CMPE 310 Systems Design and Programming

L7: Chapter 10 – Memory Interface

L7 Objectives

- * To interface memory components to x88
- * Diagram how EPROM and SRAM modules are connected to x88

8088 (8-bit) memory interface

- * The memory systems sees the 8088 as a device with:
 - * 20 address connections $(A_{19} \text{ to } A_0)$.
 - * 8 data bus connections (AD_7 to AD_0).
 - * 3 control signals, IO/M, RD, and WR.
- * Interfacing the 8088 with:
 - * 32K of EPROM (at addresses F8000H through FFFFFH).
 - * 512K of SRAM (at addresses 00000H through 7FFFFH).
- * The EPROM interface uses a 74LS138 plus 8 2732 (4K X 8) EPROMs.
 - * $T_{acc} = 450ns \rightarrow generation of a wait state.$
 - * The 74LS138 requires 12ns to decode
 - * The 8088 runs at 5MHz and only allows 420ns for memory to access data.
 - * A wait state adds 200ns of additional time

CMPE 310

2

8088 (8-bit) memory interface

- * The 16 62256s on the previous slide are actually SRAMs.
 - * Access times are on order of 10ns.
- * Flash memory can also be interfaced to the 8088 (see text).
 - * Interface at physical address range of 80000H-FFFFFH
 - * Similar to a SRAM except that it requires 12V (5.0 or 3.3V newer) for writing via V_{PP} pin
 - * However, the write time (400ms!) is too slow to be used as RAM (text).

CMPE 310

Next Time

- * Memory Interfacing
 - * 16-bit memory interface

STOP

CMPE 310