Lecture 9: More Tests

Chi square Goodness-of-fit Tests The di-square fest is based on a statistic that was developed by Karl Planson in 1900. Consider Y, ~ b(n, p,), o < p, < 1. By the Central Limit Theorem, $Z = \frac{Y_1 - np_1}{\sqrt{np_1(1-p_1)}} \propto N(0,1) \text{ for large } n,$ $\sqrt{np_1(1-p_1)} \sim np_1 \geq 5, n(1-p_1) \geq 5.$ So $Q_1 = Z^2 \approx \chi^2(1)$. Let $Y_2 = n - Y_1$ and $\beta_2 = 1 - \beta_1$. Then $Q_1 = \frac{(Y_1 - np_1)^2}{np_1(1-p_1)} = \frac{(Y_1 - np_1)^2}{np_1} + \frac{(Y_1 - np_1)^2}{n(1-p_1)}$ Since $(Y_1 - np_1)^2 = (n - Y_1 - n[1 - p_1])^2 = (Y_2 - np_2)^2$,

we have $Q_1 = \frac{(Y_1 - np_1)^2}{np_1} + \frac{(Y_2 - np_2)^2}{np_2}$

But E(Y1) = np, and E(Y2)= npz $\Rightarrow Q_1 = \sum_{i=1}^{\infty} (1i-npi)^2/npi \propto \chi^2(1)$

Q, measures the "distance" between the Observed values of 4, and 12 to the corresponding expeated values. To generalize, suppose an experiment has x mutually exclusive and exhaustive outromes, say A, Az, --, Ax. Let bi= P(Ai), Zpi=1. The experiment is repeated n independent times. Let Yi = the number of times the experiment results in Ai, i= 1,2, ..., K. The joint dishibution of Y1, Y2, ---, YK-1 is a generalization of the binonical distribution (called the multinomial distribution). We write write $f(y_1, y_2, ..., y_{k-1}) = P(Y_1 = y_1, Y_2 = y_2, ..., Y_{k-1} = y_{k-1})$ where $\sum_{i=1}^{k-1} y_i \leq n$ and $y_i, y_2, ..., y_{k-1}$ are non-negative integers (note that $Y_k = n - \sum_{i=1}^{k-1} Y_i$).

Because of independence of the trials, the probability of each particular arrangement of y_1 A_1s_1 , y_2 A_2s_2 , y_k A_ks_3 is $p_1^{y_1}p_2^{y_2}$ — $p_k^{y_k}$ and the number of such arrangements is the number of such arrangements is the

$$\begin{pmatrix}
y_1, y_2, ..., y_k
\end{pmatrix} = \frac{n!}{y_1! y_2! - ... y_k!}$$

Hence the p:m.f of $Y_1, Y_2, ..., Y_{K-1}$ is $f(y_1, y_2, ..., y_{K-1}) = \frac{n!}{y_1! y_2! -... y_K!} p_1^{y_1} p_2^{y_2} ... p_K$

$$Q_{K-1} = \sum_{i=1}^{K} \frac{(Y_i - np_i)^2}{np_i} \propto \chi^2(K-1)$$

To apply this statistic, consider the fest for Ho: $\beta i = \beta io$, i = 1/2, ..., K vs Ha: $\beta i \neq \beta io$ We fend to favour Ho if Yi and notio are approximately equal; that is, if

 $q_{\mu-1} = \sum_{i=1}^{\infty} (y_i - np_{io})^2/np_{io}$ is "small".

Since and x X2(x-1), then we shall reject Ho if 2k+ > Na(k-1), where & is the desired significance level of the fest.

Example 1:

Let X = # heads when four coins are tossed at sandom.

If the coins one fair, then X~ b(4, 1/2).

Suppose the outcomes are as follows:

2e 0 1 2 3 4 Total Trials 7 18 40 31 4 100

Do these results support the assumption of b(4,1/2) as a reasonable model for X?

Solution Let $A_1 = \{0\}, A_2 = \{1\}, A_3 = \{2\},$ $A4 = {33}$ and $A_5 = {44}$.

If $pio = P(X \in Ai)$, then

$$p_{10} = p_{50} = {4 \choose 0} {1 \choose 2}^4 = \frac{1}{16} = 0.0625$$

$$p_{20} = p_{40} = {4 \choose 1} {1 \choose 2}^4 = {4/16} = 0.25$$

$$p_{30} = {4 \choose 2} {1 \choose 2}^4 = \frac{6}{16} = 0.375$$

The null hypothesis Ho: $\dot{p}_i = \dot{p}_{io}$, i = 1, 2, 3, 4, 5 is rejected if $Q_4 > \chi^2_{0.05}(4) = 9.488$ when $\alpha = 0.05$

But
$$4 = \frac{(7-6-25)^2}{6\cdot25} + \frac{(18-25)^2}{25}$$

 $+ \frac{(40-37.5)^2}{37.5} + \frac{(31-25)^2}{25}$
 $+ \frac{(4-6-25)^2}{6\cdot25}$
 $= \frac{4.47}{6\cdot25} = \frac{9.488}{25}$

Thus, we fait to reject Ho and while that b(4, 1/2) is a reasonable probabilistize model for X.

