Übungsblatt Ana 4

Computational and Data Science FS2024

Lösungen Mathematik 2

Lernziele:

Sie kennen den Begriff uneigentliches Integral und dessen wichtigste Eigenschaften.

Sie können die Existenz eines uneigentlichen Integrals beurteilen und gegebenenfalls seinen Wert berechnen.

1. Aussagen über uneigentliche Integrale

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Alle uneigentlichen Integrale müssen über eine	Χ	
	Grenzwertbildung bestimmt werden.		
b)	Alle uneigentlichen Integrale erkennt man daran, dass		Χ
	mindestens eine der Grenzen $-\infty$ oder ∞ ist.		
	Falls das uneigentliche Integral $I = \int_0^\infty f(x) dx$ existiert, dann gilt:	Χ	
	$I = \lim_{t \to \infty} \int_0^t f(x) dx.$		
d)	Falls der Grenzwert $I = \lim_{t \to \infty} \int_0^t f(x) dx$ konvergiert, dann gilt:	X	
	$I = \int_0^\infty f(x) dx.$		

2. Uneigentliche Integrale

Berechnen Sie, sofern möglich, den Wert der folgenden Integrale.

a)
$$\int_0^\infty e^{-x} dx$$

b)
$$\int_0^\infty 2^{-x} dx$$

c)
$$\int_{1}^{\infty} \frac{1}{x} dx$$

d)
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$

e)
$$\int_0^1 \frac{1}{x} dx$$

f)
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$

g)
$$\int_{-\infty}^{\infty} e^{-|x|} dx$$

b)
$$\int_0^\infty 2^{-x} dx$$
e)
$$\int_0^1 \frac{1}{x} dx$$
h)
$$\int_{-\infty}^\infty \frac{1}{x^2} dx$$

i)
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

a)

$$\underline{\underline{I}} = \int_0^\infty e^{-x} dx = \lim_{s \to \infty} \int_0^s e^{-x} dx = \lim_{s \to \infty} \left[-e^{-x} \right] \Big|_0^s = \lim_{s \to \infty} \left(-e^{-s} + e^{-0} \right) = 0 + 1 = \underline{\underline{1}}.$$

1

b)
$$\underline{\underline{I}} = \int_0^\infty 2^{-x} \, \mathrm{d}x = \lim_{s \to \infty} \int_0^s 2^{-x} \, \mathrm{d}x = -\frac{1}{\ln(2)} \cdot \lim_{s \to \infty} \left[2^{-x} \right] \Big|_0^s = -\frac{1}{\ln(2)} \cdot \lim_{s \to \infty} \left(2^{-s} - 2^{-0} \right) \\
= -\frac{1}{\ln(2)} \cdot (0 - 1) = \frac{1}{\ln(2)}.$$

c)

$$I = \int_{1}^{\infty} \frac{1}{x} dx = \lim_{s \to \infty} \int_{1}^{s} \frac{1}{x} dx = \lim_{s \to \infty} \ln\left(\frac{s}{1}\right) = \lim_{s \to \infty} \ln(s) = \infty.$$

Dieses uneigentliche Integral ist divergent und existiert daher nicht.

d)

$$\underline{\underline{I}} = \int_1^\infty \frac{1}{x^2} dx = \lim_{s \to \infty} \int_1^s \frac{1}{x^2} dx = \lim_{s \to \infty} \left[-\frac{1}{x} \right]_1^s = \lim_{s \to \infty} \left(-\frac{1}{s} + \frac{1}{1} \right) = (-0 + 1) = \underline{\underline{1}}.$$

e)

$$I = \int_0^1 \frac{1}{x} \, dx = \lim_{s \to 0} \int_s^1 \frac{1}{x} \, dx = \lim_{s \to 0} \ln\left(\frac{1}{s}\right) = \infty.$$

Dieses uneigentliche Integral ist divergent und existiert daher nicht.

f)

$$\underline{\underline{I}} = \int_0^1 \frac{1}{\sqrt{x}} \, \mathrm{d}x = \lim_{s \to 0} \int_s^1 \frac{1}{\sqrt{x}} \, \mathrm{d}x = \lim_{s \to 0} \left[\, 2 \cdot \sqrt{x} \, \right] \Big|_s^1 = 2 \cdot \lim_{s \to 0} \left(\sqrt{1} - \sqrt{s} \, \right) = 2 \cdot (1 - 0)$$

$$= 2.$$

$$\underline{I} = \int_{-\infty}^{\infty} e^{-|x|} dx = \lim_{r \to \infty} \int_{-r}^{0} e^{-|x|} dx + \lim_{s \to \infty} \int_{0}^{s} e^{-|x|} dx = \lim_{r \to \infty} \int_{-r}^{0} e^{-|x|} dx + \lim_{s \to \infty} \int_{0}^{s} e^{-x} dx$$

