

House Prices - Advanced Regression Techniques

Javier Rabal Natalia Sisamón

INDICE

Data Science Lifecycle

BUSSINESS UNDERSTANDING

OBJETIVO

Predecir el precio de cada casa

RMSE entre el logaritmo del valor real y el valor predicho

En este caso los datos se descargan directamente de la página de kaggle:

https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data

CORRELACIÓN DE VARIABLES

VARIABLES CATEGÓRICAS

VARIABLES NUMÉRICAS

VARIABLES TEMPORALES

VARIABLE TARGET

df_tra	ain['SalePrice'].describe()
count	1460.000000
mean	180921.195890
std	79442.502883
min	34900.000000
25%	129975.000000
50%	163000.000000
75%	214000.000000
max	755000.000000
Name:	SalePrice, dtype: float64

DATA CLEANING

VALORES NULOS

PRUEBAS

VARIABLES
CATEGÓRICAS:
'most_frequent'

from sklearn.impute
import SimpleImputer

VARIABLES
NUMÉRICAS:
'mean'

```
# se cambian los valores ausentes por el valor "No_Fireplace"
df["FireplaceQu"] = df["FireplaceQu"].fillna("No Fireplace")
# se cambian los valores ausentes por el valor "No_Garage"
df["GarageCond"] = df["GarageCond"].fillna("No_Garage")
# se cambian los valores ausentes por el valor "No Garage"
df["GarageType"] = df["GarageType"].fillna("No Garage")
# se cambian los valores ausentes por el valor "No Garage"
df["GarageFinish"] = df["GarageFinish"].fillna("No_Garage")
# se cambian los valores ausentes por el valor "No_Garage"
df["GarageQual"] = df["GarageQual"].fillna("No_Garage")
# se cambian los valores ausentes por el valor "No Basement"
df["BsmtExposure"] = df["BsmtExposure"].fillna("No_Basement")
# se cambian los valores ausentes por el valor "No Basement"
df["BsmtFinType2"] = df["BsmtFinType2"].fillna("No Basement")
# se cambian los valores ausentes por el valor "No Basement"
df["BsmtCond"] = df["BsmtCond"].fillna("No Basement")
# se cambian los valores ausentes por el valor "No_Basement"
df["BsmtQual"] = df["BsmtQual"].fillna("No Basement")
# se cambian los valores ausentes por el valor "No Basement"
df["BsmtFinType1"] = df["BsmtFinType1"].fillna("No_Basement")
```

```
# Se cambian los 8 valores nulos por el valor 'None' que es el más veces se repite
df["MasVnrType"] = df["MasVnrType"].fillna("None")
# Se cambia el valor nulo por el valor 'SBrkr' que es el más veces se repite
df["Electrical"] = df["Electrical"].fillna("SBrkr")
# Se sustituyen los valores nulos por la media de toda la columna
df["LotFrontage"] = df["LotFrontage"].transform(lambda x: x.fillna(x.mean()))
# Se sustituyen los valores nulos por el año de construcción de la casa 'YearBuilt'
df["GarageYrBlt"] = df["GarageYrBlt"].transform(lambda x: x.fillna(df_train["YearBuilt"]))
# Se sustituyen los 8 valores nulos por 0 debido a que en estos casos se ha
#sustituido el valor de la columna 'MasVnrType' por el valor 'None'
df["MasVnrArea"] = df["MasVnrArea"].fillna(0)
```

