ST2334 (2018/2019 Semester 2) Solutions to Questions in Tutorial 3

Question 1

- (a) $Pr(A \cap B \cap C) = Pr(A)Pr(B \mid A)Pr(C \mid A \cap B) = 0.75(0.9)(0.8) = 0.54$.
- (b) $Pr(B) = Pr(A \cap B) + Pr(A' \cap B) = Pr(A)Pr(B \mid A) + Pr(A')Pr(B \mid A') = (0.75)(0.9) + (0.25)(0.8) = 0.875.$
- (c) $Pr(A \mid B) = Pr(A \cap B)/Pr(B) = [(0.75)(0.9)]/0.875 = 0.7714$.
- (d) $Pr(B \cap C) = Pr(A \cap (B \cap C)) + Pr(A' \cap (B \cap C))$. But $Pr(A' \cap B \cap C) = Pr(A') Pr(B \mid A') Pr(C \mid A' \cap B) = 0.25(0.8)(0.7) = 0.14$. Therefore $Pr(B \cap C) = 0.54 + 0.14 = 0.68$.
- (e) $Pr(A \mid B \cap C) = Pr(A \cap B \cap C) / Pr(B \cap C) = 0.54/0.68 = 0.7941$.

Question 2

Let $A = \{\text{product A profitable}\}\$, $B = \{\text{product B profitable}\}\$ and $C = A \cup B$.

Pr(A) = Pr(B) = 0.18. $Pr(A \cap B) = 0.05$. So $Pr(C) = Pr(A \cup B) = 0.18 + 0.18 - 0.05 = 0.31$.

- (a) $Pr(A \mid B) = Pr(A \cap B) / Pr(B) = 0.05/0.18 = 0.2777$.
- (b) $Pr(A \mid C) = Pr(A \cap C) / Pr(C) = Pr(A)/Pr(C) = 0.18/0.31 = 0.5806.$

Question 3

Let $A = \{TQM \text{ implemented}\}\$ and $B = \{sales \text{ increased}\}\$.

- (a) Pr(A) = 0.3. Pr(B) = 0.6.
- (b) Since $Pr(A \mid B) = 20/60$, therefore $Pr(A \cap B) = Pr(A \mid B) Pr(B) = (1/3)0.6 = 0.2$. As $Pr(A \cap B) \neq Pr(A)Pr(B) = 0.18$, therefore A and B are not independent events.
- (c) Since $Pr(A \mid B) = 18/60$, therefore $Pr(A \cap B) = Pr(A \mid B) Pr(B) = (0.3)0.6 = 0.18$. As $Pr(A \cap B) = Pr(A)Pr(B)$, therefore A and B are independent events.

Question 4

Let B be the event that a component needs rework. Then

 $Pr(B) = Pr(A_1)Pr(B \mid A_1) + Pr(A_2)Pr(B \mid A_2) + Pr(A_3)Pr(B \mid A_3) = (0.5)(0.05) + (0.3)(0.08) + (0.2)(0.1) = 0.069.$

- (a) $Pr(A_1 \mid B) = [(0.5)(0.05)]/0.069 = 0.3623$.
- (b) $Pr(A_2 \mid B) = [(0.3)(0.08)]/0.069 = 0.3478.$
- (c) $Pr(A_3 \mid B) = [(0.2)(0.1)]/0.069 = 0.2899.$

Notice that $Pr(A_1 | B) + Pr(A_2 | B) + Pr(A_3 | B) = 1$.

Question 5

- (a) $Pr(A_1) = Pr(draw slip 1 or 4) = 1/2$. Similarly, $Pr(A_2) = 1/2$ and $Pr(A_3) = 1/2$. $Pr(A_1 \cap A_2) = Pr(draw slip 4) = 1/4$, Similarly $Pr(A_1 \cap A_3) = 1/4$ and $Pr(A_2 \cap A_3) = 1/4$. Since $Pr(A_1 \cap A_2) = Pr(A_1) Pr(A_2)$, $Pr(A_1 \cap A_3) = Pr(A_1) Pr(A_3)$ and $Pr(A_2 \cap A_3) = Pr(A_2)$. $Pr(A_3)$, therefore the events A_1 , A_2 and A_3 are pairwise independent.
- (b) $Pr(A_1 \cap A_2 \cap A_3) = Pr(draw slip 4) = \frac{1}{4}$. But $Pr(A_1)Pr(A_2)Pr(A_3) = \frac{1}{8} \neq \frac{1}{4}$, therefore the events A_1 , A_2 and A_3 are not mutually independent.

Question 6

- (a) Since all the four components work independently, $Pr(\text{system works}) = Pr(A \cap (B \cup C) \cap D) = Pr(A)Pr(B \cup C)Pr(D) = (0.95)[0.7 + 0.8 (0.7)(0.8)](0.9) = 0.8037.$
- (b) $Pr(C \text{ does not work} | \text{ system works}) = Pr(\text{system works but } C \text{ does not work})/Pr(\text{System works}) = Pr(A \cap B \cap C' \cap D)/Pr(\text{system works}) = [(0.95)(0.7)(0.2)(0.9)]/0.8037 = 0.1489.$

Question 7

Let $A_i = \{i \text{th vehicle passes the inspection}\}$. $Pr(A_1) = Pr(A_2) = Pr(A_3) = 0.6$

- (a) $Pr(A_1 \cap A_2 \cap A_3) = Pr(A_1)Pr(A_2) Pr(A_3) = (0.6)^3 = 0.216$ since A_i 's are independent.
- (b) Pr(At least one failures) = 1 Pr(All pass) = 1 0.216 = 0.784. $Or Pr(A_1' \cup A_2' \cup A_3') = Pr((A_1 \cap A_2 \cap A_3)') = 1 - Pr(A_1 \cap A_2 \cap A_3) = 1 - 0.216 = 0.784.$
- (c) $Pr(A_1 \cap A_2' \cap A_3') + Pr(A_1' \cap A_2 \cap A_3') + Pr(A_1' \cap A_2' \cap A_3) = (0.6)(0.4)(0.4) + (0.4)(0.6)(0.4) + (0.4)(0.4)(0.6) = 0.288.$
- (d) $Pr(At least one pass) = 1 Pr(All fail) = 1 (0.4)^3 = 0.936.$ $Pr(\#pass = 3 \mid \#pass \ge 1) = Pr(\#pass = 3 \cap \#pass \ge 1)/Pr(\#pass \ge 1) = Pr(\#pass = 3)/Pr(\#pass \ge 1) = 0.216/0.936 = 0.2308.$

Question 8

Let $A = \{\text{Get into a house}\}, B = \{\text{the house is unlocked}\}\$ and $C = \{\text{Agent gets the correct key}\}\$

It is given that Pr(B) = 0.4.

Pr(C) = 1/8 + (7/8)(1/7) + (7/8)(6/7)(1/6) = 3/8.

Alternatively, $Pr(C) = ({}_{1}C_{1})({}_{7}C_{2})/{}_{8}C_{3} = 3/8$.

 $Pr(A) = Pr(B) Pr(A \mid B) + Pr(B') Pr(A \mid B') = 0.4(1) + 0.6(3/8) = 5/8.$