

Introduction to Algorithms

DongYeon Kim
Department of Multimedia Engineering
Dongguk University

Contents

Chapter.1 Foundations

1. The Role of Algorithms in Computing

- 1) Algorithms
- 2) Algorithms as a technology

2. Getting Started

- 1) Insertion sort
- 2) Analyzing algorithms
- 3) Designing algorithms

3. Growth of Functions

- 1) Asymptotic notation
- 2) Standard notations and common functions

4. Divide-and-Conquer

- 1) The maximum-subarray problem
- 2) Strassen's algorithm for matrix multiplication
- 3) The substitution method for solving recurrences
- 4) The recursion-tree method for solving recurrences
- 5) The master method for solving recurrences
- 6) Proof of the master theorem

Probabilistic Analysis and Randomized Algorithms

- 1) The hiring problem
- 2) Indicator random variables
- 3) Randomized algorithms
- Probabilistic analysis and further uses of indicator random variables

The Introduction for solving recurrences

- Introduction
 - ➤ Now that we have seen how recurrences characterize the running times of divide—and—conquer algorithms
 - ✓ Merge sort, Maximum-subarray problem, Strassen's algorithm

✓ Ex)
$$T(n) = \Theta(1) + 2T(n/2) + \Theta(n) + \Theta(1)$$

= $2T(n/2) + \Theta(n)$.

- > From this chapter, learn how to solve recurrences
 - ✓ Substitution method
 - ✓ Recursion-tree method
 - ✓ Master method ★

$$\begin{array}{rcl}
\checkmark \, \mathsf{Ex} \big) & T(n) & = & \Theta(1) + 2T(n/2) + \Theta(n) + \Theta(1) \\
& = & 2T(n/2) + \Theta(n) \,.
\end{array}$$

$$T(n) = \theta(n \log n)$$

The substitution method for solving recurrences

Concept

- ➤ When we solve the recurrence function, substitute the guessed solution for the function and check if the guessed solution is true or not
- > The substitution method comprises two steps
 - ✓ Guess the form of the solution
 - ✓ Use mathematical induction to find the constants and show that the solution works

Property

- > This method is powerful, but we must be able to guess the form of the answer
- We can use this method to establish either upper or lower bounds on a recurrence

The substitution method for solving recurrences

Example

- ➤ Determine the upper bound of the recurrence $T(n) = 2T(\lfloor n/2 \rfloor) + n$
 - ✓ Step 1: guess the solution
 - i. $T(n) = O(n \lg n)$
 - ✓ Step 2: prove through mathematical induction
 - i. Require us to prove that $T(n) \le cn \lg n$ for an appropriate choice of the constant c > 0
 - ii. Assume that the bound holds for all positive m < n, $\left(m = \frac{n}{2}\right)$
 - iii. $T([n/2]) \le c[n/2]\lg([n/2])$

iv.
$$T(n) \le 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n$$

 $\le cn \lg(n/2) + n$
 $= cn \lg n - cn \lg 2 + n$
 $= cn \lg n - cn + n$
 $\le cn \lg n$,

- v. The last step holds as long as $c \ge 1$
- vi. Require us to show that the solution holds for the boundary condition

- Concept
 - > We sum all nodes to determine the total cost of the recursion
 - ➤ Recursion tree is used to generate a good guess, which we can verify by the substitution method

- ✓ Each node represents the cost of a single subproblem
- ✓ Sum the costs within each level of the tree
- ✓ Sum all the per-level costs to determine the total cost of all levels of the recursion

The recursion-tree method for solving recurrences

- Concept (cont'd)
 - ➤ We can often tolerate a small amount of "slopness"
 - ✓ Because we can verify a good guess by the substitution method later

$$\checkmark T(n) = 3T(\lfloor n/4 \rfloor) + \theta(n^2) \rightarrow T(n) = 3T(n/4) + cn^2$$

Make a good guess for the recurrence (example)

- $T(n) = 3T(\lfloor n/4 \rfloor) + \theta(n^2)$
 - $\checkmark T(n) = 3T(n/4) + cn^2$ (sloppiness that we can tolerate)
 - ✓ Assume that n is an exact power of 4
 - i. Another example of tolerable sloppiness
 - ii. All subproblem sizes are integers

The recursion-tree method for solving recurrences

Make a good guess for the recurrence (cont'd)

$$T(n) = 3T(\lfloor n/4 \rfloor) + \theta(n^2)$$

- ✓ Part (a)
 - initial state of the recurrence
- ✓ Part (b)
 - i. The cn^2 term at the root represents the cost at the top level of recursion

- ii. The three subtrees of the root represent the costs incurred by the subproblems of size n/4
- ✓ Part (c)
 - i. The cost for each of the three children of the root is $c(\frac{n}{4})^2$
 - ii. The three subtrees of the root represent the costs incurred by the subproblems of size n/16

