Homework 3

Aleck Zhao

February 16, 2017

1. Let A be a commutative ring containing a field F as a subring. For each $a \in A$, we define the multiplication by a map

$$m_a: A \to A$$

 $x \mapsto ax$.

(a) Regarding A as an F-vector space in the natural way, show that m_a is a linear transformation over F.

Proof. Let $b \in F$ and $u, v \in A$. Then we have

$$m_a(u+v) = a(u+v) = au + av = m_a(u) + m_a(v)$$

 $m_a(bu) = a(bu) = b(au) = bm_a(u)$

The second equality comes from the fact that A is a commutative ring. Thus, m_a is a linear transformation over F, as desired.

(b) Suppose that A is an integral domain which is finite dimensional as an F-vector space. Show that A is a field.

Proof. If $a \neq 0$, then

$$\ker m_a = \{ x \in A \mid ax = 0 \} = \{0\}$$

since we are in an integral domain. Thus, $\dim(\ker m_a) = 0$, so by the result of Exercise 31, we have $\dim A = \dim(\operatorname{im} m_a)$. By the result of Exercise 32, if both A and $\operatorname{im} m_a$ have dimension n, they are both isomorphic to F^n , so they are isomorphic to each other. Thus, m_a is a bijective map, and in particular surjective. Since $1 \in A$, there must exist $x \in A$ such that ax = 1, and since a was arbitrary, it follows that every possible choice for nonzero a was invertible, so F is a field, as desired.

Section 5.2: Principal Ideal Domains

13. (a) Show that $\mathbb{Z}[\sqrt{-2}]$ is euclidean with $\delta(a) = |N(a)|$.

Proof. Here, $\omega = \sqrt{-2} \implies \omega^2 = -2$. We claim that $\mathbb{Z}[\omega]$ satisfies the condition of Lemma 1. For any $r, s \in \mathbb{Q}$, let m and n be the nearest integers to r and s, respectively. Then,

$$\left| (r-m)^2 - \omega^2 (s-n)^2 \right| \le \left| \left(\frac{1}{2} \right)^2 + 2 \left(\frac{1}{2} \right)^2 \right| = \left| \frac{3}{4} \right| < 1$$

Thus, $\mathbb{Z}[\omega]$ is euclidean by Lemma 1.

(b) If $a = 4 + 3\sqrt{-2}$ and $b = 3 - \sqrt{-2}$, write a = qb + r, where r = 0 or $\delta(r) < \delta(b)$.

Solution. Consider a division in \mathbb{C} , where

$$\frac{a}{b} = \frac{4+3\sqrt{-2}}{3-\sqrt{-2}} = \frac{(4+3\sqrt{-2})(3+\sqrt{-2})}{11} = \frac{6}{11} + \frac{13}{11}\sqrt{-2}$$

So we may estimate $q = 1 + \sqrt{-2}$. Then

$$qb = (1 + \sqrt{-2})(3 - \sqrt{-2}) = 5 + 2\sqrt{-2}$$

 $\implies r = -1 + \sqrt{-2}$

This is a legitimate factorization because

$$\delta(r) = |N(r)| = |(-1)^2 + 2| = 3 < 11 = \delta(b)$$

Section 6.1: Vector Spaces

21. If $u = a_1v_1 + a_2v_2 + \cdots + a_nv_n$ in a vector space V, and if $a_1 \neq 0$, show that span $\{v_1, v_2, \cdots, v_n\} = \text{span } \{u, v_2, \cdots, v_n\}$.

Proof. Let $w = b_1v_1 + b_2v_2 + \cdots + b_nv_n$ be an element in span $\{v_1, v_2, \cdots, v_n\}$. Since $a_1 \neq 0$, it has an inverse, so

$$u = a_1 v_1 + a_2 v_2 + \dots + a_n v_n$$

$$\implies v_1 = a_1^{-1} u - a_1^{-1} a_2 v_2 - a_1^{-1} a_3 v_3 - \dots - a_1^{-1} a_n v_n$$

Substituting, we have

$$w = b_1(a_1^{-1}u - a_1^{-1}a_2v_2 - \dots - a_1^{-1}a_nv_n) + a_2v_2 + \dots + a_nv_n$$

= $a_1^{-1}b_1u + (a_2 - a_1^{-1}a_2b_1)v_2 + \dots + (a_n - a_1^{-1}a_nb_1)v_n$

so $w \in \operatorname{span} \{u, v_2, \cdots, v_n\}$.

