# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

## PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-097804

(43) Date of publication of application: 09.04.1999

(51)Int.CI.

H01S 3/18 H01S 3/23

(21)Application number : 10-127013

(22)Date of filing:

11.05.1998

(71)Applicant: IND TECHNOL RES INST

(72)Inventor: SE SUZUFU

YO SHIHEI

O NOBUYASU

MAAKU OO FURIIMAN

(30)Priority

Priority number: 97 86113360

Priority date: 15.09.1997 Priority country: TW

## (54) DUAL-WAVELENGTH SEMICONDUCTOR DIODE PACKAGE

#### (57)Abstract:

PROBLEM TO BE SOLVED: To provide a laser diode package containing two laser diodes, which enables the use of an optical that can read the data from the optical discs of the different types such as CD, CD-R and DVD.

SOLUTION: A dual-wavelength laser diode package is provided, which can be used with an optical drive read/write head that can read the data from optical discs of different types. A set of laser diodes 131 and 132 having the different wavelengths, which are horizontally or vertically provided at one or two submounts 120, are included. Furthermore, a beam coincidence means such as a microwave bicolor prism, a micro-bicolor plate and a micro-bicolor beam splitter can be used for making the respective two beams propagate from the two laser diodes on the same propagating axis.



#### LEGAL STATUS

[Date of request for examination]

11.05.1998

[Date of sending the examiner's decision of

04.01.2000

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

Partial Translation of Japanese Patent Laying-Open No. 11-097804 [0020]

<Second Preferred Embodiment>

Referring to Figs. 6 and 7, a second preferred embodiment of a laser diode package according to the present invention will be disclosed and described in detail below.

[0021]

As shown in Fig. 6, the laser diode package of the present embodiment includes a base 200, a heat sink 210 attached on base 200, a submount 220 integrally formed of a structure including two steps with a higher plane and a lower plane attached on heat sink 210, and a pair of laser diodes including a first laser diode 232 attached on the higher plane of submount 220 and a second laser diode 231 attached on the lower plane of submount 220. The higher plane of submount 220 is located at a height from the lower plane of submount 220 so that the optical axes of laser beams from first and second laser diodes 232 and 231 can be brought very close together in parallel to each other.

[0022]

Submount 220 of Fig. 6 is integrally formed. As shown in Fig. 7, however, this submount may be formed of two stacked separate components including a first submount 221 and a second submount 222 placed on first submount 221, wherein first laser diode 232 is attached on first submount 221 and second laser diode is attached on second submount 222. [0023]

The laser diode package described above further includes a first power monitoring photodetector 241 placed at the rear of first laser diode 232 for monitoring output power of a laser beam generated by first laser diode 232 and a second power monitoring photodetector 242 placed at the rear of second laser diode 231 for monitoring output power of a laser beam generated by second laser diode 231. [0024]

All the aforementioned elements are contained in an enclosure 250 having a window 251 at the top, through which laser beams from first laser diode 232 or second laser diode 231 can exit outside the laser diode package.

[0025]

5

15

10

20

25

30

35

In fact, for example, one of first and second laser diodes 132 and 131 is used to generate a laser beam of a wavelength of 780 nm and the other is used to generate a laser beam of a wavelength of 635-650 nm. [0026]

5

10

In the case of the laser diode package as described above, two laser beams from two of first and second laser diodes 232 and 231 travel on two separate optical axes very close to each other in parallel. It is possible to provide an external beam combining means so that two laser beams from first and second laser diodes 232 and 231 during their use can travel on substantially the same axis. The detail will be described later with reference to Fig. 11.

#### (19)日本国特許庁(JP)

## (12) 公開特許公報(A)

(11)特許出願公開番号

## 特開平11-97804

(43)公開日 平成11年(1999)4月9日

(51) Int.Cl.<sup>6</sup> H 0 1 S 3/18 識別記号

F I 10 1 S

H01S 3/18

3/23

Z

3/23

審查請求 有

請求項の数12 OL (全 11 頁)

(21)出願番号

特願平10-127013

(22)出顧日

平成10年(1998) 5月11日

(31)優先権主張番号

86113360

(32)優先日

1997年9月15日

(33)優先権主張国

台湾 (TW)

(71)出願人 596170000

インダストリアル テクノロジー リサー

チ インスティテュート

Industrial Technology Research Institu

gy Research Institu

t e

台湾シンチュ31015, チュタン, 4番, チ

ュンシンロード, 195号

(72)発明者 施 錫富

台湾彰化県鹿▲港▼鎮後車巷37号

(72) 発明者 楊 子平

台湾台北市北投区公館路143号 5 接

(74)代理人 弁理士 萩原 誠

最終頁に続く

## (54) 【発明の名称】 二波長半導体レーザ・ダイオード・パッケージ

#### (57)【要約】

#### (修正有)

【課題】 CD、CD-RおよびDVDのような異なる タイプの光学的ディスクからデータを読取ることができ る光学的ドライブで使用することを可能にする、二個の レーザ・タイオードを内蔵するレーザ・タイオード・パッケージを提供する。

