Symbolic Dynamics, Profinite Groups and Profinite Monoids

Benjamin Steinberg

Carleton University

University of Leipzig

May, 2009

- A* denotes the free monoid on A.
- We always assume $2 \le |A| < \infty$
- ullet An ultrametric can be defined on A^* by putting

$$d(u,v) = |A|^{-|u \wedge v|}$$

- The completion is $A^* \cup A^{\omega}$, which can be viewed as a regular rooted tree together with its boundary.
- The boundary A^{ω} is the realm of symbolic dynamics

- A^* denotes the free monoid on A.
- We always assume $2 \le |A| < \infty$.
- An ultrametric can be defined on A^* by putting

$$d(u,v) = |A|^{-|u \wedge v|}$$

- The completion is $A^* \cup A^{\omega}$, which can be viewed as a regular rooted tree together with its boundary.
- ullet The boundary A^ω is the realm of symbolic dynamics

- A^* denotes the free monoid on A.
- We always assume $2 \le |A| < \infty$.
- An ultrametric can be defined on A^* by putting

$$d(u,v) = |A|^{-|u \wedge v|}$$

- The completion is $A^* \cup A^{\omega}$, which can be viewed as a regular rooted tree together with its boundary.
- ullet The boundary A^{ω} is the realm of symbolic dynamics.

- A^* denotes the free monoid on A.
- We always assume $2 \le |A| < \infty$.
- An ultrametric can be defined on A^* by putting

$$d(u,v) = |A|^{-|u \wedge v|}$$

- The completion is $A^* \cup A^{\omega}$, which can be viewed as a regular rooted tree together with its boundary.
- ullet The boundary A^{ω} is the realm of symbolic dynamics.

- A^* denotes the free monoid on A.
- We always assume $2 \le |A| < \infty$.
- An ultrametric can be defined on A^* by putting

$$d(u,v) = |A|^{-|u \wedge v|}$$

- The completion is $A^* \cup A^{\omega}$, which can be viewed as a regular rooted tree together with its boundary.
- ullet The boundary A^ω is the realm of symbolic dynamics.

Symbolic dynamics

• The shift map $\sigma \colon A^{\omega} \to A^{\omega}$ is given by

$$\sigma(a_0a_1\cdots)=a_1a_2\cdots.$$

- A subshift is a closed, non-empty, shift-invariant subspace of A^{ω} .
- Subshifts $\mathscr{X} \subseteq A^{\omega}$ and $\mathscr{Y} \subseteq B^{\omega}$ are conjugate if there is a homeomorphism $\psi \colon \mathscr{X} \to \mathscr{Y}$ so that

$$\begin{array}{c|c} \mathcal{X} & \stackrel{\sigma}{\longrightarrow} \mathcal{X} \\ \psi & & \psi \\ \mathcal{Y} & \stackrel{\sigma}{\longrightarrow} \mathcal{Y} \end{array}$$

commutes

Symbolic dynamics

• The shift map $\sigma \colon A^{\omega} \to A^{\omega}$ is given by

$$\sigma(a_0a_1\cdots)=a_1a_2\cdots.$$

- A subshift is a closed, non-empty, shift-invariant subspace of A^{ω} .
- Subshifts $\mathscr{X} \subseteq A^{\omega}$ and $\mathscr{Y} \subseteq B^{\omega}$ are conjugate if there is a homeomorphism $\psi \colon \mathscr{X} \to \mathscr{Y}$ so that

$$\begin{array}{c|c} \mathscr{X} & \stackrel{\sigma}{\longrightarrow} \mathscr{X} \\ \psi & & \psi \\ \mathscr{Y} & \stackrel{\sigma}{\longrightarrow} \mathscr{Y} \end{array}$$

commutes

Symbolic dynamics

• The shift map $\sigma \colon A^{\omega} \to A^{\omega}$ is given by

$$\sigma(a_0a_1\cdots)=a_1a_2\cdots.$$

- A subshift is a closed, non-empty, shift-invariant subspace of A^{ω}
- Subshifts $\mathscr{X} \subseteq A^{\omega}$ and $\mathscr{Y} \subseteq B^{\omega}$ are conjugate if there is a homeomorphism $\psi \colon \mathscr{X} \to \mathscr{Y}$ so that

commutes.

- Let $\mathscr{X} \subseteq A^{\omega}$ be a subshift.
- \mathcal{X} is said to be irreducible if it has a dense orbit.
- Let $L(\mathscr{X}) \subseteq A^*$ denote the language of all finite factors of elements of \mathscr{X} .
- It turns out $\mathscr X$ is irreducible if and only if, for all $u,v\in L(\mathscr X)$, there exists $w\in A^*$ so that $uwv\in L(\mathscr X)$
- In this talk we consider only irreducible subshifts
- The map $\mathscr{X} \mapsto L(\mathscr{X})$ is injective.
- Indeed, $\mathscr{X} = \partial L(\mathscr{X})$ (it is the boundary of the subtrespanned by $L(\mathscr{X})$).

- Let $\mathscr{X} \subseteq A^{\omega}$ be a subshift.
- \mathcal{X} is said to be irreducible if it has a dense orbit.
- Let $L(\mathscr{X}) \subseteq A^*$ denote the language of all finite factors of elements of \mathscr{X} .
- It turns out $\mathscr X$ is irreducible if and only if, for all $u,v\in L(\mathscr X)$, there exists $w\in A^*$ so that $uwv\in L(\mathscr X)$
- In this talk we consider only irreducible subshifts
- ullet The map $\mathscr{X}\mapsto L(\mathscr{X})$ is injective
- Indeed, $\mathscr{Z} = \partial L(\mathscr{Z})$ (it is the boundary of the subtrecond spanned by $L(\mathscr{Z})$).

- Let $\mathscr{X} \subseteq A^{\omega}$ be a subshift.
- \mathscr{X} is said to be irreducible if it has a dense orbit.
- Let $L(\mathscr{X}) \subseteq A^*$ denote the language of all finite factors of elements of \mathscr{X} .
- It turns out $\mathscr X$ is irreducible if and only if, for all $u,v\in L(\mathscr X)$, there exists $w\in A^*$ so that $uwv\in L(\mathscr X)$
- In this talk we consider only irreducible subshifts
- The map $\mathscr{X} \mapsto L(\mathscr{X})$ is injective
- Indeed, $\mathscr{X} = \partial L(\mathscr{X})$ (it is the boundary of the subtreed spanned by $L(\mathscr{X})$).

- Let $\mathscr{X} \subseteq A^{\omega}$ be a subshift.
- \mathcal{X} is said to be irreducible if it has a dense orbit.
- Let $L(\mathscr{X}) \subseteq A^*$ denote the language of all finite factors of elements of \mathscr{X} .
- It turns out $\mathscr X$ is irreducible if and only if, for all $u,v\in L(\mathscr X)$, there exists $w\in A^*$ so that $uwv\in L(\mathscr X)$.
- In this talk we consider only irreducible subshifts.
- ullet The map $\mathscr{X}\mapsto L(\mathscr{X})$ is injective
- Indeed, $\mathscr{X} = \partial \overline{L(\mathscr{X})}$ (it is the boundary of the subtree spanned by $L(\mathscr{X})$).

- Let $\mathscr{X} \subseteq A^{\omega}$ be a subshift.
- \mathscr{X} is said to be irreducible if it has a dense orbit.
- Let $L(\mathscr{X}) \subseteq A^*$ denote the language of all finite factors of elements of \mathscr{X} .
- It turns out $\mathscr X$ is irreducible if and only if, for all $u,v\in L(\mathscr X)$, there exists $w\in A^*$ so that $uwv\in L(\mathscr X)$.
- In this talk we consider only irreducible subshifts.
- The map $\mathscr{X} \mapsto L(\mathscr{X})$ is injective.
- Indeed, $\mathscr{X} = \partial \overline{L(\mathscr{X})}$ (it is the boundary of the subtree spanned by $L(\mathscr{X})$).

- Let $\mathscr{X} \subseteq A^{\omega}$ be a subshift.
- \mathcal{X} is said to be irreducible if it has a dense orbit.
- Let $L(\mathscr{X}) \subseteq A^*$ denote the language of all finite factors of elements of \mathscr{X} .
- It turns out $\mathscr X$ is irreducible if and only if, for all $u,v\in L(\mathscr X)$, there exists $w\in A^*$ so that $uwv\in L(\mathscr X)$.
- In this talk we consider only irreducible subshifts.
- The map $\mathscr{X} \mapsto L(\mathscr{X})$ is injective.
- Indeed, $\mathscr{X} = \partial L(\mathscr{X})$ (it is the boundary of the subtree spanned by $L(\mathscr{X})$).

- Let $\mathscr{X} \subseteq A^{\omega}$ be a subshift.
- X is said to be irreducible if it has a dense orbit.
- Let $L(\mathcal{X}) \subseteq A^*$ denote the language of all finite factors of elements of \mathcal{X} .
- It turns out $\mathscr X$ is irreducible if and only if, for all $u,v\in L(\mathscr X)$, there exists $w\in A^*$ so that $uwv\in L(\mathscr X)$.
- In this talk we consider only irreducible subshifts.
- The map $\mathscr{X} \mapsto L(\mathscr{X})$ is injective.
- Indeed, $\mathscr{X} = \partial \overline{L(\mathscr{X})}$ (it is the boundary of the subtree spanned by $L(\mathscr{X})$).

