# 实验一

## 实验(1):他励直流电动机的工作及机械特性

# 1、测量他励直流电动机的固有工作特性(转速调整特性、转矩特性和效率特性)

取  $I_{\rm an}=0.4A$ .

|                     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| $I_a(A)$            | 0.12  | 0.20  | 0.28  | 0.32  | 0.36  | 0.40  | 0.44  | 0.48  |
| $n(\mathrm{r/min})$ | 0.501 | 0.783 | 1.024 | 1.134 | 1.238 | 1.339 | 1.459 | 1.583 |
| $T(N \cdot M)$      | 1718  | 1701  | 1688  | 1678  | 1672  | 1665  | 1658  | 1650  |

表 1 他励直流电动机的转速调整特性和转矩特性

## 2、他励直流电动机的机械特性

调节电枢回路电阻 W1 使电机转速降低至 1200 r/min. 取  $I_{\rm an}=0.2A$ .

|                | 1     | 2     | 3     | 4     | 5     |
|----------------|-------|-------|-------|-------|-------|
| $T(N \cdot M)$ | 0.410 | 0.647 | 0.783 | 0.916 | 1.162 |
| n(r/m i n)     | 1508  | 1373  | 1284  | 1194  | 1059  |

表 2 机械特性表格 n = f(T)



根据两表数据在同一个坐标中绘制他励直流电动机的固有特性、工作特性和机械特性,分析、比较并得出各自的特点.

· 固有特性: 电磁转矩越大, 转速越低, 是一条下斜直线

· 机械特性: *n*<sub>0</sub> 不变

#### 思考题

1. 额定励磁的条件下,增大电枢端电压起动直流电动机,为何必须缓慢增大?否则有什么后果?

电机启动时,若直接施加额定电压,电枢回路中的电阻和电感会产生过大的启动电流,这可能损坏电机或导致过热.

- 2. 通过改变电动机励磁或端电压极性以改变电动机旋转方向,为何必须先停机,再换接端子极性?可否正常运转姿态下直接通过刀开关或接线端子直接改变旋转方向?为什么? 正常运转姿态下直接换向,转子冲击强烈,易损坏传动零件.
- 3. 直流电动机励磁回路断线后, 会产生什么后果?
  - · 由于励磁磁通减小, 电枢电流会大幅度上升, 可能导致电机烧毁,
  - · 电机转速可能急剧升高或下降,导致换向不良,损坏转子.

## 实验(2): 直流电动机启动和调速实验

|       | 型号 | 功率 (W) | 电压 (V) | 电流 (A) | 转速 (rpm) | 励磁电压 | 励磁电流 |
|-------|----|--------|--------|--------|----------|------|------|
| 直流电动机 |    | 1'     | 220    | 1.25   | 1500     | 220  |      |

表 3 直流电动机电气数据表(额定值)

| 序号        | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|-----------|-------|-------|-------|-------|-------|-------|-------|
| $U_a$ (V) | 100   | 120   | 140   | 160   | 180   | 200   | 220   |
| n (r/min) | 388   | 536   | 687   | 836   | 977   | 1133  | 1280  |
| $I_a$ (A) | 0.052 | 0.053 | 0.055 | 0.056 | 0.059 | 0.061 | 0.063 |

表 4 他励直流电动机改变电枢电压调速实验(恒转矩负载)

| 序号        | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|-----------|-------|-------|-------|-------|-------|-------|-------|
| $U_a$ (V) | 200   | 180   | 160   | 140   | 120   | 150   | 170   |
| n (r/min) | 1330  | 1377  | 1440  | 1509  | 1594  | 1505  | 1436  |
| $I_a$ (A) | 0.081 | 0.086 | 0.088 | 0.091 | 0.093 | 0.094 | 0.092 |

表 5 他励直流电动机改变励磁电流调速(恒功率负载)

#### 思考题

- 1. 说明电动机起动时,起动电阻 W1 和磁场调节电阻 W2 应调到什么位置?为什么?电动机起动时,起动电阻 W1 应调到最大位置,磁场调节电阻 W2 应调到最小位置,使励磁电流最大.
- 2. 在电动机轻载及额定负载时,增大电枢回路的调节电阻,电机的转速如何变化?增大励磁回路的调节电阻,转速又如何变化?

轻载及额定负载时增大电枢回路的调节电阻, 电机的转速会降低; 增大励磁回路的调节电阻, 转速会增加.

- 3. 用什么方法可以改变直流电动机的转向?
  - 1. 反接电枢两端的电压
  - 2. 改变调整励磁绕组的极性
- 4. 为什么要求直流他励电动机磁场回路的接线要牢靠? 起动时电枢回路必须串联起动变阻器?
  - · 一旦磁场小于最低允许值. 电机的速度将超过最大允许值, 可能损坏电机.
  - · 电机起动时, 电枢回路串联起动变阻器, 可以减小启动电流, 减小电机损坏的可能性.
- 5. 直流电动机在基速以下采用改变电枢端电压调速,称作"恒转矩调速方法",在基速以上采用弱磁调速,称作"恒功率调速方法",为什么?

直流电动机在基速以下采用改变电枢端电压调速,因为此时磁通量保持不变,转矩与电流成正比,实现恒转矩输出;而在基速以上采用弱磁调速,因为此时电枢电压已达额定值,只能通过降低磁通来提高转速,而功率保持不变,实现恒功率输出.