Definitions and Formula Sheet

Connectives The truth table below lists the truth values of each connective.

A	B	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \leftrightarrow B$	A'
\overline{T}	T	T	T	T	T	\overline{F}
T	F	F	T	F	F	
F	T	F	T	T	F	T
F	F	F	F	T	T	

Note: prime (\prime) is an unary connective. It operates on a single statement; hence, it only has two possible truth values.

Order of Precedence of Connectives The order of precedence of connectives from highest to lowest priority is

- 1. (), Parentheses
- 2. ', Negation
- 3. \wedge , \vee , Conjunction and Disjunction
- 4. \rightarrow , Implication
- 5. \leftrightarrow , Equivalence

Note: connectives are evaluated from left to right.

Equivalence Rules				
Expression	Equivalent to	Name - Abbreviation of Rule		
$A \lor B$	$B \lor A$	Commutative - comm		
$A \wedge B$	$B \wedge A$			
$(A \vee B) \vee C$	$A \vee (B \vee C)$			
$(A \wedge B) \wedge C$	$A \wedge (B \wedge C)$	Associative - assoc		
$(A \to B) \to C$	$A \to (B \to C)$			
$A \lor (B \land C)$	$(A \vee B) \wedge (A \vee C)$	Distributive - dis		
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributive dis		
$A \lor 0$	A	Identity - iden		
$A \wedge 1$	A	racinotoy racin		
$A \lor 1$	1	Domination - dom		
$A \wedge 0$	0	Domination dom		
$A \lor A'$	1	Complement - neg		
$A \wedge A'$	0			
$(A \vee B)'$	$A' \wedge B'$	De Morgan's Law - deMor		
$(A \wedge B)'$	$A' \vee B'$			
$A \to B$	$A' \vee B$	Implication - imp		
$A \rightarrow B$	$B' \to A'$	Contrapositive - cp		
A	A''	Double Negation - dn		
$A \wedge A$	A	Idempotent - self		
$A \lor A$	A			

$A \leftrightarrow B$	$(A \to B) \land (B \to A)$	Equivalence - equ		
$(A \to B) \land A$	$A \wedge B$	Reduction - red		
$(A \wedge B) \to C$	$(A \to C) \lor (B \to C)$	E		
$(A \lor B) \to C$	$(A \to C) \land (B \to C)$	Expansion - exp		
$A \vee (A \wedge B)$	A	Absorption obs		
$A \wedge (A \vee B)$	A	Absorption - abs		
$A \to (B \to C)$	$A \wedge B \to C$	Deductive - ded		
$A \rightarrow B$	$A \to (A \land B)$	Redundancy - rep		
$\left[\left(\forall x \right) P(x) \right]'$	$(\exists x)[P(x)]'$	Negation ng		
$\left[\left(\exists x \right) P(x) \right]'$	$(\forall x)[P(x)]'$	Negation - ng		
$P(x) \to (\forall y)Q(y)$	$(\forall y)[P(x) \to Q(y)]$	Shifting - sh		
$P(x) \to (\exists y)Q(y)$	$(\exists y)[P(x) \to Q(y)]$	Siliting - Sil		
	Inference Ru	ıles		
Expression	Derives	Name - Abbreviation of Rule		
$A \wedge B$	$A \lor B$	Weakening - wk		
$(A \to B) \land A$	B	Modus ponens - mp		
$(A \to B) \land B'$	A'	Modus tollens - mt		
$(A \wedge B)$	A	Simplification - sim		
(117(13)	B	Simplification - Sim		
$A \wedge B$	$(A \wedge B)$	Conjunction - con		
A	$A \lor B$	Addition - add		
$(A \lor B) \land A'$	В	Disjunctive syllogism - ds		
$(A \lor B) \land B'$	A			
$(A \to B) \land (B \to C)$	$A \to C$	Hypothetical Syllogism - hs		
$A \rightarrow B$	$A \wedge C \to B \wedge C$	Monotonic - mono		
$A \rightarrow B$	$A \vee C \to B \vee C$	Wonotome - mono		
$(\forall x)P(x)$	P(c)	Universal Instantiation - ui_{\dagger}		
$(\exists x)P(x)$	P(c)	Existential Instantiation - $ei_{\dagger\dagger}$		
P(c)	$(\forall x)P(x)$	Universal Generalization - ug_{\ddagger}		
P(c)	$(\exists x)P(x)$	Existential Generalization - eg _{‡‡}		
$(\forall x)(\forall y)P(x,y)$	$(\forall y)(\forall x)P(x,y)$	Doordoning and		
$(\exists x)(\exists y)P(x,y)$	$(\exists y)(\exists x)P(x,y)$	Reordering - ord		
† If c is a variable, then it must not have already be quantified in $P(r)$				

[†] If c is a variable, then it must not have already be quantified in P(x).

