0. 写在前面

1本课程总体结构

章节		教学内容	
第一章 引言 (刘均, 2)		概念与研究背景;主要任务;挑战与研究方向;相关资源	
第二章: 自然语言的 统计特性(刘均,1)		Zipf定律、Heaps定律、Benford 定律。	
	词袋模型 (刘均, 3)	语言模型;词袋模型(BoW);TF-IDF。 NLU任务:情感分析、文本聚类。	
第三章:	概率语言模型 (李辰, 6)	概率语言模型; n-gram 模型; 最大似然估计; 平滑技术。 NLU任务: 分词、语义关系抽取。	
语言模型	主题模型 (刘均, 6)	生成模型; 主题模型的图表示; LSA、PLSA、LDA; NMF等。 NLU任务: 话题检测、推荐。	
	神经网络语言模型 (李辰, 6)	分布式表示; C&W、CBOW、Skip-Gram、Glove等。 NLU任务: 对话、实体消歧。	
	概述 (李辰, 1)	面临的挑战;发展历程;方法类别及特点;MT评估。	
第四章: 机器翻译	统计机器翻译 (李辰, 3)	蜂 统计MT; Noisy Channel模型; IBM模型。	
	神经网络机器 译 与大语言模 (刘均, 4)	RNN与LSTM简介: Encoder-Decoder框架: Attention模型:	

- 这门课由于由两位老师授课,个人感觉结构比较混乱
- 由于时间紧任务重经费无,所以笔记还是按PPT内容和以上结构展开,即使有很多不合理的 地方

2 考试有关事项

1. 词性标注

1.1. 基本概念

1 词性标注概念:

1. 概念:给定一个句子,为其中的每个词分配适当的词性

2. 示例: Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP

3. 顺序:分词→<mark>词性标注</mark>→句法分析/命名实体识别/情感分析

本身词性 上下文 上下文 上下文 **② 词性的消息来源:词语 → 预选语料库中最高频词性** / 消除多义词歧义造成的误差 / 消除多义词歧义造成的误差

1.2. 马尔可夫模型标注器

1模型概述

1. 基本要素:

序列	含义	对应马可夫模型中
T	单词的词性集(形容词/名词/动词)	状态空间
0	输入的单词集	观测空间
W	对单词词性的标注序列	状态序列

2. 基本假设: 有限历史(一词の词性只依赖于其前一词の词性)+时间不变性(这种依赖不随时间改变)

2 模型原理:通过最大化 $P(T|W) \stackrel{ ext{ iny M}}{\longrightarrow}$ 最佳的词性标注序列 $T = \{t_1, t_2, ..., t_n\}$

1. 贝叶斯分解: $P(T|W) = \frac{P(W|T) \times P(T)}{P(W)} \propto P(W|T) \times P(T)$

Item	联合概率分解	含义
$P(W \mid T)$	$\prod_{i=1}^{n}P\left(w_{i}\mid t_{i} ight)$	每个单词由对应的词性生成
P(T)	$\prod_{i=1}^{n}P\left(t_{i}\mid t_{i-1} ight)$	词性序列之间具有转移关系

2. 联合概率分解:
$$P(T|W) = \prod_{i=1}^{n} P(w_i|t_i) P(t_i|t_{i-1})$$

3 模型训练与预测

1. 模型训练:

概率类型	公式	含义
标注转移 概率	$P\left(t^{k}\mid t^{j} ight) = rac{C\left(t^{j},t^{k} ight)}{C\left(t^{j} ight)}$	词性 t^j 转移到 t^k 的次数 $/$ 词性 t^j 的总出现次数

概率类型	公式	含义
词生成概 率	$P\left(w^{l}\mid t^{j} ight) = rac{C\left(w^{l},t^{j} ight)}{C\left(t^{j} ight)}$	词 w^l 被标注为词性 t^j 的次数 $/$ 词性 t^j 总出现次数

2. 模型预测:示例

4 其它事项

- 1. 未登录词: 即训练语料库中从未出现过的词,可认为 $P(w|t)=\frac{1}{|\mathrm{可能词性}|}/$ 假设其词性可任选......
- 2. 平滑问题:采用Laplace/Good-Turing平滑技术,或者收集更数据

1.3. 基于转换的词性标注

1 概述

1. 基本思想:

。 修正规则:正确结果要不断修正得到,修正方式有迹可循

转换规则: 计算机可以学习修正过程(记录为转换规则),并用学得转换规则进行词性标注

2. 转换规则:

组成	含义	示例
改写规则	将一个词性转换成另一个词性	将一个词性从 <mark>动词</mark> 改为 <mark>名词</mark>
激活环境	激发改写规则的条件	该词左边第一个词的词性是量词

2 转换规则学习器算法

- 1. 生成:生成语料库 $\mathbb{C}_{0 ext{-}\mathrm{raw}}$ 有词性标记的语料 $\mathbb{C}_1/\mathbb{C}_2/\mathbb{C}_3.....$
- 3. 循环:更新原有 $\{C_1,C_2,...,C_n\}$ 序列 $\stackrel{\mathrm{fiff}}{\longrightarrow}$ 得到最终的规则序列 $\{T_a,T_b,...,T_x\}$

- 。 生成:将所有的规则 T_j 应用到 C_i 上 $\stackrel{ ext{$rac{1}{2}}}{\longrightarrow} mn$ 个 C_i^j
- 。 选取: 在每列对比所有

- 。 迭代: 让 $\{C_1^{k_1},C_2^{k_2},...,C_n^{k_n}\}$ 代替 $\{C_1,C_2,...,C_n\}$, 重复以上步骤
- 。 终止:迭代到错误率小于阈值,输出最终的规则序列 $\{T_a,T_b,...,T_x\}$

2. 句法解析

2.1. 基本概念与概述

1 模型描述:

- 1. 条件:给定一个句子s及其语法G,以P(t|(s,G))概率生成分析树t,并且 $\sum_t P(t|(s,G)) = 1$
- 2. 目的:找出最大化P(t|(s,G))的t,即最有可能的句法树

2 与语言模型:

1. 句子概率:语言模型中句子以P(s)概率生成,若考虑句法结构则有 $P(s) = \sum_t P(s,t)$

2.2. 概率上下文无关文法

2.2.1. 一些基本概念与假设

1 句子结构:

结构	含义	示例
非终止 符	抽象语法成分,不直接出现在句子中	S(句子)/NP(名词短语) $/VP$ (动词短语)
终结符	实际出现的单词或符号	cat, eats, fish
规则	非终止符如何进一步被分为符序 列/短语	$\operatorname{NP} \overset{ ext{ iny MU}}{\longrightarrow} \operatorname{Det}(限定词) + \operatorname{N}$
层次结 构	规则逐步展开形成的树状结构	句法树

2 上下文无关文法(CFG):

Item	含义	例子
CFG	细分非终止符的语法 规则集	${\rm NP}{\rightarrow}{\rm Det}{+}{\rm N}/{\rm VP}{\rightarrow}{\rm V}{+}{\rm NP}$
PCFG	为每条规则赋予一个 概率	$P(\text{NP} \rightarrow \text{Det} + \text{N}) = 0.9/$ $P(\text{VP} \rightarrow \text{V} + \text{NP}) = 0.1$

3 句法树:用树状结构表示句子内部语法层次

结构	内容
根结点	整个句子

结构	内容
中间结点	包括非终结结点(如NP/VP等语法成分)+终结结点(如N/V等具体单词词性)
叶结点	实际的单词,与终结结点1-1对应

4 模型假设

假设	含义	示例
位置不变	子树概率与在句子中位置无 关	名词短语NP在句首/尾时, 其结构概率 相同
上下文无 关	子树概率不依赖不属于该子 树词	动词短语VP生成概率不依赖于句中主 语NP
祖先无关	子树概率与其父/祖先节点 无关	嵌套从句CP生成概率与更高层句法树 无关

2.2.2. 概率上下文无关文法基本问题

2.2.2.1. 问题1: 句子概率 $P(w_{1:m}|G)$ 计算

- 1 Chomsky范式语法
 - 1. 两种规则:

规则	含义	规则概率
二元规则	N^i (一个非终结符) $\stackrel{ ext{$\pm ext{μ}}}{\longrightarrow} N^i N^k$ (一个非终结符)	$P(N^i{ ightarrow}N^jN^k\mid G)$
一元规 则	N^i (一个非终结符) $\stackrel{ ext{ iny Edd}}{\longrightarrow} w^j$ (一个终结符)	$P(N^i{ ightarrow} w^j \mid G)$

