

SWISS-MODEL Homology Modelling Report

Model Building Report

This document lists the results for the homology modelling project "DNMA" submitted to SWISS-MODEL workspace on March 12, 2019, 9:05 a.m..The submitted primary amino acid sequence is given in Table T1.

If you use any results in your research, please cite the relevant publications:

- Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46(W1), W296-W303 (2018).
- Guex, N., Peitsch, M.C., Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 30, S162-S173 (2009).
- Bienert, S., Waterhouse, A., de Beer, T.A.P., Tauriello, G., Studer, G., Bordoli, L., Schwede, T. The SWISS-MODEL Repository - new features and functionality. Nucleic Acids Res. 45, D313-D319 (2017).
- Benkert, P., Biasini, M., Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343-350 (2011).
- Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., Schwede, T. Modeling protein quaternary structure of homo- and heterooligomers beyond binary interactions by homology. Scientific Reports 7 (2017).

Results

The SWISS-MODEL template library (SMTL version 2019-03-06, PDB release 2019-03-01) was searched with BLAST (Camacho et al.) and HHBlits (Remmert et al.) for evolutionary related structures matching the target sequence in Table T1. For details on the template search, see Materials and Methods. Overall 937 templates were found (Table T2).

Models

The following model was built (see Materials and Methods "Model Building"):

Model #01	File	Built with	Oligo-State	Ligands	GMQE	QMEAN
	PDB	ProMod3 Version 1.3.0.	monomer	None	0.61	-4.00

Template	Seq Identity	Oligo-state	Found by	Method	Resolution	Seq Similarity	Range	Coverage	Description
4h0n.1.A	43.73	monomer	BLAST	X-ray	2.71Å	0.42	5 - 359	0.82	DNMT2

Ligand	Added to Model	Description			
CA	X - Binding site not conserved.	CALCIUM ION			
SAH	X - Binding site not conserved.	S-ADENOSYL-L-HOMOCYSTEINE			

Target MEQLRVLEFYSGIGGMHYGLQESGVDFQVIQSFDINTNANLNYKYTFNEDS-SQKSIESYSVEELEGFKANAWLMSPPCQ
4h0n.1.A ----KILELYSGIGGMHCAWKESGLDGEIVAAVDINTVANSVYKHNFPETNLLNRNIQQLTPQVIKKWNVDTILMSPPCQ
Target PFTRLGLQKDDQDNRTNSFFHLLDVLTKIKDPPTYILIENVFGFAKKGSSNTRDHLLDTLIKMNYSFQEFHLSPQQFGLA
4h0n.1.A PFTRNGKYLDDNDPRTNSFLYLIGILDQL-DNVDYILMENVKGFE---NSTVRNLFIDKLKECNFIYQEFLLCPSTVGVP

The same that is a supply of a very decay to the very decay to the control of the

Target NQRLRYFCIAKRNGKLNFKKEQDKHNEKVDENKLNNNSNNNNEQNKYDNLKILDHIPGYDFHT--TLEECDEISNYFDKD 4h0n.1.A NSRLRYYCTARRNNLTWPFKRRD------S

1 of 5 3/12/2019, 4:34 AM

Target LTDDELYEKYKVPHNLLLSKGMLFDIKQKDSKTSNCVTKSYGKFIEGTGSIIQ-----MDNNFKA----DINDNKSL--4h0n.1.A IIEEDVDEKFLVPEKMLRC-AKVFDICYKTSKRSCCFTKAYTHYADGTGSIFTDKPREVVQKCYAAAAQNEIGGEKFVEL

Target -IPLKLRYFSPKEITRLHGFPEEFKFSPKLTTIQCYRLIGNSLNVKIVSELLKVLVSPNEEEEQQEQQKEKEGKK
4h0n.1.A FKELKLRYFTPKEVLMIMCFPKSYNLPTNISMKQCYRLLGNSVNVKVISELLKIL------

Materials and Methods

Template Search

Template search with BLAST and HHBlits has been performed against the SWISS-MODEL template library (SMTL, last update: 2019-03-06, last included PDB release: 2019-03-01).

The target sequence was searched with BLAST against the primary amino acid sequence contained in the SMTL. A total of 37 templates were found.

An initial HHblits profile has been built using the procedure outlined in (Remmert et al.), followed by 1 iteration of HHblits against NR20. The obtained profile has then be searched against all profiles of the SMTL. A total of 901 templates were found.

