Amber Hart Building a Domain-Specific AI July 14, 2025

1. Introduction

The Compliance Advisor Chatbot is a specialized AI assistant built to help organizations compare their internal security policies against the NIST SP 800-53 standard. It lives in the domain of cybersecurity and compliance, a critical area for any organization running regulated workloads in public clouds.

By choosing **cybersecurity and compliance** as my domain, I address the need for continuous, automated policy validation and gap identification. Manual audits are slow and error-prone; this chatbot provides real-time insights, reduces overhead, and helps teams rapidly align their controls with industry best practices.

2. Chatbot Architecture and Components

Cloud Advisor Chatbot architecture:

Key components:

• Streamlit UI

- File uploader (PDF/TXT)
- o Mode toggle ("NIST Lookup" vs. "Policy Gap Analysis")
- Chat interface with "Clear Chat"

FetcherAgent

- Role: Retrieve top-k chunks from the NIST vector store, then run a map-reduce summarization chain.
- Benefit: Limits token usage and ensures only relevant policy snippets are seen by the LLM.

• AnalyzerAgent

- o **Role**: Consume the summary from FetcherAgent and generate an actionable, user-facing analysis via a direct LLM call.
- **Benefit**: Separates retrieval + summarization from pure LLM reasoning for cleaner prompts and fewer hallucinations.

GapAgent

- Role: In "Policy Gap Analysis" mode, it retrieves from both the user-uploaded CompanyStore and the NISTStore, summarizes each, and calls the LLM to identify policy gaps and recommend improvements.
- o **Benefit**: Delivers a side-by-side comparison without manual cross-referencing.

• Chroma Vector Stores

- o **NISTStore**: Indexed NIST SP 800-53 Rev. 5 PDF chunks.
- o **CompanyStore**: Dynamically re-indexed whenever the user uploads a new policy PDF/TXT.

GPT-4 via ChatOpenAI

o Drives all free-text generation: summarization, analysis, and final recommendations.

Compared to the financial-analysis tutorial, we added:

- 1. A file uploader + dynamic indexer (for arbitrary company policies).
- 2. A two-column Streamlit layout for better guidance.
- 3. Three distinct agents (Fetcher, Analyzer, Gap) instead of just Researcher/Financial Analyst.

3. Implementation Details

Data Sources & Loaders

- o **PyPDFLoader** for PDF ingestion, **TextLoader** for plain text.
- o ChromaDB for fast nearest-neighbor retrieval.

• Prompt Engineering

o FetcherAgent system prompt:

"You are a policy summarizer. Retrieve the top-k relevant controls for the user's question and condense them into a short summary."

AnalyzerAgent prompt:

"You are a Compliance Analyst. Given this policy summary: {summary} — provide concise, actionable guidance."

o GapAgent prompt:

"Compare my company policy excerpt and NIST controls excerpt, then identify any gaps and recommend improvements."

• Combine Text Logic

In code, we simply f-string concatenate summaries before sending to the LLM, which emulates a Langflow "Combine Text" node.

4. Testing and Results

Question	Expected Output	Actual Output
1. "Which NIST controls apply to encryption at rest?"	SC-12, SC-13, SC-28 with rationale	Matched exactly
2. "What's missing in my access control policy?"	AC-2, AC-7, IA-2 plus suggestions (e.g., MFA, account kill)	Matched and added "account termination procedure"
3. "Where are the gaps in my encryption-at-rest section versus NIST?"	Key rotation, backup encryption policies	Correctly recommended both
4. "How do I test integrity controls?"	Checksums, hashing, audit logs	Provided those testing methods
5. "Upload a policy snippet, then ask: 'Gaps in backup encryption?""	Missing archival encryption, key management details	Accurately identified missing archival and rotation policies

Challenges:

- Token limits with GPT-4 on large policies → solved by chunking & map-reduce summarization.
- Managing duplicate uploads → we now clear the previous index before re-indexing.

Strengths & Limitations:

- Strengths: Modular, agent-driven, easy to swap in new policy sets.
- **Limitations**: Coarse chunk overlap may miss deeply nested clauses; relies on user upload accuracy.

5. Reflection and Future Work

Learnings:

- Multi-agent orchestration dramatically improves retrieval accuracy and reduces hallucinations.
- Dynamic indexing of arbitrary PDFs gives end users full flexibility.

Future Improvements:

- 1. Real-time API integration (e.g., read live configurations)
- 2. Finer-grained memory (track which specific policy sections have been discussed).

3. Enhanced UI: Visual diff highlighting between policy vs. controls.

This architecture is equally applicable to **legal**, **medical**, or **academic** domains—just swap the vector store contents and tailor the agent prompts to the new subject.