Due date: 20-09-2021 1:20pm Total: **1/6/70**.

Exercise	1	2	3	4	5	6	7	8	9	10
	(10)	(5)	(5)	(5)	(5)	(10)	(5)	(10)	(5)	(10)
Score	6	5	5	١	l	ъ	5	6	3	10

Table 1: Scores for each exercises

Instructions: You must answer all the questions below and send your solution by email (to parisepo@hawaii.edu). If you decide to not use LaTeX to hand out your solutions, please be sure that after you scan your copy, it is clear and readable. Make sure that you attached a copy of the homework assignment to your homework. No late homework will be accepted. No format other than PDF will be accepted. Name your file as indicated in the syllabus.

WRITING PROBLEMS

For each of the following problems, you will be asked to write a clear and detailed proof. You will have the chance to rewrite your solution in your semester project after receiving feedback from me.

Exercise 1. (10 pts)

- a) Let $\{[a_n, b_n] : n \ge 1\}$ be a family of closed intervals such that $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \cdots$. Show that there is a $c \in \mathbb{R}$ such that $c \in [a_n, b_n]$ for all $n \ge \mathbb{N}$. Follow the following steps to prove it:
 - (i) Prove that for any $n, m \ge 1$, $a_n \le b_m$. [hint: put $M := \max\{n, m\}$.]
 - (ii) Show that $\sup\{a_n : n \ge 1\}$ exists.
 - (iii) Show that $c = \sup\{a_n : n \ge 1\}$ satisfies the requirement.
- **b)** Use this last result to prove that the set \mathbb{R} is uncountable. [Hint: Show that any function $f: \mathbb{N} \to \mathbb{R}$ can't be surjective. To do so, construct a sequence of closed intervals such that $f(n) \notin [a_n, b_n]$ with $a_n < b_n$.]

Solution:

5/5

Exercise 2. (5 pts) Prove that if $a_n \to A$, then $|a_n| \to |A|$.

Solution: If $(a_n)_{n=1}^{\infty}$ is convergent, then $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ s.t. $|a_n - A| < \varepsilon$ for all $n \geq N$. Now, $||a_n| - |A|| \leq |a_n - A|$ (Since $||x| - |y|| \leq |x - y|$). So, $||a_n| - |A|| < \varepsilon$. This is true for every $\varepsilon > 0$. Then, by the definition of convergent sequences, $|a_n| \to |A|$.

Exercise 3. (5 pts) Let (a_n) , (b_n) , and (c_n) be sequences of real numbers. Prove that if $a_n \to L$, $b_n \to L$, and $a_n \le c_n \le b_n$, then $c_n \to L$.

Solution: Since $a_n \to L$, then $|a_n - L| < \varepsilon$ for all $n \ge N_1$. This means $L - \varepsilon < a_n < L + \varepsilon$. Similarly for $b_n \to L$, $|b_n - L| < \varepsilon$ for all $n \ge N_2$. This means $L - \varepsilon < b_n < L + \varepsilon$. Let $N = \max\{N_1, N_2\}$ Given, $a_n \le c_n \le b_n$ Then, $L - \varepsilon < a_n \le c_n \le b_n < L + \varepsilon$ for all $n \ge N$. $L - \varepsilon < c_n < L + \varepsilon$ $|c_n - L| < \varepsilon$ for all $n \ge N$. Therefore, the $c_n \to L$.

1/5

Exercise 4. (5 pts) Prove that if $a_n \to A$ and $a_n \ge 0$ for all $n \ge 1$, then $\sqrt{a_n} \to \sqrt{A}$. Follow the following steps to prove it:

- 1. Consider the case A = 0.
- 2. Suppose that $A \neq 0$. Show that there is a $N_1 \in \mathbb{N}$ such that if $n \geq N_1$, then $\sqrt{a_n} \geq \sqrt{|A|/2}$. [Hint: use the definition of convergence of $(a_n)_{n\geq 0}$ with a clever choice of ε and use the properties of the absolute value.]
- 3. Use the convergence of (a_n) again to find a N_2 such that $|a_n A| < \frac{3}{4} \frac{\varepsilon}{\sqrt{|A|}}$.
- 4. Express $\sqrt{a_n} A$ as $\frac{a_n A}{\sqrt{a_n} + \sqrt{A}}$ and put $N = \max\{N_1, N_2\}$. Conclude.