Model Building

Models are built based on the target-template alignment using ProMod3. Coordinates which are conserved between the target and the template are copied from the template to the model. Insertions and deletions are remodelled using a fragment library. Side chains are then rebuilt. Finally, the geometry of the resulting model is regularized by using a force field. In case loop modelling with ProMod3 fails, an alternative model is built with PROMOD-II (Guex et al.).

Model Quality Estimation

The global and per-residue model quality has been assessed using the QMEAN scoring function (Benkert et al.) . For improved performance, weights of the individual QMEAN terms have been trained specifically for SWISS-MODEL.

Ligand Modelling

Ligands present in the template structure are transferred by homology to the model when the following criteria are met: (a) The ligands are annotated as biologically relevant in the template library, (b) the ligand is in contact with the model, (c) the ligand is not clashing with the protein, (d) the residues in contact with the ligand are conserved between the target and the template. If any of these four criteria is not satisfied, a certain ligand will not be included in the model. The model summary includes information on why and which ligand has not been included.

Oligomeric State Conservation

The quaternary structure annotation of the template is used to model the target sequence in its oligomeric form. The method (Bertoni et al.) is based on a supervised machine learning algorithm, Support Vector Machines (SVM), which combines interface conservation, structural clustering, and other template features to provide a quaternary structure quality estimate (QSQE). The QSQE score is a number between 0 and 1, reflecting the expected accuracy of the interchain contacts for a model built based a given alignment and template. Higher numbers indicate higher reliability. This complements the GMQE score which estimates the accuracy of the tertiary structure of the resulting model.

References

• BLAST

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L. BLAST+: architecture and applications. BMC Bioinformatics 10, 421-430 (2009).

• HHblits

Remmert, M., Biegert, A., Hauser, A., Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9, 173-175 (2012).

Table T1:

Primary amino acid sequence for which templates were searched and models were built.

 $\label{thm:mequiv} $$\operatorname{MEQLRVLEFYSGIGGMHYGLQESGVDFQVIQSFDINTNANLNYKYTFNEDSSQKSIESYSVEELEGFKANAWLMSPPCQPFTRLGLQKDDQDNRTNSFFH$$ $$\operatorname{LLDVLTKIKDPPTYILIENVFGFAKKGSSNTRDHLLDTLIKMNYSFQEFHLSPQQFGLANQRLRYFCIAKRNGKLNFKKEQDKHNEKVDENKLNNNSNNN NEQNKYDNLKILDHIPGYDFHTTLEECDEISNYFDKDLTDDELYEKYKVPHNLLLSKGMLFDIKQKDSKTSNCVTKSYGKFIEGTGSIIQMDNNFKADIN DNKSLIPLKLRYFSPKEITRLHGFPEEFKFSPKLTTIQCYRLIGNSLNVKIVSELLKVLVSPNEEEEQQEQQKEKEGKK$

Table T2:

2 of 5 3/12/2019, 4:34 AM

Template	Seq Identity	Oligo- state	QSQE	Found by	Method	Resolution	Seq Similarity	Coverage	Description
4h0n.1.A	43.73	monomer		BLAST	X-ray	2.71Å	0.42	0.82	DNMT2
4h0n.2.A	43.73	monomer		BLAST	X-ray	2.71Å	0.42	0.82	DNMT2
1g55.1.A	47.71	monomer		BLAST	X-ray	1.80Å	0.42	0.86	DNA CYTOSINE METHYLTRANSFERASE DNMT2
6fdf.1.A	37.89	monomer		BLAST	X-ray	1.70Å	0.39	0.85	tRNA (cytosine(38)-C(5))- methyltransferase
3qv2.1.A	38.96	monomer		BLAST	X-ray	2.15Å	0.40	0.81	5-cytosine DNA methyltransferase
4h0n.1.A	39.94	monomer		HHblits	X-ray	2.71Å	0.39	0.84	DNMT2
4h0n.2.A	39.94	monomer		HHblits	X-ray	2.71Å	0.39	0.84	DNMT2
6fdf.2.A	37.89	monomer		BLAST	X-ray	1.70Å	0.39	0.85	tRNA (cytosine(38)-C(5))- methyltransferase
1g55.1.A	44.24	monomer		HHblits	X-ray	1.80Å	0.40	0.87	DNA CYTOSINE METHYLTRANSFERASE DNMT2
6fdf.4.A	37.89	monomer		BLAST	X-ray	1.70Å	0.39	0.85	tRNA (cytosine(38)-C(5))- methyltransferase
3qv2.1.A	36.22	monomer		HHblits	X-ray	2.15Å	0.38	0.82	5-cytosine DNA methyltransferase
6fdf.1.A	36.91	monomer		HHblits	X-ray	1.70Å	0.38	0.84	tRNA (cytosine(38)-C(5))- methyltransferase
6fdf.3.A	37.89	monomer		BLAST	X-ray	1.70Å	0.39	0.85	tRNA (cytosine(38)-C(5))- methyltransferase
6fdf.2.A	36.91	monomer		HHblits	X-ray	1.70Å	0.38	0.84	tRNA (cytosine(38)-C(5))- methyltransferase
6fdf.4.A	36.91	monomer		HHblits	X-ray	1.70Å	0.38	0.84	tRNA (cytosine(38)-C(5))- methyltransferase
6fdf.3.A	36.91	monomer		HHblits	X-ray	1.70Å	0.38	0.84	tRNA (cytosine(38)-C(5))- methyltransferase
3eeo.1.C	21.22	monomer		HHblits	X-ray	1.94Å	0.31	0.82	Modification methylase Hhal
2hmy.1.A	21.22	monomer		HHblits	X-ray	2.61Å	0.31	0.82	PROTEIN (CYTOSINE-SPECIFIC METHYLTRANSFERASE HHAI)
1hmy.1.A	21.22	monomer		HHblits	X-ray	2.50Å	0.31	0.82	Haelli METHYLTRANSFERASE
9mht.1.C	21.22	monomer		HHblits	X-ray	2.39Å	0.31	0.82	CYTOSINE-SPECIFIC METHYLTRANSFERASE HHAI
3g7u.1.A	18.69	monomer		HHblits	X-ray	1.75Å	0.30	0.89	Cytosine-specific methyltransferase
2zcj.1.C	20.90	monomer		HHblits	X-ray	2.75Å	0.31	0.82	Modification methylase Hhal
2uyh.1.A	21.22	monomer		HHblits	X-ray	2.63Å	0.31	0.82	MODIFICATION METHYLASE HHAI
5lod.1.B	21.22	homo- dimer		HHblits	X-ray	1.90Å	0.31	0.82	Modification methylase Hhal
3ubt.1.A	20.94	monomer		HHblits	X-ray	2.50Å	0.31	0.84	Modification methylase HaelII
2z6q.1.B	20.58	monomer		HHblits	X-ray	2.79Å	0.31	0.82	Modification methylase Hhal
1svu.1.A	30.88	monomer		BLAST	X-ray	2.66Å	0.36	0.75	Modification methylase Hhal
6brr.1.A	15.93	homo- dimer		HHblits	X-ray	2.97Å	0.28	0.71	DNA (cytosine-5)-methyltransferase 3A
5yx2.1.A	15.61	homo- dimer		HHblits	X-ray	2.65Å	0.28	0.71	DNA (cytosine-5)-methyltransferase 3A
4u7p.1.A	16.10	monomer		HHblits	X-ray	3.82Å	0.28	0.70	DNA (cytosine-5)-methyltransferase 3A
2qrv.1.A	15.67	homo- dimer		HHblits	X-ray	2.89Å	0.28	0.71	DNA (cytosine-5)-methyltransferase 3A
4u7t.1.A	16.04	homo- dimer		HHblits	X-ray	2.90Å	0.28	0.71	DNA (cytosine-5)-methyltransferase 3A
5wy1.1.A	20.79	homo- dimer		HHblits	X-ray	3.27Å	0.31	0.47	DNA (cytosine-5)-methyltransferase 1
3pt6.1.A	20.79	monomer		HHblits	X-ray	3.00Å	0.31	0.47	DNA (cytosine-5)-methyltransferase 1
4ft4.2.A	22.35	monomer		HHblits	X-ray	2.70Å	0.32	0.47	DNA (cytosine-5)-methyltransferase 1
5guv.1.A	20.79	monomer		HHblits	X-ray	3.08Å	0.31	0.47	DNA (cytosine-5)-methyltransferase 1
4ft4.1.A	22.35	monomer		HHblits	X-ray	2.70Å	0.32	0.47	DNA (cytosine-5)-methyltransferase 1
5gut.1.A	20.79	monomer		HHblits	X-ray	2.10Å	0.31	0.47	DNA (cytosine-5)-methyltransferase 1

