Data Analytics and Science, Milestone-(2)

HEART DATASET

MACHINE LEARNING

df = pd.read csv("C:/kgisl class/MILESTONE - 2/heart.csv")

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import mean_squared_error,r2_score,confusion_matrix,classification_report,accuracy_score
from sklearn.preprocessing import StandardScaler
```

Exploring the HEART Dataset with different (CLASSIFICATION ALGORITHMS)

We have a data which classified if patients have heart disease or not according to features in it. We will try to use this data to create a model which tries predict if a patient has this disease or not. We will use classification algorithms.

10	112	1870	1.000			J TOILE	a) ilear er	- 10					
age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
62	0	0	138	294	1	1	106	0	1.9	1	3	2	0
+	3	+0	(44)	-		-	***	-	+		-		-
59	1	1	140	221	0	1	164	1	0.0	2	0	2	1
60	1	0	125	258	0	0	141	1	2.8	1	1	3	0
47	1	0	110	275	0	0	118	1	1.0	1	1	2	0
50	0	0	110	254	0	0	159	0	0.0	2	0	2	1
	52 53 70 61 62 59 60 47	52 1 53 1 70 1 61 1 62 0 59 1 60 1 47 1	52 1 0 53 1 0 70 1 0 61 1 0 62 0 0 59 1 1 60 1 0 47 1 0	52 1 0 125 53 1 0 140 70 1 0 145 61 1 0 148 62 0 0 138	52 1 0 125 212 53 1 0 140 203 70 1 0 145 174 61 1 0 148 203 62 0 0 138 294 59 1 1 140 221 60 1 0 125 258 47 1 0 110 275	52 1 0 125 212 0 53 1 0 140 203 1 70 1 0 145 174 0 61 1 0 148 203 0 62 0 0 138 294 1 59 1 1 140 221 0 60 1 0 125 258 0 47 1 0 110 275 0	52 1 0 125 212 0 1 53 1 0 140 203 1 0 70 1 0 145 174 0 1 61 1 0 148 203 0 1 62 0 0 138 294 1 1 59 1 1 140 221 0 1 60 1 0 125 258 0 0 47 1 0 110 275 0 0	52 1 0 125 212 0 1 168 53 1 0 140 203 1 0 155 70 1 0 145 174 0 1 125 61 1 0 148 203 0 1 161 62 0 0 138 294 1 1 106 - - - - - - - - 59 1 1 140 221 0 1 164 60 1 0 125 258 0 0 141 47 1 0 110 275 0 0 118	52 1 0 125 212 0 1 168 0 53 1 0 140 203 1 0 155 1 70 1 0 145 174 0 1 125 1 61 1 0 148 203 0 1 161 0 62 0 0 138 294 1 1 106 0 59 1 1 140 221 0 1 164 1 60 1 0 125 258 0 0 141 1 47 1 0 110 275 0 0 118 1	52 1 0 125 212 0 1 168 0 1.0 53 1 0 140 203 1 0 155 1 3.1 70 1 0 145 174 0 1 125 1 2.6 61 1 0 148 203 0 1 161 0 0.0 62 0 0 138 294 1 1 106 0 1.9 59 1 1 140 221 0 1 164 1 0.0 60 1 0 125 258 0 0 141 1 2.8 47 1 0 110 275 0 0 118 1 1.0	52 1 0 125 212 0 1 168 0 1.0 2 53 1 0 140 203 1 0 155 1 3.1 0 70 1 0 145 174 0 1 125 1 2.6 0 61 1 0 148 203 0 1 161 0 0.0 2 62 0 0 138 294 1 1 106 0 1.9 1 59 1 1 140 221 0 1 164 1 0.0 2 60 1 0 125 258 0 0 141 1 2.8 1 47 1 0 110 275 0 0 118 1 1.0 1	52 1 0 125 212 0 1 168 0 1.0 2 2 53 1 0 140 203 1 0 155 1 3.1 0 0 70 1 0 145 174 0 1 125 1 2.6 0 0 61 1 0 148 203 0 1 161 0 0.0 2 1 62 0 0 138 294 1 1 106 0 1.9 1 3 - - <td>52 1 0 125 212 0 1 168 0 1.0 2 2 3 53 1 0 140 203 1 0 155 1 3.1 0 0 3 70 1 0 145 174 0 1 125 1 2.6 0 0 3 61 1 0 148 203 0 1 161 0 0.0 2 1 3 62 0 0 138 294 1 1 106 0 1.9 1 3 2 </td>	52 1 0 125 212 0 1 168 0 1.0 2 2 3 53 1 0 140 203 1 0 155 1 3.1 0 0 3 70 1 0 145 174 0 1 125 1 2.6 0 0 3 61 1 0 148 203 0 1 161 0 0.0 2 1 3 62 0 0 138 294 1 1 106 0 1.9 1 3 2

Exp	lorin	g the d	ataset 🔢	df.	head	i()														
45	hana]:		age	sex	ср	trestbps	chol	fbs	restecg	thalac	h exang	oldpeak	slope	ca	thal	target	8	
uT.S	shape			0	52	1	0	125	212	0	1	16	58 0	1.0	2	2	3	0		
(102	25, 1	4)		1	53	1	0	140	203	1	0	15	55 1	3.1	0	0	3	0		
				2	70	1	0	145	174	0	1	12	25 1	2.6	0	0	3	0		
df.d	type	S		3	61	1	0	148	203	0	1	16	51 0	0.0	2	1	3	0		
age			t64 t64	4	62	0	0	138	294	1	1	10	06 0	1.9	1	3	2	0		
sex cp				df.	tail	()														
tres	stbps		t64]:		ā	ige s	ex	cp trestl	ps c	hol 1	fbs reste	ecg th	alach ex	ang oldpe	eak slo	ope	ca t	hal tar	get	
chol fbs	L		t64 t64	102	20	59	1	1	140	221	0	1	164	1	0.0	2	0	2	1	
103		2111					e 13		7.45				****					-		2222
[7]:	df.ir	nfo()		1:	df.de	scri	ibe()													
	/ala	I manda		- D	ı:			age		sex		ср	trestbps	chol	I	fb	os	restecg	th:	alacl
			s.core.fram 025 entries			count	10	25.000000	1025.0	00000	1025.000	0000 10	25.000000	1025.00000	1025.	00000	0 10	25.000000	1025.00)000(
	_		(total 14 c			mean	16	54.434146	0.6	95610	0.942	2439 1	31.611707	246.00000	0.	14926	8	0.529756	149.11	4146
	#	Column	Non-Null	Cou	n	std	ij	9.072290	0.4	60373	1.029	9641	17.516718	51.59251	0.	35652	27	0.527878	23.00)572
					-	min	f.)	29.000000	0.0	00000	0.000	0000	94.000000	126.00000	0.	00000	00	0.000000	71.00	0000
	0	age	1025 non-			25%		48.000000	0.0	00000	0.000	0000 1	20.000000	211.00000	0.	00000	00	0.000000	132.00	0000
	1 2	sex cp	1025 non- 1025 non-			50%		56.000000	1.0	00000	1.000	0000 1	30.000000	240.00000	0.	00000	00	1.000000	152.00	0000
	3	trestbps				75%	133	61.000000	1.0	00000	2.000	0000 1	40.000000	275.00000	0.	00000	00	1.000000	166.00	0000
	4	chol	1025 non-			max		77.000000	1.0	00000	3.000	0000 2	200.000000	564.00000	1.	00000	00	2.000000	202.00	0000
	5	fbs	1025 non-	nul	1	4 6														
	6	restecg	1025 non-	nul	1	- 2/														

