昆明理工大学 2011 级硕士研究生《数理统计》试卷 A

满分 100 分 考试时间: 2 小时 30 分钟

学院:		专	业:		学号:		姓名	:	
题号	_		Ξ	四	五	六	七	总分	评卷人
得分									
各位	考生请	清注意:	试题	中的所	有分位	数是	下分位	数。	
一、填	空题(名	每空2分	,共30	分)					
1. 设2	X_1, X_2, \cdots	\cdots, X_n 是来	天自总体.	$X \sim N(\mu$,1) 的简单	单随机样	本,则 <i>E</i> ($(\overline{X}) = \underline{\hspace{1cm}}$	
E(S)	$S^{2}) = _{\underline{\hspace{1cm}}}$	·							
2. 设2	X_1, X_2, \cdots	\cdots, X_m, X_m	$_{n+1},\cdots X_{m}$	₊"为来自	总体 X ·	$\sim N(0,\sigma^2)$	²)的简单	.随机样本,	则
	<i>i</i> = <i>m</i> +1	.;² ──服从_ X ;²]归模型中			小二乘信	古计 $\hat{oldsymbol{eta}}$ =_			<u>.</u>
4. 在作	假设检验	脸中,设	H_0 为原	假设,	H ₁ 为备	择假设,	犯第一	类错误的情	祝
为			<u>.</u>						
5. 对日	F具有 s	个水平的	 自 単 因素	A 实验方	差分析	(水平A	对应的总	总体为 $N(\mu_i,$	σ^2),
(i=1,2	2,,s),	现取样,	设各水	平下的样	本容量之	之和为 n,	以 S_A, S_E	S_{T} 分别表为	示因素 A 的效
应平力	方和、误	是差平方和	口、总偏	差平方和	」,则(1	S_A, S_A	$_{\scriptscriptstyle E},S_{\scriptscriptstyle T}$ 之间	的关系是_	;
(2) 在显著性水平 α 下,假设" $H_0: \mu_1 = = \mu_s$, $H_1: \mu_1,, \mu_s$ 不全相等"的拒绝域									
形式是	·	·							
6. 正3	 支表 <i>L</i> ₈ (2	2 ⁷)中,其	中数字'	'8"表示	示				,

|--|--|

7. 某冶金实验室对锰的熔化点作了四次试验,结果分别为

1269°C 1271°C 1263°C 1265°C

设数据服从正态分布 $N(\mu, \sigma^2)$,以 $\alpha = 005$ 的水平作如下检验: 这些结果是否符合于公布的数字 1260° C? 则原假设 H_0 为__________,选用的检验统计量是

- 8. 设 X_1, X_2, \dots, X_n 为来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本, \overline{X} 和 S^2 分别为样本均值与样本方差,若 $\overline{X} + kS^2$ 为 μ^2 的无偏估计量,则 $k = \underline{\hspace{1cm}}$.
- 9. 设 $\ln X \sim N(\mu, \sigma^2)$,即 X 服从对数正态分布,其中 $E(X^k) = \exp\left\{k\mu + \frac{k^2}{2}\sigma^2\right\}$,

- 10. 设总体 X 的数学期望为 μ , X_1, X_2, X_3 是来自总体 X 的样本,下列统计量: $\hat{\mu}_1 = \frac{1}{5} X_1 + \frac{3}{5} X_2 + \frac{1}{5} X_3 \ , \ \hat{\mu}_2 = \frac{1}{3} X_1 + \frac{1}{3} X_2 + \frac{1}{3} X_3 \ , \ \text{则} \ \hat{\mu}_1, \hat{\mu}_2 \ \text{中 方 差 最 小 的 是 }$.
- 二、(10 分)设 $X_1, X_2, \cdots, X_{n_1}$ 以及 $Y_1, Y_2, \cdots, Y_{n_2}$ 为分别来自总体 $N(\mu_1, \sigma^2)$ 与 $N(\mu_2, \sigma^2)$ 的样本,且它们相互独立. μ_1, μ_2, σ^2 均未知,试求 μ_1, μ_2, σ^2 的最大似然估计量.
- 三、(10 分)假定初生婴儿(女孩)的体重服从正态分布,随机抽取 12 名新生婴儿,测其重量(单位: g)为: 3100, 2520, 3000, 3600, 3160, 3560, 3320, 2880, 3560, 3320, 2880, 2540. 求
- (1)新生婴儿的平均体重的置信水平为95%的置信区间;

$$\left(\,u_{0.975}^{}=1.96\,,\;t_{0.975}^{}(11)=2.2010,t_{0.975}^{}(12)=2.1788\,\right)$$

(2)新生婴儿的体重的方差的置信水平为95%的置信区间.

$$(\chi_{0.975}^2(11) = 21.920, \chi_{0.975}^2(12) = 23.337, \chi_{0.025}^2(11) = 3.816, \chi_{0.025}^2(12) = 4.404)$$

四、(15 分) 一般认为在大学中男生的学习成绩与女生有明显差异。某位社会学家从一所大学中随机抽取了 16 位男生和 13 位女生,对他们进行了同样题目的测试。测试结果,男生的平均成绩是 82 分,标准差 8 分,女生的平均成绩是 78 分,标准差为 7 分。假设男女生成绩都服从正态分布。试问:在显著性水平为 $\alpha = 0.02$ 时,这位社会学家能得出什么样的结论?

$$(F_{0.99}(15,12) = 4.01, F_{0.01}(15,12) = 0.272, t_{0.99}(27) = 2.473)$$

五、(10分)把一颗骰子重复抛掷 300 次,结果如下:

试检验这颗骰子的六个面是否匀称? ($\alpha = 0.05$, $\chi_{0.95}^2(5) = 11.070$)

六、(20分)随机抽取的 10 家航空公司,对其最近一年的航班正点率和顾客投诉次数进行了调查,所得数据如下:

航空公司编号	航班正点率(%)	顾客投诉次数(次)
1	81.8	21
2	76. 6	58
3	76. 6	85
4	75. 7	68
5	73. 8	74
6	72. 2	93
7	71. 2	72
8	70.8	122
9	91. 4	18
10	68. 5	125

- (1) 用航班正点率作自变量,顾客投诉次数作因变量, 求出回归方程, 并解释回归系数的意义?
 - (2) 检验回归系数的显著性($\alpha = 0.05$, $t_{0.975}(8) = 2.3060$)?
 - (3) 如果航班正点率为80%,估计顾客的投诉次数?

解题过程中所用的中间数据:
$$\sum_{i=1}^{10} x_i = 758.6$$
, $\sum_{i=1}^{10} y_i = 736$, $\sum_{i=1}^{10} (x_i - \bar{x})^2 = 397.024$,

$$\sum_{i=1}^{10} (x_i - \overline{x})(y_i - \overline{y}) = -1866.26.$$

七、证明题(5分)

证明:样本标准差S不是总体标准差 σ 的无偏估计.