Simplex Method

Matlab Code User Manual

Chongnan Li BJTU 2019

What problem can be solved?

We have two programs including two-phase simplex and dual simplex. All programs solve standard form linear programming:

(P) min
$$c^T x$$

 $Ax = b$
 $x > 0$

DO NOT solve its dual problem:

$$\max \quad \boldsymbol{b}^T \boldsymbol{w}$$
 (D) s.t. $\boldsymbol{A}^T \boldsymbol{w} \leq \boldsymbol{0}$

How to use?

• Two-phase simplex program

It contains two m-file: main.m, simplex.m. You should open main.m to input.

For example, you want to solve the following problem:

min
$$x_1 - 2x_2$$

s.t. $x_1 + x_2 \le 40$
 $2x_1 + x_2 \le 60$
 $x_1, x_2 \ge 0$

You should convert it to standard form:

min
$$x_1 - 2x_2 + 0x_3 + 0x_4$$

s.t. $x_1 + x_2 + x_3 = 40$
 $2x_1 + x_2 + x_4 = 60$
 $x_1, x_2, x_3, x_4 \ge 0$

We can have the input corresponding to the problem:

```
%Input: please make sure b>=0
18 - c=[1;-2;0;0];
19 - A=[1,1,1,0;2,1,0,1];
20 - b=[40;60];
21
```

NOTE: please make sure vetor $b \ge 0$! If not, times -1 for both sides of the constraint equality to make $b \ge 0$.

Dual simplex program

It contains three programs: dual_simplex.m, main.m, simplex.m. You should open main.m to input.

Using another example:

min
$$-2x_1 - x_2$$

s.t. $x_1 + x_2 \le 2$
 $x_1 \le 1$
 $x_1, x_2 \ge 0$

Convert to standard form:

min
$$-2x_1 - x_2 + 0x_3 + 0x_4$$

s.t. $x_1 + x_2 + x_3 = 2$
 $x_1 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

We can have the input corresponding to the problem:

```
17

18 - c=[-2;-1;0;0];

19 - A=[1,1,1,0;1,0,0,1];

20 - b=[2;1];

21

22
```

NOTE: this time $b \ge 0$ is not necessary to be satisfied.

A brief introduction of the simplex and dual simplex algorithms

Key step of simplex algorithm:

Step 1: Find a bfs x with A = [B | N].

Step 2: Check for n.b.v.'s $r_q = \boldsymbol{c}^T \boldsymbol{d}_q = c_q - \boldsymbol{c}_q \boldsymbol{B}^{-1} \boldsymbol{A}_q$ If $r_q \geq 0$, \forall nonbasic x_q , then the current bfs is optimal. Otherwise, pick one(Brand's Rule to prevent cycling) $r_q < 0$. Go to next step.

Step 3: If $d_q \ge 0$, then LP is unbounded below.

Otherwise, find
$$\alpha = \min_{i:\text{basic}} \left\{ \frac{x_i}{-d_{qi}} \mid d_{qi} < 0 \right\}$$

Then $x := x + \alpha d_q$ is a new bfs. Update B and N. Go to Step 2. In order to get initial bfs, solve the phase one problem:

$$\min \sum_{i=1}^{m} u_{i}$$
(PhI) s.t. $Ax + Iu = b \ge 0$

$$x, u \ge 0$$

Key step of dual simplex algorithm:

Step 1: Find an initial dual feasible solution with A = [B | N].

Step 2: Check x_B , if $x_B \ge 0$, then the current solution is optimal. Otherwise, pick one component of x_B that is negative.

Step 3: If $\tilde{a}_{p,l} \ge 0$, $\forall l \in \bar{N}$, then (P) is infeasible. Otherwise pick nonbasic variable x_i that satisfies

$$\lambda = \min_{l \in \bar{N}} \{-\frac{r_l}{\tilde{a}_{p,l}} \mid \tilde{a}_{p,l} < 0\}$$
. Step length $\alpha := \frac{\bar{b}_p}{-\tilde{a}_{p,j}}$. Edge direction is $d = -BN_j$. Then $x := x + \alpha d$ is a new solution. Update B and N . Go to Step 2.

In order to get initial dual feasible solution, solve the following problem:

$$min cTx$$
s.t. $Ax = Be$

$$x > 0$$

where \mathbf{B} is a basis of (P) and \mathbf{e} is a column vector with \mathbf{m} components, each component of \mathbf{e} is 1.

This introduction may be a little confusing for rookies. You can search the relevant textbooks to get further information.