Mathématiques – QCM (40 points) Correction

Première partie - Calculs

Exercice I

I-A-
$$\frac{(2\sqrt{3})^2 \times 12^3 \times 3^2}{3^{-4} \times (\sqrt{2})^4} = 3^{10} \times 2^8.$$

$$\frac{\left(2\sqrt{3}\right)^2 \times 12^3 \times 3^2}{3^{-4} \times \left(\sqrt{2}\right)^4} = \frac{4 \times 3 \times (4 \times 3)^3 \times 3^2}{3^{-4} \times 2^2} = \frac{2^2 \times 3 \times (2^2 \times 3)^3 \times 3^2}{3^{-4} \times 2^2} = \frac{2^2 \times 3 \times 2^6 \times 3^3 \times 3^2}{3^{-4} \times 2^2} = 3^{1+3+2+4} \times 2^{2+6-2}$$

$$= 3^{10} \times 2^6.$$

I-B-
$$2\sqrt{27} - (2\sqrt{3} - 1)^2 = 10\sqrt{3} - 13.$$

$$2\sqrt{27} - (2\sqrt{3} - 1)^2 = 2\sqrt{9 \times 3} - (4 \times 3 - 2 \times 2\sqrt{3} \times 1 + 1)$$
$$= 2 \times 3\sqrt{3} - (13 - 4\sqrt{3}) = 10\sqrt{3} - 13.$$

I-C-
$$ln\left(\frac{e}{4}\right) + ln\left(\frac{1}{9e}\right) + ln(36e) = 1.$$

$$\begin{split} ln\left(\frac{e}{4}\right) + ln\left(\frac{1}{9e}\right) + ln(36e) &= ln(e) - ln(4) - ln(9e) + ln(36) + ln(e) \\ &= 1 - 2ln(2) - ln(9) - ln(e) + 2ln(6) + 1 \\ &= 2 - 2ln(2) - 2ln(3) - 1 + 2ln(2) + 2ln(3) = 1 \,. \end{split}$$

I-D-
$$e^{2ln3+ln5} + e^{-2ln5} = 20.$$

$$e^{2ln3+ln5}+e^{-2ln5}=e^{2ln3}\times e^{ln5}+e^{ln5^{-2}}=3^2\times 5+5^{-2}=45+\frac{1}{25}\neq 20$$
.

I-E- Pour tout nombre réel
$$x$$
 différent de -2 et de 2, $\frac{2}{x+2} - \frac{1}{x-2} + \frac{8}{x^2-4} = \frac{1}{x-2}$.

Vral.
$$\frac{2}{x+2} - \frac{1}{x-2} + \frac{8}{x^2-4} = \frac{2(x-2)}{(x+2)(x-2)} - \frac{1(x+2)}{(x-2)(x+2)} + \frac{8}{x^2-4} = \frac{2x-4-x-2+8}{x^2-4} = \frac{x+2}{x^2-4} = \frac{1}{x-2}.$$
Pour tout nombre réel x , $\frac{e^{2x}+2e^x+1}{e^x+1} = e^x + 1$.

I-F- Pour tout nombre réel
$$x$$
, $\frac{e^{2x}+2e^x+1}{e^x+1} = e^x + 1$.

Vrai.
$$\frac{e^{2x}+2e^x+1}{e^x+1} = \frac{(e^x+1)^2}{e^x+1} = e^x + 1.$$

Deuxième partie - Fonctions

Exercice II

La fonction f définie sur \mathbb{R}^* par $f(x) = e^{\frac{1}{x}}$ admet pour dérivée $f'(x) = e^{\frac{1}{x}}$. II-A-

$$f'(x) = \frac{-1}{x^2}e^{\frac{1}{x}}$$
.

