MAP 433 : Introduction aux méthodes statistiques. Cours 5

25 Septembre 2015

Aujourd'hui

- 1 Méthode d'estimation dans le modèle de régression
 - Modèle de régression
 - Régression à design déterministe
 - La droite des moindres carrés
 - Régression linéaire multiple
 - Propriétés de l'estimateur des Moindres Carrés
 - Le cas gaussien
 - Modèle linéaire gaussien
- 2 Sélection de variables
 - Sélection rétrograde
 - LASSO
- 3 Régression non-linéaire
- 4 Bilan provisoire : modèles paramétriques dominés

Influence d'une variable sur une autre

■ Principe : on part de l'observation d'un *n*-échantillon

$$Y_1,\ldots,Y_n \ (Y_i \in \mathbb{R})$$

- A chaque observation Y_i est associée une observation auxiliaire $X_i \in \mathbb{R}^k$.
- On suspecte l'échantillon

$$X_1,\ldots,X_n \quad (X_i \in \mathbb{R}^k)$$

de contenir la « majeure partie de la variabilité des Y_i ».

Modélisation de l'influence

Si X_i contient toute la variabilité de Y_i , alors Y_i est mesurable par rapport à X_i : il existe $r: \mathbb{R}^k \to \mathbb{R}$ telle que

$$Y_i = r(\boldsymbol{X}_i),$$

mais peu réaliste (ou alors problème d'interpolation numérique).

Alternative : représentation précédente avec erreur additive : on postule

$$Y_i = r(\boldsymbol{X}_i) + \xi_i,$$

 ξ_i erreur aléatoire centrée (pour des raisons d'identifiabilité).

Motivation : meilleure approximation L^2

■ Meilleure approximation L^2 . Si $\mathbb{E}\left[Y^2\right] < +\infty$, la meilleure approximation de Y par une variable aléatoire X-mesurable est donnée par l'espérance conditionnelle $\mathbb{E}\left[Y|X\right]$:

$$\mathbb{E}\left[\left(Y - r(\boldsymbol{X})\right)^{2}\right] = \min_{h} \mathbb{E}\left[\left(Y - h(\boldsymbol{X})\right)^{2}\right]$$

où

$$r(\mathbf{x}) = \mathbb{E}\left[Y|\mathbf{X} = \mathbf{x}\right], \ \mathbf{x} \in \mathbb{R}^k.$$

• On appelle $r(\cdot)$ fonction de régression de Y sur X.

Régression

On définit :

$$\xi = Y - \mathbb{E}[Y|X] \implies \mathbb{E}[\xi] = 0.$$

On a alors naturellement la représentation désirée

$$Y = r(\boldsymbol{X}) + \xi, \quad \mathbb{E}\left[\xi\right] = 0$$

si l'on pose

$$r(x) = \mathbb{E}[Y|X = x], x \in \mathbb{R}^k$$

On observe alors un n-échantillon

$$(\boldsymbol{X}_1, Y_1), \ldots, (\boldsymbol{X}_n, Y_n)$$

οù

$$Y_i = r(\boldsymbol{X}_i) + \xi_i, \ \mathbb{E}\left[\xi_i\right] = 0$$

avec comme paramètre la fonction $r(\cdot)$ + un jeu d'hypothèses

régresseurs aléatoires

Definition

Modèle de régression à design aléatoire = donnée de l'observation

$$(\boldsymbol{X}_1, Y_1), \ldots, (\boldsymbol{X}_n, Y_n)$$

avec $(Y_i, \boldsymbol{X}_i) \in \mathbb{R} \times \mathbb{R}^k$ i.i.d., et

$$Y_i = r(\boldsymbol{\beta}, \boldsymbol{X}_i) + \sigma \xi_i, \ \mathbb{E}\left[\xi_i | \boldsymbol{X}_i\right] = 0, \ \boldsymbol{\theta} \in \Theta \subset \mathbb{R}^d.$$

- **x** \rightsquigarrow $r(\beta, x)$ fonction de régression, connue au paramètre β près.
- **X**_i = variables explicatives, co-variables, prédicteurs; $(X_1, ..., X_n) = \frac{\text{design}}{n}$.

Régression à design déterministe

Modèle de régression à design déterministe

Definition

Modèle de régression à design déterministe = donnée de l'observation

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec $Y_i \in \mathbb{R}, \mathbf{x}_i \in \mathbb{R}^k$, et

$$Y_i = r(\boldsymbol{\beta}, \mathbf{x}_i) + \sigma \xi_i, \ \mathbb{E}_{\theta} \left[\xi_i \right] = 0, \ \theta \in \Theta \subset \mathbb{R}^d \times \mathbb{R}_+.$$

- x; déterministes, donnés (ou choisis) : plan d'expérience, points du « design ».
- Hypothèses sur les ξ_i : à débattre. Pour simplifier, les variables ξ_i sont centrées, $\mathbb{E}_{\theta}[\xi_i] = 0$, décorrélées, $\mathbb{E}_{\theta}[\xi_i \xi_j] = 0$ si $i \neq j$ et de variance unité $\mathbb{E}[\xi_i^2] = 1$ (homoscédasticité).
- Attention! Les Y_i ne sont pas identiquement distribuées.

Régression à design déterministe

Régression gaussienne

■ Modèle de régression à design déterministe :

$$Y_i = r(\beta, \mathbf{x}_i) + \sigma x i_i, \ \theta \in \Theta \subset \mathbb{R}^d \times \mathbb{R}_+.$$

- Supposons : $\xi_i \sim \mathcal{N}(0,1)$, i.i.d.
- On a alors le modèle de régression gaussienne. Comment estimer θ ? On sait expliciter la loi de l'observation $Z = (Y_1, \ldots, Y_n) \Longrightarrow$ appliquer le principe du maximum de vraisemblance.
- La loi de Y_i :

$$\mathbb{P}^{Y_i}(dy) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y - r(\beta, \mathbf{x}_i))^2\right) dy$$

$$\ll dy.$$

Régression à design déterministe

EMV pour régression gaussienne

- Le modèle $\{\mathbb{P}_{\theta}^n = \text{loi de } (Y_1, \dots, Y_n), \theta \in \mathbb{R}^k\}$ est dominé par $\mu^n(dy_1 \dots dy_n) = dy_1 \dots dy_n$.
- D'où

$$\frac{d \mathbb{P}_{\theta}^{n}}{d\mu^{n}}(y_{1},\ldots,y_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}}(y_{i} - r(\boldsymbol{\beta}, \boldsymbol{x}_{i}))^{2}\right)$$

$$= \frac{1}{(\sqrt{2\pi\sigma^{2}})^{n}} \exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n} (y_{i} - r(\boldsymbol{\beta}, \boldsymbol{x}_{i}))^{2}\right).$$

La fonction de vraisemblance

$$\mathcal{L}_n(\theta, Y_1, \dots, Y_n) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - r(\beta, x_i))^2\right)$$

Régression à design déterministe

Estimateur des moindres carrés

Maximiser la vraisemblance en régression gaussienne = minimiser la somme des carrés :

$$\sum_{i=1}^n e(Y_i - r(\beta, \mathbf{x}_i))^2 \to \min_{\theta \in \Theta}.$$

Definition

Estimateur des moindres carrés : tout estimateur $\widehat{\beta}_n$ t.q. $\widehat{\beta}_n \in \arg\min_{\beta \in \Theta} \sum_{i=1}^n (Y_i - r(\beta, \mathbf{x}_i))^2$.

