Inteligência Computacional

Luís A. Alexandre

UBI

Ano lectivo 2019-20

Conteúdo

O neurónio biológico

Imagens Composição

Alguns factos O neurónio artificial

Modelo do neurónio artificial A saída do neurónio

Funções de ativação

Widrow-Hoff

neurónio

Leitura recomendada

dum neurónio Regras de aprendizagem dum

Aprendizagem

Descida do gradiente

Capacidade de discriminância

O neurónio biológico **Imagens** Hipocampo humano Cerebelo do pombo

Ramón y Cajal Cortex humano

O neurónio biológico

Imagens

Parte do neocortex duma ratazana

Ano lectivo 2019-20

O neurónio biológico Alguns factos

Composição

- O neurónio é composto por:
 - núcleo
 - corpo celular
 - dendrites
 - axónio
 - sinapses

da wikipedia: http://pt.wikipedia.org/wiki/Imagem:Complete_neuron_cell_diagram_pt.svg

Luís A. Alexandre (UBI)

5 / 23 Ano lectivo 2019-20

Alguns factos

- O número de neurónios no cérebro varia muito com a espécie.
- Estima-se que o cérebro humano (adulto) tenha 10¹¹ neurónios e 10¹⁵ sinapses (uma criança de 3 anos tem 10 vezes mais).
- O cérebro de um nemátodo (um verme) (Caenorhabditis elegans) tem apenas 302 neurónios tornando-o num objecto ideal de estudo: os cientistas conseguiram mapear todos os seus neurónios.
- A mosca da fruta (Drosophila melanogaster) tem cerca de 300 mil neurónios, o que já permite que exiba alguns comportamentos complexos.

Luís A. Alexandre (UBI)

Inteligência Computacional

Modelo do neurónio artificial

Modelo proposto por McCulloch e Pitts em 1942:

- ▶ De facto não é mais que uma função $g : \mathbb{R}^n \to \mathbb{R}$ que a cada vetor xde entrada, de dimensão n, faz corresponder um real y. Esta função $g(\cdot)$ depende ainda do vetor de pesos $[w_0w_1...w_n]$ e da função de ativação escolhida $f(\cdot)$.
- Tem uma entrada 'especial' chamada de viés (bias em inglês) que permite deslocar a função de ativação. Exemplo: se o viés for negativo, a soma pesada das entradas tem de superar o seu valor para que o neurónio produza um valor positivo na saída.

Luís A. Alexandre (UBI)

Inteligência Computacional

Cálculo da saída do neurónio

Os valores presentes as entradas do neurónio são alvo de uma soma pesada:

$$s = \sum_{i=0}^{n} x_i w_i$$

sendo que $x_0 = 1$.

- De seguida, este valor passa por uma função (normalmente) não-linear, chamada função de ativação, produzindo a saída do neurónio: y = f(s)
- Em geral as funções de ativação são monótonas crescentes e verifica-se que (com a exceção da função de ativação linear):

$$f(-\infty) = -1$$
 ou $f(-\infty) = 0$

$$f(\infty) = 1$$

Luís A. Alexandre (UBI)

Inteligência Computacional

O neurónio artificial Funções de ativação

Funções de ativação

A função de ativação $f(\cdot)$ pode assumir muitas formas, entre elas:

- linear (saída em $(-\infty, \infty)$): $f(s) = \beta s$
- degrau (step ou Heaviside) (saída em (β_1, β_2)):

$$f(s) = \begin{cases} \beta_2 & , s \ge 0 \\ \beta_1 & , s < 0 \end{cases}$$

Normalmente faz-se $\beta_1=0$ e $\beta_2=1$, embora também se use

- rampa (saída em $(-\beta,\beta)$): $f(s)=\left\{egin{array}{ll} eta &,s\geq \beta \\ s &,|s|<\beta \\ -\beta &,s\leq -\beta \end{array}
 ight.$
- sigmóide (saída em (0,1)): $f(s) = \frac{1}{1+\exp(-\lambda s)}$
- ▶ tangente hiperbólica (saída em (-1,1)): $f(s) = \frac{\exp(\lambda s) \exp(-\lambda s)}{\exp(\lambda s) + \exp(-\lambda s)}$
- ▶ ReLU (Rectified Linear Unit) (saída em $(0, \infty)$): $f(s) = \max(0, s)$