【解決手段】 異なるタイプの光学的ディスクからデータを読取ることができる、光学的ドライブの読取り/書き込みヘッドで使用可能な二波長レーザ・タイオード・バッケージであって、一つまたは二つのサブマウント1~20に相互に水平または垂直に設置されている異なる波長の一組のレーザ・タイオード131,132を含む。さらに、マイクロ二色プリズム、マイクロ二色アレート、マイクロ二色ビーム分割装置、のようなビーム一致手段を、二つのレーザ・ダイオードからの二つの各レーザ・ビームを同じ伝播軸上を伝播させるために使用することができる。



#### 【特許請求の範囲】

【請求項1】 ベースと、

前記ペース上に装着されているか、または一体に作られたヒート・シンクと、

前記ヒート・シンク上に装着されたサブマウントと、 前記サブマウント上に配置され、第一の光学的軸上を伝 揺するように方向づけられた第一の波長のレーザ・ビー ムを発生することができる第一のレーザ・ダイオード と、

前記サブマウント上の前記第一のレーザ・タイオードに 非常に接近して装着され、第一のレーザ・ビームが伝播 する前記第一の光学的軸に平行に、非常に接近して、第 二の光学的軸上を伝播するように方向づけられた第二の 波長のレーザ・ビームを発生することができる第二のレ ーザ・ダイオードとを備えたことを特徴とするレーザ・ ダイオード・バッケージ。

【請求項2】 請求項1に記載のレーザ・ダイオード・バッケージにおいて、前記第一および第二のレーザ・ダイオードによって発生した各レーザ・ビームの出力電力をモニタするために、前記第一および第二のレーザ・ダイオードの背面の前記ベース上に配置された電力モニタ光検出装置を備えたことを特徴とするレーザ・ダイオード・バッケージ。

【請求項3】 請求項1に記載のレーザ・ダイオード・バッケージにおいて、前記第一および第二のレーザ・ダイオードによって発生した、各レーザ・ビームの出力電力をモニタするために、前記第一および第二のレーザ・ダイオードの背面の前記サブマウントに配置された電力モニタ光検出装置を備えたことを特徴とするレーザ・ダイオード・バッケージ。

【請求項4】 請求項1に記載のレーザ・タイオード・バッケージにおいて、前記第一のレーザ・ダイオードによって発生する第一の波長のレーザ・ビームが、780 nmの波長を持ち、前記第二のレーザ・ダイオードによって発生する第二の波長のレーザ・ビームが、635~650 nmの波長を持つことを特徴とするレーザ・ダイオード・バッケージ。

【請求項5】 請求項1に記載のレーザ・ダイオード・パッケージにおいて、前記第一のレーザ・ダイオードによって発生する第一の波長のレーザ・ビームが、635~650nmの波長を持ち、前記第二のレーザ・ダイオードによって発生する第二の波長のレーザ・ビームが、780nmの波長を持つことを特徴とするレーザ・ダイオード・パッケージ。

【請求項6】 ベースと、

前記ベース上に装着されているか、または一体に作られ たヒート・シンクと、

前記ヒート・シンク上に装着された第一のサブマウント と

前記第一のサブマウント上に装着された第二のサブマウ

ントと、

前記第一のサブマウント上装着され、第一の光学軸上を 伝播するように方向づけられた第一の波長のレーザ・ビ ームを発生することができる第一のレーザ・タイオード と、

前記第二のサブマウント上に装着され、前記第一のレーザ・ビームが伝播する前記第一の光学的軸に平行に、非常に接近して、第二の光学的軸上を伝播するように方向づけられた第二の波長のレーザ・ビームを発生することができる第二のレーザ・タイオードとを備えたことを特徴とするレーザ・ダイオード・バッケージ。

【請求項7】 請求項6に記載のレーザ・ダイオード・バッケージにおいて、さらに、前記第一のレーザ・ダイオードによって発生したレーザ・ビームの出力電力をモニタするために、前記第一のレーザ・ダイオードの背面上の前記第一のサブマウント上に配置された第一の電力モニタ光検出装置と、前記第二のレーザ・ダイオードによって発生したレーザ・ビームの出力電力をモニタするために、前記第二のレーザ・ダイオードの背面上の前記第二のサブマウント上に配置された第二の電力モニタ光検出装置とを備えたことを特徴とするレーザ・ダイオード・バッケージ。

【請求項8】 請求項6に記載のレーザ・タイオード・ハッケージにおいて、前記第一のレーザ・タイオードによって発生する第一の波長のレーザ・ビームが、780 nmの波長を持ち、前記第二のレーザ・ダイオードによって発生する第二の波長のレーザ・ビームが、635~650 nmの波長を持つことを特徴とするレーザ・ダイオード・バッケージ。

