Aufgabe 1.1 a

- $\begin{bmatrix} -4 & -2 \\ 0 \\ -4 \end{bmatrix}$ 2 4
- Wir bestimmen Amplitudengang und Phasengang im Bereich
 −4 < ω < 4
- ► Für reelwertige Systeme gilt:
 - $ightharpoonup A(\omega) = A(-\omega)$, also ist der Amplitudengang achsensymetrisch
 - $ightharpoonup arphi(\omega) = -arphi(\omega)$, also ist der Phasengang punktsymetrisch
- ▶ Es ist also ausreichend, den Phasengang und Amplitudengang graphisch im Intervall von $-4 \le \omega \le 0$ zu bestimmen
- $lacktriangledown d_{0r}$ ist dabei die euklidische Distanz des Aufpunktes zur r-ten Nullstelle und $d_{ ext{xq}}$ die Distanz zur q-ten Polstelle

Wir berechnen die Abstände zum Aufpunkt trigonometrisch:

$$A(-4) = \frac{\sqrt{1^2+2^2}\sqrt{2^2+4^2}}{\sqrt{1^2+6^2}} = \frac{\sqrt{5}\sqrt{20}}{\sqrt{37}} \approx 2,98$$

Wir berechnen die Abstände zum Aufpunkt trigonometrisch:

$$A(-3) = \frac{\sqrt{1^2+1^2}\sqrt{1^2+5^2}}{\sqrt{2^2+3^2}} = \frac{\sqrt{2}\sqrt{26}}{\sqrt{13}} \approx 1,98$$

Wir berechnen die Abstände zum Aufpunkt trigonometrisch:

$$A(-2) = \frac{\sqrt{1^2+0^2}\sqrt{1^2+4^2}}{\sqrt{2^2+2^2}} = \frac{\sqrt{1}\sqrt{17}}{\sqrt{8}} \approx 1,46$$

Wir berechnen die Abstände zum Aufpunkt trigonometrisch:

$$A(0) = \frac{\sqrt{1^2 + 2^2}\sqrt{1^2 + 2^2}}{\sqrt{2^2 + 0^2}} = \frac{\sqrt{5}\sqrt{5}}{\sqrt{4}} \approx 2,5$$

Wenn wir das ganze tatsächlich plotten sehen wir, dass wir richtig gerechnet haben (bis auf kleine Rundungsfehler) .

Phasengang

ho φ_{0r} entspricht dabei dem Winkel den eine Linie vom Aufpunkt zur r-ten Nullstelle mit der σ - Achse einschließt, analog entspricht φ_{q_X} dem Winkel zwischen einer Linie vom Aufpunkt zur q-ten Polstelle und der σ - Achse .

Wir berechnen die Phasenwinkel trigonometrisch:

$$\varphi(-4) = -64^{\circ} - 80^{\circ} - (-64^{\circ}) = -80^{\circ}$$

Wir berechnen die Phasenwinkel trigonometrisch:

$$\varphi(0) = 64^{\circ} - 64^{\circ} - (0^{\circ}) = 0^{\circ}$$

Wir nutzen die Punktsymetrie aus.

Reelwertige Systeme

Reelwertig:

Polstellen und Nullstellen sind reelwertig oder komplex konjugiert

Allpass:

Pol- und Nullstellen symetrisch zur jw-Achse, es wird jede Nullstelle durch eine Polstelle gespiegelt und andersrum

Linearphasigkeit:

Bei linearphasigen Systemen hängt die Phase linear von der Frequenz ab. Ein symetrisches Eingangssignal erhält als Antwort ein symetrisches Ausgangssignal. Für zeitkontinuierliche System ist das nicht möglich.