```
# this is Nu
                      df['target'].unique()
 df.columns
                      array([0, 1], dtype=int64)
: Index(['age', 'sex', 'c
       'exang', 'oldpea
                      df['oldpeak'].unique()
      dtvpe='object')
                   ]: array([1. , 3.1, 2.6, 0. , 1.9, 4.4, 0.8, 3.2, 1.6, 3. , 0.7, 4.2, 1
 df.isnull().sum()
                              2.2, 1.1, 0.3, 0.4, 0.6, 3.4, 2.8, 1.2, 2.9, 3.6, 1.4, 0.2, 2
                              5.6, 0.9, 1.8, 6.2, 4., 2.5, 0.5, 0.1, 2.1, 2.4, 3.8, 2.3, 1
 age
                              3.51)
 sex
          0
 ср
                   ]: df['age'].unique()
 trestbps
 chol
                   : array([52, 53, 70, 61, 62, 58, 55, 46, 54, 71, 43, 34, 51, 50, 60, 6
                              63, 42, 44, 56, 57, 59, 64, 65, 41, 66, 38, 49, 48, 29, 37, 4
 fbs
                              76, 40, 39, 77, 69, 35, 74], dtype=int64)
 restecg
          0
 thalach
                   |: df['sex'].unique()
 exang
 oldpeak
          0
                   |: array([1, 0], dtype=int64)
 slope
 ca
                   ]: df['cp'].unique()
 thal
 target
 dtype: int64
```

Data Visualization ¶

Importing essential Libraries

import matplotlib.pyplot as nlt ...

%matplotlib inline
import seaborn as sns

```
fig = plt.figure(figsize
ax = fig.gca()
g = df.hist(ax=ax)
```


outlayer detection

