Popular Machine Learning Methods: Idea, Practice and Math

Part 2, Chapter 2, Section 2: Training Shallow Models

Yuxiao Huang

Data Science, Columbian College of Arts & Sciences George Washington University

Fall 2024

Reference

- This set of slices was largely built on the following 7 wonderful books and a wide range of fabulous papers:
- HML Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd Edition)
- PML Python Machine Learning (3rd Edition)
- ESL The Elements of Statistical Learning (2nd Edition)
- PRML Pattern Recognition and Machine Learning
 - NND Neural Network Design (2nd Edition)
 - LFD Learning From Data
 - RL Reinforcement Learning: An Introduction (2nd Edition)
- For most materials covered in the slides, we will specify their corresponding books and papers for further reference.

Code Example & Case Study

- See related code example in github repository:
 /p2_c2_s2_training_shallow_models/code_example
- See related case study of Kaggle Competition in github repository: /p2_c2_s2_training_shallow_models/case_study

Table of Contents

- Learning Objectives
- 2 Learning Theory
- Regularization

- Hyperparameter Tuning
- Model Selection
- 6 Appendix
- Bibliography

Learning Objectives: Expectation

- It is expected to understand
 - the idea of Bias and Variance
 - the idea of Expected Test Error and its decomposition
 - the idea of Bias-Variance Tradeoff
 - the idea of Underfitting and Overfitting
 - the idea of Learning Curve
 - the takeaway of signs of underfitting and overfitting
 - the good practice for handling underfitting and overfitting
 - the idea of Regularization
 - the idea and implementation of popular regularization methods, including:
 - Lasso (a.k.a., L1 regularization)
 - Ridge (a.k.a., L2 regularization)
 - Elastic net
 - the good practice for using lasso / ridge / elastic net
 - the idea of Hyperparameter Tuning
 - the idea and usage of sklearn hyperparameter tuning tools, including:
 - GridSearchCV
 - RandomizedSearchCV
 - the good practice for using GridSearchCV and RandomizedSearchCV
 - the idea and implementation of model selection

Learning Objectives: Recommendation

- It is recommended to understand
 - the math of the decomposition of expected test error
 - the math of popular regularization methods, including:
 - lasso
 - ridge
 - elastic net

Kaggle Competition: Predicting House Price

Figure 1: Kaggle competition: predicting house price. Picture courtesy of Kaggle.

- House Prices (Advanced Regression Techniques) dataset:
 - features: 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa
 - target: the sale price of homes

Motivation

- In /p2_c2_s1_linear_regression we discussed two methods for training linear regression:
 - the normal equation, which solves the optimal solution analytically
 - gradient descent, which estimates the optimal solution iteratively
- While the two methods are different in many ways, there is one thing in common: they both train linear regression by minimizing the training error (e.g., mean squared error).
- Unfortunately, if we only cared about minimizing the training error, we might learn a model that:
 - on the one hand, has low training error (i.e., performs well on training data)
 - but on the other hand, has high test error (i.e., generalizes poorly on test data)
- The Learning Theory tells us:
 - why this is the case
 - and more importantly, what we can be do to address this problem

Bias

 In learning theory, Bias measures the average difference between the predicted target value and real target value:

$$\operatorname{Bias}(\widehat{\mathbf{y}}, \mathbf{y}) = E[\widehat{\mathbf{y}} - \mathbf{y}] = \frac{\sum_{i=1}^{m} (y^i - y^i)}{m}.$$
 (1)

Here:

- \bullet $\widehat{\mathbf{y}}$ is the predicted target vector
- y is the real target vector
- $E[\widehat{\mathbf{y}} \mathbf{y}]$ is the average of $\widehat{\mathbf{y}} \mathbf{y}$
- m is the number of samples in the data
- \hat{y}^i is the predicted target value of sample i
- y^i is the real target value of sample i

Variance

- Unlike bias that captures the difference between the predicted target value and real target value, Variance measures the difference between the predicted value themselves.
- More formally, variance is the average squared difference between the predicted target value and their mean:

$$\operatorname{Var}(\widehat{\mathbf{y}}) = E\left[(\widehat{\mathbf{y}} - E[\widehat{\mathbf{y}}])^2\right] = \frac{\sum_{i=1}^{m} (\widehat{y}^i - \frac{\sum_{i=1}^{m} y^i}{m})^2}{m}.$$
 (2)

Here:

- $f \hat{y}$ is the predicted target vector
- $E[\widehat{\mathbf{y}}]$ is the mean of the predicted target vector
- $E\left[(\widehat{\mathbf{y}} E[\widehat{\mathbf{y}}])^2\right]$ is the average of $(\widehat{\mathbf{y}} E[\widehat{\mathbf{y}}])^2$
- m is the number of samples in the data
- \hat{y}^i is the predicted target value of sample i

Expected Test Error

- Given a test sample, $[x \ y]$, we:
 - draw m training sets, $\begin{bmatrix} \mathbf{X}_1 & y_1 \end{bmatrix}$, ..., $\begin{bmatrix} \mathbf{X}_m & y_m \end{bmatrix}$, where the test sample and each training set come from the same distribution
 - train the same model H on each training set and obtain m models, H_1, \ldots, H_m
- **Q:** What is the expected test error (across the *m* models)?

Decomposition of Expected Test Error

 A: It turns out that we can decompose the expected test error (across the m models) into the sum of squared bias and variance:

$$\underbrace{E\left[(\widehat{\mathbf{y}} - \mathbf{y})^{2}\right]}_{\text{Expected test error}} = \underbrace{\left(E\left[\widehat{\mathbf{y}} - \mathbf{y}\right]\right)^{2}}_{\text{Bias}^{2}} + \underbrace{E\left[(\widehat{\mathbf{y}} - E\left[\widehat{\mathbf{y}}\right])^{2}\right]}_{\text{Variance}}.$$
(3)

Here:

• $\hat{\mathbf{y}}$ / \mathbf{y} is a $m \times 1$ predicted / real target vector across the m models:

$$\widehat{\mathbf{y}} = \begin{bmatrix} \widehat{y^1} & \dots & \widehat{y^m} \end{bmatrix}^\mathsf{T} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} y^1 & \dots & y^m \end{bmatrix}^\mathsf{T},$$
 (4)

where $\hat{y^i}$ is predicted by model H_i and $y^i = y$ (with y being the target value in the test sample)

• bias is given in eq. (1)

$$\operatorname{Bias}(\widehat{\mathbf{y}}, \mathbf{y}) = E[\widehat{\mathbf{y}} - \mathbf{y}] = \frac{\sum_{i=1}^{m} (y^i - y^i)}{m}$$
(1)

• variance is given in eq. (2)

$$\operatorname{Var}(\widehat{\mathbf{y}}) = E\left[(\widehat{\mathbf{y}} - E[\widehat{\mathbf{y}}])^{2}\right] = \frac{\sum_{i=1}^{m} (\widehat{y}^{i} - \frac{\sum_{i=1}^{m} \widehat{y}^{i}}{m})^{2}}{m}$$
(2)

• See the proof of eq. (3) in Appendix (pages 53 to 55).

Bias-Variance Tradeoff

Figure 2: The bias-variance tradeoff.

- Fig. 2 shows the squared bias, variance and test error as a function of model complexity.
- Concretely, when the model complexity goes up
 - the squared bias goes down
 - the variance goes up
 - the test error, which can be decomposed into the sum of squared bias and variance (as shown in eq. (3)), first goes down then goes up
- The above relationship (between the squared bias / variance / test error and model complexity) is called the Bias-Variance Tradeoff.

Underfitting VS Overfitting

Figure 2: The bias-variance tradeoff.

- Fig. 2 also shows the minimal test error and the corresponding optimal model complexity.
- When model complexity < the optimal complexity, we call this Underfitting.
- When model complexity > the optimal complexity, we call this *Overfitting*.
- Q: Since the optimal complexity is usually unknown, how can we tell when we are underfitting and when we are overfitting?

Underfitting VS Overfitting

Figure 2: The bias-variance tradeoff.

- Fig. 2 also shows the minimal test error and the corresponding optimal model complexity.
- When model complexity < the optimal complexity, we call this *Underfitting*.
- When model complexity > the optimal complexity, we call this *Overfitting*.
- Q: Since the optimal complexity is usually unknown, how can we tell when we are underfitting and when we are overfitting?
- A: We can use the Learning Curve to do so.

