

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07C 281/02, 281/06, 281/20 C07C 337/06, 311/49 C07F 9/24, C07D 307/91

(11) International Publication Number: A1

WO 93/10083

(43) International Publication Date:

27 May 1993 (27.05.93)

(21) International Application Number:

PCT/US92/09855

(22) International Filing Date:

17 November 1992 (17.11.92)

(30) Priority data:

796,506

22 November 1991 (22.11.91) US

(71) Applicants: UNIROYAL CHEMICAL COMPANY, INC. [US/US]; World Headquarters, Middlebury, CT 06749 (US). UNIROYAL CHEMICAL LTD./UNIROYAL CHEMICAL LTEE [CA/CA]; 25 Erb Street, Elmira, Ontario N3B 3A3 (CA).

(72) Inventors: DEKEYSER, Mark, A.; 333 Boxbury Drive, Waterloo, Ontario N2K 1W3 (CA). MCDONALD, Paul, T.; 43 Mirey Dam Road, Middlebury, CT 06762 (US).

(74) Agents: THOMPSON, Raymond, D. et al.; Uniroyal Chemical Company, Inc., World Headquarters, Middlebury, CT 06749 (US).

(81) Designated States: AU, BG, BR, CA, CS, FI, HU, JP, KR, LK, NO, PL, RO, RU, SD, UA, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC,

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: INSECTICIDAL PHENYLHYDRAZINE DERIVATIVES

(57) Abstract

Compounds having structural formulae (I) and (II) where X, Y, R and Z are defined in the specification are disclosed. The compounds of this invention are effective for controlling mites, nematodes, rice planthopper, tobacco budworm, and southern corn rootworm. Methods for making these compounds are also set forth.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

			P	MR	Mauritania
AT	Austria	FR	France	MW	Malawi
UA	Australia	GA	Gabon	****	Netherlands
BB	Barbados	GB	United Kingdom	NL	
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
-	Benin	ΙE	Ireland	PT	Portugal
BJ	• • • • • • • • • • • • • • • • • • • •	iT	Italy	RO	Romania
BR	Brazil	JP	Japan	RU	Russian Federation
CA	Canada	K5	Democratic People's Republic	SD	Sudan
CF	Central African Republic	n.r		SE	Sweden
CC	('ongo		of Korea	SK	Slovak Republic
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	('ôte d'Ivoire	КZ	Kazakhstan	SU	Soviet Union
CM	Cameroon	1.1	Licehtenstein	-	
cs	Czechoslovakia •	LK	Sri Lanka	TD	Chad
CZ	Czech Republic	I.U	1.uxembourg	TG	Togo
DE	Germany	MC	Monaco	UA	Ukraine
DK	Denmark	MG	Madagasear	US	United States of America
	= ' ''	ML.	Mali	VN	Vict Nam
ES	Spain	MN	Mongolia		
FI	Finland	WIN	unne		

INSECTICIDAL PHENYLHYDRAZINE DERIVATIVES

CROSS REFERENCE TO RELATED APPLICATION

This is a continuation-in-part of application Serial Number 07/796,506, filed November 22, 1991.

BACKGROUND OF THE INVENTION

1. Field of the Invention

5

10

15

20

25

This invention is directed to novel phenylhydrazine derivatives which exhibit activity as insecticides, acaricides and nematicides. This invention is also directed to insecticidal, acaricidal or nematicidal compositions comprising such compounds as well as to methods of controlling insects, acarids and nematodes employing such compounds or compositions.

Destruction by insects, acarids and nematodes presents a serious problem to agriculture. A wide variety of field crops are in need of protection from nematodes, acarids, and insects including such valuable crops as soybeans, corn, peanuts, cotton, alfalfa, rice and tobacco. In addition, vegetables, such as tomatoes, potatoes, sugarbeet, carrots, peas, and the like as well as fruits, nuts, ornamentals and seed bed crops such as apples, peaches, almonds, citrus fruit and grapes may also require protection from the ravages of such pests.

Consequently, the development of new, more effective pesticides including insecticides, acaricides

5

10

and nematicides represents an ongoing scientific activity. More particularly, the development of pesticides which are effective as both ovicides and larvicides are of interest.

2. Description of Related Art

Chemical Abstracts 108(19):163280d refers to alkyl phenylhydrazinecarboxylates said to be useful as acaricides. United States Patent 4,725,302 refers to substituted phenylhydrazines and phenyloxadiazolinones said to be useful as pesticides. European Patent 0 067 471 refers to 7-substituted 2,3-dihydrobenzofurans said to be useful as pesticides or chemical intermediates. DerWent abstract 88-312695/44 refers to arylhydrazides of trifluoroacetic acid said to have fungicidal, bacteriocidal, acaricidal, and antiseptic activity. Chemical Abstracts 105(17):152686c refers to various phenylhydrazines said to have activity against insects and mites.

20

15

SUMMARY OF THE INVENTION

The instant invention relates to a compound having the structural formula (I) or (II):

wherein:

X is a) phenyl; lower phenylalkoxy; phenoxy; or benzyl; or b) one substituent from group a) and one or more substituents selected from C₁-C₄ alkoxy; halogen; lower alkyl; and lower alkylthio; or c) along with the phenyl to which it is attached, forms a multiple fused ring heterocycle such as dibenzofuranyl;

Y is H, C_1-C_4 alkanoyl, C_1-C_4 haloalkanoyl, dialkoxyphosphoryl, alkylaminocarbonyl, haloalkylsulfonyl, or C_1-C_4 alkoxy carbonyl; and

R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy, alkenyl, alkylthio, alkoxycarbonyl, alkylamino, heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆ cycloalkyl; and

Z is O or S.

15

10

Further, when X includes a substituent having a phenyl ring (i.e., is phenyl, phenylalkoxy, phenoxy or benzyl), the phenyl ring is optionally substituted with one or more of halogen, nitro, lower alkyl, lower alkoxy, lower haloalkyl, or dialkylamino.

20

The instant invention further relates to pesticidal compositions comprising:

a) an effective amount of a compound having the structure of formula (I) or (II) above as an active ingredient; and (b) an agriculturally acceptable carrier.

25

The present invention is also directed to a method for controlling pests such as insects, acarids or nematodes which comprises applying an effective amount

of a compound of formula (I) or (II) or of a composition of the present invention to a locus to be protected or rid of pests.

DETAILED DESCRIPTION OF THE INVENTION

5

The compounds of the present invention have the structure (I) or (II) defined above. Preferred compounds are those in which Y is hydrogen or COCF₃.

The compounds having structure (I) may be prepared by reacting a substituted phenylhydrazine:

10

$$X \longrightarrow N H N H_2$$

with an acylating agent:

15

wherein Z is halo or

20

25

and an equivalent of an HCl acceptor such as pyridine in a solvent such as toluene. The product of this reaction may be further acylated, or converted by oxidation with an oxidizing agent such as Pd/air to form compounds having structure (II).

5

10

The compositions of this invention comprise (a) a compound having a structure within that of formula (I) or (II) above, and (b) a suitable carrier. Such suitable carriers may be solid or liquid in nature.

Suitable liquid carriers may be comprised of water, alcohols, ketones, phenols, toluene and xylenes. In such formulations, additives conventionally employed in the art may be utilized such as, for example, one or more surface active agents and/or inert diluents, to facilitate handling an application of the resulting pesticide composition.

The pesticidal compositions may alternatively comprise solid carriers taking the form of dusts, granules, wettable powders, pastes, aerosols, emulsions, emulsifiable concentrates, and water-soluble solids.

For example, the pesticidal compounds of this invention may be applied as dusts when admixed with or absorbed onto powdered solid carriers, such as mineral silicates, e.g., mica, talc, pyrophyllite and clays, together with a surface-active dispersing agent so that a wettable powder is obtained which then is applicable directly to the loci to be treated. Alternatively, the powdered solid carrier containing the compound admixed therewith may be dispersed in water to form a suspension for application in such form.

Granular formulations of the compounds, suitable for application by broadcasting, side dressing, soil incorporation or seed treatment, are suitably prepared

20

25

15

WO 93/10083

using a granular or pellitized form of carrier such as granular clays, vermiculite, charcoal or corn cobs.

Alternatively, the pesticidal compounds may be applied in liquids or sprays when utilized in a liquid carrier, such as in a solution comprising a compatible solvent such as acetone, benzene, toluene or kerosene, or as dispersed in a suitable non-solvent medium, for example, water.

5

20

25

is aerosol treatment, for which the compound may be
dissolved in an aerosol carrier which is a liquid under
pressure but which is a gas at ordinary temperature
(e.g., 20°C) and atmospheric pressure. Aerosol
formulations may also be prepared by first dissolving
the compound in a less volatile solvent and then
admixing the resulting solution with a highly volatile
liquid aerosol carrier.