Kausal:

 $A(j\omega)$ nur punktweise null

Stabilität:

Polstellen müssen in der linken Halbebene liegen, bedingt stabil wenn Polstellen auf der jw-Achse

Minimalphasig:

Pol- und Nullstellen in der linken Halbebene

Prof. Dr.-Ing. **Sikora**

Elvira Fleig, Rolf Jongebloed

Rechenübung Signale & Systeme (WiSe 2023/2024)

PN-Diagramme zeitkontinuierlicher Systeme (8. Termin)

11.12 - 17.12.2023

Hinweise

- Die Aufgabenblätter zur Rechenübung stehen jeweils vor dem jeweiligen Termin auf dem ISIS-Portal zum Download bereit.
- Aufgaben, die mit [HA] bzw. [AK] beginnen, sind Hausaufgaben bzw. alte Klausuraufgaben, die als Hausaufgabe bearbeitet werden sollen. Diese werden zusätzlich in den freiwilligen Tutorien vorgerechnet bzw. besprochen.

1 Amplituden- und Phasengang

1.1 Skizziere für die folgenden Systeme Amplituden- und Phasengang im Bereich $-4 \le \omega \le 4$. Der Vorfaktor H sei 1.

3 Seite(n) output.tex

2 Systemeigenschaften

2.1 Untersuche die folgenden Systeme auf Minimalphasigkeit, Allpasseigenschaft, Linearphasigkeit, Kausalität und Stabilität. Gib weiterhin jeweils an, ob es sich um ein reales reellwertiges System handelt.

a)

-3j

b)

c)

-3j

d)[**HA**]:

Minimalphasigkeit: Pol- und Nullstellen in linker Halbebene

Allpass : Pol- und Nullstellen spiegelsymetrisch zu $j\omega$ -Achse

Linearphasigkeit: Nicht möglich für zeitkontinuierliche Systeme

Kausal: $H(j\omega)$ nur punktweise null \leftarrow 有重点且可予报票相互报讯

Stabil: Polstellen in linker Halbebene

Reelwertig: Pol- und Nullstellen reel oder komplex konjugiert

Aufgabe 2.1 b

Minimalphasigkeit ×
Allpass ✓
Linearphasigkeit ×

Kausal

Stabil

Reelwertig

Aufgabe 2.1 c

Minimalphasigkeit

Allpass

Linearphasigkeit >

Kausal

Stabil

Reelwertig

- Allpass: 所有通滤波器(全通滤波器)。其极点和零点在s平面上是 通滤波器的振幅响应是恒定的,但是它会改变输入信号的相位。
- Linearphasigkeit: 线性相位意味着系统的相位响应与频率成线性关: 通常意味着系统的冲激响应是对称的。然而,图片中标记为不可能 zeitkontinuierliche Systeme"),这可能是因为在实际的连续时间系响应通常是不可能的,或者该系统具有某种理想化条件,使其在现3
- ・Kausal: 因果系统。对于这样的系统, $H(j\omega)$ 只有在某些点上为零当前和过去的输入,而不取决于未来的输入。
- * Stabil: 稳定的系统。极点都在左半s平面,确保系统输出随时间不会
- * Reelwertig: 实值系统。其极点和零点要么是实数,要么是复数共轭

2.2 Zerlege die folgenden Systeme in eine Reihenschaltung aus Allpass und minimalphasigem System.

a)

b)[**HA**]:

c)

2.3 Von einem realen Filter mit insgesamt vier Extremstellen (Pol- und Nullstellen zusammen) seien die nachfolgend aufgelisteten Eigenschaften bekannt. Skizziere die Pol-Nullstellenverteilung des Filters.

- a) Der minimalphasige Anteils des Filters bestehe aus zwei Polstellen.
- b) Der Realteil einer Nullstelle sei 1.
- c) Der Imaginärteil mindestens einer Polstelle sei 2.
- d) $A(0) = \frac{1}{5}$, $H_0 = 1$
- e) $A(\omega \to \infty) = 0$

- ▶ LTI-Systeme können in einen Allpass- und minimalphasigen Anteil zerlegt werden
- $H(j\omega) = A(j\omega) \cdot M(j\omega)$
- $ightharpoonup A(j\omega)$ ist der Allpassanteil und $M(j\omega)$ der minimalphasige

Aufgabe 2.2a

AP

Aufgabe 2.2b

b)[**HA**]:

MP:

