CS 4650/7650 Information Extraction and Question Answering¹

Jacob Eisenstein

November 12, 2013

 $^{^1}$ Some material from Brendan O'Connor, Claire Cardie, and the FASTUS team.

Course roadmap

- Words (WSD, classification and morphology)
- Sequences (tagging)
- Trees (parsing)
- Semantics and discourse
- Applications
 - ▶ Today: knowledge from text
 - ▶ Next week: machine translation

Knowledge from text

Information extraction

- input: schema of desired knowledge base
- output: populate schema from text resources

Question answering

- input: natural language questions
- output: natural language answers
- intermediate representation usually includes structured knowledge base

(see wolfram alpha video)

8

?

Using closest Wolfram|Alpha interpretation: three lightest metals

More interpretations: expensive

■ 990

≡ Examples

Random

Assuming "element" is elements | Use as a class of elements instead

□ - 0 - **□** - 77 -

Input in	Input interpretation:									
lig	lightest radioactive elements									
Q ± 2	3 A 6									
Results	:									
By at	omic weight:					More				
1	technetium	98 u								
2	promethium	145 u								
3	polonium	209 u								
4	astatine	210 u								
5	radon	222 u								
By de	ensity:					More				
1	radon	0.0097	3 g/cm ³							
2	radium		5 g/cm ³							

	rad	ioa	cti	ve (e1e	me	ent	S											
M	emb	ers:																	More
	actinium americium astatine berkelium bohrium californium copernicium curium darmstadtium dubnium einsteinium fermium francium hassium lawrencium meitnerium mendelevium neptunium nobelium plutonium (total: 37)																		
Pe	eriod	ic ta	able	loc	atio	on:													
																		Не	
	Н																		
		Be											В		N		F	Ne	
														C Si		0 S			
	Li Na	Mg	Sc	Ti	V	Cr	Mn	Fe		Ni	Cu		ΑI		Р	S		Ar	

Knowledge extraction in NLP

Knowledge extraction requires solving lots of NLP problems

- understand the source data (syntax, discourse, semantics)
- understand the query
- reason about how they fit together

Outline

Information Extraction

Finding entities

Entity linking

Relation extraction

Event detection

The six Ws

- ▶ Who, what, where, when, why, how?
- ▶ IE is mostly concerned with the first four.

The six Ws

- Who, what, where, when, why, how?
- ▶ IE is mostly concerned with the first four.
 - who/where: named entity extraction and coreference (we've already talked about this)
 - **what**: usually defined in terms of *relations* between entities
 - when
 - parsing time expressions, finding the temporal order of events
 - this is a big part of IE, but I'm not going to talk about it today

▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.

- ▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.
- ► Annotated entities: At a meeting of <ORG>the
 Thirteen</ORG>, <PER>Pyat Pree</PER> tells
 <PER>Daenerys</PER> that he has <OBJ>her
 dragons</OBJ> in the <PER>House of the Undying</PER>.

- ▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.
- ► Annotated entities: At a meeting of <ORG>the
 Thirteen</ORG>, <PER>Pyat Pree</PER> tells
 <PER>Daenerys</PER> that he has <OBJ>her
 dragons</OBJ> in the <PER>House of the Undying</PER>.
- Linked entities:
 - ightharpoonup <PER>Pyat Pree</PER> ightharpoonup PYAT PREE
 - ► <PER>Daenerys</PER> → DAENERYS TARGARYEN

- ▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.
- ► Annotated entities: At a meeting of <ORG>the
 Thirteen</ORG>, <PER>Pyat Pree</PER> tells
 <PER>Daenerys</PER> that he has <OBJ>her
 dragons</OBJ> in the <PER>House of the Undying</PER>.
- Linked entities:
 - ► $\langle PER \rangle Pyat Pree \langle PER \rangle \rightarrow Pyat Pree$
 - ► <PER>Daenerys</PER> → DAENERYS TARGARYEN
- Relations:
 - ► PYAT PREE <HAS> DRAGONS
 - ▶ Dragons <LOCATED-IN> House of the Undying

- ▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.
- ► Annotated entities: At a meeting of <ORG>the
 Thirteen</ORG>, <PER>Pyat Pree</PER> tells
 <PER>Daenerys</PER> that he has <OBJ>her
 dragons</OBJ> in the <PER>House of the Undying</PER>.
- Linked entities:
 - ► $\langle PER \rangle Pyat Pree \langle PER \rangle \rightarrow Pyat Pree$
 - ► <PER>Daenerys</PER> → DAENERYS TARGARYEN
- Relations:
 - ► PYAT PREE <HAS> DRAGONS
 - ▶ Dragons <LOCATED-IN> House of the Undying
- Events:

