Machine Learning Worksheet Solution 4

Julius Jankowski

1 Least squares regression

Problem 1:

See attached pages.

Problem 2:

Starting from the error sum formulation:

$$E_{weighted} = \frac{1}{2} \sum_{i=1}^{N} t_i (\mathbf{w}^T \mathbf{\Phi}(\mathbf{x}_i) - y_i)^2$$
(1.1)

We can reformulate this problem by stacking all summation terms in a matrix vector style. The t_i s will be represented by an eye matrix $\tilde{\mathbf{T}}$ with the corresponding t_i in row i:

$$E_{weighted} = \frac{1}{2} (\widetilde{\mathbf{\Phi}} \cdot \mathbf{w} - \mathbf{y})^T \cdot \widetilde{\mathbf{T}} \cdot (\widetilde{\mathbf{\Phi}} \cdot \mathbf{w} - \mathbf{y})$$
 (1.2)

By resolving the brackets, we obtain $(\tilde{\mathbf{T}}^T = \tilde{\mathbf{T}})$:

$$E_{weighted} = \frac{1}{2} (\mathbf{w}^T \cdot \widetilde{\mathbf{\Phi}}^T \cdot \widetilde{\mathbf{T}} \cdot \widetilde{\mathbf{\Phi}} \cdot \mathbf{w} - 2\mathbf{y}^T \cdot \widetilde{\mathbf{T}} \cdot \widetilde{\mathbf{\Phi}} \cdot \mathbf{w} + \mathbf{y}^T \cdot \widetilde{\mathbf{T}} \cdot \mathbf{y})$$
(1.3)

and now we can easily compute the derivative w.r.t. the weights \mathbf{w} in order to get the optimizer \mathbf{w}^* :

$$\frac{\partial E_{weighted}}{\partial \mathbf{w}} = \mathbf{w}^T \cdot \widetilde{\mathbf{\Phi}}^T \cdot \widetilde{\mathbf{T}} \cdot \widetilde{\mathbf{\Phi}} - \mathbf{y}^T \cdot \widetilde{\mathbf{T}} \cdot \widetilde{\mathbf{\Phi}} = 0$$
(1.4)

$$\mathbf{w}^* = (\widetilde{\mathbf{\Phi}}^T \cdot \widetilde{\mathbf{T}} \cdot \widetilde{\mathbf{\Phi}})^{-1} \cdot \widetilde{\mathbf{\Phi}}^T \cdot \widetilde{\mathbf{T}} \cdot \mathbf{y}$$
(1.5)

Here we can see that there is a new version of a pseudo-inverse matrix $\tilde{\Phi}^+ = (\tilde{\Phi}^T \cdot \tilde{\mathbf{T}} \cdot \tilde{\Phi})^{-1} \cdot \tilde{\Phi}^T \cdot \tilde{\mathbf{T}}$ which fits the general condition for a inverse matrix $\tilde{\Phi}^+ \cdot \tilde{\Phi} = \tilde{\mathbf{I}}$. Hence the t_i s can be interpreted as metric for the feature matrix $\tilde{\Phi}$, which weights each feature independtly. From a machine learning perspective, the t_i s can be used for:

- 1) giving samples with less variance (hence more reliable) a higher impact in learning the \mathbf{w}^* .
- 2) replacing two exact copies of one sample with one sample with a weighting factor of 2.

2 Ridge regression

Problem 3:

Since we can reformulate the error equation between sum style and matrix-vector style as follows:

$$E = \frac{1}{2} (\widetilde{\mathbf{\Phi}} \cdot \mathbf{w} - \mathbf{y})^T \cdot (\widetilde{\mathbf{\Phi}} \cdot \mathbf{w} - \mathbf{y}) = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w}^T \mathbf{\Phi}_i - y_i)^2$$
 (2.1)

where Φ_i corresponds to the *i*-th row vector of the design matrix. Hence we can also reformulate the specification stated in the task description:

$$E = \frac{1}{2} \sum_{i=1}^{N+M} (\mathbf{w}^T \mathbf{\Phi}_i - y_i)^2$$
 (2.2)

and now split up the sum after N samples:

$$E = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w}^{T} \mathbf{\Phi}_{i} - y_{i})^{2} + \frac{1}{2} \sum_{i=N+1}^{N+M} (\sqrt{\lambda} w_{i-N})^{2} = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w}^{T} \mathbf{\Phi}_{i} - y_{i})^{2} + \frac{\lambda}{2} \sum_{i=1}^{M} w_{i}^{2}$$
(2.3)

which is equal to the ridge regression formulation.

