

PROPRIETARY NOTE

THIS SPECIFICATION IS THE PROPERTY OF BOE FZ AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF BOE FZ AND MUST BE RETURNED TO BOE CQ UPON ITS REQUEST

DV366FBM-N10 Product Specification Rev. P2

FUZHOU BOE OPTOELECTRONICS TECHNOLOGY Co.,LTD

SPEC. NUMBER	PRODUCT GROUP	Pov P2	ISSUE DATE	PAGE
S8-65-8D-026	TFT-LCD	Rev. P2	2019/03/25	1 OF 35

B2014-Q011-O (1/3) A4(210 X 297)

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

REVISION HISTORY

)preliminary specification

 $(\sqrt{})$ Final specification

Revision No.	Pa	ge	Description of changes	Date	Prepared
P0			Initial Release	2018/09/21	LIU TAO
	(9	3.3 Backlight Input Pin Assignments	2018/11/20	LIU TAO
	1	1	4.2 LVDS Interface	2018/11/06	LIU TAO
	1	2	4.3 LVDS Rx Interface Timing Parameter	2018/11/06	LIU TAO
	1	3	4.4 LVDS Rx Interface Eye Diagram	2018/11/06	LIU TAO
	1	4	4.5 LVDS Receiver Differential Input	2018/11/06	LIU TAO
	1	5	5.1 Timing Parameters (DE only mode)	2018/11/06	LIU TAO
P1	1	6	5.2 Signal Timing Waveform	2018/11/06	LIU TAO
	1	7	5.3 Input Signals, Basic Display Colors and Gray Scale of Colors	2018/11/06	LIU TAO
	18		5.4 Power Sequence	2018/11/06	LIU TAO
	1	9	Update Viewing Angle	2018/11/06	LIU TAO
	1	9	Update Reproduction of color	2018/11/06	LIU TAO
		3	PRODCUT SERIAL NUMBER	2018/11/06	LIU TAO
	2	5	Box Label	2018/11/06	LIU TAO
	į	5	1.3 ADD Application Mode	2019/03/21	LIU TAO
	7 Adjust Power Supply Current & Power Consumption		2019/03/21	LIU TAO	
Do.	88	3 9	Adjust LED LED Forward Voltage	2019/03/21	LIU TAO
P2	2	0	6.0 Update TBD ITEM	2019/03/21	LIU TAO
	27-	-31	11. PRECAUTIONS	2019/03/21	LIU TAO
	3	3	Figure 3 Add details	2019/03/21	LIU TAO
	3	4	Figure 4 Add details	2019/03/21	LIU TAO
SPEC. NUMBER SPEC. TITLE PAGE				PAGE	
S8-65-8D-026 DV366FBM-N10 Product Specification Rev.P2 2 OF 35					

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

Contents

No	ITEM	Page
	REVISIONS HISTORY	2
	CONTENTS	3
1	GENERAL DESCRIPTION	4
	1.1 Introduction	
	1.2 Features	
	1.3 Applications	
	1.4 General Specification	
2	ABSOLUTE MAXIMUM RATINGS	6
3	ELECTRICAL SPECIFICATIONS	7
	3.1 TFT LCD Open Cell	
4	INTERFACE CONNECTION	10
	4.1 Open Cell Input Signal & Power	
	4.2 LVDS Interface	
	4.3 LVDS Rx Interface Timing Parameter	
	4.4 LVDS Rx Interface Eye Diagram	
	4.5 LVDS Receiver Differential Input	
5	SIGNAL TIMING SPECIFICATIONS	16
	5.1 Timing Parameters (DE only mode)	
	5.2 Signal Timing Waveform	
	5.3 Input Signals, Basic Display Colors and Gray Scale of Colors	s
	5.4 Power Sequence	
6	OPTICAL SPECIFICATIONS	20
7	MECHANICAL CHARACTERISTICS	22
8	RELIABILITY TEST	23
9	PRODCUT SERIAL NUMBER	24
10	PACKING INFORMATION	25
11	HANDING & CAUTIONS	27
12	APPENDIX	28
EC. NUM	MBER SPEC. TITLE	PAGE
		ı

S8-65-8D-026

SPEC. TITLE DV366FBM-N10 Product Specification Rev.P2

3 OF 35 A4(210 X 297)

PRODUCT GROUP

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

1.0 GENERAL DESCRIPTION

1.1 Introduction

DV366FBM-N10 is a color active matrix TFT LCD MDL using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This MDL has a 36.6 inch diagonally measured active area with FHD resolutions (1920 horizontal by 290 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors. The TFT-LCD MDL panel is adapted for a low reflection and higher color type.

