CMPT 825 NLP

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

11/1/10

Finite-state transducers

- a: o is a notation for a mapping between two alphabets a ∈ Σ₁ and o ∈ Σ₂
- Finite-state transducers (FSTs) accept pairs of strings
- Finite-state automata equate to regular languages and FSTs equate to regular relations
- e.g. L = $\{(x^n, y^n) : n > 0, x \in \Sigma_1 \text{ and } y \in \Sigma_2\}$ is a regular relation accepted by some FST. It maps a string of x's into an equal length string of y's

11/1/10

Finite-state transducers

Regular relations

- A generalization of regular languages
- The set of regular relations is:
 - The empty set and (x,y) for all $x, y \in \Sigma_1 \times \Sigma_2$ is a regular relation
 - If R₁, R₂ and R are regular relations then:

$$R_1 \cdot R_2 = \{(x_1 x_2, y_1 y_2) \mid (x_1, y_1) \in R_1, (x_2, y_2) \in R_2\}$$

 $R_1 \cup R_2$

$$R^* = \cup_{i=0}^{\infty} R_i$$

- There are no other regular relations

• Formal definition:

- Q: finite set of states, q_0 , q_1 , ..., q_n
- Σ : alphabet composed of input/output pairs *i*:o where $i \in \Sigma_1$ and $o \in \Sigma_2$ and so $\Sigma \subseteq \Sigma_1 \times \Sigma_2$
- $-q_o$: start state
- F: set of final states
- $-\delta(q, i:o)$ is the transition function which returns a set of states

11/1/10

Finite-state transducers: Examples

- (aⁿ, bⁿ): map n a's into n b's
- rot13 encryption (the Caesar cipher): assuming 26 letters each letter is mapped to the letter 13 steps ahead (mod 26), e.g. cipher → pvcure
- reversal of a fixed set of words
- reversal of all strings upto fixed length k
- input: binary number n, and output: binary number n+1
- upcase or lowercase a string of any length
- *Pig latin: pig latin is goofy → igpay atinlay is oofygay
- *convert numbers into pronunciations,

e.g. 230.34 two hundred and thirty point three four

- Following relations are cannot be expressed as a FST
 - $(a^n b^n, c^n)$: because $a^n b^n$ is not regular
 - reversal of strings of any length
 - $-a^{i}b^{j} \rightarrow b^{j}a^{i}$ for any i, j
- Unlike regular languages, regular relations are not closed under intersection
 - $-(a^n b^*, c^n) \cap (a^* b^n, c^n)$ produces $(a^n b^n, c^n)$
 - However, regular relations with input and output of equal lengths are closed under intersection

11/1/10

Regular Relations Closure Properties

- Regular relations (rr) are *closed* under some operations
- For example, if R₁, R₂ are regular relns:
 - union $(R_1 \cup R_2 \text{ results in } R_3 \text{ which is a rr})$
 - concatenation
 - iteration (R_1 + = one or more repeats of R_1)
 - Kleene closure (R,* = zero or more repeats of R,)
- However, unlike regular languages, regular relns are not closed under:
 - intersection (possible for equal length regular relns)
 - complement

Regular Relations Closure Properties

- New operations for regular relations:
 - composition
 - project input (or output) language to regular language; for FST t, input language = $\pi_1(t)$, output = $\pi_2(t)$
 - take a regular language and create the identity regular relation; for FSM f, let FST for identity relation be Id(f)
 - take two regular languages and create the cross product relation; for FSMs f & g, FST for cross product is f × g
- take two regular languages, and mark each time the first language matches any string in the second

Regular Relation/FST Kleene Closure

Regular Expressions for FSTs

11/1/10 13

g:i ε:j (h:k)*

11/1/10

((a:0 | a:1) (b:0 | b:1))*

Subsequential FSTs

Subsequential FSTs

- Consider an FST in which for every symbol scanned from the input we can deterministically choose a path and produce an output
- Such an FST is analogous to a deterministic FSM. It is called a **subsequential** FST.
- Subsequential transducers with *p* outputs on the final state is called a *p*-subsequential FST
- p-subsequential FSTs can produce ambiguous outputs for a given input string

11/1/10

FST that is not subsequential

Input: x^n

Output: a^n if n is even, else b^n

11/1/10 1

FST Algorithms

- Compose: Given two FSTs f and g defining regular relations R₁ and R₂ create the FST f o g that computes the composition: R₁ o R₂
- **Recognition**: Is a given pair of strings accepted by FST t?
- Transduce: given an input string, provide the output string(s) as defined by the regular relation provided by an FST

on input side: $a^n == a^*$

What is T_1 composed with T_2 , aka T_1 o T_2 ?

