Qualificação de Mestrado

Lucas Giraldi Almeida Coimbra

24 de janeiro de 2024

Conteúdo

1	Álgebra Linear 1.1 Fundamentos e Dualidade	1 1
2	Grupos	4
3	Anéis	4
4	Corpos	4
5	Métricos	4
6	Análise 1	4
7	Análise 2	4
8	Análise Complexa	4
9	Medida	4
10	Funcional	4
11	EDO	4
12	EDP	4
13	Probabilidade	4
14	Topologia	4
15	Topologia Algébrica	4
16	Topologia Diferencial	4
17	Análise em Variedades	4
18	Riemanniana	4

1 Álgebra Linear

1.1 Fundamentos e Dualidade

Tome $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Um **espaço vetorial** é um conjunto V munido de duas operações

$$+: V \times V \to V \qquad e \qquad : \mathbb{K} \times V \to V$$

$$(x,y) \mapsto x + y \qquad e \qquad (\lambda,x) \mapsto \lambda x$$

$$(1)$$

tais que a operação + (soma) é comutativa, associativa, possui identidade e todos os inversos, e a operação de · (produto por escalar) satisfaz as relações distributivas, 1x = x e $\lambda(\mu x) = (\lambda \mu)x$.

Um subespaço vetorial de um espaço vetorial V é um subconjunto $S \subset V$ tal que para todos $x, y \in S$ e $\lambda \in \mathbb{K}$, temos $x + y \in S$ e $\lambda x \in S$. Todo espaço vetorial é um subespaço vetorial de si mesmo, assim como $\{0\}$ é sempre um subespaço vetorial. Chamamos V e $\{0\}$ de subespaços triviais. Se $U, W \subset V$ são dois subespaços, então o conjunto $U + V = \{u + w \mid u \in U, w \in W\}$ é a soma desses subespaços, e é também um subespaço. Se $U \cap W = \{0\}$, então diremos que a soma desses espaços é uma soma direta e a denotamos por $U \oplus W$. A intersecção $U \cap W$ também é sempre um subespaço vetorial.

Uma combinação linear de vetores em V é uma soma finita

$$\lambda^i x_i = 0 \tag{2}$$

onde cada $\lambda^i \in \mathbb{K}$. Dado um conjunto $S \subset V$, o conjunto $\langle S \rangle$ de todas as combinações lineares de elementos de S é um subespaço vetorial de V, chamado de **subespaço gerado por** S. O conjunto S é **gerador** de V se $\langle S \rangle = V$.

Dizemos que $x_1, \ldots, x_n \in V$ são **linearmente independentes** se para quaisquer $\lambda^1, \ldots, \lambda^n \in \mathbb{K}$ tais que

$$\lambda^i x_i = 0, \tag{3}$$

então $\lambda_i = 0$ para todo i. Vetores que não são linearmente independentes são **linearmente dependentes**. Fica claro da definição que um conjunto de vetores é linearmente dependente se, e somente se, um dos vetores pode ser escrito como combinação linear dos outros. Além disso, é fácil ver que se uma subcoleção de vetores é linearmente dependente, então a coleção original também é. Mais ainda, qualquer coleção de vetores que contenha o 0 é linearmente dependente.

Lema 1. Sejam $S = \{s_1, \ldots, s_n\}$ um gerador de V e v_1, \ldots, v_m vetores linearmente independentes. Então, $m \le n$.

Demonstração. Suponha que m > n. Como S gera V, então existem $\lambda^1, \ldots, \lambda^n$ tais que $y_1 = \lambda^i s_i$. Como $y_1 \neq 0$ (pela independência linear), então algum λ_j é não nulo, ou seja, podemos substituir s_j por y_1 e o conjunto resultante ainda gera V. Pela independência linear dos y_i , podemos fazer essa operação mais n-1 vezes, garantindo que y_1, \ldots, y_n geram V. Porém, isso significa que y_{n+1}, \ldots, y_m são combinação linear de y_1, \ldots, y_n , o que contradiz a independência linear. Segue então que $m \leq n$.

Um espaço V é **finitamente gerado** se existe um conjunto gerador finito. Uma **base** de V é um conjunto gerador linearmente independente.

Lema 2. Todo espaço finitamente gerado possui uma base.

Demonstração. Se $S = \{s_1, \ldots, s_n\}$ gera V, então se S é linearmente independente o trabalho acabou. Caso contrário, algum s_i é combinação linear dos outros, e então retiramos ele e o conjunto resultante ainda gera V. Fazemos isso até que os vetores que sobram em S sejam linearmente independentes, e assim temos uma base.

A partir de agora vamos trabalhar apenas com espaços finitamente gerados e, caso queiramos falar em um contexto mais geral, iremos explicitar. A **dimensão** de um espaço V, denotada por dimV, é o número de elementos de uma base. Pelo Teorema a seguir, esse número está bem definido.

Teorema 3. Toda base possui mesmo número de elementos.