Luís A. Alexandre (UBI)

Inteligência Computacional

O neurónio artificial Capacidade de discriminância dum neurónio

Ano lectivo 2019-20 9 / 23

O neurónio artificial Funções de ativação Funções de ativação: figuras (s) -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 ReLU 0.5 0.5 0.5 (8) -1 -05 0 05 1 -1 -0.5 0 0.5 1 -0.5 0 0.5 1 Luís A. Alexandre (UBI)

O neurónio artificial

Capacidade de discriminância dum neurónio

Capacidade de discriminância dum neurónio

- Um neurónio consegue discriminar (distinguir) pontos do espaço de entrada que sejam linearmente separáveis.
- O espaço de entrada corresponde ao espaço onde se encontram os vetores com as medições.
- Um neurónio consegue implementar um hiperplano (chamado fronteira de decisão) separando os pontos em que a sua saída é >=0daqueles que produzem um valor na saída <0.

Luís A. Alexandre (UBI)

Exemplo:

Inteligência Computacional

Inteligência Computacional

Ano lectivo 2019-20

11 / 23

Capacidade de discriminância dum neurónio: exemplos

- Exemplo de valores para os pesos dum neurónio, que usa a função degrau entre 0 e 1, para que:
 - ▶ calcule o OU lógico entre duas variáveis: w = [-0.25, 0.5, 0.5].
 - calcule o E lógico entre duas variáveis: w = [-0.75, 0.5, 0.5].
 - calcule o OU lógico exclusivo entre duas variáveis: w = [??]

Regras de aprendizagem dum neurónio

Aprendizagem

- ► Tendo ficado claro como é que o neurónio age quando lhe é apresentado um vetor na entrada, fica a faltar perceber como é que se encontram os valores dos pesos w_i .
- Para encontrarmos os pesos precisamos de dados relativos ao problema a resolver.
- Estes dados são conjuntos de pontos (ou vetores) de entrada que representam o problema em questão: por exemplo, os pontos do problema de distinguir através do peso e altura entre crianças de 10 e 15 anos são os seguintes:

1.50, 40, 0 1.52, 41, 0 1.56, 43, 0

1.54, 45, 0 1.50, 37, 0

1.62, 47, 1 1.70, 52, 1

1.53, 63, 1 1.63, 44, 1

1.57, 50, 1

Inteligência Computacional

Regras de aprendizagem dum neurónio Aprendizagem

Aprendizagem

- Existem vários tipos de aprendizagem que poderemos usar, mas vamos considerar apenas dois:
 - supervisionada: os pontos contêm informação sobre a que classe pertencem (Se são de crianças de 10 ou de 15 anos)
 - não supervisionada: os pontos não contêm informação relativa à sua classe
- Para o caso em questão vamos ver como efetuar a aprendizagem supervisionada: cada ponto no espaço de entrada do problema é constituído por uma ou mais características e a etiqueta da classe à qual o ponto pertence. Para o exemplo anterior vem:

$$P_1 = (peso_1, altura_1, classe_{P_1})$$

Inteligência Computacional

Regras de aprendizagem dum neurónio Aprendizagem

Aprendizagem

De uma forma mais genérica representamos um ponto do seguinte modo:

$$P_i = (x_{i,1}, \ldots, x_{i,n}, d_i)$$

e chamamos aos valores que são colocados na entrada no neurónio, $x_{i,1}, \ldots, x_{i,n}$ as características e d_i é a verdadeira classe do ponto i.

