SCHOOL OF ENGINEERING

Form to accompany draft examination papers sent to external examiners

Course Code, ECRERA
Course Code: EG3521
Diet of Examinations: May 2014
Materials required to be provided in the examination room when the examination is sat (in addition to the question paper and answer booklets): Unit converter, psychometric chart, R-134a refrigeration and water-steam tables.
Are candidates permitted to use approved calculators in the examination? Yes.
Details of materials which candidates are permitted to take into the examination room and use when answering the examination paper (in addition to writing and drawing instruments, and approved calculators where permitted): -
Details of any departures from the agreed syllabus for this course:
Any information which the examiners feel should be communicated to the external examiners:
The examination paper has been prepared and scrutinised following current procedures: Course Organiser Scrutineer
<u> </u>

UNIVERSITY OF ABERDEEN SESSION 2013–2014

Degree Examination in EG3521 Engineering Thermodynamics 0th May 2014 00.00–00.00

Notes: (i) Candidates ARE permitted to use an approved calculator.

- (ii) Candidates ARE permitted to use steam tables, which will be provided.
- (iii) Candidates ARE permitted to use refrigerant tables, which will be provided.
- (iv) Candidates ARE permitted to use psychrometric chart, which will be provided.
- (v) Data sheets are attached to the paper.

PLEASE NOTE THE FOLLOWING

- (i) You **must not** have in your possession any material other than that expressly permitted in the rules appropriate to this examination. Where this is permitted, such material **must not** be amended, annotated or modified in any way.
- (ii) You **must not** have in your possession any material that could be determined as giving you an advantage in the examination.
- (iii) You **must not** attempt to communicate with any candidate during the exam, either orally or by passing written material, or by showing material to another candidate, nor must you attempt to view another candidate's work.

Failure to comply with the above will be regarded as cheating and may lead to disciplinary action as indicated in the Academic Quality Handbook (www.abdn.ac.uk/registry/quality/appendix7x1.pdf) Section 4.14 and 5.

Candidates must attempt all questions.

A steam power plant operates with coupled regenerative and reheat Rankine cycle with 2 connected turbines as shown in Fig. 1. Primary steam is supplied by the boiler at 120 bar and 565°C. Conditions for water/steam flows are described in Table 1.

Figure 1: Reheat and regenerative Rankine cycle with 2 turbines.

Table 1: Thermodynamic table of the reheat and regenerative Rankine
--

Stage	P	T	State	H	S	Steam
	(bar)	$(^{o}\mathbf{C})$		$(\mathrm{kJ.kg^{-1}})$	$(\mathrm{kJ.(kg.K})^{-1})$	Quality
1	120	565	(a)	(b)	(c)	_
\parallel 2	3	_	wet vapour	(d)	_	(e)
3	3	250	_	_	_	_
4	3	475	_	_	_	_
5	0.06	_	wet vapour	(f)	_	(g)
6	_	_	sat.liquid	(h)	_	_
7	3	_	_	(i)	_	_
8	3	_	_	_	_	_
9	120	_	_	(j)	_	_

(a) In Table 1, determine (a)-(j). [10 marks]

(b) Calculate the fraction (as %) of steam supplied to the low-pressure (LP) turbine.

[2 marks]

(c) Determine the heat supplied by the boiler. [2 marks]

(d) Determine the thermal efficiency of the cycle, [6 marks]

$$\eta = \frac{W_{Total}}{Q_{Boiler}} = \frac{\sum W_{\text{Turbines}} - \sum W_{\text{Pumps}}}{Q_{Boiler}}$$

To solve this problem, you should assume that the saturated liquid streams are incompressible, and therefore dH = VdP (where H, V and P are enthalpy, volume and pressure, respectively). Quality of the steam is expressed as

$$x_j = \frac{\Psi_j - \Psi_f}{\Psi_g - \Psi_f}$$
 with $\Psi = \{H, S\}$

Refrigerant R-134a is used in a geothermal heat pump system (Fig. 2) to a storage in an industrial facility at 40°C. The heat pump uses underground water from a well to produce a heating capacity of 6 tons. Determine:

Figure 2: Heat pump cycle.

- 1. Enthalpies and Entropies: H_i , S_i with $i = \{1, 2, 3, 4\}$; [8 marks]
- 2. Volumetric flow rate of heated air to the room (m^3/s) ; [3 marks]
- 3. Mass flow rate of the R-134a refrigerant fluid; [3 marks]
- 4. Compressor power (W_C) in kW; [3 marks]
- 5. Coefficient of performance $\left(\text{COP} = \frac{Q_H}{W_C}\right)$; [3 marks]

Given the heat capacity, $C_p^{\text{air}} = 1.004 \ kJ. (kg.K)^{-1}$, and molecular weight, $MW^{\text{air}} = 28.97 \ kg.kgmol^{-1}$ of air. Assume that air behaves as an ideal gas. Quality of the vapour is expressed as

$$x_j = \frac{\Psi_j - \Psi_f}{\Psi_g - \Psi_f}$$
 with $\Psi = \{H, S\}$

A steady flow energy device formed of a turbine with one inlet (labelled 1), and two outlets (labelled 2 and 3), does work on an ideal gas at a rate of 120 kW. The specific gas constant $R = 287 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ and the specific heat capacity at constant pressure $c_p = 1003 \,\mathrm{J\,kg^{-1}\,K^{-1}}$, while the known conditions at the inlet and each outlet are given in table 2.

Table 2:	Inlet and	outlet	conditions	for the	arepsilon $steady$,	flow device

Inlet/Outlet	Area	Volume flux	Temperature	Pressure	Height
	$A (\mathrm{m}^2)$	$q \left(\mathrm{m}^3 \mathrm{s}^{-1} \right)$	T (°C)	p (Pa)	z (m)
1	0.1	2.0	20	?	0.0
2	0.1	1.0	50	200000	10.0
3	0.05	1.0	90	100000	4.0

(a) The steady flow energy equation for a steady flow device with one inlet and one outlet is

$$\frac{\dot{Q} - \dot{W}_s}{\dot{m}} = \left(c_p T_{\text{outlet}} + \frac{u_{\text{outlet}}^2}{2} + g z_{\text{outlet}}\right) - \left(c_p T_{\text{outlet}} + \frac{u_{\text{outlet}}^2}{2} + g z_{\text{inlet}}\right),$$

where u is the gas velocity, \dot{Q} is the rate of heat addition and \dot{W}_s is the rate at which shaft work is done on the gas. Explain how this equation should be changed to model the device described above. [4 marks]

(b) Calculate the gas velocity at the inlet and each outlet; [3 marks]

(c) Determine the pressure at the inlet; [5 marks]

(d) What is the relative percentage error if the gravitational potential energy terms are neglected when calculating the rate of heat transfer \dot{Q} ? [8 marks]

(a) Gas flows along a pipe of slowly varying cross section in the direction of increasing x. By considering the rate of change of the mass of gas within a small section of pipe and the gas mass fluxes into and out of this section of pipe, show that

$$\frac{\partial}{\partial t}(\rho A) + \frac{\partial}{\partial x}(\rho u A) = 0.$$

Here the gas velocity u, density ρ and pipe cross section A are all functions of x and time t.

(b) Explain what is meant by a steady flow and show that for steady flow in a pipe of uniform cross section

$$\frac{1}{\rho}\frac{\mathrm{d}\rho}{\mathrm{d}x} + \frac{1}{u}\frac{\mathrm{d}u}{\mathrm{d}x} = 0.$$

[4 marks]

(c) For steady compressible flow in a uniform pipe, using the conservation of energy and the laws of thermodynamics; changes in the entropy s, is related to changes in the pressure pressure p, density ρ and velocity u, through

$$T ds + \frac{dp}{\rho} + u du = 0.$$

Hence show that the change in pressure and the change in entropy as fluid flows are related through

$$\left(1 - \frac{u^2}{c^2}\right) \frac{\mathrm{d}p}{\mathrm{d}x} = -\rho T \left(1 + \frac{u^2 \beta}{c_p}\right) \frac{\mathrm{d}s}{\mathrm{d}x}.$$

In the derivation of this result, you may additionally assume that a change in gas density

$$\mathrm{d}\rho = \frac{\mathrm{d}p}{c^2} - \frac{\rho\beta T}{c_p}\mathrm{d}s,$$

where c is the speed of sound, β is the thermal expansion coefficient and c_p is the specific heat capacity as constant pressure. [8 marks]

(d) Define a Mach number, and (with reference to the result derived in part (c)), explain how the pressure changes as a compressible fluid flows subsonically along a pipe of uniform cross section. [3 marks]

(a) Define the specific humidity ω . Assuming both dry air and water vapour behave like ideal gases with specific gas constants $R_a = 0.2871 \text{ kJ/(kg.K)}$ and $R_v = 0.4615 \text{ kJ/(kg.K)}$, respectively, show that

$$\omega = \frac{0.622p_v}{p - p_v},$$

where p is the absolute pressure and p_v is the partial pressure of water vapour. [5 marks]

(b) Define the relative humidity φ , and hence show that

$$\omega = \frac{0.622\varphi p_g}{p - \varphi p_q},$$

where the saturation pressure of water is denoted p_q .

[3 marks]

- (c) Air enters an air-conditioning system at 1 atm, 35°C and 60% relative humidity, at a rate of $12\,\mathrm{m}^3/\mathrm{min}$. Saturated air leaves the air-conditioning system at a temperature of 16°C. The moisture in the air that condenses during the process is removed at 16°C, while the specific enthalpy of liquid water at 16°C is $67.22\,\mathrm{kJ/kg}$.
 - i) Determine the rate of moisture removal from the air;

[7 marks]

ii) Determine the rate of heat removal from the air.

[5 marks]

END OF PAPER

TABLE V

Conversion Factors

Force

Pressure

 $1 \,\mathrm{bar}$ = $750.06 \,\mathrm{mm}\,\mathrm{Hg}$

= 0.9869 atm= 10^5 N/m^2 = 10^3 kg/m-sec^2

 1 N/m^2 = 1 pascal

= $10^{-5} \,\text{bar}$ = $10^{-2} \,\text{kg/m-sec}^2$

1 atm = 760 mm Hg

= $1.03 \text{ kgf/cm}^2 = 1.01325 \text{ bar}$ = $1.01325 \times 10^5 \text{ N/m}^2$

Work, Energy or Heat

1 joule = 1 newton metre

1 watt-sec

 $= \quad \ 2.7778 \times 10^{-7} \, \text{kWh}$

0.239 cal

 $= \quad 0.239\times 10^{-3}\,\mathrm{kcal}$

1 cal = 4.184 joule

= $1.1622 \times 10^{-6} \text{ kWh}$

 $1 \text{ kcal} = 4.184 \times 10^3 \text{ joule}$

 $427~\mathrm{kgfm}$

 $= 1.1622 \times 10^{-3} \text{ kWh}$

 $1 \text{ kWh} = 8.6 \times 10^5 \text{ cal}$

= 860 kcal

= 3.6×10^6 joule

 $1 \text{ kgfm} \hspace{1.5cm} = \hspace{1.5cm} \left(\frac{1}{427}\right) \text{ kcal} = 9.81 \text{ joules}$

Power

 $1\,watt \hspace{1.5cm} = \hspace{.5cm} 1\,joule/sec = 0.86\,kcal/h$

1 h.p. = 75 mkgf/sec = 0.1757 kcal/sec

= 735.3 watt

1 kW = 1000 watts

= 860 kcal/h

Specific heat

 $1 \text{ kcal/kg - °K} \qquad \qquad = \quad 4.18 \text{ kJ/kg-K}$

Thermal conductivity

 $\begin{array}{lll} 1 \; watt/m\text{-}K & = & 0.8598 \; kcal/h\text{-}m\text{-}^{\circ}\text{C} \\ 1 \; kcal/h\text{-}m\text{-}^{\circ}\text{C} & = & 1.16123 \; watt/m\text{-}K \\ & = & 1.16123 \; joules/s\text{-}m\text{-}K \end{array}$

Heat transfer co-efficient

 $\begin{array}{lll} 1~\text{watt/m}^2\text{-K} & = & 0.86~\text{kcal/m}^2\text{-h-}^\circ\text{C} \\ 1~\text{kcal/m}^2\text{-h-}^\circ\text{C} & = & 1.163~\text{watt/m}^2\text{-K} \end{array}$

