TEORIE GRAFŮ – PROHLEDÁVÁNÍ

Kurz: Datové struktury a algoritmy / Teoretická informatika

Lektor: Doc. Ing. Radim Burget, Ph.D.

Autor: Doc. Ing. Radim Burget, Ph.D.

Cíl přednášky

- Hledání nejkratší cesty v grafu
- II. Algoritmy průchodu grafem
 - Slepé metody
 - Informované metody
- III. Příklady použití

Nejkratší cesta v grafu

Nejkratší cesta v grafu

 Mějme graf zadaný níže a předpokládejme, že chceme nalézt nejkratší cestu z vrcholu 1 do vrcholu 13

Nejkratší cesta grafem

 Po nějaké době prohledávání jsme schopni určit, že nejkratší cesta grafem je následující (s celkovou délkou 14).

- Existují i jiné cesty grafem, jsou ale delší
- Všechny možnosti = stavový prostor

Nejkratší cesta grafem

- Jak zobecňujeme problém nalezení nejkratší cesty v grafu?
- Vstup:
 - Vážený orientovaný graf G = (V, E, w).
 - Počáteční uzel s, cíl t.
- Výstup: jednotlivé uzly cesty z s do t.
- Nalezněte nejkratší orientovanou cestu s-t.

Cena cesty s-2-3-5-t = 9 + 23 + 2 + 16 = 50.

K zamyšlení

- Kolik existuje možných cest z s do t?
- Můžeme ignorovat cykly? Pokud ano, jak?
- Nějaké návrhy jak redukovat množství variant?

Závěry

- Pokud nejkratší cesta obsahuje vrchol v, potom:
 - Bude vrchol <u>v</u> obsahovat jen jedno spojení, cykly by přidaly délku a tedy i cenu cesty.
 - Cesta z <u>s</u> do <u>v</u> musí být současně nejkratší do <u>v</u> z <u>s</u>.
 - Cesta z v do t musí být nejkratší cesta do t z v.
- Z toho plyne, pokud jsme schopni určit nejkratší cestu všech ostatních vrcholů, které jsou předchůdci do cílového vrcholu, můžeme snadno spočíst nejkratší cestu.
 - Problém tedy lze rozložit na skupinu podproblémů a výpočet provádět v jednotlivých krocích.

9 / 69

Negativní cykly

- Ohodnocení hran může být obecně zobrazením do množiny celých (reálných?) čísel.
- V takovém případě ale každý průchod hranou snižuje výslednou cenu, snižuje celkovou cenu grafu.
- Tj. cyklus v grafu ve výsledku snižuje celkovou cenu průchodu grafem
- Proto pro takový graf, kde jsou záporná ohodnocení hran, je cena cesty nedefinovaná.
- Uvažujeme nejkratší cenu cesty z 1 do 4...
- Uvažujeme pouze ne-negativní váhy hran.

Členění algoritmů prohledávání grafů

Slepé prohledávání – vyhledávají "náhodně – bez

přemýšlení"

 Informované metody – snaží se odhadnout, kudy pokračovat ve vyhledávání, aby co nejdříve nalezli cíl

Prohledávací strategie

- Strategie vyhledávání se odvíjí od způsobu výběru pořadí expanze uzlu
- Strategie jsou hodnoceny podle následujících kritérií:
 - Úplnost: vždy najde řešení, pokud existuje?
 - Optimálnost: vždy najde řešení s nejnižšími náklady?
 - Časová složitost: počet generovaných uzlů
 - Prostorová složitost: maximální počet uzlů v paměti
- Časová a prostorová složitost se měří pomocí
 - b: maximální stupeň větvení stromu prohledávání
 - d: hloubka optimálního stromu řešení
 - m: maximální délka jakékoli cesty ve stavovém prostoru (může být i nekonečná)

Metody hledání cesty v grafu - zobecnění

$$F(S_k) = g(S_k) + h(S_k) = g(S_k - S_0) + h(S_C - S_k)$$

Heuristická funkce předpovídá, kterou cestou se nejrychleji dostanu ze stavu S_k do stavu S_G . Čím blíže je S_k k řešení S_G , tím je hodnota funkce $h(S_k)$ nižší.

Funkce ceny cesty, která byla vynaložena z počátečního vrcholu grafu S_0 do současného vrcholu grafu S_k .

Čím dále je S_k od počátku S_0 , tím je hodnota funkce $g(S_k)$ vyšší.

