INSTITUT DES SCIENCES APPLIQUEES ET ECONOMIQUES (ISAE) Centre associé au CNAM de Paris

MVA 006: APPLICATIONS DE L'ANALYSE A LA GEOMETRIE, INITIATION A L'ALGEBRE LINEAIRE

Feuille de TD Nº6

Exercice 1:

Dire si W est ou n'est pas un sous-espace du \mathbb{R} -espace vectoriel \mathbb{R}^3 dans les cas suivants:

a)
$$W = \{(x, y, z) \in \mathbb{R}^3 : x \neq 0\}$$

b)
$$W = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - 3z = 0\}$$

c)
$$W = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - 3z = 1\}$$

d)
$$W = \{(x, y, z) \in \mathbb{R}^3 : x^2 - y^2 + 3z^2 = 0\}$$

e)
$$W = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0\}$$

f)
$$W = \{(x, y, z) \in \mathbb{R}^3 : y \in \mathbb{Q}\}\$$

On précisera une base et la dimension de W dans chaque cas où ce dernier est un s.e.v.

Exercice 2:

Montrer que l'ensemble $F = \{(x, y) \in \mathbb{R}^2 : x^2 - y^2 = 0\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . En déduire que l'union de deux s.e.v. d'un e.v. E, n'est pas forcément un s.e.v de E.

Exercice 3:

On se place dans l' e.v. \mathbb{R}^3 muni des lois habituelles. Considérons alors les ensembles suivants: $F = \{(x, y, z) \in \mathbb{R}^3 : x - 2y + z = 0 \text{ et } 2x - y = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 : (x - y)^2 = 2x + y\}$

- 1) Vérifier que F est un s.e.v de \mathbb{R}^3 alors que G ne l'est pas.
- 2) Trouver une base de F et en déduire sa dimension.
- 3) Quelle est l'interprétation géométrique de F?

Exercice 4:

Trouver la valeur qu'il faut donner au paramètre réel m pour que le vecteur $\vec{u} = (m, -1, 3)$ soit une combinaison linéaire des vecteurs suivants : $\vec{v} = (3, 0, -2)$, $\vec{w} = (2, -1, -5)$

Exercice 5:

Considérons les vecteurs $v_1 = (1, -1, 0), v_2 = (2, 1, 3), v_3 = (4, 5, 9), w_1 = (1, 1, 1), w_2 = (3, -4, 4).$

- 1) Etudier la liberté des familles suivantes : $\{v_1, v_2, v_3\}$ $\{w_1, w_2\}$
- 2) Soient $F = vect(v_1, v_2, v_3)$ et $G = vect(w_1, w_2)$. Déterminer une base et la dimension de F, G et $F \cap G$
- 3) Montrer que la famille $\{(4,-1,3),(-1,-2,-3)\}$ est une base de F . Quelles sont les coordonnées du vecteur $v_1+v_2+v_3$ relativement à cette base ?

Exercice 6:

On se place dans le \mathbb{R} -espace vectoriel $\mathbb{R}_2[x]$ des polynômes à coefficients réels de degré \leq On considère les ensembles suivants : $E = \{P \in \mathbb{R}_2[x] : P(-1) = 0\}, \quad F = \{P \in \mathbb{R}_2[x] : P(1-x) = P(x)\}.$

- 1) Montrer que E, F sont des s.e.v. de $\mathbb{R}_2[x]$. Déterminer leurs dimensions.
- 2) Quelle est la dimension de $E \cap F$?

Exercice 7:

 \mathbb{R}^3 et \mathbb{R}^2 étant rapportés à leurs bases canoniques respectives $B = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ et $C = \{\vec{i}, \vec{j}\}$ on considère l'application linéaire u de \mathbb{R}^3 dans \mathbb{R}^2 définie par : $\cup (\vec{e_1}) = (3,4)$, $\cup (\vec{e_2}) = (0,5)$ et $\cup (\vec{e_3}) = (-1,0)$

- 1) Calculer les images par u des vecteurs suivants: (3,0,1), (1,1,1)
- 2) Calculer u(x, y, z) pour tout vecteur $(x, y, z) \in \mathbb{R}^3$.
- 3) Résoudre dans \mathbb{R}^3 l'équation suivante d'inconnue \vec{a} : $\vec{a} = \vec{i} 2\vec{j}$

Exercice 8:

Soit l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$(x, y, z) \mapsto (x, x - y, y + z)$$

- 1) Montrer que f est linéaire.
- 2) Déterminer le noyau et l'image de f.
- 3) f est-elle bijective ? Si oui déterminer sa réciproque.
- 4) Déterminer l'antécédent du vecteur $\vec{v} = (1, -1, 2)$ par f.

Exercice 9:

Soient $\mathbb{R}_2[x]$ l'ensemble des polynômes à coefficients réels de degré ≤ 2 , et $\mathbb{R}_1[x]$ l'ensemble des polynômes à coefficients réels de degré ≤ 1 .

Soit l'application $\varphi: \mathbb{R}_2[x] \to \mathbb{R}_1[x]$

$$P(x) \mapsto P'(x) + xP''(x)$$

- 1) Montrer que φ est linéaire.
- 2) Déterminer $Ker(\varphi)$ et $Im(\varphi)$.