Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение Высшего профессионального образования

T.	ır ∪	U	U	TT C	Г
1	Лосковский государ	оственный техни	ческии университ	ет имени н 🗩	ьаумана
Τ,	посковский государ	CIDCIIIIDIII I CAIIII	Tookiiii jiiiibopoiiii	or initiality.	Daymana

Лабораторная работа №1 по курсу «Моделирование»

Сравнение модели Галилея и модели Ньютона для решения баллистической задачи.

Студент группы ИУ9-81							
	А.В. Разборщикова						
<»	2018 г.						
Преподаватель							
	А.Б. Домрачева						
v \\	2018 F						

Оглавление

	Пос	тановка задачи	3		
1	Необходимые теоретические сведения				
	1.1	Модель Галилея	4		
	1.2	Модель Ньютона	5		
2	Текст программы				
3	Тесты				
	3.1	Начальная скорость 200 м/с	9		
	3.2	Начальная скорость 50 м/с	10		
	3.3	Начальная скорость 5 м/с	11		
	Зак	лючение	13		

Постановка задачи

Дано: свинцовый шар диаметром 10см брошен с поверхности Земли с заданной начальной v_0 скоростью под углом α . Найти: расстояние, на котором упадет снаряд от точки запуска (решение баллистической задачи). В ходе лабораторной работы требуется сравнить модель Галилея и модель Ньютона для решения поставленной задачи. Известные параметры:

- диаметр снаряда d = 0.1 м,
- плотность свинца $\rho_{\rm c} = 11340 \; {\rm kr/m^3},$
- плотность воздуха $\rho_{\rm B} = 1.29 \; {\rm кг/m^3},$
- ускорение свободного падения $g = 9.8 \text{ м/c}^2$,
- баллистическая постоянная $C \approx 0.15$,
- начальная скорость v_0 ,
- угол α , $0 < \alpha < \frac{\pi}{2}$.

1 Необходимые теоретические сведения

1.1 Модель Галилея

Модель Галилея подразумевает, что на падающее тело не действуют никакие силы, кроме силы тяжести, поверхность Земли представляет собой плоскость, а ускорение свободного падения постоянно. Схематически модель Галилея представлена на рисунке 1.

Рисунок 1 — Модель Галилея (изображение с сайта rudn.ru).

Модель Ньютона описывается системой уравнений, где координаты x,y есть функции от t, где t — время. В каждый момент скорости ее горизонтальная составляющая равна $v_x = v_0 \cos \alpha$, а вертикальная равна $v_y = v_0 \sin \alpha$.

В каждый момент времени координаты x, y выражаются как

$$\begin{cases} x = (v_0 \cos \alpha)t, \\ y = (v_0 \sin \alpha)t - \frac{gt^2}{2}, \end{cases}$$

где $g=9.8~{\rm m/c^2}$ — ускорение свободного падения. Если выразить из первого уравнения системы t через x и подставив во второе уравнение, получим модель Галилея в следующем виде:

$$y = -\frac{gx^2}{2v_0^2\cos^2\alpha} - x\operatorname{tg}\alpha.$$

Данное уравнение задает *обратную задачу*, так как необходимо найти ненулевое расстояние по горизонтали x, при котором y=0 (условие приземления тела).

1.2 Модель Ньютона

В модели Ньютона, в отличие от модели Галилея, учитывается сила сопротивления воздуха F, направленная противоположно вектору скорости v и по модулю пропорциональная квадрату скорости v^2 . Схема модели Ньютона приведена на рисунке 2.

Рисунок 2 — Модель Ньютона (изображение с сайта orenstudent.ru).