IMPORTANT ENGINEERING CONSTANTS AND EXPRESSIONS IN SI UNITS

	Engineering constants and expressions	M.K.S. system	S.I. units
1.	Value of g_0	9.81 kg-m/kgf-sec ²	1 kg-m/N-sec ²
2.	Universal gas constant	848 kgf-m/kg mole-°K	$848 \times 9.81 = 8314 \text{ J/kg-mole-}^{\circ}\text{K}$ ($\because 1 \text{ kgf-m} = 9.81 \text{ joules})$
3.	Gas constant (R)	29.27 kgf m/kg-°K for air	$\frac{8314}{29} = 287 \text{ joules/kg-K for air}$
4.	Specific heats (for air)	$c_v = 0.17~\rm kcal/kg\text{-}^{\circ}K$	$c_v = 0.17 \times 4.184$
		$c_p = 0.24~\rm kcal/kg\text{-}^{\circ}K$	= 0.71128 kJ/kg-K $c_p = 0.24 \times 4.184$ = 1 kJ/kg-K
5.	Flow through nozzle-exit velocity (C_2)	$91.5 \text{\ensuremath{\sqrt{U}}}$ where U is in kcal	$44.7\mathrm{\sqrt{U}}$ where U is in kJ
6.	Refrigeration 1 ton	= 50 kcal/min	= 210 kJ/min
7.	Heat transfer		
	The Stefan Boltzman Law is given by :	$\label{eq:quantum} \begin{split} Q &= \sigma T^4 \; kcal/m^2\text{-}h \\ when \; \sigma &= 4.9 \times 10^{-8} \\ kcal/h\text{-}m^2\text{-}{}^\circ K^4 \end{split}$	$\label{eq:Q} \begin{split} Q &= \sigma T^4 \ watts/m^2\text{-h} \\ when \ \sigma &= 5.67 \times 10^{-8} \\ W/m^2 K^4 \end{split}$

 ${\bf TABLE~II}$ Saturated Water and Steam (Pressure) Tables

Absolute pressure	Temp.	Spe	ecific entha	lpy	Sp	ecific entro (kJ/kg K)		Specific volume (m³/kg)		
(bar) p	t_s	h_f	h_{fg}	h_g	s_f	s_{fg}	s_g	v_f	v_g	
0.006113	0.01	0.01	2501.3	2501.4	0.000	9.156	9.156	0.0010002	206.14	
0.010	7.0	29.3	2484.9	2514.2	0.106	8.870	8.976	0.0010000	129.21	
0.015	13.0	54.7	2470.6	2525.3	0.196	8.632	8.828	0.0010007	87.98	
0.020	17.0	73.5	2460.0	2533.5	0.261	8.463	8.724	0.001001	67.00	
0.025	21.1	88.5	2451.6	2540.1	0.312	8.331	8.643	0.001002	54.25	
0.030	24.1	101.0	2 444.5	2545.5	0.355	8.223	8.578	0.001003	45.67	
0.035	26.7	111.9	2438.4	2550.3	0.391	8.132	8.523	0.001003	39.50	
0.040	29.0	121.5	2432.9	2554.4	0.423	8.052	8.475	0.001004	34.80	
0.045	31.0	130.0	2428.2	2558.2	0.451	7.982	8.433	0.001005	31.13	
0.050	32.9	137.8	2423.7	2561.5	0.476	7.919	8.395	0.001005	28.19	
0.055	34.6	144.9	2419.6	2565.5	0.500	7.861	8.361	0.001006	25.77	
0.060	36.2	151.5	2 415.9	2567.4	0.521	7.809	8.330	0.001006	23.74	
0.065	37.6	157.7	2412.4	2570.1	0.541	7.761	8.302	0.001007	22.01	
0.070	39.0	163.4	2409.1	2572.5	0.559	7.717	8.276	0.001007	20.53	
0.075	40.3	168.8	2406.0	2574.8	0.576	7.675	8.251	0.001008	19.24	
0.080	41.5	173.9	2403.1	2577.0	0.593	7.636	8.229	0.001008	18.10	
0.085	42.7	178.7	2 400.3	2 579.0	0.608	7.599	8.207	0.001009	17.10	
0.090	43.8	183.3	2397.7	2581.0	0.622	7.565	8.187	0.001009	16.20	
0.095	44.8	187.7	2395.2	2582.9	0.636	7.532	8.168	0.001010	15.40	
0.10	45.8	191.8	2392.8	2584.7	0.649	7.501	8.150	0.001010	14.67	
0.11	47.7	199.7	2 388.3	2 588.0	0.674	7.453	8.117	0.001011	13.42	
0.12	49.4	206.9	2384.2	2591.1	0.696	7.390	8.086	0.001012	12.36	
0.13	51.0	213.7	2380.2	2593.9	0.717	7.341	8.058	0.001013	11.47	
0.14	52.6	220.0	2376.6	2596.6	0.737	7.296	8.033	0.001013	10.69	
0.15	54.0	226.0	2 373.2	2 599.2	0.7549	7.2544	8.0093	0.001014	10.022	
0.16	55.3	231.6	2370.0	2 601.6	0.7721	7.2148	7.9869	0.001015	9.433	
0.17	56.6	236.9	2 366.9	2 603.8	0.7883	7.1775	7.9658	0.001015	8.911	
0.18	57.8	242.0	2 363.9	2605.9	0.8036	7.1424	7.9459	0.001016	8.445	
0.19	59.0	246.8	2361.1	2607.9	0.8182	7.1090	7.9272	0.001017	8.027	
0.20	60.1	251.5	2 358.4	2 609.9	0.8321	7.0773	7.9094	0.001017	7.650	
0.21	61.1	255.9	2 355.8	2611.7	0.8453	7.047 2	7.8925	0.001017	7.307	
0.22	62.2	260.1	2 353.3	2613.5	0.8581	7.018 4	7.8764	0.001018	6.995	
0.23	63.1	264.2	2 350.9	2615.2	0.8702	6.9908	7.8611	0.001010	6.709	
0.24	64.1	268.2	2 348.6	2616.8	0.8820	6.9644	7.8464	0.001019	6.447	

Absolute pressure	Temp. (°C)	Specific enthalpy (kJ/kg)				cific entro (kJ / kg K)	ру	Specific volume (m³/kg)	
(bar)	()		(119 / 119)		,			(*** / ***	0
p	t_s	h_f	h_{fg}	h_{g}	s_f	$s_{\it fg}$	s_g	v_f	v_g
0.25	65.0	272.0	2346.4	2618.3	0.8932	6.9391	7.8323	0.001020	6.205
0.26	65.9	275.7	2344.2	2619.9	0.9041	6.9147	7.8188	0.001020	5.980
0.27	66.7	279.2	2342.1	2621.3	0.9146	6.8912	7.8058	0.001021	5.772
0.28	67.5	282.7	2340.0	2622.7	0.9248	6.8685	7.7933	0.001021	5.579
0.29	68.3	286.0	2338.1	2624.1	0.9346	6.8466	7.7812	0.001022	5.398
0.30	69.1	289.3	2336.1	2625.4	0.9441	6.8254	7.7695	0.001022	5.229
0.32	70.6	295.5	2332.4	2628.0	0.9623	6.7850	7.7474	0.001023	4.922
0.34	72.0	301.5	2328.9	2630.4	0.9795	6.7470	7.7265	0.001024	4.650
0.36	73.4	307.1	2325.5	2632.6	0.9958	6.7111	7.7070	0.001025	4.408
0.38	74.7	312.5	2322.3	2634.8	1.0113	6.6771	7.6884	0.001026	4.190
0.40	75.9	317.7	2319.2	2636.9	1.0261	6.6448	7.6709	0.001026	3.993
0.42	77.1	322.6	2316.3	2638.9	1.0402	6.6140	7.6542	0.001027	3.815
0.44	78.2	327.3	2313.4	2640.7	1.0537	6.5846	7.6383	0.001028	3.652
0.46	79.3	331.9	2310.7	2642.6	1.0667	6.5564	7.6231	0.001029	3.503
0.48	80.3	336.3	2308.0	2644.3	1.0792	6.5294	7.6086	0.001029	3.367
0.50	81.3	340.6	2305.4	2646.0	1.0912	6.5035	7.5947	0.001030	3.240
0.55	83.7	350.6	2299.3	2649.9	1.1194	6.4428	7.5623	0.001032	2.964
0.60	86.0	359.9	2293.6	2653.6	1.1454	6.3873	7.5327	0.001033	2.732
0.65	88.0	368.6	2288.3	2656.9	1.1696	6.3360	7.5055	0.001035	2.535
0.70	90.0	376.8	2283.3	2660.1	1.1921	6.2883	7.4804	0.001036	2.369
0.75	92.0	384.5	2278.6	2663.0	1.2131	6.2439	7.4570	0.001037	2.217
0.80	93.5	391.7	2274.0	2665.8	1.2330	6.2022	7.4352	0.001039	2.087
0.85	95.1	398.6	2269.8	2668.4	1.2518	3.1629	7.4147	0.001040	1.972
0.90	96.7	405.2	2265.6	2670.9	1.2696	6.1258	7.3954	0.001041	1.869
0.95	98.2	411.5	2261.7	2673.2	1.2865	6.0906	7.3771	0.001042	1.777
1.0	99.6	417.5	2257.9	2675.4	1.3027	6.0571	7.3598	0.001043	1.694
1.1	102.3	428.8	2250.8	2679.6	1.3330	5.9947	7.3277	0.001046	1.549
1.2	104.8	439.4	2244.1	2683.4	1.3609	5.9375	7.2984	0.001048	1.428
1.3	107.1	449.2	2237.8	2687.0	1.3868	5.8847	7.2715	0.001050	1.325
1.4	109.3	458.4	2231.9	2690.3	1.4109	5.8356	7.2465	0.001051	1.236
		105 1	0.000	2.052 :	4 400 0	F =	= 000 :		4 4
1.5	111.3	467.1	2 226.2	2 693.4	1.433 6	5.7898	7.233 4	0.001053	1.159
1.6	113.3	475.4	2 220.9	2 696.2	1.455 0	5.7467	7.2017	0.001055	1.091
1.7	115.2	483.2	2 215.7	2 699.0	1.475 2	5.706 1	7.1813	0.001056	1.031
1.8	116.9	490.7	2 210.8	2 701.5	1.494 4	5.6678	7.1622	0.001058	0.977
1.9	118.6	497.8	2206.1	2704.0	1.5127	5.6314	7.1440	0.001060	0.929

