Model Validation - Cross Validation & Model Validation w/ Categorical Response

Cross Validation Motivation - Elephant Example

Say we want to build a model to predict an elephant's weight based on two predictors – age and height.

We will want to know how well our model will perform if we use it to predict the weight of an elephant we haven't seen before.

Model Validation

$$\hat{y} = 4000 \ lb$$

$$y = 3988 \, lb$$

Model validation is the process of assessing a model's performance on **new data** by comparing the model's prediction to the actual value.

How Do We Validate Our Model?

How can we **build** & **validate** our model using these 10 elephants?

)ata

Cross Validation (CV)

To assess how our model will perform with new data, we can split our data into training and testing sets. This is a single-run cross validation.

Training Testing

Cross validation (CV) allows us to assess our model's predictive ability using a "new" data.

What Happens if We Only Run CV Once?

Training

Testing

Single Run CV Limitation

Our model's performance may be **sensitive to the sample** that we use for our training set.

Solution? Perform CV Multiple Times!

- To account for this issue, we can create many training and testing sets and assess the model's predictive ability multiple times.
- The results are then combined to get an overall estimate of a model's predictive performance.

Performing CV multiple times gives a better representation of a model's performance.

CV Example Set 1

Training

Testing

CV Example Set 2

CV Example Set 3

Training

Testing

different elephants we are interested in.

Cross Validation Overview

The cross validation process is generally split into the following steps:

- 1. Data is split into training and testing sets
- 2. A model is trained using the training data
- 3. The model is validated using the testing data. i.e. a performance metric is calculated between the values predicted by model and those in the sample data
- 4. This is repeated k times. Aggregate the performance metrics across k.

overall performance =
$$\frac{1}{k} \sum_{i=1}^{k} performance_i$$

Given n, Choose k

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Training

Given n=12 samples, how many different ways can we choose k=9 samples? 12! / (9! * (12-9)!) = 12! / (9! * 3!) = 220

overall performance =
$$\frac{1}{k} \sum_{i=1}^{k} performance_i$$

Error Metrics - Discrete Data*

Confusion Matrix

Can be used to calculate different error metrics that can be used to assess how well our model is performing.

		Actual				
		Positive	Negative			
cted	Positive	True Positive	False Positive			
Predicted	Negative	False Negative	True Negative			

^{*} Binary Data

Confusion Matrix Example

Testing Data Response	0	1	1	0	0	0	1	0	0	0	0
Predicted Response	0	0	1	0	0	0	0	1	0	0	0

		Actual		
		Positive (1)	Negative (0)	
Predicted	Positive (1)			
	Negative (0)			

TP =

TN =

FP =

FN =

Confusion Matrix Example

Testing Data Response	0	1	1	0	0	0	1	0	0	0	0
Predicted Response	0	0	1	0	0	0	0	1	0	0	0

		Actual		
		Positive (1)	Negative (0)	
Predicted	Positive (1)	1	1	
	Negative (0)	2	7	

TP = 1

TN = 7

FP = 1

FN = 2

Accuracy, Precision, Recall, F1

Accuracy

Accuracy = (TP+TN)/(TP+FP+FN+TN)

(no. of correct predictions/total no. of predictions)

When to use: Accuracy is a good choice when classes are

balanced and not skewed.

Precision

Precision = (TP)/(TP+FP)

Of our predicted positives, what proportion is truly positive?

When to use: When we want to be very sure in our positive predictions.

Recall

Recall = (TP)/(TP+FN)

Of the actual positives, what proportion were accurately

classified?

When to use: When we want to classify as many positives as

possible.

		Actual		
		Pos	Neg	
Pred.	Pos	1 (TP)	1 (FP)	
	Neg	2 (FN)	7 (TN)	

Accuracy =

Precision =

Recall =

F1 =

F1

F1 = 2*(precision*recall)/(precision+recall)

Number in [0,1]. A harmonic mean of precision and recall.

When to use: When you want to have high precision and recall.

Accuracy, Precision, Recall, F1

Accuracy

Accuracy = (TP+TN)/(TP+FP+FN+TN)

(no. of correct predictions/total no. of predictions)

When to use: Accuracy is a good choice when classes are

balanced and not skewed.

Precision

Precision = (TP)/(TP+FP)

Of our predicted positives, what proportion is truly positive?

When to use: When we want to be very sure in our positive

predictions.

Recall

Recall = (TP)/(TP+FN)

Of the actual positives, what proportion were accurately

classified?

When to use: When we want to classify as many positives as

possible.

		Actual		
		Pos	Neg	
Pred.	Pos	1 (TP)	1 (FP)	
	Neg	2 (FN)	7 (TN)	

Accuracy = (1+7)/(1+1+2+7) = 8/11 = 73%Precision = (1)/(1+1) = 1/2 = 50%Recall = (1)/(1+2) = 1/3 = 33%F1 = 2*(1/2)*(1/3)/(1/2+1/3) = 40%

F1

F1 = 2*(precision*recall)/(precision+recall)

Number in [0,1]. A harmonic mean of precision and recall.

When to use: When you want to have high precision and recall.

relevant elements

How many selected items are relevant?

How many relevant items are selected?

Recall =

source: wikipedia

Many more metrics