Possession: [Object: dragons; Location: House of the Undying; Possessor: Pyat Pree]

- ▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.
- ► Annotated entities: At a meeting of <ORG>the
 Thirteen</ORG>, <PER>Pyat Pree</PER> tells
 <PER>Daenerys</PER> that he has <OBJ>her
 dragons</OBJ> in the <PER>House of the Undying</PER>.
- Linked entities:
 - ► $\langle PER \rangle Pyat Pree \langle PER \rangle \rightarrow Pyat Pree$
 - ► <PER>Daenerys</PER> → DAENERYS TARGARYEN
- Relations:
 - ► PYAT PREE <HAS> DRAGONS
 - ▶ Dragons <LOCATED-IN> House of the Undying
- Events:

Possession: [Object: dragons; Location: House of the Undying; Possessor: Pyat Pree]

Named entity recognition

Find and tag mentions of entities in text.

At a meeting of <ORG>the Thirteen</ORG>,
<PER>Pyat Pree</PER> tells <PER>Daenerys</PER>
that he has <OBJ>her dragons</OBJ> in the
<PER>House of the Undying</PER>.

- ▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.
- ► Annotated entities: At a meeting of <ORG>the
 Thirteen</ORG>, <PER>Pyat Pree</PER> tells
 <PER>Daenerys</PER> that he has <OBJ>her
 dragons</OBJ> in the <PER>House of the Undying</PER>.
- Linked entities:
 - ► $\langle PER \rangle Pyat Pree \langle PER \rangle \rightarrow Pyat Pree$
 - ► <PER>Daenerys</PER> → DAENERYS TARGARYEN
- Relations:
 - ► PYAT PREE <HAS> DRAGONS
 - ▶ Dragons <LOCATED-IN> House of the Undying
- Events:

Possession: [Object: dragons; Location: House of the Undying; Possessor: Pyat Pree]

- ▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.
- ► Annotated entities: At a meeting of <ORG>the
 Thirteen</ORG>, <PER>Pyat Pree</PER> tells
 <PER>Daenerys</PER> that he has <OBJ>her
 dragons</OBJ> in the <PER>House of the Undying</PER>.
- Linked entities:
 - ► $\langle PER \rangle Pyat Pree \langle PER \rangle \rightarrow Pyat Pree$
 - ► <PER>Daenerys</PER> → DAENERYS TARGARYEN
- Relations:
 - ► PYAT PREE <HAS> DRAGONS
 - ▶ Dragons <LOCATED-IN> House of the Undying
- Events:

Possession: [Object: dragons; Location: House of the Undying; Possessor: Pyat Pree]

Entity linking

Goal: link entity mentions to knowledge base entries. Like multi-document coreference resolution, but must ultimately resolve to KB entry.

Entity linking: challenges

From Rao et al (2010)

- 1. Name variations: Boston Symphony Orchestra vs BSO, Qaddafi vs Gadaffi, etc
- 2. Name polysemy: Washington (person, place, football team, US Government, ...)
- 3. Absence: many entities do not appear in the KB.

In combination, these challenges are especially pernicious: William Clinton is a variation of Bill Clinton, but appears in Wikipedia as two other individuals.

Entity linking: steps

Candidate identification

- Brute force: check Google Knowedge Graph for all strings that could link to an entity
- Add source document coreference resolution

Entity linking: steps

Candidate identification

- Brute force: check Google Knowedge Graph for all strings that could link to an entity
- Add source document coreference resolution

Ranking Supervised formulation (Dredze et al 2010):

$$\min_{\mathbf{w}} \quad ||\mathbf{w}||_{2}^{2}
s.t. \quad \mathbf{w}^{\mathsf{T}} f(\mathbf{x}_{i}, y_{i}) > \max_{\hat{y} \neq y_{i}} \mathbf{w}^{\mathsf{T}} f(\mathbf{x}_{i}, \hat{y})$$

Features:

- String match
- Popularity
- Local context and entity type
- Document context (similar entities)

- ▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.
- ► Annotated entities: At a meeting of <ORG>the
 Thirteen</ORG>, <PER>Pyat Pree</PER> tells
 <PER>Daenerys</PER> that he has <OBJ>her
 dragons</OBJ> in the <PER>House of the Undying</PER>.
- Linked entities:
 - ► $\langle PER \rangle Pyat Pree \langle PER \rangle \rightarrow Pyat Pree$
 - ► <PER>Daenerys</PER> → DAENERYS TARGARYEN
- Relations:
 - ► PYAT PREE <HAS> DRAGONS
 - ▶ Dragons <LOCATED-IN> House of the Undying
- Events:

