Matrix Computations

Fall 2020

Scribe: Xinyue Zhang

Lecture 2: LU decomposition

Lecturer: Prof. Yue Qiu & Prof Ziping Zhao

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1 Preliminary

Lemma 1. The inverse of a lower(upper) triangular matrix is again lower(upper) triangular.

Proof. Suppose $\mathbf{L}^{-1} = [\mathbf{y}_1, ..., \mathbf{y}_n]$, then $\mathbf{L}\mathbf{L}^{-1} = \mathbf{I} = [\mathbf{e}_1, ... \mathbf{e}_n]$. Since $\mathbf{L}\mathbf{L}^{-1} = \mathbf{L}[\mathbf{y}_1, ..., \mathbf{y}_n]$, we have $\mathbf{L}\mathbf{y}_i = \mathbf{e}_i$ for i = 1, ..., n. Notice that the first i - 1 entries of \mathbf{e}_i are 0s and \mathbf{L} is lower-triangular, then the first i - 1 entries of \mathbf{y}_i must be 0s which means \mathbf{L}^{-1} is lower-triangular. The proof for upper-triangular matrix is similar.

Lemma 2. The product of 2 lower(upper) triangular matrices is also lower(upper) triangular.

Definition 1. Gauss transformation matrix is an $n \times n$ triangular matrix of the form $\mathbf{M}_k = \mathbf{I} - \boldsymbol{\tau}_k \boldsymbol{e}_k^T$, where $\boldsymbol{\tau}_k = [0, ..., \mu_{k+1}, ..., \mu_n]^T$ is a column with zeros in the first k entries. By observing that $\boldsymbol{e}_k^T \boldsymbol{\tau}_k = 0$, we have $\mathbf{M}_k^{-1} = \mathbf{I} + \boldsymbol{\tau}_k \boldsymbol{e}_k^T$. And $\boldsymbol{\tau}$ is called Gauss vector.

In particular, given $\boldsymbol{x} \in \mathbb{R}^n$ and $x_k \neq 0$, for k = 1, ..., n, we can construct \mathbf{M}_k such that

$$\begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & \frac{1}{x_k} & 1 & & \\ & \vdots & & \ddots & \\ & -\frac{x_n}{x_k} & & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_k \\ x_{k+1} \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_k \\ 0 \\ \vdots \\ 0 \end{bmatrix}. \tag{1}$$

$$\mathbf{M}_{1}^{-1}\mathbf{M}_{2}^{-1}...\mathbf{M}_{n-1}^{-1} = (\mathbf{I} + \tau_{1}\mathbf{e}_{1}^{T})(\mathbf{I} + \tau_{2}\mathbf{e}_{2}^{T})...(\mathbf{I} + \tau_{n-1}\mathbf{e}_{n-1}^{T})$$
(2)

$$= \mathbf{I} + \tau_1 \mathbf{e}_1^T + \tau_2 \mathbf{e}_2^T + \dots + \tau_{n-1} \mathbf{e}_{n-1}^T.$$
 (3)

Definition 2. Permutation matrix is a square matrix with exactly one entry of 1 in each row and column and 0 elsewhere.

Properties:

- 1. Permutation matrix **P** is orthogonal, that is $\mathbf{P}^T \mathbf{P} = \mathbf{P} \mathbf{P}^T = \mathbf{I}$.
- 2. $\mathbf{P}^{-1} = \mathbf{P}^T$.
- 3. P_1 and P_2 are 2 permutation matrix, and P_1P_2 is again a permutation matrix.

