Exemplar Problem

Trigonometric Functions

28. Find the general solution of the equation $\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$

Solution:

According to the question,

$$\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$$

Grouping sin x and sin 3x in LHS and, cos x and cos 3x in RHS,

We get,

$$\sin x + \sin 3x - 3\sin 2x = \cos x + \cos 3x - 3\cos 2x$$

Applying transformation formula,

$$\cos A + \cos B = 2\cos ((A + B)/2)\cos((A - B)/2)$$

$$\sin A + \sin B = 2\sin ((A + B)/2)\cos((A - B)/2)$$

 \Rightarrow

$$2sin\left(\frac{3x+x}{2}\right)cos\left(\frac{3x-x}{2}\right)-3sin2x=2cos\left(\frac{3x+x}{2}\right)cos\left(\frac{3x-x}{2}\right)-3cos2x$$

$$\Rightarrow$$
 2sin 2x cos x - 3sin 2x = 2cos 2x cos x - 3cos 2x

$$\Rightarrow$$
 2sin 2x cos x - 3sin 2x - 2cos 2x cos x + 3cos 2x = 0

$$\Rightarrow$$
 2cos x (sin 2x - cos 2x) - 3(sin 2x - cos 2x) = 0

$$\Rightarrow (\sin 2x - \cos 2x)(2\cos x - 3) = 0$$

$$\Rightarrow$$
 cos x = 3/2 or sin 2x = cos 2x

As $\cos x \in [-1,1]$

Hence, no value of x exists for which $\cos x = 3/2$

Therefore, $\sin 2x = \cos 2x$

$$\Rightarrow$$
 tan 2x = 1 = tan $\pi/4$

We know solution of $\tan x = \tan \alpha$ is given by,

$$x=n\pi+\alpha$$
 , $n\in Z$

Therefore,
$$2x = n\pi + (\pi/4)$$

$$\Rightarrow$$
 x = n π /2 + (π /8), n \in Z