Denavit-Hartenberg Bedingungen

• Zn-1 Achse liegt entlang (auf) der Bewegungsachse des n-ten Gelenks

• Xn-1 Achse ist Kreuzprodukt zwischen Zn-1 und Zn Achsen

 Das Koordinatensystem wird durch die Yn Achse so ergänzt, dass ein rechtshändiges System entsteht

• Für das erste Gelenk wird die x-Achse vom zweiten Gelenk übernommen

Anmerkungen zum Verständnis

v1 x v2 ergibt ein Rechtssystem mit v1 als x-Achse und v2 als y-Achse
v2 x v1 ergibt ein Rechstssystem mit v2 als x-Achse und v1 als y-Achse

 Die Rotation um eine Koordinatenachse erfolgt bei positiven Winkeln immer in mathematisch positive Richtung (entgegen dem Uhrzeigersinn) und umgekehrt

• Ich nehme dies nur der Volständigkeit halber auf, da dies selbstverständlich jedem Beteiligten bekannt ist :)

Allgemeines Vorgehen

Die eigentliche DH-Transformation vom Objektkoordinatensystem (OKS) T_{n-1} in das OKS T_n besteht in der Hintereinanderausführung folgender Einzeltransformationen:

• einer Rotation θ_n (Gelenkwinkel) um die z_{n-1} -Achse, damit die x_{n-1} -Achse parallel zu der x_n -Achse liegt

$$\mathrm{Rot}(z_{n-1}, heta_n) = egin{pmatrix} \cos heta_n & -\sin heta_n & 0 & 0 \ \sin heta_n & \cos heta_n & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

ullet einer Translation d_n (Gelenkabstand) entlang der z_{n-1} - Achse bis zu dem Punkt, wo sich z_{n-1} und x_n schneiden

$$\operatorname{Trans}(z_{n-1}, d_n) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & d_n \ 0 & 0 & 0 & 1 \end{pmatrix}$$

 \bullet einer Translation a_n (Armelementlänge) entlang der x_n -Achse, um die Ursprünge der Koordinatensysteme in Deckung zu bringen

$$ext{Trans}(x_n,a_n) = egin{pmatrix} 1 & 0 & 0 & a_n \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

ullet einer Rotation $lpha_n$ (Verwindung) um die x_n -Achse, um die z_{n-1} -Achse in die z_n -Achse zu überführen

$$\mathrm{Rot}(x_n,lpha_n) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & \coslpha_n & -\sinlpha_n & 0 \ 0 & \sinlpha_n & \coslpha_n & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Matrix einer Transformation

In Matrixschreibweise lautet die Gesamttransformation dann (von links nach rechts zu interpretieren):

$$^{n-1}T_n = \operatorname{Rot}(z_{n-1}, \theta_n) \cdot \operatorname{Trans}(z_{n-1}, d_n) \cdot \operatorname{Trans}(x_n, a_n) \cdot \operatorname{Rot}(x_n, \alpha_n)$$

$$= \begin{pmatrix} \cos \theta_n & -\sin \theta_n \cos \alpha_n & \sin \theta_n \sin \alpha_n & a_n \cos \theta_n \\ \sin \theta_n & \cos \theta_n \cos \alpha_n & -\cos \theta_n \sin \alpha_n & a_n \sin \theta_n \\ 0 & \sin \alpha_n & \cos \alpha_n & d_n \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Denavit-Hartenberg-Parameter des Roboters

Achse	Theta (Drehgelenksw inkel°)	d (Länge Drehgelenk mm)	a (Länge Gelenkarm mm)	Alpha (Rotationswink el Zn-1 -> Zn °)
A1	-1 * theta0	675	260	90
A2	-1 * theta1	185	680	180
A3	theta2	185	670	90
A4	-1 * theta3	0	0	270
A5	-1 * theta4	0	115	90
A6	-1 * theta5	0	0	0

Die Notwendigkeit das Vorzeichen von theta zu ändern resultiert aus der unterschiedlichen Definition der Drehrichtung beim Roboter und im DH Model

Insgesamt

• Transformationsmatritzen für alle Transformationen n-1 -> n mit Hilfe ihrer Denavit-Hartenberg-Koeffizienten aufstellen

• Die Transformationsmatritzen multiplizieren um Transformationen zu verketten

• Richtung beachten:
$$n \rightarrow n-1$$
 mit
$$= \begin{pmatrix} \cos\theta_n & \sin\theta_n & 0 & -a_n \\ -\sin\theta_n\cos\alpha_n & \cos\theta_n\cos\alpha_n & \sin\alpha_n & -d_n\sin\alpha_n \\ \sin\alpha_n\sin\theta_n & -\cos\theta_n\sin\alpha_n & \cos\alpha_n & -d_n\cos\alpha_n \\ 0 & 0 & 0 & 1 \end{pmatrix}$$