Apache Spark

Agenda

- Introduction to Spark
- Spark Architecture
- Explore Spark Components
 - Spark Core
 - o Spark SQL
 - Streaming
 - o MLLib
 - o GraphX
- Case Studies

Learning Objectives

You should know

- Core Spark
- Building blocks of Spark
- Write programs in Spark
- How Spark fits the Big Data ecosystem
- Spark SQL
- Machine Learning
- Streaming data analytics
- Graph Exploration

Confusion Galore

Word Count implementations

- Hadoop MR 61 lines in Java
- Spark 1 line in interactive shell

```
sc.textFile('...').flatMap(lambda x: x.split())
.map(lambda x: (x, 1)).reduceByKey(lambda x, y: x+y)
.saveAsTextFile('...')
```

```
peort | mom.util.Stringfokesizer;
peort org. specks. hadney.comf.Configuration;
import ong. apache, hadney, Fa. Path;
inpurit org. apache, hadsag, in- Jirfar Habbe;
import org. species hadney, in: Text;
iren'l org.apache.hadosp.napreduce.3sk;
inport org. specie, halsey repreface, Repper;
import org. apache, hadoep, napreduce, Reducer;
import org. specie, hadrep reproduce, Lib, input, FileImputFerent;
import orguspiche, hidsegunapredicte, lith, extput, Filleflytputformet;
public class Worstown E
 public static class Takenize Mapper
      extends Sapper-Object, Text, Text, Interstable-C
    private first static interitable are a new interstable(ii)
    private Test werd = new Test();
    public wold mapility act key, Text value, Context context
                     I thrown Differenties, Interruptedficosption (
      StringTokemizer itr + now StringTokemizer(value.teString());
      while (ptr.hadforefokens()) {
        word.set(Str.nextfoken());
        context.write(ward, one);
  public static class Inthushotucer
      consents Reducersfort, Interstable, Text, South-inables (
    private Brewritable result a new Entwittettell;
    public odd reduce/fest key, Iterable-Interstable- selves,
                        Contest contest
                        I throws Effection, broarraghedbackgross (
      INC NAME OF BELL
      for (Doller) table out I values) (
        sum or saligatily
      remoth, satisfacely
      context, willtelley, resultly
 public static void main(String!) args) throse foragion (
    Coefiguration conf a new Coefiguration();
    Job job = Job.gat[instance(cunf, "word count");
    job. set/artig/(lass/WardCount, class);
    Job. cortResport Land Potent per Resport Classics
    job_setCoekurerElaxo|Srithunkedyper;class|;
    job. set/festurer ( lane) for furfications, class);
    job, sattle-tputtland Sans (Text , class );
     ink. settletputtialiset (anni 2+16+114b/e, class) ;
    FrindingustFormer, adelings (Faith) job, new Pathlangs (8011);
    FilabetpetFarmet. httDctputFwthijok, new Pethiarpalilli);
    System.exit()ob.ueitForComplet(anCirus) 7 8 | 13;
```

Apache Spark

Fast and general cluster computing engine interoperable with Apache Hadoop

Improves efficiency through:

- In-memory data sharing
- General computation graphs

→ Up to 100× faster

Improves usability through:

- Rich APIs in Java, Scala, Python
- Interactive shell

Apache Spark

- Started at UC Berkeley (2009)
- General purpose computing engine
- Upto 100 times faster than earlier Big Data processing frameworks
- Useful for iterative machine learning, interactive querying, real-time data processing
- Modular in nature fits well with legacy systems

Welcome to Spark

- In-memory computing framework
- Distributed Compute Engine
- Attempt at unification
 - Easy to develop
 - Orders of magnitude fast
 - Real time analytics
 - Machine Learning
 - Language Flexibility
 - API to work with different tools

- Standalone
- Hadoop
- Apache Mesos

Written in Scala

- o Close to 400,000 lines of code
- Very active developer community
- Parallel projects
- ~100 years of effort (COCOMO model)

Spark Components

Spark Users

Spark Praise

• "Spark is beautiful. With Hadoop, it would take us six-seven months to develop a machine learning model. Now, we can do about four models a day." - said Rajiv Bhat, senior vice president of data sciences and marketplace at InMobi.

