EEE 148 Buck Converter in Simulink

Submitted by: Emmanuel Estallo	Student Number: 2018-02355	Section: HWX
Collaborated with:		

GENERAL INSTRUCTIONS: Provide the required information in the spaces provided. If you run out of room for your answer, feel free to adjust the template as necessary.

Learning Activity: Open-Loop Buck Converter

1. Open-loop Buck Converter. Implement the open-loop buck converter in Figures 4 and 5.

2. **Buck Converter with Resistances.** Modify the buck converter in Fig. 4 using the following values: $L = 5\mu H$, $RL = 80m\Omega$, $C = 390\mu F$, $Resr = 2m\Omega$.

- 4. Varying the duty cycle. Change the duty cycle iteratively to get the desired output of $v_o = 8V$.
- (a) What is the duty cycle d needed to get $v_o = 8V$?

$$d = 0.72$$

(b) v_o waveform. v_o at steady - state = 8.002V

(c) i_{out} waveform.

- (d) What is your process for varying the duty cycle? How does the output of the buck converter affect your decision whether to increase or decrease the duty cycle?
- Increasing the duty cycle also increases the steady state output voltage. I increase or decrease accordingly.

5. Changing the load resistance

(a) Show the new block diagram of the open-loop system.

(b) What is the value of v_o and i_{out} at steady state? $v_o = 4.77 \text{V}$, $i_{out} = 0.47 \text{A}$

- (c) How does the load affect v_o and i_{out} ? Explain.
- The load scales v_o linearly. At the same time, the load scales i_{out} inversely.
- This follows Ohm's law. With the same v_o , i_{out} changes depending on the load resistance.
- (d) How can you get back a desired value for v_o when using a different load?
- Since the duty cycle and v_o are related proportionally, we can define a constant k where
- $k = \frac{v_{01}}{d_1} = \frac{v_{02}}{d_2}$
- This k holds for every value of v_o , d

Learning Activity: Closed-Loop Buck Converter

1. Closed-loop Buck Converter. Implement the open-loop buck converter in Figures 7.

(c) v_o waveform. v_o at steady - state = 5V

(d) i_{out} waveform.

2. Changing the output v_o . Modify the closed-loop buck converter such that $v_o = 8V$.

(a) Block Diagram of the closed-loop buck converter

(b) What variable must be changed? What should be its value? Voltage divider gain = 0.25

(c) Explain how this works. Include both equations and explanations.

$$A_{v,divider} = \frac{V_{ref}}{v_o}$$

- With $V_{ref} = 2$, and $v_o = 8$, $A_{v,divider} = 0.25$
- (d) Probe the value of the duty cycle d. What is the value at steady state? 0.72

Compare this with the duty cycle value that you got in the open-loop exercise to also get $v_o = 8V$. Explain.

- This is the same as the d value for the open loop setup.
- 3. How can you implement V_{ref} without using another voltage source? Note that we only have a single input voltage source V_a available to us.
- We can always use the V_g and a gain block. The gain will have a value:

$$G = \frac{V_{ref}}{V_g}$$

4. Changing the load resistance. Replace the load with $R_{load} = 10$.

(b) Show the waveforms. What is the value of v_o and i_{out} at steady state?

$$v_o = 8.0 \text{V}, \, i_{out} = 0.8 \text{A}$$

- (c) How does the load affect v_o and i_{out} ? Explain.
- The load current and voltage is governed by Ohm's law. Here, with the same v_o , the current should decrease if we increase the resistance.
- (d) Probe the value of the duty cycle d. What is the value at steady state? Did the value change when compared to when $R_{load}=1$? Why or why not?

- The value of d decreased.
- I think this has something to do with the load resistance having an effect to the current.

- 5. Explain how an open-loop system would get a desired v_o , and how it differs from a closed-loop system.
- For an open loop system, the v_o is governed by some constant, say, k where

$$k = \frac{v_o}{d}$$

- With this, we can obtain any v_o by just varying d.
- For a closed loop system, v_o follows

$$v_o = \frac{V_{ref}}{A_{v,divider}}$$

- The duty cycle is not manually set in a closed loop system. It can vary since it has a feedback path.
- 6. Explain the advantages and disadvantages of using an open-loop vs. using a closed-loop system.
- The gain may be high on the open-loop system but is it not as stable when compared to the closed-loop system
- A closed-loop system is generally harder to design since the system also needs to use controllers.