### **Chapter 8 Optical Properties**



- 1. Light waves in a homogeneous medium
- 2. Refractive index
- 3. Dispersion: refractive index wavelength behavior
- 4. Snell's law and total internal reflection (TIR)
- 5. Fresnel's equation
- 6. Light absorption and scattering
- Luminescence, phosphors, and white LED Tutorial Course Review & Exam Briefing

# Light waves in a homogeneous medium

Light exhibits wave-like properties such as interference and diffraction. Light is an electromagnetic (EM) wave (电磁波) with time-varying electric and magnetic fields  $\mathbf{E_x}$  and  $\mathbf{B_y}$ , respectively, which propagate through space in a way that they are perpendicular to each other and the direction of propagation  $\mathbf{z}$ .

The simplest mathematical form of a monochromatic (单色) plane wave:

$$E_x = E_0 \cos(\omega t - kz + \phi_0)$$

 $\mathbf{E}_{\mathbf{x}}$ : the electric field at position  $\mathbf{z}$  and time  $\mathbf{t}$ 

**E<sub>o</sub>**: the **amplitude**(幅值) of the wave

ω: the **angular frequency (ω=2πν)** (角频率)

k: the propagation constant, wavevector (波矢),

or wavenumber ( $k = 2\pi/\lambda$ ) (波数)

( $\omega t - kz + \phi_0$ ): is called the phase,  $\phi$  (相位)

 $\Phi_0$ : a phase constant (相位常数)

# Light waves: EM wave



An electromagnetic wave is a travelling wave which has time varying electric and magnetic fields which are perpendicular to each other and the direction of propagation, *z*.

A traveling electric field  $\mathbf{E}_{\mathbf{x}}$  is accompanied by a traveling magnetic field  $\mathbf{B}_{\mathbf{y}}$  with the same wave frequency and propagation constant ( $\boldsymbol{\omega}$  and  $\mathbf{k}$ ). We describe the interaction of a light wave with a matter through the electric field component  $\mathbf{E}_{\mathbf{x}}$  rather than  $\mathbf{B}_{\mathbf{y}}$  because it is the electric field that displaces the electrons in ions or molecules in the crystal. The **optical field (光学场)** refers to the electric field  $\mathbf{E}_{\mathbf{x}}$ .

### Wavefront (波前)



A plane EM wave travelling along z, has the same  $E_x$  (or  $B_y$ ) at any point in a given xy plane. All electric field vectors in a given xy plane are therefore **in phase**.

# Phase velocity (相速度)

The time and space evolution of a given phase  $\phi$ , is described by

$$\phi = \omega t - kz + \phi_o = \text{constant}$$

During a time interval  $\delta t$ , this constant phase moves a distance  $\delta z$ . The phase velocity of this wave is therefore  $\delta z/\delta t$ .

From  $\phi = \omega t - kz + \phi_0 = \text{constant}$ , we obtain:  $\omega \delta t - k \delta z = 0$ 

The **phase velocity** (相速度)v is:

$$v = \frac{dz}{dt} = \frac{\omega}{k} = \upsilon \lambda$$

## Refractive index (折射率)

EM traveling in a medium: the oscillating **electric field** polarizes the molecules of the medium at the frequency of the wave.

The field and the induced molecular dipoles become coupled. The polarization mechanism **delays** the propagation of the EM wave.

The stronger the interaction between the field and the dipoles, the slower is the propagation of the wave.

For an EM wave traveling in a non-magnetic medium, the phase velocity is given by:

$$v = \frac{1}{\sqrt{\mathcal{E}_r \mathcal{E}_0 \mu_0}}$$

$$\varepsilon_0 = 8.8542 \times 10^{-12} \text{ CV}^{-1} \text{M}^{-1}$$
 真空介电常数

$$μ_0 = 4πx10-7 Hm-1 真空磁导率$$

optical frequency range

In free space,  $\varepsilon_r = 1$  and  $v_{vacuum} = 1/\sqrt{(\varepsilon_0 \mu_0)} = c = 3x10^8$  m/s

$$v = \frac{c}{\sqrt{\mathcal{E}_r}}$$

When a dielectric slab is inserted into the parallel plate capacitor, the charge on the electrodes increases from  $Q_0$  to Q. The relative permittivity (or the dielectric constant)  $\varepsilon_r$  of the dielectric is defined as:

$$\varepsilon_r = \frac{Q}{Q_0} = \frac{C}{C_0}$$

The increase in the stored charge is due to the polarization of the dielectric by the applied field.



