Blatt 7

Aufgabe 7.1

(a)

(b)

Idee: man legt für jedes der k-1 Register, die von 0 verschieden sind, einen eigenen Codeabschnitt an, der dieses Register lädt. c(k-1) ist das letzte Register, in dem ein Wert ungleich 0 stehen kann. Wenn in $c(i) \geq k$, wird nichts geladen.

```
1: LOAD i

2: CSUB 1

3: IF c(0) \neq 0 THEN GOTO 6

4: LOAD 1

5: GOTO 4k + 1

:

4 \cdot l + 2: CSUB 1

4 \cdot l + 3: IF c(0) \neq 0 THEN GOTO 4 \cdot (l + 1) + 2

4 \cdot l + 4: LOAD l

4 \cdot l + 5: GOTO 4k + 1

:

4(k - 1) + 2: CSUB 1

4(k - 1) + 3: IF c(0) \neq 0 THEN GOTO 4k + 1

4(k - 1) + 4: LOAD k - 1

4k + 1: hier geht das Programm weiter
```

Aufgabe 7.2

- (a)
- (b)

Aufgabe 7.3

(a)

Diese Aussage trifft zu, da die Sprache A_{LOOP} entscheidbar ist. Sie ist insbesondere nicht schwieriger, als das Halteproblem. Eine Reduktion sähe so aus, dass eine Abbildung $\langle P \rangle$ simuliert. LOOP-Programme haben eine feste Laufzeit und es ist daher entscheidbar, ob bei Eingabe 0 das Ergebnis 1 ist. Wenn ja, wird auf $\langle M_1 \rangle$ abgebildet, wenn nicht, auf $\langle M_2 \rangle$, wobei M_1 immer hält, und M_2 nie.

(b)

 A_{LOOP} ist entscheidbar. Gäbe es eine Reduktion auf H, wäre somit das Halteproblem entscheidbar. Aus der Vorlesung ist bekannt, dass das Halteproblem nicht entscheidbar ist. Deshalb stimmt die Aussage nicht.

Aufgabe 7.4

$$(IA)A(m+1,0) = A(m,1) > A(m,0)$$

 $A(1,n) = n+2 > n+1 = A(0,n)$

- (IV) Die Bedingung gelte für (m', n') mit m' < m oder $m' \le m$ und n' < n
- (IS) A(m+1, n) = A(m, A(m+1, n-1)) > A(m, A(m, n-1)) > A(m-1, A(m, n-1)) = A(m, n)