$$= \lim_{r \to \infty} \left[e^{x} \right]_{-r}^{0} + \lim_{s \to \infty} \left[-e^{-x} \right]_{0}^{s} = \lim_{r \to \infty} \left(e^{0} - e^{-r} \right) + \lim_{s \to \infty} \left(-e^{-s} + e^{0} \right)$$

$$\lim_{s \to \infty} \left(1 - e^{-s} \right) + \lim_{s \to \infty} \left(1 - e^{-s} \right) = 1 - 0 + 1 - 0 - 2$$

$$= \lim_{r \to \infty} \left(1 - e^{-r} \right) + \lim_{s \to \infty} \left(1 - e^{-s} \right) = 1 - 0 + 1 - 0 = \underline{\underline{2}}$$

h)

$$\int_{-\infty}^{\infty} \frac{1}{x^2} dx = \lim_{a \to -\infty} \int_{a}^{-1} \frac{1}{x^2} dx + \lim_{b \to 0} \int_{-1}^{b} \frac{1}{x^2} dx + \lim_{c \to 0} \int_{c}^{1} \frac{1}{x^2} dx + \lim_{d \to \infty} \int_{1}^{d} \frac{1}{x^2} dx$$

$$= \lim_{a \to -\infty} \left[-\frac{1}{x} \right]_{a}^{-1} + \lim_{b \to 0} \left[-\frac{1}{x} \right]_{-1}^{b} + \lim_{c \to 0} \left[-\frac{1}{x} \right]_{c}^{1} + \lim_{d \to \infty} \left[-\frac{1}{x} \right]_{1}^{d}$$

$$= \lim_{a \to -\infty} \left(1 + \frac{1}{a} \right) + \lim_{b \to 0} \left(-\frac{1}{b} - 1 \right) + \lim_{c \to 0} \left(-1 + \frac{1}{c} \right) + \lim_{d \to \infty} \left(-\frac{1}{d} + 1 \right)$$

Grenzwert existiert nicht, da $\lim_{b\to 0} \left(-\frac{1}{b}\right) \to -\infty$ und $\lim_{d\to \infty} \left(-\frac{1}{d}\right) \to \infty$

i)
$$\underline{I} = \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \lim_{r \to \infty} \int_{-r}^{0} \frac{1}{1+x^2} dx + \lim_{s \to \infty} \int_{0}^{s} \frac{1}{1+x^2} dx$$

$$= \lim_{r \to \infty} \left[\arctan(x) \right]_{-r}^{0} + \lim_{s \to \infty} \left[\arctan(x) \right]_{0}^{s}$$

$$= \lim_{r \to \infty} \left(\arctan(0) - \arctan(-r) \right) + \lim_{s \to \infty} \left(\arctan(s) - \arctan(0) \right)$$

$$= \lim_{r \to \infty} \left(0 + \arctan(r) \right) + \lim_{s \to \infty} \left(\arctan(s) - 0 \right) = 0 + \frac{\pi}{2} + \frac{\pi}{2} - 0 = \underline{\pi}.$$

3. Uneigentliche Integrale mit Python/Sympy

Berechnen Sie die uneigentlichen Integrale aus Aufgabe 2 mit Python/Sympy.

```
a)
# Python initialisieren:
import IPython.display as dp;
import sympy as sp;
# Symbole:
x=sp.symbols('x');
sp.init_printing();
# Parameter:
f=sp.E**(-x);
# Berechnungen:
F=sp.integrate(f,(x,0,sp.oo));
# Ausgabe:
dp.display(f);
dp.display(F);
b)-i) analog
```

4. Aussagen über 2 Integrale

Gegeben seien die beiden Integrale

$$I = \int_a^\infty \frac{1}{x^2} dx$$
 und $J = \int_a^\infty \frac{1}{x} dx$.

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Integrale / und / sind uneigentliche Integrale.	Χ	
b) Für $a = 1$ gilt $I = 1$.	Χ	
c) Für $a > 0$ ist J konvergent.		Χ
d) Für $a \le 0$ sind I und J beide divergent.	Χ	
e) Für jedes $a > 0$ gilt: $I > J$.		Χ
f) Es gibt ein $a > 1$, so dass gilt: $I = 10$.		Χ

5. Aussagen über 2 Integrale Gegeben seien die beiden Integrale
$$I=\int_0^a (1+(\tan x)^2)dx$$
 und $J=\int_0^{2\pi} (\sin x)^2 dx$. Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Integrale / und / sind uneigentliche Integrale.		Χ
b) Es gilt: $J = -\cos(2\pi)^2 + \cos 0^2$.		Χ
c) Es gilt: $J = 0$.		Χ
d) Für $-\frac{\pi}{2} < a < 0$ gilt: $I > 0$.		X
e) Für $0 < a < \frac{\pi}{2}$ gilt: $I > 0$.	Х	
f) Es gilt: $J = \int_{-\pi}^{\pi} (\sin x)^2 dx$.	X	

