CS416

Introduction to Computer Science II Spring 2018

11 Sorting and Searching

Previously in 416

Regular expressions

Preview

- Algorithm analysis issues
- Sorting algorithms
- Searching algorithms

Based on Sanders and van Dam, Chapter 16

Algorithm Analysis

- How do we measure the <u>efficiency</u> of an algorithm?
 - Run time?
 - depends on computer, language, compiler, programmer skill, the data -- too many variables to be meaningful
 - Define an *abstraction* of the algorithm in terms of basic *logical operations* that characterize the algorithm
- Also need an *abstraction* for input and decide what measure is most useful; for example
 - average case -- probably most useful, often harder
 - worst case -- usually easier to do, gives upper bound
 - best case -- seldom useful

Logical Operations

- For each class of algorithm ask
 - What are the most important (most often done) operations?
 - Need to identify the operations required to process each "unit" of input; these are called the "steps" of the executing program
 - For example, for <u>searching</u> we asked: how many item <u>comparisons</u> does it take to find the item we seek?
 - What is the nature of the <u>data</u> processed by the algorithm?
 - What are its units? Is it ordered?

Worst Case Analysis

- Given <u>all</u> possible inputs of size N, what is the maximum execution time (in terms of operations)?
- Call this T(N)
- Probably not as useful as computing an *average* time, but average is usually much harder.

Time Analysis

- Once (if) we can figure out how many operations an algorithm takes for N inputs, we then want to compare that to other algorithms
 - Is there a <u>real</u> difference between 4N and 5N?
 - we abstracted a lot detail to define and count "operations", so we can't put any faith in differences of "constants"
 - What about 8N versus $4N^2$?
 - we care especially about very large N
 - 8 * 100,000 << 4 *(100,000 * 100,000) = 4 * 100,000,000
 - Need an <u>abstraction</u> for the time analysis

Big O Notation

time "cost"	Big O
10000	O(1) 🔨
4	O(1)
20N + 22	O(N)
N - 30000	O(N)
$100N^{2}$	$O(N^2)$
$100N^2 + 30N$	$O(N^2)$
$2^N + 4N^2 + 2N$	O(2 ^N)

• Big O notation: abstraction for time measurements based on abstract operations given N input units

I.e., time does not depend on N O(1) is called *constant time*

An O(N) algorithm is said to be "on the order of N"

Categorize only by fastest growing term; it dominates all others

Growth Rates are Key

- Graphs show how dramatic the time growth can be with exponent-based time (x^2 and 2^x)
- That's why other terms don't matter
- x^2 and 2^x don't look much different, but they **are** for big enough x:
 - $30^2 = 900$, but
 - $2^{30} = 1,073,741,824$
- $x \log_2 x$ grows much more slowly
 - $x = 30, x \log_2 x = 147$
 - $x = 100, x \log_2 x = 767$
- $log_2 x$ is nearly flat!
 - x = 32, $log_2 x = 5$
 - x = 1024, $log_2 x = 10$

Remember this graph!!!! *x* is N, *y* is time

Basic Sorting

- Given N items, sort them in alphabetic (or numeric) order.
- We'll look at 4 algorithms:
 - Bubblesort
 - Insertion sort
 - Selection sort
 - Merge sort
- We'll describe all as if the data is in an array, but there are variations that work for lists as well

Bubble Sort I

• Compare neighbors in the array; if they are not in order, swap them, and move 1 step to right and do it again.

• At end of array go back to the start and do it again -- until you make a pass without swapping anything.

← Compare, no swap

← Compare, swap

<pre>bubblesort(int data[]):</pre>	
int n = data.size;	
sorted = false;	
while (!sorted && $n > 1$)
{	
sorted = true;	
for (i= ,1 ; i <n;)<="" i++="" td=""><td></td></n;>	
{	
if (/data[i-1 ₄] > data	
swap (data, i-1, i);
/sorted =/false;	This test can be
} _/	omitted, (but it
Start at 1, not 0, since	helps analysis)
comparing i-1 and i-th	
Comparing 1-1 and 1-th	

t ←	el	S	У	h	V
d	t ←	3	У	h	V
d	S	t ←	ý +	ħ	V
d	S	t	h	у ←	V
d	S	t	h	V	У
d ←	\$ •	t +	ħ	V	У
d	S	h	t •	▼ ←	ý
d +	\$ +	h	t	V	y
d	h	s •	t +	▼ -	ý
d +	h ←	\$ •	t +	▼ •	ý

Bubble Sort II

11

• Notice that after the first pass through the array, the "highest" item must be at the end position: during that pass, it will keep being swapped until the end

• On the next pass, we can stop comparing one step

earlier; this is true for every pass

bubblesort(int data[]): int n = data.size; sorted = false; while (!sorted && n > 1) sorted = true; for (i=1; i< n; i++)if (data[i-1] > data[i])swap(data, i-1, i); sorted = false; Drop last entry of subarray used in this step.

