Lista 1: Otimização II

A. Ramos *

August 13, 2017

Abstract

Lista em constante atualização.

- 1. Métodos de gradiente;
- 2. Método de Newton e variantes.

Seja $\mathcal O$ um aberto em $\mathbb R^n$. Denote por $C^{1,1}_L(\mathcal O)$ o conjunto das funções deriváveis em $\mathcal O$ cuja derivada é Lipschitziana com constante de Lipschitz L em $\mathcal O$, isto é, $\|\nabla f(x) - \nabla f(y)\| \leq L\|x-y\|$, para todo $x,y\in \mathcal O$.

Com essas informações responda:

- 1. Considere a função $f: \mathbb{R}^n \to \mathbb{R}$ definida como $f(x) = x^T A x + b^T x + c$. Mostre que
 - $\nabla f(x) = Ax + A^T x + b$. E se A é simetrico $(A = A^T)$, $\nabla f(x) = 2Ax + b$
 - $\nabla^2 f(x) = A^T + A$. E quando A é simetrico, $\nabla^2 f(x) = 2A$
 - ullet No caso que A é simétrica. Mostre que f admite solução se, e somente se A é definida positiva.
- 2. Seja f uma função continuamente derivável em \mathbb{R}^n . Suponha que d é uma direção de descida de f em x. Mostre que existe um número T>0 tal que

$$f(x+td) < f(x) \ \forall t \in (0,T].$$

- 3. Seja d uma direção de descida para uma função derivável f no ponto $x \in \mathbb{R}^n$. Mostre que se f tem derivada contínua, o ponto $x^+ := x + td$ está bem definido, onde t é escolhido segundo as seguintes condições
 - (a) A condição de Armijo, a condição de Goldstein
 - (b) A condição de Wolfe e a condição de Wolfe forte.
- 4. Considere o problema

$$\min f(x) := x_1^2 + 2x_2^2 - x_1x_2 - 2x_1 + e^{x_1 + x_2}, \text{ s.a. } x = (x_1, x_2) \in \mathbb{R}^2.$$

- (a) Verifique que (0,0) não é solução do problema
- (b) Minimize a função a partir de (0,0) ao longo da direção de máxima descida.
- 5. Seja $f(x) := x_1^4 + x_1^2 + x_2^2$. Considere o ponto $x^k := (1,1)^T$ e a direção $d^k := (-3,-1)^T$.
 - (a) Verifique que d^k é uma direção de descida para f em x^k .
 - (b) Use a condição de Wolfe para encontrar o novo ponto $x^{k+1}:=x^k+td^k$, com parámetros $\rho:=0.1$ e $\sigma:=0.5$. Isto é:

$$f(x^k + td^k) \le f(x^k) + t\rho \nabla f(x^k)^T d^k$$
 (condição de descrescimo suficiente)

e

$$\nabla f(x^k + td^k)^T d^k \ge \sigma \nabla f(x^k)^T d^k, \sigma \in (\rho, 1) \ \ (\text{ condição sobre a curvatura}).$$

- (c) Considere os valores de t = 1, t = 0.5 e t = 0.1 respectivamente. Quais valores satisfazem a condição de Wolfe?
- 6. Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função derivável cuja derivada é uma função lipschitziana com constante de Lipschitz L (i.e. $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$, para todo $x, y \in \mathbb{R}^n$). Mostre que

$$f(y) \leq f(x) + \nabla f(x)^T (y-x) + \frac{L}{2} ||x-y||^2, \text{ para todo } x,y \in \mathbb{R}^n.$$

Isto é, a função quadrática $Q(y) := f(x) + \nabla f(x)^T (y-x) + \frac{L}{2} ||x-y||^2$ sobre estima a função f em todo \mathbb{R}^n

7. Seja f uma função duas vezes derivável em \mathbb{R}^n . As seguintes proposições são equivalentes:

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

- (a) A derivada de f Lipschitziana com constante de Lipschitz L
- (b) $\|\nabla^2 f(x)\| \le L$, para todo $x \in \mathbb{R}^n$.
- 8. Seja $f \in C_L^{1,1}(\mathbb{R}^n)$ e $\{x^k\}$ uma sequência generada pelo método do gradiente com passo constante $t_k = 1/L$. Suponha que $x^k \to x^*$. Prove que se $\nabla f(x^k) \neq 0$, para $k \in \mathbb{N}$. Então, x^* não é um máximo local.
- 9. Seja $x^0 \in \mathbb{R}^n$ um ponto inicial e seja $f \in C_L^{1,1}(\mathcal{O})$, onde \mathcal{O} é um aberto que contem o conjunto de nível $\{x \in \mathbb{R}^n : f(x) \leq f(x^0)\}$. Adicionalmente suponha que f é limitada inferiormente.

Se $\{x^{k+1} := x^k + t_k d^k\}$ é uma sequência de iterados, onde d^k é uma direção de descida.

