

ARM®-based 32-bit Cortex®-M4 MCU +FPU with 256 to 4032 KB Flash, sLib, 2 QSPI, SDRAM, DVP, 18 timers, 3 ADCs, 23 communication interfaces (2 OTGFS and Ethernet)

Features

■ Core: ARM® 32-bit Cortex®-M4 CPU with FPU

- 288 MHz maximum frequency, with a memory protection unit (MPU), single-cycle multiplication and hardware division
- Floating point unit (FPU)
- DSP instructions

Memories

- 256 to 4032 Kbytes of internal Flash memory
- sLib: configurable part of main Flash set as a library area with code executable but secured, non-readable
- Default 384 Kbytes of SRAM, configurable up to maximum 512 Kbytes
- External memory controller (XMC) with 16bit data bus. Supports CF card, SRAM, PSRAM, NOR, NAND, and SDRAM memories
- Up to 2 x QSPI interfaces for external SPI Flash or SPI RAM extension, and memory mapping mode

■ XMC as LCD parallel interface, compatible with 8080/6800 modes

■ Power control (PWC)

- $-2.6 \text{ V} \sim 3.6 \text{ V}$ power supply
- Power on reset (POR), low voltage reset (LVR), and power voltage monitoring (PVM)
- Low power: Sleep, Deepsleep, and Standby modes
- V_{BAT} supply for LEXT, ERTC and 20 x 32bit battery powered registers (BPR)

■ Clock and reset management (CRM)

- 4 to 25 MHz crystal oscillator (HEXT)
- 48 MHz internal factory-trimmed clock (HICK), accuracy ±1 % at T_A = 25 °C and ±2.5 % at T_A = -40 to +105 °C, with automatic clock calibration (ACC)
- PLL flexible multiplication and division factor
- 32 kHz crystal (LEXT)
- Low speed internal clock (LICK)

Analog

- 3 x 12-bit 5.33 MSPS A/D converters, up to 24 input channels, 12/10/8/6-bit configurable resolution, hardware oversampling up to equivalent 16-bit resolution
- Temperature sensor (V_{TS}), internal reference voltage (V_{INTRV}), V_{BAT} battery

voltage monitor (V_{BAT}/4)

- 2 x 12-bit D/A converters

■ DMA

- 2 x general-purpose DMAs and 1 x EDMA
- 22 channels in all

■ Up to 116 fast GPIO interfaces

- All mappable to 16 external interrupts (EXINT)
- Almost 5V-tolerant

■ Up to 18 timers (TMR)

- Up to 3 x 16-bit 7-channel advanced timer, including three pairs of complementary channels for PWM output, with dead-time generator and emergency brake
- Up to 8 x 16-bit + 2 x 32-bit timers, each with 4 IC/OC/PWM or pulse counter
- 2 x watchdog timers (general WDT and windowed WWDT)
- SysTick timer: a 24-bit downcounter

■ ERTC: enhanced RTC with auto-wakeup, alarm, subsecond precision, hardware calendar and calibration feature

■ Up to 23 communication interfaces

- Up to 3 x I²C interfaces (SMBus/PMBus)
- Up to 4 x USARTs/4 x UARTs (ISO7816, LIN, IrDA capability, modern control and RS485 drive enable), support TX/RX swap
- Up to 4 x SPIs (50 Mbit/s), all with I²S interface multiplexed, I²S2/I²S3 support full-duplex
- Up to 2 x CAN interfaces (2.0B Active)
- Up to 2 x OTG FS controller, supporting crystal-less in device mode
- Up to 2 x SDIO interfaces
- Infrared transmitter (IRTMR)
- 10/100M Ethernet MAC (EMAC), with dedicated DMA and 4 KB of buffer, IEEE 1588 hardware support, MII/RMII available (for AT32F437 only)

■ 8~14-bit digital video parallel (DVP) interface

- CRC calculation unit
- 96-bit unique ID (UID)

■ Debug mode

- Serial wire debug (SWD) and JTAG interfaces
- Operating temperatures: -40 to +105 °C

2024.11.1 1 Ver 2.20

■ Packages

- LQFP144 20 x 20 mm
- LQFP100 14 x 14 mm
- LQFP64 10 x 10 mm
- LQFP48 7 x 7 mm
- QFN48 6 x 6 mm

Table 1. AT32F435 device summary

Internal Flash	Part number
4032 Kbytes	AT32F435ZMT7, AT32F435VMT7, AT32F435RMT7, AT32F435CMT7, AT32F435CMU7
1024 Kbytes	AT32F435ZGT7, AT32F435VGT7, AT32F435RGT7, AT32F435CGT7, AT32F435CGU7
448 Kbytes	AT32F435ZDT7, AT32F435VDT7, AT32F435RDT7, AT32F435CDT7, AT32F435CDU7
256 Kbytes	AT32F435ZCT7, AT32F435VCT7, AT32F435RCT7, AT32F435CCT7, AT32F435CCU7

Table 2. AT32F437 device summary

Internal Flash	Part number
4032 Kbytes	AT32F437ZMT7, AT32F437VMT7, AT32F437RMT7
1024 Kbytes	AT32F437ZGT7, AT32F437VGT7, AT32F437RGT7
448 Kbytes	AT32F437ZDT7, AT32F437VDT7, AT32F437RDT7
256 Kbytes	AT32F437ZCT7, AT32F437VCT7, AT32F437RCT7

Contents

Des	cription	12
Fun	ctionality overview	17
2.1	ARM®Cortex®-M4 with FPU	17
2.2	Memory	18
	2.2.1 Internal Flash memory	18
	2.2.2 Memory protection unit (MPU)	18
	2.2.3 SRAM	18
	2.2.4 External memory controller (XMC)	18
	2.2.5 Quad serial peripheral interface (QSPI)	18
2.3	Interrupts	19
	2.3.1 Nested vectored interrupt controller (NVIC)	19
	2.3.2 External interrupts (EXINT)	19
2.4	Power control (PWC)	19
	2.4.1 Power supply schemes	19
	2.4.2 Reset and power voltage monitoring (POR / LVR / PVM)	19
	2.4.3 Voltage regulator (LDO)	19
	2.4.4 Low-power modes	20
2.5	Boot modes	20
2.6	Clocks	21
2.7	General-purpose inputs / outputs (GPIO)	21
2.8	Direct Memory Access Controller (DMA)	22
2.9	Timers (TMR)	22
	2.9.1 Advanced timers (TMR1, TMR8 and TMR20)	23
	2.9.2 General-purpose timers (TMR2~5 and TMR9~14)	23
	2.9.3 Basic timers (TMR6 and TMR7)	24
	2.9.4 SysTick timer	24
2.10	Watchdog (WDT)	24
2.11	Window watchdog (WWDT)	24
2.12	Enhanced real-time clock (ERTC) and battery powered registers (BPR)	24
2.13	Communication interfaces	25
	2.13.1 Serial peripheral interface (SPI)	25

	2.13.2 Inter-integrated sound interface (I ² S)	
	2.13.3 Universal synchronous / asynchronous receiver transmitters (USART)	25
	2.13.4 Inter-integrated-circuit interface (I ² C)	26
	2.13.5 Secure digital input / output interface (SDIO)	26
	2.13.6 Controller area network (CAN)	26
	2.13.7 Universal serial bus On-The-Go full-speed (OTGFS)	27
	2.13.8 Infrared transmitter (IRTMR)	27
	2.13.9 Ethernet MAC interface (EMAC)	28
2.14	Digital video parallel interface (DVP)	28
2.15	Cyclic redundancy check (CRC) calculation unit	28
2.16	Analog-to-digital converter (ADC)	29
	2.16.1 Temperature sensor (V _{TS})	29
	2.16.2 Internal reference voltage (V _{INTRV})	29
	2.16.3 V _{BAT} monitor (V _{BAT} /4)	29
2.17	Digital-to-analog converter (DAC)	30
2.18	Serial wire (SWD) / JTAG debug port	30
Pin f	functional definitions	31
	functional definitions	
Mem		46
Mem	nory mapping	46 47
Mem Elec	nory mappingtrical characteristics	46 47 47
Mem Elec	trical characteristics Test conditions	464747
Mem Elec	trical characteristics Test conditions 5.1.1 Minimum and maximum values	46474747
Mem Elec	trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values	47474747
Mem Elec 5.1	trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values 5.1.3 Typical curves	4647474747
Mem Elec	Test conditions	464747474747
Mem Elec 5.1	Test conditions	46474747474747
Mem Elec 5.1	trical characteristics Test conditions. 5.1.1 Minimum and maximum values 5.1.2 Typical values. 5.1.3 Typical curves. 5.1.4 Power supply scheme. Absolute maximum values. 5.2.1 Ratings.	4647474747474848
Mem Elec 5.1	trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values 5.1.3 Typical curves 5.1.4 Power supply scheme Absolute maximum values 5.2.1 Ratings 5.2.2 Electrical sensitivity	464747474747484849
Mem Elec 5.1	trical characteristics Test conditions 5.1.1 Minimum and maximum values 5.1.2 Typical values 5.1.3 Typical curves 5.1.4 Power supply scheme Absolute maximum values 5.2.1 Ratings 5.2.2 Electrical sensitivity Specification	46474747474748484950
Mem Elec 5.1	Test conditions	4647474747474848495050
Mem Elec 5.1	trical characteristics	4647474747474848495050

7	Part	numbe	ering1	18
	6.7	Therma	al characteristics1	17
	6.6		marking1	
	6.5		31 	
	6.4		ł81	
	6.3	•	54	
	6.2		100	
	6.1	LQFP1	144	07
6	Pack	age in	formation 10	07
		5.3.27	12-bit DAC characteristics1	06
		5.3.26	V _{BAT} voltage monitor characteristics1	05
		5.3.25	Temperature sensor (V _{TS}) characteristics1	04
		5.3.24	Internal reference voltage (V _{INTRV}) characteristics1	03
		5.3.23	12-bit ADC characteristics1	00
		5.3.22	DVP characteristics	99
		5.3.21	EMAC characteristics	97
		5.3.20	OTGFS characteristics	96
		5.3.19	SDIO characteristics	95
		5.3.18	I ² C characteristics	94
		5.3.17	QSPI characteristics	94
		5.3.16	I ² S characteristics	92
			SPI characteristics	
			TMR characteristics	
			XMC (SDRAM included) characteristics	
			NRST pin characteristics	
			GPIO port characteristics	
			EMC characteristics	
			Wakeup time from low-power mode	
			Internal clock source characteristics	
			External clock source characteristics	
			Supply current characteristics	

8 Document revision history119

List of tables

Table 1. AT32F435 device summary	2
Table 2. AT32F437 device summary	2
Table 3. AT32F435 features and peripheral counts	13
Table 4. AT32F437 features and peripheral counts	15
Table 5. Bootloader supporting part numbers and pin configurations	21
Table 6. Timer feature comparison	22
Table 7. USART/UART feature comparison	26
Table 8. AT32F435/437 series pin definitions	35
Table 9. XMC pin definition	43
Table 10. Voltage characteristics	48
Table 11. Current characteristics	48
Table 12. Temperature characteristics	48
Table 13. ESD values	49
Table 14. Latch-up values	49
Table 15. General operating conditions	50
Table 16. Operating conditions at power-up/power-down	50
Table 17. Embedded reset and power management block characteristics	51
Table 18. Internal Flash memory characteristics (1)	52
Table 19. Internal Flash memory endurance and data retention (1)	52
Table 20. Typical current consumption in Run mode	54
Table 21. Typical current consumption in Sleep mode	55
Table 22. Maximum current consumption in Run mode	56
Table 23. Maximum current consumption in Sleep mode	57
Table 24. Typical and maximum current consumptions in Deepsleep and Standby modes	58
Table 25. Typical and maximum current consumptions on V _{BAT}	60
Table 26. Peripheral current consumption	61
Table 27. HEXT 4 ~ 25 MHz crystal characteristics (1)(2)	63
Table 28. HEXT external source characteristics	64
Table 29. LEXT 32.768 kHz crystal characteristics (1)(2)	65
Table 30. LEXT external source characteristics	66
Table 31. HICK clock characteristics	67
Table 32. LICK clock characteristics	67
Table 33. PLL characteristics	68
Table 34. Low-power mode wakeup time	68

Table 35. EMS characteristics	68
Table 36. GPIO static characteristics	69
Table 37. Output voltage characteristics	70
Table 38. Input AC characteristics	70
Table 39. NRST pin characteristics	71
Table 40. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	72
Table 41. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	73
Table 42. Asynchronous multiplexed PSRAM/NOR read timings	74
Table 43. Asynchronous multiplexed PSRAM/NOR write timings	75
Table 44. Synchronous non-multiplexed PSRAM/NOR read timings	76
Table 45. Synchronous non-multiplexed PSRAM write timings	78
Table 46. Synchronous multiplexed PSRAM/NOR read timings	79
Table 47. Synchronous multiplexed PSRAM write timings	80
Table 48. NAND Flash read and write timings	81
Table 49. PC card /CF read and write timings	84
Table 50. SDRAM read timings	88
Table 51. SDRAM write timings	89
Table 52. TMR characteristics	90
Table 53. SPI characteristics ⁽¹⁾	90
Table 54. I ² S characteristics ⁽¹⁾	92
Table 55. QSPI characteristics ⁽¹⁾	94
Table 56. SD/MMC characteristics ⁽¹⁾	95
Table 57. OTGFS startup time	96
Table 58. OTGFS DC electrical characteristics (1)(2)	96
Table 59. OTGFS electrical characteristics (1)	96
Table 60. EMAC DC electrical characteristics ⁽¹⁾	97
Table 61. Dynamic characteristics: EMAC signals for SMI ⁽¹⁾	97
Table 62. Dynamic characteristics: EMAC signals for RMII ⁽¹⁾	97
Table 63. Dynamic characteristics: EMAC signals for MII ⁽¹⁾	98
Table 64. ADC characteristics	100
Table 65. R _{AIN} max for f _{ADC} = 80 MHz	101
Table 66. ADC accuracy (1)(2)	101
Table 67. Internal reference voltage characteristics	103
Table 68. Temperature sensor characteristics	104
Table 69. V _{BAT} voltage monitor characteristics	105

Table 70. DAC characteristics	. 106
Table 71. LQFP144 – 20 x 20 mm 144 pin low-profile quad flat package mechanical data	. 108
Table 72. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package mechanical data	. 110
Table 73. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data	. 112
Table 74. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package mechanical data	. 114
Table 75. QFN48 – 6 x 6 mm 48 pin quad flat no-leads package mechanical data	. 116
Table 76. Package thermal characteristics	. 117
Table 77. AT32F435/437 series part numbering	. 118
Table 78. Document revision history	. 119

List of figures

Figure 1. AT32F435/437 block diagram	17
Figure 2. AT32F435/437 LQFP144 pinout	31
Figure 3. AT32F435/437 LQFP100 pinout	32
Figure 4. AT32F435/437 LQFP64 pinout	33
Figure 5. AT32F435 LQFP48 pinout	34
Figure 6. AT32F435 QFN48 pinout	34
Figure 7. Memory mapping (AT32F435/437xM)	46
Figure 8. Power supply scheme	47
Figure 9. Power on reset and low voltage reset waveform	52
Figure 10. Typical current consumption in Deepsleep mode with regulator in run mode	and output
1.2 V vs. temperature at different V _{DD}	58
Figure 11. Typical current consumption in Deepsleep mode with regulator in low-power output 1.1 V vs. temperature at different V _{DD}	
Figure 12. Typical current consumption in Standby mode vs. temperature at different V _{DD} (AT32F435/437xD)	
Figure 13. Typical current consumption in Standby mode vs. temperature at different V_{DD}	others)60
Figure 14. Typical current consumption on V _{BAT} with LEXT and ERTC ON vs. temperatur different V _{BAT}	
Figure 15. HEXT typical application with an 8 MHz crystal	63
Figure 16. HEXT external source AC timing diagram	64
Figure 17. LEXT typical application with a 32.768 kHz crystal	65
Figure 18. LEXT external source AC timing diagram	66
Figure 19. HICK clock frequency accuracy vs. temperature	67
Figure 20. Recommended NRST pin protection	71
Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	72
Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	73
Figure 23. Asynchronous multiplexed PSRAM/NOR read waveforms	74
Figure 24. Asynchronous multiplexed PSRAM/NOR write waveforms	75
Figure 25. Synchronous non-multiplexed PSRAM/NOR read waveforms	77
Figure 26. Synchronous non-multiplexed PSRAM write waveforms	78
Figure 27. Synchronous multiplexed PSRAM/NOR read waveforms	79
Figure 28. Synchronous multiplexed PSRAM write waveforms	80
Figure 29. NAND controller read waveforms	82
Figure 30. NAND controller write waveforms	82

Figure 31. NAND controller common memory read waveforms	82
Figure 32. NAND controller for common memory write waveforms	83
Figure 33. PC card/CF controller waveforms for common memory read access	85
Figure 34. PC card/CF controller waveforms for common memory write access	85
Figure 35. PC card/CF controller waveforms for attribute memory read access	86
Figure 36. PC card/CF controller waveforms for attribute memory write access	86
Figure 37. PC card /CF controller waveforms for I/O space read access	87
Figure 38. PC card/CF controller waveforms for I/O space write access	87
Figure 39. SDRAM read waveforms	88
Figure 40. SDRAM write waveforms	89
Figure 41. SPI timing diagram – slave mode and CPHA = 0	91
Figure 42. SPI timing diagram – slave mode and CPHA = 1	91
Figure 43. SPI timing diagram – master mode	91
Figure 44. I ² S slave timing diagram (Philips protocol)	92
Figure 45. I ² S master timing diagram (Philips protocol)	93
Figure 46. QSPI timing diagram	94
Figure 47. SDIO high-speed mode	95
Figure 48. SD default mode	95
Figure 49. OTGFS timings: definition of data signal rise and fall time	96
Figure 50. EMAC SMI timing diagram	97
Figure 51. EMAC RMII timing diagram	98
Figure 52. EMAC MII timing diagram	98
Figure 53. DVP timing diagram	99
Figure 54. ADC accuracy characteristics	102
Figure 55. Typical connection diagram using the ADC	102
Figure 56. Power supply and reference decoupling (V_{REF^+} connected to V_{DDA})	103
Figure 57. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})	103
Figure 58. Ideal curve of V _{TS} vs. temperature	104
Figure 59. LQFP144 – 20 x 20 mm 144 pin low-profile quad flat package outline	107
Figure 60. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline	109
Figure 61. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline	111
Figure 62. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package outline	113
Figure 63. QFN48 – 6 x 6 mm 48 pin quad flat no-leads package outline	115
Figure 64. Marking example	116

1 Description

The AT32F435/437 is based on the high-performance ARM® Cortex®-M4 32-bit RISC core running up to 288 MHz. The Cortex®-M4 core features a Floating point unit (FPU) single precision which supports all ARM single-precision data processing instructions and data type. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The AT32F435/437 incorporates high-speed embedded memories (up to 4032 Kbytes of internal Flash memory and configurable maximum 512 Kbytes of SRAM), enhanced GPIOs and peripherals connected to two APB buses. Any block of the embedded Flash memory can be protected by the "sLib", functioning as a security area with code-executable only. In addition, the AT32F435/437 includes high-level memory extension: one external memory controller (XMC) (SDRAM interfaced included) and two quad-SPI interface (QSPI).

The AT32F435/437 offers three 12-bit ADCs, two 12-bit DACs, 13 general-purpose 16-bit timers (three PWM advanced timers for motor control included), two general-purpose 32-bit timers, and one low-power ERTC. It supports standard and advanced communication interfaces: up to three I²Cs, four SPIs (all multiplexed as I²Ss), two SDIOs, four USARTs plus four UARTs, one infrared transmitter, two OTGFS interfaces, two CANs, one digital video parallel (DVP) interface, and an Ethernet MAC (EMAC) interface.

The AT32F435/437 operates in the -40 to +105 °C temperature range, from a 2.6 to 3.6 V power supply. A comprehensive set of power-saving mode meets the requirements of low-power application.

The AT32F435/437 offers devices in different package types. Depending on the different packages, the pin-to-pin is completely compatible among devices, and also the software and functionality. Only different sets of peripherals are included.

