Lecture 10

Visual areas can be grouped into "what and "where" streams"

- **Dorsal** [Parietal stream]: Where?
 - Motion
 - Spatial relationships
- **Ventral** [Inferotemporal stream]: What?
 - Form
 - Color

Ventral stream areas at different levels of the hierarchy are thought to have different functions

Luminance edges to Semantic categories

- 1. Retina
- 2. Thalamus (LGN)
- 3. Intermediate Visual Areas
 - o V1, V2, V3, V4
 - Lateral Occipital Cortex
- 4. FFA (Fusiform Face Area)
- 5. EBA (Extrastriate Body Area) and PPA (Parahippocampal Place Area)

Receptive field size grows across the visual hierarchy

• The further in the visual processing processes, the receptive fields cross each other and converge into a non lateralized representation

Complexity of preferred shapes from across the visual hierarchy

 Neurons in intermediate visual aras prefer shapes of intermediate complexity

Possible features that might be represented in intermediate human visual areas

- 1. Synthetic naturalistic movie (15Hz)
- 2. Ground truth
 - Object silhouettes
 - Surface normals
 - Depth
- 3. Feature spaces
 - Silhouette contours
 - Orientation discontinuities
 - Depth discontinuities
 - Medial axes
- 4. Discretize feature space into feature channels
 - Degree of curvature
 - Orientation
 - Location, scale
- 5. Complessive output nonlinearity (log)
- 6. Temporal downsample (15 to 1 Hz)

The object silhouette model is best in V4/LO

• The object model is a semantic model (doesn't know about the shape)

- V4 likes the object silhouette, less the scene contours
- V4 likes the scene contour, less the object silhouette
- V4 Image segmentation and grouping!

Neurons in inferior temporal cortex are selective for complex shape

- Selectivity for Faces and Persons
 - Orientation
 - View point
 - Posture
 - Direction of gaze

Neurons in inferior temporal cortex are selective for complex shape

- Shape selective columns and slabs
- Sketchy
- Type 4 result: we want it to be true but we don't have enough evidence

Higher-order human visual areas are selective for complex semantic categories

A semantic category model for high-level vision

- Wordnet (1980s) by George Miller
- Hand-drawn tree of the isorelationships between all the nouns in the English language
- Indicator matrix
- Regression to find out how does the voxel response changes on the presence of a specific object

Predictions of the motion-energy versus the semantic category models

- Motion-energy model predicts lower-order visual systems
- Semantic category model predicts higher-order visual systems
- Principal component analysis:
 http://en.wikipedia.org/wiki/Principal_component_analysis

Object and action category maps

• **Blue**: indoor scenes

• Pink: vehicles and lots of motion

• **Red**: movement

• Green: People

• Yellow: animals