长田村. J. ガスガス

ΚΑΘΗΓΗΤΟΥ ΤΗ ΒΥΖΑΝΤΙΝΗ ΕΚΚΑΗ ΕΚΚΑΗ ΜΟΥ ΕΚΚΑΗ ΤΗ ΑΓΚΑΚΕΙΟΙ ΠΑΙΔΑΓΟΓΙΚΗ ΑΚΑΔΗΜΙΑΙ ΠΑΤΡΟΝ

ӨЕФРІА, МЕӨОДОС КАІ ОРӨОГРАФІА THC BYZANTINHC EKKAHC. MOYCIKHC

TPOC XPHCIN

Των επογδλετων λύτης, εκκλής, φροντιστηριών, πλιδλεωτικών λκλαμνιών, ωδείων, ιεροψλλτών κλι πλίντος φιλονιούςού

CKAOCIC TRUTH

» Τὰ μὲν οὖν παρ' ἡμῶν τοιαὖτα·
» Εἰδὲ μικρὰ καὶ τῆς ἀξίας ἐλάττω,
» καὶ Θεῷ φίλον τὸ κατὰ δύναμιν»,
(Γοηγόριος ὁ Ναζιανζηνός).

EKAOTIKOC OIKOC

XAP. & IW. KATIAPA
ABHHAI-TIATPAI 1970

MEPOE I.

ΚΕΦΑΛΑΙΟΝ ΙΣΤ.

ΠΕΡΙ ΟΡΘΟΓΡΑΦΙΑΣ ΤΗΣ ΒΥΖΑΝΤΙΝΉΣ ΕΚΚΛΉΣ. ΜΟΥΣΙΚΉΣ Η ΤΟΙ

ΠΕΡΙ ΤΗΣ ΟΡΘΗΣ ΠΛΟΚΗΣ ΤΩΝ ΜΟΥΣΙΚΩΝ ΧΑΡΑΚΤΉΡΩΝ ΚΑΙ ΑΠΑΓΓΕΛΊΑΣ ΑΥΤΩΝ.-

Ή όρθη γραφή ως και ή έντεχνος πλοκή των χαρακτήρων της Έκκλησιαστικής ήμων μουσικής έκανονίσθησαν ώς γνωστόν, ύπό των άρχαίων Διδασκάλων, οίτινες διά των μελιρρήτων και θεοπνεύστων, ούτως είπετν, μουσικών αύτων συνθέσεων έθησαύρισαν και έκληροδότησαν είς ήμας πλούτον πνευματικόν άνυπολογίστου άξίας και διδασκαλίαν άνταξίαν τῆς ἐξόχου αὐτῶν μαθήσεως καὶ σοφίας. Ἐκ τῆς μελέτης δὲ τῶν πολλων και ποικίλων άσματων των Διδασκάλων ήμων τούτων και της άκριβους κατανοήσεως του τρόπου, καθ' δν ούτοι έγραψαν καὶ τῶν ὀρθογραφικών κανόνων τούς όποίους μεταχειρίσθησαν όδηγούμενοι δυνάμεθα καί ήμεῖς νὰ γράψωμεν μέ ὀρθογραφικήν ἀκρίβειαν εν μουσικόν μάθημα, ἄν ἔχωμεν τὰς, πρὸς τοῦτο ἀπαιτουμένας γνώσεις. Διότι ὅχι μόνον ἡ ὁρθὴ γραφή, άλλά και ή έντελής γνῶσις τῆς Ἐκκλησιαστικῆς ήμῶν μουσικῆς καὶ ὁ ρυθμὸς καὶ ἄλλα πολλὰ χρησιμεύουν πρὸς τοῦτο. Όθεν, ἔνα δρθῶς γράψωμεν, ἀνάγκη ὡς εἶπομεν, νὰ γνωρίζωμεν καλῶς τοὺς ὀρθογραφικούς τῆς μουσικῆς κανόνας, τοὺς ρυθμοὺς καί ἐν γένει πᾶν ὅ,τι πρὸς τοῦτο συντελεῖ.

Ή Ύλη, περὶ τῆς ἐν γένει ὀρθογραφίας τῆς Ἐκκλησιαστικῆς μουσικῆς, ἀναλόγως τῆς φύσεως καὶ ἐνεργείας τῶν σημείων δύναται νὰ κατανεμηθῆ εἰς τρεῖς (3) κατηγορίας.

- Α΄. 'Ορθογραφία καὶ πλοκὴ τοῦ ἴσου, ὡς καὶ τῶν ἀνιόντων χαρακτήρων.
- Β΄. 'Ορθογραφία και πλοκή τῶν κατιόντων χαρακτήρων.
- καὶ Γ΄. 'Ορθογραφία τῶν τροπικῶν ὑποστάσεων ἤ καλλωπιστικῶν σημείων, ὡς καὶ τῶν ἐγχρόνων ὑποστάσεων, ἤτοι (χρονικῶν σημείων αὐξανόντων τὸν χρόνον καὶ τῆς διαφόρου ἐνεργείας αὐτῶν ὡς πρὸς τὴν ἀπαγγελίαν).

Α΄. Περὶ τῆς ὁρθογραφίὰς τοῦ ίσου () καὶ τῆς συμπλοκῆς αὐτοῦ μετὰ τῶν χαρακτήρων τῆς ποσότητος τῶν ἐγχρόνων, ὡς καὶ τῶν ἀχρόνων ὑποστάσεων.

Τὸ ἴσον ώς βὰσις τῆς μελφδίας είναι πάντοτε ἀπαραίτητον καὶ ἄνευ αὐτοῦ, οὔτε ἀνάβασις, οὕτε κατάβασις γίνεται. Τὸ ἴσον ἔχον τὴν δύναμιν τῆς ἰσότητος, τίθεται ἐν ἀρχῆ μετὰ τῆς μαρτυρίας τοῦ τυχόντος ῆχου καί εἰς τὸ τέλος τῆς μελφδίας. Πρὸ τοῦ ἴσου προηγεῖται οἰοσδήποτε χαρακτήρ ἐκτὸς τῆς πεταστῆς, μετ' αὐτὸ δὲ ἀκολουθεῖ ὁμοίως οἰοσδήποτε χαρακτήρ.

Όταν παραστῆ ἀνάγκη νὰ ἐξέλθωμεν τῆς ἰσότητος καὶ νὰ ἐξαγγείλωμεν τὸ ἴσον μὲ ζωηρότητα, τότε ἐὰν μετὰ τὸ ἴσον δὲν ἀκολουθῆ κατιοῦσα φωνὴ ἀλλ' ἔτερον ἴσον, θέτομεν ὑπ' αὐτὸ τὸ ὀλίγον —οῦτω:

Πρός ἔκφρασιν ὅμως μεγαλυτέρας ζωηρότητος μετὰ κυματισμοῦ, θέτομεν πρὸ αὐτοῦ βαρεῖαν καὶ κὰτωθι αὐτοῦ πεταστὴν καὶ ἀπλῆν μετ' ἀντικενώματος. π. χ. Δ | Α α α α α να α α α

$$η χ |$$
 $και αι αὶ αι αι αι τη η η ζω ω$
 $\frac{\pi}{\omega} κ. λ. π.$

Αντί τοῦ ὀλίγου τίθεται ψηφιστὸν , ἢ βαρεῖα , ἢ πεταστὴ , ὁσάκις πρόκειται ἀπαραιτήτως νὰ ἐπακολουθήσωσι κατιόντες χαρακτῆρες, εἰς ἢ περισσότεροι κατὰ τὴν περίστασιν, πρὸς ἔκφρασιν τῆς ζωηρότητος τοῦ ψηφιστοῦ ἢ τῆς βαρύτητος τῆς βαρείας ἢ τῆς ὀξύτητος τῆς πεταστῆς.

Όταν πάλιν εἰς τὴν αὐτὴν γραμμὴν εὑρίσκωνται δύο ἤ τρία ἴσα (), τῶν ὁποίων τὸ τελευταῖον ἔχει ἀνάγκην ζωηρότητος, τότε, ἐἀν μὲν οἱ ἐπακολουθοῦντες χαρακτῆρες εἰναι ἰσόχρονοι πρὸς τὸ τελευταῖον τοῦτο ἴσον, τὸ ἔχον ἀνάγκην ζωηρότητος, τίθεται ὑπ'αὐτὸ ψηφιστὸν Π.Χ.

$$\Delta$$
 ω_{ς} ω_{ς}

'Εὰν δὲ οἱ ἐπακολουθοῦντες χαρακτῆρες εἶναι ἐτερόχρονοι, ῆτοι ἐὰν τὸ ἴσον τοῦτο ἔχει δύο χρόνους, οἱ δὲ ἐπακολουθοῦντες κατιόντες χαρακτῆρες ἔχουν ἔνα χρόνον, τότε τίθεται ὑπὸ τὸ ἴσον πεταστὴ. Π. Χ.

'Ομοίως τὸ ἴσον ὑποτὰσσει τὴν πεταστὴν ἄνευ ἐτεροχρὸνου, ὅταν ἔπεται τούτῳ μία μόνη ᾿Απόστροφος εἰς τὴν ὁποίαν νὰ τίθεται συλλαβὴ οὕτω:

'Αλλ' ὅταν τὸ ἴσον δἐν ἀπαιτῆ ζωηρὸτητα, τότε τὶθεται ἄνευ πεταστῆς καὶ ἄς ἀλλάζει συλλαβὴ εἰς τὴν 'Απόστροφον π. χ. οὕτω:

Όταν ἐν μιᾳ καὶ τῷ αὐτῷ συλλαβῷ εὑρίσκεται τὸ ἴσον μετὰ τῆς ᾿Αποστρόφου, τότε τίθεται πρὸ αὐτοῦ βαρεῖα π. χ.

Έὰν δὲ ὑπάρχη ἀνάγκη νὰ τεθῆ εἰς τὴν ᾿Απόστροφον χρονικὸν σημεῖον ἀπαραιτήτως δέον νὰ εἶναι ἁπλῆ οὕτω :

Ἐπίσης δταν τὸ ἴσον ἀπαιτῆ ὀξύτητα μεθ' ἐτεροχρόνου, τίθεται πεταστὴ μετὰ κλάσματος καὶ ἐφ' ὄσον ἀκολουθεῖ τούτῷ ζεῦγος 'Αποστρό-

φων άνευ κλάσματος, εννοείται, ύπο μίαν και την αυτήν συλλαβήν τότε προτάσσεται τούτων ή βαρεία. Ούτω:

$$\frac{\pi}{q}$$
 $\frac{1}{X\alpha}$ ρι σμα α σιν ιι α α α σε ω ων πλου $\frac{\pi}{1}$ κ. λ. π .

Έὰν δὲ αἱ ἀκολουθοῦσαι ᾿Απόστροφοι εἶναι τρεῖς ἄνευ ἐτέρου χρόνου, τότε τίθενται ἄνευ βαρείας οὕτω:

'Εὰν ὅμως εἰς μίαν γραμμὴν εὑρεθῶσι τέσσαρες ἢ καὶ περισσότεραι 'Απόστροφοι, τῶν ὁποίων 'Αποστρόφων ἔκαστον ζεῦγος λαμβάνει ἀνὰ μίαν συλλαβὴν τοῦ κειμένου καὶ ἐφ' ὅσον εἰς τὴν πρώτην ἀπόστροφον ἑκάστου ζεύγους ἀλλάζει συλλαβὴ, τότε πρὸ ἑκάστου ζεύγους γράφεται ἡ βαρεῖα οῦτω:

Έἀν δὲ ἐκάστη τῶν ᾿Αποστρόφων λαμβάνη συλλαβὴν τὸτε οὐδόλως προγράφεται βαρεῖα, ἀλλὰ τίθεται μὸνον ψηφιστὸν εἰς τὸ ἴσον ἢ τὸ ὀλίγον οὕτω:

μνητος και δε δο ξα σμε ος και δε δο ξα σμε Ομοίως δὲ ὅταν εἰς τὴν τελευταίαν συλλαβὴν δὲν εὑρεθῶσι δύο

'Απόστροφοι τής αὐτής συλλαβής, βαρεία οὐδόλως τίθεται. Οὕτω:

 $\frac{\lambda}{\alpha}$ Πρε σβε ευ ε ε δι ι η νε ε ε κω ω ως $\frac{\delta}{\alpha}$ κ.λ.π.

Έαν είς μίαν μουσικήν γραμμήν υπάρχωσι δύο Ίσα, ή καί περισσότερα, έχοντα κατόπιν αὐτῶν ἀνὰ μίαν ᾿Απόστροφον, τὸτε εἰς ἔκαστον "Ισον προτάσσεται ή βαρεία, ἐφ' δσον εύρισκονται ἐν μιῷ συλλαβή ούτω:

η Οι οι μοι ο Α α δαμ εν θρη η νω κε $\sum_{\epsilon} \sum_{\kappa \rho \alpha} \sum_{\alpha} \sum_{\gamma \epsilon \nu} \sum_{\delta i} \sum_{\kappa, \lambda, \pi} K. \lambda. \pi.$

Όταν δύο Ίσα, ἤ ὀλίγον καὶ Ίσον ἔχουσι ἀνάγκην κυματισμοῦ, θέτομεν ύπ' αὐτὰ τὸ Ετερον (σύνδεσμον) όπότε οἱ φθόγγοι αὐτῶν προφέρονται μὲ ἐλαφρὸν καὶ λιγυρὸν κυματισμὸν. Οὕτω:

*Επίσης ὅταν μετὰ τό ἴσον ἀκολουθῆ Συνεχές ἐλαφρὸν, βαρεῖα πρὸ τοῦ Ισου δὲν τίθεται. Οὕτω:

$$\frac{6}{9}$$
 $\frac{\pi}{9}$
 $\frac{\pi}{9}$
 $\frac{\pi}{1}$
 $\frac{$

Διότι τό Συνεχές έλαφρον ἀποτελούμενον ἐκ δύο κατιουσῶν φωνῶν, ἢτοι τῆς ᾿Αποστρόφου καὶ τοῦ Ἐλαφροῦ, ἐκ τῶν ὁποίων ἡ πρώτη ὑποτάσσεται εἰς τὴν δευτέραν προξενοῦσα οὐχί πλέον ὑπέρβασιν, ἀλλὰ συνέχειαν φωνῆς καὶ μέλους εἰς τοὺς δύο τόνους λαμβανομένου τοῦ μέν πρώτου εἰς τὴν ἄρσιν, τοῦ δὲ δευτέρου δεχομένου συλλαβὴν, ἐξουδετεροῖ τὴν ἔπὶ τοῦ ἴσου τούτου ἐπιρροὴν τῆς βαρείας.