Table 3. AT32F435 features and peripheral counts

		AT32F435xxU7										AT32F435xxT7										
	Part number		CD	CG	ı	СС	CD	CG	СМ	RC	RD	RG	RM	vc	VD	VG	VM	zc	ZD	ZG	ZM	
-	requency (MHz)										28	38										
	ZW (Kbytes)	256	256	256	256	256	256	256	256	256			256	256	256	256	256	256	256	256	256	
Flash ⁽¹⁾⁽²⁾	NZW (Kbytes)	0	192	768	3776	0	192	768	3776	0	192	768	3776	0	192	768	3776	0	192	768	3776	
nt. F	Total (Kbytes)	256	448	1024	4032	256	448	1024	4032	256	448	1024	4032	256	448	1024	4032	256	448	1024	4032	
_	SRAM ⁽²⁾ (Kbytes)								y def			urabl	e ma	ximun	n 512	<u> </u>	1					
	XMC		-	-			-	-			1	(3)			1(4	1)(5)				1		
	SDRAM			•			-				-				1	(4)				1		
	QSPI		2	2			2	2			2	2			2	2			2	2		
	Advanced		3	3			3	3			3	3			;	3			;	3		
	32-bit general-purpose		2	2			2	2			2	2			2	2			2	2		
	16-bit general-purpose		8	3			8	3			8	3		8				8				
Timers	Basic		2	2			2	2			2	2			2	2		2				
Ė	SysTick		1				1	1		1					•	1		1				
	WDT		1				1	1		1			1				1					
	WWDT		1				1	1		1			1			1						
	ERTC		1	1			1	1		1			1			1						
	I ² C		3	3			3	3		3				3				3				
aces	SPI ⁽⁶⁾	SPI ⁽⁶⁾ 4					4			4				4			4					
nterf	I ² S ⁽⁶⁾	4 ((2 full-	-duple	ex)	4 (2 full-duplex)			4 (2 full-	duple	ex)	4 (2 full-duplex)				4 (2 full-duplex)			ex)		
Communication interfaces	USART + UART		3 +	4 ⁽⁷⁾		3 + 4 ⁽⁷⁾					4 +	- 4		4 + 4				4 + 4				
nicat	SDIO		1	(8)			1	(8)			2	2			2	2		2				
lmuu	OTGFS		2	2			2	2			2	2			2	2			2	2		
Con	CAN		2	2			2	2		2					2	2		2				
	IRTMR		1	1			1	1			1				•	1				1		
g	12-bit ADC					1				1	3			1								
Analog	numbers/channels		1	0			1	0			1	6			1	6			2	4		
12-bti DAC numbers										2	2											
	DVP ⁽⁹⁾		1	1		1				1			1				1					
	GPIO		3	9			3	9			5	3			8	4		116				
Ор	erating temperature					1				-40	°C to		5 °C	1				ı				
	Packages			N48 mm				P48 mm		1	LQF 0 x 1		า	LQFP100 14 x 14 mm				LQFP144 20 x 20 mm				

- (1) ZW = = zero wait-state, up to SYSCLK 288 MHz NZW = non-zero wait-state
- (2) The internal Flash and SRAM sizes are configurable with User System Data, configurable in every 64-KByte step.
 - Take the AT32F435xC as an example, the Flash/SRAM can be configured into three options below:
 - ZW: 256 Kbytes, NZW: 0 Kbyte, SRAM: 384 Kbytes (default setting before shipping form the factory)
 - ZW: 192 Kbytes, NZW: 64 Kbytes, SRAM: 448 Kbytes
 - ZW: 128 Kbytes, NZW: 128 Kbytes, SRAM: 512 Kbytes

Take the AT32F435xD as an example, the Flash/SRAM can be configured into six options below:

- ZW: 448 Kbytes, NZW: 0 Kbyte, SRAM: 192 Kbytes
- ZW: 256 Kbytes, NZW: 192 Kbytes, SRAM: 384 Kbytes (default setting before shipping form the factory)
- ZW: 128 Kbytes, NZW: 320 Kbytes, SRAM: 512 Kbytes

Take the AT32F435xG as an example, the Flash/SRAM can be configured into seven options below:

- ZW: 512 Kbytes, NZW: 512 Kbytes, SRAM: 128 Kbytes
- ZW: 256 Kbytes, NZW: 768 Kbytes, SRAM: 384 Kbytes (default setting before shipping form the factory)

- ZW: 128 Kbytes, NZW: 896 Kbytes, SRAM: 512 Kbytes

Take the AT32F435xM as an example, the Flash/SRAM can be configured into seven options below:

- ZW: 512 Kbytes, NZW: 3520 Kbytes, SRAM: 128 Kbytes

- ZW: 256 Kbytes, NZW: 3776 Kbytes, SRAM: 384 Kbytes (default setting before shipping form the factory)
- ZW: 128 Kbytes, NZW: 3904 Kbytes, SRAM: 512 Kbytes
- (3) For LQFP64 package, XMC only supports the LCD panel with 8-bit mode.
- (4) For the LQFP100 package, XMC supports to directly connect a multiplexed NOR/PSRAM memory, a 16- or 8-bit NAND Flash memory, and the SDRAM. The interrupt line cannot be used since Port G is not available in this package.
- (5) For the LQFP100 package, XMC supports a non-multiplexed NOR/PSRAM memory via the external latch circuit. Please refer to the application note AN0068.
- (6) Half-duplex I2S shares the same pin with SPI.
- (7) For LQFP48 and QFN48 packages, UART8 is not available and USART6 is used as UART for no CK pinout.
- (8) For LQFP48 and QFN48 packages, either SDIO1 or SDIO2 can be used. The SDIO2 only supports maximum 4-bit (D0~D3) mode
- (9) Only LQFP144 package supports maximum 14-bit mode; LQPF48 and QFN48 packages support only 8-bit mode; LQFP100 and LQFP64 packages support maximum 12-bit mode.

2024.11.1 14 Ver 2.20

Table 4. AT32F437 features and peripheral counts

					1021 40			37xxT7						
	Part number	RC	RD	RG	RM	VC	VD	VG	VM	ZC	ZD	ZG	ZM	
	Frequency (MHz)			<u>'</u>		<u>'</u>	28	38	<u>'</u>	<u>'</u>	<u> </u>			
(1)(2)	ZW (Kbytes)	256	256	256	256	256	256	256	256	256	256	256	256	
Flash ⁽¹⁾⁽²⁾	NZW (Kbytes)	0	192	768	3776	0	192	768	3776	0	192	768	3776	
Int. F	Total (Kbytes)	256	448	1024	4032	256	448	1024	4032	256	448	1024	4032	
	SRAM ⁽²⁾ (Kbytes)		•	•	384	by defau	lt, config	urable n	naximum	512	l.	•	•	
	XMC		1	(3)			1(4	·)(5)				1		
	SDRAM			-			1	(4)				1		
	QSPI		2	2			2	2			2	2		
	Advanced		(3			3	3			;	3		
	32-bit general-purpose		2	2			2	2				2		
	16-bit general-purpose		8	3			8	3			8	3		
Timers	Basic		2	2			2	2			2	2		
μĒ	SysTick			1			•	1				1		
	WDT		,	1			,	1		1				
	WWDT		,	1			,	1		1				
	ERTC			1			•	1		1				
	I ² C		;	3			3	3		3				
Se	SPI ⁽⁶⁾		4	4			4	1		4				
ıfacı	I ² S ⁽⁶⁾		4 (2 full-	-duplex)			4 (2 full-	-duplex)		4 (2 full-duplex)				
inte	USART + UART		4 -	+ 4			4 -	+ 4		4 + 4				
atior	SDIO		2	2			2	2		2				
unic	OTGFS		2	2			2	2		2				
Communication interfaces	CAN		2	2			2	2		2				
ŭ	EMAC		•	1			,	1		1				
	IRTMR			1			,	l				1		
gc	12-bit ADC					T	3	3						
Analog	numbers/channels		1	6				6		24				
	12-bit DAC numbers					ı		2						
	DVP ⁽⁷⁾			1				1				1		
_	GPIO .		5	3			8				1 ⁻	16		
Op	Packages			P64		-	40 °C to	P100	<i></i>	LQFP144 20 x 20 mm				
			10 x 1	0 mm			14 x 1	4 mm			20 X 2	2U mm		

- (1) ZW = zero wait-state, up to SYSCLK 288 MHz NZW = non-zero wait-state
- (2) The internal Flash and SRAM sizes are configurable with User System Data, configurable in every 64-KByte step.
 - Take the AT32F437xC as an example, the Flash/SRAM can be configured into three options below:
 - ZW: 256 Kbytes, NZW: 0 Kbyte, SRAM: 384 Kbytes (default setting before shipping form the factory)
 - ZW: 192 Kbytes, NZW: 64 Kbytes, SRAM: 448 Kbytes
 - ZW: 128 Kbytes, NZW: 128 Kbytes, SRAM: 512 Kbytes
 - Take the AT32F437xD as an example, the Flash/SRAM can be configured into six options below:
 - ZW: 448 Kbytes, NZW: 0 Kbyte, SRAM: 192 Kbytes

- ZW: 256 Kbytes, NZW: 192 Kbytes, SRAM: 384 Kbytes (default setting before shipping form the factory)

- ZW: 128 Kbytes, NZW: 320 Kbytes, SRAM: 512 Kbytes
- Take the AT32F437xG as an example, the Flash/SRAM can be configured into seven options below:
- ZW: 512 Kbytes, NZW: 512 Kbytes, SRAM: 128 Kbytes

- ZW: 256 Kbytes, NZW: 768 Kbytes, SRAM: 384 Kbytes (default setting before shipping form the factory)

- ZW: 128 Kbytes, NZW: 896 Kbytes, SRAM: 512 Kbytes
- Take the AT32F437xM as an example, the Flash/SRAM can be configured into seven options below:
- ZW: 512 Kbytes, NZW: 3520 Kbytes, SRAM: 128 Kbytes

- ZW: 256 Kbytes, NZW: 3776 Kbytes, SRAM: 384 Kbytes (default setting before shipping form the factory)

- ZW: 128 Kbytes, NZW: 3904 Kbytes, SRAM: 512 Kbytes
- (3) For LQFP64 package, XMC only supports the LCD panel with 8-bit mode.
- (4) For the LQFP100 package, XMC supports to directly connect a multiplexed NOR/PSRAM memory, a 16- or 8-bit NAND Flash memory, and the SDRAM. The interrupt line cannot be used since Port G is not available in this package.
- (5) For the LQFP100 package, XMC supports a non-multiplexed NOR/PSRAM memory via the external latch circuit. Please refer to the application note AN0068.
- (6) Half-duplex I2S shares the same pin with SPI.
- (7) Only LQFP144 package supports maximum 14-bit mode; LQFP100 and LQFP64 packages support maximum 12-bit mode.

2024.11.1 16 Ver 2.20

2 Functionality overview

2.1 ARM®Cortex®-M4 with FPU

The ARM Cortex®-M4 processor is the latest generation of ARM processors for embedded systems. It is a 32-bit RISC processor features exceptional code efficiency, outstanding computational power and advanced response to interrupts. The processor supports a set of DSP instructions which enable efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up floating point calculation while avoiding saturation. *Figure 1* shows the general block diagram of the AT32F435/437.

2.2 Memory

2.2.1 Internal Flash memory

Up to 4032 Kbytes of embedded Flash is available for storing programs and data. User can configure any part of the embedded Flash memory protected by the sLib, functioning as a security area with code-executable only but non-readable. "sLib" is a mechanism that protects the intelligence of solution venders and facilitates the second-level development by customers. After the register bit NZW_BST is enabled, the overall NZW area code execution performance can be improved, but the maximum clock frequency of AHB is lower than that when it is disabled. Please refer to *Table 15* when using it.

There is another 18-KByte boot memory in which the bootloader is stored.

A User System Data block is included, which is used as configuration of the hardware behaviors such as read/erase/write protection and watchdog self-enable. User System Data allows to set erase/write and read protection individually, with the latter supporting low-level and high-level protection.

2.2.2 Memory protection unit (MPU)

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area consists of up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially suited to the applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system).

2.2.3 **SRAM**

384 Kbytes of on-chip SRAM by default and configurable maximum 512 Kbytes, accessed (read/write) at CPU clock speed with 0 wait state.

2.2.4 External memory controller (XMC)

The XMC is embedded in the AT32F435/437. It has four Chip Select outputs supporting the following modes: CF card, SRAM, PSRAM, NOR flash, NAND flash, and SDRAM.

Main features:

- 8-bit or 16-bit data bus width
- Read buffer for SDRAM controller
- Write buffer

The XMC can be configured to interface with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes.

2.2.5 Quad serial peripheral interface (QSPI)

The AT32F435/437 series embed two quad serial peripheral interfaces (QSPI). This is a dedicated communication interface which connects single, dual, or quad data lines of SPI flash memory or SPI RAM. It can work in indirect mode (fully accessed by control registers), status polling mode, or

memory mapping mode with up to 256 MBytes mapping of the external SPI flash or RAM. QSPI can be accessed by bytes, half-words, or words, supporting execution-in-place (XIP) operation and fully programmable command and frame format.

2.3 Interrupts

2.3.1 Nested vectored interrupt controller (NVIC)

The AT32F435/437 series embed a nested vectored interrupt controller that is able to manage 16 priority levels and handle maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M4 with FPU. This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.2 External interrupts (EXINT)

The external interrupt (EXINT), which is connected directly with NVIC, consists of 22 edge detector lines used to generate interrupt requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The external interrupt lines connects up to 16 GPIOs.

2.4 Power control (PWC)

2.4.1 Power supply schemes

- $V_{DD} = 2.6 \sim 3.6 \text{ V}$: power supply for GPIOs and the internal block such as regulator (LDO), provided externally via V_{DD} pins.
- V_{DDA} = 2.6 ~ 3.6 V: power supply for ADC and DAC. V_{DDA} and V_{SSA} must be the same voltage potential as V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.62 ~ 3.6 V: V_{BAT} pin can supply V_{BAT} domain from the external battery or super capacity, or from V_{DD} without the external battery or super capacity. V_{BAT} (through power switch) supplies for ERTC, external crystal 32 kHz (LEXT), and battery powered registers (BPR) when V_{DD} is not present.

2.4.2 Reset and power voltage monitoring (POR / LVR / PVM)

The device has an integrated power-on reset (POR)/low voltage reset (PDR) circuitry. It is always active, and allows proper operation starting from/down to 2.6 V. The device remains in reset mode when V_{DD} goes below a specified threshold (V_{LVR}) without the need for an external reset circuit.

The device embeds a power voltage monitor (PVM) that monitors the V_{DD} power supply and compares it to the V_{PVM} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVM} threshold and/or when V_{DD} rises above the V_{PVM} threshold. The PVM is enabled by software.

2.4.3 Voltage regulator (LDO)

The LDO has three operating modes: normal, low-power, and power down.

- Normal mode is used in Run/Sleep mode and in the Deepsleep mode;
- Low-power mode can be used in the Deepsleep mode;
- Power down mode is used in Standby mode: The regulator output is in high impedance and the kernel circuitry is powered down but the contents of the registers and SRAM are lost.

This LDO operates always in its normal mode after reset.

The LDO has the ability to adjust its output voltage. Besides 1.2V by default, it supports 1.3/1.1V adjusted by software so as to enable flexibility between performance and power consumption. Note that different LDO voltages have limitation about the maximum frequency of the AHB clock. Please check *Table 15*, and follow steps specified in the AT32F435/437 reference manual to switch LDO voltage and set the system clock.

2.4.4 Low-power modes

The AT32F435/437 series support three low-power modes:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Deepsleep mode

Deepsleep mode achieves the low power consumption while retaining the content of SRAM and registers. All clocks in the LDO power domain are stopped, disabling the PLL, the HICK clock, and the HEXT crystal. The voltage regulator can also be put in normal or low-power mode, with output voltage being adjustable.

The device can be woken up from Deepsleep mode by any of the EXINT line. The EXINT line source can be one of the 16 external lines, the PVM output, an ERTC alarm/wakeup/tamper/time stamp event, and the OTGFS or the Ethernet MAC wakeup.

Standby mode

The Standby mode is used to acquire the lowest power consumption. The internal voltage regulator is switched off so that the entire LDO power domain is powered off. The PLL, HICK clock and HEXT crystal are also switched off. After entering Standby mode, SRAM and register contents are lost except for the ERTC register, registers in the BPR domain, and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), a WDT reset, a rising edge on the WKUPx pin, or an ERTC alarm/wakeup/tamper/time stamp occurs.

Note: The ERTC and the corresponding clock sources are not stopped by entering Deepsleep or Standby mode. WDT depends on the User System Data setting.

2.5 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from internal Flash memory. For the AT32F435/437xG/xM, user has an option to boot from any of two memory banks. By default, boot from Flash memory bank 1 is selected. User can choose to boot from Flash memory bank 2 by setting a bit in the User System Data area.
- Boot from boot memory.
- Boot from embedded SRAM.

The bootloader is stored in boot memory. It is used to reprogram the Flash memory through USART1, USART2, USART3, OTGFS1, or OTGFS2 (OTGFS1 and OTGFS2 support crystal-less). *Table 5* provides the supporting interfaces of the Bootloader regarding AT32F435/437 part numbers and pin configurations.

Interface	Part number	Pin
USART1	All part numbers	PA9: USART1_TX
USAKTT	All part numbers	PA10: USART1_RX
	AT32F435ZxT7, AT32F435VxT7	PD5: USART2_TX
USART2	AT32F437ZxT7, AT32F437VxT7	PD6: USART2_RX
USARTZ	Other part numbers	PA2: USART2_TX
	Other part numbers	PA3: USART2_RX
		PC10: USART3_TX
	AT32F435ZxT7, AT32F435VxT7, AT32F435RxT7	PC11: USART3_RX
	AT32F433ZXT7, AT32F433VXT7, AT32F433RXT7 AT32F437ZXT7, AT32F437VXT7, AT32F437RXT7	or
USART3	A1021 4072X17, A1021 407 VX17, A1021 4071X17	PB10: USART3_TX ⁽¹⁾
		PB11: USART3_RX ⁽¹⁾
	Other part numbers	PB10: USART3_TX
	Other part numbers	PB11: USART3_RX
OTGES1	All part numbers	PA11: OTGFS1_D-
OTGFS1	All part numbers	PA12: OTGFS1_D+
OTGFS2	All part numbers	PB14: OTGFS2_D-
OTGF32	All part numbers	PB15: OTGFS2_D+

Table 5. Bootloader supporting part numbers and pin configurations

2.6 Clocks

The internal 48 MHz clock (HICK) through a divided-by-6 divider (8 MHz) is selected as the default CPU clock after any reset. An external 4 to 25 MHz clock (HEXT) can be selected, in which case it is monitored for failure. If a failure is detected, HEXT will be switched off and the system automatically switches back to the internal HICK. A software interrupt is generated. Similarly, the system take the same action once HEXT fails when it is used as the source of PLL.

Several prescalers are used for the configuration of the AHB and the APB (APB1 and APB2) frequency. The maximum frequency of the AHB domain is 288 MHz. The maximum allowed frequency of the APB domain is 144 MHz.

The AT32F435/437 series embed an automatic clock calibration (ACC) block, which calibrates the internal 48 MHz HICK clock, assuring the most precise accuracy of the HICK in the full range of the operating temperatures.

2.7 General-purpose inputs / outputs (GPIO)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain with or without pull-up or pull-down), as input (floating with or without pull-up or pull-down), or as multiple function. Most of the GPIO pins are shared with digital or analog multiple functions. All GPIOs are high current-capable.

The GPIO configuration can be locked, if needed, in order to avoid false writing to the GPIO registers by following a specific sequence.

⁽¹⁾ Silicon version B.

2.8 Direct Memory Access Controller (DMA)

AT32F435/437 series have two general-purpose DMAs (DMA1 and DMA2) plus one enhanced EDMA, 22 channels in total. They are able to manage memory-to-memory, peripheral-to-memory, and memory-to-peripheral transfers. They also have dedicated buffers for APB/AHB peripherals and support burst transmission, which provides the maximum bandwidth for peripherals.

DMA/EDMA controllers support circular buffer management, removing the need for special code intervention when the controller reaches the end of the buffer. Besides, EDMA controller has double buffers, which allows the automatic use and switch between two memory buffers without the need for special code intervention.

Each channel is connected to dedicated hardware DMA/EDMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA/EDMA can be used with the main peripherals: SPI and I²S, I²C, USART, advanced/general-purpose/basic timers TMRx, DAC, SDIO, ADC, DVP and QSPI.

2.9 Timers (TMR)

The AT32F435/437 devices include up to 3 advanced timers, up to 10 general-purpose timers, 2 basic timers and a SysTick timer.

The table below compares the features of the advanced, general-purpose, and basic timers.

Counter Counter **Prescaler DMA** request Capture/compare Complementary **Type Timer** resolution type factor generation channels outputs TMR1 Any integer Up, down, Advanced TMR8 16-bit between 1 Yes 4 up/down TMR20 and 65536 Any integer 16-bit or TMR2 Up, down, between 1 Yes 4 No TMR5 32-bit up/down and 65536 Any integer TMR3 Up, down, 16-bit 4 between 1 Yes No TMR4 up/down and 65536 General-Any integer purpose TMR9 16-bit 2 Up between 1 No No TMR12 and 65536 TMR10 Any integer TMR11 16-bit between 1 1 No Up No TMR13 and 65536 TMR14 Any integer TMR6 Basic 16-bit Up between 1 Yes No No TMR7 and 65536

Table 6. Timer feature comparison

2.9.1 Advanced timers (TMR1, TMR8 and TMR20)

The three advanced timers (TMR1, TMR8, and TMR20) can each be seen a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. Each of these timers can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-cycle mode output

If configured as a standard 16-bit timer, it has the same features as the TMRx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0 to 100%).

In debug mode, the advanced timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TMR which have the same architecture. The advanced timer can therefore work together with the TMR timers via the link feature for synchronization or event chaining.

2.9.2 General-purpose timers (TMR2~5 and TMR9~14)

There are 10 synchronizable general-purpose timers embedded in the AT32F435/437 series.

TMR2, TMR3, TMR4 and TMR5

The AT32F435/437 series have 4 full-featured general-purpose timers: TMR2, TMR3, TMR4 and TMR5. The TMR2 and TMR5 timers are based on a 32-bit auto-reload upcounter/downcounter and a 16-bit prescaler. The TMR3 and TMR4 timers are based on a 16-bit auto-reload upcounter/downcounter and a 16-bit prescaler. They can offer four independent channels on the largest packages. Each channel can be used for input capture/output compare, PWM or one-cycle mode outputs.

These general-purpose timers can work together, or with the other general-purpose timers and the advanced timers via the link feature for synchronization or event chaining. In debug mode, their counter can be frozen. Any of these general-purpose timers can be used to generate PWM outputs. Each timer has individual DMA request.

These timers are capable of handling incremental quadrature encoder signals and the digital outputs coming from 1 to 3 hall-effect sensors.

TMR9 and TMR12

TMR9 and TMR12 are based on a 16-bit auto-reload upcounter, a 16-bit prescaler, and two independent channels for input capture/output compare, PWM, or one-cycle mode output. They can be synchronized with the TMR2, TMR3, TMR4, and TMR5 full-featured general-purpose timers. They can also be used as simple time bases.

• TMR10, TMR11, TMR13 and TMR14

These timers are based on a 16-bit auto-reload upcounter, a 16-bit prescaler, and one independent channels for input capture/output compare, PWM, or one-cycle mode output. They can be synchronized with the TMR2, TMR3, TMR4 and TMR5 full-featured general-purpose timers. They can also be used as simple time bases.

2.9.3 Basic timers (TMR6 and TMR7)

These two timers are mainly used for DAC trigger generation. Each of them can also be used as a generic 16-bit time base.

2.9.4 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. Its features include:

- A 24-bit down counter
- Auto reload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source (HCLK or HCLK/8)

2.10 Watchdog (WDT)

The watchdog consists of a 12-bit downcounter and 8-bit prescaler. It is clocked by an independent internal LICK clock. As it operates independently from the main clock, it can operate in Deepsleep and Standby modes. It can be used either as a watchdog to reset the device when an error occurs, or as a free running timer for application timeout management. It is self-enabling or not configurable through the User System Data. The counter can be frozen in debug mode.

2.11 Window watchdog (WWDT)

The window watchdog embeds a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when an error occurs. It is clocked by the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.12 Enhanced real-time clock (ERTC) and battery powered registers (BPR)

The battery powered domain includes:

- Enhanced real-time clock (ERTC)
- Twenty 32-bit battery powered registers

The enhanced real-time clock (ERTC) is an independent BCD timer/counter. It supports the following features:

- Calendar with second, minute, hour (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- The sub-seconds value is also available in binary format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Programmable alarms and periodic wakeup from Deepsleep or Standby mode

 To compensate quartz crystal inaccuracy, ERTC can be calibrated via a 512 Hz external output

Two alarm registers are used to generate an alarm at a specific time whereas the calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours. Other 32-bit registers also feature programmable sub-second, second, minute, hour, week day and date.

The prescaler is used as a time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The battery powered registers (BPR) are 32-bit registers used to store 80 bytes of user application data. Battery powered registers are not reset by a system or power reset, or when the device is woken up from the Standby mode

ERTC and BPR are powered through a power switch. When V_{DD} exists, the switch selects V_{DD} as power supply, or V_{BAT} is used as supply source.

2.13 Communication interfaces

2.13.1 Serial peripheral interface (SPI)

There are up to four 50 Mbits/s SPIs able to communicate in slave and master modes in full-duplex and simplex communication modes. The prescaler generates several master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD card/MMC/SDHC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master and slave modes.