L'EMC est un M-estimateur. Pour le modèle de régression gaussienne :
$$\overline{\mathrm{EMV}} = \overline{\mathrm{EMC}}$$
.

■ Existence, unicité.

Droite de régression

■ Modèle le plus simple $r(\beta, x) = \beta_0 + \beta_1 x$

$$Y_i = \beta_0 + \beta_1 x_i + \xi_i, \quad i = 1, \dots, n$$

avec $\boldsymbol{\beta} = (\beta_0, \beta_1)^T \in \mathbb{R}^2$ et les (x_1, \dots, x_n) données.

L'estimateur des moindres carrés :

$$\hat{\beta}_{\mathsf{n}} = (\hat{\beta}_0, \hat{\beta}_1) = \arg\min_{(b_0, b_1) \in \mathbb{R}^2} \sum_{i=1}^n (Y_i - b_0 - b_1 x_i)^2.$$

Solution explicite

La droite des moindres carrés

Droite de régression

Le minimum est caractérisé par les équations

$$\begin{cases} b_0 + b_1 n^{-1} \sum_{i=1}^n x_i &= n^{-1} \sum_{i=1}^n Y_i \\ b_0 n^{-1} \sum_{i=1}^n x_i + b_1 n^{-1} \sum_{i=1}^n x_i^2 &= n^{-1} \sum_{i=1}^n x_i Y_i . \end{cases}$$

Notons $\bar{x}_n = n^{-1} \sum_{i=1}^n x_i$. Si le déterminant $\Delta_n \neq 0$ où

$$\Delta_n = \left| \begin{array}{cc} 1 & n^{-1} \sum_{i=1}^n x_i \\ n^{-1} \sum_{i=1}^n x_i & n^{-1} \sum_{i=1}^n x_i^2 \end{array} \right| = S_{xx} = n^{-1} \sum_{i=1}^n (x_i^2 - \bar{x}_n)^2, \quad ,$$

alors ce système d'équations a une solution unique :

$$\begin{cases} \widehat{\boldsymbol{\beta}}_{n0} &= \bar{Y}_n - \widehat{\boldsymbol{\beta}}_{n1} \bar{x}_n \\ \widehat{\boldsymbol{\beta}}_{n1} &= \frac{S_{xY}}{S_{xx}} \,, \quad S_{xY} = n^{-1} \sum_{i=1}^n (x_i - \bar{X}_n) (Y_i - \bar{x}_n) \,. \end{cases}$$

La droite des moindres carrés

Régression linéaire simple

La droite des moindres carrés

Régression linéaire simple

Régression linéaire multiple

Régression linéaire multiple (=Modèle linéaire)

■ La fonction de régression est $r(\beta, x_i) = x_i^T \beta$. On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec

$$Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \sigma \xi_i, \quad i = 1, \dots, n$$

où
$$\theta \in \Theta = \mathbb{R}^k$$
, $\mathbf{x}_i \in \mathbb{R}^k$.

Matriciellement

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi}$$

avec

$$\mathbf{Y} = (Y_1 \cdots Y_n)^T$$

$$\boldsymbol{\xi} = (\xi_1 \cdots \xi_n)^T$$

■ \mathbb{X} la matrice $(n \times k)$ dont la *i*-ème ligne est $\mathbb{X}_{i,\cdot} = \mathbf{x}_i^T$.

Régression linéaire multiple

Régression linéaire multiple (=Modèle linéaire)

■ La fonction de régression est $r(\beta, \mathbf{x}_i) = \mathbf{x}_i^T \beta$. On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec

$$Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \sigma \xi_i, \quad i = 1, \dots, n$$

où
$$\theta \in \Theta = \mathbb{R}^k$$
, $\mathbf{x}_i \in \mathbb{R}^k$.

Matriciellement

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi}$$

avec

$$\mathbf{Y} = (Y_1 \cdots Y_n)^T$$

$$\boldsymbol{\xi} = (\xi_1 \cdots \xi_n)^T$$

■ \mathbb{X} la matrice $(n \times k)$ dont la *i*-ème ligne est $\mathbb{X}_{i,\cdot} = \mathbf{x}_i^T$.

Régression linéaire multiple

Régression linéaire multiple (=Modèle linéaire)

■ La fonction de régression est $r(\beta, \mathbf{x}_i) = \mathbf{x}_i^T \beta$. On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec

$$Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \sigma \xi_i, \quad i = 1, \dots, n$$

où
$$\theta \in \Theta = \mathbb{R}^k$$
, $\mathbf{x}_i \in \mathbb{R}^k$.

Matriciellement

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi}$$

avec

$$\mathbf{Y} = (Y_1 \cdots Y_n)^T$$

$$\boldsymbol{\xi} = (\xi_1 \cdots \xi_n)^T$$

■ \mathbb{X} la matrice $(n \times k)$ dont la *i*-ème ligne est $\mathbb{X}_{i,\cdot} = \mathbf{x}_i^T$.

Régression linéaire multiple

EMC en régression linéaire multiple

■ Estimateur des moindres carrés en régression linéaire multiple : tout estimateur $\widehat{\theta}_n^{\text{mc}}$ satisfaisant

$$\sum_{i=1}^{n} (Y_i - \mathbf{x}_i^T \widehat{\boldsymbol{\beta}}_n)^2 = \min_{\mathbf{b} \in \mathbb{R}^k} \sum_{i=1}^{n} (Y_i - \mathbf{x}_i^T \mathbf{b})^2.$$

En notation matricielle :

$$\|\mathbf{Y} - \mathbb{X}\widehat{\boldsymbol{\beta}}_n\|^2 = \min_{\mathbf{b} \in \mathbb{R}^k} \|\mathbf{Y} - \mathbb{X}\boldsymbol{\beta}\|^2$$
$$= \min_{\mathbf{v} \in V} \|\mathbf{Y} - \mathbf{v}\|^2$$

où
$$V = \operatorname{Im}(\mathbb{X}) = \{v \in \mathbb{R}^n : v = \mathbb{X}\mathbf{b}, \ \mathbf{b} \in \mathbb{R}^k\}$$
. Projection orthogonale sur V .

Régression linéaire multiple

Géométrie de l'EMC

L'EMC vérifie

$$\widehat{\boldsymbol{\mathbb{X}}}\widehat{\boldsymbol{\beta}}_{\mathsf{n}} = P_{V}\boldsymbol{\mathsf{Y}}$$

où P_V est le projecteur orthogonal sur V.

■ Comme $\mathbf{Y} - P_V \mathbf{Y} \perp V$, on en déduit les équations normales des moindres carrés :

$$\mathbb{X}^T \mathbb{X} \widehat{\boldsymbol{\beta}}_n = \mathbb{X}^T \boldsymbol{Y}.$$

- Remarques.
 - L'EMC est un Z-estimateur.
 - unicité de $\widehat{\beta}_n$ si la matrice de Gram $\mathbb{X}^T \mathbb{X}$ est inversible (la matrice \mathbb{X} est de rang complet).