Διότι ἀδύνατον νὰ διακριθῆ εἰς Ἰσον, μετὰ τὸ ὁποῖον ἀκολουθοῦν δύο ἢ περισσότεραι κατιοῦσαι φωναί, τὸ βὰρος, τὸ ὁποῖον ὡς ἐκ τῆς θὲσεώς της προσδίδει ἡ βαρεῖα εἰς τὴν φωνὴν, τοῦ πρὸ αὐτῆς φθὸγγου ἀπὸ τὸν φθόγγον τὸν ἑπὸμενον, ὅστις ἐνταῦθα εἶναι ἡ ὑποτασσομένη εἰς τὸ Ἐλαφρὸν ᾿Απόστροφος, ἀλλὰ μαλακῶς προφέρεται τὸ Ἰσον αὐτὸ καὶ ἐν συνεχεία μετὰ τῆς ᾿Αποστρόφου, μετὰ τῆς ὁποίας συνδέεται τὸ Ἐλαφρὸν, ὅπερ, οὐχὶ ὡς αὶ ᾿Απόστροφοι, ἀλλὰ μὲ ἐλαφρότητα καταβιβάζει τοὺς δύο φθὸγγους. Ἐνῷ ἀντιθέτως εἰς τὴν αὐτὴν μουσικήν γραμμὴν καὶ εἰς τὴν λέξιν (ἡμέρα) ποὺ ἀκολουθεῖ μετὰ τὸ Ἰσον μία ᾿Απόστροφος, προτάσσεται πρὸ τοῦ Ἰσου βαρεῖα. Καὶ εἰς τὰς δύο περιπτώσεις τῆς μουσικῆς γραμμῆς τὸ γοργὸν τῶν κεντημάτων είναι παρεστιγμένον μὲ τὴν στίξιν δεξιὰν ἀπαραιτήτως Π. χ.

Ἐπίσης πρὸ τοῦ Ἰσου προτάσσεται βαρεῖα, ὅταν μετ' αὐτὸ ἀκολουθεῖ μία ᾿Απόστροφος μὲ γοργὸν ἥ καὶ ἄνευ γοργοῦ, ἔχουσα ὅμως τὴν αὐτὴν συλλαβὴν μετὰ τοῦ Ἰσου, οὕτω:

Οὐδέποτε ὅμως τίθεται βαρεῖα πρὸ δὺο ἡ καὶ περισσοτέρων ᾿Αποστρόφων ὧν ἑκάστη τούτων ἔχει ἰδίαν συλλαβὴν. Εἰς τὴν περίπτωσιν αὐτῆν δυνὰμεθα εἰς τήν πρὼτην ᾿Απόστροφον, ἐφ᾽ ὄσον ἔχει ἔντονον συλλαβὴν, νὰ τὴν θέσωμεν ἐπὶ τοῦ ὀλίγου μὲ ψηφιστὸν. Οὕτω:

$$\frac{x}{q}$$
 kai ouk oi oioi δα που $\frac{x}{\epsilon}$ θη καν αυ τον $\frac{x}{q}$

'Εὰν δύο ἤ τρία Ίσα εἶναι ἀνὰγκη νὰ ἐξαγγελθῶσι μετὰ τραχέως κυματισμοῦ τῆς φωνῆς ἐν τῷ λάρυγγι, τότε προγράφομεν τὴν βαρεῖαν καὶ συνδέομεν αὐτὰ διὰ τοῦ ὁμαλοῦ (——••), θὲτοντες εἰς τὸ δεύτερον Ἰσον γοργὸν. Οὕτω:

Έν τῆ γραφῆ ταύτη τὸ κλάσμα μὲ τὸ 'Ομαλὸν ἀναλύεται καὶ ἐκτελεῖται οὕτω :

$$\frac{2}{10}$$
 $\frac{1}{10}$ $\frac{1}{10}$

'Επίσης ὅταν τὸ 'Ολίγον μὲ κλάσμα γράφεται ἐν μιᾳ καταλήξει ἐν τῷ ὁποίᾳ εὑρίσκεται μαρτυρία, καὶ ἐφ' ὅσον ἀκολουθεῖ μία καὶ μόνον 'Απόστροφος ἰσόχρονος τοῦ 'Ολίγου, τότε τὶθεται 'Ομαλὸν ὑπὸ τὸ 'Ολίγου. Οὕτω:

στειτε λουντων

Τουτο γίνεται διότι ή μαρτυρία ἐπειδή διακόπτει τὴν φωνὴν, ὁ ἀκόλουθος φθόγγος γίνεται τρόπον τινὰ ὡς ἀρχὴ μέλους. Πολλάκις ὅμως ἡ

μετά του Ίσου ή του 'Ολίγου, 'Απόστροφος δὲν ἰσοχρονεί αὐτῷ, τότε ἀναπληρούται τὸ ἰσόχρονον διὰ τοῦ ἐπομένου τῷ 'Αποστρόφφ ταύτη φθόγγου τοῦ 'Ολίγου ἢ τῶν Κεντημάτων, καθώς τοῦτο:

Ή ἐνέργεια τοῦ δμαλοῦ δύναται ἀκριβέστερον νὰ παρασταθή διὰ τῆς ἀναλυτικῆς γραμμῆς.

Tou ous
$$\alpha$$
 α $\chi \rho \alpha$ $\alpha \nu$ tou ous $\Sigma o \nu o \nu \sigma$ α α $\chi \rho \alpha$ $\alpha \nu$ δ κ . λ . π

Όταν μεταξύ δύο Ίσων ἀπαιτήται ἀνιών χαρακτήρ, τότε μὴ ὑπαρχούσης μὲν ἀνάγκης γοργοῦ, τίθενται μεταξύ αὐτῶν τὰ κεντήματα καὶ προφέρονται ἠπίως. Οὕτω:

'Εὰν δὲ ὑπάρχη ἀνάγκη γοργοῦ, τὸτε μεταξὺ τῶν δὺο Ἰσων ἀντὶ τῶν Κεντημὰτων, τίθεται τὸ Ὁλίγον μὲ Γοργὸν, προφερόμενον διὰ λαρυγγισμοῦ. Οὕτω:

Δυνάμεθα διως νὰ θέσωμεν καί Γοργόν εἰς τὰ Κεντήματα δταν εδρεθῶσι μεταξύ δύο Ἰσων, ἐὰν ἐπί τοῦ ᾿Ολίγου θέσωμεν τὸ Ἰσον καὶ τὰ Κεντήματα, ὁπότε λαμβάνουσι τὴν ζωηρότητα αὐτοῦ, τὸ δὲ μέλος προ-

φέρεται τραχέως πώς και με ελαφρόν κυματισμόν θέτοντες το Ετερον. Ούτω:

'Επειδή τὰ Κεντήματα () δὲν δέχονται έτερόχρονα σημεῖα (δηλαδή Κλάσματα ἤ 'Απλᾶς), πρὸς ἀποπλήρωσιν χρόνου, δυνάμεθα ἐἀν παραστῆ ἀνὰγκη νὰ δώσωμεν εἰς τὰ Κεντήματα χρονικὴν παρὰτασιν ένὸς, δύο ἤ καὶ περισσοτέρων χρόνων, ἐφ' δσον μετ' αὐτὰ ἀκολουθεῖ "Ισον εἰς τὸ ὁποίον θέτομεν τὰ χρονικὰ σημεῖα (κλάσμα ἤ 'Απλᾶς). Οὕτω

Ούτω: ν Α εις ο ο ρο ος γ΄ κ.λ.π. Οὐχὶ μὲ τὸ Έτεγίνεται χωρισμὸς.

'Εὰν δὲ ἀπαιτῆται καὶ μεγαλυτέρα βραδύτης, τότε ἀντὶ τοῦ κλάσματος δυνάμεθα νὰ θέσωμεν ὑπὸ τὸ Ἰσον διπλῆν καὶ τριπλῆν. Οὕτω:

Τὸ Ἰσον ἀντὶ τοῦ κλὰσματος δέχεται καὶ τὴν ἀπλῆν, ἀλλὰ μόνον μετ ἀντικενώματος, ὁπότε μετ ἀντὸ ἔπεται ἀπαραιτήτως ᾿Απόστροφος ἤ καὶ Ἐλαφρὸν μετὰ γοργοῦ ἐν μιῷ καὶ τῆ αὐτῆ συλλαβῆ. Οὕτω:

Τή Το Τότε τόσον ἡ ᾿Απόστροφος ὅσον καὶ τὸ Ἐλαφρὸν προφέρονται πάντοτε ἐκκρεμῶς πως καὶ ἀχωρίστως ἀπὸ τοῦ πρὸ αὐτῶν Ἰσου ἄνευ διακοπῆς τῆς ἀναπνοῆς. Οὕτω:

$$\chi$$
 το ο νο ο μα το ος ε ε ε π ο ο ο

$$\tau_0$$
 0 τ_0 0 0 τ_0 0 0 τ_0 0

Παραδείγματα μὲ φράσεις ἀπὸ κείμενα ἀρχαίων Διδασκάλων καὶ μὲ ἀνάλυσιν γραφής αὐτῶν πῶς πρέπει νὰ ἐκτελοῦνται.

$$\sum_{v \in V} \sum_{v \in V} \sum_{v$$

ἥ 'Αντὶ τῆς 'Αποστρόφου μὲ ἐλαφρὸν Οῦτω:

Ό ψάλλων μουσικάς συνθέσεις τοῦ ἀνωτέρω εἴδους, δέον ἀπαραιτήτως διὰ τὴν καλὴν καὶ ὀρθὴν ἀπὸδοσιν τῆς ἐκτελέσεως αὐτῶν νὰ ἔχη ὑπ' ὄψιν τὴν ἀναλυτικὴν γραμμὴν αὐτῶν. 'Η δὲ βαρεῖα, ῆτις δὲν ἀναγράφεται εἰς τὴν ἀναλυτικὴν γραμμὴν ὅλων τῶν περιπτώσεων, ἐννοεῖται. 'Η δὲ ἐνέργειὰ της πίπτει ἐπὶ τῆς τελευταίας ἀπλῆς μὲ τὸ ἀντικένωμα. (Κατὰ τὸν Π. Κιλτζανίδην τὴν βαρεῖαν ἀναπληροῖ τὸ 'Ετερον (Σύνδεσμος). 'Εὰν εἰς τὰς ἀνωτέρω συνθέσεις καὶ τῶν τριῶν περιπτώσεων, ἡ 'Απόστροφος ἤ τὸ 'Ελαφρὸν λαμβάνη συλλαβὴν, τότε οὕτε βαρεῖα τίθεται, οὕτε 'Ετερον. Οὕτω:

Δο ο ξα α σοι τω δει ε πα α κου ε πα α κου ου ου σον

βαρεῖαν καὶ Έτερον, ἐἀν τὴν διπλῆν ἢ τριπλῆν ἀντικαταστήσωμεν δι' ἰσοχρὸνων χαρακτήρων. Π. Χ. εἰς τὴν ἀνωτέρω μουσικὴν γραμμὴν «ἐπάκουσον» ἡ ἀντικατάστασις τῆς διπλῆς, προκειμένου νὰ μεταχειρισθῶμεν βαρεῖαν καὶ Έτερον, θὰ ἔχη Οὕτω:

Έτερον παράδειγμα μὲ Ἐλαφρὸν ἔχων συλλαβὴν π. χ. | κ.λ.π.

δι ι κα α α α α δι κα α ζε ε ε ε ται Ή 'Απόστροφος ἢ τὸ 'Ελασσάν Δ'

Ή ᾿Απόστροφος ἢ τὸ Ἦχαφρὸν δύναται νὰ ἔχη ἰδίαν συλλαβὴν, βαρεῖαν καὶ Ἔτερον μόνον εἰς τοὺς τερερισμοὺς. Οὕτω:

εμ τε ρι ρε ε ρε ε ε εμ τε ρι ρε ε ρε ρε ε ε εμ τε ρι ρε ε ε εμ τε ρι ρε ε ε εμ τους τερερισμούς.

Είς τὸ Ἰσον, τὸ γοργόν καὶ αἱ φθοραὶ τίθενται ἄνωθεν και κάτωθεν αὐτοῦ. Τὸ ψηφιστὸν, τὸ 'Ομαλὸν και τὸ 'Ετερον τίθενται κὰτωθεν, ἡ δὲ βαρεῖα τίθεται πρὸ αὐτοῦ καὶ μετ' αὐτοῦ. 'Εκ δὲ τῶν χρονικῶν σημείων, τὸ μὲν κλάσμα τίθεται ἄνωθεν, ἡ δὲ ἀπλῆ μετ' ἀντικενώματος κάτωθεν, ἡ διπλῆ καὶ τριπλῆ μεθ' 'Ετέρου καὶ ἄνευ αὐτοῦ πάντοτε κάτωθεν.

Δυστυχῶς αἱ ἀνωτέρω μουσικαὶ γραμμαὶ, ὡς δέον νὰ ἐκτελοῦνται, οὐδόλως τηροῦνται ὑπὸ τῶν σημερινῶν Ἱεροψαλτῶν, καθότι οἱ περισσότεροι οὐδόλως ἐμελέτησαν ἢ ἐνδιαφέρθησαν νὰ ἐκμάθουν τὰς ἐπεξηγήσεις τῶν χρονικῶν καὶ ἐκφραστικῶν σημείων, ὡς καὶ τὴν καλὴν καὶ ὀρθὴν ἐκτέλεσιν αὐτῶν.-

ΟΡΘΟΓΡΑΦΙΑ ΤΩΝ ΑΝΙΟΝΤΩΝ ΧΑΡΑΚΤΗΡΩΝ

1) περί της συμπλοκής του 'Ολίγου (____).

Τὸ ὀλίγον —, ὡνομάσθη οὕτω διότι ὀλίγον κατ' ὀλίγον καὶ ἀνὰ ἔνα φθόγγον ἀναβιβὰζει τὴν φωνὴν. Δηλαδὴ ὅταν ἔχωμεν ἀνάγκην ἀνα-

βάσεως ένὸς φθόγγου λαμβάνοντος συλλαβὴν, τὸτε μεταχειριζόμεθα μόνον τὸ ὀλίγον , ὅπερ συνεπινοηθὲν μὲ τὸ Ἰσον καὶ τὴν ᾿Απόστροφον , ἀνὲκαθεν ἐχρησιμοποιεῖτο διὰ τὴν ἀνάβασιν, καθὼς καὶ ἡ ᾿Απόστροφος διὰ τὴν κατάβασιν, τὸ δὲ Ἰσον ὡς βὰσις τῆς μελωδίας. Ἡ κάτωθι μουσικὴ γραμμὴ περιλαμβάνουσα καὶ τοὺς τρεῖς θεμελιώδεις τούτους μουσικοὺς χαρακτῆρας καταδεικνύει, πῶς οἱ παλαιοὶ Διδάσκαλοι ἐσχημάτιζον τὴν μελωδίαν τῆς κλίμακος.

Έἀν ὅμως ἡ συνεχής ἀνὰβασις εὑρεθῆ ἐν μιᾳ καὶ τῷ αὐτῷ συλλαβῷ τότε τίθενται ὑπὸ τὸ ὀλίγον — τὰ κεντήματα • Π. χ. —, διὸτι ταῦτα ὡς καὶ ἡ ὑπορροἡ οὐδέποτε λαμβάνουσι συλλαβὴν, ὡς σώματα

οὐδέτερα. Π. χ. $\overset{\Delta}{\mathring{\sqcap}}$ $\overset{\Lambda}{\mathring{\sqcap}}$ $\overset{\Delta}{\mathring{\sqcap}}$ $\overset{\Delta}{\mathring{\sqcap}}$

Έτερον μὲ, Κεντήματα κάτωθεν καὶ ἄνωθεν τοῦ Ολίγου.

