Computer Intrusion Detection

Lecture 4
Information Sources
Xiangyang Li

General Requirements

Host-based Information Sources

Network-based Information Sources

Two Sample Datasets

Other Information Sources

General Considerations

What is the right information?
It should be able to reveal violation.

Where to collect?

Host versus network Special instrument

Other Enduring Questions

- How much information is enough to allow you to accurately diagnose security problems without crippling the systems you are trying to protect?
- How do you manage the information collected to support any legal remedies you might want to pursue against attackers?
- How do you honor your responsibility to handle the information collected about users so that you stay within legal, regulatory, and ethical policy limits?

Format for Interoperability

- <u>Common Intrusion Detection</u>
 <u>Framework (CIDF): Common</u>
 <u>Intrusion Specification Language</u>
 (CISL)
- Intrusion Detection Message
 Exchange Format (IDMEF): XMLbased
- Latest threat intelligence and sharing efforts: e.g., <u>STIX/TAXII/</u> <u>CybOX</u>

Vulnerabl e IDS

OVERLOAD MONITOR WITH EVENTS

SLOW PROCESSING

OVERLOAD DISK STORAGE

DOS ATTACKS AGAINST IDS

The Insertion and Evasion Problems

Ptacek and Newsham (1998)

One Scenario

- If several internal routers exist between the Network-based IDS (NIDS) and destination host:
 - TTL may result in some packets reaching the NIDS but not the receiver.
 - Some packets are dropped by filtering routers after passing the NIDS.
- Other scenarios?

Generic Data Record

 A data record is a data point in space. We express a data point as a tuple:

$$\{X, A, Y\}$$

where $X = (X_1, X_2, ..., X_p)$ represent the numeric attributes; $A = (A_1, A_2, ..., A_m)$ represents the nominal attributes; and Y is the nominal target variable representing the class of the data point.

- Each numeric predictor variable (attribute) X_i , $i \in \{1,..., p\}$, can have a real value.
- Each nominal variable (attribute) A_i , $i \in \{1, ..., m\}$, can be a category value from the domain of this nominal attribute, DOM (A_i) .

General Requirements

Host-based Information Sources

Network-based Information Sources

Two Sample Datasets

Other Information Sources

Host-based Information Sources

- Host-based Intrusion Detection Systems (HIDSs) analyze activities on a protected host by monitoring different sources of data that reside on that host.
 - OS audit trails
 - System logs
 - System calls
 - File access
 - Memory content
 - Application information

admintool	allocate	aspppd	at	atd	atq	atrm	auditd
automountd	cardctl	chage	chfn	chkey	chsh	cron	crond
crontab	ct	cu	deallocate	dheped	dos	eject	exrecover
fdformat	ff.core	ff.bcofig	fsush	gpasswd	gpm	hpnpd	untd
in kcms	inetd	kcms_calibrate	configure	kerbd	kerneld	kushd	klogd
kswapd	List_	lockd	login	lpd	lpq	1pr	lprm
m64config	devices	mkdevalloc	mkdevmaps	mount	newgrp	nispasswd	nmbd
nscd	mingetty	pageout	passwd	ping	procmail	ps	pt_chmod
pwdb rcp	nxterm	rdist	rdistd	rlogin	routed	rpcbind	rpciod
rpld	chkpwd	rusersd	rwhod	sacadm	sadmind	sendmail	smbd
sper15.00404	rsh	sshd	su	suidperl	tepd	timed	traceroute
umount	ssh1	userhelper	usernetctl	utmp_update	utmpd	uu	volcheck
vold	uptime	whodo	wu.ftpd	xlock	xscreensaver	xterm	Xwrapper
ypbind	w	zgv	yppasswd				

Example Programs Monitored by HIDS

A.A. Ghorbani et al., Network Intrusion Detection and Prevention: Concepts and Techniques

ure 4.3 IDES Measure Categories and Examples

	Ordinal (Continuous)	Categorical (Discrete)
	CPU time used	Whether a directory was used
Binary	Number of audit records produced	Whether a file was accessed
6		Whether audit records indicated use for day/week/month
		# of times each command was used
		# of system-related errors
Inear		# of login failures in last hour
1		# of audit events recorded
		# of files modified

Example: IDES Data

Operating System Audit Trails

- OS audit trails are generated by a specialized auditing subsystem included as part of the OS, to meet the requirements of the Trusted Computer System Evaluation Criteria TCSEC. (superseded by new DoD 8500.01E)
- A collection of information about system activities, at kernel (system call) and user (application) levels, are placed in chronological order into audit files.

