PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-135217

(43)Date of publication of application: 21.05.1999

(51)Int.Cl.

H01R 33/76 H01L 23/32

(21)Application number: 09-312688

(71)Applicant: JAPAN AVIATION ELECTRON IND I TD

(22)Date of filing:

29 10 1997

(72)Inventor : ITO SHIGENORI

(54) IC SOCKET

(57)Abstract

PROBLEM TO BE SOLVED: To obtain stable connection by reducing an inductance between a solder ball of an integrated circuit and an electrode of a circuit board and by sufficiently absorbing a high coplanarity, to simplifying the structure to be suitable for mass production, and to reduce the outside dimensions.

SOLUTION: On a flexible substrate 10 composed of a sheet of insulative plate material having flexibility, a plurality of movable pieces 11 corresponding to a plurality of solder balls 101 of an integrated circuit 100, with their three sides cut by slits 14 are formed in the cantilever constitution, and a contact plate 1 which forms electrode layers 12 electrically connected between the both sides of the movable pieces 11 is installed on each both sides of the movable pieces 11. Spacers 2 which hold the contact plates 1 with a prescribed interval for the surface of the circuit board 200 are installed. Each of the plural solder balls 101 is

pressed against one of the electrode layers 12 of a

plurality of the movable pieces 11 to curve the movable pieces 11, and a positioning frame 3. pressurizing springs 4, mounting screws 5, etc., are installed to press the electrode layer 12 of the other side of the movable piece 11 against the corresponding electrode 201.

LEGAL STATUS

[Date of request for examination]

13.09.1999

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3252255

[Date of registration]

22.11.2001

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-135217

(43)公開日 平成11年(1999)5月21日

(51) Int.Cl. ⁶	徽別記号	FI		
H01R	33/76	H01R	33/76	
H01L	23/32	H01L	23/32	A

		審查請求	未請求	請求項の数3	FD	(全	6	頁)	
(21)出顧番号	特顯平9-312688	(71)出願人	関人 000231073 日本航空電子工業株式会社 東京都渋谷区道玄坂1丁目21番2号						
(22) 出願日	平成9年(1997)10月29日								
		(72)発明者	f 伊藤 茂憲 東京都渋谷区道玄坂1丁目21番2号 日本 航空電子工業株式会社内						
		(74)代理人	弁理士	八幡 義博					

(54) 【発明の名称】 I Cソケット

(57)【要約】

【課題】 集積回路のはんだボールと回路基板の電極と の間にインダクタンスを小さくすると同時に大きなコプ ラナリティも十分吸収して安定した接続が得られるよう にし、かつ構造を単純化して量産に適し、しかも外形寸 法を小さくする。

【解決手段】 可とう類を有する一枚の絶縁性板材のフレキシブル基板10に集積回路100 の複数のはんだボール101 それぞれと対応させて複数の可動片11を三方をスリット14で切断して片持らばり構造に形成し、これら可動片11それぞれの両面に各両面間で空気的に接続する電極層12を形成した接点板1を設ける。接点板1を回路基板200の表面に対し所定の間隔で保持するスペーサ2を設ける。複数のはんだボール101 それぞれを複数の可動片11の他方の面の電極層12を対応する電極201に押し付けるように位置法めフレーム3、加圧ばね4及び取付は5~多を設ける。

【特許請求の範囲】

【請求項1】 集積圏路のパッケージの実装側の面に形成されたはんだボール型の複数の接続端子を回路基板の表面に形成された複数の電極に対応接続するICソケットであって、次の各構成を有することを特徴とするICソケット。

(イ) 可とう性を有する絶縁材料製の一枚の板材から 成り前記集積回路の複数の接続端子それぞれと対応する 位置に、それぞれ三方が明断されて片特らばり構造をな す複数の可動片が形成されたフレキシブル基板と、前記 複数の可動片をれぞれの両面に形成されかつその両面間 が電気的に接続された複数の電極層と、を備えた接点板 (ロ) 前記接点板と前記回路基板の表面との間が予め 定められた間隔となるように保持するスペーサ

(ハ) 前言集積回路の複数の接較地等それを介と前記接点板の複数の可動片の一方の面の電極層に対応して前し付け前記機機の可動片を消出させて前記機数の可動片の他方の面の電極層それぞれを前記回路基板に対する前部は利度は見ずしまればして押し付けるように前記回路基板に対する前部集積回路、接点板およびスペーサの保持を行う位置合せ、保持手段

