Lecture NS1 2018 revision

Chapter 2

1. Modular arithmetic: Addition/subtraction and multiplication

```
11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4

(11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) * (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 * 15) mod 8 = 165 mod 8 = 5

(49 * 53) mod 47 = 49 mod 47 mod* 53 mod 47 = 2*6 = 12
```

- 2. State the following three theorems:
 - a. Fermat
 - b. Euler
 - c. Chinese reminder theorem
- 3. Describe the Euclidean algorithm. Write a relevant pseudo-code
- 4. What is the Euler totient function
- 5. Calculate *x* that satisfies the following equations:
 - knowing that $30 = 2 \cdot 3 \cdot 5$: $x = 1 \mod 2$; $x = 2 \mod 3$; $x = 3 \mod 5$
 - knowing that $105 = 3 \cdot 5 \cdot 7$: $x = 2 \mod 3$; $x = 4 \mod 5$; $x = 3 \mod 7$

Show your working

Chapter 5

1. Develop a set of tables similar to the following tables for GF(5).

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

(d) Addition modulo 7

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

(e) Multiplication modulo 7

w	0	1	2	3	4	5	6
-w	0	6	5	4	3	2	1
w^{-1}	=	1	4	5	2	3	6

(f) Additive and multiplicative inverses modulo 7

Answer:

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

W	-w	w^{-1}
0	0	
1	4	1
2	3	3
3	2	2
4	1	4

Polynomial arithmetic in $GF(2^8)$,

2. The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2^8), with the irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. Consider the two polynomials:

$$f(x) = x^5 + x^4 + x + 1$$
 and $g(x) = x^5 + x^2 + 1$

Give the result of $h(x) = f(x) * g(x) \mod m(x)$.

Show your working. Using polynomial notation:

The Advanced Encryption Standard (AES) uses arithmetic in the finite field $GF(2^8)$, with the irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. Consider the two polynomials $f(x) = x^6 + x^4 + x^2 + x + 1$ and $g(x) = x^7 + x + 1$. Then

$$f(x) + g(x) = x^{6} + x^{4} + x^{2} + x + 1 + x^{7} + x + 1$$

$$= x^{7} + x^{6} + x^{4} + x^{2}$$

$$f(x) \times g(x) = x^{13} + x^{11} + x^{9} + x^{8} + x^{7}$$

$$+ x^{7} + x^{5} + x^{3} + x^{2} + x$$

$$+ x^{6} + x^{4} + x^{2} + x + 1$$

$$= x^{13} + x^{11} + x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1\sqrt{x^{13} + x^{11} + x^{9} + x^{8}} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

$$x^{13} + x^{9} + x^{8} + x^{6} + x^{5}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{7} + x^{6} + x^{1} + x^{1}$$

Therefore, $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$.

It is much easier to repeat the above calculations using the binary notation:

