This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANK (USPTO)

DE00/406

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 1 1 APR 2000 WIPO PCT

Bescheinigung

Die ROBERT BOSCH GMBH in Stuttgart/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Schutzschicht"

am 12. Februar 1999 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole B 01 D und G 08 B der Internationalen Patentklassifikation erhalten.

München, den 28. März 2000

Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Aktenzeichen: 199 05 776.1

_ 1 _

R. 34998

02.02.99

5

ROBERT BOSCH GMBH, 70442 Stuttgart

10 <u>Schutzschicht</u>

zulassen.

Stand der Technik

15

20

Die Erfindung betrifft eine Schutzschicht, die für CO2 relativ durchlässig und für SO2 relativ undurchlässig ist. Eine derartige Schutzschicht wird beispielsweise dazu verwendet, bei einem Rauchsensor eine CO2-sensitive Polymerschicht vor einer Beschädigung bzw. Kontamination durch SO2 zu schützen. Eine solche CO2-sensitive Polymerschicht dient bei einem Brandmelder als Gassensor und detektiert einen CO2-Gehalt eines Raumes, in dem der Brandmelder angebracht ist. Vorzugsweise besteht die CO2-sensitive Polymerschicht aus einer Membran, die aus einer polymeren Matrix (z.B. Polydimethylsiloxan), einer Hilfsbase (Tetraalkylammoniumhydroxid) und einem pH-sensitiven Farbstoff (z.B. Thymolblau oder andere Derivate) aufgebaut ist. Eine Beaufschlagung dieser CO_2 -sensitiven Membran mit CO_2 führt zu reversiblen Reaktionen, die vorzugsweise optisch, insbesondere auch elektrisch oder massensensitiv, nachweisbar sind und somit einen Rückschluß auf den CO2-Gehalt im überwachten Raum

30

35

Wenn jedoch SO_2 auf diese CO_2 -sensitive Membran auftrifft, führt dies zu irreversiblen Reaktionen des Sensormaterials und somit zu einer Zerstörung der CO_2 -sensitiven Eigenschaft des Sensors. Da diese Reaktion der Sensormembran SO_2 irreversibel ist, kommt

es auf der Membran zu einer Anreicherung von SO_2 -Reaktionsprodukten, so daß selbst eine geringe SO_2 -Konzentration im Laufe der Zeit die Sensormembran beschädigt und deren CO_2 -Sensitivität reduziert, wodurch der mit diesem CO_2 -sensitiven Membransensor ausgestattete Brandmelder letztlich unbrauchbar wird.

Bekannte Schutzschichten sind als Pulverpreßkörper oder Granulate ausgebildet, die für SO₂ relativ undurchlässig und für CO2 relativ durchlässig sind. Ebenso sind Molekularfilter bekannt, die Unterschiede in der Molekularstruktur der CO2-Moleküle ausnutzen und somit für SO₂-Moleküle relativ undurchlässig und für CO2-Moleküle relativ durchlässig sind. Wenn eine derartige Schutzschicht zum Schutz eines CO2-Sensors verwendet wird, besteht jedoch der Nachteil, daß die CO2-Moleküle erst diese Schutzschicht durchdringen müssen, um zum CO2-Sensor zu gelangen. Dementsprechend kann sich für die CO2-Moleküle die Zeitdauer, welche die CO₂-Moleküle benötigen, um bis zum CO_2 -Sensor zu gelangen, erheblich vergrößern. Diese Zeitvergrößerung wirkt sich besonders stark aus, wenn sich die CO2-Moleküle bei Fehlen einer gerichteten Strömung lediglich aufgrund ihrer temperaturbedingten kinetischen Energie bewegen (sogenannte "Braunsche Bewegung"), was z.B. bei der Rauchausbreitung im Brandfall regelmäßig vorliegt. Wenn demnach eine solche Schutzschicht bei einem Brandmelder verwendet wird, vergrößert sich durch die zur Durchdringung der Schutzschicht erforderliche Zeitdauer die Ansprechzeit des Brandmelders, das heißt die Zeit, bis der CO2-Sensor eine erhöhte CO2-Konzentration detektiert.

Vorteile der Erfindung

Die erfindungsgemäße Schutzschicht mit den Merkmalen des Anspruches 1 hat demgegenüber den Vorteil, daß die CO_2 -Moleküle lediglich eine relativ kurze Zeitdauer benötigen, um die Schutzschicht zu durchdringen. Bei der Verwendung der

10

5

15

20

30

- 3 -

R. 34998

erfindungsgemäßen Schutzschicht in einem Brandmelder ergibt sich dadurch der Vorteil, daß die durch die Schutzschicht bedingte Verlängerung der Ansprechzeit des Brandmelders reduziert wird.

