Scilab Textbook Companion for Engineering Thermodynamics by S. S. Khandare¹

Created by
Anshika Verma
B.Tech
Mechanical Engineering
Uttrakhand Technical University
College Teacher
Mr. Naresh Kumar
Cross-Checked by
Mukul Kulkarni and Lavitha Pereira

July 11, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Thermodynamics

Author: S. S. Khandare

Publisher: Charotar Publishing, India

Edition: 1

Year: 2003

ISBN: 81-85594-21-X

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	Introduction	5
2	Gas Laws Ideal and Real Gases	11
3	Thermodynamic Processes	26
4	Availability	51
5	Air standard Cycles	53
6	Properties of Steam and Steam Cycle	64
7	Flow Process	88
8	Fuels and Combustion	92

List of Scilab Codes

Exa 1.1	Absolute pressure
Exa 1.2	Absolute pressure
Exa 1.3	Absolute pressure 6
Exa 1.4	Guage pressure
Exa 1.5	Absolute pressure
Exa 1.6	Temperature on absolute scale
Exa 1.7	Temperature in degree C
Exa 1.8	Quantity of heat supplied to water 8
Exa 1.9	Heat supplied to vessel and water 9
Exa 1.10	Quantity of heat supplied per kg of coal 9
Exa 2.1	Pressure of air
Exa 2.2	New guage pressure
Exa 2.3	Temperature at the end of compression stroke 12
Exa 2.4	Volume occupied
Exa 2.5	Final volume
Exa 2.6	Pressure of the gas
Exa 2.7	Pressure at the end of compression stroke 14
Exa 2.8	Molecular volume of the gas
Exa 2.9	Temperature at the end compression
Exa 2.10	Mass density and volume of the gas
Exa 2.11	New temperature of the gas
Exa 2.12	Tyre guage reading
Exa 2.13	Change in internal energy
Exa 2.14	Change in internal energy
Exa 2.15	Mass of the fluid in the system
Exa 2.16	Specific enthalpy of steam
Exa 2.17	Fourth work transfer
Exa 2.18	Heat transferred to the gas

Exa 2.19	Amount of heat extracted from the gas
Exa 2.20	Value of Cv gamma and R
Exa 2.21	Temperature rise
Exa 2.22	Average gas density
Exa 2.23	Internal energy of the gas
Exa 2.24	Apparent molecular mass
Exa 3.1	New pressure and temperature
Exa 3.2	Initial temperature of air
Exa 3.3	Heat added
Exa 3.4	Heat transferred from the gas
Exa 3.5	Final pressure
Exa 3.6	Final pressure and temperature
Exa 3.7	Value of Cp and Cv
Exa 3.8	Pressure temperature and internal energy
Exa 3.9	Final pressure temperature and internal energy 3:
Exa 3.10	Pressure and temperature at the end of compression . 33
Exa 3.11	Final volume temperature and work done 3
Exa 3.12	The value of index
Exa 3.13	Change in entropy of air
Exa 3.14	Gain of entropy
Exa 3.15	Change of entropy
Exa 3.16	Entropy
Exa 3.17	Change of entropy
Exa 3.18	Total enthalpy
Exa 3.19	Temperature molecular mass and specific volume 40
Exa 3.20	Composition of the mixture by mass 4
Exa 3.21	Difference between work done by air
Exa 3.22	Temperature of the gas
Exa 3.23	Total work done during the whole process 4
Exa 3.24	Internal energy change
Exa 3.25	Change in internal energy
Exa 3.26	Mass of oxygen used 4
Exa 3.27	The change in internal energy and in enthalpy 4
Exa 3.28	temperature of gas in the cylinder
Exa 3.29	Work transfer
Exa 3.30	Initial value of entropy 4
Exa 4.1	Entropy production accompanying the heat transfer . 5
Exa 4.2	The increase in unavailable energy

Exa 5.1	Efficiency of heat engine
Exa 5.2	Efficiency of a four stroke cycle gas engine
Exa 5.3	Pressure and temperature
Exa 5.4	Consumption of gas
Exa 5.7	Efficiency of dual combustion engine
Exa 5.8	Efficiency of engine
Exa 5.9	Temperature at the end of compression stroke 58
Exa 5.11	Ratio of expansion
Exa 5.12	Mean effective pressure of the cycle
Exa 5.13	Ideal efficiency
Exa 5.14	Power developed per kg of air supplied per second 61
Exa 5.15	The efficiency of cycle
Exa 6.1	Work done
Exa 6.2	External work done 64
Exa 6.3	Dryness fraction of steam 65
Exa 6.4	Heat necessary to raise the temperature
Exa 6.5	Heat required
Exa 6.6	Specific volume of steam
Exa 6.7	Internal energy
Exa 6.8	Heat units
Exa 6.9	The enthalpy
Exa 6.10	Entropy of 1 kg of steam
Exa 6.11	Value of specific entropy
Exa 6.12	Dryness fraction of steam
Exa 6.13	Dryness fraction of steam
Exa 6.14	Minimum dryness fraction of steam
Exa 6.15	Dryness fraction in the steam main
Exa 6.16	Quantity of circulating water required
Exa 6.17	Final condition of steam
Exa 6.18	Velocity of steam
Exa 6.19	Dryness fraction of steam
Exa 6.20	Condition of steam
Exa 6.21	Temperature of feed water leaving the heating 76
Exa 6.22	Quantity of water sprayed
Exa 6.23	Heat received by steam
Exa 6.24	Pressure and condition of steam
Exa 6.25	Mass of steam in vessel
Exa 6.26	Total energy and internal energy

Exa 6.27	Mass of steam present
Exa 6.28	Amount of heat put into or extracted from the steam.
Exa 6.29	Final dryness fraction
Exa 6.30	Final temperature of steam
Exa 6.31	Increase in entropy
Exa 6.32	Rankine efficiency
Exa 6.33	Rankine efficiency
Exa 6.34	Efficiency of cycle
Exa 7.1	Work tranfer
Exa 7.2	Power output of the turbine
Exa 7.3	Velocity of steam
Exa 7.4	Exit velocity and total exit area
Exa 7.5	Mass flow rate
Exa 7.6	Rate of heat transfer
Exa 8.1	Higher calorific value
Exa 8.2	HCV and LCV
Exa 8.3	Calorific value of a sample of coal
Exa 8.4	HCV and LCV
Exa 8.5	Calorific value
Exa 8.6	Theoretical mass of air
Exa 8.7	Theoretical mass of air
Exa 8.8	Mass of air
Exa 8.9	Minimum quantity of air
Exa 8.10	Percentage analysis of dry flue gas
Exa 8.11	Maximum quantity of heat
Exa 8.12	Percentage analysis of dry exhaust gases by volume
Exa 8.13	Quantity of air passing to the furnace
Exa 8.14	Gravimetric analysis of the fuel
Exa 8.15	Minimum quantity of air
Exa 8.16	Volume of air required
Exa 8.17	Volume of air supplied
Exa 8.18	Percentage composition by volume and mass
Exa 8.19	Air fuel ratio by volume
Exa 8.20	Air fuel ratio by different methods

Chapter 1

Introduction

Scilab code Exa 1.1 Absolute pressure

```
1 // Exa 1.1
2 clc;
3 clear;
4 close;
5 // Given data
6 P_m = 760; // pressure of mercury in mm
7 P_m_bar = P_m/750; // in bar
8 P_W = 0.006867; // pressure of water in bar
9 P = P_m_bar+P_W; // in bar
10 disp(P,"The absolute pressure of gas in bar is");
```

Scilab code Exa 1.2 Absolute pressure

```
1 // Exa 1.2
2 clc;
3 clear;
4 close;
5 // Given data
```

```
6 Rho = 13.6;
7 g = 9.81;
8 a = 760; // in mm
9 b = 480; // in mm
10 h = a-b; // in mm
11 P = (1000*Rho*g*h)/(1000); // in N/m^2
12 disp(P, "The absolute pressure in N/m^2 is");
13 P = P /100; // in mbar
14 disp(P, "The absolute pressure in mbar is");
```

Scilab code Exa 1.3 Absolute pressure

```
1 // Exa 1.3
2 clc;
3 clear;
4 close;
5 // Given data
6 G_P = 30; // guage pressure of steam in bar
7 \text{ P1} = 745; // \text{ in mm}
8 P1= P1/750; // in bar
9 PressureInBoiler = G_P+P1;// in bar
10 disp("The absolute pressure in the bioler in bar is
      "+string(PressureInBoiler)+" bar or "+string(
      PressureInBoiler *10^5) +" N/m^2");
11 P2 = 708.2; // in mm
12 P2 = P2/750; // in
13 PressureInCond = P1-P2; // in bar
14 disp(PressureInCond,"The absolute pressure in the
      Condenser in bar is");
15 disp(PressureInCond*10^5, "The absolute pressure in
      the Condenser in N/m<sup>2</sup> is");
```

Scilab code Exa 1.4 Guage pressure

```
1 // Exa 1.4
2 clc;
3 clear;
4 close;
5 // Given data
6 Rho = 0.78; // in kg/m^3
7 g = 9.81;
8 h = 3; // in m
9 b = g*Rho*h*1000; // in N/m^2
10 b = b * 10^-3; // in kN/m^2
11 disp(b, "The gauge pressure in kN/m^2 is");
```

Scilab code Exa 1.5 Absolute pressure

```
1 // Exa 1.5
2 clc;
3 clear;
4 close;
5 // Given data
6 B_h = 755; // Barometric height in mm
7 M_h= 240; // Manometer height in mm
8 P = B_h+M_h; // in mm
9 P = P/750; // absolute pressure in bar
10 P= P*10^5; // in N/m^2
11 disp(P*10^-6, "The absolute pressure in the vessel in MN/m^2 is");
12 disp(P*10^-5, "The absolute pressure in the vessel in bar is");
```

Scilab code Exa 1.6 Temperature on absolute scale

```
1 // Exa 1.6 2 clc;
```

```
3 clear;
4 close;
5 // Given data
6 T = 287; // in degree C
7 T = T + 273; // in K
8 disp(T,"The temperature on absolute scale in K is");
```

Scilab code Exa 1.7 Temperature in degree C

```
1 // Exa 1.7
2 clc;
3 clear;
4 close;
5 // Given data
6 a = 0.26;
7 b = 5*10^-4;
8 E = 10; // in mV
9 T = (a/(2*b))*( sqrt(1+(4*E*b/a^2)) - 1 ); // in degree C
10 disp("The unit of a will be mV/ C and the unit of b will be mV/ C^2")
11 disp(T,"The Temperature in degree C is");
```

Scilab code Exa 1.8 Quantity of heat supplied to water

```
9 del_T = T1-T2; // in C
10 Spe_heat = 4.182; // in kJ/kg
11 Q_h = Q_w*del_T*Spe_heat; // in kJ/minute
12 disp("Quantity of heat supplied to water in the economizer is "+string(Q_h)+" kJ/minute or "+string(Q_h*10^-3)+" MJ/minute");
```

Scilab code Exa 1.9 Heat supplied to vessel and water

```
1 // Exa 1.9
2 clc;
3 clear:
4 close;
5 // Given data
6 CopperMass = 3; // in kg
7 WaterMass= 6;// in kg
8 Spe_heat_copper= 0.394; // in kJ/kg-K
9 T1 = 90; // in degree C
10 T2 = 20; // in degree C
11 \text{ del_T} = T1-T2; // \text{ in degree } C
12 H_C = CopperMass*Spe_heat_copper*del_T; // heat
      required by copper in kJ
13 Spe_heat_water= 4.193; // in kJ/kg-K
14 H_W = WaterMass*Spe_heat_water*del_T; // heat
      required by water in kJ
15 H = H_C+H_W; //heat required by vessel and water in
      kJ
16 \text{ H} = \text{H} * 10^{-3}; // \text{ in MJ}
17 disp(H," Heat required by vessel and water in MJ is")
```

Scilab code Exa 1.10 Quantity of heat supplied per kg of coal

```
1 // Exa 1.10
2 clc;
3 clear;
4 close;
5 // Given data
6 m = 18.2; // quantity of air supplied of coal in kg
7 T1 = 200; // in degree C
8 T2 = 18; // in degree C
9 del_T = T1-T2; // in degree C
10 Spe_heat = 1; // in kJ/kg-K
11 Q_C = m*Spe_heat*del_T; // in kJ
12 disp(Q_C, "The Quantity of heat supplied per kg of coal in kJ is");
```

Chapter 2

Gas Laws Ideal and Real Gases

Scilab code Exa 2.1 Pressure of air

Scilab code Exa 2.2 New guage pressure

```
1 // Example 2.2
2 clc;
3 clear;
```

```
4 close;
5 // Given data
6 guagePressure= 1500; // in kN/m^2
7 atmPressure= 100; // in kN/m^2
8 P1= guagePressure+atmPressure; // in kN/m^2
9 V1= 0.1; // in m^3
10 V2= 0.4; // in m^3
11 // Formula P1*V1 = P2*V2
12 P2= P1*V1/V2; // in kN/m^2
13 NewGuagePressure= P2-atmPressure; // in kN/m^2
14 disp(NewGuagePressure, "New guage pressure in kN/m^2 is : ")
```

Scilab code Exa 2.3 Temperature at the end of compression stroke

```
1 // Example 2.3
2 clc;
3 clear;
4 close;
5 // Given data
6 P1= -4+101.3; // in kN/m^2
7 V1= 96+475; // in cm^3
8 V2= 96; // in cm^3
9 // Formula P1*V1 = P2*V2
10 P2= P1*V1/V2; // in kN/m^2
11 disp(P2, "Pressure at the end of the compression stroke in kN/m^2 is:")
12 disp(P2*10^-2, "and in bar:")
```

Scilab code Exa 2.4 Volume occupied

```
1 // Example 2.4 2 clc;
```

```
3 clear;
4 close;
5 // Given data
6 V0= 1; // in m^3
7 t= 300; // in C
8 V= V0*(1+t/273); // in m^3
9 disp(V,"The volume occupied in m^3 is : ")
```

Scilab code Exa 2.5 Final volume

```
1 // Example 2.5
2 clc;
3 clear;
4 close;
5 // Given data
6 V1= 2; // in m^3
7 T1= 30+273; // in K
8 T2= 230+273; // in K
9 // V1/T1 = V0/T0 = V2/T2
10 V2= V1*T2/T1; // in m^3
11 disp(V2,"The final volume in m^3 is : ")
```

Scilab code Exa 2.6 Pressure of the gas

```
1 // Example 2.6
2 clc;
3 clear;
4 close;
5 // Given data
6 P1= 7*10^5; // in N/m^2
7 V1= 3; // in m^3
8 V2= 9; // in m^3
9 T1= 150+273; // in K
```

```
10 T2= 10+273; // in K

11 // Formula P1*V1/T1 = P2*V2/T2

12 P2= P1*V1*T2/(T1*V2); // in N/m^2

13 disp(P2*10^-5, "Pressure of the gas in bar is : ")
```

Scilab code Exa 2.7 Pressure at the end of compression stroke

```
1 // Example 2.7
2 clc;
3 clear;
4 close;
5 // Given data
6 P1= 100; // in kN/m^2
7 V1byV2= 12; // in
8 T1= 115+273; // in K
9 T2= 180+273; // in K
10 // Formula P1*V1/T1 = P2*V2/T2
11 P2= P1*V1byV2*T2/T1; // in N/m^2
12 disp(P2*10^-2, "Absolute pressure at the end of compression stroke in bar is : ")
```

Scilab code Exa 2.8 Molecular volume of the gas

```
1 // Example 2.8
2 clc;
3 clear;
4 close;
5 // Given data
6 mR= 8314.3; // in J/kg-mole-K
7 P= 200*10^3; // in N/m^2
8 T= 30+273; // in K
9 // Formula P*V = mR*T
10 V= mR*T/P; // in m^3
```

11 disp(V,"The molecular volume of all the gases in m³ is: ")

Scilab code Exa 2.9 Temperature at the end compression

```
1 // Example 2.9
2 clc;
3 clear;
4 close;
5 // Given data
6 P1= 96; // \text{ in } kN/m^2
7 P2= 725; // \text{ in } kN/m^2
8 \text{ V1= } 600; // \text{ in cm}^3
9 V2= 100; // in cm<sup>3</sup>
10 T1= 100+273; // in K
11 // Formula P1*V1/T1 = P2*V2/T2
12 T2= P2*V2*T1/(P1*V1); // in K
13 disp(T2-273, "Temperature at the end of compression
      in C is : ");
14 // Note: In the book, There is an error to
      calculate the value of T2.
```

Scilab code Exa 2.10 Mass density and volume of the gas

```
1 // Example 2.10
2 clc;
3 clear;
4 close;
5 // Given data
6 MR= 8314.2; // in J/kg-mole-K
7 mass= 44; // Molecular mass of carbon dioxide in kg
8 R= MR/mass; // in J/kg-K
9 P= 11; // in MPa
```

```
10 P=P*10^6; // in Pa
11 V= 50*10^-3; // in m^3
12 T= 18+273; // in K
13 // Formula P*V= m*R*T
14 m= P*V/(R*T); // in kg
15 m=round(m); // in kg
16 MolecularVolume= MR*T/P; // in m^3
17 D= m/V; // density of the gas in kg/m^3
18 SpecificVolume= 1/D; // in m^3/kg
19 disp(m,"The mass of the gas in kg is:")
20 disp(MolecularVolume,"The Molecular volume in m^3 is:")
21 disp(D,"The density of the gas in kg/m^3 is:")
22 disp(SpecificVolume,"The specific volume of the gas in m^3/kg is:")
```

