The Sparse High-Dimensional Linear Discriminant Analysis with Moderately Clipped LASSO

THESIS

Chang Jae Ho

KONKUK UNIVERSITY
Graduate School
Department of Applied Statistics

Supervisor: Dr. Kyusang Yu, Professor

November 28, 2019

Contents

- 1 Motivaton
 - High-dimensional sparse LDA
 - Previous work
- 2 Main Results
 - Moderately Clipped LASSO
 - Theory
- 3 Numerical Studies
 - Simulation studies
 - Real data analysis
- 4 Conclusions

— Motivaton <u>Hig</u>h-dimensional sparse LDA

Contents

- 1 Motivaton
 - High-dimensional sparse LDA
 - Previous work
- 2 Main Results
 - Moderately Clipped LASSO
 - Theory
- 3 Numerical Studies
 - Simulation studies
 - Real data analysis
- 4 Conclusions

L Motivator

High-dimensional sparse LDA

LDA I

Classical model

Consider a classification problem where

- Predictor vector: $\mathbf{x} = (x_1, \dots, x_p)'$
- \blacksquare Class label: C = 1, 2
- **(x**|C = c) ~ $N_p(\mu_c, \Sigma)$ with $\mu_c, \Sigma :=$ mean vector of the class c and $p \times p$ covariance matrix $P(C = 1) = \pi_1, P(C = 2) = \pi_2$ such that $\pi_1, \pi_2 \in [0, 1]$.

Bayes rule: optimal classifier minimizing the 0-1 loss

Set $eta^{\mathit{Bayes}} := \Sigma^{-1} \partial$ ($\partial := \mu_2 - \mu_1$) and classify ${\bf x}$ to class 2 iff

$$\log \frac{P(C = 2|\mathbf{x})}{P(C = 1|\mathbf{x})} = \log P(\mathbf{x}|C = 2)\pi_2 - \log P(\mathbf{x}|C = 1)\pi_1 > 0$$

$$\Leftrightarrow \{\mathbf{x} - (\mu_1 + \mu_2)/2\}' \beta^{\text{Bayes}} + \log(\pi_2/\pi_1) > 0.$$

LDA II

Classical model

■ Estimation¹

$$\hat{\mu}_1 := \sum_{i=1}^{n_1} \mathbf{x}_{1i}/n_1$$

$$\hat{\mu}_2 := \sum_{i=1}^{n_2} \mathbf{x}_{2i} / n_2$$

 $\hat{\Sigma}:=$ the pooled sample covariance estimate of Σ

LDA obtains an estimator $\hat{\beta}^{LDA} := \hat{\Sigma}^{-1} \hat{\partial}$ with $\hat{\partial} = \hat{\mu}_2 - \hat{\mu}_1$.

LDA

Least Squares(LS)

LDA is analogous to **Least Sqaures** problem when p < n. Put $y_i = -n/n_1$ for $C_i = 1$ and $y_i = n/n_2$ for $C_i = 2$, then

$$(\hat{\beta}^{ols}, \hat{\beta}_0^{ols}) = \underset{\beta,\beta_0}{\operatorname{arg\,min}} \sum_{i=1}^n (y_i - \beta_0 - \mathbf{x}_i'\beta)^2$$

where $\hat{\beta}^{ols} = constant \times \hat{\beta}^{LDA}$. This indicates that the direction of $\hat{\beta}^{ols}$ is equal to that of $\hat{\beta}^{LDA}$.

Motivator

High-dimensional sparse LDA

High-dimensional LDA

Limitation and Penalized LS

■
$$\nexists \hat{\Sigma}^{-1}$$
 When $n \ll p$

Adopt Penalized Least Squares estimation;

$$(\hat{\beta}, \hat{\beta}_0) = \arg\min_{\beta, \beta_0} \left\{ \sum_{i=1}^n (y_i - \beta_0 - \mathbf{x}_i' \beta)^2 / n + \sum_{j=1}^p J(|\beta_j|) \right\}$$
(2)

where J can be selected among sparsity-inducing penalties such as Least Absolute Shrinkage and Selection Operator(LASSO), Minimax Concave Penalty(MCP) and Moderately Clipped LASSO(MCL; Kwon et al., 2015). For $\hat{\partial}'\hat{\beta}>0$, assign a new observation ${\bf x}$ to class 2 if

$$\left(\mathbf{x} - \frac{\hat{\mu}_1 + \hat{\mu}_2}{2}\right)'\hat{\beta} + \frac{\hat{\beta}'\hat{\Sigma}\hat{\beta}}{\hat{\partial}'\hat{\beta}}\log(n_2/n_1) > 0, \tag{3}$$

which was verified as a rule with the closed-form optimal intercept by Mai et al. (2012).