Demonstração. Como bases são linearmente independentes e geradoras, o resultado segue facilmente do Lema 1.

O 2 assume implicitamente que o conjunto S que gera V é não vazio. Caso tenhamos $V = \langle \varnothing \rangle$, então $V = \{0\}$ e o chamamos de **espaço trivial**. Sua dimensão é, por definição, nula.

Teorema 4. Todo conjunto linearmente independente pode ser estendido para uma base.

Demonstração. Se S é um conjunto linearmente independente, então considere $\langle S \rangle$. Se $\langle S \rangle = V$, então o conjunto S já é uma base. Caso contrário, seja $v \in V \setminus \langle S \rangle$ e tome $S_1 = S \cup \{v\}$. Podemos agora testar se $\langle S_1 \rangle = V$ e, caso contrário, repetir o processo. Como o espaço V é finitamente gerado, esse processo obrigatoriamente acaba, que é quando adicionamos vetores o suficiente em S para que se torne uma base. \square

Note que todo subespaço de um espaço com dimensão finita, possui dimensão finita (pelo Lema 1). Se W é um subespaço de V, um subespaço U de V é um **complemento** de W se $U \oplus W = V$.

Teorema 5. Complementos sempre existem e são únicos.

Demonstração. Se W é um subespaço, seja v_1, \ldots, v_m uma base de W e a complete para uma base v_1, \ldots, v_m , w_1, \ldots, w_n de V. Defina $U = \langle w_1, \ldots, w_n \rangle$. Se $x \in U \cap W$, então existem $\lambda^1, \ldots, \lambda^m$ e μ^1, \ldots, μ^n em $\mathbb K$ tais que

$$x = \lambda^i v_i = \mu^j w_j, \tag{4}$$

ou seja, $\lambda^i v_i + \mu^j v_j = 0$, portanto cada λ^i e μ^j é nulo, da onde segue que x = 0 e assim $U \cap W = \{0\}$. Mais ainda, se $x \in V$, então podemos escrever $x = \lambda^i v_i + \mu^j w_j$ e assim x = v + w com $v \in U$ e $w \in W$, da onde segue que $V = U \oplus W$.

Note que da demonstração acima tiramos um outro fato importante: se $V = U \oplus W$, então dim $V = \dim U + \dim W$. Esse fato pode ser generalizado, isso é, se $V = V_1 + \cdots + V_n$ e $V_i \cap V_j = \{0\}$ quando $i \neq j$, então escrevemos

$$V = V_1 \oplus \cdots \oplus V_n = \bigoplus_{i=1}^n V_i \tag{5}$$

e nesse caso temos

$$\dim V = \sum_{i=1}^{n} \dim V_i. \tag{6}$$

Proposição 6. Se $V = V_1 \oplus \cdots \oplus V_n$ e $x \in V$, então existem $x_i \in V_i$ únicos tais que $x = x_1 + \cdots + x_n$.

Demonstração. Como já observamos, se v_i^j é uma base de V_j , então podemos escrever $x=\lambda_j^i v_i^j$ e assim tomamos $x_j=\lambda^i v_i^j$

Dadas duas bases $e = (e_1, \dots, e_n)$ e $f = (f_1, \dots, f_n)$ de V, podemos escrever unicamente cada e_j como

$$e_j = a_j^i f_i \tag{7}$$

e fica claro que o determinante da matriz $A=[a^i_j]$ é não nulo, caso contrário os vetores e_j seriam linearmente dependentes. Se $x[e]=(\lambda^1,\ldots,\lambda^n)$ e $x[f]=(\mu^1,\ldots,\mu^n)$, então sabemos que $\lambda^j e_j=\mu^i f_i$ e portanto

$$\mu^i f_i = \lambda^j a_i^i f_i. \tag{8}$$

Como os vetores f_i são linearmente independentes, segue que $\mu^i = a_j^i \lambda^j$. Dessa forma, temos que x[e] = Ax[f], portanto $x[f] = A^{-1}x[e]$, ou seja, a troca de coordenadas de x da base e para base f é dada pela matriz inversa da matriz que troca a base f para a base e (como vimos em 7). Podemos abreviar essa frase dizendo que vetores são quantidades contravariantes, no sentido de que eles mudam de coordenadas de maneira inversa a uma mudança de base. Em particular, é por isso que sempre denotamos os índices de vetores embaixo. Para quantidades covariantes, os índices são denotados em cima (números não obedecem essa regra e seus índices são posicionados de maneira a obedecer a notação de soma de Einstein).

- 2 Grupos
- 3 Anéis
- 4 Corpos
- 5 Métricos
- 6 Análise 1
- 7 Análise 2
- 8 Análise Complexa
- 9 Medida
- 10 Funcional
- 11 EDO
- 12 EDP
- 13 Probabilidade
- 14 Topologia
- 15 Topologia Algébrica
- 16 Topologia Diferencial
- 17 Análise em Variedades
- 18 Riemanniana