Scilab code Exa 2.11 New temperature of the gas

```
1 // Example 2.11
2 clc;
3 clear;
4 close;
5 // Given data
6 P1= 350; // \text{ in } \text{kN/m}^2
7 P1=P1*10^3; // in N/m^2
8 P2= 1.05; // in kN/m^2
9 P2=P2*10^6; // in N/m^2
10 V = 0.3; // in m<sup>3</sup>
11 R= 0.29; // in kJ/kg-K
12 R= R*10^3; // in j/kgK
13 T1= 35+273; // in K
14 // Formula P*V= m*R*T
15 m = P1*V/(R*T1); // in kg
16 // Formula P1*V1/T1 = P2*V2/T2 and since V1=V2
17 T2= P2*T1/P1; // in K
```

```
18 disp(T2-273, "Temperature at constant volume compression in C is: ")
```

Scilab code Exa 2.12 Tyre guage reading

```
1 // Example 2.12
2 clc;
3 clear;
4 close;
5 // Given data
6 g1= 1.75; // gauge reading in bar
7 atm= 1.013; // in atmospheric pressure in bar
8 P1= g1+atm; // in bar
9 T1= 12+273; // in K
10 T2= 45+273; // in K
11 // Formula P1*V1/T1 = P2*V2/T2 and since V1= V2
12 P2= P1*T2/T1; // in bar
13 g2=P2-atm; // tyre gauge reading in bar
14 disp(g2, "Tyre gauge reading at 45 C in bar is : ")
```

Scilab code Exa 2.13 Change in internal energy

```
1 // Example 2.13
2 clc;
3 clear;
4 close;
5 // Given data
6 Q= 120; // in kJ
7 W= 150; // in kJ
8 E= Q-W; // change in internal energy in kJ
9 disp(abs(E), "The internal energy of the system decreases by (in kJ)")
```

Scilab code Exa 2.14 Change in internal energy

```
1 // Example 2.14
2 clc;
3 clear;
4 close;
5 // Given data
6 Q= -40; // in kJ/kg
7 W= -80; // in kJ/kg
8 E= Q-W; // change in internal energy in kJ/kg
9 disp(E, "Change in internal energy in kJ/kg is:")
10 disp("Thus internal energy of the working substance increases")
```

Scilab code Exa 2.15 Mass of the fluid in the system

```
1 // Example 2.15
2 clc;
3 clear;
4 close;
5 // Given data
6 Int_energy_changes= 20; // in kJ/kg
7 Q= 0; // in kJ
8 W= -90; // in kJ
9 E= Q-W; // change in internal energy in kJ/kg
10 m= E/Int_energy_changes; // in kg
11 disp(m,"The mass of the fluid in the system in kg is : ")
```

Scilab code Exa 2.16 Specific enthalpy of steam

```
1 // Example 2.16
2 clc;
3 clear;
4 close;
5 // Given data
6 U= 2800; // in kJ/kg
7 P= 20; // in bar
8 P= P*10^5; // in N/m^2
9 V= 0.23/1000; // in m^3
10 SP= U+P*V; // specific enthalpy in kJ/kg
11 disp(SP, "The specific enthalpy in kJ/kg is:")
```

Scilab code Exa 2.17 Fourth work transfer

```
1 // Example 2.17
2 clc;
3 clear;
4 close;
5 // Given data
6 h1= 210; // first heat transfer in kJ
7 h2= -20;// second heat transfer in kJ
8 h3= -190; // third heat transfer in kJ
9 h4= 60; // fourth heat transfer in kJ
10 W1= -180; // first work transfer in kJ
11 W2= 200; // second work transfer in kJ
12 W3= -300; // third work transfer in kJ
13 // Total Heat transfer = Total work transfer
14 \text{ W4} = \text{h1} + \text{h2} + \text{h3} + \text{h4} - \text{W1} - \text{W2} - \text{W3}; // \text{ forth work transfer in}
15 disp(W4, "Fourth work transfer in kJ is:")
16 disp("Thus the system delivers "+string(W4)+" kJ of
      work")
```

Scilab code Exa 2.18 Heat transferred to the gas

```
1 // Example 2.18
2 clc;
3 clear;
4 close;
5 // Given data
6 Cv = 0.718; // in kJ/kgK
7 R= 0.278; // in kJ/kgK
8 T1= 15+273; // in K
9 T2= 135+273; // in K
10 m = 2; // mass in kg
11 V1= 0.7; // in m<sup>3</sup>
12 Q = m*Cv*(T2-T1); // in kJ
13 disp(Q,"Heat supplied to gas in kJ is: ")
14 // Formula P1*V1= m*R*T1
15 P1= m*R*T1/V1; // in kN/m^2 absolute
16 // From P1/T1= P2/T2
17 P2= P1*T2/T1; // in kN/m^2
18 disp(P2,"The final pressure in kN/m^2 is : ")
```

Scilab code Exa 2.19 Amount of heat extracted from the gas

```
1 // Example 2.19
2 clc;
3 clear;
4 close;
5 // Given data
6 Cv= 1.005; // in kJ/kgK
7 T1= 200+273; // in K
8 T2= 15+273; // in K
9 V1= 0.12; // in m^3
```

```
10 m= 0.25; // mass in kg
11 Q= m*Cv*(T1-T2); // in kJ
12 disp(Q,"Heat extracted from the gas in kJ is : ")
13 // From V1/T1= V2/T2
14 V2= V1*T2/T1; // in m^3
15 disp(V2,"The final volume of the gas in m^3 is : ")
```

Scilab code Exa 2.20 Value of Cv gamma and R

```
1 // Example 2.20
2 clc;
3 clear;
4 close;
5 // Given data
6 m=2;// molecular mass
7 UGC= 8.3143;// universal gas constant in kJ/kg-mole-
    K
8 Cp= 14.41;// in kJ/kg-K
9 R= UGC/m;// in kJ/kgK
10 Cv= Cp-R;// in kJ/kgK
11 gama= Cp/Cv;
12 disp(R,"The value of R in kJ/kgK is:")
13 disp(Cv,"The value of Cv in kJ/kgK is:")
14 disp(gama,"The value of gama is:")
```

Scilab code Exa 2.21 Temperature rise

```
1 // Example 2.21
2 clc;
3 clear;
4 close;
5 // Given data
6 Cp = 0.796; // in kJ/kg-K
```

```
7 Cv = 0.67; // in kJ/kg-K
8 \text{ P1=1;} // \text{ in bar}
9 P1= P1*10^5; // in N/m^2
10 P2=3.5; // in bar
11 P2= P2*10^5; // in N/m^2
12 V1= 0.12; // in m<sup>3</sup>
13 V2 = 0.05; // in m^3
14 \text{ m=1}; // \text{ in kg}
15 R= Cp-Cv; // in kJ/kg-K
16 R= R*10^3; // in J/kg-K
17 // Formula P*V= m*R*T
18 T1= P1*V1/(m*R); // in K
19 // Formula P1*V1/T1 = P2*V2/T2
20 T2= P2*V2*T1/(P1*V1); // in K
21 T= T2-T1; // Temperature rise in K
22 disp(T, "Temperature rise in K is: ")
23 E= m*Cv*(T2-T1); // change in internal energy kJ
24 disp(E, "Change in internal energy in kJ is: ");
```

Scilab code Exa 2.22 Average gas density

```
1 // Example 2.22
2 clc;
3 clear;
4 close;
5 // Given data
6 CO2= 0.12; // volume of CO2 in m^3
7 CO= 0.25; // in m^3
8 H2= 0.06; // in m^3
9 CH4= 0.02; // in m^3
10 N2= 0.55; // in m^3
11 R= 8.3143; // Universal gas constant in kJ/kg-mol-K
12 mm_CO2= 44; // molecular mass of CO2
13 mm_CO= 28;
14 mm_H2= 2;
```

```
15 \text{ mm}_CH4 = 16;
16 \text{ mm}_{N2} = 28;
17 Gm_CO2= 5.28; // gravimetric mass of CO2
18 \text{ Gm}_{CO} = 7.00;
19 Gm_H2 = 0.12;
20 \text{ Gm}_CH4 = 0.32;
21 \text{ Gm}_N2 = 15.40;
22 total_Gm = Gm_CO2+Gm_CO+Gm_H2+Gm_CH4+Gm_N2;
23 Per_relative_CO2= Gm_CO2/total_Gm*100; // in \%
24 Per_relative_CO= Gm_CO/total_Gm*100; // in \%
_{25} Per_relative_H2= Gm_H2/total_Gm*100;// in \%
26 Per_relative_CH4= Gm_CH4/total_Gm*100;// in \%
27 Per_relative_N2= Gm_N2/total_Gm*100; // in \%
28 disp("Analysis % Relative : ")
                    "+string(Per_relative_CO2))
29 disp("CO2 :
                    "+string(Per_relative_CO))
30 disp("CO
              : "+string(Per_relative_H2))
31 disp("H2
32 disp("CH4 :
                    "+string(Per_relative_CH4))
                    "+string(Per_relative_N2))
33 disp("N2
             :
34 App_Gas_Constant= R/total_Gm;// in kJ/kg-K
35 mol_Vol = 22.4; //mole volume at NTP in <math>m^3
36 Average_Density= total_Gm/mol_Vol; // in kg/m^3 at
     NTP
37 disp(App_Gas_Constant,"The Apparent gas constant in
      kJ/kg-K is : ")
38 disp(Average_Density,"The average density in kg/m^3
      at NTP. is: ")
```

Scilab code Exa 2.23 Internal energy of the gas

```
1 // Example 2.23
2 clc;
3 clear;
4 close;
5 // Given data
```

```
6 Cv = 652; // in J/kg-K

7 R= 287; // in J/kg-K

8 Cp= Cv+R; // in J/kg-K

9 m=0.3; // in kg

10 P= 1.5*10^5; // in N/m^2

11 V= 0.283; // in m^3

12 // Formula P*V= m*R*T

13 T= P*V/(m*R); // in K

14 T= T-273; // in C

15 T1= -40; // in C

16 delta_U= m*Cv*(T-T1); // in J

17 disp(delta_U*10^-3, "Internal energy in kJ is : ")
```

Scilab code Exa 2.24 Apparent molecular mass

```
1 // Example 2.24
2 clc;
3 clear;
4 close;
5 // Given data
6 H2= 0.50; // volume of H2 in m<sup>3</sup>
7 CH4= 0.19; // in m<sup>3</sup>
8 \text{ CO} = 0.18; // \text{ in m}^3
9 C2H4 = 0.02; // in m^3
10 CO2 = 0.05; // in m^3
11 N2= 0.06; // in m<sup>3</sup>
12 P= 100; // pressure of mixture in kN/m^2
13 mm_CO2= 44; // molecular mass of CO2
14 \text{ mm}_CO = 28;
15 \text{ mm}_{H2} = 2;
16 \text{ mm}_CH4 = 16;
17 \text{ mm}_{C2H4} = 28;
18 \text{ mm}_{N2} = 28;
19 R= 8.3143; // Universal gas constant in kJ/kg-mol-K
20 R_H2= R/mm_H2; // gas constant for H2
```

```
21 R_CO2 = R/mm_CO2;
22 R_CO = R/mm_CO;
23 R_C2H4 = R/mm_C2H4;
24 R_CH4 = R/mm_CH4;
25 R_N2 = R/mm_N2;
26 M= mm_CO2*CO2+mm_H2*H2+mm_CH4*CH4+mm_CO*CO+mm_C2H4*
      C2H4+mm_N2*N2; // in kg
27 disp(M," Apparent molecular mass of the gas in kg is
      : ")
28 mol_Vol = 22.4; //mole volume at NTP in m<sup>3</sup>
29 density = M/mol_Vol_{;}//in kg/m^3
30 disp(density," Density of the mixture in kg/m^3 is :
      ")
31 mixture_G_constant= R/M; // in kJ/kg-K
32 disp(mixture_G_constant, The mixture gas constant in
       kJ/kg-K is : ")
33 P_H2= P*H2; // partial pressure of H2 in kN/m^2
34 P_CH4= P*CH4; // in kN/m^2
35 P_C0 = P*C0; // in kN/m^2
36 \text{ P_C2H4} = \text{P*C2H4}; // \text{ in } \text{kN/m}^2
37 P_C02= P*C02; // in kN/m^2
38 P_N2 = P*N2; // in kN/m^2
39 disp(P_H2, "The partial pressure of H2 in kN/m^2")
40 disp(P_CH4, "The partial pressure of CH4 in kN/m^2")
41 disp(P_CO, "The partial pressure of CO in kN/m^2")
42 disp(P_C2H4,"The partial pressure of C2H4 in kN/m^2"
      )
43 disp(P_CO2, "The partial pressure of CO2 in kN/m^2")
44 disp(P_N2, "The partial pressure of N2 in kN/m^2")
```

Chapter 3

Thermodynamic Processes

Scilab code Exa 3.1 New pressure and temperature

```
1 // Exa 3.1
2 clc;
3 clear;
4 close;
5 // Given data
6 P = 2.15 * 10^5; // in N/m^2
7 T = 20; // in degree C
8 T = T + 273; // in K
9 V = 0.20; // in m^3
10 R = 0.2927; // in kJ/kg-K
11 R = R * 10^3; // in J/kg-K
12 m = (P*V)/(T*R); //in kg
13 Q = 20*10^3; // in J
14 \text{ C_v} = 0.706*10^3; // \text{ in } J/\text{kg-K}
15 theta = Q/(m*C_v); // in degree C
16 T = T - 273; // in degree C
17 T1 = theta + T; // new temp. in degree C
18 disp(T1, "New temperature in degree C is");
19 T1 = T1 + 273; // in K
20 T = T + 273; // in K
21 P2 = P * (T1/T); // in N/m<sup>2</sup>
```

```
22 P2 = P2 * 10^-3; // in kN/m^2
23 disp(P2,"New pressure in kN/m^2 is");
```

Scilab code Exa 3.2 Initial temperature of air

```
1 // Exa 3.2
2 clc;
3 clear;
4 close;
5 // Given data
6 P = 350; // in kN/m^2
7 P = P * 10^3; // in N/m^2
8 m = 1; // in kg
9 m = m * 10^3; // in gram
10 V = 0.35; // in m<sup>3</sup>
11 C_p = 1.005; // in kJ/kg-K
12 C_v = 0.710; // in kJ/kg-K
13 R = C_p - C_v; // in kJ/kg-K
14 T = (P*V)/(m*R); // in K
15 T = T - 273; // in degree C
16 disp(T, "The intial temperature in degree C is");
17 T = T + 273; // in K
18 T1 = 316; // in degree C
19 T1 = T1 + 273; // in K
20 P2 = P * (T1/T); // in N/m^2
21 P2 = P2 * 10^-3; // in kN/m^2
22 disp(P2, "The final pressure of air in kN/m^2 is");
23 T = T - 273; // in degree C
24 \text{ T1} = \text{T1} - 273; // \text{ in degree C}
25 \text{ m} = \text{m} * 10^{-3}; // \text{ in kg}
26 \ Q = m * C_v * (T1-T); // in kJ
27 disp(Q,"Heat added in kJ is");
28 G = m*C_v * (T1-T); // Gain of internal energy in kJ
29 disp(G, "Gain of internal energy in kJ is");
30 G_enthalpy = m*C_p*(T1-T); // Gain of enthalpy in kJ
```

```
31 disp(G_enthalpy, "Gain of enthalpy in kJ is");
```

Scilab code Exa 3.3 Heat added

```
1 // Exa 3.3
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 P = 3.2; // in bar
7 P = P * 10^5; // in N/m^2
8 R = 292.7; // in kJ/kg-K
9 \text{ C_p} = 1.003; // \text{ in } \text{kJ/kg-K}
10 \ m = 1;
11 V1 = 0.3; // in m<sup>3</sup>
12 V2 = 2*V1; // in m^3
13 W = P*(V2-V1); // in J
14 W = W * 10^{-3}; // in kJ
15 disp(W, "The work done in kJ is");
16 T1 = (P*V1)/(m*R); // in K
17 disp(T1-273, "The intail Temperature in C is");
18 T2 = T1*(V2/V1); // in K
19 disp(T2-273, "The final temperature in C is");
20 Q = m*C_p*(T2-T1); // in kJ
21 disp(Q,"The Heat added in kJ is");
22
23 // Note: To evaluate the value of Heat added, wrong
      value of T1 is putted (i.e 273 k at place of 328
      K), so the answer of Heat added is wrong in the
      book.
```

Scilab code Exa 3.4 Heat transferred from the gas

```
1 // Exa 3.4
2 clc;
3 clear;
4 close;
5 // Given data
6 R = 0.29; // in kJ/kg-K
7 R = R * 10^3; // in J/kg-K
8 \text{ C_p} = 1.005; // \text{ in kJ/kg-K}
9 T = 185; // in degree C
10 T = T + 273; // in K
11 T2 = 70+273; // in K
12 V1 = 0.23; // in m<sup>3</sup>
13 P = 500; // \text{ in } kN/m^2
14 P = P * 10^3; // \text{ in } N/m^2
15 m = (P*V1)/(R*T); // in kg
16 Q = m*C_p*(T2-T); // in kJ
17 disp(Q,"Heat transferred in kJ is");
18 disp("i.e. "+string(abs(Q))+" kJ heat has been
      abstracted from the gas")
19 V2 = V1*(T2/T); // in m<sup>3</sup>
20 W = P * (V2-V1); // in J
21 \ W = W*10^-3; //in \ kJ
22 disp(W, "The work done in kJ is");
23 disp("i.e. "+string(abs(W))+" kJ work has been done
      on the gas ")
24 R= R*10^-3; // in kJ/kg-K
25 \text{ C_v} = \text{C_p} - \text{R}; // \text{ in kJ/kg-K}
26 I_E = m*C_v*(T2-T); // Change in internal energy in
27 disp(I_E, "Change in internal energy in kJ is");
28 disp("i.e. "+string(abs(I_E))+" kJ energy is
      decrease in internal energy")
```

Scilab code Exa 3.5 Final pressure

```
1 // Exa 3.5
2 clc;
3 clear;
4 close;
5 // Given data
6 P1 = 1.1; // in MN/m^2
7 \text{ P1} = \text{P1} * 10^6; // \text{ in } \text{N/m}^2
8 V1 = 1.5; // in m^3
9 \text{ V2} = 7.5; // \text{ in m}^3
10 P2 = (P1*V1)/V2; // in kN/m^2
11 P2 = P2 * 10^-6; // in MN/m^2
12 P2 = P2 * 10^3; // in kN/m^2
13 disp(P2, "The final pressure in kN/m^2 is");
14 \text{ W} = P1*V1*log(V2/V1); // in J
15 W = W * 10^{-3}; // in kJ
16 disp(W,"The work done in kJ is");
17
18 // Note: There is an error in calculation to find
      the value of Work Done. So the answer in the book
       is wrong
```

Scilab code Exa 3.6 Final pressure and temperature

```
1 // Exa 3.6
2 clc;
3 clear;
4 close;
5 // Given data
6 P1 = 2800000; // in N/m^2
7 P1 = P1 * 10^-6; // in MN/m^2
8 C_p = 1.024; // in kJ/kg-K
9 C_v = 0.7135; // in kJ/kg-K
10 V1 = 1; // in m^3. (asuumed)
11 V2 = 5*V1; // in degree C
```

```
13 T1 = T1 + 273; // in K
14 Gamma = C_p/C_v;
15 P2 = (P1*(V1)^Gamma)/((V2)^Gamma); // in MN/m^2
16 disp(P2,"The final pressure in MN/m^2 is");
17 T2 = (P2/P1)*V2*T1; // in K
18 disp(T2-273,"The final temperature in degree C is");
19 R = C_p-C_v; // in kJ/kg-K
20 W = (R*(T1-T2))/(Gamma - 1); // in kJ
21 disp(W,"Work done in kJ is");
```

Scilab code Exa 3.7 Value of Cp and Cv

```
1 // Exa 3.7
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ W} = 89.947; // \text{ in kJ}
7 \text{ T1} = 240; // \text{ in degree C}
8 T1=T1+273; // in K
9 T2 = 115; // in degree C
10 T2=T2+273; // in K
11 C_v = W/(T1-T2); // in kJ/kg-K
12 disp(C_v, "The value of Cv in kJ/kg-K is");
13 V1 = 1; // in m<sup>3</sup> (assumed)
14 V2 = 2*V1; // in m^3
15 / (T1/T2) = (V2/V1)^{(Gamma - 1)}
16 Gamma = log 10 (T1/T2)/log 10 (V2/V1) + 1;
17 \text{ Gamma} = 1.4;
18 C_p = Gamma * C_v; // in kJ/kg-K
19 disp(C_p, "The value Cp in kJ/kg-K is");
```

Scilab code Exa 3.8 Pressure temperature and internal energy

```
1 // Exa 3.8
2 clc;
3 clear;
4 close;
5 // Given data
6 P = 7; // in bar
7 P = P *10^5; // in N/m^2
8 R = 0.287; // in kJ/kg-K
9 R=R*10^3; // in J/kg-K
10 \text{ Gamma} = 1.4;
11 T = 100; // in degree C
12 T = T + 273; // in K
13 V = (R*T)/P; // in m^3
14 disp(V, "The volume of one kg of air in m<sup>3</sup> is:")
15 C_v = 0.718; // in kJ/kg
16 T=T-273; // in degree C
17 InternalEnergy= C_v*T; // in kJ/kg
18 disp(InternalEnergy,"Internal energy of 1 kg air in
      kJ/kg is : ")
19 P1= P; // in bar
20 V1 = 1; // in m<sup>3</sup> (assumed)
21 \text{ V2} = 4 * \text{V1}; // \text{ in } \text{m}^3
22 T1= T; // in degree C
23 T1=T1+273; // in K
24 P2 = (P * (V1)^Gamma)/((V2)^Gamma); // in N/m^2
25 disp(P2*10^-5, "The final pressure in bar is");
26 \text{ T2} = (P2*V2)/(P1*V1)*T1// \text{ in } K
27 	ext{ T2} = 	ext{T2} - 	ext{273}; // 	ext{ in degree}
28 disp(T2, "The final temperature in degree C is");
29 I_E = C_v * T2; // in kJ/kg
30 disp(I_E, "Internal energy in kJ/kg is");
```

Scilab code Exa 3.9 Final pressure temperature and internal energy

```
1 // Exa 3.9
```

```
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ Gamma} = 1.41;
7 \text{ C_v} = 0.703; // \text{ in kJ/kg-K}
8 P1 = 105; // in kN/m^2
9 P2 = 2835; // in kN/m^2
10 T1 = 15; // in degree C
11 T1 = T1 + 273; // in K
12 \text{ m} = 0.2; // \text{ in kg}
13 // Formula T2/T1 = (P2/P1)^{(Gamma-1)/Gamma)
14 T2 = T1*(P2/P1)^((Gamma-1)/Gamma); // in K
15 T2 = T2 - 273; // in degree C
16 disp(T2, "The final temperature in degree C is");
17 T2 = T2 + 273; // in K
18 I_E = m*C_v*(T2-T1); // in kJ
19 disp(I_E, "Change in internal energy in kJ is");
20 W = I_E; // in kJ
21 disp(W,"Work done in kJ is");
22
23 // Note: There is an error to calculate the value of
      T2, and this wrong value is putted to evaluate
      the value of Change in internal energy but the
      value of Change in internal energy is calculated
      correc.
```

Scilab code Exa 3.10 Pressure and temperature at the end of compression

```
1 // Exa 3.10
2 clc;
3 clear;
4 close;
5 // Given data
6 P1= 100; // in N/m<sup>2</sup>
```

```
7 \text{ T1} = 30; // \text{ in degree C}
8 T1 = T1 + 273; // in K
9 \ C_v = 0.718; // in kJ/kg-K
10 / C_v = C_v * 10^3; / in J/kg-K
11 R = 287.1; // in J/kg-K
12 d = 15; // in cm
13 \ 1 = 20; // in cm
14 V = (\%pi/4)*(d)^2*1;// in cm^3
15 V = V * 10^-3; // in litre
16 Clear_V = 1.147; // clearance volume
17 Vol = V+Clear_V; //volume of air at beginning of
      compression in litre
18 ROC = Vol/Clear_V; // Ratio of compression
19 P2 = P1*(Vol/Clear_V)^1.2; // in kN/m^2
20 disp(P2,"The pressure at the end of compression in
      kN/m^2 is");
21 T2 = (P2*Clear_V*T1)/(P1*Vol); // in K
22 T2 = T2 - 273; // in degree C
23 T1 = T1 - 273; // in degree C
24 T = T2-T1; // in degree C
25 disp(T," The temperature at the end of compression in
       degree C is");
26 \text{ T1} = \text{T1} + 273; // \text{ in } \text{K}
27 \text{ m} = (P1*Vol)/(R*T1); // in kg
28 I_E = m*C_v*T; // in kJ
29 disp(I_E, "The change in internal energy in kJ is");
```

Scilab code Exa 3.11 Final volume temperature and work done

```
1  // Exa 3.11
2  clc;
3  clear;
4  close;
5  // Given data
6  V1 = 2.5; // in litre
```

```
7 P1 = 1400; // kN/m^2
8 P2 = 280; //in kN/m^2
9 T1 = 1100; // in C
10 T1 = T1 + 273; // in K
11 n = 1.28;
12 V2 = V1 * (P1/P2)^(1/1.28); // in litres
13 disp(V2, "Final volume in litres is");
14 T2 = T1 * ((P2*V2)/(P1*V1)); // in K
15 T2 = T2 - 273; // in degree C
16 disp(T2, "Final temperature in degree C is");
17 W = (P1* V1 - P2*V2)/(n-1); // in Joules
18 disp(W*10^-3, "Work done in kJ is");
```

Scilab code Exa 3.12 The value of index

```
1 // Exa 3.12
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ Gamma} = 1.4;
7 P1 = 780; // \text{ in } kN/m^2
8 \text{ P2} = 100; // \text{ in } \text{kN/m}^2
9 V1 = 750; // in cm<sup>3</sup>
10 V1= V1*10^-6; // in m^3
11 V2 = (1/5)*V1; // in m^3
12 n = (\log(P1/P2))/(\log(V1/V2));
13 disp(n,"The value of index is");
14 W = (P1*V2-P2*V1)/(1-n); // in kJ
15 disp(W,"Work done in kJ is");
16 Q = ((Gamma - n)/(Gamma-1)) * (-W); // in kJ
17 disp("Heat rejected during Compression in kJ is "+
      string(Q)+" kJ or "+string(Q*10^3)+" joules");
```

Scilab code Exa 3.13 Change in entropy of air

```
1 // Exa 3.13
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ T1} = 40; // \text{ in degree C}
7 \text{ T1} = \text{T1} + 273; // \text{ in } \text{K}
8 P2 = 50; // in bar
9 \text{ P1} = 1; // \text{ in bar}
10 \text{ Gamma} = 1.4;
11 C_v = 0.718; // in kJ/kg-K
12 SpeHeat = 1.005; // \text{ in } kJ/kg-K
13 HeatSupply= 125.6; // in kJ/kg
14 T2 = T1 * (P2/P1)^{(Gamma-1)/Gamma); // in K
15 C_p = C_v * (T2-T1); // in kJ/kg
16 del_T = HeatSupply/SpeHeat;// in degree C
17 del_U = C_v * del_T; // in kJ/kg
18 disp(del_U, "Change in internal energy in kJ/kg is");
19 T3 = T2 + del_T; // in K
20 del_Phi = SpeHeat * log(T3/T2); // in kJ/kg-K
21 disp(del_Phi, "Change in entropy during constant
      pressure in kJ/kg-K is");
```

Scilab code Exa 3.14 Gain of entropy

```
1 // Exa 3.14
2 clc;
3 clear;
4 close;
5 // Given data
```

```
6 P1 = 30; // in bar
7 P1= P1*10^5; // in N/m^2
8 V1 = 0.85; // in m^3
9 V2 = 4.25; // in m^3
10 W = P1 *V1 * log(V2/V1); // in Joules
11 W = W * 10^-3; // in kJ
12 T = 400; // in K
13 del_U = W/T; // in kJ/K
14 disp(del_U, "Change in entropy in kJ/K is");
```

Scilab code Exa 3.15 Change of entropy

```
1 // Exa 3.15
2 clc;
3 clear:
4 close;
5 // Given data
6 \text{ C_P} = 1.041; // \text{ in } \text{kJ/kg-K}
7 \text{ C_V} = 0.743; // \text{ in } \text{kJ/kg-K}
8 R = C_P - C_V; // in kJ/kg-K
9 P1 = 140; // in kN/m^2
10 P2 = 1400; // \text{ in } kN/m^2
11 V1 = 0.14; // in m^3
12 T1 = 25; // in degree C
13 T1 = T1 + 273; // in K
14 \text{ Gamma} = 1.4;
15 n = 1.25;
16 \text{ m} = (P1 * 10^3 *V1)/(R * 10^3 * T1); // in kg
17 V2 = V1 * (P1/P2)^(1/n); // in m^3
18 del_U = C_P * (log(V2/V1)) + C_V * (log(P2/P1)); //
      in kJ/kg-K
19 del_U = m * del_U; // in kJ/K
20 disp("Part (i)")
21 disp(del_U, "Change in entropy in kJ/K is");
22 T2 = T1 * (V1/V2)^(n-1); // in K
```

```
23 del_U1 = C_P * (log(T2/T1)) - R*(log(P2/P1)); // in
      kJ/kg-K
24 disp("Part (ii)")
25 disp(del_U1, "Change in entropy in kJ/kg-K is");
26 \text{ del}_{U2} = C_V * (\log(T2/T1)) + R*(\log(V2/V1)); // in
      kJ/kg-K
27 disp("Part (iii)")
28 disp(del_U2, "Change in entropy in kJ/kg-K is");
29 del_U3 = C_V * (Gamma-n) * (\log(V2/V1)); // in kJ/kg-
     K
30 disp("Part (iv)")
31 disp(del_U3, "Change in entropy in kJ/kg-K is");
32 \text{ del}_U4 = C_V * ((Gamma-n)/(n-1)) * (log(T1/T2)); //
      in kJ/kg-K
33 disp("Part (v)")
34 disp(del_U4,"change in entropy in kJ/kg is");
35 \text{ del}_U5 = C_V * ((Gamma-n)/n) * (log(P1/P2)); // in kJ
     / kg - K
36 disp("Part (vi)")
37 disp(del_U5, "Change in entropy in kJ/kg-k is");
```

Scilab code Exa 3.16 Entropy

```
1  // Exa 3.16
2  clc;
3  clear;
4  close;
5  // Given data
6  P1 = 1; // in bar
7  P2 = 15; // in bar
8  T1 = 0; // in degree C
9  T1 = T1 + 273; // in K
10  T2 = 200; // in degree C
11  T2 = T2 + 273; // in K
12  C_P = 1.005; // in kJ/kg-K
```

Scilab code Exa 3.17 Change of entropy

```
1 // Exa 3.17
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ C_V} = 2.174; // \text{ in } \text{kJ/kg-K}
7 R = 0.5196; // in kJ/kg-K
8 C_P = C_V + R; // in kJ/kg-K
9 \ V2 = 1; // in m^3
10 V1 = 8; // in m<sup>3</sup>
11 P1 = 0.7; // in bar
12 P2 = 7; // \text{ in bar}
13 del_U = C_P * (log(V2/V1)) + C_V * (log(P2/P1)); //
      in kJ/kg-K
14 \text{ m} = 0.9; // \text{ in kg}
15 del_U = m * del_U; // in kJ/K
16 disp(del_U, "Change in entropy in kJ/K is");
17 disp("It is a loss of entropy")
```

Scilab code Exa 3.18 Total enthalpy

```
1 // Exa 3.18
2 clc;
3 clear;
4 close;
```

```
5 // Given data
6 \text{ C_P} = 1.005; // \text{ in kJ/kg-K}
7 \text{ C_V} = 0.718; // \text{ in } \text{kJ/kg-K}
8 R = C_P - C_V; // in kJ/kg-K
9 R= R*10^3; //in J/kg-K
10 P1 = 3*10^5; //in N/m^2
11 V1 = 1.5; // \text{ m}^3
12 T1 = 15; // in degree C
13 T1 = T1 +273; // in K
14 \text{ m1} = (P1*V1)/(R*T1); // in kg
15 m2 = m1+2; // final mass of air in kg
16 P2 = P1 * (m2/m1); // in kN/m^2
17 \text{ T1} = \text{T1} - 273; // \text{ in degree C}
18 T2 = 0; // in degree C
19 m = 1; // in kg
20 \text{ del}_U = m * C_P * (T1-T2); // kJ
21 disp(del_U, "Total enthapy of air in kJ is");
```

Scilab code Exa 3.19 Temperature molecular mass and specific volume

```
1 // Exa 3.19
2 clc;
3 clear;
4 close;
5 // Given data
6 R = 0.287; // in kJ/kg-K
7 P1 = 30; // in bar
8 V1 = 0.12; // in m^3
9 m = 1.8; // in kg
10 U= 8.3143; // in kJ/kg-mol-K
11 T1 = (P1 * 10^5 * V1)/(m*R*10^3); // in K
12 T1 = T1 - 273; // in degree C
13 disp(T1, "The temperature in degree C is");
14 m_m = U/R; // in kg
15 disp(m_m, "The molecular mass in kg is");
```

```
16  V_s = V1/m; // in m^3
17  disp(V_s, "The Specific volume in m^3 is');
18  V_m = V_s * m_m; // in m^3
19  disp(V_m, "Molecular volume in m^3 is");
```

Scilab code Exa 3.20 Composition of the mixture by mass

```
1 // Exa 3.20
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 T=15+273; //in K
7 U= 8.3143; // in kJ/kg-mol-K
8 GasConstant = 0.618; // in kJ/kg-K
9 GasVolume = 1; // in m<sup>3</sup> (assume)
10 AirVolume = 1.5 * GasVolume; // in m^3
11 P=760; // in mm
12 P= P/750; // in bar
13 P= P*10^5; //in N/m^2
14 MixtureVolume = GasVolume + AirVolume; //in m^3
15 disp ("Percentage of gas by volume in the mixture in
      \% is : ")
16 PGM= GasVolume/MixtureVolume*100; // in \%
17 disp(PGM);
18 disp ("Percentage of air by volume in the mixture in
      % is : ")
19 PAM= AirVolume/MixtureVolume*100; // in %
20 disp(PAM);
21 \text{ M1} = \text{U/0.287}; // \text{ in mol}
22 \text{ M2} = \text{U/0.618}; // \text{ in mol}
23 M= PAM/100*M1+PGM/100*M2;//mass of mixture in mol
24 R= U/M; // gas constant in kJ/kg-K
25 R= R*10^3; //in J/kg-K
26 disp(R*10^-3,"The gas constant in kJ/kg-K is: ");
```

```
disp("Percentage of air by mass in the mixture in %
    is ")

PAM1= PAM*M1/M; // in %

disp(PAM1);

disp("Percentage of gas by mass in the mixture in %
    is ")

PGM1= PGM*M2/M; // in %

disp(PGM1);

Rho= P/(R*T); // kg/m^3

disp(Rho, "The density of the gas in kg/m^3 is : ")
```

Scilab code Exa 3.21 Difference between work done by air

```
1 // Exa 3.21
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ Gamma} = 1.4;
7 \text{ P1} = 7; // \text{ in bar}
8 P1= P1*10^5; // in N/m^2
9 \text{ V1} = 1.6; // \text{ in } \text{m}^3
10 V2 = 8; // in m<sup>3</sup>
11 P2 = (P1 * (V1)^{(Gamma)})/((V2)^{(Gamma)}); // in bar
12 W1 = (P1*V1-P2*V2)/(Gamma-1); //work done by the gas
      during isentropic expansion in J
13 Rho = V2/V1;
14 W2 = P1*V1*(log(Rho)); //work done by the gas during
      isothermal expansion in J
15 del_W = W2-W1; // in J
16 disp(del_W*10^-3, "Difference between the work done
      during isentropic and isothemal expansion in kJ
      is");
```

Scilab code Exa 3.22 Temperature of the gas

```
1 // Exa 3.22
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ P1} = 1; // \text{ in}
                   bar
7 \text{ V1} = 400; // \text{ in } \text{ cm}^3
8 \text{ V2} = 80; // \text{ in Cm}^3
9 T1 = 110; // in degree C
10 T1 = T1 + 273; // in K
11 \text{ Gamma} = 1.3;
12 P2 = P1*((V1/V2)^(Gamma)); // in bar
13 disp(P2, "The pressure in bar is");
14 T2 = T1 * ((P2*V2)/(P1*V1)); // in K
15 T2 = T2-273; // in degree C
16 disp(T2, "The temperature in degree C is");
17 T2 = T2 + 273; // in K
18 \ m = 1;
19 \ C_V = 0.75;
20 del_U = m*C_V*(T2-T1); // in kJ
21 disp(del_U, "Change in internal energy in kJ is");
22 P1= P1*10^5; // in N/m^2
23 P2= P2*10^5; // in N/m^2
24 V1= V1*10^-3;// in litre
25 \text{ V2} = \text{V2} * 10^{-3}; // \text{ in litre}
26 \text{ W} = (P1*V1-P2*V2)/(Gamma-1); // in J
27 W = abs(W * 10^-3); // in kJ
28 disp(W,"Work done in kJ is");
29 P3 = 40*10^5; // in N/m<sup>2</sup>
30 \text{ T3} = (P3/P2) * T2; // in K
31 T3 = T3 - 273; // in degree C
32 disp(T3, "Temperature of gas in degree C is");
```

Scilab code Exa 3.23 Total work done during the whole process

```
1 // Exa 3.23
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ C_P} = 1.068; // \text{ in } \text{kJ/kg-K}
7 \text{ C_V} = 0.775; //\text{in kJ/kg-K}
8 R = C_P-C_V; // in kJ/kg-K
9 R= R*10^3; // in J/kg-K
10 P1 = 12; // in bar
11 P1= P1*10^5; // in N/m^2
12 V1 = 0.15; //in m^3
13 V2= 0.28; // in m<sup>3</sup>
14 \text{ m} = 1; // \text{ in kg}
15 T1 = (P1*V1)/(R*m); // in K
16 T2 = T1 * (V2/V1); // in K
17 disp(T2-273, "Temperature at the end of Constant
      pressure in C is");
18 W = P1* (V2-V1); // in J
19 W = W * 10^-3; // in kJ
20 \text{ Gamma} = 1.38;
21 \text{ V3} = 1.5; // \text{ in m}^3
22 T3 = T2/((V3/V2)^(Gamma-1));// in K
23 T3 = T3 - 273; // in degree C
24 disp(T3, "Temperature at the end of Isentropic in
        is");
25 	ext{ T3} = 	ext{T3} + 273; // in K
26 W1 = m *C_V*(T2-T3); //work done during isentropic
       expansion in kJ
27 \text{ W2} = \text{W+W1}; // \text{ in kJ}
28 disp(W2, "Total Work done on in kJ is");
```

Scilab code Exa 3.24 Internal energy change

```
1 // Exa 3.24
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 \text{ C_P} = 1.005; // \text{ in } \text{kJ/kg-K}
7 \text{ C_V} = 0.718; // \text{ in } \text{kJ/kg-K}
8 R = C_P-C_V; // in kJ/kg-K
9 P1 = 20; //in bar
10 P2 = 12; // in bar
11 T1 = 200; //in degree C
12 \text{ T1} = \text{T1} + 273; // \text{ in } \text{K}
13 T2 = 125; //in degree c
14 T2 = T2 + 273; // in K
15 V1 = (R*10^3*T1)/(P1*10^5); // in m<sup>3</sup>
16 V2 = (R*10^3*T2)/(P2*10^5); // in m^3
17 W = 10^5 * integrate('-293*V + 40', 'V'
      ,0.0679,0.0952);//in Joules
18 W = round(W * 10^-3); // in
19 disp(W,"Work done in kJ is");
20 \text{ m} = 1; // \text{ in kg}
21 del_U = m*C_V*(T2-T1); //change in internal energy in
       kJ
22 disp(del_U, "Change in internal energy in kJ is");
23 disp ("Negative sign indicates that there is decrease
       in internal energy of the gas. ")
24 C_Enthalpy = m*C_P*(T2-T1); //change in enthalpy in
25 disp(C_Enthalpy,"The change in enthalpy in kJ is:")
26 disp("Negative sign indicates that there is decrease
       in enthalpy of the gas")
27 Q = W + del_U; // in kJ
```

```
28 disp(Q,"Heat transfer in kJ is");
29 disp("Negative sign indicates that the heat is rejected by the air")
```

Scilab code Exa 3.25 Change in internal energy

```
1 // Exa 3.25
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ P1} = 14; // \text{ in bar}
7 P3 = 2.222; // in bar
8 V3byV1 = P1/P3;
9 P2 = 1.05; // in bar
10 Gamma = log(P1/P2)/log(V3byV1);
11 C_P = 1.005; // in kJ/kg-K
12 C_V = C_P/Gamma; // in kJ/kg-K
13 T3 = 343; // in degree C
14 T3 = T3 + 273; // in K
15 T2 = ceil(T3*P2)/P3; // in K
16 \text{ m} = 0.5; // \text{ in kg}
17 del_U = m*C_V*(T2-T3); // in kJ
18 disp(del_U, "Change in internal energy in kJ is");
19 disp("i.e. there is a loss of "+string(abs(del_U))+"
       kJ of internal energy")
```

Scilab code Exa 3.26 Mass of oxygen used

```
1 // Exa 3.26
2 clc;
3 clear;
4 close;
```

```
5 // Given data
6 R = 0.26; // in kJ/kg-K
7 R = R * 10^3; // in J/kg-K
8 \text{ Gamma} = 1.4;
9 P1 = 3.1; // MN/m^2
10 P1 = P1 * 10^6; // N/m^2
11 P2 = 1.7; // in MN/m^2
12 P2 = P2 * 10^6; // in N/m^2
13 V1 = 500; // in cm<sup>3</sup>
14
15 T = 18; // in degree C
16 T = T + 273; // in K
17 T2 = 15; // in degree C
18 T2 = T2 + 273; // in K
19 m = (P1*V1)/(R*T)*10^-3; // in kg
20 m_desh = (P2*V1)/(R*T2)*10^-3; //in kg
21 M = m-m_desh; // in kg
22 disp(M, "The mass of oxygen in kg is");
23 R = R * 10^-3; // in kJ/kg-K
24 C_v = R/(Gamma-1); // in kJ/kg-K
25 \ Q = m_desh*C_v * (T-T2); // kJ
26 disp(Q,"Heat transfered in kJ is");
```

Scilab code Exa 3.27 The change in internal energy and in enthalpy

```
1 // Exa 3.27
2 clc;
3 clear;
4 close;
5 // Given data
6 P1 = 1 * 10^5; // in N/m^2
7 V1 = 0.1; // in m^3
8 V2 = 0.01; // in m^3
9 T1 = 90; // in degree C
10 T1 = T1 +273; // in K
```

```
11 R = 0.287; // in kJ/kg-K
12 R = R
          *10^3;
13 C_v = 0.717; // in kJ/kg-K
14 C_P = 1.005; // in kJ/kg-K
15 m = (P1 * V1)/(R*T1); // in kg
16 \text{ Gamma} = 1.4;
17 T2 = T1 * ((V1/V2)^{(Gamma - 1)}); // in K
18 del_U = m*C_v*(T1-T2); // in kJ
19 disp(del_U,"The change in internal energy in kJ is:
      ")
20 del_E = m * C_P*(T2-T1); // in kJ
21 disp(del_E,"The change in enthalpy in kJ is: ")
22 U2 = m*C_v*T2; //Internal energy at 2 in kJ
23 T= 473; // temp. of entering air
24 E = V1*C_P*T; // Enthalpy of entering air in kJ
25 // U3= (m+V1)*C_v*T3; (internal energy at 3)
26 // U3= U2+E
27 	ext{ T3} = (E+U2)/((m+V1)*C_v); // in K
28 disp(T3, "Temperature in K is");
29 m = m + .1;
30 P3 = m* R*T3/V2; // in N/m^2
31 disp(P3*10^-6, "The pressure in MN/m^2 is");
32
33 // Note: There is a calculation error to evaluating
      the value of P3. So the answer in the book of P3
      is wrong.
```

Scilab code Exa 3.28 temperature of gas in the cylinder

```
1 // Exa 3.28
2 clc;
3 clear;
4 close;
5 // Given data
6 T= 60+273; // in K
```

```
7 T2= 25+273; // in K
8 P1=3.5*10^6; // in Pa
9 P2=1.7*10^6; // in Pa
10 Gamma=0.4; // value of Cp-Cv
11 m1=1; // (assumed value)
12 // R = P1*V/(m*T)
                                  (i)
13 // R = P2*V/((m-m1)*T2) (ii)
14 // From eq(i) and (ii)
15 m = m1*P1*T2/(P1*T2-P2*T);
16 // U = m*Cv*T and U1 = (m-m1)*Cv*T2+m1*Cv*T1
17 // U-U1= P1*V1= m1*R*T1 or
18 / m1*R*T1 = m*Cv*T - [(m-m1)*Cv*T2 + m1*Cv*T1]
19 T1= (m*T-(m-m1)*T2)/(m1*Gamma+m1); // in K
20 disp(T1-273," The temperature of gas in the cylinder
          C is : ")
     in
```

Scilab code Exa 3.29 Work transfer

```
1  // Exa 3.29
2  clc;
3  clear;
4  close;
5  /// Given data
6  U=180; // energy received by system in kJ
7  RH= 200; // rejected heat by system in kJ
8  RcHeat= 50; // received heat by system in kJ
9  W= U-RH+RcHeat; // in kJ
10  U1 = 0; // in kJ
11  U2= U+U1; // in kJ
12  U3 = RcHeat-RH+U2; // in kJ
13  disp(U3, "Internal energy in kJ is");
```

Scilab code Exa 3.30 Initial value of entropy

```
1 // Exa 3.30
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ C_P} = 1.045; // \text{ in } \text{kJ/kg-K}
7 Q = 100; // in kJ
8 \text{ del_T} = Q/C_P; // \text{ in degree } C
9 T1 = 25; // in degree C
10 T1 = T1 + 273; // in K
11 T = 0; // in degree C
12 T = T + 273; // in K
13 T2 = T1 + del_T; // in K
14 del_Phi = C_P * (log(T2/T1)); // in kJ/kg-K
15 disp(del_Phi,"The change in entropy in the process
      in kJ/kg-K is");
16 ini_entropy = C_P * (log(T1/T)); // initial entropy
      in in kJ/kg-K
17 disp(ini\_entropy,"The initial entropyin kJ/kg-K is")
```

Chapter 4

Availability

Scilab code Exa 4.1 Entropy production accompanying the heat transfer

```
1 // Example 4.1
2 clc;
3 clear;
4 close;
5 // Given data
6 Q = 1000; // in kJ
7 \text{ T1} = 1000; // \text{ in } K
8 T2 = 400; // in K
9 delta_Qsource= -Q/T1; // in kJ/K
10 delta_Qsystem = Q/T2; // in kJ/K
11 delta_Qnet=delta_Qsystem+delta_Qsource; // in kJ/K
12 disp(delta_Qnet,"The entropy production accompanying
       the heat transfer in kJ/K is : ")
13 T0= 300; // in K
14 Q1= Q-T0*abs(delta_Qsource); // in kJ
15 Q2= Q-T0*abs(delta_Qsystem);// in kJ
16 \;\; \texttt{LossOfEnergy=Q1-Q2;} \; // \;\; in \;\; kJ
17 disp(LossOfEnergy, "The decrease in available energy
      after heat transfer in kJ is: ")
```

Scilab code Exa 4.2 The increase in unavailable energy

```
1 // Example 4.2
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 T1= 800+273; // in K
7 T2= 400+273; // in K
8 T3= 179+273; // in K
9 T0= 25+273; // in K
10 Q= 2018.4; // heat taken by water in kJ/kg
11 // Formula mCp*(T1-T2)=Q
12 mCp = Q/(T1-T2);
13 delta_Qgas= mCp*integrate('1/T', 'T', T1, T2); // in kJ/
14 delta_Qwater= Q/T3; // in kJ/K
15 delta_Qnet= delta_Qwater+delta_Qgas; // in kJ/K
16 disp(delta_Qnet," Net entropy changes in kJ/K is : ")
17 E1= T0*abs(delta_Qgas);// Original unavailable
      energy in kJ
  E2= T0*delta_Qwater; // unavailable energy after heat
      transfer in kJ
19 E= E2-E1;// in increase in unavailable energy in kJ
20 disp(E,"The increase in unavailable energy in kJ is
      : ")
21
22 // Note: There is some difference in the value of
      increase in unavailable energy because in the
     book the value of change of entropy of the gas is
      not correct.
```

Chapter 5

Air standard Cycles

Scilab code Exa 5.1 Efficiency of heat engine

```
1 // Exa 5.1
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ T1} = 550; // \text{ in degree C}
7 \text{ T1} = \text{T1} + 273; // \text{ in } \text{K}
8 T2 = 27; // in degree C
9 T2 = T2 + 273; // in K
10 Eta = ((T1-T2)/T1)*100; // in \%
11 disp(Eta," Maximum possible efficiency for staem
       turbine plant in % is");
12 T1 = 2500; // in degree C
13 T1 = T1 + 273; // in K
14 T2 = 400; // in degree C
15 \text{ T2} = \text{T2} + 273; // \text{ in } \text{K}
16 Eta = ((T1-T2)/T1)*100; // in \%
17 disp(Eta," Maximum possible efficiency for internal
      combustion engine in % is");
18 T1 = 450; // in degree C
19 T1 = T1 + 273; // in K
```

```
20 T2 = 15; // in degree C
21 T2 = T2 + 273; // in K
22 Eta = ((T1-T2)/T1)*100; // in %
23 disp(Eta, "Maximum possible efficiency for nuclear power plant in % is");
```

Scilab code Exa 5.2 Efficiency of a four stroke cycle gas engine

```
1 // Exa 5.2
2 clc;
3 clear;
4 close;
5 // Given data
6 D = 0.3; // in m
7 L = 0.45; // in m
8 V_s = (%pi/4)*(D)^2*L; // in m^3
9 V_c = 0.0114; // in m^3
10 V = V_c+V_s; // in m^3
11 r = V/V_c;
12 Gamma = 1.4;
13 Eta = (1-((1/r)^(Gamma-1)))*100; // in %
14 disp(Eta," Efficiency of engine in % is");
```

Scilab code Exa 5.3 Pressure and temperature

```
1  // Exa 5.3
2  clc;
3  clear;
4  close;
5  // Given data
6  P1 = 0.93; // in bar
7  T1 = 93; // in degree C
8  T1 = T1 + 273; // in K
```

```
9 V2 = 1; // assumed
10 \text{ V1} = 8.5 * \text{V2};
11 r = V1/V2;
12 \text{ Gamma} = 1.4;
13 P2 = P1 * ((V1/V2)^{(Gamma)}); // in bar
14 disp(P2, "Pressure at the beginning of compression
      stroke in bar is");
15 T2 = (P2*V2*T1)/(P1*V1); // in K
16 disp(T2-273, "Temperature at the beginning of
      compression stroke in C")
17 P3 = 38; // \text{ in bar}
18 T3 = T2 * (P3/P2); // in K
19 disp(P3," Pressure at the beginning of expansion
      stroke in bar is: ")
20 disp(T3-273, "Temperature at the beginning of
      expansion stroke in C is:")
21 \ V3 = V2;
22 \text{ V4} = \text{V1};
23 P4 = P3 * ((V3/V4)^{(Gamma)}); // in bar
24 \text{ T4} = \text{T1} * (P4/P1); // in K
25 disp(P4," Pressure at the end of expansion stroke in
      bar is :")
26 disp(T4-273, "Temperature at the end of expansion
      stroke in C is:")
27 Eta = 1 - (1/((r)^{(Gamma-1))});
28 Eta = Eta * 100; // in \%
29 disp(Eta, "Standard air efficiency in % is");
```

Scilab code Exa 5.4 Consumption of gas

```
1 // Exa 5.4
2 clc;
3 clear;
4 close;
5 // Given data
```

```
6 CalorificValue= 14.887*10^3; // in kJ/m<sup>3</sup>
7 Vs=1; // in m<sup>3</sup> (assumed)
8 Vc= 0.25*Vs;// clearance volume in m^3
9 V = Vs + Vc; // in m^3
10 Ratio = V/Vc; // ratio of compression
11 Gamma = 1.4;
12 r = 5;
13 Eta=1-1/(r^(Gamma-1));
14 Eta= Eta*100; // in %
15 disp(Eta," Air standard efficiency in % is :")
16 Eta_Th = Eta * 60/100; // thermal efficiency
17 disp(Eta_Th, "Thermal efficiency in % is:")
18 Eta_br_th = Eta_Th * 75/100; // break thermal efficiency
19 disp(Eta_br_th, "Brake thermal efficiency in % is :")
20 E= 3600; // energy equivalent of brake in kJ
21 GasConsumption= E/CalorificValue; // in m^3
22 disp(GasConsumption,"The consumption of gas in m<sup>3</sup>
      is :")
```

Scilab code Exa 5.7 Efficiency of dual combustion engine

```
1 // Exa 5.7
2 clc;
3 clear;
4 close;
5 // Given data
6 Gamma = 1.4;
7 r = 8;
8 Eta = 1 - (1/((r)^(Gamma-1)));
9 Eta = Eta * 100; // in %
10 disp(Eta,"Otto engine efficiency in % is");
11 r = 13;
12 x = 1;
13 Rho = 2.5;
14 Eta = 1-(1/r)^(Gamma-1)*[(Rho^Gamma-1)/(Gamma*(Rho
```

```
-1))];
15 Eta = Eta * 100; // in %
16 disp(Eta," Diesel engine efficiency in % is");
17 r = 13;
18 x = 3.5;
19 Rho = 2.5;
20 Eta = 1-(1/r)^(Gamma-1)*[(x*Rho^Gamma-1)/((x-1)+x*Gamma*(Rho-1))];
21 Eta = Eta * 100; // in %
22 disp(Eta," Dual engine efficiency in % is");
```

Scilab code Exa 5.8 Efficiency of engine

```
1 // Exa 5.8
2 clc;
3 clear;
4 close;
5 // Given data
6 D = 15;
7 L = 25;
8 V_s = (\%pi/4) * (D)^2 * L; // in cm^3
9 \text{ V_c} = 400; // \text{ in cm}^3
10 V = V_s + V_c; // in cm^3
11 r = V/V_c;
12 Rho = (V_c + (V_s*(5/100)))/V_c;
13 \text{ Gamma} = 1.4;
14 Eta = 1-((1/r)^{(Gamma-1)}) * ((((Rho)^{(Gamma)})-1)/(
      Gamma*(Rho-1)) );
15 Eta = Eta * 100; // in \%
16 disp(Eta," Efficiency of diesel cycle in \% is");
17
18 // Note: Calculation in the book is wrong, So the
      answer in the book is wrong
```

Scilab code Exa 5.9 Temperature at the end of compression stroke

```
1 // Exa 5.9
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ C_P} = 0.966; // \text{ in } \text{kJ/kg-K}
7 \text{ C_v} = 0.712; // \text{ in } \text{kJ/kg-K}
8 T1 = 83; // in degree C
9 T1 = T1 + 273; // in K
10 T3 = 1800; // in degree C
11 T3 = T3+273; // in K
12 r = 13;
13 Gamma = 1.4;
14 T2 = T1 * (r)^(Gamma-1); // in K
15 disp(T2-273, "Temperature at the end of compression
      in
          C is");
16 Rho = T3/T2;
17 T4 = ((Rho)^(Gamma)) * T1; // in K
18 disp(T4-273, "Temperature at the end of expansion in
       C is");
19 Q = C_P * (T3-T2); // in kJ
20 disp(Q,"Heat supplied at constant pressure in kJ is"
      );
21 \ Q1 = C_v * (T4-T1); // in kJ
22 disp(Q1,"Heat rejected at constant volume in kJ is")
23 Eta = ((Q-Q1)/Q) * 100; // in \%
24 disp(Eta, "Thermal efficiency in \% is");
25
26 // Note: The answer in the book is not accurate
```

Scilab code Exa 5.11 Ratio of expansion

```
1 // Exa 5.11
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 r = 10;
7 \text{ Gamma} = 1.4;
8 P1 = 1; // in bar
9 P2 = 1 * ((r)^(Gamma)); // in bar
10 P3 = 40; // in bar
11 P4 = P3; // in bar
12 T1 = 80; // in degree C
13 T1 = T1+273; // in K
14 T2 = T1 * ((r)^{(Gamma-1)}); // in K
15 T3 = (P3/P2)*T2; // in K
16 T4 = 1700; // in degree C
17 \text{ T4} = \text{T4} + 273; // \text{ in } \text{K}
18 Vc= 1; // in m<sup>3</sup> (assumed)
19 V4 = Vc*T4/T3;
20 V1= 10*Vc; // volume at beginning of compression in m
21 Vs= V1-Vc; // in m<sup>3</sup>
22 PercentageStroke= (V4-Vc)/Vs*100; // in \%
23 disp(PercentageStroke,"Percentage of stroke at which
       heat reception must stop is: ")
24 r = V1/V4;
25 P5= P4/r^{amma}; // in bar
26 disp("Ratio of work done during expansion to that
      done during compression is ")
27 ratio= (P4*V4-P5*V1)/(P2*Vc-P1*V1);
28 disp(ratio)
```

Scilab code Exa 5.12 Mean effective pressure of the cycle

```
1 // Exa 5.12
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ P1} = 1; // \text{ in bar}
7 \text{ T1} = 320; // \text{ in } K
8 r = 11.6;
9 Vc= 1; // in m<sup>3</sup> (assumed)
10 Vs= 10.6*Vc; //in m^3
11 V1= r*Vc; // in m^3
12 Gamma= 1.4;
13 P2= P1*r^{a}Gamma; // in bar
14 V2 = Vc; // in m^3
15 V3= Vc; // in m^3
16 V4=1.38*Vc; // in m^3
17 P3= 1.53*P2;// in bar
18 P4= P3; // in bar
19 expansionRatio = V1/V4;
20 P5= P4/expansionRatio^Gamma;// in bar
21 V5 = r*Vc; // in m^3
22 \text{ W} = [P3*(V4-Vc)+(P4*V4-P5*V5)/(Gamma-1)-(P2*V2-P1*V1)
      /(Gamma-1)]*10^5;// in joule
23 Pm= W/(Vs*10^4); // in N/cm^2
24 disp(Pm," The mean effective pressure of the cycle in
       N/cm^2")
25
26 // Note: The calculation in the book is wrong
```

Scilab code Exa 5.13 Ideal efficiency

```
1 // Exa 5.13
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ C_P} = 0.998; // \text{ in kJ/kg-K}
7 \text{ C_v} = 0.707; //\text{in kJ/kg-K}
8 T1 = 15; // in degree C
9 \text{ T1} = \text{T1} +273; // \text{ in } \text{K}
10 T2 = 400; // in degree C
11 T2 = T2 + 273; // in K
12 Eta = (1 - (T1/T2))*100; // in \%
13 disp(Eta," The ideal efficiency when engine is fitted
       with a perfect regenerator in \% is");
14 R = C_P - C_v; // in kJ/kg-K
15 r = 3;
16 \text{ Eta_r} = 0.8;
17 Eta = ((R*(log(r)))*(T2-T1))/((R*(log(r))*T2) + (1-
      Eta_r) * C_v * (T2-T1) )*100; // in %
18 disp(Eta," The ideal efficiency when efficiency of
      the regenrator is 0.8 in \% is");
```

Scilab code Exa 5.14 Power developed per kg of air supplied per second

```
1 // Exa 5.14
2 clc;
3 clear;
4 close;
5 // Given data
6 T1 = 15; // in degree C
7 T1 = T1 + 273; // in K
8 P1 = 1; // in bar
9 P2 = 5; // in bar
10 Gamma = 1.4;
11 T2 = T1 * ((P2/P1)^((Gamma-1)/Gamma)); // in K
```

Scilab code Exa 5.15 The efficiency of cycle

```
1 // Exa 5.15
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ C_v} = 0.711; // \text{ in } \text{kJ/kg-K}
7 T3 = 850; // in degree C
8 T3 = T3 + 273; // in K
9 T2 = 90; // in degree C
10 T2 = T2 + 273; // in K
11 E = C_v * (log(T3/T2)); // Entropy change in kJ/kg-K
12 disp(E, "Entrophy change in kJ/kg-K is");
13 W = (E * (T3-T2))/2; //output work in kJ/kg
14 Q = T2+E; // rejected heat in kJ/kg
15 Q1 = W + Q; //heat supplied in kJ/kg
16 Eta = (W/Q1); // in \%
```

 $\mathtt{disp}(\mathtt{Eta}, \mathtt{``The\ efficiency\ of\ cycle\ in\ \%\ is\ \verb");}$

Chapter 6

Properties of Steam and Steam Cycle

Scilab code Exa 6.1 Work done

```
1 // Exa 6.1
2 clc;
3 clear;
4 close;
5 // Given data
6 P = 10; // in bar
7 P = P *10^5; // in N/m^2
8 V = 2; // volume of water in m^3
9 W = P * V; // in J
10 W = W * 10^-6; // in MJ
11 disp(W," Work done in MJ is");
```

Scilab code Exa 6.2 External work done

```
1 // Exa 6.2
2 clc;
```

```
3 clear;
4 close;
5 // Given data
6 P = 1.013; // atm pressure in bar
7 P = P * 10^5; // in N/m^2
8 area = 1000*10^-4; // in m^2
9 L_w = 1000; // in N
10 P_L = L_w/area; // Pressure due to load in N/m^2
11 PressOnPiston = P_L+P; // absolute pressure to piston
       in N/m^2
12 a = 10^-3; // in m^2
13 disp("Energy required to pump 1 kg of water at 0 C
      into the cylinder in joules is:")
14 U = PressOnPiston*a; // in Joules
15 disp(U);
16 // Part (b)
17 absPressure= 111.3*10^3; // in N/m<sup>2</sup>
18 increaseInVol= (1.02-1)*10^-3; // in m<sup>3</sup>
19 disp("Energy required to effect the change in volume
       in joules is: ")
20 u_f= increaseInVol*absPressure;// in joules
21 disp(u_f);
22 // Part (c)
23 increaseInVol= (1.52-0.001); // in m<sup>3</sup>
24 ExternalWorkDone = absPressure*increaseInVol; // in
      joules
25 disp(ExternalWorkDone*10^-3,"External work done in
     kJ is :")
```

Scilab code Exa 6.3 Dryness fraction of steam

```
1 // Exa 6.3
2 clc;
3 clear;
4 close;
```

```
5  // Given data
6  m_s = 92.3; // mass of steam in kg
7  m_w = 0.78; // mass of water in kg
8  m = m_s + m_w; // total mass in kg
9  D_s = 92.3; // Dry steam in kg
10  D_F = D_s/m; // Dryness fraction
11  disp(D_F, "Dryness fraction is");
```

Scilab code Exa 6.4 Heat necessary to raise the temperature

```
1 // Exa 6.4
2 clc;
3 clear;
4 close;
5 // Given data
6 L = 693.3; // Liquid heat in kJ/kg
7 L1 = 125.7; // Liquid heat of feed water in kJ/kg
8 m = 2; // mass of water in kg
9 Q = m * (L-L1); // in kJ
10 disp(Q,"Heat required to raise temperature in kJ is");
11 disp("The water is still liquid at the end of the heat supply")
```

Scilab code Exa 6.5 Heat required

```
1 // Exa 6.5
2 clc;
3 clear;
4 close;
5 // Given data
6 x = 0.9;
7 h_f = 762.2; // in kJ/kg
```

```
8 \text{ h_fg} = 2013.8; // \text{ in kJ/kg}
9 H_wet = h_f + (x*h_fg); // in kJ/kg
10 En = 125.7; // Enthapy of liquid in kJ/kg
11 H_{wet} = H_{wet} - En; // in kJ
12 disp(H_wet,"When dry fraction is 0.9, Heat required,
       to convert in kJ is");
13 // Part (b) when dry fraction is saturated
14 H_sat = h_f + h_fg; // in kJ/kg
15 H_sat = H_sat - En; // in kJ
16 disp(H_sat," Heat required when steam is dry and
      saturated in kJ is");
17 C_P = 2.093; // in kJ/kg-K
18 t_sup = 300; // in degree C
19 t_sat = 179.9; // in degree C
20 H_sup = h_f + h_fg + C_P*(t_sup-t_sat); // in kJ
21 H_{sup1} = H_{sup} - En; // in kJ
22 disp(H_sup1," Heat required when the steam is super
      heated in kJ is");
```

Scilab code Exa 6.6 Specific volume of steam

```
12  T_sat = 201.3; // in degree C
13  T_sat = T_sat + 273; // in K
14  T_sup = 300; // in degree C
15  T_sup = T_sup + 273; // in K
16  V_sup = v_g * (T_sup/T_sat); // in m^3
17  disp(V_sup, "When the steam is superheated, the specific volume in m^3 is");
```

Scilab code Exa 6.7 Internal energy

```
1 // Exa 6.7
2 clc;
3 clear;
4 close;
5 // given data
6 \text{ h_f} = 720.7; // \text{ in kJ}
7 \text{ h_fg} = 2046.6; // \text{ in kJ}
8 \text{ v_g} = 0.2405; // \text{ in m}^3
9 x = 0.9;
10 P = 8*10^2; // in kN/m^2
11 U_sat = h_f + x * h_f g - x * v_g * P; // in kJ
12 disp(U_sat,"When the steam is wet, the internal
      energy in kJ is");
13 En = 2767.3; // Enthalpy of dry saturated stream
14 U_sat = En-(v_g*P); //in kJ/kg
15 disp(U_sat,"When the steam is dry and saturated, the
       internal energy in kJ/kg is");
16 C_P = 2.093;
17 del_s = 100; // in degree C
18 H_sup = h_f + h_fg + (C_P*del_s); // in kJ/kg
19 t_{sat} = 170.4 + 273; // in K
20 V_{sup} = (v_g*(t_sat+del_s))/t_sat;// in m^3
21 U_sup = H_sup - P*V_sup; // in kJ/kg
22 disp(U_sup,"When the steam is super heated, the
      internal energy in kJ/kg is");
```

Scilab code Exa 6.8 Heat units

```
1 // Exa 6.8
2 clc;
3 clear;
4 close;
5 // Given data
6 x = 0.88; // dryness fraction
7 h_fg = 2392.7; // in kJ/kg
8 H_wet = x * h_fg; // in kJ/kg
9 Vs = 14.67; // Specific volume in m^3/kg
10 V_wet = x * Vs; // in m^3/kg
11 Q = H_wet/V_wet; // in kJ/m^3
12 disp(Q,"Heat to be extracted in kJ/m^3 is");
```

Scilab code Exa 6.9 The enthalpy

```
1 // Exa 6.9
2 clc;
3 clear;
4 close;
5 // Given data
6 P = 12*10^2; // in kN/m^2
7 h_f = 798.1; // in kJ/kg
8 h_fg = 1984.5; // in kJ/kg
9 x = 0.8;
10 H_wet = h_f + (x*h_fg); // in kJ/kg
11 v_f = 0.001; // in m^3
12 v_g = 0.1684; // in m^3
13 V_wet = ((1-x)*v_f) + (x*v_g); // in m^3
14 En = H_wet/V_wet; // kJ/m^3
```

```
disp(En,"The enthalpy in kJ/m^3 is");
U_wet = H_wet - (V_wet * P); // in kJ
U_wet1 = (U_wet/V_wet); // in kJ/m^3
disp(U_wet1,"Internal energy in kJ/m^3 is");

// Note: There is calculation error to find the value of V_wet.( the correct value of V_wet is 0.13492 not 0.1308), so there is some difference between the output of coding and the answer of the book
```

Scilab code Exa 6.10 Entropy of 1 kg of steam

```
1 // Exa 6.10
2 clc;
3 clear;
4 close;
5 // Given data
6 T = 0; // in degree C
7 T = T + 273; // in K
8 T_sat = 179.9; // in degree C
9 \text{ T_sat} = \text{T_sat} + 273; // in K
10 x = 0.8;
11 h_fg = 2013.8; // in kJ/kg
12 c_f = 4.188;
13 Phi_wet = c_f*log(T_sat/T)+x*h_fg/T_sat; // in kJ/kg-
14 disp(Phi_wet,"The entropy of wet steam in kJ/kg-K is
      ");
15 Phi_g = (c_f*(log(T_sat/T))) + (h_fg/T_sat); // in kJ
16 disp(Phi_g,"The entropy of dry saturated steam in kJ
      /\text{kg-K is}");
17 C_P = 2.3;
18 \text{ T_sup} = 200+273; // in K
```