Π. χ. η Πα α α α α α α α α α α α σα αν η την βι

 Όταν ἀπαιτήται ζωηρὰ ἐκφὰνησις ἐν τῷ τέλει τοιαύτης συνεχοῦς ἀναβὰσεως, τότε κάτωθεν τοῦ ὀλίγου, ἐπὶ τοῦ ὁποίου είναι τὰ Κεντήματα, τίθεται ψηφιστὸν, ὅπερ ἐνεργεῖ ἐπὶ τῶν Κεντημάτων καὶ οὐχί ἐπὶ Ὁλίγου. Οὕτω:

'Εὰν ὅμως ἡ μετὰ τὴν τελευταίαν συνεχή ἀνάβασιν 'Απόστροφος λάβη συλλαβὴν τὸτε παραλείπεται τὸ ψηφιστὸν καὶ προτὰσσεται εἰς ἔκαστον ζεῦγος 'Αποστρόφων βαρεῖα. 'Εννοεῖται ὅτι ἔκαστον ζεῦγος θὰ ἔχη ἰδίαν συλλαβὴν π. χ.

Τὸ 'Ολίγον κατὰ τὴν σύνθεσιν λαμβάνει διαφόρους θέσεις. Γράφεται μόνον καὶ συμπλέκεται μεθ' ὅλων σχεδὸν τῶν μουσικῶν χαρακτὴρων, ἐξ' ὧν ἄλλους μὲν ὑποτάσσει, εἰς ἄλλους δὲ ὑποτάσσεται καὶ εἰς ἄλλους προτάσσεται.

Τὸ ὀλίγον καὶ ἡ πεταστὴ ἀνάγονται εἰς τὰ ὑποτακτικὰ τῆς μουσικῆς σημεῖα καὶ λέγονται Σώματα. Γίνονται δὲ βοηθητικὰ εἰς τὰ πνεύματα, ἄτινα εἰναι τὰ Κέντημα καὶ ἡ Ύψηλὴ,ἐπειδή τὰ πνεύματα οὕτε ἐκφωνοῦνται, οὕτε γρὰφονται μὸνα των. Ἐκφωνοῦνται ὅμως καὶ γρὰφονται ὅταν στηρίζωνται ἐπὶ τῶν δύο τούτων σωμάτων π. χ. (ή ή ή ή ή). Ἐὰν εἰς τὸ ἀνωτέρω παράδειγμα ἡ συνεχὴς αὕτη ἀνάβασις εὑρεθῆ ἐν μιᾳ καὶ μόνη συλλαβῆ, τὸ δὲ τέλος αὐτῆς ἀπαιτεῖ γοργὸν, τότε τὰ τελευταῖα κεντήματα τίθενται ἄνωθεν τοῦ ὀλίγου μετὰ γοργοῦ π. Υ.

π. χ. Δ | Δε ε ευ τε Ομοίως τὸ αὐτὸ συμβαίνει καὶ εἰς τάς συνήθεις καταλήξεις ὅλων τῶν ἢχων. π. χ.

Αἱ ἀνωτέρω γραμμαί τῆς συνεχοῦς ἀναβάσεως εἶναι ἰσόχρονοι. Ἐὰν ὅμως ἡ τελευταία ἀνιοῦσα φωνή ἀπαιτῆ καὶ ζωηρὰν ἔκφρασιν, τότε τί-

θεται δλίγον μὲ 'Αντικένωμα καὶ προφέρεται μετὰ τετιναγμένης φωνής.

$$\Pi. \chi. \Delta \mid \frac{\Delta}{\mu \epsilon} = \frac{\Gamma}{\epsilon} = \frac{1}{\epsilon} \times \Delta \mid$$

"Όταν ἐν συνεχεῖ ἀναβάσει ὁ τελευταῖος ἀνιὼν χαρακτήρ καὶ αί μετ' αὐτὸν κατιοῦσαι 'Απόστροφοι ἀπαιτῶσιν ἑτερὸχρονα,ὁ δὲ ἀνιὼν καὶ ζωηρότητα, τότε ὑπὸ μὲν τόν τελευταῖον ἀνιὸντα τίθεται ψηφιστὸν, ἄνωθεν δὲ αὐτοῦ καὶ τῶν ἑπομένων δύο τοὐλάχιστον ἥ καὶ περισσοτέρων 'Αποστρόφων κλὰσμα, οὕτω:

$$\frac{6}{2}$$
 το ον Πε τρονκαι Ι $\frac{1}{2}$ κω ω βο ον

Έαν δὲ μόνον ὁ τελευταΐος ἀνιών χαρακτήρ ἀπαιτή σὺν τῷ ἐτέρῳ χρόνφ καὶ ζωηρότητα,αὶ δὲ ἐπόμεναι ᾿Απόστροφοι δὲν ἀπαιτώσιν ἔτερον χρόνον, τότε ἀντὶ τοῦ μετὰ Ψηφισμοῦ ᾿Ολίγου τίθεται Πεταστή. π. χ.

Όταν μετὰ τὸ ἔχον ἀνὰγκην ζωηρότητος Ὁλίγον ἀκολουθή μία μόνη ἑτεροσύλλαβος "Απόστροφος, τότε, ἐὰν μὲν καὶ τὸ "Ολίγον καὶ ἡ ἐπομένη ἑτεροσύλλαβος "Απόστροφος δέχωνται καὶ κλάσμα, τίθεται ὑπὸ τὸ δμαλὸν. π. χ.

Έὰν δὲ τὸ 'Ολίγον καὶ ἡ 'Απόστροφος δὲν δέχωνται κλάσμα, τότε τὸ 'Ολίγον ἀντικαθίσταται διὰ τῆς Πεταστῆς. Cὕτω:

$$\frac{6}{6}$$
 Μη $\frac{3}{\alpha}$ πορ $\frac{3}{\rho_1}$ ψης $\frac{1}{\alpha}$ κ. λ. π. $\frac{6}{\tau}$ $\frac{1}{\tau}$ $\frac{1}{\sigma}$ $\frac{1}$

'Επίσης δταν τὸ 'Ολίγον δέχεται Κεντήματα κάτωθεν ἤ ἄνωθεν μὲ γοργὸν, τὸτε τὸ γοργὸν πάντοτε ἀνὴκει εἰς τὰ κεντήματα.

$$\Pi$$
. χ . $\frac{\pi}{M}$ $\frac{\Gamma}{M}$ $\frac{\pi}{\sigma\eta}$ $\frac{\pi}{\eta}$ $\frac{\pi}{\eta}$ $\frac{\pi}{\eta\varsigma}$ $\frac{\pi}{\tau\omega}$ κ.λ. π

Τὸ 'Ολίγον δταν είναι όμοσύλλαβον μετὰ τῶν κεντημάτων, ἀπαιτεῖ δπως ταῦτα τίθενται παρ' αὐτῷ ἡ ἐπ' αὐτοῦ καὶ προφέρονται ἡπίως. π.χ.

"Η σύνθεσις 'Ολίγου μὲ Κεντήματα κάτωθεν π. χ. δέν ἐπιδὲχεται ποτὲ ἰδίαν συλλαβὴν. 'Εὰν δὲ τὸ 'Ολίγον δέχεται συλλαβὴν ἡ γραφὴ μεταβάλλεται εἰς τοιαύτην , ίδε τὸ ἄνωθεν παράδειγμα. Τὸ 'Ολίγον ἀντί τοῦ κλάσματος δέχεται καὶ τὴν ἁπλῆν, ἀλλὰ μόνον μετ' ἀντικενώματος. Διπλῆν δὲ καὶ τριπλῆν μεθ' 'Ετέρου καὶ ἄνευ 'Ετέρου. Καὶ γενικῶς ἰσχύει καὶ διὰ τὸ 'Ολίγον, ὅ,τι ἐλέχθη καὶ διὰ τὸ 'Ισον. (ὅρα σελ. 125).

Τὸ 'Ολίγον ἄνευ έτεροχρόνου καὶ μὲ ψηφιστὸν τίθεται πάντοτε, εῖτε ἐν θέσει, εῖτε ἐν ἄρσει, ὅταν μετ' αὐτὸ ἀκολουθῆ Συνεχὲς ἐλαφρὸν ἢ

Έὰν ἄνωθεν τοῦ Ὁλίγου μὲ ψηφιστὸν ὑπάρχουσι Κεντήματα καὶ εἶναι ἀνάγκη ν' ἀκολουθῆ 'Υπορροὴ ἢ Συνεχὲς ἐλαφρὸν π. χ. οὕτω : (), τότε ἀντὶ κεντημάτων τίθεται Ὁλίγον, καθὸτι μετὰ ἀπὸ Κεντήματα δὲν δύναται ν'ἀκολουθῆ ὑπορροὴ ῆ Συνεχὲς ἐλαφρὸν, ἐκ τοῦ ὅτι ἡ 'Υπορροὴ καὶ ἡ 'Απόστροφος τοῦ συνεχοῦς ἐλαφροῦ δὲν ἐπιδέχονται ἰδὶαν συλλαβὴν, ἐξαρτῶνται δὲ ἀπὸ τὸν προηγούμενον χαρακτῆρα, ὅστις διὰ τοῦτο δὲν δύναται νὰ εἶναι Κεντήματα. Διότι καὶ αὐτὰ ἐξαρτῶνται ἀπὸ τὸν προηγούμενον χαρακτῆρα καὶ δὲν λαμβάνουν ἰδιαιτέραν συλλαβὴν. Δυστυχῶς τοιαῦτα λὰθη ἀνορθογραφίας παρατηρεῖ τις (εἰς τὴν Μ. ἑβδομάδα Γ. Ραιδεστηνοῦ καὶ εἰς τὰς νεοεκδόσεις Θεσ-

σαλονίκης). Παραδείγματα λανθασμένης γραφής είς Μ. έβδομάδα Γ. Ραιδεστηνού δρα (σελ. 7 καί 61). π. χ.

*Ενῷ ἡ ὀρθὴ γραφὴ σύμφωνα μὲ τὸν ἀνωτὲρω κανόνα ἔχει οὖτω :

Έπίσης 'Ολίγον μὲ ψηφιστὸν ἔχομεν ὅταν ἀκολουθοῦν δύο 'Απόστροφοι ἤ καὶ περισσότεραι. π. χ.

$$\Delta$$
 | α | α

Τὸ 'Ολίγον δὲν ὑποδέχεται ψηφιστόν, ὅταν κάτωθεν αὐτοῦ εὑρεθῶσι Κεντήματα μὲ γοργὸν ἄνωθεν καὶ ἀκολουθεῖ Συνεχὲς ἐλαφρὸν μὲ 'Αντικένωμα καὶ ἀπλῆν, π. χ.

'Εὰν μετὰ τὸ 'Ολίγον κεῖται μιὰ καὶ μὸνη 'Απόστροφος μὲ κλάσμα καὶ ἰσοχρονεῖ μὲ τὸ 'Ολίγον, τότε τὸ 'Ολίγον ἀντὶ τοῦ ψηφιστοῦ λαμβὰνει τὸ 'Ομαλὸν. π. χ.

$$\frac{1}{\ddot{q}} = \frac{1}{\epsilon} \frac{1}{\gamma \omega} \frac{1}{\omega} = \frac{1}{\epsilon} \frac{1}{\kappa \upsilon} \frac{1}{\omega} = \frac{1}{\epsilon} \frac{1}{2} \frac{1}{\epsilon} \frac{1}{\epsilon$$

Τὸ ἄνωθεν τοῦ 'Ολίγου τιθέμενον κλάσμα, μέ κάτωθεν τὸ 'Ομαλὸν τῆς ἀνωτέρω γραμμῆς ἀναλύεται καὶ ἐκτελεῖται οὕτω: π. χ.

$$\stackrel{\times}{\stackrel{\smile}{q}} \stackrel{\smile}{\stackrel{\smile}{\stackrel{\smile}{=}}} \stackrel{\smile}{\stackrel{\smile}{=}} \stackrel{\smile}{\stackrel{\smile}{=} \stackrel{\smile}{\longrightarrow} \stackrel{\smile}{\smile} \stackrel{$$

Όταν μετὰ τὸ 'Ολίγον ἀκολουθοῦν τέσσερες (4) 'Απόστροφοι, ἐκ τῶν ὁποίων ἡ μὲν δευτέρα ἀπαιτεῖ κλάσμα, ἡ δὲ τρίτη βαρεῖαν, τότε ἀντὶ τοῦ κλὰσματος τίθεται 'Απλῆ εἰς τὴν δευτέραν 'Απόστροφον. Οὖτω:

Έκ τῶν ἐγχρόνων ὑποστάσεων, τὸ ᾿Αργὸν τίθεται ἄνωθεν τοῦ Ὁλίγου τοῦ ἔχοντος κάτωθεν Κεντήματα. Τὸ κλάσμα καὶ τὸ γοργὸν τίθεται καὶ ἄνωθεν καὶ κάτωθεν αὐτοῦ, καθώς καὶ ἄπασαι αἱ φθοραὶ τῶν ῆχων. Ἡ ᾿Απλῆ μετ᾽ ᾿Αντικενώματος καὶ ἡ Διπλῆ, τριπλῆ κ. λ. π. μεθ᾽ ἹΕτέρου ἡ ἄνευ τοιούτου τίθενται κὰτωθεν.

"Η Σιωπή καὶ ὁ Σταυρὸς καὶ προηγούνται καὶ ἔπονται τοῦ "Ολίγου. "Εκ δὲ τῶν ἀχρόνων ὑποστάσεων ἡ μὲν βαρεῖα προγράφεται τοῦ "Ολίγου, αἱ δέ λοιπαὶ ὑπογρὰφονται πᾶσαι πλὴν τοῦ "Ενδοφώνου, τὸ ὁποῖον οὐδέποτε τίθεται εἰς τὸ "Ολίγον.

Τὰ σημεῖα τῶν ὑφεσοδιὲσεων τίθενται καὶ ἄνωθεν καὶ κάτωθεν τοῦ 'Ολίγου κατὰ τὴν περίστασιν.

20ν) Περί της Συμπλοκής της Πεταστής ...

Ή Πεταστὴ ἀνομάσθη οὕτω, διότι οἱ ἀρχαῖοι, ἐμφαίνοντες διὰ χειρονομίας τήν μελφδίαν αὐτῆς ἐσχημάτιζον πάντοτε πτέρυγὰ τινα κινουμένην. Ἡ Πεταστὴ, ὡς ἐκ τῆς ποιότητὸς της, ἔχει ἰδιάζουσαν θέσιν εἰς
τὴν μουσικὴν γραφὴν. Τὸ μέλος δύναται ν' ἀρχίζη, ὅχι ὅμως καί νὰ
καταλὴγη μὲ Πεταστὴν. Πρὸ αὐτῆς δύναται νὰ ὑπάρχη ὁποιοσδήποτε ἄλλος χαρακτήρ, κατόπιν ὅμως αὐτῆς μόνον κατιὼν χαρακτὴρ καὶ οὐδέποτε
ἀνιὼν ἢ Ἱσον. Οἱ μετ' αὐτὴν κατιόντες χαρακτῆρες οὐδέποτε εἰναι ἰσόχρονοι αὐτῆς. Δηλαδὴ ἄν ἡ Πεταστὴ , δέχεται κλάσμα π. χ. ()
δέον οἱ μετ' αὐτὴν κατιόντες χαρακτῆρες νά μὴ δέχωνται κλάσμα. Ἄν
δὲ αὕτη δὲν δὲχηται κλάσμα, τὸτε δέον νὰ δέχηται τοὐλάχιστον ὁ πρῶ-

τος μετ' αὐτὴν κατιών χαρακτήρ κλάσμα. Ή Πεταστή ἀπαιτεί ὅπως μετ' αὐτὴν ἀκολουθοῦν κατιόντες χαρακτήρες καὶ οὐχὶ ἀνιόντες ἢ Ἰσον, διὰ νὰ δύναται νὰ διακριθή ἡ ποιοτική της ἐνέργεια.

