Faculty of Computer Science

Auswertung

Lernziele

- χ^2 -Test durchführen und interpretieren können
- Korrekte Korrelationen abhängig vom Skalenniveau berechnen und interpretieren können
- Problem des multiplen Testens verstehen
- Varianzanalysen durchführen und interpretieren können

Einordnung

Erwartungswert

- Theoretischer Wert, der Erwartung beschreibt
- Z.B. bei diskreten Werten: $E(X) = \sum_{i=1}^{n} p_i \bullet x_i$
- Mittelwert ist beobachteter Wert

χ^2 -Test

- Vergleich von Häufigkeiten
- Weichen beobachtete Häufigkeiten von erwarteten Häufigkeiten ab?
- Weichen beobachtete Häufigkeiten voneinander ab?

χ^2 -Test von Hand

 Weichen beobachtete Häufigkeiten von erwarteten Häufigkeiten ab?

	Männlich	Weiblich
Beobachtet	9	3
Erwartet	6	6

$$\chi^{2} = \sum_{i=1}^{n} \frac{(f_{bi} - f_{ei})^{2}}{f_{ei}} \qquad \frac{(6-9)^{2}}{6} + \frac{(6-3)^{2}}{6} = 3$$

χ^2 -Test von Hand

- Errechneten Wert mit Wert aus Tabelle vergleichen $\chi^2_{df=1,\alpha=.05}=3.84$
- 3.84 > 3; nicht signifikant

χ^2 -Test von Hand

- Erwartete Häufigkeiten ausrechnen (Zeilensumme*Spaltensumme/Gesamtsumme)
- 2.22
- Freiheitsgrade: (n-1)*(m-1)

$$\chi^2_{df=2,\alpha=.05} = 5.99$$

χ^2 -Test mit R

- Matrix definieren:
- freqs <- matrix(c(6,3,18,15,16,22),nrow=2)
- chisq.test(freqs)

χ^2 -Test - Voraussetzung

- Vergleich von Häufigkeiten
- Erwartete Häufigkeiten > 5 (sonst Fisher's exact test)

Korrelationen

- Maß für Zusammenhang in Daten
- Keine Kausalität!
- Wertebereich: -1 <= r <=+1
- |r|: 0-.1: kein Zusam menhang
- r: 1-.3: schwacher Zusammenhang
- r: 3-.5: mittlerer Zusammenhang
- |r|: >.5: starker Zusammenhang

Signifikanztest für Korrelationen

- Je nach Korrelation verschiedene Tests
- Nullhypothese:
 - H0: r = 0
- Signifikanz bedeutet, dass Korrelation (vmtl.)
 von 0 verschieden ist

Produkt-Moment-Korrelation

- Pearson's r
- Metrisch-Metrisch

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \bullet (y_i - \overline{y})}{n \bullet s_x \bullet s_y}$$

Spearman-Korrelation

- Rangkorrelation
- Ordinal-ordinal, ordinal-metrisch

$$r_{s} = 1 - \frac{6\sum_{i=1}^{n} d_{i}^{2}}{n \cdot (n^{2} - 1)}$$

Kontingenzkoeffizient

Nominal-nominal

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}}$$

Regression

- Vorhersage einer Variablen basierend auf Prädiktorvariable
- Geradengleichung:
 - y=b*x + a
- Quadrierte Abweichung des Geraden soll minimal sein
- R: Im(x~y)

Zusammenhang Korrelation und Regression

$$r = \frac{S_x}{S_y} \bullet b$$

- Regression erweckt den Anschein von Kausalität
- Aber auch statistisch nicht gegeben, sondern muss aus Versuchsdesign hervorgehen

Fehlerarten

Multiples Testen-Beispiel (1)

- Faktor mit 4 Stufen, jeweils paarweise Vergleiche
 Insgesamt: ⁴
 ₂ = 6
- Wahrscheinlichkeit, eine H₀ korrekterweise zu behalten: 0.95
- Wahrscheinlichkeit, zwei H_□ korrekterweise zu behalten: 0.95*0.95
- behalten: 0.956

Multiples Testen-Beispiel (2)

- Wahrscheinlichkeit, dass bei sechs Tests mindestens einer signifikant ist:
- $1 0.95^6 = 0.26$

Multiples Testen

- Bei mehreren Signifikanztests muss das Signifikanzniveau angepasst werden
- Bonferoni-Korrektur:
 - t: Anzahl Tests
 - $-\alpha' = \alpha/t$
 - $-\alpha/6 = 0.0083$
- α-Fehler, dass grüne Jellybeans Akne verursachen: 64%

