Estruturas de Informação

Análise de Complexidade

Departamento de Engenharia Informática (DEI/ISEP) Fátima Rodrigues mfc@isep.ipp.pt

"Ao verificar que um dado programa está muito lento, um programador menos responsável, normalmente culpabiliza as capacidades de processamento da máquina e provavelmente pede nova máquina [...]

Entretanto, o ganho potencial que uma máquina mais rápida pode proporcionar é tipicamente limitado por um factor de 10, por razões técnicas e/ou económicas.

Para obter um maior ganho de desempenho, é preciso desenhar melhores algoritmos – algoritmos eficientes.

Um algoritmo rápido em execução numa máquina lenta terá sempre um melhor desempenho para grandes instâncias do problema. Sempre."

S. S. Skiena, The Algorithm Design Manual

Introdução

- Algoritmo: conjunto claramente específico de instruções a seguir para resolver um problema
 - o mesmo algoritmo pode ser "implementado" de diferentes formas
- Descrição de algoritmos:
 - em linguagem natural, pseudo-código, numa linguagem de programação...
- Um algoritmo deve apresentar as seguintes características:
 - ter entrada e saída
 - ser finito
 - ser definido
 - ser correcto
 - ser eficiente

Características Desejáveis dos Algoritmos

- Correcção significa trabalhar correctamente quaisquer que sejam os dados de entrada dentro do domínio de valores admissíveis pelas suas variáveis
- Eficiência significa que os algoritmos devem ser rápidos e nunca usar recursos do computador superiores ao necessário

Estes objectivos serão alcançados se a implementação dos algoritmos obedecer aos seguintes objectivos:

- Robustez

 é a capacidade do algoritmo dar resposta à manipulação de entradas não esperadas

Adaptabilidade

 é a capacidade do algoritmo conseguir dar resposta a alterações

Reutilização

 significa o mesmo código seja um componente de diferentes sistemas em vários domínios de aplicação

Critérios de Escolha

Dado um problema podem existir vários algoritmos possíveis

Critérios de escolha:

- Extensibilidade
- Modularidade
- Portabilidade
- Eficiência (em função da dimensão do problema)
 - em tempo Complexidade Temporal
 - em espaço Complexidade Espacial

Complexidade Espacial e Temporal

- Complexidade Espacial S(n) de um programa ou algoritmo: é o espaço de memória que necessita para executar até ao fim em função do tamanho (n) da entrada
- Complexidade Temporal T(n) de um programa ou algoritmo: é o tempo que demora a executar (tempo de execução) em função do tamanho (n) da entrada

Complexidade ↑ versus Eficiência ↓

- Análise de Complexidade de um algoritmo envolve determinar os recursos (tempo, espaço) exigidos pelo algoritmo
- Para diferentes algoritmos que resolvem o mesmo problema, um algoritmo é mais eficiente, se exige menos recursos para resolver o mesmo problema

O valor exacto do tempo de execução de um algoritmo depende também:

- da linguagem de programação
- da máquina utilizada
- A análise de Complexidade não considera estes factores apenas a ordem de grandeza Tempo em função da quantidade dos dados de entrada

Exemplo: ordenar um vector com 10 elementos não leva o mesmo tempo que ordenar um vector com 1000 elementos

- O que interessa é relacionar a variação que existe no tempo de ordenação com a variação do número de elementos
- prever o crescimento dos recursos exigidos pelo algoritmo à medida que o tamanho dos dados de entrada cresce

Algumas Funções Típicas

Basicamente existem dois tipos de algoritmos:

- Os que têm tempo de execução limitável por um polinómio dependente do tamanho da entrada
 - **→** Algoritmos eficientes
- E os que não são limitáveis por um polinómio têm normalmente uma evolução exponencial
 - → Algoritmos não eficientes

T(n) – ordem de grandeza do tempo/espaço requerido para um problema de dimensão n

Ordens de Complexidade mais comuns

Considerando $n=10^5$ elementos e assumindo como tempo de execução de cada passo $k=10^{-5}$ segundos $=10~\mu s$

