

G.PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY::KURNOOL (Autonomous)

II B. Tech II SEM (R23) MID-1 Examinations - Feb'2025 Department of Electronics and Communication Engineering

Sub: LCS (A40217) Time: 90 min

Date: 28-02-2025

Max. Marks: 30

Answer all the Questions (3X10=30M)

		Marks	Uni t	co	Cognitive Level
X	Write the differential equation governing the mechanical system shown in figure. Draw the Force-voltage and Force-Current analogous circuit.	10M	1	CO1	Analyze é
	(OR)		id The		
2	Obtain the transfer function of the feedback control system shown in figure using signal flow graph method. $-H_2$ G_1 G_2 G_3 G_4		gui gal		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10M		CO1	Analyze
3	Sketch the root locus of the system whose open loop transfer function is $G(s) = \frac{K}{S(S+2)(S+4)}$. Find the value of k so that the damping ratio of the closed loop system is 0.5	10M	u	CO2	Analyze
200	(OR)	as resistante de la companya de la c		7.1	
4.a	Analyze for the nature of the roots of F(s)=s ³ +6s ² +11s+6=0. Using R-H criterion.	5M	11	CO2	Analyze
4.b	What are breakaway and break in points? How to determine them?	5M	II	CO2	Remember
5	What is Control system? Explain various types of Control systems with examples.	10M	Ti.	CO1	Remembe
1 2	(OR)			A Commercial Section	
6.a	State the limitations of RH criterion and Define relative stability	5M	П	CO2	Understan d
6.b	Explain the procedure to construct Root Locus.	5M	u	CO2	Understar d

Signature of faculty

Signature of HOD

G.PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY::KURNOOL

(Autonomous)

II B.Tech II SEM (R23) MID-II Examinations – APRIL'2025 Department of Electrical and Electronics Engineering

Sub: LCS (A40217) Time: 90 min Date: 28-04-2025 Max. Marks: 30

Answer all the Questions (3X10=30M)

		Mark s	Uni t	co	Cognitive Level
1	The unity feedback system is characterized by an open loop transfer function G(S)=K/s(s+10). Determine the gain K, so that the system will have a damping ratio of 0.5 for this value of K. Determine settling time, peak overshoot and peak time for a unit step input.	10M	JI Ji	CO2	Analyze
48	(OR)	Section 1	1,140,140	12 11 11 11 11	(4) 11/4 - 11 1
2	Derive an expression for the steady state errors of Type-0, Type-1 and Type-2 systems excited by unit step, unit ramp and unit parabolic	10M	U	CO2	Apply
3	inputs. Define and explain various frequency domain specifications with relevant expressions.	10M	IV	CO4	Understa nd
	(OR)				1 1 1 1 1 1 1 1 1 1 1 1
A	Given a unity feedback system with the forward-path transfer function $G(s)=K/s(s+1)(s+3)(s+6)$ and a delay of 0.5 second, find the range of gain, K, to yield stability. Use Bode plots.	J.10M.;	. IV_	_CO4	Analyze
				5.6	
5	Determine the solution of given A state model of a system is given $as: [X] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & -3 \end{bmatrix} [X] + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U \text{ and } Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X$	10M	y . V	CO5	Analyze .
	(OR)				3 3 3
6,4	Discuss about the properties of state transition matrix.	5M	V	CO5	Remembe r
6.b	Compute the resolvent matrix and state transition matrix of the state matrix: $A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$	5M	V	CO5	Analyze

Signature of faculty

Signature of HOD

CODE: A40217

R23

H.T.No:

G.PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS)

B. Tech II Year II Semester Regular Examinations May 2025

Subject Name: Linear control systems

Branch: Electronics& communication Engineering

Time: 3 Hours

SET-2

Max. Marks: 70

Instructions:

