Formulario

Karen Flores Muciño

Enero 2023

1 Notación

$$u = u(x,t)$$

$$u_t = \frac{\partial u}{\partial t}$$
 $u_x = \frac{\partial u}{\partial x}$ $u_{xt} = \frac{\partial u}{\partial x \partial t}$

$$D_x \equiv \frac{\partial}{\partial x}$$
 $D_y \equiv \frac{\partial}{\partial y}$

2 EDO

2.1 Variables separables

$$y' = \frac{dy}{dx} = f(x)g(y);$$
 $g(y) \neq 0$

$$\frac{dy}{g(x)} = f(x)dx$$

2.2 Ecuaciones Lineales

$$y' + p(x)y = q(x)$$

Factor integrante: $\mu(x) = exp \left\{ \int p(x) dx \right\}$

Solución general: $y(x) = \frac{1}{\mu(x)} \int \mu(x) q(x) dx$

2.3 Ecuaciones Homogeneas

2.3.1 Primer Orden

$$y' + ay = 0;$$
 $a = cte$

Ec. caracteristica: s + a = 0

Sol: $y(x) = c_1 e^{-ax}$

2.3.2 Segundo Orden

$$y^{''} + ay^{'} + by = 0$$

Ec. caracteristica: $s^2 + as + b = 0$

Sol: $y(x) = c_1 e^{s_1 x} + c_2 e^{s_2 x}$

• Si $s_1 = s_2 = s_3$: $y(x) = (c_1 + c_2 x)e^{s_0 x}$ $c_1, c_2 = ctes$

• Si $s_1 = \alpha + i\beta$ $s_2 = \alpha - i\beta$ $y(x) = e^{\alpha x} \left[c_1 cos(\beta x) + c_2 sen(\beta x) \right]$

3 EDP

Def. Una EDP es una ecuación que contine una función desconocida de varias variables y una o más de sus derivadas parciales.

3.1 Transformación de ecuaciones

En general, las ecuaciones lineales de segundo grado en dos variables son de la forma:

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0$$

Donde A, B, C, D, E, F, G son funciones definidas en una región $\Omega\subset\mathbb{R}^2\ y\ A^2+B^2+C^2>0$

El discriminante o indicador I de la ec. es:

$$I = B^2 + 4AC$$

Valor de I	Tipo	Ecuaciones de Transformación	Forma Canónica
I > 0	Hiperbólica	$\zeta = -\left(B + \sqrt{B^2 - 4AC}\right)x + 2Ay$	$\mathbf{u}_{\zeta\eta} = F'(u_{\zeta}, u_{\eta}, \zeta, \eta)$
		$\eta = -\left(B - \sqrt{B^2 - 4AC}\right)x + 2Ay$	$\mathbf{u}_{\zeta\zeta} - u_{\eta\eta} = F^{'}$
I = 0	Parabólica	$\zeta = -Bx + 2Ay$	$\mathbf{u}_{\eta\eta} = G^{'}(u_{\zeta}, u_{\eta}, \zeta, \eta)$
		$\eta = x$	
I < 0	Elíptica	$\zeta = -Bx + 2Ay$	$u_{\zeta\zeta} + u_{\eta\eta} = H'(u_{\zeta}, u_{\eta}, \zeta, \eta)$
		$\eta = \sqrt{4AC - B^2}$	

Lema. Considere el cambio de coordenadas dado por

$$\zeta = a_{11}x + a_{12}y$$

$$\eta = a_{21}x + a_{22}y$$

 $con \ a_{11}, a_{12}, a_{21}, a_{22} \in \mathbb{R}$

y det
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = 0$$

Si
$$A^{'}u_{\zeta\zeta}+B^{'}u_{\zeta\eta}+C^{'}u_{\eta\eta}+D^{'}u_{\zeta}+E^{'}u_{\eta}+F^{'}u+A^{'}u_{\zeta\zeta}=0$$

