

Universidade Federal do Pará Curso de Engenharia Elétrica e da Computação

Laboratório de Sistema de Controle - Experiência 2 Identificação de Sistemas de Primeira e Segunda Ordem

2.1 Objetivo

Ao processo de obtenção dos parâmetros de um sistema, a partir dos sinais temporais de entrada e saída, se denomina identificação.

O objetivo desta aula é apresentar algumas técnicas de identificação para sistemas de primeira e segunda ordem.

Na identificação direta, os sinais de entrada e de saída do próprio sistema a ser identificado são usados para determinação de seus parâmetros.

Quando se realimenta o sistema a ser identificado por um ganho constante e se identifica o sistema realimentado, podem-se ainda obter indiretamente os parâmetros do sistema a ser identificado, através de uma transformação matemática adequada.

2.2 Identificação Direta

Neste tipo de identificação, o sinal de entrada u(t) mais utilizado é um degrau de amplitude U.

a) Identificação de um sistema de primeira ordem

O modelo de um sistema de primeira ordem na forma padrão é:

Onde y(t) é a saída, k é o ganho estático e τ é a constante de tempo do sistema.

Os parâmetros k e τ podem ser obtidos através da resposta em regime $y(\infty)$, da amplitude da entrada U e do tempo de resposta a 5%, $t_{r5\%}$:

$$k = \frac{y(\infty)}{U}$$
 e $\tau = \frac{t_{r5\%}}{3}$

O tempo de resposta a 5%, é o tempo necessário para o sinal de saída atingir e permanecer dentro de uma faixa de 5% do seu valor em regime (atingir 95% do valor final). Para um sistema de primeira ordem: $y(t_{r5\%}) = 0.95 y(\infty)$

EXPERIMENTO 1

Simule o sistema S_1 , em malha aberta, usando como entrada o degrau de amplitude 2. Meça $y(\infty)$, e $t_{r5\%}$ e obtenha então os parâmetros k e τ do processo.

b) Identificação de um sistema de segunda ordem O modelo padrão de um sistema de segunda ordem é: $\frac{kw_n^2}{s^2 + 2\xi w_n s + w_n^2}$

Onde ξ é o coeficiente de amortecimento e w_n é a frequência natural do sistema.

Os parâmetros k, ξ e w_n podem ser obtidos através de $y(\infty)$, de U, do máximo sobre sinal M_p e do tempo de pico t_p .

$$k = \frac{y(\infty)}{U}$$
, $t_p = \frac{\pi}{w_d}$ com $w_d = w_n \sqrt{1 - \xi^2}$ e $M_p = e^{-\xi \pi / \sqrt{1 - \xi^2}}$

EXPERIMENTO 2

Simule em malha aberta, usando como entrada o degrau de amplitude 1, o sistema a ser identificado S_2 .

Meça $y(\infty)$, $t_p e M_p$ e obtenha então os parâmetros do sistema.

2.3 Identificação Indireta

Seja G(s) o sistema a ser identificado. Este tipo de identificação é feito em dois passos. Primeiramente realimentamos G(s) com um ganho K_c .

Onde r(t) é o sinal de referência. Usando para referência um degrau de amplitude R, medimos y(t) e identificamos o sistema realimentado: $M(s) = \frac{k_c G(s)}{1 + K_c G(s)}$

A função de transferência desejada é obtida da equação acima: $G(s) = \frac{1}{k_c} \frac{M(s)}{1 - M(s)}$

a) Identificação de um sistema de primeira ordem

Se G(s) for de primeira ordem, M(s) também o será, tendo a forma: $M(s) = \frac{k}{\tau s + 1}$

EXPERIMENTO 3

- Simule em malha aberta, usando como entrada o degrau de amplitude 1, o sistema a ser identificado S₃ e observe que sua resposta é lenta.
- Realimente com um ganho $K_c = 4.5$ e usando como referência o degrau unitário, identifique o sistema realimentado M(s).
- Determine G(s) conforme indicado.

b) Identificação de um sistema de segunda ordem

Se G(s) for de segunda ordem, M(s) também o será, tendo a forma: $M(s) = \frac{kw_n^2}{s^2 + 2\xi w_n s + w^2}$

EXPERIMENTO 4:

- Simule em malha aberta, usando como entrada o degrau de amplitude 1, o sistema S₄ a ser identificado. Observe que não há sobressinal;
- Realimente com um ganho $K_c=1$, e usando como referência o degrau unitário, identifique o sistema realimentado M(s);
- Determine G(s) conforme indicado.