2.13.2 Inter-integrated sound interface (I²S)

Four standard I²S interfaces (multiplexed with SPI) are available, which can be operated in master or slave mode in half-duplex mode. These interfaces can be configured to operate with 16/24/32 bit resolution, as input or output channels. Audio sampling frequencies ranges from 8 kHz up to 192 kHz. When I²S is configured in master mode, the master clock can be output to the external 256 times sampling frequency. All I²Ss can use the DMA controller.

2.13.3 Universal synchronous / asynchronous receiver transmitters (USART)

The AT32F435/437 series embed four universal synchronous/asynchronous receiver transmitters (USART1, USART3, and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7, and UART8).

These eight interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode, and have LIN Master/Slave capability. USART1, USART2, USART3, and USART6 provide hardware management of the CTS and RTS signals. They also provide Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller. The USART interfaces can be up to 9 Mbit/s.

USART/UART feature	USART1	USART2	USART3	UART4	UART5	USART6	UART7	UART8
Hardware flow control for modem	Yes	Yes	Yes	-	-	Yes	-	-
Continuous communication using DMA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Multiprocessor communication	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Synchronous mode	Yes	Yes	Yes	-	-	Yes	-	-
Smartcard mode	Yes	Yes	Yes	-	-	Yes	-	-
Single-wire half-duplex communication	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
IrDA SIR ENDEC block	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LIN mode	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
TX/RX swap	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
RS-485 driver enable	Yes	Yes	Yes	•	-	Yes	-	

Table 7. USART/UART feature comparison

2.13.4 Inter-integrated-circuit interface (I²C)

Up to three I²C bus interfaces can operate in multi-master and slave modes. They support standard mode (max. 100 kHz), fast mode (max. 400 kHz), and fast mode plus (max. 1 MHz). Several GPIOs provide ultra-high sink current 20 mA.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is included.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.13.5 Secure digital input / output interface (SDIO)

Two SD/SDIO/MMC host interfaces are available, supporting MultiMediaCard System Specification Version 4.2 in three different data bus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD Memory Card Specifications Version 2.0.

The two different data bus modes supported in the SDIO Card Specification Version 2.are: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a series of MMC4.1 or previous.

Apart from SD/SDIO/MMC/eMMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

2.13.6 Controller area network (CAN)

Two CANs are compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOs with 3 stages, and 28 scalable filter banks. Each also has dedicated 368 Bytes of SRAM, which is not shared with the other CAN or any other peripherals.

To guarantee CAN transmission quality, the CAN 2.0 protocol states that its clock source must come from the HEXT-based PLL clock.

2.13.7 Universal serial bus On-The-Go full-speed (OTGFS)

The AT32F435/437 series embed two OTG full-speed (12 Mb/s) modules that consists of PHY and can be set as a device/host. The OTGFS has software-configurable endpoint setting and supports suspend/resume. The OTGFS module requires a dedicated 48 MHz clock. When the OTGFS acts as a host, its clock source should be PLL clocked by HEXT; in device mode, tis clock source can be selected as 48 MHz HICK.

Each OTGFS has the major features such as:

- 1280 Kbytes of buffer used exclusively by the endpoints (not shared with the other OTGFS or any other peripherals)
- 8 IN + 8 OUT endpoints (endpoint 0 included, device mode)
- 16 channels (host mode)
- SOF output and OE output
- In accordance with the USB 2.0 Specification, the supported transfer speeds are:
 - In Host mode: full-speed and low speed
 - In Device mode: full-speed

2.13.8 Infrared transmitter (IRTMR)

The AT32F435/437 device provides an infrared transmitter solution. The solution is based on the internal connection between TMR10, USART1, or USART2 with TMR11. TMR11 is used to provide the carrier frequency, and TMR10, USART1, or USART2 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.

To generate infrared remote control signals, TMR10 channel 1 and TMR11 channel 1 must be correctly configured to generate the correct waveform. All standard IR pulse modulation modes can be obtained by programming two timer output compare channels.

2.13.9 Ethernet MAC interface (EMAC)

This peripheral is available only on AT32F437.

The AT32F437 devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for Ethernet LAN communications through an industry-standard media-independent interface (MII) or a reduced media-independent interface (RMII). The AT32F437 requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the AT32F437 MAC port using as many as 17 signals (MII) or 9 signals (RMII) and can be clocked by means of the 25 MHz (MII) or 50 MHz (RMII) output from the AT32F437.

The EMAC has the following features:

- Supports 10 M and 100 Mbit/s rates
- Dedicated DMA controller enabling high-speed transfers between the dedicated buffer and the descriptors
- Supports tagged MAC frame (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal buffer for transmitted and received frames. The transmit buffer and the receive buffer are both 2 Kbytes, that is, 4 Kbytes in total
- Supports hardware PTP (precision time protocol) in line with IEEE 1588 with the timestamp comparator connected to the TMR2 trigger input
- Interrupt trigger when system time becomes greater than the target time

2.14 Digital video parallel interface (DVP)

AT32F435/437 series embed a digital video parallel interface (DVP), which connects to a digital camera module and receives video data via an 8- to 14-bit parallel interface. The DVP supports a data rate up to 54 MB/s. It has the following features:

- Configurable polarity of the input pixel clock and synchronous signals
- 8-, 10-, 12- or 14-bit communication data width
- Support 8-bit raster-scan mono or Bayer format, YCbCr 4:2:2 raster-scan, RGB 565 raster-scan, or compressed data (such as JPEG)
- Continuous mode or snapshot (one frame) mode
- Automatic image cropping
- Mono-image binarization

2.15 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word using a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity.

2.16 Analog-to-digital converter (ADC)

Three 12-bit analog-to-digital converters (ADC) are embedded into AT32F435/437 devices and feature as follows:

- Configurable 12-bit, 10-bit, 8-bit, 6-bit resolution with auto calibration.
- 5.33 MSPS maximum conversion rate in 12-bit resolution, the reduction of resolution shortens the conversion period.
- Share up to 24 external channels, including 6 fast channels.
- Three internal dedicated channels: internal temperature sensor (V_{TS}), internal reference voltage (V_{INTRV}), and V_{BAT} monitor (V_{BAT}/4).
- Individual sampling time setting for each channel.
- 2 to 256 times over-sampling, equivalent maximum 16-bit resolution.
- Conversion can be triggered by:
 - Software.
 - Hardware (internal or GPIO input events) with polarity configurability.
- Converting modes:
 - Single mode or sequential mode.
 - In sequential mode, each trigger performs conversions on a selected group of channels.
 - Repeated mode converts selected channels continuously.
 - Partition mode.
- Simultaneous or shift sample and hold under one- or two-slave mode.
- A voltage monitor feature allows very precise monitoring of the converted voltage of one, some
 or all selected channels. An interrupt is generated when the converted voltage is outside the
 programmed thresholds.
- All ADCs can be served by the DMA controller.

2.16.1 Temperature sensor (V_{TS})

The temperature sensor generates a voltage V_{TS} that varies linearly with temperature. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The offset of this line varies from chip to chip due to process variation. The internal temperature sensor is more suited to applications that detect temperature variations instead of absolute temperatures. If accurate temperature readings are needed, an external temperature sensor part should be used.

2.16.2 Internal reference voltage (VINTRV)

The internal reference voltage (V_{INTRV}) provides a stable voltage source for ADC. The V_{INTRV} is internally connected to the ADC1_IN17 input channel.

2.16.3 V_{BAT} monitor (V_{BAT}/4)

This embedded hardware uses internal ADC1_IN18 channel to measure V_{BAT} voltage. As the V_{BAT} voltage may be higher than V_{REF+} or V_{DDA} to be outside the ADC input range, the V_{BAT} is internally connected to a divided-by-4 bridge. The converted value is 1/4 of the V_{BAT} voltage.

2.17 Digital-to-analog converter (DAC)

The two 12-bit buffered DACs can be used to convert two digital signals into two analog voltage signal outputs.

This DAC has the following features:

- Two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- Left- or right-aligned data in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each DAC channel
- External triggers for conversion
- Input voltage reference V_{REF+}

Several DAC trigger inputs are used in the AT32F435/437. DAC outputs are triggered through the timer update outputs that are also connected to different DMA channels.

2.18 Serial wire (SWD) / JTAG debug port

The ARM SWJ-DP Interface is embedded, and it is a combined serial wire and JTAG and debug port that enables either a serial wire debug or a JTAG probe to be connected to the target for programming and debug operation. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK.

3 Pin functional definitions

Figure 2. AT32F435/437 LQFP144 pinout

2024.11.1 31 Ver 2.20

Figure 3. AT32F435/437 LQFP100 pinout

2024.11.1 32 Ver 2.20

Figure 5. AT32F435 LQFP48 pinout

Figure 6. AT32F435 QFN48 pinout

2024.11.1 34 Ver 2.20

The table below is the pin definition of the AT32F435/437. "-" represents there is no such pinout on the related packages. Unless descriptions in () under pin name, the function during reset and after reset is the same as the actual pin name. Unless notes presented, all GPIOs are set as input floating during reset and after reset. Pin multi-functions are selected through GPIOx_MUXx registers and the additional functions are directly selected and enabled via registers of peripherals.

Table 8. AT32F435/437 series pin definitions

Pin number				ıre					
LQFP48/ QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Pin type ⁽¹⁾	GPIO structure (2)	IOMUX functions ⁽³⁾	Additional function	
-	1	1	1	PE2	I/O	FT	TMR3_EXT / SPI4_SCK / I2S4_CK / TMR20_CH1 / QSPI1_IO2 / XMC_SDNCAS / EMAC_MII_TXD3 / XMC_A23	-	
-	,	2	2	PE3	I/O	FT	TMR3_CH1 / TMR20_CH2 / XMC_A19 / DVP_D9	-	
-	-	3	3	PE4	I/O	FT	CLKOUT1 / TMR3_CH2 / SPI4_CS / I2S4_WS / TMR20_CH1C / XMC_A20 / DVP_D4	-	
-	ı	4	4	PE5	I/O	FT	TMR3_CH3 / TMR9_CH1 / SPI4_MISO / TMR20_CH2C / XMC_A21 / DVP_D6	-	
-	-	5	5	PE6	I/O	FT	TMR3_CH4 / TMR9_CH2 / SPI4_MOSI / I2S4_SD / TMR20_CH3C / XMC_SDNRAS / XMC_A22 / DVP_D7	-	
1	1	6	6	V _{BAT}	S	-	Battery power supp	ly	
2	2	7	7	PC13 ⁽⁴⁾⁽⁵⁾	I/O	FT	-	ERTC_AF1 / WKUP2	
3	3	8	8	PC14 / LEXT_IN (PC14) ⁽⁴⁾⁽⁵⁾	I/O	тс	-	LEXT_IN	
4	4	9	9	PC15 / LEXT_OUT (PC15) ⁽⁴⁾⁽⁵⁾	I/O	тс	-	LEXT_OUT	
-	-	-	10	PF0	I/O	FT	I2C2_SDA / XMC_A0	-	
-	-	-	11	PF1	I/O	FT	I2C2_SCL / XMC_A1	-	
-	-	-	12	PF2	I/O	FT	TMR20_CH3 / I2C2_SMBA / XMC_A2	-	
-	-	-	13	PF3	I/O	FTa	TMR20_CH4 / XMC_A3	ADC3_IN9	
-	-	-	14	PF4	I/O	FTa	TMR20_CH1C / XMC_A4	ADC3_IN14	
-	-	-	15	PF5	I/O	FTa	TMR20_CH2C / XMC_A5	ADC3_IN15	
-	-	10	16	Vss	S	-	Digital ground		
-	-	11	17	V_{DD}	S	-	Digital power supply		
-	-	ı	18	PF6	I/O	FTa	TMR10_CH1 / TMR20_CH4 / UART7_RX / QSPI1_IO3 / XMC_NIORD	ADC3_IN4	
-	-	ı	19	PF7	I/O	FTa	TMR11_CH1 / TMR20_BRK / UART7_TX / QSPI1_IO2 / XMC_NREG	ADC3_IN5	
-	-	-	20	PF8	I/O	FTa	TMR13_CH1 / QSPI1_IO0 / XMC_NIOWR	ADC3_IN6	
-	-	-	21	PF9	I/O	FTa	TMR14_CH1 / TMR20_BRK / QSPI1_IO1 / XMC_CD	ADC3_IN7	
-	-	-	22	PF10	I/O	FTa	TMR1_EXT / TMR5_CH4 / QSPI1_SCK / XMC_INTR / DVP_D11	ADC3_IN8	

Pin number		r			a.				
LQFP48/ QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Pin type ⁽¹⁾	GPIO structure (2)	IOMUX functions ⁽³⁾	Additional function	
5	5	12	23	PH0 / HEXT_IN (PH0)	I/O	тс	I2C1_SDA	HEXT_IN	
6	6	13	24	PH1 / HEXT_OUT (PH1)	I/O	тс	I2C1_SCL	HEXT_OUT	
7	7	14	25	NRST	I/O	R	Device reset input / internal reset output (active low)		
-	8	15	26	PC0	I/O	FTa	I2C3_SCL / UART7_TX / SDIO2_D0 / XMC_SDNWE	ADC123_IN10 ⁽⁶⁾	
-	9	16	27	PC1	I/O	FTa	I2C3_SDA / SPI3_MOSI / I2S3_SD / SPI2_MOSI / I2S2_SD / UART7_RX SDIO2_D1 / EMAC_MDC	ADC123_IN11 ⁽⁶⁾	
-	10	17	28	PC2	I/O	FTa	TMR20_CH2 / SPI2_MISO / I2S2_SDEXT / UART8_TX / SDIO2_D2 / EMAC_MII_TXD2 / XMC_SDCS0 / XMC_NWE	ADC123_IN12 ⁽⁶⁾	
-	11	18	29	PC3	I/O	FTa	SPI2_MOSI / I2S2_SD / UART8_RX / QSPI2_IO1 / SDIO2_D3 / EMAC_MII_TX_CLK / XMC_SDCKE0 / XMC_A0	ADC123_IN13 ⁽⁶⁾	
-	-	19	30				Not connected		
8	12	20	31	V _{SSA} / V _{REF} -	S	-	Analog ground / negative refer	ence voltage	
-	-	21	32	V _{REF+}	S	-	Positive reference vol	tage	
-	-	22	33	V _{DDA}	S	-	Analog power supply		
9	13	-	-	V _{DDA} / V _{REF+}	S	-	Analog power supply / positive re	ference voltage	
10	14	23	34	PA0	I/O	FTa	TMR2_CH1 / TMR2_EXT / TMR5_CH1 / TMR8_EXT / I2C2_SCL / USART2_CTS / UART4_TX / EMAC_MII_CRS	ADC123_IN0 ⁽⁶⁾ / ERTC_AF2 / WKUP1	
11	15	24	35	PA1	I/O	FTa	TMR2_CH2 / TMR5_CH2 / I2C2_SDA / SPI4_MOSI / I2S4_SD / USART2_RTS_DE / UART4_RX / QSPI1_IO3 / EMAC_MII_RX_CLK / EMAC_RMII_REF_CLK	ADC123_IN1 ⁽⁶⁾	
12	16	25	36	PA2	I/O	FTa	TMR2_CH3 / TMR5_CH3 / TMR9_CH1 / USART2_TX / SDIO2_CK / EMAC_MDIO / XMC_D4	ADC123_IN2	
13	17	26	37	PA3	I/O	FTa	TMR2_CH4 / TMR5_CH4 / TMR9_CH2 / I2S2_MCK / USART2_RX / QSPI2_IO3 / SDIO2_CMD / EMAC_MII_COL / XMC_D5	ADC123_IN3	
-	18	27	38	Vss	S	-	Digital ground		
-	19	28	39	V_{DD}	S	-	Digital power supply		
14	20	29	40	PA4	I/O	FTa	SPI1_CS / I2S1_WS / SPI3_CS / I2S3_WS / USART2_CK / USART6_TX / SDIO2_D4 / SDIO2_D0 / OTGFS2_SOF / DVP_HSYNC / XMC_D6	ADC12_IN4 / DAC1_OUT	
15	21	30	41	PA5	I/O	FTa	TMR2_CH1 / TMR2_EXT / TMR8_CH1C / SPI1_SCK / I2S1_CK / USART6_RX / QSPI2_IO2 / SDIO2_D5 / SDIO2_D1 / XMC_D7	ADC12_IN5 / DAC2_OUT	

ı	Pin nu	ımbeı	r			ıre		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Pin type ⁽¹⁾	GPIO structure (2)	IOMUX functions ⁽³⁾	Additional function
16	22	31	42	PA6	I/O	FTa	TMR1_BRK / TMR3_CH1 / TMR8_BRK / SPI1_MISO / I2S2_MCK / USART3_CTS / TMR13_CH1 / QSPI1_IO0 / SDIO2_D2 / SDIO1_CMD / DVP_PCLK / SDIO2_D6	ADC12_IN6
17	23	32	43	PA7	I/O	FTa	TMR1_CH1C / TMR3_CH2 / TMR8_CH1C / SPI1_MOSI / I2S1_SD / TMR14_CH1 / QSPI1_IO1 / EMAC_MII_RX_DV / EMAC_RMII_CRS_DV / XMC_SDNWE / SDIO2_D3 / SDIO2_D7	ADC12_IN7
-	24	33	44	PC4	I/O	FTa	TMR9_CH1 / I2S1_MCK / USART3_TX / QSPI1_IO2 / EMAC_MII_RXD0 / EMAC_RMII_RXD0 / XMC_SDCS0 / SDIO2_CK / XMC_NE4	ADC12_IN14
-	25	34	45	PC5	I/O	FTa	TMR9_CH2 / I2C1_SMBA / USART3_RX / QSPI1_IO3 / EMAC_MII_RXD1 / EMAC_RMII_RXD1 / XMC_SDCKE0 / SDIO2_CMD / XMC_NOE	ADC12_IN15
18	26	35	46	PB0	I/O	FTa	TMR1_CH2C / TMR3_CH3 / TMR8_CH2C / I2S1_MCK / USART2_RX / SPI3_MOSI / I2S3_SD / USART3_CK / QSPI2_IO0 / QSPI1_IO0 / EMAC_MII_RXD2 / SDIO1_D1	ADC12_IN8
19	27	36	47	PB1	I/O	FTa	TMR1_CH3C / TMR3_CH4 / TMR8_CH3C / SPI2_SCK / I2S2_CK / USART3_RTS_DE / QSPI1_SCK / QSPI2_SCK / EMAC_MII_RXD3 / SDIO1_D2	ADC12_IN9
20	28	37	48	PB2 / BOOT1 (PB2)	I/O	FT	TMR2_CH4 / TMR20_CH1 / I2C3_SMBA / SPI3_MOSI / I2S3_SD / QSPI1_SCK / SDIO1_CK	-
-		-	49	PF11	I/O	FT	TMR20_EXT / TMR8_EXT / XMC_SDNRAS / DVP_D12	-
-	-	1	50	PF12	I/O	FT	TMR20_CH1 / TMR8_BRK / XMC_A6	-
-	-	-	51	Vss	S	-	Digital ground	
-	-	-	52	V _{DD}	S	-	Digital power suppl	ly
-	-	-	53	PF13	I/O	FT	TMR20_CH2 / I2C3_SMBA / XMC_A7	-
-	-	-	54	PF14	I/O	FTf	TMR20_CH3 / I2C3_SCL / XMC_A8	-
-	-	-	55	PF15	I/O	FTf	TMR20_CH4 / I2C3_SDA / XMC_A9	-
	-	_	56	PG0	I/O	FT	TMR20_CH1C / SPI1_MISO / CAN1_RX / XMC_A10	-
-	-	-	57	PG1	I/O	FT	TMR20_CH2C / SPI1_MOSI / I2S1_SD / CAN1_TX / XMC_A11	-
-	-	38	58	PE7	I/O	FT	TMR1_EXT / UART7_RX / QSPI2_IO0 / XMC_D4	-
-	-	39	59	PE8	I/O	FT	TMR1_CH1C / UART4_TX / UART7_TX / QSPI2_IO1 / XMC_D5	-

ı	Pin nu	ımber	r			are		
LQFP48/ QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Pin type ⁽¹⁾	GPIO structure (2)	IOMUX functions ⁽³⁾	Additional function
1	,	40	60	PE9	I/O	FT	TMR1_CH1 / UART4_RX / QSPI2_IO2 / XMC_D6	-
-	-	-	61	V _{SS}	S	-	Digital ground	
-	-	-	62	V _{DD}	S	-	Digital power supp	у
-	-	41	63	PE10	I/O	FT	TMR1_CH2C / UART5_TX / QSPI2_IO3 / XMC_D7	-
-	-	42	64	PE11	I/O	FT	TMR1_CH2 / SPI4_CS / I2S4_WS / UART5_RX / XMC_D8	-
-	-	43	65	PE12	I/O	FT	TMR1_CH3C / SPI1_CS / I2S1_WS / SPI4_SCK / I2S4_CK / XMC_D9	-
ı		44	66	PE13	I/O	FT	TMR1_CH3 / SPI1_SCK / I2S1_CK / SPI4_MISO / XMC_D10	-
-		45	67	PE14	I/O	FT	TMR1_CH4 / SPI1_MISO / SPI4_MOSI / I2S4_SD / XMC_D11	-
-		46	68	PE15	I/O	FT	TMR1_BRK / SPI1_MOSI / I2S1_SD / XMC_D12	-
21	29	47	69	PB10	I/O	FTf	TMR2_CH3 / I2C2_SCL / SPI2_SCK / I2S2_CK / I2S3_MCK / USART3_TX / QSPI1_CS / QSPI1_IO1 / EMAC_MII_RX_ER / SDIO1_D7 / XMC_NOE	-
22	30	48	70	PB11	I/O	FT	TMR2_CH4 / TMR5_CH4 / I2C2_SDA / USART3_RX / QSPI1_IO0 / EMAC_MII_TX_EN / EMAC_RMII_TX_EN	-
23	31	49	71	PH3	I/O	FT	TMR5_CH2 / I2C2_SDA / UART4_TX / QSPI1_IO1	-
24	32	50	72	V_{DD}	S	-	Digital power supp	у
25	33	51	73	PB12	I/O	FT	TMR1_BRK / TMR5_CH1 / I2C2_SMBA / SPI2_CS / I2S2_WS / SPI4_CS / I2S4_WS / SPI3_SCK / I2S3_CK / USART3_CK / CAN2_RX / EMAC_MII_TXD0 / EMAC_RMII_TXD0 / OTGFS2_ID / XMC_D13	-
26	34	52	74	PB13	I/O	FT	TMR1_CH1C / I2C3_SMBA / SPI2_SCK / I2S2_CK / SPI4_SCK / I2S4_CK / I2C3_SCL / USART3_CTS / CAN2_TX / EMAC_MII_TXD1 / EMAC_RMII_TXD1 / OTGFS2_VBUS	-
27	35	53	75	PB14	I/O	тс	TMR1_CH2C / TMR8_CH2C / I2C3_SDA / SPI2_MISO / I2S2_SDEXT / USART3_RTS_DE / TMR12_CH1 / OTGFS2_D- / SDIO1_D6 / XMC_D0	-
28	36	54	76	PB15	I/O	TC	ERTC_REFIN / TMR1_CH3C / TMR8_CH3C / I2C3_SCL / SPI2_MOSI / I2S2_SD / TMR12_CH2 / OTGFS2_D+ / SDIO1_CK	-
-	-	55	77	PD8	I/O	FT	USART3_TX / EMAC_MII_RX_DV / EMAC_RMII_CRS_DV / XMC_D13	-
-	-	56	78	PD9	I/O	FT	USART3_RX / EMAC_MII_RXD0 / MAC_RMII_RXD0 / XMC_D14	-

