4. Jordan'sche Normalform Sei V ein Ventorraum, F: V-> V eine lineare Abbildung, LEK. Det. 4.1. Der Unterræm $\mathcal{H}au(f,\lambda) = \{v \in V \mid \exists n \in M \text{ mit } (f-\lambda id_V)^n(v) = \bar{o}\}$ heigt Kauptraum von f zu). Bem. Hau (f, X) ist wirklich ein Unterraum Wenn $(f-\lambda id_{V})^{n}(v)=\bar{o}$ und $(f-\lambda id_{V})^{m}(w)=\bar{o}$, dann $(f-\lambda id_{V})^{u}(v+w)=\bar{o}$ für $u=\max(n,m)$. Lemma 4.2. Rau $(f, \lambda) + d\bar{o} = \lambda$ ist ein Eigenwert von f. Bew (=) 3v + 0, v eV, s.d. f(v)= lv. Also $(f-\lambda id_{v})(v)=\bar{o}$ and $v \in Hau(f,\lambda)$. (=) Gegeben: Hau(f,1) + Lof. Sei VE Hau(f,1), V + 0 und sei ne M die kleinste Zahl mit $(f-\lambda id_v)^n(v)=\bar{o}$. Falls n=1, ist v ein Eigenventor von f 2u λ . Fælls $n \ge 2$, hæben wir $u = (f - \lambda id_V)^{n-1}(v) \ne \overline{o}$ und $(f - \lambda id_V)(u) = \overline{o}$, uist ein Eigenventor zu 1. B Beispiel Sei V= IK" Dann gilt: Hau(f, 0) = V (=) f = 0, f ist eine nilpotente Abbildung. (=) Kleer (=)) Eigenventor 2U0 + Industion übern.

In einer Basis ist die Mætrix von f $A = \begin{pmatrix} 0 & \star & \star & \star \\ i & \tilde{A} \end{pmatrix}$, wo \tilde{A} eine nilpotente laterix ist, weil $\widetilde{A}^{M}e_{i}^{\prime}=\overline{o}$, falls $2\leq i\leq n$, M>n; und A"i ei = ō (les, -, en) ist die Bæsis), (eielk") Inductions annahme: $\tilde{A}^{n-1} = 0$ $A = A^{n-1} A = \begin{pmatrix} 0 & u\tilde{A} \\ 0 & \tilde{A}^{n-1} \end{pmatrix}, A = \begin{pmatrix} 0 & u\tilde{A} \\ 0 & \tilde{A} \end{pmatrix} = \begin{pmatrix} 0 & u\tilde{A} \\ 0 & \tilde{A} \end{pmatrix} = \begin{pmatrix} 0 & u\tilde{A} \\ 0 & \tilde{A} \end{pmatrix}$ $=\begin{pmatrix} 0 & \mathcal{U} \cdot A & \mathcal{U} - 1 \\ 0 & \mathcal{U} \end{pmatrix} = 0 \cdot \left(\mathcal{U} = (\mathsf{X} - \mathsf{X}) \right)$ Aus LAI: AE Un(K) ist nilpotent (311, s.d. Au=0)(=) A ist triagonalisierbar und alle Eigenwerte sind Null $A \sim \begin{pmatrix} 0 & + \\ 0 & 0 \end{pmatrix} \begin{pmatrix} - \\ 0 & 0 \end{pmatrix} A^n = 0.$ Lemma 4.3. Sei h: V -> V ein lineære Abbildeing, die mit & kommutiert, hof=foh. Dann h(v) E Hau(f, 1) YVEHoalf, 1), Y1. Bew. (f-lidy)"(h(v)) = ho (f-lidy)"(v) = = $h(\bar{o}) = \bar{o}$, falls $(f - \lambda i d_v)'(v) = \bar{o}$.

