# 머신러닝 기반의 이상거래 탐지시스템 동향

(보안기술연구팀, 2017.8.25.)

#### 1 개 요

- □ 전자금융거래의 거래량 증가와 간편 결제 수단의 다양화, 동시에 나날이 치밀해져가는 사이버 금융 사기(Fraud) 방법들은 금융회사의 사기 탐지를 어렵게 만듦
  - 이에 금융권에서는 전자금융거래를 노린 사기 행위를 사전에 탐지 및 차단하여 거래의 보안성을 향상시키는 이상거래 탐지시스템(Fraud Detection System, FDS)을 도입
- □ 한편, 최근 대량의 정보를 학습하여 예측·분류의 정확도를 향상시키는 머신러닝 기술이 발전하면서, 금융회사에서는 FDS 성능 고도화 방안으로 머신러닝 기술에 관심
  - 금융회사는 머신러닝 기반 FDS 운영을 통해 시스템의 향상된 탐지율, 이상행위에 대한 신속한 대응, 자동화된 탐지 결과 반영 등을 기대1)

#### ─── < FDS 기술 변천과정 > ──

- 금융거래 기술의 발전에 따라 사기 탐지 방식이 점차 컴퓨터 기반의 자동화 학습 방식으로 변화
  - (1) 전자금융거래의 사기 탐지를 위해 초기에는 색출샘플링(Discovery Sampling)<sup>2)</sup>과 같은 방법이 이용되었으나 거래량 및 거래과정의 복잡도 증가 등으로 인해 이상거래탐지가 어려워짐
  - (2) 탐지의 효율성 증가를 위해 컴퓨터 기반으로 자동화된 FDS가 개발되었지만, 전문가가 사전에 정의한 룰(규칙)에 의존하는 동작 방식으로 한계에 부딪힘

<sup>1)</sup> The Role of Machine Learning in Fraud Management, CyberSource, 2016

- (3) 룰 기반 FDS의 한계를 극복하고자 인간의 개입을 최소화하고 누적된 금융거래 정보의 활용을 극대화시키는 데이터마이닝 기반 FDS가 연구 개발
  - 데이터마이닝 기반 FDS는 수학, 통계, 머신러닝 등의 알고리즘을 사용하여 물생성 및 반영, 새로운 사기 패턴 발견 등을 자동화함으로서 사기 패턴을 일반화하고 오탐률을 감소시킴

| 이에 본 . | 보고서에서 | 는 FDS의 | ] 머신러닝 | 활용 | 목적과 | 이상거래 | 탐지 |
|--------|-------|--------|--------|----|-----|------|----|
| 과정상의   | 머신러닝  | 기술 활   | 용에 대해  | 소개 |     |      |    |

## 2 FDS의 머신러닝 활용 목적

- □ 인공지능 구현 기술로 알려진 머신러닝은 수학적 알고리즘의 반복을 통해 기계 스스로가 대량의 과거 정보를 학습하게 함으로서 인간이 발견하기 어려운 정보 안의 패턴을 식별하고 이를 기반으로 예측・분류 등을 수행3)
  - 따라서, 금융회사는 머신러닝을 활용한 사기 탐지 방식이 전통적 방식(룰, 인간에 의한 수동적 탐지) 보다 정확성, 신규 패턴 발견 가능성, 대응속도, 편리성 등을 향상시킬 것으로 기대
    - (실시간 의사결정) 머신러닝 기술과 컴퓨팅 파워(CPU, GPU 등)의 발전은 금융회사가 실시간으로 금융거래를 모니터링하고 탐지된 비정상 거래 행위에 대해 즉각적인 대응 기회를 제공
    - (시스템 자동화) 인간의 직접적인 시스템 튜닝, 블랙/화이트 리스트 및 통계적 규칙의 등록·갱신·삭제 등의 과정을

<sup>2)</sup> 색출샘플링(Discovery Sampling): 모집단에서에서 표본을 추출한 후, 표본을 대상으로 사기 거래와 같은 이상 징후 탐지를 수행. 한 건의 오류(이상 징후)라도 탐지되지 않은 경우 모집단을 수용하지만, 오류가 탐지된 경우 샘플링 크기를 증가시키면서 수용가능 한 이상 징후 비율을 측정. 이에 따라 모집단의 수용 여부를 결정

<sup>3)</sup> Andras Cser, Stop Billions In Fraud Losses With Machine Learning, Forrester, 2015.4.6.



