Décidabilité de la rationnalité pour les WSTS

Lucas Bueri

Stage M2 - 2021

1 Réseaux de Petri

Un réseau de Petri $N = (P, T, B, F, M_0)$ est la donnée de

- un ensemble fini P de d emplacements,
- un ensemble fini T de transitions,
- une fonction de coût $B: P \times T \to \mathbb{N}$,
- une fonction de production $F: P \times T \to \mathbb{N}$,
- un marquage initial $M_0: P \to \mathbb{N}$.

Les configurations sont les marquages $M: P \to \mathbb{N}$, aussi considérés comme les valeurs possibles de d compteurs (vecteur de \mathbb{N}^d). On peut déclencher la transition t à partir du marquage M si et seulement si $M(p) \geqslant B(p,t)$ pour tout $p \in P$ (noté $M \geqslant B(\cdot,t)$).

On obtient alors un nouveau marquage M' défini par $M' := M + D(\cdot, t)$ où $D \stackrel{def}{=} F - B$. B représente donc le coût de la transition (le nombre de jetons requis et consommés dans chaque emplacement), et F représente sa production (les jetons créés lors du déclenchement).

On notera M(t) lorsque t peut se déclencher sur M, et M(t)M' si déclencher t sur M donne M'. On étendra naturellement cette notation (ainsi que $B(p,\cdot)$ et $F(p,\cdot)$) aux séquences de transitions, ou mots $w \in T^*$.

Deux ensembles nous intéresseront alors : le langage $\mathcal{L}(N) \stackrel{def}{=} \{w \in T^* \mid M_0(w)\}$ du réseau de Petri et les configurations accessibles $\mathcal{R}(N) \stackrel{def}{=} \{M' : P \to \mathbb{N} \mid \exists w \in T^*, M_0(w)M'\}$.

2 VAS

Un système d'addition de vecteurs de dimension $d \in \mathbb{N}$ (d-VAS) $S = (A, \mathbf{x}_{init})$ est la donnée d'un vecteur initial $\mathbf{x}_{init} \in \mathbb{N}^d$ et d'un ensemble fini A d'actions. À chaque action $a \in A$ est associé un unique vecteur $\overline{a} \in \mathbb{Z}^d$, de telle manière à ce que deux actions ne soient pas associées au même vecteur de \mathbb{Z}^d .

Les configurations de S sont alors les vecteurs de \mathbb{N}^d (à coordonnées positives), et chaque action $a \in A$ agit sur \mathbb{N}^d en additionnant à la configuration courante le vecteur \overline{a} associé. On a alors une transition entre \mathbf{x} et \mathbf{y} étiquetée par l'action a lorsque $\mathbf{x} + \overline{a} = \mathbf{y}$.

De manière équivalente, on dira que l'action $a \in A$ est franchissable à partir de la configuration $\mathbf{x} \in \mathbb{N}^d$ lorsque $\mathbf{x} + \overline{a} \geqslant \mathbf{0}$, et son déclenchement aboutit à la configuration $\mathbf{y} := \mathbf{x} + \overline{a}$ à travers la transition $(\mathbf{x}, a, \mathbf{y}) \in \mathbb{N}^d \times A \times \mathbb{N}^d$. On notera $\mathbf{x} \stackrel{a}{\longrightarrow} \mathbf{y}$ lorsqu'un tel déclenchement est possible.

Lorsqu'une séquence d'actions $w = a_1 \cdots a_k \in A^*$ permet d'aller de \mathbf{x} à \mathbf{y} par la séquence de transition $\mathbf{x} = \mathbf{x_0} \xrightarrow{a_1} \mathbf{x_1} \xrightarrow{a_2} \dots \xrightarrow{a_k} \mathbf{x_k} = \mathbf{y}$ (où $\mathbf{x_0}, \dots, \mathbf{x_k} \in \mathbb{N}^d$ et $\mathbf{x_{i-1}} + \overline{a_i} = \mathbf{x_i}$ pour tout $1 \leq i \leq k$), on dit que w est franchissable à partir de \mathbf{x} , et qu'on a une exécution $\rho : \mathbf{x} \xrightarrow{w} \mathbf{y}$. \mathbf{y} est alors dit accessible à partir de \mathbf{x} .

De plus, en notant $\overline{w} \stackrel{def}{=} \sum_{i=1}^k \overline{a_i}$ le vecteur associé à w, on obtient $\mathbf{x} + \overline{w} = \mathbf{y}$. Cependant, l'égalité peut-être vérifiée même si w n'est pas franchissable.