Learning Curve

Figure 3: Learning Curve showing underfitting (left) and overfitting (right).

• The *Learning Curve* shows the training and validation error as a function of the number of training samples (or iterations).

Takeaway

- The left panel of fig. 3 shows the signs of underfitting:
 - training error is high
 - validation error is close to training error
- The right panel of fig. 3 shows the signs of overfitting:
 - training error is low
 - validation error is much higher than training error

Handling Underfitting and Overfitting: The Idea

Figure 2: The bias-variance tradeoff.

- Underfitting indicates:
 - model complexity < the optimal complexity
 - we are on the left-hand side of the vertical dashed line in fig. 2
- Overfitting indicates:
 - model complexity > the optimal complexity
 - we are on the right-hand side of the vertical dashed line in fig. 2
- Both underfitting and overfitting result in higher test error (than the minimal).
- To handle underfitting, we should increase model complexity, so that we can significantly lower the squared bias and, in turn, the test error.
- To handle overfitting, we should decrease model complexity, so that we can significantly lower the variance and, in turn, the test error.

Handling Underfitting and Overfitting: The Methods

Good practice

- Methods for handling underfitting:
 - use more complex model + regularization (a.k.a., the *Stretch Pants* approach)
 - boosting (see /p2_c2_s5_tree_based_models)
- Methods for handling overfitting:
 - regularization
 - bagging (see /p2_c2_s5_tree_based_models)
 - (allocate or collect) more data for training

Further Reading

 See a very nice and detailed discussion of Error Analysis in this wonderful book by Andrew Ng: Machine Learning Yearning.

Motivation

Figure 2: The bias-variance tradeoff.

- The idea of Regularization is handling overfitting by lowering model complexity.
- As shown in fig. 2, this allows us to significantly lower the variance and, in turn, lower
 the test error (i.e., the model will generalize better in reality).

Popular Regularization Methods

- For both shallow and deep learning:
 - Lasso (a.k.a., L1 regularization)
 - Ridge (a.k.a., L2 regularization)
 - Elastic net
 - Early stopping (see /p2_c2_s5_tree_based_models)
- For deep learning only:
 - Batch normalization (see /p3_c2_s2_training_deep_neural_networks)
 - Dropout (see /p3_c2_s2_training_deep_neural_networks)
 - Data augmentation (see /p3_c2_s2_training_deep_neural_networks)
- For most regularization methods, we will use Mini-Batch Gradient Descent (MBGD) as the default for gradient descent, since as discussed in /p2_c2_s1_linear_regression:
 - in theory, MBGD reduces to Batch Gradient Descent (BGD) / Stochastic Gradient Descent (SGD) when the mini-batch contains all the samples / only one sample, so that we can slightly tweak the equations for MBGD (with respect to the mini-batch size) to get the equations for BGD and SGD
 - in practice, MBGD is more popular in deep learning

Lasso, Ridge and Elastic Net: Similarity

- The idea of lasso, ridge and elastic net are very similar: all of them aim to push parameter values toward zero, by adding the parameter values to the loss function.
- We will use linear regression in eq. (5) to show why this will decrease model complexity and variance (and finally the test error):

$$\hat{y}^i = b + w_1 x_1^i + \dots, + w_n x_n^i.$$
 (5)

- Model complexity:
 - we can measure the complexity of linear equation as the number of features (i.e.,
 x) in eq. (5)
 - based on eq. (5), the more weights (i.e., w) are zero, the fewer features remain in the equation, hence the lower the model complexity
- Variance:
 - the variance was given in eq. (2) $\operatorname{Var}(\widehat{\mathbf{y}}) = E\left[(\widehat{\mathbf{y}} E[\widehat{\mathbf{y}}])^2\right] = \frac{\sum_{i=1}^{m} (\widehat{y^i} \frac{\sum_{i=1}^{m} \widehat{y^i}}{m})^2}{m} \tag{2}$
 - by substituting eq. (5) into eq. (2), we have

$$\operatorname{Var}(\widehat{\mathbf{y}}) = \frac{\sum_{i=1}^{m} \left(\sum_{j=1}^{n} w_j (x_j^i - E[\mathbf{x}_j]) \right)^2}{m}$$
 (6)

 based on eq. (6), generally the lower the (absolute value of the) weights, the lower the variance

Lasso, Ridge and Elastic Net: Difference

- While lasso, ridge and elastic net all add parameter values to the loss function, they
 do so in different ways.
- Lasso adds a weighted sum of the absolute value of the weights:

$$\alpha \sum_{j=1}^{n} |w_j|. \tag{7}$$

• Ridge adds a weighted sum of the squared value of the weights:

$$\frac{\alpha}{2} \sum_{j=1}^{n} w_j^2. \tag{8}$$

• Elastic net adds a weighted sum of the absolute value of the weights (first item in eq. (9)), and a weighted sum of the squared value of the weights (second item):

$$\alpha \gamma \sum_{j=1}^{n} |w_j| + \frac{\alpha (1 - \gamma)}{2} \sum_{j=1}^{n} w_j^2.$$
 (9)

- Here α (where $\alpha \geq 0$) and γ (where $0 \leq \gamma \leq 1$) are the regularization parameters.
- \bullet The larger the $\alpha,$ the stronger the regularization, in turn, the smaller the weights.
- The larger the γ , the similar the elastic net to lasso, whereas the smaller the γ , the similar the elastic net to ridge.
 - Elastic net reduces to lasso / ridge when γ is 1 / 0.

MBGD + Lasso: Loss

 With the MBGD loss (second item in eq. (10)) and the regularization term of lasso (third item), the loss of MBGD + lasso is the sum of the two:

$$\mathcal{L}_{m+l_1}(\boldsymbol{\theta}^j) = \frac{1}{|\mathbf{mb}^j|} \sum_{i \in \mathbf{mb}^j} (y^i - \widehat{y^i})^2 + \alpha \sum_{j=1}^n |w_j|.$$
(10)

MBGD loss

Here:

- $\mathbf{\theta}$ (where $\mathbf{\theta} = \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^{\mathsf{T}}$) is the parameter vector
- ullet $|\mathbf{m}\mathbf{b}^j|$ is the number of samples in mini-batch $\mathbf{m}\mathbf{b}^j$
- $y^i / \hat{y^i}$ is the real / predicted target value of sample i, where

$$\widehat{y^i} = b + w_1 x_1^i + \dots, + w_n x_n^i = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \boldsymbol{\theta} \quad (11)$$

 \bullet α is the regularization parameter

MBGD + Lasso: Updating Rule

• The updating rule of MBGD was given in eq. (12)

$$\mathbf{\theta}_{k}^{j+1} = \mathbf{\theta}_{k}^{j} - \eta_{k} \mathbf{g}_{k}^{j} = \mathbf{\theta}_{k} - \eta_{k} \left[\nabla \mathcal{L}(\mathbf{\theta}^{j})^{\mathsf{T}} \right]_{\mathbf{\theta}^{j} = \mathbf{\theta}_{k}^{j}}, \tag{12}$$

where the MBGD loss, $\mathcal{L}(\mathbf{\theta}^j)$, was given in eq. (13)

$$\mathcal{L}(\boldsymbol{\theta}^{j}) = \frac{1}{|\mathbf{mb}^{j}|} \sum_{i \in \mathbf{mb}^{j}} (y^{i} - \widehat{y^{i}})^{2}.$$
 (13)

• By replacing the MBGD loss in eq. (12), $\mathcal{L}(\boldsymbol{\theta}^{J})$ (also the second item in eq. (10)), with MBGD + lasso loss, $\mathcal{L}_{m+l_1}(\boldsymbol{\theta}^{J})$ (first item in eq. (10)), we can write the updating rule of MBGD + lasso as

$$\mathbf{\theta}_k^{j+1} = \mathbf{\theta}_k^j - \eta_k \mathbf{g}_k^j = \mathbf{\theta}_k^j - \eta_k \left[\nabla \mathcal{L}_{m+l_1}(\mathbf{\theta}^j)^{\mathsf{T}} \right]_{\mathbf{\theta}^j = \mathbf{\theta}_k^j}. \tag{14}$$