1. Answer all 10 questions from Part-A. Each question carries two marks

2. Answer one full question from each unit in Part-B. Each full question carries 10marks

		PART-A	May 1		
X	a	What is the effect of positive feedback on stability?	2M	CO ₁	BTL
	b	Write the analogous electrical elements in force voltage analogy for the elements of mechanical translational system.	2M	CO1	BTL
	C	Define TYPE' and 'ORDER' of a system. What are the TYPE and ORDER of $G(s)H(s) = \frac{2}{s(1+s)}$?	2M	CO2	BTL1
100	d	What are test signals and write their significance	2M	CO2	BTL1
	e	How the roots of characteristic equation are related to stability?	2M	соз	BTL1
	f	In Routh array what conclusion you can make when there is a row of all zeros?	2M	соз	BTL1
= 3	g	Draw the Bode plot for Phase Lead compensator.	2M	CO4	BTL1
1	h	For a second order system, the damping ratio is 0.5 and natural frequency of oscillation is 8 rad/sec. Calculate resonant peak and resonant frequency.	2M	CO4	BTL
	(i)	Define state and state variable.	2M.	CO5	BTL
	j	What are the advantages of state space analysis over transfer function analysis?	2M	CO5	BTL
		PART-B			
	19/612	UNIT-1			-
2		Draw the circuit diagram of armature-controlled D.C Motor. Derive its transfer function	10M	CO1	BTL
	44	OR		2 22 2	
3		Obtain the transfer function of below signal flow graph using Mason's Gain formula. 1 1 G_1 G_2 1 1 G_3 1 G_5	10M	CO1	BTL6
. /		UNIT-II	har yang P	1 12	1 147.1

a		5M	CO2	BTL2
b	Obtain the time response of un-damped second order system for unit step input.	5M	CO2	BTL2
	OR	1471		
	A unity feedback control system has an open-loop transfer function $G(s) = 5/(s(s+1))$. Find the rise time, percentage overshoot, peak time and settling time for a step input of 10 units. Also determine peak overshoot.	10 M	CO2	BTL5
	UNIT-III			
Med Heri	Determine the range of K for stability of a unity-feedback control system whose open loop transfer function :G(S)=K/S(S+1)(S+2)	10M	соз	BTL3
4	OR			(6 <u>4.</u> 9 %
а	Obtain the Routh array for the system whose characteristic polynomial equation is: $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$. Check the stability.	5M	соз	BTL2
b	Define the following terms with respect to Root locus technique: (i) Centroid. (ii) Asymptote. (iii) Break away point.	5M	CO3	BTL1
	UNIT-IV			
	Make a polar plot of the frequency response for the transfer function given by: $G(s)=s+5/s(s+2)(s+4)$	10M	CO4	BTL3
	OR		0.	
	Explain Nyquist criterion. Write the procedure for determining Nyquist plet.	10M	CO5	BTL
	UNIT-V	At in		
	A state model of a system is given as: $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ and } Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} Y$,		
		10M	CO5	BTL2
1 - 1	OR			
1	$A = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix}$ Diagonalize the given matrix	10 M	CO5	BTL6
	b a b	response of the system. b Obtain the time response of un-damped second order system for unit step input. OR A unity feedback control system has an open-loop transfer function $G(s) = 5/(s(s+1))$. Find the rise time, percentage overshoot, peak time and settling time for a step input of 10 units. Also determine peak overshoot. UNIT-III Determine the range of K for stability of a unity-feedback control system whose open loop transfer function: $G(S)=K/S(S+1)(S+2)$ OR a Obtain the Routh array for the system whose characteristic polynomial equation is: $S^6+2S^5+8S^4+12S^3+20S^2+16S+16=0$. Check the stability. b Define the following terms with respect to Root locus technique: (i) Centroid. (ii) Asymptote. (iii) Break away point. UNIT-IV Make a polar plot of the frequency response for the transfer function given by: $G(s)=s+5/s(s+2)(s+4)$ OR Explain Nyquist criterion. Write the procedure for determining Nyquist plot. UNIT-V A state model of a system is given as: $[X] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3 \end{bmatrix} [X] + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U$ and $Y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -3 & -3 \end{bmatrix}$ Determine: (i) The Eigen values. (ii) The state transition matrix. OR	response of the system. b Obtain the time response of un-damped second order system for unit step input. OR A unity feedback control system has an open-loop transfer function $G(s) = 5/(s(s+1))$. Find the rise time, percentage overshoot, peak time and settling time for a step input of 10 units. Also determine peak overshoot. UNIT-III Determine the range of K for stability of a unity-feedback control system whose open loop transfer function $g(s) = \frac{1}{2} \int_{s=0}^{\infty} \frac{1}{2} $	response of the system. Dotain the time response of un-damped second order system for unit step input. OR

