

# VIVEKANANDA INSTITUTE OF PROFESSIONAL STUDIES - TECHNICAL CAMPUS Grade A++ Accredited Institution by NAAC

NBA Accredited for MCA Programme; Recognized under Section 2(f) by UGC; Affiliated to GGSIP University, Delhi; Recognized by Bar Council of India and AICTE An ISO 9001:2015 Certified Institution

# SCHOOL OF ENGINEERING & TECHNOLOGY

B. Tech Programme: B. Tech AI-ML (A)

Course Title: Foundation of Data Science Lab

**Course Code: AIML - 203** 

**Submitted to:** 

Mr. Adeel Hashmi

**Assistant Professor** 

**Submitted by:** 

Name: Kunsh Sabharwal

**Enrolment No: 01117711623** 



#### VIVEKANANDA INSTITUTE OF PROFESSIONAL STUDIES - TECHNICAL CAMPUS

Grade A++ Accredited Institution by NAAC

NBA Accredited for MCA Programme; Recognized under Section 2(f) by UGC;
Affiliated to GGSIP University, Delhi; Recognized by Bar Council of India and AICTE
An ISO 9001:2015 Certified Institution
SCHOOL OF ENGINEERING & TECHNOLOGY

# **VISION OF INSTITUTE**

To be an educational institute that empowers the field of engineering to build a sustainable future by providing quality education with innovative practices that supports people, planet and profit.

# MISSION OF INSTITUTE

To groom the future engineers by providing value-based education and awakening students' curiosity, nurturing creativity and building capabilities to enable them to make significant contributions to the world.



### VIVEKANANDA INSTITUTE OF PROFESSIONAL STUDIES - TECHNICAL CAMPUS

Grade A++ Accredited Institution by NAAC

NBA Accredited for MCA Programme; Recognized under Section 2(f) by UGC;

Affiliated to GGSIP University, Delhi; Recognized by Bar Council of India and AICTE

An ISO 9001:2015 Certified Institution

SCHOOL OF ENGINEERING & TECHNOLOGY

# **INDEX**

| S. No. | Experiment | Date | Marks                                  |                                     |                   | Remarks | Updated<br>Marks | Faculty<br>Signature |
|--------|------------|------|----------------------------------------|-------------------------------------|-------------------|---------|------------------|----------------------|
|        |            |      | Laboratory<br>Assessment<br>(15 Marks) | Class<br>Participation<br>(5 Marks) | Viva (5<br>Marks) |         |                  |                      |
| 1.     |            |      |                                        |                                     |                   |         |                  |                      |
| 2.     |            |      |                                        |                                     |                   |         |                  |                      |
| 3.     |            |      |                                        |                                     |                   |         |                  |                      |



# योगः कर्मसु कौशलम् IN PURSUIT OF PERFECTION VIVEKANANDA INSTITUTE OF PROFESSIONAL STUDIES - TECHNICAL CAMPUS

### Grade A++ Accredited Institution by NAAC

NBA Accredited for MCA Programme; Recognized under Section 2(f) by UGC;
Affiliated to GGSIP University, Delhi; Recognized by Bar Council of India and AICTE
An ISO 9001:2015 Certified Institution
SCHOOL OF ENGINEERING & TECHNOLOGY

| S. No. | Experiment | Date | Marks                                  |                                     |                   | Remarks | Updated<br>Marks | Faculty<br>Signature |  |
|--------|------------|------|----------------------------------------|-------------------------------------|-------------------|---------|------------------|----------------------|--|
|        |            |      | Laboratory<br>Assessment<br>(15 Marks) | Class<br>Participation<br>(5 Marks) | Viva (5<br>Marks) |         |                  |                      |  |
| 4.     |            |      |                                        |                                     |                   |         |                  |                      |  |
| 5.     |            |      |                                        |                                     |                   |         |                  |                      |  |
| 6.     |            |      |                                        |                                     |                   |         |                  |                      |  |



