

Maya Farber Brodsky
Tel Aviv University

Arka Rai Choudhuri NTT Research

Abhishek Jain
Johns Hopkins University
and NTT Research

Omer Paneth
Tel Aviv University

[Itakura-Nakmura'83, Boneh-Gentry-Lynn-Shacham'03]

[Itakura-Nakmura'83, Boneh-Gentry-Lynn-Shacham'03]

[Itakura-Nakmura'83, Boneh-Gentry-Lynn-Shacham'03]

 $\widehat{\mathbf{vk}} \coloneqq \mathbf{KeyAgg}(\mathbf{vk}_1, \dots, \mathbf{vk}_n)$

[Itakura-Nakmura'83, Boneh-Gentry-Lynn-Shacham'03]

 $\widehat{\mathrm{vk}} \coloneqq \mathrm{KeyAgg}\left(\mathrm{vk}_1, \dots, \mathrm{vk}_n\right)$

[Itakura-Nakmura'83, Boneh-Gentry-Lynn-Shacham'03]

 $\widehat{\mathrm{vk}} \coloneqq \mathrm{KeyAgg}\left(\mathrm{vk}_1, \dots, \mathrm{vk}_n\right)$

Verification is fast.

[Itakura-Nakmura'83, Boneh-Gentry-Lynn-Shacham'03]

 $\widehat{\mathbf{vk}} \coloneqq \mathbf{KeyAgg}(\mathbf{vk}_1, \dots, \mathbf{vk}_n)$

Can be constructed in the CRS model from Non-interactive Batch Arguments (BARGs) [Waters-Wu'22]

sk₂, vk₂

sk₃, vk

[Desmedt-Frankel'89]

[Desmedt-Frankel'89]

[Desmedt-Frankel'89]

 $\widehat{\mathrm{vk}} \coloneqq \mathrm{KeyAgg}\left(\mathrm{vk}_1, \dots, \mathrm{vk}_n\right)$

 sk_3, vk_3

[Desmedt-Frankel'89]

 $\widehat{\text{vk}} \coloneqq \text{KeyAgg}(\text{vk}_1, ..., \text{vk}_n)$

 sk_3, vk_3

[Desmedt-Frankel'89]

 $\widehat{\mathbf{vk}} \coloneqq \mathbf{KeyAgg}(\mathbf{vk}_1, \dots, \mathbf{vk}_n)$

Can verify without knowledge of which parties signed.

Extended to monotone policies $f: \{0,1\}^n \to \{0,1\}$.

[Desmedt-Frankel'89]

$$\widehat{\mathrm{vk}} \coloneqq \mathrm{KeyAgg}\left(\mathrm{vk}_1, \dots, \mathrm{vk}_n\right)$$

Setup

 sk_2, vk_2

m, σ_1

Recent works [Garg-Jain-Mukherjee-Sinha-Wang-Zhang'24, Das-Camacho-Xiang-Nieto-Bünz-Ren'23] remove the need for an interactive "Setup" for specific schemes, but in idealized models.

m, σ_3

Verify(vk, m, $\hat{\sigma}$)=1

Can verify without knowledge of which parties signed.

Extended to monotone policies $f: \{0,1\}^n \to \{0,1\}$.

 sk_3, vk_3

Each signer can use a different Signature scheme.

 sk_3, vk_3

 $\widehat{vk} := \text{KeyAgg}(vk_1, ..., vk_n)$ m, σ_1 $\widehat{\sigma} := \operatorname{SignAgg}(m, \{\sigma_i\}_{i \in I}), m$ sk_1, vk_1 Aggregator Verifier m, σ_3 Collects I signatures such that Verify(\widehat{vk} , m, $\widehat{\sigma}$)=1 f(I) = 1 sk_2, vk_2

 $\widehat{vk} := KeyAgg(vk_1, ..., vk_n)$

Motivation: Distributed Voting.

Challenger

Challenger

 $sk_i, vk_i \leftarrow KeyGen()$

Challenger

Challenger

$$vk_1, ..., vk_n$$
 $m^*, \hat{\sigma}$

Challenger

key

 vk_i

Challenger

Challenger

 $sk_i, vk_i \leftarrow KeyGen()$

 $\sigma \leftarrow \text{Sign}(\text{sk}_i, m)$

$$\widehat{\mathbf{vk}} := \mathbf{KeyAgg} (\mathbf{vk}_1, \dots, \mathbf{vk}_n)$$

$$m^*, \widehat{\sigma}$$

Challenger

 $sk_i, vk_i \leftarrow KeyGen()$

 $\sigma \leftarrow \text{Sign}(\text{sk}_i, m)$

 $\widehat{vk} := \text{KeyAgg}(vk_1, ..., vk_n)$

Non-interactive batch arguments. Signatures for read-once $O(\log n)$ space monotone policies.