Es la ec. transformada bajo el cambio de coordenadas, entonces:

$$sgn(B^{2} - 4AC) = sgn((B')^{2} - 4A'C')$$

Es decir, el Indicador es invariante bajo cambios de coordenadas

3.2 Condiciones de frontera

Las EDP generalmente se restringen a una región Ω con frontera $\partial\Omega$

- Dirichlet: u = g
- Neumann (De flujo): $\frac{\partial u}{\partial n} = g$
- Robin (Mixta o de radiación): $+\beta \frac{\partial u}{\partial n} = g$

3.3 Eliminación de funciones arbitrarias

Considere una superficie z = f(x+y) = f(s). Si definimos s = x + y

$$\frac{\partial z}{\partial x} = \frac{df}{ds} \cdot \frac{\partial s}{\partial x} = f'(s) \cdot 1 \dots (1)$$

$$\frac{\partial z}{\partial y} = \frac{df}{ds} \cdot \frac{\partial s}{\partial y} = f'(s) \cdot 1 \quad \dots \quad (2)$$

Restando (2) de (1): $\frac{\partial z}{\partial z} - \frac{\partial z}{\partial y} = 0$

3.4 Metodo de separación de variables

Una EDP en dos variables x,y es lineal si tiene la forma:

$$\phi(D_x, D_y, \dots)U = F(x, y)$$

Para hallar una solución particular de la ecuación suponemos una solución de la forma

$$U(x,y) = X(x) + Y(y)$$

Teorema 1. La solución general de la ecuación lineal:

$$\phi(D_x, D_y, \dots)U = F(x, y, \dots) \dots (1)$$

donde x, y, \ldots son variables independientes y $\phi(D_x, D_y, \ldots)$ es un operador polinómico en D_x, D_y, \ldots es la suma de la solución general U_c de la ecuación complementaria

$$\phi(D_x, D_y, \dots)U = 0$$

y cualquier solución particular U_p de la ecuación (1), esto es,

$$U = U_c + U_p$$

Teorema 2 - Principio de Superposición. Sean U_1, U_2, \ldots soluciones de la ecuación

$$\phi(D_x, D_y, \dots)U = 0$$

Entonces si a_1, a_2, \ldots son constantes cualesquiera

$$U = a_1 U_1 + a_2 U_2 + \dots$$

también es una solución.

4 Teoremas Integrales de Cálculo vectorial

4.1 Teorema de Fubini

Sea $A = [a,b] \times [c,d]$ un rectángulo de \mathbb{R}^2 , y sea $f : A \longrightarrow \mathbb{R}$ una función integrable tal que las funciones $f_x : [c,d] \longrightarrow \mathbb{R}$ definidas por $f_x(y) = f(x,y)$ son integrables en [c,d], para todo $x \in [a,b]$. Entonces, la función $x \longmapsto \int_c^d f(x,y) dy$ es integrable en [a,b], y

$$\int_{A} f = \int_{a}^{b} \left(\int_{c}^{d} f_{x}(y) dy \right) dx$$

Análogamente, si se supone que $\int_a^b f(x,y)dx$ existe para cada $y \in [c,d]$, se obtiene que

$$\int_{A} f = \int_{c}^{d} \left(\int_{a}^{b} f_{x}(y) dx \right) dy$$

4.2 Teorema de Stokes

Sea Σ una superficie suave orientada en \mathbb{R}^3 con frontera $\partial \Sigma$.

Si un campo fectorial $\mathbf{F} = P(x,y,z), Q(x,y,z), R(x,y,z))$ está definido y tiene derivadas parciales continuas en una región abierta que contiene a Σ entonces:

$$\oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r} = \iint_{\sigma} (\bigtriangledown \times \mathbf{F}) \cdot d\mathbf{S}$$

o, de manera más explícita:

$$\oint_{\partial \Sigma} (Pdx + Qdy + Rdz) = \iint_{\Sigma} \left[\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dydz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dzdx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy \right]$$

