组合数学解题工具之生成函数

background

是个被用烂了的 idea 出的题目, 当然并不是搬运题或者改编题. 算是个半原创题吧.所以不对题目解法和数据的正确性做保证

在过去的两周里,我们学习了一些基础组合数学,尝试解决计数、极值、存在性问题,我们引入了生成函数 (generating function) 来解决它们. 事实证明,OGF/PGF 操作 +ODE/PDE 求解是极为有效的方法,除了算起来有点麻烦. 这个题目将会帮助你熟悉它们.

spinach 的文笔非常差, 但是他非常肝, 在高考考场乱写了一篇零分作文. 向 ZJ2020 高考语文满分作文-生活在树上致敬 (口区)

statement

生活在 vertex weighted undirected graph 上

现代计算机科学以 Martin Fowler 的 "Any fool can write code that a computer can understand. Good programmers write code that humans can understand." 为嚆矢。滥觞于哲学与数学的期望正失去它们的借鉴意义。但面对看似无垠的未来天空,我想循 Sean Parent"Good code is short, simple, and symmetrical—the challenge is figuring out how to get there." 好过过早地振翮。

因此你要选出一些点, 使得任意两点之间没有边, 第 i(0<i) 次选择点 j 的收益是 w(i,j)

我们怀揣热忱的灵魂天然被赋予对超越性的追求,不屑于古旧坐标的约束,钟情于在别处的芬芳。但当这种期望流于对逻辑主义不假思索的批判,乃至走向直觉与构造主义时,便值得警惕了。与秩序的落差、错位向来不能为越矩的行为张本。而纵然我们已有翔实的蓝图,仍不能自持已在浪潮之巅立下了自己的沉锚。

"Only wimps use tape backup: real men just upload their important stuff on ftp, and let the rest of the world mirror it"Linus Torvalds 之言可谓切中了肯綮。人的无后效性是不可祓除.

求出总收益最大的选取方案,输出它的收益用在栈上的生活方式体现个体的超越性,保持婞直却又不拘泥于所谓"遗世独立"的单向度形象。这便是 Steve McConnell 为我们提供的理想期望范式。生活在栈上——始终热爱大地——升上天空。

1/0

input

第一行两个整数 n,m 表示点和边的数量. 之后 m 行, 每行 x_i,y_i 表示一个连接 x_i,y_i 的边. 之后 $n\times n$ 的表格, 第 i 行 j 列表示 w(i,j)

output

一个整数,表示答案.

case1

• input

```
1 3 2
2 1 2
3 1 3
4 0 1 2
5 0 2 1
6 0 0 0
```

output

1 4

• explanation

第一次选择点 3, 第二次选择点 2, 结束过程.

restriction

- compile flags: (none) (备注:gcc.version >= 4.8.4(noi linux 上的版本))
- TL: 2s (备注: 请根据评测机性能进行调整, 在 2 倍 std 以上)
- ML: 256MB

共10个测试点,每个测试点独立计分.

- 对于所有数据, $0 \le w(i,j) \le 10^5$, $1 \le n \le 20$, $0 \le m \le 1000$
- 对于 20% 的数据,w(i,j) = 0
- 另外有 20% 的数据,m=0

solution

一句话题意: 给你一个边带权的无向图, 求 1,n 两点在生成树上距离的期望, 保证图联通. 图非常小, 或者具有某些特性. - 图是一个树: 只有一种生成树就是它本身,dfs 一下即可. - 图是一个 1..n 首尾相接的环: 任意删掉一条边就是一个生成树, 转化成上面的问题. - 一般的图: 直接搜索, 当然 $O(2^m)$ 或者 $O(\binom{m}{n})$ 肯定是过不去的. 而 O(n!) 是可以过的.