Índice		1.4.1. Función σ	8
		1.4.2. Función Ω	9
1. Teoría de números	4	1.4.3. Función ω	9
1.1. Funciones básicas	4	1.4.4. Función φ de Euler	9
1.1.1. Función piso y techo	4	1.4.5. Función μ	9
1.1.2. Exponenciación y multiplicación binaria	4	1.5. Orden multiplicativo, raíces primitivas y raíces de la uni-	
1.1.3. Mínimo común múltiplo y máximo común divisor	4	dad	9
1.1.4. Euclides extendido e inverso modular	4	1.5.1. Función λ de Carmichael	9
1.1.5. Todos los inversos módulo p	5	1.5.2. Orden multiplicativo módulo m	10
1.1.6. Exponenciación binaria modular	5	1.5.3. Número de raíces primitivas (generadores) módu-	
1.1.7. Teorema chino del residuo	5	$lo m \dots $	
1.1.8. Coeficiente binomial	5	1.5.4. Test individual de raíz primitiva módulo m 1	.0
1.1.9. Fibonacci	6	1.5.5. Test individual de raíz k -ésima de la unidad módulo m	10
1.2. Cribas	6		
1.2.1. Criba de divisores	6	1.5.6. Encontrar la primera raíz primitiva módulo m . 1	.U
1.2.2. Criba de primos	6	1.5.7. Encontrar la primera raíz k -ésima de la unidad módulo m	. 1
1.2.3. Criba de factor primo más pequeño	6	1.5.8. Logaritmo discreto 1	. 1
1.2.4. Criba de factores primos	7	1.5.9. Raíz k -ésima discreta	1
1.2.5. Criba de la función φ de Euler	7	1.6. Particiones	2
1.2.6. Triángulo de Pascal	7	1.6.1. Función P (particiones de un entero positivo) 1	2
1.3. Factorización	7	1.6.2. Función Q (particiones de un entero positivo en	
1.3.1. Factorización de un número	7	distintos sumandos)	.2
1.3.2. Potencia de un primo que divide a un factorial $$.	7	1.7. Otros	.3
1.3.3. Factorización de un factorial	8	1.7.1. Cambio de base	.3
1.3.4. Factorización usando Pollard-Rho	8	1.7.2. Fracciones continuas	.3

ESCOM-IPN 1

1.4. Funciones multiplicativas famosas

2 .	Nún	neros racionales	14		5.2.	Verificar si un punto pertenece a una línea o segmento .	25
	2.1.	Estructura fraccion	14		5.3.	Intersección de líneas	26
ก	á 1	akua linaal	10		5.4.	Intersección de segmentos	26
ა.	_	ebra lineal	16		5.5.	Distancia punto-recta	26
			16		5.6.	Perímetro y área de un polígono	26
		Gauss Jordan			5.7.	Envolvente convexa (convex hull) de un polígono	27
		Matriz inversa			5.8.	Verificar si un punto pertenece al perímetro de un polígono	27
	3.4.	Transpuesta			5.9.	Verificar si un punto pertenece a un polígono	27
	3.5.	Traza					
	3.6.	Determinante	18	6.	Gra		28
	3.7.	Matriz de cofactores y adjunta	19		6.1.	Estructura disjointSet	28
	3.8.	Factorización $PA = LU$	19		6.2.	Estructura edge	28
	3.9.	Polinomio característico	19		6.3.	Estructura path	28
	3.10.	. Gram-Schmidt	20		6.4.	Estructura graph	29
	3.11.	. Recurrencias lineales	20		6.5.	Dijkstra con reconstrucción del camino más corto con menos vértices	29
4.	FFT	Γ	21		6.6.	Bellman Ford con reconstrucción del camino más corto	
	4.1.	Funciones previas	21				30
	4.2.	FFT con raíces de la unidad complejas	21			Floyd	
	4.3.	FFT con raíces de la unidad discretas (NTT) $\ \ldots \ \ldots$	22			Cerradura transitiva $O(V^3)$	
		$4.3.1.\;$ Otros valores para escoger la raíz y el módulo	23		6.9.	Cerradura transitiva $O(V^2)$	30
	4.4.	Aplicaciones	23		6.10	Verificar si el grafo es bipartito	31
		4.4.1. Multiplicación de polinomios	23		6.11	Orden topológico	31
		4.4.2. Multiplicación de números enteros grandes	23		6.12	Detectar ciclos	31
					6.13	Puentes y puntos de articulación	32
5.		ometría	24		6.14	. Componentes fuertemente conexas	32
	5.1.	Estructura point	24		6.15	Árbol mínimo de expansión (Kruskal)	33

2

3

	6.16.	Máximo emparejamiento bipartito	33
7.	Árb	oles	34
	7.1.	Estructura tree	34
	7.2.	k-ésimo ancestro	34
	7.3.	LCA	35
	7.4.	Distancia entre dos nodos	35
8.	Fluj	os	36
	8.1.	Estructura flowEdge	36
	8.2.	Estructura flowGraph	36
	8.3.	Algoritmo de Edmonds-Karp $O(VE^2)$	36
	8.4.	Algoritmo de Dinic $O(V^2E)$	37
9.	Estr	ructuras de datos	38
	9.1.	Segment Tree	38
	9.2	Fenwick Tree	38

4

1. Teoría de números

1.1. Funciones básicas

1.1.1. Función piso y techo

```
lli piso(lli a, lli b){
  if((a >= 0 \&\& b > 0) || (a < 0 \&\& b < 0)){}
    return a / b:
  }else{
    if(a \% b == 0) return a / b:
    else return a / b - 1;
 }
}
lli techo(lli a, lli b){
  if((a >= 0 \&\& b > 0) || (a < 0 \&\& b < 0)){}
    if(a \% b == 0) return a / b;
    else return a / b + 1;
  }else{
    return a / b;
  }
}
```

1.1.2. Exponenciación y multiplicación binaria

```
lli pow(lli b, lli e){
    lli ans = 1;
    while(e){
        if(e & 1) ans *= b;
        e >>= 1;
        b *= b;
    }
    return ans;
}

lli multMod(lli a, lli b, lli n){
    lli ans = 0;
    a %= n, b %= n;
    if(abs(b) > abs(a)) swap(a, b);
```

```
if(b < 0){
    a *= -1, b *= -1;
}
while(b){
    if(b & 1) ans = (ans + a) % n;
    b >>= 1;
    a = (a + a) % n;
}
return ans;
}
```

1.1.3. Mínimo común múltiplo y máximo común divisor

```
lli gcd(lli a, lli b){
  lli r:
  while(b != 0) r = a \% b, a = b, b = r;
  return a:
lli lcm(lli a, lli b){
  return b * (a / gcd(a, b));
lli gcd(vector<lli>> & nums){
  lli ans = 0;
  for(lli & num : nums) ans = gcd(ans, num);
  return ans;
}
lli lcm(vector<lli> & nums){
  lli ans = 1:
  for(lli & num : nums) ans = lcm(ans, num);
  return ans:
}
```

1.1.4. Euclides extendido e inverso modular

```
while(r1){
    q = r0 / r1;
    ri = r0 \% r1, r0 = r1, r1 = ri;
    si = s0 - s1 * q, s0 = s1, s1 = si;
    ti = t0 - t1 * q, t0 = t1, t1 = ti;
  s = s0, t = t0;
  return r0;
}
lli modularInverse(lli a, lli m){
  lli r0 = a, r1 = m, ri, s0 = 1, s1 = 0, si;
  while(r1){
    si = s0 - s1 * (r0 / r1), s0 = s1, s1 = si;
   ri = r0 \% r1, r0 = r1, r1 = ri;
  }
  if(r0 < 0) s0 *= -1;
  if(s0 < 0) s0 += m;
  return s0;
}
```

1.1.5. Todos los inversos módulo p

```
//find all inverses (from 1 to p-1) modulo p
vector<lli> allInverses(lli p){
  vector<lli> ans(p);
  ans[1] = 1;
  for(lli i = 2; i < p; ++i)
    ans[i] = p - (p / i) * ans[p % i] % p;
  return ans;
}</pre>
```

1.1.6. Exponenciación binaria modular

```
lli powMod(lli b, lli e, lli m){
  lli ans = 1;
  b %= m;
  if(e < 0){
    b = modularInverse(b, m);</pre>
```

```
e *= -1;
}
while(e){
  if(e & 1) ans = (ans * b) % m;
  e >>= 1;
  b = (b * b) % m;
}
return ans;
}
```

1.1.7. Teorema chino del residuo

1.1.8. Coeficiente binomial

```
lli ncr(lli n, lli r){
  if(r < 0 || r > n) return 0;
  r = min(r, n - r);
  lli ans = 1;
  for(lli den = 1, num = n; den <= r; den++, num--){
    ans = ans * num / den;
  }
  return ans;
}</pre>
```

6

1.1.9. Fibonacci

```
//very fast fibonacci
inline void modula(lli & n){
  if(n < 0) n += mod;
  if(n \ge mod) n = mod;
}
array<lli, 2> mult(array<lli, 2> & A, array<lli, 2> & B){
  array<lli, 2> C;
  C[0] = A[0] * B[0] \% mod;
  11i C2 = A[1] * B[1] \% mod;
  C[1] = (A[0] + A[1]) * (B[0] + B[1]) % mod - (C[0] + C2);
  C[0] += C2;
  C[1] += C2;
  modula(C[0]), modula(C[1]);
  return C;
}
lli fibo(lli n){
  array<11i, 2 > ans = \{1, 0\}, tmp = \{0, 1\};
  while(n){
    if (n \& 1) ans = mult(ans, tmp);
    n >>= 1;
    if(n) tmp = mult(tmp, tmp);
  }
  return ans[1];
}
```