【請求項2】 前記位置合せ、保持手段が、前記集積回路の複数の接続端子と前記接点版の複数の電極層との対 的心度置を合かせる位置決めフレームと、前記集積回路の バッケージ表面を押圧して前記集積回路の複数の接続端 子、前記接点版の複数の電極層。及び前記回路基板の積 数の電極相互配列申し付け匠力を得る加圧は1と、前記 回路基板に前記接点板、前記スペーサ、前記位置決めフ レーム及び加圧は12を保持固定するロック機構とを含ん で構成された第5項1 記載の1 C ソケット。

【請求項3】 請求項1記載のICソケットの接点板の 複数の電極層それぞれの表面全面に、所定の大きさの突 起が一様に分布する導電性の凹凸電極層を積層したIC ソケット。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はICソケットに関し、特にパッケージの実装側の面にボール状の電極が多数配列されたCSP型、BGA型と呼ばれる集積回路を回路基板等の回路に接続するためのICソケットに属する。

[0002]

【従来の技術】超高密度実装、小型・軽量化等を実現するために、半導体集積回路(以下単に集積回路及は1℃ という)では、パッケージの実装側の面にはんだをボール状に形成したはんだパンプ、はんだボールによる電極を多数配列した構造のCSP(Chip Size Package), BGA(Ball Grid Array)と呼ばれるものが多くなってき。 CSP型、BGA型の1Cの電気的試験、検査を行う試験装置や、これら1Cの交換が必要な電子装置にお いては、これらICを回路基板等の回路と接続するためのICソケットが必要となる。

【0004】この第1の例のICソケット300aでは、上部ビン303及び下部にン304等を組入形成できるので、接続増子の狭ビッチ化が容易であり、また上部エラストマ305及び下部エラストマ306の特性から、集積回路100aのはんだボール101aの大きさ(パッケージ面からの高さ)に多少の差があっても(コアラナリティ)、全てのはんだボール101aと電極201aとの間で、安定した接触が得られる。

【0005】また、図5に示された従来のICソケット の第2の例は(例えば、特開平9-55273号公報参 照)、弾性のある一枚の金属板の一方の端にスリットを 入れてこの部分をV字状に開いてこのV字状の部分に集 積回路100bのはんだボール101bを押し当て、他 方の端を折り曲げて回路基板200bの電極201bと 接触させるようにしたコンタクト308の中間部分をハ ウジング307で保持する構造となっている。この第2 の例のICソケット300bでは、コンタクト308の 一方の端のV字状の部分にはんだボール101bを押し 当て、折り曲げられた他方の端で電極201bと接触 1. その中間部分をハウジングで保持するようになって いるので、構造が単純で、かつ、はんだボール101b ・電極201b間が短くできてインダクタンス成分が少 なくなり、しかもコプラナリティに対しても安定した接 触力を得ることができる。

【0006】また、図6に示された第3の例は、ボリイ まドフィルムなどのフレキシブル基板310の表面の、 集積回路100cの複数のはんだボール101cそれぞ れと対応する位置に電極層311が形成されており、こ たり、変数では、ない、フレキシブル基板310の 裏面と回路基板200cの表面との間にはエラストマ3 14が設けられた構造となっている。この第3の例の1 にソケット300cでは、フレキシブル基板310及び エラストマ314の変形を利用してはんだボール101 cのコプラナリティに対処している。また、はんだボール101cと回路基板200cとの間にはフレキシブル 基板310及びエラストマ314が挿入されるだけであるので、薄型にすることができる。

【0007】なお、これらの例を示す図4~図6には、集積回路のはんだボールとICソケットの電極との間、 及びICソケットの電極と回路基板の電極との間の位置 決め手段や、押圧手段等は省略されている。

[0008]

【発明が解決しようとする課題】上述した従来のICソ ケットは、第1の例では、集積回路100aのはんだボ ール101aと回路基板200aの電極201aとの間 の接続を、コンタクト302により上部ピン303及び 下部ピン304を軸方向に直列接続して行う構造となっ ているので、はんだボール101aと電極201aとの 間の距離が長くなりインダクタンスが大きくなるほか。 構造が複雑で量産には不向きな上、厚さが厚くなるとい う問題点があり、第2の例では、集積回路100bのは んだボール101bと回路基板200bの電極201b との間を、1枚の金属板を加工して得られたコンタクト 308で接続する構造となっているので、第1の例に比 べ、構造が単純化され、かつ、はんだボール101b・ 電極2016間が短く(薄く)なるものの、コンタクト 308が、はんだボール101bを受け入れるV字状の 部分、ハウジング307に保持される部分、及び電極2 01bと接触する部分それぞれに予め定められた長さを 必要とするため、はんだボール101b・電極201b 間のインダクタンスはまだまだ大きく、厚さも厚いとい う問題点がある。

