Логика и Алгоритмы 2 курс Задачи

16 июня 2021 г.

Логика и алгоритмы (весна 2021) Листок N 3. Срок сдачи 15 июня.

Задачи оцениваются по 1 баллу, кроме задач 6 и 7, за которые дается 2 балла. Можно набрать не более 10 баллов.

В этом листке все сигнатуры и теории с равенством, все модели нормальны.

 $Cne\kappa mp$ замкнутой формулы — это множество мощностей ее конечных моделей.

Теории одной сигнатуры называются *эквивалентными*, если у них одни и те же модели.

Теория называется *конечно аксиоматизируемой*, если существует эквивалентная ей конечная теория.

 $A_{=n}$ — формула в сигнатуре $\{=\}$, истинная в точности в моделях мощности n.

- 1. Докажите, что ординалы $\omega \cdot 2$ и $\omega \cdot 3$ как модели сигнатуры $\{<,=\}$ не элементарно эквивалентны.
- 2. (a) Докажите, что в сигнатуре {=} спектр любой замкнутой формулы либо конечное, либо ко-конечное (т.е. дополнение к конечному) множество.
 - (b) Докажите, что всякая замкнутая формула этой сигнатуры эквивалентна булевой комбинации формул вида $A_{=n}$ (т.е. формуле, построенной из них с помощью \vee, \wedge, \neg).
- 3. Докажите, что если замкнутая формула в сигнатуре $\{+,\cdot,1,0,=\}$ истинна во всех полях характеристики 0, то она истинна в некотором поле конечной характеристики.
- 4. Докажите, что $Th(\mathbb{Q},<,=,P)$, где $\{r\mid \mathbb{Q}\models P(r)\}=(-\infty,\sqrt{2}),$ счетно категорична
- 5. Даны две теории T и S в сигнатуре Ω со следующими свойствами:
 - теория $T \cup S$ противоречива;
 - всякая модель сигнатуры Ω является либо моделью T, либо моделью S.

Докажите, что обе теории T и S конечно аксиоматизируемы.

- 6. (2 балла) Докажите, что любой бесконечный линейный порядок (X, \leq) изоморфно вкладывается в некоторое ультрапроизведение своих конечных подпорядков.
- 7. (2 балла) Докажите, что теория $Th(\mathbb{Q})$ в сигнатуре $\{+,\cdot,1,0,=\}$ не является счетно категоричной.
- 8. Пусть A, A', B, B' линейно упорядоченные множества (в сигнатуре $\{<,=\}$). Докажите, что если $A \equiv A'$ и $B \equiv B'$, то $A+B \equiv A'+B'$.
- 9. В сигнатуре $\{S, =\}$, где S одноместный функциональный символ рассмотрим теорию T с аксиомами

$$\forall x \exists ! y \, S(y) = x,$$

$$\forall x \, S^n(x) \neq x \quad (\text{для всех } n).$$

- (a) Докажите, что T не счетно категорична.
- (b) Докажите, что T категорична в любой несчетной мощности и, как следствие, теория T полна.
- 10. Докажите, что в модели ($\mathbb{Q},0,1,+,<$) операция умножения не определима.

Решения

Задача 1

Предъявим формулу, которая выполняется в одной модели, но не выполняется в другой: Существует три различных элемента, у которых нет непосредственного предшественника. То есть $A = \exists x1, x2, x3 \ (x1! = x2 \land x1! = x3 \land x2! = x3 \land \forall y \ (y < x_i \Rightarrow \exists z: \ y < z < x_i). \ w*3 \models A, \ w*2 \models A.$

Задача 2

- (а) Пусть Sp(A) спектр A. Sp(A) дополнение к $Sp(\neg(A))$, так как если A не истинна в M, то $\neg(A)$ истинна в M, а модели одинакового порядка, раз у нас сигнатура $\{=\}$, изоморфны. Тогда надо показать, что невозможно, что и Sp(A), и $Sp(\neg(A))$ бесконечны. Пусть бесконечны, тогда у A и $\neg(A)$ есть конечные модели сколь угодно большой мощности \Rightarrow по теореме о подъеме есть и сколь угодно бесконечной. Возьмем тогда такие модели бесконечной мощности k. Получается, у A и $\neg(A)$ есть модели одинаковой мощности одной сигнатуры. Как мы уже сказали, они должны быть изоморфны, то есть в них истинны одни и те же формулы, то есть в таких моделях мощности k истинны и A, и $\neg(A)$, а так не может быть.
- (b) Если $\mathrm{Sp}(A)$ конечен, то тогда у A модели мощности n_1, n_2, \ldots, n_k . А еще модели одинаковой мощности изоморфны, то есть модели мощностей n_1, \ldots, n_k будут моделями A. Значит, $A = \vee A_{=n}$ по $n = n_1, \ldots, n_k$.
 - Если конечен, то $\mathrm{Sp}(\neg(A))$ конечное, тогда $\neg(A) \Leftrightarrow \lor A_{=n}$, тогда $A \Leftrightarrow \land \neg(A_{=n})$.