Nous allons étudier deux ensembles naturellement associés à un VAS $S = (A, \mathbf{x}_{\text{init}})$:

- 1. $\mathcal{L}(S) \stackrel{def}{=} \left\{ w \in A^* \mid \exists \mathbf{y} \in \mathbb{N}^d, \mathbf{x}_{\text{init}} \stackrel{w}{\longrightarrow} \mathbf{y} \right\}$ qui est le *langage* des séquences d'actions franchissables à partir de \mathbf{x}_{init} ,
- 2. $\mathcal{R}(S) \stackrel{def}{=} \left\{ \mathbf{y} \in \mathbb{N}^d \mid \exists w \in A^*, \mathbf{x}_{\text{init}} \xrightarrow{w} \mathbf{y} \right\}$ qui est l'ensemble des configurations accessibles à partir de \mathbf{x}_{init} .

Définition 1. Un VAS S est rationnel si $\mathcal{L}(S)$ est rationnel sur A^* .

3 Un algorithme de calcul du Graphe de couverture (pour les VAS)

On étend les configurations des VAS aux vecteurs à coordonnées dans $\mathbb{N}_{\omega} \stackrel{def}{=} \mathbb{N} \cup \{\omega\}$. Cela va nous permettre de représenter le graphe des configurations accessibles de manière finie (bien qu'il puisse exister une infinité de configurations accessibles).

Le graphe de couverture a pour sommets des configurations de \mathbb{N}^d_{ω} et pour arêtes des transitions du VAS, étiquetés par une action de A. Il est obtenu en partant d'un sommet initial $s_0: \mathbf{x}_{\text{init}}$ étiqueté par la configuration initiale $\mathbf{x}_{\text{init}} \in \mathbb{N}^d$, puis par récurrence sur la profondeur des noeuds en indiquant les voisins des noeuds accessibles :

Pour chaque noeud $s: \mathbf{x}$ associé à la configuration $\mathbf{x} \in \mathbb{N}^d_{\omega}$, on fait partir de s autant d'arêtes que d'actions $a \in A$ qui sont franchissables à partir de \mathbf{x} . Le sommet d'arrivée de l'arête associée à une action a est déterminé ainsi :

- Si $\mathbf{x} \stackrel{a}{\longrightarrow} \mathbf{y}$ (déclencher a aboutit à la configuration $\mathbf{y} := \mathbf{x} + \overline{a}$) et qu'il existe un sommet déjà existant $r : \mathbf{y}$ associé à cette configuration, alors on crée une arête étiquetée par a de $s : \mathbf{x}$ vers $r : \mathbf{y}$;
- Si $\mathbf{x} \stackrel{a}{\longrightarrow} \mathbf{y}$ et qu'il existe un ancêtre $r : \mathbf{z}$ de s (c'est-à-dire tel qu'il existe une chemin dans le graphe déjà créé de r à s) avec $\mathbf{y} > \mathbf{z}$, alors on crée un nouveau sommet $s' : \mathbf{y}'$ et une arête de $s : \mathbf{y}$ vers $s' : \mathbf{y}'$ étiquetée par a, où $\mathbf{y}' \in \mathbb{N}^d_\omega$ est la configuration de coordonnées $\mathbf{y}'(i) := \mathbf{y}(i)$ pour les $1 \le i \le d$ tels que $\mathbf{y}(i) = \mathbf{z}(i)$, et $\mathbf{y}'(i) := \omega$ si $\mathbf{y}(i) > \mathbf{z}(i)$;
- Si la configuration \mathbf{y} atteinte n'est pas dans les cas précédents, on crée simplement un nouveau sommet $s' : \mathbf{y}$ et une arête de s à s' étiquetée par a.

4 Une caractérisation pour la rationnalité

La preuve de décidabilité se divise en deux étapes. Tout d'abord, on va donner une caractérisation mathématique équivalente à la rationnalité. On montrera ainsi qu'un VAS est rationnel si et seulement s'il existe une borne sur la décroissance possible des coordonnées des configurations.

