

BASIC MATH & STATISTICS (PART III)

พัณณธัญญ์ วิจิตรวงศ์เจริญ

สารบัญ

- 🔪 การทดสอบสมมติฐาน
- การวิเคราะห์ความสัมพันธ์
 - ➤ Scatter plot
 - **Correlation**
 - Regression
- ➢Optimization Linear Programming

เมื่อต้องการศึกษาค่าพารามิเตอร์ของประชากร โดยการสุ่มตัวอย่างเพื่อ ตรวจสอบว่าเป็นไปตามที่กำหนดไว้เดิมหรือไม่

สถิติอย่างเดียว ไม่สามารถใช้ พิสูจน์สิ่งใดๆ ได้

เราใช้อนุมานทางสถิติเพื่อยอมรับ หรือ ปฏิเสธ คำอธิบายต่างๆ โดยอิงกับความเป็นไปได้

การอนุมาน

วัคซีนโควิด ใช้ได้ดีหรือไม่

แคมเปญโฆษณา เพิ่มยอดขายได้จริงหรือไม่ ลูกค้าสองกลุ่ม มีพฤติกรรมเหมือนกันหรือไม่

- 1. แคมเปญโฆษณา A สามารถทำให้ลูกค้าซื้อมากกว่า 3 ชิ้น/เดือน
 - => สมมติฐานเกี่ยวกับประชากร 1 กลุ่ม
- 2. ลูกค้าวัยรุ่นตอนต้น (13-18 ปี) มียอดใช้จ่ายในการซื้อบัตรคอนเสิร์ต มากกว่า วัยรุ่นตอนปลาย (19-25 ปี)
 - => สมมติฐานเกี่ยวกับประชากร 2 กลุ่ม
- 3. เมื่อใช้วัคซีนโควิดชนิด A สามารถป้องกันโควิดได้ 80%
 - => สมมติฐานเกี่ยวกับสัดส่วนประชากร 1 กลุ่ม

แคมเปญโฆษณา \mathbf{A} สามารถทำให้ลูกค้าซื้อมากกว่า $\mathbf{3}$ ชิ้น/เดือน

$$\mu \geq 3$$

ครั้งที่ 1 สุ่มตัวอย่าง n = 40 คน , $\bar{X}=5.5$ ครั้งที่ 2 สุ่มตัวอย่าง n = 40 คน , $\bar{X}=2.2$ ครั้งที่ 3 สุ่มตัวอย่าง n = 40 คน , $\bar{X}=3.1$ ครั้งที่ 4 สุ่มตัวอย่าง n = 40 คน , $\bar{X}=2.98$

ตั้งข้อสมมติฐานไว้ 2 ข้อสมมติฐานคือ

- *Ho หรือข้อสมมติฐานหลัก (Null Hypothesis)
 - •สิ่งที่คาดไว้ มีเครื่องหมาย = , \geq , \leq
- •H₁ หรือ H_a หรือข้อสมมติฐานรอง หรือ ข้อสมมติฐานทางเลือก (Alternative Hypothesis)
 - ■มีเครื่องหมายตรงข้ามกับสมมติฐานหลัก ≠,<,>

ประเภทของการทดสอบสมมติฐาน

- 1. การทดสอบสองทาง (Two-sided test)
- สมมติฐาน H₁ มีเครื่องหมาย ≠
- เขตปฏิเสธการทดสอบจะมีสองด้าน
- 2. การทดสอบทางเดียว (One-sided test) การทดสอบทางขวา (Right-tailed test)
- $lacktriang = สมมติฐาน <math>lacktriang H_1$ มีเครื่องหมาย >
- เขตปฏิเสธการทดสอบจะอยู่ทางด้านขวา

การทดสอบทางซ้าย (Left-tailed test)