Slepé prohledávání

- Nepoužívají heuristiku, tj. $h(S_k) = 0$
- Prohledávání do šířky (BFS)
- Prohledávání do hloubky (DFS)
- Prohledávání do hloubky s omezenou hloubkou (DLS)
- Obousměrné vyhledávání
- Iterativní prohledávání do hloubky s omezenou hloubkou, IDLS
- Dijkstrův algoritmus (Uniform-cost search, UCS) a další...

$$F(S_k) = g(S_k) + h(S_k) = g(S_k - S_0) + h(S_G - S_k)$$

Informované prohledávání

Best First Search (BestFS či Greedy Search)

$$F(S_k) = g(S_k) + h(S_k) = g(S_k - S_0) + h(S_G - S_k)$$

Algoritmus A* (čti: A-star)

$$F(S_k) = g(S_k) + h(S_k) = g(S_k - S_0) + h(S_G - S_k)$$

a další...

Metody slepého prohledávání

Obousměrné vyhledávání

- Prochází stavový prostor od počátku a současně i od požadovaného stavu a hledá se cesta mezi těmito dvěma stavy.
- Co algoritmus velice zatěžuje, je nutnost kontroly ekvivalence stavů v jednotlivých krocích. Díky tomu je časová složitost algoritmu ne příliš příznivá.
- V literatuře se uvádí, ale nepoužívá se

Obousměrné vyhledávání – vlastnosti

- Úplnost algoritmus je úplný.
- Optimálnost algoritmus je optimální, je nalezeno takové řešení, ke kterému vede nejmenší počet kroků.
- Prostorová složitost BFS/2.
- Časová složitost velký problém je porovnávání množin OPEN z obou směrů. V takovém případě se dostáváme na O(m*2ⁿ), kde m je počet prvků z množiny 1 a n je počet prvků z množiny 2.

Prohledávání do hloubky

Start

Prohledávání do hloubky

Vychází z algoritmu známého z ADT

Je třeba eliminovat cykly

Chodí "po okraji"

Prohledávání do hloubky – vlastnosti

- Úplnost algoritmus je úplný (tj. vždy nalezne řešení, pokud existuje).
- Optimálnost algoritmus DLS není optimální, upřednostňuje jednu větev oproti druhé. Z toho důvodu je velice pravděpodobné, že bude nalezeno řešení, ke kterému je velký počet kroků i když existuje řešení bližší.
- Prostorová složitost o mnoho lepší než je BFS O(bm), kde d je hloubka a b je stupeň stromu.
- Časová složitost obdobně jako BFS. O(b^d)

Procházení grafem do hloubky

- Průchodem grafu při odstranění cyklů získáváme strom
- Do hloubky se snaží (náhodným směrem) maximálně zanořit a vynořuje se, jakmile již není se zanořovat kam

Jak se dostanu ze stavu 7 do stavu 6 s nejmenším počtem tahů?

Zásobník OPEN:

Konec, řešení nalezeno

Prohledávání do šířky

Prohledávání do šířky – vlastnosti

- Úplnost algoritmus je úplný, tj. jestliže existuje řešení, BFS jej nalezne. Jedná-li se o nekonečný graf, algoritmus bude konvergovat k řešení (v praxi ale dříve nebo později dojde k vyčerpání paměťových prostředků, které jsou vždy konečné).
- Optimálnost algoritmus je optimální, tj. vybere cestu s nejmenším počtem kroků.
- Prostorová složitost O(B^M), kde B je max. počet větvení, M je maximální hloubka v grafu od počátečního uzlu.
- Časová složitost O(b^m)

Prohledávání do šířky (BFS) – příklad složitosti

- Prostorová složitost $O(b^d)$ b... Stupeň větvení, d...hloubka stromu
- Časová složitost O(b^d)

Hloubka	Uzlů	Čas	Paměť
2	110	.11 milliseconds	107 kilobytes
4	11,110	11 milliseconds	10.6 megabytes
6	10^{6}	1.1 seconds	1 gigabyte
8	10^{8}	2 minutes	103 gigabytes
10	10^{10}	3 hours	10 terabytes
12	10^{12}	13 days	1 petabyte
14	10^{14}	3.5 years	99 petabytes
16	10^{16}	350 years	10 exabytes

b = 10, rychlost zpracování 1 milion uzlů za sekundu

Procházení grafem do šířky

- Průchodem grafu při odstranění cyklů získáváme strom
- "Do šířky" opisuje kružnice od "start" uzlu

Jak se dostanu ze stavu 7 do stavu 6 s nejmenším počtem tahů?