3/12/2019, 4:34 AM

Template	Seq Identity	Oligo- state	QSQE	Found by	Method	Resolution	Seq Similarity	Coverage	Description
4onq.1.A	16.08	monomer		HHblits	X-ray	2.50Å	0.27	0.53	DNA methyltransferase
4da4.1.A	20.79	monomer		HHblits	X-ray	2.60Å	0.31	0.47	DNA (cytosine-5)-methyltransferase 1
3pt9.1.A	20.79	monomer		HHblits	X-ray	2.50Å	0.31	0.47	DNA (cytosine-5)-methyltransferase 1
4wxx.1.A	20.79	monomer		HHblits	X-ray	2.62Å	0.30	0.47	DNA (cytosine-5)-methyltransferase 1
4fsx.2.A	22.35	monomer		HHblits	X-ray	3.20Å	0.32	0.47	DNA (cytosine-5)-methyltransferase 1
4fsx.1.A	22.35	monomer		HHblits	X-ray	3.20Å	0.32	0.47	DNA (cytosine-5)-methyltransferase 1
4ft2.1.A	22.35	monomer		HHblits	X-ray	3.20Å	0.32	0.47	DNA (cytosine-5)-methyltransferase 1
4ft2.1.B	22.35	monomer		HHblits	X-ray	3.20Å	0.32	0.47	DNA (cytosine-5)-methyltransferase 1
3av6.1.A	20.79	monomer		HHblits	X-ray	3.09Å	0.31	0.47	DNA (cytosine-5)-methyltransferase 1
5guv.1.A	32.10	monomer		BLAST	X-ray	3.08Å	0.35	0.43	DNA (cytosine-5)-methyltransferase 1
3g7u.1.A	29.17	monomer		BLAST	X-ray	1.75Å	0.37	0.44	Cytosine-specific methyltransferase
5gut.1.A	32.10	monomer		BLAST	X-ray	2.10Å	0.35	0.43	DNA (cytosine-5)-methyltransferase 1

The table above shows the top 50 filtered templates. A further 867 templates were found which were considered to be less suitable for modelling than the filtered list.