(Approved by AICTE | NAAC Accreditation with 'A' Grade | Accredited by NBA (CIV, CSE, ECE & EEE) | Affiliated to JNTUA)
Nandikotkur Road, Venkayapalli (V), Kurnool - 518452, Andhra Pradesh

Subject Code	:	A30218	Subject Name	:	Control Systems Engineering			
Class/Section	:	B.Tech	Year	:	II	Semester	••	II

QUESTIONBANK

Name of Faculty: Dr. G. Pandu Ranga Reddy

BLOOMS LEVEL							
Remember	L1	Understand	L2	Apply	L3		
Analyze	L4	Evaluate	L5	Create	L6		

2 Marks Questions

Unit No	Q.No	Question	CO Mapped	Bloom's Taxonomy Level
	1	Distinguish between open loop and closed loop systems.	CO1	L1
	2	Define Masons Gain formula.	CO1	L1
	3	What is the basic rule used for block diagram reduction technique?	CO1	L1
	4	What is the effect of positive feedback on stability?	CO1	L1
	5	List the advantages of negative feedback in control system	CO1	L1
	6	Write the force balance equation of an ideal mass element and ideal dashpot element.	CO1	L1
Unit 1	7	What are the difference between synchro transmitter and Control transformer	CO1	L1
	8	In Torque-Voltage analogy, what are the analogous electrical quantities for (i) Torque (ii) Moment of inertia (iii) Angular displacement (iv) Stiffness.	CO1	L1
	11	List out the advantages of closed loop systems	CO1	L1
	12	If a forward path touched all closed loops, what would be the value of $\boldsymbol{\Delta}_k$	CO1	L1
	13	Write the analogous electrical elements in force voltage analogy for the elements of mechanical translational system.	CO1	L1

		List the time domain specifications.		
	1	List the time domain specifications.	CO2	L1
	2	What are test signals and write their significance	CO2	L1
	3	How do you find the type of a control system	CO2	L1
	4	Find the value of position error constant for second order system using ramp input	CO2	L1
	5	Give steady state error for step and velocity input	CO2	L1
Unit 2	6	The closed loop transfer function of a second order system is $C(S)/R(S) = 10/S^2+6S+10$. What is the type of damping in the system	CO2	L1
	7	What is steady state error?	CO2	L1
	8	Sketch the unit step response of a first order system and show how Time constant is defined	CO2	L1
	9	Distinguish between order and type of system	CO2	L1
	10	The open loop transfer function of a unity feedback system is G(s) = 20/s(s+10). What is the nature of response of closed loop system for unit step input?	CO2	L1
	11	Define impulse signal with its waveform	CO2	L1
	12	How the system was classified depending on the value of the damping?	CO2	L1
	1	State limitations for Routh's stability	CO3	L1
	2	How do you determine the centroid and angle of asymptotes?	CO3	L1
	3	What are asymptotes? How will you find angle of asymptotes	CO3	L1
	4	When is a system said to be Bounded Input-Bounded Output (BIBO) stable?	CO3	L1
	5	State the necessary and sufficient conditions of Routh-Hurwitz criterion stability?	CO3	L1
Unit 3	6	Determine the stability of the system whose characteristic equation is given by: $S^4+6S^3+23S^2+40S+50=0$ using Routh's stability criterion.	CO3	L1
	7	How the roots of characteristic equation are related to stability?	CO3	L1
	8	What is centroid? How the centroid is calculated?	CO3	L1
	9	State the rules for obtaining the breakaway point in Root locus	CO3	L1
	10	What are the effects of adding a zero to a system	CO3	L1
	11	Why marginally stable systems are considered unstable under the BIBO definition of stability?	CO3	L1
	1	Find the resonant frequency and resonant peak for a unity feedback system with: $(ss)=100s/s(s+10)$.	CO4	L1

