## End-Semester Exam

UM 205: Introduction to Algebraic Structures (Winter 2023-24) Indian Institute of Science

Instructor: Arvind Ayyer

April 22, 2024 9:30am – 12:30pm

## Unless otherwise stated, each question is worth 5 marks.

- See separate sheet.
- 2. See separate sheet.
- 3. Give a simple formula for the number f(n) of permutations  $\sigma$  in  $S_n$  which satisfy  $|\sigma_i i| \le 1$  for all  $i \in [n]$ . The formula can be explicit, in terms of a recurrence, or as a generating function.
- 4. Let G be a simple graph. The degrees of all the vertices of G arranged in weakly decreasing order forms a partition  $p_G$  called the *ordered degree sequence* of G.
  - (a) Prove that  $p_G$  is a partition of an even integer.
  - (b) Show that is is not possible to construct G with 6 vertices such that  $p_G = (4, 4, 4, 2, 1, 1)$ .
- 5. Recall that  $\nu(n)$  is the number of positive divisors of a positive integer n. Prove that  $\nu(n)$  is odd if and only if n is a square.
- 6. Find all inequivalent solutions x to the congruence  $15x \equiv 25 \pmod{35}$ . Explain why your solutions are inequivalent.
- 7. Suppose G is a group and  $a, b \in G$ . Prove that |ab| = |ba|.
- 8. Prove that the dihedral group  $D_6$  and the symmetric group  $S_3$  are isomorphic, but that  $D_{24}$  and  $S_4$  are not.
- 9. For the quotient group  $G = \mathbb{Q}/\mathbb{Z}$ , find a natural set of representatives of cosets. Then prove that every element in G has finite order, but that there is no upper bound on the order of an element.
- 10. Suppose G is a group of order  $p^n$  for some prime p and  $n \ge 1$ . Prove that G must have a nontrivial center.

Page-3

## Additional Booklet No.





Name Sakel Chardhary

SR No. : 222-

Date 2024 104102

Course Code : UM - 20 S.

UM205 End Sem (Q.1 and Q.2)

**Q.1** Suppose A, B are sets. First prove that  $A \cap B \subseteq A$ . Then suppose that C is another set satisfying  $C \subseteq A$  and  $C \subseteq B$ . Now prove that  $C \subseteq A \cap B$ .

**Q.2** Suppose you select 12 integers (possibly with repetition)  $x_1, \ldots, x_{12}$  between 1 and 30 in an arbitrary way. Show that you can always find two integers i, j such that  $gcd(x_i, x_j) > 1$ .

Solution: