Efficient Algorithms to Rank and Unrank Permutations in Lexicographic Order

Blai Bonet Universidad Simón Bolívar bonet@ldc.usb.ve

Introduction

- Ranking is the process of assigning a given permutation π over n numbers, a unique index (rank) $r(\pi) \in \{0, \ldots, n! 1\}$
- Unranking is the inverse: given a rank $r \in \{0, ..., n! 1\}$, find a permutation π such that $r(\pi) = r$
- Ranking is used to compute the index for PDB lookups, and is the **most critical** operation during node generation
- Ranking/unranking algorithms are said to be in lexicographic order iff lexicographically consecutive permutations are ranked into consecutive integers. Thus, e.g., the identity permutation is ranked into 0 and the reverse permutations is ranked into n!-1
- It has been argued that a lexicographic ranking can be more efficient for search as it tend to generate references (PDB indices) with some degree of locality

Related Work

- Naive algorithms run in $O(n^2)$ time
- Knuth (1973) presents $O(n \log n)$ lexicographic algorithms based on modular arithmetic
- Using a data structure of Dietz (1989), the number of operations can be reduced to $O(n \log n / \log \log n)$ yet the implementation is complex and hidden constants are high
- Myrvold and Ruskey (2001) present non-lexicographic algorithms that run in linear time (these are commonly used in heuristic search)
- Korf and Schultze (2005) present linear time lexicographic algorithms that require a precomputed table of exponential size
- Korf and Schultze's algorithms are **non-uniform**

Contribution

- Novel lexicographic algorithms that run in $O(n \log n)$ time
- The algorithms are simple and efficient and, in our experiments, ran faster than the linear time algorithms of Myrvold and Ruskey for permutations up to size 128, and fell a bit short for sizes up to 1,024
- Also, give novel non-uniform lexicographic algorithms that require much less space than Korf and Schultze's

Uniform Algorithms

Ranking: $\pi = \langle 25714603 \rangle \rightarrow d = \langle 24512200 \rangle \rightarrow r = \#$

Unranking: $r = \# \to d = \langle 24512200 \rangle \to \pi = \langle 25714603 \rangle$

Input: factorial digits d, array π , and array T**Input**: permutation π and array T**Output**: permutation π Output: rank of π begin $k := \lceil \log n \rceil$ begin for i = 0 to k do $k := \lceil \log n \rceil$ for j = 1 to 2^i do rank := 0for i = 1 to $2^{1+k} - 1$ do T[i] := 0for i = 1 to n do for i = 1 to n do $ctr := \pi[i]$ digit := d[i] $node := 2^k + \pi[i]$ node := 1for j = 1 to k do for j = 1 to k do if node is odd then T[node] := T[node] - 1 $node := node \ll 1$ T[node] := T[node] + 1if $digit \ge T[node]$ then digit := digit - T[node]T[node] := T[node] + 1node := node + 1 $rank := rank \cdot (n+1-i) + ctr$ T[node] := 0return rank $\pi[i] \leftarrow node - 2^k$ end end

Non-Uniform Algorithms

Korf and Schultze's Ranking Algorithm:

$$d_i = \pi_i - \#\{\text{elements to the left of position } i \text{ that are less than } \pi_i\}$$

= $\pi_i - T_r[N \ll (n - \pi_i)]$

where $T_r[x]$ equals the number of 1-bits in the binary representation of x. In the example,

i	$ \pi_i $	N before	$N \ll (n - \pi_i)$	T_r	$ d_i $	N after
0	2	0000 0000	0000 0000	0	2	0000 0100
1	5	00000100	0010 0000	1	4	00100100
2	7	00100100	0100 1000	2	5	1010 0100
3	1	10100100	0000 0000	0	1	1010 0110
4	4	10100110	0110 0000	2	2	1011 0110
5	6	1011 0110	1101 1000	4	2	1111 0110
6	0	1111 0110	0000 0000	0	0	1111 0111
7	3	1111 0111	1110 0000	3	0	1111 1111

New Algorithm:

• Replace table T_r of size $O(2^n \log n)$ bits by a single table T_r^* of size $O(2^m \log m)$ bits, and perform $\lceil n/m \rceil$ lookups instead of one. For example, for m=4, we have that

$$T_r[x] = T_r^*[x\&1111] + T_r^*[(x \gg 4)\&1111].$$

Therefore,

$$d_{i} = \pi_{i} - T_{r}[N \ll (n - \pi_{i})]$$

$$= \pi_{i} - T_{r}^{*}[(N \ll (n - \pi_{i}))\&1111] - T_{r}^{*}[((N \ll (n - \pi_{i})) \gg 4)\&1111]$$

$$= \pi_{i} - T_{r}^{*}[N_{1}] - T_{r}^{*}[N_{2}].$$

In the example,

i	$ \pi_i $	N before	$N \ll (n - \pi_i)$	$T_r^*[N_2]$	$T_r^*[N_1]$	d_i	N after
0	2	0000 0000	0000 0000	0	0	2	0000 0100
1	5	0000 0100	0010 0000	1	0	4	0010 0100
2	7	0010 0100	0100 1000	1	1	5	1010 0100
3	1	1010 0100	0000 0000	0	0	1	1010 0110
4	4	1010 0110	0110 0000	2	0	2	1011 0110
5	6	1011 0110	1101 1000	3	1	2	1111 0110
6	0	1111 0110	0000 0000	0	0	0	1111 0111
7	3	1111 0111	1110 0000	3	0	0	1111 1111

Interesting Tradeoffs:

Θ	m=1	$m = \log n$	$m = n^{\epsilon}$	$m = n/\log n$	m = n/k	m = n
time	n^2	$n^2/\log n$	$n^{2-\epsilon}$	$n \log n$	n	n
space	1	$n \log \log n$	$2^{n^{\epsilon}} \log n$	$2^{n/\log n}\log n$	$2^{n/k}\log n$	$2^n \log n$

Experiments