For pesticidal treatment of plants (such term including plant parts), the compounds of the invention preferably are applied in aqueous emulsions containing a surface-active dispersing agent which may be non-ionic, cationic or anionic. Suitable surface-active agents include those known in the art, such as those disclosed in U.S. Patent 2,547,724 (columns 3 and 4). The compounds of the invention may be mixed with such surface-active dispersing agents, with or without an organic solvent, as concentrates for the subsequent addition of water to yield aqueous suspensions of the

エしょうしょうたい ひとしょう

5

10

15

20

compounds at desired concentration levels.

In addition, the compounds may be employed with carriers which themselves are pesticidally active, such as insecticides, acaricides, fungicides or bactericides.

It will be understood that the amount of the pesticidally active compound in a given formulation will depend upon the specific pest to be combatted, as well as upon the specific chemical composition and formulation of the compound being employed, the method of applying the compound/formulation and the locus of treatment so that the pesticidally effective amount of the compound may vary widely. Generally, however, concentrations of the compound as the active ingredient in pesticidally effective formulations may range from about 0.1 to about 95 percent by weight. dilutions may be as low as a few parts per million, while at the opposite extreme, full strength concentrates of the compound may be usefully applied by ultra low volume techniques. Concentration per unit area, where plants constitute the loci of treatment, may range between about 0.01 and about 50 pounds per acre, with concentrations of between about 0.1 and about 10 pounds per acre preferably being employed for crops such as corn, tobacco, rice and the like.

To combat pests, sprays of the compounds may be
applied to the pests directly and/or to plants upon
which they feed or nest. The pesticidally active
formulations may also be applied to the soil or other

5

10

medium in which the pests are present.

Wide variety of plants, including both ornamental and agricultural plants and inflict damage by consuming roots and/or foliage, withdrawing vital juices from the plants, secreting toxins and often by transmitting diseases. The compounds of the present invention may be advantageously utilized to minimize or prevent such damage. The specific methods of application, as well as the selection and concentration of these compounds will, of course, vary depending upon such circumstances as geographic area, climate, topography, plant tolerance, etc. For specific circumstances, one skilled in the art may readily determine the proper compound, concentration and method of application by routine experimentation.

The compounds of the invention are particularly useful as insecticides, nematicides and acaricides, for foliar and/or soil application.

EXAMPLES

20

15

The following Examples are intended to further illustrate the invention, and are not intended to limit the scope of the invention in any manner whatsoever.

EXAMPLE 1

25

Preparation of (4-methoxy-[1,1'-biphenyl]-3-yl)hydrazine hydrochloride (chemical intermediate)

To 25 g of 5-phenyl-o-anisidine were added 250 ml of water and 450 ml of concentrated hydrochloric acid

5

and the stirred solution was cooled to 0°C. A solution of 8.6 g of sodium nitrite in 20 ml of water was then added dropwise, maintaining a temperature of 0°C. After this addition the mixture was stirred, at 0°C, for 1 hour. A solution of 113 g of stannous chloride in 200 ml of concentrated HCl, cooled to -20°C, was added to the reaction mixture and again the mixture was stirred for one hour. The mixture was then suction filtered and the resulting solid was allowed to dry overnight. The solid was dissolved in hot water, gravity filtered, and the filtrate cooled on ice. The crystallized solid was then suction filtered and the product was allowed to dry overnight. The product obtained was 26 g of (4-methoxy-[1,1'-biphenyl]-3-yl)hydrazine hydrochloride.

15

20

25

10

EXAMPLE 2

Preparation of 2-(4-methoxy-[1,2'-biphenyl]-3-yl)hydrazide of propanoic acid (Compound 18)

To 5 g of the product of Example 1 was added 100 ml of water and 40 ml of 10% sodium hydroxide solution and the mixture was allowed to stir for 1 hour at room temperature. The mixture was then extracted with ether and the ether extract was dried over sodium sulfate for one half hour. The ether extract was then filtered and evaporated under reduced pressure to yield 4.6 g of the intermediate, (4-methoxy-[1,1'-biphenyl]-3-yl)hydrazine.

To 4.6 g of the above intermediate, 150 ml of toluene and 1.58 g of pyridine were added and the solution was stirred and cooled to 0°C. Then, 1.84 g of

WO 93/10083

-10-

propionyl chloride was added dropwise. After addition of the propionyl chloride, the solution was stirred for 1 hour at 0°C. The solution was then washed twice, each time with 100 ml of water. The water fraction was saved and extracted with toluene. The toluene fractions from the extraction were combined and evaporated under reduced pressure. The resulting solid was washed with hexane and filtered. The product obtained was 3.4 g of 2-(4-methoxy-[1,1'-biphenyl]-3-yl)hydrazide of propanoic acid.

10

5

EXAMPLE 3

Preparation of 2-(4-methoxy-[1,1'-bipheny1]-3-y1)-2-(tri-fluoroacety1)hydrazide of propanoic acid (Compound 73)

To 2.25 g of the product of Example 2 was added 150 ml of methylene chloride. The solution was stirred and cooled to 0°C. Then 1.75 g of trifluoroacetic anhydride was added dropwise, the flask stoppered, and the reaction stirred overnight. The solvent was then evaporated under reduced pressure to yield a solid which was washed with hexane and filtered. The final product obtained was 2.7 g of 2-(4-methoxy-[1.1'-biphenyl]-3-y1)-2-(trifluoroacetyl)-hydrazide of propanoic acid, with a melting point of 126°C.

25

5

10

15

20

25

EXAMPLE 4

Preparation of (4-bromo-[1,1'-biphenyl]-3-yl)hydrazine hydrochloride (chemical intermediate)

To 4 g of 4-bromo-[1,1'-biphenyl]-3-amine were added 25 ml of water and 50 ml of concentrated HCl with stirring. The solution was cooled to 0°C. A solution of 1.1 g of sodium nitrite in 6 ml of water was then added dropwise while maintaining a temperature of 0°C. After this addition, the mixture was stirred at 0°C for one hour. A solution of 20 g of stannous chloride in 20 ml of concentrated HCl cooled to -20°C was added to the reaction mixture and again the mixture was stirred for one hour.

The precipitate was then suction filtered and the resulting solid was allowed to dry overnight. The product, (4-bromo-[1,1'-biphenyl]hydrazine hydrochloride, was used in subsequent reactions without further purification.

EXAMPLE 5

Preparation of isopropyl 2-(4-bromo-[1,1'-biphenyl]-3-yl) hydrazine carboxylate (Compound 139)

To the product of Example 4 was added 100 ml of a 10% aqueous sodium hydroxide solution and the mixture was stirred for 30 minutes at 10°C. The mixture was then extracted with ether, dried over sodium sulfate for 2 hours, and evaporated, leaving 3 g of (4-bromo-[1,1'-bipheny1]-3-yl)hydrazine. To 3 g of the hydrazine were

added 100 ml of toluene and 1.5 g of pyridine and the resulting mixture was cooled an ice bath. Twelve ml of a 1M solution of isopropyl chloroformate in toluene were added dropwise. After the addition of isopropyl chloroformate, the solution was allowed to stir overnight at room temperature. The solution was then washed twice, each time with 100 ml of water, dried over sodium sulfate for 2 hours, and evaporated under reduced pressure.

The resulting solid was washed with hexane and recrystallized from toluene. The product obtained was 3 g of isopropyl 2-(4-bromo-[1,1'-biphenyl]-3-yl) hydrazinecarboxylate with melting point 107-108°C.

EXAMPLE 6

Preparation of isopropyl (4-bromo-[1,1'-biphenyl]-3-yl)
diazenecarboxylate (Compound 161)

To 1.7 g of the product of Example 4 was added 100 ml of toluene and 0.4 g of palladium on charcoal. The mixture was stirred overnight at room temperature, then filtered out and the toluene evaporated under reduced pressure. The product obtained was 1.5 g of isopropyl (4-bromo-[1,1'-biphenyl]-3-yl)diazene carboxylate as a red oil.

20

15

5

FLI/ リコフム/ リフリン

5

EXAMPLE 7

Preparation of 2-methoxy-3-dibenzofuranyl hydrazine (chemical intermediate)

To 10 g of 3-amino-2-methoxydibenzofuran were added 100 ml of water and 50 ml of concentrated HCl with stirring. The solution was cooled to 0°C. A solution of 3.5 g of sodium nitrite in 15 ml of water was then added dropwise, maintaining a temperature of 0°C. After this addition, the mixture was stirred at 0°C for one hour. A solution of 40 g of stannous chloride in 50 ml 10 of concentrated HCl cooled to -20°C was added to the reaction mixture and the mixture was stirred for one hour.

The precipitate was then suction filtered and the resulting solid added to a solution of 70 g sodium hydroxide in 500 ml of water cooled in an ice bath. mixture was then extracted with ether, dried over sodium sulfate for 2 hours, and evaporated to a solid. solid was washed with hexane, leaving 7 g of 2-methoxy-3-dibenzofuranyl hydrazine of mp 113-115°C.

20

15

EXAMPLE 8

Preparation of isopropyl 2-(2-methoxy-3-dibenzofuranyl) hydrazinecarboxylate (Compound 141)

To 2.3 g of the product of Example 7 were added 100 25 ml of toluene and 1 g of pyridine and the resulting mixture was cooled in an ice bath. Ten ml of a lM solution of isopropyl chloroformate in toluene was then

added dropwise. After this addition, the solution was allowed to stir overnight at room temperature.

