《线性代数》模拟试题 04 参考答案

专业: 班纺	及: 姓名:	学号:

题	号	得分	合计	总分
	1	2	20	100
	2	2		
	3	2		
	4	2		
	5	2		
	6	2		
	7	2		
	8	2		
	9	2		
	10	2		
	11	3	15	
	12	3		
	13	3		
	14	3		
	15	3		
Ξ.	16	9	54	
	17	9		
	18	9		
	19	9		
	20	9		
	21	9		
四	22	11	11	

一、填空题: 1~10 小题,每小题 2 分,共 20 分.

1. 如果行列式
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 2$$
,则
$$\begin{vmatrix} -2a_{11} & -2a_{12} & -2a_{13} \\ -2a_{21} & -2a_{22} & -2a_{23} \\ -2a_{31} & -2a_{32} & -2a_{33} \end{vmatrix} =$$

$$D_{n} = \begin{vmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{vmatrix} = \begin{bmatrix} a + (n-1)b \end{bmatrix} \begin{vmatrix} 1 & b & \cdots & b \\ 1 & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ 1 & b & \cdots & a \end{vmatrix}$$

$$= \begin{bmatrix} a + (n-1)b \end{bmatrix} \begin{vmatrix} 1 & b & \cdots & b \\ 0 & a - b & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a - b \end{vmatrix} = \begin{bmatrix} a + (n-1)b \end{bmatrix} (a - b)^{n-1}$$

提示:
$$\begin{vmatrix} -2a_{11} & -2a_{12} & -2a_{13} \\ -2a_{21} & -2a_{22} & -2a_{23} \\ -2a_{31} & -2a_{32} & -2a_{33} \end{vmatrix} = -8 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = -16$$

提示:
$$A_{12} + A_{22} + A_{32} + A_{42} = \begin{vmatrix} 1 & 1 & -1 & 2 \\ 6 & 1 & 1 & 2 \\ 3 & 1 & 1 & 2 \\ 6 & 1 & 3 & 2 \end{vmatrix} = 0$$

- 3. 向量组 α_1 , α_2 , α_3 线性无关,则 α_1 , α_1 + α_2 , α_1 + α_2 + α_3 线性 <u>无关</u> (填写相关或无关).
- 4. 设 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\beta, \alpha_2, \alpha_3)$ 均为 3 阶方阵,且|A| = 1,|B| = 2,则|2A B| = 0(这里 α_1 , α_2 , α_3 , β 均为三维列向量).

提示:
$$|2A - B| = |(2\alpha_1, 2\alpha_2, 2\alpha_3) - (\beta, \alpha_2, \alpha_3)| = |2\alpha_1 - \beta, \alpha_2, \alpha_3| = 2|A| - |B| = 0$$

- 6. 已知A为4阶矩阵,且A = 2, A^* 为A的伴随矩阵,则 $A^* = 8$.

- 7. A为n阶方阵,b为n维向量,非齐次线性方程组 Ax = b 有唯一解的充分必要条件是 $|A| \neq 0$ 或 R(A) = n .
- 8. 若 3 阶矩阵 A 的特征值分别为 1、2、3,则 |A+E| = 24.

提示: A+E 的特征值为 $\lambda+1$

9. 已知 A-B 为可逆矩阵,若矩阵 X 满足 AXA+BXB=AXB+BXA+E,经化简可得 $X=\left(A-B\right)^{-2}$.

