

Knots, Plethysms, and the Riordan Group

Minh-Tâm Quang Trinh

Howard University

1 Fruit

"You can't add together apples and oranges."

Well, not in real life.

But in mathematics, you can make up a new world where this is possible.

The free vector space on $X = \{\text{apple, orange, pear}\}:$

$$\mathbf{C}\langle X\rangle = \{a \cdot \mathrm{apple} + b \cdot \mathrm{orange} + c \cdot \mathrm{pear} \mid a,b,c \in \mathbf{C}\}.$$

Natural ways to do addition and scalar multiplication on $\mathbf{C}\langle X \rangle$.

1 Fruit

"You can't add together apples and oranges."

Well, not in real life

But in mathematics, you can make up a new world where this is possible.

The free vector space on $X = \{\text{apple, orange, pear}\}\$

$$\mathbf{C}\langle X\rangle = \{a \cdot \mathrm{apple} + b \cdot \mathrm{orange} + c \cdot \mathrm{pear} \mid a,b,c \in \mathbf{C}\}.$$

Natural ways to do addition and scalar multiplication on $\mathbf{C}\langle X\rangle.$

Too dumb? The vectors "apple" and "orange" just sum to "apple + orange".

But there's a vector space where it simplifies further.

- Start with some relations like
 pear ~ apple + orange, orange ~ 2 · apple.
- (2) Let Rel be the span of "pear apple orange" and "orange $2 \cdot$ apple".
- (3) Extend \sim to an equivalence relation on $\mathbf{C}\langle X \rangle$: $v \sim v' \iff v v' \in Rel.$

The set of equivalence classes is a new vector space $\mathbb{C}\langle X \rangle/Rel$, in which \sim defines equality.

Too dumb? The vectors "apple" and "orange" just sum to "apple + orange".

But there's a vector space where it simplifies further.

(1) Start with some relations like

- $\mbox{pear} \sim \mbox{apple} + \mbox{orange}, \quad \mbox{orange} \sim 2 \cdot \mbox{apple}.$
- (2) Let Rel be the span of "pear apple orange" and "orange $2 \cdot apple$ ".
- (3) Extend \sim to an equivalence relation on $\mathbf{C}\langle X \rangle$:

$$v \sim v' \iff v - v' \in Rel.$$

The set of equivalence classes is a new vector space $\mathbb{C}\langle X \rangle/Rel$, in which \sim defines equality.

2 Knots and Links I'm interested in knots and links. Knot diagrams:

Links allow multiple circles:

An *oriented link diagram* is a link diagram where we give each circle a direction/orientation.

Also interested in diagrams that are strictly inside a given region $\Omega \subseteq \mathbf{R}^2$.

Will mainly focus on $\Omega = \mathbf{R}^2$ and $\Omega = \mathbf{R}^2 \setminus \mathbf{0}$.

Too dumb? The vectors "apple" and "orange" just sum to "apple + orange".

But there's a vector space where it simplifies further.

pear \sim apple + orange, orange $\sim 2 \cdot$ apple.

(1) Start with some relations like

- (2) Let Rel be the span of "pear apple orange" and "orange $2 \cdot apple$ ".
- (3) Extend \sim to an equivalence relation on $\mathbb{C}\langle X \rangle$:

$$v \sim v' \iff v - v' \in Rel.$$

The set of equivalence classes is a new vector space $\mathbb{C}\langle X \rangle/Rel$, in which \sim defines equality.

2 Knots and Links I'm interested in *knots* and *links*.

Knot diagrams:

Links allow multiple circles:

An *oriented link diagram* is a link diagram where we give each circle a direction/orientation.

Also interested in diagrams that are strictly inside a given region $\Omega \subseteq \mathbf{R}^2$.

Will mainly focus on $\Omega = \mathbf{R}^2$ and $\Omega = \mathbf{R}^2 \setminus \mathbf{0}$.

2 Knots and Links I'm interested in knots and links. Knot diagrams:

Links allow multiple circles

An *oriented link diagram* is a link diagram where we give each circle a direction/orientation.

Also interested in diagrams that are strictly inside a given region $\Omega \subseteq \mathbb{R}^2$.

Will mainly focus on $\Omega = \mathbf{R}^2$ and $\Omega = \mathbf{R}^2 \setminus \mathbf{0}$.

