HLock: Locking IPs at the High-Level Language

Background

Results

Conclusion

> Jeboit!

HLock: Locking IPs at the High-Level Language

Rafid M., Roshanak M., Mark T. and Farimah F Design Automation Conference(DAC) 2021

March 18, 2022

Presented by Akshay Gopalakrishnan

Authors?

HLock: Locking IPs at the High-Level Language

3ackground

...

Results

- Cybersecurity research group at University Of Florida
- Farimah and Mark professors
- Rafid and Roshanak PhD students.)

Outline

HLock: Locking IPs at the High-Level Language

Background

.....

Results

- Security! ~>> of H/W Synthesis!
- Security from what ?
- Remedy ? "Lock" parts of the code.
- Lock at High Level description to avoid attackers from succeeding (resiliency).
- Results

Security Need

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Security Measures: Locking/Obfuscation

HLock: Locking IPs at the High-Level Language

Background

Main

Results

- Modify parts of the hardware specification at the RTL/netlist layer.
- The parts work correctly only with another extra input being correct.
- This way, "locking" of IP blocks can be achieved.

Problem?

HLock: Locking IPs at the High-Level Language

Background

....

Results

- RTL/netlist layer security not resilient enough.
- Obfuscating constant values and branches of RTL are hard to do. → Easy to detect.
- SAT based/ Machine learning based attacks can easily extract the original design.

```
Not resilient enough!!
```

Proposed Solution

HLock: Locking IPs at the High-Level Language

Background

Main

Results

- Perform locking/obfuscation at HLS level (C/C++ like) design.
- Previous approach exists in these lines, but do not measure resilience to attack and has more overhead.

Outline

HLock: Locking IPs at the High-Level Language

Main

Locking Different Candidates

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Branch Obfuscation

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Function Obfuscation

HLock: Locking IPs at the High-Level Language

Background

Main

Results

onclusion

Own code sample here.

Constant Obfuscation

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Identifying Optimal Lock Key Size

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Model as ILP problem. Resiste for Condidate
$$2c$$

$$\gamma_{1c} \times L_{1c} + \gamma_{2c} \times L_{2c} + ... + \gamma_{mc} \times L_{mc} \ge Res_{spec} \quad (1)$$
Resiliency Value $\alpha_{1c} \times L_{1c} + \alpha_{2c} \times L_{2c} + ... + \alpha_{mc} \times L_{mc} \le Ov_{spec} \quad (2)$
Area value

Whole setup

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Conclusion

Design should give correct output only for correct keys!

Lock Key Size compared to Previous Approaches

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Conclusion

Previous Appraches

Power consumption and SAT Resiliency

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Locking Type	Mergesort		diam'r
0 11	Power Overhead	SAT Resiliency	7
inserts XOR and XNOR gates at randomly chosen locations (RND) [20]	69.09%	10.75s	R
inserts XOR/XNOR gates carefully to avoid fault-analysis attack (DAC) [19]	103.21%	190.20s	
Maximizes HD between correct and incorrect outputs by MUX (ToC mux) [21]	42.10%	1.34s	4
Maximizes HD between correct and incorrect outputs by XOR (ToC xor) [21]	82.30%	19.34s	
Minimizes low controllability locations by inserting AND, OR (IOLTS) [29]	14.67%	2.90s	
HLock (Proposed Framework)	7.84%	1915s	-

ML Resiliency

HLock: Locking IPs at the High-Level Language

3ackground

iviaiii

Results

			for Locking		
Benchmark Designs	TOCm'13 ⁻⁴ [21]	[29]	SARLock [22]	Mux2 [30]	HLock
MergeSort	96.66	100	100	92.27	68.18
AES	97.22	100	100	93.82	62.50
NeedWun	98.86	99.32	100	92.74	65.87
Avg.	97.58	99.77	100	92.95	65.51

A few drawbacks

HLock: Locking IPs at the High-Level Language

Background

......

Results

- Resiliency is highly reliant on optimizations done by HLS tools to locked design.
- Comparison of results are with previous RTL/Netlist layer locking (not the previous work on HLL layer).
- Lack statistics about time taken to lock the design (potentially much slower than previous approaches).

Thank you

HLock: Locking IPs at the High-Level Language

ackgroun

Main

Results

Conclusion

Questions?