```
import seaborn as sns
#outlier detection
for col in df:
   plt.figure(figsize=(3, 3))
   sns.boxplot(y=df[col])
   plt.title(f'Box Plot of {col}')
   plt.show()
```

Box Plot of age

[31]:	q1=r.quant	ile(0.25)		IQR=	q3 - q1													
[31]:	cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target Name: 0.25	48.0 0.0 120.0 211.0 0.0 0.0 132.0 0.0 0.0 1.0 0.0 2.0 0.0 dtype: float64		age sex cp tres chol fbs rest thal exan oldp slop ca thal targ dtyp	ecg ach g eak e e		.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	r>q1+1.5*I(QR))									
	q3			а														
[32]:	sex cp	61.0 1.0 2.0		df1=df df1	[~((r	≺q1-	1.5*	·IQR) (r>	q1+1.5	*IQR)).any(a	xis =1)]						
	trestbps chol fbs	140.0 275.0 0.0]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	restecg thalach exang	1.0 166.0 1.0		3	61	1	0	148	202									
	oldpeak							140	203	0	1	161	0	0.0	2	1	3	0
		1.8		5	58	0	0	100	248	0	0	161 122	0	0.0		0	3 2	0
	slope ca thal	1.8		8	46	0	0	100 120	248 249		0	122 144		1.0 0.8		0		1
	slope ca	1.8 2.0 1.0		8 17	46 54	1	0 0	100 120 124	248 249 266	0 0	0 0	122 144 109	0 0 1	1.0 0.8 2.2	1 2 1	0 0 1	3	1 0 0
	slope ca	1.8 2.0 1.0		8	46	1	0	100 120	248 249	0	0	122 144	0	1.0 0.8	1 2	0 0 1	2	1 0 0
	slope ca	1.8 2.0 1.0		8 17 18 	46 54 50 	1 1 0 	0 0 0 1	100 120 124 120 	248 249 266 244 	0 0 0 0	0 0 0 1	122 144 109 162	0 0 1 0	1.0 0.8 2.2 1.1	1 2 1 2 	0 0 1 0	2 3 3 2 	1 0 0 1
	slope ca	1.8 2.0 1.0		8 17 18 	46 54 50 47	1 1 0 	0 0 0 1 	100 120 124 120 	248 249 266 244 204	0 0 0 0	0 0 1 1	122 144 109 162 143	0 0 1 0 0	1.0 0.8 2.2 1.1 	1 2 1 2 2	0 0 1 0 	2 3 3 2 2	1 0 0 1 1
	slope ca	1.8 2.0 1.0		8 17 18 1019	46 54 50 47 59	1 1 0 1	0 0 0 1 0	100 120 124 120 112 140	248 249 266 244 204 221	0 0 0 0	0 0 1 1	122 144 109 162 143 164	0 0 1 0 0 1	1.0 0.8 2.2 1.1 0.1	1 2 1 2 2	0 0 1 0 0	2 3 3 2 2	1 0 0 1 1
	slope ca	1.8 2.0 1.0		8 17 18 	46 54 50 47	1 0 1 1	0 0 0 1 	100 120 124 120 112 140 110	248 249 266 244 204	0 0 0 0	0 0 1 1	122 144 109 162 143	0 0 1 0 0	1.0 0.8 2.2 1.1 	1 2 1 2 2 2	0 0 1 0 	2 3 3 2 2	1 0 0 1 1

univarient analysis

```
df1.groupby(['target']).count()
[37]:
                      cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
      target
                                  173 173
                                                      173
                                                             173
                                                                           173 173 173
         0 173 173 173
                             173
                                              173
                                                                     173
          1 301 301 301
                             301 301 301
                                              301
                                                      301
                                                             301
                                                                     301
                                                                           301 301 301
      a=df1.groupby(['target']).size().reset_index(name='count')
[38]:
      а
                                 x=filter['target']
                                 plt.hist(x,bins=2,color="skyblue")
[38]:
        target count
                                 plt.title("Histogram --- clarity of target")
      0
                 173
                                 plt.xlabel("target")
                                                                                                       Histogram
                                 plt.ylabel("count")
                 301
      1
            1
                                 plt.show()
```

Bivariate Analysis ¶

```
p=sns.pairplot(df1)

plt.figure(figsize=(10,10))
sns.heatmap(df1.corr(),annot=True,cmap='coolwarm')
plt.title('Correlation Matrix Heatmap')
plt.show()
```

x=df.iloc[:,:-1]
х

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3
		•					·				_	_	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3
			•		202			4.54					
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2
•••								***					
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3
				440				440					
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3
1024	JT		U	120	100	U	'	113	U	1.4			3
1025 rd)WS ×	13 cc	olum	ns									
								• •					
Tro	n ski	Leari	n.mo	odel_sel	lecti	on 1	mport t	rain_te	est_sp	IIτ			

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)

x_train.shape

(820, 13)

LogisticRegression

