Saad Ahmad.

Roll no: 20P-0051.

Class: BS(CS) - 1D.

 $\Omega_0 f(x) = \chi^2 - 4x + 5$

We know that

 $\Delta x = b - a$

Ax = 3-0

AX= 1 02 0.5

Now

 $\chi = \alpha + \Delta \chi(0) = 0$

 $x_1 = q + \Delta x(1) = 0.5$

x, = a + Ax(2) = 1

x3 = a + Ax(3) = 1.5

x4 = a + Ax(4) = 2

x5 = a + Ax(5) = 2.5

x = a + Ax(6) = 3.

So,

And Now

$$\chi_{i}^{*} = \frac{\chi_{i} + \chi_{i}}{2}$$

$$\chi_{2}^{*} = \frac{\chi_{1} + \chi_{2}}{2}$$

$$x_3^* = \frac{\chi_2 + \chi_3}{2}$$

$$\chi_5^* = \frac{\chi_4 + \chi_5}{2}$$

So,

$$f(x_2^*) = 2.5625$$

Now

Left End Points:

Right End Points:

Mid Point:

b)
$$\int_{0}^{\infty} x \sin^{2}x dx$$

We know that

Now.

$$x_1 = \alpha + \Delta x(1) = \overline{\Lambda}$$

$$x_2 = q + \Delta y(2) = \frac{\pi}{2}$$

$$x_3 = \alpha + \Delta \times (3) = 3 \pi$$

So we have

$$x_1^* = \frac{x_1 + x_1}{2} = \frac{x_1}{8}$$
 $y_2^* = \frac{x_1 + x_2}{2} = \frac{3\pi}{8}$

$$x_3^* - \frac{1}{2} + \frac{1}{2} = \frac{5\pi}{6}$$
, $x_4^* - \frac{1}{2} + \frac{1}{8} = \frac{7\pi}{8}$

So,

$$f(x^*) = 6.0575$$
, $f(x^*) = 1.0056$

$$f(x_3^*) = 1.6759$$
, $f(x_4^*) = 0.4026$

$$\sum_{i=1}^{4} f(x^*) \Delta x = \Delta x [f(x^*,) + f(x^*_2) + f(x^*_3) + f(x^*_4)]$$

$$Q_2$$
 a) $\int_2^5 (x^2 + \frac{1}{x}) dx$

So,
$$\Delta x = \frac{b-a}{n}$$

So we & have,

So

$$\int_{0}^{1} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$

$$= \lim_{n \to \infty} \frac{\sum_{i=1}^{n} f\left(2 + 3i\right)}{\sum_{i=1}^{n} f\left(2 + 3i\right)} \frac{3}{n}$$

$$=\lim_{n\to\infty}\frac{\sum_{i=1}^{n}f\left(6i\right)}{\sum_{i=1}^{n}h\left(n\right)}\frac{3}{n}.$$

=
$$\lim_{n\to\infty} \frac{3}{n} \stackrel{?}{\underset{i=1}{\stackrel{r}{\underset{r}}{\underset{i=1}{\stackrel{r}{\underset{r}}{\atop{i=1}}}}{\stackrel{r}{\underset{r}}{\underset{r}}{\underset{r}}{\underset{r}}}{\underset{r}}{\underset$$

b) i)
$$\lim_{n\to\infty} \frac{\ddot{Z}}{i=1} \frac{\sin x_i}{1+x_i} \Delta x_i$$
, $[0,\pi]$.

So,

$$\lim_{n\to\infty} \frac{z}{i=1} = \frac{\sin x}{1+x} = \int_{a}^{x} \left(\frac{\sin x}{1+x}\right) dx$$

ii)
$$\lim_{n\to\infty} \frac{\sum_{i=1}^{n} x_i^*}{(x_i^*)_+^2 4} \Delta x$$
, [1,3]

$$\lim_{h \to \infty} \frac{\sum_{i=1}^{n} \chi_{i}^{*}}{(\chi_{i}^{*})^{2} + 4} \Delta \chi = \int_{1}^{3} \frac{\chi}{\chi^{2} + 4} d\chi.$$

Q3
$$\int_{a}^{5} f(x) dx \quad \text{if } f(x) = \begin{cases} 3 & \text{for } x < 3 \\ x + c^{x} & \text{for } x \geq 3 \end{cases}$$

$$\int_0^5 f(x) dx = \int_0^5 f(x) dx + \int_3^5 f(x) dx$$

=
$$\int_{0}^{3} (3) dx + \int_{3}^{3} (x + e^{x}) dx$$

$$\int_0^3 3 \, dx = 3 \int_0^3 1 \, dx$$

And

$$\int_{3}^{5} (x + e^{x}) dx = \int_{3}^{5} x dx + \int_{3}^{5} e^{x} dx$$

=
$$\chi^2$$
 + e^{χ} 5

$$= \left(\frac{(5)^2 - (3)^2}{2}\right) + \left(e^5 - e^3\right)$$

So,

$$\int_0^5 f(x) = 9 + 136.3.$$

Qu i)
$$\int_{1/2}^{1/\sqrt{2}} \frac{4}{\sqrt{1-x^2}} dx.$$

$$4\left(\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)-\sin^{-1}\left(\frac{1}{2}\right)\right)$$

ii)
$$\int_{0}^{\pi} f(x) dx, \text{ where } f(x) = \begin{cases} \sin x & \text{if } 0 \le x \le \pi/2 \\ \cos x & \text{if } \pi/2 \le x \le 2 \end{cases}$$

