

HARA: A Hierarchical Approach for Robust Rotation Averaging

CVPR 19-24 2022 NEW ORLEANS - LOUISIANA

Seong Hun Lee and Javier Civera

1. What is (multiple) rotation averaging?

- > Input: Estimates of some of the relative rotations between cameras.
- > Output: Absolute rotations of all cameras that best fit the input data.

- > Applications: Structure-from-Motion (SfM), Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM).
- Challenge: In real datasets, the input could contain many outliers.
 They can significantly degrade the estimation accuracy if not handled properly.

2. Our approach

Improve the initialization to achieve better optimization results!

- > Step 1: Robust initialization by building a spanning tree based on a hierarchy of triplet support.
- > Step 2: Filtering the edges inconsistent with the initial solution.
- > Step 3: Iterative refinement using [IRLS-0,5].

3. Definitions

- > **Family** = Set of nodes added to the (yet-incomplete) spanning tree.
- Base = A recently added node from which the tree may branch out.
- \triangleright Consistent triplet = Node (i, j, k) that satisfy the following condition:

$$d_{\text{chord}}(\mathbf{R}_{ij}^{\text{in}}, \mathbf{R}_{ik}^{\text{in}} \mathbf{R}_{kj}^{\text{in}}) < \text{Loop threshold}$$

Triplet supports = If we propagate away from the base to one of its neighbors, how many other neighbors support its rotation by forming a consistent triplet?

5 has two supports (3, 4, 5), (4, 5, 7) 6 has one support (4, 6, 7) 7 has three supports (3, 4, 7), (4, 5, 7), (4, 6, 7)

4. Hierarchical tree expansion

We alternate between the following two modes of tree expansion:

- 1st mode: Expand the tree incrementally by adding first the neighbors with many strong triplet supports and later those with gradually weaker and fewer supports.
- ➤ 2nd mode: When none of the family members can branch out (i.e., zero triplet support), add the neighbor that is most connected to the family via single rotation averaging.

5. Results:

Datasets	[IRLS-L0.5]	[MPLS]	HARA
Ellis Island	2.9	2.8	2.1
Madrid MTP	7.0	5.2	4.8
Notre Dame	3.5	2.7	1.6
Trafalgar	3.6	4.5	3.5
San Francisco	3.6	4.4	3.6

Mean error (deg) after L1 alignment

References

[R-GoDec, Eig-IRLS] F. Arrigoni et al., Robust synchronization in SO(3) and SE(3) via low-rank and sparse matrix decomposition, CVIU 2018.

[IRLS-0.5] A. Chatterjee and V. M. Govindu, Robust relative rotation averaging, TPAMI 2018.

[MPLS] Y. Shi and G. Lerman, Message passing least squares framework and its application to rotation synchronization, ICML 2020.