Minimal Absent Words

Alice Heliou

October 13, 2015

Introduction

Minimal Absent Words

Computation of Minimal Absent Words

Alice Heliou Minimal Absent Words October 13, 2015 2 / 22

Outline

- Introduction
- Minimal Absent Words
- 3 Computation of Minimal Absent Words

Alice Heliou Minimal Absent Words October 13, 2015 3 / 22

Principle

Given a sequence of letters, we focus on words that don't occur. Their absence may have a signification.

Principle

Given a sequence of letters, we focus on words that don't occur. Their absence may have a signification.

Example

In a random sequence S, we expect that every word of size less than $\log_{\sigma}(|S|)$ occurs in S.

Principle

Given a sequence of letters, we focus on words that don't occur. Their absence may have a signification.

Example

In a random sequence S, we expect that every word of size less than $\log_{\sigma}(|S|)$ occurs in S.

The human genome contains around 3G nucleotides (A, C, G, T).

Yet some words of size 11, are absent $(11 < \log_4(3*10^9) = 15,7)$

Application

Three minimal sequences found in Ebola virus genomes and absent from human DNA, [Silva et al.], 2015

3 small sequences (of length between 12 and 14) that appear in the Ebola genome as coding for proteins, are absent from the Human genome.

This was done by analyzing 99 virus and the Human genome reference GRC-38.

Unicity

Set of Absent Words

Property

For each set of words \mathcal{M} if there exists a sequence \mathcal{S} such that \mathcal{M} is its set of absent words, then \mathcal{S} is unique.

Alice Heliou Minimal Absent Words October 13, 2015 6 / 22

Absent words are too numerous

The number of absent words from a sequence of size n is **exponential** in n.

There are at most two words of size n-1 that occur in $S\Rightarrow$ at least $\sigma^{n-1}-2$ absent words of size n-1 with σ the size of the alphabet.

Alice Heliou Minimal Absent Words October 13, 2015 7 / 22

Outline

- Introduction
- Minimal Absent Words
- 3 Computation of Minimal Absent Words

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

$$S = \overset{0}{A} \overset{1}{A} \overset{2}{C} \overset{3}{A} \overset{4}{C} \overset{5}{A} \overset{6}{C} \overset{7}{C}$$

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

$$S = \overset{0}{A} \overset{1}{A} \overset{2}{C} \overset{3}{A} \overset{4}{C} \overset{5}{A} \overset{6}{C} \overset{7}{C}$$

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

Crochemore et al. 1998, Mignosi et al. 2002

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

$$S = \overset{0}{A} \overset{1}{A} \overset{2}{C} \overset{3}{A} \overset{4}{C} \overset{5}{A} \overset{6}{C} \overset{7}{C}$$
AAA, AACACC, AACC, CAA, CACACA, CCC

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

$$S = \overset{0}{A} \overset{1}{A} \overset{2}{C} \overset{3}{A} \overset{4}{C} \overset{5}{A} \overset{6}{C} \overset{7}{C}$$
AAA, AACACC, AACC, CAA, CACACA, CCC

A minimal absent word of a sequence is an absent word whose proper factors (longest prefix, and longest suffix) all occur in the sequence.

An upper bound on the number of minimal absent words is $\mathcal{O}(\sigma n)$.

Sequence S

A an absent word of S

A an absent word of S

k, such that A[0..k] occurs in S but not A[0..k+1]

A an absent word of S

k, such that A[0..k] occurs in S but not A[0..k+1]

j, such that A[j..k+1] occurs S but not A[j-1..k+1]

Sequence *S*

A an absent word of S

k, such that A[0..k] occurs in S but not A[0..k+1]

j, such that A[j..k+1] occurs S but not A[j-1..k+1]

A[j-1..k+1] is a minimal absent word of S

because A[j..k+1] and A[j-1..k] occur in S.

Retrieving the sequence from its set of minimal absent words

Retrieving a sequence from its set of minimal absent words can be done in linear time ⇒ Gabriele Fici thesis Minimal Forbidden Words and Applications (2006).