1.2 Features

- LVDS interface with 2 pixel / clock
- High-speed response
- Low color shift image quality
- 8-bit color depth, display 16.7M colors
- Wide viewing angle
- DE (Data Enable) only mode
- ADS technology is applied for high display quality
- RoHS compliant

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	4 OF 35

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. P2	2019/03/25

1.3 Application

- Commercial Digital Display
- Display Terminals for Control System
- Landscape and Portrait Display

1.4 General Specification

< Table 1. General Specifications >

Parameter	Specification	Unit	Remarks
Active area	919.3(H) × 138.85 (V)	mm	
Number of pixels	1920(H) ×290(V)	pixels	
Pixel pitch	159.6(H) ×478.8(V)	um	
Pixel arrangement	Pixels RGB Vertical stripe		
Display colors	16.7M	colors	8bits True
Display mode	Normally Black		
Dimensional outline	960(H)*174.35(V)*16.9(B)	mm	Detail refer to drawing
Weight	3260	g	
Power Consumption	35.2	Watt	Тур.
Bezel width (L/R/U/D)	17.85/17.85/15.25/15.25	mm	
Surface Treatment	Haze 1%		
Back-light	Down edge side, 2- LED Light bar		
Possible display type	Landscape and Portrait Enabled	_	

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	5 OF 35
D0044 0044 0 (0/0)		A 4/040 \/ 007\

B2014-Q011-O (3/3) A4(210 X 297)

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev. P2	2019/03/25

2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

< Table 2. Open Cell Electrical Specifications >

[VSS=GND=0V]

Parameter	Symbol	Min.	Max.	Unit	Remark
Power Supply Voltage	VDD	VSS-0.3	13.5	V	Ta = 25 ℃
Operating Temperature	T _{OP}	0	+50	°C	
Ctorogo Tomporoturo	T _{SUR}	-20	+60	$^{\circ}$	
Storage Temperature	T _{ST}	-20	+60	$^{\circ}$	Note 1
Operating Ambient Humidity	Нор	10	80	%RH	1.0.0
Storage Humidity	Hst	10	80	%RH	

Note 1: Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C max. and no condensation of water.

SPEC. NUMBER
S8-65-8D-026

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

3.0 ELECTRICAL SPECIFICATIONS

3.1 TFT LCD Open Cell

< Table 3. Open Cell Electrical Specifications >

[Ta =25±2 °C]

Doromotor		Symbol		Values		l lm:4	Remark
	Parameter	Symbol	Min	Тур	Max	Unit	Remark
Power Sup	Power Supply Input Voltage		10.8	12	13.2	Vdc	
Power Sup	ply Ripple Voltage	VRP	-	-	300	mV	
Power Sup	ply Current	IDD	-	450	600	mA	Note 1
Power Con	sumption	PDD	-	5.4	8	Watt	inote i
Rush curre	nt	IRUSH	-		3.0	Α	Note 2
	Differential Input High Threshold Voltage	VLVTH	+100	-	+300	mV	
LVDS	Differential Input Low Threshold Voltage	VLVTL	-300	ı	-100	mV	
Interface	Input Differential Voltage	VID	200	-	600	mV	
	Common Input Voltage	VLVC	0.6	1.2	2.4- VID /2	V	
CMOS	Input High Threshold Voltage	VIH	2.7	-	3.3		
Interface	Input Low Threshold Voltage	VIL	0	-	0.6	V	

Note 1: The supply voltage is measured and specified at the interface connector of LCM.

The current draw and power consumption specified is for VDD=12.0V,

Frame rate f_V =60Hz and Clock frequency = 74.25MHz.

Test Pattern of power supply current

a) Typ: Mosaic 7X5 (L0/L255)

b) Max: Vline Subline (L255))

c) Flicker Pattern

Note 2: The duration of rush current is about 2ms and rising time of Power Input is 1ms(min)

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	7 OF 35

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev P2	2019/03/25

Rev. P2

3.0 ELECTRICAL SPECIFICATIONS

3.2 Backlight Unit

< Table 3. Backlight Unit Electrical Specifications >

[Ta =25±2 °C]

2019/03/25

		Min.	Тур.	Max.	Unit	Remarks	
LED Forward	l Voltage	V _F	-	3.1	3.2	V	-
LED Forward Current		I _F	-	100	-	mA	Note 1,2
LED Power Consumption		P _{LED}		29.8	-	W	Note 3
LED Life-Time		N/A	50000	-	-	Hour	Note 4
PWM High Level			-	-	-	V	
Control Level	PWM Low Level		-	-	-	V	
PWM Control Frequency		F _{PWM}	-	-	-	Hz	
Duty Ratio		-	-	-	-	%	

LED bar consists of 48LED packages,4strings(parallel)*12pckages(serial)