High-dimensional LDA

Why PLS?

- Q. Why did they adopt PLS for this problem?
 - lacksquare Does not depend on the invertibility of Σ
 - Many optimal computation algorithms
 - Theoretical properties (e.g. oracle property, variable selection consistency, and asymptotic normality)
 - Computationally NOT sophisticated (compared to other methods)

Previous work

Contents

- 1 Motivaton
 - High-dimensional sparse LDA
 - Previous work
- 2 Main Results
 - Moderately Clipped LASSO
 - Theory
- 3 Numerical Studies
 - Simulation studies
 - Real data analysis
- 4 Conclusions

Motivaton

Previous work

Mai et al. (2012) I

Example

LASSOed Sparse LDA

- Low prediction error and variable selection consistency
- Emulates the Bayes rule and outperforms penaliezed Fisher's LDA(Witten and Tibshirani, 2011), ℓ_1 -Constrained Quadratic Porgramming with LASSO(Wainwright, 2009), and Wu et al. (2009)
- Simulations + prostate and colon cancer data analysis

Mai et al. (2012) II

The LASSOed estimators asymptotically approach the **oracle LASSO estimator**;

$$\hat{\beta}^{oL,\gamma} := \underset{\beta_A; A:=\{j:\beta_j\neq 0\}}{\arg\min} \left\{ \sum_{i=1}^n (y_i - \beta_0 - \mathbf{x}_i'\beta)^2 / n + \sum_{j=1}^p |\beta_j| \gamma \right\}$$

The sparse high-dimensional LDA with MCL estimators shows that;

- Close enough to the oracle LASSO estimator
- Performs better than the LASSOed LDA

Moderately Clipped LASSO

Contents

- Motivaton
 - High-dimensional sparse LDA
 - Previous work
- 2 Main Results
 - Moderately Clipped LASSO
 - Theory
- 3 Numerical Studies
 - Simulation studies
 - Real data analysis
- 4 Conclusions

The Sparse High-Dimensional LDA with MCL

Moderately Clipped LASSO

Background I

Moderately Clipped LASSO

- Precedent research on the nonconvex penalized estimators' oracle property; the asymptotic equivalence with the oracle estimator
- Convex penalties(LASSO) and their derivatives lost variable selection consistency under the violation of strong irrepresentability (SI) condition
- Smoothly Clipped Absolute Deviation (SCAD; Fan et al., 2001, Kim et al., 2008); asymptotically attains an oracle LSE and nearly unbiasedness by smoothly clipping LASSO
- Minimax Concave Penalty (MCP; Zhang, 2010) preserves convexity better than SCAD while achieving an oracle LSE

The Sparse High-Dimensional LDA with MCL

Main Results

Moderately Clipped LASSO

Background II

Moderately Clipped LASSO

- Prediction accuracy: LSE < LASSO</p>
- Non-convex penalized estimators' predictions are mostly inferior to those of LASSO for the finite-size samples.
- lacktriangle When the sample size is small, the non-convex penalties fail when true eta is small.
- The MCL penalty was devised in this context to combine both LASSO and MCP seeking to achieve both advantages of LASSO and MCP.

Definition I

Moderately Clipped LASSO

The MCL-penalized estimator $(\hat{\beta}^{cL}, \hat{\beta}_0^{cL})$, proposed by Kwon et al. (2015), is a minimizer defined as (2) where J is a penalty function induced by its derivative:

$$\begin{cases} \frac{d}{dt} J_{\gamma,\hat{n}}(|t|) &= \max(\gamma,\hat{n}-|t|/\tau) \qquad \forall t \in \mathbb{R} \sim \{0\} \\ \\ J_{\gamma,\hat{n}}(0) &= 0 \end{cases}$$

for $\tau > 1$, $0 \le \gamma \le \beta$.

Main Results

Moderately Clipped LASSO

Definition II

Moderately Clipped LASSO

Figure: The penalty functions. ($\hat{\jmath}$, τ) = (1, 2) and (γ , τ) = (0.1, 2) respectively.

The Sparse High-Dimensional LDA with MCL

Main Results

Moderately Clipped LASSO

Definition III

Moderately Clipped LASSO

There are two different regularization parameters γ and β .