- สมมติฐาน H₁ มีเครื่องหมาย <
- เขตปฏิเสธการทดสอบจะอยู่ทางด้านซ้าย

$$H_0: \dots = \dots$$

 $H_1: \dots \neq \dots$

$$H_0: \ldots \leq \ldots$$

$$H_1: ... > ...$$

$$H_0: \ldots \geq \ldots$$

 $H_1: \ldots < \ldots$

$$H_1: ... < ...$$

1.นักวิชาการเชื่อว่าเด็กไทยเฉลี่ยเล่นอินเตอร์เนต 4.5 ชั่วโมงต่อวัน

$$H_0: \mu = 4.5$$

 $H_1: \mu \neq 4.5$

$$H_1: \mu \neq 4.5$$

2.สัตวแพทย์คาดว่าสุนัขจะใช้เวลาฟื้นตัวหลังผ่าตัดเฉลี่ยอย่างน้อย 5 ชั่วโมง

$$H_0: \mu \ge 5$$

 $H_1: \mu < 5$

$$H_1: \mu < 5$$

3.โดยปกติ ยาแก้ปวดจะมีฤทธิ์เฉลี่ยน้อยกว่า 4 ชั่วโมง

$$H_0: \mu \le 4$$

 $H_1: \mu > 4$

$$H_1: \mu > 4$$

4.นักเรียนชายและนักเรียนหญิงใช้เวลาทบทวนหนังสือก่อนสอบต่างกัน 50 นาที

$$H_0: \mu_1 - \mu_2 = 50$$

 $H_1: \mu_1 - \mu_2 \neq 50$

$$H_1: \mu_1 - \mu_2 \neq 50$$

5.ผู้จบปริญญาโทมีเงินเดือนสูงกว่าผู้จบปริญญาตรีในสาขาเดียวกันไม่น้อยกว่า 4,000 บาท

$$H_0: \mu_1 - \mu_2 \ge 4,000$$

 $H_1: \mu_1 - \mu_2 < 4,000$

6.ชาวสวนทุเรียนในจังหวัดระยองมีรายได้เฉลี่ยแตกต่างจากชาวสวนในจังหวัด จันทบุรี

$$H_0: \mu_1 = \mu_2$$

 $H_1: \mu_1 \neq \mu_2$

7. ประชาชนในเขตลาดกระบัง 45% เป็นคนกรุงเทพโดยกำเนิด

$$H_0: p = 0.45$$

$$H_1 : p \neq 0.45$$

8.เด็กไทยมากกว่า 72% มีผลการทดสอบ IQ ต่ำกว่า 115

$$H_0: p \le 0.72$$

$$H_1 : p > 0.72$$

Type I: ผลบวกลวง

(Positive False)

Type II: ผลลบลวง

(Negative false)

สถานการณ์	Type I error ผลบวกลวง	Type II error ผลลบลวง
ตัวกรองสแปมอีเมลล์	กรองอีเมลล์ที่ไม่ใช้สแปมทิ้งไปด้วย	ปล่อยอีเมลล์สแปมเข้ามาในกล่อง ข้อความ
การตรวจคัดกรองโควิด	ผลเป็นบวก ทั้งๆที่ไม่ได้เป็น	ผลเป็นลบ ทั้งๆที่เป็น
การจับกุมผู้ต้องหา	ผู้บริสุทธิ์ติดคุก	ผู้ต้องหาลอยนวล

วิธีการลดค่าความผิดพลาด

- เพิ่มช่วงการยอมรับ
- เพิ่มขนาดของตัวอย่าง **n**

ช้นตอนการทดสอบสมมติฐาน

- 1) ตั้งสมมติฐานหลักและสมมติฐานรอง
- 2) กำหนดตัวสถิติทดสอบเป็น Z หรือ t
- 3) หาค่าวิกฤต z_{lpha} , $z_{lpha/2}$, t_{lpha} , $t_{lpha/2}$
- 4) กำหนดกฎของการตัดสินใจ
- 5) คำนวณค่าสถิติ
- 6) สรุปผล

กฏการตัดสินใจ

This Photo by Unknown Author is licensed under CC BY-SA-NC

This Photo by Unknown Author is licensed under CC BY-SA

ปฏิเสธ
$${\sf H}_{\sf O}$$
เมื่อ ${\sf z} < {\sf -}z_{lpha}$

ปฏิเสธ
$$\mathbf{H}_0$$
เมื่อ $\mathbf{z} < -z_{lpha/2}$ หรือ $\mathbf{z} > z_{lpha/2}$