1.2. Cribas

1.2.1. Criba de divisores

```
vector<lli> divisorsSum;
vector<vector<lli>> divisors;
void divisorsSieve(lli n){
  divisorsSum.resize(n + 1, 0);
  divisors.resize(n + 1, vector<lli>());
  for(lli i = 1; i <= n; i++){
    for(lli j = i; j <= n; j += i){</pre>
```

```
divisorsSum[j] += i;
  divisors[j].push_back(i);
}
}
```

1.2.2. Criba de primos

```
vector<lli> primes;
vector<bool> isPrime;
void primesSieve(lli n){
 isPrime.resize(n + 1, true);
 isPrime[0] = isPrime[1] = false;
 primes.push_back(2);
 for(lli i = 4: i \leq n: i += 2){
    isPrime[i] = false;
 for(lli i = 3; i \leq n; i += 2){
   if(isPrime[i]){
     primes.push_back(i);
     for(lli j = i * i; j <= n; j += 2 * i){
       isPrime[j] = false;
     }
   }
 }
```

1.2.3. Criba de factor primo más pequeño

```
vector<lli>lowestPrime;
void lowestPrimeSieve(lli n){
  lowestPrime.resize(n + 1, 1);
  lowestPrime[0] = lowestPrime[1] = 0;
  for(lli i = 2; i <= n; i++) lowestPrime[i] = (i & 1 ? i : 2);
  lli limit = sqrt(n);
  for(lli i = 3; i <= limit; i += 2){
    if(lowestPrime[i] == i){
      for(lli j = i * i; j <= n; j += 2 * i){
        if(lowestPrime[j] == j) lowestPrime[j] = i;
    }
}</pre>
```

```
}
}
}
```

1.2.4. Criba de factores primos

```
vector<vector<lli>>> primeFactors;
void primeFactorsSieve(lli n){
  primeFactors.resize(n + 1, vector<lli>());
  for(int i = 0; i < primes.size(); i++){
    lli p = primes[i];
    for(lli j = p; j <= n; j += p){
        primeFactors[j].push_back(p);
    }
  }
}</pre>
```

1.2.5. Criba de la función φ de Euler

```
vector<lli> Phi;
void phiSieve(lli n){
   Phi.resize(n + 1);
   for(lli i = 1; i <= n; i++) Phi[i] = i;
   for(lli i = 2; i <= n; i ++){
      if(Phi[i] == i){
        for(lli j = i; j <= n; j += i){
            Phi[j] -= Phi[j] / i;
        }
      }
   }
}</pre>
```

1.2.6. Triángulo de Pascal

```
vector<vector<lli>>> Ncr;
void ncrSieve(lli n){
  Ncr.resize(n + 1, vector<lli>());
  Ncr[0] = {1};
```

1.3. Factorización

1.3.1. Factorización de un número

```
vector<pair<lli, int>> factorize(lli n){
  vector<pair<lli, int>> f;
  for(lli & p : primes){
    if(p * p > n) break;
    int pot = 0;
    while(n % p == 0){
       pot++;
       n /= p;
    }
    if(pot) f.push_back(make_pair(p, pot));
}
if(n > 1) f.push_back(make_pair(n, 1));
  return f;
}
```

1.3.2. Potencia de un primo que divide a un factorial

```
lli potInFactorial(lli n, lli p){
    lli ans = 0;
    lli div = p;
    while(div <= n){
        ans += n / div;
        div *= p;
}
    return ans;</pre>
```

7

```
}
```

1.3.3. Factorización de un factorial

```
vector<pair<lli, lli>> factorizeFactorial(lli n){
  vector<pair<lli, lli>> f;
  for(lli & p : primes){
    if(p > n) break;
    f.push_back(make_pair(p, potInFactorial(n, p)));
  }
  return f;
}
```

1.3.4. Factorización usando Pollard-Rho

```
bool isPrimeMillerRabin(lli n){
  if(n < 2) return false;
  if(n == 2) return true;
  lli d = n - 1, s = 0;
  while(!(d & 1)){
    d >>= 1;
    ++s;
  for(int i = 0; i < 16; ++i){
    lli a = 1 + rand() \% (n - 1);
    lli m = powMod(a, d, n);
    if (m == 1 \mid \mid m == n - 1) goto exit;
    for(int k = 0; k < s - 1; ++k){
      m = m * m % n:
      if(m == n - 1) goto exit;
    }
    return false;
    exit:;
  }
  return true;
lli factorPollardRho(lli n){
  lli a = 1 + rand() \% (n - 1);
```

```
lli b = 1 + rand() \% (n - 1);
 lli x = 2, y = 2, d = 1;
 while(d == 1 \mid \mid d == -1){
   x = x * (x + b) \% n + a;
   y = y * (y + b) \% n + a;
   y = y * (y + b) \% n + a;
   d = gcd(x - y, n);
 return abs(d);
map<lli, int> fact;
void factorizePollardRho(lli n){
  while(n > 1 && !isPrimeMillerRabin(n)){
   lli f;
   do{
     f = factorPollardRho(n);
   }while(f == n);
   n /= f;
   factorizePollardRho(f);
   for(auto & it : fact){
     while(n % it.first == 0){
       n /= it.first;
       ++it.second;
     }
   }
 }
 if(n > 1) ++fact[n];
```

1.4. Funciones multiplicativas famosas

1.4.1. Función σ

```
//divisor power sum of n
//if pot=0 we get the number of divisors
//if pot=1 we get the sum of divisors
lli sigma(lli n, lli pot){
   lli ans = 1;
   vector<pair<lli, int>> f = factorize(n);
```

```
for(auto & factor : f){
    lli p = factor.first;
    int a = factor.second;
    if(pot){
        lli p_pot = pow(p, pot);
        ans *= (pow(p_pot, a + 1) - 1) / (p_pot - 1);
    }else{
        ans *= a + 1;
    }
}
return ans;
```

1.4.2. Función Ω

```
//number of total primes with multiplicity dividing n
int Omega(lli n){
  int ans = 0;
  vector<pair<lli, int>> f = factorize(n);
  for(auto & factor : f){
    ans += factor.second;
  }
  return ans;
}
```

1.4.3. Función ω

```
//number of distinct primes dividing n
int omega(lli n){
  int ans = 0;
  vector<pair<lli, int>> f = factorize(n);
  for(auto & factor : f){
    ++ans;
  }
  return ans;
}
```

1.4.4. Función φ de Euler

```
//number of coprimes with n less than n
lli phi(lli n){
    lli ans = n;
    vector<pair<lli, int>> f = factorize(n);
    for(auto & factor : f){
        ans -= ans / factor.first;
    }
    return ans;
}
```

1.4.5. Función μ

```
//1 if n is square-free with an even number of prime factors
//-1 if n is square-free with an odd number of prime factors
//0 is n has a square prime factor
int mu(lli n){
  int ans = 1;
  vector<pair<lli, int>> f = factorize(n);
  for(auto & factor : f){
    if(factor.second > 1) return 0;
    ans *= -1;
  }
  return ans;
}
```

1.5. Orden multiplicativo, raíces primitivas y raíces de la unidad

1.5.1. Función λ de Carmichael

```
//the smallest positive integer k such that for
//every coprime x with n, x^k=1 mod n
lli carmichaelLambda(lli n){
    lli ans = 1;
    vector<pair<lli, int>> f = factorize(n);
    for(auto & factor : f){
        lli p = factor.first;
    }
}
```

```
int a = factor.second;
lli tmp = pow(p, a);
tmp -= tmp / p;
if(a <= 2 || p >= 3) ans = lcm(ans, tmp);
else ans = lcm(ans, tmp >> 1);
}
return ans;
}
```

1.5.2. Orden multiplicativo módulo m

```
// the smallest positive integer k such that x^k = 1 \mod m
lli multiplicativeOrder(lli x, lli m){
  if(gcd(x, m) != 1) return -1;
  lli order = phi(m);
  vector<pair<lli, int>> f = factorize(order);
  for(auto & factor : f){
    lli p = factor.first;
    int a = factor.second;
    order /= pow(p, a);
    lli tmp = powMod(x, order, m);
    while(tmp != 1){
      tmp = powMod(tmp, p, m);
      order *= p;
    }
  }
  return order;
}
```

1.5.3. Número de raíces primitivas (generadores) módulo m

```
//number of generators modulo m
lli numberOfGenerators(lli m){
  lli phi_m = phi(m);
  lli lambda_m = carmichaelLambda(m);
  if(phi_m == lambda_m) return phi(phi_m);
  else return 0;
}
```

1.5.4. Test individual de raíz primitiva módulo m

```
//test if order(x, m) = phi(m), i.e., x is a generator for Z/mZ
bool testPrimitiveRoot(lli x, lli m){
  if(gcd(x, m) != 1) return false;
  lli order = phi(m);
  vector<pair<lli, int>> f = factorize(order);
  for(auto & factor : f){
    lli p = factor.first;
    if(powMod(x, order / p, m) == 1) return false;
  }
  return true;
}
```

