Лабораторная работа №2 «Разработка простейшего класса на языке Java»

Скоробогатов С.Ю.

7 апреля 2016 г.

1 Цель работы

Целью данной работы является изучение базовых возможностей языка Java.

2 Исходные данные

Каждый публичный класс в языке Java должен размещаться в отдельном файле, базовая часть имени которого совпадает с именем класса. В данной лабораторной работе потребуется разработать два класса: основной класс, реализующий функциональность в соответствии с вариантом задания, и вспомогательный класс Test, демонстрирующий работоспособность основного класса. Соответственно, создаваемый в рамках лабораторной работы проект будет состоять из двух файлов: файла с основным классом и файла Test.java. Эти файлы нужно разместить в одном каталоге.

Компиляция нашего проекта с командной строки может быть выполнена с помощью команды

javac Test.java

Файл, содержащий основной класс, в командной строке компилятора Java можно не указывать: компилятор увидит, что основной класс используется в классе Test и автоматически найдёт и откомпилирует содержащий его файл.

Отметим, что при программировании на языке Java следует соблюдать следующие соглашения об именовании сущностей программы:

- 1. Имена классов должны быть существительными и должны начинаться с заглавной буквы. Бывают сложные имена классов, состоящие из нескольких слов. В этом случае каждое слово в составе имени класса начинается с заглавной буквы. Например, Color, HashSet, DoubleLinkedList.
- 2. Имена методов должны быть глаголами и должны начинаться с прописной (т.е. маленькой) буквы. В сложных именах, состоящих из нескольких слов, первое слово начинается с прописной буквы, а следующие слова с заглавных букв. Например, insert, extractMax, convertToDouble.

3. Имена переменных, параметров и полей должны быть существительными, начинающимися с прописной буквы. В сложных именах, состоящих из нескольких слов, первое слово начинается с прописной буквы, а следующие слова – с заглавных букв.

Для вывода объектов в стандартный поток вывода удобно определить человекочитаемое текстовое представление объектов. Для этого в языке Java предусмотрен метод toString:

```
public String toString()
```

Любой класс по умолчанию наследует реализацию этого метода от класса Object. Однако, эта реализация не очень информативна, и поэтому имеет смысл переопределять метод toString в каждом классе, объекты которого может потребоваться переводить в текстовую форму. Как это сделать, демонстрируется в следующем примере:

```
public class Point {
    private double x, y;

public Point(double x, double y) {
    this.x = x;
    this.y = y;
}

public String toString() {
    return "(" + x + ", " + y + ")";
}
}
```

Metog toString автоматически вызывается при печати объекта с помощью System.out.println и при конкатенации строки и объекта. Например, следующая программа напечатает (10.0, 20.0):

```
public class Test {
    public static void main(String[] args) {
        Point p = new Point(10, 20);
        System.out.println(p);
    }
}
```

3 Задание

Выполнение лабораторной работы заключается в составлении на языке Java одного из классов, приведённых в таблицах 1–3. В классе обязательно должны присутствовать конструктор и метод toString.

Отладку разработанного класса необходимо осуществить в методе main вспомогательного класса Test.

Использование контейнерных классов из стандартной библиотеки языка Java не разрешается.

Таблица 1: Варианты классов

1	Класс полиномов с вещественными коэффициентами и операцией вычисления
	значения полинома в точке.
2	Класс <i>п</i> -мерных вещественных векторов с операцией скалярного произведения.
3	Класс векторов в трёхмерном пространстве с операцией векторного произведения.
4	Класс комплексных чисел с четырьмя арифметическими операциями.
5	Класс, представляющий конечное множество целых чисел с операцией
	пересечения.
6	Класс, представляющий конечное множество целых чисел с операцией
	симметрической разности.
7	Класс, представляющий элемент однонаправленного списка целых чисел, с
	операцией поиска целого числа в списке.
8	Класс, представляющий элемент двунаправленного кольцевого списка строк с
	ограничителем, с операцией удаления элемента из списка.
9	Класс двоичных беззнаковых целых чисел произвольной разрядности с операцией
	сложения (число должно быть представлено булевским массивом).
10	Класс двоичных знаковых целых чисел произвольной разрядности с операцией
	изменения знака (число должно быть представлено булевским массивом в
	дополнительном коде).
11	Класс интервалов на вещественной оси с операциями определения вхождения
	одного интервала в другой, пересечения двух интервалов и определения
	принадлежности числа интервалу.
12	Класс, представляющий последовательность целых чисел с операцией выделения
	подпоследовательности с максимальной суммой элементов (реализовать алгоритм
	Кадана).
13	Класс треугольников в трёхмерном пространстве с операцией вычисления
	площади.
14	Класс ломаных линий в двумерном пространстве с операцией вычисления длины
	ломаной.
15	Класс квадратных целочисленных матриц с операцией вычисления определителя.
16	Класс, представляющий полином с целыми коэффициентами с операцией деления
	полинома с остатком.
17	Класс, представляющий конечное множество точек на плоскости с операцией
	вычисления минимальной площади прямоугольника, содержащего все точки.
18	Класс прямых на плоскости с операцией вычисления точки пересечения.
19	Класс прямых на плоскости с операцией вычисления перпендикуляра,
	проходящего через точку.
20	Класс полиномов с операцией формирования производной.
21	Класс десятичных беззнаковых целых чисел произвольной разрядности с
00	операцией сложения (число должно быть представлено массивом цифр).
22	Класс десятичных беззнаковых целых чисел произвольной разрядности с
	операцией умножения на число от 0 до 9 (число должно быть представлено
00	массивом цифр).
23	Класс нормализованных простых дробей с операциями сложения и умножения.
24	Класс, представляющий множество целых чисел от 0 до 63 с операциями
	объединения, пересечения и проверки принадлежности числа множеству
	(множество должно быть представлено битовой маской типа long).