# योगः कर्मसु कौशलम् IN PURSUIT OF PERFECTION VIVEKANANDA INSTITUTE OF PROFESSIONAL STUDIES - TECHNICAL CAMPUS

### Grade A++ Accredited Institution by NAAC

NBA Accredited for MCA Programme; Recognized under Section 2(f) by UGC;
Affiliated to GGSIP University, Delhi; Recognized by Bar Council of India and AICTE
An ISO 9001:2015 Certified Institution
SCHOOL OF ENGINEERING & TECHNOLOGY

| S. No. | Experiment | Date | Marks                                  |                                     |                   | Remarks | Updated<br>Marks | Faculty<br>Signature |
|--------|------------|------|----------------------------------------|-------------------------------------|-------------------|---------|------------------|----------------------|
|        |            |      | Laboratory<br>Assessment<br>(15 Marks) | Class<br>Participation<br>(5 Marks) | Viva (5<br>Marks) |         |                  |                      |
| 7.     |            |      |                                        |                                     |                   |         |                  |                      |
| 8.     |            |      |                                        |                                     |                   |         |                  |                      |
| 9.     |            |      |                                        |                                     |                   |         |                  |                      |



# योगः कर्मसु कौशलम् IN PURSUIT OF PERFECTION VIVEKANANDA INSTITUTE OF PROFESSIONAL STUDIES - TECHNICAL CAMPUS

### Grade A++ Accredited Institution by NAAC

NBA Accredited for MCA Programme; Recognized under Section 2(f) by UGC;
Affiliated to GGSIP University, Delhi; Recognized by Bar Council of India and AICTE
An ISO 9001:2015 Certified Institution
SCHOOL OF ENGINEERING & TECHNOLOGY

| S. No. | Experiment | periment Date | Marks                                  |                                     |                   | Remarks | Updated<br>Marks | Faculty<br>Signature |
|--------|------------|---------------|----------------------------------------|-------------------------------------|-------------------|---------|------------------|----------------------|
|        |            |               | Laboratory<br>Assessment<br>(15 Marks) | Class<br>Participation<br>(5 Marks) | Viva (5<br>Marks) |         |                  |                      |
| 10.    |            |               |                                        |                                     |                   |         |                  |                      |
| 11.    |            |               |                                        |                                     |                   |         |                  |                      |
| 12.    |            |               |                                        |                                     |                   |         |                  |                      |



# योगः कर्मसु कौशलम् IN PURSUIT OF PERFECTION VIVEKANANDA INSTITUTE OF PROFESSIONAL STUDIES - TECHNICAL CAMPUS

Grade A++ Accredited Institution by NAAC

NBA Accredited for MCA Programme; Recognized under Section 2(f) by UGC;

Affiliated to GGSIP University, Delhi; Recognized by Bar Council of India and AICTE

An ISO 9001:2015 Certified Institution

SCHOOL OF ENGINEERING & TECHNOLOGY

| S. No.    | Experiment | Date | Marks                                  |                                     |                   | Remarks | Updated<br>Marks | Faculty<br>Signature |
|-----------|------------|------|----------------------------------------|-------------------------------------|-------------------|---------|------------------|----------------------|
|           |            |      | Laboratory<br>Assessment<br>(15 Marks) | Class<br>Participation<br>(5 Marks) | Viva (5<br>Marks) |         |                  |                      |
| 13.       |            |      |                                        |                                     |                   |         |                  |                      |
| (Mini     |            |      |                                        |                                     |                   |         |                  |                      |
| Projec t) |            |      |                                        |                                     |                   |         |                  |                      |
|           |            |      |                                        |                                     |                   |         |                  |                      |
|           |            |      |                                        |                                     |                   |         |                  |                      |
|           |            |      |                                        |                                     |                   |         |                  |                      |

| oopular IDES, co | onfigure them and test. |  |
|------------------|-------------------------|--|
| Theory:          |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |
|                  |                         |  |

### **Installation Screenshots:**





### **Configuration Screenshots:**



















# Testing the installed and configured IDE (Jupyter Notebook):





**Aim:** To design a Python program that generates a list of squares of numbers between 1 and 30 and prints the list excluding the first 5 elements.

