CS605

19 February 2025 (first, a little revision of last week's topics)

Student question: does this accept a on
$$a,e \Rightarrow a$$
 $b,e \Rightarrow b$ b , $a,e \Rightarrow e$ b , $b \Rightarrow e$

$$5 + 3 \times 2 = 7/3 \times 9$$

$$(3+2)^2$$

 $(3+2)\times(3/2)$

	CS605 19 February 2025 (official start of today's lecture)
	Countable Sets
	A set is countable if it forms a bijection with IN = {0,1,2,}
	with $W = \{0,1,2,\ldots\}$
	The set Z is countable.
	Paogfidea Z/N
_	
	-2 3
	2 4
	-3 5
	3 6
	Prof
	We will prove this by Execulying
	Proof We will prove this be specifying a bijection of between IV and II,
	$f: N > Z \qquad f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ \frac{x+1}{-2} & \text{if } x \text{ is odd} \end{cases}$
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$\frac{\wedge + 1}{-2} \Rightarrow 18 \text{ odd}$
	$f^{-1}: \mathbb{Z} \Rightarrow \mathbb{N}$ $f(x)$ $\begin{cases} -2 \times -1 & \text{if } x < 0 \\ 2 \times & \text{otherwise} \end{cases}$
	2x otherwise
	D. F. P XI = 71
	Bijection f: N->Z proves Z is countable

PRIMES = { x & IN, x is prime } is countable.
FB= {x ∈ N, x 16 a number 15 the Fibbonaci sequence 3 15 countable,
$D = \{ \frac{\alpha}{5} : \alpha \in \mathbb{Z}, b \in \mathbb{N}, \} $ is countable.
$N_1 = \left\{1, 2, 3, \ldots\right\}$
Proof idea We will use a breadth-first Search to enumerate Q.
Search to enumerate Q.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 -3 3
6 7 7 7 7 7 7
9 9
· · · · · · · · · · · · · · · · · · ·
Since we are able to enginerate Q, this proves it is countable.
CX, this proves it is countable.

Z= {0,13 * is countable. Since we can enumerate Et (in lexicographical order, for example) this proves it is countable. [WE {0,13*, w=w} is countable. {anbn: n > 0} is countable. Wond Doc = { d: d is a Microsoft The Word document} is countable. port Save to disk to get a unique bit sequence.
Order sequences lexiographally.

The most convencing proof that a set can be enumerated is to define a computer program that lists (outputs) to elements of the set in some order (works every time). T = { M: Mis a Turing machino} is countable F = {M: M is a FA} is countable.

Un countable sets. A set is uncountable if it is not countable. The set R'= {x: x eR, 0 < x < 1} is uncountable Parely We will prove this by contradiction using diagonalisation. Assume Rois countable. Therefore there must exist a bijection between W and Roy and it must be possible to order Ro. Let the following be an arbitrary ordering for Ro. with corresponding decimal expansions. 0

Consider an arbitrary such bijection. Consider the decimal expansion of each value in Ro in a table as shown. Estract the diagonal. Change each digit (not using 9).

This now number is a value in Ro, but it is not in one table. A contradiction. Our description of the bijection was completely general. This contradiction will occur for any ordering (any bijection, any table). This proves the set Ro is uncountable.