USAFOEHL REPORT

88-098EQ0159GEF

SOURCE EMISSION TESTING OF HOSPITAL AND CLASSIFIED WASTE INCINERATORS, PLATTSBURGH AFB NY

JAMES A. GARRISON, Major, USAF, BSC

July 1988

AD-A199

Final Report

Distribution is unlimited; approved for public release

USAF Occupational and Environmental Health Laboratory
Human Systems Division (AFSC)
Brooks Air Force Base, Texas 78235-5501

88 9 28 026

CCI IDITY	PIAC	CICLOAS	TION OF	TILLE	DACE

REPORT	DOCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188
14 REPORT SECURITY CLASSIFICATION Unclassified		16 RESTRICTIVE N/A	MARKINGS	i	
24. SECURITY CLASSIFICATION AUTHORITY	······································		for public		
2b. DECLASSIFICATION / DOWNGRADING SCHEDU N/A	LE		tion is unl		
4. PERFORMING ORGANIZATION REPORT NUMBER	R(S)	5 MONITORING	ORGANIZATION	REPORT NU	MBER(S)
USAFOEHL Report 88-098EQ0159GE					
6a. NAME OF PERFORMING ORGANIZATION USAF Occupational and Environ-	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORG	ANIZATION	
mental Health Laboratory.	ECQ				
6c. ADDRESS (City, State, and ZIP Code)	-	7b. ADDRESS (Ci	ty, State, and 21F	Code)	
Brooks AFB TX 78235-5501		<u> </u>			
8a. NAME OF FUNDING / SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9 PROCUREMEN	T INSTRUMENT I	DENTIFICAT	ION NUMBER
Same as 6a	}				
8c. ADDRESS (City, State, and ZIP Code)	<u> </u>	10 SOURCE OF	UNDING NUMBE	RS	
		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO
Same as 6c			J	}	ļ
11. TITLE (Include Security Classification)		<u>, </u>	<u> </u>		
Source Emission Testing of Hos	spital and Class	ified Waste	Incinerator	s, Plat	tsburgh AFB NY
12. PERSONAL AUTHOR(S)					
James A. Garrison, Major, USAF,	BSC				
13a. TYPE OF REPORT 13b. TIME CO	OVERED	14. DATE OF REPO	ORT (Year, Month	i, Day) 15	PAGE COUNT
	10 to Dec_87				87
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES	18. SUBJECT TERMS (Cor le on reven	se if necessary ar	nd identify i	by block number)
FIELD GROUP SUB-GROUP	Stack Sampling	.ncinerat			
	Source Testing	Hospital	Incinerator	Hyd	rogen Chloride
19. ABSTRACT (Continue on reverse if necessar)	Emission Testin	q Patholo	gical Incin	erator	
At the request of HQ SAC/SG	PB. source emis	sion testina	for partic	ulates	and hydrogen
Chloride emissions was conducted	ed on the USAF H	ospital path	ological in	cinerat	or at
Plattsburgh AFB NY by the Air Q	uality Function	of the USAF	Occupation	al and	Environmental
Health LaboratoryThis survey	was requested	to evaluate	emissions w	ith res	pect to
proposed New York State Standar BMW/MSS classified waste incine	ru for medical c erator was also	are facility	-waste inci	nerator	s. The 380
emissions could be produced fro	m this unit.	tested becau	se or conce	riis tiia	CSIMITAL
Results indicate that the h	ospital inciner	ator did not	meet the p	resent	air emission
standards or proposed standards	with the excep	tion of hydr	ogen chlori	de (HC1) emissions.
The classified waste incinerate	r met both stan	dards with r	espect to v	isible	emissions but
did not meet the standards for proposed regulations, the class	particulate emi ified wasto inc	ssiums. Alt inerator was	nough not r evaluated	for uri	by present or
results indicate that this unit	met the propos	ed HC1 emiss	ions standa	rds for	infectious
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT	RPT DTIC USERS	21 WARABAST IF	CUBITY CLASSIFI	CATION	(over)
Maj Madames R. PGarrison (512) 536		225 JELERHANE	Include Area Cod	(e) 22c OF	FICE SYMBOL
DD Form 1472 HIN 96					

Item 19 Continued

waste incinerators. Since only one sample run of the three required by testing methods could be accomplished on the classified waste unit, results should only be used as an indicator of performance and not as definite evidence of either meeting or failing to meet regulations.

me dinter proposed mandager

Acces	ssion For	
NTIS	GRA&I	D
DTIC	TAB	ň
Unara	ounced	ñ
Justi	fluation	
T	ibution/	Codes
:	Aveil and	l/or
Dist	Special	
4-1		

CONTENTS

			Page
		Form 1473 rations	i iv
١.	INTE	ODUCTION	1
11.	DISC	CUSSION	1
	A. B	ackground	1
	B. S	ite Description	1
	C. A	pplicable Standards and Guidelines	3
	D. S	ampling Methods and Procedures	6
1.	CON	CLUSIONS	7
٧.	REC	OMMENDATIONS	16
	Refe	rences	17
	Appe	ndix	
	Α	Personnel Information	19
	В	State Regulations	23
	С	State Interim Guidelines	29
	D	Proposed State Regulations	37
	E	Hospital Incinerator Field Data and Emissions Calculations	53
	F	Classified Waste Incinerator Field Data and Emission Calculations	69
	G	Calibration Data	77
	Distri	bution List	83

Iliustrations

		Page
Figure	Title	
1	Hospital Incinerator Facility	2
2	Classified Waste Incinerator Facility	4
3	ORSAT Sampling Train	8
4	ORSAT Apparatus	8
5	Particulate Sampling Train	9
6	Hospital Incinerator During Initial 10 Minutes of Burn	12
7	Hospital Incinerator 10 Minutes Into Burn	13
Table		
1	Stack Emission Data	10
2	Incinerator Temperature Data	15

I. INTRODUCTION

On 6-10 Dec 87, source emission testing for particulate and hydrogen chloride (HCI) emissions was conducted on the USAF Hospital pathological incinerator at Plattsburgh AFB by the Air Quality Function of the USAF Occupational and Environmental Health Laboratory (USAFOEHL). This survey was requested by HQ SAC/SGPB to evaluate emissions with respect to proposed New York State interim standards for medical care facility-waste incinerators. The 380 BMW/MSS classified waste incinerator was also tested because of concerns that similar emissions could be produced from this unit. Personnel involved with on-site testing are listed in Appendix A.

II. DISCUSSION

A. Background

There has been a growing concern by the New York State Department of Environmental Conservation (NYSDEC) concerning the environmental impact of hospital waste disposal including transportation, storage and disposal. Even though the primary concern with this waste material has been related to the infectious fraction, interest is now being focused on the incineration aspects of disposal. It is not the infectious material that is of primary concern during incineration, but the increasing amounts of disposable plastics found in the wastes. Many of the plastics are chlorinated and, when incinerated, produce emissions containing hydrochloric acid and possibly traces of chlorinated organic compounds.

Current state air regulations did not address toxic emissions at the time of their adoption but only dealt with particulates and opacity. At the time of this survey, an in-house test program was being considered by the state to characterize the emissions from selected medical care-waste incinerators and evaluate the risk from the emission constituents. The resulting technical data gathered by the state would be used to revise current air laws with regards to toxic emissions. Due to the time needed to develop adequate emission data and the inadequacy of the present regulations, the state deemed it necessary to promulgate interim guidance which would apply to new or modified units for which applications for permits to construct are received on or after 15 Oct 1986. The interim guidelines would not affect present units. The guidelines would be voluntary; however, the final regulations would be at least as stringent as the interim guidance.

B. Site Description

- 1. The hospital pathological waste incinerator is located in a separate building near the hospital. This facility is pictured in Figure 1. The incinerator is manufactured by Spronze Incinerator Corporation (Model RL-20 HDP) and has the following operational parameters:
- a. Designed for Type 4 waste (human and animal solid refuse consisting of carcasses and organs from hospitals, laboratories, slaughterhouses).

Figure 1. Hospital Incinerator Facility

b. Feed mechanism: batch

c. Load capacity: 150 pounds per hour (lbs/hr)

d. Combustions chamber design: Two-chamber design (primary/secondary)

e. Fuel: LP gas

f. Burner rating: 1,200,000 British thermal units per hour (Btu/hr)

- 2. The classified waste incinerator is located in a separate building (Bldg 2009) located next to Building 2008. The facility is pictured in Figure 2. The incinerator is manufactured by Spronze Incinerator Corporation (Model RL-20HD) and has the following operational parameters:
- a. Designed for Type 0 waste (rubbish consisting of highly combustible materials such as paper, wood and cardboard including up to 10% treated papers, rags, plastic or rubber from commercial and industrial sources).

b. Feed mechanism: batch

c. Load capacity: 230 lbs/hr.

d. Combustion chamber design: two-chamber design (primary/secondary).

e. Fuel: fuel oil.

f. Burner rating: 1,200,000 Btu/hr.

C. Applicable Standards and Guidelines

1. The monitoring requirements, opacity and particulate regulations are defined under Codes, Rules and Regulations of the State of New York, Title 6, Chapter III - Air Resources, Subchapter A - Prevention and Control of Air Contamination and Air Pollution, Part 219 incinerators. The current state regulations for particulate and smoke emissions (opacity) are provided in Appendix B. The NYSDEC interim guidance pertaining to medical care-waste incinerators which prompted this project is provided in Appendix C. The proposed regulations (Subpart 219-3, infectious Waste Incineration Facilities and Subpart 219-5, Existing Incinerators) which are now undergoing the public review process and which will affect future incinerator compliance are presented in Appendix D. Proposed Subpart 219-3 applies to all new, modified and existing infectious waste incineration facilities including those used for the incineration of all medical wastes and whose total permitted charging rate is less than 50 tons per day (present facilities must comply by 1 Jan 1992). The requirements of 219-3 are somewhat different from those outlined in the interim guidance presented in Appendix C. Proposed Subpart 219-5 applies to any incinerator installed or constructed or for which an application for a permit to construct was received prior to the effective date of the subpart (does not include incinerators falling under 219-3).

Figure 2. Classified Waste Incinerator Facility

- 2. The present state regulations for emissions from incinerators having a capacity of 2000 lb/hr or less and installed after 1 Jan 68 are as follows:
- a. Particulate emissions: Emissions are based on the amount of refuse charged in the incinerator on a lb/hr basis. Emissions for incinerators rated at less than 100 lb/hr shall meet the standards for a unit rated at 100 lb/hr which limits particulate emissions to 0.3 lb/hr. Reference Part 219, Appendix 2, Figure 1 (Appendix B).
- b. Smoke emissions: opacity not denser than 20 percent (%) or No. 1 on the Ringleman chart or equivalent during normal operation.
- 3. The proposed NYSDEC revision of Part 219, Subpart 219-3, for infectious waste incineration facilities provides for the following operational parameters:
- a. Particulate emissions: not greater than 0.015 grains per dry standard cubic foot (gr/dscf) of flue gas corrected to 7% oxygen (O_2) .
- b. HCl emissions: uncontrolled emission rate less than four pounds per hour and the total charging rate is less than 500 lb/hr.
 - c. Design requirements:
- (1) Interlocks batch fed units: must prevent charging waste until secondary chamber exit temperature reaches 1600 degrees Fahrenheit (°F) and prevent recharging until combustion and burndown cycles are complete.
 - (2) Temperature and residence time:
 - (a) Primary chamber: temperature maintained at no less than 1400°F.
- (b) Secondary chamber: residence time at least 1 sec for combustion gas and temperature not less than 1800°F.
 - d. Operating requirements:
- (1) Carbon monoxide (CO) emissions: not greater than 100 parts per million by volume, dry basis, corrected to $7\%~{\rm O_2}$.
- (2) Smoke emissions: not to exceed a six-minute average opacity equal to or greater than 10%.
- e. Continuous emission monitoring: monitor and record primary and secondary chamber exit temperatures, exit temperature of particulate cleaning device (if installed), opacity and CO (units with charging rate of 500 lbs or more).
- f. Stack testing: must be tested at start-up and annually thereafter for particulates, HCI, O_2 and CO.

- 4. The proposed NYSDEC revision of Part 219, Subpart 219-5, for existing incineration facilities (classified waste unit) provides for the following operational parameters:
- a. Particulate emissions: same as present regulations 0.3 lb/hr (for charging rate ap to 100 lb/hr)
- b. Visible emissions: not to exceed an average opacity of 20% during any six expectative minutes.
- 5. The proposed regulations, Subparts 219-3 and 219-5, contain additional incinerator enteria not addressed by this project. These criteria should also be reviewed to determine additional future compliance requirements.

U. Sampling Methods and Procedures

The present regulations require that all emissions tests be conducted in accordance with the procedures and analysis methods specified in 40 CFR 60, Appendix A, Methods 1-5 (perticulate emissions) and 9 (visible emissions). It is assumed that proposed regulations will require that Method 10 be used to evaluate CO emissions. At the present time, there is no standard method for determining HCI emissions; therefore, we coordinated with State of New York and Environmental Protection Agency personnel for an acceptable method to use for this project. For the parameters evaluated, test methods, equipment, sample train preparations, sampling and recovery, calibration requirements and quality assurance were done in accordance with the methods and procedures outlined in 40 CFR 60, Appendix A.

