Université Pierre-et-Marie-Curie

LICENCE INFORMATIQUE $3^{\text{\tiny EME}}$ Année Projet 3\tiny 1013

Rapport de Projet

Auteurs:

Nicolas CASTANET Maël FRANCESCHETTI Daoud KADOCH Fabien MANSON

Enseign ant: Fabrice KORDON

3 Avril 2019

Table des Matières

1	Pré	sentation du Projet	2
	1.1	Contexte	2
	1.2	Use Case	3
		1.2.1 Création d'un plan de vol	3
		1.2.2 Exécution d'un plan de vol	3
	1.3	Cahier des charges	4
		1.3.1 Présentation du Projet	4
		1.3.2 Besoins fonctionnels	5
		1.3.3 Périmètre	7
		1.3.4 Ressources	7
		1.3.5 Solutions étudiées	7
		1.3.6 Contraintes	9
		1.3.7 Cinématique des écrans	10
2	A no	chitecture Logicielle	13
4	2.1	-	13
	$\frac{2.1}{2.2}$		14
	2.3	Application IOS	
	$\frac{2.5}{2.4}$	**	16
	2.1	Tremeeture logiciene globaie	10
3	Pro	blèmes rencontrés	17
	3.1	Problèmes matériels	17
	3.2	Solutions	17
	_		
4	_		18
	4.1	.0	18
	4.2	Répartition des taches	18
5	Dép	ploiement	19
_	~		
6	Con	mparatif aux objectifs fixés	20
7	Am	éliorations possibles	21
8	Con	nclusion	22

1 Présentation du Projet

1.1 Contexte

Un client souhaite effectuer un vol autonome avec un drone Bebop 2 tout en visualisant sur un iPod Touch le retour vidéo de la caméra embarquée sur le drone. L'iPod sera placé dans un masque de vue à la première personne. La solution devra permettre à l'utilisateur de saisir un plan de vol sur une carte interactive et de le faire exécuter par le drone tout en ayant un retour vidéo sur l'iPod.

1.2 Use Case

1.2.1 Création d'un plan de vol

Dans le premier cas d'utilisation, l'utilisateur souhaite créer un nouveau plan de vol afin de le faire suivre à son drone dans le futur, voici les étapes qu'il va suivre :

1	L'utilisateur lance l'application et arrive sur la page d'accueil.	
2	L'utilisateur lance la fonctionnalité de saisie du plan de vol sur une machine connectée au réseau local.	
3	L'utilisateur saisit le plan de vol sur la carte en spécifiant les points de passage du drone ainsi que les altitudes que le drone doit adopter au cours du vol.	
4	L'utilisateur valide la saisie de son plan de vol, ce dernier est enregistré.	

1.2.2 Exécution d'un plan de vol

Dans le deuxième cas d'utilisation, l'utilisateur possède déjà un ou plusieurs plan de vol enregistrés sur sa machine, par exemple le tour de son énorme jardin qu'il souhaite surveiller sans avoir à ce déplacer. Il fais désormais exécuter au drone l'un de ces plan de vol et observe le retour vidéo sur son Ipod. Voici les étapes suivient :

1	L'utilisateur lance l'application et arrive sur la page d'accueil.	
5	L'utilisateur allume le drone et y connecte sa machine en wifi.	
6	L'utilisateur lance la fonctionnalité d'exécution du plan de vol.	
7	L'utilisateur démarre l'iPod touch, le connecte au réseau local et lance l'application de réception vidéo. La réception vidéo en temps réel sur l'iPod commence.	
8	L'utilisateur sélectionne parmi les plans de vols présents sur le drone celui qu'il souhaite réaliser.	
9	L'utilisateur place l'iPod dans le masque FPV, l'enfile, puis lance l'exécution du plan de vol d'un mouvement de tête. Le drone décolle.	
10	Le drone effectue le plan de vol choisi, l'utilisateur voit en temps réel ce que le drone filme et peut constater l'état d'enneigement de son jardin.	
11	L'utilisateur attend la fin de l'exécution du plan de vol pour retirer le masque et aller récupérer le drone une fois qu'il aura atterri à son point de départ, comme prévu.	