```
from sklearn.model selection import train test split
# Define your feature columns and target column
x = df.drop('target', axis=1)
v = df['target']
# Split the data into training and testing sets
x train, x test, y train, y test = train test split(x, y, test size=0.2, random state=42)
          from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import accuracy_score, classification_report
          # Initialize and train the model
           logistic model = LogisticRegression()
           logistic model.fit(x train, y train)
          # Make predictions
          y pred logistic = logistic model.predict(x test)
          # Evaluate the model
           accuracy_logistic = accuracy_score(y_test, y_pred_logistic)
           report_logistic = classification_report(y_test, y_pred_logistic)
           print("Logistic Regression Accuracy:", accuracy logistic)
           print("Logistic Regression Classification Report:\n", report_logistic)
           Logistic Regression Accuracy: 0.7853658536585366
           Logistic Regression Classification Report:
                          precision
                                       recall f1-score
                                                          support
                      0
                              0.85
                                        0.70
                                                  9.76
                                                             102
                              0.74
                                        0.87
                      1
                                                  0.80
                                                             103
                                                  0.79
                                                              205
               accuracy
                                                  0.78
                                                              205
              macro avg
                              0.79
                                        0.78
```

0.78

205

0.79

weighted avg

0.79

WITH HP

```
from sklearn.model selection import GridSearchCV
# Define parameter grid
param_grid_logistic = {
    'C': [0.01, 0.1, 1, 10, 100],
    'penalty': ['l1', 'l2']
# Initialize and train the model with GridSearch
grid search logistic = GridSearchCV(LogisticRegression(max iter=1000), param grid logistic, cv=5, n jobs=-1)
grid_search_logistic.fit(x_train, y_train)
# Best parameters and best score
print("Best Parameters for Logistic Regression:", grid_search_logistic.best_params_)
print("Best Score for Logistic Regression:", grid_search_logistic.best score )
# Make predictions
y_pred_logistic_tuned = grid_search_logistic.predict(x_test)
                                           Mai Handa Mai H
# Evaluate the model
                                        Best Parameters for Logistic Regression: {'C': 1, 'penalty': '12'}
accuracy logistic tuned = accuracy score
report logistic tuned = classification re
                                         Best Score for Logistic Regression: 0.85
print("Logistic Regression Accuracy (With
print("Logistic Regression Classification
                                         Logistic Regression Accuracy (With Tuning): 0.7951219512195122
                                         Logistic Regression Classification Report (With Tuning):
                                                        precision recall f1-score
                                                                                          support
                                                                                  0.78
                                                             0.85
                                                                        0.72
                                                                                              102
                                                             0.76
                                                                        0.87
                                                                                  0.81
                                                                                              103
                                                                                  0.80
                                                                                              205
                                             accuracy
                                                                                              205
                                                             0.80
                                                                        0.79
                                                                                  0.79
                                            macro avg
                                                             0.80
                                                                                              205
                                        weighted avg
                                                                        0.80
                                                                                  0.79
```

RandomForestClassifier

0.99

0.99

0.99

0.99

accuracy macro avg

weighted avg

```
from sklearn.ensemble import RandomForestClassifier
# Initialize and train the model.
rf model = RandomForestClassifier()
rf model.fit(x train, y train)
# Make predictions
y pred rf = rf model.predict(x test)
# Evaluate the model
accuracy rf = accuracy score(y test, y pred rf)
report rf = classification report(y test, y pred rf)
print("Random Forest Accuracy:", accuracy rf)
print("Random Forest Classification Report:\n", report rf)
Random Forest Accuracy: 0.9853658536585366
Random Forest Classification Report:
                            recall f1-score
               precision
                                               support
           0
                   0.97
                             1.00
                                       0.99
                                                   102
           1
                   1.00
                             0.97
                                       0.99
                                                   103
```

0.99

0.99

0.99

205

205

205

WITH HP

from sklearn.model selection import GridSearchCV

```
# Define parameter grid
param grid svm = {
   'C': [0.1, 1, 10],
   'kernel': ['linear'],
# Initialize and train the model with GridSearch
grid_search_svm = GridSearchCV(SVC(), param_grid_svm, cv=5, n_jobs=-1)
grid_search_svm.fit(x_train, y_train)
# Best parameters and best score
print("Best Parameters for SVM:", grid_search_svm.best_params_)
print("Best Score for SVM:", grid_search_svm.best_score_)
# Make predictions
y_pred_svm_tuned = grid_search_svm.predict(x_test)
# Evaluate the model
accuracy_svm_tuned = accuracy_score(y_test, y_pred_svm_tuned)
report_svm_tuned = classification_report(y_test, y_pred_svm_tuned)
print("SVM Accuracy (With Tuning):", accuracy_svm_tuned)
print("SVM Classification Report (With Tuning):\n", report_svm_tuned)
                                               Best Parameters for SVM: {'C': 0.1, 'kernel': 'linear'}
                                               Best Score for SVM: 0.8512195121951219
                                               SVM Accuracy (With Tuning): 0.7951219512195122
                                               SVM Classification Report (With Tuning):
                                                                                   recall f1-score support
                                                                  precision
```

0

1

accuracy

macro avg weighted avg 0.88

0.74

0.81

0.81

0.68

0.91

0.79

0.80

0.77

0.82

0.80

0.79

0.79

102

103

205

205

205

KNN Classifier