Die Erfindung beruht auf der Erkenntnis, daß das Oxidationsprodukt von SO_2 , nämlich SO_3 , ein stark oxidierend und hygroskopisch wirkendes Säureanhydrid ist, das regelmäßig sofort zu Sulfat (SO_4^{2-}) weiter reagiert. Die sich damit ausbildenden Sulfate können sich jedoch am Trägermaterial ablagern, so daß die Sulfate in der Schutzschicht adsorbiert werden.

Die SO₂-Moleküle werden auf diese Weise auf dem Träger angereichert bzw. darauf gespeichert, während die CO₂-Moleküle ohne Reaktion die Schutzschicht durchdringen können. Da theoretisch ein einziger Kontakt eines SO₂-Moleküls mit der mit dem Oxidationsmittel ausgestatteten Trägeroberfläche ausreicht, um die genannte Reaktion auszulösen, müssen in der Schutzschicht keine komplizierten Strukturen – wie z.B. bei einem Pulverpresskörper – ausgebildet werden, um diesen einen Kontakt mit an Sicherheit grenzender Wahrscheinlichkeit gewährleisten zu können. Dementsprechend müssen die CO₂-Moleküle auch keine komplizierte Schutzschichtstruktur durchdringen, so daß die CO₂-Moleküle relativ ungehindert und unverzögert die erfindungsgemäße Schutzschicht durchdringen können.

Gemäß einer bevorzugten Ausführungsform kann der Träger wenigstens ein Rohr aufweisen, dessen Innenwandung mit dem Oxidationsmittel versehen ist. Bei dieser Ausführungsform müssen die SO₂-Moleküle und die CO₂-Moleküle dieses Rohr axial durchdringen, wobei nach den Gesetzen der Wahrscheinlichkeitslehre ein Wahrscheinlichkeitswert dafür vorliegt, daß die Moleküle auf die mit dem Oxidationsmittel beschichtete Innenwandung des Rohres auftreffen. Durch diesen Kontakt kann dann ein SO₂-Molekül am Träger adsorbiert werden, während ein CO₂-Molekül ohne Reaktion davon abprallt und seinen Weg fortsetzt. Über ein Verhältnis von Rohrquerschnitt zu

10

5

15

20

30

Rohrlänge kann in Abhängigkeit einer mittleren freien Weglänge der Moleküle der Wert für diese Adsorptionswahrscheinlichkeit ermittelt werden.

Weitere wichtige Merkmale und Vorteile der erfindungsgemäßen Schutzschicht ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.

10 Zeichnungen

5

15

20

30

35

- Fig. 1 einen Längsschnitt durch eine erste Ausführungsform der erfindungsgemäßen Schutzschicht,
- Fig. 2 eine perspektivische Ansicht auf eine zweite
 Ausführungsform der erfindungsgemäßen Schutzschicht,
- Fig. 3 einen Seitenansicht auf eine dritte Ausführungsform der Erfindung und
- Fig. 4 eine Seitenansicht (Fig. 4a) und eine Draufsicht (Fig. 4b) auf eine vierte Ausführungsform der erfindungsgemäßen Schutzschicht.

Beschreibung der Ausführungsbeispiele

Entsprechend Fig. 1 ist in einem Raum 1 an einer Wand 2, insbesondere an einer Raumdecke, ein Rauchmelder 3 angebracht, der im Falle einer Rauchentwicklung im Raum 1 ein entsprechendes Warnsignal abgeben soll. Der Rauchmelder 3 enthält zu diesem Zweck einen CO₂-sensitiven Sensor 4, der mit einer CO₂-sensitiven Membran 5 ausgestattet ist. Darüber hinaus weist der Rauchmelder

3 einen Träger 10 auf, der hier als ein zylindrisches, insbesondere kreiszylindrisches, Rohr 6 ausgebildet ist. Dieses Rohr 6 ist bei dieser Ausführungsform Bestandteil einer mit einer geschweiften Klammer gekennzeichneten, erfindungsgemäßen Schutzschicht 7. Durch diese Schutzschicht 7, das heißt durch das Rohr 6, ist der CO₂-Sensor 4 vom Raum 1 abgetrennt.