【0009】第3の例では、はんだボール101cと回 路基板200cの表面との間の厚さは薄くなるものの、 はんだボール101cと接触する電極層311はフレキ シブル基板310の連続平面上に形成されているため、 隣接する電極層311間の変形には限度があり、はんだ ボール101cのコプラナリティが大きい場合には、こ れを十分吸収することができないという問題占や、回路 基板200cの回路(電極)と接続する端子313は電 極層311の形成領域の外側に配置されるため、はんだ ボール101cと回路基板200cの回路との間の距離 が長くなり、その間のインダクタンスが大きくなると同 時に、外形寸法が大きくなる、という問題点がある。 【0010】本発明の目的は、上記従来技術の問題点に 鑑みて、集積回路のはんだボールと回路基板の電極との 間の距離を短くしてそのインダクタンスを小さくするこ とができると同時に、大きなコプラナリティも十分吸収 して安定した接続を得ることができ、かつ、構造を単純 化して量産に適し、しかも厚さを薄く、外形寸法を小さ くして小型化することができるICコネクタを提供する ことにある。

[0011]

【課題を解決するための手段】本発明のICソケット は、集積回路のパッケージの実装側の面に形成されたは んだボール型の複数の接続端子を回路基数の決価に形成 された複数の電極に対応接続するICソケットであっ て、上記目的を達成するために次の各構成を有すること を特徴とする。

(イ) 可とう性を有する絶縁材料製の一枚の板材から 成り前記集積回路の複数の接続端子それぞれと対応する 位置に、それぞれ三方が9所されて片持ちばり構造をな す複数の可動片が形成されたフレキシブル基板と、前記 複数の可動片でれぞれの両面に形成されかつその両面間 が電気的に接続された複数の電極層と、を備えた揺点板 (ロ) 前記憶点板と前記回路基板の表面との間が予め 定められた間隔となるように保持するスペーサ

(ハ) 前証集積回路の複数の接続端子それぞれを前記接点板の複数の可動片の一方の面の電極層はが応じ、中付け前配接機の可動片を消曲させて前記域数の可動片の他方の面の電極層それぞれを前記回路基板の複数の電極に対応して押し付けるように前記回路基板に対する前能域間回路、接点板およびスペーサの保持を行う位置合せ、保持手段

【0012】また、前記位置合せ・保持手段が、前記集 積回路の複数の接換端半と前記控点板の複数の電船層と の対応位置を合わせる位置状のブレームと、前記集積回路のバッケージ表面を押圧して前記集積回路の複数の総 統端子、前記控点板の複数の電船層、及び前記回路基板 の複数の電板目面の押し付炉上方を得る加圧なおと、 前記回路基板に前記接点板、前記スペーサ、前記位置決 めフレーム及び加圧ばおを保料固定するロック機構とを を人で構成される更にまた、「ヒソケット投点板の 複数の電極層をれぞれの表面全面に、所定の大きさの突 起が一様に分布する導電性の凹凸電極層を積層して構成 される。

[0013]

【発明の実施の形態】本発明の実施の形態は、可とう性 のある絶縁材料製の一枚の板材から成り集積回路の複数 の接続端子それぞれと対応する位置に、それぞれ三方が 切断されて片持ちばり構造をなす複数の可動片が形成さ れたフレキシブル基板、及び上記複数の可動片の両面 に、それぞれその両面間で電気的に接続するように形成 された複数の電極層を備えた接点板と、上記接点板と回 路基板の表面との間が予め定められた間隔となるように 保持するスペーサと、上記集稽回路の複数の接続端子を れぞれを上記接点板の複数の可動片の一方の面の電極層 に対応して押し付けこれら複数の可動片を湾曲させてこ れら複数の可動片の他方の面の電極層それぞれを上記回 路基板の複数の電極に対応して押し付けるように この 回路基板に対する上記集積回路、接点板及びスペーサの 保持を行う位置合せ、保持手段とを有する構成となって いる。