		Tempo de Execução
		10 ⁻⁵ g (10 ⁵)
O(3 ⁿ)	Tempo exponencial	50 000 horas
$O(n^2)$	Tempo quadrático	28 horas
O(n log n)	Tempo n log n	17 seg
O(n)	Tempo linear	1 seg
O(log n)	Tempo logarítmico	170 µs
O(1)	Tempo constante	10 µs

Ordens de Complexidade mais comuns

Notações O, Ω e Θ

Definição (notação O) = Limite superior para o tempo de execução

Definição (notação Ω) = Limite inferior para o tempo de execução

Definição (notação Θ) = Tempo de execução exacto

Notação Big-Oh (O Grande)

Num algoritmo que toma como domínio um conjunto de n elementos, a notação Big-Oh exprime o tipo de proporcionalidade existente entre n e o tempo t(n) que demora a sua execução

Este tipo de notação é **assimptótica** porque vai ser definida para um comportamento limite quando aumenta o tamanho do problema

Definição:

```
T(n) = O(f(n)) (diz-se que T(n) é de ordem f(n)) se e só se existem constantes positivas c e n_0 tal que T(n) \le c f(n) para todo o n > n_0, n_0 > 0, c > 0
```

Com a notação Big-Oh garantimos que a complexidade da função T(n) não é superior a f(n); f(n) é um majorante de T(n)

Exemplos:

$$f(n) = c_k n^k + c_{k-1} n^{k-1} + ... + c_0 \rightarrow O(n^k)$$
 (c_i - constantes)
 $f(n) = \log_2 n \rightarrow O(\log n)$ (não se indica a base - a base é uma const.)
 $f(n) = 4 \rightarrow O(1)$ (usa-se 1 para ordem constante)

Propriedades

Se
$$F(n) = O(f(n)) e G(n) = O(g(n))$$

então $F(n) + G(n) = O(max (f(n), g(n)))$

```
Demonstração
Por hipótese existem n_1, n_2, c_1, c_2 tais que:
                                 n \ge n_1 \rightarrow F(n) \le c_1 f(n)
                                n \ge n_2 \rightarrow G(n) \le c_2 g(n)
Sejam:
                                 n_3 = max (n_1, n_2)
                                 c_3 = max (c_1, c_2)
Então, para qualquer n \ge n_3:
                       F(n) + G(n) \le c_1 f(n) + c_2 g(n)
                                        \leq c_3(f(n) + g(n))
                                        \leq c_3 \max (f(n), g(n))
```

Propriedades

- 1. O(f) + O(g) = O(f + g) = O(max(f, g))Ex: $O(n^2) + O(log n) = O(n^2)$
- 2. $O(f) \times O(g) = O(f \times g)$ Ex: $O(n^2) \times O(\log n) = O(n^2 \log n)$
- 3. O(cf) = O(f) com c constante Ex: $O(3 n^2) = O(n^2)$
- 4. F = O(f)Ex: $3n^2 + log n = O(3n^2 + log n)$
- 5. $O(n^g) < O(n^{g+k})$

Exemplo

$$3 n^{2} + \log n = O(3 n^{2} + \log n)$$
 por 4.
= $O(3 n^{2})$ por 1.
= $O(n^{2})$ por 3.

Exemplo: Função que executa o somatório $\rightarrow \sum_{i=0}^{n} i^3$

		Unidades de Tempo
1	int soma_cubos (int n)	
2	{ int somaparcial;	
3	somaparcial = 0 ;	1
4	for (int i = 1; i <= n; i++)	1 + (n+1) + n
5	somaparcial += i * i * i ;	4 n
6	return somaparcial ;	1
	}	6 n + 4

$$T(n) = O(n)$$
 Linear

Na prática, é difícil (senão impossível) prever com rigor o tempo de execução de um algoritmo ou programa

- obtém-se o tempo a menos de constantes multiplicativas e de parcelas menos significativas (pelo menos para n grande)
- identificam-se uma ou mais operações-chave (operações mais frequentes ou muito mais demoradas) e determina-se o nº de vezes que são executadas

