

线性代数习题册

Linear Algebra Workbook

(第三版)

四川大学数学学院 编 陈 丽 谭英谊 胡朝浪 主编

图书在版编目(CIP)数据

线性代数习题册 / 四川大学数学学院编 ; 陈丽, 谭 英谊, 胡朝粮主编. — 3版. — 成都:四川大学出版社, 2023.12

ISBN 978-7-5690-6504-6

· I . ①线··· II . ①四··· ②陈··· ③谭··· ④胡··· Ⅲ . ①线性代数一高等学校一习题集 Ⅳ . ① 0151. 2-44

中国国家版本馆 CIP 数据核字 (2023) 第 242823 号

书 名:线性代数习题册(第三版)

Xianxing Daishu Xitice (Di-san Ban)

编 者:四川大学数学学院

主 编: 陈 丽 谭英谊 胡朝浪

丛 书 名 高等教育公共基础类"十四五"系列规划教材

丛书策划: 李志勇 王 睿

选题策划: 毕 潜 王 睿

责任编辑: 毕 潜 王 睿

责任校对: 胡晓燕

装帧设计:墨创文化

责任印制 王 炜

出版发行: 四川大学出版社有限责任公司

地址:成都市-环路南-段24号(610065)

电话: (028) 85408311 (发行部)、85400276 (总编室)

电子邮箱: scupress@vip.163.com 网址: https://press.scu.edu.cn

印前制作:四川胜翔数码印务设计有限公司

印刷装订:四川煤田地质制图印务有限责任公司

成品尺寸: 185mm×260mm

印 张: 8.75 字 数: 228 千字

版 次: 2014年8月第1版

2024年1月第3版

印 次: 2024年1月第1次印刷

定 价: 35,00元

本社图书如有印装质量问题,请联系发行部调换

版权所有 ● 侵权必究

日码获取数字资源

四川大学出版社 微信公众号

目 录

·	
线性方程组	1
矩阵的加法 数乘 乘法	9
可逆矩阵和求逆矩阵	15
矩阵的转置及分块	21
行列式的定义与性质	27
行列式的性质与计算(一)	31
行列式的性质与计算(二)	39
综合练习(一)	43
线性相关与线性无关	47
向量组的极大线性无关组和秩	51
基和维数····	55
矩阵的秩	59
线性方程组	63
综合练习(二)	71
矩阵的特征值与特征向量	77
矩阵的相似对角化	81
实对称矩阵的相似对角化	87
综合练习(三)	91
二次型及其矩阵表示······	97
二次型化为标准形	101
正定二次型	103
止定二次型····································	107
*** *** *** *** *** *** *** *** *** **	
2011/25 DC	119
期中考试试题(闭卷)(2022-2023 学年第 2 学期)	
期末考试试题(闭卷)(2020—2021 学年第 2 学期)	
期末考试试题(闭卷)(2021-2022 学年第 2 学期)	
四川大学期末考试试题(闭卷)(2022-2023 学年第 2 学期)A 卷 ···································	13.

线性代数习题册

姓名_____

学号____

教师

线性方程组

一、利用高斯消元法,化下列方程组为系数矩阵是行阶梯形的方程组,并判断方程组是否有解,若有解,求其解.

1.
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 1, \\ x_1 + x_2 + x_3 = 3, \\ 3x_1 + 4x_2 + 2x_3 = 4, \end{cases}$$

2.
$$\begin{cases} x_1 - 3x_2 + x_3 = 1, \\ 2x_1 + x_2 - x_3 = 2, \\ x_1 + 4x_2 - 2x_3 = 1, \\ 5x_1 - 8x_2 + 2x_3 = 5; \end{cases}$$

学院

姓名

学号

教师

3.
$$\begin{cases} 2x_1 + 3x_2 - x_3 - x_4 = 2, \\ x_1 + x_2 + x_3 + x_4 = 0, \\ 3x_1 + 2x_2 + x_3 + x_4 = 5, \\ 3x_1 + 6x_2 - x_3 - x_4 = 4. \end{cases}$$

- 二、设一线性方程组 A 分别满足下列条件,判断该方程组是否有解,并说明理由.
- 1. 方程组 A 有 3×4 系数矩阵,该矩阵有三个主元列;

2. 方程组 A 有 3×4 增广矩阵,该矩阵第四列为主元列;

3. 方程组 A 的系数矩阵的每一行中都有一个主元;

 性代数习题册	1	线性方程组	***************************************	E
 学院	姓名	<u>'</u>	学号	教师

4. 方程组 A 有三个变量、三个方程,其系数矩阵的每一列都有一个主元.

三、方程个数比未知量个数少的一个方程组,称为一个亚定组.亚定方程组可能有解,也可能 无解,为什么?若一个亚定组有解,试说明它一定有无穷多解.请给出一个含两个方程的三 元线性方程组,并举例说明.

四、方程个数比未知量个数多的一个方程组,称为一个超定组.超定方程组是否有解?请给出一个含三个方程的二元线性方程组,并举例说明.

学院

姓

学号

教师

- 1. 该方程组是否无解?

2. 当 a 为何值时,方程组有唯一解? 当 a 为何值时,方程组有无穷多解?

六、设线性方程组的增广矩阵为 $\begin{bmatrix} 1 & 1 & 3 & 2 \\ 1 & 2 & 4 & 3 \\ 1 & 3 & a & b \end{bmatrix}$

1. 当 a,b 为何值时,方程组有无穷多解?

当	性代数习题册	线性方程:	组
	11 mm	L.L. AT	兴卫

教师

2. 当 a,b 为何值时,方程组无解?

七、已知方程组

$$\begin{cases} x_1 + x_2 + x_3 = 3, \\ x_1 + 2x_2 - ax_3 = 9, \\ 2x_1 - x_2 + 3x_3 = b. \end{cases}$$

1. 当 a,b 为何值时,方程组无解?

2							
	6.55	del	134	25:2	>	1120	HII
1000	27	407.	15	251	- 24	- 2 /0	###
	1.	12	16	<i>3</i> /4	7.3	1863	100
Million out of							
CO35/2-							

学院

姓名

学号

教师

2. 当 a,b 为何值时,方程组有唯一解?

八、求数据(1,12),(2,15),(3,16)插值多项式 $P(t) = a_0 + a_1 t + a_2 t^2$,即求 a_0 , a_1 , a_2 ,使得

$$\begin{cases} a_0 + a_1(1) + a_2(1)^2 = 12, \\ a_0 + a_1(2) + a_2(2)^2 = 15, \\ a_0 + a_1(3) + a_2(3)^2 = 16. \end{cases}$$

九、一个投资者将 100 万元投给三家企业甲、乙、丙,所得利润率分别为 12%,15%,22%. 他想得到 20 万元的利润.

1. 如果投给乙的钱是投给甲的钱的 2 倍,那么应分别给甲、乙、丙投资多少?

结性代数习题册

姓名_____

松师

2. 可不可以投给丙的钱等于投给甲与乙的钱的和?

十、某厂在每批次投料生产中,获得四种不同产量的产品,同时测算出各批次的生产总成本,列表如下:

11 -de 111 v.C.		产量	(吨)	1	总成本(万元)
生产批次	·A	В	C	D	
1	4	2	2	1	58
2	10	5	4	2	141
3	5	2	2	1	68
4	20	9	8	3	275

求每种产品的单位成本.

7	A D A L A S A WAY AND 207 MD
	线性代数习题册
8 V	25 TT 15 28 -1 119 111
≫; \	and for a distance of the con-
SEE SEE	

	S S		2
	1/3	100	Ð

学院 女

B_____

教师

十一、已知方程组

$$\begin{cases} \lambda x + y + z = 0, \\ x + \lambda y - z = 0, \\ 2x - y + z = 0. \end{cases}$$

则当λ为何值时,方程组有非零解?并求其解.

十二、对于同一矩阵 A,关于非齐次线性方程组 $Ax = b(b \neq 0)$ 和齐次线性方程组 Ax = 0,下列说法中正确的是().

- 1. Ax = 0 无非零解时, Ax = b 无解;
- 2.Ax = 0 有无穷多解时,Ax = b 有无穷多解;
- 3. Ax = b 有无穷多解时,Ax = 0 无非零解;
- 4. Ax = b 有唯一解时,Ax = 0 只有零解.

矩阵的加法 数乘 乘法

$$-, \ \ \, \mathbf{\mathcal{L}} \mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}, \ \, \mathbf{\mathcal{L}} \mathbf{2A} - 3\mathbf{B}.$$

二、计算下列矩阵乘积.

$$1. \begin{bmatrix} 1 & 2 & -1 \\ -2 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 1 \\ 1 & -1 \end{bmatrix};$$

and the last and some fills
线性代数习题册
1V. at.ba

矩阵的加法 数乘 乘法

学院

姓名_____

学号____

教师_

$$2. \begin{bmatrix} x \\ y \\ z \end{bmatrix} [a \quad b \quad c];$$

3.
$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix};$$

教师

4.
$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{12} & a_{23} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix};$$

5. 已知某公司三个部门分别销售四种商品的销售收入如下:

商品1 商品2 商品3 商品4

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$
部门 1

请用矩阵乘法表示下列项:

- (1)该公司每个部门的销售收入;
- (2)该公司每种商品的销售收入;
- (3)该公司的总销售收入;
- (4)该公司第 i 个部门销售第 j 种商品的销售收入 a ii.

156500	线性代数习	獅棚
	24 12 18 28 7	<i>理 加</i>
) 600000		

学院_____

姓名____

三、求 A^n ,n 为自然数.

$$1. \mathbf{A} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \end{bmatrix};$$

$$2. \mathbf{A} = \begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix};$$

30000	线性代数习题册
	28 11 18 98 "3 12 19
	兴岭

姓名

教师

3.
$$A = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$
.

四、已知对角形矩阵
$$\mathbf{A} = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_n \end{bmatrix}$$
,其中 a_i , $i=1,2,\cdots,n$ 两两互不相等,且 $\mathbf{AB} = \mathbf{AB}$

BA. 证明 B 必为对角形矩阵.

字阮_____

好么

学号

教师

五、设A,B都是n阶矩阵.证明:

1.
$$(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2 \Leftrightarrow \mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$$
;

$$2 \cdot A^2 - B^2 = (A + B)(A - B) \Leftrightarrow AB = BA;$$

3. 若
$$AB = BA$$
,则 $(A + B)^m = A^m + mA^{m-1}B + C_m^2A^{m-2}B^2 + \cdots + B^m$.

六、设
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, $f(x) = x^3 - 3x^2 + 3x - 1$, 计算 $f(\mathbf{A})$.

5		' nime new
38888	继性代数习	鄉冊
		NG NU
1 6886		

可逆矩阵和求逆矩阵

学院

姓皇

学号

教师

可逆矩阵和求逆矩阵

一、填空题.

$$1. \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \underline{\hspace{1cm}}.$$

2. 设A,B 都是n 阶可逆矩阵,C 是n 阶矩阵,X 是n 阶未知矩阵,则矩阵方程 AXB=C 的

解为_____;试写出
$$\begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{B} & \mathbf{0} \end{bmatrix}^{-1} =$$
_____.

3. 如果矩阵 A 满足 $A^2 = A$, 且 A 可逆,则 A =_____.

4.n 阶初等阵乘积 $E(i,j(k))E(i,j(-k)) = _____.$

5. 设A,B,C,D 都是n 阶可逆矩阵,则 $(AB^2C^3D^4)^{-1} = _____.$

二、选择题.

1. 设 A,B,C 均是 n 阶方阵,且 ABC=I,则有().

A.
$$BCA = I$$

B. BAC = I

$$C$$
, $CBA = I$

D.
$$ACB = I$$

2. 设 n 阶初等阵 E(i,j(k)), E(i(k)), E(i,j), A 为同阶对角阵,则下列正确的是().

$$\mathbf{A}.\,\mathbf{E}(i,j(k))\mathbf{A} = \mathbf{A}\mathbf{E}(i,j(k))$$

B.
$$E(i(k))A = AE(i(k))$$

$$C. E(i,j)A = AE(i,j)$$

三、求下列矩阵的逆矩阵.

1.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $ad -bc \neq 0$;

1	10 11 16	w -	e etc. ette
5225	线性代	変狂 シ	细洲
200	24 17 18	34 -3	R25 1010
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 368			

可逆矩阵和求逆矩阵

姓名

学院____

学号

教师

$$2. \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 4 \\ 5 & 0 & 0 \end{bmatrix};$$

学院

姓名_____

学号

教师

四、解下列矩阵方程.

1.
$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 4 \\ 0 & -1 & 1 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$2. X \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 4 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 4 \\ 1 & 5 & 0 \end{bmatrix};$$

1	10 11 16 W - SEE 011
1000	<i>线性代数习题册</i>

可逆矩阵和求逆矩阵

学院

姓名_

学号

教师_

$$3. \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 4 \\ 0 & -1 & 1 \end{bmatrix} \mathbf{X} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ -1 & 2 \\ 2 & 5 \end{bmatrix};$$

$$4. \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{X} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -4 & 3 \\ 2 & 0 & -1 \\ 1 & -2 & 0 \end{bmatrix}.$$

<u> </u>	/	可逆矩阵和求逆矩阵	
学院	姓名	学号	老师

五、设A,B均为n阶方阵.

- 1.A,B 满足A+B+AB=O. 证明:I+A,I+B 互为逆矩阵,并且 AB=BA;
- 2. 若 B 可逆,且满足 $A^2 + AB + B^2 = 0$. 证明:A 与 A + B 都是逆矩阵.

六、若 n 阶矩阵 A 满足 $A^k = O, k$ 为正整数. 证明: I - A 可逆, 并求 $(I - A)^{-1}$.

线性代数习题册

可逆矩阵和来逆矩阵

学院

姓名___

学号

教师

七、(选做)设A,B,A+B都可逆.证明: $C=A^{-1}+B^{-1}$ 可逆.

八、设 3 阶方阵
$$A$$
 和 B 满足 $A^{-1}BA = 6A + BA$, $A = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{7} \end{bmatrix}$, 求 B .

矩阵的转置及分块

一、填空题.

