第二节 二维离散型随机变量及其概率分布

- 一、二维离散型随机变量及其概率分布
- 二、二维离散型随机变量的边缘分布律
- 三、二维离散型随机变量的独立性

2.1 二维离散型随机变量及其概率分布

定义2.1 若二维随机变量(X, Y)所有可能取的值是有限对或无限可列多对,则称(X, Y)为二维离散型随机变量.

定义2.2 设二维离散型随机变量(X,Y)所有可能取值为

$$(x_i, y_j)$$
, $(i, j = 1, 2, \cdots)$, 取值的概率为

$$P\{X = x_i, Y = y_j\} = p_{ij}$$
 $i, j = 1, 2, \dots$ ---(*)

则称(*)式为(X,Y)的概率分布(分布律),也称为X和Y的联合概率分布(联合分布律)。

其中
$$(1)p_{ij} \ge 0, (i, j = 1, 2, \dots)$$
 $(2)\sum_{i,j} p_{ij} = 1$

(X,Y) 的联合分布律

列

位

置

二维离散型随机变量(X, Y)的分布函数为

$$F(x,y) = p_{ij}.$$

例3.2.1 从装有3个黑球和2个白球的口袋中取球两次,每次任取一个,不放回.令

$$X =$$
 $\begin{cases} 0, \text{第一次取出白球}, \\ 1, \text{第一次取出黑球}, \end{cases}$ $Y =$ $\begin{cases} 0, \text{第二次取出白球}, \\ 1, \text{第二次取出黑球}. \end{cases}$

求(1) X与Y的联合分布律; (2) 联合分布函数.

(1)
$$P\{X = 0, Y = 0\} = P\{X = 0\}P\{Y = 0 \mid X = 0\} = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10}$$
,

 $P\{X = 0, Y = 1\} = P\{X = 0\}P\{Y = 1 \mid X = 0\} = \frac{2}{5} \times \frac{3}{4} = \frac{3}{10}$,

 $P\{X = 1, Y = 0\} = P\{X = 1\}P\{Y = 0 \mid X = 1\} = \frac{3}{5} \times \frac{2}{4} = \frac{3}{10}$,

 $P\{X = 1, Y = 1\} = P\{X = 1\}P\{Y = 1 \mid X = 1\} = \frac{3}{5} \times \frac{2}{4} = \frac{3}{10}$,

于是(X,Y)的分布律为

XY	0	1	
0	1	3	
U	10	$\frac{10}{3}$	
1	3	3	
•	10	10	

(2) 求分布函数 F(x, y);

当
$$x < 0, y < 0$$
 时, $F(x, y) = 0$

当
$$x<0,y\ge0$$
时, $F(x,y)=0$

当
$$y < 0, x \ge 0$$
时, $F(x, y) = 0$

当
$$0 \le x < 1, 0 \le y < 1$$
 时, $F(x, y) = P\{X = 0, Y = 0\} = 1/10$,

当 $0 \le x < 1, y \ge 1$ 时,

$$F(x,y) = P\{X = 0, Y = 0\} + P\{X = 0, Y = 1\} = 4/10$$

当
$$x \ge 1, 0 \le y < 1$$
 时, $F(x, y) = 4/10$,

当
$$x \ge 1, y \ge 1$$
时, $F(x, y) = 1$,

可求得(X,Y)的分布函数为

$$F(x,y) = \begin{cases} 0, & x < 0 y < 0, \\ 1/10, & 0 \le x < 1, \ 0 \le y < 1, \\ 4/10, & 0 \le x < 1, \ y \ge 1 x \ge 1, 0 \le y < 1, \\ 1, & x \ge 1, y \ge 1. \end{cases}$$

例 3.2.2 设随机变量 X在1,2,3,4四个整数中等可能地取一个值,另一个随机变量 Y在1~X中等可能地取一整数值,试求(X,Y)的分布律.

