

Data Science Dojo

Regression

Agenda

- Introduction
- Cost Function & Gradient Descent
 - Minimization
 - Implementation
- Hands-on Example
- Evaluating Regression Models
- Regularization

INTRODUCTION

Regression

Sales Forecasts

Housing Price Predictions

Daily Temperature Highs & Lows

Regression vs Classification

- Classification
 - Target is discrete with finite value set
 - **Examples:** survived/dead, face/non-face, fraud/non-fraud
- Regression
 - Target is continuous
 - Examples: price, weight, height, temperature

Notation: Titanic Dataset

											Emparke
Passenger Id	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	d
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.25		S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.925		S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1	C123	S
5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.05		S

 x_{4}^{5}

5: The passenger is in the 5th row

4: The passenger's name is the 4th column

Notation: Ozone Dataset

So how do we describe all the rows?

Row	1
Row	2
Row	3

ozone	radiation	temperature	wind
41	190	67	7.4
36	118	72	8.0
12	149	74	12.6
18	313	62	11.5
23	299	65	8.6
19	99	59	13.8

$$x^{1} = [190, 67, 7.4]$$
 $x^{2} = [118, 72, 8.0]$
 $x^{3} = [149, 74, 12.6]$

Notation: Ozone Dataset

The ozone dataset uses radiation, temperature and wind to predict ozone levels.

		x_1	x_2	x_3	
	ozone	radiation t	emperature	wind	
	41	190	67	7.4	
	36	118	72	8.0	
Y	12	149	74	12.6	X
	18	313	62	11.5	
	23	299	65	8.6	
	19	99	59	13.8	

Using this notation, we can describe all the columns of the dataset.

Notation Summary

```
x^{i} – Each row of features
x_j – Each column of features X – Set of all the feature columns
                                            Features
y^i – Each row of the target
Y – The target column
n – Number of rows in the dataset
m – Number of columns in the dataset
```


COST FUNCTION AND GRADIENT DESCENT

What is a good regression line?

- Wind Speed=15 mph
- Ozone = ?
- Use the line that is somewhere in the middle
- How do we define "middle"?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Defining a line

How do we define a line in slope-intercept

notation?

•
$$y = mx + b$$

In θ notation

•
$$h_{\theta}(x) = \theta_1 x + \theta_0$$

More Features

\mathcal{Y}	x_1	x_2	x_3
ozone	radiation	temperature	wind
41	190	67	7.4
36	118	72	8.0
12	149	74	12.6
18	313	62	11.5
23	299	65	8.6
19	99	59	13.8

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

Residuals (or "Errors")

Difference between hypothesis $h_{\theta}(x)$ (predicted value) and true value (known target)

Cost Function

Minimize the 'cost' or 'loss' function $-J(\theta)$

- Smaller for lower error
- Larger for higher error

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^i) - y^i \right)^2$$

Cost Function

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0 = 0$$

Each point on the parabola corresponds to a line on the graph on the left

Cost function in three dimensions

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\theta}(x^i) - y^i \right)^2$$

HOW DO WE FIND THE MINIMUM OF THE COST FUNCTION

Maximum/Minimum Problem

Find **two non-negative** numbers whose **sum is 9** and so that the product of one number and the square of the other number is a **maximum**.

2 + 4 = 9 P = 2 contraint

Solution (1/2)

Sum of number is 9

$$9 = x + y$$

Product of two numbers is

$$P = x y^2$$
$$= x (9-x)^2$$

Solution (2/2)

Using the product rule and chain rule from Calculus 101:

$$P' = x (2) (9-x)(-1) + (1) (9-x)2$$

= $(9-x) [-2x + (9-x)]$
= $(9-x) [9-3x]$
= $(9-x) (3)[3-x]$
= 0

$$x=9 \text{ or } x=3$$

Maximum Problem

There are **50** apple trees in an orchard.

Each tree produces **800 apples**. For each additional tree planted in the orchard, the apple output per tree drops by **10 apples**.

Question: How many additional trees should be planted in the existing orchard in order to maximize the apple output of the orchard?

Solution

$$A = (50 + t) \times (800 - 10t)$$

$$A = 40,000 + 300t - 10t^2$$

Solve for A' and set to 0 to find maximum.

$$A' = -20t + 300 = 0$$

$$t = 15$$

Adding 15 trees will maximize apple production

Gradient Descent

- Goal : minimize $J(\theta)$
- Start with some initial θ and then perform an update on each θ_i in turn:

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{\partial}{\partial \theta_j} J(\theta^k)$$

• Repeat until θ converges

Gradient Descent

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{\partial}{\partial \theta_j} J(\theta^k)$$

• α is known as the learning rate; set by user

• Each time the algorithm takes a step in the direction of the steepest descent and $J(\theta)$ decreases.

• α determines how quickly or slowly the algorithm will converge to a solution

Intuition

Effect of High Learning Rate: Large α

Learning Rate Effects Small α

Gradient Descent Implementation

When do we stop updating?

