

N89-13662

S20-27
181388
TP

CYCLIC STRESS ANALYSIS OF CERAMIC COATED GAS TURBINE SEALS

Joe Padovan
University of Akron
Akron, Ohio 44325

Dan Dougherty
General Tire and Rubber Co.
Akron, Ohio

Bob Hendricks
NASA Lewis Research Center
Cleveland, Ohio 44135

Through the use of the Finite Element Method, the cyclic thermomechanical response of ceramic coated gas turbine parts is considered. The analysis includes temperature dependent elastic-plastic-creep material properties and cyclic thermal loads. To demonstrate the cyclic thermomechanical response, a ceramic coated outer gas path seal is studied. The analysis will estimate the significant residual stress field created by the cyclic thermal loads.

*Work supported by NASA Lewis Research Center under Grant NAG3-265.

TABLE I.

% YSZ/CoCrAlY:		100/0	85/15	70/30	40/60	MAR-M-50
material set #:		1	2	3	4	5
<u>property</u>	<u>temperature(°F)</u>					
density(lb/in ³)	all	.155	.180	.205	.254	.320
poisson ratio	all	.25	.26	.27	.28	.30
thermal cond. (BTU/min-in-°F) (X 10 ⁻⁴)	0	4.09	4.09	4.09	4.09	422.98
	200	4.09	4.09	4.09	4.09	"
	500	4.09	4.66	4.98	5.38	"
	1000	4.33	6.26	7.46	8.35	"
	1500	4.74	8.51	10.60	12.20	"
	2000	5.70	11.64	14.85	17.66	"
	2500	8.11	16.30	20.95	25.52	"
specific heat (BTU/lb-°F)(X 10 ⁻²)	0	.126	.121	.116	.107	.097
	2500	.161	.161	.161	.158	.155
coef of expansion (in/in-°F) (X 10 ⁻⁶)	0	4.08	3.28	3.36	3.64	6.40
	2500	4.83	7.70	8.38	9.52	12.20
Young's modulus (lb/in ²)(X 10 ⁶)	0	6.90	3.80	5.15	8.30	34.70
	2500	2.00	2.00	8.00	17.75	15.60
tensile strength (lb/in ²)(X 10 ³)	0	4.25	6.00	8.10	33.25	40.0
	2500	3.30	7.25	11.75	1.00	40.0

Figure 1.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

ORIGINAL PAGE IS
OF POOR QUALITY.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.