Сила сопротивления воздуха вычисляется по формуле $F_{\rm c}=-\beta v^2$, $\beta=\frac{C\rho_{\rm B}S}{2}$, где C — баллистическая постоянная, $C\approx 0.15$, S — площадь поперечного сечения снаряда, $\rho_{\rm B}$ — плотность воздуха, $\rho_{\rm B}=1.29~{\rm kr/m}^3$. Обозначив координаты вектора скорости v как $v_x=u,\,v_y=w$, запишем суммарное действие $F=(F_x,F_y)$ сил $F_{\rm c}$ и $F_{\rm T}$, действующие на снаряд в каждый момент времени ($F_{\rm T}$ — сила тяжести, $F_{\rm T}=mg$):

$$\begin{cases} F_x = -\beta u \sqrt{u^2 + w^2}, \\ F_y = -\beta w \sqrt{u^2 + w^2} - mg, \end{cases}$$

Откуда можно получить систему дифференциальных уравнений, описывающих движение тела:

$$\begin{cases}
 m \frac{du}{dt} = -\beta u \sqrt{u^2 + w^2}, \\
 m \frac{dw}{dt} = -\beta w \sqrt{u^2 + w^2} - mg, \\
 \frac{dx}{dt} = u, \\
 \frac{dy}{dt} = w.
\end{cases} (1)$$

Получаем задачу Коши с начальными условиями:

$$\begin{cases} u(0) = v_0 \cos \alpha, \\ w(0) = v_0 \sin \alpha, \\ x(0) = 0, \\ y(0) = 0. \end{cases}$$

Полученная модель, описывающая движение тела, брошенного под углом к горизонту с учетом силы сопротивления воздухе, является моделью Ньютона. Можно показать, что при $\beta=0$ модель Ньютона совпадает с моделью Галилея.

Система 1 не решается аналитически и требует численных методов решения систем дифференциальных уравнений, таких как метод Рунге-Кутты четвертого порядка.

2 Текст программы

Для сравнения моделей Галилея и Ньютона была написана программа, рисующая графики движения тела, брошенного под углом к горизонту и вычисляющая координаты точек падения для каждого метода. Программа реализована на языке Python, peшение системы 1 выполняется функцией solve_ivp модуля scipy.integrate. Массивы решений для x и y coords отрисовываются на экране с помощью функции plot модуля matplotlib.pyplot. Для каждого момента времени t из массива t_arr, вычисляем соотвутствующие координаты x и y, используя модель Галилея, полученные массивы точек gal_xval и gal_yval так же отрисовываются на том же графике.

Листинг 1 — Вычисление параметров системы 1.

```
1 | rho_{lead} = 11340 \# kg/m^3
 2 | \text{rho\_air} = 1.29
                          # kg/m^3
 3 | d = \emptyset.1 \# m
 4|alpha = pi / 4 # angle, radians
 5 \lor 0 = 200 # start velocity 6 \lor t_0 = 0 # time limits, see
                      # time limits, sec
   t_max = 100
 8 | eps = 1.e-2
10 r = d/2
11 V = (4/3) * pi*(r**3) # volume
12 | m = rho_lead * V
13 \mid C = \emptyset.15  # ballistic constant
14 \, \# \, C = \emptyset
15|S = pi * (r**2)
16|beta = C * rho_air * S / 2
17 | g = 9.8 \# m/sec^2
```

Листинг 2 — Решение системы дифференциальных уравнений, описывающих движение тела в модели Ньютона.

```
## Функция, реализующая правые части системы
   def f(t, system):
       (u, w, x, y) = system
       root = math.sqrt(u**2 + w**2)
       factor = -beta*root/m
       return np.ndarray((4,), buffer=np.array([u*factor, w*factor-g, u, w
       ]))
  ## Начальные условия
 9 | u\emptyset = v\emptyset * math.cos(alpha)
10 \mid w\emptyset = v\emptyset * math.sin(alpha)
11 \times \emptyset = \emptyset
12 \mid y\emptyset = \emptyset
13
14 \mid ## Функция, отбрасывающая точки правее точки приземления
15 def trim(arr):
       M = np.where(arr[1] >= \emptyset)[-1][-1]
17
       return arr[:M, :M]
18
19|t_arr = coords['t'] # Массив точек t
20|systemØ = np.ndarray((4,), buffer=np.array([uØ, wØ, xØ, yØ]))
21|coords = solve_ivp(f, (t_0, t_max), system0, max_step=eps)
```

Листинг 3 — Вычисление координат снаряда в каждый момент времени в модели Галилея.

```
def Galilei_x(t):
    return vØ*math.cos(alpha)*t

def Galilei_y(t):
    return vØ*math.sin(alpha)*t-g*(t**2)/2

gal_xvals = [Galilei_x(t) for t in t_arr] # t_arr — массив точек t gal_yvals = [Galilei_y(t) for t in t_arr]
```

3 Тесты

3.1 Начальная скорость 200 м/с

Возьмем $\alpha=\frac{\pi}{4},\,v_0=200$ м/с. Сопротивление воздуха в модели Ньютона учитывается. Максимальный шаг $\Delta t=1.e-2.$

Результат работы программы представлен на рисунке 3. Координаты точки падения тела в модели Ньютона: $(x_N,y_N)=(2952.89,2.06)$. Координаты точки падения тела в модели Галилея: $(x_G,y_G)=(4079.70,1.93)$.