TEST

```
# Se sustituyen los 2 valores nulos por 0 debido a que es el más frecuente
df test["BsmtFullBath"] = df test["BsmtFullBath"].fillna(0)
# Se sustituyen los 2 valores nulos por la media de toda la columna
df test["BsmtHalfBath"] = df test["BsmtHalfBath"].transform(lambda x: x.fillna(x.mean()))
# Se sustituye el valor nulo por la media de toda la columna
df test["TotalBsmtSF"] = df test["TotalBsmtSF"].transform(lambda x: x.fillna(x.mean()))
# Se sustituye el valor nulo por la media de toda la columna
df_test["BsmtUnfSF"] = df_test["BsmtUnfSF"].transform(lambda x: x.fillna(x.mean()))
# Se sustituye el valor nulo por la media de toda la columna
df test["BsmtFinSF2"] = df test["BsmtFinSF2"].transform(lambda x: x.fillna(x.mean()))
# Se sustituye el valor nulos por 2 debido a que es el más frecuente
df test["GarageCars"] = df test["GarageCars"].fillna(2)
# Se sustituye el valor nulo por la media de toda la columna
df test["BsmtFinSF1"] = df test["BsmtFinSF1"].transform(lambda x: x.fillna(x.mean()))
# Se sustituye el valor nulo por la media de toda la columna
df test["GarageArea"] = df test["GarageArea"].transform(lambda x: x.fillna(x.mean()))
# Se sustituye los valores nulos por 'RL' debido a que es el más frecuente
df_test["MSZoning"] = df_test["MSZoning"].fillna('RL')
# Se sustituye los valores nulos por 'AllPub' debido a que es el más frecuente
df_test["Utilities"] = df_test["Utilities"].fillna('AllPub')
# Se sustituye los valores nulos por 'Typ' debido a que es el más frecuente
df test["Functional"] = df test["Functional"].fillna('Typ')
# Se sustituye los valores nulos por 'VinylSd' debido a que es el más frecuente
df test["Exterior2nd"] = df test["Exterior2nd"].fillna('VinylSd')
# Se sustituye los valores nulos por 'TA' debido a que es el más frecuente
df test["KitchenQual"] = df test["KitchenQual"].fillna('TA')
# Se sustituye los valores nulos por 'WD' debido a que es el más frecuente
df_test["SaleType"] = df_test["SaleType"].fillna('WD')
# Se sustituye los valores nulos por 'VinylSd' debido a que es el más frecuente
df test["Exterior1st"] = df test["Exterior1st"].fillna('VinylSd')
```


OUTLIERS PRUEBAS

from sklearn.ensemble import IsolationForest

from sklearn.neighbors import LocalOutlierFactor

OUTLIERS

MEJOR RESULTADO

No se realiza limpieza de outliers

PRUEBAS

VARIABLES CON ORDEN NUMÉRICO

Se eliminan las variables con una correlación menor a 0.2 con la variable objetivo

```
rating = {'None': 0, 'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5}
ordinal_encoding = {
        'LotShape': {'None': 0, 'Reg': 1, 'IR1': 2, 'IR2': 3, 'IR3': 4},
       'Utilities': {'None': 0, 'El0': 1, 'NoSeWa': 2, 'NoSeWr': 3, 'AllPub': 4},
       'LandSlope': {'None': 0, 'Gtl': 1, 'Mod': 2, 'Sev': 3},
       'ExterQual': rating,
       'ExterCond': rating,
       'BsmtQual': {'No_Basement': 0, 'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5},
       'BsmtCond': {'No_Basement': 0, 'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5},
        'BsmtExposure': {'No_Basement': 0, 'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4},
        'BsmtFinType1': {'No_Basement': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6},
       'BsmtFinType2': {'No_Basement': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6},
        'HeatingQC': rating,
       'CentralAir': {'None': 0, 'N': 1, 'Y': 2},
        'Electrical': {'None': 0, 'Mix': 1, 'FuseP': 2, 'FuseF': 3, 'FuseA': 4, 'SBrkr': 5},
        'KitchenQual': rating,
       'Functional': {'None': 0, 'Sal': 1, 'Sev': 2, 'Maj2': 3, 'Maj1': 4, 'Mod': 5,
                       'Min2': 6, 'Min1': 7, 'Typ': 8},
       'FireplaceQu': {'No_Fireplace': 0, 'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5},
       'GarageFinish': {'No_Garage': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3},
       'GarageQual': {'No_Garage': 0, 'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5},
       'GarageCond': {'No_Garage': 0, 'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5},
       'PavedDrive': {'None': 0, 'N': 1, 'P': 2, 'Y': 3}
```

```
[('ExterQual', 0.6826392416562593),
 ('KitchenQual', 0.6595997207286625),
 ('BsmtQual', 0.5852071991725201),
 ('GarageFinish', 0.5492467563332124),
 ('FireplaceQu', 0.5204376059504018),
 ('HeatingQC', 0.4276487073988035),
 ('BsmtExposure', 0.37469622100088673),
 ('BsmtFinType1', 0.30490787307063333),
 ('GarageQual', 0.2738390740062235),
 ('GarageCond', 0.2631907844703991),
 ('CentralAir', 0.2513281638401551),
 ('PavedDrive', 0.23135695225722716),
 ('BsmtCond', 0.21260715648557876),
 ('PoolQC', 0.11548430473054794),
 ('Functional', 0.10761889324399436),
 ('Street', 0.04103553550004947),
 ('ExterCond', 0.018899118482413036),
 ('BsmtFinType2', -0.005323160673474943),
 ('LandSlope', -0.05115224817946656),
 ('Fence', -0.146941526435884),
 ('LotShape', -0.2677593139178232)]
```

