

Fast Fourier Transform

	TOPIC		
1	Radix-2 Cooley & Tuckey's DIT-FFT Algorithm,		
3	DIT-FFT Flowgraph for N=4 & 8,		
3	Comparison of Complex and Real, Multiplication and Additions of DFT and FFT		
4	Inverse FFT algorithm		

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

1

Kiran TALELE

- @ Bharatiya Vidya Bhavans' Sardar Patel Institute of Technology Andheri(w) Mumbai
- **Associate Professor,** Electronics Engineering Department (1997)
- **Dean,** Students, Alumni & External Relations (2022)
- @ Sardar Patel Technology Business Incubator(SP-TBI), Funded by Department of Science & Technology(DST), Govt. of India
- **Head**, Academic Relations (2015)
- @ IEEE Bombay Section
- •Treasurer (2020)
- •Executive Committee Member (2015)

Kiran TALELE

Chapter-2B: Fast Fourier Transform

Objective : To illustrate FFT calculations mathematically

Outcomes:

At the end of module, students will be able to,

- Develop FFT flow-graph
- Compare DFT and FFT computationally
- Perform forward and Inverse FFT
- Plot signal spectrum in frequency domain

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

3

 In 1965, James W. Cooley and John W. Tukey (IEEE 1982 Medal of Honor recipient) published a paper describing the Fast Fourier Transform (FFT) algorithm, which led to an explosion in Digital Signal Processing.

James COOLEY

 Their landmark research offered enormous improvements in processing speeds and played an essential role in the digital revolution.

John TUKEY

DIT FFT flowgraph for N = 4

Step-1: Derive DIT-FFT equation

• By DFT,
$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$

$$X[k] = \sum_{r=0}^{\frac{N}{2}-1} x[2r] W_N^{2rk} + \sum_{r=0}^{\frac{N}{2}-1} x[2r+1] W_N^{(2r+1)k}$$

$$X[k] = \sum_{r=0}^{\frac{N}{2}-1} x[2r] W_N^{rk} + W_N^k \sum_{r=0}^{\frac{N}{2}-1} x[2r+1] W_N^{rk}$$

$$X[k] = G[k] + W_N^k H[k]$$
N pt $\frac{N}{2}$ pt $\frac{N}{2}$ pt

Step-2: Derive DIT-FFT flowgraph

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

9

Ex-1: Given x[n] = { 1, 2, 3, 4 }. Find X[k] using DITFFT

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

Ex-2 : Given x[n] = { 1, 4, 3, 2 }. Find X[k] using DITFFT Solution : To Find X[k] using FFT

DIT FFT flowgraph for N = 8

Step-2: Derive DIT-FFT flowgraph

Ex-1 : Given $x[n] = \{1, 2, 3, 4, 5, 6, 7, 8\}.$

Find X[k] using DIT-FFT.

Solution: To Find X[k] using DIT-FFT

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

15

Given $x[n] = \{1, 2, 3, 4, 5, 6, 7, 8\}$

Find X[k]: (1)
$$X[0] = (16) + (20)$$

 $X(0) = 36$

(2)
$$X[1] = (-4+4j) + (-4+4j)_{W_N^1}$$

= $(-4+4j) + (-4+4j)(0.707 - j 0.707)$
 $X(1) = -4 + j 9.656$

(3)
$$X[2] := (-4) + (-4) W_N^2$$

= $(-4) + (-4) (-j)$
 $X(2) = -4 + 4j$

(4)
$$X[3] := (-4-4j) + (-4-4j) W_N^3$$

= $(-4-4j) + (-4-4j) (-0.707 - j 0.707)$
 $X[3] = -4 + j 1.656$

17

(5)
$$X[4] = (16) - (20)$$

$$X[4] = -4$$

(6)
$$X[5] = (-4-4j) - (-4-4j) W_N^1$$

= $(-4-4j) - (-4-4j) [0.707 - j0.707]$
 $X[5] = -4 - j 1.656$

(7)
$$X[6] = (-4) - (-4) W_N^2$$

= $(-4) - (-4) [-j]$
 $X[6] = -4 - 4j$

kiran.talele@spit.ac.in Kiran TALELE 99870 30 881

(8)
$$X[7] = (-4-4j) - (-4-4j) W_N^3$$

 $X[7] = (-4-4j) - (-4-4j) [-0.707-j 0.707]$
 $X[7] = -4-j 9.656$

ANS:
$$X[k] = \begin{bmatrix} 36 & k = 0 \\ -4+9.656j & -4+4j & -4+1.656j & -4 & -4-1.656j & -4-4j & -4-9.656j & -4$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

