BIG O-NOTATION

CS A250 – C++ Programming Language 2

Introduction

- Key factors in designing software:
 - Reliability: Your program should anticipate and handle all types of exceptional circumstances.
 - **Flexibility:** Your program should be easy to modify to handle circumstances that may change in the future.
 - Reusability and expandability: If your program is successful, it will frequently spawn new computing needs; you should be able to incorporate solutions to these new needs into the original system with relative ease.

Introduction (cont.)

- Key factors in designing software:
 - **User-friendliness**: Your program should be clearly documented so that it is easy to use—**both** internal and external documentation).
 - Structured organization: The system should be divided into compact modules, each of which is responsible for a specific, well-defined task.
 - Efficiency: The system should make optimal use of time and space resources.

Introduction (cont.)

- As a **computer scientist** you should:
 - Have a detailed knowledge of algorithms and data storage techniques
 - Do not re-invent the wheel!
 - Apply these techniques when designing software
 - Choose the most appropriate algorithms and tailor them to the application you are creating

EFFICIENCY

- A system to be **efficient** needs to make optimal use of
 - Storage space
 - Programming effort
 - Computer time
 - Let's look at each one of them...

Efficiency – Storage Space

- Storage space is the amount of memory required to store data
 - If the list is too large to be kept in high-speed memory, you need to find other options
 - One approach for sorting
 - Divide lists into sub-lists
 - Sort them internally within high-speed memory
 - Merge the sorted sub-lists externally

Efficiency – Programming Effort

- Several factors to consider:
 - An algorithm is going to be running only a few times
 - No need for a programmer to spend days/weeks investigating sophisticated algorithms
 - Should you use recursion?
 - Consider readability
 - Consider if easy to implement
 - Some programming languages do **not** have recursion (FORTRAN, COBOL)
 - Simplicity and correctness are essential

EFFICIENCY - COMPUTER TIME

- One **computer** may be **faster** than another
 - You should use the **same computer** to **test** different algorithms
- Some languages are better suited for certain algorithms.
- Some **compilers** generate better machine code than others
- Some **programmers** write better programs than others

TIME EFFICIENCY

- Although the efficient use of both time and space is important, inexpensive memory has reduced the significance of space efficiency. Thus, we will focus primarily on time efficiency.
- How can we measure time efficiency?

COMPUTATIONAL COMPLEXITY

- Same problem can be solve with algorithms that differ in efficiency.
- Differences may be immaterial for processing a small number of data items, but can grow with the amount of data.
- Computational complexity indicates how costly it is to apply an algorithm:
 - The cost can be measured in a variety of ways.
 - We will focus on the relationship between input size and execution time.

EXECUTION TIME

- How do we measure the efficiency of algorithms in terms of execution time?
 - Use a systematic and quantitative way to evaluate comparatively
 - Example: Sorting
 - Determine a function f(n), where n is the size of the data
 - How many comparisons to sort the data?

EFFICIENCY OF ALGORITHMS

- Efficiency can be measured for
 - Best case
 - Searching a key in a list:
 - The key is immediately found
 - Worst case
 - Searching a key in a list:
 - The key is at the end of the list or there is no key
 - Average case
 - Difficult to determine

EFFICIENCY OF ALGORITHMS (CONT.)

- How do we analyze a particular algorithm?
 - We count the number of operations the algorithm executes
 - We do **NOT** focus on the actual computer time to execute the algorithm
 - Why not?
 - A particular algorithm can be implemented on a variety of computers and the speed of the computer can affect the execution time
 - **But** the number of operations performed by an algorithm would be the same

EXAMPLE 1

```
cout << "Enter two numbers: ";  // 1 time
cin >> num1 >> num2;

if (num 1 > num2)
        largest = num1;
else
        largest = num2;

cout << "The largest number is"
        << largest << endl;</pre>
```

```
cout << "Enter two numbers: ";  // 1 time
cin >> num1 >> num2;  // 1 time

if (num 1 > num2)  // 1 time
    largest = num1;
else
    largest = num2;

cout << "The largest number is"
    << largest << endl;</pre>
```

```
cout << "Enter two numbers: ";  // 1 time
cin >> num1 >> num2;  // 1 time

if (num 1 > num2)  // 1 time
    largest = num1;  // 0 to 1 time
else
    largest = num2;

cout << "The largest number is"
    << largest << endl;</pre>
```

```
cout << "Enter two numbers: ";  // 1 time
cin >> num1 >> num2;  // 1 time

if (num 1 > num2)  // 1 time
    largest = num1;  // 0 to 1 time

else
    largest = num2;  // 0 to 1 time

cout << "The largest number is"
    << largest << endl;</pre>
```

```
cout << "Enter two numbers: ";  // 1 time
cin >> num1 >> num2;  // 1 time

if (num 1 > num2)  // 1 time
    largest = num1;  // 0 to 1 time

else
    largest = num2;  // 0 to 1 time

cout << "The largest number is"
    << largest << endl;  // 1 time</pre>
```

