磁场中的磁介质

一、磁介质对磁场的影响

1.真空时螺线管内部磁场 B_0 为 μ_0 n_1

介质时的内部磁场B为 μnI 或 $\mu_r \mu_0 nI$

 $2.B \cap B_0$ 的比值称为相对磁导率,用符号 μ_{μ} 表示;

传导电流产生

$$\vec{B} = \vec{B}_o + \vec{B}'$$

与介质有关的电流产生

3.当填充介质为铁、钴、镍时, $\mu>>1$,这类介质是铁磁质; 当填充介质为锰、铬、铝时, $\mu>1$,这类介质是顺磁质; 当填充介质为铜、金、银时, $\mu<1$,这类介质是抗磁质;

二分子的磁矩与磁化机制

- 1. 圆电流的磁矩
- 2. 分子的固有磁矩

介质的磁化

抗磁质

顺磁质

无磁场	分子有固有磁矩 <i>而</i>	分子无固有磁矩
	出现与 \vec{B}_0 反向的感生	磁矩 \vec{m} $(\Delta \vec{m} << \vec{m})$
	\vec{B}_0	\vec{B}_0
有磁场	\vec{m} 在 \vec{B}_0 作用下整齐排列,在介质表面出现束缚(磁化)电流 I' \vec{B}' 与 \vec{B}_0 方向相同	在介质表面出现 束缚(磁化)电流 I' \vec{B}' 与 \vec{B}_0 方向相反
	$ \vec{B} = \vec{B}_0 + \vec{B}' > \vec{B}_0$	$ \vec{B} = \vec{B}_0 + \vec{B}' < \vec{B}_0$

磁化电流和磁化强度矢量

顺磁质分子固有磁矩 的定向排列

在介质表面形成束缚电流

抗磁质分子附加磁矩 的产生

1、定义磁化强度矢量

单位: A/m

介质的磁化

试试看:长直螺线管 (n,I) 励磁电流方向如图

- 1. (选择) 螺线管内部由励磁电流形成磁场 B_0 的方向为__;
- 2. (选择)填充介质为顺磁质时,螺线管内部磁场B的方向为___,介质的磁化强度M的方向为___;填充介质为抗磁质时,螺线管内部磁场B的方向为___,介质的磁化强度M的方向为___;

a.水平向左; b.水平向右

3.填充介质为__(顺,抗)磁质时,介质的面磁化电流的方向与励磁电流方向一致;磁化强度M的方向与面磁化电流的方向满足 关系。

1.a 2.a, a, a, b 3 顺, 右手

\vec{H} 的环路定理

1、定义
$$\frac{\vec{B}}{\mu_o}$$
 $-\vec{M}$ 为磁场强度矢量 \vec{H} 单位 A/m

$$\oint_L \vec{H} \cdot d\vec{l} = I_0$$
 为 \vec{H} 的环路定理

2、磁场强度矢量 \vec{H} 与磁感强度矢量 \vec{R} 的关系

$$\vec{B} = \mu_o \mu_r \vec{H}$$

B矢量的环流与回路包围的**所有**电流有关,H的环流与回路包围的**自由**电流有关。

B和H矢量由空间分布的所有电流共同决定。

例1 无限长直螺线管,单位长度匝数n,管内充满相对磁导率 μ_r 的磁介质。现通以电流I,求管内磁感强度。

1) 由 \vec{H} 的环路定理

$$\oint_{L} \vec{H} \cdot d\vec{l} = I_{0}$$

取矩形环路abcda

$$\oint_{L} \vec{H} \cdot d\vec{l} = H \overline{ab} = n \overline{ab} I \longrightarrow H = nI$$

2)
$$\vec{B} = \mu_0 \mu_r \vec{H} \longrightarrow B = \mu_0 \mu_r nI$$

例2 一长直单芯导线的芯是根半径为R 的金属导体,与导电外壁间充满相对磁导率 μ_r 的磁介质。现有电流I 均匀流过横截面并沿外壁流回,求:

磁介质中磁场分布;

解: 磁场分布具有对称性

1) 在磁介质中取圆形环路L

$$\oint_{L} \vec{H} \cdot d\vec{l} = H2\pi r = I \longrightarrow H = \frac{I}{2\pi r}$$

2)
$$\vec{B} = \mu_o \mu_r \vec{H} \longrightarrow B = \frac{\mu_o \mu_r I}{2\pi r}$$

注意这一类轴对称电流分布的磁场的计算问题