**Theory:** 

# **Programming Code and Output:**



# **EXPERIMENT 3(a)**

Aim: Design a Python program to understand the working of loops: -

(a) Reverse a given string using both for and while loops.

**Theory:** 

# **Programming Code and Output:**

```
Jupyter P3(a) Last Checkpoint: 3 days ago
File Edit View Run Kernel Settings Help
a + % □ □ b ■ C b Code
                                                                                                                           JupyterLab ☐ # Python 3 (ipykernel) ○
    [22]: x=input("Enter a string to reverse:-")
          for i in x:
x=x[::-1]
          print(x)
          Enter a string to reverse:- kunsh
          hsnuk
     [2]: y=input("Enter a string to reverse:-")
          rev_str=" "
          index=len(y)-1
          while index>=0:
             rev_str=rev_str+y[index]
             index=index-1
          print("The reversed string is:-",rev_str)
          Enter a string to reverse: - kunsh
           The reversed string is:- hsnuk
```

# **EXPERIMENT 3(b)**

Aim: Design a Python program to understand the working of loops: -

(b) Write a program to find the sum of the digits of a given number.

**Theory:** 

# **Programming Code and Output:**

```
File Edit View Run Kernel Settings Help

Trusted

H + % □ □ ▶ ■ □ → Code 

JupyterLab □ → Python 3 (ipykernel) ○

[2]: x=int(input("Enter a number:-"))
sum=0
if(x<0):
    print("Invalid Input.")
else:
    while(x|=0):
        sum=sum+(x\(\frac{1}{2}\)10
        y=x/10
    print(sum)

Enter a number:- 123
6
```

# **EXPERIMENT 3(c)**

Aim: Design a Python program to understand the working of loops: -

(c) Write a program to find factorial of a number.

**Theory:** 

# **Programming Code and Output:**



# **EXPERIMENT 3(d)**

Aim: Design a Python program to understand the working of loops: -

(d) Write a program to generate the Fibonacci series.

**Theory:** 

# **Programming Code and Output:**

```
File Edit View Run Kernel Settings Help

Trusted

H * * □ * ■ C * Code 

JupyterLab * □ Python 3 (ipykernel) C

[8]: x=int(input("Enter the number of terms for the Fibonacci Series:-"))
first = 0
second = 1
print(first)
print(second)
for x in range(0,x-2):
    third = first + second
print(third)
    first, second=second, third

Enter the number of terms for the Fibonacci Series:- 10
0
1
2
3
5
8
13
21
34
```

# **EXPERIMENT 3(e)**

Aim: Design a Python program to understand the working of loops: -

(e) Write a program to print the following pattern of an equilateral triangle: -

\*
\*\*
\*\*\*

\*\*\*\*

**Theory:** 

# **Programming Code and Output:**



**Aim:** To design a Python function that determines and returns the maximum of three given numbers.

**Theory:** 

# **Programming Code and Output:**

```
Jupyter P4 Last Checkpoint: 4 minutes ago
File Edit View Run Kernel Settings Help
                                                                                                                                                       Trusted
                                                                                                                           JupyterLab ☐ # Python 3 (ipykernel) ○
   [22]: x=int(input("Enter 1st Number:-"))
                                                                                                                                    ★ ① ↑ ↓ 占 〒 î
         y=int(input("Enter 2nd Number:-"))
         z=int(input("Enter 3rd Number:-"))
         if(x==y or x==z or y==z):
             print("Two inputs are same. Cannot compare.")
          elif(x>y and x>z):
             print("The greatest number is:-",x)
          elif(y>x and y>z):
           print("The greatest number is:-",y)
          else:
             print("The greatest number is:-",z)
          Enter 1st Number:- 5
          Enter 2nd Number: - 10
          Enter 3rd Number:- 2
          The greatest number is:- 10
```

Aim: Write a program in Python to read a text file and write in a text file.

**Theory:** 

# **Programming Code and Output:**

```
File Edit View Run Kernel Settings Help

Trusted

+ ** © * Depen("kunsh.txt","w")

f.write("Kunsh Sabharwal - B.Tech AI-ML(A)")

f.close()

g=open("kunsh.txt","r")

print(g.read())
g.close()

Kunsh Sabharwal - B.Tech AI-ML(A)
```

Aim: Write a program in Python to implement exception handling.