- Make a good guess for the recurrence (cont'd)
 - $T(n) = 3T(\lfloor n/4 \rfloor) + \theta(n^2)$

- ✓ Subproblem size for a node at depth $i:\frac{n}{4^i}$
- ✓ The tree has $\log_4 n + 1$ levels
 - i. Bottom node size $=\frac{n}{4^i}=1$
 - ii. $i = \log_4 n$
- \checkmark The number of nodes at depth $i = 3^i$
- ✓ The cost of each node at level $i = c(\frac{n}{4i})^2$
- \checkmark The total cost of level $i = 3^i c(\frac{n}{4^i})^2 = cn^2(\frac{3}{16})^i$
- ✓ The bottom level has $3^{\log_4 n} = n^{\log_4 3}$ nodes, each contributing cost T(1) is a constant
- ✓ A total cost of bottom level = $n^{\log_4 3}T(1) = \theta(n^{\log_4 3})$

- Make a good guess for the recurrence (cont'd)
 - $T(n) = 3T(\lfloor n/4 \rfloor) + \theta(n^2)$
 - ✓ Add up the costs over all levels to determine the cost for the entire tree

$$T(n) = \frac{cn^2 + \frac{3}{16}cn^2 + \left(\frac{3}{16}\right)^2cn^2 + \dots + \left(\frac{3}{16}\right)^{\log_4 n - 1}cn^2 + \underline{\Theta(n^{\log_4 3})}$$

$$= \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^icn^2 + \underline{\Theta(n^{\log_4 3})}$$

$$= \frac{(3/16)^{\log_4 n} - 1}{(3/16) - 1}cn^2 + \underline{\Theta(n^{\log_4 3})}$$
(by equation (A.5)).

Sum of geometric sequence total cost of each level $(1 \sim \log_4 n - 1)$

- ✓ This formula looks somewhat messy → we can take advantage of small amounts of sloppiness
- ✓ Use an infinite decreasing geometric series as an upper bound

- Make a good guess for the recurrence (cont'd)
 - $> T(n) = 3T(|n/4|) + \theta(n^2)$
 - ✓ Take advantage of small amounts of sloppiness & use infinite decreasing geometric series

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 n})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 n})$$

$$= \frac{1}{1 - (3/16)} cn^2 + \Theta(n^{\log_4 n})$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 n})$$

$$= O(n^2).$$

- $T(n) = \sum_{i=0}^{\log_4 n 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$ i. Line 1~2: use infinite decreasing geometric series as an $<\sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^icn^2+\Theta(n^{\log_43})$ i. Line $1\sim2$ use intinite decreasing geometric series as an upper bound ii. Line $4\sim5$: take advantage of small amounts of sloppiness

- \succ We have derived a guess of $T(n) = O(n^2)$ for our original recurrence T(n) = $3T(|n/4|) + \theta(n^2)$
- ➤ Now we can use the substitution method to verify that our guess was correct

The recursion-tree method for solving recurrences

Make a good guess for the recurrence (cont'd)

```
 T(n) = 3T(\lfloor n/4 \rfloor) + \theta(n^2) 
✓ Use the substitution method to verify our guess
 T(n) = O(n^2) \text{ is an upper bound for the recurrence } T(n) = 3T(\lfloor n/4 \rfloor) + \theta(n^2) 
✓ We want to show that T(n) \le dn^2 for some constant d > 0
 T(n) \le 3T(\lfloor n/4 \rfloor) + cn^2 \qquad \text{i. Line } 1 \sim 2 : T(n) = O(n^2) \text{ is an upper bound} 
 \le 3d \lfloor n/4 \rfloor^2 + cn^2 \qquad \text{ii. Line } 2 \sim 3 : \text{Floor function means upper bound} 
 \le 3d(n/4)^2 + cn^2 \qquad \text{iii. Line } 4 \sim 5 : \text{holds as long as } d \ge \left(\frac{16}{13}\right)c 
 \le dn^2,
```

✓ So, there exists some constant d > 0, our guess is correct!!

The master method for solving recurrences

- Introduction
 - The master method provides a "cookbook" method for solving recurrences of the form T(n) = aT(n/b) + f(n)
 - ✓ Where $a \ge 1$ and b > 1 are constants
 - $\checkmark f(n)$ is an asymptotically positive function
 - > The recurrence describes the running time of algorithms
 - \checkmark Divide the problem of size n into a subproblems
 - ✓ Each of size n/b
 - ✓ a subproblems are solved recursively, each in time T(n/b)
 - $\checkmark f(n)$: divide and combine steps in divide and conquer algorithm
 - ✓ $T(\lfloor n/b \rfloor)$ or $T(\lceil n/b \rceil)$ will not affect the asymptotic behavior of the recurrence, so replace the terms T(n/b)

The master method for solving recurrences

The master theorem

> To use the master method, you will need to memorize three cases

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

✓ Case 2

- i. The two functions are the same size
- ii. We multiply by a logarithmic factor
- iii. The solution is $T(n) = \theta(n^{\log_b a} \lg n) = \theta(f(n) \lg n)$