- A minimal subshift must be the closure of the orbit of any of its elements under the shift.
- It follows immediately that minimal subshifts are irreducible
- A word $w \in A^{\omega}$ generates a minimal subshift if and only if u is uniformly recurrent.
- This means that if v is a finite factor of w, then there exists N > 0 so that each factor of w of length N contains v as a factor: the "bounded gaps property."
- If $u \in A^*$, then the subshift generated by

$$u^{\omega} = uuu \cdots$$

- A minimal subshift must be the closure of the orbit of any of its elements under the shift.
- It follows immediately that minimal subshifts are irreducible.
- A word $w \in A^{\omega}$ generates a minimal subshift if and only if w is uniformly recurrent.
- This means that if v is a finite factor of w, then there exists N>0 so that each factor of w of length N contains v as a factor: the "bounded gaps property."
- If $u \in A^*$, then the subshift generated by

$$u^{\omega} = uuu \cdots$$

- A minimal subshift must be the closure of the orbit of any of its elements under the shift.
- It follows immediately that minimal subshifts are irreducible.
- A word $w \in A^{\omega}$ generates a minimal subshift if and only if w is uniformly recurrent.
- This means that if v is a finite factor of w, then there exists N>0 so that each factor of w of length N contains v as a factor: the "bounded gaps property."
- If $u \in A^*$, then the subshift generated by

$$u^{\omega} = uuu \cdots$$

- A minimal subshift must be the closure of the orbit of any of its elements under the shift.
- It follows immediately that minimal subshifts are irreducible.
- A word $w \in A^{\omega}$ generates a minimal subshift if and only if w is uniformly recurrent.
- This means that if v is a finite factor of w, then there exists N>0 so that each factor of w of length N contains v as a factor: the "bounded gaps property."
- If $u \in A^*$, then the subshift generated by

$$u^{\omega} = uuu \cdots$$

- A minimal subshift must be the closure of the orbit of any of its elements under the shift.
- It follows immediately that minimal subshifts are irreducible.
- A word $w \in A^{\omega}$ generates a minimal subshift if and only if w is uniformly recurrent.
- This means that if v is a finite factor of w, then there exists N>0 so that each factor of w of length N contains v as a factor: the "bounded gaps property."
- If $u \in A^*$, then the subshift generated by

$$u^{\omega} = uuu \cdots$$

The famous Morse-Thue cube-free word is uniformly recurrent.
 It is the fixed point obtained by iterating the substitution

$$a \mapsto ab, b \mapsto ba$$

- a
- \bullet ab
- abbo
- abbahaab
- abbabaabbaababba
- A substitution $f: A^* \to A^*$ is primitive if there exists N > 0 so that each letter of A appears in $f^N(a)$, all $a \in A$.
- If f is a primitive substitution with a the first letter of f(a), then $\lim_{n \to \infty} f^n(a)$ is a uniformly recurrent word.

The famous Morse-Thue cube-free word is uniformly recurrent.
 It is the fixed point obtained by iterating the substitution

$$a \mapsto ab, b \mapsto ba$$

- a
- *ab*
- abba
- abbabaab
- abbabaabbaababba -
- A substitution $f: A^* \to A^*$ is primitive if there exists N > 0 so that each letter of A appears in $f^N(a)$, all $a \in A$.
- If f is a primitive substitution with a the first letter of f(a), then $\lim_{n \to \infty} f^n(a)$ is a uniformly recurrent word.

The famous Morse-Thue cube-free word is uniformly recurrent.
 It is the fixed point obtained by iterating the substitution

$$a \mapsto ab, b \mapsto ba$$

- a
- *ab*
- abba
- abbabaab
- ullet abbabaabbaabbaabbaabba
- A substitution $f: A^* \to A^*$ is primitive if there exists N > 0 so that each letter of A appears in $f^N(a)$, all $a \in A$.
- If f is a primitive substitution with a the first letter of f(a), then $\lim_{n \to \infty} f^n(a)$ is a uniformly recurrent word.

The famous Morse-Thue cube-free word is uniformly recurrent.
 It is the fixed point obtained by iterating the substitution

$$a \mapsto ab, b \mapsto ba$$

- a
- *ab*
- abba
- abbabaab
- \bullet $abbabaabbaabbaabbabba \cdot \cdot \cdot$
- A substitution $f: A^* \to A^*$ is primitive if there exists N > 0 so that each letter of A appears in $f^N(a)$, all $a \in A$.
- If f is a primitive substitution with a the first letter of f(a), then $\lim_{n \to \infty} f^n(a)$ is a uniformly recurrent word.

The famous Morse-Thue cube-free word is uniformly recurrent.
 It is the fixed point obtained by iterating the substitution

$$a \mapsto ab, b \mapsto ba$$

- a
- ab
- abba
- abbabaab
- \bullet $abbabaabbaabbaababba \cdot \cdot \cdot$
- A substitution $f: A^* \to A^*$ is primitive if there exists N > 0 so that each letter of A appears in $f^N(a)$, all $a \in A$.
- If f is a primitive substitution with a the first letter of f(a), then $\lim_{n \to \infty} f^n(a)$ is a uniformly recurrent word.

The famous Morse-Thue cube-free word is uniformly recurrent.
 It is the fixed point obtained by iterating the substitution

$$a \mapsto ab, b \mapsto ba$$

- a
- *ab*
- abba
- abbabaab
- \bullet $abbabaabbaababba \cdots$
- A substitution $f: A^* \to A^*$ is primitive if there exists N > 0 so that each letter of A appears in $f^N(a)$, all $a \in A$.
- If f is a primitive substitution with a the first letter of f(a), then $\lim_{n \to \infty} f^n(a)$ is a uniformly recurrent word.

The famous Morse-Thue cube-free word is uniformly recurrent.
 It is the fixed point obtained by iterating the substitution

$$a \mapsto ab, b \mapsto ba$$

- a
- *ab*
- abba
- abbabaab
- \bullet $abbabaabbaababba \cdots$
- A substitution $f : A^* \to A^*$ is primitive if there exists N > 0 so that each letter of A appears in $f^N(a)$, all $a \in A$.
- If f is a primitive substitution with a the first letter of f(a), then $\lim_{n \to \infty} f^n(a)$ is a uniformly recurrent word.

The famous Morse-Thue cube-free word is uniformly recurrent.
 It is the fixed point obtained by iterating the substitution

$$a \mapsto ab, b \mapsto ba$$

- a
- *ab*
- abba
- abbabaab
- \bullet $abbabaabbaababba \cdots$
- A substitution $f: A^* \to A^*$ is primitive if there exists N > 0 so that each letter of A appears in $f^N(a)$, all $a \in A$.
- If f is a primitive substitution with a the first letter of f(a), then $\lim_{n \to \infty} f^n(a)$ is a uniformly recurrent word.

- A subshift $\mathscr{X} \subseteq A^{\omega}$ is said to be of finite type if there is a finite set F of forbidden factors defining \mathscr{X} . That is, $L(\mathscr{X}) = A^* \setminus A^*FA^*$.
- In this case, $L(\mathcal{X})$ is a regular language, i.e., recognized by a finite automaton.
- Weiss defined ${\mathscr X}$ to be a sofic shift if $L({\mathscr X})$ is regular
- Sofic shifts are precisely the quotients (in the appropriate category) of subshifts of finite type.
- Irreducible sofic shifts can always be recognized by a strongly connected automaton all of whose states are initial and final.
- A minimal sofic shift must be periodic (follow a cycle in the automaton).

- A subshift $\mathscr{X} \subseteq A^{\omega}$ is said to be of finite type if there is a finite set F of forbidden factors defining \mathscr{X} . That is, $L(\mathscr{X}) = A^* \setminus A^*FA^*$.
- In this case, $L(\mathcal{X})$ is a regular language, i.e., recognized by a finite automaton.
- Weiss defined $\mathscr X$ to be a sofic shift if $L(\mathscr X)$ is regular
- Sofic shifts are precisely the quotients (in the appropriate category) of subshifts of finite type.
- Irreducible sofic shifts can always be recognized by a strongly connected automaton all of whose states are initial and final.
- A minimal sofic shift must be periodic (follow a cycle in the automaton).

- A subshift $\mathscr{X} \subseteq A^{\omega}$ is said to be of finite type if there is a finite set F of forbidden factors defining \mathscr{X} . That is, $L(\mathscr{X}) = A^* \setminus A^*FA^*$.
- In this case, $L(\mathscr{X})$ is a regular language, i.e., recognized by a finite automaton.
- Weiss defined $\mathscr X$ to be a sofic shift if $L(\mathscr X)$ is regular.
- Sofic shifts are precisely the quotients (in the appropriate category) of subshifts of finite type.
- Irreducible sofic shifts can always be recognized by a strongly connected automaton all of whose states are initial and final.
- A minimal sofic shift must be periodic (follow a cycle in the automaton).

- A subshift $\mathscr{X} \subseteq A^{\omega}$ is said to be of finite type if there is a finite set F of forbidden factors defining \mathscr{X} . That is, $L(\mathscr{X}) = A^* \setminus A^*FA^*$.
- In this case, $L(\mathscr{X})$ is a regular language, i.e., recognized by a finite automaton.
- Weiss defined $\mathscr X$ to be a sofic shift if $L(\mathscr X)$ is regular.
- Sofic shifts are precisely the quotients (in the appropriate category) of subshifts of finite type.
- Irreducible sofic shifts can always be recognized by a strongly connected automaton all of whose states are initial and final.
- A minimal sofic shift must be periodic (follow a cycle in the automaton).