(Approved by AICTE | NAAC Accreditation with 'A' Grade | Accredited by NBA (CIV, CSE, ECE & EEE) | Affiliated to JNTUA)
Nandikotkur Road, Venkayapalli (V), Kurnool - 518452, Andhra Pradesh

	2	What is Polar plot?	CO4	L1
	3	Define Phase Margin, Gain Margin with reference to Bode plot	CO4	L1
	4	What is meant by lag compensation?	CO4	L1
	5	Write the expression for resonant peak in frequency response analysis	CO4	L1
	6	Draw the approximate polar plot for a Type Zero second order systems	CO4	L1
Unit 4	7	For a second order system, the damping ratio is 0.5 and natural frequency of oscillation is 8 rad/sec. Calculate resonant peak and resonant frequency.	CO4	L1
	8	What are the advantages of Bode plot?	CO4	L1
	9	Draw the polar plot of G(S)=1/1+ST	CO4	L1
	10	A unity feedback system has $G(S) = 100/S(S+10)$. What is the resonant frequency of system.	CO4	L1
	11	Draw the Bode plot for Phase Lead compensator.	CO4	L1
	12	Define resonant frequency. Write the transfer function of Lag/ Lead Compensator.	CO4	L1
	13	Write a short note on the correlation between the time and frequency response.	CO4	L1
	1	State the properties of state transition matrix.	CO5	L1
	2	What are the advantages of state space modeling using physical variables?	CO5	L1
	3	Define State and State Variables	CO5	L1
	4	Write general form of state variable matrix.	CO5	L1
	5	What are phase variables?	CO5	L1
Unit	6	What is meant by Diagonalization	CO5	L1
5	7	Enumerate any four important advantages of state space approach over transfer function approach	CO5	L1
	8	Define Controllability	CO5	L1
	9	How can the poles of a system be found from the state equations?	CO5	L1
	10	Write the general form of the state-transition matrix. How many constants would have to be found?	CO5	L1

10 Marks Questions

Unit No	Q.No	Question	COs	Bloo m's Taxo nomy Level	
---------	------	----------	-----	--------------------------------------	--

		andikotkai Noad, venkayapani (v), kainooi 310432, Andina i rade.		
	1	Compare and contrast 'open loop control systems' and 'closed loop control systems'.	CO1	L2
	2	What are the various ways of classifying control systems? Discuss in detail the effects of feedback on system performance	CO1	L2
	3	Write Mason's gain formula and explain the meaning of all the terms	CO1	L2
		in the formula.		1.2
	4	Draw the circuit diagram of armature-controlled D.C Motor. Derive its transfer function	CO1	L2
Unit 1	5	Find the transfer function by using signal flow graph method	CO1	L3
	6	Write the differential equations governing the mechanical rotational	CO1	L2
	7	system shown in fig. and determine the transfer function. Find the transfer function by using Block diagram reduction methods.	CO1	L2
	8	Explain synchro transmitter and receiver.	CO1	L2
	9	For the mechanical system shown in the figure draw the Force-Voltage	CO1	L3
		and Force-Current analogous circuits.		
	10	Derive the transfer function of A.C servo motor. Using block diagram reduction technique, obtain closed loop transfer	CO1	L2
	11	function of the figure give below. $R \xrightarrow{+} G_1 \xrightarrow{+} G_2 \xrightarrow{+} G_3 \xrightarrow{+} C$	CO1	K4
	12	Write the differential equations governing the mechanical system shown in figure. Draw the force-voltage and force-current electrical analogous circuits and verify by writing mesh and node equations. K29 M1 M1 B1	C01	K4
	13	Obtain the transfer function using mason gain formula for the signal flow graph shown in figure.	CO1	