- When θ_j^{k+1} is close to θ_j^k
- When $J(\theta^{k+1})$ is close to $J(\theta^k)$ [Error does not change]

Batch Gradient Descent

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{\partial}{\partial \theta_i} J(\theta^k)$$

Each $heta_i$ represents one feature

- How do we incorporate all our data?
- Loop!

For j from 0 to m:

$$\theta_j^{k+1} := \theta_j^k - \alpha \frac{1}{n} \sum_{i=1}^n (h_\theta(x^i) - y^i) x_j^i$$

- h_{θ} is updated only once the loop has completed
- Weaknesses?

Batch Gradient Descent

Loop!

For j from 0 to m:

wind	temperature	radiation	ozone
7.4	67	190	41
8.0	72	118	36
12.6	74	149	12
11.5	62	313	18
8.6	65	299	23
13.8	59	gg	19

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{1}{n} \sum_{i=1}^n (h_\theta(x^i) - y^i) x_j^i$$

Stochastic Gradient Descent

Consider an alternative approach:

```
for i from 1 to n:

for j from 0 to m:

\theta_j^{k+1} \coloneqq \theta_j^k - \alpha(h_{\theta}(x^i) - y^i)x_j^i
```

- h_{θ} is updated when inner loop is complete
- If the training set is big, converges quicker than batch
- May oscillate around a minimum of $J(\theta)$ and never converge

^{*} We're now only taking one random observation at a time as a sample, instead of averaging across observations

Batch vs. Stochastic

Which is the better to use? It depends.

	Batch Gradient Descent	Stochastic Gradient Descent
Function	Updates hypothesis by scanning whole dataset	Updates hypothesis by scanning one training sample at a time
Rate of convergence	Slowly	Quickly (but may oscillate at minimum)
Appropriate Dataset Size	Small	Large

EVALUATING REGRESSION MODELS

Evaluation metrics for regression

Mean Absolute Error (MAE)

- Root-Mean-Square Error (RMSE)
 - Root-Mean-Square Deviation

Coefficient of Determination (R²)

Mean Absolute Error

$$MAE(\theta) = \frac{\sum_{i=1}^{n} |h_{\theta}(x^{i}) - y^{i}|}{n}$$

- Mean of residual values
- "Pure" measure of error

Mean Absolute Error - Example

$$y = \{36, 19, 34, 6, 1, 45\}$$

$$h_{\theta}(x) = \{27, -2.6, 13, -7.3, -2.6, 48\}$$

$$|h_{\theta}(x) - y| = \{9, 21.6, 21, 13.3, 3.6, 3\}$$

$$MAE(\theta) = \frac{71.5}{6} = 11.9$$

Root-Mean-Square Error

$$RMSE(\theta) = \sqrt{\frac{\sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}}{n}}$$

- Square root of mean of squared residuals
- Penalizes large errors more than small
- Good measure to use to accentuate outliers

 $y = \{36, 19, 34, 6, 1, 45\}$ $h_{\theta}(x) = \{27, -2.6, 13, -7.3, -2.6, 48\}$ $(x) - y)^2 = \{81, 467, 441. 177$

$$y = \{36, 19, 34, 6, 1, 45\}$$

$$h_{\theta}(x) = \{27, -2.6, 13, -7.3, -2.6, 48\}$$

$$(h_{\theta}(x) - y)^2 = \{81, 467, 441, 177, 13, 9\}$$

$$RSME(\theta) = \sqrt{\frac{1187}{6}} = 14.1$$

Coefficient of Determination (R²)

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

where
$$SS_{res} = \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$
 $SS_{tot} = \sum_{i=1}^{n} (y^{i} - \bar{y})^{2}$

 SS_{res} – Sum of squared residuals (i.e. total squared error) SS_{tot} –Sum of squared differences from mean (i.e. total variation in dataset)

Result: Measure of how well the model explains the data

• "Fraction of variation in data explained by model"

Coefficient of Determination

R² Example

- $R^2 = 0.277$
- Want a much better model for real application
- $R^2 = 0.6$ can be a good model

REGULARIZATION

Overfitting

Intuition

- Want to discourage complex models automatically How?
- Adjust the cost function!
 - Penalize models with large high-order θ terms

$$J'(\theta) = J(\theta) + Penalty$$

Definitions

- Two most common methods
 - L1 regularization
 - lasso regression
 - L2 regularization
 - ridge regression
 - weight decay

$$J_{L1}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{m} |\theta_{j}|$$

$$J_{L2}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{m} \theta_{j}^{2}$$

Regularized Regression

$$J_{L1}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{m} |\theta_{j}|$$

$$J_{L2}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{m} |\theta_{j}|$$

$$J_{L2}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{m} \theta_{j}^{2}$$

- Find the best fit
- Keep the θ_i terms as small as possible.
- λ is a user-set parameter which controls the trade off

Regularized Regression

$$J_{L1}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{m} |\theta_{j}|$$

$$J_{L2}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{m} \theta_{j}^{2}$$

- Size of λ important
 - λ too high => no fitting
 - λ too low => no regularization