Inspection of the stacks indicated that sampling ports had already been installed on both the hospital incinerator and classified waste incinerator stacks. Inside stack diameters at the sampling ports for each stack were essentially the same: 13.5 inches (1.1 ft) for the hospital incinerator and 14 inches (1.2 ft) for the classified incinerator. Ports were located 5.0 stack sameters upstream from the stack exit and 12.8 stack diameters downstream from any disturbance (incinerator). Based on 1.1 to 1.2 ft inside stack diameters, port location and type of sample (particulate), a total of eight traverse points were determined for emission evaluation for each unit. The total time for each sampling run was 64 minutes; therefore, the sampling time for each point in a particular stack was 8 minutes. Illustrations showing port locations and sampling points are provided in Appendixes E and F.

Prior to every sample run on each stack, a preliminary velocity pressure traverse was accomplished and cyclonic flow was determined. For acceptable cyclonic flow conditions to exist in a stack, the average of the absolute value of the flow angle taken at each traverse point must be less than or equal to 20 degrees. The average flow angles in the hospital incinerator stack and classified waste incinerator stack were 18 degrees and 11 degrees respectively. These average flow angles indicate acceptable flow conditions in each of the stacks.

During each sample run, a flue gas sample for Orsat analysis (measures oxygen and carbon dioxide in the stack gas) was taken. Orsat sampling and analysis equipment are shown in Figures 3 and 4. Flue gas moisture content was obtained during particulate sampling.

Particulate samples were collected using the sampling train shown in Figure 5. The train consisted of a button-hook probe nozzle, heated inconel probe, heated glass filter, impingers and pumping and metering device. The nozzle was sized prior to each sample run so that the gas stream could be sampled isokinetically; in other words, the velocity at the nozzle tip was the same as the stack gas velocity at each point sampled. Flue gas velocity pressure was measured at the nozzle tip using a Type-S pitot tube connected to a ten inch inclined-verticle manometer. Type K thermocouples were used to measure flue gas as well as sampling train temperatures. The probe was heated to minimize moisture condensation. The heated filter was used to collect particulate materials. The impinger train (first, third and fourth impingers: modified Greenburg-Smith type, second impinger: standard Greenburg-Smith design) was used as a condenser to collect stack gas moisture. Also, the first two impingers contained 100 milliliters each of a dilute sodium carbonate solution (0.10N) instead of distilled water to collect HCI. The pumping and metering system was used to control and monitor the sample gas flow rate.

Both incinerators were tested using the typical waste and amounts normally burned in the units. The hospital wastes were the commonly termed "medical wastes" which included infectious waste and all other wastes derived from the care of patients. The estimated amount of wastes generated by the hospital for incineration is 44 to 88 bags per week. This equates to incineration operation 1-2 times per week with charge weights ranging from 20 to 50 lb. During emission testing, loading rates ranged from 20 to 50 pounds/hr. The classified wastes contained paper, plastic film-coated paper and film. The amount of plastics/film is usually less than 10% of the total volume. The estimated maximum amount of wastes generated for disposal in the classified incinerator is 30 bags per week. However, at the time of testing only enough material for a one-hour burn was available; this equated to a loading rate of 50.5 lb/hr.

Emission calculations were done using "Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators" (EPA-340/1-85-018) developed by the EPA's Office of Air Quality Planning and Standards, Research Triangle Park NC. All field data and resulting emissions calculations are presented in Appendixes E and F. Calibration data are presented in Appendix G.

III. CONCLUSIONS

Incinerator operating parameters and emissions results are presented in Table 1. Particulate and HCl emissions data are given in units which are consistent with both present and proposed regulations.

AND THE PROPERTY OF THE ANALYSIS AND PROPERTY OF THE PROPERTY

ADMINISTRATION OF THE PROPERTY OF THE PROPERTY

Figure 3. Orsat Sampling Train

Figure 4. Orsat Apparatus

Figure 5. Particulate Sampling Train

Table 1. Stack Emission Data

Description of the property of the second of

STACK FLOW RATE (decf/min)	572	55 50 50 50 50 50 50 50 50 50 50 50 50 5					
	30.19	50.40 51.29 51.79					
	126	2 2 3 3 8 6 8	1	10	(1b/hr)	0.25	0 0 0 0 0 0 0
OXYGEN CONCENTRATION (%)	11	17.27		•	78 02)	0.34	0.00 0.05 0.01
N ISORENETIC SAMPLING RATE	102	906 66 66	CHISSIONS	PARTICULATES	(gr/decf) (gr/		0.00 0.10 0.03
LOADING RATE (1b/hr)	51.5	50.0 20.0 17.0			(1b/hr)		0.37 0.49 0.16
NO.	1	400	i	ì	i		
INCINERATOR	CLASSIFIED	HOSPITAL Hospital Hospital					
DATE	08 Dec 88	09 Dec 88 10 Dec 88					

0.04

0.03

0.07

AVG -

A. Hospital incinerator: Results indicate that the hospital incinerator did not meet either the present or proposed incinerator regulations.

1. Present regulations:

- a. Present regulations require opacity to be not greater than 20%. A formal Method 9 (visible emissions) was not accomplished on this unit; however, it was estimated that during the first 6 to 10 minutes after charging the opacity of the visible emissions was greater than 90%. This fact is evidenced by Figure 6. Approximately 10 minutes into the run, the opacity rapidly began to decrease as shown in Figure 7 and reached essentially 0% opacity as shown in Figure 1. Opacity remained at this level for the remainder of the test (approximately 55 minutes).
- b. Present regulations limit particulate emissions to 0.3 lb/hr. Our tests indicate the actual emissions averaged 0.34 lb/hr. On sample runs 1 and 2 it became necessary to chare filters during the first five minutes of each test run due to the high particulate loading encountered. These filter changes prevented a certain amount of sampling during this tinth emission period; therefore, actual particulate emissions are greater than 0.34 lb/hr.
- 2. Proposed regulations: The hospital incinerator would not have passed the emission design, operating or continuous emission monitoring criteria which were evaluated with the exception of HCI.
- a. Particulate emissions: Emissions are limited to 0.015 gr/dscf. Actual emissions were 0.03 gr/dscf. Again, note that emissions would have been higher had it not been for the filter changes required in sample runs 1 and 2.
- b. HCl emissions: Emissions are limited to less than 4 lb/hr for charging rates less than 500 lb/hr. The average emission rate was 0.25 lb/hr, well below the standard.

c. Design requirements:

- (1) Temperature and residence time: Primary chamber temperature maintained at no less than 1400°F. Secondary chamber residence time of at least one second at no less than 1800°F.
- (2) Primary and secondary chamber operating temperatures for both the hospital and classified waste incinerators as well as corresponding stack temperatures are presented in Table 2. The hospital incinerator data were obtained during runs 2 and 3 and is typical of the temperature fluctuations observed during testing. As can be seen by these data, the incinerator does not meet the proposed temperature criteria. Based on secondary chamber volume (54 cubic feet) and temperature and flue gas temperatures and flow rates observed during testing, the calculated residence time ranged between 0.5 and 1.3 seconds. However, we feet the incinerator temperature sensing and/or indicating devices are suspect based on the following observations:

personal posterior lightered federates presented this

MANAGEMENT BEAUTIFFE FOR STATE OF THE STATE

Seesa exercica estectora persona entrese estructo estectora esteste estestes estructo estestes entrese entrese S

Figure 6. Hospital Incinerator During Initial 10 Minutes of Burn

Figure 7. Hospital Incinerator 10 Minutes into Burn

- (a) The extremely high primary and secondary chamber temperatures recorded during testing (Table 2). The temperature indicating devices were actually "pegged out" when the 2700°F readings were recorded. Discussion with Spronz Incinerator Corp. personnel indicated that normal chamber temperatures should range between 1700-1800°F with the secondary chamber reaching about 2300°F during a burn.
- (b) The wide fluctuation in secondary chamber temperature over very short periods of time (temperature dropping 1700°F in two minutes or 1000°F in one minute) with no corresponding fluctuations in stack temperature.
- (c) Lower stack flue gas temperatures corresponding to higher secondary chamber temperatures than noted during operation of the classified waste unit.
- (2) Interlocks: Incinerators must incorporate interlocks to prevent charging of wastes until chamber temperatures reach specified values, maintain specified chamber temperatures until waste has been reduced to ash and prevent recharging until the design burn cycle is complete. This unit was not equipped with such an interlock system.

o. Operating requirements:

- (1) CO emissions: Not measured.
- (2) Smoke emissions: Smoke emissions are limited to not more than a six-minute average opacity of 10%. Opacity was estimated to be greater than 90% for the first 6-10 minutes of each of the three sample runs.
- e. Continuous emission monitoring: Requires primary and secondary chamber temperatures, opacity, and control device (if installed) exit temperature to be continuously monitored and recorded. The only parameters continuously measured are chamber temperature; but, they are not continuously recorded.
- B. Classified incinerator: Due to the amount of waste material available (51.5 lbs charged in four loads over the sample run), only one sample run was accomplished. Due to high particulate loading, the run was shutdown after 52 minutes of sampling time. Since Method 5 requires that three sample runs be accomplished and the results averaged to determine final particulate emissions and each sample run be at least 60 minutes, results of this run should only be used as a possible indicator of performance and not as definite evidence of either meeting or failing to meet present or proposed emission regulations.

1. Present regulations:

a. Present regulations require opacity to be not greater than 20%. A formal Method ε (visible emissions) was not accomplished on this unit; however, it was estimated that opacity of the visible emissions was less than 20% during the entire run.

Table 2. Incinerator Temperature Data

				TEMPERATURE(°F)	
INCINERATOR					
ID	TIME	CHARGE	PRIMARY CHAMBER	SECONDARY CHAMBER	STACK
HOSPITAL	0925		2700	2700	
	0928	X	2700	2700	
	093 0		300	1000	520
	0933		800	1300	
	1005		2000	2700	
	1007	X	1450	2700	
	1008		500	2700	
	1009		600	1700	
	1011		800	1500	
	1013		900	2300	550
	1016		1300	2700	
	1024		1500	2700	590(1021 & 1025 hrs)
	105 3		1450	2700	590(1054 hrs)
	1100		1500	2700	600(1100 hrs)
	1228		2000	2200	
	1229	Х	2000	2000	
	1231		800	1400	
	1233		1000	2000	620(1234 hrs)
	1235	X	800	900	
	1250		800	1700	645
	1300		800	800	602(1302 hrs)
CLASSIFIED	1130	Х	1200	1500	750
	1137	Х			
	1140		1400	1700	745(1138 hrs)
	1141	X	\		
	1147		1250	1500	850(1146 hrs)
	1148	X	4.00	4500	
	1230		1600	1500	000/4000)
	1237		1900	1800	920(1233 hrs)
	1240		1900	2000	

- b. Present regulations limit particulate emissions to 0.3 lb/hr. Our tests indicate that, after correcting for the 52-minute run, actual emissions for the one sample run was 2.27 lb/hr. This result is significant in that, even if two additional runs had been accomplished and their results were zero, the average emissions rate would still be 0.76 lb/hr.
- 2. Proposed regulations for opacity and particulate emissions remain the same as the present standards. Therefore, the classified incinerator would have met regulations for opacity but not for particulates.

Even though not required by present or proposed regulations, secondary chamber temperature and HCI emissions were also noted. HCI emissions were 0.25 lb/hr which is well below the infectious waste incinerator emission limits. Secondary chamber temperatures ranged between 1500-2000°F during testing (Table 2).

IV. RECOMMENDATIONS

It is our opinion that the hospital and the classified waste incinerators should undergo a maintenance inspection to ensure they are operating according to the manufacturer's specifications. Once proper operation is attained, the units should undergo periodic preventive maintenance to ensure they continue to operate as designed. The following items should be evaluated initially and on a periodic schedule: (1) proper operation of combustion chamber temperature sensing and indicating devices, (2) proper operation of burners (auxiliary fuel) and supply of excess air to control chamber temperature, (3) integrity of seals, refractory, grates and overall general condition of unit.

Once the unit itself has been verified as operating properly, poor performance can then usually be attributed to the waste material or the charging technique. If the waste material consists of compressed or packaged materials rather than loose materials or materials for which the unit wasn't designed to burn (plastics), the rate of volatilization and the rate at which combustion air is supplied can become unbalanced which will cause smoke. Variable amounts of moisture in the waste can also cause a combustion imbalance and cause visible emissions. Therefore, to control emissions through charging techniques, consider the following suggestions: (1) use smaller and more frequent charges, (2) only fill primary (ignition) chamber two-thirds of the distance from grate to top of chamber, (3) remove ash buildup frequently, (4) spread charge evenly over grate and (5) preheat chamber to operating temperature prior to charging.

Once final incinerator regulations have been promulgated and the hospital and classified waste incinerators have been inspected and demonstrate proper operation, the units should be formally tested to ensure compliance with state standards.

REFERENCES

- 1. "Standards of Performance for New Stationary Sources," Title 40, Part 60, Code of Federal Regulations, July 1, 1987.
- 2. Quality Assurance Handbook for Air Pollution Measurement Systems Volume III, Stationary Source Specific Methods, U.S. Environmental Protection Agency, EPA-600/4-77-027-b, Research Triangle Park, North Carolina, December 1984.
- 3. Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators. U.S. Environmental Protection Agency, EPA-340/1-85-018, Research Triangle Park, North Carolina, May 1987.

