```
In [22]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from math import sqrt
   from tqdm import tqdm
   from timeit import default_timer as timer
```

Intro to ML

Ex0

1. Algebra, Random variables

 Ω = The sample space (the set of outcomes)

 $\omega =$ The outcome

 $P(\omega) > 0$ = The probability of an outcome

 $\sum_{\omega \in \Omega} P(\omega) = 1$ So sum of probabilities is 1

X = a real-valued random variable (satunnaismuuttuja)

 $X(\omega)$ creates a mapping between real numbers and the possible outcomes

a)

An operator L is linear if it obeys:

$$L(x + y) = Lx + Ly$$

where x, y are eg. functions

and

$$L(\lambda x) = \lambda L x$$

where $\lambda \in \Re$

Show that the operator E is linear:

$$E[X(\omega)] = \sum_{\omega} P(\omega)X(\omega)$$

$$\begin{split} E[F(\omega) + G(\omega)] &= \sum_{\omega} P(\omega) \left(F(\omega) + G(\omega) \right) \\ E[F(\omega) + G(\omega)] &= \sum_{\omega} P(\omega) F(\omega) + \sum_{\omega} P(\omega) G(\omega) \\ E[F(\omega) + G(\omega)] &= E[F(\omega)] + E[G(\omega)] \\ E[F + G] &= E[F] + E[G] \end{split}$$

and:

$$E[cF(\omega)] = \sum_{\omega} P(\omega)cF(\omega)$$
$$E[cF(\omega)] = c\sum_{\omega} P(\omega)F(\omega)$$
$$E[cF(\omega)] = cE[F(\omega)]$$

$$Var[X(\omega)] = E[(X(\omega) - E[X(\omega)])^{2}]$$

b)
$$Var[X] = E[(X - E[X])^{2}]$$

$$Var[X] = E[X^{2} - 2XE[X] + E[X]^{2}]$$

$$Var[X] = E[X^{2}] - 2E[X]E[X] + E[X]^{2}$$

$$Var[X] = E[X^{2}] - E[X]^{2}$$

b)
$$E[X] = \sum_{\alpha} PX$$

$$Var[X] = E[(X - E[X])^{2}]$$

$$Var[X] = E[X^{2} - 2XE[X] + E[X]^{2}]$$

$$Var[X] = E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$$

$$Var[X] = E[X^{2}] - 2E[X]E[X] + E[E[X]E[X]]$$

$$Var[X] = \sum_{\omega} PX^{2} - 2\sum_{\omega} PX\sum_{\omega} PX + \sum_{\omega} P(\sum_{\omega} PX)^{2}$$

$$Var[X] = \sum_{\omega} PX^{2} - 2\sum_{\omega} PX\sum_{\omega} PX + \sum_{\omega} P\sum_{\omega} PX\sum_{\omega} PX$$

$$Var[X] = \sum_{\omega} PX^{2} - (\sum_{\omega} PX)^{2}$$

$$Var[X] = E[X^{2}] - E[X]^{2}$$

2. Bayes Rule

a) Derivation

The probability of event A given B is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

The probability of event B given A is:

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

Noting that:

$$P(B \cap A) = P(A \cap B)$$

We get:

$$P(A|B)P(B) = P(B|A)P(A)$$

Rearranging gives Bayes:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

b) Medical test

A = allergy

 $\neg A = \text{no allergy}$

T = positive test

 $\neg T$ = negative test

false positive in 1 % of the cases:

$$P(T|\neg A) = 0.01$$

false negative in 10 % of the cases:

$$P(\neg T|A) = 0.1$$

15 % of the population in Finland have allergy:

$$P(A) = 0.15$$

$$P(\neg A) = 0.85$$

the probability that a person is allergic, if the test is positive:

$$P(A|T) = \frac{P(A \cap T)}{P(T)}$$

$$P(A|T) = \frac{P(T|A)P(A)}{P(T)}$$

Write:

$$\begin{split} P(T) &= P(A \cap T) + P(\neg A \cap T) \\ P(T) &= P(T|A)P(A) + P(T|\neg A)P(\neg A) \end{split}$$

