Neural Network

Lameck Mbangula Amugongo Department of Computer Science

Outline

- Introduction
- Machine Learning
- Why go Deep?
- Neural Network

Introduction

- Computational model
 - Inspired by how our brain works (process information)
- Breakthroughs,
 - Speech Recognition
 - Computer Vision
 - Natural Language Processing

Machine Learning

- What is this?
- How will a computer classify this?

Machine Learning

- Input: Picture of different landscapes
- Goal: Classify [Desert, Forest, Water]
- Solution: Average pixel colour and threshold

Red > θ^1 r

Green > θ^2 g

Red > θ^3 r Green > θ^3 g Blue > θ^3 b

Machine Learning AKA learning function parameters

```
def classifyImage(I, t1, t2, t3, t4, t5): //5 threshold t1 to t5
    theta_r, theta_g, theta_b = averageChannels(I)
    if theta_r > t1 and theta_g > t2 and theta_b > t3:
        return Water
    else if theta_g > t4:
        return Forest
    else if theta_r > t5:
        return Desert
    else
        Return Unkown
```

Machine Learning

- Input: Picture of different landscapes
- Goal: Classify [Desert, Forest, Water]
- Solution: Average pixel colour and threshold
- Problem: How do we set the thresholds?

With DATA

 θ^1 r, θ^1 g, θ^1 b

 θ^2 r, θ^2 g, θ^2 b

 θ^3 r, θ^3 g, θ^3 b

Machine Learning AKA learning function parameters

- Input: Picture
- Goal: Classify into 5000 classes
- Solution: Neural network with > 1 000 000 parameters

- Given a Program with Free Parameters,
- Machine Learning is used to set the Parameters from Data

Neuron

- Basic computation unit in a neural network.
- Activation function
 - Defines the output of that node given an input or set of inputs

Output of neuron = Y= f(w1. X1 + w2. X2 + b)

Neuron

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Why more Neuron?

• Do more layers or more neurons mean better performance?

Neural Network

- Simulation of a biological brain.
- Purpose: Learn to recognise patterns in data.
- Make predictions based on similarities.

Types of Neural Network

- Feed Forward neural network
- Redial basis function Neural Network
- Kohonen Self Organising Neural Network
- Recurrent Neural Network
- Convolutional Neural Network
- Modula Neural Network

Facebook Al Masterclass 2017

Hidden Layer

A set of neutrons with shared inputs.

$$x_1 \bigcirc y_1 = \sigma(\langle a_1, x \rangle + b_1)$$

$$x_2 \bigcirc y_2 = \sigma(\langle a_2, x \rangle + b_2)$$

$$x_3 \bigcirc y_3 = \sigma(\langle a_3, x \rangle + b_3)$$

$$x_4 \bigcirc y_4 = \sigma(\langle a_4, x \rangle + b_4)$$

Hidden Layer

Operation faster on GPUs (x100 speed-up).

Forward Pass

```
# set some inputs
x = -2; y = 5; z = -4

# perform the forward pass
q = x + y # q becomes 3
f = q * z # f becomes -12
```

Output of a layer becomes the input of the next layer.

Summary

- Neural Networks has originally been primarily inspired by the goal of modeling biological neural systems,
- but has since diverged and become a matter of engineering and achieving good results in Machine Learning tasks.

Reference

- Facebook Al Masterclass series.
- http://cs231n.github.io/neural-networks-1
- http://neuralnetworksanddeeplearning.com/index.html