Quarta Lista de Preparação para a XLVIII IMO e XXII Olimpíada Ibero-americana de Matemática

Nível III

▶PROBLEMA 1

Mostre que todo polígono, convexo ou não, possui uma diagonal que está contida em seu interior e divide o polígono em duas partes, ambas com pelo menos um terço dos seus vértices.

▶PROBLEMA 2

Considere um conjunto S formado por 2006 números naturais distintos. Um subconjunto T de S é chamado obstinado se para quaisquer u, ν (não necessariamente distintos) em T, o número u + ν não pertence a T. Demonstre as duas afirmações a seguir:

- i) Se $S = \{1, 2, ..., 2006\}$, então o número de elementos de todo subconjunto obstinado T de S é menor ou igual a 1003.
- ii) Todo S possui um subconjunto obstinado com pelo menos 669 elementos.

▶PROBLEMA 3

O ponto P pertence ao interior do triângulo $\triangle ABC$ e $\angle BPC - \angle BAC = \angle CPA - \angle CBA = \angle APB - \angle ACB$. Prove que $PA \cdot BC = PB \cdot CA = PC \cdot AB$.

▶PROBLEMA 4

Sejam a > b > 1 números primos entre si. Dizemos que o peso de um inteiro c, denotado w(c), é o menor valor possível de |x| + |y|, em que o par (x, y) de inteiros é tal que ax + by = c.

Um inteiro c é chamado campeão local se $w(c) \ge w(c \pm a)$ e $w(c) \ge w(c \pm b)$.

Encontre todos os campeões locais e determine a sua quantidade.

▶PROBLEMA 5

Prove que

$$\frac{a^3 - 2a + 2}{b + c} + \frac{b^3 - 2b + 2}{c + a} + \frac{c^3 - 2c + 2}{a + b} \geqslant \frac{3}{2}$$

para quaisquer reais positivos a, b, c.

▶PROBLEMA 6

É dado um quadrilátero ABCD com $\angle ABC = \angle ADC$. Seja BM uma altura do triângulo ABC, com M pertencente a AC. O ponto M' é marcado sobre a diagonal AC de modo que

$$\frac{AM \cdot CM'}{AM' \cdot CM} = \frac{AB \cdot CD}{BC \cdot AD}$$

Prove que o ponto de intesecção entre DM' e BM é o ortocentro do triângulo ABC.

Atenção:

As soluções desta lista e de todas as anteriores deve chegar em nossas mãos até o dia 21 de maio. Listas que chegarem após tal data não serão consideradas e virarão rascunho!