Übungsblatt Ana 4

Computational and Data Science BSc FS 2023

Lösungen

Analysis und Lineare Algebra 2

1. Aussagen über parametrisierte Kurven

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Eine parametrisierte Kurve ist eine Funktion der Form $\mathbf{s}: \mathbb{R} \to \mathbb{R}^n$.	•	0
b) Eine parametrisierte Kurve ist als Funktion in jedem Fall injektiv.	0	•
c) Eine parametrisierte Kurve $\mathbf{s}: \mathbb{R} \to \mathbb{R}^n$ ist für $n \geq 2$ niemals surjektiv.	•	0
d) Haben zwei <i>parametrisierte Kurven</i> die gleiche <i>Bahn</i> , dann haben sie auch die gleiche <i>Bahngeschwindigkeit</i> .	0	•
e) Haben zwei <i>parametrisierte Kurven</i> die gleiche <i>Bahn</i> , dann haben sie auch den gleichen <i>Bahnvektor</i> .	0	•
f) Haben zwei parametrisierte Kurven den gleichen Geschwindigkeitsvektor, dann haben sie auch die gleiche Bahn.	0	•

2. Bahn von parameterisierten Kurven

Wir skizzieren jeweils die Bahn der parametrisierten Kurve.

a) Wir skizzeren die Bahn der Kurve in einem x-y-Diagramm.

b) Wir skizzeren die Bahn der Kurve in einem x-y-Diagramm.

c) Wir skizzeren die Bahn der Kurve in einem x-y-Diagramm.

d) Wir skizzeren die Bahn der Kurve in einem x-y-Diagramm.

e) Wir skizzeren die Bahn der Kurve in einem x-y-Diagramm.

f) Wir skizzeren die Bahn der Kurve in einem x-y-Diagramm.

3. Bahn von parameterisierten Kurven plotten mit Python/Numpy

Wir plotten jeweils die *Bahn* der *parameterisierten Kurven* aus Aufgabe 2 mit Python/Numpy. Dazu implementieren wir den folgenden Code, den wir für jede Teilaufgabe modifizieren.

```
# Python initialisieren:
import matplotlib.pyplot as pl;
import numpy as np;
# Parameter:
tau_0=...; tau_E=...; N=...; lw=3; fig=...;
# Funktionen:
def s(tau):
    x = ...;
    y = ...;
    return x,y;
# Daten:
tau_data=np.linspace(tau_0,tau_E,N);
[x_data,y_data]=s(tau_data);
# Plot:
fh=pl.figure(fig);
pl.plot(x_data,y_data,linewidth=lw);
pl.xlabel(r'$x$'); pl.ylabel(r'$y$');
pl.grid('on'); pl.axis('image');
```

a) Wir betrachten die parameterisierte Kurve

$$\mathbf{s}(\tau) = \begin{bmatrix} 1 + 2\tau \\ 3 - \tau \end{bmatrix}. \tag{1}$$

Um die Bahn von s zu plotten, modifizieren wir den Code.

```
# Parameter:
tau_0=0; tau_E=np.pi; N=201; lw=3; fig=1;
# Funktionen:
def s(tau):
    x=1+2*tau;
    y=3-tau;
    return x,y;
```

Es wird der folgende Plot erzeugt.

b) Wir betrachten die parameterisierte Kurve

$$\mathbf{s}(\tau) = \begin{bmatrix} \tau \\ \sin(\tau) \end{bmatrix}. \tag{2}$$

Um die Bahn von s zu plotten, modifizieren wir den Code.

```
# Parameter:
tau_0=0; tau_E=2*np.pi; N=201; lw=3; fig=fig+1;
# Funktionen:
def s(tau):
    x=tau;
    y=np.sin(tau);
    return x,y;
```


c) Wir betrachten die parameterisierte Kurve

$$\mathbf{s}(\tau) = \begin{bmatrix} \sin(\tau) \\ \tau \end{bmatrix}. \tag{3}$$

Um die Bahn von ${f s}$ zu plotten, modifizieren wir den Code.

```
# Parameter:
tau_0=0; tau_E=2*np.pi; N=201; lw=3; fig=fig+1;
# Funktionen:
def s(tau):
    x=np.sin(tau);
    y=tau;
    return x,y;
```


d) Wir betrachten die parameterisierte Kurve

$$\mathbf{s}(\tau) = \begin{bmatrix} 2\cos(\tau) \\ 2\sin(\tau) \end{bmatrix}. \tag{4}$$

Um die Bahn von ${\bf s}$ zu plotten, modifizieren wir den Code.

```
# Parameter:
tau_0=0; tau_E=2*np.pi; N=401; lw=3; fig=fig+1;
# Funktionen:
def s(tau):
    x=2*np.cos(tau);
    y=2*np.sin(tau);
    return x,y;
```


e) Wir betrachten die parameterisierte Kurve

$$\mathbf{s}(\tau) = \begin{bmatrix} \cosh(\tau) \\ \sinh(\tau) \end{bmatrix}. \tag{5}$$