**Theory:** 

# **Programming Code and Output:**

```
File Edit View Run Kernel Settings Help

Trusted

Trusted
```

Aim: Design a Python Program for creating a random story generator.

Theory:

# **Programming Code and Output:**



**Aim:** Create a NumPy array with specific characteristics and perform various operations to analyse and manipulate the data.

- (a) Create a 2D NumPy array of shape (4,5) with random integers from between 1 to 50.
- (b) Calculate the Sum: Compute the sum of all elements in the array.
- (c) Find the Maximum Value: Determine the maximum value in the array.
- (d) Calculate the Mean: Compute the mean of the array elements.
- (e) Sum of Each Row: Calculate the sum of elements in each row.
- (f) Transpose the Array: Transpose the array and display it.
- (g) Filter Elements: Create a Boolean mask to find all elements greater than 25.

### **Theory:**

### **Programming Code and Output:**

```
Jupyter p8 Last Checkpoint: 51 seconds ago
                                                                                                                                                         Trusted
File Edit View Run Kernel Settings Help
      % 🗓 🖒 ▶ ■ C >> Code
                                                                                                                             JupyterLab ☐ # Python 3 (ipykernel) ☐
    [2]: import numpy as np
          import random as rd
          arr = np. array ( \texttt{[[rd.randint(1,50),rd.randint(1,50),rd.randint(1,50),rd.randint(1,50),rd.randint(1,50)]}, \\
                      [rd.randint(1,50),rd.randint(1,50),rd.randint(1,50),rd.randint(1,50)],
                      [\mathsf{rd.randint}(1,50),\mathsf{rd.randint}(1,50),\mathsf{rd.randint}(1,50),\mathsf{rd.randint}(1,50)],
                      [rd.randint(1,50),rd.randint(1,50),rd.randint(1,50),rd.randint(1,50)]])
         print(arr)
          [[32 11 31 45 42]
           [10 42 8 34 28]
          [12 41 33 17 49]
          [50 8 14 43 19]]
    [3]: np.sum(arr)
    [3]: 569
    [4]: np.amax(arr)
    [4]: 50
    [5]: np.average(arr)
    [5]: 28.45
```



**Aim:** Create a Synthetic Dataset(.csv/.xlsx) to work upon and design a Python program to read and print that data.

### **Theory:**

### **Source Code and Output:**

(a) Jupyter Notebook Screenshot:

```
JUDYTET P9 Last Checkpoint: 35 minutes ago (autosaved)
                                                                                                                                                                                          Trusted / Python 3 (ipykernel) O
            Edit
                     View
                                  Insert
                                              Cell Kernel Widgets Help
                                                                                               ~
In [2]: pip install faker
                       Collecting faker
                       Downloading Faker-30.8.0-py3-none-any.whl (1.8 MB)

Requirement already satisfied: typing-extensions in c:\users\cc12\anaconda3\lib\site-packages (from faker) (4.1.1)

Requirement already satisfied: python-dateutil>=2.4 in c:\users\cc12\anaconda3\lib\site-packages (from faker) (2.8.2)

Requirement already satisfied: six>=1.5 in c:\users\cc12\anaconda3\lib\site-packages (from python-dateutil>=2.4->faker) (1.16.
                       Installing collected packages: faker
                       Successfully installed faker-30.8.0 Note: you may need to restart the kernel to use updated packages.
          In [3]: from faker import Faker
                       fake = Faker()
                       import pandas as pd
                       11=[]
                       for i in range(5):
name=fake.name()
                             country=fake.country()
email=fake.email()
12=[name,country,email]
                             11.append(12)
                       [['Xavier Graham', 'American Samoa', 'greg12@example.net'], ['Laura Ritter', 'Finland', 'fdoyle@example.org'], ['Lisa Robinso n', 'Iceland', 'eramirez@example.com'], ['Ashley Randolph', 'Azerbaijan', 'watsonsharon@example.org'], ['Annette Castro', 'Slov enia', 'kathyrodriguez@example.com']]
        In [14]: column=['Name', 'Country', 'E-Mail']
df = pd.DataFrame(l1, columns=column)
                      print(df)
                               Xavier Graham
Laura Ritter Finland
Lisa Robinson Iceland
                                                                                          greg12@example.net
fdoyle@example.org
eramirez@example.com
                                                      Finland
Iceland
                            Ashley Randolph
                                                            Azerbaijan
                                                                                   watsonsharon@example.org
                             Annette Castro
                                                               Slovenia kathyrodriguez@example.com
        In [15]: df.to_csv('SyntheticDatasetKunsh.csv',index=False)
```