Régression linéaire multiple

Géométrie de l'EMC

Proposition

Si X^TX (matrice $k \times k$) inversible, alors $\widehat{\theta}_n^{ mc}$ est unique et

$$\left|\widehat{ heta}_{\mathsf{n}}^{\,\mathsf{mc}} = \left(\mathbb{X}^{\,\mathsf{T}}\mathbb{X}
ight)^{-1}\mathbb{X}^{\,\mathsf{T}}\,\mathbf{Y}$$

- Contient le cas précédent de la droite de régression simple.
- Résultat géometrique, non stochastique.
- $\mathbb{X}^T \mathbb{X} \ge 0$; $\mathbb{X}^T \mathbb{X}$ inversible $\iff \mathbb{X}^T \mathbb{X} > 0$;

$$\mathbb{X}^T \mathbb{X} > 0 \iff \operatorname{rang}(\mathbb{X}) = k \iff \dim(V) = k.$$

$$X^TX > 0 \implies n \ge k$$
.

Régression linéaire multiple

Géométrie de l'EMC

Soit $\mathbb{X}^T \mathbb{X} > 0$. Alors, la matrice $n \times n$

$$A = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T$$

est dite matrice chapeau (hat matrix).

Proposition

 $Si \mathbb{X}^T \mathbb{X} > 0$, alors A est le projecteur sur $V : A = P_V$ et $\operatorname{rang}(A) = k$.

$$A = A^T$$
, $A = A^2$, donc A est un projecteur. $Im(A) = V$, donc $A = P_V$; $rang(P_V) = dim(V) = k$.

Régression linéaire multiple

Géométrie de l'EMC

Soit $X^TX > 0$. Alors, la matrice $n \times n$

$$A = \mathbb{X}(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T$$

est dite matrice chapeau (hat matrix).

Proposition

 $Si \mathbb{X}^T \mathbb{X} > 0$, alors A est le projecteur sur $V : A = P_V$ et $\operatorname{rang}(A) = k$.

Chapeau, car A génère la prévision de $\mathbb{X}\theta$ notée $\widehat{\mathbf{Y}}$:

$$\widehat{\mathbf{Y}} = \mathbb{X} \, \widehat{\theta}_{n}^{\, mc} = A \mathbf{Y}.$$

Propriétés de l'estimateur des Moindres Carrés

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi}$$

- 1 X est de rang complet.
- $\mathbb{E}_{\theta}[\boldsymbol{\xi}] = 0$ pour tout $\theta \in \Theta$ (les erreurs sont centrées)
- **3** La variance des erreurs est constante et les erreurs sont décorrélées $\mathbb{E}_{\theta}[\boldsymbol{\xi}\boldsymbol{\xi}^T] = \sigma^2 I$ (homoscédasticité)
- 4 (optionnel) les erreurs sont gaussiennes.

Propriétés de l'estimateur des Moindres Carrés

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi}$$

- $\mathbf{1}$ \mathbb{X} est de rang complet.
- **2** $\mathbb{E}_{\theta}[\xi] = 0$ pour tout $\theta \in \Theta$ (les erreurs sont centrées)
- 3 La variance des erreurs est constante et les erreurs sont décorrélées $\mathbb{E}_{\theta}[\boldsymbol{\xi}\boldsymbol{\xi}^T] = \sigma^2 I$ (homoscédasticité)
- 4 (optionnel) les erreurs sont gaussiennes.

Propriétés de l'estimateur des Moindres Carrés

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi}$$

- $\mathbf{1}$ \mathbb{X} est de rang complet.
- **2** $\mathbb{E}_{\theta}[\boldsymbol{\xi}] = 0$ pour tout $\theta \in \Theta$ (les erreurs sont centrées)
- 3 La variance des erreurs est constante et les erreurs sont décorrélées $\mathbb{E}_{\theta}[\boldsymbol{\xi}\boldsymbol{\xi}^T] = \sigma^2 I$ (homoscédasticité)
- 4 (optionnel) les erreurs sont gaussiennes.

Propriétés de l'estimateur des Moindres Carrés

$$\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi}$$

- 1 \mathbb{X} est de rang complet.
- **2** $\mathbb{E}_{\theta}[\xi] = 0$ pour tout $\theta \in \Theta$ (les erreurs sont centrées)
- **3** La variance des erreurs est constante et les erreurs sont décorrélées $\mathbb{E}_{\theta}[\boldsymbol{\xi}\boldsymbol{\xi}^T] = \sigma^2 I$ (homoscédasticité)
- 4 (optionnel) les erreurs sont gaussiennes.

MAP 433 : Introduction aux méthodes statistiques. Cours 5

- Méthode d'estimation dans le modèle de régression

Propriétés de l'estimateur des Moindres Carrés

Estimateur sans biais

Théorème

L'estimateur $\widehat{\boldsymbol{\beta}}_n$ est sans biais, i.e. pour tout $\theta \in \Theta$, $\mathbb{E}_{\theta}[\widehat{\boldsymbol{\beta}}_n] = \theta$. De plus, $\operatorname{Cov}_{\theta}(\widehat{\boldsymbol{\beta}}_n) = \sigma^2(\mathbb{X}^T\mathbb{X})^{-1}$.

Propriétés de l'estimateur des Moindres Carrés

Estimateur sans biais

Théorème

L'estimateur $\widehat{\boldsymbol{\beta}}_n$ est sans biais, i.e. pour tout $\theta \in \Theta$, $\mathbb{E}_{\theta}[\widehat{\boldsymbol{\beta}}_n] = \theta$. De plus, $\operatorname{Cov}_{\theta}(\widehat{\boldsymbol{\beta}}_n) = \sigma^2(\mathbb{X}^T\mathbb{X})^{-1}$.

Démonstration.

$$\widehat{\boldsymbol{\beta}}_{\mathsf{n}} = \boldsymbol{\theta} + \left(\mathbb{X}^{\mathsf{T}} \mathbb{X} \right)^{-1} \mathbb{X}^{\mathsf{T}} \boldsymbol{\xi}.$$

On vérifie : $\mathbb{E}_{\theta}[\widehat{\boldsymbol{\beta}}_{\mathsf{n}}] = \theta$,

$$\mathbb{E}_{\theta} \left[\left(\mathbb{X}^{T} \mathbb{X} \right)^{-1} \mathbb{X}^{T} \boldsymbol{\xi} \left(\left(\mathbb{X}^{T} \mathbb{X} \right)^{-1} \mathbb{X}^{T} \boldsymbol{\xi} \right)^{T} \right]$$
$$= \sigma^{2} \left(\mathbb{X}^{T} \mathbb{X} \right)^{-1}.$$

Erreur de prédiction

■ Erreur de prédiction :

$$\hat{\boldsymbol{\xi}} = \boldsymbol{Y} - \mathbb{X} \widehat{\boldsymbol{\beta}}_{n} = \boldsymbol{Y} - \mathbb{X} (\mathbb{X}^{T} \mathbb{X})^{-1} \mathbb{X} \boldsymbol{Y}
= (I - A) \boldsymbol{Y}$$

• Sous \mathbb{P}_{θ} , $\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \sigma \boldsymbol{\xi}$. Donc,

$$\hat{\boldsymbol{\xi}} = (I - A) \mathbb{X} \boldsymbol{\beta} + \sigma (I - A) \boldsymbol{\xi}$$
$$= \sigma (I - A) \boldsymbol{\xi}$$

car AX = X (A is the orthogonal projector on the image of X).

