Ранг на матрица

Нека $A \in M_{k \times n}(F)$ е матрица с k реда и n стълба с елементи от полето F

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \dots & & \dots & & \\ a_{k1} & a_{k2} & \dots & a_{kn} \end{pmatrix}$$

Да разгледаме системата от вектор- редове на матрицата:

Матрицата A има k броя редове a_1, \ldots, a_k , които са вектори от n-мерното векторно пространство F^n и ще записваме този факт по следния начин $rows(A) = \{a_1, a_2, \ldots, a_k\}.$

Стълбовете на матрицата A са n броя и те са вектори от k-мерното векторно пространство:

$$c_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{k1} \end{pmatrix}, c_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{k2} \end{pmatrix}, \dots, c_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{kn} \end{pmatrix}.$$

Записваме, че c_1, \ldots, c_n са вектор-стълбовете на матрицата A по следния начин $\operatorname{colms}(A) = \{c_1, c_2, \ldots, c_n\}$

Следващите теореми са възлови за да може да се дефинира понятието ранг на матрица, те също се използват при пресмятане на рангове - на вектори или на матрици. В първата теорема се доказва, че прилагайки елементарни преобразования по редове към една матрица, тогава рангът на системата от вектор-редове не се променя, а във втората се доказва, че при прилагане на елементарни преобразования по редове към матрица, тогава не се променя и рангът на системата от вектор-стълбове на матрицата.

Елементарните преобразования по редове за една матрица са следните:

- (1) размяна местата на два реда на матрицата;
- (2) прибавяне към един ред на друг ред от матрицата, умножен по число;
 - (3) умножаване на ред по число, различно от 0.

Теорема: 1. Нека матрицата A' се получава от матрицата A чрез последователно прилагане на елементарни преобразования по редове $(A, A' \in M_{k \times n}(F))$. Тогава рангът на системата от вектор-редове на матрицата A е равен на рангът от системата от вектор-редове на матрицата A'

$$\mathbf{r}(\text{rows}(A)) = \mathbf{r}(\text{rows}(A')).$$

Доказателство:

Нека да разгледаме поотделно по какъв начин се отразява върху ранга на системата от вектор-редовете прилагането на всяко едно от елементарните преобразования:

Преобразование 1. Ако размененим местата на редовете на матрицата, които имат номера $i, j, i \neq j$, тогава $a'_i = a_j, a'_j = a_i$ а за останалите индекси t е изпълнено $a'_t = a_t$. Това означава, че множествата от редове на двете матрици съвпадат и затова линейните обвивки на тези системи от вектори съвпадат $\ell(a_1, \ldots, a_k) = \ell(a'_1, \ldots, a'_k)$.

Преобразование 2 Ако към ред i на матрицата A се прибави ред j, умножен по числото λ . Изпълнено е $a'_i = a_i + \lambda.a_j$ а за индексите $t \neq i$ е изпълнено $a'_t = a_t$. Тогава $a'_i \in \ell(a_1, \ldots, a_k)$, а от равенството $a_i = a'_i - \lambda.a_j = a'_i - \lambda.a'_j$ се получава, че $a_i \in \ell(a'_1, \ldots, a'_k)$. И в този случай се получава, че линейните обвивки на вектор-редовете на двете матрици съвпадат $\ell(a_1, \ldots, a_k) = \ell(a'_1, \ldots, a'_k)$.

Преобразование 3 Ако ред i на матрицата A е умножен по числото $\lambda \neq 0$, тогава е изпълнено $a'_i = \lambda.a_i$ и съответно $a_i = \lambda^{-1}.a'_i$ и отново се получава равенство на линейните обвивки $\ell(a_1, \ldots, a_k) = \ell(a'_1, \ldots, a'_k)$.

Получихме, че прилагането на елементарно преобразование не променя линейната обвивка на вектор-редовете на матрицата $\ell(a_1,\ldots,a_k)=\ell(a'_1,\ldots,a'_k)$. Рангът на система вектори е равен на размерността на линейната обвивка на тези вектори, затова се получава

$$\mathbf{r}(a_1,\ldots,a_k) = \dim(\ell(a_1,\ldots,a_k)) = \dim(\ell(a'_1,\ldots,a'_k)) = \mathbf{r}(a'_1,\ldots,a'_k).$$

Решенията на всяка система линейни уравнения задават линейни комбинации на стълбовете на матрицата на системата и тази връзка се използва, когато се определя дали няколо вектора са линейно зависими и тази зависимост е основна при доказателствата на теоремаата, касаеща ранга на системата от вектор-стълбове.