Das Rohr 6 ist an einem axialen Ende am Rauchmelder 3 gasdicht angebracht, wobei das Rohr 6 den CO₂-Sensor 4 einschließt. Das dem CO₂-Sensor 4 gegenüberliegende axiale Ende des Rohres 6 ist offen und somit einem im Raum 1 enthaltenen Gas ausgesetzt. Eine Innenwandung 8 des Rohres 6 ist mit einer Beschichtung 9 aus einem nichtflüchtigen Oxidationsmittel versehen. Als Oxidationsmittel kann beispielsweise Kaliumpermanganat verwendet werden. Das Rohr 6 kann beispielsweise aus Aluminiumoxid gebildet sein.

Die erfindungsgemäße Schutzschicht arbeitet wie folgt:

Sobald ein SO_2 -Molekül auf die Innenwandung 8 des Rohres 6 auftrifft (die Bewegungsbahn eines solchen SO_2 -Moleküles ist durch eine unterbrochene Linie symbolisiert), wird durch das Oxidationsmittel das SO_2 -Molekül zu einem SO_3 -Molekül aufoxidiert, wobei sich außerdem Braunstein (MnO_2) ausbildet. Das Säureanhydrid SO_3 reagiert sofort weiter zu (SO_4^{2-}) und verbindet sich mit freigesetzten Kaliumverbindungen zu K_2SO_4 . Die durch diese Reaktionen gebildeten Festkörper, nämlich MnO_2 und K_2SO_4 , setzen sich an der Innenwandung 8 des Rohres 6 fest, so daß insoweit die SO_2 -Moleküle vom Träger 10 der Schicht 7 bzw. vom Rohr 6 adsorbiert werden. Vorzugsweise ist das Rohr 6 aus einem korrosionsbeständigem bzw. gegenüber schwefelsauren Medien resistenten Material hergestellt, so daß weder die SO_2 -, die SO_3 -Moleküle noch (SO_4^{2-}) das Rohr 6 beschädigen können.

10

5

15

20

5

20

30

35

Im Unterschied zu einem SO₂-Molekül wird ein CO₂-Molekül, dessen Bewegungsbahn mit einer durchgezogenen Linie symbolisiert ist, von der Innenwandung 8 des Rohres 6 nicht adsorbiert, sondern ggf. abgelenkt, wobei das CO₂-Molekül ohne größere Zeitverzögerung auf die Membran 5 des CO₂-Sensors 4 auftreffen kann. Sobald eine hinreichende Menge an CO₂-Molekülen auf der Membran 5 entsprechende Reaktionen ausgelöst hat, gibt der Rauchmelder 3 das Warnsignal ab.

Gemäß Fig. 2 kann der Träger 10 der erfindungsgemäßen
Schutzschicht 7 auch als Block ausgebildet sein, der aus einer
Vielzahl nebeneinander angeordneter und achsparallel zueinander
ausgerichteter zylindrischer Rohre 6 aufgebaut sein. Die Rohre 6
haben bei dieser Ausführungsform einen rechteckigen,
insbesondere quadratischen, Querschnitt. Auch hier sind die
Innenwandungen 8 mit der Oxidationsmittel-Beschichtung 9
versehen.

Derartige blockartige Träger 10 lassen sich besonders einfach aus Katalysatormonolithen herstellen, die lediglich noch mit der Oxidationsmittel-Beschichtung 9 versehen werden müssen.

Entsprechend Fig. 3 kann der Träger 10 der Schutzschicht 7 auch als Block ausgebildet sein, bei dem die einzelnen Rohre 6 bezüglich einer senkrecht auf der Zeichnungsebene stehenden Geraden oder eines Punktes 11 radial ausgerichtet sind. Bei der in Fig. 3 dargestellten speziellen Ausführungsform sind die Rohre 6 nicht zylindrisch ausgebildet, sondern mit einem Querschnitt ausgestattet, der sich in Richtung auf den Punkt oder die Gerade 11 hin verjüngt. Diese Ausführungsform ermöglicht ein Eindringen von Molekülen in die Rohre 6 aus einem großen Raum-Winkelbereich, so daß CO₂-Moleküle aus nahezu allen Raumrichtungen zum CO₂-Sensor 4 gelangen können.