Kor. Jeder Hauptraum Kau(f,1) ist f-stabil. (I) Seetz 4.4. Seien 1,..., Ir EK pæærweise Verschieden, li + li für i + j. Dann gilt $\sum \mathcal{R}au(f, \lambda_i) = \mathcal{R}au(f, \lambda_1) \oplus_{-} \oplus \mathcal{H}au(f, \lambda_r).$ Bew Induction über r. Fælls r=1, gibt es nichts zu zeigen. Sei r>2 Hier ist die Summe E Hault, li) direct. Sei es (\(\sum_{i=1}^{r-1} \text{Hau}(\tau, \lambda; \) \(\) Hau(\tau, \lambda_i) \(\) + # { 0}. Dann finden wir einen Verstor U = 0 im Schnitt, u= V1+ -- +Vrs und $v_i \in Hau(f, \lambda_i)$. $\exists n \ mit \ (f - \lambda_r id_v)(u) = \overline{o}$. Setzen h=(f-1, idv). h: V-> V ist eine Cineare Abbildung und hof = Joh. Wir haben $\overline{O} = h(u) = h(v_1) + \dots + h(v_{r-1})$. Weil die Summe E Hau(f, 1;) direvet 181, mussen alle Summanden i=1 gleich Null sein, $h(v_i) = \overline{0} \quad \forall i \leq r-1$. (Nach dem Lemma 4.3. h(Vi) & Hau (f, li).) Sei ni EN die kleinste Zahl mit (f-liidy)"(V)=0 Wie sehon bemeret, $(f-1, sd_V)^{n_i-1}(v_i) = W_i \neq 0$ ist ein Eigenventor von f zu li. (Falls ni=1, setzt man (f-liidy) = idy -) Es 18t angenommen, does vi +o.

Die Abbildungen h und f- lid kommutieren, damit auch h. (f-1; id,)" (v)= $= \overline{O} \text{ und } h(w) = \overline{O}. \text{ Aber}$ $h(w) = (f - l_r id_v)^n(w) = (f - l_r id_v)(l_i - l_r)w =$ = (1;-1r) W = O. Der Widerspruch zeigt, dæss alle Vi gleich Kull sind und $(Hau(f, l_1) \oplus \oplus Hau(f, l_{r-1})) \cap Hau(f, l_r) =$ $= \sqrt{0}$ Sæt 74.5. (Fitting-Zerlegung). Sei V=1K" Dann besitzt kææ (f,0) stets genæel ein unter f' stabiles Komplement. V= Hau(f, 0) & U, wo f(u) & U tueU. Bew. Hau(f, o) = Ker $f^n = \text{Ker } f^N \forall N > n$. Betrachten wir noch die Kette von Unterräumen Imf 2 Imf 2 = 2 Imf 2. Eine Seite ist die unendlich, die andere liegen alle Unterraume in V und dim $V = \infty$.

Wenn $Im f^{K} \supset Im f^{K+1}$, dann $dim (Im f^{K}) > \infty$ > $dim (Im f^{K+1})$. West $dim (Im f) \leq n$, gibt es eine Stelle m, ab der diese Folge Konstant wird, Imf = Imf W/N>m.

Sei N=m, N=n. Dann Im $f^{2N} = f^{N}(Im f^{N}) = Im f^{N} und aus$ Dimensionsgründen Imf n Kerf = dof. Nach der Dimensionsformel: n=dim(ImF1)+ + dim(Ker f") folgt es dess, V= Im f * * Kerf = Im f * * Kæu (f, 0). Im f ist f-stabil, weil f(Imf") = = Im f N+1 = Im f. Zu Eindentigkeit: Gegeben ist $V=Kau(f,0)\oplus U$ und $f(U)\subseteq U$. Weil Un Kerf=lof, gilt es dim f(u)=dimul, also f(U) = U. Damit U = Imf KK. Nun USImfund dim U = dim (Imf") = = n - dim Race (f, 0). U= Imf. Lemma 4.6. Sei V= IK". Dann stimmt dim Kær (f, 1) mit der Vielfachheit der Nullstelle λ von $\chi_{f}(\lambda)$ (diese Vielfachheit nennt meen algebraische Vielfachheit des Giernworte) Eigenwerts). Bem dim V, (f) ist die geometrische Vielfachheit von 1, V₁(f) = Ker(f-lidy). Bew. Die Fitting-Zerlegung zu h=f-didy