4.3 Teorema de Green

Sean $D \subset \mathbb{R}^2$ una región simple cuya frontera es una curva C suave a trozos orientada en sentido positivo, si $\mathbf{F} = (M,N) : D \longrightarrow \mathbb{R}^2$ es un campo vectorial con derivadas parciales continuas en una región abierta que contiene a D entonces:

$$\oint_C M dx + N dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$$

donde $C = \partial D$

4.4 Teorema de Gauss

Sea U una región sólida acotada por una superficie cerrada S. Si \mathbf{F} es un campo vectorial continuamente diferenciable en un entorno de U, entonces:

$$\oint_{\partial U} \mathbf{F} \cdot d\mathbf{S} = \iiint_{U} \nabla \cdot F dV$$

donde $S = \partial U$

5 Series de Fourier

5.1 Formulas

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right)$$
$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$
$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

5.1.1 Teorema de Kronecker

Sea p(x) un polinomio grado m y f(x) una función continua, entonces:

$$\int p(x)f(x)dx = pF_1 + p'F_2 - p''F_3 + \dots - p^mF_{m+1}$$

donde p
 se deriva sucesivamente hasta anularse y ${\cal F}_1$ denota la integral de f

5.2 Propiedades

Función par: f(-x) = f(x)Función impar: f(-x) = -f(x)

- \bullet Par X Par = Par
- \bullet Impar X Impar = Par
- Par X Impar = Impar

Para $f(x), x \in [0, L]$

Si la extensión de f(x) en [-L, L] es par, entonces: $b_n = 0$

$$a_0 = \frac{2}{L} \int_0^L f(x) \, dx$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

Si la extensión de f(x) en [-L, L] es impar, entonces: $\mathbf{a}_0 = a_n = 0$

$$b_n = \frac{2}{L} \int_0^L f(x) sen\left(\frac{n\pi x}{L}\right) dx$$

$$sin(n\pi) = 0,$$
 $cos(n\pi) = (-1)^n$

5.3 Sturm - Liouville

Problemas de valor de frontera para $\frac{d^2\phi}{dx^2}=-\lambda\phi$

Condiciones de frontera	$\phi(0) = 0$ $\phi(L) = 0$	$\frac{\frac{d\phi}{dx}(0) = 0}{\frac{d\phi}{dx}(L) = 0}$	$\phi(-L) = \phi(L)$ $\frac{d\phi}{dx}(-L) = \frac{d\phi}{dx}(L)$
Eigenvalores λ_n	$n = \begin{pmatrix} \frac{n\pi}{L} \end{pmatrix}^2$ $n = 1, 2, 3, \dots$	$n = \begin{pmatrix} \frac{n\pi}{L} \end{pmatrix}^2$ $n = 1, 2, 3, \dots$	$n = \begin{pmatrix} \frac{n\pi}{L} \end{pmatrix}^2$ $n = 1, 2, 3, \dots$
Eigenfunciones	$sin\left(rac{n\pi x}{L} ight)$	$cos\left(\frac{n\pi x}{L}\right)$	$sin\left(\frac{n\pi x}{L}\right)$ and $cos\left(\frac{n\pi x}{L}\right)$
Series	$f(x) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right)$	$f(x) = \sum_{n=0}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right)$	$f(x) = \sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right)$
			$+\sum_{n=1}^{\infty} n_n sen\left(\frac{n\pi x}{L}\right)$
		$A_0 = \frac{1}{L} \int_0^L f(x) dx$	$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$
Coeficientes	$B_n = \frac{2}{L} \int_0^L f(x) sen\left(\frac{n\pi x}{L}\right) dx$		$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$
		$A_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$	$b_n = \frac{1}{L} \int_{-L}^{L} f(x) sen\left(\frac{n\pi x}{L}\right) dx$

