МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и кибербезопасности Высшая школа технологий искусственного интеллекта

Отчёт по дисциплине «Образовательный форсайт» Анонимизация данных

Студент:	Салимли Айзек Мухтар Оглы
Преподаватель:	Курочкин Михаил Александрович
	«» 20 г.

Содержание

B	ведение	:
1	Постановка задачи	4
2	Аннотация курса и разделов	5
3	Теоретическая часть курса	6
	3.1 Базовые понятия	6
	3.2 Атаки идентификации и анонимизация данных	6
	3.3 Методы обезличивания данных	7
	3.4 Концепция предположительной анонимности	7
	3.5 К-анонимность	8
	3.6 Дифференциальная конфиденциальность	8
	3.7 Оценка полезности и совместное применение	8
4	Результаты аттестации по модулям	10
5	Заключение	12
6	Список источников	13

Введение

В рамках модуля мобильности был выбран курс «Анонимизация данных», так как направление данного курса, нужно для защиты персональных данных. Автором курса, является ведущий специалист в области анонимизации данных - д.т.н., доцент Института компьютерных наук и кибербезопасности - Полтавцева Мария Анатольевна. Курс включает в себя 6 содержательных тем. Все материалы курса доступны с момента открытия курса: видеолекции, кратко раскрывающие содержание каждой темы, презентации и конспекты, с которыми в дальнейшем можно ознакомиться в любое удобное время. Все темы включают практические занятия и самостоятельные работы. В материалах курса подготовлены методические рекомендации к выполнению заданий и примеры решения типовых заданий.

1 Постановка задачи

В рамках курса «Образовательный форсайт», было необходимо пройти выбранный по желанию онлайн курс «Анонимизация данных» на портале «Открытое образование» (https://openedu.ru/). Онлайн-курс предполагает успешное освоение предлагаемых десяти лекций, написание контрольных заданий по лекциям и итогового теста. Цель изучения дисциплины «Анонимизация данных» заключается в освоении базовых принципов и методов анонимизации данных.

2 Аннотация курса и разделов

В настоящее время анонимизация данных является критически важным направлением в области информационной безопасности и защиты персональных данных. Этот курс представляет собой комплексное изучение современных методов и технологий обеспечения конфиденциальности информации в условиях цифровой трансформации. Анонимизация данных формирует основу для безопасной работы с персональной информацией, позволяя использовать данные для анализа и исследований, сохраняя при этом приватность пользователей.

Технологии анонимизации находят широкое применение в различных сферах деятельности, включая здравоохранение, финансы, государственное управление и бизнес-аналитику. Они предоставляют возможность работать с большими объемами данных, соблюдая требования законодательства о защите персональных данных и обеспечивая баланс между доступностью информации и её конфиденциальностью. Это делает знания в области анонимизации данных особенно ценными в современном мире, где вопросы защиты информации становятся все более актуальными.

3 Теоретическая часть курса

3.1 Базовые понятия

- Анонимизация (персональных) данных действия, направленные на сохранение конфиденциальности данных путем защиты от атак идентификации.
- Атака логического вывода (inference attack) атаки нарушения конфиденциальности данных, которые проводятся без нарушения политики безопасности, как правило, с использование внешних знаний и данных.
- Атаки идентификации вид атак логического вывода, которые позволяют в наборе данных (в том числе, обезличенном, из которого удалена персональная информация) установить кортежи, или сведения, принадлежащие конкретному субъекту.
- Обезличивание (персональных) данных действия, в результате которых становится невозможным без использования дополнительной информации определить принадлежность персональных данных конкретному субъекту персональных данных.
- Обратная идентификация установление по защищенным данным сведений, относящих ся к конкретному лицу (объекту) путем восстановления исходных данных на основе только обезличенного набора.
- Повторная идентификация установление по защищенным (обезличенным или анонимизированным) данным сведений, относящихся к конкретному лицу (объекту).
- Повторная идентификация с использованием фоновых знаний установление по защищенным данным сведений, относящихся к конкретному лицу (объекту) путем восстановления исходных данных с использованием внешних знаний и/или данных.