提示: AXA+BXB=AXB+BXA+E ,所以 AXA+BXB-AXB-BXA=E , AX(A-B)-BX(A-B)=E ,从而(A-B)X(A-B)=E ,于是 $X=(A-B)^{-2}$

- 10. 若 $f = 2x_1^2 + x_2^2 + 3x_3^2 + 2tx_1x_2 2x_1x_3$ 为正定二次型,则t的取值范围是 $-\sqrt{\frac{5}{3}} < t < \sqrt{\frac{5}{3}}$.
- 二、单项选择题: 11~15 小题,每小题 3 分,共 15 分.
 - 11. 设A, B 均为n阶矩阵,满足AB = O,则必有(D).

$$(A) |A| + |B| = 0$$

(B)
$$A = 0 \implies B = 0$$

(C)
$$R(A) = R(B)$$

(D)
$$|A| = 0$$
 $|B| = 0$

12. 设A, B 均为n阶矩阵,则正确的是(C).

$$(A) |A+B| = |A|+|B|$$

(B)
$$AB = BA$$

(C)
$$|AB| = |BA|$$

(D)
$$(A-B)^2 = A^2 - 2AB + B^2$$

- 13. 下列命题正确的是 (B).
 - (A) 若 n 维 向 量 组 $\alpha_1, \alpha_2, ..., \alpha_m$ 线 性 无 关 , $\beta_1, \beta_2, ..., \beta_m$ 也 线 性 无 关 , 则 $\alpha_1 + \beta_1, \alpha_2 + \beta_2, ..., \alpha_m + \beta_m$ 也线性无关
 - (B) 若向量 $\boldsymbol{\beta}$ 可由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$,..., $\boldsymbol{\alpha}_m$ 线性表示,但不能由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$,..., $\boldsymbol{\alpha}_{m-1}$ 线性表示,则 $\boldsymbol{\alpha}_m$ 一定不能由 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$,..., $\boldsymbol{\alpha}_{m-1}$ 线性表示
 - (C) 若向量 $m{\beta}$ 不能由 $m{lpha}_1$, $m{lpha}_2$,..., $m{lpha}_m$ 线性表示,则 $m{lpha}_1$, $m{lpha}_2$,..., $m{lpha}_m$, $m{eta}$ 一定线性无关
- (D) 若n维向量组 α_1 , α_2 , ..., α_m 与 β_1 , β_2 , ..., β_r 秩相等,则这个两个向量组一定等价 14. n元齐次线性方程组Ax=0系数矩阵的秩为r,则其有非零解的充分必要条件是 (B).

《线性代数》模拟试题 04

(A)
$$r > n$$

(B)
$$r < n$$

(C)
$$r \ge n$$

(D)
$$r = n$$

15. 设矩阵
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $A 与 B$ (B).

(A) 合同且相似

(B) 合同但不相似

(C) 不合同但相似

(D) 既不合同也不相似

提示: A的特征方程为 $|f(\lambda)| = \lambda(\lambda-3)^2$, 即特征值为 3、3、0

三、计算题: 16~21 小题,每小题 9 分,共 54 分.

16. 计算
$$n$$
阶行列式 $D_n = \begin{vmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{vmatrix}$.

$$D_{n} = \begin{vmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{vmatrix} = \begin{bmatrix} a + (n-1)b \end{bmatrix} \begin{vmatrix} 1 & b & \cdots & b \\ 1 & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ 1 & b & \cdots & a \end{vmatrix}$$
$$= \begin{bmatrix} a + (n-1)b \end{bmatrix} \begin{vmatrix} 1 & b & \cdots & b \\ 0 & a - b & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a - b \end{vmatrix} = \begin{bmatrix} a + (n-1)b \end{bmatrix} (a - b)^{n-1}$$

17. 矩阵
$$A = \begin{pmatrix} 1 & -2 & 0 & 0 \\ -2 & 4 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
, 求 A^n .