1.3 Cahier des charges

1.3.1 Présentation du Projet

Contexte et définition du problème Un client nous contacte dans le but de réaliser une application lui permettant d'effectuer un vol autonome avec un drone Bebop 2 tout en visualisant sur un iPod Touch le retour vidéo de la caméra embarquée sur le drone. L'iPod sera placé dans un masque de vue à la première personne.

La solution devra permettre à l'utilisateur de saisir un plan de vol sur une carte interactive et de le faire exécuter par le drone tout en ayant un retour vidéo sur l'iPod.

Cas d'utilisation:

1) Un utilisateur souhaite effectuer une ronde avec un drone pour surveiller sa propriété (qui possède un très grand jardin) au prix d'un moindre effort.

Voici un exemple des étapes qu'il va suivre chronologiquement :

1	L'utilisateur lance l'application et arrive sur la page d'accueil.	
2	L'utilisateur lance la fonctionnalité de saisie du plan de vol sur une machine connectée au réseau local.	
3	L'utilisateur saisit le plan de vol sur la carte en spécifiant les points de passage du drone ainsi que les altitudes que le drone doit adopter au cours du vol.	
4	L'utilisateur valide la saisie de son plan de vol, ce dernier est enregistré.	
5	L'utilisateur allume le drone et y connecte sa machine en wifi.	
6	L'utilisateur lance la fonctionnalité d'exécution du plan de vol.	
7	L'utilisateur démarre l'iPod touch, le connecte au réseau local et lance l'application de réception vidéo. La réception vidéo en temps réel sur l'iPod commence.	
8	L'utilisateur sélectionne parmi les plans de vols présents sur le drone celui qu'il vient de réaliser.	
9	L'utilisateur place l'iPod dans le masque FPV, le met sur sa tête, puis lance l'exécution du plan de vol. Le drone décolle.	
10	Le drone effectue le plan de vol choisi, l'utilisateur voit en temps réel ce que le drone filme.	
11	L'utilisateur souhaite stopper l'exécution de plan de vol : par exemple, il a repéré quelque chose d'anormal sur la zone de vol et souhaite s'y rendre au plus vite. Il active alors la procédure d'arrêt d'urgence sur sa machine et retire le masque FPV. Le drone stoppe l'exécution du plan de vol et attérit sur place si les conditions le permettent.	

2) En hiver, un utilisateur souhaite faire effectuer au drone le tour de son jardin pour contrôler le niveau d'enneigement de celui-ci sans risquer de glisser.

Voici un exemple des étapes qu'il va suivre chronologiquement :

1	L'utilisateur lance l'application et arrive sur la page d'accueil.	
2	L'utilisateur lance la fonctionnalité de saisie du plan de vol sur une machine connectée au réseau local.	
3	L'utilisateur saisit le plan de vol sur la carte en spécifiant les points de passage du drone tout autour de son jardin et spécifie une altitude de quelques mètres. Le tracé est fait de manière à faire revenir le drone à son point de départ après avoir fait le tour du jardin.	
4	L'utilisateur valide la saisie de son plan de vol, ce dernier est enregistré.	
5	L'utilisateur allume le drone et y connecte sa machine en wifi.	
6	L'utilisateur lance la fonctionnalité d'exécution du plan de vol.	
7	L'utilisateur démarre l'iPod touch, le connecte au réseau local et lance l'application de réception vidéo. La réception vidéo en temps réel sur l'iPod commence.	
8	L'utilisateur sélectionne parmi les plans de vols présents sur le drone celui qu'il vient de réaliser.	
9	L'utilisateur place l'iPod dans le masque FPV, le met sur sa tête, puis lance l'exécution du plan de vol. Le drone décolle.	
10	Le drone effectue le plan de vol choisi, l'utilisateur voit en temps réel ce que le drone filme et peut constater l'état d'enneigement de son jardin.	
11	L'utilisateur attend la fin de l'exécution du plan de vol pour retirer le masque et aller récupérer le drone une fois qu'il aura atterri à son point de départ, comme prévu.	