Set A set is an unordered collection of distinct elements.

Set Membership Given a set, **S**, we denote that an element, a, is a member of **S** as $a \in \mathbf{S}$; otherwise, if a is not a member of **S**, it is denoted $a \notin \mathbf{S}$.

Subsets Given sets **A** and **B**, **A** is a subset of **B**, denoted $\mathbf{A} \subseteq \mathbf{B}$, implies $\{x \mid x \in \mathbf{A} \to x \in \mathbf{B}\}$.

Proper Subsets Given sets A and B, A is a proper subset of B, denoted $A \subset B$, implies

 $[\]dagger\dagger$ c must be a new constant.

 $[\]ddagger c$ cannot be a free variable or derived from ei.

 $[\]ddagger \ddagger x$ cannot be an existing variable or constant in P(c).

$$\{x \mid x \in \mathbf{A} \to x \in \mathbf{B} \land (\exists y)(y \in \mathbf{B} \land y \notin \mathbf{A})\}.$$

Empty Set The empty set or null set is the set that contains no elements. It is denoted \emptyset or $\{\}$. The empty set is a subset of every set.

Equality of Sets Given sets **A** and **B**, **A** is equals **B**, denoted $\mathbf{A} = \mathbf{B}$, implies $\{\mathbf{A} \subseteq \mathbf{B} \land \mathbf{B} \subseteq \mathbf{A}\}$.

Powerset Given set S, $\wp(S) = \{x \mid x \subseteq S\}$. The function $\wp(S)$ is called the power set of S.

Cardinality If S is a finite set, |S| is the number of elements in S. It is called the cardinality of S.

Number Sets Below is a list of numerical sets:

Whole Numbers $W = \{0, 1, 2, 3, 4, 5, ...\}$

Natural Numbers $\mathbb{N} = \mathbb{W}^*$

Note: the * exponent means that 0 is excluded from the set.

Integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$

Rational Numbers $\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z} \land b \in \mathbb{Z}^* \right\}$ or $\left\{ \text{decimals that either repeats or terminates} \right\}$

Irrational Numbers $\mathbb{I} = \{i \mid (\forall a \in \mathbb{Z})(\forall b \in \mathbb{Z}^*)(i \neq \frac{a}{b})\}$ or $\{\text{decimals that neither repeats nor terminates}\}$

Real Numbers $\mathbb{R} = \{r \mid r \in \mathbb{Q} \lor r \in \mathbb{I}\}$

Complex Numbers $\mathbb{C} = \{a + ib \mid a \in \mathbb{R} \land b \in \mathbb{R} \land i = \sqrt{-1}\}$

Set Operations Given sets $A, B \subseteq S$, the following operations can be performed

Union

$$\mathbf{A} \cup \mathbf{B} = \{ x \mid x \in \mathbf{A} \lor x \in \mathbf{B} \}.$$

Intersection

$$\mathbf{A} \cap \mathbf{B} = \{ x \mid x \in \mathbf{A} \land x \in \mathbf{B} \}.$$

Difference

$$\mathbf{A} - \mathbf{B} = \{ x \mid x \in \mathbf{A} \land x \notin \mathbf{B} \}.$$

Complement

$$\overline{\mathbf{A}} = \big\{ x \mid x \in \mathbf{S} \land x \notin \mathbf{A} \big\}.$$

Cartesian Product

$$\mathbf{A} \times \mathbf{B} = \{ (x, y) \mid x \in \mathbf{A} \land y \in \mathbf{B} \}.$$

Disjoint Sets The sets **A** and **B** are disjoint if $\mathbf{A} \cap \mathbf{B} = \emptyset$.

