- Consider a Boolean formula in CNF.
- In CNF, each clause is a disjunction of literals
- The formula is a conjunction of clauses.
- Another name for CNF is Product-of-Sums.

- We show that for any set of m clauses, there is a truth assignment that satisfies at least m/2 clauses.
- Proof: Consider a random assignment of truth values to variables as T/F.
- Consider a clause C_i of k variables.
- C_i is not satisfied with probability 2^{-k}.
- Define a random variable Z_i that indicates the event C_i is satisfied.
- $E[Z_i] = Pr(C_i \text{ is satisfied}) = 1 2^{-k}$.
- Define Z as the number of clauses satisfied. $Z = \sum Z_i$.
- $E[Z] = E[\sum Z_i] = \sum E[Z_i] = m(1 2^{-k}) \ge m/2 \text{ as } k \ge 1.$

- We show that for any set of m clauses, there is a truth assignment that satisfies at least m/2 clauses.
- Proof: Consider a random assignment of truth values to variables as T/F.
- $E[Z] = E[\sum Z_i] = \sum E[Z_i] = m(1 2^{-k}) \ge m/2 \text{ as } k \ge 1.$
- The above holds irrespective of whether the formula is satisfiable or not.
- The version of the problem where we intend to maximize the number of clauses that can be satisfied is called as MAXSAT.
- MAXSAT is also NP-hard indicating that no good polynomial solutions exist.

- The version of the problem where we intend to maximize the number of clauses that can be satisfied is called as MAXSAT.
- Define for an instance I, m*(I) to be the maximum number of clauses that can be satisfied.
- Let m^A(I) be the number of (expected) clauses that can be satisfied by an (randomized) algorithm A.
- The ratio m^A(I)/m*(I) is the performance ratio of algorithm A.
- We seek algorithms that this ratio as close to 1.
- The previous approach gives us 1/2 as the ratio.

- This version of the problem where we intend to maximize the number of clauses that can be satisfied is called as MAXSAT.
 - The ratio m^A(I)/m*(I) is the performance ratio of algorithm
 A.
 - We seek algorithms that this ratio as close to 1.
 - The previous approach gives us 1/2 as the ratio.
 - Actually the ratio is 1-2-k.
 - In fact, there are instances where one can satisfy only 1/2 of the clauses.

- This version of the problem where we intend to maximize the number of clauses that can be satisfied is called as MAXSAT.
 - We now study an approach that does better than 1/2.
- Finally, we devise an algorithm that gets us a ratio of 3/4.

- The technique of LP Rounding uses the following approach.
- Write the optimization problem as an integer linear program (ILP).
- Relax some of the constraints of the ILP in a step called LP Relaxation to convert the ILP to a simple Linear Program (LP).
- Note that LP can be solved in polynomial time. Get an optimal solution to the LP.
- Round the solution from LP to satisfy the integrality constraints.
 - May lose some quality in this step but that is inevitable.

- Let us apply LP rounding to the MAXSAT problem.
- Consider a clause C_i.
- An indicator variable z_i with values in {0, 1} is defined to indicate whether C_i is satisfied or not.
- We now seek to maximize $\sum_{i} z_{i}$.
- For each variable x_j , we define an indicator variable y_j that takes values 1 or 0 corresponding to x_j = True or False respectively.
- Since variables can appear in either the pure form or the complemented form, we separate these as follows.

- Let us apply LP rounding to the MAXSAT problem.
- Consider a clause C_i.
- For each variable x_j , we define an indicator variable yj that takes values 1 or 0 corresponding to x_j = True or False respectively.
- Since variables can appear in either the pure form or the complemented form, we separate these as follows.
- Define C_{i+} to be the indices of variables that appear in pure form in C_i.
- Define C_i to be the indices of variables that appear in pure form in C_i.

- Let us apply LP rounding to the MAXSAT problem.
- Consider a clause C_i.
- For each variable x_j , we define an indicator variable y_j that takes values 1 or 0 corresponding to x_j = True or False respectively.
- Define C_{i+} to be the indices of variables that appear in pure form in C_i.
- Define C_{i-} to be the indices of variables that appear in the complemented form in C_i .
- Now, clause C_i is satisfied if it holds that for each i

$$\sum_{j \text{ in } C_{i+}} y_j + \sum_{j \text{ in } C_{i-}} (1 - y_j) \ge z_i.$$

- Let us apply LP rounding to the MAXSAT problem.
- The entire integer linear program is:

$$\begin{array}{c} \text{Maximize } \Sigma_{\mathbf{i}} \ Z_{\mathbf{i}} \\ \text{subject to} \end{array}$$

$$\sum_{j \text{ in } C_{i+}} y_j + \sum_{j \text{ in } C_{i-}} (1 - y_j) \ge z_i \text{ for all } I$$

where y_i , z_i in $\{0, 1\}$ for all i and j.