3.2 Атаки идентификации и анонимизация данных

Логический вывод и атаки идентификации. Атаки логического вывода (inference attacks) не нарушают политику доступа, но с помощью доступных агрегированных данных и фоновых знаний позволяют вывести конфиденциальную информацию о конкретном субъекте.

Повторная идентификация.

- Обратная идентификация: восстановление исходных данных X по обезличенному X' и знанию алгоритма f, $X = f^{-1}(X')$.
- С фоновыми знаниями: объединение обезличенных данных X' с внешними источниками B для установления соответствия.

Законодательные требования. Федеральный закон 152-ФЗ:

обезличивание $X: \quad \nexists$ доп. инфо. $\Rightarrow \neg ($ определить субъекта по X).

Приказ РКН №996 выделяет четыре подхода к обезличиванию:

- 1. введение идентификаторов;
- 2. изменение состава и семантики данных;
- 3. декомпозиция;
- 4. перемешивание.

3.3 Методы обезличивания данных

Требования к методам. Методы должны обеспечивать:

- 1. Невозможность восстановления исходных X из X': $\nexists f^{-1}$;
- 2. Сохранение домена и формата: $X_i' \in \text{Dom}(X_i)$;
- 3. <u>Уникальность:</u> если $X_i \neq X_j$, то $X'_i \neq X'_j$;
- 4. Ссылочная целостность при нескольких таблицах;
- 5. Применимость ко всем значениям домена;
- 6. Сохранение статистик: оценки по агрегатам должны быть близки.

Обратимые методы.

- Декомпозиция: разделение на таблицы $T_1(ID,...), T_2(ID,...)$ по суррогатному ключу ID.
- Подстановка: $x_i \mapsto t(x_i)$, где t задано таблицей соответствий.
- Преобразование:

$$V_d = F(V_u, V_r), \quad V_u = F^{-1}(V_d, V_r).$$

• **Перестановка**: обмен полями между записями; если алгоритм детерминирован, — обратимо.

Необратимые методы.

- Замена на константу: $x_i \to *$.
- Округление: $x_i \to b \lfloor x_i/b \rfloor$, риск раскрытия $DR(X[i]) = \frac{1}{\log_2 m(I[i])}$.
- Микроагрегация: группы размера $\geq k$, замена на среднее. Риск $DR_w = \frac{1}{n} \sum_{k,j} w_{kj} c_{kj}$.
- Обобщение: замена конкретных значений на более общие (даты \to месяцы).
- Размытие (blurring): $x_i \to x_i + \eta$, η случайно в малом диапазоне.

3.4 Концепция предположительной анонимности

Модель угадывания. Пусть $I \in \{1, \dots, M\}$ — индекс записи с псевдоидентификатором r_i , а S — наблюдаемый шумом выход. Число догадок G(I|s) оптимальной стратегии минимизирует $\mathrm{E}[G(I|S)]$.

Границы по энтропии Реньи.

$$E[G(I|S)]^{\rho} \leq H_{\alpha}(I|S),$$

где
$$H_{\alpha}(I|S) = \frac{1}{1-\alpha} \ln \sum_{s} \sum_{i} P(i,s)^{\alpha}$$
.

Gaussian-модель. При $S \mid I = i \sim \mathcal{N}(r_i, \sigma^2)$ нижняя граница

$$E[G(I|S)] \geq c \sum_{i=1}^{M} \sum_{j=1}^{M} \exp\left(-\frac{(r_i - r_j)^2}{2\sigma^2}\right).$$

3.5 К-анонимность

Определение. Таблица T является k-анонимной, если каждая комбинация значений квазиидентификаторов Q встречается $\geq k$ раз.

Обобщение и подавление.

- ullet Обобщение: по иерархиям VGH/DGH заменяем домен $\mathrm{Dom}(A)\mapsto$ более общий.
- <u>Подавление</u>: удаление отдельных кортежей, если иначе k-анонимность невозможна без сильного обобщения.