```
from sklearn.neighbors import KNeighborsClassifier
# Initialize and train the model
knn_model = KNeighborsClassifier()
knn model.fit(x train, y train)
# Make predictions
y pred knn = knn model.predict(x test)
# Evaluate the model
accuracy knn = accuracy score(y test, y pred knn)
report knn = classification report(y test, y pred knn)
print("KNN Accuracy:", accuracy knn)
print("KNN Classification Report:\n", report knn)
KNN Accuracy: 0.7317073170731707
KNN Classification Report:
               precision recall f1-score
                                              support
           0
                   0.73
                             0.73
                                       0.73
                                                   102
                   0.73
                             0.74
                                       0.73
           1
                                                   103
                                       0.73
                                                   205
    accuracy
                   0.73
                             0.73
                                       0.73
                                                   205
   macro avg
weighted avg
                                       0.73
                                                   205
                   0.73
                             0.73
```

With HyperParametric Tuning


```
33]:
    from sklearn.metrics import confusion_matrix
     knn= KNeighborsClassifier(n_neighbors=3)
    knn.fit(x_train,y_train)
    pred = knn.predict(x_test)
    print('With K=3')
    print('\n')
     print(confusion_matrix(y_test,pred))
    print(classification_report(y_test,pred))
    With K=3
     [[91 11]
      [ 9 94]]
                   precision
                                recall f1-score
                                                   support
                                  0.89
                        0.91
                                            0.90
                                                        102
                0
                        0.90
                                  0.91
                                            0.90
                1
                                                        103
                                            0.90
                                                        205
         accuracy
                        0.90
                                  0.90
                                            0.90
                                                        205
        macro avg
```

0.90

205

weighted avg

0.90

0.90

Exploring the CAR Dataset with different (REGRESSION ALGORITHMS)

We have a data which is car or not according to features in it. We will try to use this data to create a model which tries predict types of car and price. We will use regression algorithms.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

df=pd.read_csv("C:/kgisl class/MILESTONE - 2/car details v4.csv")
df

	Make	Model	Price	١
0	Honda	Amaze 1.2 VX i-VTEC	505000	2
1	Maruti Suzuki	Swift DZire VDI	450000	2

: df.describe()

	p.d					
	Price	Year	Kilometer	Length	Width	n Height
count	2.059000e+03	2059.000000	2.059000e+03	1995.000000	1995.000000	1995.000000
mean	1.702992e+06	2016.425449	5.422471e+04	4280.860652	1767.991980	1591.735338
std	2.419881e+06	3.363564	5.736172e+04	442.458507	135.265825	136.073956
min	4.900000e+04	1988.000000	0.000000e+00	3099.000000	1475.000000	1165.000000
25%	4.849990e+05	2014.000000	2.900000e+04	3985.000000	1695.000000	1485.000000
50%	8.250000e+05	2017.000000	5.000000e+04	4370.000000	1770.000000	1545.000000
75%	1.925000e+06	2019.000000	7.200000e+04	4629.000000	1831.50000	
max	3.500000e+07	2022.000000	2.000000e+06	5569.000000	2220.00000	df.isnull().su
						Make Model Price
df=d df	f.drop(columns	=['Length','	Width','Heigh	t','Fuel Tan	c Capacity	Year Kilometer Fuel Type Transmission
						Color Owner Seller Type
						Engine Max Power Max Torque
						Drivetrain Seating Capaci dtype: int64

```
for i in categorical:
    df[i].fillna(df[i].mode()[0], inplace=True)
df['Seating Capacity']=df['Seating Capacity'].fillna(df['Seating Capacity'].median())
df.describe()
                                                                  df.isnull().sum()
              Price
                                    Kilometer Seating Capacity
                           Year
                                                                  Make
                                                                                       0
                                                                  Model
count 2.059000e+03 2059.000000
                                 2.059000e+03
                                                   2059.000000
                                                                  Price
                                                                  Year
      1.702992e+06 2016.425449 5.422471e+04
                                                      5.296746
                                                                  Kilometer
  std 2.419881e+06
                        3.363564 5.736172e+04
                                                      0.811029
                                                                  Fuel Type
                                                                  Transmission
  min 4.900000e+04 1988.000000 0.000000e+00
                                                      2.000000
                                                                  Color
                                                                  Owner
      4.849990e+05 2014.000000
                                 2.900000e+04
                                                      5.000000
                                                                  Seller Type
                                                                  Engine
 50% 8.250000e+05 2017.000000 5.000000e+04
                                                      5.000000
                                                                  Max Power
                                                                                       0
                                                                  Max Torque
 75% 1.925000e+06 2019.000000
                                 7.200000e+04
                                                      5.000000
                                                                  Drivetrain
      3.500000e+07 2022.000000 2.000000e+06
                                                      8.000000
                                                                  Seating Capacity
                                                                                       0
                                                                  dtype: int64
```

categorical=['Engine','Max Power','Max Torque','Drivetrain']

Outlier Detection

