Gate PH-2013

AI24BTECH11032 Shreyansh Sonkar

- 40) A proton is confined to a cubic box, whose sides have length $10^{-12}m$. What is the minimum kinetic energy of the proton? The mass of proton is $1.67 \times 10^{-27} kg$ and Planck's constant is 6.63×10^{-34} Js.

- a) $1.1 \times 10^{-17} \text{J}$ b) $3.3 \times 10^{-17} \text{J}$ c) $9.9 \times 10^{-17} \text{J}$ d) $6.6 \times 10^{-17} \text{J}$

1

- 41) For the function $f(z) = \frac{16z}{(z+3)(z-1)^2}$ the residue at the pole z=1 is (your answer should be an integer)
- 42) 2 The degenerate eigenvalue of the matrix

$$\begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4 \end{bmatrix}$$
 is (your answer should be an integer)

- 43) Consider the decay of a pion into a muon and an anti-neutrino $\pi^- \to \mu^- + \nu_\mu^-$ in the pion rest frame $m_\pi = 139.6 \frac{MeV}{c^2}, m_\mu = 105.7 \frac{MeV}{c^2}, m_\nu \approx 0$ The energy (in MeV) of the emitted neutrino, to the nearest integer is
- 44) In a constant magnetic field of 0.6 Tesla along the z direction, find the value of the path integral $\oint \overrightarrow{A} \cdot \overrightarrow{dl}$ in the units of on (Tesla m^2) a square loop of side length $\left(\frac{1}{\sqrt{2}}\right)$ meters. The normal to the loop makes an angle of 60° to the z-axis, as shown in the figure. The answer should be up to two decimal places.

- 45) A spin-half particle is in a linear superposition $0.8|\uparrow\rangle + 0.6|\downarrow\rangle$ of its spin-up and spindown states. If $|\uparrow\rangle$ and $|\downarrow\rangle$ are the eigenstates of σ_z then what is the expectation value, up to one decimal place, of the operator $10\sigma_z + 5\sigma_x$? Here, symbols have their usual meanings.
- 46) Consider the wave function $Ae^{ikr}\left(\frac{r_0}{r}\right)$ where A is the normalization constant. For $r=2r_0$ the magnitude of probability current density up to two decimal places, in units of $\frac{A^2 \hbar k}{m}$ is

47) An n-channel junction field effect transistor has 5mA source to drain current at shorted gate (I_{DSS}) and 5V pinch off voltage (V_P) . Calculate the drain current in mA for a gate-source voltage (V_{GS}) of -2.5V. The answer should be up to two decimal places.

Common Data Questions

Common Data for Questions 48 and 49: There are four energy levels E, 2E, 3E

and 4E (where E > 0). The canonical partition function of two particles is , if these particles are

- 48) two identical fermions
 - a) $e^{-2\beta E} + e^{-4\beta E} + e^{-6\beta E} + e^{-8\beta E}$

 - b) $e^{-3\beta E} + e^{-4\beta E} + 2e^{-5\beta E} + e^{-6\beta E} + e^{-7\beta E}$ c) $\left(e^{-\beta E} + e^{-2\beta E} + e^{-3\beta E} + e^{-4\beta E}\right)^2$ d) $e^{-2\beta E} e^{-4\beta E} + e^{-6\beta E} e^{-8\beta E}$
- 49) two distinguishable particles
 - a) $e^{-2\beta E} + e^{-4\beta E} + e^{-6\beta E} + e^{-8\beta E}$
 - b) $e^{-3\beta E} + e^{-4\beta E} + 2e^{-5\beta E} + e^{-6\beta E} + e^{-7\beta E}$ c) $\left(e^{-\beta E} + e^{-2\beta E} + e^{-3\beta E} + e^{-4\beta E}\right)^2$ d) $e^{-2\beta E} e^{-4\beta E} + e^{-6\beta E} e^{-8\beta E}$

Common Data for Questions 50 and 51: To the given unperturbed Hamiltonian

$$\begin{bmatrix} 5 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

we add a small perturbation given by

$$\epsilon \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$

- , where ϵ is a small quantity
- 50) The ground state eigenvector of the unperturbed Hamiltonian is

 - a) $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ b) $\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0\right)$ c) (0, 0, 1) d) (1, 0, 0)
- 51) A pair of eigenvalues of the perturbed Hamiltonian, using first order perturbation theory, is
 - a) $3 + 2\epsilon + 7 + 2\epsilon$ b) $3 + 2\epsilon, 2 + \epsilon$ c) $3.7 + 2\epsilon$
- d) $3.2+2\epsilon$

Statement for Linked Answer Questions 52 and 53: In the Schmidt model of nuclear magnetic moments, we have, $\overrightarrow{\mu} = \frac{e\hbar}{2Mc} \left(g_l \overrightarrow{l} + g_s \overrightarrow{S} \right)$ where the symbols have their usual meaning

- 52) For the case $j = l + \frac{1}{2}$ where J is the total angular momentum, the expectation value of $\overrightarrow{S} \cdot \overrightarrow{J}$ in the nuclear ground state is equal to,

 - a) $\frac{(J-1)}{2}$ b) $\frac{(J+1)}{2}$ c) $\frac{J}{2}$

- d) $\frac{-J}{2}$
- 53) For the O^{17} nucleus (A = 17, Z = 8) the effective magnetic moment is given by, $\overrightarrow{\mu} =$ $\frac{e\hbar}{2Mc}g\overrightarrow{J}$ where is equal to, $(g_s = 5.59 \text{ for proton and } -3.83 \text{ for neutron})$
 - a) 1.12
- b) 0.77
- c) -1.28
- d) 1.28