گزارش جامع تحلیل عدمتعادل دادهها و بهینهسازی سیستم شناسایی تهدیدات با SMOTE

خلاصه مديريتي

تاریخ تولید: ۲۰ مهر ۱۴۰۴

تهیه شده برای: شرکت <u>tesna.co</u>

موضوع: تحلیل جامع عدم تعادل کلاسها و انتخاب استراتژی بهینه برای شناسایی تهدیدات امنیتی

يافتههاي كليدي

- **عدم تعادل شدید** در دادهها با نسبت ۵۳.۸۵ شناسایی شد
 - مقیاس بندی:
- **مدل KNN روی داده اصلی** به عنوان بهترین مدل انتخاب گردید
- عملکرد استثنایی امنیتی: ٪۲hreat Detection Rate = ۹۹.۹۶
 - تضمین عملکرد: Recall کلاسهای اقلیت بالای ۸۷٪

۱. تحلیل کمی عدم تعادل کلاسها

۱.۱ توزیع اصلی کلاسها

نقش امنیتی	درصد	تعداد نمونه	کلاس
فعالیت عادی	۵۹.۵۸٪	14,1.9	•
تهديد سطح متوسط	۳٩.۳۱٪	۹,۳۰۸	۲
تهدید بحرانی	1.11%	757	١

شاخصهای کلیدی عدم تعادل:

• نسبت عدم تعادل: ۵۳.۸۵

• ضریب جینی: ۰.۳۸۹۹

• وضعیت: **عدم تعادل شدید**

۱.۲ مقایسه استراتژیهای نمونهبرداری

نمونههای مصنوعی	کیفیت داده	بهبود عدم تعادل	استراتژی
•	عالى	×1.•	اصلی
•	خوب	×1.6۲	Undersampling
17,.97	خوب	×ra.ar	Oversampling (SMOTE)

۲. ارزیابی عملکرد مدلها

۲.۱ مدلهای برتر بر اساس معیارهای امنیتی

امتیاز امنیتی	Recall امنیتی	F1 کلاسهای اقلیت	دقت	مدل	رتبه
٠.٩۶١	٠.٩٣٩	٠.٩۶٣	۹۹.۸۵٪	(اصلی) KNN	اول
٠.٩۶۱	٠.٩٣٩	٠.٩۶٣	۹٩.۸۵٪	KNN (Undersampled)	دوم
۰.۹۵۵	٠.٩۵٢	۰.۹۳۶	99.VI%	Random Forest (اصلی)	سو م

۲.۲ عملکرد دقیق مدل انتخابی (KNN - اصلی)

کلاس۱ (تهدید بحرانی):

- ٪Recall: ۸۷.۸۸ شناسایی اکثر تهدیدات بحرانی
- ٪Precision: ۹۸.۳۱ هشدارهای با دقت بسیار بالا
- ۶۲.۸۰٪ تعادل عالی بین دقت و بازیابی

کلاس ۲ (تهدید سطح متوسط):

- Recall: ۱۰۰٪ شناسایی تمام تهدیدات سطح متوسط
 - ٪Precision: ۹۹.۷۰ حداقل هشداِرهای کاذب
 - F1-Score: ۹۹.۸۵٪ عملکرد تقریباً کامل

۳. تحلیل مقایسهای استراتژیها

۳.۱ تاثیر SMOTE بر مدلهای مختلف

وضعیت	Recall کلاس۱	F1 کلاس ۱	استراتژی	مدل
بهينه	۰.۸۷۹	۸۲۹.۰	اصلی	KNN
بهبود جزئی	۰.۹۳۹	۰.۹۳۵	SMOTE	KNN
خوب	۰.۸۳۳	٠.٩٠٢	اصلی	SVM
كاهش عملكرد	۰.۸۴۸	۰.۸۹۶	SMOTE	SVM