Varianzanalyse

- ANOVA (Analysis of Variances)
- Analyse, in wie weit Varianz in abhängiger Variablen durch unabhängige Variable verursacht wird
- Zerlegung der Varianzanteile in Treatmentund Fehlervarianz
- H₀: Mittelwerte aller Gruppen sind gleich
- H₁: Mindestens 2 Mittelwerte sind ungleich

Schritt 1: Totale Quadratsumme

Quadrierte
 Abweichung aller
 Messwerte vom
 Gesamtmittelwert

• G: 4

• $QS_{tot} = 100$

Formal

$$\overline{G} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij}}{n \cdot m}$$

$$QS_{tot} = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_{ij} - \overline{G})^{2}$$

n: Anzahl Probanden pro Gruppe

m: Anzahl Faktorstufen

Schritt2: Treatmentquadratsumme

- Anteil, der auf 4 Stufen der unabhängigen Variablen zurückzuführen ist
- Annahme, dass nur die unabhängige Variable Varianz in Ergebnis hervorruft
- Abweichung der Messwerte vom
 Gesamtmittelwert (=4)
- $QS_{treat} = 70$

```
      A1
      A2
      A3
      A3
      A4

      A1
      A3
      A3
      A4
      A4

      A2
      A3
      A3
      A4
      A4

      A3
      A3
      A4
      A4
      A4

      A3
      A4
      A4
      A4
      A4

      A4
      A4
      A4
      <td
```


Formal

A_i: Gruppenmittelwert

$$QS_{treat} = n \sum_{i=1}^{m} (\overline{A_i} - \overline{G})^2$$

Schritt 3: Fehlerquadratsumme

- Unterschiede in Messwerten pro Gruppe sind nur durch Störvariablen beeinflusst
- Quadrierte Differenz der einzelnen Messwerte vom Gruppenmittelwert
 A. A. A. A. A.
- $QS_{error} = 30$

A_1	A_2	A_3	A_4
2 0	3 0	6 1	5 1
1 1	4 1	8 1	5 1
3 1	3 0	7 0	5 1
3 1	5 4	6 1	3 1
1 1	0 9	8 1	2 4
2	3	7	4

Formal

$$QS_{error} = \sum_{i} \sum_{m} (x_{mi} - \overline{A_i})^2$$

Zusammenhang Quradatsummen

- $QS_{tot} = 100$
- $QS_{treat} = 70$
- $QS_{error} = 30$

• $QS_{tot} = QS_{treat} + QS_{error}$

Schritt 4a: Freiheitsgrade

- df_{tot}: Anzahl Faktorstufen * Anzahl Probanden pro Stufe 1
 (=19)
- df_{treat}: Anzahl Faktorstufen 1 (=3)
- df_{error}: Anzahl Faktorstufen * (Anzahl Probanden pro Stufe –
 1) [=16]
- $df_{tot} = df_{treat} + df_{error}$

Schritt 4b: Varianzen

$$\widehat{\sigma}^{2}_{treat} = \frac{QS_{treat}}{df_{treat}} = \frac{70}{3} = 23.33$$

$$\widehat{\sigma}^{2}_{error} = \frac{QS_{error}}{df_{error}} = \frac{30}{16} = 1.88$$

$$\hat{\sigma}^2_{tot} = \frac{QS_{tot}}{df_{tot}} = \frac{100}{19} = 5.26$$

Schritt 5: F-Wert

- H₀: Mittelwerte aller Gruppen sind gleich
- H_0 : $\hat{\sigma}^2_{treat} = \hat{\sigma}^2_{error}$

$$F = \frac{\hat{\sigma}^2_{treat}}{\hat{\sigma}^2_{error}} = \frac{23.33}{1.88} = 12.41$$

$$F_{dfZ\ddot{a}hler=3,dfNenner=16,\alpha=.05} = 3.24$$

Signifikanter Unterschied, d.h.:

Min. 2 Mittelwerte unterscheiden sich

Schritt 6: Einzelvergleiche

$$\sum_{i} c_{i} = 0$$

$$D = 1 \cdot \overline{A_1} + 1 \cdot \overline{A_2} + 1 \cdot \overline{A_4} - 3 \cdot \overline{A_3} = 2 + 3 + 4 - 21 = -12$$

$$F = \frac{n \cdot D^2}{\sum_{i=1}^{p} c_i^2 \cdot \hat{\sigma}_{error}^2} = \frac{5 \cdot 12^2}{(1+1+1+9) \cdot 1.88} = 31.91$$

$$F_{dfZ\ddot{a}hler=1,dfNenner=16,\alpha=.05} = 4.49$$

Zweifaktorielle ANOVA

- Überprüfung, ob der Einfluss von 2 Faktoren signifikant ist
- Unterschied zur einfaktoriellen ANOVA:
 - Haupteffekte
 - Interaktionseffekte
- Hypothesen:
 - H_{OA}: Gleiche Mittelwerte in Faktorstufen von A
 - H_{OB}: Gleiche Mittelwerte in Faktorstufen von B
 - H_{OAXB}: Keine Interaktion zwischen A und B

