A Sequential Basket Trial Design Based on Multi-Source Exchangeability With Predictive Probability Monitoring

Alex Kaizer

Assistant Professor
Department of Biostatistics and Informatics
Colorado School of Public Health

ENAR 2022 March 29, 2022

Acknowledgments

Joint work with

- Brian Hobbs (The University of Texas at Austin)
- Nan Chen (Gilead Sciences)
- Emily Zabor (Cleveland Clinic)

Funding:

• K01-HL151754

 In oncology, studies traditionally are designed for a particular histology or "indication" (e.g., lung cancer)

- In oncology, studies traditionally are designed for a particular histology or "indication" (e.g., lung cancer)
- We can now partition cancers into many small molecular subtypes and have developed therapies to target these genetic alterations

- In oncology, studies traditionally are designed for a particular histology or "indication" (e.g., lung cancer)
- We can now partition cancers into many small molecular subtypes and have developed therapies to target these genetic alterations
- However, there may be potential heterogeneity in treatment benefit by indication

- In oncology, studies traditionally are designed for a particular histology or "indication" (e.g., lung cancer)
- We can now partition cancers into many small molecular subtypes and have developed therapies to target these genetic alterations
- However, there may be potential heterogeneity in treatment benefit by indication
- Basket trials address this scientific context, but have their own challenges, including interim monitoring for futility (Woodcock and LaVange, 2017; Hobbs et al., 2018)

Example Basket Trial with 5 Baskets

	Basket Number						
Scenarios	1	2	3	4	5		
Global Null							
2							
3							
4							
5							
6 Global Alternative							

LEGEND:

Simon's two-stage designs

2 Bayesian predictive probability monitoring

3 Addition of information sharing across baskets with multi-source exchangeability models (MEMs)

- Simon's two-stage designs
 - Pros: Simple and easy to implement
 - Cons: Only one interim evaluation, no sharing information across baskets
- 2 Bayesian predictive probability monitoring

Addition of information sharing across baskets with multi-source exchangeability models (MEMs)

- Simon's two-stage designs
 - Pros: Simple and easy to implement
 - Cons: Only one interim evaluation, no sharing information across baskets
- 2 Bayesian predictive probability monitoring
 - Pros: Can design with more than one interim analysis, interpretation makes sense for interim monitoring
 - Cons: No sharing information across baskets
- 3 Addition of information sharing across baskets with multi-source exchangeability models (MEMs)

- Simon's two-stage designs
 - Pros: Simple and easy to implement
 - Cons: Only one interim evaluation, no sharing information across baskets
- 2 Bayesian predictive probability monitoring
 - Pros: Can design with more than one interim analysis, interpretation makes sense for interim monitoring
 - Cons: No sharing information across baskets
- 3 Addition of information sharing across baskets with multi-source exchangeability models (MEMs)
 - Pros: Can share exchangeable information across baskets
 - Cons: More complex, concerns about heterogeneity
 - We will use an empirically Bayesian prior with a single hyperparameter B, where $0 \le B \le 1$

Designs assuming a 10% null response and 30% alternative response without information sharing calibrated for α=0.1 and 90% power (Simon and Bayesian designs without interim monitoring).

Simulation Set-up

Assume a 10 basket trial where $p_0=0.1$ and our target response is $p_1=0.3$

Generate 1,000 trials with N = 25 per basket under two scenarios:

- Global scenario (all null or all alternative baskets)
- Mixed scenario (8 null and 2 alternative baskets)

Compare three designs:

- 1 Simon minimax two-stage design
- 2 Bayesian design with predictive probability monitoring without information sharing (i.e., B = 0)
- **3** Bayesian design with predictive probability monitoring with information sharing via MEMs set at B = 0.1

Bayesian Calibration and Monitoring

Assume a Beta(0.5,0.5) prior on treatment response.

Posterior probability thresholds calibrated to achieve a 10% type I error rate under the **global null scenario** with N=25 and **no interim monitoring**:

- When B = 0, conclude "success" if above 0.900.
- When B = 0.1, conclude "success" if above 0.848.

Predictive probability monitoring for futility is implemented continually after the 5th participant in each basket.

Explore thresholds across a grid of values from 0 to 0.5 in increments of 0.05.