MBGD + Lasso: Updating Rule

• By deriving the gradient in eq. (14), $\nabla \mathcal{L}_{m+l_1}(\theta^j)^{\mathsf{T}}|_{\theta^j=\theta^j_L}$, we can write eq. (14) as

$$\theta_k^{j+1} = \theta_k^j + \eta_k \left(\frac{2}{|\mathbf{mb}^j|} \sum_{i \in \mathbf{mb}^j} \left[1 \quad \mathbf{x}^i \right] (\mathbf{y}^i - \widehat{\mathbf{y}^i}) - \alpha \left[0 \quad \operatorname{sgn}(w_1) \cdots \operatorname{sgn}(w_n) \right]^{\mathsf{T}} \right),
= \theta_k^j + \eta_k \left(\frac{2}{|\mathbf{mb}^j|} \left[1 \quad \mathbf{X}^j \right]^{\mathsf{T}} (\mathbf{y}^j - \widehat{\mathbf{y}^j}) - \alpha \left[0 \quad \operatorname{sgn}(w_1) \cdots \operatorname{sgn}(w_n) \right]^{\mathsf{T}} \right).$$
(15)

Here

- η_k is the learning rate in epoch k
- $|\mathbf{mb}^{j}|$ is the number of samples in mini-batch \mathbf{mb}^{j}
- $y^i / \widehat{y^i}$ is the real / predicted target value of sample i, given in eq. (11)

$$\widehat{y^i} = b + w_1 x_1^i + \dots + w_n x_n^i = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \boldsymbol{\theta}_k^j \tag{11}$$

and $\mathbf{y}^j / \widehat{\mathbf{y}^j}$ is the $|\mathbf{mb}^j| \times 1$ real / predicted target vector, where

$$\widehat{\mathbf{y}^j} = b + w_1 \mathbf{x}_1 + \dots + w_n \mathbf{x}_n = \begin{bmatrix} 1 & \mathbf{X}^j \end{bmatrix} \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & \mathbf{X}^j \end{bmatrix} \mathbf{\theta}_k^j \qquad (16)$$

- \mathbf{x}^i is the $1 \times n$ feature vector of sample i, and \mathbf{X}^j the $|\mathbf{mb}^j| \times n$ feature matrix of \mathbf{mb}^j
- sgn is the *Sign* function:

$$\operatorname{sgn}(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}$$
 (17)

• See the proof of eq. (15) in Appendix (pages 56 to 60).

MBGD + Lasso: The Implementation

- See /models/p2_shallow_learning:
 - ① cell 4

MBGD + Ridge: Loss

 With the MBGD loss (second item in eq. (18)) and the regularization term of ridge (third item), the loss of MBGD + ridge is the sum of the two:

$$\underbrace{\mathcal{L}_{m+l_2}(\boldsymbol{\theta}^j)}_{\text{MBGD + ridge loss}} = \underbrace{\frac{1}{|\mathbf{mb}^j|} \sum_{i \in \mathbf{mb}^j} (y^i - \widehat{y^i})^2}_{\text{MBGD loss}} + \underbrace{\frac{\alpha}{2} \sum_{j=1}^n w_j^2}_{\text{ridge term}}. \tag{18}$$

Here:

- $\mathbf{\theta}$ (where $\mathbf{\theta} = \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^{\mathsf{T}}$) is the parameter vector
- ullet $|\mathbf{m}\mathbf{b}^{j}|$ is the number of samples in mini-batch $\mathbf{m}\mathbf{b}^{j}$
- $y^i / \widehat{y^i}$ is the real / predicted target value of sample i, given in eq. (11)

$$\widehat{\mathbf{y}^i} = b + w_1 x_1^i + \dots, + w_n x_n^i = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \boldsymbol{\theta} \quad (11)$$

 \bullet α is the regularization parameter

MBGD + Ridge: Updating Rule

• The updating rule of MBGD was given in eq. (12)

$$\mathbf{\theta}_{k}^{j+1} = \mathbf{\theta}_{k}^{j} - \eta_{k} \mathbf{g}_{k}^{j} = \mathbf{\theta}_{k}^{j} - \eta_{k} \nabla \mathcal{L}(\mathbf{\theta}^{j})^{\mathsf{T}} \Big|_{\mathbf{\theta}^{j} = \mathbf{\theta}_{k}^{j}}, \tag{12}$$

where the MBGD loss, $\mathcal{L}(\mathbf{\theta}^j)$, was given in eq. (13)

$$\mathcal{L}(\boldsymbol{\theta}^{j}) = \frac{1}{|\mathbf{mb}^{j}|} \sum_{i \in \mathbf{mb}^{j}} (y^{i} - \widehat{y^{i}})^{2}.$$
 (13)

• By replacing the MBGD loss in eq. (12), $\mathcal{L}(\boldsymbol{\theta}^j)$ (also the second item in eq. (18)), with MBGD + ridge loss, $\mathcal{L}_{m+l_2}(\boldsymbol{\theta}^j)$ (first item in eq. (18)), we can write the updating rule of MBGD + lasso as

$$\mathbf{\theta}_{k}^{j+1} = \mathbf{\theta}_{k}^{j} - \eta_{k} \mathbf{g}_{k}^{j} = \mathbf{\theta}_{k}^{j} - \eta_{k} \nabla \mathcal{L}_{m+l_{2}}(\mathbf{\theta}^{j})^{\mathsf{T}} \Big|_{\mathbf{\theta}^{j} = \mathbf{\theta}_{k}^{j}}. \tag{19}$$

MBGD + Ridge: Updating Rule

• By deriving the gradient in eq. (19), $\nabla \mathcal{L}_{m+l_2}(\mathbf{\theta}^j)^{\mathsf{T}}|_{\mathbf{\theta}^j=\mathbf{\theta}_k^j}$, we can write eq. (19) as

$$\mathbf{\theta}_{k}^{j+1} = \mathbf{\theta}_{k}^{j} + \eta_{k} \left(\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} \begin{bmatrix} 1 & \mathbf{x}^{i} \end{bmatrix} (\mathbf{y}^{i} - \widehat{\mathbf{y}^{i}}) - \alpha \begin{bmatrix} 0 & w_{1} \cdots w_{n} \end{bmatrix}^{\mathsf{T}} \right),$$

$$= \mathbf{\theta}_{k}^{j} + \eta_{k} \left(\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}) - \alpha \begin{bmatrix} 0 & w_{1} \cdots w_{n} \end{bmatrix}^{\mathsf{T}} \right).$$

$$(20)$$

Here:

- η_k is the learning rate in epoch k
- $|\mathbf{mb}^{j}|$ is the number of samples in mini-batch \mathbf{mb}^{j}
- $y^i / \widehat{y^i}$ is the real / predicted target value of sample i, given in eq. (11)

$$\widehat{\mathbf{y}^i} = b + w_1 x_1^i + \dots + w_n x_n^i = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^\mathsf{T} = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \boldsymbol{\theta}_k^j \tag{11}$$

and $\mathbf{y}^j / \widehat{\mathbf{y}^j}$ is the $|\mathbf{mb}^j| \times 1$ real / predicted target vector, given in eq. (16)

$$\widehat{\mathbf{y}^j} = b + w_1 \mathbf{x}_1 + \dots + w_n \mathbf{x}_n = \begin{bmatrix} 1 & \mathbf{X}^j \end{bmatrix} \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^\mathsf{T} = \begin{bmatrix} 1 & \mathbf{X}^j \end{bmatrix} \mathbf{\theta}_k^j \qquad (16)$$

- \mathbf{x}^i is the $1 \times n$ feature vector of sample i, and \mathbf{X}^j the $|\mathbf{mb}^j| \times n$ feature matrix of \mathbf{mb}^j
- See the proof of eq. (20) in Appendix (pages 61 to 63).

