Covid-19 Identification from Chest X-Ray with a study on Google Search Correctness estimation

Sibashis Chatterjee sibashis1992@gmail.com

Submitted as part of final project presentation of IISC CCE course AL & ML with Python

Motivation

- Covid-19 is a global pandemic affecting entire human race.
- Major Challenges in initial days
 - Unavailability of specialized test kits
 - Not enough PPEs
 - Not enough trained personnel
- Solution Exploration
 - Abundantly available radiology equipments (e.g. X-Ray)
 - Use of Machine Learning in attempt of classifying chest X-Ray as COVID affected
 - Use of CNN for image classification

Data Sources

- Using Google image search to download Covid 19 affected Lungs' X-Ray images
- Some data published by some universities:
 - The researchers of Qatar University have compiled the COVID-QU-Ex dataset, which consists of 33,920 chest X-ray (CXR) images including: 11,956 COVID-19, 11,263 Non-COVID infections (Viral or Bacterial Pneumonia), and 10,701 Normal. This data can be found here
 - University of Montreal released images can be found here
- Combining all these data to create a huge labeled set of Chest X-Ray dataset. I'll select training, cross validation and test data dynamically.

Technical setup

- Python (v >= 3.11)
- Latest PIP
- Libraries
 - google-api-python-client
 - o numpy
 - pandas
 - matplotlib
 - o PIL
 - tensorflow

Data Collection

- Scraping Images from Google, refer: <u>image_scrapping.ipynb</u>.
- Using Google Custom Search API for the scraping. API Keys and other secrets are stored in a file *my_secrets.py* (Not pushed to remote repository for security reasons).
- The Scrapping worked till 200 images but then started returning 400 Bad Request errors; probably I reached the free use limit.
- Download and collate data at one place for creating Training data set, refer <u>classifier.ipynb</u>.

Data cleaning

- Google returned a lot of images with wrong encoding and format information. This was causing model predictions to fail.
- Used Image package from PIL library to read the images and clean them up.

```
UnidentifiedImageError: cannot identify image file '<a href="/content/google-test-images/positive/Covid/image">content/google-test-images/positive/Covid/image</a> 54.jpeg'
UnidentifiedImageError: cannot identify image file '<a href="/content/google-test-images/positive/Covid/image">content/google-test-images/positive/Covid/image</a> 59.jpeg'
UnidentifiedImageError: cannot identify image file '<a href="/content/google-test-images/positive/Covid/image">content/google-test-images/positive/Covid/image</a> 21.jpeg'
```

Training Data

Viral Infection Normal Covid

Model fitting

- Using Tersorflow Sequential model of Convolution Neural Network.
- By trial and error determined that a model with 4 hidden layers is performing best with some parameter adjustments.
- Refer <u>classifier.ipynb</u> for details about data preprocessing and training of the final model.
- I had tried with different number of layers and hyper parameters, one such example can be found at classifier1.ipynb and classifier_3_hidden_layers.ipynb files.

```
Epoch 1/8
125/125 [============ ] - 754s 6s/step - loss: 0.7943 - accuracy: 0.6838 - val loss: 0.9358 - val accuracy: 0.6667
Epoch 2/8
125/125 [============================ ] - 726s 6s/step - loss: 0.5490 - accuracy: 0.7851 - val_loss: 0.5703 - val_accuracy: 0.7879
Epoch 3/8
125/125 [============= ] - 717s 6s/step - loss: 0.4309 - accuracy: 0.8346 - val_loss: 0.6323 - val_accuracy: 0.7576
Epoch 4/8
Epoch 5/8
Epoch 6/8
125/125 [============= ] - 713s 6s/step - loss: 0.1976 - accuracy: 0.9236 - val_loss: 0.9324 - val_accuracy: 0.8030
Epoch 7/8
Epoch 8/8
125/125 [============ ] - 710s 6s/step - loss: 0.1085 - accuracy: 0.9628 - val_loss: 0.8249 - val_accuracy: 0.8485
Model: "sequential"
```

Model Summary

Layer (type)	Output Shape	Param #
conv2d_7 (Conv2D)	(None, 254, 254, 32)	896
max_pooling2d_7 (MaxPooling 2D)	(None, 127, 127, 32)	0
conv2d_8 (Conv2D)	(None, 125, 125, 64)	18496
max_pooling2d_8 (MaxPooling 2D)	(None, 62, 62, 64)	0
conv2d_9 (Conv2D)	(None, 60, 60, 128)	73856
max_pooling2d_9 (MaxPooling 2D)	(None, 30, 30, 128)	0
conv2d_10 (Conv2D)	(None, 28, 28, 128)	147584
max_pooling2d_10 (MaxPoolin g2D)	(None, 14, 14, 128)	0
flatten_2 (Flatten)	(None, 25088)	0
dense_4 (Dense)	(None, 512)	12845568
dropout_2 (Dropout)	(None, 512)	0
dense_5 (Dense)	(None, 3)	1539
======================================		

Analysis of Google Search Images

- I downloaded images from Google by searching with search phrase covid 19 infected lungs x ray
- Downloaded images have Chest X-ray data, all of them expected to be classified with Covid-19.
- Analysis of Google Search results can be found at <u>google_search_analysis.ipynb</u> file.

```
Positive case predictions: (97,)
Positive Test cases:

Total Predictions = 97

Correct Predictions = 78 that is 80.41237113402062 % of all predictions
Falsely Predicted as Normal = 5 that is 5.154639175257731 % of all predictions
Falsely Predicted as Pneumonia = 14 that is 14.432989690721648 % of all predictions
Invalid Predictions = 0 that is 0.0 % of all predictions

Negative test case predictions: (80,)
Negative Test cases:
Total Predictions = 80

Correct Predictions = 64 that is 80.0 % of all predictions
Falsely Predicted as Normal = 7 that is 8.75 % of all predictions
Falsely Predicted as Pneumonia = 9 that is 11.25 % of all predictions
Invalid Predictions = 0 that is 0.0 % of all predictions
```

Features

Features

Thank You