Ma trận khả nghịch

Nguyễn Hoàng Thạch nhthach@math.ac.vn

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trận nghịch đảo
- 2 Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trận nghịch đảo

- 2 Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch

Ma trận khả nghịch

$$A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 4 \\ 2 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix}$$

$$A \neq B \text{ nhưng } AC = BC.$$

Câu hỏi: Khi nào thì từ AC = BC có thể suy ra A = B?

Định nghĩa

Một ma trận <u>vuông</u> A cấp n được gọi là <mark>khả nghịch (hay không suy biến)</mark> nếu tồn tại một ma trận vuông B cấp n sao cho

$$AB = BA = I_n$$
.

Khi đó, ma trận B được gọi là ma trận nghịch đảo của A.

Một ma trận không khả nghịch còn được gọi là một ma trận suy biến.

Chú ý:

- Ma trận không vuông thì không khả nghịch.
- Không phải mọi ma trận vuông đều khả nghịch.

H.-T. Nguyen Ma trận khả nghịch 4 / 26

Ma trận khả nghịch

Định lý

Nếu A là một ma trận khả nghịch thì ma trận nghịch đảo của nó là duy nhất. Khi đó, ma trận nghịch đảo của A được ký hiệu là A^{-1} .

Chứng minh:

Giả sử B và C là hai ma trận nghịch đảo của A: $AB = BA = I_n$ và $AC = CA = I_n$.

Ta có:

$$B = BI_n = B(AC) = (BA)C = I_nC = C.$$

Chú ý: Nếu hai ma trận vuông A, B thỏa mãn $AB = I_n$ thì $B = A^{-1}$.

Thí dụ:
$$A=\left(\begin{array}{cc} -1 & 2 \\ -1 & 1 \end{array}\right)\ , \quad A^{-1}=\left(\begin{array}{cc} 1 & -2 \\ 1 & -1 \end{array}\right)\ .$$

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trân nghịch đảo

- 2 Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch

Tìm ma trận nghịch đảo

Thí dụ:
$$A = \begin{pmatrix} 1 & 4 \\ -1 & -3 \end{pmatrix}$$
.

Cần tìm $X = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$ sao cho $AX = I_2$.
$$\begin{cases} x + 4y = 1 \\ -x - 3y = 0 \end{cases} \begin{cases} z + 4t = 0 \\ -z - 3t = 1 \end{cases}$$

Hai hệ pttt có cùng ma trận hệ số nên có thể được giải bằng các phép biến đổi giống nhau \Rightarrow giải song song!

$$\begin{pmatrix} 1 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{pmatrix} \xrightarrow{h_2 + h_1} \begin{pmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{h_1 - 3h_2} \begin{pmatrix} 1 & 0 & -3 & -4 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$

Thuật toán Gauss-Jordan để tìm ma trận nghịch đảo

Cho ma trận A cỡ $n \times n$.

- Viết ma trận $(A \mid I_n)$.
- Dùng các phép biến đổi sơ cấp, đưa về dạng $(I_n \mid B)$.
- Nếu thành công thì $A^{-1} = B$, nếu không thì A không khả nghịch.

Thí dụ:

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3 \end{pmatrix} : (A \mid I_3) \rightarrow \begin{pmatrix} 1 & 0 & 0 & -2 & -3 & -1 \\ 0 & 1 & 0 & -3 & -3 & -1 \\ 0 & 0 & 1 & -2 & -4 & -1 \end{pmatrix}.$$

$$B = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ -2 & 3 & -2 \end{pmatrix} : (B \mid I_3) \rightarrow \begin{pmatrix} 1 & 2 & 0 \mid 1 & 0 & 0 \\ 0 & -7 & 2 \mid -3 & 1 & 0 \\ 0 & 0 & 0 \mid -1 & 1 & 1 \end{pmatrix}.$$

Ma trận vuông cấp 2

Cho
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Ma trận A là khả nghịch khi và chỉ khi $ad - bc \neq 0$.

Nếu
$$ad - bc \neq 0$$
 thì $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Thí dụ:

$$A = \begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & -1 \\ -6 & 2 \end{pmatrix}$.

