Nome: Pedro Gabriel Garcia Ribeiro Balestr	a	Matricula: 1551
Cruso: GEC	Periodo: P7	Matéria: M020

EXERCÍCIO 01: Observe as sequências de demonstração abaixo e indique o(s) erro(s) (se houver). Se possível, encontre uma interpretação em português para enfatizar o problema.

a) $(\forall x)P(x) \lor (\exists x)Q(x) \to (\forall x)[P(x) \lor Q(x)]$

1. $(\forall x)P(x) \lor (\exists x)Q(x)$	hip
$2. (\forall x) P(x) \lor Q(a)$	1, pe
3. $P(a) \vee Q(a)$	2, pu
$4. (\forall x)[P(x) \lor Q(x)]$	3, gu

Falso, pois não posso usar $\forall x$ em Q(x)

b)
$$(\forall y)[F(x,y) \lor [G(x)]'] \rightarrow (\exists y)[G(x) \rightarrow F(x,y)]$$

$1. (\forall y) [F(x,y) \lor [G(x)]']$	hip
2. $F(x,z) \vee [G(x)]'$	1, pu
$3. [G(x)]' \vee F(x,z)$	2, comut
$4. G(x) \to F(x,z)$	3, cond
$5. (\exists y) [G(x) \to F(x, y)]$	5, ge

Correto

c)
$$(\exists x)[B(x) \rightarrow [C(x)]'] \rightarrow (\forall x)[C(x) \rightarrow [B(x)]']$$

$1. (\exists x) [B(x) \to [C(x)]']$	hip
$2. B(a) \to [C(a)]'$	1, pe
3. $[B(a)]' \vee [C(a)]'$	2, cond
4. $[C(a)]' \vee [B(a)]'$	3, comut
5. $C(a) \rightarrow [B(a)]'$	4, cond
$6. (\forall x) [C(x) \to [B(x)]']$	5, gu

Falso, pois não posso transformar um $\exists x$ em $\forall x$

d) $(\forall x)(\exists y)[[D(x)]' \lor E(x,y)] \land (\forall x)D(x) \rightarrow (\forall x)E(x,a)$

1. $(\forall x)(\exists y)[[D(x)]' \lor E(x,y)]$	hip
$2. (\forall x) D(x)$	hip
3. $(\forall x)[[D(x)]' \lor E(x,a)]$	1, pe
$4. [D(z)]' \vee E(z,a)$	3, pu
5. $D(z)$	2, pu
6. E(z,a)	4, 5, sd
7. $(\forall x)E(x,a)$	6, gu

correto

EXERCÍCIO 02: Considerando a fbf $(\forall y)(\exists x)Q(x,y) \rightarrow (\exists x)(\forall y)Q(x,y)$, justifique os passos adotados e indique os erros na sequência de demonstração a seguir (se houver).

1. $(\forall y)(\exists x)Q(x,y)$	Hip
$2. (\exists x) Q(x, y)$	1, pu
3. $Q(a, y)$	2, pe
$4. (\forall y) Q(a, y)$	3, gu
5. $(\exists x)(\forall y)Q(x,y)$	4, ge

A segunda linha se encontra errada pois primeiro devemos fazer o pe, como abaixo:

1. $(\forall y)(\exists x)Q(x,y)$	hip
2. $(\forall y)Q(a,y)$	2, pe
3. $Q(a, y)$	1, pu
4. $(\forall y)Q(a,y)$	3, gu
5. $(\exists x)(\forall y)Q(x,y)$	4, ge

EXERCÍCIO 03: Justifique cada passo das sequências de demonstração a seguir.

a)
$$(\exists x)[P(x) \to Q(x)] \to [(\forall x)P(x) \to (\exists x)Q(x)]$$

1. $(\exists x)[P(x) \to Q(x)]$ Hip
2. $P(a) \to Q(a)$ 1, pe
3. $(\forall x)P(x)$ Hip (md)
4. $P(a)$ 3, pu
5. $Q(a)$ 2,4 md
6. $(\exists x)Q(x)$ 5, ge

b) $(\exists x) [(P(x) \lor Q(x)) \land S(x)] \rightarrow (\exists x) [[[P(x)]' \land [Q(x)]'] \rightarrow [S(x) \land R(x)]]$

1. $(\exists x) [(P(x) \lor Q(x)) \land S(x)]$	Hip
2. $[P(a) \vee Q(a)]'$	Hip temp.
3. $(P(a) \lor Q(a)) \land S(a)$	1, pe
$A.P(a) \vee Q(a)$	3, simp
S.S(a)	3, simp
6. R(a)	2,4 inc
7. $S(a) \wedge R(a)$	5,6 conj
8. $[P(a) \lor Q(a)]' \rightarrow [S(a) \land R(a)]$	2,7 retirada
9. $[[P(a)]' \land [Q(a)]'] \rightarrow [S(a) \land R(a)]$	8, de morgan
10. $(\exists x)[[[P(x)]' \land [Q(x)]'] \rightarrow [S(x) \land R(x)]]$	9, ge

c) $(\exists x)[P(x) \to Q(x)] \land (\forall y)[Q(y) \to R(y)] \land (\forall x)P(x) \to (\exists x)R(x)$

1. $(\exists x)[P(x) \rightarrow Q(x)]$ Hip 2. $(\forall y)[Q(y) \rightarrow R(y)]$ Hip 3. $(\forall x)P(x)$ Hip $4. P(a) \rightarrow Q(a)$ 1, pe 5. $Q(a) \rightarrow R(a)$ 2, pu 6.P(a)3, pu 7. $P(a) \rightarrow R(a)$ 4,5 sh 8.R(a)6,7 mp 9. $(\exists x)R(x)$ 8, ge

EXERCÍCIO 04: Proponha uma sequência de demonstração para cada fbf a seguir.

