- 18:30 Doors open , Drinks, and Networking
- 18:45 Welcome and Opening remarks
- 18:55 Hands-on Exercise!
- 19:30 Break
- 19:40 Data Science @ Dalia
- 20:10 Drinks, Finger Food and More Networking

Academia & Industry

Data Scientist at Dalia,

with background in Computational Neuroscience

Academia & Industry

Support data science - from an engineering point of view

Why?

Why (we hope) you are here

- Get an idea what data science is (and what it is not)
- Follow a hands-on walkthrough
- Learn more on how we use it to solve our surveys / ad-tech problem
- Drinks / Finger-food / Networking

Why are we here

- We like to share our technical approaches
- Because we want to get some of your ideas and thoughts about it
- To let you know about Dalia

Data Process Walkthrough

Kostas Christidis, PhD

June 18, 2018

Definitions

Data Science

- Using data to understand the world.
- The art of uncovering the insights and trends behind data.
- Translate data into a story.

Eventually:

Study of data

In the coming 30 minutes we will do the following:

- Tools of the Trade
- Data Loading / Storage
- Data Wrangling: clean, transform
- Plot and visualize

Please download the following:

https://github.com/DaliaResearch/DataScienceMeetup

Tools of the Trade

What we use

elasticsearch

Please connect to WIFI

SSID: Dalia Guest

yes I am a guest

Install Anaconda

https://www.anaconda.com/download

Run the following in your terminal:

conda create -n dalia-meetup python=3.6

source activate dalia-meetup (conda activate dalia-meetup)

conda install anaconda

jupyter notebook

Isolated python environments

Say it if something doesn't work!

Jupyter Notebook: Let's create one!

Jupyter Notebook

Import required libraries

```
import numpy as np # main calculations - linear algebra
import pandas as pd # data processing
import matplotlib.pyplot as plt # visualisation
import seaborn as sns # visualisation

# we want to see our plots inline
%matplotlib inline
```

Data: Read

Please download the following:

https://www.kaggle.com/claudiodavi/superhero-set/download s/heroes_information.csv/1

https://www.kaggle.com/martj42/international-football-results-from-1872-to-2017/downloads/results.csv/30

Unzip the file that ends with .zip

Read Data

football_results = pd.read_csv('results.csv')
football_results.head(10)

	date	home_team	away_team	home_score	away_score	tournament	city	country	neutral
0	1872-11-30	Scotland	England	0	0	Friendly	Glasgow	Scotland	False
1	1873-03-08	England	Scotland	4	2	Friendly	London	England	False
2	1874-03-07	Scotland	England	2	1	Friendly	Glasgow	Scotland	False

heroes_information = pd.read_csv('heroes_information.csv')
heroes_information.head(10)

	Unnamed: 0	name	Gender	Eye color	Race	Hair color	Height	Publisher	Skin color	Align
0	0	A-Bomb	Male	yellow	Human	No Hair	203.0	Marvel Comics	2	gd
1	1	Abe Sapien	Male	blue	Icthyo Sapien	No Hair	191.0	Dark Horse Comics	blue	go

We can read also from Excel, Json, Parquet, MySQL While also we can configure options such as separator, delimiter, names, header

Pro Tip

Create an extra cell for each action you want to do.

Data: Clean, Transform

Clean / Transform Data

In many cases we do not have values.

```
heroes_information = pd.read_csv('heroes_information.csv')
print(heroes_information.shape) # Let's look at the size
heroes_information[heroes_information.isnull().any(axis=1)]
# Heroes with None data
```