Лема: 1. Нека А е матрицата на система линейни уравнения

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_k = b_2 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = b_k \end{vmatrix},$$

$$u\ c_1=egin{pmatrix} a_{11}\\ a_{21}\\ \vdots\\ a_{k1} \end{pmatrix},\ldots,c_n=egin{pmatrix} a_{1n}\\ a_{2n}\\ \vdots\\ a_{kn} \end{pmatrix}\ ca\ cm$$
ълбовете на $A\ u\ b=egin{pmatrix} b_1\\ b_2\\ \vdots\\ b_k \end{pmatrix}\ e$

стълба от свободните членове на системата. Изпълнено е :

Векторът $\beta = (\beta_1, \dots, \beta_n)$ е решение на системата линейни уравнения, тогава и само тогава когато $b = \beta_1.c_1 + \dots + \beta_n.c_n$. (Стълба от свободните членове е линейна комбинация, определена от числата β_1, \dots, β_n на вектор-стълбовете на матрицата)

Доказателство: Пресмятаме линейната комбинация

$$\beta_1.c_1 + \dots + \beta_n.c_n =$$

$$= \beta_1. \begin{pmatrix} a_{11} \\ \dots \\ a_{k1} \end{pmatrix} + \dots + \beta_n. \begin{pmatrix} a_{1n} \\ \dots \\ a_{kn} \end{pmatrix} = \begin{pmatrix} \beta_1.a_{11} + \dots + \beta_n.a_{1n} \\ \dots \\ \beta_1.a_{k1} + \dots + \beta_n.a_{kn} \end{pmatrix}.$$

От последното равенство е ясно, че $\beta = (\beta_1, \dots, \beta_n)$ е решение на системата линейни уравнения, точно когато е изпълнено

$$\beta_1.c_1 + \dots + \beta_n.c_n = \begin{pmatrix} \beta_1.a_{11} + \dots + \beta_n.a_{1n} \\ \dots \\ \beta_1.a_{k1} + \dots + \beta_n.a_{kn} \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} = b.$$

Лема: 2. Нека матрицата A_{kxn} има вектор-стълбове $c_1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{k1} \end{pmatrix}, \ldots,$

 \Diamond

 $c_n = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{kn} \end{pmatrix}$. Тогава е изпълнено, че векторите c_1, \dots, c_n са линейно зависими тогава и само тогава, когато хомогенната система с матрица A

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{vmatrix}$$

има ненулево решение.

Доказателство: Според Лема 1 е изпълнено, че хомогенната система с матрица A има ненулево решение $\beta=(\beta_1,\ldots,\beta_n)$ точно когато стълба от свободните членове $\vartheta=\begin{pmatrix}0\\\vdots\\0\end{pmatrix}$ може да се представи като линейна комбинация на вектор-стълбовете на матрицата $\vartheta=\beta_1.c_1+\cdots+\beta_n.c_n$, а според дефиницията това е изпълнено точно тогава, когато векторите c_1,\ldots,c_n са линейно зависими.

Използвайки тази лема лесно се получава, че ранга на системата вектор-стълбове не се променя при прилагане на елементарни преобразования по редове.

Теорема: 2. Нека матрицата A' се получава от матрицата A чрез последователно прилагане на елементарни преобразования по редове $(A, A' \in M_{n \times k}(F))$, тогава рангът на системата от вектор-стълбове на матрицата A е равен на рангът от системата от вектор-стълбове на матрицата A',

$$\mathbf{r}(\operatorname{colms}(A)) = \mathbf{r}(\operatorname{colms}(A')).$$

Доказателство: Нека матрицата $A' = (a'_{ij})_{k \times n}$ със стълбове c'_1, \ldots, c'_n се получава от матрицата $A = (a_{ij})_{k \times n}$ чрез прилагане на няколко елементарни преобразования по редове.

При избрани индекси $\{t_1,\ldots,t_s\}\subset\{1,\ldots,n\}$ нека да вземем от матриците A и A' стълбовете с номера $\{t_1,\ldots,t_s\}$ и със тях да направим нови матрици

$$A_{1} = \begin{pmatrix} a_{1,t_{1}} & \dots & a_{1,t_{s}} \\ \dots & \dots & \dots \\ a_{k,t_{1}} & \dots & a_{k,t_{s}} \end{pmatrix}, \quad A'_{1} = \begin{pmatrix} a'_{1,t_{1}} & \dots & a'_{1,t_{s}} \\ \dots & \dots & \dots \\ a'_{k,t_{1}} & \dots & a'_{k,t_{s}} \end{pmatrix}.$$

Вижда се, че матрицата A_1' се получава от матрицата A_1 като се приложат същите елементарни преобразования, които привеждат матрицата A в A'. Следователно двете хомогенни системи

които имат матрици A_1 и A_1' са еквивалентни и имат едни и същи решения. Прилагаме Лема 2 и получаваме:

$$c_{t_1},\ldots,c_{t_s}$$
 са ЛЗ \Leftrightarrow системата (1) има ненулево решение c'_{t_1},\ldots,c'_{t_s} са ЛЗ \Leftrightarrow системата (2) има ненулево решение

Откъдето се получава, че вектор-стълбовете c_{t_1}, \ldots, c_{t_s} от матрицата A са линейно зависими точно когато вектор-стълбовете със същите номера $c'_{t_1}, \ldots, c'_{t_s}$ от матрицата A' са линейно зависими.