การทดสอบค่าพารามิเตอร์

การทดสอบค่าเฉลี่ย

การทดสอบผลต่างของค่าเฉลี่ย

การทดสอบความเท่ากันของค่าเฉลี่ยเมื่อค่าสังเกตเป็นคู่

การทดสอบสัดส่วน

การทดสอบค่าความแปรปรวน

การทดสอบอัตราส่วนของค่าความแปรปรวน

1.การทดสอบสมมติฐานค่าเฉลี่ยประชากรหนึ่งกลุ่ม

สมมติฐานหลักและสมมติฐานรอง

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

$$H_1: \mu \neq \mu_0$$

$$H_0: \mu \geq \mu_0$$

$$H_0: \mu \ge \mu_0$$

 $H_1: \mu < \mu_0$

$$H_0: \mu \ge \mu_0$$

 $H_1: \mu < \mu_0$

$$H_1: \mu < \mu_0$$

สถิติทดสอบ

กรณีทราบความแปรปรวนประชากร (σ^2)

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

กรณีไม่ทราบความแปรปรวนประชากร (σ^2)

$$z = \frac{\bar{x} - \mu}{S / \sqrt{n}}$$

$$t = \frac{\bar{x} - \mu}{S / \sqrt{n}},$$

$$d. f. = n - 1$$

ผู้จัดการรีสอร์ตกำหนดระดับความพึงพอใจของผู้ใช้บริการไว้ว่าจะต้องไม่ต่ำ กว่า 4.2 คะแนน จึงต้องสำรวจความพึงพอใจอย่างสม่ำเสมอ เมื่อสำรวจ ผู้ใช้บริการจำนวน 49 คนพบว่ากลุ่มตัวอย่างมีความพึงพอใจ 4.02 คะแนน ค่าเบี่ยงเบนมาตรฐาน 1.24 จงทดสอบว่าเป็นไปอย่างที่กำหนด หรือไม่ ที่ระดับนัยสำคัญทางสถิติ 0.1

1) ตั้งสมมติฐานหลักและสมมติฐานรอง

$$H_0: \mu \ge 4.2$$

 $H_1: \mu < 4.2$

$$H_1: \mu < 4.2$$

2) กำหนดสถิติทดสอบเป็น z

$$z = \frac{\bar{x} - \mu}{S / \sqrt{n}}$$

- 3) หาค่าวิกฤต
- เป็นการทดสอบทางเดียวแบบทางซ้าย ใช้ค่า Z_{lpha}
- ที่ lpha=0.1 เปิดตาราง ค่า $z_lpha=1.28$

$$-z_{\alpha} = -1.28$$

- 4) กำหนดกฎของการตัดสินใจ จะปฏิเสธ H_0 เมื่อ z < -1.28
- 5) คำนวณค่าสถิติทดสอบ

$$z = \frac{4.02 - 4.2}{1.24 / \sqrt{49}}$$
$$= -1.02$$

6) สรุปผล
 ยอมรับ HO ความพึงพอใจของผู้ใช้บริการไม่ต่ำกว่า 4.2
 ที่ระดับนัยสำคัญ 0.1

11.การทดสอบสมมติฐานของผลต่างค่าเฉลี่ย ประชากรสองกลุ่ม

สมมติฐานหลักและสมมติฐานรอง

$$H_0: \mu_1 - \mu_2 = \mu_0$$

$$H_1: \mu_1 - \mu_2 \neq \mu_0$$

$$H_0: \mu_1 - \mu_2 \ge \mu_0$$

$$\begin{aligned} & \mathsf{H_0}: \ \mu_1 - \mu_2 = \mu_0 \\ & \mathsf{H_0}: \mu_1 - \mu_2 \geq \mu_0 \\ & \mathsf{H_1}: \ \mu_1 - \mu_2 \neq \mu_0 \end{aligned} \quad \begin{aligned} & \mathsf{H_0}: \mu_1 - \mu_2 \geq \mu_0 \\ & \mathsf{H_1}: \mu_1 - \mu_2 < \mu_0 \end{aligned} \quad \begin{aligned} & \mathsf{H_0}: \mu_1 - \mu_2 \geq \mu_0 \\ & \mathsf{H_1}: \mu_1 - \mu_2 < \mu_0 \end{aligned}$$

$$H_0: \mu_1 - \mu_2 \ge \mu_0$$

$$H_1: \mu_1 - \mu_2 < \mu_0$$

สถิติทดสอบ

กรณีทราบความแปรปรวนประชากร (σ_1^2 , σ_2^2)

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n}}}$$

กรณีไม่ทราบความแปรปรวนประชากร (σ_1^2 , σ_2^2)

