4.3 Budget Constraint

Then,
$$\Rightarrow$$
 Py $ay = I - P \times a \times$ analogous to $y = mx + b$

$$ab = \frac{I}{Py} - \frac{P \times a \times a}{Py}$$

$$ab = \frac{I}{Py} - \frac{P \times a \times a}{Py}$$

Slide 418: Shists

Lattes @D (Px = 2Px) $Oy = \frac{50}{10} - \frac{5(2)}{10} Ox$ Oy = 5 - (1) Ox

HW I Question 1

Then,
$$\Rightarrow \frac{Mu_1}{P_1} = \frac{Mu_2}{P_2}$$

More, a little trick is is we hove

$$\frac{\partial \mathcal{L}(\mathcal{L}_1,\mathcal{L}_2)}{\partial \mathcal{L}_1} = \frac{\mathcal{L}(\mathcal{L}_1,\mathcal{L}_2)}{\partial \mathcal{L}_1} = \frac{\mathcal{L}(\mathcal{L}_1,\mathcal{L}_2)}{\partial \mathcal{L}_1} = 0$$

=> 1)
$$mu_1 = \lambda P_1$$
 $\stackrel{\text{continuo}}{=} -mRS_{1,2} = \frac{mu_1}{mu_2} = \frac{p_1}{p_2}$
 $\stackrel{\text{d}}{=} 2$ $mu_2 = \lambda P_2$ Since λ 'S cancel

the sliches.

> Once we got MRS,1,2, we have the recontinguip we need to solve the problem in a different, yet more informative, way ?

$$\Rightarrow \frac{\alpha}{(1-\alpha)} \frac{82}{81} = \frac{P_1}{P_2}$$

$$\Rightarrow \frac{\alpha}{(1-\alpha)} \frac{82}{81} = \frac{P_1}{P_2}$$
which is the amount you would get for good 2 few some anent of good 1