The solution was then washed twice, each time with 100 ml of water, dried over sodium sulfate for two hours, and then evaporated under reduced pressure. The resulting solid was washed with hexane and recrystallized from toluene. The product obtained was 2 g of isopropyl 2-(2-methoxy-3-dibenzofuranyl) hydrazine carboxylate with mp of 178°C.

10

5

EXAMPLE 9

Preparation of isopropyl (2-methoxy-3-dibenzofuranyl)
diazenecarboxylate (Compound 157)

To 1.4 g of the product of Example 7 were added 100 ml of toluene and 0.3 g of palladium on charcoal. The mixture was stirred overnight at room temperature, filtered, and the toluene evaporated under reduced pressure. The product obtained was 1.2 g of isopropyl (2-methoxy-3-dibenzofuranyl) diazenecarboxylate as a red oil.

20

25

15

The compounds summarized in Tables 1-4B and numbered from 1-161 were prepared using essentially the same processes as shown in the foregoing examples. Where starting compounds were not commercially available, they were synthesized by methods well known in the art. Each of the compounds so formed is characterized by their NMR characteristics.

ABLE 1

2 2-C6H5 OCH2CH3 O	s(3)1.9; m(10)6.8-7.5; bs(1)9.9 s(3)3.6; s(1)6.5; m(9)6.8-7.5; bs(1)9.1 t(3)1.2; q(2)4.0; s(1)6.5; m(9)6.7-7.5; bs(1)9.0 s(9)1.2; m(10)6.8-7.5; bs(1)9.7 m(8)1.4-1.8; m(1)2.4-2.8; d(1)6.5; m(9)6.7-7.5; d(1)9.8 s(2)5.1; s(1)6.5; m(14)6.8-7.5; s(1)9.8 d(6)1.2; m(1)4.9; bs(1)5.9; bs(1)6.3;
3-C6H5 CH3 0 s(3)2.0;	s(3)2.0; m(9)6.8-7.5; bs(1)8.7; bs(1)9.7

, d
Cont
-
LABLE

COMPOUND	×	R	21	NMR DATA FOR TABLE 1 (CDCL, 3)
σ	2-CH30, 5-C6H5	CH2C1.	0	s(3)3.8; s(2)3.9; m(9)6.9-7.6; bs(1)9.8
10	2-снзо, 5-с6н5	оснз	0	s(3)3.7; s(3)3.8; bs(1)6.2; m(9)6.7-7.5
11	2-снзо, 5-с6н5	ОСН2СН3	0	t(3)1.2; s(3)3.8; q(2)4.2; bs(1)6.3;
				bs(1)6.4; m(8)6.7-7.5
12	2-снзо, 5-с6н5	СН2СН2СН3	0	t(3)0.9; m(2)1.5; t(2)2.2; s(3)3.8;
				m(9)6.8-7.5; d(1)9.8
13	2-снзо, 5-сен5	СН(СНЗ)2	0	d(6)0.9; m(1)2.9; s(3)3.8; m(9)6.8-7.5
				bs(1)9.8
14	2-снзо, 5-с6н5	с(снз)з	0	s(9)1.1; s(3)3.8; m(9)6.8-7.5; bs(1)9.8
15	2-СН30, 5-С6Н5	OCH2C6H5	0	s(3)3.9; s(2)5.0; m(2)6.4; m(8)6.9-7.6
16	2-CH30, 5-C6H5	CH20CH3	0	s(3)3.3; s(3)3.8; s(2)4.0; bs(1)6.5;
				m(8)6.7-7.5; bs(1)8.3
17	2-СН30, 5-С6Н5	C(CH3)=CH2	0	s(3)2.0; s(3)3.8; s(1)5.2; s(1)5.7;
•				bs(1)6.5; m(8)6.7-7.5; bs(1)8.3
18	2-снзо, 5-с6н5	СН2СН3	0	t(3)1.2; q(2)2.3; s(3)3.8; bs(1)6.5;
				m(8)6.8-7.5; bs(1)8.3

_	_
7	j
•	
÷	•
Ĉ	5
Cont)
•	•
_	ł
Ţ	Į
Ξ	1
'ART.F	į
٩	٠

COMPOUND	X	×	2	NMR DATA FOR TABLE 1 (CDCL, 3)
19	2-снзо, 5-с6н5	0(CH2) ₃ CH3	0	t(3)0.9; m(4)1.5; s(3)3.8; t(2)4.1;
				bs(1)6.5; m(8)6.8-7.5
20	2-снзо, 5-с6н5	оснаснасна	0	t(3)0.9; m(2)1.6; s(3)3.8; t(2)4.1;
				bs(1)6.3; bs(1)6.5; m(8)6.8-7.5
21	2-снзо, 5-с6н5	осн2сн(сн3) ₂ о	0	d(6)0.9; m(1)1.9; s(3)3.8; d(2)3.9;
				bs(1)6.3; bs(1)6.6; m(8)6.8-7.5
22	2-снзо, 5-с6н5	NHC3H7	တ	t(3)1.0; m(2)1.7; q(2)3.6; s(3)3.9;
				s(1)6.5; m(9)6.8-7.5; s(1)8.5
23	2-СН30,5-С6Н5	СО2СН2СН3	0	t(3)1.2; s(3)3.8; q(2)4.2; m(8)6.8-7.5;
				bs(1)8.3; bs(1)9.8
24	2-СН30,5-С6Н5	SCH2СН3	0	t(3)1.2; q(2)2.7; s(3)3.8; m(9)6.8-7.5;
				bs(1)9.5
25	2-снзо, 5-с6н5	OCH2CH-CH2	0	s(3)3.8; d(2)4.6; m(3)5.1-6.0; bs(1)6.3
				bs(1)6.5; m(8)6.8-7.5
26	2-СН3О, 5-С6Н5	осн(снз)2	0	d(6)1.2; s(3)3.8; m(1)5.0; bs(1)6.3;

bs(1)6.5; m(8)6.8-7.5

(Cont'd)	~
-	N
TABLE	COMPO

מייים אייים מייים	cone a)			
COMPOUND	×	R	N	NMR DATA FOR TABLE 1 (CDCL.3)
27	2-CH3O, 5-C6H5	СН2С(СН3)3	0	s(9)1.0; s(2)2.1; s(3)3.8; bs(1)6.5;
				m(8)6.8-7.5
28	2-снзо, 5-сен5	CF2CF3	0	s(3)3.8; m(8)6.8-7.5; bs(2)8.2
29	2-снзо, 5-с6н5	CF2C1	0	s(3)3.8; bs(1)6.0; m(8)6.8-7.5; bs(1)8.2
30	2-снзо, 5-с6н5	2-C4H3S	0	s(3)3.8; m(13)6.7-7.9
31	2-C6H5	H	0	m(10)6.7-7.5; bs(1)8.1; bs(1)9.9;
32	2-C6H5	CF_3	0	m(11)6.7-7.5
33	2-CH ₃ O, 5-C ₆ H ₅	ж	0	s(3)3.9; m(9)6.9-7.7; bs(1) 8.1; bs(1)9.8
34	2-CH ₃ O, 5-C ₆ H ₅	CH ₃	0	s(3)2.0; s(3)3.8; m(10) 6.8-7.7
35	2-CH ₃ O, 5-C ₆ H ₅	CF_3	0	s(3)3.8; m(10)6.8-7.7
36	2-CH ₃ O, 5-C ₆ H ₅	снсіснз	0	d(3)1.5; s(3)3.9; q(1)
37	2-CH ₃ O, 5-C ₆ H ₅	CH ₂ C ₆ H ₅	0	s(2)3.5; s(3)3.9; m(15)5.8-7.4
38	2-CH ₃ O, 5-C ₆ H ₅	cyclohexyl	0	m(11)1.1-1.8; s(3)3.8;
				m(9)6.8-7.5; bs(1)9.8
39	2-CH ₃ 0,5-C ₆ H ₅	och2ch2och3	0	s(3)3.3; t(2)3.5; s(3)3.8; t(2)4.2;
				bs(1)6.3; m(9)6.8-7.5