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{n}}}$$

สุ่มตัวอย่างหลอดไฟจากบริษัท A 60 หลอด ปรากฏว่ามีอายุการใช้งาน เฉลี่ย 1,300 ชั่วโมง ส่วนเบี่ยงเบนมาตรฐาน 90 ชั่วโมง และสุ่มตัวอย่าง บริษัท B มา 50 หลอด ปรากฏว่ามีอายุการใช้งานเฉลี่ย 1,060 ชั่วโมง ส่วนเบี่ยงเบนมาตรฐาน 70 ชั่วโมง จงทดสอบสมมติฐานว่า หลอดไฟจาก บริษัท A มีอายุการใช้งานนานกว่าหลอดไฟจากบริษัท B มากกว่า 200 ชั่วโมง ที่ระดับนัยสำคัญทางสถิติ 0.01 หรือไม่

1) ตั้งสมมติฐานหลักและสมมติฐานรอง

$$H_0: \mu_1 - \mu_2 \ge \mu_0$$

 $H_1: \mu_1 - \mu_2 < \mu_0$

2) กำหนดสถิติทดสอบเป็น z

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{n}}}$$

- 3) หาค่าวิกฤต
- เป็นการทดสอบทางเดียวแบบทางขวา ใช้ค่า z_lpha
- ที่ lpha=0.01 เปิดตาราง ค่า $z_lpha=2.33$

$$z_{\alpha} = 2.33$$

- 4) กำหนดกฎของการตัดสินใจ จะปฏิเสธ H_0 เมื่อ z>2.33
- 5) คำนวณค่าสถิติทดสอบ

$$z = \frac{(1300 - 1060) - (200)}{\sqrt{\frac{90^2}{60} + \frac{70^2}{50}}}$$
$$= 2.62$$

สรุปผล
 ปฏิเสธ HO หลอดไฟจากบริษัท A มีอายุการใช้งานนานกว่า
 หลอดไฟจากบริษัท B มากกว่า 200 ชม. ที่นัยสำคัญ 0.01

111.การทดสอบสมมติฐานของค่าสัดส่วนประชากร

สมมติฐานหลักและสมมติฐานรอง

$$H_0: p = p_0$$
 $H_0: p \ge p_0$ $H_0: p \ge p_0$ $H_1: p < p$ $H_1: p < p_0$

$$H_1: p \neq p_0$$

$$\mathsf{H_0}: p \geq p_0$$

$$H_1: p < p$$

$$H_0: p \geq p_0$$

$$H_1 : p < p_0$$

สถิติทดสอบ

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

จากการสำรวจโพลของ ABC เชื่อว่า 72% ของคนที่เล่นอินเตอร์เน็ต จะ ถูกขโมยข้อมูลทางอินเตอร์เน็ต จึงทำการสุ่มตัวอย่างนักศึกษาที่เล่น อินเตอร์เน็ตจำนวน 300 คน จากมหาวิทยาลัยแห่งหนึ่ง พบว่า 228 คน ถูกขโมยข้อมูล จงทดสอบความเชื่อนี้ที่ระดับนัยสำคัญ 0.10

1) ตั้งสมมติฐานหลักและสมมติฐานรอง

$$H_0: p = 0.72$$

 $H_1: p \neq 0.72$

$$H_1: p \neq 0.72$$

2) กำหนดสถิติทดสอบเป็น z

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

3) หาค่าวิกฤต

- เป็นการทดสอบสองทางใช้ค่า $z_{lpha/2}$
- ที่ lpha=0.1 , $rac{lpha}{2}=0.05$ เปิดตาราง ค่า $z_{\alpha/2} = 1.645$

$$-z_{\alpha} = -1.645$$
 $z_{\alpha} = 1.645$

- 4) กำหนดกฏของการตัดสินใจ จะปฏิเสธ H_0 เมื่อ z < -1.645 หรือ z > 1.645
- 5) คำนวณค่าสถิติทดสอบ

$$z = \frac{0.76 - 0.72}{300}$$
$$= 1.54$$

สรุปผล
 ยอมรับ HO มีคนที่เล่นอินเทอร์เน็ตและถูกขโมยข้อมูล
 ทางอินเตอร์เน็ต 72% จริงที่ระดับนัยสำคัญ 0.10