Mostre que se t_k satisfaz (i) a condição de Wolfe, ou (ii) a condição de Goldstein ou (iii) a condição de Wolfe-forte. Então, a condição de Zoutendijk é satisfeita i.e. $\sum_{k=1} \cos^2(\theta_k) \|f(x^k)\|^2 < \infty$, onde $\cos(\theta_k) := -d^{kT} \nabla f(x^k) / \|d^k\| \|\nabla f(x^k)\|$.

10. Considere o problema de minimizar $\min\{x^TAx, x \in \mathbb{R}^2\}$, onde A é uma matriz 2×2 definida positiva. Considere $D = \begin{pmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{pmatrix}$

Prove que $\mathcal{K}(D^{1/2}AD^{1/2}) \leq \mathcal{K}(A)$. Interprete e analise o método do gradiente para este caso.

- 11. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x) = \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 \frac{1}{2}x_2^2$. Responda:
 - (a) Determine e classifique os pontos estacionários.
 - (b) Faça uma iteração do método de gradiente com ponto inicial $x^0 = (1,0)^T$. Discuta a possível convergência do método de gradiente.
- 12. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x) = \frac{1}{2}x_1^2 + \frac{a}{2}x_2^2$, onde $a \ge 1$. Mostre que o método de gradiente, com ponto inicial $x^0 = (a, 1)^T$, gera a seguinte sequência

$$x^k := (x_1^k, x_2^k)^T = \left(\frac{a-1}{a+1}\right)^k (a, (-1)^k)^T$$
, para todo $k \in \mathbb{N}$.

- 13. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x) = 5x_1^2 + 5x_2^2 x_1x_2 + 11x_2 11x_1 + 11$. Responda:
 - (a) Calcule a taxa de convergência de $||x^k x^*||$ e de $f(x^k) f(x^*)$.
 - (b) Considere $x^0 = (0,0)^T$. Quantas iterações são necessárias para obter uma precisão de 10^{-8} no valor ótimo de f?.
- 14. Considere $f(x) = \frac{1}{2}(x_1^2 x_2)^2 + \frac{1}{2}(1 x_1)^2$. Responda:
 - (a) Calcule o minimizador de f
 - (b) Calcule uma iteração do método de Newton para minimizar f a partir de $x^0 = (2,2)^T$. Esse passo é aceitável? Dica: Calcule $f(x^0)$ e $f(x^1)$.
- 15. Em \mathbb{R}^n , considere $f(x) := ||x||^3$. Faça o método de Newton com passo constante $t_k = 1$. Mostre que o método converge linearmente para o mínimo $x^* = 0$. Por quê não temos convergência quadrática?
- 16. Denote $M(n,\mathbb{R})$ o conjunto de matrices reaias. Seja $GL(n,\mathbb{R})$ o conjunto das matrices não singulares. A função que associa cada matriz com a sua inversa, $Inv:GL(n,\mathbb{R})\to GL(n,\mathbb{R}),\ Inv(A)=A^{-1}$ é infinitamente derivável. Para isto faça o seguinte:
 - (a) Primeiro, calcule as derivadas de Inv em I (onde I é a matriz identidade) e mostre que $D^kInv(I)[A,\ldots,A] = (-1)^k k! A^k$. Para isto, use a formula de Neumann ¹ para escrever a expansão de $(I+tA)^{-1}$, para t suficientemente pequeno.
 - (b) No caso geral, para $A \in GL(n,\mathbb{R})$ e $B \in M(n,\mathbb{R})$ mostre que

$$D^k Inv(A)[B, \dots, B] = (-1)^k k! A^{-1} B A^{-1} B A^{-1} \dots B A^{-1},$$

onde temos k+1 matrices A e k matrices B. Dica: Escreva $A+tB=A(I+tA^{-1}B)$ e use o item anterior.

- (c) Descreva o método de Newton para calcular a inversa de uma matriz.
- 17. Considere uma matriz definida positiva $A \in M(n,\mathbb{R})$. (i) Mostre que $||x||_A := \sqrt{x^T A x}$ é uma norma em \mathbb{R}^n . (ii) Ainda mais, prove que $\sqrt{\lambda_{min}(A)}||x||_2 \le ||x||_A \le \sqrt{\lambda_{max}(A)}||x||_2$ para todo $x \in \mathbb{R}^n$, onde $||\cdot||_2$ é a norma euclideana.
 - (iii) Use o resultado anterior para provar que a sequência x^k generada pelo método de máxima descida (com busca exata) aplicado ao problema min $f(x) := (1/2)x^T Ax$ converge à solução x^* de dito problema e

$$\frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} \le \sqrt{\mathcal{K}} \left(\frac{\mathcal{K} - 1}{\mathcal{K} + 1}\right), \text{ onde } \mathcal{K} = \frac{\lambda_{min}(A)}{\lambda_{max}(A)}.$$

Formula de Neumann: Para $B \in M(n, \mathbb{R})$ com ||B|| < 1, temos que $(I+B)^{-1} = \sum_{k=0}^{\infty} (-1)^k B^k$