Um die Bahn von s zu plotten, modifizieren wir den Code.

```
# Parameter:
tau_0=-2; tau_E=2; N=601; lw=3; fig=fig+1;
# Funktionen:
def s(tau):
    x=2*np.cosh(tau);
    y=2*np.sinh(tau);
    return x,y;
```


f) Wir betrachten die parameterisierte Kurve

$$\mathbf{s}(\tau) = \begin{bmatrix} 2^{-\frac{\tau}{2\pi}} \cos(\tau) \\ 2^{-\frac{\tau}{2\pi}} \sin(\tau) \end{bmatrix}. \tag{6}$$

Um die Bahn von s zu plotten, modifizieren wir den Code.

```
# Parameter:
tau_0=0; tau_E=10*np.pi; N=1001; lw=3; fig=fig+1;
# Funktionen:
def s(tau):
    x=2**(-tau/(2*np.pi))*np.cos(tau);
    y=2**(-tau/(2*np.pi))*np.sin(tau);
    return x,y;
```


4. Bahnvektor und Verlauf von parameterisierten Kurven

Wir berechnen jeweils den Bahnvektor der parametrisierten Kurve und skizzieren diesen entlang der Bahn.

a) Wir betrachten die parametrisierte Kurve

$$\mathbf{s}(\tau) = \frac{2\tau - 3}{2 - \tau} \quad \text{für } \tau \in [0, 4]. \tag{7}$$

Für Geschwindigkeitsvektor und Bahngeschwindigkeit erhalten wir

$$\mathbf{v}(\tau) = \dot{\mathbf{s}}(\tau) = \begin{bmatrix} 2 \cdot 1 - 0 \\ 0 - 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}. \tag{8}$$

$$v(\tau) = |\mathbf{v}(\tau)| = \sqrt{2^2 + (-1)^2} = \sqrt{5}.$$
 (9)

Der Bahnvektor ist daher

$$\underline{\hat{\mathbf{e}}(\tau)} = \hat{\mathbf{v}}(\tau) = \frac{1}{v(\tau)} \cdot \mathbf{v}(\tau) = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\ -1 \end{bmatrix}.$$
(10)

Wir skizzeren die Bahn und den Bahnvektor entlang der Kurve in einem x-y-Diagramm.

b) Wir betrachten die parametrisierte Kurve

$$\mathbf{s}(\tau) = \begin{bmatrix} 3\cos(\tau) - 3\\ 3\sin(\tau) + 1 \end{bmatrix} \quad \text{für } \tau \in [0, 2\pi]. \tag{11}$$

Für Geschwindigkeitsvektor und Bahngeschwindigkeit erhalten wir

$$\mathbf{v}(\tau) = \dot{\mathbf{s}}(\tau) = \begin{bmatrix} -3\sin(\tau) + 0\\ 3\cos(\tau) + 0 \end{bmatrix} = \begin{bmatrix} -3\sin(\tau)\\ 3\cos(\tau) \end{bmatrix}. \tag{12}$$

$$v(\tau) = |\mathbf{v}(\tau)| = \sqrt{(-3)^2 \sin^2(\tau) + 3^2 \cos^2(\tau)} = \sqrt{9 \sin^2(\tau) + 9 \cos^2(\tau)}$$
$$= \sqrt{9 \cdot (\sin^2(\tau) + \cos^2(\tau))} = \sqrt{9} = 3. \tag{13}$$

Der Bahnvektor ist daher

$$\underbrace{\mathbf{\hat{e}}(\tau)}_{\underline{\underline{\mathbf{v}}}} = \mathbf{\hat{v}}(\tau) = \frac{1}{v(\tau)} \cdot \mathbf{v}(\tau) = \frac{1}{3} \begin{bmatrix} -3\sin(\tau) \\ 3\cos(\tau) \end{bmatrix} = \begin{bmatrix} -\sin(\tau) \\ \cos(\tau) \end{bmatrix}.$$
(14)

Wir skizzeren die Bahn und den Bahnvektor entlang der Kurve in einem x-y-Diagramm.

c) Wir betrachten die parametrisierte Kurve

$$\mathbf{s}(\tau) = \begin{bmatrix} 3\cos(\tau) + 2\\ 2\sin(\tau) + 1 \end{bmatrix} \quad \text{für } \tau \in [0, 2\pi]. \tag{15}$$