P-VALUE

ความน่าจะเป็นที่น้อยที่สุด ที่สามารถจะปฏิเสธสมมติฐานหลักได้

ระดับความเชื่อมั่นสูงสุดที่จะสามารถปฏิเสธ สมมติฐานหลักได้ (1-P-value)

$$P-Value = Pr(Z > |z_c|)$$

ค่าความน่าจะเป็นที่ค่าสถิติที่เหมาะสมนั้นมีค่ามากกว่าค่าสัมบูรณ์ของค่าสถิติที่คำนวณได้

P-VALUE

Standard Normal Model

$$H_a: p_1 - p_2 < 0$$

Left-tailed P-value

$$H_a: p_1 - p_2 > 0$$

Right-tailed P-value

$$H_a: p_1 - p_2 \neq 0$$

Two-tailed P-value

P-VALUE

กรณีที่	สรุปผล
P-Value $< \alpha$	Reject H _o (ปฏิเสธสมมติฐานหลัก)
P-Value $> \alpha$	Accept H ₀ (ยอมรับสมมติฐานหลัก)

การวิเคราะห์ความสัมพันธ์

การวิเคราะห์ความสัมพันธ์

ตัวแปร X กับ Y มีความสัมพันธ์กันอย่างไร

- Netflix
- อุณหภูมิ กับ ผลผลิต
- 🖣 ฤดูกาล กับ ยอดขาย

SCATTER PLOT (การกระจาย)

75 -70 -65 Wife's Age 30 35 40 50 55 60 65 70 75 Husband's Age

ทำหน้าที่ชี้วัดว่า ปรากฏการณ์สองอย่างสัมพันธ์กันเพียงใด

Correlation VS Causation

٧S

ยอดขายชุดว่ายน้ำ

ยอดขายไอศครีม

- Linear Correlation สหสัมพันธ์เชิงเส้น เป็นการศึกษาว่ามี ความสัมพันธ์เป็นเส้นตรงมากน้อยเพียงใด
- สัมประสิทธิ์สหสัมพันธ์ Coefficient of Correlation

- ▶ มีค่าระหว่าง -1 กับ 1
 ค่าเข้าใกลั 1 => สัมพันธ์เชิงบวกอย่างสมบูรณ์
 ค่าเข้าใกลั -1 => สัมพันธ์เชิงลบอย่างสมบูรณ์
- ♦ ไม่ยึดติดกับหน่วยวัดใดๆ

Highly correlated

This Photo by Unknown Author is licensed under CC BY-SA-NC

This Photo by Unknown Author is licensed under CC BY

This Photo by Unknown Author is licensed under CC BY-SA-NC

เจ้าของร้านน้ำแข็งใส อยากรู้ว่า อุณหภูมิมีความสัมพันธ์กับปริมาณ น้ำแข็งใสที่ถูกซื้อไปหรือไม่

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

Where,

r = Pearson Correlation Coefficient

 x_{i} = x variable samples

 $y_{i_{\, ext{=}\, ext{y}\, ext{variable}\, ext{sample}}}$

 $ar{x}_{ ext{= mean of values in x variable}} \ \ ar{y}_{ ext{= mean of values in y variable}}$

เวลาที่	อุณหภูมิ °C (x _i)	#น้ำแข็งใส (y _i)		
1	23	66		
2	26	75		
3	25	70		
4	30	81		
5	33	86		
6	26	72		
7	26	90		
8	30	80		
9	25	73		
10	29	78		
11	41	99		
12	37	95		
13	23	60		
14	23	63		
15	33	86		

