

Lecture 9: Backpropagation

Optimization for data sciences

- Introduction to optimization
 - A few problems of interest
 - Quick mathematical refresher
- Convex problems (Following Stephen Boyd)
 - Convex sets
 - Convex functions
 - Convex problems
 - Simplex algorithm for Linear Programming

- Duality (for convex problems)
 - Lagrangian and dual function
 - Dual problem
 - Qualification constraints
 - KKT conditions
- Newton's Descent and Barrier methods for convex case
 - Descent for the unconstrained problems
 - Equality constrained problems
 - Interior point methods
 - Lab session!

- What about the real (neural) world?
 - Problem statement
 - Let's try to solve it!
 - Gradient descent with(out) convexity
 - Gradient descent variants
- Backpropagation
 - Chain rule derivation
 - Dynamic programming
 - Backpropagation
 - Lab session 2!

Evaluation

- Reports on lab sessions
 - Labs on jupyter notebooks
 - Not every session
 - Explain the code done in the session
 - Summarize what is done in the practical
- Written Exam
 - Theoretical questions
 - We will do exercises in class

Refresher on convexity!

Problem statement: Ideal case

- Find (robot) f that classifies images well
 - Often based on neural networks

$$\forall (x,y) \in \mathcal{D}, f(x) = y$$

Minimizing Risk

- ullet Problem: we do not know $\mathcal D$!
 - Solved problem otherwise...
 - Evaluating the risk requires this distribution
- Solution: Use a dataset D of (x,y) sampled from \mathcal{D}
 - Empirical Risk Minimization
 - o If the (x,y) are i.i.d drawn from \mathcal{D} can be expressed as a mean over the dataset

$$min_{\theta}\hat{\mathcal{R}}_{\theta} = \frac{1}{N} \sum_{i=0,\dots,N-1} l(f_{\theta}(x_i), y_i)$$

Neural network functions

Neural networks are sequences of simple functions

$$f_{\theta} = h_{\theta}^{0} \circ h_{\theta}^{1} \circ \cdots \circ h_{\theta}^{L-1}$$

Interlude: Formalization of dense networks 🔅 🗀

- Highly expressive
 - Can fit many types of distributions

(Non-convex) Unconstrained problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- Cost function is given by neural network and loss
- No constraints!
 - Easy unconstrained problem!
- Not convex, for a number of reasons.

Let's do discount descent: Gradient descent: UNIVERSITÉ CÔTE D'AZUR

- What do we need?
 - Step size
 - Fixed step size
 - Gradient
 - Could get pretty expensive too...
 - Obtained through backpropagation!
 - No Hessian!

Takeaway

- Under reasonable L-smooth assumption
 - Gradient descent converges!
 - To something
 - With a minuscule fixed step size

- General deep learning heuristics
 - Most local minimums are similarly good/bad
 - Big networks have very few really bad mins

1. Some context

We need the gradient...

$$\theta^{t+1} := \theta^t - \eta \nabla_\theta \mathcal{R}_\theta(B)$$

Requires finding the risk gradient wrt parameters

$$\nabla_{\theta} \mathcal{R}_{\theta}(B) = \frac{1}{\#B} \sum_{k=0,\dots,B-1} \nabla_{\theta} l(f_{\theta}(x_k), y_k)$$

Boils down to computing gradients for one sample

$$\nabla_{\theta} l(f_{\theta}(x), y)$$

Let's get the gradients!

- Neural networks embed complex functions
 - Reason we use them

Let's get the gradients!

- Neural networks embed complex functions
 - Reason we use them
- How do we get the gradients?!

Gradients for neural networks

- Not an easy problem originally
- First neural networks do not use gradients
 - "Hard" value perceptron
 - Rosenblatt's algorithm
- 1970: Modern Backpropagation (reverse mode)
 - Computes gradients
 - Uses Chain rule derivation
 - With bottom-up dynamic programming

2. Chain rule

Neural network functions

The complete network is complicated

$$f_{\theta} = h_{\theta}^{0} \circ h_{\theta}^{1} \circ \cdots \circ h_{\theta}^{L-1}$$

Neural network functions

But individual derivatives are simple!

$$f_{\theta} = h_{\theta}^{0} \circ h_{\theta}^{1} \circ \cdots \circ h_{\theta}^{L-1}$$

Leibniz said: Chain rule derivation

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

- Derivatives can be broken down into simpler parts
 - As a product!
- Allows us to use the very simple functions
 - O E.g. $\tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h x_j + b_i^h$ has trivial partial derivatives
- Known for a very long time (17th century)

Chain rule in neural networks

- Chain rule derivation powers backpropagation
 - Leverages simple component functions
 - Easy to break down
- Works as long as we know how to derivate layers
- Backpropagation is not just the chain rule
 - Exploding costs
 - Lots of redundant computations

