Clarification from last lecture:

Reverse of amino acid synthesis steps, same enzymes

Clarification of the enzyme inhibition by **gabaculine**, a suicide substrate

Cannot regenerate active form of enzyme/cofactor complex

proton abstraction, double bond rearrangement

re-protonation at a different carbon in the pi system

imine-enamine rearrangement driven by aromatization **Exam in 11 days!!!** Will cover the last few weeks especially, but that also includes all the carbonyl group chemistry which we emphasized for the Second exam.

The chemical synthesis of proteins:

Problems: protecting group needed. create amide bonds.

 $H_2N-AA_1-CO_2H + H_2N-AA_2-CO_2H$

H₂N-**AA₁**-CONH-**AA₂**-CO₂H

Protect NH_2 on AA_1 , and protect $-CO_2H$ on AA_2

 P_1 -HN- AA_1 -CO₂H + H_2 N- AA_2 -CO₂ P_2

P₁-HN-AA₁-CONH-AA₂-CO₂P₂

[one example of a series] R-N=C=N-R

The "Peptide Synthesizer" Automated peptide synthesis. Repeated amide bond formation with different AA Technical problem: how separate the byproducts from DCC coupling and deprotection steps?

Solid phase synthesis: Easy separation of byproducts by filtration R. Bruce Merrifield, Nobel prize 1986

- 1. Attach AA₁-NH-BOC to an insoluble polymer via carboxylate (as ester). Deprotect the amino group
- 2. Add AA₂ (free -CO₂H) + DCC in solution.
- 3. Reaction occurs to couple AA₂ to AA₁ on the polymer
- 4. Filter away the solution and byproducts
- 5. Add CF₃CO₂H to deprotect amino group on AA₂, filter, rinse
- 6. Add AA₃ (free CO₂H) DCC in solution
- 7. Reaction occurs to couple AA₃ with AA₁-AA₂ at AA₂ amino group
- 8. Filter

R-N=C=N-R

9. Cleave ester linkage to polymer: HO₂C-AA₁-AA₂-AA₃-NH-BOC

Details: 4

Polypeptide Synthesis:

Very effective for polypeptides of 10-30 size.

Enzymes of 100-150 AA have been synthesized by techniques such as this.

3D Structure of Proteins:

A. Primary structure e.g., a dodecapeptide (proteins can have thousands of AA units)

R = side chain from any one of the 20 essential amino acids

$$H_{2}N$$
 $H_{2}N$
 $H_{2}N$
 $H_{2}N$
 $H_{3}N$
 $H_{4}N$
 $H_{4}N$
 $H_{4}N$
 $H_{5}N$
 $H_{4}N$
 $H_{5}N$
 H

Digression: Text 856-863

Thiols and thioethers

Special reaction, different from the chemistry of ethers: oxidative formation of disulfides

Reductive regeneration:

$$H_2N$$
 H_2N
 H_2N
 H_3N
 H_4N
 H_4N

disulfide crosslinking of peptide chains

Primary sequence of lysozyme, showing disulfide bonds. Supplementary handout

Now: Secondary structure

Alpha helix: Supplementary handout Beta-Sheet: Supplementary handout

Random coil: essentially a noon-conformation, as the name implies. The polypeptide units adopt a random coil with no discernible pattern: e.g., cooked spagetti. But specific inter-chain interactions support the randon coil.

Hair and wool: – helix Silk: -sheet

Enzymes: mixture of all three, "globular" and soluble

Tertiary Structure: additional local structural features holding chains near each other in a complex fold

ionic interactions (ammonium cations/carboxylate anions)

specific H-bonds between certain side chains van der Waals forces (hydrophobic bonds)

Quarternary Structure: Protein chains can fold together with other chains (e.g., dimers)