

# A B A K Ó S

## Instituto de Ciências Exatas e Informática



Licença Creative Commons Attribution 4.0 International

## Trabalho Prático 2\*

Model - Magazine Abakós - ICEI - PUC Minas

Thais Andreatta da Silva Carmo<sup>1</sup> Hugo Portes Araújo Cattoni<sup>2</sup>

#### Resumo

Este relatório contém a documentação do Trabalho Prático II, feita em LATEX. O problema dos k-centros é uma tarefa clássica da análise de dados. Sua solução envolve algoritmos de apromixação e de agrupamento, chamadas técnicas de *clustering*. Essas técnicas são utilizadas para facilitar a análise e compreensão dos dados.

Existem diversos tipos de problemas de *clustering*. Neste problema, dado um grafo completo com custos nas arestas e um inteiro positivo k, deseja-se encontrar um conjunto de k vértices (chamados centros) que minimize a maior distância de um vértice qualquer do grafo a um desses conjuntos. Essa distância é denominada de **raio** da solução.

Palavras-chave: clustering, grafos, centros, MST, força bruta.

<sup>\*</sup>Artigo apresentado à Revista Abakos

<sup>&</sup>lt;sup>1</sup>Bacharelanda em Ciência da Computação, Instituto de Ciências Exatas e Informática da PUC Minas, Brasiltascarmo@pucminas.br

<sup>&</sup>lt;sup>2</sup>Bacharelando em Ciência da Computação, Instituto de Ciências Exatas e Informática da PUC Minas, Brasilhcattoni@sga.pucminas.br

# 1 INTRODUÇÃO

O problema dos k-centros é um desafio de otimização utilizado em técnicas de *cluste-ring*, onde o objetivo é encontrar **k** centros no espaço de dados que minimizem a maior distância entre um ponto e seu centro mais próximo. Esse problema é frequentemente utilizado em problemas de alocação de recursos, roteamento de veículos e análise de agrupamentos.

Dado um grafo com vértices representando os pontos de dados, o objetivo é selecionar k vértices como centros de *clusters*, de forma que a soma das distâncias entre cada ponto de dados e seu centro mais próximo seja minimizada. Essa distância pode ser medida de diferentes maneiras, como a distância euclidiana ou a distância de Manhattan.

Dentre as possíveis soluções para o problema exploramos aqui duas delas: o algoritmo de **Força Bruta** e o algoritmo de **Minimum Spanning Tree** (MST). O método de **Força Bruta** verifica todas as possíveis combinações de centros e seleciona a alocação que minimiza a maior distância. No entanto, esse método é computacionalmente caro e inviável para grandes conjuntos de dados. Quanto ao **MST**, a ideia básica do algoritmo é encontrar uma árvore geradora mínima do grafo usando um algoritmo eficiente, como o algoritmo de Kruskal ou o algoritmo de Prim. Uma vez que ela é construída, cada centro é escolhido como o vértice com maior distância em relação aos centros já selecionados. Esse algoritmo é baseados em heurísticas que buscam encontrar uma solução aproximada, mas geralmente eficiente, para o problema.

Neste trabalho, exploramos possíveis soluções para o problema apresentado utilizando as instâncias disponíveis pela OR-Library. Ao fim do trabalho, foram comparados os resultados adquiridos com os resultados esperados, no intuito de avaliar o desempenho dos algoritmos implementados.

# 2 IMPLEMENTAÇÃO

Para desenvolver a solução do trabalho, utilizamos a linguagem Python. Ela foi escolhida por ser uma linguagem rápida e eficiente.

Em uma mesma *Thread* de execução, foram implementadas as classes *bruce\_force\_solver* e *mst\_solver* para solucionar o problema dos k-centros dos grafos. Além disso, várias outras classes complementares também foram implementadas para que, agrupadamente, formassem a solução do problema.

