MTH114: ODE: Assignment-3

1. (T) A surface $z = y^2 - x^2$ in the shape of a saddle is lying outdoors in a rainstorm. Find the paths along which raindrops will run down the surface.

Solution:

A curve on the surface is determined by a curve y = y(x) on the xy-plane. The raindrop will take the path where z decreases at maximum rate. We know that for a real valued differentiable function f(x,y), f will have maximum increase rate in direction ∇f and maximum decrease rate in direction $-\nabla f$ (This comes from the fact that directional derivative of f in direction v, |v| = 1, is given by $(\nabla f).v$).

So the required curve in xy-plane will have slope $-\nabla f = (2x, -2y)$. So its differential equation is dy/dx = -2y/2x. Solving we get xy = c. Thus the curve on the surface is the intersection of the saddle $z = x^2 - y^2$ with hyperbolic cylinder xy = c.

2. (T) Does $f(x,y) = xy^2$ satisfies Lipschitz condition (LC) on any rectangle $[a,b] \times [c,d]$? What about on an infinite strip $[a,b] \times \mathbb{R}$?

[A function f(x, y) is said to satisfy Lipschitz condition on a domain $D \subseteq \mathbb{R}^2$, if there exists L > 0 such that $|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$ for all $(x, y_1), (x, y_2) \in D$.]

Solution:

On closed rectangle $[a, b] \times [c, d]$, the partial derivative f_y is continuous and hence bounded and hence f satisfies LC. Alternatively,

$$\frac{|f(x,y_1) - f(x,y_2)|}{|y_1 - y_2|} = |x||y_1 + y_2| \le \max\{|a|, |b|\} \times 2\max\{|c|, |d|\}$$

On the vertical strip, |x| is bounded but $|y_1 + y_2|$ can be made arbitrarily large for large choices of y_1 and y_2 . So f does not satisfy LC there.

3. (T) Consider the IVP $y' = 2\sin(3xy)$, $y(0) = y_0$. Show that it has unique solution in $(-\infty, \infty)$.

Solution:

It suffices to show that it has unique solution on every interval [-L, L]. This is because if we have a unique solution on $[-L_1, L_1]$ and a unique solution on $[-L_2, L_2]$ with $L_2 > L_1$, then by uniqueness part the two solution has to agree on the smaller interval $[-L_1, L_1]$.

Now fix L. Define $R = [-L, L] \times [y_0 - b, y_0 + b \text{ for some large } b > 0$. Note that the function $f(x, y) = 2\sin(3xy)$ satisfies $|f| \le 2$ and $|f_y| \le 6L$ on the rectangle R. So by Picard theorem, unique solution exist on the interval [-h, h] where $h = \min\{L, b/2\}$. We can choose b > 2L so that h = L. Thus we get a unique solution on [-L, L].

4. Consider the ODE $y' = \frac{2xy}{y^2 - x^2}$. Solve it. Sketch the solutions. Verify Picard theorem for initial values in $\mathbb{R}^2 - \{(x, y): x^2 = y^2\}$. What is your solution passing through (1, 0)?

Solution:

Comparing with Mdx + Ndy = 0, we have M = 2xy, $N = x^2 - y^2$. So $\frac{1}{M}(M_y - N_x) = 2/y$. So integrating factor is $e^{-\int 1/ydy} = 1/y^2$. We get solution $x^2 + y^2 = cy$.

(Also we can solve it as homogeneous equation.)

Solution curves are circles with centre on the y-axis and touching the x-axis at the origin.

The function $f(x,y) = \frac{2xy}{x^2 - y^2}$ and f_y is continuous on $D = \mathbb{R}^2 - \{(x,y): x^2 = y^2\}$. So Picard theorem tells us: given any $(x_0, y_0) \in D$ there passes through a unique solution curve.

Given initial condition (x_0, y_0) , $x_0 \neq 0$ there is circle as above passing though that point.

For point $(x_0, 0), x_0 \neq 0$ we can not find a circle like that. But we observe that y(x) = 0 is also a solution of the equation and so this must be the unique solution passing through $(x_0, 0), x_0 \neq 0$.

5. (T) What does Picard theorem says about existence and uniqueness of solution of the IVP $y' = (3/2)y^{1/3}$, y(0) = 0? Show that it has uncountably many solutions.

Solution:

Here $f(x,y) = (3/2)y^{1/3}$ is continuous on the plane. So Picard theorem (Peano existence) tells us that it has at least one solution. But f_y is not continuous in any rectangle containing (0,0) and also f does not satisfy Lipschitz condition on any rectangle containing (0,0). So we can not say anything about uniqueness of the solution from the theorem.

Solving the equation we get $y^2 = x^3$. Also y(x) = 0 satisfies the IVP. Moreover, $y(x) = (x-a)^{3/2}$ for $x \ge a$ and y(x) = 0 for $x \le a$ also satisfies the IVP for any $a \ge 0$ (just need check derivative at x = a exists and equal to 0). Thus we get uncountably many solutions.

