Theoretical Physics 2019/20 — Solution of Problem QT2.7

(a) We need to invert the relations between \hat{a} , \hat{a}^{\dagger} , \hat{x} and \hat{p} given in the question, namely

$$\hat{a} = (2\hbar m\omega)^{-1/2} (m\omega \hat{x} + i\hat{p}), \qquad \hat{a}^{\dagger} = (2\hbar m\omega)^{-1/2} (m\omega \hat{x} - i\hat{p}).$$

This can be done simply by adding or subtracting these two equations. Adding them gives

$$\hat{a} + \hat{a}^{\dagger} = (2\hbar m\omega)^{-1/2} (2m\omega \hat{x}),$$

while substracting the second from the first gives

$$\hat{a} - \hat{a}^{\dagger} = (2\hbar m\omega)^{-1/2} (2i\hat{p}).$$

The results quoted in the question follow. [2 marks]

- (b) This is an easy step. Since $\hat{x} = [2\hbar/(m\omega)]^{1/2} \hat{S}$, $\langle \alpha | \hat{x} | \alpha \rangle = [2\hbar/(m\omega)]^{1/2} \langle \alpha | \hat{S} | \alpha \rangle$, and therefore, since $\langle \alpha | \hat{S} | \alpha \rangle = \text{Re } \alpha$, $\langle \alpha | \hat{x} | \alpha \rangle = [2\hbar/(m\omega)]^{1/2} \, \text{Re } \alpha$. The result for $\langle \alpha | \hat{p} | \alpha \rangle$ is obtained in the same way. [1 mark]
- (c) (i) Since $[\hat{a}_{H}(t), \hat{H}_{H}(t)] = \hat{U}(0, t) [\hat{a}, \hat{H}] \hat{U}^{\dagger}(0, t)$, the first step is to calculate $[\hat{a}, \hat{H}]$. We are told that $\hat{H} = \hbar \omega (\hat{a}^{\dagger} \hat{a} + 1/2)$ (a result worth remembering). Since \hat{a} commutes with the 1/2 term, we should simply calculate $[\hat{a}, \hbar \omega \hat{a}^{\dagger} \hat{a}]$ (the calculation makes use of the commutator given in the question, $[\hat{a}, \hat{a}^{\dagger}] = 1$):

$$\begin{aligned} [\hat{a}, \hbar \omega \hat{a}^{\dagger} \hat{a}] &= \hbar \omega \left(\hat{a} \hat{a}^{\dagger} \hat{a} - \hat{a}^{\dagger} \hat{a} \hat{a} \right) \\ &= \hbar \omega \left(\hat{a} \hat{a}^{\dagger} - \hat{a}^{\dagger} \hat{a} \right) \hat{a} \\ &= \hbar \omega \hat{a}. \end{aligned}$$

Thus $[\hat{a}_{\rm H}(t), \hat{H}_{\rm H}(t)] = \hbar \omega \, \hat{U}(0,t) \, \hat{a} \, \hat{U}^{\dagger}(0,t)$. Since $\hat{a}_{\rm H}(t) = \hat{U}(0,t) \, \hat{a} \, \hat{U}^{\dagger}(0,t)$, we obtain $[\hat{a}_{\rm H}(t), \hat{H}_{\rm H}(t)] = \hbar \omega \, \hat{a}_{\rm H}(t)$, as stated in the question. [2 marks]

(ii) The simplest way of showing that $\hat{a}_{\rm H}(t) = \hat{a} \exp(-i\omega t)$ is to check that this Heisenberg operator satisfies that differential equation as well as the initial condition $\hat{a}_{\rm H}(t=0) = \hat{a}$. The latter is obvious: since $\exp(0) = 1$, $\hat{a}_{\rm H}(t) = \hat{a}$ at t=0. For the former, let us first rewrite the equation as

$$\frac{\mathrm{d}\hat{a}_{\mathrm{H}}}{\mathrm{d}t} = \frac{\hbar\omega}{i\hbar}\,\hat{a}_{\mathrm{H}}(t) = -i\omega\,\hat{a}_{\mathrm{H}}(t).$$

Replacing $\hat{a}_{\rm H}(t)$ by $\hat{a} \exp(-i\omega t)$ in this equation yields

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{a}\,\exp(-i\omega t) = -i\omega\,\hat{a}\,\exp(-i\omega t).$$

I.e., since \hat{a} does not depend on time,

$$\hat{a} \frac{\mathrm{d}}{\mathrm{d}t} \exp(-i\omega t) = \hat{a} [-i\omega \exp(-i\omega t)],$$

which is true. Hence $\hat{a}_{\rm H}(t) = \hat{a} \exp(-i\omega t)$ is indeed a solution of that initial condition problem. [2 marks]