解: X的可能取值是 1, 2, 3, 4, Y的可能取值是不大于X的正整数, 当i < j时, $p_{ii} = P\{X = i, Y = j\} = 0$, 当 $i \geq j$ 时, $p_{ij} = P\{X = i, Y = j\}$ $= P\{X = i\}P\{Y = j \mid X = i\}$ 1 1 1 $=\frac{-\times-}{4}=\frac{-}{4i}$

(X,Y)的联合分布律的表格形式为:

X	1	2	3	4
1	$\frac{1}{4}$	0	0	0
2	$\frac{1}{8}$	$\frac{1}{8}$	0	0
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0
4	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	1 16

2.2 二维离散型随机变量的边缘分布

二维离散型随机变量(X,Y)中,随机变量 X的分布律称为(X,Y)关于X的边缘分布律,Y的分布律称为(X,Y)关于Y的边缘分布律.

已知(X,Y)的分布律为

$$P{X = x_i, Y = y_j} = p_{ij}, (i, j = 1, 2, \dots)$$

如何求边缘分布律?

$$P\{X = x_i\} = P\{\{X = x_i\} \cap \Omega\}$$

$$= P\{\{X = x_i\} \cap \left(\bigcup_{j=1}^{\infty} \{Y = y_j\}\right)\}$$

$$P\{X = x_i\} = P\left\{ \bigcup_{j=1}^{\infty} \left(\{X = x_i\} \cap \{Y = y_j\} \right) \right\}$$

$$= P\left\{\bigcup_{j=1}^{\infty} \{X = x_i, Y = y_j\}\right\} = \sum_{j=1}^{\infty} P\{X = x_i, Y = y_j\}$$

$$=\sum_{i=1}^{\infty}p_{ij}\stackrel{\triangle}{=}p_{i}. \qquad (i=1,2,\cdots)$$

$$P\{X=x_i\} = \sum_{i=1}^{\infty} p_{ij} = p_i. \quad (i=1,2,\cdots)$$

$$P\{Y = y_j\} = \sum_{i=1}^{\infty} p_{ij} \triangleq p_{ij} \quad (j = 1, 2, \dots)$$

关于X的 边缘 分布律

关于*Y*的边缘 分布律

定义2.3 设二维离散型随机变量(X,Y)的分布律为

$$P\{X = x_i, Y = y_j\} = p_{ij}, (i, j = 1, 2, \dots)$$

则① 关于X的边缘分布律为

$$P\{X=x_i\} = \sum_{i=1}^{\infty} p_{ij} = p_i, \ (i=1,2,\cdots)$$

② 关于Y的边缘分布律为

$$P{Y = y_j} = \sum_{i=1}^{\infty} p_{ij} = p_{ij}, (j = 1, 2, \dots)$$

注意

(1) 联合分布律可确定边缘分布律, 反之不一定.

(2)边缘分布律都是一维随机变量的分布律.

二维离散型随机变量的边缘分布律:

X的边缘分布律

\mathcal{Y}_1	\mathcal{Y}_2	• • •	y_j .	• •	$P\{X=x_i\}=P_{i\bullet}$
p_{11}	p_{12}	•••	p_{1j}	•••	p ₁•
p_{21}	p_{22}	• • •	p_{2j}	•••	p _{2•}
÷	:	:	•	:	:
p_{i1}	p_{i2}	• • •	p_{ij}	•••	$p_{i\bullet}$
•	•	•	•	•	
$p_{ullet 1}$	$p_{ullet 2}$	•••	$p_{ullet j}$	•••	1
	$egin{array}{c} p_{11} \ p_{21} \ dots \ p_{i1} \ dots \ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Y的边缘分布律

二维离散型随机变量的分布函数:

$$F(x,y) = P\{X \le x, Y \le y\} = \sum_{x_i \le x} \sum_{y_i \le y} p_{ij}$$

	X	${\cal Y}_1$	${\mathcal Y}_2$	••• 〕	y_j	•	$P\{X=x_i\}=P_{i\bullet}$
	x_1		p_{12}				p _{1•}
	x_2	p_{21}	p_{22}	• • •	p_{2j}	• • •	p _{2•}
	: :	÷	:	:	•	•	
	X_i	p_{i1}	p_{i2}	• • •	p_{ij}	• • •	$p_{i\bullet}$
	•	•	•	•	•	•	
$P\{Y=y\}$	$\{p_j\} = P_{\bullet j}$	$p_{ullet 1}$	$p_{ullet 2}$	•••	$p_{ullet j}$	•••	1

