1. Consider the voltage-amplifier circuit model shown in Fig.

Avo = 100 V/V under the following conditions:

30pts

- (a) $R_i = 10R_s$, R_L , = $10R_0$
- (b) $R_i = R_s$, $R_L = R_0$
- (c) $R_i = R_s/10$, $R_L = 10R_0$

Calculate the overall voltage gain v_0/v_s in each case, expressed both directly and in decibels.

2. The amplifier is fed by a signal source with a source resistance of 100 kohm and delivers its output into a load resistance of 100 ohm. The first stage has a relatively high input resistance and a modest gain factor of 10. The second stage has a higher gain factor but lower input resistance. Finally, the last, or output, stage has unity gain but a low output resistance. We wish to evaluate the overall voltage gain, that is, v_L/v_s , the current gain, and the power gain.

3. Question on voltage divider. 10pts

a. Find Vout

b. Find R2

4. Define High pass filter. Draw the frequency response curve of high pass filter. 5pts 5pts

5. Why do you need to amplify a signal?