Résidus et variance résiduelle

Theorem

Pour tout $\theta \in \Theta$

- $\mathbb{1} \mathbb{E}_{\theta}[\hat{\boldsymbol{\xi}}] = 0.$
- $\mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \mathbb{X}\boldsymbol{\beta}.$
- $Cov_{\theta}(\hat{\boldsymbol{\xi}}, \hat{\mathbf{Y}}) = 0.$

$$\mathbb{E}_{\theta}[\hat{\boldsymbol{\xi}}] = \sigma \, \mathbb{E}_{\theta}[(I - A)\boldsymbol{\xi}]$$
$$= \sigma(I - A) \, \mathbb{E}_{\theta}[\boldsymbol{\xi}] \, .$$

Résidus et variance résiduelle

Theorem

Pour tout $\theta \in \Theta$

- $\mathbb{E}_{\theta}[\hat{\boldsymbol{\xi}}] = 0.$
- $2 \operatorname{Cov}_{\theta}(\hat{\boldsymbol{\xi}}) = \sigma^2(I A).$
- $\mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \mathbb{X}\boldsymbol{\beta}.$

$$\operatorname{Cov}_{\theta}(\hat{\boldsymbol{\xi}}) = \sigma^{2}(I - A) \mathbb{E}_{\theta}[\boldsymbol{\xi}\boldsymbol{\xi}'](I - A)$$
$$= \sigma^{2}(I - A).$$

Résidus et variance résiduelle

Theorem

Pour tout $\theta \in \Theta$

- $\mathbb{E}_{\theta}[\hat{\boldsymbol{\xi}}] = 0.$
- $2 \operatorname{Cov}_{\theta}(\hat{\boldsymbol{\xi}}) = \sigma^2(I A).$
- $\mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \mathbb{X}\boldsymbol{\beta}.$
- $Cov_{\theta}(\hat{\boldsymbol{\xi}}, \hat{\mathbf{Y}}) = 0.$

$$\mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \mathbb{E}_{\theta}[A(\mathbb{X}\boldsymbol{\beta} + \sigma\boldsymbol{\xi})]$$
$$= A\mathbb{X}\boldsymbol{\beta} + \sigma\,\mathbb{E}_{\theta}[\boldsymbol{\xi}]$$
$$= \mathbb{X}\boldsymbol{\beta}.$$

Résidus et variance résiduelle

Theorem

Pour tout $\theta \in \Theta$

- $\mathbb{E}_{\theta}[\boldsymbol{\hat{\xi}}] = 0.$
- $2 \operatorname{Cov}_{\theta}(\hat{\boldsymbol{\xi}}) = \sigma^2(I A).$
- $\mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \mathbb{X}\boldsymbol{\beta}.$
- $Cov_{\theta}(\hat{\boldsymbol{\xi}}, \hat{\mathbf{Y}}) = 0.$

Démonstration.

On a $\hat{\mathbf{Y}} - \mathbb{E}_{\theta}[\hat{\mathbf{Y}}] = \sigma A \boldsymbol{\xi}$ et donc

$$\operatorname{Cov}_{\theta}(\hat{\boldsymbol{\xi}}, \hat{\mathbf{Y}}) = \sigma^{2} \mathbb{E}_{\theta}[(I - A)\boldsymbol{\xi}\boldsymbol{\xi}'A]$$
$$= \sigma^{2}(I - A)A = 0.$$

Propriétés de l'estimateur des Moindres Carrés

Estimateur sans bians de la variance de l'erreur de prédiction

Théorème

 $\hat{\sigma}_n^2 = (n-p)^{-1} \|\hat{\xi}\|^2$ est un estimateur sans biais de la variance de l'erreur.

Comme
$$(I - A)^2 = (I - A)$$
, nous avons

$$\mathbb{E}_{\theta}[\hat{\sigma}_{n}^{2}] = (n-p)^{-1} \mathbb{E}_{\theta}[\boldsymbol{\xi}^{T}(I-A)\boldsymbol{\xi}]$$
$$= (n-p)^{-1} \mathbb{E}[\text{Tr}((I-A)\boldsymbol{\xi}\boldsymbol{\xi})]$$
$$= \sigma^{2}(n-p)^{-1}\text{Tr}(I-A) = \sigma^{2}.$$

Propriétés de l'estimateur des Moindres Carrés

Prevision

- Un des buts de la régression est de proposer des prédictions pour la réponse lorsque nous avons de nouvelles valeurs des variables explicatives.
- Un prédicteur naturel de la réponse est $\hat{Y}_n(x) = x^T \hat{\beta}_n$

Moyenne et variance de la prévision

Theorem

$$\blacksquare \mathbb{E}_{\theta}[\hat{Y}_{n}(\mathbf{x})] = \mathbf{x}^{T} \boldsymbol{\beta}$$

$$\blacksquare \mathbb{E}_{\theta}[(Y(\mathbf{x}) - \hat{Y}_n(\mathbf{x}))^2] = \sigma^2(1 + \mathbf{x}'(^T\mathbb{X})^{-1}\mathbf{x})$$

$$\hat{Y}_n(\mathbf{x}) = \mathbf{x}^T \widehat{\boldsymbol{\beta}}_n$$
 et $\mathbb{E}_{\theta}[\widehat{\boldsymbol{\beta}}_n] = \boldsymbol{\beta}$

Moyenne et variance de la prévision

Theorem

$$\blacksquare \mathbb{E}_{\theta}[\hat{Y}_n(\mathbf{x})] = \mathbf{x}^T \boldsymbol{\beta}$$

$$\operatorname{Var}_{\theta}(\hat{Y}_{n}(\mathbf{x})) = \sigma^{2} \mathbf{x}^{T} (\mathbb{X}^{T} \mathbb{X})^{-1} \mathbf{x}$$

$$\blacksquare \mathbb{E}_{\theta}[(Y(\mathbf{x}) - \hat{Y}_n(\mathbf{x}))^2] = \sigma^2(1 + \mathbf{x}'(^T\mathbb{X})^{-1}\mathbf{x})$$

$$\hat{Y}_{n}(\mathbf{x}) - \mathbf{x}^{T} \boldsymbol{\beta} = \mathbf{x}^{T} \mathbb{X}^{T} \mathbb{X}^{-1} \mathbb{X}^{T} \mathbf{Y} - \mathbf{x}^{T} \boldsymbol{\beta}$$

$$= \mathbf{x}^{T} \mathbb{X}^{T} \mathbb{X}^{-1} \mathbb{X}^{T} (\mathbb{X} \boldsymbol{\beta} + \sigma \boldsymbol{\xi}) - \mathbf{x}^{T} \boldsymbol{\beta}$$

$$= \sigma \mathbf{x}^{T} \mathbb{X}^{T} \mathbb{X}^{-1} \mathbb{X}^{T} \boldsymbol{\xi}$$

