Part II — Classical Dynamics

Based on lectures by G. Ogilvie Notes taken by Nick Trilloe

Michaelmas 2019

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

Review of Newtonian Mechanics

Some early definitions and recap

[1]

Contents

L	Review of Newtonian Mechanics	
	1.1 Newton's Second Law	
	1.2 Systems of Particles	
2	Lagrange's Equations	
	Lagrange's Equations 2.1 Generalised Co-ordinates	

1 Review of Newtonian Mechanics

1.1 Newton's Second Law

If a particle of mass m has position vector $\mathbf{r}(t)$ and velocity $\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt}$ in an inertial frame of reference, then its acceleration $\ddot{\mathbf{r}} = \frac{d^2\mathbf{r}}{dt^2}$ is related to the force \mathbf{F} acting on the particle by the equation of motion

$$m\ddot{\mathbf{r}} = \mathbf{F}$$

This is a system of 2nd order ODEs for the components of \mathbf{r} . The solution depends on the initial position $\mathbf{r}(0)$ and initial velocity $\dot{\mathbf{r}}(0)$.

Any frame of reference that moves with constant velocity w.r.t an inertial frame is also inertial.

In a non-inertial (e.g rotating) frame, the equation of motion is modified and can be defined by including 'fictitious' forces.

Newton's Second Law also applies to extended bodies if m is the total mass, \mathbf{r} is the position of the centre of mass, \mathbf{F} is the net force acting on the body.

The momentum (or linear momentum) of the particle is

$$\mathbf{p} = m\dot{\mathbf{r}}$$

Its angular momentum (about the origin) is

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = m\mathbf{r} \times \dot{\mathbf{r}}$$

Its kinetic energy is $T = \frac{1}{2}m |\dot{\mathbf{r}}|^2$

Their rates of change are

$$\dot{\mathbf{p}} = m\ddot{\mathbf{r}} = \mathbf{F}$$

$$\dot{\mathbf{L}} = m\dot{\mathbf{r}} \times \dot{\mathbf{r}} + m\mathbf{r} \times \ddot{\mathbf{r}}$$

$$= \mathbf{0} + \mathbf{G}$$

Where G is the *torque* acting on the particle (or the *moment* of the force about the origin).

$$\dot{T} = m\ddot{\mathbf{r}} \cdot \dot{\mathbf{r}} = \mathbf{F} \cdot \dot{\mathbf{r}}$$

The change in KE as the particle moves along a path C is

$$\Delta T = \int_{t_1}^{t_2} \dot{T} dt = \int_{t_1}^{t_2} \mathbf{F} \cdot \dot{\mathbf{r}} dt = \int_C \mathbf{F} \cdot d\mathbf{r}$$

This line integral is the work done by the force along the path.

1.2 Systems of Particles

Consider N particles with masses m_i and position vectors $\mathbf{r}_i(t)$ (for $1 \leq i \leq N$) The equation of motion of particle i is

$$m_i \ddot{\mathbf{r}}_i = \mathbf{F}_i$$

If the force \mathbf{F}_i on particle i is given as a function of the positions \mathbf{r}_j , velocities $\dot{\mathbf{r}}_j (1 \leq j \leq N)$ and time t, then we have a system of coupled 2nd order ODEs. The solution depends on the initial positions and velocities.

Assume that \mathbf{F}_i can be decomposed as

$$\mathbf{F}_i = \sum_{j=1}^N \mathbf{F}_{ij} + \mathbf{F}_i^{ext}$$

Where \mathbf{F}_{ij} is the force on particle i due to particle j, and \mathbf{F}_i^{ext} is the external force on particle i due to particles outside the system.

For an isolated system, $\mathbf{F}_{i}^{ext} = 0$

Newton's Third Law states that $\mathbf{F}_{ji} = -\mathbf{F}_{ij}$ and that the self-force $\mathbf{F}_{ii} = 0$ (no sum)

The equation of motion of particle i is then

$$m_i \ddot{\mathbf{r}}_i = \sum_j \mathbf{F}_{ij} + \mathbf{F}_i^{ext}$$

The centre of mass has position $\mathbf{R}(t)$ given by

$$M\mathbf{R} = \sum_{i=1}^{N} m_i \mathbf{r}_i$$

Where $M = \sum_{i=1}^{N} m_i$ is the total mass of the system.

