

Joseph Lucas, Al Security Researcher | Assurance and Security for Al-enabled Systems, April 2024

"Al Red Teaming" has come to mean different things to different organizations. All those definitions are wrong, but some are useful. Here's ours.

BLUF

An Al Red Team is a **friendly force** that provides **targeted stimulus** to determine the **effectiveness of security controls** for **Al-integrated systems** and provides **actionable recommendations** to reduce the likelihood or effectiveness of adversarial action.

Why [it matters]?

- Why red team?
 - Measure system reaction to known unknown and identifies unknown unknown
 - Objective-guided adversarial stimulus
 - Risk identification and calibration
- Red teaming provides system operators with data about how their system performs under adversarial conditions

Why [it might be unconventional]?

- In some contexts, we red team a "final product" as part of a final T&E:
 - BCTs going to CTC
 - CMTs before being FOC
- The final performance of AI systems are highly dependent on inputs at several points during the lifecycle:
 - Test time
 - Training time
 - Prototyping
- Comprehensive test and evaluation against the complete range of inputs is difficult to do and interpret.
 - And we know there are small epsilon attacks
- "Final product" T&E is insufficient for Al-integrated systems.

MQ9

- "The system has 368 cameras capable of capturing five million pixels each to create an image of about 1.8 billion pixels" General Atomics MQ-9 Reaper Wikipedia
 - o 42k x 42k
 - Monochrome Each pixel is [0, 255]
 - State space? Huge.

MQ9

- "The system has 368 cameras capable of capturing five million pixels each to create an image of about 1.8 billion pixels" General Atomics MQ-9 Reaper Wikipedia
 - o 42k x 42k
 - Monochrome Each pixel is [0, 255]
 - State space? Huge.

How [we got here]?

- We want to deploy Al in security-critical contexts.
- Performance must be measured under adversarial conditions
- Adversarial: conditions and stimulus most disadvantageous to friendly objectives
- We don't always know who the adversary is, what their objectives are, or what capabilities they have
 - Sometimes intelligence-driven adversarial emulation
 - But sometimes systems may have to operate against unknown unknowns

How [not to do it]?

- Red Teams improve the security of the system.
 - No stunt hacking.
- Is the target a Model or a System? (it's a system)
- Security is a system property
 - The most secure operating system can be "hacked" with bad passwords
- And the security of the deployed system relies on the security of all inputs
 - Inputs are not just raw data
 - How much do you know about computational photography?
- "The system has 368 cameras capable of capturing five million pixels each to create an image of about 1.8 billion pixels" General Atomics MQ-9 Reaper Wikipedia
 - Image processing -> 368 images are probably not just tiled together. They're transformed (rotation, stretching, error correction, etc). **Those transformations are inputs.** They're not part of the model, but they're an important security component of the system. (not to mention sensor fusion)

How [and when to do it]?

• Deployed systems can be targets, but they're not the only targets

How [and when to do it]?

How [to build the capability]?

- What _____ does an AI Red Teamer need?
 - Skills
 - Tools
 - Access
 - Partners
- Red Teams aren't
 - and those things are important
- Red Team(ers) must be:
 - Creative
 - Calibrated
 - Precise

How [to build the capability]?

- What _____ does an AI Red Teamer need?
 - Skills
 - Tools
 - Access
 - Partners
- Red Teams aren't _____
 - and those things are important
- Red Team(ers) must be:
 - Creative
 - Calibrated
 - Precise

Skills

- Understanding of ML Development Lifecycle
- Ability to develop and use gradient-based ML techniques
- Knowledge of optimization paradigms
- Technical proficiency in the target domains/languages

Optimize bit-level mask and perturbations over specific PE header fields and inject the resulting transformation into a python venv to run during training data ETL

How [to build the capability]?