['MSSubClass', 'MSZoning',

'Utilities',
'LotConfig',
'Neighborhood',
'Condition1',

'Condition2',
'BldgType',

'HouseStyle',
'RoofStyle',
'RoofMatl',
'Exterior1st',

'Exterior2nd',

'MasVnrType',

'Foundation',

'GarageType',

'MiscFeature',

'Heating',
'Electrical',

'MoSold',

'SaleType',
'SaleCondition']

'Alley',
'LandContour',

VARIABLES SIN ORDEN NUMÉRICO

from category_encoders import OneHotEncoder

Una vez realizado OneHotEncoder, se eliminan las columnas que tienen menos de 42 apariciones

```
# Se cuentan las colunmas con pocas apariciones
cont = 0
list_poca_apa = []
y_col = df_train['SalePrice']
df_train = df_train.drop(['SalePrice'], axis=1)
for x in df_train.columns:
    if (df_train[x].sum()<42) & (df_test[x].sum()<42):
        cont = cont + 1
        list_poca_apa.append(x)</pre>
```


VARIABLES NUMÉRICAS: BOX COX

SKEWNESS

PRUEBAS

VARIABLES NUMÉRICAS: LOG TRANSFORMATION


```
df_train['LotFrontage'] = np.log1p(df_train['LotFrontage'])
df_test['LotFrontage'] = np.log1p(df_test['LotFrontage'])
```

VARIABLES NUMÉRICAS: SEGMENTAR VARIABLES

```
def Gar_category(cat):
    if cat <= 250:
        return 1
    elif cat <= 500 and cat > 250:
        return 2
    elif cat <= 1000 and cat > 500:
        return 3
    return 4
```


MEJOR RESULTADO

VARIABLES TEMPORALES: CREACIÓN DE VARIABLES

```
df_train['YearBuilt_age'] = df_train['YearBuilt'].apply(lambda x: 0 if x==0 else (2022 - x))
df_test['YearBuilt_age'] = df_test['YearBuilt'].apply(lambda x: 0 if x==0 else (2022 - x))
df_train['YearRemodAdd_age'] = df_train['YearRemodAdd'].apply(lambda x: 0 if x==0 else (2022 - x))
df_test['YearRemodAdd_age'] = df_test['YearRemodAdd'].apply(lambda x: 0 if x==0 else (2022 - x))
df_train['YrSold_age'] = df_train['YrSold'].apply(lambda x: 0 if x==0 else (2022 - x))
df_test['YrSold_age'] = df_test['YrSold'].apply(lambda x: 0 if x==0 else (2022 - x))
df_train['GarageYrBlt_age'] = df_train['GarageYrBlt'].apply(lambda x: 0 if x==0 else (2022 - x))
df_test['GarageYrBlt_age'] = df_test['GarageYrBlt'].apply(lambda x: 0 if x==0 else (2022 - x))
df_train['renovated'] = df_train['YearRemodAdd'] + df_train['YearBuilt']
df_test['renovated'] = df_test['YearRemodAdd'] + df_test['YearBuilt']
df_train = df_train.drop(['YearBuilt', 'YearRemodAdd', 'YrSold', 'GarageYrBlt'], axis=1)
df_test = df_test.drop(['YearBuilt', 'YearRemodAdd', 'YrSold', 'GarageYrBlt'], axis=1)
```