Absolute pressure (bar)	Temp.	Specific enthalpy (kJ/kg)			l .	ecific entro (kJ/kg K)	py	Specific volume (m³/kg)		
p	t_s	h_f	$h_{f\!g}$	h_g	s_f	s_{fg}	s_g	v_f	v_g	
2.0	120.2	504.7	2 201.6	2 706.3	1.530 1	5.5967	7.1268	0.001061	0.885	
2.1	121.8	511.3	2197.2	2708.5	1.5468	5.5637	7.1105	0.001062	0.846	
2.2	123.3	517.6	2193.0	2710.6	1.562 7	5.5321	7.0949	0.001064	0.810	
2.3	124.7	523.7	2188.9	2712.6	1.5781	5.5019	7.0800	0.001065	0.777	
2.4	126.1	529.6	2184.9	2714.5	1.5929	5.4728	7.0657	0.001066	0.746	
2.5	127.4	535.3	2 181.0	2716.4	1.607 1	5.4449	7.0520	0.001068	0.718	
2.6	128.7	540.9	2 177.3	2718.2	1.6209	5.4180	7.0389	0.001069	0.693	
2.7	129.9	546.2	2 173.6	2719.9	1.6342	5.3920	7.0262	0.001070	0.668	
2.8	131.2	551.4	2 170.1	2721.5	1.647 1	5.3670	7.0140	0.001071	0.646	
2.9	132.4	556.5	2 166.6	2723.1	1.6595	5.3427	7.0023	0.001072	0.625	
3.0	133.5	561.4	2 163.2	2 724.7	1.6716	5.3193	6.9909	0.001074	0.606	
3.1	134.6	566.2	2 159.9	2724.7	1.6834	5.2965	6.979 9	0.001074	0.587	
3.2	135.7	570.9	2159.9 2156.7	2 720.1	1.6948	5.2744	6.969 2	0.001075	0.570	
3.3	136.8	570.5 575.5	2 150.7	2727.0	1.7059	5.253 0	6.958 9	0.001070	0.554	
3.4	137.8	575.5 579.9	2155.5 2150.4	2 729.0	1.705 9	5.2322	6.948 9	0.001077	0.534	
0.4	157.6	519.9	2 130.4	Z 150.5	1.7100	5.252 Z	0.940 9	0.001078	0.556	
3.5	138.8	584.3	2147.4	2731.6	1.727 3	5.2119	6.9392	0.001079	0.524	
3.6	139.8	588.5	2144.4	2732.9	1.737 6	5.1921	6.9297	0.001080	0.510	
3.7	140.8	592.7	2141.4	2734.1	1.747 6	5.1729	6.9205	0.001081	0.497	
3.8	141.8	596.8	2138.6	2735.3	1.7574	5.1541	6.9116	0.001082	0.486	
3.9	142.7	600.8	2135.7	2736.5	1.7670	5.135 8	6.9028	0.001083	0.473	
4.0	143.6	604.7	2 133.0	2737.6	1.7764	5.1179	6.8943	0.001084	0.462	
4.2	145.4	612.3	2127.5	2739.8	1.7945	5.0834	6.8779	0.001086	0.441	
4.4	147.1	619.6	2122.3	2741.9	1.8120	5.0503	6.8623	0.001088	0.423	
4.6	148.7	626.7	2117.2	2743.9	1.8287	5.0186	6.8473	0.001089	0.405	
4.8	150.3	633.5	2112.2	2745.7	1.8448	4.9881	6.8329	0.001091	0.390	
5.0	151.8	640.1	2 107.4	2747.5	1.8604	4.9588	6.8192	0.001093	0.375	
5.2	153.3	646.5	2 102.7	2749.3	1.8754	4.9306	6.805 9	0.001003	0.361	
5.4	154.7	652.8	2 098.1	2750.9	1.8899	4.9033	6.793 2	0.001034	0.348	
5.6	156.2	658.8	2 093.7	2 752.5	1.9040	4.8769	6.7809	0.001030	0.337	
5.8	157.5	664.7	2 089.3	2 754.0	1.9176		6.769 0	0.001099	0.326	
6.0	1500	670.4	2.095.0	9.755 F	1 020 9	4.8267	6 757 5	0.001101	0.315	
6.0	158.8	670.4	2 085.0	2 755.5	1.930 8		6.757 5	0.001101		
6.2	160.1	676.0	2 080.9	2 756.9	1.943 7	4.8027	6.7464	0.001102	0.306	
6.4	161.4	681.5	2 076.8	2 758.2	1.956 2	4.7794	6.7356	0.001104	0.297	
6.6	162.6	686.8	2 072.7	2759.5	1.968 4	4.7568	6.725 2	0.001105	0.288	
6.8	163.8	692.0	2068.8	2760.8	1.980 2	4.7348	6.7150	0.001107	0.280	

Absolute	Temp.	Sp	ecific entha	lpy		ecific entre	ору	Specific v	
pressure	(°C)		(kJ/kg)			$(kJ/kg\ K)$		(m^3/k)	g)
(bar)									
p	t_s	h_f	h_{fg}	h_g	s_f	s_{fg}	s_g	v_f	v_g
7.0	165.0	697.1	2 064.9	2 762.0	1.9918	4.7134	6.705 2	0.001108	0.273
7.2	166.1	702.0	2061.1	2763.2	2.003 1	4.6925	6.6956	0.001110	0.265
7.4	167.2	706.9	2057.4	2764.3	2.014 1	4.6721	6.6862	0.001111	0.258
7.6	168.3	711.7	2053.7	2765.4	2.0249	4.6522	6.677 1	0.001112	0.252
7.8	169.4	716.3	2050.1	2766.4	2.0354	4.6328	6.6683	0.001114	0.246
8.0	170.4	720.9	2046.5	2 767.5	2.045 7	4.6139	6.6596	0.001115	0.240
8.2	171.4	725.4	2043.0	2768.5	2.0558	4.5953	6.6511	0.001116	0.235
8.4	172.4	729.9	2039.6	2769.4	2.0657	4.5772	6.6429	0.001118	0.229
8.6	173.4	734.2	2036.2	2770.4	2.0753	4.5594	6.6348	0.001119	0.224
8.8	174.4	738.5	2032.8	2771.3	2.0848	4.5421	6.6269	0.001120	0.219
9.0	175.4	742.6	2 029.5	2772.1	2.094 1	4.525 0	6.6192	0.001121	0.215
9.2	176.3	746.8	2026.2	2773.0	2.1033	4.5083	6.6116	0.001123	0.210
9.4	177.2	750.8	2023.0	2773.8	2.1122	4.4920	6.6042	0.001124	0.206
9.6	178.1	754.8	2019.8	2774.6	2.1210	4.4759	6.5969	0.001125	0.202
9.8	179.0	758.7	2016.7	2775.4	2.1297	$4.460\ 1$	6.5898	0.001126	0.198
10.0	179.9	762.6	2 013.6	2776.2	2.1382	4.4446	6.5828	0.001127	0.194
10.5	182.0	772.0	2 005.9	2778.0	2.1588	4.407 1	6.5659	0.001130	0.185
11.0	184.1	781.1	1 998.5	2779.7	2.1786	4.3711	6.5497	0.001133	0.177
11.5	186.0	789.9	1991.3	2781.3	2.1977	4.3366	6.5342	0.001136	0.170
12.0	188.0	798.4	1 984.3	2782.7	2.2161	4.3033	6.5194	0.001139	0.163
12.5	189.8	806.7	1 977.4	2784.1	2.2338	4.271 2	6.5050	0.001141	0.157
13.0	191.6	814.7	1970.7	2785.4	2.2510	4.240 3	6.4913	0.001141	0.157
13.5	193.3	822.5	1964.2	2786.6	2.2676	4.2104	6.4779	0.001144	0.146
14.0	195.0	830.1	1957.7	2787.8	2.283 7	4.1814	6.4651	0.001140	0.140
14.5	196.7	837.5	1951.4	2788.9	2.2993	4.1533	6.4526	0.001115	0.136
15.0	100 2	844.7	1 945.2	2 789.9	2.3145	4.126 1	6.4406	0.001154	0.132
15.0	198.3		1 945.2		2.3145		6.4289	0.001154	0.132 0.128
16.0	199.8 201.4	851.7 858.6	1 939.2	2790.8 2791.7	2.329 2	4.0996	6.4289	0.001156	0.128 0.124
16.0	201.4	865.3	1 933.2	2 791.7 2 792.6	2.343 6	4.073 9 4.048 9	6.4065	0.001159	0.124 0.120
17.0	202.8	871.8	1 927.5	2 792.6	2.3713	4.046 9	6.3957	0.001161	0.120 0.117
17.0	4U4.0	011.0	1 521.0	4 170.4	2.3113	4.024 0	บ.อฮอ เ	0.001103	0.117
17.5	205.7	878.3	1915.9	2794.1	2.3846	4.0007	6.3853	0.001166	0.113
18.0	207.1	884.6	1910.3	2794.8	2.3976	3.9775	6.3751	0.001168	0.110
18.5	208.4	890.7	1904.7	2795.5	2.4103	3.9548	6.3651	0.001170	0.107
19.0	209.8	896.8	1899.3	2796.1	2.4228	3.9326	6.3554	0.001172	0.105
19.5	211.1	902.8	1893.9	2796.7	2.4349	3.9110	6.3459	0.001174	0.102

Absolute pressure (bar)	Temp.	Sp	ecific entha	ulpy		ecific entro (kJ / kg K)	ру	Specific v	
p	t_s	h_f	$h_{f\!g}$	h_g	s_f	s_{fg}	s_g	v_f	v_g
20.0	212.4	908.6	1888.6	2 797.2	2.4469	3.8898	6.3366	0.001177	0.0995
20.5	213.6	914.3	1883.4	2 797.7	2.4585	3.8690	6.3276	0.001179	0.0971
21.0	214.8	920.0	1878.2	2 798.2	2.4700	3.8487	6.3187	0.001181	0.0949
21.5	216.1	925.5	1873.1	2798.6	2.4812	3.8288	6.3100	0.001183	0.0927
22.0	217.2	931.0	1868.1	2799.1	2.4922	3.8093	6.3015	0.001185	0.0907
22.5	218.4	936.3	1863.1	2 799.4	2.503 0	3.7901	6.293 1	0.001187	0.0887
23.0	219.5	941.6	1858.2	2 799.4	2.503 0	3.7713	6.2849	0.001187	0.0868
23.5	219.5	941.6				3.7528	6.2769	0.001189	
			1853.3	2 800.1	2.524 1				0.0849
24.0	221.8	951.9	1848.5	2 800.4	2.5343	3.7347	6.269 0	0.001193	0.0832
24.5	222.9	957.0	1843.7	2 800.7	2.544 4	3.7168	6.2612	0.001195	0.0815
25.0	223.9	962.0	1839.0	2800.9	2.5543	3.6993	6.2536	0.001197	0.0799
25.5	225.0	966.9	1834.3	2801.2	2.5640	3.6821	6.2461	0.001199	0.0783
26.0	226.0	971.7	1829.6	2801.4	2.5736	3.6651	6.2387	0.001201	0.0769
26.5	227.1	976.5	1825.1	2801.6	2.583 1	3.6484	6.2315	0.001203	0.0754
27.0	228.1	981.2	1820.5	2801.7	2.5924	3.6320	6.2244	0.001205	0.0740
27.5	229.1	985.9	1816.0	2801.9	2.6016	3.6158	6.2173	0.001207	0.0727
28.0	230.0	990.5	1811.5	2802.0	2.6106	3.5998	6.2104	0.001209	0.0714
28.5	231.0	995.0	1807.1	2802.1	2.6195	3.5841	6.2036	0.001211	0.0701
29.0	232.0	999.5	1802.6	2802.2	2.6283	3.5686	6.1969	0.001213	0.0689
29.5	233.0	1 004.0	1798.3	2802.2	2.6370	3.5533	6.1902	0.001214	0.0677
30.0	233.8	1 008.4	1793.9	2802.3	2.6455	3.5382	6.1837	0.001216	0.0666
30.5	234.7	1012.7	1789.6	2802.3	2.6539	3.5233	6.1772	0.001218	0.0655
31.0	235.6	1 017.0	1785.4	2802.3	2.6623	3.5087	6.1709	0.001220	0.0645
31.5	236.5	1 021.2	1781.1	2802.3	2.6705	3.4942	6.1647	0.001222	0.0634
32.0	237.4	1025.4	1776.9	2802.3	2.6786	3.4799	6.1585	0.001224	0.0624
32.5	238.3	1 029.6	1772.7	2802.3	2.6866	3.4657	6.1523	0.001225	0.0615
33.0	239.2	1 033.7	1768.6	2802.3	2.6945	3.4518	6.1463	0.001227	0.0605
33.5	240.0	1 037.8	1764.4	2802.2	2.7023	3.4380	6.1403	0.001229	0.0596
34.0	240.9	1 041.8	1760.3	2802.1	2.7101	3.4244	6.1344	0.001231	0.0587
34.5	241.7	1 045.8	1 756.3	2802.1	2.7177	3.4109	6.1286	0.001233	0.0579
35.0	242.5	1 049.8	1752.2	2802.0	2.7253	3.3976	6.1228	0.001234	0.0570
35.5	243.3	1 053.7	1748.2	2 801.8	2.7327	3.3844	6.1171	0.001236	0.0562
36.0	244.2	1057.6	1744.2	2801.7	2.740 1	3.3714	6.1115	0.001238	0.0554
36.5	245.0	1061.4	1740.2	2801.6	2.747 4	3.3585	6.1059	0.001239	0.0546
37.0	245.7	1 065.2	1736.2	2801.4	2.7547	3.3458	6.1004	0.001242	0.0539
		1 0 00.2	1.50.2			3.3100	J,100 1	0.001212	0.0000