		andikotkur koad, verikayapani (v), kurnoor - 516452, Andina Prades		K4
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	14	For the mechanical system shown in the figure draw the force-voltage and force-current analogous circuits.	CO1	К3
	15	Derive the transfer function of the following I. Armature controlled D.C.Motor. II. Field controlled D.C.Motor.	CO1	К3
	1	Define and derive Time domain specifications of Rise time and Peak time.	CO2	L2
	2	The unity feedback system is characterized by an open loop transfer function G(S)=K/s(s+10). Determine the gain K, so that the system will have a damping ratio of 0.5 for this value of K. Determine settling time, peak overshoot and peak time for a unit step input.	CO2	L2
	3	Find the steady state error when the input is unit step signal.	CO2	L2
	4	The unity feedback system is characterized by an open loop transfer function G(s)=K/S(S+10). Determine the gain K, so that the system will have a damping ratio of 0.5 for this value of K. Determine rise time, peak time, peak over shoot and settling time.	CO2	L2
Unit 2	5	Derive the response of under damped second order system for unit step input.	CO2	L2
	6	The open loop transfer function of a system with unity feedback $G(s) = K/S(ST+1)$ where K and T are positive constants. By what factor should the amplifier gain K be reduced, so that the peak overshoot of the unit step response of the system is reduced from 75% to 25%?	CO2	L2
	7	The open loop transfer function of a control system with unity feedback is given by $G(s)=100/S(S+0.1S)$. Determine the steady state error of the system when the input is $10 + 10t + 4t^2$.	CO2	L3
	8	Explain error constants Kp, Kv and Ka for type II system.	CO2	L2
	9	Derive an expression for the steady state errors of Type-0, Type-1 and Type-2 systems excited by unit step, unit ramp and unit parabolic inputs.	CO2	L3
	10	A unity feedback control system has an open-loop transfer function G(s) = 5/(s(s+1)). Find the rise time, percentage overshoot, peak time and	CO2	L2

		vandikotkur kodu, venkayapani (v), kumoor- 516452, Andina Prade:	, , , , , , , , , , , , , , , , , , ,	
		settling time for a step input of 10 units. Also determine peak overshoot.		
	11	Derive the Response of Underdamped Second Order System With Unit Step Input	CO2	К3
	12	The unity feedback system is characterized by an open loop transfer function G(S)=K/s(s+10). Determine the gain K, so that the system will have a damping ratio of 0.5 for this value of K. Determine settling time, peak overshoot and peak time for a unit step input.	CO2	K4
	13	The unity feedback system is characterized by an open loop transfer function G(S)=K/s(s+10). Determine the gain K, so that the system will have a damping ratio of 0.5 for this value of K. Determine settling time, peak overshoot and peak time for a unit step input.	CO2	K4
	14	Define and derive Time domain specifications of Rise time, Peak Time and Maximum Peak overshoot.	CO2	К3
	1	The characteristic polynomial of a system is $s^7+9s^6+24s^5+24s^4+24s^3+24s^2+23s+15=0$. Determine the location of roots on s-plane and hence the stability of the system.	CO3	L2
	2	Draw the root locus plot for $G(s) = K/(s(s+1)(s+3))$.	CO3	L3
	3	Explain the Routh's criterion to determine the stability of a dynamical system and give its limitations.	CO3	L2
Unit 3	4	Determine the range of K for stability of a unity-feedback control system whose open loop transfer function :G(S)=K/S(S+1)(S+2)	CO3	L2
	5	How many roots of the characteristic polynomial of a system have positive real parts?	CO3	L3
	6	State and explain the rules for construction of root loci, which are concerned with:	CO3	L2
	7	(i)Angle of asymptotes. (ii) Breakaway point on real axis.	CO3	L3
	8	Consider the loop transfer function $G(s)H(s)=K(s+2)/(s^2+2s+2)$. Construct the root locus and comment on stability.	CO3	L2
	9	Determine the range of K for stability of unity feedback system whose open loop transfer function is: $G(s) = /s(+1)(+2)$ using Routh Hurwitz criterion.	CO3	L2
	10	Using the Routh-Hurwitz criterion and the unity feedback system with $G(s)=K/s(s+1)(s+2)(s+5)$.(i) Find the range of K for stability. (ii) Find the value of K for marginal stability. (iii) Find the actual location of the closed-loop poles when the system is marginally stable.	CO3	L3
	11	Determine the location of roots on s-plane and hence the stability of the following systems. (i)	CO3	K4
	12	Consider the loop transfer function $G(s) = \frac{K(s+2)}{(s^2+2s+2)}$ Construct the root locus and comment on stability.	CO3	K4
	13	With the help of Routh's stability criterion find the stability of the following systems represented by the characteristic equations:	CO3	K4