October 13, 2015

Retrieving the sequence from its set of minimal absent words

Retrieving a sequence from its set of minimal absent words can be done in linear time \Rightarrow Gabriele Fici thesis Minimal Forbidden Words and Applications (2006).

Why can we retrieve it ?

Retrieving the sequence from its set of minimal absent words

Retrieving a sequence from its set of minimal absent words can be done in linear time \Rightarrow Gabriele Fici thesis Minimal Forbidden Words and Applications (2006).

Why can we retrieve it ?

A maximal repeated pair in a S is a triple (i, j, w) such that:

- w occurs in S at positions i and j
- $S[i-1] \neq S[j-1]$
- $S[i + |w|] \neq S[j + |w|]$

A maximal repeated pair in a S is a triple (i, j, w) such that:

- w occurs in S at positions i and j
- $S[i-1] \neq S[j-1]$
- $S[i + |w|] \neq S[j + |w|]$

Lemma

If awb is a minimal absent word of S, then there exist positions i and j such that (i, j, w) is a maximal repeated pair of S.

A maximal repeated pair in a S is a triple (i, j, w) such that:

- w occurs in S at positions i and j
- $S[i-1] \neq S[j-1]$
- $S[i + |w|] \neq S[j + |w|]$

Lemma

If awb is a minimal absent word of S, then there exist positions i and j such that (i, j, w) is a maximal repeated pair of S.

Sequence S

A a minimal absent word of S

October 13, 2015

A maximal repeated pair in a S is a triple (i, j, w) such that:

- w occurs in S at positions i and j
- $S[i-1] \neq S[j-1]$
- $S[i + |w|] \neq S[j + |w|]$

Lemma

If awb is a minimal absent word of S, then there exist positions i and j such that (i, j, w) is a maximal repeated pair of S.

Sequence S

A a minimal absent word of S longest prefix of A

A maximal repeated pair in a S is a triple (i, j, w) such that:

- w occurs in S at positions i and j
- $S[i-1] \neq S[j-1]$
- $S[i + |w|] \neq S[j + |w|]$

Lemma

If awb is a minimal absent word of S, then there exist positions i and j such that (i, j, w) is a maximal repeated pair of S.

Sequence S

A a minimal absent word of S

longest suffix of A

October 13, 2015

A maximal repeated pair in a S is a triple (i, j, w) such that:

- w occurs in S at positions i and j
- $S[i-1] \neq S[j-1]$
- $S[i + |w|] \neq S[j + |w|]$

Lemma

If awb is a minimal absent word of S, then there exist positions i and j such that (i, j, w) is a maximal repeated pair of S.

A a minimal absent word of S

If awb is a minimal absent word of S, then there exists positions i and j such that (i, j, w) is a maximal repeated pair of S.

What is an upper bound of the number of maximal repeated pairs of a sequence of size n?

If awb is a minimal absent word of S, then there exists positions i and j such that (i, j, w) is a maximal repeated pair of S.

What is an upper bound of the number of maximal repeated pairs of a sequence of size n? $\mathcal{O}(n)$

If awb is a minimal absent word of S, then there exists positions i and j such that (i, j, w) is a maximal repeated pair of S.

What is an upper bound of the number of maximal repeated pairs of a sequence of size n? $\mathcal{O}(n)$

How to find all maximal repeated pairs ?

If awb is a minimal absent word of S, then there exists positions i and j such that (i, j, w) is a maximal repeated pair of S.

What is an upper bound of the number of maximal repeated pairs of a sequence of size n? $\mathcal{O}(n)$

How to find all maximal repeated pairs ? By sorting all the suffixes of S, \Rightarrow Suffix Array

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of patterns.