Absolute pressure (bar)	Temp. (°C)	Sp	ecific entha	ulpy		ecific entro (kJ/kg K)	ру	Specific volume (m³/kg)	
p	t_s	h_f	h_{fg}	h_g	s_f	s_{fg}	s_g	v_f	v_g
37.5	246.5	1 069.0	1 732.3	2 801.3	2.7618	3.3332	6.0950	0.001243	0.0531
38.0	247.3	1 072.7	1728.4	2801.1	2.7689	3.3207	6.0896	0.001245	0.0524
38.5	248.1	1076.4	1724.5	2800.9	2.7759	3.3083	6.0842	0.001247	0.0517
39.0	248.8	1 080.1	1720.6	2800.8	2.7829	3.2961	6.0789	0.001249	0.0511
39.5	249.6	1 083.8	1716.8	2800.5	2.7897	3.2840	6.0737	0.001250	0.0504
40.0	250.3	1 087.4	1 712.9	2800.3	2.7965	3.2720	6.0685	0.001252	0.0497
41.0	251.8	1 094.6	1705.3	2799.9	2.8099	3.2483	6.0582	0.001255	0.0485
42.0	253.2	1 101.6	1697.8	2799.4	2.823 1	3.2251	6.0482	0.001259	0.0473
43.0	254.6	1 108.5	1690.3	2798.8	2.8360	3.2023	6.0383	0.001262	0.0461
44.0	256.0	1 115.4	1 682.9	2798.3	2.8487	3.1799	6.0286	0.001266	0.0451
45.0	257.4	1 122.1	1 675.6	2797.7	2.8612	3.1579	6.0191	0.001269	0.0440
46.0	258.7	1 128.8	1 668.3	2 797.0	2.8735	3.1362	6.0097	0.001272	0.0430
47.0	260.1	1 135.3	1661.1	2796.4	2.8855	3.1149	6.0004	0.001276	0.0421
48.0	261.4	1 141.8	1653.9	2795.7	2.8974	3.0939	5.9913	0.001279	0.0412
49.0	262.6	1 148.2	1646.8	2794.9	2.909 1	3.0733	5.9823	0.001282	0.0403
50.0	263.9	1 154.5	1 639.7	2 794.2	2.9206	3.0529	5.9735	0.001286	0.0394
51.0	265.1	1 160.7	1632.7	2793.4	2.9319	3.0328	5.9648	0.001289	0.0386
52.0	266.4	1 166.8	1625.7	2792.6	2.943 1	3.0130	5.9561	0.001292	0.0378
53.0	267.6	1 172.9	1618.8	2791.7	2.954 1	2.9935	5.9476	0.001296	0.0371
54.0	268.7	1 178.9	1611.9	2790.8	2.9650	2.9742	5.9392	0.001299	0.0363
55.0	269.9	1 184.9	1 605.0	2 789.9	2.975 7	2.9552	5.9309	0.001302	0.0356
56.0	271.1	1 190.8	1598.2	2789.0	2.9863	2.9364	5.9227	0.001306	0.0349
57.0	272.2	1 196.6	1591.4	2788.0	2.9967	2.9179	5.9146	0.001309	0.0343
58.0	273.3	1 202.3	1584.7	2787.0	3.0071	2.8995	5.9066	0.001312	0.0336
59.0	274.4	1 208.0	1 578.0	2786.0	3.0172	2.8814	5.8986	0.001315	0.0330
60.0	275.5	1 213.7	1571.3	2785.0	3.0273	2.8635	5.8908	0.001318	0.0324
61.0	276.6	1 219.3	1564.7	2784.0	3.0372	2.8458	5.8830	0.001322	0.0319
62.0	277.7	1224.8	1558.0	2782.9	3.0471	2.8283	5.8753	0.001325	0.0313
63.0	278.7	1 230.3	1551.5	2781.8	3.0568	2.8109	5.8677	0.001328	0.0308
64.0	279.8	1 235.7	1 544.9	2 780.6	3.066 4	2.7938	5.860 1	0.001332	0.0302
65.0	280.8	1 241.1	1538.4	2 779.5	3.075 9	2.7768	5.8527	0.001335	0.0297
66.0	281.8	1246.5	1531.9	2778.3	3.0853	2.7600	5.8452	0.001338	0.0292
67.0	282.8	1 251.8	1525.4	2777.1	3.0946	2.7433	5.8379	0.001341	0.0287
68.0	283.8	1 257.0	1518.9	2775.9	3.1038	2.7268	5.8306	0.001345	0.0283
69.0	284.8	1262.2	1512.5	2774.7	3.1129	2.7105	5.8233	0.001348	0.0278

Absolute	Temp.	Sp	ecific entho	ılpy	_	ecific entro	py	Specific v	
pressure	(°C)		(kJ/kg)			$(kJ/kg\ K)$		(m^3/k)	rg)
(bar)									
p	t_s	h_f	h_{fg}	h_g	s_f	s_{fg}	s_g	v_f	v_g
70.0	285.8	1 267.4	1506.0	2773.5	3.1219	2.6943	5.8162	0.001351	0.0274
71.0	286.7	1272.5	1499.6	2772.2	3.1308	2.6782	5.8090	0.001355	0.0269
72.0	287.7	1277.6	1493.3	2770.9	3.1397	2.6623	5.8020	0.001358	0.0265
73.0	288.6	1 282.7	1486.9	2769.6	3.1484	2.6465	5.7949	0.001361	0.0261
74.0	289.6	1 287.7	1480.5	2768.3	3.1571	2.6309	5.7880	0.001364	0.0257
75.0	290.5	1 292.7	1474.2	2766.9	3.165 7	2.6153	5.7810	0.001368	0.0253
76.0	291.4	1 297.6	1467.9	2765.5	3.1742	2.5999	5.7742	0.001371	0.0249
77.0	292.3	1 302.5	1461.6	2764.2	3.1827	2.5846	5.7673	0.001374	0.0246
78.0	293.2	1 307.4	1455.3	2762.8	3.1911	2.5695	5.7605	0.001378	0.0242
79.0	294.1	1 312.3	1449.1	2761.3	3.1994	2.5544	5.7538	0.001381	0.0239
80.0	294.9	1 317.1	1442.8	2759.9	3.2076	2.5395	5.747 1	0.001384	0.0235
81.0	295.8	1 321.9	1436.6	2758.4	3.2158	2.5246	5.7404	0.001387	0.0232
82.0	296.7	1 326.6	1430.3	2757.0	3.2239	2.5099	5.7338	0.001391	0.0229
83.0	297.5	1 331.4	1424.1	2755.5	3.2320	2.4952	5.7272	0.001394	0.0225
84.0	298.4	1 336.1	1 417.9	2754.0	3.2399	2.4807	5.7206	0.001397	0.0222
					0.200				****
85.0	299.2	1 340.7	1411.7	2752.5	3.2479	2.4663	5.7141	0.001401	0.0219
86.0	300.1	1 345.4	1405.5	2750.9	3.2557	2.4519	5.7076	0.001404	0.0216
87.0	300.9	1 350.0	1399.3	2749.4	3.2636	2.4376	5.7012	0.001408	0.0213
88.0	301.7	1 354.6	1393.2	2747.8	3.2713	2.4235	5.6948	0.001411	0.0211
89.0	302.5	1 359.2	1 387.0	2746.2	3.2790	2.4094	5.6884	0.001414	0.0208
90.0	303.3	1 363.7	1 380.9	2744.6	3.2867	2.3953	5.6820	0.001418	0.0205
91.0	304.1	1 368.3	1374.7	2743.0	3.2943	2.3814	5.6757	0.001421	0.0202
92.0	304.9	1 372.8	1 368.6	2741.4	3.3018	2.3676	5.6694	0.001425	0.0199
93.0	305.7	1 377.2	1362.5	2739.7	3.3093	2.3538	5.663 1	0.001428	0.0197
94.0	306.4	1 381.7	1 356.3	2738.0	3.3168	2.3401	5.6568	0.001432	0.0194
95.0	307.2	1 386.1	1350.2	2736.4	3.3242	2.3264	5.6506	0.001435	0.0192
96.0	308.0	1 390.6	1 344.1	2734.7	3.3315	2.3129	5.6444	0.001438	0.0189
97.0	308.7	1 395.0	1 338.0	2733.0	3.338 8	2.2994	5.6382	0.001442	0.0187
98.0	309.4	1 399.3	1 331.9	2 731.2	3.346 1	2.2859	5.632 1	0.001445	0.0185
99.0	310.2	1 403.7	1 325.8	2 729.5	3.3534	2.2726	5.625 9	0.001118	0.0183
	010.1	100.1	1020.0	0.0	0.0001	5	3.0200	0.001110	0.0100
100.0	311.1	1 408.0	1 319.7	2727.7	3.360 5	2.2593	5.6198	0.001452	0.0181
102.0	312.4	1 416.7	1307.5	2724.2	3.3748	2.2328	5.6076	0.001459	0.0176
104.0	313.8	1 425.2	1 295.3	2724.2	3.388 9	2.2066	5.595 5	0.001467	0.0170
106.0	315.3	1 433.7	1 283.1	2716.8	3.4029	2.1806	5.583 5	0.001474	0.0172
108.0	316.6	1 442.2	1270.9	2713.1	3.4167	2.1548	5.5715	0.001474	0.0164
100.0	010.0	1 114.4	1210.0	2,10.1	0.110 /	2.1010	5.5110	0.001401	0.0101

Absolute pressure	<i>Temp.</i> (° <i>C</i>)	Sp	ecific entha	lpy	1	cific entro	py	Specific vo	
(bar)									
p	t_s	h_f	h_{fg}	h_g	s_f	$s_{\!f\!g}$	s_g	v_f	v_g
110.0	318.0	1 450.6	1258.7	2709.3	3.4304	2.129 1	5.5595	0.001488	0.0160
112.0	319.4	1 458.9	1246.5	2705.4	3.4440	2.1036	5.5476	0.001496	0.0157
114.0	320.7	1 467.2	1234.3	2701.5	3.4574	2.0783	5.5357	0.001504	0.0153
116.0	322.1	1 475.4	1222.0	2697.4	3.4708	2.0531	5.5239	0.001511	0.0149
118.0	323.4	1 483.6	1209.7	2693.3	3.4840	2.0280	5.5121	0.001519	0.0146
120.0	324.6	1 491.8	1197.4	2689.2	3.4972	2.0030	5.5002	0.001527	0.0143
122.0	325.9	1 499.9	1185.0	2684.9	3.5102	1.9782	5.4884	0.001535	0.0139
124.0	327.1	1 508.0	1172.6	2680.6	3.5232	1.9533	5.4765	0.001543	0.0137
126.0	328.4	1516.0	1160.1	2676.1	3.5360	1.9286	5.4646	0.001551	0.0134
128.0	329.6	1 524.0	1147.6	2671.6	3.5488	1.9039	5.4527	0.001559	0.0131
130.0	330.8	1 532.0	1135.0	2667.0	3.5616	1.8792	5.4408	0.001567	0.0128
132.0	332.0	1540.0	1122.3	2662.3	3.5742	1.8546	5.4288	0.001576	0.0125
134.0	333.2	1547.9	1109.5	2657.4	3.5868	1.8300	5.4168	0.001584	0.0123
136.0	334.3	1 555.8	1096.7	2652.5	3.5993	1.8053	5.4047	0.001593	0.0120
138.0	335.5	1 563.7	1 083.8	2647.5	3.6118	1.7807	5.3925	0.001602	0.0117
140.0	336.6	1571.6	1070.7	2642.4	3.6242	1.7560	5.3803	0.001611	0.0115
142.0	337.7	1 579.5	1057.6	2637.1	3.6366	1.7313	5.3679	0.001619	0.0112
144.0	338.8	1 587.4	1044.4	2631.8	3.6490	1.7066	5.3555	0.001629	0.0110
146.0	339.9	1 595.3	1 031.0	2626.3	3.6613	1.6818	5.3431	0.001638	0.0108
148.0	341.1	1 603.1	1017.6	2620.7	3.6736	1.6569	5.3305	0.001648	0.0106
150.0	342.1	1611.0	1004.0	2615.0	3.6859	1.6320	5.3179	0.001658	0.0103
152.0	343.2	1 618.9	990.3	2609.2	3.6981	1.6070	5.3051	0.001668	0.0101
154.0	344.2	1 626.8	976.5	2603.3	3.7103	1.5819	5.2922	0.001678	0.00991
156.0	345.3	1 634.7	962.6	2597.3	3.7226	1.5567	5.2793	0.001689	0.00971
158.0	346.3	1 642.6	948.5	2591.1	3.7348	1.5314	5.2663	0.001699	0.00951
160.0	347.3	1 650.5	934.3	2584.9	3.747 1	1.5060	5.2531	0.001710	0.00931
162.0	348.3	1 658.5	920.0	2578.5	3.7594	1.4806	5.2399	0.001721	0.00911
164.0	349.3	1 666.5	905.6	2572.1	3.7717	1.4550	5.2267	0.001733	0.00893
166.0	350.3	1 674.5	891.0	2565.5	3.7842	1.4290	5.2132	0.001745	0.00874
168.0	351.3	1 683.0	875.6	2558.6	3.7974	1.4021	5.1994	0.001757	0.00855
170.0	352.3	1 691.7	859.9	2551.6	3.8107	1.3748	5.1855	0.001769	0.00837
172.0	353.2	1700.4	844.0	2544.4	3.8240	1.3473	5.1713	0.001783	0.00819
174.0	354.2	1709.0	828.1	2537.1	3.8372	1.3198	5.1570	0.001796	0.00801
176.0	355.1	1717.6	811.9	2529.5	3.8504	1.2922	5.142 5	0.001810	0.00784
178.0	356.0	1 726.2	795.6	2521.8	3.8635	1.2643	5.1278	0.001825	0.00767