- A controls the concavity of the MCL near the origin and the overall sparsity of the estimators.
- ho regularizes a shrinkage of nonzero estimators so and also controls the sparsity(Kwon et al., 2015).
- The MCL penalty with $\gamma=0$ and $\gamma=\hat{\jmath}$ each obtains an MCP and a LASSO penalty.
- Fix γ properly with a reasonable estimator and choose the optimal β for the given γ in the estimation process.

Computation Algorithm²

The MCL penalty can be decomposed as $J_{\gamma,\hat{n}}(|t|) = L_{\gamma,\hat{n}}(t) + \hat{n}|t|$ where $L_{\gamma,\hat{n}}$ is a continuously differentiable concave function:

$$\frac{d}{dt}L_{\gamma,\beta}(t) = \frac{d}{dt}J_{\gamma,\beta}(t) - \beta = -\max(\beta - \gamma, t/\tau) < 0$$

for t > 0 and $L_{\gamma,\hat{H}}(0) = J_{\gamma,\hat{H}}(0)$ (the image of $J_{\gamma,\hat{H}}$ for $t \neq 0$ is symmetric about t = 0).

- Convex-ConCave Procedure (CCCP; Yuille and Rangarajan, 2003) and an iterative way such as pathwise coordinate descent algorithm (Friedman et al., 2007) can find a local minimizer
- The package napen programmed in R (Kim et al., 2018) was used in the numerical study section

²The efficient computation algorithm for the MCL estimation had already been discussed by Kwon et al. (2015).

Contents

Theory

- Motivaton
 - High-dimensional sparse LDA
 - Previous work
- 2 Main Results
 - Moderately Clipped LASSO
 - Theory
- 3 Numerical Studies
 - Simulation studies
 - Real data analysis
- 4 Conclusions

Terms I

Terms and Definitions

For an arbitrary $m \times n$ matrix **P** and some vector $\mathbf{a} \in \mathbb{R}^p$, define

$$|\mathbf{P}|_{\infty} = \max_{i=1,\cdots,m} \sum_{j=1}^{n} |P_{ij}|$$
 (4)

$$|\mathbf{a}|_{\infty} = \max_{j=1,\dots,p} |a_j|$$

$$|\mathbf{a}|_{\min} = \min_{j=1,\dots,p} |a_j|$$
(5)

and define $A=\{j; \beta_j^{Bayes} \neq 0\}$, $s=|A|, N=A^c$. Call β_A^{Bayes} as discriminative variable(s) since it is a Bayes classification direction.

Terms II

Terms and Definitions

Let the marginal covariance matrix of
$$\mathbf{x}$$
 be $\Omega := V(\mathbf{x}) = \Sigma + V(\mu_{\gamma})$ and partition it as $\Omega = \begin{pmatrix} \Omega_{AA} & \Omega_{AN} \\ \Omega_{NA} & \Omega_{NN} \end{pmatrix}$ and define
$$\kappa = |\Omega_{NA}(\Omega_{AA})^{-1}|_{\infty}$$

$$\varphi = |(\Omega_{AA})^{-1}|_{\infty}$$

$$\psi = |\partial_{A}|_{\infty}.$$

Terms III

Terms and Definitions

Define $\mathbf{Z} := (\mathbf{I}_n - \Pi_{\mathbf{1}_n})\mathbf{X}$ and $\Pi_{\mathbf{a}} := \mathbf{a}(\mathbf{a}'\mathbf{a})^{-1}\mathbf{a}'$ and $\mathbf{X} = (\mathbf{X}_1, \cdots, \mathbf{X}_p)$ for $\mathbf{X}_j = (x_{1j}, \cdots, x_{nj})'$ $(j = 1, \cdots, p)$.

Then, the MCL estimator is defined as;

$$(\hat{\beta}^{\gamma,\hat{n}},\hat{\beta}_0^{\gamma,\hat{n}}) = \arg\min_{\beta,\beta_0} \left\{ \sum_{i=1}^n (y_i - \beta_0 - \mathbf{x}_i'\beta)^2 / n + \sum_{j=1}^p J_{\gamma,\hat{n}}(|\beta_j|) \right\}$$

which can derive a partial estimation while plugging in the centered design matrix;

$$\hat{eta}^{\gamma,eta}=rg\min_eta\{\mathcal{Q}^{\gamma,eta}(eta)\}$$
 where

$$Q^{\gamma,\widehat{\jmath}}(\beta) := \frac{\beta'\mathbf{Z}'\mathbf{Z}\beta}{n} - 2\hat{\partial}'\beta + \sum_{j=1}^{p} J_{\gamma,\widehat{\jmath}}(|\beta_{j}|).$$

