Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

1 / 1 point

Semantic Segmentation For Self-Driving Cars

Achieving smooth category boundaries is a major difficulty to take into account while

LATEST SUBMISSION GRADE 100%

	designing semantic segmentation models. Which of the following statements describe the origins of this problem? (Check all that apply.)	27 2 pot
	Objects within the same category having variable appearances. An example being multiple color and models for cars on the road.	
	Thin objects such as poles, tree trunks, and lane separators.	
	Correct!	
	The similarity in appearance between some categories such as road, curb, and sidewalk.	
	Correct!	
2.	When comparing the results of a semantic segmentation model to the ground truth, you found out that for the car category, its class IOU is 0.75 . Knowing that the number of false positives (FP) is 17 , and the number of false negatives (FN) is 3 , what is the number of true positives achieved by this model?	2 / 2 points
	60	
ps://\	www.coursera.org/learn/visual-perception-self-driving-cars/exam/64RV0/semantic-segmentation-for-self-driv	 ing-cars/view-att

5.	Anchor boxes are an essential component of any semantic segmentation neural network architecture.	1/1 point
	○ True	
	False	
	Correct	
	Correct!	
6.	In your semantic segmentation model an input feature map is passed through a nearest neighbor up-sampling layer. The output feature map's depth is equal to that of the input feature map.	1/1 point
	True	
	False	
	Correct	
7.	A standard semantic segmentation architecture that uses a softmax output layer is allowed to associate multiple categories to a single pixel in the input image.	1/1 point
	True	
	False	
	Correct!	
	Concot	
8.	Which of the bellow loss functions is usually used to train semantic segmentation models?	1 / 1 point
	Mean Square Error (L2-Loss)	
	Cross-Entropy Loss	

- 0-1 Loss Mean Absolute Error (L1-Loss) Correct Correct!
- 9. A semantic segmentation model uses the following decoder architecture. The convolutions are all 3x3, have a padding size of 1, and have a number of filters shown in the figure. The up-sampling multiplier S is 2 for all upsampling layers.

2/2 points

If you pass an input of dimensions MxNxD through this decoder, what are the expected output dimensions?

Note: M is the width, N is the height, and D is the depth of the input.

- 8*M, 8*N, 64*D
- M/8, N/8, 64*D
- 8*M, 8*N, 128*D
- 6*M, 6*N, 64*D

10. In context of self-driving cars, semantic segmentation can be used to perform: (Check all that apply.)

1 / 1 point

Localization in a predefined 3D map.

	Velocity estimation of dynamic obstacles in the scene.	
	✓ Drivable space estimation.	
	Correct!	
	Constrain the image space used to perform 2D object detection.	
	Correct!	
	Lane boundary estimation.	
	Correct!	
11.	to determine lane boundaries?	/ 1 point
11.		/ 1 point
11.	to determine lane boundaries?	/ 1 point
11.	to determine lane boundaries? Lane Separator Correct	/ 1 point
11.	to determine lane boundaries? Lane Separator Correct Correct!	/ 1 point
11.	to determine lane boundaries? Lane Separator Correct Correct! Road	/ 1 point

Curb

	Correct Correct!	
12. To	estimate a plane model, an algorithm would require a minimum of:	1/1 point
0	Five points, chosen at random.	
	Three points, chosen to be non-collinear.	
0	Three points, chosen to be collinear.	
0	Five points, chosen to be non-collinear.	
	✓ Correct	
	estimate lines that could belong to lanes in a post-processed output image from mantic segmentation, containing only relevant categories, one would:	1/1 point
\subset	First apply Canny edge detection followed by a Kalman Filter to estimate lines.	
•	First apply Canny edge detection followed by Hough transform line estimation.	
\subset	Use RANSAC to estimate the road plane, then fit lines to its boundary.	
\subset	First apply Hough transform line estimation followed by Canny edge detection.	
	Correct!	