Absolute pressure (bar)	Temp.	Sp	ecific entha (kJ/kg)	lpy	_	ecific entro (kJ/kg K)	ру	Specific volume (m³/kg)		
p	t_s	h_f	h_{fg}	h_g	s_f	s_{fg}	s_g	v_f	v_g	
180.0	356.9	1734.8	779.1	2 513.9	3.8765	1.2362	5.1128	0.001840	0.00750	
182.0	357.8	1743.4	762.3	2505.8	3.8896	1.2079	5.0975	0.001856	0.00733	
184.0	358.7	1752.1	745.3	2497.4	3.9028	1.1792	5.0820	0.001872	0.00717	
186.0	359.6	1760.9	727.9	2488.8	3.9160	1.1501	5.0661	0.001889	0.00701	
188.0	360.5	1769.7	710.1	2479.8	3.9294	1.1205	5.0498	0.001907	0.00684	
190.0	361.4	1778.7	692.0	2470.6	3.9429	1.0903	5.0332	0.001926	0.00668	
192.0	362.3	1787.8	673.3	2461.1	3.9566	1.0594	5.0160	0.001946	0.00652	
194.0	363.2	1 797.0	654.1	2451.1	3.9706	1.0278	4.9983	0.001967	0.00636	
196.0	364.0	1806.6	634.2	2440.7	3.9849	0.9951	4.9800	0.001989	0.00620	
198.0	364.8	1816.3	613.5	2429.8	3.9996	0.9614	4.9611	0.002012	0.00604	
200.0	365.7	1826.5	591.9	2 418.4	4.0149	0.9263	4.9412	0.002037	0.00588	
202.0	366.5	1837.0	569.2	2 406.2	4.0308	0.8897	4.9204	0.002064	0.00571	
204.0	367.3	1848.1	545.1	2 393.3	4.0474	0.8510	4.8984	0.002093	0.00555	
206.0	368.2	1859.9	519.5	2 379.4	4.065 1	0.8099	4.875 0	0.002125	0.00538	
208.0	368.9	1872.5	491.7	2 364.2	4.084 1	0.765 7	4.8498	0.002161	0.00521	
210.0	369.8	1886.3	461.3	2 347.6	4.1048	0.7175	4.8223	0.002201	0.00502	
212.0	370.6	1901.5	427.4	2 328.9	4.1279	0.6639	4.7917	0.002249	0.00302	
214.0	371.3	1919.0	388.4	2 307.4	4.1543	0.6026	4.7569	0.002246	0.00468	
216.0	372.1	1939.9	341.6	2 281.6	4.186 1	0.5293	4.7154	0.002379	0.00439	
218.0	372.9	1967.2	280.8	2 248.0	4.227 6	0.4346	4.6622	0.002483	0.00412	
220.0	373.7	2011.1	184.5	2 195.6	4.2947	0.285 2	4.5799	0.002671	0.00373	
221.2	374.1	2 107.4	0.0	2 107.4	4.4429	0.0	4.4429	0.003170	0.00317	

TABLE III
Superheated Steam at Various Pressures and Temperatures

$\begin{array}{c} \downarrow p \; (bar) \\ (t_s) \end{array}$	<i>t</i> (°C) →	50	100	150	200	250	300	400	500
	υ	149.1	172.2	195.3	218.4	241.5	264.5	310.7	356.8
0.01	u	2445.4	2516.4	2588.4	2661.6	2736.9	2812.2	2969.0	3132.4
(7.0)	h	2594.5	2688.6	2783.6	2880.0	2978.4	3076.8	3279.7	3489.2
(1.0)	s n	9.242	9.513	9.752	9.967	10.163	10.344	10.671	10.960
	8	9.242	9.010	9.152	9.901	10.103	10.544	10.071	10.900
	υ	29.78	34.42	39.04	48.66	48.28	52.9	62.13	71.36
0.05	u	2444.8	2516.2	2588.4	2661.9	2736.6	2812.6	2969.6	3133.0
(32.9)	h	2593.7	2688.1	2783.4	2879.9	2977.6	3076.7	3279.7	3489.2
(0_10)	s	8.498	8.770	9.009	9.225	9.421	9.602	9.928	10.218
		0.100			00	***		0.000	
	υ	14.57	17.19	19.51	21.82	24.14	26.44	31.06	35.68
0.1	u	2443.9	2515.5	2587.9	2661.3	2736.0	2812.1	2968.9	3132.3
(45.8)	h	2592.6	2687.5	2783.0	2879.5	2977.3	3076.5	3279.6	3489.1
	s	8.175	8.448	8.688	8.904	9.100	9.281	9.608	9.898
	υ		34.18	3.889	43.56	4.821	5.284	6.209	7.134
0.5	u		2511.6	2585.6	2659.9	2735.0	2811.3	2968.5	3132.0
(81.3)	h		2682.5	2780.1	2877.7	2976.0	3075.5	3278.9	3488.7
	s		7.695	7.940	8.158	8.356	8.537	8.864	9.155
	υ		2.27	2.587	2.900	3.211	3.520	4.138	4.755
0.75	u		2509.2	2584.2	2659.0	2734.4	2810.9	2968.2	3131.8
(92.0)	h		2679.4	2778.2	2876.5	2975.2	3074.9	3278.5	3488.4
	s		7.501	7.749	7.969	8.167	8.349	8.677	8.967
	υ		1.696	1.936	2.172	2.406	2.639	3.103	3.565
1.0	u		2506.2	2582.8	2658.1	2733.7	2810.4	2967.9	3131.6
(99.6)	h		2676.2	2776.4	2875.3	2974.3	3074.3	3278.2	3488.1
	s		7.361	7.613	7.834	8.033	8.216	8.544	8.834
	υ			1.912	2.146	2.375	2.603	3.062	3.519
1.01325	u			2582.6	2658.0	2733.6	2810.3	2967.8	3131.5
(100)	h			2776.3	2875.2	2974.2	3074.2	3278.1	3488.0
	s			7.828	7.827	8.027	8.209	8.538	8.828
	υ			1.285	1.143	1.601	1.757	2.067	2.376
1.5	u			2579.8	2656.2	2732.5	2809.5	2967.3	3131.2
(111.4)	h			2772.6	2872.9	2972.7	3073.1	3277.4	3487.6
	s			7.419	7.643	7.844	8.027	8.356	8.647

$\downarrow p (bar) \\ (t_s)$	<i>t</i> (°C) →	50	100	150	200	250	300	400	500
	υ			0.960	1.080	1.199	1.316	1.549	1.781
2.0	u			2576.9	2654.4	2731.2	2808.6	2966.7	3130.8
(120.2)	h			2768.8	2870.5	2971.0	3071.8	3276.6	3487.1
	s			7.279	7.507	7.709	7.893	8.222	8.513
	υ			0.764	0.862	0.957	1.052	1.238	1.424
2.5	u			2574.7	2655.7	2734.9	2813.8	2973.9	3139.6
(127.4)	h			2764.5	2868.0	2969.6	3070.9	3275.9	3486.5
	s			7.169	7.401	7.604	7.789	8.119	8.410
	υ			0.634	0.716	0.796	0.875	1.031	1.187
3.0	u			2570.8	2650.7	2728.7	2806.7	2965.6	3130.0
(133.5)	h			2761.0	2865.6	2967.6	3069.3	3275.0	3486.1
	s			7.078	7.311	7.517	7.702	8.033	8.325
	υ			0.471	0.534	0.595	0.655	0.773	0.889
4.0	u			2564.5	2646.8	2726.1	2804.8	2964.4	3129.2
(143.6)	h			2752.8	2860.5	2964.2	3066.8	3273.4	3484.9
	s			6.930	7.171	7.379	7.566	7.899	8.191

$\downarrow_{p \ (bar)} \\ (t_s)$	<i>t</i> (°C) →	200	250	300	350	400	450	500	600
	υ	0.425	0.474	0.523	0.570	0.617	0.664	0.711	0.804
5.0	u	2642.9	2723.5	2802.9	2882.6	2963.2	3045.3	3128.4	3299.6
(151.8)	h	2855.4	2960.7	3064.2	3167.7	3271.9	3377.2	3483.9	3701.7
	s	7.059	7.271	7.460	7.633	7.794	7.945	8.087	8.353
	v	0.352	0.394	0.434	0.474	0.514	0.553	0.592	0.670
6.0	u	2638.9	2720.9	2801.0	2881.2	2962.1	3044.2	3127.6	3299.1
(158.8)	h	2850.1	2957.2	3061.6	3165.7	3270.3	3376.0	3482.8	3700.9
	s	6.967	7.182	7.372	7.546	7.708	7.859	8.002	8.267
	v	0.300	0.336	0.371	0.406	0.440	0.473	0.507	0.574
7.0	u	2634.8	2718.2	2799.1	2879.7	2960.9	3043.2	3126.8	3298.5
(165.0)	h	2844.8	2953.6	3059.1	3163.7	3268.7	3374.7	3481.7	3700.2
	s	6.886	7.105	7.298	7.473	7.635	7.787	7.930	8.196
	v	0.261	0.293	0.324	0.354	0.384	0.414	0.443	0.502
8.0	u	2630.6	2715.5	2797.2	2878.2	2959.7	3042.3	3126.0	3297.8
(170.4)	h	2839.3	2950.1	3056.5	3161.7	3267.1	3373.4	3480.6	3699.4
	s	6.816	7.038	7.233	7.409	7.572	7.724	7.867	8.133

$\downarrow_p (bar)$	t (°C)	200	250	300	350	400	450	500	600
(t_s)	$\iota (C)$ \rightarrow	200	250	300	550	400	450	300	600
	υ	0.230	0.260	0.287	0.314	0.341	0.367	0.394	0.446
9.0	u	2626.3	2712.7	2795.2	2876.7	2958.5	3041.3	3125.2	3297.3
(175.4)	h	2833.6	2946.3	3053.8	3159.7	3265.5	3372.1	3479.6	3698.6
	s	6.752	6.979	7.175	7.352	7.516	7.668	7.812	8.078
	v	0.206	0.233	0.258	0.282	0.307	0.330	0.354	0.401
10.0	u	2621.9	2709.9	2793.2	2875.2	2957.3	3040.3	3124.4	3296.8
(179.9)	h	2827.9	2942.6	3051.2	3157.8	3263.9	3370.7	3478.5	3697.9
	s	6.694	6.925	7.123	7.301	7.465	7.618	7.762	8.029
	v	0.132	0.152	0.169	0.187	0.203	0.219	0.235	0.267
15.0	u	2598.8	2695.3	2783.1	2867.6	2951.3	3035.3	3120.3	3293.9
(198.3)	h	2796.8	2923.3	3037.6	3147.5	3255.8	3364.2	3473.1	3694.0
	s	6.455	6.709	6.918	7.102	7.269	7.424	7.570	7.839
	v		0.111	0.125	0.139	0.151	0.163	0.176	0.200
20.0	u		2679.6	2772.6	2859.8	2945.2	3030.5	3116.2	3290.9
(212.4)	h		2902.5	3023.5	3137.0	3247.6	3357.5	3467.6	3690.1
	s		6.545	6.766	6.956	7.127	7.285	7.432	7.702
	v		0.0870	0.0989	0.109	0.120	0.130	0.140	0.159
25	u		2662.6	2761.6	2851.9	2939.1	3025.5	3112.1	3288.0
(223.9)	h		2880.1	3008.8	3126.3	3239.3	3350.8	3462.1	3686.3
	s		6.408	6.644	6.840	7.015	7.175	7.323	7.596
	v		0.0706	0.0811	0.0905	0.0994	0.108	0.116	0.132
30	u		2644.0	2750.1	2843.7	2932.8	3020.4	3108.0	3285.0
(233.8)	h		2855.8	2993.5	3115.3	3230.9	3344.0	3456.5	3682.3
	s		6.287	6.539	6.743	6.921	7.083	7.234	7.509
	v			0.0588	0.0664	0.0734	0.080	0.0864	0.0989
40	u			2725.3	2826.7	2919.9	3010.2	3099.5	3279.1
(250.4)	h			2960.7	3092.5	3213.6	3330.3	3445.3	3674.4
	s			6.362	6.582	6.769	6.936	7.090	7.369
	v			0.0453	0.0519	0.0578	0.0633	0.0686	0.0787
50	u			2698.0	2808.7	2906.6	2999.7	3091.0	3273.0
(263.9)	h			2924.5	3068.4	3195.7	3316.2	3433.8	3666.5
	s			6.208	6.449	6.646	6.819	6.976	7.259