Exemplo: num **algoritmo de ordenação**, uma operação fundamental, natural é a **comparação entre elementos** quanto à ordem

Exemplo: Determinar a quantidade de 1s existentes na representação binária de um número n

1 2	1 10
4	100
7	111
 16	10000
 32	100000

1	ler(n)	1	41
2	conta ← 0	1	t1
3	$Enq^{to} n > 0$ fazer	k+1	t2
4	conta ← conta + n mod 2	k	t3
5	n ← n / 2	k	1.5

Tempo total para execução do algoritmo:

$$T(n) = t1 + (k + 1) \times t2 + k \times t3$$

 $T(n) = (t1+t2) + (t2+t3) \times k$

em que k é o número de iterações do ciclo

É necessário relacionar k (nº de iterações) com n

n	
1	1
2	10
4	100
8	1000
16	10000
32	100000

k	Função
1	1+log ₂ 1
2	1+log ₂ 2
4	
8	
16	
32	1+log ₂ 32

A operação divisões por 2 é inversa da operação potência de base 2:

função inversa potência de base 2 → log₂n

Substituindo $k = 1 + log_2 n$

$$T(n) = (t1+t2) + (t2+t3) \times k$$

 $T(n) < (t1+t2) + (t2+t3) \times (1 + log_2 n)$
 $T(n) < C \times (1 + log_2 n)$

 $T(n) = O(\log n) \text{ Logarítmica}$

Na Prática

Todas as operações simples (teste, afectação, etc.) custam 1 unidade de tempo

Para calcular a ordem de grandeza da complexidade, ignoram-se as constantes

Afectações
Comparações
Operações aritméticas
Leituras e Escritas
Chamadas de funções
Retornos de funções
Acessos a campos de vectores
Acessos a campos de registos

0(1)

$$\begin{tabular}{lll} \textbf{switch} & \textbf{E} \\ \textbf{case} & \forall 1: \textbf{S1} \\ & \dots \\ \textbf{case} & \forall j: \textbf{Sj} \\ \end{tabular} O \left(max \left(T_E, T_{S1}, ..., T_{Sj} \right) \right)$$

Na Prática

```
if C then S1 else S2 O (max (TC, TS1, TS2))
for .... do S
                       O(nT(S))
                       O ( n max (T_C, T_S))
while C do S
                       O ( n max (T_C, T_S)) n é o nº iterações do ciclo
do S while C
Ciclos aninhados
  Para i = 1 até n
   \underline{Para} j = 1 até n
                           x n ou O(n²) Os ciclos exteriores têm efeito
         k++
                                         multiplicativo sobre as operações
                                         no ciclo interior
```

Ciclos paralelos

$$\begin{array}{ll} \underline{Para} & i=1 \text{ até } n & O(n) \\ & A[i]=0 \ ; \\ \underline{Para} & i=1 \text{ até } n & O(n^2) \\ \underline{Para} & j=1 \text{ até } n \\ & k++ \end{array} \right) \quad \text{pela Propriedade 1} \quad O(n^2)$$

Na Prática

```
h = 1;

Enq<sup>to</sup> h <= n

{ s;

h = h * 2; }

h toma os valores 1, 2, 4, ..., n

→ 1 + log<sub>2</sub> n → O(log n)
```

Quando o 2º ciclo depende do ciclo exterior

$$Para i = 1 até n$$

 $Para j = 1 até i$
 $k++$

O ciclo interno é executado i vezes, pelo que o tempo total é

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \approx \frac{n^2}{2}$$

 \rightarrow O(n²)

o ciclo externo é executado log₂n vezes

o ciclo interno n vezes

→ O(n log n)

Algoritmos determinísticos vs. não determinísticos

Os **algoritmos determinísticos**, são aqueles para os quais não é preciso atender à forma de distribuição dos dados para obter o seu tempo de execução.

Exemplos:

- média dos elementos de um vector
- máximo de um vector
- multiplicação de duas matrizes

- ...

Estes algoritmos independentemente dos valores contidos no vector apresentarão sempre a mesma complexidade

Os **algoritmos não determinísticos**, a sua complexidade depende da forma de distribuição dos dados

Exemplos:

- pesquisa de um valor num vector
- ordenação dos valores de um vector

- ...