Note1: There are two light bar ,and the specified current is input LED chip 100% duty current

Note2: The sense current of each input pin is $4*I_F=400mA$

Note3: $P_{LED}=2\times48\times V_F\times I_F$

Note4: The lifetime is determined as the time at which luminance of LED become 50% of the initial brightness or not normal lighting at I_F=100mA on condition of continuous operating at 25 ±2 °C

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	8 OF 35

PRODUCT GROUP REV

Customer SPEC

Rev. P2

2019/03/25

ISSUE DATE

3.3 Backlight Input Pin Assignments

Connector type: CI0106S0000-6pin or equivalent

Pin No.	Symbol	Feature	Remarks
1	CH1+	VLED OUT CH1,Blue	Linkt Dov 1
2	CH1-	I Return CH1,White	Light Bar 1
3	NC	NC	
4	NC	NC	
5	CH2+	VLED OUT CH2,Blue	Light Box 2
6	CH2-	I Return CH2,White	Light Bar 2

DC Input specification

Parameter	Cymbol		Value		Unit	Remarks
Parameter	Symbol	Min.	Тур.	Max.	Offic	Remarks
LED forward voltage per channel	VLED	1	37.2	38.4	V	
LED forward current per channel	ILED	1	400	1	mA	
Power Consumption	PLED	1	29.8		W	Note 1

Note1: There are two channels, and the sense current of each channel is 400mA PLED = $2channels*VLED \times ILED$

SPEC. NUMBER	
S8-65-8D-026	

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

4.0 INTERFACE CONNECTION

- 4.1 Open Cell Input Signal & Power
 - LVDS Connector: IS050-C51B-C39-S(UJU).

< Table 4. Open Cell Input Connector Pin Configuration >

Pin No	Symbol	Description Pin No		Symbol	Description
1	GND	Ground	16	ERX2-	Even pixel Negative LVDS differential data input.
2	SCL	I2C Clock	17	ERX2+	Even pixel Negative LVDS differential data input.
3	SDA	I2C Data	18	GND	Ground
4	NC	No Connection	19	ECLK-	Even pixel Negative LVDS differential clock input.
5	NC	No Connection	20	ECLK+	Even pixel Negative LVDS differential clock input.
6	NC	No Connection	21	GND	Ground
7	SELLVDS	LVDS data format selection	22	ERX3-	Even pixel Negative LVDS differential data input.
8	NC	No Connection	23	ERX3+	Even pixel Negative LVDS differential data input.
9	NC	No Connection	24	NC	No Connection
10	NC	No Connection	25	NC	No Connection
11	GND	Ground	26	GND	Ground
12	ERX0-	Even pixel Negative LVDS diffe rential data input.	27	GND	Ground
13	ERX0+	Even pixel Negative LVDS differential data input.	28	ORX0-	Odd pixel Negative LVDS differential data input.
14	ERX1-	Even pixel Negative LVDS differential data input.	29	ORX0+	Odd pixel Negative LVDS differential data input.
15	ERX1+	Even pixel Negative LVDS differential data input.	30	ORX1-	Odd pixel Negative LVDS differential data input.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	10 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

Pin No	Symbol	Description	Pin No	Symbol	Description
1 111 140	Symbol	Description	1 111 140	Symbol	Description
31	ORX1+	Odd pixel Negative LVDS differential data input.	42	GND	Ground
32	ORX2-	Odd pixel Negative LVDS differential data input.	43	GND	Ground
33	ORX2+	Odd pixel Negative LVDS differential data input.	44	GND	Ground
34	GND	Ground	45	GND	Ground
35	OCLK-	Odd pixel Negative LVDS differential clock input.	46	GND	Ground
36	OCLK+	Odd pixel Negative LVDS differential clock input.	47	NC	No Connection
37	GND	Ground	48	VCC	+12V
38	ORX3-	Odd pixel Negative LVDS differential data input.	49	VCC	+12V
39	ORX3+	Odd pixel Negative LVDS differential data input.	50	VCC	+12V
40	NC	No Connection	51	VCC	+12V
41	NC	No Connection			

Notes: 1. NC(Not Connected): This pins are only used for BOE internal operations.