Schritt 1: Totale Quadratsumme

	${\sf A_1}$	A_2	A_3	
B ₁	22 26.01	16 0.81	13 15.21 •	Quadrierte
	25 65.61	16 0.81		Abweichung aller
	22 26.01	16 0.81	12 24.01	Abwelchang and
	21 16.81	15 3.61	13 15.21	Messwerte vom
	22 26.01	15 3.61	12 24.01	Gesamtmittelwert
B ₂	18 1.21	19 4.41	16 0.81	G: 16,9
	19 4.41	20 9.61	14 8.41	•
	17 0.01	17 0.01	16 0.81	$QS_{tot} = 348.7$
	21 16.81	16 0.81	13 15.21	
	19 4.41	16 0.81	14 8.41	

$$QS_{tot} = \sum_{m} \sum_{i} \sum_{j} (x_{ijm} - \overline{G})^{2}$$

Schritt 2: Quadratsumme der Zellen

- Quadrierte Abweichung der Gruppenmittelwerte vom Gesamtmittelwert
- $QS_{cells} = 307.9$

$$QS_{error} = n \sum_{i} \sum_{j} (\overline{AB_{ij}} - \overline{G})^{2}$$

• AB_{ii}: Mittelwerte der einzelnen Gruppen

Schritt 3: Fehlerquadratsumme

Β,

- Unterschiede in Messwerten pro Gruppe sind nur durch Störvariablen beeinflusst
- Differenz der einzelnen Messwerte vom Gruppenmittelwert
- $QS_{error} = 40,80$

A_1	A_2	A_3
22 0.16	16 0.16	13 0.36
25 6.76	16 0.16	12 0.16
22 0.16	16 0.16	12 0.16
21 1.96	15 0.36	13 0.36
22 0.16	15 0.36	12 0.16
22.4	15.6	12.4
18 0.64	19 1.96	16 1.96
19 0.04	20 5.76	14 0.36
17 3.24	17 0.36	16 1.96
21 4.84	16 2.56	13 2.56
19 0.04	16 2.56	14 0.36
18.8	17.6	14.6
	22 0.16 25 6.76 22 0.16 21 1.96 22 0.16 22.4 18 0.64 19 0.04 17 3.24 21 4.84 19 0.04	22 0.16 16 0.16 25 6.76 16 0.16 22 0.16 16 0.16 21 1.96 15 0.36 22 0.16 15 0.36 22.4 15.6 18 0.64 19 1.96 19 0.04 20 5.76 17 3.24 17 0.36 21 4.84 16 2.56 19 0.04 16 2.56

$$QS_{error} = \sum_{m} \sum_{i} \sum_{j} (x_{ijm} - \overline{AB_{ij}})^{2}$$

• AB_{ii}: Mittelwerte der einzelnen Gruppen

Zusammenhang Quadratsummen

- $QS_{tot} = 348.7$
- $QS_{cells} = 307.9$
- $QS_{error} = 40.8$

• $QS_{tot} = QS_{cells} + QS_{error}$

Schritt 4: Quadratsumme Haupteffekte

Mittel

- Faktor A: Differenz der Gruppenmittelwerte vom Gesamtmittelwert
- G: 16.9
- Wichtung mit Anz.
 Probanden pro Gruppe
 * Anz. Stufen Faktor B
- QS_A: 253.4

$\mathbf{A_1}$	A_2	A_3
22	16	13
25	16	12
22	16	12
21	15	13
22	15	12
18	19	16
19	20	14
17	17	16
21	16	13
19	16	14

20.6 13.69 16.6 0.09 13.5 11.56

$$QS_A = n \cdot q \cdot \sum_{i} (\overline{A_i} - \overline{G})^2$$

- n: Anzahl Probanden pro Gruppe
- q: Anzahl Faktorstufen B
- A_i: Mittelwert Faktor (über alle Stufen von Faktor B)