Now, you may wonder, could there be another solution? If $\hat{a}_{\rm H}(t)$ was an ordinary function rather than an operator, you know that the answer would be no: the general solution of the equation $dy/dt = -i\omega y(t)$ is $C \exp(-i\omega t)$ where C is an arbitrary constant, and if you impose the condition that y(t) at t_0 is some given y_0 then C is no longer arbitrary but must be equal to y_0 — there is one and only solution of that initial value problem. However, $\hat{a}_{\rm H}(t)$ is an operator, not an ordinary function... In fact, that $\hat{a}_{\rm H}(t)$ is not an ordinary function changes nothing here, the solution of the differential equation is still unique once an initial condition has been specified. Here is a proof: Suppose that $\hat{a}_{\rm H}(t) =$ $\hat{a} \exp(-i\omega t) + \hat{O}(t)$, where $\hat{O}(t)$ is some unknown operator. It is easy to see that this operator must be such that $d\ddot{O}/dt = -i\omega \ddot{O}(t)$ with $\ddot{O}(t=0) = 0$. Hence, for δt small enough, $\hat{O}(t+\delta t) = \hat{O}(t) - i\omega \hat{O}(t)\delta t = (1-i\omega\delta)\hat{O}(t)$. In particular, setting t=0, $\hat{O}(\delta t)=(1-i\omega\delta)\hat{O}(0)=0$. But then $\hat{O}(2\delta t)=(1-i\omega\delta)\hat{O}(\delta t)=0$, $O(3\delta t) = (1 - i\omega\delta)O(2\delta t) = 0$, etc., and we see that O(t) must be zero at all values of t. Hence there is no other solution than $\hat{a} \exp(-i\omega t)$. [No mark for this, but congratulations if you had thought about the issue of uniqueness.

The corresponding result for $\hat{a}_{\rm H}^{\dagger}(t)$ can be obtained simply by taking the adjoint of $\hat{a}_{\rm H}(t)$. In general, the adjoint of the product of an operator \hat{A} by a scalar c is $c^*\hat{A}^{\dagger}$. Thus the adjoint of $\hat{a}_{\rm H}^{\dagger}(t)$ is $[\exp(-i\omega t)]^*\hat{a}^{\dagger}$, which is $\hat{a}^{\dagger}\exp(i\omega t)$. [1 mark]

(iii) Using results obtained previously,

$$\begin{split} \langle x \rangle(t) &= \langle \alpha | \hat{x}_{\mathrm{H}}(t) | \alpha \rangle \\ &= [2\hbar/(m\omega)]^{1/2} \left(\langle \alpha | \hat{a}_{\mathrm{H}}(t) | \alpha \rangle / 2 + \langle \alpha | \hat{a}_{\mathrm{H}}^{\dagger}(t) | \alpha \rangle / 2 \right) \\ &= [2\hbar/(m\omega)]^{1/2} \left[\langle \alpha | \hat{a} | \alpha \rangle \exp(-i\omega t) + \langle \alpha | \hat{a}^{\dagger} | \alpha \rangle \exp(i\omega t) \right] / 2. \end{split}$$

The right-hand side of this equation can be worked out as in Question 2 of the Problem Test: Since $\hat{a}|\alpha\rangle = \alpha|\alpha\rangle$, $\langle\alpha|\hat{a}|\alpha\rangle = \alpha\langle\alpha|\alpha\rangle = \alpha$. Moreover, $\langle\alpha|\hat{a}^{\dagger}|\alpha\rangle = (\langle\alpha|\hat{a}|\alpha\rangle)^* = \alpha^*\langle\alpha|\alpha\rangle^* = \alpha^*$. Therefore

$$\langle x \rangle(t) = [2\hbar/(m\omega)]^{1/2} \left[\alpha \exp(-i\omega t) + \alpha^* \exp(i\omega t) \right] / 2$$

$$= [2\hbar/(m\omega)]^{1/2} \left[|\alpha| \exp(i\arg\alpha) \exp(-i\omega t) + |\alpha| \exp(-i\arg\alpha) \exp(i\omega t) \right] / 2$$

$$= [2\hbar/(m\omega)]^{1/2} |\alpha| \left(\exp[i(\arg\alpha - \omega t)] + \exp[-i(\arg\alpha - \omega t)] \right) / 2$$

$$= [2\hbar/(m\omega)]^{1/2} |\alpha| \operatorname{Re} \exp[i(\arg\alpha - \omega t)]$$

$$= [2\hbar/(m\omega)]^{1/2} |\alpha| \cos(\arg\alpha - \omega t).$$

Likewise,

$$\langle p \rangle(t) = (2\hbar m\omega)^{1/2} \left[\alpha \exp(-i\omega t) - \alpha^* \exp(i\omega t) \right] / (2i)$$

$$= (2\hbar m\omega)^{1/2} \left[|\alpha| \exp(i\arg\alpha) \exp(-i\omega t) - |\alpha| \exp(-i\arg\alpha) \exp(i\omega t) \right] / (2i)$$

$$= (2\hbar m\omega)^{1/2} |\alpha| \left(\exp[i(\arg\alpha - \omega t)] - \exp[-i(\arg\alpha - \omega t)] \right) / (2i)$$

$$= (2\hbar m\omega)^{1/2} |\alpha| \operatorname{Im} \exp[i(\arg\alpha - \omega t)]$$

$$= (2\hbar (m\omega)^{1/2} |\alpha| \sin(\arg\alpha - \omega t).$$

[2 marks]