MBGD + Ridge: The Implementation

- See /models/p2_shallow_learning:
 - ocell 4

MBGD + Elastic Net: Loss

• With the MBGD loss (second item in eq. (21)) and the regularization term of elastic net (third item), the loss of MBGD + elastic net is the sum of the two:

$$\underbrace{\mathcal{L}_{m+l_{12}}(\boldsymbol{\theta}^{j})}_{\text{MBGD + elastic net loss}} = \underbrace{\frac{1}{|\mathbf{mb}^{j}|} \sum_{i \in \mathbf{mb}^{j}} (y^{i} - \widehat{y^{i}})^{2}}_{\text{MBGD loss}} + \alpha \gamma \sum_{j=1}^{n} |w_{j}| + \frac{\alpha(1-\gamma)}{2} \sum_{j=1}^{n} w_{j}^{2}. \quad (21)$$

Here:

- θ (where $\theta = \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^\mathsf{T}$) is the parameter vector
- ullet $|\mathbf{m}\mathbf{b}^{j}|$ is the number of samples in mini-batch $\mathbf{m}\mathbf{b}^{j}$
- $y^i / \hat{y^i}$ is the real / predicted target value of sample i, where

$$\widehat{\mathbf{y}^i} = b + w_1 x_1^i + \dots, + w_n x_n^i = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^\mathsf{T} = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \mathbf{\theta}$$
 (11)

• α and γ are the regularization parameters

MBGD + Elastic Net: Updating Rule

• The updating rule of MBGD was given in eq. (12)

$$\mathbf{\theta}_{k}^{j+1} = \mathbf{\theta}_{k}^{j} - \eta_{k} \mathbf{g}_{k}^{j} = \mathbf{\theta}_{k}^{j} - \eta_{k} \nabla \mathcal{L}(\mathbf{\theta}^{j})^{\mathsf{T}} \Big|_{\mathbf{\theta}^{j} = \mathbf{\theta}_{k}^{j}}, \tag{12}$$

where the MBGD loss, $\mathcal{L}(\mathbf{\theta}^{j})$, was given in eq. (13):

$$\mathcal{L}(\boldsymbol{\theta}^{j}) = \frac{1}{|\mathbf{mb}^{j}|} \sum_{i \in \mathbf{mb}^{j}} (y^{i} - \widehat{y^{i}})^{2}.$$
 (13)

• By replacing the MBGD loss in eq. (12), $\mathcal{L}(\boldsymbol{\theta}^j)$ (also the second item in eq. (21)), with MBGD + elastic net loss, $\mathcal{L}_{m+l_{12}}(\boldsymbol{\theta}^j)$ (first item in eq. (21)), we can write the updating rule of MBGD + elastic net as

$$\mathbf{\theta}_{k}^{j+1} = \mathbf{\theta}_{k}^{j} - \eta_{k} \mathbf{g}_{k}^{j} = \mathbf{\theta}_{k}^{j} - \eta_{k} \nabla \mathcal{L}_{m+l_{12}}(\mathbf{\theta}^{j})^{\mathsf{T}} \Big|_{\mathbf{\theta}^{j} = \mathbf{\theta}_{k}^{j}}. \tag{22}$$

MBGD + Elastic Net: Updating Rule

$$\begin{aligned} & \quad \text{By deriving the gradient in eq. (22), } & \quad \nabla \mathcal{L}_{m+l_{12}}(\boldsymbol{\theta}^{j})^{\intercal} \big|_{\boldsymbol{\theta}^{j} = \boldsymbol{\theta}_{k}^{j}}, \text{ we can write eq. (22) as} \\ & \quad \boldsymbol{\theta}_{k}^{j+1} = \boldsymbol{\theta}_{k}^{j} + \eta_{k} \left(\frac{2\eta_{k}}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} \left[1 \quad \mathbf{x}^{i} \right] (\mathbf{y}^{i} - \widehat{\mathbf{y}^{i}}) - \alpha\gamma \left[0 \quad \operatorname{sgn}(w_{1}) \cdots \operatorname{sgn}(w_{n}) \right]^{\intercal} - \alpha(1 - \gamma) \left[0 \quad w_{1} \cdots w_{n} \right]^{\intercal} \right) \\ & \quad = \boldsymbol{\theta}_{k}^{j} + \eta_{k} \left(\frac{2\eta_{k}}{|\mathbf{m}\mathbf{b}^{j}|} \left[1 \quad \mathbf{X}^{j} \right]^{\intercal} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}) - \alpha\gamma \left[0 \quad \operatorname{sgn}(w_{1}) \cdots \operatorname{sgn}(w_{n}) \right]^{\intercal} - \alpha(1 - \gamma) \left[0 \quad w_{1} \cdots w_{n} \right]^{\intercal} \right). \end{aligned}$$

Here

- η_k is the learning rate in epoch k
- $|\mathbf{mb}^{J}|$ is the number of samples in mini-batch \mathbf{mb}^{J}
- $y^i / \widehat{y^i}$ is the real / predicted target value of sample i, given in eq. (11)

$$\widehat{y^i} = b + w_1 x_1^i + \dots, + w_n x_n^i = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & \mathbf{x}^i \end{bmatrix} \mathbf{\theta}_k^j$$
(11)

and $\mathbf{y}^j / \widehat{\mathbf{y}^j}$ is the $|\mathbf{mb}^j| \times 1$ real / predicted target vector, given in eq. (16)

$$\widehat{\mathbf{y}^{j}} = b + w_{1}\mathbf{x}_{1} + \dots + w_{n}\mathbf{x}_{n} = \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix} \begin{bmatrix} b & w_{1} \cdots w_{n} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix} \boldsymbol{\theta}_{k}^{j}$$
(16)

- \mathbf{x}^i is the $1 \times n$ feature vector of sample i, and \mathbf{X}^j the $|\mathbf{mb}^j| \times n$ feature matrix of \mathbf{mb}^j
- sgn is the sign function:

$$sgn(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}$$
 (17)

• See the proof of eq. (15) in Appendix (pages 64 to 66).

MBGD + Elastic Net: The Implementation

- See /models/p2_shallow_learning:
 - ① cell 4

Lasso VS Ridge VS Elastic Net

Good practice

- Ridge is a good default.
- However, if across all the features only a few of them are relevant:
 - use elastic net or lasso, because they tend to push parameter values of irrelevant features to exact zero
 - elastic net is preferred, because lasso may perform badly when
 - the number of features is higher than the number of samples (i.e., n>m)
 - some features are strongly correlated

Lasso VS Ridge

Figure 4: Contour plot of MSE and constraint of Lasso and Ridge. Picture courtesy of *An Introduction to Statistical Learning*.

- The ellipses are the contour plot of MSE (where w^* represents the optimal solution).
- The highlighted diamond and circle are the constraint region of the weights $(w_1 \text{ and } w_2)$ imposed by Lasso and Ridge (e.g., $|w_1| + |w_2| \le s$ and $w_1^2 + w_2^2 \le s$).
- The weights estimated by lasso and ridge regression are the first points where an ellipse contacts the constraint region.
- As lasso has corners on each axis, this intersection will usually occur on an axis, and so one of the estimates will be exactly zero.
- Conversely, as ridge has a circular constraint, this intersection will not generally occur on an axis, and so none of the estimates will be exactly zero.

Parameters

- Parameters of a model or training method are the unknowns that are:
 - not fixed
 - but updated during training
- For example, $\mathbf{\theta} = \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^\mathsf{T}$ (bias and weights) are the parameters of linear regression in eq. (24)

$$\widehat{\mathbf{y}} = b + w_1 \mathbf{x}_1 + \dots + w_n \mathbf{x}_n = \begin{bmatrix} 1 & \mathbf{X} \end{bmatrix} \begin{bmatrix} b & w_1 \cdots w_n \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & \mathbf{X} \end{bmatrix} \boldsymbol{\theta}. \tag{24}$$

- These parameters are:
 - not fixed
 - but updated using, say, the updating rule of MBGD + ridge in eq. (20)

$$\mathbf{\theta}_{k}^{j+1} = \mathbf{\theta}_{k}^{j} + \eta_{k} \left(\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} \begin{bmatrix} 1 & \mathbf{x}^{i} \end{bmatrix} (\mathbf{y}^{i} - \widehat{\mathbf{y}^{i}}) - \alpha \begin{bmatrix} 0 & w_{1} \cdots w_{n} \end{bmatrix}^{\mathsf{T}} \right),$$

$$= \mathbf{\theta}_{k}^{j} + \eta_{k} \left(\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}) - \alpha \begin{bmatrix} 0 & w_{1} \cdots w_{n} \end{bmatrix}^{\mathsf{T}} \right).$$
(20)

Hyperparameters

- Hyperparameters of a model or training method are the unknowns that are:
 - fixed
 - and not updated during training
- For example, η_k (learning rate) and α (regularization parameter) are the hyperparameters of the updating rule of MBGD + ridge in eq. (20)

$$\mathbf{\theta}_{k}^{j+1} = \mathbf{\theta}_{k}^{j} + \eta_{k} \left(\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} \begin{bmatrix} 1 & \mathbf{x}^{i} \end{bmatrix} (\mathbf{y}^{i} - \widehat{\mathbf{y}^{i}}) - \alpha \begin{bmatrix} 0 & w_{1} \cdots w_{n} \end{bmatrix}^{\mathsf{T}} \right),$$

$$= \mathbf{\theta}_{k}^{j} + \eta_{k} \left(\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}) - \alpha \begin{bmatrix} 0 & w_{1} \cdots w_{n} \end{bmatrix}^{\mathsf{T}} \right).$$
(20)

- These hyperparameters are:
 - fixed
 - and not updated during training
- It is worth noting that learning rate is not necessarily a hyperparameter:
 - we can use methods such as Learning Rate Scheduling to update it during training (see /p3_c2_s2_training_deep_neural_networks)
 - in this case, learning rate is a parameter rather than a hyperparameter

Hyperparameter Tuning: Motivation

Figure 5: Training and validation loss of MBGD + ridge with different combinations of learning rate (η) and regularization parameter (α) .