2 Direct methods for general linear system

Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ has an LU decomposition. Then $\mathbf{A}x = \mathbf{b}$ is equivalent to the following 2 triangular systems $\mathbf{L}y = \mathbf{b}$ and $\mathbf{U}x = y$. First, the lower-triangular system $\mathbf{L}y = \mathbf{b}$ is solved for y by forward substitution

$$y_1 = b_1$$
 and $y_i = b_i - \sum_{k=1}^{i-1} \ell_{ik} y_k$ for $i = 2, ..., n$. (4)

After y is known, the upper-triangular system Ux = y is solved for x by back substitution

$$x_n = \frac{y_n}{u_{nn}}$$
 and $x_i = \frac{1}{u_{ii}} \left(y_i - \sum_{k=i+1}^n u_{ik} x_k \right)$ for $i = n-1, ..., 1$. (5)

3 LU decomposition

LU decomposition

If **A** is an $n \times n$ matrix such that a zero pivot is never encountered when applying Gaussian elimination with adding to one row a scalar multiple of another, then **A** can be factored as the product $\mathbf{A} = \mathbf{L}\mathbf{U}$, where the following hold.

- 1. L is lower triangular and U is upper triangular.
- 2. $\ell_{ii} = 1$ and $u_{ii} \neq 0$ for i = 1, 2, ..., n.
- 3. Below the diagonal of **L**, the entry ℓ_{ii} is the multiple of row j that is subtracted from row i in order to annihilate the (i, j)-position during Gaussian elimination.
- 4. U is the final result of Gaussian elimination applied to A.
- 5. The matrices L and U are uniquely determined by properties 1 and 2.

The decomposition of A into A = LU is called the LU decomposition of A, and the matrices L and U are called the LU factors of A.

3.1 Existence

Theorem 3. If **A** is an $n \times n$ matrix and every leading principal submatrix **A**_k is non-singular $(\det(\mathbf{A}(1:k,1:k)) \neq 0)$ for k=1:n-1, then there exists a unit lower triangular **L** and an upper triangular **U** such that $\mathbf{A} = \mathbf{L}\mathbf{U}$.

Proof. ←: Assume that A possesses an LU decomposition and partition A as

$$\mathbf{A} = \mathbf{L}\mathbf{U} = \begin{bmatrix} \mathbf{L}_{11} & \mathbf{0} \\ \mathbf{L}_{21} & \mathbf{L}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} \\ \mathbf{0} & \mathbf{U}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{11}\mathbf{U}_{11} & \star \\ \star & \star \end{bmatrix}$$
(6)

where \mathbf{L}_{11} and \mathbf{U}_{11} are each $k \times k$. Thus $\mathbf{A}_k = \mathbf{L}_{11}\mathbf{U}_{11}$ must be non-singular because \mathbf{L}_{11} and \mathbf{U}_{11} are each non-singular—they are triangular with nonzero diagonal entries.

 \Rightarrow : Use induction to prove that each \mathbf{A}_k possesses an LU decomposition. For k=1, this statement is clearly true because if $\mathbf{A}_1=(a_{11})$ is non-singular, then $\mathbf{A}_1=(1)(a_{11})$ is its LU decomposition. Now assume that \mathbf{A}_k has an LU decomposition and show that this together with the non-singularity condition implies \mathbf{A}_{k+1} must also possess an LU decomposition. If $\mathbf{A}_k=\mathbf{L}_k\mathbf{U}_k$ is the LU decomposition for \mathbf{A}_k , then $\mathbf{A}_k^{-1}=\mathbf{U}_k^{-1}\mathbf{L}_k^{-1}$ so that

$$\mathbf{A}_{k+1} = \begin{bmatrix} \mathbf{A}_k & \mathbf{b} \\ \mathbf{c}^T & \alpha_{k+1} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_k & \mathbf{0} \\ \mathbf{c}^T \mathbf{U}_k^{-1} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{U}_k & \mathbf{L}_k^{-1} \mathbf{b} \\ \mathbf{0} & \alpha_{k+1} - \mathbf{c}^T \mathbf{A}_k^{-1} \mathbf{b} \end{bmatrix}, \tag{7}$$

where \mathbf{c}^T and \mathbf{b} contain the first k components of $\mathbf{A}_{k+1,*}$ and $A_{*,k+1}$, respectively. Observe that this is the LU decomposition for \mathbf{A}_{k+1} because