1. 设
$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 3 \\ 0 & 2 & 1 \end{bmatrix}$$
 , $\mathbf{B} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \mathbf{B}_3 \end{bmatrix}$ 为行分块矩阵, $\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} \mathbf{C}_1 \\ \mathbf{C}_2 \\ \mathbf{C}_3 \end{bmatrix}$, 则 $\mathbf{C}_1 = \underline{\phantom{\mathbf{C}}_1}$, 几 $\mathbf{C}_2 = \underline{\phantom{\mathbf{C}}_1}$

____,C_3 =_____

2. 设 A, B, C, D, F 都 是 n 阶 方 阵, 满 足 $AB = I_n$, $CD = I_n$, 则 分 块 阵 乘 积

$$\begin{bmatrix} A & O \\ -CFA & C \end{bmatrix} \begin{bmatrix} B & O \\ F & D \end{bmatrix} = \underline{\hspace{1cm}}.$$

3. 设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$
 , $\mathbf{B} = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ -1 & 5 \end{bmatrix}$, \mathbf{B} 的列分块矩阵 $\mathbf{B} = [\boldsymbol{\beta}_1 \ \boldsymbol{\beta}_2]$, 则 $\mathbf{A}\mathbf{B} = \underline{\qquad}$,

 $[\mathbf{A}\boldsymbol{\beta}_1 \ \mathbf{A}\boldsymbol{\beta}_2] =$

二、选择题.

1. 设矩阵 $A \in \mathbb{R}$ 阶方阵,且 $A \neq A^{T}$. 下列矩阵中,()不是对称矩阵.

$$\mathbf{A}.\mathbf{A} + \mathbf{A}^{\mathrm{T}}$$

$$B. A - A^T$$
 $C. AA^T$ $D. A^TA$

$$C_{\bullet}AA^{\mathrm{T}}$$

$$\mathbf{D}.\,\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}$$

2. 若矩阵 A 满足 $A^{T} = -A$,则称 A 为反对称矩阵. 下列矩阵中,()不是反对称矩阵.

A.
$$\begin{bmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{bmatrix}$$

B.
$$\begin{bmatrix} 0 & a_{12} \\ -a_{12} & 0 \end{bmatrix}^{T} - \begin{bmatrix} 0 & a_{12} \\ -a_{12} & 0 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1 & 1 & 2 \\ -1 & 2 & 3 \\ -2 & -3 & 3 \end{bmatrix}$$

D.
$$\begin{bmatrix} 1 & 1 & 2 \\ -1 & 2 & 3 \\ -2 & -3 & 3 \end{bmatrix}^{T} - \begin{bmatrix} 1 & 1 & 2 \\ -1 & 2 & 3 \\ -2 & -3 & 3 \end{bmatrix}$$

3. 设 A, B 均为 3 阶矩阵, A, B 的列分块矩阵分别为 $A = [A_1 A_2 A_3]$, $B = [B_1 B_2 B_3]$, $k = [A_1 A_2 A_3]$ 一个常数,下列式子中,()不成立,

$$A. \mathbf{AB} = \begin{bmatrix} \mathbf{AB}_1 & \mathbf{AB}_2 & \mathbf{AB}_3 \end{bmatrix}$$

$$\mathbf{B}, \mathbf{A}\mathbf{B} = \begin{bmatrix} \mathbf{A}_1 \mathbf{B} & \mathbf{A}_2 \mathbf{B} & \mathbf{A}_3 \mathbf{B} \end{bmatrix}$$

$$C. kA = \begin{bmatrix} kA_1 & kA_2 & kA_3 \end{bmatrix}$$

$$D. A + B = \begin{bmatrix} A_1 + B_1 & A_2 + B_2 & A_3 + B_3 \end{bmatrix}$$

4. 设 A,B,C 都是 n 阶矩阵,则下列运算中,不正确的是().

A.
$$\begin{bmatrix} B & C \end{bmatrix} \begin{bmatrix} A \\ A \end{bmatrix} = BA + CA$$

$$B.A[B C] = [AB AC]$$

$$C. \begin{bmatrix} B \\ C \end{bmatrix} A = \begin{bmatrix} AB \\ AC \end{bmatrix}$$

$$D. \begin{bmatrix} B \\ C \end{bmatrix} A = \begin{bmatrix} BA \\ CA \end{bmatrix}$$

- 1	115 30	88 80	25.5	116
50000	NE 110	代劉	77 - F/K	444
588 F	- 228 J.L	10 24	~3 NZ	ואנו
and Markey and		******		
\$ \$665UX				

矩阵的转置及分块

学院

姓名_

学号

教师

三、设A,C是同阶可逆矩阵,求 $X = \begin{bmatrix} O & A \\ C & O \end{bmatrix}$ 的逆.

四、设A 是一个方阵,证明: $A + A^{T}$ 为对称矩阵, $A - A^{T}$ 为反对称矩阵,并将 A 表示为对称矩阵和反对称矩阵之和.

,								
1	1.0	1606	130	154	-7	- 13	1111	
	28	ΊÏ	16	纵	-3	那	ДΗ	
20								

姓名

学号_

教师

五、设A是3阶实数矩阵, $AA^{T}=O$,证明:A=O.

六、设 $\mathbf{A} = (a_{ij})_{m \times n}$ 的列向量为 $\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_n, \mathbf{B} = (b_{ij})_{n \times s}$ 的行向量为 $\mathbf{\beta}_1, \mathbf{\beta}_2, \cdots, \mathbf{\beta}_n$. 证明:

AB 的第 i 个行向量为 a_{i1} $\beta_1 + a_{i2}$ $\beta_2 + \cdots + a_{in}$ β_n ;

AB 的第j 个列向量为 $b_{1j}A_1 + b_{2j}A_2 + \cdots + b_{nj}A_n$.

线性代数习题册	/

矩阵的转置及分块:

学院_____ 姓名____

名____ 学号____

教师

七、设 B 为 n 阶可逆矩阵,又 $U = [u_1, u_2, \dots, u_n]^T$, $V = [v_1, v_2, \dots, v_n]^T$,令 $A = B + UV^T$. 证明:当 $\gamma = 1 + V^T B^{-1} U \neq 0$ 时, $A^{-1} = B^{-1} - \frac{1}{\gamma} (B^{-1} U V^T B^{-1})$.

八、设列矩阵 $X = [x_1, x_2, \dots, x_n]^T$ 满足 $X^T X = 1$, $A = I - 2XX^T$. 证明: A 是对称阵, 且 $AA^T = I$.

教师

九、已知 n 维非零列向量 α , E 为 n 阶单位阵 , $A = I - \alpha \alpha^{T}$, 证明: $1. A^2 = A$ 的充要条件是 $\alpha^T \alpha = 1$;

2. 当 $\alpha^{\mathsf{T}}\alpha = 1$ 时, A 是不可逆矩阵.

十、设
$$\mathbf{A} = \begin{bmatrix} 3 & 4 & 0 & 0 \\ 4 & -3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$
,求 \mathbf{A}^6 .

,		
į	153° 1154 62	## 77 ## III
	獲程件	数习题册
\$80.00		

·· 矩阵的转置及分块

学院

姓名

十一、设A,B 是n 阶对称阵,且AB+I 及A 可逆,证明: $(AB+I)^{-1}A$ 为可逆对称阵.

十二、设
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & -4 & 5 & 0 \\ 0 & 0 & -6 & 7 \end{bmatrix}$$
, $\mathbf{B} = (\mathbf{I} + \mathbf{A})^{-1}(\mathbf{I} - \mathbf{A})$. 证明: $\mathbf{B} + \mathbf{I}$ 可逆,并求其逆.

线性代数习题册	

···· 行列式的定义与性质

学院

姓名___

学号

教师

行列式的定义与性质

一、填空题.

1.
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = \underline{\qquad}.$$
2.
$$\begin{vmatrix} 0 & \cdots & 0 & a_{1n} \\ 0 & \cdots & a_{2,n-1} & 0 \\ \vdots & & \vdots & \vdots \\ a_{n1} & 0 & \cdots & 0 \end{vmatrix} = \underline{\qquad}.$$

4. 设
$$D_1 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 1$$
,则 $D_2 = \begin{vmatrix} 2a_{21} & 3a_{21} - 5a_{22} & a_{23} \\ 2a_{11} & 3a_{11} - 5a_{12} & a_{13} \\ 2a_{31} & 3a_{31} - 5a_{32} & a_{33} \end{vmatrix} = \underline{\qquad}$

).

二、选择题.

若 3 阶矩阵 \mathbf{A} 的行列式 $|\mathbf{A}| = 0$,则(

A. A 有一行为零

C. A = O

三、利用行列式的定义计算.

B. A 有两行成比例

D. A 有一行是其余行的线性组合

	线性	t K	数	J	题	掤
						,,,,,,,

一行列式的定义与性质

学院__

学号_____

教师

$$2. \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix};$$

 $3. \begin{vmatrix} a & 0 & 0 & b \\ b & a & 0 & 0 \\ 0 & b & a & 0 \\ 0 & 0 & b & a \end{vmatrix}$

計划	性代数习题册	1	的定义与性质 ——	
L	学院	姓名	学号	教师

四、将 4 阶方阵 $\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$ 的行列式按照定义展开到一阶行列式,并归纳出 4 阶

方阵的行列式的值等于 4! 项取自不同行不同列的元素乘积的代数和,且可推广至 n 阶方阵的行列式的值等于 n! 项取自不同行不同列的元素乘积的代数和.

五、若 n 阶方阵 A 中为零的元多于 $n^2 - n$ 个, 求 A 的行列式的值.

	缋	性代	数	Ü	₩	
 988						

行列式的定义与性质

学院

姓名

学号

教师___

六、设平面直线 y=mx+b 通过平面上两点 $(x_1,y_1),(x_2,y_2)$,验证直线方程可以表示为

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0.$$

七、写出行列式
$$D = \begin{vmatrix} 5x & 1 & 2 & 3 \\ x & x & 1 & 2 \\ 1 & 2 & x & 3 \\ x & 1 & 2 & 2x \end{vmatrix}$$

的展开式中包含 x³ 和 x⁴ 的项.

m	<u> 维性代数习题册</u>

行列式的性质与计算(一)

学院

姓名

学号

教师

行列式的性质与计算(一)

一、填空题.

1. 设
$$\mathbf{A} = \begin{bmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{bmatrix} (a, b \neq 0), \mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & l \end{bmatrix},$$
当 k, l 满足_______时, $\mathbf{AB} + \mathbf{I}$ 可逆.

2. 设
$$\mathbf{A} = \frac{1}{3} \begin{bmatrix} 2 & 1 & 2 \\ 2 & -2 & -1 \\ 1 & 2 & -2 \end{bmatrix}$$
,则 $\mathbf{A}\mathbf{A}^{\mathrm{T}} = \underline{\hspace{1cm}}$,,只知 $|\mathbf{A}| > 0$, $|\mathbf{A}| = \underline{\hspace{1cm}}$.

4. 设
$$D = \begin{vmatrix} 5 & -4 & 3 \\ 6 & 2 & 0 \\ 3 & 4 & 2 \end{vmatrix}$$
, A_{21} , A_{22} , A_{23} 是 a_{21} , a_{22} , a_{23} 的代数余子式, 试用一个三阶行列式表

 $\Rightarrow 3A_{21} - 2A_{22} + 4A_{23} =$ _____.

5. 设A,B 是两个n 阶方阵,且满足条件:AB = I,|A| = -5,则 $|B| = _____$.

二、选择题.

1. 设 \mathbf{A} 是n(n > 2)阶方阵,k 为常数. 若 $|\mathbf{A}| = a$,则 $|k\mathbf{A}\mathbf{A}^{\mathsf{T}}| = ($).

A.
$$ka^2$$

B.
$$k^2 a^2$$

C.
$$k^n a^2$$

- 2. 设A,B 是两个n(n>1)阶方阵,则以下结论中不正确的是().
 - A. |A+B|不一定等于|A|+|B|

B.
$$|AB| = ||A|B|$$

C.
$$|AB| = |BA|$$

$$D. |AB| = |B| |A|$$

3. 方程
$$\begin{vmatrix} 1 & -1 & 1 & x-1 \\ 1 & -1 & x+1 & -1 \\ 1 & x-1 & 1 & -1 \\ x+1 & -1 & 1 & -1 \end{vmatrix} = 0 的根为().$$

B.
$$-1,0,0,0$$

$$C. -1,1,0,0$$

	线性代数习题册
528 managa	and the second s

一行列式的性质与计算(一)—

三、利用行列式的性质计算.

$$1. \begin{vmatrix} x & y & z \\ z & x & y \\ y & z & x \end{vmatrix};$$

	7.15	.t.L	130	16%	-7	1914	riti
	銭	q_T	17	W	24	祁柳	###
ş	278	1.1	3 4	24.4		.4	20
02-00-	. حداد الراسي	~~~			~~~	~~~	

一 行列式的性质与计算(一)

学院

姓名

学号

教师

3.
$$\begin{vmatrix} x_1 & a & a & a \\ a & x_2 & 0 & 0 \\ a & 0 & x_3 & 0 \\ a & 0 & 0 & x_4 \end{vmatrix}$$

四、证明:
$$\begin{vmatrix} a_1+b_1 & b_1+2c_1 & c_1+3a_1 \\ a_2+b_2 & b_2+2c_2 & c_2+3a_2 \\ a_3+b_3 & b_3+2c_3 & c_3+3a_3 \end{vmatrix} = 7 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}.$$