Минимальное обобщение. T_j —k-минимальное обобщение T_i , если $T_i \leq T_j$, T_j удовлетворяет k-анонимности, и нет T_z с $T_i \leq T_z < T_j$ также k-анонимного. Расстояние обобщения:

$$DV_{i,j} = [d_1, \dots, d_n],$$

где d_{ℓ} — число шагов в DGH по атрибуту A_{ℓ} .

3.6 Дифференциальная конфиденциальность

Определение. Алгоритм A обеспечивает (ε, δ) -DP, если для любых соседних БД D_1, D_2 и всех S:

$$P[A(D_1) \in S] \le e^{\varepsilon} P[A(D_2) \in S] + \delta.$$

При $\delta = 0$ — ε -DP.

Механизмы.

- Лапласовский: добавляет шум $\text{Lap}(\Delta_1/\varepsilon)$, где $\Delta_1 = \max_{D_1,D_2} |q(D_1) q(D_2)|$.
- Гауссовский: добавляет шум $\mathcal{N}(0, \sigma^2)$ с $\sigma \ge \Delta_2 \sqrt{2 \ln(1.25/\delta)}/\varepsilon$.
- Экспоненциальный: для нечисловых задач, выбор по весам $\exp(\frac{\varepsilon u(D,r)}{2\Delta u})$.

Свойства композиции.

- 1. Последовательная: $(\varepsilon_1, \delta_1)$ и $(\varepsilon_2, \delta_2)$ дают $(\varepsilon_1 + \varepsilon_2, \delta_1 + \delta_2)$.
- 2. Параллельная: на непересекающихся фрагментах бюджета не суммируются.
- 3. Расширенная: для k последовательных ε -механизмов общий бюджет $\varepsilon_{\mathrm{tot}} = O(\varepsilon \sqrt{k \ln(1/\delta)})$.
- 4. Постобработка: любые g(A(D)) сохраняют тот же (ε, δ) .

3.7 Оценка полезности и совместное применение

Метрики для специфических методов.

• Округление:

$$DR_i = \frac{1}{\log_2 m(I[i])}, \quad IL_i = X_i' - X_i.$$

8

• Микроагрегация: $DR_w = \frac{1}{n} \sum_{k,j} w_{kj} c_{kj}$.

• Перестановка:

$$DU = \frac{1}{n_T} \sum_{c} |T_p(c) - T_0(c)|, \quad DR = \frac{\sum I(T_0(c) = 1, T_p(c) = 1)}{\sum I(T_0(c) = 1)}.$$

Метрики для k-анонимности.

- Generalized IL: $GenILoss = \frac{1}{n|T|} \sum_{i,j} \frac{U_{ij} L_{ij}}{U_i L_i}$.
- Discernibility Metric: $DM = \sum_{|EQ| \ge k} |EQ|^2 + \sum_{|EQ| < k} |T| \cdot |EQ|.$
- Average EQ Size: $C_{\text{avg}} = \frac{|T|}{|EQ_s| \ k}$.

Совместное применение. Сначала применяют k-анонимизацию (обобщение), затем дифференциальную приватность (малый ε) для дополнительной защиты при минимальном искажении.

4 Результаты аттестации по модулям

Прогресс учитан без финального теста, так как для него требуется платная подписка! Результаты прохождения аттестации по темам 1-6 и общий прогресс представлены на рисунках 1 - 7

Прогресс

salimliam salimli.am@edu.spbstu.ru

Рис. 1: Прогресс

Тема 1. Введение в курс. Зад анонимизации данных	цача			Статус прокторинга	Оценка
▼ Аттестация по теме 1. Поп	ытка '	1		Без прокторинга	8/20
▼ Аттестация по теме 1. Поп	ытка :	2		Без прокторинга	11/20
 Аттестация по теме 1. Поп 	ытка :	3		Без прокторинга	14/20
Оценки по заданиям: 1/1	,	,			
0/1 1/1	1/1 1/1	0/1	1/1 1/1		
0/1	1/1	1/1	1/1		
1/1	1/1	0/1	0/1		

Рис. 2: Результаты прохождения аттестации по теме 1

Тема 2. Обезличивание д	данн	ых			Статус прокторинга	Оценка
 Аттестация по теме 2. 	Поп	ытка	1		Без прокторинга	16/20
Оценки по заданиям:	1/1	1/1	1/1	1/1		
	0/1	1/1	1/1	1/1		
	0/1	0/1	1/1	1/1		
	0/1	1/1	1/1	1/1		
	1/1	1/1	1/1	1/1		