$$\mathbf{L}_{k+1} = \begin{bmatrix} \mathbf{L}_k & \mathbf{0} \\ \mathbf{c}^T \mathbf{U}_k^{-1} & 1 \end{bmatrix} \text{ and } \mathbf{U}_{k+1} = \begin{bmatrix} \mathbf{U}_k & \mathbf{L}_k^{-1} \mathbf{b} \\ \mathbf{0} & \alpha_{k+1} - \mathbf{c}^T \mathbf{A}_k^{-1} \mathbf{b} \end{bmatrix}$$
(8)

are lower- and upper-triangular matrices, respectively, and ${\bf L}$ has 1's on its diagonal while the diagonal entries of ${\bf U}$ are nonzero. The fact that

$$\alpha_{k+1} - \mathbf{c}^T \mathbf{A}_k^{-1} \mathbf{b} \neq 0 \tag{9}$$

follows because \mathbf{A}_{k+1} and \mathbf{L}_{k+1} are each non-singular, so $\mathbf{U}_{k+1} = \mathbf{L}_{k+1}^{-1} \mathbf{A}_{k+1}$ must also be non-singular. Therefore, the non-singularity of the leading principal submatrices implies that each \mathbf{A}_k possesses an LU decomposition, and hence $\mathbf{A}_n = \mathbf{A}$ must have an LU decomposition.

Proposition 1. If every leading principal submatrix is non-singular, then no zero pivots encountered.

Proof. Suppose k-1 steps in LU decomposition have been executed. And we have $\mathbf{M}_{k-1}...\mathbf{M}_1\mathbf{A} = \mathbf{A}^{(k-1)}$. Then $\det(\mathbf{M}_{k-1}...\mathbf{M}_1\mathbf{A}) = \det(A)$, so $\det(\mathbf{A}(1:k,1:k)) = a_{11}^{(k-1)}...a_{kk}^{(k-1)}$. If the leading principal submatrix is non-singular, then the kth pivot $a_{kk}^{(k-1)}$ is nonzero.

3.2 Uniqueness

Theorem 4. If A is non-singular and every leading principal submatrix of it is non-singular, then the LU decomposition is unique.

Proof. Since LU factors have nonzero diagonals, then they must be non-singular. Suppose there exists 2 LU decompositions for a non-singular matrix \mathbf{A} , we have

$$L_1U_1 = A = L_2U_2,$$

 $L_2^{-1}L_1 = U_2U_1^{-1}.$ (10)

From lemma 1 and lemma 2, we know $L_2^{-1}L_1$ is lower triangular and $U_2U_1^{-1}$ is upper triangular, Equation (10) implies $L_2^{-1}L_1=D=U_2U_1^{-1}$ where D is a diagonal matrix. However, the diagonal entries of L_1 and L_2 are ones, so it must be the case that $L_2^{-1}L_1=I=U_2U_1^{-1}$, that is $L_1=L_2$ and $U_1=U_2$.

4 Pivoting

When row interchanges are allowed, zero pivots can always be avoided when the original matrix \mathbf{A} is non-singular. Consequently, we may conclude that for every non-singular matrix \mathbf{A} , there exists a permutation matrix \mathbf{P} (a product of elementary interchange matrices) such that $\mathbf{P}\mathbf{A}$ has an LU decomposition.

- 1. Partial pivoting: do row or column interchange so that no multiplier is greater than 1 in absolute value.
- 2. Complete pivoting: do row and column interchange so that no multiplier is greater than 1 in absolute value.

5 The LDM decomposition

Suppose the square matrix A has LU decomposition A = LU, then the LDM decomposition can be written as A = LDM, where L and U are lower- and upper-triangular matrices with 1's on both of their diagonals. U = DM is easily remedied by factoring the diagonal entries out of the upper factor as shown below:

$$\begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix} = \begin{bmatrix} u_{11} & 0 & \dots & 0 \\ 0 & u_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix} \begin{bmatrix} 1 & u_{12}/u_{11} & \dots & u_{1n}/u_{11} \\ 0 & 1 & \dots & u_{2n}/u_{22} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$
(11)

It is uniquely determined, and when **A** is symmetric, the LDU decomposition is $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T$.