19

Computational Efficiency of FFT

·酸			
	Complex I	Speed Improvement	
N	D DET		
	By DFT	By FFT.	factor.
4	16	4	4.0
8	64	12	5.3
16	256	32	8.0
32	1024	80	12.8
64	4096	192	21.3
128	16384	448	36.6
256	65536	1024	64.0

Bit Reversal Technique:

Input with Index in	Input sequence		Output Sequence	Output with Index in
Binary			_	Binary
x[0 0 0]	x[0]		X[0]	X[0 0 0]
x[1 0 0]	x[4]		X[1]	X[0 0 1]
x[0 1 0]	x[2]	DIT-FFT	X[2]	X[0 1 0]
x[1 1 0]	x[6]	Flowgraph	X[3]	X[0 1 1]
x[001]	x[1]	For	X[4]	X[1 0 0]
x[1 0 1]	x[5]	N = 8	X[5]	X[1 0 1]
x[0 1 1]	x[3]		X[6]	X[1 1 0]
X[1 1 1]	x[7]		X[7]	X[1 1 1]

Inverse FFT Algorithm

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

23

Inverse FFT using Forward FFT Flowgraph

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] w_N^{nk}$$

By Complex Conjugate on Both Sides,

$$x^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} x^*[k] w_N^{nk}$$

$$x^*[n] = \frac{1}{N} FFT \{ \chi^*[k] \}$$

IFFT ALGORITHM

I. Find X^{*}[k]

II. Find FFT (X*[k])

III. Find x[n] using **IFFT** equation

By Complex Conjugate on Both Sides,

$$\chi[n] = \frac{1}{N} (FFT \{\chi^*[k]\})^*$$

This is an IFFT equation

Ex-1. Given
$$X[k] = \begin{bmatrix} 66 & k=0 \\ -22+2j & \\ -2 & \\ -22-2j & \end{bmatrix}$$

Find x[n] using Forward FFT.

Solution: To find x[n]

By IFFT equation:

$$x[n] = \frac{1}{N} (FFT \{\chi^*[k]\})^*$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

25

I. Find X*[k]

Now,
$$X[k] = \begin{bmatrix} 66 & k=0 \\ -22 + 2j & \\ -2 & \\ -22 - 2j & \end{bmatrix}$$

$$X^{*}[k] = \begin{bmatrix} 66 & k=0 \\ -22 - 2j & \\ -2 & \\ -22 + 2j & \end{bmatrix}$$

IFFT ALGORITHM

- I. Find X*[k]
- II. Find FFT (X*[k])
- III. Find x[n] using IFFT equation

II. Find FFT (X*[k])

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

27

III. Find x[n]

By IFFT:
$$x[n] = \frac{1}{N} (FFT \{x^*[k]\})^*$$

$$x[n] = \frac{1}{4} (\begin{bmatrix} 20 & n=0 \\ 64 \\ 108 \\ 72 \end{bmatrix})^*$$

$$x[n] = \begin{bmatrix} 5 & n=0 \\ 16 \\ 27 \\ 18 \end{bmatrix}$$

Find x[n] using Inverse FFT.

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

29

To Find x[n] using Inverse FFT

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

III. Find x[n]

By IFFT:
$$x[n] = \frac{1}{N} x'[n]$$

$$x[n] = \frac{1}{4} \left(\begin{bmatrix} 20 & n=0 \\ 64 & 108 \\ 72 & . \end{bmatrix} \right)$$

$$x[n] = \begin{bmatrix} 5 & n=0 \\ 16 & 27 \\ 18 & \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

31

Ex: Let
$$x[n] = \{1, 2, 3, 4\}$$

- (a) Find X[k] using DIT-FFT.
- (b) Let $p[n] = \{1, 0, 2, 0, 3, 0, 4, 0\}$. Find P[k] using X[k].

Solution: (a) To finds X[k] using DITFFT

Given $x[n] = \{1, 2, 3, 4\}.$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

33

(b) Let
$$p[n] = \{1, 0, 2, 0, 3, 0, 4, 0\}$$
.
Find $P[k]$ using $X[k]$.