liefert: V = Have (f, 1) DU, wo h (U) = U (Rou(h,0)) für alle m>1. Auf Kæu(f, 1) ist h nilpotent, so ist sie tricegonælisierbar (LAI) mit alle Eigenwerte gleich Null. Satz 4.7. (Houptraumzerlegung). Zerfällt χ_i $\chi_f(x)$ in Lineafautoren, $\chi_f(x) = \Pi(x-\lambda_i)$, so gilt V= Kære(f, ls) € _ € Kære (f, lr). Hier 18t es litts für alle i + j. Bew. Nach dem Satz 4.4. haben wir E Hau(f, 1;) = Hau(f, 1,) € _ € Hau(f, 1,) und das 18t ein Untervæeum von V von Dimension 21+22+ +24 (Lemma 4.6). $\sum_{i=1}^{r} \chi_i = \deg \chi_i(x) = \dim V = \bigoplus_{i=1}^{r} \operatorname{Hau}(f, \lambda_i) = V.$

17.05. Sætz 4.7. Ist es II) $\mathcal{X}_{\xi}(x) = \prod_{i=1}^{r} (x-\lambda_i)^{\lambda_i}$, wo $\lambda_i \neq \lambda_j$ für $i \neq j$, so gilt V= Rau(f, 1,1) D. @ Rau(f, 1r). Das characteristische Polynom Xf(X) zerfällt in Linearfautoren. Es ist nicht wahr, dass alle Wellstellen von $\chi_f(x)$ pæærweise verschieden sind, L; > 1 ist erlændt. $\mathcal{X}_{\mathcal{F}}(x) = 17(x-Y_j) = (Y_4, ..., Y_n) = (A_1, -A_1, ..., A_r, ..., A_r)$ c one Reihenfolge. Bis œut Keihenfolge. Der Seetz sagt doch, dass f ~ () block-diagonale

Block-diagonale

Gestalt. Sætz 4.8. (Jordæn-Zerlegung). Sei f:V->V linear mit $\chi_{f}(x) = \prod_{i=1}^{n} (x - y_i)$, n = dim V. Dann existiert genæu eine Zerlegung f=fs+fnl, wo fs diægonælisierkar ist,

fue nilpotent it, und fifne = fue ofs. Mon sægt, dæss & halbeinfach (æll f Englisch "semisimple", deswegen "s"). Bew Xf(x) zerfällt in Linearfactoren =) =) V= $Rae(f, \lambda_1) \oplus - \oplus Rae(f, \lambda_r), \lambda_i \neq \lambda_j$. II Setzen $f_s:=\lambda_s id_{\mathcal{U}_s} \oplus \lambda_r id_{\mathcal{U}_r}$, gemeint ist, doss $f_s(u_i)=\lambda_i u_i \ \forall u_i \in \mathcal{U}_i$. Weiter, $f_{n\ell}=f-f_s$ ist nilpotent, weil $f_{ne}(u_i) = (f - \lambda_i i d_i)^n (u_i) = \overline{\sigma} \quad \forall u_i \in \mathcal{U}_i, \forall i.$ Noch merken, $f \circ f_s(u_i) = f(\lambda_i u_i) = \lambda_i f(u_i) = f(\lambda_i u_i) = f$ Zu Eindeutigneit! Sei es $f = f_s + f_{ne} = h + l$, wo h diagonalisierbar, l'nilpotent ist, und hol=loh. Dann ho(h+l)= (h+l)oh, also hof= foh und die Kæeepträume von f sind h-stæbil (L.4.3.). Ebenfælls lof= fol und jeder U; ist auch l-stabil. Auf Ui: fs | ui = lidui, diese Abbildung vertæeseht mit jeder anderen

linearen Abbildung pili- Di. Inst. (I) fol=lot's auf jedem Unterrouem Ui. Damit fol=lofs und lofne= filel Wenn zwei nilpstenle Abbildungen 41, 42 Rommutieren 41°42=4241, dann 18t jede Cineare Kombination 241+842 milpotent. $(241+842)=\sum_{k=0}^{N} \binom{N}{k} 2^{k} 8^{N-k} 4^{k} 9^{k} 9^{k} 4^{k}$ So ist $f_{ne}-l=h-f_s$ eine nilpotente Abbildung. Hier $hof_s=f_s\circ h=h-f_s$ diagonalisierbar. L.4.9.Eine nilpotente Abbildung 1st genceu dann diagoncelisierbar, wenn sie gleich Null 18t. Also h= fs und fne = l. Lemma 4.9. Seien P, h: V->V linear und diagonalisserbar. Wenn foh=hot dænn ist f+h (æuch f-h) diagonalisierbar. Bew. f diagonalisierbar => V= V15(F) D D V(F), wo wie den $\chi_{f}(x) = \Pi(x-\lambda_i)^n, \lambda_i \neq \lambda_i, i \neq j$. Kier Kæer (f, 1:) = Vi (f) (Eigenræcem zu 1:) Ebenfælls für h: Hæu(h, u) = Vu(f) Vu. Wir wissen, dass jeder Heeu(f, li) = 4 (f)

