Contents

Contents 1

CONTENTS 2

Definition 1 $(\tau(\iota), \text{ deprecated version})$. For an inference ι with $\sigma = \text{mgu}(\iota)$, we define the infinite substitution $\tau(\iota)$ with $\text{dom}(\tau(\iota)) = \{z_s \mid s\sigma \neq s\}$ as follows for a variable x:

$$x\tau(\iota) = \begin{cases} x & x \text{ is a non-lifting variable} \\ z_t & x \text{ is a lifting variable } z_s \text{ and } s\sigma = t \end{cases}$$

 \triangle

Definition 2 $(\tau(\iota), \text{ current version})$. For an inference ι with $\sigma = \text{mgu}(\iota)$, we define the infinite substitution $\tau(\iota)$ with $\text{dom}(\tau(\iota)) = \text{dom}(\sigma) \cup \{z_s \mid s\sigma \neq s\}$ as follows for a variable x:

$$x\tau(\iota) = \begin{cases} x\sigma & x \text{ is a non-lifting variable} \\ z_t & x \text{ is a lifting variable } z_s \text{ and } s\sigma = t \end{cases}$$

 \triangle

Definition 3 (Incremental lifting). Let π be a resolution refutation of $\Gamma \cup \Delta$. For a clause C in π , we define LI(C) and $LI_{cl}(C)$ as follows:

Base case. If $C \in \Gamma$, $LI(C) \stackrel{\text{def}}{=} \bot$. If otherwise $C \in \Delta$, $LI(C) \stackrel{\text{def}}{=} \top$. In any case, $LI_{cl}(C) \stackrel{\text{def}}{=} \ell[C]$.

Resolution. If the clause C is the result of a resolution step ι of $C_1: D \vee l$ and $C_2: E \vee \neg l'$ using a unifier σ such that $l\sigma = l'\sigma$, then let $\tau = \tau(\iota)$ and define $\mathrm{LI}(C)$ and $\mathrm{LI}_{\mathrm{cl}}(C)$ as follows:

$$\mathrm{LI}_{\mathrm{cl}}(C) \stackrel{\mathrm{def}}{=} \ell \big[\big(\mathrm{LI}_{\mathrm{cl}}(C_1) \backslash \{l_{\mathrm{LI}_{\mathrm{cl}}}\} \big) \tau \big] \ \lor \ \ell \big[\big(\mathrm{LI}_{\mathrm{cl}}(C_2) \backslash \{l_{\mathrm{LI}_{\mathrm{cl}}}'\} \big) \tau \big]$$

say something about $l_{\rm LI_{cl}}$ and/or rewrite that (also below)

- 1. If l is Γ -colored: $LI(C) \stackrel{\text{def}}{=} \ell[LI(C_1)\tau] \vee \ell[LI(C_2)\tau]$
- 2. If l is $\Delta\text{-colored}\colon \mathrm{LI}(C)\stackrel{\mathrm{def}}{=}\ell[\mathrm{LI}(C_1)\tau]\,\wedge\,\ell[\mathrm{LI}(C_2)\tau]$
- 3. If l is grey: $LI(C) \stackrel{\text{def}}{=} (\neg \ell[l'_{LI_{cl}}\tau] \land \ell[LI(C_1)\tau]) \lor (\ell[l_{LI_{cl}}\tau] \land \ell[LI(C_2)\tau])$

Factorisation. If the clause C is the result of a factorisation step ι of C_1 : $l \lor l' \lor D$ using a unifier σ such that $l\sigma = l'\sigma$, then $\mathrm{LI}(C) \stackrel{\mathrm{def}}{=} \ell[\mathrm{LI}(C_1)\tau(\iota)]$ and $\mathrm{LI}_{\mathrm{cl}}(C) \stackrel{\mathrm{def}}{=} \ell[(\mathrm{LI}_{\mathrm{cl}}(C_1) \setminus \{l'_{\mathrm{LI}_{\mathrm{cl}}}\})\tau(\iota)].$

Definition 4. $\mathrm{LI}^{\Delta}(C)$ ($\mathrm{LI}^{\Delta}_{\mathrm{cl}}(C)$) for a clause C is defined as $\mathrm{LI}(C)$ ($\mathrm{LI}_{\mathrm{cl}}(C)$) with the difference that in its inductive definition, every lifting $\ell[\varphi]$ for a formula or term φ is replaced by a lifting of only the Δ -terms $\ell_{\Delta}[\varphi]$. \triangle

?(def:arrow_quantifier_block)? **Definition 5** (Quantifier block). Let C be a clause in a resolution refutation π of $\Gamma \cup \Delta$ and \bar{x} be the Δ -lifting variables and \bar{y} the Γ -lifting variables occurring in $\mathrm{LI}(C)$ and $\mathrm{LI}_{\mathrm{cl}}(C)$. Q(C) denotes an arrangement of the elements of $\{\forall x_t \mid x_t \in \bar{x}\} \cup \{\exists y_t \mid y_t \in \bar{y}\}$ such that for two lifting variable z_s and z_r , if s is a subterm of r, then z_s is listed before z_r . We denote $Q(\Box)$ by $Q(\pi)$. \triangle

CONTENTS 3

Conjectured Lemma 6. For a clause C of a resolution refutation of $\Gamma \cup \Delta$, $\Gamma \models \mathrm{LI}^{\Delta}(C) \vee \mathrm{LI}^{\Delta}_{\mathrm{cl}}(C)$.

Proof. Induction of the strengthening $\Gamma \models LI^{\Delta}(C) \vee LI^{\Delta}_{cl}(C_{\Gamma})$

Base case. \checkmark

Resolution.

Ind hyp gives $\Gamma \models \operatorname{LI}^{\Delta}(C_1) \vee \operatorname{LI}^{\Delta}_{\operatorname{cl}}(D) \vee l_{\operatorname{LI}^{\Delta}_{\operatorname{cl}}}$ and similar for C_2 .

$$\Gamma \models \mathrm{LI}^{\Delta}(C_1) \vee \mathrm{LI}_{\mathrm{cl}}^{\Delta}(D) \vee l_{\mathrm{LI}_{\mathrm{cl}}^{\Delta}}$$

have that $l\sigma=l'\sigma$, get also that $\ell_{\Delta}[l_{\mathrm{LI}_{\mathrm{cl}}^{\Delta}}\tau]=\ell_{\Delta}[l'_{\mathrm{LI}_{\mathrm{cl}}^{\Delta}}\tau]$. Proof: Suppose not lifted, then same. Otw. lifting variables, but then for p pos of lft var z_t in $l_{\mathrm{LI}_{\mathrm{cl}}^{\Delta}}$, $l|_p$ is t after applying τ . Hence have z_t for both.

 \bullet supp Γ resolved literals not removed due to coloring. literals are equal,

Don't really say $\operatorname{LI}_{\operatorname{cl}}^{\Delta}(D)$ here, we only have $\operatorname{LI}_{\operatorname{cl}}^{\Delta}(C)$

CONTENTS 4

Conjectured Lemma 7. For a clause C of a resolution refutation of $\Gamma \cup \Delta$, $\Gamma \models Q(C)(\mathrm{LI}(C) \vee \mathrm{LI}_{\mathrm{cl}}(C)).$