Für Geschwindigkeitsvektor und Bahngeschwindigkeit erhalten wir

$$\mathbf{v}(\tau) = \dot{\mathbf{s}}(\tau) = \begin{bmatrix} -3\sin(\tau) + 0\\ 2\cos(\tau) + 0 \end{bmatrix} = \begin{bmatrix} -3\sin(\tau)\\ 2\cos(\tau) \end{bmatrix}.$$

$$v(\tau) = |\mathbf{v}(\tau)| = \sqrt{(-3)^2 \sin^2(\tau) + 2^2 \cos^2(\tau)} = \sqrt{9\sin^2(\tau) + 4\cos^2(\tau)}$$

$$= \sqrt{5\sin^2(\tau) + 4\sin^2(\tau) + 4\cos^2(\tau)} = \sqrt{5\sin^2(\tau) + 4\cdot\left(\sin^2(\tau) + \cos^2(\tau)\right)}$$

$$= \sqrt{5\sin^2(\tau) + 4}.$$

$$(17)$$

Der Bahnvektor ist daher

$$\underline{\hat{\mathbf{e}}(\tau)} = \hat{\mathbf{v}}(\tau) = \frac{1}{v(\tau)} \cdot \mathbf{v}(\tau) = \frac{1}{\sqrt{5} \sin^2(\tau) + 4} \begin{bmatrix} -3 \sin(\tau) \\ 2 \cos(\tau) \end{bmatrix}.$$
(18)

Wir skizzeren die Bahn und den Bahnvektor entlang der Kurve in einem x-y-Diagramm.

5. Aussagen über eine parametrisierte Kurve

Wir betrachten die parametrisierte Kurve

$$\mathbf{s}(\tau) = 5.0 \,\mathrm{m} \cdot \begin{bmatrix} \cos(3\pi\tau) + 1\\ \sin(3\pi\tau) - 2 \end{bmatrix} \quad \text{für } \tau \in [0, 2].$$
 (19)

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) $\mathbf{s}(\tau)$ ist <i>injektiv</i> .	0	•
b) Die Bahn von $\mathbf{s}(\tau)$ ist ein Kreis mit Mittelpunkt $(5.0; -10)$ und Radius $5.0 \mathrm{m}$.	0	•
c) Der Kurvenparameter τ ist eine Grösse ohne Masseinheit.	•	0
d) Für den Geschwindigkeitsvektor gilt $\mathbf{v}(0) = 5.0 \mathrm{m} \cdot \mathbf{\hat{e}}_y$.	0	•
e) Für die <i>Bahngeschwindigkeit</i> gilt $v(1) = 5.0 \mathrm{m/s}$.	0	•
f) Für den Bahnvektor gilt $\hat{\mathbf{e}}(1) = \hat{\mathbf{e}}_x$.	0	•

6. Aussagen über Linenintegrale

Wir betrachten ein Linienintegral der Form

$$I = \int_{\tau_0}^{\tau_{\rm E}} \langle \mathbf{w}, \mathbf{v} \rangle \, \mathrm{d}\tau. \tag{20}$$

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Wählt man den neuen $Kurvenparameter \tilde{\tau} = 2\tau$, dann verändert man den Wert von I nicht.	•	0
b) Wechselt man die Laufrichtung der parametrisierten Kurve, dann verändert man den Wert von I nicht.	0	•
c) Gilt überall $\angle(\mathbf{w}, \mathbf{v}) = \pi/2$, dann folgt $I = 0$.	•	0
d) Gilt überall $\angle(\mathbf{w}, \mathbf{v}) = 0$, dann folgt $I = 0$.		•
e) Gilt überall $\angle(\mathbf{w}, \mathbf{v}) = \pi$, dann folgt $I < 0$.	•	0

7. Linienintegrale berechnen

Wir berechnen jeweils das *Linienintegral* des *Vektorfeldes* entlang der *parametrisierten Kurve*.

a) Wir betrachten
$$\mathbf{w}(x;y) = \begin{cases} 0.5 \\ 0.25 \end{cases} \text{ entlang } \mathbf{s}(\tau) = \begin{cases} 1 - 2\tau \\ 3 + 8\tau \end{cases} \text{ für } \tau \in [0,2].$$
Der Geschwindigkeitsvektor der parametrisierten Kurve ist }
(21)

$$\mathbf{v}(\tau) = \dot{\mathbf{s}}(\tau) = \begin{bmatrix} 0 - 2 \cdot 1 \\ 0 + 8 \cdot 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$$
 (22)

Daraus erhalten wir

$$\underline{\underline{I}} = \int_{\gamma} \mathbf{w} \, d\mathbf{s} = \int_{\tau_0}^{\tau_E} \langle \mathbf{w}, \mathbf{v} \rangle \, d\tau = \int_{0}^{2} \left\langle \begin{bmatrix} 0.5 \\ 0.25 \end{bmatrix}, \begin{bmatrix} -2 \\ 8 \end{bmatrix} \right\rangle \, d\tau$$

$$= \int_{0}^{2} \left(0.5 \cdot (-2) + 0.25 \cdot 8 \right) d\tau = \int_{0}^{2} 1 \, d\tau = \left[\tau \right] \Big|_{0}^{2} = 2 - 0 = \underline{\underline{2}}.$$
(23)

b) Wir betrachten

$$\mathbf{w}(x;y) = \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} \tau \cos(\alpha) \\ \tau \sin(\alpha) \end{bmatrix} \quad \text{für } \tau \in [0,r]. \tag{24}$$

