Formal modeling of biological cyclic behavior with control points: the case of the cell cycle

Déborah Boyenval Joint Meetup - Duchess, PyLadies and WiMLDS

September 20, 2022

•00

Team SPARKS (Gilles Bernot and Jean-Paul Comet)

- Licence de science de la vie et de la santé
- Master Biologie, Informatique et Mathématiques (BIM)
- Doctorat en informatique

Team Franck Delaunay

000

Questionnement en recherche fondamentale

- Observation de phénomènes physiologiques (comportement d'un système biologique)
- Identification des mécanismes moléculaires sous-jacents (réseau de régulations biologiques)

Questionnement en recherche fondamentale

- Observation de phénomènes physiologiques (comportement d'un système biologique)
- Identification des mécanismes moléculaires sous-jacents (réseau de régulations biologiques)

Erreur de raisonnement + Automatisation du raisonnement (e.g. Model-Checking)

Problématique

Introduction

000

https://reactome.org/PathwayBrowser/

Question de recherche

- Observation de phénomènes physiologiques (comportement d'un système biologique)
- Identification des mécanismes moléculaires sous-jacents (réseau de régulations biologiques)

Graphe de régulations

Déduction graphe de transitions (Modèle)

Question de recherche

- Observation de phénomènes physiologiques (comportement d'un système biologique)
- Identification des mécanismes moléculaires sous-jacents (réseau de régulations biologiques)

Formalisation des réseaux de régulations biologiques et déduction

Question de recherche

- Observation de phénomènes physiologiques (comportement d'un système biologique)
- Identification des mécanismes moléculaires sous-jacents (réseau de régulations biologiques)

Question de recherche

- Observation de phénomènes physiologiques (comportement d'un système biologique)
- Identification des mécanismes moléculaires sous-jacents (réseau de régulations biologiques)

Graphe de régulations

Déduction graphe de transitions (Modèle)

Question de recherche

- Observation de phénomènes physiologiques (comportement d'un système biologique)
- Identification des mécanismes moléculaires sous-jacents (réseau de régulations biologiques)

Graphe de régulations

Déduction graphe de transitions (Modèle)

Formalisation des réseaux de régulations biologiques et déduction

Question de recherche

- Observation de phénomènes physiologiques (comportement d'un système biologique)
- Identification des mécanismes moléculaires sous-jacents (réseau de régulations biologiques)

Complexité des systèmes biologiques

Tentative de prédiction de la dynamique d'un système

- Ce graphe de régulation peut-il générer une oscillation de a, b ou c?
- Une saturation/dégradation ?

Complexité des systèmes biologiques

Tentative de prédiction de la dynamique d'un système

- Ce graphe de régulation peut-il générer une oscillation de a, b ou c?
- Une saturation/dégradation ?

Le principe du Model-Checking

- Exploration systématique de toutes les exécutions d'un système modélisé
- Expression des propriétés à prouver en logique temporelle

Validité d'une propriété et étiquetage des états

Gérard Berry (Collège de France) Cours sur le model-checking

Validité d'une propriété et étiquetage des états

Gérard Berry (Collège de France) Cours sur le model-checking

Ces propriétés sont-elles vraies ou fausses ?

• P1: p et q ne sont jamais vraies en même temps

Model-Checking 00000

Validité d'une propriété et étiquetage des états

Gérard Berry (Collège de France) Cours sur le model-checking

Ces propriétés sont-elles vraies ou fausses ?

P1: p et q ne sont jamais vraies en même temps : ✓

Validité d'une propriété et étiquetage des états

Gérard Berry (Collège de France) Cours sur le model-checking

- P1: p et q ne sont jamais vraies en même temps : ✓
- P2: tout p est immédiatement suivi d'un q

Validité d'une propriété et étiquetage des états

Gérard Berry (Collège de France)
Cours sur le model-checking

- P1: p et q ne sont jamais vraies en même temps : ✓
- P2: tout *p* est immédiatement suivi d'un *q* : **X** (contre-exemple ?)

Gérard Berry (Collège de France)
Cours sur le model-checking

- P1: p et q ne sont jamais vraies en même temps : ✓
- P2: tout p est immédiatement suivi d'un q : X (contre-exemple ?)
- P3: tout chemin infini depuis un état initial atteint p

Validité d'une propriété et étiquetage des états

Gérard Berry (Collège de France)
Cours sur le model-checking

- P1: p et q ne sont jamais vraies en même temps : ✓
- P2: tout p est immédiatement suivi d'un q : X (contre-exemple ?)
- P3: tout chemin infini depuis un état initial atteint p: X (contre-exemple ?)

