Ferre Van Assche, Vergauwen Bob

KU Leuven

January , 2015

- Introduction
 - Numerical schemes
- Software and computations
- Numerical results

Riemann problem in 2D

A Riemann problem consists of a system of conservation equation together with a piecewise constant initial condition.

$$U_{0}(x,y) = \begin{cases} u_{1} & (x,y) \in [0.5,1]^{2} \\ u_{2} & (x,y) \in [0,0.5] \times [0.5,1] \\ u_{3} & (x,y) \in [0,0.5]^{2} \\ u_{4} & (x,y) \in [0.5,1] \times [0,0.5] \end{cases}$$

Introduction

The equations

Euler equation for compressible fluids

$$U_t + F(U)_x + G(U)_y = 0$$

with

$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ e \end{pmatrix} \qquad F = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ u(e+p) \end{pmatrix} \qquad G = \begin{pmatrix} \rho v \\ \rho u v \\ \rho u^2 + p \\ v(e+p) \end{pmatrix}$$

Equation describing the dynamics of a compressible fluid. Conserved quantities are: ρ density, ρu momentum in x, ρv momentum in y and the total energy e.

Numerical methods

5 different numerical schemes tested:

- TVDLF
- HLL
- ► HLLC
- ► TVD-MUSCL
- ▶ FD

TVDLF - Total Variation Diminishing (TVD) concept

Total variation of numerical approximation of u:

$$TV(u^n) = \sum_{i=0}^{N} |u_{i+1}^n - u_i^n|$$

Scheme is total variation diminishing in time if

$$TV(u^{n+1}) \leq TV(u^n) \ \forall n$$

TVDLF

First order Lax-Friedrichs scheme:

$$U_j^{n+1} = U_j^n - \frac{\Delta t}{\Delta x} \left(F_{j+1/2} - F_{j-1/2} \right) + \frac{1}{2} \left(\Phi_{j+1/2} - \Phi_{j-1/2} \right)$$

where

$$F_{j+1/2} = \frac{F_j + F_{j+1}}{2}$$
$$\Phi_{j+1/2} = U_{j+1} - U_j$$

Scheme is TVD ⇔ CFL condition satisfied

Scheme is first order accurate

Reduce numerical diffusion (with local Courant number, maximal speed):

$$\Phi_{j+1/2} = rac{\Delta t}{\Delta x} c_{j+1/2}^{max} (U_{j+1} - U_{j})$$

TVDLF - second order spatial accuracy

Linear approximation of U and fluxes at boundary interfaces U at $x_{i+1/2}$, linear interpolation:

$$U_{j+1/2}^{L} = U_{j}^{n} + \frac{1}{2}\bar{\Delta U_{j}^{n}}$$

$$U_{j+1/2}^{R} = U_{j+1}^{n} - \frac{1}{2}\bar{\Delta U}_{j+1}^{n}$$

Limited slopes ΔU will be defined later

$$F_{j+1/2} = \frac{F(U_{j+1/2}^L) + F(U_{j+1/2}^R)}{2}$$

$$\Phi_{j+1/2} = rac{\Delta t}{\Delta x} c_{j+1/2}^{ extit{max}} \left(U_{j+1/2}^{ extit{R}} - U_{j+1/2}^{ extit{L}}
ight)$$

TVDLF - slope limiter

Required to ensure TVD property For example *minmod* limiter

$$\bar{\Delta U_j} = minmod(\Delta U_{j-1/2}, \Delta U_{j+1/2})$$

with

$$\Delta U_{j+1/2} = U_{j+1} - U_j$$

and

$$minmod(w_1, w_2, \dots, w_n) =$$

$$sgn(w_1)max[0, min(|w_1|, sgn(w1)w_2, \dots, sgn(w_1)w_n)]$$

The *minmod* function takes the argument with the smallest modulus when all arguments have the same signs and otherwise it is zero.

TVDLF - Temporally second order accuracy

Use Hancock's predictor step:

$$U_{j}^{n+1/2} = U_{j}^{n} - \frac{1}{2} \frac{\Delta t}{\Delta x} \left[F(U_{j}^{n} + \frac{1}{2} \bar{\Delta U}_{j}^{n}) - F(U_{j}^{n} - \frac{1}{2} \bar{\Delta U}_{j}^{n}) \right]$$

used for calculating linear extrapolations:

$$U_{j+1/2}^{L} = U_{j}^{n+1/2} + \frac{1}{2}\bar{\Delta U_{j}^{n}}$$

$$U_{j+1/2}^R = U_{j+1}^{n+1/2} - \frac{1}{2}\bar{\Delta U}_{j+1}^n$$

TVD-MUSCL

MUSCL = Monotonic Upstream Scheme for Conservation Laws

- same Hancock predictor step and upwinding as TVDLF
- upwinding is applied for characteristic variables rather than conservative variables

Characteristic variables \vec{r}^k

- linear combinations of conservative variables
- right eigenvectors of $\partial \vec{F}/\partial \vec{U}$

$$\frac{\partial F}{\partial \vec{U}}\vec{r}^k = c^k \vec{r}^k$$

- ightharpoonup eigenvalues c^k are real
- eigenvectors form a complete orthogonal basis
- ▶ left eigenvectors \vec{l}^k :

$$\vec{l}^k \cdot \vec{r}^k = \delta_{k,m}$$

TVD-MUSCL

Modify $\vec{\Phi}$:

$$\vec{\Phi} = \frac{\Delta t}{\Delta x} \sum_{k} \vec{r}^{k} |c^{k}| \vec{l}^{k} \cdot (\vec{U^{R}} - \vec{U^{L}})$$

where \vec{r}^k , c^k and \vec{l}^k are calculated for $U_{j+1/2}$

- ightarrow $ec{l}^k \cdot (ec{U^R} ec{U^L})$ determines jump in k-th characteristic variable
- multiplication by \vec{r}^k transforms result back to conservation variables