2fhp.2.A, 5wyj.1.A, 3hm2.1.D, 1boo.1.A, 3hm2.1.A, 2yqz.1.A, 3hm2.1.C, 3e9m.2.A, 3m33.1.A, 2idj.1.D, 4mtl.1.A, 4mtl.1.B, 5nju.1.A, 1mjf.1.A, 3ftc.1.A, 5k8v.1.B, 5k8v.1.A, 4lec.1.A, 3cjt.2.A, 5dst.1.A, 3m6u.1.A, 6b1a.2.A, 2n47.1.A, 3bgi.1.A, 3lcu.1.A, 4kvz.1.A, 3v97.2.A, 2f8l.1.A, 1tpy.1.A, 2h1r.1.A, 5je6.1.A, 3m70.1.A, 2pjd.1.A, 5gio.1.C, 3vse.2.A, 3jwi.1.A, 5yjf.1.A, 1g38.1.C, 4e30.1.A, 2nxj.1.A, 1vq1.1.A, 5e9q.1.A, 5fwd.1.A, 5k01.1.A, 5dm0.1.A, 3gwz.1.A, 5d1h.1.A, 3b3f.1.A, 4p7c.1.A, 3b3f.1.B, 5lsa.1.A, 1o9g.1.A, 3fyc.1.A, 5k05.1.A, 3ggd.1.A, 3qhu.1.A, 3k0b.1.A, 5c1i.1.C, 5c1i.1.B, 4fp9.1.D, 3tpz.1.A, 4fp9.1.A, 5bw5.1.A, 1nw7.1.A, 3fuv.2.A, 4pym.1.A, 5jr3.1.A, 4l7v.1.A, 5fub.1.A, 6b91.1.A, 5lqk.1.A, 2ift.1.A, 2adm.1.A, 3vc2.1.A, 2idj.1.A, 5k0l.1.A, 4gc5.1.A, 3evz.1.A, 2ip2.1.A, 3ldf.1.A, 3jwh.1.A, 4onq.1.A, 6ifw.2.A, 6cx6.2.A, 5k0l.3.A, 1dl5.1.A, 3dul.1.A, 1wxw.2.A, 3mer.1.A, 3fuu.1.A, 3uzu.1.A, 3bt7.1.A, 2uyc.1.A, 3c3p.1.B, 4da4.1.A, 4pyk.2.B, 3fzg.1.A, 2avd.1.A, 3thr.1.A, 6du4.1.A, 3lhd.1.B, 2hmy.1.A, 5zth.1.A, 3b7p.1.A, 4n49.1.A, 3htx.1.A, 1vid.1.A, 3px3.1.A, 4u7t.1.D, 2y1x.1.A, 6ifv.1.A, 6aw5.1.A, 5n5d.1.A, 3ofk.1.A, 3f4k.1.A, 2v7e.1.A, 3bxo.1.A, 4o29.1.A, 2nyu.1.A, 4p7f.1.A, 4kw7.1.A, 1vbf.1.B, 3bus.2.A, 4ax8.1.A, 3jwj.1.A, 3a27.1.A, 5evj.1.A, 2pxx.1.A, 5fad.1.A, 1pjz.1.A, 1nbh.1.D, 4azw.1.A, 4xrp.1.F, 2ipx.1.A, 4xrp.1.C, 5k0e.1.A, 2br4.1.B, 2br4.1.A, 1wy7.2.A, 1ve3.2.A, 3jwh.2.A, 5n5d.1.B, 4iwn.1.A, 1d2g.1.A, 1zq9.1.B, 3tka.1.A, 1zq9.1.A, 5m5b.1.A, 4fr0.1.A, 5eeg.1.A, 3lx6.1.A, 5wz1.1.A, 2zth.1.A, 1uwv.1.A, 3t7r.1.A, 2vdu.1.C, 6ero.2.A, 5ulp.1.A, 5xj1.1.A, 3gnl.1.A, 2azt.1.A, 5jwj.1.A, 4u7t.1.B, 3njr.1.A, 5dwq.1.B, 6ift.1.A, 3grr.1.A, 5dwq.1.A, 1xds.1.A, 3mq2.1.A, 1xds.1.B, 3t7s.2.A, 5wp5.1.A, 2v74.2.B, 2fca.1.A, 5lqn.1.A, 6ecx.1.A, 2fca.1.B, 5e9w.1.A, 5njv.1.A, 1sui.2.A, 6gfn.1.A, 5yac.1.A, 3ay0.2.A, 1xtp.1.A, 4pyo.1.A, 2br3.1.A, 6em5.1.i, 6em5.1.i, 1x19.1.A, 1o54.1.A, 3px2.1.A, 5wwq.1.A, 2p7h.1.A, 4uoe.1.A, 3lec.1.A, 3jwi.2.A, 1hnn.1.A, 4c04.1.A, 2i9k.1.C, 5lod.1.B, 1khh.1.A, 2zzn.2.A, 2hnk.1.A, 5fqn.1.A, 5e71.1.A, 4hg2.2.A, 2uyh.1.A, 1im8.1.A, 4ikp.1.A, 4ikp.1.B, 3r9x.1.B, 