1:	5:	9:			
2:	6:	10:			
3:	7:				
4:	8:				

The equation of the tangent line to the curve with parametric equations $x(t) = 2t + 1, y(t) = 3 - t^3$ at t=1 is:

SHOW ANSWER

A.
$$2x + 3y = 12$$

B.
$$3x + 2y = 13$$

c.
$$6x + y = 20$$

$$\mathbf{D.} \qquad 3x - 2y = 5$$

D.
$$3x - 2y = 5$$

E. None of the above.

If $x(t) = 4\cos t$, $y(t) = 3\sin t$, then $\int_{2}^{4} xydx$ is equivalent to

SHOW ANSWER

Problem 3

The length of $x = e^t \cos t$, $y = e^t \sin t$ from t=2 to t=3 is

SHOW ANSWER

A.
$$\sqrt{2}e^2\sqrt{e^2-1}$$

B.
$$\sqrt{2}(e^3 - e^2)$$

C.
$$2(e^3 - e^2)$$

D.
$$e^3(\cos 3 + \sin 3) - e^2(\cos 2 + \sin 2)$$

E. None of the above.

The area enclosed by the four-leaved rose $r = \cos(2\theta)$ is

SHOW ANSWER

Problem 5

The rectangular equation of the parametric curve $x = 1 - \sin t$ and $y = 4 - 2\cos t$ is:

SHOW ANSWER

A.
$$4(x-1)^2 + (y-4)^2 = 1$$

B.
$$4(x-1)^2 + (y-4)^2 = 4$$

C.
$$(x-1)^2 + (y-4)^2 = 4$$

D.
$$(x-1)^2 + (y-4)^2 = 2$$

E. none of the above

The area bounded by the lemniscate with polar equation $r^2 = 2\cos(2\theta)$ is equal to

SHOW ANSWER

. .

None of the above

Problem 7

The graph of the polar equation $r = \frac{1}{\sin \theta - 2\cos \theta}$ is:

SHOW ANSWER

- a circle
- B. a line with slope 1
- c. a line with slope 2

3.40°×

- D. a parabola
- E. a semi-circle

The power series $x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n} + \dots$ converges if and only if:

SHOW ANSWER

S. S. C.

$$-1 < x < 1$$

$$B. -1 \le x \le 1$$

B.
$$-1 \le x \le 1$$

C. $-1 \le x < 1$
D. $-1 < x \le 1$
 $x = 0$

$$-1 < x \le x = 0$$

Problem 9

The power series

$$(x+1) - \frac{(x+1)^2}{2!} + \frac{(x+1)^3}{3!} - \frac{(x+1)^4}{4!} + \dots$$
diverges:

SHOW ANSWER

- for no real x values A.
- В.
- C.
- D.
- E.

Problem 10

The series
$$\sum_{n=0}^{\infty} n!(x-3)^n$$
 converges if and only if

A. $x=0$
B. $2 < x < 4$
C. $x=3$
 $2 \le x \le 4$
 $x < 2$ or $x > 4$

ANSWER KEY

1 (234)	В	5 (238)	В	9 (242)	A		
2 (235)	Е	6 (239)	D	10 (243)	С		
3 (236)	В	7 (240)	С				
4 (237)	В	8 (241)	С				