Der Geschwindigkeitsvektor der parametrisierten Kurve ist

$$\mathbf{v}(\tau) = \dot{\mathbf{s}}(\tau) = \begin{bmatrix} \cos(\alpha) \\ \sin(\alpha) \end{bmatrix}$$
 (25)

Daraus erhalten wir

$$\underline{I} = \int_{\gamma} \mathbf{w} \, d\mathbf{s} = \int_{\tau_0}^{\tau_E} \langle \mathbf{w}, \mathbf{v} \rangle \, d\tau = \int_{0}^{r} \left\langle \begin{bmatrix} \tau \cos(\alpha) \\ \tau \sin(\alpha) \end{bmatrix}, \begin{bmatrix} \cos(\alpha) \\ \sin(\alpha) \end{bmatrix} \right\rangle \, d\tau$$

$$= \int_{0}^{r} \left(\tau \cos(\alpha) \cdot \cos(\alpha) + \tau \sin(\alpha) \cdot \sin(\alpha) \right) d\tau = \int_{0}^{r} \tau \cdot \left(\cos^{2}(\alpha) + \sin^{2}(\alpha) \right) d\tau$$

$$= \int_{0}^{r} \tau \, d\tau = \frac{1}{2} \cdot \left[\tau^{2} \right]_{0}^{r} = \frac{1}{2} \cdot (r^{2} - 0) = \frac{r^{2}}{2}.$$
(26)

c) Wir betrachten

$$\mathbf{w}(x;y) = \begin{bmatrix} -y \\ x \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} \tau \cos(\alpha) \\ \tau \sin(\alpha) \end{bmatrix} \quad \text{für } \tau \in [0,r]. \tag{27}$$

Der Geschwindigkeitsvektor der parametrisierten Kurve ist

$$\mathbf{v}(\tau) = \dot{\mathbf{s}}(\tau) = \begin{bmatrix} \cos(\alpha) \\ \sin(\alpha) \end{bmatrix}$$
 (28)

Daraus erhalten wir

$$\underline{I} = \int_{\gamma} \mathbf{w} \, d\mathbf{s} = \int_{\tau_0}^{\tau_E} \langle \mathbf{w}, \mathbf{v} \rangle \, d\tau = \int_{0}^{\tau} \left\langle \begin{bmatrix} -\tau \sin(\alpha) \\ \tau \cos(\alpha) \end{bmatrix}, \begin{bmatrix} \cos(\alpha) \\ \sin(\alpha) \end{bmatrix} \right\rangle \, d\tau \\
= \int_{0}^{\tau} \left(-\tau \sin(\alpha) \cdot \cos(\alpha) + \tau \cos(\alpha) \cdot \sin(\alpha) \right) d\tau = \int_{0}^{\tau} 0 \, d\tau = \underline{0}. \tag{29}$$

d) Wir betrachten

$$\mathbf{w}(x;y) = \begin{bmatrix} 0.5\\ 0.25 \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} r\cos(\tau)\\ r\sin(\tau) \end{bmatrix} \quad \text{für } \tau \in [0, 2\pi]. \tag{30}$$

Der Geschwindigkeitsvektor der parametrisierten Kurve ist

$$\mathbf{v}(\tau) = \dot{\mathbf{s}}(\tau) = \begin{bmatrix} -r \sin(\tau) \\ r \cos(\tau) \end{bmatrix}$$
 (31)

Daraus erhalten wir

$$\underline{I} = \oint_{\gamma} \mathbf{w} \, \mathrm{d}\mathbf{s} = \int_{\tau_0}^{\tau_E} \langle \mathbf{w}, \mathbf{v} \rangle \, \mathrm{d}\tau = \int_{0}^{2\pi} \left\langle \begin{bmatrix} 0.5 \\ 0.25 \end{bmatrix}, \begin{bmatrix} -r \sin(\tau) \\ r \cos(\tau) \end{bmatrix} \right\rangle \, \mathrm{d}\tau$$

$$= \int_{0}^{2\pi} \left(0.5 \cdot \left(-r \sin(\tau) \right) + 0.25 \cdot r \cos(\tau) \right) \, \mathrm{d}\tau = 0.25 \, r \int_{0}^{2\pi} \left(\cos(\tau) - 2 \sin(\tau) \right) \, \mathrm{d}\tau$$

$$= 0.25 \, r \cdot \left[\sin(\tau) + 2 \cos(\tau) \right]_{0}^{2\pi} = 0.25 \, r \cdot \left(\sin(2\pi) + 2 \cos(2\pi) - \sin(0) - 2 \cos(0) \right)$$

$$= 0.25 \, r \cdot \left(0 + 2 \cdot 1 - 0 - 2 \cdot 1 \right) = 0.25 \, r \cdot 0 = \underline{0}. \tag{32}$$

e) Wir betrachten

$$\mathbf{w}(x;y) = \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} r \cos(\tau) \\ r \sin(\tau) \end{bmatrix} \quad \text{für } \tau \in [0, 2\pi]. \tag{33}$$