1.5.5. Test individual de raíz k-ésima de la unidad módulo m

1.5.6. Encontrar la primera raíz primitiva módulo m

```
for(auto & factor : f){
                                                                    lli order = multiplicativeOrder(a, m);
      lli p = factor.first;
                                                                    lli n = sqrt(order) + 1;
      if(powMod(x, order / p, m) == 1){
                                                                    lli a_n = powMod(a, n, m);
        test = false;
                                                                    lli ans = 0;
        break:
                                                                    unordered_map<lli, lli> firstHalf;
      }
                                                                    lli current = a_n;
    }
                                                                    for(lli p = 1; p \le n; p++){
                                                                      firstHalf[current] = p;
    if(test) return x;
                                                                      current = (current * a_n) % m;
  }
  return -1;
}
                                                                    current = b % m;
                                                                    for(lli q = 0; q \le n; q++){
                                                                      if(firstHalf.count(current)){
1.5.7. Encontrar la primera raíz k-ésima de la unidad módulo
                                                                        lli p = firstHalf[current];
                                                                        lli x = n * p - q;
                                                                        return make_pair(x % order, order);
lli findFirstPrimitiveKthRootUnity(lli k, lli m){
  if(carmichaelLambda(m) % k != 0) return -1; //just an
                                                                      current = (current * a) % m;
  → optimization, not required
  vector<pair<lli, int>> f = factorize(k);
                                                                    return make_pair(-1, 0);
  for(lli x = 1; x < m; x++){
    if(powMod(x, k, m) != 1) continue;
    bool test = true:
                                                                  1.5.9. Raíz k-ésima discreta
    for(auto & factor : f){
      lli p = factor.first;
                                                                  // x^k = b \mod m, m has at least one generator
      if(powMod(x, k / p, m) == 1){
                                                                  vector<lli>discreteRoot(lli k, lli b, lli m){
       test = false;
                                                                    if(b \% m == 0) return \{0\};
        break;
                                                                    lli g = findFirstGenerator(m);
      }
                                                                    lli power = powMod(g, k, m);
    }
                                                                    pair<lli, lli> y0 = discreteLogarithm(power, b, m);
    if(test) return x;
                                                                    if(y0.first == -1) return {};
  }
                                                                    lli phi_m = phi(m);
  return -1;
                                                                    lli d = gcd(k, phi_m);
}
                                                                    vector<lli> x(d);
                                                                    x[0] = powMod(g, y0.first, m);
1.5.8. Logaritmo discreto
                                                                    lli inc = powMod(g, phi_m / d, m);
                                                                    for(lli i = 1; i < d; i++){
                                                                      x[i] = x[i - 1] * inc % m;
// a^x = b \mod m, a and m coprime
pair<lli, lli> discreteLogarithm(lli a, lli b, lli m){
                                                                    sort(x.begin(), x.end());
  if(gcd(a, m) != 1) return make_pair(-1, 0);
```

}

```
return x;
}
```

1.6. Particiones

1.6.1. Función P (particiones de un entero positivo)

```
lli mod = 1e9 + 7;
vector<lli> P;
//number of ways to write n as a sum of positive integers
lli partitionsP(int n){
  if(n < 0) return 0;
  if(P[n]) return P[n];
  int pos1 = 1, pos2 = 2, inc1 = 4, inc2 = 5;
  lli ans = 0;
  for(int k = 1; k \le n; k++){
    lli tmp = (n \ge pos1 ? P[n - pos1] : 0) + (n \ge pos2 ? P[n]
    \rightarrow - pos2] : 0);
    if(k & 1){
      ans += tmp;
    }else{
      ans -= tmp;
    if(n < pos2) break;</pre>
    pos1 += inc1, pos2 += inc2;
    inc1 += 3, inc2 += 3;
  }
  ans %= mod;
  if (ans < 0) ans += mod;
  return ans;
}
void calculateFunctionP(int n){
  P.resize(n + 1);
  P[0] = 1;
  for(int i = 1; i \le n; i++){
    P[i] = partitionsP(i);
  }
```

1.6.2. Función Q (particiones de un entero positivo en distintos sumandos)

```
vector<lli>Q;
bool isPerfectSquare(int n){
  int r = sqrt(n);
 return r * r == n;
}
int s(int n){
  int r = 1 + 24 * n;
  if(isPerfectSquare(r)){
    int j;
    r = sqrt(r);
    if((r + 1) \% 6 == 0) j = (r + 1) / 6;
    else j = (r - 1) / 6;
    if(j & 1) return -1;
    else return 1;
 }else{
    return 0;
 }
}
//number of ways to write n as a sum of distinct positive
\hookrightarrow integers
//number of ways to write n as a sum of odd positive integers
lli partitionsQ(int n){
  if(n < 0) return 0;
  if(Q[n]) return Q[n];
  int pos = 1, inc = 3;
  lli ans = 0;
  int limit = sqrt(n);
  for(int k = 1; k \le limit; k++){
    if(k & 1){
      ans += Q[n - pos];
    }else{
      ans -= Q[n - pos];
```

```
}
    pos += inc;
    inc += 2;
  }
  ans <<= 1;
  ans += s(n);
  ans %= mod;
  if (ans < 0) ans += mod;
  return ans;
}
void calculateFunctionQ(int n){
  Q.resize(n + 1);
  Q[0] = 1;
  for(int i = 1; i <= n; i++){
    Q[i] = partitionsQ(i);
  }
}
```

1.7. Otros

1.7.1. Cambio de base

```
string decimalToBaseB(lli n, lli b){
  string ans = "";
  lli digito;
  do{
    digito = n % b;
    if(0 <= digito && digito <= 9){
      ans = (char)(48 + digito) + ans;
    }else if(10 <= digito && digito <= 35){
      ans = (char)(55 + digito) + ans;
    }
    n /= b;
  }while(n != 0);
  return ans;
}
lli baseBtoDecimal(const string & n, lli b){
  lli ans = 0;
```

```
for(const char & digito : n){
   if(48 <= digito && digito <= 57){
      ans = ans * b + (digito - 48);
   }else if(65 <= digito && digito <= 90){
      ans = ans * b + (digito - 55);
   }else if(97 <= digito && digito <= 122){
      ans = ans * b + (digito - 87);
   }
}
return ans;</pre>
```

1.7.2. Fracciones continuas

```
//continued fraction of (p+sqrt(n))/q, where p,n,q are positive
\hookrightarrow integers
//returns a vector of terms and the length of the period,
//the periodic part is taken from the right of the array
pair<vector<lli>, int> ContinuedFraction(lli p, lli n, lli q){
  vector<lli> coef;
 lli r = sqrt(n);
 if(r * r == n){
    lli num = p + r;
   lli den = q;
   lli residue;
    while(den){
      residue = num % den;
      coef.push_back(num / den);
     num = den;
      den = residue;
    return make_pair(coef, 0);
 if((n - p * p) % q != 0){
   n *= q * q;
   p *= q;
    q *= q;
    r = sqrt(n);
 lli a = (r + p) / q;
```

14

```
coef.push_back(a);
  int period = 0;
  map<pair<lli, lli>, int> pairs;
  while(true){
    p = a * q - p;
    q = (n - p * p) / q;
    a = (r + p) / q;
    if(pairs.count(make_pair(p, q))){ //if p=0  and q=1, we can
    \rightarrow just ask if q==1 after inserting a
      period -= pairs[make_pair(p, q)];
      break;
    }
    coef.push_back(a);
    pairs[make_pair(p, q)] = period++;
  }
  return make_pair(coef, period);
}
```

1.7.3. Ecuación de Pell

```
//first solution (x, y) to the equation x^2-ny^2=1
pair<lli, lli> PellEquation(lli n){
  vector<lli> cf = ContinuedFraction(0, n, 1).first;
  lli num = 0, den = 1;
  int k = cf.size() - 1;
  for(int i = ((k & 1) ? (2 * k - 1) : (k - 1)); i >= 0; i--){
    lli tmp = den;
    int pos = i % k;
    if(pos == 0 && i != 0) pos = k;
    den = num + cf[pos] * den;
    num = tmp;
}
return make_pair(den, num);
}
```