 $\int_{0}^{x} f(x) dx = \int_{0}^{\pi/2} \sin x dx + \int_{\pi/2}^{x} \cos x dx$

 $= -\cos\chi \Big|_{0}^{\pi/2} + \sin\chi \Big|_{\pi/2}^{\pi}$

= $-\left[\cos\left(0\right) - \cos\left(\pi/2\right)\right] + \left[\sin\left(\pi/2\right) - \sin\left(\pi\right)\right]$

= -(1-0) + (1-0).

= -1 +1

= 0.

iii) f(x) = [] I+ sect dt.

- [2/]1+ sect dt

Multiplying and dividing by Tsect - 1

=- Sect +1. Sect-1 Sect-1

- - Soct-1.

$$y^{2} = y^{3} - 2y^{2} - y \cdot dy$$

$$\int_{1}^{3} \left(\frac{y^{3}}{y^{2}} - \frac{2y^{2}}{y^{2}} - \frac{y}{y^{2}} \right) dy$$

$$-\int_{1}^{3} y \, dy - 2 \int_{0}^{3} 1 \, dy - \int_{0}^{3} \frac{1}{y} \, dy$$

$$-\frac{y^2}{2} \Big|_{1}^{3} - \frac{2y}{3} - \frac{\ln |y|}{3}$$

$$=\frac{1}{2}((3)^2-(1)^2)-2(3-1)-(\ln |3|-\ln |1|$$

$$=\frac{1}{2}(9-1)-2(2)-1.1$$

$$=$$
 $\left(\frac{1}{2} - 1\right)$

$$vi)$$
 $\int_0^2 |2x-1| dx$

$$|2x-1| = \begin{cases} 2x-1 & \text{if} \quad x \ge 1/2 \\ -2x+1 & \text{if} \quad x < 1/2 \end{cases}$$

$$\int_{0}^{2} |2x-1| dx = \int_{0}^{1/2} (-2x+1) dx + \int_{1/2}^{2} (2x-1) dx$$

$$\int_{0}^{1/2} (-2x+1) dx = -2 \int_{0}^{1/2} x dx + \int_{0}^{1/2} dx$$

$$= -2\left(\frac{\chi^2}{2}\right) \left| \begin{array}{c} 1/2 \\ + \chi \end{array} \right|^{1/2}$$

$$= -((1/2)^2 - (0)^2) + (1/2 - 0)$$

$$= -\frac{1}{4} + \frac{1}{2}$$

And how:

$$\int_{1/2}^{2} (2x+1) dx = 2 \int_{1/2}^{2} x dx + \int_{1/2}^{2} dx$$

$$= \mathcal{F}\left(\frac{\chi^2}{2}\right) \Big|_{1/2}^{2} + \chi \Big|_{1/2}^{2}$$

$$=[(2)^2-(1/2)^2]+[2-1/2]$$

So,

$$\int_{0}^{2} |2x-1| = \frac{1}{4} + \frac{9}{4}$$

$$Q_5$$
 a)i) $g(x) = \int_{x}^{a} \int_{t+t^2}^{t} dt$.

We see this that this function is continuous everywhere also, asxsb. So we can apply fundamental law so we get

$$g(x) = -\sqrt{x + x^2}$$

As this function is also continuous as logisthmic function is not negative so, also as x & b.

So $h'(x) = d \int_0^x lnt dt$.

let $v=e^x$, so $dv=e^x$ and $dv=e^x dx$. so.

h'(x) = d · dv \ lnt dt

= d [Int dt] # dv

= lnv.ex

= ln ex. ex

= x lne . ex

= x(1) . ex

= xex

iii) $h(x) = \int_{2}^{x} z^{2} dz$.

let $v = \sqrt{x}$, so $\frac{dv}{dx} = \frac{1}{2\sqrt{x}}$

Now

$$h(x) = \int_{2}^{v} \frac{z^{2}}{z^{4}+1} dz$$

$$h'(x) = d \int_{0}^{y} \frac{z^{2}}{z^{4}+1} dz$$

$$= \frac{d}{dev} \left[\int_{2}^{v} \frac{Z^{2}}{Z^{4}+1} dz \right] \frac{dv}{dx}$$

$$= \frac{V^2}{V^4+1} \cdot \frac{1}{2\sqrt{x}}$$

$$= (\sqrt{x})^2 \cdot 1$$

$$(\sqrt{x})^4 + 1 \cdot 2\sqrt{x}$$

$$= \frac{\chi}{\chi^2 + 1} \cdot \frac{1}{2\sqrt{\chi}}$$

$$= \sqrt{\chi}$$

$$2(\chi^2+1)$$

(iv)
$$h(x) = \int_{2x}^{3x} \frac{y^2 - 1}{y^2 + 1} dy$$

$$\int_{2x}^{0} \frac{y^{2}-1}{y^{2}+1} dy + \int_{0}^{3x} \frac{y^{2}-1}{y^{2}+1} dy$$