머신러닝으로 자동화함으로써 시스템 유지 관리에 효율성 제고

- (정확도 향상) 기존 시스템에서 다루기 어려웠던 대량의 정보를 학습하여 시스템의 탐지 정확도를 향상 시키고, 지금까지 발견이 어려웠던 이상 징후를 탐지하며, 오탐은 인간으로부터 피드백 받음으로서 지속적인 성능 개선 가능

## 이상거래 탐지과정에서의 머신러닝 적용

(FDS 구성요소) 도입 권역(은행, 카드 등)에 따라 구성 방식에 차이가 있을 수 있으나, 크게 4가지 영역인 정보수집 및 가공, 분석/탐지, 대응, 모니터링 및 감사로 구성4)



[그림 1] 이상거래 탐지시스템(FDS) 구성 예시

○ (정보 수집 및 가공) 금융거래 이용자의 PC, 모바일 등에서 수집한 정보(금융거래 단말기, 로그인, 거래은행 등)를 축적하고, 시스템(분석/탐지 단계)에서 필요한 형태로 전처리

<sup>4)</sup> 금융보안연구원, 이상금융거래 탐지시스템 기술 가이드, 2014.8.



- 시스템에서 다양한 출처로부터 수집된 대량의 정보를 곧바로 사용하는 것은 어렵고, 시스템 복잡도를 증가시킬 수 있어 정보의 질적 향상 및 양적 감소 등을 위한 과정이 수행
- 정보가공을 위해 정보의 질적 손실은 최소화하면서 양을 축소하는 머신러닝 방법 중 하나인 차원축소(Dimensionality Reduction)5) 등이 주로 연구되고,
- 차원축소 방법으로는 크게 특징선택(Feature Selection)6), 특징추출(Feature Extraction)<sup>7)</sup>이 존재
- (분석/탐지) 전처리된 금융거래 정보와 이상금융거래 유형 정보를 머신러닝으로 분석하여 이상거래 탐지
  - 분석방법으로 오용(Misuse)탐지, 이상(Anomaly)탐지 등이 존재하며, 각 방법에 대한 설명은 아래 "FDS의 주요 분석/ 탐지 방법" 표와 같음

#### <FDS의 주요 분석/탐지 방법>

| 분석방법                 | 분석모델          | 설명                                                                                                                                                          |
|----------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 오용<br>탐지<br>(Misuse) | 패턴탐지,<br>상태전이 | - 금융거래정보들 중 '사기'에 해당하는 정보들을 통계,<br>휴리스틱 등의 방법을 사용하여 시그니처(=룰, 규칙)를<br>정의하고, 이를 기반으로 '사기'와 '비(非) 사기'를 판별<br>- 전문가 시스템(Expert System)으로 볼 수 있으며, 빠르고<br>단순한 구조 |

<sup>5)</sup> 차원축소(Dimensionality Reduction): 다양한 특징(속성)을 가지는 고차원(high-dimension)의 데이터를 머신러닝 등의 알고리즘에서 처리할 경우, 용량이 큰 전체 데이터와는 반대로, 데이터 내의 각 특징별 데이터 수는 적어지는 현상이 나타날 수 있음. 이로 인해 머신러닝이 적절히 이루어지지 않거나 과적합(Overfitting), 메모리 사용량 증가, 알고리즘 연산의 복잡성 증가 등의 현상이 발생 가능. 따라서 수집된 데이터를 가장 잘 대표할 수 있는 주요 특징들을 고르는 차원축소 과정이 필요

<sup>6)</sup> 특징선택(Feature Selection): 분석에 사용되어질 관련 있는 특징(속성)들을 직접 선택하는 방법. 대표적인 방법 으로 Lasso, Information Gain, Laplacian Score 등이 존재

<sup>7)</sup> 특징추출(Feature Extraction): 고차원(high-dimension)의 특징을 갖는 원본 데이터를 저차원(low-dimension) 으로 투영(projection)시킴으로써 새로운 특징 데이터를 추출. 새롭게 생성된 데이터는 대게 원본 데이터와 선형 또는 비선형 관계를 가짐. 대표적인 방법으로 PCA(Principle Component Analysis), LDA(Linear Discriminant Analysis). SVD(Singular Value Decomposition) 등이 존재