h-stabil st (Lemma 4.3.). Sei $h_i = h \mid \text{Haa}(\theta, \lambda_i)$, $\mathcal{U}_i := \text{Keea}(\theta, \lambda_i)$. Doenn $U_i = \text{Row}(\widetilde{h}_i, \mathcal{U}_s) \oplus_{-} \oplus \text{Row}(\widetilde{h}_i, \mathcal{U}_{r(i)}).$ Klar, Kau (hi, μ_j) \subseteq Kau (h, μ_j) = χ_i (h) . Ui hat eine Basis, wo jedes Element ein Eigenventor von hist. Damit 3 eine Basis, wo fund h gleichzeitig diagonal sind, da ist jede Linear combination 2f+sh diagonal. Sind h. f: V -> V diægonælisierkar und gilt (hof = foh, so existiert eine Basis, wo fundhy diægonal sind. Alle Abbilderugen 2f+Bh, sowie foh, foh sind diægonælisierbær. Beispiel (Zu Tordan-Zerlegung). Sei $f = f_A$ mit $A = \begin{pmatrix} 120\\012\\001\\031 \end{pmatrix}$, so ist $A_s = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix}$, $A_{ne} = \begin{pmatrix} 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. Bem. & ist diagonalisierbar € Xf(X) = 17(X-Yi) und f = fs; fist nilpotent (=) f = ful.

Det. 4.10. Gegeben r>1 definieren (T) Wir eine rxr-llatrix T(r), genannt der nilpotente Jordan-Block der Größe r, durch die Vorschrift J(r); = 1 für j=i+1 und J(r); = 0 sonst. Ins6. J(1) = 0. $\mathcal{J}(r) = \begin{pmatrix} 010 & 0 \\ 010 & 0 \\ 011 & 0 \\ 0 & 0 \end{pmatrix}, \mathcal{J}(2) = \begin{pmatrix} 01 \\ 00 \end{pmatrix}, \mathcal{J}(3) = \begin{pmatrix} 010 \\ 000 \\ 000 \end{pmatrix}.$ Merken, rk T(r) = r-1, T(r) = 0. Als Abbildung: IK -> IK wirkt J(r) wie Folgend: er Herst erst Hesto. ~ Wir mochten die nilpotenten Abbildeengen 6: 1Kⁿ → 1Kⁿ (oder die nilpsteuten blatrizen AE Un(IK) bis œut Konjugation) klassifizieren. Sætz 4.11. (Normælform nilpotenter Abbildungen.) aegeben eine nilpotente Abbildung f:V->V, V=1K, gibt es eine Bæsis 43 von V, s.d. B[f]B=diag(J(ra),_, J(rt)). Die positiven gænzen Zæhlen 7,-, 7 sind hierbei durch f eindeutig bestimmt bis auf Reihenfolge. (Hier ist n < ∞.)

Beispiel diag $(\mathcal{J}(2), \mathcal{J}(3)) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Kor. Seien A, A & Un (IK) nilpotent. Dann $\exists r_1 \leq r_2 \leq \leq r_t, r_1 \geq 1, s.d.$ A~ $diag(\mathcal{I}(r_d),...,\mathcal{I}(r_t))$ und ahnlich (oder wonjugiert)A~ $\widetilde{A} \iff \widetilde{A} \sim diag(\mathcal{I}(r_d),...,\mathcal{I}(r_t)).$ Beweis des Sætzes. Die Eindeutigkeit ist unproblematisch. Ist f eine Abbildeng mit der Matrix diag (T(rs), ..., T(r2)), so gilt $\dim\left(\operatorname{Im} f^{d-1}\right) - \dim\left(\operatorname{Im} f^{d}\right) = \left| f_{i}^{i} \right|_{i} \ge df \right|.$ $f^{2}(e_{r_{4}})$ $f^{2}(e_{r_{4}})$ $f(e_{r_{4}}) \in Imf$, $f(e_{r_{4}}) \notin Imf$ $e_{r_{4}} \notin Imf$, $f(e_{r_{4}}) = e_{r_{4}-1}$ and (f = idy) so weiter. Die Kenntnis aller Zahlen |di | ri > di | liegt das t-Tupel (rs,-, rt) bis œut Reihenfolge fest, t = dim /- dim (Imf). Die Existenz folgt aus dem folgenden Lemma.

