Toddler mental development interventions: Can machine learning play a part?

28th June 2024 IDDDP Presentation Akshat Gautam

How is Physical Development Monitored?

- Physical parameters such as height, weight, and head circumference
- Standardized growth charts (WHO)
- z-scores calculated

WHO WHITHY OUT VED PET 11

Mental development?

Gauging Mental Development

Goal : To measure mental development (ultimately for interventions) **Current Situation:** Parents observe atypical symptoms, visit hospital

- Hospital conduct tests
- Too late? (symptoms already appeared)
- Results difficult to accept?

Long term goal: Bring hospital to children; generate developmental scores

Understanding Psychometric Tests

What are they:

 Standard and scientific method to measure mental capability

Why are they not used everywhere?

- Costly
- Trained professional; specific setting
- Not available in Low Income countries

Tablet Based Assessment

- Tablet contains set of tasks, each for different domain (social, motor, cognitive)
- Task generated raw data, not usable, needs to be processed One of the tasks is the **wheel task** (social domain)

Video recorded from front camera

Overview

- 1. Introduction (done)
- 2. Analysis Pipeline
- Understanding GMDS test (more detail)
- 4. Using features to predict GMDS scores
- 5. Using IRT (item response theory) to generate scores
- 6. Future Work
- 7. Understanding tasks and feature extraction

- Data collection done by STREAM team
- My work: Data analysis
- All contributions mentioned in purple colour.

Wheel Task

Feature description

Get the distance of face from the camera given video

Involves Computer Vision (STAGE 1) Wheel Task Say to the child: "Look at this wheel moving. You can look at it for as long as you Frame Number want. If you want to stop it just press this red button. Shall we stop it?" Press the red Video recorded from Black and white wheel [3] Distance vs Frame no front camera

Classification

- Median and Std dev of distance signal
- 111 children, 2 input features, 2 classes
- 5-fold CV

Algorithm	Accuracy (%)	F1 Score
Random Forest	78.46	0.67
Logistic Regression	81.23	0.74
SVM	73.07	0.55

Classified children into NDD/TD using distance as feature

Overview

- 1. Introduction (done)
- 2. Analysis Pipeline
- 3. Understanding GMDS test (more detail)
- 4. Using features to predict GMDS scores
- 5. Using IRT (item response theory) to generate scores
- 6. Future Work
- 7. Understanding tasks and feature extraction

