Homologie singulière

Table des matières

1.	Premières définitions	2
	1.1. Simplexe • • • • • • • • • • • • • • • • • •	2
	1.2. Chaine singulière	2

1. Premières définitions

1.1. Simplexe

Définition 1.1. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On dit que A est *convexe* si

$$\forall p, q \in A, [p, q] := \{(1 - t)p + tq \mid t \in [0, 1]\} \subset A.$$

Définition 1.2. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. On appelle *combinaison (linéaire) convexe* une combinaison de la forme $t_0p_0 + \cdots + t_np_n$, telle que $t_0, ..., t_n \in [0, 1]$ et $t_0 + \cdots + t_n = 1$.

Proposition 1.3. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. Alors si A est convexe toute combinaison convexe de $p_0, ..., p_n$ appartient à A.

Démonstration. Soit $t_0, ..., t_n \in [0,1]$ tels que $t_0 + \cdots + t_n = 1$. Notons $H(n): t_0p_0 + \cdots + t_np_n \in A$. Pour n=1. On pose $t:=t_1$, alors puisque A est convexe $t_0p_0 + t_1p_1 = (1-t)p_0 + tp_1 \in A$. Pour n>1. On suppose que H(n-1) est vérifiée. Sans perte de généralité, on suppose que $t_n \neq 0$, et on pose

$$p := \frac{t_0}{1 - t_n} p_0 + \dots + \frac{t_{n-1}}{1 - t_n} p_{n-1}$$

alors d'après H(n-1) on a $p \in A$. Par convexité on a $t_0p_0 + \cdots + t_np_n = (1-t_n)p + t_np_n \in A$. \square

Définition 1.4. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On appelle *enveloppe convexe de A*, notée [A], l'ensemble des combinaisons convexes de sous-ensembles finis de A.

Proposition 1.5. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. Alors l'enveloppe convexe de A est le plus petit ensemble convexe contenant A.

Démonstration. Soit $p, q \in [A]$ et $t \in [0, 1]$. Puisque (1 - t)p + tq est une combinaison convexe d'un sous-ensemble fini de A, on a bien $(1 - t)p + tq \in [A]$. Donc [A] est convexe.

Soit B un sous-ensemble convexe de E contenant A. Soit $x \in [A]$, alors il existe $p_0, ..., p_n \in A$ et $t_0, ..., t_n \in [0, 1]$ tels que $t_0 + \cdots + t_n = 1$ et $x = t_0 p_0 + \cdots + t_n p_n$. D'après la Proposition 1.3 on a bien $x \in B$. Donc $[A] \subset B$.

Définition 1.6. Soit E un \mathbb{R} -espace vectoriel et F une famille libre de n+1 éléments de E. On appelle n-simplexe généré par F l'enveloppe convexe de F. On dit que les éléments de F sont les sommets de F et que F et

Définition 1.7. On appelle *n-simplexe standard*, noté Δ^n , le *n-*simplexe généré par la base canonique de \mathbb{R}^{n+1} .

Définition 1.8. Soit E un \mathbb{R} -espace vectoriel, [F] un n-simplexe et $x = t_0 p_0 + \cdots + t_n p_n$ un élément de [F]. On appelle *coordonnées barycentriques de x* les coefficients $t_0, ..., t_n$.

1.2. Chaine singulière

Définition 1.9. Soit X un espace topologique. On appelle n-simplexe singulier sur X une application continue $\sigma: \Delta^n \to X$.

Définition 1.10. Soit X un espace topologique, $a_0, ..., a_k$ des entiers et $\sigma_0, ..., \sigma_k$ des n-simplexes singuliers sur X. On appelle n-chaîne l'application $a_0\sigma_0 + \cdots + a_k\sigma_k$. On note $C_n(X)$ l'ensemble des n-chaînes.

Proposition 1.11. Soit X et Y deux espaces topologiques, σ un n-simplexe singulier sur X et $f: X \to Y$ une application continue. Alors la composition $f \circ \sigma: \Delta^n \to Y$ est un n-simplexe.

Définition 1.12. Soit X un espace topologique et σ un n-simplexe singulier sur X. On appelle bord de σ , noté ∂_n , le (n-1)-simplexe singulier sur X défini par :

$$\partial_n \sigma \coloneqq \sum_{k=0}^n \left(-1\right)^k \sigma_i$$

où
$$\sigma_i \coloneqq \sigma|_{[e_1,\dots,e_{k-1},e_{k+1},\dots,e_n]}.$$