Trade-off ۳.۲ تحلیلها

نتيجه	داده SMOTE	داده اصلی	معيار
کاهش جزئی	٩٨.۵۶٪ 🚹	٩٩.٨۵٪ 🗸	دقت کلی
بهبود جزئی	I…X ✓	99.95% 🗸	شناسایی تهدیدات
بهبود	٩٣.٩۴٪ 🗸	∧V.∧∧%. ✓	عملكرد كلاس ١
اصلی بهتر	ا خوب	✓ عالی	پایداری مدل

۴. نتایج آماری و اعتبارسنجی

۴.۱ اعتبارسنجی کیفیت داده

Oversampled	Undersampled	داده اصلی	بررسی
✓	✓	✓	عدم وجود Null
✓	✓	✓	تنوع كلاسها
✓	✓	✓	حفظ ساختار داده
✓	✓	✓	عدم نشت داده

۴.۲ معیارهای امنیتی

وضعيت	مقدار	شاخص
الى 🗨 عالى	99.95%	Threat Detection Rate
🗨 بسیار خوب	9۳.9۴%	Mean Security Recall
عالی	٩۶.۴٠٪	Security F1 Score
الى 🗨 عالى	٩۶.۱٠٪	Security Overall Score

۴.۳ نمودار های خروجی

کلاس های امنیتی F1:

کلاس های امنیتی Recall:

تعادل بین دقت کلی و امنیت:

عملکرد مدل ها برای کلاس ۱:

عملکرد مدل ها برای کلاس ۲:

بهبود عملکرد برای هر مدل در کلاس های امنیتی با SMOTE:

۵. بحث و تفسیر نتایج

۵.۱ چرا مدل KNN روی داده اصلی برتر است؟

- ۱. **سازگاری با ساختار داده**: دادههای اصلی حاوی اطلاعات ارزشمندی هستند که در فرآیند نمونهبرداری از بین میروند
 - ۲. **عملکرد متعادل**: اگرچه عدم تعادل شدید وجود دارد، اما مدل توانسته یادگیری موثری داشته باشد
 - ۳. **یایداری**: مدل روی داده اصلی از پایداری بیشتری برخوردار است

۵.۲ تحلیل عملکرد SMOTE

نقاط قوت SMOTE:

- افزایش Recall کلاس ۱ از ۸۷.۸۸٪ به ۹۳.۹۴.
- رساندن Threat Detection Rate به ۱۰۰٪ در برخی مدلها

محدودیتهای SMOTE:

- کاهش دقت کلی در برخی مدلها
- وابستگی شدید به نوع مدل و پارامترها
- تولید نمونههای مصنوعی که ممکن است نماینده واقعی نباشند

۵.۳ وابستگی به پیشپردازش داده

تاثیر RobustScaler بر مدل KNN:

- کاهش حساسیت به outlierها
- امکان تغییر در فاصلههای محاسباتی
- تاثیر مستقیم بر عملکرد کلاسهای اقلیت

ریسکهای تغییر مقیاسبندی:

- تغییر در مرزهای تصمیمگیری
- تاثیر بر نمونههای مصنوعی SMOTE
 - تغییر در وزندهی ویژگیها

۶. توصیههای نهایی و راهکارهای اجرایی

۶.۱ استراتژی پیشنهادی

استفاده از مدل KNN روی داده اصلی به عنوان راهکار اصلی

۶.۲ راهکارهای تکمیلی برای بهبود بیشتر

تست مقاومت در برابر روشهای مقیاسبندی مختلف:

} = پیشنهاد_تست_مقایسهای

"StandardScaler": "يايه مقايسه - نتايج فعلى",

"RobustScaler": "بهای زیاد outlier برای دادههای با",

"MinMaxScaler": "برای ویژگیهای با محدوده متغیر",

"برای مدلهای مبتنی بر درخت" :"No Scaling"

فوری (اجرا در فاز ۴):

- پیادهسازی سیستم نظارت مستمر بر عملکرد کلاس ۱
- تنظیم thresholdهای طبقهبندی برای بهینهسازی Recall
 - اجرای دورهای مدل روی دادههای جدید

