CW5

- Timing:
 - Issued today : https://github.com/HPCE/hpce-2016-cw5
 - Due Fri 25th Oct (2 weeks)
- Pair work:
 - You'll work from two private repositories
 - Give each other push permission to your private repos
 - Keep the two repositories in sync
 - I'll infer the graph of pairs from access rights
- If you don't have a pair sorted out...
 - Hang around after the lecture

Suggestions

- 1. Read the code
 - What are the dependencies, what is the complexity?
- 2. Parallelism Low-hanging fruit
 - Parallel for, recursive parallelism
- 3. Obvious inefficiencies
 - Excessive copying or re-initialisation (sloppy code)
 - Caching / eliminating computation (sloppy algorithms)
- 4. Parallelism Larger-scale changes
 - Moving code to GPU
 - More aggressive re-structuring of code
- 5. Deep analysis
 - Algorithmic opportunities (change complexity)
 - Batching of computation
 - Maximise compute per data transfer (memory bandwidth)

Feasibility:

Learning to say no

Making sure metrics are meaningful

- Some things are quantifiable, but not very useful
 - CPU performance: MHz is not the same as performance
 - Cameras: Mega-Pixels is not the same as quality
- Consistent and quantifiable metrics provide open competition
 - Suppliers of systems always want to use the "best" metrics
 - Metrics should be defined by users, not suppliers
- People will optimise for metrics (it's what they are for!)
 - Poor metrics lead to poor design and optimisation
 - Part of the specification problem

Feasibility studies

- People come up with demands
 - "I want real-time spectral analysis of a 0hz-1GHz signal"
 - "We must process HD video within a latency of 1ms"
 - "This base-station must beam-form 32 channels"
- Is it feasible to meet those demands?
 - Will it be easy?
 - Will it require optimisation?
 - Will it require a specialised platform?
 - Is it fundamentally impossible?
- You need some estimates before you start implementation
 - Execution time is the most basic check to be made

Circuit Placement

Logical components in circuit

Physical resources in device

- Take the graph of circuit, and find a valid placement onto physical resources
- Make sure that all logical components have a unique physical location
- Make sure that all logical connections map to a physical channel

Circuit Placement

How difficult is a big problem?

Trying to measure complexity

- Want to capture complexity of a task using equations
 - Time complexity: how many "steps" does it require
 - Space complexity: how much "storage" does it require
- We could derive exact equations for each
 - How many instructions does the task take in total?
 - How many bytes of memory are allocated during execution
- Means we have to worry about lots of details
 - Language: did you use C++, Fortran, VHDL?
 - Compiler: what optimisation flags were used?
 - Architecture: are integers 32-bit or 64-bit?
- Exact equations are sometimes possible, but often impractical

HPCE / dt10 / 2016 / 7.10

HPCE / dt10 / 2016 / 7.11

HPCE / dt10 / 2016 / 7.12

Complexity and Big-O (recap)

- Let's assume the existence of a function g(n)
 - -g(n) specifies exactly how many steps are taken
 - Note: this function doesn't need to be stated explicitly!
 - n is the "size" of the problem; e.g. an input vector of length n
- Goal: find a simple function f(n), such that $g(n) \in O(f(n))$

$$g(n) \in O(f(n))$$
 iff $\exists n_c > 0, m > 0 : [\forall n > n_c : [g(n) < m \times f(n)]]$

"There must exist a critical value n_c , and a positive constant m, such that for all $n > n_c$ the relation $g(n) \le m \times f(n)$ holds"

"For increasing n, eventually you'll reach a point where f(n) times a constant is always bigger than g(n)"

Complexity and Big-O

O(f(n)) is a set of functions with the same or lower complexity

```
\begin{array}{ll} - & n \in O(n) & n^2 \notin O(n) \\ - & n \in O(n^2) & n^2 \in O(n^2) \\ - & O(n) \subset O(n^2) \subset O(n^3) \end{array}
```

- It is sort of correct to claim that everything is O(∞)
 - But it's really not very useful...
- Try to find the smallest complexity class containing a function
 - $n^2 + 2 \in O(n^2)$
 - $-100 n^2 + 0.1 n^3 100 \in O(n^3)$
 - $2^n + n^4 \in O(2^n)$
- Find the fastest growing component, and choose that