6. Consider the IVP $y' = \sqrt{y} + 1$, y(0) = 0, $x \in [0,1]$. Show that $f(x,y) = \sqrt{y} + 1$ does not satisfy Lipschitz condition in any rectangle containing origin, but still the solution is unique.

(Remark: It is fact that if an IVP, with f is continuous (not necessarily Lipschitz), has more than one solution, then it has uncountably many solutions. This is known as Kneser's Theorem. The previous exercise illustrates this phenomenan.)

Solution:

Consider any rectangle $R = [0, a] \times [0, d]$ containing origin We have

$$\frac{|f(x,y_1) - f(x,y_2)|}{|y_1 - y_2|} = \frac{|\sqrt{y_1} - \sqrt{y_2}|}{|y_1 - y_2|} = 1/\sqrt{\delta}, \text{ for } y_1 = \delta > 0, y_2 = 0.$$

For δ arbitrary small, we can make $\frac{|f(x,y_1)-f(x,y_2)|}{|y_1-y_2|}$ arbitrarily large on R. Hence f does not satisfy Lipschitz condition in any rectangle containing origin.

Let $g_1(x)$, $g_2(x)$ be two solutions of the IVP. Consider $z(x) = (\sqrt{g_1} - \sqrt{g_2})^2$. Then $z'(x) = -\frac{z(x)}{\sqrt{g_1}\sqrt{g_2}} \le 0$. Thus z(x) is a decreasing function. Further z(x) is non negative and z(0) = 0. Then z(x) = 0 for all $x \ge 0$. Hence $g_1 = g_2$.

7. Use Picard's method of successive approximation to solve the following initial value problems and compare these results with the exact solutions:

(i) (T)
$$y' = 2\sqrt{x}$$
, $y(0) = 1$ (ii) $y' + xy = x$, $y(0) = 0$ (iii) $y' = 2\sqrt{y}/3$, $y(0) = 0$

Solution:

Picard iteration is $y_{n+1}(x) = y_0 + \int_{x_0}^x f(t, y_n(t)) dt$ with $y_0(x) \equiv y_0$.

(i) $y_0 = 1$, $y_n(x) = 1 + 2 \int_0^x \sqrt{t} dt = 1 + (4/3)x^{3/2}$, $n \ge 1$ (since f is independent of y). Here $y_n(x)$ $(n \ge 1)$ coincides with the exact solution.

(ii) For exact solution

$$\frac{dy}{1-y} = x \, dx \implies -\ln(1-y) = \frac{x^2}{2} + C$$

Using y(0) = 0 we find C = 0. So,

$$1 - y = e^{-x^2/2} \implies y = 1 - e^{-x^2/2}.$$

Now we calculate the Picard iterates. Here f(x,y) = x(1-y) and $y_0 = 0$. Thus $y_1(x) = \int_0^x t(1-0) dt = x^2/2$. Using y_1 , we get $y_2(x) = \int_0^x t(1-t^2/2) dt = x^2/2 - (x^2/2)^2/2$. $y_3(x) = x^2/2 - (x^2/2)^2/2 + (x^2/2)^3/3$!. By induction, we get $y_n(x) = \sum_{m=1}^n (-1)^{m-1} (x^2/2)^m/m$!. Thus as $n \to \infty$, $y_n(x) \to -\sum_{m=0}^\infty (-x^2/2)^m/m$! $+ 1 = 1 - e^{-x^2/2}$, which is the exact solution.

(iii) Here $y_0 = 0$ and $f(x, y) = 2\sqrt{y}/3$. If we take $y_0(x) \equiv y_0 = 0$, then $y_n(x) = 0$, $n \ge 1$. Here $y_n(x)$, $\forall n$ coincides with the analytical solution y(x) = 0. The other solution $y(x) = (x/3)^2$ is not reachable from here.

Note: However, if we start with $y_0(x) = 1$, then

$$y_1(x) = \frac{2}{3}x$$
, $y_2(x) = \left(\frac{2}{3}\right)^{5/2}x^{3/2}$, $y_3(x) = \left(\frac{2}{3}\right)^{9/4}\frac{4}{7}x^{7/4}$
$$y_4(x) = \left(\frac{2}{3}\right)^{17/8}\left(\frac{4}{7}\right)^{1/2}x^{15/8}$$

Clearly, $y_n(x) = a_n x^{b_n}$ where $a_1 = 2/3$, $a_2 = (2/3)^{5/2}$, $a_3 = (2/3)^{9/4} (4/7)$, \cdots and $b_n = (2^n - 1)/2^{n-1}$. The sequence $b_n \to 2$ and a_n is a decreasing sequence bounded below. Hence, $y_n(x) \to Ax^2$. To find we substitute in the integral relation and find

$$Ax^2 = 2/3\sqrt{A}x^2/2 \implies A = 1/3^2 \implies y_n(x) \to (x/3)^2.$$

8. Solve $y' = (y - x)^{2/3} + 1$. Show that y = x is also a solution. What can be said about the uniqueness of the initial value problem consisting of the above equation with $y(x_0) = y_0$, where (x_0, y_0) lies on the line y = x.