1wxx.1.A, 6cn0.2.A, 3eeo.1.C, 1bhj.1.A, 3l8d.1.A, 4dcm.1.A, 4p7k.1.A, 2pss.2.B, 3a7e.1.A, 5goz.3.A, 2c7r.1.A, 6aw9.1.A, 5wcj.1.A, 3vse.3.A, 5ikm.1.A, 4e2x.1.A, 6dvr.2.D, 3cc8.1.A, 5ybb.1.A, 1dct.1.C, 2zcj.1.C, 5kva.1.A, 1wy7.4.A, 4dkj.1.A, 4c03.1.A, 6g4w.1.3, 6ifx.1.A, 3tqs.1.A, 3pta.1.A, 2bh2.1.A, 3a4t.2.A, 5nju.2.A, 1l1e.1.A, 3bzb.1.A, 2frx.1.A, 4pwy.1.A, 3grz.1.B, 3grz.1.A, 3p97.2.A, 6cn0.4.A, 3iv6.2.A, 4nec.1.A, 5bp9.1.A, 5t6b.1.A, 3k6r.1.A, 1pry.1.A, 2oxt.3.A, 3qnh.1.A, 2fpo.2.A, 2p8j.1.A, 3dh0.1.A, 3mb5.1.A, 3khk.1.A, 3v8v.1.A, 5wlc.45.A, 1jsx.1.A, 2r3s.1.A, 1d2h.1.C, 4xcx.1.A, 2np7.1.C, 3lbf.1.A, 6bq2.1.A, 5wt1.1.A, 1kpg.2.A, 2yr0.2.A, 1nv8.1.A, 4lg1.1.A, 2pwy.1.B, 2pwy.1.A, 4e2z.1.A, 5g02.1.A, 3ozs.2.A, 2oyr.1.A, 1n2x.2.A, 3vse.1.A, 3sxj.1.A, 2z6u.1.C, 5bxy.1.A, 5lhm.1.A, 5cvd.2.A, 3nmu.1.C, 3lkd.1.A, 4dq0.2.A, 4hgy.1.A, 4e2y.1.A, 3i9f.1.A, 3gwz.1.B, 3gwz.1.D, 3axs.1.A, 4m6x.1.B, 5t6b.3.A, 4m6x.1.A, 2zie.1.B, 2zie.1.A, 5je3.1.A, 2oxt.1.A, 5goz.1.A, 6aw9.3.A, 5tyq.1.A, 5log.1.A, 5log.1.B, 2xva.3.A, 1jg4.1.A, 3cgg.2.A, 5u1i.1.A, 6ifw.1.A, 3tma.1.A, 2h00.3.A, 4qvk.1.A, 3pt6.1.A, 1nbi.1.C, 1vrz.1.A, 6ifs.2.A, 3bkw.1.A, 1nbh.1.B, 2h00.1.A, 3hcb.1.A, 2pvc.3.A, 2v74.2.A, 5p8w.1.A, 2bzg.1.A, 5p8w.1.C, 5p8w.1.B, 1jg1.1.A, 3s1s.1.A, 3dxz.1.A, 1i9g.1.A, 3sm3.1.A, 2pvc.1.A, 5c1i.1.A, 5isc.1.D, 5k0f.1.A, 5isc.1.A, 3tr6.1.A, 1ne2.1.A, 2vs1.1.A, 1yb2.1.A, 1ne2.1.B, 3anx.1.B, 4rfq.1.A, 1p1b.1.A, 4f86.1.A, 4qtt.1.B, 5c1i.1.D, 5lv5.1.A, 3mti.1.A, 3mti.1.B, 2esr.1.A, 4xue.1.A, 2esr.1.B, 2fyt.1.A, 6mro.1.A, 2z6a.1.C, 4y2h.1.B, 5ks2.1.A, 5e8j.1.A, 2i62.3.A, 3eey.1.A, 1l3i.1.A, 2nxe.1.A, 3me5.1.A, 3e8s.1.A, 5gp1.1.A, 5fhr.1.A, 3bkx.1.B, 3bkx.1.A, 2p2s.1.A, 1fbn.1.A, 3av6.1.A, 3q7e.1.A, 3pfh.1.A, 2gpy.1.A, 3m33.2.A, 2gpy.1.B, 3cjq.1.A, 1r74.1.A, 4ymg.1.A, 5zq0.1.A, 1p91.1.A, 3hm2.2.C, 3hm2.2.A, 1p91.1.B, 4auk.1.A, 5fhq.1.A, 1xcj.1.A, 5ufm.1.A, 3c3y.1.A, 1l9k.1.A, 2ih4.1.C, 3gdh.1.A, 3duw.1.A, 2i6g.1.A, 5xvk.1.A, 3ldu.1.A, 2nxn.1.A, 2avn.1.A, 1qyr.2.A, 2zlb.1.A, 1z3c.1.A, 4pca.1.A, 4fs8.1.A, 2nxj.2.A, 3id6.1.D, 5oql.1.R, 3evg.1.A, 5lgr.1.C, 5vim.1.A, 4hg2.1.A, 1o9h.1.A, 5ubb.1.A, 2i62.1.A, 