Summing the equations of motion and using Newton's Third Law, we find

$$\begin{split} M\ddot{\mathbf{R}} &= \sum_{i} \sum_{j} \mathbf{F}_{ij} + \sum_{i} \mathbf{F}_{i}^{ext} \\ &= \mathbf{0} + \mathbf{F}^{ext} \end{split}$$

Where \mathbf{F}^{ext} is the net external force.

The total linear momentum of the system

$$\mathbf{P} = \sum_{i=1}^{N} \mathbf{p}_i = \sum_{i} m_i \dot{\mathbf{r}}_i = M \dot{\mathbf{R}}$$

satisfies $\dot{\mathbf{P}} = M\ddot{\mathbf{R}} = \mathbf{F}^{ext}$

The total angular momentum of the system about the origin is

$$\mathbf{L} = \sum_{i} m_{i} \mathbf{r}_{i} \times \dot{\mathbf{r}}_{i}$$

and satisfies

$$\dot{\mathbf{L}} = \sum_{i} m_{i} \mathbf{r}_{i} \times \ddot{\mathbf{r}}_{i} = \sum_{i} \mathbf{r}_{i} \times \mathbf{F}_{i}$$

If the *strong version* of Newton's Third Law applies, i.e that $\mathbf{F}_{ij} = -\mathbf{F}_{ji}$ and is parallel to $\mathbf{r}_i - \mathbf{r}_j$ then the internal torques cancel.

$$\sum_{i} \sum_{j} \mathbf{r}_{i} \times \mathbf{F}_{ij} = \frac{1}{2} \sum_{i} \sum_{j} \mathbf{r}_{i} \times (\mathbf{F}_{ij} - \mathbf{F}_{ji})$$
$$= \frac{1}{2} \sum_{i} \sum_{j} (\mathbf{r}_{i} - \mathbf{r}_{j}) \times \mathbf{F}_{ij} = \mathbf{0}$$

Then we have

$$\dot{\mathbf{L}} = \sum_{i} \mathbf{r}_{i} \times \mathbf{F}_{i}^{ext} = \sum_{i} \mathbf{G}_{i}^{ext} = \mathbf{G}^{ext} \text{ (net external torque)}$$

For an $\mathit{isolated\ system},$ both $\mathbf P$ and $\mathbf L$ are conserved.

2 Lagrange's Equations

2.1 Generalised Co-ordinates

While Newtonian mechanics uses vectors ($\mathbf{F} = m\mathbf{a}$), the Lagrangian approach is more flexible.

A system with n degrees of freedom requires n independent generalised coordinates $q_i(t)$, i = 1, 2, ..., n to specify its configuration.

The generalised velocities are $\dot{q}_i = \frac{dq_i}{dt}$

Why do this?

- (i) Non-Cartesian coordinates e.g polar coordinates for problems with circular or spherical symmetry
- (ii) Systems with constraints e.g confining surfaces, curves, strings, rods

Lagrangian mechanics deals mostly with systems that are *conservative* (ideal, non-dissipative). Their dynamics can be derived from a scalar function called the Lagrangian

$$\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t) = T - V$$

Notation:

$$\mathbf{q}$$
 stands for $(q_1, q_2, ..., q_n)$
 $\dot{\mathbf{q}}$ stands for $(\dot{q}_1, \dot{q}_2, ..., \dot{q}_n)$
 $\frac{\partial \mathcal{L}}{\partial \mathbf{q}}$ stands for $(\frac{\partial \mathcal{L}}{\partial q_1}, ...)$
 $\mathbf{q} \cdot \mathbf{p} = \sum_{i=1}^n q_i p_i$

2.2 Hamilton's Principle

If a system evolves from an initial configuration $\mathbf{q_1} = \mathbf{q}(t_1)$ to a final configuration $\mathbf{q_2} = \mathbf{q}(t_2)$, the *action* is defined as the functional

$$S[\mathbf{q}] = \int_{t_1}^{t_2} \mathcal{L}dt$$

This is a functional of t and the path $\mathbf{q}(t)$ taken in the configuration space.

