Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 4

Visualizing relations as graphs

- Teachers and courses
 - T, set of teachers in a collegeC, set of courses being offered
 - A ⊆ T × C describes the allocation of teachers to courses
 - $\blacksquare A = \{(t,c) \mid (t,c) \in T \times C, t \text{ teaches } c\}$

Teachers and courses

Visualizing relations as graphs

- Teachers and courses
 - T, set of teachers in a collegeC, set of courses being offered
 - A ⊆ T × C describes the allocation of teachers to courses
 - $\blacksquare A = \{(t,c) \mid (t,c) \in T \times C, t \text{ teaches } c\}$
- Friendships
 - P, a set of students
 - F ⊆ P × P describes which pairs of students are friends
 - $F = \{(p,q) \mid p,q \in P, p \neq q, p \text{ is a friend of } q\}$
 - $(p,q) \in F \text{ iff } (q,p) \in F$

Friendship

- Graph: G = (V, E)
 - V is a set of vertices or nodes
 - One vertex, many vertices
 - **E** is a set of edges
 - $E \subseteq V \times V$ binary relation

- Graph: G = (V, E)
 - V is a set of vertices or nodes
 - One vertex, many vertices
 - **E** is a set of edges
 - $E \subseteq V \times V$ binary relation
- Directed graph
 - $(v, v') \in E$ does not imply $(v', v) \in E$
 - The teacher-course graph is directed

Teachers and courses

- Graph: G = (V, E)
 - V is a set of vertices or nodes
 - One vertex, many vertices
 - **E** is a set of edges
 - $E \subseteq V \times V$ binary relation
- Directed graph
 - $(v, v') \in E$ does not imply $(v', v) \in E$
 - The teacher-course graph is directed
- Undirected graph
 - $(v,v') \in E \text{ iff } (v',v) \in E$
 - Effectively (v, v'), (v', v) are the same edge
 - Friendship graph is undirected

Friendship

Paths

- A path is a sequence of vertices $v_1, v_2, ..., v_k$ connected by edges
 - For $1 \le i < k$, $(v_i, v_{i+1}) \in E$

Friendship graph

Paths

- A path is a sequence of vertices v_1, v_2, \dots, v_k connected by edges
 - For $1 \le i < k$, $(v_i, v_{i+1}) \in E$
- Normally, a path does not visit a vertex twice
- A sequence that re-visits a vertex is usually called a walk
 - Kumar Feroze Colin Aziz Priya Feroze — Sheila

Friendship graph

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v

Airline routes

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?
 - What is the shortest path from u to v?
 - What are the vertices reachable from u?
 - Is the graph connected? Are all vertices reachable from each other?

Airline routes

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?
 - What is the shortest path from u to v?
 - What are the vertices reachable from u?
 - Is the graph connected? Are all vertices reachable from each other?

Airline routes

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?
 - What is the shortest path from u to v?
 - What are the vertices reachable from u?
 - Is the graph connected? Are all vertices reachable from each other?

Airline routes

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours
- Only need the underlying graph

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours
- Only need the underlying graph
- Abstraction: if we distort the graph, problem is unchanged

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G

Madhavan Mukund Graphs PDSA using Python Week 4

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For planar graphs derived from geographical maps, 4 colours suffice

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For planar graphs derived from geographical maps, 4 colours suffice
 - Not all graphs are planar. General case? Why do we care?

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For planar graphs derived from geographical maps, 4 colours suffice
 - Not all graphs are planar. General case? Why do we care?
- How many classrooms do we need?
 - Courses and timetable slots, edges represent overlapping slots
 - Colours are classrooms

English

Math

History

Science

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For planar graphs derived from geographical maps, 4 colours suffice
 - Not all graphs are planar. General case? Why do we care?
- How many classrooms do we need?
 - Courses and timetable slots, edges represent overlapping slots
 - Colours are classrooms

Vertex cover

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera can monitor all corridors that meet at an intersection
- Minimum number of cameras needed?

8/11

Madhavan Mukund Graphs PDSA using Python Week 4

Vertex cover

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera can monitor all corridors that meet at an intersection
- Minimum number of cameras needed?
- Represent the floor plan as a graph
 - V intersections of corridors
 - *E* corridor segments connecting intersections

Vertex cover

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera can monitor all corridors that meet at an intersection
- Minimum number of cameras needed?
- Represent the floor plan as a graph
 - V intersections of corridors
 - *E* corridor segments connecting intersections
- Vertex cover
 - Marking v covers all edges from v
 - Mark smallest subset of V to cover all edges

Independent set

- A dance school puts up group dances
 - Each dance has a set of dancers
 - Sets of dancers may overlap across dances
- Organizing a cultural programme
 - Each dancer performs at most once
 - Maximum number of dances possible?

Independent set

- A dance school puts up group dances
 - Each dance has a set of dancers
 - Sets of dancers may overlap across dances
- Organizing a cultural programme
 - Each dancer performs at most once
 - Maximum number of dances possible?
- Represent the dances as a graph
 - V dances
 - *E* sets of dancers overlap

Independent set

- A dance school puts up group dances
 - Each dance has a set of dancers
 - Sets of dancers may overlap across dances
- Organizing a cultural programme
 - Each dancer performs at most once
 - Maximum number of dances possible?
- Represent the dances as a graph
 - V dances
 - *E* sets of dancers overlap
- Independent set

 Subset of vertices such that no two are connected by an edge

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships
- Find a good allocation of groups
- Matching
 - G = (V, E), an undirected graph
 - A matching is a subset *M* ⊆ *E* of mutually disjoint edges

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships
- Find a good allocation of groups
- Matching
 - G = (V, E), an undirected graph
 - A matching is a subset $M \subseteq E$ of mutually disjoint edges
- Find a maximal matching in G

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships
- Find a good allocation of groups
- Matching
 - G = (V, E), an undirected graph
 - A matching is a subset M ⊆ E of mutually disjoint edges
- Find a maximal matching in G
- Is there a perfect matching, covering all vertices?

Summary

- A graph represents relationships between entities
 - Entities are vertices/nodes
 - Relationships are edges
- A graph may be directed or undirected
 - A is a parent of B directed
 - A is a friend of B undirected

11 / 11

Madhavan Mukund Graphs PDSA using Python Week 4

Summary

- A graph represents relationships between entities
 - Entities are vertices/nodes
 - Relationships are edges
- A graph may be directed or undirected
 - A is a parent of B directed
 - A is a friend of B undirected
- Paths are sequences of connected edges
- Reachability: is there a path from u to v?

11 / 11

Madhavan Mukund Graphs PDSA using Python Week 4

Summary

- A graph represents relationships between entities
 - Entities are vertices/nodes
 - Relationships are edges
- A graph may be directed or undirected
 - A is a parent of B directed
 - A is a friend of B undirected
- Paths are sequences of connected edges
- Reachability: is there a path from u to v?

- Graphs are useful abstract representations for a wide range of problems
- Reachability and connectedness are not the only interesting problems we can solve on graphs
 - Graph colouring
 - Vertex cover
 - Independent set
 - Matching
 - . . .