```
numerical_columns=['Price','Year','Kilometer','Seating Capacity']

import seaborn as sns
#outlier detection

for col in numerical_columns:
    plt.figure(figsize=(3, 3))
    sns.boxplot(y=df[col])
    plt.title(f'Box Plot of {col}')
    plt.show()
```



```
# Calculate Q1 (25th percentile) and Q3 (75th percentile) for numerical columns
Q1 = df[numerical_columns].quantile(0.25)
Q3 = df[numerical_columns].quantile(0.75)
IQR = Q3 - Q1
IQR
Price 1440001.0
```

Year 5.0
Kilometer 43000.0
Seating Capacity 0.0
dtype: float64

```
 outlier\_mask = ((df[numerical\_columns] < (Q1 - 1.5 * IQR)) \mid (df[numerical\_columns] > (Q3 + 1.5 * IQR)))
```

Check which rows contain outliers
outliers = outlier_mask.any(axis=1)
print(f"Number of rows with outliers: {outliers.sum()}")

Number of rows with outliers: 563

df_cleaned = df[~outliers]

Check the shape of the cleaned data print(f"Original data shape: {df.shape print(f"Cleaned data shape: {df cleaned

Original data shape: (2059, 15) Cleaned data shape: (1496, 15)

df_cle	eaned														
	Make	Model	Price	Year	Kilometer	Fuel Type	Transmission	Color	Owner	Seller Type	Engine	Max Power	Max Torque	Drivetrain	Seating Capacity
0	Honda	Amaze 1.2 VX i-VTEC	505000	2017	87150	Petrol	Manual	Grey	First	Corporate	1198 cc	87 bhp @ 6000 rpm	109 Nm @ 4500 rpm	FWD	5.0
1	Maruti Suzuki	Swift DZire VDI	450000	2014	75000	Diesel	Manual	White	Second	Individual	1248 cc	74 bhp ⊚ 4000 rpm	190 Nm @ 2000 rpm	FWD	5.0
2	Hyundai	i10 Magna 1,2 Kappa2	220000	2011	67000	Petrol	Manual	Maroon	First	Individual	1197 cc	79 bhp @ 6000 rpm	112.7619 Nm @ 4000 rpm	FWD	5.0
3	Toyota	Glanza G	799000	2019	37500	Petrol	Manual	Red	First	Individual	1197 cc	82 bhp @ 6000 rpm	113 Nm @ 4200 rpm	PWD	5.0
5	Maruti Suzuki	Ciaz ZXi	675000	2017	73315	Petrol	Manual	Grey	First	Individual	1373 cc	91 bhp @ 6000 rpm	130 Nm @ 4000 rpm	FWD	5.0
101	-	744	-	144	- 4		-	1,50	- 1	-	- 4	100	-		160
2051	Maruti Suzuki	Vitara Brezza VXi	925000	2021	48000	Petrol	Manual	White	First	Individual	1462 cc	103 bhp @ 6000 rpm	138 Nm @ 4400 rpm	FWD	5,0
2052	Hyundai	i20 Sportz 1,4 CRDI	409999	2014	68000	Diesel	Manual	Silver	First	Individual	1396 cc	90@4000	220@1750	FWD	5.0
2053	Maruti Suzuki	Ritz Vxi (ABS) BS-IV	245000	2014	79000	Petrol	Manual	White	Second	Individual	1197 cc	85 bhp @ 6000 rpm	113 Nm @ 4500 rpm	FWD	5.0

Univariate Analysis

```
[18]: # Histograms
      df[['Price', 'Year', 'Kilometer', 'Engine', 'Max Power', 'Max Torque']].hist(figsize=(12, 10))
```


Bivariate analysis

```
19]: # Function to extract numeric values from strings
     def extract_numeric(value):
          try:
             return float(value.split()[0].replace(',', ''))
          except:
              return None
     # Apply the function to convert columns
     df_cleaned['Engine'] = df_cleaned['Engine'].apply(extract_numeric)
     df_cleaned['Max Power'] = df_cleaned['Max Power'].apply(extract_numeric)
     df_cleaned['Max Torque'] = df_cleaned['Max Torque'].apply(extract_numeric)
```