• How many times is each statement executed?

```
cout << "Enter two numbers: ";  // 1 time
cin >> num1 >> num2;  // 1 time

if (num 1 > num2)  // 1 time
    largest = num1;  // 0 to 1 time
else
    largest = num2;  // 0 to 1 time

cout << "The largest number is"
    << largest << endl;  // 1 time</pre>
```

What is the total?

```
cout << "Enter two numbers: ";  // 1 time
cin >> num1 >> num2;  // 1 time

if (num 1 > num2)  // 1 time
    largest = num1;  // 0 to 1 time

else
    largest = num2;  // 0 to 1 time

cout << "The largest number is"
    << largest << endl;  // 1 time</pre>
```

EXAMPLE 2

```
int num = 0;
int count = 0;
int sum = 0;
cout << "Enter 3 integers: ";
while (count < 3)
{
     cin >> num;
     sum += num;
     ++count;
}
cout << "The sum is"
     << sum << endl;</pre>
```

Assume we do not know that the loop will go around 3 times, and we know that it will go around n times:

```
while (count < n)  // executes n + 1 times
{
    cin >> num;
    sum += num;  // each executes n times
    ++count;
}
```

```
Execution time = 1 + 1 + 1 + 1 + (n + 1) + (n + n + n) + 1
```

We can simplify our expression:

$$1 + 1 + 1 + 1 + (n + 1) + (n + n + n) + 1$$

$$5 + (n + 1) + (n + n + n)$$

$$5 + n + 1 + (n + n + n)$$

$$6 + n + (n + n + n) = 6 + 4n$$

The execution time for this algorithm is = 6 + 4n

We can simplify by using a few shortcuts (next page).

PRACTICAL SHORTCUTS

• Ignore lesser terms (find the dominant term)

• $n^3 + 5n^2 + n$ \rightarrow n^3

• Ignore coefficients

• 5n²

 n^2

Ignore bases of logarithms

• $\log_{10} n$

 \rightarrow log n

• $\log_2 n$

→ log n

(same)

• And we convert it to Big O-notation...

BIG O-NOTATION

o Big O-notation:

- Mathematical measuring tool to quantitatively evaluate algorithms
- Also called Big Oh notation, Landau notation, Bachmann-Landau notation, and asymptotic notation.
- Formal definition:

$$f(x) = O(g(x))$$
 as $x \to \infty$

- Categorizes algorithms with respect to execution time
 - → in terms of **growth rate**, **not** speed

BACK TO EXAMPLE 2 (CONT.)

Going back to example 2, we can simplify as follows:

```
Ignore lesser terms \rightarrow 6 + 4n \equiv 4n
Ignore coefficients \rightarrow 4n \equiv n
```

The algorithm's complexity is O (n)

REDUCING AN EXPRESSION TO BIG-O

• The number of logical operations in an algorithm as a function of *n* can be reduced to a simplified **O-notation**:

$$n + 4n^2 + 4n$$

What is the dominant term? \rightarrow 4n²

What is the O-notation? \rightarrow O(n²)

COMMON GROWTH-RATE FUNCTIONS

- o O(1) Constant
 - Time required is constant
 - Independent of problem size

COMMON GROWTH-RATE FUNCTIONS

- o O(1) Constant
 - Time required is constant
 - Independent of problem size

$$O(1) + O(1) = O(1)$$

- o O(n) Linear
 - Increases directly with size

- o O(n) Linear
 - Increases directly with size

$$O(n) \times O(1) = O(n)$$

- o O(n²) Quadratic
 - Time requirement increases rapidly with the size of the problem
 - Practical for small problems only

```
for (int i = 0; i < numOfElem; ++i)  // O(n)
  for (int j = 0; j < numOfElem; ++j)  // O(n)
     cout << (i + j) << " ";  // O(1)</pre>
```

- O(n²) Quadratic
 - Time requirement increases rapidly with the size of the problem
 - Practical for small problems only

```
for (int i = 0; i < numOfElem; ++i)  // O(n)
  for (int j = 0; j < numOfElem; ++j)  // O(n)
      cout << (i + j) << " ";  // O(1)</pre>
```

$$O(n) \times O(n) \times O(1) = O(n^2)$$

- o O(n³) Cubic
 - Time requirement increases more rapidly than the quadratic algorithm
 - Practical for small problems only

- o O(n³) Cubic
 - Time requirement increases more rapidly than the quadratic algorithm
 - Practical for small problems only

$$O(n) \times O(n) \times O(n) \times O(1) = O(n^3)$$

- o O(log n) Logarithmic
 - Time requirement increases slowly as the size increases
 - The base does not affect the growth rate
- Let's look at this one in more detail...

