INEPT

Insensitive Nuclei Enhanced by Polarization Transfer

Gareth A. Morris and Ray Freeman JACS, 101, 1979, 760-762

INEPT Pulse sequence

Main Interactions in solution NMR

The chemical shift

(a single-spin coupling)

The J coupling

(a 2-or-more spin coupling)

Effect of these interaction – spin magnetization evolving in the rotating frame

$$M_a(t) = M_o e^{iJt/2}/2$$
 $M_b = M_o e^{iJt/2}/2$
 $M_b = M_o e^{iJt/2}/2$

$$S(t) = M_o \cdot e^{i\Delta\omega t}$$

$$S(t) = M_o \cdot (e^{iJt/2} + e^{-iJt/2})/2 = M_o \cdot \cos(Jt/2)$$

Time domain signal

$$S(t) = M_o e^{i\Delta\omega t} \cos\frac{Jt}{2}$$

Spin Echo

Two spins fast and slow precessing sites

refocusing the J-coupling effect but not the chemical shift - DECOUPLING

Combining the spin echo & decoupling

This block refocuses S chemical shift but not S-I J coupling

The INEPT Experiment

M_y Magnetization

$$M_{y} = M_{o}^{s} \left[pop(I_{\uparrow}) \cdot \sin\left(\frac{Jt}{2}\right) + pop(I_{\downarrow}) \cdot \sin\left(\frac{-Jt}{2}\right) \right] =$$

$$= M_{o}^{s} \left[pop(I_{\uparrow}) - pop(I_{\downarrow}) \right] \sin\left(\frac{Jt}{2}\right) = 2M_{o}^{s} M_{o}^{I} \sin\left(\frac{Jt}{2}\right)$$

$$\sin\left(\frac{-Jt}{2}\right) = -\sin\left(\frac{Jt}{2}\right) \qquad pop(I_{\uparrow}) - pop(I_{\downarrow}) = 2M_{o}^{I}$$

$$S_{x}(t = 0) \xrightarrow{J} S_{x} \cos\left(\frac{Jt}{2}\right) + 2S_{y}I_{z} \sin\left(\frac{Jt}{2}\right)$$

$$In-phase \qquad Anti-phase \qquad (invisible)$$

Keep in mind:
$$S_x(t=0) \xrightarrow{J} S_x \cos\left(\frac{Jt}{2}\right) + 2S_y I_z \sin\left(\frac{Jt}{2}\right)$$

In-phase (observable) Anti-phase (invisible)

INEPT - summery

¹³C comes from J-mediated transfer from the ¹H

- Intensity given by γ_H not γ_C $\gamma_H > \gamma_C$: signal enhancement by the ratio γ_H / γ_C
- Relaxation given by T_1^H not T_1^C $T_1^H < T_1^C$: faster repetition rates