Problem Statement

Generate
developmental
scores using tabletbased assessment

	Parent name											
	Address	F-2,765,sanga	am vihar									
		M										
~1	Birth Date	2014-09-29										
		4y 1m										
1		Not available										
		Delhi										
	Hand dominan	right										
		39992d8a3632										
-		16.04.2018 08	3:37:29 386									
	interrupted	0										se features
1	screenHeight	1600										
	screenWidth	2560										or analysis
	startTime	16.04.2018 08										- C, -
	xdpi	301.037										
	ydpi	301.037										
Assessmo	Cub attampt t	4.4										
on table	Sub-attempt #	1										
						touch_pressur		touch_x			touch_y_dp	
	-65536					0.07843138						
	05500											
Fea	-65536				4393					1300.3906		
Fea	-05550	-0.1436521	0.18195933	9.959879	4393 4439	0.10588236	0.227451	1012.29724	538.032064	1280.4792	680.569737	
	-05550	-0.1436521 -0.1436521	0.18195933 0.18195933	9.959879 9.959879	4439 4455	0.10588236 0.10588236	0.227451 0.21960786	1012.29724 1006.9506	538.032064 535.190345	1280.4792 1269.5358	680.569737 674.753363	
Fe; Extr	-65536 -65536	-0.1436521 -0.1436521 -0.1436521	0.18195933 0.18195933 0.18195933	9.959879 9.959879 9.959879	4439 4455 4471	0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786	1012.29724 1006.9506 998.96625	538.032064 535.190345 530.946694	1280.4792 1269.5358 1248.6647	680.569737 674.753363 663.660454	
	-05550	-0.1436521 -0.1436521 -0.1436521 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613	9.959879 9.959879 9.959879 9.969456	4439 4455	0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451	1012.29724 1006.9506 998.96625 991.5432	538.032064 535.190345 530.946694 527.001372	1280.4792 1269.5358 1248.6647 1230.4275	680.569737 674.753363 663.660454 653.967453	
	-65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456	4439 4455 4471	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.227451	1012.29724 1006.9506 998.96625 991.5432 979.2913	538.032064 535.190345 530.946694 527.001372 520.489535	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983	680.569737 674.753363 663.660454 653.967453 642.737365	
	-65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456	4439 4455 4471 4488	0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.227451	1012.29724 1006.9506 998.96625 991.5432 979.2913	538.032064 535.190345 530.946694 527.001372 520.489535	1280.4792 1269.5358 1248.6647 1230.4275	680.569737 674.753363 663.660454 653.967453	
	-65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.227451 0.21960786 0.21960786	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325	538.032064 535.190345 530.946694 527.001372 520.489535	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478	
	-65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.227451 0.21960786 0.21960786	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324	538.032064 535.190345 530.946694 527.001372 520.489535 514.611825 509.876992	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755	
	-65536 -65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521 4537	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.227451 0.21960786 0.21960786	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324	538.032064 535.190345 530.946694 527.001372 520.489535 514.611825 509.876992 506.187452	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607 1164.1115	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755	
	-65536 -65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521 4537 4554	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.227451 0.21960786 0.21960786 0.23529413	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324 952.3822	538.032064 535.190345 530.946694 527.001372 520.489535 514.611825 509.876992 506.187452 502.557333	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607 1164.1115 1144.6969	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755 608.401971	
	-65536 -65536 -65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521 4537 4554	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.21960786 0.21960786 0.23529413 0.227451 0.227451	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324 952.3822 945.5522 941.5788	538.032064 535.190345 530.946694 527.001372 520.489535 514.611825 509.876992 506.187452 502.557333 500.445487	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607 1164.1115 1144.6969 1123.0647 1109.33	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755 608.401971 596.90454	
	-65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521 4537 4554 4570	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.21960786 0.21960786 0.21960786 0.23529413 0.227451	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324 952.3822 945.5522 941.5788	538.032064 535.190345 530.946694 527.001372 520.489535 514.611825 509.876992 506.187452 502.557333 500.445487 498.941565	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607 1164.1115 1144.6969 1123.0647 1109.33 1088.0769	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755 608.401971 596.90454 589.6046	
	-65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521 4537 4554 4570 4586 4603 4619	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.21960786 0.21960786 0.23529413 0.227451 0.227451	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324 952.3822 945.5522 941.5788 938.7492	538.032064 535.190345 530.946694 527.001372 520.489535 514.611825 509.876992 506.187452 502.557333 500.445487 498.941565	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607 1164.1115 1144.6969 1123.0647 1109.33 1088.0769	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755 608.401971 596.90454 589.6046 578.30866	s from