2024.11.1 38 Ver 2.20

	Pin nı	ımbeı	r		_	are		
LQFP48/ QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Pin type ⁽¹⁾	GPIO structure	IOMUX functions ⁽³⁾	Additional function
-	1	57	79	PD10	I/O	FT	USART3_CK / EMAC_MII_RXD1 / EMAC_RMII_RXD1 / XMC_D15	•
-	ı	58	80	PD11	I/O	FT	I2C2_SMBA / USART3_CTS / QSPI1 _IO0 / XMC_A14 / XMC_SDBA0 / EMAC_MII_RXD2 / XMC_A16_CLE	-
-	ı	59	81	PD12	1/0	FTf	TMR4_CH1/ I2C2_SCL / USART3_RTS_DE / QSPI1 _IO1 / XMC_A15 / XMC_SDBA1 / EMAC_MII_RXD3 / XMC_A17_ALE	-
-	-	60	82	PD13	I/O	FTf	TMR4_CH2/I2C2_SDA / UART8_TX / QSPI1_IO3 / XMC_SDCLK / XMC_A18	-
-	-	-	83	Vss	S	-	Digital ground	
-	-	-	84	V _{DD}	S	-	Digital power supp	ly
-	ı	61	85	PD14	I/O	FTf	TMR4_CH3 / I2C3_SCL / UART8_RX / XMC_D0	-
-	ı	62	86	PD15	9	FTf	TMR4_CH4 / I2C3_SDA / XMC_D1	-
-	1	-	87	PG2	I/O	FT	TMR20_CH3C / XMC_A12	-
-	ı	•	88	PG3	I/O	FT	TMR20_BRK / XMC_A13	-
-	-	-	89	PG4	I/O	FT	XMC_A14 / XMC_SDBA0	-
-	-	-	90	PG5	I/O	FT	TMR20_EXT / XMC_A15 / XMC_SDBA1	-
-	-	-	91	PG6	I/O	FT	QSPI1_CS / XMC_INT2 / DVP_D12	-
-	-	-	92	PG7	I/O	FT	USART6_CK / XMC_INT3 / DVP_D13	-
-	-	-	93	PG8	I/O	FT	QSPI2_CS / USART6_RTS_DE / EMAC_PPS_OUT / XMC_SDCLK	-
-	-	-	94	Vss	S	-	Digital ground	
-	-	-	95	V_{DD}	S	-	Digital power supp	ly
-	37	63	96	PC6	I/O	FT	TMR3_CH1 / TMR8_CH1 / I2C1_SCL / I2S2_MCK / USART6_TX / XMC_A0 / SDIO1_D6 / DVP_D0 / XMC_D1	-
-	38	64	97	PC7	I/O	FT	TMR3_CH2 / TMR8_CH2 / I2C1_SDA / SPI2_SCK / I2S2_CK / I2S3_MCK / USART6_RX / XMC_A1 / SDIO1_D7 / DVP_D1	-
-	39	65	98	PC8	I/O	FT	TMR3_CH3 / TMR8_CH3 / I2S4_MCK / TMR20_CH3 / UART8_TX / USART6_CK / QSPI1_IO2 / XMC_A2 / SDIO1_D0 / DVP_D2	-
-	40	66	99	PC9	I/O	FT	CLKOUT2 / TMR3_CH4 / TMR8_CH4 / I2C3_SDA / UART8_RX / QSPI1_IO0 / XMC_A3 / OTGFS2_OE / SDIO1_D1 / DVP_D3	-
29	41	67	100	PA8	I/O	FT	CLKOUT1 / TMR1_CH1 / I2C3_SCL / USART1_CK / USART2_TX / OTGFS1_SOF / SDIO1_D1 / XMC_A4	-

ı	Pin nu	ımbeı	r			ıre		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Pin type ⁽¹⁾	GPIO structure (2)	IOMUX functions ⁽³⁾	Additional function
30	42	68	101	PA9	I/O	FT	TMR1_CH2 / I2C3_SMBA /	-
31	43	69	102	PA10	I/O	FT	TMR1_CH3 / SPI2_MOSI / I2S2_SD / I2S4_MCK / USART1_RX / I2C1_SDA / OTGFS1_ID / DVP_D1	-
32	44	70	103	PA11	I/O	тс	TMR1_CH4 / I2C2_SCL / SPI2_CS / I2S2_WS / SPI4_MISO / USART1_CTS / USART6_TX / CAN1_RX / OTGFS1_D- / DVP_D2	-
33	45	71	104	PA12	I/O	тс	TMR1_EXT / I2C2_SDA / SPI2_MISO / USART1_RTS_DE / USART6_RX / CAN1_TX / OTGFS1_D+ / DVP_D3	-
34	46	72	105	PA13 (JTMS / SWDIO)	I/O	FT	JTMS / SWDIO / IR_OUT / SPI3_MISO / OTGFS1_OE	-
35	47	73	106	PH2	I/O	FT	TMR5_CH1/I2C2_SCL/ UART4_RX/QSPI1_IO0	-
-	-	74	107	Vss	S	-	Digital ground	
36	48	75	108	V _{DD}	S	-	Digital power supp	ly
37	49	76	109	PA14 (JTCK / SWCLK)	I/O	FT	JTCK / SWCLK / SPI3_MOSI / I2S3_SD / USART2_TX	-
38	50	77	110	PA15 (JTDI)	I/O	FT	JTDI / TMR2_CH1 / TMR2_EXT /	-
-	51	78	111	PC10	I/O	FT	TMR5_CH2 / SPI3_SCK / I2S3_CK / USART3_TX / UART4_TX / QSPI1 _IO1 / SDIO1_D2 / DVP_D8	-
-	52	79	112	PC11	I/O	FT	TMR5_CH3 / I2S3_SDEXT / SPI3_MISO / USART3_RX / UART4_RX / QSPI1_CS / SDIO1_D3 / DVP_D4 / XMC_D2	-
-	53	80	113	PC12	I/O	FT	TMR11_CH1 / I2C2_SDA / SPI3_MOSI / I2S3_SD / USART3_CK / UART5_TX / SDIO1_CK / DVP_D9 / XMC_D3	-
-		81	114	PD0	I/O	FT	SPI4_MISO/ SPI3_MOSI / I2S3_SD / SPI2_CS / I2S2_WS / CAN1_RX / XMC_A5 / XMC_D2	-
-	-	82	115	PD1	I/O	FT	SPI2_SCK / I2S2_CK / SPI2_CS / I2S2_WS / CAN1_TX / XMC_A6 / XMC_D3	-
-	54	83	116	PD2	I/O	FT	TMR3_EXT / USART3_RTS_DE / UART5_RX / XMC_A7 / SDIO1_CMD / DVP_D11 / XMC_NWE	-
-	-	84	117	PD3	I/O	FT	SPI2_SCK / I2S2_CK / SPI2_MISO / USART2_CTS / QSPI1_SCK / XMC_A8 / XMC_CLK / DVP_D5	-

	Pin nu	ımbeı	r		_	ure		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Pin type ⁽¹⁾	GPIO structure	IOMUX functions ⁽³⁾	Additional function
-	-	85	118	PD4	I/O	FT	SPI2_MOSI / I2S2_SD / USART2_RTS_DE / XMC_A9 / XMC_NOE	-
-	•	86	119	PD5	I/O	FT	USART2_TX / XMC_A10 / XMC_NWE	-
-	-	-	120	Vss	S	-	Digital ground	
-	-	-	121	V _{DD}	S	-	Digital power suppl	ly
-	-	87	122	PD6	I/O	FT	SPI3_MOSI / I2S3_SD / USART2_RX / XMC_A11 / XMC_NWAIT / DVP_D10	-
-	-	88	123	PD7	I/O	FT	USART2_CK / XMC_A12 / XMC_NE1 / XMC_NCE2	-
-	-	-	124	PG9	I/O	FT	USART6_RX / QSPI1_IO2 / XMC_NE2 / XMC_NCE3 / DVP_VSYNC	-
-	•	-	125	PG10	I/O	FT	QSPI2_IO2 / XMC_NE3 / XMC_NCE4_1 / DVP_D2	-
-	1	-	126	PG11	I/O	FT	QSPI2_IO3 / SPI4_SCK / I2S4_CK / CAN2_RX / EMAC_MII_TX_EN / EMAC_RMII_TX_EN / XMC_NCE4_2 / DVP_D3	-
-	-	-	127	PG12	I/O	FT	QSPI2_IO1 / SPI4_MISO / USART6_RTS_DE / CAN2_TX / XMC_NE4	-
-	1	-	128	PG13	I/O	FT	QSPI2_SCK / SPI4_MOSI / I2S4_SD / USART6_CTS / EMAC_MII_TXD0 / EMAC_RMII_TXD0 / XMC_A24	-
-	-	-	129	PG14	I/O	FT	QSPI2_IO0 / SPI4_CS / I2S4_WS / USART6_TX / QSPI1_IO3 / EMAC_MII_TXD1 / EMAC_RMII_TXD1 / XMC_A25	-
-	•	-	130	Vss	S	-	Digital ground	
-	-	-	131	V _{DD}	S	-	Digital power suppl	y
-	-	-	132	PG15	I/O	FT	USART6_CTS / XMC_SDNCAS / DVP_D13	-
39	55	89	133	PB3 (JTDO)	I/O	FTf	JTDO / TMR2_CH2 / I2C2_SDA /	-
40	56	90	134	PB4 (NJTRST)	I/O	FT	JNTRST / TMR3_CH1 / I2C3_SDA / SPI1_MISO / SPI3_MISO / I2S3_SDEXT / UART7_TX / SDIO1_D0 / DVP_D5	-
41	57	91	135	PB5	I/O	FT	TMR3_CH2/I2C1_SMBA / SPI1_MOSI / I2S1_SD / SPI3_MOSI / I2S3_SD / USART1_CK / UART5_RX / CAN2_RX / EMAC_PPS_OUT / XMC_SDCKE1 / DVP_D10 / SDIO1_D3	-
42	58	92	136	PB6	I/O	FT	TMR4_CH1/ I2C1_SCL / I2S1_MCK / SPI4_CS / I2S4_WS / USART1_TX / UART5_TX / CAN2_TX / QSPI1_CS / XMC_SDCS1 / DVP_D5 / SDIO1_D0	-

ı	Pin nu	ımber	•		_	ure		
LQFP48 / QFN48	LQFP64	LQFP100	LQFP144	Pin name (function after reset)	Pin type ⁽¹⁾	GPIO structure (2)	IOMUX functions (3)	Additional function
43	59	93	137	PB7	I/O	FT	TMR4_CH2 / TMR8_BRK / I2C1_SDA / SPI4_SCK / I2S4_CK / USART1_RX / QSPI2_IO1 / XMC_NADV / DVP_VSYNC / SDIO1_D0	-
44	60	94	138	BOOT0	ı	В	-	-
45	61	95	139	PB8	I/O	FT	TMR2_CH1 / TMR2_EXT / TMR4_CH3 / TMR10_CH1 / I2C1_SCL / SPI4_MISO / UART5_RX / CAN1_RX / QSPI2_CS / EMAC_MII_TXD3 / SDIO1_D4 / DVP_D6	-
46	62	96	140	PB9	I/O	FTf	IR_OUT / TMR2_CH2 / TMR4_CH4 / TMR11_CH1 / I2C1_SDA / SPI2_CS/I2S2_WS / SPI4_MOSI / I2S4_SD / I2C2_SDA / UART5_TX / CAN1_TX / QSPI1_CS / SDIO1_D5 / DVP_D7	-
-	-	97	141	PE0	I/O	FT	TMR4_EXT / TMR20_EXT / UART8_RX / XMC_LB / XMC_SDDQML / DVP_D2	-
-	-	98	142	PE1	I/O	FT	TMR1_CH2C / TMR20_CH4 / UART8_TX / XMC_UB / XMC_SDDQMH / DVP_D3	-
47	63	99	143	Vss	S	-	Digital ground	
48	64	100	144	V_{DD}	S	-	- Digital power supply	
-/49	-	-	•	EPAD	S	-	Digital ground	

- (1) I = input, O = output, S = supply
- (2) TC = standard 3.3 V GPIO, FT = general 5 V-tolerant GPIO, FTa = 5 V-tolerant GPIO with analog functionalities, FTf = 5 V-tolerant GPIO with 20 mA sink current capability, R = bidirectional reset pin with embedded weak pull-up resistor, B = dedicated BOOT0 pin with embedded weak pull-down resistor. Among them, FTa pin has 5 V-tolerant characteristics when configured as input floating, input pull-up, or input pull-down mode. However, it cannot be 5 V-tolerant when configured as analog mode. Meanwhile, its input level should not higher than V_{DD} + 0.3 V.
- (3) Function availability depends on the chosen device. Every GPIO can function as EVENTOUT.
- (4) PC13, PC14, and PC15 are supplied through the power switch. Since the switch only drives a limited amount of current (3 mA), the use of these three GPIOs as output mode is limited not to be used as a current source (e.g. to drive an LED).
- (5) Main function after the first battery powered domain power-up. Later on, it depends on the contents of the battery powered registers even after reset (because these registers are not reset by the main reset). For details on how to manage these GPIOs, refer to the battery powered domain and register description sections in the AT32F435/437 reference manual.
- (6) PA0, PA1, PC0, PC1, PC2, and PC3 are ADC fast channels; others are slow channels.

2024.11.1 42 Ver 2.20

Table 9. XMC pin definition

			XMC					
Pin name	CF card	SRAM/PSRA M/NOR	Multiplexed PSRAM/NOR	NAND 16-bit	SDR	AM ⁽¹⁾	LQFP100	LQFP64
PF0	A0	A0	-	-	-	A0	-	-
PF1	A1	A1	-	-	-	A1	-	-
PF2	A2	A2	-	-	-	A2	-	-
PF3	А3	А3	-	-	-	А3	-	-
PF4	A4	A4	-	-	-	A4	-	-
PF5	A5	A5	-	-	-	A5	-	-
PF12	A6	A6	-	-	-	A6	-	-
PF13	A7	A7	-	-	-	A7	-	-
PF14	A8	A8	-	-	-	A8	-	-
PF15	A9	A9	-	-	-	A9	-	-
PG0	A10	A10	-	-	-	A10	-	-
PG1	-	A11	-	-	-	A11	-	-
PG2	-	A12	-	-	-	A12	-	-
PG3	-	A13	-	-		-	-	-
PG4	-	A14	-	-	-	SDBA0	-	-
PG5	-	A15	-	-	-	SDBA1	-	-
PD11	-	A14 / A16	A14 / A16	-/CLE	SDBA0	-	Yes	-
PD12	-	A15 / A17	A15 / A17	-/ALE	SDBA1	-	Yes	-
PD13	-	A18	A18	-	SDCLK	-	Yes	-
PE3	-	A19	A19	-		-	Yes	-
PE4	-	A20	A20	-		-	Yes	-
PE5	-	A21	A21	-	,	-	Yes	-
PE6	-	A22	A22	-	SDN	IRAS	Yes	-
PE2	-	A23	A23	-	SDN	ICAS	Yes	-
PG13	-	A24	A24	-	,	-	-	-
PG14	-	A25	A25	-		_	-	-
PC3	-	A0	-	-	SDC	KE0	Yes	Yes
PC6	A0 / D1	A0 / D1	- / AD1	- / D1	A0	-	Yes	Yes
PC7	A1	A1	-	-	A1	-	Yes	Yes
PC8	A2	A2	-	-	A2	-	Yes	Yes
PC9	A3	А3	-	-	A3	-	Yes	Yes
PA8	A4	A4	-	-	A4	-	Yes	Yes
PD0	A5 / D2	A5 / D2	- / AD2	- / D2	A5	D2	Yes	-
PD1	A6 / D3	A6 / D3	- / AD3	- / D3	A6	D3	Yes	-
PD2	A7 / NWE	A7 / NWE	NWE	NWE	A7	-	Yes	Yes
PD3	A8 / -	A8 / CLK	-/CLK	-	A8	-	Yes	-
PD4	A9 / NOE	A9 / NOE	- / NOE	- / NOE	A9	-	Yes	-

			XMC					
Pin name	CF card	SRAM/PSRA M/NOR	Multiplexed PSRAM/NOR	NAND 16-bit	SDR	AM ⁽¹⁾	LQFP100	LQFP64
PD5	A10 / NWE	A10 / NWE	- / NWE	- / NWE	A10	-	Yes	-
PD6	- / NWAIT	A11 / NWAIT	- / NWAIT	- / NWAIT	A11	-	Yes	-
PD7	-	A12 / NE1	- / NE1	- / NCE2	A12	-	Yes	-
PD14	D0	D0	AD0	D0	С	00	Yes	-
PD15	D1	D1	AD1	D1	С)1	Yes	-
PE7	D4	D4	AD4	D4	С)4	Yes	-
PE8	D5	D5	AD5	D5	С)5	Yes	-
PE9	D6	D6	AD6	D6	С	06	Yes	-
PE10	D7	D7	AD7	D7	С)7	Yes	-
PE11	D8	D8	AD8	D8	С	08	Yes	-
PE12	D9	D9	AD9	D9	С	9	Yes	-
PE13	D10	D10	AD10	D10	D	10	Yes	-
PE14	D11	D11	AD11	D11	D	11	Yes	-
PE15	D12	D12	AD12	D12	D	12	Yes	-
PD8	D13	D13	AD13	D13	D	13	Yes	-
PD9	D14	D14	AD14	D14	D	14	Yes	-
PD10	D15	D15	AD15	D15	D	15	Yes	-
PB14	D0	D0	AD0	D0		-	Yes	Yes
PC6	D1	D1	AD1	D1		_	Yes	Yes
PC11	D2	D2	AD2	D2	D2	-	Yes	Yes
PC12	D3	D3	AD3	D3	D3	-	Yes	Yes
PA2	D4	D4	AD4	D4		-	Yes	Yes
PA3	D5	D5	AD5	D5		-	Yes	Yes
PA4	D6	D6	AD6	D6		-	Yes	Yes
PA5	D7	D7	AD7	D7		_	Yes	Yes
PB12	D13	D13	AD13	D13		_	Yes	Yes
PD7	-	NE1	NE1	NCE2		-	Yes	-
PG9	-	NE2	NE2	NCE3		-	-	-
PA15	-	NE2	NE2	NCE3		-	Yes	Yes
PG10	NCE4_1	NE3	NE3	-		-	-	-
PG11	NCE4_2	-	-	-		-	-	-
PG12	-	NE4	NE4	-		-	-	-
PC4	-	NE4	NE4	-	SD	CS0	Yes	Yes
PB7	-	-	NADV	-		-	Yes	Yes
PB10	NOE	NOE	NOE	NOE		-	Yes	Yes
PC5	NOE	NOE	NOE	NOE	SDC	KE0	Yes	Yes
PC2	NWE	NWE	NWE	NWE	SD	CS0	Yes	Yes
PF6	NIORD	-	-	-		-	-	-
		i .	•					

			XMC					
Pin name	CF card	SRAM/PSRA M/NOR	Multiplexed PSRAM/NOR	NAND 16-bit	SDR	AM ⁽¹⁾	LQFP100	LQFP64
PF7	NREG	-	-	-		-	-	-
PF8	NIOWR	-	-			•	-	-
PF9	CD	-	-	-		=	-	-
PF10	INTR	-	-	-			-	-
PG6	-	-	-	INT2			-	-
PG7	-	-	-	INT3	-		-	-
PE0	-	LB	LB	-	SDDQML		Yes	-
PE1	-	UB	UB	-	SDD	QMH	Yes	-
PG8	-	-	-	-	-	SDCLK	-	-
PC0	-	-	-	-	SDN	IWE	Yes	-
PF11	-	-	-	-	SDN	RAS	-	-
PG15	-	-	-	-	SDN	CAS	-	-
PA7	-	-	-	-	SDN	IWE	Yes	Yes
PB5	-	-	-	-	SDC	KE1	Yes	-
PB6	-	-	-	-	SDO	CS1	Yes	-

⁽¹⁾ The address, block address, data and clock lines of SDRAM are suggested to use these two set of pin combinations. Once mixed, it can still work normally but with a limited performance.

4 Memory mapping

Figure 7. Memory mapping (AT32F435/437xM)

⁽¹⁾ The logic addresses of several blocks can be swapped through software configuration. Code can be executed from 0x6000_0000 through 0x9FFF_FFFF. Please refer to the reference manual of AT32F435/437 series.

5 Electrical characteristics

5.1 Test conditions

5.1.1 Minimum and maximum values

The minimum and maximum values are guaranteed in the worst conditions. Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. The minimum and maximum values represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

5.1.2 Typical values

Typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V.

5.1.3 Typical curves

All typical curves are provided only as design guidelines and are not tested.

5.1.4 Power supply scheme

Figure 8. Power supply scheme

5.2 Absolute maximum values

5.2.1 Ratings

If stresses were out of the absolute maximum ratings listed in *Table 10*, *Table 11* and *Table 12*, it may cause permanent damage to the device. These are the maximum stress ratings only that the device could bear, but the functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for an extended period of time may affect device reliability.

Table 10. Voltage characteristics

Symbol	Description	Min	Max	Unit
V_{DDx} - V_{SS}	External main supply voltage	-0.3	4.0	
V _{BAT} -V _{SS}	Battery power voltage	-0.3	40	
	Input voltage on FT and FTf GPIO			
	Input voltage on FTa GPIO (set as input floating,	V _{SS} -0.3	6.0	V
V_{IN}	input pull-up, or input pull-down mode)			
	Input voltage on TC GPIO	V _{SS} -0.3	4.0	
	Input voltage on FTa GPIO (set as analog mode)	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50	mV
$ V_{SSx}-V_{SS} $	Variations between all the different ground pins	-	50	IIIV

Table 11. Current characteristics

Symbol	Description	Max	Unit
I_{VDD}	Total current into V _{DD} power lines (source)	250	
I _{VSS}	Total current out of V _{SS} ground lines (sink)	250	mA
1	Output current sunk by any GPIO and control pin	25	IIIA
IIO	Output current source by any GPIOs and control pin	-25	

Table 12. Temperature characteristics

Symbol	Description	Value	Unit
T _{STG}	Storage temperature range	-60 ~ +150	°C
T_J	Maximum junction temperature	125	C

5.2.2 Electrical sensitivity

Based on three different tests (HBM, CDM, and LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges are applied to the pins of each sample according to each pin combination. This test conforms to the JS-001-2017/JS-002-2018 standard.