#### 2.1 Classe Grafo

A classe **Grafo** possui os atributos *\_is\_directional*, *\_num\_edges*, *\_num\_nodes*, *\_k\_centers* e *\_edges\_weights* que representam, respectivamente, se o grafo é direcionado, o número de arestas, o número de vértices, o número de k-centros e os pesos das arestas. Além disso, a classe

é composta por diversos métodos, dentre eles, os principais são: from\_file, que cria e retorna os grafos a partir dos arquivos de entrada, get\_min\_distance que utiliza o algoritmo de Floyd-Warshall para calcular as distâncias mínimas, set\_edge que atribui os pesos das arestas sendo que, se a aresta não existir, ele atribui o peso a ela, e se ela já existir, ele atribui o menor peso a ela, calculate\_excentricity, que calcula e retorna a excentricidade de um nó do grafo utilizando o algoritmo de busca de custo uniforma, que garante encontrar uma solução se ela existir, get\_reachable\_nodes, que retorna uma lista de nós alcançáveis a partir de um determinado nó usando busca em largura, e, por fim, is\_reachable\_from, que verifica se um nó específico é alcançável a partir de outro nó do grafo utilizando o método de busca em largura para executar a pesquisa.

Foi utilizada a estrutura de matriz de adjacência para armazenar as arestas dos grafos e seus respectivos pesos. Essa estrutura foi escolhida por permitir acessar rapidamente o peso de uma aresta entre dois vértices, bastando apenas acessar o valor correspondente na matriz.

#### 2.2 Algoritmos

Para solucionar o problema apresentado neste documento, a primeira abordagem tomada é a **Força Bruta**, que garante encontrar a melhor solução ao custo da performance do algoritmo. Este método considera todas as combinações possíveis de centros e calcula o raio máximo para cada combinação, apresentando uma solução precisa e ótima.

A segunda abordagem tomada é o algoritmo de **Árvore Geradora Mínima** (**MST**), que encontra soluções aproximadas para o problema, mas apresenta melhor eficiência em termos de tempo de execução, principalmente para grafos grandes. Ele constrói uma árvore geradore mínima no grafo e encontra os centros com base na excentricidade dos nós.

#### 2.2.1 Algoritmo de Força Bruta

O algoritmo utiliza força bruta para testar todas as combinações possíveis de centros e calcular o raio mínimo de alcance deles, garantindo a solução ótima para o problema de se encontrar os melhores centros do grafo.

O construtor da classe *BruteForceSolver* recebe como entrada um objeto Grafo e o número *k\_centros* que indica a quantidade de centros a serem encontrados. O método *find\_best\_centers* é o ponto de entrada do algoritmo e retorna os melhores centros encontrados e o raio mínimo de alcance. Ele inicializa variáveis como *centers*, *best\_centers* e *min\_radius* para acompanhar os melhores centros encontrados até o momento. O algoritmo usa um loop para testar cada quantidade de centros, de 1 até *k\_centros*.

Dentro do loop, o método *find\_best\_center\_ite* é chamado para encontrar os melhores centros para a quantidade atual de centros. Ele utiliza, então, outro loop para gerar todas as

combinações possíveis de nós para os centros, utilizando o algoritmo clássico de geração de combinações. Para cada combinação de centros, o algoritmo distribui os nós restantes para os centros mais próximos, calculando as distâncias e armazenando em uma estrutura de dados. Em seguida, ele encontra o raio máximo de alcance para a distribuição atual e atualiza as variáveis best\_centers e min\_radius se o raio atual for menor do que o mínimo encontrado até o momento. O loop continua gerando todas as combinações possíveis até que todas sejam testadas. Ao final, o algoritmo retorna os melhores centros encontrados e o raio mínimo de alcance.

Apesar de garantir a solução ótima, essa abordagem pode ser computacionalmente intensiva para grafos grandes, já que o número de combinaçõs cresce exponencialmente com o número de nós. Por este motivo, foi implementado, também, um limite de tempo para evitar execuções muito longas.

#### 2.2.2 Algoritmo de Árvores Geradoras

O algoritmo é um solver baseado na construção de uma floresta de árvores de espalhamento mínimo (MSF - Minimum Spanning Forest) com prioridade uma fila para encontrar os melhores centros em um grafo. Foi utilizado o método get\_run\_time para calcular o tempo de execução.