2. Números racionales

2.1. Estructura fraccion

```
struct fraccion{
   lli num, den;
   fraccion(){
       num = 0, den = 1;
   fraccion(lli x, lli y){
       if(y < 0)
           x *= -1, y *=-1;
       lli d = \_gcd(abs(x), abs(y));
       num = x/d, den = y/d;
   }
   fraccion(lli v){
       num = v;
       den = 1;
   fraccion operator+(const fraccion& f) const{
       lli d = __gcd(den, f.den);
       return fraccion(num*(f.den/d) + f.num*(den/d),
        \rightarrow den*(f.den/d));
   }
   fraccion operator-() const{
       return fraccion(-num, den);
   fraccion operator-(const fraccion& f) const{
       return *this + (-f);
   fraccion operator*(const fraccion& f) const{
        return fraccion(num*f.num, den*f.den);
   fraccion operator/(const fraccion& f) const{
       return fraccion(num*f.den, den*f.num);
   fraccion operator+=(const fraccion& f){
        *this = *this + f;
       return *this;
   }
   fraccion operator = (const fraccion& f){
```

```
*this = *this - f;
                                                                       return (num*(f.den/d) \le (den/d)*f.num);
                                                                   }
    return *this;
                                                                   fraccion inverso() const{
fraccion operator++(int xd){
                                                                       return fraccion(den, num);
    *this = *this + 1;
    return *this;
                                                                   fraccion fabs() const{
                                                                       fraccion nueva:
fraccion operator--(int xd){
                                                                       nueva.num = abs(num);
    *this = *this - 1;
                                                                       nueva.den = den;
    return *this;
                                                                       return nueva;
fraccion operator*=(const fraccion& f){
                                                                   double value() const{
    *this = *this * f;
                                                                     return (double) num / (double) den;
    return *this;
}
                                                                   string str() const{
fraccion operator/=(const fraccion& f){
                                                                       stringstream ss;
                                                                       ss << num;
    *this = *this / f;
                                                                       if(den != 1) ss << "/" << den;
    return *this;
}
                                                                       return ss.str();
                                                                   }
bool operator == (const fraccion& f) const{
    lli d = __gcd(den, f.den);
                                                               };
    return (num*(f.den/d) == (den/d)*f.num);
}
                                                               ostream & operator << (ostream & os, const fraccion & f) {
                                                                   return os << f.str();
bool operator!=(const fraccion& f) const{
    lli d = __gcd(den, f.den);
                                                               }
    return (num*(f.den/d) != (den/d)*f.num);
}
                                                               istream &operator>>(istream &is, fraccion & f){
bool operator >(const fraccion& f) const{
                                                                   lli num = 0, den = 1;
    lli d = __gcd(den, f.den);
                                                                   string str;
    return (num*(f.den/d) > (den/d)*f.num);
                                                                   is >> str;
}
                                                                   size_t pos = str.find("/");
bool operator <(const fraccion& f) const{</pre>
                                                                   if(pos == string::npos){
    lli d = __gcd(den, f.den);
                                                                       istringstream(str) >> num;
    return (num*(f.den/d) < (den/d)*f.num);
                                                                   }else{
}
                                                                       istringstream(str.substr(0, pos)) >> num;
bool operator >=(const fraccion& f) const{
                                                                       istringstream(str.substr(pos + 1)) >> den;
    lli d = __gcd(den, f.den);
    return (num*(f.den/d) >= (den/d)*f.num);
                                                                   f = fraccion(num, den);
}
                                                                   return is;
bool operator <=(const fraccion& f) const{
    lli d = __gcd(den, f.den);
```

15

3. Álgebra lineal

3.1. Estructura matrix

```
template <typename entrada>
struct matrix{
 vector< vector<entrada> > A;
 int m, n;
 matrix(int _m, int _n){
   m = _m, n = _n;
   A.resize(m, vector<entrada>(n, 0));
 }
 vector<entrada> & operator[] (int i){
   return A[i];
 }
 void multiplicarFilaPorEscalar(int k, entrada c){
   for(int j = 0; j < n; j++) A[k][j] *= c;
 }
 void intercambiarFilas(int k, int 1){
   swap(A[k], A[l]);
 }
 void sumaMultiploFilaAOtra(int k, int l, entrada c){
   for(int j = 0; j < n; j++) A[k][j] += c * A[l][j];
 }
 matrix operator+(const matrix & B) const{
   if(m == B.m \&\& n == B.n){
     matrix<entrada> C(m, n);
     for(int i = 0; i < m; i++){
       for(int j = 0; j < n; j++){
          C[i][j] = A[i][j] + B.A[i][j];
       }
     }
     return C;
   }else{
```

```
return *this;
 }
}
matrix operator+=(const matrix & M){
  *this = *this + M;
  return *this;
}
matrix operator-() const{
 matrix<entrada> C(m, n);
 for(int i = 0; i < m; i++){
   for(int j = 0; j < n; j++){
      C[i][j] = -A[i][j];
   }
  }
  return C;
matrix operator-(const matrix & B) const{
  return *this + (-B);
}
matrix operator = (const matrix & M){
  *this = *this + (-M);
  return *this;
matrix operator*(const matrix & B) const{
  if(n == B.m){
    matrix<entrada> C(m, B.n);
   for(int i = 0; i < m; i++){
      for(int j = 0; j < B.n; j++){
        for(int k = 0; k < n; k++){
          C[i][j] += A[i][k] * B.A[k][j];
        }
      }
    }
   return C;
  }else{
    return *this;
```

```
}
}
matrix operator*(const entrada & c) const{
  matrix<entrada> C(m, n);
  for(int i = 0; i < m; i++){
    for(int j = 0; j < n; j++){
      C[i][j] = A[i][j] * c;
    }
  }
  return C;
}
matrix operator*=(const matrix & M){
  *this = *this * M;
  return *this;
}
matrix operator*=(const entrada & c){
  *this = *this * c;
  return *this;
}
matrix operator^(lli b) const{
  matrix<entrada> ans = matrix<entrada>::identidad(n);
  matrix<entrada> A = *this;
  while(b){
   if (b & 1) ans *= A;
   b >>= 1;
   if(b) A *= A;
  }
  return ans;
}
matrix operator^=(lli n){
  *this = *this ^ n;
  return *this;
}
bool operator==(const matrix & B) const{
  if(m == B.m \&\& n == B.n){
```

```
for(int i = 0; i < m; i++){
    for(int j = 0; j < n; j++){
        if(A[i][j] != B.A[i][j]) return false;
    }
    return true;
}else{
    return false;
}
}
bool operator!=(const matrix & B) const{
    return !(*this == B);
}</pre>
```

3.2. Gauss Jordan

```
//For every elemental operation that we apply to the matrix,
//we will call to callback(operation, source row, dest row,
\rightarrow value).
//It returns the rank of the matrix, and modifies it
int gauss_jordan(bool full = true, bool makeOnes = true,

    function < void(int, int, int, entrada) > callback = NULL) {

  int i = 0, j = 0;
  while(i < m \&\& j < n){
    if(A[i][j] == 0){
      for(int f = i + 1; f < m; f++){
        if(A[f][i] != 0){
          intercambiarFilas(i, f);
          if(callback) callback(2, i, f, 0);
          break;
        }
      }
    if(A[i][j] != 0){
      entrada inv_mult = A[i][j].inverso();
      if(makeOnes && A[i][j] != 1){
        multiplicarFilaPorEscalar(i, inv_mult);
        if(callback) callback(1, i, 0, inv_mult);
      }
```

```
for(int f = (full ? 0 : (i + 1)); f < m; f++){
    if(f != i && A[f][j] != 0){
        entrada inv_adit = -A[f][j];
        if(!makeOnes) inv_adit *= inv_mult;
        sumaMultiploFilaAOtra(f, i, inv_adit);
        if(callback) callback(3, f, i, inv_adit);
    }
}
i++;
}
return i;
}

void eliminacion_gaussiana(){
    gauss_jordan(false);
}</pre>
```

3.3. Matriz inversa

```
static matrix identidad(int n){
  matrix<entrada> id(n, n);
  for(int i = 0; i < n; i++){
    id[i][i] = 1;
  }
  return id;
}
matrix<entrada> inversa(){
  if(m == n){
    matrix<entrada> tmp = *this;
    matrix<entrada> inv = matrix<entrada>::identidad(n);
    auto callback = [&](int op, int a, int b, entrada e){
     if(op == 1){
        inv.multiplicarFilaPorEscalar(a, e);
      else if(op == 2){
        inv.intercambiarFilas(a, b);
      else if(op == 3){
        inv.sumaMultiploFilaAOtra(a, b, e);
```

```
}
};
if(tmp.gauss_jordan(true, true, callback) == n){
  return inv;
}else{
  return *this;
}
}else{
  return *this;
}
}else{
```

3.4. Transpuesta

```
matrix<entrada> transpuesta(){
  matrix<entrada> T(n, m);
  for(int i = 0; i < m; i++){
    for(int j = 0; j < n; j++){
      T[j][i] = A[i][j];
    }
  }
  return T;
}</pre>
```

3.5. Traza

```
entrada traza(){
  entrada sum = 0;
  for(int i = 0; i < min(m, n); i++){
    sum += A[i][i];
  }
  return sum;
}</pre>
```

3.6. Determinante

```
entrada determinante(){
  if(m == n){
```

```
matrix<entrada> tmp = *this;
    entrada det = 1;
    auto callback = [&](int op, int a, int b, entrada e){
      if(op == 1){
        det /= e:
      else if(op == 2){
        det *= -1;
      }
                                                                    }
    };
    if(tmp.gauss_jordan(false, true, callback) != n) det = 0;
    return det;
  }else{
    return 0;
  }
}
```

3.7. Matriz de cofactores y adjunta

```
matrix<entrada> menor(int x, int y){
  matrix<entrada> M(0, 0);
  for(int i = 0; i < m; i++){
    if(i != x){
      M.A.push_back(vector<entrada>());
      for(int j = 0; j < n; j++){
        if(j != y){
          M.A.back().push_back(A[i][j]);
        }
      }
    }
  M.m = m - 1;
  M.n = n - 1;
  return M;
}
entrada cofactor(int x, int y){
  entrada ans = menor(x, y).determinante();
  if((x + y) \% 2 == 1) ans *= -1;
  return ans;
}
```

```
matrix<entrada> cofactores(){
  matrix<entrada> C(m, n);
  for(int i = 0; i < m; i++){
    for(int j = 0; j < n; j++){
        C[i][j] = cofactor(i, j);
    }
  }
  return C;
}

matrix<entrada> adjunta(){
  return cofactores().transpuesta();
}
```

3.8. Factorización PA = LU

```
vector< matrix<entrada> > PA_LU(){
  matrix<entrada> U = *this;
  matrix<entrada> L = matrix<entrada>::identidad(n);
  matrix<entrada> P = matrix<entrada>::identidad(n);
  auto callback = [&](int op, int a, int b, entrada e){
    if(op == 2){
      L.intercambiarFilas(a, b);
      P.intercambiarFilas(a, b);
      L.A[a][a] = L.A[b][b] = 1;
      L.A[a][a + 1] = L.A[b][b - 1] = 0;
    }else if(op == 3){
      L.A[a][b] = -e;
    }
};
U.gauss_jordan(false, false, callback);
return {P, L, U};
}
```