2. 参数空间: 对于空间 $\{N^1,N^2,...,N^n,w^1,w^2,...,w^V\}$

。 规则数量:二元规则共 n^3 个,一元规则共nV个

。 规则概率:需满足 $\sum_{r,s} P\left(N^j{\to}N^rN^s\right) + \sum_k P\left(N^j{\to}w^k\right) = 1$

2句子概率
$$P(w_{1:m}) = \sum_{t: ext{yield}(t) = w_{1m}} P(t)$$

项	含义	
$P\left(w_{1:m} ight)$	生成句子(词序列) $w_{1:m} = \{w_1, w_2,, w_m\}$ 的概率	
t :yield $(t)=w_{1:m}$	句法树的叶节点序列是 $\{w_1,w_2,,w_m\}$	
$\sum P(t)$	所有叶节点序列是 $\{w_1,w_2,\ldots,w_m\}$ 的句法树生成的概率 总和	
P(t)	某一句法树生成的概率, <mark>为生成句法树所有规则概率的乘积</mark>	

3 示例:考虑句子astronomers saw stars with ears

1. 句法树:

	t_1 : with ears修饰stars	t_1 : with ears修饰saw	
句法树	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

2. 规则概率:

S - NP VP	1.0	NP → NP PP	0.4
$PP \rightarrow P NP$	1.0	NP → astronomers	0.1
$VP \rightarrow V NP$	0.7	$NP \rightarrow ears$	0.18
$VP \rightarrow VP PP$	0.3	$NP \rightarrow saw$	0.04
P - with	1.0	$NP \rightarrow stars$	0.18
$V \rightarrow saw$	1.0	NP - telescopes	0.1

3. 生成概率

概率	计算
$P(t_1)$	$1.0 \times 0.1 \times 0.7 \times 1.0 \times 0.4 \times 0.18 \times 1.0 \times 1.0 \times 0.18$
$P(t_2)$	$1.0 \times 0.1 \times 0.3 \times 0.7 \times 1.0 \times 0.18 \times 1.0 \times 1.0 \times 0.18$
P(w)	$P(t_1)+P(t_2) \\$

2.2.2.2. 问题2: 最佳句法分析

1 问题描述

1.目的:找到使句子概率最大的句法树,即最优句法树

2. 形式化:

。 定义 $\delta_i(p,q)$: 即以非终结符 N^i 且覆盖字句 $w_{p:q}$ 情况下,最佳解析树的概率

。 求解方法: 动态规划

2 类Viterbi风格的动态规划求解

1. 二元规则:

2. 一元规则:
$$\delta_i(p,p) \overset{ ext{durthal} ext{H} ext{T} ext{h} ext{N}_{p:p}^i ext{直接生成} w_j}{+} P\left(N^i {
ightarrow} w_p
ight)$$

2.2.2.3. 问题2: 文法训练

- Inside-Outside算法
 - 1. 内部概率&外部概率

P	公式	含义
内	$eta_{j}(p,q) = P\left(w_{p:q} \mid \left(N_{p:q}^{j},G ight) ight)$	由 $N_{p:q}^{j} \xrightarrow[ar{ ext{B}}]{ ext{Ed}} w_{p:q}$ 的概率
外	$lpha_j(p,q) = P\left(\left(w_{1:(p-1)}, N_{p:q}^j, w_{(q+1):m} ight) \mid G ight)$	句子 pq 以外(基于 G)的 生成概率

2. 算法公式:

$$P($$
规则 $N \rightarrow \alpha \in w_{p:q}) = \alpha_i(p,q) \times P(N \rightarrow \alpha) \times \prod \beta($ 子结构 $) \times \frac{1}{P(w_{1:m})}$

2 EM算法: 优化规则的概率 $P(N \rightarrow \alpha)$

1. E步: 使用Inside-Outside算法, 算出规则在未标注语料中出现次数的期望

2. M步: 更新每条规则中的概率为 $P(N \rightarrow \alpha) = \frac{ 规则 N \rightarrow \alpha}{ 所有以 N 为 左部规则的期望值总和}$

2.3. 其它有关内容

1 依存句法

1. 含义:在一句话中选一个词为中心,然后用词之间的依存关系来描述语言结构

2. 表示: 带箭头的曲线表示

2 句法消歧分析:统计方法用概率代替语义规则,自动完成句法树的消歧和选择过程

3 树库:包含已正确句法分析的句子及其对应解析树的集合,用于构建和训练统计句法分析器