关于X的边缘分布函数为

$$F_X(x) = F(x, +\infty) = \sum_{x_i < x} \sum_{i=1}^{\infty} p_{ij} = \sum_{x_i < x} p_{i\cdot},$$

关于Y的边缘分布函数为

$$F_{y}(y) = F(+\infty, y) = \sum_{y_{j} \leq y} \sum_{i=1}^{\infty} p_{ij} = \sum_{y_{j} \leq y} p_{\cdot j}$$

例3.2.3 袋中有3个黑球,2个白球.每次从中任意取出1个球,不放回连抽两次,令

$$X = \begin{cases} 0, & \text{第一次取到白球,} \\ 1, & \text{第一次取到黑球.} \end{cases}$$
 $Y = \begin{cases} 0, & \text{第二次取到白球,} \\ 1, & \text{第二次取到黑球.} \end{cases}$

求关于 X 的边缘概率分布和关于 I的边缘概率分布.

解: 边缘概率分布律为

XY	0	1	$P\{X=x_{i\bullet}\}$
0	0.1	0.3	0.4
1	0.3	0.3	0.6
$P\{Y=y_{\bullet j}\}$	0.4	0.6	1

关于X的边缘分布为

\boldsymbol{X}	0	1
p_{k}	0.4	0.6

关于Y的边缘分布为

Y	0	1
$\overline{p_k}$	0.4	0.6

例3.2.4 设(X,Y)的概率分布如下表所示,求

$$(2)P\{X \le 0, Y \le 0\};$$

$$(3)P\{XY=0\}$$

$P\{X=x_{i\bullet}\}$	2	1	0	XY
0.55	0.15	0.3	0.1	-1
0.25	0	0.05	0.2	0
0.2	0.1	0.1	0	2
1	0.25	0.45	0.3	$P\{Y=y_{\bullet j}\}$

两个事件不互

斥,有交集

解:(1)见表最后一行、最后一列.

$$(2)P\{X \le 0, Y \le 0\}$$

$$= P({X = -1, Y = 0} \cup {X = 0, Y = 0})$$

$$= P{X = -1, Y = 0} + P{X = 0, Y = 0}$$

$$= 0.1 + 0.2 = 0.3$$

$$(3)P\{XY=0\} = P(\{X=0\} \cup \{Y=0\})$$

$$= P\{X = 0\} + P\{Y = 0\} - P\{X = 0, Y = 0\}$$
$$= 0.25 + 0.3 - 0.2 = 0.35$$

2.3 二维离散型随机变量的独立性

若离散型随机变量 (X,Y)的联合分布律为

$$P{X = i, Y = j} = p_{ij}, i, j = 1,2,\dots$$

X和Y相互独立 \iff

$$P{X = x_i, Y = y_j} = P{X = x_i}P{Y = y_j},$$

→ 独立性 → 联合分布律 可以

2.3 二维离散型随机变量的独立性

定理 设二维离散型随机变量(X,Y),则X与Y相互独立的充要条件是对任意的i,j,都有

$$P\{X=x_i, Y=y_j\} = P\{X=x_i\} \cdot P\{Y=y_j\}, \quad (i, j=1, 2, \cdots)$$

$$\mathbb{P}_{i,j} = p_{i,j}, \quad (i, j=1, 2, \cdots)$$

判断随机变量的独立性的方法:

(1) 按定义判断 (2) 从直观背景判断

例如 甲袋中有3红球2白球; 乙袋中有4红球5白球. 从甲乙两袋中各任取两球,用 X、Y分别表示取到白球的个数,问X与Y是否独立?

