Introduction to Two Model Free Reinforcement Learning

Model-Free Reinforcement Learning

- Temporal Difference (TD) Learning
 - TD methods learn directly from episodes of experience
 - TD is model-free: no knowledge of MDP transitions / rewards
 - TD learns from incomplete episodes, by bootstrapping
 - TD updates a guess towards a guess
- Monte-Carlo (MC) Learning
 - MC methods learn directly from episodes of experience
 - MC is model-free: no knowledge of MDP transitions / rewards
 - MC learns from complete episodes: no bootstrapping
 - MC uses the simplest possible idea: value = mean return
 - Caveat: can only apply MC to episodic MDPs
 - ▶ All episodes must terminate
 - Monte-Carlo Tree Search (MCTS) is a successful one based on MC learning.

Monte-Carlo Learning

- Incremental Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t $V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$
 - α : learning rate, or called step size.
- Unbiased, but high variance.

Temporal-Difference Learning

- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$
 - TD target: $R_{t+1} + \gamma V(S_{t+1})$
 - TD error: $R_{t+1} + \gamma V(S_{t+1}) V(S_t)$
 - α : learning rate, or called step size.
- Biased, but lower variance

Application Classification of Deep Reinforcement Learning

Action

Agent

Environment

(lightweight)

Reward

Class 1: Lightweight-Model Applications

State

- Properties:
 - Model is well known or tractable
 - E.g., branching factor is limited.
 - Environments are simple to design, and allow backtracking
- Applications: Card/Board Games like Go, chess, etc.
- Possible Solutions: AlphaZero-like.

Related DRL Techniques

State

- Temporal Difference Learning
- Monte-Carlo Learning
- POMDP
- Monte-Carlo Tree Search (MCTS)
- AlphaGo/AlphaZero

Class 2: Heavy-Weight-Model Applications

- Properties:
 - Model is well defined, but may be complex or intractable
 - ▶ E.g., environment dynamics are huge or continuous.
 - Simulators exist, but backtracking is hard and costly.
- Applications:
 - Video Games
 - ITM (intelligent traffic management)
 - Simulators for robots/drones/autonomous driving, etc.
 - Network resource allocation?
 - Mathematical optimization (like scheduling problems)?
- Related DRL Techniques (next pages)

State

Related DRL Techniques

- Value-Based:
 - DQN
 - DDQN
 - Deuling Network
 - Bootstrapped DQN
 - Gorrila: Distributed DQN
 - MFEC: Model-free episodic control (like 2048)
 - NEC: Neural Episodic Control
 - D3QN: Double Deuling DQN
 - Rainbow: A mix with all kinds of value-based algorithms.
 - C51: a kind of distributional method
 - QR-DQN: a kind of distributional method
 - IQN: a kind of distributional method
 - FQF: a kind of distributional method
 - Ape-X DQN: a distributed method with n-step and Double Dueling
 - R2D2: Recurrent Replay Distributed DQN

Related DRL Techniques

- Policy-based and Actor-Critic:
 - A3C: Asynchronous Advantage Actor-Critic
 - LASER: Off-Policy Actor-Critic with Shared Experience Replay (a kind of actor-critic that samples on-line sometimes)
 - ACER: Actor-Critic with Experience Replay
 - ACKTR: Actor Critic using Kronecker-Factored Trust Region (a kind of Natural Gradient)
 - TRPO: Trust-Region Policy Optimization
 - PPO: Proximal Policy Optimization
 - IMPALA: Importance Weighted Actor-Learner Architectures

• Miscellaneous:

- NoisyNet and its variants
- IDS: information directed sampling: Explore to the direction with information
- RND: Random Network Distillation (for exploration)
- NGU: Never Give up (for exploration; improving RND)
- Agent57: Improve NGU
- muZero

Class 3: Real-World-Model Applications

- Properties:
 - Model is unknown or too complex
 - Simulator does not exist or runs with expensive costs.
 - ▶ So, it is hard to produce a large data set.
- Applications:
 - Robots, Drones, Autonomous driving, etc.
- Related DRL Techniques:
 - Curriculum learning
 - Imitation Learning
 - Behavior Cloning
 - Transfer Learning (Sim2Real)
 - Meta Learning (one-shot/few-shot)

I-Chen Wu

Reinforcement Learning for Lightweight Model

- Applications
 - 2048 (Temporal Difference Learning)
 - Go Programs (with Monte-Carlo Tree Search)

Case Study: 2048

[Szubert et al., 2014; Yeh et al., 2016]

2048 RL Agent

- Value function:
 - The expected score/return G_t from a board S
 - But, #states is huge
 - About $17^{16} \ (\cong 10^{20})$.
 - Empty $(\rightarrow 0)$, 2 (=2¹ \rightarrow 1), 4 (=2² \rightarrow 2), 8 (=2³ \rightarrow 3), ..., 65536 (=2¹⁶ \rightarrow 16).
 - Need to use value function approximator.
- Policy:
 - Simply choose the action (move) with the maximal value based on the approximator.
- Model: agent's representation of the environment
 - After a move, randomly generate a tile:
 - ▶ 2-tile: with probability of 9/10
 - ▶ 4-tile: with probability of 1/10
 - Reward: simply follow the rule of 2048.