	-65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521 4537 4554 4570 4586 4603 4619	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.21960786 0.21960786 0.23529413 0.227451 0.21960786 0.227451 0.227451	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324 952.3822 945.5522 941.5788 938.7492 937.35486 937.5	538.032064 535.190345 530.946694 527.001372 520.489535 514.611825 509.876992 506.187452 502.557333 500.445487 498.941565 498.200479	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607 1164.1115 1144.6969 1123.0647 1109.33 1088.0769 1070.7511 1059.5403	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755 608.401971 596.90454 589.6046 578.30866 569.100064	s from
	-65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521 4537 4554 4570 4586 4603 4619	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.21960786 0.21960786 0.23529413 0.227451 0.21960786 0.227451 0.227451	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324 952.3822 945.5522 941.5788 938.7492 937.35486 937.5	538.032064 535.190345 530.946694 527.001372 520.489535 514.611825 509.876992 506.187452 502.557333 500.445487 498.941565 498.200479 498.27762	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607 1164.1115 1144.6969 1123.0647 1109.33 1088.0769 1070.7511 1059.5403	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755 608.401971 596.90454 589.6046 578.30866 569.100064 563.141567 558.26998	
	-65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436525 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521 4537 4554 4570 4586 4603 4619 4636 4652	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.21960786 0.21960786 0.23529413 0.227451 0.227451 0.227451 0.227451 0.227451 0.227451 0.227451 0.227451	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324 952.3822 945.5522 941.5788 938.7492 937.35486 937.5	538.032064 535.190345 530.946694 527.001372 520.489535 514.611825 509.876992 506.187452 502.557333 500.445487 498.941565 498.200479 498.27762	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607 1164.1115 1144.6969 1123.0647 1109.33 1088.0769 1070.7511 1059.5403	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755 608.401971 596.90454 589.6046 578.30866 569.100064 563.141567 558.26998 554.853045	s from Taks
	-65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521 4537 4554 4570 4586 4603 4619 4636 4652	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.21960786 0.21960786 0.23529413 0.227451 0.21960786 0.227451 0.227451 0.227451 0.227451 0.227451 0.227451	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324 952.3822 945.5522 941.5788 938.7492 937.35486 937.5 937.5	538.032064 535.190345 530.946694 527.001372 520.48953 514.611825 509.876992 506.187452 502.557333 500.445487 498.941565 498.200479 498.27762 498.27762 504.256633	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607 1164.1115 1144.6969 1123.0647 1109.33 1088.0769 1070.7511 1059.5403 1050.3745	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755 608.401971 596.90454 589.6046 578.30866 569.100064 563.141567 558.26998 554.853045	
	-65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.18195933 0.18195933	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521 4537 4554 4570 4586 4603 4619 4636 4652 4668	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.21960786 0.21960786 0.23529413 0.227451 0.21960786 0.227451 0.21960786 0.227451 0.21960786 0.21960786 0.21960786	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324 952.3822 945.5522 941.5788 938.7492 937.35486 937.5 937.5	538.032064 535.190345 530.946694 527.001372 520.489535 514.611825 509.876992 506.187452 502.557333 500.445487 498.941565 498.27062 498.27762 504.256633 508.366251 520.189611	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607 1164.1115 1144.6969 1123.0647 1109.33 1088.0769 1070.7511 1059.5403 1050.3745	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755 608.401971 596.90454 589.6046 578.30866 569.100064 563.141567 558.26998 554.853045 551.557875 547.957839	
	-65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536 -65536	-0.1436521 -0.1436521 -0.1436521 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753 -0.1340753	0.18195933 0.18195933 0.18195933 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.19153613 0.1915363 0.1915363 0.1915363 0.1915363 0.1915363	9.959879 9.959879 9.959879 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456 9.969456	4439 4455 4471 4488 4504 4521 4537 4554 4570 4586 4603 4619 4636 4652 4668 4684	0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236 0.10588236	0.227451 0.21960786 0.21960786 0.227451 0.21960786 0.23529413 0.227451 0.21960786 0.227451 0.21960786 0.227451 0.21960786 0.21960786 0.21960786 0.21960786 0.21960786 0.21960786 0.21960786 0.21960786 0.21176472	1012.29724 1006.9506 998.96625 991.5432 979.2913 968.2325 959.324 952.3822 945.5522 941.5788 938.7492 937.35486 937.5 937.5	538.032064 535.190345 530.946694 527.001372 520.489535 514.611825 509.876992 506.187452 502.557333 500.445487 498.200479 498.27762 498.27762 504.256633 508.366251 520.189611 537.408757	1280.4792 1269.5358 1248.6647 1230.4275 1209.2983 1183.4607 1164.1115 1144.6969 1123.0647 1109.33 1088.0769 1070.7511 1059.5403 1050.3745 1043.9456 1037.7458 1030.9724	680.569737 674.753363 663.660454 653.967453 642.737365 629.00478 618.720755 608.401971 596.90454 589.6046 578.30866 569.100064 563.141567 558.26998 554.853045 551.557875 547.957839 544.461392	