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trận nghịch đảo

- 2 Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch

Tính chất của ma trận nghịch đảo

Định lý

Giả sử A là một ma trận khả nghịch, k là một số nguyên dương và c là một vô hướng khác 0. Khi đó:

- $((A)^{-1})^{-1} = A$
- $(A^k)^{-1} = A^{-1}A^{-1} \dots A^{-1} = (A^{-1})^k$
- $(cA)^{-1} = \frac{1}{c}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$

Chú ý: Lũy thừa với số mũ nguyên âm:

$$A^{-k} := (A^k)^{-1}$$
.

Các công thức $A^{k+l} = A^k A^l$ và $A^{kl} = (A^k)^l$ được mở rộng cho số mũ nguyên bất kỳ.

Nghịch đảo của một tích

Định lý

Nếu A, B là các ma trận vuông khả nghịch cấp n thì AB cũng khả nghịch và

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Chú ý: Mở rộng cho tích của k ma trận khả nghịch

$$(A_1A_2...A_k)^{-1} = A_k^{-1}A_{k-1}^{-1}...A_1^{-1}.$$

Nghịch đảo của một tích

Thí dụ:

$$A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 3 \end{pmatrix}.$$

$$A^{-1} = \begin{pmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 2/3 & 0 & -1/3 \end{pmatrix}$$

$$\Rightarrow (AB)^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 8 & -5 & -2 \\ -8 & 4 & 3 \\ 5 & -2 & -7/3 \end{pmatrix}.$$

Rút gọn thừa số khả nghịch

Định lý

Giả sử A, B, C là các ma trận với cỡ sao cho các phép toán được thực hiện là có nghĩa. Giả sử ma trận C là khả nghịch. Khi đó:

- Nếu AC = BC thì A = B.
- ② $N \hat{e} u CA = CB thì A = B.$

Định lý

Nếu A là một ma trận khả nghịch thì hệ pttt $A\mathbf{x}=\mathbf{b}$ có nghiệm duy nhất được cho bởi $\mathbf{x}=A^{-1}\mathbf{b}$.

Thí dụ:

$$\begin{cases} 2x + 3y + z = -1 \\ 3x + 3y + z = 1 \\ 2x + 4y + z = -2 \end{cases} \begin{cases} 2x + 3y + z = 4 \\ 3x + 3y + z = 8 \\ 2x + 4y + z = 5 \end{cases} \begin{cases} 2x + 3y + z = 0 \\ 3x + 3y + z = 0 \\ 2x + 4y + z = 0 \end{cases}$$

Ma trận hệ số:

$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{pmatrix}$$
$$A^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{pmatrix}$$

•
$$x = 2, y = -1, z = -2$$

•
$$x = 4, y = 1, z = -7$$

•
$$x = 0, y = 0, z = 0$$

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trân nghịch đảo
- 2 Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch

Ma trận sơ cấp

Định nghĩa

Một ma trận vuông cấp n được gọi là sơ cấp nếu nó có thể được nhận từ I_n bằng một phép biến đổi sơ cấp.

Thí dụ:

$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$A_4 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right), \quad A_5 = \left(\begin{array}{ccc} 1 & 0 \\ 2 & 1 \end{array}\right), \quad A_6 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

Các ma trận A_1, A_4, A_5 là sơ cấp; các ma trận A_2, A_3, A_6 không phải sơ cấp.

Ma trận sơ cấp và các phép biến đổi sơ cấp

$$A = \left(\begin{array}{cccc} 1 & 0 & -4 & 1 \\ 0 & 2 & 6 & -4 \\ 0 & 1 & 3 & 1 \end{array}\right)$$

$$E_1 = \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}
ight) \,, \quad E_1 A = \left(egin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 2 & 6 & -4 \end{array}
ight) \,.$$

$$E_2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right) \,, \quad E_2 A = \left(\begin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 4 & 12 & -8 \\ 0 & 1 & 3 & 1 \end{array} \right) \,.$$

$$E_3 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array}\right) \;, \quad E_3 A = \left(\begin{array}{ccc} 1 & 0 & -4 & 1 \\ 0 & 0 & 0 & -6 \\ 0 & 1 & 3 & 1 \end{array}\right) \;.$$

Ma trận sơ cấp và các phép biến đổi sơ cấp

Định lý

Giả sử ma trận sơ cấp E được nhận từ ma trận đơn vị I_m bằng một phép biến đổi sơ cấp. Khi đó, với mọi ma trận A cỡ $m \times n$, tích EA là ma trận nhận được từ A bằng cách thực hiện chính phép biến đổi sơ cấp đó.