La fonction F définie sur $[0; +\infty[$ par $F(x) = x\sqrt{x}$ est une primitive de la fonction fII-Bdéfinie par $f(x) = \frac{3}{2}\sqrt{x}$.

$$F'(x) = \sqrt{x} + x \times \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{\sqrt{x}}{2} = \frac{3\sqrt{x}}{2}.$$

La fonction f définie sur]0; $+\infty[$ par $f(x) = (ln(3x))^2$ admet pour dérivée la fonction $f'(x) = \frac{2}{3x} \ln(3x).$

$$f'(x) = 2 \times \frac{3}{3x} \times \ln(3x) = \frac{2}{x} \ln(3x).$$

II-D-
$$\lim_{x \to 0} (x \ln(x) - x) = -\infty.$$
Faux.
$$\lim_{x \to 0} (x \ln(x)) = 0 \text{ (limite de référence) donc } \lim_{x \to 0} (x \ln(x) - x) = 0.$$
II-E-
$$\lim_{x \to +\infty} (xe^x - \ln(x)) = 0.$$
Faux.
$$\lim_{x \to +\infty} (xe^x - \ln(x)) = \lim_{x \to +\infty} \left(x(e^x - \frac{\ln(x)}{x})\right).$$
Or
$$\lim_{x \to +\infty} \left(\frac{\ln(x)}{x}\right) = 0 \text{ (limite de référence)}$$

$$\operatorname{donc } \lim_{x \to +\infty} \left(e^x - \frac{\ln(x)}{x}\right) = +\infty \text{ et } \lim_{x \to +\infty} \left(x(e^x - \frac{\ln(x)}{x})\right) = +\infty \text{ (par produit)}.$$

Exercice III

Soient f la fonction définie pour tout nombre réel x différent de 1 par $f(x) = \frac{3}{1-x}$ et C_f sa courbe représentative dans un repère orthonormé.

 $\lim_{x \to 1^{-}} f(x) = -\infty.$ III-A-

$$\lim_{x \to 1^{-}} (1 - x) = 0^{+} \operatorname{donc} \lim_{x \to 1^{-}} (\frac{1}{1 - x}) = +\infty \operatorname{et} \lim_{x \to 1^{-}} f(x) = +\infty.$$

Une équation de la tangente à la courbe C_f au point d'abscisse x=-1 est $y=\frac{3}{4}x+\frac{3}{2}$. III-B-

$$f(-1) = \frac{3}{2}$$

 $f'(x) = \frac{3}{(1-x)^2} \operatorname{donc} f'(-1) = \frac{3}{4}$

Donc une équation de la tangente à la courbe C_f au point d'abscisse x=-1 est $\frac{3}{4}(x+1)+\frac{3}{2}$ soit $y=\frac{3}{4}x+\frac{9}{4}$. $\nu =$

$$\frac{3}{4}(x+1) + \frac{3}{2}$$
 soit $y = \frac{3}{4}x + \frac{9}{4}$.

III-Cf est concave sur]1; $+\infty$ [

$$f'(x) = \frac{3}{(1-x)^2} \operatorname{donc} f''(x) = \frac{6}{(1-x)^3}$$

Sur]1; $+\infty$ [, f''(x) < 0 donc f est concave sur]1; $+\infty$ [.

Troisième partie - Suites numériques

Exercice IV

Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $u_n\neq 0$ pour tout entier naturel n. Pour tout entier naturel n, on définit la suite $(v_n)_{n\in\mathbb{N}}$ par $v_n=-\frac{2}{u_n}$.

Si $(u_n)_{n\in\mathbb{N}}$ est minorée par 2, alors $(v_n)_{n\in\mathbb{N}}$ est minorée par -1. IV-A-

Si
$$(u_n)_{n\in\mathbb{N}}$$
 est minorée par 2, alors pour tout entier naturel n , $u_n\geq 2 \implies \frac{2}{u_n}\leq 1$ et $\frac{2}{u_n}\leq 1 \Leftrightarrow \frac{-2}{u_n}\geq -1$, ce qui traduit que $(v_n)_{n\in\mathbb{N}}$ est minorée par -1 .

IV-B-Si $(u_n)_{n\in\mathbb{N}}$ est croissante, alors $(v_n)_{n\in\mathbb{N}}$ est décroissante.

La suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout entier naturel n par $u_n=n+1$ est croissante, et $(v_n)_{n\in\mathbb{N}}$ est définie pour tout entier naturel n par $v_n=\frac{-2}{n+1}$ est aussi croissante.

IV-C-Si $(u_n)_{n\in\mathbb{N}}$ converge, alors $(v_n)_{n\in\mathbb{N}}$ converge. Faux.

La suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout entier naturel n par $u_n=\frac{1}{n+1}$ converge vers 0, et $(v_n)_{n\in\mathbb{N}}$ est définie pour tout entier naturel n par $v_n=-2(n+1)$ tend vers $-\infty$, ce qui signifie qu'elle diverge.