Now Suppose pio were unknown and Ho: X~b(n,p), OCPZI ise pio are functions of an unknown parameter p. We would need an extincte of p to Use in the calculation of $Q_4 = \sum_{i=1}^{5} (Y_i - np_{io})^2$, which is still approximately χ^2 - distributed. This estimator of p will be chosen to minimize Qu and is known as the minimum chi-square estimator of p, F. Here $p_{io} = P(X \in A_i) = \frac{4!}{(i-1)!(5-i)!} p^{i-1}(1-p)^{5-i}$ If β is used in Q_4 , then Q4 2 X2(3). In general, Q4 2 X2(4-d)

if pio are functions of d unknown parameters. 9k-1 values are hence compared with $\chi^2(k-1-d)$ in testing Ho. Normally, MLEs are used since minimum chi-square extimators are difficult to find.

Now, let W be a random variable of the Continuous type and $W \sim F(w) = distribution$ function.

To fest Ho: $F(w) = f_0(w)$ (Known), we partion $[a_0, b_1]$ into k sets with points $b_0, b_1, b_2, ..., b_K$, where $0 = b_0 < b_1 < b_2 < ... < b_K = 1$.

Let $a_i = f_0^{-1}(b_i)$, i = 1/2, ..., k-1; $A_i = (-\infty, a_1]$, $A_i = (a_{i-1}, a_i]$, i = 1/2, ..., k-1

 $A\kappa = (a_{\kappa-1}, \infty);$ and $\beta i = P(W \in Ai)$ $i = 1, 2, ..., \kappa$

het $\forall i = \text{# times the observed value of W}$ belongs to A_i , i = 1, 2, ..., k, in

n independent repetitions of the

experiment

Then $\forall_i, \forall_z, ..., \forall_k$ have a multinomial

distribution with parameters $n, p_i, ..., p_{k-1}$.

Let pio = P(WEAi) under Ho: WN Fo(w).

Then Ho: pi = pio $i = 1, 2, ..., \kappa$. We reject Hoif $q_{\kappa-1} = \sum_{i=1}^{\kappa} (y_i - np_{io})^2 > \chi^2_{\alpha}(\kappa-i)$.

Example 2

Let X = time (in minutes) between calls to 911.

We mish to test Ho: Xn exp(0=20). The

table below provides the summary of n=105

Such calls.

C(455 : A. A3 - A4 Prequency 22 11 (0 Probability 0.0599 0.0382 0.0244 0.0155 0.027 0.094 0.36 0.23 0.147 Expected 6.29 4.011 2.562 1.628 2.87 15.47 9.86 24.26 38.05

 $A_1 = [0,9], A_2 = (9,18], A_3 = (18,27], A_4 = (27,36],$

A5 = (36, 45], A6 = (45, 54], A7 = (54, 63],

 $A_8 = (63,72], A_9 = (72,00).$

28 = 4.6861, p-value = 0.7905 => the exprenential is an extremely good fit for the data.

Note that we assumed $\Theta = 20$ but could have also run the test with $\hat{\Theta} = X$ (the MLE of O) and achieve the same result.

In fitting data to the Normal distribution, N(u, o2), where both u and 52 are unknown, we would extracte u and 52 by X and S2, then partition the Sample space Ju: - 0 < x < 00 g into k nutually disjoint sets A, Az, -, Az and Use $\hat{\beta}_{io} = \int_{A_i} \frac{1}{s\sqrt{2\pi}} \exp\left[-\frac{(x-\bar{x})^2}{2s^2}\right] dx$ i=1,2,-., k. Using observed frequencies $y_1,..., y_k$ and \$10, \$20, --, \$ko, we obtain Qk-1 2 /2(k-1-2)

Exercise

Let X = # alpha particles emitted by barium-133 in one tenth of a second. An experimeter takes 50 observations of X with a Geiger counter in a fixed position and partitions the Set of outcomes into sets

 $A_1 = \{0, 1, 2, 3\}, A_2 = \{4\}, A_3 = \{5\},$

 $A_4 = \begin{cases} 63, A_5 = \begin{cases} 73 \text{ and } A_6 = \begin{cases} 8,9,10,... \end{cases} \end{cases}$

The Sauple mean number of particles, \$= 5.4.

The table below provides a summary of the data:

Outcome	A	AZ	A3	A4	A5	Ac	Total	
Frequency	13	9	6	5	7	10		
Prolo (pio)	-							
Expected								

Test Ho: X~ Poisson (A). at X= 0.05