For the reverse inclusion, let $x = c_1 u + c_2 v_2 + \cdots + c_n v_n$ be an element in span $\{u, v_2, \cdots, v_n\}$. Substituting the expression for u, we have

$$x = c_1(a_1v_1 + a_2v_2 + \dots + a_nv_n) + c_2v_2 + \dots + c_nv_n$$

= $a_1c_1v_1 + (a_2c_1 + c_2)v_2 + \dots + (a_nc_1 + c_n)v_n$

so $x \in \text{span}\{v_1, \dots, v_n\}$. Thus, the two spanning sets are equal, as desired.

23. (a) Show that an independent set $\{v_1, \dots, v_n\}$ in FV with n maximal is a basis.

Proof. If n is maximal, then for any $v \in V$, the set $\{v, v_1, \dots, v_n\}$ is linearly dependent, so we may write

$$0 = av + a_1v_1 + \cdots + a_nv_n$$

for where not all of a, a_i are nonzero. WLOG, $a \neq 0$, so it has an inverse, and

$$v = -a^{-1}a_1v_1 - \dots - a^{-1}a_nv_n$$

so v is a linear combination of the v_i . Since v was arbitrary, it follows that the set $\{v_1, \dots, v_n\}$ spans V, and if they are linearly independent, this set is a basis, as desired.

(b) Show that a spanning set $\{v_1, \dots, v_n\}$ of FV with n minimal is a basis.

Proof. Let $v \in V$, so since $\{v_1, \dots, v_n\}$ is spanning, we may write

$$v = a_1 v_1 + \dots + a_n v_n$$

for $a_i \in F, \forall i$. If n is minimal, then it must be that removing any of the v_i from the set will cause it to not span V. WLOG, remove a_1 .

j++j

30. If U is a subspace of a vector space ${}_FV$, define a scalar multiplication on the (additive) factor group V/U by a(v+U)=av+U. Show that V/U is a vector space and that if V is finite dimensional, then V/U is finite dimensional and dim $V/U=\dim V-\dim U$.

Proof. Let $a, b \in F$ and $v + U, w + U \in V/U$.

V1

$$a[(v+U) + (w+U)] = a(v+w+U) = (av+aw) + U$$

V2

$$(a+b)(v+U) = a(v+U) + b(v+U) = (av+U) + (bv+U) = (av+bv) + U$$

V3

$$a(b(v+U)) = a(bv+U) = abv + U = (ab)(v+U)$$

V4

$$1(v+U) = v+U$$

Thus the four vector space axioms are satisfied, so V/U is a vector space.

Suppose dim V = n, and let $\{v_1, \dots, v_n\}$ be a basis. Then I claim that the set $\{v_1 + U, \dots, v_n + U\}$ spans V/U. For any coset $v + U \in V/U$, since $v \in V$, we may write

$$v = a_1v_1 + \dots + a_nv_n$$

$$v + U = (a_1v_1 + \dots + a_nv_n) + U$$

$$= a_1(v_1 + U) + \dots + a_n(v_n + U)$$

$$\in \text{span} \{v_1 + U, \dots, v_n + U\}$$

Thus, $\{v_1 + U, \dots, v_n + U\}$ spans V/U, and any spanning set contains a basis, so dim $V/U \le n$, so it is finite, as desired.

- 31. A linear transformation $\varphi : {}_FV \to {}_FW$ is a map such that $\varphi(v+w) = \varphi(v) + \varphi(w)$ and $\varphi(av) = a\varphi(v)$ for all $a \in F$ and all $v, w \in V$.
 - (a) Show that $\ker \varphi$ and $\operatorname{im} \varphi$ are subspaces of V and W, respectively.

Proof. $\ker \varphi$: We have

$$\varphi(0) + \varphi(0) = \varphi(0+0) = \varphi(0) \implies \varphi(0) = 0$$

so $0 \in \ker \varphi$. Let $v, w \in \ker \varphi$ and $a \in F$. Then

$$\varphi(v) + \varphi(w) = 0 + 0 = 0 = \varphi(v + w) \implies v + w \in \ker \varphi$$

and

$$\varphi(av) = a\varphi(v) = a \cdot 0 = 0 \implies av \in \ker \varphi$$

Thus, $\ker \varphi$ is a subgroup of V that is closed under addition and scalar multiplication, so it is a subspace, as desired.

 $\operatorname{im} \varphi$: From above, we know that $0 \in \operatorname{im} \varphi$ since $\varphi(0) = 0$. Let $\varphi(x), \varphi(y) \in \operatorname{im} \varphi$ and $b \in F$. Then

$$\varphi(x) + \varphi(y) = \varphi(x+y) \in \operatorname{im} \varphi$$

since $x + y \in V$ because V is a vector space. We also have

$$b\varphi(x) = \varphi(bx) \in \operatorname{im}\varphi$$

since $bx \in V$. Thus, im φ is a subgroup of W that is closed under addition and scalar multiplication, so it is a subspace, as desired.

