Hardware Security

-- Digital Logic Design

Cybersecurity Specialization

Outline: Digital Logic Design 101

- # Digital system design/synthesis
 - System specification
 - System implementation
 - Function simplification/optimization
- # Design examples
 - Combinational circuits
 - Sequential system
- # Don't care conditions

Digital System Specification

- # The **specification** of a system is a description of its functionality and other characteristics required for its use.
- # Developing system specification
 - From high-level to binary-level
 - Input (input signals and current state) encoding
 - * Output (output signals and next state) encoding
 - Express output as Boolean functions of input
 - Truth table
 - State transition graph/table

Example: System Specification

- # A system that tells whether a given month has 31 days.
- # High-level system spec:
 - **■** Input: $x \in \{1,2,3,4,5,6,7,8,9,10,11,12\}$
 - **■** Output: z ∈ {0,1}
 - Function: $z = F(x) = \begin{cases} 0 & x=2,4,6,9.11 \\ 1 & x=1,3,5,7,8,10,12 \end{cases}$

X	1	2	3	4	5	6	7	8	9	10	11	12
Z	1.	0	1	0	1	0	1	1	0	1.	0	1

Example: System Spec	X	$x_3x_2x_1x_0$	Z	
	1	0001	1	
** 4	2	0010	0	
# A system that tells whether	3	0011	1	*
a given month has 31 days.	4	0100	0	
# Binary-level system spec:	5	0101	1	
= Input variables/bits: x_3, x_2, x_1, x_0	6	0110	0	
Output variable/bit: z	7	0111	1	-
■ Function:	8	1000	1	
$z(x_3,x_2,x_1,x_0) = x'_3x_0 + x_3x'_0$	9	1001	0	
	10	1010	1	,
	11	1011	0	
	12	1100	1	
	4	The said		