2. Input Level of LVDS signal is based on the EIA-644 Standard.

Rear view of LCM

BIST Pattern

SPEC. NUMBER
S8-65-8D-026

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

4.2 LVDS Interface

- LVDS Receiver: Timing Controller (LVDS Rx merged) / LVDS Data: Pixel Data

< Table 5. Open Cell Input Connector Pin Configuration >

Channal Na	Data Na	8-bit LVD	S Туре
Channel No.	Data No.	NS	JEIDA
	Bit-0	R0	R2
	Bit-1	R1	R3
	Bit-2	R2	R4
0	Bit-3	R3	R5
	Bit-4	R4	R6
	Bit-5	R5	R7
	Bit-6	G0	G2
	Bit-0	G1	G3
	Bit-1	G2	G4
	Bit-2	G3	G5
1	Bit-3	G4	G6
	Bit-4	G5	G7
	Bit-5	В0	B2
	Bit-6	B1	В3
	Bit-0	B2	B4
	Bit-1	В3	B5
	Bit-2	B4	B6
2	Bit-3	B5	В7
	Bit-4	HS	HS
	Bit-5	VS	VS
	Bit-6	DE	DE
	Bit-0	R6	R0
	Bit-1	R7	R1
	Bit-2	G6	G0
3	Bit-3	G7	G1
	Bit-4	В6	В0
	Bit-5	В7	B1
	Bit-6	-	

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	12 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

4.3 LVDS Rx Interface Timing Parameter

The specification of the LVDS Rx interface timing parameter is shown in Table 6.

<Table 6. LVDS Rx Interface Timing Specification>

Item	Symbol	Min	Тур	Max	Unit	Remark
CLKIN Period	tRCP	9.09	Т	40	nsec	
		-0.35	-	0.35	nsec	fCLKIN=110MHz
Receiver Data	tRMG	-0.40	-	0.40	nsec	fCLKIN=95MHz
Input Margin	IKIVIG	-0.45	-	0.45	nsec	fCLKIN=85MHz
		-0.60	-	0.60	nsec	fCLKIN=65MHz
Input Data 0	tRIP1	- tRMG	0.0	tRMG	Clock	
Input Data 1	tRIP0	T/7- tRMG	T/7	T/7+ tRMG	Clock	
Input Data 2	tRIP6	2 T/7- tRMG	2T/7	2T/7+ tRMG	Clock	
Input Data 3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	Clock	
Input Data 4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	Clock	
Input Data 5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	Clock	
Input Data 6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	Clock	

* Vdiff = (RXz+)-(RXz-),....,(RXCLK+)-(RXCLK-)

SPEC. NUMBER
S8-65-8D-026

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev. P2	2019/03/25

4.4 LVDS Rx Interface Eye Diagram

< Table 7. LVDS Rx Interface Eye Diagram>

Symbol	Min	Тур	Max	Unit	Note
А	-	100	-	mV	
В	-	100	-	mV	
С	-	0	-	mV	
D	-	-100	-	mV	
E	-	-100	-	mV	
F	-	0	-	mV	

Notes: 1. Time F to A,B to C,C to D,E to F is 150p second.

- 2. LVDS clock=85Mhz.
- 3. The time A to B=1T-2*TRSKM-2*150ps.

D0044 0044 0 (0(0)	<u>'</u>	A 4 (0 4 0) (0 0 7)
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	14 OF 35
SPEC. NUMBER	SPEC. TITLE	PAGE

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

4.5 LVDS Receiver Differential Input

< Table 7-1. LVDS Receiver Differential Input>

Symbol	Parameter	Min	Тур	Max	Uni t	Condition
R _{xVTH}	Differential input high threshold voltage			+0.1v	٧	RxVCM =1.2V
R _{xVTL}	Differential input low threshold voltage	-0.1V			V	
R _{XVIN}	Input voltage range (singled-end)	0		2.4	V	
R _{xVCM}	Differential input common mode voltage	V _{ID} /2		2.4- V _{ID} /2	V	
V _{ID}	Differential input voltage	0.1		0.6	V	

SPEC. NUMBER
S8-65-8D-026

B	O	E
		_

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev P2	2019/03/25

5.0 SIGNAL TIMING SPECIFICATION

5.1 Timing Parameters (DE only mode)

< Table 8. Timing Table >

Item		Symbols		Min	Тур	Max	Unit
	Frequency	1/Tc Tch		60	74.25	78	MHz
Clock	High Time			-	4/7Tc	-	
Low Time		Tcl		-	3/7Tc	-	
Frame Period		Tv		1100	1125	1149	lines
		l IV		48.5	60	63	Hz
Horizontal Active		Valid	t _{HV}	-	960	-	t _{CLK}
Display Term		Total	t _{HP}	1060	1100	1200	t _{CLK}
Vertical Active Display Term		Valid	t _{vv}	-	1080	-	t _{HP}
		Total	t _{VP}	1100	1125	1149	t _{HP}

Notes: This product is DE only mode. The input of Hsync & Vsync signal does not have an effect on normal operation.

