ОБЩИЕ УКАЗАНИЯ

Используя паспортные (каталожные) данные, в работе необходимо провести расчёт и построение основных характеристик трехфазного трансформатора, асинхронного двигателя и машины (двигателя или генератора) постоянного тока.

Согласно варианту для каждой задачи необходимо:

- вычертить расчетную электрическую схему машины с выбором условно положительных направлений токов и напряжений во всех ветвях схемы;
- выписать из соответствующей таблицы числовые значения параметров электромагнитного устройства.

Решение задач сопровождать написанием формул, подстановкой числовых данных в формулы с учетом единиц измерения, объяснением основных операций (действий), законов, характеристик, графиков, диаграмм, схем, вычисленных величин, выводами по полученным результатам.

При изображении графических зависимостей (характеристик) по осям координат необходимо нанести **равномерные шкалы**, нуль которых должен совпадать с началом координат.

Срок сдачи работы – 16-я неделя семестра.

Задача 1. Для трёхфазного трансформатора, параметры которого приведены в табл.1,

определить:

- $-R_1$ и X_1 ; R_2 и X_2 активные и реактивные сопротивления фазы первичной и вторичной обмоток;
 - $-R_0, X_0$ и Z_0 расчётные сопротивления намагничивающей ветви;
 - $-\delta$ угол магнитного запаздывания;
 - $-\cos \varphi_0$ коэффициент мощности при холостом ходе;
- $-\cos\varphi_1$ коэффициент мощности в первичной ветви при $\beta=0.5$ и $\cos\varphi_2=\cos\varphi_{\scriptscriptstyle H}=1$; при $\beta=1$ и $\cos\varphi_2=\cos\varphi_{\scriptscriptstyle H}=0.8$, где $\beta=I_2/I_{2_{\scriptscriptstyle H}}\approx I_1/I_{1_{\scriptscriptstyle H}}$ коэффициент нагрузки трансформатора;

рассчитать и построить:

- внешнюю характеристику $U_2 = f(\beta)$;
- зависимость КПД от нагрузки, т. е. $\eta = f(\beta)$ в случае $\cos \varphi_H = 0.8$; **вычертить** T-образную схему замещения фазы трансформатора.

Задача 2 (для вариантов 1...15, табл. 2). Трехфазный асинхронный двигатель с фазным ротором, сопротивления фаз обмоток которого R_1 , R_2 , X_1 , X_2 , соединён треугольником, работает при напряжении U_{1H} с частотой f = 50 Гц. Число витков w_1 , w_2 на фазу обмоток; число пар полюсов p.

Определить:

- пусковые токи статора и ротора;
- пусковой вращающий момент;

- коэффициент мощности $\cos \varphi_0$ при пуске двигателя без пускового реостата;
- сопротивление пускового реостата, при включении которого пусковой момент равен максимальному моменту двигателя;
 - максимальный пусковой момент.

Построить естественную и реостатную механические характеристики двигателя n = f(M).

Задача 2 (для вариантов 16...30, табл. 2). Трехфазный асинхронный двигатель (АД) с короткозамкнутым ротором, номинальная мощность которого P_{2H} , подключается к сети с номинальным линейным напряжением U_H и частотой f = 50 Гц.

Определить:

- номинальный I_{1n} и пусковой I_{1n} токи;
- номинальный M_{H} , пусковой M_{n} и максимальный M_{max} моменты;
- потери мощности ΔP в двигателе при номинальной нагрузке P_{2H} ;
- как измениться пусковой момент двигателя при снижении напряжения на его зажимах на 10% и возможен ли пуск двигателя при этих условиях с номинальной нагрузкой.

Построить механическую характеристику двигателя $n_2 = f(M)$.

Задача 3 (для вариантов 1...15, табл. 3). Генератор постоянного тока параллельного возбуждения характеризуется следующими величинами: номинальной мощностью P_{n} ; номинальным напряжением U_{n} ; номинальным КПД η_{n} ; сопротивлением цепи якоря R_{n} ; сопротивлением цепи возбуждения R_{n} . Характеристика холостого хода ГПТ задана в виде таблицы.

$I_{\rm g}/I_{\rm gh}$, %	0	20	40	60	80	100	120	140
E_0/U_{H} , %	5	45	75	90	97	100	103	105

Определить:

- номинальный ток якоря I_{gH} ;
- номинальный ток возбуждения $I_{\it GH}$;
- мощность двигателя для вращения генератора $P_{1H} = P_{\partial e}$;
- максимальный ток нагрузки I_{max} ;
- ток короткого замыкания I_{κ} ГПТ.

Построить внешнюю характеристику U = f(I) генератора, задаваясь значениями тока генератора, равными 20, 40, 60, 80 и 100% номинального.

При этом размагничивающим действием реакции якоря пренебречь.

Задача 3 (для вариантов 16...30, табл. 3). Двигатель постоянного тока (ДПТ) параллельного возбуждения имеет следующие номинальные данные: мощность P_H ; напряжение U_H ; частота вращения якоря n_H ; КПД η_H .

Потери мощности в цепи якоря ΔP_{g} и в цепи возбуждения ΔP_{g} заданы в процентах от потребляемой двигателем мощности P_{1g} из сети.

Определить:

- номинальные токи цепи якоря $I_{\!\scriptscriptstyle \it SH}$ и цепи возбуждения $I_{\!\scriptscriptstyle \it GH}$;
- номинальный вращающий момент M_{H} ;
- пусковой вращающий момент M_n при токе $I_{gn} = 2,5 \cdot I_{gn}$, полагая, что магнитный поток машины остаётся без изменений, и соответствующее сопротивление пускового реостата.

Построить естественную и реостатную механические характеристики ДПТ.