Now.

$$\int_{2x}^{9^{2}-1} y^{2} - \int_{0}^{2x} \frac{y^{2}-1}{y^{2}+1} dy$$

let
$$v = 2x$$
 then $\frac{dv}{dx} = 2$.

$$= -\frac{d}{dx} \int_0^x \frac{y^2 - 1}{y^2 + 1} dy$$

$$= - \frac{d}{dV} \left[\int_{0}^{y^{2}-1} \frac{dv}{dx} \right]$$

$$= -\left[\begin{array}{c} V^2 - 1 \\ V^2 + 1 \end{array}\right] 2.$$

$$= -2 \left[\frac{(2x)^2 - 1}{(2x)^2 + 1} \right]$$

$$= -2 \left(\frac{4x^2 - 1}{4x^2 + 1} \right)$$

$$\frac{-8x^2+2}{4x^2-1}$$

Now.

$$\int_0^{3x} \frac{y^2 - 1}{y^2 + 1} dy.$$

Let
$$v=3x$$
 so $dv=d3$.

Taking d

$$= \frac{d}{dx} \int_0^y \frac{y^2 - 1}{y^2 + 1} dy$$

Using chain rule.

$$= \frac{d}{dv} \left[\begin{array}{c} y^2 - 1 \\ 0 \end{array} \right] \frac{dv}{dx}$$

$$=\frac{V^2-1}{V^2+1}$$
 . 3.

$$= \frac{9x^2 - 1 \cdot 3}{9x^2 + 1}$$

$$\frac{27x^2-3}{9x^2+1}$$
.

So,

$$h'(x) = \frac{27x^2-3}{9x^2+1} - \frac{8x^2-2}{4x^2+1}$$

b) i)
$$\int_{1}^{2} \frac{4}{x^{3}} dx = -\frac{2}{x^{2}} \Big]_{1}^{2} = \frac{2}{3}$$

When x=0 this equation tends to go to infinity.

So this function is discountinuous at x=0 therefore this solution is not possible.

ii)
$$\int_0^{\pi} \sec^2 x \, dx = \tan x = 0.$$

When $x = \pi$ this function tends towards infinity. So this function is discountinuous at $x = \pi/2$, therefore this solution is not possible.

Q6 i) $\int \sin^5(2t) \cos^2(2t) dt$.

Let
$$v=2l$$
 then $dv=2$, so $dt=dv$

$$\int \sin^5(v) \cos^2(v) dv$$

$$\frac{1}{2} \left(\left(1 - \left(\cos^2 v \right)^2 \cdot \sin(v) \cdot \cos^2 v \right) dv$$

$$-\frac{1}{2}\int (1-v)^2 dv v^2 dv$$

$$-\frac{1}{2}\int \int v^2 dv + \int v' dv - 2 \int v'' dv$$

$$\frac{-1}{2} \left[\frac{\cos^3(2t) + \cos^3(2t)}{3} + \frac{2\cos^3(2t)}{7} + \frac{2\cos^3(2t)}{5} \right]$$

ii)
$$\int \frac{\sin^2(1/t)}{t^2} dt$$

Let
$$v = 1$$
 then $\frac{dv}{dt} = -\frac{1}{t^2} = 0$ $dt = -\frac{t^2}{t^2} dv$.

$$\int \frac{\sin y}{(1/v^2)} \left(-t^2 dv\right)$$

$$-\int \int \frac{1-\cos^2 v}{2} \, dv$$

$$= -\frac{1}{2} \int dv + \frac{1}{2} \int \cos 2v \, dv$$

$$= -\frac{V}{2} + \frac{2 \sin 2V}{2} + C$$

$$= -\frac{V}{2} + \sin 2V + C.$$

 $-1 + \sin(2/t) + C$

ii) (tan'x sec'x dx

Stan2x. tanx. sec6x dx

S (sec2x-1). tanx. secx dx.

let v= secx, so du = tanx secx dx.

J (V2-1). v5 dv.

Svadv - Svadv.

 $\frac{V^3}{3} - \frac{V^6}{6} + C$.

Sec3 x - sec6x + c.

JT-cos40 do.

Let v= 20 so dv = 2d0 = dv = 2

So 1/4

\[\sqrt{1-\cos 2v} \cdot \frac{dv}{2} \]

$$\sqrt{\frac{1}{2}}$$
 $\int_{0}^{\sqrt{14}} \sin v \, dv$.

 $\sqrt{\frac{1}{2}}$ $\int_{0}^{\sqrt{14}} \sin v \, dv$.

$$-\sqrt{2}$$
 $\cos \sqrt{\frac{\pi}{4}}$

$$-\sqrt{2}$$
 $(\cos(\pi/4) - \cos(0))$

$$-\sqrt{2}$$
 $\left(\sqrt{2} - 1\right)$

0.207.