Ecuación	p(x)	q(x)	λ	$\omega(x)$
Legendre^a	1 - x ²	0	l(l + 1)	1
Shifted Legendre ^{a}	x(1 - x)	0	l(l + 1)	1
Associated Legendre a	$1 - x^2$	$-m^2/\left(1-x^2\right)$	l(l+1)	1
Chebyshev I	$\left(1-x^2\right)^{1/2}$	0	n^2	$\left(1-x^2\right)^{-1/2}$
Shifted Chebyshev	$\left[x(1-x)\right]^{1/2}$	0	n^2	$\left[x(1-x)\right]^{1/2}$
Chebyshev II	$\left(1-x^2\right)^{3/2}$	0	n(n + 2)	$\left(1-x^2\right)^{1/2}$
Ultraspherical (Gegenbauer)	$\left(1-x^2\right)^{\alpha+1/2}$	0		$\left(1-x^2\right)^{\alpha-1/2}$
Bessel ^b , $0 \le x \le a$	X	$-n^2/x$	a^2	x
Laguerre, $0 \le x < \infty$	xe^{-x}	0	α	e^{-x}
Associated Laguerre c	$\mathbf{x}^{k+1}e^{-x}$	0	$\alpha - k$	$x^k e^{-x}$
Hermite, $0 \le x < \infty$	e^{-x^2}	0	2α	e^{-x}
Simple harmonic oscillator d	1	0	n^2	1

5.3.1 Ejemplo

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

$$u(0,t) = u(1,t) = 0, \qquad t > 0$$

$$u(x,0) = f(x), \qquad 0 < x < 1$$

Paso 1. Separación de variables: Suponemos una solución de la forma u(x,t) = X(x)T(t)

Dividimos la ecuación entre kX(x)T(t) para obtener:

$$\frac{T'(t)}{kT(t)} = \frac{X''(x)}{X(x)} = -\lambda$$

Entonces las ecuaciones separadas son:

$$X''(x) + \lambda X(x) = 0, \qquad 0 < x < L$$

$$T'(t) + \lambda T(t) = 0, \qquad t > 0$$

Paso 2. Resolver el problema Sturm - Liouville:

$$X''(x) + \lambda X(x) = 0,$$
 $X(0) = 0,$ $X(L) = 0$

Sabemos que sus valores y funciones propias tienen la forma:

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad X_n(x) = \sin\left(\frac{n\pi x}{L}\right), \quad n = 1, 2, 3, \dots$$

Entonces, para cada λ_n , de la ecuación (4) encontramos una componente temporal de la solución, es decir:

$$T_n(t) = e^{-k\left(\frac{n\pi x}{L}^2 t\right)}, \quad n = 1, 2, 3, \dots$$

Paso 3. Series de Fourier: Combinamos las soluciones para escribir:

$$u_n(x,t) = X_n(x)T_n(t) = \sin\left(\frac{n\pi x}{L}\right)e^{-k\left(\frac{n\pi x}{L}\right)^2t}, \quad n=1,2,3,\dots$$

Paso 4. Escribir la solución como producto: Así, la solución final será:

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right) e^{-k\left(\frac{n\pi x}{L}\right)^2 t}$$

6 Coordenadas Curvilíneas

6.1 Definición

Generales:

Vectores base $\hat{e}_{[}i$ en el punto M

$$\hat{e}_{[i}(M) = \frac{\frac{\partial \overrightarrow{r}}{\partial q_i}}{\left| \frac{\partial \overrightarrow{r}}{\partial q_i} \right|}$$

Suele denominarse h_i a:

$$h_i = \left| \frac{\partial \overrightarrow{r}}{\partial q_i} \right|$$

llamados factores de escala de las coordenadas q_i

Entonces:

$$\hat{e}_i(M) = \frac{1}{h_i} \cdot \frac{\partial \overrightarrow{r}}{\partial q_i}$$