		(i)s4+8s3+18s2+16s +5 =0.		
		(ii)s6+2s5+8s4+12s3+20s2+16s +16 =0.		
		Sketch the root locus for the unity feedback system whose open loop	CO3	K4
	14	transfer function is: $G(s) = \frac{k}{s(s+4)(s+6)}$		
	15	The characteristic polynomial of a system is s7+9s6+24s5+24s4+24s3+24s2+23s+15=0. Determine the location of roots on s-plane and hence the stability of the system.	CO3	K4
	16	Sketch the root locus of the system whose open loop transfer function $G(s) = \frac{K}{s(s+2)(s+4)}$ is Find the value of K so that the damping ratio of the closed loop system is 0.5.	CO3	K4
Unit 4	1	Define and explain various frequency domain specifications with relevant expressions.	CO4	L3
	2	State and explain the Nyquist Criterion.	CO4	L3
	3	Draw the Nyquist plot for the system whose open loop transfer function is: $G(S)H(S) = K/S$ (S+2) (S+10). Determine the range of K for which closed loop system is stable.	CO4	L3
	4	Plot the Bode diagram for the following transfer function and obtain the gain and phase cross over frequencies. $G(S) = KS/(1 + 0.2S) (1 + 0.02S)$. Determine the value of K for a gain cross over frequency of 20 rad/sec.	CO4	L2
	5	Make a polar plot of the frequency response for the transfer function given by: $G(s)=s+5/s(s+2)(s+4)$	CO4	L3
	6	Given a unity feedback system with the forward-path transfer function $G(s)=K/s(s+1)(s+3)(s+6)$ and a delay of 0.5 second, find the range of gain, K, to yield stability. Use Bode plots.	CO4	L3
	7	Sketch the Bode plots for a system $G(s)=15(s+5)/s(s^2+16s+100)$ and discuss its stability.	CO4	L3
	8	Use Nyquist criteria to find the stability of system $G(s)=1/s^2(1+s)$ and $H(s)=1+2s$.	CO4	L2
	9	What is Lead compensator and obtain the transfer function? Also draw its Pole-Zero plot.	CO4	L3
	10	The transfer function of a phase-lead controller is given as $G(s)=1+asT/1+sT$, $a>1$ and T is constant depending on the circuit parameters. Determine the maximum value of the phase load which can be obtained from this controller.	CO4	L3
	11	Draw the bode plot and determine gain margin and phase margin of a system whose open loop transfer function is given by $G(S)=100/S(S+1)(S+2)$	CO4	K5
	12	Determine the stability of the system using Nyquist stability criterion: $G(s)H(s) = 10/[s(s+1)(s+4)]$	CO4	K5
	13	Draw the Bode Plot of the Transfer Function G(s)=20/s(1+3s)(1+4s) and determine Gain Margin, Phase Margin, Gain Crossover Frequency and Phase Crossover Frequency.	CO4	K4