Lemma 4.12. Sei f: V -> V eine nilpotente (III)

Abbildung, V = IK, N < ... Dann existiert

eine Basis B von V, s.d. B LI d of unter

f stabil ist und, s.d. jedes Element

von B unter f höchstens ein Urbild

in B hæt. Wir nennen solche Basis eine

Jordan-Basis.

Lemma => Scatz: Nicht jedes Element von B hat ein Urbild in B.

falls immer geht, bommen wir zu einem Zyklus:

Also $f^{S}(v)=v$, für if ware die Länge S des Zynelees und f ware nicht nilpotent.

Wir sehen æuch, dass jedes Element von B, das in f(B) liegt, die Gestalt f(W) mit weB, w&f(B) hat.

Unter fzerfällt B in Ketten:

 $f(B) \neq v_1 \xrightarrow{f(v_2)} f^2(v_1) \xrightarrow{f^3(v_1)} \overline{o}$ $f(B) \neq v_2 \xrightarrow{f(v_2)} f^2(v_2) \xrightarrow{f^3(v_2)} \overline{o}$

Bew. des Lemmas Industion über n=dimV & ist nilpotent, so dim (Kerf) > 1 und dim (Imf) < n. Das Bild von f hæt eine Jordan-Basis 3. S: Die Menge Senthält eine Basis

So= {t_1,--,t_ri} von Kerf n Imf, $S_0 = \{t \in S \mid f(t) = \bar{o}\}.$ Sei weiter Bo LI Jo eine Basis von Kerf. (Kerf=(KerfnImf) & Wo, wo keinen Ventor $v \in W_0, v \neq \bar{o}$ im Bild von fliegt.)

Sist eine Jordan-Basis =) =) f(S) = SU(O). Wie betrachten die Elemente von 3, die nicht in f(5) liegen. Seien die Si,-, Sri. Jedes hat ein Urbild, weil SE Imf. Seien bs,..., bri Urbilde von Ss,..., Sri, biel und #16i) = Si. Setzen Bi= (S1,--, SifUBoUJ. Wir überprüfen, doss Beine Jordon-Basis von Vist.

Wir heeben $B = (B_0 \sqcup S_0) \sqcup (d 6_1, ..., 6_r, \beta \sqcup \{t \in S \mid f(t) \neq \bar{o}\})$ eine Basis von Kerf Merken, f(B) = 203 U(251,..., Sif LI f(S)). Und $f(S) = \int f(t) | t \in S$, $f(t) \neq \bar{o}$ $\int U d\bar{o}$. $\{f(b_1), \dots, f(b_r)\}$ $\coprod \{f(t) \mid t \in S, f(t) \neq \overline{O}\} = S$ ist eine Basis in Imf => =) B ist linear unabhangig und |B|=dimV. B 3t eine Basis von V. Wir haben gesehen, dass F(B) = BU(0). Zu Urbilde: Sei b EB. Es gibt drei llöglichkeiten. (I) & & S, &= &; . Hier & & Imf, Weil SUIBS linear unabhangig 18t. Das Element & hat Kein Urbild unter f. (II) $B \in S$, aber $B \notin F(S)$. Hier $B = S_i$ und b hat genœu ein Urbild in B, bi. (III) bes, bef(s). In Shat & gencer ein Urbild (5 ist eine Jordan - Basis) und $f(B_i) = S_i \neq B \forall i, 1 \leq i \leq r'$

Das Bildi \$1 \$1 \$1 \$1 \$2 \$5 \$7 \$1 \$2 \$3 \$6 \$1 \$2 \$3 \$4 \$4 \$5 \$6 \$6 \$1