11/1/10

Composing FSTs

Composing FSTs

$$\begin{array}{lll} \underline{(0,0)\ (1,1)\ a:a} & \underline{(0,0)\ (2,1)\ b:a} \\ \underline{(0,1)\ (1,2)\ a:a} & \underline{(0,1)\ (2,2)\ b:a} \\ \underline{(2,0)\ (3,1)\ b:a} & \underline{(2,1)\ (3,2)\ b:a} \end{array}$$

$$\begin{array}{c|c} b:a & b:a \\ \hline 0 & a:d & \\ \hline \end{array}$$

$$(0,1) (0,1) a : d (1,1) (3,1) b : d$$

 $(0,1) (0,2) a : c (1,1) (3,2) b : c$

25

Composing FSTs

$$\begin{array}{lll} \underline{(0,0)\ (1,1)\ a:a} & \underline{(0,0)\ (2,1)\ b:a} \\ \underline{(0,1)\ (1,2)\ a:a} & \underline{(0,1)\ (2,2)\ b:a} \\ \underline{(2,0)\ (3,1)\ b:a} & \underline{(2,1)\ (3,2)\ b:a} \end{array}$$

11/1/10

FST Composition

- Input: transducer S and T
- Transducer composition results in a new transducer with states and transitions defined by matching compatible input-output pairs:

```
 \begin{split} & \mathsf{match}(s,t) = \\ & \{ (s,t) \to^{\mathsf{x}:\mathsf{z}} (s',t') \colon \mathsf{s} \to^{\mathsf{x}:\mathsf{y}} \mathsf{s'} \in \mathsf{S.edges} \; \mathsf{and} \; \mathsf{t} \to^{\mathsf{y}:\mathsf{z}} \mathsf{t'} \in \mathsf{T.edges} \; \} \cup \\ & \{ (s,t) \to^{\mathsf{x}:\mathsf{E}} (s',t) \colon \mathsf{s} \to^{\mathsf{x}:\mathsf{E}} \mathsf{s'} \in \mathsf{S.edges} \; \} \cup \\ & \{ (s,t) \to^{\mathsf{E}:\mathsf{z}} (s,t') \colon \mathsf{t} \to^{\mathsf{E}:\mathsf{z}} \mathsf{t'} \in \mathsf{T.edges} \; \} \end{split}
```

 Correctness: any path in composed transducer mapping u to w arises from a path mapping u to v in S and path mapping v to w in T, for some v

11/1/10

Complex FSTs with composition

- Take, for example, the task of constructing an FST for the Soundex algorithm
- Soundex is useful to map spelling variants of proper names to a single code (hashing names)
- It depends on a mapping from letters to codes

Soundex

• Mapping from letters to numbers:

b, f, p,
$$v \rightarrow 1$$

c, g, j, k, q, s, x, $z \rightarrow 2$
d, $t \rightarrow 3$
 $l \rightarrow 4$
m, $n \rightarrow 5$
 $r \rightarrow 6$

11/1/10

Soundex

- The Soundex algorithm:
 - If two or more letters with the same number are adjacent in the input, or adjacent with intervening h's or w's omit all but the first
 - Retain the first letter and delete all occurrences of a,
 e, h, i, o, u, w, y
 - Except for the first letter, change all letters into numbers
 - Convert result into LNNN (letter and 3 numbers), either truncate or add os

Soundex

• Example:

Losh-shkan, Los-qam Loshhkan, Losqam Lskn, Lsqm L225, L225

• Other examples:

Euler (E460), Gauss (G200), Hilbert (H416), **Knuth** (K530), Lloyd (L300), Lukasiewicz (L222), and Wachs (W200)

11/1/10 33

Soundex

- How can we implement Soundex as a FST?
- For each step in Soundex, the FST is quite simple to write
- Writing a single FST from scratch that implements Soundex is quite challenging
- A simpler solution is to build small FSTs, one for each step, and then use FST composition to build the FST for Soundex

FST that is not subsequential

Input: x^n

Output: a^n if n is even, else b^n

11/1/10 35

Conversion to subsequential FST

Input: x^n

- Step1 output: (x1/x2)*x2 if n is even, else (x1/x2)*x1
- Step2 output: reversal of Step1 output
- Step3 output: a^n if n is even, else b^n

Interesting fact: this can be done for any non-subsequential FST to convert it into a subsequential FST

Recognition of string pairs

```
function FSTRecognize (input[], output[], q):
    Agenda = { (start-state, o, o) }
    Current = (state, i, o) = pop(Agenda) // i :- inputIndex, o :- outputIndex
    while (true) {
        if (Current is an accept item) return accept
        else Agenda = Agenda ∪ GenStates(q, state, input, output, i, o)
        if (Agenda is empty) return reject
        else Current = (state, i, o) = pop(Agenda)
    }
function GenStates (q, state, input[], output[], i, o):
    return { (q', i, o) : for all q' = q(state, ε:ε) } ∪
        { (q', i, o+1) : for all q' = q(state, input[i+1]) } ∪
        { (q', i+1, o+1) : for all q' = q(state, input[i+1], output[i+1]) }
        { (q', i+1, o+1) : for all q' = q(state, input[i+1], output[i+1]) }
        { (q', i+1, o+1) : for all q' = q(state, input[i+1], output[i+1]) }
        { (q', i+1, o+1) : for all q' = q(state, input[i+1], output[i+1]) }
}
```