Chú ý: Ma trận sơ cấp ở bên trái của tích.

Ma trận sơ cấp và dạng bậc thang theo hàng

Thí dụ: Đưa ma trận sau về dạng bậc thang theo hàng

$$A = \left(\begin{array}{rrrr} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

$$\frac{h_1 \leftrightarrow h_2}{\longrightarrow} \begin{pmatrix} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 2 & -6 & 2 & 0 \end{pmatrix} \qquad E_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\frac{h_3 - 2h_1}{\longrightarrow} \begin{pmatrix} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & -4 \end{pmatrix} \qquad E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$

$$\frac{1/2 \times h_3}{\longrightarrow} \begin{pmatrix} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & -2 \end{pmatrix} \qquad E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/2 \end{pmatrix}$$

Ma trận sơ cấp và dạng bậc thang theo hàng

Thí dụ: Đưa ma trận sau về dạng bậc thang theo hàng

$$A = \left(\begin{array}{rrrr} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{array}\right)$$

$$B = \begin{pmatrix} 1 & -3 & 0 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & -2 \end{pmatrix} = E_3 E_2 E_1 A.$$

Định lý

Hai ma trận A và B cỡ $m \times n$ là tương đương theo hàng nếu và chỉ nếu tồn tại các ma trận sơ cấp E_1, E_2, \ldots, E_k sao cho

$$B = E_k \dots E_2 E_1 A$$
.

- Ma trận khả nghịch
 - Ma trận khả nghịch
 - Tìm ma trận nghịch đảo
 - Tính chất của ma trân nghịch đảo

- 2 Ma trận sơ cấp
 - Ma trận sơ cấp và các phép biến đổi sơ cấp
 - Ma trận sơ cấp và ma trận khả nghịch

Nghịch đảo của ma trận sơ cấp

Định lý

Mọi ma trận sơ cấp đều khả nghịch. Nghịch đảo của một ma trận sơ cấp là một ma trận sơ cấp.

Nhận xét: Phép biến đổi tương ứng với E^{-1} là phép biến đổi "ngược" của phép biến đổi tương ứng với E

$$\begin{array}{c|cc}
E & E^{-1} \\
h_i \leftrightarrow h_j & h_i \leftrightarrow h_j \\
c \times h_i & \frac{1}{c} \times h_i \\
h_i + ch_j & h_i - ch_j
\end{array}$$

Ma trận sơ cấp và ma trận khả nghịch

Định lý

Ma trận vuông A là khả nghịch nếu và chỉ nếu nó viết được thành tích của các ma trận sơ cấp.

Nhận xét: Giả sử A khả nghịch

- ① Có thể đưa A về I_n bằng một số phép biến đổi sơ cấp.
- Gọi E₁, E₂,..., E_k là các ma trận sơ cấp tương ứng với các phép biến đổi đó.
- **1** Ta có $I_n = E_k \dots E_2 E_1 A$, suy ra $A = E_1^{-1} E_2^{-1} \dots E_k^{-1}$.

Ma trận sơ cấp và ma trận khả nghịch

Thí dụ:
$$A = \begin{pmatrix} -1 & -2 \\ 3 & 8 \end{pmatrix}$$

$$\xrightarrow{(-1) \times h_1} \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \qquad E_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\xrightarrow{h_2 - 3h_1} \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \qquad E_2 = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$$

$$\xrightarrow{(1/2) \times h_2} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \qquad E_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}$$

$$\xrightarrow{h_1 - 2h_2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad E_4 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$

$$A = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

Tổng hợp các điều kiện khả nghịch

Định lý

Cho A là một ma trận vuông cấp n. Các điều kiện sau là tương đương:

- A khả nghịch.
- ② Hệ pttt $A\mathbf{x} = \mathbf{b}$ có nghiệm duy nhất với mọi \mathbf{b} .
- **3** Hệ pttt $A\mathbf{x} = \mathbf{0}$ chỉ có nghiệm tầm thường.
- 4 A tương đương theo hàng với In.
- A viết được thành tích của các ma trận sơ cấp.