Der Geschwindigkeitsvektor der parametrisierten Kurve ist

$$\mathbf{v}(\tau) = \dot{\mathbf{s}}(\tau) = \begin{bmatrix} -r \sin(\tau) \\ r \cos(\tau) \end{bmatrix}$$
 (34)

Daraus erhalten wir

$$\underline{I} = \oint_{\gamma} \mathbf{w} \, d\mathbf{s} = \int_{\tau_0}^{\tau_E} \langle \mathbf{w}, \mathbf{v} \rangle \, d\tau = \int_{0}^{2\pi} \left\langle \begin{bmatrix} r \cos(\tau) \\ r \sin(\tau) \end{bmatrix}, \begin{bmatrix} -r \sin(\tau) \\ r \cos(\tau) \end{bmatrix} \right\rangle \, d\tau$$

$$= \int_{0}^{2\pi} \left(r \cos(\tau) \cdot \left(-r \sin(\tau) \right) + r \sin(\tau) \cdot r \cos(\tau) \right) d\tau$$

$$= r^2 \int_{0}^{2\pi} \left(\sin(\tau) \cdot \cos(\tau) - \cos(\tau) \cdot \sin(\tau) \right) d\tau = r^2 \int_{0}^{2\pi} 0 \, d\tau = r^2 \cdot 0 = \underline{0}. \tag{35}$$

f) Wir betrachten

$$\mathbf{w}(x;y) = \begin{bmatrix} -y \\ x \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} r \cos(\tau) \\ r \sin(\tau) \end{bmatrix} \quad \text{für } \tau \in [0, 2\pi]. \tag{36}$$

Der Geschwindigkeitsvektor der parametrisierten Kurve ist

$$\mathbf{v}(\tau) = \dot{\mathbf{s}}(\tau) = \begin{bmatrix} -r \sin(\tau) \\ r \cos(\tau) \end{bmatrix}$$
 (37)

Daraus erhalten wir

$$\underline{I} = \oint_{\gamma} \mathbf{w} \, d\mathbf{s} = \int_{\tau_0}^{\tau_E} \langle \mathbf{w}, \mathbf{v} \rangle \, d\tau = \int_{0}^{2\pi} \left\langle \begin{bmatrix} -r \sin(\tau) \\ r \cos(\tau) \end{bmatrix}, \begin{bmatrix} -r \sin(\tau) \\ r \cos(\tau) \end{bmatrix} \right\rangle \, d\tau$$

$$= \int_{0}^{2\pi} \left(\left(-r \sin(\tau) \right) \cdot \left(-r \sin(\tau) \right) + r \cos(\tau) \cdot r \cos(\tau) \right) d\tau$$

$$= r^{2} \int_{0}^{2\pi} \left(\sin^{2}(\tau) + \cos^{2}(\tau) \right) d\tau = r^{2} \int_{0}^{2\pi} 1 \, d\tau = r^{2} \cdot \left[\tau \right]_{0}^{2\pi} = r^{2} \cdot (2\pi - 0)$$

$$= 2\pi r^{2}. \tag{38}$$

8. Linienintegrale berechnen mit Python/Sympy

Wir berechnen die *Linienintegrale* aus Aufgabe 7 mit Python/Sympy. Dazu implementieren wir den folgenden Code, den wir für jede Teilaufgabe modifizieren.

```
# Python initialisieren:
import IPython.display as dp;
import sympy as sp;
# Python konfigurieren:
sp.init_printing();
r,x,y,alpha,tau=sp.symbols('r,x,y,alpha,tau');
# Parameter:
tau_0=...; tau_E=...;
# Funktionen:
def w(x,y):
    res=sp.Matrix([[...],[...]]);
    return res;
def s(tau):
    res=sp.Matrix([[...],[...]]);
                                         ruft 1. Reihe der Matrix auf, es geht
    return res;
                                         auch: s(tau).row(0)
# Berechnungen:
v=sp.simplify(sp.diff(s(tau),tau));
I=sp.simplify(sp.integrate(v.dot(w(s(tau)[0],s(tau)[1]))
                ,(tau,tau_0,tau_E)));
# Ausgabe:
dp.display(I);
```

a) Wir betrachten

$$\mathbf{w}(x;y) = \begin{bmatrix} 0.5\\ 0.25 \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} 1 - 2\tau\\ 3 + 8\tau \end{bmatrix} \quad \text{für } \tau \in [0,2]. \tag{39}$$