We will treat two diagrams in Ω as <u>equal</u> as long as they are *isotopic*:

That is, we can deform one into the other within Ω , without tearing any circles.

Let \mathcal{L}_{Ω} be the set of all oriented link diagrams in Ω , including the empty diagram.

 $\mathbf{C}\langle\mathcal{L}_{\Omega}\rangle = \{\text{finite linear combos of elements of } \mathcal{L}_{\Omega}\}$

is usually huge!

To study it, try to find equivalence relations on it that give us smaller, more tractable vector spaces.

This is called *skein theory*.

We will treat two diagrams in Ω as <u>equal</u> as long as they are *isotopic*:

That is, we can deform one into the other within Ω , without tearing any circles.

Let \mathcal{L}_{Ω} be the set of all oriented link diagrams in Ω , including the empty diagram.

 $\mathbf{C}\langle\mathcal{L}_{\Omega}\rangle=\{\text{finite linear combos of elements of }\mathcal{L}_{\Omega}\}$ is usually huge!

To study it, try to find equivalence relations on it that give us smaller, more tractable vector spaces.

This is called $skein\ theory.$

The interesting parts of links are the crossings.

One thing that we can do with links, which we could not do with fruit:

We can specify *local relations*, that relate diagrams whenever they differ at a single crossing.

E.g., we might have three diagrams that only differ at one crossing:

We will interpret a relation on these crossings as a relation on every such triple of oriented link diagrams.

We will treat two diagrams in Ω as equal as long as they are isotopic:

That is, we can deform one into the other within Ω , without tearing any circles.

Let \mathcal{L}_{Ω} be the set of all oriented link diagrams in Ω , including the empty diagram.

 $\mathbb{C}\langle\mathcal{L}_{\Omega}\rangle = \{\text{finite linear combos of elements of } \mathcal{L}_{\Omega}\}$

is usually huge!

To study it, try to find equivalence relations on it that give us smaller, more tractable vector spaces.

This is called *skein theory*.

The interesting parts of links are the crossings.

One thing that we can do with links, which we could not do with fruit:

We can specify *local relations*, that relate diagrams whenever they differ at a single crossing.

E.g., we might have three diagrams that only differ at one crossing:

We will interpret a relation on these crossings as a relation on every such triple of oriented link diagrams.

The interesting parts of links are the crossings

One thing that we can do with links, which we could not do with fruit:

We can specify *local relations*, that relate diagrams whenever they differ at a single crossing.

E.g., we might have three diagrams that only differ at one crossing:

We will interpret a relation on these crossings as a relation on *every* such triple of oriented link diagrams Fix constants $a \neq 0$ and $q \neq 0, 1$.

It turns out that the following local $skein\ relations$ are especially interesting.

When $\Omega \neq \mathbf{R}^2$, we will be a bit more restrictive:

We will only apply the relations when the drawings take place inside an open disk inside Ω .

E.g., we will not simplify a circle using the bottom left relation when Ω has a hole inside the circle.

Fix constants $a \neq 0$ and $q \neq 0, 1$.

It turns out that the following local *skein relations* are especially interesting.

$$\left(\overbrace{\sum} \right) - \left(\overbrace{\sum} \right) = (q - q^{-1}) \left(\overbrace{\bigcirc} \right).$$

$$\left(\bigodot) = \frac{a - a^{-1}}{q - q^{-1}} \left(\bigodot) \right) , \left(\bigodot) = -a^{-1} \left(\bigodot) \right)$$

When $\Omega \neq \mathbf{R}^2$, we will be a bit more restrictive:

We will only apply the relations when the drawings take place inside an open disk inside Ω .

E.g., we will not simplify a circle using the bottom left relation when Ω has a hole inside the circle.

The relations give us a linear subspace $Rel_{\Omega} \subseteq \mathbf{C}(\mathcal{L}_{\Omega})$.

The HOMFLYPT skein module of Ω is

$$\mathbf{Sk}_{\Omega} = \mathbf{C} \langle \mathcal{L}_{\Omega} \rangle / Rel_{\Omega}.$$

Thm (\approx HOMFLYPT 1986)

$$\mathrm{Sk}_{\mathbf{R}^2} = \mathbf{C}.$$

That is, any diagram in \mathbb{R}^2 is a scalar multiple of the empty diagram modulo the skein relations.