$\downarrow p (bar)$	t (°C)	200	250	300	350	400	450	500	600
(t_s)	\rightarrow								
	υ			0.0362	0.0422	0.0474	0.0521	0.0567	0.0653
60	u			2667.2	2789.6	2892.9	2988.9	3082.2	3266.9
(275.5)	h			2884.2	3043.0	3177.2	3301.8	3422.2	3658.4
	s			6.067	6.333	6.541	6.719	6.880	7.168
	v			0.0295	0.0352	0.0399	0.0442	0.0481	0.0557
70	u			2632.2	2769.4	2878.6	2978.0	3073.4	3260.7
(285.8)	h			2838.4	3016.0	3158.1	3287.1	3410.3	3650.3
	s			5.931	6.228	6.448	6.633	6.798	7.089
$\downarrow p (bar)$	t (°C)	350	375	400	450	500	550	600	700
(t_s)	\rightarrow	550	370	100	100	300	300	300	, 50
80	1)	0.02995	0.03222	0.03432	0.03817	0.04175	0.04516	0.04845	0.05481

$\downarrow p (bar)$	t (°C)	350	375	400	450	500	550	600	700
(t_s)	\rightarrow								
80	υ	0.02995	0.03222	0.03432	0.03817	0.04175	0.04516	0.04845	0.05481
(294.9)	h	2987.3	3066.1	3138.3	3272.0	3398.3	3521.0	3642.0	3882.4
	s	6.130	6.254	6.363	6.555	6.724	6.878	7.021	7.281
90	v	0.0258	0.02796	0.02993	0.03350	0.03677	0.03987	0.04285	0.04857
(303.3)	h	2956.6	3041.3	3117.8	3256.6	3386.1	3511.0	3633.7	3876.5
(505.5)	n s	6.036	6.169	6.285	6.484	6.658	6.814	6.959	7.222
	8	0.050	0.109	0.200	0.404	0.056	0.014	0.555	1.222
100	υ	0.02242	0.02453	0.02641	0.02975	0.03279	0.03564	0.03837	0.04358
(311.0)	h	2923.4	3015.4	3096.5	3240.9	3373.7	3500.9	3625.3	3870.5
	s	5.944	6.089	6.212	6.419	6.597	6.756	6.903	7.169
110	υ	0.01961	0.02169	0.02351	0.02668	0.02952	0.03217	0.03470	0.03950
(318.0)	h	2887.3	2988.2	3074.3	3224.7	3361.0	3490.7	3616.9	3864.5
	8	5.853	6.011	6.142	6.358	6.540	6.703	6.851	7.120
120	v	0.01721	0.01931	0.02108	0.02412	0.02680	0.02929	0.03164	0.03610
(324.6)	h	2847.7	2958.9	3051.3	3208.2	3348.2	3480.4	3608.3	3858.4
	s	5.760	5.935	6.075	6.300	6.487	6.653	6.804	7.075
100		0.04544		0.04000			0.00004		0.00000
130	υ	0.01511	0.01725	0.01900	0.02194	0.0245	0.02684	0.02905	0.03322
(330.8)	h	2803.3	2927.9	3027.2	3191.3	3335.2	3469.9	3599.7	3852.3
	s	5.663	5.859	6.009	6.245	6.437	6.606	6.759	7.033
140	v	0.01322	0.01546	0.01722	0.02007	0.02252	0.02474	0.02683	0.03075
(336.6)	h	2752.6	2894.5	3001.9	3174.0	3322.0	3459.3	3591.1	3846.2
	s	5.559	5.782	5.945	6.192	6.390	6.562	6.712	6.994
170		0.044.5	0.04000	0.04505	0.04045			0.00404	0.00004
150	υ	0.01145	0.01388	0.01565	0.01845	0.02080	0.02293	0.02491	0.02861
(342.1)	h	2692.4	2858.4	2975.5	3156.2	3308.6	3448.6	3582.3	3840.1
	S	5.442	5.703	5.881	6.140	6.344	6.520	6.679	6.957

								1	
$\downarrow p (bar)$	t (°C)	350	375	400	450	500	550	600	700
(t_s)	\rightarrow								
100		0.00077	0.01045	0.01400	0.01701	0.01000	0.00104	0.00000	0.00074
160	υ	0.00975	0.01245	0.01426	0.01701	0.01930	0.02134	0.02323	0.02674
(347.3)	h	2615.7	2818.9	2947.6	3138.0	3294.9	3437.8	3573.5	3833.9
	s	5.302	5.622	5.188	6.091	6.301	6.480	6.640	6.922
170	υ		0.01117	0.01302	0.01575	0.01797	0.01993	0.02174	0.02509
(352.3)	h		2776.8	2918.2	3119.3	3281.1	3426.9	3564.6	3827.7
	s		5.539	5.754	6.042	6.259	6.442	6.604	6.889
180	υ		0.00996	0.01190	0.01462	0.01678	0.01868	0.02042	0.02362
(356.9)	h		2727.9	2887.0	3100.1	3267.0	3415.9	3555.6	3821.5
	s		5.448	5.689	5.995	6.218	6.405	6.570	6.858
190	υ		0.00881	0.01088	0.01361	0.01572	0.01756	0.01924	0.02231
(361.4)	h		2671.3	2853.8	3080.4	3252.7	3404.7	3546.6	3815.3
	s		5.346	5.622	5.948	6.179	6.369	6.537	6.828
200	υ		0.00767	0.00994	0.01269	0.9477	0.01655	0.01818	0.02113
(365.7)	h		2602.5	2818.1	3060.1	3238.2	3393.5	3537.6	3809.0
(====,	s		5.227	5.554	5.902	6.140	6.335	6.505	6.799
210	υ		0.00645	0.00907	0.01186	0.01390	0.01564	0.01722	0.02006
(369.8)	h		2511.0	2779.6	3039.3	3223.5	3382.1	3528.4	3802.8
(300.0)	s		5.075	5.483	5.856	6.103	6.301	6.474	6.772
			0.070	0.400	0.000	0.100	0.001	0.111	0.772
220	υ		0.00482	0.00825	0.01110	0.01312	0.01481	0.01634	0.01909
(373.7)	h		2345.1	2737.6	3017.9	3208.6	3370.6	3519.2	3796.5
(010.1)			4.810	5.407	5.811	6.066	6.269	6.444	6.745
	S		4.010	0.407	0.011	0.000	0.209	0.444	0.740

TABLE IV Supercritical Steam

				~~_	Jereritiea					
p(bar)	t (°C)	350	375	400	425	450	500	600	700	800
	\rightarrow									
230	v	0.00162	0.00221	0.00748	0.00915	0.01040	0.01239	0.01554	0.01821	0.02063
	h	1632.8	1912.2	2691.2	2869.2	2995.8	3193.4	3510.0	3790.2	4056.2
	s	3.137	4.137	5.327	5.587	5.765	6.030	6.415	6.719	6.980
250	υ	0.00160	0.00197	0.00600	0.00788	0.00916	0.01112	0.01414	0.01665	0.01891
	h	1623.5	1848.0	2580.2	2806.3	2949.7	3162.4	3491.4	3775.5	4047.1
	s	3.680	4.032	5.142	5.472	5.674	5.959	6.360	6.671	6.934
300	υ	0.00155	0.00179	0.00279	0.00530	0.00673	0.00868	0.01145	0.01366	0.01562
	h	1608.5	1791.5	2151.1	2614.2	2821.4	3081.1	3443.9	3745.6	4024.2
	s	3.643	3.930	4.473	5.150	5.442	5.790	6.233	6.561	6.833
350	υ	0.00152	0.00110	0.00210	0.00343	0.00496	0.00693	0.00953	0.01153	0.01328
000	h	1597.1	1762.4	1987.6	2373.4	2672.4	2994.4	3395.5	3713.5	4001.5
	s	3.612	3.872	4.213	4.775	5.196	5.628	6.118	6.463	6.745
400	υ	0.00149	0.00164	0.00191	0.00253	0.00369	0.00562	0.00809	0.00994	0.01152
	h	1588.3	1742.8	1930.9	2198.1	2512.8	2903.3	3346.4	3681.2	3978.7
	s	3.586	3.829	4.113	4.503	4.946	5.470	6.011	6.375	6.666
500	υ	0.00144	0.00156	0.00173	0.00201	0.00249	0.00389	0.00611	0.00773	0.00908
	h	1575.3	1716.6	1874.6	2060.0	2284.0	2720.1	3247.6	3616.8	3933.6
	s	3.542	3.764	4.003	4.273	4.588	5.173	5.818	6.219	6.529
600	υ	0.00140	0.00150	0.00163	0.00182	0.00209	0.00296	0.00483	0.00627	0.00746
	h	1566.4	1699.5	1843.4	2001.7	2179.0	2567.9	3151.2	3553.5	3889.1
	s	3.505	3.764	3.932	4.163	4.412	4.932	5.645	6.082	6.411
700	υ	0.00137	0.00146	0.00157	0.00171	0.00189	0.00247	0.00398	0.00526	0.00632
700	h	1560.4	1687.7	1822.8	1967.2	2122.7	2463.2	3061.7	3492.4	3845.7
	s	3.473	3.673	3.877	4.088	4.307	4.762	5.492	5.961	6.307
000		0.00105	0.00140	0.00150	0.00100	0.00155	0.00010	0.00000	0.00450	0.00540
800	v	0.00135	0.00142	0.00152	0.00163	0.00177	0.00219	0.00339	0.00452	0.00548
	h	1556.4	1679.4	1808.3	1943.9	2086.9	2394.0	2982.7	3434.6	3803.8
	s	3.444	3.638	3.833	4.031	4.232	4.642	5.360	5.851	6.213
900	υ	0.00133	0.00139	0.00147	0.00157	0.00169	0.00201	0.00297	0.00397	0.00484
	h	1553.9	1673.4	1797.7	1927.2	2062.0	2346.7	2915.6	3381.1	3763.8
	s	3.419	3.607	3.795	3.984	4.174	4.554	5.247	5.753	6.128
1000	υ	0.01308	0.00137	0.00144	0.00152	0.00163	0.00189	0.00267	0.00355	0.00434
	h	1552.7	1669.4	1790.0	1914.8	2043.8	2312.8	2859.8	3332.3	3726.1
	s	3.396	3.579	3.762	3.944	4.126	4.485	5.151	5.664	6.050
			l	1		1	l	1		

736 Tables in SI Units

TABLE A-10 Properties of Saturated Refrigerant 134a (Liquid–Vapor): Temperature Table

