Name:	

Year 11 Physics 2015

Unit 1

Nuclear Physics and Radioactivity

Diagnostic Test 1 Atomic Structure, Radioactivity and the basic properties of Nuclear Radiation

Recommended writing time: 40 minutes Total number of marks available: 30 marks

Section A – Multiple Choice Questions (10 marks)

Section B – Short Answer Questions (20 marks)

Conditions and restrictions

- This diagnostic test is to be completed at home in the allocated time under test conditions.
- You are permitted to use: pens, pencils, highlighters, erasers, sharpeners, ruler and an approved scientific calculator.
- You are NOT allowed to refer to your textbook or to make use of any written notes whilst undertaking this task.

(It is designed for you to determine what you have learned and understood so far, and what you need to go back over, and where necessary get additional help from your teacher. ©)

• After completing this diagnostic test you need to correct it using the supplied solutions. It is then to be handed in to your teacher.

Materials supplied

- Question and answer book of 12 pages.
- Detachable periodic table and a formula and data sheet.

Instructions

- Print your name in the space provided on the top of the front page.
- Attempt all questions.
- All written responses must be in English.

Section A – Multiple Choice Questions (10 marks)

Specific instructions for Section A

Section A consists of 10 multiple-choice questions. Choose the response that is **correct** or that **best answers** the question.

- Write the letter corresponding to your chosen answer in the box at the end of each question.
- A correct answer is worth 1 mark, an incorrect answer scores 0.

Questions 1 to 3 relate to the following information.

Americium-241, $^{241}_{95}$ Am, is a man made radioisotope of the element Americium that is sometimes used in household smoke detectors. When an atom of Am-241 undergoes radioactive decay it emits both alpha (α) radiation and a gamma (γ) radiation.

Question 1

The number of *protons* in the nucleus of a $^{241}_{95}$ Am atom is:

- **A.** 336
- **B.** 241
- **C.** 146
- **D.** 95

Question 2

The number of *neutrons* in the nucleus of a $^{241}_{95}$ Am atom is:

- **A.** 336
- **B.** 241
- **C.** 146
- **D.** 95

Ouestion 3

Figure 1 shows three possible pathways, **X**, **Y** and **Z**, between two electrically charged plates that the radiation emitted by a decaying ²⁴¹₉₅Am atom could travel along after leaving the lead box.

Which one of the choices $\mathbf{A} - \mathbf{F}$ correctly describes the paths taken by the α -radiation and γ -radiation respectively?

Figure 1

	A.	В.	C.	D.	Е.	F.
α-particle	X	X	Y	Y	Z	Z
γ-ray	Y	Z	X	Z	X	Y

Question	4
Question	

A radioisotope emits beta (β) radiation. From which part of the radioisotope will the beta (β) radiation be emitted?

- **A.** The electron cloud
- **B.** The nucleus
- C. From the information provided it cannot be determined from which part of the radioisotope the beta (β) radiation is emitted.

Question 5

Which one or more of the following isotopes is definitely radioactive?

- **A.** $^{237}_{93}$ Np
- **B.** ²⁰⁹₈₃Bi
- **C.** ¹⁸¹₇₃Ta
- **D.** ¹⁵²₆₃Eu

Question 6

Which one of the following statements, A - C, correctly explains how the penetrating ability of a radioactive emission relates to its ability to ionise other atoms?

- **A.** There is no relationship between the penetrating ability of a radioactive emission and its ability to ionise other atoms.
- **B.** Radioactive emissions with a high ionising ability have greater penetrating ability.
- **C.** Radioactive emissions with a low ionising ability have greater penetrating ability.