The *HOMFLYPT invariant* of a link is the scalar that we get from any diagram of the link.

Fix constants $a \neq 0$ and $q \neq 0, 1$.

It turns out that the following local $skein\ relations$ are especially interesting.

$$\left(\begin{array}{c} \left\langle \begin{array}{c} \left\langle \begin{array}{c} \left\langle \begin{array}{c} \right\rangle \\ \end{array} \right\rangle \\ = \left(q - q^{-1} \right) \end{array} \right) \left(\begin{array}{c} \left\langle \begin{array}{c} \left\langle \begin{array}{c} \right\rangle \\ \end{array} \right\rangle \\ = \left(\frac{a - a^{-1}}{q - q^{-1}} \left(\begin{array}{c} \left\langle \begin{array}{c} \right\rangle \\ \end{array} \right) \end{array} \right) , \quad \left(\begin{array}{c} \left\langle \begin{array}{c} \left\langle \begin{array}{c} \right\rangle \\ \end{array} \right) \\ = \left(\frac{a^{-1}}{q - q^{-1}} \left(\begin{array}{c} \left\langle \begin{array}{c} \left\langle \begin{array}{c} \right\rangle \\ \end{array} \right) \end{array} \right) \right) \right)$$

When $\Omega \neq \mathbb{R}^2$, we will be a bit more restrictive:

We will only apply the relations when the drawings take place inside an open disk inside Ω .

E.g., we will not simplify a circle using the bottom left relation when Ω has a hole inside the circle.

The relations give us a linear subspace $Rel_{\Omega} \subseteq \mathbf{C}(\mathcal{L}_{\Omega})$.

The HOMFLYPT skein module of Ω is

$$Sk_{\Omega} = \mathbf{C}\langle \mathcal{L}_{\Omega} \rangle / Rel_{\Omega}.$$

Thm (\approx HOMFLYPT 1986)

$$\mathrm{Sk}_{\mathbf{R}^2} = \mathbf{C}.$$

That is, any diagram in \mathbb{R}^2 is a scalar multiple of the empty diagram modulo the skein relations.

The *HOMFLYPT invariant* of a link is the scalar that we get from any diagram of the link.

The relations give us a linear subspace $Rel_{\Omega} \subseteq \mathbb{C}\langle \mathcal{L}_{\Omega} \rangle$.

The HOMFLYPT skein module of Ω is

$$\mathbf{Sk}_{\Omega} = \mathbf{C}\langle \mathcal{L}_{\Omega} \rangle / Rel_{\Omega}.$$

Thm (\approx HOMFLYPT 1986)

$$\mathrm{Sk}_{\mathbf{R}^2} = \mathbf{C}.$$

That is, any diagram in \mathbb{R}^2 is a scalar multiple of the empty diagram modulo the skein relations.

The *HOMFLYPT invariant* of a link is the scalar that we get from any diagram of the link.

Example Consider the following element in $\mathbf{C}\langle \mathcal{L}_{\mathbf{R}^2} \rangle$:

$$L = \bigcirc$$

Modulo the "crossing" rule,

$$L = + (q - q^{-1})$$

Modulo
$$\bigcirc = \frac{a-a^{-1}}{q-q^{-1}} \cdot \emptyset,$$

$$L = \left(\frac{a-a^{-1}}{q-q^{-1}}\right)^2 \cdot \emptyset + (a-a^{-1}) \cdot \emptyset.$$

So the scalar is
$$\left(\frac{a-a^{-1}}{q-q^{-1}}\right)^2 + a - a^{-1}$$
.

Example Consider the following element in $\mathbb{C}\langle \mathcal{L}_{\mathbf{R}^2} \rangle$:

$$L = \bigcirc$$

Modulo the "crossing" rule,

$$L = \bigcirc \bigcirc + (q - q^{-1}) \bigcirc$$

Modulo
$$\bigcirc = \frac{a-a^{-1}}{q-q^{-1}} \cdot \emptyset,$$

$$L = \left(\frac{a-a^{-1}}{q-q^{-1}}\right)^2 \cdot \emptyset + (a-a^{-1}) \cdot \emptyset.$$

So the scalar is
$$\left(\frac{a-a^{-1}}{q-q^{-1}}\right)^2 + a - a^{-1}$$
.

