

Multiple linear "Leg ression Notation: dependent variable l'ont come l'in dependent variable l'predictor/covariane · Yi · Xip , BP vector of unknown parameters Stochastic error term . *e* į denotes individual dos o rue him # as parameters . P Assumption 1: Linearity $y_{i} = \sum_{p=1}^{T} \beta_{p} \times_{ip} + \varepsilon_{i},$ i = 1, ..., n ig we include a constant, xin = 1 gor Y = XB + E (nx1) (nxp) (px1) (nx1)

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \qquad \begin{pmatrix} x_{11} \\ x_{24} \\ \vdots \\ x_{nn} \end{pmatrix} \qquad \begin{pmatrix} x_{np} \\ \vdots \\ x_{np} \end{pmatrix}$$

$$\mathcal{E} = \begin{pmatrix} \mathcal{E}_1 \\ \vdots \\ \mathcal{E}_n \end{pmatrix}$$

$$X = \begin{pmatrix} x_{11} & x_{21} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{pmatrix}$$

Least Squares:

In matrix notation: SSR(13*) = (y-XB*)'(y-XB*) $\beta := \operatorname{argmin} S(\beta^*)$ $\beta^* \in IR^P$ SSP (B+) = Y'Y - (X13+)'Y - Y'XB+ +B+' - y'y-2y'x3* +px x'xp x'xp* = > d SSR(13*) = -2x'y+ 2x'x 13* $X^1 \times 13 = X^1 Y$ $\int_{3}^{3} = (X'X)^{-1}X'Y$ To solve for 13: we need to assume that X'x has gull rank Assumption 2. rank (XIX) = P Assurption 3: E(E: (X) =0

Weak exogeneity: $E(e_i) = 0$ This is needed for unbiasedness: $E(f_3) = f_3 \qquad E(f_3 - f_3) = 0$ Difference $E(e_i \mid X) = 0$ and $E(e_i) = 0$

Example: X;= 1 ig i is melæ (O

$$E(e; |X; = 1) = 1 \quad (E(E; |X; = 0) = -1)$$

 $E(\varepsilon;) = 0$ $E(\varepsilon; |X|) \neq 0$

Assumption: Honoskedos hicity $E(E_i^2 | X) = \sigma^2 > 0$ Some quantities as interest: $\ddot{y}_i = x_i / 3 = \tilde{g}(x_i)$

=> OLS gitted values

Assessing quality of git:

$$MSE = \frac{1}{h} \left[\left(Y_i - \hat{J}(X_i) \right)^2 \right]$$

(1)

$$(\Lambda)$$
 ? (Λ) . (Λ)

$$\hat{J}(x;) = y; \Rightarrow MSE = 0$$

What do we want: 1) Assess the structural relationship between y and X 2) predict Ynew gor a given Xnew. =) Related goals , but not the same and not nested. For both MSE 5 a pool However: messure of success.

2: We want to choose To achieve a nachod tent gives the lowest MSE based on a new training Observation (to, yo). - test minimi 2e: Ave (g/(x0) - y0)2 where \hat{g} was derived grom a training Set. Big question: Where to get test Obser valus. Best: get hew data 2. Best: Besan pring me Hoods such as Cross-Vacidation