Ή Πεταστή ώναβαίνει ἔνα φθόγγον (μίαν φωνὴν) καὶ ἐν τῷ τέλει τῆς συνεχοῦς ἀναβάσεως λαμβάνει ζωηρότητὰ τινα ἐν εἴδει πετάγματος μετὰ κύκλου. Ὁ Χρύσανθος γράφων ἐν τῷ Μ. Θεωρητικῷ αὐτοῦ περἰ τῆς διαφορᾶς τῆς ἐντὰσεως τοῦ φθόγγου τοῦ χαρακτῆρος τῆς Πεταστῆς λέγει ἐν § 113 τὰ ἑξῆς: «ἡ δὲ πεταστὴ θέλει νὰ ἀναβιβάζωμεν τἡν φωνὴν ὀλίγον περισσότερον ἀπὸ τὴν φυσικὴν ὀξύτητα τοῦ τυχὸντος τόνου. Φυλάττει δὲ τοῦτο τὸ ἰδίωμα καὶ ὅταν ὑποτάσσηται ὑπὸ τοῦ Ἰσου ἡ τῶν κατιόντων χαρακτήρων».

Ό Θ. Φωκαεύς εν Κεφ. ΙΑ΄. τοῦ θεωρητικοῦ του λέγει «Ἡ δὲ πεταστὴ ἀναβιβάζει τὴν φωνὴν ὀλίγον περισσότερον ἀπὸ τὴν φυσικὴν βάσιν τοῦ τυχόντος τὸνου μὲ ταχεῖαν ἐπιστροφὴν ἀνεπαισθήτως εἰςτὴν ἰδίαν βάσιν του. Φυλάττει δὲ τοῦτο τὸ ἰδίωμα καὶ ὅταν ὑποτάσσηται ἀπὸ τὸ Ἰσον». Ἡ πεταστὴ τὴν αὐτὴν ἐνέργειαν, καθώς καὶ τὸ αὐτὸ ἀκριβῶς σχῆ μα καὶ ὄνομα εἶχε καὶ εἰς τὸ ἀρχαῖον σύστημα τῆς Βυζαντινῆς παρασημαντικῆς.

'Εὰν ἡ Πεταστὴ τεθή ἄνευ έτεροχρόνου, (δηλαδὴ κλάσματος) τὸτε ἀπαραιτήτως μίαν καὶ μόνην 'Απόστροφον δέχεται καί οὐχὶ περισσοτέρας, ὁπὸτε καὶ ἡ 'Απόστροφος λαμβάνει συλλαβὴν. π. χ.

η του Γα βρι ηλ φθεγ ξα με νου σοι παρ θε νε το χαι αι Δ η π κ λ. π. ρε δ δ δ Σε γαρ μη τε ρα

Όταν μετά τὴν Πεταστὴν 🥠 ἡ ᾿Απόστροφος λαμβάνη κλάσμα, τότε δύναται νὰ τεθῆ καὶ δευτέρα καὶ τρίτη ᾿Απόστροφος μετὰ κλάσματος

η καὶ ἄνευ κλάσματος π. χ. Δ δος μοι το ο μυ υ υ υ ρον Δ η Δ και του το οι δας δι ι δο ο ο ο ναι Δ κ. τ. λ.

Έαν μετά την Πεταστην φέρουσα κλάσμα (),εύρεθῶσιν εν ή καὶ

περισσότερα ζεύγη 'Αποστρόφων, τότε ἐὰν μὲν ἡ πρώτη ἐκάστου ζεύγους 'Απόστροφος λαμβάνη συλλαβὴν, προτάσσεται ἐκάστου ζεύγους βαρεία. Π. χ. Δ γι α σαιαι τα α υ υ υ δα α α α α α σ

Έτερα παραδείγματα όρα (είς σελίδα 127). «Πῶς χειροθετήσει...»

Έπίσης μετά τὴν πεταστὴν μὲ κλάσμα τίθεται βαρεῖα, ἐὰν αί Απόστροφοι είναι εἰς μίαν καὶ τὴν αὐτήν συλλαβὴν μέ τὴν πεταστὴν. π. χ.

Έὰν ὅμως ἡ δευτὲρα ᾿Απόστροφος λαμβὰνη συλλαβήν, τότε βαρεῖα δὲν τίθεται. π. χ.

Όμοίως ὅταν ἀναβαίνωμεν ἐπὶ τὸ ὀξύ συνεχῶς καὶ ὁ τελευταῖος ἀνιών χαρακτήρ ἐπιδέχεται κλάσμα, τότε ἐὰν μὲν οἱ ἐπόμενοι κατιὸντες χαρακτήρες δὲν ἔχουσι κλάσμα τίθεται πεταστὴ. Οὕτω:

Εάν δὲ ἔχουσι κλάσμα τίθεται 'Ολίγον μετὰ ψηφιστοῦ. Οὕτω:

Όταν μετὰ τὴν Πεταστὴν μὲ κλάσμα (), ἀκολουθοῦν δύο κατιόντες χαρακτῆρες, ἐκ τῶν ὁποίων ὁ πρῶτος ἔχει γοργὸν καὶ ὑπὸ τὴν ἰδίαν συλλαβὴν, τότε ἀπαραιτήτως τίθεται ὑπορροὴ. Π. χ.

 $q = \frac{1}{100} =$

η Π.χ. π | γω ω ω σορ νην α πορ ριι ιι γης η ο τε

Εάν δμως ὁ δεύτερος τούτων κατιών χαρακτήρ, λαμβάνη ἰδίαν συλλαβήν, τότε τίθεται Συνεχὲς ἐλαφρὸν. Π. χ.

$$\Delta$$
 α να στας ο Κυ υ υ ρι ι ι ος Δ = Δ α να στα ας ο Κυ υ υ υ

Καὶ γενικώς ἐκ τῶν ἀνωτέρω παραδειγμάτων ἐπισυνάγεται ὅτι ἡ Πεταστὴ οὐδέποτε τίθεται ἄνευ κλάσματος, ὅταν ἐπακολουθοῦν δύο ἡ περισσότεροι κατιόντες χαρακτῆρες μὴ ἑτερόχρονοι. Ἡ Ὑπορροὴ εἰς τὰ κρατήματα τῶν τερερισμῶν δέχεται καὶ συλλαβήν. Π. χ.

Έὰν μετὰ τὴν Ύπορροήν εὑρίσκωνται καὶ ἄλλοι κατιόντες χαρακτῆρες, τότε ἀντί Πεταστῆς τίθεται Ὀλίγον μετὰ ψηφιστοῦ καὶ κλὰσματος. Π. χ.

Έπίσης δύναται νὰ τεθή καὶ εἰς τήν ᾿Απόστροφον γοργόν π. χ.

"Όταν πάλιν μετὰ τὴν πεταστήν ἀκολουθοῦν δύο κατιόντες χαρακτῆ ρες, ἐκ τῶν ὁποίων ὁ δεύτερος ἀπαιτεῖ γοργὸν, τὸτε ἀντὶ τῆς Ύπορροῆς τίθενται δύο ᾿Απόστροφοι, ἴνα ἡ δευτέρα λάβη ἄνωθεν γοργὸν. π. χ.

η Δ | Σ κ.λ.π. Εὶς τὰς ἀνωτέρω περιπτώσεις οὐδέποτε ή πεταστὴ δέχεται κλάσμα.

Ή Πεταστή ὑποτάσσεται ὑπὸ τοῦ ἵσου Π. χ. ΄, καὶ ὑπὸ τῆς Ύψηλῆς ἐκ τῶν ἀνιόντων χαρακτήρων, μόνον ὅταν αὕτη τίθεται εἰς τὸ ἄκρον μέρος τοῦ δεξιοῦ τῆς πεταστῆς οὕτω: ΄ ἤ ΄, ἐκ δὲ τῶν κατιόντων ὑπὸ πάντων τῶν χαρακτήρων. Τὰ δὲ Κεντήματα οὐδέποτε τίθενται ἐπ' αὐτῆς. Τὸ δὲ 'Ολίγον καὶ τὸ Κέντημα τιθέμενα ἐπ' αὐτῆς π. χ. ΄ ὡς καὶ ἡ 'Υψηλὴ τιθεμένη εἰς τὸ ἀριστερὸν ἄκρον τῆς πεταστῆς π. χ. ΄ συνεκφωνοῦνται. Ἡ Πεταστὴ, εἴτε ὑποτασσομένη, εἴτε συνεκφωνουμένη, φυλάσσει ἀμείωτον τὴν ποιοτικὴν της ἐνέργειαν (δηλα δὴ τὴν ἐν εἴδει πετάγματος ὀξύτητα) καὶ τὴν ὁποίαν μεταβιβάζει πρός τοὺς μετ' αὐτῆς συντεθειμὲνους χαρακτῆρας.

'Η Πεταστή δέχεται ὑφ' ἑαυτήν ἐκ μὲν τῶν ἐγχρόνων ὑποστάσεων μόνον τὸ κλάσμα καὶ τὴν 'Απλῆν μετ' 'Αντικενώματος καὶ οὐδέποτε μόνην. Έκ δὲ τῶν ἀχρόνων σημείων μόνον τὸ 'Αντικένωμα μὲ ἀπλῆν, τὴν βαρεῖαν καὶ τὸ Έτερον.

1) Παραδείγματα μὲ Πεταστήν, 'Αντικένωμα καὶ Βαρεῖαν.

2) μὲ "Ετερον (Σύνδεσμον). Π. χ.

Μονόχρονος Πεταστή με ἀκολουθοῦντας πολλούς κατιόντας χαρακτῆρας συχνότατα λαμβάνεται εἰς τήν ἄρσιν. Εὰν μετὰ τῆς μονοχρόνου Πεταστῆς ἀκολουθοῦν δύο ᾿Απόστροφοι ἡ καὶ ζεύγη ᾿Αποστρόφων ἄνευ κλάσματος, (ἐννοεῖται ὑπὸ μὶαν καὶ τήν αὐτὴν συλλαβήν) τότε προτὰσ-

σεται τούτων ή βαρεΐα. Οὕτω: $\begin{array}{c|c} & \times & \circ & \\ & \ddots & \\ & & \\ \hline \\ vov & \\ \end{array}$ το $\begin{array}{c|c} & \times & \\ \hline \\ & \times & \\ \hline \\ & \times & \\ \end{array}$ $\begin{array}{c|c} & \times & \\ \hline \\ & \times & \\ \hline \\ & \times & \\ \end{array}$

ή ο Ω θει ει ει ει στή λαμβάνεται εἰς τήν ἄρσιν καὶ ὅταν ἀκολουθεῖ μία ᾿Απόστροφος μὲ κλάσμα. Οὕτω:

$$\pi$$
 | $\frac{1}{\Pi \alpha}$ | $\frac{1}{\Pi$

Συνήθως τοῦ ἀνωτέρω εἴδους μουσικὰς γραμμὰς μὲ τὴν Πεταστὴν μονόχρονον καὶ εἰς τὴν ἄρσιν συναντῶμεν εἰς τὰ ἀργὰ στιχηραρικὰ μαθήματα τοῦ ἀειμνήστου ΙΑΚΩΒΟΥ Πρωτοψάλτου. π. χ.

$$\ddot{\ddot{q}} | \Delta_0 \qquad \xi_{\alpha \alpha} \qquad \sigma_{01} \qquad \ddot{\ddot{q}} \qquad \delta_{\epsilon 1} \qquad \epsilon_1 \qquad \ddot{\ddot{q}} \qquad \Delta_0 \qquad \delta_{\alpha \alpha}$$

$$| \Delta_0 \qquad \xi_{\alpha \alpha} \qquad \sigma_{01} \qquad \ddot{\ddot{q}} \qquad \delta_{\epsilon 1} \qquad \epsilon_1 \qquad \ddot{\ddot{q}} \qquad \Delta_0 \qquad \delta_{\alpha \alpha} \qquad \delta_{\alpha$$

Ή ἀνάλυσις τῆς Πεταστῆς ἄνευ κλὰσματος ἔχει περίπου ὡς ἑξῆς: π . χ . π q Mηπρο σευ q Mη η προ σευ q Mη η προ σευ q Mη η προ σευ q Mη q M0 q M

Ή Πεταστή καὶ εἰς τό ἀρχαῖον σύστημα τὸ αὐτὸ ἀκριβῶς σχῆμα καὶ ὄνομα εἰχε, καθώς καὶ τὴν αὐτήν ἐνέργειαν. Ἡ δὲ ἀνάλυσὶς της μετὰ κλάσματος καὶ ἄνευ κλάσματος ὡς πρὸς τήν ἐκτέλεσιν γίνεται μὲ τὰ κεντήματα ὡς ἀνωτέρω.

Ή ποιοτική ἐνέργεια τῆς Πεταστῆς, καθώς καὶ τῶν ἄλλων σημείων ποιότητος, δύναται νὰ παρασταθῆ διὰ ζώσης μόνον φωνῆς.

Εὶς τὰ κρατήματα, ἡ ᾿Απόστροφος μετὰ γοργοῦ, κατόπιν τῆς Πεταστῆς μὲ ᾿Αντικένωμα καὶ ʿΑπλῆν, λαμβὰνει συλλαβήν καὶ προφέρεται ἐκκρεμῶς πως καὶ ἀχωρίστως. π. χ.

*Αλλως οὐδόλως δέχεται ἡ 'Απόστροφος συλλαβήν.

Ή Πεταστή εύρισκομένη πρό μιᾶς καὶ μόνης ᾿Αποστρόφου μετὰ γοργοῦ δὲν δέχεται οὕτε ψηφιστὸν οὕτε κλάσμα, πλήν μιᾶς καὶ μόνηςθέσεως τήν ὁποίαν οἱ Διδὰσκαλοι τής μουσικής δὲν ἐξήγησαν π. χ.

καὶ ἡ ἐξήγησὶς της ὡς πρὸς τήν ἐκτέλεσιν γίνεται περίπου ὡς ἑξῆς: π.χ.

Όλαι δὲ αἱ φθοραὶ τῶν ἤχων τίθενται καὶ ἄνωθεν καὶ κάτωθεν ἀδια κρίτως κατὰ τήν περίστασιν. Ἡ ὕφεσις τίθεται ἄνωθεν. Δίεσις δὲν τίθεται εἰς τήν Πεταστήν λόγω ὅτι ἐπακολουθεῖ κατιών χαρακτήρ πάντοτε.

3ον Περί των Κεντημάτων (..).