For $\Omega = \mathbf{R}^2 \setminus \mathbf{0}$, what happens?

Cannot simplify circles in ${\bf R}^2 \setminus {\bf 0}$ that go around ${\bf 0}.$

In fact: pairwise distinct diagrams p_n for all $n \in \mathbf{Z}$.

(n > 0 is counterclockwise, n < 0 clockwise.)

We set $p_0 = \emptyset$ as a matter of convention.

Example Consider the following element in $\mathbb{C}\langle \mathcal{L}_{\mathbb{R}^2} \rangle$:

$$L = \bigcirc$$

Modulo the "crossing" rule,

$$L = + (q - q^{-1})$$

Modulo $\bigcirc = \frac{a-a^{-1}}{q-q^{-1}} \cdot \emptyset,$

$$L = \left(\frac{a - a^{-1}}{q - q^{-1}}\right)^2 \cdot \emptyset + (a - a^{-1}) \cdot \emptyset.$$

So the scalar is $\left(\frac{a-a^{-1}}{q-q^{-1}}\right)^2 + a - a^{-1}$.

For $\Omega = \mathbf{R}^2 \setminus \mathbf{0}$, what happens?

Cannot simplify circles in $\mathbb{R}^2 \setminus \mathbf{0}$ that go around $\mathbf{0}$.

In fact: pairwise distinct diagrams p_n for all $n \in \mathbf{Z}$.

(n>0 is counterclockwise, n<0 clockwise.)

We set $p_0 = \emptyset$ as a matter of convention.

For $\Omega = \mathbb{R}^2 \setminus \mathbf{0}$, what happens?

Cannot simplify circles in $\mathbb{R}^2 \setminus 0$ that go around 0. In fact: pairwise distinct diagrams p_n for all $n \in \mathbb{Z}$.

(n > 0 is counterclockwise, n < 0 clockwise.)We set $p_0 = \emptyset$ as a matter of convention. There are even more diagrams in $\mathbf{R}^2 \setminus \mathbf{0}$ that we cannot simplify.

If we have two diagrams L and L', then we can put L around L' to get a new diagram

 $L \cdot L'$.

Note that $L \cdot L'$ and $L' \cdot L$ are isotopic.

Extend this to a binary operation on $\text{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$, by making it distribute over addition.

Think of this as a multiplication law, which turns $\mathrm{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$ into a *ring*.

Monomials in the p_n 's, like $p_1p_2p_3$ or p_{-1}^2 , do not simplify further.

There are even more diagrams in $\mathbb{R}^2 \setminus \mathbf{0}$ that we cannot simplify.

If we have two diagrams L and L', then we can put L around L' to get a new diagram

$$L \cdot L'$$
.

Note that $L \cdot L'$ and $L' \cdot L$ are isotopic.

Extend this to a binary operation on $Sk_{\mathbf{R}^2\setminus\mathbf{0}}$, by making it distribute over addition.

Think of this as a multiplication law, which turns $\mathrm{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$ into a ring.

Monomials in the p_n 's, like $p_1p_2p_3$ or p_{-1}^2 , do not simplify further.

Thm (Turaev 1988)

The collection of all monomials in the p_n 's is a basis for $\text{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$ as a vector space.

Corollary As a ring,

$$\operatorname{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}} = \mathbf{C}[p_0, p_{\pm 1}, p_{\pm 2}, \ldots].$$

Remark

The subring generated by p_0, p_1, p_2, \ldots is isomorphic to a very famous ring in combinatorics, called the *ring* of symmetric functions.

There are even more diagrams in $\mathbf{R}^2 \setminus \mathbf{0}$ that we cannot simplify.

If we have two diagrams L and L', then we can put L around L' to get a new diagram

 $L \cdot L'$.

Note that $L \cdot L'$ and $L' \cdot L$ are isotopic.

Extend this to a binary operation on $\text{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$, by making it distribute over addition.

Think of this as a multiplication law, which turns $\mathrm{Sk}_{\mathbf{R}^2\backslash\mathbf{0}}$ into a ring.