Objectifs

- 1. Permettre à l'utilisateur de saisir un plan de vol étape par étape sur une carte interactive et de spécifier les altitudes du drone à chaque point de passage.
- 2. Permettre à l'utilisateur de sauvegarder son plan de vol pour le réutiliser plus tard.
- 3. Permettre à l'utilisateur de lancer l'exécution du plan de vol réalisé au préalable.
- 4. Rediriger le flux vidéo du drone vers l'iPod Touch.
- 5. Minimiser les latences vidéo (de l'ordre de la seconde).
- 6. Permettre d'arrêter le vol en cours en cas d'urgence.

1.3.2 Besoins fonctionnels

Fonctionnalités requises

1	Saisie du plan de vol	L'utilisateur doit pouvoir saisir un plan de vol sur une carte	
		à travers une interface intuitive. L'utilisateur doit pouvoir	
		spécifier l'altitude du drone à chaque waypoint (point de pas-	
		sage).	
2	Traduction du plan de vol	Le plan de vol saisi graphiquement par l'utilisateur doit être	
	au format Mavlink	converti au format Mavlink pour être ensuite envoyé au drone.	
3	Envoi du plan de vol au	La solution doit prendre en charge la récupération du plan de	
	drone	vol réalisé au préalable et son envoi au drone.	
4	Choix du plan de vol	L'utilisateur doit pouvoir choisir le plan de vol enregistré sur	
		le drone qu'il souhaite exécuter.	
5	Exécution du plan de vol	Une fois le plan de vol choisi, l'utilisateur doit pouvoir en lancer	
		l'exécution.	
6	Retour vidéo	Tout au long du vol du drone, le retour vidéo de ce dernier	
		doit être envoyé sur un iPod touch en temps réel et avec une	
		latence minimale.	
7	Arrêt d'urgence	À tout moment un deuxième utilisateur doit pouvoir enclen-	
		cher un arrêt d'urgence depuis le PC.	
8	Démarrage de la ronde à	L'utilisateur pourra éventuellement engager le démarrage du	
	l'aide de gestes	vol en effectuant un certain mouvement de la tête.	
9	Arrêt d'urgence	L'utilisateur pourra éventuellement engager un arrêt d'urgence	
		en effectuant par exemple un certain mouvement de la tête.	

Diagramme des fonctionnalités Voici le diagramme des fonctionnalités (Figure 1) composé de l'utilisateur, du PC et du drone. L'iPod est ici considéré comme une extension de l'utilisateur, étant placé dans un masque FPV. On considère ici que le PC est déjà connecté au drone en Wifi et que l'iPos et le PC sont connecté tous les deux à un même réseau local.

Figure 1 – Diagramme des fonctionnalités

1.3.3 Périmètre

À qui s'adresse le produit? Ce projet est destiné à un public désirant effectuer une ronde d'une durée de 20 à 25 minutes maximum avec son drone.

La portée maximale du drone est de 200 mètres pour une altitude de 100 mètres tout au plus.

Les Limites Le drone ne sera pas capable d'éviter les obstacles durant sa ronde, c'est à l'utilisateur d'établir un trajet cohérent avec son environnement.

De plus, dans le cas où le trajet proposé est trop long par rapport à l'autonomie du drone, un simple message d'avertissement sera affiché pour prévenir l'utilisateur, l'application ne sera pas en mesure d'empêcher cette ronde.

1.3.4 Ressources

Matériel

Pour réaliser ce projet nous disposons du matériel suivant :

- 1. Un drone Bebop 2.
- 2. Un iPod Touch de 6ème génération sous iOS 12.
- 3. Un accès aux salles machines SAR équipées de machines sous OSX.
- 4. Un accès aux salles informatiques équipées de machines sous Linux.

L'équipe

L'équipe est composée de quatre étudiants en troisième année de licence d'informatique.

Nos connaissances en programmation sous Linux sont bonnes mais le langage Objective-C et l'univers iOS nous sont pour le moment encore inconnus.

