KNN (K Nearest Algorithm)

- → Classification & Regression

 y Ediscrete y ∈ Continuous
- Supervised ML Algo

Distance

$$\left(\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{j=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}$$

Distances blue tost point & au the points

N.V

一, 一, 一, 一, 一, 一, -

2) Distance sort inc order _ gust

= |congr

Sented Let 2 top 2 value

PI → 1 2 majoursty P2 → 1 White y

Stat point - class.

2 Hanhattan Dotance

Minlowski Distance

(n [| pi -qi |]]

Training time: 0(1)

Test Time:

1 test porif: N + NlogN + kr Distance Sonting

9 test pont: 9 (N+NcgN+K)

,						
D	5	labels	Destance	k=1	x=3	
7	7	G	212		•	1=3
6	4	В	12		V B	(z,z)
7	4	9	Js			
6	5	9	1	Gord	V4	A Bud
3	4	B	12			
1	4	В	JF.			
4	3	В	12			
3	5	B	2		VB	
		l				

Naire Bayes Classifier

& Bouges Theorem

Conditional Probability

Probability that both are girls?

Days:

$$\frac{10072}{6}$$
 \rightarrow 500 is gril \rightarrow 299, 139, 91339 \rightarrow 299, 134, 91339

$$P(f(e)) = \frac{P(f(e))}{P(e)} = \frac{1/4}{3/4} = \frac{1}{3}$$

Formulas:

$$P(B|A) = P(BA) \rightarrow P(BA) = P(BA) \cdot P(A)$$

$$P(A|B) = \frac{P(A\cap B)}{P(B)} = \frac{P(B\cap A)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B)}$$

D: Prob. of getting a sood ball ques that A box is chosen.
$$P(R|A) = 2/5$$

Q: Prob. Het by A is closen gluen that Red ball is drawn?

Nature Boyes Classifer:

(moliti sel Prob. of B given A (dikelihord Muchrosm datesis: Class featres. Shepe, colon, vadeus, weight Test Mushrom -, -, -, -. class = ? Ani ? P(y=1)x) -10.25 P(y=2/2) - 0.15 P(y=3/2) -0.6 -> Burgs to Class 3 Sum g all those prob. Shard be 1 P(y=1)x) = P(x|y=1) + P(y=1)P(2)

 $= \frac{P(x|y=1) + P(y=1)}{P(x|y=2) + P(x|y=2) + P(x|y=2)} + P(x|y=2) + P(x|y=2)}$ $= \frac{P(x|y=1) + P(y=2)}{P(x|y=2)} + \frac{P(x|y=2) + P(x|y=2)}{P(x|y=2)}$ $= \frac{P(x|y=1) + P(y=2)}{P(x|y=2)} + \frac{P(x|y=2) + P(y=2)}{P(x|y=2)}$

P(y=2/n) = 1(2/y-1) + P(y=1) + P(x/y=2) + P(x/y=3) + P(x/y=3) + P(x/y=3)

$$P(y=1|x) = P(x|y=1) \cdot P(y=1)$$

$$P(y=2|x) = P(x|y=2) \cdot P(y=2)$$

$$P(y=3|x) = P(x|y=3) \cdot P(y=3)$$

nultiple featur

Independit

HEC

Crebbial pr

likelihood Pros