APPENDIX A

Personnel Information

1. USAFOEHL Test Team

Maj James Garrison, Chief, Air Quality Function

Capt Mary Daly, Consultant, Air Quality Engineer

2Lt Ronald Parte, Chemist

A1C James Jarbeau, Industrial Hygiene Technician

USAFOEHL/ECQ Brooks AFB TX 78235-5501

Phone: AUTOVON 240-2891

Commercial (512) 536-2891

2. Plattsburgh AFB On-site Representatives

Capt McCullough USAF Hospital ?Plattsburgh/SGPB

AUTOVON 689-7421

SGT Miller 380th BMW/MSS

AUTOVON 689-7398

APPENDIX B

State Regulations

PART 218 VEHICLES PROPELLED BY DIESEL ENGINES

(Effective May 1, 1972; May 10, 1981)

Section 218.1 Applicability. This Pair shall apply to all vehicles propelled by a diesel engine, excluding marine vessels

- 218.2 Prohibitions. (a) No person who owns, operates or leases a vehicle propelled by a diesel engine or with owns, leases or occupies land and has actual or apparent dominion or control over the operation of a vehicle propelled by a diesel engine which is present on said land, shall operate said vehicle or allow or permit it to be operated. in such a manner that exhaust emissions of a shade of blue, black or grey equal to or greater than Number I on the Ringelmann chart or equivalent standard acceptable to the Commissioner are produced for a continuous period of more than five seconds when the vehicle is in motion
- (b) No person who owns, operates or leases a bas or track, the motive power for which is provided by a diesel engine or who owns, leases or occupies land and has the actual or apparent dominion or control over the operation of a bus or truck present on such land, the motive power for which said bus or truck is provided by a diesel engine, shall allow or permit the diesel engine of such bus or truck to idle for more than five consecutive minutes when the bus or truck is not in motion, except as otherwise permitted by section 218.3.
- 218.3 Exceptions. The prohibitions of subdivision (b) of Section 218.2 shall not apply when
- (a) A bus or truck is forced to remain motionless because of traffic conditions over which the operator thereof has no control.
- (b) Regulations adopted by federal, state or local agencies having jurisdiction require the maintenance of a specific temperature for passenger comfort. The idling time specified in subdivision (b) of section 218.2 may be increased but only to the extent necessary to comply with such regulations
- (c) A diesel engine is being used to provide power for an auxiliary purpose, such as loading, discharging, mixing or

processing cargo, controlling cargo temperature; construction; lumbering; oil or gas well servicing; farming; or when operation of the engine is required for the purpose of maintenance.

- .d) Fire, police and public utility trucks. or ther vehicles are performing emergency services.
- (e) Trucks owned or operated by persons engaged in mining and quarrying are used within the confines of such persons' property.
- (f) A track is to remain motionless for a period exceeding two hours, and during which period the ambient temperature is continuously below twenty-five degrees Fahrenheit

PART 219 INCINERATORS

(Effective May 1, 1972)

Section 219.1 Title. These rules shall be known as the New York State rules to prevent or poliution from in transfers

219.2 Applicable geographical area. This Part shall apply to the entire State of New

- 219.3 Definitions. (a) Incinerator. Any structure or furnace in which combustion takes place and type 0, 1, 2, 3, or 4 refuse is used as fuel, alone or in conjunction with fossil fuel
- (b) Refuse. All waste material, including but not limited to, garbage, rubbish, incinerator residue, street cleanings, dead animals, and offal. Refuse is classified in accordance with Table 1, Appendix 2.
- (c) Smoke. An air contaminant consisting of small gas-borne particles emitted by an air contamination source in sufficient number to be observable.
- 219.4 Emission limits. (a) All incinerators having a capacity of 2,000 lb/hr or less and built and installed after January 1, 1968, shall be designed, built, installed and operated to meet the emission limits of figure 1*
- (b) No incinerator larger than 2,000 fb/hr capacity and built after January I. 1970, shall be operated so as to produce

particulate emissions which exceed the

- 2,000 lb fir or less and built or installed between April 1, 1962, and January I, 1968, shall be operated so as to produce particulate conssions which exceed 0.5 lb hr for every 100 lb hr of refuse charged. unless a to allorder by the commissioner provides otherwise.
- (d) Any incinerator having a cupacity of 7,000 lb hr or less and built or installed prior to April 1, 1962, shall either meet the requirements of 219.4(c) or shall be equipped with adequate control devices or redesigned and rebuilt so as to meet the requirements of 2194(a) by January 1.
- (e) No incinerator larger than 2,000 lb. hr capacity and built between April 1, 1962, and January 1, 1970, shall be operated so as to produce particulate emissions which exceed 0.5 lb/hr for every 100 lb, hr of refuse charged, unless a final order by the commissioner provides Alberton
- (f) Any incinerator larger than 2,000 lb/hr capacity and built prior to April 1. 1962, shall either meet the requirements of 219.4(e) or shall be equipped with adequate control devices or redesigned an rebuilt so as to meet the requirements of 219.4(b) by January 1, 1970.
- 219.5 Smoke emissions. (a) No incinerator, built or installed after January 26, 1967, regardless of size, shall emit smoke of an opecity denser than 20 percent or No. 1 of the Ringelmann chart or equivalent, under normal operating conditions
- (b) No incinerator built or installed prior to January 26, 1967, regardless of size, shall be operated so as to emit smoke of an opacity denser than 40 percent or No 2 of the Ringelmann chart or equivalent, under normal operating conditions.
- 219.6 Tests. (a) All incinerators larger than 2.000 hr/lb capacity shall be tested using isokinetic sampling techniques in accordance with test procedures acceptable to the commissioner
- (6) All incinerators built or installed after January 1, 1968, and having a capacity of 2,000 lb/hr or less shall be tested in

*See Appendix 2

amount shown in figure 1* (c) No incinerator having a capacity of

promulgated by the commissioner. Units which are representative models may be tested instead of an actual installation, in accordance with special test procedures promulgated by the commissioner.

219.7 Abatement. (a) Where the commissioner has reason to believe that an incinerator installation is violating the emissions standards of section 219.4, he

accordance with special test procedures may have tests conducted. The owner shall provide, at his expense, sampling holes and request of the commissioner.

- (b) If such tests indicate a contravention of the emission limits, the commissioner may require the installation of appropriate control equipment or he may seal the incinerator if such equipment is not installed missioner.
- (c) The commissioner may order the cleaning, repair, replacement or alteration pertinent allied facilities as needed, at the of any equipment or control equipment which causes or is operated so as to cause a violation of this Part
- (d) The commissioner may order a change in the manner of operation of any within the time limit specified by the com-incinerator which is operated so as to cause a violation of this Part.

APPENDIX 2

APPENDIX 2

TABLE 1

Classification of Refuse

E	(2)	(5)	(4)	(5)	(9)
Iyles	Principal Composents	Approximate Composition X by weight	Approximate Moisture Content & by Weight	Approximate Incorbustible Solids A by Acoult	Approximate B.1.0. per Found of Refuse
	Rubbish consisting of highly combustible materials such as paper, wood not caldboard including up to 10% treated papers, rags, plastic or rubber from connectial and industrial sources	Rubbish 100€	% 01	3 5	3058
	Some garbage but primarily rubb.s) consisting of communities material such as paper, cardward, wood, corroutible floor owenings from residential, confercial and industrial sources.	Rubbish BCt Garouge 2014	25%	10%	0259
	Rubbish and garbage from residential sources	Rubbish of t Garbage 50%	50%	3.2	4.00
	Some tubbish, but primatily quincon oug- sisting of animal and we include mother from restaurants, theis, content, inclubutions, and corpetitionals.	Garbage 500 Pulicish 500	70%	Me	001.
	Upran and animal solid refuse constituta of curcusses and organs from hostatuls laboratories, abattoirs, animal perunds and similar sources.	1003(anima and Human Tissue	85%	*	17.CC
	Gake us, liquid or semi-liquid refuse from procisses such as tar, polots, selvente uni chemical siudhe	Variable	Dependent on pre- definant cempenents	e de la companya de l	Variable
	Solid or somi-solid refuse from prucesses such as rubber, plastics, wood and sowage sludge.	Variable	Dependent on pre-	variable	Varianin
ı					

PART 220 PORTLAND CEMENT PLANTS (Effective March 16, 1973; May 10, 1984)

Section 220.1 Definitions. (a) For the purpose of this Part, the general definitions of Part 200 of this Title apply.

- (b) For the purpose of this Part, the following definitions also apply:
- (1) Dry process portland cement plant. A portland cement plant where the raw material kiln feed entering the kiln in a powder form has a moisture content of one percent or less by weight.
- (2) Feed to the kiln. The weight of all materials, excluding fuels and uncombined water, introduced into the kiln during the time when a stack sample is being taken to determine compliance with sections 220.2 and 220.3 of this Part.
 - (3) Upset condition. Any unavoidable

APPENDIX C

State Interim Guidelines

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233-

HEHORANDUM

TO: Regional Air Pollution Control Engineer

Bureau Directors

Section Chiefs

FROM: Mr. Hovey (Originator: (W. Sonntag

SUBJECT: Regulation of Medical Care Waste-Incineration

DATE: October 14, 1986

86-AIR-21

Background

There has been a growing concern over the environmental impact of hospital waste disposal. The operators of both sanitary landfills and municipal waste incinerators have generally rejected infectious waste (red bags) as described in Dapartment of Health Memorandum, Health Pacilities Series H-12, copy attached. As a result, the red bags have piled up and their transportation, storage and disposal have at times been truly inadequate. Commercial incineration facilities have been developed to dispose of hospital wastes and their larger capacities and continuous operation should be scrutinized closely.

Although the primary concern with hospital waste relates to its infectious fraction, there is also concern with incinerator emissions from burning increasing amounts of disposable plastics. Some of these plastics are chlorinated, producing hydrochloric acid and possibly traces of chlorinated organic compounds when burned.

Existing Parts 219 and 222 were adopted in 1972 and 1973 to provide for the general regulation of refuse and pathological waste incineration. Part 222 applies in New York City, Nassau and Westchester Counties and Part 219 applies in the rest of the State. At the time of adoption, there was little concern with toxic emissions from these incinerators. Therefore, these regulations limit only emissions of particulate matter and smoke; Part 222 requires maintenance of 1400°F at the furnace outlet to destroy odors.

In order to revise Parts 219 and 222 to reflect current air toxic concerns, the Division of Air Resources plans to test a few selected medical care facility-waste incinerators to characterize emissions. Results and samples from these tests will then be given to the Department of Health for analysis with subsequent quantitative risk assessment of the emitted toxic contaminants. This program is scheduled for completion in spring, 1987.

Because the technical material needed to revise the incinerator regulations will not be available until spring 1987, the revisions will not be formally adopted until early 1988. This delay, combined with the inadequacy of existing Parts 219 and 222 dictates the need for interim guidance.

Direction

The suggestions proceeded have absold be construed as guidance. DEC staff should strive to obtain voluntary compliance with this guidance and then incorporate its recommendations in paralla.

Incinerator manufactures have indicated that they generally consider these recommendations good engineering practice, therefore they are not opposed to them.

Source owners refusing to meet the provisions of this guidance should be informed that the forthcoming proposed revisions of Parts 219 and 222 will be at least as stringent as this guidance and if adopted, existing units will be required to comply with them within the next few years. Retrofitting is frequently more expensive and less effective than a properly designed new unit.

Rationale for Interim Requirements

Applicability,

Concerns with happinal serve incineration relate to emissions and impacts from individual units burning infectious waste and high concentrations of plastics. These waste material a new substitution to hospitals; they are generated in nearly all medical care facilities. Therefore, for the purpose of this guidance, hospital weste rufure to all wastes, except unmixed garbage, that are generated by a medical care facility.

Hospital wasts incineration is carried out both on-site and off-site with impacts largely independent of geography and population density. This guidance applies to all on-sit, incinerators located throughout New York State which burn wastes generaled by a medical care facility. This does not apply to incinerators dedicated exclusively to the burning of Type 3 waste (garbage).

Commercial facilities incinarating waste generated by medical care facilities are generally of sufficient size as to present a potential risk to public health and the environment. Their emissions are similar to those from hazardous waste facilities and they should be regulated accordingly. Therefore, more sophisticated operating and emission control equipment should be sought for such facilities. This may be handled under SEQRA. The Bureau of Source Control will provide guidance as requested.

It would be inappropriate to change the standards of acceptability for existing incinerators without formal analysis and public notification and comment. This guidance then applies only to new or modified (including replacement) units for which applications for permits to construct are received on or after October 15, 1986.

Particulate matter

It has been found by test and by communication with manufacturers that well designed, controlled air incinerators can meet a particulate emission standard of 0.10 grain per dry standard cubic foot of flue gas, corrected to 12 percent

CO (EPA Method 5), without gas cleaning. Since this value is schieveble, it is recommended here.

Temperature and residence time

Studies used in the development of a regulation on smaller of exfess combustion have indicated that chi did ted plants which we are an expension of their for one second to assure the description of the expension. This guidance recommends that those feather of the expension of t

Loading and operating controls

Batch fed incinerators should have

- Provent Agailtáin a leann an agus an a
- Prevent recharging enum. Fine tombers to the for dom cycles are complete.

Nonbatch fad incinerators should in the lock system to prevent opening the most match the incinerator departure to assure complete burning of the waste. Interlocks must prevent charging the waste until the secondary chamber exit temperature reaches 1600°F.

Auxiliary burners alone should be easy the of mobiles the secondary chamber exit temperature to a minimum of 1500°F. The diring rach of these burners should be modulated automatically to maintain the secondary chamber exit temperature at this minimum temperature.