3 Bayesian linear regression

Problem 4:

04_homework_linear_regression

November 16, 2017

1 Programming assignment 4: Linear regression

1.1 Your task

In this notebook code skeleton for performing linear regression is given. Your task is to complete the functions where required. You are only allowed to use built-in Python functions, as well as any numpy functions. No other libraries / imports are allowed.

1.2 Load and preprocess the data

I this assignment we will work with the Boston Housing Dataset. The data consists of 506 samples. Each sample represents a district in the city of Boston and has 13 features, such as crime rate or taxation level. The regression target is the median house price in the given district (in \$1000's).

More details can be found here: http://lib.stat.cmu.edu/datasets/boston

```
In [6]: X , y = load_boston(return_X_y=True)

# Add a vector of ones to the data matrix to absorb the bias term
# (Recall slide #7 from the lecture)
X = np.hstack([np.ones([X.shape[0], 1]), X])
# From now on, D refers to the number of features in the AUGMENTED dataset (i.e. include
# Split into train and test
test_size = 0.2
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
```

1.3 Task 1: Fit standard linear regression

```
X : array, shape [N, D]
                 (Augmented) feature matrix.
             y : array, shape [N]
                 Regression targets.
             Returns
             _____
             w : array, shape [D]
                 Optimal regression coefficients (w[0] is the bias term).
             HHHH
             w = np.linalg.inv(X.transpose().dot(X)).dot(X.transpose()).dot(y)
             return w
1.4 Task 2: Fit ridge regression
In [32]: def fit_ridge(X, y, reg_strength):
             """Fit ridge regression model to the data.
             Parameters
             _____
             X : array, shape [N, D]
                 (Augmented) feature matrix.
             y : array, shape [N]
                 Regression targets.
             reg\_strength: float
                 L2 regularization strength (denoted by lambda in the lecture)
             Returns
             _____
             w : array, shape [D]
                 Optimal regression coefficients (w[0] is the bias term).
             HHHH
             D = X.shape[1]
             lambda_matrix = reg_strength*np.eye(D)
             w = np.linalg.inv(lambda_matrix + X.transpose().dot(X)).dot(X.transpose()).dot(y)
             return w
   Task 3: Generate predictions for new data
In [25]: def predict_linear_model(X, w):
             """Generate predictions for the given samples.
```

1.6 Task 4: Mean squared error

```
In [30]: def mean_squared_error(y_true, y_pred):
             """Compute mean squared error between true and predicted regression targets.
             Reference: `https://en.wikipedia.org/wiki/Mean_squared_error`
             Parameters
             _____
             y_true : array
                 True regression targets.
             y_pred : array
                 Predicted regression targets.
             Returns
             _____
             mse : float
                 Mean squared error.
             11 11 11
             n = len(y_true)
             \mathbf{E} = 0
             for i in range(n):
                 E = E + np.dot((y_true[i] - y_pred[i]),(y_true[i] - y_pred[i]))
             return E / n
```

1.7 Compare the two models

The reference implementation produces * MSE for Least squares \approx 23.98 * MSE for Ridge regression \approx 21.05

You results might be slightly (i.e. $\pm 1\%$) different from the reference soultion due to numerical reasons.

```
In [33]: # Load the data
        np.random.seed(1234)
         X , y = load_boston(return_X_y=True)
         X = np.hstack([np.ones([X.shape[0], 1]), X])
         test size = 0.2
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
         # Ordinary least squares regression
         w_ls = fit_least_squares(X_train, y_train)
         y_pred_ls = predict_linear_model(X_test, w_ls)
         mse_ls = mean_squared_error(y_test, y_pred_ls)
         print('MSE for Least squares = {0}'.format(mse_ls))
         # Ridge regression
         reg_strength = 1
         w_ridge = fit_ridge(X_train, y_train, reg_strength)
         y_pred_ridge = predict_linear_model(X_test, w_ridge)
         mse_ridge = mean_squared_error(y_test, y_pred_ridge)
         print('MSE for Ridge regression = {0}'.format(mse_ridge))
MSE for Least squares = 23.984307611774053
MSE for Ridge regression = 21.051487033771537
```