C Step — Compare, swap						
t	+	el	S	У	h	V
d		t ←	3	У	h	V
d		S	t 🛨	ý -	ħ	V
d		S	t	h	у -	V
d		S	t	h	V	У
d	+	\$ +	t +	ħ	V	У
d		S	h	t •	Ť	У
d	+	5 ←	h	t	V	У
d		h	s ←	ť	V	У
d	4	ħ ←	\$	t	V	у

← Compare, no swap

Bubblesort Analysis

- What are important operations?
 - Comparisons and swaps
- What is worst case?
 - Need a swap and a comparison at every test
 - How many times is the **while** body be executed?N 1
 - How many times is **for** body executed for each **while** body?
 - which is N-1 then N-2 then N-3 ...then 1: this sums to N(N-1)/2
 - So, have $(N^2-N)/2$ comparisons and sorts: $O(N^2)$
- What is best case?
 - No swaps; but still must <u>always</u> do $(N^2-N)/2$ comparisons!
 - Note: this version does not have early exit test if no swap

```
bubblesort abstraction:
n = N
while ( n > 1 )
  for ( i=1; i<n; i++ )
    if ( comparison )
      swap;
n--;</pre>
```

Insertion Sort

- Card player's sort
 - Assume you have a pile of unordered objects (could be cards on a table or in an array) and you have another array into which you will sort these objects

while still objects left

pick one and <u>insert</u> it into its correct location in the sorted array

```
insertionSort( int[] in ):
int n = in.length;
int[] out = new int[ n ];
for ( int i = 0; i < n; i++ )
   insert( out, i, in[ i ] );
return out;</pre>
```

```
insert( int[] a, int k, int d):
int i = 0;
// find insertion point
while ( i < k && a[i] < d )
    i++;
// make room for the insertion
for ( int j = k; j > i; j-- )
    a[ j ] = a[ j - 1 ];
a[ i ] = d; // insert it
```

Insertion Sort Example

```
insertionSort( int[] in ):
int n = in.length;
int[] out = new int[ n ];
for ( int i = 0; i < n; i++ )
   insert( out, i, in[ i ] );
return out;
```

```
insert( int[] a, int k, int d):
int i = 0;
// find insertion point
while ( i < k \&\& a[i] < d )
   i++;
// make room for the insertion
for ( int j = k; j > i; j-- )
   a[j] = a[j-1];
a[i] = d; // insert it
```

	mpariso	n		in	[]		
→ m	ove insert	6	1	4	7	3	9
	111Sert 6 ←	→		ou	t[]		
		6					
	1 ←	6 —	6				
	4 •	1,6	6 →	6			
•	7 ←	1 1, 4	14 ,6	6			
	3 ←	J _{1,4}	4	64,6	7		
	3	1,		1,0			
	9 ←	¹ _{1, 3,}	3, 6,	4	6	7	
		Ī	3	4	6	7	9

Insertion Sort In Place

• Why use 2 arrays? Can sort in place.

```
insertionSort( int[] arr ):
int n = arr.length;
for ( int k = 0; k < n; k++ )
  insert( arr, k, arr[ k ] );</pre>
```

```
insert( int[] a, int k, int d):
int i = 0;
// find insertion point
while ( i < k && a[i] < d )
    i++;
// make room for the insertion
for ( int j = k; j > i; j-- )
    a[ j ] = a[ j - 1 ];
a[ i ] = d; // insert it
```

```
Can use same framework; don't need return
                             Note: start at 1
      Or, merge into 1 method
insertSort( int[] arr ):
for ( int k=1; k < arr.length; k++ )
   int d = arr[k];
   int i = 0;
   // find insertion point
   while (i < k \&\& arr[i] < d)
      i++;
   // make room for the insertion
   for ( int j = k ; j > i; j-- )
     arr[j] = arr[j-1];
   arr[i] = d; // insert it
```