Théorème 1. Soit $S = (A, \mathbf{x}_{init})$ un VAS. Alors $\mathcal{L}(S)$ est rationnel si et seulement si

$$\exists k \in \mathbb{N}, \forall \mathbf{x} \in \mathcal{R}(S), \forall w \in A^*, \left((\mathbf{x} + \overline{w}) \in \mathcal{R}(S) \implies \forall i \in \{1, \dots, d\}, \overline{w}(i) \geqslant -k \right)$$

Une manière équivalente de formuler cette caractérisation serait

$$\exists k \in \mathbb{N}, \forall \mathbf{x} \in \mathcal{R}(S), \forall \mathbf{y} \in \mathcal{R}(A, \mathbf{x}), \quad \mathbf{y} \geqslant \mathbf{x} - \mathbf{k}$$

pourrait aussi s'écrire avec des fleches : $\exists k \in \mathbb{N}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{N}^d \text{ si } \mathbf{x_0} \xrightarrow{*} \mathbf{x} \xrightarrow{*} \mathbf{y} \text{ alors } \mathbf{y} \geqslant \mathbf{x} - \mathbf{k}$ où $\mathbf{k} = (k, k, ..., k) \in \mathbb{N}^d$. Méthode de Valk et Vidal-Naquet :

On prouve d'abord la réciproque en construisant un automate fini reconnaissant $\mathcal{L}(S)$. Pour cela, on restreint simplement les états aux configurations de $\{0,\ldots,c\}^d$ pour une certaine constante $c \in \mathbb{N}$ obtenue à partir de k. L'autre sens est montré par l'absurde, en s'appuyant sur les circuits dans le graphe de couverture de S.

Méthode de Ginzburg et Yoeli :

On introduit une relation E sur les configurations de $\mathcal{R}(S)$ par

$$\mathbf{x}E\mathbf{y}$$
 ssi $\forall w \in A^*, \left(\mathbf{x} + \overline{w} \in \mathcal{R}(S) \Leftrightarrow \mathbf{y} + \overline{w} \in \mathcal{R}(S)\right)$

Ca a l'air d'être équivalent à $\mathcal{L}(S, x) = \mathcal{L}(S, y)$. Est-ce que la relation d'ordre associée $x \sqsubseteq y$ if $\mathcal{L}(S, x) \subseteq \mathcal{L}(S, y)$ est intéressante à regarder?

L'objectif est de traduire les caractérisations usuelles de rationnalité dans le modèle des configurations. La relation E correspond en fait à la congruence de Nérode sur le langage $\mathcal{L}(S)$. On obtient donc le résultat suivant :

Théorème 2. Pour un VAS S, $\mathcal{L}(S)$ est rationnel si et seulement si le quotient $\mathcal{R}(S)/E$ est fini.

Preuve : Dans un sens, construit l'automate (explicitement) en associant un état à chaque classe d'équivalence. Dans l'autre, utilise le fait que la congruence de Nérode est connue être finie pour les langages rationnels.

On prouve ensuite l'équivalence entre $\mathcal{R}(S)/E$ fini et la caractérisation du théorème 1.

5 Bornes

Détaillons maintenant plusieurs propriétés de bornes sur les coordonnées des vecteurs configurations. On regarde $\{1,\ldots,d\}$ l'ensemble des indices des vecteurs codant les configurations d'un VAS $S=(A,\mathbf{x}_{\mathrm{init}})$. On peut voir ces coordonnées comme des emplacements accueillant un certain nombre de jetons, qui sont ajoutés ou retirés lors du déclenchement d'une action (lien avec les réseaux de Petri).

Soit $I \subseteq \{1, \dots, d\}$ un sous-ensemble d'indices. On dira que

— I est borné pour $\mathbf{x} \in \mathbb{N}^d_{\omega}$ lorsqu'il existe toujours une coordonnée d'indice dans I qui soit bornée pour toute configuration accessible depuis \mathbf{x} :

$$\exists k \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(\mathbf{x}), \exists i \in I, \mathbf{y}(i) \leqslant k$$

— I est uniformément borné pour $\mathbf{x} \in \mathbb{N}^d_{\omega}$ lorsque toutes les coordonnées d'indice dans I sont bornées pour toute configuration accessible depuis \mathbf{x} :

$$\exists k \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(\mathbf{x}), \forall i \in I, \mathbf{y}(i) \leqslant k$$

— I est borné inférieurement pour $\mathbf{x} \in \mathbb{N}^d_{\omega}$ lorsqu'au moins une coordonnée dans I ne diminue pas plus qu'une certaine borne (même en augmentant les ressources initiales) :

$$\exists k \in \mathbb{N}, \forall n \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(\mathbf{x} + n \cdot \mathbb{1}_I), \exists i \in I, \mathbf{y}(i) \geqslant \mathbf{x}(i) + n - k$$

— I est uniformément borné inférieurement pour $\mathbf{u} \in \mathbb{N}^d_{\omega}$ lorsque toutes les coordonnées de I ne décroissent pas plus d'une certaine valeur :

$$\exists k \in \mathbb{N}, \forall n \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(\mathbf{x} + n \cdot \mathbb{1}_I), \forall i \in I, \mathbf{y}(i) \geqslant \mathbf{x}(i) + n - k$$