Reduction Rules

$$O(a \times g(n)) \equiv O(g(n)),$$
 a is independent of n
 $O(a + g(n)) \equiv O(g(n))$
 $O((a \times n)^2) \equiv O(n^2)$

Common complexity classes

```
int SUM(int N)
{
   int acc=0;
   for(int i=0;i<N;i++)
      acc=acc+D[i];
   return acc;
}</pre>
```

```
function [R]=randMMM(N)
A=rand(N,N);
B=rand(N,N);
R=A*B;
end
```

```
function [R]=randFFT(N)

A=rand(N,1);

B=rand(N,1);

R=fft(A,B);
end
```

```
int Ack(int N)
{
   int A(int m, int n)
   {
      if(m==0) return n+1;
      if(n==0) return A(m-1,1);
      return A(m-1,A(m,n-1));
   }

   return A(N,N);
}
```



```
function[R]=randMMM(N)
A=rand(N,N);
B=rand(N,N);
R=A*B;
end
```

```
function [R]=Mul(A,B)
  for r=1:n
    for c=1:n
        R(r,c)=sum(A(r,:).*B(:,c));
    end
  end
end
```


Quick-Sort

```
void Qsort(int N, int *data)
{
    partition(N, data); // O(n)
    if(N>1) {
        Qsort(N/2, data);
        Qsort(N/2, data+N/2);
    }
}
```


How fast do functions grow?

O(1) $O(n^4)$

O(n) $O(1.01^n)$ O(n!)

 $O(2^n)$ O(n log n)

Polynomial Algorithms

- Polynomial-time algorithms are considered "easy"
 - That's mathematically easy, not necessarily practical
- O(1) − **Constant time**
 - The best complexity class! Not much interesting in it though...
 - Read an item from RAM
- O(n) Linear time
 - Vector addition
 - Search through an un-ordered list
- O(n²) Quadratic time
 - Matrix-vector multiply
- $O(n^3)$ Cubic time
 - Dense matrix-matrix multiply
 - Gaussian elimination

In theory it's lower, but in practise it often isn't – see Strassen's algorithm

Log and Log-Linear Algorithms

- Algorithms which recursively sub-divide some space
 - These are actually easy, not just mathematically
- O(log n) Logarithmic time
 - Find an element in a sorted list
 - Root finding through bi-section
 - See if an element belongs to a set / add an element to a set
- O(n log n) **Log-Linear time** (also called linearithmic)
 - Sorting a vector of items
 - Fast-Fourier-Transform (FFT)
- Both are huge improvements over closest polynomial
 - O(log n) preferred to O(n)
 - O(n log n) is massively better than O(n²)

Exponential Algorithms

- Algorithms which explore some multi-dimensional space
- Class of algorithms with complexity O(aⁿ) for a>1
 - Brute-force search of all length-n binary patterns : O(2ⁿ)
 - Brute-force search of all length-n decimal strings : O(10ⁿ)
- Exponential time algorithms are generally very bad
 - Scale extremely poorly with n
- Occasionally useful as long as you are careful
 - O(2ⁿ) algorithm can be useful for n<32
 - O(a^n) algorithm with a close to 1 is sometimes feasible

Combinatorial Algorithms

- Looking at permutations and combinations of things
- Lots of specific sub-classes, but generally O(n!)
- Optimal mapping: bind abstract resources to physical ones
- Find the best sub-set from a larger set of resources
 - Many interesting engineering problems are combinatorial

Avoid anything more than polynomial

Thought Experiment

- We have four applications
 - All currently run in one second
 - All currently handle problems of "size" 16
- Each application has different complexity

Log-linear: O(n log n)

- Cubic: $O(n^3)$

Exponential: O(2ⁿ)

– Combinatorial: O(n!)

- The customer wants to handle problems of twice the size
 - How much do we need to accelerate the existing applications?

Speedup by about 2.5 times – probably use multi-core

Speedup by about 8 times – maybe use a GPU?

Umm.....

Speedup by 65000 times – err, cluster of FPGAs? Cloud?

Speedup by 10²² times – turn every atom in 1kg of iron into a Pentium?

The limits of computation

New systems are not magic

– Multi-core CPUs: ~16x speedup

– GPUs: ~500x speedup

– FPGAs: ~1000x speedup

Cloud: ~10,000x speedup

- O(n!), from n=16 to n=32 ~10²² required

- Lots of problems are completely intractable
 - Travelling Salesman: find shortest path to visit n cities
 - Bin packing: pack objects into the minimum number of bins
 - Boolean satisfiability: find values to make equation true

How to deal with intractable problems?