- \checkmark compare the function f(n) with the function $n^{\log_b a}$
- ✓ The larger of the two functions determines the solution to the recurrence
- ✓ Case 1
 - i. The function $n^{\log_b a}$ is the larger
 - ii. The solution is $T(n) = \theta(n^{\log_b a})$
 - ii. The function f(n) must be polynomially smaller $\rightarrow f(n)$ must be asymptotically smaller than $n^{\log_b a}$ by a factor of n^{ϵ}

The master method for solving recurrences

- The master theorem (cont'd)
 - > To use the master method, you will need to memorize three cases

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

- ✓ Case 3
 - i. The function f(n) is the larger
 - ii. The solution is $T(n) = \theta(f(n))$
 - ii. The function f(n) must be polynomially larger $\rightarrow f(n)$ must be asymptotically larger than $n^{\log_b a}$ by a factor of n^{ϵ}
 - iv. Must satisfy the "regularity" condition that $af(n/b) \le cf(n)$
- ✓ Three cases do not cover all the possibilities for f(n)
- ✓ Gap between cases 1 and 2 when f(n) is smaller than $n^{\log_b a}$ but not polynomially smaller
- ✓ Gap between cases 2 and 3 when f(n) is larger than $n^{\log_b a}$ but not polynomially larger
- ✓ The regularity condition in case 3 fails to hold
 - → Cannot use the master method to solve the recurrence!!!

The master method for solving recurrences

- Using the master method
 - ➤ To use the master method, we simply determine which case of the master theorem applies and write down the answer

$$> T(n) = 9T\left(\frac{n}{3}\right) + n$$

$$\checkmark a = 9, b = 3, f(n) = n$$

$$\checkmark f(n) = O(n^{\log_3 9 - \epsilon})$$
, where $\epsilon = 1$

$$\checkmark n^{\log_b a} = n^{\log_3 9} = \theta(n^2)$$

✓ We can apply case 1 of the mater theorem and conclude that the solution is $T(n) = \theta(n^2)$

$$> T(n) = T\left(\frac{2n}{3}\right) + 1$$

$$\checkmark a = 1, b = \frac{3}{2}, f(n) = 1$$

$$\checkmark n^{\log_b a} = n^{\log_3/2} = n^0 = 1$$

$$\checkmark f(n) = \theta(n^{\log_b a}) = \theta(1)$$

✓ We can apply case 2 of the mater theorem and conclude that the solution is $T(n) = \theta(\lg n)$

The master method for solving recurrences

Using the master method (cont'd)

$$> T(n) = 2T\left(\frac{n}{2}\right) + n \lg n$$

$$\checkmark a = 2, b = 2, f(n) = n \lg n$$

$$\checkmark n^{\log_b a} = n^{\log_2 2} = n$$

- \checkmark We might mistakenly think that case 3 should apply, since f(n) is asymptotically larger than n
- ✓ The problem is that it is not polynomially larger.
 - i. The ratio $f(n)/n^{\log_b a} = n \lg n / n = \lg n$
 - ii. It is asymptotically less than n^{ϵ} for any positive constant ϵ
- ✓ The recurrence falls into the gap between case 2 and case 3

$$> T(n) = 7T(n/2) + \theta(n^2)$$
 (Strassen's algorithm)

$$\checkmark a = 7, b = 2, f(n) = \theta(n^2)$$

$$\checkmark n^{\log_b a} = n^{\log_2 7} \rightarrow 2.80 < lg 7 < 2.81$$

$$\checkmark f(n) = O(n^{\lg 7 - \epsilon}) \text{ for } \epsilon = 0.8$$

✓ We can apply case 1 of the mater theorem and conclude that the solution is $T(n) = \theta(n^{\lg_2 7})$

Thank You!

- The substitution method for solving recurrences
 - Example (cont'd)
 - > Show the solution holds for base case
 - \checkmark For n=1
 - i. $T(n) \le cn \lg n \rightarrow T(1) \le c \lg 1 = 0$
 - ii. It is odds with $T(1) = 1 \le 0$
 - iii. The base case of our inductive proof fails to hold.
 - \checkmark we can overcome this obstacle by only proving $T(n) \le cn \lg n$ for $n \ge n_0$ where n_0 is a constant that we get to choose
 - i. Induction proves the statement for $n \ge 2$, $n_0 = 2$
 - ii. Base cases for induction proof n = 2 and n = 3

base case	recurrence relation	induction proof $[T(n) \leq cn \lg n]$	
n = 2	T(2) = 2T(1) + 2 = 4	$4 \le (2)(2) \lg(2)$]]
n = 3	T(3) = 2T(1) + 3 = 5	$5 \le (2)(3) \lg(3)$	$\begin{array}{c} c = 2 \end{array}$