Задача 3

Пусть $\{B\}$ аксиоматизирует теорию поля, A замкнутая формула в сигнатуре, которая истинна в каждом поле характеристики 0. Тогда $\{B\} \vee \{1+\ldots+1\neq 0 (\text{n единиц}) | n\geqslant 1,\ n\in A\} \models A \Rightarrow$ по теореме о компактности есть натуральное m, такое что $\{B\} \vee \{1+\ldots+1\neq 0 (\text{n единиц}) | n=1,\ldots,m\} \models A \Rightarrow A$ истинна в каком-то поле char p>m

Задача 5

 $T \cup S$ противоречива \Leftrightarrow есть формула A, такая что $T \cup S \vdash A$, $T \cup S \vdash \neg(A)$. Выводы конечные по определению, так что число использующихся аксиом конечно. Пусть из T используются $\{t_1, \ldots, t_k\}$, из $S - \{s_1, \ldots, s_m\}$. В их объединении выводимы $A, \neg(A)$

Теперь покажем, что $\{t_1,\ldots,t_k\}\sim T$. Покажем, что у них одинаковые модели. Если M — модель T, то M — модель $\{t_1,\ldots,t_k\}\subset T$. Наоборот от противного. То есть M — модель $\{t_1,\ldots,t_k\}$, но не модель T. По условию M — модель или T, или S. Значит, модель S. Тогда $M\models\{s_1,\ldots,s_m\}\subset S$. Раз $M\models\{t_1,\ldots,t_k\}$ по предположению, то $M\models\{s_1,\ldots,s_m\}\vee\{t_1,\ldots,t_k\}$. А в этом объединении выводимы A и $\neg(A)$ (а значит, и истинны). Значит, $M\models A$, $\neg(A)$. Противоречие.

Значит, $T \sim \{t_1, \dots, t_k\} \Leftrightarrow T$ конечно аксиоматизируема. Аналогично S конечно аксиоматизируема

Задача 7

Расширим сигнатуру, добавив в нее константу c. Добавим в $\operatorname{Th}(Q)$ схему аксиом $\forall n \exists x : x^n = c$.

 $\operatorname{Th}(Q) \vee \{ \forall n \exists x : x^n = c \}$ выполнима по теореме о компактности (в каждой конечной подтеории есть лишь конечное число аксиом об извлечении корня. В качестве с возьмем достаточно большое рациональное число, из которого извлекаются все корни теории). По теореме о понижении мощности есть счетная элементарно эквивалентная ей модель M.

Обедним сигнатуру до исходной. Чтобы показать, что $\mathrm{Th}(Q)$ не счетно категорична, предъявим две счетные неизоморфные модели. Покажем, что это Q и M. От противного: пусть есть изоморфизм $\phi: M \sim Q$. Тогда $\phi(x) = \phi(0+x) = \phi(0) + \phi(x) \Rightarrow \phi(0) = 0, \ \phi(x) = \phi(1\cdot x) = \phi(1)\phi(x) \Rightarrow \phi(1) = 1.$ Теперь посмотрим, как выглядит $\phi(c)$. Из $\phi(c)$ должен извлекаться корень любой степени. $\phi(c)$ рациональное, так что $\phi(c)$ или 0, или 1. Но 0 и 1 мы показали, что уже заняты. Так что изоморфизма нет.

Задача 9

(а) T не счетно категорично, т.е. не все счетные модели изоморфны. Явно покажем две счетные неизоморфные модели T. $M_1=\{Z,S_1(x)=x+1\},\ M_2=\{Z,S_2(x)=x+2\}.$ От противного: пусть они изоморфны, ϕ — изоморфизм. Тогда для любого m из $M_1:\ \phi(m+1)=\phi(m)+2.$ Тогда все $\phi(m)$ для всех m из M_1 одинаковой четности. Но ϕ — биекция. Противоречие