

Bicoptère

CALENDINI TOMMY
CLOUVEL LOUIS

Cahier des Charges

Cahier des charges	
Fonction(s) Principale(s)	
Description	Critère(s)
FP1: voler stablement	Le sytème doit être capable de se maintenir dans une position fixe
Fonction(s) Contrainte(s)	
Description	Critère(s)
FC1: Autonomie	Le système doit pouvoir fonctionner à l'aide d'une batterie avec un temps de vol de 10 à 15min
FC2: Résister à l'environnement	Le système doit pouvoir résister aux chutes éventuelles sans trop se dégrader
FC3: Être réalisable à l'école	Avec les moyens techniques mis à notre disposition Dans le temps imparti (environ 3 mois)
FC4: Sécurité	La mise en route des moteurs doit se faire par une manipulation supplémentaire

Sommaire

- Matériaux/Matériel utilisé(s)
 - Pour la mécanique
 - Pour l'électronique
- II. Déroulement du projet
 - Conception
 - Réalisation
- III. Problèmes rencontrés
 - Lié au Bluetooth
 - Lié à la stabilisation
 - Lié à la mécanique
- IV. Conclusion

Matériaux utilisés

Au niveau mécanique :

Deux blocs d'aluminium

• Un tube en aluminium

• Un châssis en fibre

Une tige filetée

4 chapes à rotule

• 4 entretoises en aluminium

• 2 hélices

• 2 supports moteurs en fibre

Matériel utilisé

Au niveau Electronique:

2 moteurs brushless, 920 kv

- 2 ESCs de 30A
- 2 servo-moteurs hitech

- 1 accéléromètre/gyroscope GY-521
- 1 carte arduino

1 magnétomètre

1 module bluetooth

- 1 émetteur/récepteur radio
- 1 carte de contrôle KK2.1.5

- 1 batterie 5V
- 3 batteries Lipo, 3S (12V)

1 alimentation secteur, 12V
 12A

Conception

Conception

▶ Electronique :

▶ Electronique:

Asservissement

Mécanique:

▶ Mécanique:

▶ Mécanique:

Mécanique + Electronique :

Problèmes rencontrés

Liés à l'électronique :

Problèmes rencontrés

Liés à la mécanique :

Problèmes rencontrés

Liés à la stabilisation :

Conclusion

- Autonomie
- Comprendre le fonctionnement d'un bicoptère
- Résultat satisfaisant