BARGs \longrightarrow Monotone Policy Aggregate Signatures for read-once $O(\log n)$ space monotone policies.

Examples: threshold, weighted threshold.

Aggregation time in threshold grows with threshold t (not n).

Construction of BARGs

QR – Quadratic residuosity, LWE – Learning with Error, DDH – Decisional Diffie-Hellman, DLIN – Decisional Linear Assumption over Bilinear Groups.

Recently [Nassar-Waters-Wu'24] construct static secure monotone Policy Aggregate Signatures for poly size monotone circuits challenge message is declared first.

CRS

 x_1, \cdots, x_n

 w_1, \cdots, w_n

 x_1, \cdots, x_n

$$L = \{x \mid \exists w \ s. \ t. \ R_L(x, w) = 1\}$$

 $\forall i \in [n], x_i \in L$

 $L = \{x \mid \exists w \ s. \ t. \ R_L(x, w) = 1\}$

 $\forall i \in [n], x_i \in L$

 $\boldsymbol{\Pi}$ is publicly verifiable

 $\boldsymbol{\Pi}$ is publicly verifiable

$$L = \{x \mid \exists w \ s. \ t. \ R_L(x, w) = 1\}$$

$$\forall i \in [n], x_i \in L$$

 $L = \{x \mid \exists w \ s. \ t. \ R_L(x, w) = 1\}$

 $\forall i \in [n], x_i \in L$

No PPT $\overline{\mathbb{Z}}$ can produce accepting Π if

$$\exists i^* \in [n], x_{i^*} \times L$$

somewhere extractable BARGs (seBARGs)

[C-Jain-Jin'21]

somewhere extractable BARGs (seBARGs)

[C-Jain-Jin'21]

[Waters-Wu'22]

[Waters-Wu'22]

```
\frac{\text{KeyAgg } (\text{vk}_1, \dots, \text{vk}_n)}{\widehat{\text{vk}} = \text{MerkleRoot}(\text{vk}_1, \dots, \text{vk}_n)}
```

[Waters-Wu'22]

$\frac{\text{KeyAgg } (\text{vk}_1, \dots, \text{vk}_n)}{\widehat{\text{vk}} = \text{MerkleRoot}(\text{vk}_1, \dots, \text{vk}_n)}$

SignAgg
$$(m, \sigma_1, ..., \sigma_n)$$

$$x_i = i, m, \widehat{vk}$$

$$w_i = vk_i, \sigma_i, \pi_i$$

$$\widehat{\sigma} = BARG(x_1 ..., x_n, w_1, ..., w_n)$$

Statement: i, m, \widehat{vk}

Witness: vk_i , σ_i , π_i

s.t. π_i is a valid opening to vk_i AND $Verify(vk_i, m, \sigma_i) = 1$

[Waters-Wu'22]

$\frac{\text{KeyAgg } (\text{vk}_1, \dots, \text{vk}_n)}{\widehat{\text{vk}} = \text{MerkleRoot}(\text{vk}_1, \dots, \text{vk}_n)}$

SignAgg
$$(m, \sigma_1, ..., \sigma_n)$$

$$x_i = i, m, \widehat{vk}$$

$$w_i = vk_i, \sigma_i, \pi_i$$

$$\widehat{\sigma} = BARG(x_1 ..., x_n, w_1, ..., w_n)$$

Statement: i, m, \widehat{vk}

Witness: vk_i , σ_i , π_i

The n statements have a succinct representation - m, \widehat{vk} , n and thus the BARG proof can be verified quickly without dependence on n.

s.t. π_i is a valid opening to vk_i AND $Verify(vk_i, m, \sigma_i) = 1$

Challenger

CRS

key

sign

 ${
m vk}_i$ generated by igwedge

 $sign vk_i, m^* queried$

$$vk_1, ..., vk_n$$
 $m^*, \hat{\sigma}$

- wins if 1. Verify $(\widehat{vk}, m^*, \widehat{\sigma}) = 1$ 2. f(0, 1, 1, 1, 0, 0, 0, 0)

Challenger

CRS

key

sign

 vk_1, \dots, vk_n m^* , $\hat{\sigma}$

 $\widehat{\mathrm{vk}} \coloneqq \mathrm{KeyAgg}\left(\mathrm{vk}_1, \dots, \mathrm{vk}_n\right)$

 $vk_1 \cdots vk_i \cdots vk_n$

- wins if $\begin{cases} 1. & \text{Verify}(\widehat{vk}, m^*, \widehat{\sigma}) = 1 \\ 2. & f(1111101) \end{cases}$

Signature Scheme Challenger

Can \mathbb{Z} keep avoiding i^* ?

