

Bonzie Colson

From Data to Knowledge

							LOW VOLUME • • • HIGH VOLUME							IOTANALYTICS.COM	M WWW.SHOTANALY				
F Throw % 1st Half: 6-8	75.0%	2nd H	alf: 8	-13	61.	5%	4			C	01	NZ	AG	A		NO	TRE D	AME	
3-Pt. FG% 1st Half: 2-5	40.0%	2nd H	alf: 2	-6	33.	3%				•	•	•	•	•		• 0	• 0000		
FOTAL FG% 1st Half: 14-30	46.7%	2nd H	alf: 7	-22	31.	88		O,5 79				42 9	%	~	4170		39 %		33 %
Totals	21-52	4-11	14-21	9	27	36		39 %			. f.	Ň		41 %			1000		35 %
TEAM				2	1	3				40	/0			77 70		41		41.9	
23 <u>Martinas Geben</u>	1-1	0-0	0-0	1	0	1				A P	0/			17.0%			book		
04 <u>Matt Ryan</u>	2-3	0-0	2-2	0	2	2													
)2 TJ Gibbs	0-1	0-0	2-2	0	2	2	44	%	53	% X	6	3%		48.%	44 %	40 %	68%	46	43
01 Austin Torres	0-1	0-0	0-0	1	0	1		: . .					•	• • • •					
32 <u>Steve Vasturia</u>		1-2	3-4	3	5	8													
05 <u>Matt Farrell</u>		3-5	1-3	0	4	4	2	16	4	3	0	2	36						
OO <u>Rex Pflueger</u> o		0-0	0-0	0	2	2	2	4	0	1	0	0	28						
35 <u>Bonzie Colson</u> f		0-1	6-10	2	5	7	2	18	2	0	2	1	31						
03 VJ Beachem f		0-3	0-0	0	6	6	1	2	3	0	0	1	37						
## Player Name		FG-FGA	FT-FTA				PF	TP	А	то	вьк	S	MIN						
	.9 TOT-FG	3_РТ		REI	BOUN	DS.													

##	Player	gp-gs	min	avg	fg-fga	fg%	3fg-fga	3fg%	ft-fta	ft%	off	def	tot	avg	pf	dq	а	to	blk	stl	pts	avg
35	Colson,Bonzie	36-36	1156	32.1	236-449	.526	26-60	.433	141-180	.783	104	258	362	10.1	81	0	56	44	50	40	639	17.8
03	Beachem,VJ	36-36	1230	34.2	187-443	.422	87-241	.361	61-73	.836	23	123	146	4.1	46	0	31	40	38	33	522	14.5
05	Farrell,Matt	36-36	1238	34.4	172-384	.448	81-193	.420	81-102	.794	9	63	72	2.0	71	0	196	91	5	51	506	14.1
32	Vasturia,Steve	36-36	1244	34.6	162-374	.433	58-162	.358	91-100	.910	25	116	141	3.9	75	1	119	57	4	42	473	13.1
00	Pflueger,Rex	35-11	750	21.4	59-133	.444	27-68	.397	19-29	.655	18	78	96	2.7	60	0	53	24	12	31	164	4.7
02	Gibbs,TJ	36-1	539	15.0	51-136	.375	17-53	.321	49-59	.831	12	41	53	1.5	49	0	62	28	2	26	168	4.7
04	Ryan,Matt	36-0	286	7.9	43-99	.434	36-83	.434	9-10	.900	6	26	32	0.9	29	0	14	13	1	6	131	3.6
23	Geben, Martinas	34-23	421	12.4	42-65	.646	0-0	.000	23-30	.767	42	73	115	3.4	66	3	25	22	11	13	107	3.1
01	Torres, Austin	36-1	261	7.3	21-38	.553	0-0	.000	6-18	.333	23	31	54	1.5	46	0	7	9	8	9	48	1.3
33	Mooney, John	12-0	46	3.8	5-8	.625	2-4	.500	2-2	1.000	6	13	19	1.6	5	0	2	1	1	1	14	1.2
12	Burns, Elijah	11-0	44	4.0	1-4	.250	0-1	.000	7-8	.875	5	5	10	0.9	5	0	1	2	1	2	9	8.0
34	Mazza,Patrick	4-0	4	1.0	1-2	.500	0-0	.000	0-0	.000	0	1	1	0.3	0	0	0	1	1	0	2	0.5
21	Gregory,Matt	5-0	6	1.2	0-4	.000	0-4	.000	0-0	.000	0	0	0	0.0	0	0	0	0	0	0	0	0.0

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions
- Data Visualization
- Measuring Data Similarity and Dissimilarity

Types of Data Sets: (1) Record Data

- Relational records in relational tables: highly structured
- Transaction data
- Document data: Term-frequency matrix of text documents

```
HOME TEAM: Notre Dame 26-9
                       TOT-FG 3-PT
                                           REBOUNDS
## Player Name
                       FG-FGA FG-FGA FT-FTA OF DE TOT PF
03 VJ Beachem.... f
                               0 - 3
                                     0 - 0
35 Bonzie Colson..... f
                        6-13
                               0 - 1
                                     6-10
                                                                      31
00 Rex Pflueger..... g
                        2-3
                             0 - 0
05 Matt Farrell..... g
                        6-9
                             3-5
                                                                      36
32 Steve Vasturia..... g
                                     3-4 3 5 8 0 10 1 0 0 0 37
                        3-12
                             1-2
01 Austin Torres.....
                                     0-0 1 0 1 0 0 0 1 1 0
                        0 - 1
                               0 - 0
                                     2-2 0 2 2 1 2 0 0 0 0
                        0 - 1
02 TJ Gibbs.....
                             0 - 0
                                     2-2 0 2 2 0 6 0 0 0 0
                        2-3
04 Matt Ryan.....
                               0 - 0
23 Martinas Geben.....
                               0 - 0
                                     0 - 0
  Totals.....
                                           9 27 36
                       21 - 52
                               4-11 14-21
                                                     9 60 10 6 3
                                                                   4 200
TOTAL FG% 1st Half: 14-30 46.7%
                               2nd Half: 7-22 31.8%
                                                     Game: 40.4%
                                                                DEADB
3-Pt. FG% 1st Half: 2-5 40.0%
                               2nd Half: 2-6 33.3%
                                                                 REBS
                                                     Game: 36.4%
F Throw % 1st Half: 6-8 75.0%
                               2nd Half: 8-13 61.5%
                                                     Game: 66.7%
                                                                  3
```

Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
 - Sales database: customers, store items, sales.
 - Medical database: patients, treatments.
 - University database: students, professors, courses.
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database: (often) rows → data objects; columns → attributes.

Attributes

- Attribute (or features, variables)
 - A data field, representing a characteristic or feature of a data object
- Types:
 - Nominal (e.g., red, blue)
 - Binary (e.g., {true, false})
 - Ordinal (e.g., {freshman, sophomore, junior, senior})
 - Numeric: quantitative

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {black, blond, brown, grey, red, white}

Binary

- Nominal attribute with only 2 states (o and 1)
- Symmetric binary: both outcomes equally important
 - e.g., _____
- Asymmetric binary: outcomes not equally important.
 - e.g., ______

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known
- Size = {small, medium, large}, _____, _____

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (o and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known
- Size = {small, medium, large}, grades, army rankings

Types of Data Sets: (2) Graphs and Networks

- Transportation networks
- World Wide Web
- Molecular structures
- Social or information networks

Types of Data Sets: (3) Ordered Data

- Video data: sequence of images
- Temporal data: time-series
- Sequential Data: transaction sequences

Macaque

Human

Macaque

Human

Macaque

Human

Macaque

Human

Macaque

Human

Macague

Human

Macaque

Genetic sequence data

Other Types of Data Sets

- Spatial data
- Image and multimedia data

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions
- Data Visualization
- Measuring Data Similarity and Dissimilarity

Basic Statistical Descriptions of Data

- Motivation: to better understand the data
- Data dispersion characteristics
 - Central tendency: Mean, median, mode, max, min ...
 - Outlierness: Variance, standard deviation, Z-score ...