【請求項9】 請求項6に記載のレーザ・ダイオード・バッケージにおいて、前記第一のレーザ・ダイオードによって発生する第一の波長のレーザ・ビームが、635~650nmの波長を持ち、前記第二のレーザ・ダイオードによって発生する第二の波長のレーザ・ビームが、780nmの波長を持つことを特徴とするレーザ・タイオード・バッケージ。

【請求項10】 ベースと、

前記ベース上に装着されているか、または一体に作られたヒート・シンクと、

前記ヒート・シンク上に装着された第一のサブマウント と、

前記第一のサブマウント上に装着された第二のサブマウントと、

前記第一のサブマウント上に装着され、第一の光学的軸上を伝播するように方向づけられた第一の波長のレーザ・ビームを発生することができる第一のレーザ・タイオードと

前記第二のサブマウント上に装着され、第一のレーザ・ ビームが伝播する前記第一の光学的軸に平行に、非常に 接近して、第二の光学的軸上を伝播するように方向づけ られた第二の波長のレーザ・ビームを発生することができる第二のレーザ・ダイオードと、

前記ヒート・シンク上に装置され、第一の反射面とこの第一の反射面に平行する第二の反射面とを持ち、前記第一の反射面が、前記第一および第二のレーザ・タイオードからの各レーザ・ビームが45度の入射角でそれと交わることができるように方向づけられているマイクロニ色プリズムとを備え、

前記第一の反射面が前記第一のレーザ・タイオードからの第一の波長のレーザ・ピームの波長に対して高い反射率を持ち、前記第二のレーザ・タイオードからの第二の波長のレーザ・ピームの波長に対して高い透過率を持ち、前記第二の反射面が前記第二のレーザ・ダイオードからの第二の波長のレーザ・ピームの波長に対して高い反射率を持つことを特徴とするレーザ・ダイオード・バッケージ。

#### 【請求項11】 ベースと、

前記ペース上に装着されているヒートシンクと、 前記ヒートシンク上に装着された第一のサブマウント と、

前記第一のサブマウント上に装着された第二のサブマウントと、

前記第一のサブマウント上装着され、第一の光学軸上を 伝播するように方向づけられた第一の波長のレーザ・ビームを発生することができる第一のレーザ・タイオード レ

前記第二のサブマウント上に装着され、第一のレーザ・ビームが伝播する前記第一の光学的軸に平行に、非常に接近して、第二の光学的軸上を伝播するように方向づけられた第二の波長のレーザ・ビームを発生することができる第二のレーザ・タイオードと、

前記ヒートシンク上に装着され、第一の反射面とこの第一の反射面に平行する第二の反射面とを持ち、前記第一の反射面が、前記第一および第二のレーザ・タイオードからの各レーザ・ビームが45度の入射角でそれと交わることができるように方向づけられているマイクロ二色フレートとを備え、

前記第一の反射面が前記第一のレーザ・タイオードからの第一の波長のレーザ・ビームの波長に対して高い反射率を持ち、前記第二のレーザ・タイオードからの第二の波長のレーザ・ビームの波長に対して高い透過率を持ち、前記第二の反射面が前記第二のレーザ・ダイオードからの第二の波長のレーザ・ビームの波長に対して高い反射率を持つことを特徴とするレーザ・ダイオード・バッケージ。

#### 【請求項12】 ベースと、

前記ペース上に装<mark>置されているかまたは一体に作られた</mark> ヒート・シンクと、

前記ヒート・シンク上に装着された第一のサブマウント と、 前記第一のサブマウント上に装着された第二のサブマウントと、

前記第一のサブマウント上に装着され、第一の光学軸上 を伝播するように方向づけられた第一の波長のレーザ・ ビームを発生することができる第一のレーザ・タイオー ドと

前記第二のサブマウント上に装着され、第一のレーザ・ ビームが伝播する前記第一の光学的軸に平行に、非常に 接近して、第二の光学軸上を伝播するように方向づけら れた第二の波長のレーザ・ビームを発生することができ る第二のレーザ・タイオードと、

前記ヒート・シンク上に装着され、第一の反射面とこの 第一の反射面に平行する第二の反射面とを持ち、前記第 一の反射面が、前記第一および第二のレーザ・タイオー ドからの各レーザ・ビームが、45度の入射角で、それ と交わることができるように方向づけられているマイク ロ二色ビーム分割装置とを備え、

前記第一の反射面が、前記第一のレーザ・ダイオードからの第一の波長のレーザ・ピームの波長に対して高い反射率を持ち、前記第二のレーザ・タイオードからの第二の波長のレーザ・ピームの波長に対して高い透過率を持ち、前記第二の反射面が、前記第二のレーザ・タイオードからの第二の波長のレーザ・ピームの波長に対して高い反射率を持つことを特徴とするレーザ・ダイオード・バッケージ。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、光学的装置で使用するレーザ源に除り、特に光学的ドライブを、CD(コンパクト・ディスク)、CD-R(記録可能なCD)およびDVD(デジタル万能ディスク)のような、二つの異なるタイプの光学的ディスクから、データを読むことができるようにする、光学的ドライブの読取り/書き込みヘッドで使用することができる、二波長レーザ・ダイオード・パッケージに関する。