记
$$A_1 = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, 则 $A = \begin{pmatrix} A_1 & \mathbf{0} \\ \mathbf{0} & A_2 \end{pmatrix}$, 于是 $A^n = \begin{pmatrix} A_1^n & \mathbf{0} \\ \mathbf{0} & A_2^n \end{pmatrix}$

因为
$$A_1 = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \begin{pmatrix} 1, -2 \end{pmatrix}$$
,所以

《线性代数》模拟试题 04

$$A_{1}^{n} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \begin{pmatrix} 1, & -2 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} \begin{pmatrix} 1, & -2 \end{pmatrix} \cdots \begin{pmatrix} 1 \\ -2 \end{pmatrix} \begin{pmatrix} 1, & -2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} 5^{n-1} \begin{pmatrix} 1, & -2 \end{pmatrix}$$

$$= 5^{n-1} A_{1}$$

再由
$$A_2^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \times 2 \\ 0 & 1 \end{pmatrix}$$
,

$$A_2^3 = A_2^2 A = \begin{pmatrix} 1 & 2 \times 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \times 2 \\ 0 & 1 \end{pmatrix},$$

可以看出
$$A_2^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix}$$
, 因此 $A^n = \begin{pmatrix} 5^{n-1} & -2 \times 5^{n-1} & 0 & 0 \\ -2 \times 5^{n-1} & 4 \times 5^{n-1} & 0 & 0 \\ 0 & 0 & 1 & 2n \\ 0 & 0 & 0 & 1 \end{pmatrix}$

18. 已知向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ -5 \\ 3 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ 5 \\ 4 \\ 8 \end{pmatrix}$, $\alpha_5 = \begin{pmatrix} 1 \\ -2 \\ 2 \\ 0 \end{pmatrix}$

- (1) 求向量组 α_1 , α_2 , α_3 , α_4 , α_5 的秩以及它的一个极大线性无关组;
- (2) 将其余向量用所求的极大线性无关组线性表示.

由干

$$\begin{pmatrix}
1 & 0 & 2 & 1 & 1 \\
-1 & 3 & -5 & 5 & -2 \\
2 & 1 & 3 & 4 & 2 \\
4 & 2 & 6 & 8 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 2 & 1 & 1 \\
0 & 3 & -3 & 6 & -1 \\
0 & 1 & -1 & 2 & 0 \\
0 & 2 & -2 & 4 & -4
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & -1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

因此 $R(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)=3$,其极大线性无关组可以取为 α_1 、 α_2 、 α_5 ,且

$$\alpha_3 = 2\alpha_1 - \alpha_2 + 0\alpha_5$$
, $\alpha_4 = \alpha_1 + 2\alpha_2 + 0\alpha_5$

19. 求矩阵 $A = \begin{pmatrix} -1 & -2 & 0 \\ 2 & 3 & 0 \\ 2 & 0 & 2 \end{pmatrix}$ 的所有特征值,判断 A 能否与对角矩阵相似,说明理由.

由于
$$\left|\lambda E - A\right| = \begin{vmatrix} \lambda + 1 & 2 & 0 \\ -2 & \lambda - 3 & 0 \\ -2 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2)$$
,所以 A 的所有特征值为 $\lambda_1 = \lambda_2 = 1$,

 $\lambda_3 = 2$. 对于 $\lambda_1 = \lambda_2 = 1$,由于

$$E - A = \begin{pmatrix} 2 & 2 & 0 \\ -2 & -2 & 0 \\ -2 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 2 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

 $R(E-A)=2 \neq 3-2$,所以A不能与对角矩阵相似.

20. λ 为何值时,线性方程组 $\begin{cases} x_1 + x_2 + x_3 = \lambda \\ \lambda x_1 + x_2 + x_3 = 1 \end{cases}$ 有解?并求其解(有无穷多 $x_1 + x_2 + \lambda x_3 = 1$

解时用通解表示其解)

$$(A, b) = \begin{pmatrix} 1 & 1 & 1 & \lambda \\ \lambda & 1 & 1 & 1 \\ 1 & 1 & \lambda & 1 \end{pmatrix} \xrightarrow{r_2 - \lambda r_1, r_2 - r_1} \begin{pmatrix} 1 & 1 & 1 & \lambda \\ 0 & 1 - \lambda & 1 - \lambda & 1 - \lambda^2 \\ 0 & 0 & \lambda - 1 & 1 - \lambda \end{pmatrix}$$

