Problem Section 3

KEY

Monday Jan 22 2024

Learning Outcomes

The problems are designed to build conceptual understanding and problem-solving skills. The emphasis is on learning to find, evaluate and build confidence. The specific tasks include:

- Finding the distribution of the sum of two independent random variables
- Finding the mean and variance of the sum of independent normal random variables.
- Performing probability calculations with a normal distribution
- Be able to work out probabilities for the maximum of two continuous random variables
- Back up and support work with relevant explanations

Exercises

1. We can write the joint PMF of $\langle X, Y \rangle$ in a tabular form. Each (x, y) pair has probability $\frac{1}{9}$ since the random variables are independent.

		x	
\overline{y}	0	1	2
0	1/9	1/9	1/9
1	1/9	1/9	1/9
2	1/9	1/9	1/9

We have that S can take the following 5 values, S = 0, 1, 2, 3, 4. Thus we have the following PMF for S:

ſ	s	0	1	2	3	4
	outcomes	(0,0)	(0,1); (1,0)	(0,2), (1,1), (2,0)	(1,2), (2,1)	(2,2)
	f(s)	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{3}{9}$	$\frac{2}{9}$	$\frac{1}{9}$

2.

a. Let X_1, \ldots, X_5 denote the number of cars crossing the bridge on the 5 weekdays. More specifically we are given that:

$$X_i \stackrel{ind}{\sim} N(\mu = 67000, \sigma = 1000), i = 1, 2, 3, 4, 5$$

Similarly let Y_1, Y_2 be the number of cars crossing on the weekends, so we are given that:

$$Y_i \stackrel{ind}{\sim} N(\mu = 72000, \sigma = 1000), j = 1, 2$$

1

We wish to find the distribution of $T = X_1 + X_2 + \cdots + X_5 + Y_1 + Y_2 = \sum_{i=1}^5 X_i + \sum_{j=1}^2 Y_j$.

Since these are independent random variables, by the properties of the normal distribution, we know T will be normally distributed. We will have that:

$$\begin{split} E(T) &= E(\sum_{i=1}^5 X_i + \sum_{j=1}^2 Y_j) \\ &= \sum_{i=1}^5 E[X_i] + \sum_{j=1}^2 E[Y_j] \text{ by linearity of expectation} \\ &= 5E[X_1] + 2E[Y_1] \text{ since each X and Y follows the same distribution} \\ &= 5 \times 67000 + 2 \times 72000 \\ &= 4.79 \times 10^5 \end{split}$$

Similarly we will have that:

$$Var(T) = Var(\sum_{i=1}^{5} X_i + \sum_{j=1}^{2} Y_j)$$

$$= \sum_{i=1}^{5} Var[X_i] + \sum_{j=1}^{2} Var[Y_j] \text{ by independence of the RV's}$$

$$= 5Var[X_1] + 2Var[Y_1] \text{ since each X and Y follows the same distribution}$$

$$= 5 \times 1000^2 + 2 \times 1000^2$$

$$= 7000000$$

Thus we have that SD(Z) = 2645.7513111

Thus we have that the total number of cars crossing the bridge in a 7 day week, W, has distribution:

$$Z \sim N(\mu = 4.79 \times 10^5, \sigma = \sqrt{7000000} = 2645.7513111)$$

b. We wish to find P(T > 482,000). We can simply use pnorm to find this in R:

Thus we see that P(T > 482,000) = 0.1284196

3.

$$P(max(X_1, X_2) > q) = 1 - P(max(X_1, X_2) \le q) = 1 - P(X_1 \le q \cap X_2 \le q)$$

Since X_1, X_2 are independent RV's, we have that $P(X_1 \le q \cap X_2 \le q) = P(X_1 \le q) \times P(X_2 \le q)$. Since q is the 60th percentile, we know that $P(X_1 \le q) = P(X_2 \le q) = .6$. Thus we have that:

$$P(X_1 \le q \cap X_2 \le q) = P(X_1 \le q) \times P(X_2 \le q) = .6 \times .6 = .36$$

Thus putting it all together we have:

$$P(\max(X_1,X_2)>q)=1-P(\max(X_1,X_2)\leq q)=1-P(X_1\leq q\ \cap X_2\leq q)=1-.36=.64$$
 So the probability that the larger of the 2 RV's is greater than q is .64

4.

a. Find the PDF of $X_{max} = \max\{X_1, X_2, X_3\}$

We know by Theorem 16.5 that $f_{max}(x) = n[F(x)]^{n-1}f(x)$. For an exponential RV, we have that $f(x) = \lambda exp(-\lambda x)$ and that $F(x) = 1 - e^{-\lambda x}$. In this case we have that n=3 and $\lambda = 1$.

Thus we have that:

$$f_{max}(x) = n[F(x)]^{n-1}f(x) = 3[1 - e^{-x}]^{3-1}e^{-x} \quad x \ge 0$$

Doing some simplification we have that:

$$f_{max}(x) = 3[1 - e^{-x}]^2 e^{-x}$$

$$= 3e^{-x}[1 - 2e^{-x} + e^{-2x}]$$

$$= 3e^{-x} - 6e^{-2x} + 3e^{-3x} \quad x > 0$$

b.

```
pdf_max <- function(x){</pre>
  \#return the PDF of Xmax at a given value x
  3*exp(-x)-6*exp(-2*x)+3*exp(-3*x)
ggplot(data = NULL) +
  #first layer is for X ~ Exp(1)
  geom_function(fun = dexp,
                args = list(rate = 1),
                mapping = aes(color = "Exp(1)" ),
                xlim=c(0,10)) +
  #second layer is for PDF of X_{max}
  geom_function(fun = pdf_max,
                mapping = aes(color = "Xmax"),
                xlim=c(0,10) ) +
  labs(x = "x",
      y = "density",
       title = "Comparing distributions of X and Xmax",
       color = "Dist")
```

Comparing distributions of X and Xmax

