-

Name	When to Use	Formula (PMF/PDF)	Characteristics	Example 1	Example 2
Uniform (Continuous)	When any value in a contin- uous range is equally likely	$f(x) = \frac{1}{b-a}, x \in [a, b]$	Flat density, Mean: $(a+b)/2$, Var: $(b-a)^2/12$	If your friend says they'll arrive between 1:00 and 2:00 PM, what's the probability they'll arrive between 1:15 and 1:30?	If your dog stops ran- domly along a 100-foot path, what's the probabil- ity they'll stop within 10 feet of the start?
Normal	When data is symmetrically spread around the average, common in nature	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	Bell-shaped, Parameters: $\mu, \sigma, 68-95-99.7$ rule	If heights of your friends follow a normal distribution with mean 5'8" (68 inches) and standard deviation 3 inches, what's the probability a randomly selected friend is taller than 6 feet?	If your commute time is normally distributed with mean 25 minutes and standard deviation 4 minutes, what's the probability your commute takes between 20 and 30 minutes?
Exponential	When modeling time between random, independent events occurring at a constant rate		Memoryless, Mean: $1/\lambda$, Skewed right	If you receive text messages at a rate of 4 per hour ($\lambda = 4$), what's the probability you'll wait more than 20 minutes for the next text?	If customers enter a coffee shop at a rate of 12 per hour ($\lambda = 12$), what's the probability that the next customer arrives within 2 minutes of you?
Gamma	When modeling time until multiple events in a Poisson process occur	,	Generalizes Exponential, Mean: α/λ , Flexible shapes	If Uber rides arrive at a rate of 8 per hour ($\lambda=8$) and you need 3 rides today ($\alpha=3$), what's the probability it takes less than 30 minutes to get all 3 rides?	If you find four-leaf clovers at a rate of 2 per hour ($\lambda = 2$), what's the probability it takes between 1 and 2 hours to find 4 clovers ($\alpha = 4$)?
Beta	When modeling random probabilities and proportions between 0 and 1	$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$	Bounded [0,1], Many shapes possible, Used in Bayesian stats	Based on your past behavior ($\alpha = 2, \beta = 3$), what's the probability you'll save between 30% and 50% of your budget this month?	If your Netflix watching pattern follows $\alpha = 3, \beta = 7$, what's the probability you'll watch more than 40% of your watchlist?
Chi-Square	When testing independence or comparing observed vs ex- pected frequencies	$\frac{f(x)}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-x/2} =$	Skewed right, Used in hypothesis tests, Parameter: k (df)	You believe your music app's shuffle isn't truly random. After noting the genres of 100 songs played, you calculate a chi-square statistic of 15.2 with 9 degrees of freedom. What is the p-value and what can you conclude?	You wonder if births in your family are evenly distributed across months. For 36 family birthdays, you calculate a chi-square value of 23.6 with 11 degrees of freedom. What is the p-value and what can you conclude?
Student's t	When estimating means with small samples and unknown variance	$f(x) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2}$	Like normal, but heavier 2 tails, Parameter: ν (df)	From your last 8 grocery trips, you spent a mean of \$85 with standard deviation \$12. Calculate a 95% confidence interval for your true average grocery bill.	You walked route A 6 times (mean 18.2 minutes, SD 2.1) and route B 6 times (mean 16.8 minutes, SD 1.9). Test if route B is significantly faster at the 0.05 level.

Name	When to Use	Formula (PMF/PDF)	Characteristics	Example 1	Example 2
F-distribution	When comparing variability	Complex PDF	Right-skewed, Non-negative,	You track your weight loss	You timed how long 5 peo-
	between two or more groups		Parameters: d_1, d_2 (df)	with exercise routine A	ple took to make a recipe
	(ANOVA, regression)			(10 measurements, vari-	with two different instruc-
				ance 4.2) and routine B	tions. Method 1 had vari-
				(8 measurements, variance	ance 12.6 and method 2
				9.6). Test if routine B has	had variance 3.4. Test if
				significantly more variable	method 1 produces signif-
				results at the 0.05 level.	icantly more variable cook-
					ing times at the 0.05 level.
Log-Normal	When data is positively skewed and values can't be	$f(x) = \frac{1}{2\sigma^{2}} e^{-\frac{(\ln x - \mu)^{2}}{2\sigma^{2}}}$	Skewed right, log of data is	If house prices in your	If daily social media usage
	skewed and values can't be	20 \ 2 \ 1	normal, Parameters: μ, σ	neighborhood follow a log-	(in minutes) follows a log-
	negative			normal distribution with	normal distribution with
				parameters $\mu = 12.8$ and	parameters $\mu = 4.1$ and
				$\sigma = 0.4$, what's the	$\sigma = 0.8$, what's the prob-
				probability a randomly se-	ability someone uses social
				lected house costs less than	media for more than 120
				\$400,000?	minutes (2 hours) per day?