Moyenne et variance de la prévision

Theorem

- $\blacksquare \mathbb{E}_{\theta}[\hat{Y}_n(\mathbf{x})] = \mathbf{x}^T \boldsymbol{\beta}$
- $\blacksquare \mathbb{E}_{\theta}[(Y(\mathbf{x}) \hat{Y}_n(\mathbf{x}))^2] = \sigma^2(1 + \mathbf{x}'(^T\mathbb{X})^{-1}\mathbf{x})$

$$\mathbb{E}_{\theta}[(Y(\mathbf{x}) - \hat{Y}_n(\mathbf{x}))^2] = \mathbb{E}_{\beta}[(Y(\mathbf{x}) - \mathbb{E}_{\beta}[\hat{Y}_n(\mathbf{x})])^2] + \operatorname{Var}_{\theta}(\hat{Y}_n(\mathbf{x}))$$
$$= \mathbb{E}_{\beta}[(Y(\mathbf{x}) - \mathbf{x}^T \beta)^2] + \sigma^2 \mathbf{x}^T (^T \mathbb{X})^{-1} \mathbf{x}$$

```
MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression
```

Diagnostic de régression

FIGURE - Régression à un facteur : endurance / âge

```
MAP 433 : Introduction aux méthodes statistiques. Cours 5
```

Méthode d'estimation dans le modèle de régression

Propriétés de l'estimateur des Moindres Carrés

Diagnostic de régression

```
> summary(model2)
call:
lm(formula = endur$endurance ~ endur$activevears)
Residuals:
    Min
              10 Median
-23,7296 -7,0671 0,5579 5,7454 31,0829
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 18.3921 1.5998 11.496 < 2e-16 ***
                             0.1369 5.571 6.7e-08 ***
endur$activeyears 0.7625
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.21 on 243 degrees of freedom
Multiple R-squared: 0.1133, Adjusted R-squared: 0.1096
F-statistic: 31.04 on 1 and 243 DF. p-value: 6.697e-08
```

 $\ensuremath{\mathrm{FIGURE}}$ – Régression à un facteur : endurance / nombre d'années de pratique

```
MAP 433 : Introduction aux méthodes statistiques. Cours 5

Méthode d'estimation dans le modèle de régression
```

Diagnostic de régression

```
> summary(model3)
call:
lm(formula = endur\u00e4endurance ~ endur\u00e4age + endur\u00e4activeyears)
Residuals:
     Min
              1Q Median
-21.7994 -6.9040 0.5701 5.6326 27.2279
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                              3.2054 9.171 < 2e-16 ***
                 29.3952
endur $age
                              0.0655 -3.925 0.000113 ***
                  -0.2571
endur Sactive vears 0.9163
                           0.1386 6.610 2.44e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.919 on 242 degrees of freedom
Multiple R-squared: 0.1663, Adjusted R-squared: 0.1594
F-statistic: 24.14 on 2 and 242 DF, p-value: 2.754e-10
```

FIGURE - Régression à un deux facteurs : endurance / âge + nombre d'années de pratique

└ Modèle linéaire gaussien

Régression gaussienne

Régression gaussienne : on suppose $\boldsymbol{\xi} \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$. Alors on a plusieurs proriétés remarquables :

■ Estimateur des moindres carrés $\widehat{\theta}_n^{\,\text{mc}}$ et estimateur du maximum de vraisemblance coïncident.

Preuve : écriture de la fonction de vraisemblance.

On sait expliciter la loi exacte (non-asymptotique!) de \(\hat{\theta}_n^{mc}\).
 Ingrédient: loi des vecteurs gaussiens sont caractérisés par leur moyenne et matrice de variance-covariance.

└ Modèle linéaire gaussien

Cadre gaussien : loi des estimateurs

- Hyp. 1 : $\boldsymbol{\xi} \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$.
- Hyp. 2 : $X^TX > 0$.

Proposition

- (i) $\widehat{\theta}_{n}^{\text{mc}} \sim \mathcal{N}(\theta, \sigma^{2}(\mathbb{X}^{T}\mathbb{X})^{-1})$
- (ii) $\|\mathbf{Y} \mathbb{X} \widehat{\theta}_{n}^{\,\mathrm{mc}}\|^{2} \sim \sigma^{2} \chi^{2}(n-k)$ loi du Chi 2 à n-k degrés de liberté
- (iii) $\widehat{\theta}_{n}^{\,mc}$ et $\mathbf{Y} \mathbb{X} \, \widehat{\theta}_{n}^{\,mc}$ sont indépendants.
 - Preuve: Thm. de Cochran (Poly, page 18). Si $\xi \sim \mathcal{N}(0, \mathrm{Id}_n)$ et A_j matrices $n \times n$ projecteurs t.q. $A_j A_i = 0$ pour $i \neq j$, alors: $A_j \xi \sim \mathcal{N}(0, A_j)$, indépendants, $\|A_i \xi\|^2 \sim \chi^2(\mathrm{Rang}(A_i))$.

- Méthode d'estimation dans le modèle de régression

Modèle linéaire gaussien

Preuve de la proposition

■ (ii)

$$\begin{aligned} \boldsymbol{Y} - \mathbb{X} \, \widehat{\boldsymbol{\theta}}_{\mathsf{n}}^{\,\mathsf{mc}} &= \mathbb{X} \big(\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}_{\mathsf{n}}^{\,\mathsf{mc}} \, \big) + \boldsymbol{\xi} \\ &= -\mathbb{X} \big(\mathbb{X}^T \mathbb{X} \big)^{-1} \mathbb{X}^T \boldsymbol{\xi} + \boldsymbol{\xi} \\ &= \sigma \big(\mathsf{Id}_n - A \big) \boldsymbol{\xi}', \ \boldsymbol{\xi}' \sim \mathcal{N}(0, \mathsf{Id}_n). \end{aligned}$$

• (iii) le vecteur $(\widehat{\theta}_n^{\,\text{mc}}, \mathbf{Y} - \mathbb{X} \, \widehat{\theta}_n^{\,\text{mc}})$ est gaussien. On calcule explicitement sa matrice de variance-covariance.

Modèle linéaire gaussien

Propriétés de l'EMC : cadre gaussien

Estimateur de la variance σ^2 :

$$\widehat{\sigma}_{n}^{2} = \frac{\|\mathbf{Y} - \mathbb{X}\widehat{\theta}_{n}^{\,\text{mc}}\|^{2}}{n - k} = \frac{1}{n - k} \sum_{i=1}^{n} \left(Y_{i} - (\widehat{\theta}_{n}^{\,\text{mc}})^{T} \mathbf{x}_{i}\right)^{2}$$

D'après la dernière Proposition :

- $\widehat{\sigma}_n^2/\sigma^2 \sim \chi^2(n-k)$ loi du Chi 2 à n-k degrés de liberté
- C'est un estimateur sans biais :

$$\mathbb{E}_{\theta}\left[\widehat{\sigma}_{n}^{2}\right] = \sigma^{2}.$$

• $\widehat{\sigma}_n^2$ est indépendant de $\widehat{\theta}_n^{\,\text{mc}}$.