Rejection Rate

Rejection Rate

Rejection Rate

Predictive Probability Threshold

Expected Sample Size

Expected Sample Size

Expected Sample Size

Stop Rate

Stop Rate

Stop Rate

Mixed Scenario Results

Discussion

- Ultimately, there is no free lunch
- The Simon two-stage design is inefficient with respect to many trial operating characteristics, but simple to implement
- Predictive probability monitoring can lead to a much lower expected sample size with only slightly lower power relative to the Simon design
- Information sharing with MEMs can increase power in the global scenario, but should be calibrated if other scenarios are expected (Kaizer et al., 2020)

Sources I

- Hobbs, B., Kane, M., Hong, D., and Landin, R. (2018). Statistical challenges posed by uncontrolled master protocols: sensitivity analysis of the vemurafenib study. *Annals of Oncology*.
- Kaizer, A. M., Koopmeiners, J. S., Chen, N., and Hobbs, B. P. (2020). Statistical design considerations for trials that study multiple indications. *Statistical Methods in Medical Research*.
- Kaizer, A. M., Koopmeiners, J. S., and Hobbs, B. P. (2017). Bayesian hierarchical modeling based on multi-source exchangeability. *Biostatistics*.
- Woodcock, J. and LaVange, L. M. (2017). Master protocols to study multiple therapies, multiple diseases, or both. *New England Journal of Medicine*, 377(1):62–70.

Tabular Results-Global Null

PP	Rejection		Family-wise		Expected		Stop		Prob. All	
Thres	Rate		Rate		Size		Rate		Null Stop	
hold	B=0	B=0.1	B=0	B=0.1	B=0	B=0.1	B=0	B=0.1	B=0	B=0.1
0	0.096	0.093	0.635	0.559	25.0	25.0	0.000	0.000	0.000	0.000
0.05	0.082	0.081	0.563	0.543	14.8	13.8	0.844	0.851	0.211	0.242
0.1	0.070	0.067	0.508	0.478	11.9	11.2	0.877	0.882	0.282	0.320
0.15	0.061	0.060	0.453	0.442	10.1	10.0	0.898	0.902	0.355	0.393
0.2	0.053	0.050	0.418	0.386	9.6	9.2	0.947	0.950	0.582	0.614
0.25	0.049	0.042	0.391	0.340	9.1	8.5	0.951	0.957	0.609	0.660
0.3	0.042	0.038	0.348	0.295	8.6	8.0	0.958	0.962	0.652	0.705
0.35	0.037	0.031	0.312	0.247	8.1	7.3	0.963	0.969	0.688	0.753
0.4	0.034	0.025	0.297	0.210	7.8	6.8	0.966	0.975	0.703	0.790
0.45	0.028	0.019	0.253	0.166	7.3	6.4	0.972	0.981	0.747	0.834
0.5	0.021	0.017	0.198	0.145	6.7	6.1	0.979	0.983	0.802	0.855

Tabular Results-Global Alternative

PP	Rejection		Expected		Stop		Prob. All	
Thres	Ŕ	Řate Size		ize	Rate		Null Stop	
hold	B=0	B=0.1	B=0	B=0.1	B=0	B=0.1	B=0	B=0.1
0	0.905	0.971	25.0	25.0	0.000	0.000	0.000	0.000
0.05	0.859	0.925	23.7	24.2	0.111	0.064	0.000	0.000
0.1	0.801	0.896	22.3	23.6	0.178	0.094	0.000	0.000
0.15	0.746	0.869	21.0	23.0	0.239	0.122	0.000	0.000
0.2	0.727	0.844	20.7	22.5	0.273	0.154	0.000	0.000
0.25	0.707	0.824	20.3	22.1	0.293	0.176	0.000	0.000
0.3	0.676	0.802	19.7	21.6	0.324	0.197	0.000	0.000
0.35	0.642	0.779	19.1	21.2	0.358	0.221	0.000	0.000
0.4	0.619	0.760	18.6	20.8	0.381	0.240	0.000	0.000
0.45	0.577	0.743	17.7	20.5	0.423	0.257	0.000	0.000
0.5	0.518	0.721	16.4	20.1	0.482	0.279	0.000	0.000

Global Scenario Results

Family-wise Global Scenario Results

Family-Wise Mixed Scenario Results

Multi-Source Exchangeability Models (MEMs)

- A general Bayesian framework to enable incorporation of independent sources of supplemental information based on Bayesian model averaging across all possible combinations of exchangeability (Kaizer et al., 2017)
- Amount of borrowing determined by exchangeability of data (e.g., equivalent response rates)
- Exchangeability priors specified with respect to sources rather than models
- Using an empirical Bayes prior with single hyperparameter B, where $0 \le B \le 1$

Standard Analysis (No Borrowing)

MEM Framework

Notation

 $extbf{\emph{y}}_{ extit{h}}$ Observable Data $extit{\emph{ heta}}_{ extsf{p}}$ Parameters of Interest

ightarrow Pooled data Ω_{k} Model

MEM Framework

Building the MEM framework

- MEM framework leverages the concept of Bayesian model averaging
- · Posterior model weights are

$$\omega_k = pr(\Omega_k|D) = \frac{p(D|\Omega_k)\pi(\Omega_k)}{\sum_{j=1}^K p(D|\Omega_j)\pi(\Omega_j)},$$

where $p(D|\Omega_k)$ is the integrated marginal likelihood and $\pi(\Omega_k)$ is the prior belief that Ω_k is the true model

MEM framework specifies priors with respect to the sources