Os principais critérios para a determinação da complexidade dos algoritmos **não determinísticos** são: o **melhor caso**, o **caso médio** e o **pior caso**

Algoritmos de Pesquisa

Pesquisa Sequencial

Problema (*pesquisa de valor num vector*): verificar se um valor existe num vector e, no caso de existir, indicar a sua posição

int	Pesq_Sequencial (T v[], int n, T x)
1	$i \leftarrow 0 \; ; \; enc \leftarrow False$
2	Engto i < n fazer
3	\underline{se} (v[i] = x) $\underline{ent\~ao}$ $devolve i$ $\underline{sen\~ao}$ $i \leftarrow i +1$
4	devolve -1

Pesquisa Sequencial

Operação fundamental:

comparação (instr. <u>se</u> linha 3)

A complexidade do algoritmo vai depender da posição em que x se encontrar:

```
1^a posição \rightarrow 1 comparação
```

2ª posição → 2 comparações

.

n^a posição → n comparações

Complexidade Pior caso \rightarrow O (n)

Complexidade Média: Se **x** existir no vector, o teste é realizado aproximadamente **n/2** vezes em média (1 vez no melhor caso)

$$1 \times (1 + 2 + \dots + n) = (1 + n) \rightarrow O(n)$$

T(n) = O(n) Linear no pior caso e no caso médio

Complexidade Espacial

Complexidade espacial de um programa é dada pela função que define o comportamento do programa relacionando o espaço de memória ocupado com o volume de dados a manipular

Intervêm neste espaço os seguintes componentes:

Espaço de Instruções: espaço necessário para guardar a versão compilada das instruções do programa. Este espaço é constante para um dado programa referente a um dado compilador, com determinadas opções de compilação → Este espaço não interessa analisar

Espaços que variam com o algoritmo usado:

- Espaço de Dados: espaço onde estão definidas as variáveis globais e que varia de acordo com os dados manipulados pelo problema
- Espaço de Stack: usado para guardar a informação necessária para resumir a execução de funções.

Na stack são guardados os endereços:

- de retorno das funções
- variáveis locais
- parâmetros formais

Complexidade Espacial

Pesquisa Sequencial

Espaço total:

```
endereço de retorno 2 bytes apontador v 2 bytes apontador para parâmetro actual de x 2 bytes valor do parâmetro formal n 2 bytes variável local i 2 bytes variável local enc 2 bytes 12 bytes
```

Assim esta função tem uma Complexidade espacial constante

S(n) = O(1) em qualquer caso

Eficiência da Pesquisa Sequencial

- Eficiência temporal da Pesq_Sequencial
 - A operação realizada mais vezes é o teste da condição de continuação do ciclo **for**, no máximo **n+1** vezes (no caso de não encontrar x).
 - Se x existir no vector, o teste é realizado aproximadamente
 n/2 vezes em média (1 vez no melhor caso)
 - \Rightarrow T(n) = O(n) (linear) no pior caso e no caso médio
- Eficiência espacial da Pesq_Sequencial
 - Gasta o espaço das variáveis locais (incluindo argumentos)
 - Como o array é passado "por referência" (de facto o que é passado é o endereço do array), o espaço gasto pelas variáveis locais é constante e independente do tamanho do array
 - \Rightarrow S(n) = O(1) (constante) em qualquer caso

O que analisar?

O recurso mais importante a analisar é o **tempo de execução** Vários factores afectam o **tempo de execução**:

- Computador fora do âmbito de qualquer modelo teórico
- Compilador
- Algoritmo usado
- Tamanho dos dados de entrada do algoritmo (N)

Em algoritmos não determinísticos:

- T_{med} (N) representa um comportamento típico
- T_{pior} (N) garante-nos o desempenho do algoritmo para qualquer input

 $T_{med}(N) \le T_{pior}(N)$ na maioria dos casos segue o pior caso

Uma vez que estamos interessados num limite superior – **Complexidade Big-Oh** – basta apenas calcular a complexidade para o **Pior Caso** e **Melhor Caso**

