```
import numpy as np
import pandas as pd
import sklearn

df = pd.read_csv('/content/drive/My Drive/Data Science/Data.csv')
df
```

	Country	Age	Salary	Purchased
0	France	44.0	72000.0	No
1	Spain	27.0	48000.0	Yes
2	Germany	30.0	54000.0	No
3	Spain	38.0	61000.0	No
4	Germany	40.0	NaN	Yes
5	France	35.0	58000.0	Yes
6	Spain	NaN	52000.0	No
7	France	48.0	79000.0	Yes
8	Germany	50.0	83000.0	No
9	France	37.0	67000.0	Yes

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
# Column
               Non-Null Count Dtype
0 Country
1 Age
                              object
               10 non-null
               9 non-null
                               float64
2 Salary
               9 non-null
                               float64
3 Purchased 10 non-null
                               object
dtypes: float64(2), object(2)
memory usage: 448.0+ bytes
```

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

Independent and Dependent Variable

Handling missing values - Pandas

```
df['Age'] = df['Age'].fillna(value = df['Age'].mean())
df['Salary'] = df['Salary'].fillna(value = df['Salary'].median())
df
```

	Country	Age	Salary	Purchased
0	France	44.000000	72000.0	No
1	Spain	27.000000	48000.0	Yes
2	Germany	30.000000	54000.0	No
3	Spain	38.000000	61000.0	No
4	Germany	40.000000	61000.0	Yes
5	France	35.000000	58000.0	Yes
6	Spain	38.777778	52000.0	No
7	France	48.000000	79000.0	Yes
8	Germany	50.000000	83000.0	No
9	France	37.000000	67000.0	Yes

Handling Missing Values using sklearn

Encoding Categorical data

Independent variable - Country - 3 Values

Purchased Variable - 2 values - labelencoder

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y = le.fit_transform(y)
print(y)
     [0 1 0 0 1 1 0 1 0 1]
```

Splitting dataset

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 7)
X_train
     array([['Germany', 30.0, 54000.0],
             ['Spain', 27.0, 48000.0],
['France', 37.0, 67000.0],
['France', 48.0, 79000.0],
             ['Spain', 38.0, 61000.0],
['Spain', 38.777777777778, 52000.0],
             ['Germany', 40.0, 63777.777777778]], dtype=object)
X_test
     array([['Germany', 50.0, 83000.0],
             ['France', 35.0, 58000.0],
['France', 44.0, 72000.0]], dtype=object)
y_train
     array(['No', 'Yes', 'Yes', 'No', 'No', 'Yes'], dtype=object)
y_test
     array(['No', 'Yes', 'No'], dtype=object)
Feature Scaling - Standardization
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train[:, 3:] = sc.fit_transform(X_train[:, 3:])
X_test[:,3:] = sc.transform(X_test[:,3:])
X_train
Feature Scaling - Normalization
from sklearn.preprocessing import Normalizer
nm = Normalizer()
X_train[:, 3:] = nm.fit_transform(X_train[:, 3:])
X_test[:, 3:] = nm.transform(X_test[:, 3:])
X_train
```

×