Rudin Textbook Notes

Arjun

January 7, 2024

It begins!

1

The rational numbers are inadequate, both as a field and an unordered set.

Example 1.1. There is no rational number p such that $p^2 = 2$.

Proof. For the sake of contradiction, assume that $p^2 = 2$ has a rational solution, $\frac{a}{b}$, where a and b are integers such that $\gcd(a,b) = 1$. Therefore, we can take the square root of both sides as so:

$$\sqrt{2} = \frac{a}{b}$$

Through algebraic manipulation, we then get

$$2a^2 = b^2$$

This means b must be even, and so b^2 is divisible by 4. This means a must also be even. Contradiction, as we assumed that gcd(a, b) = 1.

Now, something more interesting: let A be the set of positive rationals p such that $p^2 < 2$, and B be the set of positive rationals p such that $p^2 > 2$.

Proposition 1.1. There is NO largest element in A.

Proof. We have some rational p such that $p^2 < 2$. Now, define a new rational q such that $q = p - \frac{p^2 - 2}{p - 2} = \frac{2(p + 1)}{(p + 2)}$. Why do we define a rational like so? Well, for one, q > p, because $\frac{p^2 - 2}{p + 2}$ is less than zero. Also, $q^2 - 2 = \frac{2(p^2 - 2)}{(p + 2)^2} < 0$. Therefore, for some arbitrary rational p such that $p^2 < 2$, we have found another rational q such that q > p and $q^2 < 2$.

Proposition 1.2. There is NO smallest element in B.

Proof. Very similar proof. We have some rational p such that $p^2 > 2$. Now, define a new rational q such that $q = p - \frac{p^2-2}{p-2} = \frac{2(p+1)}{(p+2)}$. Why do we define a rational like so? Well, for one, q < p, because $\frac{p^2-2}{p+2}$ is greater than zero. Also, $q^2-2=\frac{2(p^2-2)}{(p+2)^2}>0$. Therefore, for some arbitrary rational p such that $p^2>2$, we have found another rational q such that q < p and $q^2>2$.