Τὰ Κεντήματα () ἀνομάσθησαν οὕτω ἀπὸ τὸ ῥῆμα Κεντῶ, φανερώνει δὲ τήν ἀνάβασιν τῆς φωνῆς ἐλαφρὰν (ἠπίως) βαθμιαίαν καὶ οὐχὶ ἐλευθὲραν, ὡς εἰς τὸ ὀλίγον, ὕψωσιν τῆς φωνῆς καὶ θέλουσι νὰ συνέχηται ἡ φωνή καὶ νὰ μή χωρίζηται ὁ φθὸγγος αὐτῶν ἀπὸ τοῦ προηγουμένου. Τὰ Κεντήματα () οὐδέποτε δέχονται ἰδίαν συλλαβήν, πλήν τῶν ἀσημάντων εἰς τὰ κρατήματα τῶν τερερισμῶν, κατὰ κανὸνα δὲ ἐκτείνουν τὸ φωνῆεν τοῦ προηγουμένου χαρακτῆρος. Όπου ἀπαιτεῖται 'Ολίγον, Κεντήματα δὲν τίθενται. 'Αντὶ Κεντημὰτων ὅμως τίθεται εἰς τινὰς περιπτώσεις 'Ολίγον. Κατὰ κανόνα ἔπειτα ἀπὸ Κεντήματα δὲν ἀκολουθοῦν Κεντήματα, ἔστω καὶ ἄν συνεχίζεται ἡ αὐτή συλλαβή. Τὰ Κεντήματα οὐδέποτε τίθενται εἰς τήν ἀρχήν καὶ εἰς τὸ τέλος τοῦ μέλους ἤ καταλήξεως, ὡς καὶ μετὰ τὴν Πεταστήν, ἀλλὰ πάντοτε ἐν μέσω τῶν λοιπῶν χα-

ρακτήρων καὶ είναι ἐξηρτημένα ἐκ τοῦ πρὸ αὐτῶν χαρακτήρος, εἰς τὸν ὁποῖον μεταβιβάζουσι καὶ τήν ἔμφασίν των. Τίθενται δὲ πάντοτε ἐν συνεχεῖ ἀναβάσει ὑπὸ μίαν καὶ τὴν αὐτήν συλλαβήν μετὰ τοῦ πρὸ αὐτῶν χαρακτήρος, δηλαδή ἐν παραθὲσει. π. χ.

Όταν τὰ Κεντήματα τίθενται μετὰ τὸ ὀλίγον π. χ. — τη ἄνωθεν αὐτοῦ π. χ. τότε καὶ εἰς τήν πρώτην καὶ εἰς τήν δευτέραν περὶπτωσιν, τὸ ὀλίγον δέχεται συλλαβήν, ὅταν ὅμως τὰ Κεντήματα τίθενται κάτωθεν τοῦ 'Ολίγου, οὕτω: οὐδέποτε λαμβάνει τὸ ὀλίγον συλλαβήν, ἀλλ' ἐπέκτασιν τῆς πρώην συλλαβής. Π. χ.

$$q$$
 $\Pi\omega$ ω $\omega\varsigma$ $\Sigma\varepsilon$ ε κ , λ , π .

Όσάκις ὅμως ἐπέρχεται σύγχυσις μεταξὺ Κεντήματος καὶ Κεντημάτων, τὰ Κεντήματα ἀντικαθίστανται διὰ τοῦ Ὁλίγου. π. χ.

κάτωθι: "Ήτοι τὰ Κεντήματα θὰ ἀντικατασταθοῦν μὲ τὸ 'Ολίγον π. χ.

$$\frac{\pi}{q}$$
 $\frac{\kappa}{\Pi \omega}$ $\frac{\kappa}{\omega \varsigma}$ $\frac{\kappa}{\omega \varsigma}$ $\frac{\kappa}{\mu \eta}$ $\frac{\kappa}{\theta}$ $\frac{\kappa}{\mu}$ $\frac{\kappa}{\omega}$ $\frac{\kappa}{\omega$

Πάντως τὰ Κεντήματα, ὅπως καὶ ἄν τεθῶσι, εἶτε ἄνωθεν, εἶτε κατωθεν τοῦ Ὁλίγου, συλλαβὴν δέν ἐπιδέχονται καὶ ἄν ἤθελε τύχη γοργὸν τοῦτο τίθεται διά τὰ Κεντήματα. π. χ. τ ἤ Γ

γοργὸν τοῦτο τίθεται διά τὰ Κεντήματα. π. χ.
$$\frac{\kappa}{1}$$
 $\frac{\pi}{1}$ $\frac{\pi}{1}$

Όταν τὰ Κεντήματα ἀπαιτῶσι βραδύτητα μεγαγαλυτέραν τοῦ ἐνὸς χρόνου μετά ζωηρότητος, τότε τίθενται μετ' αὐτῶν τὸ Ἰσον μετ' ἀναλόγων χρονικῶν σημείων αὐξανόντων τὸν χρόνον (Διπλῆν, Γριπλῆν).

$$οῦτω: ξ$$
 $Δε$
 $ε$
 $ε$
 $σπο$
 $κ. λ. π.$

Όμοίως Πεταστή μὲ κλάσμα καὶ ψηφιστὸν, ὅταν ἀκολουθεῖ ᾿Απόστροφος μὲ γοργὸν μία καὶ μόνη εἶναι ἡ περίπτωσις αὐτὴ ὅρα (σελ. 147). Τὰς δύο ἀνωτέρω περιπτώσεις ὁ ἀεἰμνηστος Γ. Ραιδεστηνὸς εἰς τὸ ἀρχαῖον μέλος «Φῶς ἱλαρὸν.....» (Μ. ἐβδομὰς σελ. 101) τὰς παρουσιὰζει λανθασμένας ἀπὸ ὀρθογραφίαν τῆς μουσικῆς π. χ.

α ον α ΄Η ὀρθή γραφή ὅπως είναι καὶ είς τὰ ἀρχαῖα μουσικὰ κείμενα ἔνει ὡς ἐξῆς :

Δηλαδή άντὶ Κεντημάτων, τίθεται 'Ολίγον καὶ άντὶ Πεταστῆς μέ κλάσμα καὶ ψηφιστὸν, τίθεται 'Ολίγον μὲ 'Αντικένωμα καὶ 'Απλῆν.

Οὕτως ή Πεταστή δὲν δέχεται, οὒτε ψηφιστὸν, οὕτε κλάσμα δταν ἀκολουθεῖ ᾿Απόστροφος μὲ γοργὸν πλὴν τῆς περιπτώσεως (σελ. 147).

Έρωτήσας ποτὲ τὸν ἀοίδιμον Κ. ΨΑΧΟΝ διὰ τὸν μακαρίτην Γ. Ραιδεστηνὸν μοῦ εἶπε ἐπὶ λέξει τὰ ἑξῆς: «Ὁ μακαρίτης Ραιδεστηνὸς ὑπῆρξεν ἄριστος καὶ λίαν καλλίφωνος πρωτοψάλτης, διακρινόμενος διὰ τὸ ἀρχαῖζον πατριαρχικὸν ὕφος, διαδεχθεὶς τὸν ΙΩΑΝΝΗΝ πρωτοψάλτην ἀποχωρήσαντα λὸγφ γήρατος, ἀλλὰ ἀπό θεωρίαν καὶ ὀρθογρα-

φίαν τής μουσικής ήτο τελείως ἀνίδεος». Δι' αὐτὸ καὶ εἰς τὴν Μ. ἑβδο μὰδα του βλέπει τις πολλὰς ἀνορθογραφίας, ἐν ἀντιθέσει πρὸς τὴν Μουσικὴν Κυψέλην Πέτρου καὶ Στεφάνου Λαμπαδαρίου, ὅπου δὲν παρατηροῦνται τοιαῦται ἀνορθογραφίαι. 'Ομοίως τὰ Κεντήματα χρησιμεύουσι καὶ διὰ τὴν ἀνάλυσιν τοῦ κλάσματος, τοῦ 'Ομαλοῦ καὶ τῆς Πεταστής μὲ κλάσμα.

Παραδείγματα 1) με κλάσμα και άνάλυσιν αύτου.

$$\frac{1}{27} \text{ Tην τι } \text{ μι } \text{ ω } \text{ τε ε ε ε ραν } \frac{1}{9} \text{ την τὶ}$$

$$\frac{1}{27} \text{ Την τι } \text{ μι } \text{ ω } \text{ τε ε ε ε ραν } \frac{1}{9} \text{ την } \text{ τὶ}$$

$$\frac{1}{27} \text{ μι } \text{ ω } \text{ τε ε ε ε ε ραν } \frac{1}{9} \text{ την } \frac{1$$

2) με 'Ομαλόν και ανάλυσιν αὐτοῦ ώς πρὸ τὴν ἐκτέλεσιν.

$$\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1$$

καί 3) Πεταστή μετὰ κλάσματος ή καὶ ἄνευ κλάσματος ὅρα ἀνὰλυσιν (σελ. 146).

'Εκ δὲ τῶν τροπικῶν ὑποστάσεων τίθενται τὸ Έτερον (Σύνδεσμος) καὶ τὸ ψηφιστὸν κατὰ τὴν περίστασιν, ὡς εἴπομεν. Πᾶσαι δὲ αί φθοραὶ τῶν ἤχων ὡς καὶ αἱ ὑφεσοδιέσεις τίθενται ἄνωθεν καὶ κάτωθεν αὐτῶν.

4ον) ΠΕΡΙ ΤΟΥ ΚΕΝΤΗΜΑΤΟΣ (ι) ΚΑΙ ΤΗΣ ΥΨΗΛΗΣ ($\mathcal I$).

Όπως γνωρίζομεν τὸ μὲν Κέντημα ἔχει ὑπερβατήν ἀνὰβασιν δύο φθόγγων καὶ ἡ Ύψηλὴ ἔχει ὑπερβατήν ἀνάβασιν τεσσάρων φθόγγων. ᾿Αμφότεροι οἱ χαρακτῆρες οὐτοι ὀνομάζονται πνεύματα καὶ ὡς πνεύματα δὲν τίθενται μόνοι των, ἀλλὰ συντίθενται μετὰ τῶν σωμάτων. Καὶ τὸ μέν Κέντημα μηδενίζει τὴν ποσότητα τοῦ ᾿Ολίγου, ὅταν τεθῆ ὑπ᾽ αὐτὸ ἢ μετ᾽ αὐτὸ π. χ. ἡ , ὅταν ὅμως τεθῆ ἄνωθεν αὐτοῦ ἤ τῆς Πεταστῆς π. χ. ἡ , ὅταν ὅμως τεθῆ ἀνωθεν αὐτοῦ ἤ τῆς Πεταστῆς π. χ. ἡ , ὅταν ὅμως τεθῆ τιθεμένη εἰς τὸ δεξιὸν μέρος αὐτῶν π. χ. ἐἡ , Συνεκφωνεῖται δὲ τιθεμένη εἰς τὸ ἀριστερόν

μέρος αὐτῶν π. χ. ή . Πάντως εἴτε μηδενίζεται, εἴτε συνεκφωνεῖται ἡ ποσότης τοῦ 'Ολίγου ἢ τῆς Πεταστῆς, ἡ ποιοτικὴ των ἐνέργεια διατηρεῖται ἀμείωτος. (Δηλαδὴ ἡ ζωηρότης τοῦ 'Ολίγου καὶ ἡ ἐν εἴδει πετάγματος ποιοτικὴ ἐνέργεια τῆς Πεταστῆς).

Απὸ τὰ χρονικὰ σημεῖα λαμβάνουν τὸ κλάσμα καὶ ἄνωθεν καὶ κάτωθεν τοῦ Ὁλίγου π. χ. , , , μὲ τὴν Πεταστὴν μόνον κάτωθεν αὐτῆς π. χ. . , , , , , , , μὲ τὴν Πεταστὴν μόνον μὲ ᾿Αντικένωμα π. χ. , , , , , , , , , , , , , , , μὲ τὴν Πεταστὴν . ՝ Ἡ Διπλῆ καὶ ἡ Τριπλῆ μόνον εἰς τὸ Ὁλίγον καὶ κὰτωθεν αὐτοῦ μὲ Σύνδεσμον ἐὰν δὲν ἀλλάζη συλλαβή π. χ. ν κα α αμ φθη

Έαν άλλάζη συλλαβή τότε δὲν τίθεται Έτερον (Σύνδεσμος). (ὅρα εἰς τήν πλοκήν τοῦ Ἑλαφροῦ).

Β΄. ΟΡΘΟΓΡΑΦΙΑ ΤΩΝ ΚΑΤΙΟΝΤΩΝ ΧΑΡΑΚΤΗΡΩΝ

1) περί τῆς *Αποστρόφου (>).

"Η 'Απὸστροφος ἕλαβε τὸ ὅνομα κατὰ τὸνΠ. Κηλτσανίδην ἐκ τοῦ ἀποστρέφω καὶ μᾶλλον ἐπιστρέφω πρὸς τὰ ὀπίσω (κάτω). 'Ο μουσικὸς οὐτος χαρακτήρ ἐπενοὴθη μετὰ τῶν πρὼτων χαρακτήρων τοῦ Ἰσου () καὶ τοῦ 'Ολίγου (), διὰ τήν κατάβασιν. 'Η 'Απόστροφος τίθεται ἐν ἀρχῆ ἐν μέσω καὶ ἐν τέλει τοῦ μέλους ὅταν λαμβάνη ἀνάγκην καταβάσεως ἑνὸς φθόγγου. Διὰ πᾶσαν συνεχῆ καὶ βαθμιαίαν κατὰ φθὸγγον κατάβασιν, καθ' ῆν πᾶς φθόγγος λαμβάνει συλλαβήν, ἤ καὶ πάντες οἱ φθόγγοι εὑρίσκονται ἐν μιᾳ καί μόνη συλλαβῆ μεταχειριζόμεθα τήν 'Απόστροφον, διότι καταβαίνει ἐλευθέρως ἕνα πρὸς ἕνα φθόγγον π. χ.

"Η ἀνάλυσις τῆς ἀνωτέρω γραμμῆς ἄρχεται ἀπὸ τοῦ 'Ολὶγου, εἰς τὸ ὁποῖον εὐρίσκεται ἡ 'Υψηλή καὶ ἀπὸ τὸ ὁποῖον ἀφαιρεῖται τὸ φηφιστὸν, διότι εἰς 'Αποστρὸφους τά μὲν κλὰσματα ἀντικαθίστανται διὰ τῶν Ίσων προτασσομένης τῆς βαρείας, αἱ δὲ 'Απόστροφοι λαμβάνουσιν ἄνωθεν μὲν γοργὸν, κάτωθεν δὲ 'Απλῆν.

Όταν εἰς τοὺς κατιόντας χαρακτῆρας γράφεται βαρεῖα, ὁ τελευταῖος ἀνιών χαρακτήρ δὲν δύναται νὰ λάβη τὸ ψηφιστὸν, διότι μηδενίζεται ἡ τούτου ἐνέργεια καὶ γράφεται οὕτω ἀναλυτικῶς.