### (b) Excel Screenshot:



Aim: Perform Statistics and Data Visualization in Python.

Theory:

# **Source Code and Output:**

(a) Excel Screenshot:



### (b) Jupyter Notebook Screenshots:

```
JUDYTET P10 Last Checkpoint: 14 minutes ago (autosaved)
                                                                                                                                        Logout
    Edit
                          Cell
                                          Widgets
                                                                                                                 Trusted / Python 3 (ipykernel) O
                                 Kernel
                          ▶ Run ■ C → Code
                                                        v 😑
  In [3]: from faker import Faker
           fake = Faker()
           import pandas as pd
           11=[]
           for i in range(10):
               name=fake.name()
               email=fake.email()
               country=fake.country()
               Python_marks=fake.random_int(0,100)
               Java marks=fake.random int(0,100)
               C marks=fake.random int(0,100)
               12=[name,email,country,Python marks,Java marks,C marks]
               11.append(12)
           print(l1)
           [['Daniel Cohen', 'mortega@example.com', 'Singapore', 75, 40, 58], ['James Johnson', 'grantkaren@example.net', 'Sudan', 44, 42,
           58], ['Morgan Ramsey', 'christopher49@example.net', 'Gibraltar', 76, 34, 41], ['Eric Nelson', 'howardmartinez@example.net', 'Au
           stralia', 64, 26, 47], ['Diana Hawkins', 'warrenchristina@example.org', 'United States Minor Outlying Islands', 20, 45, 79],
           ['Jason Mitchell', 'evelyn95@example.org', 'Colombia', 87, 61, 23], ['Jessica Lowe', 'richard15@example.com', 'Norway', 18, 42,
           28], ['Stephen Washington', 'robincortez@example.com', 'Ghana', 29, 33, 87], ['Kylie Davidson', 'debradiaz@example.org', 'Antar
           ctica (the territory South of 60 deg S)', 48, 33, 38], ['Laura Robbins', 'gonzalezkevin@example.com', 'Mozambique', 7, 33, 65]]
  In [4]: column=['Name','E-Mail','Country','Python Marks','Java Marks','C Marks']
           df = pd.DataFrame(l1,columns=column)
           print(df)
                                                       E-Mail \
                            Name
           0
                    Daniel Cohen
                                          mortega@example.com
           1
                   James Johnson
                                       grantkaren@example.net
           2
                   Morgan Ramsey christopher49@example.net
           3
                    Eric Nelson howardmartinez@example.net
           4
                   Diana Hawkins warrenchristina@example.org
           5
                  Jason Mitchell
                                        evelyn95@example.org
                    Jessica Lowe
                                        richard15@example.com
           7 Stephen Washington
                                   robincortez@example.com
                  Kylie Davidson
                                        debradiaz@example.org
                   Laura Robbins
                                    gonzalezkevin@example.com
                                                   Country Python Marks Java Marks \
           0
                                                 Singapore
                                                                      75
                                                                                 40
           1
                                                     Sudan
                                                                      44
                                                                                 42
                                                                      76
                                                                                 34
                                                 Gibraltar
                                                                      64
                                                                                 26
                                                 Australia
           4
                      United States Minor Outlying Islands
                                                                      20
                                                                                 45
```







| KLINICH | SARHARWAL | (01117711623) | B.TECH AI-ML (A)            |
|---------|-----------|---------------|-----------------------------|
| киизп   | SADDARWAL | 10111//110/54 | I D. I E U.TI AI-IVII. I A. |

|         | ign a Python Prog<br>using california_h |   | ment Linear 1 | Regression H | Iouse price |
|---------|-----------------------------------------|---|---------------|--------------|-------------|
| Theory: | C                                       | J |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |
|         |                                         |   |               |              |             |

### **Source Code and Output:**



Aim: Design a Python Program to create a recommender system.