		Stratch the Poler Plot of the following Transfer Function and determine		TZ 4
	14	Sketch the Polar Plot of the following Transfer Function and determine Phase Margin and Gain Margin	CO4	K4
		G(s) = (S+5)/S(S+2)(S+4)		
	15	Derive the expressions for resonant frequency, resonant peak and	CO4	K4
	13	bandwidth of a second order system.		
		Draw the Bode Plot of the Transfer Function $G(S)=20/s(1+3s)(1+4s)$	CO4	K5
	16	and determine Gain Margin, Phase Margin, Gain Crossover Frequency		
		and Phase Crossover Frequency.	G0.	
	1	What is meant by state space model? Evaluate the mathematical	CO5	L2
		expression for the state space representation for the continuous system. Consider a system whose transfer function is given by: $Y(S)/U(S) =$	CO5	L2
	2	10(S+1)/S3+6S2+5S+10. Evaluate the state model for the system by	COS	LZ
		Block diagram reduction.		
		Obtain the state variable representation of an armature controlled D.C	CO5	L3
	3	Servomotor Servomotor	003	113
		The dynamic behaviour of the system is described by	CO5	L3
	4	dc(t)/dt+10c(t)=40e(t), where 'e(t)' is the input and 'c(t)' is the output.		
		Determine the transfer function of the system.		
	5	Obtain the state model for the system described by	CO5	L2
		$Y(S)/U(S)=s^2+2s+4/s^3+9s^2+26s+24$. Using phase variables.		
Unit 5		$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	CO5	L3
Unit 5	6	Diagonalize the system matrix, $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$		
		$\begin{bmatrix} L-6 & -11 & -6J \end{bmatrix}$ Compute the resolvent matrix and state transition matrix of the state	CO5	L3
	7		CO3	LS
ı		matrix: $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$		
		Consider the system $\dot{X}=AX$ with $X_0=X(0)$ where $A=\begin{bmatrix} -2 & -4 \\ 1 & -2 \end{bmatrix}$ Find	CO5	L3
	8			
		\emptyset (t) and the solution for $X_0=[1 1]^T$.	G0.	
	9	Discuss about the properties of state transition matrix.	CO5	L3
	10	A state model of a system is given as: $[\dot{X}] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3 \end{bmatrix} \begin{bmatrix} X \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U$	CO5	L3
		A state model of a system is given as. $[A] = \begin{bmatrix} 0 & 0 & 1 \\ -1 & -2 & -2 \end{bmatrix} \begin{bmatrix} A \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix}$		
		and $Y=[1 \ 0 \ 0] X$		
		Obtain the state model for the transfer function of a control system given	CO5	K4
		by		
	11	$\frac{Y(s)}{U(s)} = \frac{s^2 + 3s + 4}{s^3 + 3s^2 + 3s + 2}$		
		$\frac{1(s)}{\text{U(s)}} = \frac{s + s + 1}{3 + 2 + 2 + 2}$		
			CO5	17.4
		Consider a system with state model given by	CO5	K4
	12	$\begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} + \begin{vmatrix} 0 \\ 0 \end{vmatrix} u$ and		
		$\begin{bmatrix} x \\ 1 \\ x \\ 2 \\ x \\ 3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ x \\ 2 \\ x \\ 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u \text{ and }$		
		[x1]		
		$y=\begin{bmatrix}1 & 0 & 0\end{bmatrix}\begin{bmatrix}x1\\x2\\z\end{bmatrix};$		
		$\lfloor Lx3 \rfloor$		
	10	Check the controllability and observability of the system.	96.7	TT 1
	13	Obtain the state model for the system represented by:	CO5	K4

	$\frac{d^{3}y}{dt^{3}} + 6\frac{d^{2}y}{dt^{2}} + 11\frac{dy}{dt} + 10y = 3u(t)$		
14	Consider a system with state model given below: $ x = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -1 \end{bmatrix} X + \begin{bmatrix} 0 \\ 5 \\ -24 \end{bmatrix} $ $ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}x + \begin{bmatrix} 0\end{bmatrix}u $ Verify, the system is observable and controllable.	CO5	K4
15	Obtain the state model of a system described by a differential equation $\ddot{y} + 6\ddot{y} + 11\dot{y} + 6y = 8\ddot{u} + 17\dot{u} + 8u$; Where y is output and u is input	CO5	K4
16	Determine the controllability and observability of the system $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t) $ and $Y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	CO5	K1