(a) A neutral atom in E = 0.

(b) Induced dipole moment in a field

The origin of electronic polarization.

The ratio of the speed of a light in free space to its speed in a medium is called the **refractive index** of the medium:

$$\boldsymbol{n} = \frac{c}{v} = \sqrt{\boldsymbol{\varepsilon_r}}$$

Suppose that in free space  $k_0$  is the wavevector  $(2\pi/\lambda_0)$ , the wavevector k in the medium will be  $\mathbf{nk_0}$  and  $\lambda = \lambda_0/\mathbf{n}$ , if the medium is **isotropic** (各向同性).

$$n = \frac{k}{k_0}$$

For an anisotropic crystal,  $\varepsilon_x \neq \varepsilon_y \neq \varepsilon_z$  in general, the refractive index n is **orientation dependent**.

Noncrystalline materials such as glasses and liquids, are optically isotropic.





**Table 9.1** Low-frequency (LF) relative permittivity  $\varepsilon_r$ (LF) and refractive index n

| Material         | $\varepsilon_r$ (LF) | $\sqrt{\varepsilon_r(\mathrm{LF})}$ | n (optical)       | Comments                                                                 |
|------------------|----------------------|-------------------------------------|-------------------|--------------------------------------------------------------------------|
| Diamond          | 5.7                  | 2.39                                | 2.41 (at 590 nm)  | Electronic bond polarization up to UV light                              |
| Si               | 11.9                 | 3.44                                | 3.45 (at 2.15 μm) | Electronic bond polarization up to optical frequencies                   |
| AgCl             | 11.14                | 3.33                                | 2.00 (at 1–2 μm)  | Ionic polarization contributes to $\varepsilon_r(LF)$                    |
| SiO <sub>2</sub> | 3.84                 | 2.00                                | 1.46 (at 600 nm)  | Ionic polarization contributes to $\varepsilon_r(LF)$                    |
| Water            | 80                   | 8.9                                 | 1.33 (at 600 nm)  | Dipolar polarization contributes to $\varepsilon_r(LF)$ , which is large |

# Dispersion (色散): refractive index – wavelength behavior



The refractive index in general depends on the frequency, or the wavelength.



**Dispersion relation** (色散关系): relationship between  $\mathbf{n}$  and  $\lambda$  (or  $\omega$ )

In equilibrium under a E field, the net force on the negative charge is zero or  $ZeE = \beta x$ :

$$p_{induced} = (Ze)x = \frac{Z^2 e^2}{\beta} E$$

When the E field is removed: restoring force = mass × acceleration

$$-\beta x = Zm_e \frac{d^2x}{dt^2}$$

A simple harmonic motion:

$$x(t) = x_0 \cos(\omega_0 t)$$

The solution of the oscillation  $\omega_0$ :

$$\omega_0 = \left(\frac{\beta}{Zm_e}\right)^{1/2}$$



 $\omega_0$  is called the resonance frequency

In equilibrium under a E field, the net force on the negative charge is zero or  $ZeE = \beta x$ . The induced electronic dipole:

$$p_{induced} = (Ze)x = \frac{Z^2 e^2}{\beta} E$$

When an ac field is applied  $E = E_0 \exp(j\omega t)$ :

$$Zm_e \frac{d^2x}{dt^2} = -Ze \cdot E_0 \exp(j\omega t) - \beta x$$

The solution of the above equation:

$$x = x(t) = -\frac{eE_0 \exp(j\omega t)}{m_e(\omega_0^2 - \omega^2)}$$

The electronic polarizability (极化率)  $\alpha_e$ :

$$\alpha_e = \frac{p_{induced}}{E} = \frac{Ze^2}{m_e(\omega_0^2 - \omega^2)}$$

$$\varepsilon_r = 1 + \frac{N}{\varepsilon_o}\alpha_e$$

From  $n^2 = \varepsilon_r$  and  $\lambda_0 = 2\pi c/\omega_0$ :