Inteligência Computacional

Regras de aprendizagem dum neurónio Descida do gradiente

Descida do gradiente

- É a forma de aprendizagem mais usada em redes neuronais.
- ▶ É necessária a definição de uma função de custo (em inglês chamada a loss function ou apenas a loss) que permita saber quão próximo da verdadeira classe ficou a saída do neurónio.
- A função de custo mais comum é o quadrado do erro:

$$e_i = (d_i - y_i)^2$$

onde d_i é a classe verdadeira e y_i a saída do neurónio para o ponto j.

Regras de aprendizagem dum neurónio Descida do gradiente

Descida do gradiente

A ideia da descida do gradiente consiste em achar os pesos que minimizam o erro, procurando no espaço dos pesos ao longo do sentido contrário ao do gradiente.

Luís A. Alexandre (UBI)

Inteligência Computacional

17 / 23

Descida do gradiente

- ▶ Dado um ponto j, vejamos como se efetua o ajuste dos pesos.
- ► Cada peso w_i na iteração t é ajustado de acordo com

$$w_i(t) = w_i(t-1) + \Delta w_i(t)$$

onde

$$\Delta w_i(t) = \eta \left(-\frac{\partial e_j}{\partial w_i} \right)$$

e

$$\frac{\partial e_j}{\partial w_i} = -2(d_j - y_j) \frac{\partial f}{\partial s_i} x_{j,i}$$

e η é a chamada taxa de aprendizagem, $x_{j,i}$ é a característica i do ponto j e f é a função de ativação.

Para que o termo $\frac{\partial f}{\partial s_j}$ não anule esta derivada e percamos a informação relativa ao gradiente, f não pode ser o degrau.

Luís A. Alexandre (UBI)

Inteligência Computaci

no lectivo 2019-20 1

19 / 23

Descida do gradiente

▶ Se usarmos o sigmóide como função de ativação vem:

$$\Delta w_i(t) = 2\eta (d_j - y_j) \lambda f(s_j) (1 - f(s_j)) x_{j,i} = 2\eta (d_j - y_j) \lambda y_j (1 - y_j) x_{j,i}$$

lsto porque, se f(x) é o sigmóide, então temos:

$$\frac{df(x)}{dx} = -(1 + \exp(-\lambda x))^{-2}(-\exp(-\lambda x)) =$$

$$\frac{\lambda}{1 + \exp(-\lambda x)} \left(\frac{\exp(-\lambda x)}{1 + \exp(-\lambda x)}\right) = \lambda f(x) \frac{1 + \exp(-\lambda x) - 1}{1 + \exp(-\lambda x)} =$$

$$\lambda f(x) \left(1 - \frac{1}{1 + \exp(-\lambda x)}\right) = \lambda f(x)(1 - f(x))$$

Luís A. Alexandre (UBI)

Inteligência Computacional

Ano lectivo 2019-20

-20 20 / 23

Regras de aprendizagem dum neurónio Widrow-Hoff

Widrow-Hoff

A regra de Widrow-Hoff, proposta em 1960, é um caso particular da descida do gradiente em que se considera a função de ativação como a função identidade, $f(s_i) = s_i$, logo vem que

$$\frac{\partial f}{\partial s_i} = 1$$

Assim, a atualização do valor dos pesos neste caso é feito com

$$\Delta w_i(t) = 2\eta (d_i - y_i) x_{i,i}$$

 Este algoritmo é também chamado de Least Mean Squares ou Delta Rule.

Luís A. Alexandre (UBI

Inteligência Computaciona

lectivo 2019-20 21

.. | |

Regras de aprendizagem dum neurónio Widrow-Hoff

Widrow-Hoff

- O hardware construído por Widrow e Hoff para o implementar eram as Adalines.
- Festejaram-se os 50 anos da construção da primeira Adaline no ano de 2009.

magem do paper [

Luís A. Alexandre (UB

Inteligência Computacion

Ano lectivo 2019-20

Leitura recomend

Leitura recomendada

- Engelbrecht, cap. 2.
- [1] http://www-isl.stanford.edu/~widrow/papers/ t1960anadaptive.pdf

Luís A. Alexandro (LIDI)

Inteligência Computacional

Ano lectivo 2019-20

22/2