Tidal effects on scalar cloud (numerical simulation)

arXiv:2001.01729

Taishi Ikeda (CENTRA, Lisbon) with Vitor Cardoso, Francisco Duque

Light scalar field

Energy components

Dark Matter

- QCD axion
- string axion
- PBH et al

Dark Energy

- Cosmological constant
- Modified gravity
 - Scalar tensor theory
 - F(R) gravity
 - massive gravity et al

Several models predict light scalar field.

Superradiant clouds

Supperradiance

$$\Phi(x) = e^{-\omega t} e^{im\phi} S_{lm}(\theta) R_{lm}(r)$$

$$\Rightarrow \operatorname{Re}(\omega) < m\Omega_{\mathrm{H}} = \frac{ma}{2Mr_{+}}$$

$$\tau \sim 100\tilde{a} \left(\frac{10^{6} M_{\odot}}{M}\right)^{8} \left(\frac{10^{-16} \text{eV}}{\mu}\right)^{9} \text{sec}$$

Scalar cloud

Black Hole has a companion.

- There are a lot of BH binaries in our Universe.
- Sgr A* and Cygnus X1 have companion stars.
- Scalar cloud around BH with companion star
 - Scalar cloud feels a tidal force.
 - Does tidal force change the dynamics of scalar cloud?
 - Is scalar cloud disrupted?

Previous work

$$V(r) = \frac{\alpha}{r}$$

- Mode mixing (D.Baumann et al PRD99,044001, E.Berti et al PRD99,104039)
 - single BH

$$\bullet \quad (\Box - \mu^2)\Phi = 0 \quad \bullet \quad i\partial_t \Psi = \left(-\frac{1}{2\mu^2}\nabla^2 + \underline{V(r)}\right)\Psi \quad \bullet \quad \left\{\begin{array}{l} |n,l,m> \\ \omega_{n,l,m} \end{array}\right.$$

 $\begin{cases} M/r \ll 1 \\ \text{non-relativistic limit} \end{cases}$

cf: QM of Hydrogen atom

higher order correction

$$\Delta\omega_{nlm} = \mu \left(-\frac{\alpha^4}{8n^4} + \frac{(2l - 3n + 1)\alpha^4}{n^4(l + 1/2)} + \frac{2\tilde{a}m\alpha^5}{n^3l(l + 1/2)(l + 1)} \right)$$

- $\operatorname{Im}(\omega_{nlm}) \propto m\Omega_H \omega$
 - decaying mode . $\text{Im}(\omega_{nlm}^{(d)}) > 0$
 - growing mode $Im(\omega_{nlm}^{(g)}) < 0$

$$n = 3$$

$$n = 2$$

$$n = 2$$

$$n = 1$$

$$\ell = 0$$

$$\ell = 1$$

$$\ell = 2$$

Tidal effect on the cloud

Binary BH

- $i\partial_t \Psi = \left(-\frac{1}{2\mu^2}\nabla^2 + V(r)\right)\Psi$
- ▶ The tidal effect deforms the potential.

$$V(r) \rightarrow V(r) + \delta V(t, r, \theta, \phi)$$

cf: Perturbation theory in QM

mode mixing

$$< n, l, m | \delta V | n', l', m' > \neq 0$$

Growing mode is coupled with decaying mode.

What we want to do

- Previous works : perturbation theory of QM
 - mode mixing between decaying and growing mode
 - depletion of the cloud
- Questions
 - What happens beyond perturbation theory?
 - Is the cloud disrupted due to the strong tidal force?
- Numerical simulation is good approach.
 - For simplicity, we focus on static tidal field.
 - Weak tidal: consistency check with perturbation theory
 - Strong tidal: threshold of the tidal disruption

Tidally deformed BH

- We solve the KG eq. on this metric.

$$\left(\Box - \mu^2\right)\Phi = 0$$

$$\Phi|_{t=0} = A_0 r M \mu^2 e^{-rM\mu^2/2} \cos(\phi - \mu t) \sin \theta$$

with Regge Wheeler gauge

$$f = 1 - \frac{2M}{r}$$

cf: $R = 10^4 M$ $M_c = 10^4 M$

$$\epsilon = \frac{M_c M^2}{R^3} = 10^{-8}$$

Simulation 1: Weak tidal case

Weak tidal case

Weak tidal case

- Excitation of overtone mode.
 - n = 3,4 modes are excited.
 - consistent with perturbation theory of QM. (Up to a few factor)
- Excitation of higher *l* mode.

Strong gravitational wave emission is expected.

Simulation 2: Strong tidal case

1000M

Strong tidal case

Strong tidal case

Tidal disruption

cf: Roche limit

- Numerical result

$$\epsilon_{\text{th}} = \frac{M_c M^2}{R^3} \bigg|_{\text{th}} \sim \begin{cases} 10^{-8} \text{ (for } M\mu = 0.1 \text{)} \\ 2 \times 10^{-7} \text{ (for } M\mu = 0.2 \text{)} \end{cases} \sim \frac{1}{250} (M\mu)^6$$

Strong tidal case

• After higher mode is excited, the cloud is disrupted.

Astrophysical application (In progress)

- Cygnus X-1 (J.A.Orosz et al (2011))
 - $M_{\rm BH} \sim 15 M_{\odot}$
 - $M_c \sim 20 M_{\odot}$

- $R \sim 3 \times 10^{10} \text{ m}$

- $\operatorname{Sgr} A^* (S2)$ (R.Abuter et al (2018))
 - $M_{\rm BH} \sim 4 \times 10^6 M_{\odot}$
 - $M_{\rm c} \sim 20 M_{\odot}$

- $R \sim 1400 M_{\rm BH}$
- Corresponding mass scale : $M\mu \lesssim 9 \times 10^{-3}$

* This is beyond our approximation.

Summary

- We considered tidal effect on scalar cloud.
- We investigate the time evolution of the cloud under tidal force.
 - Higher multipole mode is excited.
 - ▶ Strong gravitational wave emission is expected.
 - Tidal disruption

$$\epsilon_{\rm th} \sim \frac{1}{250} (M\mu)^6$$

- Future work
 - Time dependent tidal force
 - Gravitational wave from deformed cloud