平成24年度

大学院博士前期課程(修士)入学試験問題

材 料 力 学

注意事項:解答用紙に指示してある問題番号,解答の仕方にしたがって記入すること.

岡山大学大学院自然科学研究科 (工学グループ) 機械システム工学専攻 (機械系)

材 料 力 学

- 【1】はりに関する以下の問いに答えよ、ただし、図1に示すいずれのはりに関しても、 縦弾性係数をE、断面二次モーメントをIとする。
 - (1) 図 1 (a) に示す自由端 A に集中荷重 P を受ける長さI の片持ちはりがある. 固定端 B における反力 $R_{\rm BI}$ と曲げモーメント $M_{\rm BI}$ を求めよ.
 - (2) 図 1 (a) に示す片持ちはりに関して、自由端 A におけるたわみ角 θ_{A1} とたわみ y_{A1} を求めよ.
 - (3) 図 1 (b) に示す自由端 A に曲げモーメントM を受ける長さIの片持ちはりがある。固定端 B における反力 $R_{\rm B2}$ と曲げモーメント $M_{\rm B2}$ を求めよ。
 - (4) 図 1 (b) に示す片持ちはりに関して、自由端 A におけるたわみ角 θ_{A2} とたわみ y_{A2} を求めよ.
 - (5) 前問までの結果を用いて、図1(c)に示す両端が固定されたはりの変位が δ であるとき、固定端Aにおける反力 R_A と曲げモーメント M_A を求めよ.

図 1

材 料 力 学

- 【2】天井からつり下げられた棒に関して以下の問いに答えよ.
 - (1) 図 2 (a) に示す断面積が A_1 , 長さが I_1 , 比重量(単位体積当たりの重量)が γ の棒 1 に関して、棒の下端から距離xの位置における垂直応力 $\sigma_1(x)$ を求めよ.
 - (2) 問(1)において垂直応力の最大値 σ_{lmax} を求めよ.
 - (3) 図 2 (b) に示す重さWの重りがつり下げられている断面積が A_2 , 長さが I_2 , 比重量が γ の棒 2 に関して,棒の下端から距離x の位置における垂直応力 $\sigma_2(x)$ を求めよ.
 - (4) 問(3)において垂直応力の最大値 σ_{2max} を求めよ.
 - (5) 棒 2 から重りW を取り去り、図 2 (c)のように棒 1 を接合した。棒 1 の断面積が $A_1 = kA_2$ (0 < k < 1)であり、この段付棒に使われている材料の引張強さを σ_B とする。両棒を合わせた長さI が最大となるときの値 I_{max} を γ と σ_B と k で表せ.

材 料 力 学

- 【3】図3のように、直径dの丸棒をAにおいて直角に曲げて作ったレバーOABを考える。このレバーを、OAが鉛直となるように一端 Oを水平な床に固定する。レバーの自由端Bに、水平方向の力PをABに垂直に加えるとき、以下の問いに答えよ。ただし、OA間の長さをh、AB間の長さをwとする。
 - (1) AB 間において、自由端 B から距離 a の位置にある断面 C に作用する曲げモーメント M_c を求めよ.
 - (2) OA 間において、固定端 O から距離 b の位置にある断面 D に作用する曲げモーメント M_D と、ねじりモーメント T_D を求めよ.
 - (3) 断面 D の外表面において、曲げモーメント M_D によって生じる曲げ応力と、ねじりモーメント T_D によって生じるせん断応力を求めよ.
 - (4) 断面 D に生ずる最大主応力を求めよ.
 - (5) 最大主応力が丸棒の許容応力 σ_a を超えたときに破損が生じるとする.このとき、 レバーOAB が力Pに耐える最小の丸棒直径を求めよ.

図3