$$G = (V, E)$$

$$G = (V, E)$$

$$E\subset V\times V$$

$$G = (V, E)$$

$$E\subset V\times V$$

$$V = \{2, 3, 4, 6, 8\}$$

$$G = (V, E)$$

$$E \subset V \times V$$

$$V = \{2, 3, 4, 6, 8\}$$

$$E = \{(4,2),(6,2),(6,3),(8,2),(8,4)\} = \{(a,b) : a \in V, b \in V, a\%b = 0\}$$

$$G = (V, E)$$

$$E \subset V \times V$$

$$V=\{2,3,4,6,8\}$$

$$E = \{(4,2), (6,2), (6,3), (8,2), (8,4)\} = \{(a,b) : a \in V, b \in V, a\%b = 0\}$$

$$G = (V, E)$$

$$G = (V, E)$$

$$E = \{ \{a, b\} : a, b \in V \}$$

$$G = (V, E)$$
 $E = \{ \{a, b\} : a, b \in V \}$
 $V = \{1, 2, 3, 4, 5\}$

$$G = (V, E)$$
 $E = \{ \{a, b\} : a, b \in V \}$
 $V = \{1, 2, 3, 4, 5 \}$

 $E = \{\{1,3\},\{1,5\},\{3,5\},\{2,4\}\} = \{\{a,b\} : a \in V, b \in V, (a+b)\%2 = 0\}$

$$G=(V,E)$$

$$E = \{ \{a,b\} : a,b \in V \}$$

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{\{1,3\},\{1,5\},\{3,5\},\{2,4\}\} = \{\{a,b\} : a \in V, b \in V, (a+b)\%2 = 0\}$$

Взвешенный граф

$$G=(V,E,c)$$

Взвешенный граф

$$G = (V, E, c)$$

$$E \subset V \times V$$

Взвешенный граф

$$G = (V, E, c)$$

$$E \subset V \times V$$

$$c: E \to \mathbb{R}$$

Вершины v и w индицентны, если $(v,w) \in E$.

Вершины v и w индицентны, если $(v,w) \in E$.

Степенью вершины в неориентированном графе называют количество инцидентных ей ребер. Для ориентированных графов разделяют степень захода и степень исхода.

Вершины v и w индицентны, если $(v,w) \in E$.

Степенью вершины в неориентированном графе называют количество инцидентных ей ребер. Для ориентированных графов разделяют степень захода и степень исхода.

Путь (маршрут) — это последовательность $v_1, e_1, v_2, e_2, \ldots, v_n$, где $e_i = (v_i, v_j)$, $e_i \in E, v_i \in V$.

Степенью вершины в неориентированном графе называют количество инцидентных ей ребер. Для ориентированных графов разделяют степень захода и степень исхода.

Путь (маршрут) — это последовательность $v_1, e_1, v_2, e_2, \ldots, v_n$, где $e_i = (v_i, v_j)$, $e_i \in E$, $v_i \in V$.

Простой путь – это путь, в котором все ребра и вершины различны.

Вершины v и w индицентны, если $(v, w) \in E$.

Степенью вершины в неориентированном графе называют количество инцидентных ей ребер. Для ориентированных графов разделяют степень захода и степень исхода.

Путь (маршрут) — это последовательность $v_1, e_1, v_2, e_2, \ldots, v_n$, где $e_i = (v_i, v_j)$, $e_i \in E$, $v_i \in V$.

Простой путь – это путь, в котором все ребра и вершины различны.

Вершины v и w индицентны, если $(v, w) \in E$.

Цикл (контур) – это путь, в котором первая и последняя вершина совпадают, но других совпадений нет.

Ребро e инцидентно вершине v, если e=(v,w) или e=(w,v) для некоторого w Вершины v и w индицентны, если $(v,w)\in E$.

Степенью вершины в неориентированном графе называют количество инцидентных ей ребер. Для ориентированных графов разделяют степень захода и степень исхода.

Путь (маршрут) — это последовательность $v_1, e_1, v_2, e_2, \ldots, v_n$, где $e_i = (v_i, v_j)$, $e_i \in \mathcal{E}, \ v_i \in \mathcal{V}$.

Простой путь – это путь, в котором все ребра и вершины различны.