- By comparing the two rows in each column of fig. 5, we can see that the training and validation loss can be quite sensitive to η .
- By comparing the two columns in each row of fig. 5, we can see that the training and validation loss can be quite sensitive to α .
- The goal of hyperparameter tuning is finding hyperparameter values that lead to good validation performance (e.g., low validation loss).

Hyperparameter Tuning: Idea

Table 1: Combinations of learning rate (η) and regularization parameter (α) and their validation MSE. The best combination is highlighted in red.

η	α	Val MSE
0.001	0.01	0.138
0.001	0.1	0.139
0.02	0.1	2.35×10^{52}
0.02	0.01	5.94×10^{57}

- Let us use table 1 as an example to illustrate the idea of hyperparameter tuning:
 - **1** we loop over each combination of η and α , and for each combination:
 - we train the model (on the training data) using the combination as the hyperparameter values
 - 2 we get the validation MSE of the model (on the validation data)
 - We pick the first combination (highlighted in red) as the best hyperparameter values since it leads to the lowest validation MSE
 - We retrain the model (on the combined training and validation data) with the best hyperparameter values picked earlier

Hyperparameter Tuning in Sklearn: Two Popular Methods

- There are two popular hyperparameter tuning methods in sklearn:
 - GridSearchCV
 - RandomizedSearchCV
- The key difference between the two methods lies in:
 - how they expect the user to propose values of a single hyperparameter
 - how they produce combinations of values of all the hyperparameters
- After producing the combinations of values, both methods:
 - 1 loop over each combination, and for each combination:
 - train the model (on the training data) using the combination as the hyperparameter values
 - 2 get the validation performance of the model (on the validation data)
 - 2 pick the best hyperparameter values that lead to the best validation performance
 - (when setting parameter refit as True) retrain the model (on the combined training and validation data) with the best hyperparameter values picked earlier

Hyperparameter Tuning in Sklearn: Good Practice

Good practice

- It is recommended to set parameter refit as True when using GridSearchCV and RandomizedSearchCV.
- This allows us to retrain the model (i.e., its parameters) on the combined training and validation data with the best hyperparameter values.
- While retraining model requires extra computational cost, doing so will usually improve model performance (which is often preferred).

GridSearchCV: Parameter Grid

Table 1: Combinations of learning rate (η) and regularization parameter (α) and their validation MSE. The best combination is highlighted in red.

η	α	Val MSE
0.001	0.01	0.138
0.001	0.1	0.139
0.02	0.1	2.35×10^{52}
0.02	0.01	5.94×10^{57}

- GridSearchCV expects a list of possible values for each hyperparameter.
- This list of values is also called Parameter Grid (hence the name of GridSearchCV).
- In table 1 we used the grid below for η and α (in MBGD + ridge):
 - η: [0.001, 0.02]
 α: [0.01, 0.1]
- Based on the parameter grid of each hyperparameter, GridSearchCV produces all the possible combinations of hyperparameter values.
- With the grid of η and α above, we will have four combinations, shown in table 1.

GridSearchCV: Code Example

- See /p2_c2_s2_training_shallow_models/code_example:
 - ① cells 54 to 56
 - 2 cells 57 to 61

GridSearchCV: Pros and Cons

- Pros:
 - we have full control:
 - we can use parameter grid to specify the exact hyperparameter values we want to fine-tune
- Cons:
 - it is not scalable:
 - assume there are n hyperparameters and for each hyperparameter we only fine-tune two values
 - the number of combination of hyperparameter values is 2^n

RandomizedSearchCV: Parameter Distribution

Table 2: Combinations of learning rate (η) and regularization parameter (α) and their validation MSE. The best combination is highlighted in red.

η	α	Val MSE
0.0124	0.0759	0.1350
0.0040	0.024	0.1355
0.0175	0.0152	5.31×10^{40}
0.0191	0.0437	1.11×10^{50}

- Unlike GridSearchCV that expects a list of possible values for each hyperparameter, RandomizedSearchCV expects a distribution for each hyperparameter.
- Possible values of a hyperparameter will then be randomly sampled from the distribution (hence the name of RandomizedSearchCV).
- In table 2 we used the distribution below for η and α (in MBGD + ridge):
 - η : uniform(loc=0.01, scale=0.003)
 - α : uniform(loc=0.01, scale=0.09)
- Based on the distribution of each hyperparameter, and parameter n_iter,
 RandomizedSearchCV produces n_iter combinations of hyperparameter values.
- With the distribution of η and α above, and n_iter = 4, we could have four combinations, shown in table 2.

RandomizedSearchCV: Code Example

- See /p2_c2_s2_training_shallow_models/code_example:
 - ① cells 54 to 56
 - cells 62 to 66

RandomizedSearchCV: Pros and Cons

- Pros:
 - it is scalable:
 - the number of combination of hyperparameter values is not determined by the number of hyperparameters
 - instead, it is determined by parameter n_iter of RandomizedSearchCV
- Cons:
 - we do not have full control:
 - hyperparameter values we want to fine-tune are randomly sampled from the parameter distributions

GridSearchCV VS RandomizedSearchCV: Good Practice

Good practice

- When there are many hyperparameters to fine-tune:
 - it is recommended to use RandomizedSearchCV (so that hyperparameter tuning can be scalable)
- When there are only a few hyperparameters to fine-tune:
 - it is recommended to use GridSearchCV (so that we can have full control of the hyperparameter values to fine-tune)

Model Selection: Motivation

- For a problem, (in theory) there are usually many models we can use.
- Take linear regression for example, we have sklearn models such as:
 - LinearRegression
 - SGDRegressor
 - Lasso
 - Ridge
 - ElasticNet
- While for certain problems some models are favored over others, we may not know for sure which model actually works the best.
- As a result, we may have to:
 - 1 try many models
- The process of trying many models and selecting some of them is called Model Selection.

Model Selection: Idea

- The idea of model selection is as follows:
 - for each model:
 - we fine-tune its hyperparameters and select the best combination of hyperparameter values (ones with the best validation performance)
 - we retrain the model using the best combination selected earlier on the combined training and validation data
 - ② we select the top-1 retrained model or ensemble of top-k retrained models (based on the validation performance of the models)
 - we test the selected retrained models on the test data to estimate how well they generalize in reality

Model Selection: Code Example

- See /p2_c2_s2_training_shallow_models/code_example:
 - cell 67
 - 2 cell 69

Proof of Decomposition of Expected Test Error: Page 12

• The expected test error, $E\left[(\widehat{\mathbf{y}} - \mathbf{y})^2\right]$, can be written as

$$E\left[\left(\widehat{\mathbf{y}} - \mathbf{y}\right)^{2}\right] = E\left[\widehat{\mathbf{y}}^{2} - 2\widehat{\mathbf{y}}\mathbf{y} + \mathbf{y}^{2}\right] = E\left[\widehat{\mathbf{y}}^{2}\right] - 2E\left[\widehat{\mathbf{y}}\mathbf{y}\right] + E\left[\mathbf{y}^{2}\right]$$
(25)

Expected test error

• Since \hat{y} and y are independent, we can write eq. (25) as

$$E\left[(\widehat{\mathbf{y}} - \mathbf{y})^2\right] = E\left[\widehat{\mathbf{y}}^2\right] - 2E\left[\widehat{\mathbf{y}}\right]E\left[\mathbf{y}\right] + E\left[\mathbf{y}^2\right]. \tag{26}$$

