MRI-Together 2021-https://mritogether.github.io/

A White Hat's Guide to P-Hacking

Dr. Xeni Deligianni- University of Basel-xeni.deligianni@unibas.ch

This tutorial is released under a CC-BY license.

We have two data distributions, one the **controls** and one a distribution that we want to compare to the control. In real scientific life this could be the quantitative values of a controlled group, let's call them **qmr** and respective values of a different group e.g. patients with a certain condition.

Let's assume for now that the distributions are **normal** Gaussian distributions. So let's assume we checked the distributions. And let's assume, that BEFORE starting our analysis, we have a **hypothesis** that in disease presence T42 values are increased. And let's imagine we have estimated that we should measure and we measured under identical and ideal conditions **50** healthy controls and **50** patients.

Let's agree on some definitions first

α: Significance level. A p-value below this will lead to the null hypothesis being rejected.

Ready? Let's create some fictional data.

Let's create two perfectly **normal distributions**. One with **mean** 40 and **standard deviation** (sd) 5 and one with mean 10 and standard deviation 2. And let's visualize at their distributions, as well as the distribution of their difference.

Loading required package: viridisLite

That looks clear. Doesn't it? Let's also look at the boxplot visualization.

```
library(ggplot2)# A great library for visualization
library(viridis)
load('New_Data.RData')
#qmr <-c(rnorm(1000, mean=10, sd=5),rnorm(1000, mean=40, sd=5))
#subj <- c(rep("ctrl",1000),rep("pat",1000),rep("diff",1000))
#d.exp <- data.frame(qmr,subj)
x<-d.exp[d.exp$subj=='pat',]$qmr
bw <- 2 * IQR(x) / length(x)^(1/3)#decide for the nr of bins-Friedman-Diaconis rule
ggplot(data = d.exp,mapping = aes(y = qmr,x = subj, fill=subj)) + geom_boxplot()+scale_fill_viridis_d()</pre>
```


#colorblind accessible colors

So what's next? How likely is that this difference is 0.

What would we get by testing whether there is a difference in these 2 distributions. Having all our assumptions, most of us would go for a t-test.

```
load('New_Data.RData')

#qmr <-c(rnorm(1000, mean=10, sd=5),rnorm(1000, mean=40, sd=5))
#subj <- c(rep("ctrl",1000),rep("pat",1000),rep("diff",1000))
#d.exp <- data.frame(qmr,subj)
# Randomly choose number of samples (1000/50/25/15/5)

nr_s<-4

p_series<-vector()
for (i in 1:100) {
    sample_rows_ctrl<-sample(nrow(d.exp[d.exp$subj=="ctrl",]),nr_s)
    sample_rows_pat<-1000+sample(nrow(d.exp[d.exp$subj=="pat",]),nr_s)
    d.exp_sub<-rbind(d.exp[sample_rows_ctrl],d.exp[sample_rows_pat,])
    p_Res<-t.test(d.exp_sub[d.exp_sub$subj=="pat",]$qmr, d.exp_sub[d.exp_sub$subj=="ctrl",]$qmr, paired =
    alternative = "two.sided", conf.level = 0.95,var.equal=TRUE)
    p_series [i]<-p_Res$p.value</pre>
```


qmr

 $\#\#\#\mathrm{So}$ let's sum up and continue

##

```
## Paired t-test
##
## data: d.exp_sub[d.exp_sub$subj == "pat", ]$qmr and d.exp_sub[d.exp_sub$subj == "ctrl", ]$qmr
## t = 14.295, df = 7, p-value = 1.949e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 25.00649 34.91887
## sample estimates:
## mean of the differences
## 29.96268
```

But what if we don't have 1000 samples or 1000 representative samples?