- A subshift $\mathscr{X} \subseteq A^{\omega}$ is said to be of finite type if there is a finite set F of forbidden factors defining \mathscr{X} . That is, $L(\mathscr{X}) = A^* \setminus A^*FA^*$.
- In this case, $L(\mathscr{X})$ is a regular language, i.e., recognized by a finite automaton.
- ullet Weiss defined $\mathscr X$ to be a sofic shift if $L(\mathscr X)$ is regular.
- Sofic shifts are precisely the quotients (in the appropriate category) of subshifts of finite type.
- Irreducible sofic shifts can always be recognized by a strongly connected automaton all of whose states are initial and final.
- A minimal sofic shift must be periodic (follow a cycle in the automaton).

- A subshift $\mathscr{X} \subseteq A^{\omega}$ is said to be of finite type if there is a finite set F of forbidden factors defining \mathscr{X} . That is, $L(\mathscr{X}) = A^* \setminus A^*FA^*$.
- In this case, $L(\mathscr{X})$ is a regular language, i.e., recognized by a finite automaton.
- Weiss defined $\mathscr X$ to be a sofic shift if $L(\mathscr X)$ is regular.
- Sofic shifts are precisely the quotients (in the appropriate category) of subshifts of finite type.
- Irreducible sofic shifts can always be recognized by a strongly connected automaton all of whose states are initial and final.
- A minimal sofic shift must be periodic (follow a cycle in the automaton).

The even shift

• An automaton recognizing the even shift:

 The even shift consists of all infinite words with an even number of occurrences of b between consecutive occurrences of a.

- Multiplication on A^* is uniformly continuous in the ultrametric defining the completion $A^* \cup A^\omega$.
- Thus $A^* \cup A^{\omega}$ has the structure of an A-generated profinite monoid.
- The product is given by

$$u \cdot v = \begin{cases} uv & u \in A^* \\ u & u \in A^{\omega} \end{cases}$$

- It follows that $A^* \cup A^{\omega}$ is a continuous homomorphic image of the profinite completion $\widehat{A^*}$ of A^* , i.e., of the free profinite monoid on A
- Almeida used this to "lift" symbolic dynamics to the free profinite monoid.

- Multiplication on A^* is uniformly continuous in the ultrametric defining the completion $A^* \cup A^\omega$.
- Thus $A^* \cup A^{\omega}$ has the structure of an A-generated profinite monoid.
- The product is given by

$$u \cdot v = \begin{cases} uv & u \in A^* \\ u & u \in A^{\omega} \end{cases}$$

- It follows that $A^* \cup A^{\omega}$ is a continuous homomorphic image of the profinite completion \widehat{A}^* of A^* , i.e., of the free profinite monoid on A.
- Almeida used this to "lift" symbolic dynamics to the free profinite monoid.

- Multiplication on A^* is uniformly continuous in the ultrametric defining the completion $A^* \cup A^\omega$.
- Thus $A^* \cup A^{\omega}$ has the structure of an A-generated profinite monoid.
- The product is given by

$$u \cdot v = \begin{cases} uv & u \in A^* \\ u & u \in A^{\omega}. \end{cases}$$

- It follows that $A^* \cup A^{\omega}$ is a continuous homomorphic image of the profinite completion $\widehat{A^*}$ of A^* , i.e., of the free profinite monoid on A.
- Almeida used this to "lift" symbolic dynamics to the free profinite monoid.

- Multiplication on A^* is uniformly continuous in the ultrametric defining the completion $A^* \cup A^\omega$.
- Thus $A^* \cup A^{\omega}$ has the structure of an A-generated profinite monoid.
- The product is given by

$$u \cdot v = \begin{cases} uv & u \in A^* \\ u & u \in A^{\omega}. \end{cases}$$

- It follows that $A^* \cup A^{\omega}$ is a continuous homomorphic image of the profinite completion $\widehat{A^*}$ of A^* , i.e., of the free profinite monoid on A.
- Almeida used this to "lift" symbolic dynamics to the free profinite monoid.

- Multiplication on A^* is uniformly continuous in the ultrametric defining the completion $A^* \cup A^\omega$.
- Thus $A^* \cup A^{\omega}$ has the structure of an A-generated profinite monoid.
- The product is given by

$$u \cdot v = \begin{cases} uv & u \in A^* \\ u & u \in A^{\omega}. \end{cases}$$

- It follows that $A^* \cup A^{\omega}$ is a continuous homomorphic image of the profinite completion $\widehat{A^*}$ of A^* , i.e., of the free profinite monoid on A.
- Almeida used this to "lift" symbolic dynamics to the free profinite monoid.

- For $u \neq v \in A^*$, define $\sigma(u, v)$ to be the minimum size of a finite monoid separating u from v.
- A^* is residually finite, so $\sigma(u,v)$ is well defined.
- ullet The profinite ultrametric on A^* is defined by

$$d(u,v) = |A|^{-\sigma(u,v)}.$$

- ullet The completion is the free profinite monoid \widehat{A}^* .
- Set $\partial A^* = A^* \setminus A^*$; it is an ideal of A^* .
- A* plays a crucial role in automata theory because it is the Zariski spectrum of the Boolean ring of regular languages.

- For $u \neq v \in A^*$, define $\sigma(u, v)$ to be the minimum size of a finite monoid separating u from v.
- ullet A^* is residually finite, so $\sigma(u,v)$ is well defined.
- The profinite ultrametric on A* is defined by

$$d(u,v) = |A|^{-\sigma(u,v)}.$$

- ullet The completion is the free profinite monoid \widehat{A}^*
- Set $\partial \widehat{A}^* = \widehat{A}^* \setminus A^*$; it is an ideal of \widehat{A}^* .
- A* plays a crucial role in automata theory because it is the Zariski spectrum of the Boolean ring of regular languages.

- For $u \neq v \in A^*$, define $\sigma(u, v)$ to be the minimum size of a finite monoid separating u from v.
- A^* is residually finite, so $\sigma(u,v)$ is well defined.
- ullet The profinite ultrametric on A^* is defined by

$$d(u,v) = |A|^{-\sigma(u,v)}.$$

- The completion is the free profinite monoid \widehat{A}^* .
- Set $\partial \widehat{A}^* = \widehat{A}^* \setminus A^*$; it is an ideal of \widehat{A}^* .
- A* plays a crucial role in automata theory because it is the Zariski spectrum of the Boolean ring of regular languages.

- For $u \neq v \in A^*$, define $\sigma(u, v)$ to be the minimum size of a finite monoid separating u from v.
- ullet A^* is residually finite, so $\sigma(u,v)$ is well defined.
- ullet The profinite ultrametric on A^* is defined by

$$d(u,v) = |A|^{-\sigma(u,v)}.$$

- ullet The completion is the free profinite monoid \widehat{A}^* .
- Set $\partial \widehat{A}^* = \widehat{A}^* \setminus A^*$; it is an ideal of \widehat{A}^* .
- \widehat{A}^* plays a crucial role in automata theory because it is the Zariski spectrum of the Boolean ring of regular languages.

- For $u \neq v \in A^*$, define $\sigma(u, v)$ to be the minimum size of a finite monoid separating u from v.
- ullet A^* is residually finite, so $\sigma(u,v)$ is well defined.
- ullet The profinite ultrametric on A^* is defined by

$$d(u,v) = |A|^{-\sigma(u,v)}.$$

- ullet The completion is the free profinite monoid \widehat{A}^* .
- $\bullet \ \, \mathrm{Set} \,\, \partial \widehat{A^*} = \widehat{A^*} \setminus A^*; \, \mathrm{it} \,\, \mathrm{is} \,\, \mathrm{an} \,\, \mathrm{ideal} \,\, \mathrm{of} \,\, \widehat{A^*}.$
- \widehat{A}^* plays a crucial role in automata theory because it is the Zariski spectrum of the Boolean ring of regular languages.

- For $u \neq v \in A^*$, define $\sigma(u,v)$ to be the minimum size of a finite monoid separating u from v.
- ullet A^* is residually finite, so $\sigma(u,v)$ is well defined.
- ullet The profinite ultrametric on A^* is defined by

$$d(u,v) = |A|^{-\sigma(u,v)}.$$

- ullet The completion is the free profinite monoid \widehat{A}^* .
- $\bullet \ \, \mathrm{Set} \,\, \partial \widehat{A^*} = \widehat{A^*} \setminus A^*; \, \mathrm{it} \,\, \mathrm{is} \,\, \mathrm{an} \,\, \mathrm{ideal} \,\, \mathrm{of} \,\, \widehat{A^*}.$
- ullet \widehat{A}^* plays a crucial role in automata theory because it is the Zariski spectrum of the Boolean ring of regular languages.

- Let $\mathscr{X} \subseteq A^{\omega}$ be an irreducible subshift.
- Almeida established the following result:

- The map $\mathscr{X} \mapsto \overline{L(\mathscr{X})} \cap \partial \widehat{A^*}$ is injective.
- Among all principal ideals A^*uA^* intersecting $L(\mathcal{X})$ there is a unique minimal one, denoted $I(\mathcal{X})$.
- $I(\mathcal{X})$ can be generated by an idempotent $e = e^2$.
- The subshift $\mathscr X$ is minimal if and only if $I(\mathscr X)$ is maximal among principal ideals in $\partial \widehat{A}^*$.
- Every maximal principal ideal in $\partial \widehat{A}^*$ is of the form $I(\mathcal{X})$ for a unique minimal subshift \mathcal{X} .

