模式识别 2020-2021 学期期末试卷

	. 简答题 请介绍模式识别的概念,	并说明样本、	模式和模式类之	间的联系和区别。	(10 分)
2.	介绍贝叶斯定理及其公式	、 并说明先验	放概率、 后验概率	和类条件概率的定	三义。(10 分)

3. 介绍参数估计量的三个评价标准:无偏性、有效性、一致性(10分)

4.	简单介绍神经元模型,	以及 Hebb 和 Delta 学	习规则。(10 分)	
5.	请简单介绍遗传算法的	的步骤。(10 分)		
_) I the U.S.			
1.1		的最小错误率贝叶斯决策	策,要求写出对应判别	公式以及具体公式推
导。	。(10分)(在1.1和1.2寸	中任选一题)		

1.2 假定在细胞识别中,病变细胞的先验概率和正常细胞的先验概率分别为 $P(\omega_1)=0.05$, $P(\omega_2)=0.95$ 。现有一待识别细胞,其观察值为 X,从类条件概率密度分布曲线上查的: $P(X|\omega_1)=0.5$, $P(X|\omega_2)=0.2$,试用最小错误率贝叶斯决策对细胞 X 进行分类。

2. 通过最大似然估计计算一维正态分布的两个参数 μ , σ^2 的表现形式。(10 分)

3. 有一个非线性的三次判别函数 $z = g(x) = x^3 + 4x^2 + x + 8$. 试建立映射 $x \to y$,使得 z 转化为 y 的线性判别函数。(10 分)

4.1 设两类样本的类内离散矩阵分别为
$$S_1 = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix}$$
 , $S_2 = \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix}$, 各类样本均值分别为

 $m_1 = (2,0)^t$, $m_2 = (2,2)^t$,试用 Fisher 准则求其决策面方程。(10 分)

4.2 简述 Fisher 线性判别的过程,并说明每个变量的意义。

三. 论述题

1.根据人工智能与模式识别的发展趋势,结合自我发展规划分析当前的挑战和机遇。(10分)