A classe *MSTSolver* recebe o grafo e o número de centros desejados como entrada. O método *build\_ms\_forest\_* constrói a *Minimum Spanning Tree (MST)* do grafo utilizando uma fila de prioridade para otimizar o processo. As arestas são adicionadas à fila juntamente com o seu peso. Enquanto houver arestas na fila de prioridade e o número de arestas na MSF for menor que o número de nós - número de centros, o algoritmo continua iterando. A cada iteração, uma aresta é removida da fila de prioridade e é verificado se ela conecta dois nós que ainda não são alcançáveis na MSF. Se sim, a aresta é adicionada à MSF e é feita uma verificação adicional para manter a propriedade da MSF. Essa propriedade é mantida verificando se a excentricidade do menor caminho entre os nós alcançáveis na MSF é maior que o peso mínimo na fila de prioridade. Se for, a aresta é removida da MSF e adicionada novamente à fila de prioridade com um novo peso igual à excentricidade. Durante o processo, também são realizadas verificações para evitar a formação de ciclos no grafo.

O método *find\_best\_centers* recebe uma matriz *subgraphs* que representa as subárvores geradoras encontradas. O método percorre cada subgrafo e calcula a excentricidade de cada vértice em relação aos outros vértices do mesmo subgrafo. Em seguida, seleciona o vértice com a menor excentricidade como centro do subgrafo e retorna uma lista contendo os melhores centros encontrados e o raio mínimo alcançado.

O método *calculate\_component\_radius* calcula o raio de um componente em um grafo representado por uma matriz. Ele recebe uma matriz e um vértice como entrada e retorna o raio do componente.

Este algoritmo geralmente é mais eficiente do que a abordagem de força bruta quando o

número de nós no grafo é grande. No entanto, a eficiência ainda pode depender do tamanho do grafo e da implementação específica.

#### 3 ANÁLISE DE RESULTADOS

Nessa seção analisamos o desempenho dos algoritmos implementados analisando o tempo de execução e a precisão dos resultados obtidos por cada um.

#### 3.1 Experimentos

Os algoritmos descritos na seção 2.2 foram executados em um processador Intel Core i5 de 8ª geração 1.80 GHz. Foram testadas diversas instâncias com diferentes tamanhos, o que afeta diretamente o desepenho apresentado pelos algoritmos. Por este motivo, foi implementado um limite de tempo de 1 hora de execução para cada instância. Quando este limite é alcançado, a execução é abortada e o melhor resultado encontrado até então é retornado.

#### 3.2 Resultados

Os resultados dos valores de k-centros e seus respectivos raios encontrados para cada instância são apresentados na Tabela 1. A Figura 1 representa esses resultados em um gráfico. Para todas as instâncias, o algoritmo MST encontrou os valores de k-centros corretos, mas de raios diferentes da solução. Os raios encontrados representam a solução aproximada implementada pelo algoritmo.

Já o algoritmo de Força Bruta, que devido ao tempo limite de uma hora implementado, só conseguiu realizar a busca completa da primeira instância, e encontrou a solução ótima para esta. Para as demais instâncias, o algoritmo realizou a busca durante o tempo limite e apresentou os resultados obtidos até então. Estes raios obtidos, são, portanto, uma solução aproximada também. Entretanto, vale ressaltar que, com o uso de computadores mais potentes ou maior tempo limite, a solução ótima poderia ser encontrada para todas as instâncias utilizando este algoritmo.

#### 3.3 Análise Comparativa

Ao implementar o algoritmo MST para encontrar os k-centros dos grafos, todas as instâncias foram processadas sem exceder o tempo limite de uma hora previamente estipulado. Entretanto, os valores obtidos para os raios das soluções são valores aproximados, já que essa



Figura 1 – Raios obtidos pelos algoritmos MST e Força Bruta

abordagem encontra os k-centros do grafo em relação à àrvore geradora mínima do mesmo, não levando em consideração todas as possíveis combinações dos vértices. Esse método se apresentou mais eficiente do que a abordagem de força bruta quando o número de nós no grafo é grande. No entanto, ele não é capaz de fornecer uma solução ótima para o problema.

