Lecture 10 Entity Relationship Diagram(E-RD) and DFD

- Proposed by Chen 1976
 - Analysis of system static data
 - Data modeling
 - Represent major data objects and relationship between them
 - Removing redundancies
- Major abstraction to represent data are :
 - 1. Entity (each individual objects, noun)
 - 2. Relationship(verb, preposition)
 - 3. Attribute

- N-array relationship should be avoided because they include more than one concept
- Avoid :
 - System itself should not appear

2. Derived relationship sets

Attributes :

- <u>Cardinality</u>: Number of relationships in which an entity can appear (i) 1:1, (ii) 1:N (iii) N:M
- <u>Participation</u>: Participation of entities in a relationship set can be (i) Mandatory, (ii) Optional, (iii) Conditional

- Mandatory : All persons work on project
- Optional : one person need not work on project (represented by ○)
- Conditional: Depending upon condition(s)
- Avoid relationship can be multivalued and structured

• Dependent Entity Set (weak entity set):

Subsets:

DFD (Data Flow Diagram)

- Both analysis and design tool for dynamic data of the system
- Popularized by DeMacro (1978), Yourdon, Gane & Sarson (1979)
- Definition: A DFD shows the flow of data through a system (a system may be an organization, a manual procedure, a s/w system, a mechanical system, a h/w system or any combination of these

Library System

- System components : four kind
 - Process (bubble): What system do
 Each process has a unique name and number

updat

Source and sink

- 3. Data store (//): repository of data, unique name
- 1. Data flows (>>): arrows

• Example : Top level DFD

Context diagram (level 0)

Process

Level 0 context diagram Level 1 1, 2, 3 Level 2 1.1, 2.1, 3.1 1.2, 2.2, 3.2 1.3, 2.3, 3.3 Level 3 1.1.1 1.1.2 1.1.3

- DFD vs. Flowchart
- Some common errors should be avoided :
 - 1. No process can acts as sink or a source
 - 2. Information required by a process is not available
 - 3. Some information is not being used in the process
 - 4. Missing process
 - 5. No unlabeled data flow
 - 6. Avoid criss-crossing flow
 - 7. Missing data flow
 - 8. Extraneous data flow
 - 9. Contain some control information, looping and decision
 - 10. Consistency not maintained during refinement

- Criteria of a good DFD:
 - Self explanatory, Complete and Unambiguous
- Features :
 - I. Absence of flowchart structures
 - II.Conservation of data
 - III.Good naming conventions

Absence of flowchart structures

- 1. No splitting of data flows
- 2. No crossing lines
- 3. No control signal from a process
- 4. No looping
- 5. No input signals
- 6. Decision and iteration must be avoided

Conservation of data and Good naming conventions

- Conservation of data :
 - What comes out of the data store must first go in
 - It is not possible for data store to create new data elements
 - It is true for process also
- Good naming conventions :
 - Process : readable, avoid meaningless names. Single phrase/ describe a process in one sentence
 - Data store :
 - Data flow : one word (invoice, check) avoid

PDFD vs. LDFD

Physical DFD

- 1. During analysis
- 2. Use of physical agent/devices
- 3. How, by whom, when
- 4. Specific name of data flow and process
- Objective world

Logical DFD

- 1. During design
- Logical entity/ operation name
- 3. What uspects
- 4. Names of data flow and process by a sentence or a phrase
- 5. Subjective world

- E-RD vs. DFD
- Convert DFD to structure Chart

- Transformed centered analysis
- Transaction centered analysis

Data Dictionary

- Structured repository of data about data
- Information about different data elements and different layers
- Smallest element is fields/data elements, can't be further decomposed.
 - Ex. emp_no., emp_type
- Repository of various data flow in the system
- Define data structure of data in DFD: Notations
 - 1. Sequence or Composition (+)
 - Ex. Weekly timesheet = emp_name + emp_id
 - 2. Selection (|)
 - Pay rate = Hourly | Daily | Weekly

Data Dictionary

- 3. Repetition (*) (one or more)
 - Hour = [regular_hours + Overtime_hours]*

- 1. N_S (Nassi_Shneiderman) Diagram
 - 1. Sequence
 - 2. Decision
 - 3. Looping
- 2. Structured English
 - Arithmetic operators: *, /, +, -, **
 - Relational operators : >, <, >=, <=, ∏
 - Boolean operators: and , or, not
 - Keywords: BEGIN END, REPEAT UNTIL, IF THEN ELSE, CASE OF, WHILE DO, FOR
- 3. Decision Tree
- 4. Decision Table

- Example : Conditions :
 - Credit limit exceeded
 - 2. Good payment history
 - Purchase above Rs. 200

Structured English:

If credit limit exceeded

THEN IF customer has bad payment history

THEN refuse credit

ELSE IF Purchase is above Rs. 200

THEN Refuse credit

ELSE refer to manager

ELSE Allow credit

Decision Table :

Decision Tree: Purchase Refuse credit above Rs. 200 Good payment **Purchase** history Refuse credit below Rs. Credit limit 200 exceeded Bad payment Refuse credit history Credit limit Allow credit

not exceeded