Signature Scheme Challenger

Can $\sum_{i=1}^{\infty}$ keep avoiding i^* ?

No! Avoidance can be checked from i^* and \blacksquare

Would break CRS indistinguishability.

se monotone
policy BARG

?

Monotone policy
aggregate
Signatures

Monotone Policy BARGs (pBARGs)

Monotone Policy $f: \{0,1\}^n \rightarrow \{0,1\}$

 x_1, \cdots, x_n $\{w_i\}_{i \in I}$

CRS

$$x_1, \cdots, x_n$$

 Π is publicly verifiable

$$L = \{x \mid \exists w \ s. \ t. \ R_L(x, w) = 1\}$$

 $f(b_1, ..., b_n) = 1$ where $b_i = 1$ iff $i \in I$

[Brakerski-Brodsky-Kalai-Lombardi-Paneth'23]

Monotone Policy $f: \{0,1\}^n \rightarrow \{0,1\}$

Example:

For t-out-of-n threshold, any set J of size n-t+1 is necessary.

 $J \subset [n]$ is necessary for f if $f(b_1, \ldots, b_n) = 0$ where $b_i = 0$ iff $i \in J$

[Brakerski-Brodsky-Kalai-Lombardi-Paneth'23]

Monotone Policy $f: \{0,1\}^n \rightarrow \{0,1\}$

```
For any necessary set I
CRS_I, td \leftarrow Setup(J)
                                                  CRS_I
                                                 x_1, \cdots, x_n
w \leftarrow \text{Extract}(\Pi, \text{td})
If \Pi verifies, R_L(x_i, w) = 1 for some j \in J
```

$$J \subset [n]$$
 is necessary for f if $f(b_1, \ldots, b_n) = 0$ where $b_i = 0$ iff $i \in J$

[Brakerski-Brodsky-Kalai-Lombardi-Paneth'23]

Monotone Policy $f: \{0,1\}^n \rightarrow \{0,1\}$

 $J \subset [n]$ is necessary for f if $f(b_1, \ldots, b_n) = 0$ where $b_i = 0$ iff $i \in J$

[Brakerski-Brodsky-Kalai-Lombardi-Paneth'23]

Monotone Policy $f: \{0,1\}^n \rightarrow \{0,1\}$

```
For any necessary set I
CRS_I, td \leftarrow Setup(J)
                                                   CRS_I
                                                  \chi_1, \cdots, \chi_n
w \leftarrow \text{Extract}(\Pi, \text{td})
If \Pi verifies, R_L(x_i, w) = 1 for some j \in J
```

$$J \subset [n]$$
 is necessary for f if $f(b_1, \ldots, b_n) = 0$ where $b_i = 0$ iff $i \in J$

$\frac{\text{KeyAgg }(\text{vk}_1, ..., \text{vk}_n)}{\widehat{\text{vk}} = \text{MerkleRoot}(\text{vk}_1, ..., \text{vk}_n)}$

```
SignAgg (m, \{\sigma_i\}_{i \in I})
x_i = i, m, \widehat{vk}
w_i = vk_i, \sigma_i, \pi_i \text{ or } \bot \text{ if } i \notin I
\widehat{\sigma} = pBARG(x_1 ..., x_n, w_1, ..., w_n)
```

Statement: i, m, \widehat{vk}

Witness: vk_i , σ_i , π_i

s.t. π_i is a valid opening to vk_i AND $Verify(vk_i, m, \sigma_i) = 1$

CRS

key

sign

$$vk_1, ..., vk_n$$
 $m^*, \hat{\sigma}$

Challenger

CRS

key

sign

 $\mathbf{v}\mathbf{k}_i$ generated by \mathbf{z}

$$vk_1, ..., vk_n$$
 $m^*, \hat{\sigma}$

$$\widehat{vk} := \text{KeyAgg}(vk_1, ..., vk_n)$$

$$V = \begin{bmatrix} v k_1 & \cdots & v k_i & \cdots & v k_n \\ v k_1 & \cdots & v k_n \end{bmatrix}$$

- 1. Verify($\widehat{vk}, m^*, \widehat{\sigma}$)=1
- $f(0111000) \neq 1$

Challenger

CRS

key

sign

 ${f v}{f k}_i$ generated by m Z

$$vk_1, ..., vk_n$$
 $m^*, \hat{\sigma}$

$$\widehat{vk} := \text{KeyAgg}(vk_1, ..., vk_n)$$

$$V = \begin{bmatrix} v k_1 & \cdots & v k_i & \cdots & v k_n \\ \vdots & \vdots & \ddots & \vdots \\ V & \vdots & \vdots & \ddots & \vdots \\ V & \vdots & \vdots & \ddots & \vdots$$

- wins if $\begin{cases} 1. & \text{Verify}(\widehat{vk}, m^*, \widehat{\sigma}) = 1 \\ 2. & \text{J is necessary.} \end{cases}$

Signature Scheme Challenger

Fails unless guessed J^* is the same as adaptively chosen J.