└─ Modèle linéaire gaussien

Propriétés de l'EMC : cadre gaussien

Lois des coordonnées de $\widehat{\theta}_n^{\,\text{mc}}$:

$$(\widehat{\theta}_{\mathsf{n}}^{\,\,\mathsf{mc}})_{j} - \theta_{j} \sim \mathcal{N} ig(0, \sigma^{2} b_{j} ig)$$

où b_j est le jème élément diagonal de $(X^TX)^{-1}$.

$$\frac{(\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}})_{j} - \theta_{j}}{\widehat{\sigma}_{n} \sqrt{b_{j}}} \sim t_{n-k}$$

loi de Student à n - k degrés de liberté.

$$t_q = rac{\xi}{\sqrt{\eta/q}}$$

où $q \geq 1$ un entier, $\xi \sim \mathcal{N}(0,1)$, $\eta \sim \chi^2(q)$ et ξ indépendant de η .

MAP 433 : Introduction aux méthodes statistiques. Cours 5

-Méthode d'estimation dans le modèle de régression

Modèle linéaire gaussien

Exemple de données de régression

Résultats de traitement statistique initial

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.576	59.061	< 2e - 16 * **
age	-10.012	59.749	-0.168	0.867000
sex	-239.819	61.222	-3.917	0.000104 * **
bmi	519.840	66.534	7.813	4.30 <i>e</i> - 14 * **
map	324.390	65.422	4.958	1.02e - 06 * **
tc	-792.184	416.684	-1.901	0.057947
ldl	476.746	339.035	1.406	0.160389
hdl	101.045	212.533	0.475	0.634721
tch	177.064	161.476	1.097	0.273456
ltg	751.279	171.902	4.370	1.56e - 05 * **
glu	67.625	65.984	1.025	0.305998

⁻ Méthode d'estimation dans le modèle de régression

Modèle linéaire gaussien

Modèle linéaire gaussien

Questions statistiques

■ Sélection de variables. Lesquelles parmi les 10 variables :

- sont significatives? Formalisation mathématique : trouver (estimer) l'ensemble $N = \{j : \theta_i \neq 0\}$.
- Prévison. Un nouveau patient arrive avec son vecteur des 10 variables $x_0 \in \mathbb{R}^{10}$. Donner la prévison de la réponse Y =état du patient dans 1 an.

RSS (Residual Sum of Squares)

Modèle de régression

$$Y_i = r(\theta, \mathbf{x}_i) + \xi_i, \quad i = 1, \dots, n.$$

■ Résidu : si $\widehat{\theta}_n$ est un estimateur de θ ,

$$\widehat{\xi}_i = Y_i - r(\widehat{\theta}_n, \mathbf{x}_i)$$
 résidu au point i .

RSS: Residual Sum of Squares, somme résiduelle des carrés. Caractérise la qualité d'approximation.

$$RSS(=RSS_{\widehat{\theta}_n}) = \|\widehat{\xi}\|^2 = \sum_{i=1}^n (Y_i - r(\widehat{\theta}_n, \mathbf{x}_i))^2.$$

■ En régression linéaire : $\mathbb{RSS} = \|\mathbf{Y} - \mathbb{X} \, \widehat{\theta}_n \, \|^2$.

Sélection rétrograde

- On se donne un critère d'élimination de variables (plusieurs choix de critère possibles...).
- On élimine une variable, la moins significative du point de vue du critère choisi.
- On calcule l'EMC $\widehat{\theta}_{n,k-1}^{\mathrm{mc}}$ dans le nouveau modèle, avec seulement les k-1 paramétres restants, ainsi que le RSS :

$$RSS_{k-1} = \|\mathbf{Y} - \mathbb{X}\widehat{\theta}_{n,k-1}^{\mathrm{mc}}\|^2.$$

• On continue à éliminer des variables, une par une, jusqu'à la stabilisation de RSS : $RSS_m \approx RSS_{m-1}$.

Données de diabète : sélection rétrograde

- Sélection "naïve" : {sex,bmi,map,ltg}
- Sélection par Backward Regression : Critère d'élimination : plus grande valeur de Pr(>|t|).

	Estimate	Std. Error	t value	Pr(> t)
				11(/ ٤)
(Intercept)	152.133	2.576	59.061	< 2e - 16 * **
age	-10.012	59.749	-0.168	0.867000
sex	-239.819	61.222	-3.917	0.000104 * **
bmi	519.840	66.534	7.813	4.30 <i>e</i> – 14 * **
map	324.390	65.422	4.958	1.02e - 06 * **
tc	-792.184	416.684	-1.901	0.057947
ldl	476.746	339.035	1.406	0.160389
hdl	101.045	212.533	0.475	0.634721
tch	177.064	161.476	1.097	0.273456
ltg	751.279	171.902	4.370	1.56e - 05 * **
glu	67.625	65.984	1.025	0.305998

Sélection de variables

Sélection rétrograde

Données de diabète : Backward Regression

Backward Regression : Itération 2.

Critère d'élimination : plus grande valeur de Pr(>|t|).

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.573	59.128	< 2e - 16
sex	-240.835	60.853	-3.958	0.000104
bmi	519.905	64.156	5.024	8.85 <i>e</i> — 05
map	322.306	65.422	4.958	7.43 <i>e</i> – 07
tc	-790.896	416.144	-1.901	0.058
ldl	474.377	338.358	1.402	0.162
hdl	99.718	212.146	0.470	0.639
tch	177.458	161.277	1.100	0.272
ltg	749.506	171.383	4.373	1.54 <i>e</i> — 05
glu	67.170	65.336	1.013	0.312

Sélection rétrograde

Données de diabète : Backward Regression

Backward Regression : Itération 5 (dernière).

Variables sélectionnées :

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	152.133	2.572	59.159	< 2e - 16
sex	-226.511	59.857	-3.784	0.000176
bmi	529.873	65.620	8.075	6.69e - 15
map	327.220	62.693	5.219	2.79 <i>e</i> – 07
tc	-757.938	160.435	-4.724	3.12 <i>e</i> – 06
ldl	538.586	146.738	3.670	0.000272
ltg	804.192	80.173	10.031	< 2e - 16

Sélection de variables : Backward Regression

Discussion de Backward Regression:

- Méthode de sélection purement empirique, pas de justification théorique.
- Application d'autres critères d'élimination en Backward Regression peut amener aux résultats différents.
 Exemple. Critère Cp de Mallows-Akaike : on élimine la variable j qui réalise

$$\min_{j} \left(\mathrm{RSS}_{m,(-j)} + 2\widehat{\sigma}_{n}^{2} m \right).$$

Sélection de variables : LASSO

LASSO = Least Absolute Shrinkage and Selection Operator

Estimateur LASSO : tout estimateur $\widehat{\theta}_n^L$ vérifiant

$$\widehat{\theta}_n^L \in \arg\min_{\theta \in \mathbb{R}^k} \left(\sum_{i=1}^n \left(Y_i - \theta^T x_i \right)^2 + \lambda \sum_{j=1}^k |\theta_j| \right) \text{ avec } \lambda > 0.$$

- Si $\mathbb{X}^T \mathbb{X} > 0$, l'estimateur LASSO $\widehat{\theta}_n^L$ est unique.
- Estimateur des moindres carrés pénalisé. Pénalisation par $\sum_{j=1}^{k} |\theta_j|$, la norme ℓ_1 de θ .