Transduction: input → output

- The transduce operation for a FST t can be simulated efficiently using the following steps:
 - 1. Convert the input string into a FSM *f* (the machine only accepts the input string, nothing else).
 - 2. Convert f into a FST by taking Id(f) and compose with t to give a new FST g = Id(f) o t. (note that g only contains those paths compatible with input f)
 - 3. Finally project the output language of g to give a FSM for the output of transduce: $\pi_2(g)$
 - 4. Optionally, eliminate any transitions that only derive the empty string from the $\pi_2(g)$ FST.
- What follows is an alternate version that attempts to produce all output strings

Transduction: input → output

(3, 2, [dc, cd]) is an *accept* item: output = dc, cd

agenda: $\{(3, 2, [dc, cd])\}$

Transduction: input → output

```
function FSTtransduce (input[], q):
    Agenda = { (start-state, o, []) } // each item contains list of partial outputs
    Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list
    output = ()
    while (true) {
        if (Current is an accept item) output ⊕ out
        else Agenda = Agenda ∪ GenStates(q, state, input, out, i)
        if (Agenda is empty) return output
        else Current = (state, i, o) = pop(Agenda)
}
```

Transduction: input → output

```
function FSTtransduce (input[], q):

Agenda = { (start-state, o, []) } // each item contains list of partial outputs

Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list

output = ()

while (true) {

if (Current is an accept item) output ⊕ out

else Agenda = Agenda ∪ GenStates(q, state, input, out, i)

if (Agenda is empty) return output

else Current = (state, i, o) = pop(Agenda)

}

U adds new output to output lists in items seen before
```

Transduction: input → output

```
function FSTtransduce (input[], q):

Agenda = { (start-state, o, []) } // each item contains list of partial outputs

Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list

output = ()

while (true) {

if (Current is an accept item) output ⊕ out

else Agenda = Agenda ∪ GenStates(q, state, input, out, i)

if (Agenda is empty) return output

else Current = (state, i, o) = pop(Agenda)

}

function GenStates (q, state, input[], out, i):

return { (q', i, out) : for all q' = q(state, ε:e) } ∪

{ (q', i, out ⊕ newOut) : for all q' = q(state, input[i+1]:ε) } ∪

{ (q', i+1, out) ⊕ newOut) : for all q' = q(state, input[i+1], newOut) }
```

Transduction: input → output

```
function FSTtransduce (input[], q):
     Agenda = \{(start-state, o, [])\} // each item contains list of partial outputs
     Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list
     output = ()
     while (true) {
          if (Current is an accept item) output ⊕ out
          else Agenda = Agenda ∪ GenStates(q, state, input, out, i)
          if (Agenda is empty) return output
                                                               ⊕ concatenates new
          else Current = (state, i, o) = pop(Agenda)
                                                               output string to
                                                               each item in out (the
function GenStates (q, state, input[], out, i):
                                                               output list for each item)
     return \{(q', i, out) : for all q' = q(state, \epsilon:\epsilon)\} \cup
           \{(q', i, out \oplus newOut) : for all q' = q(state, \epsilon: newOut)\} \cup
           \{(q', i+1, out) : for all q' = q(state, input[i+1]:\epsilon)\} \cup
           \{(q', i+1, out \oplus newOut) : for all q' = q(state, input[i+1], newOut)\}
```

Cross-product FST

 For regular languages L₁ and L₂, we have two FSAs, M₁ and M₂

$$M_1 = (\Sigma, Q_1, q_1, F_1, \delta_1)$$

 $M_2 = (\Sigma, Q_2, q_2, F_2, \delta_2)$

 Then a transducer accepting L₁×L₂ is defined as:

$$T=ig(\Sigma,Q_1 imes Q_2,\langle q_1,q_2
angle,F_1 imes F_2,\deltaig) \ \delta(\langle s_1,s_2
angle,a,b)=\delta_1(s_1,a) imes \delta_2(s_2,b) \ ext{for any } s_1\in Q_1,s_2\in Q_2 ext{ and } a,b\in \Sigma\cup \{\epsilon\}$$

Summary

- Finite state transducers specify regular relations
 - Encoding problems as finite-state transducers
- Extension of regular expressions to the case of regular relations/FSTs
- FST closure properties: union, concatenation, composition
- FST special operations:
 - creating regular relations from regular languages (Id, cross-product);
 - creating regular languages from regular relations (projection)
- FST algorithms
 - Recognition, Transduction

^{11/1/10} Determinization, Minimization? (not all FSTs can be determinized)