What to do with these features?

Feature Tensor

Child 1	Coloring Task Feature	Wheel Task Feature	Button Task Feature	
Child 2	Coloring Task Feature	Wheel Task Feature	Button Task Feature	
Child 3	Coloring Task Feature	Wheel Task Feature	Button Task Feature	

Feature to scores supervised on psychometric tests (GMDS)

Features to scores but unsupervised using IRT (Item response theory) Features to classify NDD/TD (Done for wheel task)

For this, it's important to understand psychometric test GMDS

Griffith's Mental Development Scale (GMDS)

- Gold-standard tool
- o-6 years
- 321 items, 5 domains
 - Foundations of learning (63 items)
 - Language and communication (63 items)
 - Eye and hand coordination (67 items)
 - Personal-social-emotional (65 items)
 - Gross motor (63 items)
- Binary Items

Convert these "raw scores" into normalized scores

Photo of GMDS test kit [4]

Sample GMDS Results					
ChildID	Α	В	С	D	E
MW-0113	33	43	44	53	47
IN-1653	49	51	52	56	60
IN-1682	31	43	46	45	46

Short demo of GMDS test

This is done so a child doesn't have to sit through all 321 items

How do we use these raw scores?

Motivation

- Want psychometric test to be administered easily
- Want to show features actually capture development

Features to developmental scores based on psychometric test

Pipeline

Setup

Training

384 data points (i.e. features and scores for 384 children) 56 features (54 features from 6 different tasks + Age,Gender) Target label is GMDS scores across 5 domains

Training Setup

5-fold cross-validation (due to less data)

What is model choice?

Regression Models

Metrics

R2 Score Mean absolute percentage error (MAPE) Mean square error (MSE)

Models

- Linear Regression
- Ridge Regression
- Random Forest
- Gradient Boosting
- AdaBoost
- Decision Tree
- Support Vector Regression
- KNN regressor
- XGBoost

Results [1/3]

Best Model

Model	R2 Score	MAPE	MSE
Random Forest	0.64	7.88%	20.12

Ground truth GMDS score distribution

Results (2/3)

- 1st plot: MAPE across 5 domains
- 2nd plot: Average MAPE
- 5-10% error for half of the samples

Average MAPE Across All Domains for Random Forest

Results (3/3)

- Removing Age reduces performances, GMDS highly correlated with Age
- Sex and Country don't show any effect
- Same trend in MAPE and MSE

Overview

- 1. Introduction (done)
- 2. Analysis Pipeline
- 3. Understanding GMDS test (more detail)
- 4. Using features to predict GMDS scores
- 5. Using IRT (item response theory) to generate scores
- 6. Future Work
- 7. Understanding tasks and feature extraction

Problem Statement

Generate
developmental
scores using tabletbased assessment

Where are we now?

Features extracted can be used to generate scores like GMDS

Developmental scores could be generated independently

Not depend on GMDS

- Costly
- Will need to administer again for a new country

What's Next?

To generate developmental scores without relying on psychometric test

Item Response Theory (IRT)

What is IRT?

- Theory of measurement
- Family of statistical models

What does it do?

IRT maps observations onto internal traits / states :-

- Test scores responses into knowledge / intelligence
- Questionnaire items into attitude / beliefs

IRT equation

$$Y_{ij} = \theta_j - b_i$$
 Where, Y_{ij} = Logit of Response by person j for item i,
$$\theta_j$$
= **Trait** of person j,
$$b_i$$
= Difficulty of item I

Thus, for mapping values to [0,1],

$$Logit = \ln(\frac{Pr}{1 - Pr})$$

So, we have probability value between [0,1] and binary responses (0/1) to items. We can optimize the two parameters (θ , b)

Probability vs logit [6]

Some other models

2 Parameter Model

 $Y_{ij} = a_i \theta_j - b_i$ $Y_{ij} = ext{Logit of Response by person j for item i,}$ $a_i = ext{Discrimination of item I,}$ $\theta_j = ext{Trait of person j,}$ $b_i = ext{Difficulty of item i}$

Same difficulty, different discriminations

In STREAM, if we consider tasks metric as "items" in questionnaire, responses are not in binary. e.g., for coloring tasks

Task metric / Items	Features / Responses
Points Inside	636
Points Outside	1595
Crossovers	63
Time Taken	88216

Adapting for STREAM data

What if we remove the logit link from the equation earlier :-

$$Y_{ij} = \theta_j - b_i$$
 Where, Y_{ij} =Feature of child j for the task metric i, θ_j = Ability of the child j, b_i = Difficulty of task metric j

- Known as LME (linear mixed effect) model
- Ime4 package in R [7]

Setup for START data

Final equation

$$Feature_{task,child} = \theta_{child} - b_{task}$$

- Higher ability should lead to higher feature value
- Not true, higher ability child should have lower crossover counts

Results (1)

r = 0.34

Correlation of IRT score with	r
GMDS domain A	0.27
GMDS domain B	0.22
GMDS domain C	0.24
GMDS domain D	0.24
GMDS domain E	0.25

Correlating IRT scores with GMDS

Relatively low correlation with age and GMDS scores, the scores need to be improved

Improvements/Future Work

Why is correlation not good?