#### [0002]

【従来の技術】レーザ・ダイオードは、特定の波長のレーザ・ビームを、発生することができる半導体レーザ源である。レーザ・ダイオードは、種々の多くの用途に使用される。例えば、レーザ・ダイオードは、CD、CDーRおよびDVDのような、光学的ディスクから、データを読みとるための、光学的ドライブで使用することができる。レーザ・ダイオードは、通常、バッケージの形で供給される、広く使用されているTOダイブのバッケージのような、従来のレーザ・ダイオード・バッケージを、一波長のレーザ・ダイオード・パッケージを、一波長のレーザ・ビームだけを発生できるようにする一つのレーザ・ダイオードだけを内蔵するような構造になっている。しかし、ある種の用途の場合には、二つの異なるダイブの光学的ディスクからデータを読むことができる光学的ド

ライブのように、二つの異なる波長のレーサ・ビームが必要になる場合がある。

【0003】図1は、一個の一波長のレーザ・タイオードを内蔵する従来のレーザ・タイオード・バッケージの簡単な斜視図である。図2は、図1のレーザ・タイオード・バッケージの内部構造を変化させたものである。

【0004】図1に示すように、レーザ・ダイオード・パッケージは、レーザ・ダイオード・チップ10を実装するためのエンクロージャ18、サブマウント12、ヒート・シンク14、およびその内部の電力モニタ16を含む。エンクロージャ18の内部においては、サブマウント12上にレーザ・ダイオード・チップ10が装着され、サブマウント12が、レーザ・ダイオード・チップ10の発生した熱を発散するために使用されるヒート・シンク14上に装着されている。さらに、エンクロージャ18は、その頂部に窓20を持ち、この窓により、レーザ・タイオード・チップ10の発生したレーザ・ビームは、そこを通り過ぎてレーザ・ダイオード・パッケージの外へ出ることができる。

【0005】図2は、図1のレーザ・ダイオード・パッケージの内部構造を変えたものである。この場合、電力モニタ(ここでは代わりに参照番号16aで示す)は、サブマウント(ここでは代わりに参照番号12aで示す)上に、レーザ・ダイオード(ここでは代わりに参照番号10aで示す)と一緒に装着されている。基本的には、電力モニタは、レーザ・ダイオード・チップの発生した、レーザ・ダイオード・チップの背面上に装着されなければならない。

【0006】上記レーザ・ダイオード・パッケージは、従来の低密度CDまたはCD-Rのような、一つのタイプの光学的ディスクからデータを読取るための光学的ドライブで使用することができる一波長のレーザ・ビームしか供給することができない。新しく導入されたDVDのような、新しい高密度記憶媒体が開発されたので、このような新しいタイプの光学的ディスクからデータを読取るには、より短い波長のレーザ・ビームを使用しなければならない。しかし、互換性を持たせるために、新しいDVDドライブはまたもっと種々の用途に使用することができるように、古いタイプの光学的ディスク(すなわち、CDまたはCD-R)からデータを読取ることができるものでなければならない。

【0007】図3は、CD、CD-RまたはDVDからデータを読取ることができる従来の光学的ドライブの読取りヘッドの光学的構造の略図である。図に示すように、この読取りヘッドは、例えば、780nm(ナノメートル)の第一の波長のレーザ・ビームを発生するための第一のレーザ源22a(レーザ・タイオードおよび光検出装置を含むモジュール)、および、例えば、635~650nmの第二の波長のレーザ・ビームを発生する

ための第二のレーザ源22b(レーザ・タイオード)を含む一組の別々の一波長レーザ源を含む。第一および第二のレーザ源22a、22bは、現在ドライブに挿入されている光学的ディスク(例えば、CD、CD-RまたはDVD)のタイプによって、選択的に作動させることができる。

【0008】例えば、CDまたはCD-Rを読取る場合には、第一のレーザ源22aが作動し、第二のレーザ源22bは作動しない。DVDを読取る場合には、第一のレーザ源22aは作動せず、第二のレーザ源22bが作動する。

【0009】第一のレーザ源22aが作動した場合(例えは、CDまたはCD-Rを読取る場合)には、このレーザ源がレーザ・ビームを発生し、そのレーザ・ビームは、反射鏡24aにより、対物レンズ26aに向かって反射し、この対物レンズは、読取り対象のデータが位置しているCDまたはCD-R上にレーザ・ビームの焦点を結ぶ。

【0010】第二のレーザ源22bが作動した場合(例えば、DVDを読取る場合)には、このレーザ源がレーザ・ビームを発生し、そのレーザ・ビームはビーム分割装置24bにより反射して、別の伝播経路20bに入り、その後でコリメータ28bを通り、そこでレーザ・ビームは視準され、まっすぐなビームになる。その後、コリメータ28bを通過するレーザ・ビームは、反射鏡30bにより、対物レンズ32bに向かって反射し、この対物レンズは、読取り対象のデータが位置しているDVD上に、レーザ・ビームの焦点を結ぶ。DVDからの反射光は、その後、反対方向に伝播してビーム分割装置24bに戻り、このビーム分割装置は、反射光の一部を受け入れ、そこを通して光検出装置26bが装着されている伝播経路20cに送る。

#### [0011]

【発明が解決しようとする課題】上記の読取り/書き込 みヘッドの一つの欠点は、構造が複雑なことである。C D-Rのデータにアクセスすることができるのは、78 0 nmのレーザ光線だけである。CD-Rのデータも読 取るようにするには、製造コストが高くなる。何故な ら、光学的ドライブを、CD、CDーRまたはDVDか ら、データを読取ることができるようにするためには、 例えば、波長635~650 nmのレーザ・ダイオード と、波長780nmのもう一つのレーザ・タイオードの ような、二つの別々の一波長のレーザ源が必要になるか らである。高密度のDVDが開発されたので、新しく開 発された光学的ドライブは、特にこの新しいタイプの光 学的ディスクからデータを読取るように設計される。し かし、互換性を持たせるために、新しいDVDドライブ は、また顧客が自分達の新しい光学的ドライブでいろい ろな媒体を読むことができるように、古いCDまたはC D-Rからもデータを読取ることができるものでなけれ

ばならない。それ故、波長の異なる二つのレーザ・ビー ムの一方を、選択的に発生するのに使用することができ るレーザ・ダイオード・バッケージが必要になる。

【0012】それ故、本発明の一つの目的は、レーザ・ タイオード・バッケージを、CD、CD-RおよびDV Dのような異なるタイプの光学的ディスクからデータを 読収ることができる、光学的ドライブで使用することを 可能にする、二つのレーザ・タイオードを内蔵するレー ザ・ダイオード・バッケージを提供することである。

#### [0013]

【課題を解決するための手段】本発明の上記および他の 目的に従って、新しいレーザ・タイオード・バッケージ の提供が行われる。本発明のレーザ・ダイオード・パッ ケージは、一つまたは二つのサブマウント上に相互に水 平または垂直方向を向いて設置されている二つの異なる 波長の一組のレーザ・ダイオードを含む。二つのレーザ ・タイオードからのそれぞれの二つのレーザ・ビームが 同じ光軸上を伝播できるようにするために、ピーム一致 手段が設置される。このピーム一致手段は、マイクロニ 色フリズム、マイクロ二色プレート、マイクロ二色ビー ム分割装置、または二つのレーザ・ダイオードからの二 つのそれぞれのレーザ・ビームを、同じ伝播軸上で一致 させるために使用する外部二色ビーム分割装置のどれで、 あってもよい。添付の図面を参照しながら、好道な実施 形態の以下の詳細な説明を読めば、本発明をさらによく 理解することができる。

#### [0014]

#### 【発明の実施の形態】

<第一の好適な実施形態>図4~図5を参照しながら、 本発明のレーザ・ダイオード・バッケージの第一の好適 な実施形態を以下に詳細に開示および説明する。

【0015】図4に示すように、この実施形態のレーザ ・ダイオード・バッケージは、ベース100と、ベース 100上に装着されたヒート・シンク110と、ヒート ・シンク110上に装着されたサブマウント120と、 サブマウント120上に相互に並んで配置され、図4の 太い矢印で示すように、そこから発射される各レーザ・ ビームの二つの光学的軸が平行に、そして相互に接近す るように向いている第一のレーザ・ダイオード131お よび第二のレーサ・タイオード132を含む一組のレー ザ・ダイオードを含む。さらに、上記レーザ・ダイオー ド・パッケージは、第一および第二のレーザ・ダイオー ド131、132の背面に配置され、ベース100上に 装置されている電力モニタ光検出装置140を含む。電 カモニタ光検出装置140は、第一および第二のレーザ ・タイオード131、132の出力電力をモニタするの に使用される。すべての上記素子は、エンクロージャ1 50に内蔵されている。さらに、エンクロージャ150 は、その頂部に窓151を持ち、第一および第二のレー サ・タイオードからの各レーザ・ビームは、この窓を通

ってレーザ・クイオード・パッケージの外へ出ることが できる。

【0016】第一のレーザ・ダイオード131は、第一 の外部ピン171に電気的に接続している電極と、第二 の外部ピン172に電気的に接続しているサブマウント 120上の共通パッド(図示せず)に接続しているもう 一つの電極を持つ。同様に、第二のレーザ・タイオード 132は、第三の外部ピン173に電気的に接続してい る電極と、第二の外部ピン172に電気的に接続してい るサブマウント120上の共通バッド(図示せず)に接 続しているもう一つの電極を持つ。