17 different numbers on each cell And 4x4 (=16) cells in total.

TD Learning in 2048

- Value function: (Normally $\gamma = 1$)
 - Update value $V(S_t)$ toward TD target $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$
 - ▶ TD error: $R_{t+1} + \gamma V(S_{t+1}) V(S_t)$
- Making a decision (based on value).

$$\pi(s) = argmax_a(R_{t+1} + \mathbb{E}[V(S_{t+1}) \mid S_t = s, A_t = a])$$

- Problem: Less efficient upon making decision.

Q-Learning in 2048

- Q-value function: (Normally $\gamma = 1$)
 - Update value $Q(S_t, A_t)$ toward TD target $R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$ $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t))$
- Making decision (based on value).

$$\pi(s) = argmax_a(Q(S_t, a))$$

- more efficient.
- A minor problem: Four times more memory

Afterstates in 2048

- Afterstate S_t^{af} is a state after action A_t at S_t .
 - Why not use S_t^{af} instead of (S_t, A_t) ?
 - Note: in 2048, the reward R_{t+1} is not included in S_t^{af} .
- Afterstate value function: (Normally $\gamma = 1$)
 - Update value $V^{af}\left(S_{t}^{af}\right)$ toward TD target $R_{t+1} + \gamma \max_{a} (V^{af}\left(S_{t+1}^{af}\right))$

$$V^{af}\left(S_{t}^{af}\right) \leftarrow V^{af}\left(S_{t}^{af}\right) + \alpha \left(R_{t+1} + \gamma \max_{a} \left(V^{af}\left(S_{t+1}^{af}\right)\right) - V^{af}\left(S_{t}^{af}\right)\right)$$

• Making decision (based on value).

$$\pi(s) = argmax_a \left(V^{af} \left(S_t^{af} \right) \right)$$

- For simplicity, we use V, instead of V^{af} , if it can be applied to both.

 $S_t, A_t \rightarrow S_t^a$

 S_{t+1}

Value Function Approximation

- As mentioned above, #states is huge, so we need to use value function approximation.
 - Use a value function approximator, $\hat{v}(S, \theta) \approx V(S)$.
 - Simply use deterministic policy: $\pi(S) = argmax_a(\hat{v}(S, \theta))$
- But, what kind of value function approximator can we use?
 - What features can we choose?
 - ▶ Traditionally, # of empty cells, # of continuous cells, big tiles, etc.
 - Linear (like n-tuple network) vs. non-linear (like NN)
- n-tuple network is a powerful network for 2048.
 - Explore a large set of features.
 - Simplify operations by linear value function approximation.
 - Features in each network is one-hot vector.

Gradient Descent

Now, how to do the update: $V(S_t) \leftarrow V(S_t) + \alpha \Delta V$

- Update value $V(S_t)$ towards TD target $y_t = R_{t+1} + V(S_{t+1})$ $\Delta V = (R_{t+1} + V(S_{t+1}) - V(S_t)) = (y_t - V(S_t))$ α : learning rate, or called step size. - Note: $\gamma = 1$ here.
- Objective function is to minimize the following loss in parameter θ . (note: $\hat{v}(S, \theta) = x(S)^{T}\theta$)

$$\mathcal{L}(\theta) = \mathbb{E}\left[\left(y_t - \hat{v}(S, \theta)\right)^2\right]$$

$$\nabla_{\theta} \mathcal{L}(\theta) = \left(y_t - \hat{v}(S, \theta)\right) \cdot \nabla_{\theta} \hat{v}(S, \theta) = \Delta V \cdot x(S)$$

• Update features w: step-size * prediction error * feature value

$$\theta \leftarrow \theta + \alpha \Delta V \cdot \frac{\bar{x}(S)}{\|x(S)\|} \Rightarrow V(S_t) \leftarrow V(S_t) + \alpha \Delta V$$

N-Tuple Network

- Characteristics:
 - Provide with a large number of features.
 - Easily update.
- Example: 4-tuple networks as shown.
 - Each cell has 16 different tiles
 - 16⁴ features for this network.
 - ▶ But only one is on, others are 0.
 - -[...,0,0,1,0,0,...]
 - So-called one-hot vector.
 - ► So, we can use table lookup to find the feature weight.