Pesquisa Binária

Verificar se um valor (x) existe num vector (v) previamente ordenado e, no caso de existir, indicar a sua posição

Algoritmo

```
inf ← 1
sup ← n
Enq<sup>to</sup> inf <= sup fazer
  meio ← (inf+sup)/2
  se v[meio] = x então
      devolve meio
  senão
      se v[meio] < x então
      inf ← meio+1
      senão
      sup ← meio-1

devolve -1</pre>
```

Codificação em C++

```
template <class T>
int BinarySearch(const T v[], int n, T x)
{
   int left = 0, right = n - 1;
   while (left <= right)
   {
      int middle = (left+right)/2;
      if (x == v[middle])
          return middle;
      else if (x > v[middle])
          left = middle + 1;
      else
          right = middle - 1;
   }
   return -1;
}
```

Exemplo de Pesquisa Binária

vector a inspeccionar vazio \Rightarrow o valor 2 não existe no vector inicial!

Exemplo de Pesquisa Binária

x: 2

Eficiência Temporal da Pesquisa Binária

Operação fundamental: meio \leftarrow (inf + sup)/2 (instr. linha 3)

A complexidade do algoritmo vai depender do número de elementos do vector (n) e da posição onde x se encontra

Pior Caso: x não se encontra no vector

n	k
32	7
16	6
8	5
4	4
2	3

$$2 + \log_2 n$$

Em cada iteração, o tamanho do sub-vector a analisar é dividido por um factor de aproximadamente 2

Ao fim de k iterações, o tamanho do sub-vector a analisar é aproximadamente n / 2k

Se não existir no vector o valor procurado, o ciclo só termina quando:

$$n / 2k \approx 1 \Leftrightarrow log_2 n - k \approx 0 \Leftrightarrow k \approx log_2 n$$

Pior caso, o nº de iterações é aproximadamente log₂ n

$$\Rightarrow T(n) = O(\log n)$$
 Logarítmico

Algoritmo de Ordenação

Ordenação por Inserção

- Problema (ordenação de vector): rearranjar os n elementos de um vector (v) por ordem crescente
 - ou melhor, por ordem n\u00e3o decrescente, porque podem existir valores repetidos
- Algoritmo (ordenação por inserção):
 - Considera-se o vector dividido em dois sub-vectores (esquerdo e direito), com o da esquerda ordenado e o da direita desordenado
 - Começa-se com um elemento apenas no sub-vector da esquerda
 - Move-se um elemento de cada vez do sub-vector da direita para o sub-vector da esquerda, inserindo-o na posição correcta por forma a manter o sub-vector da esquerda ordenado
 - Termina-se quando o sub-vector da direita fica vazio

Exemplo de Ordenação por Inserção

Ordenação por Inserção

```
Algoritmo (ordenação por inserção): i \leftarrow 1 \underline{Enq^{to}} \quad i < n \quad \underline{fazer} j \leftarrow i x \leftarrow v[i]
```

```
Enq<sup>to</sup> j > 0 \wedge x < v[j-1] <u>fazer</u>
v[j] \leftarrow v[j-1]
j \leftarrow j-1
v[j] \leftarrow x
```

$i \leftarrow i + 1$

Sub-problema:

Inserção de um valor num vector ordenado mantendo-o ordenado

Implementação da Ordenação por Inserção em C++

```
template <class T>
  void InsertSorted(T v[], int n, T x)
    for (int j = n; j > 0 && x < v[j-1]; j--)
        v[i] = v[i-1];
    v[j] = x;
  // Ordena vector v de n elementos, ficando v[0] \leq ... \leq v[n-1]
  template <class T>
 void InsertionSort(T v[], int n)
  { for (int i = 1; i < n; i++)
        InsertSorted(v, i, v[i]);
ou
       template <class T>
       void InsertionOrd(T v[], int n)
       { for (int i = 1; i < n; i++)
          \{ \mathbf{T} \mathbf{x} = \mathbf{v}[\mathbf{i}];
              for (int j = i; j > 0 && x < v[j-1]; j--)
                 v[i] = v[i-1];
             v[j] = x;
```