- Example. Consider the following clauses
- $C_1 = x_1 \vee \neg x_2 \vee x_4$
- $C_2 = x_2 \ V \ x_3 \ V \ \neg x_4$
- $C_3 = \neg x_1 \lor x_3$
- $C_4 = \neg x_3 \lor \neg x_4$

and write the corresponding integer linear program and the (relaxed) linear program.

- Let us apply LP rounding to the MAXSAT problem.
- Let us relax the constraints on y_j and z_i so that they can take values in [0,1]
- Note they are real numbers between 0 and 1 now and not just integral necessarily.
- We will use u_j and v_i for the values of the best solution to the relaxed linear program.
 - We use u's for the variables and v's for the clauses.
- Notice that $\sum_{i} v_{i}$ is an upper bound on the number of clauses that can be satisfied.
- But, the values of u_j are not integral, so they do not yet correspond to True/False values in a truth assignment.

- Let us relax the constraints on y_j and z_i so that they can take values in [0,1]
- We will use u_j and v_i for the values of the best solution to the relaxed linear program.
- But, the values of u_j are not integral, so they do not yet correspond to True/False values in a truth assignment.
- The next step in the technique suggests to round the u_i's so that a truth assignment can be obtained. This step is called randomized rounding.
- Our rounding does the following: Set y_j to 1 with probability u_i.
 - This sets x_i to True with the same probability.

- The next step in the technique suggests to round the u_j's so that a truth assignment can be obtained. This step is called randomized rounding.
- Our rounding does the following: Set y_j to 1 with probability u_i.
 - This sets x_i to True with the same probability.
- We now estimate the probability that a clause C_i is satisfied.

- We now estimate the probability that a clause C_i is satisfied.
- Claim: A clause C_i with k literals is satisfied with probability at least $1 (1-1/k)^k v_i$.
- Recall what is v_i.
- Let us assume wlog that all the variables in C_i appear in their pure form.
- So, $C_i = x_1 \ V \ x_2 \ V \dots \ x_k$ for some variables x_1 through x_k .
- In the relaxed LP, we satisfy the constraint u₁ + u₂ +... + u_k
 ≥ v_i.
- C_i now remains unsatisfied if the corresponding x₁ through x_k are all 0.

- Claim: A clause C_i with k literals is satisfied with probability at least 1 – (1-1/k)^k.v_i.
- Recall what is v_i.
- So, $C_i = x_1 \vee x_2 \vee ... \times x_k$ for some variables x_1 through x_k .
- In the relaxed LP, we satisfy the constraint u₁ + u₂ +... + u_k
 ≥ v_i.
- C_i now remains unsatisfied if the corresponding x₁ through x_k are all 0.
- This happens with probability (1-u_j) for each variable and hence with probability $\Pi_{\rm i}$ (1-u_j) for the k variables.
- So, C_i is satisfied with probability 1 Π_i (1- u_i).

- Claim: A clause C_i with k literals is satisfied with probability at least 1 – (1-1/k)^k.v_i.
- This happens with probability (1-u_j) for each variable and hence with probability $\Pi_{\rm i}$ (1-u_j) for the k variables.
- So, C_i is satisfied with probability 1 Π_i (1- u_i).
- We claim that the above is minimized when $u_j = v_i/k$ for each j. (Take the proof as a reading exercise).
- So, the probability of interest is $1 (1 v_i/k)^k$.
- We now claim that the function $f(r) = 1 (1 r/k)^k$ is at least $1 (1-1/k)^k$.r for all r in [0,1].
 - Take the proof of the above also as a reading exercise. You need to show that the function is concave.

- Claim: A clause C_i with k literals is satisfied with probability at least 1 – (1-1/k)^k.v_i.
- So, the probability of interest is $1 (1 v_i/k)^k$.
- We now claim that the function $f(r) = 1 (1 r/k)^k$ is at least $1 (1-1/k)^k$.r for all r in [0,1].
- By the above, we conclude that C_i is satisfied with probability at least (1-1/k)^k.v_i.
- Now, use linearity of expectations (over clauses) to show that the expected number of satisfied clauses is at least

$$\sum_{i} (1 - (1-1/k)^{k}).v_{i} \ge (1 - (1-1/k)^{k}). \sum_{i} v_{i}$$

$$\ge (1 - (1-1/k)^{k}). m^{*}(I).$$

 Notice that we satisfy at least (1 – (1-1/k)^k)-fraction of the maximum number of clauses that can be satisfied.