Project(2)
Implementing EDF Scheduler Report
Name: Aya Mohamed Sayed

System Overview

Task Number	Task Name	Task Periodicity (ms)	Task Deadline (ms)	Task Execution Time (ms)
Task_1	Button_1_Monitor	50	50	0.02
Task_2	Button_2_Monitor	50	50	0.02
Task_3	Periodic_Transmitter	100	100	0.02
Task_4	Uart_Receiver	20	20	0.02
Task_5	Load_1_Simulation	10	10	5
Task_6	Load_2_Simulation	100	100	12

Calculating System's Hyper Period

Hyper Period = LCM (50, 50, 100, 20, 10, 100) = 100 MS

Calculating System's CPU Load

CPU Load =
$$\frac{0.02}{50} + \frac{0.02}{50} + \frac{0.02}{100} + \frac{0.02}{20} + \frac{5}{10} + \frac{12}{100} = 0.6236 = 62.36\%$$

Calculating System's Schedulability

Using Utilization Rate Monotonic Approach

Assuming Rate-Monotonic Scheduler then the system is guaranteed to be scheduled if

$$CPU\ LOAD \le n(2^{\frac{1}{n}} - 1)$$

CPU LOAD = 62.36%

 \mathbf{n} = number of tasks = 6

URM (Utilization of rate monotonic) = $6(2^{\frac{1}{6}} - 1) = 0.73477 = 73.47\%$

U < URM

Then

The System is guaranteed to be scheduled

Using Time Demand Analysis Approach

1. Finding the greatest common divisor of the system to calculate the step

2. Compute parameters

Beginning = Start of a Hyper period Step = system GCD Ending = End Hyper period

Beginning	T = 0
Step	10 ms
Ending	100 ms
Number Of Tasks	6

3. Compute The time demand Function W_i(t)

$$W_i(t) = E_i + \sum_{k=1}^{i-1} \sum_{k=1}^{t} E_k$$

I: Task index

P: Task Period/Deadline

E: Execution time

After calculating:

Task index		Periodicity	Execution Time	W100	Schedulable
	1	50	0.02	0.01	PASS
	2	50	0.02	0.06	PASS
	3	100	0.03	0.11	PASS
	4	20	0.05	0.16	PASS
	5	10	5	5.36	PASS
	6	100	12	62.36	PASS

Screenshots

SimSo Simulator

Keil uVision