Insertion Sort in Place 2

- Can it be simpler?
- Can we merge the inner *while* and *for* loops?
- Together they go through the array once: the *while* goes up to the insertion point, doing comparisons and the *for* goes *down* to the insertion point, copying elements
- If we searched <u>backwards</u> through the sorted portion of the array initially, we could <u>move as we compare</u> and do it in one loop.

```
for . . .
   int i = 0;
   while ( i < k && arr[ i ] < d )
        i++;

for ( int j = k ; j > i; j-- )
   arr[ j ] = arr[ j - 1 ];
   arr[ i ] = d;
```

Insertion Sort Analysis

- The outer *for* always executes *N-1* times
- In the *worst case*, the array is inversely sorted and the comparison test of the inner *for* loop is never true
- this means that the inner loop executes 1 time for k=1, then 2 for k = 2, etc. upto N-1 for k = N-1 or: sum(k) for k = 1 .. N-1
- This is N*(N-1)/2

```
insertionSort( int[] arr ):
for k = 1 to arr.length - 1 // N-1
{
   d = arr[k];
   for i=k downto 1 until arr[i] >= d
      move
   insert
}
```

k	1	2	•••	N-2	N-1
inner loop	1	2	•••	N-2	N-1

Total moves = 1 + 2 + ... + N-1 = N*(N-1)/2

Algorithm is $O(N^2)$

Selection Sort

- Given a pile of objects and an array into which you will sort them:
 - Pick the smallest object, put in 1st position
 - Pick the smallest remaining object, put in 2nd position
 - Continue until done
- Assume initial objects are stored in an array and we'll sort in place.
 - Note: don't need to do a test if only 1 object left unsorted; it's the max and is at the end

```
selectionSort( int[] arr ):
int n = arr.length;
for ( int i = 0; i < n - 1; i++ )
{
  int p = minPos( arr, i );
  int temp = arr[ p ]; //swap
  arr[ p ] = arr[ i ];
  arr[ i ] = temp;
}</pre>
```

```
int minPos( int[] arr, int k):
int n = arr.length;
int minP = k;  // let k be min
for (int i = k + 1; i < n; i++)
{
   if ( arr[ i ] < arr[ minP ] )
      minP = i;
}
return minP;</pre>
```

Selection Sort Example

```
selectionSort( int[] arr ):
int n = arr.length;
for ( int i = 0; i < n - 1; i++ )
{
  int p = minPos( arr, i );
  int temp = arr[ p ]; //swap
  arr[ p ] = arr[ i ];
  arr[ i ] = temp;
}</pre>
```

```
int minPos( int[] arr, int k):
int n = arr.length;
int minP = k; // let k be min
for ( int i = k + 1; i < n; i++ )
{
  if ( arr[ i ] < arr[ minP ] )
    minP = i;
}
return minP;</pre>
```


Selection Sort Analysis

- Outer loop body always executes N-1 times
- Inner loop body executes N-1 times then N-2, then N-3 etc.
- N-1 + N-2 ... $= sum(k) \text{ for } k = 1..\text{N-1}_{inner\ loop}^{k}$ which is N(N-1)/2

```
selectionSort( int[] arr ):
for k = 0 to N-2
{
  for j = k+1 to N-1
    if ( ... )
}
```

```
0 1 ... N-3 N-2
N-1 N-2 ... 2 1
```

• Selection sort is $O(N^2)$ Total compares = N-1+N-2+...+2+1=N*(N-1)/2

Algorithm is $O(N^2)$

A Better Sort

- Bubble, insertion and selection sort are all $O(N^2)$
- There must be a better way!
 - It's called *merge sort* (and an even better variant, *quicksort*)
- Suppose we have 2 <u>sorted</u> arrays
 - Can <u>merge</u> these into a new array in O(N) time
 - OK, but how do we get the 2 sorted arrays in the first place?
 - ullet divide and conquer!

```
Merge( int[] a, int[] b ):
int[] c = new int[aSize + bSize]
int ia = 0, ib = 0, ic = 0;
while ia < aSize && ib < bSize
  if a[ ia ] <= b[ ib ]
    c[ ic++ ] = a[ ia++ ]
  else
    c[ ic++ ] = b[ ib++ ];
move rest of a to c
move rest of b to c</pre>
```

Merge analysis

N data copies
every item copied to new array
N comparisons (at most)
need 1 comparison for each move
until one array becomes empty; rest can
move without a comparison