To find P[k]

Let
$$P[k] = G[k] + W_N^k H[k]$$
 ---Eqn (1)
8 pt 4 pt 4 pt

Where $G[k] = DFT\{p(2r)\}$ and $H[k] = DFT\{p(2r+1)\}$

$$G[k] = DFT \begin{bmatrix} p[0] \\ p[2] \\ p[4] \\ p[6] \end{bmatrix}$$

$$H[k] = DFT \begin{bmatrix} p[1] \\ p[3] \\ p[5] \\ p[7] \end{bmatrix}$$

$$G[k] = DFT \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

$$H[k] = DFT \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

 $G[k] = X[k] \qquad \qquad H[k] = 0$

By Substituting G[k] = X[k] and H[k] = 0 in Eqn (1) we get,

P[k] = X[k]

P[0] = X[0] = = 10

P[1] = X[1] = -2+2J

P[2] = X[2] = = -2

P[3] = X[3] = = -2-2J

P[4] = X[4] = 10

P[5] = X[5] = -2+2J

P[6] = X[6] = = -2

P[7] = X[7] = -2-2J

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

Ex-1 Let
$$x[n] = [1, 2, 3, 4]$$
 and $h[n] = \{5, 6, 7\}$
Find Circular Convolution using FFT

Solution:

Here x[n] is L=4 point and h[n] is M = 3 point

I. Select N

$$N = Max (L,M)$$

$$N = Max (4,3) == 4$$

II. Zero Padding

$$x[n] = [1, 2, 3, 4]$$

$$h[n] = \{ 5, 6, 7, 0 \}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

37

III. Find $y[n] = x[n] \otimes h[n]$ using FFT

(1). Find X[k] using DIT-FFT

(2). Find H[k] using DIT-FFT

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

$$Y[k] = X[k] H[k]$$

$$Y[k] = \begin{bmatrix} 10 & k=0 \\ -2+2j & \\ -2 & \\ -2-2j & \end{bmatrix} \begin{bmatrix} 18 & k=0 \\ -2-6j & \\ 6 & \\ -2+6j & \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

41

III. Find y[n] By Inverse FFT

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

Now y[n] =
$$\frac{1}{N}$$
 y'[n]
$$y[n] = \frac{1}{4} \begin{bmatrix} 200 & n=0 \\ 176 & 136 \\ 208 \end{bmatrix}$$
 y[n] = $\begin{bmatrix} 5 & 0 & 7 & 6 \\ 6 & 5 & 0 & 7 \\ 7 & 6 & 5 & 0 \\ 0 & 7 & 6 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$ y[n] = $\begin{bmatrix} 50 & n=0 \\ 44 & 34 \\ 52 & 52 \end{bmatrix}$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

43

Solution:

Here x[n] is L=3 point and h[n] is M=2 point

I. Select N

$$N \ge 3+2-1 == 4$$

II. Zero Padding

$$x[n] = [1, 2, 3, 0]$$

$$h[n] = \{ 5, 6, 0, 0 \}$$

III. Find $y[n] = x[n] \otimes h[n]$ using FFT

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

45

(1). Find X[k] using DIT-FFT

(2). Find H[k] using DIT-FFT

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

47

(3). Find Y[k]

$$Y[k] = X[k] H[k]$$

$$Y[k] = \begin{bmatrix} 6 & k=0 \\ -2-2j & 5-6j \\ 2 & -1 \\ 5+6j & 5+6j \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

III. Find y[n] using Inverse FFT

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

49

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

APLICATIONS OF DFT/FFT

- (i) Linear Filtering: To find output of a digital FIR filter for any given input say x[n].
- (ii) **Spectral Analysis**: To find magnitude spectrum and phase spectrum of signal.

Linear Filtering: To find output of a digital FIR filter for any given input say x[n]

None of above mehod is suitable for Real Time Application

Limitations of LC by FFT Algorithms

(1) Algorithm is NOT suitable for Real Time Applications where entire input signal is not available.

Examples include

- (i) ECG Monitoring system
- (ii) Digital Telephone System
- (iii) Weather Monitoring System

Limitations of LC by FFT Algorithms...

(2) Algorithm is NOT suitable for Long Data Sequence.

Examples include

- i) Digital Song in the form of wave file (Fs = 44.1 KHz)
- ii) ECG/Weather Monitoring Systems.

In most of the real Time applications data is Long sequence.