Operating System Audit Trails (cont.)

- Pros and cons
 - Protection
 - Finer-grained details
- Audit trail structuring
 - Self-contained
 - Distributed records for one event
- Problems in commercial audit systems
 - No documentation
 - No accurate documentation

Sun Solaris BSM

- DoD "C2" level certification
- Audit files are binary.
- BSM has translation functions to translate audit events to kernel or user events.
- There are different event classes (>280).
- Audit trail management commands perform various functions.
 - Auditreduce to select events.
 - Praudit to translate the binary format to more readable ones.

BSM Audit Data Structure

BSM Audit Event Example

event	217
auid	-2
euid	0
egid	0
ruid	0
rgid	0
pid	96
sid	0
RemotelP	0.0.0.0
time	897047263
error_message	e 91
process_error	0
retval	0

Windows NT

- Three types of system events are OS, security, and application events, in separate logs.
- The security log consists of securityrelevant events, derived from TCSEC C2 definitions.
 - e.g. valid/invalid login/logoff, file use
 - Common Criteria and Mission Assurance Category (MAC) in the new DoD classification
- Each event record has a header, a description, and an optional additional data field.
- Administrator can manage the size of event log.

Figure 3.3

Format of Windows NT Event Record

Header User Name Computer Name Date Time Event ID Source Type Category Variable content, depending on event. Can be text explanation of problem and recommendation of Description corrective measures. Optional field. If used, contains binary data which can be displayed in bytes or words. Information Additional Data generated by source application for event record.

Windows NT Audit Event Record

System Logs

THERE ARE OTHER LOG FILES FOR VARIOUS SYSTEMS EVENTS AND SETTINGS.

UNIX USES SYSLOG SERVICE WITH SYSLOGD DAEMON.

THESE LOGS ARE CONSIDERED LESS SECURE.

THESE ARE COMPLEMENT TO OS AUDIT.

Log Name	Content	File Written/Used /var/adm/pacct		
pacct	Commands run by users plus resource usage			
lastlog	Most recent successful/ unsuccessful login for each user	/var/adm/wtmp		
loginlog	All login failures	/var/adm/acct/sum/loginlog		
sulog	All use of su command	/var/adm/sulog		
utmp(x)	Lists each user currently logged in; utmpx is a more current extended version of log	/var/adm/utmp(x)		
wtmp(x)	Time-stamped list of all user logins/logouts and system startups and shutdowns; wtmpx is a more current extended version of log	/var/adm/wtmp(x)		
nis.trans	List of all changes in NIS namespace	/var/nis/trans.log		

Sun Solaris Systems Logs

Application Information

- In modern systems, application logs may often represent the only available user-level abstraction of system activity.
- Development of object-oriented and distributed systems enhances this.
- OS audit mechanisms support the generation of applicationlevel audit entries, but few include application with auditing features.

Database Systems

- Volume may be more an issue.
 - Compression and archival
 - Audit reduction
 - Granularity of audit control,
 e.g. switch on one event type vs
 one groups of events
- Temporal discrepancy can be induced in time due to the application-level auditing.
- Similar trade-off issue exists with level of abstraction.
 - Can we just use the transaction log?
 - Composition and fusion

WWW Servers

 Two types of access log formats are Common Log Format (CLF) and an extension on the specific web server.

Targetbased Monitoring

- Monitoring mechanism is designed to collect information about the most critical or valuable (or of interest) objects in the system.
 - cryptographic integrity checkers,
 e.g., Tripwire
- In UNIX all items of interests to users can be represented as files, in structures called inodes.
 - network connection
 - device
 - process

26

General Requirements

Host-based Information Sources

Network-based Information Sources

Two Sample Datasets

Other Information Sources

Network-based Information Sources

- Low to no performance cost to monitor
- Monitor is transparent to the users so safe to certain extent.
- Network traffic is necessary to identify certain attacks such as malformed packets and DDoS.