< Table 9. LVDS Input SSCG>

0	D	O and I'd' and	D.4.*	_	3.0	11
Symbol	Parameter	Condition	Min	Тур	Max	Unit
F	LVDS Input frequency	-	45	74.25	85	MHz
T _{LVSK}	LVDS channel to channel skew	$F=100MHz$ $V_{IC}=1.2V$ $V_{ID}=\pm400mV$	-380	-	+380	ps
F _{LVMOD}	Modulating frequency of input cl ock during SSC		60	-	85	KHz
F _{LVDEV}	Maximum deviation of input clock frequency during SSC		-3	-	+3	%
T _{CY-CY}	Cycle to Cycle jitter		-	-	100	ps

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	16 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

5.2 Signal Timing Waveform

SPEC. NUMBER	
S8-65-8D-026	

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

5.3 Input Signals, Basic Display Colors and Gray Scale of Colors

< Table 10. Input Signal and Display Color Table >

		< I 	abi	<u>.</u>	υ.	1111	, a t	υį									ıu	210	_					—	\neg
Color & Gray Scale		Input Data Signal Red Data Green Data Blue Data																							
		<u></u>	<u> </u>					<u> </u>	<u> Б</u>	07									<u> </u>					<u> </u>	D.0
	DI I	_																					B2		
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Posis	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Colors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	Darker	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	Δ													<u> </u>								<u> </u>			
of Red	∇	<u> </u>			, ,	_								_								_			
	Brighter	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	∇	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray Scale	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
of Green	Δ	<u> </u>				<u> </u>								<u> </u>								<u> </u>			
1 01 010011	∇	<u> </u>			, ,	_								_								_			
-	Brighter	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
-	∇	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
-	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray Scale	Δ	<u> </u>				<u> </u>								<u> </u>								<u> </u>			
of Blue	∇	<u> </u>			, ,	_								_								_			
	Brighter	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
-	∇	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
_	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
]	Δ	0		0	0	0	0	0	1	0	0	0		0	0	0	1	0	0	0	0	0	0	0	1
Gray Scale	Darker	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0
of White	Δ	_				<u> </u>								<u> </u>								<u> </u>			
or writte	∇				<u> </u>	<u> </u>				L.,															
]	Brighter	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1
]	∇	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

SPEC. NUMBER
S8-65-8D-026

PRODUCT GROUPREVISSUE DATECustomer SPECRev. P22019/03/25

5.4 Power Sequence

To prevent a latch-up or DC operation of the Open Cell, the power on/off sequence shall be as shown in below

< Table 11. Sequence Table >

Dovomotov		Values							
Parameter	Min	Тур	Max	Units					
T1	0.5	-	20	ms					
T2	10	-	100	ms					
Т3	200	-	-	ms					
T4	200	-	-	ms					
T5	0	-	-	ms					
T6	1	-	-	s					

Notes: 1. Back Light must be turn on after power for logic and interface signal are valid.

- 2. Even though T1 is out of SPEC, it is still ok if the inrush current of VDD is below the limit.
- 3. When VDD<0.9VDD(Typ.), Power off.
- 4. T7 decreases smoothly, if there were rebounding voltage, it must smaller than 5 volts.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	19 OF 35

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev. P2	2019/03/25

6.0 OPTICAL SPECIFICATIONS

The test of optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature= $25\pm2^{\circ}C$) with the equipment of Luminance meter system (Goniometer system and PR730) and test unit shall be located at an approximate distance 180cm from the LCD surface at a viewing angle of θ and Φ equal to 0° . We refer to $\theta_{\varnothing=0}$ (= θ_3) as the 3 o'clock direction (the "right"), $\theta_{\varnothing=90}$ (= θ_{12}) as the 12 o'clock direction ("upward"), $\theta_{\varnothing=180}$ (= θ_9) as the 9 o'clock direction ("left") and $\theta_{\varnothing=270}$ (= θ_6) as the 6 o'clock direction ("bottom"). While scanning θ and/or \varnothing , the center of the measuring spot on the Display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be 12.0V at 25°C. Optimum viewing angle direction is 6 'clock.

< Table 12. Optical Table >

[VDD = 12.0V, Frame rate = 60Hz, Ta = 25 ± 2 °C]

Parame	eter	Symbol	Condition	Min	Тур	Max	Unit	Remark	
	Horizontal	Θ_3		80	89	1	Deg.		
Viewing	Honzontai	Θ_9	CD > 10	80	89	1	Deg.	Note 4	
Angle	Vertical	Θ ₁₂	CR > 10	80	89	1	Deg. Note 1		
	verticai	Θ_6		80	89	1	Deg.		
Brightn	ess	Lv		560	700	1	nit		
Contrast	ratio	CR		800:1	1200:1	1		Note 2	
White lumi uniforn		ΔΥ		75	-	-	%	Note 3	
	\\/\b:4-a	W _x			0.289	TYP. + 0.03			
	White	W _y	Θ = 0°	TYP. - 0.03	0.332				
	Red	R _x	(Center)		0.650				
Reproduction		R_y	Normal Viewing		0.341				
of color	Green	G _x	Angle		0.304			Note 4	
	Green	G_{y}			0.625				
	Blue	B _x			0.148				
	Diue	B_y			0.071				
Color Gamut				70	72	-	%		
Response Time	G to G	T_g		-	8	10	ms	Note 5	

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	20 OF 35

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev. P2	2019/03/25

Note:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface.
- 2. Contrast measurements shall be made at viewing angle of θ = 0° and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See Figure 1 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically.

