F3A MP 2019

Refroidissement du supraconducteur

A. Premier et deuxième principes dans un écoulement

A.1 Signification

Système : Le diazote

 \overline{h} : enthalpie massique $\rightarrow h_e$: en entrée de l'organe / h_s : en sortie

s : entropie massique, mêmes notations

s_c : entropie créée par unité de masse suite à des phénomènes irréversibles

wu : travail utile par unité de masse (travail autre que le travail des forces de pression)

q : transfert thermique par unité de masse

T_{ext} : température extérieur (à la surface de l'organe)

A.2. Hypothèse

L'écoulement est permanent, les grandeurs dans la partie étudiée ne dépendent pas du temps.

On peut aussi négliger les variations d'énergie cinétique

B. Etude du cycle Analyse

E1 P₁ = 1 bar
$$\xrightarrow{\text{Compression}}$$
 E2 P₂ = 200 bar $\xrightarrow{\text{Refroidissement}}$ E3 P₃ = P₂ = 200 bar $\xrightarrow{\text{Détente}}$ E4 P₄ = P₁
T₁ = 290K Isotherme T₂ = T₁ = 290K Isobare T₃ < T₂ liquide/vapeur

Puis retour à l'état 1 par un échauffement isobare

B.1 Le cycle

Point 1: $P_1 = 1$ bar; $T_1 = 290$ K = 17° C Point 2: $P_2 = 200$ bar; $T_2 = 290$ K = 17° C Point 5: $P_5 = P_4 = P_1 = 1$ bar; liquide saturant Point 6: $P_6 = P_1 = 1$ bar; gaz saturant

B.2. Les valeurs

Par lecture graphiques:

Point	1	2	5	6
h (kJ/kg)	505	470	80	280
S (kJ/kg/K)	3,85	2,15	-0,05	2,45

B.3. Modèle du gaz parfait

Pour un gaz parfait, l'enthalpie ne dépend que de la température selon la 2^{éme} loi de Joule.

Ainsi si la température est constante alors l'enthalpie est constante.

Dans un diagramme (*P,h*), les isothermes et isenthalpiques d'un gaz parfait sont des droites parallèles et verticales.

B.4. Domaine de validité

Sur le diagramme les isothermes sont des droites verticales à basses pressions pour $P \le 1$ bar. Dans ce domaine le diazote pourra être considéré comme un gaz parfait.

B.5. Transformation de 1→2

Transformation réversible : s_c = 0 J/K/Kg

Transformation isotherme : $T_{ext} = T_1 = constante$

Second principe pour un système ouvert en écoulement permanent : $s_2 - s_1 = \frac{q_{12}}{T_1}$

D'où $q_{12} = T_1(s_2 - s_1) = -493 \text{ kJ/kg}$

B.6. Travail pour le compresseur

Premier principe pour un système ouvert en écoulement permanent : $h_2 - h_1 = q_{12} + w_{12}$

D'où $w_{12} = h_2 - h_1 - q_{12} = 458 \text{ kJ/kg}$

B.7. Transformation de 3→4

Il n'y a pas de pièce mobile, donc pas de travail utile : w₃₄ = 0 J/kg

Le système est de plus calorifugé q₃₄ = 0 J/kg

Premier principe pour un système ouvert en écoulement permanent : $h_4 - h_3 = 0$ J/kg

C'est une détente isenthalpique

B.8. Expression de ha

h₅ est l'enthalpie massique du liquide dans les conditions de l'état 4.

h₆ est l'enthalpie massique du gaz dans les conditions de l'état 4.

h est une fonction d'état extensive et additive :

d'où $h_4 = v h_5 + (1-v) h_6$

B.9. Expression de y

La transformation $3\rightarrow 4$ est isenthalpique : $h_4 = h_3$

On nous indique $h_3 - h_2 + (1-y)(h_1 - h_6) = 0$

D'où $yh_5 + (1-y) h_6 - h_2 + (1-y) (h_1 - h_6) = 0$

Soit $yh_5 - h_2 + (1 - y)h_1 = 0$

Ainsi $y = \frac{h_2 - h_1}{h_3 - h_1} = 8.2 \%$

B.10. Le travail pour 1 kg de diazote liquide

II faut w_{12} = 458 kJ pour obtenir 0,082 kg de diazote liquide.

Ainsi il faut $W = \frac{w_{12}}{v} = 5,6MJ$ pour obtenir 1 kg de $N_{2(1)}$

B.11. Le point 4

Le point 4 est tel que : P₄=P₁=1 bar et y=0,08 donc le titre en vapeur x=0,92

On détermine graphiquement : $h_4 = 265 \text{ kJ/kg et s}_4 = 2,25 \text{ kJ/K/Kg}$

B.12. Le point 3

Le point 3 est tel que : P_3 =200 bar et h_4 = h_3

On détermine graphiquement : $h_3 = h_4 = 265 \text{ kJ/kg et s}_4 = 1,25 \text{ kJ/K/kg}$

B.13. Variation d'entropie dans le détendeur

Transformation $3\rightarrow 4$: $\Delta s = s_4 - s_3 = 1,0 \text{ kJ/kg/K}$

Second principe pour un système ouvert en écoulement permanent : $s_4 - s_3 = \frac{q_{34}}{T_{\rm total}} - s_c$

Or le détendeur est calorifugé, q₃₄ = 0J

D'où $s_c = \Delta s = 1, \hat{a} kJ/kg/K$

Il faut donc dépenser 1,9€

La transformation est irréversible sans doute à cause de l'importante variation de pression.

