CHEM2100J Chapter 00-02 RC

Zeng Haoxuan

UM-SJTU Joint Institute zenghaoxuan@sjtu.edu.cn

March 20, 2024

Table of Contents

- Comments & Advice
- 2 Fundamentals
- 3 Atomic Theory
- Quantum Theory
- 5 The Hydrogen Atom
- 6 Many-Electron Atoms

Comments on Homework, Quizzes and Exams

Homework

- ▶ is designed to prepare you for the quizzes and deepen your understanding of some basic concepts
- will not be accepted after the closing time and will receive an automatic grading of zero points.
- only contains multiple choice questions, only retains the last attempt

Quizzes

- short examinations of 5 min length on a regular basis, focussing on individual or thematically connected chapters
- the questions will be different between individuals
- the grades and answers will be published manually sometimes after the afternoon class

Exams

- ▶ a 45 minutes midterm exam and a 100 minutes final exam
- cannot use any form of dictionaries
- cheating paper may help you a lot, but do not refer to it all the time

Advice

- Attend and listen carefully in lectures and RC.
- Practice your skills on using calculator.
- Carefully finish the homework; refer to exercises in the textbook if you have time.
- Read *Chemical Principle* before and after the lectures. Don't rely too much on Chinese textbooks.
- Ask questions at OH as much as possible. TAs reserve the rights not to answer questions asked via WeChat and Feishu.
- Al tools are strictly **PROHIBITED** in this course! Please don't use them to do your homework!

- Comments & Advice
- 2 Fundamentals
- 3 Atomic Theory
- Quantum Theory
- The Hydrogen Atom
- 6 Many-Electron Atoms

Counting rule

Count the number of figures starting from the first non-zero one.

Rounding rule

- ► Above 5 round up
- ▶ Exactly 5 round to even if no figures behind; round up otherwise
- Below 5 round down

Operational rule

- ▶ +-: follow the least decimal place
- */: follow the least significant figures
- exponent: decimal place of index = significant figures of answer
- logarithm: significant figures of antilogarithm = decimal place of answer

Tip: Don't round up in the middle of the calculation!

```
Example
```

1.0080

0.0035

5000

5000.

 3.45×10^{4}

Plank's constant h= 6.626×10^{-34}

 $(604.01+0.53)\times321.81$

Determine the number of the significant figures!

Example

A Na_2CO_3 solution has pH=11.61, what's the concentration of H⁺?

Example

A Na_2CO_3 solution has pH=11.61, what's the concentration of H⁺?

Answer

 2.5×10^{-12}

Accuracy & Precision

- Accuracy: how close the average value of a series of measurements to the true value.
- Precision: how close repeated measurements are to one another.

Properties

- Extensive properties: depends on the quantity of matter
- Intensive properties: **independent** of the **quantity** of matter

Example pressure volume density temperature speed

Determine whether the above properties are intensive or extensive!

Properties

- Extensive properties: depends on the quantity of matter
- Intensive properties: independent of the quantity of matter

Example pressure volume density temperature speed

Determine whether the above properties are intensive or extensive!

 Remark: Sometimes ratio of two extensive properties will be intensive properties

- Comments & Advice
- 2 Fundamentals
- 3 Atomic Theory
- Quantum Theory
- The Hydrogen Atom
- 6 Many-Electron Atoms

Electromagnetic Radiation

- Formula: $\lambda \times \nu = c$
- Amplitude
 - the height above the centerline
 - intensity=amplitude²
- Wavelength
 - distance between peaks

Electromagnetic Spectrum

- Use this diagram to identify the type
- Do copy it onto your cheating paper

Atomic Models

- Democritus
- Dalton
- J.J.Thomson "Plum-pudding Model"
 - ► Cathode ray experiment
 - ▶ Ratio of an electron's charge to its mass $\frac{e}{m_e}$
- Millikan
 - ▶ Oil drop experiment
 - $ightharpoonup e = 1.62 \times 10^{-19} \text{C}, \ m_e = 9.11 \times 10^{-31} \text{kg}$
- Rutherford "Nuclear Model"
 - $ightharpoonup \alpha$ Scattering Experiment
- Bohr Bohr atomic model

- Comments & Advice
- 2 Fundamentals
- 3 Atomic Theory
- Quantum Theory
- 5 The Hydrogen Atom
- 6 Many-Electron Atoms

Black Body

- Stefan-Boltzmann law
 - describes the exponential-like behavior of the total intensity of black body objects
 - ▶ Total intensity= $const \times T^4$
 - $ightharpoonup const=5.67 \times 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$
- Wien's law
 - shows a maximum energy density exists in black body radiation
 - $ightharpoonup T\lambda_{max} = const$
 - $ightharpoonup const = 2.898 \times 10^{-3} \text{ m/K}$

Black Body

Exercise

Calculate the temperature of a sun whose maximum intensity of radiation occurs at 490 nm. Use 0.2898 cm/K as constant.

Black Body

Exercise

Calculate the temperature of a sun whose maximum intensity of radiation occurs at 490 nm. Use 0.2898 cm/K as constant.