Konec, řešení nalezeno

Srovnání BFS a DFS

- DFS výrazně nižší paměťové nároky než BFS
- BFS je optimální

- Kompromis mezi BFS a DFS
 - Iterativní prohledávání do hloubky s omezenou hloubkou
 - Prohledávání s omezenou hloubkou (pokud znám hloubku, ve které se řešení nalézá)
 - Současně optimální a současně nízké paměťové nároky

Prohledávání s omezenou hloubkou

- Vychází z algoritmu DFS, ale max. hloubka je omezena
- Výhodné, znám-li počet potřebných tahů (úspora paměti i průměrného času řešení)

(viz problém dvou džbánů později)

Prohledávání s omezenou hloubkou

- Ideální v případě, kdy známe hloubku, ve které se řešení nachází (v takovém případě by byl optimální)
- Nízká spotřeba paměti (DFS)

Nalezněte všechny možnosti jak dát mat

Příklad: osmička – zobecnění řešení

- Zjednodušení pro budoucí algoritmy:
 - nepohybuji fyzickou kostkou, ale jakoby "prázdným políčkem"

Souvislost mezi grafem a stavovým prostorem

Souvislost mezi grafem a stavovým prostorem

- · Předpoklady:
 - · znám počáteční stav,
 - umím vytvářet nové stavy,
 - · znám cílový stav,
- => řešitelné jako problém hledání cesty v grafu

Problém odstranění duplicitních stavů

Jak zajistit, aby se neprohledávaly již navštívené stavy?

 Porovnáním hodnot matic pomalé

7	2	4	
	5	6	
8	3	1	

• 9!/2 = 181 440 možných stavů

Zjištění výsledného řešení?

Vytvoření nového stavu

-> pamatovat způsob, jakým pohybem vznikl

+

->rodičovský stav: (nahoru, dolů, doleva či doprava).

=> Jsem schopen vypsat cestu

Hledané a nalezené řešení

Iterativní prohledávání s omezenou hloubkou

- Vychází z algoritmu DFS
- Kompromisem mezi DFS a BFS
- Šetří paměť na úkor času

Iterativní prohledávání s omezenou hloubkou

- Úplnost algoritmus je úplný.
- Optimálnost algoritmus je optimální, je nalezeno takové řešení, ke kterému vede nejmenší počet kroků.
- Prostorová složitost jako DFS.
- Časová složitost suma jednotlivých iterací, kde v každé iteraci je použit algoritmus DFS.

Iterativní prohledávání s omezenou hloubkou

V jakém nejkratším tahu je možné vyhrát? Prohledávání do hloubky hlásí vyčeprání paměti.

Srovnání – Dijkstrův algoritmus vs. DFS a BFS

- Algoritmus je identický
- · Liší se ve způsobu výběru kandidátních cest
 - Do šířky (BFS) ... fronta
 - Do hlobky (DFS)...zásobník
 - Dijkstra ... prioritní fronta

$$\begin{split} F(S_k) &= g(S_k) + h(S_k) \\ &= g(S_k - S_0) + h(S_G - S_k) \\ h(S_k) &= 0 \\ g(S_k) \dots \text{ cena cesty (suma vah hran)} \end{split}$$

Dijkstrův algoritmus

- Pracuje jen pokud všechny váhy jsou kladné.
- Poskytuje nejkratší cesty ze zdroje do všech dalších vrcholů v grafu
- Směrovací tabulka
 - IS-IS
 - OSPF

 Může být ukončen okamžitě po nalezení cesty do hledaného vrcholu t, pokud je to pro daný problém žádoucí.

Dijkstrův algoritmus

Prioritní fronta OPEN:

- 0) **[((A),0)]**
 - 1) [((A),0)] [((B,A),11), (([E,A]),9), **((C,A),4)**]

- 2) [((B,A),11), (([E,A]),9),((A,C,A),8),((E,C,A),6),((D,C,A),11)]
- 3) [((B,A),11), (([E,A]),9), ((A,C,A),8), ((E,C,A),6), ((B,E,C,A),8), ((A,E,C,A),15), ((C,E,C,A),8), ((D,E,C,A),14), ((D,C,A),11)]
- 4) [((B,A),11), (([E,A]),9), ((A,C,A),8), ((B,A,C,A),19), ((E,A,C,A),17), ((C,A,C,A),12), ((B,E,C,A),8), ((A,E,C,A),15), ((C,E,C,A),8), ((D,E,C,A),14), ((D,C,A),11)]