Expected test error

• Let a be a vector and $E[\mathbf{a}]$ the expectation of \mathbf{a} , then

$$E\left[\left(\mathbf{a} - E\left[\mathbf{a}\right]\right)^{2}\right] = E\left[\mathbf{a}^{2} - 2\mathbf{a}E\left[\mathbf{a}\right] + E\left[\mathbf{a}\right]^{2}\right],$$

$$= E\left[\mathbf{a}^{2}\right] - 2E\left[\mathbf{a}E\left[\mathbf{a}\right]\right] + E\left[E\left[\mathbf{a}\right]^{2}\right],$$

$$= E\left[\mathbf{a}^{2}\right] - 2E\left[\mathbf{a}\right]^{2} + E\left[\mathbf{a}\right]^{2},$$

$$= E\left[\mathbf{a}^{2}\right] - E\left[\mathbf{a}\right]^{2}.$$
(27)

Based on eq. (27), we have

$$E\left[\mathbf{a}^{2}\right] = E\left[\left(\mathbf{a} - E\left[\mathbf{a}\right]\right)^{2}\right] + E\left[\mathbf{a}\right]^{2}.$$
 (28)

Proof of Decomposition of Expected Test Error: Page 12

ullet Based on eq. (28), we can write $E\left[\widehat{\mathbf{y}}^2\right]$ in eq. (25) as

$$E\left[\widehat{\mathbf{y}}^{2}\right] = \underbrace{E\left[\left(\widehat{\mathbf{y}} - E\left[\widehat{\mathbf{y}}\right]\right)^{2}\right]}_{\text{Variance}} + E\left[\widehat{\mathbf{y}}\right]^{2}. \tag{29}$$

• Similarly, based on eq. (28), we can write $E\left[\mathbf{y}^{2}\right]$ in eq. (25) as:

$$E\left[\mathbf{y}^{2}\right] = E\left[\left(\mathbf{y} - E\left[\mathbf{y}\right]\right)^{2}\right] + E\left[\mathbf{y}\right]^{2}.$$
(30)

Based on eq. (4)

$$\mathbf{y} = \begin{bmatrix} y^1 & \dots & y^m \end{bmatrix}^\mathsf{T}, \tag{4}$$

where $y^i = y$ and y is the target value in the test sample, we have

$$E\left[(\mathbf{y} - E[\mathbf{y}])^2\right] = 0. \tag{31}$$

By substituting eq. (31) into eq. (30), we have

$$E\left[\mathbf{y}^2\right] = E[\mathbf{y}]^2. \tag{32}$$

Proof of Decomposition of Expected Test Error: Page 12

By substituting eqs. (29) and (32) into eq. (26), we have

$$\underbrace{E\left[(\widehat{\mathbf{y}} - \mathbf{y})^{2}\right]}_{\text{Expected test error}} = E\left[\widehat{\mathbf{y}}^{2}\right] - 2E\left[\widehat{\mathbf{y}}\right]E\left[\mathbf{y}\right] + E\left[\mathbf{y}^{2}\right],$$

$$= \underbrace{E\left[(\widehat{\mathbf{y}} - E\left[\widehat{\mathbf{y}}\right])^{2}\right]}_{\text{Variance}} + \left(E\left[\widehat{\mathbf{y}}\right]^{2} - 2E\left[\widehat{\mathbf{y}}\right]E\left[\mathbf{y}\right] + E\left[\mathbf{y}\right]^{2}\right),$$

$$= \underbrace{E\left[\widehat{\mathbf{y}} - E\left[\widehat{\mathbf{y}}\right]\right)^{2}\right]}_{\text{Variance}} + \underbrace{\left(E\left[\widehat{\mathbf{y}} - \mathbf{y}\right]\right)^{2},$$

$$= \underbrace{E\left[\widehat{\mathbf{y}} - E\left[\widehat{\mathbf{y}}\right]\right)^{2}\right]}_{\text{Variance}} + \underbrace{\left(E\left[\widehat{\mathbf{y}} - \mathbf{y}\right]\right)^{2}}_{\text{Bias}^{2}}.$$
(33)

which proves the claim in eq. (3) on page 12.

П

The MBGD + lasso loss can be written as

$$\underbrace{\mathcal{L}_{m+l_1}(\boldsymbol{\theta}^j)}_{\text{MBGD + lasso loss}} = \underbrace{\mathcal{L}(\boldsymbol{\theta}^j)}_{\text{MBGD loss}} + \alpha \sum_{j=1}^n |w_j|, \tag{34}$$

where the MBGD loss, $\mathcal{L}(\mathbf{\theta}^j)$, was given in eq. (13)

$$\mathcal{L}(\mathbf{\theta}^j) = \frac{1}{|\mathbf{mb}^j|} \sum_{i \in \mathbf{mb}^j} (y^i - \widehat{y^i})^2.$$
 (13)

• The gradient of MBGD + lasso loss, $\nabla \mathcal{L}_{m+l_1}(\theta^j)^\intercal$, can be written as the sum of the gradient of MBGD loss (second item in eq. (34)) and the gradient of lasso term (third item):

$$\nabla \mathcal{L}_{m+l_1}(\boldsymbol{\theta}^j)^{\mathsf{T}} = \nabla \mathcal{L}(\boldsymbol{\theta}^j)^{\mathsf{T}} + \left(\nabla \alpha \sum_{j=1}^n |w_j|\right)^{\mathsf{T}}.$$
 (35)

• The gradient of MBGD loss (second item in eq. (35)), $\nabla \mathcal{L}(\mathbf{\theta}^j)^\intercal$, can be written as

$$\nabla \mathcal{L}(\mathbf{\theta}^{j})^{\mathsf{T}} = \begin{bmatrix} \frac{\partial}{\partial b} \mathcal{L}(\mathbf{\theta}^{j}) & \frac{\partial}{\partial w_{1}} \mathcal{L}(\mathbf{\theta}^{j}) \cdots \frac{\partial}{\partial w_{n}} \mathcal{L}(\mathbf{\theta}^{j}) \end{bmatrix}^{\mathsf{T}}.$$
 (36)

ullet Based on eq. (13), we can write $rac{\partial}{\partial h}\mathcal{L}(oldsymbol{ heta}^j)$ as

$$\frac{\partial}{\partial b} \mathcal{L}(\boldsymbol{\theta}^{j}) = \frac{\partial}{\partial b} \left(\frac{1}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} \left(y^{i} - \widehat{y^{i}} \right)^{2} \right),$$

$$= \frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} \left(y^{i} - \widehat{y^{i}} \right) \cdot \frac{\partial}{\partial b} \left(y^{i} - \widehat{y^{i}} \right),$$

$$= \frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} \left(y^{i} - \widehat{y^{i}} \right) \cdot \frac{\partial}{\partial b} \left(y^{i} - (b + w_{1}x_{1}^{i} +, \dots, + w_{n}x_{n}^{i}) \right),$$

$$= \frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} \left(y^{i} - \widehat{y^{i}} \right) \cdot (-1).$$
(37)

ullet Based on eq. (13), we can write $rac{\partial}{\partial w_i}\mathcal{L}(oldsymbol{ heta}^i)$ as

$$\frac{\partial}{\partial w_{j}} \mathcal{L}(\boldsymbol{\theta}^{j}) = \frac{\partial}{\partial w_{j}} \left(\frac{1}{|\mathbf{mb}^{j}|} \sum_{i \in \mathbf{mb}^{j}} \left(y^{i} - \widehat{y^{i}} \right)^{2} \right),$$

$$= \frac{2}{|\mathbf{mb}^{j}|} \sum_{i \in \mathbf{mb}^{j}} \left(y^{i} - \widehat{y^{i}} \right) \cdot \frac{\partial}{\partial w_{j}} \left(y^{i} - \widehat{y^{i}} \right),$$

$$= \frac{2}{|\mathbf{mb}^{j}|} \sum_{i \in \mathbf{mb}^{j}} \left(y^{i} - \widehat{y^{i}} \right) \cdot \frac{\partial}{\partial w_{j}} \left(y^{i} - (b + w_{1}x_{1}^{i} +, \dots, + w_{n}x_{n}^{i}) \right),$$

$$= \frac{2}{|\mathbf{mb}^{j}|} \sum_{i \in \mathbf{mb}^{j}} \left(y^{i} - \widehat{y^{i}} \right) \cdot (-x_{j}^{i}).$$
(38)