CR = Luminance when displaying a white raster
Luminance when displaying a black raster

- 3. The White luminance uniformity on LCD surface is then expressed as : $\Delta Y = (Minimum Luminance of 9 points / Maximum Luminance of 9 points) * 100 (See Figure 5 shown in Appendix).$
- 4. The color chromaticity coordinates specified in Table 9.shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel. The BLU is used by BOE.
- 5. Response time Tg is the average time required for display transition by switching the input signal as below table and is based on Frame rate fV =60Hz to optimize.

 Each time in below table is defined as Figure 2 and shall be measured by switching the

5. Definition of Transmittance (T%):

Module is with white(L255) signal input

SPEC. NUMBER	SPEC. TITLELuminance of LCD Module	
S8-65-8D-026 ^{Trans}	smittance =	2

PAGE 21 OF 35

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev P2	2019/03/25

Rev. P2

2019/03/25

7.0 MECHANICAL CHARACTERISTICS

7.1 Dimensional Requirements

Figure 3(located in Appendix) shows mechanical outlines for the model DV366FBM-N10 . Other parameters are shown in Table 13.

< Table 13. Dimensional Parameters >

Parameter	Specification	Unit
Dimensional outline	960(H)*174.35(V)*16.9(B)	mm
Weight	3260	gram
Active area	919.3(H)*138.85(V)	mm
Pixel pitch	159.6(H) ×478.8(V)	um
Number of pixels	$1920(H) \times 290(V)(1 \text{ pixel} = R + G + B \text{ dots})$	pixels
Back-light	Down edge side 2-LED Light bar Type	

7.2 Mounting

See FIGURE 5. (shown in Appendix)

7.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an anti-glare coating to minimize reflection and a coating to reduce scratching.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	22 OF 35

PRODUCT GROUP	REV	ISSUE DATE	
Customer SPEC	Rev. P2	2019/03/25	

8.0 RELIABILITY TEST

The Reliability test items and its conditions are shown in below.

< Table 14. Reliability Test Parameters >

No	Test Items	Conditions				
1	High temperature storage test	Ta = 60 °C, 240 hrs				
2	Low temperature storage test	Ta = -20 °C, 240 hr	rs			
3	High temperature & high humidity operation test	Ta = 50 °C, 80%RF	I, 240hrs			
4	High temperature operation test	Ta = 50 °C, 240hrs				
5	Low temperature operation test	Ta = 0 °C, 240hrs				
6	Thermal shock	$Ta = -20 \text{ °C} \leftrightarrow 60 \text{ °C}$	°C (0.5 hr), 100 cycle			
7	Vibration test (non-operating)	Frequency Gravity / AMP Period	10 ~ 300 Hz, Sweep rate 30 min 1.5 G X, Y, Z 30 min			
		Gravity	50G			
8	Shock test (non-operating)	Pulse width	11msec, half sine wave			
		Direction	± X, ± Y, ± Z Once for each			
9	Electro-static discharge test (non-operating)	Air : 150 pF, 330Ω, 15 KV Contact : 150 pF, 330Ω, 8 KV				
10	Altitude test	Operating: 0 to 15000ft, 0 to 40° Non Operating: 0 to 40000ft, -10 to 25°				

This test condition is based on BOE module.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	23 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

9.0 PRODCUT SERIAL NUMBER

- ① FG-CODE
- ② Module ID,最后一位为Revision Code(扫描不显示),前17位编 码规则如下
- ③ PPID (客户端ID)
- ④ D/PN码,规格待确定
- ⑤ 生产年份+生产周别(中间无空格)

MDL ID Naming Rule:

Digit	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Code	S	L	S	А	1	0	8	5	9	4	2	0	0	0	1	D	В
Descriptio n	de/G FG-C0	uct Co BN→ DDE— 寸应		line	Ye	ear	Mont h	Mode (Last	el Exte 4 Digi Di	nsion ts of F	Code G-CO			Seria Hex-D 00000	ecima		

SPEC. NUMBER	
S8-65-8D-026	

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

10.0 PACKING INFORMATION

BOE provides the standard shipping container for customers, unless customer specifies their packing information. The standard packing method and Barcode information are shown in below.