Theory:

### **Source Code and Output:**

```
Jupyter Untitled Last Checkpoint: 5 minutes ago
File Edit View Run Kernel Settings Help
8
   + % 🗇 🗂 ▶ ■ C → Code
                                                                                                                              JupyterLab 🖸 🌼 Python 3 (ipykernel) 🕻
                                                                                                                                         ◎ ↑ ↓ 古 早 🛢
    •[1]: import pandas as pd
          # Create a simple dataset of users and their movie ratings
          data = {
              'User': ['User1', 'User1', 'User1', 'User2', 'User2', 'User2', 'User3', 'User3', 'User4', 'User4'],
              'Movie': ['MovieA', 'MovieB', 'MovieC', 'MovieA', 'MovieB', 'MovieD', 'MovieB', 'MovieC', 'MovieA', 'MovieC'],
              'Rating': [5, 3, 4, 4, 2, 5, 2, 4, 5, 3]
          # Convert the dataset into a DataFrame
          df = pd.DataFrame(data)
           # Function to recommend movies to a user based on highest ratings from others
          def recommend_movies(user):
              # Get movies rated by the user
              user_movies = df[df['User'] == user]
              rated_movies = user_movies['Movie'].tolist()
              # Get the top-rated movies that the user hasn't seen
              recommendations = df[~df['Movie'].isin(rated_movies) & (df['User'] != user)]
              # Sort by ratinas
              recommended_movies = recommendations.sort_values(by='Rating', ascending=False).drop_duplicates(subset='Movie')
              return recommended_movies[['Movie', 'Rating']]
          # Example: Recommend movies for 'User1'
          recommended_movies = recommend_movies('User1')
          print("Recommended movies for User1:")
          print(recommended_movies)
          Recommended movies for User1:
              Movie Rating
             MovieD
```

(Mini Project) **Aim:** Apply Data Pre-Processing Operation on the Titanic Dataset. Theory:

### **Source Code and Output:**

```
Jupyter P13(Mini Project) Last Checkpoint: 38 minutes ago
Edit View
            Run Kernel Settings Help
+ % 🗇
      # Step 1: Load the Dataset
 [5]:
      import pandas as pd
      # Load the Titanic dataset from a CSV file
      df=pd.read_csv('titanic.csv')
      # Display the first few rows of the dataset
      print("Initial Data:")
      print(df.head())
      Initial Data:
         PassengerId Survived Pclass
                   1
      1
                   2
                            1
                                    1
                   3
                            1
      3
                   4
                            1
                                                     Name
                                                             Sex Age SibSp \
                                  Braund, Mr. Owen Harris
                                                            male 22.0
      1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
      2
                                   Heikkinen, Miss. Laina female 26.0
      3
              Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
      4
                                 Allen, Mr. William Henry male 35.0
         Parch
                          Ticket
                                    Fare Cabin Embarked
                                 7.2500
                      A/5 21171
                                           NaN
                        PC 17599 71.2833
                                           C85
                                                     C
             0 STON/02. 3101282
                                 7.9250
                                           NaN
                                                     S
      3
                         113803 53.1000 C123
                                                     S
                          373450
                                 8.0500 NaN
 [6]: # Step 2: Data Exploration and Visualization
      import seaborn as sns
      import matplotlib.pyplot as plt
      # Basic information about the dataset
      print("\nData Info:")
```

```
Jupyter P13(Mini Project) Last Checkpoint: 38 minutes ago
File
     Edit
          View
                Run
                      Kernel
                             Settings
                                      Help
       % □
   +
                                     Code
          print(df.info())
          # Check for missing values
          print("\nMissing Values:")
          print(df.isnull().sum())
          # Visualize the distribution of survival
          sns.countplot(data=df, x='Survived')
          plt.title('Survived Count')
          plt.show()
          # Visualize survival based on gender
          sns.countplot(data=df, x='Survived', hue='Sex')
          plt.title('Survival Count by Gender')
          plt.show()
          # Visualize survival based on passenger class
          sns.countplot(data=df, x='Survived', hue='Pclass')
          plt.title('Survival Count by Passenger Class')
          plt.show()
          Data Info:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 891 entries, 0 to 890
          Data columns (total 12 columns):
           #
               Column
                            Non-Null Count
                                            Dtype
               -----
                            -----
               PassengerId 891 non-null
                                            int64
           0
           1
               Survived
                            891 non-null
                                            int64
                                            int64
               Pclass
                            891 non-null
           3
               Name
                            891 non-null
                                           object
           4
               Sex
                            891 non-null
                                           object
                                           float64
           5
                            714 non-null
               Age
           6
               SibSp
                            891 non-null
                                           int64
           7
               Parch
                            891 non-null
                                            int64
               Ticket
                            891 non-null object
           9
                                            float64
               Fare
                            891 non-null
               Cabin
                                            object
           10
                            204 non-null
```

```
Jupyter P13(Mini Project) Last Checkpoint: 39 minutes ago
          View
     Edit
                 Run
                      Kernel
                              Settings
                                      Help
        X
            a
                                     Code
                                            object
               Ticket
                            891 non-null
            9
               Fare
                            891 non-null
                                            float64
                            204 non-null
               Cabin
                                            object
     [3]: # Step 3: Data Cleaning
           # Fill missing values for 'Age' with the median
           df['Age'].fillna(df['Age'].median(), inplace=True)
           # Drop the 'Cabin' column due to high missing values
           df.drop(columns=['Cabin'], inplace=True)
           # Drop 'Ticket' column as it does not provide useful information
           df.drop(columns=['Ticket'], inplace=True)
           # Drop rows with missing 'Embarked' values
           df.dropna(subset=['Embarked'], inplace=True)
           print("\nData after cleaning:")
           print(df.info())
           Data after cleaning:
           <class 'pandas.core.frame.DataFrame'>
           Index: 889 entries, 0 to 890
           Data columns (total 10 columns):
               Column
                            Non-Null Count Dtype
               PassengerId 889 non-null
                                            int64
            0
               Survived
                            889 non-null
            1
                                            int64
                                           int64
            2
               Pclass
                            889 non-null
            3
               Name
                            889 non-null
                                            object
                           889 non-null
            4
               Sex
                                            object
            5
                            889 non-null
                                           float64
               Age
            6
               SibSp
                            889 non-null
                                           int64
            7
                                            int64
               Parch
                            889 non-null
            8
               Fare
                            889 non-null
                                            float64
               Embarked
                            889 non-null
                                            object
           dtypes: float64(2), int64(5), object(3)
           memory usage: 76.4+ KB
           None
```

```
JUPYTER P13(Mini Project) Last Checkpoint: 40 minutes ago
File Edit View Run Kernel Settings Help
[7]: # Step 4: Feature Engineering
          # Convert categorical variables to numerical
          df['Sex'] = df['Sex'].map({'male': 0, 'female': 1})
          df = pd.get_dummies(df, columns=['Embarked'], drop_first=True)
          # Select features and target variable
          X = df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked_Q', 'Embarked_S']]
          y = df['Survived']
     [8]: # Step 5: Model Training
          from sklearn.model_selection import train_test_split
          from sklearn.ensemble import RandomForestClassifier
          # Split the data into training and testing sets
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
          # Train the Random Forest Classifier
          model = RandomForestClassifier()
          model.fit(X train, y train)
     [8]: RandomForestClassifier
         RandomForestClassifier()
     [9]: # Step 6: Model Evaluation
          from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
          # Make predictions
          y_pred = model.predict(X_test)
          # Calculate accuracy
          accuracy = accuracy_score(y_test, y_pred)
          print(f"\nModel Accuracy: {accuracy:.2f}")
          # Print classification report
          print("\nClassification Report:")
          print(classification_report(y_test, y_pred))
```