Είς τὰ κρατήματα τῶν τερερισμῶν, αἱ ᾿Απόστροφοι ἄνευ ἐτεροχρόνου γράφονται οῦτω:

Όταν εἰς μίαν γραμμήν εὐρεθῶσι τρεῖς ᾿Απόστροφοι, ἐκ τῶν ὁποίων ἡ πρὼτη ἀπαιτεῖ ζωηρότητα, τότε τίθεται τὸ ψηφιστὸν ἐπειδή δὲ ἡ ᾿Απόστροφος δὲν δύναται νὰ δεχθῇ ἀπ᾽ εὐθείας ψηφιστὸν, χάριν συμμετρίας τίθεται ἐπὶ ᾿Ολίγου (ἐπειδή τὸ σῶμα τῆς ᾿Αποστρόφου εἶναι δυσανάλογον μὲ τὸ τοῦ ψηφιστοῦ) καὶ ἀκολουθοῦν κατιὸντες, τὸ αὐτὸ ἰσχύει καί διὰ τὸ Ἑλαφρὸν οῦτω :

Ή ᾿Απόστροφος ἐν συνθέσει δέχεται πάσας τὰς ἔγχρόνους ὑποστάσεις πλήν τοῦ ᾿Αργοῦ, ὡς καὶ πάσας τάς τροπικὰς τὸ δὲ Ἔτερον () ἢ μόνον, ἢ μετὰ διπλῆς ἢ καὶ τριπλῆς καὶ οὐδέποτε μεθ᾽ άπλῆς, ἥτις τίθεται μὸνη καί μὲ ᾿Αντικένωμα. Πᾶσαι αἱ φθοραὶ τῶν ἢχων τίθενται ἄνωθεν ἢ κάτωθεν τῆς ᾿Αποστρόφου κατὰ τήν περίστασιν, ὡς καὶ αἱ ὑφεσοδιέσεις.

2ον Περί τῆς Υπορροής (,)

Ή ἐνέργεια τῆς Ύπορροῆς εἶναι ὅτι οἱ δύο αὐτῆς φθόγγοι συνεχῶς καταβαίνουσιν, ἀπαγγελλόμενοι ἄνευ τομῆς ἢ διακοπῆς τῆς φωνῆς μεταξύ τοῦ φθόγγου τοῦ πρὸ αὐτῆς χαρακτῆρος καὶ τῶν δύο αὐτῆς φθόγγων, ἐλαφρῶς καὶ ὡς ὑπορρέουσα. Οὕτω:

Είς τὴν ἀνωτέρω γραμμὴν δηλαδή Δέον νὰ προφέρωνται ἄπαντες οἱ φθόγγοι διὰ μιᾶς καὶ τῆς αὐτῆς εἰσπνοῆς, μὴ ἐπιτρεπομένης διακοπῆς τῆς φωνῆς οὕτε μεταξύ των , οὕτε μεταξύ των ... Όταν τίθεται γοργὸν () εἰς τὴν Υπορροὴν, πὰντοτε ἐννοεῖται διὰ τὸν πρῶτον φθόγγον της καὶ γράφεται ἄνωθεν. Οὕτω

Όταν εἰς τὸν δεύτερον αὐτῆς φθόγγον ἀπαιτῆται ζωηρότης ἡ ὁξύτης τότε τίθεται ἄνωθεν τῆς Πεταστῆς μέ κλάσμα. Οὕτω:

$$\frac{?}{q} = \frac{1}{\epsilon} \underbrace{\sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon \in \kappa} \frac{1}{\tau \omega \nu} \underbrace{\sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \underbrace{\sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \underbrace{\sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \underbrace{\sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \underbrace{\sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \sum_{\epsilon} \underbrace{\sum_{\epsilon} \sum_{\epsilon} \sum_{$$

ή και άνευ κλάσματος Ούτω:

"Όταν ἀπαιτήται κυματισμός όμαλὸς ἢ τραχὺς καί ἀνώμαλος, τότε μετά τὴν "Υπορροὴν τίθεται τὸ "Ισον, συνδεόμενον μετ' αὐτῆς διὰ Συνδέσμου ("Ετέρου) ή "Όμαλοῦ — . "Η "Υπορροὴ μὲ γοργὸν καὶ κάτωθεν Σύνδεσμος ἤτοι μὲ "Ελαφρὸν κυματισμόν. Οὕτω:

$$\Delta = \frac{1}{100} =$$

Ἐπίσης ή Ὑπορροὴ μὲ δίγοργον καὶ Σύνδεσμον, <mark>ῆτοι</mark> μὲ ἐλαφρὸν κυματισμὸν.

'Ομοίως ή 'Υπορροή μὲ 'Ομαλόν —, ἢτοι μὲ τραχύν καὶ ἀνώμαλον κυματισμόν. Οὖτω :

$$\sum_{\lambda} \sum_{\epsilon} \sum_{\epsilon$$

Έὰν ἡ Ὑπορροὴ λάβη Ἦπλῆν (·) καὶ ἀκολουθεῖ ᾿Απόστροφος μὲ γοργὸν τότε ἀπαραιτήτως, ἡ ᾿Απλῆ τίθεται μετ᾽ ᾿Αντικενώματος, ἐννοεῖται ὑπὸ μίαν συλλαβὴν. Ἐὰν δὲ λάβη Διπλῆν ·· ἢ Τριπλῆν ···, τότε ἐφ᾽ ὅσον εἶναι ὑπὸ τὴν αὐτὴν συλλαβὴν ἀπαραιτήτως αὖται τίθενται μεθ᾽ Ἑτέρου (Συνδέσμου). Οὕτω:

1)
$$\chi \mid \int_{\varepsilon} \frac{1}{\varepsilon} \int_{\varepsilon} \frac$$

2) Μὲ τριπλῆν Οῦτω :
$$\pi$$
 | $\frac{1}{9}$ | $\frac{1}{7}$ ε ε ε $\frac{1}{1}$ ε ε τε εμ τε ρι

$$\int$$
 $\frac{1}{\rho_1}$ $\frac{\pi}{\rho_1}$ κ. λ. π.

$$\sum_{\text{pl. pem q}}^{\pi} \pi \kappa.\lambda.\pi.$$

Καὶ εἰς τὰς τρεῖς ἀνωτέρω περιπτώσεις ἡ ᾿Απόστροφος, ἤτις ἐπακολουθεῖ μὲ γοργὸν μετὰ τοῦ ᾿Αντικενώματος καὶ τοῦ Συνδέσμου καὶ ὑπὸ τὴν αὐτὴν συλλαβὴν, προφέρεται ἐκκρεμῶς πως καὶ ἀχωρίστως. Ἡ Ύπορροὴ οὐδέποτε λαμβάνει συλλαβὴν, ἐκτὸς τῶν ἀσημάντων τερερισμῶν Οὕτω:

Τὰς δὲ φθορὰς τῶν Ἡχων, λαμβάνει καὶ εἰς τὸν πρῶτον καὶ εἰς τὸν δεύτερον φθόγγον κατὰ τήν περίστασιν. Ἐκ δὲ τῶν ἐγχρόνων ὑποστὰσε-

ων λαμβάνει τό Γοργόν, Δίγοργον κ.λ.π. Τήν 'Απλήν, Διπλήν κ.λ.π. 'Εκ δὲ τῶν τροπικῶν ὑποστάσεων λαμβάνει μόνον τὸ 'Αντικένωμα μὲ 'Απλήν , τὸ "Ετερον καὶ τὸ 'Ομαλὸν ——.

30v) ΠΕΡΙ ΤΟΥ ΕΛΑΦΡΟΥ ΚΑΙ ΣΥΝΕΧΟΥΣ ΕΛΑΦΡΟΥ ($\supset \subset$).

Τὸ Ἐλαφρὸν καταβιβάζει δύο φωνὰς, ὑπερβατῶς μετ' ἐλαφρότητος, δι' δ καὶ ὡνομάσθη Ἐλαφρὸν. Διὰ τὴν σύνθεσιν ἐλαφροῦ μὲ 'Ολίγον ἢ Πεταστήν ἰσχύουν δσα καὶ διά τήν 'Απόστροφον.

Τὸ Ἐλαφρὸν ἐπιδέχεται πὰντοτε Ιδιαιτέραν συλλαβήν.

Συνεχές έλαφρὸν λέγεται δταν τῆς 'Αποστρόφου ἐγγίζει τὸ 'Ελαφρὸν π. χ. οὕτω: , τότε καταβαίνομεν συνεχῶς δύο μὸνον φωνὰς, τῆς μέν πρώτης λαμβανομένης ὡσάν νά φέρη γοργόν καὶ είναι ἰσοδύναμον μὲ δύο 'Αποστρόφους τῆς πρώτης φερούσης γοργὸν ῆ καὶ μὲ 'Υπορροήν φερούσης γοργόν. Οὕτω:

() = 5 = 5). Όθεν ή τοιαύτη πλοκή τοῦ Ἑλαφροῦ μετά τῆς ᾿Αποστρόφου, ὡς εἴπομεν ἀνωτέρω, καλεῖται Συνεχὲς Ἐλαφρὸν.

Μεταξύ ὅμως τοῦ Συνεχοῦς Ἑλαφροῦ , τῆς Ύπορροῆς φερούσης γοργὸν καὶ τῶν δύο ᾿Αποστρόφων, φέρούσης τῆς πρώτης γοργὸν , ὑπάρχει θεωρητικὸς λόγος ὁ ἐξῆς: "Οτι εἰς μὲν τὸ Συνεχὲς Ἑλαφρὸν τίθεται συλλαβὴ, ῆτις προφέρεται εἰς τήν πλῆξιν τοῦ Ἑλαφροῦ, εἰς δὲ τὴν Ὑπορροὴν οὐχὶ, ἀλλ' ἐπέκτασιν τοῦ φωνήεντος τῆς συλλαβῆς. Εἰς δὲ τὰς δύο ᾿Αποστρόφους τίθεται συλλαβὴ καὶ εἰς τὴν πρώτην καὶ εἰς τὴν δευτέραν ᾿Απόστροφον.

Παραδείγματα 1) (μὲ Συνεχὲς Ἑλαφρὸν).

π κ. τ. λ.

2) (μὲ Υπορροὴν ς π. χ. π με ε Κυ υ υ ρι ι ε ε

καὶ 3 (μὲ δύο ᾿Αποστρόφους)

ε ε ε ε

π Είς τὰ Κρατήματα τῶν νενανισμῶν ἀπαραιτήτως τἰθεται Συνεχὲς

'Ελαφρόν (). Ο ὅτω: $\pi \mid \frac{1}{\text{Lε}} = \epsilon \quad \text{γα} \quad \text{Lε} \quad \text{Lε} \quad \text{γγα} \quad \text{γα} \quad \text{Lε} \quad \text{Lε}$

Τὸ Ἐλαφρὸν ἐκ μὲν τῶν ἐγχρόνων ὑποστάσεων δέχεται πάσας, πλήν τοῦ ᾿Αργοῦ, καὶ τὴν ʿΑπλῆν μὸνον μετ ᾿Αντικενώματος. Διπλῆν δὲ ἢ Τριπλῆν μεθ ἩΕτέρου (Συνδέσμου) καὶ ἄνευ ἩΕτέρου, ὅταν ἡ μετά τό Ἐλαφρὸν ᾿Απόστροφος λάβη συλλαβὴν. Παραδείγματα.

1) 'Απλή μετ' 'Αντικενώματος είς τὸ 'Ελαφρόν μὲ Πεταστήν. Οὕτω:

2) Διπλῆ μεθ' Έτέρου, ὅταν ἡ μετὰ τοῦ Ἐλαφροῦ ᾿Απόστροφος δὲν λαμβάνει συλλαβὴν. Οὕτω:

3) Διπλή ἄνευ Έτέρου όταν ή Απόστρφος λαμβάνει συλλαβήν. Οὕτω :

Έπίσης πρὸ τοῦ Συνεχοῦς Ἑλαφροῦ, ἢ τῆς Ὑπορροῆς φερούσης γοργὸν, ὁσὰκις ἔχομεν ποσοτικὸν χαρακτῆρα ἄνευ ἑτεροχρόνου, εῖτε ἐν θὲσει, εῖτε ἐν ἄρσει. ἀπαραιτήτως θὰ εἶναι Ὀλὶγον μὲ ψηφιστὸν. (ὅρα παραδείγματα σελ. 139).

'Απὸ δὲ τὰς τροπικὰς ὑποστάσεις δέχεται πάσας πλὴν τοῦ 'Ενδοφώνου, καθώς καὶ πὰσσς τὰς φθορὰς τῶν ἥχων ἄνωθεν ἥ κάτωθεν αὐτοῦ κατὰ τὴν περίστασιν.

4ον ΠΕΡΙ ΤΗΣ ΧΑΜΗΛΗΣ (\smile).

Ή Χαμηλή ἐκ πάντων τῶν κατιόντων χαρακτήρων καταβιβάζει τὴν φωνὴν ὑπερβατῶς περισσότερον, ἢτοι μὲ τὴν χαμηλὴν καταβαίνομεν τέσ

σαρας (4) φωνὰς ὑπερβατῶς. Ἡ ἐνέργεια αὐτῆς είναι ὡς ἡ τοῦ Ἐλαφροῦ καί τῆς ᾿Αποστρόφου, τίθεται δηλαδή καὶ εἰς τὸ ᾿Ολίγον καὶ εἰς τήν Πεταστήν καὶ ὑποτάσσει αὐτὰς. Ἅπασαι δὲ αἱ φθοραὶ τῶν ἡχων ἀπαραλλάκτως τίθενται καὶ εἰς τήν Χαμηλήν, ὅπως καὶ εἰς τοὺς ἄλλους χαρακτῆρας. Ἡ Χαμηλή ἐπιδέχεται πάντοτε ἰδιαιτέραν συλλαβὴν καὶ τὸ μέλος δύναται ν᾽ ἀρχίζη μὲ Χαμηλήν. Οὕτω:

ΔΙΑΙΡΈΣΕΙΣ ΚΑΙ ΚΑΤΗΓΟΡΙΑΙ ΤΩΝ ΧΑΡΑΚΤΉΡΩΝ ΠΟΣΟΤΉΤΟΣ.

1) 'Απὸ τοὺς ἀνωτέρω ποσοτικοὺς χαρακτήρας τὸ Ίσον , τό 'Ολίγον , ἡ Πεταστή , ἡ 'Απόστροφος , τὸ 'Ελαφρὸν καὶ ἡ Χαμηλή δέχονται ἰδιαιτέραν συλλαβὴν λέξεως καὶ ἐκφέρουν τὴν φωνήν χωριστὰ, δηλαδὴ αὐτοτελῶς καὶ ἀσχέτως πρὸς τὸν προηγούμε νον καὶ τὸν ἐπόμενον χαρακτήρα, δι' δ καὶ ὀνομάζονται Κύριοι χαρακτήρες.

2) 'Από τοὺς ποσοτικοὺς χαρακτήρας, ἰδιαιτέραν ποιοτικήν ἐνέργειαν, δεικνύει ἡ Πεταστὴ , τά κεντήματα καὶ ἡ 'Υπορροή . Καὶ ἡ μὲν Πεταστὴ , ἀκολουθουμένη πάντοτε ὑπό κατιόντων χαρακτήρων, ἐκφέρει τὸν φθὸγγον μὲ κύκλον ἐν εἴδει πετὰγματος πρὸς τὰ ἄνω.

Τὰ δέ Κεντήματα δὲν δέχονται ποτὲ ἰδιαιτέραν συλλαβὴν, ἀλλά μό-

νον συνεχίζουν τὴν προηγουμένην συλλαβὴν ἠπὶως (μαλακῶς).

