Design of Future W-Band and Q-band LEO Satellite Earth Observation Systems: Payload Estimation

Introduction

European Space Agency (ESA) has launched a project for the design, fabrication and launch of a W-band Cubesat at 76 GHz. Indeed, future Communication Satellites and Earth Observation satellites will use this frequency band in order to increase the bandwidth that can generally be considered as a fraction (about 10%) of the centre frequency. The current MetOp (A, B, and C) Second Generation meteorological satellite¹ will download the data in the 26 GHz band and the future generation foresee to use the next window in the attenuation spectrum, located between 76 and 90 GHz.

If the total amount of data (called "data throughput") increases at 75 GHz, the degradation due to tropospheric gases, clouds, and rain becomes important. The atmospheric channel-propagation-models available from the ITU are known to be accurate up to about 50 GHz. Therefore, new measurement campaigns are needed to characterize the atmospheric propagation channel at W-band where the models proposed by ITU-R have not been validated.

Cubesats are non-geostationary and there are nearly no propagation measurements available for non-geostationary satellites. Therefore, the combination of 75 GHz and non-GEO orbits will be difficult to handle. In order to reduce the uncertainties, a second frequency of 37.5 GHz will be used for the verification of the non-GEO models.

Figure 1: Example of a 2 Units cubesat (Reaktor Space, Finland)

UCLouvain takes part in the project for the propagation campaign definition and the extraction of the effects of the troposphere from the measurements.

The purpose of the present project is to calculate the link budget in order to evaluate the power on-board the satellite (EIRP), for both Q-band and future W-band systems.

-

 $^{^1}$ https://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Metop/index.html

Location of Receiving Earth Stations

The link budget will be calculated for various receiving stations in different climates².

Location	Latitude	Longitude	Above mean see level	Group
UK	51.15°N	1.43°W	100 m	
Chilbolton	31.13 N	1.45 W	100 III	1
Argentina				1
Malargüe				
Austria	47.07°N	15.44°E	353 m	
Graz	-7107 -1			2
Norway				
Isfjord radio				
Spain	42.170°N	8.688°W	447 m	
Vigo				3
ACT, Australia				
Canberra				
Portugal	$40.612^{\rm o}{ m N}$	8.662°W	12 m	
Aveiro WA, Australia				4
New Norcia				
Cyprus				
Kofinou	34.859°N	33.384°E	120 m	
Antartica				5
McMurdo				
Greece				
Athens	37.975°N	23.785°E	210 m	
VA, USA				6
Wallops Islands				
Singapore	1.07000	100 50105	104	
Bukit Timah	1.353°S	103.791°E	164 m	
Sweden				7
Esrange				
CA, USA	35.28°N	116.78°W	900 m	
Goldstone Observatory	55.20 IV	110.75 W	900 III	8
Belgium				
Redu				
UK	52.03°N	2.84°W	118 m	
Madley	32.00			9
Spain				
Madrid				
South Africa	25.89°S	27.68E	1276 m	
Hartebeesthoek				10
Germany Düsseldorf				
CA, USA				
Jamesburgh	36.4°N	121.64°W	525 m	
France				11
Toulouse				
1 outouse				

 2 One station per group is fully characterized.

LELEC 2910 - PROPAGATION PROJECT

Location	Latitude	Longitude	Above mean see level	Group
Japan Usuda	36.07°N	138.21°E	1456 m	10
Sweden Kiruna				12
HI, USA Kaena	21.33°N	158.14°W	460 m	19
Hungary Budapest				13
Belgium Louvain-la-Neuve	50.668°N	4.615°E	160 m	14
Kenya Malindi				14
Greece Lavrion	37.72°N	24.048°E	20 m	15
Slovania Ljubljana	46.04°N			15
Czech Republic Prague	50.04°N	14.48°E	274 m	16
Ghana Kuntunse	5.75°N			16

Table 1: Geographical coordinates of Earth receiving sites

The parameters of use for the link budget are given in Table 2.

Evaluation of Tropospheric Effects

The purpose of this project is to calculate the effects of the troposphere on both beacons, using the RAPIDS II version Pastel propagation tool, in single site mode, for various elevation angles:

- enter "New calculation" and "Effects Expert mode": chose "troposphere" "single site mode";
- enter your stations if they are not available yet;
- request the calculation of various attenuation effects as well as their combination.

Important note

You need to derive a proper method to account for the LEO orbit and the varying elevation angle (the RAPIDS tool will not do it for you). Indeed, RAPIDS II provides the troposphere impairments for GEO satellites. The final attenuation should be corrected for non-GEO satellites using a conditional probability:

$$P(A > A_{th}) = \sum P(A > A_{th}|\theta_i)P(\theta_i)$$

where θ_i is the elevation angle in any bin i and $P(\theta_i)$ is the probability occurrence of the non-GSO satellite in elevation angle θ_i . Further information can be found in ITU-R recommendations³, as well as on additional documents available on moodle. Every group is free to choose a given LEO orbit (e.g. MetOp A/B/C, or COMS, etc.).

³ https://www.itu.int/rec/R-REC-P.618/en, https://www.itu.int/rec/R-REC-S.1257/en

Earth-satellite mean distance: 2800 km				
W band				
Frequency	75 GHz			
Polarization	Dual polarization (RHCP* and LHCP*)			
Antenna boresight	Nadir			
EIRP	?? dBW			
Receive antenna gain	51 dBi			
Antenna efficiency	57%			
LNA noise temperature	500K			
Receiver bandwidth	50 Hz			
Min C/N for detection	10 dB			
Q band				
Frequency	37.5 GHz			
Q Band Polarization	Dual polarization (RHCP* and LHCP*)			
Boresight	Nadir			
EIRP	?? dBW			
Receive antenna gain	To be evaluated, same antenna as for W band			
Antenna efficiency	60%			
LNA noise temperature	450K			
Receiver bandwidth	50 Hz			
Min C/N for detection	10 dB			

Table 2: Main characteristics of W- and Q-band beacons

(* RHCP=Right Hand Circular Polarization – LHCP= Left Hand Circular Polarization)

Deliverable

A brief report, to be uploaded on Moodle by January 18, will contain

- the total attenuation as well as the attenuation for various components (rain, gases, clouds, scintillation);
- their analysis (discuss/comment the importance of the various effects in function of the frequency, assuming an availability of the station of 99.0, 99.5, 99.9 and 99.99% of the time) and the comparison between both stations;
- the link budget for both frequencies and the proposed EIRP.

A formative discussion about the preliminary results (10 minutes for presentation + 5 minutes for feedback) will take place on 13/12 at 10:45 or 16/12 at 16:15 (depending on the groups).