Eficiência da Ordenação por Inserção

- O no de iterações do **InsertSorted** (v, n, x) é:
 - -Pior caso: n (inserir um valor menor do que todos os que existem no vector)
 - -Melhor caso: 1 (inserir um valor maior do que todos os que existem no vector)
 - -Média: n/2
- O nº de iterações do **InsertionSort (v, n)**:
 - -faz InsertSorted (,1,), InsertSorted (,2,), ..., InsertSorted (,n-1,)
 - -o nº total de iterações do ciclo for de InsertSorted é:
 - Melhor caso: 1 + 1 + ... + 1 (*n-1 vezes*) = n-1 ≈ n
 - Pior caso: $1 + 2 + ... + n-1 = (n-1)(1+ n-1)/2 = n(n-1)/2 \approx n^2/2$
 - ◆ Média, metade do anterior, isto é, aproximadamente n²/4

Melhor Caso: T(n) = O(n) Linear

Pior Caso e Caso Médio: $T(n) = O(n^2)$ Quadrático

Análise de Complexidade

Funções Recursivas

Funções Recursivas

Os problemas que podem ser resolvidos recursivamente têm normalmente as seguintes características:

- um ou mais casos de paragem, em que a solução é não recursiva e conhecida
- casos em que o problema pode ser diminuído recursivamente até se atingirem os casos de paragem

Estrutura de um Algoritmo Recursivo

<u>se</u> caso de paragem atingido <u>então</u> resolver o problema

<u>senão</u>

fazer uma ou mais invocações recursivas

Custo da Recursividade

A invocação de uma função recursiva produz um **desperdício de tempo e de memória** devido:

- à criação de uma cópia local dos parâmetros de entrada que são passados por valor
- à recolha do endereço dos parâmetros passados por referência
- espaço para guardar variáveis locais
- bem como a salvaguarda do estado do programa na altura da invocação - memória stack - para que o programa possa retomar a execução na instrução seguinte à invocação da função, quando a execução da função terminar

Complexidade Funções Recursivas

Em funções recursivas a complexidade é determinada:

- pelo número de chamadas recursivas
- pela complexidade das operações que acarretam cada chamada

Exemplo Factorial

```
long factiter (long num)
{ long res=1 ;
  for (int i = 1; i <= num; i++)</pre>
      res *= i ;
                                         T(n) = O(n) Linear
  return res ; }
                                         S(n) = 1
long factrecurs (long &num)
\{ if (num == 1) \}
     return 1 ;
  else
      return num * factrecurs(num-1) ; }
numCR = \begin{cases} 0 & \text{ii } -1 \\ 1 + numCR (n-1) & \text{ii } >= 2 \end{cases}
T(n) = O(n)
S(n) = O(n)
                                                                        Linear
```

Fibonnaci Iteractivo

```
int fib iter (int n)
  if (n == 0 || n == 1)
     return n;
  segano=0;
  ano=1;
  for (int i = 2; i <= n; i++)
     corrente = segano + ano;
     segano = ano;
     ano = corrente;
  return corrente;
                                    T(n) = O(n) Linear
```

Fibonnaci recursivo

```
int fib (int n)
{
   if (n ≤ 1)
      return n ;
   else
      return fib(n-1) + fib(n-2);
}
```


Número de Chamadas recursivas:

$$numCR(n) = \begin{cases} 0 & n = 0 \\ 0 & n = 1 \\ numCR(n-1) + numCR(n-2) + 1 & n > = 2 \end{cases}$$

Fibonnaci recursivo

n	k	Função
2	3	<= 2 ⁿ⁻¹ +1
3	5	<= 2 ⁿ⁻¹ +1
4	9	<= 2 ⁿ⁻¹ +1
5	15	<= 2 ⁿ⁻¹ +1
6	24	<= 2 ⁿ⁻¹ +1
		<= O(2 ⁿ⁻¹)

$$T(n) = O(2^n)$$
 Exponencial

Potência xⁿ (Versão iterativa)

```
double potencia (double x, int n)
{
    double pot = 1.0;

    for (; n > 0; n--)
        pot *= x;

    for (; n < 0; n++)
        pot /= x;

    return pot;
}</pre>
T(n) = O(n) Linear
```

