Part IA — Discrete Mathematics

Lectures by xxx Latex by Z.Yan

Michaelmas 2016

* Proof [5 lectures]

Proofs in practice and mathematical jargon. Mathematical statements: implication, bi-implication, universal quantication, conjunction, existential quantication, disjunction, negation. Logical deduction: proof strategies and patterns, scratch work, logical equivalences. Proof by contradiction. Divisibility and congruences. Fermats Little Theorem.

* Numbers [5 lectures]

Number systems: natural numbers, integers, rationals, modular integers. The Division Theorem and Algorithm. Modular arithmetic. Sets: membership and comprehension. The greatest common divisor, and Euclids Algorithm and Theorem. The Extended Euclids Algorithm and multiplicative inverses in modular arithmetic. The Dife-Hellman cryptographic method. Mathematical induction: Binomial Theorem, Pascals Triangle, Fundamental Theorem of Arithmetic, Euclids innity of primes.

* Sets [7 lectures]

Extensionality Axiom: subsets and supersets. Separation Principle: Russells Paradox, the empty set. Powerset Axiom: the powerset Boolean algebra, Venn and Hasse diagrams. Pairing Axiom: singletons, ordered pairs, products. Union axiom: big unions, big intersections, disjoint unions. Relations: composition, matrices, directed graphs, preorders and partial orders. Partial and (total) functions. Bijections: sections and retractions. Equivalence relations and set partitions. Calculus of bijections: characteristic (or indicator) functions. Finite cardinality and counting. Innity axiom. Surjections. Enumerable and countable sets. Axiom of choice. Injections. Images: direct and inverse images. Replacement Axiom: set-indexed constructions. Set cardinality: Cantor-Schoeder-Bernstein Theorem, unbounded cardinality, diagonalisation, xed-points. Foundation Axiom.

* Formal languages and automata [7 lectures]

Introduction to inductive denitions using rules and proof by rule induction. Abstract syntax trees. Regular expressions and their algebra. Finite automata and regular languages: Kleenes theorem and the Pumping Lemma.

Contents

1	Proofs		
	1.1	Proofs in practice and mathematical jargon	
	1.2	Mathematical statements	
	1.3	Logical deduction	
	1.4	Proof by contradiction	
	1.5	Divisibility and congruences	
	1.6	Fermats Little Theorem	
2	Numbers		
3	Sets	3	
4	Regular languages and finite automata		

1 Proofs

. : implication, bi-implication, universal quantication, conjunction, existential quantication, disjunction, negation. : proof strategies and patterns, scratch work, logical equivalences. . . .

1.1 Proofs in practice and mathematical jargon

We are interested in examining the following statement:

Statement. The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage. For instance, it presupposes that you know:

- what a statement is;
- \circ what the integers (...,-1,0,1,...) are, and that amongst them there is a class of odd ones (...,-3,-1,1,3,...);
- what the product of two integers is, and that this is in turn an integer.
- 1.2 Mathematical statements
- 1.3 Logical deduction
- 1.4 Proof by contradiction
- 1.5 Divisibility and congruences
- 1.6 Fermats Little Theorem

2 Numbers

3 Sets

4 Regular languages and finite automata