Рис. 3: Результаты прохождения аттестации по теме 2

Тема 3. Предположительная анонимность	Статус прокторинга	Оценка
▼ Аттестация по теме 3. Попытка 1	Без прокторинга	5/10
▲ Аттестация по теме 3. Попытка 2 Оценки по заданиям: 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/	Без прокторинга	10/10
▼ Аттестация по теме 3. Попытка 3	Без прокторинга	0/10

Рис. 4: Результаты прохождения аттестации по теме 3

ма 4. k-анонимность					Статус прокторинга Без прокторинга	Оценка
Аттестация по теме 4.	Поп	ытка	1			25/3
Оценки по заданиям:	1/1	1/1	1/1	1/1		
	1/1	1/1	1/1	1/1		
	1/1	1/1	1/1	1/1		
	1/1	0/1	1/1	1/1		
	1/1	0/1	1/1	1/1		
	0/1	1/1	1/1	1/1		
	1/1	0/1	0/1	1/1		
	1/1	1/1				

Рис. 5: Результаты прохождения аттестации по теме 4

ема 5. Дифференциаль онфиденциальность	ная				Статус прокторинга	Оценка
 Аттестация по теме 5. 	Попь	ытка	1		Без прокторинга	18/25
Оценки по заданиям:	0/1	0/1	1/1	1/1		
	1/1	1/1	1/1	1/1		
	1/1	1/1	0/1	1/1		
	1/1	1/1	0/1	1/1		
	1/1	1/1	1/1	1/1		
	0/1	0/1	1/1	0/1		
	1/1					

Рис. 6: Результаты прохождения аттестации по теме 5

Тема 6. Оценка полезно применение методов ан				гное	Статус прокторинга	Оценка
 Аттестация по теме 6. 	Поп	ытка	1		Без прокторинга	20/20
Оценки по заданиям:	Оценки по заданиям: 1/1 1/1 1/1 1/1					
	1/1	1/1	1/1	1/1		
	1/1	1/1	1/1	1/1		
	1/1	1/1	1/1	1/1		
	1/1	1/1	1/1	1/1		

Рис. 7: Результаты прохождения аттестации по теме 6

5 Заключение

Прохождение онлайн-курса «Анонимизация данных», автором которого является Полтавцева Мария Анатольевна, позволило ознакомиться с фундаментальными концепциями и принципами современных методов защиты персональных данных. Курс охватывал широкий спектр тем, включая основы анонимизации и обезличивания данных, методы защиты от атак идентификации, а также практические аспекты реализации механизмов конфиденциальности в информационных системах. Одной из ключевых особенностей курса стала связь изучаемых технологий с актуальными требованиями законодательства в области защиты персональных данных. Курс предоставил глубокое понимание роли современных методов анонимизации в обеспечении баланса между доступностью данных для анализа и сохранением конфиденциальности персональной информации. Особенно ценным оказалось изучение таких концепций как k-анонимность и дифференциальная конфиденциальность, которые являются основой современных подходов к защите данных. Подводя итоги, хочется отметить, что использование дистанционных образовательных технологий, на которых базировался данный курс, представляет собой важное дополнение к традиционным методам обучения. Однако, несмотря на очевидные преимущества онлайн-обучения, такие как гибкость и доступность, личное общение с преподавателем и участие в практических занятиях остаются незаменимыми для полноценного усвоения материала, особенно в области, требующей практического применения различных методов анонимизации. Онлайн-курсы, подобные этому, играют важную роль в расширении образовательных возможностей и развитии самостоятельного обучения. Они отлично дополняют основное образование, предоставляя удобные инструменты для освоения сложных концепций и навыков, востребованных в современных системах защиты информации.

6 Список источников

1. Анонимизация данных. Открытое образование: URL: https://apps.openedu.ru/learning/course/course-v1:spbstu+DATANON+spring_2025/progress(дата обращения: 15.05.2025)