Computational Psychiatry Course Zurich 2015

Frederike Petzschner & Klaas Enno Stephan

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

From differential diagnosis to nosology

>3,000 FDA-approved clinical tests in medicine

1 diagnostic instrument in psychiatry

Diagnostic and Statistical Manual of Mental Disorders (DSM)

DSM-IV: Schizophrenia

- Delusions
- Hallucinations
- Formal thought disorder
- Grossly disorganized or catatonic behavior
- Negative symptoms: flat affect, anhedonia, avolition, alogia, asociality
- + social or occupational dysfunction
- + continuous signs of the disturbance persist for at least six months

 \geq 2 symptoms over \geq 1 month

Psychiatric diseases = spectrum diseases

polygenetic basis
gene-environment interactions
individual beliefs

variability in clinical trajectory and treatment response

multiple disease mechanisms

www.nature.com/mp

PERSPECTIVE

Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?

S Kapur¹, AG Phillips² and TR Insel³

We often take DSM too seriously (or forget about its original purpose).

Trying to develop clinical tests based on constructs which are inherently heterogenous is not a promising strategy.

www.nature.com/mp

PERSPECTIVE

Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?

S Kapur¹, AG Phillips² and TR Insel³

nature neuroscience Perspective

From reinforcement learning models to psychiatric and neurological disorders

Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders

Gustavo Deco^{1,2,*} and Morten L. Kringelbach^{3,4}

Tiago V Maia^{1,2} & Michael J Frank^{3,4}

Opinion

Special Issue: Cognition in Neuropsychiatric Disorders

Computational psychiatry

P. Read Montague^{1,2}, Raymond J. Dolan², Karl J. Friston² and Peter Dayan³

¹Virginia Tech Carilion Research Institute and Department of Physics, Virginia Tech, 2 Riverside Circle, Roanoke, VA 24016, USA ²Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK

³ Gatsby Computational Neuroscience Unit, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK

Perspective Neuron

Computational Psychiatry

Xiao-Jing Wang^{1,2,3,*} and John H. Krystal^{3,4,5,6}

Review

Translational Perspectives for Computational Neuroimaging

Klaas E. Stephan,^{1,2,3,*} Sandra Iglesias,¹ Jakob Heinzle,¹ and Andreea O. Diaconescu¹

computational states

Biological realism

Generative models as "computational assays"

$$p(y | \theta, m) \cdot p(\theta | m)$$

$$p(\theta | y, m)$$

$$p(y | \theta, m) \cdot p(\theta | m)$$

$$p(\theta | y, m)$$

Generative models of disease symptoms

differential diagnosis via model selection

spectrum dissection into mechanistically distict subgroups

(aetiology)

"All models are wrong, but some are useful."

George E.P. Box (1919-2013)

① Computational assays: Models of disease mechanisms

Translational Neuromodeling

Detecting physiological subgroups (based on inferred mechanisms)

- disease mechanism A
- disease mechanism B
- disease mechanism C

Individual treatment prediction

Application to brain activity and behaviour of individual patients

Stephan et al. 2015, Neuron

Three major challenges

- 1. Highly interdisciplinary: mutual teaching!
- 2. Evolving methodology: open source and benchmarking!
- 3. Validation against clinical problems: new types of organisations!

COURSESTRUCTURE

Basics: selecting between models & inferring parameters

- Variational Bayes
- MCMC
- Bayesian Model Selection
- Bayesian Model Averaging

Models: behavior & physiology

- · Hierarchical Gaussian Filter
- Markov Models
- Drift Diffusion Model
- Free Energy
- · Predictive Coding
- · Reinforcement Learning
- · DCM for Behavior
- DCM for EEG
- DCM for fMRI

Applications: models in psychiatry and

neuroeconomics

Contents

Basic computational techniques

- approximate inference: VB, MCMC
- model comparison

Generative models of behaviour

- hierarchical Bayesian models
- drift diffusion models
- predictive coding & active inference
- Markov decision processes
- reinforcement learning

Generative models of physiology

- DCM for fMRI
- DCM for EEG
- behavioural DCMs

This course

- arose from our previous local CP courses
- key features
 - theoretical lectures & practical demonstrations coupled
 - open source software only
 - computation in a broad sense: models of physiology and behaviour
 - broad scope many external presenters
- an experiment

Welcome & Thank You