If N is too large as for long data sequences, then there is a significant delay in processing, that will make processing, almost impossible for real-time applications

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

55

Linear FIR filtering using FAST Algorithm

Overlap Add fast Convolution Algorithm

- Decompose x[n] into L point sequences
- II. Select N
- III. Append h[n] with (N-M) zeros and find H [k] using N pt FFT flowgraph
- IV. Append each input signal data block by (N-L) zeros and find DFT of each block using N pt FFT algorithm
- **V.** Let Yi [k] = Xi [k] . H [k] for i = 0,1...
- **VI**. Obtain y_i[n] by N pt iFFT Algorithm

VII. Find y[n] i.e.
$$y[n] = \bigotimes_{i=0}^{N-1} y_i[n-iL]$$

Ex. Given

h[n] = δ [n] + 2 δ [n-1] + 3 δ [n-2] + 4 δ [n-3] Find the response of the filter to the input x[n]={ 2, 0, 2, 0, 2, 1, 0, 2, 1 } using Overlap Add Method.

Solution: To Output of the filter i.e. y[n]

Given
$$h[n] = \{ 1, 2, 3, 4 \}$$
. Length $M = 4$ and $x[n] = \{ 2, 0, 2, 0, 2, 1, 0, 2, 1 \}$

(I) Select L

Assume N = 8 for Radix 2 FFT Algorithm
Now
$$N = L + M - 1$$

 $8 = L + 4 - 1$
 $L = 5$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

59

Given
$$h[n] = \{ 1, 2, 3, 4 \}$$
. Length $M = 4$ and $x[n] = \{ 2, 0, 2, 0, 2, 1, 0, 2, 1 \}$

(II) Decompose x[n]

By decomposing x[n] into L=5, we get,

$$x_1[n] = \{ 2, 0, 2, 0, 2 \}$$

 $x_2[n] = \{ 1, 0, 2, 1, 0 \}$

(III) Zero Padding

$$x_1[n] = \{ 2, 0, 2, 0, 2, 0, 0, 0, 0 \}$$

 $x_2[n] = \{ 1, 0, 2, 1, 0, 0, 0, 0 \}$
 $h[n] = \{ 1, 2, 3, 4, 0, 0, 0, 0, 0 \}$
 $h[-n] = \{ 1, 0, 0, 0, 0, 4, 3, 2 \}$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

61

(IV) Find y₁[n]

$$y_1[n] = \sum_{m=0}^{N-1} x_1[m] \ h[((n-m))]$$

$$y_{1}[n] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 4 & 3 & 2 \\ 2 & 1 & 0 & 0 & 0 & 0 & 4 & 3 \\ 3 & 2 & 1 & 0 & 0 & 0 & 0 & 4 \\ 4 & 3 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 3 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 3 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 4 & 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} = = \begin{bmatrix} 2 \\ 4 \\ 8 \\ 12 \\ 8 \\ 12 \\ 6 \\ 8 \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

(V) Find $y_2[n]$

$$y_2[n] = \sum_{m=0}^{N-1} x_2[m] \ h[((n-m))]$$

$$y_{2}[n] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 4 & 3 & 2 \\ 2 & 1 & 0 & 0 & 0 & 0 & 4 & 3 \\ 3 & 2 & 1 & 0 & 0 & 0 & 0 & 4 \\ 4 & 3 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 3 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 3 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 4 & 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = = \begin{bmatrix} 1 \\ 2 \\ 5 \\ 9 \\ 8 \\ 11 \\ 4 \\ 0 \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

63

(VI) Find y[n]

Now
$$y[n] = y_1[n] + y_2[n-L]$$

Put L = 5
 $y[n] = y_1[n] + y_2[n-5]$

To find y[n]:

Overlap Save fast Convolution Algorithm

- Decompose x[n] into L point sequences
- 2. Select N ≥ L +M + 1
- 3. Begin each decomposed input sequence with (N–L) values of previous sequence
- 4. Append h[n] with (N–M) zeros and find H[k] using N point FFT.
- 5. Perform N point FFT on the selected data block X_i [n]
- 6. Let $Yi[k] = Xi[k] \cdot H[k]$
- 7. Perform N point iFFT of Yi[k]
- 8. Discard the first (N–L) values of y i [n] and save the remaining values of yi [n]
- 9. y[n] is obtained by concatenating all the saved values of y_i[n]

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

65

Ex. Given

h[n] = δ [n] + 2 δ [n-1] + 3 δ [n-2] + 4 δ [n-3] Find the response of the filter to the input x[n]={ 2, 0, 2, 0, 2, 1, 0, 2, 1 } using Overlap Save Method.

