Sample 7

In the <u>damped</u> mass-spring system shown above, the masses m_1 , m_2 and m_3 are .8, .6 and .5, the spring constants k_1 , k_2 , k_3 and k_4 are 4.3, 5.1, 4.6 and 5.4, the damping constants c_1 , c_2 , c_3 and c_4 are .24, .12, .20 and .16, and x_1 , x_2 and x_3 are the displacements of m_1 , m_2 and m_3 from their equilibrium positions.

Write a MATLAB program as follows:

- 1) t will go from 0 to 12 sec in steps of .001 sec.
- 2) For each of the 3 natural frequencies, plot x_1 , x_2 and x_3 versus t using using the colors blue, red and green and the t axis in black (there will be 3 figures). The figures should look like the ones on the attached sheets.

Equations

$$m_{1}\frac{d^{2}x_{1}}{dt^{2}} = -k_{1}x_{1} + k_{2}(x_{2}-x_{1}) - C_{1}V_{1} + C_{2}(v_{2}-v_{1})$$

$$m_{2}\frac{d^{2}x_{2}}{dt^{2}} = -k_{2}(x_{2}-x_{1}) + k_{3}(x_{3}-x_{2}) - C_{2}(v_{2}-v_{1}) + C_{3}(v_{3}-v_{2})$$

$$m_{3}\frac{d^{2}x_{3}}{dt^{2}} = -k_{3}(x_{3}-x_{2}) - k_{4}x_{3} - C_{3}(v_{3}-v_{2}) - C_{4}V_{3}$$