Theorem. Hamilton's Principle

The physical path taken is such that the action has a stationary value. i.e the first variation

$$\delta S = \delta \int \mathcal{L}dt = 0$$

subject to $\mathbf{q}(t_1)$ and $\mathbf{q}(t_2)$ being fixed.

According to the calculus of variations, this means that the functional derivative vanishes.

$$\frac{\delta S}{\delta q_i} = \frac{\partial \mathcal{L}}{\partial q_i} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = 0$$

for each i = 1, ..., n

This is the Euler-Lagrange equation for q_i .

In analytical mechanics we call these Lagrange's equations and interpret them as the equations of motion of the system:

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_i} = \frac{\partial \mathcal{L}}{\partial q_i}$$

or

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} = \frac{\partial \mathcal{L}}{\partial \mathbf{q}}$$

Since \mathcal{L} depends on \mathbf{q} and $\dot{\mathbf{q}}$ these are n 2nd order ODEs for $q_i(t)$ which are usually nonlinear.

The LHS of Lagrange's equations can be interpeted as $\frac{dp_i}{dt}$ where $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ is the generalised momentum or conjugate momentum to coordinate q_i .

Remark. Proof of E-L equations can be found in IB Variational Principles, so is omitted.

Is the Lagrangian unique?

No. If we add to \mathcal{L} the expression

$$\frac{d}{dt}f(\mathbf{q},t) = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial \mathbf{q}} \cdot \dot{\mathbf{q}}$$

then we add to $S = \int \mathcal{L}dt$ the quantity

$$f(\mathbf{q}_2, t_2) - f(\mathbf{q}_1, t_1)$$

Which is independent of the path.

Indeed, the extra terms in Lagrange's equations cancel out. (exercise)

Example. N particles with potential forces

The standard form of \mathcal{L} is the difference between KE and PE.

$$\mathcal{L} = T - V$$

$$=\sum_{i=1}^{N}\frac{1}{2}m_{i}\left|\dot{\mathbf{r}}_{i}\right|^{2}-V(\mathbf{r}_{1},...,\mathbf{r}_{n})$$

We identify \mathbf{q} with $(\mathbf{r_1}, ..., \mathbf{r}_n)$:

$$\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}_i} = m_i \dot{\mathbf{r}}_i \frac{\partial \mathcal{L}}{\partial \mathbf{r}_i} = -\nabla_i V$$

Lagrange's equations give

$$m_i \ddot{\mathbf{r}}_i = -\nabla_i V$$

are then exactly equivalent to Newton's Second Law.

Example. Particle in a rotating frame

If $\mathbf{r}(t)$ is the position vector measured in a frame rotating with angular velocity $\boldsymbol{\omega}(t)$ about an axis through the origin, then

$$\mathcal{L} = \frac{1}{2}m\left|\dot{\mathbf{r}} + \boldsymbol{\omega} \times \mathbf{r}\right|^2 - V$$

where the first term is the absolute velocity, including that due to rotation of the frame

$$=\frac{1}{2}m\dot{x}_{i}\dot{x}_{i}+m\epsilon_{ijk}\dot{x}_{i}\omega_{j}x_{k}+\frac{1}{2}m\epsilon_{ijk}\epsilon_{ilm}\omega_{j}x_{k}\omega_{l}x_{m}-V$$

Lagrange's equations are

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{x}_i} = \frac{\partial \mathcal{L}}{\partial x_i}$$

$$\frac{d}{dt}(m\dot{x}_i + m\epsilon_{ijk}\omega_j x_k) = m\epsilon_{kji}\dot{x}_k\omega_j + m\epsilon_{kji}\epsilon_{klm}\omega_j\omega_l x_m - \frac{\partial V}{\partial x_i}$$

After some manipulation, leads to

$$m(\ddot{\mathbf{r}} + 2\boldsymbol{\omega} \times \dot{\mathbf{r}} + \dot{\boldsymbol{\omega}} \times \mathbf{r} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})) = -\nabla V$$

Which is the equation of motion for a rotating frame, obtained without vectors.