1	銭	件	H	数	IJ	Đ.	₩	

~~~ 行列式的性质与计算(一)

学院

姓名

学号

教师

五、利用行列式的展开公式计算行列式.

2.
$$\begin{vmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

3	1.11 1.7	es. 161	- 47 HH
	维性	代額	习题册
Section of the sectio			2 / Gas / 23

行列式的性质与计算(一)

学院

学号

教师

六、先化简,再利用展开公式计算行列式.

$$1. \begin{vmatrix} 1 & 0 & 2 & 1 \\ 2 & -1 & 1 & 0 \\ 1 & 0 & 0 & 3 \\ -1 & 0 & 2 & 1 \end{vmatrix};$$

学号_

教师_

$$\begin{vmatrix}
-x_1 & x_1 & 0 & \cdots & 0 \\
0 & -x_2 & x_2 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & x_n \\
1 & 1 & 1 & \cdots & 1
\end{vmatrix}_{n+1}$$

 $\begin{vmatrix}
1 & 1 & 1 & 1 & 1 \\
a & b & c & d & x \\
a^2 & b^2 & c^2 & d^2 & x^2 \\
a^3 & b^3 & c^3 & d^3 & x^3 \\
a^4 & b^4 & c^4 & d^4 & x^4
\end{vmatrix};$

	粉粉体粉刀瓣肌
	<i>线性代数习题册</i>
1 3888	

$$6.$$
 (选做) $D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{vmatrix}$ (提示:将第 4 题的行列式按第 5 列展开,然后比较两端 x^3 的系数);

	菱	性	H	数	1	題	H	
S (~~~			. خدت نه				

一行列式的性质与计算(一)

学院_____

姓名

学号___

教师

7. (选做)
$$D = \begin{vmatrix} x_1 & a & a & a \\ a & x_2 & a & a \\ a & a & x_3 & a \\ a & a & a & x_4 \end{vmatrix}$$
 $(x_i \neq a, i = 1, 2, 3, 4);$

8.
$$\begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \\ b^2 & (b+1)^2 & (b+2)^2 & (b+3)^2 \\ c^2 & (c+1)^2 & (c+2)^2 & (c+3)^2 \\ d^2 & (d+1)^2 & (d+2)^2 & (d+3)^2 \end{vmatrix}$$

į.	1.6. 2.1. 4% DUT eed 4000 800
	维性代類习趣册

行列式的性质与计算(二)

学院

姓名

学号

教师

行列式的性质与计算(二)

一、填空题.

1. 设
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,则 \mathbf{A} 的伴随矩阵 $\mathbf{A}^* = \underline{^*} = \underline{^*}$,

2. 设
$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 1 & 2 \\ -1 & 1 & 1 \end{bmatrix}$$
,则 \mathbf{A} 的伴随矩阵 $\mathbf{A}^* = \underline{^*}$

二、选择题.

设A为 3 阶方阵, A^* 是A 的伴随矩阵,常数 $k \neq 0$, $k \neq \pm 1$,则(kA)* =().

A, $k^{-1}A^{*}$

B. *kA* *

C. $k^2 A^*$

D. $k^3 A^*$

三、1. 设 A^* 是 n 阶矩阵 A 的伴随矩阵,若 $|A| \neq 0$,证明: $|A^*| \neq 0$, $|A^*| = |A|^{n-1}$;

2. 如果|A|=5, 计算 $|2(A^*)^{-1}|$.

,	
500000	<i>线性代数习题册</i>
	28 11 1 (38 - 7 1/2 1/7)
1 330	

行列式的性质与计算(二)

姓名_____ 学号_____ 教师_

四、求下列矩阵的逆矩阵.

$$\begin{bmatrix} 1 & -1 & 3 \\ 2 & -1 & 4 \\ -1 & 2 & -4 \end{bmatrix}.$$

五、设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, \mathbf{A}^{\mathrm{T}} (\mathbf{B}\mathbf{A}^{-1} - \mathbf{I})^{\mathrm{T}}\mathbf{X} = \mathbf{B}^{\mathrm{T}}, 求 \mathbf{X}.$$

姓名____

学号_____

教师

六、设n(n>2)阶非零实数矩阵 A 满足: $A^*=A^{\mathrm{T}}$,试证:|A|=1,且 A 是正交矩阵,即 $\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{I}$.

七、利用|AB| = |A||B|计算下列行列式.

1.
$$\begin{vmatrix} 1+x_1y_1 & 1+x_1y_2 & \cdots & 1+x_1y_n \\ 1+x_2y_1 & 1+x_2y_2 & \cdots & 1+x_2y_n \\ \vdots & \vdots & & \vdots \\ 1+x_ny_1 & 1+x_ny_2 & \cdots & 1+x_ny_n \end{vmatrix};$$

-	线性代数习题册
	学院

_____ 姓名

学号

教师

八、求行列式
$$\begin{vmatrix} \lambda - 4 & -5 & 2 \\ 2 & \lambda + 2 & -1 \\ 1 & 1 & \lambda - 1 \end{vmatrix}$$
 的值.

综合练习(一)

一、设
$$A$$
 为 3 阶方阵, A^* 是 A 的伴随矩阵, $|A| = \frac{1}{8}$,求 $\left| (\frac{1}{3}A)^{-1} - 8A^* \right|$.

二、设A 是n 阶矩阵,满足 $AA^{T} = I(I \in n)$ 阶单位阵,A 为正交阵),|A| < 0,求|A+I|.

三、设
$$n$$
 阶行列式 $|A| =$ $\begin{vmatrix} 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & \cdots & \frac{1}{2} & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ \frac{1}{n-1} & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & \frac{1}{n} \end{vmatrix}$, 求 $|A|$ 中所有元素代数余子式

之和.

45.50	线性代数习题册
	-24 [3. N. 33. *] N. 1111

综合练习(一)

学院

学号

教师

四、设A,B是正交矩阵,且 $\frac{|A|}{|B|}=-1$,证明:|A+B|=0.

五、设矩阵
$$\mathbf{A}$$
 的伴随矩阵 $\mathbf{A}^* = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -3 & 0 & 8 \end{bmatrix}$,且 $\mathbf{ABA}^{-1} = \mathbf{BA}^{-1} + 3\mathbf{I}$, \mathbf{I} 为 4 阶单位阵,求矩阵 \mathbf{B} .

六、设n 阶矩阵A 可逆 $(n \ge 2)$, A^* 是A 的伴随矩阵, $求(A^*)^*$ 与A 的关系.

维性代数习题册	,	综合练习(-)		·	營
学院	姓名	3		学号	教师	

七、A 是n 阶方阵,满足 $A^m=I(m$ 为正整数),I 为n 阶单位阵,现将A 中 n^2 个元素 a_{ij} 用其代数余子式 A_{ij} 代替,得到的矩阵记为 B,证明: $B^m=I$.

八、证明:奇数阶反对称阵的行列式等于零.

}	10 13 15 16 := 1 EEE 10
	线性代数习题册

综合练习(一)

学院

姓名

学号

教师

九、设
$$f(x) = \begin{vmatrix} 1 & 1 & 1 \\ 3-x & 5-3x^2 & 3x^2-1 \\ 2x^2-1 & 3x^5-1 & 7x^8-1 \end{vmatrix}$$
,证明:存在一个小于 1 的正数 ξ ,使得 $f'(\xi) = 0$.

十、计算元素为 $a_{ij} = |i-j|$ 的 n 阶行列式.

学院

姓夕

学号

教师

线性相关与线性无关

一、填空题,

1.
$$\mathfrak{P}_{\alpha_1} = (2, -1, 0), \alpha_2 = (1, 4, -3), \alpha_3 = (1, -2, 1), \mathfrak{p}_{2\alpha_1} = \alpha_2 + 3\alpha_3 = \underline{\hspace{1cm}}$$

2. 设
$$\alpha_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$, 若 $x_1\alpha_1 + x_2\alpha_2 = \alpha_3$, 则 $x_1 = \underline{\qquad}$, $x_2 = \underline{\qquad}$.

3. 设矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{bmatrix}$$
,向量 $\alpha = \begin{bmatrix} k \\ 1 \\ 1 \end{bmatrix}$,若 $\mathbf{A}\alpha$ 与 α 线性相关,则 $k = \underline{}$.

4. 当
$$h = _$$
____时,向量组 $\alpha_1 = (2,1,-1)^{\mathrm{T}}, \alpha_2 = (-1,-3,3)^{\mathrm{T}}, \alpha_3 = (2,3,h)^{\mathrm{T}}$ 线性相关. 二、选择题.

- 1. 向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ ($s \ge 2$)(])线性无关的充分必要条件是().
 - A.(T)中不含零向量
 - B.(I) 中任何 s-1 个向量都线性无关
 - C.(T)中有一个向量不能由其余向量线性表出
 - D.(I)中任何向量都不能由其余向量线性表出
- 2. 设向量组 α_1 , α_2 , α_3 线性无关,则下列向量组线性相关的是().

A.
$$\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_1$$

B.
$$\boldsymbol{\alpha}_1 = \boldsymbol{\alpha}_2$$
, $\boldsymbol{\alpha}_2 = \boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_3 = \boldsymbol{\alpha}_1$

C.
$$\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$$
, $\boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_3 - \boldsymbol{\alpha}_1$

D.
$$\boldsymbol{\alpha}_1$$
, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$

3. 设
$$\boldsymbol{\alpha}_1 = \begin{bmatrix} 0 \\ 0 \\ c_1 \end{bmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{bmatrix} 0 \\ 1 \\ c_2 \end{bmatrix}$, $\boldsymbol{\alpha}_3 = \begin{bmatrix} 1 \\ -1 \\ c_3 \end{bmatrix}$, $\boldsymbol{\alpha}_4 = \begin{bmatrix} -1 \\ 1 \\ c_4 \end{bmatrix}$, 其中 c_1 , c_2 , c_3 , c_4 为任意常数,则下列

向量组一定线性相关的是().

A.
$$\boldsymbol{\alpha}_1$$
 , $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$

$$B. \alpha_1, \alpha_2, \alpha_4$$

$$C, \alpha_1, \alpha_3, \alpha_4$$

D.
$$\alpha_2$$
, α_3 , α_4

4. 若向量组 α , β , γ 线性无关, α , β , δ 线性相关, 则().

$$A, B, \gamma, \delta$$
 线性无关

B.
$$B, \gamma, \delta$$
 线性相关

 $C.\alpha$ 必可由 β,γ,δ 线性表示

$$D.\delta$$
 必可由 α,β,γ 线性表示

三、设向量组
$$\boldsymbol{\alpha}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \boldsymbol{\alpha}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}, \boldsymbol{\alpha}_3 = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}, \boldsymbol{\alpha}_4 = \begin{bmatrix} 2 \\ -3 \\ 7 \\ 0 \end{bmatrix}.$$

	\Box	线	性	H.	数	Ŋ	題	₩
1								

线性相关与线性无关 -----

F		3
1	N de	3
1		

学院 ____

姓名____

学号

教师_

判断α₁,α₂,α₃的线性相关性;

2. 判断 α_1 , α_2 , α_3 , α_4 的线性相关性;

3. 问 α_4 能否由 α_1 , α_2 , α_3 线性表出?如果可以,将 α_4 写成 α_1 , α_2 , α_3 的线性组合.

1	14 shift	14	## T	Hill	1111
3000	线性	71	#V -	理	Ш
and the same				 .	
32232					

姓名_____ 学号_

教师

四、设向量组
$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ a+2 \\ -3a \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} -1 \\ -b-2 \\ a+2b \end{bmatrix}$, $\beta = \begin{bmatrix} 1 \\ 3 \\ -3 \end{bmatrix}$. 试讨论当 a , b 为何值时,

β 不能由α₁,α₂,α₃ 线性表示;

2. β 能由 α_1 , α_2 , α_3 线性表示,且表示式唯一,并写出线性表示式;

 $3.\beta$ 能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,但表示式不唯一,此时写出一个线性表示式.

线性代数习题册

线性相关与线性无关

教师

毕院_____ 姓名_____ 学号____

五、设在向量组 α_1 , α_2 ,…, α_m 中, $\alpha_1 \neq 0$,并且每一个 α_i 都不能由前面的 α_1 , α_2 ,…, α_{m-1} 线性表示,证明 α_1 , α_2 ,…, α_m 线性无关.

六、设向量组 α_1 , α_2 , α_3 , α_4 线性无关.

1. 判断向量组 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$ 的线性相关性,并说明理由;

2. 判断向量组 $\alpha_1 + \alpha_4$, $\alpha_2 + 2\alpha_4$, $\alpha_3 + 3\alpha_4$, α_4 的线性相关性, 并说明理由.

į.	IP IN IN ALL THERE OF	
88888 (菱性代数习题册	
	NA 17 (A NY .) NO 200	
3	art -s	

向量组的极大线性无关组和秩

学院 :

名 学号

教师

向量组的极大线性无关组和秩

一、填空题

- 2. 设向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的秩为 r, 向量 β 不能由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表出,则 $r(\alpha_1, \alpha_2, \dots, \alpha_s, \beta) =$ ______.
- 3. 已知向量组 α_1 , α_2 的秩为 2, 向量组 α_1 , α_2 , α_3 的秩为 2, 向量组 α_1 , α_2 , α_4 的秩为 3,则向量组 α_1 , α_2 , α_4 一 α_3 的秩为______.
- 4. 设 4 阶矩阵 A 按列分块为 $A = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$, 其中 $\alpha_1 = (-3, 5, 2, 1)^{\mathrm{T}}$, $\alpha_2 =$

$$(4,-3,7,-1)^{\mathrm{T}}$$
,若 \mathbf{A} 行等价于 $\mathbf{B} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$,则向量 $\boldsymbol{\alpha}_3 = \underline{\qquad}$, $\boldsymbol{\alpha}_4 = \underline{\qquad}$