Trap Nr. 1: Be real! 5 data points is not 5000

Topic 1: The number of samples is important What if we have 15 samples of some less different data. Let's get them & repeat the steps

p-values change but our difference is still constantly higher than 0. ## But what if things are not so clear? Let's modify bring the mean values closer and increase the standard deviation. Keeping the assumptions for t-test we keep standard deviation the same.


```
##
## Paired t-test
##
## data: d.exp[d.exp$subj == "pat", ]$qmr and d.exp[d.exp$subj == "ctrl", ]$qmr
```

```
## t = 3.1788, df = 4, p-value = 0.03357
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
     2.147982 31.792787
##
## sample estimates:
  mean of the differences
##
                  16.97038
##
## Cohen's d
##
## d estimate: 1.877434 (large)
## 95 percent confidence interval:
##
       lower
                 upper
## 0.1269388 3.6279300
```

Histogram of p_series

What can we do?

Decide in advance the sample size we need! If we don't know maybe it is an exploratory analysis after all ###Clinical vs statistical significance (to the slides and back)

Trap Nr. 2: Step 1: Look at your data

Not all datasets are normal, t-test is not for everything!

The same way as mean is not always the proper statistic.

```
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
```



```
##
##
    Paired t-test
##
## data: d.exp[d.exp$subj == "pat", ]$qmr and d.exp[d.exp$subj == "ctrl", ]$qmr
## t = -0.76922, df = 999, p-value = 0.4419
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
   -1.2379758 0.5407345
## sample estimates:
  mean of the differences
                -0.3486206
##
##
##
   Wilcoxon signed rank test with continuity correction
## data: d.exp[d.exp$subj == "pat", ]$qmr and d.exp[d.exp$subj == "ctrl", ]$qmr
## V = 276158, p-value = 0.00457
\#\# alternative hypothesis: true location shift is not equal to 0
```



```
##
##
   Paired t-test
## data: d.exp[d.exp$subj == "pat", ]$qmr and d.exp[d.exp$subj == "ctrl", ]$qmr
## t = 2.306, df = 9, p-value = 0.04654
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
     0.249618 26.007024
##
## sample estimates:
## mean of the differences
##
                  13.12832
##
## Cohen's d
##
## d estimate: 1.320048 (large)
## 95 percent confidence interval:
##
       lower
                 upper
## 0.2831986 2.3568978
```

Histogram of p_series

Trap 3: Just one more experiment then!It almost looks good. Let's repeat it. Trap of adding data on

Trap Nr. 3: This one looks wrong. Let's remove it

##TO DO:post-hoc data selection, Keep adjusting the data collection removing outliers, 1) use different threshold, 2) remove outliers and test till you get you result

Trap Nr. 4: Problem of repeated sequential testing

Bonferroni and other corrections

```
Petal.Length
     Sepal.Length
                      Sepal.Width
                                                         Petal.Width
##
                                                                :0.100
##
    Min.
            :4.300
                     Min.
                             :2.000
                                              :1.000
                                      Min.
                                                        Min.
##
    1st Qu.:5.100
                     1st Qu.:2.800
                                       1st Qu.:1.600
                                                        1st Qu.:0.300
##
    Median :5.800
                     Median :3.000
                                      Median :4.350
                                                        Median :1.300
##
    Mean
            :5.843
                     Mean
                             :3.057
                                      Mean
                                              :3.758
                                                        Mean
                                                                :1.199
##
    3rd Qu.:6.400
                     3rd Qu.:3.300
                                      3rd Qu.:5.100
                                                        3rd Qu.:1.800
##
    Max.
            :7.900
                     Max.
                             :4.400
                                      Max.
                                              :6.900
                                                        Max.
                                                                :2.500
##
          Species
##
    setosa
               :50
    versicolor:50
##
##
    virginica:50
##
##
##
```


Trap Nr. 5: TODO POST HOC hypothesis

Be ware of one-sided tests,

###Check the assumptions: (different variation, reaching normality)

[1] 0.04930856 0.97534572 0.02465428

 $\#\# References\ https://www.youtube.com/watch?v=HDCOUXE3HMM\ Cambell\ book\ \#\# how\ to\ hack\ tutorial\ nicolas$

```
## set global chunk options: all images will be 7x5 inches
knitr::opts_chunk$set(fig.width = 7, fig.height = 5)
options(digits = 4)
```

I encourage you to watch: The dance of p-values: https://www.youtube.com/watch?v=5OL1RqHrZQ8 by Geoff Cumming who is also a presenter