特願2007-532307 (Proof) 提出日:平成19年11月22日 1/E 整理番号: 出願審查請求書 【書類名】 【提出日】 平成19年11月22日 特許庁長官殿 【あて先】 【出願の表示】 【出願番号】 特願2007-532307 【請求項の数】 30 【請求人】 【識別番号】 505011095 コラス ファーマ インコーポレイテッド 【氏名又は名称】 【代理人】 【識別番号】 100147485 【弁理士】 杉村 憲司 【氏名又は名称】

【手数料の表示】 【予納台帳番号】

【納付金額】

345439

259,700円

【0014】にのような構成とすることにより、コプラリティの程度に応じて可動片が湾曲の底合いが変化し、大きなコプラナリティも吸収することができて安定した接続を得ることができ、集積回路の接続場子と回路基板の電極岩の厚さと、その両面の電極岩の厚さと、コプラナリティを吸収できる程度の寸法とを合計した寸法まで短くできるので、その間のインダクタンスを小さくすることができ、かつ1Cソケットの厚さを深くすることができる。また、集積回路の接続場子と回路基板の電極との間を電気的に接続する接点板の構造も単純であり、進産に適している。そして、気の接続構造の外側傾感は、集積回路や接点底等の位置決め、保特に必要な寸法だけで済むので、前述の、厚さが導くなることを合わせて、外形寸法を小さくして小型化することができる。

[0015] 【実施例】次に本発明の実施例について図面を参照して 説明する。図1 (a), (b)は本発明の第1の実施例 を示す断面側面図及び接点板部分の平面図、図2はその 分解斜視図である。この実施例は、接点板1、スペーサ 2、並びに位置合せ・保持手段の位置決めフレーム3、 加圧ばね4、取付ねじ5、絶縁シート6及びバックプレ ート7を備えて構成され、これら構成の詳細は次のとお りである。接点板1は、可とう性のある絶縁材料製の一 枚の板材から成り集積回路100の複数(この実施例で は、構造が分かりやすいように9個となっている)の接 続端子のはんだボール101それぞれと対応する位置 に、それぞれ三方がスリット14で切断されて片持ちば り構造をかす複数の可動片11が形成されたフレキシブ ル基板10と、複数の可動片11の両面に、それぞれそ の面面間をスルーホール13で電気的に接続するように 形成された複数の電極層12とを備えている。スペーサ 2は、接点板1の複数の可動片の形成領域の外側を、接 点板1と回路基板200の表面との間が予め定められた 間隔となるように保持する。

【00161位置合せ、保持手段は、位置決めフレーム るにより、集積回路100の複数のはんだボール101 と接点板10複数の電極間12との対応位置を含わせる ように集積回路100のパッケージを保持し、弾性板材 で形成された加圧ばね4により、集積回路100の検数のはんだ ボール101と接点板1の検数の可動庁11の一方の面 の電極間12との間、及びこれら複数の可動庁11の一方の面 方の面の電極間12と回路を被200の複数の電極20 1との間に所定の押し付け圧加を得、取付ねじち並びに 回路基板200の裏面側の絶縁シート6及びタッア穴7 付きのバッアンレート7により、接点板1スペーサ 2、位置決めフレーム3、加圧ばね4及び集積回路10 0を回路基板200に除持すると同時に、回路基板20 の複数の電板201に除持すると同時に、回路基板20 の複数の電板201に保持すると同時に、回路基板20 の複数の電板201に対する提点板10被数の電板層 12の位置を合わせる構造となっている。

【0017】この実施例において、加圧ばね4により集 種回路10のはんだボール101が接点板1の可動行 10の一方の配電極間20世間く付けられると可動行 11は押し込まれてその先端が回路基板200の電極2 01に当たり、湾曲する。このとき、はんだボール10 は可動行11の一方の面の電極圏12と接触、接続 し、また可動行11の他方の面の電極圏12と接触、接続 11が湾曲しはとめてから湾曲の限界(それ以上中心 みできない地策)に到るまでのは人だボール101の移動可能距離は、スペーサ2の厚さにより定まり、この厚さを速に正に設定することにより、コブラナリティに大小の差があったとしても、十分吸収することができて安定した接続を得ることができる。

【0018】また、はんだボール101と電底201と の間は、接点板1の可動作11の両面に形成された電極 間12により電気的に接続されるので、その距離は極め て短くなり、そのイングククシスを大幅に低減すること ができ、かっその間隔も薄くすることができて1Cソケット全体の厚さを薄くすることができる。しかも、可動 片11、電板間12等の電気的接続精造の外間領域を のに対する集積に関102では変しませ、 の位置決め、保持に必要なスペースだけで済むので、前 述の厚さを含む外形寸法が小さくなり、小型化すること ができる。