【0017】図4においては、電力モニタ光検出装置1 40は、ベース100上に装着され、第四の外部ピン1 74に電気的に接続している。図5は、他の方法、すな わち、レーザ・タイオードの内部構造を変更したものを 示す。この実施形態の場台には、参照番号141で示す 電力モニタ光検出装置は、第一および第二のレーザ・ダ イオード131、132と一緒に、サブマウント120 上に配置されている。

【0018】実際には、例えば、第一および第二のレー ザ・ダイオード131、132の一方は波長780nm のレーザ・ビームを発生するのに使用され、他方のレー ザ・ダイオードは波長635~650 nmのレーザ・ビ ームを発生するのに使用される。

【0.01.9】上記レーサ・ダイオード・バッケージの場 台には、二つの第一および第二のレーザ・ダイオード1 31、132からの二つのレーザ・ビームは、二つの別 々の平行で非常に接近している光学的軸上を伝播する。 使用中、第一および第二のレーザ・ビーム131、13 2からの二つの各レーザ・ビームがほぼ同じ軸上を伝播 することができるように、外部ピーム一致手段を設置す ることができる。詳細については、図11のところで後 に説明する。

【0020】<第二の好適な実施形態>図6~図7を参 照しながら、本発明のレーザ・ダイオード・バッケージ の第二の好適な実施形態を以下に詳細に開示および説明 する。

【0021】図6に示すように、この実施形態のレーザ ・ダイオード・パッケージは、ベース200と、ベース 200上に装置されたヒート・シンク210と、ヒート ・シンク210上に装着された低い面と高い面とを含む ステップが二つの階段のような構造を持つ一体に形成さ れたサブマウント220と、第一のサブマウント221 の高い面上に装着された第一のレーザ・タイオード23 2と、サブマウント220の低い面上に装着された、第 二のレーザ・ダイオード231とを含む一組のレーザ・ タイオードとを含む。サブマウント220の高い面は、 サブマウント220の低い面からある高さに位置してい て、それにより、第一および第二のレーザ・ダイオード 232、231からの各レーザ・ビームの光学的軸を、

相互に平行で非常に接近させることができる。

【0022】図6のサブマウント220は一体に形成されている。しかし、図7に示すように、このサブマウントは、第一のレーザ・タイオード232が第一のサブマウント221の上に装置され、第二のレーザ・タイオード231が第二のサブマウント222の上に装置されている、第一のサブマウント221および第一のサブマウント221の上に置かれた第二のサブマウント222を含む二つの別々の部品を積み上げたものでもよい。

【0023】さらに、上記レーザ・ダイオード・バッケージは、第一のレーザ・ダイオード232が発生したレーザ・ビームの出力電力をモニタするために、第一のレーザ・ダイオード232の背面に置かれた、第一の電力モニタ光検出装置241と、第二のレーザ・ダイオード231が発生した、レーザ・ビームの出力電力をモニタするために、第二のレーザ・ダイオード231の背面に置かれた、第二の電力モニタ光検出装置242とを含む。

【0024】上記すべての素子は、頂部に窓251を持つエンクロージャ250に内蔵されていて、第一のレーザ・ダイオード232または第二のレーザ・ダイオード231からのレーザ・ビームはこの窓を通ってレーザ・ダイオード・バッケージの外へ出ることができる。

【0025】実際には、例えば、第一および第二のレーザ・タイオード132、131の一方は、波長780 nmのレーザ・ビームを発生するのに使用され、他方のレーザ・ダイオードは、波長635~650 nmのレーザ・ビームを発生するのに使用される。

【0026】上記レーザ・ダイオード・バッケージの場合には、二つの第一および第二のレーザ・ダイオード232、231からの二つのレーザ・ビームは、二つの別々の平行で非常に接近している光学的軸上を伝播する。使用中、第一および第二のレーザ・ダイオード232、231からの二つの各レーザ・ビームが、ほぼ同じ軸上を伝播することができるように、外部ビーム一致手段を設置することができる。詳細については、図11のところで後に説明する。

【0027】 <第三の好適な実施形態>上記実施形態の場合には、二つの各レーザ・ビームはレーザ・タイオード・パッケージから出て二つの別々の、しかし、接近した平行な整合光学軸上を伝播する。以下に、他の三つの好適な実施形態について開示するが、これらの実施形態の場合には、第一および第二のレーザ・ダイオードからの二つの各レーザ・ビームはレーザ・ダイオード・バッケージから放射されほぼ同じ光学軸上を伝播する。

【0028】図8を参照しながら、本発明のレーザ・ダイオード・パッケージの第三の好道な実施形態を以下に詳細に開示し説明する。

【0029】図8に示すように、この実施形態のレーザ・ダイオード・パッケージはベース300と、ベース3

00上に装置された低い面と高い面とを持つヒート・シンク310と、ヒート・シンク310上に装置された第一のサブマウント321と、第一のサブマウント321上に装置された第二のサブマウント322を含む損み重ねた階段状の構造体320と、第一のサブマウント321に装置された第一のレーザ・タイオード332とを含む、一組のレーザ・タイオードを含む。第二のサブマウント321から高さDのところにある。