Sélection de variables : LASSO

- Deux utilisations de LASSO :
 - **Estimation** de θ : alternative à $\widehat{\theta}_n^{\text{mc}}$ si k > n.
 - Sélection de variables : on ne retient que les variables qui correspondent aux coordonnées non-nulles du vecteur $\widehat{\theta}_n^L$.
- LASSO admet une justification théorique : sous certaines hypothèses sur la matrice X,

$$\lim_{n\to\infty} \mathbb{P}\{\widehat{N}_n = N\} = 1,$$

où
$$N = \{j : \theta_j \neq 0\}$$
 et $\widehat{N}_n = \{j : \widehat{\theta}_{n,j}^L \neq 0\}$.

LASSO

Application de LASSO: "regularization path"

LASSO

Données de diabète : LASSO

Application aux données de diabète.

L'ensemble de variables sélectionné par LASSO :

```
\{sex,bmi,map,tc,hdl,ltg,glu\}
```

Backward Regression:

Sélection naïve :

Prévision

Modèle de régression

$$Y_i = r(\theta, \mathbf{x}_i) + \xi_i, \quad i = 1, \dots, n.$$

Régression linéaire : $r(\theta, x_i) = \theta^T x_i$. Exemple : x_i vecteur de 10 variables explicatives (age, sex, bmi, ...) pour patient i.

- Problème de prévision : Un nouveau patient arrive avec son vecteur des 10 variables $\mathbf{x}_0 \in \mathbb{R}^{10}$. Donner la prévison de la valeur de fonction de régression $r(\theta, \mathbf{x}_0) = \theta^T \mathbf{x}_0$ (=état du patient dans 1 an).
- Soit $\widehat{\theta}_n$ un estimateur de θ . Prévision par substitution : $\widehat{Y} = r(\widehat{\theta}_n, x_0)$.
- Question statistique : quelle est la qualité de la prévision ? Intervalle de confiance pour $r(\theta, x_0)$ basé sur \widehat{Y} ?

4周) 4 きょ 4 きょ

Prévision : modèle linéaire gaussienne

- Traitement sur l'exemple : $r(\theta, \mathbf{x}) = \theta^T \mathbf{x}$, régression linéaire gaussienne et $\widehat{\theta}_n = \widehat{\theta}_n^{\,\mathrm{mc}}$. $\Longrightarrow \widehat{Y} = \mathbf{x}_0^T \widehat{\theta}_n^{\,\mathrm{mc}}$
- Hyp. 1 : $\boldsymbol{\xi} \sim \mathcal{N}(0, \sigma^2 \mathrm{Id}_n)$.
- Hyp. 2 : $X^TX > 0$.

Proposition

- (i) $\widehat{Y} \sim \mathcal{N}(\mathbf{x}_0^T \theta, \sigma^2 \mathbf{x}_0^T (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{x}_0)$
- (ii) $\widehat{Y} \mathbf{x}_0^T \theta$ et $\mathbf{Y} \mathbb{X} \widehat{\theta}_n^{\,\mathrm{mc}}$ sont indépendants.

Rappel : $\|\mathbf{Y} - \mathbb{X} \widehat{\theta}_{\mathbf{n}}^{\,\mathrm{mc}}\|^2 \sim \sigma^2 \chi^2(\mathbf{n} - \mathbf{k})$ loi du Chi 2 à $\mathbf{n} - \mathbf{k}$ degrés de liberté.

Prévision : modèle linéaire gaussienne

D'après la Proposition,

$$\eta := rac{\widehat{Y} - \mathbf{x}_0^T heta}{\sqrt{\sigma^2 \mathbf{x}_0^T ig(\mathbb{X}^T \mathbb{X}ig)^{-1} \mathbf{x}_0}} \sim \mathcal{N}(0, 1).$$

- On replace σ^2 inconnu par $\widehat{\sigma}_n^2 = \|\mathbf{Y} \mathbb{X} \widehat{\theta}_n^{\,\mathrm{mc}}\|^2/(n-k)$.
- t-statistique :

$$t := \frac{\widehat{Y} - \mathbf{x}_0^T \theta}{\sqrt{\widehat{\sigma}_n^2 \mathbf{x}_0^T (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{x}_0}} = \frac{\eta}{\sqrt{\chi/(n-k)}} \sim t_{n-k},$$

loi de Student à n-k degrés de liberté, car $\eta \sim \mathcal{N}(0,1)$, $\chi := \|\mathbf{Y} - \mathbb{X}\widehat{\theta}_{\mathbf{n}}^{\mathrm{mc}}\|^2/\sigma^2 \sim \chi^2(n-k)$ et $\eta\chi$.

Prévision : intervalle de confiance

$$\mathbb{P}\left(-q_{1-\frac{\alpha}{2}}(t_{n-k}) \leq \frac{\widehat{Y} - \mathbf{x}_0^T \theta}{\sqrt{\widehat{\sigma}_n^2 \mathbf{x}_0^T (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{x}_0}} \leq q_{1-\frac{\alpha}{2}}(t_{n-k})\right) \\
= \mathbb{P}(-q_{1-\frac{\alpha}{2}}(t_{n-k}) \leq t \leq q_{1-\frac{\alpha}{2}}(t_{n-k})) = 1 - \alpha.$$

 \implies intervalle de confiance de niveau $1 - \alpha$ pour $r(\theta, x_0) = x_0^T \theta$ est $[r_L, r_U]$, où :

$$\begin{array}{lll} \textbf{\textit{r}}_{\textit{L}} & = & \widehat{Y} - q_{1-\frac{\alpha}{2}}(t_{n-k})\sqrt{\widehat{\sigma}_{n}^{2}\textbf{\textit{x}}_{0}^{\intercal}\big(\mathbb{X}^{\intercal}\mathbb{X}\big)^{-1}\textbf{\textit{x}}_{0}}, \\ \textbf{\textit{r}}_{\textit{U}} & = & \widehat{Y} + q_{1-\frac{\alpha}{2}}(t_{n-k})\sqrt{\widehat{\sigma}_{n}^{2}\textbf{\textit{x}}_{0}^{\intercal}\big(\mathbb{X}^{\intercal}\mathbb{X}\big)^{-1}\textbf{\textit{x}}_{0}}. \end{array}$$

Limites des moindres carrés et du cadre gaussien

- Calcul explicite (et efficace) de l'EMC limité à une fonction de régression linéaire.
- Modèle linéaire donne un cadre assez général :
 - Modèle polynomial,
 - Modèles avec interactions...
- Hypothèse de gaussianité = cadre asymptotique implicite.
- Besoin d'outils pour les modèles à réponse Y discrète.

Régression linéaire non-gaussienne

Modèle de régression linéaire

$$Y_i = \theta^T \mathbf{x}_i + \xi_i, \quad i = 1, \dots, n.$$

- Hyp. 1': ξ_i i.i.d., $\mathbb{E}[\xi_i] = 0$, $\mathbb{E}[\xi_i^2] = \sigma^2 > 0$.
- Hyp. 2': $\mathbb{X}^T \mathbb{X} > 0$, $\lim_n \max_{1 \le i \le n} x_i^T (\mathbb{X}^T \mathbb{X})^{-1} x_i = 0$.

