Relatório 1º projecto ASA 2021/2022

Grupo: tp022

Aluno(s): Stefan Daniel Knutsen (99123) e Tomás Gomes Nascimento (99128)

Descrição do Problema e da Solução

Para ambos os problemas para descobrir o tamanho da maior subsequência possível, a ideia é ter um vetor (lensList) em que na mesma posição de um certo elemento teria o tamanho máximo de uma subsequência crescente que acaba nesse elemento. Para o problema 1 teremos uma lista adicional para o número de subsequências crescentes que existem com o tamanho indicado na posição com o mesmo índice na lensList.

Análise Teórica

- Leitura dos dados de entrada: simples leitura do input, com ciclo(s) a depender linearmente O(n)
- Processamento da instância para fazer alguma coisa. Logo, O(1)
- Aplicação do algoritmo 1 para encontrar a número e o tamanho das maiores subsequências crescentes numa lista com n elementos. Logo, O(n^2)
- Aplicação do algoritmo 2 para encontrar tamanho da maior subsequência comum crescente entre uma lista com n elementos e outra com m elementos. Logo, O(n*m)
- Calculo do numero de listas com o maior tamanho possível. O(n^2)
- Apresentação dos dados. O(1)

Complexidade da solução do 1º algoritmo: O(n^2)

Complexidade da solução do 2º algoritmo: O(n*m)

Relatório 1º projecto ASA 2021/2022

Grupo: tp022

Aluno(s): Stefan Daniel Knutsen (99123) e Tomás Gomes Nascimento (99128)

Avaliação Experimental dos Resultados

Problema 1:

•	1º Input	n=100	t=0,006s
•	2º Input	n= 500	t=0,007s
•	3º Input	n=1 000	t=0,009s
•	4º Input	n=2 000	t=0,017s
•	5º Input	n=5 000	t=0,060s
•	6º Input	n=10 000	t=0,149s
•	7º Input	n=20 000	t=0,480s
•	8º Input	n=50 000	t=2,765s
•	9º Input	n=100 000	t=10,813s
•	10º Input	n=200 000	t=42,155s

Eixo dos YY's refere-se ao tempo do algoritmo e o eixo dos XX's refere-se ao número de elementos da lista

Problema 2:

•	1º Input	n=100	m=100	t=0,006s
•	2º Input	n=500	m=500	t=0,008s
•	3º Input	n=1 000	m=1 000	t=0,011s
•	4º Input	n=2 000	m=2 000	t=0,039s
•	5º Input	n=5 000	m=5 000	t=0,101s
•	6º Input	n=10 000	m=10 000	t=0,262s
•	7º Input	n=20 000	m=20 000	t=1,442s
•	8º Input	n=50 000	m=50 000	t=5,606s
•	9º Input	n=100 000	m=100 000	t=22,166s
•	10º Input	n=200 000	m=200 000	t=87,540s

Eixo dos YY's refere-se ao tempo do algoritmo e o eixo dos XX's refere-se ao número de elementos de uma das listas

