Aufgabe 8: Greedy-Färben von Intervallen

Sei X = (Ji,/2,..., eine Menge von n (geschlossenen) Intervallen über den reellen Zahlen R. Das Intervall Ij sei dabei gegeben dnrch seine linke Intervallgrenze Ij E R sowie seine rechte Intervallgrenze rj E R mit rj > Ij, d.h. Ij = [lj,rj].

Wir nehmen in dieser Aufgabe der Einfachheit halber an, dass die Zahlen alle paarweise verschieden sind.

Zwei Intervalle Ij, 1 überlappen sich gdw. sie mindestens einen Punkt gemeinsam haben, d.h. gdw. falls für (o.B.d.A.) Ij < 4, auch 1 < Vj gilt. Eine gültige Färbung von X mit c e N Farben ist eine Funktion F : X (1,2,...,c) mit der Eigenschaft, dass für jedes Paar Ij,Ik von überlappenden Intervallen F(Ij) F(Ik) gilt.

Abbildung 1: Eine gültige Färbung von X

Eine minimale gültige Färbung von X ist eine gültige Färbung mit einer minimalen Anzahl an Farben. Die Anzahl von Farben in einer minimalen gültigen Färbung von X bezeichnen wir mit X(X). Wir gehen im Folgenden davon aus, dass für X eine minimale gültige Färbung X0 gefunden wurde.

- (a) Nehmen wir an, dass aus X alle Intervalle einer bestimmten Farbe von F* gelöscht werden. Ist die so aus F* entstandene Färbung der übrigen Intervalle in jedem Fall immer noch eine minimale gültige Färbung? Begründen Sie Ihre Antwort.
- (b) Nehmen wir an, deiss aus X ein beliebiges Intervall gelöscht wird. Ist die so aus F* entstehende Färbung der übrigen Intervalle in jedem Fall immer noch eine minimale gültige Färbung? Begründen Sie Ihre Antwort.
- (c) Mit uj(X) bezeichnen wir die maximale Anzahl von Intervallen in X, die sich paarweise überlappen. Zeigen Sie, dass x(A) > uj(X) ist. Wir betrachten nun folgenden Algorithmus, der die Menge $X = (F,F \blacksquare ..,In)$ von n Intervallen einfärbt:
 - Zunächst sortieren wir die Intervalle von X aufsteigend nach ihren linken Intervallgrenzen. Die Intervalle werden jetzt in dieser Reihenfolge nacheinander eingefärbt; ist ein Intervall dabei erst einmal eingefärbt, ändert sich seine Farbe nie wieder. Angenommen die sortierte Reihenfolge der Intervalle sei Ia(i), ■ , F(n)-
 - Das erste Intervall F(i) erhält die Farbe 1. Für 1 < i < n verfahren wir im Aten Schritt zum Färben des Aten Intervalls wie folgt:
 Bestimme die Menge Cj aller Farben der bisher schon eingefärbten Intervalle die /"(p überlappen. Färbe /"-(j) dann mit der Farbe c, = min((l,2,..., n) Cj). Fortsetzung nächste Seite!
- (d) Begründen Sie, warum der Algorithmus immer eine gültige Färbung von X findet (Hinweis: Induktion).
- (e) Zeigen Sie, dass die Anzahl an Farben, die der Algorithmus für das Einfärben benötigt, mindestens $c\ddot{u}(X)$ ist.
- (f) Zeigen Sie, dass die Anzahl an Farben, die der Algorithmus für das Einfärben benötigt, höchstens uj(X) ist.

- (g) Begründen Sie mit Hilfe der o.g. Eigenschaften, warum der Algorithmus korrekt ist, d.h. immer eine minimale gültige Färbung von X findet.
- (h) Wir betrachten folgenden Implementierung des Algorithmus in Pseudocode: Was ist die asymptotische Laufzeit dieses Algorithmus? Was ist der asymptotische Speicher bedarf dieses Algorithmus? Begründen Sie Ihre Antworten.