Entsprechend den Fig. 4a und 4b ist der Träger 10 der Schutzschicht 7 wiederum aus einem Block gebildet, der hier aus

mehreren, übereinander gestapelten Gittern 12 gebildet ist, die jeweils aus einer Vielzahl von einander kreuzenden Gitterstäben 13 gebildet sind. Die einzelnen Gitter 12 brauchen dabei nicht wie in den Fig. 4a und 4b zueinander fluchtend aufeinanderliegen, vielmehr können die einzelnen Gitter 12 auch versetzt zueinander angeordnet sein. Die Oxidbeschichtung 9 ist hier auf die Oberfläche der Gitterstäbe 13 aufgebracht. Durch die Anzahl der aufeinander gestapelten Gitter 12 und durch deren Maschenweite wird die Adsorptionswahrscheinlichkeit bestimmt, das heißt der Wahrscheinlichkeitswert dafür, daß ein in die Schutzschicht 7 eindringendes SO₂-Molekül auf die Oberfläche eines der Gitterstäbe 13 auftrifft, dort mit dem Oxidationsmittel reagiert und so in der Schutzschicht 7 adsorbiert wird.

10

02.02.99

5

ROBERT BOSCH GMBH, 70442 Stuttgart

10

Ansprüche

versehen ist.

15

1. Für CO_2 relativ durchlässige und für SO_2 relativ undurchlässige Schutzschicht mit einem gasdurchlässigen Träger (10) aus einem gegenüber schwefelsauren Medien, z.B. SO_2 und SO_3 , resistenten Material, der eine Oberfläche (8) aufweist, die einem Gas aussetzbar ist und mit einem Oxidationsmittel versehen ist, dessen Oxidationspotential ausreicht, SO_2 zu oxidieren.

20

2. Schutzschicht nach Anspruch 1, dadurch gekennzeichnet, daß ein nichtflüchtiges Oxidationsmittel verwendet wird.

3. Schutzschicht nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Oxidationsmittel Kaliumpermanganat verwendet wird.

30

5. Schutzschicht nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Träger (10) wenigstens ein Rohr (6) aufweist, dessen Innenwandung (8) mit dem Oxidationsmittel

4. Schutzschicht nach einem der Ansprüche 1 bis 3, dadurch

gekennzeichnet, daß der Träger (10) aus Aluminiumoxid besteht.

5

10

15

20

- 6. Schutzschicht nach Anspruch 5, dadurch gekennzeichnet, daß der Träger (10) als Block ausgebildet ist, der aus einer Vielzahl von aneinander angeordneten zylindrischen Rohren (6) aufgebaut ist, die zueinander achsparallel ausgerichtet sind.
- 7. Schutzschicht nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Rohre (6) kreiszylindrisch ausgebildet sind.
- 8. Schutzschicht nach Anspruch 5, dadurch gekennzeichnet, daß der Träger (10) als Block ausgebildet ist, der aus mehreren aneinander angeordneten Rohren (6) aufgebaut ist, die bezüglich einer Geraden oder bezüglich eines Punktes (11) radial ausgerichtet sind.
- 9. Schutzschicht nach Anspruch 8, dadurch gekennzeichnet, daß die Rohre (6) einen Querschnitt aufweisen, der sich zur Geraden bzw. zum Punkt (11) hin verjüngt.
- 10. Schutzschicht nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Träger (10) wenigstens ein aus sich kreuzenden Gitterstäben (13) aufgebautes Gitter (12) aufweist, wobei die Gitterstäbe (13) mit dem Oxidationsmittel versehen sind.
- 11. Schutzschicht nach Anspruch 10, dadurch gekennzeichnet, daß der Träger (10) als Block ausgebildet ist, der aus mehreren, aufeinandergestapelten Gittern (12) aufgebaut ist.
- 12. CO_2 -Sensor, insbesondere für einen Rauchmelder, dadurch gekennzeichnet, daß der CO_2 -Sensor (4) mit einer Schutzschicht (7) nach einem der vorhergehenden Ansprüche ausgestattet ist, die den CO_2 -Sensor (4) von einem auf einen CO_2 -Gehalt zu überwachenden Raum (1) trennt.

02.02.99

5

ROBERT BOSCH GMBH, 70442 Stuttgart

10

Zusammenfassung

15

Eine für CO_2 relativ durchlässige und für SO_2 relativ undurchlässige Schutzschicht (7) soll so ausgebildet werden, daß sich für CO_2 -Moleküle eine reduzierte Durchdringungszeit ergibt.

20

Die erfindungsgemäße Schutzschicht (7) weist dazu einen gasdurchlässigen Träger (10) aus einem gegenüber schwefelsauren Medien, z.B. SO_2 und SO_3 , resistenten Material auf, der eine Oberfläche (8) aufweist, die einem Gas aussetzbar ist und mit einem Oxidationsmittel versehen ist, dessen Oxidationspotential ausreicht, SO_2 zu oxidieren. (Fig. 1)

Fig. 4b