|                 |                                                                                                       | - (이슈) 잘 알려지지 않은 '사기' 패턴의 경우 기존에 등록<br>된 시그니처로 탐지되지 않아 발견이 어려움<br>- 이러한 이슈로 이상탐지 방법이 사용                                                                                                                                                                                                         |  |
|-----------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 이상              | 지도학습<br>(Supervised)                                                                                  | <ul> <li>분석/탐지를 위해 수집되어진 금융거래정보들을 '사기', '비(非) 사기'로 태깅하고, 두 영역을 학습하여 각 경우에 대한 일반적인 패턴을 추출</li> <li>추출된 금융거래패턴을 이용하여 새롭게 입력되는 금융거래가 '사기'인지 '비(非) 사기'인지 판별</li> <li>(이슈) 수집된 대용량 금융거래정보들 중 '사기'에 해당하는 정보가 많지 않고, 태깅된 정보들로 만드는 것이 어려움</li> <li>이러한 이슈로 비지도학습 또는 하이브리드(지도학습+비지도학습) 방법이 사용</li> </ul> |  |
| 탐지<br>(Anomaly) | 비지도학습<br>(Unsupervised)                                                                               | <ul> <li>수집되어진 금융거래정보들을 태깅하지 않고, 시스템 정보들을 분석하여 그룹화</li> <li>각 그룹은 '사기', '비(非) 사기' 등으로 분류되고, 그룹특성과 새롭게 입력되는 금융거래의 특성을 비교하 '사기'인지 '비(非) 사기'인지 판별</li> <li>(이슈) '사기' 거래정보에 대한 정확한 태킹 없이 학함으로 지도학습 방법에 비해 오탐률이 높을 수 있음</li> </ul>                                                                   |  |
|                 | 하이브리드<br>(지도+비지도)                                                                                     | - 금융거래정보들 중 적은양의 일부를 '사기', '비(非) 사기'로<br>태깅하고, 나머지는 태깅이 없는 형태로 학습                                                                                                                                                                                                                               |  |
| 1               | - 오용탐지와 이상탐지 방법이 가진 단점을 상호 보완하는 방식<br>- 알려지지 않은 '사기' 패턴은 이상탐지로 탐지하고, 상대적으로 높은 이상<br>탐지의 오탐률을 오용탐지로 감소 |                                                                                                                                                                                                                                                                                                 |  |

- 현재까지 룰 기반의 오용탐지 방법이 많이 사용되고 있지만 최근 딥러닝 기반의 이상탐지 또는 하이브리드(오용+이상) 탐지 방법이 도입 중
- 이상탐지 방법에서 사용되는 주요 머신러닝 알고리즘으로 규칙 유도(Rule Induction)<sup>8)</sup>, 랜덤포레스트(Random Forest)<sup>9)</sup>,



서포트벡터머신(SVM)10), 자기조직화맵(SOM)11), 은닉마코브 모델(HMM)<sup>12</sup>), 유전알고리즘(GA)<sup>13</sup>), 딥러닝(Deep Learning)<sup>14</sup>) 등이 존재

- (대응) 이상거래로 판별된 거래정보에 대해 승인/차단/추가 인증 등을 수행하며, FDS에서 재사용할 수 있도록 저장하고 관리자 및 이용자에게 통지
- (모니터링 및 감사) FDS 전 과정에 대한 관리 및 모니터링을 수행하고, 경우에 따라 수집될 수 있는 개인정보 등에 대한 관리 방안 제공

### 4 국내·외 머신러닝 기반 FDS 활용 현황

머신러닝의 FDS 적용은 국내보다 국외에서 활발히 이루어 졌으며, 금융회사들은 주로 머신러닝 기술 전문 업체와 협력 하여 시스템을 구축

알고리즘이 존재

<sup>8)</sup> 규칙 유도(Rule Induction): 데이터의 패턴을 찾아 IF-THEN 형태의 규칙으로 정의하는 방법, 데이터의 일부 또는 전체를 표현하는 규칙을 반복적으로 찾아나가면서 규칙 집합을 생성하고, 과적합(Overfitting)을 완화시키기 위해 프루닝(가지치기) 과정을 거침

<sup>9)</sup> 랜덤포레스트(Random Forest): 단일 학습 알고리즘의 성능보다 더 높은 성능을 얻기 위해 다중 학습 알고 리즘을 사용하는 앙상블 학습 방법의 일종으로, 다수의 의사결정나무 알고리즘으로부터의 평균치를 이용하여 동작 ※ 의사결정나무(Decision Tree): 다수의 변수로 표현되는 데이터 집합에서 정해진 규칙에 따라 변수들을 반복적 으로 분할함으로써 전체 데이터 집합에 대한 분류나무를 생성. 대표적으로 ID3, C4.5, C5.0, CART 등의

