Задача 10.3. Нека k й n са естествени числа. Означаваме с $\lambda(k,n)$ броя на представянията на k във вида $k = a_0 + a_1 \cdot 2 + a_2 \cdot 2^2 + \dots + a_{n-1} \cdot 2^{n-1}$

$$k = a_0 + a_0$$

където $a_i \in \{-1, 0, +1\}.$

а) Да се намери $\lambda(2^{i}, n)$, където $0 \le i \le n - 1$.

б) Да се намери
$$\lambda(2^i-1,n)$$
, където $0 \le i \le n$.

Решение. a) От равенството $2^i = a_0 + a_1 \cdot 2 + a_2 \cdot 2^2 + \cdots + a_{n-1} \cdot 2^{n-1}$ следва,

иение. а) От равенството
$$2^i = a_0 + a_1.2 + a_2.3$$
 $a_0 = a_1 = \cdots = a_{i-1} = 0$. Нека j е най-големи

Решение. а) От равенството
$$2^i = a_0 + a_1.2 + a_2.2^2 + \cdots + a_{n-1}.2^{n-1}$$
 следва, че $a_0 = a_1 = \cdots = a_{i-1} = 0$. Нека j е най-големият индекс, за който $a_j \neq 0$.

Тогава $a_j = 1$ и имаме единствено представяне $2^{i} = -2^{i} - 2^{i+1} - \dots - 2^{j-1} + 2^{j}$

Тъй като $j \in \{i, i+1, \ldots, n-1\}$, заключаваме, че $\lambda(2^i, n) = n-i$.

б) Лесно се съобразява, че за нечетни
$$m$$
 е в сила рекурентната връзка $\lambda(m,n)=\lambda\left(\frac{m-1}{2},n-1\right)+\lambda\left(\frac{m+1}{2},n-1\right).$

Оттук получаваме

$$\lambda(2^{i}-1,n) = \lambda(2^{i-1}-1,n-1) + \lambda(2^{i-1},n-1)$$

$$\lambda(2^{i-1}-1,n-1) = \lambda(2^{i-2}-1,n-2) + \lambda(2^{i-2},n-2)$$

$$\lambda(2^{i-2}-1,n-2) = \lambda(2^{i-2}-1,n-3) + \lambda(2^{i-3},n-3)$$

 $\lambda(2^2 - 1, n - (i - 2)) = \lambda(2 - 1, n - (i - 1)) + \lambda(2, n - (i - 1))$ $\lambda(1, n - (i - 1)) = n - i + 1.$ Сумирайки горните равенства и отчитайки резултата от точка а), получа-

ваме $\lambda(2^i - 1, n) = i(n - i) + 1.$ Забележка. Ако $2^i-1=a_0+a_1.2+a_2.2^2+\cdots+a_{n-1}.2^{n-1}$, то числото a_0

е нечетно и от равенството $\frac{2^i-1-a_0}{2}=a_1+a_2.2^1+\cdots+a_{n-1}.2^{n-2}$ следва, че $\lambda(2^i-1,n)=\lambda(2^{i-1}-1,n-1)+\lambda(2^{i-1},n-1)=\lambda(2^{i-1}-1,n-1)+n-i.$

Продължавайки по същия начин (или прилагайки индукция), достигаме до $\lambda(2^{i} - 1, n) = i(n - i) + 1.$