Validité d'une propriété et étiquetage des états

Introduction

Gérard Berry (Collège de France) Cours sur le model-checking

- P1: p et q ne sont jamais vraies en même temps : ✓
- P2: tout p est immédiatement suivi d'un q : X (contre-exemple ?)
- P3: tout chemin infini depuis un état initial atteint p: X (contre-exemple ?)
- P4: tout q est immédiatement suivi d'un r

Gérard Berry (Collège de France)
Cours sur le model-checking

- P1: p et q ne sont jamais vraies en même temps : ✓
- P2: tout p est immédiatement suivi d'un q : X (contre-exemple ?)
- P3: tout chemin infini depuis un état initial atteint p: X (contre-exemple ?)
- P4: tout q est immédiatement suivi d'un r : ✓

Propriétés exprimées en logique temporelle arborescente

CTL: Computational Tree Logique

https://www.inf.unibz.it/~artale/

Propriétés exprimées en logique temporelle arborescente

Propriétés temporelles en langage courant VS CTL

- P1: $[p \text{ et } q \text{ ne sont jamais vraies en même temps}] \equiv [\neg(p \land q)]$
- P2: [tout p est immédiatement suivi d'un q] \equiv [p \Rightarrow AX(q)]

Des propriétés dynamiques biologiques vérifiées à l'aide du model-checking de CTL

DOI: 10.3389/fcell.2018.00059

- Vérifier que la prolifération d'une cellule peut être contrôlée
- État de quiescence $\equiv (a=2)$
- Stabilité de l'état de quiescence

Une application du model-checking à la biologie des systèmes

- Vérifier qu'un modèle d'un réseau de régulation biologique satisfait les propriétés dynamiques attendues.
- Un réseau de régulation admet un ensemble fini de modèles (formalisme de René Thomas, DOI: 10.1016/j.jtbi.2004.04.003)
- Sélection des modèles qui satisfont les propriétés dynamiques attendues.

" La science avance par réfutation " - Karl Popper

and the section of th

Les propriétés des checkpoints du cycle cellulaire

• L'exemple de la séparation temporelle des phases de réplication et de mitose

$\textbf{D\'efinition 31: P\'r\'edicat}\ s\'eparation-temporelle$

Introduction

Étant donnés un graphe d'interactions $\mathcal G$ et un ensemble de paramétrisations Σ de $\mathcal G$, les phases canoniques π_i étant ordonnées suivant la séquence $G_{Iprécocc}:GI_{tardif}:S:G^2:M_{précocc}:M_{tardif}$, les checkpoints du cycle cellulaire sont satisfiables si les phases som séparés temporellement :

$$\exists \sigma \in \Sigma \mid \forall i \in [1, 5],$$

 $\forall E, \forall E', [peutClore_{\sigma}(E, \pi_i) \land peutInitier_{\sigma}(E', \pi_{i+1}) \Longrightarrow estRequis_{\sigma}(E, E')]$

On note $séparation - temporelle(\pi_i, \pi_{i+1})$ le prédicat correspondant.

Définition 32: Prédicat est Requis

Étant donné un évènement E qui peut clore une phase π_i et un évènement E' qui peut initier la phase suivante π_{i+1} , E est requis avant E' dans un modèle $\mathcal{R}=(\mathcal{G},\sigma)$ si et seulement si :

$$[\sigma(K_{v',\omega}) - \eta(v')] \times [\sigma(K_{v',\omega'}) - \eta'(v')] \le 0$$

où $K_{v',\omega}$, $K_{v',\omega}$, η , η' , et v' sont introduits en notation 3 et on rappelle que η , η' et σ sont des substitutions, cf. définitions 5 et 7 du chapitre 2.

On note $estRequis_{\sigma}(E', E)$ le prédicat correspondant.

Définition 30: Prédicats peutInitier et peutClore

Étant donnés un modèle $\mathcal{R}=(\mathcal{G},\sigma)$, une phase canonique π définie par un triplet de Hoare élémentaire $H\equiv\{P\}\ p\ \{Q\}$ où P (resp. Q) est sa précondition (resp. postcondition) et p son chemin canonique, tout événement E' peut initier π si :

$$\exists \ p' \in permutations(p) \mid \ estAdmis_{\sigma}(p',H) \ \land \ E' = premier(p')$$
 et tout événement E peut clore π si et seulement si :

$$\exists p' \in permutations(p) \mid estAdmis_{\sigma}(p', H) \land E = dernier(p')$$

On note $peutInitier_{\sigma}(E', \pi)$ et $peutClore_{\sigma}(E, \pi)$ les prédicats correspondants et les fonctions premier(p') et dernier(p') sont trivialement les premier et dernier évènements de p'.

Un exemple de propriétés dynamiques complexes

Les propriétés des checkpoints du cycle cellulaire

- L'exemple de la séparation temporelle des phases de réplication et de mitose
- Prolog:
 https://gitlab.com/deborahboyenval/temporal-separation-prototype

Merci de votre attention!

Des propriétés dynamiques biologiques vérifiées à l'aide du model-checking de CTL

DOI: 10.3389/fcell.2018.00059

- Vérifier que la prolifération d'une cellule peut être contrôlée
- État de quiescence $\equiv (a=2)$
- Stabilité de l'état de quiescence

Des propriétés dynamiques biologiques vérifiées à l'aide du model-checking de CTL