【0019】更に、接点板1は、1枚のフレキシブル基 板10にスリット14を入れて可動片11を形成し、こ の可動片11の両面に電路層12を形成する。という草 純な構造であるので製造工程も単純であり、安価でかつ 量産に適している。この実施例において、可動片11を 角形としたが、丸みを持たせまうにしてた例が が得られる。また、可動片11の両面の電極層12をス ルーホール13で接続するようにしたが、可動片11の 側面でメタライズ層によって接続するようにしてもよ い。更に、可動片11を、三方にスリット14を入れる ことにより形成しているが、単に切り込みを入れるだけでもよい。

【0020】図3は本売明の第2の実施例の接点板の可動片及び電極層部分の拡大断面側面図である。この実施 例は、第1の実施例における電極層12の表面全体に集 積回路10の以はんだボール101より十分小さい寸法 の突起を一様に分布させた凹凸電極層15を設けた構造 となっている。この凹凸電極層15は、可動片11に複 合めっきや、導電性材料の溶射などにより容易に形成す ることができる。凹凸電極層15を設けることにより、 はんだボール101や回路差板200の電極201の表 面が熔化限や汚染膜で覆われていたとしても、これら酸 化膜、汚染膜を凹凸電極層15の突起が突き破って導通 が得られるようになっているので、小さな接触圧力で はんだボール101・電極201間の電気的接続を より一層安定させることができる。

[0021]

【発明の効果】以上説明したように本発明は、可とう性 を有する一枚の絶縁性板材に、集積回路のはんだボール 型の複数の接続端子それぞれと対応させて複数の可動片 を、三方切断して片持ちばり構造に形成し、これら複数 の可動片それぞれの両面に、各両面間で電気的に接続す る電極層を形成した接点板を、スペーサにより回路基板 の表面に対し所定の間隔に保持し、集積回路の複数の接 練端子それぞれを接占板の複数の可動片の一方の面の電 極層に対応して押し付けて上記複数の可動片を湾曲させ ると同時にこれら複数の可動片の他方の面の電極層それ ぞれを回路基板の複数の電極に対応して押し付ける構造 とすることにより、コプラナリティに大小の差があって もそれを十分吸収することができて安定した接続を得る ことができ、かつ、集積回路の接続端子と回路基板の電 極との間の距離が短くなってその間のインダクタンスを 大幅に低減することができると同時にICソケット全体 の厚さを強くすることができ、しかも集積回路の複数の 接続端子及び回路基板の複数の電極間の電気的接続構造 の外側領域は、回路基板に対する集積回路、接点板及び スペーサ等の位置決め、保持に必要なスペースだけで済 むので、ICソケットの外形寸法は上記厚さも含め小さ くなり、小型化することができ、更に、接点板は構造が 単純で製造工程も単純化され、安価で量産化に適してい る、という効果がある。

【0022】また、接点板の各接点板の電極層の表面全 体に、突起が一様に分布した凹凸電極層を設けた構造と することにより、集積回路の接続端子や回路基板の電極 の表面が酸化膜や汚染膜で覆われていたとしても、これ ら酸化膜、汚染膜を凹凸電極層の突起が突き破って導通 するので、小さな接触圧力でも、より一層電気的接続を

安定させることができる効果がある。

【図面の簡単な説明】

【図1】本発明の第1の実施例を示す断面側面図及び接 点板部分の平面図である。

【図2】図1に示された実施例の分解斜視図である。

【図3】本発明の第2の実施例の接点板の可動片及び電 極層部分の断面側面図である。

【図4】従来のICソケットの第1の例の部分断面側面 図である。

【図5】従来のICソケットの第2の例の2方向から見 た部分断面側面図である。

【図6】従来のICソケットの第3の例の部分断面側面 図である。

【符号の説明】

- 1 接点板 2 スペーサ
- 3 位置決めフレーム
- 4 加圧ばね
- 5 取付わじ
- 6 絶縁シート
- 7 バックプレート
- 10 フレキシブル基板
- 11 可動片
- 12 雷極層
- 13 スルーホール
- 14 スリット
- 15 凹凸電極層
- 100.100a~100c 集積回路
- 101.101a~101c はんだボール
- 200, 200a~200c 回路基板 201, 201a, 201b 電極
- 300a~300c ICソケット

【図3】

[図4]