3.9. Polinomio característico

```
vector<entrada> polinomio(){
  matrix<entrada> M(n, n);
```

```
vector<entrada> coef(n + 1);
    matrix<entrada> I = matrix<entrada>::identidad(n);
                                                                   lli *mult(lli *P, lli *Q, lli **residues, int degree){
    coef[n] = 1;
                                                                     lli *R = new lli[degree]();
   for(int i = 1; i <= n; i++){
                                                                     lli *S = new lli[degree - 1]();
                                                                     for(int i = 0; i < degree; i++){
      M = (*this) * M + I * coef[n - i + 1];
      coef[n - i] = -((*this) * M).traza() / i;
                                                                       for(int j = 0; j < degree; j++){
   }
                                                                         if(i + j < degree) R[i + j] += P[i] * Q[j];
                                                                         else S[i + j - degree] += P[i] * Q[j];
   return coef;
 }
                                                                       }
                                                                     for(int i = 0; i < degree - 1; i++) S[i] %= mod;
3.10. Gram-Schmidt
                                                                     for(int i = 0; i < degree - 1; i++){
                                                                       for(int j = 0; j < degree; j++)
  matrix<entrada> gram_schmidt(){ //los vectores son las filas
                                                                         R[i] += S[i] * residues[i][i];
  \hookrightarrow de la matriz
                                                                     }
    matrix<entrada> B = (*this) * (*this).transpuesta();
                                                                     for(int i = 0; i < degree; i++) R[i] %= mod;
    matrix<entrada> ans = *this;
                                                                     return R;
    auto callback = [&](int op, int a, int b, entrada e){
                                                                   }
      if(op == 1){
        ans.multiplicarFilaPorEscalar(a, e);
                                                                   lli **getResidues(lli *charPoly, int degree){
      else if(op == 2){
                                                                     lli **residues = new lli*[degree - 1];
        ans.intercambiarFilas(a, b);
                                                                     lli *current = new lli[degree];
      else if(op == 3){
                                                                     copy(charPoly, charPoly + degree, current);
        ans.sumaMultiploFilaAOtra(a, b, e);
                                                                     for(int i = 0; i < degree - 1; i++){
      }
                                                                       residues[i] = new lli[degree];
   };
                                                                       copy(current, current + degree, residues[i]);
    B.gauss_jordan(false, false, callback);
                                                                       if(i != degree - 2) multByOne(current, charPoly, degree);
                                                                     }
    return ans;
 }
                                                                     return residues;
3.11. Recurrencias lineales
                                                                   //Solves a linear recurrence relation of degree d of the form
                                                                   //F(n) = a(d-1)*F(n-1) + a(d-2)*F(n-2) + \dots + a(1)*F(n-(d-1))
void multByOne(lli *polynomial, lli *original, int degree){
                                                                   \rightarrow + a(0)*F(n-d)
 lli first = polynomial[degree - 1];
                                                                   //with initial values F(0), F(1), ..., F(d-1)
 for(int i = degree - 1; i >= 0; --i){
                                                                   //It finds the nth term of the recurrence, F(n)
   polynomial[i] = first * original[i];
                                                                   //The values of a[0,...,d) are in the array charPoly[]
   if(i > 0) polynomial[i] += polynomial[i - 1];
                                                                   lli solveRecurrence(lli *charPoly, lli *initValues, int degree,
 }
                                                                   \rightarrow lli n){
  for(int i = 0; i < degree; ++i) polynomial[i] %= mod;</pre>
                                                                     lli **residues = getResidues(charPoly, degree);
                                                                     lli *tmp = new lli[degree]();
```

ESCOM-IPN 20

}

```
lli *ans = new lli[degree]();
ans[0] = 1;
if(degree > 1) tmp[1] = 1;
else tmp[0] = charPoly[0];
while(n){
   if(n & 1) ans = mult(ans, tmp, residues, degree);
   n >>= 1;
   if(n) tmp = mult(tmp, tmp, residues, degree);
}
lli nValue = 0;
for(int i = 0; i < degree; i++) nValue += ans[i] *
        initValues[i];
   return nValue % mod;
}</pre>
```

4. FFT

4.1. Funciones previas

```
typedef complex<double> comp;
typedef long long int lli;
double PI = acos(-1.0);
int nearestPowerOfTwo(int n){
  int ans = 1;
  while(ans < n) ans <<= 1;</pre>
  return ans;
}
bool isZero(comp z){
  return abs(z.real()) < 1e-3;</pre>
}
template<typename T>
void swapPositions(vector<T> & X){
  int n = X.size();
 int bit;
 for (int i = 1, j = 0; i < n; ++i) {
    bit = n >> 1;
    while(j & bit){
      j ^= bit;
      bit >>= 1;
    j ^= bit;
    if (i < j){
      swap (X[i], X[j]);
    }
 }
}
```

4.2. FFT con raíces de la unidad complejas

```
void fft(vector<comp> & X, int inv){
  int n = X.size();
   swapPositions<comp>(X);
```

22

```
int len, len2, i, j;
                                                                     if(s0 < 0) s0 += n;
    double ang;
                                                                    return s0;
    comp t, u, v;
                                                                }
    vector<comp> wlen_pw(n >> 1);
    wlen_pw[0] = 1;
                                                                 void ntt(vector<int> & X, int inv) {
    for(len = 2; len <= n; len <<= 1) {
                                                                   int n = X.size();
        ang = inv == -1 ? -2 * PI / len : 2 * PI / len;
                                                                   swapPositions<int>(X);
       len2 = len >> 1;
                                                                   int len, len2, wlen, i, j, u, v, w;
       comp wlen(cos(ang), sin(ang));
                                                                  for (len = 2; len <= n; len <<= 1) {
       for(i = 1; i < len2; ++i){
                                                                    len2 = len >> 1;
           wlen_pw[i] = wlen_pw[i - 1] * wlen;
                                                                    wlen = (inv == -1) ? root_1 : root;
       }
                                                                    for (i = len; i < root_pw; i <<= 1){
       for(i = 0; i < n; i += len) {
                                                                      wlen = wlen * 111 * wlen \% p;
           for(j = 0; j < len2; ++j) {
               t = X[i + j + len2] * wlen_pw[j];
                                                                    for (i = 0; i < n; i += len) {
               X[i + j + len2] = X[i + j] - t;
                                                                      w = 1;
               X[i + j] += t;
                                                                      for (j = 0; j < len2; ++j) {
           }
                                                                        u = X[i + j], v = X[i + j + len2] * 111 * w % p;
       }
                                                                        X[i + j] = u + v 
   }
                                                                        X[i + j + len2] = u - v < 0 ? u - v + p : u - v;
    if(inv == -1){
                                                                        w = w * 111 * wlen % p;
        for(i = 0; i < n; ++i){
                                                                      }
           X[i] /= n;
                                                                    }
       }
                                                                  }
    }
                                                                   if (inv == -1) {
}
                                                                     int nrev = inverse(n, p);
                                                                    for (i = 0; i < n; ++i){
                                                                      X[i] = X[i] * 111 * nrev % p;
     FFT con raíces de la unidad discretas (NTT)
                                                                    }
                                                                  }
                                                                }
```

```
const int p = 7340033;
const int root = 5;
const int root_1 = 4404020;
const int root_pw = 1 << 20;</pre>
int inverse(int a, int n){
    int r0 = a, r1 = n, ri, s0 = 1, s1 = 0, si;
    while(r1){
        si = s0 - s1 * (r0 / r1), s0 = s1, s1 = si;
        ri = r0 \% r1, r0 = r1, r1 = ri;
    }
```

}

23

4.3.1. Otros valores para escoger la raíz y el módulo

D / / ·	_1	m ~	1/1/1 1
Raíz n -ési-	ω^{-1}	Tamaño	Módulo p
ma de la		máximo del	
unidad (ω)		arreglo (n)	
15	30584	2^{14}	$4 \times 2^{14} + 1 = 65537$
9	7282	2^{15}	$2 \times 2^{15} + 1 = 65537$
3	21846	2^{16}	$1 \times 2^{16} + 1 = 65537$
8	688129	2^{17}	$6 \times 2^{17} + 1 = 786433$
5	471860	2^{18}	$3 \times 2^{18} + 1 = 786433$
12	3364182	2^{19}	$11 \times 2^{19} + 1 = 5767169$
5	4404020	2^{20}	$7 \times 2^{20} + 1 = 7340033$
38	21247462	2^{21}	$11 \times 2^{21} + 1 = 23068673$
21	49932191	2^{22}	$25 \times 2^{22} + 1 = 104857601$
4	125829121	2^{23}	$20 \times 2^{23} + 1 = 167772161$
31	128805723		$119 \times 2^{23} + 1 = 998244353$
2	83886081	2^{24}	$10 \times 2^{24} + 1 = 167772161$
17	29606852	2^{25}	$5 \times 2^{25} + 1 = 167772161$
30	15658735	2^{26}	$7 \times 2^{26} + 1 = 469762049$
137	749463956	2^{27}	$15 \times 2^{27} + 1 = 2013265921$