Um das Linienintegral von \mathbf{w} entlang \mathbf{s} zu berechnen, modifizieren wir den Code.

```
# Parameter:
tau_0=0; tau_E=2;
# Funktionen:
def w(x,y):
    res=sp.Matrix([[0.5],[0.25]]);
    return res;
def s(tau):
    res=sp.Matrix([[1-2*tau],[3+8*tau]]);
    return res;
```

$$\underline{\underline{I} = 2.} \tag{40}$$

b) Wir betrachten

Gemäss Ausgabe ist

$$\mathbf{w}(x;y) = \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} \tau \cos(\alpha) \\ \tau \sin(\alpha) \end{bmatrix} \quad \text{für } \tau \in [0,r]. \tag{41}$$

```
# Parameter:
tau_0=0; tau_E=r;
# Funktionen:
def w(x,y):
    res=sp.Matrix([[x],[y]]);
    return res;
def s(tau):
    res=sp.Matrix([[tau*sp.cos(alpha)],[tau*sp.sin(alpha)]]);
    return res;
```

Gemäss Ausgabe ist

$$I = \frac{r^2}{2} \,. \tag{42}$$

c) Wir betrachten

$$\mathbf{w}(x;y) = \begin{bmatrix} -y \\ x \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} \tau \cos(\alpha) \\ \tau \sin(\alpha) \end{bmatrix} \quad \text{für } \tau \in [0,r]. \tag{43}$$

```
# Parameter:
tau_0=0; tau_E=r;
# Funktionen:
def w(x,y):
    res=sp.Matrix([[-y],[x]]);
    return res;
def s(tau):
    res=sp.Matrix([[tau*sp.cos(alpha)],[tau*sp.sin(alpha)]]);
    return res;
```

Gemäss Ausgabe ist

$$\underline{I=0.} \tag{44}$$

d) Wir betrachten

$$\mathbf{w}(x;y) = \begin{bmatrix} 0.5 \\ 0.25 \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} r \cos(\tau) \\ r \sin(\tau) \end{bmatrix} \quad \text{für } \tau \in [0, 2\pi]. \tag{45}$$

```
# Parameter:
tau_0=0; tau_E=2*sp.pi;
# Funktionen:
def w(x,y):
    res=sp.Matrix([[0.5],[0.25]]);
    return res;
def s(tau):
    res=sp.Matrix([[r*sp.cos(tau)],[r*sp.sin(tau)]]);
    return res;
```

Gemäss Ausgabe ist

$$\underline{\underline{I} = 0.} \tag{46}$$

e) Wir betrachten

$$\mathbf{w}(x;y) = \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} r \cos(\tau) \\ r \sin(\tau) \end{bmatrix} \quad \text{für } \tau \in [0, 2\pi]. \tag{47}$$

```
# Parameter:
tau_0=0; tau_E=2*sp.pi;
# Funktionen:
def w(x,y):
    res=sp.Matrix([[x],[y]]);
    return res;
def s(tau):
    res=sp.Matrix([[r*sp.cos(tau)],[r*sp.sin(tau)]]);
    return res;
```

Gemäss Ausgabe ist

$$\underline{I=0.} \tag{48}$$

f) Wir betrachten

$$\mathbf{w}(x;y) = \begin{bmatrix} -y \\ x \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} r \cos(\tau) \\ r \sin(\tau) \end{bmatrix} \quad \text{für } \tau \in [0, 2\pi]. \tag{49}$$

```
# Parameter:
tau_0=0; tau_E=2*sp.pi;
# Funktionen:
def w(x,y):
    res=sp.Matrix([[-y],[x]]);
    return res;
def s(tau):
    res=sp.Matrix([[r*sp.cos(tau)],[r*sp.sin(tau)]]);
    return res;
```

Gemäss Ausgabe ist

$$\underline{I} = 2\pi r^2. \tag{50}$$

9. Aussagen über ein Linienintegral

Wir betrachten das $Linienintegral\ I$ des Vektorfeldes

$$\mathbf{w}(x;y) = \begin{bmatrix} y \\ -x \end{bmatrix} \quad \text{entlang} \quad \mathbf{s}(\tau) = \begin{bmatrix} 3\cos(2\pi\tau) \\ 3\sin(2\pi\tau) \end{bmatrix} \quad \text{für } \tau \in [0,1]. \tag{51}$$

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Es gilt $I = 0$.	0	•
b) Es gilt $I > 0$.	0	•
c) Es gilt $ I = 18\pi$.	•	0
d) Der <i>Bahnvektor</i> der <i>parametrisierten Kurve</i> steht an jedem Punkt <i>senk-recht</i> auf w .	0	•
e) Verlängert man die parametrisierte Kurve durch $\tau \in [0,2]$, dann bleibt der Wert von I unverändert.	0	•
f) Verlängert man die parametrisierte Kurve durch $\tau \in [0,2]$, dann verdoppelt man den Wert von I .	•	0