Monomials in the p_n 's, like $p_1p_2p_3$ or p_{-1}^2 , do not simplify further.

Thm (Turaev 1988)

The collection of all monomials in the p_n 's is a basis for $\operatorname{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$ as a vector space.

Corollary As a ring,

$$\mathrm{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}} = \mathbf{C}[p_0, p_{\pm 1}, p_{\pm 2}, \ldots].$$

Remark

The subring generated by p_0, p_1, p_2, \ldots is isomorphic to a very famous ring in combinatorics, called the *ring* of symmetric functions.

Thm (Turaev 1988)

The collection of all monomials in the p_n 's is a basis for $Sk_{\mathbf{R}^2\setminus\mathbf{0}}$ as a vector space.

Corollary As a ring,

$$\operatorname{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}} = \mathbf{C}[p_0, p_{\pm 1}, p_{\pm 2}, \ldots].$$

Remark

The subring generated by p_0, p_1, p_2, \ldots is isomorphic to a very famous ring in combinatorics, called the *ring* of symmetric functions.

3 Plethysm Another operation on $\mathrm{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$:

The first diagram above is p_2 . Call the middle one L. The last diagram is the $plethysm\ L\circ p_2$.

If L had multiple knot components, then we would form $L \circ p_2$ by inserting p_2 into each component, following their orientations.

For any n, we define $L \circ p_n$ analogously.

3 Plethysm Another operation on $Sk_{\mathbf{R}^2\setminus\mathbf{0}}$:

The first diagram above is p_2 . Call the middle one L. The last diagram is the *plethysm* $L \circ p_2$.

If L had multiple knot components, then we would form $L \circ p_2$ by inserting p_2 into each component, following their orientations.

For any n, we define $L \circ p_n$ analogously.

It is fun to check that:

(1) $p_m \circ p_n = p_{mn}$ for any m, n.

How to define $L \circ K$ for any K and L?

Every element of $\operatorname{Sk}_{\mathbf{R}^2\backslash\mathbf{0}}$ is a polynomial in the p_n 's, so it is enough to declare:

- (2) $-\circ K$ distributes over + and \cdot , for all K.
- (3) $p_n \circ \text{ distributes over } + \text{ and } \cdot, \text{ for all } n.$

Thm (1)–(3) define a binary operation on $\mathrm{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$. This operation is associative, non-commutative, and satisfies $L \circ p_1 = L = p_1 \circ L$. 3 Plethysm Another operation on $Sk_{\mathbf{R}^2\setminus\mathbf{0}}$:

The first diagram above is p_2 . Call the middle one L. The last diagram is the $plethysm\ L\circ p_2$.

If L had multiple knot components, then we would form $L \circ p_2$ by inserting p_2 into each component, following their orientations.

For any n, we define $L \circ p_n$ analogously.

It is fun to check that:

(1) $p_m \circ p_n = p_{mn}$ for any m, n.

How to define $L \circ K$ for any K and L?

Every element of $\mathrm{Sk}_{\mathbf{R}^2\backslash\mathbf{0}}$ is a polynomial in the p_n 's, so it is enough to declare:

- (2) $-\circ K$ distributes over + and \cdot , for all K.
- (3) $p_n \circ \text{distributes over} + \text{and } \cdot, \text{ for all } n.$

Thm (1)–(3) define a binary operation on $\mathrm{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$. This operation is associative, non-commutative, and satisfies $L \circ p_1 = L = p_1 \circ L$. It is fun to check that

(1) $p_m \circ p_n = p_{mn}$ for any m, n.

How to define $L \circ K$ for any K and L?

Every element of $Sk_{\mathbb{R}^2\setminus 0}$ is a polynomial in the p_n 's, so it is enough to declare:

- (2) $-\circ K$ distributes over + and \cdot , for all K.
- (3) $p_n \circ \text{ distributes over} + \text{ and } \cdot, \text{ for all } n$

Thm (1)–(3) define a binary operation on $\mathrm{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$. This operation is associative, non-commutative, and satisfies $L \circ p_1 = L = p_1 \circ L$. Let $\mathbf{C}[t]$ be the ring of polynomials in t.

By comparison, the composition operation

$$(g\circ f)(t)=g(f(t))$$

on $\mathbf{C}[t]$ is characterized by:

- (1) $t \circ f = f = t \circ f$ for any f.
- (2) $-\circ f$ distributes over + and \cdot , for any f.