Terms IV

Terms and Definitions

Let
$$\hat{\Omega} := \mathbf{Z}'\mathbf{Z}/n$$
 so $\hat{\Omega}_{AA} = \mathbf{Z}'_A\mathbf{Z}_A/n$ and $\hat{\Omega}_{NA} = \mathbf{Z}'_N\mathbf{Z}_A/n$. Denote $(\Omega_{AA})^{-1}\partial_A$ by $\tilde{\beta}^{Bayes}_A$ so that $\tilde{\beta}^{Bayes}_N := \mathbf{0}$.

Verifying the claim that suggested sparse discriminant analysis constructed on $\hat{\beta}^{\gamma,\hat{\jmath}}$ can successfully recover the support of this quantity and estimating $\tilde{\beta}^{Bayes}$ are sufficient for us in the sense that $\tilde{\beta}^{Bayes} = c\beta^{Bayes}$ for some constant c as mentioned in Mai et al. (2012).

Put
$$\hat{\Delta}_{AA} = \hat{\Omega}_{AA} - \Omega_{AA}$$
, $\hat{\Lambda}_{NA} = \hat{\Omega}_{NA} (\hat{\Omega}_{AA})^{-1} - \Omega_{NA} (\Omega_{AA})^{-1}$, $\hat{\delta}_A = \hat{\partial}_A - \partial_A$ and $\hat{\delta} = \hat{\partial} - \partial$ for the following lemmas.

Non-asymptotic properties I

Tail probabilities and Karush Kuhn Tucker conditions

Lemma

There exist positive constants ϵ_0 and c_1 , c_2 such that for any $\epsilon \leq \epsilon_0$ we have

$$P(|\hat{\Delta}_{AA}|_{\infty} \ge \epsilon) \le 2s^{2} \exp(-nc_{1}\epsilon^{2}/s^{2})$$

$$P(|\hat{\delta}_{A}|_{\infty} \ge \epsilon) \le 2s \exp(-nc_{2}\epsilon^{2})$$

$$P(|\hat{\delta}|_{\infty} \ge \epsilon) \le 2p \exp(-nc_{2}\epsilon^{2})$$

L_{Theory}

Non-asymptotic properties II

Tail probabilities and Karush Kuhn Tucker conditions

Lemma

There exist constants ϵ_0 , c_1 such that for any $\epsilon \leq \min(\epsilon_0, 1/\varphi)$, we have

$$P\left[|\hat{\Lambda}_{NA}|_{\infty} \geq \frac{\epsilon \varphi(\kappa+1)}{1-\varphi\epsilon}\right] \leq 2ps \exp(-nc_1\epsilon^2/s^2).$$

 ε_0 depends on $\zeta \leq \hat{\eta}_{\max}(\Omega)^{-1}$ only.

The detailed proof of Lemma 2 and 3 are given in Mai et al. (2012).

An oracle lasso estimator $\hat{\beta}^{oL,\gamma}$ is the oracle MCL estimator with $\gamma = \hat{\jmath}$. Let me claim that $\hat{\beta}^{oL,\gamma}$ is a member of (6).

Non-asymptotic properties III

Tail probabilities and Karush Kuhn Tucker conditions

Lemma

Define $\Xi^{\gamma,\hat{\jmath}}$ as the set of all local minimizers of (6). Then, $\hat{\beta} \in \Xi^{\gamma,\hat{\jmath}}$ if $\hat{\beta}$ satisfies

$$\hat{\partial}_{S} - \mathbf{Z}_{S}'\mathbf{Z}\hat{\beta}/n = \frac{\gamma}{2}\operatorname{sign}(\hat{\beta}_{S}), \tag{7}$$

$$|\hat{\beta}_{S}|_{min} > \tau(\hat{\jmath} - \gamma),$$

$$|\hat{\partial}_{S^{\circ}} - \mathbf{Z}_{S^{\circ}}^{\prime} \mathbf{Z} \hat{\beta} / n|_{\infty} \le \frac{\hat{\eta}}{2}$$
 (8)

where $S := \{j; \hat{\beta}_i \neq 0\}.$

Non-asymptotic properties IV

Tail probabilities and Karush Kuhn Tucker conditions

Remark In addition, conditions (7) and (8) are equivalent with

$$\begin{split} \hat{\partial}_{S} - \hat{\Omega}_{SS} \hat{\beta}_{S} &= \frac{\gamma}{2} \text{sign} (\hat{\beta}_{S}), \\ |\hat{\partial}_{S^{c}} - \hat{\Omega}_{S^{c}S} \hat{\beta}_{S}|_{\infty} &\leq \frac{\hat{n}}{2}. \end{split}$$

