Question	Scheme	Marks
10(a)	$\begin{array}{ccc} \rightarrow & \rightarrow & \rightarrow & \rightarrow \\ & & & & & & & & & & & &$	
	(i) $AB = -OA + OB \Rightarrow AB = -2\mathbf{a} + 4\mathbf{b}$	B1
	$\rightarrow \rightarrow 3(\rightarrow) \qquad 3 \qquad \qquad a$	M1A1
	(ii) $\overrightarrow{MY} = \overrightarrow{MA} + \frac{3}{4} \left(\overrightarrow{AB} \right) = \mathbf{a} + \frac{3}{4} \left(-2\mathbf{a} + 4\mathbf{b} \right) = -\frac{\mathbf{a}}{2} + 3\mathbf{b}$	[4]
(b)	$\overrightarrow{OX} = \mu OB = \mu 4\mathbf{b}$	M1
	$\overrightarrow{OX} = \overrightarrow{OM} + \overrightarrow{MX} = \overrightarrow{OM} + \lambda \overrightarrow{MY} = \mathbf{a} + \lambda \left(-\frac{\mathbf{a}}{2} + 3\mathbf{b} \right) = \mathbf{a} \left(1 - \frac{\lambda}{2} \right) + 3\lambda \mathbf{b}$	M1
	$\Rightarrow \mu 4\mathbf{b} = \mathbf{a} \left(1 - \frac{\lambda}{2} \right) + 3\mathbf{b}$	dM1
	$\Rightarrow 1 - \frac{\lambda}{2} = 0 \Rightarrow \lambda = 2$	
	$\Rightarrow 4\mu = 3\lambda \Rightarrow \mu = \frac{6}{4} = \frac{3}{2}$	ddM1
	OB: OX = 2:3 oe	A1
		[5]
	ALT – working with alternative vector within triangle <i>OMX</i>	
	$\overrightarrow{MX} = \overrightarrow{MO} + \overrightarrow{OB} + \mu \overrightarrow{OB} = -\boldsymbol{a} + 4\boldsymbol{b} + \mu 4\boldsymbol{b}$	[M1
	$\overrightarrow{MX} = \lambda \left(-\frac{a}{2} + 3b \right)$	M1
	$\Rightarrow -a = -\frac{\lambda a}{2} \Rightarrow \lambda = 2$	dM1
	$\Rightarrow 4\mathbf{b} + \mu 4\mathbf{b} = 3\lambda \mathbf{b} \Rightarrow \mu = \frac{1}{2}$	ddM1
	OB: OX = 2:3 oe	A1]
		,
(c)	$\frac{\Delta YBX}{\Delta TB} = \frac{1}{4}$	M1
	$\triangle ABX = 4$	1V1 1
	$\frac{\Delta ABX}{\Delta ABX} = \frac{1}{2}$	
	$\Delta OAX = 3$	
	$\Rightarrow \frac{\Delta YBX}{\Delta OAX} = \frac{1}{4} \times \frac{1}{2} = \frac{1}{12} \Rightarrow \Delta YBX : \Delta OAX = 1:12$	M1A1
	$\Delta OAX = 4 - 3 - 12$ ALT – working with relative areas of triangles	[3]
	Area $\triangle YBX = a$	
	Area $\triangle ABX = 4a$ Area $\triangle OMX = 6a$	[M1
	Area $\triangle AYX = 3a$ Area $\triangle OAY = 6a$	_
	Area $\triangle OYB = 2a$	
	Area $\triangle OAX = 12a$	M1
	$\Delta YBX : \Delta OAX = 1:12$	A1]
		11 marks

Part	Mark	Notes
(a)	B1	For the correct simplified vector \overrightarrow{AB}
	M1	\rightarrow
	A1	For the correct vector statement for MY \rightarrow
		For the correct simplified vector for MY
(b)	M1	For the statement $\overrightarrow{OX} = \mu 4\mathbf{b}$
		Note: this is a B mark on epen.
	M1	\rightarrow
		For the correct vector for OX (ft their MY)
	dM1	For equating both vectors for OX and for comparing coefficients of a
		and b
		Dep on M1M1
	ddM1	For finding a value for their parameter for μ
		Note: there is no mark for only finding λ , they must find μ
		Dep on M1M1M1
	A1	For the correct ratio $OB: OX = 2:3$
		Allow equivalent ratios e.g. 4:6, 1:1.5
		working with alternative vector within triangle <i>OMX</i>
	M1	For a vector statement which includes $\mu 4\mathbf{b}$ (for OX or BX) (ft their MY)
	M1	Note: this is a B mark on epen.
	M1 dM1	For a correct second vector equation for the same vector (ft their <i>MY</i>) For equating both vectors and comparing coefficients of a
	GIVI I	and b
		Dep on M1M1
	ddM1	For finding a value for their parameter for μ
		Note: there is no mark for only finding λ , they must find μ
		Dep on M1M1M1
	A1	For the correct ratio $OB: OX = 2:3$
		Allow equivalent ratios e.g. 4:6, 1:1.5
		Condone $OX: OB = 3: 2$ if clearly stated, but not just $3:2$
(c)	M1	For either the relationship between the of areas of triangles BYX and
		ABX or the relationship between the areas of triangles ABX and OAX
	M1	For finding the relationship between the of areas of triangles BYX and
		OAX
	A1	For the correct ratio [1:12]
		Allow equivalent ratios.
		Note: do not penalise answer given as a fraction i.e. $\frac{1}{12}$ if already
		penalised in (b).
		working with relative areas
	M1	For assigning a value to one triangle area and writing a second area in
		terms of this.
		Note: This could also follow from working with
		area of a triangle $=\frac{1}{2}ab\sin C$

	e.g. $\Delta YBX = \frac{1}{2}yz\sin B$ and $\Delta ABX = \frac{1}{2}y(4z)\sin B$
M1	For finding the relationship between the of areas of triangles BYX and
	OAX
	Note:
	This could also follow from working with
	area of a triangle $=\frac{1}{2}ab\sin C$
	e.g. $\Delta YBX = \frac{1}{2}yz\sin B$ and $\Delta ABX = \frac{1}{2}y(4z)\sin B$
A1	For the correct ratio [1:12]
	Allow equivalent ratios.
	Note: do not penalise answer given as a fraction i.e. $\frac{1}{12}$ if already
	penalised in (b).

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom