DEPARTMENT OF MATHEMATICS, I.I.T. GUWAHATI

MA 332: Scientific Computing Lab - II

- 1. Use the Bisection method to find the root of the equation $e^x = \sin x$ closest to 0.
- 2. Use the Bisection method to find solution accurate to within 10^{-3} for the following problems.
 - a. $2 + \cos(e^x 2) e^x = 0$ for $0.5 \le x \le 1.5$
 - b. $e^x x^2 + 3x 2 = 0$ for 0 < x < 1
 - c. $2x\cos(2x) (x+1)^2 = 0$ for $-3 \le x \le -2$ and $-1 \le x \le 0$
 - d. $x\cos(x) 2x^2 + 3x 1 = 0$ for $0.2 \le x \le 0.3$ and $1.2 \le x \le 1.3$
- 3. A particle starts at rest on a smooth inclined plane whose angle θ is changing at a constant rate $\frac{d\theta}{dt} = \omega < 0$. At the end of t seconds, the position (measured from starting point) of the object is given by

$$x(t) = -\frac{g}{2\omega^2} \left(\frac{e^{\omega t} - e^{-\omega t}}{2} - \sin \omega t \right).$$

Suppose the particle has moved 1.7ft in 1s. Find, within 10^{-5} , the rate ω at which θ changes. Assume that $g = 32.17ft/s^2$.

- 4. Use a fixed-point iteration method to determine a solution accurate to within 10^{-2} for $x^3 x 1 = 0$ on [1, 2]. Use $x_0 = 1$.
- 5. The following four methods are proposed to compute $\sqrt[5]{7}$. Rank them in order based on their apparent speed of convergence, assuming $x_0 = 1$.

(i)
$$x_n = x_{n-1} \left(1 + \frac{7 - x_{n-1}^5}{x_{n-1}^2} \right)^3$$
, (ii) $x_n = x_{n-1} - \frac{x_{n-1}^5 - 7}{x_{n-1}^2}$, (iii) $x_n = x_{n-1} - \frac{x_{n-1}^5 - 7}{5x_{n-1}^4}$,

- (iv) $x_n = x_{n-1} \frac{x_{n-1}^5 7}{12}$. Based upon the first four iterations, which one do you think gives the best approximation to the solution?
- 6. For each of the following equations, determine an interval [a, b] on which fixed-point iteration will converge. (i) Estimate the number of iterations necessary to obtain approximations accurate to within 10^{-5} , and (ii) Perform the calculations.

(i)
$$3x^2 - e^x = 0$$
, (ii) $x - \cos x = 0$.

7. Use Newton's method to find solution accurate to within 10^{-5} for the following problems.

1

a.
$$e^x + 2^{-x} + 2\cos(x) - 6 = 0$$
 for $1 \le x \le 2$

b.
$$(x-2)^2 - \ln x = 0$$
 for $1 \le x \le 2$ and $e \le x \le 4$

c.
$$e^x - 3x^2 = 0$$
 for $0 \le x \le 1$ and $3 \le x \le 5$

d.
$$\sin x - e^{-x} = 0$$
 for $0 \le x \le 1, 3 \le x \le 4$ and $6 \le x \le 7$

- 8. Let $f(x) = 2^{x^2} 3 \cdot 7^{x+1}$.
 - (i) Plot f(x) to find initial approximations to roots of f. (ii) Use Newton's method to find roots of f to within 10^{-16} .
- 9. The fourth degree polynomial $f(x) = 230x^4 + 18x^3 + 9x^2 221x 9$, has two real zeros, one in [-1,0] and the other in [0,1], Attempt to approximate these zeros to within 10^{-6} using the
 - a. Newton's method
 - b. Secant method

Use the midpoints of each interval as the initial approximation in (a) and the endpoints of each interval as the initial approximations in (b).

- 10. Repeat the problems given in **Exercise 7** using the secant method. What can you comment on the number of iterations and accuracy of the two methods based on your run?
- 11. Use secant method to approximate, to within 10^{-4} , the value of x that produces the point on the graph of $y = x^2$ that is closest to (1,0).
- 12. Find an approximation for γ , accurate to within 10^{-4} , the population equation

$$1,564,000 = 1,000,000e^{\gamma} + \frac{435,000}{\gamma}(e^{\gamma} - 1).$$