

# Mastering RAG

## Different Types Embedding in RAG







## 1. Word-Level Embeddings

#### **Overview**

Word embeddings represent individual words as fixedlength dense vectors, capturing semantic relationships based on their co-occurrence in a large corpus.

#### **Pros**

- Efficient for basic similarity tasks.
- Works well for traditional NLP tasks (e.g., word analogy, clustering).

- Context-independent (same vector for a word in all contexts).
- Cannot handle out-of-vocabulary (OOV) words effectively.



### Implementation Using Word2Vec

```
from gensim.models import Word2Vec
# Sample text corpus
data = [["RAG", "uses", "retrieval", "and",
"generation"],
        ["Embeddings", "help", "in",
"retrieving", "documents"]]
# Train Word2Vec Model
model = Word2Vec(sentences=data,
vector_size=100, window=5, min_count=1,
workers=4)
# Get embedding for a word
print(model.wv["retrieval"]) # Output: 100-
dimensional vector
```





### 2. Sentence-Level Embeddings

#### **Overview**

Sentence embeddings represent full sentences as vectors, capturing their semantic meaning.

#### **Pros**

- Useful for document retrieval and ranking.
- Captures sentence context better than word embeddings.

- Computationally heavier than word embeddings.
- Requires larger models for better accuracy.



## Implementation Using Sentence-BERT (SBERT)

```
from sentence_transformers import
SentenceTransformer
# Load pre-trained Sentence-BERT model
model = SentenceTransformer("all-MiniLM-L6-
v2")
# Example sentences
sentences = ["RAG improves text generation
by retrieving information.",
             "Sentence embeddings help in
semantic search."]
# Compute sentence embeddings
embeddings = model.encode(sentences)
print(embeddings.shape) # Output: (2, 384)
(2 sentences, 384-dim vectors)
```





### 3. Document-Level Embeddings

#### **Overview**

Document embeddings represent entire documents, considering overall topic structure and relationships between words and sentences.

#### **Pros**

- Useful for large-scale document retrieval.
- Works well for topic modeling and knowledge representation.

- Requires specialized models.
- Longer documents may need hierarchical chunking.



### Implementation Using Doc2Vec

```
from gensim.models.doc2vec import Doc2Vec,
TaggedDocument
# Sample document corpus
documents = ["Retrieval-Augmented Generation"]
uses embeddings for retrieval.",
             "Document embeddings help in
search and ranking tasks."]
# Convert to TaggedDocument format
tagged_data =
[TaggedDocument(words=doc.split(), tags=
[str(i)]) for i, doc in
enumerate(documents)]
# Train Doc2Vec model
doc_model = Doc2Vec(tagged_data,
vector_size=100, window=5, min_count=1,
workers=4, epochs=10)
# Get document embedding
print(doc_model.dv["0"]) # Output: 100-
dimensional vector for document 0
```

### 4. Contextual Embeddings

#### **Overview**

Contextual embeddings (from models like BERT, RoBERTa) generate different representations for the same word depending on its context, improving retrieval accuracy.

#### **Pros**

- Captures word meaning based on surrounding context.
- More effective for complex NLP tasks.

- Requires substantial computational resources.
- Slower inference compared to static embeddings.

## Implementation Using BERT

```
from transformers import AutoTokenizer,
AutoModel
import torch
# Load pre-trained BERT model
tokenizer =
AutoTokenizer.from_pretrained("bert-base-
uncased")
model = AutoModel.from_pretrained("bert-
base-uncased")
# Example text
text = "RAG models use embeddings for better
retrieval."
# Tokenize input
inputs = tokenizer(text,
return_tensors="pt")
# Generate contextual embeddings
outputs = model(**inputs)
embeddings = outputs.last_hidden_state
Shape: (1, sequence_length, 768)
print(embeddings.shape)
```

### 5. Sparse Embeddings

#### **Overview**

Sparse embeddings use traditional NLP techniques to represent text as frequency-based vectors.

#### **Pros**

- Fast and interpretable.
- Good for keyword-based search and retrieval.

- Does not capture deep semantic meaning.
- Struggles with synonyms and paraphrased text.

## Implementation Using TF-IDF

```
from sklearn.feature_extraction.text import
TfidfVectorizer
# Sample documents
documents = ["RAG models enhance AI-
generated responses.",
             "TF-IDF helps in information
retrieval."1
# Compute TF-IDF vectors
vectorizer = TfidfVectorizer()
tfidf_matrix =
vectorizer.fit_transform(documents)
print(tfidf_matrix.shape) # Output: (2,
vocab_size)
```

Different embedding techniques serve different purposes in RAG. Choosing the right type of embedding depends on the retrieval model, dataset, and computational constraints.

## **Comparison of Embedding Types**

| Embedding Type           | Use Case                   | Pros                            | Cons                         |
|--------------------------|----------------------------|---------------------------------|------------------------------|
| Word Embeddings          | Basic NLP tasks            | Fast, interpretable             | Context-independent          |
| Sentence Embeddings      | Semantic search, retrieval | Captures sentence meaning       | Computationally expensive    |
| Document<br>Embeddings   | Large document retrieval   | Retains overall topic structure | Needs specialized models     |
| Contextual<br>Embeddings | Complex NLP, RAG<br>models | Captures deep meaning           | High computational cost      |
| Sparse Embeddings        | Keyword-based search       | Fast, interpretable             | Lacks semantic understanding |