Acid mas control

Hydrochloric acid is produced by the burning of chloricated plastics. It is a very reactive acid, capable of causing structural damage and irritation of the respiratory tract. For these primary reasons, the Department intends to require acid gas control for at least larger incinerators, e.g. 21000 lbs/hr burning rate, in its forthcoming revision of Parts 219 and 222. Because of the cost of purchasing and operating gas scrubbing equipment and its attendant impact on medical care facilities, it will not be required until regulations are promulgated following public hearing. In the interim, facility owners anticipating the installation of hospital waste incinerators should be informed of the State's intention and encouraged to apply acid gas scrubbers where feasible. Space should be allowed for scrubbers in case they are required in the future.

Type 4 Wasts

Because of its high density and moisture content, pathological (Type 4) waste will normally burn more slowly than hospital waste, making it more suitable for burning alone in a crematory. However, some hospital waste incinerators are designed to provide for the acceptable burning of Type 4 waste. For your guidance then, Type 4 waste should only be burned with hospital waste if the

incinerator has been satisfactorily tested while burning that mixture. "Satisfactorily tested" means that the Type 4 waste must be completely destroyed and not be identifiable in the residue. Permits issued should restrict charging rates, by waste type, to the rates shown satisfactory by test.

Continuous monitoring and recording

The secondary chamber exit temperature should be continuously measured and recorded to assure the maintenance of at least 1600°F. Flame from the auxiliary burner must not impinge on the thermocouples. Records should be submitted annually.

Opacity

THE SEAST PROPERTY INTO PORTOR PROPERTY AND PROPERTY OF THE PR

Opacity should be limited to less than 10 percent during any consecutive six minute period except that a maximum of one six minute period per hour of less than 20 percent is allowed, as determined by EPA Method 9. This is consistent with the "Revised Draft Operating Requirements for Municipal Solid Waste Incineration Facilities," dated June 20, 1986.

Calculations

Calculations and data, including references, should be provided relative to the following:

- Waste Provide for each waste or mixture to be burned at one time (if all wastes are mixed uniformly, provide only once).
 - Burning rate (maximum) pounds per hour, tons per year
 - Heating value of waste (maximum, average) (how determined), BTU/per pound
 - Moisture (maximum, average), percent
 - Pathological waste (Type 4), percent (by weight)
 - Infectious waste (DOH designation), percent (by weight)
 - Plastics, percent (by weight)

Incinerator and combustion air -

Provide the following information for each waste or mixture to be burned at one time:

- Describe inlet and exit temperatures, residence times and flue gas velocities in each chamber. Residence time equals combustion chamber volume divided by volumetric flue gas flow at its average temperature.
- Describe anticipated excess air requirements in primary and secondary chambers, percent.

- Describe combustion air flow, cfm and pressure drop, inches H₂O relative to fan provided.
- Demonstrate that flame from auxiliary burners will not impinge on thermocouples.

Impact of emissions -

 Provide elementary dispersion model for particulate matter and HCl for both onsite and offsite receptors.

Testing

Because of its composition, and attendant heating value, hospital waste does not conform to Type 0 through 4 waste used in the definition of "incinerator" in Part 200. Therefore, incinerators burning hospital waste are not strictly within the purview of Parts 219 and 222 and the DEC list of "approved" incinerators no longer applies to them. The effect of this is that any incinerator, whether approved by the DEC to burn Type 0-4 waste or not, should not be excused from the need to demonstrate compliance with the 0.10 grains/dscf at 12% CO2 particulate emission limitation of this guidance, using EPA Method 5, until it or a geometrically similar model has been demonstrated to meet those requirements while burning hospital waste and formal approval of that demonstration has been given by the DEC. The first unit of a representative series should be tested in New York State to assure the attainment of the standard while burning waste of known composition.

Owners of incinerators burning hospital waste should provide results of measurements made at startup and annually thereafter, of carbon monoxide concentration in the secondary chamber, before the introduction of cooling air (to assess combustion efficiency).

Owners of incinerators burning hospital waste should provide results of measurements made at startup, of secondary chamber: (1) inlet temperature (to evaluate average temperature and residence time) and (2) hydrogen chloride concentration (to evaluate the impact on receptors and to assess the need for future acid gas scrubbing).

The Bureau of Toxic Air Sampling will continue to evaluate and maintain records of incinerator test reports, including the compilation of an approved list for hospital waste incinerators.

All test methods must be acceptable to the Commissioner.

Inspection

Experience has shown incinerator performance to be highly variable, depending on both operators and incinerator condition. These problems could be exaggerated in burning high plastics and infectious waste. Therefore, an annual inspection report, attesting to the condition and operation of the incinerator and the calibration of instruments covered by this guidance should be prepared by a qualified engineer and submitted to the DEC by the source owner. DEC staff should inspect annually each incinerator covered by this guidance against those inspection reports, while the incinerator is operating.

Summer of Gutdelines

Applicability - New or modified on-site incinerators burning waste (except Type 3, garbage) from medical care facilities Statewide. Regulate commercial units under SECRA.

Particulate Emissions - 0.10 gr/dscf at 12% CO2 (EPA Method 5).

Temperature & Residence Time - Secondary chamber design 1600°F and one second - Minimum 1600°F at exit.

Loading and Operating Controls - Batch fed: interlocks for charging - Nonbatch fed: mechanical loader with interlocks - Hodulating, auxiliary burners to raise and maintain secondary chamber exit temperature to 1600°F.

Acid Ges Control - Not required now - Leave space for possible future need.

Type 4 Waste - Pathological waste (Type 4) may only be burned with hospital waste if tested and found acceptable. Permits to limit wastes by type.

Continuous Monitoring and Recording - Required to show secondary chamber exit temperature at least 1600°F. Submit records annually.

<u>Auxiliary Burners</u> - Required to raise secondary chamber temperature to 1600°F and maintain there when needed.

 $\underline{\text{Opacity}}$ - Hourly average less than 10 percent. Haximum continuous 6 minute average less than 20 percent.

<u>Calculations</u> - Waste composition and parameters, incinerator parameters, fan, impact.

Testing - Particulates - test first unit of geometrically similar series in New York State.

- Secondary chamber inlet temperature and HCl concentration test at startup.
- Secondary chamber CO concentration test at startup and annually thereafter.

Inspection

- Annual report by owner.
- Annual review of report and inspection by DEC.

Attachment

cc: Regional Directors of Environmental Quality Engineering

APPENDIX D

Proposed State Regulations

New Subpart 219-1 is adopted to read as follows:

SUBPART 219-1

INCINERATION - GENERAL PROVISIONS

Section

- 219-1.1 Definitions
- 219-1.2 Summary of applicability

- 219-1.1 Definitions. (a) For the purpose of this Part and each of the Subparts of this Part, the general definitions of Part 200 of this Title apply.
- (b) For the purpose of this Part, the following definitions also apply:
- (†) Commercial waste. Solid waste generated by stores, offices, restaurants, warehouses, and other non-manufacturing activities other than household and industrial waste.
- (2) Dioxin equivalent. Any combination or mix of polychlorinated dibenzo-para-dioxins and polychlorinated dibenzo furans containing from four to eight chlorine atoms which are expressed as 2,3,7,8 tetrachlorinated dibenzo-para-dioxin equivalents using current New York State Department of Health toxic equivalency factors. Standard conditions upon which these data are referenced are an absolute pressure of 760 mm mercury and 20° C at 7% oxygen.
- (3) Incinerator. Any structure or furnace in which combustion takes place and type 0, 1, 2, 3, or 4 refuse is used as fuel, alone or in conjunction with fossil fuel.
- (4) Infectious waste. Infectious waste means and includes the following:
- (i) surgical waste, which consists of materials discarded from surgical procedures involving the treatment of a patient on isolation, other than patients on reverse or protective isolation;
- (ii) Obstetrical waste, which consists of materials discarded from obstetrical procedures involving the treatment of a patient on isolation;
- (iii) pathological waste, which consists of discarded human tissues and anatomical parts which are discarded from surgery, obstetrical procedures, autopsy and laboratory procedures;

- (iv) biological waste, which consists of discarded excretions, exudates, secretions, suctionings, and disposable medical supplies which have come in contact with these substances that cannot be legally discarded directly into a sewer and that emanate from the treatment of a patient on isolation, other than patients on reverse or protective isolation;
- (v) discarded materials soiled with blood emanating from the treatment of a patient on isolation, other than patients on reverse or protective isolation;
- (vi) all waste being discarded from renal dialysis, including tuping and needles;
- (vii) discarded serums and vaccines that have not been autoclaved or returned to the manufacturer or point of origin.
- (viii) discarded laboratory waste which has come in contact with pathogenic organisms and which has not been rendered noninfectious by autoclaving or other sterilization techniques;
- (ix) animal carcasses exposed to pathogens in research, their bedding, and other waste from such animals that is discarded; and
- (x) other articles that are being discarded that are potentially infectious and that might cause punctures or cuts, including intravenous tubing with needles attached, that have not been autoclaved or subjected to a similar sterilization technique and rendered incapable of causing punctures or cuts.
- (5) Infectious waste incineration facility. An incinerator which is operated or utilized for the disposal or treatment of infectious waste, including combustion for the recovery of heat, and which utilizes high temperature thermal destruction technologies.

Note: An infectious waste incineration facility may also burn other medical waste.

- (6) Medical waste. Infectious waste and all other waste derived from the care of patients.
- (7) Municipal solid waste. All materials or substances discarded from single and multiple family dwellings,

and other residential sources; similar types of materials from institutional, commercial and industrial sources; but not hazardous waste as defined in Part 371 of this Title or exclusive firing of sewage sludge.

(8) Municipal solid waste incineration facility. A facility that is owned, operated, or utilized by, or under contract with, a municipality or political subdivision and which utilizes high temperature thermal destruction technologies, including combustion for the recovery of thermal value or for the disposal of municipal solid waste.

Note: A municipal solid waste incineration facility may also be an infectious waste incineration facility.

- (9) Private solid waste incineration facility. Any facility, other than a municipal solid waste facility, that burns municipal solid waste, or any fuels derived from municipal solid waste using thermal destruction technologies. The without energy recovery.
- (10) Refuse. All waste material, including but not limited to, garbage, rubbish, incinerator residue, street cleanings, dead animals, and offal. Refuse is classified in accordance with Table 1, Appendix 2*.
- (11) Smoke. An air contaminant consisting of small gas-borne particles emitted by an air contamination source in sufficient number to be observable.
 - (12) Solid waste.
- (i) Solid waste means all putrescible and non-putrescible materials or substances that are discarded or rejected as being spent, useless, worthless or in excess to the owners at the time of such discard or rejection, including but not limited to garbage, refuse, industrial and commercial waste, sludges from air or water treatment facilities, rubbish, tires, ashes, contained gaseous material, incinerator residue, construction and demolition debris, discarded automobiles and offal.
- (ii) A material is discarded if it is abandoned by being:
 - (a) disposed of;
- (b) burned or incinerated, including being burned as a fuel for the purpose of recovering usable energy; or
 - (c) accumulated, stored, or physically, chemically,

or biologically treated (other than burned or incinerated) instead of or before being disposed of.

- (iii) A material is disposed of if it is discharged, deposited, injected, dumped, spilled, leaked, or placed into or on any land or water so that such material or any constituent thereof may enter the environment or be emitted into the air or discharged into groundwater or surface water.
- (iv) The following materials are not solid waste for the purposes of this Part:
 - (a) domestic sewage;
- (b) any mixture of domestic sewage and other wastes that passes through a sewer system to a publicly owned treatment works for treatment;
- (c) industrial wastewater discharges that are actual point source discharges subject to permit under ECL Article 17. Industrial wastewaters while they are being collected, stored, or treated before discharge, and sludges that are generated by industrial wastewater treatment are solid wastes and are regulated by this Part;
 - (d) irrigation return flows;
- (e) radioactive materials which are source, special nuclear, or by-product material as defined by the Atomic Energy Act of 1954, as amended, 42 USC 2011 et seq. (see subdivision 360-1.3 of this Title); and
- (f) materials subject to in-situ mining techniques which are not removed from the ground as part of the extraction process.
- 219-1.2 Summary of applicability. (a) Subpart 219-2, "Municipal and Private Solid Waste Incineration Facilities."
- (1) Subpart 219-2 applies to all new municipal or private solid waste incineration facilities, or modifications of such sources, for which a permit to construct is issued pursuant to Part 201 of this Title, 120 days or more after the effective date of this Part.
 - (2) Subpart 219-2 applies statewide.
- (3) Any incineration facility subject to Subpart 219-2 is exempt from the requirements of Subparts 219-5 and 219-6 of this Part.

- (4) Any incineration facility subject to Subpart 219-2 must also comply with Subpart 219-3 when burning infectious waste.
- (b) Subpart 219-3, "Infectious Waste Incircustion Facilities."
- (1) Subpart 219-3 applies to all incinerators used for the incineration of infectious waste or medical waste.
- (2) Subpart 219-3 only applies if the total charging rate, as limited by a permit to construct or certificate to operate issued pursuant to Part 201 of this Title, is less than 50 tons per day.
 - (3) Subpart 219-3 applies statewide.
 - (c) Subpart 219-4, "Incinerators, Crematories."
- (1) Subpart 219-4 applies to all facilities constructed or installed or for which an application for a permit to construct was received by the commissioner after the effective date of this Part, used for the cremation of human and animal bodies, body parts and for the incineration of associated bedding.
 - (2) Subpart 219-4 applies statewide.
 - (d) Subpart 219-5, "Existing Incinerators."
- (1) Subpart 219-5 applies to incinerators constructed or installed or which had been issued a permit to construct prior to the effective date of this Part.
- (2) Subpart 219-5 applies statewide except in New York City or Westchester and Nassau Counties.
- (e) Subpart 219-6, "Existing Incinerators-New York City, Nassau and Westchester Counties."
- (1) Subpart 219-6 applies to incinerators constructed or installed or which had been issued a permit to construct prior to the effective date of this Part.
- (2) Subpart 219+6 only applies in New York City and Westchester and Nassau Counties.