Solution: If $(a_n \to A)$, then given $\varepsilon > 0$ for some $N \in \mathbb{N}$ s.t. $n \ge N$, we have $|a_n - A| < \varepsilon$. 1) If A = 0, then for some $\varepsilon > 0$ there exist an $N \in \mathbb{N}$ s.t. $|a_n - 0| < \varepsilon^2$. Then $a_n < \varepsilon^2$ $\Rightarrow \sqrt{a_n} < \sqrt{\varepsilon^2}$ $\Rightarrow \sqrt{a_n} < \varepsilon$ $|\sqrt{a_n} - 0| < \varepsilon$ Therefore, $\sqrt{a_n}$ converges to 0

Exercise 5. (5 pts) For each sequence $(a_n)_{n=1}^{\infty}$, define the sequence $(\sigma_n)_{n=1}^{\infty}$ by

$$\sigma_n := \frac{a_1 + a_2 + \dots + a_n}{n} \quad (n \ge 1).$$

Prove that if $a_n \to A$, then $\sigma_n \to A$. Find an example of a divergent sequence (a_n) such that $(\sigma_n)_{n=1}^{\infty}$ converges.

Solution: Proof:

Example:

Let
$$(a_n)_{n=1}^{\infty} = (-1)^n$$

 (a_n) is divergent, but
 $\sigma_n = \frac{-1+1-1+1....(-1)^n}{n} = 0$ or $\frac{-1}{n}$
Thus, σ_n converges to 0.

Homework problems

Exercise 6. (10 pts) Use the definition of convergence to prove that each of the following sequences converges.

- a) $(a_n)_{n=1}^{\infty}$ given by $a_n = 5 + 1/n$ for $n \ge 1$.
- **b)** $(a_n)_{n=1}^{\infty}$ given by $a_n = \frac{3n}{2n+1}$ for $n \ge 1$.

Solution: a) If $(a_n)_{n=1}^{\infty}$ is convergent, then $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } |a_n - A| < \varepsilon \text{ for all } n \geq N$ Let $(a_n) = 5 + \frac{1}{n}$. The $\lim_{n \to \infty} 5 + \frac{1}{n} = 5$. Our goal is to show that a_n converges to 5.

$$|(5 + \frac{1}{n}) - 5| < \varepsilon$$

$$\frac{1}{n} < \varepsilon$$

$$1 < n\varepsilon$$

$$\frac{1}{\varepsilon} < n$$

$$\frac{1}{\varepsilon} < N < n(\text{Since } n \ge N)$$

$$\frac{1}{N} < \varepsilon$$

By AP for any $\varepsilon > 0$ there is an $N \in \mathbb{N}$ s.t. $\frac{1}{N} < \varepsilon$

$$|a_n - 5| = |(5 + \frac{1}{n}) - 5|$$

$$= \frac{1}{n}$$

$$\leq \frac{1}{N} (\text{Since } n \geq N \Rightarrow \frac{1}{n} \leq \frac{1}{N})$$

$$< \varepsilon$$

Therefore, for every $\varepsilon > 0$, there exist an N s.t. $|a_n - 5| < \varepsilon$ for all $n \ge N$ and the sequence converges to 5.

b) $(a_n)_{n=1}^{\infty}$ given by $a_n = \frac{3n}{2n+1}$ for $n \ge 1$. Let $(a_n) = \frac{3n}{2n+1}$. The $\lim_{n \to \infty} \frac{3n}{2n+1} = \frac{3}{2}$. Our goal is to show that a_n converges to $\frac{3}{2}$. By AP for any $\varepsilon > 0$ there is an $N \in \mathbb{N}$ s.t. $\frac{1}{N} < \varepsilon$

$$|a_n - \frac{3}{2}| = \left| \frac{3n}{2n+1} - \frac{3}{2} \right|$$

$$= \left| \frac{6n - 6n - 3}{2(2n+1)} \right|$$

$$= \left| \frac{-3}{4n+2} \right|$$

$$= \frac{3}{4n+2}$$

$$\leq \frac{3}{4n} \left(\text{Since } \frac{1}{4n+2} \leq \frac{1}{4n} \right)$$

$$= \frac{3}{4N} \left(\text{Since } n \geq N \Rightarrow \frac{1}{n} \leq \frac{1}{N} \right)$$

$$< \frac{3\varepsilon}{4}$$

$$< \varepsilon$$

Therefore, for every $\varepsilon > 0$, there exist an N s.t. $|a_n - \frac{3}{2}| < \varepsilon$ for all $n \ge N$ and the sequence converges to $\frac{3}{2}$.

Exercise 7. (5 pts) Prove that the sequence $(a_n)_{n=1}^{\infty} = \left(\frac{2n+1}{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence.