Ако рангът на системата вектор-стълбове на матрицата A е r, тогава имаме:

- съществуват r линейно независими стълбове на A и нека това са стълбовете c_{i_1}, \ldots, c_{i_r} , следователно стълбовете $c'_{i_1}, \ldots, c'_{i_r}$ на матрицата A' също са линейно независими;
- всеки r+1 стълба $c_{j_1},\ldots,c_{j_{r+1}}$ на A са линейно зависими, откъдето следва, че и стълбовете $c'_{j_1},\ldots,c'_{j_{r+1}}$ на матрицата A' също са линейно зависими.

По този начин се получава, че рангът на системата вектор-стълбове на матрицата A' е също равен на r, колкото е ранга на вектор-стълбовете на матрицата A.

Като следствие от Теорема 1 и Теорема 2 при транспониране на матриците непосредствено се получава следното:

Твърдение: 1. Нека матрицата B се получава от матрицата A чрез последователно прилагане на няколко елементарни преобразования по **стълбове** $(A, B \in M_{n \times k}(F))$, тогава:

- рангът на системата от вектор-стълбове на матрицата A е равен на рангът от системата от вектор-стълбове на матрицата B;
- рангът на системата от вектор-редове на матрицата A е равен на рангът от системата от вектор-редове на матрицата B;

Като се използват доказаните теореми не е трудно да се получи равенство на ранговете на системата от вектор-редовете и системата от вектор-стълбовете за произволна матрица. Идеята е чрез последователно прилагане на подходящо подбрани елементарни преобразования да се получи матрица в такъв вид, в който лесно се установява равенство на ранговете. Доказателството на следващата теорема ни задава също и алгоритъм, по който може да се пресмятат ранговете на системите вектор-редове или вектор-стълбове.

Теорема: 3. Нека $A \in M_{k \times n}$ е ненулева матрица. Тогава съществува последователност от елементарни преобразования по редове и по стълбове, които привеждат матрицата A до матрица

$$R_{s} = (r_{ij})_{k \times n} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix},$$

на която единствените ненулеви елементи са s броя 1 по главния диагонал. $(r_{11}=r_{22}=\cdots=r_{ss}=1)$. Тогава рангът на системата вектор - редове е равен на системата от вектор-стълбове на матрицата u

$$\mathbf{r}(\text{rows}(A)) = \mathbf{r}(\text{colms}(A)) = s.$$

Доказателство:

Нека A е ненулева матрица. Следователно в нея има поне един ненулев елемент, например $a_{ij} \neq 0$. Ако е необходимо разместват се редове и стълбове, така че ненулевия елемент да отиде на първи ред, в първи стълб - място 1,1. Ако елемента $a_{11} \neq 0$, тогава може да се раздели първия ред на a_{11} и след тези преобразования се получава матрица от следния вид:

$$A \leadsto \begin{pmatrix} 1 & a'_{12} & \dots & a'_{1n} \\ a'_{21} & a'_{22} & \dots & a'_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a'_{k1} & a'_{k2} & \dots & a'_{kn} \end{pmatrix} = A'$$

Умножава се първия ред по подходящи числа и се прибавя към следващите редове с цел да се анулират елементите, които стоят на места $(2,1),\ldots,(k,1)$. След това използвайки преобразования по стълбове, чрез новополучения първи стълб могат да се анулират елементите от първия ред, които имат номера $(1,2),\ldots,(1,n)$. Получава се

$$A \leadsto \begin{pmatrix} 1 & a'_{12} & \dots & a'_{1n} \\ 0 & a'_{22} & \dots & a'_{2n} \\ \vdots & \vdots & \dots & \vdots \\ 0 & a'_{k2} & \dots & a'_{kn} \end{pmatrix} \leadsto \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & a'_{22} & \dots & a'_{2n} \\ \vdots & \vdots & \dots & \vdots \\ 0 & a'_{k2} & \dots & a'_{kn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \hline 0 & & & \\ \vdots & & & & \\ 0 & & & & \\ \end{pmatrix}$$

Ако матрицата A_1 е нулевата матрица, следователно сме получили след преобразованията матрица от типа R_1 , за която s=1.

