Theorem 1. Let M be a finitely generated R-module and $I \subset \operatorname{Jac}(R)$ an ideal such that IM = M. Then M = 0.

Proof. We prove the statement through contradiction.

- 1. Assume $M \neq 0$.
- 2. Since M is finitely generated, it has a generating system $m_1, \ldots, m_n \in M$. Assert that this generating system is minimal.
- 3. With IM = M, there is an equation

$$m_1 = a_1 m_1 + \cdots + a_n m_n$$

for some $a_1, \ldots, a_n \in I$.

4. We may rewrite

 $m_1 = a_1 m_1 + \dots + a_n m_n \iff m_1 - a_1 m_1 = a_2 m_2 + \dots + a_n m_n$

$$\iff (1 - a_1)m_1 = a_2m_2 + \dots + a_nm_n$$

- 5. Since $a_1 \in I \subset \operatorname{Jac}(A)$, $1 a_1$ is a unit in R.
- $6.\ \ \mbox{We arrive at a contradiction with the minimality of the genrating system.}$

Theorem 2. Let M be a finitely generated R-module, $I \subset \operatorname{Jac}(R)$ an ideal, and N a submodule of M such that M = N + IM. Then M = N.

Proof. 1. M = N + IM implies M/N = (N + IM)/N = 0 + I(M/N) = I(M/N).

- 2. M/N is finitely generated.
- 3. Applying Nakayama yields
- 4. M/N = 0
- 5. Thus M = N.

Theorem 3. Let R be a local ring with maximal ideal \mathfrak{m} and M a finitely generated R-module.

- 1. Then $M/\mathfrak{m}M$ is a vector space over the field $R/\mathfrak{m}.$
- 2. If $x_1,\ldots,x_n\in M$ are elements such that $x_1,\ldots,x_n\in M/\mathfrak{m}M$ generates this vector space, then $M=\sum_{i=1}^nRx_i$

Theorem 4. Let I be an nilpotent ideal in R and M be an R-module such that IM = M. Then M = 0.

Proof. 1. IM = M implies $I \cdot IM = IM = M$. 2. Induction yields $I^nM = M = 0$.