The IEEE standard defines a binary representation for floating point using sign, significant, and mantissa.

Sign	Exponent	Significand
1 hit	8 hits	23 hits

For normalized floats:

Value = (-1)^{Sign} x 2^(Exponent - Bias) x 1.significand₂

For denormalized floats:

Value = $(-1)^{Sign} \times 2^{(Exponent - Bias + 1)} \times 0.significand_2$

Exponent	Significand	Meaning
0	Anything	Denorm
1-254	Anything	Normal
255	0	Infinity
255	Nonzero	NaN

bias =
$$\binom{(Exponent birs-1)}{2}$$

$$2^{9-1}-1=2^{7}-1=126-1=127$$

denoting Stride
$$\exp 0$$

 $2^{-126} \times 0.0.1 = 2^{-126} \times 2^{-23} = 2^{-149}$ - smallest Pos denorms
 $2^{-126} \times 0.0.10 = 2^{-126} \times 2^{-22} = 2^{-148}$ - Gecord Smallest Pos de norms
 $2^{-148} \times 2^{-148} = 2^{-148} (1 - 2^{-1}) = 2^{-148} \times 2^{-1} = 2^{-149}$ denorm Strike

$$2^{-126} \times 1.0.01 = 2^{-126} \times (1 + 2^{-23}) = 2^{-126} + 2^{-149}$$
 Smallest horm Stride.

each time exponent increases, Stride doubles so when exp=2 Stride = 2-148

$$2^{x-127} \times 2^{-23} = 1$$

$$2^{x-150}$$

flow many #'s between 1-2?

next hum 2128-127 x 1.0...0= 2 = 2

notice we have all values reflesentable by Significand between $1-2=2^{23}$ things Same between 2-4 there are 2^{23} HS. Equally Spaced Fuler between Powers of 2 with 2 Sig Size #15 between.

Note:

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

$$\sum_{i=0}^{2^{2}} 2^{i} = 2^{2^{3}} - 1$$

2-4 $2^{23}-2^{1}+2^{22}$

$$\frac{3-7}{2^{2}} = \frac{3^{2}}{2^{2}} = \frac{3-7}{2^{2}} = \frac{3-7}{2^{2$$

= 0x 42 1 E4000

129

```
CS
61C
```

Example: Representing 1/3

Understanding the Significand (1/2)

Berkeley

Method 1 (Fractions):

```
□ In decimal: 0.340_{10} \Rightarrow 340_{10}/1000_{10} \Rightarrow 34_{10}/100_{10}
```

□ In binary:
$$0.110_2$$
 $\Rightarrow 110_2/1000_2 = 6_{10}/8_{10}$
 $\Rightarrow 11_2/100_2 = 3_{10}/4_{10}$

 Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Berkeley UNIVERSITY OF CALIFORNIA

Floating Point (30)

Understanding the Significand (2/2)

- Method 2 (Place Values):
 - Convert from scientific notation
 - In decimal:

```
1.6732 = (1x10^{\circ}) + (6x10^{-1}) + (7x10^{-2}) + (3x10^{-3}) + (2x10^{-4})
```

- In binary:
- $1.1001 = (1x2^{0}) + (1x2^{-1}) + (0x2^{-2}) + (0x2^{-3}) + (1x2^{-4})$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating FP numbers

Floating Point Fallacy

Not associated

FP add associative?

$$x = -1.5 \times 10^{38}$$
, $y = 1.5 \times 10^{38}$, and $z = 1.0$

$$x + (y + z) = -1.5x10^{38} + (1.5x10^{38} + 1.0)$$

$$= -1.5x10^{38} + (1.5x10^{38}) = 0.0$$

$$(x + y) + z = (-1.5x10^{38} + 1.5x10^{38}) + 1.0$$

$$= (0.0) + 1.0 = \underbrace{1.0}$$

- Therefore, Floating Point add is not associative!
 - Why? FP result <u>approximates</u> real result!
 - ^o This example: 1.5×10^{38} is so much larger than 1.0 that $1.5 \times 10^{38} + 1.0$ in floating point representation is still 1.5×10^{38}

$$\frac{1}{2} = .5$$

$$\frac{1}{2} = .25$$

$$\frac{1}{3} = 0.0625$$

$$\frac{1}{3} = 0.03125$$

$$\frac{1}{64} = 0.015625$$

$$\frac{2}{2} \times 1.0011$$

$$\frac{2}{2} \times 1.0011$$

$$\frac{1025 - 1023}{2}$$

$$\frac{1023 - 1023}{2}$$

heg

Pos

n	2^{n}
-1	0.5
-2	0.25
-3	0.125
-4	0.0625
-5	0.03125
-6	0.015625
-7	0.0078125
-8	0.00390625
-9	0.001953125
-10	0.0009765625
-11	0.00048828125
-12	0.000244140625
-13	0.0001220703125
-14	0.00006103515625
-15	0.000030517578125
-16	0.0000152587890625
-17	0.00000762939453125
-18	0.000003814697265625
-19	0.0000019073486328125
-20	0.00000095367431640625
-21	0.000000476837158203125
-22	0.0000002384185791015625
-23	0.00000011920928955078125
-24	0.000000059604644775390625
-25	0.0000000298023223876953125

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{8} = 256$
 $2^{9} = 512$
 $2^{10} = 1024$
 $2^{11} = 2048$
 $2^{12} = 4096$
 $2^{13} = 8192$
 $2^{14} = 16384$
 $2^{15} = 32768$
 $2^{16} = 65536$
 $2^{17} = 131072$
 $2^{18} = 262144$
 $2^{19} = 524288$
 $2^{20} = 1048576$
 $2^{21} = 2097152$
 $2^{22} = 4194304$
 $2^{23} = 8388608$
 $2^{24} = 16777216$
 $2^{25} = 33554432$

3 exp bias = -3

4 mantifa.
$$2^{5-3} \times 1.0..0 = 2^{\circ} = 1$$

2° x 1. 0...1 = $1(1+2^{-4})$

60 bias = -15

QX

C

-5. 25

2x 101.01

 $2^2 \times 1.0101$

Ob 1 0001

2ex-15 ex= 17

Left Rad to convert

[9 bits
13
1100 5
11 1000 | 610 | 00000000

5 ex 5 010 | Sig.

0110 0010 1010 0000 0000

Part B

decimal = FP

39, 5625

6=4.1.5