```
df_cleaned.isnull().sum()
```

```
Make
                     0
Model
                     0
Price
Year
Kilometer
Fuel Type
Transmission
Color
Owner
Seller Type
Engine
                     0
                     99
Max Power
Max Torque
                    99
                     0
Drivetrain
Seating Capacity
                     0
dtype: int64
```

```
df_cleaned['Max Power'].fillna(df_cleaned['Max Power'].median(), inplace=True)
df cleaned 'Max Torque'].fillna(df cleaned 'Max Torque'].median(), inplace=True)
 df_cleaned = df_cleaned.dropna()
 # Remove non-numeric characters and convert to numeric
 df['Engine'] = df['Engine'].replace('[^\d]', '', regex=True).astype(float)
 df['Max Power'] = df['Max Power'].replace('[^\d]', '', regex=True).astype(float)
 df['Max Torque'] = df['Max Torque'].replace('[^\d]', '', regex=True).astype(float)
 corr matrix = df[['Price', 'Year', 'Kilometer', 'Engine', 'Max Power', 'Max Torque']].corr()
 corr_matrix
                                                                   # Heatmap of correlation matrix
                                                                   plt.figure(figsize=(10, 8))
                                                                   sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
                                                 Engine Max Powe plt.title('Correlation Matrix')
                  Price
                             Year Kilometer
                                                                   plt.show()
              1.000000
                         0.311400
                                    -0.150825
                                               0.608255
                                                            0.753338
                                                                                                     Correlation Matrix
                                                                                                                                                                 1.00
              0.311400
                        1.000000 -0.296547
                                               0.021308
                                                            0.126709
   Kilometer
             -0.150825 -0.296547
                                     1.000000
                                               0.058900
                                                           -0.03239: 방
                                                                                         0.31
                                                                                                      -0.15
                                                                                                                                             -0.053
                                                                                                                                                                - 0.75
     Engine
              0.608255
                         0.021308
                                    0.058900
                                               1.000000
                                                            0.84824
                                    -0.032393
                                               0.848248
                                                            1.000000
  Max Power
              0.753338
                         0.126709
                                                           -0.06855( )
                                                                            0.31
                                                                                                       -0.3
                                                                                                                   0.021
                                                                                                                                 0.13
                                                                                                                                              -0.11
 Max Torque -0.053103 -0.112548 -0.003623 -0.068478
                                                                                                                                                                - 0.50
                                                                                                                                                                - 0.25
                                                                    Klometer
                                                                            -0.15
                                                                                         -0.3
                                                                                                                   0.059
                                                                                                                                -0.032
                                                                                                                                             -0.0036
                                                                                                                                                                - 0.00
                                                                    Engine
                                                                                         0.021
                                                                                                      0.059
                                                                                                                                 0.85
                                                                                                                                             -0.068
                                                                                                                                                                - -0.25
                                                                   Max Power
                                                                                         0.13
                                                                                                     -0.032
                                                                                                                                             -0.069
                                                                                                                                                                -0.50
                                                                    Max Torque
                                                                                                                                                                - -0.75
                                                                           -0.053
                                                                                         -0.11
                                                                                                                   -0.068
                                                                                                                                -0.069
                                                                                                     -0.0036
                                                                                                                                                                -1.00
                                                                            Price
                                                                                         Year
                                                                                                    Kilometer
                                                                                                                  Engine
                                                                                                                              Max Power
                                                                                                                                           Max Torque
```

sns.pairplot(df cleaned) cseaborn.axisgrid.PairGrid at 8x22f2a746ct85 11 -----1.1

```
x = df_cleaned.drop(columns=['Price'])
y = df_cleaned['Price']
```

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, r2_score
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
from sklearn.metrics import classification_report
```

```
linear=LinearRegression()
linear.fit(x_train,y_train)
y_predict=linear.predict(x_test)
mse1 = mean_squared_error(y_test,y_predict)
r2_sq = np.sqrt(mse1)

print("MSE of LR: ",mse1)
print('R2 of LR: ', r2_sq)
```

