國立雲林科技大學資訊管理系

機器學習-作業四

Department of Information Management

National Yunlin University of Science & Technology

Assignment

台灣火車站距離和飲料資料集

Taiwan Railway Station Distance & Drink 資料集

楊欣蓓、黄裕鳴、游棨翔

指導老師:許中川博士

Advisor: Chung-Chian Hsu, Ph.D.

中華民國113年6月

June 2024

摘要

本研究旨在利用 Python 探索 MDS 在台灣火車站地理距離可視化中的應用,並比較 One-Hot Encoding 和 Word2Vec 在飲料數據集處理上的效果差異。

在車站資料集中的一部分,本研究定義了台北、新竹、台中、斗六、高雄、花蓮玉里、台東知本等七個火車站的經緯度。然後,考量到地球的曲率,使用了測地線方法來測量火車站之間的地理距離,生成距離矩陣。接下來,使用MDS方法,將這些距離數據降維至二維空間,並繪製降維後的二維散點圖。此外,還有用 Google 地圖標記這些火車站的位置,以便對比。

資料集二的部分則比較了 One-Hot Encoding 和 Word2Vec 在飲料資料處理上的效果,發現 Word2Vec 能夠更有效的捕捉飲料之間的語意關係,並透過熱圖和 t-SNE 視覺化展示其優勢。實驗結果表明,相較於 One-Hot Encoding,Word2Vec 能更好的捕捉飲料之間的語意關係,在飲料推薦或市場區隔上具有更大的潛力。

關鍵字:降維、MDS、One-Hot Encoding、Word2Vec、t-SNE

一、緒論

1.1 研究動機

隨著台灣交通日益發達,跨縣市通勤、洽公與旅行的需求也日益增加。然 而,民眾對於火車站之間的距離與相對位置,往往缺乏直觀且易於理解的認知。 因此,本研究希望透過資料視覺化技術,將台灣主要火車站的地理位置與相對 距離以更直觀的方式呈現,為旅客提供便捷的出行參考。

同時,飲料市場競爭激烈,消費者口味多變。如何從眾多產品中脫穎而出,並精確掌握消費者偏好,成為各大飲料廠商欲解決的難題。本研究將聚焦於常見的碳酸飲料與咖啡兩大類別,透過分析其相似度,期望能發掘消費者的偏好趨勢,為產品研發與營銷策略提供有價值的參考依據。例如,相似度高的飲料可能存在市場競爭關係,而相似度低的飲料則可能具有市場區隔的潛力。

1.2 研究目的

首先,本研究聚焦於台灣主要火車站之間的地理關係。本研究將收集台北、新竹、台中、斗六、高雄、花蓮玉里、台東知本等七個主要火車站的經緯度數據,計算其地理距離,並透過 MDS 方法將距離數據降維至二維平面。最後,結合 Google 地圖標記,繪製直觀的二維散點圖,協助民眾更有效地規劃行程。

其次,本研究將分析飲料市場中碳酸飲料與咖啡的相似度。本研究將使用包含 Drink、Rank、Amount、Quantity 等特徵的飲料資料集,透過 t-SNE 方法降維並視覺化。同時,本研究將比較1-of-k編碼與屬性值相似度計算兩種方法在處理名目屬性上的效果,期望能揭示消費者偏好趨勢,為廠商提供產品開發與市場策略的參考依據。

二、實驗方法

2.1 實作說明

首先,本研究收集了台北、新竹、台中、斗六、高雄、花蓮玉里、台東知本等七個主要火車站的經緯度資料。根據這些經緯度資訊,本研究利用測地線方法計算火車站之間的地理距離,生成距離矩陣。測地線方法能更精確地反映地球曲率對距離的影響,因此相較於平面距離計算更準確。接著,本研究使用MDS方法將距離矩陣降維至二維平面,以便更直觀地呈現火車站之間的相對位置。同時,本研究使用 Google 地圖標記這些火車站,將理論結果與實際地理位置進行對比驗證。

在飲料市場相似度分析實驗中,本研究使用包含 Drink、Rank、Amount、Quantity 等特徵的飲料資料集。為便於視覺化與分析,本研究將透過 t-SNE 方法將高維資料降維至二維平面。