**Dispersion relation**: relationship between n and  $\lambda$  (or  $\omega$ )

$$n^2 = \varepsilon_r = 1 + \frac{N}{\varepsilon_0}\alpha_e = 1 + \left(\frac{NZe^2}{\varepsilon_0 m_e}\right)\frac{1}{\omega_0^2 - \omega^2} = 1 + \left(\frac{NZe^2}{\varepsilon_0 m_e}\right)\left(\frac{\lambda_0}{2\pi c}\right)^2\frac{\lambda^2}{\lambda^2 - \lambda_0^2} \qquad \text{N is the number of atoms per unit volume}$$

N is the number unit volume

### Dispersion relation (色散关系)

The relationship between **n** and  $\lambda$  (or  $\omega$ ) is called the **dispersion relation**.

In a solid, a series of **resonance frequencies** may exist, Sellmeier dispersion 塞梅尔色散:

$$n^{2} = 1 + \frac{A_{1}\lambda^{2}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{A_{2}\lambda^{2}}{\lambda^{2} - \lambda_{2}^{2}} + \frac{A_{3}\lambda^{2}}{\lambda^{2} - \lambda_{3}^{2}}$$

Where  $A_1$ ,  $A_2$ ,  $A_3$  and  $\lambda_1$ ,  $\lambda_2$  and  $\lambda_3$  are constant, called Sellmeier coefficients.

There is another well-known useful  $\mathbf{n}$ - $\lambda$  dispersion by Cauchy (1836):

$$n^2 = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4}$$

Cauchy equation 柯西方程:

$$n = n_{-2}(h\upsilon)^{-2} + n_0 + n_2(h\upsilon)^2 + n_4(h\upsilon)^4$$

where hv is the photon energy, and n<sub>0</sub>, n<sub>-2</sub>, n<sub>2</sub>, and n<sub>4</sub> are constants

**Table 9.2** Sellmeier and Cauchy coefficients

|                                                   | Sellmeier                       |            |                    |                                 |     |                        |                           |  |  |
|---------------------------------------------------|---------------------------------|------------|--------------------|---------------------------------|-----|------------------------|---------------------------|--|--|
|                                                   | $A_1$                           | $A_2$      | $A_3$              | λ <sub>1</sub><br>(μ <b>m</b> ) |     | λ <sub>2</sub><br>(μm) | λ <sub>3</sub><br>(μm)    |  |  |
| SiO <sub>2</sub> (fused silica)                   | 0.696749                        | 0.408218   | 0.890815           | 0.0690                          | 560 | 0.115662               | 9.900559                  |  |  |
| 86.5% SiO <sub>2</sub> –13.5%<br>GeO <sub>2</sub> | 0.711040                        | 0.451885   | 0.704048           | 0.0642700                       |     | 0.129408               | 9.425478                  |  |  |
| $GeO_2$                                           | 0.80686642                      | 0.71815848 | 0.85416831         | 0.068972606                     |     | 0.15396605             | 11.841931                 |  |  |
| Sapphire                                          | 1.023798                        | 1.058264   | 5.280792           | 0.0614                          | 182 | 0.110700               | 17.92656                  |  |  |
| Diamond                                           | 0.3306                          | 4.3356 —   |                    | 0.1750                          |     | 0.1060                 |                           |  |  |
|                                                   |                                 |            | Cauc               | hy                              |     |                        |                           |  |  |
| R                                                 | ange of $h\nu$ (eV) $n_{-2}$ (e |            | eV <sup>2</sup> )  | $V^2$ ) $n_0$                   |     | (eV <sup>-2</sup> )    | $n_{-4}  ({\rm eV}^{-4})$ |  |  |
| Diamond                                           | 0.05-5.47                       | -1.07 >    | $\times 10^{-5}$ 2 | .378 8.01                       |     | $\times 10^{-3}$       | $1.04 \times 10^{-4}$     |  |  |
| Silicon                                           | 0.002 - 1.08                    | -2.04      | $\times 10^{-8}$ 3 | 3.4189 8.1                      |     | $5 \times 10^{-2}$     | $1.25\times 10^{-2}$      |  |  |
| Germanium                                         | 0.002-0.75                      | -1.0 >     | $\times 10^{-8}$   | 1.003                           | 2.2 | $2 \times 10^{-1}$     | $1.4 \times 10^{-1}$      |  |  |

