{1+x} = (1+x)^{\frac{1}{3}} = 1 + \frac{1}{3}x + \frac{\frac{1}{3}(\frac{1}{3}-1)}{x!}x^3 + \cdots,$$

故

$$\sqrt[3]{1+x} \approx 1 + \frac{1}{3}x - \frac{1}{9}x^{2}$$

$$(2)\sqrt[3]{9} = \sqrt[3]{8+1} + 2\sqrt[3]{1+\frac{1}{8}} \approx 2\left(1 + \frac{1}{3} \cdot \frac{1}{8} - \frac{1}{9} \cdot \frac{1}{8^{2}}\right) = 2.0798,$$

从第二项起,展开式

$$2\sqrt[3]{1+\frac{1}{8}} = 2\left[1+\frac{1}{3}\cdot\frac{1}{8}+\sum_{n=2}^{\infty}(-1)^{n-1}\cdot\frac{2\cdot5\cdots(3n-4)}{n!3^n}\left(\frac{1}{8}\right)^n\right]$$
是交错及数
$$a_n = \frac{2\cdot5\cdots(3n-4)}{n!3^n}\left(\frac{1}{8}\right)^n, \frac{a_{n+1}}{a_n} = \frac{3n-1}{24(n+1)} < 1, 即 a_{n+1} < a_n$$

且 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\frac{1}{8}<1$,由比值判别法知 $\sum_{n=1}^{\infty}a_n$ 收敛,则 $\lim_{n\to\infty}a_n=0$.

从而 $\sum_{n=2}^{\infty} (-1)^{n-1} a_n$, 符合莱布尼兹判别法, 故 $|R_3| < 2 \cdot \frac{2.5}{3!3^3} \left(\frac{1}{8}\right)^3 \approx 0.0002$.