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of patterns.

$$S = \overset{0}{A} \overset{1}{A} \overset{2}{C} \overset{3}{A} \overset{4}{C} \overset{5}{A} \overset{6}{C} \overset{7}{C} \overset{8}{+}$$

```
0 A A C A C A C C #
1 A C A C A C C #
2 C A C A C C #
3 A C A C C #
4 C A C C #
5 A C C #
6 C C #
7 C #
8 #
```

Suffixes of y

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of patterns.

$$S = AACACACCC\#$$

$$pos$$
0 A A C A C A C C #
1 A C A C A C C #
2 C A C A C C #
3 A C A C C #
4 C A C C #
5 A C C #
6 C C #
7 C #
8 #

Suffixes of y

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of patterns.

$$S = \overset{0}{A} \overset{1}{A} \overset{2}{C} \overset{3}{A} \overset{4}{C} \overset{5}{A} \overset{6}{C} \overset{7}{C} \overset{8}{+}$$

DOS

8 #

```
0 A A C A C A C C #

1 A C A C A C C #

2 C A C A C C #

3 A C A C C #

4 C A C C #

5 A C C #

6 C C #

7 C #
```

Suffixes of y

Ordered suffixes of S

0 A A C A C A C C #

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of patterns.

$$S = \overset{0}{A} \overset{1}{A} \overset{2}{C} \overset{3}{A} \overset{4}{C} \overset{5}{A} \overset{6}{C} \overset{7}{C} \overset{8}{\#}$$

DOS

```
0 A A C A C A C C #

1 A C A C A C C #

2 C A C A C C #

3 A C A C C #

4 C A C C #

5 A C C #

6 C C #

7 C #
```

8 # 0 A A C A C A C C # 1 A C A C A C C #

Suffixes of y Ordered suffixes of S

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of patterns.

$$S = \overset{0}{A} \overset{1}{A} \overset{2}{C} \overset{3}{A} \overset{4}{C} \overset{5}{A} \overset{6}{C} \overset{7}{C} \overset{8}{\#}$$

```
0 A A C A C A C C #

1 A C A C A C C #

2 C A C A C C #

4 C A C C #

5 A C C #

6 C C #

7 C #
```

Suffixes of y

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of patterns.

$$S = \overset{0}{A} \overset{1}{A} \overset{2}{C} \overset{3}{A} \overset{4}{C} \overset{5}{A} \overset{6}{C} \overset{7}{C} \overset{8}{\#}$$

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of patterns.

$$S = \overset{0}{A} \overset{1}{A} \overset{2}{C} \overset{3}{A} \overset{4}{C} \overset{5}{A} \overset{6}{C} \overset{7}{C} \overset{8}{\#}$$

Suffixes of y

Table containing the starting position of the suffixes when they are in alphabetical order. It allows fast localisation of patterns.

$$S = \overset{0}{A} \overset{1}{A} \overset{2}{C} \overset{3}{A} \overset{4}{C} \overset{5}{A} \overset{6}{C} \overset{7}{C} \overset{8}{\#}$$

6 C C #

A A C A C A C C #

A C A C A C C #

A C A C C #

C A C C #

Suffixes of y Ordered suffixes of S

Computation of minimal absent words

Pre-computation

Construction:

- Suffix Array, linear time and space since 2003
- Longest Common Prefix table, linear time and space with the SA and the sequence as input

Computation

- Travel twice through those tables, in order to construct the set of letters that occurs just before each right-maximal repetition.
- Deduce the set of minimal absent words.

Applications

Biology

- Linear-Time Sequence Comparison Using Minimal Absent Words
 & Applications, [Crochemore et al.], 2015
- Minimal Absent Words in Prokaryotic and Eukaryotic Genomes, [Garcia et al.], 2011

Computer Science

 Data Compression Using Antidictionaries, [Crochemore et al.], 2000, [Fiala and Holub], 2008

Outline

- Introduction
- Minimal Absent Words
- Computation of Minimal Absent Words

Before 2014

References	Time	Space	Structure
	for fixed size alphabet		
Crochemore et al. 1998	$\mathcal{O}(n)$	$\mathcal{O}(n)$	suffix
Automata and forbidden words			automata
Pinho et al. 2009	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$	suffix array
On finding minimal absent words			
Belazzougui et al. 2013	$\mathcal{O}(n)$	$\mathcal{O}(n)$	compact
Versatile Succinct Representations of the Bidi-			bidirectional
rectional Burrows-Wheeler Transform.			BWT