<sup>10)</sup> 서포트벡터머신(SVM, Support Vector Machine): 딥러닝 활성화 이전까지 일반적으로 많이 사용되어진 분류 알고리즘으로 기본적으로는 데이터를 두 개의 그룹으로 분류하며, 이 때 2개의 그룹으로 데이터를 분류하는 최적의 기준선을 찾는 것이 알고리즘의 목적. 또한 N개의 그룹으로 데이터를 분류하기 위해 커널트릭을 사용

<sup>11)</sup> 자기조직화맵(SOM, Self-Organizing Map): 비지도학습 신경망 모델의 유형 중 하나로 정보 집합을 그래프로 표현하여 분석할 수 있으며, 유사한 패턴을 가진 정보들을 클러스터링

<sup>12)</sup> 은닉마코브모델(HMM, Hidden Markov Model): 음성·필기·동작 인식 등과 같이 시간에 따라 변화하는 것에서 패턴을 인식하는데 유용. 확률이론을 기반으로 하며 이전 상태와 현재 상태의 값을 이용해 미래의 값을 예측하는 방법. 고려하는 상태의 수에 따라 알고리즘의 복잡도가 증가

<sup>13)</sup> 유전알고리즘(GA, Genetic Algorithm): 유전학에서 다윈의 진화론 개념을 이용한 것으로 유전자가 세대를 반복하면서 자연환경에 적응할 수 있는 적합한 형태로 변이하고 살아남는 것처럼 해결하고자 하는 문제의 가능한 해들을 대상으로 선택, 교차, 변이 등을 수행함으로써 가능한 최적의 해를 찾아내는 방법

<sup>14)</sup> 딥러닝(Deep Learning): 인간의 신경망 구조에서 착안한 학습 알고리즘으로 입력층, 출력층, 다수의 은닉층을 구성하여 학습하는 방식, 대표적으로 심층 신경망, 컨볼루션 신경망, 재귀적신경망, 오토인코더 등이 존재

- 사용하는 머신러닝 기술로 최근 우수한 성능을 보이는 딥러닝이 주로 채택되었으며, 그 외 기존에 알려진 자기조직화맵, 서포트 벡터머신, 랜덤포레스트 기술 등이 활용
- 한편, 대다수 기업이 머신러닝 도입 여부와 도입 시 사용한 기술을 비공개
- □ 국외 금융회사의 머신러닝 기반 FDS 활용
  - (Paypal) 딥러닝 기반의 FDS가 금융거래 고객 약 1억 7천만명이 발생시킨 약 40억 건의 거래정보를 학습하여 사기 탐지를 수행
  - (BillGuard) 고객의 신용카드 사용과 은행계좌 이체를 딥러닝 기반 시스템으로 모니터링하고, 이상징후 발생 시 해당 고객의 사용자 앱으로 통지
  - (Sul America) 보험 클레임의 약 20%가 사기, 남용 등에서 비롯된 것을 파악하고, 보험금 지급 및 클레임 과정에서의 정확성, 유효성 등을 확인하고자 딥러닝 기반 시스템을 도입
  - (D'Oro) 사기로 인한 은행 손실을 감소시키기 위해 딥러닝 기반 FDS 도입
  - (BAE System) 금융거래 모니터링을 위해 자기조직화맵 알고 리즘 기반의 NetReveal 시스템을 개발하였으며, 이를 통해 유사한 패턴을 보이는 금융거래자들의 행위를 그룹화하여 이상행위 식별
  - (US Credit Issuer) 랜덤포레스트, 서포트벡터머신 등 여러 머신러닝 알고리즘을 활용한 시스템을 도입하여 이상거래의 탐지율 향상

- **(US Bank)** AML(Anti Money Laundering) 시스템의 오탐률을 낮추고자 비지도 및 지도학습 기반의 머신러닝 솔루션 도입
- □ 국내 금융회사에서는 카드사와 은행을 시작으로 머신러닝 기반 FDS를 도입(예정 포함)하여 운영
  - (SK증권) 룰 방식(오용탐지)과 딥러닝 방식(이상탐지)이 혼합 된 하이브리드(오용+이상 탐지) FDS 도입
  - (신한은행) 딥러닝 기반 FDS의 모형을 구축하고, 개발한 학습 모형 16개에 대해 기존 방식과의 정확도 비교 결과 딥러닝 기반 모형의 우수성 확인
  - (한국스마트카드) 딥러닝 기반 FDS를 구축하였고, 시스템 오류를 이상거래로 탐지하는 등의 오탐이 발견되었으나 실제 이상거래에 대해서는 우수한 탐지 성능을 보임
  - (KB국민카드) '17년 3분기 내 딥러닝 기반 FDS 도입 예정