Таблица 2: Варианты классов

	Таблица 2: Варианты классов
25	Класс, представляющий 64-битное число с фиксированной точкой (32 бита на
	целую часть, 32 бита – на дробную) с операциями сложения и умножения.
26	Класс, представляющий разложение целого знакового числа в последовательность
	цифр в позиционной системе счисления по основанию d , где $1 < d \le 36$, с
	операциями чтения указанной цифры числа и знака числа.
27	Класс симметричных квадратных целочисленных матриц с операциями чтения и
	записи указанного элемента (часть матрицы, расположенную выше главной
	диагонали, хранить не надо).
28	Класс окружностей с операцией вычисления точек пересечения окружности и
	отрезка прямой.
29	Класс арифметических прогрессий с операциями определения принадлежности
	числа прогрессии и вычисления суммы n первых членов прогрессии.
30	Класс, представляющий вершину бинарного дерева поиска с операциями
	добавления словарных пар и поиска пары по ключу (ключи – целые числа,
	значения – строки, операции удобно реализовать через рекурсию).
31	Класс, представляющий кольцевой буфер фиксированного размера, состоящий из
	целых чисел, с операциями empty, enqueue и dequeue.
32	Класс, представляющий очередь с приоритетами фиксированного размера, с
	операциями empty, insert и extractMax (элементы очереди – целые числа).
33	Класс вещественных квадратных матриц с операцией быстрого возведения
	матрицы в указанную степень.
34	Класс, представлящий последовательность чисел Фибоначчи с операцией
	получения n -го числа Фибоначчи (вычисление чисел должно быть ленивым, т.е. ни
	одно число не должно вычисляться до вызова операции, и ни одно число не
	должно вычисляться дважды).
35	Класс, представляющий последовательность простых чисел с операцией получения
	n-го простого числа (вычисление чисел должно быть ленивым, т.е. ни одно число
	не должно вычисляться до вызова операции, и ни одно число не должно
	вычисляться дважды).
36	Класс, представляющий динамически растущий стек целых чисел с операциями
	empty, push и pop.
37	Класс многоугольников на плоскости с операциями добавления вершины, удаления
	вершины и определения выпуклости многоугольника (у выпуклого многоугольника
	все векторные произведения смежных сторон должны быть однонаправлены).
38	Класс, представляющий шашечную доску размером $n \times n$ с операциями установки
	шашки, удаления шашки и определения содержимого клетки (координаты шашки
	задаются в стандартной нотации строками – Е3, С1 и т.п., хранить нужно только
	содержимое чёрных клеток, шашки могут быть дамками).
39	Класс целочисленных матриц размера $m \times n$ с операциями добавления и удаления
	столбцов и строк.
40	Класс, представляющий полином с вещественными коэффициентами с операцией
	умножения на полином.
41	Класс, представляющий доску для игры в крестики-нолики размером $n \times n$ с
	операциями установки крестика или нолика и определения окончания игры.

Таблица 3: Варианты классов

	таолица з: варианты классов
42.	Класс, представляющий последовательность булевских значений размера n с
	операциями чтения и изменения указанного члена последовательности (в объекте
	класса последовательность должна быть представлена массивом байтов, по восемь
	булевских значений на байт).
43.	Класс бинарных отношений на подмножестве целых чисел от 0 до n с двумя
	операциями: проверка принадлежности пары чисел отношению; вычисление
	транзитивного замыкания отношения.
44.	Класс бинарных отношений на множестве символов ASCII с тремя операциями:
	проверка принадлежности пары символов отношению; добавление пары символов
	в отношение; проверка, является ли отношение отношением эквивалентности.
45.	Класс бинарных отношений на подмножестве целых чисел от 0 до n с тремя
	операциями: проверка принадлежности пары чисел отношению; добавление пары
	чисел в отношение; вычисление композиции данного отношения с другим
	отношением.