De aquí:

$$d\overrightarrow{r} = \sum h_i dq_i \hat{e}_i$$

6.1.1 Cilindricas.

$$x = \rho \cos \phi$$

$$y = \rho \sin \phi$$

$$z = z$$

Facotres de escala

$$h_{\rho} = 1, \qquad h_{\phi} = \rho, \qquad h_z = 1$$

Vectores base:

$$\hat{e}_{\rho} = \cos\phi \hat{\mathbf{i}} + \sin\phi \hat{\mathbf{j}}$$

$$\hat{e}_{\phi} = -\sin\phi\hat{\mathbf{i}} + \cos\phi\hat{\mathbf{j}}$$

$$\hat{e}_z = \hat{k}$$

6.1.2 Esfericas

$$x=rsin\theta cos\phi$$

$$y=rsin\theta sin\phi$$

$$z = r cos \theta$$

Factores de escala:

$$h_r = 1, \qquad h_\theta = r, \qquad h_\phi = r \sin \theta$$

Vectores base:

$$\hat{e}_r = \sin\theta\cos\phi\hat{i} + \sin\theta\sin\phi\hat{j} + \cos\theta\hat{k}$$

$$\hat{e}_{\theta} = \cos\theta\cos\phi\hat{i} + \cos\theta\sin\phi\hat{j} - \sin\theta\hat{k}$$

$$\hat{e}_{\phi} = -\sin\phi\hat{\mathbf{i}} + \cos\phi\hat{\mathbf{j}}$$

6.1.3 Polares.

$$x = rcos\theta$$

$$y = rsin\theta$$

$$x^2 + y^2 = r^2$$

$$\tan \theta = \frac{y}{x}$$

6.2 Operadores Vectoriales

1. Gradiente:

$$\nabla \phi = \sum \frac{1}{h_i} \cdot \frac{\partial \phi}{\partial q_i} \hat{e}_i$$

2. Divergencia:

$$\nabla \cdot \overrightarrow{A} = \frac{1}{(h_1 h_2 h_3)} \left[\frac{\partial}{\partial q_1} (A_1 h_2 h_3) + \frac{\partial}{\partial q_2} (A_2 h_1 h_3) + \frac{\partial}{\partial q_3} (A_3 h_1 h_2) \right]$$

3. Rotacional:

$$\nabla \cdot \overrightarrow{A} = \frac{1}{(h_1 h_2 h_3)} \cdot \begin{vmatrix} h_1 \hat{e}_1 & h_2 \hat{e}_2 & h_3 \hat{e}_3 \\ \partial/\partial q_1 & \partial/\partial q_2 & \partial/\partial q_3 \\ h_1 A_1 & h_2 A_2 & h_3 A_3 \end{vmatrix}$$

4. Laplaciana:

$$\nabla^2 \cdot \phi = \frac{1}{(h_1 h_2 h_3)} \left[\frac{\partial}{\partial q_1} \left(\frac{h_2 h_3}{h_1} \cdot \frac{\partial \phi}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{h_1 h_3}{h_2} \cdot \frac{\partial \phi}{\partial q_2} \right) + \frac{\partial}{\partial q_3} \left(\frac{h_1 h_2}{h_3} \cdot \frac{\partial \phi}{\partial q_3} \right) \right]$$

7 Transformada de Laplace

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t)t$$

	F(s)	f(t)
1	$\frac{1}{s}$	1
2	$\frac{1}{s^2}$	t
3	$\frac{1}{s^n}$	$\frac{t^{n-1}}{(n-1)!}$
4	$\frac{1}{s \pm a}$	$e^{\pm at}$
5	$\frac{1}{s(s+a)}$	$\frac{1}{a}(1 - e^{-at})$
6	$\frac{1}{s^2(s+a)}$	$\frac{1}{a^2}(e^{-at} + mt - 1)$
7	$\frac{a}{s^2 + a^2}$	$\sin(at)$
8	$\frac{s}{s^2 + a^2}$	$\cos(at)$
9	$\frac{s}{s^2 + a^2}$	$\cos(at)$
10	$\frac{a}{s^2 - a^2}$	$\sinh(at)$