Proposition (Normalité asymptotique de l'EMC)

$$\sigma^{-1}\big(\mathbb{X}^T\mathbb{X}\big)^{1/2}(\widehat{\theta}_n^{\ \text{mc}}-\theta)\overset{d}{\longrightarrow}\mathcal{N}\big(0,\mathrm{Id}_k\big),\quad n\to\infty.$$

A comparer avec le cadre gaussien :

$$\sigma^{-1}(\mathbb{X}^T\mathbb{X})^{1/2}(\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mc}}-\theta)\sim\mathcal{N}\big(0,\mathrm{Id}_k\big)$$
 pour tout n .

Régression non-linéaire

On observe

$$(\boldsymbol{x}_1, Y_1), \ldots, (\boldsymbol{x}_n, Y_n),$$

οù

$$Y_i = r(\theta, \mathbf{x}_i) + \xi_i, \quad i = 1, \ldots, n$$

avec

$$x_i \in \mathbb{R}^k$$
, et $\theta \in \Theta \subset \mathbb{R}^d$.

■ Si $\xi_i \sim_{\text{i.i.d.}} \mathcal{N}(0, \sigma^2)$,

$$\mathcal{L}_n(\theta, Y_1, \dots, Y_n) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(Y_i - r(\theta, \boldsymbol{x}_i)\right)^2\right)$$

et l'estimateur du maximum de vraisemblance est obtenu en minimisant la fonction

$$\theta \leadsto \sum_{i=1}^{n} (Y_i - r(\theta, \mathbf{x}_i))^2 \ge \epsilon \delta + \epsilon \delta + \epsilon \delta = \delta \delta$$

Moindre carrés non-linéaires

Definition

■ M-estimateur associé à la fonction de contraste $\psi: \Theta \times \mathbb{R}^k \times \mathbb{R} \to \mathbb{R}$: tout estimateur $\widehat{\theta}_n$ satisfaisant

$$\sum_{i=1}^{n} \psi(\widehat{\theta}_n, \boldsymbol{x}_i, Y_i) = \max_{\boldsymbol{a} \in \Theta} \sum_{i=1}^{n} \psi(\boldsymbol{a}, \boldsymbol{x}_i, Y_i).$$

- Estimateur des moindres carrés non-linéaires : associé au contraste $\psi(a, \mathbf{x}, y) = -(y r(a, \mathbf{x}))^2$.
- Extension des résultats en densité → théorèmes limites pour des sommes de v.a. indépendantes non-équidistribuées.

Modèle à réponse binaire

On observe

$$(x_1, Y_1), \ldots, (x_n, Y_n), Y_i \in \{0, 1\}, x_i \in \mathbb{R}^k.$$

Modélisation via la fonction de régression

$$\mathbf{x} \leadsto p_{\mathbf{x}}(\theta) = \mathbb{E}_{\theta} [Y | \mathbf{X} = \mathbf{x}] = \mathbb{P}_{\theta} [Y = 1 | \mathbf{X} = \mathbf{x}]$$

Représentation

$$Y_i = p_{\mathbf{x}_i}(\theta) + (Y_i - p_{\mathbf{x}_i}(\theta))$$

= $r(\theta, \mathbf{x}_i) + \xi_i$

avec
$$r(\theta, \mathbf{x}_i) = p_{\mathbf{x}_i}(\theta)$$
 et $\xi_i = Y_i - p_{\mathbf{x}_i}(\theta)$.

■ $\mathbb{E}_{\theta}\left[\xi_{i}\right]=0$ mais structure des ξ_{i} compliquée (dépendance en θ).

Modèle à réponse discrète

• Y_i v.a. de Bernoulli de paramètre $p_{x_i}(\theta)$. Vraisemblance

$$\mathcal{L}_n(\theta, Y_1, \ldots, Y_n) = \prod_{i=1}^n p_{\mathbf{x}_i}(\theta)^{Y_i} (1 - p_{\mathbf{x}_i}(\theta))^{1 - Y_i}$$

- → méthodes de résolution numérique.
- Régression logistique (très utile dans les applications)

$$p_{\mathbf{x}}(\theta) = \psi(\mathbf{x}^{\mathsf{T}}\,\theta),$$

$$\psi(t) = \frac{e^t}{1 + e^t}, \ t \in \mathbb{R}$$
 fonction logistique.

Régression logistique et modèles latents

■ Représentation équivalente de la régression logistique : on observe

$$Y_i = 1_{\{Y_i^* > 0\}}, \quad i = 1, \dots, n$$

(les x_i sont donnés), et Y_i^* est une variable latente ou cachée,

$$Y_i^{\star} = \boldsymbol{\theta}^T \mathbf{x}_i + U_i, \quad i = 1, \dots, n$$

avec $U_i \sim_{\text{i.i.d.}} F$, où

$$F(t)=rac{1}{1+e^{-t}},\,\,t\in\mathbb{R}\,.$$

$$\mathbb{P}_{\theta} \left[Y_{i}^{\star} > 0 \right] = \mathbb{P}_{\theta} \left[\mathbf{x}_{i}^{T} \theta + U_{i} > 0 \right]$$
$$= 1 - \mathbb{P}_{\theta} \left[U_{i} \leq -\mathbf{x}_{i}^{T} \theta \right]$$

Bilan provisoire : modèles paramétriques dominés

■ Modèle de densité : on observe

$$X_1,\ldots,X_n\sim_{\mathsf{i.i.d}} \mathbb{P}_{\theta}, \ \theta\in\Theta\subset\mathbb{R}^d$$
.

Estimateurs : moments, Z- et M-estimateurs, EMV.

■ Modèle de régression : on observe

$$Y_i = r(\theta, \mathbf{x}_i) + \xi_i, \quad i = 1, \dots, n, \quad \xi_i \text{ i.i.d.}, \quad \theta \in \Theta \subset \mathbb{R}^d.$$

Estimateurs:

- Si $r(\theta, \mathbf{x}) = \theta^T \mathbf{x}$, EMC (coïncide avec l'EMV si les ξ_i gaussiens)
- Sinon, *M*-estimateurs, EMV...
- Autres méthodes selon des hypothèses sur le « design »...

Bilan provisoire (cont.) : précision d'estimation

 $\widehat{\theta}_n$ estimateur de θ : précision, qualité de $\widehat{\theta}_n$? Approche par région-intervalle de confiance

■ Pour $\alpha \in (0,1)$, on construit $\mathcal{C}_{n,\alpha}(\widehat{\theta}_n)$ ne dépendant pas de θ (observable) tel que

$$\mathbb{P}_{\theta}\left[\theta \in \mathcal{C}_{n,\alpha}(\widehat{\theta}_n)\right] \ge 1 - \alpha$$

asymptotiquement lorsque $n \to \infty$, uniformément en θ ... La précision de l'estimateur est le diamètre (moyen) de $C_{n,\alpha}(\widehat{\theta}_n)$.

■ Par exemple : $C_{n,\alpha}(\widehat{\theta}_n)$ = boule de centre $\widehat{\theta}_n$ et de rayon à déterminer

Bilan provisoire : modèles paramétriques dominés

En pratique, une information non-asymptotique de type

$$\mathbb{E}\left[\|\widehat{\theta}_n - \theta\|^2\right] \le c_n(\theta)^2,$$

ou bien asymptotique de type

$$v_n(\widehat{\theta}_n - \theta) \stackrel{d}{\longrightarrow} Z_{\theta}, \quad n \to \infty$$

(avec $v_n \to \infty$) permet « souvent » de construire un(e) région-intervalle de confiance.