Ouestion 7

A radioactive sample is emitting alpha, beta and gamma radiation into the air. A single sheet of paper is placed between the radioactive sample and a Geiger counter that is about 5.0 centimetres from, and pointed towards the sample. The Geiger counter would be most likely to detect:

- A. gamma radiation only
- **B.** beta and gamma radiation only
- C. alpha radiation only
- **D.** alpha, beta and gamma radiation
- **E.** beta radiation only

Question 8

Which one of the following radioactive emissions, $\mathbf{A} - \mathbf{D}$, has the greatest *ionising* ability?

A. A gamma ray with 0.95 MeV of energy

B. A gamma ray with 750 keV of energy

C. An alpha particle with 5.4 MeV of energy

D. A beta particle with 1.6 MeV of energy

Question 9

Which one of the following radioactive emissions, $\mathbf{A} - \mathbf{D}$, has the greatest *penetrating* ability?

A. A gamma ray with 0.95 MeV of energy

B. A gamma ray with 750 keV of energy

C. An alpha particle with 5.4 MeV of energy

D. A beta particle with 1.6 MeV of energy

Question 10

In which one of the following nuclear transmutations, $\mathbf{A} - \mathbf{D}$, is the unknown object 'X' an alpha particle?

A. $^{60}_{27}$ Co $\rightarrow ^{60}_{27}$ Co + **X**

B. $^{198}_{79}$ Au $\rightarrow ^{198}_{80}$ Hg + **X**

C. ${}^{12}_{7}N \rightarrow {}^{12}_{6}C + X$

D. $^{211}_{83}$ Bi $\rightarrow ^{207}_{81}$ Tl + **X**

End Of Section A

Section B – Short Answer Questions (20 marks)

Specific instructions for Section B

Section B consists of 8 questions. Answer all questions in the spaces provided.

- Your answers should be expressed correctly using appropriate physics terms.
- Numerical answers should be calculated fully and expressed with the appropriate number of significant figures.
- Where an answer box has a unit printed in it, give your answer in that unit.
- In questions where more than one mark is available, appropriate working should be shown.

Question 1 (2 marks)
²³⁵ ₉₂ U and ²³⁸ ₉₂ U are both radioisotopes of uranium. Explain what <i>both</i> aspects of the term radioisotope mean.
Question 2 (2 marks)
Carbon-12 is stable but Carbon-14 is radioactive. Explain any differences in how these two types of Carbon atoms would interact chemically with other atoms.

Questions 3 and 4 relate to the following information.

In a sample of graphite the nucleus of each carbon atom has a radius of 2.75×10^{-15} m, whereas the atom itself has a radius of 6.80×10^{-11} m. Both the carbon atom and its nucleus can be assumed to be spherical in shape.

The volume of a sphere can be calculated using the formula: $V = \frac{4}{3}\pi r^3$

Question 3 (2 marks)

Express the volume of a Carbon atom's nucleus to the volume of the atom itself as a percentage.

Question 4 relates to the following additional information.

A marble of diameter 16 mm was used to model the nucleus of a carbon atom.

Question 4 (3 marks)

Calculate the radius of the sphere to be occupied by the electrons in this model of a carbon atom.

m

Qu	estion 5 $(2 + 2 = 4 \text{ marks})$
a)	Describe the types of forces, and their nature, acting upon the nucleons in the nucleus of an atom.
b)	Explain why radioactive nuclei are unstable.

Question 6 (2 marks)

Complete the following table for the properties of alpha (α), beta (β) and gamma (γ) radiation.

Property	α – radiation	β – radiation	γ – radiation		
Mass	heavy	light	none		
Charge					
Typical energy	~5 MeV	~1 MeV	~0.1 MeV		
Range in air					
Penetration in matter	~10 ⁻² mm	a few mm	high		
Ionising ability* (*circle correct answer)	low / medium / high	low / medium / high	low / medium / high		

Question 7 (2 marks)	
Calculate the energy in joules of a gamma ray that has energy of 7	750 keV.
	J
Question 8 relates to the following information.	
As an alpha particle travels through air it collides with and ionizes average this happens 100 000 times for each centimetre travelled. particle ionises another atom the alpha particles loses about 35 eV	Each time an alpha
Question 8 (3 marks)	
Correct to the nearest millimeter calculate the approximate distant particle with 4.8 MeV will travel in air before it loses all of its energy	
•	
	cm
	End Of Section B

