FSRM/MSDS 581 Homework 7 Due on Wednesday 11:59pm EST, 11/4

- 1. Let $X_1, X_2, ..., X_n$ be a random sample, following the Bernoulli Ber(p) distribution. Let \bar{X} be an estimator of the parameter p.
 - (a) Is \bar{X} a consistent estimator of p? Give a reason (you may just cite a theorem)
 - (b) What is the (approximate) sampling distribution of \bar{X} when n is sufficiently large?
 - (c) Is \bar{X} unbiased?
 - (d) What is the standard deviation of \bar{X} (in the expression of n and p)?
 - (e) If n = 1000 and $\bar{x} = 0.45$, what is the approximate standard error of \bar{X} estimating p?
 - (f) Find a 95% confidence interval of p, when n = 1000 and $\bar{x} = 0.45$.
- 2. Let $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$ and let $\hat{\lambda}_n = \sum_{i=1}^n X_i/n$. Find the bias, se and MSE of this estimator.
- 3. Let $X_1, \ldots, X_n \sim \text{Uniform}(0, \theta)$.
 - (a) Let $\hat{\theta}_n = X_{(n)} = \max\{X_1, \dots, X_n\}$. Find the bias, se and MSE of this estimator.
 - (b) Let $\hat{\theta}_n = X_{(n)} = 2\sum_{i=1}^n X_i/n$. Find the bias, se and MSE of this estimator.
- 4. Is a consistent estimator always unbiased? If yes, prove it. If no, give a counter example. Is an unbiased estimator always consistent? If yes, prove it. If no, give a counter example.