Since Mai et al. (2012) proved that $\hat{\beta}_A^{ol.,\gamma}$ is asymptotically close to $\tilde{\beta}_A^{Bayes}$ and (3) can recover the support of $\tilde{\beta}^{Bayes}$, I will show that $\hat{\beta}^{\gamma,\hat{\jmath}l}$ can asymptotically obtain $\hat{\beta}^{ol.,\gamma}$.

Non-asymptotic properties V

Tail probabilities and Karush Kuhn Tucker conditions

Theorem

Let $m_A := |\tilde{\beta}_A^{\text{Bayes}}|_{\min}$. Pick any τ , γ and $\hat{\jmath}$ so $\hat{\jmath} > \gamma \times \max(1, \kappa) \ge 0$ and $m_A > \tau(\hat{\jmath} - \gamma) + \varphi \gamma/2$. then,

$$P\left(\hat{\beta}^{ol,\gamma} \in \Xi^{\gamma,\hat{n}}\right) \ge 1 - 2p \exp\left[-nc_2\left\{\frac{\hat{n}(1-\varphi\epsilon_1) - \gamma(\kappa+\varphi\epsilon_1)}{4(1+\kappa)}\right\}^2\right]$$
$$-2ps \exp(-c_1n\epsilon_1^2/s^2) - 2s^3 \exp(-c_1n\epsilon_2^2/s^2) - 2s^2 \exp(-c_2n\epsilon_2^2)$$

for any positive
$$\epsilon_1 < \min \left[\epsilon_0, 1/\varphi, \frac{\widehat{\jmath} - \kappa \gamma}{\varphi \{4\psi(1+\kappa) + \widehat{\jmath} + \gamma\}} \right]$$
 and $\epsilon_2 < \min \left[\epsilon_0, \frac{m_A - \tau(\widehat{\jmath} - \gamma) - \varphi \gamma/2}{\varphi \{1 + \psi \varphi + m_A - \tau(\widehat{\jmath} - \gamma)\}} \right]$.

L_{Theory}

Asymptotic property I

with specified orders

Corollary

For
$$\hat{\jmath}_n = \hat{\jmath}_n$$
 and $\gamma = \gamma_n$, $P(\hat{\beta}^{oL,\gamma} \in \Xi^{\gamma,\hat{\jmath}}) \to 1$ under;

Condition 1.
$$n, p \to \infty$$
 and $\log(ps)s^2 = o(n)$,

Condition 2.
$$\sqrt{\frac{\log(ps)s^2}{n}} \ll \beta \ll m_A$$
 and $\gamma = o(\beta)$,

Condition 3. ψ , κ and φ are constants.

First condition poses a joint restriction on n and p.

For example, as mentioned in Mai et al. (2012), it holds as long as $p \ll \exp(n^{2a})$ for a < 1/2 so p is allowed to grow faster than any polynomial order of n (nonpolynomial-dimension asymptotics).

Asymptotic property II

with specified orders

In second condition, since $\gamma \leq \beta$ by the definition of the MCL, the order of m_A is specified to consistently separate the discriminative set from the non-discriminative one.

- Mai et al. (2012) included an irrepresentability condition³; the value of κ to should be less than one.
- This was relaxed in here: we can allow $\kappa > 1$ under the values of γ and β satisfying $\kappa \leq \beta/\gamma$.

 $^{^3}$ Irrepresentability condition is a sufficient condition for the asymptotic properties of $\hat{\beta}$ (oracle property & variable selection consistency) to satisfy (Meinshausen and Bühlmann, 2006; Zou, 2006; Zhao and Yu, 2006; Wainwright, 2009; Mai et al., 2012).

