

A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning

Yuanning Cui¹, Zequn Sun¹, and Wei Hu^{1,2}

¹State Key Laboratory for Novel Software Technology, Nanjing University, China

²National Institute of Healthcare Data Science, Nanjing University, China

Contact: yncui.nju@gmail.com
https://github.com/nju-websoft/KG-ICL

- Recent advancements in NLP and computer vision have been largely driven by foundation models.
- Can we also develop a foundation model for reasoning on knowledge graphs?
- Inspired by the in-context learning capabilities of LLMs, we propose a new foundation model, **KG-ICL**.

- Different KGs do not share a common symbolic system, including entities and relations.
 - > We defined a unified tokenizer to map entities and relationships from different KGs onto predefined tokens.
- A foundational model requires strong generalization capabilities among diverse datasets. How can it perform reasoning on unseen relations?
 - > We defined a prompt graph that describes the reasoning patterns of a relation based on a set of example subgraphs.

- Given the query and KG, we extract prompt graphs as context for the query relation ``player in league". The entities and relations in the prompt graphs are mapped to the unified tokens.
- We employ a message passing neural network to encode the prompt graph and readout the relation representations as the prompts.
- Then we use the prompts to initialize the representations of entities and relations in the KG.After KG encoding, we score the candidate entities according to their embeddings in the last layer.

- Datasets: 43 datasets in three settings.
- Baseline: Supervised SOTA & ULTRA
- Results: KG-ICL outperforms baseline models on most datasets.

Figure 2: MRR results on various KGs.

Table 11: Detailed results on 43 datasets.

Datasets	Supervised SOTA		ULTRA pre-train		KG-ICL pre-train		ULTRA finetune		KG-ICL finetune	
	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10
FB V1	0.457	0.589	0.498	0.656	0.520	0.678	0.509	0.670	0.531	0.700
FB V2	0.510	0.672	0.512	0.700	0.565	0.749	0.524	0.710	0.568	0.768
FB V3	0.476	0.637	0.491	0.654	0.535	0.695	0.504	0.663	0.537	0.704
FB V4	0.466	0.645	0.486	0.677	0.513	0.699	0.496	0.684	0.525	0.706
ILPC-large	0.070	0.146	0.290	0.424	0.288	0.412	0.308	0.431	0.295	0.411
ILPC-small	0.130	0.251	0.302	0.443	0.288	0.446	0.303	0.453	0.316	0.473
NELL V1	0.637	0.866	0.785	0.913	0.693	0.915	0.757	0.878	0.841	0.995
NELL V2	0.419	0.601	0.526	0.707	0.644	0.835	0.575	0.761	0.641	0.835
NELL V3	0.436	0.594	0.515	0.702	0.613	0.792	0.563	0.755	0.631	0.799
NELL V4	0.363	0.556	0.479	0.712	0.590	0.791	0.469	0.733	0.594	0.802
WN VI	0.741	0.826	0.648	0.768	0.733	0.838	0.685	0.793	0.762	0.827
WN V2	0.704	0.798	0.663	0.765	0.696	0.783	0.679	0.779	0.721	0.787
WN V3	0.452	0.568	0.376	0.476	0.425	0.548	0.411	0.546	0.503	0.626
WN V4	0.661	0.743	0.611	0.705	0.652	0.722	0.614	0.720	0.683	0.749
FB-25	0.223	0.371	0.388	0.640	0.396	0.656	0.383	0.635	0.434	0.694
FB-50	0.189	0.325	0.338	0.543	0.341	0.559	0.334	0.538	0.384	0.598
FB-75	0.117	0.218	0.403	0.604	0.438	0.633	0.400	0.598	0.458	0.664
FB-100	0.133	0.271	0.449	0.642	0.487	0.694	0.444	0.643	0.499	0.703
NL-0	0.309	0.506	0.342	0.523	0.557	0.777	0.329	0.551	0.555	0.765
NL-25	0.261	0.464	0.395	0.569	0.550	0.736	0.407	0.596	0.540	0.730
NL-50	0.281	0.453	0.407	0.570	0.534	0.704	0.418	0.595	0.528	0.708
NL-75	0.334	0.501	0.368	0.547	0.452	0.673	0.374	0.570	0.446	0.681
NL-100	0.269	0.431	0.471	0.651	0.556	0.762	0.458	0.684	0.557	0.766
WK-25	0.107	0.169	0.316	0.532	0.423	0.621	0.321	0.535	0.425	0.628
WK-50	0.247	0.362	0.166	0.324	0.273	0.430	0.140	0.280	0.277	0.432
WK-75	0.068	0.135	0.365	0.537	0.437	0.602	0.380	0.530	0.466	0.626
WK-100	0.186	0.309	0.164	0.286	0.262	0.409	0.168	0.286	0.270	0.415
AristoV4	0.311	0.447	0.182	0.282	0.203	0.306	0.343	0.496	0.313	0.480
CoDEx-small	0.473	0.663	0.472	0.667	0.465	0.654	0.490	0.686	0.479	0.662
CoDEx-medium	0.352	0.490	0.372	0.525	0.330	0.474	0.372	0.525	0.402	0.565
CoDEx-large	0.345	0.473	0.338	0.469	0.261	0.376	0.343	0.478	0.388	0.508
ConceptNet100K	0.320	0.553	0.082	0.162	0.249	0.416	0.310	0.529	0.371	0.584
DBpedia100K	0.306	0.418	0.398	0.576	0.390	0.541	0.436	0.603	0.455	0.604
FB15k-237	0.415	0.599	0.368	0.564	0.359	0.541	0.368	0.564	0.376	0.538
FB15k-237-10	0.219	0.337	0.248	0.398	0.274	0.433	0.254	0.411	0.260	0.416
FB15k-237-20	0.247	0.391	0.272	0.436	0.285	0.454	0.274	0.445	0.284	0.456
FB15k-237-50	0.293	0.458	0.324	0.526	0.329	0.520	0.325	0.528	0.324	0.499
Hetionet	0.257	0.403	0.257	0.379	0.260	0.371	0.399	0.538	0.269	0.402
NELL-995	0.543	0.651	0.406	0.543	0.532	0.653	0.509	0.660	0.534	0.672
NELL23K	0.253	0.419	0.239	0.408	0.317	0.532	0.268	0.450	0.329	0.552
WD-singer	0.393	0.500	0.382	0.498	0.470	0.582	0.417	0.526	0.493	0.599
WN18RR	0.551	0.666	0.480	0.614	0.455	0.527	0.480	0.614	0.536	0.637
YAGO3-10	0.563	0.708	0.451	0.615	0.352	0.503	0.557	0.710	0.545	0.688
Average	0.351	0.493	0.396	0.557	0.442	0.606	0.421	0.590	0.473	0.638

Thanks

The source code are available at https://github.com/nju-websoft/KG-ICL.

This work was funded by National Natural Science Foundation of China (Nos. 62272219 and 62406136), Postdoctoral Fellowship Program of CPSF (No. GZC20240685), and CCF-Tencent Rhino-Bird Open Research Fund.

Contact: yncui.nju@gmail.com

Homepage: https://yncui-nju.github.io