Цикл (контур) – это путь, в котором первая и последняя вершина совпадают, но других совпадений нет.

Неориентированный граф **связен**, если между любыми двумя его вершинами существует путь. Для орграфов такое условие называют **сильной связностью**. **Слабая связность** орграфа означает связность соответствующего ему неориентированного графа.

Лист – это вершина дерева, имеющая степень 1.

Лист – это вершина дерева, имеющая степень 1.

Корень – это произвольно выбранная и зафиксированная вершина дерева.

Лист — это вершина дерева, имеющая степень 1.

Корень – это произвольно выбранная и зафиксированная вершина дерева.

Несвязный неориентированный ациклический граф иногда называют лесом.

1 2 3 4 5 6 7 8 1 2 3 4 5 7 8 6 1 2 3 4 5 7 8 6

Лемма

Если в орграфе есть циклы, он не может быть топологически отсортирован.

Если в орграфе есть циклы, он не может быть топологически отсортирован.

Доказательство.

Из любой вершины цикла есть путь в любую другую, а значит, в каком бы порядке мы их не расположили, этот порядок не будет топологической сортировкой \Box

Если в орграфе есть циклы, он не может быть топологически отсортирован.

Доказательство.

Из любой вершины цикла есть путь в любую другую, а значит, в каком бы порядке мы их не расположили, этот порядок не будет топологической сортировкой \Box

Лемма

Если в орграфе нет циклов, то в нем есть вершина с нулевой степенью захода.

Если в орграфе есть циклы, он не может быть топологически отсортирован.

Доказательство.

Из любой вершины цикла есть путь в любую другую, а значит, в каком бы порядке мы их не расположили, этот порядок не будет топологической сортировкой $\hfill\Box$

Лемма

Если в орграфе нет циклов, то в нем есть вершина с нулевой степенью захода.

Доказательство.

От противного: пусть такой вершины нет, значит, для каждой вершины есть входящее в нее ребро. Возьмем любую v_0 , затем v_1 такую, что ребро из v_1 ведет в v_0 , и так далее. Эту последовательность можно продолжить бесконечно, но вершин в графе — конечное число, следовательно, вершины повторятся, и образуют цикл.

Если в орграфе нет циклов, он может быть топологически отсортирован

Если в орграфе нет циклов, он может быть топологически отсортирован

Доказательство.

База индукции: очевидно для двухэлементного орграфа.

Шаг индукции. В графе есть вершина u с нулевой степенью захода. Исключим вершину u из графа со всеми исходящими ребрами. По предположению индукции, в получившемся графе есть топологическая сортировка v_1, \ldots, v_n . Тогда u, v_1, \ldots, v_n будет топологической сортировкой исходного графа: в u нет входящих ребер, а значит, нет и пути из вершин v_1, \ldots, v_n .

4, 3, 2, 1

4, 3, 2, 1

Если в орграфе нет циклов, то в нем есть вершина с нулевой степенью исхода.

Если в орграфе нет циклов, то в нем есть вершина с нулевой степенью исхода.

Лемма

Если u — вершина c нулевой степенью исхода, а v_1, \ldots, v_n — топологическая сортировка $G \setminus \{u\}$, то v_1, \ldots, v_n — топологическая сортировка G.

Если в орграфе нет циклов, то в нем есть вершина с нулевой степенью исхода.

Лемма

Если u — вершина c нулевой степенью исхода, а v_1, \ldots, v_n — топологическая сортировка $G \setminus \{u\}$, то v_1, \ldots, v_n — топологическая сортировка G.

Лемма

Если в орграфе нет циклов, то алгоритм Тарьяна найдет топологическую сортировку.

Если в орграфе есть циклы, то алгоритм Тарьяна выдаст ошибку.

Если в орграфе есть циклы, то алгоритм Тарьяна выдаст ошибку.

Доказательство.

Пусть v_1, \ldots, v_n — цикл. Тогда, начав поиск в глубину из одной из вершин v_i , алгоритм отметит эту вершину серым цветом. Затем, пройдя по вершинам $v_{i+1}, v+i+2, \ldots, v_{i-1}$, он вернется в вершину v_i , которая все еще отмечена серым цветом, и выдаст ошибку.