- Let $\mathscr{X} \subseteq A^{\omega}$ be an irreducible subshift.
- Almeida established the following result:

- The map $\mathscr{X} \mapsto \overline{L(\mathscr{X})} \cap \partial A^*$ is injective.
- Among all principal ideals $\widehat{A^*uA^*}$ intersecting $\widehat{L(\mathscr{X})}$ there is a unique minimal one, denoted $I(\mathscr{X})$.
- $I(\mathscr{X})$ can be generated by an idempotent $e=e^{i\omega}$
- ullet The subshift ${\mathscr X}$ is minimal if and only if $I({\mathscr X})$ is maximal
- Every maximal principal ideal in $\partial \widehat{A}^*$ is of the form $I(\mathcal{X})$ for a unique minimal subshift \mathcal{X}

- Let $\mathscr{X} \subseteq A^{\omega}$ be an irreducible subshift.
- Almeida established the following result:

- ullet The map $\mathscr{X}\mapsto \overline{L(\mathscr{X})}\cap\partial\widehat{A}^*$ is injective.
- Among all principal ideals $\widehat{A}^*u\widehat{A}^*$ intersecting $\overline{L(\mathscr{X})}$ there is a unique minimal one, denoted $I(\mathscr{X})$.
- $I(\mathcal{X})$ can be generated by an idempotent $e=e^2$.
- The subshift $\mathscr X$ is minimal if and only if $I(\mathscr X)$ is maximal among principal ideals in $\partial \widehat{A}^*$.
- Every maximal principal ideal in $\partial \widehat{A}^*$ is of the form $I(\mathcal{X})$ for a unique minimal subshift \mathcal{X} .

- Let $\mathscr{X} \subseteq A^{\omega}$ be an irreducible subshift.
- Almeida established the following result:

- The map $\mathscr{X} \mapsto \overline{L(\mathscr{X})} \cap \partial \widehat{A^*}$ is injective.
- Among all principal ideals $\widehat{A}^*u\widehat{A}^*$ intersecting $\overline{L(\mathscr{X})}$ there is a unique minimal one, denoted $I(\mathscr{X})$.
- $I(\mathcal{X})$ can be generated by an idempotent $e = e^2$.
- The subshift $\mathscr X$ is minimal if and only if $I(\mathscr X)$ is maximal among principal ideals in $\partial \widehat{A}^*$.
- Every maximal principal ideal in $\partial \widehat{A}^*$ is of the form $I(\mathcal{X})$ for a unique minimal subshift \mathcal{X} .

- Let $\mathscr{X} \subseteq A^{\omega}$ be an irreducible subshift.
- Almeida established the following result:

- ullet The map $\mathscr{X}\mapsto \overline{L(\mathscr{X})}\cap \partial \widehat{A^*}$ is injective.
- Among all principal ideals $\widehat{A}^*u\widehat{A}^*$ intersecting $\overline{L}(\mathscr{X})$ there is a unique minimal one, denoted $I(\mathscr{X})$.
- $I(\mathscr{X})$ can be generated by an idempotent $e=e^2$.
- The subshift $\mathscr X$ is minimal if and only if $I(\mathscr X)$ is maximal among principal ideals in $\partial \widehat{A}^*$.
- Every maximal principal ideal in $\partial \widehat{A}^*$ is of the form $I(\mathcal{X})$ for a unique minimal subshift \mathcal{X} .

- Let $\mathscr{X} \subseteq A^{\omega}$ be an irreducible subshift.
- Almeida established the following result:

- ullet The map $\mathscr{X}\mapsto \overline{L(\mathscr{X})}\cap \partial \widehat{A^*}$ is injective.
- Among all principal ideals $\widehat{A}^*u\widehat{A}^*$ intersecting $\overline{L}(\mathscr{X})$ there is a unique minimal one, denoted $I(\mathscr{X})$.
- $I(\mathscr{X})$ can be generated by an idempotent $e=e^2$.
- The subshift $\mathscr X$ is minimal if and only if $I(\mathscr X)$ is maximal among principal ideals in $\partial \widehat{A^*}$.
- Every maximal principal ideal in $\partial \widehat{A}^*$ is of the form $I(\mathcal{X})$ for a unique minimal subshift \mathcal{X} .

- Let $\mathscr{X} \subseteq A^{\omega}$ be an irreducible subshift.
- Almeida established the following result:

- ullet The map $\mathscr{X}\mapsto \overline{L(\mathscr{X})}\cap \partial \widehat{A^*}$ is injective.
- Among all principal ideals $\widehat{A^*u}\widehat{A^*}$ intersecting $\overline{L(\mathscr{X})}$ there is a unique minimal one, denoted $I(\mathscr{X})$.
- $I(\mathcal{X})$ can be generated by an idempotent $e = e^2$.
- The subshift $\mathscr X$ is minimal if and only if $I(\mathscr X)$ is maximal among principal ideals in $\partial \widehat{A}^*$.
- Every maximal principal ideal in $\partial \widehat{A}^*$ is of the form $I(\mathscr{X})$ for a unique minimal subshift \mathscr{X} .

- ullet Suppose M is a profinite monoid and $e \in M$ is an idempotent.
- ullet Then eMe is a profinite monoid with identity e
- The group of units G_e of eMe is a profinite group known as the maximal subgroup at e.
- If e, f are idempotents, then MeM = MfM implies $eMe \cong fMf$ and hence $G_e \cong G_f$.
- Thus to each principal ideal generated by an idempotent, we can associate a unique maximal subgroup (up to isomorphism).
- I've shown that any ideal of \widehat{A}^* generated by an idempotent is prime; in particular, the ideal $I(\mathcal{X})$ associated to an irreducible shift \mathcal{X} is prime

- Suppose M is a profinite monoid and $e \in M$ is an idempotent.
- ullet Then eMe is a profinite monoid with identity e.
- The group of units G_e of eMe is a profinite group known as the maximal subgroup at e.
- If e, f are idempotents, then MeM = MfM implies $eMe \cong fMf$ and hence $G_e \cong G_f$.
- Thus to each principal ideal generated by an idempotent, we can associate a unique maximal subgroup (up to isomorphism).
- I've shown that any ideal of \widehat{A}^* generated by an idempotent is prime; in particular, the ideal $I(\mathcal{X})$ associated to an irreducible shift \mathcal{X} is prime

- Suppose M is a profinite monoid and $e \in M$ is an idempotent.
- Then eMe is a profinite monoid with identity e.
- The group of units G_e of eMe is a profinite group known as the maximal subgroup at e.
- If e, f are idempotents, then MeM = MfM implies $eMe \cong fMf$ and hence $G_e \cong G_f$.
- Thus to each principal ideal generated by an idempotent, we can associate a unique maximal subgroup (up to isomorphism).
- I've shown that any ideal of \widehat{A}^* generated by an idempotent is prime; in particular, the ideal $I(\mathscr{X})$ associated to an irreducible shift \mathscr{X} is prime.

- Suppose M is a profinite monoid and $e \in M$ is an idempotent.
- ullet Then eMe is a profinite monoid with identity e.
- The group of units G_e of eMe is a profinite group known as the maximal subgroup at e.
- If e, f are idempotents, then MeM = MfM implies $eMe \cong fMf$ and hence $G_e \cong G_f$.
- Thus to each principal ideal generated by an idempotent, we can associate a unique maximal subgroup (up to isomorphism).
- I've shown that any ideal of \widehat{A}^* generated by an idempotent is prime; in particular, the ideal $I(\mathcal{X})$ associated to an irreducible shift \mathcal{X} is prime.

- Suppose M is a profinite monoid and $e \in M$ is an idempotent.
- Then eMe is a profinite monoid with identity e.
- The group of units G_e of eMe is a profinite group known as the maximal subgroup at e.
- If e, f are idempotents, then MeM = MfM implies $eMe \cong fMf$ and hence $G_e \cong G_f$.
- Thus to each principal ideal generated by an idempotent, we can associate a unique maximal subgroup (up to isomorphism).
- I've shown that any ideal of \widehat{A}^* generated by an idempotent is prime; in particular, the ideal $I(\mathscr{X})$ associated to an irreducible shift \mathscr{X} is prime.

- Suppose M is a profinite monoid and $e \in M$ is an idempotent.
- Then eMe is a profinite monoid with identity e.
- The group of units G_e of eMe is a profinite group known as the maximal subgroup at e.
- If e, f are idempotents, then MeM = MfM implies $eMe \cong fMf$ and hence $G_e \cong G_f$.
- Thus to each principal ideal generated by an idempotent, we can associate a unique maximal subgroup (up to isomorphism).
- I've shown that any ideal of \widehat{A}^* generated by an idempotent is prime; in particular, the ideal $I(\mathscr{X})$ associated to an irreducible shift \mathscr{X} is prime.

- Since the ideal $I(\mathscr{X})$ associated to an irreducible subshift \mathscr{X} is generated by an idempotent, it has a unique maximal subgroup $G(\mathscr{X})$ associated to it.
- Almeida defined this to be the profinite group associated to the subshift \mathscr{X} .
- He announced that it is a conjugacy invariant of the sofic shift.
- A proof was first published by his student, A. Costa
- So there is a profinite group invariant associated to an irreducible shift via the free profinite monoid!

