Loading Libraries

```
In [1]: # Importing libraries
    import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
```

Loading Dataset

Display First 5 Rows

Out[]:	OrganisationID	OrganisationCode	OrganisationType	SubType	Sector	Organisatio
0	17970	NDA07	Hospital	Hospital	Independent Sector	
1	17981	NDA18	Hospital	Hospital	Independent Sector	
2	18102	NLT02	Hospital	Hospital	NHS Sector	
3	18138	NMP01	Hospital	Hospital	Independent Sector	
4	18142	NMV01	Hospital	Hospital	Independent Sector	

5 rows × 22 columns

Display Last 5 Rows

Out[]:		OrganisationID	OrganisationCode	OrganisationType	SubType	Sector	Orga
	1206	10956142	U7P1U	Hospital	UNKNOWN	Independent Sector	
	1207	10956143	B6Q2K	Hospital	UNKNOWN	Independent Sector	
	1208	10956150	K5E9C	Hospital	UNKNOWN	Independent Sector	
	1209	10956151	L4S0G	Hospital	UNKNOWN	Independent Sector	
	1210	10956153	P3P8S	Hospital	UNKNOWN	Independent Sector	

5 rows × 22 columns

Display Data Types Of Columns

Out[]: 0 OrganisationID int64 OrganisationCode object OrganisationType object **SubType** object **Sector** object **OrganisationStatus** object **IsPimsManaged** bool OrganisationName object Address1 object Address2 object Address3 object City object County object

Postcode object
Latitude float64

Longitude float64

ParentODSCode object

ParentName object

Phone object

Email object

Website object

Fax,,, object

dtype: object

Display Five Point Summary

Out[]:		OrganisationID	OrganisationCode	OrganisationType	SubType	Sector	Organisati
cour	nt	1.211000e+03	1211	1211	1211	1211	
uniqu	ıe	NaN	1211	1	3	2	
to	р	NaN	NDA07	Hospital	Hospital	NHS Sector	
fre	q	NaN	1	1211	961	743	
mea	เท	1.375611e+06	NaN	NaN	NaN	NaN	
st	td	3.024986e+06	NaN	NaN	NaN	NaN	
m i	in	1.797000e+04	NaN	NaN	NaN	NaN	
25	%	4.064900e+04	NaN	NaN	NaN	NaN	
50	%	4.311000e+04	NaN	NaN	NaN	NaN	
75	%	7.610700e+04	NaN	NaN	NaN	NaN	
ma	ıx	1.095615e+07	NaN	NaN	NaN	NaN	

11 rows × 22 columns

Removing Outlier

```
In [3]: from scipy.stats import zscore
    z_scores = data.select_dtypes(include=['number']).apply(zscore)
    data no outliers = data[(z scores < 3).all(axis=1)]</pre>
```

Display Total Number Of Rows & Columns

Finding Duplicates Values

Finding Missing Values

```
In [ ]: # Finding missing values summary
         data.isnull().sum()
Out[]:
             OrganisationID
                               0
          OrganisationCode
                               0
           OrganisationType
                  SubType
                               0
                    Sector
                               0
         OrganisationStatus
            IsPimsManaged
                               0
          OrganisationName
                               0
                  Address1
                             328
                  Address2
                             484
                  Address3
                            1064
                       City
                              15
                             238
                    County
                  Postcode
                   Latitude
                               2
                 Longitude
                               2
            ParentODSCode
               ParentName
                               0
                    Phone
                             250
                     Email
                             789
                   Website
                             358
                     Fax,,,
                              2
```

dtype: int64

Dropping Missing Values

Finding Uniques Values For Each Columns

```
In [ ]: # Finding unique values for each column
        data.nunique()
Out[]:
            OrganisationID 1211
          OrganisationCode 1211
          OrganisationType
                  SubType
                              3
                    Sector
                              2
         OrganisationStatus
            IsPimsManaged
         OrganisationName 1189
           ParentODSCode
                            307
               ParentName 307
        dtype: int64
```

Finding object columns

Finding numerical columns

Calculate & Display the Correlation Matrix for t Numeric Columns

Display Heatmap for Numeric Columns

```
In []: # Select only numeric columns before calculating correlations
    numeric_data = data.select_dtypes(include=['number'])

# Calculate the correlation matrix
    corr_matrix = numeric_data.corr()

# Plot the correlation matrix
    plt.figure(figsize=(8, 6))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
    plt.title("Correlation Matrix")
    plt.show()
```


Count Plots For Each Object Type Columns

```
In []: import seaborn as sns
    import matplotlib.pyplot as plt

# Assuming 'data' is your DataFrame and 'object_columns' is a list of cate
for col in object_columns:
    plt.figure(figsize=(8, 6)) # Increase plot size
    top_categories = data[col].value_counts().nlargest(10).index # Limit
    sns.countplot(y=col, data=data, order=top_categories) # Use order for
    plt.xticks(rotation=45) # Rotate x-axis labels for better readability
    plt.show()
```


Object-Type BarPlot

Top 10 Categories in OrganisationCode

Top 10 Categories in OrganisationType

Top 10 Categories in OrganisationStatus

Numeric Columns Boxplot

Histograms with a Kernel Density Estimate (KI

In []: sns.scatterplot(data=data, x='0rganisationID', y='Sector')

Out[]: <Axes: xlabel='OrganisationID', ylabel='Sector'>

In []: sns.lineplot(data=data, x='OrganisationID', y='Sector')

Out[]: <Axes: xlabel='OrganisationID', ylabel='Sector'>


```
In [ ]: sns.boxplot(data=data, x='OrganisationID', y='Sector')
```



```
In [ ]: sns.barplot(data=data, x='OrganisationCode', y='OrganisationID')
Out[ ]: <Axes: xlabel='OrganisationCode', ylabel='OrganisationID'>
```


Removing Outliers

```
In [4]: import matplotlib.pyplot as plt
import seaborn as sns

# Boxplot before removing outliers
plt.figure(figsize=(8, 4))
sns.boxplot(data=data)
plt.title("Before Removing Outliers")
plt.show()

# Boxplot after removing outliers
plt.figure(figsize=(8, 4))
sns.boxplot(data=data_no_outliers)
plt.title("After Removing Outliers")
plt.show()
```


0.4

0.6

0.8