1.3.5 Solutions étudiées

Au cours de nos recherches nous avons étudié principalement 3 solutions d'architecture envisageables pour le développement de l'application. Ces architectures sont les suivantes, de gauche à droite dans le tableau ci-après (figure 2) :

- 1. Une architecture utilisant un PC sous linux pour la saisie du plan de vol et qui commande le drone, ainsi qu'un iPod Touch sur lequel on redirige le flux vidéo.
- 2. Une architecture utilisant un iPad pour la saisie du plan de vol, ainsi qu'un iPod Touch qui commande le drone et récupère le flux vidéo.
- 3. Une architecture utilisant un iPod Touch pour la saisie du plan de vol, qui commande le drone tout en récupérant le flux vidéo.

Comparatif des solutions

Concernant le confort d'utilisation l'avantage est à la seconde solution car l'iPad possède un grand écran ainsi qu'une saisie tactile. La première solution est moins confortable principalement à cause de l'absence de saisie tactile

FIGURE 2 – tableau comparatif des solutions

sur le PC. La dernière solution n'est pas très pratique de fait de la petite taille de l'écran de l'iPod.

Concernant l'arrêt d'urgence c'est la première solution qui a l'avantage car elle permet d'implémenter cette fonction sur le PC ou sur l'iPod (via un mouvement de tête quand l'utilisateur porte le masque ou la pression d'une touche du clavier). L'arrêt d'urgence sur la troisième solution nous force à implémenter la fonctionnalité via un geste car l'iPod est, rappelons-le, attaché dans le masque donc difficile d'accès. La seconde solution ne pourra pas utiliser l'iPad pour lancer un arrêt d'urgence car l'iPod sera le seul appareil connecté au drone.

Les solutions 2 et 3 proposent une latence vidéo réduite car il n'y a pas à rediriger le flux vidéo. Ce dernier est directement reçu et lu par l'iPod. La première solution, en raison de la redirection du flux vidéo depuis le PC vers l'iPod, induit une latence légèrement plus importante (la différence reste assez imperceptible à l'utilisateur).

Et finalement en ce qui concerne les traitements réalisés par l'application, dans la première solution la majorité des calculs (saisie du plan de vol, envoie du plan de vol et traitement du flux vidéo reçu) seront fait sur le PC. L'iPod ne fera que recevoir le flux vidéo déjà traité. La seconde solution suit le même principe : la saisie du plan de vol se fait depuis l'iPad mais le traitement du flux vidéo ce fera sur l'iPod. Enfin la dernière solution traitera tout sur l'iPod ce qui peut causer des probleme d'autonomie de batterie pour l'iPod. L'avantage est donc à la première solution.

Comme nous pouvons le constater, la solution utilisant le PC et l'iPod Touch est plus avantageuse dans la majorité des cas. C'est donc cette solution qui sera préférée.

Voici un schéma de l'architecture générale de la solution que nous avons choisie (figure 3).

FIGURE 3 – Schéma de l'architecture générale de la solution retenue

1.3.6 Contraintes

Les contraintes techniques de la solution préférée sont :

- 1. Le PC sous Linux doit avoir deux cartes réseau : une pour pouvoir se connecter au drone en wifi, l'autre pour se connecter au réseau local pour rediriger le flux vidéo.
- 2. Il faut un réseau local sur lequel sont connectés le PC et l'iPod Touch.
- 3. Le réseau local doit avoir un accès internet.

Délais Le cahier des charges doit être envoyé au client pour le lundi 11 mars.

En ce qui concerne le produit, il devra être prêt et livré début mai, et un rapport devra être rendu le jeudi 2 mai avant minuit.

Une soutenance publique devant un jury se tiendra également début mai, nous viendrons y défendre l'ensemble de notre travail.

Autres contraintes

Concernant le plan de vol:

- 1. L'application de saisie du plan de vol doit intégrer une carte interactive permettant de tracer ce dernier.
- 2. On devra pouvoir spécifier l'altitude à laquelle le drone doit se trouver aux différents points du parcours.
- 3. L'application devra au minimum pouvoir avertir l'utilisateur lorsqu'il tracera un trajet trop long pour le drone, tant pour son autonomie que pour la portée du signal wifi.

Concernant le retour vidéo:

- La qualité du retour vidéo est directement liée à la distance avec le serveur central (le PC) ainsi qu'à l'encombrement de l'espace dans lequel le drone vol. Un terrain avec des obstacles comme des bâtiments ou des arbres réduit fortement la porté du signal vidéo.
- 2. Le retour vidéo du drone doit être envoyé à un iPod Touch en temps réel.
- 3. Sa qualité doit être convenable (HD).
- 4. La latence du retour vidéo sur l'iPod doit être minimale (de l'ordre de la seconde), et la vidéo doit être fluide.