Different Features of Network Traffic

(https://erlerobotics.gitbooks.io/erle-robotics-introduction-to-linux-networking/content/introduction_to_network/tcp_and_packets.html)

Packet Headers

Number	Feature Description
19	Source IP
20	Destination IP
21	Duration of Connection
22	Connection Starting Time
23	Connection Ending Time
24	Number of packets sent from Source to Destination
25	Number of packets sent from Source to Destination
26	Number of packets sent from Destination to Source
27	Number of data bytes sent from Source to Destination
28	Number of data bytes sent from Destination to Source
29	Number of Fragmented packets
30	Number of Overlapping Fragments
31	Number of Acknowledgement packets
32	Number of Retransmitted packets
33	Number of Pushed packets
34	Number of SYN packets Number of FIN packets
35	Number of TCP header Flags
36	Number of Urgent packets

Network Connection Data

Packet Capture

Windows packet capture options

Microsoft Network Monitor
WinPcap
WinDump

UNIX packet capture options

Libpcap Tcpdump Other packet filters

General Requirements

Host-based Information Sources

Network-based Information Sources

Two Sample Datasets

Other Information Sources

Two Popular Data Sets

Data sets		2000 Data	Kdd'99 Data
Data type		Computer audit records for a multiple-stage (DDoS) attack	Network connection records for Intrusion Detection
# of	Training	Over 100,000	About 5,000,000
records	Testing	Over 100,000	Over 300,000
# of	Numeric	284	34
attributes	Nominal	0	7
Target variab	le	0: normal, 1: intrusive	0:normal, 1:probe, 2:DOS, 3:R2L, 4:U2R
Description		15 normal sessions and 7 attack sessions in testing data.	22 attack types in training data; 37 in testing data. They fall into 4 categories.

Audit Data Record in 2000 Data

ATTRIBUTE	Value	DESCRIPTION
Event	Nominal	Audit event type
Event	Nominai	Addit event type
Auid	Nominal	Audit user id
euid	Nominal	Effective user id
egid	Nominal	Effective group id
ruid	Nominal	Real user id
rgid	Nominal	Real group id
pid	Nominal	Process id
sid	Nominal	Session id
RemoteIP	Nominal	Remote host IP address
time	Numeric	Occurrence time stamp
error_message	Nominal	Error message
process_error	Nominal	Process error status

Network Connect Record in Kdd99

Attributes	Data type	Description
Duration	Numeric	Length of the connection
Protocol_type	Nominal	Type of the protocol
Service	Nominal	Network service on the destination
Flag	Nominal	Normal or error status of the connection
src_bytes	Numeric	Number of data bytes from source to destination
dst_bytes	Numeric	Number of data bytes from destination to source
land	Nominal	1 if connection is from/to the same host/port; 0 otherwise
wrong_fragment	Numeric	Number of "wrong" fragments
urgent	Numeric	Number of urgent packets
hot	Numeric	Number of "hot" indicators
num_failed_login s	Numeric	Number of failed login attempts
logged_in	Nominal	1 if successfully logged in; 0 otherwise
num_compromise d	Numeric	Number of "compromised" conditions
root_shell	Numeric	1 if root shell is obtained; 0 otherwise
su_attempted	Numeric	1 if "su root" command attempted; 0 otherwise
num_root	Numeric	Number "root" accesses
num_file_creation s	Numeric	Number of file creation operations
num_shells	Numeric	Number of shell prompts
num_access_files	Numeric	Number of operations on access control files
num_outbound_c mds	Numeric	Number of outbound commands in an ftp session
is_host_login	Nominal	1 if the login belongs to the "host" list; 0 otherwise
is_guest_login	Nominal	1 if the login is a "guest' login; 0 otherwise
count	Numeric	Number of connections to the same host as the current connection in the past two seconds

Network Connect Record in Kdd99 (cont.)