Set Identities Given $A, B, C \in \wp(S)$

Expression	Equivalent to	Name - Abbreviation of Rule	
$\mathbf{A} \cup \mathbf{B}$	$\mathbf{B} \cup \mathbf{A}$	Commutative - comm	
$\mathbf{A} \cap \mathbf{B}$	$\mathbf{B} \cap \mathbf{A}$	Commutative - comm	
$(\mathbf{A} \cup \mathbf{B}) \cup \mathbf{C}$	$\mathbf{A} \cup (\mathbf{B} \cup \mathbf{C})$	Associative - ass	
$(\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C}$	$\mathbf{A}\cap \big(\mathbf{B}\cap \mathbf{C}\big)$	ASSOCIATIVE - ass	
$\mathbf{A} \cup (\mathbf{B} \cap \mathbf{C})$	$(\mathbf{A} \cup \mathbf{B}) \cap (\mathbf{A} \cup \mathbf{C})$	Distributive - dis	
$\mathbf{A} \cap (\mathbf{B} \cup \mathbf{C})$	$(\mathbf{A} \cap \mathbf{B}) \cup (\mathbf{A} \cap \mathbf{C})$	Distributive - dis	
$\overline{\overline{\mathbf{A}}}$	A	Double Negation - dn	
$\mathbf{A} \cup \emptyset$	A	Identity - iden	
$\mathbf{A} \cap \mathbf{S}$	A	rectionly - recti	

$egin{array}{c} \mathbf{A} \cup \overline{\mathbf{A}} \ \mathbf{A} \cap \overline{\mathbf{A}} \ \end{array}$	S Ø	Complement - unit
$\mathbf{A} \cup \mathbf{S}$ $\mathbf{A} \cap \emptyset$	S Ø	Domination - dom
$\frac{\overline{(\mathbf{A} \cup \mathbf{B})}}{\overline{(\mathbf{A} \cap \mathbf{B})}}$	$egin{array}{c} \overline{\mathbf{A}} \cap \overline{\mathbf{B}} \\ \overline{\mathbf{A}} \cup \overline{\mathbf{B}} \end{array}$	De Morgan's Law - deMor
$\mathbf{A} \cap \mathbf{A}$	A	Idempotent - self
$\mathbf{A} \cup \mathbf{A}$ $\mathbf{A} - \mathbf{B}$	$oldsymbol{A} \cap \overline{oldsymbol{B}}$	Difference - diff

N-ary Union Given $\mathbf{S} = \{\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n\}$ where \mathbf{A}_i s are sets,

$$\bigcup_{x \in \mathbf{S}} x = \mathbf{A}_1 \cup \mathbf{A}_2 \cup \ldots \cup \mathbf{A}_n$$

If n = 1,

$$\bigcup_{x \in \mathbf{S}} x = \mathbf{A}_1$$

N-ary Intersection Given $S = \{A_1, A_2, \dots, A_n\}$ where A_i s are sets,

$$\bigcap_{x \in \mathbf{S}} x = \mathbf{A}_1 \cap \mathbf{A}_2 \cap \ldots \cap \mathbf{A}_n$$

If n = 1,

$$\bigcap_{x \in \mathbf{S}} x = \mathbf{A}_1$$

Partition Given a set, A, P_A is a partition of A implies $P_A \subset \wp(A)$ such that

- $\forall x \in P_{\mathbf{A}}, |x| \neq 0$
- $\forall x_i, x_j \in P_{\mathbf{A}}, x_i \cap x_j = \emptyset$
- $\bullet \ \bigcup_{x \in P_{\mathbf{A}}} x = \mathbf{A}$

Summation

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + f(a+2) + \ldots + f(b)$$

where $a, b \in \mathbb{Z}$ and $a \leq b$

Summation Properties

Sum Rule

$$\sum_{i=a}^{b} f(i) + g(i) = \sum_{i=a}^{b} f(i) + \sum_{i=a}^{b} g(i)$$

Difference Rule

$$\sum_{i=a}^{b} f(i) - g(i) = \sum_{i=a}^{b} f(i) - \sum_{i=a}^{b} g(i)$$

Scalar Product Rule

$$\sum_{i=a}^{b} cf(i) = c \sum_{i=a}^{b} f(i)$$

where $c \in \mathbb{R}$

Separation Rule

$$\sum_{i=a}^{b} f(i) = \sum_{i=a}^{c} f(i) + \sum_{i=c+1}^{b} f(i)$$

where $a \le c < b$

Inclusion and Exclusion Rule Let $S = \{A_1, A_2, \dots, A_n\}$ where A_i s are sets, and $\mathbf{p}_i = \{x \in \wp(S) \mid |x| = i\}$ for $1 \le i \le n$,

$$\left| \bigcup_{x \in \mathbf{S}} x \right| = \sum_{i=1}^{n} (-1)^{i+1} \sum_{j \in p_i} \left| \bigcap_{x \in j} x \right|$$