Spark in Action

Ooyala

- Offers analytics services to media organizations
- >2 billion analytics per day to maximize revenues
- Deliver real-time insights

Yahoo

- Personalization of web pages for visitors
- Analytics for advertising

Facebook

Uses Spark extensively

Uber

- Spark Streaming to analyze data in real-time
- Drives decisions such as surge pricing

YARN

Span SQL

Span MLli

VS

Streaming

Spark MapReduce Competition

	Hadoop World Record	Spark 100 TB	Spark 1 PB
Data Size	102.5 TB	100 TB	1000 TB
Elapsed Time	72 mins	23 mins	234 mins
# Nodes	2100	206	190
# Cores	50400	6592	6080
# Reducers	10,000	29,000	250,000
Rate	1.42 TB/min	4.27 TB/min	4.27 TB/min
Rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min
Sort Benchmark Daytona Rules	Yes	Yes	No
Environment	dedicated data center	EC2 (i2.8xlarge)	EC2 (i2.8xlarge)

Spark Versions

- Two prominent versions:
- Spark 1.6
- Spark 2.x

Spark 1.x vs Spark 2.x

primitive	Spark 1.6	Spark 2.0
filter	15 ns	1.1 ns
sum w/o group	14 ns	0.9 ns
sum w/ group	79 ns	10.7 ns
has h join	115 ns	4.0 ns
sort (8-bit entropy)	620 ns	5.3 ns
sort (64-bit entropy)	620 ns	40 ns
sort-merge join	750 ns	700 ns
Parquet decoding (single int column)	120 ns	13 ns

Simple ML Example

Unification – Binding Together

- All different systems in Spark share something known as RDD (more on this later)
 - Think of this as a dataframe for now
- Because of this common RDD, you can now mix and match

Unification

Runs Everywhere

- Run on top of any distributed system
- E.g.
 - O Hadoop 1.x
 - O Hadoop 2.x
 - Apache Mesos
 - Standalone
 - Own cluster
- Integrates with Hadoop
 - No separate storage layer
 - Works with HDFS

Big Picture

- There are two ways to manipulate data in Spark
 - Use the interactive shell, i.e., the REPL
 - Write standalone applications, i.e., driver programs

SHARED-NOTHING ARCHITECTURE

So... you want to build a parallel system. What's the best way to do that? There are different models of parallel processing in computers.

The problem is that data must travel over the network within the cluster, and that may be slow. It's useful in some scientific settings where a small data set takes a long time to analyze.

Shared-disk architecture (like many "high-performance computing" systems) distributes computation but centralizes storage

In Hadoop, data is processed where it is stored, so you don't have to send it over the network.

Shared-nothing architecture

(like Hadoop) distributes computation and storage

DATA LOCALITY

When datasets are very large, as is the case for Google, Yahoo!, Amazon, Facebook, and other web giants, sending data over the network becomes a limiting factor.

Hadoop solves this problem with data locality – it distributes the data, as well as the processing power, so that data can be analyzed (close to) where it is stored.

This "shared nothing" architecture means that relatively little data needs to be sent over the network.

Shared-nothing architecture

SEND THE PROGRAM TO THE DATA

This saying may help to explain the idea behind Hadoop and its programming model:

"If you can't send the data to the program, send the program to the data!"

At a high level, Hadoop distributes data across the cluster. When you want to process data, Hadoop passes your instructions along to all the computers ("nodes") in the cluster, and they run the code. Only the answer is sent over the network to you.

High Level Architecture

System Level Architecture

Building Blocks

- Idea of Spark Programming is similar to Excel
 - Think of computation as data flow across multiple stages
 - At every point you have data on which you apply functions
- For this to happen, we need some tools
- Three building blocks
 - Spark Context
 - Resilient Distributed Datasets (RDD)
 - Operations Transformations & Actions

RDD

- Fundamental data unit in Spark (think DataFrames in R or Python)
- Resilient Distributed Dataset
 - Resilient If data in memory is lost, it can be recreated
 - Distributed stored in memory across the cluster
 - Dataset data coming from either external files or from internal structures such as lists or other variables
- All functions work on RDD (or its variants)

RDD

Simple View

 Collection of data items split into partitions and stored in memory on worker nodes of cluster

Complex View

- Interface for data transformation
- Data stored in either persisted store (HDFS, Cassandra, Hbase etc) or in cache (memory, memory+disks, disk only etc)

$more\ partitions = more\ parallelism$

More on RDD

- More like a container
- Can have any type of elements
 - o Integer, Strings, Boolean
 - List, Dictionaries
 - Complex Objects (More for Java/Scala)
- There are some specific types of RDD as well
 - Key-value Hold data in key-value pairs
 - Double RDD Hold only numeric data
- But we won't concern ourselves with them

RDD Operations

Two types

- Transformations
 - Apply code to distributed data in parallel
 - Convert one RDD to another
 - Work with actual data objects

Actions

- Assemble final output from distributed data
- Trigger entire workflow
- Present results to the driver

RDD Operations

- Two types of RDD operations
 - Actions return values
 - -count
 - -take(n)
 - Transformations define new RDDs based on the current one
 - -filter
 - -map
 - -reduce

Another Example

I've never seen a purple cow.

