EGMO TST Day 1

Date: 29 December 2023

Instructions:

- i) You have 4 hours and 30 minutes for three problems.
- ii) Each problem is worth 10 points. Attempt all three.
- iii) Any claim you make must be accompanied by a proper justification.

Rubric P2 Problem and Solution

Problem 2.

Given that a_1, a_2, \ldots, a_{10} are positive real numbers, determine the smallest possible value of

$$\sum_{i=1}^{10} \left\lfloor \frac{7a_i}{a_i + a_{i+1}} \right\rfloor$$

where we define $a_{11} = a_1$.

Sutanay Bhattacharya

Solution. We claim the minimum is 6. This is attained when $a_i = 7^i$ for $i \in \{1, ..., 10\}$.

Now to prove this is the minimum, make the substitution $a_{i+1}/a_i = x_i$. The problem becomes: for positive reals x_1, \ldots, x_{10} with $x_1x_2 \cdots x_{10} = 1$. Prove that

$$\sum_{i=0}^{10} \left\lfloor \frac{7}{1+x_i} \right\rfloor \ge 6.$$

Let $z_i = \left\lfloor \frac{7}{1+x_i} \right\rfloor$. If at most 4 of the z_i 's are zero, then at least 6 of them are ≥ 1 , and thus the sum is at least 6.

If not, then at least five of them are 0. Suppose $z_1 = \cdots = z_5 = 0$ without loss of generality. Note that $z_i = 0$ implies

$$\frac{7}{1+x_i} < 1 \implies x_i > 6,$$

so that $x_1, ..., x_5 > 6$. Thus $x_1x_2x_3x_4x_5 > 6^5$, which means $x_6x_7x_8x_9x_{10} < 1/6^5$. Assuming WLOG $x_6 = \min\{x_6, x_7, x_8, x_9, x_{10}\}$, this implies $x_6 < 1/6$. However, then we have

$$z_6 \ge \left\lfloor \frac{7}{1 + \frac{1}{6}} \right\rfloor = 6,$$

and the conclusion follows.

Rubric

0+

Upper Bound. (3)

- (A) +1: Guessing the answer is 6
 - The conjecture should be explicitly stated. Something like being boxed as a number is rough work is not considered sufficient.
- (B) +2: Correct construction achieving 6
 - +1: If construction is not explicitly written saying that it achieves 6 but the sequence $1, 7, 7^2, \cdots$ is mentioned upto at least the square.

Lower Bound. (7)

- (A) **+2:** Shifting to working with $\frac{a_{i+1}}{a_i}$ or x_i .
 - The full two points can be awarded if only the expression is rewritten as $\sum_{i=0}^{10} \left\lfloor \frac{7}{1+x_i} \right\rfloor$ or it is clear that only the x_i are being considered.
 - 1 point can still be awarded if things like $\frac{a_{i+1}}{a_i} > 6 \implies z_i = 0$ and equivalent things are written. It is not considered to be the same as writing $a_{i+1} > 6a_i$. It should be clear that the ratio is being considered.
- (B) **+1:** Concluding if at most $4 z_i$ are 0.
- (C) **+1:** Showing that $z_i = 0 \iff x_i > 6$.
- (D) **+1:** Showing that at least $1 x_i$ is less than $\frac{1}{6}$ if $5 z_i$ s are 0.
- (E) **+2:** Concluding that the total sum is atleast 6 then.

All points are considered additive.

10-

A solution with both the upper and lower bound is considered complete. 1 mark can be deducted for minor errors which are easily fixable. Typos and such should not lead to deductions.