Теорема о нулях x_2 и ψ_2

Теорема 1. Пусть $\tau_1 < \tau_2$. Тогда

- 1. $ecnu \ \psi_2(\tau_1) = \psi_2(\tau_2) = 0 \ u \ x_2(\tau_1) = 0, \ mo \ x_2(\tau_2) = 0;$
- 2. если $x_2(\tau_1) = x_2(\tau_2) = 0$, $x_2(t) \neq 0$ при $t \in (\tau_1, \tau_2)$ и $\psi_2(\tau_1) = 0$, то $\psi_2(\tau_2) = 0$;
- 3. $ec_{\mathcal{A}}u \ \psi_2(\tau_1) = \psi_2(\tau_2) = 0 \ u \ x_2(\tau_1) \neq 0, \ mo \ x_2(\tau_2) \neq 0 \ u$ $\exists t' \in (\tau_1, \tau_2) \colon x_2(\tau') = 0;$
- 4. $ecnu x_2(\tau_1) = x_2(\tau_2) = 0, x_2(t) \neq 0 \text{ npu } t \in (\tau_1, \tau_2) \text{ u } \psi_2(\tau_1) \neq 0,$ $mo \ \psi_2(\tau_2) \neq 0 \ u \ \exists t' \in (\tau_1, \tau_2) \colon \ \psi_2(\tau') = 0.$

Доказательство. Докажем все пункты по очереди.

1) Поскольку $\mathcal{M}|_{t=\tau_1} = \mathcal{M}|_{t=\tau_2}$ из ПМП, то

$$0 = \psi_1(\tau_1)x_2(\tau_1) = \mathcal{M}|_{t=\tau_1} = \mathcal{M}|_{t=\tau_2} = \psi_1(\tau_2)x_2(\tau_2).$$

Поскольку $\psi_1(\tau_2) \neq 0$ в силу (УН), следовательно, $x_2(\tau_2) = 0$.

3) Аналогично предыдущему пункту: $\psi_1(\tau_1) \neq 0$, $\psi_1(\tau_2) \neq 0$ в силу (УН), и

$$0 \neq \psi_1(\tau_1)x_2(\tau_1) = \mathcal{M}|_{t=\tau_1} = \mathcal{M}|_{t=\tau_2} = \psi_1(\tau_2)x_2(\tau_2).$$

Отсюда $x_2(\tau_2) \neq 0$. Покажем теперь, что в некоторой промежуточной точке $x_2(t') = 0$. Без ограничения общности будем считать, что τ_1 и τ_2 — два последовательных нуля $\psi_2(\cdot)$, и $\psi_2(t) \neq 0$ при $t \in (\tau_1, \tau_2)$. Поскольку $\dot{\psi}_2(\tau_j) = -\psi_1(\tau_j) \neq 0$, то

$$\psi_1(\tau_1)\psi_1(\tau_2)<0.$$

Тогда из равенства $\psi_1(\tau_1)x_2(\tau_1)=\psi_1(\tau_2)x_2(\tau_2)$ следует, что

$$x_2(\tau_1)x_2(\tau_2) < 0,$$

что, в силу непрерывности функции $x_2(\cdot)$, означает, что $\exists t' \in (\tau_1, \tau_2) \colon x_2(t') = 0.$

2) Рассмотрим функцию $K(t) = \psi_1(t)x_2(t) + \psi_2(t)\frac{dx_2(t)}{dt}$, определённую всюду вне моментов переключений (если t_0 —

момент переключения, то производная $\frac{dx_2(t)}{dt}$ может иметь разрыв І-го рода). Более того, эта функция будет кусочнонепрерывной. Если t_0 — момент переключения, то определены $K(t_0+0)$ и $K(t_0-0)$. Покажем, что $K\equiv const$ (при доопределении в моментах переключений).

Пусть τ — точка непрерывности K, тогда при $t \in U_{\delta}(\tau)$:

$$\frac{dK}{dt} = \psi_2 \frac{\partial f}{\partial x_1} x_2 + \psi_1(-f + u) + \psi_2 \frac{\partial f}{\partial x_2} \frac{dx_2}{dt} - \psi_1 \frac{dx_2}{dt} + \psi_2 \frac{d^2 x_2}{dt^2}.$$

При этом

$$\psi_2 \frac{d^2 x_2}{dt^2} = \psi_2 \left(\frac{\partial f}{\partial x_1} x_2 - \frac{\partial f}{\partial x_2} (-f + u) \right).$$

Объединяя два последних равенства, сократим все слагаемые и получим $\frac{dK}{dt}=0.$

Пусть теперь t_0 — момент переключения, тогда из ПМП $\psi_2(t_0)=0$, и

$$K(t_0 \pm 0) = \psi_1(t_0)x_2(t_0) \Rightarrow K(t_0 + 0) = K(t_0 - 0),$$

то есть $K(\cdot)$ непрерывна в t_0 .

Тогда доопределим K во всех точках переключений и получим, что $K(t) \equiv const.$ Тогда $(\psi_2(\tau_1) = 0)$:

$$0 = \psi_2(\tau_1) \frac{dx_2(\tau_1 \pm 0)}{dt} = K(\tau_1) = K(\tau_2) = \psi_2(\tau_2) \frac{dx_2(\tau_2 \pm 0)}{dt}.$$

Предположим противное: пусть $\psi_2(\tau_2) \neq 0$, тогда $\frac{dx_2(\tau_2)}{dt} = 0$. Но по условию у нас $x_2(\tau_2)$, и $u(t) \equiv const$ при $t \in U_\delta(\tau_2)$. Таким образом, получаем, что $(x_1(\tau_2), x_2(\tau_2))$ — стационарная точка системы

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -f(x_1, x_2) + u. \end{cases}$$

В силу единственности решения получаем, что $x_1(t) \equiv const, x_2(t) \equiv const$ при $t \in U_\delta(\tau_2)$, что противоречит условию $x_2(t) \neq 0$ при $t \in (\tau_1, \tau_2)$.

Это противоречие приводит нас к тому, что $\psi_2(\tau_2) = 0$.

4) По аналогии с 2) через противоречие со стационарной точкой получаем, что при $t \in (\tau_1, \tau_2)$

$$(x_2(t))^2 + \left(\frac{dx_2(t\pm 0)}{dt}\right)^2 \neq 0.$$

Тогда

$$0 \neq \psi_2(\tau_1) \frac{dx_2(\tau_1 \pm 0)}{dt} = K(\tau_1) = K(\tau_2) = \psi_2(\tau_2) \frac{dx_2(\tau_2 \pm 0)}{dt},$$

то есть $\psi_2(\tau_2) \neq 0$.

Покажем, что $\exists t'\colon \psi_2(t')=0$. Предположим противное: пусть $sgn\psi_2(t)\equiv const, t\in [\tau_1,\tau_2]$. Тогда

$$\frac{dx_2(\tau_1)}{dt}\frac{dx_2(\tau_2)}{dt} > 0,$$

что противоречит (по аналогии с 3)) той части условия 4), в которой говорится, что τ_1 и τ_2 — последовательные обособленные нули x_2 .

Теорема доказана.