Josh Park HW5

MA450 - Algebra Honors Fall 2024

5.2)
$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{bmatrix}$$

 $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{bmatrix}$

$$x=(1\ 2\ 3\ 4\ 5)(6\ 7\ 8)$$

= $(1\ 5)(2\ 5)(3\ 5)(4\ 5)(6\ 8)(7\ 8)$

$$\beta = (2 3 8 4 7)(56)$$

$$= (27)(37)(87)(47)(56)$$

5.6) What is the order of the foll.

2.6) What is the order of the toll.

a)
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 4 & 6 & 5 \end{bmatrix} = (12)(356)$$

$$lcm(2,3) = 6$$

b)
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 1 & 2 & 3 & 4 & 5 \end{bmatrix} = (1 & 7 & 5 & 3)(2 & 6 & 4)$$

 $lcm(3,4) = 12$

5.28) How manyelt of order 5 ∈ S,?

$$lem = 5 \implies 5 + 1 + 1$$

 $(a_1 \cdot \cdot \cdot \cdot a_5) \implies \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3}{5} = 7 \cdot 6 \cdot 4 \cdot 3$

5.32) Let
$$\beta = (123)(145)$$
. Write β^{9} in DC $= (\frac{1}{2} \frac{3}{3} \frac{4}{4} \frac{5}{5})(\frac{1}{4} \frac{2}{3} \frac{3}{4} \frac{4}{5})$
 $= (14523)$
 $\beta^{99} = (14523)^{99} = [(14523)^{99}](14523)^{4}$
 $= (14523)^{4}$
 $= (13254)$

5.69) Prove every $g \in S_n(n>1)$ can be written as a product of elements of torm (1 k)

Thm 5.4 => All perms can be written as 2-cycles => ETS all 2 cycles cbw in form (1 k)

 \Rightarrow given $a \neq 1 \neq b$, (a b) = (1 a)(1 b)(1 a) \Rightarrow all perms can be written in form (1 k)

5.71) Show perm w/odd order must be even Odd order => lcm(lengths) = odd=> lengths all odd $(a, a_2 \cdots a_{2n+1}) = (a, a_{2n+1})(a, a_{2n}) \cdots (a, a_2)$

> 2n+1-1=2n terms =>even perm

6.2) Find
$$Aut(\mathbb{Z})$$
 $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$

Then $G = \langle \alpha \rangle \Leftrightarrow \overline{G} = \langle \phi(\alpha) \rangle$
 $\Rightarrow \phi(1) = 1 \text{ or } \phi = -1 \text{ (***)}$
 $\det iso \Rightarrow \phi(k) = k\phi(1)$
 $\phi(1) = 1 \Rightarrow \phi(x) = x \Leftrightarrow id$
 $\phi(1) = -1 \Rightarrow \phi(x) = -x$
 $Avt(\mathbb{Z}) = \{id, \phi\}$ where $\phi(x) = -x$

6.10) Ga group. Prove $\alpha(g) = g^{-1} \forall g \in G$ is an aut. \Leftrightarrow Gabelian

(\Rightarrow) Supp $\alpha \in Aut(G)$.

Then $\alpha(xy) = (xy)^{-1}$ and $\alpha(xy) = \alpha(x)\alpha(y)$
 $\Rightarrow (xy)^{-1} = x^{-1}y^{-1}$
 $\Rightarrow xy = yx \Rightarrow Gabelian$

(\Leftrightarrow) Supp $Gabelian \Rightarrow xy = yx$
 $\Rightarrow (xy)^{-1} = y^{-1}x^{-1} = x^{-1}y^{-1} = \phi(x)\phi(y) = \phi(xy)$

6.28 group $\Psi = \frac{2[6]}{ae}$ ae \mathbb{Z} iso to what tamiliargp? $\cdot |-1| \cdot \left[\begin{array}{c} a \\ 0 \end{array} \right] = \left[\begin{array}{c} b \\ 0 \end{array} \right] \Rightarrow a = b$ $\phi: \Psi \rightarrow \mathbb{Z}$ $\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \rightarrow a$ ·onto: \frac{1}{2} = \frac{1}{2} \ \text{dearly [67] maps to 2 $O.p.: \begin{bmatrix} 1 & a+b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & b \\ 0 & 1 \end{bmatrix}$ $\phi(ab) = a + b = \phi(a)\phi(b)$ 6.34) Prove (or disprove) that U(20) = U(24) Let $x(G) = card \{g \mid g \in G, |g| = 2\}$ $U(24) = \{1, 5, 7, 11, 13, 17, 19, 23\}$ |1|=1 |5|=2 |7|=2 |1|=21131=2 (17)=2 1191=2 1231=2 $\Rightarrow \propto (U(24)) = 7$ $U(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$ $\Rightarrow \times (U(20)) \neq \times (U(24))$ Thm 6.2.7 => U(24) \$ U(24)