(b) If V is finite dimensional, show that im φ is also finite dimensional.

Proof. Suppose dim V=n, and let $\{v_1, \dots, v_n\}$ be a basis for V. Then I claim that $\{\varphi(v_1), \dots, \varphi(v_n)\}$ spans im φ . Consider $\varphi(v) \in \operatorname{im} \varphi$, where $v \in V$. Then we may write

$$v = a_1 v_1 + \dots + a_n v_n$$

$$\varphi(v) = \varphi(a_1 v_1 + \dots + a_n v_n)$$

$$= a_1 \varphi(v_1) + \dots + a_n \varphi(v_n)$$

$$\in \text{span} \{ \varphi(v_1), \dots, \varphi(v_n) \}$$

Since every spanning set contains a basis, it follows that $\dim(\operatorname{im}\varphi) \leq n$, so it is finite, as desired. \square

(c) If V is finite dimensional, show that $\dim V = \dim(\ker \varphi) + \dim(\operatorname{im} \varphi)$.

Proof. If dim $V = \dim(\ker \varphi)$, then $\ker \varphi = V$, so then $\dim(\operatorname{im} \varphi) = \dim\{0\} = 0$, and the relation is satisfied.

Otherwise, since $\ker \varphi \subsetneq V$, we have $\dim(\ker \varphi) < n$. Let $\dim(\ker \varphi) = m$, so that $\{u_1, \dots, u_m\}$ is a basis for $\ker \varphi$. Then there exists some $v_1 \in V$ such that $v_1 \notin \ker \varphi$.

j++j

32. Vector spaces ${}_FV$ and ${}_FW$ are called isomorphic if a one-to-one, onto linear transformation $V \to W$ exists. If ${}_FV$ has dimension n, show that $V \cong F^n$.

Proof. Since dim V = n, its basis has n elements, say $\{v_1, \dots, v_n\}$. Let $\{e_1, \dots, e_n\}$ represent the standard basis for F^n . For any $u \in V$, we can represent it as

$$u = a_1 v_1 + \dots + a_n v_n, \quad a_i \in F, \forall i$$

Define the map

$$T: V \to F^n$$

$$a_1v_1 + \dots + a_nv_n \mapsto a_1e_1 + \dots + a_ne_n$$

I claim that this is a one-to-one, onto linear transformation.

To prove it is linear, let $a \in F$ and $u, v \in V$ such that

$$u = a_1 v_1 + \dots + a_n v_n$$
$$v = b_1 v_1 + \dots + b_n v_n$$

where $a_i, b_i \in F, \forall i$. Then we have

$$T(u+v) = T [(a_1v_1 + \dots + a_nv_n) + (b_1v_1 + \dots + b_nv_n)]$$

$$= T [(a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n]$$

$$= (a_1 + b_1)e_1 + \dots + (a_n + b_n)e_n$$

$$= (a_1e_1 + \dots + a_ne_n) + (b_1e_1 + \dots + b_ne_n)$$

$$= T(u) + T(v)$$

$$T(au) = T [a(a_1v_1 + \dots + a_nv_n)]$$

$$= T(aa_1v_1 + \dots + aa_nv_n)$$

$$= aa_1e_1 + \dots + aa_nv_n$$

$$= a(a_1e_1 + \dots + a_nv_n)$$

$$= aT(u)$$

Thus T is a linear transformation.

To prove it is injective, suppose

$$T(u) = T(v)$$

$$\implies T(a_1v_1 + \dots + a_nv_n) = T(b_1v_1 + \dots + b_nv_n)$$

$$\implies a_1e_1 + \dots + a_ne_n = b_1e_1 + \dots + b_ne_n$$

Since the e_i form a basis for F^n , necessarily we must have $a_i = b_i, \forall i$, so then

$$a_1v_n + \cdots + a_nv_n = b_1v_1 + \cdots + b_nv_n \implies u = v$$

so T is injective.

To prove it is surjective, take any $w \in F^n$, which can be written as a unique linear combination

$$w = c_1 e_1 + \dots + c_n e_n$$

From here, we can recover $x \in V$ such that T(x) = w by taking the coefficients of the e_i , so that

$$x = c_1 v_1 + \dots + c_n v_n$$

Thus, T is surjective, so we have $V \cong F^n$, as desired.