Simulation studies

Contents

- Motivaton
 - High-dimensional sparse LDA
 - Previous work
- 2 Main Results
 - Moderately Clipped LASSO
 - Theory
- 3 Numerical Studies
 - Simulation studies
 - Real data analysis
- 4 Conclusions

Simulation I

– Simulation studies

Design and results

$$n_j \stackrel{\mathit{iid}}{\sim} \mathit{Bin}(n,\pi_1)$$
 $(j=1,\cdots 6)$ given prior probabilities $\pi_1=\pi_2=1/2$. $\mathbf{x}_1|c_1,\cdots,\mathbf{x}_n|c_n\stackrel{\mathit{iid}}{\sim} N_p(\mu_c,\Sigma)$. WLOG, set $\mu_1=\mathbf{0}$ so that $\mu_2=\Sigma\beta^{\mathit{Bayes}}$ where β^{Bayes} represents the Bayes classification direction. The values of β^{Bayes} and Σ satisfies $\kappa>1$, violating the irrepresentability condition.

Table: Simulation Settings

Model number	nj	р	Σ	$oldsymbol{eta}^{ extit{Bayes}}$		
<i>j</i> = 1, ⋯ , 6	$100\times 2^{j-1}$	400	$\Sigma_{rc} = \begin{cases} 0.5^{l(r \neq c)} & r \in A, c \in A \\ 0.5^{ r-c } & o.w. \\ (r, c = 1, \cdots p) \end{cases}$	$0.556 \begin{pmatrix} 3\\1.5\\0\\0\\0\\0_{\rho-5}^2 \end{pmatrix}$		

Simulation II

Design and results

- LASSO and the MCP (with $\tau=2$) estimators obtained from training data of size n_j
- Tuning parameters were selected by 5-fold cross-validation based on Root Mean Squared Error (RMSE).
- For the MCL, $\tau=2$ and estimators for γ : $1.3^k \hat{\gamma}$ with $k=-4,-3,\cdots,3,4$, where $\hat{\gamma}$ is the optimally selected value of $\hat{\beta}$ for the LASSO estimator.
- Tuned $\hat{\jmath}$ through 5-fold cross-validation to ensure a better prediction accuracy.

For the prediction assessment, I generated new test data of size 2n. 200 replications were conducted using medians and standard errors of each measure.

Numerical Studies

Simulation studies

Simulation III

Design and results

Table: Simulation Results

Model		MCP	MCL _v									LASSO
			$1.3^{-4}\hat{\gamma}$	$1.3^{-3}\hat{\gamma}$	$1.3^{-2}\hat{\gamma}$	$1.3^{-1}\hat{\gamma}$	ŷ	$1.3^{1}\hat{\gamma}$	$1.3^2 \hat{\gamma}$	$1.3^3 \hat{\gamma}$	$1.3^4 \hat{\gamma}$	
1	Error (%)	11	11	10.5	10	9	8	8	7.5	7.5	8.5	7.5
	s.e.	(0.029)	(0.031)	(0.031)	(0.028)	(0.027)	(0.024)	(0.023)	(0.024)	(0.024)	(0.025)	(0.022)
	True.Sel.	1	1	1	1	2	2	2	2	2	2	3
	s.e.	(0.071)	(0.57)	(0.636)	(0.746)	(0.734)	(0.73)	(0.688)	(0.668)	(0.704)	(0.741)	(0.353)
	False.Sel.	0	0	1	1	1	1	0	0	0	0	5.5
	s.e.	(1.692)	(11.062)	(12.483)	(12.775)	(10.725)	(8.873)	(6.952)	(3.579)	(1.942)	(0.676)	(11.504)
2	Error (%)	9.25	8.75	8.375	8	8	7.5	7.25	7.25	7.25	7.5	7.25
	s.e.	(0.021)	(0.02)	(0.019)	(0.021)	(0.019)	(0.017)	(0.016)	(0.014)	(0.015)	(0.015)	(0.014)
	True.Sel.	1	2	2	2	2	3	3	3	3	3	3
	s.e.	(0.419)	(0.523)	(0.565)	(0.605)	(0.649)	(0.56)	(0.476)	(0.461)	(0.456)	(0.524)	(0.1)
	False.Sel.	1	1	1	1	2	2	1	0	0	0	8
	s.e.	(2.835)	(5.523)	(6.837)	(9.003)	(9.699)	(8.573)	(4.504)	(1.906)	(0.73)	(0.198)	(11.804)
3	Error (%)	8.062	7.625	7.5	7.375	7.125	7	7	6.875	6.875	7	7
	s.e.	(0.014)	(0.011)	(0.011)	(0.011)	(0.01)	(0.01)	(0.009)	(0.009)	(0.009)	(0.009)	(0.009)
	True.Sel.	2	2	2	2	3	3	3	3	3	3	3
	s.e.	(0.474)	(0.472)	(0.549)	(0.587)	(0.495)	(0.371)	(0.32)	(0.232)	(0.186)	(0.196)	(0)
	False.Sel.	2	2	2	2	1	1	0	0	0	0	10
	s.e.	(3.555)	(3.852)	(4.721)	(4.678)	(8.041)	(9.289)	(3.464)	(0.962)	(0.3)	(0.157)	(11.062)