Solution:

Put $u = y - x \implies u' = u^{2/3}$. Solving we get $y = x + [(x + C)/3]^3$. Also y = x is a solution by direct verification. If $y(x_0) = y_0$ and $x_0 = y_0$, then $C = -x_0$. Thus the solutions $y = x + [(x - x_0)/3]^3$ and y = x both satisfy the initial conditions $y(x_0) = y_0$ with $x_0 = y_0$. Clearly the solution to the IVP is nonunique.

9. Discuss the existence and uniqueness of the solution of the initial value problem

$$(x^2 - 2x)y' = 2(x - 1)y,$$
 $y(x_0) = y_0.$

Solution:

Here $f(x,y) = 2(x-1)y/(x^2-2x)$ and $\partial f/\partial y = 2(x-1)/(x^2-2x)$. The existence and uniqueness theorem guarantees the existence of unique solution in the vicinity of (x_0, y_0) where f and $\partial f/\partial y$ are continuous and bounded. Thus, existence of unique solution is guaranteed at all x_0 for which $x_0(x_0-2) \neq 0$. Hence, unique solution exists when $x_0 \neq 0, 2$.

When $x_0 = 0$ or $x_0 = 2$, nothing can be said using the existence and uniqueness theorem. However, since the equation is separable, we can find the general solution to be y = Cx(x-2). Using initial condition we get $y_0 = Cx_0(x_0-2)$. Clearly the IVP has no solution if $x_0(x_0-2) = 0$ and $y_0 \neq 0$. If $x_0(x_0-2) = 0$ and $y_0 = 0$ then $y = \alpha x(x-2)$ is a solution to the IVP for any real α . Hence, in summary

- (i) No solution for $x_0 = 0$ or $x_0 = 2$ and $y_0 \neq 0$;
- (ii) Infinite number of solutions for $x_0 = 0$ or $x_0 = 2$ and $y_0 = 0$;
- (iii) Unique solution for $x_0 \neq 0, 2$.
- 10. (**T**) Consider the IVP y' = x y, y(0) = 1. Show that for Euler method, $y_n = 2(1-h)^n 1 + nh$ where h is the step size. $(x_n = nh \text{ with } x_0 = 0, y_0 = y(0) = 1)$. Deduce that if we take h = 1/n, then the limit of y_n converges to actual value of y(1).

Solution:

The inductive formula of Euler method is

$$y_n = y_{n-1} + hf(x_{n-1}, y_{n-1}) = y_{n-1} + h(x_{n-1} - y_{n-1}) = (1 - h)y_{n-1} + h^2(n-1).$$

(Using $x_n = nh$.)

We now use induction to prove the required formula for y_n . Clearly it is true for n = 0. Assume the formula is true for n. Then $y_{n+1} = (1-h)y_n + h^2n = 2(1-h)^{n+1} - 1 + (n+1)h$.

Taking h = 1/n, we have $x_n = 1$. Thus approximate value of y(1) is given by $y_n = 2(1 - 1/n)^n$ which converges to $2e^{-1}$.

Exact solution of the equation is $y = 2e^{-x} - 1 + x$. So $y(1) = 2e^{-1}$.

11. Use Euler method and step size .1 on the IVP $y' = x + y^2$, y(0) = 1 to calculate the approximate value for the solution y(x) when x = .1, .2, .3. Is your answer for y(.3) is higher or lower than the actual value?

Solution:

We have $x_0 = 0$, $y_0 = 1$. Using the Euler iterative formula with h = .1 (see previous exercise), we get $y_1 = 1.1$, $y_2 = 1.231$, $y_3 = 1.403$.

Using graphical method, we see that the solution curve through (0,1) is convex. So Euler method approximate value is lower than actual value.

12. Verify that $y = x^2 \sin x$ and y = 0 are both solution of the initial value problem (IVP)

$$x^2y'' - 4xy' + (x^2 + 6)y = 0, \quad y(0) = y'(0) = 0.$$

Does it contradict uniqueness of solution of IVP?

Solution: It is easy to verify that they satisfies the equation. For second order ode y'' + p(x)y' + q(x)y = r(x), with initial condition $y(x_0) = a$, $y'(x_0) = b$, the existence and uniqueness theorem assets unique solution when p, q, r are continuous on an interval containing x_0 . Here p(x) = -4/x and $q(x) = (x^2 + 6)/2$ are not continuous at x = 0.