*See Appendix 2, infra.

(Appendix 2 remains unchanged.)

EXPRESS TERMS

Adopt New Subpart 219-3

Infectious Waste Incineration Facilities

(Statutory authority: Environmental Conservation Law,

Sections 3-0301, 19-0301, 19-0303, 19-0306)

Section

- 219-3.1 Definitions
- 219-3.2 Applicability and compliance dates
- 219-3.3 Particulate emissions
- 219-3.4 Hydrogen chloride emissions
- 219-3.5 Design requirements
- 219-3.6 Operating requirements
- 219-3.7 Other wastes
- 219-3.8 Continuous emission monitoring
- 219-3.9 Stack testing
- 219-3.10 Data and calculations
- 219-3.11 Operator training and certification
- 219-3.12 Inspection

Section 219-3.1 Definitions. For the purpose of this Subpart, the definitions of Subpart 219-1 and Part 200 of this Title apply.

Section 219-3.2 Applicability and compliance dates. This Subpart applies to all new, modified and existing infectious waste incineration facilities including those used for the incineration of all medical waste and whose total permitted charging rate is less than 50 tons per day. Any new facility or modification for which an application for a permit to construct a source of air contamination is received by the department ninety or more days after the effective date of this Subpart must comply with the requirements of this Subpart before operation may commence. All other applicable facilities must comply with the requirements of this Subpart by January 1, 1992.

Any facility subject to this Subpart whose total permitted charging rate is 50 tons per day or more or which accepts municipal solid waste must also meet the requirements of Subpart 219-2.

Note: This Subpart alone does not require the indineration of any infectious or non-infectious waste. It only establishes the standards to be met if incineration is the chosen method of waste disposal. The requirement for incineration of infectious waste (as one treatment option) is found in PHIS 1389-dd (for treatment at hospitals, residential health care facilities and clinical laboratories), in ECL S 15-1507 (for other treatment

facilities), in proposed solid waste regulations (6 NYCRR Subpart 360-10) and in Department of Health regulations (10 NYCRR 405.3 (b)(5) and 702.2(e)). If non-infectious waste is incinerated by choice, it must meet the requirements of Subpart 219-3 or 219-2.

Section 219-3.3 Particulate emissions No person may cause or allow emissions of particulates into the outdoor atmosphere from any emission source located in a facility subject to this Subpart in excess of 0.015 grains per dry standard cubic foot of flue gas, corrected to seven percent oxygen.

Section 219-3.4 Hydrogen chloride emissions. No person may cause or allow a running three-hour average emission of hydrogen chloride from any incinerator at a facility subject to this Subpart in excess of 10 percent by weight of the uncontrolled emissions (90 percent reduction) unless it is demonstrated that the stack concentration is less than 50 parts per million by volume, dry basis, corrected to seven percent oxygen; or the uncontrolled emission rate is less than four pounds per hour and the total charging rate is less than 500 pounds per hour.

Section 219-3.5 Design requirements. (a) Furnace design must provide for a residence time for combustion gas of at least one second at no less than 1800 degrees F. For a multichamber incinerator, these parameters must be met after the primary combustion chamber and the primary combustion chamber temperature must be maintained at no less than 1400 degrees F, or

- (b) Furnace design must provide a residence time for combustion gas and a temperature which, in combination, are shown to be equivalent to subdivision (a) of this section.
- (c) Auxiliary burners must be designed to provide combustion chamber temperatures as described in subdivision (a) of this section by means of automatic modulating controls.
- (d) Each incinerator must incorporate an interlock system which will:
 - Prevent the charging of waste into the incinerator until the temperatures described in subdivision
 (a) of this section have been reached;
 - (2) Prevent recharging until each design burn cycle is complete; and
 - (3) Maintain the temperatures described in subdivision (a) of this section until all waste has been reduced to ash and carbon.
- (e) Mechanically fed incinerators must incorporate an air lock system to prevent opening the incinerator to the room environment. The volume of the loading system must be designed so as to prevent overcharging to assure complete combustion of the waste.

(f) Control equipment for reducing emissions hydrogen chloride must be designed such that the flue gas temperature at the outlet of the control device does not exce 300 degrees F unless a demonstration is made that a greater of the condensible matter can be achieved at a higher temperature.

Section 219-3.6 Operating requirements. (a) person may cause or allow emissions to the outdoor atmosphere a six-minute average opacity of 10 percent or greater from an emission source subject to these requirements.

- (b) No person may cause or allow emissions of monoxide to the outdoor atmosphere having an hourly average concentration in the flue gas exceeding 100 parts per million volume, dry basis, corrected to seven percent oxygen.
- (c) No person may operate a facility subject this subpart unless the temperatures described in Section 219-are maintained.
- (d) The commissioner must be notified in writi at least ten days prior to the commencement of operation of a or modified incinerator subject to this Subpart.

Section 219-3.7 Other wastes. (a) Human and body parts of up to five percent of the permitted hourly chargerate for medical waste may be burned in an incinerator subject to this Subpart only if shown by test to be unidentifiable in tash. The Certificate to Operate a source of air contamination will limit the amount of human and animal body parts that may be burned to the amount tested and found acceptable. Human and ar body parts exceeding five percent of the permitted hourly chargerate may be burned only in a crematorium permitted under Subpar 219-4, 219-5 and 219-6.

- (b) Radioactive waste, whether decayed or not, may not be burned in an incinerator subject to this Subpart unl that incinerator has been issued a permit pursuant to 6 NYCRR 3:
- (c) Hazardous waste may not be burned in an incinerator subject to this Subpart unless that incinerator is exempt from or has been issued a permit pursuant to 6 NYCRR 373.

Section 219-3.8 Continuous emission monitoring.

(a) Any person who owns or operates a facility subject to this Subpart must install, operate and maintain in accordance with manufacturer's instructions, instruments meeting specifications acceptable to the commissioner for continuously monitoring and recording the following emission and operating parameters:

- (1) Primary combustion chamber exit temperature;
- (2) Secondary (or last) combustion chamber exit temperature;

- (3) Temperature leaving the particulate air cleaning device;
- (4) Opacity; and

(5) Carbon monoxide for incinerators whose permitted charging rate is 500 pounds per hour or more.

Monitoring instruments for continuously measuring opacity will be subject to Performance Specification 1 set forth in Title 40 of the Code of Federal Regulations, Part 60, Appendix B.

Section 219-3.9 Stack testing. (a) Each facility subject to this Subpart must be tested while burning the normal waste to be incinerated in that facility, to demonstrate compliance with the standards in this Subpart. At a minimum, each incinerator must be tested at start-up and annually thereafter for particulates, hydrone chloride, oxygen and carbon monoxide emissions. Additional tesuing will be at the discretion of the commissioner.

- (b) A test protocol, including the configuration of breeching, stack and test port locations and test methods must be submitted for the commissioner's approval at least 30 days prior to stack testing.
- (c) Witnessing of all stack tests by the commissioner's representative is required. Results of any stack test done in the absence of an approved protocol, or which is not witnessed, will not be accepted.
- (d) Three copies of the stack test report must be submitted by the permittee to the commissioner within 60 days after completion of the tests, in accordance with 6 NYCRR 202.3.

Section 219-3.10 Data and calculations. Each application for a permit to construct a source of air contamination for a facility subject to this Subpart must include:

- (a) Basic engineering data relative to the waste to be burned, incinerator design, combustion air, control devices and air cleaning devices; and
- (b) An impact analysis using procedures acceptable to the commissioner.

Section 219-3.11 Operator training and certification.

(a) No facility subject to this Subpart will be permitted to operate until the applicant has submitted material that demonstrates to the satisfaction of the commissioner that the plant will at all times be operated under the direction of individuals who have received training necessary for proper operation of the entire facility.

- (b) With the application for a certificate to operate, for a new or modified facility subject to this Subpart, the permittee must submit a description of an operator training program, including at least the following along with a time schedule for accomplishing training of all plant persons.
 - (1) Proper operation and maintenance or equipments
 - (2) Know edge of environmental perton and the impact of plant operation all emissions;
 - (3) Interfacing with the public on the period of plant operation on enveronmental services
- (c) The on-site operation of any factories to these requirements must be directed at all times by a personal possessing an appropriate current New York State incinerator operator certification. This requirement is effective with personal after the date of the first qualifying examination approved a the commissioner.

respected the section of the section

- (d) Operation includes, but is not limited to:
- (1) Fuel preparation, storage, charging, combustion, heat extraction, combustion gas treatmern; and
- (2) Proper functioning of all mechanical and/or environmental control and monitoring equipment.
- (e) This requirement does not eliminate the need for any person(s) involved with the facility from having to obtain any other required certificate(s) or license(s) necessary for the performance of their specific duties.

Section 219-3.12 Inspection and reporting. Each owner or operator of a permitted facility subject to these requirements must annually inspect that facility and submit a report to the commissioner, certifying that the condition and operation of that facility, including the calibration of all instrumentation, meet manufacturer's specifications. Such reports must be prepared by a qualified professional engineer, registered in New York State.

[PART 219] SUBPART 219-5

EXISTING INCINERATORS

Section

[219.1 Title]

[219.2] 219-5.1 [Applicable geographical area] Applicability

[219.3 Definitions]

[219.4] 219-5.2 Emission limits

[219.5] 219-5.3 [Smoke] Opacity of emissions

[219.6] 219-5.4 Tests

[219.7] 219-5.5 Abatement

Existing section 219.1 is repealed. Existing section 219.2 is renumbered 219-5.1 and is amended to read as follows:

[219.2] 219-5.1 [Applicable geographical area]
Applicability. This [Part] Subpart [shall apply] applies to
any incinerator which was installed or constructed or for which
an application for a permit to construct was received prior
to (effective date of this Subpart) located in the [entire]
State of New York except New York City and Nassau and Westchester
Counties.

Existing section 219.3 is repealed. Existing section 219.4 is amended to read as follows:

[219.4] 219-5.2 Emission limits. (a) All incinerators having a capacity of 2000 lb/hr or less and built and installed after January 1, 1968, [shall] must be designed, built, installed and operated to meet the emission limits of figure 1*.

- (b) No incinerator larger than 2000 lb/hr capacity and built after January 1, 1970, [shall] will be operated so as to produce particulate emissions which exceed the amount shown in figure 1*.
- (c) No incinerator having a capacity of 2000 lb/hr or less and built or installed between April 1, 1962, and January 1, 1968, [shall] will be operated so as to produce particulate emissions which exceed 0.5 lb/hr for every 100 lb/hr of refuse charged, unless a final order of the commissioner provides otherwise.
- (d) Any incinerator having a capacity of 2000 lb/hr or less and built or installed prior to April 1, 1962, [shall] must either meet the requirements of [219.4(c)] 219-5.2(c) or [shall] must be equipped with adequate control devices or redesigned and rebuilt so as to meet the requirements of [219.4(a)] 219-5.2(a)

by January 1, 1969.

- (e) No incinerator larger than 2000 lb/hr capacity and built between April 1, 1962, and January 1, 1970, [shall] will be operated so as to produce particulate emissions which exceed 0.5 lb/hr for every 100 lb/hr of refuse charged, unless a final order by the commissioner provides otherwise.
- (f) Any incinerator larger than 2000 lb/hr capacity and built prior to April 1, 1962, [shall] must either meet the requirements of [219.4(e)] 219-5.2(e) or [shall] must be equipped with adequate control devices or redesigned and rebuilt [so as] to meet the requirements of [219.4(b)] 219-5.2(b) by January 1, 1970.

Existing section 219.5 is renumbered 219-5.3, and is amended to read as follows:

- [219.5] 219-5.3 [Smoke] Opacity of emissions.

 (a) No incinerator, built or installed after January 26, 1967, regardless of size, [shall] will emit [smoke of an opacity denser than 20 percent or No. 1 of the Ringelmann chart or equivalent,] visible emissions having an average opacity during any six consecutive minutes of greater than 20 percent, under normal operating conditions.
- (b) No incinerator built or installed prior to January 26, 1967, regardless of size, [shall] will be operated so as to emit [smoke of an opacity denser than 40 percent or No. 2 of the Ringelmann chart or equivalent] visible emissions having an average opacity during any six consecutive minutes of greater than 20 percent, under normal operating conditions.

Existing section 219.6 is renumbered 219-5.4, and is amended to read as follows:

- [219.6] 219-5.4 Tests. (a) All incinerators larger than 2000 lb/hr capacity [shall] must be tested using [isokinetic sampling techniques in accordance with test procedures] emission tests acceptable to the commissioner.
- (b) All incinerators built or installed after January 1, 1968 and having a capacity of 2000 lb/hr or less [shall] must be tested [in accordance with special test procedures promulgated by the commissioner] using emission tests acceptable to the commissioner. Units which are representative models may be tested instead of an actual installation, [in accordance with special test procedures promulgated by the commissioner] using emission tests acceptable to the commissioner.