【0030】さらに、上記レーザ・ダイオード・バッケージは、第一のレーザ・ダイオード331が発生したレーザ・ビームの出力電力をモニタするために、第一のレーザ・タイオード331の背面に置かれた図示しない第一の電力モニタ光検出装置と、第二のレーザ・タイオード332が発生したレーザ・ビームの出力電力をモニタするために、第二のレーザ・ダイオード332の背面に置かれた図示しない第二の電力モニタ光検出装置とを含む。

【0031】上記すべての素子は、頂部に窓351を持つエンクロージャ350に内蔵されていて、第一のレーザ・ダイオード331または第二のレーザ・ダイオード332からのレーザ・ビームはこの窓を通ってエンクロージャ350の外へ出ることができる。

【0032】この実施形態は、特にレーザ・ダイオード ・パッケージが、第一および第二のレーザ・ダイオード 331、332からの各レーザ・ビームをほぼ同じ光学 的軸上を通して、エンクロージャ350の外へ放射する ことができるマイクロ二色プリズム360を含んでいる という点で、上記二つの実施形態と異なる。上記マイク ロ二色プリズム360は、厚さdの間隔を持つ頂部反射 面361と底部反射面362とを含む。この特定の実施 形態の場台には、d=D/√2である。マイクロ二色プ リズム360は、ヒート・シンク310の切除部分上に 装着され、第一および第二のレーザ・ダイオード33 1、332からの各レーザ・ビームが45度の入射角 で、頂部反射面361に交わるような方向を向いてい る。頂部反射面361は、第一のレーザ・ダイオード3 31からのレーザ・ビームに対してはほとんど100% の透過率を持ち、第二のレーザ・ダイオード 332から のレーザ・ビームに対しては、ほぼ100%の反射率を 持つ。それ故、第二のレーザ・タイオード332からの レーザ・ビームは、必要な共通の光学的軸に対して、4 5度の角度で、コーティング 3 6 1 の露出面により反射 される。第一のレーザ・ダイオード331からのレーザ ・ビームの場合には、頂部反射面361を透過した後 で、同様に45度の角度で底部反射面362により反射 され、その後で、頂部反射面361を通り、同じ共通光 学的軸に到着する。それ故、第一および第二のレーザ・ ダイオード331、332からの二つの各レーザ・ビー

ムは、レーザ・タイオード・パッケージから放射されて 同じ共通の光学的軸上を伝播する。

【0033】<第四の好適な実施形態>図9を参照しながら、本発明のレーザ・タイオード・バッケージの第四の好適な実施形態を以下に詳細に開示および説明する。

【0034】図りに示すように、この実施形態のレーザ・タイオード・バッケージはベース400と、ベース400上に装着されたヒートシンク410と、ヒートシンク410上に装着された第一のサブマウント421と、第一のサブマウント421の上に装着された第二のサブマウント422とを含む積み上げた階段状の構造体420と、第一のサブマウント421上に装着された第一のレーザ・ダイオード431と、第二のサブマウント42とを含む、一組のレーザ・ダイオードを含む。第二のサブマウント422と第一のサブマウント421との間の高さの違いはDである。これらの素子は、図8の実施形態のものと同じであるので説明を省略する。

【0035】この実施形態と上記第三の実施形態との間の違いは、上記実施形態のマイクロ二色プリズム360の代わりに、ヒート・シンク410の突出した三角形の部分の傾斜面上に装着されているマイクロ二色プレート460を使用しているという点だけである。同様に、マイクロ二色プレート460は頂部反射面461および底部反射面462を持つ。頂部および底部反射面461、462の向きおよび機能は、図8の実施形態の頂部および底部反射面361、362のそれと同じであるので説明は省略する。

【0036】<第五の好適な実施形態>図10を参照しながら、本発明のレーザ・ダイオード・パッケージの第五の好適な実施形態を以下に詳細に開示および説明する。

【0037】図10に示すように、この実施形態のレーザ・タイオード・バッケージはベース500と、ベース500上に装着されたヒート・シンク510と、ヒート・シンク510上に装着された第一のサブマウント521上に装着された第二のサブマウント522とを含む、積み上げた階段状の構造体520と、第一のサブマウント521上に装着された第一のレーザ・タイオード531と、第二のサブマウント522上に装着された第二のレーザ・タイオード532とを含む、一組のレーザ・タイオードを含む。第二のサブマウント522と、第一のサブマウント521との間の高さの違いはDである。これらの素子は、図8および図9の実施形態のものと同じであるので、説明を省略する。

【0038】この実施形態と図8および図9の実施形態との間の違いは、マイクロ二色プリズム360またはマイクロ二色プレート460の代わりに、ヒート・シンク510の切除部分上に装置されている立方体を使用して

いるという点だけである。マイクロ二色ビーム分割装置 5 6 0 は、第一の反射面 5 6 1 と第二の反射面 5 6 2 と を持つ。これら二つの反射面 5 6 1 および 5 6 2 の向き および機能は、図 8 の反射面 3 6 1、3 6 2 および反射面 4 6 1、4 6 2 のそれと同じであるので説明は省略する。