Comparison to TVDLF

- Advantage: use of eigenvalue c^k instead of largest eigenvalue $c^{max} \Rightarrow$ upwinding is accurate for each characteristic variable \Rightarrow less numerical diffusion
- ► Disadvantage: left and right eigenvectors must be calculated for each cell interface (can be very expensive)

FD

Finite Differences

The flow variables are given as point-wise values U_j at locations x_j as:

$$U_j(t) = U(x_j, t)$$

Difference formulae of a given order of accuracy can be derived from Taylor expansion around the grid points

FD

Example, 1D, grid spacing Δx :

 \rightarrow a first order spatial derivative can be approximated by the centered finite difference formula:

$$\frac{U_{j+1} - U_{j-1}}{2\Delta x}$$

$$= \frac{1}{2\Delta x} \left[U_j + \Delta x \partial_x U + \frac{(\Delta x)^2}{2!} \partial_{xx} U + \dots \right]$$

$$- \frac{1}{2\Delta x} \left[U_j - \Delta x \partial_x U + \frac{(\Delta x)^2}{2!} \partial_{xx} U + \dots \right]$$

$$= \partial_x U + O((\Delta x)^2)$$

HLL

Riemann solver of Harten, Lax and van Leer System of one-dimensional conservation laws:

$$q_t + f(q)_{\times} = 0$$

with

$$q(x,0) = \begin{cases} q_I & \text{if } x < 0 \\ q_r & \text{if } x > 0 \end{cases}$$

Overview of different numerical methods

HLL

Integrating over control volume:

$$q^{hII} = \frac{s_r q_r - s_l q_l + f_l - f_r}{s_r - s_l}$$

Following approximation is proposed:

$$\tilde{q}(x,t) =
\begin{cases}
q_l & \text{if } \frac{x}{t} \leq s_l \\
q^{hll} & \text{if } s_l \leq \frac{x}{t} \leq s_r \\
q_r & \text{if } \frac{x}{t} \geq s_r
\end{cases}$$

Corresponding flux:

$$f_{i+1/2}^{hll} = \begin{cases} f_l & \text{if } 0 \le s_l \\ \frac{s_r f_l - s_l f_r + s_l s_r (q_r - q_l)}{s_r - s_l} & \text{if } s_l \le 0 \le s_r \\ f_r & \text{if } 0 \ge s_r \end{cases}$$

Overview of different numerical methods

HLL

These formulas can be used in the explicit conservative formula:

$$q_i^{n+1} = q_i^n + \frac{\Delta t}{\Delta x} \left[f_{i-1/2} - f_{i+1/2} \right]$$

Wave speeds s_l and s_r must be estimated.

HLLC

Modification of HLL scheme in which the missing contact and shear waves are restored.

HLLC

$$\tilde{q}(x,t) = \begin{cases} q_{l} & \text{if } \frac{x}{t} \leq s_{l} \\ q_{l}^{*} & \text{if } s_{l} \leq \frac{x}{t} \leq s^{*} \\ q_{r}^{*} & \text{if } s^{*} \leq \frac{x}{t} \leq s_{r} \\ q_{r} & \text{if } \frac{x}{t} \geq s_{r} \end{cases}$$

$$f_{l}^{hllc} = \begin{cases} f_{l} & \text{if } 0 \leq s_{l} \\ f_{l} + s_{l}(q_{l}^{*} - q_{l}) & \text{if } s_{l} \leq 0 \leq s^{*} \\ f_{r} + s_{r}(q_{r}^{*} - q_{r}) & \text{if } s^{*} \leq 0 \leq s_{r} \\ f_{r} & \text{if } 0 \geq s_{r} \end{cases}$$

Intermediate states q_I^* and q_r^* can be determined. Wave speeds s_I , s_r and s^* need to be estimated.

Software and computations

MPI-AMRVAC and the HPC

Vlaams Supercomputer Centrum

Server interaction

A script can do this better than we do!

- No need to ssh
- All changes can be made locally
- Bulk submitting
- No need to wait on the compilation
- Compresses and downloads all automatic

Les then 10 minutes to compare 5 methods on a new problem.

Software and computations

Some problems

- ► Compiler error: segmentation problem
- Some of the problems ran only on one node
- The visualisation software crashed a lot

2D Riemann problem

Configuration 1 - Results from paper

2D Riemann problem

Configuration 1 - Own results

movie

Configuration 5 - Results from paper

Configuration 5.	J_{32}^-	J_{41}^{-} : the initial data are	
$p_2 = 1$ $u_2 = -0.75$	$\rho_2 = \frac{J_{34}}{2}$ $v_2 = 0.5$	$p_1 = 1$ $u_1 = -0.75$	$ \rho_1 = 1 \\ v_1 = -0.5 $
$p_3 = 1$ $u_3 = 0.75$	$\rho_3 = 1$ $v_3 = 0.5$	$p_4 = 1$ $u_4 = 0.75$	$ \rho_4 = 3 $ $ v_4 = -0.5 $

Numerical results

2D Riemann problem

Configuration 5 - Own results

movie

2D Riemann problem

Configuration 5 - Own results

High Resolution - HLLC

Setup for the explosion

We tried several parameters

- Size of the explosion centre
- Pressure difference
- Location of the explosion

Comparing two explosions

Movie

3d rayleigh taylor