Ако A_1 е ненулева матрица, тогава към нея можем да приложим аналогични на описаните преобразования и да се получи

$$A \leadsto \begin{pmatrix} \begin{array}{c|c} 1 & 0 & \dots & 0 \\ \hline 0 & & & \\ \vdots & & A_1 & \\ 0 & & & \\ \end{pmatrix} \leadsto \begin{pmatrix} \begin{array}{c|c} 1 & 0 & \dots & 0 \\ \hline 0 & \frac{1}{0} & 0 & \dots & 0 \\ \hline \vdots & & \vdots & A_2 & \\ 0 & & 0 & & \\ \end{array} \end{pmatrix}$$

Ако матрицата A_2 е нулева, значи че сме получили търсената матрица R_2 . Ако A_2 не е нулева по подобен начин се продължава, докато на някоя стъпка се получи нулева матрица A_s или се свършат редовете или стълбовете. Това означава че се получава матрица от търсения вид R_s , която има само s единици по главния диагонал, а всички останали елементи са 0. Ясно е, че първите s реда на матрицата R_s са линейно независими и ранга на системата вектор-редове на R_s е равен на s. По същия начин се установява, че и ранга на системата от вектор-редове е равен на ранга на системата вектор-редове е равен на ранга на системата вектор-редове е равен на ранга на системата вектор-стълбове за матрицата R_s . От предните теореми имаме, че ранговете на системите от вектор-редове и вектор стълбове на R_s са равни на съответните рангове за матрицата R_s , откъдето следва че и за произволната ненулева матрица R_s е изпълнено, че рангът на системата вектор-редове е равен на рангът на системата вектор-стълбове. \diamondsuit

Определение: 1. Ранг на матрица A се нарича рангът на системата от вектор-стълбове на матрицата, който е равен на ранга на системата от вектор-редове. рангът се бележи с $\mathbf{r}(A)$.

Определение: 2. Ако квадратната $n \times n$ матрица A има ранг $\mathbf{r}(A) = n$, тогава A се нарича **неособена матрица**.

Не е труднно да се види, че ако една матрица е неособена, тогава нейните вектор-редове са линейно независими, а също така и нейните стълбове са линейно независими.

Теорема: 4. Ако матрицата A е неособена $n \times n$ матрица, тогава само чрез елементарни преобразования по редове A можее да се приведе

$$\partial o \ e \partial u н u u н a ma матрица E_n = \left(egin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \\ 0 & 0 & \dots & 1 \end{array}
ight).$$

Доказателство: Индукция по n. За n=1 е изпълнено $A=(a_{11})$ и $a_{11}\neq 0$, като се раздели на a_{11} се получава единична матрица $E_1=(1)$. Нека твърдението е изпълнено за неособени матрици от ред $(n-1)\times (n-1)$ и нека A е неособена $n\times n$ матрица.

Изпълнено е, че стълбовете на A са линейно независими, следователно първия стълб е различен от ϑ , следователно има ненулев елемент от първия стълб и нека това е $a_{i1} \neq 0$. Чрез разместване на редове, можем да си подсигурим елемента $a_{11} \neq 0$. Като се раздели първия ред на a_{11} ще се получи матрица, която има 1 мястото на елемента a_{11} . Умножаваме първи ред по подходящи числа и го прибавяме към останалите редове с цел всички останали елементи от първи стълб да станат ϑ . Получава се матрица от вида

$$A' = \begin{pmatrix} 1 & a'_{12} & \dots & a'_{1n} \\ 0 & a'_{22} & \dots & a'_{2n} \\ \vdots & \vdots & \dots & \vdots \\ 0 & a'_{n2} & \dots & a'_{nn} \end{pmatrix} = \begin{pmatrix} 1 & a'_{12} & \dots & a'_{1n} \\ \hline 0 & & & \\ \vdots & & A_1 & \\ 0 & & & \end{pmatrix}$$

Рангът на матрицата A' е n, и тя има линейно независими редове. Следователно редовете на A_1 също са линейно независими и тя е неособена матрица. Прилага се индукционнот предположение към матрицата A_1 и само с елементарни преобразования по редове се получва

$$A' = \begin{pmatrix} 1 & a'_{12} & \dots & a'_{1n} \\ \vdots & & & A_1 \\ 0 & & & \end{pmatrix} \leadsto \begin{pmatrix} 1 & a'_{12} & \dots & a'_{1n} \\ \hline 0 & & & \\ \vdots & & E_{n-1} \\ 0 & & & \end{pmatrix}.$$

Използвайки редовете на единичната матрица лесно се нулират елементите a'_{12} ... a'_{1n} , като се получава единичната матрица от ред n. \diamondsuit