Table 13. ESD values

Symbol	Parameter	Conditions	Class	Min	Unit
Vesd(HBM)	Electrostatic discharge voltage	T_A = +25 °C, conforming to JS-001-	3A	±4000	
, ,	(human body model)	2017	,		\/
VEODIODAN	Electrostatic discharge voltage	T_A = +25 °C, conforming to JS-002-	III	±1000	v
VESD(CDM)	(charge device model)	2018	111	±1000	

Static latch-up

Tests compliant with EIA/JESD78E IC latch-up standard are required to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin;
- A current injection is applied to each input, output and configurable GPIO pin.

Table 14. Latch-up values

Symbol	Parameter	Conditions	Level/Class
LU	Static latch-up	T_A = +105 °C, conforming to	II level A (±200 mA)
LU		EIA/JESD78E	II level A (±200 IIIA)

5.3 Specification

5.3.1 General operating conditions

Table 15. General operating conditions

Symbol	Parameter	Condition	ons	Min	Max	Unit	
			LDO 1.3 V	0	288		
		NZW_BST disabled	LDO 1.2 V	0	240		
	Internal AHB clock		LDO 1.1 V	0	144		
fHCLK	frequency		LDO 1.3 V	0	192	MHz	
		NZW_BST enabled	LDO 1.2 V	0	160		
			LDO 1.1 V	0	108		
	Internal ADD4/O alask	LDO 1.3 V	0	144			
fPCLK1/2	Internal APB1/2 clock frequency	LDO 1.2 V	0	120	MHz		
		LDO 1.1 V		0	72		
VDD	Digital against valtage	LDO 1.3 V	3.0	3.6	V		
VDD	Digital operating voltage	LDO 1.2/1.1 V	2.6	3.6	V		
V _{DDA}	Analog operating voltage	Must be the same potenti	al as V _{DD}	V	DD	V	
VBAT	Battery power voltage	-		1.62	3.6	V	
		LQFP144	-	402			
	Dawar disaination	LQFP100		-	316		
PD	Power dissipation:	LQFP64	-	310	20		
	T _A = 105 °C	LQFP48	-	320			
		QFN48	-	500			
T _A	Ambient temperature	-		-40	105	°C	

5.3.2 Operating conditions at power-up / power-down

Table 16. Operating conditions at power-up/power-down

Symbol	Parameter	Conditions	Min	Max	Unit
	V _{DD} rise time rate		0	∞	ms/V
t _{VDD}	V _{DD} fall time rate	-	20	∞	μs/V

Embedded reset and power control block characteristics

Table 17. Embedded reset and power management block characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		PVMSEL[2:0] = 001 (rising edge) ⁽¹⁾	2.19	2.28	2.37	V
		PVMSEL[2:0] = 001 (falling edge) ⁽¹⁾	2.09	2.18	2.27	V
		PVMSEL[2:0] = 010 (rising edge) ⁽²⁾	2.28	2.38	2.48	V
		PVMSEL[2:0] = 010 (falling edge) ⁽²⁾	2.18	2.28	2.38	V
		PVMSEL[2:0] = 011 (rising edge) ⁽²⁾	2.38	2.48	2.58	V
		PVMSEL[2:0] = 011 (falling edge) ⁽²⁾	2.28	2.38	2.48	V
VPVM	Power voltage monitoring	PVMSEL[2:0] = 100 (rising edge) ⁽²⁾	2.47	2.58	2.69	V
V PVM	level selection	PVMSEL[2:0] = 100 (falling edge) ⁽²⁾	2.37	2.48	2.59	V
	1	PVMSEL[2:0] = 101 (rising edge) ⁽²⁾	2.57	2.68	2.79	V
		PVMSEL[2:0] = 101 (falling edge) ⁽²⁾	2.47	2.58	2.69	V
		PVMSEL[2:0] = 110 (rising edge) ⁽²⁾	2.66	2.78	2.9	V
		PVMSEL[2:0] = 110 (falling edge) ⁽²⁾	2.56	2.68	2.8	V
		PVMSEL[2:0] = 111 (rising edge)	2.76	2.88	3	V
		PVMSEL[2:0] = 111 (falling edge)	2.66	2.78	2.9	V
V _{HYS_P} ⁽²⁾	PVM hysteresis	-	-	100	-	mV
V _{POR} ⁽²⁾	Power on reset threshold	-	2.02	2.2	2.45	V
$V_{\text{LVR}^{(2)}}$	Low voltage reset threshold	-	1.84 ⁽³⁾	2.07	2.3	٧
V _{LVRhyst} ⁽²⁾	LVR hysteresis	-	-	130	-	mV
	Reset temporization: CPU	ZW = 128 Kbytes	-	10	-	
Tresttempo ⁽²⁾	starts execution after V _{DD}	ZW = 256 Kbytes	-	15	-	me
IKESTIEMPO(=/	keeps higher than V _{POR} for T _{RSTTEMPO}	ZW = 512 Kbytes	-	25	-	ms

⁽¹⁾ PVMSEL[2:0] = 001 may be not available for its voltage detector level may be lower than VPOR.

⁽²⁾ Guaranteed by characterization results, not tested in production.
(3) The product behavior is guaranteed by design down to the minimum V_{LVR} value.

Figure 9. Power on reset and low voltage reset waveform

5.3.4 Memory characteristics

Table 18. Internal Flash memory characteristics (1)

Symbol	Parameter	Conditions	Тур	Max	Unit	
_	Drogramming time	AT32F435/437xD	30	80		
T _{PROG}	Programming time	Others	50	200	μs	
		AT32F435/437xC	50	500		
	0	AT32F435/437xD	50	240		
tse	Sector erase time	AT32F435/437xG	50	500	ms	
		AT32F435/437xM	45	400		
		AT32F435/437xC	250	2300		
	Diagle area a time	AT32F435/437xD	300	1200		
t _{BLE}	Block erase time	AT32F435/437xG	200	2300	ms	
		AT32F435/437xM	225	2000		
		AT32F435/437xC	2.5	5		
4	Bank erase time	AT32F435/437xD	3	10	s	
t _{BKE}	Dank erase time	AT32F435/437xG	1.6	20		
		AT32F435/437xM	7.2	64		

⁽¹⁾ Guaranteed by design, not tested in production.

Table 19. Internal Flash memory endurance and data retention (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
NEND	Endurance	T _A = -40 ~ 105 °C	100	-	-	kcycles
tret Data retention T		T _A = 105 °C	10	-	1	years

⁽¹⁾ Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is subjected to several parameters and factors such as the operating voltage, ambient temperature, GPIO pin loading, device software configuration, operating frequencies, GPIO pin switching rate, and executed binary code. The current consumption is obtained by characterization results, not tested in production.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All GPIO pins are in analog mode.
- Prefetch in ON. (Reminder: This bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled:
 - $-\ f_{HCLK} > 72\ MHz,\ f_{PCLK1} = f_{HCLK}/2,\ f_{PCLK2} = f_{HCLK}/2,\ f_{ADCCLK} = f_{PCLK2}/2$
 - f_{HCLK} ≤ 72 MHz, f_{PCLK1} = f_{HCLK}, f_{PCLK2} = f_{HCLK}, f_{ADCCLK} = f_{PCLK2}/2
- Code executes in ZW area.
- Unless otherwise specified, the typical values are measured with $V_{DD} = 3.3 \text{ V}$ and $T_A = 25 \text{ °C}$ condition and the maximum values are measured with $V_{DD} = 3.6 \text{ V}$.

2024.11.1 53 Ver 2.20

Table 20. Typical current consumption in Run mode

			,		onsumption ii	Тур			
Symbol	Parameter	Conditions	f _{HCLK}	LDO voltage		All peripherals enabled (AT32F435)	All peripherals disabled	Unit	
				288 MHz	1.3	247.1	237.7	63.1	
			264 MHz	1.3	227.5	218.7	58.2		
			240 MHz	1.2	189.1	181.8	48.6		
			216 MHz	1.2	170.9	164.4	44.1		
			192 MHz	1.2	152.6	146.6	39.6		
			168 MHz	1.2	134.2	129.1	35.1		
			144 MHz	1.1	104.9	100.8	27.5		
		High speed	120 MHz	1.1	88.3	84.9	23.8		
		external	108 MHz	1.1	79.8	76.8	21.7	^	
		crystal	72 MHz	1.1	58.7	56.6	15.8	mA	
		(HEXT) (1)(2)	48 MHz	1.1	40.4	39.0	11.9		
			36 MHz	1.1	31.0	29.9	9.68		
	Supply current in Run mode		24 MHz	1.1	21.9	21.2	7.79		
			16 MHz	1.1	15.6	15.1	6.23		
			8 MHz	1.1	8.85	8.63	4.41		
			4 MHz	1.1	5.99	5.86	3.77		
		in	2 MHz	1.1	4.57	4.49	3.45		
			1 MHz	1.1	3.86	3.80	3.29		
I _{DD}			288 MHz	1.3	246.2	236.8	62.8		
			264 MHz	1.3	226.4	217.8	57.9		
			240 MHz	1.2	188.3	181.1	48.3		
			216 MHz	1.2	170.2	164.0	43.8		
			192 MHz	1.2	152.0	146.2	39.3		
			168 MHz	1.2	133.8	128.8	34.8		
			144 MHz	1.1	104.5	100.4	27.2		
		High speed	120 MHz	1.1	88.0	84.6	23.5		
		internal	108 MHz	1.1	79.4	76.3	21.4	mA	
		clock (HICK)	72 MHz	1.1	58.4	56.3	15.5	IIIA	
		(2)	48 MHz	1.1	40.0	38.7	11.5		
			36 MHz	1.1	30.7	29.6	9.34		
			24 MHz	1.1	21.6	20.9	7.45		
			16 MHz	1.1	15.3	14.8	5.89		
			8 MHz	1.1	8.51	8.29	4.07		
			4 MHz	1.1	5.63	5.52	3.42		
			2 MHz	1.1	4.21	4.14	3.11		
			1 MHz	1.1	3.50	3.45	2.95		

External clock is 8 MHz.
 PLL is ON when f_{HCLK} > 8 MHz.

Table 21. Typical current consumption in Sleep mode

						Тур		
Symbol	Parameter	Conditions	f _{HCLK}	LDO	All peripherals	All peripherals	AII	Unit
- Cymbon	i didiliotoi	Conditions	INCLK	voltage	enabled	enabled	peripherals	J.III
					(AT32F437)	(AT32F435)	disabled	
			288 MHz	1.3	225.0	215.4	39.2	
			264 MHz	1.3	205.7	198.4	36.3	
			240 MHz	1.2	172.1	164.8	30.3	
			216 MHz	1.2	155.5	149.0	27.6	
			192 MHz	1.2	138.9	132.9	24.9	
			168 MHz	1.2	122.1	117.0	22.3	
			144 MHz	1.1	95.4	91.3	17.4	
		High speed	120 MHz	1.1	80.4	77.0	15.4	
		external	108 MHz	1.1	72.7	69.6	14.2	mA
		crystal	72 MHz	1.1	53.9	51.8	10.8	IIIA
		(HEXT) (1)(2)	48 MHz	1.1	37.2	35.8	8.51	
			36 MHz	1.1	28.6	27.5	7.17	
	Supply current in		24 MHz	1.1	20.3	19.6	6.12	
			16 MHz	1.1	14.5	14.1	5.13	
			8 MHz	1.1	8.3	8.12	3.88	
			4 MHz	1.1	5.75	5.63	3.52	
			2 MHz	1.1	4.45	4.38	3.33	
I _{DD}			1 MHz	1.1	3.81	3.76	3.24	
טטי	Sleep mode		288 MHz	1.3	224.3	214.6	38.8	
	Olecp mode		264 MHz	1.3	205.9	197.7	36.0	
			240 MHz	1.2	171.3	164.0	29.9	
			216 MHz	1.2	154.9	148.6	27.3	
			192 MHz	1.2	138.4	132.5	24.6	
			168 MHz	1.2	121.7	116.7	22.0	
			144 MHz	1.1	95.0	91.0	17.1	
		High speed	120 MHz	1.1	80.1	76.7	15.1	
		internal	108 MHz	1.1	72.2	69.2	13.9	mA
		clock (HICK)	72 MHz	1.1	53.6	51.5	10.4	ША
		(2)	48 MHz	1.1	36.8	35.4	8.18	
			36 MHz	1.1	28.2	27.2	6.83	
			24 MHz	1.1	20.0	19.3	5.79	
			16 MHz	1.1	14.2	13.8	4.80	
			8 MHz	1.1	8.00	7.78	3.54	
			4 MHz	1.1	5.40	5.29	3.17	
		2 MHz	1.1	4.11	4.04	2.99		
			1 MHz	1.1	3.47	3.42	2.90	

2024.11.1 Ver 2.20

⁽¹⁾ External clock is 8 MHz.(2) PLL is ON when fhclk > 8 MHz.

Table 22. Maximum current consumption in Run mode

				LDO	М	ах									
Symbol	Parameter	Conditions	f _{HCLK}	voltage	T _A = 85 °C	T _A = 105 °C	Unit								
			288 MHz	1.3	277.1 ⁽²⁾	299.3(2)									
			240 MHz	1.2	212.1	230.3									
			192 MHz	1.2	174.9	192.8									
			144 MHz	1.1	121.6	136.0									
		High speed external	120 MHz	1.1	104.9	119.2									
		crystal (HEXT) (1), all	108 MHz	1.1	96.3	110.5									
		peripherals enabled	72 MHz	1.1	74.9	89.0	mA								
		(AT32F437)	48 MHz	1.1	56.8	71.0									
			36 MHz	1.1	47.2	61.4									
			24 MHz	1.1	38.1	52.2									
			16 MHz	1.1	31.8	45.7									
			8 MHz	1.1	24.9	38.6									
			288 MHz	1.3	265.6 ⁽²⁾	290.0(2)									
	Supply current in Run mode		240 MHz	1.2	204.8	223.0									
			192 MHz	1.2	168.9	187.0									
											144 MHz	1.1	117.5	132.0	
		High speed external	120 MHz	1.1	101.5	115.9									
		crystal (HEXT) (1), all	108 MHz	1.1	93.3	107.5	A								
I_{DD}		peripherals enabled (AT32F435)	72 MHz	1.1	72.9	87.1	mA								
			48 MHz	1.1	55.4	69.7									
			36 MHz	1.1	46.2	60.4									
			24 MHz	1.1	37.5	51.6									
			16 MHz	1.1	31.4	45.2									
			8 MHz	1.1	24.7	38.3									
			288 MHz	1.3	88.4	109.7									
			240 MHz	1.2	68.8	86.1									
			192 MHz	1.2	59.9	76.9									
			144 MHz	1.1	43.5	57.4									
		High appeal and t	120 MHz	1.1	39.7	53.7									
		High speed external	108 MHz	1.1	37.7	51.5	A								
		crystal (HEXT) (1), all	72 MHz	1.1	31.8	45.6	mA								
		peripherals disabled	48 MHz	1.1	27.8	41.7									
			36 MHz	1.1	25.6	39.3									
			24 MHz	1.1	23.7	37.4									
			16 MHz	1.1	22.1	35.7	-								
			8 MHz	1.1	20.3	33.8									

⁽¹⁾ External clock is 8 MHz. PLL is ON when f_{HCLK} > 8 MHz. (2) Exceed the total value; for reference only.

Table 23. Maximum current consumption in Sleep mode

				LDO	M	ax	
Symbol	Parameter	Conditions	f _{HCLK}	voltage	T _A = 85 °C	T _A = 105 °C	Unit
			288 MHz	1.3	252.7 ⁽²⁾	274.3 ⁽²⁾	
			240 MHz	1.2	192.5	211.7	
			192 MHz	1.2	159.1	177.8	
			144 MHz	1.1	110.9	125.6	
		High speed external	120 MHz	1.1	95.9	110.5	
		crystal (HEXT) ⁽¹⁾ , all	108 MHz	1.1	88.1	102.7	
		peripherals enabled	72 MHz	1.1	69.4	83.9	mA
		(AT32F437)	48 MHz	1.1	52.7	67.0	
			36 MHz	1.1	44.2	58.4	
			24 MHz	1.1	36.0	50.2	
			16 MHz	1.1	30.2	44.3	
			8 MHz	1.1	23.9	37.9	
			288 MHz	1.3	243.0	265.2 ⁽²⁾	
	Supply current in Sleep mode		240 MHz	1.2	185.2	204.0	
			192 MHz	1.2	153.0	171.6	
			144 MHz	1.1	106.8	121.7	
		High speed external	120 MHz	1.1	92.4	107.1	mA
		crystal (HEXT) ⁽¹⁾ , all peripherals enabled (AT32F435)	108 MHz	1.1	85.1	99.6	
I _{DD}			72 MHz	1.1	67.3	81.8	
			48 MHz	1.1	51.4	65.7	
			36 MHz	1.1	43.1	57.4	
			24 MHz	1.1	35.2	49.4	
			16 MHz	1.1	29.7	43.8	
			8 MHz	1.1	23.7	37.7	
			288 MHz	1.3	64.8	84.9	
			240 MHz	1.2	50.5	67.3	
			192 MHz	1.2	45.1	61.8	
			144 MHz	1.1	33.8	47.2	
		High apped outernal	120 MHz	1.1	32.0	45.2	
		High speed external crystal (HEXT) ⁽¹⁾ , all	108 MHz	1.1	30.1	43.9	m ^
		peripherals disabled	72 MHz	1.1	26.7	40.4	mA
		periprierais disabled	48 MHz	1.1	24.9	38.0	
			36 MHz	1.1	23.7	36.6	
			24 MHz	1.1	22.7	35.6	
			16 MHz	1.1	20.9	34.6	1
			8 MHz	1.1	19.6	33.3	

⁽¹⁾ External clock is 8 MHz. PLL is ON when f_{HCLK} > 8 MHz. (2) Exceed the total value; for reference only.

2024.11.1 Ver 2.20

Table 24. Typical and maximum current consumptions in Deepsleep and Standby modes

				Typ ⁽¹⁾		Max ⁽²⁾			
Symbol	Parameter	C	Conditions		V _{DD}	T _A =	T _A =	T _A =	Unit
			= 2.6 V	= 3.3 V	25 °C	85 °C	105 °C		
		LDO in norma	al mode, 1.2 V						
	Supply	output, HICK	and HEXT OFF,	2.21	2.22		23.2	40.6	
	current in	WDT disable	WDT disabled			See (3)			т Л
	Deepsleep	LDO in low-p			See (*)			mA	
	mode	output, HICK	1.52	1.53		18.2	30.7		
IDD		WDT disable	d						
	Supply	LEXT and	AT32F435/437xD	13.0	15.8	18.9	24.1	30.3	
	current in	ERTC OFF	Others	9.2	10.9	12.5	17.1	23.2	μΑ
	Standby	LEXT and	AT32F435/437xD	14.5	18.8	21.0	26.4	32.7	
	mode	ERTC ON	Others	10.6	13.5	14.6	19.3	25.9	

- (1) Typical values are measured at $T_A = 25$ °C.
- (2) Guaranteed by characterization results, not tested in production.(3) This value may be several times the typical value due to process variations.

Figure 10. Typical current consumption in Deepsleep mode with regulator in run mode and output 1.2 V vs. temperature at different V_{DD}

2024.11.1 Ver 2.20

Figure 11. Typical current consumption in Deepsleep mode with regulator in low-power mode and output 1.1 V vs. temperature at different V_{DD}

Figure 12. Typical current consumption in Standby mode vs. temperature at different V_{DD} (AT32F435/437xD)

2024.11.1 59 Ver 2.20

30 28 26 24 22 20 Current (µA) 18 -3.6 V 16 -3.3 V 14 -2.6 V 12 10 $-40 - 35 - 30 - 25 - 20 - 15 - 10 - 5 \quad 0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \quad 45 \quad 50 \quad 55 \quad 60 \quad 65 \quad 70 \quad 75 \quad 80 \quad 85 \quad 90 \quad 95 \quad 100 \quad 105 \quad 105$ Temperature (°C)

Figure 13. Typical current consumption in Standby mode vs. temperature at different V_{DD} (others)

Table 25. Typical and maximum current consumptions on V_{BAT}

				Typ ⁽¹⁾			Max ⁽²⁾		
Symbol	Parameter	Conditions	V _{BAT} = 1.62 V	V _{BAT} = 2.6 V	V _{BAT} = 3.3 V		T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_} VBAT	Supply current of V _{BAT}	LEXT and ERTC ON, V _{DD} < V _{LVR}	1.04	1.49	1.89	2.29	2.70	3.23	μΑ

⁽¹⁾ Typical values are measured at $T_A = 25$ °C.

Figure 14. Typical current consumption on V_{BAT} with LEXT and ERTC ON vs. temperature at different V_{BAT}

⁽²⁾ Guaranteed by characterization results, not tested in production.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- All GPIO pins are in analog mode.
- The given value is calculated by measuring the current consumption difference between "all peripherals clocked OFF" and "only one peripheral clocked ON".

