AAE 532 – Orbit Mechanics

Problem Set 6 Due: 10/16/20

Problem 1: Assume a relative two-body model and a space vehicle that is currently in a Mars orbit with $r_p = 1.1 R_{d}$ and $r_a = 6.0 R_{d}$. The spacecraft is currently located at $\theta_c^* = 90^{\circ}$ at time t_c . A single in-plane adjustment will be employed to circularize the orbit.

- (a) At what true anomaly values does $r = 4.5 R_{\sigma}$? (Note that two locations exist!) Select the location that is the earliest opportunity after t_c to reach $r = 4.5 R_{\sigma}$. Let this time be t_1 . Determine $v_1, \gamma_1, E_1, (t_1 t_p)$ at this location.
- (b) Sketch the orbit. Mark the usual quantities at the time t_1 : $\overline{r_1}$, $\overline{v_1}$, γ_1 , l.h., E_1 ; also add appropriate unit vectors \hat{e} , \hat{p} ; $\hat{r_1}$, $\hat{\theta_1}$.
- (c) What is the "wait time" till the maneuver $(t_1 t_c)$?
- (d) Determine r_1^+, v_1^+, γ_1^+ after the maneuver. Compute the required maneuver ($\Delta v, \alpha$). Recall that $\Delta v = |\Delta \overline{v}|$. [Include VECTOR diagrams!!!!]
- (e) Plot the old and new orbits on the same figure using your Matlab script. On the plot, mark \overline{r}_0 , \overline{r}_1 , \overline{v}_1^- , local horizon, γ_1^- , \overline{v}_1^+ , γ_1^+ , $\Delta \overline{v}$, α .
- (f) Plot the two orbits in GMAT using Mars as the central body. At the maneuver time, use a report to list \overline{r} , \overline{v} in each orbit at the maneuver time. Choose a convenient set of unit vectors (coordinate frame). Subtracting the velocity vectors should yield your $\Delta v = |\Delta \overline{v}|$. Does it?

- **Problem 2:** Given a two-body model, a vehicle is successfully launched into an Earth orbit with e = 0.4 and $a = 4R_{\oplus}$. A single <u>in-plane</u> maneuver will be implemented when $\theta^* = 135^{\circ}$. Let the maneuver be defined as $|\Delta \overline{\nu}| = 0.90$ km/s, $\alpha = +45^{\circ}$.
- (a) Determine $\overline{r}, \overline{v}^-, \gamma^-$ at the maneuver point.
- (b) Express the maneuver in both \hat{r} , $\hat{\theta}$ and \hat{e} , \hat{p} unit vectors. Also determine the maneuver in the VNB set of coordinates.
- (c) Prepare any VECTOR diagrams!!!! Determine r^+, v^+, γ^+ in the new orbit immediately after the maneuver.
- (d) To determine the impact that such a maneuver creates on the orbital characteristics, compute the following characteristics of the new orbit: $a, e, h, period, \mathcal{E}; \theta^*, E, \gamma, IP, (t-t_n), r_n, \Delta\omega$.
- (e) Plot the new and the old orbits in Matlab on the same figure using your Matlab script. On the plot, mark \overline{r}_0 , \overline{r}_1 , \overline{v}_1^- , local horizon, γ_1^- , \overline{v}_1^+ , γ_1^+ , $\Delta \overline{v}$, α . Also indicate the new and old lines of apsides and the shift, i.e., $\Delta \omega$. Is it positive or negative? Why?
- (f) Bonus → You can use GMAT in two ways to check the maneuver and the new orbit. Use either method to check your results:
 - (i) Use a start date October 10, 2020 12:00:00 to propagate the satellites. Put in the old and new orbits with 2 satellites and compare the velocities at the intersection point to assess if the difference equals the required $\Delta \overline{\nu}$;
 - (ii) Under GMAT Tips is a new document titled "Implement Maneuvers in GMAT". Use a start date October 10, 2020 12:00:00 to propagate and plot the old and new orbit but use the option to insert a maneuver. The $\Delta \overline{v}$ can also be expressed in terms of \hat{V} , \hat{N} , \hat{B} . Confirm that adding this maneuver yields the orbit that you calculated.

Problem 3: Assume a relative two-body model and a space vehicle that is currently located in an Earth orbit with $a = 3R_{\oplus}$ and e = 0.6. A single in-plane adjustment is to be implemented for a perigee-raise maneuver. The goal is a new periapsis distance such the new $r_p = 2R_{\oplus}$. At the same time, it is desired to produce an orbit that is less eccentric, i.e., the new eccentricity is e = 0.4 and both goals are accomplished using the same maneuver. The maneuver will take place when the spacecraft is located at the end of the minor axis and <u>descending</u>.

- (a) Determine $\overline{r_1}$, $\overline{v_1}$, γ_1^- , $(t-t_p)$ at the maneuver point. Sketch or plot the orbit in Matlab. Mark the usual quantities at the maneuver location prior to the maneuver: \overline{r}^- , \overline{v}^- , γ^- , l.h., E^- ; also add appropriate unit vectors \hat{e} , \hat{p} ; \hat{r} , $\hat{\theta}$.
- (b) Determine $\overline{r}^+, \overline{v}^+, \gamma^+$ at the maneuver point. [Include VECTOR diagrams!!!!] Compute the required maneuver ($\Delta v, \alpha$). Express that maneuver in terms of $\hat{r}, \hat{\theta}; \hat{V}, \hat{B}$ sets of unit vectors.
- (c) Determine the characteristics of the <u>new</u> orbit: $a, e, r_p, r_a, period, \mathbf{\mathcal{E}}; \theta^*, E, \gamma, IP, (t-t_p), r_p, \Delta\omega$

How long till the spacecraft reaches perigee in the new orbit?

(d) Plot the old and new orbits on the same figure using your Matlab script. On the plot, mark \overline{r}_0 , \overline{r}_1 , \overline{v}_1^- , local horizon, γ_1^- , \overline{v}_1^+ , γ_1^+ , $\Delta \overline{v}$, α .

Practice Problem (no submission): The relationship between sets of unit vectors is clearly important!

- (a) Derive the direction cosine matrix, i.e., the transformation matrix, that relates the inertial unit vectors $\hat{x}, \hat{y}, \hat{z}$ to the rotating set of unit vectors $\hat{r}, \hat{\theta}, \hat{h}$.
- (b) A vehicle is moving in some Earth orbit. At a certain time, the following information is given $\overline{r_1} = 2.12 \ R_{\oplus} \hat{x} + 2.73 \ R_{\oplus} \hat{y} 0.6 \ R_{\oplus} \hat{z}$ $\overline{v_1} = -3.4 \hat{x} + 1.62 \hat{y} + 2.9 \hat{z} \ \text{km/s}$

Could you express $\overline{r}, \overline{v}$ in terms of other sets of unit vectors: $\hat{n}_x, \hat{n}_v, \hat{n}_z; \hat{q}_x, \hat{q}_v, \hat{q}_z; \hat{r}, \hat{\theta}, \hat{h}$?

- (c) Determine the following orbital characteristics: $a, e, p, i, \omega, \Omega, r, v, \gamma, \theta^*, M, E, (t t_p)$. [Be sure to include the appropriate quadrant checks!!] Are you sure the orbit is an ellipse? How do you know?
- (d) Plot/sketch the orbit in its plane; mark all the usual quantities as well as the nodal line and the orientation angle ω .

Plot/sketch the 3D orbit and add AN, DN, fundamental plane, unit vectors $\hat{x}, \hat{y}, \hat{z}; \hat{r}, \hat{\theta}, \hat{h}$ as well as the nodal axis.