RNN -Time To Event

Using Recurrent Neural Networks to predict the time to an event

The Time to an Event is the primary outcome of interest in many fields

The Time To Failure

- Positively skewed
- Subject to censoring
- Usually long sequences explained by time varying variables
- Useful for Predictive Maintenance in the Pharmaceutical Industry
- Statisticians have been studying it for a long time

What if we use Recurrent Neural Networks to predict an **statistic distribution**?

WTTE-RNN

Use Recurrent Neural Networks to predict the shape and scale of the Weibull Distribution

$$\begin{aligned} & \textit{maximize} \ln(\mathcal{L}(w, y, u, x)) := \sum_{t=0}^{T} (u_t \cdot [exp[\left(\frac{y_t+1}{\beta_t}\right)^{\alpha_t} - \left(\frac{y_t}{\beta_t}\right)^{\alpha_t}] - 1] - \left(\frac{y_t+1}{\beta_t}\right)^{\alpha_t}) \end{aligned}$$

$$\underset{w}{\textit{maximize}} \ln(\mathcal{L}(w, y, u, x)) := \sum_{t=0}^{T} (u_t \cdot \left[\alpha_t \cdot \ln\left(\frac{y_t}{\beta_t}\right) + \ln(\alpha_t)\right] - \left(\frac{y_t}{\beta_t}\right)^{\alpha_t})$$

Turbofan Engine Dataset

- Simulated with C-MAPSS at NASA
- 6 operating conditions
- 2 failure modes
- Original training set (100) is split into train (80) and validation (20)
- Engines in train are monitored from the start (normal) to the end (failure)
- Test sequences (100) are censored
- 26 variables

Two ways to model the problem

Rolling Window

- Split in sequences of "lookback period"
- Return the output state of the last unit
- Sequences are independent

Batch Mode

- Organize the data in batches
- Return the output of all the units
- State is preserved
- Easy to shuffle

Baseline

- Batch Mode
- Right Padding
- Recurrent Dropout of 20%
- Early Stopping of 30 epochs
- Shuffle batches
- Exponential activation function

Adapting to WTTE-RNN

- Discrete log-likelihood loss
- Exponential activation for the scale parameter
- Sigmoid activation for the shape parameter
- Initialize scale parameter
- Gradient clipping
- Scale factor in GRU variant

95%

Of the failures from the validation set **can be warned** with an anticipation between 40 and 60 cycles just by triggering an alarm when the standard deviation is below 10 cycles.

MAE	17.4	17.8	18.3
RMSE	24.0	25.3	27.5
R^2	0.87	0.85	0.82

The WTTE-RNN model is **just as good** as the regressor, but it has many **interesting attributes** for Predictive Maintenance

Thanks!

- **y** amanelmc
- nanelmc1