Algebra Autumn 2025 Frank Sottile 18 September 2025

Fifth Homework

Write your answers neatly, in complete sentences. I highly recommend recopying your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in when you show up for your mid-term exam.

- 1. Let $m \geq 2$ be an integer. Recall that $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z} = \{0, 1, \dots, m-1\}$. Set $\mathbb{Z}_m^* := \{k \in \mathbb{Z}_m \mid \gcd(k, m) = 1\}$. These are the cosets of integers that are relatively prime to m.
 - (a) Show that \mathbb{Z}_m^* is the set of generators of the cyclic group \mathbb{Z}_m .
 - (b) Show that \mathbb{Z}_m^* is a group under multiplication modulo m. Define $\phi(m) := |\mathbb{Z}_m^*|$, the order of this group. This is Euler's $totient\ function$, also called Euler's ϕ -function.
 - (c) Deduce Euler's Theorem: If gcd(a, m) = 1, then $a^{\phi(m)} \equiv 1 \mod m$. (That is, m divides $a^{\phi(m)} 1$, equivalently, $a^{\phi(m)} = 1$ as elements of \mathbb{Z}_m .)
 - (d) Show that ϕ is multiplicative; if $a, b \in \mathbb{N}$ are relatively prime, $(\gcd(a, b) = 1)$, then $\phi(ab) = \phi(a) \cdot \phi(b)$. Let p be a prime number and show that $\phi(p) = p 1$. Determine $\phi(p^n)$, where p is a prime and n > 0 is an integer.

Deduce a formula for $\phi(m)$ in terms of the factorization of m into a product of powers of distinct primes. Express this in terms of m and its distinct prime divisors.

- (e) Use (d) to deduce Fermat's Little Theorem: If p is any prime number and $a \in \mathbb{Z}$, then $a^p \equiv a \mod p$.
- 2. Let $\mathfrak{H} := \{z \in \mathbb{C} \mid \Im(z) > 0\}$ be the upper half plane in the set of complex numbers. Let $G := SL(2,\mathbb{R})$, the group of real 2×2 matrices with determinant 1.

For
$$z\in\mathbb{C}$$
 and $\alpha=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $\in G$, let $\alpha.z:=\frac{az+b}{cz+d}$.

Verify that this defines an action of G on \mathfrak{H} , and that the isotropy group of $\sqrt{-1}$ is the group

$$K \ := \ \left\{ \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \ \middle| \ \text{with} \ \theta \in \mathbb{R} \right\} \ .$$

of rotation matrices. Show that G acts transitively on \mathfrak{H} .

3. Let H be a subgroup of a group G and define the $core\ of\ H$ to be

$$\operatorname{core}(H) := \bigcap \{ {}^g\!H \mid g \in G \} \,,$$

the intersection of all conjugates of H by elements of G.

Let $S := \{xH \mid x \in G\}$ be the set of left cosets of H in G. For each $g \in G$, define $g_* \colon S \to S$ by $g_*(xH) = gxH$.

- (a) Show that g_* is an element of the symmetric group on the set S, Sym(S).
- (b) Show that the map $G \to \operatorname{Sym}(S)$ given by $g \mapsto g_*$ is a group homomorphism with kernel $\operatorname{core}(H)$.