srv_count	Numeric	Number of connections to the same service as the current connection in the past two seconds
serror_rate	Numeric	% of connections that have "SYN" errors
srv_serror_rate	Numeric	% of connections that have "SYN" errors
rerror_rate	Numeric	% of connections that have "REJ" errors
srv_rerror_rate	Numeric	% of connections that have "REJ" errors
same_srv_rate	Numeric	% of connections to the same service
diff_srv_rate	Numeric	% of connections to different services
$srv_diff_host_rate$	Numeric	% of connections to different hosts
dst_host_count	Numeric	
dst_host_srv_cou nt	Numeric	
dst_host_same_sr v_rate	Numeric	
dst_host_diff_srv _rate	Numeric	
dst_host_same_sr c_port_rate	Numeric	
dst_host_srv_diff _host_rate	Numeric	
dst_host_serror_r ate	Numeric	
dst_host_srv_serr or_rate	Numeric	
dst_host_rerror_r ate	Numeric	
dst_host_srv_rerr or_rate	Numeric	

Attack Categories In KDD'99 Training Data

Attack	back	buffer_ overflo	ftp_wri te	guess_ passwd	imap	ipswee p	land	loadmo dule
Category	DOS	w U2R	R2L	R2L	R2L	probe	DOS	U2R
Attack	perl	phf	pod	portsw	rootkit	satan	smurf	spy
				eep				
Category	U2R	R2L	DOS	probe	U2R	probe	DOS	R2L
Attack	neptun	nmap	warezc	warez	multih	teardro		
	e	-	lient	master	op	p		
Category	DOS	probe	R2L	R2L	R2L	DOS		

Attack Categories In KDD'99 Testing Data

	<u>ulu</u>							
Attack	apache	back	buffer_	ftp_wri	guess_	httptun	imap	ipswee
	2		overflo	te	passwd	nel		p
			W					
Category	DOS	DOS	R2L	U2R	U2R	R2L	U2R	probe
Attack	mailbo	mscan	multih	named	neptun	nmap	perl	phf
	mb		op		e			
Category	DOS	probe	U2R	U2R	DOS	probe	R2L	U2R
Attack	process	ps	rootkit	saint	satan	sendm	smurf	snmpg
	table					ail		etattac
								k
Category	DOS	R2L	R2L	probe	probe	U2R	DOS	U2R
Attack	teardro	udpstor	warez	worm	xlock	xsnoop	xterm	land
	p	m	master					
Category	DOS	DOS	DOS	U2R	U2R	U2R	R2L	DOS
Attack	pod	portsw	loadmo	snmpg	sqlatta			
		eep	dule	uess	ck			
Category	DOS	probe	R2L	U2R	R2L			

General Requirements

Host-based Information Sources

Network-based Information Sources

Two Sample Datasets

Other Information Sources

Information from SNMP and Others

- Simple Network Management
 Protocol (SNMP) is an "Internet standard protocol for managing
 devices on IP networks. Devices that
 typically support SNMP include
 routers, switches, servers,
 workstations, printers, modem
 racks, and more."
- In SNMP, the so-called Network
 Management Systems (NMSs) monitor
 the network status passively and
 provide information about the
 network traffic statistics.
- Many other network devices also provide relevant information.

Information from Other Security Products

- Many firewalls, information assurance systems, access control systems, and other security devices generate activities.
- Integrating and analyzing event logs from other components of the system security infrastructure plays an important role.

Field	Format
The host name of the visitor accessing the site	"Host.subnet.domain.net"
rfc931	information returned by identd for this user; otherwise "-"
The username if a userID was sent for authentication	userID
The date and time of the request plus time zone information	[DD/MMM/YYYY]:HH:MM:SS +TZO]
The name of the page requested and the protocol used by the server to communicate the page	"GET xxx.host.subnet.domain.net"
The status code for the request (200 indicates success)	NNN, "-" if not available
The number of bytes returned by the request	NNNNN, "-" if not available

Firewall-1 Log Files

Honeypots and Honeynets

- Real or virtual system attractive to hackers, without other practical use.
- These systems entice attackers to break in.
- Observe and record all activities.
- Then use the collected information to develop stronger defense and detection.

Other System Components

- Intrusion detection can be aided with physical access control to identify masquerader.
 - Whether the user in question is on the premises?
- Out-of-band information source
 - Not input from computer/network, but from human or other systems such as telephone records