Possession: [Object: dragons; Location: House of the Undying; Possessor: Pyat Pree]

- ▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.
- ► Annotated entities: At a meeting of <ORG>the
 Thirteen</ORG>, <PER>Pyat Pree</PER> tells
 <PER>Daenerys</PER> that he has <OBJ>her
 dragons</OBJ> in the <PER>House of the Undying</PER>.
- Linked entities:
 - ► $\langle PER \rangle Pyat Pree \langle PER \rangle \rightarrow Pyat Pree$
 - ► <PER>Daenerys</PER> → DAENERYS TARGARYEN
- ► Relations:
 - ► PYAT PREE <HAS> DRAGONS
 - ▶ Dragons <LOCATED-IN> House of the Undying
- Events:

Possession: [Object: dragons; Location: House of the Undying; Possessor: Pyat Pree]

Relations

A relation is a *predication* about a pair of entities.

- ▶ Davos works for Stannis
- ► King's Landing is in Westeros
- ▶ Joffrey's **father is** Jaime

Relations are typically permanent.

Example relations

From the Automatic Content Extraction (ACE) 2004 Task:

relation type	subtypes
physical	located, near, part-whole
personal-social	business, family, other
employment/membership/	employ-executive, employ-staff,
subsidiary	employ-undetermined, member-of-group,
	partner, subsidiary, other
agent-artifact	user-or-owner, inventor-or-manufacturer,
	other
person-org affiliation	ethnic, ideology, other
GPE affiliation	citizen-or-resident, based-in, other
discourse	-

► Typically we focus on cases in which the relation and the two entities are all mentioned in the same sentence. (Exception: Robert and Cersei were married. A son was born the next year)

- ► Typically we focus on cases in which the relation and the two entities are all mentioned in the same sentence. (Exception: Robert and Cersei were married. A son was born the next year)
- ▶ Relation extraction requires coreference resolution.
 - ► He has her dragons:
 PYAT PREE <HAS> DAENERYS' DRAGONS

- ▶ Typically we focus on cases in which the relation and the two entities are all mentioned in the same sentence. (Exception: Robert and Cersei were married. A son was born the next year)
- ▶ Relation extraction requires coreference resolution.
 - He has her dragons:
 PYAT PREE <HAS> DAENERYS' DRAGONS
 - ▶ Eddard died. His daughter, Sansa, said the Eulogy.
 - ▶ Must resolve his to EDDARD and his daughter to SANSA
 - ► Then we can recover Sansa < Daughter-of> Eddard

- ▶ Typically we focus on cases in which the relation and the two entities are all mentioned in the same sentence. (Exception: Robert and Cersei were married. A son was born the next year)
- ▶ Relation extraction requires coreference resolution.
 - He has her dragons:
 PYAT PREE <HAS> DAENERYS' DRAGONS
 - ▶ Eddard died. His daughter, Sansa, said the Eulogy.
 - ▶ Must resolve his to Eddard and his daughter to Sansa
 - ► Then we can recover Sansa < Daughter-of> Eddard
- ▶ Micro-reading: correctly identify every relation mention
- ▶ Macro-reading: correctly identify every relation in the text

Knowledge-base population (KBP)

Extract attributes for each named person or organization:

entity	house	father	mother	position
ARYA	Stark	Eddard	Catelyn	
Daenerys	Targaryen	Aerys		Mother-of-dragons
QHORIN	COMMONER			Knight-of-the-Watch

KBP is similar to relation extraction.

- Columns define relation types
- Rows define the left entity
- Cells define the right entity

Relations from patterns

- ► Early idea: lexical patterns, like regular expressions
- ▶ Possible patterns for Person Lives-in Location:
 - ▶ PERSON lives in LOCATION
 - ▶ PERSON lived in LOCATION
 - ▶ PERSON has lived in LOCATION
 - ► PERSON resides in LOCATION

- ► Early idea: lexical patterns, like regular expressions
- ▶ Possible patterns for Person Lives-in Location:
 - ► PERSON lives in LOCATION
 - ▶ PERSON lived in LOCATION
 - ▶ PERSON has lived in LOCATION
 - ► PERSON resides in LOCATION
- Can we generalize beyond lexical patterns?