Διὰ τοῦτο ἐξαρτῶνται ἀπὸ τὸν προηγούμενον χαρακτῆρα καὶ ἐκφέρουν τὴν φωνὴν ἐν συνεχεία πρὸς τὸν προηγούμενον φθὸγγον, μὲ ὀλιγωτέραν ἐκείνου ζωηρότητα, χωρὶς νὰ χωρίζεται ἡ φωνὴ των οὕτε ἀπὸ τὸν προηγούμενον, οὕτε ἀπὸ τὸν ἐπόμενον χαρακτῆρα. π. χ.

$$\frac{\pi}{\hbar} = \frac{1}{\hbar} = \frac{1}$$

Ή φωνή τῶν Κεντημάτων είναι συνέχεια τῆς φωνῆς τοῦ 'Ολίγου. Προφέρονται δὲ ἀσθενέστερον ἀπὸ τὸ 'Ολίγον καὶ ή φωνή των δὲν χωρίζεται ἀπὸ τὴν φωνὴν τοῦ 'Ολίγου καὶ τῆς πρώτης 'Αποστρόφου. 'Όμοι-ὸν τι πρὸς τὰ Κεντήματα συμβαίνει καὶ ὡς πρὸς τὴν 'Υπορροὴν. Δὲν

δέχεται δηλαδή καὶ αὐτὴ ἰδιαιτέραν συλλαβήν, ἀλλά ἐπεκτείνει τὴν φωνὴν τῆς συλλαβῆς τοῦ προηγουμένου φθόγγου. Δὲν ἔχει δηλαδή αὐτοτελῆ ἐνέργειαν, ἀλλὰ πὰντοτε ἐξαρτᾶται ἀπὸ τὸν προηγούμενον χαρακτῆρα. Ἐκφέρει δὲ τοὺς δύο αὐτῆς φθόγγους ἐν συνεχεὶᾳ, χωρὶς διακοπὴν, ἀσθενέστερον ἀπὸ τόν προηγούμενον χαρακτῆρα.

'Ο δεύτερος φθόγγος τῆς 'Υπορροῆς ἀπαγγέλλεται πὰντοτε εἰς τὴν θέσιν, ὅταν δὲν ἔχει γοργὸν (ὅρα σελ. 153 Περὶ 'Υπορροῆς) καὶ 3) Τό Κέντημα () καὶ ἡ ὑψηλὴ (), ὅπως δὲν γρὰφονται μόνα, ἀλλὰ πάντο τε ἐν συνθέσει μὲ 'Ολίγον ἤ Πεταστὴν, οὕτω ἐπίσης δὲν ἔχουν ἰδικὴν των ποιὸτητα, ἀλλὰ λαμβάνουν τὴν ποιότητα τοῦ 'Ολίγου ἢ τῆς Πεταστῆς, μετὰ τῶν ὁποίων εὐρίσκονται συντεθειμένα. Οὕτω:

Ένεκα τῆς διαφορᾶς, τὴν ὁποίαν δεικνύουν εἰς τὴν ἀπαγγελίαν οἱ ποσοτικοὶ χαρακτῆρες διακρίνομεν αὐτοὺς εἰς τρεῖς κατηγορίας. 1) Εἰς σώματα, 2) εἰς πνεύματα καὶ 3) εἰς οὐδετέρους.

- 1) Τὰ σώματα είναι οἱ κύριοι χαρακτῆρες. Ἡτοι τὸ Ἰσον, τὸ ᾿Ολί-γον,ἡ Πεταστὴ,ἡ ᾿Απόστροφος, τὸ Ἐλαφρὸν καὶ ἡ Χαμηλὴ. Ἡτοι εξ (6).
 - 2) Τὰ πνεύματα είναι δύο τὸ Κέντημα καὶ ἡ Ύψηλὴ.
 - καί 3) Τὰ οὐδέτερα είναι δύο τὰ Κεντήματα καὶ ἡ Ύπορροὴ.

ΠΕΡΙ ΤΗΣ ΔΙΑΦΟΡΑΣ ΤΩΝ ΕΓΧΡΟΝΩΝ ΥΠΟΣΤΑΣΕΩΝ.

(ώς πρὸς τὴν ἀπαγγελίαν τοῦ Κλάσματος, 'Απλῆς, Διπλῆς καὶ χαρακτήρων......) Τὸ κλάσμα , τιθέμενον ἄνωθεν ἢ κάτωθεν ὅλων τῶν χαρακτήρων πλὴν τῶν Κεντημὰτων () καὶ τῆς 'Υπορροῆς (,), διπλασιὰζει τὴν χρονικὴν αὐτῶν διάρκειαν. Τὸ αὐτὸ κάμνει καὶ ἡ άπλῆ , ῆτις μόνη μὲν τίθεται μόνον ὑπὸ τὴν 'Απόστροφον π. χ. καὶ 'Υπορροὴν ', μετὰ δὲ τοῦ 'Αντικενώματος π. χ. ΄ ὑφ' ὅλους τοὺς χαρακτῆρας πλήν τῶν Κεντημάτων (), μὴ ἐπιδεχομομένων χρονικήν παράτασιν πλέον τοῦ βραχὲος χρὸνου. 'Εδῶ γεννᾶται τὸ ἐρώτημα: διατὶ διὰ τὸν αὐτὸν σκοπὸν μεταχειριζόμεθα δύο διαφορετικὰ σημεῖα; Διότι καίτοι δὲν διαφέρουσι χρονικῶς, διαφέρουσι ὅμως κατὰ τὴν γραφήν καὶ ἐκτέλεσιν. Εἰς τὸ Μέγα θεωρητικὸν τοῦ Χρυσάνθου καὶ εἰς τήν § 120 ἀναγινώσκομεν ὅτι : «ὁ φθόγγος τοῦ χαρακτῆρος, ὅστις ἔχει τὸ κλάσμα, ἐξοδεύει δύο χρόνους καὶ ἐν τῆ χρονοτριβῆ κυματίζεται ') τρόπον τινὰ

Ή λέξις κλάσμα παράγεται ἐκ τοῦ ρήματος κλάω—ῷ(=θράνω,τσακίζω κ.λ.π. ἐξ οὖ καὶ ἡ μεταβυζαντινή ὀνομασία τοῦ κλάσματος > τσάκισμα).

ή φωνή». Προκειμένου όμως περί τῆς 'Απλῆς, γράφει άπλῶς ὅτι αῦτη αὐξάνει κατά ἔνα χρόνον τὴν διάρκειαν τοῦ ὑφ' ὄν τίθεται χαρακτήρος, έξ οδ συνάγομεν δτι πλήν τῆς ἀπλῆς παρατάσεως τῆς χρονικῆς διαρκείας τοῦ φθόγγου ὑφ' ὄν τίθεται κατὰ ἕνα χρόνον, οὐδεμίαν ἄλλην τροπικήν ἐνέργειαν, ἔχει αὕτη.

Συμφωνούντες με τὸ πνεύμα του Χρυσάνθου, ὡς πρὸς τὴν τροπικήν έκτέλεσιν τοῦ κλάσματος, καὶ τῶν λοιπῶν χρονικῶν σημείων, ἀνέλαβον τήν διδασκαλίαν του πρακτικού μέρους τῆς καθ' ήμᾶς μουσικῆς οἱ δύο Ετεροι Διδάσκαλοι καὶ συνεργάται αὐτοῦ. Ὁ Γρηγὸριος ὁ πρωτοψάλτης καί ὁ Χουρμούζιος ὁ χαρτοφύλαξ τῶν Πατριαρχείων π. χ.

$$\ddot{\tilde{\Lambda}}$$
 χ_{α} $\ddot{\tilde{\Lambda}}$ χ_{α} $\chi_{$

Τὸν τρόπον δμως τοῦτον τῆς ἀναλύσεως τοῦ κλάσματος, ὅστις καθ' ήμας είναι και ο άκριβέστερος, δέν καθιέρωσαν ώς μοναδικόν οί Διδάσκαλοι, άλλ' άνέλυον τουτο καί άπλούστερον συχνάκις π. χ. την θέσιν:

Όθεν ή ἐκτέλεσις τοῦ κλάσματος παρουσιάζει διφορετικὴν τροπικὴν ένέργειαν τῆς Απλῆς, ὡς καὶ διαφορὰν γραφῆς. Δηλαδή εἰς τὸν χαρακτῆρα ὅπου τίθεται τὸ κλάσμα δέν τὶθεται ἡ Απλῆ μόνη της, ἀλλὰ μετά τοῦ ἀντικενώματος π. χ. ($\stackrel{\bullet}{\Longrightarrow}$). ἀλλὰ καὶ ἐκεῖ ὅπου τίθεται μόνη της π. χ. (τη ξ), οὐδεμίαν τροπικήν ἐνέργειαν ἔχει, ἀλλὰ ἀπλῶς αὐξάνει κατὰ ἔνα χρόνον τὴν χρονικήν διάρκειαν. Οὕτω αί δύο αὐται χρονικαὶ ὑποστάσεις (καὶ) κατ' οὐδὲν διαφέρουσι χρονικῶς. ἀλλὰ τροπικώς μόνον καί κατά τήν γραφήν διαφέρουσι.

Διά δὲ τὰ ἄλλα χρονικὰ σημεῖα καὶ τῶν τριῶν κατηγοριῶν ἔχει γίνη λόγος έκτενής μὲ παραδείγματα καὶ γυμνάσματα είς τὰ κεφάλαια Ε΄,

Σημείωσις: Διὰ τὴν ἐκμάθησιν τῆς ὀρθογραφίας τῆς Βυζαντινῆς μουσι-

Γ΄. ΠΕΡΙ ΤΩΝ ΤΡΟΠΙΚΩΝ ΥΠΟΣΤΑΣΕΩΝ.

"Η ΧΑΡΑΚΤΗΡΩΝ ΕΚΦΡΑΣΕΩΣ "Η ΠΟΙΟΤΗΤΟΣ.

Τὰ σημεῖα αὐτὰ δὲν ἔχουν οὕτε φωνήν,οὕτε χρονικήν διάρκειαν ἀλλὰ μόνον τὸνον. Όνομάζονται δὲ τροπικὰ, διότι δεικνύουν τὸν τρόπον τῆς ἀπαγγελίας τῶν φθόγγων εἰς τοὺς ὁποίους τίθενται. Μεταχειριζόμεθα αὐτὰ διὰ τὸν τονισμὸν τῶν φθόγγων, ἢτοι διὰ τὸν καλλωπισμὸν τῆς μελφδίας. Διὰ τοῦτο δινάμεθα νὰ τὰ ὁνομὰσωμεν καὶ καλλωπιστικὰ.

Ή έρμηνεία αὐτῶν ἐπιτυγχάνεται διὰ μόνης τῆς φωνητικῆς διδασκαλίας καὶ τῶν ἀναλυτικῶν ἐπεξηγήσεων περὶ τοῦ τρόπου τῆς ἀπαγγελίας των.

Τά τροπικά ή έκφραστικά σημεία είναι έξ (6). Ήτοι

1ον ή Βαρεία 🕽

Ή Βαρεῖα απαιτεῖ, ὅπως ὁ χαρακτήρ, ὅστις ἔπεται, ἀπαγγελθή μετά τινὸς βάρους εἰς τρόπον, ὥστε νὰ διακρίνεται ἡ ἐπ² αὐτοῦ ἐνέργεια αὐτῆς τόσον ἀπὸ τὸν προηγούμενον, ὅσον καὶ ἀπό τὸν ἐπὸμενον χαρακτή ρα, χωρὶς νὰ ὑφίσταται πτῶσιν τῆς φωνῆς κάτω τῆς τονικῆς θέσεως.

Προγράφεται δὲ ἡ βαρεῖα πὰντων τῶν χαρακτήρων πλήν τῶν Κεντημάτων καὶ τῆς Ύποροοῆς.

Η Βαρεία τίθεται ώς έπί τὰς έξης περιπτώσεις.

1) Είς τὰς ἐντελεῖς καὶ τελικὰς καταλήξεις δλων τῶν ἢχων. Οὕτω:

ως 🗶

κής, (δηλαδή τής ὀρθής πλοκής τῶν χαρακτήρων), συντελεί κατά μέγα μέρος ἡ μετὰ προσοχής μελέτη τῶν ἀρχαίων κλασικῶν μουσικῶν κειμένων, ὡς καὶ ἡ ἀντιγραφή αὐτῶν, ὅπου δημιουργοῦνται διὰ τὸν Σπουδαστὴν ὀπτικαὶ εἰκόναι.

2) "Όταν μετά τὸ "Ισον ἀκολουθή 'Απόστροφος μέ 'Απλήν καὶ γ γόν ή και άνευ γοργού, τότε ἀπαραιτήτως πρό τοῦ Ισου τίθεται βαρ Ойты: 11 - 5 # 11 - 5

3ον) "Όταν ἀκολουθοῦν τρία "Ισα ποὺ τὸ δεύτερον φέρει γοργόν κάτωθεν του πρώτου και δευτέρου Ίσου εύρισκεται 'Ομαλόν, άπαραιτή έμπροσθεν του πρώτου Ίσου τίθεται καί βαρεΐα. Οὕτω: έννοείται έχοντα τήν αύτήν συλλαβήν.

Παράδειγμα μὲ τὴν δευτέραν καί τρίτην περίπτωσιν.

το ο φω ω ως ζίκ.λ.π.

Καὶ 4ον) "Όταν πολλαί "Απόστροφοι λαμβάνουν ἀνὰ δύο τὴν αὐτ συλλαβήν, τότε πρό έκαστου ζεύγους 'Αποστρόφων τίθεται βαρεία. Οδτ

Βαρεῖα οὐδέποτε τίθεται πρὸ τοῦ Ἰσου, ὅταν μετ' αὐτὸ ἀκολουθ Συνεχές έλαφρόν ή Ύπορροή φέρουσα γοργόν. Οὕτω:

2ον Τὸ Ψηφιστόν <

Τό Ψηφιστόν δίδει ζωηρότητα είς τὸν φθόγγον του χαρκτήρος κά τωθεν του δποίου τίθεται και συνδέει αὐτὸν μὲ τὸν προηγούμενὸν του ζητών ξμπροσθεν κατιόντας πάντοτε καὶ Ισοχρόνους αὐτοῦ χαρακτήρας.

Τὸ Ψηφιστὸν τίθεται κάτωθεν του Ίσου και των άλλων άνιόντων χαρακτήρων 'Ολίγου καὶ Πεταστής, πλην τῶν Κεντημάτων. Τίθεται δὲ καὶ κάτωθεν τῶν κατιόντων χαρακτήρων, ἄλλ' ἐν τοιαύτη περιπτώσει μεταξύ του κατιόντος χαρακτήρος και του Ψηφιστού παρατίθεται το 'Ολίγον —, τὸ ὁποῖον οὐδεμίαν ἔχει ἐνέργειαν ἀλλὰ τίθεται, διότι τὸ μέγε

θος των κατιόντων χαρακτήρων είναι δυσανάλογον πρὸς τὸ μέγεθος τοῦ Ψηφιστοῦ. Π.χ. Οὕτω: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Φράσεις μὲ Ψηφιστὸν εἰς κατιόντας χαρακτήρας.

Όμοίως τίθεται κάτωθεν τοῦ Ἰσου ἢ τοῦ Ὀλίγου Ψηφιστὸν, ὅταν ἀκολουθῆ Ὑπορροὴ μέ γοργὸν ἢ Συνεχὲς ἐλαφρὸν. Οῦτω: Π. χ.