- Circuit place-and-route has ridiculously high complexity
 - But we regularly create designs with millions of logic gates...
- Must make decision about quality versus runtime
 - Wait 1 hour : design runs at 250MHz
 - Wait 10 hours: design runs at 310MHz
 - Wait ? hours : design runs at 317 MHZ
- Some algorithms are progressive and approximate
 - Quality of solution improves as more compute time applied
 - Monte-Carlo, Genetic Algorithms, Simulated Annealing, ...
 - No guarantee of optimality but at least you get an answer

Why parallelism fails: Amdahl's Law

- Split a given compute task X into two portions
 - A: The parts that cannot be easily optimised or accelerated
 - B: The parts that can be sped up significantly
- Assume we achieve a speed-up of S_B times to part B
 - What is the speed-up S_x for the entire task?

$$T_{\rm X} = T_{\rm A} + T_{\rm B}$$
 Original execution time $T_{\rm X'} = T_{\rm A} + T_{\rm B} / S_{\rm B}$ New execution time

$$S_{\mathbf{X}} = T_{\mathbf{X}} / T_{\mathbf{X'}}$$
 Achieved speedup
$$= \frac{T_{\mathbf{A}} + T_{\mathbf{B}}}{T_{\mathbf{A}} + \frac{T_{\mathbf{B}}}{S_{\mathbf{B}}}}$$

$$= \frac{T_{\mathbf{A}} + T_{\mathbf{B}}}{T_{\mathbf{A}}} \text{ as } \xrightarrow{S_{\mathbf{B}}} \infty$$

- Maximum speed-up is limited by the serial fraction: T_A/(T_A+T_B)
- Need a tiny serial fraction to achieve big speed-ups
- Are 1000x speed-ups realistic then?

Practical example

- Finite difference applications (fluid-mechanics, physics)
 - Discretise continuous space into cells
 - Discretise continuous time into distinct time-steps
- Goal of acceleration is to support finer resolution solutions
 - Usually increase resolution of space and time axis together
 - Let's take *n* as the resolution along each axis
- Tasks within finite-difference
 - Initialisation: initialise the n items in the first column
 - Processing: advance each column through n steps in time
 - Collection: retrieve answers from final column

return F3(g[1..n,t])

•Total work: $(n+1)(n+2) + C \in O(n^2)$

•Total work: $(n+1)(n+2) + C \in O(n^2)$

- Critical path: longest path through dependency graph
 - Assume infinite processors, and zero communication overhead

- Double the resolution of the grid
 - Increase resolution in both time and space
 - Model things of smaller size
 - Model things that happen faster
- Solution is better, but more compute intensive
 - Need High-Performance Computing!

- Double the resolution of the grid
 - Increase resolution in both time and space
 - Model things of smaller size
 - Model things that happen faster
- Solution is better, but more compute intensive
 - Need High-Performance Computing!

More...

Serial execution: $(n+2) + n \times (n+2) + C$

Parallel execution: (n+2) + n + C

Speedup: $[n^2 + 3n + 2 + C]/[2n + 2 + C]$

Speedup is O(n) - increases linearly with problem size

Why parallelism works: Gustafson's Law

- Split a task X into two portions A and B
 - A cannot be accelerated, while B can be parallelised
 - But now the execution time of A and B depends on problem size
 - $T_A(n)$: time to perform part **A** for problem of size n

$$T_{\mathbf{X}'}(n) = T_{\mathbf{A}}(n) + T_{\mathbf{B}}(n)$$
 Original execution time $T_{\mathbf{X}'}(n) = T_{\mathbf{A}}(n) + T_{\mathbf{B}}(n) / S_{\mathbf{B}}$ New execution time

$$S_{\mathbf{X}}(n) = T_{\mathbf{X}}(n) / T_{\mathbf{X}'}(n)$$
 Achieved speedup
$$= \frac{T_{\mathbf{A}}(n) + T_{\mathbf{B}}(n)}{T_{\mathbf{A}}(n) + T_{\mathbf{B}}(n) / S_{\mathbf{B}}}$$

$$= S_{\mathbf{B}} \text{ as } \xrightarrow{n} \infty \text{ if } O(T_{\mathbf{A}}(n)) \prec O(T_{\mathbf{B}}(n))$$