Dijkstrův algoritmus – příklad

- 5) [((B,A),11), (([E,A]),9), ((B,A,C,A),19), ((E,A,C,A),17), ((C,A,C,A),12), ((B,E,C,A),8), ((A,E,C,A),15), ((C,E,C,A),8), ((A,C,E,C,A),12), ((E,C,E,C,A),10), ((D,C,E,C,A),15), ((D,E,C,A),14), ((D,C,A),11)]
- 6) pokračuji (([E,A]),9)... a rozgeneruji 7) [((B,A),11), (([E,A]),9), ((B,A,C,A),19), ((E,A,C,A),17), ((C,A,C,A),12), ((B,E,C,A),8), ((A,B,E,C,A),19), ((E,B,E,C,A),10), **((D,B,E,C,A),10)**, ((A,E,C,A),15),, ((A,C,E,C,A),12), ((E,C,E,C,A),10), ((D,C,E,C,A),15), ((D,E,C,A),14), ((D,C,A),11)]
 - 8) Konec vybrán stav, který vede z A do D a má nejnižší cenu

Horolezecký algoritmus – Hill-climbing

- Podobný BFS, na rozdíl od BFS odstraňuje všechna starší řešení a ponechává pouze tyto poslední expandované stavy.
- Vybírá nejlepší a expanduje jej
- Není úplný (nemusí nalézt řešení)
- Není optimální
- Šetří paměť

Informované metody prohledávání

- Best First Search (BestFS, hladové vyhledávání = greedy search)
- A* (čti A-star)

Best First Search (BestFS, Greedy Search)

- Zobecňuje BFS
- Namísto fronty používá prioritní frontu, kde se prvky řadí dle hodnoty $F(S_k)$
- $g(S_k)$... funkce kolik mne stála cesta sem = 0, tj. neberu v potaz při výběru dalšího vrcholu grafu
- $h(S_k)$... heuristická funkce, pokouší se odhadnout, jak jsem blízko ke hledanému stavu S_G . Čím blíže cíli S_g , tím je nižší (tj. klesající).

$$F(S_k) = g(S_k) + h(S_k) = g(S_k - S_0) + h(S_G - S_k)$$

Best First Search (BestFS, Greedy Search)

 Používá heuristickou hodnotu aby pomohla uhodnout nejlepší cestu.

Je úplný

Není optimální (heuristika se může mýlit)

Časová složitost: O(b^m)

Prostorová složitost: O(b^m)

 $h(S_G - S_k)$... odhadovaná vzdálenost k cíli

V tomto bodě je výhodnější použít alternativní cestu, BestFS ale pokračuje dál

start

Best First Search (BestFS, Greedy Search)

- $g(S_k) = 0$, pro další kroky se rozhoduje výhradně na základě heuristiky
- Příklad nalezněte cestu z Velkého Meziříčí do města Prostějov

A* (Čtěte A-star)

Vychází z BestFS + navíc bere v potaz i kompletní cestu, kterou již urazil.

Sčítá se minulost + heuristika

 Heuristika h(S_k): např. kolik políček stále není na svém místě

1+6

1+9

Náhodně jednou z nejlepších pokračuje.

1+8

A* (Čtěte A-star)

- Časová složitost algoritmu je O(b^d)
- Prostorová složitost je O(b^d).

- Je úplný
- Je optimální

b je stupeň stromu stavového prostoru a d je hloubka

Slepé metody prohledávání - srovnání

Algoritmus	Úplný	Optimální	Časová složitost	Prostorová složitost	Výběr uzlů
BFS	Ano	Pokud je cena hran stejná	$O(b^a)$	$O(b^{c})$	Fronta
UCS (Dijkstra)	Ano	Ano	Počet uzlů s g(n) ≤ C*		Prioritní fronta $F(S_k) = g(S_k)$
DFS	Ano	Ne	$O(b^m)$	O(bm)	Zásobník
IDLS	Ano	Pokud je cena hran stejná	O(<i>b</i> ^{<i>a</i>})	O(bd)	Zásobník

b: max stupeň uzlu

d: hloubka optimálního řešení

m: max. délka cesty ve stavovém prostoru

C*: cena optimálního řešení

Algoritmus	Úplný	Optimální	Časová složitost	Prostorová složitost	Výběr uzlů
BFS	Ano	Pokud je cena hran stejná	$O(b^{a})$	O(<i>b</i> ^{<i>a</i>})	Fronta
UCS (Dijkstra)	Ano	Ano	Počet uzlů	$g(n) \leq C^*$	Prioritní fronta $F(S_k) = g(S_k)$
DFS	Ano	Ne	$O(b^m)$	O(bm)	Zásobník
IDLS	Ano	Pokud je cena hran stejná	O(<i>b</i> °)	O(bd)	Zásobník
BestFS (Greedy)	Ne	Ne	Nejhorší: O (<i>b</i> ^m) Nejlepší: Ω(<i>bd</i>)		Prioritní fronta $F(S_k) = h(S_k)$
A *	Ano	Ano	Počet uzlů: $g(n) + h(n) \le C^*$		Prioritní fronta $F(S_k) = g(S_k) + h(S_k)$