Remark t^n is analogous to p_1^n , not to p_n : In general, $t^n \circ (f_1 + f_2) \neq t^n \circ f_1 + t^n \circ f_2$.

Let $\mathbf{C}[t]$ be the ring of polynomials in t.

By comparison, the composition operation

$$(g \circ f)(t) = g(f(t))$$

on $\mathbf{C}[t]$ is characterized by:

- (1) $t \circ f = f = t \circ f$ for any f.
- (2) $-\circ f$ distributes over + and \cdot , for any f.

Remark t^n is analogous to p_1^n , not to p_n :

In general, $t^n \circ (f_1 + f_2) \neq t^n \circ f_1 + t^n \circ f_2$.

4 Riordan Revisited

In combinatorics, we like to study number sequences c_0, c_1, c_2, \dots through *generating functions*

$$c(t) = c_0 + c_1 t + c_2 t^2 + \dots,$$

a.k.a. formal power series. They form a ring $\mathbb{C}[t]$.

The word "formal" means we don't worry about whether c(t) converges at any given value of t.

Any polynomial is a power series: $\mathbf{C}[t] \subseteq \mathbf{C}[\![t]\!]$. But \circ does <u>not</u> extend to a binary operation on $\mathbf{C}[\![t]\!]$.

Example If
$$c(t) = 1 + t + t^2 + ...$$
, then $c(1)$ diverges.

Let $\mathbf{C}[t]$ be the ring of polynomials in t.

$$\begin{array}{c|cccc} \operatorname{Sk}_{\mathbf{R}^2 \backslash \mathbf{0}} & p_1 & \operatorname{plethysm} \\ \mathbf{C}[t] & t & \operatorname{composition of polynomials} \end{array}$$

By comparison, the composition operation

$$(g \circ f)(t) = g(f(t))$$

on $\mathbf{C}[t]$ is characterized by:

- (1) $t \circ f = f = t \circ f$ for any f.
- (2) $-\circ f$ distributes over + and \cdot , for any f.

Remark t^n is analogous to p_1^n , not to p_n : In general, $t^n \circ (f_1 + f_2) \neq t^n \circ f_1 + t^n \circ f_2$.

4 Riordan Revisited

In combinatorics, we like to study number sequences c_0, c_1, c_2, \ldots through *generating functions*

$$c(t) = c_0 + c_1 t + c_2 t^2 + \dots,$$

a.k.a. formal power series. They form a ring $\mathbb{C}[t]$.

The word "formal" means we don't worry about whether c(t) converges at any given value of t.

Any polynomial is a power series: $\mathbf{C}[t] \subseteq \mathbf{C}[\![t]\!]$.

But \circ does $\underline{\text{not}}$ extend to a binary operation on $\mathbf{C}[\![t]\!].$

Example If $c(t) = 1 + t + t^2 + \dots$, then c(1) diverges.

4 Riordan Revisited

In combinatorics, we like to study number sequences c_0, c_1, c_2, \ldots through *generating functions*

$$c(t) = c_0 + c_1 t + c_2 t^2 + \dots$$

a.k.a. formal power series. They form a ring $\mathbb{C}[\![t]\!]$.

The word "formal" means we don't worry about whether c(t) converges at any given value of t.

Any polynomial is a power series: $\mathbf{C}[t] \subseteq \mathbf{C}[\![t]\!]$.

But \circ does <u>not</u> extend to a binary operation on $\mathbb{C}[\![t]\!]$.

Example If $c(t) = 1 + t + t^2 + \dots$, then c(1) diverges.

Similarly, c(1 + blah(t)) will never work. By contrast:

$$c(t+t^{2}) = 1 + (t+t^{2}) + (t+t^{2})^{2} + (t+t^{2})^{3} + \dots$$

$$= \begin{cases} 1 \\ +t+t^{2} \\ +t^{2} + 2t^{3} + t^{4} \\ +t^{3} + 3t^{4} + \dots \\ +t^{4} + \dots \end{cases}$$

$$= 1 + t + 2t^{2} + 3t^{3} + 5t^{4} + \dots$$

In general, we can form $g\circ f$ as long as f has $\underline{\mathrm{zero}}$ constant term.