Quatrième partie - Probabilités

Exercice V

On lance cinq fois un dé à six faces. Cocher VRAI si la variable aléatoire proposée suit une loi binomiale et FAUX dans le cas contraire.

- V-A- La variable aléatoire correspondant au nombre de lancers où apparait un numéro pair.
 Vrai.
- V-B- La variable aléatoire correspondant à la somme des résultats de tous les lancers. Faux.

Exercice VI

 Ω désigne l'univers d'une expérience aléatoire E et P désigne une probabilité sur Ω . A et B sont deux événements de probabilités respectives 0,6 et 0,4. On suppose de plus que $P(A \cup B) = 0,8$.

VI-A- $P(A \cap B) = 0.24.$

Faux.

$$P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0,6 + 0,4 - 0,8 = 0,2.$$

VI-B- *A* et *B* sont des événements contraires.

Faux.

Si A et B sont des événements contraires, alors ils sont incompatibles et $P(A \cup B) = 1$, ce qui n'est pas le cas.

VI-C- *A* et *B* sont des événements indépendants.

Faux.

A et B sont des événements indépendants si, et seulement si $P(A \cap B) = P(A) \times P(B)$, ce qui n'est pas le cas.

VI-D- *A* et *B* sont des événements incompatibles.

Faux.

Si A et B sont des événements incompatibles, alors $P(A \cap B) = 0$, ce qui n'est pas le cas.

Cinquième partie – Géométrie dans le plan

Exercice VII

On considère les points A et B de coordonnées respectives dans un repère orthonormé : A(2;0) et B(0;-4) .

VII -A- Une équation de la droite (*AB*) est 2x - y - 4 = 0.

Vrai.

$$2x_A - y_A - 4 = 2 \times 2 - 0 - 4 = 0$$
 et $2x_B - y_B - 4 = 2 \times 0 + 4 - 4 = 0$.
L'équation est vérifiée par deux points distincts de la droite (AB) donc l'équation $2x - y - 4 = 0$ est bien une équation de la droite (AB) .

VII -B- Une équation de la médiatrice du segment [AB] est x + 2y + 3 = 0.

Vrai.

La médiatrice \triangle du segment [AB] a pour vecteur normal $\overrightarrow{AB} \begin{pmatrix} -2 \\ -4 \end{pmatrix}$ et passe par le milieu

I(1; -2) du segment [AB].

Soit M(x; y) un point du plan.

 $M \in \Delta \iff \overrightarrow{AB} \text{ et } \overrightarrow{IM} \text{ sont orthogonaux} \iff \overrightarrow{AB} \cdot \overrightarrow{IM} = 0 \iff {\binom{-2}{-4}} \cdot {\binom{x-1}{y+2}} = 0$ $\iff -2x - 4y - 6 = 0 \iff x + 2y + 3 = 0.$

VII -C- Une équation du cercle de diamètre [AB] est $x^2 + y^2 - 2x - 4y = 0$.

Faux

Le cercle de diamètre [AB] a pour centre le milieu I(1; -2) du segment [AB] et pour rayon $R = IA = \sqrt{(2-1)^2 + (0+2)^2} = \sqrt{5}$.

Ainsi, l'équation du cercle de diamètre [AB] est :

$$(x - x_I)^2 + (y - y_I)^2 = R^2 \Leftrightarrow (x - 1)^2 + (y + 2)^2 = 5$$

$$\Leftrightarrow x^2 - 2x + 1 + y^2 + 4y + 4 = 5$$

$$\Leftrightarrow x^2 + y^2 - 2x + 4y = 0.$$

VII -D- Le point de coordonnées (-1; -1) appartient au cercle de diamètre [AB].

Vrai

 $(-1)^2+(-1)^2-2\times(-1)+4\times(-1)=~0$ donc les coordonnées du point vérifient l'équation du cercle.

VII -E- La droite d'équation 2x - y + 1 = 0 est tangente au cercle de diamètre [AB].

Vrai

 $2 \times (-1) - (-1) + 1 = 0$ donc le point P de coordonnées (-1; -1) est un point d'intersection de cette droite et du cercle.

De plus, le vecteur \overrightarrow{IP} $\binom{-2}{1}$ est un vecteur normal à la droite.

La droite est donc perpendiculaire au rayon du cercle au point d'intersection, ce qui caractérise bien une tangente au cercle.