Příklady použití A*

- An Efficient A* Search Algorithm For Statistical Machine Translation. 2001
 - Strojové překlady na základě statistiky
- The Generalized A* Architecture. Journal of Artificial Intelligence Research (2007)
 - Počítačové vidění ... nový model pro nalezení nejvýznamnějších křivek
- Factored A*search for models over sequences and trees International Conference on Al. 2003....
 - Hlavní výzva pro A* je navrhnout heuristickou funkci, která je současně dostatečně rychlá, co nejpřesnější... časté použití je zpracování přirozeného jazyka, bio-informatice a zpracování obrazu

Příklady použití A* (pokračování)

- Aker, A., Cohn, T., Gaizauskas, R.: Multi-document summarization using A* search and discriminative training. Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. ACL (2010)
 - Automatická sumarizace významu obsahu několika dokumentů

Prohledávání grafů – příklady použití

Cílem je získat představu o uplatnění nabytých znalostí

v praxi ...

A to nejen v oblasti sítí

Diskstrův algoritmus - poznámka

- V prostředí sítí má každý směrovač samostatný procesor, tj. výpočet probíhá samostatně na každém z nich distribuovaným způsobem
- Distribuovaná varianta nás v tomto předmětu nebude zajímat

Shrnutí

Odstraň nejmenší z fronty

Konst. cena + zásobník ... Do hloubky

Konst. cena + fronta ... Do šířky

Cena + prio. fronta ... Dijkstra (UCS)

Heurist. + prio. fronta ... BestFS (Greedy)

Cena + heurist + prio. fronta ... A*

Příklad I.

- Mějme směrovač, ve kterém chceme nalézt nejkratší cestu z lokálního uzlu do všech okolních stanic (OSPF, IS-IS).
 - Co musí směrovač vědět o svém okolí, než začne s výpočtem?
 - Jaký algoritmus by pro tyto potřeby měl být použit?

Příklad II.

- Aplikujte algoritmy prohledávání grafů na problematiku hry čísla.
 - Jaký algoritmus (ritmy) lze použít?
 - Jaká je analogie hry čísla a prohledávání stromů, kde jsou uzly čísla
 - isSolution(): boolean
 - Rozgenerovat následníky každého uzlu

Příklad III.

- Mějme dvě sklenice, jedna má 0,4 litru, druhá 0,3 litru. Jak s jejich pomocí (přelévání) přesně odměřit 0,2 litru?
 - Jaký algoritmus lze pro tento problém použít?

Příklad III.

- Mějme dvě sklenice, jedna má 0,4 litru, druhá 0,3 litru.
 Jak s jejich pomocí (přelévání) přesně odměřit 0,2 litru?
 - Jaký algoritmus lze pro tento problém použít?

Otázka

- Mějme algoritmus A*, kde heuristika bude naprosto bezcenná a všechny hrany mají konstantní cenu, jaký algoritmus je ekvivalentní?
 - BFS
 - DFS
 - IDFS

Shrnutí

- Umíme projít všechny vrcholy grafu
 - (= vyhledat vrchol v grafu)
- Umíme najít nejkratší cestu v grafu
 - Které z algoritmů jsou optimální?
- Algoroitmy
 - Slepé metody
 - Informované metody
- Složitost je často exponenciální O(b^d)

Hloubka	Uzlů	Čas	Paměť
2	110	.11 milliseconds	107 kilobytes
4	11,110	11 milliseconds	10.6 megabytes
6	10^{6}	1.1 seconds	1 gigabyte
8	10^{8}	2 minutes	103 gigabytes
10	10^{10}	3 hours	10 terabytes
12	10^{12}	13 days	1 petabyte
14	10^{14}	3.5 years	99 petabytes
16	10^{16}	350 years	10 exabytes

b = 10, rychlost zpracování 1 milionů uzlů za sekundu

Doc. Ing. Radim Burget, Ph.D.

Datové struktury a algoritmy

Děkuji za pozornost