- Since the ideal $I(\mathscr{X})$ associated to an irreducible subshift \mathscr{X} is generated by an idempotent, it has a unique maximal subgroup $G(\mathscr{X})$ associated to it.
- Almeida defined this to be the profinite group associated to the subshift \mathscr{X} .
- He announced that it is a conjugacy invariant of the sofic shift
- A proof was first published by his student, A. Costa
- So there is a profinite group invariant associated to an irreducible shift via the free profinite monoid!

- Since the ideal $I(\mathscr{X})$ associated to an irreducible subshift \mathscr{X} is generated by an idempotent, it has a unique maximal subgroup $G(\mathscr{X})$ associated to it.
- Almeida defined this to be the profinite group associated to the subshift \mathscr{X} .
- He announced that it is a conjugacy invariant of the sofic shift.
- A proof was first published by his student, A. Costa
- So there is a profinite group invariant associated to an irreducible shift via the free profinite monoid!

- Since the ideal $I(\mathscr{X})$ associated to an irreducible subshift \mathscr{X} is generated by an idempotent, it has a unique maximal subgroup $G(\mathscr{X})$ associated to it.
- Almeida defined this to be the profinite group associated to the subshift \mathscr{X} .
- He announced that it is a conjugacy invariant of the sofic shift.
- A proof was first published by his student, A. Costa.
- So there is a profinite group invariant associated to an irreducible shift via the free profinite monoid!

- Since the ideal $I(\mathscr{X})$ associated to an irreducible subshift \mathscr{X} is generated by an idempotent, it has a unique maximal subgroup $G(\mathscr{X})$ associated to it.
- Almeida defined this to be the profinite group associated to the subshift \mathscr{X} .
- He announced that it is a conjugacy invariant of the sofic shift.
- A proof was first published by his student, A. Costa.
- So there is a profinite group invariant associated to an irreducible shift via the free profinite monoid!

- Let \widehat{F}_A be a free profinite group on A.
- There is a natural surjective map $\varphi\colon \widehat{A^*} o \widehat{F}_A$.
- If e is an idempotent of the minimal ideal I, then $e\widehat{A}^*e=G_0$ and $\varphi(G_e)=\widehat{F}_A.$
- So φ splits and hence all projective profinite groups embed in free profinite monoids (observation of Almeida and Volkov).
- Margolis and I observed that the maximal subgroup of the minimal ideal maps onto any countably based profinite group

- ① Is every maximal subgroup of \widehat{A}^* a free profinite group, or at least projective?
- Is the maximal subgroup of the minimal ideal of \widehat{A}^* a free profinite group?

- Let \widehat{F}_A be a free profinite group on A.
- There is a natural surjective map $\varphi \colon \widehat{A^*} \to \widehat{F}_A$.
- If e is an idempotent of the minimal ideal I, then $e\widehat{A^*}e=G_e$ and $\varphi(G_e)=\widehat{F}_A.$
- So φ splits and hence all projective profinite groups embed in free profinite monoids (observation of Almeida and Volkov).
- Margolis and I observed that the maximal subgroup of the minimal ideal maps onto any countably based profinite group.

- ① Is every maximal subgroup of \widehat{A}^* a free profinite group, or at least projective?
- Is the maximal subgroup of the minimal ideal of \widehat{A}^* a free profinite group?

- Let \widehat{F}_A be a free profinite group on A.
- There is a natural surjective map $\varphi \colon \widehat{A^*} \to \widehat{F}_A$.
- If e is an idempotent of the minimal ideal I, then $e\widehat{A^*}e=G_e$ and $\varphi(G_e)=\widehat{F}_A.$
- So φ splits and hence all projective profinite groups embed in free profinite monoids (observation of Almeida and Volkov).
- Margolis and I observed that the maximal subgroup of the minimal ideal maps onto any countably based profinite group.

- ① Is every maximal subgroup of \widehat{A}^* a free profinite group, or at least projective?
- Is the maximal subgroup of the minimal ideal of \widehat{A}^* a free profinite group?

- Let \widehat{F}_A be a free profinite group on A.
- ullet There is a natural surjective map $\varphi\colon \widehat{A^*} o \widehat{F}_A.$
- If e is an idempotent of the minimal ideal I, then $e\widehat{A}^*e=G_e$ and $\varphi(G_e)=\widehat{F}_A.$
- So φ splits and hence all projective profinite groups embed in free profinite monoids (observation of Almeida and Volkov).
- Margolis and I observed that the maximal subgroup of the minimal ideal maps onto any countably based profinite group.

- ① Is every maximal subgroup of \widehat{A}^* a free profinite group, or at least projective?

- Let \widehat{F}_A be a free profinite group on A.
- ullet There is a natural surjective map $\varphi\colon \widehat{A^*} \to \widehat{F}_A.$
- If e is an idempotent of the minimal ideal I, then $e\widehat{A}^*e=G_e$ and $\varphi(G_e)=\widehat{F}_A.$
- So φ splits and hence all projective profinite groups embed in free profinite monoids (observation of Almeida and Volkov).
- Margolis and I observed that the maximal subgroup of the minimal ideal maps onto any countably based profinite group.

- ① Is every maximal subgroup of \widehat{A}^* a free profinite group, or at least projective?
- ② Is the maximal subgroup of the minimal ideal of \widehat{A}^* a free profinite group?

- Let \widehat{F}_A be a free profinite group on A.
- ullet There is a natural surjective map $\varphi\colon \widehat{A^*} o \widehat{F}_A.$
- If e is an idempotent of the minimal ideal I, then $e\widehat{A}^*e=G_e$ and $\varphi(G_e)=\widehat{F}_A.$
- So φ splits and hence all projective profinite groups embed in free profinite monoids (observation of Almeida and Volkov).
- Margolis and I observed that the maximal subgroup of the minimal ideal maps onto any countably based profinite group.

- Is every maximal subgroup of $\widehat{A^*}$ a free profinite group, or at least projective?
- 2 Is the maximal subgroup of the minimal ideal of \widehat{A}^* a free profinite group?

- Let \widehat{F}_A be a free profinite group on A.
- ullet There is a natural surjective map $\varphi\colon \widehat{A^*} o \widehat{F}_A.$
- If e is an idempotent of the minimal ideal I, then $e\widehat{A}^*e=G_e$ and $\varphi(G_e)=\widehat{F}_A.$
- So φ splits and hence all projective profinite groups embed in free profinite monoids (observation of Almeida and Volkov).
- Margolis and I observed that the maximal subgroup of the minimal ideal maps onto any countably based profinite group.

- **1** Is every maximal subgroup of \widehat{A}^* a free profinite group, or at least projective?
- 2 Is the maximal subgroup of the minimal ideal of \widehat{A}^* a free profinite group?

ullet A profinite group G is projective if given a diagram

of epimorphisms of profinite groups, there exists a homomorphism $\lambda\colon G\to A$ so that the diagram commutes

ullet A profinite group G is projective if given a diagram

of epimorphisms of profinite groups, there exists a homomorphism $\lambda\colon G\to A$ so that the diagram commutes.

ullet A profinite group G is projective if given a diagram

of epimorphisms of profinite groups, there exists a homomorphism $\lambda\colon G\to A$ so that the diagram commutes.

 \bullet A profinite group G is projective if given a diagram

of epimorphisms of profinite groups, there exists a homomorphism $\lambda\colon G\to A$ so that the diagram commutes.

- Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic.
- Almeida used techniques from symbolic dynamics to study the group associated to a primitive substitution.

Theorem (Almeida)

Let $f: A^* \to A^*$ be a primitive substitution which is invertible over the free group F_A . Then the profinite group associated to the corresponding minimal subshift is a free profinite group on A.

- For example, the Fibonacci word is the fixed point of the invertible substitution $a \mapsto ab, b \mapsto a$. The associated maximal subgroup is then free of rank 2.
- More generally, the group associated to any Sturmian system is free of rank 2.

- Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic.
- Almeida used techniques from symbolic dynamics to study the group associated to a primitive substitution.

Theorem (Almeida)

Let $f: A^* \to A^*$ be a primitive substitution which is invertible over the free group F_A . Then the profinite group associated to the corresponding minimal subshift is a free profinite group on A.

- For example, the Fibonacci word is the fixed point of the invertible substitution $a \mapsto ab, b \mapsto a$. The associated maximal subgroup is then free of rank 2.
- More generally, the group associated to any Sturmian system is free of rank 2.

- Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic.
- Almeida used techniques from symbolic dynamics to study the group associated to a primitive substitution.

Theorem (Almeida)

Let $f: A^* \to A^*$ be a primitive substitution which is invertible over the free group F_A . Then the profinite group associated to the corresponding minimal subshift is a free profinite group on A.

- For example, the Fibonacci word is the fixed point of the invertible substitution $a \mapsto ab, b \mapsto a$. The associated maximal subgroup is then free of rank 2.
- More generally, the group associated to any Sturmian system is free of rank 2.

- Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic.
- Almeida used techniques from symbolic dynamics to study the group associated to a primitive substitution.

Theorem (Almeida)

Let $f: A^* \to A^*$ be a primitive substitution which is invertible over the free group F_A . Then the profinite group associated to the corresponding minimal subshift is a free profinite group on A.

- For example, the Fibonacci word is the fixed point of the invertible substitution $a\mapsto ab, b\mapsto a$. The associated maximal subgroup is then free of rank 2.
- More generally, the group associated to any Sturmian system is free of rank 2.

- Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic.
- Almeida used techniques from symbolic dynamics to study the group associated to a primitive substitution.

Theorem (Almeida)

Let $f: A^* \to A^*$ be a primitive substitution which is invertible over the free group F_A . Then the profinite group associated to the corresponding minimal subshift is a free profinite group on A.

- For example, the Fibonacci word is the fixed point of the invertible substitution $a\mapsto ab, b\mapsto a$. The associated maximal subgroup is then free of rank 2.
- More generally, the group associated to any Sturmian system is free of rank 2.

- Almeida showed the profinite group associated to the substitution $a\mapsto a^3b, b\mapsto ab$ is not free.
- Almeida presented this work at the Fields workshop on profinite groups organized by me and Ribes in 2005.
- Lubotzky asked during the questions after Almeida's talk whether all maximal groups of \widehat{A}^* are projective.
- Recently, Almeida and Costa showed that the profinite group associated to the Morse-Thue infinite word is not free profinite.

- Almeida showed the profinite group associated to the substitution $a \mapsto a^3b, b \mapsto ab$ is not free.
- Almeida presented this work at the Fields workshop on profinite groups organized by me and Ribes in 2005.
- Lubotzky asked during the questions after Almeida's talk whether all maximal groups of \widehat{A}^* are projective.
- Recently, Almeida and Costa showed that the profinite group associated to the Morse-Thue infinite word is not free profinite.

- Almeida showed the profinite group associated to the substitution $a\mapsto a^3b, b\mapsto ab$ is not free.
- Almeida presented this work at the Fields workshop on profinite groups organized by me and Ribes in 2005.
- Lubotzky asked during the questions after Almeida's talk whether all maximal groups of \widehat{A}^* are projective.
- Recently, Almeida and Costa showed that the profinite group associated to the Morse-Thue infinite word is not free profinite.

- Almeida showed the profinite group associated to the substitution $a \mapsto a^3b, b \mapsto ab$ is not free.
- Almeida presented this work at the Fields workshop on profinite groups organized by me and Ribes in 2005.
- Lubotzky asked during the questions after Almeida's talk whether all maximal groups of \widehat{A}^* are projective.
- Recently, Almeida and Costa showed that the profinite group associated to the Morse-Thue infinite word is not free profinite.

Theorem (Rhodes, BS)

- The proof uses wreath products and Schützenberger's generalization of the Krasner-Kaloujnine embedding to monoids in order to extend maps from the maximal subgroup to the whole free profinite monoid.
- Ribes later pointed us to a similar proof scheme by Cossey,
 Kegel and Kovács for the case of free profinite groups.
- Ribes and I have used the same ideas to give simple algebraic proofs of the Nielsen-Schreier and Kurosh Theorems via wreath products (in both the abstract and profinite settings).

Theorem (Rhodes, BS)

- The proof uses wreath products and Schützenberger's generalization of the Krasner-Kaloujnine embedding to monoids in order to extend maps from the maximal subgroup to the whole free profinite monoid.
- Ribes later pointed us to a similar proof scheme by Cossey, Kegel and Kovács for the case of free profinite groups.
- Ribes and I have used the same ideas to give simple algebraic proofs of the Nielsen-Schreier and Kurosh Theorems via wreath products (in both the abstract and profinite settings).

Theorem (Rhodes, BS)

- The proof uses wreath products and Schützenberger's generalization of the Krasner-Kaloujnine embedding to monoids in order to extend maps from the maximal subgroup to the whole free profinite monoid.
- Ribes later pointed us to a similar proof scheme by Cossey, Kegel and Kovács for the case of free profinite groups.
- Ribes and I have used the same ideas to give simple algebraic proofs of the Nielsen-Schreier and Kurosh Theorems via wreath products (in both the abstract and profinite settings).

Theorem (Rhodes, BS)

- The proof uses wreath products and Schützenberger's generalization of the Krasner-Kaloujnine embedding to monoids in order to extend maps from the maximal subgroup to the whole free profinite monoid.
- Ribes later pointed us to a similar proof scheme by Cossey, Kegel and Kovács for the case of free profinite groups.
- Ribes and I have used the same ideas to give simple algebraic proofs of the Nielsen-Schreier and Kurosh Theorems via wreath products (in both the abstract and profinite settings).

- Any element s of finite order in \widehat{A}^* must satisfy $s^n=s^{n+m}$ for some $n,m\geq 1$.
- But then $C = \{s^n, \dots, s^{n+m-1}\}$ is a finite cyclic subgroup with identity s^k some $n \le k \le n+m-1$.
- But then, since idempotents generate a prime ideal, it follows that s and s^k generate the same ideal.
- ullet Standard profinite semigroup theory then implies $s \in C$.
- But projective profinite groups are torsion-free so $C = \{s^k\}$

Theorem (Rhodes, BS)

- Any element s of finite order in \widehat{A}^* must satisfy $s^n = s^{n+m}$ for some $n, m \ge 1$.
- But then $C = \{s^n, \dots, s^{n+m-1}\}$ is a finite cyclic subgroup with identity s^k some $n \le k \le n+m-1$.
- ullet But then, since idempotents generate a prime ideal, it follows that s and s^k generate the same ideal.
- Standard profinite semigroup theory then implies $s \in C$.
- ullet But projective profinite groups are torsion-free so $C=\{s^k\}$

Theorem (Rhodes, BS)

- Any element s of finite order in \widehat{A}^* must satisfy $s^n = s^{n+m}$ for some $n, m \ge 1$.
- But then $C = \{s^n, \dots, s^{n+m-1}\}$ is a finite cyclic subgroup with identity s^k some $n \le k \le n+m-1$.
- ullet But then, since idempotents generate a prime ideal, it follows that s and s^k generate the same ideal.
- Standard profinite semigroup theory then implies $s \in C$.
- \bullet But projective profinite groups are torsion-free so $C=\{s^k\}.$

Theorem (Rhodes, BS)

- Any element s of finite order in \widehat{A}^* must satisfy $s^n = s^{n+m}$ for some $n, m \ge 1$.
- But then $C = \{s^n, \dots, s^{n+m-1}\}$ is a finite cyclic subgroup with identity s^k some $n \le k \le n+m-1$.
- But then, since idempotents generate a prime ideal, it follows that s and s^k generate the same ideal.
- ullet Standard profinite semigroup theory then implies $s\in C.$
- But projective profinite groups are torsion-free so $C = \{s^k\}$.

Theorem (Rhodes, BS)

- Any element s of finite order in \widehat{A}^* must satisfy $s^n = s^{n+m}$ for some $n, m \ge 1$.
- But then $C = \{s^n, \dots, s^{n+m-1}\}$ is a finite cyclic subgroup with identity s^k some $n \le k \le n+m-1$.
- ullet But then, since idempotents generate a prime ideal, it follows that s and s^k generate the same ideal.
- Standard profinite semigroup theory then implies $s \in C$.
- But projective profinite groups are torsion-free so $C = \{s^k\}$.

Theorem (Rhodes, BS)

- Any element s of finite order in \widehat{A}^* must satisfy $s^n = s^{n+m}$ for some $n, m \ge 1$.
- But then $C = \{s^n, \dots, s^{n+m-1}\}$ is a finite cyclic subgroup with identity s^k some $n \le k \le n+m-1$.
- But then, since idempotents generate a prime ideal, it follows that s and s^k generate the same ideal.
- Standard profinite semigroup theory then implies $s \in C$.
- \bullet But projective profinite groups are torsion-free so $C=\{s^k\}.$

Theorem (Rhodes, BS)

- A subset Y of a profinite group G is a set of generators converging to 1 if:
 - $\overline{\langle Y \rangle} = G$;
 - Each neighborhood of 1 contains all but finitely many elements of Y.
- One can define a free profinite group \widehat{F}_Y on a set Y of generators converging to 1. The cardinality of Y is called the rank of \widehat{F}_Y .
- A free profinite group on a topological space X is also free on a set of generators converging to 1 of the same cardinality as the Boolean algebra of clopen subsets of X.

- A subset Y of a profinite group G is a set of generators converging to 1 if:
 - \bullet $\overline{\langle Y \rangle} = G$;
 - Each neighborhood of 1 contains all but finitely many elements of Y.
- One can define a free profinite group \widehat{F}_Y on a set Y of generators converging to 1. The cardinality of Y is called the rank of \widehat{F}_Y .
- A free profinite group on a topological space X is also free on a set of generators converging to 1 of the same cardinality as the Boolean algebra of clopen subsets of X.

- A subset Y of a profinite group G is a set of generators converging to 1 if:
 - $\overline{\langle Y \rangle} = G$;
 - Each neighborhood of 1 contains all but finitely many elements of Y.
- One can define a free profinite group \widehat{F}_Y on a set Y of generators converging to 1. The cardinality of Y is called the rank of \widehat{F}_Y .
- A free profinite group on a topological space X is also free on a set of generators converging to 1 of the same cardinality as the Boolean algebra of clopen subsets of X.

- A subset Y of a profinite group G is a set of generators converging to 1 if:
 - $\overline{\langle Y \rangle} = G$;
 - Each neighborhood of 1 contains all but finitely many elements of Y.
- One can define a free profinite group \widehat{F}_Y on a set Y of generators converging to 1. The cardinality of Y is called the rank of \widehat{F}_Y .
- A free profinite group on a topological space X is also free on a set of generators converging to 1 of the same cardinality as the Boolean algebra of clopen subsets of X.