二、求下列向量组的秩与一个极大线性无关组.

1.
$$\boldsymbol{\alpha}_1 = (0,1,-1,2)^T, \boldsymbol{\alpha}_2 = (0,3,-3,6)^T, \boldsymbol{\alpha}_3 = (1,1,-2,1)^T, \boldsymbol{\alpha}_4 = (-1,0,1,2)^T;$$

2.
$$\boldsymbol{\alpha}_1 = (1,0,3,6)^T, \boldsymbol{\alpha}_2 = (-1,2,-2,-5)^T, \boldsymbol{\alpha}_3 = (1,k,5,8)^T, \boldsymbol{\alpha}_4 = (0,2,1,1)^T.$$

三、设 4 维向量组 $\alpha_1 = (1+k,1,1,1)^{\mathrm{T}}, \alpha_2 = (2,2+k,2,2)^{\mathrm{T}}, \alpha_3 = (3,3,3+k,3)^{\mathrm{T}}, \alpha_4 = (4,4,4,4+k)^{\mathrm{T}}$. 问当 k 为何值时,向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关?当 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关的,求其一个极大线性无关组,并用该极大线性无关组线性表出向量组中的其余向量.

四、已 知 秩 $(\alpha_1,\alpha_2,\alpha_3)=3$, 秩 $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=3$, 秩 $(\alpha_1,\alpha_2,\alpha_3,\alpha_5)=4$. 求 秩 $(\alpha_1,\alpha_2,\alpha_3,\alpha_5-\alpha_4)$.

向量组的极大线性无关组和秩

学院	姓名	
在 1分	姓石	

号______ 教师

五、设向量组 α_1 , α_2 , …, α_r 线性无关,而向量组 α_1 , α_2 , …, α_r , β , γ 线性相关,证明: 或者 β 与 γ 中至少有一个可由 α_1 , α_2 , …, α_r 线性表出,或者向量组 α_1 , α_2 , …, α_r , β 与 α_1 , α_2 , …, α_r , γ 等价.

六、证明:向量组 $\beta_1, \beta_2, \dots, \beta_t$ 能由向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表出的充分必要条件是 $r(\alpha_1, \alpha_2, \dots, \alpha_s) = r(\alpha_1, \alpha_2, \dots, \alpha_s, \beta_1, \beta_2, \dots, \beta_t)$.

<i>线性代数习题册</i>

向量组的极大线性无关组和秩

学院 姓名

学号

教师

七、设向量组 $\alpha_1 = (1,0,1)^{\mathrm{T}}, \alpha_2 = (0,1,1)^{\mathrm{T}}, \alpha_3 = (1,3,5)^{\mathrm{T}}$ 不能由向量组 $\beta_1 = (1,1,1)^{\mathrm{T}}, \beta_2 = (1,2,3)^{\mathrm{T}}, \beta_3 = (3,4,k)^{\mathrm{T}}$ 线性表出. 1. 求 k 的值;

2. 将 β_1 , β_2 , β_3 用 α_1 , α_2 , α_3 线性表出.

姓名

学号

教师

基和维数

一、填空题.

- 1. 若 $\alpha_1 = (1,1,0)^T$, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (1,1,1)^T$ 是 \mathbf{R}^3 的一个基,则 $\boldsymbol{\beta} = (3,4,3)^T$ 在该基下的坐标为
- 2. 从 \mathbf{R}^2 的基 $\boldsymbol{\alpha}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\boldsymbol{\alpha}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ 到基 $\boldsymbol{\beta}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\boldsymbol{\beta}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 的过渡矩阵为_____.
- 3. 设 ε_1 , ε_2 , ε_3 是 \mathbb{R}^3 的一组基,则这组基到基 ε_2 , ε_3 , ε_1 的过渡矩阵为_____.
- 4. 设向量组 $\alpha_1 = (1, 2, -1, 0)^T$, $\alpha_2 = (1, 1, 0, 2)^T$, $\alpha_3 = (2, 1, 1, k)^T$, 若由 α_1 , α_2 , α_3 生成的 向量空间的维数为 2, 则 k =
- 二、判别下列R⁴的子集是否为R⁴的子空间.
- 1. $H = \{(0, x_2, x_3, \dots, x_n)^T | x_2, x_3, x_4 \in \mathbb{R}\};$

2.
$$H = \{ (1, x_2, x_3, x_n)^T | x_2, x_3, x_4 \in \mathbb{R} \};$$

3.
$$H = \{ (a,b,c,d)^T | a-2b+5c=d,c-a=b \}.$$

	錢	1.1	15	144		(727	THE
	-,97	803T	5-9-	AH	- 53	- 393	1117
- 3	2.9	14	N	334		ACS:	2.02
2		,,	٠				~~~

基和维数

学院 _

完 姓名

学号

教师

三、求 \mathbf{R}^4 的子空间 $span\{\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_4\}$ 的维数和一组基,其中

$$\boldsymbol{\alpha}_{1} = \begin{bmatrix} 1 \\ -3 \\ 2 \\ 4 \end{bmatrix}, \quad \boldsymbol{\alpha}_{2} = \begin{bmatrix} -3 \\ 9 \\ -6 \\ 12 \end{bmatrix}, \quad \boldsymbol{\alpha}_{3} = \begin{bmatrix} 2 \\ -1 \\ 4 \\ 2 \end{bmatrix}, \quad \boldsymbol{\alpha}_{4} = \begin{bmatrix} -4 \\ 5 \\ -3 \\ 7 \end{bmatrix}.$$

四、令
$$\mathbf{A} = \begin{bmatrix} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{bmatrix}$$
,求 $Col(\mathbf{A})$ 和 $Null(\mathbf{A})$ 的基.

学院

姓

学号

教师

五、证明:向量组 $\alpha_1 = (1,2,-1,-2)^T$, $\alpha_2 = (2,3,0,1)^T$, $\alpha_3 = (1,3,-1,1)^T$, $\alpha_4 = (1,2,1,3)^T$ 是 \mathbf{R}^4 的一组基,并求向量 $\alpha = (7,14,-1,-2)^T$ 在该基下的坐标.

六、设 \mathbf{R}^3 中由基 $\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3$ 到基 $\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \boldsymbol{\eta}_3$ 的过渡矩阵为 $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. 若 $\boldsymbol{\eta}_1 = (1, -1, 1)^{\mathrm{T}}, \boldsymbol{\eta}_2 = (2, -2, 0)^{\mathrm{T}}, \boldsymbol{\eta}_3 = (3, -1, -1)^{\mathrm{T}}, 求 \, \boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3$.

受陰

姓名 _____

七、在 \mathbb{R}^3 中,设有两组基:([) $\boldsymbol{\varepsilon}_1 = (1,2,1)^{\mathrm{T}}, \boldsymbol{\varepsilon}_2 = (2,3,3)^{\mathrm{T}}, \boldsymbol{\varepsilon}_3 = (3,7,1)^{\mathrm{T}}; ([])\boldsymbol{\eta}_1 = (9,24,-1)^{\mathrm{T}},\boldsymbol{\eta}_2 = (8,22,-2)^{\mathrm{T}},\boldsymbol{\eta}_3 = (12,28,4)^{\mathrm{T}}.$

1. 求基(Ⅱ)到基(Ⅲ)的过渡矩阵;

2. 若向量 α 在基([)下的坐标为 $x=(0,1,-1)^{\mathrm{T}}$,求 α 在基([)下的坐标.

	装	性代	数	7ê	#	
- 1						

矩阵的秩

学院

姓名

学号

教师

矩阵的秩

一、填空题.

- 1. 写出一个秩为 2 的三阶矩阵 $A = ______$,其伴随矩阵 A^* 的秩 $= ______$.

3. 设矩阵
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
,则 $r(\mathbf{A}^3) = \underline{\hspace{1cm}}$

4. 设矩阵
$$\mathbf{A} = \begin{bmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{bmatrix}$$
 与 $\mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ 相抵,则 $k = \underline{\qquad}$

二、选择题.

- 1. 设 A, B 是两个 3 阶可逆矩阵,则下列结论不正确的是().
 - A.A.B 必定等价

B.A.B 不一定等价

C.A,B 的行向量组等价

- D.A,B 的列向量组等价
- 2. 设 A 为 $m \times n$ 矩阵, B 为 $n \times m$ 矩阵, I 为 m 阶单位矩阵. 若 AB = I, 则(
 - A. $\Re r(\mathbf{A}) = m$, $\Re r(\mathbf{B}) = m$

B. 秩 $r(\mathbf{A}) = m$, 秩 $r(\mathbf{B}) = n$

- C. 秩 $r(\mathbf{A}) = n$, 秩 $r(\mathbf{B}) = m$
- D. 秩 $r(\mathbf{A}) = n$, 秩 $r(\mathbf{B}) = n$

三、计算下列矩阵的秩.

$$1. \begin{bmatrix} 0 & 0 & -1 & -1 & -3 \\ 1 & 4 & -1 & 0 & -3 \\ 1 & 4 & -2 & 1 & 0 \\ 2 & 8 & 1 & 1 & -3 \end{bmatrix};$$

子口

姓名

学号

教师_

四、设A,B都是 $s \times n$ 矩阵,证明 $: rank(A+B) \leq rank(A) + rank(B)$.

<i>线性代数习题册</i>	/	矩阵的秩	·····		当
学院	姓名	ጟ	学号	教师	

五、设 $\mathbf{A} = \alpha \alpha^{\mathrm{T}} + \beta \beta^{\mathrm{T}}$,其中 α , β 是3维列向量.证明: $1.r(\mathbf{A}) \leq 2$;

2. 若 α,β 线性相关,则 r(A) <2.

	性代数习题册	矩阵的	秩	
1	学院	姓名	学号	教师

六、设A为 3 阶矩阵, α_1 , α_2 , α_3 为 3 维列向量组,若 $A\alpha_1$, $A\alpha_2$, $A\alpha_3$ 线性无关,证明: α_1 , α_2 , α_3 线性无关,且A 为可逆矩阵.

学院

姓名

学号

教师

线性方程组

一、填空题.

- 1. 设 ξ_1 , ξ_2 都是线性方程组 AX = b ($b \neq 0$)的解,则 $\xi_1 \xi_2$ 是方程组______的解, $\xi_2 + k$ ($\xi_1 \xi_2$)是方程组 _____的解.
- 2. 设 A 是秩为 r 的 $m \times n$ 矩阵, $\xi_1, \xi_2, \dots, \xi_{n-r}$ 是 Ax = 0 的一个基础解系,n 维列向量 ξ 不 是 Ax = 0 的解,则 $r\{\xi_1, \xi_2, \dots, \xi_{n-r}, \xi\} = ______.$
- 3. 设 A 是 n 阶方阵,则 $AX = b(b \neq 0)$ 有无穷多解或无解的充分必要条件是______
- 4. 已知方程组 $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$ 无解,则 a =______.
- 5. 若 ξ_1 , ξ_2 , ξ_3 是齐次线性方程组 Ax=0 的基础解系,当 k 满足条件_____时,向量组 $k\xi_1+\xi_2+\xi_3$, $\xi_1+k\xi_2+\xi_3$, $\xi_1+\xi_2+k\xi_3$ 也是 Ax=0 的基础解系.

二、选择题.

- 1. 在非齐次线性方程组 Ax = b 中,方程个数少于未知量个数,则().
 - A. Ax = b 有无穷多解
 - B. Ax = b 有唯一解
 - C.Ax = 0 有无穷多解
 - D. Ax = 0 仅有零解
- 2. 设 \mathbf{A} 是 $\mathbf{s} \times \mathbf{n}$ 矩阵, 秩 $\mathbf{A} = \mathbf{s}$,则线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 一定().
 - A. 有唯一解

B. 有无穷多解

C. 有解

D. 无解

3. 已知 β_1 , β_2 是非齐次线性方程组Ax = b 的两个不同的解, α_1 , α_2 是其导出组Ax = 0 的基础解系, k_1 , k_2 为任意常数, 则 Ax = b 的通解为().

A.
$$k_1 \boldsymbol{\alpha}_1 + k_2 (\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2) + \frac{\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2}{2}$$

B.
$$k_1 \alpha_1 + k_2 (\alpha_1 - \alpha_2) + \frac{\beta_1 + \beta_2}{2}$$

C.
$$k_1 \boldsymbol{\alpha}_1 + k_2 (\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2) + \frac{\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2}{2}$$

D.
$$k_1 \boldsymbol{\alpha}_1 + k_2 (\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2) + \frac{\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2}{2}$$

- 4. 设 $\mathbf{A} = [\alpha_1, \alpha_2, \alpha_3]$ 是秩为 2 的三阶矩阵, \mathbf{A}^* 是 \mathbf{A} 的伴随矩阵,则齐次线性方程组 $\mathbf{A}^* \mathbf{x} = \mathbf{0}$ 的解一定能表示为(),其中 k, l, m 是任意常数.
 - A. $k\boldsymbol{\alpha}_1 + l\boldsymbol{\alpha}_2$

B. $l\alpha_2 + m\alpha_3$

C. $k\alpha_1 + m\alpha_3$

D. $k\alpha_1 - l\alpha_2 + m\alpha_3$

錢	111	10	40-	77	175	. un
26	11/4	17	40U	1	赤斑	m
22	1.3.	14	25%	٠,	N.C.S	110

线性方程组

学院

姓名

学号_

教师

三、求下列齐次线性方程组的一个基础解系及通解.

1.
$$\begin{cases} x_1 + x_2 + 2x_3 - x_4 = 0, \\ x_1 + x_2 + x_3 + 2x_4 = 0, \\ 2x_1 + 2x_2 + 3x_3 + x_4 = 0; \end{cases}$$

2. 方程组
$$Ax = 0$$
,其系数矩阵 A 可经初等行变换化为 $B = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 0 & a & 0 \end{bmatrix}$.

š	10 11 15 MI -1 BE 101
9889	线性代数习题册
_	

线性方程组

学院

姓名

学号

教师

四、解下列线性方程组.

1.
$$\begin{cases} x_1 + x_2 - x_3 + x_4 + 2x_5 = 1, \\ 2x_1 + 2x_2 + x_3 + 2x_4 + 3x_5 = 2, \\ 3x_1 + 3x_2 + 3x_4 + x_5 = 3; \end{cases}$$

2. 方程组