1.3.7 Cinématique des écrans

1. Lorsque l'utilisateur lance l'application, il arrive sur la page d'accueil (Figure 4). Il y a alors deux sections sur l'écran, l'une proposant d'ajouter un nouveau plan de vol et l'autre proposant d'exécuter un plan de vol parmi ceux existants.

Le bouton "créer un plan de vol" de la première section lance l'application de saisie du plan de vol. La sélection d'un plan de vol dans la seconde section et le clic sur le bouton "exécuter" lancent l'exécution par le drone du plan de vol choisi, le retour vidéo sur l'iPod peut alors commencer.

Figure 4 – page d'accueil de l'application PC

2. Lors de l'ouverture de la page, la carte est vierge comme le montre la figure 5 :

FIGURE 5 – carte vierge

La carte est interactive et on peut la déplacer avec la souris. Les boutons situés en haut à gauche permettent de zoomer et dézoomer sur la carte.

Le cadre situé en bas à gauche contient un switch (interrupteur) et un bouton : le switch permet de changer le mode d'interaction, et le bouton permet de finaliser le plan de vol en l'exportant dans un fichier. Il existe deux modes d'interraction : le mode d'ajout et le mode de suppression. Le mode dans lequel on se situe est indiqué à coté du switch ("adding" / "removing").

En cliquant sur la carte, un marqueur est placé à l'endroit du clic. Chaque marqueur représente un point de passage du drone dans son itinéraire de vol. Les marqueurs peuvent être déplacés à la souris (drag and drop). Lors du survol de la souris sur un marqueur, une bulle indique son numéro d'ordre (0 pour le point de départ).

- En mode d'ajout, en cliquant sur un marqueur, on peut spécifier dans une boite de dialogue l'altitude à laquelle doit se situer le drone à ce point lors du vol.
- En mode de suppression, en cliquant sur un marqueur, on supprime ce dernier. Les marqueurs sont alors automatiquement remis dans le bon ordre et le trajet est retracé.
- 3. On place des marqueurs en cliquant aux endroits voulus sur la carte. Au survol d'un marqueur, la bulle comportant son numéro d'ordre apparait :

Figure 6 – ajout de points de passage

4. On souhaite retirer des marqueurs, on active le mode de suppression en cliquant sur le switch en bas à gauche (figure 7) et on clique ensuite sur les marqueurs à supprimer. L'ordre des marqueurs et le tracé du trajet s'adaptent :

FIGURE 7 – suppression de points de passage

5. On clique sur un marqueur pour spécifier l'altitude voulue à ce point (figure 8) :

FIGURE 8 – modification de l'altitude

6. On peut déplacer les marqueurs avec un cliquer-glisser (drag and drop) sur ces derniers (figure 9):

FIGURE 9 – déplacer les marqueurs

7. Une fois le plan de vol terminé, on clique sur le bouton pour obtenir le fichier correspondant au trajet défini :

FIGURE 10 – sauvegarde du plan

Toutes ces images sont issues de prototypes d'interface graphique et sont non-contractuelles. Elles ne sont donc en aucun cas définitives et sont sujet à changement.

2 Architecture Logicielle

2.1 Interface utilisateur

L'interface utilisateur est une interface GTK permettant d'intéragir avec le SDK Parrot afin d'enregistrer des trajets sur le drone et de les exécuter.

Elle permet également d'intéragir avec le Serveur local afin de saisir intéractivement le plan de vol à l'aide de l'application javascript et de créer les fichiers Mavlink.

Voici l'architecture d'intéraction de l'interface utilisateur :

Rapport/new_HIM.png

Figure 11 – Interface utilisateur

2.2 Controle du drone

Le contrôle du drone est axé autour de la génération du fichiers mavlink à l'aide de l'application JS sur le serveur local et du SDK Parrot qui permet d'envoyer des commandes au drone et de connaître son état.

