universitätfreiburg

Stochastic processes

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024ws_stochproc.html

https://www.stochastik.uni-freiburg.de/

Tutorial 11 - Markov processes III

Exercise 1 (4 Points).

Let E_1 be countable, $(E_2,\mathcal{B}(E_2))$ a measurable space and $f: E_1 \times E_2 \to E_1$ measurable. Furthermore, let X_0 be an E_1 -valued random variable and Z_0, Z_1, \ldots iid and E_2 -valued. Show: If $X_0, Z_0, Z_1, Z_2, \ldots$ are independent, then $(X_t)_{t=0,1,2,\ldots}$ given by $(X_{t+1}:=f(X_t,Z_{t+1}),t=0,1,2,\ldots)$ is a time-homogeneous Markov chain.

Exercise 2 (4 points).

Let (E,r) be a complete and separable metric space, $\mathcal{X} = (X_t)_{t\geq 0}$ an E-valued Markov process with generator G, which has domain $\mathcal{D} \subseteq \mathcal{C}_b(E)$. Show that, for $f \in \mathcal{D}$ with $Gf \in \mathcal{C}_b(E)$ and $\lambda \geq 0$

$$\left(e^{-\lambda t}f(X_t) + \int_0^t e^{-\lambda s}(\lambda f(X_s) - Gf(X_s))ds\right)_{t \ge 0}$$

is a martingale.

Exercise 3 (4 Points).

The semigroup of the Ornstein-Uhlenbeck process is given by:

$$(T_t f)(x) = \int f\left(e^{-tx} + \sqrt{1 - e^{-2ty}}\right) e^{-\frac{y^2}{2}} \frac{1}{\sqrt{2\pi}} dy,$$

for $f \in \mathcal{C}_0(\mathbb{R})$. Show that the infinitesimal generator of the process is given by

$$Gf(x) = f''(x) - xf'(x).$$

Exercise 4 (4 Points).

Let $(B_t)_{t\in\mathbb{R}^+}$ be a Brownian motion and $X_t = |B_t|$ for $t \geq 0$. Assume that the initial distribution of X is $P_0(x,\cdot) = \delta_x(\cdot)$, where δ_x denotes the Dirac measure for all $x \in \mathbb{R}^+$.

(a) Prove that X is a Markov process with transition function given by the density

$$\frac{1}{\sqrt{2\pi t}} \left[\exp\left(-\frac{1}{2t}(y-x)^2\right) + \exp\left(-\frac{1}{2t}(y+x)^2\right) \right] \mathbb{1}_{\{y \ge 0\}}.$$

(b) Is the associated semigroup P_t a Feller semigroup?