B.14. Le coup pour obtenir 101

On veut obtenir 10 I soit une masse $m = \rho V$. Or pour 1 kg il faut une énergie W = w_{12}/y On doit alors fournir $W_T = \frac{w_{12}}{v} \rho V = 45,3 \text{MJ}$ Or 1kWh = 3,6 MJ coute 0,15€

C.1 La maille CFC

C.2. Nombre d'atomes par maille

Le fer
$$\alpha$$
 : Z = $\underbrace{8x1/8}_{\text{sommets}}$ + $\underbrace{1x1}_{\text{interieur}}$ = 2 \Leftrightarrow $\underbrace{\mathbf{Z}_{\alpha} = \mathbf{2}}_{\mathbf{Z}_{\alpha} = \mathbf{2}}$
Le fer γ : Z = $\underbrace{8x1/8}_{\text{sommets}}$ + $\underbrace{6x1/2}_{\text{faces}}$ = 4 \Leftrightarrow $\underbrace{\mathbf{Z}_{\gamma} = \mathbf{4}}_{\mathbf{Z}_{\gamma} = \mathbf{4}}$

C.3. Le contact entre les atomes

Le fer α : 2 atomes sont en contact sur la diagonale du cube

D'où
$$4r = \sqrt{3}a$$

Le fer γ : 2 atomes sont en contact sur la diagonale d'une face du cube

C.4. La masse volumique

Pour une maille
$$\rho = \frac{ZM}{N_a a^3}$$

Le fer
$$\alpha$$
: $\rho_{\alpha} = \frac{2x \, 56 \, 10^{3} x \, 3\sqrt{3}}{6.02 \, 10^{23} x \, 64x (124 \, 10^{-12})^{3}} \Leftrightarrow \rho_{\alpha} = 7 \, 922 \, kg/m^{3}$
Le fer γ : $\rho_{\gamma} = \frac{4x \, 56 \, 10^{-3} x \, 2\sqrt{2}}{6.02 \, 10^{23} x \, 64x (124 \, 10^{-12})^{3}} \Leftrightarrow \rho_{\gamma} = 8 \, 625 \, kg/m^{3}$

Le fer
$$\gamma$$
: $\rho_{\gamma} = \frac{4x \ 56 \ 10^{-3} x 2 \sqrt{2}}{6.02 \ 10^{23} x 64 x (124 \ 10^{-12})^3} \Leftrightarrow \rho_{\gamma} = 8 \ 625 \ kg/m$

C.5 Nombres d'atomes

Baryum:
$$8x1/8 + 1x1 = 2 \Leftrightarrow \mathbf{Z}_{Ba} = \mathbf{2}$$

$$\frac{\text{Fer}}{\text{faces latérales}} : \underbrace{2x4x1/2}_{\text{faces latérales}} = 4 \Leftrightarrow \mathbf{Z}_{\text{Fe} = 4}$$

Arsenic:
$$\underbrace{4X2x1/4}_{\text{arêtes verticales}} + \underbrace{2x1}_{\text{intérieur}} = 4 \Leftrightarrow \overline{\textbf{Z}_{Ba} = \textbf{4}}$$

C.6. Formule de l'alliage : BaFe₂As₂

D. Stabilité du fer

D.1. Les couples de l'eau

$$H_2O/H_2 = H^+/H_2$$

Demi-équation :
$$2H^+ + 2e^- \xrightarrow{\leftarrow} H_{2(g)}$$

Potentiel : E = E°₁ + 0,03 Log
$$\frac{[H_3O^+]^2}{P_{H_2/P^+}}$$

A la frontière
$$P_{H2} = P^{\circ} = 1$$
 bar $\Leftrightarrow E_{F1} = -0.06pH$

O₂/H₂O

Demi-équation :
$$O_{2(g)} + 4H + 4e - \stackrel{\rightarrow}{\leftarrow} 2H_2O$$

Potentiel : E =
$$E^{\circ}_{2} + \frac{0,06}{4} \text{Log}[H_{3}O^{+}]^{4}P_{O_{2}/P^{\circ}}$$

Potentiel : E = E°₂ + $\frac{0.06}{4}$ Log[H₃O⁺]⁴P_{O₂/P°}
A la frontière P_{O2} = P° = 1 bar \Leftrightarrow **E**_{F2} = **1,23 - 0,06pH**

