Algorithms and Data Structures

Random Numbers (Adaptive) Rejection Sampling

Learning goals

- Rejection sampling
- Adaptive rejection sampling

REJECTION SAMPLING

- Aim: Generate random numbers X from a distribution with density $f_X(x)$.
- Idea: Draw Y from distribution with density $f_Y(y)$ (Proposal density) instead; there must be a β with $0 < \beta < 1$ such that $\beta f_X(x) \le f_Y(x)$ for all $x \in \text{supp}(X)$.
- Accept Y as a random number from $f_X(x)$ with probability

$$\alpha = \alpha(Y) = \beta \cdot \frac{f_X(Y)}{f_Y(Y)}$$

REJECTION SAMPLING / 2

Note: In this plot α is shown as a percentage of the "total distance", so it does not refer to the y-axis in the plot.

REJECTION SAMPLING / 3

Algorithm Rejection Sampling

- 1: Initialization: f_Y , f_X , β , N (number of RV needed)
- 2: $i \leftarrow 0$
- 3: while $i \neq N$ do
- 4: Create a random number Y from f_Y ($Y \sim f_Y$)
- 5: Calculate $\alpha(Y) = \frac{\beta f_X(Y)}{f_Y(Y)}$
- 6: Create a random number $U \sim U(0,1)$ independent of Y
- 7: if $U \leq \alpha(Y)$ then
- 8: Accept Y
- 9: $i \leftarrow i+1$
- 10: **else**
- 11: Reject Y
- 12: **end if**
- 13: end while

PROOF: REJECTION SAMPLING

$$P(Y \le x \mid U \le \alpha(Y)) = \frac{P(Y \le x, U \le \alpha(Y))}{P(U \le \alpha(Y))}$$

Y, U independent \Rightarrow common density $f(y, u) = f_Y(y) \cdot 1 = f_Y(y)$

$$P(Y \le x, U \le \alpha(Y)) = \int_{-\infty}^{x} \int_{0}^{\alpha(y)} f_{Y}(y) \, du \, dy = \int_{-\infty}^{x} \alpha(y) f_{Y}(y) \, dy$$
$$= \int_{-\infty}^{x} \beta \frac{f_{X}(y)}{f_{Y}(y)} f_{Y}(y) \, dy = \beta \int_{-\infty}^{x} f_{X}(y) \, dy$$

$$P(U \le \alpha(Y)) = P(Y \le \infty, U \le \alpha(Y)) = \beta \int_{-\infty}^{\infty} f_X(y) dy = \beta$$

PROOF: REJECTION SAMPLING / 2

In summary we obtain exactly what was required

$$P(Y \leq x \mid U \leq \alpha(Y)) = \int_{-\infty}^{x} f_X(y) dy.$$

The closer f_Y to f_X , the closer α to 1.

⇒ There is less rejection, hence it is faster.

However, random variables of Y should be generated as quickly as possible.

Note: β is the probability of Y being accepted. The greater β , the better.

 β itself is not needed in the algorithm (only $\alpha(Y)$).

⇒ calculation of normalization constants not always needed.

EXAMPLE: NORMAL DISTRIBUTION

Only to illustrate Rejection Sampling! Rejection Sampling from $\mathcal{N}(0,1)$ -distribution via Cauchy distribution (therefore we have Inverse transform sampling):

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}x^2)$$

 $f_Y(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}$

It is easy to show that $\beta = \inf_{V} \frac{f_{V}(y)}{f_{X}(y)} = \sqrt{\frac{e}{2\pi}} \approx 0.657$.

The probability of acceptance $\alpha(Y)$ is

$$\alpha(Y) = \frac{\beta f_X(Y)}{f_Y(Y)}$$
$$= \frac{\sqrt{e}}{2} (1 + y^2) \exp(-\frac{1}{2}y^2).$$

EXAMPLE: NORMAL DISTRIBUTION / 2

EXAMPLE: NORMAL DISTRIBUTION / 3

ADAPTIVE REJECTION SAMPLING

Often it is difficult to find a "good" proposal density f_Y . **Adaptive** rejection sampling (ARS) is an approach to construct adaptive proposal densities. ARS is based on the following ideas:

- Working with log densities (often algebraically simpler)
- \bullet Use piecewise linear density functions for f_Y
- Adapt f_Y as soon as a proposal Y is rejected

ADAPTIVE REJECTION SAMPLING /2

Procedure:

- Construction of the proposal density f_Y
 - $\bullet \quad \text{Start with } M := \{y_1, \dots, y_k\}$
 - **2** Evaluate the log density $I_X := \log f_X(y)$ for all $y \in M$ and find the tangent lines at these points
 - **9** Define a piecewise linear function which is composed of the tangent lines: $I_Y \rightarrow$ upper bound for I_X

3 Back-transform: $f_Y := \exp(I_Y)$

ADAPTIVE REJECTION SAMPLING /3

Rejection sampling:

- Create a random number $Y \sim f_Y$ (*)
- Calculate $\alpha(Y) = \frac{\exp(I_X(Y))}{\exp(I_Y(Y))} = \exp(I_X(Y) I_Y(Y))$
- Create $U \sim U(0,1)$
 - If $U \leq \alpha(Y)$: Accept Y
 - Otherwise: Reject Y, add this point to M → M ∪ Y and go to step 1

(*) A method for "sampling" f_Y and an implementation can be found here: https://blog.inferentialist.com/2016/09/26/adaptive-sampling.html