Solution: To Output of the filter i.e. y[n]

Given
$$h[n] = \{ 1, 2, 3, 4 \}$$
. Length $M = 4$ and $x[n] = \{ 2, 0, 2, 0, 2, 1, 0, 2, 1 \}$

(I) Select L

Assume N = 8 for Radix 2 FFT Algorithm Now N = L + M -1 8 = L + 4 - 1L = 5

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

67

Given
$$h[n] = \{ 1, 2, 3, 4 \}$$
. Length $M = 4$ and $x[n] = \{ 2, 0, 2, 0, 2, 1, 0, 2, 1 \}$

(II) Decompose x[n]

By decomposing x[n] into L=5, we get,

$$x_1[n] = \{ 2, 0, 2, 0, 2 \}$$

 $x_2[n] = \{ 1, 0, 2, 1, 0 \}$

$$x_3[n] = \{0, 0, 0, 0, 0\}$$

(III) Modify input Sequence

$$x_1[n] = \{ 0, 0, 0, 2, 0, 2, 0, 2 \}$$
 $x_2[n] = \{ 2, 0, 2, 1, 0, 2, 1, 0 \}$
 $x_3[n] = \{ 2, 1, 0, 0, 0, 0, 0, 0 \}$
 $h[n] = \{ 1, 2, 3, 4, 0, 0, 0, 0, 0 \}$
 $h[-n] = \{ 1, 0, 0, 0, 0, 4, 3, 2 \}$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

69

(IV) Find y₁[n]

$$y_1[n] = \sum_{m=0}^{N-1} x_1[m] \ h[((n-m))]$$

$$y_{1}[n] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 4 & 3 & 2 \\ 2 & 1 & 0 & 0 & 0 & 0 & 4 & 3 \\ 3 & 2 & 1 & 0 & 0 & 0 & 0 & 4 \\ 4 & 3 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 3 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 3 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 4 & 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \end{bmatrix} = = \begin{bmatrix} 12 \\ 6 \\ 8 \\ 2 \\ 4 \\ 8 \\ 12 \\ 8 \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

(V) Find $y_2[n]$

$$y_2[n] = \sum_{m=0}^{N-1} x_2[m] \ h[((n-m))]$$

$$y_{2}[n] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 4 & 3 & 2 \\ 2 & 1 & 0 & 0 & 0 & 0 & 4 & 3 \\ 3 & 2 & 1 & 0 & 0 & 0 & 0 & 4 \\ 4 & 3 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 3 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 3 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 4 & 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 2 \\ 1 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} = = \begin{bmatrix} 13 \\ 8 \\ 8 \\ 13 \\ 9 \\ 8 \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

71

(VI) Find $y_3[n]$

$$y_3[n] = \sum_{m=0}^{N-1} x_3[m] \ h[((n-m))]$$

$$y_{3}[n] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 4 & 3 & 2 \\ 2 & 1 & 0 & 0 & 0 & 0 & 4 & 3 \\ 3 & 2 & 1 & 0 & 0 & 0 & 0 & 4 \\ 4 & 3 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 3 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = = \begin{bmatrix} 2 \\ 5 \\ 8 \\ 11 \\ 4 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Kiran TALELE 99870 30 881 kiran.talele@spit.ac.in

(VII) Find y[n]

$$y_1[n] = \{ 12, 6/8, 2, 4, 8, 12, 8 \}$$

 $y_2[n] = \{ 13/8, 8, 13, 9, 8 \}$
 $y_3[n] = \{ 2, 5, 8, 11, 4, 0, 0, 0 \}$

By discarding first (M-1) values from each output sequence we get,

Dr. Kiran TALELE

Stay Connected....

Mobile: 091-9987030881eMail: talelesir@gmail.com kiran.talele@spit.ac.in

• Facebook : www.facebook.com/ Kiran-Talele-1711929555720263

LinkedIn: https://www.linkedin.com/in/k-t-vtalele/

- Dr. Kiran TALELE is an Associate Professor in Electronics & Telecommunication Engineering Department of Bharatiya Vidya Bhavans' Sardar Patel Institute of Technology, Mumbai with 33+ years experience in Academics.
- He is a Dean of Students, Alumni and External Relations at Sardar Patel Institute of Technology, Andheri Mumbai.
 He is also a Head of Sardar Patel Technology Business Incubator, Mumbai.
- His area of research is Digital Signal & Image Processing, Computer Vision, Machine Learning and Multimedia System Design.
- He has published 85+ research papers at various national & international refereed conferences and journals. He has filed published 12+ patents at Indian Patent Office.
 One patent is granted in 2021.
- He is a Treasurer of IEEE Bombay Section and Mentor for Startup Incubation & Intellectual Asset Creation.
- He received incentives for excellent performance in academics and research from Management of S.P.I.T. in 2008-09. He is a recipient of P.R. Bapat IEEE Bombay Section Outstanding Volunteer Award 2019.

