

A Dual Framework for Low-Rank Tensor Completion

 $\mathsf{Madhav}\ \mathsf{Nimishakavi}^1$ Pratik Jawanpuria 2 Bamdev Mishra 2

Microsoft

¹Indian Institute of Science ²Microsoft, India madhav@iisc.ac.in, {pratik.jawanpuria,bamdevm}@microsoft.com

Contributions

- We propose a novel formulation for low-rank tensor completion by using a non-sparse "mixture of tensors" as the regularizer.
- We propose a dual framework for analyzing the problem formulation.
- The dual allows to develop large-scale algorithms by exploiting the versatile Riemannian optimization framework.

Motivation

 $: \min_{\boldsymbol{\mathcal{W}}^{(k)} \in \mathbb{R}^{n_1 \times n_2 \times \dots n_K}} \sum_{k} \left\| \boldsymbol{\mathcal{W}}_k^{(k)} \right\|_*$ Latent Trace Norm:

Proposed Regularizer: $\sum_k \mathcal{W}^{(k)} = \mathcal{W}$

where \mathcal{W}_k denotes mode-k unfolding. Latent trace norm is highly sparse across modes.

Non-sparse Latent Trace Norm and Duality

Given is a partially observed tensor $\mathbf{\mathcal{Y}}_{\Omega} \in \mathbb{R}^{n_1 \times ... \times n_K}$.

Proposed Primal Formulation:

$$\min_{\boldsymbol{\mathcal{W}}^{(k)} \in \mathbb{R}^{n_1 \times n_2 \times ... \times n_K}} \|\boldsymbol{\mathcal{W}}_{\Omega} - \boldsymbol{\mathcal{Y}}_{\Omega}\|_F^2 + \sum_k \frac{1}{\lambda_k} \|\boldsymbol{\mathcal{W}}_k^{(k)}\|_*^2, \qquad (1)$$
where $\sum_{k=1}^K \boldsymbol{\mathcal{W}}^{(k)} = \boldsymbol{\mathcal{W}}.$

• Equivalent Min-Max Formulation:

$$\min_{\Theta_1,...,\Theta_K} \max_{\mathbf{Z} \in \mathcal{C}} \langle \mathbf{Z}, \mathbf{Y}_{\Omega} \rangle - \frac{1}{4} \| \mathbf{Z} \|_F^2 - \sum_k \frac{\lambda_k}{2} \langle \Theta_k, \mathbf{Z}_k \mathbf{Z}_k^{\top} \rangle,$$

where \mathbf{Z} is sparse dual tensor variable and Θ_k are auxiliary variables for all k, Θ_k are P.S.D and $trace(\Theta_k) = 1$.

• Representer Theorem: The optimal solution of the primal problem (1) admits a representation of the form: $\mathcal{W}^{(k)*} = \lambda_k(\mathcal{Z} \times_k \Theta_k) \forall k$. Where, the set \mathcal{C} constrains \mathcal{Z} to be sparse tensor with $|\Omega|$ non-zero entries.

Fixed-rank Dual Formulation

• Constraining the rank of Θ_k by $\Theta_k = \mathbf{U}_k \mathbf{U}^{\top}$, where $\mathbf{U}_k \in \mathcal{S}_{r_k}^{n_k}$ and $S_n^r := \{ \mathbf{U} \in \mathbb{R}^{n \times r} : ||\mathbf{U}||_F = 1 \}$ leads to

$$\min_{u \in \mathcal{S}_{r_1}^{n_1} imes ... imes \mathcal{S}_{r_K}^{n_K}} \ g(u),$$

where $u = (\mathbf{U}_1, \dots, \mathbf{U}_K)$ and g is the convex function

$$g(u) \coloneqq \max_{\mathcal{Z} \in \mathcal{C}} \langle \mathcal{Z}, \mathcal{Y}_{\Omega} \rangle - \frac{1}{4} \|\mathcal{Z}\|_F^2 - \sum_k \frac{\lambda_k}{2} \|\mathbf{U}_k^{\mathsf{T}} \mathcal{Z}_k\|_F^2.$$

Proposed Riemannian Trust Region algorithm (TR-MM)

Input: \mathcal{Y}_{Ω} , rank (r_1, \ldots, r_K) , regularization parameter λ , and tolerance ϵ . Initialize: $u = (\mathbf{U}_1, \dots, \mathbf{U}_K) \in \mathcal{S}_{r_1}^{n_1} \times \dots \times \mathcal{S}_{r_K}^{n_K}$. repeat

- 1: Solve for $\boldsymbol{\mathcal{Z}}$ by computing g(u)
- **2:** Compute $\nabla_u g(u)$.
- 3: Riemannian TR step: Compute the search direction $v = (\mathbf{V}_1, \dots, \mathbf{V}_K)$ which minimizes the trust-region subproblem and set step size $\alpha = 1$. It makes use of $\nabla_u g(u)$ and its directional derivative $D\nabla_u g(u)[v]$.
- 4: Update u as $\mathbf{U}_k \leftarrow (\mathbf{U}_k + \alpha \mathbf{V}_k) / \|\mathbf{U}_k + \alpha \mathbf{V}_k\|_F$, for all k.

until $\|\nabla_u g(u)\| < \epsilon$

Output: $u^* = (\mathbf{U}_1^*, \dots, \mathbf{U}_K^*)$ and \mathbf{Z}^* .

Solution to primal problem:

$$m{\mathcal{W}}^{(k)*} = \lambda_k(m{\mathcal{Z}}^* imes_k \mathbf{U}_k^* \mathbf{U}_k^{* op}) ext{ and } m{\mathcal{W}}^* = \sum_k m{\mathcal{W}}^{(k)*}.$$

Results

(a) Evolution of test RMSE on Ribeira; (b) & (c) Evolution of test AUC on FB15k-237 and YouTube, respectively. (d) Variation of test AUC as percentage of training data changes on FB15k-237.

Generalization performance across several applications: hyperspectral-image/video/image completion, movie recommendation, and link prediction.

TR-MM FFW Rprecon geomCG Hard Topt HaLRTC Latent T-svd BayesCP RMSE reported 0.067 0.088 0.083 0.156 0.114 0.127 0.095 0.087 **0.064** 0.154 Ribeira ML10M $0.840 \quad 0.895 \quad$ **0.831** $\quad 0.844 \quad - \quad -$ AUC reported FB15k-237 **0.823** 0.764 0.821

Results on outlier robustness experiments.

	1			-					_		
	x	TR-MM	F'F'W	Rprecon	geomCG	Hard	Topt	HaLRTC	Latent	T-svd	BayesCP
Ribeira	0.05	0.081	0.095	0.157	0.258	0.142	0.169	0.121	0.103	0.146	0.201
(RMSE)	0.10	0.111	0.112	0.172	0.373	0.158	0.188	0.135	0.120	0.182	0.204
FB15k-237	0.05	0.803	0.734	0.794	0.764	_		_	_	_	_
(AUC)	0.10	0.772	0.711	0.765	0.739				_		_

- Our algorithms use the Manopt toolbox at manopt.org.
- Codes: https://pratikjawanpuria.com/.