Lecture 8 Strong Duality Results

September 22, 2008

Outline

- Slater Condition and its Variations
- Convex Objective with Linear Inequality Constraints
- Quadratic Objective over Quadratic Constraints
- Representation Issue
- Multiple Dual Choices

General Convex Problem

Primal Problem

minimize
$$f(x)$$

subject to $g_j(x) \leq 0, \quad j = 1, \dots, m$
 $a_i^T x = b_i, \quad i = 1, \dots, r$
 $x \in X$

Assumption used throughout the lecture

Assumption 1.

- The objective f and all g_j are convex
- ullet The set $X\subseteq \mathbb{R}^n$ is nonempty and convex
- ullet The optimal value f^* is finite

Slater Condition for Inequality Constrained Problem

Convex Primal Problem

minimize
$$f(x)$$

subject to $g_j(x) \le 0, \quad j = 1, ..., m$
 $x \in X$

Slater Condition There exists a vector $\bar{x} \in X \cap \text{dom} f$ such that

$$g_j(\bar{x}) < 0$$
 for all $j = 1, \ldots, m$.

Observation: The Slater condition is a condition on the constraint set only when $dom f = \mathbb{R}^n$

Theorem Let Assumption 1 and the Slater condition hold. Then:

- There is no duality gap, i.e., $q^* = f^*$
- The set of dual optimal solutions is nonempty and bounded

Proof

Consider the set $V \subset \mathbb{R}^m \times \mathbb{R}$ given by

$$V = \{(u, w) \mid g(x) \le u, \ f(x) \le w, \ x \in X\}$$

The Slater condition is illustrated in the figures below.

The set V is convex by the convexity of f, $g_j's$, and X.

Proof continues

The vector $(0, f^*)$ is not in the interior of the set V. Suppose it is, i.e., $(0, f^*) \in \text{int} V$. Then, there exists an $\epsilon > 0$ such that $(0, f^* - \epsilon) \in V$ contradicting the optimality of f^* .

Thus, either $(0, f^*) \in \mathrm{bd}V$ or $(0, f^*) \notin V$. By the Supporting Hyperplane Theorem, there exists a hyperplane passing through $(0, f^*)$ and supporting the set V: there exists $(\mu, \mu_0) \in \mathbb{R}^m \times \mathbb{R}$ with $(\mu, \mu_0) \neq 0$ such that

$$\mu^T u + \mu_0 w \ge \mu_0 f^* \qquad \text{for all } (u, w) \in V \tag{1}$$

This relation implies that $\mu \succeq 0$ and $\mu_0 \geq 0$.

Suppose that $\mu_0 = 0$. Then, $\mu \neq 0$ and relation (1) reduces to

$$\inf_{(u,v)\in V} \mu^T u = 0$$

On the other hand, by the definition of the set V, since $\mu \succeq 0$ and $\mu \neq 0$, we have

$$\inf_{(u,v)\in V} \mu^T u = \inf_{x\in X} \mu^T g(x) \le \mu^T g(\bar{x}) < 0 \quad \text{- a contradiction}$$

Hence, $\mu_0 > 0$ (the supporting hyperplane is nonvertical), and by dividing with μ_0 in Eq. (1), we obtain

$$\inf_{(u,v)\in V} \left\{ \tilde{\mu}^T u + w \right\} \ge f^*$$

with $\tilde{\mu} \succeq 0$. Therefore,

$$q(\tilde{\mu}) = \inf_{x \in X} \left\{ f(x) + \tilde{\mu}^T g(x) \right\} \ge f^* \quad \text{with } \tilde{\mu} \succeq 0$$

implying that $q^* \geq f^*$. By the weak duality $[q^* \leq f^*]$, it follows that $q^* = f^*$ and $\tilde{\mu}$ is a dual optimal solution.

We now show that the set of dual optimal solutions is bounded. For any dual optimal $\tilde{\mu} \succeq 0$, we have

$$q^* = q(\tilde{\mu}) = \inf_{x \in X} \left\{ f(x) + \tilde{\mu}^T g(x) \right\}$$

$$\leq f(\bar{x}) + \tilde{\mu}^T g(\bar{x})$$

$$\leq f(\bar{x}) + \max_{1 \leq j \leq m} \left\{ g_j(\bar{x}) \right\} \sum_{j=1}^m \tilde{\mu}_j$$

Therefore, $\min_{1 \leq j \leq m} \{-g_j(\bar{x})\} \sum_{j=1}^m \tilde{\mu}_j \leq f(\bar{x}) - q^* \text{ implying that }$

$$\|\tilde{\mu}\| \le \sum_{j=1}^{m} \tilde{\mu}_j \le \frac{f(\bar{x}) - q^*}{\min_{1 \le j \le m} \{-g_j(\bar{x})\}}$$

Example

l_{∞} -Norm Minimization

minimize
$$||Ax - b||_{\infty}$$

Equivalent to

minimize
$$t$$
 subject to $a_j^Tx-b_j-t\leq 0,\ j=1,\ldots,m$ $b_j-a_j^Tx-t\leq 0,\ j=1,\ldots,m$ $(x,t)\in\mathbb{R}^n\times\mathbb{R}$

The vector (\bar{x}, \bar{t}) given by

$$\bar{x} = 0$$
 and $\bar{t} = \epsilon + \max_{1 \le j \le m} |b_j|$ for some $\epsilon > 0$

satisfies the Slater condition

We refer to a vector satisfying the Slater condition as a $Slater\ vector$

Convex Objective Over Linear Constraints

Def. A vector x_0 is in the relative interior of X when there exists a ball $B_r(x_0) = \{x \in \mathbb{R}^n \mid ||x - x_0|| \le r\}$ such that

$$B_r(x_0) \cap \operatorname{aff}(X) \subseteq X$$

The relative interior of a convex set X is the set of points that are interior with respect to the affine hull of X.