Existing section 219.7 is renumbered 219-5.5,

and is amended to read as follows:

[219.7] 219-5.5 Abatement. (a) Where the commissioner has reason to believe that an incinerator installation is violating the emission standards of section [219.4] 219-5.2 of this [Part] Subpart, he may have tests conducted. The owner [shall] must provide, at his expense, sampling holes and pertinent allied facilities as needed, at the request of the commissioner.

(Renumbered subdivision 219-5.5(b) remains unchanged.)

Renumbered subdivisions 219-5.5(c) and 219-5.5(d) are amended to read as follows:

- (c) The commissioner may order the cleaning, repair, replacement or alteration of any equipment or control equipment which causes or is operated so as to cause a violation of this [Part] Subpart.
- (d) The commissioner may order a change in the manner of operation of an incinerator which is operated so as to cause a violation of this [Part] Subpart.

*See Appendix 2, infra.

(Appendix 2 remains unchanged.)

Hospital Incineration Field Data and Emissions Calculations

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

HOSPITAL
Stack ID: INCINERATOR Stack diameter at ports: // (ft)

Distance A (ft) 5.6 (duct diameters) 5.0

Recommended number of traverse points as determined by

distance A: 8

Distance B (ft) 14.4 (duct diameters) 12.8

Recommended number of traverse points as determined by

distance B: 8

Number of traverse points used: 8

Nesp July RAS CALL A BOX NUMBER OF CALL OF CAL	He 3 the standard		EQUATIONS OR = OF + 460 H = $\begin{bmatrix} 5130.F6C_{\text{D-A}} \\ C_{\text{O}} \end{bmatrix}$ $\begin{cases} \xi = 64m/n \end{cases}$ $\begin{cases} \frac{75}{15} = 582 \end{cases}$	2 <u>Im</u> . Vp	AMBIENT PERFORMENT STANDS HEATER BOX TEMP PROBE HEATER SETTING PROBE LENGTH NOZZLE AREA (A) 49 CD 494 497 497 49	15 0p 25 25 26 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
HOSP JAC HOSP JAC EBOX NUMBER PAC R BOX NUMBER	to the state of th		60 Co.F.C.C.A.	E	PROBE LENG CO PAGE FRATE	
W. O.	Service of the servic		0. FG. Cp. A. Co. A. Co	티 수	PROBE LENG PROBE LENG PROBE LENG CO RY CO	
HOSP JAC FIRST LANGER OF EAC R BOX NUMBER R BOX NUMBER	Service of the Contraction of th		O.F. Co. Co. 71	E .	PROBE HEATI PROBE LENG PROBE LENG CO PU	
Hosp Out	the state of the s			É	PROBE HEAT PROBE LENG HOZZLEARE UDG CP CAS FRA	
Plats was a series of RA C RA C ROX NUMBER OF ROX NUMBER O	the		= 64 min 355.7.1111 555.5.7.111		PROBE LENG HOZZLE ARE UDD CO CO P CO ORY GAS FRA	
Plats Wingery RAC C RAC NUMBER NUMBER	Che STANCK I		(= 64min) 358-7.1171 55 = 582		PROBE LENG HOZZLE ARE CO PU	5
KINDER BOX NUMBER ETER BOX NUMBER W.Om	Che Che STACKT		t= 64 min 358 - 7.1171 55 = 582		PROBE LENG	864,498
ETER BOX NUMBER	STACK TO STA		1711.17.88.5 = 582		LIGORY CASERA	864,496
ETER BOX NUMBER	J. Lime		355 7.1171 55 = 582		CP PY OBY GASERA	864 445
W.Qm (VIUC)	STACK TEMP (OF) (OF) (OF)		8.18 × 7.71711 5. = 5.82		Co Ry	
E Ø/₃	STACK TEMP STACK TEMP STACK (OF) (TS	>	15 = 582 12 - 582		ORY GAS FRA	
	STACK TO (OF)		-		ORY GAS FRA	
Co	(°F)	1	Tr:61 542 2.00		2/1	TION (Fd)
SA GAM	(oF)	HEAD (Vp)		GAS METER TEMP	-	_
POINT TIME PRESS	7		DIFF. SAMPLE PRESS. VOLUME	AVG (Tm)	OUT TEMP	DX OUTLET
1736 187	1	1000	7	+	-	127
1	9 454	りんん	1. J.	20	100	
2 3	585	80.0	2,1/5],_	127	
1,	10.5 Km		5/0.019	(K)		
2 16.						
02						
4 24						+
9.2			CHLANE			
		- 1	þ.	4	7	
7 1300 2	1/2/2	000	11. 11. Dage	100 2	2	205
+	7000	0000		80	10	\dagger
3	6,750	0,00,0	177	1/2	2	
	1/30/	ナイン・ア	1,00	i	130	
7	+	1000	0,00	1,4		
	2 32	1 4 2 7 3	397)	7,	2	
>						
C43	800	4 C) #	100	July S	11 30	20 02
1770		7.5				
030		350 F				
·						

10.15 10				ł	PARTICULATE SAMPLING DATA SHEET	MPLING DATA	SHEET					_
12 C	PUN NUMBER	6	SCHEM		SS SECTION	EQUATIONS			AGBRE	uy years	9	
	DATE					°R ≈ °F + 460	ſ		34.4	ON PRESS	•	_
THE BOTH WAS ALLESS OF THE PROPERTY OF THE PRO	LANT	Dic			-			d م ا	HEAT	ER BOX TEMP	A Hg	-
THE BOX WILLIAM AND LOAD TO THE BOX WILLIAM TO THE		AND STAN	13		18 C				PROB!	E HEATER SETT		
TOWN CONTRACTOR CONTROL CONTRO	B 0	162.6000 0.80		yer leak					PROB	ELENGTH		
Contact Cont		JWBER LOS		,	•				120N	LE AREA (A)	Ę	-
ANVERSE SAMPLING STATIC STACKTEMP VELOCITY ORIFICE STACKTOWNED TO THE SOURCE STACKTOWNED TO THE)w//m	N. X.X.		+	_				ů		11 00	
AND CONT 4 450 CONT 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ပြ								7 80	AS FRACTION (F	φ.	
1304 1200 0.07 4 450 0.05 1.20 621.84.56 56 277 5 12 4 450 0.035 1.43 65 55 25 25 1.40 64 55 25 25 1.40 64 55 25 25 1.40 64 55 25 25 1.40 64 55 25 25 1.40 64 55 25 25 1.40 64 55 25 25 25 1.40 64 55 25 25 25 1.40 64 55 25 25 25 25 25 25 25 25 25 25 25 25	TRAVERSE POINT NUMBER	SAMPLING TIME (min)	STATIC PRESSURE (in H20)	STACK TE	H	ORIFICE DIFF. PRESS.	SAMPLE	GAS METE]#	SAMPLE BOX TEMP (OF)	IMPINGER OUTLET TEMP OED	·
11.		001	0,0.7 4	1 ' 1	0.03		Ex 11 181		<u> </u>	373	57	<u> </u>
13 24			6	M	0,035	17.77			35	263	1404 1 DOC	쏡
24	,		3.	62	0.075	2,34		63	36		101	_
25 32 1304 1304 1305 1306 1306 1300			×3	7	908	2,68		2018	Ar.	285		- 1
1304 1006 170 1305 170 1315 800 1 1400 1340 900 1			110	6	0.055	1.87		67	57			T T
1304 - 200 1 170 (312) 800 1 1400 (314) 900 1 170	17		*				1277					7
1304 1006 1760 1315 800 1 1400 1340 900 1												-
1304 -200 f 170 1315 800 f 1400 1340 900 f 130												7.
13.15 800 1 1400		1304	1 00%	1700								
(376) 766 (364)		(3.6)	000	5 0000								T
:		1340	7,5,75	- 1 1								7-7
												7 1
	i											_

	AIR POLLU	JTIO	N PARTICUL	ATE ANA	LYTICAL	DATA		
BASE	10/	ATE				RUN NUMBER		
PLATTSBURG	H AFB	e	DEC 8	7		3		
BUILDING NUMBER			#1	OURCE NU	MBER			
HOSP INCIN	IRRATOR	<u>K</u>	ur. #					
 			PARTICUI FINAL WE		INITI	AL WEIGHT		EIGHT PARTICLES
	TEM		(# m)			(# m)		(6 n)
FILTER NUMBER			0.750	7		a931 2950		0.1626
ACETONE WASHINGS Hall Pilter)	(Probe, Front		99.64		99	5518	1	1.0942
BACK HALF (If needed	", filters need	ed						
	v		Total Wei	ght of Partic	ulotes Colle	ected	0,	5568 an
П,			WATE	R			,	
11	TEM		FINAL WE	IGHT	INITI	AL WEIGHT		WEIGHT WATER
IMPINGER 1 <i>(H20)</i>			116		10	0		16
IMPINGER 2 (H20)			118		100)		18
IMPINGER 3 (Dry)			0.5	-	0		(0.5
IMPINGER 4 (SIIIca Ge	"tare 27.	35 7	221.	65	20	7.18	/	14,47
	78.		Total Wei	ght of Water	Collected		4	8.97 -
III.	ANALYSIS		GASES ANALYSIS	r	_Y\$1S	ANALYSIS		
ITEM	1		2		3	4	-	AVERAGE
VOL % CO ₂	2.3		2.5	2.4	ļ 			2.4
VOL % 02	17,3		17,3	17,	4			17,33
VOL 2 CO		··			· · · · · · · · · · · · · · · · · · ·			
VOL % N ₂	-							
		Vol %	N ₂ = (100% - % (. % o ₂ .	% CO)			

	AIR POLL	UTIC	H PARTICUL	ATE ANA	LYTICAL	DATA		
Plate	burgh	DATE	9 De	- 87	1	RUN NUMBER	/	
BUILDING NUMBER	Run#	1	cont		MBER			
ł	* - · ·		PARTICU FINAL WE		INIT	IAL WEIGHT	Ţ	EIGHT PARTICLES
'	TEM		(# m)		2.0	(@ n)	ļ	(# n)
FILTER NUMBER					29	* *		
ACETONE WASHINGS Hall Filter)	(Probe, Front		* 5	see o	reviou	S parl		
BACK HALF (if neede	d)		o o	26:11	ers ii	s page	th	is run
			Total We	ght of Parric	ula tes Coll i	ec ted] 	e n
11.			WATE					
1	TEM		FINAL WE	IGHT	INIT	AL WEIGHT		WEIGHT WATER
IMPINGER 1 (H26)								
IMPINGER 2 (H20)								
IMPINGER 3 (Dn/)								
IMPINGER 4 (SIIIco Ge	s1)				30	6.44		
•••	.		Total We	ght of Water	Collected			g en
191.			GASES	(Dry)		·		
ITEM	ANALYSIS		ANALYSIS 2		. YSIS 3	ANALYSI 4	S	AVERAGE
VOL % CO2								
VOL \$ 02								
VOL + CO								
VOL + N2								
		V ₀ 1 %	N2 = (100% - %)	CO ₂ .%O ₂ .	% CO)			
OEHL FORM 20								

	(Velocity and Te	EY DATA SHEET NO. 2 emperature Traverse)	
BASE PLANS BUTG BOILER NUMBER HOSP INC INSIDE STACK DIAMETER	7	Por 9 Dec 8;	Í
HOSE INC			
INSIDE STACK DIAMETER	1	3.5	Inches
SYATION PRESSURE	2	9.7/3	In Hg
STACK STATIC PRESSURE	0,	07	In H20
SAMPLING TEAM	80	CO_	
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	chelonies.	STACK TEMPERATURE (OF)
	0,045	14 16	
2	0,06	9 18	
<u>3</u>	0,065	4 19	450
4	0,06	40 18	>
		(18))
		.48/6	
50			
20-100/65	burn		
one /wh			
	extot leak check		
	(H 6.3 V		
	0 5,2		
	,496		
	AVERAGE		

	PR	ELIMINARY SURVE (Stack G	Y DATA :	SHEET NO. 1
BASE OLITE Z		PLANT		
PLATTSBURG DATE UG DEC		SAMPLING TEAM		
\$9 DEC	8.8	ORHL		
SPILON ZE INCIA	E IERHTOR COR	P MODEL RL-	-20 HD	OP TYPE 4 WASTE Inches
HOSP INCIN	IENZIHTER	13.5) TTYPE FU	Inches
150 W/h			LP	6115
DISTANCE FROM OUTSID	E OF NIPPLE TO I	ISIDE DIAMETER		Inches
NUMBER OF TRAVERSES		NUMBER OF POINTS/T	RAVERSE	110000
		CATION OF SAMPLING	POINTS AL	ONG TRAVERSE
	PERCENT OF			TOTAL DISTANCE FROM OUTSIDE
POINT	DIAMETER	INSIDE WA (Inches		OF NIPPLE TO SAMPLING POINT (Inches)
1				4.9
2				7.4
3				14.1
4				16.6
			Ī	

