Sample problems for FINAL EXAM MA 511

Part I- TRUE FALSE

1.	If A and B are unitary matrices with the same eigenvalues then there is unitary U such that $UBU^H=A$.
2.	If A is a square matrix such that the linear transformation $f(x) = Ax$, preserves angles and lengths then A^TA is an orthogonal matrix.
3.	If A is Hermitian and real then A is symmetric .
4.	If U is a unitary matrix then all its eigenvalues are real.
5.	If U_1 and U_2 are unitary matrices of the same size then $U_1U_2^H$ is unitary.
6.	If A is Hermitian and U is unitary of the same size then $U^{-1}AU$ is Hermitian.
7.	If $x^TA = b^T$ has exactly one solution then rows of A are linerly independent.
8.	If the characteristic polynomials of 2×2 matrices A and B are equal then A and B are similar.
9.	If u is a unit vector then $I - uu^T$ is a projection matrix.
10.	If V and W are subspaces of R^{11} and $dim(V)=5$ and $dim(W)=8$ then $dim(V^{\perp}\cap W)\geq 4$.
11.	All Fourier matrices F_n are unitarily diagonalizable
12.	If A is $m \times n$ and $rank(A) = m$ then A has linearly independent rows
13.	If A is symmetric positive definite then $A=B^4$ for some B which is symmetric positive definite.
14.	If A has infinitely many inverses then it has no right inverse

- 15. All Fourier matrices are Hermitian.
- 16. The differential equation du/dt = Au is stable if $Re(\lambda_i) > 0$ for all egenvalues λ_i ,
- 17. A real $n \times n$ matrix is invertible if and only if A has n positive singular values.
- 18. A is diagonalizable if and only if A has distinct eigenvalues.
- 19. Let A be a unitary matrix. Then the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.
- 20. If A is similar to B, that is, there exists an invertible matrix S so that $A = SBS^{-1}$, then A and B share the same eigenvalues and eigenvectors.
- 21. Let A be the incidence matrix of a graph G. The summation of each all columns is zero vector.

Part II

1. Find the Singular Value Decomposition of the matrix

(a)
$$A = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
.

(b)
$$A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ 1 & 2 \end{bmatrix}$$

(c)
$$B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

2. Determine a type of the critical point (0,0) for the function

(a) Let
$$F(x,y) = x^2 + 4xy + 3y^2$$
.

(b) Let
$$G(x,y) = (x^2 - 2)(y^2 + 5)$$

3. For the matrix $A=\begin{bmatrix}2&1&0\\1&2&0\\1&1&3\end{bmatrix}$ find a unitary matrix U such that U^HAU is upper triangular.

4. Verify that the matrix is positive definite

$$A = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{array} \right].$$

5. Given the ellipsoid $x^T A x = 4$, where

$$A = \left[\begin{array}{rrrr} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

find the direction vectors and the length of its four principal axes.

- 6. Given the matrix $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ find its norm and the condition number.
- 7. Let $f: \mathbb{R}^5 \to \mathbb{R}^5$ be a linear transformation such that $f(e_i) = e_{i+1} + 2e_i$ for $i = 1, \ldots, 4$ and $f(e_5) = 2e_5$. Find the matrix A of f with respect to the standard basis. Find the Jordan form J of A and the matrix M such that $J = M^{-1}AM$.
- 8. Find the matrix exponential e^{At} , where

(a)
$$A = \begin{bmatrix} -1 & -1 \\ 1 & -3 \end{bmatrix}$$
.

(b)
$$A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$$
.

(c)
$$A = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$$
.

(d)
$$A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$$
.

Use e^{At} to find explicitly the solution of the initial value problem

$$X' = AX, X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

9. Find A^n for the matrices

(a)
$$A = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$

10. Decide about the stability of dx/dt = Ax, where

(a)
$$A = \begin{bmatrix} -1 & -1 \\ 1 & -3 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 5 & -1 \\ 1 & -3 \end{bmatrix}$$

11. Find eigenvalues of
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
.

12. Which of the following matrices are similar and which are not. (Find their Jordan canonical form) $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$,

$$B = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix},$$

$$\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$$

$$C = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array} \right],$$

$$D = \left[\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

$$D = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

13. Find the projection matrix P onto the column space of the matrix

$$A = \left[\begin{array}{rr} 1 & -1 \\ 1 & 2 \\ 1 & 0 \end{array} \right],$$

Find the matrix Q with othonormal columns such that $P = QQ^T$. Find the eigenvalues and eigenvectors of P^3 .

- 14. (a) Find the matrix of the projection $P: \mathbb{R}^3 \to \mathbb{R}^3$ onto the the plane x+y+3z=0.
 - (b) Find the projection of \mathbb{R}^3 onto the line $span\{[1,1,3].$
- 15. Find the closest function $c + dx^2$ to x^4 on the interval [-0,1], and the distance of x^4 to span $(1, x^4)$.

(We consider the inner product $(f,g) = \int_0^1 fg dx$.)

- 16. Find the orthogonal basis of the vector space of quadratic polynomials $a + bx + cx^2$ over the interval [0, 1].
- 17. Find QR factorization for

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 2 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

18. Find the least squares solution to

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

19. Solve the initial value problem X'' = AX, where $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$,

$$X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, X'(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$