Automi e Linguaggi Formali

Indecidibilità, linguaggi ricorsivi e linguaggio universale

Lamberto Ballan lamberto.ballan@unipd.it

Correzione esercizi

- TM che accetta L delle stringhe con stesso numero di 0 e 1
- TM che accetta L delle stringhe binarie palindrome

Indecidibilità

- Un linguaggio L è ricorsivamente enumerabile (RE) se L=L(M) per una macchina di Turing M
 - i.e. esiste una TM che si arresta se la stringa è accettata (ma potrebbe non fermarsi se non la accetta)

- Abbiamo poi introdotto in modo formale cosa significa che un problema é indecidibile
- Abbiamo visto un esempio di linguaggio non RE (il linguaggio di diagonalizzazione L_d) e lo abbiamo dimostrato

Indecidibilità

- Cerchiamo adesso di chiarire la struttura dei linguaggi RE, ossia quelli accettati da una TM, individuando due classi:
 - linguaggi L in cui abbiamo una TM che non solo riconosce il linguaggio ma che segnala anche se w non è in L
 - Iinguaggi L che non sono accettati da alcuna TM che garantisca di arrestarsi

Linguaggi ricorsivi

- Un linguaggio L è **ricorsivo** se L=L(M) per una macchina di Turing M tale che:
 - se w è in L, allora M accetta (e dunque si arresta)
 - se w non è in L, allora M si arresta pur non entrando in uno stato accettante
- Una TM d questo tipo corrisponde alla nozione informale di algoritmo, cioè una sequenza ben definita di passi che termina sempre e produce una risposta
- Se consideriamo L come un problema, allora il problema L è detto decidibile se si tratta di un linguaggio ricorsivo, mentre è detto indecidibile se si tratta di un linguaggio non ricorsivo

Relazione tra linguaggi ricorsivi, RE, non RE

Complementi di linguaggi ricorsivi e RE

 Teorema (9.3): se Lé un linguaggio ricorsivo, lo è anche il suo complementare L^c

D: Sia L=L(M) per una TM che si arresta sempre.

Costruiamo una macchina M^c tale che L^c=L(M^c). Per formare M^c modifichiamo M nel modo seguente:

- gli stati accettanti di M diventanøstati non accettanti di M^c senza transizioni; in questi stati M^c si arresta senza accettare.
- M^c ha un nuovo stato accettante q_f, da cui non esistono transizioni uscenti.
- per ogni combinazione di stato non accettante e simbolo di nastro per cui M non ha regole di transizione (quindi si arresta senza accettare) aggiungiamo una transizione verso q_f.

M si arresta per definizione, e quindi anche M^c. Inoltre M^c accetta le stringhe w che M non accetta. Quindi M^c accetta il linguaggio L^c.

Complementi di linguaggi ricorsivi e RE

Teorema (9.4): se Le L^c sono linguaggi RE, allora L è ricorsivo

D: Siano $L=L(M_1)$ e $L^c=L(M_2)$, dove M_1 e M_2 sono simulate in parallelo da una TM a due nastri M (nota: gli stati di M_1 e M_2 sono componenti dello stato di M_1 .

- se l'input w è in L, allora M₁ accetta in tempo finito e quindi M accetta e si arresta.
- se l'input w non è in L, allora è in L^c , perciò M_2 prima o poi dovrà accettare w; a quel punto M si arresta senza accettare.

Dunque M si arresta su tutti gli input e L(M)=L, e quindi possiamo concludere che L è ricorsivo.

Proprietà dei linguaggi ricorsivi e RE

- Quindi dove possono stare L e L^c?
 - ▶ sia *L* sia *L^c* sono ricorsivi, cioè si trovano nel cerchio interno
 - ▶ né L né L^c sono RE
 - ▶ L è RE ma non ricorsivo, e L^c non è RE
 - L^c è RE ma non ricorsivo, e L non è RE (caso analogo al precedente ma L e L^c sono scambiati)
- Non è possibile che un linguaggio (*L* o *L^c*) sia ricorsivo e l'altro sia RE o neanche RE (per il primo teorema)
- Non è possibile che siano entrambi RE ma non ricorsivi (per il secondo teorema)

Il linguaggio universale

• Il linguaggio universale L_u è l'insieme delle stringhe binarie che codificano una coppia (M, w) dove $w \in L(M)$

- Esiste una TM *U*, detta "TM universale", tale che $L_u=L(U)$
- Descriviamo U come TM multinastro (3 nastri):
 - ▶ uno per il codice di M (i.e. le transizioni) e l'input w
 - uno per il nastro simulato di M (usando la stessa codifica di M)
 - uno per la codifica dello stato di M
- Così U simula M su w, e accetta (M, w) sse M accetta w

Indecidibilità del linguaggio universale

Teorema: Lué RE ma non ricorsivo

D: Abbiamo già visto che Lu è RE.

Supponiamo che L_u sia ricorsivo. Quindi per il T9.3 anche L_u^c sarà ricorsivo. Se abbiamo una M che accetta L_u^c allora si può costruire una TM che accetta L_d . Ma L_d non è RE e quindi siamo in contraddizione.

Supponiamo ora che $L(M) = L_u^c$. Possiamo modificare M in una TM M' che accetta L_d .

- data una stringa w, M' la trasforma in w111w (si usa un'altro nastro per copiare w)
- M' simula M sul nuovo input; se nella "nostra" enumerazione w è w_i allora M' determina se M_i accetta w_i . Poiché M accetta L_u^c , accetterà sse M_i non accetta w_i , quindi w_i é in L_d .

Perciò M' accetta w sse è in L_d . Ma M' non può esistere quindi L_u non è un linguaggio ricorsivo.

Il problema dell'arresto

- Data una TM M, definiamo H(M) come l'insieme delle stringhe w tale che M si arresta con input w (anche se M non accetta)
- Il problema dell'arresto è quindi definito come il linguaggio che contiene le coppie (M, w) tali che w è in H(M)
 - questo è un altro problema simile a Lu, e quindi si può definire una TM che simula il comportamento di M su w, mostrando che è un linguaggio RE ma non ricorsivo
- Quindi non esiste un algoritmo che possa dire se un dato programma termina o no; esiste però un algoritmo che, se il programma in input termina, si ferma, altrimenti non si arresta

Riduzioni

- Dato un problema noto P_1 indecidibile, vorremmo vedere se un nuovo problema P_2 è a sua volta indecidibile
- Un problema P_1 si *riduce* a P_2 se abbiamo un algoritmo per convertire le istanze P_1 in istanze di P_2 con stessa risposta
 - ridurre P_1 a P_2 significa convertire ogni stringa di P_1 in una stringa di P_2 , e ogni stringa non in P_1 in una stringa non in P_2
- Supponiamo che esista un algoritmo che risolve P₂. Data una stringa w per P₁, la convertiamo in un'altra stringa x per P₂.
 Usiamo quindi l'algoritmo di soluzione per P₂ per decidere se x è o meno in P₂. Qualunque sia la risposta, è valida anche per w in P₁. Perciò, a partire dall'algoritmo che risolve P₂, abbiamo costruito un algoritmo che risolve P₁.

Riduzioni

• Teorema (9.7): se esiste una riduzione da P_1 a P_2 allora: (a) se P_1 è indicibile, lo è anche P_2 ; (b) se P_1 è non RE, lo è anche P_2

D: fare per esercizio