เวลาที่	อุณหภูมิ °C (xi)	#เม้าแข็งใส (yi)	xi_bar	yi_bar	xi - xi_bar (Xi)	yi - yi_bar (Yi)	Xi*Yi	∑Xi*Yi	Xi²	Yi ²	∑xi²	ΣYi²	$sqrt_Xi^2*Xi^2$	Correlation Coefficient (r)
1	23	66	28.67	78.27	-5.67	-12.27	69.51	771.33	32.11	150.47	407.33	1840.93	865.95	0.89
2	26	75	28.67	78.27	-2.67	-3.27	8.71	771.33	7.11	10.67	407.33	1840.93	865.95	0.89
3	25	70	28.67	78.27	-3.67	-8.27	30.31	771.33	13.44	68.34	407.33	1840.93	865.95	0.89
4	30	81	28.67	78.27	1.33	2.73	3.64	771.33	1.78	7.47	407.33	1840.93	865.95	0.89
5	33	86	28.67	78.27	4.33	7.73	33.51	771.33	18.78	59.80	407.33	1840.93	865.95	0.89
6	26	72	28.67	78.27	-2.67	-6.27	16.71	771.33	7.11	39.27	407.33	1840.93	865.95	0.89
7	26	90	28.67	78.27	-2.67	11.73	-31.29	771.33	7.11	137.67	407.33	1840.93	865.95	0.89
8	30	80	28.67	78.27	1.33	1.73	2.31	771.33	1.78	3.00	407.33	1840.93	865.95	0.89
9	25	73	28.67	78.27	-3.67	-5.27	19.31	771.33	13.44	27.74	407.33	1840.93	865.95	0.89
10	29	78	28.67	78.27	0.33	-0.27	-0.09	771.33	0.11	0.07	407.33	1840.93	865.95	0.89
11	41	99	28.67	78.27	12.33	20.73	255.71	771.33	152.11	429.87	407.33	1840.93	865.95	0.89
12	37	95	28.67	78.27	8.33	16.73	139.44	771.33	69.44	280.00	407.33	1840.93	865.95	0.89
13	23	60	28.67	78.27	-5.67	-18.27	103.51	771.33	32.11	333.67	407.33	1840.93	865.95	0.89
14	23	63	28.67	78.27	-5.67	-15.27	86.51	771.33	32.11	233.07	407.33	1840.93	865.95	0.89
15	33	86	28.67	78.27	4.33	7.73	33.51	771.33	18.78	59.80	407.33	1840.93	865.95	0.89

ค่า Correlation Coefficient = 0.89

อุณหภูมิมีความสัมพันธ์กับปริมาณการซื้อน้ำแข็งใส

Netflix Example

Suppose we have 4 people who have rated movies on a scale of 1 to 5 stars with 1 being disliking the movie and 5 being loving the movie.

Movie	Adam	Lindsay	Austin	Sarah
Top Gun	4	1	5	2
Jurassic Park	5	2	5	3
Office Space	5	3	5	1
Message in a Bottle	1	4	1	5
Sleepless in Seattle	1	5	1	1
Titanic	4	1	5	3
Predator	5	2	5	2
Terminator	5	3	5	2
Anchorman	5	4	5	2

ค่า **r**

	Adam	Lindsay	Austin	Sarah
Adam	1	-0.54	0.97	-0.34
Lindsay	-0.54	1	-0.7	-0.1
Austin	0.97	-0.7	1	-0.31
Sarah	-0.34	-0.1	-0.31	1

REGRESSION สมการถดถอย

REGRESSION สมการถดถอย

LINEAR REGRESSION

- Econometric modelling
- Marketing Mix Model
- Customer Lifetime Value

Continuous ⇒ Continuous

$$y = \alpha_0 + \sum_{i=1}^{N} \alpha_i x_i$$

 $Im(y \sim x1 + x2, data)$

1 unit increase in x increases y by α

LOGISTIC REGRESSION

- Customer Choice Model
- 2 Click-through Rate
- 3 Conversion Rate
- 4 Credit Scoring

Continuous ⇒ True/False

$$y = \frac{1}{1 + e^{-z}}$$
$$z = \alpha_0 + \sum_{i=1}^{N} \alpha_i x_i$$

 $glm(y \sim x1 + x2, data, family=binomial())$

1 unit increase in x increases log odds by α

POISSON REGRESSION

- Number of orders in lifetime
- Number of visits per user

Continuous ⇒ 0,1,2,...

$$y \sim Poisson(\lambda)$$
$$ln\lambda = \alpha_0 + \sum_{i=1}^{N} \alpha_i x_i$$

glm(y ~ x1 + x2, data, family=poisson())

1 unit increase in x multiplies y by e^{α}

 $\label{lem:marketingDistillery.com} \begin{tabular}{ll} Marketing Distillery.com is a group of practitioners in the area of e-commerce marketing. \\ \hline {\it This Photo} \end{tabular} by Unknown Author is licensed under $${\tt CC BY-SA}$$$

LINEAR REGRESSION การถดถอยเชิงเส้น

เป็นการอธิบายลักษณะความสัมพันธ์ระหว่างตัวแปร ว่าตัวแปรตัวหนึ่งหรือหลายตัว มี อิทธิพลต่อตัวแปรอีกตัวหนึ่งอย่างไร