Schritt 4: Quadratsumme Haupteffekte

- Faktor B (analog zu Faktor A)
 - Differenz der Gruppenmittelwerte von B vom Gesamtmittelwert
 - Wichtung mit Anz. Probanden pro Gruppe und Anz. Stufen Faktor A
 - $-QS_{B}: 0.30$

$$QS_B = n \cdot p \cdot \sum_{j} (\overline{B_j} - \overline{G})^2$$

- n: Anzahl Probanden pro Gruppe
- p: Anzahl Faktorstufen A
- B_i: Mittelwert Faktor (über alle Stufen von Faktor A)

Zusammenhang Haupteffekt-Quadratsummen

- $QS_{cells} = 307.9$
- $QS_A = 253.4$
- $QS_B = 0.30$

•
$$QS_{cells} = QS_A + QS_B + QS_{AxB}$$

					A_1	A_2	A_3	
	A_1	A_2	A ₃	B_1	20.5	16.5	13.4	16.8
B_1	22.4	15.6	12.4	B_2	20.7	16.7	13.6	17.0
B ₂	18.8	17.6	14.6	Differenz	0.2	0.2	0.2	
Differenz	3.6	-2	-2.2		20.6	16.6	13.5	16.9

Schritt 5: Quadratsumme Interaktionseffekt

	A_1	A ₂	A ₃	Gruppen mittel B _j
B_1	20.5 3.61	16.5 0.81	13.4 <mark>1</mark>	16.8
B ₂	20.7 3.61	16.7 0.81	13.6 1	17.0
Differenz	0.2	0.2	0.2	
Gruppen mittel A _i	20.6	16.6	13.5	

- Differenz erwartete Gruppenmittelwerte und tatsächliche Gruppenmittelwerte
- Wichtung mit Anz. Probanden pro Gruppe (5)
- $QS_{AxB} = 54.2$

$$QS_{AxB} = n \sum_{i} \sum_{j} (\overline{AB}_{ij}^{erwartet} - \overline{AB}_{ij}^{beobachtet})^{2}$$

$$\overline{AB}_{ij}^{erwartet} = \overline{A}_i + \overline{B}_j - \overline{G}$$

Zusammenhang Quadratsummen

- $QS_{tot} = QS_{cells} + QS_{error}$
- $QS_{tot} = QS_A + QS_B + QS_{AxB} + Qs_{error}$
- \bullet 348.7 = 253.4 + 0.3 + 54.2 + 40.8

Schritt 6a: Freiheitsgrade

- df_{tot}: Faktorstufen (A) * Faktorstufen (B) * Anz. Probanden pro Stufe – 1 (=29)
- df_A : Faktorstufen (A) 1 (=2)
- df_B : Faktorstufen (B) 1 (=1)
- df_{AxB} : (Faktorstufen (A) 1)*(Faktorstufen (B) 1) (=2)
- df_{error}: Faktorstufen (A) * Faktorstufen (B) * (Anz. Probanden pro Stufe – 1) (=24)
- $df_{tot} = df_A + df_B + df_{AxB} + df_{error}$

Schritt 6b: Varianzen

$$\hat{\sigma}^2_{tot} = \frac{QS_{tot}}{df_{tot}} = \frac{348.7}{29} = 12.2$$

$$\widehat{\sigma}^{2}_{error} = \frac{QS_{error}}{df_{error}} = \frac{40.8}{24} = 1.7$$

$$\hat{\sigma}^{2}_{A} = \frac{QS_{A}}{df_{A}} = \frac{253.4}{2} = 126.7$$

$$\hat{\sigma}^{2}_{B} = \frac{QS_{B}}{df_{B}} = \frac{0.3}{1} = 0.3$$

$$\hat{\sigma}^2_{AxB} = \frac{QS_{AxB}}{df_{AxB}} = \frac{54.2}{2} = 27.1$$

Schritt 7: Signifikanztest

$$F_A = \frac{126.7}{1.7} = 74.53$$
 $F_{dfZ\ddot{a}hler=2,dfNenner=24,\alpha=.05} = 3.4$

$$F_{dfZ\ddot{a}hler=2,dfNenner=24,\alpha=.05}=3.4$$

$$F_B = \frac{0.3}{1.7} = 0.18$$

$$F_{dfZ\ddot{a}hler=1,dfNenner=24,\alpha=.05} = 4.26$$

$$F_{AxB} = \frac{27.1}{1.7} = 15.94$$
 $F_{dfZ\ddot{a}hler=2,dfNenner=24,\alpha=.05} = 3.4$

$$F_{dfZ\ddot{a}hler=2,dfNenner=24,lpha=.05}=3.4$$