Para o algoritmo de Força Bruta, os resultados obtidos mostram que para todas as instâncias exceto a 1, o limite de tempo de 1 hora previamente estipulado foi atingido. Sendo assim, para estas instâncias, o resultado obtido foi aproximado. Isso ocorre devido à quantidade de combinações que o algoritmo realiza para se obter o resultado. A complexidade de tempo é alta, sendo exponencial em relação ao número de centros (k\_centros) e ao número de nós no grafo. Como essa abordagem envolve a enumeração de todas as possíveis combinações de k-vértices, além do cálculo da soma das distâncias entre cada vértice a seu centro mais próximo, sua eficiência diminui rapidamente à medida que o tamanho do problema aumenta.

#### 4 CONCLUSÃO

A matriz de adjacência permite acessar rapidamente o peso de uma aresta entre dois nós, pois basta acessar o valor correspondente na matriz. No entanto, essa representação consome mais espaço em memória em comparação com outras estruturas de dados, especialmente para grafos densos (com muitas arestas). Além disso, o custo para percorrer todos os vizinhos de um nó é proporcional ao número total de nós no grafo, o que pode ser ineficiente para grafos com muitos nós.

Em termos de eficiência, o algoritmo de MST foi capaz de processar todas as instâncias

em tempo hábil, se mostrando eficiente. Já o algortimo de força bruta, devido à complexidade exponencial em relação ao número de vértices do grafo, se apresentou ineficiente à medida que o tamanhodo grafo aumenta.

Quanto ao desempenho, o algoritmo MST, embora ainda tenha uma complexidade de tempo razoável, oferece uma solução aproximada com bom desempenho na maioria dos casos. Já o algoritmo de Força Bruta pode se tornar impraticável para grafos com grande número de vértices.

Por fim, avaliando agora a precisão dos métodos, o algoritmo de MST fornece uma solução aproximada, pois os centros são escolhidos com base nas excentricidades dos nós na MST. Já o algoritmo de Força Bruta considera todas as combinações possíveis, garantindo uma solução precisa e ótima.

Conclui-se, então, que para grafos com números limitados de nós, o algoritmo de Força Bruta, apesar de apresentar tempo de execução elevado, é capaz de fornecer uma solução ótima. Entretanto, essa solução pode ser inviável para grafos maiores, sendo, então, a melhor opção, o algoritmo de MST, que garantirá uma solução aproximada em tempo hábil.

