Addendum: Exoplanet detection yield of a space-based Bracewell interferometer, from small to medium satellites

Colin Dandumont^{a,*}, Denis Defrère^a, Jens Kammerer^b, Olivier Absil^c, Sascha P. Quanz^d, Jérôme Loicq^a

^aCentre Spatial de Liège, Université de Liège, Avenue Pré-Aily, 4031 Angleur, Belgium

planets100.txt

Table 1 shows the header and the description of each column of "planets100.txt". This file regroups all the information of each putative planet generated by our state-of-the-art planet population synthesis tool. More information about this tool is available in ref. 1.

Configurations

Each configuration (Tab 2 for related information) has its three own files (xxx is the name of the configuration):

- "xxxWavelength.txt": the integration time (in hours) for each planet (same order as "planets100.txt") with no platform stability constraints for different wavelength. The header of each column is the wavelength (in microns), from $0.5 \, \mu m$ to $19.5 \, \mu m$ with a step of $1 \, \mu m$.
- "xxxTiptilt.txt": the integration time (in hours) for each planet (same order as "planets100.txt") with a relative tip/tilt angle and the optimum wavelength. The header of each column is the tip/tilt angle (in mas), from 0 mas to 1000 mas with a step of 50 mas. There are no files for the CubeSat 6U configuration.
- "xxxOPD.txt":
 - the integration time (in hours) for each planet (same order as "planets100.txt") with a relative optical path difference (OPD) and the optimum wavelength. The header of each column is the opd (in nm), from 0 nm to 75 nm with a step of 5 nm. There are no files for the CubeSat 6U configuration.

References

1 J. Kammerer and S. P. Quanz, "Simulating the exoplanet yield of a space-based mid-infrared interferometer based on *Kepler* statistics," *Astronomy & Astrophysics* **609**, A4 (2018). [doi:10.1051/0004-6361/201731254].

^bEuropean Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching, Germany

^bResearch School of Astronomy & Astrophysics, Australian National University, ACT 2611, Australia

^cSpace Sciences, Technologies, Astrophysics Research (STAR) Institute, University of Liège, Liège, Belgium

^dETH Zurich, Institute for Particle Physics and Astrophysics, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland

Header	Content		
nMC	Number of the universe to which the planet belongs to		
Rp	Planet radius		
Porb	Planet orbital period		
a	Planet semi-major axis		
rp	Planet physical separation		
ang_sep	Planet projected angular separation		
ang_sep_max	Max planet projected angular separation		
inc	Planet inclination		
Omega	Planet longitude of ascending node		
omega	Planet argument of periapsis		
theta	Planet true anomaly		
ecc	Planet eccentricity	-	
Finc	Planet incident host star flux	S_{Earth}	
Abond	Planet Bond albedo		
AgeomMIR	Planet geometric albedo in the mid-infrared		
AgeomVIS	Planet geometric albedo in the visible		
f	Planet Lambertian reflectance		
Тр	Planet equilibrium temperature		
Mp	Planet mass		
dist	Host star distance		
Rs	Host star radius		
Ts	Host star effective temperature		
Ms	Host star mass	M_{Sun}	
stype	Host star spectral type		
zodis	Exozodiacal dust level		
ra	Host star right ascension		
dec	Host star declination		
nstar	Number of the star		

 $\textbf{Table 1} \ \ \text{Header and description of each column of planets} 100.txt.$

	CubeSat 6U	CubeSat 12U	PROBA-size	FKSI-concept
Size	$0.6 \times 0.1 \times 0.1 \mathrm{m}$	$1.1 \times 0.1 \times 0.1 \mathrm{m}$	$1\mathrm{m}^3$	
Baseline length	0.5 m	1 m	5 m	12.5 m
Pupil diameter	$0.08\mathrm{m}$	$0.08\mathrm{m}$	$0.25\mathrm{m}$	$0.5\mathrm{m}$
Optical train	150 K	150 K	100 K	60 K
temperature	1001	1001	1001	0010
Optimal wavelength	0.5 µm	1.5 µm	$2.5\mu\mathrm{m}$	4.5 µm

Table 2 Four studied configurations considered in this study, from nano to medium-size satellites.