\sim
D
-
u
Ħ
0
Ü
J.
_
-
BLE

COMPOUND	X	24	2	NMR DATA FOR TABLE 1 (CDCL, 3)
40	2-CH ₃ O, 5-C ₆ H ₅	оснстснз	0	d(3)1.8; s(3)3.8; m(1)6.5; m(10)6.8-7.6
41	2-сн ₃ 0,5-с ₆ н ₅	oc ₆ H ₅	0	s(3)3.8; m(15)6.5-7.8
42	2-C ₆ H ₅	OC3H7	0	m(5)0.8-1.7; m(2)4.1; bs(1)5.9
				m(10)6.7-7.5
43	2-C ₆ H ₅	осн4н9	0	m(7)0.8-1.7; m(2)4.1; bs(1)5.9
				m(10)6.7-7.6
77	2-сн ₃ 0, 5-с ₆ н ₅	och=cH ₂	0	s(3)3.8; m(2)4.5-5.0
				bs(1)6.2; m(10)6.7-7.6
45	2-CH ₃ O, 5-C ₆ H ₅	OC(CH ₃) ₂ CC1 ₃	0	s(6)1.9; s(3)3.9; bs(1)6.2; m(9)6.8-7.6
46	2-CH ₃ O, 5-C ₆ H ₅	0-cyclohexyl- 0	0	m(8)1.0-2.2; s(3)3.9; m(10)6.5-7.5
		3-C1		
47	$2-CH_3O, 5-C_6H_5$	осн2сн2с1	0	m(2)3.6; s(3)3.8; m(2)4.3; bs(1)6.2
				m(9)6.7-7.6
48	2-CH ₃ O, 5-C ₆ H ₅	CC13	0	s(3)3.9; m(10)6.8-7.8
49	2-CH30, 5-Ch5	осн,сн-сн,	0	d(2)4.5; m(3)5.0-6.0; m(11)6.7-7.6

ф ф
Cont.
) (C
TABLE :

TABLE 1 (Cont. a)	cont. a)			
COMPOUND	×	R	M	NMR DATA FOR TABLE 1 (CDCL, 3)
20	3-C ₆ H ₅	OCH(CH3)2	0	d(6)1.2; m(1)4.9; bs(1)6.0; m(10)6.7-7.5
51	3-C ₆ H ₅	0C2H5	0	t(3)1.2; q(2)4.1; bs(1)5.9; m(10)6.7-7.6
52	2-CH ₃ 0, 5-C ₆ H ₅	OCH(CH3)2	0	m(9)1.2-1.6; m(2)4.0-4.3; m(1)4.8-5.2;
				bs(1)6.4; m(9)6.8-7.6
53	2-C ₆ H ₅	0C5H11	0	m(9)0.8-1.7; m(2)3.9-4.2; bs(1)5.9
				m(10)6.7-7.5
54	2-CH ₃ O, 5-C ₆ H ₅	0C5H11	0	m(9)0.8-1.7; s(3)3.8; t(2)4.1; bs(1)6.3;
				m(9)6.7-7.5
ន	2-CH ₃ O, 5-C ₆ H ₅	OC6H13	0	m(11)0.8-1.7; s(3)3.9; t(2)4.1; bs(1)6.3;
		·		m(9)6.7-7.5
136	3-OCH ₂ C ₆ H ₅	C2H5	0	t(3)1.2; q(2)4.1; s(2)5.0; bs(2)6.3;
				m(9)6.9-7.4
137	3-OCH ₂ C ₆ H ₅	CH(CH ₃) ₂	0	d(6)1.3;m(1)5.0;s(2)5.1;bs(2)6.5;
				m(9)6.9-7.5
138	3-0C6H5	сн(сн ₃) ₂	0	s(9)1.4;bs(2)6.5;m(9)6.9-7.5
139	2-Br,5-C ₆ H ₅	CH(CH ₃) ₂	0	d(6)1.3;m(1)5.0;bs(1)6.3;m(8)6.9-7.5

_
\frown
<u></u>
-
u
Cont
0
Ū
こ
_

Z NWR DATA FOR TABLE 1 (CDCL, 3)	0 d(6)1.3;m(1)5.0;bs(2)6.6;m(9)6.9-7.5	o s(3)3.8;s(2)5.0;bs(2)6.5;m(9)7.0-7.5	O d(2)4.5;m(3)5.1-6.0;bs(2)6.5;	m(9)6.9-7.5	0 t(3)0.8;m(2)1.5;s(2)3.8;m(2)3.9;	bs(2)6.4;m(9)6.9-7.3	o s(2)3.9;d(2)4.5;m(3)5.0-5.8;bs(2)6.6;	m(9)6.8-7.3	o s(9)1.4;s(2)5.0;bs(2)6.5;m(9)6.9-7.4	0 s(9)1.4;s(2)3.9;bs(2)6.2;m(9)6.9-7.3	0 t(3)0.8;d(3)1.2;m(2)1.5;m(1)4.8;	bs(2)6.5;m(9)6.9-7.4	0 d(6)1.2;s(3)2.4;m(1)4.9;bs(2)6.6;
R	CH(CH ₃) ₂	CH ₃	CH ₂ CH=CH ₂		C_3H_7		CH ₂ CH=CH ₂		С(СН3)3	C(CH ₃) ₃	$CH(CH_3)C_2H_5$		$CH(CH_3)_2$
×	3-0C ₆ H ₅	3-0CH ₂ C ₆ H ₅	3-0CH2C6H5		2-CH ₂ C ₆ H ₅		2-CH ₂ C ₆ H ₅		3-0CH ₂ C ₆ H ₅	2-CH ₂ C ₆ H ₅	3-0C ₆ H ₅		2-SCH ₃ , 5-C ₆ H ₅
COMPOUND	140	143	144		145		146		147	148	149		150

アレル しごうか りょししし

_
ď
•
nt
⊏
ပ္ပ
O
<u> </u>
-
띡
烘
삣
TABLE
_

NMR DATA FOR TABLE 1 (CDCL, 3)	d(6)1.2;s(3)2.2;m(1)4.9;bs(1)5.8;	bs(1)6.6;m(8)7.0-7.6	d(6)1.3;s(3)3.8;m(1)4.9;m(10)6.5-7.4
2	0		0
æ	CH(CH ₃) ₂		Сн(Сн ₃) ₂
×	2-CH3,5-C6H5		2-0CH3,5-0C ₆ H5
COMPOUND	154		155

NOTES FOR TABLES 1-4B S=Singlet, d=Goublet, t=triplet q=guartet, m=multiplet bs - broad singlet the number in parenthesis represents the number of protons $CD \subset L_3$ is deuterated chloroform 325

TABLE 2

COMPOUND	×	R	NMR DATA FOR TABLE 2 (CDCL, 3)
98	2-C6H5	ж	bs(1)5.8; m(9)6.8-7.5; bs(1)8.1
57	2-C6H5	СНЗ	s(3)2.5; bs(1)6.0; m(9)6.8-7.5
58	2-сен5	оснз	s(3)3.7; bs(1)5.7; m(9)7.3-7.6
59	2-C6H5	осн2сн3	t(3)1.2; q(2)4.2; m(9)7.3-7.7; bs(1)9.7
09	2-С6Н5	С(СНЗ)З	s(9)1.2; m(10)6.8-7.6
61	2-С6Н5	С5Н9-С	m(8)1.7; m(10)6.8-7.6
62	2-С6Н5	осн206н5	s(2)5.2; bs(1)6.9; m(9)7.3-7.6
63	3-С6Н5	СНЗ	s(3)2.0; m(9)7.3-7.9; bs(1)8.5
64	2-СН3О, 5-С6Н5	н	s(3)3.9; b(1)5.5; m(8)7.0-7.7; bs(1)8.3
65	2-СН30, 5-С6Н5	СНЗ	s(3)2.0; s(3)3.8; bs(1) 6.1; m(8)6.9-7.
99	2-СНЗО, 5-С6Н5	оснз	s(3)3.7; s(3)3.9; bs(1)4.2; m(8)7.3-7.8
19	2-CH30, 5-C6H5	ОСН2СН3	t(3)1.1; s(3)3.8, q(2)4.1; m(9)7.2-7.8

7	•
_	
4	;
5	;
•	•
C	
ARTE 2	

	NMR DATA FOR TABLE 2 (CDCL.3).	s(6)3.0; s(3)3.9; m(9)7.0-7.9	t(3)1.0; m(2)1.7; t(2)3.0; s(3)3.9;	m(8)7.0-7.7; bs(1)8.2	d(6)1.0; m(1)2.5; s(3)3.9; bs(1)5.4;	m(8)7.0-7.9	s(9)1.2; s(3)3.9; m(8)7.0-7.9; bs(1)8.3	s(3)3.8; s(2)5.1; m(8)7.1-7.8; bs(1)9.5	t(3)1.1; q(2); s(3)3.8;	m(8)7.0-7.8; bs(1)8.1	m(7)0.8-1.7; s(3)3.9; t(2)4.1;	m(9)7.0-7.8	s(3)2.0; s(3)3.9; m(2)5.4-5.7;	m(8)7.0-7.8; bs(1)8.3	s(3)3.9; m(9)7.1-7.8	t(6)1.2; m(4)3.3; s(3)3.8; m(9)7.0-8.0	t(3)1.2; q(2)2.8; s(3)3.9; m(9)7.2-7.8
	R	N(CH3)2	СН2СН2СН3		СН(СН3)2		С(СНЗ)3	ОСН2С6Н5	СН2СН3		оснаснасна		C(CH3)=CH2		CF3	N(CH2CH3)2	SCH2CH3
ont'd)	×	2-CH30,5-C6H5	2-снзо, 5-с6н5	•	2-снзо, 5-с6н5		2-снзо, 5-с6н5	2-CH3O, 5-C6H5	2-снзо, 5-с6н5		2-СН3О, 5-С6Н5		2-снзо, 5-с6н5		2-CH30,5-C6H5	2-СНЗО, 5-С6Н5	2-СНЗО, 5-С6Н5
TABLE 2 (Cont'd)	COMPOUND	89	69		70		7.1	72	73		74		75		16	77	79