11	$\frac{a}{s^2 - a^2}$	$\sinh(at)$
12	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
13	$\frac{1}{s(s^2+a^2)}$	$\frac{1}{a^2}(1-\cos(at))$
14	$\frac{1}{s(s^2+a^2)}$	$\frac{1}{a^2}(1-\cos(at))$
15	$\frac{1}{s^2(s^2+a^2)}$	$\frac{1}{a^3}(at - \sin(at))$
16	$\frac{1}{(s+a)\cdot(s+b)}$	$\frac{a-b}{e^{-bt}-e^{\cdot}-at}$
17	$\frac{s}{(s+a)\cdot(s+b)}$	$\frac{1}{b-a}(be^{-bt} - ae^{-at})$
18	$\frac{1}{(s+a)^2}$	te^{-at}
19	$\frac{1}{(s+a)^n}$	$\frac{t^{n-1}}{(n-1)!}e^{-at}$
20	$\frac{s}{(s+a)^2}$	$e^{-at}(1-at)$
21	$\frac{1}{(s^2+a^2)^2}$	$\frac{1}{2a^3}(\sin(at) - at\cos(at))$
22	$\frac{s}{(s^2+a^2)^2}$	$\frac{t}{2a}(\sin(at))$
23	$\frac{s^2}{(s^2+a^2)^2}$	$\frac{1}{2a}(\sin(at) + at\cos(at))$
24	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$	$t\cos(at)$

8 Transformada de Fourier

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}$$

	f(t)	$F(\omega)$	
1	$e^{-at}\mu(t)$	$rac{1}{a+j\omega}$	a > 0
2	$e^{-at}\mu(-t)$	$rac{1}{a-j\omega}$	a > 0
3	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	a > 0
4	$te^{-at}\mu(t)$	$\frac{1}{(a+j\omega)^2}$	a > 0
5	$t^n e^{-at} \mu(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	a > 0
6	$\delta(t)$	1	
7	$\delta(t-t_0)$	$e^{-j\omega t_0}$	
8	1	$2\pi\delta(\omega)$	
9	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
10	$\cos(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$	
11	$\sin(\omega_0 t)$	$\pi \left[\delta(\omega + \omega_0) - \delta(\omega - \omega_0) \right]$	
12	$\mu(t)$	$\pi\delta(\omega) + \frac{1}{j\omega}$	
13	$\mu(-t)$	$\pi\delta(\omega)-rac{1}{j\omega}$	
14	(t)	$rac{2}{j\omega}$	

15	$\cos(\omega_0 t) \mu(t)$	$\frac{\pi}{2} \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right] + \frac{j\omega}{\omega_0^2 - \omega^2}$	
16	$\sin(\omega_0 t)\mu(t)$	$\frac{\pi}{2j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right] + \frac{\omega_0}{\omega_0^2 - \omega^2}$	
17	$e^{-at}(\omega_0 t)\mu(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	a > 0
18	$e^{-at}\cos(\omega_0 t)\mu(t)$	$\frac{a\!+\!j\omega}{(a\!+\!j\omega)^2\!+\!\omega_0^2}$	a > 0
19	$rect\left(\frac{1}{ au}\right)$	$ au\left(rac{\omega au}{2} ight)$	
20	$\frac{W}{\pi}$	$\left(rac{\omega}{2W} ight)$	
21	$\nabla\left(rac{t}{ au} ight)$	$\frac{ au}{2}^2 \left(\frac{\omega au}{4} \right)$	
22	$\frac{W}{2\pi}^2 \left(\frac{Wt}{2}\right)$	$ abla \left(rac{\omega}{2W} ight)$	
23	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$
24	$\frac{e^{-t^2}}{2\sigma^2}$	$\sigma\sqrt{2\pi e^{-\sigma^2\omega^2/2}}$	
25	$\frac{1}{a^2+t^2}$	$e^{-a \omega }$	
26	e^{-at^2}	$\sqrt{\frac{\pi}{a}}e^{-\omega^2/4a}$	a > 0
27	$p_a(t) = \begin{cases} 1, & t < a, \\ 0, & t > a \end{cases}$	$2a rac{\sin(\omega a)}{\omega a}$	