Reconnaître une suite arithmétique

Suite définie explicitement

Une suite donnée sous forme explicite peut être une suite arithmétique. Par exemple la suite (u_n) définie pour tout entier naturel n par u(n)=n+4 est une suite arithmétique. Comment le prouver?

- 1. Exprimer u(n+1).
- 2. Calculer u(n+1) u(n).
- 3. Si le résultat est une constante, ie. si le résultat ne dépend pas de la variable n, alors la suite est arithmétique.

EXEMPLE

« Montrer que la suite (u_n) définie pour tout entier naturel n par u(n)=n+4 est une suite arithmétique. »

Réponse:

- 1. u(n+1) = (n+1) + 4 = n+1+4 = n+5
- 2. u(n+1) u(n) = (n+5) (n+4) = n+5-n-4 = 1.
- 3. Comme le résultat de u(n+1)-u(n) est une constante (1), la suite est arithmétique de raison 1. On peut donc réécrire u sous la forme :

$$u(n+1) = u(n) + 1$$

Reconnaître une suite arithmétique graphiquement

Graphiquement, une suite arithmétique sera un ensemble de points alignés.

Exemple

La suite u représentée graphiquement ci-dessous est une suite arithmétique car l'ensemble des points est aligné.

Suites géométriques

DÉFINITION

On dit qu'une suite est **géométrique** quand on passe d'un terme au suivant en multipliant toujours par le même nombre. Ainsi, pour tout n:

$$u(n+1) = u(n) \times q$$

On appelle ce nombre q la raison de la suite géométrique.

EXEMPLE

- La suite $u(n+1) = u(n) \times 7$ est une suite géométrique dont la raison est 7.
- La suite $u(n) = -6 \times u(n-1)$ est une suite géométrique dont la raison est -6.

Remarque

Nous nous limiterons cette année aux suites géométriques dont la raison est positive

Monotonie

- Si q > 1, la suite est strictement croissante.
- Si 0 < q < 1, la suite est strictement décroissante.

EXEMPLE

La suite u définie par tout entier naturel par u(n+1)=5u(n) est une suite croissante.

La suite v définie par tout entier naturel par $v(n+1)=\frac{v(n)}{2}$ est une suite décroissante.

Reconnaître une suite géométrique

Suite définie explicitement

Une suite donnée sous forme explicite peut être une suite géométrique. Par exemple la suite (u_n) définie pour tout entier naturel n par $u(n)=4^n$ est une suite géométrique. Comment le prouver?

- 1. Exprimer u(n+1).
- 2. Calculer $\frac{u(n+1)}{u(n)}$.
- 3. Si le résultat est une constante alors la suite est géométrique.