```
You could copy&paste this code into Scilab

// Scilab & chemical kinetics - intro to ode function

// A first-order reaction

// A0 = 2 mol/L

// B0 = 0 mol/L

// k=1.4e-3 1/s

// t = 0 - 3600s

// How to calculate concentration of the reagents dunring the reaction time?

// Approach 1: using of analytical solution (integral form)
```



```
// Scilab & chemical kinetics - intro to ode function
// First-order reaction
// A=>B
// A0 = 2 mol/L
// B0 = 0 mo1/L
// k=1.4e-3 1/s
// t = 0 - 3600s
// Approach 2: numerical integration of ODE
function dy=model(t, y)
 //our chemical species
 A = y(1)
  B = y(2)
  //our chemical kinetics equations
  dAdt = -k*A
  dBdt = k*A
  dy = [dAdt, dBdt]
endfunction
                         time = 0...3600
A0 = 2
B0 = 0
k = 1.4e-3
t = linspace(0, 3600)
                                             Must be always provided to ode function
//initial conditions (IC)
y0 = [A0; B0]
                                           The heart, calling ode function:
t0 = 0
                                            ordinary differential equation solver
y = ode(y0, t0, t, model)
A=y(1,:)
B=y(2,:)
                               Selecting first and second row of y vector,
plot(t,A,'b')
                               here A and B concentations
plot(t,B,'g')
```

Please remember that variables: t, A and B are vectors!

Use "Variable browser" to check it

ii iabi	e Browser						
	Name	Value	Type	Visibility			
	Α	1x100	Double	loc			
	A0	2	Double	loc			
	В	1x100	Double	loc			
	B0	0	Double	loc			
\mathcal{V}	ans	1x1	Graphic handle	loc			
\mathcal{V}	ged_handle	1x1	Graphic handle	glob			
	k	0.0014	Double	loc			
	t	1x100	Double	loc			

Anatomy of "t" variable: it is a 100 elements vector of values from 0 to 3600 (check linspace function in Scilab manual)

Variable "A" content

	Index = 1	L	Index = 4			Ca
						ro iı □ co
Variable: t	1	2	3	4		Co
	0	36.36	72.72	109.09		
						_
Variable: A	1	2	3	4		
	2	1.9	1.8	1.71		
Variable: B	1	2	3	4		
	0	0.099	0.19	0.28		
						_
		t(4) = 109.09 A(4) = 1.71 B(4) = 0.28				
At time	0 [A]=2 a)	At time 109.09 [A]=1.71 a			

Calculation results interpretation cont.

nd [B]=0.28