Scilab code Exa 6.11 Value of specific entropy

```
1 // Exa 6.11
2 clc;
3 clear;
4 close;
5 // Given data
6 T_sat = 198.3; // in degree C
7 \text{ T_sat} = \text{T_sat} + 273; // in K
8 \text{ T_sup} = 300; // \text{ in degree C}
9 \text{ T_sup} = \text{T_sup} + 273; // \text{ in } K
10 c_f = 4.188;
11 h_fg = 1945; // in kJ/kg-K
12 T = 273; // in K
13 C_P = 2.093; // in kJ/kg-K
14 Phi_sup =c_f *log(T_sat/T)+h_fg/T_sat+C_P*log(T_sup/
      T_sat);// in kJ/kg-K
15 disp(Phi_sup,"The value of specific entropy in kJ/kg
      -K is");
```

Scilab code Exa 6.12 Dryness fraction of steam

```
1 // Exa 6.12
2 clc;
3 clear;
4 close;
5 //Given data
6 P = 16; // in bar
```

```
7 m_w = 73; // in gm
8 m_s = 980; // in gm
9 x = m_s/(m_s+m_w);
10 disp(x,"Dryness fraction of steam is");
```

Scilab code Exa 6.13 Dryness fraction of steam

```
1 // Exa 6.13
2 clc;
3 clear;
4 close;
5 // Given data
6 P1 = 7; // in bar
7 P2 = 1.2; // in bar
8 h_f1 = 696.9; // in kJ/kg
9 h_fg1 = 2065; // in kJ/kg
10 h_g2 = 2684.9; // in kJ/kg
11 T_sup = 112; // in degree C
12 T_sat = 104.77; // in degree C
13 C_P = 2.1; // in kJ/kg
14 x1 = (h_g2+(C_P*(T_sup-T_sat))-h_f1)/h_fg1;
15 disp(x1," Dryness fraction of steam is");
```

Scilab code Exa 6.14 Minimum dryness fraction of steam

```
1  // Exa 6.14
2  clc;
3  clear;
4  close;
5  // Given data
6  P1 = 14; // in bar
7  P2 = 1.2; // in bar
8  h_f1 = 830;
```

```
9 h_fg1 = 1958;
10 h_g2 = 2684.9;
11 x = (h_g2-h_f1)/h_fg1;
12 disp(x,"Dryness fraction of steam is");
```

Scilab code Exa 6.15 Dryness fraction in the steam main

```
1 // Exa 6.15
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ m_s} = 2.2; // \text{ in kg}
7 \text{ m_w} = 0.18; // \text{ in kg}
8 x1 = m_s/(m_s+m_w);
9 h_f1 = 743;
10 h_fg1 = 2031;
11 h_g2 = 2685;
12 C_P = 2;
13 \text{ T_sup} = 115; // \text{ in degree C}
14 T_{sat} = 104.8; // in degree C
15 	ext{ x2} = (h_g2 + (C_P*(T_sup-T_sat)) - h_f1)/h_fg1;
16 x = x1 * x2;
17 disp(x, "The dryness fraction of steam is");
```

Scilab code Exa 6.16 Quantity of circulating water required

```
1 // Exa 6.16
2 clc;
3 clear;
4 close;
5 // Given data
6 h_f1 = 232; // in kJ/kg
```

```
7 h_fg = 2369; // in kJ/kg
8 x = 0.8;
9 h_f2 = 167.5; // in kJ/kg
10 H_wet1 = h_f1 + (x*h_fg); // in kJ/kg
11 H_wet = H_wet1 - h_f2; // in kJ/kg
12 T1 = 38; // in degree C
13 T2 = 25; // in degree C
14 T = T1-T2; // in degree C
15 SpeHeat = 4.188; // in kJ/kg-K
16 m = H_wet/(T*SpeHeat); // in kJ/kg
17 disp(round(m), "The quantity of circulating water required of condensed steam in kJ/kg is");
```

Scilab code Exa 6.17 Final condition of steam

```
1 // Exa 6.17
2 clc:
3 clear;
4 close;
5 // Given data
6 V1 = 0.4; // volume of dry saturated steam
7 \text{ P1} = 1.5; // \text{ in } MN/m^2
8 disp("Part (i): For Isothermal operation:")
9 Vs = 0.1318; // specific volume of dry steam
10 m = V1/Vs; // quantity of steam present in the vessel
       in kg
11 h_f1 = 844.6; // in kJ/kg
12 \text{ x1= } 0.5; // \text{ dryness fraction}
13 h_fg1= 1945.2; // in kJ/kg
14 Specific_Enth= h_f1+x1*h_fg1; // in kJ/kg
15 En= Specific_Enth*m; // kJ
16 disp(En, "Enthalpy of the fluid in kJ is:")
17 HeatLost = m*(1-x1)*h_fg1; // in kJ
18 disp(HeatLost,"The loss of heat during the constant
      temperature process in kJ is: ");
```

Scilab code Exa 6.18 Velocity of steam

```
1 // Exa 6.18
2 clc;
3 clear;
4 close;
5 // Given data
6 P = 13.5; // power developed by engine in kW
7 P1 = 12; // Steam consumption of the engine in kg/kWh
8 \text{ S_C} = P*P1; //\text{steam consumed per hour in kg}
9 \text{ S_C} = \text{S_C}/60; // \text{ in kg/min}
10 x = 0.85;
11 \ V_g = 1.430;
12 Volume = x * V_g; // in m^3/kg
13 Volume = S_C * Volume; // in m^3
14 d = 15*10^-2; // diameter of exhaust pipe in meter
15 A = (\%pi/4) * (d)^2; // in m^2
16 C = Volume/A; // in meter/minute
17 disp(C,"The velocity of steam in metre/minute is");
```

Scilab code Exa 6.19 Dryness fraction of steam

Scilab code Exa 6.20 Condition of steam

```
1 // Exa 6.20
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ P1} = 7 + 1; // \text{ in bar}
7 H = 2767; // Enthalpy in kJ/kg
8 P2 = 1.5+1; // in bar
9 H1 = 2717; // enthalpy of 1kg of dry steam in kJ/kg
10 H_sup = H - H1; // Superheated of 1kg of steam in kJ
11 S1 = 2.17; // super heated steam in kJ/kg-K
12 theta = H_sup/S1;// in degree C
13 T_{sat} = 127.4; // in degree C
14 T_{sup} = T_{sat} + theta; // in degree C
15 disp(T_sup,"The super heated temperature in degree C
       is");
```

Scilab code Exa 6.21 Temperature of feed water leaving the heating

```
1 // Exa 6.21
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ T\_sat} = 99.6; // \text{ in degree C}
7 \text{ h_fg} = 2258; // \text{ in } kJ/kg
8 m = 1; // steam output of the boiler in (assumed)
9 \text{ m1} = 0.03; // \text{ exhaust steam}
10 x = 0.9;
11 T1 = 21; // in degree C
12 Cp = 4.187; // kJ/kg-K
13 // Formula m1*(Cp*(T_sat-t)+x*h_fg) = m*Cp*(t-T1)
14 t = (m1*(Cp*T_sat+x*h_fg)+m*Cp*T1)/(Cp*(m+m1))
15 disp(t, "Temperature of the feed water leaving the
      heater in degree C is");
```

Scilab code Exa 6.22 Quantity of water sprayed

```
1 // Exa 6.22
2 clc;
3 clear;
4 close;
5 // Given data
6 T = 20; // in degree C
7 H1 = 3039; // Enthalpy in kJ/kg
8 H2 = 2725; // Enthalpy of 1kg dry saturated steam
9 H_sup = H1-H2; // superheat of 1kg of steam in kJ/kg
10 H= 2621.4; // heat required for 1kg or water in kJ
11 m = H_sup/H; // in kg
12 disp(m," Quantity of water in kg is");
```

Scilab code Exa 6.23 Heat received by steam

```
1 // Exa 6.23
2 clc;
3 clear;
4 close;
5 // Given data
6 x = 0.9;
7 h_f1 = 1087.4; // in kJ/kg
8 h_fg1 = 1712.9; // in kJ/kg
9 H_wet1 = h_f1 + (x*h_fg1); // in kJ/kg
10 H_sup2 = 3095; // in kJ/kg
11 H = H_sup2 - H_wet1; // in kJ/kg
12 disp(H," Heat recieved in kJ/kg is");
```

Scilab code Exa 6.24 Pressure and condition of steam

```
1 // Exa 6.24
2 clc;
3 clear;
4 close;
5 // Given data
6 V_fg = 0.1632; // in m^3
7 \text{ T_sup} = 200; // \text{ in degree C}
8 T_{sup} = T_{sup} + 273; // in K
9 T_{sat} = 188; // in degree C
10 T_{sat} = T_{sat} + 273; // in K
11 V_{sup} = (V_{fg}*T_{sup})/T_{sat}; // in m^3/kg
12 V = 0.24; // Capacity of the vessel in m<sup>3</sup>
13 Q = V/V_sup; // in kg
14 V1 = 0.9774; //volume of 1kg dry saturated steam in m
15 x = V_sup/V1;
16 disp(x, "Dryness fraction of steam is");
```

Scilab code Exa 6.25 Mass of steam in vessel

```
1 // Exa 6.25
2 clc;
3 clear;
4 close;
5 // Given data
6 V = 0.6; // in m^3
7 P2 = 2*10^2; // in kN/m^2
8 \text{ P1} = 10*10^2; // \text{ in } \text{kN/m}^2
9 \text{ m} = V/0.1946; // in kg
10 V_s = 0.8872; // Specific volume of dry saturated
      steam in m<sup>3</sup>
11 x = 0.1946/V_s;
12 h_f1 = 505; // in kJ/kg
13 h_fg1 = 2202; // in kJ/kg
14 H2 = m*(h_f1 + (x*h_fg1)); // in kJ
15 H1 = m*2776; // in kJ
16 Q = (H2-H1) - (V*(P2-P1)); // in kJ
17 disp(m,"The mass of steam in the vessel in kg is: "
18 disp(x,"The dryness fraction of steam in the vessel
      is : ")
19 disp(Q,"The amount o heat transferred in kJ is");
20 disp("Thus during cooling process there is loss of
      heat")
```

Scilab code Exa 6.26 Total energy and internal energy

```
1 // Exa 6.26
2 clc;
3 clear;
4 close;
5 // Given data
6 x1 = 0.95;
```

```
7 \text{ P1} = 9; // \text{ in bar}
8 P1= P1*10^2; // in kN/m^2
9 \text{ h_f1} = 743; // \text{ in } \text{kJ/kg}
10 h_fg1 = 2030; // in kJ/kg
11 V = 0.204; // in m<sup>3</sup>
12 \times 2 = 0.544
13 P2 = 5; // in bar
14 P2= P2*10^2; // in kN/m^2
15 h_f2 = 640; // in kJ/kg
16 \text{ h}_{fg2} = 2108; // \text{ in } kJ/kg
17 H_{wet1} = h_{f1} + (x1*h_{fg1}); // in kJ/kg
18 disp(H_wet1, "Total energy in kJ/kg is");
19 U1 = H_{wet1} - P1*V; // in kJ/kg
20 disp(U1,"The internal energy in kJ/kg is : ")
V_g1 = 0.204; // in m^3
22 V1 = 0.3753; //volume of 1kg of dry stream in m<sup>3</sup>
23 	 x2 = V_g1/V1;
24 \text{ H_wet2} = h_f2 + (x2*h_fg2); // in kJ
25 \text{ U2} = \text{H_wet2} - \text{P2*V}; // \text{ in kJ}
26 \text{ del_U} = \text{U1-U2}; // \text{ in } \text{kJ}
27 H = del_U/V; // in kJ
28 disp(H," Heat removed from 1 m<sup>3</sup> of steam in kJ is");
```

Scilab code Exa 6.27 Mass of steam present

```
1 // Exa 6.27
2 clc;
3 clear;
4 close;
5 // Given data
6 P1 = 2.1; // in MN/m^2
7 P1= P1*10^3; // in kN/m^2
8 P2 = 0.7; // in MN/m^2
9 P2= P2*10^3; // in kN/m^2
10 V1 = 0.1281; // in m^3
```

```
11 x = 0.9;
12 n = 1.25;
13 h_f1=920;//in kJ/kg
14 h_fg1= 1878.6; // in kJ/kg
15 h_f2= 697.0; // in kJ/kg
16 \text{ h}_{fg2} = 2065.0; // \text{ in } kJ/kg
17 V_{\text{wet1}} = x * 0.0949; // in m^3/kg
18 m = V1/V_wet1; // in kg
19 disp(m, "Mass of steam in kg is");
20 V2 = V1*((P1/P2)^(1/n)); //in m^3
21 del_W = (P1*V1-P2*V2)/(n-1); // in kJ
22 disp(del_W,"External work done in kJ is");
23 V_2 = V_2/m; // in m^3/kg
24 \times 2 = V_2/0.273;
25 H1= h_f1+x*h_fg1; // in kJ/kg
26 U1= H1-P1*V_wet1; // in kJ/kg
27 H2= h_f2+x2*h_fg2; // in kJ/kg
28 U2= H2-P2*V_2; // in kJ/kg
29 del_E = m*(U2-U1); //in kJ
30 disp(del_E, "Change in internal energy in kJ is");
31 Q = del_W +del_E; // in kJ
32 disp(Q,"Heat exchange in kJ is");
33 disp("Heat is lost to the surroundings.")
```

Scilab code Exa 6.28 Amount of heat put into or extracted from the steam

```
1 // Exa 6.28
2 clc;
3 clear;
4 close;
5 // Given data
6 h_f1 = 670; // in kJ/kg
7 h_fg1 = 2085; // in kJ/kg
8 h_f2 = 475; // in kJ/kg
9 h_fg2 = 2221; // in kJ/kg
```

```
10 P2 = 6*10^2; // in kJ/kg

11 P1 = 1.6*10^2; // in kJ/kg

12 n = 1.1;

13 x1 = 0.9;

14 V1 = 0.3159; // in m^3

15 V2 = 1.092; // in m^3

16 H_wet = h_f1 + (x1*h_fg1); // in kJ/kg

17 V_wet1 = x1*V1; // in m^3

18 V_wet2 = V_wet1*(P2/P1)^(1/n); // in m^3

19 x2 = V_wet2/V2;

20 H_wet2 = h_f2 + (x2*h_fg2); // in kJ/kg

21 U2= H_wet2-H_wet+P2*V_wet1-P1*V_wet2; // in kJ/kg

22 W= (P2*V_wet1-P1*V_wet2)/(n-1); // in kJ/kg

23 Q= U2+W; // in kJ/kg

24 disp(Q,"Heat recieved by steam in kJ/kg is");
```

Scilab code Exa 6.29 Final dryness fraction

```
1 // Exa 6.29
2 clc;
3 clear;
4 close;
5 // Given data
6 P1 = 0.85*10^3; // in kN/m^2
7 P2 = 0.17*10^3; // in kN/m^2
8 n = 1.13;
9 x1 = 0.95;
10 V1 = x1*0.227; // in m^3/kg
11 V2 = V1 * ((P1/P2)^(1/n)); // in m^3/kg
12 x2 = V2/1.032;
13 disp(x2, "Final dryness fraction of steam is");
14 W = (P1*V1-P2*V2)/(n-1); // in kJ/kg
15 disp(W, "Change in internal energy in kJ/kg is");
```

Scilab code Exa 6.30 Final temperature of steam

```
1 // Exa 6.30
2 clc;
3 clear;
4 close;
5 // Given data
6 Cp= 2.3; // in kJ/kg-K
7 \text{ T_sat= } 179.9; // in
8 T_sat = T_sat + 273; // in K
9 H= 3052; // enthalpy in kJ/kg
10 P= 10*10^2; // in kN/m^2
11 h_f = 763; // in kJ/kg
12 h_fg= 2015; // in kJ/kg
13 V= 0.1944; // in m<sup>3</sup>
14 // Formula H= h_f+h_fg*Cp*(t_sup-T_sat)-P*V*(t_sup/T_sat)
      T_sat)
15 t_sup= (h_f+h_fg-Cp*T_sat-H)/(P*V/T_sat-Cp); // in K
16 t_sup= t_sup-273;// in
17 disp(t_sup,"The final temperature of the steam in
       C is : ")
```

Scilab code Exa 6.31 Increase in entropy

```
1 // Exa 6.31
2 clc;
3 clear;
4 close;
5 // Given data
6 m1 = 3; // in kg
7 m2 = 2; // in kg
8 T1 = 10; // in degree C
```

```
9 T2 = 80; // In Degree C
10 T = ((m1*T1)+(m2*T2))/(m1+m2); // in degree C
11 T = T + 273; // in K
12 T1 = T1 + 273; // in K
13 T2 = T2 + 273; // in K
14 c_f = 4.188;
15 del_phi1 = m1 * c_f*log(T/T1); // in kJ/K
16 del_phi2 = m2 * c_f*log(T/T2); // in kJ/K
17 Phi = del_phi1 + del_phi2; // in kJ/K
18 disp(Phi, "Total change in entropy in kJ/K is")
```

