Notas Taller Topología Algebraica

Cristo Daniel Alvarado

8 de septiembre de 2024

Índice general

2.	Gru	pos Libres y Productos de Grupos Libres	2
	2.1.	Producto Débil de Grupos	2
	2.2.	Grupos Abelianos Libres	6

Capítulo 2

Grupos Libres y Productos de Grupos Libres

En los capítulos siguientes será indispensable el tratar con este tipo de grupos dada la naturaleza del grupo fundamental de los espacios topológicos.

2.1. Producto Débil de Grupos

Observación 2.1.1

De ahora en adelante, el símbolo 🗵 significa para casi todo salvo una cantidad finita de elementos.

Observación 2.1.2

En esta parte, I no denotará al intervalo [0, 1], sino a una indexación de una familia.

Definición 2.1.1

Sea $\mathcal{G} = \{G_i\}_{i \in I}$ una familia arbitraria no vacía de grupos. Se define el **producto directo de la familia** \mathcal{G} por:

$$\prod \mathcal{G} = \left\{ x : I \to \prod_{i \in I} G_i \middle| x \text{ es función} \right\}$$

y en ocasiones se denotará simplemente por $\prod_{i \in I} G_i$. Se dota a este conjunto de la siguiente operación: si $x, y \in \prod \mathcal{G}$, entonces $x \cdot y : I \to \prod_{i \in I} G_i$ es la función tal que

$$(x \cdot y)(i) = x(i) \cdot y(i)$$

para todo $i \in I$, siendo la multiplicación respectiva en cada grupo.

En caso de que no lo haya hecho, queda como ejercicio al lector probar que el producto directo de una familia de grupos \mathcal{G} es un grupo dotado de la operación de la definición anterior.

Definición 2.1.2

Sea $\mathcal{G} = \{G_i\}_{i \in I}$ una familia arbitraria no vacía de grupos. Se define el **producto débil de la familia** \mathcal{G} como el subgrupo de $\prod \mathcal{G}$ dado por:

$$\prod \mathcal{G}^* = \left\{ x \in \prod \mathcal{G} \middle| x(i) = e_i, \ \forall i \in I \right\}$$

donde e_i denota la identidad de G_i para cada $i \in I$.

Proposición 2.1.1

Si \mathcal{G} es una familia arbitraria no vacía de grupos, entonces

$$\prod \mathcal{G}^* < \prod \mathcal{G}$$

es decir, que $\prod \mathcal{G}^*$ es un subgrupo de $\prod \mathcal{G}$.

Demostración:

Ejercicio.

Definición 2.1.3

Sea $\mathcal{G} = \{G_i\}_{i \in I}$ una familia no vacía de grupos. Si G_i es abeliano para cada $i \in I$, entonces llamaremos a $\prod \mathcal{G}^*$ la **suma directa de los grupos** G_i . En este caso, se denotará la operación del grupo de forma aditiva y se le denotará por:

$$\prod \mathcal{G}^* = \bigoplus_{i \in I} G_i = \bigoplus \mathcal{G}$$

Observación 2.1.3

Note que ambas definiciones coinciden si I es un conjunto finito.

Definición 2.1.4

En las condiciones de la definición anterior, para cada índice $i \in I$ definimos un **monomorfismo** natural $\varphi_i : G_i \to \prod \mathcal{G}^*$ definido como sigue: $\forall g \in G_i$ y para todo $j \in I$:

$$\varphi_i(g)_j(\varphi_i(g))(j) = \begin{cases} g & \text{si} & i = j \\ e_j & \text{si} & i \neq j \end{cases}$$

En el caso en que cada G_i sea un grupo abeliano, el siguiente teorema da una caracterización importante de su producto débil y de los monomorfismos φ_i .

Teorema 2.1.1

Si $\{G_i\}_{i\in I}$ es una familia no vacía de grupos abelianos y,

$$G = \bigoplus_{i \in I} G_i$$

entonces para cualquier grupo abeliano A y cualquier familia de homomorfismos $\{\psi_i\}_{i\in I}$ tales que

$$\psi_i: G_i \to A, \quad \forall i \in I$$

Existe un único homomorfismo $f:G\to A$ tal que para todo $i\in I$ el siguiente diagrama es conmutativo:

$$G_i \xrightarrow{\varphi_i} G$$

$$\downarrow_f$$

$$A$$

Figura 1. Diagrama conmutativo de G y A.

Demostración:

Sean A un grupo abeliano y $\{\psi_i\}_{i\in I}$ una familia de homomorfismos tales que

$$\psi_i: G_i \to A, \quad \forall i \in I$$

sea ahora $x \in G$, como $x_i = e_i$, $\forall i \in I$ se tiene pues al ser ψ_i homomorfismos debe suceder que $\psi_i(x_i) = e_A$, $\forall i \in I$ (siendo e_A la identidad de A). Por lo cual la suma

$$\sum_{i \in I} \psi_i(x_i)$$

está bien definido (pues solo una cantidad finita de estos elementos es diferente de la identidad). Hacemos

$$f(x) = \sum_{i \in I} \psi_i(x_i), \quad \forall x \in G$$

Veamos que esta función está bien definida, ya se tiene por lo anterior que $f:G\to A$. Sea $x\in G$, si x se expresa como

$$x = \sum_{j=1}^{n} y_j \quad \mathbf{y} \quad \mathbf{z} = \sum_{k=1}^{m} z_k$$