Simulation studies

Simulation IV

Design and results

Model		MCP					MCL_{ν}					LASSO
			$1.3^{-4}\hat{\gamma}$	$1.3^{-3}\hat{\gamma}$	$1.3^{-2}\hat{\gamma}$	$1.3^{-1}\hat{\gamma}$	ŷ	$1.3^{1}\hat{\gamma}$	$1.3^2 \hat{\gamma}$	$1.3^3 \hat{\gamma}$	$1.3^4\hat{\gamma}$	
4	Error (%)	7.469	7.125	7.063	7	6.937	6.937	6.937	6.937	6.937	6.937	7
	s.e.	(0.009)	(0.008)	(0.007)	(0.007)	(0.007)	(0.007)	(0.007)	(0.007)	(0.006)	(0.006)	(0.007)
	True.Sel.	2	3	3	3	3	3	3	3	3	3	3
	s.e.	(0.476)	(0.511)	(0.453)	(0.397)	(0.332)	(0.238)	(0.157)	(0.071)	(0)	(0.071)	(0)
	False.Sel.	3	3	2	1	1	0.5	0	0	0	0	10
	s.e.	(4.102)	(3.387)	(3.143)	(3.308)	(3.906)	(6.904)	(3.491)	(0.908)	(0.258)	(0.071)	(10.367)
5	Error (%)	7.094	6.906	6.875	6.875	6.844	6.844	6.844	6.828	6.812	6.812	6.844
	s.e.	(0.006)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
	True.Sel.	3	3	3	3	3	3	3	3	3	3	3
	s.e.	(0.491)	(0.401)	(0.368)	(0.332)	(0.264)	(0.196)	(0.157)	(0.071)	(0)	(0)	(0)
	False.Sel.	2	0	0	0	0	0	0	0	0	0	16
	s.e.	(2.941)	(1.813)	(1.579)	(1.785)	(4.906)	(8.862)	(4.028)	(0.943)	(0.198)	(0)	(12.005)
6	Error (%)	6.93	6.859	6.859	6.859	6.844	6.844	6.812	6.812	6.812	6.797	6.844
	s.e.	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
	True.Sel.	3	3	3	3	3	3	3	3	3	3	3
	s.e.	(0.448)	(0.372)	(0.337)	(0.32)	(0.264)	(0.208)	(0.122)	(0.071)	(0)	(0)	(0)
	False.Sel.	0	0	0	0	0	0	1	0	0	0	21.5
	s.e.	(1.495)	(2.375)	(4.047)	(4.71)	(7.728)	(9.494)	(4.968)	(1.109)	(0.196)	(0)	(11.578)

Simulation V

Design and results

- The LASSO has a great accuracy overall yet shows the largest counts of irrelevant variable selection.
- MCL: selected the true variables and excluded the non-discriminant variables from the model, and even better prediction accuracy than LASSO
- The MCL with $\gamma=1.3^3\hat{\gamma}\approx 2.2\hat{\gamma}$: the best accuracy except model 6 in which ranked the second accuracy by the difference of 0.015%.
- The LASSO sensed all three discriminative variables but numbers of the false selection tended to increase; 5.5, 8, 10, 10, 16 and 21.5 false selections.
- MCP also succeeded to show variable selection consistency.

Simulation VI

Design and results

lacksquare Boxplots of estimators and $ilde{eta}_A^{ extit{Bayes}}$ (dotted lines)

Estimation

- Sample size \uparrow \Rightarrow center-concentrated estimators
- lacksquare $\hat{eta}_A^{\hat{\gamma},\hat{\jmath}^{CV}} pprox \hat{eta}_A^{\hat{\gamma},\hat{\gamma}}$ for all models
- The MCL tended to underestimate as the value of γ increases because the estimation became sparser.

Real data analysis

Contents

- Motivaton
 - High-dimensional sparse LDA
 - Previous work
- 2 Main Results
 - Moderately Clipped LASSO
 - Theory
- 3 Numerical Studies
 - Simulation studies
 - Real data analysis
- 4 Conclusions

Numerical Studies
Real data analysis

Prostate cancer data analysis I

Table: Prostate data analysis, $\tau=2$ for MCP and MCL.