SOURCE: Sellmeier coefficients combined from various sources. Cauchy coefficients from D. Y. Smith *et al., J. Phys. CM* 13, 3883, 2001.

**Example (GaAs dispersion relation):** For GaAs, from  $\lambda = 0.89$  to 4.1  $\mu$ m, the refractive index is given as the following dispersion relation:

$$n^2 = 7.10 + \frac{3.78\lambda^2}{\lambda^2 - 0.2767}$$

Where  $\lambda$  is in microns ( $\mu$ m). What is the refractive index of GaAs for light with a photon energy of 1 eV.

At hv = 1 eV:

$$\lambda = \frac{hc}{h\nu} = \frac{6.62x10^{-34} \cdot 3x10^{8}}{1x1.6x10^{-19}} = 1.24 \,\mu\text{m}$$

Thus

$$n^2 = 7.10 + \frac{3.78\lambda^2}{\lambda^2 - 0.2767} = 7.10 + \frac{3.78 \cdot (1.24)^2}{(1.24)^2 - 0.2767} = 11.71$$

So that

$$n = 3.42$$

### Snell's law 斯涅尔定律 and total internal reflection (TIR)



A traveling plane EM wave in a medium (1) with the refractive index n<sub>1</sub> propagating toward a medium (2) with the refractive index n<sub>2</sub>.

$$BB' = v_1 t = ct / n_1$$
$$AA' = v_2 t = ct / n_2$$

$$\Rightarrow$$

$$AB' = \frac{v_1 t}{\sin \theta_i} = \frac{v_2 t}{\sin \theta_t}$$

A light wave travelling in a medium with a greater refractive index  $(n_1 > n_2)$  suffers reflection and refraction at the boundary.

Snell's law:

$$\frac{\sin \theta_i}{\sin \theta_t} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$

Consider the reflected wave: BB'=AA"=v<sub>1</sub>t:

$$AB' = \frac{v_1 t}{\sin \theta_i} = \frac{v_1 t}{\sin \theta_r}$$

$$\Rightarrow$$

$$\sin \theta_i = \sin \theta_r$$

and

$$\theta_i = \theta_r$$

When  $n_1 > n_2$ ,  $\theta_t > \theta_i$  from the Snell's law.

If  $\theta_t = 90^{\circ}$ ,  $\Rightarrow$  the critical angle  $\theta_i$ 

$$\sin \theta_c = \frac{n_2}{n_1}$$

#### **Total internal reflection (TIR)**



Light wave travelling in a more dense medium strikes a less dense medium. Depending on the incidence angle with respect to  $q_C$ , which is determined by the ratio of the refractive indices, the wave may be transmitted (refracted) or reflected.

(a) 
$$\theta_i < \theta_c$$
 (b)  $\theta_i = \theta_c$  (c)  $\theta_i > \theta_c$ , total internal reflection (TIR).





The light guiding by a water jet was demonstrated by John Tyndall in 1854 to the Royal Institution.

An optical fiber link for transmitting digital information in communications. The fiber core has a higher refractive index so that the light travels along the fiber inside the fiber core by total internal reflection at the core-cladding interface.

If  $n_1(core) = 1.455$  and  $n_2(cladding) = 1.440$ 

$$\theta_c = \arcsin(\frac{n_2}{n_1}) = \arcsin(\frac{1.440}{1.455}) = 81.8^{\circ}$$



# Total internal reflection fluorescence microscope (TIRF) 全内反射显微技术







### 完成 Assignment 8.1

提交时间: 6月5日(周四)前,提交Assignment 8.1

提交方式: 电子版(写明姓名、学号),通过本班课代表

统一提交