		Specific m ³ /l			Energy /kg		Enthalpy kJ/kg			ropy g·K	
Temp. °C	Press. bar	Sat. Liquid $v_{\rm f} \times 10^3$	Sat. Vapor $v_{\rm g}$	Sat. Liquid $u_{\rm f}$	Sat. Vapor u _g	Sat. Liquid h_{f}	Evap. h_{fg}	Sat. Vapor $h_{\rm g}$	Sat. Liquid $s_{\rm f}$	Sat. Vapor	Temp.
-40	0.5164	0.7055	0.3569	-0.04	204.45	0.00	222.88	222.88	0.0000	0.9560	-40
-36	0.6332	0.7113	0.2947	4.68	206.73	4.73	220.67	225.40	0.0201	0.9506	-36
-32	0.7704	0.7172	0.2451	9.47	209.01	9.52	218.37	227.90	0.0401	0.9456	-32
-28	0.9305	0.7233	0.2052	14.31	211.29	14.37	216.01	230.38	0.0600	0.9411	-28
-26	1.0199	0.7265	0.1882	16.75	212.43	16.82	214.80	231.62	0.0699	0.9390	-26
-24	1.1160	0.7296	0.1728	19.21	213.57	19.29	213.57	232.85	0.0798	0.9370	-24
-22	1.2192	0.7328	0.1590	21.68	214.70	21.77	212.32	234.08	0.0897	0.9351	-22
-20	1.3299	0.7361	0.1464	24.17	215.84	24.26	211.05	235.31	0.0996	0.9332	-20
-18	1.4483	0.7395	0.1350	26.67	216.97	26.77	209.76	236.53	0.1094	0.9315	-18
-16	1.5748	0.7428	0.1247	29.18	218.10	29.30	208.45	237.74	0.1192	0.9298	-16
-12	1.8540	0.7498	0.1068	34.25	220.36	34.39	205.77	240.15	0.1388	0.9267	-12
-8	2.1704	0.7569	0.0919	39.38	222.60	39.54	203.00	242.54	0.1583	0.9239	-8
-4	2.5274	0.7644	0.0794	44.56	224.84	44.75	200.15	244.90	0.1777	0.9213	-4
0	2.9282	0.7721	0.0689	49.79	227.06	50.02	197.21	247.23	0.1970	0.9190	0
4	3.3765	0.7801	0.0600	55.08	229.27	55.35	194.19	249.53	0.2162	0.9169	4
8	3.8756	0.7884	0.0525	60.43	231.46	60.73	191.07	251.80	0.2354	0.9150	8
12	4.4294	0.7971	0.0460	65.83	233.63	66.18	187.85	254.03	0.2545	0.9132	12
16	5.0416	0.8062	0.0405	71.29	235.78	71.69	184.52	256.22	0.2735	0.9116	16
20	5.7160	0.8157	0.0358	76.80	237.91	77.26	181.09	258.36	0.2924	0.9102	20
24	6.4566	0.8257	0.0317	82.37	240.01	82.90	177.55	260.45	0.3113	0.9089	24
26	6.8530	0.8309	0.0298	85.18	241.05	85.75	175.73	261.48	0.3208	0.9082	26
28	7.2675	0.8362	0.0281	88.00	242.08	88.61	173.89	262.50	0.3302	0.9076	28
30	7.7006	0.8417	0.0265	90.84	243.10	91.49	172.00	263.50	0.3396	0.9070	30
32	8.1528	0.8473	0.0250	93.70	244.12	94.39	170.09	264.48	0.3490	0.9064	32
34	8.6247	0.8530	0.0236	96.58	245.12	97.31	168.14	265.45	0.3584	0.9058	34
36	9.1168	0.8590	0.0223	99.47	246.11	100.25	166.15	266.40	0.3678	0.9053	36
38	9.6298	0.8651	0.0210	102.38	247.09	103.21	164.12	267.33	0.3772	0.9047	38
40	10.164	0.8714	0.0199	105.30	248.06	106.19	162.05	268.24	0.3866	0.9041	40
42	10.720	0.8780	0.0188	108.25	249.02	109.19	159.94	269.14	0.3960	0.9035	42
44	11.299	0.8847	0.0177	111.22	249.96	112.22	157.79	270.01	0.4054	0.9030	44
48	12.526	0.8989	0.0159	117.22	251.79	118.35	153.33	271.68	0.4243	0.9017	48
52	13.851	0.9142	0.0142	123.31	253.55	124.58	148.66	273.24	0.4432	0.9004	52
56	15.278	0.9308	0.0127	129.51	255.23	130.93	143.75	274.68	0.4622	0.8990	56
60	16.813	0.9488	0.0114	135.82	256.81	137.42	138.57	275.99	0.4814	0.8973	60
70	21.162	1.0027	0.0086	152.22	260.15	154.34	124.08	278.43	0.5302	0.8918	70
80	26.324	1.0766	0.0064	169.88	262.14	172.71	106.41	279.12	0.5814	0.8827	80
90	32.435	1.1949	0.0046	189.82	261.34	193.69	82.63	276.32	0.6380	0.8655	90
100	39.742	1.5443	0.0027	218.60	248.49	224.74	34.40	259.13	0.7196	0.8117	100

Source: Tables A-10 through A-12 are calculated based on equations from D. P. Wilson and R. S. Basu, "Thermodynamic Properties of a New Stratospherically Safe Working Fluid—Refrigerant 134a," ASHRAE Trans., Vol. 94, Pt. 2, 1988, pp. 2095–2118.

 TABLE A-11
 Properties of Saturated Refrigerant 134a (Liquid–Vapor): Pressure Table

Troperties of Saturated Refrigerant 13 ta (English Vapor). Tressure Table											
		Specific V	/olume	Internal	Energy	Enthalpy			Enti		
		m ³ /k	g	kJ/	'kg	kJ/kg		kJ/kg · K			
		Sat.	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.	Sat.	
Press.	Temp.	Liquid	Vapor	Liquid	Vapor	Liquid	Evap.	Vapor	Liquid	Vapor	Press.
bar	°C	$v_{\rm f} \times 10^3$	$v_{\rm g}$	$u_{\rm f}$	$u_{\rm g}$	$h_{ m f}$	h_{fg}	h_{g}	$s_{\rm f}$	$s_{\rm g}$	bar
0.6	27.07	-	-	-			-	_		-	
0.6	-37.07	0.7097	0.3100	3.41	206.12	3.46	221.27	224.72	0.0147	0.9520	0.6
0.8	-31.21	0.7184	0.2366	10.41	209.46	10.47	217.92	228.39	0.0440	0.9447	0.8
1.0	-26.43	0.7258	0.1917	16.22	212.18	16.29	215.06	231.35	0.0678	0.9395	1.0
1.2	-22.36	0.7323	0.1614	21.23	214.50	21.32	212.54	233.86	0.0879	0.9354	1.2
1.4	-18.80	0.7381	0.1395	25.66	216.52	25.77	210.27	236.04	0.1055	0.9322	1.4
1.6	-15.62	0.7435	0.1229	29.66	218.32	29.78	208.19	237.97	0.1211	0.9295	1.6
1.8	-12.73	0.7485	0.1098	33.31	219.94	33.45	206.26	239.71	0.1352	0.9273	1.8
2.0	-10.09	0.7532	0.0993	36.69	221.43	36.84	204.46	241.30	0.1481	0.9253	2.0
2.4	-5.37	0.7618	0.0834	42.77	224.07	42.95	201.14	244.09	0.1710	0.9222	2.4
2.8	-1.23	0.7697	0.0719	48.18	226.38	48.39	198.13	246.52	0.1911	0.9197	2.8
3.2	2.48	0.7770	0.0632	53.06	228.43	53.31	195.35	248.66	0.2089	0.9177	3.2
	5.84	0.7770	0.0632	57.54	230.28	57.82	193.33	250.58	0.2089	0.9177	3.6
3.6											
4.0	8.93	0.7904	0.0509	61.69	231.97	62.00	190.32	252.32	0.2399	0.9145	4.0
5.0	15.74	0.8056	0.0409	70.93	235.64	71.33	184.74	256.07	0.2723	0.9117	5.0
6.0	21.58	0.8196	0.0341	78.99	238.74	79.48	179.71	259.19	0.2999	0.9097	6.0
7.0	26.72	0.8328	0.0292	86.19	241.42	86.78	175.07	261.85	0.3242	0.9080	7.0
8.0	31.33	0.8454	0.0255	92.75	243.78	93.42	170.73	264.15	0.3459	0.9066	8.0
9.0	35.53	0.8576	0.0226	98.79	245.88	99.56	166.62	266.18	0.3656	0.9054	9.0
10.0	39.39	0.8695	0.0202	104.42	247.77	105.29	162.68	267.97	0.3838	0.9043	10.0
12.0	46.32	0.8928	0.0166	114.69	251.03	115.76	155.23	270.99	0.4164	0.9023	12.0
14.0	52.43	0.9159	0.0140	123.98	253.74	125.26	148.14	273.40	0.4453	0.9003	14.0
16.0	57.92	0.9392	0.0140	132.52	256.00	134.02	141.31	275.33	0.4433	0.9003	16.0
18.0	62.91	0.9392	0.0121	140.49	257.88	142.22	134.60	276.83	0.4714	0.8959	18.0
20.0	67.49	0.9878	0.0103	140.49	257.88	142.22	134.60	270.83	0.4934	0.8939	20.0
25.0	77.59	1.0562	0.0093	165.48	261.84	168.12	111.06	277.94	0.5178	0.8954	25.0
30.0			0.0053	181.88		185.30	92.71	279.17		0.8834	30.0
30.0	86.22	1.1416	0.0033	101.00	262.16	183.30	92.71	2/8.01	0.6156	0.8733	30.0

TABLE A-12 Properties of Superheated Refrigerant 134a Vapor

TABL	E A-12	Properties of	of Superhe	eated Refrig	gerant 134a	Vapor				
<i>T</i>	v	и	<i>h</i>	s		v	и	<i>h</i>	s	
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K		m³/kg	kJ/kg	kJ/kg	kJ/kg · K	
		$0.6 \text{ bar} = 0.6 T_{\text{sat}} = -3 T_{$		a		p = 1.0 bar = 0.10 MPa $(T_{\text{sat}} = -26.43^{\circ}\text{C})$				
Sat20 -10	0.31003 0.33536 0.34992	206.12 217.86 224.97	224.72 237.98 245.96	0.9520 1.0062 1.0371		0.19170 0.19770 0.20686	212.18 216.77 224.01	231.35 236.54 244.70	0.9395 0.9602 0.9918	
0	0.36433	232.24	254.10	1.0675		0.21587	231.41	252.99	1.0227	
10	0.37861	239.69	262.41	1.0973		0.22473	238.96	261.43	1.0531	
20	0.39279	247.32	270.89	1.1267		0.23349	246.67	270.02	1.0829	
30	0.40688	255.12	279.53	1.1557		0.24216	254.54	278.76	1.1122	
40	0.42091	263.10	288.35	1.1844		0.25076	262.58	287.66	1.1411	
50	0.43487	271.25	297.34	1.2126		0.25930	270.79	296.72	1.1696	
60	0.44879	279.58	306.51	1.2405		0.26779	279.16	305.94	1.1977	
70	0.46266	288.08	315.84	1.2681		0.27623	287.70	315.32	1.2254	
80	0.47650	296.75	325.34	1.2954		0.28464	296.40	324.87	1.2528	
90	0.49031	305.58	335.00	1.3224		0.29302	305.27	334.57	1.2799	
		= 1.4 bar =		'a		p = 1.8 bar = 0.18 MPa				
Sat. -10 0	0.13945 0.14549 0.15219	$(T_{\text{sat}} = -1)$ $\begin{vmatrix} 216.52 \\ 223.03 \\ 230.55 \end{vmatrix}$	236.04 243.40 251.86	0.9322 0.9606 0.9922		0.10983 0.11135 0.11678	$\frac{r_{\text{sat}} = -12}{219.94}$ $\frac{219.94}{222.02}$ $\frac{229.67}{229.67}$	239.71 242.06 250.69	0.9273 0.9362 0.9684	
10	0.15875	238.21	260.43	1.0230		0.12207	237.44	259.41	0.9998	
20	0.16520	246.01	269.13	1.0532		0.12723	245.33	268.23	1.0304	
30	0.17155	253.96	277.97	1.0828		0.13230	253.36	277.17	1.0604	
40	0.17783	262.06	286.96	1.1120		0.13730	261.53	286.24	1.0898	
50	0.18404	270.32	296.09	1.1407		0.14222	269.85	295.45	1.1187	
60	0.19020	278.74	305.37	1.1690		0.14710	278.31	304.79	1.1472	
70	0.19633	287.32	314.80	1.1969		0.15193	286.93	314.28	1.1753	
80	0.20241	296.06	324.39	1.2244		0.15672	295.71	323.92	1.2030	
90	0.20846	304.95	334.14	1.2516		0.16148	304.63	333.70	1.2303	
100	0.21449	314.01	344.04	1.2785		0.16622	313.72	343.63	1.2573	
	p = 2.0 bar = 0.20 MPa $(T_{\text{sat}} = -10.09^{\circ}\text{C})$					p = 0	$2.4 \text{ bar} = T_{\text{sat}} = -5$	0.24 MPa		
Sat. -10 0	0.09933 0.09938 0.10438	$ \begin{array}{ c c c c c } \hline 221.43 \\ 221.50 \\ 229.23 \end{array} $	241.30 241.38 250.10	0.9253 0.9256 0.9582		0.08343	$\frac{r_{\text{sat}} - 3}{224.07}$	244.09 248.89	0.9222	
10	0.10922	237.05	258.89	0.9898		0.08993	236.26	257.84	0.9721	
20	0.11394	244.99	267.78	1.0206		0.09399	244.30	266.85	1.0034	
30	0.11856	253.06	276.77	1.0508		0.09794	252.45	275.95	1.0339	
40	0.12311	261.26	285.88	1.0804		0.10181	260.72	285.16	1.0637	
50	0.12758	269.61	295.12	1.1094		0.10562	269.12	294.47	1.0930	
60	0.13201	278.10	304.50	1.1380		0.10937	277.67	303.91	1.1218	
70	0.13639	286.74	314.02	1.1661		0.11307	286.35	313.49	1.1501	
80	0.14073	295.53	323.68	1.1939		0.11674	295.18	323.19	1.1780	
90	0.14504	304.47	333.48	1.2212		0.12037	304.15	333.04	1.2055	
100	0.14932	313.57	343.43	1.2483		0.12398	313.27	343.03	1.2326	

