UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA ELÉTRICA CIRCUITOS ELÉTRICOS II

Prof. Wellington Maycon Santos Bernardes CIRCUITOS TRIFÁSICOS EQUILIBRADOS - MEDIDA DE POTÊNCIA COM 2 WATTIMETROS

1 – Objetivo

Verificar experimentalmente os conceitos teóricos sobre os métodos utilizados para medir a potência ativa trifásica das cargas. Além disso, comparar os resultados com os valores obtidos utilizando uma análise teórica.

2 – Montagem

ABC

2.1 - Carga em estrela

Efetue a montagem indicada na Figura 1 abaixo, alimentando os pontos a b c através de uma fonte alternada trifásica em seqüência de fases abc (ou **direta**), aplicando uma tensão entre linhas V_L **igual a 100** V, em frequência de 60 Hz. Os parâmetros da carga são: R = 50 Ω ; $R_L = 3.8$ Ω ; L = 160 mH. Na figura1, V_L representa um voltímetro conectado para medir a tensão entre linhas; A_L representa o amperímetro conectado para medir a corrente de linha (igual a de fase); W_i representa um wattímetro analógico conectado para medir a potência ativa da carga. Os valores dos instrumentos devem ser anotados na Tabela I.

Utilize os medidores digitais Kron para medida de corrente e tensão (TL = $0048 - 3\omega$ sem Neutro)¹. Além disso, compare os valores das potências entre Kron e os wattímetros analógicos. **Atente-se a escala do wattímetro (corrente e tensão)**.

 $V_L(V)$ $I_L(A)$ $W_1(W)$ $W_2(W)$ $P_F(W)$ $P_T(W)$ $Q_T(VAr)$ $S_T(VA)$

 $^{^1}$ Os medidores de corrente do Kron estarão em série com as bobinas de corrente (I_R) dos equipamentos analógicos. Já os medidores de tensão do Kron estarão em paralelo com as boninas de tensão (E_R e E_S) dos equipamentos analógicos.

Lembre-se que $P = W_1 + W_2$ e que $Q = \sqrt{3(W_2 - W_1)}$ para a **sequência abc** da conexão acima.

Agora, troque duas fases na saída do *varivolt* para obter a **sequência cba** da conexão acima. Anote os valores na segunda linha da tabela II.

	$V_{L}(V)$	I _L (A)	$W_1(W)$	$W_2(W)$	P _F (W)	P _T (W)	Q _T (VAr)	S _T (VA)
CBA								

Tabela II

2.2 - Carga em triângulo

Efetue a montagem indicada na Figura 2 abaixo, alimentando os pontos a b c através de uma fonte alternada trifásica em sequência de fases abc (ou **direta**), aplicando uma tensão entre linhas V_L **igual a 100** V, em frequência de 60 Hz. Os parâmetros da carga são: R = 50 Ω ; C = 45.9 μF . Na figura 2, V_L representa um voltímetro conectado para medir a tensão entre linhas; A_F representa um amperímetro conectado para medir a corrente de fase; A_L representa o amperímetro conectado para medir a corrente de linha; W_i representa um wattímetro analógico conectado para medir a potência ativa trifásica da carga. Os valores dos instrumentos devem ser anotados na Tabela III.

Utilize os medidores digitais Kron para medida de corrente e tensão (TL = $0048 - 3\omega$ sem Neutro)². Além disso, compare os valores das potências entre Kron e os wattímetros analógicos. **Atente-se a escala do wattímetro (corrente e tensão)**.

Figura 2 – Ligação em triângulo em seqüência de fases abc

	$V_{L}(V)$	I _L (A)	$W_1(W)$	$W_2(W)$	P _F (W)	P _T (W)	Q _T (VAr)	$S_T(VA)$
ABC								

Tabela III

Lembre-se que $P = W_1 + W_2$ e que $Q = \sqrt{3(W_2 - W_1)}$ para a sequência abc de acordo com a conexão acima.

² Idem nota 1.

Agora, troque duas fases na saída do *varivolt* para obter a **sequência cba** da conexão acima. Anote os valores na segunda linha da Tabela IV.

	$V_{L}(V)$	$I_L(A)$	$W_1(W)$	$W_2(W)$	$P_F(W)$	$P_T(W)$	Q _T (VAr)	$S_T(VA)$
CBA								

Tabela IV

3 – Análise

- Para os sistemas das Figuras 1 e 2, ao ser ligado, o que aconteceu com os wattímetros W_1 e W_2 quando a sequência de fases foi invertida? Algum deles marcou valor negativo? Explique. Encontre as potências usando as leituras.
- Encontre o valor das leituras dos wattímetros usando as expressões analíticas.
- Mostre através de um diagrama fasorial que de acordo com as polaridades das bobinas de corrente e de potencial a leitura do wattímetro analógico é positiva para um ângulo θ_Z | menor que 60°. Mostre que a leitura será negativa se θ_Z | for maior que 60°.
- Mostre através de um diagrama fasorial que se a polaridade de uma das bobinas não for seguida a leitura terá um sinal oposto ao correto.