Two Local Models for Neural Constituent Parsing

WeiYang

weiyang@godweiyang.com https://godweiyang.com

Introduction

- Non-local features have been shown crucial for statistical parsing.
- However, local models have been shown to give highly competitive accuracies for neural parsing.
- What extent the encoding power can be leveraged for constituent parsing?
- We investigate two local neural models which make local decisions to constituent spans and CFG rules.

Model

(a) BiLSTM based constituent span classifier.

(c) Label generator for two example spans. **NP*** is an intermediate constituent label.

(b) unlabeled binarized parse tree.

(d) Final example parse tree.

Unlabeled Parser

Span model

Identifies the probability of an arbitrary span being a constituent span.

Rule model

Considers the probability P([i,j] o [i,k][k+1,j]|S) for the production rule that the span [i,j] is composed by two children spans [i,k] and [k+1,j].

Span Model

Span representation

$$v[i,j] = [f_{i+1}; r_i; f_{j+1}; r_j]$$

Probability distribution

$$P(Y_{[i,j]}|S,\Theta) = softmax(f(v[i,j]))$$

Training objective

$$\mathcal{L}_{binary} = -\sum_{[i,j] \in T_{ub}} \log P(Y_{[i,j]} = 1) - \sum_{[i,j]
otin T_{ub}} \log P(Y_{[i,j]} = 0)$$

Span Model

Neural CKY Algorithm

The unlabeled production probability for the rule r:[i,j] o [i,k][k+1,j] given by the binary classification model is

$$P(r|S,\Theta) = P(Y_{[i,k]} = 1|S,\Theta)P(Y_{[k+1,j]} = 1|S,\Theta)$$

Multi-class Span Classification Model

Probability distribution

$$P(Y_{[i,j]} = c|S,\Theta) = softmax(g(v[i,j]))_{[c]}$$

Training objective

$$egin{aligned} \mathcal{L}_{multi} &= -\sum_{[i,j] \in T_{ub}} \sum_{c \in GEN[i,j], c
eq } \log P(Y_{[i,j]} = c) \ &- \sum_{[i,j]
otin T_{ub}} \log P(Y_{[i,j]} =) \end{aligned}$$

Neural CKY Algorithm

Transform the multi-class probability distribution into a binary probability distribution by using

$$egin{aligned} P(Y_{[i,j]} = 1 | S, \Theta) &= \sum_{c,c
eq } P(Y_{[i,j]} = c | S, \Theta) \ P(Y_{[i,j]} = 0 | S, \Theta) &= P(Y_{[i,j]} = | S, \Theta) \end{aligned}$$

Rule Model

Span representation

$$egin{aligned} s[i,j] &= [f_{j+1} - f_i; r_i - r_{j+1}] \ sr[i,j] &= [s[0,i-1]; s[i,j]; s[j+1,n-1]] \ r[i,j] &= \phi(W^M_r sr[i,j] + b^M_r) \end{aligned}$$

Linear model

$$ps_k = w_{ll,k}^T r[i,k] + w_{lr,k}^T r[k+1,j] + b_{ll,k}$$

Biaffine model

$$egin{aligned} lps_k &= (r[i,j] \oplus 1)^T W_{pl}(r[i,k] \oplus 1) \ rps_k &= (r[i,j] \oplus 1)^T W_{pr}(r[k+1,j] \oplus 1) \ ps_k &= lps_k + rps_k \end{aligned}$$

Rule Model

(b) Rule model.

Rule Model

Unlabeled production probability

$$P(r|S,\Theta) = rac{\exp(ps_k)}{\sum_{k'=i}^{j-1} \exp(ps_{k'})}$$

Training objective

$$\mathcal{L}_{rule} = -\sum_{r \in T_{ub}} \log P(r|S,\Theta)$$

Label Generator

- Lexicalized tree-LSTM encoder
 - Use lexicalized tree-LSTM encoder to get the representation h[i,j] of span [i,j].
- Label decoder

Suppose the constituent label chain for the span [i,j] is $(L_p^0,L_p^1,\dots,L_p^m)$, the probability distribution of generating the label at time step z is

$$egin{aligned} P(L_{p}^{z}|T_{ub},L_{p}^{z< m}) \ &= softmax(g(h[i,j],E_{label}(L_{p}^{z-1}),d_{z-1})) \end{aligned}$$

Label Generator

• Training objective

$$egin{aligned} \mathcal{L}_{label}[i,j] &= -\sum_{z=0}^{m} \log P(L_p^z | T_{ub}, L_p^{z < m}) \ \mathcal{L}_{label} &= \sum_{[i,j] \in T_{ub}} \mathcal{L}_{label}[i,j] \end{aligned}$$

Joint Training

• Training objective

$$\mathcal{L}_{total} {=} \mathcal{L}_{parser} {+} \mathcal{L}_{label} {+} \; rac{\lambda}{2} \|\Theta\|^2$$

Experiments

Model	SpanVec	LP	LR	LF
BinarySpan	$\mathbf{v}[i,j]$	92.16	92.19	92.17
	$ \mathbf{sr}[i,j] $	91.90	91.70	91.80
BiaffineRule	$\mathbf{v}[i,j]$	91.79	91.67	91.73
	$ \mathbf{sr}[i,j] $	92.49	92.23	92.36

Table 2: Span representation methods.

Experiments

Model	English			Chinese			
	LP	LR	LF	LP	LR	LF	
BinarySpan	92.16	92.19	92.17	91.31	90.48	90.89	
MultiSpan	92.47	92.41	92.44	91.69	90.91	91.30	
LinearRule	92.03	92.03	92.03	91.03	89.19	90.10	
BiaffineRule	92.49	92.23	92.36	91.31	91.28	91.29	

Table 3: Main development results.

Experiments

Parser	LR	LP	LF	Parser	LR	LP	LF
Zhu et al. (2013) (S)	91.1	91.5	91.3	Charniak (2000)	89.5	89.9	89.5
McClosky et al. (2006) (S)	92.1	92.5	92.3	Collins (2003)	88.1	88.3	88.2
Choe and Charniak (2016) (S,R,E)			93.8	Sagae and Lavie (2006)	87.8	88.1	87.9
Durrett and Klein (2015) (S)			91.1	Petrov and Klein (2007)	90.1	90.2	90.1
Vinyals et al. (2015) (S, E)			92.8	Carreras et al. (2008)	90.7	91.4	91.1
Charniak and Johnson (2005) (S, R)	91.2	91.8	91.5	Zhu et al. (2013)	90.2	90.7	90.4
Huang (2008b) (R)			91.7	Watanabe and Sumita (2015)			90.7
Huang and Harper (2009) (ST)	91.1	91.6	91.3	Fernández-González and Martins (2015)	89.9	90.4	90.2
Huang et al. (2010) (ST)	92.7	92.2	92.5	Cross and Huang (2016b)	90.5	92.1	91.3
Shindo et al. (2012) (E)			92.4	Kuncoro et al. (2017)			91.2
Socher et al. (2013) (R)			90.4	Liu and Zhang (2017b)	91.3	92.1	91.7
Dyer et al. (2016) (R)			93.3	Stern et al. (2017) top-down	90.4	93.2	91.8
Kuncoro et al. (2017) (R)			93.6	BinarySpan	91.9	92.2	92.1
Liu and Zhang (2017a) (R)			94.2	MultiSpan	92.2	92.5	92.4
Fried et al. (2017) (ES)			94.7	BiaffineRule	92.0	92.6	92.3

Table 4: Results on the PTB test set. S denotes parsers using auto parsed trees. E, R and ST denote ensembling, reranking and self-training systems, respectively.