 TABLE A-12 (Continued)

IABL	E A-12 (Сопппиеа)							
<i>T</i> °C	υ m³/kg	и kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K		v m³/kg	и kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K	
	p = 2.8 bar = 0.28 MPa $(T_{\text{sat}} = -1.23^{\circ}\text{C})$					p = 3.2 bar = 0.32 MPa $(T_{\text{sat}} = 2.48^{\circ}\text{C})$				
Sat.	0.07193	226.38	246.52	0.9197		0.06322	228.43	248.66	0.9177	
0 10	0.07240 0.07613	227.37 235.44	247.64 256.76	0.9238 0.9566		0.06576	234.61	255.65	0.9427	
20	0.07972	243.59	265.91	0.9883		0.06901	242.87	264.95	0.9749	
30	0.08320	251.83	275.12	1.0192		0.07214	251.19	274.28	1.0062	
40 50	0.08660	260.17 268.64	284.42 293.81	1.0494 1.0789		0.07518	259.61 268.14	283.67 293.15	1.0367 1.0665	
60	0.08992	277.23	303.32	1.10789		0.07813	276.79	302.72	1.0003	
70	0.09641	285.96	312.95	1.1364		0.08392	285.56	312.41	1.1243	
80	0.09960	294.82	322.71	1.1644		0.08674	294.46	322.22	1.1525	
90 100	0.10275 0.10587	303.83 312.98	332.60 342.62	1.1920 1.2193		0.08953 0.09229	303.50 312.68	332.15 342.21	1.1802 1.2076	
110	0.10307	322.27	352.78	1.2461		0.09503	322.00	352.40	1.2345	
120	0.11205	331.71	363.08	1.2727		0.09774	331.45	362.73	1.2611	
		4.0 bar =	= 0.40 MF	ra			5.0 bar =	0.50 MPa	<u> </u>	
		$(T_{\rm sat} = 8$.93°C)				$T_{\rm sat} = 15.$	74°C)		
Sat.	0.05089	231.97	252.32	0.9145		0.04086	235.64	256.07	0.9117	
10 20	0.05119 0.05397	232.87 241.37	253.35 262.96	0.9182 0.9515		0.04188	239.40	260.34	0.9264	
30	0.05662	249.89	272.54	0.9313		0.0416	248.20	270.28	0.9204	
40	0.05002	258.47	282.14	1.0148		0.04410	256.99	280.16	0.9918	
50	0.06164	267.13	291.79	1.0452		0.04842	265.83	290.04	1.0229	
60	0.06405	275.89	301.51	1.0748		0.05043	274.73	299.95	1.0531	
70 80	0.06641 0.06873	284.75 293.73	311.32 321.23	1.1038 1.1322		0.05240 0.05432	283.72 292.80	309.92 319.96	1.0825 1.1114	
90	0.07102	302.84	331.25	1.1602		0.05620	302.00	330.10	1.1397	
100	0.07327	312.07	341.38	1.1878		0.05805	311.31	340.33	1.1675	
110	0.07550	321.44	351.64	1.2149		0.05988	320.74	350.68	1.1949	
120	0.07771	330.94	362.03	1.2417		0.06168	330.30	361.14	1.2218	
130 140	0.07991 0.08208	340.58 350.35	372.54 383.18	1.2681 1.2941		0.06347 0.06524	339.98 349.79	371.72 382.42	1.2484 1.2746	
		6.0 bar =	= 0.60 MF	 Pa			7.0 bar =	0.70 MPa		
	Γ	$(T_{\rm sat}=2)$					$T_{\rm sat} = 26.$			
Sat.	0.03408	238.74	259.19	0.9097		0.02918	241.42	261.85	0.9080	
30	0.03581	246.41	267.89	0.9388		0.02979	244.51	265.37	0.9197	
40 50	0.03774 0.03958	255.45 264.48	278.09	0.9719 1.0037		0.03157 0.03324	253.83 263.08	275.93 286.35	0.9539	
50 60	0.03958	264.48	288.23 298.35	1.0037		0.03324	263.08	286.35	0.9867 1.0182	
70	0.04304	282.66	308.48	1.0645		0.03634	281.57	307.01	1.0487	
80	0.04469	291.86	318.67	1.0938		0.03781	290.88	317.35	1.0784	
90 100	0.04631 0.04790	301.14 310.53	328.93 339.27	1.1225 1.1505		0.03924 0.04064	300.27 309.74	327.74 338.19	1.1074 1.1358	
110	0.04790	320.03	349.70	1.1781		0.04201	319.31	348.71	1.1637	
120	0.05099	329.64	360.24	1.2053		0.04335	328.98	359.33	1.1910	
130	0.05251	339.38	370.88	1.2320		0.04468	338.76	370.04	1.2179	
140	0.05402 0.05550	349.23	381.64	1.2584		0.04599	348.66	380.86	1.2444	
150 160	0.05550	359.21 369.32	392.52 403.51	1.2844 1.3100		0.04729 0.04857	358.68 368.82	391.79 402.82	1.2706 1.2963	

 TABLE A-12 (Continued)

IABL	E A-12 (Continuea	!)								
<i>T</i> °C	v m³/kg	и kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K		<i>v</i> ³/kg	и kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K		
	p =	$= 8.0 \text{ bar} = (T_{\text{sat}} = 3)$		Pa		p = 9.0 bar = 0.90 MPa $(T_{\text{sat}} = 35.53^{\circ}\text{C})$					
C .	0.00547		1	0.0066					0.0054		
Sat.	0.02547	243.78	264.15	0.9066		2255	245.88	266.18	0.9054		
40 50	0.02691	252.13	273.66	0.9374		2325	250.32	271.25	0.9217		
50	0.02846	261.62	284.39	0.9711		2472	260.09	282.34	0.9566		
60	0.02992	271.04	294.98	1.0034		2609	269.72	293.21	0.9897		
70	0.03131	280.45	305.50	1.0345		2738	279.30	303.94	1.0214		
80	0.03264	289.89	316.00	1.0647		2861	288.87	314.62	1.0521		
90	0.03393	299.37	326.52	1.0940		2980	298.46	325.28	1.0819		
100	0.03519	308.93	337.08	1.1227		3095	308.11	335.96	1.1109		
110	0.03642	318.57	347.71	1.1508		3207	317.82	346.68	1.1392		
120	0.03762	328.31	358.40	1.1784	0.0	3316	327.62	357.47	1.1670		
130	0.03881	338.14	369.19	1.2055		3423	337.52	368.33	1.1943		
140	0.03997	348.09	380.07	1.2321	0.0	3529	347.51	379.27	1.2211		
150	0.04113	358.15	391.05	1.2584	0.0	3633	357.61	390.31	1.2475		
160	0.04227	368.32	402.14	1.2843	0.0	3736	367.82	401.44	1.2735		
170	0.04340	378.61	413.33	1.3098	0.0	3838	378.14	412.68	1.2992		
180	0.04452	389.02	424.63	1.3351	0.0	3939	388.57	424.02	1.3245		
		1001	_ 1 00 1/0	D-		1	201	1 20 MD			
	p =	10.0 bar	= 1.00 M	Pa		p = 1	2.0 bar =	1.20 MP	1		
		$(T_{\rm sat} = 39)$	9.39°C)			($T_{\rm sat} = 46.$.32°C)			
Sat.	0.02020	247.77	267.97	0.9043	0.0	1663	251.03	270.99	0.9023		
40	0.02029	248.39	268.68	0.9066							
50	0.02171	258.48	280.19	0.9428	0.0	1712	254.98	275.52	0.9164		
60	0.02301	268.35	291.36	0.9768	0.0	1835	265.42	287.44	0.9527		
70	0.02423	278.11	302.34	1.0093		1947	275.59	298.96	0.9868		
80	0.02538	287.82	313.20	1.0405		2051	285.62	310.24	1.0192		
90	0.02649	297.53	324.01	1.0707		2150	295.59	321.39	1.0503		
100	0.02755	307.27	334.82	1.1000		2244	305.54	332.47	1.0804		
110	0.02753	317.06	345.65	1.1286		2335	315.50	343.52	1.1096		
120	0.02959	326.93	356.52	1.1567		2423	325.51	354.58	1.1381		
130	0.02939	336.88	367.46	1.1841		2508	335.58	365.68	1.1660		
140	0.03038	346.92	378.46	1.2111		2592	345.73	376.83	1.1933		
				1.2376							
150	0.03250	357.06	389.56			2674	355.95	388.04	1.2201		
160	0.03344	367.31	400.74	1.2638		2754	366.27	399.33	1.2465		
170	0.03436	377.66 388.12	412.02	1.2895		2834	376.69	410.70 422.16	1.2724		
180	0.03528	300.12	423.40	1.3149	0.0	2912	387.21	422.10	1.2980		
	p =	14.0 bar	= 1.40 M	Pa		p = 1	6.0 bar =	1.60 MP	a		
	-	$(T_{\rm sat} = 52)$	2.43°C)			($T_{\rm sat} = 57.$	92°C)			
Sat.	0.01405	253.74	273.40	0.9003	0.0	1208	256.00	275.33	0.8982		
60	0.01403	262.17	283.10	0.9003		1233	258.48	278.20	0.8982		
70	0.01493	272.87	295.31	0.9297		1340	269.89	291.33	0.9009		
80	0.01701	283.29	307.10	0.9997		1435	280.78	303.74	0.9813		
90	0.01792	293.55	318.63	1.0319		1521	291.39	315.72	1.0148		
100	0.01878	303.73	330.02	1.0628		1601	301.84	327.46	1.0467		
110	0.01960	313.88	341.32	1.0927		1677	312.20	339.04	1.0773		
120	0.02039	324.05	352.59	1.1218		1750	322.53	350.53	1.1069		
130	0.02115	334.25	363.86	1.1501	0.0	1820	332.87	361.99	1.1357		
140	0.02189	344.50	375.15	1.1777		1887	343.24	373.44	1.1638		
150	0.02262	354.82	386.49	1.2048		1953	353.66	384.91	1.1912		
160	0.02333	365.22	397.89	1.2315	0.0	2017	364.15	396.43	1.2181		
170	0.02403	375.71	409.36	1.2576	0.0	2080	374.71	407.99	1.2445		
180	0.02472	386.29	420.90	1.2834	0.0	2142	385.35	419.62	1.2704		
190	0.02541	396.96	432.53	1.3088	0.0	2203	396.08	431.33	1.2960		
200	0.02608	407.73	444.24	1.3338	0.0	2263	406.90	443.11	1.3212		