Chain rule in neural networks

- Chain rule derivation powers backpropagation
 - Leverages simple component functions
 - Easy to break down
- Works as long as we know how to derivate layers
- Backpropagation is not just the chain rule
 - Exploding costs
 - Lots of redundant computations
 - Backprop is efficient derivation

3. Dynamic Programming

Dynamic programming

- Efficient computations of complex problem
 - Bellman (1950)
 - Break down into simpler (re-occuring) problems
 - And remember your solutions
- Avoid redundant computations
 - By using additional memory to store results
 - By properly structuring computations

Example: Fibonacci sequence

• F(0)=0, F(1)=1, F(N+2)=F(N)+F(N+1)

Example: Fibonacci sequence

Lots and lots and lots of computations...

Example: Fibonacci sequence (Top-down)

Memoization: Store sub-problem solutions as needed

Example: Fibonacci sequence (Bottom-up)

- Tabulation: Start from basic problems
 - Tabulate results as we go along
- One single forward pass this way!
- Memoization vs. Tabulation depends on the problem

Takeaway

- Efficient computations of complex problem
 - Bellman (1950)
- Avoid redundant computations
 - By using additional memory to store results
 - By properly structuring computations
- Top-down (Memoization): Start from final problem
- Bottom-up (Tabulation): Start from basic problem

4. Backpropagation

Backpropagation

- Modern Backpropagation: Linnainmaa (1970)
 - In his Master's thesis!
 - Some precursor efforts before
 - Theorized by Rosenblatt for perceptrons
- Efficient differentiation in a computational graph
 - Reverse mode autodiff
 - Not for neural network per se
 - Applied to neural networks later on

Backpropagation

Backpropagation on networks (Informal)

- Networks are complex but made of simple parts!
 - Simple gradients of component functions
 - $\begin{array}{ccc} \circ & \text{Chain-rule allows} \\ & \text{decomposition into} & \frac{\partial l}{\partial w} = \frac{\partial l}{\partial a} \frac{\partial a}{\partial w} \end{array}$ simple gradients
 - Remember the computed values
- Need to store intermediate activations $\frac{\partial a}{\partial w}$ "a" to evaluate partial derivatives
- Only one pass (in backward)!

- Simple 1 hidden layer MLP
 - 2 inputs
 - o 2 outputs
 - 4 hidden activations
- Classification problem
 - Outputs probabilities
 - Cross-entropy loss

$$l_{CE}(\hat{y}, y) = -\sum_{i=0}^{\#Classes-1} y_i \log(\hat{y}_i)$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \tilde{h}_{i} = \sum_{j=1}^{n_{x}} W_{i,j}^{h} \ x_{j} + b_{i}^{h} \\ h_{i} = \tanh(\tilde{h}_{i}) \\ \tilde{y}_{i} = \sum_{j=1}^{n_{h}} W_{i,j}^{y} \ h_{j} + b_{i}^{y} \\ \hat{y}_{i} = \operatorname{SoftMax}(\tilde{y}_{i}) = \frac{e^{\tilde{y}_{i}}}{\sum_{j=1}^{n_{y}} e^{\tilde{y}_{j}}} \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \delta_i^y = \frac{\partial \ell}{\partial \tilde{y}_i} = \hat{y}_i - y_i \\ \frac{\partial \ell}{\partial W_{i,j}^y} = \delta_i^y h_j \\ \frac{\partial \ell}{\partial b_i^y} = \delta_i^y \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \delta_i^y = \frac{\partial \ell}{\partial \tilde{y}_i} = \hat{y}_i - y_i \\ \frac{\partial \ell}{\partial W_{i,j}^y} = \delta_i^y \ h_j \\ \frac{\partial \ell}{\partial b_i^y} = \delta_i^y \end{cases}$$

$$\delta_i^h = \frac{\partial \ell}{\partial \tilde{h}_i} = \frac{\partial \ell}{\partial W_{i,j}^h} = \frac{\partial \ell}{\partial W_{i,j}^h} = \frac{\partial \ell}{\partial b_i^h} = \frac{\partial \ell}{\partial b_$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \delta_i^y = \frac{\partial \ell}{\partial \tilde{y}_i} = \hat{y}_i - y_i \\ \frac{\partial \ell}{\partial W_{i,j}^y} = \delta_i^y \ h_j \\ \frac{\partial \ell}{\partial b_i^y} = \delta_i^y \end{cases}$$

$$\delta_i^h = \frac{\partial \ell}{\partial \tilde{h}_i} = (1 - h_i^2) \sum_{j=1}^{n_y} \delta_j^y W_{j,i}^y$$

$$\frac{\partial \ell}{\partial W_{i,j}^h} = \delta_i^h \ x_j$$

$$\frac{\partial \ell}{\partial b_i^h} = \delta_i^h$$

Takeaway

Core problem: Find gradient updates

- Gradient can be computed efficiently with backpropagation
 - Chain rule starting from the "end"
 - Re-use computed gradients (Bottom-up DP)
 - Keep forward activations for gradients
 - Simple layers mean simple gradient blocks