- X ตัวแปรตัน (Independent variable): ควบคุมและวัดค่าได้
- Y ตัวแปรตาม (Dependent variable) : เปลี่ยนแปลงไปตามการเปลี่ยนแปลงของตัวแปรต้น

ใช้ในการสร้างแบบจำลองเพื่อพยากรณ์ค่าต่างๆ

Simple linear regression:

$$Y = aX + b$$

- a คือ ค่าความชั้นของเส้นตรง
- b คือ ค่าที่ตัดกับเส้นแกน Y

LINEAR REGRESSION การถดถอยเชิงเส้น

การประมาณค่า a กับ b โดยใช้วิธีกำลังสองน้อยที่สุด (Least square estimation)

$$Y = aX + b$$

a คือ ค่าความชั้นของเส้นตรง

b คือ ค่าที่ตัดกับเส้นแกน **Y**

$$\mathbf{q} = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x^2)}$$

$$b = \bar{y} - a\bar{x}$$

การศึกษาราคาบ้าน (Housing Price)

บ้านหลังที่	ขนาดบ้าน (X)	ราคาบ้าน (Y)
1	1705	30859
2	1785	39759
3	1430	33232
4	1429	24158
5	2120	56310
6	2002	46101
7	1460	25727
8	1787	34780
9	2021	45137
10	2049	47411

บ้านหลังที่	ขนาดบ้าน (xi)	ราดาบ้าน (yi)	x_bar	y_bar	Xi = xi-x_bar	Yi = yi-y_bar	Xi*Yi	ΣΧί*Υί	Xi ²	ΣXi ²	a_hat
1	1705	30859	1778.8	38347.4	-73.8	-7488.4	552643.92	23256098.8	5446.44	649111.6	
2	1785	39759	1778.8	38347.4	6.2	1411.6	8751.92	23256098.8	38.44	649111.6	
3	1430	33232	1778.8	38347.4	-348.8	-5115.4	1784251.52	23256098.8	121661.44	649111.6	
4	1429	24158	1778.8	38347.4	-349.8	-14189.4	4963452.12	23256098.8	122360.04	649111.6	
5	2120	56310	1778.8	38347.4	341.2	17962.6	6128839.12	23256098.8	116417.44	649111.6	35.828
6	2002	46101	1778.8	38347.4	223.2	7753.6	1730603.52	23256098.8	49818.24	649111.6	33.020
7	1460	25727	1778.8	38347.4	-318.8	-12620.4	4023383.52	23256098.8	101633.44	649111.6	
8	1787	34780	1778.8	38347.4	8.2	-3567.4	-29252.68	23256098.8	67.24	649111.6	
9	2021	45137	1778.8	38347.4	242.2	6789.6	1644441.12	23256098.8	58660.84	649111.6	
10	2049	47411	1778.8	38347.4	270.2	9063.6	2448984.72	23256098.8	73008.04	649111.6	

บ้านหลังที่	ขนาดบ้าน (X)	ราคาบ้าน (Y)	ราคาบ้านคาดการณ์ (Y_hat)	Error Term (e = Y-Y_hat)	e ²	LSE (Σe ²)
1	1705	30859	35703.74	-4844.74	23471505.67	
2	1785	39759	38569.98	1189.02	1413768.56	
3	1430	33232	25851.04	7380.96	54478570.52	
4	1429	24158	25815.212	-1657.212	2746351.613	
5	2120	56310	50572.36	5737.64	32920512.77	135,387,027.64
6	2002	46101	46344.656	-243.656	59368.24634	133,367,027.64
7	1460	25727	26925.88	-1198.88	1437313.254	
8	1787	34780	38641.636	-3861.636	14912232.6	
9	2021	45137	47025.388	-1888.388	3566009.239	
10	2049	47411	48028.572	-617.572	381395.1752	

MULTIPLE REGRESSION

ในความเป็นจริงแล้วเราไม่ได้ตัดสินใจว่าราคาบ้านควรจะเป็นเท่าไหร่

"จากปัจจัยขนาดของบ้านเท่านั้น"

แต่เราอาจจะมีปัจจัยอื่นๆมาใช้ในการตัดสินใจด้วย เช่น จำนวนห้อง, ปริมาณที่จอดรถ, เฟอร์นิเจอร์ภายในบ้าน

ตัวแปรตัน (X) ที่ใช้จะมีมากกว่า 1 ตัว

$$Y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

OPTIMIZATION LINEAR PROGRAMMING

เป็นวิธีการหาค่าที่ดีที่สุด ภายใต้เงื่อนไข/ข้อจำกัด/ทรัพยากร

maximize
$$c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

subject to $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \leq b_1$
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \leq b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \leq b_m$
 $x_1, x_2, \dots x_n \geq 0$

We shall refer to linear programs formulated this way as linear programs in *standard* form. We shall always use m to denote the number of constraints, and n to denote the number of decision variables.