Potência xⁿ (versão recursiva)

```
double potenc (const double x, const int& n)
{
  if (n == 0)
    return 1 ;
  else
    return x * potenc(x,n-1) ;
}
```

Número de Chamadas Recursivas

n	k
0	0
1	1
2	2
15	14
n	n-1

$$T(n) = O(n)$$
 Linear

Potência xⁿ (outra versão recursiva)

```
double potenc (const double x, const int& n)
\{ if (n == 0) \}
     return 1 ;
  if (n == 1)
     return x ;
  if (n % 2 == 0)
     return potenc (x * x, n/2);
  else
     return x * potenc (x * x, n/2) ; }
 2^{16} = (2*2)^8 = (4*4)^4 = (16*16)^2 = (256*256)^1
     → 5 chamadas recursivas
 2^{15} = 2*(2*2)^7 = 2*4*(4*4)^3 = 2*4*16*(16*16)^1

→ 4 chamadas recursivas
```

Potência xⁿ (outra versão recursiva)

Número de Chamadas Recursivas

n (par)	k
0	1
1	1
2	2
4	3
8	4
16	5
64	7
	1+log ₂ n

n (ímpar)	k
3	2
5	3
7	3
9	4
	1+log ₂ n

$$T(n) = O(log n)$$
 Logarítmica

Torres de Hanói

```
Torres-Hanoi (N, TorreA, TorreB, TorreC)
    Se (N = 1)
        Mover disco TorreA → TorreB
    Senão
        Torres-Hanoi (N-1, TorreA, TorreC, TorreB)
        Torres-Hanoi (1, TorreA, TorreB, TorreC)
        Torres-Hanoi (N-1, TorreC, TorreB, TorreA)
```

n (nº discos)	K (nº movimentos)
1	1
2	3
4	15
8	63
16	
	•••
	2 ⁿ -1

$$T(n) = O(2^n)$$
 Exponencial

Algoritmos de Ordenação

Dividir-e-Conquistar

- Dividir-e-Conquistar é um paradigma genérico de desenho de algoritmos:
 - Dividir: dividir os dados de entrada S em dois subconjuntos disjuntos S1 e S2
 - **Recorrência**: resolver os subproblemas associados com S1 e S2
 - Conquistar: combinar as soluções S1 e S2 numa solução final S

 O caso base para a recursividade são subproblemas de tamanho 0 ou 1

Algoritmo MergeSort

MergeSort é um algoritmo de ordenação baseado no paradigma Dividir-e-Conquistar

MergeSort recebe uma sequência de entrada S com n elementos e consiste em três etapas:

- Divide: divide S em duas sequências S1 e S2 de cerca de n/2 elementos cada
- Recorrência: recursivamente ordena S1 e S2
- Conquistar: une S1 e S2 numa sequência ordenada única

Algoritmo MergeSort

Input: Sequência S com n elementos

Output: Sequência S ordenada

```
mergeSort(S)
Se S.size() > 1
S1 ← partition (S, n/2) //subvector esq.
S2 ← partition (S, n/2) //subvector dir.
mergeSort(S1)
mergeSort(S2)
S ← merge(S1, S2)
```

Árvore MergeSort

- A execução do mergeSort pode ser descrita através de uma árvore binária
- Cada nó representa uma chamada recursiva do mergeSort e apresenta a sequência não ordenada antes da execução e a respetiva partição ordenada no final da execução
- a raiz é a chamada inicial
- as folhas são chamadas de subsequências de tamanho 0 ou 1

Exemplo

Partição

Chamada recursiva, partição

Chamada Recursiva, partição

Chamada Recursiva, caso base

Chamada Recursiva, caso base

Une

Chamada Recursiva, ..., caso base, une

Une

Chamada Recursiva, ..., une,une,une

Une

Análise MergeSort

- A altura h da árvore mergeSort é O(log n)
- Em cada chamada recursiva a sequência é dividida ao meio
- O trabalho feito nos nós de profundidade é O (n)
- Assim, o tempo total de merge-sort é $O(n \log n)$