Table 26. Peripheral current consumption

			Typ		
Perip	pheral	LDO = 1.3 V	LDO = 1.2 V	LDO = 1.1 V	Unit
	DMA1	14.67	13.39	12.21	
	DMA2	14.85	13.56	12.36	
	EDMA	68.04	62.02	56.48	
	GPIOA	2.68	2.46	2.24	
	GPIOB	2.66	2.44	2.21	
	GPIOC	2.65	2.42	2.22	
	GPIOD	2.58	2.38	2.17	
	GPIOE	2.67	2.46	2.23	
	GPIOF	2.58	2.37	2.16	
	GPIOG	2.64	2.42	2.20	
	GPIOH	2.59	2.39	2.18	
ALID	XMC	43.05	39.29	35.81	
AHB	QSPI1	49.85	45.54	41.53	
	QSPI2	50.05	45.66	41.59	
	CRC	1.74	1.60	1.46	
	SDIO1	20.30	18.51	16.86	
	SDIO2	20.56	18.76	17.12	
	OTGFS1	58.65	53.58	48.87	A /A 41 1
	OTGFS2	59.09	53.96	49.17	μA/MHz
	DVP	8.12	7.42	6.76	
	EMAC				
	EMAC_TX			27.21	
	EMAC_RX	32.68	29.84		
	EMAC_PTP				
	TMR2	12.43	11.33	10.32	
	TMR3	9.11	8.30	7.57	
	TMR4	9.29	8.47	7.71	
	TMR5	12.17	11.12	10.13	
	TMR6	1.71	1.58	1.44	
4554	TMR7	1.59	1.47	1.34	
APB1	TMR12	5.54	5.07	4.63	
	TMR13	3.59	3.31	3.01	
	TMR14	3.71	3.42	3.12	
	WWDT	0.79	0.73	0.67	
	SPI2/I ² S2	10.21	9.34	8.52	
	SPI3/I ² S3	7.80	7.16	6.53	

Donit	-l l		Тур		11!4
Perij	oheral	LDO = 1.3 V	LDO = 1.2 V	LDO = 1.1 V	Unit
	USART2	3.14	2.87	2.62	
	USART3	3.09	2.83	2.58	
	UART4	3.04	2.78	2.53	
	UART5	2.96	2.72	2.47	
	I ² C1	7.28	6.66	6.07	
APB1	I ² C2	7.31	6.69	6.09	
	I ² C3	7.25	6.64	6.06	
	CAN1	4.92	4.51	4.11	
	CAN2	4.56	4.18	3.81	
	PWC	0.55	0.54	0.48	
	DAC	2.72	2.50	2.28	
	UART7	3.06	2.80	2.56	
	UART8	3.07	2.80	2.56	
	TMR1	13.26	12.11	11.04	A /B 41 I—
	TMR8	13.44	12.28	11.21	μA/MHz
	USART1	3.24	2.97	2.71	
	USART6	3.44	3.15	2.87	
	ADC1	15.11	13.80	12.56	
	ADC2	15.02	13.70	12.49	
	ADC3	14.95	13.65	12.44	
APB2	SPI1/I ² S1	5.70	5.22	4.77	
	SPI4/I ² S4	3.67	3.36	3.07	
	SCFG	0.95	0.88	0.80	
	TMR9	5.89	5.40	4.93	
	TMR10	3.72	3.41	3.12	
	TMR11	3.97	3.63	3.31	
	TMR20	12.88	11.74	10.69	
	ACC	1.12	1.02	0.93	

5.3.6 External clock source characteristics

High-speed external clock generated from a crystal / ceramic resonator

The high-speed external (HEXT) clock can be supplied with a 4 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 27. HEXT 4 ~ 25 MHz crystal characteristics (1)(2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fhext_in	Oscillator frequency	-	4	8	25	MHz
t _{SU(HEXT)} (3)	Startup time	V _{DD} is stabilized	-	2	-	ms

- (1) Oscillator characteristics given by the crystal/ceramic resonator manufacturer.
- (2) Guaranteed by characterization results, not tested in production.
- (3) t_{SU(HEXT)} is the startup time measured from the moment HEXT is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and select to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

RF Controlled gain

HEXT_IN

HEXT_OUT

HEXT_OUT

HEXT_OUT

Figure 15. HEXT typical application with an 8 MHz crystal

2024.11.1 63 Ver 2.20

High-speed external clock generated from an external source

The characteristics given in the table below result from tests performed using a high-speed external clock source.

Table 28. HEXT external source characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fHEXT_ext	User external clock source frequency (1)		1	8	25	MHz
VHEXTH	HEXT_IN input pin high level voltage		0.7V _{DD}	-	VDD	V
VHEXTL	HEXT_IN input pin low level voltage		Vss	-	0.3V _{DD}	V
tw(HEXT)	HEXT_IN high or low time (1)	-	5	-	-	
t _{r(HEXT)}	HEXT_IN rise or fall time (1)		-	-	20	ns
Cin(HEXT)	HEXT_IN input capacitance (1)	-	-	5	-	pF
Duty(HEXT)	Duty cycle	-	45	-	55	%
IL	HEXT_IN input leakage current	Vss ≤ Vin ≤ Vdd	-	-	±1	μΑ

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 16. HEXT external source AC timing diagram

2024.11.1 64 Ver 2.20

Low-speed external clock generated from a crystal / ceramic resonator

The low-speed external (LEXT) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 29. LEXT 32.768 kHz crystal characteristics (1)(2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{SU(LEXT)}	Startup time	V _{DD} is stabilized	-	200	-	ms

⁽¹⁾ Oscillator characteristics given by the crystal/ceramic resonator manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality ceramic capacitors in the 5 pF to 20 pF range selected to meet the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} .

Load capacitance C_L is based on the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$, where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

C_{L1}

32.768 kHz

crystal

LEXT_IN

Bias

Controlled
gain

Figure 17, LEXT typical application with a 32.768 kHz crystal

Note:

No external resistor is required between LEXT_IN and LEXT_OUT, and it is also prohibited to add it.

⁽²⁾ Guaranteed by characterization results, not tested in production.

Low-speed external clock generated from an external source

The characteristics given in the table below come from tests performed using a low-speed external clock source.

Table 30. LEXT external source characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f LEXT_ext	User external clock source frequency (1)		-	32.768	1000	kHz
VLEXTH	LEXT_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
VLEXTL	LEXT_IN input pin low level voltage		Vss	-	0.3V _{DD}	V
tw(LEXT)	LEXT_IN high or low time (1)	-	450	-	-	
tr(LEXT)	LEXT_IN rise or fall time (1)		-	-	50	ns
Cin(LEXT)	LEXT_IN input capacitance (1)	-	-	5	-	pF
Duty(LEXT)	Duty cycle	-	30	-	70	%
IL	LEXT_IN input leakage current	Vss ≤ Vin ≤ VDD	-	-	±1	μA

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 18. LEXT external source AC timing diagram

5.3.7 Internal clock source characteristics

High-speed internal clock (HICK)

Table 31. HICK clock characteristics

Symbol	Parameter		Conditions	Min	Тур	Max	Unit	
fніск	Frequency		-	-	48	-	MHz	
DuCy(HICK)	Duty cycle		-	45	-	55	%	
		User-trimmed register	ser-trimmed with the CRM_CTRL egister		-	1 ⁽¹⁾		
	A	ACC-trimmed	I	-	-	0.25(1)		
ACCHICK		Accuracy of the HICK		T _A = -40 ~ 105 °C	-2.5	-	2.5	%
	oscillator	Factory-	T _A = -40 ~ 85 °C	-2	-	2		
		calibrated (2)	T _A = 0 ~ 70 °C	-1.5	-	1.5		
			T _A = 25 °C	-1	0.5	1		
tsu(HICK) ⁽²⁾	HICK oscillator					40		
	startup time	-		-	-	10	μs	
IDD(HICK) ⁽²⁾	HICK oscillator				255	225	^	
	power consumption		-	_	255	325	μA	

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 19. HICK clock frequency accuracy vs. temperature

Low-speed internal clock (LICK)

Table 32. LICK clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
flick ⁽¹⁾	Frequency	-	30	40	60	kHz

⁽¹⁾ Guaranteed by characterization results, not tested in production.

⁽²⁾ Guaranteed by characterization results, not tested in production.

5.3.8 PLL characteristics

Table 33. PLL characteristics

Symbol	Parameter	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
f	PLL input clock (2)	2	8	16	MHz
fpll_in	PLL input clock duty cycle	40	-	60	%
fpll_out	PLL multiplier output clock	16	-	288	MHz
tLOCK	PLL lock time	-	-	200	μs
Jitter	Cycle-to-cycle jitter	-	-	300	ps

⁽¹⁾ Guaranteed by design, not tested in production.

5.3.9 Wakeup time from low-power mode

The wakeup times given in the table below is measured on a wakeup phase with the HICK. The clock source used to wake up the device depends from the current operating mode:

- Sleep mode: the clock source is the clock that was configured before entering Sleep mode.
- Deepsleep or Standby mode: the clock source is the HICK.

Table 34. Low-power mode wakeup time

Symbol	Parameter	Conditions	Тур	Unit
twusleep	Wakeup from Sleep mode	-	1.8	μs
4	Wakeup from Deepsleep mode	LDO in normal mode	330	
twudeepsleep		LDO in low-power mode	360	μs
	Wakeup from Standby mode	ZW = 128 Kbytes	5	
twustdby		ZW = 256 Kbytes	10	ms
		ZW = 512 Kbytes	20	

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

• **EFT:** A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a coupling/decoupling network, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

Table 35. EMS characteristics

Symbol	Parameter	Conditions	Level/Class
VEFT	Fast transient voltage burst limits to be applied through coupling/decoupling network conforms to IEC 61000-4-4 on V _{DD} and V _{SS} pins to induce a functional disturbance, V _{DD} and V _{SS} input has one 47 μF capacitor and each V _{DD} and V _{SS} pin pair 0.1 μF.	V _{DD} = 3.3 V, LQFP144, T _A = +25 °C, f _{HCLK} = 288 MHz, LDO = 1.3 V, NZW_BST = 0, conforming to IEC 61000-4-4 V _{DD} = 3.3 V, LQFP144, T _A = +25 °C, f _{HCLK} = 160 MHz, LDO = 1.2 V, NZW_BST = 1, conforming to IEC 61000-4-4	4A (±4 kV)

⁽²⁾ Take care of using the appropriate multiplier factors to ensure that PLL input clock values are compatible with the range defined by f_{PLL_OUT}.

EMC characterization and optimization are performed at component level with a typical application environment. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

5.3.11 GPIO port characteristics

General input/output characteristics

All GPIOs are CMOS and TTL compliant.

Table 36. GPIO static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIL	GPIO input low level voltage	-	-0.3	-	0.28 x V _{DD} + 0.1	V
	TC input high level voltage	-	0.31 x V _{DD} + 0.8	1	V _{DD} + 0.3	V
	FTa input high level voltage	Analog mode				
VIH	FT and FTf input high level voltage	-		-	5.5	
	FTa input high level voltage	Input floating, input				
		pull-up, or input				
		pull-down mode				
Vhys	Schmitt trigger voltage		200	-	-	mV
v nys	hysteresis (1)	-	5% V _{DD}	-	-	-
	Input floating leakage current (2)	Vss ≤ V _{IN} ≤ V _{DD} TC GPIO	-	-	±1	
likg		Vss ≤ V _{IN} ≤ 5.5 V FT, FTf and FTa GPIOs	-	-	±1	μΑ
Rpu	Weak pull-up equivalent resistor	V _{IN} = V _{SS}	60	70	100	kΩ
Rpd	Weak pull-down equivalent resistor 3)(4)	V _{IN} = V _{DD}	60	70	100	kΩ
Сю	GPIO pin capacitance	-	-	9	-	pF

⁽¹⁾ Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results, not tested in production.

All GPIOs are CMOS and TTL compliant (no software configuration required). Their characteristics take into account the strict CMOS-technology or TTL parameters.

Output driving current

In the user application, the number of GPIO pins which can drive current must be controlled to respect the absolute maximum rating defined in Section *5.2.1*.

 The sum of the currents sourced by all GPIOs on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 11*).

⁽²⁾ Leakage could be higher than max if negative current is injected on adjacent pins.

⁽³⁾ Internal pull-up/pull-down resistors must be disabled when the FT, FTf and FTa input voltage is higher than V_{DD} + 0.3 V.

⁽⁴⁾ The pull-down resistor of BOOT0 exists permanently.

• The sum of the currents sunk by all GPIOs on V_{SS}, plus the maximum Run consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating I_{VSS} (see *Table 11*).

Output voltage levels

All GPIOs are CMOS and TTL compliant.

Table 37. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
Maximum	sourcing/sinking strength		·		•
Vol	Output low level voltage	01400	-	0.4	- v
Vон	Output high level voltage	CMOS standard, I _{IO} = 15 mA	V _{DD} -0.4	-	
Vol	Output low level voltage	TTI 1 1 1 1 0 A	-	0.4	V
Vон	Output high level voltage	TTL standard, I _{IO} = 6 mA	2.4	-	
Large sou	rcing/sinking strength		•		
Vol	Output low level voltage	CMCC standard I - C mA	-	0.4	V
Vон	Output high level voltage	CMOS standard, I _{IO} = 6 mA	V _{DD} -0.4	-	
Vol	Output low level voltage	TTI standard I - 2 mm	-	0.4	V
Vон	Output high level voltage	TTL standard, I _{IO} = 3 mA	2.4	-	
V _{OL} ⁽¹⁾	Output low level voltage	I _{IO} = 20 mA	-	1.3	V
V _{OH} ⁽¹⁾	Output high level voltage		V _{DD} -1.3	-	
Normal so	urcing/sinking strength		•		
Vol	Output low level voltage	CMOS standard, I _{IO} = 4 mA	-	0.4	V
Vон	Output high level voltage		V _{DD} -0.4	-	
V _{OL}	Output low level voltage	TTL standard, I _{IO} = 2 mA	-	0.4	V
V _{OH}	Output high level voltage		2.4	-	
V _{OL} ⁽¹⁾	Output low level voltage	1 40 m A	-	1.3	_ v
V _{OH} ⁽¹⁾	Output high level voltage	l _{IO} = 10 mA	V _{DD} -1.3	-	
Ultra high	sourcing/sinking strength (2)				-
V _{OL}	Output low level voltage	I _{IO} = 20 mA	-	0.4	V

⁽¹⁾ Guaranteed by characterization results, not tested in production.

Input AC characteristics

The definition and values of input AC characteristics are given as follows.

Table 38. Input AC characteristics

Symbol	Parameter	Min	Max	Unit
t EXINTpw	Pulse width of external signals detected by EXINT controller	10	-	ns

2024.11.1 70 Ver 2.20

⁽²⁾ When GPIO ultra high sinking strength is enabled, its V_{OH} is the same as that of maximum sourcing strength.

5.3.12 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see the table below).

Conditions Symbol Parameter Min Тур Max Unit $V_{\mathsf{IL}(\mathsf{NRST})}^{(1)}$ NRST input low level voltage -0.5 8.0 ٧ $V_{IH(NRST)}^{(1)}$ NRST input high level voltage 2 $V_{DD} + 0.3$ NRST Schmitt trigger voltage $V_{hys(NRST)}$ 500 mV hysteresis Rpu Weak pull-up equivalent resistor VIN = VSS 40 50 kΩ 30 $t_{\mathsf{ILV}(\mathsf{NRST})}^{(1)}$ NRST input low level invalid time 33.3 μs NRST input low level valid time t_{ILNV(NRST)}(1) 66.7 μs

Table 39. NRST pin characteristics

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 20, Recommended NRST pin protection

- (1) The reset network protects the device against parasitic resets.
- (2) The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in NRST *Table 39*. Otherwise the reset will not be performed by the device.

5.3.13 XMC (SDRAM included) characteristics

Parameters listed in the table below are guaranteed by design, not tested in production.

Asynchronous waveforms and timings of SRAM/PSRAM/NOR

The results given in these tables are obtained with the following XMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

2024.11.1 71 Ver 2.20

Table 40. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings

Symbol	Parameter	Min	Max	Unit
tw(NE)	XMC_NE low time	5thclk - 1.5	5tнськ + 2	ns
tv(NOE_NE)	XMC_NE low to XMC_NOE low valid time	0.5	1.5	ns
tw(NOE)	XMC_NOE low time	5tнськ - 1.5	5tнськ + 1.5	ns
th(NE_NOE)	XMC_NOE high to XMC_NE high hold time	-1.5	-	ns
tv(A_NE)	XMC_NE low to XMC_A valid time	-	7	ns
th(A_NOE)	Address hold time after XMC_NOE high	2.5	-	ns
tv(UBLB_NE)	XMC_NE low to XMC_UB/LB valid time	-	0	ns
th(UBLB_NOE)	XMC_UB/LB hold time after XMC_NOE high	2.5	-	ns
tsu(Data_NE)	Data to XMC_NE high setup time	2thclk + 25	-	ns
tsu(Data_NOE)	Data to XMC_NOE high setup time	2thclk + 25	-	ns
th(Data_NOE)	Data hold time after XMC_NOE high	0	-	ns
th(Data_NE)	Data hold time after XMC_NE high	0	-	ns
tv(NADV_NE)	XMC_NE low to XMC_NADV low valid time	-	5	ns
tw(NADV)	XMC_NADV low time	-	tнськ + 1.5	ns

Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

(1) Only available in mode 2/B, C and D. XMC_NADV is not used in mode 1.

Table 41. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings

Symbol	Parameter	Min	Max	Unit
tw(NE)	XMC_NE low time	4tнськ — 1.5	4thclk + 2	ns
tv(NWE_NE)	XMC_NE low to XMC_NWE low valid time	tнськ - 0.5	thclk + 1.5	ns
tw(NWE)	XMC_NWE low time	2tнськ - 0.5	2thclk + 1.5	ns
th(NE_NWE)	XMC_NWE high to XMC_NE high hold time		-	ns
tv(A_NE)	NE) XMC_NE low to XMC_A valid time		7.5	ns
th(A_NWE)	Address hold time after XMC_NWE high		-	ns
tv(UBLB_NE)	XMC_NE low to XMC_UB/LB valid time	-	1.5	ns
th(UBLB_NWE)	XMC_UB/LB hold time after XMC_NWE high	tнськ - 0.5	-	ns
tv(Data_NE)	XMC_NE low to data valid	-	thclk + 7	ns
th(Data_NWE)	Data hold time after XMC_NWE high	thclk + 3	-	ns
tv(NADV_NE)	ADV_NE) XMC_NE low to XMC_NADV low valid time		5.5	ns
tw(NADV)	XMC_NADV low time	-	tнськ + 1.5	ns

Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

(1) Only available in mode 2/B, C and D. XMC_NADV is not used in mode 1.

Table 42. Asynchronous multiplexed PSRAM/NOR read timings

Symbol	Parameter	Min	Max	Unit
tw(NE)	XMC_NE low time	8tнськ - 2	8tнськ + 2	ns
tv(NOE_NE)	XMC_NE low to XMC_NOE low valid time	4tнськ - 0.5	4tнськ + 1.5	ns
tw(NOE)	XMC_NOE low time	4tнськ - 1	4tнськ + 2	ns
th(NE_NOE)	XMC_NOE high to XMC_NE high hold time	-1	-	ns
tv(A_NE)	XMC_NE low to XMC_A valid time	-	7	ns
tv(NADV_NE)	XMC_NE low to XMC_NADV low valid time		5	ns
tw(NADV)	XMC_NADV low time		tнськ + 1.5	ns
th(AD_NADV)	XMC_AD (address) valid hold time after XMC_NADV high	tнськ + 3	-	ns
th(A_NOE)	Address hold time after XMC_NOE high	tнськ + 3	-	ns
th(UBLB_NOE)	XMC_UB/LB hold time after XMC_NOE high	0	-	ns
tv(UBLB_NE)	XMC_NE low to XMC_UB/LB valid time	-	0	ns
tsu(Data_NE)	Data to XMC_NE high setup time	2tнськ + 24	-	ns
tsu(Data_NOE)	Data to XMC_NOE high setup time	2tнськ + 25	-	ns
th(Data_NE)	Data hold time after XMC_NE high	0	-	ns
th(Data_NOE)	Data hold time after XMC_NOE high	0	-	ns

Figure 23. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 43. Asynchronous multiplexed PSRAM/NOR write timings

Symbol	Parameter	Min	Max	Unit
tw(NE)	XMC_NE low time	7t _{HCLK} - 1	7t _{HCLK} + 2	ns
tv(NWE_NE)	XMC_NE low to XMC_NWE low valid time	t _{HCLK} - 1	t _{HCLK} + 1	ns
tw(NWE)	XMC_NWE low time	5t _{HCLK} - 1	5t _{HCLK} + 2	ns
th(NE_NWE)	XMC_NWE high to XMC_NE high hold time	t _{HCLK} - 1	-	ns
tv(A_NE)	XMC_NE low to XMC_A valid time	-	7	ns
tv(NADV_NE)	XMC_NE low to XMC_NADV low valid time	3	5	ns
tw(NADV)	XMC_NADV low time	t _{HCLK} - 1	t _{HCLK} + 1	ns
th(AD_NADV)	XMC_AD (address) hold time after XMC_NADV high	t _{HCLK} - 3	-	ns
th(A_NWE)	Address hold time after XMC_NWE high	tнськ - 1.5	-	ns
th(UBLB_NWE)	XMC_UB/LB hold time after XMC_NWE high	tнськ - 1.5	-	ns
tv(UBLB_NE)	XMC_NE low to XMC_UB/LB valid time	-	1.6	ns
tv(Data_NADV)	XMC_NADV high to data valid time	-	2t _{HCLK} + 1.5	ns
th(Data_NWE)	Data hold time after XMC_NWE high	t _{HCLK} - 5	-	ns

Figure 24. Asynchronous multiplexed PSRAM/NOR write waveforms

Synchronous waveforms and timings of PSRAM/NOR

The results given in these tables are obtained with the following XMC configuration:

- BurstAccessMode = XMC_BurstAccessMode_Enable
- MemoryType = XMC_MemoryType_CRAM
- WriteBurst = XMC_WriteBurst_Enable
- CLKPrescale = 1 (1 memory cycle = 2 HCLK cycles) (note: CLKPrescale is the CLKPSC bit in the XMC_BK1TMGx register; refer to AT32F435/437 series reference manual)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM (note: DataLatency is the DATLAT bit in the XMC_BK1TMGx register; refer to AT32F435/437 series reference manual)

Table 44. Synchronous non-multiplexed PSRAM/NOR read timings

Symbol	Parameter	Min	Мах	Unit
tw(CLK)	XMC_CLK period	20	-	ns
td(CLKL-NEL)	XMC_CLK low to XMC_NE low	-	2	ns
td(CLKL-NEH)	XMC_CLK low to XMC_NE high	1	-	ns
td(CLKL-NADVL)	XMC_CLK low to XMC_NADV low	-	4	ns
td(CLKL-NADVH)	-NADVH) XMC_CLK low to XMC_NADV high		-	ns
td(CLKL-AV)	XMC_CLK low to XMC_A valid	-	2	ns
td(CLKL-AIV)	XMC_CLK low to XMC_A invalid	0	-	ns
td(CLKH-NOEL)	XMC_CLK high to XMC_NOE low	-	2	ns
td(CLKL-NOEH)	XMC_CLK low to XMC_NOE high	0.5	-	ns
tsu(DV-CLKH)	XMC_D valid data before XMC_CLK high	6.5	-	ns
th(CLKH-DV)	XMC_D valid data after XMC_CLK high	7	-	ns
tsu(NWAITV-CLKH)	XMC_NWAIT valid before XMC_CLK high	7	-	ns
th(CLKH-NWAITV)	XMC_NWAIT valid after XMC_CLK high	2	-	ns

Figure 25. Synchronous non-multiplexed PSRAM/NOR read waveforms

Table 45. Synchronous non-multiplexed PSRAM write timings

Symbol	Parameter	Min	Max	Unit
tw(CLK)	XMC_CLK period	20	-	ns
td(CLKL-NEL)	XMC_CLK low to XMC_NE low	-	2	ns
td(CLKL-NEH)	XMC_CLK low to XMC_NE high	1	-	ns
td(CLKL-NADVL)	XMC_CLK low to XMC_NADV low	-	4	ns
td(CLKL-NADVH)	XMC_CLK low to XMC_NADV high	1	-	ns
td(CLKL-AV)	XMC_CLK low to XMC_A valid	-	2	ns
td(CLKL-AIV)	XMC_CLK low to XMC_A invalid	0	-	ns
td(CLKL-NWEL)	XMC_CLK low to XMC_NWE low	-	1	ns
td(CLKL-NWEH)	XMC_CLK low to XMC_NWE high	0.5	-	ns
td(CLKL-Data)	XMC_D after XMC_CLK low	-	6	ns
td(CLKL-UBLBH)	XMC_CLK low to XMC_UB/LB high	1.5	-	ns
tsu(NWAITV-CLKH)	XMC_NWAIT valid before XMC_CLK high	7	-	ns
th(CLKH-NWAITV)	XMC_NWAIT valid after XMC_CLK high	2	-	ns