為了比較不同編碼方式對相似度分析的影響,本研究將對飲料資料集中的名目欄位(如 Drink)進行 One-Hot Encoding 和 Word2Vec 兩種處理方式,比較其在反映飲料相似度上的效果。接著,利用 t-SNE 將處理後的資料降維並繪製散點圖,以視覺化方式呈現飲料之間的相似度,進一步探討消費者偏好。

2.2 操作說明

本研究採用 Python 3.8作為編寫語言,並使用 Visual Studio Code 作為開發環境。使用 MDS 對火車站經緯度降維,且利用 One-Hot Encoding 與 Word2Vec 處理 Drink 欄位,並利用 t-SNE 降維。

三、實驗設計

3.1 資料集

3.1.1 火車站經緯度

此表格展示了台北火車站、新竹火車站、台中火車站、斗六火車站、高雄火車站、花蓮玉里及台東知本的經緯度座標。

表1
各個火車站的經緯度座標

車站	緯度	經度
台北火車站	25.047637204053995	121.5171273798563
新竹火車站	24.801750331885113	120.9716203981461
台中火車站	24.137523918186687	120.68683583244295
斗六火車站	23.712201175089422	120.54104266971164
高雄火車站	22.6396706176077	120.30261518317573
花蓮玉里	23.727506999999997	120.2999999999999
台東知本	23.712201175089422	120.54104266971164

3.1.2 Drink 資料集

表2展示了 Drink 資料集的原始型態,記錄了7種不同飲料的 Class、名稱、Rank、容量(常態分佈)和數量(隨機分佈),並指定了每種飲料要生成的模擬資料筆數。表3展示了依照 Amount 常態分佈及 Quantity 隨機分佈並依照 Count 筆數生成的模擬資料。

表 2
Drink 資料集(處理前)

Class	Drink	Rank	Amount(N (μσ))	Quantity	Count
A	7up	7	(100, 200)	Random(500, 1000)	100
В	Sprite	6	(200, 10)	Random(500, 1000)	200
С	Pepsi	5	(200, 10)	Random(500, 1000)	100
D	Coke	4	(400, 100)	Random(500, 1000)	400
Е	Cappuccino	3	(800, 10)	Random(1, 500)	400
F	Expresso	2	(800, 10)	Random(1, 500)	200
G	Latte	1	(900, 400)	Random(1, 500)	100

表 3
Drink 資料集(處理後)

	Class	Drink	Rank	Amount	Quantity
0	A	7Up	7	-55.983657	919.387694
1	A	7Up	7	278.756034	559.495568
2	A	7Up	7	213.574166	858.120052
3	A	7Up	7	115.276056	675.560194
4	A	7Up	7	113.712519	856.110844
•••		•••	•••	•••	•••
1495	G	Latte	1	1342.372717	368.955640
1496	G	Latte	1	833.656659	223.793875
1497	G	Latte	1	1034.502112	425.712543
1498	G	Latte	1	504.050802	141.633063
1499	G	Latte	1	1085.908829	99.448849

3.2 資料前處理

3.2.1 火車站經緯度

根據火車站經緯度資料,計算每一對火車站之間的地理距離(km)。考慮到 地球的球面特性,不直接採用平面歐式距離,而是利用大圓距離,透過輸入的 火車站經緯度資料,計算出每對火車站之間沿地球表面測量所得的最短距離 (大圓距離)。此過程將結果儲存為一個二維矩陣,為後續分析提供基礎。

3.2.2 Drink 資料集

在 Drink 資料集中,對'Drink'欄位分別進行兩種不同的處理方式:

- One-Hot Encoding: 將每種獨特的飲料名稱轉換為一個二元向量, 這個過程將每種獨特的飲料名稱(如:'7up'、'Sprite')轉換為一個二 維向量。
- Word2Vec:利用 gensim 庫中的 Word2Vec 模型學習每種飲料名稱的詞向量表示,不同於 One-Hot Encoding, Word2Vec 會將單詞映射到一個連續的向量空間中,使得在該向量空間中,語意相似的詞彙會靠的更近。