$$\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$$
, 其增广矩阵 $\mathbf{A} = (\mathbf{A}, \boldsymbol{\beta})$ 可经初等行变换化为 $\begin{bmatrix} 1 & 2 & -1 & 2 & 5 \\ 0 & 0 & 0 & a-1 & b \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

线性代数习题册
学院

学院

姓名

教师

$$\lambda x_1 + x_2 + x_3 = 1$$
5 计标准性 方程组 $x_1 + \lambda x_2 + x_3 = 1$

五、λ 为何值时,方程组 $\{x_1 + \lambda x_2 + x_3 = \lambda \}$ 有解? 有解时,求出通解. $\left(x_1 + x_2 + \lambda x_3 = \lambda^2\right)$

六、写出方程组 $x_1-x_2=a_1,x_2-x_3=a_2,x_3-x_4=a_3,x_4-x_1=a_4$ 有解的充要条件,并 求解.

教师

七、设 η 。是非齐次线性方程组 $Ax = b(b \neq 0)$ 的一个解, $\xi_1, \xi_2, \dots, \xi_{n-r}$ 是其导出组Ax = 0的 一个基础解系,令 $\eta_j = \eta_0 + \xi_j$, $j = 1, 2, \dots, n - r$. 证明:

1. η₀,ξι,…,ξ"--,线性无关;

 $2.\eta_0,\eta_1,\cdots,\eta_{n-r}$ 线性无关,且都是Ax=b的解;

3. 方程组 Ax = b 的任一解可表示为 $x = \lambda_0 \eta_0 + \lambda_1 \eta_1 + \dots + \lambda_{n-r} \eta_{n-r}$ 的形式,其中常数 λ_0 , $\lambda_1, \dots, \lambda_{n-r}$ 满足 $\lambda_0 + \lambda_1 + \dots + \lambda_{n-r} = 1$.

	线性代数习题册	<i></i>	线性方
···SHE		***************************************	

教师

学院 姓名 学

八、设 α_1 , α_2 , α_3 是四元非齐次线性方程组 $Ax = \beta(\beta \neq 0)$ 的 3 个线性无关的解向量,r(A) = 3,且 $\alpha_1 + \alpha_2 = (1,1,0,2)^T$, $\alpha_2 + \alpha_3 = (1,0,1,3)^T$,求方程组 $Ax = \beta$ 的通解.

九、已知四阶方阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4), \alpha_1, \alpha_2, \alpha_3, \alpha_4$ 均为 4 维列向量,其中 $\alpha_2, \alpha_3, \alpha_4$ 线性无 关, $\alpha_1 = 2\alpha_2 - \alpha_3$. 如果 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,求方程组 $Ax = \beta$ 的通解.

 线性代数习题册	
烈111、双刁四加	

学院

姓名_

学号_

______ 教师

十、设A 是秩为n 的 $s \times n$ 矩阵,AB = AC,证明:B = C.

十一、设n 阶矩阵A 满足: $A^2-3A-10I=O$,I 为n 阶单位矩阵,证明: $rank(\mathbf{A} - 5\mathbf{I}) + rank(\mathbf{A} + 2\mathbf{I}) = n$.

	AS ALL IN MIG. TH MITE HIT
- SS	<i>线性代数习题册</i>
aaaan Gaaraa daa	
1 1882	

线性方程组

学院_

姓名

学号

教师

十二、设
$$A$$
为 $n(n>1)$ 阶矩阵, A^* 是 A 的伴随矩阵,证明: $r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n-1, \\ 0, & r(A) \leqslant n-2. \end{cases}$

十三、若任意一个n维向量都是n元齐次线性方程组Ax=0的解,证明:A=0.

综合练习(二)

一、填空题.
1. 设向量组 α_1 , α_2 , α_3 线性无关,向量组 $p\alpha_1 - \alpha_2$, $s\alpha_2 - \alpha_3$, $t\alpha_3 - \alpha_1$ 线性相关,则 p , s , t 满足
条件
2. 设 $\alpha_i = (1, \lambda_i, \lambda_i^2, \dots, \lambda_i^{n-1})^{\mathrm{T}}, i = 1, 2, \dots, r$,其中 $\lambda_1, \lambda_2, \dots, \lambda_r$ 是互不相同的 r 个数,则对
于向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r,$ 当 $r>n$ 时,线性;当 $r=n$ 时,线性;当 $r< n$
时,线性
3. 设 α_1 , α_2 , α_3 是 \mathbf{R}^3 的一组基,则由基 α_1 , $\frac{1}{2}\alpha_2$, $\frac{1}{3}\alpha_3$ 到 α_1 + α_2 , α_2 + α_3 , α_3 + α_1 的过渡矩阵
为
4. 设 α 为 3 维列向量, $\alpha^{T}\alpha=1$, I 为 3 阶单位矩阵,则矩阵 $I-\alpha\alpha^{T}$ 的秩为
5. 设 A , B 均为 n 阶矩阵,齐次线性方程组 $Ax=0$ 的解都是 $Bx=0$ 的解,则 $r(A)$
r(B).
6. 设 $\mathbf{A} = [\alpha_1, \alpha_2, \alpha_3]$ 为 3 阶矩阵,若 α_1, α_2 线性无关,且 $\alpha_3 = -\alpha_1 + 2\alpha_2$,则线性方程组
Ax = 0 的通解为
二、选择题.
1. 设 A , B 为满足 $AB = O$ 的任意两个非零矩阵,则必有().
A.A. 的列向量组线性相关, $B.$ 的行向量组线性相关
B.A 的列向量组线性相关, B 的列向量组线性相关
C.A 的行向量组线性相关, B 的行向量组线性相关
D.A 的行向量组线性相关, B 的列向量组线性相关
2. 设 \mathbf{A} 为 4×3 矩阵, $\mathbf{\eta}_1$, $\mathbf{\eta}_2$, $\mathbf{\eta}_3$ 是非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的 3 个线性无关的解, \mathbf{k}_1 ,
k_2,k_3 是任意常数,则 $\mathbf{A}\mathbf{x}=\mathbf{\beta}$ 的通解为().
A. $k_1 \eta_1 + k_2 \eta_2 + k_3 \eta_3$
B. $k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$
C. $\frac{\eta_2 + \eta_3}{2} + k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$
D. $\frac{\eta_2 - \eta_3}{2} + k_1(\eta_2 - \eta_1) + k_2(\eta_3 - \eta_1)$
3. 设 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4)$ 是 4 阶矩阵, \mathbf{A}^* 是 \mathbf{A} 的伴随矩阵. 若 $(1,0,1,0)^{\mathrm{T}}$ 是线性方程组
Ax = 0 的一个基础解系,则 $A * x = 0$ 的基础解系为().
A. α_1 , α_3
B. $\alpha_1, \alpha_2, \alpha_3$
C. α_2 , α_3 , α_4
D. $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_4$

i	63	det	132	#A	- 77	23	1111
§ 7	28	77	11	21	-1	涎	Ш

表出;

-- 综合练习(二)

教师

学院

姓名 __ 学-

三、设向量组 $\alpha_1 = (1,1,1,3)^{\mathrm{T}}, \alpha_2 = (-1,-3,5,1)^{\mathrm{T}}, \alpha_3 = (3,2,-1,p+2)^{\mathrm{T}},$

 $\alpha_4 = (-2, -6, 10, p)^T$. 1. p 取何值时, $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关?此时将 $\beta = (4, 1, 6, 10)^T$ 用 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性

2. p 取何值时, α_1 , α_2 , α_3 , α_4 线性相关?此时求 α_1 , α_2 , α_3 , α_4 的秩及一个极大线性无关组.

四、设 α_1 , α_2 , …, α_r ($r \ge 2$) 线性无关, 任取 k_1 , k_2 , …, $k_{r-1} \in \mathbb{R}$, 证明: 向量组 $\beta_1 = \alpha_1 + k_1 \alpha_r$, $\beta_2 = \alpha_2 + k_2 \alpha_r$, …, $\beta_{r-1} = \alpha_{r-1} + k_{r-1} \alpha_r$, $\beta_r = \alpha_r$ 线性无关.

<i>性代数习题册</i>	综合练	3 (=)	E
学 腔	姓名	学号	教师

五、设向量组 α_1 , α_2 , α_3 是 \mathbf{R}^3 的一个基, $\boldsymbol{\beta}_1=2\boldsymbol{\alpha}_1+2k\boldsymbol{\alpha}_3$, $\boldsymbol{\beta}_2=2\boldsymbol{\alpha}_2$, $\boldsymbol{\beta}_3=\boldsymbol{\alpha}_1+(k+1)\boldsymbol{\alpha}_3$. 1. 证明:向量组 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 是 \mathbf{R}^3 的一个基;

2. 当 k 为何值时,存在非零向量 ξ 在基 α_1 , α_2 , α_3 与基 β_1 , β_2 , β_3 下的坐标相同,并求出所有的 ξ .

	į .	44 AN 1	er war t	7 88 70	
		鐵性/	し数七	(週期)	
.,					••
	2.5%				

综合练习(二)

学院

姓名

学号

教师

六、设A 是秩为n 的 $s \times n$ 矩阵,证明:r(AB) = r(B).

七、设
$$\mathbf{A} = \begin{bmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{bmatrix}, \mathbf{b} = \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}$$
,已知线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 存在 2 个不同的解

1. 求λ,a;

4	性代数习题册	综合练	3 (二)	E
	学院	姓名	学号	数 师

2. 求方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的通解.

八、设线性方程组 $\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \end{cases}$ 与方程 $x_1 + 2x_2 + x_3 = a - 1$ 有公共解,求 a 的值和所 $\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \end{cases}$

有公共解.

	6.27	20	25	364	- 73	55.0	1118
82 T	錢	37	11	411	فوشه	17.11	ttt
333 \	100	1.1.	19	25.5		Marie Marie	100
William.							

教师

九、设
$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{bmatrix}$$
, \mathbf{I} 为 3 阶单位矩阵.

1. 求 Ax = 0 的一个基础解系;

2. 求满足AB = I的所有矩阵B.

 选择	碼
 774.1=	三疋乙

- 1. 设非奇异矩阵 A 的一个特征值为 2,则矩阵 $(\frac{1}{3}A^2)^{-1}$ 有一个特征值等于().

- B. $\frac{3}{4}$
- C. $\frac{1}{2}$

- 2. 下列说法正确的是().

 - B. 若A = B 有相同的特征向量,则它们对应的特征值必相同
 - C. 不同的矩阵必有不同的特征多项式
 - D. 矩阵的一个特征值可以有多个特征向量,但一个特征向量仅能属于一个特征值
- 3. 下列说法错误的是().
 - A. 若 λ 是 A 的特征值,则 λ^k (k 为正整数)为 A^k 的特征值

 - C. 若 n 阶矩阵 A 的秩等于 n-1,则 A^* 有一个 n-1 重的零特征值以及一个单特征值
 - D. 设A,B为n阶对称矩阵,则AB与BA可能有不同的特征值
- 4. 设矩阵 $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$,则 A 的特征值为().
 - A.1,0,1

- B. 1,1,2 C. -1,1,2 D. -1,1,1
- 二、填空题.
- 1. 已知 3 阶矩阵 $\bf A$ 的特征值为 -1,1,2 且 $\bf B = \bf A^3 2\bf A^2$,则 $|\bf B| =$

2. 设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{bmatrix}$, \mathbf{A} 和 \mathbf{B} 有相同的特征值,则 $a = \underline{}$

三、求下列矩阵的特征值与特征向量.

$$1. \mathbf{A} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix};$$

维性代数习题册
学院

姓名

教师__

$$2. \mathbf{B} = \begin{bmatrix} 4 & 0 & 3 \\ -1 & 1 & 0 \\ -1 & 1 & -1 \end{bmatrix};$$

$$3. C = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 0 \end{bmatrix};$$

	#	姓	H	数	Ī	麵	<i>III</i>
26j.		دددنه					

姓名

$$4. \mathbf{D} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{bmatrix}.$$

四、设n 阶矩阵A 的各行元素之和为2.

1. 求证: $\lambda = 2$ 是 \boldsymbol{A} 的一个特征值,且 $\boldsymbol{\beta} = [1,1,\cdots,1]^T$ 是相应的特征向量;

2. 当A 可逆时, A^{-1} 的各行元素之和为多少?矩阵 $3A^{-1} + A^2 + 2A$ 的各行元素之和为多少?

发性代数习题册	矩阵!	的特征值与特征向	
学院	姓名	学号	教师

五、设 λ_1 , λ_2 ,…, λ_n 与 α_1 , α_2 ,…, α_n 是n 阶矩阵A 的全部特征值和相应的特征向量,求 $P^{-1}AP$ 的全部特征值与相应的特征向量.

六、设方阵 A 满足 $A^2 = A$,证明: A 的特征值只有 0 或 1.

七、设 λ_1 , λ_2 ,····, λ_n 是n 阶矩阵A 的n 个特征值, β_1 , β_2 ,····, β_n 是对应的n 个线性无关的特征向量,求 $A - \lambda_1 I$ 的全部特征值与一组对应的线性无关的特征向量.

学院

名

教师

矩阵的相似对角化

一、选择题,

1. 设
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, 则().$$

 $A.A \sim B$

B. $A \sim C$

C. *C* ∼*B*

D. 以上结论均不成立

2. 已知
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & a \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A} \sim \mathbf{B}, 则 a, b 分别为().$$

A. -1,1

B. 1,0

C.0,1

D.1, -1

3. 下列说法错误的是().

A.n 阶矩阵 A 可对角化的充要条件是 A 有 n 个互异的特征值

B. n 阶矩阵 A 可对角化的充要条件是 A^{T} 有 n 个互异的特征值

C.n 阶矩阵A 可对角化的充要条件是A 有n 个互异的特征向量

D.n 阶矩阵A 可对角化的充要条件是A 有n 个线性无关的特征向量

4. A, B 均为n 阶矩阵, $1. A \sim B$,则下列说法错误的是().

 $A_{\cdot} \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{B})$

B. 存在对角阵 Λ , 使得 Λ , B 均相似于 Λ

 $C A^{2013} \sim B^{2013}$

D. 若A 可逆,则B 可逆,且 $A^{-1} \sim B^{-1}$

二、填空题.

1. 已知
$$\mathbf{A} = \begin{bmatrix} 0.4 & 5 & 6 \\ 0 & 0.5 & 6 \\ 0 & 0 & 0.6 \end{bmatrix}$$
