$\begin{array}{c} \text{MATH 5411 - Advanced Probability I} \\ \text{Homework 1} \end{array}$

(due: October 10, 2022)

Q1: Let A_1, A_2, \cdots be a sequence of events. Define

$$B_n = \bigcup_{m=n}^{\infty} A_m, \qquad C_n = \bigcap_{m=n}^{\infty} A_m.$$

Clearly $C_n \subset A_n \subset B_n$. The sequences $\{B_n\}$ and $\{C_n\}$ are decreasing and increasing respectively with limits

$$\lim B_n = B = \cap_n B_n = \cap_n \cup_{m \ge n} A_m, \qquad \lim C_n = C = \cup_n C_n = \cup_n \cap_{m \ge n} A_m.$$

The events B and C are denoted $\limsup_{n\to\infty} A_n$ and $\liminf_{n\to\infty} A_n$, respectively. Show that

- (a) $B = \{ \omega \in \Omega : \omega \in A_n \text{ for infinitely many values of } n \},$
- (b) $C = \{ \omega \in \Omega : \omega \in A_n \text{ for all but finitely many values of } n \},$

We say that the sequence $\{A_n\}$ converges to a limit $A = \lim A_n$ if B and C are the same set A. Suppose that $A_n \to A$ and show that

(c) $\mathbb{P}(A_n) \to \mathbb{P}(A)$.

Q2: Let \mathcal{F} be a σ -field, and let $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$ be two sub σ -fields.

- (i) Give one example which shows that $\mathcal{G} \cup \mathcal{H}$ is not a σ -field.
- (ii) Prove that $\mathcal{G} \cap \mathcal{H}$ is a σ -field.
- (iii) $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \cdots$ is a sequence of sub σ -fields, prove that $\bigcup_{i=1}^{\infty} \mathcal{F}_i$ is a field. Give an example to show that $\bigcup_{i=1}^{\infty} \mathcal{F}_i$ is not necessarily a σ -field.

Q3: Suppose that X and Y are random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ and let $A \in \mathcal{F}$. We set $Z(\omega) = X(\omega)$ for all $\omega \in A$ and $Z(\omega) = Y(\omega)$ for all $\omega \in A^c$. Prove that Z is a random variable.

Q4: Prove the following two definitions of random vector are equivalent.

Def.1: $X = (X_1, \ldots, X_d) : (\Omega, \mathcal{F}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ is a random vector if it is \mathcal{F} -measurable. Def.2: $X = (X_1, \ldots, X_d)$ is a random vector if $X_i : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is \mathcal{F} -measurable for all $i = 1, \ldots, d$.

Q5: Prove the following reverse Fatou's lemma: Let $f_1, f_2, ...$ be a sequence of Lebesgue integrable functions on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that there exists a nonnegative integrable function g on Ω such that $f_n \leq g$ for all n. Prove

$$\limsup_{n\to\infty} \int f_n d\mu \le \int \limsup_{n\to\infty} f_n d\mu.$$