Measuring the Central Tendency: (1) Mean and (2) Median

- Mean (sample vs. population):
 - Note: n is sample size and N is population size.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$

- Trimmed mean: Chopping extreme values
- Median:
 - Middle value if odd number of values, or average of the middle two values otherwise

Measuring the Central Tendency: (3) Mode

- Mode: Value that occurs most frequently in the data
- Multi-modal
 - Bimodal
 - Trimodal

Measuring the Outlierness: Variance and Standard Deviation

- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
Why?
$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2} \qquad \mu = \frac{1}{N} \sum_{i=1}^{N} x_{i}$$

• Standard deviation s (or σ) is square root of variance s² (or σ ²)

Biased Sample Variance

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^{n} \left[(X_i - \mu) + (\mu - \bar{X}) \right]^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 + \frac{2}{n} \sum_{i=1}^{n} (X_i - \mu)(\mu - \bar{X}) + \frac{1}{n} \sum_{i=1}^{n} (\mu - \bar{X})^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 + 2(\bar{X} - \mu)(\mu - \bar{X}) + (\mu - \bar{X})^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 - (\mu - \bar{X})^2$$

Unbiased

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Bessel's Correction: 3 alternative proofs of correctness

Measuring the Outlierness: Variance and Standard Deviation

- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)
 - Q: Can you compute it incrementally and efficiently?

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2} \qquad \mu = \frac{1}{N} \sum_{i=1}^{N} x_{i}$$

• Standard deviation s (or σ) is square root of variance s² (or σ ²)

Measuring the Outlierness: Properties of Normal Distribution Curve

Z-score: The distance between the raw score and the population mean in the unit of the standard deviation

Z-score Normalization

The normalized value of X_i is calculated as:

$$Z_i = \frac{X_i - \overline{X}}{S}$$

$$\mathbf{y} = \begin{bmatrix} 35\\36\\46\\68\\70 \end{bmatrix} \quad s = \sqrt{\frac{(35-51)^2 + (36-51)^2 + (46-51)^2 + (68-51)^2 + (70-51)^2}{5-1}}$$

$$= \frac{1}{2}\sqrt{(-16)^2 + -15^2 + (-5)^2 + 17^2 + 19^2}$$

$$= 17. \quad \mathbf{z} = \begin{bmatrix} \frac{35-51}{17}\\\frac{36-51}{17}\\\frac{46-51}{17}\\\frac{68-51}{17}\\\frac{17}{70-51} \end{bmatrix} = \begin{bmatrix} -\frac{16}{17}\\-\frac{15}{17}\\\frac{17}{17}\\\frac{17}{17}\\\frac{19}{19} \end{bmatrix} = \begin{bmatrix} -0.9412\\-0.8824\\-0.2941\\1.0000\\1.1176 \end{bmatrix}$$

vs. Min-Max Normalization:

$$[0, 1/35, 11/35, 33/35, 1] = [0, 0.0286, 0.3143, 0.9429, 1.0]$$

Discussion

- Can you use Z-score to automatically find phrases?
 - If we have 1,000 "matrix" and 1,000 "factorization" in 1,000,000 words, and we assume independency, we should have only one "matrix factorization" (expected).
 - But actually we have more! Outlierness

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Clare R Voss, Jiawei Han. "Automated Phrase Mining from Massive Text Corpora". Submitted to Transactions on Knowledge and Data Engineering.

References

- W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997
- D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- E. R. Tufte. The Visual Display of Quantitative Information, 2nd ed., Graphics Press, 2001
- C. Yu, et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009