10.1 Packing Order

1. Put one MDL in the PE bag.

2. Put 8pcs MDL in the EPS Box.

3. Put one EPS Cover.

5. Put 4ea Paper Conner and one Top Cover on t he EPS Boxs (48ea MDLs per pallet) and Pack wi th 4 packing belts.

4. Put the boxes on the pallet (6ea boxe s per pallet)

SPEC. NUMBER
S8-65-8D-026

PRODUCT GROUP REV ISSUE DATE Customer SPEC Rev. P2 2019/03/25

10.2 Packing Note

• Box Dimension: 1106mm(L)×477mm(W)×316mm(H)

• Package Quantity in one Box: 8pcs

10.3 Box Label

• Label Size : 100mm (L) × 50mm (W)

• Contents

Model: DV366FBM-N10

Q'ty: Module 8 Q'ty in one box

Serial No.: Box Serial No.

Date: Packing Date

Box ID 条形码

X

6)

RoHS Complement

打印内容,说明如下:

- ① FG-CODE
- ② 产品数量
- ③ Box ID, 编码规则如下
- ④ Box Packing 日期
- 5) 产品物料号(客户端)
- ⑥ FG-CODE 后四位

Digit Code	1	2	3	4	5	6	7	8	9	10	11	12	13
Code	X	X	X	Х	1	6	3	D	0	0	1	Α	1
Descripti on		ıcts G N	Gra de	Line	Ye	ear	Mon th	Revisi on Code		s	erial No	D .	

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	26 OF 35

B2014-Q011-O (3/3) A4(210 X 297)

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

11.0 PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

11.1 Mounting Precautions

- Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- You must mount a module using specified mounting holes (Details refer to the drawings)
- You should consider the mounting structure so that uneven force (ex. Twisted stress, Concentrated stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- Do not apply mechanical stress or static pressure on LCD, and avoid impact, vibration and falling.
- Acetic acid type and chlorine type materials for the cover case are not desirable because
 the former generates corrosive gas of attacking the polarizer at high temperature and the
 latter causes circuit break by electro-chemical reaction.
- Be careful to prevent water & chemicals contact the module surface.
- You should adopt radiation structure to satisfy the temperature specification.
- Connectors are precision devices to transmit electrical signals, and operators should plug in parallel
- Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- When the surface becomes dusty, please wipe gently with absorbent cotton or other soft
 materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for
 cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene
 and alcohol because they cause chemical damage to the polarizer.
- Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading..
- Do not disassemble the module.
- This module has its circuitry PCB's on the rear side and Driver IC and should be handled carefully in order not to be stressed.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	27 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

11.2 Operating Precautions

- Do not connector or disconnect the cable to/from the Module at the "Power On" Condition.
- When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
- Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.
- Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- As the low temperature, the response time is greatly delayed. As the high temperatures
 (higher than the operating temperature) the LCD may turn black screen. The above
 phenomenon cannot explain the failure of the display. When the temperature returns to the
 normal operating temperature, the LCD will return to normal display.
- Do not exceed the absolute maximum rating value.(supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on). Otherwise the Module may be damaged.
- Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- Design the length of cable to connect between the connector for back-light and the converter as shorter as possible and the shorter cable shall be connected directly, The long cable between back-light and Converter may cause the Luminance of LED to lower and need a higher startup voltage
- The cables should be as short as possible between System Board and PCB interface.
- The conductive material and signal cables are kept away from LED driver inductor to prevent abnormal display, sound noise and temperature rising.

11.3 Electrostatic Discharge Precautions

- Avoid to wear synthetic clothing, cotton clothing or other antistatic fibers are suggested.
 Wear anti-static gloves, anti-static wrist strap and conductive shoes grounding when contact with LCM
- Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc.
- Do not close to static electricity to avoid product damage.
- · Do not touch interface pin directly.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	28 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

11.4 Precautions for Strong Light Exposure

• Do not leave the module operation or storage in Strong light . Strong light exposure causes degradation of polarizer and color filter.

11.5 Precautions for Storage

A. Atmosphere Requirement

ITEM	UNIT	MIN	MAX	
Storage Temperature	(°C)	5	40	
Storage Humidity	torage Humidity (%rH) 35		75	
Storage Life	6 months			
Storage Condition	 The storage room should be equipped with a dark and good ventilation facility. Prevent products from being exposed to the direct sunlight, moisture and water. The product need to keep away from organic solvent and corrosive gas. Be careful for condensation at sudden temperature change. Storage condition is guaranteed under packing conditions. 			