,则 $\lim_{n \to +\infty} \mathbf{A}^n = \underline{^n}$.

2. 设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{bmatrix}, \mathbf{A} \sim \mathbf{B}, 则 \ a = \underline{\qquad}, b = \underline{\qquad}.$$

线性代数习题册
学院

____ 姓名_____ 学号_____ 教师__

三、判断下列矩阵 A 是否可以对角化,若可以,求出可逆矩阵 P,使得 $P^{-1}AP$ 为对角阵.

$$1. \mathbf{A} = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 2 \end{bmatrix};$$

$$2. \mathbf{A} = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix};$$

	维性代数习题册
· Shill good	
	11/2 17/2

姓名____

$$\mathbf{3.A} = \begin{bmatrix} 3 & 0 & 1 \\ 4 & -2 & -8 \\ -4 & 0 & -1 \end{bmatrix};$$

$$4. \mathbf{A} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}_{n \times n}.$$

 线性代数习题册
 271 32 3 4 779 J 700 779

矩阵的相似对角化

学院

姓名

学号

教师

四、设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{bmatrix}$$
,求 \mathbf{A}^{100} .

五、设 3 阶矩阵 A 的 3 个特征值为 1, 1, 2, 对应的特征向量为 $\gamma_1 = [1,2,1]^T$, $\gamma_2 = [1,1,0]^T$, $\gamma_3 = [2,0,-1]^T$.

1. 求矩阵 A;

线性代数习题册	
 117 2-	

姓名____

2. 若 $\beta = [1,1,1]^T$,求 $A^{10}\beta$.

六、设
$$\mathbf{A} = \begin{bmatrix} -4 & 2 & 1 \\ 2 & 0 & -3 \\ 1 & -3 & 1 \end{bmatrix}$$
,求可逆矩阵 \mathbf{P} 和对角阵 \mathbf{A} ,使得 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{A}$.

- Á	40	del	112	35%	- 17	- <i>6</i> 55	1111
h.	37	11	14	羰	3	\mathcal{K}_{i}^{n}	Щ
33. ₂₂₂ , .							

矩阵的相似对角化

学院

学号

教师

七、设
$$\mathbf{A} = \begin{bmatrix} 3 & 2 & -2 \\ -k & -1 & k \\ 4 & 2 & -3 \end{bmatrix}$$
,求:

1.A 为何值时,A 相似于对角阵?

2. 可逆阵 P,使得 $P^{-1}AP$ 为对角阵.

	线	烨	H	勬	7	瘦	#	
#38								

实对称矩阵的相似对角化

圖

学院

姓名

学号

教师

实对称矩阵的相似对角化

一、用施密特正交规范化方法把下列向量组正交规范化.

1.
$$[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 4 & 8 \end{bmatrix};$$

$$2. \left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4} \right] = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 2 \end{bmatrix}.$$

1	维性作	计数写	題	W

实对称矩阵的相似对角化

学院

姓名_____

学号

二、对下列矩阵 A,求正交矩阵 Q 和对角矩阵 A,使得 $Q^{-1}AQ = A$.

$$1. \mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 2 \\ 0 & 2 & 1 \end{bmatrix};$$

$$2. \mathbf{A} = \begin{bmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{bmatrix}.$$

	<i>线性代数习题册</i>	实对称	农矩阵的相似对角化	
L	学院	姓名	学号	教师

三、已知 3 阶实对称矩阵 A 的三个特征值为 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$, 且对应于 λ_1 , λ_2 的特征向量为 $\xi_1 = [-1, -1, 1]^{\mathrm{T}}$, $\xi_2 = [1, -2, -1]^{\mathrm{T}}$, 求矩阵 A 与 λ_3 对应的一个特征向量及矩阵 A.

四、设 3 阶实对称矩阵 A 的特征值为 6, 3, 3, 且特征值 6 对应的特征向量为 $\xi_1 = [1,1,1]^T$, 求矩阵 A.

į	
	<i>线性代数习题册</i>
	e proportion de la company de la company La company de la company d

姓名_____

学号______ 教师

五、设 3 阶实对称矩阵 \mathbf{A} 的特征值为 $\lambda_1 = -1$, $\lambda_2 = \lambda_3 = 1$, 属于 λ_1 的特征向量为 $\boldsymbol{\eta} =$ [0,1,1]^T,求矩阵 A.

六、设矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
, $\mathbf{B} = (2\mathbf{I} + \mathbf{A})^{10}$, 求对角阵 $\mathbf{\Lambda}$, 使得 \mathbf{B} 相似于 $\mathbf{\Lambda}$.

到一数	<u>性代数习题册</u>	<i></i>	综合练习(三)		酱
	学院	姓名	ź	学号	教师	

综合练习(三)

-、A 是正交矩阵且|A| = -1,证明:-1 是 A 的一个特征值.

二、求
$$n$$
 阶方阵 $\mathbf{A} = \begin{bmatrix} a & a & \cdots & a \\ a & a & \cdots & a \\ \vdots & \vdots & & \vdots \\ a & a & \cdots & a \end{bmatrix}$ 的特征值与对应的特征向量.

三、设 α_1 , α_2 是矩阵 A 对应于不同特征值 λ_1 , λ_2 的特征向量,且 $\lambda_1\lambda_2\neq 0$,证明: $\lambda_1\alpha_1+\lambda_2\alpha_2$ 不是 A 的特征向量.

四、已知向量 $\alpha = [1,k,1]^T$ 是矩阵

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

的逆矩阵的特征向量,求常数 k.

	线性代数习题册	س.
- manufacture of the second		
1 1999		

综合练习(三)

五、A,B 是n 阶方阵,证明:AB 与BA 有相同的特征值.

姓名

六、设
$$\mathbf{A} \circ \mathbf{B}$$
,且 $\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & a & 2 \\ 0 & 2 & 3 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{bmatrix}$.

1. 求 a,b;

性代數习题册	综合练	9(三)	
学院	姓名	学号	

2. 求可逆阵 P, 使 $P^{-1}AP = B$.

七、设向量 $\alpha = [a_1, a_2, \cdots, a_n]^T$, $\beta = [b_1, b_2, \cdots, b_n]^T$ 都是非零向量,且 $\alpha^T \beta = 0$,记 $A = \alpha \beta^T$,求:
1. A^2 ;

 统性代数习题册
art .

综合练习(三)

学院

姓名

学号

教师

2. 矩阵 A 的特征值与特征向量.

八、求解微分方程组
$$\begin{bmatrix} \frac{\mathrm{d}x}{\mathrm{d}t} \\ \frac{\mathrm{d}y}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

<i>线性代数习题册</i>
 132

学院

姓名

学号

教师

九、
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$
 , $\mathbf{B} = \begin{bmatrix} n & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{bmatrix}_{n \times n}$, 证明: $\mathbf{A} \sim \mathbf{B}$.

$$+ \begin{bmatrix} x_n \\ y_n \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x_{n-1} \\ y_{n-1} \end{bmatrix}, \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \Re \lim_{n \to 0} x_n, \lim_{n \to 0} y_n.$$

 <i>线性代数习题册</i>

二次型及其矩阵表示

学院

姓名____

学号

教师

二次型及其矩阵表示

一、写出下列二次型的矩阵,并求出该二次型的秩.

1.
$$f(x_1, x_2, x_3, x_4) = x_1^2 + 3x_2^2 - x_3^2 - 3x_4^2 + 2x_1x_2 + x_1x_3 - 2x_2x_4 + x_3x_4;$$

2.
$$f(x_1, x_2, x_3) = \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
.

20000000	线性代数习额概
	20 11 IV 90 7 1 123 111
300000	

学院

姓名 _____ 学号___

教师

二、已知二次型 $f(x_1,x_2,x_3)=5x_1^2+5x_2^2+kx_3^2-3x_4^2-2x_1x_2+6x_1x_3-6x_2x_3$ 的秩为 2,求参数 k.

三、设二次型 $f(x_1,x_2,x_3)=2x_1^2+x_2^2-4x_1x_2-4x_2x_3$,分别作如下 4 个可逆线性替换,求 新二次型.

$$1. \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix};$$

;		
and	线性代数习题册	
	% LIN % T MZ MI	

"二次型及其矩阵表示

学院

姓名

学号

教师

$$2. \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix};$$

3.
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix};$$

线性代数习题册

二次型及其矩阵表示

学院

姓名

学号

教师

4.
$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
.

ş		— P	r nh
g	线性代	数刀额	<i>:#</i> #
		,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

学号______ 教师

二次型化为标准形

- 一、分别用正交变换法和配方法化下列二次型为标准形.
- 1. $f(x_1, x_2, x_3) = 2x_1x_2 + 2x_1x_3 4x_2x_3$;

2. $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$;

3. $f(x_1, x_2, x_3) = 2x_1^2 - x_2^2 + 9x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$;

教师

4. $f(x_1, x_2, x_3, x_4) = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_4^2 + 2x_1x_2 + 2x_3x_4$.

二、已知 $f(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3$ (a > 0) 经过正交变换化为标准形 $f(x_1,x_2,x_3)=y_1^2+2y_2^2+5y_3^2$,求参数 a 以及所用的正交变换.

三、设 3 阶实对称矩阵 A 的特征值为 $1,2,3,\alpha = [\alpha_1,\alpha_2,\alpha_3]^T$, $f(\alpha) = \alpha^T A \alpha$. 当 $\|\alpha\| = 1$ 时,求 $f(\alpha)$ 的最大值和最小值.

	8.0	34	2.60	446	-	443	1777	
	-0-	ma:	15	280	- 1	- #III	His	
- 3	鳞	11	18	27.5	~ 1	923	11/1	

学院

姓名____

正定二次型

一、请对下列二次型进行分类(正定、负定、半正定、半负定、不定).

1.
$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$
;

2. $f(x_1, x_2, x_3) = -5x_1^2 - 6x_2^2 - 4x_3^2 + 4x_1x_2 + 4x_1x_3$;

 线性代数习题册

学院

姓名

教师

3. $f(x_1, x_2, x_3) = 3x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_2x_3$.

二、试确定参数 a 的取值范围,使得 $A = \begin{bmatrix} 2 & 6 & 0 \end{bmatrix}$ 为正定矩阵.

- 1	2.0	33.	855	164	77	ÆΞ	1117	
2000	1	47	17	4001	-1	7.30	Htt	
	27.10	14	18	24	-1	ΝΩ	1.01	
Carrier Service							~	•

三、设A,B为正定矩阵,证明: A^{T} , A^{-1} , A^{*} ,A+B也是正定矩阵.

四、设A,B 分别为m 阶和n 阶正定矩阵,矩阵 $C = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$,证明:C 为正定矩阵.

黄	性代数习题册	 二次型 ————————————————————————————————————	
	学院	 学号	教师

五、求参数 t 的值,使得二次型 $f(x_1,x_2,x_3) = -x_1^2 + tx_2^2 + 4tx_3^2 + 2x_1x_2 + 4x_1x_3 + 2x_2x_3$ 为负定二次型.

六、设A为实对称矩阵,且满足 $6A^2-7A+2I=0$.证明:A是正定矩阵.

	综合练 <i>-</i>	5 (56)	
学院	姓名	学号	教师

综合练习(四)

一、二次型 $f(x_1,x_2,x_3) = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3$ (a > 0)可通过正交变换化为标准形 $f(x_1,x_2,x_3) = y_1^2 + 2y_2^2 + 5y_3^2$.

- 1. 求参数 a 及所用的正交变换矩阵;
- 2. 问 $f(x_1,x_2,x_3)=1$ 表示什么曲面.

二、设n 阶实对称矩阵A 的最大特征值为 λ , α 是n 维实向量,且 $||\alpha||=1$.证明: $f(\alpha)=\alpha^{T}A\alpha \leq \lambda$.

<u> </u>	代数习题册	综合练:	ə(四)	
	学院	姓名	学号	教师

三、设A 是实对称矩阵,证明:存在常数 k,使当 $\mu > k$ 时, $\mu I + A$ 总是正定矩阵.

四、设A 是n 阶正定矩阵,B 是 $n \times r$ 矩阵,且秩(B) =r.证明: $B^{T}AB$ 是正定矩阵.

发性代数习题册	综合练习(四)	
学院	姓名	学号	教师

五、设 $f(\alpha) = \alpha^{T} A \alpha$ 是一实二次型, λ_1 , λ_1 ,…, λ_n 是 A 的特征值,且 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. 证明: $\forall \alpha \in \mathbb{R}^n$,有 $\lambda_1 \|\alpha\|^2 \leq f(\alpha) \leq \lambda_n \|\alpha\|^2$.

六、设A为n阶实对称矩阵, $\forall \alpha \in \mathbb{R}^{n \times 1}$,有 $f(\alpha) = \alpha^{\mathsf{T}} A \alpha = 0$. 证明:A 为零矩阵.

 生代数习题册		[된 [편]	
学院	姓名	学号	

七、A 既是正定矩阵,又是正交矩阵.证明:A 一定是单位矩阵.

八、A 是实反对称矩阵,证明: $I-A^2$ 是正定矩阵.

学院

姓名

学号

教师

期中考试试题(闭卷)

(2020-2021 学年第2学期)

- 一、填空题 (每题 4 分,共 24 分)
- 1. 设 A 为三阶方阵, $x_1 = (0,0,1)^{\mathrm{T}}$, $x_2 = (1,0,0)^{\mathrm{T}}$, $x_3 = (0,1,0)^{\mathrm{T}}$ 分别是 $Ax_i = b_i$ 的解,其中 $b_1 = (1,2,3)^{\mathrm{T}}$, $b_2 = (4,5,6)^{\mathrm{T}}$, $b_3 = (7,8,9)^{\mathrm{T}}$,则 A =______.