D.2. Identification

Plus le potentiel est élevé et plus le nombre d'oxydation (no) est grand

Plus le pH est élevé et plus il y a des ions HO-

Les no : F

 Fe^{3+} et $Fe(OH)_{3(s)}$ no = III

 Fe^{2+} et $Fe(OH)_{2(s)}$ no = II

Fe no = 0

D.3. Pente de la frontière II/V

C'est le couple Fe(OH)3(s)/Fe2+

Demi-équation : Fe(OH)_{3(s)} + 3H⁺ + e^{- \rightarrow} Fe²⁺ + 3H₂O

Potentiel : E = $E^{\circ}_{Fe(OH)3(s)/Fe\acute{e}=} + 0.06 \text{ Log} \frac{[H_3O^+]^3}{[Fe^{2^+}]}$

Frontière : au premier grain de $Fe(OH)_{3(s)}$ on a $[Fe^{2+}] = C_0$

D'où $E_F = E^{\circ}_{Fe(OH)3(s)/Fe\acute{e}} - 0.06 \ LogC_0 - 0.18 \ pH$

On a donc une frontière de pente -0,18 V/unité de pH

D.4. Le pH frontière entre IV/V

Réaction : Fe(OH)_{3(s)} \rightarrow Fe³⁺ + 3 HO \rightarrow K_s = [Fe³⁺][HO⁻]³

A la frontière on a le premier grain de précipité et [Fe³⁺] = C₀

Le K_S étant vérifié on a K_S = $C_0^{\frac{K_0^2}{2}}$

D'où $pH = \frac{1}{3}(-LogC_0 - pK_s) + pK_e = 2,3$

E. <u>Détermination de la composition</u>

E.1. Réaction du fer

A pH = ° le fer n'est pas stable dans l'eau

La réaction : $\mathbf{Fe} + 2\mathbf{H}_3\mathbf{O}^+ \xrightarrow{\sim} \mathbf{Fe}^{3+} + \mathbf{H}_{2(g)} + \mathbf{H}_2\mathbf{O}$

Constante d'équilibre : K = $\frac{\left[Fe^{2+}\right]P_{H_2}/P'}{\left[H_3O^+\right]^2}$

A l'équilibre il y a égalité des potentiels : $E^{\circ}_{Fe2+/Fe}$ + 0,03 Log $[Fe^{2+}]$ = 0,03 Log $\frac{[H_30^+]^2}{P_{H_3/P^+}}$

D'où $LogK = \frac{-E^{\circ}_{Fe2+/Fe}}{0.03} \Leftrightarrow K = 10^{14.7}$

E.2. Deux électrodes

On ne peut mesurer qu'une différence de potentiel. Il faut donc une deuxième électrode de référence.

E.3. Réaction de dosage

Elle doit être totale (ou quasi totale) rapide et avoir une écriture connue

E.4. La réaction de dosage

 $MnO_4^- + 5Fe^{2+} + 8H_3O^+ \stackrel{\longrightarrow}{\sim} Mn^{2+} + 5Fe^{3+} + 12 H_2O$

E.5. Visualisation de l'équivalence

Avant l'équivalence tous les ions MnO₄ violes apportés sont transformés en Mn²⁺ incolores.

A l'équivalence il n'y a plus de Fe²⁺ et la couleur violette va persister.

E.6. Quantité initiale en Fe²⁺

Graphiquement on a V_{eq} = 10 mL

On à l'équivalence $N_{ox}V_{ox} = N_{red} V_{red}$ soit $5C_1V_{eq} = n(Fe^{2+})$

D'où $n(Fe^{2+}) = 5 \cdot 10^{-2} \text{ mol}$

E.7. Valeur de y

On a 5 10⁻² mol de fer pour 0,25 mol de baryum dans une pastille.

où $y = \frac{x}{2} = \frac{1}{2}$

Exercice 1

1. Solénoïde long

Il faut calculer le rapport L/R.

On a L/R = 12,5 > 10

On peut donc considérer le solénoïde comme long

2. Représentation

3. Le champ magnétique

Pour un solénoïde **B** = μ_0 I_1^N = 7,5 10⁻⁵ **T**

4.1. Position de l'aiguille en absence de courant

L'aiguille sera orientée selon le champ magnétique terrestre soit perpendiculairement à l'axe du solénoïde.

4.2. Angle de rotation

L'aiguille va s'orienter selon le champ magnétique total : Avec les orientations choisies on a tg $\alpha = \frac{B_T}{B_{sol}} \Leftrightarrow \alpha = 14.9 \degree = 0,26$ rad

Exercice 2

1. Bilan des forces

Il y a : La réaction en O R Le poids en G \vec{P} La force de Laplace \vec{F}

2. Le sens du courant

On utilise la règle de la main droite

3. Condition d'équilibre

Référentiel R galiléen Système : la tige Forces : voir 1

<u>Loi</u> condition d'équilibre : $\sum \vec{F} = \vec{0}$ <u>Projection</u> : sur Oz

La force de Laplace : $\vec{F} = I \vec{L} \wedge \vec{B} \Leftrightarrow F = IBL$

D'où IBL = mgsin α Ainsi sin $\alpha = \frac{IBL}{mg} \Leftrightarrow \alpha = 0.92 \text{ rad} = 52.8^{\circ}$