Solution

According to Wien's law, $T\lambda_{max} = const$, we have

$$T = \frac{0.2898 \times 10^{-2}}{490 \times 10^{-9}} K = 5.91 \times 10^{3} K$$

Photoelectric Effect

$$E_{photon} = KE_{electron} + WorkFunction_{metal}$$
 $h
u = rac{1}{2}m_{e}v^{2} + \Phi$

- illustrates the particle nature of light
- exists a threshold frequency $\nu_0 = \frac{\Phi}{h}$

Exercise

Calculate the velocity of an electron ejected from a metal with a work function of $4.28~{\rm eV}$ while being irradiated with light with a wavelength of $140~{\rm nm}$.

Exercise

Calculate the velocity of an electron ejected from a metal with a work function of 4.28 eV while being irradiated with light with a wavelength of 140 nm.

Solution

$$\frac{1}{2}m_{e}v^{2} = h\nu - \Phi$$

$$\nu = \frac{c}{\lambda}$$

Using the above equations, we can obtain that $v = 1.27 \times 10^6 \text{m/s}$.

(Tip: be careful with the unit conversion! 1 eV= 1.60×10^{-19} J)

Emission Spectra of Hydrogen

Formulas

- $\nu = \mathcal{R}(\frac{1}{n_1^2} \frac{1}{n_2^2}), \ n_1 = 1, 2, ...; n_2 = n_1 + 1, n_1 + 2, ...$
- Nydberg constant: $\mathcal{R}=3.29\times10^{15}$ Hz, $\mathcal{R}_{\lambda}=1.097\times10^{7}$ m^{-1}
- Balmer series $n_1 = 2$, $n_2 = 3, 4...$
- Lyman series $n_1 = 1$, $n_2 = 2, 3...$

Emission Spectra of Hydrogen

Exercise

- Use the Rydberg formula for atomic hydrogen to calculate the wavelength of radiation generated by the transition from n=2 to n=1
- What is the name given to the spectroscopic series to which this transition belongs?
- Determine the region of the spectrum in which the transition takes place?

Emission Spectra of Hydrogen

Exercise

- Use the Rydberg formula for atomic hydrogen to calculate the wavelength of radiation generated by the transition from n=2 to n=1
- What is the name given to the spectroscopic series to which this transition belongs?
- Determine the region of the spectrum in which the transition takes place?

Solution

122nm; Lyman series; ultraviolet region

Wave-Particle Duality

de Broglie relation

$$\lambda = \frac{h}{p}$$

- matter has both wavelike and particlelike properties
- matter behaves wave properties as it propagates
- matter behaves particle properties when it interacts

Wave-Particle Duality

Exercise

The Gloriana-class battleship Hand of Dorn (m = 160 Mt) has engaged its sub-light engines and accelerated to 0.55c. Calculate the deBroglie wavelength.

Wave-Particle Duality

Exercise

The Gloriana-class battleship Hand of Dorn (m = 160 Mt) has engaged its sub-light engines and accelerated to 0.55c. Calculate the deBroglie wavelength.

Solution

According to de Broglie's relation,

$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{6.626 \times 10^{-34}}{160 \times 10^9 \times 0.55 \times 3 \times 10^8} \text{m} = 2.51 \times 10^{-53} \text{m}$$

Heisenberg Uncertainty Principle

- $\Delta x \Delta p \geqslant \frac{1}{2}\hbar$
- $\hbar = \frac{h}{2\pi}$
- Δx is the uncertainty of position and Δp is the uncertainty of momentum

Exercise

Estimate the minimum uncertainty of the position of a 5.0g marble given that its speed is known within \pm 0.20 mm/s.

Heisenberg Uncertainty Principle

- $\Delta x \Delta p \geqslant \frac{1}{2}\hbar$
- $\hbar = \frac{h}{2\pi}$
- Δx is the uncertainty of position and Δp is the uncertainty of momentum

Exercise

Estimate the minimum uncertainty of the position of a 5.0g marble given that its speed is known within \pm 0.20 mm/s.

Solution

$$\Delta \textit{p} = \textit{m} \Delta \textit{v} \leqslant 5.0 \times 10^{-3} \times 0.4 \times 10^{-3} \text{kg} \cdot \text{m/s} = 2.0 \times 10^{-6} \text{ kg} \cdot \text{m/s}$$

$$\Delta x \geqslant \frac{\hbar}{2\Delta\rho} \geqslant \frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 2.0 \times 10^{-6}} m = 2.6 \times 10^{-29} m$$

Wave Function and Schrödinger Equation

Wave function

- \bullet $\,\Psi$ describes the state of microsystem; represents AO or MO in atomic or molecular system
- \bullet Ψ^2 represents the probability density (NOT PROBABILITY!) of electrons in atoms or molecules
- ullet Node the point where $\Psi=0$ (the probability of finding electrons is 0)

Schrödinger Equation

- the intrinsic form: $-\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi = E\Psi$
- $-\frac{\hbar^2}{2m}\nabla^2\Psi$ stands for the kinetic energy, $V\Psi$ stands for the potential energy and E stands for the total energy

The model of 1D box is introduced to help you better understand QM!