5k0c.1.A, 3dlc.1.A, 1yzh.1.A, 6brr.1.B, 6brr.1.D, 3g5l.1.B, 3hp7.1.A, 5d1h.2.A, 2vdw.1.A, 2uz4.1.A, 5e9j.1.A, 1kp9.1.A, 4c4a.1.A, 4qpp.3.B, 2pv0.3.A, 5yx2.1.B, 5lqj.1.A, 5zq1.1.A, 3d2l.1.A, 3rod.3.A, 2pgx.1.A, 2gh1.1.A, 2b9e.1.A, 5epe.1.A, 1yub.1.A, 4m36.1.A, 5gwx.1.A, 3rod.1.A, 6cn0.1.A, 4iv8.1.A, 3fyc.2.A, 1g6q.1.E, 3opn.1.A, 3a7d.1.A, 3fut.1.A, 3ocj.1.A, 3v97.1.A, 2a14.1.A, 5jr3.2.B, 3e23.1.A, 3b3g.1.B, 3ha5.1.A, 2yx1.3.A, 3cjr.1.A, 2yx1.3.B, 1g8a.1.A, 6ec3.1.A, 5dm0.2.A, 1r18.1.A, 4atn.1.A, 1wxw.1.B, 1wxw.1.A, 3ftd.1.A, 4fzv.1.A, 2pv0.1.A, 4htf.1.B, 4htf.1.A, 6dub.1.A, 3e7p.1.A, 3ajd.1.A, 2erc.1.A, 3b7p.2.A, 5mrk.2.A, 4p7g.3.A, 4y2h.1.A, 2jjq.1.A, 4r05.2.A, 5c0o.1.D, 5c0o.1.B, 5c0o.1.C, 3anx.1.A, 5c0o.1.A, 4rvh.1.A, 1l3b.2.C, 5wyj.2.A, 3m4x.1.A, 1kph.4.A, 4pne.1.A, 1hmy.1.A, 3cjt.1.A, 5t64.1.A, 2z6q.1.B, 3dtn.1.A, 5wy1.1.A, 2xva.1.A, 4oa5.1.A, 3e9m.1.B, 3e9m.1.A, 2y1w.1.A, 1sqf.1.A, 2yxd.1.B, 4e31.1.A, 2yxd.1.A, 5evj.2.A, 5bsz.1.A, 4pon.1.A, 1nv9.1.A, 3ntv.1.A, 3ntv.1.B, 6cx6.1.A, 3bwy.1.A, 5u0n.1.A, 4y30.1.B, 1ri4.1.A, 5eov.1.A, 5ccb.1.A, 1ve3.1.A, 3a26.1.A, 5eg5.1.A, 1qyr.1.A, 2kw5.1.A, 5njv.3.A, 3h2b.1.A, 3h2b.1.B, 4qdj.1.A, 3ou2.1.A, 3lpm.1.A, 5zw3.1.A, 3pt9.1.A, 3jwj.2.A, 2fhp.1.A, 5wp4.1.A, 5vim.2.A, 4qnu.1.A, 2b25.1.A, 1p1c.1.A, 1r8y.1.A, 3ofj.1.A, 5wwr.1.A, 2ozv.1.B, 2wa2.2.A, 3fuv.3.A, 3ku1.2.A, 1nw8.1.A, 4by9.1.E, 3fuv.1.A, 2gb4.1.A, 4pyj.2.B, 4jxj.1.A, 4pyq.1.B, 4by9.1.N, 3p9n.1.A, 4by9.1.H, 4by9.1.K, 4wxh.1.A, 3epp.1.A, 1f3l.1.A, 5bp7.1.A, 3dou.1.A, 4qvk.1.B, 2yxl.1.A, 1ri2.1.A, 4ctj.1.A, 1ixk.1.A, 1xva.1.A, 5e9q.2.A, 3g2m.1.A, 3g2m.1.B, 3c3p.1.A, 1vbf.1.A, 5bw4.1.A, 2r6z.1.B, 4c03.1.B, 4azt.1.A, 2nnw.1.B, 2xva.2.A, 4qpn.1.A, 2yvl.1.A, 4xuc.1.A, 3fpf.1.A, 3fpf.1.B, 3ay0.1.A, 3emd.1.A, 3htx.2.A, 5xj2.1.A, 5i2h.1.A, 3g5t.1.A, 3lby.1.B, 3lby.1.A, 2zvj.1.A, 3ofk.4.A, 5jdy.1.A, 5k0g.1.A, 1svu.1.A, 4df3.1.A, 2zbp.1.A, 4onj.1.B, 6ect.1.A, 4onj.1.A, 9mht.1.C, 3bgi.2.A, 2cww.1.A, 5hzm.1.A, 3ou7.1.A, 5xvk.2.A, 1vl5.1.A, 6gt5.1.A, 4z2y.1.A, 5zvd.1.A, 2igt.1.A, 2b78.1.A, 2eju.1.A, 4pyo.2.A, 5cvd.1.A, 2bm9.1.F, 1wy7.1.A, 2bm9.1.B, 5m5b.2.A, 2bh2.2.A, 1eiz.1.A, 3jwg.1.A, 2okc.1.A,

