SEQUENCE LISTING

<110> Waldman, Scott A.

(110)	Park, Jason Schulz, Stephanie									
<120>	Compositions And Methods For Identifying And Targeting Cancer Cells Of Alimentary Canal Origin									
<130>	TJU2857									
<150> <151>	60/192,229 2000-03-27				· .	• • ,				
<150> <151>	09/819,254 2001-03-27									
<160>	2 .									
<170> PatentIn version 3.2										
<210> <211> <212>	1 1699 DNA					4				
<213>	Homo sapiens					•				
<400> aggtga	1 gcgg ttgctcgtcg	teggggegge	cggcagcggc	ggctccaggg	cccagcatgc	60				
gcgggg	gacc ccgcggccac	catgtatgtg	ggctatgtgc	tggacaagga	ttcgcccgtg	120				
tacccc	ggcc cagccaggcc	agccagcctc	ggcctgggcc	cgcaagccta	cggccccccg	180				
gccccg	cccc cggcgccccc	gcagtacccc	gacttctcca	gctactctca	cgtggagccg	240				
gccccc	gege eccegaegge	ctggggggcg	cccttccctg	cgcccaagga	cgactgggcc	300				
gccgcc	tacg gcccgggccc	cgcggcccct	gccgccagcc	cagcttcgct	ggcattcggg	360				
ccccct	ccag actttagçcc	ggtgccggcg	ccccctgggc	ccggcccggg	cctcctggcg	420				
cagccc	ctcg ggggcccggg	cacaccgtcc	tcgcccggag	cgcagaggcc	gacgccctac	480				
gagtgg	atgc ggcgcagcgt	ggcggccgga	ggcggcggtg	gcagcggtaa	gactcggacc	540				
aaggac	aagt accgcgtggt	ctacaccgac	caccaacgcc	tggagctgga	gaaggagttt	600				
cattac	agcc gttacatcac	aatccggcgg	aaatcagagc	tggctgccaa	tctggggctc	660				
actgaa	cggc aggtgaagat	ctggttccaa	aaccggcggg	caaaggagcg	caaagtgaac	720				
aagaag	aaac agcagcagca	acagccccca	cageegeega	tggcccacga	catcacggcc	780				
acccca	gccg ggccatccct	ggggggcctg	tgtcccagca	acaccagcct	cctggccacc	840				
tcctct	ccaa tgcctgtgaa	agaggagttt	ctgccatagc	cccatgccca	gcctgtgcgc	900				
cggggg	acct ggggactcgg	gtgctgggag	tgtggctcct	gtgggcccag	gaggtctggt	960				
cçgagt	ctca gccctgacct	tctgggacat	ggtggacagt	cacctatcca	ccctctgcat	1020				
cccctt	ggcc catctgtgca	gtaagcctgt	tggataaaga	ccttccagct	cctgtgttct	1080				
agacct	ctgg gggataaggg	agtccagggt	ggatgatctc	aatctcccgt	gggcatctca	1140				
agcccc	aaat ggttggggga	ggggcctaga	caaggctcca	ggccccacct	cctcctccat	1200				
acgttc	agag gtgcagctgg	aggctgctgt	ggggaccaca	ctgatcctgg	agaaaaggga	. 1260				
tggagc	tgaa aaagatggaa	tgcttgcaga	gçatgaçctg	aggagggagg	aacgtggtca	1320				

actcacacct	gcctcttcct	gcagcctcac	ttctacctgc	ccccatcata	agggcactga	1380
gcccttccca	ggctggatac	taagcacaaa	gcccatagca	ctgggctctg	atggctgctc	1440
cactgggtta	cagaatcaca	gccctcatga	tcattctcag	tgagggctct	ggattgagag	1500
ggaggccctg	ggaggagaga	agggggcaga	gtcttcccta	ccaggtttct	acacccccgc	1560
caggctgccc	atcagggccc	agggagcccc	cagaggactt	tattcggacc	aagcagagct	1620
cacagctgga	caggtgttgt	atatagagtg	gaatctcttg	gatgcagctt	caagaataaa	1680
tttttcttct	cttttcaaa				•	1699

<210> 2

<211> 265 <212> PRT

<213> Homo sapiens

<400> 2

Met Tyr Val Gly Tyr Val Leu Asp Lys Asp Ser Pro Val Tyr Pro Gly 1 $$ 15

Pro Ala Arg Pro Ala Ser Leu Gly Leu Gly Pro Gln Ala Tyr Gly Pro 20 25 30

Pro Ala Pro Pro Pro Ala Pro Pro Gln Tyr Pro Asp Phe Ser Ser Tyr 35 40 45

Ser His Val Glu Pro Ala Pro Ala Pro Pro Thr Ala Trp Gly Ala Pro 50 55 60

Phe Pro Ala Pro Lys Asp Asp Trp Ala Ala Ala Tyr Gly Pro Gly Pro 65 70 75 80

Ala Ala Pro Ala Ala Ser Pro Ala Ser Leu Ala Phe Gly Pro Pro Pro 85 90 95

Asp Phe Ser Pro Val Pro Ala Pro Pro Gly Pro Gly Pro Gly Leu Leu 100 105 110

Ala Gln Pro Leu Gly Gly Pro Gly Thr Pro Ser Ser Pro Gly Ala Gln $115 \\ 120 \\ 125$

Arg Pro Thr Pro Tyr Glu Trp Met Arg Arg Ser Val Ala Ala Gly Gly 130 140

Gly Gly Gly Ser Gly Lys Thr Arg Thr Lys Asp Lys Tyr Arg Val Val 145 150 155 160

Tyr Thr Asp His Gln Arg Leu Glu Leu Glu Lys Glu Phe His Tyr Ser 165 170 175

Arg Tyr Ile Thr Ile Arg Arg Lys Ser Glu Leu Ala Ala Asn Leu Gly 180 185 190

Leu Thr Glu Arg Gln Val Lys Ile Trp Phe Gln Asn Arg Arg Ala Lys
Page 2

195 200 205

Glu Arg Lys Val Asn Lys Lys Lys Gln Gln Gln Gln Gln Pro Pro Gln 210 $$ 215 $$ 220

Pro Pro Met Ala His Asp Ile Thr Ala Thr Pro Ala Gly Pro Ser Leu 225 230 230

Gly Gly Leu Cys Pro Ser Asn Thr Ser Leu Leu Ala Thr Ser Ser Pro 245 255