- ► Early idea: lexical patterns, like regular expressions
- ▶ Possible patterns for Person Lives-in Location:
 - ▶ PERSON <V BASE=LIVE> in LOCATION
 - ► PERSON has lived in LOCATION
 - ► PERSON resides in LOCATION
- Can we generalize beyond lexical patterns?
 - morphological analysis

- ► Early idea: lexical patterns, like regular expressions
- ▶ Possible patterns for Person Lives-in Location:
 - ▶ PERSON < VGROUP BASE=LIVE > in LOCATION
 - ► PERSON resides in LOCATION
- Can we generalize beyond lexical patterns?
 - morphological analysis
 - phrase chunking

- ► Early idea: lexical patterns, like regular expressions
- ▶ Possible patterns for Person Lives-in Location:
 - ▶ PERSON < VGROUP SYNSET=LIVE#1> in LOCATION

- Can we generalize beyond lexical patterns?
 - morphological analysis
 - phrase chunking
 - lexical semantics

Syntactic patterns

Given a dependency parse, we can define more flexible patterns:

Supervised relation extraction

We can develop a classifier for each relation type, or a general classifier for detecting relations of any type.

- Feature-based classification (Features: heads of each entity, types of each entity, distance between entities, words between entities, dependency path between entities, ...)
- Kernel-based classification
 - Kind of like K-nearest-neighbors classification
 - ► The label for a test instance should be based on similar training instances

Whirlwind tour of kernel-based classification

► The kernel function maps from pairs of instances to a non-negative real value.

$$K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$$

- \blacktriangleright $K(x_1, x_2)$ is large for similar x_1, x_2 , small if they are different
- K can count number of shared words, etc.

Whirlwind tour of kernel-based classification

► The kernel function maps from pairs of instances to a non-negative real value.

$$K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$$

- \blacktriangleright $K(x_1, x_2)$ is large for similar x_1, x_2 , small if they are different
- K can count number of shared words, etc.
- Classification rule:

$$\hat{y}(\mathbf{x}) = \sum_{i} y_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b$$

- ▶ Each $\alpha_i \ge 0$ is a parameter, which must be learned.
- $\#|\alpha| = \#|\mathbf{x}|$, regardless of number of features

Other training paradigms: bootstrapping

- Start with a few seed patterns
- Extract some high-confidence relations
- Induce more patterns
- Extract more relations
- **.**..

Other training paradigms: distant learning

- ▶ Start with a large set of known relations (e.g. from Freebase)
- Collect all sentences that include both entities in the relation. These are positive training instances.
- ► Sample negative training instances (for example, sentences that contain one entity in a relation but not both).
- a.k.a. multi-instance learning

The Information Extraction pipeline

- ▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.
- ► Annotated entities: At a meeting of <ORG>the
 Thirteen</ORG>, <PER>Pyat Pree</PER> tells
 <PER>Daenerys</PER> that he has <OBJ>her
 dragons</OBJ> in the <PER>House of the Undying</PER>.
- Linked entities:
 - ► $\langle PER \rangle Pyat Pree \langle PER \rangle \rightarrow PYAT PREE$
 - ► <PER>Daenerys</PER> → DAENERYS TARGARYEN
- ► Relations:
 - ► PYAT PREE <HAS> DRAGONS
 - ▶ Dragons <LOCATED-IN> House of the Undying
- Events:

Possession: [Object: dragons; Location: House of the Undying; Possessor: Pyat Pree]

The Information Extraction pipeline

- ▶ Unstructured source: At a meeting of the Thirteen, Pyat Pree tells Daenerys he has her dragons in the House of the Undying.
- ► Annotated entities: At a meeting of <ORG>the
 Thirteen</ORG>, <PER>Pyat Pree</PER> tells
 <PER>Daenerys</PER> that he has <OBJ>her
 dragons</OBJ> in the <PER>House of the Undying</PER>.
- Linked entities:
 - ► $\langle PER \rangle Pyat Pree \langle PER \rangle \rightarrow PYAT PREE$
 - ► <PER>Daenerys</PER> → DAENERYS TARGARYEN
- Relations:
 - ► PYAT PREE <HAS> DRAGONS
 - ▶ Dragons <LOCATED-IN> House of the Undying
- Events:

Possession: [Object: dragons; Location: House of the Undying; Possessor: Pyat Pree]

Event extraction

- ▶ **Relations** are predications involving two arguments.
- Events are predications involving arbitrary numbers of arguments.