B. Package Requirement

- The product should be placed in a sealed polythene bag to avoid air.
- Product Should be placed on the pallet, Which is away from the floor, Be cautions not to pile the product up.
- The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- As the original protective film, do not use the adhesive protective film to avoid change of Pol color and characteristic.
- The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition.

11.6 Precautions for protection film

- The ambient is maintained at more than 50%RH with anti-static equipment such as the iron fan when peeled off the protection film .
- People who peeled off the protection film should wear anti-static strap.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	29 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

11.7 Appropriate Condition for Commercial Display

-Generally large-sized LCD modules are designed for consumer applications .

Accordingly, a long-term display like in Commercial Display application, can cause uneven display including image sticking. To optimize module's lifetime and function, several operating usages are required.

- 1. Normal operating condition
 - Temperature: 20±15°C
 - Operating Ambient Humidity: 55±20%
 - Display pattern: dynamic pattern (Real display)
 - Well-ventilated place is recommended to set up Commercial Display system
- 2. Special operating condition
 - a. Ambient condition
 - Well-ventilated place is recommended to set up Commercial Display system.
 - b. Power and screen save
 - Periodical power-off or screen save is needed after long-term display.
 - c. Product reliability and functions are only guaranteed when the product is used under right operation usages. If product will be used in extreme conditions such as high temperature, high humidity, high altitude, special display images, running time, long time operation, outdoor operation, etc. It is strongly recommended to contact BOE for filed application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stock market and controlling systems.
- 3. Operating usages to protect against image sticking due to long-term static display.
 - a. Suitable operating time: under 20 hours a day.
 - b. Static information display recommended to use with moving image.
 - Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
 - c. Background and character (image) color change
 - Use different colors for background and character, respectively.
 - Change colors themselves periodically.
 - d. Avoid combination of background and character with large different luminance.
 - 1) Abnormal condition just means conditions except normal condition.
 - 2) Black image or moving image is strongly recommended as a screen save
- 4. Lifetime in this spec. is guaranteed only when Commercial Display is used according to operating usages.
- 5. Module should be turned clockwise based on front view when used in portrait mode.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	30 OF 35

Portrait Mode

11.8 Other Precautions

A. LC Leak

- If the liquid crystal material leaks from the panel, it is recommended to wash the LC with acetone or ethanol and then burn it.
- If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- If LC in mouth, mouth need to be washed, drink plenty of water to induce vomiting and follow medical advice.
- If LC touch eyes, eyes need to be washed with running water at least 15 minutes.

B. Rework

When returning the module for repair or etc., Please pack the module not to be broken. We recommend to use the original shipping packages.

SPEC. NUMBER	SPEC. TITLE	PAGE
S8-65-8D-026	DV366FBM-N10 Product Specification Rev.P2	31 OF 35

B2014-Q011-O (3/3) A4(210 X 297)

H() —

PRODUCT GROUP

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

12.0 APPENDIX

< Figure 1. Measurement Set Up >

< Figure 2. Response Time Testing >

SPEC. NUMBER				
S8-65-8D-026				

SPEC. TITLE

DV366FBM-N10 Product Specification Rev.P2

PAGE 32 OF 35

REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

< Figure 3.TFT-LCD Module Outline Dimensions (Front View) >

SPEC. NUMBER S8-65-8D-026

SCALE 2/1

SPEC. TITLE DV366FBM-N10 Product Specification Rev.P2

PAGE 33 OF 35

B2014-Q011-O (3/3)

A4(210 X 297)

 REV

ISSUE DATE

Customer SPEC

Rev. P2

2019/03/25

< Figure 4.TFT-LCD Module Outline Dimensions (Rear View) >

ITEM NO.	DESCRIPTION	TYPE	UDM Height (mm)	Max. Depth (mm)	Torque kgf-cm
A1	м3	Short Rivet	0.0	4.0	Max.5.0
A2	М3	Middle Rivet	6.0	5.0	Max.5.0
A3	М3	Longt Rivet	7.7	5.0	Max.5.0
A4	М3	Thread Hole	0.0	5.0	Max.5.0

SPEC. NUMBER
S8-65-8D-026

BOE PRODUCT GROUP		REV	ISSUE DATE
Customer SPEC		Rev. P2	2019/03/25
< Figure 5.	White Luminance and Uniformity Measu	rement Locatio	>
			1/2
	AA⊠(H)		
1/9 H	©	1/2 н	\$\langle \sqrt{1}
AA X(V)	•		1/2 \
, , , , , , , , , , , , , , , , , , ,			9
	NATE (II)		<u>-</u> J
SPEC. NUMBER SPEC. TITLE			PAGE
S8-65-8D-026 DV366FBM-N10 Product Specification Rev.P2 B2014-Q011-O (3/3)			35 OF 35 A4(210 X 297)