4 of 5 3/12/2019, 4:34 AM

1wy7.3.A, 6d2l.1.A, 4nec.2.A, 1x1b.1.A, 3ckk.1.A, 2br5.1.A, 2br5.1.F, 3r3h.1.A, 2br5.1.D, 4e2w.1.A, 1qaq.1.A, 4pyi.1.A, 1nkv.1.C, 1nkv.1.B, 1nkv.1.A, 4uw0.1.A, 4f84.1.A, 2vdv.1.A, 3tpz.2.A, 3swr.1.A, 4p58.1.A, 3bgd.1.A, 1aqj.1.A, 2xbm.1.A, 2wa2.1.A, 3dmh.1.A, 2plw.1.A, 1vbf.2.B, 3ccf.2.A, 4isc.1.A, 2pss.1.A, 5cuq.1.A, 5jdz.1.A, 1sui.3.A, 3x0d.1.A, 3tlj.1.A, 3fyd.1.A, 5egs.2.B, 1nt2.1.A, 4gek.1.A, 5x7f.1.A, 4x41.1.A, 4x41.1.B, 2zzn.1.A, 5h02.1.A, 5eku.1.A, 5lv4.1.A, 1sg9.1.A, 3frh.1.A, 2bm8.1.D, 2bm8.1.E, 1r8x.1.A, 4n4a.1.A, 2fpo.3.A, 5is7.1.C, 2qrv.1.B, 5is7.1.D, 1kpi.1.A, 3tfw.1.A, 3v8v.2.A, 6ifv.2.A, 2fpo.1.A, 6f5z.1.A, 6f5z.1.B, 4dq0.3.A, 2ibs.1.C, 4pca.1.B, 2as0.1.B, 2as0.1.A, 3ubt.1.A, 2zul.1.A, 4dmg.1.A, 4dmg.1.B, 1r6a.1.A, 2ex4.1.A, 4krg.1.A, 4dq0.1.A, 4u7p.1.B, 3p8z.1.A, 1wzn.1.A, 1kph.1.A, 5kyg.1.A, 4yoc.1.A, 3ege.1.A, 2h00.2.A, 1tw2.1.A, 1sui.1.B, 2pbf.1.A, 1tw2.1.B, 5m58.1.A, 3bus.1.A, 3wst.1.A, 1l3c.1.A, 3bwm.1.A, 3iv6.1.A, 2yxe.1.B, 2yxe.1.A, 2r6z.1.A, 3id5.1.F, 4qtu.1.B, 3egi.1.A, 2p40.1.A, 3egi.1.C, 5hji.1.A, 3c6k.1.A, 5k0b.1.A, 3eey.2.A, 5wcf.1.A, 6ifx.2.A, 4m6y.1.B, 4m6y.1.A, 1xdu.1.A, 6bqc.1.A, 5eeh.1.A, 2fk7.1.A, 1jr4.1.A, 5fcd.1.A, 2br3.1.F, 5e8j.2.A, 3a4t.1.A, 3e05.1.A, 2br3.1.B, 3e05.1.C, 4xru.1.C, 4xru.1.F, 1orh.1.A, 2p3o.1.A, 1vbf.2.A, 1y8c.1.A, 3fff.1.A, 5fa8.1.A, 5u4t.1.A, 3ccf.1.A, 1d2h.1.A, 1dus.1.A, 1d2h.1.D, 1nv8.2.A, 5t38.1.A, 5jpq.1.W, 3kr9.1.A, 4y30.1.A, 3gdh.2.A, 3g5l.1.A, 3dli.1.A, 2pkw.1.A, 1nbh.1.C, 1nbh.1.A, 5goz.2.A, 5wxb.1.A, 4e33.1.A, 4kdc.1.A, 2p41.1.A, 3dr5.1.A, 5wlc.46.A, 1xxl.1.A, 5mgz.1.A, 3smq.1.A, 5xvq.1.A, 2zif.1.B, 6cn0.3.A, 3hce.1.A, 3o31.1.B, 3o31.1.A, 1g6q.1.C, 1l1e.2.A, 1g6q.1.A, 1g6q.1.F, 1g6q.1.D, 4wxx.1.A, 3cbg.1.A, 2zzm.1.A, 1kr5.1.A, 6aw9.2.A, 4p7j.1.A, 4m38.1.A, 3c0k.1.A, 5lga.1.A, 3b3j.1.A, 2ozv.1.A, 5gp1.2.A, 5mrk.1.A, 6ero.1.A, 2pv0.2.A, 5lqj.2.A, 3m6v.1.A, 2nxe.2.A, 1uir.1.A, 5lqc.1.B, 4bp3.2.B, 5k0b.3.A, 5is6.1.D, 3egv.1.A, 1sui.1.A, 5dly.1.A, 6erp.1.E, 1dl5.1.B, 3c6m.1.B, 3svz.1.A, 5is8.1.B, 5is8.1.A, 3evb.1.A, 1kp9.2.A, 3elw.1.A, 1ws6.1.A, 5u18.1.A, 3vse.4.A, 3lcc.1.A, 6aw6.1.A, 3orh.1.A, 4kdr.1.A, 5wy0.1.A, 3hnr.1.A, 6ifs.1.A, 3ll7.1.A, 3fri.1.A, 5kqr.1.A, 3fte.1.A, 4qtt.2.B, 3fut.2.A, 3lbf.4.A, 2ytz.1.A, 4lwo.1.A, 5dpm.1.A, 3lga.1.A, 2onz.1.A, 6dcb.1.A, 3cgg.1.A, 3gu3.1.A, 1n2x.1.A, 3b89.1.A, 5zq8.2.A, 3gcz.1.A

5 of 5