#### 5 결론

- □ 금융 분야의 이상거래 탐지시스템(FDS) 활용은 이미 활성화 된 상태로 현재는 머신러닝 기술을 적용하여 시스템의 성능 향상을 도모하거나 관심 수준
- □ FDS를 도입한 회사가 직면하는 주요 이슈로 Concept Drift<sup>15)</sup>의 어려움, 정상/비정상 정보의 불균형, 대용량 정보의 축소, 실시간 탐지의 어려움 등이 존재 할 수 있으며,

<sup>15)</sup> Concept Drift: 시간의 흐름에 따라 변화하는 인간 행위 등의 현상을 모델링하는 연구로 FDS에서의 Concept Drift는 시간에 따른 합법적인 이용자와 불법적인 이용자의 행위 모델링을 의미



- 이는 금융 분야 등에서 사기 탐지를 연구해온 학계의 주요 연구 이슈16)와 유사
- 주요 이슈 중 Concept Drift를 제외한 실시간탐지, 정상/ 비정상 정보의 불균형, 대용량 정보의 축소는 머신러닝과 관련 있는 부분이며, 각 항목에 대한 설명은 아래 "FDS의 주요 이슈" 표와 같음

#### <FDS의 주요 이슈>

| 이슈 항목             | 설명                                                                                                                                                                                                                                                                                                        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 실시간 탐지            | - FDS는 크게 이상징후 발견 시 즉각적인 대응을 하는 온라인 방식과<br>그렇지 않은 오프라인 방식이 존재<br>- 금융 분야와 같이 온라인 방식이 주로 요구되는 상황을 위해 제한된<br>자원(시간, 컴퓨팅 파워 등)을 기반으로 다양한 머신러닝 알고리즘들이<br>효과적으로 동작할 수 있도록 연구 중                                                                                                                                 |
| 정상/비정상 정보의<br>불균형 | <ul> <li>사기 탐지를 위해 수집된 정보를 정상 행위와 비정상 행위(사기 패턴 등)로 분류할 때 비정상 행위 정보의 양이 상대적으로 매우 부족</li> <li>2009년 UCSD 데이터마이닝 대회에서 공개한 온라인 거래 데이터의 학습데이터를 살펴보면 97%가 정상적 행위이며 3%만이 비정상적 행위</li> <li>이러한 정보 불균형은 머신러닝의 학습 성능을 감소시킬 수 있는 요소로 작용되며, 많은 연구에서는 정보의 균형을 맞추기 위해 Under Sampling<sup>17)</sup> 등의 방법을 사용</li> </ul> |
| 대용량 정보의 축소        | - 수집된 대량의 정보를 FDS에서 곧바로 사용하는 것은 어려운 일이며,<br>시스템 복잡도의 증가 가능성이 존재<br>- 따라서 분석/탐지를 위한 머신러닝 이전에, 정보의 질적 향상 및 양적<br>축소 등을 위한 과정이 수행되며, 머신러닝 기술(특징선택, 특징추출<br>등)이 적용 가능(상세 내용은 본문의 "FDS 구성요소" 참고)                                                                                                               |

<sup>16)</sup> Abdallah, Fraud Detection System: A survey, Journal of Network and Computer Application, 2016.4.

<sup>17)</sup> Under Sampling: 머신러닝에 사용되는 학습정보(training dataset)에서 정상/비정상 정보의 균형을 맞추고자 정상 정보의 일부를 삭제함으로써 정상 및 비정상 정보의 비율을 맞추는 것



- □ 최근 머신러닝 기술 중 하나인 딥러닝이 세계적으로 확산됨에 따라 많은 금융회사에서 이에 대한 활용방안 모색
- □ 하지만, 금융회사에서는 머신러닝 기술이 신기술임을 인지하고 시대 흐름에 따른 도입 보다 현 시스템과의 성능을 비교하면서 단계적인 도입 방안을 고려해보는 것이 필요
  - 또한, 전자금융거래 사기가 동일한 수법으로 여러 금융회사에 시도될 수 있는 만큼 금융 회사의 보안성 및 신뢰성 향상을 위해 탐지된 사기 패턴, 탐지에 사용된 정보 등을 적극적으로 공유하는 것이 필요