Bayes with the marginal:

$$P(A|T) = \frac{P(T|A)P(A)}{P(T|A)P(A) + P(T|\neg A)P(\neg A)}$$

$$egin{array}{c|ccccc} A & \neg A & {\bf SUM} \\ \hline T & 0.05 & 0.01 & 0.06 \\ \hline \neg T & 0.1 & 0.84 & 0.94 \\ {\sf SUM} & 0.15 & 0.85 & 1 \\ \hline \end{array}$$

Bayes with the marginal:

$$P(A|T) = \frac{0.05 \times 0.15}{0.05 \times 0.15 + 0.01 \times 0.85}$$
$$P(A|T) = 0.46875$$

3. Matrix calculus

Matrix $A \in \mathbb{R}^{n \times n}$ Eigenvalue $\lambda \in \mathbb{R}$ of AEigenvector $x \in \mathbb{R}^n$ if Eigenfunction $Ax = \lambda x$ A has n orthonormal eigenvectors $x_i \in \mathbb{R}^n$ and corresponding eigenvalue $\lambda_i \in \mathbb{R}$ where $i \in [1, n]$

Orthonormality means:

$$\begin{aligned} \boldsymbol{x}_i^\top \boldsymbol{x}_i &= 1 \text{ and } \\ \boldsymbol{x}_i^\top \boldsymbol{x}_j &= 0 \text{ if } i \neq j \end{aligned}$$

A new matrix:

$$\mathbf{B} = \sum_{j=1}^n \lambda_j x_j x_j^{\top}$$
 "spectral decomposition"

A matrix A can be expressed in the basis of it's eigenvectors $X = [x_1 + x_2 + ... + x_n]$ and X^{\top}

$$\mathbf{A} = X \Lambda X^{\top}$$

where Λ is a diagonal matrix with $\mathrm{Tr}(\Lambda) = \sum_{i=1}^n \lambda_i$

$$A = \begin{pmatrix} \uparrow & \uparrow & & \uparrow \\ x_1 & x_2 & \dots & x_n \\ \downarrow & \downarrow & & \downarrow \end{pmatrix} \begin{pmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix} \begin{pmatrix} \leftarrow & x_1 & \rightarrow \\ \leftarrow & x_2 & \rightarrow \\ \leftarrow & \vdots & \rightarrow \\ \leftarrow & x_n & \rightarrow \end{pmatrix}$$

Multiplying the matrices yields $A = \sum_{i=1}^{n} \lambda_i x_i x_i^{\top}$ Hence A = B and the eigenvectors and -values are the same for B as well.

4. Optimization

Constants:

 $a \in \mathbb{R}$

 $b \in \mathbb{R}$

 $c \in \mathbb{R}$

A function:

$$f(x) = ax^4 + bx + c$$
$$f'(x) = 4ax^3 + b$$

a)

The extreme values are found when f'(x) = 0

$$4ax^{3} + b = 0$$

$$4ax^{3} = -b$$

$$x^{3} = \frac{-b}{4a}$$

$$x = \sqrt[3]{\frac{-b}{4a}}$$

b)

Conditions: $a \neq 0$ and none of them can go to the infinity (and beyond)

5. Algorithms

The fibonacci numbers F(i) are defined for $i \in \mathbb{N}$ as:

$$F(i + 2) = F(i + 1) + F(i)$$
 when $F(1) = F(2) = 1$

Pseudocode for producing fibonacci numbers

```
func fibo(n) {
    i = 1
    j = 1
    for k in [1,n + 1] {
        i = j
        j = i + j
        print j
}
```

```
In [1]: def fibol(n):
             """Function to calculate values from fibonacci sequence using r
         ecursion. Scales O(2^n)"""
             if n<= 1: return n</pre>
             else: return fibo1(n-1)+fibo1(n-2)
In [2]: def fibo2(n):
             """Function to calculate valuesfrom fibonacci sequence. Scales
         n n n
             return int(((1+sqrt(5))**n-(1-sqrt(5))**n)/(2**n*sqrt(5)))
In [14]: | length = 50
In [15]: | idx = np.arange(length)
         fibo1_df = pd.DataFrame(index=idx,columns=["Time","F"])
In [32]:
         fibo1 list = []
         fibol times = []
In [33]: | for n in tqdm(range(length)):
             start = timer()
             fibo1_list.append(fibo1(n))
             end = timer()
             time = end - start
             fibol times.append(time)
         100% | 50/50 [3:11:21<00:00, 2436.57s/it]
In [34]: fibo1_df["F"]=fibo1_list
         fibo1_df["Time"]=fibo1_times
```

```
In [44]: sns.scatterplot(x=idx,y=fibo1_df.Time)
   plt.title("Fibonacci with recursion")
   plt.xlabel("n")
   plt.ylabel("Time")
```

Out[44]: Text(0, 0.5, 'Time')

So it almost doubles the time every time Well the big-O is the worst case scenario here (not like one usually thinks)

```
In [23]: fibo2_df = pd.DataFrame(index=idx,columns=["Time","F"])
    fibo2_list = []
fibo2_times = []

In [24]: for n in tqdm(range(length)):
    start = timer()
    fibo2_list.append(fibo2(n))
    end = timer()
    time = end - start
    fibo2_times.append(time)

100% | 50/50 [00:00<00:00, 9364.79it/s]</pre>
In [25]: fibo2_df["F"]=fibo2_list
    fibo2_df["Time"]=fibo2_times
```

```
In [27]: sns.scatterplot(x=idx, y=fibo2_df.Time)
   plt.title("Fibonacci with sqrt formula")
   plt.xlabel("n")
   plt.ylabel("Time")
```

Out[27]: Text(0, 0.5, '')

This follows basically O(1) scaling

6. Data analysis

```
In [37]: x_data = pd.read_csv("x.csv")
x_data.sample(4)
```

Out[37]:

	V1	V2	V 3	V4	V 5	V 6	V 7	V 8	
708	-4.597123	-4.220368	7.404075	-4.136433	5.526760	-1.680865	7.044002	-8.015283	
704	-5.544900	-4.872460	5.765845	-4.165147	7.296932	-1.894360	7.509021	-8.786945	
931	-1.741200	-1.065827	7.687956	-2.579892	7.887600	-0.035358	6.411963	-5.078061	1
877	-1.234139	-0.703955	8.137113	-5.114361	7.608299	-2.379770	7.233044	-4.648962	

4 rows × 32 columns

```
In [38]: x_data.shape
Out[38]: (1000, 32)
```

In [39]: x_data.describe()

Out[39]:

	V1	V2	V3	V 4	V 5	V 6	
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	100
mean	-5.493603	-4.848361	6.748369	-3.592207	5.432545	-1.009983	٠
std	1.860624	1.868029	1.002521	1.798006	1.561889	1.801655	
min	-12.051620	-11.449646	3.402454	-9.883042	0.650691	-7.255290	•
25%	-6.720468	-6.091409	6.098733	-4.771207	4.390488	-2.164160	1
50%	-5.483653	-4.871369	6.761059	-3.571100	5.406136	-0.987092	٠
75%	-4.240198	-3.555943	7.438199	-2.368798	6.432138	0.173440	+
max	0.765007	1.443165	10.269498	1.833573	10.671700	4.451196	1

8 rows × 32 columns

```
In [40]: indices = np.where(x_data.describe().loc["std",:] > 2)[0]
```

In [41]: | use = x_data.iloc[:,indices]

In [42]: use.sample(3)

Out[42]:

	V13	V21
606	1.084029	5.581020
937	5.314569	-1.139744
349	2.604948	1.017301

In [43]: plt.scatter(use.V13,use.V21)

Out[43]: <matplotlib.collections.PathCollection at 0x1a1a203278>

