Programming 1: Lab 7: Loops

- 1. Find the sum of the following series for N terms, where N is taken as input from the user and display the result till exactly 9 decimal places.
 - (a) $1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + \dots$ N terms.
 - (b) 1/1! + 1/2! + 1/3! + 1/4! + ... + 1/N!
 - (c) $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots + N$ terms
 - (d) $1 + x/1! + x^2/2! + x^3/3! + + x^n/n!$ (Take x as input from user)
 - (e) $F(x) = 1 + x/1 + x^2/2 + x^3/3 + x^4/4 + + N$ terms (Take x also as input)
- 2. Find the sum of the series where x and a positive error ϵ is taken as input from the user. The value of F(x) is displayed along with the minimum number of terms that gives the valid result such that
 - $\mid \, F_{i}(x) F_{i \text{-} 1}(x) \, \mid \, < \varepsilon \text{ where } i \text{ is the term count}$
 - (b) $F(x) = x x^3/3! + x^5/5! x^7/7! +$

(a) $F = \Sigma_n (1/2)^n$ where n is the term count

- (c) $F(x) = 1 x^2/2! + x^4/4! x^6/6! +$
- 3. Write a program to find the sum of prime numbers between x and y where x and y are given as input by the user.
- 4. Print the following patterns (take number of lines as input from user):
 - (a) A

ΑB

ABC

ABCD

(b) A

 AB

А В

А В

A B

ABCDE

(c) A

ABC

ABCDE

ABCDEFG

- (d) *****
 - * *

* *

* **

* * * * *