【0039】図11は、光学的ドライブの読取り/書き込みヘッドの第一または第二の好適な実施形態の、レーザ・タイオード・パッケージの使用例を示す簡単な図である。参照番号80は、この実施形態で使用されるレーザ・タイオード・パッケージを示す。すでに説明したように、第一または第二の実施形態のレーザ・タイオード・パッケージは、その内部の二つのレーザ・タイオード・パッケージは、その内部の二つのレーザ・タイオードからの各レーサ・ビームの光学軸が相互に正確に一致しないように設計されているので、光学的ドライブの読取り/書き込みヘッドに、この図に示す二波長二色ビーム分割装置82のような、外部ビーム一致手段を設置して、レーザ・タイオード・パッケージからの二つの各レーザ・ビームが、同じ光学的軸上をシステムの方向に伝播するようにしなければならない。

【0040】レーザ・ダイオード・バッケージ80および二色ビーム分割装置82の他に、読取り/書き込みヘッドは、さらに、ビーム分割装置84、コリメータ86、反射鏡88、第一対物レンズ90a(DVDを読むときに使用する)、および第二の対物レンズ90b(CDまたはCD-Rを読むときに使用する)を含む。この読取り/書き込みヘッドは、DVD、CDまたはCD-Rのような光学的ディスク92から、データを読むときに使用される。光学的ディスク92からの反射光は、その後、光検出装置94に向かって逆方向に伝播する。このシステムの読取り動作は、従来のシステムと同じなので説明は省略する。

【0041】図12は、光学的ドライブの読取り/書き込みヘッドの第三、第四または第五の実施形態のレーザ・タイオード・バッケージの使用例を示す略図である。参照番号86は、この実施形態で使用するレーザ・タイオード・バッケージを示す。

【0042】特に説明すると、第三、第四または第五の好適な実施形態のレーザ・ダイオード・バッケージは、内蔵の二つのレーザ・ダイオードからの各レーザ・ビームの光学軸が、相互に正確に一致するように設計されている。それ故、図11のシステムで使用する二色ビーム分割装置82は省略することができる。それ故、図11のシステムの構成部品と同じであり、同じ参照番号がついている他の構成部品の説明は省略する。

【0043】例示としての好適な実施形態を参照しながら本発明を説明してきた。しかし、本発明の範囲は開示の実施形態により制限されるものでないことを理解されたい。それどころか、その種々の修正および類似の装置も本発明に含まれる。それ故、特許請求の範囲をできる

だけ広く解釈して、上記のようなすべての修正および類 似の装置を本発明の特許請求の範囲に含まれるようにす べきである。

【0044】 <関連出願との相互参照>本出願は、引用によってその全文を本明細書の記載に援用する、1997年9月15日付の台湾出願第86113360号の優先権の利益を要求する。

#### 【図面の簡単な説明】

【図1】一個の一波長のレーザ・タイオードを内蔵する 従来のレーザ・タイオード・パッケージの簡単な斜視図 である。

【図2】図1のレーザ・ダイオード・パッケージの内部 構造を変更したものである。

【図3】 従来のレーザ・ダイオード・バッケージを使用 する光学的ドライブ用の従来の読取り/書き込みヘッド の光学的構造の略図である。

【図4】本発明のレーザ・タイオード・パッケージの第 一の好適な実施形態の簡単な斜視図である。 【図5】図4のレーザ・タイオード・パッケージの内部 構造を変更したものである。

【図6】本発明のレーザ・タイオード・バッケージの第二の好適な実施形態の簡単な斜視図である。

【図7】図6のレーザ・ダイオード・パッケーシの内部 構造を変更したものである。

【図8】本発明のレーザ・ダイオード・パッケージの第 三の好適な実施形態の簡単な斜視図である。

【図9】本発明のレーザ・ダイオード・バッケージの第 四の好適な実施形態の簡単な斜視図である。

【図10】本発明のレーザ・ダイオード・パッケージの 第五の好適な実施形態の簡単な斜視図である。

【図11】光学的ドライブの読取り/書き込みヘッドの 第一または第二の好適な実施形態のレーザ・タイオード ・パッケージの使用例の略図である。

【図12】光学的ドライブの読取り/書き込みヘッドの 第三、第四または第五の好適な実施形態のレーザ・ダイ オード・パッケージの使用例の略図である。





[29]



[図10]







【图12】



## フロントページの続き

## (71) 出願人 596170000

No. 195, Chung Hsing R oad, Sec. 4, Chutung, H sinchu 31015, Taiwan, R. O. C.

(72) 発明者 王 進康

台湾台北県永和市安樂路198巷2弄10号3 牌

(72) 発明者 マーク オー フリーマン アメリカ合衆国 カリフォルニア州 \$4401 サンマテオ ティルトンアヴェニ ュー106