Scilab code Exa 6.32 Rankine efficiency

```
1 // Exa 6.32
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ P1} = 15; // \text{ in bar}
7 P2 = 0.15; // in bar
8 T_sat = 198.3; // in degree C
9 \text{ T_sat} = \text{T_sat} + 273; // in K
10 h_fg1 = 1947; // in kJ/kg
11 h_fg2= 2369; // in kJ/kg
12 \text{ h}_g1 = 845; // \text{ in } kJ/kg
13 h_f2 = 232; // in kJ/kg
14 f_g2 = 7.985; // in kJ/kg-K
15 \times 1 = 0.8;
16 Phi_f1 = 2.315; // in kJ/kg-K
17 Phi_f2 = 0.772; // in kJ/kg-K
18 Phi1 = Phi_f1 + ((x1*h_fg1)/T_sat); // in kJ/kg-K
19 H1 = h_g1 + (x1*h_fg1); // in kJ/kg-K
20 Phi2 = Phi1; // in kJ/kg-K
21 \times 2 = (Phi1 - Phi_f2)/(f_g2 - Phi_f2);
22 H2 = h_f2 + (x2*h_fg2); // in kJ/kg
```

```
23 Eta = ((H1-H2)/(H1-h_f2))*100; // in \%
24 disp("Part (i) When the steam supply is wet and
      dryness fraction is 0.8")
25 disp(Eta," Rankine efficiency in \% is");
26 delH = H1-H2; //theoretical work of steam in kJ/kg
27 \text{ W} = \text{delH}*60/100; // \text{ in kJ/kg}
28 Energy_Equivalent= 3600; // in kJ
29 Steam_C = Energy_Equivalent/W;// Steam consumption
30 disp(Steam_C,"Steam consumption per kW-hr in kg is:
      ")
31 disp("Part (ii) When the steam supply is dry and
      saturated")
32 \text{ H}_1 = 2792; // \text{ in } \text{kJ/kg}
33 Phi_g1 = 6.445; // in kJ/kg-K
34 \text{ x}_2 = (Phi_g1-Phi_f2)/(f_g2-Phi_f2);
35 \text{ H}_2 = h_f2 + (x_2*h_fg2); // in kJ/kg
36 Eta1 = (H_1-H_2)/(H_1-h_f2);
37 disp("Rankine efficiency is "+string(Eta1)+" or "+
      string(Eta1*100) +" %");
38 W1 = (H_1-H_2)*60/100; // in kJ/kg
39 Steam_C= Energy_Equivalent/W1; // in kg
40 disp(Steam_C,"Steam consumption per kW-hr in kg is:
      ")
41 disp("Part (iii) When steam is superheated and
      temperature is 300 C")
42 \text{ H}_1 = 3039; // in kJ/kg
43 Phi_1 = 6.919; // in kJ/kg-K
44 x_2 = (Phi_1 - Phi_f2)/(f_g2-Phi_f2);
45 \text{ H}_2 = \text{h}_f2 + (\text{x}_2 * \text{h}_fg2); // \text{ in } \text{kJ/kg}
46 Eta = (H_1 - H_2)/(H_1-h_f2);
47 disp("Rankine efficiency is "+string(Eta)+" or "+
      string(Eta*100)+" %");
48 W2 = (H_1-H_2)*60/100; // in kJ/kg
49 Steam_C= Energy_Equivalent/W2;// in kg
50 disp(Steam_C, "Steam consumption per kW-hr in kg is:
      ")
```

Scilab code Exa 6.33 Rankine efficiency

```
1 // Exa 6.33
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ T1} = 400; // \text{ in degree C}
7 \text{ T1} = \text{T1} + 273; // \text{ in } \text{K}
8 T2 = 72.7; // in degree C
9 T2 = T2 + 273; // in K
10 Eta = ((T1-T2)/T1)*100; // in \%
11 disp("For carnot cycle: ")
12 disp(Eta, "Rankine efficiency in % is:")
13 H1 = 3248; // in kJ/kg
14 \text{ h}_{f2} = 304.5; // \text{ in } kJ/kg
15 del_H = 809.2; // in kJ/kg
16 Eta = (del_H/(H1-h_f2))*100; // in \%
17 disp("For Rankine cycle: ")
18 disp(Eta, "Rankine efficiency in % is");
```

Scilab code Exa 6.34 Efficiency of cycle

```
1  // Exa 6.34
2  clc;
3  clear;
4  close;
5  // Given data
6  P1 = 15; // in bar
7  H1 = 3039; // in kJ/kg
8  V_g1 = 0.1697; // in m^3/kg
9  Phi1 = 6.919; // in kJ/kg-K
```

```
10 P2_desh = 3.5*10^2; // in kN/m<sup>2</sup>
11 Phi_g2 = 6.941; // in kJ/kg-K
12 Phi_f2 = 1.727; // in kJ/kg-K
13 P2 = 0.15*10^2; // in kN/m^2
14 h_f2 = 232; // in kJ/kg
15 x = (Phi1-Phi_f2)/(Phi_g2 - Phi_f2);
16 h_f = 584; // in kJ/kg
17 \text{ h}_fg = 2148; // \text{ in } kJ/kg
18 H2 = h_f + (x*h_fg); // in kJ/kg
19 V = 0.5241; // in m<sup>3</sup>
20 V2=x*V; // in m^3/kg
21 W = (H1-H2) + (P2_desh-P2)*V2; //work output of the
      cycle in kJ/kg
22 Eta = W/(H1-h_f2)*100; // in \%
23 disp(Eta,"The efficiency of the cycle in % is");
24 Energy_equivalent= 3600; // in kJ
25 S_consumption = Energy_equivalent/W; // in kg
26 V = S_consumption* V_g1; // in m^3
27 disp(V, "Total volume of steam in m<sup>3</sup> is");
```

Chapter 7

Flow Process

Scilab code Exa 7.1 Work tranfer

```
1 // Exa 7.1
2 clc;
3 clear;
4 close;
5 // Given data
6 H1 = 2600; // in kJ/kg
7 H2 = 1850; // in kJ/kg
8 g = 9.81;
9 C1 = 10; // in meter/second
10 C2 = 20; // in meter/secon
11 Q = 120; // in kJ/kg
12 Z1 = 30; // in meter
13 Z2 = 10; // in meter
14 W = g*(Z1-Z2)/1000+H1-H2+(C1^2-C2^2)/(2*1000)+Q
15 disp(W, "The work done in kJ/kg is");
```

Scilab code Exa 7.2 Power output of the turbine

```
1 // Exa 7.2
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ H1} = 3100; // \text{ in } \text{kJ/kg}
7 \text{ H2} = 1950; // \text{ in } \text{kJ/kg}
8 C1 = 20; // in meter/second
9 C2 = 30; // in meter/secon
10 Q = 0; // in kJ/kg
11 Q_desh= 20; // in kJ/kg
12 Vs= 1.1; // in m^3/kg
13 W = H1-H2+(C1^2-C2^2)/(2*1000)+Q-Q_desh; // in kJ/kg
14 m= 2; //mass flow rate in kg/sec
15 Power= m*W; // in kW
16 disp(Power, "Power output of the turbine in kW is:"
      )
17 Area = m*Vs/C2; // in m^2
18 disp(Area, "Area of exhaust pipe in m<sup>2</sup> is:")
```

Scilab code Exa 7.3 Velocity of steam

```
1 // Exa 7.3
2 clc;
3 clear;
4 close;
5 // Given data
6 H1 = 2940; // in kJ/kg
7 H2 = 2630; // in kJ/kg
8 C = sqrt((H1-H2)*1000*2); // in m/sec
9 disp(C," Velocity of the steam leaving the nozzle in m/sec is");
```

Scilab code Exa 7.4 Exit velocity and total exit area

```
1 // Exa 7.4
2 clc;
3 clear;
4 close;
5 // Given data
6 H1 = 2800; // in kJ/kg
7 H2 = 2600; // in kJ/kg
8 C2 = sqrt(2*(H1-H2)*1000); // in m/s
9 disp(C2, "Exit velocity in m/s is ");
10 m_f = 25; // mass flow rate in kg/sec
11 V = 0.154; // in m^3/kg
12 A = (m_f*V)/C2; // in m^2
13 disp(A, "Total exit area in m^2 is");
```

Scilab code Exa 7.5 Mass flow rate

```
1 // Exa 7.5
2 clc;
3 clear;
4 close;
5 // Given data
6 Q = 20; // in kJ/kg
7 P = 10; // in MW
8 P = P * 10^3; // in kW
9 H1 = 3248; // in kJ/kg
10 H2 = 2552; // in kJ/kg
11 C1 = 20; // m/s
12 C2 = 40; // m/s
13 m = P/((H1-H2+(C1^2-C2^2)/(2*1000))-Q); // in kg/s
14 disp(m, "Mass in kg is");
```

Scilab code Exa 7.6 Rate of heat transfer

```
1 // Exa 7.6
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ h_f1} = 2584; // \text{ in } \text{kJ/kg}
7 \text{ h_fg1} = 2392; // \text{ in } \text{kJ/kg}
8 \text{ H2} = 192; // \text{ in } \text{kJ/kg}
9 x = 0.2;
10 H1 = round(h_f1-(x*h_fg1)); // in kJ/kg
11 \times 1 = 0.8;
12 Vs = 14.67; // in m<sup>3</sup>
13 V1 = x1*Vs; // in m^3/kg
14 A = 0.45; // in m^2
15 C1 = V1/A; // in m/s
16 Q = 5; // kJ/s
17 C2 = 0;
18 W = 0;
19 Q_desh = W-H1 - C1^2/(2*1000)-Q+H2+C2^2/2; // in kJ/s
20 {\tt disp(Q\_desh\,,"Rate} of heat transfer in kJ/s is");
```

Chapter 8

Fuels and Combustion

Scilab code Exa 8.1 Higher calorific value

```
1 // Exa 8.1
2 clc;
3 clear;
4 close;
5 // Given data
6 C= 85; // in \%
7 H= 12.5; // in \%
8 H1 = 35000; // heat liberated by carbon in kJ
9 H2 = 143000; // heat liberated by hydrogen in kJ
10 HCV = (C*H1+H*H2)/100; // Higher calorific value in
11 disp(HCV, "Higher calorific value in kJ/kg is");
12 \text{ ms} = 9;
13 LCV= HCV -(ms*H*2442)/100; // Lower calorific value
     in kJ/kg
14 disp(LCV, "Lower calorific value in kJ/kg is");
15
16 // Note: The calculated value in the book is not
      accurate
```

Scilab code Exa 8.2 HCV and LCV

```
1 // Exa 8.2
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 \text{ CH4} = 77; // \text{ in } \%
7 \text{ C2H6} = 22.5; //in \%
8 H1 = 40.08; // heat liberated by CH4 in MJ/nm<sup>3</sup>
9 H2 = 69.52; // heat liberated by C2H6 in MJ/nm<sup>3</sup>
10 HCV = (CH4*H1+C2H6*H2)/100; // Higher calorific value
        in kJ/kg
11 disp(HCV, "The higher calorific value in MJ/nm<sup>3</sup>")
12 V1= CH4*2/100; // volume of water due to combustion
      of CH4 in m<sup>3</sup>
13 V2= C2H6*3/100; // volume of water due to combustion
       of C2H6 in m<sup>3</sup>
14 V = V1 + V2; // total volume in m<sup>3</sup>
15 ms= 18/22.41; // in kg
16 LCV = HCV - ms * V * 2.242; // in MJ/nm^3
17 disp(LCV, "The lower calorific value in MJ/nm<sup>3</sup>")
18 disp("The word nm<sup>3</sup> means that cubic metre at normal
        temperature and pressure")
19
20 // Note: The calculated value in the book is not
      accurate
```

Scilab code Exa 8.3 Calorific value of a sample of coal

```
1 // Exa 8.3 2 clc;
```

```
clear;
close;
// Given data
mw = 2.5; //mass of water in kg
mc= 0.744; //water equivalen of apparatus in kg
CoalMass = 1.01*10^-3; // in kg
T_r = 2.59; //temp. rise in degree C
C_c = 0.016; // Cooling correction in degree C
theta = T_r +C_c; //corrected temp. rise in degree C
Cp = 4.1868; // in kJ/kg-K
m = mw+mc; // in kg
Qw = m * Cp*theta; //heat received by water in kJ
C = (Qw/CoalMass); // in kJ/kg
disp(C, "Calorific value of the fuel in kJ/kg is");
```

Scilab code Exa 8.4 HCV and LCV

```
1 // Exa 8.4
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ T_r} = 2.912; // \text{ temp. rise in degree C}
7 C_c = 0.058; // cooling correction in degree C
8 theta = T_r + C_c; // in degree C
9 HyCon= 14/100; // Hydrogen content
10 C_P = 4.1868; // in J/gm-K
11 Cc = 16750; // calorific value of cotton in J/gm
12 \text{ m_w} = 1400; // \text{ in gm}
13 \text{ m_c} = 500; // \text{ in gm}
14 m = m_w + m_c; // in gm
15 m1 = 0.005; // mass of cotton in gm
16 m2 = 0.579; //mass of oil in gm
17 Qw = m*C_P*theta; // in J
18 H1= m1*Cc; // heat given out by combustion of cotton
```

```
in J
19 Qin= Qw-H1; // in J
20 C= Qin/m2; // J/gm or kJ/kg
21 LCV= C-2442*9*HyCon; // in J/gm or kJ/kg
22 disp(C,"Higher Calorific value of the fuel in J/gm or kJ/kg is:")
23 disp(LCV,"Lower Calorific value of the fuel in J/gm or kJ/kg is:")
```

Scilab code Exa 8.5 Calorific value

```
1 // Exa 8.5
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ W_c} = 500*10^-3; //\text{water collected in kg}
7 \text{ C_P} = 4.1868; // \text{ in } \text{kJ/kg-K}
8 \text{ T_o} = 28.3; // \text{outlet temp. in}
9 T_i = 14; //inlet temp. in C
10 P_bero= 785; // barometric pressure in mm
11 P_gas= P_bero+90/13.6; // in mm
12 T1=17+273; // gas temp. in K
13 T2= 15+273; // in K
14 theta = T_o-T_i; //temp. rise in
15 Qw = W_c * C_P*theta; // in kJ
16 Vgs= 2.8*10^-3; //volume of gas consumed in m^3
17 E = Qw/Vgs; // in kJ
18 V1= P_{gas}/760*(T2/T1); // in m^3
19 CalorificValue = E/V1; // in kJ/standard m^3
20 disp(Calorific Value, "Calorific value in kJ/m^3 is :
      ")
```

Scilab code Exa 8.6 Theoretical mass of air

```
1 // Exa 8.6
2 clc;
3 clear;
4 close;
5 // Given data
6 C = 0.83; // in kg
7 H = 0.05; // in kg
8 O = 0.02; // in kg
9 S = 0.002; // in kg
10 AbyF_min = (11.6 * C) + +(34.8*(H-(0/8))) + (4.35 * S); // in kg
11 disp(AbyF_min, "The therotical mass of air in kg is");
;
```

Scilab code Exa 8.7 Theoretical mass of air

```
1  // Exa 8.7
2  clc;
3  clear;
4  close;
5  // Given data
6  C = 0.86; // in kg
7  H = 0.14; // in kg
8  S = 0; // in kg
9  0 = 0; // in kg
10  Vair = 0.77; // volume of 1kg of air in m^3
11  Spe_Gravity = 0.8; // specific gravity of petrol
12  maBYmf = (11.6*C) + (34.8*(H-0/8)) + (4.35*S); // in kg
13  disp(maBYmf, "The therotical mass of air in kg is");
14  V = maBYmf *Spe_Gravity*Vair; // in m^3/litre
15  disp(V, "Volume of air required in m^3/litre is");
```

Scilab code Exa 8.8 Mass of air

```
1 // Exa 8.8
2 clc;
3 clear;
4 close;
5 // Given data
6 \ C = 0.75; // in kg
7 \text{ H} = 0.08; // in kg
8 \ 0 = 0.03; // in kg
9 S = 0; // in kg
10 P = 1.1; // in bar
11 P = P*10^5; // in N/m^2
12 maBYmf = (11.6*C) + (34.8 * (H-(0/8))) + (4.35 *S);
      // in kg
13 disp(maBYmf ,"The mass of air in kg is");
14 \text{ m} = 1.5*(\text{maBYmf}); // \text{ in kg}
15 T = 20+273; // in K
16 R = 29.27;
17 V = (m*R*T)/P; // in m^3
18 disp(V, "Volume in m<sup>3</sup> is");
19
20 // Note: The calculated value of V in the book is
      wrong.
```

Scilab code Exa 8.9 Minimum quantity of air

```
1 // Exa 8.9
2 clc;
3 clear;
4 close;
5 // Given data
```

```
6 C = 0.82; // in kg
7 H2 = .12; // in kg
8 02 = 0.02; // in kg
9 a = C/12;
10 b = H2/2;
11 y = (32*(a+(0.5*b))-02)/0.23;
12 disp(y, "Minimum quantity of air in kg is");
```