- 2. 考虑元素取值为 0 或 1 的二阶方阵 $A = (a_{ij})_{2\times 2}$. 这样的可逆矩阵共有 = ________个.
- 3. 设 $\bf A$ 为 $\bf 4$ 阶方阵, $\bf A$ * 为 $\bf A$ 的伴随矩阵, $|\bf A$ * |=8, 则行列式 $|(2\bf A)^{-1}-\bf A$ * |=_____.
- 4. 若线性方程组 $\begin{cases} x_1 x_3 = kx_2 \\ x_2 + x_3 = kx_1 \end{cases}$ 有非零解,则常数 k =______.
- 5. 若 $\begin{vmatrix} 1 & x & y & z \\ x & 1 & 0 & 0 \\ y & 0 & 2 & 0 \\ z & 0 & 0 & 3 \end{vmatrix} = 6$,则 x + y + z =_____.
- 6. 设 $\alpha_i = (1, \lambda_i, \lambda_i^2, \dots, \lambda_i^{n-1}), i = 1, 2, \dots, r,$ 其中 $\lambda_1, \lambda_2, \dots, \lambda_r$ 是r 个互补相同的r 个数,则向量组 $\alpha_1, \alpha_2, \dots, \lambda_r$ 线性无关当且仅当r 和n 满足条件______.
- 二、(10 6)将矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 表示成有限个初等矩阵的乘积.

学院

姓名

学号

教师

三、
$$(12分)$$
矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$

- (1)计算 $f(\mathbf{A}) = \mathbf{A}^3 + \mathbf{A} + 2$,其中 \mathbf{E} 为四阶单位矩阵;
- (2)用 A*表示 A 的伴随矩阵,计算((A-1)T)*.

四、
$$(12 分)$$
已知矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, 且矩阵 \mathbf{X} 满足

AXC - BXC = AX - BX + E,其中 E 为三阶单位矩阵. 求 X.

线性代数习题册	/	考试试题(闭卷)	
学院	姓名	学号	教师

五、(12 分)已知 $\boldsymbol{\alpha}_1 = (1,3,0,2)^{\mathrm{T}}, \boldsymbol{\alpha}_2 = (2,5,1,3)^{\mathrm{T}}, \boldsymbol{\alpha}_3 = (0,1,-1,a)^{\mathrm{T}}, \boldsymbol{\beta} = (3,7,b,4)^{\mathrm{T}}.$

- (1)a,b 为何值时, β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出?
- (2)a,b 为何值时, β 可由 α_1 , α_2 , α_3 线性表出,且表出方式唯一? 并给出其表示式.

六、(15分)判断下列结论的正确性,若正确,请证明之;否则,请举出一个反例.

- (1)若矩阵 A 满足 $A^3 = 0$,则 A 为零矩阵;
- (2)设 \mathbf{A} 为n 阶方阵, \mathbf{A}^* 为 \mathbf{A} 的伴随矩阵,则 $|\mathbf{A}^*| = |\mathbf{A}|^{n-1}$;
- (3)设 α_1 , α_2 , α_3 , α_4 是四维列向量,若 α_1 + α_2 , α_2 + α_3 , α_3 + α_4 , α_4 + α_1 线性相关,则 α_1 , α_2 , α_3 , α_4 也线性相关.

线性代数习题册

中考试试题(闭卷):

学院

姓名

教师

七、(15 分)设A是4阶方阵, α 是4维列向量,

$$(1)$$
若 $\boldsymbol{\alpha} = (1,1,1,1)^{\mathrm{T}}, \boldsymbol{B} = \boldsymbol{A} + \boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathrm{T}}, \bar{\boldsymbol{\chi}} (\boldsymbol{A} - \boldsymbol{B})^{2021};$

(2)
$$\ddot{A}$$
 a_1, a_2, a_3, a_4 为非零实数, $A = \begin{bmatrix} a_1 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 \\ 0 & 0 & a_3 & 0 \\ 0 & 0 & 0 & a_4 \end{bmatrix}$, $\alpha = (a_1, a_2, a_3, a_4)^T$,

求 $|A + \alpha \alpha^{\mathrm{T}}|$;

(3)若 A 为反对称矩阵,且 |A|=1, $\alpha=(1,1,1,1)^{\mathrm{T}}$,证明 $|A+\alpha\alpha^{\mathrm{T}}|=1$.

A CONTRACTOR

学院

姓名

学号

教师

期中考试试题(闭卷)

(2021-2022 学年第2学期)

- 一、填空题 (每题 4 分, 共 24 分)
- 1. 设三阶方阵 $A = [\alpha_1, \alpha_2, \alpha_3]$, $B = [\alpha_1 \alpha_2, \alpha_2 + 2\alpha_3, 2\alpha_1 \alpha_2 + \alpha_3]$, 其中 α_i (i=1,2,3)为三维列向量. 若|A|=3,则|B|=______.

2. 设
$$\mathbf{A} = \begin{bmatrix} 1 & 5 & 3 & 4 \\ -1 & 4 & -2 & 3 \\ 2 & 2 & 7 & 10 \\ 0 & 7 & 1 & 8 \end{bmatrix}$$
, M_{ij} 为 \mathbf{A} 的元素 a_{ij} 的余子式,则 $-2M_{12} - 4M_{32} + 2M_{42} =$

3. 设三阶方阵 A 的行列式 |A| = 2, A^* 为 A 的伴随矩阵, $B = (2A^*)^{-1} + \frac{1}{4}A$, 则 |B| =

4. 设向量
$$\boldsymbol{\beta} = \begin{bmatrix} 3 \\ -5 \\ 2 \\ k \end{bmatrix}$$
可以被向量组 $\boldsymbol{\alpha}_1 = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 2 \end{bmatrix}$, $\boldsymbol{\alpha}_2 = \begin{bmatrix} 0 \\ 5 \\ 1 \\ 4 \end{bmatrix}$, $\boldsymbol{\alpha}_3 = \begin{bmatrix} -4 \\ 15 \\ -1 \\ 8 \end{bmatrix}$ 线性表出,则 $k = \underline{\qquad}$

- 5. 设向量组 α_1 , α_2 , α_3 线性无关,向量组 α_1 +5 α_2 + $k\alpha_3$, $2\alpha_1$ + α_2 α_3 , α_2 + α_3 线性相关,则 k=
- 6. 已知 $Rank(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4) = 4$, $Rank(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5) = 4$, $Rank(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_6) = 4$
- 5, \mathbb{M} Rank $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 \alpha_6) = \underline{\hspace{1cm}}$

二、(12 分)已知
$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 3 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, $\mathbf{X}\mathbf{A} + 2\mathbf{B} = \mathbf{A}\mathbf{B} + 2\mathbf{X}$, 求 \mathbf{X}^{2023} .

线性代	数习起	TH
~		

期中考试试题(闭卷)…

学院

姓名____

学号

教师_

三、(14 分)已知 $\alpha = (1,2,1), \beta = (1,1,-1), A = \alpha^{T}\beta, f(x) = x^{2} + x - 3.$

(1)求 A^n ,其中n 为整数,且 $n \ge 1$;

(2)求f(A).

.

四、(10 分)计算 n 阶行列式

 x_1 x_2-m \vdots

 $x_n - y$

,其中 n≥

116

page 1	缓性代数习题册	
	NA 17 1 A NA 2 MM 00	

期中考试试题(闭卷)----

教师

学院

姓名_____

学号_____

五、(15 分)设 $\alpha_1 = (2,1,2,3)$, $\alpha_2 = (-1,1,5,3)$, $\alpha_3 = (0,-1,-4,-3)$, $\alpha_4 = (1,0,-2,-1)$, $\alpha_5 = (1,2,9,8)$. 求向量组 α_1 , α_2 , α_3 , α_4 , α_5 的秩以及它的一个极大无关组,并用该极大无关组表示其余向量.

 $(x_1 + x_2 + \lambda x_3 = 2)$ 六、(15 分) 为何值时,线性方程组 $\begin{cases} x_1 + x_2 + \lambda x_3 = 2 \\ x_1 + \lambda x_2 + x_3 = 1$ 有唯一解、无解、有无穷多解?并在有 $(x_1 + x_2 + 2x_3 = \lambda)$

无穷多解的情形下,求出该方程组的全部解.

七、(10 分)设 α_1 , α_2 , \cdots , α_r 和 β_1 , β_2 , \cdots , β_s 是两个线性无关的 n 维向量组. 证明: 向量组 α_1 , α_2 , \cdots , α_r , β_1 , β_2 , \cdots , β_s 线性相关⇔存在非零向量 γ , 它既可以由 α_1 , α_2 , \cdots , α_r 线性表示, 义可由 β_1 , β_2 , \cdots , β_s 线性表示.

į	a for a 1 Say 167 and her nice	
andres.	<i>线性代数习题册</i>	
<i>182</i> ;	535 TT 11. 402 (1) 1997 JJJ	
100000		

期中考试试题(闭卷)

学院

姓名

学号

教师

期中考试试题(闭卷)

(2022-2023 学年第2学期)

- 一、填空题(每题4分,共24分)
- 1. 设 $\mathbf{A} = (a_{ij})$ 为三阶方阵, A_{ij} 为元素 a_{ij} 的代数余子式,若 \mathbf{A} 的每行元素之和均为 3,且 $|\mathbf{A}| = 2$,则 $A_{12} + A_{22} + A_{32} = _____$.
- 2. 设 α 是三维列向量, α^{T} 是 α 的转置. 若 $\alpha\alpha^{\mathrm{T}} = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$,则 $|k\alpha^{\mathrm{T}}\alpha|$ 的值=_____.
- 3. 设 A 为 n(n ≥ 2) 阶可逆方阵,则行列式 $|[(|A|A^T)^*]^{-1}|$ 的值 = _____.
- 4. 若线性方程组 $\begin{cases} x_1 + x_2 = a \\ x_2 + x_3 = b \\ x_3 + x_4 = c \end{cases}$ 有解,则常数 a,b,c,d 应满足的条件是______.
- 5. 已知方阵 A 满足 $aA^2 + bA + cI = 0(a,b,c \in \mathbb{R},c \neq 0)$,则 $A^{-1} =$ _____.
- 6. 已知向量组 $\alpha_1 = (1,1,1), \alpha_2 = (a,0,b), \alpha_3 = (1,3,2)$ 生成的子空间 $Span \{\alpha_1,\alpha_2,\alpha_3\}$ 的 维数为 2,则 a,b 满足的关系式为
- 二、(10 分)已知平面上的一条抛物线 $y = ax^2 + bx + c$ 经过三个不同的点(1,1),(2,3),(3,9). 求出这条抛物线的方程.

55550000000	税料准数订新加
	线性代数习题册

- 期中考试试题(闭卷)

受院

姓名

三、(12 分)已知矩阵方程
$$\mathbf{A}^{2023} \mathbf{X} (\mathbf{I} - \mathbf{C}^{-1} \mathbf{B})^{\mathrm{T}} \mathbf{C}^{\mathrm{T}} \mathbf{A} = \mathbf{I},$$
其中 $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

四、 $(12 \, \beta)$ 设 \mathbf{A} , \mathbf{B} 为三阶方阵,且 $\mathbf{A} = [\alpha, 2\gamma_2, 3\gamma_3]^T$, $\mathbf{B} = [5\beta, 3\gamma_2, \gamma_3]^T$, $|\mathbf{A}| = 18$, $|\mathbf{B}| = 30$. 求 $|\mathbf{A} - \mathbf{B}|$.

1	<i>线性代数习额册</i>

期中考试试题(闭卷)

学院

五、(14 分)已知向量组 $\boldsymbol{\alpha}_1 = (1,3,0,5)^T, \boldsymbol{\alpha}_2 = (1,2,1,4)^T, \boldsymbol{\alpha}_3 = (1,-3,6,a-1)^T, \boldsymbol{\alpha}_4 = (1,3,0,5)^T$ $(-1,b,-3,-6)^{\mathrm{T}}$.

- (1)求向量组的秩和全部极大线性无关组;
- (2)若向量组的秩小于4,将其余向量用极大线性无关组线性表示.

六、(14 分)已知三维向量组 $\alpha_1 = (1,1,1), \alpha_2 = (1,0,1), \alpha_3 = (0,0,1), \alpha_4 = (1,2,0), \alpha_5 = (0,0,1), \alpha_6 = (0,0,1), \alpha_8 = (0,0,1), \alpha_$ (0,1,1).

- (1)证明:向量组(\mathbb{I}) α_1 , α_2 , α_3 与向量组(\mathbb{I}) α_1 , α_4 , α_5 是三维空间 \mathbb{R}^3 的两组基;
- (2)求向量组(Ⅱ)到向量组(Ⅱ)的过渡矩阵 M.

发性代数习题	捌	中考试试题(闭卷)	
学院	姓名	学号	教师

七、(14 分)设 A 是 n 阶方阵, α_1 , α_2 , α_3 是 n 维列向量,其中 $\alpha_1 \neq 0$,且 $A\alpha_1 = 3\alpha_1$, $A\alpha_2 = -\alpha_1 + 3\alpha_2$, $A\alpha_3 = -\alpha_2 + 3\alpha_3$.

- (1)证明向量组 **a**₁,**a**₂,**a**₃ 线性无关;
- (2) 若 n=3, 求 |A|.

注:本试题中的 I 表示单位矩阵, A^* 表示方阵 A 的伴随矩阵.

期末考试试题(闭卷)

(2020-2021 学年第2学期)

- 一、填空题(每题3分,共18分)
- 1. 设A 为四阶方阵,且 $|A| = \frac{1}{4}$,则 $|(2A^*)^{-1}| = _____.$
- 2. 设 \mathbf{A} 是 4×3 矩阵, \mathbf{A} 的秩 $r(\mathbf{A}) = 2$, 矩阵 $\mathbf{B} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$,则秩 $r(\mathbf{AB}) = \underline{\qquad}$
- 3. 设 $\bf A$ 为 3 阶矩阵, $\bf A$ 的第一行元素为 1,2,3, $|\bf A|$ 的第二行元素的余子式分别为 a+2, a + 1, a - 2, \emptyset a =

4. 设
$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 2 & 5 & 12 \\ 1 & 4 & 9 \\ 3 & 6 & 15 \end{bmatrix}, \mathbf{R} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, 则 \mathbf{P}^{2021}\mathbf{Q}\mathbf{R} = \underline{\qquad}.$$

- 5. 设 \mathbf{A} 为三阶实对称矩阵, $\mathbf{\alpha}_1 = \begin{bmatrix} 2 \\ a+4 \\ -3 \end{bmatrix}$, $\mathbf{\alpha}_2 = \begin{bmatrix} a+1 \\ 1 \\ 1 \end{bmatrix}$,且 $\mathbf{A}\mathbf{\alpha}_1 = \mathbf{\alpha}_1$, $\mathbf{A}\mathbf{\alpha}_2 = 2\mathbf{\alpha}_2$,则 $a = \underline{\mathbf{\alpha}_1 = \mathbf{\alpha}_1}$
