IVAIVIE:	•••••	ADM NO:
SCHOOL :	DATE	:
CANDIDATE'S SIGNATURE		
233/3		
CHEMISTRY		
PAPER 3		
TIME: $2^{1}/_{4}$ HOURS		

Kenya Certificate of Secondary Education (K.C.S.E)

ADM NO.

INSTRUCTIONS TO CANDIDATES:

NIAME.

- Write your name and index number in the spaces provided above. (i)
- (ii) **Sign** and write the **date** of examination in the spaces provided **above**.
- (iii) Answer **ALL** the questions in the spaces provided in the question paper.
- You are not allowed to start working with apparatus for the first 15 minutes of (iv) $2^{1}/_{4}$ Hours allowed for this paper. This time is to enable you read the question and make sure you have all the chemicals and apparatus required.
- (iv) Mathematical tables and silent electronic calculators **may be** used.
- (v) All working **must be** clearly shown where necessary.
- Candidates should check the question paper to ascertain that all the pages (vi) are printed as indicated and that no questions are missing

FOR EXAMINER'S USE ONLY:

Question	Maximum	Candidate's
	Score	Score
1	20	
2	13	
3	7	
Total Score	40	

Get more resources from: Enovate KCSE Revision App highschool.co.ke

QUESTION 1

- (a) You are provided with the following
 - (i) Sulphuric(VI) acid labeled a solution D
 - (ii) Solution R prepared by dissolving 40g of NaOH in 400cm³ of distilled water and made up to 1 litre.

You are required to determine the molarity of Sulphuric (VI) acid.

PROCEDURE

- (i) Fill the burette with Sulphuric (VI) acid.
- (ii) Using pipette and pipette filter place 25cm³ of solution R into conical flask.
- (iii)Add 2-3 drops of phenolphthalein indicator.
- (iv)Titrate solution R against solution D.
- (v) Repeat the titrations to obtain two concordant titrates
- (vi)Record your results in the table below.

1)1100014 Jour results in			
	I	II	III
Final burette reading			
(cm^3)			
Initial burette			
reading (cm ³)			
Volume of solution			
D used (cm ³)			

D us	ed (cm ³)			
i)	Calculate the av	verage volume of acid	solution D used .	(4mks) (1mk)
ii)	Calculate the nu	umber of moles NaOH	solution (Solution R)	used. (1mk)
iii)	Calculate the nu	umber of moles of acid	l used.	(1mk)
iv)	Determine the r	nolarity of Sulphuric (vi) acid.	(1mk)

Get more resources from: Enovate KCSE Revision App

- b) You are provided with the following;
 - (i) 0.85M HCL labeled solution N.
 - (ii) Sodium hydroxide labeled solution K.

You are required to determine the molar heat of neutralization of solution N

Procedure

- i. Measure 50cm³ of solution N and transfer it into a 250cm plastic beaker provided.
- ii. Record the initial temperature of solution N to the nearest 0.5° c.
- iii. Rinse the burette thoroughly with distilled water and fill it up to the 0.0cm³ mark with sodium hydroxide solution (Solution K)
- iv. From the burette add 10cm³ of solution K to solution N in the beaker. Stir gently with the thermometer and record the new temperature in the table below.
- v. Continue adding 10cm³ portions of Solution K recording new temperature after each addition until 80cm³ of K has been added

Volume of Solution K	0	10	20	30	40	50	60	70	80
added (cm ³)									
Temperature ⁰ C									

(3mks)

a) Plot a graph of temperature (y-axis) against total volume of sodium hydroxide (Solution K) (x-axis) (3mks)

Get more resources from: Enovate KCSE Revision App

highschool.co.ke

	i)	From the graph determine the maximum temperature reach	ed. (1mk)
	ii)	What is the temperature change?	(1mk)
b)		he graph determine the volume of sodium hydroxide required ization of hydrochloric acid.	ed for complete (1mk)
c)	Write a	an Ionic equation for the neutralization reaction.	(1mk)
d)		ate the heat evolved when volume of sodium hydroxide in (or y of solution 1g/cm ³ ,C=4.2j/g/k.	e) was neutralized. (1mk)
e)	Calcul	ate the molar heat of neutralization.	(1mk)
<u>UES</u>	TION 2	<u>2</u>	
	-	ded with solid D. Carry out the following tests and record you he spaces provided.	our observation and

QΙ

a) Describe the appearance of Solid D. (1mk)

Observation	Inferences
1mk	1mk
	oiling tube and add about 10cm ³ of distilled water. Shak
ell and add about 2cm³ porti Observation	ions for each of the test below. Inferences
	micronecs
1mk	1mk
	ueous NaOH drop wise until in excess Inferences
To one portion, add aq	ueous NaOH drop wise until in excess
To one portion, add aq	ueous NaOH drop wise until in excess
To one portion, add aq	ueous NaOH drop wise until in excess
To one portion, add aq	ueous NaOH drop wise until in excess
To one portion, add aq	ueous NaOH drop wise until in excess
To one portion, add aq	ueous NaOH drop wise until in excess
	ueous NaOH drop wise until in excess

		nmonia drop wise until in	excess
Observation	I	nferences	
		4	
1mk		$^{1}/_{2}$ mk	
i) To a third portion	add about 5 drops o	f sodium chloride solution	1.
•	-		
Observation		Inferences	
	1mk		$^{1}/_{2}$ mk
v) To a fourth portio	on, add dilute Barium	nitrate solution.	
Observation	,	Inferences	
			$^{1}/_{2^{mk}}$
			±/amk

v) To a fifth, add lead (ii) nitrate solution, warm mixture

Observation		Inferences
	1mk	1mk

QUESTION 3

You are provided with solid J. carry out the tests below and record your observation and inferences to the spaces provided.
 Place a half of Solid J in a clean metallic spatula and ignite it on Bunsen burner flame.

Observation	Inferences
1mk	1mk

Get more resources from: $\underline{\text{Enovate KCSE Revision App}}$

Put the remaining portion of solid J in a boiling tube and add about 8cm³ of distilled water. Shake to dissolve. To about 2cm³ of solution J in a test tube add 2 to 3 drops of bromine water.

	Observation	Inferences
	1mk	1mk
L	To about 2cm ³ of solution J in a test to	ube, add about 1cm ³ of acidified potassium
_	dichromate (vi). Warm gently and allo	ow to stand for a minute.
	Observation	Inferences
L		
		1.
		$^{1}/_{2^{mk}}$
	1mk	
		be, add a small amount of solid Sodium
	hydrogen carbonate.	
ľ	Observation	Inferences

1mk	$^{1}/_{2^{\mathrm{mk}}}$