求证告年后梯度法构造的方向是告轮的。

证明:
$$O$$
 $\lambda^{(1)}Q \lambda^{(0)} = (-g^{(1)} + Q \lambda^{(0)}) Q \lambda^{(0)}$

$$= -g^{(1)}Q \lambda^{(0)} + Q \lambda^{(0)}Q \lambda^{(0)}$$

其中 $Q = \frac{g^{(1)}Q \lambda^{(0)}}{g^{(0)}Q \lambda^{(0)}}$, 他人得
$$\lambda^{(1)}Q \lambda^{(0)} = -g^{(1)}Q \lambda^{(0)} + \frac{g^{(1)}Q \lambda^{(0)}}{g^{(0)}Q \lambda^{(0)}} \cdot \lambda^{(0)}Q \lambda^{(0)} = O$$

②假设d⁽⁰⁾,d⁽¹⁾;····,d^(h)共轭,只需证d^(k+1)与d⁽⁰⁾,d⁽¹⁾,···,d^(h)也共轭阿;即证 d^{((h+1))}Qd⁽¹⁾=0,∀i∈[0,h]

 $\therefore d^{(k+1)} = -g^{(k+1)} + \ell_k d^{(k)} \quad \text{wit} \quad -g^{(k+1)T} Q d^{(i)} + \ell_k d^{(k)T} Q d^{(i)} = \alpha$

I. 对于 osich, 另席证 $-g^{(kH)} T Q d^{(i)} = 0$ 即到.

 $g^{(i+1)} = g^{(i)} + \chi_{i}Qd^{(i)} \quad \text{iff} \quad Qd^{(i)} = \frac{g^{(i+1)} - g^{(i)}}{\chi_{i}}, \quad \text{fig. iff} \quad g^{(i+1)} = 0. \quad \text{fig.} \quad d^{(i+1)} = 0. \quad d^{(i+1)} =$

明证得 g(ht) 7 g(i) - g(kt) 7 g(it) = 0., 那对oéick成艺

I.
$$i = k$$
 H, $i = i \times k - g^{(k+1)} T Q d^{(k)} + k Q^{(k)} T Q d^{(k)} = 0$.

 $f = k + \frac{g^{(k+1)} T}{Q d^{(k)}} Q d^{(k)} + k Q^{(k)} T Q d^{(k)} = 0$
 $-g^{(k+1)} T Q d^{(k)} + k Q^{(k)} Q d^{(k)} = 0$
 $g^{(k+1)} T Q d^{(k)} + k Q^{(k)} Q d^{(k)} = 0$
 $g^{(k+1)} T Q d^{(k)} + k Q^{(k)} Q d^{(k)} = 0$
 $g^{(k+1)} T Q d^{(k)} + k Q^{(k)} Q d^{(k)} = 0$
 $g^{(k+1)} T Q Q^{(k)} + k Q^{(k)} Q Q^{(k)} = 0$

综上所述, 共轭梯度法构造的的均类的.