Figure 26. Synchronous non-multiplexed PSRAM write waveforms

Table 46. Synchronous multiplexed PSRAM/NOR read timings

Symbol	Parameter	Min	Max	Unit
tw(CLK)	XMC_CLK period	20	-	ns
td(CLKL-NEL)	XMC_CLK low to XMC_NE low	-	2	ns
td(CLKL-NEH)	XMC_CLK low to XMC_NE high	1	-	ns
td(CLKL-NADVL)	XMC_CLK low to XMC_NADV low	-	4	ns
td(CLKL-NADVH)	XMC_CLK low to XMC_NADV high	1	-	ns
td(CLKL-AV)	L-AV) XMC_CLK low to XMC_A valid		2	ns
td(CLKL-AIV)	XMC_CLK low to XMC_A invalid	0	-	ns
td(CLKH-NOEL)	XMC_CLK high to XMC_NOE low	-	1	ns
td(CLKL-NOEH)	XMC_CLK low to XMC_NOE high	0.5	-	ns
td(CLKL-ADV)	XMC_CLK low to XMC_AD valid	-	12	ns
td(CLKL-ADIV)	XMC_CLK low to XMC_AD invalid	0	-	ns
tsu(ADV-CLKH)	XMC_AD valid before XMC_CLK high	6	-	ns
th(CLKH-ADV)	XMC_AD valid afterXMC_CLK high	6	-	ns
tsu(NWAITV-CLKH)	XMC_NWAIT valid before XMC_CLK high	8	-	ns
th(CLKH-NWAITV)	XMC_NWAIT valid after XMC_CLK high	6	-	ns

Figure 27. Synchronous multiplexed PSRAM/NOR read waveforms

Table 47. Synchronous multiplexed PSRAM write timings

Symbol	Parameter	Min	Max	Unit
tw(CLK)	XMC_CLK period	20	-	ns
td(CLKL-NEL)	XMC_CLK low to XMC_NE low	-	2	ns
td(CLKL-NEH)	XMC_CLK low to XMC_NE high	1	-	ns
td(CLKL-NADVL)	XMC_CLK low to XMC_NADV low	-	4	ns
td(CLKL-NADVH)	NADVH) XMC_CLK low to XMC_NADV high		-	ns
td(CLKL-AV)	(CLKL-AV) XMC_CLK low to XMC_A valid		2	ns
td(CLKL-AIV)	XMC_CLK low to XMC_A invalid	0	-	ns
td(CLKL-NWEL)	XMC_CLK low to XMC_NWE low	-	1	ns
td(CLKL-NWEH)	XMC_CLK low to XMC_NWE high	0.5	-	ns
td(CLKL-ADV)	XMC_CLK low to XMC_AD valid	-	12	ns
td(CLKL-ADIV)	XMC_CLK low to XMC_AD invalid	3	-	ns
td(CLKL-Data)	XMC_AD after XMC_CLK low	-	6	ns
td(CLKL-UBLBH)	XMC_CLK low to XMC_UB/LB high	1	-	ns
tsu(NWAITV-CLKH)	XMC_NWAIT valid before XMC_CLK high	8	-	ns
th(CLKH-NWAITV)	XMC_NWAIT valid after XMC_CLK high	6	-	ns

Figure 28. Synchronous multiplexed PSRAM write waveforms

NAND controller waveforms and timings

The results given in the table below are obtained with the following XMC configuration:

- COM.XMC_SetupTime = 0x01 (note: STP in XMC_BKxTMGMEM)
- COM.XMC_WaitSetupTime = 0x03 (note: OP in XMC_BKxTMGMEM)
- COM.XMC HoldSetupTime = 0x02 (note: HLD in XMC BKxTMGMEM)
- COM.XMC_HiZSetupTime = 0x01 (note: WRSTP in XMC_BKxTMGMEM)
- ATT.XMC_SetupTime = 0x01 (note: STP in XMC_BKxTMGATT)
- ATT.XMC_WaitSetupTime = 0x03 (note: OP in XMC_BKxTMGATT)
- ATT.XMC_HoldSetupTime = 0x02 (note: HLD in XMC_BKxTMGATT)
- ATT.XMC_HiZSetupTime = 0x01 (note: WRSTP in XMC_BKxTMGATT)
- Bank = XMC_Bank_NAND
- MemoryDataWidth = XMC_MemoryDataWidth_16b (note: memory data width = 16 bits)
- ECC = XMC_ECC_Enable (note: enable ECC calculation)
- ECCPageSize = XMC_ECCPageSize_512Bytes (note: ECC page size = 512 bytes)
- DLYCRSetupTime = 0 (note: DLYCR in XMC_BKxCTRL)
- DLYARSetupTime = 0 (note: DLYAR in XMC_BKxCTRL)

Table 48. NAND Flash read and write timings

Symbol	Parameter	Min	Max	Unit
tw(NOE)	XMC_NOE low width	4tнськ - 1.5	4tнськ + 1.5	ns
tsu(D-NOE)	XMC_Dx valid data before XMC_NOE high	25	-	ns
th(NOE-D)	XMC_Dx valid data after XMC_NOE high	14	-	ns
td(ALE-NOE)	XMC_ALE valid before XMC_NOE low	-	3tнськ + 2	ns
th(NOE-ALE)	XMC_NOE high to XMC_ALE invalid	3tнськ + 4.5	-	ns
tw(NWE)	XMC_NWE low width	4tнськ - 1	4tнськ + 2.5	ns
tv(NWE-D)	XMC_NWE low to XMC_Dx valid	-	0	ns
th(NWE-D)	XMC_NWE high to XMC_Dx invalid	10thclk + 4	-	ns
td(D-NWE)	XMC_Dx valid data before XMC_NWE high	6tнськ + 12	-	ns
td(ALE-NWE)	XMC_ALE valid before XMC_NWE low	-	3tнськ + 1.5	ns
th(NWE-ALE)	XMC_NWE high to XMC_ALE invalid	3thclk + 4.5	-	ns

Figure 29. NAND controller read waveforms

Figure 30. NAND controller write waveforms

Figure 31. NAND controller common memory read waveforms

2024.11.1 82 Ver 2.20

ALE(XMC_A17
CLE(XMC_A16

t d(ALE-NOE)

XMC_NWE

XMC_NOE

XMC_NOE

XMC_D[15:0]

Figure 32. NAND controller for common memory write waveforms

PC card /CF card controller timings and waveforms

The results given in the table below are obtained with the following XMC configuration:

- COM.XMC_SetupTime = 0x04 (note: STP in XMC_BKxTMGMEM, x = 2...4)
- COM.XMC_WaitSetupTime = 0x07 (note: OP in XMC_BKxTMGMEM, x = 2...4)
- COM.XMC_HoldSetupTime = 0x04 (note: HLD in XMC_BKxTMGMEM, x = 2...4)
- COM.XMC HiZSetupTime = 0x00 (note: WRSTP in XMC BKxTMGMEM, x = 2...4)
- ATT.XMC_SetupTime = 0x04 (note: STP in XMC_BKxTMGATT, x = 2...4)
- ATT.XMC_WaitSetupTime = 0x07 (note: OP in XMC_BKxTMGATT, x = 2...4)
- ATT.XMC_HoldSetupTime = 0x04 (note: HLD in XMC_BKxTMGATT, x = 2...4)
- ATT.XMC_HiZSetupTime = 0x00 (note: WRSTP in XMC_BKxTMGATT, x = 2...4)
- IO.XMC_SetupTime = 0x04 (note: STP in XMC_BKxTMGIO, x = 4)
- IO.XMC_WaitSetupTime = 0x07 (note: OP in XMC_BKxTMGIO, x = 4)
- IO.XMC_HoldSetupTime = 0x04 (note: HLD in XMC_BKxTMGIO, x = 4)
- IO.XMC_HiZSetupTime = 0x00 (note: WRSTP in XMC_BKxTMGIO, x = 4)
- DLYCRSetupTime = 0 (note: DLYCR in XMC_BKxCTRL)
- DLYARSetupTime = 0 (note: DLYAR in XMC_BKxCTRL)

Note: Refer to the AT32F435/437 reference manual about the description of registers above (XMC_BKXTMGMEMx, XMC_BKxTMGATT, XMC_BKxTMGIO and XMC_BKxCTRL).

2024.11.1 83 Ver 2.20

AT32F435/437 Series Datasheet

Table 49. PC card /CF read and write timings

Symbol	Parameter	Min	Max	Unit
tv(NCEx-A)	XMC_NCEx low to XMC_Ax valid	-	0	ns
th(NCEx-AI)	XMC_NCEx high to XMC_Ax invalid	0	-	ns
td(NREG-NCEx)	XMC_NCEx low to XMC_NREG valid	-	2	ns
th(NCEx-NREG)	XMC_NCEx high to XMC_NREG invalid	t _{HCLK} + 4	-	ns
td(NCEx-NWE)	XMC_NCEx low to XMC_NWE low -		5t _{HCLK} + 1	ns
td(NCEx-NOE)	XMC_NCEx low to XMC_NOE low -		5t _{HCLK} + 1	ns
tw(NOE)	XMC_NOE low width	8t _{HCLK} - 0.5	8t _{HCLK} + 1	ns
td(NOE -NCEx)	XMC_NOE high to XMC_NCEx high	5tнськ — 0.5	-	ns
tsu(D-NOE)	XMC_Dx valid data before XMC_NOE high	32	-	ns
th(NOE-D)	XMC_Dx invalid data after XMC_NOE high t _{HCLK} -		-	ns
tw(NWE)	XMC_NWE low width	8t _{HCLK} - 1	8t _{HCLK} + 4	ns
td(NWE-NCEx)	XMC_NWE high to XMC_NCEx high	5t _{нськ} + 1.5	-	ns
td(NCEx-NWE)	XMC_NCEx low to XMC_NWE low	-	5t _{HCLK} + 1	ns
tv(NWE-D)	XMC_NWE low to XMC_Dx valid	-	0	ns
th(NWE-D)	XMC_NWE high to XMC_Dx invalid	11t _{HCLK}	-	ns
td(D-NWE)	XMC_Dx valid data before XMC_NWE high	13t _{HCLK} + 2.5	-	ns
tw(NIOWR)	XMC_NIOWR low width	8thclk	-	ns
tv(NIOWR-D)	XMC_NIOWR low to XMC_Dx valid	-	5t _{нськ} - 4	ns
th(NIOWR-D)	XMC_NIOWR high to XMC_Dx invalid	11t _{HCLK}	-	ns
td(NCEx-NIOWR)	XMC_NCEx low to XMC_NIOWR valid			
th(NCEx-NIOWR)	XMC_NCEx high to XMC_NIOWR invalid	5t _{HCLK} - 7	-	ns
td(NIORD-NCEx)	XMC_NCEx low to XMC_NIORD valid	-	5t _{HCLK} + 1	ns
th(NCEx-NIORD)	DRD) XMC_NCEx high to XMC_NIORD invalid 5t _{HCLK} - 0.5 -		-	ns
tw(NIORD)	XMC_NIORD low width	8thclk -		ns
tsu(D-NIORD)	XMC_Dx valid before XMC_NIORD high	28 -		ns
td(NIORD-D)	XMC_Dx valid after XMC_NIORD high	3	-	ns

Figure 33. PC card/CF controller waveforms for common memory read access

(1) XMC_NCE4_2 remains low (inactive during 8-bit access).

Figure 34. PC card/CF controller waveforms for common memory write access

XMC_NCE4_1 tv(NCE4_1-A) th(NCE4_1-AI)-XMC_NCE4_2 XMC_A[10:0] XMC_NIOWR XMC_NIORD td(NREG-NCE4_1) th(NCE4_1-NREG) -XMC_NREG XMC_NWE td(NCE4_1-NOE) td(NOE-NCE4_1) XMC_NOE tsu(D-NOE)--th(NOW-D) XMC_D[15:0]⁽¹⁾

Figure 35. PC card/CF controller waveforms for attribute memory read access

(1) Only data bits 0~7 are read (bits 8~15 disregarded).

Figure 36. PC card/CF controller waveforms for attribute memory write access

(1) Only data bits 0~7 are driven (bits 8~15 remains HiZ).

Figure 37. PC card /CF controller waveforms for I/O space read access

SDRAM controller timings and waveforms

Table 50. SDRAM read timings

Symbol	Parameter	Min	Max	Unit
1/tw(SDCLK)	SDCLK frequency	-	100	MHz
tsu(SDCLKH_Data)	Input data setup time	2	-	ns
th(SDCLKH_Data)	Input data hold time	0	-	ns
td(SDCLKL_Add)	Address valid time	-	1.5	ns
td(SDCLKL_SDCS)	SDCS valid time	-	1	ns
th(SDCLKL_SDCS)	SDCS hold time	0	-	ns
td(SDCLKL_SDNRAS)	SDNRAS valid time	-	1	ns
th(SDCLKL_SDNRAS)	SDNRAS hold time	0	-	ns
td(SDCLKL_SDNCAS)	SDNCAS valid time	-	1	ns
th(SDCLKL_SDNCAS)	SDNCAS hold time	0	-	ns

Figure 39. SDRAM read waveforms

Table 51. SDRAM write timings

Symbol	Parameter	Min	Max	Unit
1/tw(SDCLK)	SDCLK frequency	-	100	MHz
td(SDCLKL_Data)	Output data valid time	-	2.5	ns
th(SDCLKL_Data)	Output data hold time	-1	-	ns
td(SDCLKL_Add)	Address valid time	-	1.5	ns
td(SDCLKL_SDNWE)	SDNWE valid time	-	1	ns
th(SDCLKL_SDNWE)	SDNWE hold time	0	-	ns
td(SDCLKL_SDCS)	SDCS valid time	-	1	ns
th(SDCLKL_SDCS)	SDCS hold time	0	-	ns
td(SDCLKL_SDNRAS)	SDNRAS valid time	-	1	ns
th(SDCLKL_SDNRAS)	SDNRAS hold time	0	-	ns
td(SDCLKL_SDNCAS)	SDNCAS valid time	-	1	ns
th(SDCLKL_SDNCAS)	SDNCAS hold time	0	-	ns
td(SDCLKL_DQM)	DQM valid time	-	1	ns
th(SDCLKL_DQM)	DQM hold time	0	-	ns

Figure 40. SDRAM write waveforms

5.3.14 TMR characteristics

The parameters given in the table below are guaranteed by design.

Table 52. TMR characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
4	Timer recolution time	-	1	-	t TMRxCLK
tres(TMR)	Timer resolution time	f _{TMRxCLK} = 288 MHz	3.47	-	ns
fехт	Timer external clock frequency on CH1 to CH4	-	0	ftmrxclk/2	MHz

5.3.15 SPI characteristics

Table 53. SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions		Min	Max	Unit
		Master mode	Prescaler ≠ 3	-	50	
fsck		Master mode	Prescaler = 3	-	40	
$(1/t_{c(SCK)})^{(2)(3)}$	SPI clock frequency	Slave receive	Prescaler ≠ 3	-	36	MHz
(1/tc(3CK))****		mode	Prescaler = 3	-	32	
		Slave transmit n	node	-	32	
t _{su(CS)}	CS setup time	Slave mode		2t _{PCLK}	-	ns
t _{h(CS)}	CS hold time	Slave mode		2t _{PCLK}	-	ns
$t_{w(SCKH)}$ $t_{w(SCKL)}$	SCK high and low time	Master mode, P	Master mode, Prescaler factor = 4		2t _{PCLK} + 3	ns
	SCK duty cycle		f _{PCLK} = f _{HCLK}			
		Master mode	f _{PCLK} = f _{HCLK} / 2,	45	55	%
Duty _(SCK)			prescaler ≠ 3			
			f _{PCLK} = f _{HCLK} / 2,	40	60	
			prescaler = 3	40	00	
t _{su(MI)}	Data input setup time	Master mode		6	-	ns
t _{su(SI)}	Data iriput setup time	Slave mode		5	-	115
t _{h(MI)}	Data input hold time	Master mode		4	-	20
t _{h(SI)}	Data iriput riolu tirrie	Slave mode		5	-	ns
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode		tpclk	2t _{PCLK} + 25	ns
t _{dis(SO)} (5)	Data output disable time	Slave mode		tpclk	2t _{PCLK} + 25	ns
t _{v(SO)}	Data output valid time	Slave mode (after	er enable edge)	-	25	ns
t _{v(MO)}	Data output valid time	Master mode (at	fter enable edge)	-	10	ns
th(SO)	Data autout hald time	Slave mode (after	er enable edge)	9	-	ne
t _{h(MO)}	Data output hold time	Master mode (at	fter enable edge)	2	-	ns

⁽¹⁾ Guaranteed by design, not tested in production.

2024.11.1 90 Ver 2.20

⁽²⁾ The maximum SPI clock frequency should not exceed fPCLK/2.

⁽³⁾ Guaranteed by characterization results, not tested in production. The maximum SPI clock frequency is highly related with devices and the PCB layout. For more details about the complete solution, please contact your local Artery sales representative.

⁽⁴⁾ Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

⁽⁵⁾ Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

CS input $t_{c(SCK)}$ - t_{h(CS)} t_{su(CS)} -CPHA=0 w(SCKH) CPOL=0 t_{w(SCKL)} CPHA=0 -CPOL=1 $t_{v(SO)}$ t_{h(SO)} $t_{a(SO)}$ t_{dis(SO)} MSB out LSB out MISO output t_{su(SI)} → $t_{h(SI)}$ MSB in LSB in MOSI input

Figure 41. SPI timing diagram – slave mode and CPHA = 0

Figure 42. SPI timing diagram – slave mode and CPHA = 1

Figure 43. SPI timing diagram - master mode

5.3.16 I²S characteristics

Table 54. I²S characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
tr(CK)	I ² S clock rise and fall time	Capacitive load: C = 15 pF	-	12	
t _{v(WS)}	WS valid time	Master mode	0	4	1
t _{h(WS)}	WS hold time	Master mode	0	4]
tsu(WS)	WS setup time	Slave mode	9	-]
t _{h(WS)}	WS hold time	Slave mode	0	-]
tsu(SD_MR)	Data input actus time	Master receiver	6	-]
tsu(SD_SR)	Data input setup time	Slave receiver	2	-	ns
t _{h(SD_MR)}	Data input hold time	Master receiver	0.5	-]
th(SD_SR)	- Data input hold time	Slave receiver	0.5	-]
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	20]
th(SD_ST)	Data output hold time	Slave transmitter (after enable edge)	9	-	
t _{v(SD_MT)}	Data output valid time	Master transmitter (after enable edge)	-	15]
th(SD_MT)	Data output hold time	Master transmitter (after enable edge)	0	-	

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 44. I²S slave timing diagram (Philips protocol)

⁽¹⁾ LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

2024.11.1 92 Ver 2.20

Figure 45. I²S master timing diagram (Philips protocol)

(1) LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

5.3.17 QSPI characteristics

Table 55. QSPI characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fsck 1/t _(CK) ⁽²⁾	QSPI clock frequency	-	-	-	96	MHz
tw(CKH)	QSPI clock high and low time	-	(t _(CK) / 2) - 3	-	(t _(CK) / 2) + 3	ns
ts(IN)	Data input setup time	-	2	-	-	ns
t _{h(IN)}	Data input hold time	-	4.5	-	-	ns
tv(OUT)	Data output valid time	-	-	1.5	3	ns
th(OUT)	Data output hold time	-	0	-	-	ns

⁽¹⁾ Guaranteed by design, not tested in production.

 $t_{(CK)}$ $t_{\text{w}(\text{CKH})}$ $t_{w(CKL)}$ QSPI_SCK t_{v(OUT)} t_h(OUT) QSPI_IO D0 D1 D2 output t_{s(IN)} $t_{h(IN)}$ QSPI_IO D2 D0 D1 input

Figure 46. QSPI timing diagram

5.3.18 I²C characteristics

GPIO pins SDA and SCL have limitation as follows: they are not "true" open-drain. When configured as open-drain, the PMOS connected between the GPIO pin and V_{DD} is disabled, but is still present.

l²C bus interface can support standard mode (max. 100 kHz), fast mode (max. 400 kHz), and fast mode plus (max. 1 MHz).

2024.11.1 Ver 2.20

⁽²⁾ Guaranteed by characterization results, not tested in production.

5.3.19 SDIO characteristics

Table 56. SD/MMC characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
fpp	Clock frequency in data transfer mode	-	0	48	MHz
tw(ckl)	Clock low ime	f _{PP} = 48 MHz	8.5	-	
tw(ckh)	Clock high time	f _{PP} = 48 MHz	8.5	-	ns
CMD, D inp	uts (referenced to CK)			•	I.
tısu	Clock setup time	f _{PP} = 48 MHz	7	-	
tıн	Clock hold time	f _{PP} = 48 MHz	-4.5	-	ns
CMD, D out	puts (referenced to CK)				•
tov	Output valid time	fpp = 48 MHz		4	
tovd	Output valid time	IPP = 40 IVIDZ	-	4	no
tон	Output hold time	fpp = 48 MHz	0.5		ns
t _{OHD}	Output hold time	I IPP = 40 IVIDZ	0.5	-	

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 47. SDIO high-speed mode

Figure 48. SD default mode

2024.11.1 95 Ver 2.20

5.3.20 OTGFS characteristics

Table 57. OTGFS startup time

Symbol	Parameter	Max	Unit
t _{STARTUP} (1)	OTGFS transceiver startup time	1	μs

⁽¹⁾ Guaranteed by design, not tested in production.

Table 58. OTGFS DC electrical characteristics (1)(2)

Syml	bol	Parameter	Conditions	Min	Тур	Max	Unit
	V_{DD}	OTGFSoperating voltage	-	3.0(3)		3.6	V
Input	V_{DI}	Differential input sensitivity	I (OTGFS_D+/D-)	0.2		-	
levels	V_{CM}	Differential common mode range	Include V _{DI} range	0.8		2.5	V
	V_{SE}	Single ended receiver threshold	-	1.3		2.0	
Output	V _{OL}	Static output level low	R_L of 1.24 $k\Omega$ to 3.6 $V^{(4)}$	-		0.3	V
levels	V _{OH}	Static output level high	$R_L of 15 k\Omega$ to $V_{SS}^{(4)}$	2.8		3.6	
D		OTGFS_D+ internal pull-up	Idle, VIN = VSS	0.97	1.24	1.58	10
RPI	U		Receive, VIN = Vss	1.66	2.26	3.09	kΩ
RPI	D	OTGFS_D+/D- internal pull-down	VIN = VDD	15	19	25	kΩ

- (1) All the voltages are measured from the local ground potential.
- (2) Guaranteed by design, not tested in production.
- (3) The AT32F435/437 USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7 to 3.0 V V_{DD} voltage range.
- (4) R_L is the load connected on the USB drivers.