End Of Diagnostic Test

Physics Unit 1- Formula and Data Sheet

Nuclear physics and radioactivity

1	absorbed dose (Gy)	$absorbed\ dose = \frac{E}{m}$
2	dose equivalent	dose equivalent = absorbed dose × quality factor
3	activity level	$A = \frac{A_o}{t^n}$
4	nuclear transmutation	1 Becquerel $(Bq) = 1$ nuclear transmutation per second

Quality Factors

 γ - radiation 1 β - radiation 1 slow neutron 3 fast neutron 10 α - radiation 20

$$1 \text{ eV} = 1.6 \text{ x} 10^{-19} \text{ J}$$

Multiplying Prefixes

 $\begin{array}{lll} giga & (G) & = 10^9 \\ mega & (M) & = 10^6 \\ kilo & (k) & = 10^3 \\ milli & (m) & = 10^{-3} \\ micro & (\mu) & = 10^{-6} \\ nano & (n) & = 10^{-9} \end{array}$

Periodic table of the elements

	1															,	1
1																	2
H																	He
1 Hydrogen																	4 Helim
3	4				ator	nic number	101	1				5	6	7	8	9	10
Li	Be				utoi	me number	Md	element sy	mbol			В	$\overset{\circ}{\mathbf{C}}$	N	Ŏ	F	Ne
7	9				relative a	tomic mass	258					11	12	14	16	19	20
Lithium	Beryllium				relative a	tomic mass	Mendelevium	name of el	ement			Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
11	12							ч				13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
23	24											27	28	31	32	36	40
Sodium	Magnesium		I	I	1	I	ı	T	1	I	1	Aluminium	Silicon	Phosphorous	Sulfur	Chlorine	Argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39 Potassium	40 Calcium	45 Scandium	48 Titanium	51 Vanadium	52 Chromium	55 Manganese	56 Iron	59 Cobalt	59 Nickel	64 Copper	65 Zinc	70 Gallium	73 Germanium	75 Arsenic	79 Selenium	80 Bromine	84 Krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
86	88	89	91	93	96	98	101	103	106	108	112	115	119	122	128	127	131
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
133	137	139	179	181	184	186	190	192	197	197	201	204	207	209	209	210	222
Caessium 87	Barium 88	Lanthanum 89	Hafnium 104	Tantalum 105	Tungsten 106	Rhenium 107	Osmium 108	Iridium 109	Platinum 110	Gold	Mercury	Thallium	Lead 114	Bismuth	Polonium 116	Astatine	Radon
			Rf	Db						111 D a	112						118 The
Fr 223	Ra 226	Ac 227	261	262	Sg 263	Bh 264	Hs 265	Mt 268	Ds 271	Rg 272	Uub		Uuq		Uuh		Uuo
Francium	ZZO Radium	Actinium	ZO1 Rutherfordium	202 Dubnium	203 Seaborgium	204 Bohrium	203 Hassium	208 Meitnerium	2/1 Darmstadtium	Z / Z Roentgenium							
												•		_		•	
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			140	141	144	145	150	152	157	159	163	165	167	169	173	175	
			Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
				ı		ı	ı	1		ı					ı		Ī
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			232 Thorium	231 Proactinium	238 Uranium	237 Neptunium	244 Plutonium	243 Americium	247 Curium	247 Berkelium	254 Californium	251 Einsteinium	257 Fermium	258 Mendelevium	255 Nobelium	256 Lawrencium	
			- nortuin	. rouetillulli	Cramum	. reptamum	* randillulli	cricium	Carrain	Derkenum	Carrollium		. Carinum	c.idele viuiil	. roochum	Lawrencium	l