- We have seen that **Binary Search** cuts the list in **half** after each **comparison**.
- Assume you have a list of 32 items.
- After comparing the **middle element**, if the middle element is **not** the item we are looking for, only one half of the list will be considered.

- Start with 32 items in the list.
- Roughly, we cut the list in half after each comparison
 - Assume the item we are looking for is not in the list.

- Start with 32 items in the list.
- Roughly, we cut the list in half after each comparison
 - Assume the item we are looking for is not in the list.

32		2 ⁵
16	equivalent to	2 ⁴
8		2 ³
4		2 ²
2		2 ¹
1		2 ⁰

- Start with 32 items in the list.
- Roughly, we cut the list in half after each comparison
 - Assume the item we are looking for is not in the list.

32	2 ⁵		log_2	32	= 5	
16	24		log_2	16	= 4	
8	2 ³	in logarithmic notation	log_2	8	= 3	
4	2 ²		log_2	4	= 2	
2	2 ¹		log_2	2	= 1	
1	2 ⁰		log_2	1	= 0	

- Start with 32 items in the list.
- Roughly, we cut the list in half after each comparison
 - Assume the item we are looking for is not in the list.

$$log_2$$
 32 = 5

Therefore, the growth rate is logarithmic:

 log_2 16 = 4

 log_2 8 = 3

 log_2 4 = 2

But we omit the base and we have:

 log_2 2 = 1

 log_2 1 = 0

 log_2 1 = 0

- o O(n log n) Log-linear
 - Time requirement increases more rapidly than a linear algorithm
 - Typical algorithms divide the problem into smaller problem that are solved separately

```
for (int i = 0; i < numOfElem; ++i)  // O(n)
  for (int j = numOfElem; j > 0; j/= 2)  // O(log n)
      cout << (i + j) << " ";  // O(1)</pre>
```

$$O(n) * O(\log n) * O(1) = O(n \log n)$$

- O(2ⁿ) Exponential
 - Time requirement increases too rapidly to be practical
 - Fibonacci sequence
 - A series of numbers where a number is found by adding up the **two** numbers before it. Starting with **0** and 1:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34...

Order of Growth

• How do you find the **complexity** of an algorithm in terms of O-notation?

- How do you find the **complexity** of an algorithm in terms of O-notation?
 - Think at how you would implement the algorithm

- How do you find the **complexity** of an algorithm in terms of O-notation?
 - Think at how you would implement the algorithm
 - What is the running time of **sequential search** in the **worst case** scenario?

- How do you find the **complexity** of an algorithm in terms of O-notation?
 - Think at how you would implement the algorithm
 - What is the running time of **sequential search** in the **worst case** scenario?
 - O(n) → traverses the whole sequence and finds the element among the last elements of the sequence

- How do you find the **complexity** of an algorithm in terms of O-notation?
 - Think at how you would implement the algorithm
 - What is the running time of **sequential search** in the **worst case** scenario?
 - \circ O(n) → traverses the whole sequence and finds the element among the last elements of the sequence
 - What about the **best case** scenario?

- How do you find the **complexity** of an algorithm in terms of O-notation?
 - Think at how you would implement the algorithm
 - What is the running time of **sequential search** in the **worst case** scenario?
 - \circ O(n) → traverses the whole sequence and finds the element among the last elements of the sequence
 - What about the **best case** scenario?
 - O(1) → finds the element among the first elements of the sequence

- How do you find the **complexity** of an algorithm in terms of O-notation?
 - Think at how you would implement the algorithm
 - What is the running time of **sequential search** in the **worst case** scenario?
 - \circ O(n) \rightarrow traverses the whole sequence and finds the element among the last elements of the sequence
 - What about the **best case** scenario?
 - O(1) → finds the element among the first elements of the sequence
 - And the average case?

- How do you find the **complexity** of an algorithm in terms of O-notation?
 - Think at how you would implement the algorithm
 - What is the running time of **sequential search** in the **worst case** scenario?
 - \circ O(n) → traverses the whole sequence and finds the element among the last elements of the sequence
 - What about the **best case** scenario?
 - O(1) → finds the element among the first elements of the sequence
 - And the average case?
 - \circ O(n/2) → remove the coefficient → O(n)
 - Finding the element somewhere in between.