Let $\mathbb{C}[\![t]\!]^{\circ}$ be the further subset of power series with zero constant term and nonzero linear term.

Thm Any element of $\mathbb{C}[\![t]\!]^{\circ}$ has an inverse under \circ .

Similarly, c(1 + blah(t)) will never work. By contrast:

$$c(t+t^{2}) = 1 + (t+t^{2}) + (t+t^{2})^{2} + (t+t^{2})^{3} + \dots$$

$$= \begin{cases} 1 \\ +t+t^{2} \\ +t^{2} + 2t^{3} + t^{4} \\ +t^{3} + 3t^{4} + \dots \\ +t^{4} + \dots \end{cases}$$

$$= 1 + t + 2t^{2} + 3t^{3} + 5t^{4} + \dots$$

In general, we can form $g \circ f$ as long as f has $\underline{\text{zero}}$ constant term.

Let $\mathbb{C}[\![t]\!]^{\circ}$ be the further subset of power series with zero constant term and nonzero linear term.

Thm Any element of $\mathbf{C}[\![t]\!]^{\circ}$ has an inverse under \circ .

In other words:

 $\mathbf{C}[\![t]\!]^{\circ}$ forms a group under \circ , with identity t.

If you think about what I've covered, you'll realize: There is an analogous group where we replace

$$\mathbf{C}[\![t]\!] \supseteq \mathbf{C}[t]$$

with a certain containment

$$\widehat{\operatorname{Sk}}_{\mathbf{R}^2 \setminus \mathbf{0}} \supseteq \operatorname{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$$

and replace composition with plethysm. Maybe interesting for knot theory and symmetric functions.

Similarly, c(1 + blah(t)) will never work. By contrast:

$$c(t+t^{2}) = 1 + (t+t^{2}) + (t+t^{2})^{2} + (t+t^{2})^{3} + \dots$$

$$= \begin{cases} 1 \\ +t+t^{2} \\ +t^{2} + 2t^{3} + t^{4} \\ +t^{3} + 3t^{4} + \dots \\ +t^{4} + \dots \end{cases}$$

$$= 1 + t + 2t^{2} + 3t^{3} + 5t^{4} + \dots$$

In general, we can form $g \circ f$ as long as f has zero constant term.

Let $\mathbf{C}[\![t]\!]^{\circ}$ be the further subset of power series with $\underline{\text{zero}}$ constant term and $\underline{\text{nonzero}}$ linear term.

Thm Any element of $\mathbb{C}[\![t]\!]^{\circ}$ has an inverse under \circ .

In other words:

 $\mathbf{C}[\![t]\!]^\circ$ forms a group under $\circ,$ with identity t.

If you think about what I've covered, you'll realize:

There is an analogous group where we replace

$$\mathbf{C}[\![t]\!] \supseteq \mathbf{C}[t]$$

with a certain containment

$$\widehat{\operatorname{Sk}}_{\mathbf{R}^2 \setminus \mathbf{0}} \supseteq \operatorname{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$$

and replace composition with plethysm. Maybe interesting for knot theory and symmetric functions.

In other words:

 $\mathbf{C}[\![t]\!]^\circ$ forms a group under $\circ,$ with identity t.

If you think about what I've covered, you'll realize: There is an analogous group where we replace

$$\mathbf{C}[\![t]\!] \supseteq \mathbf{C}[t]$$

with a certain containment

$$\widehat{\operatorname{Sk}}_{\mathbf{R}^2 \setminus \mathbf{0}} \supseteq \operatorname{Sk}_{\mathbf{R}^2 \setminus \mathbf{0}}$$

and replace composition with plethysm. Maybe interesting for knot theory and symmetric functions.

Thm Any element of $\mathbf{C}[t]^{\circ}$ has an inverse under \circ .

Proof sketch For any $f \in \mathbb{C}[\![t]\!]^{\circ}$, let M_f be the infinite matrix whose columns record the powers of f:

$$M_f = \begin{pmatrix} 1 & & & \\ 0 & c_{1,1} & & \\ 0 & c_{2,1} & c_{2,2} & \\ \vdots & \vdots & & \ddots \end{pmatrix},$$

where the $c_{i,j}$ are given by $f(t)^j = \sum_{i>0} c_{i,j} t^i$.

