

BILBOKO INGENIARITZA ESKOLA

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Grado en Ingeniería Informática de Gestión y Sistemas de Información

CONVOCATORIA EXTRAORDINARIA

Curso 2018/2019

1 de julio de 2019

Nombre y apellidos:

Grupo:

EJERCICIO 1

(2.5 puntos)

Sea ($\mathbb{P}_3(x), <,>$) el espacio vectorial euclídeo con el siguiente producto escalar:

$$\langle p(x) = ax^3 + bx^2 + cx + d, q(x) = a'x^3 + b'x^2 + c'x + d' \rangle = aa' + bb' + cc' + cd' + dc'$$

Y sean los subespacios:

$$S = \{ p(x) = ax^{3} + bx^{2} + cx + d \in \mathbb{P}_{3}(x) / p(x) \perp x^{2} \quad \forall a, b, c, d \in \mathbb{R} \}$$

$$T = \{ p(x) = ax^{3} + bx^{2} + cx + d \in \mathbb{P}_{3}(x) / p'(0) = p''(1) \quad \forall a, b, c, d \in \mathbb{R} \}$$

- (1.) Determine una base y dimensión del subespacio vectorial S.
- (2.) Obtenga una base y dimensión del subespacio vectorial $S \cap T$.
- (3.) Logre una base y dimensión del subespacio vectorial S + T.
- (4.) ¿Son S y T complementarios? Razone la respuesta.

EJERCICIO 2

(2.5 puntos)

Sea la siguiente matriz $A \in M_{4\times 4}(\mathbb{R})$:

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

- (1.) Calcule para qué valores del parámetro $a \in \mathbb{R}$ la matriz es diagonalizable.
- (2.) ¿Existe algún vector propio de la matriz A tal que $A \cdot \overline{x} = \overline{0}$? Si la respuesta es afirmativa obtenga el conjunto de vectores propios asociados a la matriz A que cumplan que $A \cdot \overline{x} = \overline{0}$. Si la respuesta es negativa razone la respuesta.
- (3.) Sea S el subespacio generado por los vectores columna de la matriz A. Calcule la dimensión del subespacio S en función del valor de $a \in \mathbb{R}$. Para los distintos casos, obtenga una base S y su dimensión.
- (4.) Para a=1 obtenga la matriz de paso para obtener las coordenadas de un vector en la base Bs a partir de las coordenadas en la base canónica de \mathbb{R}^4 .

BILBOKO INGENIARITZA ESKOLA

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Grado en Ingeniería Informática de Gestión y Sistemas de Información

EJERCICIO 3

(2.5 puntos)

Sea $(M_{2x2}(\mathbb{R}), <,>)$ el espacio vectorial euclídeo con el producto escalar usual, y sea el subespacio vectorial:

$$U \equiv \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2x2}(R) / la \ matriz \ A \ es \ antisimétrica \right\}$$

- (1.) Determine una base y dimensión del subespacio vectorial \boldsymbol{U} .
- (2.) Obtenga una base y dimensión del subespacio vectorial ortogonal a U, U^{\perp}
- (3.) Obtenga la mejor aproximación de la matriz $X = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$ en el subespacio vectorial U^{\perp} . Calcule el error cometido en la aproximación.

EJERCICIO 4

(2.5 puntos)

Responda las siguientes cuestiones razonando las respuestas:

- (1.) Sea la matriz $A = \begin{pmatrix} 1 & m & 0 \\ 0 & 1 & m \\ 1 & 0 & n \end{pmatrix}$
 - a) Hallar los valores de m y n para que A sea idempotente
 - b) Hallar los valores de m y n para que A sea involutiva
 - c) Hallar los valores de m y n para que A sea periódica de período 2
- (2.) Sea el sistema de ecuaciones lineales definido por: $\begin{cases} x y = 2 \\ a \cdot x + y + 2z = 0 \\ x y + a \cdot z = 1 \end{cases}$

Clasifica el sistema en función de los valores del parámetro a:

(3.) Consideremos la matriz $B = \begin{pmatrix} 2 & 0 & m \\ -1 & 0 & -1 \\ 5 & m+4 & -4 \end{pmatrix}$.

¿Para qué valores de m existe B^{-1} ?

- (4.) Sea el vector \vec{x} del subespacio S y el vector $\vec{x'}$ la mejor aproximación \vec{x} en el subespacio S^{\perp} . ¿De qué particularidad nos percatamos al obtener $\vec{x'}$?
- (5.) ¿Un sistema con 3 incógnitas y 4 ecuaciones es un sistema compatible indeterminado?