Optical Flow Algorithms for CSF Analysis

Catherine Tu Fall Q2 UROP

Background + Motivation

- CSF flow in the 4th ventricle has been shown to be influenced by many factors, especially arousal state,
 evoked sensory stimulation, and systemic physiology
- Fluid flow is an inherently complex physical system, additionally complicated by the MR inflow effect
- Most of the research to date focuses on analyses in the time or frequency domain of spatially averaged signals
- Thus, potential spatial patterns of flow that might change across conditions might be missed by traditional analysis methods

Standard Analysis Method

X slice of brain

Are there important spatial patterns?

- We sometimes look at the intensity decay across z-slices,
 but this method doesn't capture spatial patterns
- How can we capture spatio-temporal features of CSF flow in the 4th ventricle?
- In analysis of 2D videos, optical flow algorithm are used to track motion of objects, compute directions of change over time

Optical Flow Applications

Optical flow vectors

Compensated flow vectors

Dense Optical Flow Algorithm

Description

- We focus on this type since CSF fluid attenuates and cannot be tracked like an object moving through the ventricle
- Computes a "dense" flow field estimation covering all pixels that explains how local image intensities change from frame to frame

$$I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)$$

Assuming the movement to be small, the image constraint at I(x,y,t) with Taylor series can be developed to get:

$$I(x+\Delta x,y+\Delta y,t+\Delta t)=I(x,y,t)+rac{\partial I}{\partial x}\,\Delta x+rac{\partial I}{\partial y}\,\Delta y+rac{\partial I}{\partial t}\,\Delta t+ ext{higher-order terms}$$

Gunnar-Farneback implementation

Flow direction indicated by color

Dense Optical Flow Example

Mean Optical Flow Over 51 Frames

Original Video

Dataset

- 7T fast fMRI sequences collected from participants receiving dexmedetomidine sedation
- 580 volumes, 0.499s TR, 2mm isotropic voxels
- Data preprocessed with slice timing correction and motion realignment

Methods

DATASET PARAMETERS:

96 96 96 580 [X, Y, Z, time frame]

OVER ALL TIME STAMPS t= 0 - 578

- · get X-slice of time frame t and t+1
- · calculate the dense optical flow between the two time frames

PLOT WITH ARROWS:

- · plot arrows in Cartesian coordinates on flow changes
- · use color also as indication of direction

Arrow Color Direction:

One Calculation vs. Averaged

One Frame

Averaged Frames

Optical Flow (All Time Stamps)

Optical Flow Timestamp 1

Smoothed Over Time (3 Time Stamps)

Optical Flow Timestamp 105

Angle Distributions Method

```
DATASET PARAMETERS:
[x, y, z, time frame]
OVER ALL TIME STAMPS t= D + 578
· get X-slice of time frame t and t+1
· calculate the dense optical flow
  between the two time frames
CALCULATE ANGLES
· extract x & y optical flow vectors @ voxels
· calculate the angle (arctan)
· plot angle distributions of flow over a
 voxel over all time frames
```

Example Ventricular Voxel

Plot of Voxel 63, 2 Angle (Radians) Over All Timestamps

4th Ventricle Mask Voxels

Plot of All X-Axis Masked Voxel Angles (Degrees) Over All Timestamps

"Control" Cerebellum voxels

Comparing Pre vs Dex Scan

- Different dataset (Pre)
- Data seems more sporadic, and flow

Next Steps

- Continue to explore what the output of this algorithm can show us about spatio-temporal features of CSF flow in the 4th ventricle
- Model 3D optical flow
- Continue to explore different datasets and evaluate what factors make the data a good candidate for optical flow algorithms
 - Compare across brain states (sedation, natural sleep, drowsiness, etc)
 - Compare across different populations or conditions (age, mood, sleep deprivation)

```
void cv::calcOpticalFlowFarneback ( InputArray
                                                       prev,
                                    InputArray
                                                       next,
                                    InputOutputArray flow,
                                    double
                                                       pyr_scale,
                                    int
                                                       levels,
                                    int
                                                       winsize,
                                    int
                                                       iterations,
                                    int
                                                       poly_n,
                                    double
                                                       poly_sigma,
                                    int
                                                       flags
Python:
```

cv.calcOpticalFlowFarneback(prev, next, flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags) -> flow

Citations

- https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html
- https://viso.ai/deep-learning/optical-flow/#elementor-toc_heading-anchor-4
- Fultz NE, Bonmassar G, Setsompop K, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366(6465):628-631. doi:10.1126/science.aax5440

Thank you to the MGH Department of Anesthesiology and Marco Loggia & Seun Akeju for the dataset!