- IRT assumes monotonicity, ability increases, task feature should also increase
 - Not necessarily true since they are hand crafted features, e.g. number of crossovers increases as age of children increases which is not expected
- IRT assumes local independence: responses given to the separate items in a test are mutually independent given a certain level of ability (multiple features are extracted from same task)
- We are using all features to predict a single score, could bin features into different domains and generate multiple scores like -> social, motor ...

Future Work Motivation

- We are not including the fact that the child is performing tasks in a particular order, and in a single sitting
- Each feature may require mastery in multiple areas (social, motor, fine motor etc.), however we may not know the areas corresponding to each feature
- We are fitting a linear mixed effect regression model

Knowledge State

- Given a child's previous task attempts X= {x1,x2, ... xt-1}, our goal is to predict the feature (say number of crossovers) that child will achieve in the current task
 - Fach input $x_t = (q_t, F_t)$ is a tuple containing task q_t , and its feature F_t which is computed from the tablet data
- The information of previous attempted tasks is condensed into a latent knowledge state S={s1,s2, ... st-1}
 - For example, if our previous method incorrectly predicts a feature F_t , our goal is to update the model and the knowledge state, thus improving our understanding of the child as she attempts task over time

Concepts

We want to have multiple concepts for each state i.e c1,c2....cn

States and concepts

- Combine knowledge state and concept in a memory augmented neural net paradigm
- Training
 - Learn static matrix (key) for storing concepts associated with each task independent of child
 - Learn matrix (value) for storing student's knowledge state in each concept
- Inference
 - Update the value matrix as child completes task
 - Final score after all tasks are completed

Maintains a knowledge state for each concept simultaneously and all states constitute the "knowledge" of a child

Method 3: Deep IRT

- IRT Module is built on top of key-value network
 - Instead of predicting probability, we predict student ability using f,
- Task difficulty is calculated using another network
- Ability and difficulty is combined to predict task feature (F_t)
 [reminiscent of Item Response Theory]

M^v ∈ ℝ^{N×d_v}: Value memory matrix (skill states)
 M^k ∈ ℝ^{N×d_k}: Key memory matrix (latent abilities)
 A ∈ ℝ^{d_k×Q}: Ability Components Embedding matrix

 $\begin{array}{ll} - & k_t \in \mathbb{R}^{d_k} & : \text{ Embedding vector (key)} \\ - & v_t \in \mathbb{R}^{d_v} & : \text{ Response Embedding vector} \\ - & e_t \in \mathbb{R}^{d_v} & : \text{ Response erase vector} \end{array}$

 $\mathbf{B} \in \mathbb{R}^{Q \times d_v}$: Ability Components response embedding matrix

Ability is our developmental score

Delayed Gratification Task

Task Description

A star appears on screen. Child is told to wait for some time to get all three stars.

Feature Description

- 1. Proportion time spent delaying gratification
- 2. Proportion of frames child's face visible

Start time and end time are read through the excel files. Total task time is 180 s

Proportion Time =
$$\frac{End\ Time-Start\ Time}{180}$$

Medipipe face mesh is used to detect if a face is present or not in the frame. If more than one faces are present, then that frame is ignored.

Proportion face =
$$\frac{No \ of \ frames \ with \ a \ face}{Total \ No \ of \ frames}$$

Summary

 The data stored as raw data from tablet assessments can be converted into relevant features.

These features can be used for classification into NDD/TD.

- These features used to generate scores under the supervision of GMDS scores.
- Item Response Theory used to generate developmental scores in an unsupervised setting.

Acknowledgements

- My advisor: Prof. Sharat Chandran
- STREAM team
- Shubham (especially for distance work, experiments ..)

Thank You!

References

- [1] https://www.who.int/tools/child-growth-standards/standards/weight-for-length-height
- [2] https://www.who.int/tools/child-growth-standards/software
- [3] https://journals.sagepub.com/doi/full/10.1177/13623613231182801
- [4] https://www.aricd.ac.uk/about-the-griffiths-scales/griffiths-iii/griffiths-iii-kit/
- [5] https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000273
- [6] https://hummedia.manchester.ac.uk/institutes/methods-manchester/docs/irt.pdf
- [7] https://www.jstatsoft.org/article/view/vo39i12
- [8] https://www.mdpi.com/2624-8611/5/3/50
- [9] https://arxiv.org/abs/1904.11738