OPTIMIZATION LINEAR PROGRAMMING

การประยุกต์ใช้ => กำไรสูงสุด / ต้นทุนต่ำสุด

- อุตสาหกรรมปิโตรเลียม : สูตรผสมน้ำมันดิบ
- ภาคการผลิต : inventory, overtime
- อุตสาหกรรมอาหาร : shipping plan
- การแพทย์ : nutrition
- การสื่อสาร : network

Maximization problem

Objective function

$$c^{T}x = c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n}$$

ที่สอดคล้องกับ constraints

$$\begin{vmatrix}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_n
 \end{vmatrix}$$

$$\begin{cases}
 (Ax \le b) \\
 x_i \ge 0, \quad i = 1, 2, ..., n$$

จะได้แบบฟอร์มทั่วไปของปัญหาในการหาค่าสูงสุด คือ

Maximize

$$c^T x$$

Subject to:

$$Ax \leq b$$

$$x \ge 0$$

Minimization problem

Objective function

$$y^{T}b = y_{1}b_{1} + y_{2}b_{2} + ... + y_{m}b_{m}$$

ที่สอดคล้องกับ constraints

$$y_{1}a_{11} + y_{2}a_{21} + \dots + y_{m}a_{m1} \ge c_{1}$$

$$y_{1}a_{12} + y_{2}a_{22} + \dots + y_{m}a_{m2} \ge c_{2}$$

$$\vdots$$

$$y_{1}a_{1n} + y_{2}a_{2n} + \dots + y_{m}a_{mn} \ge c_{n}$$

$$y_{i} \ge 0, \qquad i = 1, 2, \dots, n$$

$$y_{i} \ge 0, \qquad i = 1, 2, \dots, n$$

จะได้แบบฟอร์มทั่วไปของปัญหาในการหาค่าต่ำสุด คือ

Minimize

$$y^Tb$$

Subject to:

$$y^T A \ge c^T$$

$$y \ge 0$$

GRAPHICAL METHOD

Maximize $z = 5x_1 + 4x_2$

ที่สอดคล้องกับ constraints:

$$6x_1 + 4x_2 \le 24 \tag{1}$$

$$x_1 + 2x_2 \le 6 \tag{2}$$

$$-x_1 + x_2 \le 1 \tag{3}$$

$$x_2 \le 2 \tag{4}$$

$$x_1 \ge 0 \tag{5}$$

$$x_2 \ge 0 \tag{6}$$

PIVOT METHOD

	s_1		\boldsymbol{s}_{j}		S_n
<i>y</i> ₁ :	<i>a</i> ₁₁ :		a_{1j} :		$a_{_{1n}}$:
y_i	a_{i1}		a_{ij}		a_{in}
:	:		÷		÷
\mathcal{Y}_m	a_{m1}	•••	a_{mj}	•••	a_{mn}

SIMPLEX METHOD

$$-y^T A + s^T = -c^T$$

								Solution
y_1	y_2	•••	${\mathcal Y}_n$	s_1	s_2	•••	S_m	constant
$-a_{11}$	$-a_{12}$		$-a_{1n}$	1	0		0	$-c_1$
$-a_{21}$	$-a_{22}$		$-a_{2n}$	0	1		0	$-c_2$
:	:	٠.		:	:	٠.	:	:
$-a_{m1}$	$-a_{m2}$		$-a_{mn}$	0	0		1	$-c_m$
$-b_1$	$-b_2$		$-b_n$	0	0		0	0

Simplex Tableau ของ minimization problem

WRAP UP

- 🔪 การทดสอบสมมติฐาน
- การวิเคราะห์ความสัมพันธ์
 - ➤ Scatter plot
 - **Correlation**
 - Regression
- ➤ Optimization Linear Programming