- a) $(\forall x)P(x) \land (\exists x)Q(x) \rightarrow (\exists x)[P(x) \land Q(x)]$
 - 1. $(\forall x)P(x)$ hip

 2. $(\exists x)Q(x)$ hip

 3. Q(x) 2, pe

 4. P(x) 1, pu

 5. $P(x) \land Q(x)$ 3, 4 conj

 6. $(\exists x)[P(x) \land Q(x)]$ 5, ge
- b) $(\forall x)P(x) \land (\exists x)[P(x)]' \rightarrow (\exists x)Q(x)$
 - 1. $(\forall x)P(x)$ hip 2. $(\exists x)[P(x)]'$ hip 3. [P(x)]' 2, pe 4. P(x) 1, pu 5. Q(x) 3, 4 inc 6. $(\exists x)Q(x)$ 5, ge
 - c) $(\exists x)[A(x) \land R(x,y)] \land (\forall x)[R(x,y) \rightarrow I(x,y)] \rightarrow (\exists x)[A(x) \land I(x,y)]$
 - 1. $(\exists x)[A(x) \land R(x,y)]$ hip 2. $(\forall x) [R(x,y) \rightarrow I(x,y)]$ hip 3. $A(x) \wedge R(x, y)$ *1, pe* 4. $R(x,y) \rightarrow I(x,y)$ 2, pu 5. A(x)3, simp 6. R(x,y)3, simp 7. I(x,y)4, 6 mp 8. $A(x) \wedge I(x,y)$ 5, 7 conj 9. $(\exists x)[A(x) \land I(x,y)]$ 8, ge

d) $(\forall y)[Q(x,y) \to P(x)] \to [(\exists x)Q(x,y) \to P(x)]$

$$(\forall y)[Q(x,y) \to P(x)] \land (\exists x)Q(x,y) \to P(x) \text{ (md)}$$

$$1. (\forall y)[Q(X,Y) \to P(X)] \qquad hip$$

$$2. (\exists x)Q(x,y) \qquad hip$$

$$3. Q(X,Y) \qquad 2. pe$$

$$4. Q(X,Y) \to P(X) \qquad 1. pu$$

$$5. P(X) \qquad 3.4 mp$$

EXERCÍCIO 05: Leia as frases a seguir, formule o argumento na notação lógica de predicados e forneça uma sequência de demonstração.

a) Nenhum <u>matemático</u> é <u>bom em literatur</u>a. Algum <u>físico</u> também é matemático. Portanto, algum físico não é bom em literatura.

```
M(x) = x é matemático

L(x) = x é bom em literatura

F(x) = x é físico
```

Notação Simbólica: $(\forall x)[M(x) \to L(x)]' \land (\exists x)[M(x) \land F(x)] \to (\exists x)[F(x) \land [L(x)]']$

Demonstração:

$(\forall x)[M(x) \to L(x)]' \land (\exists x)[M(x) \land F(x)] \to (\exists x)[F(x) \land [L(x)]']$

```
1. (\forall x) [M(x) \to L(x)]'
                                   hip
2.(\exists x)[M(x) \land F(x)]
                                   hip
3.M(a) \wedge F(a)
                                  2, pe
4. [M(x) \wedge L(x)]'
                                  1, pu
5. [M(x)]' \vee [L(x)]'
                                  4, De Morgan
6.M(x) \to [L(x)]'
                                  5, cond
7.M(a)
                                  3, simp
8.F(a)
                                  3, simp
9. [L(x)]'
                                  6, 7, mp
10.F(a) \wedge [L(x)]'
                                  8, 9, conj
11. (\exists x)[F(x) \land [L(x)]']
                                  10, ge
```

b) Todo estudante de ciência da computação trabalha mais do que alguém e todo o mundo que trabalha mais do que uma pessoa, dorme menos do que essa pessoa. Maria é uma estudante de ciência da computação. Portanto, Maria dorme menos do que alguém.

C(x) = x é estudante de ciências da computação

T(x, y) = x trabalha mais que y

D(x, y) = x dorme menos que y

C(m) = x é Maria

Notação Simbólica:

$$(\forall x) \big(\exists y\big) \Big[\Big(C(x) \to T\big(x,y\big) \Big) \land \Big(T\big(x,y\big) \to D\big(x,y\big) \Big) \Big] \land (\exists x) \big[C(m) \big] \to (\exists x) \big(\exists y\big) \big[C(m) \land D\big(m,y\big) \Big]$$

Demonstração:

$$(\forall x) \left(\exists y\right) \left[\left(C(x) \to T\big(x,y\big) \right) \land \left(T\big(x,y\big) \to D\big(x,y\big) \right) \right] \land (\exists x) [C(m)] \to (\exists x) \left(\exists y\right) \left[C(m) \land D\big(m,y\big) \right]$$

1. $(\forall x)(\exists y)[(C(x) \to T(x,y)) \land (T(x,y) \to D(x,y))]$	hip
$2. (\exists x) [C(m)]$	hip
3. $(\forall x)[(C(x) \rightarrow T(x,a)) \land (T(x,a) \rightarrow D(x,a))]$	1, pe
$4. \left(C(x) \to T(x, a) \right) \wedge \left(T(x, a) \to D(x, a) \right)$	3, pu
5. C(m)	2, pe
$6. C(x) \rightarrow T(x, a)$	4, simp
$7. T(x, a) \rightarrow D(x, a)$	4, simp
8. T(x, a)	5, 6, mp
9. D(x, a)	7, 8, mp
$10. C(m) \wedge D(x, a)$	5, 9, conj
11. $(\exists y)[C(m) \land D(x,y)]$	10, ge
12. $(\exists x)(\exists y)[C(m) \land D(m,y)]$	11, ge