- 18. Direções de curvaura negativa. Considere uma função de classe $C^2(\mathbb{R})$. Então:
 - (a) Se $\nabla^2 f(x)$ tem um autovalor negativo, dizemos que x é uma ponto indefinido.
 - (b) Se x é um ponto indefinido e existe uma direção d tal que $d^T \nabla^2 f(x) d < 0$. Dito vetor é chamado de direção de curvatura negativa.
 - (c) Se existe um par de vetores (z, d) tal que

$$\nabla f(x)^T z \le 0$$
, $\nabla f(x)^T d \le 0$, $d^T \nabla^2 f(x) d < 0$,

dizemos que (z,d) é um par de descida no ponto indefinido x. No caso que x não é um ponto indefinido (i.e. $\nabla^f(x) \succeq 0$) se (z,d) satisfaz

$$\nabla f(x)^T z < 0$$
, $\nabla f(x)^T d \le 0$, $d^T \nabla^2 f(x) d = 0$,

dizemos que (z,d) é um par de descida no ponto x.

Com um par de descida (z^k, d^k) podemos fazer busca ao longo de uma curva da forma

$$x(t) := x^k + \phi_1(t)z^k + \phi_2(t)d^k$$

para certos ϕ_1 e ϕ_2 , em lugar de fazer uma busca linear.

(a) Condição de Armijo de segunda-ordem. Nesse caso, a busca é realizada ao longo de curvas da forma:

$$x(t) := x^k + t^2 z^k + t d^k$$
, i.e. $\phi_1(t) = t^2, \phi_2(t) = t$.

Considere $\rho, \gamma \in (0,1)$, e ponha $x^k(i) := x^k + \gamma^{2i}z^k + \gamma^i d^k$. A condição de Armijo de segunda-ordem pede por encontrar $i(k) \in \mathbb{N}$ o menor inteiro não negativo i tal que

$$f(\boldsymbol{x}^k(i)) \leq f(\boldsymbol{x}^k) + \rho \gamma^{2i} (\nabla f(\boldsymbol{x}^k)^T \boldsymbol{z}^k + \frac{1}{2} \boldsymbol{d^k}^T \nabla^2 f(\boldsymbol{x}^k) \boldsymbol{d^k})$$

Atualize $x^{k+1} := x^k(i(k))$. Mostre o seguinte:

- i. O passo de Armijo de segunda-ordem está bem definido, se temos que $\nabla f(x^k)^T z^k < 0$ (quando $\nabla f(x^k) \neq 0$) e $d^{k}^T \nabla^2 f(x^k) d^k < 0$ (quando $\nabla f(x^k) = 0$).
- ii. Seja $f \in C^2(\mathbb{R}^n)$ tal que $\{x \in \mathbb{R}^n : f(x) \leq f(x^0)\}$ é compacto. Seja $\{x^k\}$ uma sequência que satisfaz a condição de Armijo de segunda-ordem, e suponha que as sequências $\{\|z^k\|\}$ e $\{\|d^k\|\}$ são limitadas. Prove que :

$$\nabla f(x^k)^T z^k \to 0 \text{ e } d^{kT} \nabla^2 f(x^k) d^k \to 0.$$

- iii. Se adicionalmente às hipoteses do item anterior, temos que existem constantes $c_1, c_2, c_3 > 0$ tal que
 - A. $||z^k|| \ge c_3 ||\nabla f(x^k)||$
 - B. $d^{k} \nabla^{2} f(x^{k}) d^{k} \leq c_{2} \lambda_{min}(\nabla^{2} f(x^{k}))$ (lembre que $\lambda_{min}(A)$ denota o mínimo autovalor de A).
 - C. $-\nabla f(x^k)^T z^k \ge c_1 \|\nabla f(x^k)\| \|z^k\|$.

Então, qualquer ponto de acumulação x^* de x^k é um ponto estacionário de segunda-ordem, isto é, $\nabla f(x^*) = 0$ e $\nabla^2 f(x^*) \succeq 0$.

Obs: Além da condição de segunda-ordem de Armijo, outras condições de segunda-ordem são a condição de Goldfard, a condição de Moré-Sorensen, etc.

- 19. Seja $F: \mathbb{R}^2 \to \mathbb{R}^2$ uma função cuja componentes são $F_1(x) = x_1^2 + x_2^2 9$ e $F_2(x) = x_1 + x_2 3$.
 - (a) Avalie a Jacobiana de F em $x = (1,0)^T$ e $x = (1,5)^T$.
 - (b) Faça duas (três) iterações do método de Newton, para resolver F(x) = 0, partindo de $x^0 = (1,5)^T$.
 - (c) Escreva o problema F(x) = 0, como um problema de otimização com função objetivo $f(x) := ||F(x)||^2$. Encontre o gradiente e a Hessiana da função objetivo.
- 20. Seja $f: \mathbb{R} \to \mathbb{R}$ definida $f(x) := x^3 x$. Construa um modelo linear de f. Nos pontos (1) x = 0, (ii) $x = \sqrt{3}/3$ e (iii) x = 2. Explique o que acontece em cada uma das situações.