I never hope to see one;

But I can tell you, anyhow,

I'd rather see than be one.

- Data pipelines empty
- o RDD could exist, but no data
- If we want to save intermediate RDD?
 - Repeating process is wasteful
 - Caching is the solution

Why Use RDDs?

- Offer control and flexibility
- Low Level API
- Encourage more of "how-to" behavior
- When to use RDD?
 - Low level API and control of dataset
 - Dealing with unstructured data (media, images, text)
 - Manipulate data in complex manner (such as lambda function)
 - Don't care about schema or structure of data
 - o If you are ok if some sacrifices in performance

Problem?

- Encourage "how-to", not "what-to"
- Not optimized by Spark hence lower performance
- Slow for non-JVM languages such as Python

Putting it together – Lifecycle of Spark Program

- Create RDD
 - Parallelize
 - Read data from external sources
- Transform operations
- Optional Cache RDD
- Actions

Code Execution

Shuffle

- o Redistributes data among cluster of nodes by a criteria
- Groups data into bucket (partitions)
- Expensive

Job

- Set of computations
- Application can have multiple jobs

Stage

- Collection of tasks
- Stages could depend on each other
- Shuffle boundaries

Code Execution

- Run Application
- Connect to cluster manager & get executors on worker nodes
- Spark splits jobs into stages
- Executors run tasks in parallel

Let's get started

- Launch Spark REPL
 - VM Distribution comes pre-installed with Spark
 - o Can also install Spark as standalone on Windows
- For now, we will not worry much about installation
 - Focus on being able to program
 - Understand building blocks
- Multiple REPL (Python, Scala)

Ways of programming in Spark

- Similar to Python
 - Command Prompt
 - User Programs
- Spark Shell (Command Prompt version)
 - Good for learning or data exploration
 - o Python, Scala
- User Programs (Applications)
 - For large scale data processing
 - o Python, R, Java, Scala

Building Blocks

Driver Program

- o Connects to, and communicates with Spark cluster
- o REPL is a driver program
- Pushes work to a cluster and brings back

Spark Context

- Every Spark application needs a SparkContext
 - In REPL, it comes pre-started
 - o In programs, you have to create one
- Main entry point to Spark library
- Connection to Spark cluster
- Apps create instance of SparkContext
 - o One instance per app
 - o sc = SparkContext()

What is SparkSession?

For Core API

SparkContext

What is SparkSession?

For Core API

SparkContext

For Streaming API

StreamingContext

What is SparkSession?

For Core API

SparkContext

For Streaming API

StreamingContext

For SQLAPI

SQLContext

RDD

- Abstract representation of data
- Breaks data into partitions
- More partition -> More parallelism
- Distributed collection
- Immutable, partitioned, fault tolerant, strongly typed, in-memory
- Can be created in two ways
 - Parallelize a collection In Memory
 - Read data from external data sources

Example

- Parallelize in Python
 - o wordsRDD = sc.parallelize(["fish", "cats",
 "dogs"])
- Read a local txt file in Python
 - o linesRDD = sc.textFile("/path/to/README.md")

Some common functions

map reduce take

filter count first

groupBy fold partitionBy

union reduceByKey pipe

join groupByKey distinct

leftOuterJoin cogroup save

rightOuterJoin flatMap ...

Commonly used Transformations

- Work element by element (Most, not all)
- General
 - Map(), filter(), flatMap(), groupBy(), sortBy()
- Math
 - sample(), random(), union(), intersection(), distinct(), subtract(), cartesian()

Commonly used Actions

- General
 - Reduce(), collect(), first(), aggregate()
- Math
 - o count(), min(), max(), stdev(), variance()
- IO
 - o saveToCassandra(), countByKey(), foreach()

First lines of code

- Let's discuss some commonly used transformations
- Map
 - o applies a function to each element of RDD and returns a new RDD
- Python:
 - \circ x = sc.parallelize(["a","b","c"])
 - \circ Y = x.map(lambda z: (z,z))
 - o Print(x.collect())
 - o Print(y.collect())

