Algorithmen und Datenstruckturen

Vincent Dahmen 6689845 Roberto Seidel Rafael Heid 6704828

25. Oktober 2015

2.1

2.2

```
Funktion
                       € Äquivalenzklasse
{4, 1000}
                       \subset O(1)
\{ln(n), log(n)\}
                       \subset O(\log(n)
n^{0.5}
                            O(\sqrt{n})
                       \in
\sqrt{n}^3
                            O(n^{\frac{3}{2}})
n^2
                            O(n^2)
                       \in
2^n
                       \in
                             O(2^{n})
```

Die obige Tabelle zeigt das Wachstumsverhalten in aufasteigender Reihenfolge. Funktionen die in der gleichen Äuqivalenzklasse liegen sind entsprechend geklammert. Es folgt eine Begründung der Zusammenfassungen.

0		0	0	
Funktion				Begründung
$\{4, 1000\}$	Be	ide überscl	areiten nie	e einen konstanten Wert
$\{ln(n), log(n)\}$	Das Wachstu	m ist bis a	uf einen l	konstanten Faktor gleich
$n^{0.5}$				
\sqrt{n}^3 n^2		Nach d	len Poten	zgesetzen gilt $\sqrt{n}^a = n^{\frac{a}{2}}$
n^2				
2^n				

2.3

2.4