- 6. 二次型 $f(x_1,x_2,x_3) = [x_1 \quad x_2 \quad x_3] \begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ 的秩为_____.
- 二、 $(10 \, \mathcal{G})$ 已知 A 是三阶矩阵, α 是三维列向量. $P = [\alpha, A\alpha, A^2\alpha]$ 可逆, 并且 $A^3\alpha =$ $5A\alpha - 4A^2\alpha$.
- (1) 求 B, 使得 $A = PBP^{-1}$;
- (2)求|A+I|.

线性代数习题册
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

### 期末考试试题(闭卷)



学院

姓名

学号

教师

三、(13 分)线性方程组
$$\begin{cases} x_1 + x_2 + 3x_3 = 5 \\ x_1 + 2x_2 + 4x_3 = 7 \\ x_1 + (a+3)x_2 + (a^2+3)x_3 = 3a + 10 \end{cases}$$
,其中  $a$  为常数.

- (1)写出该方程组的增广矩阵;
- (2)a 为何值时方程组有解? 有解时求出所有的解.

四、(13 分)设 V 是由  $\alpha_1 = [2,3,1,1]^T$ ,  $\alpha_2 = [1,2,-1,1]^T$  所张成的子空间.  $\beta_1 = [4,7,-1,3]^T$ ,  $\beta_2 = [3,4,3,1]^T$ .

- (1)求子空间 V 的维数  $\dim(V)$ ;
- (2)判断是否有  $\beta_1 \in V$ ,  $\beta_2 \in V$  并说明理由;
- (3)**\beta_1**, **\beta_2** 是否是子空间 V 的基? 请说明理由. 如果是,求基 **\beta_1**, **\beta_2** 到基  $\alpha_1$ ,  $\alpha_2$  的过渡矩阵.



## 期末考试试题(闭卷)---



学院

姓名

学号

教师

五、(13 分)三阶实对称矩阵 A 的三个特征值为 $\lambda_1 = \lambda_2 = 1$ ,  $\lambda_3 = 2$ , 且对应于  $\lambda_1 = \lambda_2 = 1$  的特征向量为  $\alpha_1 = [1,1,-1]^{\mathrm{T}}$ ,  $\alpha_2 = [-2,-3,3]^{\mathrm{T}}$ .

- (1)求 A 的对应于特征值 $\lambda_3 = 2$  的特征向量;
- (2)求正交矩阵 Q 及对角形矩阵  $\Lambda$ ,使  $Q^{-1}AQ = \Lambda$ .

六、
$$(13 分)$$
设 $\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 3 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ ,矩阵 $\mathbf{X}$ 满足 $\mathbf{X}\mathbf{A} + 2\mathbf{B} = \mathbf{A}\mathbf{B} + 2\mathbf{X}$ .

- (1)求(A 2I)⁻¹;
- (2)求  $X^{2021}$ .

## 期末考试试题(闭卷)-



七、(10 分)已知  $n \ge 2, a_1, a_2, \dots, a_n$  是常数,实二次型  $f(x_1, x_2, \dots, x_n) = (x_1 + a_1 x_2)^2 + a_1 x_2 + a_2 x_2 + a_1 x_2 + a_2 x$  $(x_2+a_2x_3)^2+\cdots+(x_{n-1}+a_{n-1}x_n)^2+(x_n+a_nx_1)^2.$ 

- (1)证明二次型  $f(x_1,x_2,\dots,x_n)$ 是正定或半正定的;
- (2)当且仅当  $a_1, a_2, \dots, a_n$  满足什么条件时  $f(x_1, x_2, \dots, x_n)$ 正定?

### 八、(10分)证明题

- (1)设向量组  $\alpha_1,\alpha_2,\alpha_3$  是齐次线性方程组 AX=0 的基础解系,证明: $\alpha_1+\alpha_2+\alpha_3,\alpha_1+\alpha_2$  $9\boldsymbol{\alpha}_2 + 16\boldsymbol{\alpha}_3$ ,  $\boldsymbol{\alpha}_1 - 3\boldsymbol{\alpha}_2 - 4\boldsymbol{\alpha}_3$  也是  $AX = \mathbf{0}$  的基础解系.
- (2)设A是n阶非零实矩阵(n>2),A^T=A*,证明A是正交矩阵.
- 注:本试题中的I表示单位矩阵, $A^*$ 表示方阵A的伴随矩阵.



教师

期末考试试题(闭卷)

# (2021-2022 学年第 2 学期)

- 一、填空颗(每颗3分,共18分)
- 1. 设  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$  均 为 三 维 列 向 量, 记 矩 阵  $A = [\alpha_1, \alpha_2, \alpha_3]$ , B = $\lceil \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 + 4\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + 3\boldsymbol{\alpha}_2 + 9\boldsymbol{\alpha}_3 \rceil$ . 如果  $|\boldsymbol{A}| = 1$ ,则  $|\boldsymbol{B}| = 1$ .

2. 设
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
,则 $\mathbf{A}^{2022} - 2\mathbf{A}^{2021} = \underline{\hspace{1cm}}$ .

- 3. 设矩阵  $A = \begin{bmatrix} 1 & \lambda & -1 & 2 \\ 2 & -1 & \lambda & 5 \\ 1 & 10 & -6 & 1 \end{bmatrix}$ ,当参数  $\lambda =$ _______时矩阵 A 的秩最小.
- 4. 三阶矩阵 A 的特征值为 1,1,2,则行列式  $\left| \left( \frac{1}{3} A^2 \right)^{-1} + \frac{1}{2} A^* I \right| = _____.$
- 5. 二维平面上的向量  $\beta = (5,6)^{\mathrm{T}}$  在基  $\alpha_1 = (1,2)^{\mathrm{T}}, \alpha_2 = (3,4)^{\mathrm{T}}$  下的坐标为_
- 6. 设二次型  $f(x_1,x_2,x_3)=(x_1-ax_2)^2+(x_2-bx_3)^2+(x_3-cx_1)^2$ ,当且仅当 a,b,c 满足 条件时,该二次型 f 正定.
- 二、解答题(共68分)
- 1. (12 分)设向量  $\boldsymbol{\alpha} = (1,2)^{\mathrm{T}}$ ,  $\boldsymbol{\beta} = \left(1,\frac{1}{2}\right)^{\mathrm{T}}$ ,  $\boldsymbol{\gamma} = \begin{bmatrix} 8 & 4 \\ 16 & 8 \end{bmatrix}$ ,  $\boldsymbol{\diamondsuit}$   $\boldsymbol{A} = \boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}}$ ,  $\boldsymbol{B} = \boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\alpha}$ , 其中  $\boldsymbol{\beta}^{\mathrm{T}}$  表示 列向量 $\beta$ 的转置. 求解方程  $2B^2A^2X = A^4X + B^3X + \gamma$ .
- $(x_1 + x_2 2x_4 = -6)$ 2. (14 分) 考虑如下非齐次线性方程组(I):  $4x_1-x_2-x_3-x_4=1$ , 与非齐次方程组  $\left(3x_{1}-x_{2}-x_{3}=3\right)$

- (1)求解方程组(丁),用导出组基础解系表示通解;
- (2)方程组(I)与方程组(I)同解,求参数 a,b,c 的值.



- 3. (12 分)设矩阵  $\mathbf{A} = \begin{bmatrix} 1 & -2 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 1 & 8 & -4 \end{bmatrix}$ .
- (1)请给出矩阵 A 的列向量组的一个极大无关组;
- (2)矩阵  $\mathbf{A}$  的零空间  $null(\mathbf{A})$ 的维数是多少?请给出零空间  $null(\mathbf{A})$ 的一组最小生成集.



4. (15 分)某城市及郊区乡镇共有 50 万人从事农、工、商工作,假设总人数在若干年内保持稳定不变. 经调查表明,在这 50 万的就业人员中,目前大约有 25 万人从事农业,有 15 万人从事工业,有 10 万人从事商业. 在务农的人员中,每年大约有 20%改为务工,10%改为经商;在务工的人员中,每年大约有 20%改为务农,10%改为务农,10%改为务农,10%改为务农,10%改为务农,10%改为务工.

- (1)请写出一年后从事农、工、商工作的人数分别是多少.
- (2)请预测 n 年后从事各行业的人员总数及发展趋势.

- 5. (15 分)已知二次型  $f(x_1,x_2,x_3)=ax_1^2+2x_2^2-2x_3^2+2bx_1x_3=\textbf{\textit{X}}^{\mathrm{T}}\textbf{\textit{A}}\textbf{\textit{X}}(a,b>0)$ ,且已知二次型矩阵  $\textbf{\textit{A}}$  的特征值之和为 1,特征值之积为 -12.
- (1)求参数 a,b 的值;
- (2)利用正交变换 X = QY 将其化成标准形,写出所用的正交变换的矩阵 Q.

<u> </u>	<b>题册</b>	期末考试试题	(闭卷)	
学图	完 姓	名	学号	教师

三、证明题(14分)

- 1. 设A 是三阶方阵,三维列向量组 $\alpha$ , $A^2\alpha$  线性无关,且 $A^3\alpha=3A\alpha-2A^2\alpha$ . 证明:矩阵  $B=[\alpha,A^2\alpha,A^4\alpha]$ 可逆.
- 2. 设 n 阶方阵A 满足 $A^2 = A$ ,且 r(A) = r(0 < r < n),证明: $A \sim \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$ ,其中  $I_r$  为 r 阶单位矩阵,符号"~"代表相似.



学院

姓名

学号

教师

# 四川大学期末考试试题(闭卷)

(2022-2023 学年第 2 学期)A 卷

一、填空题(每题3分,共18分)

1. 设 
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 4 & 2 \\ 1 & 3 & 9 & 0 \\ 1 & -1 & 1 & 2 \\ 1 & 4 & 16 & 3 \end{bmatrix}$$
,  $M_{ij}$  为矩阵  $\mathbf{A}$  的第  $i$  行第  $j$  列元素的余子式  $(i, j = 1, 2, 3, 4, 4, 5)$ 

- 4),  $\mathbb{I} 8M_{14} + 27M_{24} + M_{34} + 64M_{44} =$
- 2. 设 n 维向量  $\alpha = (c, 0, \dots, 0, c)^{\mathrm{T}}$ ,其中 c > 0, I 为 n 阶单位矩阵. 矩阵  $A = I \alpha \alpha^{\mathrm{T}}$  的逆矩阵为  $B = I + c^{-1} \alpha \alpha^{\mathrm{T}}$ ,则 c =
- 3. 已知三阶方阵  $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$  ,  $\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$  , 则矩阵  $\mathbf{A}^{2023} \mathbf{B}^{2024}$  位于第二行第三列的元

素的值= .

- 4. 已知以  $n(n \ge 2)$  阶方阵 A 为系数矩阵的非齐次线性方程组 Ax = b 仅有两个线性无关的解向量,则矩阵  $A^*$  的秩为
- 5. 设三阶方阵 A 满足 |A-I| = |A-2I| = |A-3I| = 0, I 为三阶单位矩阵,则|A-4IE| = .
- 6. 使二次型  $f(x_1,x_2,x_3) = tx_1^2 + tx_2^2 + (t-2)x_3^2 + 2x_1x_2$  负定的参数 t 的取值范围为
- 三、(12 分)已知向量组  $\boldsymbol{\alpha}_1 = (1,0,1,0)^{\mathrm{T}}, \boldsymbol{\alpha}_2 = (3,-1,2,1)^{\mathrm{T}}, \boldsymbol{\alpha}_3 = (1,a,b,0)^{\mathrm{T}}, \boldsymbol{\alpha}_4 = (1,2,-2,1)^{\mathrm{T}}.$
- 1. 求向量组的秩和一个极大线性无关组;
- 2. α。能否由其余向量线性表出? 若能,请给出线性表出的表达式.





三、(10 分)已知方阵 
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$
满足[(| $\mathbf{A} - \mathbf{I}$ || $^{-1}\mathbf{A}$ )*] $^{-1}\mathbf{X}\mathbf{A}^{-1} = \mathbf{I} - \frac{1}{2}\mathbf{A}\mathbf{X}$ ,求矩

阵 X.

四、
$$(12\, f)$$
设四阶矩阵  $\mathbf{A}=\begin{bmatrix} 3 & 2 & 2 & 2\\ a & 1 & b & c\\ d & e & 1 & f\\ g & h & k & 1 \end{bmatrix}$  对应特征值  $\lambda=3$  有三个线性无关的特征向

量,其中a,b,c,d,e,f,g,h,k为常数.

- 1. 求矩阵 A;
- 2. 求可逆矩阵 P 和对角形矩阵  $\Lambda$ , 使  $P^{-1}AP = \Lambda$ .

# **线性代数习题册**

## 四川大学期末考试试题(闭卷)



兴险

姓名

学号

教师

五、(12 分)已知非齐次线性方程组  $\begin{cases} x_1+x_2+x_3+x_4=-1\\ 4x_1+3x_2+5x_3-x_4=-1 有三个线性无关的解.\\ ax_1+x_2+3x_3+bx_4=1 \end{cases}$ 

- 1. 求 a,b 的值;
- 2. 求线性方程组的通解.

六、 $(12 \, \mathcal{G})$ 设向量组  $\boldsymbol{\alpha}_1 = (1,2,1)^{\mathrm{T}}, \boldsymbol{\alpha}_2 = (1,3,2)^{\mathrm{T}}, \boldsymbol{\alpha}_3 = (1,a,3)^{\mathrm{T}}$  是三维空间  $\mathbf{R}^3$  的一组 基.  $\boldsymbol{\beta} = (1,1,1)^{\mathrm{T}}$  在这组基下的坐标为 $(b,c,1)^{\mathrm{T}}$ .

- 1. 求 a,b,c 的值;
- 2. 证明  $\alpha_2$ ,  $\alpha_3$ ,  $\beta$  是  $\mathbb{R}^3$  的一组基, 并求  $\alpha_2$ ,  $\alpha_3$ ,  $\beta$  到  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$  的过渡矩阵 M.

# 第性代數习题册 四川大学期末考试试题(闭卷) 学院_____ 姓名 学号



七、 $(12 \, \beta)$ 设三阶实对称矩阵 A 的特征值为 1,1,4. 向量  $\boldsymbol{\xi}_1 = (-1,1,0)^{\mathrm{T}}, \boldsymbol{\xi}_2 = (-1,0,1)^{\mathrm{T}}$ 

是 A 的对应特征值  $\lambda=1$  的特征向量. 记  $\boldsymbol{X}=(x_1,x_2,x_3)^{\mathrm{T}}$ ,二次型  $f(x_1,x_2,x_3)=\boldsymbol{X}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{X}$ .

- 1. 判断二次型  $f(x_1, x_2, x_3)$ 是否正定并说明理由;
- 2. 用正交变换将二次型  $f(x_1,x_2,x_3)$ 化为标准形,写出所用的正交变换;
- 3. 求出二次型  $f(x_1, x_2, x_3)$ .

## 八、证明题(每题6分,共12分)

- 1. 四阶矩阵  $A = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ ,齐次线性方程组 AX = 0 的基础解系为 $(1, 2, 0, 0)^T$ .  $A^*$  是 A 的伴随矩阵. 证明 :  $\alpha_2, \alpha_3, \alpha_4$  是  $A^*X = 0$  的基础解系.
- 2. 设 n 阶实方阵 A 满足  $A^2-(a+b)A+abI=O$ , 其中常数  $\alpha \neq b$ , I 为 n 阶单位矩阵. 证明: rank(A-aI)+rank(A-bI)=n, 且 A 可对角化.