

Sharif University of Technology Department of Computer Engineering

Embedded System Design

StateCharts (Cont.) (8)

A. Ejlali

Moore and Mealy Automata

Moore:

Output reactions are assigned to the nodes of an automaton

Mealy:

- Output reactions are assigned to the arcs of an automaton
- Mixed Moore-Mealy automata are also possible.

Example: Moore

```
T<25°C
State PS=S1,NS;
Event e;
while(1){
                                 S2
                                                              S1
  case (PS) {
                              Heater: OFF
                                                          Heater: OFF
    S1:
                              Cooler: ON
                                                          Cooler: OFF
      Turn off(Heater);
      Turn off(Cooler);
                                            T>35°C
                                                                         T>30°C
      e=Wait for event();
      if(e=='T<15') NS=S3;
      else if (e=='T>35') NS=S2; end if;
    S2:
                                                                S3
                                                   T<15°C
      Turn off(Heater);
                                                              Heater: ON
      Turn on(Cooler);
                                                             Cooler: OFF
      e=Wait for event();
      if(e=='T<25') NS=S1; end if;
    S3:
      Turn on(Heater);
      Turn off(Cooler);
      e=Wait for event();
      if(e=='T>30') NS=S1; end if;
  PS=NS;
```

Example: Mealy

```
T<25°C
State PS=S1,NS;
Event e;
while(1){
                                   S2
                                                                 S1
  case (PS) {
                                                              Heater: OFF
                                Heater: OFF
    S1:
                                                              Cooler: OFF
                                Cooler: ON
       e=Wait for event();
       if(e=='T<15')</pre>
                                              T>35°C
                                                                              T>30°C
         NS=S3;
         Turn on(Heater);
         Turn off(Cooler);
       else if(e=='T>35')
                                                                    S3
                                                      T<15°C
         NS=S2;
                                                                 Heater: ON
         Turn off(Heater);
                                                                 Cooler: OFF
         Turn on(Cooler);
      end if;
    S2:
    S3:
```

PS=NS;

Mutually Dependent Assignments

Hysteresis

 Hysteresis is used to prevent chattering where the system would have rapid state transitions when the sensor input is close to the setpoint.

State Inertia

- Alternative solution is state inertia: a single threshold + state holding for at least T_{min} .
- Problem:
 - It does not have time-scale invariance
 - Time-Scale Invariance: time scaling at the input results in the same time scaling at the output. $_{T<30^{\circ}C}$

Sharif University of Technology Department of Computer Engineering

Embedded System Design

The MoC of Differential Equations (9)

A. Ejlali

Actor Models

 Actor: A box like that above, where the inputs are functions and the outputs are functions, is called an actor.

Actors

 Closely related to the concept of functional in mathematics.

 Can be used to model sensors, actuators, computation, and plant.

Example 1

 Actor model of the plant in the air conditioning system.

$$dE = mc dT$$

$$dT = \frac{1}{mc} dE$$

$$T = \frac{1}{mc} \int_{E_0}^{E_1} dE + T_0$$
Parameters:
$$m, c, T_0$$

$$T(t)$$

$$T = \frac{1}{mc} \int_{t_0}^{t_1} P(t)dt + T_0$$

Example 2

 Actor model of the plant in one dimensional velocity control.

$$F = ma$$

$$F = m \frac{dv}{dt}$$

$$dv = \frac{1}{m}Fdt$$

$$v = \frac{1}{m} \int_{t_0}^{t_1} F(t)dt + v_0$$

Key Point in Modeling a Plant

- The most important point in modelling a plant as an actor is to correctly determine the input(s) and output(s).
 - Output is what you desire to control.
 - Input is what you really give (apply) to the system from the viewpoint of the controller.