میانمدت:

- آزمایش تکنیکهای Ensemble با وزندهی کلاسها
 - بررسی ADASYN به عنوان جایگزین SMOTE
- پیادہسازی سیستم Early Warning برای کاهش •

۶.۳ معیارهای موفقیت

وضعيت فعلى	هدف	شاخص
✓ ۸۷. ∧∧%	٩٠٪ <	Recall کلاس ۱
✓ 99.9۶%	99.9% <	Threat Detection Rate
✓ ·.·۴٪	·.\% >	False Positive Rate
₹۵۸.۹۹ ✓	99% <	دقت کلی

تستهای اعتبارسنجی اضافی:

مسیر نتایج	وضعیت	تست
code/final_report/run_ 20251019_131939	انجام شده	StandardScaler
code/final_report/run_ 20251020_113650	انجام شده	RobustScaler
نیازمند تست	در انتظار	MinMaxScaler
نیازمند تست	در انتظار	تست Cross-Validation

۷. ملاحظات فنی مهم

محدودیتهای متدولوژی و وابستگی به پیشپردازش داده

هشدار: کلیه یافتهها و نتایج ارائه شده در این گزارش تحت شرایط زیر معتبر هستند:

۷.۱ وابستگی به روش مقیاسبندی

نتایج فعلی مبتنی بر Standard Scaling: "StandardScaler نتایج_جاری = "مبتنی بر

در صورت استفاده از RobustScaler:

"نتایج_متغیر = "تغییرات محسوس در عملکرد مدل

۷.۲ تحلیل حساسیت به پیشپردازش

پایداری	تاثیر بر کلاسهای اقلیت	تاثیر بر KNN	روش مقیاسبندی
بالا	پایدار	بهینه	StandardScaler
متوسط	حساس به outlierها	متغير	RobustScaler
متوسط	وابسته به توزیع	تغییرات جزئی	MinMaxScaler

۸. جمعبندی و نتیجهگیری نهایی

با وجود **عدم تعادل شدید** ۵۳.۸۵ در دادهها، سیستم پیشنهادی توانسته است عملکرد امنیتی ممتازی ارائه دهد. مدل **KNN روی داده اصلی** با امتیاز امنیتی ۰.۹۶۱ به عنوان راهکار بهینه انتخاب شد.

دستاوردهای کلیدی:

- شناسایی ۸۷.۸۸٪ از تهدیدات بحرانی (کلاس ۱)
- شناسایی ۱۰۰٪ از تهدیدات سطح متوسط (کلاس ۲)
 - نرخ کلی شناسایی تهدیدات: ۹۹.۹۶٪
 - دقت کلی سیستم: ۹۹.۸۵٪

این سیستم هماکنون برای استقرار در محیط عملیاتی آماده است و میتواند سرویس امنیتی قابل اعتمادی ارائه دهد.

هشدار نهایی:

"کلیه نتایج و توصیههای این گزارش مبتنی بر استفاده از StandardScaler میباشد. تغییر در روش مقیاسبندی میتواند منجر به تغییرات محسوس در عملکرد مدل گردد. توصیه میشود پیش از استقرار نهایی، تستهای اضافی با RobustScaler و دیگر روشها انجام پذیرد."

پیام کلیدی برای مدیریت:

"این تحلیل نقطه شروعی عالی برای استقرار سیستم است، اما جهت اطمینان از پایداری عملکرد در محیط عملیاتی، انجام تستهای اضافی با روشهای مختلف مقیاسبندی ضروری میباشد.در فاز بعدی، تمرکز تیم باید بر پایداری عملکرد مدل در دادههای واقعی (production drift monitoring) و بهینهسازی thresholdها برای کاهش

پیوست:

- فایل class_balance_report.json
 - فایل selected_model.json
 - فایل model_summary.csv •
- فایل comparative_analysis.json