02 - VECTOR SPACES

Contents

1. Definition and examples	1
1.1. Fields	1
1.2. Vector spaces	1
2. Linear dependence	2
2.1. Linear combinations	2
2.2. Linear dependence	2

1. Definition and examples

- 1.1. **Fields.** A **field** is a set F together with two binary operations: **addition** $+: F \times F \to F$ and **multiplication** $\cdot: F \times F \to F$. Addition and multiplication are bound by the axioms listed below, for all $a, b, c \in F$.
 - (1) Addition and multiplication are associative: (a + b) + c = a + (b + c), and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
 - (2) Addition and multiplication are commutative: a + b = b + a, and $a \cdot b = b \cdot a$.
 - (3) Additive and multiplicative identities: there are two elements $0, 1 \in F$ such that a + 0 = a and $a \cdot 1 = a$.
 - (4) Additive inverses: For every $a \in F$ there exists an element (-a) such that a + (-a) = 0.
 - (5) Multiplicative inverses: For every $a \neq 0 \in F$ there exists an element a^{-1} such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$.
 - (6) Distributivity of multiplication over addition: $a \cdot (b+c) = a \cdot b + a \cdot c$

Hopefully, you have observed that these axioms are satisfied by the usual addition and multiplication on the rationals (\mathbb{Q}) , the reals (\mathbb{R}) and the complex numbers (\mathbb{C}) .

1.2. Vector spaces. A vector space over a field F is a set V together with two binary operations:

```
addition: +: V \times V \to V, (\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u} + \mathbf{v}, and scalar multiplication: :: F \times V \to V, (a, \mathbf{v}) \mapsto a \cdot \mathbf{v}.
```

The elements of V are called **vectors**, and the elements of F are called **scalars**.

The operations of addition and scalar multiplication satisfy the axioms listed below for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, and scalars $a, b \in F$.

- (1) Associativity of addition: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$.
- (2) Commutativity of addition: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.
- (3) Additive identity: There exists an element $\mathbf{0} \in V$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$.
- (4) Additive inverses: For every \mathbf{v} there exists an element $(-\mathbf{v}) \in V$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.
- (5) Compatibility of scalar multiplication with field multiplication: $a \cdot (b \cdot \mathbf{v}) = (ab) \cdot \mathbf{v}$.
- (6) Identity element of scalar multiplication: $1 \cdot \mathbf{v} = \mathbf{v}$, where $1 \in F$ is the multiplicative identity of F.
- (7) Distributivity of scalar multiplication with respect to vector addition: $a \cdot (\mathbf{u} + \mathbf{v}) = a \cdot \mathbf{u} + a \cdot \mathbf{v}$.
- (8) Distributivity of scalar multiplication with respect to field addition: $(a + b) \cdot \mathbf{v} = a \cdot \mathbf{v} + b \cdot \mathbf{v}$.

The two and three-dimensional vectors with real components described in Lesson 01 form a vector space. They are examples of **coordinate spaces**. More generally, given a field F, all n-tuples

$$(a_1,a_2,\ldots,a_n)$$

where $a_1, a_2, \ldots, a_n \in F$ form a vector space over F, usually denoted by F^n . Addition and scalar multiplication are defined component-wise:

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n),$$

and

$$k(a_1, a_2, \dots a_n) = (ka_1, ka_2, \dots, ka_n).$$

2. Linear dependence

2.1. Linear combinations. A linear combination of vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 in a vector space V over a field F is a sum

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3$$
,

where $k_1, k_2, k_3 \in F$.

For example, let $\mathbf{u} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$, and $\mathbf{v} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$. The vector $\begin{pmatrix} 1 \\ 17 \end{pmatrix}$ is the linear combination

$$2\mathbf{u} + 3\mathbf{v} = \begin{pmatrix} 4\\8 \end{pmatrix} + \begin{pmatrix} -3\\9 \end{pmatrix}.$$

2.2. **Linear dependence.** A set of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is **linearly dependent** if one of the vectors can be written as a linear combination of the others, or equivalently, if there exist scalars a_1, a_2, \dots, a_k , not all zero, such that

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_k\mathbf{v}_k = \mathbf{0}.$$

If no vector can be written as a linear combination of the others, or all the scalars in the expression above must be zero, then the vectors are said to be **linear independent**. $2.2.1.\ Exercise.$ Show the equivalence of the two statements describing linear dependence above.