Data Structure and Algorithms

LECTURE - 1

Data and Information

- •Data: Data are simple values or set of values
- •Data item: single unit of values
 - Group items: that are divided into sub items- name.
 - elementary types: that cannot be divided- social security number.
- •Information: data with given attributes or meaningful or processed data.

What is Data Structure

- In Computer Science, a **data structure** is a particular way of organizing data in a computer so that it can be used efficiently.
- The logical or mathematical model of a particular organization of data is called a data structure.
 - A data structure is defined by
 - (1) the logical arrangement of data elements, combined with
 - (2) the set of operations we need to access the elements.

Classification of Data Structure

- 1. Primitive
 - 1.1 Integer
 - 1.2 Real
 - 1.3 Character
 - 1.4 Boolean
- 2. Non-Primitive
 - 2.1 Linear
 - 2.1.1 Arrays
 - 2.1.2 Linked List
 - 2.1.3 Stack
 - 2.1.4 Queue
 - 2.2 Non-Linear
 - 2.2.1 Trees
 - 2.2.2 Graph

Classification of Data Structure

Solving a problem involves processing data, and an important part of the solution is the careful organization of the data

In order to do that, we need to identify:

- 1. The <u>collection of data items</u>
- 2. Basic *operation* that must be performed on them

Abstract Data Type (ADT): a collection of data items together with the operations on the data

- The word "abstract" refers to the fact that the data and the basic operations defined on it are being studied independently of how they are implemented
- We think about **what** can be done with the data, not **how** it is done

Implementation of ADT

The term of Data Structure and Abstract Data Type are often used interchangeably

However, we use ADT when data is studied at a logical level

The term data structure refers to a construct in programming language that can be used to store data

ARRAYS

A 2-Dimensional Array: table

LINKED LIST

STACK

QUEUE

STACK VS. QUEUE

TREE & GRAPH

DATA STRUCTURE OPERATIONS

- 1. Traversing
- 2. Inserting
- 3. Deleting
- 4. Searching
- 5. Sorting
- 6. Merging

If the sequence of operations -

```
push (1)
push (2)
pop
push (1)
push (2)
pop
pop
pop
pop
pop
pop
pop
pop
pop
```

are performed on a stack, the sequence of popped out values are ?

D 21222

A sequence of stack operations

A sequence of queue operations

					5			empty	front			
		2		7	7	7		enqueue(4)	front	4		
	4	4	4	4	4	4	4	enqueue(2)	front	4	2	
								dequeue()	front	2		
empty	push(4)	push(2)	Ωαoα	push(7)	push(5)	()qoq	pop()	enqueue(7)	front	2	7	
,,			1-1-1/	paori(1)		1-1-17	1-1-17	enqueue(5)	front	2	7 5	
								dequeue()	front	7	5	
								dequeue()	front	5		