Factorisation et Developpement

Delhomme Fabien

21 février 2022

Table des matières

Ι	Reconnaître une forme factorisée et une forme développée				
II	Développer II.1 Techniques pour développer un produit de deux facteurs	2 2			
III	[Factoriser	2			
	III.1 Identités remarquables	2			
	III.1.1 TODO Première identité	2			
		3			
	III.1.3 Troisième identité	4			
IV	IV Applications théoriques : résolution d'équations				
V	V Applications concrètes : calculer mentalement des carrés				
V]	VI Application concrete et théorique : extraction d'une racine carré				
Ι	I Reconnaître une forme factorisée et une forme développée				

Certains calculs sont sous forme factorisée.

L'expression :

$$(x+7)\times(x-4)$$

est sous forme factorisée

$\mathbf{Exemple}$

L'expression :

$$x^2 + 3x$$

n'est pas factorisée, puisque on peut encore trouver des facteurs communs aux différents termes. Cette expression est sous forme développé car il n'y a que des produit de termes simples

L'expression :

$$x(x+1) + 1$$

N'est ni sous forme factorisée (car le terme 1 n'est pas dans un produit) ni sous forme développée (car il existe le terme x(x+1) qui peut encore être développé

II Développer

 $\#+begin_{defi}\{Développement\}$ On appelle développement le processus qui permet de passer d'une forme développer à une forme factorisée. $\#+end_{defi}$

$$x \times (x+5) = x^2 + 5x$$

II.1 Techniques pour développer un produit de deux facteurs

On peut faire appel à un tableau.

Si on veut développer le produit suivant :

$$(x-4)\times(x+3)$$

on peut utiliser le tableau suivant :

×	x	3
x	x^2	3x
-4	-4x	-12

Puis faire la somme de tous les termes du tableau :

$$(x-4) \times (x+3) = x^2 + 3x - 4x - 12 = x^2 - x - 12$$

III Factoriser

On appelle la factorisation le processus qui permet de passer d'une forme développée à une forme factorisée

III.1 Identités remarquables

Les identités remarquables servent à reconnaîtres des expressions pour développer ou factoriser. Il faut donc les connaître dans les deux sens (de gauche à droite du signe égal, mais également de droite à gauche).

III.1.1 TODO Première identité

Pour tout nombres réels a et b, on a l'égalité suivante

$$(a+b)^2 = a^2 + 2ab + b^2$$

Demonstration

Version graphique:

À venir!

 $Version\ alg\'ebrique:$

On développe le carré par :

$$(a+b)^2 = (a+b) \times (a+b)$$

$$= a \times (a+b) + b \times (a+b)$$

$$= a \times a + a \times b + b \times a + b \times b$$

$$= a^2 + ab + ba + b^2$$

$$= a^2 + 2a \times b + b^2$$

En on trouve bien l'égalité annoncée

III.1.2 Deuxième identité

En partant de la première identité, on peut en déduire la deuxième facilement.

Proposition

Pour tout nombre réel a, b, on a :

$$(a-b)^2 = a^2 - 2a \times b + b^2$$

Demonstration

Pour montrer cette identité, on peut soit redévelopper comme cela a été fait à la démonstration précédente, soit, puisque l'identité précédente est valable pour tous les nombres a, et b, on peut $remplacer\ b$ par -b pour obtenir :

$$(a + (-b)) = a^2 + 2 \times a \times (-b) + (-b)^2$$

(a+(- Sauf que $(-b)^2=b^2,$ donc on obtient

$$(a-b) = a^2 - 2 \times a \times b + b^2$$

Exemple

On peut par exemple calculer 98^2 en remarquant que 98 = 100 - 2, et donc :

$$98^2 = (100 - 2)^2 = 100^2 - 2 \times 100 \times 2 + 2^2$$

Finalement:

$$98^2 = 10000 - 400 + 4 = 9604$$

III.1.3 Troisième identité

La troisième identité est bien différente des deux autres.

Pour tout a et b réel, on a l'égalité suivante :

$$(a+b)(a-b) = a^2 - b^2$$

Demonstration

On démontre cette égalité à l'aide d'un développement comme pour la première identité

$$(a+b)(a-b) = a \times (a-b) + b \times (a-b)$$
$$= a \times a - a \times b + b \times a - b \times b$$
$$= a^2 - b^2$$

 $\overline{\mathrm{Qu'}}$ obtient-on lorsque l'on remplace b par -b, quelle nouvelle identité découvre-t-on?

IVApplications théoriques : résolution d'équations

Les identités remarquables permettent de résoudre des équations sans faire d'erreur. Regardons précisemment l'équations:

$$x^2 = 49$$

On sait déjà qu'une solution est donnée par x=7, puisque le carré de 7 fait 49. Mais est-ce la seule solution?

On va utiliser une identité remarquable pour le savoir.

$\mathbf{^{ m extsf{L}}}$ Méthode

On soustrait 49 à chaque membre de l'équation, pour obtenir la nouvelle équation (équivalente à la

$$x^2 - 49 = 0$$

On peut remplacer 49 par 7², pour obtenir :

$$x^2 - 7^2 = 0$$

On peut utiliser l'identité remarquable $a^2 - b^2 = (a + b)(a - b)$, avec a = x et b = 7, on obtient

$$(x-7)(x+7) = 0$$

Puis, si un produit est nul, c'est que l'un de ses facteurs est nul, donc soit x vaut 7 (on retrouve une solution vue précédemment), soit x vaut -7 (et c'est souvent l'equation que l'on oublie!)

V Applications concrètes : calculer mentalement des carrés

Si on considère le calcul de 204², on peut utiliser la relation suivante :

$$204^{2} = (200 + 4)^{2}$$

$$= 200^{2} + 2 \times 200 \times 4 + 4^{2}$$

$$= 40000 + 1600 + 16$$

$$= 41616$$

VI Application concrete et théorique : extraction d'une racine carré

Méthode

On vient de voir par exemple que $\sqrt{41616}=204$. Peut-on calculer à la main les premieres décimales de $\sqrt{41617}$?

On sait que $\sqrt{41617}\approx 204$. Que doit-on rajouter à 204 pour s'approcher le plus possible de $\sqrt{41617}$?

On pose h le nombre tel que

$$\sqrt{41617} = 204 + h$$

On obtient donc

$$41617 = (204 + h)^{2}$$
$$= 204^{2} + 2 \times 204 \times h + h^{2}$$
$$= 41616 + 408 \times h + h^{2}$$

Le terme h^2 devrait être très très petit, donc on va à partir de maintenant considérer qu'il est nul (alors qu'il ne l'est pas! Mais on cherche une approximation!)

On se retrouve ainsi avec l'expression:

$$1 = 408 \times h$$

Donc, si on considère que h^2 est négligeable car très petit, on obtient finalement $h = \frac{1}{408}$. Il vient :

$$\sqrt{41617} \approx 204 + \frac{1}{408}$$