64	•° 8	4
128	2•1	2
2	8•2	2
128	3	

0123	weight	
0000	3.04	
0001	-3.90	
0002	-2.14	
:		
0010	5.89	
:	:	
0130	-2.01	
:	÷	

Note: tabular RL is just like 16-tuple network in the case of 2048.

Other N-Tuple Networks

- Left: [Szubert et al., 2014]; Right: [Yeh et al., 2016]
- Some researchers even used 7-tuple network.

Update Features in N-Tuple Networks

- For each n-tuple networks, simply update one weights.
- Features:
 - 8 x 16⁴ features, x(S) = [0, 1, 0, ..., 0, 0, 1, ..., ..., 1, 0, 0, ...]
 - ▶ All 0s, except for 8 ones.
 - One 1 every 16⁴ features.
 - Let their indices be s_1 , s_2 , s_3 , s_4 , s_5 , s_6 , s_7 , s_8 .
 - Only need to update $\alpha \Delta V$ at the features indexed by these indices.
 - Very efficient and fast.
- For k n-tuple networks,

$$\hat{v}(S,\theta) = x(S)^{\mathrm{T}}\theta = \sum_{i=1}^{n} x_i(S)\theta_i = \sum_{i=1}^{k} LUT_i[index(s_i)]$$

- LUT_i : the i-th n-tuple network lookup table.
- $index(s_i)$: The index in the i-th n-tuple network of state S.
- Update features w: step-size * prediction error * feature value
 - $\theta \leftarrow \theta + \alpha \Delta V \cdot x(S)$
 - Only need to update values θ_i with $\alpha \Delta V$ at $LUT_i[index(s_i)]$.

The N-Tuple Networks Used

• Use the following [Szubert and Jaskowaski 2014]

Ours:

I-Chen Wu

Our Results (2021)

100 tested games	CGI-2048 (2 nd in contest, 2014)	Kcwu (1 st in contest, 2014)	Jaśkowski (2018, Previous SOTA)	Current CGI-2048 (2021, Current SOTA)
2048	100%	100%	100%	100.0%
4096	100%	100%	100%	100.0%
8192	94%	96%	98%	99.8%
16384	59%	67%	97%	98.8%
32768	0%	2%	70%	72.0%
Max score	367956	625260	N/A	840384
Avg score	251794	277965	609104	625377
Speed	500 moves/sec	>100 moves/sec	1 move/sec	2.5 moves/sec

The First 65536

2048

SCORE BEST 1031392

Reinforcement Learning for Lightweight Model

- Applications
 - 2048 (Temporal Difference Learning)
 - Go Programs (with Monte-Carlo Tree Search)

Case Study: Go

- Monte-Carlo Tree Search:
 - Monte-Carlo (MC) Learning (z: 1 for win, 0 for loss)
 - Multi-Armed Bandits
 - Planning
- Very successful for Go in the past two decades.
- And also applied to others successfully.
 - Other games like Havannah, Hex, GGP
 - Other applications, like mathematical optimization problems (scheduling, UCP, camera coverage).

Go – One of the Most Popular Games

- Game tree complexity: about 10^{360}
 - It is just impossible to try all moves.

(from DeepMind)

Can Alpha-Beta Search Work for Go?

- Alpha-Beta Search
 - Very successful for many games such as chess.
 - ▶ Almost dominate all computer games before 2006.
 - ▶ This is what Deep Blue used.
- The key for chess: evaluate position accurately and efficiently. E.g., features:
 - King: 1000
 - Queen: 200
 - Rook: 100
 - Knight: 80
 - Bishop: 70
 - Pawn: 30
 - Guarded Pawns: 30
 - Guarded Knights: 40
 - ···
- Problem for chess:
 - need to consult with experts for feature values.

Why not alpha-beta search for Go?

- No simple heuristics like chess.
 - Only black/white pieces (no difference)
- Must know life-and-death
 - But, all are correlated.
 - ▶ Like the lower-right one.
 - But, this is very complex.

Since no simply heuristics to evaluate,

- Why not use Monte-Carlo?
- Calculate it based on stochastics.

Game 1: AlphaGo vs. 李世石

Rules Overview Through a Game (opening 1)

• Black/White move alternately by putting one stone on an intersection of the board.

The example was given by B. Bouzy at CIG'07.

Rules Overview Through a Game (opening 2)

• Black and White aims at surrounding large « zones »

Rules Overview Through a Game

(atari 1)
A white stone is put into « atari » : it has only one liberty left.

