Week 2-1 NN for LR

笔记本: DL 1 - NN and DL

创建时间: 2021/1/5 10:37 **更新时间**: 2021/1/7 01:09

Notation

Notation

$$(x,y)$$
 $\times \in \mathbb{R}^{n_{x}}$, $y \in \{0,1\}$
 m training examples: $\{(x^{(1)},y^{(1)}),(x^{(1)},y^{(2)}),...,(x^{(m)},y^{(m)})\}$
 $M = M$ train

 M these = $\{1,1,1,\dots,1\}$
 $M = M$ train

 $M = M$ training

 $M = M$ training

(different from ML)

LR

Logistic Regression

Given
$$\times$$
, want $\hat{y} = P(y=1|x)$
 $\times \in \mathbb{R}^{n_{\times}}$
 $\times \in \mathbb{R}^{n_{\times}}$

Parautes: $\bigcup \in \mathbb{R}^{n_{\times}}$, $\bigcup \in \mathbb{R}$.

Output $\hat{y} = G(\underline{\omega}^{T_{\times}} + \underline{b})$

If $z = \log_{p} G(z) \approx 1$

Cost Func

Logistic Regression cost function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Loss (error) function: $\int_{\mathcal{C}} (\hat{y}, y) = \frac{1}{2} (\hat{y} - y)^2$

The second contains $\int_{\mathcal{C}} (\hat{y}, y) = -\log \hat{y} \in \text{Most log} \hat{y} \text{ large } \text{Most } \text{ large } \text{Most } \hat{y} \text{ large } \text{Most } \hat{y} \text{ large } \text{ large } \text{Most } \hat{y} \text{ large } \text{ l$

What is the difference between the cost function and the loss function for logistic regression?

- The cost function computes the error for a single training example; the loss function is the average of the cost functions of the entire training set.
- They are different names for the same function.
- The loss function computes the error for a single training example; the cost function is the average of the loss functions of the entire training set.

Correct

GD

Gradient Descent

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}} \leftarrow \underline{J(w, b)} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$

Want to find w, b that minimize J(w, b)

Andrew Na

Computation Graph for derivatives

right to left

Logistic regression recap

$$z = w^T x + b$$

$$\hat{y} = a = \sigma(z)$$

$$\mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

Logistic regression derivatives

Logistic regression on m examples

$$J=0; d\omega_{i}=0; d\omega_{z}=0; db=0$$

$$Eor i=1 to m$$

$$Z^{(i)}=\omega^{T}x^{(i)}tb$$

Logistic regression cost function

If
$$y = 1$$
: $p(y|x) = \hat{y}$

If $y = 0$: $p(y|x) = 1 - \hat{y}$

$$p(y|x) = \hat{y} \quad (1 - \hat{y}) \quad (1 - \hat{y})$$

$$T = \hat{y} = 0$$
: $p(y|x) = \hat{y} \quad (1 - \hat{y}) \quad (1 - \hat{y}$

maximum likelihood method

Cost on m examples

Log p (lobels in trotog set) = log
$$\prod_{i=1}^{m} p(y^{(i)} | \chi^{(i)})$$

Log p (----) = $\prod_{i=1}^{m} \log p(y^{(i)} | \chi^{(i)})$

Movimum likelihood astimum $\prod_{i=1}^{m} \chi(y^{(i)}, y^{(i)})$

(ost: $J(w,b) = \prod_{i=1}^{m} \chi(y^{(i)}, y^{(i)})$

(minimize)