Signature Scheme Challenger

Fails unless guessed J^* is the same as adaptively chosen J.

May be exponentially many J^* .

$$m^*$$
, σ^*

[Brakerski-Brodsky-Kalai-Lombardi-Paneth'23]

Monotone Policy $f: \{0,1\}^n \rightarrow \{0,1\}$

```
For any necessary set I
CRS_I, td \leftarrow Setup(J)
                                                   CRS_I
                                                  \chi_1, \cdots, \chi_n
w \leftarrow \text{Extract}(\Pi, \text{td})
If \Pi verifies, R_L(x_i, w) = 1 for some j \in J
```

$$J \subset [n]$$
 is necessary for f if $f(b_1, \ldots, b_n) = 0$ where $b_i = 0$ iff $i \in J$

pBARG with Adaptive Subset Extraction

Monotone Policy $f: \{0,1\}^n \rightarrow \{0,1\}$

 $J \subset [n]$ is necessary for f if $f(b_1, \ldots, b_n) = 0$ where $b_i = 0$ iff $i \in J$

pBARG with
adaptive subset
extraction

Monotone policy
aggregate
Signatures

Today

Previous Attempt

Fails unless guessed J^* is the same as adaptively chosen J.

May be exponentially many J^* .

 m^* , σ^*

Previous Attempt

 $x_1 w_1$

:

 $x_i w_i$

:

 $x_n w_n$

At least t witnesses w_i such that $w_i \neq \perp$.

x_1	

:

 x_i

:

 x_n

w_1
÷
w_i
:
W_n

*x*₁

 x_i

:

 x_n

w_1	c_1
w_i	c_i
W_n	c_n

$$c_i = c_{i-1} + R_L(x_i, w_i)$$

x_1	c_0	w_1	c_1
•	c_1		
x_i	c_{i-1}	w_i	c_i
:			
x_n	c_{n-1}	W_n	c_n

$$c_i = c_{i-1} + R_L(x_i, w_i)$$

x_1	c_0	w_1	c_1	
•	c_1			
x_i	c_{i-1}	w_i	c_i	
:				
x_n	c_{n-1}	W_n	c_n	
				ĺ
		<i>O</i> (l	$\log n)$ b	its

$$c_i = c_{i-1} + R_L(x_i, w_i)$$

 $c_i = c_{i-1} + R_L(x_i, w_i)$

Batch $\forall i \in [n]$

Statement: x_i

Witness: C_{i-1} , W_i , C_i

s.t.
$$c_i = c_{i-1} + R_L(x_i, w_i)$$

Assumed to be same value.

x_1	c_0	w_1	c_1	
:	c_1			
x_i	c_{i-1}	w_i	c_i	
:				
x_n	c_{n-1}	w_n	c_n	
			\vdash	
		0($\log n)$ b	its

$$c_i = c_{i-1} + R_L(x_i, w_i)$$

Batch $\forall i \in [n]$

Statement: x_i

Witness: C_{i-1} , W_i , C_i

s.t.
$$c_i = c_{i-1} + R_L(x_i, w_i)$$

Batch $\forall i \in [n]$

Statement: x_i , rt

Witness: C_{i-1} , π_{i-1} , W_i , C_i , π_i

s.t.
$$c_i = c_{i-1} + R_L(x_i, w_i)$$

 π_{i-1} valid opening to c_{i-1}

 π_i valid opening to c_i

$$rt = H(c_0 c_1 \cdots c_n)$$

Batch $\forall i \in [n]$

Statement: x_i

Witness: C_{i-1} , W_i , C_i

s.t.
$$c_i = c_{i-1} + R_L(x_i, w_i)$$

$$j \leftarrow [n]$$

$$CRS_{j}, td \leftarrow Setup(j)$$

$$\Pi, J$$

$$x_{1}, \dots, x_{n}$$

$$w \leftarrow Extract(\Pi, td)$$

$$\Pr_{j \leftarrow [n]} [j \in J \land R_L(x_j, w_j) = 1] \stackrel{?}{\approx} 1/n$$

Can keep avoiding j by setting $w_j = \perp$?

$$\Pr_{j \in [n]} [j \in J \land R_L(x_j, w_j) = 1] \stackrel{?}{\approx} 1/n$$

Can keep avoiding j by setting $w_j = \perp$?