- A subset Y of a profinite group G is a set of generators converging to 1 if:
 - $\overline{\langle Y \rangle} = G$;
 - Each neighborhood of 1 contains all but finitely many elements of Y.
- One can define a free profinite group \widehat{F}_Y on a set Y of generators converging to 1. The cardinality of Y is called the rank of \widehat{F}_Y .
- ullet A free profinite group on a topological space X is also free on a set of generators converging to 1 of the same cardinality as the Boolean algebra of clopen subsets of X.

Theorem (BS)

The maximal subgroup of the minimal ideal of $\widehat{A^*}$ is a free profinite group of countable rank.

 The proof relies on Iwasawa's criterion: a countably based profinite group G is free of countable rank if and only if given a diagram

$$G \\ \varphi$$

$$A \xrightarrow{\alpha} B$$

of epimorphisms (A and B are finite), there exists an epimorphism $\lambda \colon G \twoheadrightarrow A$ so that the diagram commutes.

Theorem (BS)

The maximal subgroup of the minimal ideal of $\widehat{A^*}$ is a free profinite group of countable rank.

 The proof relies on Iwasawa's criterion: a countably based profinite group G is free of countable rank if and only if given a diagram

$$\begin{array}{c}
G \\
\downarrow \varphi \\
A \xrightarrow{\alpha} B
\end{array}$$

of epimorphisms (A and B are finite), there exists an epimorphism $\lambda \colon G \twoheadrightarrow A$ so that the diagram commutes.

Theorem (BS)

The maximal subgroup of the minimal ideal of $\widehat{A^*}$ is a free profinite group of countable rank.

 The proof relies on Iwasawa's criterion: a countably based profinite group G is free of countable rank if and only if given a diagram

of epimorphisms (A and B are finite), there exists an epimorphism $\lambda: G \twoheadrightarrow A$ so that the diagram commutes.

Theorem (BS)

The maximal subgroup of the minimal ideal of $\widehat{A^*}$ is a free profinite group of countable rank.

 The proof relies on Iwasawa's criterion: a countably based profinite group G is free of countable rank if and only if given a diagram

of epimorphisms (A and B are finite), there exists an epimorphism $\lambda \colon G \twoheadrightarrow A$ so that the diagram commutes.

- Again wreath products play a role: this time iterated wreath products.
- The idea is based on Bernhard Neumann's proof that every countable semigroup embeds in a 2-generated semigroup, and variations on this theme.
- The most relevant variant for us embeds any countable group as the maximal subgroup of the minimal ideal of a 2-generated monoid with cyclic group of units.
- Ideas from Krohn-Rhodes Theory and the Synthesis Theorem also play a role.

- Again wreath products play a role: this time iterated wreath products.
- The idea is based on Bernhard Neumann's proof that every countable semigroup embeds in a 2-generated semigroup, and variations on this theme.
- The most relevant variant for us embeds any countable group as the maximal subgroup of the minimal ideal of a 2-generated monoid with cyclic group of units.
- Ideas from Krohn-Rhodes Theory and the Synthesis Theorem also play a role.

- Again wreath products play a role: this time iterated wreath products.
- The idea is based on Bernhard Neumann's proof that every countable semigroup embeds in a 2-generated semigroup, and variations on this theme.
- The most relevant variant for us embeds any countable group as the maximal subgroup of the minimal ideal of a 2-generated monoid with cyclic group of units.
- Ideas from Krohn-Rhodes Theory and the Synthesis Theorem also play a role.

- Again wreath products play a role: this time iterated wreath products.
- The idea is based on Bernhard Neumann's proof that every countable semigroup embeds in a 2-generated semigroup, and variations on this theme.
- The most relevant variant for us embeds any countable group as the maximal subgroup of the minimal ideal of a 2-generated monoid with cyclic group of units.
- Ideas from Krohn-Rhodes Theory and the Synthesis Theorem also play a role.

- Recall that we have a canonical projection $\varphi \colon \widehat{A}^* \twoheadrightarrow \widehat{F}_A$ where \widehat{F}_A is the free profinite group generated by A.
- Moreover, φ restricts to an epimorphism $\varphi \colon G \twoheadrightarrow \widehat{F}_A$ where G is the maximal subgroup of the minimal ideal I.
- Let $K = \ker \varphi$.

Theorem (BS)

- The proof uses Melnikov's characterization of free normal subgroups of a free profinite group.
- \bullet The key point is that K can map onto every finite group

- Recall that we have a canonical projection $\varphi \colon \widehat{A}^* \twoheadrightarrow \widehat{F}_A$ where \widehat{F}_A is the free profinite group generated by A.
- Moreover, φ restricts to an epimorphism $\varphi \colon G \twoheadrightarrow \widehat{F}_A$ where G is the maximal subgroup of the minimal ideal I.
- Let $K = \ker \varphi$.

Theorem (BS)

- The proof uses Melnikov's characterization of free normal subgroups of a free profinite group.
- \bullet The key point is that K can map onto every finite group

- Recall that we have a canonical projection $\varphi\colon \widehat{A}^* \twoheadrightarrow \widehat{F}_A$ where \widehat{F}_A is the free profinite group generated by A.
- Moreover, φ restricts to an epimorphism $\varphi \colon G \twoheadrightarrow \widehat{F}_A$ where G is the maximal subgroup of the minimal ideal I.
- Let $K = \ker \varphi$.

Theorem (BS)

- The proof uses Melnikov's characterization of free normal subgroups of a free profinite group.
- The key point is that K can map onto every finite group.

- Recall that we have a canonical projection $\varphi \colon \widehat{A}^* \twoheadrightarrow \widehat{F}_A$ where \widehat{F}_A is the free profinite group generated by A.
- Moreover, φ restricts to an epimorphism $\varphi \colon G \twoheadrightarrow \widehat{F}_A$ where G is the maximal subgroup of the minimal ideal I.
- Let $K = \ker \varphi$.

Theorem (BS)

- The proof uses Melnikov's characterization of free normal subgroups of a free profinite group.
- The key point is that K can map onto every finite group.

- Recall that we have a canonical projection $\varphi\colon \widehat{A}^* \twoheadrightarrow \widehat{F}_A$ where \widehat{F}_A is the free profinite group generated by A.
- Moreover, φ restricts to an epimorphism $\varphi \colon G \twoheadrightarrow \widehat{F}_A$ where G is the maximal subgroup of the minimal ideal I.
- Let $K = \ker \varphi$.

Theorem (BS)

- The proof uses Melnikov's characterization of free normal subgroups of a free profinite group.
- ullet The key point is that K can map onto every finite group.

- Recall that we have a canonical projection $\varphi\colon \widehat{A}^* \twoheadrightarrow \widehat{F}_A$ where \widehat{F}_A is the free profinite group generated by A.
- Moreover, φ restricts to an epimorphism $\varphi \colon G \twoheadrightarrow \widehat{F}_A$ where G is the maximal subgroup of the minimal ideal I.
- Let $K = \ker \varphi$.

Theorem (BS)

- The proof uses Melnikov's characterization of free normal subgroups of a free profinite group.
- ullet The key point is that K can map onto every finite group.

- The minimal ideal of \widehat{A}^* is the principal ideal associated to the full shift A^ω , which is an irreducible sofic shift.
- It is then natural to ask whether the result for the minimal ideal extends to all irreducible sofic shifts.
- Minimal sofic shifts are periodic and hence have free procyclic associated groups.
- So the interesting case is the non-minimal case

Theorem (Costa, BS)

The profinite group associated to a non-minimal irreducible sofice shift is a free profinite group of countable rank.

 The proof makes use of the conjugacy invariance of the profinite group associated to an irreducible shift.

- The minimal ideal of $\widehat{A^*}$ is the principal ideal associated to the full shift A^ω , which is an irreducible sofic shift.
- It is then natural to ask whether the result for the minimal ideal extends to all irreducible sofic shifts.
- Minimal sofic shifts are periodic and hence have free procyclic associated groups.
- So the interesting case is the non-minimal case

Theorem (Costa, BS)

The profinite group associated to a non-minimal irreducible sofic shift is a free profinite group of countable rank.

 The proof makes use of the conjugacy invariance of the profinite group associated to an irreducible shift.

- The minimal ideal of \widehat{A}^* is the principal ideal associated to the full shift A^ω , which is an irreducible sofic shift.
- It is then natural to ask whether the result for the minimal ideal extends to all irreducible sofic shifts.
- Minimal sofic shifts are periodic and hence have free procyclic associated groups.
- So the interesting case is the non-minimal case.

Theorem (Costa, BS)

The profinite group associated to a non-minimal irreducible sofic shift is a free profinite group of countable rank.

• The proof makes use of the conjugacy invariance of the profinite group associated to an irreducible shift.

- The minimal ideal of \widehat{A}^* is the principal ideal associated to the full shift A^ω , which is an irreducible sofic shift.
- It is then natural to ask whether the result for the minimal ideal extends to all irreducible sofic shifts.
- Minimal sofic shifts are periodic and hence have free procyclic associated groups.
- So the interesting case is the non-minimal case.

Theorem (Costa, BS)

The profinite group associated to a non-minimal irreducible sofic shift is a free profinite group of countable rank.

• The proof makes use of the conjugacy invariance of the profinite group associated to an irreducible shift.

- The minimal ideal of \widehat{A}^* is the principal ideal associated to the full shift A^ω , which is an irreducible sofic shift.
- It is then natural to ask whether the result for the minimal ideal extends to all irreducible sofic shifts.
- Minimal sofic shifts are periodic and hence have free procyclic associated groups.
- So the interesting case is the non-minimal case.

Theorem (Costa, BS)

The profinite group associated to a non-minimal irreducible sofic shift is a free profinite group of countable rank.

• The proof makes use of the conjugacy invariance of the profinite group associated to an irreducible shift.

- The minimal ideal of \widehat{A}^* is the principal ideal associated to the full shift A^ω , which is an irreducible sofic shift.
- It is then natural to ask whether the result for the minimal ideal extends to all irreducible sofic shifts.
- Minimal sofic shifts are periodic and hence have free procyclic associated groups.
- So the interesting case is the non-minimal case.

Theorem (Costa, BS)

The profinite group associated to a non-minimal irreducible sofic shift is a free profinite group of countable rank.

 The proof makes use of the conjugacy invariance of the profinite group associated to an irreducible shift.

- A key observation in the proof is that the following objects are the same:
 - \bullet Syntactic monoids of languages of the form $L({\mathcal X})$ with ${\mathcal X}$ an irreducible sofic shift
 - Generalized group mapping monoids with an aperiodic 0-minimal ideal.
- A semigroup S is generalized group mapping if it has a (necessarily unique and regular) 0-minimal ideal I on which it acts faithfully on both the left and right.
- The so-called Fischer cover of an irreducible sofic shift is just the Schützenberger graph of the aperiodic 0-minimal ideal.
- Generalized group mapping semigroups were introduced by Rhodes in his work on the complexity of finite semigroups.
- The theory of lifting regular *f*-classes, again due to Rhodes, plays a salient role in the proof of our theorem.

- A key observation in the proof is that the following objects are the same:
 - \bullet Syntactic monoids of languages of the form $L({\mathscr X})$ with ${\mathscr X}$ an irreducible sofic shift
 - Generalized group mapping monoids with an aperiodic 0-minimal ideal.
- A semigroup S is generalized group mapping if it has a (necessarily unique and regular) 0-minimal ideal I on which it acts faithfully on both the left and right.
- The so-called Fischer cover of an irreducible sofic shift is just the Schützenberger graph of the aperiodic 0-minimal ideal.
- Generalized group mapping semigroups were introduced by Rhodes in his work on the complexity of finite semigroups.
- The theory of lifting regular *y*-classes, again due to Rhodes, plays a salient role in the proof of our theorem.

- A key observation in the proof is that the following objects are the same:
 - \bullet Syntactic monoids of languages of the form $L({\mathscr X})$ with ${\mathscr X}$ an irreducible sofic shift
 - Generalized group mapping monoids with an aperiodic 0-minimal ideal.
- A semigroup S is generalized group mapping if it has a (necessarily unique and regular) 0-minimal ideal I on which it acts faithfully on both the left and right.
- The so-called Fischer cover of an irreducible sofic shift is just the Schützenberger graph of the aperiodic 0-minimal ideal.
- Generalized group mapping semigroups were introduced by Rhodes in his work on the complexity of finite semigroups.
- The theory of lifting regular *y*-classes, again due to Rhodes, plays a salient role in the proof of our theorem.

- A key observation in the proof is that the following objects are the same:
 - \bullet Syntactic monoids of languages of the form $L({\mathscr X})$ with ${\mathscr X}$ an irreducible sofic shift
 - Generalized group mapping monoids with an aperiodic 0-minimal ideal.
- A semigroup S is generalized group mapping if it has a (necessarily unique and regular) 0-minimal ideal I on which it acts faithfully on both the left and right.
- The so-called Fischer cover of an irreducible sofic shift is just the Schützenberger graph of the aperiodic 0-minimal ideal.
- Generalized group mapping semigroups were introduced by Rhodes in his work on the complexity of finite semigroups.
- The theory of lifting regular *y*-classes, again due to Rhodes, plays a salient role in the proof of our theorem.

- A key observation in the proof is that the following objects are the same:
 - \bullet Syntactic monoids of languages of the form $L({\mathscr X})$ with ${\mathscr X}$ an irreducible sofic shift
 - Generalized group mapping monoids with an aperiodic 0-minimal ideal.
- A semigroup S is generalized group mapping if it has a (necessarily unique and regular) 0-minimal ideal I on which it acts faithfully on both the left and right.
- The so-called Fischer cover of an irreducible sofic shift is just the Schützenberger graph of the aperiodic 0-minimal ideal.
- Generalized group mapping semigroups were introduced by Rhodes in his work on the complexity of finite semigroups.
- The theory of lifting regular *J*-classes, again due to Rhodes, plays a salient role in the proof of our theorem.

- A key observation in the proof is that the following objects are the same:
 - \bullet Syntactic monoids of languages of the form $L({\mathscr X})$ with ${\mathscr X}$ an irreducible sofic shift
 - Generalized group mapping monoids with an aperiodic 0-minimal ideal.
- A semigroup S is generalized group mapping if it has a (necessarily unique and regular) 0-minimal ideal I on which it acts faithfully on both the left and right.
- The so-called Fischer cover of an irreducible sofic shift is just the Schützenberger graph of the aperiodic 0-minimal ideal.
- Generalized group mapping semigroups were introduced by Rhodes in his work on the complexity of finite semigroups.
- The theory of lifting regular *J*-classes, again due to Rhodes, plays a salient role in the proof of our theorem.

- A key observation in the proof is that the following objects are the same:
 - \bullet Syntactic monoids of languages of the form $L(\mathscr{X})$ with \mathscr{X} an irreducible sofic shift
 - Generalized group mapping monoids with an aperiodic 0-minimal ideal.
- A semigroup S is generalized group mapping if it has a (necessarily unique and regular) 0-minimal ideal I on which it acts faithfully on both the left and right.
- The so-called Fischer cover of an irreducible sofic shift is just the Schützenberger graph of the aperiodic 0-minimal ideal.
- Generalized group mapping semigroups were introduced by Rhodes in his work on the complexity of finite semigroups.
- The theory of lifting regular *J*-classes, again due to Rhodes, plays a salient role in the proof of our theorem.

- Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?
- Are there any trivial maximal subgroups of $\widehat{A^*}$ other than the group of units?
- Can a free pro-p group be a maximal subgroup of \widehat{A}^* (Zalesskii)?
- What makes the profinite group associated to a subshift finitely generated?
- What are the possible finite subsemigroups of a free profinite monoid?
 - We know that each element of such a semigroup is idempotentation
 - It can be shown that the principal ideals must form a chain using that ideals generated by idempotents are prime.

- Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?
- Are there any trivial maximal subgroups of $\widehat{A^*}$ other than the group of units?
- Can a free pro-p group be a maximal subgroup of \widehat{A}^* (Zalesskii)?
- What makes the profinite group associated to a subshift finitely generated?
- What are the possible finite subsemigroups of a free profinite monoid?
 - We know that each element of such a semigroup is idempotent
 - It can be shown that the principal ideals must form a chain

Benjamin Steinberg

- Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?
- Are there any trivial maximal subgroups of $\widehat{A^*}$ other than the group of units?
- Can a free pro-p group be a maximal subgroup of \widehat{A}^* (Zalesskii)?
- What makes the profinite group associated to a subshift finitely generated?
- What are the possible finite subsemigroups of a free profinite monoid?
 - We know that each element of such a semigroup is idempotent.
 - It can be shown that the principal ideals must form a chain using that ideals generated by idempotents are prime.

- Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?
- \bullet Are there any trivial maximal subgroups of $\widehat{A^*}$ other than the group of units?
- Can a free pro-p group be a maximal subgroup of \widehat{A}^* (Zalesskii)?
- What makes the profinite group associated to a subshift finitely generated?
- What are the possible finite subsemigroups of a free profinite monoid?
 - We know that each element of such a semigroup is idempotent
 - It can be shown that the principal ideals must form a chain using that ideals generated by idempotents are prime.

- Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?
- Are there any trivial maximal subgroups of $\widehat{A^*}$ other than the group of units?
- Can a free pro-p group be a maximal subgroup of \widehat{A}^* (Zalesskii)?
- What makes the profinite group associated to a subshift finitely generated?
- What are the possible finite subsemigroups of a free profinite monoid?
 - We know that each element of such a semigroup is idempotent.
 - It can be shown that the principal ideals must form a chain using that ideals generated by idempotents are prime.

- Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?
- Are there any trivial maximal subgroups of $\widehat{A^*}$ other than the group of units?
- Can a free pro-p group be a maximal subgroup of \widehat{A}^* (Zalesskii)?
- What makes the profinite group associated to a subshift finitely generated?
- What are the possible finite subsemigroups of a free profinite monoid?
 - We know that each element of such a semigroup is idempotent.
 - It can be shown that the principal ideals must form a chain using that ideals generated by idempotents are prime.

- Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?
- Are there any trivial maximal subgroups of $\widehat{A^*}$ other than the group of units?
- Can a free pro-p group be a maximal subgroup of \widehat{A}^* (Zalesskii)?
- What makes the profinite group associated to a subshift finitely generated?
- What are the possible finite subsemigroups of a free profinite monoid?
 - We know that each element of such a semigroup is idempotent.
 - It can be shown that the principal ideals must form a chain using that ideals generated by idempotents are prime.

THANK YOU FOR YOUR ATTENTION!