

Pentru orice mulțime de clauze \mathcal{S} , notăm cu

$$Res(S) := \bigcup_{C_1, C_2 \in S} Res(C_1, C_2).$$

Propoziția 1.91

Pentru orice mulțime de clauze \mathcal{S} și orice evaluare $e:V \to \{0,1\}$, $e \models \mathcal{S} \implies e \models Res(\mathcal{S}).$

Teorema 1.92 (Teorema de corectitudine a rezoluției)

Fie S o mulțime de clauze. Dacă \square se derivează prin rezoluție din S, atunci S este nesatisfiabilă.

Algoritmul Davis-Putnam (DP)

Intrare: S mulțime nevidă de clauze netriviale.

$$i:=1$$
, $\mathcal{S}_1:=\mathcal{S}$.

Pi.1 Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 := \{C \in \mathcal{S}_i \mid x_i \in C\}, \quad \mathcal{T}_i^0 := \{C \in \mathcal{S}_i \mid \neg x_i \in C\}.$$

Pi.2 if $(\mathcal{T}_i^1 \neq \emptyset \text{ și } \mathcal{T}_i^0 \neq \emptyset)$ then

$$\mathcal{U}_i := \{(C_1 \setminus \{x_i\}) \cup (C_0 \setminus \{\neg x_i\}) \mid C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0\}.$$

else $\mathcal{U}_i := \emptyset$.

Pi.3 Definim

$$\mathcal{S}'_{i+1} := \left(\mathcal{S}_i \setminus (\mathcal{T}_i^0 \cup \mathcal{T}_i^1)\right) \cup \mathcal{U}_i;$$

 $\mathcal{S}_{i+1} := \mathcal{S}'_{i+1} \setminus \{C \in \mathcal{S}'_{i+1} \mid C \text{ trivial}\}.$

Pi.4 if $S_{i+1} = \emptyset$ then S este satisfiabilă.

else if $\square \in S_{i+1}$ then S este nesatisfiabilă.

else
$$\{i := i + 1; \text{ go to Pi.1}\}.$$

Algoritmul Davis-Putnam (DP)

$$\mathcal{S} = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}. \ i := 1, \ \mathcal{S}_1 := \mathcal{S}.$$

$$\text{P1.1} \quad x_1 := v_3; \ \mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}; \ \mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}.$$

$$\text{P1.2} \quad \mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$$

$$\text{P1.3} \quad \mathcal{S}_2' := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; \ \mathcal{S}_2 := \{\{v_2, v_1\}\}.$$

$$\text{P1.4} \quad i := 2 \text{ and go to P2.1.}$$

$$\text{P2.1} \quad x_2 := v_2; \ \mathcal{T}_2^1 := \{\{v_2, v_1\}\}; \ \mathcal{T}_2^0 := \emptyset.$$

$$\text{P2.2} \quad \mathcal{U}_2 := \emptyset.$$

$$\text{P2.3} \quad \mathcal{S}_3 := \emptyset.$$

$$\text{P2.4} \quad \mathcal{S} \text{ este satisfiabilă.}$$

Algoritmul Davis-Putnam (DP)

- $S = \{ \{\neg v_1, v_2, \neg v_4\}, \{\neg v_3, \neg v_2\}, \{v_1, v_3\}, \{v_1\}, \{v_3\}, \{v_4\} \} \}.$ $i := 1, S_1 := S.$ $P1.1 \quad x_1 := v_1; T_1^1 := \{ \{v_1, v_3\}, \{v_1\} \}; T_1^0 := \{ \{\neg v_1, v_2, \neg v_4\} \}.$ $P1.2 \quad \mathcal{U}_1 := \{ \{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\} \}.$ $P1.3 \quad S_2 := \{ \{\neg v_3, \neg v_2\}, \{v_3\}, \{v_4\}, \{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\} \}.$
 - P1.4 i := 2 and go to P2.1.
 - P2.1. $x_2 := v_2$; $\mathcal{T}_2^1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}; \mathcal{T}_2^0 := \{\{\neg v_3, \neg v_2\}\}.$
 - P2.2 $\mathcal{U}_2 := \{\{v_3, \neg v_4, \neg v_3\}, \{\neg v_4, \neg v_3\}\}.$
 - P2.3 $S_3 := \{\{v_3\}, \{v_4\}, \{\neg v_4, \neg v_3\}\}.$
 - P2.4 i := 3 and go to P3.1.
 - P3.1 $x_3 := v_3$; $\mathcal{T}_3^1 := \{\{v_3\}\}$; $\mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}$.
 - P3.2. $\mathcal{U}_3 := \{ \{ \neg v_4 \} \}.$ P3.3 $\mathcal{S}_4 := \{ \{ v_4 \}, \{ \neg v_4 \} \}.$
 - P3.4 i := 4 and go to P4.1.
 - P4.1 $x_4 := v_4$; $\mathcal{T}_4^1 := \{\{v_4\}\}\}$; $\mathcal{T}_4^0 := \{\{\neg v_4\}\}\}$.
 - P4.2 $\mathcal{U}_4 := \{\Box\}.$ P4.3 $\mathcal{S}_5 := \{\Box\}.$
 - P4.4 S nu este satisfiabilă.