Merge Sort

- Given N items
 - split into 2 groups of N/2 items
 - sort each group
 - merge the 2 groups
- Split is O(N), merge is O(N)
- But what about the sort part?
 - Apply mergeSort to each group
 - get 4 groups of N/4
 - Recurse again
 - get 16 groups of N/16
 - Recurse until each group has only 1 or 2 elements
 - if 1 element, it is sorted
 - if 2 elements, takes 1 comparison to sort

```
mergeSort( int a[] ):
if a.size == 2
   sort the 2 elements
else if a.size > 2
   a1 = a[0 .. N/2]
   a2 = a[N/2+1 .. N-1]
   mergeSort( a1 )
   mergeSort( a2 )
   int[] c = merge( a1, a2 )
   copy c into a
```

Merge Sort Example

• Three phases: split, sort, merge

Merge Sort Analysis

- Split steps: takes log₂N steps to get to pairs: O(log₂N); each step is O(N), so split complexity is O(N log₂N)
- Sort steps: there are N/2 pairs, so N/2 comparisons and at most N/2 swaps: O(N)
- Merge steps: there are log₂N merge steps and each merge step is O(N): O(N log₂N)
- Overall complexity is: O(N log₂N)

What is O(N log₂N)?

- x log₂x seems to be a pretty steep curve!
 - but it's still less than y = 9x for x < 512
- Consider some sample values:

X	256	512	1024	4096	16384
log ₂ x	8	9	10	12	14
x log ₂ x	2048	4608	10K	49K	0.229M
\mathbf{x}^2	65536	262144	1048K	16000K	268M

Clearly, $x \log_2 x$ grows much more slowly than x^2

Growth Rates are Key

- Graphs show how dramatic the time growth can be with exponent-based time (x² and 2^x)
 - That's why other terms don't matter
 - x² and 2^x don't look much different, but they **are** for big enough x:

$$30^2 = 900$$
, but $2^{30} = 1,073,741,824$

- \bullet x $\log_2 x$
 - x = 30, $x \log_2 x = 147$
 - x = 100, $x \log_2 x = 767$
- Remember this graph!

Merge Sort Algorithm

```
sort( int[] arr ):
mergeSort( arr, 0, arr.length - 1 );
mergeSort(int[] a, int lo, int hi):
if ( lo == hi - 1 ) // a pair yet?
 orderPair(a, lo);
else if ( lo != hi ) 7/ recurse
  int mid = (lo + hi) / 2;
 mergeSort( a, lo, mid );
 mergeSort( a, mid + 1, hi );
 merge( a, lo, hi );
orderPair( int[] arr, int lo ):
if (a[lo] > a[lo + 1])
  int tmp = a[ lo ];
  a[num] = a[lo + 1];
  a[lo + 1] = temp;
```

Just 2 in array, order them

More than 2 in array, split and recurse

Find the midpoint

Split array into 2 parts, sort each part and put them back together

merge Method

```
get a temp array to
merge( int[] a, int lo, int hi):
                                            merge into
int[] tmp = new int[ hi - lo + 1 ];
int mid = (lo + hi)/2;
                                            Set up regions to be
int k1 = lo; // start of one split
                                            merged
int k2 = mid + 1; // start of other
int t = 0:
                                      quit loop as soon as either
while ( k1 <= mid && k2 <= hi )
                                       subpart runs out
  if (a[ k1 ] < a[ k2 ] )
                                            look at "first" of
  tmp[t++] = a[k1++];
                                            each group and copy
  else
                                            smaller to temp
   tmp[t++] = a[k2++];
while ( k1 \le mid )
                                       copy any thing left in
 tmp[t++] = a[k1++];
                                       first partition
while ( k2 \ll hi )
 tmp[t++] = a[k2++];
                                         copy any thing left in
// copy tmp array back
                                         second partition
for ( int i = 0, k = lo; k <= hi; i++, k+\frac{1}{2})
 a[k] = tmp[i];
                                          copy tmp back into the
                                          array
                               28
```

Review

- Introduced 3 sorting algorithms
 - bubble sort
 - insertion sort
 - selection sort
- Analyzed their complexity: $O(N^2)$
- Introduced merge sort algorithm
 - Analyzed its complexity O(N log₂ N)

Next

- Programming design and style review
 - Assignment/lab solutions
 - Coding style pointers
- CS 515 Data structures and algorithms
 - More data structures
 - AVL trees, B-trees, and more
 - More algorithms and algorithm complexity
 - C++

Next

- Programming design and style review
 - Assignment/lab solutions
 - Coding style pointers
- CS 515 Data structures and algorithms
 - More data structures
 - AVL trees, B-trees, and more
 - More algorithms and algorithm complexity
 - C++