Actinide-Rich or Actinide-Poor, Same *r*-Process Progenitor

Erika M. Holmbeck

23 May 2019

JINA-CEE Frontiers in Nuclear Astrophysics

The r-Process Pattern

Hotokezaka+ (2018)

The r-Process Pattern

Hotokezaka+ (2018)

Actinides in *r*-II Stars

Placco, Holmbeck+ (2017)

Holmbeck+ (2018)

Actinide Variation

The actinide-to-lanthanide ratio (Th/Eu) is not the same in all *r*-process enhanced stars Actinide variations could be a hint to key *r*-process characteristics

Holmbeck+ (2019b)

Actinide Production and Y_e

Th and U are produced by the *r*-process

The electron fraction, $Y_{e,}$ is a key parameter determining the extent of an r-process event

$$Y_e = [1+(n/p)]^{-1}$$

Actinide Production and Y_e

Th and U overproduced at very low Y_e

Holmbeck+ (2019a)

Actinide Boost Stars

Abundances of stars enhanced with Th and U can be reproduced by a combination of Y_e

Going backwards

What would the abundances themselves suggest for this ejecta distribution?

Actinide-Dilution with Matching Model

Builds empirical mass ejecta distributions as a function of Y_e (0.005-0.450) To explain entire pattern using Zr, Dy, and Th only

ADM

Empirical ejecta mass distributions

Distributions differ in very low-Y_e region

Holmbeck+ (2019b)

Astrophysical Variations

Holmbeck+ (2019b)

Nuclear Physics Variations

The low-Y_e component

No discrete difference between actinide-rich and actinide-poor

Holmbeck+ (2019b)

Nuclear and Astrophysical Variations

Actinide-boost stars **do not necessarily** call for a separate *r*-process progenitor

Actinide-boost stars **do not necessarily** call for a separate *r*-process progenitor

Is this source an NSM?

GW170817 lightcurve

Cowperthwaite+ (2017)

Two ejecta components

Stellar Abundances

$$X_{lan} = 10^{-3.8}$$

$$X_{\text{lan}} = 10^{-0.8}$$

 $m_{\rm red}/m_{\rm blue} = 1.7$

Holmbeck+ (2019b)

Two ejecta components

Stellar Abundances

$$X_{lan} = 10^{-3.8}$$

$$X_{\text{lan}} = 10^{-0.8}$$

 $m_{\rm red}/m_{\rm blue} = 1.7$

Holmbeck+ (2019b)

GW170817

$$X_{lan} = 10^{-4}$$

$$X_{lan} = 10^{-1.5}$$

$$m_{\text{red}} / m_{\text{blue}} = 1.6$$

Kasen+ (2017)

Results derived from *r*-enhanced stars are consistent with the GW170817 kilonova

Results derived from *r*-enhanced stars are consistent with the GW170817 kilonova

Further evidence supporting that an NSM produced the material in *r*-enhanced stars like Ret II

Special Thanks

Rebecca Surman (ND), Gail C. McLaughlin (NC State), Anna Frebel (MIT)
Trevor M. Sprouse (ND), Matthew Mumpower (LANL)
Timothy C. Beers (ND), Nicole Vassh (ND), Terese T. Hansen (TAMU), Chris Sneden (UT-Austin)
Vinicius M. Placco (ND), Ian U. Roederer (UMich.), Charli M. Sakari (UW), Rana Ezzeddine (MIT)
Grant Mathews (ND), Ani Aprahamian (ND), Toshihiko Kawano (LANL)