Event type	Subtypes
Life	Be-born, Marry, Divorce, Injure, Die
Movement	Transport
Transaction	Transfer-ownership, Transfer-money
Business	Start-org, Merge-org, Declare-bankruptcy, End-org
Conflict	Attack, Demonstrate
Personnel	Start-position, End-position, Nominate, Elect
Justice	Arrest-jail, Release-parole, Trial-hearing
	Charge-indict, Sue, Convict, Sentence, Fine, Execute,
	Extradite, Acquit, Appeal, Pardon

Representing events

"POLICE HAVE REPORTED THAT TERRORISTS TONIGHT BOMBED THE EMBASSIES OF THE PRC"

Event templates

In supervised event extraction, each event type has a template of relevant attributes.

```
0. MESSAGE ID
                               TST1-MUC3-0099
1. TEMPLATE ID
2. DATE OF INCIDENT
                               - 25 OCT 89
3. TYPE OF INCIDENT
                               BOMBING
4. CATEGORY OF INCIDENT
                               TERRORIST ACT
                               "TERRORISTS"
5. PERPETRATOR: ID OF INDIV(S)
6. PERPETRATOR: ID OR ORG(S)
7. PERPETRATOR CONFIDENCE
8. PHYSICAL TARGET: ID(S)
                               "THE EMBASSIES"
9. RHMSICAL TARGET: TOTAL
                               PLURAL
                               DIPLOMAT OFFICE OR RESIDENCE: "THE EMBASSIES"
10. PHYSICAL TARGET: TYPE(S)
11. HUMAN TARGET: ID(S)
12. HUMAN TARGET: TOTAL NUM
13. HUMAN TARGET: TYPE(S)
14. TARGET: FOREIGN NATIONS
15. INSTRUMENT: TYPE(S)
16. LOCATION OF INCIDENT
                               EL SALVADOR: SAN ISIDRO (TOWN)
17. EFFECT ON PHYSICAL TARGET
                               SOME DAMAGE: "THE EMBASSIES"
18. EFFECT ON HUMAN TARGET
                               NO INJURY: "-"
```

Typical approach: train classifiers for each slot in the template

Collective relation extraction

Joint reasoning about both language understanding and the underlying semantics.

(Yao, Riedel, and McCallum, 2010)

Collective relation extraction

Joint reasoning about both language understanding and the underlying semantics.

(Lao, Subramanya, Pereira, and Cohen, 2012)

Special cases: time

Expression	Туре	Value
October of 1963	DATE	1963-10
October	DATE	2011-10
last Friday	DATE	2011-09-16
next weekend	DATE	2011-W39-WE
the day after tomorrow	DATE	2011-09-21
the nineties	DATE	199X
winter of 2000	DATE	2000-WI
5th century B.C.	DATE	-05XX
now	DATE	PRESENT_REF
Saturday morning	TIME	2011-09-24TMO
4 p.m. Tuesday	TIME	2011-09-20T16:00

- ► SUTIME is a rule-based system for parsing time expressions.
- ▶ Recent work (Agneli et al) has focused on statistical parsing.

Special cases: space

Location descriptions also have a structure that is hierarchical and complex, yet arguably tractable.

- ▶ the first gas station after you cross under the 85 on Peachtree Road in Vinings
- ▶ on the left after you come up stairs in TSRB
- ▶ in the bottom of a drawer in the cabinet opposite the green bookcase

The problem of resolving place names is **toponym resolution**.

Next steps: beliefs and evidence

- Possibly factual: United States may extend its naval quarantine to Jordans Red Sea port of Aqaba.
- ▶ Possibly counter-factual: They may not have enthused him for their particular brand of political idealism.
- ► Source-specific facuality: Izvestiya said that the G-7 leaders pretended everything was OK in Russia's economy.
- ▶ Epistemic marking: He saw the gunman, The WSJ editorial page speculated ...

FactBank is a corpus of factuality annotations (Saurí and Pustejovsky 2009).

	Positive (+)	Negative (-)	Underspecified (u)
Certain (CT)	Fact: <cr,+></cr,+>	Counterfact: <ct,-></ct,->	Certain but unknown output: <cr,u></cr,u>
Probable (PR)	Probable: <pr,+></pr,+>	Not probable: <pr,-></pr,->	(NA)
Possible (PS)	Possible: <ps,+></ps,+>	Not certain: <ps,-></ps,->	(NA)
Underspecified (u)	(NA)	(NA)	Unknown or uncommitted: <u.u></u.u>