- What _____ does an Al Red Teamer need?
 - Skills
 - Tools
 - Access
 - Partners
- Red Teams aren't
 - and those things are important
- Red Team(ers) must be:
 - Creative
 - Calibrated
 - Precise

Tools

- https://github.com/Trusted-Al/adversarial-robustnesstoolbox
- https://github.com/QData/TextAttack
- https://github.com/leondz/garak
- https://github.com/JosephTLucas/vger
- ... more all the time

How [to build the capability]?

- What _____ does an Al Red Teamer need?
 - Skills
 - Tools
 - Access
 - Partners
- Red Teams aren't _____
 - and those things are important
- Red Team(ers) must be:
 - Creative
 - Calibrated
 - Precise

Access

- Network
- Host
- Cloud Service API

White card access to improve telemetry and efficiency

How [to build the capability]?

- What _____ does an Al Red Teamer need?
 - Skills
 - Tools
 - Access
 - Partners
- Red Teams aren't _____
 - and those things are important
- Red Team(ers) must be:
 - Creative
 - Calibrated
 - Precise

Partners

- Threat Intel -> Adversary emulation
- Traditional host/network access teams

How [to build the capability]?

- What _____ does an Al Red Teamer need?
 - Skills
 - Tools
 - Access
 - Partners
- Red Teams aren't _____
 - and those things are important
- Red Team(ers) must be:
 - Creative
 - Calibrated
 - Precise

- Aren't
- Tactical offensive units
- QA
- Coverage-based T&E
- Security Automation

How [to build the capability]?

- What _____ does an Al Red Teamer need?
 - Skills
 - Tools
 - Access
 - Partners
- Red Teams aren't _____
 - and those things are important
- Red Team(ers) must be:
 - Creative
 - Calibrated
 - Precise

Creative

- All models are wrong, but some are useful [to the attacker]
- There may be undocumented inputs/ranges

How [to build the capability]?

- What _____ does an Al Red Teamer need?
 - Skills
 - Tools
 - Access
 - Partners
- Red Teams aren't _____
 - and those things are important
- Red Team(ers) must be:
 - Creative
 - Calibrated
 - Precise

Calibrated

- Red teams shouldn't get caught when they don't want
 - But should when they do!

How [to build the capability]?

- What _____ does an Al Red Teamer need?
 - Skills
 - Tools
 - Access
 - Partners
- Red Teams aren't _____
 - and those things are important
- Red Team(ers) must be:
 - Creative
 - Calibrated
 - Precise

Precise

- There are multiple ways to achieve most effects.
- Want a backdoor? You could:
 - Use test-time techniques to identify latent backdoors
 - Use host/network access to swap model binaries
 - Use experiment tracking access to control which model is promoted to prod
 - Use a data ordering attack
 - Inject into python runtime to modify dataloader
 - Modify data at rest
 - Poison data-to-be-scraped

Measurement [of performance]

- Tradecraft
 - Is your red team [creative, calibrated, precise]?
 - Is this documented in tooling or runbooks?
- Recommendations
 - Do they generate [realistic, actionable, effective] recommendations?
 - When countered, can they provide op data to validate prioritization (and help with the prioritization merge sort)?

Measurement [of effectiveness]

- If operations don't generate change, they weren't effective.
- Changes in
 - Systems
 - Policies
- Was there a data lifecycle policy before the operation?
- Did specific AIRT actions generate feedback on the effectiveness of that policy?

The Future

- Automata v. Automata?
- Simulation

The Future

Closing thoughts

An Al Red Team is a **friendly force** that provides **targeted stimulus** to determine the **effectiveness of security controls** for **Al-integrated systems** and provides **actionable recommendations** to reduce the likelihood or effectiveness of adversarial action.

- Not all assessments are "Al Red Teaming" be precise about what capability you need
- Today, the number of threat actors using "traditional" techniques >> those using algorithmic techniques. Cover those bases.
 - Buckets, passwords, etc.
- Algorithmic techniques can threaten otherwise hardened and isolated systems
- "internet scale" models bring hard-to-mitigate risks
 - Data volume requirements may present a tradeoff between capability and security ... but there are still defensive controls we can implement (embedding search for prompt injection, search for glitch tokens, etc)

