Devoir à la maison n°16 : corrigé

Problème 1 — Petites Mines 2002 – Exemples de matrices semblables à leur inverse

Partie I -

- La relation considérée est réflexive : ∀A ∈ M₃(ℝ), A = I₃⁻¹AI₃.
 Elle est symétrique, car si A = P⁻¹BP, alors B = PAP⁻¹ = (P⁻¹)⁻¹ AP⁻¹.
 Enfin elle est transitive, car si A = P⁻¹BP et B = Q⁻¹CQ, alors A = P⁻¹Q⁻¹CQP = (QP)⁻¹ CQP, et GL₃(ℝ) est un groupe multiplicatif.
- 2. On sait que le déterminant d'un produit de matrices est le produit des déterminants (c'est un morphisme multiplicatif). Si $A \sim B$, il existe $P \in GL_3(\mathbb{R})$ telle que $A = P^{-1}AP$. Alors $\det A = \det \left(P^{-1}BP\right) = \det \left(P^{-1}\right)\det(B)\det(P)$ et, comme $\det P^{-1} = \frac{1}{\det P}$, il vient $\det A = \det B$. On conclut alors par contraposition.
- **3.** a. Soit $y \in \text{Im } w$. Il existe $x \in \text{Ker } u^{i+j}$ tel que $y = w(x) = u^j(x)$. On en déduit que $u^i(y) = u^{i+j}(x) = 0$ car $x \in \text{Ker } u^{i+j}$. Donc $y \in \text{Ker } u^i$. Ainsi $\text{Im } w \subset \text{Ker } u^i$.
 - **b.** D'après le théorème du rang, dim Ker $w + \operatorname{rg} w = \dim \operatorname{Ker} u^{i+j}$. Or

$$\operatorname{Ker} w = \operatorname{Ker} \left(u^j \right)_{\mid \operatorname{Ker} u^{i+j}} = \operatorname{Ker} u^j \cap \operatorname{Ker} u^{i+j} = \operatorname{Ker} u^j$$

car Ker $u^j \subset \text{Ker } u^{i+j}$. En remplaçant dans l'égalité précédente, on a donc

$$\dim \operatorname{Ker} u^j + \dim \operatorname{Im} w = \dim \operatorname{Ker} u^{i+j}$$

D'après la question précédente, $\operatorname{Im} w \subset \operatorname{Ker} u^i$ donc $\operatorname{rg} w \leq \dim \operatorname{Ker} u^i$. On peut donc conclure :

$$\dim \operatorname{Ker} u^{i+j} \leq \dim \operatorname{Ker} u^j + \dim \operatorname{Ker} u^i$$

- **4. a.** D'une part, $u^3 = u^{2+1}$, donc la question **I.3.b** donne $3 = \dim \operatorname{Ker} u^3 \le \dim \operatorname{Ker} u^2 + \dim \operatorname{Ker} u$. Comme rg u = 2, on a dim Ker u = 1 d'après le théorème du rang. Ainsi dim Ker $u^2 \ge 2$. D'autre part $u^2 = u^{1+1}$, donc dim Ker $u^2 \le 2 \dim \operatorname{Ker} u = 2$ toujours d'après la question **I.3.b**. Finalement, on obtient dim Ker $u^2 = 2$.
 - **b.** De dim Ker $u^2 = 2$, on peut déduire rg $u^2 = 1$. Il existe donc un vecteur a non nul tel que $u^2(a) \neq 0$. Soient α, β, γ des réeles tels que

$$\alpha a + \beta u(a) + \gamma u^2(a) = 0$$

Alors, par application de u^2 , on trouve $\alpha u^2(a) = 0$ puisque $u^3 = 0$. D'où $\alpha = 0$. Puis, en appliquant u, on trouve $\beta = 0$. Enfin, il reste $\gamma u^2(a) = 0$ ce qui donne $\gamma = 0$.

La famille $(u^2(a), u(a), a)$ est donc libre. Elle est formée de 3 vecteurs, dans E de dimension 3, c'est donc une base de E.

c. On a U =
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 et V = $\begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$.

- **5. a.** Puisque rg u = 1, il existe un vecteur b tel que $u(b) \neq 0$.
 - b. D'une part $u^2 = 0$ donc $u^2(b) = 0$, ce qui entraîne $u(b) \in \text{Ker } u$. D'autre part, dim Ker u = 2 donc le vecteur non nul u(b) de Ker u peut être complété par un vecteur c de Ker u pour que la famille (u(b), c) forme une base de Ker u. Il nous reste à vérifier que la famille (b, u(b), c) est libre. Soient α, β, γ des réels tels que $\alpha b + \beta u(b) + \gamma c = 0$. Alors, par application de u, on trouve $\alpha = 0$. Puis, la famille (u(b), c) étant libre, on trouve $\beta = \gamma = 0$. La famille (b, u(b), c) est libre et possède autant d'éléments que la dimension de E: c'est donc une base de E.

c. On a U' =
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et V' = $\begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Partie II -

- 1. On a $\det T = 1$ et A est semblable à T donc $\det A = 1$, ce qui prouve que A est inversible.
- 2. $N^2 = \begin{pmatrix} 0 & 0 & \alpha \gamma \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ puis $N^3 = 0$. On a alors : $(I_3 N + N^2)(I + N) = I_3 N^3 = I$ car la matrice N commute avec

I et les puissances de N. On en déduit $T^{-1} = I_3 - N + N^2$. Autrement dit, $(P^{-1}AP)^{-1} = I_3 - N + N^2$. On peut conclure en remarquant que $(P^{-1}AP)^{-1} = P^{-1}A^{-1}P$.