MSE of LR: 0.24322150109243054 R2 of LR: 0.4931749193667806

```
from sklearn.linear_model import Ridge,Lasso
from sklearn.model selection import GridSearchCV
# Define parameter grid for Ridge regression
param grid ridge = {'alpha': [0.1, 1, 10, 100]}
# Create a Ridge regression model
ridge = Ridge()
# Perform grid search with cross-validation
grid search ridge = GridSearchCV(ridge, param grid ridge, cv=5, scoring='neg mean squared error')
grid search ridge.fit(x train, y train)
# Best parameters and score
best params ridge = grid search ridge.best params
best score ridge = -grid search ridge.best score
print("Best parameters for Ridge:", best params ridge)
print("Best score (MSE) for Ridge:", best score ridge)
```

```
Best parameters for Ridge: {'alpha': 10}
Best score (MSE) for Ridge: 0.24550850761586768
```

```
print("Test MSE for Ridge:", mse ridge)
Test MSE for Ridge: 0.2427443602402604
# Define parameter grid for Lasso regression
param grid lasso = {'alpha': [0.1, 1, 10, 100]}
# Create a Lasso regression model
lasso = Lasso()
# Perform grid search with cross-validation
grid_search_lasso = GridSearchCV(lasso, param_grid_lasso, cv=5, scoring='neg_mean_squared_error')
grid search lasso.fit(x train, y train)
# Best parameters and score
best params lasso = grid search lasso.best params
best score lasso = -grid search lasso.best score
print("Best parameters for Lasso:", best params lasso)
print("Best score (MSE) for Lasso:", best_score_lasso)
# Evaluate on test set
best lasso model = grid search lasso.best estimator
y pred lasso = best lasso model.predict(x test)
mse lasso = mean squared error(y test, y pred lasso)
print("Test MSE for Lasso:", mse_lasso)
Best parameters for Lasso: {'alpha': 0.1}
Best score (MSE) for Lasso: 0.30246442065761636
Test MSE for Lasso: 0.2725312880614805
```

best_ridge_model = grid_search_ridge.best_estimator_

mse ridge = mean squared error(y test, y pred ridge)

y pred ridge = best ridge model.predict(x test)

Applying Random Forest Regressor

```
from sklearn.model selection import train_test_split,GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean squared error
rfr=RandomForestRegressor(random state=42)
rfr.fit(x train, y train)
                                                                        # with hyperparametric tuning
             RandomForestRegressor
                                                                        param grid=
                                                                           'n estimators':[50,100,200],
RandomForestRegressor(random state=42)
                                                                           'max features':['auto', 'sqrt'],
                                                                           'max_depth':[10,20,30],
                                                                           'min samples split': [2,5,10],
                                                                           'min samples leaf':[1,2,4]
y pred = rfr.predict(x test)
                                                                        grid search =GridSearchCV(estimator=rfr,param grid=param grid , cv=5, scoring='neg mean squared error', n jobs=-1,verbose=2)
mse= mean squared error(y test, y pred)
r2 = r2 score(y test, y pred)
                                                                        grid search.fit(x train,y train)
                                                                        Fitting 5 folds for each of 162 candidates, totalling 810 fits
print("Without Hyperparameter Tuning:")
                                                                                GridSearchCV
print("Mean Squared Error:", mse)
                                                                         estimator: RandomForestRegressor
print("R-squared:", r2)

    RandomForestRegressor

Without Hyperparameter Tuning:
                                                                        best params = grid search.best params
                                                                        print(best params)
Mean Squared Error: 0.08856394845372201
                                                                        best_rfr= grid_search.best_estimator_
R-squared: 0.912306620755473
                                                                        print(best rfr)
                                                                        {'max depth': 20, 'max features': 'sqrt', 'min samples leaf': 1, 'min samples split': 2, 'n estimators': 200}
                                                                        RandomForestRegressor(max_depth=20, max_features='sqrt', n_estimators=200,
```

random state=42)

```
y pred=best rfr.predict(x test)
                                              from sklearn.svm import SVR
                                              # SVR without tuning
mse=mean squared error(y test,y pred)
                                              svr model = SVR()
mse
                                              svr model.fit(x train, y train)
0.0860003557006667
                                              y_pred_svr = svr_model.predict(x_test)
r2 score= r2 score(y test,y pred)
                                              from sklearn.metrics import r2 score
r2_score
                                              # Evaluate SVR
0.9148450138087103
                                              r2 svr = r2 score(y test, y pred svr)
                                              mse svr = mean squared error(y test, y pred svr)
from sklearn.svm import SVR
                                              print(f"SVR R2: {r2 svr}")
                                              print(f"SVR MSE: {mse svr}")
# SVR without tuning
                                              SVR R2: -0.09972620190197734
svr model = SVR()
                                              SVR MSE: 1.1106436483291606
svr_model.fit(x_train, y_train)
                                        # SVR with tuning
y pred svr = svr model.predict(x test)
                                        param_grid_svr = {'C': [0.1, 1, 10], 'epsilon': [0.1, 0.01]}
                                        svr_cv = GridSearchCV(SVR(), param_grid_svr, cv=5)
                                        svr cv.fit(x train, y train)
                                        y pred svr tuned = svr cv.predict(x test)
                                        # Evaluate tuned SVR
                                        r2 svr tuned = r2 score(y test, y pred svr tuned)
                                        mse_svr_tuned = mean_squared_error(y_test, y_pred_svr_tuned)
                                        print(f"Tuned SVR R2: {r2 svr tuned}")
                                        print(f"Tuned SVR MSE: {mse svr tuned}")
                                        Tuned SVR R2: 0.17398036676004547
                                        Tuned SVR MSE: 0.8342198789721214
                                         Thank you
```