Lab2: Manual Backprop

$$\begin{cases} \tilde{\mathbf{h}} = \mathbf{x} \mathbf{W}^{h^{\top}} + \mathbf{b}^{h} \\ \mathbf{h} = \tanh(\tilde{\mathbf{h}}) \\ \tilde{\mathbf{y}} = \mathbf{h} \mathbf{W}^{y^{\top}} + \mathbf{b}^{y} \\ \hat{\mathbf{y}} = \operatorname{SoftMax}(\tilde{\mathbf{y}}) \end{cases}$$

$$\begin{cases} \tilde{\mathbf{h}} = \mathbf{x} \mathbf{W}^{h^{\top}} + \mathbf{b}^{h} \\ \mathbf{h} = \tanh(\tilde{\mathbf{h}}) \\ \tilde{\mathbf{y}} = \mathbf{h} \mathbf{W}^{y^{\top}} + \mathbf{b}^{y} \\ \hat{\mathbf{y}} = \mathrm{SoftMax}(\tilde{\mathbf{y}}) \end{cases} \begin{cases} \nabla_{\tilde{\mathbf{y}}} = \hat{\mathbf{y}} - \mathbf{y} \\ \nabla_{\mathbf{W}^{y}} = \nabla_{\tilde{\mathbf{y}}}^{\top} \mathbf{h} \\ \nabla_{\mathbf{b}^{y}} = \nabla_{\tilde{\mathbf{y}}}^{\top} \\ \nabla_{\mathbf{h}} = (\nabla_{\tilde{\mathbf{y}}} \mathbf{W}^{y}) \odot (1 - \mathbf{h}^{2}) \\ \nabla_{\mathbf{W}^{h}} = \nabla_{\tilde{\mathbf{h}}}^{\top} \mathbf{x} \\ \nabla_{\mathbf{b}^{h}} = \nabla_{\tilde{\mathbf{h}}}^{\top} \mathbf{x} \end{cases}$$

- Lab2 on Moodle
 - Implement this by hand with basic torch!
 - Careful with batch dimension!

Lab 2: Autograd backward


```
backward(params, outputs, Y):
bsize = Y.shape[0]
grads = {}
Y tilde grad = outputs["yhat"] - Y
h tilde grad = torch.mm(Y tilde grad, params['Wy']
                        ) * (1 - torch.pow(outputs['h'], 2))
grads["Wy"] = torch.mm(Y tilde grad.T, outputs["h"])
grads["Wh"] = torch.mm(h tilde grad.T, outputs['X'])
grads["by"] = Y tilde grad.sum(dim=0,keepdim=True).T
grads["bh"] = h tilde grad.sum(0, keepdim=True).T
grads['Wy'] /= bsize
grads['by'] /= bsize
grads['Wh'] /= bsize
grads['bh'] /= bsize
return grads
```

- Torch.tensor object
 - Np.array like
 - Tracked on a computational graph
 - .grad variable to track gradients
 - backward to backpropagate gradients through the graph
 - Activate .autograd!

Lab 2: Autograd backward


```
def backward(params, outputs, Y):
    bsize = Y.shape[0]
    grads = {}
    Y tilde grad = outputs["yhat"] - Y
    h tilde grad = torch.mm(Y tilde grad, params['Wy']
                            ) * (1 - torch.pow(outputs['h'], 2))
    grads["Wy"] = torch.mm(Y tilde grad.T, outputs["h"])
    grads["Wh"] = torch.mm(h tilde grad.T, outputs['X'])
    grads["by"] = Y tilde grad.sum(dim=0,keepdim=True).T
    grads["bh"] = h tilde grad.sum(0, keepdim=True).T
    grads['Wy'] /= bsize
    grads['by'] /= bsize
    grads['Wh'] /= bsize
    grads['bh'] /= bsize
    return grads
```

```
params['Wh'] = torch.randn(nh, nx) * 0.3
params['Wh'].requires_grad = True
params['bh'] = torch.zeros(nh, 1, requires_grad=True)
params['Wy'] = torch.randn(ny, nh) * 0.3
params['Wy'].requires_grad = True
params['by'] = torch.zeros(ny, 1, requires_grad=True)
```

```
with torch.no_grad():
    params['Wy'] -= eta * params['Wy'].grad
    params['Wh'] -= eta * params['Wh'].grad
    params['by'] -= eta * params['by'].grad
    params['bh'] -= eta * params['bh'].grad

params['Wy'].grad.zero_()
    params['Wh'].grad.zero_()
    params['bh'].grad.zero_()
```