Algoritmul DP - terminare

Notăm:

$$Var(C) := \{x \in V \mid x \in C \text{ sau } \neg x \in C\}, \quad Var(S) := \bigcup_{C \in S} Var(C).$$

Aşadar, $Var(C)=\emptyset$ ddacă $C=\square$ și $Var(\mathcal{S})=\emptyset$ ddacă $\mathcal{S}=\emptyset$ sau $\mathcal{S}=\{\square\}$.

Propoziția 1.93

Fie n := |Var(S)|. Atunci algoritmul DP se termină după cel mult n pași.

Dem.: Se observă imediat că pentru orice *i*,

$$Var(S_{i+1}) \subseteq Var(S_i) \setminus \{x_i\} \subsetneq Var(S_i).$$

Prin urmare, $n = |Var(S_1)| > |Var(S_2)| > |Var(S_3)| > \ldots \geq 0$.

119

Algoritmul DP - corectitudine și completitudine

Fie $N \le n$ numărul de pași după care se termină DP. Atunci $S_{N+1} = \emptyset$ sau $\square \in S_{N+1}$.

Teorema 1.94

Algoritmul DP este corect și complet, adică,

 \mathcal{S} este nesatisfiabilă ddacă $\square \in \mathcal{S}_{N+1}$.

LOGICA DE ORDINUL I

Limbaje de ordinul l

Definiția 2.1

Un limbaj L de ordinul l este format din:

- ightharpoonup o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ightharpoonup conectorii \neg și \rightarrow ;
- paranteze: (,);
- simbolul de egalitate =;
- ► cuantificatorul universal ∀;
- o mulțime R de simboluri de relații;
- ▶ o mulțime F de simboluri de funcții;
- ▶ o mulțime C de simboluri de constante;
- lacksquare o funcție aritate ari : $\mathcal{F} \cup \mathcal{R}
 ightarrow \mathbb{N}^*$.
- ightharpoonup este unic determinat de cvadruplul $au:=(\mathcal{R},\mathcal{F},\mathcal{C},\mathsf{ari})$.
- ightharpoonup au se numește signatura lui $\mathcal L$ sau vocabularul lui $\mathcal L$ sau alfabetul lui $\mathcal L$ sau tipul de similaritate al lui $\mathcal L$

Limbaje de ordinul l

Fie \mathcal{L} un limbaj de ordinul I.

• Mulţimea $Sim_{\mathcal{L}}$ a simbolurilor lui \mathcal{L} este

$$Sim_{\mathcal{L}} := V \cup \{\neg, \rightarrow, (,), =, \forall\} \cup \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$$

- Elementele lui $\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ se numesc simboluri non-logice.
- Elementele lui $V \cup \{\neg, \rightarrow, (,), =, \forall\}$ se numesc simboluri logice.
- Notăm variabilele cu x, y, z, v, \ldots , simbolurile de relații cu $P, Q, R \ldots$, simbolurile de funcții cu f, g, h, \ldots și simbolurile de constante cu c, d, e, \ldots
- Pentru orice $m \in \mathbb{N}^*$ notăm:

 $\mathcal{F}_m := \text{mulțimea simbolurilor de funcții de aritate } m;$

 $\mathcal{R}_m := \text{mulțimea simbolurilor de relații de aritate } m$.

Limbaje de ordinul l

Definiția 2.2

Mulțimea $\mathsf{Expr}_{\mathcal{L}}$ a expresiilor lui \mathcal{L} este mulțimea tuturor șirurilor finite de simboluri ale lui \mathcal{L} .

- ightharpoonup Expresia vidă se notează λ .
- Lungimea unei expresii θ este numărul simbolurilor din θ .

Definiția 2.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui \mathcal{L} , unde $\theta_i \in Sim_{\mathcal{L}}$ pentru orice i.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i,j)-subexpresia lui θ ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ ;
- Notăm cu $Var(\theta)$ mulțimea variabilelor care apar în θ .