当λ≠1时,由于

$$\begin{pmatrix}
1 & 1 & 1 & \lambda \\
0 & 1 - \lambda & 1 - \lambda & 1 - \lambda^{2} \\
0 & 0 & \lambda - 1 & 1 - \lambda
\end{pmatrix}
\xrightarrow{\frac{1}{1 - \lambda} \times r_{2}, \frac{1}{\lambda - 1} \times r_{3}}
\begin{pmatrix}
1 & 1 & 1 & \lambda \\
0 & 1 & 1 & 1 + \lambda \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\xrightarrow{r_{2} - r_{3}, r_{1} - r_{3}}
\begin{pmatrix}
1 & 1 & 0 & \lambda + 1 \\
0 & 1 & 0 & 2 + \lambda \\
0 & 0 & 1 & -1
\end{pmatrix}
\xrightarrow{r_{1} - r_{2}}
\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 + \lambda \\
0 & 0 & 1 & -1
\end{pmatrix}$$

所以R(A) = R(A, b) = 3,方程组有惟一解,其解为 $x_1 = -1$, $x_2 = 2 + \lambda$, $x_3 = -1$.

当λ=1时,由于

$$\begin{pmatrix}
1 & 1 & 1 & \lambda \\
0 & 1-\lambda & 1-\lambda & 1-\lambda^2 \\
0 & 0 & \lambda-1 & 1-\lambda
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

所以R(A)=R(A,b)=1,方程组有无穷多解,对应的齐次方程 $x_1=-x_2-x_3$,基础解系

为
$$\boldsymbol{\xi}_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\boldsymbol{\xi}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$,非齐次方程 $x_1 = 1 - x_2 - x_3$ 的特解为 $\boldsymbol{\eta} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$,通解为

 $x = \eta + c_1 \xi_1 + c_2 \xi_2$, $\sharp + c_1$, $c_2 \in \mathbb{R}$.

- 21. 已知二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + ax_3^2 + 2x_2x_3$ 的系数矩阵 A 有一个特征值等于 1. 求
 - (1) 求 a 的值; (2) 将该二次型化为标准形,并写出所对应的可逆线性变换.

二次型对应的矩阵为
$$A=\begin{pmatrix}2&0&0\\0&2&1\\0&1&a\end{pmatrix}$$
,由于 $\lambda=1$ 是 A 的特征值,因此

|E-A|=(2-a)=0,所以a=2. 对二次型配方得

$$f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_2x_3 = 2x_1^2 + 2\left(x_2 + \frac{1}{2}x_3\right)^2 + \frac{3}{2}x_3^2$$

$$f = 2y_1^2 + 2y_2^2 + \frac{3}{2}y_3^2$$

可逆线性变换为 $\begin{cases} x_1 = y_1 \\ x_2 = y_2 - \frac{1}{2}y_3 \\ x_3 = y_3 \end{cases} .$

- 四、证明题:本题满分11分.
 - 22. 已知 3 阶矩阵 $B \neq 0$, 且矩阵 B 的列向量都是齐次线性方程组

$$\begin{cases} x_1 + 2x_2 - x_3 = 0 \\ 2x_1 - x_2 + \lambda x_3 = 0 \\ 3x_1 + x_2 - x_3 = 0 \end{cases}$$

的解,(1) 求 λ 的值; (2) 证明 B = 0.

(1) 因为B≠0,所以齐次线性方程组有非零解,故其方程组的系数行列式

$$\begin{vmatrix} 1 & 2 & -1 \\ 2 & -1 & \lambda \\ 3 & 1 & -1 \end{vmatrix} = 5\lambda = 0$$

所以 λ =0.

(2) 由于

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 0 \\ 3 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 \\ 0 & -5 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

因此 R(A)=2, 因此齐次线性方程组的基础解系所含解的个数为 3-2=1, 故 $R(B)\le 1$, 因而 B=0.