Spectraltheory

Prof. Dr. Tobias Lamm

Sommersemester 2017

Karlsruher Institut für Technologie

Contents

 ${\bf I} \quad {\bf Unbounded \ operators, \ adjoint \ and \ self-adjoint \ operators}$

2

Chapter I

Unbounded operators, adjoint and self-adjoint operators

Let H be a separable Hilbert space, $\langle \cdot, \cdot \rangle$ denote the scalar product on H.

A linear operator T in H is a linear map $u \mapsto Tu$ defined on a subspace $\mathcal{D}(T)$ of H, and we call $\mathcal{D}(T)$ the domain of T.

For $T: \mathcal{D}(T) \to H$ we denote the range of T with

$$\mathcal{R}(T) := \operatorname{Image}(T)$$
.

We say that T is **bounded** if it is continuous from $\mathcal{D}(T)$ into H, with respect to the topology induced by H.

If $\mathcal{D}(T) = H$ we recall the definition of bounded operators from the functional analysis course.

From now on, if $\mathcal{D}(T) \neq H$ we will assume that $\mathcal{D}(T)$ is **dense** in H, i.e. $\overline{\mathcal{D}(T)} = H$. In this case, if T is bounded then T has a unique continuous extension to all of H.

$$\Rightarrow T$$
 bounded is ...

Recall: An operator is called **closed** if the graph

$$G(T) := \{(x, y) \in H \times H : x \in \mathcal{D}(T), y = Tx\}$$

is closed in $H \times H$.

Definition I.1: Let $T: \mathcal{D}(T) \to H$ be a (linear) operator with $\mathcal{D}(T)$ dense in H. Then T is called **closed** if the conditions

$$\left. \begin{array}{l} u_{n} \in \mathcal{D}\left(T\right) \\ u_{n} \to u \ in \ H \\ Tu_{n} \to v \ in \ H \end{array} \right\} \Rightarrow u \in \mathcal{D}\left(T\right), v = Tu$$

hold.

Example:

a) Let $T_0 = -\Delta$, $H = \ell^2(\mathbb{R}^n)$ and $\mathcal{D}(T_0) = C_c^{\infty}(\mathbb{R}^n)$ dense in H. Take $u \in W^{2,2}(\mathbb{R}^n) \setminus C_c^{\infty}(\mathbb{R}^n)$

$$\xrightarrow{\text{densly}} \exists (u_n)_{n \in \mathbb{N}} \in C_c^{\infty}(\mathbb{R}^n) \colon u_n \to u \text{ in } W^{2,2}(\mathbb{R}^n)$$

 $(u_n, -\Delta u_n) \in G(T_0)$ converges in $\ell^2 \times L^2$ to $(u, -\Delta u) \notin G(T_0)$.

b) Let $T_1 = -\Delta$, $\mathcal{D}(T_1) = W^{2,2}(\mathbb{R}^n)$ and $H = L^2(\mathbb{R}^n)$. For $u_n \in \mathcal{D}(T_1)$ with

$$u_n \to u$$
 in H and $(-\Delta u_n) \to u$ in L^2

follows that $-\Delta u = v \in L^2(\mathbb{R}^n)$ weakly, i.e. $\forall \varphi \in C_c^{\infty}(\mathbb{R}^n)$:

$$\int_{\mathbb{R}^n} v\varphi \leftarrow \int_{\mathbb{R}^n} \left(-\Delta u_n\right) \varphi = \int_{\mathbb{R}^n} u_n \left(-\Delta \varphi\right) \rightarrow \int_{\mathbb{R}^n} u \left(-\Delta \varphi\right).$$

Stichwortverzeichnis

bounded, 2

closed, 2

dense, 2