Transformation - Filter

- Filter
 - Keeps an element if condition is true.
- Python
 - \circ x = sc.parallelize([4,5,6,8])
 - \circ Y = x.filter(lambda x:x-5==1)
 - o Print(x.collect())
 - o Print(y.collect())

Transformation - FlatMap

- Return a new RDD by applying a function to all elements of RDD, and then flattening the results
- Python
 - sentencesRDD = sc.parallelize(['Hello world', 'My name is Peeyush'])
 - o wordsRDD = sentencesRDD.flatMap(lambda sentence: sentence.split(" "))
 - o print(wordsRDD.collect())
 - o print(wordsRDD.count())

Transformations - Intersection

- Takes two RDD as input and returns a new RDD that has common elements
- Python
 - o numbersRDD = sc.parallelize([1,2,3])
 - o moreNumbersRDD = sc.parallelize([2,3,4])
 - o numbersRDD.intersection(moreNumbersRDD).collect()

Transformations - GroupBy

- Similar to groupby in SQL.
- Groups the data, and creates key, value pairs
- Python
 - o x = sc.parallelize(['Ajay','Amit','Manav','Manish','Sonam'])
 - Y = x.groupBy(lambda w: w[o])
 - Print [(key, list(value)) for (key,value) in y.collect()]
- Scala
 - o val x =
 sc.parallelize(Array("Ajay","Amit","Manav","Manish","Sonam"])
 - o val y = x.groupBy(w => w.charAt(o))
 - o println (y.collect().mkString(","))

Actions - collect

Returns elements as array

- o rdd = sc.parallelize((1 to 10000).toList)
- o filteredRdd = rdd filter $\{x \Rightarrow (x \% 1000) == 0\}$
- filterResult = filteredRdd.collect
- o total = rdd.count

Actions - reduce

- Aggregates elements by a rule
 - o rdd = sc.parallelize(range(1, 10+1))
 - o rdd.reduce(lambda x, y: x * y)

Word Count Example

the cat sat on the mat the aardvark sat on the sofa

Result

aardvark	1
cat	1
mat	1
on	2
sat	2
sofa	1
the	4

> counts = sc.textFile(file)

the cat sat on the mat

the aardvark sat on the sofa

```
> counts = sc.textFile(file) \
     .flatMap(lambda line: line.split())
the cat sat on the
                         the
mat
                         cat
the aardvark sat on
                         sat
the sofa
                         on
                         the
                         mat
                         the
                         aardvark
                         sat
```



```
> counts = sc.textFile(file) \
     .flatMap(lambda line: line.split()) \
     .map(lambda word: (word, 1)) \
     .reduceByKey(lambda v1, v2: v1+v2)
                                                           (aardvark, 1)
                                         (the, 1)
the cat sat on the
                          the
mat
                                                           (cat, 1)
                                         (cat, 1)
                          cat
the aardvark sat on
                                                           (mat, 1)
                                         (sat, 1)
                          sat
the sofa
                                                           (on, 2)
                                         (on, 1)
                          on
                                                           (sat, 2)
                                         (the, 1)
                          the
                                                           (sofa, 1)
                                         (mat, 1)
                          mat
                                                           (the, 4)
                                         (the, 1)
                          the
                          aardvark
                                         (aardvark, 1)
                          sat
                                         (sat, 1)
```


ReduceByKey

ReduceByKey functions must be

- Binary combines values from two keys
- -Commutative x+y = y+x
- -Associative (x+y)+z = x+(y+z)


```
> counts = sc.textFile(file) \
   .flatMap(lambda line: line.split()) \
   .map(lambda word: (word,1)) \
   .reduceByKey(lambda v1,v2: v1+v2)
```

```
(aardvark, 1)
(cat, 1)
(mat, 1)
(on, 2)
(sat, 2)
(sofa, 1)
(the, 4)
```


- Binary combines values from two keys
- -Commutative x+y = y+x
- -Associative (x+y)+z = x+(y+z)


```
> counts = sc.textFile(file) \
    .flatMap(lambda line: line.split()) \
    .map(lambda word: (word,1)) \
    .reduceByKey(lambda v1,v2: v1+v2)
```

(aardvark, 1)
(cat, 1)
(mat, 1)
(on, 2)
(sat, 2)
(sofa, 1)
(the, 4)

- Binary combines values from two keys
- -Commutative x+y = y+x
- -Associative (x+y)+z = x+(y+z)

```
> counts = sc.textFile(file) \
   .flatMap(lambda line: line.split()) \
   .map(lambda word: (word,1)) \
   .reduceByKey(lambda v1,v2: v1+v2)
```