TABLE 2 (Cont'd)

COMPOUND	×	R	NMR DATA FOR TABLE 2 (CDCL.3)
78	2-CH30, 5-C6H5	СО2СН2СН3	t(3)1.3; s(3)3.8; q(2)4.2; m(8)7.0-7.9;
			bs(1)9.5
80	2-CH30, 5-C6H5	OCH2CH=CH2	s(3)3.9; d(2)4.6; m(3)5.1-5.8;
			m(9)7.0-7.7
81	2-снзо, 5-с6н5	осн(снз)2	d(6)1.2; s(3)3.8; m(1)4.9; m(9)7.0-7.7
82	2-снзо, 5-с6н5	СН2С(СН3)3	s(9)1.0; s(2)2.2; s(3)3.9; m(8)7.0-7.8;
			bs(1)8.6
83	2-СН3О, 5-С6Н5	CF2C1	s(3)3.9; m(9)7.0-8.0
84	2-снзо, 5-с6н5	2-C4H3S	s(3)3.9; m(12)7.0-8.0
85	2-снзо, 5-с6н5	2-C4H3O	s(3)3.9; bs(1)6.5; m(11)7.0-8.0
86	2-снзо, 5-с6н5	och ₂ ch ₃	m(6)1.3; m(4)4.2; m(9)7.0-7.8
87	$2-CH_3O, 5-C_6H_5$	CH ₂ C1	s(3)3.9; s(2)4.0; m(9) 6.9-7.7
88	$2-CH_3O, 5-C_6H_5$	CH ₂ C ₆ H ₅	s(2)3.7; s(3)3.8; m(14) 6.8-7.9
89	2-CH30,5-C6H5	cyclohexyl	m(11)1.1-1.9; s(3)3.9; m(9) 6.8-7.9

_	_
'	n -

	R NMR DATA FOR TABLE 2 (CDCL, 3)	H_5 OC_3H_7 $t(3)1.9; m(2)1.6; s(3)3.9; t(2)4.1;$	m(9)6.9-7.8	H ₅ CH ₂ OCH ₃ s(3)3.4; s(3)3.9; s(2)4.0; m(9)6.9-7.9	H_5 OCH ₂ CH(CH ₃) ₂ d(6)0.9; m(1)1.8; s(3)3.9; d(2)4.0;	m(9)6.9-7.8	OCH ₂ CH(CH ₃) d(6)0.9; m(1)1.8; d(2)3.9; bs(1)6.1;	m(9)7.2-7.7	t(3)1.5; s(3)2.0; s(3)4.1; m(8)6.9-7.8;	bs(1)8.3	6H ₅ осн(СH ₃) ₂ d(6)1.3; m(1)5.0; m(9)7.3-7.8; bs(1)10.	6H ₅ OCH2CH2C1 t(2)3.7; s(3)3.9; t(2)4.3; m(9)6.9-7.8	6H ₅ OC ₆ H ₅ s(3)3.9; m(14)6.8-7.9	6H ₅ OC ₄ H ₉ m(7)0.8-1.7; m(2)4.1; bs(1)6.2	m(9)7.2-7.6	OC ₃ H ₇ m(5)0.8-1.6; m(2)4.0; bs(1)6.2;	
Cont'd)	×	2-CH ₃ 0,5-C ₆ H ₅		2-CH ₃ 0, 5-C ₆ H ₅	2-CH ₃ 0, 5-C ₆ H ₅		2-C ₆ H ₅		2-CH ₃ 0, 5-C ₆ H ₅		2-CH ₃ 0,5-C ₆ H ₅	$2-CH_30, 5-C_6H_5$	2-CH ₃ 0, 5-C ₆ H ₅	2-CH ₃ 0, 5-C ₆ H ₅		2-C ₆ H ₅	
TABLE 2 (Cont'd)	COMPOUND	06		91	92	•	93		94		95	96	97	98		66	

TABLE 2 (Cont'd)

NMR DATA FOR TABLE 2 (CDCL, 3)	s(3)3.9; m(2)4.5-5.0; s(1)6.2;	m(10)6.8-7.8	m(9)0.8-1.6; s(3)3.8; m(2)4.1-6.2;	m(9)6.8-7.7	m(11)0.8-1.6; s(3)3.8; m(2)4.1; m(9)	6.8-7.7	NOTES FOR TABLES 1-4B $S = Singlet, \ d = doublet, \ t = triplet \ q = quartet, \ m = multiplet \ bs - broad singlet the number in parenthesis represents the number of protons CD \ CL_3 \ is \ deuterated \ chloroform$
2	och-ch ₂		$^{0C_5H_{11}}$		OC6H ₁₃		NOTES FOR olet, t = triplet nesis represents chloroform
×	2-CH ₃ O, 5-C ₆ H ₅		2-CH ₃ O, 5-C ₆ H ₅		2-CH ₃ O, 5-C ₆ H ₅		NOT S = Singlet, d = doublet, t = t; the number in parenthesis repres CD CL ₃ is deuterated chloroform
COMPOUND	100		101		102		(1) S = (2) the (3) CD C

TABLE 3	OCH ₃	-¤
H		\supset

COMPOUND	×	R	NMR DATA FOR TABLE 3 (CDCL.3)
103	соснз	CF3	s(3)2.0; s(3)3.9; m(9)7.2-7.8
104	COCH2C1	СНЗ	s(3)2.3; s(3)3.9; s(2)4.5; m(9)7.2-7.8
105	COCF2CF3	СНЗ	s(3)2.5; s(3)3.9; m(9)7.0-7.6
106	COCF2CF3	оснз	s(3)3,4; s(3)3.9; s(2)4.0; m(8)7.0-8.0;
			bs(1)8.8
107	соснасна	CF3	t(3)1.0; m(2)2.2; s(3)3.9; m(8)7.0-7.9;
			bs(1)9.0
108	CO2CH2CH3	CF3	t(3)1.2; s(3)3.9; q(2)4.2; m(9)7.0-7.8
109	CONHCH3	оснасна	t(3)1.2; d(3)2.9; s(3)3.9; m(10)7.0-7.
110	COCH ₃	СН3	s(3)2.0; s(3)3.4; s(3)3.9; m(8)6.9-7.7
			bs(1)9.8
111	cocr ₂ c1	CH ₃	s(3)2.0; s(3)3.9; m(9)6.7-7.8

 $COCF_2C1$

Q
•
ب
⊑
\sim
S
\sim
ന
ABLE
\vdash
m
æ

COMPOUND	×	R	NMR DATA FOR TABLE 3 (CDCL, 3)
112	сосн3	CF2CF3	s(3)2.0; s(3)3.9; m(8)6.9-7.8; bs(1)8.9
113	соснз	CF ₂ C1	s(3)2.0; s(3)3.9; m(8)6.9-7.8; bs(1)8.7
114	COCF ₂ CF ₃	CF ₃	s(3)3.9; m(9)6.9-7.9
115	COCF2C1	CF_3	s(3)3.9; m(9)6.9-7.8
116	$PO(OC_2H5)_2$	CF_3	t(6)1.3; s(3)3.8; q(4)4.2; m(9)6.8-7.5
117	COCH ₂ C1	CF_3	s(3)3.9; s(2)4.1; m(9)6.8-7.8
118	$COCF_2CF_3$	осн(сн ₃) ₂	d(6)1.2; s(3)3.9; m(1)4.9; m(9)6.9-7.8
119	cocF ₂ c1	осн(сн ₃) ₂	d(6)1.2; s(3)3.8; m(1)4.9; m(9) 6.9-7.8
120	CONHCH ₃	OCH(CH ₃) ₂	d(6)1.2; d(3)2.8; s(3)3.8; m(1)4.9;
			m(1)5.3; m(9)6.9-7.8
121	cocc13	CF_3	s(3)3.9; m(9)6.8-7.7
122	$CON(CH_3)_2$	OCH(CH ₃) ₂	d(6)1.4; s(6)2.7; s(3)3.9; m(1)5.0;
			ш(9)6.8-7.8
123	$COCF_2CF_3$	CF_2C1	d(3)3.8; m(8)6.8-7.8; bs(1)8.5
124	$COCF_2CF_3$	CF_3	d(3)3.8; m(8)6.8-7.7; bs(1)8.6
125	so_2cF_3	CF_3	d(3)3.8; m(9)6.8-7.8