Ž—						_		γ,	- -	_	, ,	- 1	_	,		Ţ-	,	_	· •	—	_	_	_		_
2000	4	JO JN		e ft	6	IMPINGER	TEMP	00	67	57	58	500	57	,	ر و	7 7	6/	19	200	6.7					
la Cardron	NOBLENT SEUF (300 FL) STATION PRESS	HEATER BOX TEMP	PROBE LENGTH	9 9	ORY GAS FRACTION (FO)	SAMPLE	BOX TEMP (PF)	260	267	45	72	198	252		260	15%	252	25.5	257	100					
ud	8.0 % STATE	HEATE	PROBE	HOZZLE ,	δ	TEMP	OUT (OF)	20	77	1	1	45	16		24	55	25	27	70/	400	1				
upper all	pum			*			A (Ta)																		
Mpg 1	June (*・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.50	354 >*	1/2	GAS	⊼ (¶0)	56	49	12	03	62	64		57	27	65	0	60	100	1				
A SHEET	1,3 12) (651.	648.74	GAS	SAMPLE VOLUME (cu fi)	146 849						459169				1			695.69				
15	EQUATIONS OR = °F + 460	H = 3130.18		する	7		PAESS.	2.80	2.6/	1.00	2,33	2,26	1.82	2.29	18/8	2,45	2.80	A. 070.	4.60	2.24	×				
ICULATE SAN	MACE SERVE	3 25	0000	Jaks John Asan	,	VELOCITY	WEAD (Vp)	5200	0,075	206	2000	2000	0.05	•	2000	100	0.08	00800	2000	100					
PART	F S (L CER	300	614	Say Say	TEMP	(Te)			+								1	1						
	$f_{\mathcal{R}}/\sim$	8 mun/p	1 092 8 0930 0933	3806	INTO FUN VACUULIANS	STACK	(OF)	075	20%	540	015	097	560		200	000	509	6000	1/33	2005					-
20 165/1	SCHEMAT	8 min 8	Lesson 2	PSI6 = 8,3808 15 - 577 12 - 57	HMIN HMIN	STATIC	(in H20)	07 10	, x	4.5	2.5	7,5	S		57	1	8	×C		\$					
6	43	2.	15 HS GUNG!	WHOE THE		SAMPLING		7530 "	× 5/0		.7/	46			10.24							/	111		
	BUN NUMBER DATE	PLANT hosp		1 × 1	wo^/mo	TRAVERSE	POINT		10074	12	31 7	OZ.	\$5		7 7	3 8	2/	16.	100	2.8	32		(t=67mm	/	
<u></u>	- 12	1 "		<u> </u>			· · ·	K	<u>%</u>		Ш		1_			لسل		_ــــ		1_	لبا			⊥ .↓	

economia becedes records server population secre

	AIR POLLUT	ION PARTICUL	ATE AMA	LYTICAL	DATA		1
Rur	#2 est	10Dec			# *	(5	
BUILDING NUMBER	,		SOURCE NU	MBER			
i		PARTICU	LATES				
1*	TEM	FMAL WE		1001TI	AL WEIGHT	TEIGH	T PARTICLES
FILTER HUMBER		0.800	04	31	60.288	5 0,	2207
ACETONE WASHINGS Mail Pilos)	(Probo, Frant	97,7	515	97.	6556	0,0	1959
BACK HALF (II access	•	* 2 fitter	z use	d for	this run		
				culetes Colis		0,3	166 -
и.		WATE	R				
1*	TEM	Final We	IGHT	SMITI	AL WEIGHT	TE	GHT WATER (#=)
IMPINGER 1 (#20)		110		10	0	/	0
IMPINGER 2 (120)		116	,	100)	16	/ ?
IMPINGER 3 (Dry)		0.	5	0		0.	5
IMPINGER 4 (SIIIca Ge	" Lare 27.7	218.	15	200	6,44	11,	71
			ight of Water	C-liected		38	.21 -
m.		GASES	(Dey)			- 1	
ITEM	ANALYSIS	AHALYSIS 2	ANA	LYSIS 3	ANALYSIS 4		AVERAGE
VOL % CO2	3,5	3.6	3,	5			3,53
VOL % 02	15.3	3.6 15.5	15	5		1	5,47
VOL 5 CO							
VOL 1 N2							
	Vo	% N ₂ = (100% - %	co ₂ . s o ₂ .	• (0)			

	AIR POL	LUTION	PARTICULAT	E ANALYT		
EURE HUMBER hoss	#2 cont	BAYE	10 D.	W NCE HUMBER	#	16
BUILDING NUMBER	o Ino		804	RCE HUMBER		
i /voxy			PARTICULA	res		
	ITEM		FINAL WEIGH	7	INITIAL WEIGHT	WEIGHT PART
FILTER HUMBER				7	***************************************	li .
ACETONE WASHING	95 (Frabo, Frant	W.	See oral	JAUS 00	_	
BACK HALF (II not	-4-4)	*	2 bilter	s used	for this re	un
			Total Weight	of Particulate	• Collected	
u.			WATER	- 		
	ITEM		FINAL WEIGH	(T	HITIAL WEIGHT	WEIGHT WA
MPINGER 1 (#20)					100	
MPINGER 2 (H20)					100	
IMPINGER 3 (Dry)						
IMPINGER 4 (SIII oa	Gel)			2	13.67	
-			Total Weight	of Water Colle	octod	
111.			GASES (Dr			
ITEM	ANALYSIS		ALYSIS 2	ANALYSIS	ANALYS!	AVER.
VOL % CO2						
VOL 1 02						
VOL 3 CO						
VOL 1 N2						

OEHL FORM 20

WITH US THE WORK BROWN WAS ASSETTED FROM SHOWING

				PARTI	ICULATE SA	PARTICULATE SAMPLING DATA SHEET	SHEET					
NUN NUMBER	# 10	SCHEWA 10 act	SCHEMATIC OF STACE	K CROSS SECTION	7 (paper	EQUATIONS	(2.68)		N A	AMBIENT TEMP		P.O.
01	10 Dec 8		716	1235	(platie	-	Fd Cp. A 2	III. Vo	हें प्र हें प्र	29.5K		In Hg
PLANT hos	hosp inc		9.190	(A)	13.00	lear L	- 7 ວິ	•	P. O. O.	PROBE HEATER SETTING	SETTING	4o
9	Uspwark	746	Chareful (Market	<u>-</u>	3				P. P	PROBE LENGTH		
METER BOX NUMBER	CAC DX NUMBER	10 P	1615 = 8,9371			19=7)	4 min		ON	NOZZLE AREA (A)	₹	ın sq ft
04/0m	3	2 17 × 17 ×	09			<i>i</i>			ථ	12/		
3		24.2 - 410.	25,55			·			DRY	GAS FRACTION (Fd)	10N (Fd)	
			STACK 1	EMP	VELOCITY	ORIFICE	GAS	GASIN	GAS METER TEMP	SAMPLE	 	IMPINGER
TRAVERSE POINT NUMBER	SAMPLING TIME (min)	PRESSURE (IN H20)	1 5	(Ts)	HEAD (Vp)	PRESS.	SAMPLE VOLUME (G)	Z (9)	AVG OUT (Tm) (oF)			OUTLET TEMP (OF)
	1254	0.07	Control of the contro		0.08	2.48	506-509	23	+,	B		52
7 &	775-7		200		0.065			23	3			25
3	8	<i>Ö/</i>	650		0.085	2,84			54	177	7	23
	15		643		0.00	707		7.7	3	176	7.5	
6	16	11.50	1000		0.000	20.0		120	35	26	1	60
	27	201	100		0.07	2,47		7	5	7 368		90
-	2.8	10	-209	7	0.07	2,47	720135	100	2,	42	7	77
7	36	10	7207	- 2-3	1 1	2.45	2010767	22	5.5	35	0	66
	7	6	549		0.07	2,36		de la company de	500	25.	%	176
2	200	163	629		0000	2.67		61	99	-	12	65
ġ	71	1/2	652		8013	2.70		6.0	55		0	2.7
	3	71	1887		0.08	2,75		69	77	34	4	65
,	72	8	634		0.045	455		200	9		7:	65
	28	7	450	1	0.04	137	100	88	90	3		2
	37					-	173,313			-		
											1	
DEML FORM	18		'									

	AR POLL	TION PARTICU	LATE ANA	LYTICAL	DATA		
Plattebe	1 -	10 Dec	87		#	7	
han	ing Run	* 3	-				
9		PARTIC	MATES			····	
	ITEM	PMAL T		1001T	AL WEIGHT	WEIGHT PA	
PILTER HUMBER		0,32	68	24	16.2926	0.03	142
ACETONE WASHING Mall Pillor)	15 (Probo, Prant	99,1-	138	99,	1074	0,06	64
BACK HALF (II acc	40	* one	filter fo	r this	run		
			night of Partic			0.1004	Ç.
l		FINAL V		IMIT	AL WEIGHT	WEIGHT	WATER
a	100	(-			((=)	(#	
MPINGER 1 (#20)	MO 10 55	10	4	10	0	4	
WPINGER 2 (#20)	10 55 0.5 - 0.55	115		9		17	
MPINGER 3 (Diy)		3.	8	0		3.8	
IMPINGER 4 (Silice	254.8 Tare 27.8	5 220	5.95	20	8,63	18.3.	3
	$\overline{}$	ret. Ned ja	olght of Water			43.1	3
II	ANALYSIS	GASE:	7	LYSIS	ANALYSIS		
ITEM	1	2		3	4	AVE	ERAGE
VOL % CO2	2.7	2.6	2,	4		2,	57
VOL % 02	17.1	17.3	17	, 4		17.	2
VOL 2 CO							
VOL T N2							

XRON "METH 5" RUM HUNGER MINOR THETH 5" HOSPITAL RI REIN HANGER MISPITAL R2 METER BOX Y? HETER BOX Y? MET TO H? BOR PRESS 7 METER VOL 2 46.8589 HTR TEMP F? 61.9000 MULTER ES 2 OTHER CAS 57.000 REMOVED BEFORE 2 OTHER CAS MRY CRS HETER ? RENOVED BEFORE BRY CAS NETER ? STRTIC HOH IN ? XXXVII "MRSSFLO" VIEND *MISSER O. STRTIC HOH IN ? STRCK TEMP RUN 582.0000 RUN NUMBER PUN NUMBER ML. WATER ? HOSPITAL RI HOSPITAL R2 577,8000 48.9799 MATER ? IMP. 2 HOH = 4,4 38,2186 VOL HTR STB ? VOL HTR STB ? INP. 2 HOH = 3.4 2 HOH=4.4 STACK BSCFN 2 STOCK BSCEN 2 2 404=3.4 597.88 \$ 0027 FRONT 1/2 MG ? CLX \$ C027 316.68 2 DXYCEN? BACK 1/2 NG ? 256.88 PIN 3.5300 17, 3300 PIN **BOCK 1/2 MC 7** 0.98 Z OXYGEN? 2 00 2 RUN 2 CO 7 MOL NT GIVEP? F CR/BSCF = 0.10 MIN RUN GR/BSCF = 0.08 MG/MMM = 218.83 MOL MT OTHER? MG/MMH = 179.92 LB/HR = 8.49 BUN FMd =29.68 F LB/HR = 0.37 KC/HR = 8.22 PM WET=28.59 F KG/HR = 8.17 MMd =29.18 PM: MET=29.98 SORT PSTS ? TIME HIM ? MOZZI E 119 2 .4998 STK BIR INCH ? PIN 13,5000 STK DIR INCH? 13.5000 * VOL MTR STB = 50.403 STK PRES ABS = 29.72 * WOL HTR STB = 51.288 STK PRES RBS = 29.52 **VOL HOH GRS = 2.31** 2 MOISTURE = 4.37 VOL HOH GRS = 1.88 MOL DRY GRS = 0.956 2 MOISTURE = 3.39 2 HITROGEN = 80.27 MOL BRY GAS = 8.966 MOL NT DRY = 29.88 MOL NT WET = 28.59 Z NITROCEN = 81.88 MOL MT BRY = 29.18 VELOCITY FPS = 19.81 MOL NT NET = 28.88 STRCK RREG = 8.99 VELOCITY FPS = 20.64 STRCK RCFR = 1,134. STACK AREA = 0.99 * STRCK BSCFM = 546. STACK ACER = 1.231. % ISOKINETIC = 105.69 STACK-BSCFR = 597. 2 ISOKIMETIC = 98.22

PUN

PIN

XXXX "METH 5" RUM NUMBER HOSPITAL R3 RIM HETER BOX Y? BELTA H? METER VOL HTR TEMP F? 68.8 2 OTHER CAS REMOVED BEFORE RUN XROM *MASSFLO* DRY GAS NETER ? RUN RUN HUMBER STATIC HOM IN ? HOSPITAL R3 . 8796 RUN 632.0000 VOL HTR STD ? ML. MATER ? 51.711 43.1386 IMP. 2 HOH = 3.8 % HOH=3.8 190.60 Z C027 2.5788 9.00 Z OXYGEN? 17.2709 2 CO ? F GR/BSCF = 0.03 F HG/HMM = 68.78 F LB/HR = 8.16 NOL NT OTHER? 2114 F KC/HR = 8.87 NMd =29.10 PM NET=28.68 SORT PSTS ? 8.9371 HOZZLE BIR ? STE DIR INCH ? 13.5000 * VOL NTR STB = 51.711 STK PRES ABS = 29.52 VOL NON GRS = 2.83 2 MOISTURE = 3.78 HOL BRY GRS = 0.962 2 NITROGEN = 88.16 HOL HT MY = 29.18 MOL NT MET = 28.68 VELOCITY FPS = 22.85 STACK AREA = 0.99 STRCK RCFM = 1.315. • STACK BSCFR = 684.