Primal Problem with Linear Inequality Constraints

minimize
$$f(x)$$

subject to $Ax \leq b$, $x \in X$

Theorem Let Assumption 1 hold. Assume that there exists a vector \tilde{x} such that

$$A\tilde{x} \leq b$$
 and $\tilde{x} \in \operatorname{relint}(X) \cap \operatorname{relint}(\operatorname{dom} f)$

Then

- There is no duality gap $(q^* = f^*)$ and
- A dual optimal solution exists

Implications

- When $dom f = \mathbb{R}^n$, the relative interior condition has to do only with the constraint set.
- The "relative interior" condition is always satisfied
 - (a) When $dom f = \mathbb{R}^n$ and $X = \mathbb{R}^n$: convex function over \mathbb{R}^n and linear constraints
 - (b) LP's: $X = \mathbb{R}^n$ and $f(x) = c^T x$.
- In these cases, by the preceding theorem:
 - Strong duality holds and optimal dual solution exists

Examples

Examples not satisfying the "relative interior" condition

minimize
$$e^{-\sqrt{x_1x_2}}$$
 subject to $x_1 \leq 0, x \in \mathbb{R}^2$

Here, $X = \mathbb{R}^2$ and the feasible set C is $C = \{x \mid x_1 = 0, x_2 \in \mathbb{R}\}$. The domain of f is the set $\{x \mid x_1 \geq 0, x_2 \geq 0\}$, thus, relint $(X) \cap \text{relint}(\text{dom} f) = \{x \mid x_1 > 0, x_2 > 0\}$.

However, none of the feasible vectors lies in $\operatorname{relint}(X \cap \operatorname{dom} f)$. Hence, the condition fails. Furthermore, **there is a gap** - Homework.

Consider the same constraint set with an objective $f(x) = -\sqrt{x_1}$. The condition is not satisfied. In this case, there is no gap, but a dual optimal solution does not exist.

Slater for a General Convex Problem

minimize
$$f(x)$$

subject to $g_j(x) \leq 0, \quad j = 1, \dots, m$
 $Ax = b, \ Dx \leq d$
 $x \in X$

Theorem Let f^* be finite, and assume that:

• There is a feasible vector satisfying the Slater condition, i.e., there is $\bar{x} \in \mathbb{R}^n$ such that

$$g(\bar{x}) \prec 0, \quad A\bar{x} = b, \quad D\bar{x} \leq d, \quad \bar{x} \in X \cap \text{dom} f$$

• There is a vector satisfying the linear constraints and belongs to the relative interior of X, i.e., there is $\tilde{x} \in \mathbb{R}^n$ such that

$$A\tilde{x} = b, \quad D\tilde{x} \leq d, \quad \tilde{x} \in \operatorname{relint}(X) \cap \operatorname{relint}(\operatorname{dom} f)$$

Then:

- There is no duality gap, i.e., $q^* = f^*$
- The set of dual optimal solutions is nonempty

Note: Conditions only on the constraint set

Theorem says nothing about the existence of primal optimal solutions

Quadratic Objective over Quadratic Constraint

minimize
$$x^TQ_0x + a_0^Tx + b_0$$

subject to $x^TQ_jx + a_j^Tx + b_j \leq 0, \quad j=1,\ldots,m$
 $x \in \mathbb{R}^n$

Theorem Let each Q_i be symmetric positive semidefinite matrix. Let f^* be finite. Then, there is no duality gap $[q^* = f^*]$ and the primal optimal set is nonempty.

Note:

- The theorem says nothing about the existence of dual optimal solutions
- Opposed to the Slater and the relative interior condition, which say nothing about the existence of the primal optimal solutions

$$\begin{array}{ll} \text{minimize} & \|x\| \\ \text{subject to} & Ax = b \\ & x \in \mathbb{R}^n \end{array}$$

Representation Issue

minimize
$$-x_2$$

subject to $||x|| \le x_1$
 $x \in X, X = \{(x_1, x_2) \mid x_2 \ge 0\}$

• The relaxation of the inequality constraint results in a dual problem, for which the dual value $q(\mu)$ is $-\infty$ for any $\mu \geq 0$ (verify yourself).

Thus,
$$q^* = -\infty$$
, while $f^* = 0$.

However, a closer look into the constraint set reveals

$$C = \{(x_1, x_2) \mid x_1 \ge 0, \ x_2 = 0\}$$

Thus the problem is equivalent to

minimize
$$-x_2$$

subject to $x_1 \ge 0$, $x_2 = 0$
 $x \in \mathbb{R}^2$

There is no gap for this problem!!! Why?

The duality gap issue is closely related to the "representation" of the constraints [the model for the constraints]

Multiple Choices for a Dual Problem

minimize
$$f(x)$$

subject to $g_j(x) \leq 0, \quad j = 1, \dots, m$
 $Ax = b, \ Dx \leq d$
 $x \in X$

- There are multiple choices for the set of "inequalities" to be relaxed
- How to choose the "right one"? There is no general rule
 - Keep box constraints, "sign" constraints if any
 - Keep constraints for which the dual function can be easily evaluated
- Will for all of them "no duality-gap" relation hold?
- What do we know about duality gaps when "multiple dual choices" exist?

Relax-All Rule

minimize
$$f(x)$$

subject to $g_j(x) \leq 0, \ j = 1, \dots, m$
 $x \in \mathbb{R}^n$

A linear equality is represented by two linear inequalities.

Theorem Let f^* be finite. Consider a dual corresponding to the relaxation of all the constraints, and assume that there is no duality gap. Then, there is no duality gap when partially relaxing the constraints.