Rules Overview Through a Game (defense)

• White plays to connect the one-liberty stone yielding a four-stone white string with 5 liberties.

Rules Overview Through a Game (atari 2)

• It is White's turn. One black stone is atari.

Reinforcement Learning RL for Lightweight Model Rules Overview Through a Game (capture 1)

• White plays on the last liberty of the black stone which is removed

Rules Overview Through a Game (human end of game)

• The game ends when the two players pass. (Experts would

stop here)

Rules Overview Through a Game (contestation 1)

• White contests the black « territory » by playing inside.

Rules Overview Through a Game (contestation 2)

• White contests black territory, but the 3-stone white string has one liberty left

Rules Overview Through a Game (follow up 1)

Black has captured the 3-stone white string

Rules Overview Through a Game (follow up 2)

• White lacks liberties...

Rules Overview Through a Game (follow up 3)

- Black suppresses the last liberty of the 9-stone string
- Consequently, the white string is removed

Rules Overview Through a Game (follow up 4)

 Contestation is going on. White has captured four black stones.

Rules Overview Through a Game (concrete end of game)

• The board is covered with either stones or « eyes ».

Programs know to end.

Performed OK Even for Moves (Nearly) at Random

Purely at random

Have some heuristic (from Aja's Thesis)

Stochastics

- Calculate values based on stochastics.
 - Good example: calculate π .

RL for Lightweight Model

Multi-Armed Bandit Problem

(吃角子老虎問題)

- Assume that you have infinite plays
 - How to choose the one with the maximal average return?

Exploration vs. Exploitation

- Example for the exploration vs exploitation dilemma
 - Exploration: is a long-term process, with a risky, uncertain outcome.
 - Exploitation: by contrast is short-term, with immediate, relatively certain benefits

Deterministic Policy: UCB1

- UCB: Upper Confidence Bounds. [Auer et al., 2002]
- Initialization: Play each machine once.
- Loop:
 - Play machine *i* that maximizes,

$$X_i + \sqrt{\frac{2 \log n}{n_i}}$$

- where
 - $n = \sum_{i=1}^{k} n_i$ is the total number of playing trials.
 - n_i is the number of playing trials on machine i.
 - X_i is the (average) win rate on machine i.
- Key:
 - Ensure optimal machine is played exponentially more often than any other machine.

Cumulative Regret

- Assume Machines M₁, M₂, M₃, M₄, M₅
 - Win rates: 37%, 42%, 47%, 52%, 57%
 - Trial numbers: n_1 , n_2 , n_3 , n_4 , n_5 .

Monte-Carlo Tree Search

- A kind of planning
- A kind of Reinforcement learning

Strength of Go Program after MCTS

• [Schaeffer et al., 2014]

Strength grew fast, after MCTS.

Case Study: AlphaGo

• Use stochastic policy gradient ascent to maximize the likelihood of the human move *a* selected in state *s*

$$\Delta\theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \cdot z$$

- $-\theta$: network parameter.
- $-\alpha$: learning rate
- z: the value of the episode
 - win/loss (1/-1) of the game

AlphaGo's Algorithm

- Use DCNN to learn experts' moves
 - (學習高手的著手策略)
- Use Monte-Carlo Tree Search (MCTS) for search to avoid pitfalls (避開陷阱)
 - MCTS is a kind of RL that do planning.
- Use DCNN to train "reinforcement learning (RL) network"
- Use DCNN to train "value network" (價值網路)
 - Learn the values of game positions (學習盤勢之優劣)

AlphaGo's Algorithm

- Use DCNN to learn experts' moves → DL
 - (學習高手的著手策略)
- Use Monte-Carlo Tree Search (MCTS) for search to avoid pitfalls (避開陷阱) → RL
 - MCTS is a kind of RL that do planning.
- Use DCNN to train "reinforcement learning (RL) network"
 → DRL (Policy Gradient)
- Use DCNN to train "value network" (價值網路)
 - Learn the values of game positions (學習盤勢之優劣) → DL

Policy Network and Value Network

 \boldsymbol{Z}

RL Policy Network: AlphaGo

• Use stochastic policy gradient ascent to maximize the likelihood of the human move *a* selected in state *s*

$$\Delta\theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \cdot z$$

- $-\theta$: network parameter.
- $-\alpha$: learning rate
- z: the value of the episode
 - ▶ win/loss (1/-1) of the game

AlphaGo Zero

- Use Monte-Carlo Tree Search (MCTS) → RL
 - Learn to find the best move (avoid pitfalls)
- Combine "value/policy network" → DRL

Like a tutor

Learn from Zero Knowledge!!!

Like a student

