Association Rules Mining

Mining Massive Datasets
Prof. Carlos Castillo

Topic 13

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) – slides by Lijun Zhang
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 6) slides
- Data Mining Concepts and Techniques, 3rd edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) slides ch5, slides ch6

Association rule

Let X, Y be two itemsets; the rule X⇒Y is an
 association rule of minimum support minsup
 and minimum confidence minconf if:

$$\sup(X\Rightarrow Y) \ge \min\sup$$

and
 $\operatorname{conf}(X\Rightarrow Y) \ge \min \operatorname{conf}$

Association rule mining framework

- In the first phase, all the frequent itemsets are generated at the minimum support of minsup
 - The most difficult (computationally expensive) step
- In the second phase, the association rules are generated from the frequent itemsets at the minimum confidence level of minconf
 - Relatively straightforward

A straightforward implementation of the second phase

For each frequent itemset I $// sup(I) \ge minsup$ For each possible partition X, Y = I – X Check if conf(X \Rightarrow Y) \ge minconf

 Use the confidence monotonicity property (next slide) to reduce search space

Confidence monotonicity property

Let X_S , X_L , I be itemsets; assume $X_S \subset X_L \subset I$

Then:

$$conf(X_L \Rightarrow I - X_L) \ge conf(X_S \Rightarrow I - X_S)$$

Exercise: prove conf. monotonicity

$$X_S \subset X_L \subset I \Rightarrow \operatorname{conf}(X_L \Rightarrow I - X_L) \ge \operatorname{conf}(X_S \Rightarrow I - X_S)$$

Tip: start from what you want to prove:

1. Use the definition of confidence on this

$$\operatorname{conf}(X \Rightarrow Y) = \frac{\sup(X \cup Y)}{\sup(X)}$$

2. Try to arrive to

$$\sup(X_L) \le \sup(X_S)$$

which we know is true because $X_S \subset X_L$

Answer in Nearpod Collaborate

Brute-force itemset mining algorithms

Naïve approach

- Generate all candidate itemsets ($2^{|U|}$ of them)
 - Not practical, U=1000 ⇒ more than 10³⁰⁰ itemsets
- Calculate sup(I) for every itemset
- Key observation
 - If no k-itemsets are frequent
 - No (k+1)-itemsets are frequent

Improved approach

Start with k=1

- Generate all k-itemsets
- Determine sup(I)
- If no k-itemset has sup(I) ≥ minsup, stop
- Otherwise, $k \leftarrow k+1$ and repeat

Improved approach is a significant improvement

• Let *l* be the final value of *k*

$$\sum_{i=1}^{l} \binom{|U|}{i} \ll 2^{|U|}$$

• For |U| = 1000, l=10, this is $\approx 10^{23}$

Further improvements to bruteforce method

- 1. Reducing the size of the explored search space (lattice) by pruning candidate itemsets (lattice nodes) using tricks, such as the downward closure property
- Counting the support of each candidate more efficiently by pruning transactions that are known to be irrelevant for counting a candidate itemset
- 3. Using compact data structures to represent either candidates or transaction databases that support efficient counting

The Apriori Algorithm

Apriori algorithm principle

- Downward closure
 property: every subset of a
 frequent itemset is also
 frequent
- Conversely, if an itemset has a subset that is not frequent, the itemset cannot be frequent
- What are subsets in the lattice?

Example

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Item	Count	
Bread	4	
Coke	2	X
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	Х

Example

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count	
Bread	4	
Coke	2	X
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	Χ

Items (1-itemsets)

Item	Count		
Bread	4		
Coke	2	X	•
Milk	4		
Beer	3		
Diaper	4		
Eggs	1	X	

Item	Count	
{Bread, Milk}	3	
{Beer, Bread}	2	X
{Bread, Diaper}	3	
{Beer, Milk}	2	Χ
{Diaper, Milk}	3	
{Beer, Diaper}	3	

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count		
Bread	4		
Coke	2	X	•
Milk	4		
Beer	3		
Diaper	4		
Eggs	1	X	

Item	Count	
{Bread, Milk}	3	
{Beer, Bread}	2	Χ
{Bread, Diaper}	3	
{Beer, Milk}	2	Χ
{Diaper, Milk}	3	
{Beer, Diaper}	3	

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count		
Bread	4		
Coke	2	X	•
Milk	4		
Beer	3		
Diaper	4		
Eggs	1	Χ	

Item	Count	
{Bread, Milk}	3	
{Beer, Bread}	2	Χ
{Bread, Diaper}	3	
{Beer, Milk}	2	Χ
{Diaper, Milk}	3	
{Beer, Diaper}	3	

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Triplets (3-itemsets)

{Beer, Bread, Milk} 1 X

Items (1-itemsets)

Item	Count		
Bread	4		
Coke	2	Χ	•
Milk	4		
Beer	3		
Diaper	4		
Eggs	1	Χ	

Pairs (2-itemsets)

Item	Count	
{Bread, Milk}	3	
{Beer, Bread}	2	Χ
{Bread, Diaper}	3	
{Beer, Milk}	2	Χ
{Diaper, Milk}	3	
{Beer, Diaper}	3	

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Triplets (3-itemsets)

Item	Count	
{Bread, Diaper, Milk}	2	X
{Beer, Bread, Diaper}	2	Χ
{Bread, Diaper, Milk}	2	X
{Beer, Bread, Milk}	1	X

Minimum Support = 3, **found 8 frequent itemsets**

Pseudocode of Apriori

```
Algorithm Apriori(Transactions: \mathcal{T}, Minimum Support: minsup)
begin
  k = 1:
  \mathcal{F}_1 = \{ \text{ All Frequent 1-itemsets } \};
  while \mathcal{F}_k is not empty do begin
     Generate \mathcal{C}_{k+1} by joining itemset-pairs in \mathcal{F}_k;
                                                                                          (1) Generation
     Prune itemsets from C_{k+1} that violate downward closure;
                                                                                          (2) Pruning
     Determine \mathcal{F}_{k+1} by support counting on (\mathcal{C}_{k+1}, \mathcal{T}) and retaining (3) Support counting
             itemsets from C_{k+1} with support at least minsup;
     k = k + 1:
  end:
  \operatorname{return}(\cup_{i=1}^k \mathcal{F}_i);
end
```

Answer in Google Spreadsheet

Exercise: Apriori

Use the Apriori algorithm to obtain all rules of the form {a,b}→{c} having minimum support = 2 and confidence >= 50%

Note: to generate only rules of the form $\{a,b\}\rightarrow\{c\}$, use only the itemsets of size 3

TID	items
T1	11, 12 , 15
T2	12,14
T3	12,13
T4	11,12,14
T5	11,13
T6	12,13
T7	11,13
T8	11,12,13,15
T9	11,12,13

Summary

Things to remember

- Support and confidence on a rule
- Downward closure property
 - every subset of a frequent itemset is also frequent
 - hence, if an itemset X has a subset that is not frequent, X cannot be frequent
- Apriori algorithm

Exercises for TT13-TT14

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises 4.9 → 9-10
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises 6.2.7 → 6.2.5 and 6.2.6
- Introduction to Data Mining 2nd edition (2019) by Tan et al.
 - Exercises 5.10 → 9-12