例3.2.5 袋中有3个黑球,2个白球.每次从中任意取出1个球,连抽两次,令

$$X = \begin{cases} 0, & \text{第一次取到白球,} \\ 1, & \text{第一次取到黑球.} \end{cases}$$
 $Y = \begin{cases} 0, & \text{第二次取到白球,} \\ 1, & \text{第二次取到黑球.} \end{cases}$

分别判断不放回抽样和放回抽样时,X与Y的独立性.

解:

不放回抽样 时分布律:

XY	0	1	$P\{X=x_i\}$
0	0.1	0.3	0.4
1	0.3	0.3	0.6
$P{Y=y_j}$	0.4	0.6	

由表知

不放回抽样时,X与Y不独立.

放回抽样 时分布律:

YY	0	1	$P\{X=x_i\}$
0	$\frac{4}{25}$	$\frac{6}{25}$	$\frac{2}{5}$
1	$\frac{6}{25}$	25	$\frac{3}{5}$
$P{Y=y_j}$	$\frac{2}{5}$	$\frac{3}{5}$	

放回抽样时,X与Y相互独立.

例3.2.6 设A, B是两个随机事件, P(A)=1/4, P(B|A)=1/3, P(A|B)=1/2,

求(X,Y)的联合分布,X,Y的边缘分布并判断X与Y是否相互独立。

解: 由已知可得 $P(AB) = P(A)P(B|A) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$,

$$P(B) = \frac{P(AB)}{P(A|B)} = \frac{1/12}{1/2} = \frac{1}{6},$$

$$P{X = 1, Y = 1} = P(AB) = \frac{1}{12}, P{X = 1, Y = 0} = P(AB) = P(A) - P(AB) = \frac{1}{6},$$

 $P{X = 0, Y = 1} = P(\overline{AB}) = P(B) - P(AB) = \frac{1}{12},$

X	0	1	$P\{X=x_i\}$
0	$\frac{2}{3}$	1 12	3 4
1	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{4}$
$P\{Y=y_j\}$	$\frac{5}{6}$	$\frac{1}{6}$	

$$P\{X = 0, Y = 0\} = P(\overline{AB}) = P(\overline{A \cup B})$$

$$= 1 - P(A) - P(B) + P(AB) = \frac{2}{3}.$$

由表知

 $X \rightarrow Y$ $X \rightarrow$

例3.2.7 设 (X,Y) 的分布律为

XX	1	2	$P\{X=x_i\}$
1	1/8	b	$b + \frac{1}{8}$
2	a	1/4	$a + \frac{1}{4}$
3	1/24	1/8	<u>1</u> 6
$P\{Y=y_j\}$	<i>a</i> +	$\frac{1}{6}b+\frac{3}{8}$	

(1) 求a,b应满足的条件; (2) 若X,Y独立, 求a,b.

解

$$(1)a \ge 0, b \ge 0,$$

$$a+b=1-(\frac{1}{8}+\frac{1}{24}+\frac{1}{4}+\frac{1}{8})=\frac{11}{24}$$

例3.2.7 设 (X,Y) 的分布律为

XY	1	2	$P\{X=x_i\}$
1	1/8	b	$b + \frac{1}{8}$
2	a	$\frac{1}{4}$	$a + \frac{1}{4}$
3	$\frac{1}{24}$	1/8	$\frac{1}{6}$
$P{Y=y_j}$	<i>a</i> +	$\frac{1}{6}b+\frac{3}{8}$	

(1) 求a,b应满足的条件; (2) 若X,Y独立, 求a,b.

(2) 若X, Y相互独立, 则

$$\frac{1}{24} = P\{X = 3, Y = 1\} = P\{X = 3\} \cdot P\{Y = 1\} = \frac{1}{6}(a + \frac{1}{6})$$

$$\therefore a = \frac{1}{12};$$

$$\frac{1}{8} = P\{X = 3, Y = 2\} = P\{X = 3\}P\{Y = 2\} = \frac{1}{6}(b + \frac{3}{8})$$
$$\therefore b = \frac{3}{8}.$$