The Impact of Cultural Cognition on Explainable AI in Strategic Environments

Johns Hopkins SAIS – Anthropology for Strategists – Fall 2018

Leo Klenner

Outline

- 1. Background
- 2. Summary of the Paper
- 3. Structure of the Paper
 - > Explaination as Minimization v. Maximization
 - > Cognitive Anthropology Culture as {Knowledge, Learning}
 - > Cognition in Combat
 - > Human-centered Explainable AI and Applications to Algorithms
- 4. Towards a Socio-Cultural Approach

Background

- > 5-10 year strategic environment shaped by autonomous weapons systems (AWSs) with AI-based OODA (observe, orient, decide, act) capabilities
- > Problem Humans need to understand the decisionmaking of AI-based systems
- > Solution Enable systems to output explanations of logic that drives its decsions

Summary of the Paper

> For robust explainable AI, understand machine learning (different algorithms) and human learning (differnt groups -> cultures)

Structure of the Paper

Explanation as Minimization v. Maximization

- > What do we do when we explain something to someone?
- > Explanation as a blackbox what constitutes an optimal explanation?

- > Tradeoffs for min v. max approach
 - > Min: "Don't touch dead bodies because the Ebolavirus spreads through skin contact."
 - > Max: "Don't touch dead bodies because an evil ghost will enter your body and kill you."

Cognitive Anthropology – Culture as {Knowledge, Learning}

"Cognitive Anthropology is the study of the relation between human society and human thought. [It] studies how people in social groups conceive and think about the objects and events make up their world. Such a project [...] inevitably leads to questions about the basic nature of [...] cognitive processes."

Roy G. D'Andrade. The Developement of Cognitive Anthropology. 1995.

> Culture = information environment with distinct knowledge demand and supply

> A lives in two environments but each has different epistemic parameters

Cognition in Combat

- > Optimal foraging for information in an environment changes based on culture
- > Hence, different cultures have different optimal explanations

Foraging path of human accountant of AWS

Foraging path of human team member of AWS

Human-Centered Explainable AI and App. to Algorithms

- > Robust explainable AI =
 - > optimized based on **sender** (AI engineering) and
 - > optimized based on **receiver** (humans anthropology, cognitive science)
 - > structured around on joint human-machine learning
- > Joint-learning case study of two classes of algorithms

Expert systems

Reinforcement learning (with human demonstrations and trajectory preferences)

> **Conclusion**: Human-cent. explainable AI won't eliminate all ethical concerns, but can at least partially minimize them

Towards a Socio-Cultural Approach

Aspects of Anthropology in Al Research

Belief systems	Optimize based on a group's shared models of the world
Narrative construction of reality	Explanations provide narratives that interact with world models
Lying informants	——— Data that algorithms train on may be faulty; could AI lie?
Relativism (and ethics)	─────────────────────────────────────
Group-based learning	Apprenticeship or habitual learning is both human and algortihmic
Social networks	Cognitive anthropology concerns information flows in networks
Semiotics (representation)	How to translate between human and computational representation?