TABLE 3 (COUC U)	cone a)		
COMPOUND	X	R	NMR DATA FOR TABLE 3 (CDCL. 3)
126	CO ₂ CH ₃	cF_3	s(3)3.8; s(3)3.9; m(9)6.8-7.8
127	COCF2CF3	OCH ₂ C ₆ H ₅	s(3)3.8; s(2)5.0; m(14)6.8-7.8
128	CONHCH3	CF3	bs(3)2.7; s(3)3.8; bs(1) 5.5;
			m(8)6.8-7.8; s(1) 9.2
129	COCH3	och ₃	s(3)3.7; s(3)3.8; m(9) 6.8-7.8
130	CONHC ₂ H ₅	CF_3	t(3)1.1; m(2)3.1; s(3)3.8; bs(1)5.8;
			m(9)6.8-7.8
131	CONHC ₂ H ₅	OCH(CH ₃) ₂	m(9)1.2; m(2)3.2; s(3)3.8; m(1)4.9;
			m(9)6.8-7.8
132	COCH ₃	OCH=CH ₂	s(3)2.0; s(3)3.8; m(2)4.4-4.9; m(1)6.5;
			m(9)6.8-7.8
133	PO(0CH ₂ H ₅) ₂	och(ch3)2	m(12)1.3; s(3)3.9; m(4)4.1; m(1)5.0;
			m(9)6.8-7.7
134	PO(0C ₂ H ₅) ₂	och ₂ ch ₃	m(9)1.2; s(3)3.8; q(6)4.1; m(9)6.8-7.7
		NOTES FOR	NOTES FOR TABLES 1-4B

- broad singlet S = Singlet, d = doublet, t = triplet q = quartet, m = multiplet bs the number in parenthesis represents the number of protons CD CL_3 is deuterated chloroform 383

CABLE 4

NMR DATA FOR TABLE 4 (CDCL, 3)	d(6)1.5; s(3)4.0; m(1)5.2; m(8)7.0-7.9	s(9)1.6;m(9)7.0-7.5	t(3)1.4;q(2)4.4;\$(2)5.0;m(9)7.1-7.5	d(6)1.5;s(3)2.7;m(1)5.2;m(8)7.2-7.8	d(6)1.4;s(3)4.0;m(1)5.2;m(8)6.9-7.4	d(6)1.5;m(1)5.3;m(8)7.0-7.7
æ	осн(снз) ₂	OC(CH ₃) ₃	OC2H5	OCH(CH ₃) ₂	осн(сн ₃) ₂	осн(сн ₃) ₂
×	2-СНЗО, 5-С6Н5	3-0C ₆ H ₅	3-OCH ₂ C ₆ H ₅	2-CH3, 5-C6H5	2-0CH ₃ , 5-0C ₆ H ₅	2-Br, 5-C ₆ H ₅
COMPOUND	135	156	158	159	160	161

TABLE 4A

NMR DATA FOR TABLE 4A (CDCL3)

d(6)1.2;s(3)3.9;m(1)5.0;bs(2)6.5;m(6)7.0-7.6

s(9)1.5;s(3)4.0;bs(2)6.5;m(6)7.1-7.6

s(3)4.0;d(2)4.7;m(3)5.1-5.8;bs(2)6.5;m(6)7.1-7.6

CH2CH-CH2

 C_3H_7

153

CH3

152

с(снз)з

142 151

CH(CH₃)₂

141

COMPOUND

s(3)3.8;s(3)4.0;bs(2)6.5;m(6)7.0-7.6

t(3)1.0;m(2)1.6;s(3)4.0;m(2)4.2;bs(2)6.6;m(6)7.1-7.6

TABLE 4B

NMR DATA FOR TABLE 4B (CDCL3)

d(6)1.4;s(3)4.1;m(6)7.1-7.7

сн(сн3)2

157

COMPOUND

EXAMPLE 10

Preparation of Formulations

The remaining examples relate to the pesticidal use of the compounds of this invention. In all these examples a stock solution for the compounds were prepared at 3000 ppm by dissolving 0.3 gram of the compound to be tested in 10 ml of acetone and adding 90 ml of distilled water plus for drops of ethoxylated sorbitan monolaurate, or a simliar suitable wetting agent. For each example that follows, this stock solution was used and the specificied dilutions made. All the tests discussed below, which involved treatment with compounds of this invention, were always repeated with controls, in which the active compound was not provided, to permit a comparison upon which the percent control was calculated.

5

10

15

20

25

EXAMPLE 11

Mite Adulticide and Mite Ovicide/Larvicide Tests

One day before treatment, a "Figure 8" configuration of tree tanglefoot was applied to each of two cowpea primary leaves, one from each of two plants in a pot. In each figure, the circle nearer the stem was designated for the mite ovicide/larvicide test and the circle further from the stem was designated for the mite adulticide test.

Groups of adult mites (<u>Tetranychus urticae</u> Koch) were transferred into ovicide circles one day before

treatment and the females were allowed to deposit eggs until one hour before treatment when they were removed. Plants were sprayed to run off with a 1000 ppm solution diluted from the 3000 ppm stock solution.

One day following treatment, groups of approximately 25 adult mites were transferred into the adulticide rings. Five days later these rings were examined for live mites remaining on the leaves. The percent control was estimated based on the number of mites surviving on the check plants.

10

5

Nine days following treatment the ovicide/larvicide rings were examined for hatched eggs and living immature mites. The percent control was estimated based on the number of eggs hatching and immature mites surviving on the check plants. When the treatment effect was to eggs, control was designated as ovicidal (O); when the treatment effect was to immatures, control was designated as larvicidal (L).

Results of the mite adulticide (MI) and ovicide/larvicide (MIOLV) tests are presented in Table 5.

20

15

TABLE 5

5	NO.	MI	MIOVL	
J	1	50	80(L)	
	2	100	100	
	3	100	100(L)	
	4	100	100(L)	
	5	30	80(L)	
10	. 6	100	100(L)	
	7	100	100(0)	
	8	70	0	
	9	70	0	
15	10	100	100(O/L)	
	11	100	100(O/L)	
	12	95	90(L)	
	13	70	70(L)	
	14	100	100(L)	
	15	100	100(L)	
20	16	100	100(L)	
	17	70	0	
	18	98	100(L)	
	19	100	100(0)	
25	20	100	100(0)	
25	21	100	100(0)	
	22	100	20(L)	

TABLE 5 (Cont'd)

	NO.	MI	WIOAT
	23	70	0
5	24	100	70(L)
	25	100	100(0)
	26	100	100(0)
	27	99	50(L)
	28	100	100(L)
	29	80	80(L)
10	30	50	50(L)
	39	100	100(L)
	40	50	0
	41	80	50(L)
	42	100	100(0)
15	43	100	100(0)
	44	50	30(L)
	45	70 ·	50(L)
	46	100	30(L)
	47	100	100(L)
20	49	100	100(0)
	50	100	100(0)
	51	100	100(0)
	52	100	100(0)
	53	100	100(L)
25	54	100 .	100(0)
	55	100	100(0)

TABLE 5 (Cont'd)

	NO.	MI	MIOVL
	56	70	0
5	57	90	95(L)
	58	100	30
	59	100	0
	60	100	100(L)
	62	98	50(L)
	63	100	70(L)
10	64	100	100(L)
	65	100	100(L)
	66	70	50(L)
	67	90	95(L)
	68	100	100(L)
15	69	100	100(L)
	70	100	100(L)
	. 72	. 0	50(L)
	73	100	100(L)
	74	99	30(L)
20	75	100	100(L)
	76	100	100(L)
	77	100	100(L)
	78	100	100(L)
25	79	70	70(L)
25	80	100	70(L)
	81	99	90(L)

TABLE 5 (Cont'd)

	NO.	MI	MIOVL
	82	95	30(L)
5	83	100	100(L)
	84	100	100(L)
	85	100	100(L)
	86	100	100(L)
	93	100	80(1)
	94	100	100(L)
10	95	100	100(L)
	96	100	100(L)
	97	70	30(L)
	98	100	100(L)
	99	100	100(L)
15	101	70	80(L)
	102	70	0
	105	95	0
	107	100	50(L)
	108	100	100(0)
20	109	100	100(0)
	112	60	0
	114	100	100(0)
	115	100	100(L)
0.5	116	100	100(L)
25	117	100	100(L)
	118	100	100(L)

TABLE 5 (Cont'd)

• •	NO	MI	MIOVL
	119	100	100(L)
5	120	100	100(L)
	121	100	100(L)
	122	100	100(0)
	124	100	100(L)
	125	80	30(L)
10	126	100	100(L)
10	128	100	100(L)
	130	100	50(L)
	131	100	100(L)
	133	100	100(0)
	135	100	100(0)
15	136	98	100(L)
	137	100	100(L)
	138	100	98(L)
	139	100	100(L)
20	140	100	100(L)
20	141	70	100(L)
	142	50	80(L)
	143	70	30(0)
	144	30	0
25	145	100	90(L)
23	146	70	50(L)
	147	100	100(L)
	148	70	30(L)
	149	30	0

TABLE 5 (Cont'd)

	NO.	MI	WIOAL
	150	80	0
5	151	0	0
	152	0	0
	153	100	90(L)
	154	100	100(L)
	155	0	0
	156	98	0
10	157	30	80(L)
	158	100	98(0)
	159	100	100(0)
	160	100	20(0)
	161	100	100(0)
15			

NOTES: MI = MITE ADULTICIDE

MIOVL = MITE OVICIDE/LARVICIDE

EXAMPLE 12

20

25

European Red Mite Test

Orchard apple trees with infestations of European red mite (Panonychus ulmi) were sprayed with aqueous solutions of emulsifiable concentrates of individual compounds. Greater than 75 percent control with an application rate of 150 ppm ai was achieved by compound numbers 103, 10, 11, 19, 20, 25, 26, and 82.

