

# Energy, work and power

## **Work & Energy**

$$W = \Delta E$$

$$W = F \times d$$

## **Efficiency**

(%)Efficiency = 
$$\frac{\text{useful energy output}}{\text{total energy output}} \times 100\%$$

(%) Efficiency = 
$$\frac{\text{useful power output}}{\text{total power output}} \times 100\%$$

#### **Power**

$$Power = \frac{work done}{}$$

$$P = \frac{vv}{t}$$

$$P = \frac{\Delta E}{E}$$

# Work

- Work done is the amount of energy transferred
- When a force moves an object through a distance, work is done on the object and energy is transferred.
- The force does "work" to move the object and energy is transferred mechanically from one store to another.



where

$$W = \Delta E$$
$$W = F \times d$$

W = work done (J)

 $\Delta E = \text{energy transferred}(J)$ 

F = force(N)

d = distance moved in the direction of the force (m)

This formula only works if the force is in exactly the same direction as the movement.

# **Efficiency**

The efficiency of any device is defined as:

(%)Efficiency = 
$$\frac{\text{useful energy output}}{\text{total energy output}} \times 100\%$$

(%)Efficiency = 
$$\frac{\text{useful power output}}{\text{total power output}} \times 100\%$$

- Efficiency is given as a percentage, or a decimal.
- Total energy output = total energy input because of the conservation of energy.
- The efficiency can never be equal to or higher than 100%, since some energy is always wasted.



#### Study question #1:

A toaster transfers 216000 J of energy electrically from the mains. 84000 J of energy is transferred to the bread's thermal energy store. Calculate the efficiency of the toaster.





#### Study question #1:

A toaster transfers 216000 J of energy electrically from the mains. 84000 J of energy is transferred to the bread's thermal energy store. Calculate the efficiency of the toaster.

$$efficiency = \frac{useful\ energy\ output}{total\ enegy\ output} \times 100\% = \frac{84000}{216000} \times 100\% = 38.888...\% = 39\%$$



#### Study question #2:

An electrical device wastes 420 J of energy when it has an input energy of 500 J. Calculate the efficiency of the device.



#### Study question #2:

An electrical device wastes 420 J of energy when it has an input energy of 500 J. Calculate the efficiency of the device.

$$Useful\ energy\ output = 500\ -420 = 80\ J$$

$$efficiency = \frac{useful\ energy\ output}{total\ enegy\ output} \times 100\% = \frac{80}{500} \times 100\% = 16\%$$



### Study question #3:

An electrical kettle has an efficiency of 76%. 2500 J of energy is transferred from the mains to the kettle every second. When the kettle is full, it needs to transfer 418 000 J of energy to the thermal energy store of the water to boil it. How long does a full kettle need to be switched on for in order to boil the water? Use 2 methods.



#### Study question #3:

An electrical kettle has an efficiency of 76%. 2500 J of energy is transferred from the mains to the kettle every second. When the kettle is full, it needs to transfer 418 000 J of energy to the thermal energy store of the water to boil it. How long does a full kettle need to be switched on for in order to boil the water?

#### Method 1:

Total thermal energy = 
$$\frac{418000}{0.76} = 550\,000 J$$
  
 $\frac{550000}{2500} = 220 s$ 



#### Study question #3:

An electrical kettle has an efficiency of 76%. 2500 J of energy is transferred from the mains to the kettle every second. When the kettle is full, it needs to transfer 418 000 J of energy to the thermal energy store of the water to boil it. How long does a full kettle need to be switched on for in order to boil the water?

#### Method 2:

Usefully transferred to the thermal energy store of the water  $= 2500 \times 0.76 = 1900J$ 

$$\frac{418000}{1900} = 220 \, s$$