Задача D. Наводнение

В един град има *п* кръстовища, някои от които са свързани с преки двупосочни улици. Между две кръстовища може да има повече от една пряка улица. През пролетта има големи наводнения заради прииждащата река и някои от улиците остават под вода. За всяка улица е известно времето, за което общинската фирма ще успее да я почисти. Необходимо е част от наводнените улиците да се изчистят от придошлата вода, за да може да се достига от всяко кръстовище до всяко друго. Задачата на общинската фирма е за минимално време на осигури възможност за достигане от всяко кръстовище до всяко друго.

Напишете програма **flood**, която по дадени n кръстовища и m улици, намира минималното време, за което общинската фирма ще се справи със задачата. Програмата трябва да обработва няколко тестови случаи.

Вход

От първия ред на стандартния вход се въвежда броят на тестовите случаи. За всеки тестов случай следват няколко реда. Първият от тях съдържа три числа n, m и k, съответно броя на кръстовищата, общия брой на улиците и броя на улиците, които са наводнени. Всеки от следващите m реда съдържа три числа (x_i , y_i , t_i) — номерата на кръстовищата, между които има улица и времето, за което фирмата ще почисти улицата, ако е наводнена. От следващия ред се въвеждат номерата на улиците, които са наводнени. Улиците са номерирани от 1 до m в реда, по който се въвеждат.

Изход

За всеки тестов случай на един ред на стандартния изход програмата трябва да изведе минималното време, за което фирмата ще се справи със задачата.

Ограничения

 $1 \le n \le 1000$

1 < *m* < 10000

 $1 \le k \le m$

 $1 \le t_i \le 30000$

Пример

Вход

1

7 8 4

0 2 5

2 1 2

1 3 8

3 4 12

6 4 1

5 4 10

6 5 4

2 3 6

1 4 6 7

Изход

21