EXAMPLE 13

Nematode Test

The stock solution of 3000 ppm was diluted to 1000 ppm. For each compound, 25 ml was drenched onto 500 grams of soil infested with root knot nematode (Meloidogyne incognita) eggs in a pot, for a soil concentration of 50 ppm sc.

One day after treatment, two tomato seedlings were planted in each pot. Nineteen days after planting, the roots were evaluated for the presence of knots or galls, and the percent control was estimated based on the infestation levels in check plants.

The results of the testing of nematodes (NE) are given in Table 6.

15

20

25

10

EXAMPLE 14

Rice Planthopper Foliar Test

The stock solution of 3000 ppm was diluted to 1000 ppm. One pot containing approximately 20 Mars variety rice seedlings was treated with each formulation by spraying with a spray atomizer. One day after treatment plants were covered with a tubular cage and twenty adult rice delphacids, Sogatodes oryzicola, were transferred into each cage. Five days after transferring, counts were made of the surviving planthoppers in each pot and percent control was estimated.

The results of the testing of rice planthoppers (RPH) are given in Table 6.

10

EXAMPLE 15

Tobacco Budworm Test

The stock solution of 3000 ppm was used for this test. For each compound, 0.2 ml was pipetted onto the surface of each of 5 diet cells, allowed to spread over the surfaces and air dried for two hours. Then a second istar Heliothis virescens larva was introduced into each cell. After 14 days, the number of living larvae was determined for each treatment and percent control, corrected by Abbott's formula, was calculated.

The results of the testing of tobacco budworms (TB) are given in Table 6.

EXAMPLE 16

Southern Corn Rootworm Test

The stock solution of 3000 ppm was diluted to 100 ppm. For each compound, 2.5 ml was pipetted onto a filter paper (Whatman #3) at the bottom of a 100 mm petri dish. Two corn seedlings were soaked in the 100 ppm solution for 1 hour and transferred to the petri dish. After 24 hours, each dish was loaded with 5 second instar larvae of Diabrotica undecimpunctata. After five days, the number of live larvae were noted and the percent control, corrected by Abbott's formula (see J. Economic Entomology, 18, 265-267 (1925)) was calculated.

The results appear in Table 6.

TABLE 6

	COMPOUND		PERCI	ENT CONT	ROL
	NO.	<u>ne</u>	RPH	<u>TB</u>	SCR
	1	0	30	100	0
_	2	30	100	79	75
5	3	0	100	58	50
	4	70	100	100	100
	5	0	0	100	0
	6	0	100	100	0
10	7	~ 0	1.00	100	100
10	8	50	PT	0	0
	9	85	0	0	0
	10	0	50	20	0
	11	0	10	100	0
16	12	50	0	20	0
15	13	0	5	100	0
	14	70	0	0	0
	17	70	0	0	0
	18	0	0	80	0
20	19	70	60	0	14
20	20	0	0	80	0
	23	95	0	75	0
	24	0	80	0	0
	25	30	0	56	0
25	26	20	. 0	100	0
4 J	27	0	0	56	0
	28	70	0	40	6

TABLE 6 (Cont'd)

	COMPOUND		PERCI	ENT CONT	ROL
	NO.	<u>ne</u>	RPH	<u>TB</u> _	SCR
	31	50	55	100	15
	33	0	20	100	0
5	34	50	15	0	0
	35	100	20	0	0
	36	50	0	0	20
	37	PT	25	80	17
	38	0	0	80	0
10	42	0	100	100	100
	43	0	100	100	80
	45	0	. 0	100	0
	47	80	50	0	20
	48	50	25	0	0
15	49	0	80	0	0
	50	30	100	0	100
	· 51	30	. 100	100	0
	53	0	100	100	0
	54	0	95	80	0
20	55 ·	0	70	40	0
	57	0	35	100	37
	58	0	25	100	0
	59	50	20	100	75
	60	0	40	60	
25	62	0	0	100	0
	64	70	25	0	21

TABLE 6 (Cont'd)

	COMPOUND		PERCENT	CONTRO	L
	NO.	NE	RPH	<u>TB</u>	<u>SCR</u>
	65	60	0	0	0
-	67	0	10	100	0
5	74	0	0	80	0
	78	95	0	0	14
	. 80	0	0	78	0
	81	0	50	78	0
10	83	30	50	73	16
10	84	0	50	20	6
	87	50	0	0	0
	88	50	0	100	0
	89	0	0	60	33
	90	0	0	100	0
15	91	0	70	80	0
	92	0	0	75	0
	95	0	25	100	100
	96	30	0	50	20
20	99	0	80	0	100
20	100	70	60	0	0
	102	70	0	0	0
	103	0	0	100	0
	103	0	0	100	0
25	105	0	0	100	0
<u> </u>	106	30	55	0	0
	108	70	0	0	0
	110	0	30	100	0

c

-46-

TABLE 6 (Cont'd)

	COMPOUND		PERCE	INT CONTR	OL
	NO.	NE	RPH	TB_	SCR
	111	0	0	100	20
	112	50	0	0	0
5	113	0	0	100	6
	115	70	50	16	0
	116	60	0	0	. 60
	117	50	0	55	33
	119	0	40	78	0
10	121	50	40	0	0
	125	98	25	0	0
	127	50	50	0	0
	128	70	30	0	0
	129	50	25	0	0
15	130	70	15	0	16
	131	70	25	0	16
	132	70	50	0	0
	133	0	55	60	0
	134	70	60	0	0
20	135		55		
	136	100	30	20	0
	137	100	25	0	100
	138	0	90	0	0
	139	0	98	0	40
25	140	0	. 0	0	0
	141	100	0	60	0
	142	0	0	60	0

COUDT ICE ALL

-47-

TABLE 6 (Cont'd)

	COMPOUND		PERCEN	T CONTROL	
	NO.	<u>ne</u>	RPH	TB	SCR
•	143	PT	0	20	20
5	144	0	0	0	80
5	145	0	0	0	80
	146	0	PT	0	20
	147	0	0	0	100
10	148	0	0	0	100
	149	50	0	0	60
	150	0	0	36	0
	151	0	0	60	20
	152 ·	0	0	60	0
	153	50	0	37	0
15	154	0	80	58	0
13	155		0	75	0
	156	0	0	0	0
	157	100	0	40	0
	158				
20	159	0	100	58	0
~ 0	160	100 000 000	0	0	0
	161		100	100	60

NOTES:

NE = NEMATODE

25

RPH = RICE PLANT HOPPER

TB = TOBACCO BUDWORM

SCR = SOUTHERN CORN ROOTWORM

PT = PHYTOTOXIC--PLANT DIED, NO SCORE APPLICABLE

15

20

25

What is claimed is:

1. A compound having the structural formula:

wherein

benzyl; the phenyl ring of each substituent being optionally substituted with one or more of halogen, nitro, lower alkyl, lower alkoxy, lower haloalkyl or dialkylamino; or b) one substituent from group a) and one or more substituents selected from C1-C4 alkoxy; halogen; lower alkyl; and lower alkylthio;

Y is H, C_1 - C_4 alkanoyl, C_1 - C_4 haloalkanoyl, dialkoxyphosphoryl, alkylaminocarbonyl, haloalkylsulfonyl, or C_1 - C_4 alkoxy carbonyl; and

R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy, alkenyl, alkylthio, alkoxycarbonyl, alkylamino, heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆ cycloalkyl; and

Z is O or S;

- with the proviso that when X is phenyl, then R is not alkylamino or alkoxycarbonyl.
 - 2. A compound in accordance with claim 1 wherein X is phenyl or phenyl and C_1-C_4 alkoxy; Y is H or $COCF_3$;

R is CF_3 , C_1-C_4 alkyl, C_1-C_4 alkoxy, or C_3-C_6 cycloalkyl; and

Z is 0.

3. A compound having the structural formula:

5

(II)

wherein

X is a) phenyl; lower phenylalkoxy; phenoxy; or
benzyl; the phenyl ring of each substituent being
optionally substituted with one or more of halogen,
nitro, lower alkyl, lower alkoxy, lower haloalkyl or
dialkylamino; or b) one substituent from group a) and
one or more substituents selected from C₁-C₄ alkoxy;
halogen; lower alkyl; and lower alkylthio;

R is H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_4 haloalkyl, or C_3 - C_6 cycloalkyl; and

Z is O.