Figure 49. OTGFS timings: definition of data signal rise and fall time

Table 59. OTGFS electrical characteristics (1)

Symbol	Parameter	Conditions	Min	Max	Unit
t _r (2)	Rise time	C _L ≤ 50 pF	4	20	ns
t _f (2)	Fall time	C _L ≤ 50 pF	4	20	ns
t _{rfm}	Rise/fall time matching	t_r/t_f	90	110	%
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V

⁽¹⁾ Guaranteed by design, not tested in production.

2024.11.1 96 Ver 2.20

⁽²⁾ Measured from 10% to 90% of the data signal. For more detailed information, please refer to USB Specification Chapter 7 (version 2.0).

5.3.21 EMAC characteristics

Operating voltage

Table 60. EMAC DC electrical characteristics(1)

Symbol	Parameter	Min	Max	Unit
V _{DD}	EMAC operating voltage	3.0	3.6	V

⁽¹⁾ Guaranteed by design, not tested in production. All the voltages are measured from the local ground potential.

SMI (station management interface)

Table 61. Dynamic characteristics: EMAC signals for SMI⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
t _{MDC}	MDC cycle time (1.96 MHz)	509	510	511	
t _{d(MDIO)}	MDIO write data valid time	12	14.5	17	no
t _{su(MDIO)}	Read data setup time	35	-	-	ns
t _{h(MDIO)}	Read data hold time	15	-	-	

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 50. EMAC SMI timing diagram

RMII

Table 62. Dynamic characteristics: EMAC signals for RMII⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	4	-	-	
t _{ih(RXD)}	Receive data hold time	2	-	-	
t _{su(DV)}	Carrier sense set-up time	6	-	-	no
t _{ih(DV)}	Carrier sense hold time	1	-	-	ns
t _{d(TXEN)}	Transmit enable valid delay time	8	10	16	
t _{d(TXD)}	Transmit data valid delay time	7	10	16	

⁽¹⁾ Guaranteed by design, not tested in production.

RMII_REF_CLK

RMII_TX_EN
RMII_TXD[1:0]

t_su(RXD)
t_su(CRS)

RMII_RXD[1:0]
RMII_CRS_DV

Figure 51. EMAC RMII timing diagram

MII

Table 63. Dynamic characteristics: EMAC signals for MII⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	8	-	-	
t _{ih(RXD)}	Receive data hold time	2	-	-	
t _{su(DV)}	Data valid setup time	6	-	-	
t _{ih(DV)}	Data valid hold time	1	-	-	no
t _{su(ER)}	Error setup time	3	-	-	ns
tih(ER)	Error hold time	1	-	-	
t _{d(TXEN)}	Transmit enable valid delay time	14	16	18	
t _{d(TXD)}	Transmit data valid delay time	13	16	20	

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 52, EMAC MII timing diagram

5.3.22 DVP characteristics

DVP_PCLK polarity: falling edge; DVP_HSYNC and DVP_VSYNC polarity: high level.

Table 57. DVP characteristics(1)

Symbol	Parameter	Min	Max	Unit
f _{DVP_PCLK}	Frequency of the input pixel clock	-	54	MHz
Duty _{DVP_PCLK}	Duty cycle of the input pixel clock	30	70	%
tsu(DVP_DATA)	Input data setup time	1	-	ns
th(DVP_DATA)	Input data hold time	3.5	-	ns
tsu(DVP_HSYNC) tsu(DVP_VSYNC)	Input HSYNC/VSYNC setup time	2	-	ns
th(DVP_HSYNC) th(DVP_VSYNC)	Input HSYNC/VSYNC hold time	0	-	ns

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 53. DVP timing diagram

2024.11.1 99 Ver 2.20

5.3.23 12-bit ADC characteristics

Unless otherwise specified, the parameters given in the table below are preliminary values derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 15*.

Note: It is recommended to perform a calibration after each power-up.

Table 64. ADC characteristics

Symbol	Parameter	Co	nditions	Min	Тур	Max	Unit
VDDA	Power supply	-		2.6	-	3.6	V
V _{REF+}	Positive reference voltage (3)	-		2.0	-	VDDA	V
IDDA	Current on V _{DDA} input pin	-		-	1280(1)	1560	μA
Ivref+	Current on V _{REF+} input pin ⁽³⁾		-	-	400(1)	480	μA
£	ADC alask francisco	V _{REF+} ≥ 2.6	V	0.6	-	80	N41.1-
fadc	ADC clock frequency	V _{REF+} < 2.6	V	0.6	-	30	MHz
		12-bit	Fast channels	0.04		5.33	
		resolution	Slow channels	0.04	-	4.21	
		10-bit	Fast channels	0.047		6.15	
fs ⁽²⁾	Camplinguate	resolution	Slow channels	0.047	-	4.71	Mene
IS ⁽²⁾	Sampling rate	8- bit	Fast channels	0.055		7.27	MSPS
		resolution	Slow channels	0.055	-	5.33	
		6- bit	Fast channels	0.007		8.88	- -
		resolution	Slow channels	0.067	-	6.15	
f _{TRIG} (2)	External trigger fraguency	f _{ADC} = 80 M	Hz	-	-	4.44	MHz
ITRIG\ ² /	External trigger frequency	-		-	-	18	1/fadc
Vain	Conversion voltage range (3)	-		0 (VREF- internally connected to ground)	-	VREF+	V
R _{AIN} ⁽²⁾	External input impedance		_	See Table 65			Ω
C _{ADC} ⁽²⁾	Internal sample and hold capacitor		-	-	10	-	pF
1 (2)	0 11 11 11	f _{ADC} = 80 M	Hz	2.56			μs
t _{CAL} ⁽²⁾	Calibration time	-		205			1/fadc
1 (2)	Preemptive trigger conversion	f _{ADC} = 80 M	Hz	-	-	37.5	ns
$t_{lat}^{(2)}$	latency		-	-	-	3 ⁽⁴⁾	1/fadc
1 (2)	Ordinary trigger conversion	f _{ADC} = 80 M	Hz	-	-	25	ns
t _{latr} (2)	latency	-		-	-	2 ⁽⁴⁾	1/fadc
± (2)	0	f _{ADC} = 80 MHz		0.031	-	8.006	μs
ts ⁽²⁾	Sampling time	-		2.5	-	640.5	1/fadc
t _{STAB} (2)	Power-up time	-		45			1/fadc
4 (2)	Total conversion time	f _{ADC} = 80 M resolution	Hz, 12-bit	0.188	-	8.163	μs
t _{CONV} ⁽²⁾ (including sampling time)		12-bit resol	ution	15 ~ 653 (ts for sampling+ 12.5 for successive approximation)		1/fadc	

⁽¹⁾ Guaranteed by characterization results, not tested in production.

- (2) Guaranteed by design, not tested in production.
- (3) V_{REF+} can be internally connected to V_{DDA} depending on the package.
- (4) For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 64*.

Table 65 are used to define the maximum external impedance allowed for an error below 1 of LSB in 12-bit resolution.

Table 65. R_{AIN} max for f_{ADC} = 80 MHz

- /		R _{AIN} max (Ω) ⁽¹⁾			
T _S (cycle)	t _S (μ s)	Fast channels	Slow channels		
2.5	0.031	30	-		
6.5	0.081	200	50		
12.5	0.156	400	350		
24.5	0.306	800	700		
47.5	0.594	1700	1500		
92.5	1.156	3000	2600		
247.5	3.094	9000	8500		
640.5	8.006	20000	19000		

⁽¹⁾ Guaranteed by design.

Table 66. ADC accuracy (1)(2)

Symbol	Parameter	Test conditions	Тур	Max	Unit
ET	Total unadjusted error		±1.5	±3	
EO	Offset error	f_{ADC} = 80 MHz, R_{AIN} < 20 k Ω ,	±0.5	±1.5	
EG	Gain error	V _{DDA} = 3.0~3.6 V, T _A = 25 °C,	±0.5	±1.5	LSB
ED	Differential linearity error	VREF+ = VDDA	±1	+1.5/-1	
EL	Integral linearity error		±1.5	±3	
ET	Total unadjusted error	fadc = 15 ~ 80 MHz. Rain < 20 kΩ.	±2	±4.5	
EO	Offset error	$V_{DDA} = 2.6 \sim 3.6 \text{ V}, T_A = -40 \sim$	±0.5	±3	
EG	Gain error	105 °C.	+1.5	+4/-2	LSB
ED	Differential linearity error	V _{REF+} = 2.0~3.6 V	±1	+2/-1	
EL	Integral linearity error	VILL . 2.0 0.0 V	±1.5	±3.5	

⁽¹⁾ ADC DC accuracy values are measured after internal calibration.

2024.11.1 101 Ver 2.20

⁽²⁾ Guaranteed by characterization results, not tested in production.

Figure 54. ADC accuracy characteristics

- (1) Example of an actual transfer curve.
- (2) Ideal transfer curve.
- (3) End point correlation line.
- (4) ET = Maximum deviation between the actual and the ideal transfer curves.
 - EO = Deviation between the first actual transition and the first ideal one.
 - EG = Deviation between the last ideal transition and the last actual one.
 - ED = Maximum deviation between actual steps and the ideal one.
 - EL = Maximum deviation between any actual transition and the end point correlation line.

Figure 55. Typical connection diagram using the ADC

- (1) Refer to Table 64 for the values of RAIN and CADC.
- (2) C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 56* or *Figure 57*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

If HEXT is enabled while ADC uses any input channel of ADC3_IN4~8 and ADC123_IN10~13, following PCB layout guide line below benefits to isolate the high frequency interference from HEXT emitting to ADC input signals nearby.

- Use different PCB layers to route ADC IN signal apart from HEXT path
- Do not route ADC_IN signals and HEXT path parallel

 V_{DDA} V_{DDA} V_{REF+} V_{REF+} 1 μF // 100 nF = 1 μ F // 100 nF \pm 1 μF // 100 nF = V_{SSA}/V_{REF-} V_{SSA}/V_{REF-} V_{REF+}未连接到V_{DDA} V_{REF+}连接到V_{DDA}

Figure 56. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

(1) V_{REF+} input is available only on 100-pin package.

Figure 57. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

(1) V_{REF+} input is available only on 100-pin package.

5.3.24 Internal reference voltage (VINTRV) characteristics

Table 67. Internal reference voltage characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{INTRV} ⁽¹⁾	Internal reference voltage	-	1.16	1.20	1.24	V
T _{Coeff} (1)	Temperature coefficient	-	-	50	100	ppm/°C
Ts_vintrv(ADC sampling time when reading the internal reference voltage	-	5	-	-	μs

⁽¹⁾ Guaranteed by characterization results, not tested in production.

(2) Guaranteed by design, not tested in production.

2024.11.1 103 Ver 2.20

5.3.25 Temperature sensor (V_{TS}) characteristics

Table 68. Temperature sensor characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
T _I ⁽¹⁾	V _{TS} linearity with temperature	T _A = -20 ~ +85 °C	-	±1	±2	90	
IL('')		T _A = -40 ~ +105 °C	-	-	±3	°C	
Avg_Slope(1)(2)	Average slope	-	-4.00	-4.13	-4.25	mV/°C	
V ₂₅ ⁽¹⁾⁽²⁾	Voltage at 25 °C	-	1.21	1.27	1.34	V	
tstart ⁽³⁾	Setup time	-	-	-	100	μs	
Ts_temp ⁽³⁾	ADC sampling time when reading		5				
	the temperature	-	3	_	-	μs	

⁽¹⁾ Guaranteed by characterization results, not tested in production.

Obtain the temperature using the following formula:

Temperature (°C) = $\{(V_{25} - V_{TS}) / Avg_Slope\} + 25$ where,

V₂₅ = V_{TS} value for 25 °C

Avg Slope = Average Slope for curve between Temperature vs. V_{TS} (given in mV/° C)

Figure 58. Ideal curve of V_{TS} vs. temperature

2024.11.1 104

⁽²⁾ The temperature sensor output voltage changes linearly with temperature. The offset of this line varies from chip to chip due to process variation (up to 50 °C from one chip to another). The internal temperature sensor is more suited to applications that detect temperature variations instead of absolute temperatures. If accurate temperature readings are needed, an external temperature sensor part should be used.

⁽³⁾ Guaranteed by design, not tested in production.

5.3.26 V_{BAT} voltage monitor characteristics

Table 69. V_{BAT} voltage monitor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R _{VBATM} ⁽¹⁾	String resistor value of the V _{BAT} monitor	-	45	-	kΩ
Q	Dividing factor of the V _{BAT} monitor	Y _{BAT} monitor - 4		-	-
Q _{ET} ⁽¹⁾	Total error of Q	-1	-	+1	%
Ts_vbatm ⁽²⁾	ADC sampling time when reading the voltage of	5		-	
	the V _{BAT} monitor	5	-		μs

⁽¹⁾ Guaranteed by characterization results, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

5.3.27 12-bit DAC characteristics

Table 70. DAC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDDA		Gorialions	2.6		3.6	V
VREF+(3)	Analog supply voltage Reference supply voltage	-	2.0	-	3.6	V
VSSA	Ground	-	0	-	0	V
	Load resistance with buffer ON	-				
R _{LOAD} ⁽¹⁾		-	5	- 40.0	-	kΩ
	Impedance output with buffer OFF	-	-	13.2	16	kΩ
C _{LOAD} ⁽¹⁾	Capacitive load (buffer ON)	-	-	-	50	pF
	Lower DAC_OUT voltage with buffer ON	-	0.15	-	-	V
DAC OUT ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	-	V _{REF+} - 0.15	V
DAC_OUT	Lower DAC_OUT voltage with buffer OFF	-	-	0.5	5	mV
	Higher DAC_OUT voltage with buffer OFF	-	-	-	V _{REF+} - 2 mV	٧
Idda	DAC DC current consumption in quiescent mode	With no load, V _{REF+} = 3.6 V	-	460	625	μA
I _{VREF+} (3)	DAC AC current consumption in quiescent mode	With no load, V _{REF+} = 3.6 V	-	270	310	μΑ
DNL ⁽²⁾	Differential non linearity	-	-	±0.4	±0.8	LSB
INL ⁽²⁾	Integral non linearity (difference between measured value from code i and a line drawn between DAC_OUT min and DAC_OUT max)	-	-	±1	±3	LSB
	Offset error (difference between		-	10	15	mV
Offset ⁽²⁾	measured value at Code (0x800) and the ideal value = $V_{REF+}/2$)	-	-	10	25	LSB
Gain error ⁽²⁾	Gain error	-	-	0.1	0.25	%
tsettling	Setting time	$R_{LOAD} \ge 5 \text{ k}\Omega$ $C_{LOAD} \le 50 \text{ pF}$	-	1	4	μs
Update rate	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1 LSB)	$R_{LOAD} \ge 5 \text{ k}\Omega$ $C_{LOAD} \le 50 \text{ pF}$	-	-	1	MSPS
twakeup	Wakeup time from off state (setting the EN bit in the DAC Control register)	R _{LOAD} ≥ 5 k Ω C _{LOAD} ≤ 50 pF	-	1.2	4	μs

⁽¹⁾ Guaranteed by design, not tested in production.

 ⁽²⁾ Guaranteed by characterization results, not tested in production.
 (3) V_{REF+} can be internally connected to V_{DDA} depending on the package.

6 Package information

6.1 LQFP144

Figure 59. LQFP144 - 20 x 20 mm 144 pin low-profile quad flat package outline

AT32F435/437 Series Datasheet

Table 71. LQFP144 – 20 x 20 mm 144 pin low-profile quad flat package mechanical data

Oh l	millimeters					
Symbol	Min	Тур	Max			
А	-	-	1.60			
A1	0.05	-	0.15			
A2	1.35	1.40	1.45			
A3	0.59	0.64	0.69			
b	0.18	-	0.26			
b1	0.17	0.20	0.23			
С	0.13	-	0.17			
c1	0.12	0.13	0.14			
D	21.80	22.00	22.20			
D1	19.90	20.00	20.10			
E	21.80	22.00	22.20			
E1	19.90	20.00	20.10			
е		0.50 BSC.				
L	0.45	0.60	0.75			
L1	1.00 REF.					
θ	0°	3.5°	7°			

6.2 LQFP100

Figure 60. LQFP100 - 14 x 14 mm 100 pin low-profile quad flat package outline

AT32F435/437 Series Datasheet

Table 72. LQFP100 - 14 x 14 mm 100 pin low-profile quad flat package mechanical data

Symbol	millimeters		
	Min	Тур	Max
А	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
b	0.17	0.20	0.26
С	0.10	0.127	0.20
D	15.75	16.00	16.25
D1	13.90	14.00	14.10
E	15.75	16.00	16.25
E1	13.90	14.00	14.10
е	0.50 BSC.		
L	0.45	0.60	0.75
L1		1.00 REF.	

2024.11.1 110 Ver 2.20

6.3 LQFP64

Figure 61. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline

AT32F435/437 Series Datasheet

Table 73. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

Symbol	millimeters		
	Min	Тур	Max
А	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
b	0.17	0.20	0.27
С	0.09	-	0.20
D	11.75	12.00	12.25
D1	9.90	10.00	10.10
E	11.75	12.00	12.25
E1	9.90	10.00	10.10
е	0.50 BSC.		
Θ	3.5° REF.		
L	0.45	0.60	0.75
L1	1.00 REF.		
ccc	0.08		

2024.11.1 112 Ver 2.20

6.4 LQFP48

Figure 62. LQFP48 - 7 x 7 mm 48 pin low-profile quad flat package outline

AT32F435/437 Series Datasheet

Table 74. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package mechanical data

Symbol	millimeters		
	Min	Тур	Max
А	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
b	0.17	0.22	0.27
С	0.09	-	0.20
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	0.50 BSC.		
Θ	0°	3.5°	7°
L	0.45	0.60	0.75
L1		1.00 REF.	

2024.11.1 114 Ver 2.20

6.5 QFN48

Figure 63. QFN48 - 6 x 6 mm 48 pin quad flat no-leads package outline

Table 75. QFN48 - 6 x 6 mm 48 pin quad flat no-leads package mechanical data

Symbol	millimeters		
	Min	Тур	Max
А	0.80	0.85	0.90
A1	0.00	0.02	0.05
А3	0.203 REF.		
b	0.15	0.20	0.25
D	5.90	6.00	6.10
D2	3.07	3.17	3.27
E	5.90	6.00	6.10
E2	3.07	3.17	3.27
е	0.40 BSC.		
K	0.20	-	-
L	0.35	0.40	0.45

6.6 Device marking

Figure 64. Marking example

(1) Not in scale.

6.7 Thermal characteristics

Thermal characteristics are calculated based on two-layer board that uses FR-4 material in 1.6mm thickness. They are guaranteed by design, not tested in production.

Table 76. Package thermal characteristics

Symbol	Parameter	Values	Unit
	Thermal resistance junction-ambient —LQFP144 – 20 x 20 mm/0.5 mm	49.7	
	Thermal resistance junction-ambient —LQFP100 – 14 x 14 mm/0.5 mm	63.2	
Θ_{JA}	Thermal resistance junction-ambient —LQFP64 – 10 x 10 mm/0.5 mm	64.4	°C/W
	Thermal resistance junction-ambient —LQFP48 – 7 x 7 mm/0.5 mm	62.5	
	Thermal resistance junction-ambient —QFN48 – 6 x 6 mm/0.4 mm	40.0	

7 Part numbering

 $7 = -40 \, ^{\circ}\text{C} \text{ to } +105 \, ^{\circ}\text{C}$

For a list of available options (speed, package, etc.) or for more information concerning this device, please contact your local Artery sales office.

8 Document revision history

Table 78. Document revision history

Date	Version	Revision note	
2021.10.27	2.00	Initial release.	
2022.1.13	2.01	1. Updated Figure 63.	
		2. Modified contents in the original <i>Table 16</i> .	
0000 0 40	2.02	1. Added max values at T _A = 25 °C and notes of <i>Table 24</i> and <i>Table 25</i> .	
2022.6.13		2. Added max and min values of D, D1, E, E1 for each package.	
		1. Added AT32F435/437xD.	
		2. Added pins for USART3 in <i>Table 5</i> .	
		3. Modified V _{DD} and T _A in <i>Table 15</i> and deleted the original <i>Table 16</i> .	
2023.3.24	2.10	4. Modified current values in <i>Table 22</i> , <i>Table 23</i> and <i>Table 24</i> .	
		5. Modified SPI clock frequency in <i>Table 53</i> .	
		6. Modified current values in <i>Table 64</i> , and updated <i>Figure 56</i> and <i>Figure 57</i> .	
		7. Modified thermal characteristic values of QFN48 in <i>Table 76</i> .	
	2.11	1. Modified Table 18, Table 44, Table 45, Table 46, Table 47, Table 53 and Table	
		54.	
2023.10.17		2. Added note (3) of <i>Table 36</i> .	
		3. Added contents in 2.13.6.	
		4. Modified the fourth paragraph in IMPORTANT NOTICE.	
2024.4.1	2.12	Updated the end address of internal Flash memory bank 2 in Figure 7	
	2.20	1. LDO 1.0V not supported. Modified the maximum frequency at LDO 1.1V in	
		Table 15, and modified test conditions and data in 5.3.5.	
0004444		2. Modified the condition and values of OTGFS_D+ internal pull-up in <i>Table 58</i> .	
2024.11.1		3. Modified Table 41, Table 42, Table 43, Table 44, Table 45, Table 46, Table 47,	
		Table 50, Table 51, Table 53, Table 55, Table 56, Table 61, Table 62 and	
		Table 63.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY's products and services, and ARTERY assumes no liability whatsoever relating to the choice, selection or use of the ARTERY products and services described herein

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any third party products or services, it shall not be deemed a license granted by ARTERY for the use of such third party products or services, or any intellectual property contained therein, or considered as a warranty regarding the use in any manner of such third party products or services or any intellectual property contained therein.

Unless otherwise specified in ARTERY's terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose (and their equivalents under the laws of any jurisdiction), or infringement on any patent, copyright or other intellectual property right.

Purchasers hereby agree that ARTERY's products are not designed or authorized for use in: (A) any application with special requirements of safety such as life support and active implantable device, or system with functional safety requirements; (B) any aircraft application; (C) any aerospace application or environment; (D) any weapon application, and/or (E) or other uses where the failure of the device or product could result in personal injury, death, property damage. Purchasers' unauthorized use of them in the aforementioned applications, even if with a written notice, is solely at purchasers' risk, and Purchasers are solely responsible for meeting all legal and regulatory requirements in such use.

Resale of ARTERY products with provisions different from the statements and/or technical characteristics stated in this document shall immediately void any warranty grant by ARTERY for ARTERY's products or services described herein and shall not create or expand any liability of ARTERY in any manner whatsoever.

© 2024 ARTERY Technology - All Rights Reserved