PRUEBAS

CREACIÓN DE VARIABLES

```
df['haspool'] = df['PoolArea'].apply(lambda x: 1 if x > 0 else 0)
df['has2ndfloor'] = df['2ndFlrSF'].apply(lambda x: 1 if x > 0 else 0)
df['hasgarage'] = df['GarageArea'].apply(lambda x: 1 if x > 0 else 0)
df['hasbsmt'] = df['TotalBsmtSF'].apply(lambda x: 1 if x > 0 else 0)
df['hasfireplace'] = df['Fireplaces'].apply(lambda x: 1 if x > 0 else 0)
```

```
df['TotalBsmtBath'] = df['BsmtFullBath']+(1/2)*df['BsmtHalfBath']
df['TotalBath'] = df['FullBath']+(1/2)*df['HalfBath']
df['TotalSf'] = df['1stFlrSF']+df['2ndFlrSF']+df['TotalBsmtSF']
df['TotalSqrFootage'] = df['BsmtFinSF1']+df['BsmtFinSF2']+df['1stFlrSF']+df['2ndFlrSF']
```

MEJOR RESULTADO

CREACIÓN DE VARIABLES

PRUEBAS

LASSO PARA VER LA IMPORTANCIA DE VARIABLES

```
lasso=Lasso(alpha=0.001)
lasso.fit(X_train[variables_numericas],y_train)
FI_lasso = pd.DataFrame({"Feature Importance":lasso.coef_}, index=X_train[variables_numericas].columns)
FI_lasso['feature imp abs']=abs(FI_lasso["Feature Importance"])
FI_lasso.sort_values("feature imp abs",ascending=False)
```


FEATURE ENGINEERING

PRUEBAS

PCA todas las variables numéricas

PRUEBAS

PCA Garage Cars & Garage Area

FEATURE ENGINEERING

MEJOR RESULTADO

LOG TRANSFORMATION A LA VARIABLE TARGET

PREDICTIVE MODELING

PRUEBAS

LASSO

RIDGE

SVR

AVERAGING MODELS:

- LGMR
- Lasso
- Ridge
- XGBR

LGBM REGRESSOR

ELASTIC NET

XGB REGRESSOR

RANDOM FOREST

HISTGRADIENT BOOST REGRESSOR GRADIENT BOOST REGRESSOR

PREDICTIVE MODELING

MEJOR RESULTADO

from sklearn.ensemble import StackingRegressor

PREDICTIVE MODELING

MEJOR RESULTADO

BLENDING MODELS:

```
y_xgb = grid_xgb.predict(X_test)
y_gbm = grid_gbm.predict(X_test)
y_cat = grid_cat.predict(X_test)
y_stack1 = grid_stack1.predict(X_test)
y_stack4 = grid_stack4.predict(X_test)
y_mean_models = (0.35 * y_stack1 + 0.15 * y_xgb + 0.15 * y_gbm + 0.1 * y_cat + 0.25 * y_stack4) / 1.0
```

PUESTO	SCORE	JUGADORES TOTALES	PORCENTAJE
105	0.11574	4186	2%

CLASIFICACIÓN