	MCP	$MCL_{\mathcal{V}}$									LASSO
		$1.3^{-4}\hat{\gamma}$	$1.3^{-3}\hat{\gamma}$	$1.3^{-2}\hat{\gamma}$	$1.3^{-1}\hat{\gamma}$	ŷ	$1.3^{1}\hat{\gamma}$	$1.3^2 \hat{\gamma}$	$1.3^3 \hat{\gamma}$	$1.3^4\hat{\gamma}$	
Error (%)	22.857	8.571	8.571	8.571	8.571	11.429	8.571	8.571	11.429	11.429	8.571
s.e.	(0.076)	(0.044)	(0.046)	(0.047)	(0.048)	(0.048)	(0.051)	(0.052)	(0.06)	(0.064)	(0.044)
fit size	3	25	23	21	19	17	15	14	13	12	50
s.e.	(2.119)	(5.293)	(4.977)	(4.655)	(4.576)	(4.672)	(4.609)	(4.566)	(5.778)	(6.19)	(5.573)

Prostate cancer data analysis II

- Prostate tumor gene expression dataset (Singh et al., 2002); available on R package sda
- train to test data split = 2 : 1
- The MCL with $\gamma=1.3^2\hat{\gamma}\approx 1.7\hat{\gamma}$ showed the best performance.
- Even though the larger value of γ can make a simpler model possible, it will cost a large amount of accuracy loss.
- LASSO also predicted accurately but failed to narrow the pool of variables and simplify the model.

Prostate cancer data analysis III

Figure: Boxplots of the fit size

mcl1 through mcl9 indicate MCL with $\gamma=1.3^{-4}\hat{\gamma},\cdots$, $1.3^{4}\hat{\gamma}$

Conclusions

- With the control of MCL regularization parameter added with the tuning parameter, it is possible searching for the optimal set of estimators.
- MCL is successful in the application of sparse LDA; the concave penalty is the breakthrough in relaxing the irrepresentability condition.
- MCL can simultaneously obtain great prediction accuracy and select true variables.
- \blacksquare Numerical studies showed that the MCL can select the value of γ properly using the optimal tuning parameter for the LASSO.

Conclusions

Conclusions

End of the presentation

Thank You

References

- Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 96(456), 1348-1360.
- Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. The annals of applied statistics, 1(2), 302-332.
- Kim, D., Lee, S., & Kwon, S. (2018). A unified algorithm for the non-convex penalized estimation: The ncpen package. arXiv preprint arXiv:1811.05061.
- Kim, Y., Choi, H., & Oh, H. S. (2008). Smoothly clipped absolute deviation on high dimensions. Journal of the American Statistical Association, 103(484), 1665-1673.
- Kwon, S., Lee, S., & Kim, Y. (2015). Moderately clipped LASSO. Computational Statistics & Data Analysis, 92, 53-67.
- Lee, S. & Kwon, S. (2015) Moderately Clipped LASSO for the Sparse High-Dimensional Logistic Regression Models. Journal of the Korean Data Analysis Society, 17, 1145-1154.
- Mai, Q., Zou, H., & Yuan, M. (2012). A direct approach to sparse discriminant analysis in ultra-high dimensions. Biometrika, 99(1), 29-42.
- Meinshausen, N., & Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. *The annals of statistics*, 34(3), 1436-1462.
- Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., ... & Lander, E. S. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer cell, 1(2), 203-209.
- Sun, X., Choi, H., & Kwon, S. (2014) A Sparse Ridge Estimation for the Sparse Logistic Regression Model. Journal of the Korean Data Analysis Society, 16(4), 1715-1725.

References

- Wainwright, M. J. (2009). Sharp thresholds for High-Dimensional and noisy sparsity recovery using ℓ_1 -Constrained Quadratic Programming (Lasso). *IEEE transactions on information theory*, 55(5), 2183-2202.
- Witten, D. M., & Tibshirani, R. (2011). Penalized classification using Fisher's linear discriminant. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(5), 753-772.
- Wu, M. C., Zhang, L., Wang, Z., Christiani, D. C., & Lin, X. (2009). Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection. Bioinformatics, 25(9), 1145-1151.
- Yuille, A. L., & Rangarajan, A. (2003). The concave-convex procedure. Neural computation, 15(4), 915-936.
- Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of statistics, 38(2), 894-942.
- Zhao, P., & Yu, B. (2006). On model selection consistency of Lasso. Journal of Machine learning research, 7(Nov), 2541-2563.
- Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical association, 101(476), 1418-1429.