2 ISOKIMETIC = 97.99

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

CLASSIFIED

Stack ID: INCINERATOR Stack diameter at ports: 1.2 (ft)

Distance A (ft) 5.6 (duct diameters) 5.0

Recommended number of traverse points as determined by

distance A: 8

Distance B (ft) 14.4 (duct diameters) 12.8

Recommended number of traverse points as determined by

distance B: 8_

Number of traverse points used: 8

	AIR POLLU	TION PARTICUL	ATE ANA	LYTICAL	DATA		
BASE	, OA	_	<u> </u>	7'	TUN NUMBER		
PLATT3BURGH		8 DEC 8					
BUILDING NUMBER (/255/6/	ed		SOURCE NU		7		
ACII	VERITOR			10551/	<u>es</u>		
f.		PARTICU FINAL WE (gm)		INITI	AL WEIGHT	WEIG	HT PARTICLES
FILTER NUMBER		0.55	60	0.	2869	0.	2691
ACETONE WASHINGS (Pro Hell Filter)	be, Front	101.48		100	, 3360	1.1	1514
BACK HALF (II needed)			•				
		Total We	ght of Partic	ulates Colle	cted	1,4	1205 -
II.		WATE	R			·	
1TEM		FINAL WE	IGHT	N2 2	AL WEIGHT	w (EIGHT WATER
IMPINGER 1 (H20)		120)		90	o	70
IMPINGER 2 (H20)		118	ζ	10	00	/	2
IMPINGER 3 (Dry)		4	,6	0		4.	6
IMPINGER 4 (SIIIce Gel)	241. tare 27.4	7 214.	3	20:	2.92	//.	38
	·		ight of Water	Collected		4	7.98 -
111.	ANALYSIS	GASES ANALYSIS	1	LYSIS	ANALYSIS		AVERAGE
ITEM		2		3	4		AVERAGE
VOL % CO2	8.2	8.0	8.	0			8.07
VOL 1 02	11.8	11.9	11.	8			8.07 11.83
AOT 2 CO							
VOL T N2							
	٧	ol % N ₂ = (100% - %	CO ₂ . % O ₂	- % CO)			

		'EY DATA SHEET NO. 2 emperature Traverse)	
BASE PILLS	· · · · ·	DATE	
BOILER NUMBER			
INSIDE STACK DIAMETER			Inches
STATION PRESSURE			T- U-
STACK STATIC PRESSURE	0.07		In Hg
SAMPLING TEAM			In H.20
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	V. OFICHE	STACK TEMPERATURE (OF)
/	0,080.04	17 15	
Į.	707007	22 12	750
Z Z	0,07	22 0	
4	0.08	24 15	
,		WG-1015	
		ev 21	
5/000	2,7		
57000	//		
59			
.493	416 .496		
	AVERAGE		

Besses welled bettered british control become

	P	RELIMIN	ARY SURVEY (Stack Ge		SHEET NO. 1	
PLATTSBURG		PLANT				
PLHTTSBLKG DATE OS DELS SOURCE TYPE AND MAKE	₹	SAMPLIN	EHL			-,-,
SOURCE TYPE AND MAKE	E WED ATTO			RL -	2014D TYPER WASTE	
		INSIDES	STACK DIAMETE	Я	201+D, TYPEO WASTE	
CHYSS, INLINE		<u> </u>		TYPE FU	Inches	
230 Lb	E OF NIPPLE TO I	INSIDE DIA	METER			
NUMBER OF TRAVERSES	5		OF POINTS/TR	AVERSE	Inches	
	2	4			OUC TOLUCIA	
		Т			ONG TRAVERSE	
POINT	PERCENT O DIAMETER		DISTANCE FI INSIDE WAI (Inches)	LL	TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)	
/					4.4	
2					7.0	
3					14.0	
4					16.6	
						

DETERMINE THE PROPERTY OF THE

OEHL FORM 15

```
MIN THETH 5
 CLASSIFIED RI
 SETER BOX Y?
                       HIN
 MELTO NO
                       RUN
             1.9700
 BOR PRESS ?
                       RM
           33.8320
 HIR TEM F?
           51.8000
 2 OTHER CAS
 REMOVED DEFORE
                                                      XRON -MASSFLO-
 BRY COS HETER ?
                       NH
 STATIC NON IN ?
                                           RUN HUMBER
                                           CLASSIFIED RI
                                                                 RUN
 M. WATER ?
                                           YOL HTR STB ?
           47, 9000
 IRP. 2 HOH = 5.6
                                                      572.00
                                           FRONT 1/2 NG ?
 ₹ HOH=5.6
                                                     1,420.50
                                                                 RUN
                                           BRCK 1/2 NG ?
                                                                 Blin
 2 CO2?
                       PUN
 2 OXYGEN?
                                           F GR/BSCF = 0.57
           11.8300
                                           F NG/NHR = 1,313.46
F LB/NR = 2.81
200 2
                       RIN
                                           F KG/HP = 1.28
 HOL HT OTHER?
                       RUM
FM4 =29.76
攤 梃7=29.11
SORT PSTS 7
           9.2837
TIME HIM?
          52.0006
MOZZLE BIR ?
STR DIR INCH ?
          14.0000
. WOL MTR STB = 38.192
  STK PRES RBS = 38.12
  YOL NON CAS = 2.26
  2 MOISTURE = 5.58
  MOL MRY CRS = 8.944
  R NITROCEN = 80.10
  HOL NT BRY = 29.76
  MOL NT MET = 29.11
  VELOCITY FPS = 22.52
  STACK AREA = 1.07
 STRCK RCFH = 1,444.
* STACK BSCFN = 572.
% ISOKINETIC = 102.33
```

APPENDIX G Calibration Data

NOZZLE CALIBRATION DATA FORM

Date	9DEC 8	Calib	rated by _		
Nozzle identification number	D ₁ , mm (1n.)	Ozzle Diam D ₂ , mm (in.)	eter ^a D ₃ , mm (in.)	ΔD, b mm (in.)	D _{avg} c
O.Sa	0.499	0,499	0,498	0.001	0.499

where:

aD_{1,2,3}, = three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

b $\Delta D = \text{maximum difference between any two diameters, mm (in.),} \Delta D \leq (0.10 \text{ mm}) 0.004 \text{ in.}$

 $D_{avg} = average of D_1, D_2, and D_3.$

NOZZLE CALIBRATION DATA FORM

Date	8 CF (8	Calib	rated by _		
Nozzle identification number	D ₁ , mm (in.)	Jozzle Diam D ₂ , mm (in.)	meter ^a D ₃ , mm (in.)	ΔD, b mm (in.)	D c
0.56	0.496	0,496	0,495	0.001	0.496
	<u> </u>		<u> </u>		<u></u>

where:

 $[\]Delta D = \text{maximum difference between any two diameters, mm (ir.)}$ $\Delta D \leq (0.10 \text{ mm}) \ 0.004 \text{ in.}$

 $D_{avg} = average of D_1, D_2, and D_3.$

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

280ct .87 Meter box number Tilly Barometric pressure, $P_b = \frac{27.515}{15}$ in. Hg Calibrated by Gas volume Temperature Wet test Dry gas Wet test Dry gas meter Orifice . Inlet Outlet Time weter meter meter manometer (V_u), (v_d) , (t_d), (Θ), setting $(K\Delta)$, ${\sf ft}^3$ ft^3 in. H₂0 min 4.672 1.072 0.5 5 2.056 5 4.684 1.0 *53*3.5 9C 1.5 10 533.5 9.376 73 91 2.0 10 .533 3.0 10 533 6 4.0 10 533.5 b 2,1

ΔH, in. H ₂ O	Δ H 13.6	$Y_{i} = \frac{V_{w} P_{b}(t_{d} + 460)}{V_{d}(P_{b} + \frac{\Delta H}{13.6}) (t_{d} + 460)} \Delta H@_{i} = \frac{0.0317 \Delta H}{P_{b}(t_{d} + 460)} \left[\frac{(t_{w} + 460) \Theta}{V_{w}} \right]^{2}$
0.5	0.0368	
1.0	0.0737	
1.5	0.110	
2.0	0.147	
3.0	0.221	
4.0	0.294	

 $^{^{\}mathbf{a}}$ If there is only one thermometer on the dry gas meter, record the temperature under $\mathbf{t_{d}}.$

POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units)

Test 1	Test number	βΩ /	Date 12 4 6 80 Meter box number Mutes!	647	Meter b	ox number	Mus	1	Plant (Plant 21554 1 611855
Baron	Barometric pressure, $P_b = 29.70$	ire, P _b = 3	9.70 in.	Hg Dı	y gas m	eter, numbe	12 6840	ł	Pretest	Y 10kg
Orifice	Gas volume	lume		Temperature	ıre					,
manometer	Wet test	Dry gas	Wet test	Dr	Dry gas meter	eter				
setting,	mater .	mater	meter	Inlat	Outlat	Inlat Outlat Average	e E	Vacuum	>	V, Pb (td + 460)
in. 1120	ft 3	ft a	, F.	, d	, d	Ho.	(6)	setting,	,	$V_{d} \left({}^{P}_{b} + \frac{\Delta II}{13.6} \right) \left({}^{L}_{v} + 460 \right)$
				4	,		11711	4111 116		
/ :/	10 9.32/180	20,18	-16 536	36	برح	19.5 539.5 18.76	1/3	13	1,076	
//	10 1.347	1.6.37	16 536	163	42	0% 8/31765 5178	03/0 81	13	0.801	
11	10 9,370	1.84:50	78 34	36 85	Soft	13/2 8/ 5/1/2 51/2	18/20	13	1807	

 $^{\mathtt{a}}$ If there is only one thermometer on the dry gas meter, record the temperature under t $_{\mathtt{d}}$

 $V_{\rm w} = Gas$ volume passing through the wet test meter, ft.

 $v_{
m d}$ = Gas volume passing through the dry gas meter, ft 3 .

 $t_{
m W}$ = Temperature of the gas in the wet test meter, $^{
m 0F}$.

= Temperature of the inlet gas of the dry gas meter, oF.

= Temperature of the outlet gas of the dry gas meter, °F.

 $t_{
m d}$ = Average temperature of the gas in the dry gas meter, obtained by the average of $t_{
m d}$ and $t_{
m d}$, $^{
m 0}P$, $\Delta M = Pressure differential across orifice, in. H₂0.$

 ${
m Y_{1}}$ = Ratio of accuracy of wet test meter to dry gas meter for each run,

Y = Average ratio of accuracy of wet test meter to dry gas mater for all three runs; tolerance = pretest Y ± 0.05 Y.

= Barometric pressure, in. Hg.

0 = Time of calibration run, min.

DISTRIBUTION LIST

	Copies
HQ AFSC/SGPB Andrews AFB DC 20334-5000	1
HQ USAF/SGPA Bolling AFB DC 20332-6188	1
HQ SAC/SGPB Offutt AFB NE 68113-5001	1
USAF Regional Medical Center Wiesbaden/SGB APO New York 09220-5300	1
OL AD, USAFOEHL APO San Francisco 96274-5000	1
USAFSAM/TSK Brooks AFB TX 78235-5301	1
USAFSAM/EDH Brooks AFB TX 78235-5301	1
Defense Technical Information Center (DTIC) Cameron Station Alexandria VA 22319	2
HSD/EV Brooks AFB TX 78235-5000	1
HQ USAF/LEEV Bolling AFB DC 20330-5000	1
HQ AFESC/RDV Tyndall AFB FL 32403-6001	1
HQ SAC/DE Offutt AFB NE 68113-5001	1
USAF Hospital Plattsburgh/SGPB Pla:burgh AFB NY 12903-5300	5

SUPPLEMENTARY

INFORMATION

DEPARTMENT OF THE AIR FORCE USAF OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY (AFSC) BROOKS AIR FORCE BASE, TEXAS 78235-5501

1 ...

REP. Y TO

ECQ

SUBJECT

Addendum to USAF0EHL Report 88-098EQ0159MEF, Source Emission Testing of Hospital and Classified Waste Incinerators, PlattsburgkAFB NY

See Distribution

1. An error was recently found in the calculation for correcting particulate emissions data to 7% oxygen. Corrections to Table 1 and the text are attached. These corrections do not change the outcome of the testing.

2. Any questions concerning this report can be addressed to Maj Garrison or Capt Vaughn at AUTOVON 240-2891.

SHELTON R. BIRCH, Colonel, USAF, BSC Chief, Consultant Services Division

1 Atch Corrections 1. Change Table 1. Stack Emission Data on page 10, 12th column entitled (gr/dscf @ 7% 02) to read:

0.87

0.31

0.26

 $\tfrac{0.12}{0.23}$

2. Change page 11, paragraph A2a to read: Particulate emissions: Emissions are limited to 0.015 gr/dscf. Actual emissions were 0.23 gr/dscf. Again...

PROJECT CRITIQUE

This response sheet is provided to help us improve our service to you. Your confidential answers will be used by the Consultant Services Division Chief to identify the strengths and weaknesses of our products and services.

Project No: Project Title: ES 198 EQ 0159 MEF

Inadequate Meager Satisfactory Excellent

- 1. Content (Did the report respond to your question?)
- 2. Timeliness (Considering the complexity of the report and field survey requirements, was our response consistent with your needs?)
 Interim Response:
 Final Report:
- 3. Recommendations (Were the recommendations appropriate and supported by the conclusions?)
- 4. Charts, Figures, Graphs and Tables (Did these enhance or clutter the report?)
- 5. Clarity (Could you understand the report?)
- Project Officer (Professional, competent, courteous)

COMMENTS: (Please provide any additional comments you believe will help us improve our service. Use this section to expand any Inadequate or Meager blocks.)

To return, fold over, staple, and drop in outgoing mail.