Checking requires extracting using $td \Rightarrow cannot rely on$ CRS hiding.

$$\Pr_{j \in [n]} [j \in J \land R_L(x_j, w_j) = 1] \stackrel{?}{\approx} 1/n$$

Can keep avoiding j by setting $w_j = \perp$?

Sufficient to determine which statements were true to perform above check.

$$\Pr_{j \in [n]} [j \in J \land R_L(x_j, w_j) = 1] \stackrel{?}{\approx} 1/n$$

Sufficient to determine which statements were true to perform above check.

Goal: Determine which t statements proved were true.

Sufficient to determine which statements were true to perform above check.

Approximately Simulate Goal: Determine which t statements proved were true.

Ideal(j)

$$x_1, \cdots, x_n, w_1, \cdots, w_n, J \leftarrow \operatorname{Sim}()$$

$$\approx \quad |\{J | \leq k - t \text{ or } | \{w_i \neq \bot\}\}| < t$$
abort

Ideal(j)

$$x_1, \cdots, x_n, w_1, \cdots, w_n, J \leftarrow \operatorname{Sim}()$$

$$\approx \quad |\{J \mid \leq k - t \text{ or } | \{w_i \neq \bot\}\}| < t$$
abort

$$\Pr_{j \leftarrow [n]} [R_L(x_j, w_j) = 1] \approx t/n$$

$$x_1, \cdots, x_n, w_1, \cdots, w_n, J \leftarrow \operatorname{Sim}()$$

$$\approx \quad |\{J | \leq k - t \text{ or } | \{w_i \neq \bot\}\}| < t$$
abort

$$\Pr_{j \leftarrow [n]} [R_L(x_j, w_j) = 1] \approx t/n$$

$$\Pr_{j \leftarrow [n]} [R_L(x_j, w_j) = 1] \approx t/n$$

$$\Pr_{j \leftarrow [n]} [R_L(x_j, w_j) = 1] \approx t/n$$

$$\Pr_{j \leftarrow [n]} [R_L(x_j, w_j) = 1] \approx t/n$$

$$\Pr_{j \leftarrow [n]}[j \in J] \approx (n - t + 1)/n$$

By CRS indistinguishability and that the size of any necessary set is (n-t+1)

$$\Pr_{j \leftarrow [n]} [R_L(x_j, w_j) = 1] \approx t/n$$

$$\Pr_{j \leftarrow [n]}[j \in J] \approx (n - t + 1)/n$$

By CRS indistinguishability and that the size of any necessary set is (n-t+1)

$$\Pr_{j \leftarrow [n]} [j \in J \land R_L(x_j, w_j) = 1] \approx 1/n$$

Ideal(j)

$$x_1, \cdots, x_n, w_1, \cdots, w_n, J \leftarrow \operatorname{Sim}()$$

$$\approx \quad |\{J | \leq k - t \text{ or } | \{w_i \neq \bot\}\}| < t$$
abort


```
CRS_1, td \leftarrow Setup(1)
```

 CRS_1 , $td \leftarrow Setup(1)$ CRS_1 , $td \leftarrow Setup(1)$ x_1

$$CRS_1$$
, $td \leftarrow Setup(1)$ CRS_1 , $td \leftarrow Setup(1)$ CRS_1 , $td \leftarrow Setup(1)$.

$$CRS_2$$
, $td \leftarrow Setup(2)$ CRS_2 , $td \leftarrow Setup(2)$ CRS_2 , $td \leftarrow Setup(2)$... x_2 x_2 x_2 ...

•

$$CRS_n$$
, $td \leftarrow Setup(n)$ CRS_n , $td \leftarrow Setup(n)$ CRS_n , $td \leftarrow Setup(n)$... x'_n

$$CRS_2$$
, $td \leftarrow Setup(2)$ CRS_2 , $td \leftarrow Setup(2)$ CRS_2 , $td \leftarrow Setup(2)$... x'_2 ...

•

$$CRS_n$$
, $td \leftarrow Setup(n)$ CRS_n , $td \leftarrow Setup(n)$ CRS_n , $td \leftarrow Setup(n)$... x'_n

•

At least t valid witnesses.

If
$$|c_i| = O(\log n)$$

Today

Our Results

Thank you. Questions?

Arka Rai Choudhuri

arkarai.choudhuri@ntt-research.com

Paper on ePrint soon!