Après avoir saisi interactivement un trajet à l'aide de l'application javascript, le fichier Mavlink généré et envoyé au SDK Parrot.

Le SDK permet ensuite le contrôle du drone à savoir :

- 1. Connexion au drone.
- 2. Exécution d'un plan de vol.
- 3. Arrêt d'urgence.

Le décollage et l'arrêt d'urgence du drone sont des commandes envoyées directement par le serveur, ses commandes seront envoyées au serveur par l'iPod afin de permettre un décollage et un arrêt ergonomique.

Il permet également la réception de l'état du drone et du flux vidéo qui sera par la suite traité avec FFMPEG et envoyé en RTP à l'iPod.

Rapport/new_controle_drone.png

FIGURE 12 - Controle du drone

2.3 Application IOS

L'application IOS permet d'afficher le flux vidéo du drone et d'envoyer des requêtes au serveur en effectuant des gestes simples avec l'iPod afin de démarrage du drone et d'effectuer l'arrêt d'urgence.

Dans un premier temps, l'application scanne le réseau afin de se connecter au serveur local. Après la connexion, une requête de demande de description du flux vidéo au format SDP est automatiquement envoyée au serveur.

Le descripteur de flux est alors retourné par le serveur à l'application IOS, en parrallèle, elle reçoit également le flux video grâce au protocol RTP, le SDK VLC permet ensuite l'affichage vidéo.

Rapport/new_archi_logicielle.png

Figure 13 – Application IOS

2.4 Architecture logicielle globale

Rapport/Architecture_logicielle_v2.jpg

FIGURE 14 – Architecture logicielle

3 Problèmes rencontrés

3.1 Problèmes matériels

Nous avons rencontré plusieurs difficultés d'ordre matérielles lors de ce projet.

Tout d'abord nous avons été confrontés à un problème de GPS sur le campus de Sorbonne Université, en effet la couverture GPS était très mauvaise et les vols d'essai n'étaient donc possibles que très rarement. Nous avons eu l'occasion, avec l'accord de policiers en service présents sur les lieux, de faire des vols d'essai aux arènes de Lutèces à Jussieu. La couverture GPS y était très bonne et nous avons pu mener à bien nos tests. Malheureusement, nous n'avons pas eu d'autres occasions de faire voler le drone dans un environnement adapté et n'avons donc pas pu effectuer tous les tests voulus.

Ensuite, nous avons rencontré une difficulté lors du développement de l'application de l'iPod : nous avions besoin des composants VLC compatibles avec le logiciel de développement xCode, afin de faire fonctionner la récupération et l'affichage du flux vidéo par l'iPod. Nous ne disposions pas des droits nécessaires pour installer ces composants logiciels à la PPTI. Le logiciel de développement xCode ne fonctionnant que sur les appareils Apple, nous avons du nous procurer un ordinateur Mac et installer dessus les outils requis pour pouvoir continuer le projet.

Concernant le déploiement, nous avons du utiliser une machine virtuelle afin de procéder aux installations de test car nous ne disposions pas des droits nécessaires sur les machines de la PPTI.

3.2 Solutions

4 Organisation du travail

4.1 Diagramme de Gantt

Les différentes étapes du projet sont visibles sur ce diagramme de Gantt, qui représente les tâches effectuées chaque semaine :

Figure 15 – Diagramme de Gantt du projet

On y distingue les deux phases principales du projet : dans un premier temps la phase de recherche et de construction du cahier des charges, et dans un second temps la phase de développement et de mise en fonctionnement de l'application.

4.2 Répartition des taches

La répartition du travail durant ce projet est visible sur ce diagramme :

FIGURE 16 - Répartition du travail

Afin de ne pas avoir de retard sur les différentes taches à réaliser, nous avons réparti le travail équitablement entre les membres du groupe. Nous avons pu paralléliser les tâches majeures afin de bénéficier de tout le "man-power" disponible.