Algoritmo QuickSort

QuickSort é um algoritmo de ordenação baseado no paradigma Dividir-e-Conquistar

QuickSort recebe uma sequência de entrada S com n elementos e consiste em três etapas:

Divide: Escolhe um elemento x (meio do vetor, chamado pivô)

Particiona S em:

- L elementos menores que x
- E elementos iguais a x
- G elementos superiores a x

Recorrência: recursivamente ordena L e G

Conquista: une L, E e G numa sequência ordenada única

Algoritmo Ordenação por Partição Quick Sort

1. Caso básico:

Se o número (n) de elementos do vector (v) a ordenar for 0 ou 1, não é preciso fazer nada

2. Passo de partição:

- 2.1. Escolher um elemento arbitrário (x) do vector (chamado *pivot*)
- 2.2. Partir o vector inicial em dois sub-vectores (esquerdo e direito):
 - valores ≤ x no sub-vector esquerdo
 - valores ≥ x no sub-array direito
 - pode existir um 3º sub-array central com valores =x

3. Passo recursivo:

Ordenar os sub-vectores esquerdo e direito, usando o mesmo método recursivamente

Algoritmo recursivo baseado na técnica divide and conquer!

Algoritmo Ordenação por Partição Quick Sort

```
quicksort (v, inf, sup)
 pivot \leftarrow v[(inf+sup)/2]
                                   //elemento do meio do array
 i \leftarrow inf
                                   //indice da 1° posição do vector
 j \leftarrow sup
                                   //indice da última posição do vector
 Enq<sup>to</sup> i ≤ j fazer
      Enqto v[i] < pivot
           i++
       Engto v[j] > pivot
           j--
       se i ≤ j
         v[i] = v[j]
          i++
          i --
  se (inf < j)
     quicksort (v, inf, j)
  se (sup > i)
     quicksort (v, i, sup)
```

Exemplo do Passo de Partição - Melhor Caso

Eficiência da Ordenação por Partição

Melhor caso: Ocorre quando a tabela está sempre dividida precisamente ao meio

Melhor caso:

- profundidade de recursão: ≈ 1+log₂ n
- Tempo de execução total : $T(n) = O[(1+\log_2 n) \times n] = O(n \log n)$

Exemplo do Passo de Partição - Pior Caso

74

Eficiência da Ordenação por Partição

Pior caso: Uma das tabelas é vazia

Pior caso:

- profundidade de recursão: n
- tempo de execução total (somando totais de linhas):

$$T(n) = O[n+(n-1)+(n-2) + ... +2]$$

$$T(n) = O[n+(n-1)(n+2)] = O(n^2)$$

Algumas considerações

- Prova-se que no caso médio (na hipótese de os valores estarem aleatoriamente distribuídos pelo array), o tempo de execução é da mesma ordem que no melhor caso → T(n) = O(n log n)
- Para um "input" pequeno (n ≤ 20) o "QuickSort" não se comporta tão bem como o método Ordenação Linear, é mais adequado para ordenar sequências de grande dimensão
- O critério seguido para a escolha do pivot destina-se a tratar eficientemente os casos em que o vetor está inicialmente ordenado
 - se se escolher sempre o pivot como o primeiro elemento do vector e se este estiver ordenado, este algoritmo toma um tempo da ordem nº para não fazer nada na ordenação da tabela
 - Em regra, o pivot escolhido não deve ser nem o primeiro nem o último elemento do vector

Complexidade Espacial QuickSort

- O espaço de memória exigido por cada chamada de QuickSort, sem contar com chamadas recursivas, é independente do tamanho (n) do vector
- O espaço de memória total exigido pela chamada de QuickSort, incluindo as chamadas recursivas, é pois proporcional à profundidade de recursão
- Assim, a complexidade espacial de QuickSort é:
 - O(log n) no melhor caso (e no caso médio)
 - **O(n)** no pior caso