A compound in accordance with claim 3 wherein
 X is phenyl or alkoxy; and

R is CF_3 , C_1 - C_4 alkyl; C_1 - C_4 alkoxy, or C_3 - C_6 cycloalkyl.

5. A compound having the structural formula

25

20

wherein

X is hydrogen or lower alkoxy;

R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy, alkenyl, alkylthio, alkoxycarbonyl, alkylamino, heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆ cycloalkyl; and

Z is O or S.

6. A compound having the structural formula

10

5

wherein

X is hydrogen or lower alkoxy;

R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆

cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy,

alkenyl, alkylthio, alkoxycarbonyl, alkylamino,

heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆

cycloalkyl; and

Z is O or S.

7. A process for controlling undesirable pests
which comprises applying to a locus to be protected a
pesticidally effective amount of a compound having the
structural formula:

25

(T)

wherein

X is a) phenyl; lower phenylalkoxy; phenoxy; or benzyl; or b) one substituent from group a) and one or more substituents selected from C_1-C_4 alkoxy; halogen; lower alkyl; and lower alkylthio;

Y is H, C_1-C_4 alkanoyl, C_1-C_4 haloalkanoyl, dialkoxyphosphoryl, alkylaminocarbonyl, haloalkylsulfonyl, or C_1-C_4 alkoxy carbonyl; and

R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy, alkenyl, alkylthio, alkoxycarbonyl, alkylamino, heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆ cycloalkyl; and

Z is O or S.

- 8. A process for controlling undesirable pests
 which comprises applying to a locus to be protected a
 pesticidally effective amount of a compound in
 accordance with claim 3.
 - 9. A pesticidal composition comprising
 - A) a pesticidally effective amount of a compound having the structural formula:

wherein

25

20

10

x is a) phenyl; lower phenylalkoxy; phenoxy; or benzyl; or b) one substituent from group a) and one or more substituents selected from C_1-C_4 alkoxy; halogen; lower alkyl; and lower alkylthio;

10

25

Y is H, C_1 - C_4 alkanoyl, C_1 - C_4 haloalkanoyl, dialkoxyphosphoryl, alkylaminocarbonyl, haloalkylsulfonyl, or C_1 - C_4 alkoxy carbonyl; and

R is H, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy, alkenyl, alkylthio, alkoxycarbonyl, alkylamino, heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C₃-C₆ cycloalkyl; and

Z is O or S; and

- B) an acceptable carrier.
- 10. A pesticidal composition comprising
- A) a pesticidally effective amount of a compound in accordance with claim 3; and
 - B) an acceptable carrier.
- 11. A process for controlling undesirable pests
 which comprises applying to a locus to be protected a
 pesticidally effective amount of a compound in
 accordance with claim 5.
- which comprises applying to a locus to be protected a pesticidally effective amount of a compound in accordance with claim 6.
 - 13. A pesticidal composition comprising
 - A) a pesticidally effective amount of a compound in accordance with claim 5; and .
 - B) an acceptable carrier.
 - 14. A pesticidal composition comprising
 - A) a pesticidally effective amount of a compound

in accordance with claim 6; and

B) an acceptable carrier.

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶						
_	to International Patent . 5 C07C281/ C07C311/			C07C281/20; C07D307/91	CO	7C337/06
II. FIELDS	SEARCHED					
		Minimum D	ocumentati	on Searched ⁷		
Classificat	ion System		Class	ification Symbols		
Int.Cl	. 5	C07C ; C07F ;	;	C07D		
				Minimum Documentation cluded in the Fields Searched ⁸		
III. DOCU		D TO BE RELEVANT ⁹				
Category o	Citation of Do	ocument, ¹¹ with indication, where ap	propriate, o	f the relevant passages 12		Relevant to Claim No.13
X	19 Septe	388 165 (GLAXO) ember 1990 e 34, paragraph 2; c	laims	25-27		1
Χ .	FR,A,2 MANUFAC 18 May see cla		INING	AND		3,4
				-/- ·		
"T" later document published after the international or priority date and not in conflict with the app cited to understand the principle or theory understand the principle or princi					e application but underlying the med invention med invention we step when the her such docu- a person skilled	
Date of the	Actual Completion of t	he International Search		Date of Mailing of this Interna	tional Searc	h Report
	04 MAR	RCH 1993		15. 03. 9		
Internationa	I Searching Authority EUROPEA	AN PATENT OFFICE		Signature of Authorized Office. HELPS I.M.	•	

ategory o	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
1		
	CHEMICAL ABSTRACTS, vol. 102, no. 23,	1,2
X	10 June 1985, Columbus, Ohio, US;	
	K NAGARAJAN ET. AL. Antiimplantation agents: Part 1. 1-Arylthiosemicarbazides. page 595; column 2;	
	see abstract & INDIAN J.CHEM, SECT B,	
	vol. 23B, no. 12, pages 1243 - 57 & 11TH COLLECTIVE INDEX	
	see page 32946CS, column 2, line 36 - line 40	
x	CHEMICAL ABSTRACTS, vol. 51, no. 2, 25 January 1957, Columbus, Ohio, US;	1-2
	abstract no. 1883d, V. HAHN ET. AL. 'Syntheses in the diphenyl series. IV. The phenoxyphenylhydrazines.'	
	see abstract & CROAT. CHEM. ACTA., vol. 28, 1956,	
	pages 57 - 65	1-14
\	EP,A,O 457 140 (BAYER) 21 November 1991 see claims; examples	
	LU,A,51 918 (SCHERING) 9 November 1966	1-14
	see claims; examples	1-14
	US,A,4 514 419 (CRUIKSHANK ET. AL.) 30 April 1985 see whole document	
	FR,A,2 440 943 (MITSUI TOATSU CHEMICALS INC.)	1-4
	6 June 1980 see claims	1-14
A	EP,A,O 183 650 (CIBA-GEIGY) 4 June 1986 cited in the application	1-14
	see claims; examples	1-14
	EP,A,O 067 471 (SHELL) 22 December 1982 cited in the application	
	see whole document	

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)					
Category °	Citation of Document, with indication, where appropriate, of the relevant passages Relevant to Claim No				
CE. CEGO. 7					
A	CHEMICAL ABSTRACTS, vol. 108, no. 19, 9 May 1988, Columbus, Ohio, US; abstract no. 163280d, K. SATO ET. AL. 'Preparation and acaricidal activity of alkyl phenylhydrazinecarboxylates.' page 249; column 2; cited in the application see abstract & JP,A,62 238 258 (MITSUBISHI CHEMICAL INDUSTRIES CO.)	1-14			

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9209855 SA 67279

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

04/03/93

Publication Patent family **Publication** Patent document date member(s) date cited in search report 20-09-90 5136990 AU-A-19-09-90 EP-A-0388165 15-09-90 2012004 CA-A-29-11-90 2289555 JP-A-11-06-91 5023255 US-A-22-10-75 1411373 GB-A-18-05-73 FR-A-2155631 01-02-73 789780 BE-A-23-12-75 980341 CA-A-30-06-78 601195 CH-A-12-04-73 2248958 DE-A-28-05-81 1048294 JP-C-49006919 22-01-74 JP-A-14-10-80 55039823 JP-B-19-08-75 3900321 US-A-21-11-91 4015834 DE-A-21-11-91 EP-A-0457140 7709991 21-11-91 **AU-A-**18-11-91 2042571 CA-A-17-08-92 4226955 JP-A-23-02-67 685849 BE-A-09-11-66 LU-A-51918 09-10-69 DE-A,B,C 1567157 1492641 FR-A-1085697 GB-A-15-03-67 6612874 NL-A-None 30-04-85 US-A-4514419 04-11-82 525427 AU-B-FR-A-2440943 06-06-80 15-05-80 5259279 AU-A-07-12-82 1137097 CY-Y-22-05-80 2944783 DE-A.C 23-07-80 2038319 GB-A, B 23-12-84 1131458 SU-A-15-09-87 1338783 SU-A-23-07-84 1105115 SU-A-15-11-86 1271371 SU-A-07-05-85 4515628 US-A-28-01-86 4566897 US-A-28-10-86 US-A-4619689

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9209855 SA 67279

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

04/0

04/03/93 2

Page

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0183650		AU-A- 5035885 CA-A- 1258076 DE-A- 3562235 US-A- 4725302	590232 5035885 1258076 3562235 4725302 61143352	02-11-89 05-06-86 01-08-89 26-05-88 16-02-88 01-07-86
EP-A-0067471	22-12-82	CA-A- JP-C- JP-B- JP-A- US-A- US-A-	1177833 1660796 3028430 58013577 4406910 4467104	13-11-84 21-04-92 19-04-91 26-01-83 27-09-83 21-08-84

Select a location name for an aerial photo or park property map and descriptions of ball fields located on school or park property. Maps and directions to the ball fields are also provided. Click 'Back' on your broad for another search.

Rock Creek Hills Local Park

Note: Ple see <u>field</u> <u>descriptic</u> below for current sfield availabilit

Address 3701 Sau Road City: Kensingto State: M Zip Code 20895 Contact Agency: NCPPC Contact Phone: 3 495-252!