By substituting eqs. (37) and (38) into eq. (36), we have

$$\nabla \mathcal{L}(\boldsymbol{\theta}^{j})^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i,\mathbf{y} \in \mathbf{A}^{j}} (y^{i} - \widehat{y^{i}}) \begin{bmatrix} 1 & \mathbf{x}^{i} \end{bmatrix}^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}).$$
(39)

• The gradient of the lasso term (third item in eq. (35)), $\nabla \alpha \sum_{j=1}^{n} |w_j|^{\intercal}$, can be written as

$$\left(\nabla \alpha \sum_{j=1}^{n} |w_{j}|\right)^{\mathsf{T}} = \alpha \left[\frac{\partial}{\partial b} \sum_{j=1}^{n} |w_{j}| \quad \frac{\partial}{\partial w_{1}} \sum_{j=1}^{n} |w_{j}| \cdots \frac{\partial}{\partial w_{n}} \sum_{j=1}^{n} |w_{j}|\right]^{\mathsf{T}}, \tag{40}$$

where

$$|w_j| = \begin{cases} -w_j, & w_j < 0\\ 0, & w_j = 0\\ w_j, & w_j > 0. \end{cases}$$
(41)

Based on eq. (41), we have
$$\frac{\partial}{\partial b} \sum_{j=1}^{n} |w_j| = 0 \quad \text{and} \quad \frac{\partial}{\partial w_k} \sum_{j=1}^{n} |w_j| = \operatorname{sgn}(w_k) = \begin{cases} -1, & w_k < 0 \\ 0, & w_k = 0 \\ 1, & w_k > 0 \end{cases}$$
 (42)

where $1 \le k \le n$.

By substituting eq. (42) into eq. (40), we have

$$\left(\nabla \alpha \sum_{j=1}^{n} |w_j|\right)^{\mathsf{T}} = \alpha \left[0 \quad \operatorname{sgn}(w_1) \cdots \operatorname{sgn}(w_n)\right]^{\mathsf{T}}.$$
 (43)

• By substituting eqs. (39) and (43) into eq. (35),

$$\nabla \mathcal{L}(\mathbf{\theta}^{j})^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} (y^{i} - \widehat{y^{i}}) \begin{bmatrix} 1 & \mathbf{x}^{i} \end{bmatrix}^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}), \quad (39)$$

$$\left(\nabla \alpha \sum_{j=1}^{n} |w_j|\right)^{\mathsf{T}} = \alpha \left[0 \quad \operatorname{sgn}(w_1) \cdots \operatorname{sgn}(w_n)\right]^{\mathsf{T}},\tag{43}$$

$$\nabla \mathcal{L}_{m+l_1}(\boldsymbol{\theta}^j)^{\mathsf{T}} = \nabla \mathcal{L}(\boldsymbol{\theta}^j)^{\mathsf{T}} + \left(\nabla \alpha \sum_{j=1}^n |w_j|\right)^{\mathsf{T}},\tag{35}$$

we have

$$\nabla \mathcal{L}_{m+l_1}(\mathbf{\theta}^j)^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^j|} \begin{bmatrix} \mathbf{1} & \mathbf{X}^j \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^j - \widehat{\mathbf{y}^j}) + \alpha \begin{bmatrix} 0 & \operatorname{sgn}(w_1) \cdots \operatorname{sgn}(w_n) \end{bmatrix}^{\mathsf{T}}.$$
(44)

• By substituting eq. (44) into eq. (14)

$$\mathbf{\theta}_k^{j+1} = \mathbf{\theta}_k^j - \eta_k \mathbf{g}_k^j = \mathbf{\theta}_k^j - \eta_k \nabla \mathcal{L}_{m+l_1}(\mathbf{\theta}^j)^{\mathsf{T}} \Big|_{\mathbf{\theta}^j = \mathbf{\theta}_k^j}, \tag{14}$$

we have

$$\mathbf{\theta}_{k}^{j+1} = \mathbf{\theta}_{k}^{j} + \eta_{k} \left(\frac{2}{|\mathbf{mb}^{j}|} \begin{bmatrix} \mathbf{1} & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}) - \alpha \begin{bmatrix} 0 & \operatorname{sgn}(w_{1}) \cdots \operatorname{sgn}(w_{n}) \end{bmatrix}^{\mathsf{T}} \right), \quad (45)$$

which proves the claim in eq. (15) on page 25.

The MBGD + ridge loss can be written as

$$\underbrace{\mathcal{L}_{m+l_2}(\boldsymbol{\theta}^j)}_{\text{MBGD + ridge loss}} = \underbrace{\mathcal{L}(\boldsymbol{\theta}^j)}_{\text{MBGD loss}} + \underbrace{\frac{\alpha}{2} \sum_{j=1}^n w_j^2}_{\text{ridge term}}, \tag{46}$$

where the MBGD loss, $\mathcal{L}(\boldsymbol{\theta}^{j})$, was given in eq. (13)

$$\mathcal{L}(\mathbf{\theta}^j) = \frac{1}{|\mathbf{mb}^j|} \sum_{i \in \mathbf{mb}^j} (y^i - \widehat{y^i})^2.$$
 (13)

• The gradient of MBGD + ridge loss, $\nabla \mathcal{L}_{m+l_2}(\mathbf{\theta}^j)^\intercal$, can be written as the sum of the gradient of MBGD loss (second item in eq. (46)) and the gradient of ridge term (third item):

$$\nabla \mathcal{L}_{m+l_2}(\boldsymbol{\theta}^j)^{\mathsf{T}} = \nabla \mathcal{L}(\boldsymbol{\theta}^j)^{\mathsf{T}} + \left(\nabla \frac{\alpha}{2} \sum_{j=1}^n w_j^2\right)^{\mathsf{T}}, \tag{47}$$

where the gradient of MBGD loss was given in eq. (39)

$$\nabla \mathcal{L}(\mathbf{\theta}^{j})^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} (\mathbf{y}^{i} - \widehat{\mathbf{y}^{i}}) \begin{bmatrix} 1 & \mathbf{x}^{i} \end{bmatrix}^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}). \tag{39}$$

• The gradient of the ridge term (third item in eq. (47)), $\nabla \alpha \sum_{j=1}^n |w_j|^\intercal$, can be written as

$$\left(\nabla \frac{\alpha}{2} \sum_{j=1}^{n} w_j^2\right)^{\mathsf{T}} = \frac{\alpha}{2} \left[\frac{\partial}{\partial b} \sum_{j=1}^{n} w_j^2 \quad \frac{\partial}{\partial w_1} \sum_{j=1}^{n} w_j^2 \cdots \frac{\partial}{\partial w_n} \sum_{j=1}^{n} w_j^2\right]^{\mathsf{T}}, \tag{48}$$

where

$$\frac{\partial}{\partial b} \sum_{j=1}^{n} w_j^2 = 0 \quad \text{and} \quad \frac{\partial}{\partial w_k} \sum_{j=1}^{n} w_j^2 = 2w_k$$
 (49)

where $1 \le k \le n$.