3.3 實驗設計

圖 1

火車距離資料集實驗設計流程圖

本研究於收集七個火車站的各個經緯度,並利用利用側地線方法計算各個火車站之間的距離,並生成矩陣,接著使用 MDS 方法將距離矩陣降維至二為平面,可更簡易地觀察火車站之間的相對位置以及大致上的距離差。此外使用 Google 地圖標記這些火車站,可更直觀地做出對比驗證。

圖 2

Drink 資料集實驗設計流程圖

本研究於 Drink 資料集先行依照 Amount 常態分佈及 Quantity 隨機分佈並依 照 Count 筆數生成的模擬資料,並對 Drink 欄位做 One-Hot Encoding 和 Word2Vec 資料前處理,接著利用 t-SNE 進行降維,欲觀察兩者之間在視覺化方面的差異,並探討何者較容易觀測。

3.4 實驗結果

本實驗利用火車經緯度與飲料資料集,並透過 MDS、t-SNE 和 Word2Vec 技術,將高維數據降維並視覺化展示,揭示火車站之間的地理距離與飲料之間的相似度。

3.4.1 火車站經緯度分析

本實驗利用多維度縮放(MDS)技術,將台灣七個主要火車站的地理距離關係視覺化呈現。透過計算火車站間的大圓距離並進行降維,並繪製了散點圖(圖3),清晰的展示了各站點的相對位置,與實際地理分佈高度吻合,通過與實際地圖的對比,進一步驗證了MDS方法在可是化地理距離上的有效性。

圖3 台灣主要火車站距離之MDS 視覺化

圖4 台灣火車站座標真實地圖

3.4.2 Drink 資料集分析

本研究旨在比較 One-Hot Encoding 和 Word2Vec 兩種方法在飲料資料處理上的效果。實驗結果表明,Word2Vec 能夠更好的捕捉飲料之間的語意關係,相似的飲料在 t-SNE 視覺化圖中聚集在一起(圖5)。而 One-Hot Encoding 僅僅將飲料轉換為獨立的類別,無法捕捉飲料之間的相似性,因此在 t-SNE 視覺化圖中,不同飲料的分佈相對分散(圖6)。

這種差異也在熱圖中得到了體現(圖7),其中顏色越深表示相似度越高,可以明顯看出 Word2Vec 能夠有效捕捉飲料之間的語意關係,例:可樂和百事可樂的相似度較高,而 One-Hot Encoding 則無法呈現這樣的關係。

圖 5
Drink 資料集使用 Word2Vec ≥ t-SNE 視覺化圖

圖 6Drink 資料集使用 One-Hot Encoding ≥ t-SNE 視覺化圖

圖 7Drink 資料集 heatmap 視覺化

四、結論

本研究透過多尺度縮放(MDS)技術成功的將台灣七個主要火車站的地理距離關係視覺化,清楚呈現它們的相對位置,與實際地理分佈高度吻合。這種可視化方法能直觀的反映火車站之間的距離關係,更有助於旅客規劃行程。

此外,在飲料相似度分析方面,本研究比較了 One-Hot Encoding 和Word2Vec 兩種方法在處理飲料資料上的結果。實驗結果顯示,Word2Vec 在捕捉飲料之間的語意關係方面表現更為出色。相似的飲料在 t-SNE 視覺化圖中聚集在一起,而 One-Hot Encoding 則無法呈現這樣的關係。這項發現對於飲料市場的產品開發和行銷策略具有重要意義,因為 Word2Vec 能夠更精確地反映消費者對不同飲料的偏好與認知。

参考文獻

sklearn 與機器學習系列專題之降維(三)一文弄清楚 MDS 特徵篩選&降維 https://blog.csdn.net/weixin 45234485/article/details/109729659

[Day15] 文本/詞表示方式(五)-實作 word2vec

https://ithelp.ithome.com.tw/articles/10264523

t-SNE實踐-sklearn 教程翻譯

https://blog.csdn.net/hustqb/article/details/80628721

初學 Pandas+Ploty+Dash 大禮包

 $\frac{https://weilihmen.medium.com/\%E5\%88\%9D\%E5\%AD\%B8pandas-plotydash\%E5\%A4\%A7\%E7\%A6\%AE\%E5\%8C\%85-8661c04e67b7$