- 3. Si N = 0, alors $T = I_3$ donc $A = I_3 = A^{-1}$. A et A^{-1} sont évidemment semblables.
- **4. a.** Appelons u l'endomorphisme de matrice N dans une base de E. On a donc rg(u) = rg(N) = 2 et $u^3 = 0$ puisque $N^3 = 0$. D'après la question **I.4.c**, il existe une base de E dans laquelle u a pour matrice U donc N est semblable à U et la matrice M est semblable à V.
 - **b.** D'après la question **II.2**, on a $V^3 = 0$, donc aussi $M^3 = 0$ puisque M et V sont semblables. D'autre part, le rang de V est 2 car le sous-espace engendré par ses vecteurs colonnes est de dimension 2. Comme M et V sont semblables, elles ont même rang (elles représentent le même endomorphisme dans des bases différentes). Ainsi rg M = 2.

De manière moins sophistiquée, on peut calculer directement $M^3 = (N(N-I_3))^3 = N^3(N-I_3)^3 = 0$ car N et $N-I_3$ commutent et $N^3 = 0$. Enfin, on peut voir que N étant de rang 2, α et γ sont non nuls. Un calcul rapide

donne
$$M = \begin{pmatrix} 0 & -\alpha & \alpha \gamma - \beta \\ 0 & 0 & -\gamma \\ 0 & 0 & 0 \end{pmatrix}$$
 et donc rg $M = 2$ puisque $-\alpha$ et $-\gamma$ sont non nuls.

- c. On a $N^3 = 0$ et rg N = 2, de même que $M^3 = 0$ et rg M = 2. On prouve comme en **II.4.a** que M est également semblable à U. Par transitivité, on en déduit que M et N sont semblables.
- **d.** On sait que A est semblable à $T = I_3 + N$ et A^{-1} est semblable à $I_3 N + N^2 = I_3 + M$. Or M et N sont semblables donc il existe $Q \in GL_3(\mathbb{R})$ telle que $M = Q^{-1}NQ$. On a alors également $I_3 + M = Q^{-1}(I_3 + N)Q$ i.e. $I_3 + M$ et $I_3 + N$ sont semblables. Par transitivité de la relation \sim , on en déduit que A et A^{-1} sont semblables.
- 5. Ici rg N=1 donc l'un au moins des deux coefficients α et γ est nul (sinon le rang serait 2). Le calcul de II.2 montre alors que $N^2=0$.

On a vu dans **I.5.c** que N est semblable à U' et M à V'. Or U' et V' sont semblables. En effet, posons $P = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

On vérifie que $P^{-1} = P$ puis que $V' = P^{-1}U'P$. En raisonnant comme précédemment, N et M sont semblables puis $I_3 + N$ et $I_3 + M$ le sont aussi et enfin A et A^{-1} sont semblables.

- **6. a.** Déterminons $\operatorname{Ker}(u-\operatorname{Id}_{\operatorname{E}})$. C'est l'ensemble des vecteurs de coordonnées (x,y,z) dans la base (a,b,c) tels que $\begin{cases} -y-z=0 \\ y+z=0 \end{cases}$. On reconnaît une équation de plan. Une base est, par exemple $(e_1,e_2)=(a,b-c)$.
 - **b.** La matrice des coordonnées de la famille (a, b c, c) dans la base (a, b, c) est $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$. Cette matrice

a pour déterminant 1, donc la famille (a, b - c, c) est une base de E. Dans cette base, la matrice de u est

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{car } u(a) = a, \ u(b-c) = b-c \text{ et } u(c) = -b+2c = -(b-c)+c. \text{ On aurait \'egalement pu calculer } P^{-1}\text{AP}.$$

c. On a
$$P^{-1}AP = I_3 + N$$
 avec $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$. On a donc rg $N = 1$ et on peut appliquer la question **II.5**: A est

7. Soit $A=-I_3$. On a $A^{-1}=-I_3=A$ donc A et A^{-1} sont bien semblables par réflexivité de la relation \sim . De plus, pour toute matrice $P\in GL_3(\mathbb{R}), P^{-1}AP=A$. La seule matrice semblable à A est donc A elle-même.

Aucune matrice
$$T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$$
 n'est semblable à A.

bien semblable à A^{-1} .