Please report any typos/issues on Campuswire.

Start reading Chapter 6 of Rosenlicht. Problems:

- 1 Let $f:(0,\infty)\to\mathbb{R}$ be a function. Suppose $\lim_{x\to 0} f(x)$ exists and equals L. Let g(u)=f(1/u). Prove that $\lim_{u\to +\infty} g(u)$ exists and equals L as well. That is, prove that given $\varepsilon>0$ there is $M\in\mathbb{R}$ so that $|g(u)-L|<\varepsilon$ for all u>M.
- **2(a)** Suppose $f, g:(a,b) \to \mathbb{R}$ are two functions, $c \in (a,b)$, the limits $\lim_{x\to c} f(x)$, $\lim_{x\to c} g(x)$ both exist and equal L. Define $h:(a,b)\to\mathbb{R}$ by

$$h(x) := \begin{cases} f(x) & x \text{ is rational} \\ g(x) & x \text{ is irrational} \end{cases}.$$

Prove that $\lim_{x\to c} h(x)$ exists and equals L.

- (b) Assume further that f(c) = g(c), that f, g are differentiable at c and that f'(c) = g'(c). Prove that h is differentiable at c as well.
- 3 Consider

$$f(x) := \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0. \end{cases}.$$

Prove that f is differentiable at zero. Feel free to use problem 1 and l'Hopital's rule, if needed.

4 Prove directly from the definition of Darboux integral given in lecture 21 that the function

$$f(x) := \begin{cases} 1 & x \text{ is rational} \\ 0 & x \text{ is irrational} \end{cases}.$$

is not integrable on the interval [0, 1].

- **5** Prove directly from the definition of the Darboux integral (lecture 21) that the function $f:[0,b]\to\mathbb{R}, f(x)=x^2$ is integrable.
- **6** Let $f:[a,b] \to \mathbb{R}$ is a function that is identically 0 everywhere except at the points $x_1, \ldots, x_n \in [a,b]$ $(n \ge 1)$. Prove directly from the definition that f is integrable on [a,b].
- 7 Let X be a metric space. Define a relation \sim on X by $x \sim y$ if and only if there is a continuous map (a path) $\gamma : [0,1] \to X$ with $\gamma(0) = x$ and $\gamma(1) = y$. Prove that \sim is an equivalence relation. The equivalence classes of \sim are called *path components* of X.

Hint: problem 2 from homework #6 may be useful for a proof of transitivity of the relation \sim . The fact that $f:[0,1] \to [0,1], f(x) = 1-x$ is continuous may be useful for a proof of symmetry of \sim .