con $y_j, z_k \in G$ para todo $j \in [1, n]$ y para todo $k \in [1, m]$, sea

$$I_0 = \{i_1, ..., i_r\}$$

el subconjunto de I tal que si $i \in I_0$, entonces

$$y_{i} \neq e_i$$
 o $z_{ki} \neq e_i$

para algún $j \in [\![1,n]\!]$ o algún $k \in [\![1,m]\!]$. Veamos que

$$f\left(\sum_{j=1}^{n} y_{j}\right) = \sum_{i \in I} \psi_{i} \left(\left(\sum_{j=1}^{n} y_{j}\right)_{i}\right)$$
$$= \sum_{i \in I_{0}} \psi_{i} \left(\sum_{j=1}^{n} y_{j_{i}}\right)$$
$$= \sum_{i \in I_{0}} \sum_{j=1}^{n} \psi_{i} \left(y_{j_{i}}\right)$$

y,

$$f\left(\sum_{k=1}^{m} z_{k}\right) = \sum_{i \in I} \psi_{i} \left(\left(\sum_{k=1}^{m} z_{k}\right)_{i}\right)$$
$$= \sum_{i \in I_{0}} \psi_{i} \left(\sum_{k=1}^{m} z_{ki}\right)$$
$$= \sum_{i \in I_{0}} \sum_{k=1}^{m} \psi_{i} \left(z_{ki}\right)$$

por ende,

$$f\left(\sum_{j=1}^{n} y_{j}\right) - f\left(\sum_{k=1}^{m} z_{k}\right) = \sum_{i \in I_{0}} \sum_{j=1}^{n} \psi_{i}\left(y_{j_{i}}\right) - \sum_{i \in I_{0}} \sum_{k=1}^{m} \psi_{i}\left(z_{k_{i}}\right)$$

$$= \sum_{i \in I_{0}} \left(\sum_{j=1}^{n} \psi_{i}\left(y_{j_{i}}\right) - \sum_{k=1}^{m} \psi_{i}\left(z_{k_{i}}\right)\right)$$

$$= \sum_{i \in I_{0}} \left(\psi_{i}\left(\sum_{j=1}^{n} y_{j_{i}}\right) - \psi_{i}\left(\sum_{k=1}^{m} z_{k_{i}}\right)\right)$$

$$= \sum_{i \in I_{0}} \left(\psi_{i}\left(\sum_{j=1}^{n} y_{j_{i}}\right) - \psi_{i}\left(\sum_{k=1}^{m} z_{k_{i}}\right)\right)$$

$$= \sum_{i \in I_{0}} \left(\psi_{i}\left(\sum_{j=1}^{n} y_{j_{i}} - \sum_{k=1}^{m} z_{k_{i}}\right)\right)$$

pero $x_i = \sum_{j=1}^n y_{ji}$ y $x_i = \sum_{k=1}^m z_{ki}$, por lo cual

$$f\left(\sum_{j=1}^{n} y_j\right) - f\left(\sum_{k=1}^{m} z_k\right) = 0$$

$$\Rightarrow f\left(\sum_{j=1}^{n} y_j\right) = f\left(\sum_{k=1}^{m} z_k\right)$$

Se sigue que f está bien definida. Veamos que es homomorfismo. Sean $x,y\in G$, entonces

$$f(x+y) = \sum_{i \in I} \psi_i(x_i + y_i)$$
$$= \sum_{i \in I} \psi_i(x_i) + \psi_i(y_i)$$

como A es abeliano, esta suma se puede reordenar de cualquier forma, en particular:

$$f(x+y) = \sum_{i \in I} \psi_i(x_i) + \psi_i(y_i)$$
$$= \sum_{i \in I} \psi_i(x_i) + \sum_{i \in I} \psi_i(y_i)$$
$$= f(x) + f(y)$$

por lo que f es homomorfismo. Sea ahora $i \in I$, entonces

$$f \circ \varphi_i(x_i) = f(\varphi_i(x_i))$$

$$= \sum_{j \in I} \psi_j(\varphi_i(x_i)_j)$$

$$= \psi_i(\varphi_i(x_i)_i)$$

$$= \psi_i(x_i), \quad \forall x_i \in G_i$$

Luego, $f \circ \varphi_i = \psi_i$ para todo $i \in I$. Veamos la unicidad. Para ello, recordemos antes que si $x \in G$, entonces

$$x = \sum_{i \in I} \varphi_i(x_i)$$

(básicamente x se expresa como la suma de sus componentes una por una vistas como elementos de G) siendo esta suma finita y por ende, está bien definida. Si $g:G\to A$ es otro homomorfismo tal que

$$g \circ \varphi_i = \psi_i, \quad \forall i \in I$$

se tiene que

$$g(x) = g\left(\sum_{i \in I} \varphi_i(x_i)\right)$$
$$= \sum_{i \in I} g \circ \varphi_i(x_i)$$
$$= \sum_{i \in I} \psi_i(x_i)$$
$$= f(x), \quad \forall x \in G$$

por ende, f es único.

Este teorema caracteriza la suma directa de grupos abelianos, como lo muestra la siguiente proposición.

Proposición 2.1.2

Sea $\{G_i\}_{i\in I}$ una familia de grupos abelianos y $G=\bigoplus_{i\in I}G_i$

2.2. Grupos Abelianos Libres

Recordemos que si G es un grupo, decimos que un conjunto $S \subseteq G$ genera a G, si

$$G = \left\{ s_1^{\epsilon_1} \cdot \dots \cdot s_m^{\epsilon_m} \middle| s_i \in S, \forall i \in [1, m]; m \in \mathbb{N} \right\}$$

y en tal caso, se denota $G = \langle S \rangle$.

Ejemplo 2.2.1

Si G es un grupo cíclico de orden $n \in \mathbb{N}$, entonces existe $x \in G$ tal que $G = \langle x \rangle$, así que

$$G = \{x, x^2, ..., x^n = e\}$$