CLAIMS:

What is claimed is:

	•	
1	1	
2	2 a first region of semiconductor material of	of a first conductivity type;
3	a second region of semiconductor materi	al of a second conductivity
4	4 type opposite the first conductivity type and extending	g over a portion of the first
5	5 region, the device being configured to permit light to	enter the second region;
6	6 third and fourth regions of semiconducto	or material of the first
7 [:]	7 conductivity type extending over portions of the secon	nd region, the third and
8	fourth regions being respectively coupled to first and second electrical contacts.	
1	1 2. The device of claim I wherein the first co	onductivity type is P and
2	2 the second conductivity type is N.	
1	1 3. The device of claim 1 wherein the third	and fourth regions are
2	more heavily doped than the first region.	
1	1 4. A method of using a photocell, comprisi	ng
2	2 exposing the photocell to incident light;	
3	driving a sample node of the photocell to	o a reset value;
4	4 sensing a monitor node of the photocell.	the signal values of the

5

6

7

monitor and sample nodes decaying in response to the incident light; and

value of the monitor node having decayed to a predetermined value.

driving the monitor node to a stop value in response to the signal

1	5.	The method of claim 4 further comprising:
2	\	releasing the sample node after driving the sample node to the reset
3	value;	
4		storing a first time value corresponding to the point in time of
5	releasing the	e sample node; and
6		storing a second time value corresponding to the point in time of
7	driving the	monitor node.
1	6.	The method of claim 4 wherein exposing is started after driving the
2	sample node	2.
1	7.	The method of claim 4 further comprising:
2		reading an output value related to the signal value of the sample
3	node.	
ub	8.	An imaging system comprising:
2		an image sensor having a plurality of photocells, the photocells
3	providing sensor signals in response to incident light and control signals, the	
4	photocells being part of an integrated circuit (IC) die, the IC die having a first	
5	region of semiconductor material of a first conductivity type, each of the plurality	
6	of photocells having	
7		a second region of semiconductor material of a second
8	conductivity	type opposite the first conductivity type and extending over a
9	portion of the first region, the C die being configured to permit the incident light	
10	to onter the second region	

· · ·
ű
TI!
ĒĒ,
₽.
7.4
Ţ
577

1

2

3

5

6

11	third and fourth regions of semiconductor material of the		
12 م	first conductivity type extending over portions of the second region, the third		
13	and fourth regions respectively coupled to first and second electrical contacts;		
14	ontrol circuitry configured to generate the control signals for		
15	controlling the mage sensor; and		
16	signal processing circuitry for generating image data in response to		
17	the sensor signals.		

- 9. The imaging system of claim 8 wherein the plurality of photocells define one or more sets of photocells, each set being associated with a respective monitor node, the second contact of each photocell in a set being coupled to the set's respective monitor node, the system being further configured to stop integration in one or more of the sets in response to detecting a predetermined value on the set's respective monitor node.
- The imaging system of claim wherein the plurality of photocells define one set associated with a single monitor node.
- The imaging system of claim 8 wherein the plurality of photocells are arranged as an array and define a plurality of sets, each set defined by a column of the array.
 - 1 12. The imaging system of claim 8 further comprising 2 system controller for controlling the signal processing circuitry.

D	nez
10	\mathbf{M}_{2}

13. The imaging system of claim 8 further comprising optical system configured to receive the incident light to form an

- 3 image on the image sensor; and
- 4 communication interface for transferring the image data to an
- 5 image processing system separate from the imaging system.
- 1 14. The imaging system of claim 8 wherein the third and fourth regions
- 2 are formed as implants using a MOS fabrication process.
- The imaging system of claim wherein each photocell further
- 2 comprises reset circuit configured to drive a voltage of the first contact to a reset
- 3 value in response to a first reset signal.

Suba3

16. The imaging system of claim 9 wherein the control circuitry causes

- 2 The set's respective monitor node to be pulled high in response to detecting the
- 3 predetermined value.