4.4. Aplicaciones

4.4.1. Multiplicación de polinomios

```
void multiplyPolynomials(vector<comp> & A, vector<comp> & B){
  int degree = A.size() + B.size() - 2;
  int size = nearestPowerOfTwo(degree + 1);
  A.resize(size);
  B.resize(size);
  fft(A, 1);
  fft(B, 1);
  for(int i = 0; i < size; i++){
     A[i] *= B[i];
  }
  fft(A, -1);
  A.resize(degree + 1);</pre>
```

```
void multiplyPolynomials(vector<int> & A, vector<int> & B){
  int degree = A.size() + B.size() - 2;
  int size = nearestPowerOfTwo(degree + 1);
  A.resize(size);
  B.resize(size);
  ntt(A, 1);
  ntt(B, 1);
  for(int i = 0; i < size; i++){
     A[i] = A[i] * 111 * B[i] % p;
  }
  ntt(A, -1);
  A.resize(degree + 1);
}</pre>
```

4.4.2. Multiplicación de números enteros grandes

```
string multiplyNumbers(const string & a, const string & b){
 int sgn = 1;
 int pos1 = 0, pos2 = 0;
 while(pos1 < a.size() && (a[pos1] < '1' || a[pos1] > '9')){
   if(a[pos1] == '-') sgn *= -1;
   ++pos1;
 }
  while(pos2 < b.size() && (b[pos2] < '1' || b[pos2] > '9')){
   if(b[pos2] == '-') sgn *= -1;
   ++pos2;
 }
 vector<int> X(a.size() - pos1), Y(b.size() - pos2);
 if(X.empty() || Y.empty()) return "0";
 for(int i = pos1, j = X.size() - 1; i < a.size(); ++i){}
   X[i--] = a[i] - '0';
 }
 for(int i = pos2, j = Y.size() - 1; i < b.size(); ++i){
   Y[j--] = b[i] - '0';
 }
 multiplyPolynomials(X, Y);
 stringstream ss;
 if(sgn == -1) ss << "-";
```

```
int carry = 0;
for(int i = 0; i < X.size(); ++i){
    X[i] += carry;
    carry = X[i] / 10;
    X[i] %= 10;
}
while(carry){
    X.push_back(carry % 10);
    carry /= 10;
}
for(int i = X.size() - 1; i >= 0; --i){
    ss << X[i];
}
return ss.str();
}</pre>
```

5. Geometría

5.1. Estructura point

```
double eps = 1e-8;
# define M_PI 3.14159265358979323846
# define M_E 2.71828182845904523536
struct point{
 double x, y;
 point(){
   x = y = 0;
 point(double x, double y){
   this->x = x, this->y = y;
 point operator+(const point & p) const{
   return point(x + p.x, y + p.y);
 point operator-(const point & p) const{
   return point(x - p.x, y - p.y);
 }
 point operator*(const double & k) const{
   return point(x * k, y * k);
 point operator/(const double & k) const{
   return point(x / k, y / k);
 }
 point rotate(const double angle) const{
   return point(x * cos(angle) - y * sin(angle), x *

    sin(angle) + y * cos(angle));
 point rotate(const double angle, const point & p){
   return p + ((*this) - p).rotate(angle);
 double dot(const point & p) const{
   return x * p.x + y * p.y;
```

```
}
  double length() const{
    return sqrt(dot(*this));
  }
  double cross(const point & p) const{
    return x * p.y - y * p.x;
  }
  point normalize() const{
    return (*this) / length();
  }
  point projection(const point & p) const{
    return (*this) * p.dot(*this) / dot(*this);
  }
  point normal(const point & p) const{
    return p - projection(p);
  bool operator==(const point & p) const{
    return abs(x - p.x) < eps && abs(y - p.y) < eps;
  bool operator!=(const point & p) const{
    return !(*this == p);
  bool operator<(const point & p) const{</pre>
    if(abs(x - p.x) < eps){
      return y < p.y;</pre>
    }else{
      return x < p.x;
    }
  bool operator>(const point & p) const{
    if(abs(x - p.x) < eps){
      return y > p.y;
    }else{
      return x > p.x;
    }
  }
};
```

```
istream & operator >> (istream & is, point & P){
  point p;
    is \gg p.x \gg p.y;
    P = p;
    return is;
}
ostream &operator<<(ostream &os, const point & p) {
    return os << fixed << setprecision(8) << p.x << " " << p.y;</pre>
}
int sgn(double x){
  if(abs(x) < eps){
    return 0;
 else if(x > 0){
    return 1;
 }else{
    return -1;
 }
}
```

5.2. Verificar si un punto pertenece a una línea o segmento

```
bool pointInLine(point & a, point & b, point & p){
    //line ab, point p
    return abs((p - a).cross(b - a)) < eps;
}

bool pointInSegment(point a, point b, point & p){
    //segment ab, point p
    if(a > b) swap(a, b);
    return pointInLine(a, b, p) && !(p < a || p > b);
}
```

26

5.3. Intersección de líneas

```
int intersectLinesInfo(point & a, point & b, point & c, point &
\rightarrow d){
  //line ab, line cd
  point v1 = b - a, v2 = d - c;
  double det = v1.cross(v2);
  if(abs(det) < eps){
    if(abs((c - a).cross(v1)) < eps){
      return -1; //infinity points
    }else{
      return 0; //no points
    }
  }else{
    return 1; //single point
}
point intersectLines(point & a, point & b, point & c, point &
\rightarrow d){
  //assuming that they intersect
  point v1 = b - a, v2 = d - c;
  double det = v1.cross(v2);
  return a + v1 * ((c - a).cross(v2) / det);
}
     Intersección de segmentos
```

5.5. Distancia punto-recta

```
double distancePointLine(point & a, point & v, point & p){
   //line: a + tv, point p
   return abs(v.cross(p - a)) / v.length();
}
```

5.6. Perímetro y área de un polígono

```
double perimeter(vector<point> & points){
  int n = points.size();
  double ans = 0;
  for(int i = 0; i < n; i++){
    ans += (points[i] - points[(i + 1) % n]).length();
  }
  return ans;
}

double area(vector<point> & points){
  int n = points.size();
  double ans = 0;
  for(int i = 0; i < n; i++){
    ans += points[i].cross(points[(i + 1) % n]);
  }
  return abs(ans / 2);
}</pre>
```

27

5.7. Envolvente convexa (convex hull) de un polígono

```
vector<point> convexHull(vector<point> points){
  sort(points.begin(), points.end());
  vector<point> L, U;
  for(int i = 0; i < points.size(); i++){</pre>
    while(L.size() \geq 2 && (L[L.size() - 2] -
    → points[i]).cross(L[L.size() - 1] - points[i]) <= 0){</pre>
      L.pop_back();
    L.push_back(points[i]);
  for(int i = points.size() - 1; i \ge 0; i--){
    while(U.size() \geq 2 && (U[U.size() - 2] -
    → points[i]).cross(U[U.size() - 1] - points[i]) <= 0){</pre>
      U.pop_back();
    U.push_back(points[i]);
  }
 L.pop_back();
  U.pop_back();
  L.insert(L.end(), U.begin(), U.end());
  return L;
}
```

5.8. Verificar si un punto pertenece al perímetro de un polígono

```
bool pointInPerimeter(vector<point> & points, point & p){
  int n = points.size();
  for(int i = 0; i < n; i++){
    if(pointInSegment(points[i], points[(i + 1) % n], p)){
      return true;
    }
  }
  return false;
}</pre>
```

5.9. Verificar si un punto pertenece a un polígono

6. Grafos

6.1. Estructura disjointSet

```
struct disjointSet{
  int N;
  vector<short int> rank;
  vector<int> parent;
  disjointSet(int N){
    this->N = N;
    parent.resize(N);
    rank.resize(N);
  }
  void makeSet(int v){
    parent[v] = v;
  int findSet(int v){
    if(v == parent[v]) return v;
    return parent[v] = findSet(parent[v]);
  }
  void unionSet(int a, int b){
    a = findSet(a);
    b = findSet(b);
    if(a == b) return;
    if(rank[a] < rank[b]){</pre>
      parent[a] = b;
    }else{
      parent[b] = a;
      if(rank[a] == rank[b]){
        ++rank[a];
      }
    }
  }
};
```

6.2. Estructura edge

```
struct edge{
  int source, dest, cost;
  edge(){
    this->source = this->dest = this->cost = 0;
  edge(int dest, int cost){
    this->dest = dest;
    this->cost = cost;
  edge(int source, int dest, int cost){
    this->source = source;
    this->dest = dest;
    this->cost = cost;
 }
  bool operator==(const edge & b) const{
    return source == b.source && dest == b.dest && cost ==
    → b.cost;
 bool operator<(const edge & b) const{</pre>
    return cost < b.cost;</pre>
 }
 bool operator>(const edge & b) const{
    return cost > b.cost;
 }
};
```

6.3. Estructura path

```
struct path{
  int cost = inf;
  vector<int> vertices;
  int size = 1;
  int previous = -1;
};
```