Solving the Schrödinger Equation, we obtain the following results:

- when $x \leq 0$ or $x \geqslant L$, $\Psi(x) = 0$
- when 0 < x < L, $\Psi_n(x) = \sqrt{\frac{2}{L}} sin(\frac{n\pi x}{L})$, n=1,2,...

Exercise

A particle of mass m is confined in a 1D box of length L. Given that the quantum number n, and Plank constant h is known, please verify that $E_n = \frac{n^2h^2}{8mL^2}$.

Exercise

A particle of mass m is confined in a 1D box of length L. Given that the quantum number n, and Plank constant h is known, please verify that $E_n = \frac{n^2h^2}{8mL^2}$.

Solution

As the wave function of the particle is $\Psi_n(x) = \sqrt{\frac{2}{L}} sin(\frac{n\pi x}{L})$, its wave length satisfies $L = n \times \frac{\lambda}{2}$, thus $\lambda = \frac{2L}{n}$. Using de Broglie's equation, we obtain that $E_n = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2} = \frac{n^2h^2}{8mL^2}$.

Exercise

A particle of mass m is confined in a 1D box of length L. Given that the quantum number n, and Plank constant h is known, please verify that $E_n = \frac{n^2 h^2}{8mL^2}$.

Solution

As the wave function of the particle is $\Psi_n(x) = \sqrt{\frac{2}{L}} sin(\frac{n\pi x}{L})$, its wave length satisfies $L = n \times \frac{\lambda}{2}$, thus $\lambda = \frac{2L}{n}$. Using de Broglie's equation, we obtain that $E_n = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2} = \frac{n^2h^2}{8mL^2}$.

Remarks:

- energy levels are quantized and determined by n
- multiple possibilities of the state of motion
- as m,L increase, the separations between energy levels decrease

- Comments & Advice
- 2 Fundamentals
- 3 Atomic Theory
- Quantum Theory
- The Hydrogen Atom
- 6 Many-Electron Atoms

Quantum Numbers, Shells and Subshells

Name	Symbol	Values	Specifies	Indicates
principal	n	1, 2,	shell	size
orbital angular momentum*	1	$0,1,\ldots,n-1$	subshell: $l = 0, 1, 2, 3, 4,$ s, p, d, f, g,	shape
magnetic	m_l	$l, l-1, \ldots, -l$	orbitals of subshell	orientation
spin magnetic	m_s	$+\frac{1}{2}$, $-\frac{1}{2}$	spin state	spin direction

Remarks:

- n,l determine the energy level of an orbital
- I, m_I determine the shape and orientation of an orbital
- \bullet m_s is independent with the other three quantum numbers

The Shape of Orbitals

Shape of:

- s orbitals sphere
- p orbitals spindle
- d orbitals petal

Number of:

- total orbitals=n²
- total nodes=n-1
- radial nodes=n-l-1
- nodal planes=I

(View the 3D images in file "atomic orbitals.zip" on canvas)

Radial distribution function of AO

- Comments & Advice
- 2 Fundamentals
- 3 Atomic Theory
- Quantum Theory
- The Hydrogen Atom
- 6 Many-Electron Atoms

Shielding Effect & Penetration Effect

- Shielding effect
 - due to the repulsion of the electrons on inner orbitals, the outer electrons will be shielded from the full attraction of the nucleus.
 - ightharpoonup the effective nuclear charge $Z_{\it eff}\,e$ is always less than the nuclear charge $Z_{\it eff}\,e$
 - ▶ will cause the energy of electrons ↑
- Penetration effect
 - ▶ the electrons also have the ability to penetrate through the inner cells
 - ▶ will cause the energy of the electrons ↓

Orbital Energies

- $E_n = -\frac{Z_{eff}^2 h \mathcal{R}}{n^2}$, n=1,2,...
- ullet In a many-electron atom, because of penetration effect and shielding effect, the order of orbital energies in a given shell is s
- Between different shells, the energy levels may overlap

The Building-Up Principle

- Pauli exclusion principle
 - ▶ No more than two electrons may occupy any given orbital
 - When two electrons do occupy one orbital, their spins must be paired(↑ and ↓)
 - ▶ In other words, no two electrons in an atom can have the same set of four quantum numbers
- Hund's rule
 - If more than one orbital in a subshell is available, add electrons with parallel spins(↑↑) to different orbitals of that subshell rather than pairing two electrons in one of the orbitals (lowest total energy)
 - ► Exceptions: half-complete or complete subshell configuration have lower energy

Electron Configuration

- Valence shell the occupied shell with the largest value of n
- Valence electron the electrons in the outermost shell
- Ground state electrons are in the lowest energy state
- Excited state electrons are in energy states higher than the ground state

Exercise

Write the ground state electron configuration for:

- Fe
- Fe³⁺
- Cr
- Ag
- Ga

Reference

- Atkins, P. (2016) *Chemical principles: The quest for insight*. New York: W H Freeman.
- Prof. Milias Liu, Lecture Slides. 23FA VC210
- MA Anlin, RC Slides. 22FA VC210
- ZHOU Sikuang, RC Slides, 22FA VC210
- https://struchem.nankai.edu.cn/

Thank you!