Lab 03

Basic Image Processing Fall 2018

2D convolution in Practice

• In practice both the kernel and the image have finite size.

Let h and \hat{h} be $(2r_1 + 1) \times (2r_2 + 1)$ sized kernels, where \hat{h} is the 180° rotated version of h:

$$h = \begin{bmatrix} a_{-r_1, -r_2} & \cdots & a_{-r_1, r_2} \\ \vdots & \ddots & \vdots \\ a_{r_1, -r_2} & \cdots & a_{r_1, r_2} \end{bmatrix} \text{ and } \hat{h} = \begin{bmatrix} a_{r_1, r_2} & \cdots & a_{r_1, -r_2} \\ \vdots & \ddots & \vdots \\ a_{-r_1, r_2} & \cdots & a_{-r_1, -r_2} \end{bmatrix}$$

$$g(x,y) = \sum_{l=-r_1}^{r_1} \sum_{l=-r_2}^{r_2} f(k,l) \cdot h(x-k,y-l) =$$

$$= \sum_{k=-r_1}^{r_1} \sum_{l=-r_2}^{r_2} h(k,l) \cdot f(x-k,y-l) =$$

$$= \sum_{k=-r_1}^{r_1} \sum_{l=-r_2}^{r_2} \hat{h}(k,l) \cdot f(x+k,y+l)$$

14

105	102	100	97	96	
103	99	103	101	102	
101	98	104	102	100	
99	101	106	104	99	The state of the s
104	104	104	100	98	
				-	

0	-1	0
-1	5	-1
0	-1	0

89		
	W	50.00
l		

$$105 * 0 + 102 * -1 + 100 * 0$$

$$+103 * -1 + 99 * 5 + 103 * -1$$

$$+101 * 0 + 98 * -1 + 104 * 0 = 89$$

105	102	100	97	96	
103	99	103	101	102	
103	99	103	101	102	
101	98	104	102	100	
99	101	106	104	99	
104	104	104	100	98	

0	-1	0
-1	5	-1
0	-1	0

	89	111		
8	3	3	1	

$$102 * 0 + 100 * -1 + 97 * 0$$

$$+99 * -1 + 103 * 5 + 101 * -1$$

$$+98 * 0 + 104 * -1 + 102 * 0 = 111$$

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	J
0	101	98	104	102	100	
0	99	101	106	104	99	
0	104	104	104	100	98	

0	-1	0
-1	5	-1
0	-1	0

210	89	111		

Image Matrix

$$0*0+105*-1+102*0$$

+0*-1+103*5+99*-1
+0*0+101*-1+98*0 = 210

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	
0	101	98	104	102	100	
0	99	101	106	104	99	7
0	104	104	104	100	98	
						لأنا

0	-1	0
-1	5	-1
0	-1	0

320				×	
210	89	111			
8	N.	8	6		

$$0*0+0*-1+0*0$$

$$+0*-1+105*5+102*-1$$

$$+0*0+103*-1+99*0=320$$

Now please

download the 'Lab 03' code package

from the

submission system

Exercise 1

Implement the function myconv in which:

- Extend your input image (input_img) with zero-valued boundary cells. Use padarray().
- Rotate your kernel (kernel) with 180 degrees, (to ensure the right order of elements for element-wise multiplication – see the boxed formula on bottom of Slide 2). Use rot90().
- Iterate through your extended image with two (nested) **for** loops, multiplying every portion of your extended image with the rotated kernel (even include the corner regions as shown in Slide 7).
- The resulting image (output_img) should have the same size as the input image (input_img).

Exercise 1 - continued

You can assume that the input of the function is a double type grayscale image with values in the [0,1] range.

You should return the result of the convolution "as is", without any scaling or type conversion.

Set the level parameter of script.m to 1, run it, and examine the results.

- Numerical check:
 - the calculated difference value should be smaller than 10⁻⁹.
 - the dynamics range of the convolved image is moved from [0, 1] to approx. [-2.5, 2.5]
- Visual check: the left side of the trees should be black, the right should be white.

original

$$kernel = \begin{array}{cccc} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{array}$$

myconv, difference to GT:1.756e-12

built-in conv2

Exercise 2

Extend your function myconv in order to:

- Be able to calculate with kernels of size (2k+1) × (2k+1) where k = 1,2,3,... (it means: your padding should be dependent on the size of the incoming kernel)
- All of the previous conditions should be satisfied.
- Your resulting image should preserve the size of your input image.

Set the **level** parameter of **script.m** to **2**, **run** it, and **examine** the results. (The earlier checks in the script should work similarly.)

original

	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138
	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138
	0.0138	0.0138	0.0138	0.0158	0.0254	0.0158	0.0138	0.0138	0.0138
	0.0138	0.0138	0.0158	0.2858	0.6837	0.2858	0.0158	0.0138	0.0138
kernel =	0.0138	0.0138	0.0254	0.6837 -	4.9357	0.6837	0.0254	0.0138	0.0138
	0.0138	0.0138	0.0158	0.2858	0.6837	0.2858	0.0158	0.0138	0.0138
	0.0138	0.0138	0.0138	0.0158	0.0254	0.0158	0.0138	0.0138	0.0138
	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138
	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138	0.0138

myconv, difference to GT:3.1237e-12

-1 -2

0.8

0.6

0.4

0.2

built-in conv2

1 0 -1 -2

Exercise 3

Modify your function myconv in order to:

- Be able to calculate with kernels of size (2a+1) x (2b+1) where
 a = 1,2,3,...
 b = 1,2,3,...
 - (it means: your padding should be dependent on the size of the incoming kernel, differently along the two main axes)
- All of the previous conditions should be satisfied.
- Your resulting image should preserve the size of your input image.

Set the **level** parameter of **script.m** to **3**, **run** it, and **examine** the results. (The earlier checks in the script should work similarly.)

original

0	0	0	0.0197	0.0044
0	0	0	0.0480	0.0154
0	0	0	0.0589	0.0045
0	0	0.0082	0.0552	0
0	0	0.0191	0.0443	0
0	0	0.0299	0.0335	0
0	0	0.0408	0.0226	0
0	0	0.0516	0.0118	0
0	0.0009	0.0624	0.0009	0
0	0.0118	0.0516	0	0
0	0.0226	0.0408	0	0
0	0.0335	0.0299	0	0
0	0.0443	0.0191	0	0
0	0.0552	0.0082	0	0
0.0045	0.0589	0	0	0
0.0154	0.0480	0	0	0
0.0044	0.0197	0	0	0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0.0480 0 0 0 0.0589 0 0 0.0082 0.0552 0 0 0.0191 0.0443 0 0 0.0299 0.0335 0 0 0.0516 0.0118 0 0.0009 0.0624 0.0009 0 0.0118 0.0516 0 0 0.0226 0.0408 0 0 0.0335 0.0299 0 0 0.0443 0.0191 0 0 0.0589 0 0 0.0154 0.0480 0 0

myconv, difference to GT:1.1812e-12

0.8

0.6

0.4

0.2

built-in conv2

Optional exercise

Do not upload this, just try it for fun:

- Write another script which calls your myconv function and MATLAB's built-in conv2 with the following kernels (generate them with fspecial()):
 - average
 - Laplacian
- Measure the runtime of both functions with tic / toc.

THE END