Όμοίως εἰς τήν σύνθεσιν τὸ Ψηφιστὸν ἐνεργεῖ ἐπὶ τοῦ 'Ολίγου, ἐνῷ εἰς τὰς συνθέσεις ἡ ἡ ἡ ἡ ἐνεργεῖ ἐπὶ τῶν Κεντημάτων ὡς ὀξεῖα. 'Επίσης ἐν τῆ συνθέσει αὐτῆ, ὅταν ὁ ἑπὸμενος φθόγγος γίνεται ἀρχὴ (θέσις) τοῦ μετρικοῦ ποδὸς, τὸ Ψηφιστὸν δὲν ἐνεργεῖ ἐπὶ τῶν Κεντημάτων ὡς ὀξεῖα, ἀλλ' ἐνεργεῖ ὡς βαρεῖα ἐπὶ τοῦ ἐπομένου φθόγγου. Π. χ.

'Επίσης ἐπὶ τοῦ έπομένου φθόγου ἐνεργεῖ τὸ Ψηφιστὸν ὡς βαρεῖα, ὅταν ὁ φθόγγος οὖτος (δηλαδή ὁ ἐπόμενος) δὲχεται ἔντονον συλλαβὴν

Δηλαδή τὸ Ψηφιστὸν ἐνεργεῖ οὐχὶ ἐπὶ τοῦ δεχομένου αὐτὸ 'Ολίγου,

άλλ' ἐπί τῆς ἐπομένης 'Αποστρόφου τῆς δεχομένης τὴν ἔντονον συλλαβὴν (οὖς). 'Ομοίως Ψηφιστὸν τίθεται ὑπὸ τὸ 'Ισον ῆ τὸ 'Ολίγον, ὅταν ἀκολουθοῦν δύο τοὐλάχιστον 'Απόστροφοι ἰσὸχρονοι τοῦ 'Ολίγου π. χ.

$$\stackrel{\pi}{\mathbf{X}} | \underbrace{\overset{1}{\underset{\mu \epsilon}{\longrightarrow}}}_{\overset{3}{\varepsilon}} \stackrel{3}{\underset{\epsilon}{\varepsilon}} | \underbrace{\overset{3}{\underset{\epsilon}{\longrightarrow}}}_{\overset{3}{\varepsilon}} \stackrel{1}{\underset{\epsilon}{\longrightarrow}} \underbrace{\overset{3}{\underset{\epsilon}{\longrightarrow}}}_{\overset{3}{\varepsilon}} \underset{\overset{1}{\underset{\epsilon}{\longrightarrow}}}{\overset{3}{\underset{\epsilon}{\longrightarrow}}} \underbrace{\overset{7}{\underset{\epsilon}{\longrightarrow}}}_{\overset{7}{\underset{\epsilon}{\longrightarrow}}} \kappa.\lambda.\pi.$$

*Επίσης ὖπὸ τὸ Ἰσον ή τὸ Ὁλίγον τίθεται ψηφιστὸν ὅταν ἀκολουθή Ύπορροὴ μὲ γοργὸν. Π. χ. Φράσις ἐκ τοῦ «Ἦξιον ἐστιν...» Ανθίμου τοῦ ᾿Αρχιδιακὸνου.

Σημ. Τὸ Ψηφιστόν καὶ ἡ βαρεῖα δύνανται νὰ ὁνομασθῶσι καὶ τονιστικά σημεῖα, διότι χρησιμεύουσι διὰ τόν τονισμόν τῶν χαρακτήρων.-

3ον Τὸ Όμαλὸν ——

Τὸ "Ομαλόν — , κληθέν κατ' εὐφημισμόν οὕτω προξενεῖ, εἰς τὸν χαρακτῆρα ὑπὸ τὸν ὁποῖον τίθεται, ἀνώμαλον καὶ τραχὺν κυματισμὸν τῆς φωνῆς ἐπὶ τὸ ὀξὺ, οὕτως ώστε ἡ φωνὴ νὰ ἐγγίζη λίαν ταχέως τοῦ ἀμέσως ὀξέως φθόγγου.-

Π. χ. ν | τε ε ε ε σ ή ἐνέργεια τοῦ Όμαλοῦ ἀναλύεται κατά προσέγγισιν ὡς πρὸς τήν ἐκτέλεσιν οῦτω:

Έὰν ὅμως τὸ Ἱσον δὲν ἔχη γοργόν, ὅτε καὶ ἀπαιτεῖ νά ἐπακολουθή κατιὼν χαρακτήρ (᾿Απὸστροφος), τότε τὸ ὑμαλὸν ἐνεργεῖ ὡς ὀξεῖα ἐπὶ

Τὸ 'Ομαλὸν τίθεται κάτωθεν πάντων τῶν χαρακτήρων, πλὴν τῶν Κεντημάτων καὶ τῆς Πεταστῆς. 'Απαραιτὴτως ὅμως ἐπὶ μιᾶς καὶ τῆς αὐτῆς συλλαβῆς καὶ οὐχὶ ἐπὶ δύο διαφόρων. Τὸ 'Ομαλὸν ἀναπληροϊ καὶ τὸ Ψηφιστὸν, ὅταν τεθἢ ὑπὸ τὸ 'Ολίγον μετὰ κλάσματος, εἰς τὸ ὁποῖον ἀκολουθεῖ μία καὶ μόνη 'Απόστροφος μετά κλάσματος Π. χ. καὶ τὸ ὁποῖον ἀπαιτεῖ ζωηρότητα καὶ ἀναλύεται συνήθως οὖτω:

 $\frac{\lambda}{\Delta 0} = \frac{\lambda}{\delta \alpha}$ ανάλυσις ώς πρὸς τήν ἐκτέλεσιν = $\frac{\lambda}{\delta \Delta 0} = \frac{\lambda}{\delta \Delta 0}$ ο ξα $\frac{\lambda}{\delta \Delta 0} = \frac{\lambda}{\delta \Delta 0} = \frac{\lambda}{\delta \Delta 0} = \frac{\lambda}{\delta \Delta 0}$ Πληνα πι Πλη ηνα πι

Συνηθέστερον δὲ συναντᾶται κάτωθεν τριῶν Ίσων, τοῦ δευτέρου Εχοντος γοργὸν εἰς τὰς παρατεταμένας καταλήξεις δλων τῶν ἤχων. Π. χ.

Κυ υ υ υ υ υ ρι ι ι ε ε ε ε ε δι Ετερον παράδειγμα μὲ Όμαλὸν, βαρεῖαν καὶ κορώνα. Π, χ.

Όμοίως τὸ Όμαλὸν τίθεται καὶ εἰς τὰς τελικὰς καταλήξεις συντόμων καὶ ἀργῶν μελῶν ὅπου ἀπαραιτήτως τίθεται ᾿Αργὸν ἡ Δὶαργον π. χ. $\frac{\Delta}{\Sigma \omega} = \frac{3}{500} \frac{1}{500} \frac{$

4ον Το 'Αντικένωμα — ,

Φράσις μὲ ἀντικένωμα ἄνευ γοργοῦ καὶ μετά γοργοῦ. Π. χ.

- Τὸ ᾿Αντικένωμα τιθέμενον κάτωθεν τοῦ ᾿Ολὶγου μετὰ γοργοῦ ῆ ἄνευ γοργοῦ ἐνεργεῖ εἰς τὸ δεύτερον μέρος τοῦ μέτρου (δηλαδή τῆς ἄρσεως) ὁπότε ἀπαραιτήτως δέον νὰ ἐπακολουθοῦν κατιὸντες χαρακτῆρες.
- 2) Τό 'Αντικένωμα τιθέμενον εἰς τὸ κύριον ἢ ἰσχυρὸν μέρος τοῦ μέτρου ὑπὸ τὸ Ἰσον ἢ τὸ 'Ολίγον μὲ ἀπλῆν π. χ. ἡ ἡ ἀπαιτεῖ ὅπως ἐπα κολουθεῖ εἰς μόνον κατιὼν χαρακτήρ μετά γοργοῦ, ὅστις ἐκτελούμενος προφέρεται τρόπον τινὰ κρεμάμενος ἄνευ διακοπῆς τῆς ἀναπνοῆς καὶ ἀχω ρίστως ἀπὸ τοῦ προηγουμένου χαρακτῆρος.

Φράσις π. χ. $\frac{x}{q}$ $\frac{1}{\eta}$ $\frac{1}{\alpha}$ $\frac{1}{\alpha}$

$$= \frac{\kappa}{q} \frac{1}{\eta} \frac{1}{\alpha} \frac{$$

Ετέρα φράσις μὲ 'Αντικένωμα, 'Ομαλόν καὶ Βαρείαν, ('Ιακώβου).

Είς τήν σύνθεσιν αὐτὴν τὸ 'Αντικένωμα ἐνεργεῖ ἐπὶ τοῦ 'Ολίγου, Εἰς δὲ τὴν σύνθεσιν μὲ τήν Πεταστὴν Οὕτω : "Οπισθεν

 π | χ | χ

5ον Τὸ Έτερον ή Σύνδεσμος Δ

Τὸ "Ετερον ἡ Σύνδεσμος () συνδέει δύο χαρακτήρας τῆς αὐτῆς ἡ διαφόρου ὀξύτητος,κάτωθεν τῶν ὁποίων τίθεται καὶ ζητεῖ ὅπως οἱ φθόγ γοι αὐτῶν προφέρωνται συνδεδεμένοι καὶ μὲ "Ελαφρὸν κυματισμὸν τῆς φωνῆς πάντοτε ὑπὸ μίαν καὶ τὴν αὐτήν συλλαβήν, τήν ὁποίαν δέχεται ὁ πρῶτος τῶν συνδεομὲνων χαρακτήρων καὶ οὐδέποτε ὁ δεύτερος. Π. χ

'Ανεξαρτήτως τοῦ Συνδέσμου εἰς τὴν ἀνωτέρω γραμμὴν προγράφεται καὶ ἡ βαρεῖα. Έτερον παράδειγμα μὲ Σύνδεσμον. Π. χ.

Όμοιως δταν κάτωθεν χαρακτήρος τινός ὑπὰρχουν δύο ἡ τρεῖς 'Απλαϊ καὶ ἀκολουθῷ κατιὼν χαρακτήρ, τότε ὑπογράφεται τὸ 'Ετερον ὑπὸ
τὰς 'Απλᾶς, ἱνα κρατῷ ἀχωρίστως ἐν αὐτῷ τοὺς δαπανωμένους χρόνους
τοῦ φθόγγου μὲ ἐλαφρὸν κυματισμὸν καὶ μὲ ἀκριβῷ ἐκτέλεσιν τῆς ἀναλύ
σεὼς των 1) ἄνευ γοργοῦ καὶ 2) μετὰ γοργοῦ.

Καὶ εἰς τὰς δύο ἀνωτέρω θέσεις ἡ ἐνέργεια τῆς βαρεῖας πὶπτει ἐπὶ τῆς τελευταίας ᾿Απλῆς, μεθ᾽ ἥν ἀκολουθεῖ κατὰβασις καὶ οὐχὶ ἐπὶ τοῦ Ἱσου τοῦ ὁποίου προγράφεται. (Ὅρα παραδείγματα γραφῆς μὲ ἀνάλυσιν καὶ τῶν τριῶν περιπτώσεων σελὶς. 133).

Καὶ 6ον Τὸ Ἐνδόφωνον ἤ Ρινόφωνον

Τὸ Ἐνδόφωνον ή Ρινόφωνον () τοῦ ὁποίου ή χρήσις εἶναι σπανιωτάτη σήμερον, τίθεται εἰς χαρακτήρα φέροντας τὰς συλλαβὰς (ἔμ) καί (ἔν) καὶ ἐκτελεῖται διὰ τῆς ρινὸς κεκλεισμένων τῶν χειλέων.

Συναντᾶται δὲ εἰς κρατήματα παλαιῶν Διδασκάλων (τερερισμούς).
Π. χ.π ξε ε ρε εμ τε εμ τε εμ τε ε ρε εμ τε ε ρε εμ τε ε ρε εμ τε ε ρε εμ τε εμ

Μὲ τοὺς ἀνωτέρω ἐκφραστικοὺς καὶ ἀναλυτικούς χαρακτήρας, ὡς πρὸς τὴν ἐκτέλεσιν, δύναται ὁ καλῶς κατηρτισμένος μουσικός νὰ ἀποδώση ἐν τῆ ψαλμωδία δλα τὰ ποικίλα ἰδιώματα τῆς μουσικής ποιότητος, ἤτοι τὸ ἔντονον τῆς φωνῆς, τὸ κυματοειδές, τὸ ἤπιον, τὸ τραχὺ κ.λ.π. ὡστε διὰ τῆς ἐνεργείας των αὐτῆς νὰ ἀκούηται τὸ μέλος ἐκφραστικόν, εὐχάριστον καὶ λίαν τερπνὸν. Χωρὶς ὅμως νὰ γὶνεται κατάχρησις τῶν ἀναλυτικῶν γραμμῶν, ὡς πρὸς τήν γραφήν, αίτινες θέσιν ἔχουν εἰς τὰ δημώδη ἄσματα. ᾿Ανευ αὐτῶν, τὸ μέλος θὰ ἤτο ξηρὸν καὶ τρόπον τινὰ ἄψυχον. Ἐνγένει ἡ ποιότης ἐξαρτᾶται ἀπὸ τὴν καλαισθησίαν καὶ καλὴν μουσικὴν κατὰρτισιν τοῦ Ἱεροψάλτου.

"Η δέ ξρμηνεία τῶν χαρακτήρων αὐτῶν ἐπιτυγχάνεται διὰ μόνης τῆς φωνητικῆς διδασκαλίας, ἥτις διεσώθη εἰς ἡμᾶς ὡς φωνητικὴ παρὰδοσις διὰ τῶν κατὰ καιροὺς ἀριστέων ἐκτελεστῶν καὶ διδασκάλων τῆς Ἐκκλησιαστικῆς Βυζαντινῆς μουσικῆς.

Φωνητικήν παράδοσιν λέγοντες έννοοῦμεν τὸ ἰδιαίτερον ἐκεῖνο ήθος δλων όμοῦ τῶν μελωδικῶν μας τρόπων καὶ ἐνὸς ἐκάστου ἰδιαιτέρως, ὑφ' δ παρουσιάζονται τὰ εἰς ἕνα ἕκαστον τῶν ὀκτὰ ἢχων ἀναγόμενα πολυ-

ποίκιλα μέλη, ἐκτελούμενα δμως ὑπὸ μουσικῶν, κατεχόντων ἄπαντα τὰ ἰδιαίτερα γνωρίσματα τῆς ἡμετέρας μουσικῆς, τῆς ἀπὸ στόματος εἰς στόμα διὰ μέσου τῶν αἰώνων διασωθείσης καὶ διὰ τῆς σημειογραφίας αὐτῆς εἰς σύστημα τέλειον ἀποκρυσταλλωθείσης. Τὴν παράδοσιν ταύτην κατὰ τὸ πλεῖστον ἀποτελοῦσι τὰ μουσικὰ διαστήματα ἐκάστου τῶν τριῶν μουσικῶν γενῶν, ἄτινα εἰναι φυσικὰ καὶ σταθερὰ, ὅπως καὶ τὰ δυνάμει τοῦ νόμου τῆς μελφδικῆς ἔλξεως εἰς καθ' ὡρισμένους, κανόνας κυμαινόμενα.

Έγραφον εν έτει Σωτηρίω 1969 εν τη εὐκλεεί τῶν Πατρέων πόλει. ΚΩΝΣΤΑΝΤΙΝΟΣ ΙΩΑΝ. ΠΑΝΑΣ

Μουσικοδιδάσκαλος—Καθηγητής εν τη Αρσακείφ Παιδαγωγική Ακαδημία Πατρών.