TD 3 : Champ magnétostatique – Calcul direct

Ex1: Exemple de cours (voir polycopié)

Ex2: Segment de courant

On veut calculer le champ magnétostatique $\overline{B(M)}$ créé en un point M quelconque à une distance x d'un fil traversé par un courant constant i. Une gaine permet de négliger le champ créé par le courant par les parties du fil au-delà des angles α_0 et α_1 .

- 1. En utilisant la loi de Biot et Savart, donner la direction du champ $\overrightarrow{B(M)}$.
- 2. Montrer que l'on obtient le même résultat en étudiant les symétries de la distribution de courants.
- 3. Donner l'expression du champ élémentaire $\overrightarrow{dB(M)}$ créé par une portion du fil P de longueur infinitésimale dl.
- 4. Nous allons maintenant intégrer cette expression pour obtenir le champ $\overrightarrow{B(M)}$ résultant de la distribution de courants.
- a. Calculer le produit scalaire $\overrightarrow{dl} \times \overrightarrow{r}$ (ou $\overrightarrow{dl} \times \overrightarrow{u_{PM}}$ selon l'expression choisie pour la loi de Biot et Savart).
- b. Choisir une variable d'intégration pour le calcul de B(M) et transformer en conséquence l'expression de $\overrightarrow{dB(M)}$. On pourra utiliser la trigonométrie.
 - c. Calculer $\overline{B(M)}$ par intégration.
 - Comment pouvez-vous contrôler la vraisemblance de votre résultat ?

Ex3: Arc de courant

On cherche à calculer le champ $\overrightarrow{B(O)}$ créé en son centre O par un arc de courant d'ouverture angulaire θ et de rayon R. Une gaine permet de ne considérer que la contribution de cette portion.

On étudie le champ magnétostatique $\overrightarrow{B(M)}$ créé par une spire de rayon R traversée par un courant d'intensité constante I. Le point M est situé sur l'axe de la spire et perçoit celle-ci sous un angle α .

- 1. Etablir sans calcul la direction du champ $\overline{B(M)}$.
- 2. Donner l'expression du champ infinitésimal $\overrightarrow{dB(M)}$ créé par un élément de la distribution, et la

projeter dans la direction du champ résultant.

3. Intégrer l'expression obtenue pour calculer l'expression du champ résultant en M en fonction de μ_0 , I, R et α .

Ex6: Cyclotron (bonus)

Un cyclotron sert à accélérer des ions (ici de masse m et de charge q > 0S) depuis le point O avec une vitesse négligeable, en leur faisant décrire des demi-cercles de rayon de plus en plus élevé. Le dispositif est constitué de deux parties en forme de « D » où règne un champ magnétique constant \vec{B} , séparées par un intervalle où règne un champ électrique \vec{E} que l'on synchronise avec le passage des électrons, de sorte, que, pour simplifier, l'on pourra considérer que le champ \vec{E} est de norme constante et possède deux sens comme indiqué sur le schéma. La tension U régnant entre les deux « D » a pour valeur $U = \frac{E}{d}$, où d est la distance entre les deux « D ».

- 1. Schématiser la force s'appliquant sur les ions lorsqu'ils sont dans le champ \vec{E} . Quelle vitesse les ions possèdent-ils après leur première accélération par le champ \vec{E} ?
- 2. Schématiser la force s'appliquant sur les ions dans un « D ». Quelle est la trajectoire des ions dans un « D » ? Appliquer le second principe de la dynamique pour obtenir le rayon R_1 de la première trajectoire. Commentaire.
- 3. Généraliser pour trouver le rayon R_n de la n-ième trajectoire en fonction de R_1 , ainsi que la vitesse v_n sur cette trajectoire en fonction de v_1 .
- 4. Montrer que le temps de parcours d'un demi-cercle ne dépend pas du rayon de celui-ci.
- 5. On suppose que le rayon du cyclotron est 1000 fois plus grand que celui de la première trajectoire. En combien de temps le faisceau d'ions atteint-il la périphérie du cyclotron? Vérifier la vraisemblance de votre résultat avec un calcul d'ordre de grandeur.