Truth Tables

Binary Logic

What do we know up to now?

- We know how to derive the output expression from a given ...
- ... Logic Circuit

Today ...

- We will learn how to derive the output expression from ...
- ... a Truth Table

Truth Table

Given a Truth Table

Output expressions ...

Simplify

Gates and VHDL

Truth Table → Simplified Circuit

How can we derive an output expression from a Truth Table?

Truth Table → Output logic expression(s)

Algorithm:

- 1. Write an AND term (Boolean expression) for each case in the truth table the output is logic 1
- 2. All the AND terms are then ORed together to produce the final output expression

Derive the Truth Table; Word Problem

Word Problem:

For a three-input (A,B,C) binary system. If we have more than one high(1) inputs the output (X) is 1, otherwise is zero(0).

Example Truth Table:

Α	В	С	Х
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Word Problem:

For a three-input (A,B,C) binary system. If we have more than one high(1) inputs the output (X) is 1, otherwise is zero(0).

Example Truth Table: Done

٧		7	
	v		
١	V	•	

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Word Problem:

For a three-input (A,B,C) binary system. If we have more than one high(1) inputs the output (X) is 1, otherwise is zero(0).

Example: Write Terms for X=1

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

ABC ABC

Example: Output expression

Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$X = \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$$

A B C A B C A B C

Example: Sum-of-Product (SOP)

$$X = \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$$

$$SOP = Sum-Of-Products$$

Let us simplify the above expression ...

Example: Simplify

$$X = \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$$

5 Minutes ...

Simplification using Boolean Theorems

$$X = \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

Result

$$X = \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= BC(\overline{A+A}) + AC(\overline{B+B}) + AB(\overline{C+C})$$

$$= BC + AC + AB$$

Implementation: Logic Circuit

Conclusion

- The algebraic simplification procedure is very unsystematic ...
- A systematic method will be studied next semester (CMPT281)