	Unnamed: 0	name	Gender	Eye color	Race	Hair color	Height	Publisher	Skin color	Alignment	Weight
46	46	Astro Boy	Male	brown	-	Black	-99.0	NaN	. 2	good	-99.0
86	86	Bionic Woman	Female	blue	Cyborg	Black	-99.0	NaN		good	-99.0
138	138	Brundlefly	Male	-	Mutant	-	193.0	NaN	(14)		-99.0
175	175	Chuck Norris	Male	2	2	-	178.0	NaN	022	good	-99.0
204	204	Darkside	-	-	-	-	-99.0	NaN	-	bad	-99.0

```
clean_data = heroes_information.dropna()
print(clean_data.shape) # Size of the clean data
```

(719, 11)

In a world full of lies - we need to filter heroes that have weight and height

```
# We assume that real superheroes have weight and height

real_heroes = heroes_information[(heroes_information['Weight']> 0) &
   (heroes_information['Height']> 0)]

real_heroes.shape
```

Find the outlier

We first calculate the score difference And then we find the highest!

```
football_results['difference'] = abs(football_results['home_score']-
football_results['away_score'])

football_results.loc[football_results['difference'].idxmax()]
```

```
2001-04-11
date
home_team
                        Australia
                     American Samoa
away_team
home score
                            31
                             0
away score
tournament FIFA World Cup qualification
                 Coffs Harbour
city
                     Australia
country
neutral
                       False
                          31
difference
Name: 23569, dtype: object
```

Change will happen

For example a country can change its name

```
df = football_results

df[(df['home_team']=="Macedonia")| (df['away_team']=="Macedonia") ]

df['home_team'] = df['home_team'].replace({'Macedonia': 'Northern Macedonia'})

df['away_team'] = df['away_team'].replace({'Macedonia': 'Northern Macedonia'}))

df[df['home_team'].str.contains("Macedonia") |
    df['away_team'].str.contains("Macedonia") ]
```

	date	home_team	away_team	home_score	away_score	tournament	city	country	neutral	difference
17881	1993-10-13	Slovenia	Northern Macedonia	1	4	Friendly	Kranj	Slovenia	False	3
18073	1994-03-23	Northern Macedonia	Slovenia	2	0	Friendly	Skopje	Macedonia	False	2
18165	1994-05-14	Northern Macedonia	Albania	5	1	Friendly	Tetovo	Macedonia	False	4
18195	1994-06-01	Northern Macedonia	Estonia	2	0	Friendly	Skopje	Macedonia	False	2

What we did:

D

- Remove empty values
- Remove wrong values
- Found outliers (suspicious?)
- Replace values to match the business change

Say it if something doesn't work!

Data: Explore

Shape

```
heroes_information = heroes_information.dropna()
heroes_information = heroes_information[(heroes_information['Weight']> 0) & (heroes_information['Height']> 0)]
print(heroes_information.shape)
```

(489, 11)

Groupby count, sum

```
heroes_information.groupby('Gender')['name'].count()
 Gender
      14
 Female 141
       334
 Male
weights_by_race = heroes_information.groupby('Race')['Weight'].mean()
weights_by_race.sort_values()
Race
Flora Colossus
               4.000000
Cosmic Entity
              16.000000
Yoda's species
              17.000000
Kakarantharaian
               18.000000
Animal
            25.000000
 . . . . . .
```

What we did:

Looked at the shape of a dataset Looked at some statistics - groups

Say it if something doesn't work!

Data: Visualise


```
df = football_results.copy()

df['difference'] = abs(df['home_score']- df['away_score'])
 df['date'] = pd.to_datetime(df['date']).map(lambda x: x.year)
 result = df.groupby('date')['difference'].mean()

result.plot.line()
```



```
heroes_information[['Weight','Height']].plot.scatter(x='Weight',
y='Height')
```

What's wrong with this plot?

Histogram Plot


```
greece_data = df[df['home_team']=='Greece'].copy()
greece_data['difference'] = greece_data.apply(lambda row: row['home_score'] -
row['away_score'],axis=1)
```

greece_data['difference'].plot.hist(bins=100, figsize =(10,10))

Notebook: Export

Export


```
greece_data.to_csv('greece_results.csv')
```

Q&A

Break Time!