Tabela 1 – Resultados obtidos para os algoritmos

|           | Solução        |     |      | MST |      | Força bruta |               |
|-----------|----------------|-----|------|-----|------|-------------|---------------|
| Instância | Instância    V |     | Raio | k   | Raio | k           | Raio          |
| 1         | 100            | 5 k | 127  | 5   | 177  | 5           | 127           |
| 2         | 100            | 10  | 98   | 10  | 178  | 5 (TIMEOUT) | 128 (TIMEOUT) |
| 3         | 100            | 10  | 93   | 10  | 173  | 5 (TIMEOUT) | 127 (TIMEOUT) |
| 4         | 100            | 20  | 74   | 20  | 190  | 5 (TIMEOUT) | 135 (TIMEOUT) |
| 5         | 100            | 33  | 48   | 33  | 117  | 5 (TIMEOUT) | 116 (TIMEOUT) |
| 6         | 200            | 5   | 84   | 5   | 110  | 4 (TIMEOUT) | 91 (TIMEOUT)  |
| 7         | 200            | 10  | 64   | 10  | 100  | 5 (TIMEOUT) | 84 (TIMEOUT)  |
| 8         | 200            | 20  | 55   | 20  | 95   | 4 (TIMEOUT) | 94 (TIMEOUT)  |
| 9         | 200            | 40  | 37   | 40  | 89   | 4 (TIMEOUT) | 87 (TIMEOUT)  |
| 10        | 200            | 67  | 20   | 67  | 55   | 4 (TIMEOUT) | 76 (TIMEOUT)  |
| 11        | 300            | 5   | 59   | 5   | 71   | 4 (TIMEOUT) | 60 (TIMEOUT)  |
| 12        | 300            | 10  | 51   | 10  | 81   | 4 (TIMEOUT) | 65 (TIMEOUT)  |
| 13        | 300            | 30  | 35   | 30  | 72   | 4 (TIMEOUT) | 66 (TIMEOUT)  |
| 14        | 300            | 60  | 26   | 60  | 62   | 4 (TIMEOUT) | 72 (TIMEOUT)  |
| 15        | 300            | 100 | 18   | 100 | 56   | 3 (TIMEOUT) | 65 (TIMEOUT)  |
| 16        | 400            | 5   | 47   | 5   | 59   | 3 (TIMEOUT) | 48 (TIMEOUT)  |
| 17        | 400            | 10  | 39   | 10  | 53   | 4 (TIMEOUT) | 48 (TIMEOUT)  |
| 18        | 400            | 40  | 28   | 40  | 56   | 3 (TIMEOUT) | 57 (TIMEOUT)  |
| 19        | 400            | 80  | 18   | 80  | 48   | 3 (TIMEOUT) | 51 (TIMEOUT)  |
| 20        | 400            | 133 | 13   | 133 | 46   | 4 (TIMEOUT) | 54 (TIMEOUT)  |
| 21        | 500            | 5   | 40   | 5   | 47   | 3 (TIMEOUT) | 44 (TIMEOUT)  |
| 22        | 500            | 10  | 38   | 10  | 55   | 3 (TIMEOUT) | 50 (TIMEOUT)  |
| 23        | 500            | 50  | 22   | 50  | 49   | 3 (TIMEOUT) | 47 (TIMEOUT)  |
| 24        | 500            | 100 | 15   | 100 | 42   | 3 (TIMEOUT) | 48 (TIMEOUT)  |
| 25        | 500            | 167 | 11   | 167 | 36   | 3 (TIMEOUT) | 51 (TIMEOUT)  |
| 26        | 600            | 5   | 38   | 5   | 48   | 3 (TIMEOUT) | 43 (TIMEOUT)  |
| 27        | 600            | 10  | 32   | 10  | 47   | 3 (TIMEOUT) | 40 (TIMEOUT)  |
| 28        | 600            | 60  | 18   | 60  | 39   | 3 (TIMEOUT) | 44 (TIMEOUT)  |
| 29        | 600            | 120 | 13   | 120 | 36   | 3 (TIMEOUT) | 43 (TIMEOUT)  |
| 30        | 600            | 200 | 9    | 200 | 36   | 3 (TIMEOUT) | 45 (TIMEOUT)  |
| 31        | 700            | 5   | 30   | 5   | 38   | 3 (TIMEOUT) | 34 (TIMEOUT)  |
| 32        | 700            | 10  | 29   | 10  | 40   | 3 (TIMEOUT) | 39 (TIMEOUT)  |
| 33        | 700            | 70  | 15   | 70  | 35   | 3 (TIMEOUT) | 35 (TIMEOUT)  |
| 34        | 700            | 140 | 11   | 140 | 32   | 3 (TIMEOUT) | 40 (TIMEOUT)  |
| 35        | 800            | 5   | 30   | 5   | 36   | 3 (TIMEOUT) | 34 (TIMEOUT)  |
| 36        | 800            | 10  | 27   | 10  | 38   | 3 (TIMEOUT) | 38 (TIMEOUT)  |
| 37        | 800            | 80  | 15   | 80  | 34   | 3 (TIMEOUT) | 37 (TIMEOUT)  |
| 38        | 900            | 5   | 29   | 5   | 31   | 3 (TIMEOUT) | 35 (TIMEOUT)  |
| 39        | 900            | 10  | 23   | 10  | 32   | 3 (TIMEOUT) | 32 (TIMEOUT)  |
| 40        | 900            | 90  | 13   | 90  | 31   | 3 (TIMEOUT) | 33 (TIMEOUT)  |

Fonte: Dados da pesquisa