5 Déploiement

6 Comparatif aux objectifs fixés

N	Titre de l'objectif	détail (cahier des charges)	réalisation de l'objectif
1	Saisie du plan de	L'utilisateur doit pouvoir saisir	L'utilisateur peut saisir un plan
	vol	un plan de vol sur une carte	de vol sur une carte, et peut
		à travers une interface intui-	spécifier l'altitude pour chaque
		tive. L'utilisateur doit pouvoir spécifier l'altitude du drone à	waypoint.
		chaque waypoint (point de pas-	
		sage).	
2	Traduction du plan	Le plan de vol saisi graphique-	Le plan de vol est exporté au
	de vol au format	ment par l'utilisateur doit être	format Mavlink et stocké sur le
	Mavlink	converti au format Mavlink pour	serveur avec un nom choisi par
3	Envoi du plan de	être ensuite envoyé au drone. La solution doit prendre en	l'utilisateur. Le plan de vol choisi dans
3	Envoi du plan de vol au drone	charge la récupération du plan de	la fonctionnalité d'exécution de
	vor ad drone	vol réalisé au préalable et son en-	plan de vol est automatique-
		voi au drone.	ment transféré au drone.
4	Choix du plan de	L'utilisateur doit pouvoir choisir	L'utilisateur choisit dans un na-
	vol	le plan de vol enregistré sur le	vigateur de fichier le plan de
		drone qu'il souhaite exécuter.	vol qu'il souhaite exécuter. Les
			plans de vol sont stockés sur le serveur, et seul le plan de vol
			choisi est envoyé au drone (pour
			ne pas surcharger la mémoire du
			drone).
5	Exécution du plan	Une fois le plan de vol choisi,	Le bouton d'exécution du plan
	de vol	l'utilisateur doit pouvoir en lan- cer l'exécution.	de vol permet de choisir le plan de vol et en lance l'exécution.
6	Retour vidéo	Tout au long du vol du drone, le	Une fois l'application iPod
	10000 41 11400	retour vidéo de ce dernier doit	lancée et l'exécution du plan
		être envoyé sur un iPod touch	de vol demandée, la vidéo prise
		en temps réel et avec une latence	par le drone en temps réel est
		minimale.	transférée à l'iPod avec une vue
			FPV (une image pour chaque oeil), avec une latence d'environ
			6 secondes. La qualité d'image
			est celle fournie par le drone :
			résolution 480x856px.
7	Arrêt d'urgence	À tout moment un deuxième uti-	Pour des raisons pratiques et
		lisateur doit pouvoir enclencher	après discussion avec le client, cette fonctionnalité est rem-
		un arrêt d'urgence depuis le PC.	placée par l'arrêt d'urgence par
			un mouvement de tête.
8	Démarrage de la	L'utilisateur pourra	Une fois l'exécution du plan
	ronde à l'aide de	éventuellement engager le	de vol lancé, le drone attend
	gestes	démarrage du vol en effectuant	l'autorisation de décoler qui est
		un certain mouvement de la tête.	donnée par un hochement de tête avec l'iPod Touch.
9	Arrêt d'urgence	L'utilisateur pourra	Une fois le drone en vol, l'arrêt
	-11100 a argonoo	éventuellement engager un	d'urgence peut être activé par
		arrêt d'urgence en effectuant par	un hochement de tête avec
		exemple un certain mouvement	l'iPod Touch.
		de la tête.	

7 Améliorations possibles

Tout d'abord, une amélioration de l'application de saisie du plan de vol serait possible afin de permettre à l'utilisateur de choisir dans quelle direction le drone doit regarder au fur-et-à-mesure du vol.

Ensuite, l'application utilisée pour la lecture de la vidéo est conçue pour un iPod Touch. Compte tenu de la nature universelle du protocole utilisé pour envoyer le flux vidéo (protocole RTP), il est tout à fait possible de développer des applications similaires compatibles à d'autres systèmes. Il est d'ailleurs d'ores et déjà possible de lire la vidéo depuis un appareil androide à l'aide de la fonctionnalité de lecture de flux de l'application VLC, ce qui est plus contraingant à paramétrer que s'il existait une application dédiée bien évidemment.

Concernant la latence du retour vidéo qui est d'environ 6 secondes sur les appareils que nous avons utilisés, nous pensons qu'il est possible de diminuer ce délai en utilisant une connexion wifi directe entre l'iPod et le PC linux, plutôt que de passer par un réseau local servant d'intermédiaire.

8 Conclusion