• By substituting eq. (49) into eq. (48), we have

$$\left(\nabla \frac{\alpha}{2} \sum_{j=1}^{n} w_j^2\right)^{\mathsf{T}} = \alpha \left[0 \quad w_1 \cdots w_n\right]^{\mathsf{T}}. \tag{50}$$

• By substituting eqs. (39) and (50) into eq. (47),

$$\nabla \mathcal{L}(\mathbf{\theta}^{j})^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} (y^{i} - \widehat{y^{i}}) \begin{bmatrix} 1 & \mathbf{x}^{i} \end{bmatrix}^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}), \quad (39)$$

$$\left(\nabla \frac{\alpha}{2} \sum_{j=1}^{n} w_j^2\right)^{\mathsf{T}} = \alpha \left[0 \quad w_1 \cdots w_n\right]^{\mathsf{T}},\tag{50}$$

$$\nabla \mathcal{L}_{m+l_2}(\boldsymbol{\theta}^j)^{\mathsf{T}} = \nabla \mathcal{L}(\boldsymbol{\theta}^j)^{\mathsf{T}} + \left(\nabla \frac{\alpha}{2} \sum_{j=1}^n w_j^2\right)^{\mathsf{T}},\tag{47}$$

we have

$$\nabla \mathcal{L}_{m+l_2}(\boldsymbol{\theta}^j)^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^j|} \begin{bmatrix} 1 & \mathbf{X}^j \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^j - \widehat{\mathbf{y}^j}) + \alpha \begin{bmatrix} 0 & w_1 \cdots w_n \end{bmatrix}^{\mathsf{T}}.$$
 (51)

By substituting eq. (51) into eq. (19)

$$\mathbf{\theta}_k^{j+1} = \mathbf{\theta}_k^j - \eta_k \mathbf{g}_k^j = \mathbf{\theta}_k^j - \eta_k \nabla \mathcal{L}_{m+l_2}(\mathbf{\theta}^j)^{\mathsf{T}} \Big|_{\mathbf{\theta}^j = \mathbf{\theta}_k^j}, \tag{19}$$

we have

$$\mathbf{\theta}_{k}^{j+1} = \mathbf{\theta}_{k}^{j} + \eta_{k} \left(\frac{2}{|\mathbf{mb}^{j}|} \begin{bmatrix} \mathbf{1} & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}) - \alpha \begin{bmatrix} 0 & w_{1} \cdots w_{n} \end{bmatrix}^{\mathsf{T}} \right), \tag{52}$$

which proves the claim in eq. (20) on page 29.

The MBGD + elastic net loss can be written as

$$\underbrace{\mathcal{L}_{m+l_{12}}(\boldsymbol{\theta}^{j})}_{\text{MBGD + elastic net loss}} = \underbrace{\mathcal{L}(\boldsymbol{\theta}^{j})}_{\text{MBGD loss}} + \alpha \gamma \sum_{j=1}^{n} |w_{j}| + \frac{\alpha(1-\gamma)}{2} \sum_{j=1}^{n} w_{j}^{2}, \qquad (53)$$

where the MBGD loss, $\mathcal{L}(\mathbf{\theta}^{j})$, was given in eq. (13)

$$\mathcal{L}(\mathbf{\theta}^j) = \frac{1}{|\mathbf{mb}^j|} \sum_{i \in \mathbf{mb}^j} (y^i - \widehat{y^i})^2.$$
 (13)

• The gradient of MBGD + elastic net loss, $\nabla \mathcal{L}_{m+l_{12}}(\boldsymbol{\theta}^j)^\intercal$, can be written as the sum of the gradient of MBGD loss (second item in eq. (53)) and the gradient of elastic net term (third item):

$$\nabla \mathcal{L}_{m+l_{12}}(\boldsymbol{\theta}^{j})^{\mathsf{T}} = \nabla \mathcal{L}(\boldsymbol{\theta}^{j})^{\mathsf{T}} + \left(\nabla \alpha \gamma \sum_{j=1}^{n} |w_{j}|\right)^{\mathsf{T}} + \left(\nabla \frac{\alpha (1-\gamma)}{2} \sum_{j=1}^{n} w_{j}^{2}\right)^{\mathsf{T}}.$$
 (54)

• The gradient of MBGD loss was given in eq. (39)

$$\nabla \mathcal{L}(\mathbf{\theta}^{j})^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} (\mathbf{y}^{i} - \widehat{\mathbf{y}^{i}}) \begin{bmatrix} 1 & \mathbf{x}^{i} \end{bmatrix}^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}). \tag{39}$$

Based on the gradient of lasso term and ridge term given in eqs. (43) and (50)

$$\left(\nabla \alpha \sum_{j=1}^{n} |w_j|\right)^{\mathsf{T}} = \alpha \left[0 \quad \operatorname{sgn}(w_1) \cdots \operatorname{sgn}(w_n)\right]^{\mathsf{T}},\tag{43}$$

$$\left(\nabla \frac{\alpha}{2} \sum_{j=1}^{n} w_j^2\right)^{\mathsf{T}} = \alpha \left[0 \quad w_1 \cdots w_n\right]^{\mathsf{T}}, \tag{50}$$

we can write the gradient of elastic net term as

$$\left(\nabla \alpha \gamma \sum_{j=1}^{n} |w_j|\right)^{\mathsf{T}} + \left(\nabla \frac{\alpha (1-\gamma)}{2} \sum_{j=1}^{n} w_j^2\right)^{\mathsf{T}} = \alpha \gamma \left[0 \quad \operatorname{sgn}(w_1) \cdots \operatorname{sgn}(w_n)\right]^{\mathsf{T}} + \alpha (1-\gamma) \left[0 \quad w_1 \cdots w_n\right]^{\mathsf{T}}. \tag{55}$$

By substituting eqs. (39) and (55) into eq. (54),

$$\nabla \mathcal{L}(\boldsymbol{\theta}^{j})^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \sum_{i \in \mathbf{m}\mathbf{b}^{j}} (\mathbf{y}^{i} - \widehat{\mathbf{y}^{i}}) \begin{bmatrix} 1 & \mathbf{x}^{i} \end{bmatrix}^{\mathsf{T}} = -\frac{2}{|\mathbf{m}\mathbf{b}^{j}|} \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}), \tag{39}$$

$$\left(\nabla \alpha \gamma \sum_{j=1}^{n} |w_j|\right)^{\mathsf{T}} + \left(\nabla \frac{\alpha (1-\gamma)}{2} \sum_{j=1}^{n} w_j^2\right)^{\mathsf{T}} = \alpha \gamma \left[0 \quad \operatorname{sgn}(w_1) \cdots \operatorname{sgn}(w_n)\right]^{\mathsf{T}} + \alpha (1-\gamma) \left[0 \quad w_1 \cdots w_n\right]^{\mathsf{T}}, \quad (55)$$

$$\nabla \mathcal{L}_{m+l_{12}}(\boldsymbol{\theta}^{j})^{\mathsf{T}} = \nabla \mathcal{L}(\boldsymbol{\theta}^{j})^{\mathsf{T}} + \left(\nabla \alpha \gamma \sum_{j=1}^{n} |w_{j}|\right)^{\mathsf{T}} + \left(\nabla \frac{\alpha(1-\gamma)}{2} \sum_{j=1}^{n} w_{j}^{2}\right)^{\mathsf{T}}, \tag{54}$$

we have

$$\nabla \mathcal{L}_{m+l_2}(\mathbf{\theta}^j)^{\mathsf{T}} = -\frac{2}{|\mathrm{mb}^j|} \begin{bmatrix} 1 & \mathbf{X}^j \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^j + \widehat{\mathbf{y}^j}) + \alpha \gamma \begin{bmatrix} 0 & \mathrm{sgn}(w_1) \cdots \mathrm{sgn}(w_n) \end{bmatrix}^{\mathsf{T}} + \alpha (1-\gamma) \begin{bmatrix} 0 & w_1 \cdots w_n \end{bmatrix}^{\mathsf{T}}. \tag{56}$$

• By substituting eq. (56) into eq. (22)

$$\boldsymbol{\theta}_{k}^{j+1} = \boldsymbol{\theta}_{k}^{j} - \eta_{k} \mathbf{g}_{k}^{j} = \boldsymbol{\theta}_{k}^{j} - \eta_{k} \left[\nabla \mathcal{L}_{m+l_{2}} (\boldsymbol{\theta}^{j})^{\mathsf{T}} \right]_{\boldsymbol{\theta}^{j} = \boldsymbol{\theta}_{k}^{j}}, \tag{22}$$

we have

$$\boldsymbol{\theta}_{k}^{j+1} = \boldsymbol{\theta}_{k}^{j} + \eta_{k} \left(\frac{2\eta_{k}}{|\mathbf{m}\mathbf{b}^{j}|} \begin{bmatrix} 1 & \mathbf{X}^{j} \end{bmatrix}^{\mathsf{T}} (\mathbf{y}^{j} - \widehat{\mathbf{y}^{j}}) - \alpha\gamma \begin{bmatrix} 0 & \operatorname{sgn}(w_{1}) \cdots \operatorname{sgn}(w_{n}) \end{bmatrix}^{\mathsf{T}} - \alpha(1 - \gamma) \begin{bmatrix} 0 & w_{1} \cdots w_{n} \end{bmatrix}^{\mathsf{T}} \right), \tag{5}$$

which proves the claim in eq. (23) on page 33.

Bibliography