Scilab code Exa 8.10 Percentage analysis of dry flue gas

```
1 // Exa 8.10
2 clc;
3 clear;
4 close;
5 // Given data
6 mC= 0.88; //mass of carbon in kg
7 mH2 = 0.03; //mass of H2 in kg
8 mS= 0.005; //mass of S in kg
9 02_{mass} = 2.66*mC + 8*mH2 + 2*mS; // in kg
10 Air_mass= 02_mass/0.23; // in kg
11 Air_mass= 1.5*Air_mass;// in kg (as 50\% excess air
      is supplied)
12 disp(Air_mass," Actula mass of air required per kg of
       fuel for complete combustion in kg is: ")
13 // The flue gases per kg of fuel will be:
14 CO2= 3.226; // in kg
15 N2= 13.04; // in kg
16 \ 02 = 1.298; // in kg
17 total_mass = CO2+N2+O2; // in kg
18 CO2\_per\_by\_mass = CO2/total\_mass*100; // in \%
19 02_{per_by_mass} = 02/total_mass*100; // in \%
20 N2_per_by_mass= N2/total_mass*100;// in \%
21 disp(CO2_per_by_mass,"Percentage of CO2 by mass is:
22 disp(O2_per_by_mass,"Percentage of O2 by mass is: "
```

```
)
23 disp(N2_per_by_mass, "Percentage of N2 by mass is: "
24 \text{ M_wt_CO2} = 44;
_{25} CO2_Per_M_com_M_wt= CO2_per_by_mass/M_wt_CO2;// \%
      Mass composition molecular weight
26 \text{ M_wt_02} = 32;
27 O2_Per_M_com_M_wt= O2_per_by_mass/M_wt_O2;// % Mass
      composition molecular weight
28 \text{ M_wt_N2= } 28;
29 N2_{per_M_{com_M_{wt}}} = N2_{per_by_{mass/M_{wt}}} = N2_{jer_by_{mass}}
      composition molecular weight
30 total = CO2_Per_M_com_M_wt + O2_Per_M_com_M_wt +
      N2_Per_M_com_M_wt;
31 CO2_per_by_vol = CO2_Per_M_com_M_wt/total*100; // in %
32 O2_per_by_vol= O2_Per_M_com_M_wt/total*100; // in \%
33 N2_per_by_vol= N2_Per_M_com_M_wt/total*100; // in \%
34 disp(CO2_per_by_vol, "Percentage of CO2 by volume is
35 disp(O2_per_by_vol,"Percentage of O2 by volume is:
36 disp(N2_per_by_vol,"Percentage of N2 by volume is:
```

Scilab code Exa 8.11 Maximum quantity of heat

```
1  // Exa 8.11
2  clc;
3  clear;
4  close;
5  // Given data
6  Cp= 1; // in kJ/kg
7  H= 2.7*10^3; // total heat of vaport in flue gas in kJ/kg
8  CoalCalorific= 32.82*10^3; // in kJ/kg
```

```
9 T1= 310; // final gas flue temp. in
10 T2= 25; // boiler house temp. in
11 mC= 0.84; //mass of carbon in kg
12 mH2= 0.05; //mass of H2 in kg
13 02_{mass} = 2.66*mC + 9*mH2; // in kg
14 Air_mass= 02_{mass}/0.23; // in kg
15 Air_mass= 1.5*Air_mass; // in kg (as 50% excess air
      is supplied)
16 disp(Air_mass," Actual mass of air required per kg of
       fuel for complete combustion in kg is: ")
17 // Analysis of dry flue gas by weight
18 CO2 = 3.08; // in kg
19 N2= 13.24; // in kg
20 \quad 02 = 1.32; // in kg
21 total_mass = CO2+N2+O2; // in kg
22 CO2_per_by_mass= CO2/total_mass*100;// in \%
02_per_by_mass= 02/total_mass*100;// in \%
24 N2_per_by_mass= N2/total_mass*100; // in \%
25 disp(CO2_per_by_mass,"Percentage of CO2 by mass is:
26 disp(O2_per_by_mass, "Percentage of O2 by mass is : "
  disp(N2_per_by_mass, "Percentage of N2 by mass is:"
27
      )
28 \text{ M_wt_CO2} = 44;
29 CO2_Per_M_com_M_wt= CO2_per_by_mass/M_wt_CO2;// \%
      Mass composition molecular weight
30 \text{ M_wt_02} = 32;
02_{per_M_{com_M_{wt}}} = 02_{per_by_{mass/M_{wt}}} = 02_{per_by_{mass}}
      composition molecular weight
32 \text{ M_wt_N2} = 28;
33 N2_{Per_M_{com_M_wt=}} N2_{per_by_{mass/M_wt_N2;}} // \% Mass
      composition molecular weight
34 total = CO2_Per_M_com_M_wt + O2_Per_M_com_M_wt +
      N2_Per_M_com_M_wt;
35 CO2_per_by_vol= CO2_Per_M_com_M_wt/total*100;// in \%
36 O2_per_by_vol= O2_Per_M_com_M_wt/total*100;// in \%
37 N2_{per_by_vol} = N2_{per_M_com_M_wt/total*100; // in \%
```

Scilab code Exa 8.12 Percentage analysis of dry exhaust gases by volume

```
1 // Exa 8.12
2 clc;
3 clear;
4 close;
5 // Given data
6 mC= 0.86; //mass of carbon in kg
7 mH2= 0.14; // mass of H2 in kg
8 maBYmf = (2.66*mC + 8*mH2)/0.23; // in kg/kg of fuel
9 Air_supp_deficiency= maBYmf/10; // in kg/kg of fuel
10 Air_saved= 16/(12*0.23); // in kg/kg of carbon
11 m1= Air_supp_deficiency/Air_saved; // mass of coal
     burns to carbon monoxide
12 m2= mC-m1; // mass of coal burns to carbon diooxide
13 CO2\_formed = m2*3.66; // in kg
14 CO_formed= m1*28/12; // in kg
15 N2_formed = Air_supp_deficiency *0.77*9; // in kg
16 M_wt_CO2= 44; // molecular weight
17 \text{ M_wt_CO} = 28;
18 \text{ M_wt_N2} = 28;
```

```
19  CO2_rel_vol= CO2_formed/M_wt_CO2;
20  CO_rel_vol= CO_formed/M_wt_CO;
21  N2_rel_vol= N2_formed/M_wt_N2;
22  total_rel_vol=CO2_rel_vol+CO_rel_vol+N2_rel_vol;
23  CO2_vol= CO2_rel_vol/total_rel_vol*100; // in %
24  CO_vol= CO_rel_vol/total_rel_vol*100; // in %
25  N2_vol= N2_rel_vol/total_rel_vol*100; // in %
26  disp(CO2_vol, "Volumetric analysis of CO2 in % is:")
27  disp(CO_vol, "Volumetric analysis of N2 in % is:")
28  disp(N2_vol, "Volumetric analysis of N2 in % is:")
```

Scilab code Exa 8.13 Quantity of air passing to the furnace

```
1 // Exa 8.13
2 clc;
3 clear;
4 close;
5 // Given data
6 N = 83; // compositon of nitrogen in %
7 C = 81; // carbon mass in the fuel in \%
8 C1 = 11; // compositon of CO2 in \%
9 C2 = 2; // compositon of CO in \%
10 0 = 4; // composition of O2 in \%
11 AirSupplied =N*C/(33*(C1+C2)); // in kg/kg
12 disp(AirSupplied,"The amount of air supplied in kg
      per kg of fuel is: ")
13 ExcessAir =79*0*C/(21*33*(C1+C2)); // in kg/kg
14 disp(ExcessAir," Weight of excess air in kg per kg of
       fuel is : ")
```

Scilab code Exa 8.14 Gravimetric analysis of the fuel

```
1 // Exa 8.14
2 clc;
3 clear;
4 close;
5 // Given data
6 CO2= 10; // in \%
7 02= 6; // in \%
8 \text{ N2} = 84; // \text{ in } \%
9 // a = x/12 and b = (1-x)/2
10 // 0.23 * y/32 = a+b/2+c
11 abyc= CO2/O2;
12 // a/(0.77*y/28) = CO2/N2
13 x = 0.835;
14 carbon_per= x*100; // in %
15 hydrogen_per= 100-carbon_per; // in \%
16 disp("The fuel consists of "+string(carbon_per)+" %
       carbon and "+string(hydrogen_per)+" % hydrogen."
      )
```

Scilab code Exa 8.15 Minimum quantity of air

```
1 // Exa 8.15
2 clc;
3 clear;
4 close;
5 // Given data
6 H2 = 50; // in %
7 CO = 5; // in %
8 CH4 = 35; // in %
9 disp("Quantity of air required for complete combustion of 1m<sup>3</sup> of gas in m<sup>3</sup> is:")
10 V = ((0.5*(H2+CO))+(2*CH4))/21; // in m<sup>3</sup>
11 disp(V)
```

Scilab code Exa 8.16 Volume of air required

```
1 // Exa 8.16
2 clc;
3 clear;
4 close;
5 // Given data
6 H2= 0.4; // in m<sup>3</sup>
7 CH= 0.425; // in m<sup>3</sup>
8 \text{ C2H4} = 0.0253; // in m^3
9 C4H8= 0.0127; // in m^3
10 CO= 0.075; // in m<sup>3</sup>
11 02\_vol = 0.5*H2 + 2*CH + 3*C2H4 + 6*C4H8 + 0.5*C0; //
      in m^3
12 Air_vol= 02_vol/0.21; // in m<sup>3</sup>
13 disp(Air_vol, "The volume of air required for
      complete combustion in m<sup>3</sup> is");
14 actualAirSupplied= 1.3*Air_vol;// in m^3
15 disp(actualAirSupplied,"The actual quantity of air
      supplied in m<sup>3</sup> is: ")
```

Scilab code Exa 8.17 Volume of air supplied

```
1 // Exa 8.17
2 clc;
3 clear;
4 close;
5 // Given data
6 V_H2= 0.15; // in m^3
7 V_CH4= 0.02; // in m^3
8 V_CO= 0.20; // in m^3
9 V_CO2= 0.06; // in m^3
```

```
10 V_02 = 0.03; // in m<sup>3</sup>
11 V_N2 = 0.54; // in m<sup>3</sup>
12 V1= 0.5*V_H2; // quantity of O2 required for complete
       combustion of H2
13 V2 = 2 * V_CH4; // in m^3
14 V3 = 0.5 * V_CO; // in m^3
15 V = V1 + V2 + V3; // total oxygen required in m<sup>3</sup>
16 O2_supp= V-V_02; // O2 to be supplied by air in m<sup>3</sup>
17 Air_req_min = 02_supp/0.21; // minimum quantity of air
       required in m<sup>3</sup>
18 Actual_Air_Supp= 1.5*Air_req_min; // m^3 of air
19 disp(Actual_Air_Supp,"The volume of air supplied
       m<sup>3</sup>")
20 Vol_Carbondioxide_inFlue= V_CO2+V_CH4+V_CO; //total
      volume of carbon dioxide
21 Vol_O2_inFlue= (Actual_Air_Supp-Air_req_min)*0.21;//
       in m^3
22 N2_from_air_Supp= 0.79*Actual_Air_Supp;// in m^3
23 Vol_N2_inFlue= N2_from_air_Supp+V_N2;// in m^3
24 total = Vol_Carbondioxide_inFlue+Vol_O2_inFlue+
      Vol_N2_inFlue; // in m^3
25 Per_CarbonDioxide= Vol_Carbondioxide_inFlue/total
      *100; // in %
26 Per_Oxygen= Vol_O2_inFlue/total*100;// in %
27 Per_Nitrogen= Vol_N2_inFlue/total*100;// in \%
28 disp(Per_CarbonDioxide, "% Carbon dioxide is: ")
29 disp(Per_Oxygen, "% Carbon dioxide is : ")
30 disp(Per_Nitrogen, "% Carbon dioxide is: ")
```

Scilab code Exa 8.18 Percentage composition by volume and mass

```
1 // Exa 8.18
2 clc;
3 clear;
4 close;
```

```
5 // Given data
6 \text{ V}_CH4 = 0.14; // in m^3
7 \text{ V_CO= } 0.35; // \text{ in } \text{m}^3
8 \text{ V}_{\text{CO2}} = 0.06; // \text{ in m}^3
9 V_N2 = 0.03; // in m^3
10 V_H2 = 0.42; // in m<sup>3</sup>
11 a = V_CH4 + V_CO2 + V_CO;
12 b= 2*V_CH4+V_H2;
13 / a + 0.5*b + c = V_CO2 + V_CO/2 + 0.21*5
14 c= V_C02+V_C0/2+0.21*5-a-0.5*b;
15 d=V_N2+5*0.79;
16 total= a+c+d;
17 Vol_per_CO2= a/total*100; // in \%
18 Vol_per_02= c/total*100; // in %
19 Vol_per_N2= d/total*100; // in %
20 disp(Vol_per_CO2, "Volume percentage of CO2 is: ")
21 disp(Vol_per_O2, "Volume percentage of O2 is : ")
22 disp(Vol_per_N2, "Volume percentage of N2 is : ")
23 \text{ m}_{\text{CO2}} = 44; // \text{ molecular mass}
24 \text{ m}_02= 32;// \text{ molecular mass}
25 m_N2=28; // molecular mass
26 mass_ratio_CO2= Vol_per_CO2/m_CO2;
27 mass_ratio_02= Vol_per_02/m_02;
28 mass_ratio_N2= Vol_per_N2/m_N2;
29 total_mass_ratio= mass_ratio_CO2+mass_ratio_O2+
      mass_ratio_N2;
30 mass_per_CO2= mass_ratio_CO2/total_mass_ratio*100;
31 mass_per_02= mass_ratio_02/total_mass_ratio*100;
32 mass_per_N2= mass_ratio_N2/total_mass_ratio*100;
33 disp(mass_per_CO2, "Mass percentage of CO2 is : ")
34 disp(mass_per_02, "Mass percentage of O2 is : ")
35 disp(mass_per_N2, "Mass percentage of N2 is : ")
```

Scilab code Exa 8.19 Air fuel ratio by volume

```
1 // Exa 8.19
2 clc;
3 clear;
4 close;
5 // Given data
6 GCR= 110; // gas consumption rate in m<sup>3</sup>/hour
7 rpm= 300; // round per minute
8 Vs= 0.1; // swept volume of engine in m<sup>3</sup>
9 V_H2=0.50; // in m^3
10 V_CO= 0.05; // in m^3
11 V_CH4=0.25; // in m<sup>3</sup>
12 V_C02 = 0.10; // in m<sup>3</sup>
13 V_N2 = 0.10; // in m<sup>3</sup>
14 V_02=5.8;// in m^3
15 AirRequired = (0.5*(V_H2+V_C0)+2*V_CH4)/0.21; // in m
16 CO2\_formed = V\_CO + V\_CH4; // in m^3
17 total_CO2= CO2_formed+V_CO2; // in m^3
18 N2\_of\_air = 0.79 * AirRequired; // in m^3
19 total_N2= N2_of_air+V_N2; // in m^3
20 TotalVolume= total_N2+total_CO2;// in m^3
21 V= TotalVolume; // in m<sup>3</sup>
22 ExcessAirSupplied= (V_02*V)/(21-V_02); // in m<sup>3</sup>
23 TotalAirSupplied= ExcessAirSupplied+AirRequired; //
      in m<sup>3</sup>
24 AirFuel_ratio = round(TotalAirSupplied)/1;
25 disp(AirFuel_ratio, "Air fuel ratio by volume is : ")
26 // Let V1= Volume of air + gas aspirated per hour
27 \text{ V1= GCR*6; // in m}^3
28 Vs_out= Vs*rpm/2*60; // in m<sup>3</sup>
29 Ratio = V1/Vs_out;
30 disp("The value of Ratio i.e.")
31 disp(Ratio," (Volume of air + gas aspirted per hour)/
      Volume swept out by piston per hour")
```

Scilab code Exa 8.20 Air fuel ratio by different methods

```
1 // Exa 8.20
2 clc;
3 clear;
4 close;
5 // Given data
6 CO2= 9.9; // in \%
7 CO= 7.2; // in %
8 \text{ H2} = 3.3; // in \%
9 CH4= 0.3; // in \%
10 N2= 79.3; // in \%
11 02= N2*21/79; // in %
12 disp("Method 1 : By Carbon balance : ")
13 Z = (CO2 + CO + CH4)/8;
14 x = 8 * Z;
15 measured_air_fuel_ratio= 11.3;
16 mm1 = 29; // molecular mass of air
17 mm2= 12*8+17; // molecular mass of C8H17
18 massOf_air= (02+N2)*mm1;
19 massOf_fuel= Z*mm2;
20 air_fuel_ratio = massOf_air/massOf_fuel;
21 disp(air_fuel_ratio, "The air fuel ratio by mass is :
       ")
22 Per_error= (air_fuel_ratio - measured_air_fuel_ratio
      )/measured_air_fuel_ratio*100;
23 disp(Per_error, "Percentage error is : ")
24 disp("Method 2 : By Hydrogen balance : ")
25 X = (02 - C02 - C0/2) *2;
26 \text{ Z} = (4*CH4+2*H2+X*2)/17;
27 \text{ massOf\_air} = (02+N2)*mm1;
28 \text{ massOf\_fuel= Z*mm2};
29 air_fuel_ratio= massOf_air/massOf_fuel;
30 disp(air_fuel_ratio, "The air fuel ratio by mass is :
31 Per_error= (air_fuel_ratio - measured_air_fuel_ratio
      )/measured_air_fuel_ratio *100;
32 disp(Per_error, "Percentage error is : ")
```

```
disp("Method 3 : By Carbon-Hydrogen balance : ")
y = (4*CH4+2*H2+X*2);
massOf_air = (02+N2)*mm1;
massOf_fuel = x*12+y;
air_fuel_ratio = massOf_air/massOf_fuel;
disp(air_fuel_ratio, "The air fuel ratio by mass is : ")

Per_error = (air_fuel_ratio - measured_air_fuel_ratio )/measured_air_fuel_ratio*100;
disp(Per_error, "Percentage error is : ")
```