Constants reduction

References	Time	Space	Structure
	for fixed size alphabet		
Ota et al. 2014	$\mathcal{O}(n)$	$\mathcal{O}(n)$	suffix tree,
Dynamic construction of an antidic-			dynamic
tionary with linear complexity			approach
Theoretical Computer Science			
Barton et al. 2014	$\mathcal{O}(n)$	$\mathcal{O}(n)$	suffix array
Linear-time computation of minimal			
absent words BMC Bioinfo			
Belazzougui et al. 2015	randomized	$\mathcal{O}(n)$	BWT & few
Space-efficient detection of unusual	$\mathcal{O}(n)$		additional
words. CPM			structures
Barton et al. 2015	$\mathcal{O}(n/p)$	$\mathcal{O}(n)$	suffix array
Engineering the Computation of			
Minimal Absent Words. PPAM			

Perspectives

 Use external memory computation to find a trade-off between running time and RAM usage.

• Knowing the set of minimal absent words of a sequence, deduce the set of a circular shift.

Thank you

Thank you

Questions?

Linear time construction of the suffix array

over integer alphabets

The skew algorithm, Karkkainen and Sanders 2003

Main idea: Divide suffixes into 2 groups:

- Those starting a position $i \not\equiv 0 \mod 3$
- Those starting a position $i \equiv 0 \mod 3$

Linear time construction of the suffix array

over integer alphabets

The skew algorithm, Karkkainen and Sanders 2003

Main idea: Divide suffixes into 2 groups:

- Those starting a position $i \not\equiv 0 \mod 3$
- Those starting a position $i \equiv 0 \mod 3$

```
S = MISSISSIPPI##
```

Linear time construction of the suffix array

over integer alphabets

The skew algorithm, Karkkainen and Sanders 2003

Main idea: Divide suffixes into 2 groups:

- Those starting a position $i \not\equiv 0 \mod 3$
- Those starting a position $i \equiv 0 \mod 3$

```
S = MISSISSIPPI##
```

Outline:

- recursively sort the suffixes of the first group
- merge with the second group

first step, recursively sort the suffixes starting at $i \not\equiv 0 \mod 3$

• Consider all the triples of starting at positions $i \not\equiv 0 \mod 3$.

first step, recursively sort the suffixes starting at $i \not\equiv 0 \mod 3$

- Consider all the triples of starting at positions $i \not\equiv 0 \mod 3$.
- Assign them lexicographical names $\Rightarrow S'$ This can be done in linear time by radix sort and recursion
 - if some of them get the same lexicographic name, we compute recursively the suffix array of the string S^{12}

first step, recursively sort the suffixes starting at $i \not\equiv 0 \mod 3$

- Consider all the triples of starting at positions $i \not\equiv 0 \mod 3$.
- Assign them lexicographical names $\Rightarrow S'$ This can be done in linear time by radix sort and recursion
 - ullet if some of them get the same lexicographic name, we compute recursively the suffix array of the string S^{12}
- Once all the triples are ordered, we have the ordering of the suffixes starting at $i \not\equiv 0 \mod 3$

• Sort the group 0 suffixes, using the representation (S[i], S_{i+1})

- Sort the group 0 suffixes, using the representation (S[i], S_{i+1})
- Merge the two ordered groups by comparing 0-suffix S_j with 1 or 2-suffix S_i

- Sort the group 0 suffixes, using the representation (S[i], S_{i+1})
- Merge the two ordered groups by comparing 0-suffix S_j with 1 or 2-suffix S_i
 - if $i \equiv 1 \mod 3$, we compare the pair representations $(s[j], S_{i+1})$ and $(s[i], S_{i+1})$

- Sort the group 0 suffixes, using the representation (S[i], S_{i+1})
- Merge the two ordered groups by comparing 0-suffix S_j with 1 or 2-suffix S_i
 - if $i \equiv 1 \mod 3$, we compare the pair representations $(s[j], S_{j+1})$ and $(s[i], S_{i+1})$
 - if $i \equiv 2 \mod 3$, we compare the triple representations $(s[j], s[j+1] S_{j+2})$ and $(s[i], s[i+1], S_{i+2})$