6 Exercise

6.1 Find LU decomposition by Gauss Elimination

Problem: Do LU decomposition on the matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 2 & 2 \\ 4 & 7 & 7 \\ 6 & 18 & 22 \end{bmatrix} \tag{12}$$

Solution:

$$\mathbf{A} = \begin{bmatrix} 2 & 2 & 2 \\ 4 & 7 & 7 \\ 6 & 18 & 22 \end{bmatrix} \xrightarrow{row2 - 2*row1} \begin{bmatrix} 2 & 2 & 2 \\ 0 & 3 & 3 \\ 0 & 12 & 16 \end{bmatrix} \xrightarrow{row3 - 4*row2} \begin{bmatrix} 2 & 2 & 2 \\ 0 & 3 & 3 \\ 0 & 0 & 4 \end{bmatrix} = \mathbf{U}. \tag{13}$$

Then we can write the row operations in matrix representation $N_3N_2N_1A = U$, and

$$\mathbf{N}_{3}\mathbf{N}_{2}\mathbf{N}_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & -4 & 1 \end{bmatrix}.$$
(14)

So that $\mathbf{A} = \mathbf{N}_1^{-1} \mathbf{N}_2^{-1} \mathbf{N}_3^{-1} \mathbf{U} = \mathbf{L} \mathbf{U}$, where

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix} . \tag{15}$$

6.2 Use partial pivoting

Problem: Use partial pivoting on the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -3 & 4 \\ 4 & 8 & 12 & -8 \\ 2 & 3 & 2 & 1 \\ -3 & -1 & 1 & -4 \end{bmatrix} \tag{16}$$

Solution: Note that the components from \mathbf{L} and \mathbf{U} are overwritten in \mathbf{A} , and the multipliers ℓ_{ij} are shown in boldface. Adjoin a "permutation counter column" \mathbf{p} that is initially set to the natural order 1,2,3,4. Permuting components of \mathbf{p} as the various row interchanges are executed will accumulate the desired permutation. The matrix \mathbf{P} is obtained by executing the final permutation residing in \mathbf{p} to the rows of an appropriate size identity matrix:

$$[\mathbf{A}|\mathbf{p}] = \begin{bmatrix} 1 & 2 & -3 & 4 & 1 \\ 4 & 8 & 12 & -8 & 2 \\ 2 & 3 & 2 & 1 & 3 \\ -3 & -1 & 1 & -4 & 4 \end{bmatrix} \xrightarrow{\mathbf{P}_{1}} \begin{bmatrix} 4 & 8 & 12 & -8 & 2 \\ 1 & 2 & -3 & 4 & 1 \\ 2 & 3 & 2 & 1 & 3 \\ -3 & -1 & 1 & -4 & 4 \end{bmatrix}$$
(17)

$$\frac{\mathbf{M}_{3}}{\longrightarrow} \begin{bmatrix}
4 & 8 & 12 & -8 & 2 \\
-3/4 & 5 & 10 & -10 & 4 \\
1/4 & \mathbf{0} & -6 & 6 & 1 \\
1/2 & -1/5 & 1/3 & 1 & 3
\end{bmatrix}.$$
(20)

Therefore, $M_3P_3M_2P_2M_1P_1A = U, LU = PA$ and

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3/4 & 1 & 0 & 0 \\ 1/4 & 0 & 1 & 0 \\ 1/2 & -1/5 & 1/3 & 1 \end{bmatrix}, \mathbf{U} = \begin{bmatrix} 4 & 8 & 12 & -8 \\ 0 & 5 & 10 & -10 \\ 0 & 0 & -6 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$
(21)

References

- [1] Horn, Roger A., and Charles R. Johnson. Matrix analysis. Cambridge university press, 2012
- [2] Meyer, Carl D. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000.