Отличие результатов дальности полета в модели Галилея и в модели Ньютона составляет $|1-\frac{x_G}{x_N}|\times 100\%=38\%.$

Рисунок 3 — Моделирование полета тела, брошенного под углом к горизонту, $\alpha=\frac{\pi}{4}, v_0=200\,\mathrm{m/c},$ сопротивление воздуха учитывается.

Результат работы программы в случае, когда коэффициент β равен нулю (сопротивление воздуха не учитывается) представлен на рисунке 4.

Координаты точки падения тела в модели Ньютона: $(x_N, y_N) = (4079.70, 1.93)$. Координаты точки падения тела в модели Галилея: $(x_G, y_G) = (4079.70, 1.93)$.

Рисунок 4 — Моделирование полета тела, брошенного под углом к горизонту, $\alpha=\frac{\pi}{4},\,v_0=200\,\mathrm{m/c},$ сопротивление воздуха не учитывается.

Как видно из результатов тестов, расстояние, которое пролетает тело в модели Галилея и в модели Ньютона совпадают в условиях отсутствия сопротивления воздуха.

3.2 Начальная скорость 50 м/с

Возьмем $\alpha=\frac{\pi}{4},$ $v_0=200$ м/с. Сопротивление воздуха в модели Ньютона учитывается. Максимальный шаг $\Delta t=1.e-2.$

Результат работы программы представлен на рисунке 5. Координаты точки падения тела в модели Ньютона: $(x_N, y_N) = (248.31, 0.47)$. Координаты точки падения тела в модели Галилея: $(x_G, y_G) = (254.67, 0.43)$. Отличие результатов дальности полета в модели Галилея и в модели Ньютона составляет $|1-\frac{x_G}{x_N}|\times 100\%=2,4\%$

Рисунок 5 — Моделирование полета тела, брошенного под углом к горизонту, $\alpha=\frac{\pi}{4},\,v_0=50\,\mathrm{m/c},$ сопротивление воздуха учитывается.

3.3 Начальная скорость 5 м/с

Возьмем $\alpha=\frac{\pi}{4},$ $v_0=200$ м/с. Сопротивление воздуха в модели Ньютона учитывается. Максимальный шаг $\Delta t=1.e-3$.

Результат работы программы представлен на рисунке 6. Координаты точки падения тела в модели Ньютона: $(x_N,y_N)=(2.546,0.004)$. Координаты точки падения тела в модели Галилея: $(x_G,y_G)=(2.547,0.004)$.

Отличие результатов дальности полета в модели Галилея и в модели Ньютона составляет $|1-\frac{x_G}{x_N}|\times 100\%=0.04\%$

Рисунок 6 — Моделирование полета тела, брошенного под углом к горизонту, $\alpha=\frac{\pi}{4},\,v_0=5\,\mathrm{m/c},$ сопротивление воздуха учитывается.

Заключение

По результатам проведенных тестов можно сделать вывод, что дальность падения снаряда, брошенного под углом к горизонту, для моделей Галилея и Ньютона отличается тем больше, чем больше начальная скорость (для дальности полета в несколько километров разница составила больше 1 км, для дальности полета в двести метров — разница в несколько метров, при дальности полета в несколько метров отличия практически не заметны).

Таким образом, модель Галилея применима для бросания снаряда на небольшие расстояния. При увеличении дальности полета влияние силы сопротивления воздуха становится достаточно значительным, и им уже нельзя принебречь.

При еще больших расстояниях становится необходимо учитывать и кривизну поверхности Земли, и изменение ускорения свободного падения g, и момент вращения снаряда, поэтому модель Ньютона также становится неприменимой.