6.4. Estructura graph

```
struct graph{
  vector<vector<edge>> adjList;
  vector<vector<bool>> adjMatrix;
  vector<vector<int>> costMatrix;
  vector<edge> edges;
  int V = 0;
  bool dir = false;
  graph(int n, bool dirigido){
   V = n;
    dir = dirigido;
    adjList.resize(V, vector<edge>());
    edges.resize(V);
    adjMatrix.resize(V, vector<bool>(V, false));
    costMatrix.resize(V, vector<int>(V, inf));
   for(int i = 0; i < V; i++)
      costMatrix[i][i] = 0;
 }
  void add(int source, int dest, int cost){
    adjList[source].push_back(edge(source, dest, cost));
    edges.push_back(edge(source, dest, cost));
    adjMatrix[source][dest] = true;
    costMatrix[source][dest] = cost;
    if(!dir){
      adjList[dest].push_back(edge(dest, source, cost));
      adjMatrix[dest][source] = true;
      costMatrix[dest] [source] = cost;
   }
 }
  void buildPaths(vector<path> & paths){
    for(int i = 0; i < V; i++){
      int actual = i:
      for(int j = 0; j < paths[i].size; j++){</pre>
        paths[i].vertices.push_back(actual);
        actual = paths[actual].previous;
      }
```

6.5. Dijkstra con reconstrucción del camino más corto con menos vértices

```
vector<path> dijkstra(int start){
  priority_queue<edge, vector<edge>, greater<edge>> cola;
  vector<path> paths(V, path());
  vector<bool> relaxed(V, false);
  cola.push(edge(start, 0));
  paths[start].cost = 0;
  relaxed[start] = true;
  while(!cola.empty()){
    int u = cola.top().dest; cola.pop();
    relaxed[u] = true:
    for(edge & current : adjList[u]){
      int v = current.dest:
      if(relaxed[v]) continue;
      int nuevo = paths[u].cost + current.cost;
      if(nuevo == paths[v].cost && paths[u].size + 1 <</pre>
      → paths[v].size){
        paths[v].previous = u;
        paths[v].size = paths[u].size + 1;
      }else if(nuevo < paths[v].cost){</pre>
        paths[v].previous = u;
        paths[v].size = paths[u].size + 1;
        cola.push(edge(v, nuevo));
        paths[v].cost = nuevo;
   }
  buildPaths(paths);
  return paths;
}
```

6.6. Bellman Ford con reconstrucción del camino más 6.7. Floyd corto con menos vértices

```
vector<path> bellmanFord(int start){
  vector<path> paths(V, path());
  vector<int> processed(V);
  vector<bool> inQueue(V, false);
  queue<int> Q;
  paths[start].cost = 0;
  Q.push(start);
  while(!Q.empty()){
    int u = Q.front(); Q.pop(); inQueue[u] = false;
    if(paths[u].cost == inf) continue;
    ++processed[u];
    if(processed[u] == V){
      cout << "Negative cycle\n";</pre>
      return {};
    for(edge & current : adjList[u]){
      int v = current.dest;
      int nuevo = paths[u].cost + current.cost;
      if(nuevo == paths[v].cost && paths[u].size + 1 <</pre>
      → paths[v].size){
        paths[v].previous = u;
        paths[v].size = paths[u].size + 1;
      }else if(nuevo < paths[v].cost){</pre>
        if(!inQueue[v]){
          Q.push(v);
          inQueue[v] = true;
        paths[v].previous = u;
        paths[v].size = paths[u].size + 1;
        paths[v].cost = nuevo;
      }
    }
  buildPaths(paths);
  return paths;
```

```
vector<vector<int>>> tmp = costMatrix;
for(int k = 0; k < V; ++k)
   for(int i = 0; i < V; ++i)
   for(int j = 0; j < V; ++j)
      if(tmp[i][k] != inf && tmp[k][j] != inf)
        tmp[i][j] = min(tmp[i][j], tmp[i][k] + tmp[k][j]);
return tmp;
}</pre>
```

6.8. Cerradura transitiva $O(V^3)$

```
vector<vector<bool>> transitiveClosure(){
  vector<vector<bool>> tmp = adjMatrix;
  for(int k = 0; k < V; ++k)
    for(int i = 0; i < V; ++i)
     for(int j = 0; j < V; ++j)
        tmp[i][j] = tmp[i][j] || (tmp[i][k] && tmp[k][j]);
  return tmp;
}</pre>
```

6.9. Cerradura transitiva $O(V^2)$

```
DFSClosure(u, u, tmp);
return tmp;
}
```

6.10. Verificar si el grafo es bipartito

```
bool isBipartite(){
  vector<int> side(V, -1);
  queue<int> q;
  for (int st = 0; st < V; ++st) {
    if(side[st] != -1) continue;
    q.push(st);
    side[st] = 0;
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      for (edge & current : adjList[u]) {
        int v = current.dest;
        if (side[v] == -1) {
          side[v] = side[u] ^ 1;
          q.push(v);
        } else {
          if(side[v] == side[u]) return false;
        }
      }
    }
  }
  return true;
}
```

6.11. Orden topológico

```
vector<int> topologicalSort(){
  vector<int> order;
  int visited = 0;
  vector<int> indegree(V);
  for(auto & node : adjList){
    for(edge & current : node){
      int v = current.dest;
  }
}
```

```
++indegree[v];
 }
}
queue<int> Q;
for(int i = 0; i < V; ++i){
  if(indegree[i] == 0) Q.push(i);
while(!Q.empty()){
  int source = Q.front();
  Q.pop();
 order.push_back(source);
 ++visited;
  for(edge & current : adjList[source]){
    int v = current.dest;
    --indegree[v];
    if(indegree[v] == 0) Q.push(v);
 }
}
if(visited == V) return order;
else return {};
```

6.12. Detectar ciclos

```
bool DFSCycle(int u, int parent, vector<int> & color){
  color[u] = 1;
  for(edge & current : adjList[u]){
    int v = current.dest;
    if(color[v] == 0)
        return DFSCycle(v, u, color);
    else if(color[v] == 1 && (dir || v != parent))
        return true;
  }
  color[u] = 2;
  return false;
}

bool hasCycle(){
  vector<int> color(V);
  for(int u = 0; u < V; ++u)</pre>
```

32

}

```
if(color[u] == 0 && DFSCycle(u, -1, color))
    return true;
return false;
}
```

6.13. Puentes y puntos de articulación

```
int articulationBridges(int u, int p, vector<int> & low,

→ vector<int> & label, int & time, vector<bool> & points,

    vector<edge> & bridges){
  label[u] = low[u] = ++time:
  int hijos = 0. ret = 0:
  for(edge & current : adjList[u]){
    int v = current.dest;
    if(v == p && !ret++) continue;
    if(!label[v]){
      ++hijos;
      articulationBridges(v, u, low, label, time, points,
      → bridges);
      if(label[u] <= low[v])</pre>
        points[u] = true;
      else if(label[u] < low[v])</pre>
        bridges.push_back(current);
      low[u] = min(low[u], low[v]);
    }
    low[u] = min(low[u], label[v]);
  }
  return hijos;
}
pair<vector<bool>, vector<edge>> articulationBridges(){
  vector<int> low(V), label(V);
  vector<bool> points(V);
  vector<edge> bridges;
  int time = 0;
  for(int u = 0; u < V; ++u)
    if(!label[u])
      points[u] = articulationBridges(u, -1, low, label,

    time, points, bridges) > 1;

  return make_pair(points, bridges);
```

6.14. Componentes fuertemente conexas

```
void scc(int u, vector<int> & low, vector<int> & label, int &

→ time, vector<vector<int>> & ans, stack<int> & S){
  label[u] = low[u] = ++time:
  S.push(u);
  for(edge & current : adjList[u]){
    int v = current.dest;
    if(!label[v]) scc(v, low, label, time, ans, S);
   low[u] = min(low[u], low[v]);
  if(label[u] == low[u]){
    vector<int> comp;
    while(S.top() != u){
      comp.push_back(S.top());
     low[S.top()] = V + 1;
     S.pop();
    comp.push_back(S.top());
    S.pop();
    ans.push_back(comp);
   low[u] = V + 1;
 }
}
vector<vector<int>> scc(){
  vector<int> low(V), label(V);
  int time = 0;
  vector<vector<int>> ans;
  stack<int> S;
  for(int u = 0; u < V; ++u)
    if(!label[u]) scc(u, low, label, time, ans, S);
  return ans;
}
```

used[u] = true;

for(edge & current : adjList[u]){

6.15. Árbol mínimo de expansión (Kruskal)

```
vector<edge> kruskal(){
  sort(edges.begin(), edges.end());
  vector<edge> MST;
  disjointSet DS(V);
 for(int u = 0; u < V; ++u)
    DS.makeSet(u):
  int i = 0;
  while(i < edges.size() && MST.size() < V - 1){</pre>
    edge current = edges[i++];
    int u = current.source, v = current.dest;
    if(DS.findSet(u) != DS.findSet(v)){
      MST.push_back(current);
      DS.unionSet(u, v);
    }
 }
  return MST;
}
```

6.16. Máximo emparejamiento bipartito

```
int v = current.dest;
   if(right[v] == -1){
     right[v] = u;
     left[u] = v;
     return true;
   }
 for(edge & current : adjList[u]){
   int v = current.dest;
   if(!used[right[v]] && augmentingPath(right[v], used,
    → left, right)){
     right[v] = u;
     left[u] = v;
     return true;
 return false;
//vertices from the left side numbered from 0 to l-1
//vertices from the right side numbered from 0 to r-1
//graph[u] represents the left side
//graph[u][v] represents the right side
//we can use tryKuhn() or augmentingPath()
vector<pair<int, int>> maxMatching(int 1, int r){
  vector<int> left(l, -1), right(r, -1);
  vector<bool> used(1, false);
 for(int u = 0; u < 1; ++u){
   tryKuhn(u, used, left, right);
   fill(used.begin(), used.end(), false);
  vector<pair<int, int>> ans;
 for(int u = 0; u < r; ++u){
   if(right[u] != -1){
     ans.push_back({right[u], u});
   }
 }
 return ans;
}
```

7. Árboles

7.1. Estructura tree

```
struct tree{
  vector<int> parent, level, weight;
 vector<vector<int>> dists, DP;
  int n, root;
  void graph_to_tree(int prev, int u, graph & G){
   for(edge & curr : G.adjList[u]){
     int v = curr.dest;
     int w = curr.cost;
     if(v == prev) continue;
     parent[v] = u;
     weight[v] = w;
     graph_to_tree(u, v, G);
   }
 }
 int dfs(int i){
   if(i == root) return 0;
    if(level[parent[i]] != -1) return level[i] = 1 +
    → level[parent[i]];
   return level[i] = 1 + dfs(parent[i]);
 }
  void buildLevels(){
   for(int i = n - 1; i >= 0; --i){
     if(level[i] == -1){
        level[i] = dfs(i);
     }
   }
 }
  tree(int n, int root){
   this->n = n;
    this->root = root;
   parent.resize(n);
   level.resize(n, -1);
```

```
weight.resize(n);
  dists.resize(n, vector<int>(20));
  DP.resize(n, vector<int>(20));
 level[root] = 0;
 parent[root] = root;
tree(graph & G, int root){
  tree(G.V, root);
  graph_to_tree(-1, root, G);
 buildLevels();
}
void pre(){
 for(int u = 0; u < n; u++){
    DP[u][0] = parent[u];
    dists[u][0] = weight[u];
 for(int i = 1; (1 << i) <= n; ++i){
    for(int u = 0; u < n; ++u){
      DP[u][i] = DP[DP[u][i - 1]][i - 1];
      dists[u][i] = dists[u][i - 1] + dists[DP[u][i - 1]][i -
      \hookrightarrow 1];
    }
 }
}
```

7.2. k-ésimo ancestro

```
int ancestor(int p, int k){
  int h = level[p] - k;
  if(h < 0) return -1;
  int lg;
  for(lg = 1; (1 << lg) <= level[p]; ++lg);
  lg--;
  for(int i = lg; i >= 0; --i){
    if(level[p] - (1 << i) >= h){
      p = DP[p][i];
    }
}
```

```
return p;
  }
7.3. LCA
  int lca(int p, int q){
   if(level[p] < level[q]) swap(p, q);</pre>
   int lg;
   for(lg = 1; (1 << lg) <= level[p]; ++lg);
   lg--;
   for(int i = lg; i >= 0; --i){
      if(level[p] - (1 \ll i) >= level[q]){
        p = DP[p][i];
     }
    if(p == q) return p;
   for(int i = lg; i >= 0; --i){
      if(DP[p][i] != -1 \&\& DP[p][i] != DP[q][i]){
       p = DP[p][i];
       q = DP[q][i];
      }
   }
    return parent[p];
  }
     Distancia entre dos nodos
```

```
int dist(int p, int q){
 if(level[p] < level[q]) swap(p, q);</pre>
 for(lg = 1; (1 << lg) <= level[p]; ++lg);</pre>
 lg--;
 int sum = 0;
 for(int i = lg; i >= 0; --i){
   if(level[p] - (1 << i) >= level[q]){
      sum += dists[p][i];
      p = DP[p][i];
    }
```

```
if(p == q) return sum;
for(int i = lg; i >= 0; --i){
  if(DP[p][i] != -1 && DP[p][i] != DP[q][i]){
    sum += dists[p][i] + dists[q][i];
    p = DP[p][i];
    q = DP[q][i];
  }
sum += dists[p][0] + dists[q][0];
return sum;
```

8. Flujos

8.1. Estructura flowEdge

```
template<typename T>
struct flowEdge{
  int dest;
  T flow, capacity;
  flowEdge *res;
  flowEdge(){
    this->dest = this->flow = this->capacity = 0;
    this->res = NULL;
  }
  flowEdge(int dest, T flow, T capacity){
    this->dest = dest, this->flow = flow, this->capacity =

→ capacity;

    this->res = NULL;
  }
  void addFlow(T flow){
    this->flow += flow;
    this->res->flow -= flow;
  }
};
```

8.2. Estructura flowGraph

```
template<typename T>
struct flowGraph{
  vector<vector<flowEdge<T>*>> adjList;
  vector<int> dist, pos;
  int V;
  flowGraph(int V){
    this->V = V;
    adjList.resize(V);
    dist.resize(V);
    pos.resize(V);
}
    flowGraph(){
    for(int i = 0; i < V; ++i)
        for(int j = 0; j < adjList[i].size(); ++j)</pre>
```

```
delete adjList[i][j];
}
void addEdge(int u, int v, T capacity){
  flowEdge<T> *uv = new flowEdge<T>(v, 0, capacity);
  flowEdge<T> *vu = new flowEdge<T>(u, capacity, capacity);
  uv->res = vu;
  vu->res = uv;
  adjList[u].push_back(uv);
  adjList[v].push_back(vu);
}
```

8.3. Algoritmo de Edmonds-Karp $O(VE^2)$

```
//Maximun Flow using Edmonds-Karp Algorithm O(VE^2)
T edmondsKarp(int s, int t){
  T \max Flow = 0;
  while(true){
    vector<flowEdge<T>*> parent(V);
    queue<int> Q;
    Q.push(s);
    while(!Q.empty() && !parent[t]){
      int u = Q.front(); Q.pop();
      for(flowEdge<T> *v : adjList[u]){
        if(!parent[v->dest] && v->capacity > v->flow){
          parent[v->dest] = v;
          Q.push(v->dest);
        }
      }
   }
   if(!parent[t]) break;
   T f = inf;
   for(int u = t; u != s; u = parent[u]->res->dest)
      f = min(f, parent[u]->capacity - parent[u]->flow);
    for(int u = t; u != s; u = parent[u]->res->dest)
      parent[u]->addFlow(f);
    maxFlow += f;
  return maxFlow;
}
```

}

8.4. Algoritmo de Dinic $O(V^2E)$

```
//Maximun Flow using Dinic Algorithm O(EV^2)
                                                                      return maxFlow;
T blockingFlow(int u, int t, T flow){
                                                                   }
  if(u == t) return flow;
  for(int &i = pos[u]; i < adjList[u].size(); ++i){</pre>
    flowEdge<T> *v = adjList[u][i];
    if(v->capacity > v->flow && dist[u] + 1 ==

    dist[v->dest]){
      T fv = blockingFlow(v->dest, t, min(flow, v->capacity -
      \rightarrow v->flow));
      if(fv > 0){
        v->addFlow(fv);
        return fv;
      }
    }
  }
  return 0;
}
T dinic(int s, int t){
  T \max Flow = 0;
  dist[t] = 0;
  while(dist[t] != -1){
    fill(dist.begin(), dist.end(), -1);
    queue<int> Q;
    Q.push(s);
    dist[s] = 0;
    while(!Q.empty()){
      int u = Q.front(); Q.pop();
      for(flowEdge<T> *v : adjList[u]){
        if(dist[v->dest] == -1 \&\& v->flow != v->capacity){
          dist[v->dest] = dist[u] + 1;
          Q.push(v->dest);
        }
      }
    }
    if(dist[t] != -1){
      T f:
      fill(pos.begin(), pos.end(), 0);
      while(f = blockingFlow(s, t, numeric_limits<T>::max()))
        maxFlow += f;
```

Estructuras de datos

9.1. Segment Tree

```
template<typename T>
struct SegmentTree{
  int N;
 vector<T> ST;
  SegmentTree(int N){
    this->N = N;
    ST.assign(N \ll 1, 0);
 }
  void build(vector<T> & arr){
   for(int i = 0; i < N; ++i)
      ST[N + i] = arr[i];
   for(int i = N - 1; i > 0; --i)
      ST[i] = ST[i << 1] + ST[i << 1 | 1];
 }
  //single element update in pos
  void update(int pos, T value){
   ST[pos += N] = value;
   while(pos >>= 1)
      ST[pos] = ST[pos << 1] + ST[pos << 1 | 1];
 }
  //single element update in [l, r]
  void update(int 1, int r, T value){
   1 += N, r += N;
   for(int i = 1; i \le r; ++i)
      ST[i] = value;
   1 >>= 1, r >>= 1;
   while(1 \ge 1){
     for(int i = r; i \ge 1; --i)
        ST[i] = ST[i << 1] + ST[i << 1 | 1];
      1 >>= 1, r >>= 1;
   }
 }
```

```
//range query, [l, r]
  T query(int 1, int r){
   T res = 0;
   for(1 += N, r += N; 1 <= r; 1 >>= 1, r >>= 1) {
      if(1 \& 1) res += ST[1++];
      if(!(r \& 1)) res += ST[r--];
   return res;
 }
};
```

9.2. Fenwick Tree

```
template<typename T>
struct FenwickTree{
 int N;
 vector<T> bit;
 FenwickTree(int N){
    this->N = N;
   bit.assign(N, 0);
 }
 void build(vector<T> & arr){
   for(int i = 0; i < arr.size(); ++i){</pre>
      update(i, arr[i]);
   }
 }
 //single element increment
 void update(int pos, T value){
    while(pos < N){
     bit[pos] += value;
     pos \mid = pos + 1;
 //range query, [0, r]
 T query(int r){
   T res = 0;
```

```
while(r >= 0){
    res += bit[r];
    r = (r & (r + 1)) - 1;
}
    return res;
}

//range query, [l, r]
T query(int l, int r){
    return query(r) - query(l - 1);
}
};
```