For example, $M_z = I$, the identity matrix.

In general, we can recover f from M_f by looking at the second column.

Thm Any element of $\mathbf{C}[\![t]\!]^{\circ}$ has an inverse under \circ .

Proof sketch For any $f \in \mathbb{C}[\![t]\!]^{\circ}$, let M_f be the infinite matrix whose columns record the powers of f:

$$M_f = \begin{pmatrix} 1 & & & \\ 0 & c_{1,1} & & \\ 0 & c_{2,1} & c_{2,2} & \\ \vdots & \vdots & & \ddots \end{pmatrix},$$

where the $c_{i,j}$ are given by $f(t)^j = \sum_{i>0} c_{i,j} t^i$.

For example, $M_z = I$, the identity matrix.

In general, we can recover f from M_f by looking at the second column.

Since M_f is lower-triangular with nonzero diagonal entries, it is *invertible*.

Now check the following facts:

- (1) M_f^{-1} takes the form M_g for some $g \in \mathbf{C}[\![t]\!]^{\circ}$.
- (2) $M_{f_1 \circ f_2} = M_{f_1} \cdot M_{f_2}$.

We deduce that for any f, there's some g s.t.

$$M_{g \circ f} = M_g \cdot M_f = M_f^{-1} \cdot M_f = I = M_z.$$

Thus $g \circ f = z$. \square

This proof shows that the group $\mathbf{C}[\![t]\!]^{\circ}$ embeds into the group of invertible infinite matrices \mathbf{GL}_{∞} .

Thm Any element of $\mathbb{C}[\![t]\!]^{\circ}$ has an inverse under \circ .

Proof sketch For any $f \in \mathbb{C}[\![t]\!]^{\circ}$, let M_f be the infinite matrix whose columns record the powers of f:

$$M_f = \begin{pmatrix} 1 & & & \\ 0 & c_{1,1} & & \\ 0 & c_{2,1} & c_{2,2} & \\ \vdots & \vdots & & \ddots \end{pmatrix},$$

where the $c_{i,j}$ are given by $f(t)^j = \sum_{i>0} c_{i,j} t^i$.

For example, $M_z = I$, the identity matrix.

In general, we can recover f from M_f by looking at the second column.

Since M_f is lower-triangular with nonzero diagonal entries, it is *invertible*.

Now check the following facts:

- (1) M_f^{-1} takes the form M_g for some $g \in \mathbf{C}[\![t]\!]^{\circ}$.
- (2) $M_{f_1 \circ f_2} = M_{f_1} \cdot M_{f_2}$.

We deduce that for any f, there's some g s.t.

$$M_{g \circ f} = M_g \cdot M_f = M_f^{-1} \cdot M_f = I = M_z.$$

Thus $g \circ f = z$. \square

This proof shows that the group $\mathbf{C}[\![t]\!]^{\circ}$ embeds into the group of invertible infinite matrices GL_{∞} .

Since M_f is lower-triangular with nonzero diagonal entries, it is *invertible*.

Now check the following facts:

- (1) M_f^{-1} takes the form M_g for some $g \in \mathbf{C}[\![t]\!]^{\circ}$.
- (2) $M_{f_1 \circ f_2} = M_{f_1} \cdot M_{f_2}$.

We deduce that for any f, there's some g s.t.

$$M_{g \circ f} = M_g \cdot M_f = M_f^{-1} \cdot M_f = I = M_z.$$

Thus $g \circ f = z$. \square

This proof shows that the group $\mathbf{C}[\![t]\!]^{\circ}$ embeds into the group of invertible infinite matrices \mathbf{GL}_{∞} .

Recall that the set $\mathbf{C}[\![t]\!]^{\times}$ of power series with *nonzero* constant term forms a group under \times .

The map $f \mapsto M_f$ can be extended to an embedding

$$\mathbf{C}[\![t]\!]^{\times} \rtimes \mathbf{C}[\![t]\!]^{\circ} \hookrightarrow \mathrm{GL}_{\infty},$$

$$(u, f) \mapsto M_{u, f}.$$

Shapiro's $Riordan\ group$ is the image.

This also has an analogue in the world of plethysm.

Thank you for listening.