Solution: a_n is a cauchy sequence if $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t } m, n \geq N \Rightarrow |a_m - a_n| < \varepsilon$ By AP, there exist an $N \in \mathbb{N}$ s.t. $\frac{1}{N} < \frac{\varepsilon}{2}$ Take $m, n \geq N$

$$\begin{split} |a_m-a_n|&=|\frac{2n+1}{n}-\frac{2m+1}{m}|\\ &=|2+\frac{1}{n}-2-\frac{1}{m}|\\ &=|\frac{1}{n}-\frac{1}{m}|\\ &\leq\frac{1}{n}+\frac{1}{m} \end{split}$$
 triangle inequality

Since $n, m \geq N$, then $\frac{1}{n}, \frac{1}{m} \leq \frac{1}{N}$

$$\frac{1}{n}, \frac{1}{m} \le \frac{1}{N}$$

$$< \frac{\varepsilon}{2}$$

Therefore,

$$|a_m - a_n| \le \frac{1}{n} + \frac{1}{m}$$
 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$
 $= \varepsilon$

rally good!

Hence, $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t } |a_m - a_n| < \varepsilon \text{ for all } m, n \ge N.$ Thus, $(a_n)_{n=1}^{\infty} = \left(\frac{2n+1}{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence.

Exercise 8. (10 pts) Prove that each of the following sequence diverges.

- a) $(a_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$
- **b)** $(a_n)_{n=1}^{\infty} = (\sin(\frac{2n+1}{2}\pi))_{n=1}^{\infty}$.

- You have to prove it. 115 Solution: a) $(a_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$. When n is even $a_n = 1$. When n is odd $a_n = -1$. Thus, $(-1)^n$ is divergent.

b)
$$(a_n)_{n=1}^{\infty} = (\sin(\frac{2n+1}{2}\pi))_{n=1}^{\infty}$$
.
 $\sin(\frac{2n+1}{2}\pi) = \sin(n\pi + \frac{\pi}{2})$
 $= \sin(n\pi)\cos(\frac{\pi}{2}) + \sin(\frac{\pi}{2})\cos(n\pi)$
 $= 0 + \cos(n\pi)$
 $= 1, -1, 1, -1....$ for $n = 0, 1, 2...$
Thus, $\sin(\frac{2n+1}{2}\pi)$ is divergent.

Solution: Let
$$(a_n) = n^2$$
 and $(b_n) = -n^2$, these two sequences do not converge. $(a_n + b_n) = n^2 - n^2 = 0$, this sequence converges.

Exercise 10. (10 pts) With the limit operations and the writing problems, find the limit of the following sequence with general term

- a) $\frac{n^2+4n}{n^2-5}$.
- **b**) $\frac{n}{n^2-3}$.
- c) $\frac{\cos n}{n}$. [You can use what you know on the cosine function.]

d)
$$(\sqrt{4-\frac{1}{n}}-2)n$$
.

Solution: a)
$$\frac{n^2+4n}{n^2-5}$$

 $\frac{n^2+4n}{n^2-5} = \frac{1+\frac{4}{n}}{1-\frac{5}{n^2}}$
 $1+\frac{4}{n}$ converges to $1+0=1$
 $1-\frac{5}{n^2}$ converges to $1-0=1$
Thus, $\frac{n^2+4n}{n^2-5}$ converges to $\frac{1}{1}=1$

b)
$$\frac{n}{n^2-3}$$

$$\frac{n}{n^2-3} = \frac{\frac{1}{n}}{1-\frac{3}{n^2}}$$
 $\frac{1}{n}$ converges to 0.
$$1 - \frac{3}{n^2}$$
 converges to 1-0=1 Thus, $\frac{n}{n^2-3}$ converges to $\frac{0}{1} = 0$

c)
$$\frac{\cos n}{n}$$
. [You can use what you know on the cosine function.] $\frac{\cos n}{n} = \frac{1}{n} \cdot \cos n$ Consider the theorem if $an \to 0$ and b_n is bounded then $a_n b_n \to 0$ Let $a_n = \frac{1}{n}$, this converges to 0 and $b_n = \cos n$, which is bounded. Thus, $\frac{\cos n}{n}$ converges to 0

d)
$$\left(\sqrt{4 - \frac{1}{n}} - 2\right) n$$
.
 $\left(\sqrt{4 - \frac{1}{n}} - 2\right) n = \frac{\left(\sqrt{4 - \frac{1}{n}} - 2\right) \left(\sqrt{4 - \frac{1}{n}} + 2\right) n}{\left(\sqrt{4 - \frac{1}{n}} + 2\right)} = \frac{-1}{\left(\sqrt{4 - \frac{1}{n}} + 2\right)}$
 $\left(\sqrt{4 - \frac{1}{n}} + 2\right)$ converges to 4.
So, $\left(\sqrt{4 - \frac{1}{n}} - 2\right) n$ converges to $\frac{-1}{4}$.