Admission to Candidacy Examination

in

Real Analysis January 1988

Instructions: Answer all questions. Question \$ 1 is worth 20 points; the remaining problems are worth 10 points each.

Terminology: Unless otherwise specified, the terms measurable, a.e., refer to Lebesgue measure λ on the real line R, and L^p of an interval with respect to Lebesgue measure on that interval.

1. Prove or provide a counterexample for each of the following.

(a). If f is monotone on [a,b] and f' exists a.e., then f' & L1([a,b]).

(b). If f is monotone on [a,b] and f'(x) = 0 a.e. on (a,b), then f is a constant on [a,b].

(c). Let μ and ν be measures on a measurable space (X,). If μ << ν , then there exists $f \in L^1(\nu)$ such that $\mu(B) = \int_B f \ d\nu$, for all $B \in \mathcal{C}$.

(d). If (f_n) is a sequence in $L^1(X_0\mu)$ and $\iint_{n} d\mu \to 0$ as $n \to \infty$, then $f_n \to 0$ μ -a.e.

2. Suppose $g \in L^1([0,1])$, $g \ge 0$, and $f_n \to f$ in measure. If $|f_n| \le g$, prove that $f \in L^1([0,1])$ and that

$$\lim_{n\to\infty} \int_0^1 f_n d\lambda = \int_0^1 f d\lambda.$$

3. Suppose g(t) and tg(t) are in $L^1((0, \infty))$. For x real, define f(x) by

$$f(x) = \int_{0}^{\infty} g(t) \sin(xt) dt$$

Prove that f is differentiable on R, and that

$$f'(x) = \int_0^\infty tg(t)\cos(xt)dt.$$

4. Let (X, μ) be a finite measure space and $\{f_n\}$ a sequence in $L^1(X, \mu)$. If f is an -measurable function on X which is finite μ -a.e. with $f_n \to E$ ψ -a.e., prove that

$$f \in L^1(X, \mu)$$
 and $\lim_{n\to\infty} \int_X |f_n - f| d\mu = 0$

if and only if for each $\epsilon > 0$, there exists a $\delta > 0$ such that $\int |f_n| d\mu < \epsilon$ for all E ϵ with $\mu(E) < \delta$.

5. Suppose f is a measurable function on [0,1]. The distribution function for f is defined by $\mu_f(t) = \lambda(\{x: |f(x)| > t\})$. Suppose Φ is a nonnegative, absolutely continuous monotone increasing function on $[0,\infty)$ with $\Phi(0) = 0$. Prove that

$$\int_{0}^{1} \Phi(|f(x)|) dx = \int_{0}^{\infty} \Phi'(t) \mu_{f}(t) dt.$$

6. Let µ ≠ 0 be a regular Borel measure on [0,1] such that

$$\int_{0}^{1} f g d\mu = \int_{0}^{1} f d\mu \int_{0}^{1} g d\mu$$

for all continuous functions f and g on [0,1]. Prove that there exist

a ϵ [0,1] such that $\int_{0}^{1} f d\mu = f(a)$ for all continuous functions f on [0,1].

7. Let μ and ν be measures on a measurable space (X,). Suppose μ is o-finite and $\nu << \mu$? If f_n , $n=1,2,\ldots$ and f are measurable functions on X with $f_n \to f$ in measure $\{\mu\}$, prove that $f_n \to f$ in measure $\{\nu\}$.

8. Let μ be a positive measure on X. Let $K: K \times X \to [0,\infty)$ and $g: X \to (0,\infty)$ be measurable functions, 1 and <math>1/p + 1/q = 1. Suppose there exist constants A and B so that

$$\int_X K(x,y)g(y)^q d\mu(y) \le [A g(x)]^q \text{ and } \int_X K(x,y)g(x)^p d\mu(x) \le [B g(y)]^p.$$

Prove that T defined by

$$Tf(x) = \int_{X} K(x,y)f(y)d\mu(y)$$

is a bounded operator on $L^p(X,\mu)$ satisfying $||Tf||_p \le AB||f||_p$ for all $f \in L^p$.

9. Suppose $f \in L^p(\mathbb{R})$, $1 \le p \leqslant \infty$. Define the L^p modulus of continuity of f by

$$\omega_{p}(f,t) = \sup_{\|h\| \le t} \left[\int_{R} |f(x+h) - f(x)|^{p} dx \right]^{1/p}.$$

Prove that $\lim_{t\to 0^+} \omega_p(f,t) \approx 0$.