РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Отчёт по лабораторной работе №7 Дискретное логарифмирование в конечном поле

Дисциплина: Математические основы защиты информации и информационной безопасности

Студент: Агеева Анастасия Сергеевна, 1032212304

Группа: НФИмд-02-21

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2021

Содержание

1	Цель работы	4					
2	Задание	5					
3	Теоретическое введение 3.1 ρ-алгоритм Полларда	6 6 7					
4	Выполнение лабораторной работы	9					
5	Выводы	11					
Сп	Список литературы						

List of Figures

4.1	Сжимающая функция f										9
4.2	Результаты р-метода Полларда					 					10

1 Цель работы

Цель данной лабораторной работы изучение задачи и алгоритмов дискретного логарифмирования в конечном поле.

2 Задание

1. Реализовать программно алгоритм, реализующий р-метод Полларда для задач дискретного логарифмирования.

3 Теоретическое введение

3.1 ρ -алгоритм Полларда

ρ-алгоритм (*ρ*-алгоритм) — предложенный Джоном Поллардом в 1975 году алгоритм, служащий для факторизации (разложения на множители) целых чисел. Данный алгоритм основывается на алгоритме Флойда поиска длины цикла в последовательности и некоторых следствиях из парадокса дней рождения. Алгоритм наиболее эффективен при факторизации составных чисел с достаточно малыми множителями в разложении [1].

Сложность алгоритма оценивается как $O(N^{1/4})$.

ho-алгоритм Полларда строит числовую последовательность, элементы которой образуют цикл, начиная с некоторого номера n, что может быть проиллюстрировано, расположением чисел в виде греческой буквы ho, что послужило названием семейству алгоритмов.

3.1.1 Современная версия

Пусть N составное целое положительное число, которое требуется разложить на множители. Алгоритм выглядит следующим образом: Случайным образом выбирается небольшое число x_0 и строится последовательность $\{x_n\}, n=0,1,2,...$, определяя каждое следующее как $x_{n+1}=F(x_n) \ (\mathrm{mod}\ N).$

Одновременно на каждом i-ом шаге вычисляется $d=\mathrm{GCD}(N,|x_i-x_j|)$ для каких-либо i,j таких, что j< i, например, i=2j. Если d>1, то вычисление заканчивается, и найденное на предыдущем шаге число d является делителем

N. Если N/d не является простым числом, то процедуру поиска делителей продолжается, взяв в качестве N число N'=N/d.

На практике функция F(x) выбирается не слишком сложной для вычисления (но в то же время не линейным многочленом), при условии того, что она не должна порождать взаимно однозначное отображение. Обычно в качестве F(x) выбираются функции $F(x)=x^2\pm 1 ({\rm mod}\,N)$ или $F(x)=x^2\pm a ({\rm mod}\,N)$. Однако функции x^2-2 и x^2 не подходят.

Если известно, что для делителя p числа N справедливо $p\equiv 1\,(\mathrm{mod}\,k)$ при некотором k>2, то имеет смысл использовать $F(x)=x^k+b$.

Существенным недостатком алгоритма в такой реализации является необходимость хранить большое число предыдущих значений x_j .

3.2 Алгоритмы для дискретного логарифмирования

Существуют три различных категории алгоритмов для вычисления дискретных логарифмов [2]:

- 1. Алгоритмы, которые работают для произвольных групп, т.е. они не используют какие-либо специфические свойства групп. К этой категории относятся метод «шаги младенца шаги гиганта» Шэнкса, ρ -метод Полларда (аналог метода ρ -факторизации Полларда) и λ -метод (также известный как «дикие и ручные кенгуру»).
- 2. Алгоритмы, которые хорошо работают в конечных группах, для которых порядок групп не имеет больших простых множителей. Хорошо известный алгоритм Сильвера Поляга Хеллмана, основанный на китайской теореме об остатках, относится к этой категории.
- 3. Алгоритмы, которые используют методы представления групповых элементов как продуктов элементов из относительно небольшого набора (также используя китайскую теорему об остатках); типичными алгоритмами в

этой категории являются алгоритм исчисления индекса Адлемана и алгоритм NFS Гордона.

4 Выполнение лабораторной работы

1. Реализация р-метода Полларда

1. Задам функцию f(), обладающую сжимающими свойствами, в которую буду передавать числа c, u и v.

Figure 4.1: Сжимающая функция f

2. Задам функцию discrlog(), в которую буду передавать параметры, необходимые для вычисления . По алгоритму, реализующему р-метода Полларда для задач дискретного логарифмирования, осуществляется нахождение показателя x, для которого верно $a^x \equiv b \pmod{p}$. В качестве результата возвращается показатель степени x. Вызову функцию для чисел p=107, a=10, r=53, b=64, u=2 и v=2. Алгоритм верно находит показатель степени x=20.

Figure 4.2: Результаты р-метода Полларда

5 Выводы

В ходе данной лабораторной работы я реализовала программно /rho-метод Полларда для задач дискретного логарифмирования.

Список литературы

- 1. Ро-алгоритм Полларда [Электронный ресурс]. Википедия, 2019. URL: https://ru.wikipedia.org/wiki/Po-алгоритм_Полларда.
- 2. The discrete log problem [Электронный ресурс]. 2002. URL: http://www.cs.t oronto.edu/~cvs/dlog/research_paper.pdf.